MAYNARD KONG

INVESTIGACIÓN DE OPERACIONES

Programación lineal | Problemas de transporte | Análisis de redes

Investigación de operaciones Programación lineal Problemas de transporte Análisis de redes

Maynard Kong

Investigación de operaciones

Programación lineal Problemas de transporte Análisis de redes

Investigación de operaciones Programación lineal - Problemas de transporte - Análisis de redes Maynard Kong

© Maynard Kong, 2010

De esta edición:

© Fondo Editorial de la Pontificia Universidad Católica del Perú, 2010 Av. Universitaria 1801, Lima 32, Perú

Teléfono: (51 1) 626-2650

Fax: (51 1) 626-2913 feditor@pucp.edu.pe www.pucp.edu.pe/publicaciones

Diseño, diagramación, corrección de estilo y cuidado de la edición: Fondo Editorial PUCP

Primera edición: abril de 2010

Tiraje: 500 ejemplares

Prohibida la reproducción de este libro por cualquier medio, total o parcialmente, sin permiso expreso de los editores.

Hecho el Depósito Legal en la Biblioteca Nacional del Perú Nº 2010-03265

ISBN: 978-9972-42-921-7

Registro del Proyecto Editorial: 31501361000223

Impreso en Tarea Asociación Gráfica Educativa Pasaje María Auxiliadora 156, Lima 5, Perú

Índice

Capí	tulo 1. Introducción	11
1.1.	Aplicaciones	11
1.2.	Problema de optimización	12
1.3.	Propiedades y ejemplos	12
1.4.	Programación matemática	17
1.5.	Modelo de programación matemática	19
1.6.	Problemas resueltos	22
Capí	tulo 2. Introducción a la Programación Lineal	31
2.1.	Formulación del problema de Programación Lineal	31
2.2.	Solución geométrica de problemas con dos variables de decisión	34
2.3.	Problemas propuestos	37
2.4.	Forma estándar del problema de Programación Lineal	41
2.5.	Restricciones equivalentes de la forma estándar	46
2.6.	Variables básicas y soluciones básicas factibles	48
2.7.	Problemas propuestos	53
Capí	tulo 3. El método del símplex	57
3.1.	Conceptos básicos del método del símplex	57
3.2.	Forma tabular del problema estándar	64
3.3.	Criterios del símplex. Caso máximo	66

3.4.	Problema de minimización	67
3.5.	Problemas propuestos	70
Capí	tulo 4. Método del símplex: variables artificiales.	
Conv	VERGENCIA DEL ALGORITMO	73
4.1.	Variables artificiales	73
4.2.	Problemas propuestos	80
4.3.	Convergencia del algoritmo del símplex	83
4.4.	Métodos para evitar ciclos: regla de Blands y perturbación	86
4.5.	Problemas propuestos	93
Capí	tulo 5. Problema dual	95
5.1.	Definición del problema dual	95
5.2.	Formas típicas de problemas duales	100
5.3.	Reglas para hallar el problema dual	102
5.4.	Problemas propuestos	104
5.5.	Propiedades del problema dual	106
5.6.	Problemas propuestos	112
5.7.	Vector dual de una solución básica factible	114
Capí	tulo 6. Análisis de sensibilidad post óptimo	123
6.1.	Introducción	123
6.2.	Pasos del análisis	123
6.3.	Programa ejemplo	124
6.4.	Variación de un costo fijando la solución óptima	125
6.5.	Variación del lado derecho de una restricción fijando las variables básicas	127
6.6.	Inclusión de variable	129
6.7.	Inclusión de restricción	131
6.8.	Dualidad y análisis de sensibilidad	133
6.9.	Costos reducidos y asignación de valores a variables no básicas	136
6.10.	Matriz de operaciones en la tabla final	137
6.11.	Problemas resueltos	140

Capí	Capítulo 7. Problemas de transporte y asignación			
7.1.	Introducción	153		
7.2.	Problema de transporte balanceado	155		
7.3.	Método del símplex simplificado	156		
7.4.	Problemas propuestos	174		
7.5.	Problema de transbordo	177		
7.6.	Problema de asignación	181		
7.7.	Problemas propuestos	192		
Capítulo 8. Análisis de redes				
8.1.	Introducción	197		
8.2.	Rutas en una red	199		
8.3.	Problema de ruta óptima	200		
8.4.	Problemas propuestos	203		
8.5.	Problema de flujo máximo	206		
8.6.	Problemas propuestos	213		
8.7.	Programación de proyectos	216		
8.8.	Problemas propuestos	235		
Índice alfabético 24				

Capítulo 1 Introducción

En este capítulo se introducen los conceptos básicos de la investigación de operaciones. Se define el problema de optimización y se presenta el modelo matemático de la programación matemática.

La investigación de operaciones trata el estudio y despliegue de métodos científicos para usar eficazmente los recursos. Tales métodos comprenden modelos matemáticos —y estadísticos— y diversos algoritmos que sirven para tomar decisiones en problemas relacionados con la planificación, coordinación y ejecución de operaciones en las organizaciones.

1.1 Aplicaciones

Mencionamos algunas aplicaciones de la investigación de operaciones:

- Problemas de asignación de recursos materiales y servicios: productos, mano de obra, tareas
- Procesos de planificación de personal, etapas de producción
- Administración de flujos de materias primas a través de cadenas de suministros
- Planificación de rutas, redes de telecomunicación
- Refinamiento y mezcla de sustancias o componentes, por ejemplo, petróleo
- Selección de portafolios de acciones y bonos

1.2 Problema de optimización

El problema general de optimización consiste en determinar el valor óptimo (valor máximo o valor mínimo) que una función asume sobre los elementos de un conjunto dado.

De modo preciso, dados un conjunto Xy una función que asigna a cada x de X un valor numérico f(x), se desea, para el caso de máximo, encontrar x de X que cumpla la condición:

$$f(x) \le f(x_0)$$
 para todo $x \operatorname{de} X$

y para el caso de mínimo: un x_1 de X que cumpla

$$f(x_1) \le f(x)$$
 para todo $x \operatorname{de} X$

En forma abreviada se escribe $f(x_0) = Max f(x), f(x_1) = Min f(x)$

Los elementos del conjunto X representan los recursos del problema y f(x) puede ser considerado como el valor del recurso x, por ejemplo, es un costo, un tiempo, una cantidad de producción, etc. A la función f(x) se le denomina función objetivo.

Frecuentemente, el conjunto X se especifica mediante:

- condiciones —a las que se llama restricciones— que determinan sus elementos
- algoritmos o reglas que describen cómo obtener elementos de X.

Véanse los ejemplos 1, 3 y 4.

Es posible que el problema no tenga soluciones, porque el conjunto X no tiene elementos o porque la función f(x) no puede tomar un valor máximo o mínimo.

1.3 Propiedades y ejemplos

Se cumplen las siguientes propiedades

- 1) Max(f(x) + c) = Max f(x) + c, c es una constante
- 2) Max(af(x)) = a Max f(x), a es una constante positiva

- 3) Min(bf(x)) = b Max f(x), b es una constante negativa
- 4) Min f(x) = -Max(-f(x))
- 5) Max f(x) = -Min(-f(x))

si existen los valores óptimos de los segundos miembros.

Las propiedades 4) y 5) se suelen aplicar a menudo para convertir un problema de minimización en uno de maximización y viceversa. Por ejemplo, de manera explícita, según 4) para encontrar el valor mínimo de f(x):

- se halla el valor máximo de la función -f(x), por ejemplo $-f(x_2)$
- luego se le cambia de signo, y resulta así que $f(x_2)$ es el valor mínimo buscado.

A continuación se desarrollan algunos ejemplos sencillos relativos a problemas de optimización

Ejemplo 1. Un problema de mezcla

Se desea producir una bebida mezclando jugos o zumos de naranja, toronja y mandarina. Los costos de los jugos son 3, 6 y 5 por litro, respectivamente. Se requiere que la bebida tenga al menos el 30% de toronja y no más del 25% de naranja.

Formule el problema de optimización para obtener una mezcla de bebida cuyo costo sea mínimo.

Solución

Sean n, t y m, las cantidades de naranja, toronja y mandarina, en litros, para obtener un litro de mezcla de bebida. Luego, los costos de cada componente son 3n, 6t y 5m, respectivamente, y el costo de la bebida es C = 3n + 6t + 5m.

El problema consiste en obtener el valor mínimo de C. Falta precisar las condiciones sobre las cantidades de jugos. Estas son:

1) las tres cantidades suman un litro: n + t + m = 1

Maynard Kong

- 2) la cantidad de toronja al menos es 30% de un litro: $t \ge 0.30$
- 3) la cantidad de naranja no excede el 25% de un litro: $n \le 0.25$
- y 4) las tres cantidades son evidentemente no negativas: n, t y $m \ge 0$

Así, el conjunto X sobre el cual C queda definida es X = todos los (n, t, m) tales que

$$n + t + m = 1$$

 $t \ge 0.30$
 $n \le 0.25$
 $n, t, m \ge 0$

Finalmente, el problema de optimización es Minimizar C = 3n + 6t + 5m sobre el conjunto X.

Ejemplo 2. Solución óptima del ejemplo 1 por simple inspección

Resuelva el problema de optimización del ejemplo 1, esto es, halle el costo mínimo de un litro de mezcla de bebida.

Solución

El problema es encontrar el valor mínimo de C = 3n + 6t + 5m en donde n, t y m cumplen las condiciones

$$n + t + m = 1$$

 $n \le 0.25$
 $t \ge 0.30$
 $n, t, m \ge 0$

Observamos que *n*, *t* y *m* son menores o iguales a 1.0.

El costo C será menor si se toma la menor cantidad del jugo más caro, que corresponde al de toronja; así t, que varía entre 0.30 y 1.0, debe tomar su menor valor t=0.30.

Y también C será menor si se toma la mayor cantidad posible n del jugo de naranja, pues es el más barato, y como n se encuentra entre 0.0 y 0.25, ha de tomarse n = 0.25.

El valor de m, que se halla entre 0.0 y 1.0, es lo que falta para completar el litro de mezcla, así m = 1.0 -0.30 -0.25 = 0.45.

Así, la bebida que da un litro de costo mínimo se obtiene mezclando 0.25 litros de naranja, 0.30 litros de toronja y 0.45 litros de mandarina, que tiene un costo de $3\times0.25 + 6\times0.30 + 5\times0.45 = 3.90$.

Ejemplo 3

Sea la función f(x, y) = 2x + y definida en el conjunto de los puntos (x, y), x, y números reales, que cumplen las condiciones

$$x + y = 4$$

$$x \ge 0, \quad y \ge 0$$

Determine los valores máximo y mínimo de f(x, y).

Solución

Reemplazando x + y = 4 en la función

$$f(x, y) = 2x + y = x + (x + y) = 4 + x$$

y de las relaciones dadas se observa que los valores de x varían desde 0 hasta 4 (y varía a la vez desde 4 hasta 0) de manera que el menor valor de x es 0, cuando y es 4, y por eso Max f(x, y) = 4 + 4 = 8 cuando x = 4, y = 0.

Por el mismo razonamiento se obtiene $Min\ f(x, y) = 4 + 0 = 4$ cuando x = 0, y = 4.

Ejemplo 4

Tres máquinas M_1 , M_2 y M_3 pueden realizar las tareas A, B y C. Los costos de ejecución son dados en la tabla siguiente:

	A	В	C
$M_{_1}$	8	14	15
$M_{2}^{'}$	7	15	10
M_3^-	6	17	9

Maynard Kong

¿Cómo se deben hacer las asignaciones de las tareas de manera que cada máquina realice exactamente una de las tareas y el costo total sea el menor posible?

Solución

En este caso, el conjunto de recursos consiste de todas las posibles asignaciones.

Los recursos del problema con sus respectivos costos son dados por

	Asignaciones (una columna)						
$M_{_1}$	A	A	В	В	C	C	
M_{2}	В	C	A	C	A	B	
M_3	C	В	C	A	В	A	
Costo	32	35	30	30	39	36	

en donde cada columna indica la forma de asignar las tareas a las máquinas, por ejemplo, la tercera columna asigna las tareas B, A, C a las máquinas M_1 , M_2 y M_3 , respectivamente, y el costo respectivo es 14+7+9=30, que, como puede observarse, es en verdad el mínimo.

Ejemplo 5

Pruebe que
$$Min f(x) = -Max(-f(x))$$

Solución

Sea
$$f(x_1) = Min f(x)$$
.

Entonces por definición de valor mínimo se tiene

$$f(x_1) \le f(x)$$
 para todo x de X
o $-f(x) \le -f(x_1)$ para todo x de X

de modo que $f(x_1)$ es el valor máximo de -f(x), esto es

$$-f(x_1) = Max \left(-f(x)\right)$$

o $Min f(x) = -Max \left(-f(x)\right)$

1.4 Programación matemática

Los problemas de programación matemática constituyen una parte importante de los problemas de optimización.

Un programa matemático tiene la forma

Maximizar (o minimizar)
$$y = f(x_1, x_2, ..., x_n)$$
,

sujeto a las condiciones o restricciones

en donde $f(x_1, ..., x_n)$, $g_1(x_1, ..., x_n)$, ..., $g_n(x_1, ..., x_n)$, son funciones con valores numéricos que dependen de n variables numéricas, $x_1, x_2, ..., x_n, b_1, ..., b_m$ son constantes y en cada restricción se emplea uno de los signos \leq , = , $o \geq$, lo que se indica mediante la notación $\{\leq$, = , $o \geq\}$.

El conjunto X de definición del problema está formado por todos los $x = (x_1, ..., x_n)$ que satisfacen todas las restricciones. A tales x se les llama soluciones factibles del programa o del problema, y a X, se le denomina el conjunto de soluciones factibles o región de factibilidad.

Generalmente se asume que las variables x_1 , ..., x_n son números reales. No obstante, también se consideran programas matemáticos —llamados de programación entera— en los que las variables toman solo valores enteros.

Ejemplo 1

Maximizar
$$z = x + y$$

sujeto a $x^2+y^2 \le 4$.

En este caso: z = f(x, y) = x + y, $g_1(x, y) = x^2 + y^2$, el signo es $\leq y$ la constante es $b_1 = 4$.

Ejemplo 2

Aplicando métodos geométricos, hallar la solución óptima del ejemplo anterior.

Solución

La restricción $x^2 + y^2 \le 4$ determina el disco D de radio 2 y centro en el origen.

Sea v un valor dado y consideremos la recta Lv: v = x + y

En la figura se grafican las rectas correspondientes a los valores de v = 0 y 4.

Observemos que la función objetivo f(x, y) = x + y toma el valor v sobre el disco D, si y solo si la recta Lv interseca al disco. Esto implica que se debe considerar únicamente rectas Lv que intersequen al disco. Y por otro lado, cuando se aumenta los valores de v, como de v = 0 a v = 1, la recta Lv se desplaza en el primer cuadrante alejándose del origen. En resumen, para hallar el valor de v, el valor máximo u óptimo,

hay que mover la recta hasta que sea tangente al círculo. El punto de tangencia P(a, b) tiene pendiente 1, pues el radio del origen al punto P es perpendicular a la recta, cuya pendiente es -1. Así, b=a y por estar en el círculo

$$a^2 + b^2 = 4$$
, de donde $a = \sqrt{2}$

Por tanto, la solución óptima es $(\sqrt{2}, \sqrt{2})$ y el valor óptimo es $f(\sqrt{2}, \sqrt{2}) = 2\sqrt{2}$.

Ejemplo 3

Minimizar
$$z = 5x_1 + 3x_2 + 8x_3 - 5x_4 + 100$$

sujeto a $x_1 + x_2 + x_3 + x_4 \ge 25$
 $5x_1 + x_2 \le 20$
 $5x_1 - x_2 \le 8$
 $x_3 + x_4 = 20$

y todas las $x_i \ge 0$.

Ejemplo 4

Maximizar
$$w = 2x + xy + y^2 + 5z^2$$
 sujeto a las condiciones

$$2x + y - z = 10$$
$$3y + 7x \le 25$$
$$x, y, z \ge 0$$

1.5 Modelo de programación matemática

Para resolver un problema de optimización:

- Se formula un modelo del problema mediante un programa matemático.
- 2. Se resuelve el programa matemático.

MAYNARD KONG

A partir de la definición o enunciado del problema, los pasos que usualmente se aplican para la formulación o propuesta del modelo son los siguientes:

- Se identifican la cantidad o variable de salida que se desea optimizar y las variables de decisión o de entrada x₁, x₂, ..., x_n, de las que depende y se expresa la primera como una función matemática de las últimas.
- Se determinan las condiciones, requisitos y limitaciones y se expresan mediante restricciones matemáticas que se imponen a las variables de decisión.
- Se incluyen condiciones adicionales que no aparecen de manera explícita pero que deben cumplirse en el problema real, por ejemplo, si algunas variables de decisión han de tomar valores mayores que o iguales a cero, o si deben tener valores enteros.

Una vez obtenido el modelo del programa matemático se procede a resolverlo aplicando los métodos y técnicas de optimización; esto es, hallar el valor óptimo, si existe, y una solución óptima, o algunos valores en los cuales las variables de decisión proporcionan el valor óptimo.

Ejemplo

Un establecimiento de ventas de combustible atiende las 24 horas y tiene los siguientes requerimientos mínimos de empleados para atender a los clientes:

Horas	0-4	4-8	8-12	12-16	16-20	20-24
Número de empleados	2.	4	8	6	9	4

Un empleado trabaja 8 horas consecutivas y puede ingresar al iniciarse cualquiera de los 6 períodos indicados.

Formule el modelo matemático para minimizar el menor número de empleados que se necesitan en el establecimiento.

Solución

Sea
$$x_1 = n$$
úmero de empleados que empiezan a las 0 horas (primer período)

...

 x_6 = número de empleados que empiezan a las 20 horas (último período)

Entonces n = total de empleados requeridos = $x_1 + x_2 + ... + x_6$ y las restricciones para los respectivos períodos son:

$$x_6 + x_1 \ge 2;$$

$$x_1 + x_2 \ge 4;$$

$$x_2 + x_3 \ge 8;$$

$$x_3 + x_4 \ge 6;$$

$$x_4 + x_5 \ge 6;$$

$$x_5 + x_6 \ge 4;$$

que toman en cuenta la suma de los empleados de dos períodos consecutivos, por ejemplo, en el primer período 0-4 se tiene x_6 empleados que empezaron a las 20 horas y x_1 empleados que empiezan a las 0 horas.

Además, hay que observar que las variables son enteras y mayores que o iguales a 0.

Por tanto, el modelo de programación pedido es

Minimizar
$$n = x_1 + x_2 + ... + x_6$$

sujeto a $x_6 + x_1 \ge 2$,
 $x_1 + x_2 \ge 4$;
 $x_2 + x_3 \ge 8$;
 $x_3 + x_4 \ge 6$;
 $x_4 + x_5 \ge 6$;
 $x_5 + x_6 \ge 4$;

con todas las variables enteras y no negativas.

1.6 Problemas resueltos

Problema 1

Si Max f(x) = 20 calcule

- a) Max (3 f(x) 10)
- b) Min(-5f(x))

Solución

Se tiene

- a) $Max(3f(x)-10) = 3 Max f(x)-10 = 3 \times 20 10 = 50$
- b) Min(-5f(x)) = 5Min(-f(x)) = 5(-Max f(x)) = 5(-20) = -100

Problema 2

Resuelva el problema

Maximizar
$$z = 4y - 3x$$

sujeto a $x + y = 4$
 $x \ge 1, y \ge 2$

Solución

Despejando la variable y de la restricción x+y=4 y reemplazándola en la función objetivo

$$z = 4y - 3x = 4(4 - x) - 3x = 16 - 7x$$

Falta determinar el conjunto de valores de x:

$$de x = 4 - v$$

y usando la condición $y \ge 2$ se obtiene $x \le 4 - 2 = 2$,

por lo tanto, x varía desde 1 hasta 2,

de donde resulta que z varía de 16-7(1) a 16-7(2).

Luego, el mayor valor de z es 9 y se obtiene en x = 1, y = 3.

Problema 3. Problema de la dieta

Se desea mezclar cuatro alimentos de modo que el producto resultante contenga al menos 80 unidades de proteínas, 100 unidades de carbohidratos y 25 unidades de grasa. La tabla siguiente contiene las cantidades nutricionales de los alimentos y el respectivo costo

Alimento	Proteínas	Carbohidratos	Grasas	Costo
1	20	60	12	3
2	40	30	16	2
3	50	45	8	6
4	30	30	14	4

Formule el modelo de programación matemática para obtener una mezcla de costo mínimo.

Solución

Sean x_1 , x_2 , x_3 , y x_4 , las unidades que se toman de los alimentos, respectivamente, para formar una mezcla.

Luego, el costo de la mezcla es
$$C = 3x_1 + 2x_2 + 6x_3 + 4x_4$$
.

La cantidad de proteínas que contiene la mezcla es $20x_1 + 40x_2 + 50x_3 + 30x_4$, que debe ser al menos 80, y por lo tanto se tiene la primera restricción:

$$20x_1 + 40x_2 + 50x_3 + 30x_4 \ge 80.$$

Similarmente, se establecen las restricciones para los carbohidratos y grasas:

$$60x_1 + 30x_2 + 45x_3 + 30x_4 \ge 100$$
$$12x_1 + 16x_2 + 8x_3 + 14x_4 \ge 25$$

y es obvio que todas las variables han de ser no negativas.

Así, el modelo pedido es

Minimizar
$$C = 3x_1 + 2x_2 + 6x_3 + 4x_4$$

sujeto a
$$20x_1 + 40x_2 + 50x_3 + 30x_4 \ge 80$$

 $60x_1 + 30x_2 + 45x_3 + 30x_4 \ge 100$
 $12x_1 + 16x_2 + 8x_3 + 14x_4 \ge 25$
todos los $x_i \ge 0$.

Problema 4

Se dispone de S/. 5000 para invertirlos según los dos planes de inversión A y B, que ofrecen ganancias o utilidades como se muestran en la tabla:

	Cantidad invertida					
	0	1000	2000	3000		
Utilidad de A	0	200	650	800		
Utilidad de <i>B</i>	0	250	600	900		

Los depósitos deben hacerse en cantidades múltiplos de 1000 y se puede invertir usando una parte en cada plan.

Desarrollar un modelo de programación matemático para obtener la mayor utilidad.

Solución

Sean a y b, en miles, las cantidades que se invierten en los planes A y B.

Entonces $a + b \le 5$, a y b enteros no negativos.

Las utilidades de los planes pueden expresarse mediante las funciones U y V definidas por

$$U(0) = 0.00$$
, $U(1) = 0.20$, $U(2) = 0.65$, $U(3) = 0.80$
 $V(0) = 0.00$, $V(1) = 0.25$, $V(2) = 0.60$, $V(3) = 0.90$

Por tanto, el modelo requerido es

Maximizar
$$G(a, b) = U(a) + V(b)$$

sujeto a $a + b \le 5$
 $a \ y \ b$ enteros no negativos.

Problema 5

Resuelva, por simple inspección, el problema anterior.

Solución

Para cada valor de a = 0, 1, 2, 3 calculamos el valor máximo de la ganancia:

$$G(a, b)$$
, por ejemplo, si $a=2$, $U(2)=0.65$,

$$Max G(2,b) = Max \{U(2) + V(0), U(2) + V(1), U(2) + V(2), U(2) + V(3)\}$$
$$= Max \{0.65 + 0, 0.65 + 0.25, 0.65 + 0.60, 0.65 + 0.90\} = 1.55,$$

que se obtiene en b=3.

Procediendo de esta manera se obtienen los siguientes resultados:

Max
$$G(0,b) = 0.90$$
, en $b = 3$;

$$Max G(1,b) = 1.10$$
, en $b = 3$

$$Max G(2,b) = 1.55$$
, en $b = 3$

$$Max G(3,b) = 1.40$$
, en $b = 2$

La ganancia máxima es 1.55 en miles, o 1550, y se obtiene en a = 2 y b = 3, esto es, invirtiendo 2000 en el plan A y 3000 en el plan B.

Problema 6. Problema de transporte

Se desea transportar un producto de las fábricas *A* y *B* a los locales 1 y 2. Los costos de transporte por unidad de producto son:

y las cantidades disponibles en *A* y *B* son 1500 y 2000, respectivamente, y se requieren 1800 y 1700 unidades en 1 y 2, respectivamente.

Determine un modelo de programación que minimice el costo total de transporte.

Solución

Sean a_1 y a_2 las cantidades que se envían desde A a los locales, y b_1 , b_2 , similarmente para B.

Según las cantidades disponibles se tiene

$$a_1 + a_2 = 1500$$

 $b_1 + b_2 = 2000$

y para los locales

$$a_1 + b_1 = 1800$$

$$a_2 + b_2 = 1700$$

siendo el costo de envío $C = 2a_1 + 6a_2 + 3b_1 + 5b_2$

Así, el modelo del problema es

Minimizar
$$C = 2a_1 + 6a_2 + 3b_1 + 5b_2$$

sujeto a $a_1 + a_2 = 1500$
 $b_1 + b_2 = 2000$
 $a_1 + b_1 = 1800$
 $a_2 + b_2 = 1700$

y todas las variables enteras y no negativas.

Problema 7. Problema del corte mínimo

Una fábrica de papel que produce rollos de papel A y B de papel de 6 y 9 metros de ancho, respectivamente, recibe un pedido de rollos de papel, uno de 2 metros de ancho y 800 metros de longitud y otro de 5 metros de ancho y 900 metros de longitud.

Suponiendo que los recortes de rollos del mismo ancho pueden ser pegados para satisfacer las longitudes requeridas, se desea determinar cómo deben recortarse los anchos de los rollos *A* y *B* para minimizar la cantidad de papel que se pierde.

Solución

Hay que considerar las distintas maneras de cortar los anchos de 6 y 9 en anchos de 2 y 5.

Para el rollo A,

$$6 = 2 + 2 + 2 = 3 \times 2$$
, que nos indica tres cortes de 2 sin sobrante $6 = 5 + 1$, que da un corte de 5 y sobra 1 unidad de ancho

Si a_1 y a_2 son las longitudes de los cortes de A, para cada caso, la cantidad sobrante es $0a_1 + 1a_2$ metros cuadrados.

Puesto que se trata de minimizar las cantidades sobrantes, se omiten los casos en los cuales los cortes originan partes sobrantes con valores mayores.

Y para el rollo B,

$$9 = 4 \times 2 + 1$$
, cuatro cortes de 2 y sobra 1
 $9 = 2 \times 2 + 5$, dos cortes de 2, uno de cinco y sobra 0

de donde, designando por b_1 y b_2 las longitudes de los cortes en ambos casos, la cantidad sobrante es $1b_1+0b_2$

La cantidad total de papel sobrante es $S = a_2 + b_1$ en metros cuadrados.

Los datos se muestran en la tabla:

	A	4]	3	_
clase	$a_{_1}$	a_2	$b_{_1}$	$b_2^{}$	Longitud total
1 (ancho 2)	3	0	4	2	800
2 (ancho 5)	0	1	0	1	900
sobrante	0	1	1	0	

Las longitudes totales de los rollos producidos dan lugar a las restricciones

$$3a_1 + 0a_2 + 4b_1 + 2b_2 \ge 800$$
, para la clase 1
 $0a_1 + a_2 + 0b_1 + b_2 \ge 900$, para la clase 2

Finalmente, el modelo requerido es

Minimizar
$$S = a_2 + b_1$$

sujeto a $3a_1 + 4b_1 + 2b_2 \ge 800$
 $a_2 + b_2 \ge 900$

y todas las variables son no negativas.

Problema 8. Problema de programación de producción

Un producto A requiere dos unidades del componente B y tres unidades del componente C. Los componentes se fabrican con materias primas 1 y 2, de las que se disponen 200 y 300 unidades, respectivamente. Se dispone de dos procesos de producción P y Q.

Una ejecución del proceso *P* requiere 8 y 4 unidades de las materias primas 1 y 2, respectivamente, y produce 6 unidades de *B* y 5 unidades de *C*.

Y cada corrida del proceso *Q* demanda 5 y 7 unidades de materias primas y da 4 y 8 unidades de *B* y *C*.

Formule el modelo de programación que halle cuántas veces debe ejecutarse cada proceso para obtener el máximo de unidades del producto A.

Solución

Se tiene la siguiente tabla por corrida de cada proceso

Proceso	Materia requerida (unidades)		Componente producido (unidades)	
	1	2	В	C
P	8	5	6	9
Q	5	7	4	12

Si p y q los números de veces que se ejecutan los procesos P y Q, respectivamente, se tiene:

cantidad requerida de materia 1
$$8p + 5q \le 200$$
 cantidad requerida de materia 2 $5p + 7q \le 300$

y las cantidades de componentes producidos son:

de tipo B 6p+4q, con lo que se puede completar $\frac{6p+4q}{2} = 3p+2q$ productos A y de tipo C 9p+12q, que permite completar $\frac{9p+12q}{3} = 3p+4q$ productos A

El número N de productos A resultante es el menor de estos, o sea

$$N = 3p + 2q$$

Así, el modelo es

Maximizar
$$N = 3q + 2p$$

sujeto a $8p + 5q \le 200$
 $5p + 7q \le 300$

p y q enteros no negativos.

Problema 9

En un terreno de 100 hectáreas se puede cultivar arroz y frijoles. En un año bueno, la ganancia por hectárea de arroz es 750 y la de frijoles 500; en cambio, en un año malo, las ganancias son de 210 y 360, respectivamente.

Se dedica a cada planta no más de 4/5 de hectáreas del terreno y se requiere determinar cuántas hectáreas deben cultivarse de cada producto para maximizar la ganancia total en un año bueno y asegurar que la ganancia en un año malo sea al menos de 30.000. Formule el modelo del programa.

Solución

Sean a y f las cantidades de hectáreas de arroz y frijoles a cultivar.

Entonces
$$a + f \le 100$$

 $a \le 80$, los $4/5$ de 100
 $f \le 80$

La ganancia en un año bueno es Gb = 750a + 500f y la de un año malo es Gm = 210a + 360f, que debe ser al menos 30000.

Maynard Kong

Por lo tanto, el modelo del problema es

Max
$$Gb = 750a + 500f$$

sujeto a $a + f \le 100$
 $a \le 80$
 $f \le 80$
 $210a + 360f \ge 30000$
 $a \ y \ f$ no negativas.

Capítulo 2

Introducción a la Programación Lineal

2.1 Formulación del problema de Programación Lineal

Se dice que una función numérica $f(x_1, ..., x_n)$, que depende de variables numéricas $x_1, x_2, ..., x_n$, es lineal si se expresa como una suma de múltiplos de las variables

$$f(x_1, ..., x_n) = m_1 x_1 + m_2 x_2 + ... + m_n x_n$$

en donde $m_1, m_2, ..., m_n$ son constantes.

Por ejemplo,

$$f(x_1, x_2, x_3, x_4) = 2x_1 - x_2 + 4x_3 + 6.5x_4$$

Un problema de programación lineal (PPL) tiene la forma:

Maximizar (o Minimizar)

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

sujeto a las condiciones o restricciones

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \quad \{ \leq, =, \geq \} \quad b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \quad \{ \leq, =, \geq \} \quad b_2$$

...

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \quad \{ \leq, =, \geq \} \quad b$$

. . .

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \quad \{ \leq, =, \geq \} \ b_m$$

en donde $x_1, x_2, ..., x_n$ son variables,

$$c_1, c_2, ..., c_n, a_{11}, a_{12}, ..., a_{m1}, ..., a_{mn}, b_1, b_2, ..., b_m$$
, son constantes

y en cada condición se asume uno de los signos \leq , = o \geq .

Así, tanto la función objetivo $z = z \ (x_1, ..., x_n)$ como las funciones que definen los miembros izquierdos de las condiciones o restricciones son funciones lineales de las variables de decisión $x_1, x_2, ..., x_n$.

En este caso, a las constantes c_1 , c_2 , ..., c_n de la función objetivo se les suele denominar costos o coeficientes de costos.

Se llama solución factible a cualquier colección de valores $x_1, x_2, ..., x_n$ que cumplan todas las restricciones. El problema consiste en determinar el mayor z_{\max} (o menor z_{\min}) de los valores de la función objetivo z ($x_1, x_2, ..., x_n$), evaluada sobre todas las soluciones factibles y, desde luego, indicar una solución óptima, esto es, una solución factible que produzca ese valor.

Ejemplos

1. Maximizar
$$z = 4x_1 + 5x_2$$

sujeto a $3x_1 - 4x_2 \le 30$
 $-x_1 + 6x_2 \ge 20$
 $x_1 \ge 3$;

El valor máximo de z es 164 y se obtiene en la solución óptima $x_1 = 26, x_2 = 12.$

2. Maximizar
$$z = -13x_1 + 8x_2 + 20x_3$$

sujeto a $2x_1 + x_2 + 4x_3 = 80$
 $x_1 - 3x_2 + 5x_3 \ge 100$
 $x_1 \ge 0$
 $x_2 \ge 0$

En este caso $z_{\text{max}} = 400$ en $x_1 = 0$, $x_2 = 0$, $x_3 = 20$.

3. Minimizar
$$z = 20x_1 - x_2 + 4x_3 - 5x_4$$

sujeto a $x_1 + x_2 + x_3 + x_4 = 10$
 $x_2 + 2x_4 \le 5$;
y todas las variables ≥ 0 .

El valor óptimo es $z_{\min} = 15$ y se alcanza en $x_1 = 0$, $x_2 = 5$, $x_3 = 5$, $x_4 = 0$.

4. Minimizar
$$z = 6x_1 - 10x_2 + 4x_3 - 6x_4$$

sujeto a $x_1 + 3x_3 \le 30$
 $x_2 - 4x_3 + 2x_4 \ge -4$
todas las variables no negativas.

En este problema el valor mínimo no existe, pues, si se asigna a las variables de decisión

$$x_1 = 0, x_2 = t + 36, x_3 = 10, x_4 = 0$$
, cualquier $t \ge 0$,

se comprueba que estas son soluciones factibles (cumplen todas las restricciones) en las que la función objetivo vale

$$z = z(t) = -10t + 320$$

y, por lo tanto, adquiere un valor menor que cualquier número que se precise (en notación de límites: z(t) tiende a $-\infty$ cuando t tiende a $+\infty$).

5. Minimizar:
$$z = 6x_1 - 10x_2 + 4x_3 - 6x_4$$

sujeto a $x_1 + 3x_3 \le 30$
 $x_2 - 4x_3 + 2x_4 \ge -4$
 $x_3 \ge 12$
 $x_1 \ge 0$

El problema no tiene soluciones factibles, pues las restricciones son incompatibles o inconsistentes. En efecto, de las dos últimas restricciones se obtiene la desigualdad

$$x_1 + 3x_2 \ge 0 + 3 \times 12$$
 ó $x_1 + 3x_2 \ge 36$

que contradice a la primera restricción $x_1 + 3x_3 \le 0$.

2.2 SOLUCIÓN GEOMÉTRICA DE PROBLEMAS CON DOS VARIABLES DE DECISIÓN

Los problemas de programación lineal con dos variables de decisión y un número reducido de restricciones pueden ser resueltos gráficamente por métodos geométricos sencillos utilizando un plano cartesiano cuyos ejes de coordenadas son las variables de decisión. Allí se trazan la región factible y algunas rectas asociadas a la función objetivo que permiten determinar en qué puntos esta obtiene su valor óptimo, cuando existe.

Este método muestra gráficamente dos propiedades de los problemas de programación lineal:

- 1) el conjunto factible es un polígono, esto es, una región del plano limitada por rectas
- 2) si la función objetivo tiene óptimo, entonces este se alcanza en uno de los vértices del polígono.

y por lo tanto para encontrar una solución óptima es suficiente calcular los vértices y evaluar la función objetivo en estos.

Además, si el polígono es cerrado —sus lados forman una poligonal cerrada— la función objetivo siempre tiene valor óptimo.

El siguiente ejemplo ilustra el procedimiento que se aplica en estos casos.

Ejemplo 1

Resuelva geométricamente el problema

Maximizar z = 2x+3y sujeto a las restricciones

$$(1) -3x + 2y \le 6$$

(2)
$$2x + y \le 10$$

$$(3) 2x - y \le 6$$

$$(4) x \ge 0$$

$$(5) y \ge 0.$$

Solución

Trazamos la región factible R

R es el polígono cerrado con vértices los puntos A, B, C, D y el origen del sistema. Se hallan los conjuntos R_1 , ..., R_5 de puntos que satisfacen las restricciones (1)-(5), respectivamente. Por ejemplo, para determinar R_1 que corresponde a (1) – $3x + 2y \le 6$ se traza la recta dada por la ecuación – 3x + 2y = 6, que resulta de sustituir el signo de desigualdad por el de igualdad, y en la figura es la recta que pasa por los puntos A y B. Esta recta divide al plano en dos semiplanos, determinados por las desigualdades

 $-3x + 2y \le 6$, semiplano inferior

y $-3x + 2y \ge 6$, semiplano superior.

Para saber cuál de los semiplanos es R_1 basta seleccionar arbitrariamente un punto fuera de la recta, y comprobar cuál de las dos desigualdades satisface. Por ejemplo, el punto (0,0) satisface la primera desigualdad, que es la restricción tratada, y por lo tanto, R_1 es el semiplano que contiene a (0,0), o el semiplano inferior o debajo de la recta. La región factible R es la intersección de los semiplanos obtenidos.

A continuación se analiza cómo varía la función objetivo z = 2x + 3y respecto del conjunto factible R. Con este propósito se fija un valor constante v y se considera la recta z = v = 2x + 3y, que es el conjunto de puntos (x, y) en los cuales la función z vale v.

Todas las rectas así obtenidas son paralelas. Para apreciar el comportamiento de la función objetivo se trazan las rectas (paralelas) correspondientes a dos valores distintos de v. En la figura, se muestran las rectas z = -3 = 2x + 3y y z = 18 = 3x + 3y.

Ahora se observa que para que la función objetivo tome un valor v se requiere que la recta asociada interseque la región poligonal R y además cuando v aumenta, por ejemplo de -3 a 18, la recta z = v = 2x + 3y se desplaza paralelamente de izquierda a derecha. Así, por simple inspección se concluye que el valor máximo de z se alcanza en el vértice B(2,6) y por lo tanto $z_{max} = v = 2(2) + 3(6) = 20$.

A veces es un tanto complicado apreciar directamente cuál es el vértice de valor óptimo y en estos casos simplemente se evalúa la función objetivo en los vértices vecinos y se comparan estos valores.

Ejemplo 2

Determine los valores máximo y mínimo de la función z = z(x,y) = 10x-3y sujeta a las restricciones del ejemplo anterior.

Solución

Puesto que la región factible es un polígono cerrado es suficiente evaluar la función en los vértices del polígono:

$$z (0,0) = 0$$

$$z (0,3) = -3$$

$$z (2,6) = -18$$

$$z (4,2) = 34$$

$$z (3,0) = 30$$

de donde
$$z_{\text{max}} = 34$$
 en $x = 4$, $y = 2$, $y z_{\text{min}} = -18$ en $x = 2$, $y = 6$.

2.3 Problemas propuestos

Problema 1

Resuelva por métodos geométricos el problema

Maximizar
$$z = 4x - 2y$$

sujeto a $x + 6y \le 28$
 $3x - 4y \le 7$
 $y \ge 2$
 $5x + 2y \ge 14$

Halle todos los vértices del polígono de soluciones factibles.

Respuesta

$$z_{max} = 21$$
 en $x = 7$, $y = 3.5$.
Los vértices son $(1, 4.5)$, $(7, 3.5)$, $(5, 2)$ y $(2, 2)$

Problema 2

Resuelva gráficamente el problema

Minimizar
$$z = x + y$$

sujeto a $4x + 3y \ge 19$
 $3x - 2y \ge -7$
 $x - 2y \le 2$

Respuesta

$$z_{\min} = 5$$
 en $x = 4$, $y = 1$.

Problema 3

Resuelva el problema

Minimizar
$$z = x - y$$
 sujeto a las restricciones del problema 3.

Respuesta

La función objetivo no tiene mínimo pues las rectas z=v=x-y, paralelas a la diagonal y=x, intersecan al polígono factible para cualquier valor negativo de v, que es lo que se observa cuando la diagonal se desplaza paralelamente de izquierda a derecha.

Problema 4

El siguiente es el modelo de programación del problema 9, Capítulo 1, 1.6:

Max
$$Gb = 750a + 500f$$

sujeto a $a+f \le 100$
 $a \le 80$
 $f \le 80$
 $210a + 360f \ge 30000$
 $a y f$ no negativas.

Por métodos geométricos encuentre cuántas hectáreas del terreno deben dedicarse a cada cultivo para obtener la mayor ganancia en un buen año.

Respuesta

$$f = 60$$
, $a = 40$, ganancia máxima = 60000

Problema 5

Resuelva el problema

Maximizar
$$6x_1 + 4x_2$$

sujeto a $-2x_1 + x_2 \le 1$
 $x_1 \le 2$
 $x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$.

Respuesta

Máximo = 16 en
$$x_1$$
=2, x_2 =1.

Problema 6

Determine el valor mínimo de $z=10x_1 + 3x_2$

sujeto a
$$x_1+x_2 \ge c$$

 $x_1 \le 6$
 $x_1 \ge 2$
 $x_2 \le 12$
 $x_2 \ge 1$

en cada caso siguiente:

- a) cuando c = 10,
- b) cuando c = 20.

Respuesta

- a) c = 10: mínimo = 44 en $x_1 = 2$, $x_2 = 8$
- b) c = 20: el problema no tiene soluciones

Problema 7

Halle el valor máximo de
$$z = -2x_1 + x_2$$

sujeto a $x_1 + x_2 \ge 10$
 $-10x_1 + x_2 \le 10$
 $-4x_1 + x_2 \le 20$
 $x1 + 4x2 \ge 20$
 $x1, x2 \ge 0$.

Respuesta

No existe valor máximo pues la función *z* toma valores arbitrariamente grandes.

Problema 8

Resuelva el problema Max
$$z=z(x,y)=$$
 mínimo $\{2x+y, x+2y\}$ sujeto a las condiciones $2x-5y \ge -10$ $2x-y \le 6$ $x, y \ge 0$.

Indicación

Este problema no tiene la forma de un problema de programación lineal pues la función objetivo no es lineal. No obstante, de la definición de la función se tiene

$$z = z(x,y) = 2x + y$$
 si $2x+y \le x+2y$, o $x-y \le 0$
y $z = z(x,y) = x + 2y$ si $2x+y \le x+2y$, o $x-y \ge 0$

y por lo tanto agregando sucesivamente las restricciones $x - y \le 0$, $x - y \ge 0$ el problema se descompone en los subproblemas lineales:

(P1)
$$\text{Max } z_1 = 2x + y$$
sujeto a
$$2x - 5y \ge -10$$

$$2x - y \le 6$$

$$x, y \ge 0$$

$$x - y \le 0$$

(P2) Max
$$z_2 = x+2y$$

sujeto a $2x - 5y \ge -10$
 $2x - y \le 6$
 $x, y \ge 0$
 $x-y \ge 0$

El valor máximo del problema inicial es el máximo de los valores óptimos de estos subproblemas.

Geométricamente, mediante la recta *y=x*, se ha dividido el polígono factible en dos subpolígonos sobre los cuales la función objetivo adquiere una expresión lineal.

Respuesta

- (P1) tiene máximo 10 en x = 10/3, y = 10/3
- (P2) tiene máximo 13 en x = 5, y = 4

El valor máximo del problema es el de (P2), esto es, 13 en x = 5, y = 4.

Problema 9

Resuelva el problema Max $z = z(x,y) = \text{máximo } \{2x + y, x + 2y\}$ sujeto a las restricciones del problema 8.

Respuesta

El valor óptimo es 14 en x = 5, y = 4.

2.4 Forma estándar del problema de Programación Lineal

Se dice que un problema de programación lineal tiene la forma estándar si

- (1) todas las variables de decisión son no negativas,
- y (2) las (restantes) restricciones son de igualdad con constantes no negativas en el lado derecho.

De manera explícita, el problema dado en forma estándar es

Maximizar (o Minimizar)
$$z = c_1 x_1 + c_2 x_2 \dots + c_n x_n$$

sujeto a $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$
 $a_{21}x_2 + a_{22}x_2 + \dots + a_{2n}x_2 = b_2$
...
 $a_{m1}x_2 + a_{m2}x_2 + \dots + a_{mn}x_m = b_m$

 $x_1, x_2, ..., x_n$ son no negativas y las constantes $b_1, b_2, ..., b_m$ son no negativas.

2.4.1 Ejemplos

Tienen la forma estándar los siguientes problemas:

1) Maximizar
$$z=3x+5y-z$$

sujeto a $-x+2y+6z=20$
 $4y-z=0$
 $x, y, z \ge 0$.

2) Minimizar
$$z=x_1 + x_2 - 3x_3 + 2x_4$$

sujeto a $x_1 + x_2 + x_3 + x_4 = 25$
 $x_1 + 3x_2 - 2x_3 + 7x_4 = 6$
 $x_1 + 4x_3 - 4x_4 = 16$
y todas las variables son no negativas.

2.4.2 Importancia de la forma estándar

Cualquier problema de programación lineal expresado en forma estándar puede ser resuelto por el método del símplex debido a George Dantzig.

Como se verá a continuación, si un problema de programación lineal no es dado en la forma estándar, este puede transformarse en uno que tiene esta forma y el mismo valor óptimo y, además, cuyas soluciones óptimas dan lugar a soluciones óptimas del problema inicial.

Así, para resolver un problema de programación lineal

- (1) si es necesario, se transforma en uno equivalente que tiene la forma estándar
- y (2) se resuelve en la forma estándar y se obtienen las soluciones del problema dado.

PPL GENERAL \rightarrow PPL ESTÁNDAR \rightarrow SÍMPLEX \rightarrow SOLUCIÓN

2.4.3 Conversión a la forma estándar

Las operaciones para llevar un problema de programación lineal a la forma estándar son las siguientes:

 Si es negativo el término constante del lado derecho de una restricción, se intercambian los dos miembros; esto equivale a cambiar de signo a todos los términos en ambos lados de la restricción y, adicionalmente, cuando la restricción es de desigualdad, a invertir el sentido de la desigualdad. Es decir, si la restricción es

si
$$a_{i1}x_1 + ... + a_{in}x_n$$
 $\{\leq, =, o \geq\}$ en donde b_i es negativo

entonces

$$-(a_{i1}x_1 + ... + a_{in}x_n) \quad \{\leq, =, o \geq\} -b_i$$

con $-b_i$ positivo y, cuando se aplique, con el signo de desigualdad invertido.

Se indican algunos ejemplos:

restricción	restricción transformada con término constante no negativo
$3x - y + 2z \le -5$	$-3x + y - 2z \le 5$
$3x - y + 2x \le -5$	$-3x + y - 2x \le 5$
$3x - y + 2z \le -5$	$-3x + y - 2z \le 5$

2) Una restricción, de desigualdad con signo ≤, puede ser reemplazada por una de igualdad si se suma una variable no negativa al lado izquierdo para convertirla en una de igualdad:

si
$$a_{i1}x_1 + ... + a_{in}x_n \le b_i$$

entonces
$$a_{i1}x_1 + ... + a_{in}x_n + h_i = b_i,$$

con h_i no negativa

Esta variable se llama variable de holgura (por defecto).

Por ejemplo, la restricción $-3x + y - 2z \le 5$

se reemplaza por

$$-3x + y - 2z + h_1 = 5$$
$$h_1 \ge 0$$

3) Una restricción de desigualdad con signo ≥ puede ser reemplazada por una de igualdad si se resta una variable no negativa al lado izquierdo para convertirla en una de igualdad:

si
$$a_{i1}x_1 + ... + a_{in}x_n \le b_i$$

entonces
 $a_{i1}x_1 + ... + a_{in}x_n - h_i = b_i$

con h_i no negativa.

Esta variable se llama variable de holgura (por exceso o superávit)

Por ejemplo, la restricción $-3x + y - 2z \ge 5$

se reemplaza por

$$-3x + y - 2z + h_2 = 5$$
$$h_2 \ge 0$$

Las operaciones (1), (2) y (3) no modifican la función objetivo.

4) Una variable irrestricta, lo cual significa que puede tomar valores negativos y positivos, puede ser reemplazada por la diferencia de dos variables no negativas.

Si x_2 es irrestricta, entonces se escribe x_2 = u-v con dos nuevas variables u y v no negativas.

5) Una variable *x* no positiva, esto es, menor que o igual a cero, puede ser reemplazada por una variable no negativa precedida del signo menos, es decir, se efectúa el cambio de variable

x = -u, en donde u es no negativa.

La sustitución de una variable irrestricta o una no positiva se realiza tanto en las restricciones como en la función objetivo.

Ejemplo 1

Exprese en forma estándar el problema

Minimizar
$$x + 2y - z + 4w$$

sujeto a $x + y \le 10$
 $2x + y + 3z \le 18$
 $z + w \ge 14$
 x, y, z no negativas
 w irrestricta.

Solución

No es necesario cambiar de signo a ninguna restricción pues todas ya tienen términos constantes no negativos.

Sumando las variables de holguras h_1 , h_2 a las dos primeras restricciones y restando la variable de holgura h_3 a la tercera restricción

$$x + y + h_1 = 10$$

 $2x + y + 3z + h_2 = 18$
 $z + w - h_3 = 14$

Luego, reemplazando la variable irrestricta w por $w=w_1$ - w_2 en la función objetivo y en las restricciones, se obtiene la forma estándar

Minimizar
$$x + 2y - z + 4w_1 - 4w_2$$

sujeto a $x + y + h_1 = 10$
 $2x + y + 3z + h_2 = 18$
 $z + w_1 - w_2 - h_3 = 14$
con todas las variables no negativas.

Ejemplo 2

Escriba en forma estándar el problema

Maximizar
$$z = 2x_1 - 4x_2 + 5x_3 - 3x_4$$

sujeto a las restricciones
$$x_1 - x_2 + 5x_3 \ge -12$$
$$-3x_1 + 4x_2 + 2x_4 = -8$$
$$x_1 + x_2 - 2x_3 + x_4 - 5x_5 \ge 4$$

 x_1 es no positiva y las demás variables no negativas.

Solución

La primera restricción se convierte en

$$-x_1 + x_2 - 5x_3 + h_1 = 12$$

después de cambiar los signos de los términos y el signo de la desigualdad y de sumar la variable de holgura h_1 . A la segunda restricción se le cambian los signos de los términos y a la tercera restricción se le resta la variable de holgura h_3 .

Puesto que x_1 es no positiva, se reemplaza x_1 = - u, en donde u es una variable no negativa. Así, la forma estándar es

Maximizar
$$z = -2u - 4x_2 + 5x_3 - 3x_4$$

sujeto a las restricciones
 $-u + x_2 - 5x_3 + h_1 = 12$
 $-3u - 4x_2 - 2x_4 = 8$
 $-u + x_2 - 2x_3 + x_4 - 5x_5 - h_3 = 4$
con todas las variables no negativas.

2.5 Restricciones equivalentes de la forma estándar

El conjunto de restricciones de igualdades de la forma estándar

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{i1}x_2 + a_{i2}x_2 + \dots + a_{in}x_2 = b_2$$

$$\dots$$

$$a_{m1}x_2 + a_{m2}x_2 + \dots + a_{mn}x_m = b_m$$

es un sistema de ecuaciones lineales con m ecuaciones y n incógnitas $x_1, x_2, ..., x_n$, y una solución factible es, en particular, una solución de este sistema.

Una ventaja de esta representación se refiere a la posibilidad de modificar o reemplazar estas ecuaciones por otras de manera que las soluciones son las mismas y las nuevas restricciones son más adecuadas para resolver el problema.

Las soluciones del sistema se preservan cuando

(1) una ecuación se multiplica por una constante k distinta de cero; en efecto, son equivalentes las ecuaciones

$$a_{i1} x_1 + ... + a_{in} x_n = b_i$$

y
$$ka_{i1} x_1 + ... + ka_{in} x_n = kb_i$$

o (2) se suma, o resta, *d* veces una ecuación a otra, ya que, cuando *i*, *j* son distintos, las dos ecuaciones

$$a_{i1} x_1 + \dots + a_{in} x_n = b_i$$

 $a_{j1} x_1 + \dots + a_{jn} x_n = b_j$

son equivalentes a las ecuaciones

$$a_{i1} x_1 + ... + a_{in} x_n = b_i$$

 $(a_{i1} + da_{i1}) x_1 + ... + (a_{in} + da_{in}) x_n = b_i + db_i$

Estas operaciones son las que se aplican para resolver sistemas de ecuaciones lineales por el método de eliminación de Gauss.

Ejemplo

Sea el problema

Maximizar z = 3x + 4y sujeto a las restricciones

$$-x + 2y + u = 6$$

$$2x + y + v = 8$$

x, y, u, v no negativas.

- (1) Mediante las operaciones indicadas obtenga restricciones equivalentes de manera que cada una contenga solo una de las variables x, y.
- (2) Determine la expresión de la función objetivo que resulta de reemplazar las variables *x*, *y* despejadas de las ecuaciones.
- (3) Encuentre el valor máximo de z.

Solución

(1) Se elimina la variable *y* de la primera ecuación restándole 2 veces la segunda ecuación:

$$-5x + u - 2v = -10$$
 o $x - 0.2u + 0.4v = 2$

Similarmente, se elimina *x* de la segunda ecuación sumándole 2 veces la primera ecuación:

$$5y + 2u + v = 20$$
 o $y + 0.4u + 0.2v = 4$

Luego, las nuevas ecuaciones o restricciones son

$$x - 0.2u + 0.4v = 2$$
$$y + 0.4u + 0.2v = 4$$

y todas las variables no negativas.

(2) Despejando las variables de las ecuaciones obtenidas y reemplazando en la función objetivo z = 3x + 4y

se tiene
$$z = 3(2 + 0.2u - 0.4v) + 4(4 - 0.4u - 0.2v)$$

 $z = 22 - u - 0.4v$

(3) De z = z(x, y, u, v) = 22 - u - 0.4v

se tiene $z \le 22$ pues u y v son no negativas.

Luego, haciendo u=v=0 en las ecuaciones de la parte (1) se obtiene x=2, y=4, y por lo tanto se encuentra la solución factible x=2, y=4, u=0, v=0, en la que la función objetivo vale 22. Así, se cumple $z(x, y, u, v) \le 22 = z(2,4,0,0)$

y esto demuestra analíticamente que 22 es el valor máximo.

2.6 VARIABLES BÁSICAS Y SOLUCIONES BÁSICAS FACTIBLES

Sea el sistema de ecuaciones lineales

$$a_{11} x_1 + \dots + a_{1n} x_n = b_1$$

 $a_{21} x_1 + \dots + a_{2n} x_n = b_2$
...
 $a_{m1} x_1 + \dots + a_{mn} x_n = b_m$

dadas por las restricciones de igualdad de la forma estándar.

Si el sistema es compatible, esto es, tiene soluciones, se puede asumir que el número m de ecuaciones es menor que o igual al número n de variables, ya que si m>n aplicando las operaciones con las ecuaciones, descritas en la sección anterior, se encuentra que hay al menos m-n ecuaciones redundantes y por lo tanto pueden eliminarse del sistema.

Así, en lo que sigue asumiremos $m \le n$.

Se dice que *m* variables son básicas si el sistema puede ser escrito de manera que cada ecuación contiene solamente una de ellas. Las *n-m* variables restantes se denominan no básicas, para distinguirlas de las anteriores.

De modo explícito, renombrando las variables y reordenando las ecuaciones si es necesario, las variables $x_1, ..., x_m$, son básicas si el sistema de ecuaciones puede ser escrito, o convertido, en uno de la forma

$$x_1 + a_{1, m+1} x_{m+1} + \dots + a_{1, n} x_n = b_1$$

...
 $x_m + a_{m, m+1} x_{m+1} + \dots + a_{1, n} x_n = b_m$

de modo que tales variables aparecen (con coeficientes 1) exactamente una vez en las distintas m ecuaciones y dependen de las variables no básicas $x_{m+1}, ..., x_n$.

Haciendo cero cada variable no básica en el sistema se obtiene la solución factible

$$x_1 = b_1, ..., x_m = b_m, x_{m+1} = 0, ..., x_n = 0$$

que se denomina solución básica factible correspondiente a las variables básicas.

2.6.1 Cálculo de soluciones básicas factibles

Una manera directa de determinar soluciones básicas factibles es hacer *n-m* variables iguales a cero y resolver el sistema resultante. Si este tiene una única solución con valores no negativos, entonces

- (1) estos valores juntos con los ceros de las variables anuladas forman una solución básica factible
- y (2) son básicas las variables del sistema resuelto.

Ejemplo 1

Halle las soluciones básicas factibles del conjunto de restricciones

$$x + 2y - 3z = 10$$

 $2x + 5y - 6z = 23$.

Solución

En este caso m=2, n=3, de manera que hay que anular n-m=1 variable.

- (1) Si x=0 y se resuelve el sistema
 - 2y 3z = 10
 - 5y 6z = 23

se encuentra la solución única y = 3, z = -4/3

y por lo tanto x=0, y=3, z=-4/3 es una solución básica.

Sin embargo, no es factible pues la variable z tiene un valor negativo.

- (2) Haciendo y = 0, el sistema resultante es
 - x 3z = 10
 - 2x 6z = 23

que no tiene solución pues restando 2 veces la primera ecuación de la segunda se obtiene la contradicción 0 = 3.

- (3) Haciendo z = 0, se resuelve el sistema
 - x + 2y = 10
 - 2x + 5y = 23

que tiene única solución x = 4, y = 3.

Luego, x=4, y=3, z=0 es una solución básica factible con variables básicas x, y.

En resumen, para las restricciones dadas solamente hay una solución básica factible: x=4, y=3, z=0 con variables básicas x, y.

Ejemplo 2

Encuentre las soluciones básicas factibles de las restricciones

$$2x_1 + x_2 - x_3 + x_4 = 2$$
$$4x_1 + 2x_2 - 2x_3 + x_4 = 4$$

Solución

En este caso se deben anular 4-2=2 variables y resolver las ecuaciones para las variables restantes.

Se analizan los casos posibles

(1)
$$x_1 = 0$$
, $x_2 = 0$,
el sistema es $-x_3 + x_4 = 2$
 $-2x_3 + x_4 = 4$
de donde $x_3 = -2$, $x_4 = 0$
y la solución es básica pero no es factible.

(2)
$$x_1 = 0$$
, $x_3 = 0$
para el sistema $x_2 + x_4 = 2$
 $2x_2 + x_4 = 4$
se halla $x_2 = 2$, $x_4 = 0$
y, por lo tanto, la solución $x_1 = 0$, $x_2 = 2$, $x_3 = 0$, $x_4 = 0$ es básica factible.

(3)
$$x_1 = 0$$
, $x_4 = 0$
resolviendo el sistema $x_2 - x_3 = 2$
 $2x_2 - 2x_3 = 4$

se observa que tiene infinitas soluciones (la segunda ecuación se obtiene de la primera).

Así, no se obtiene una solución básica.

Los restantes casos

$$(4) x_2 = 0, x_3 = 0$$

$$(5) x_2 = 0, x_4 = 0$$

$$(6) x_3 = 0, x_4 = 0$$

se tratan de modo similar; en (4) y (5) se hallan soluciones básicas factibles y en (6) no, pues tiene infinitas soluciones.

La siguiente tabla muestra los resultados de los cálculos.

_	CASOS	VAR. BÁSICAS	SOLUCIÓN BÁSICA FACTIBLE
	$x_1 = 0, x_3 = 0$	x_{2}, x_{4}	$x_1 = 0, x_2 = 2, x_3 = 0, x_4 = 0$
	$x_2 = 0, x_3 = 0$	x_{1}, x_{4}	$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$
	$x_2 = 0, x_4 = 0$	x_{1}, x_{3}	$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$

Así, este conjunto de restricciones tiene dos soluciones básicas factibles.

Ejemplo 3

Dado el conjunto de restricciones

$$-x + 2y \le 6$$

$$2x + y \le 8$$

x,y no negativas

- (a) calcule los vértices del polígono que representa la región factible en el plano XY,
- (b) obtenga la forma estándar del conjunto de restricciones y determine las soluciones básicas factibles,
- (c) muestre que a cada vértice del polígono le corresponde una solución básica factible de la forma estándar.

Solución

- (a) El polígono en cuestión es el cuadrilátero limitado por las rectas -x+2y=6, 2x+y=8, x=0 y=0. Los vértices son los puntos (0,0), (0,3), (2,4) y (4,0).
- (b) La forma estándar de las restricciones se obtiene sumando una variable de holgura a cada restricción de igualdad

$$-x + 2y + h_1 = 6$$

 $2x + y + h_2 = 8$

y las soluciones básicas son

VARIABLES BÁSICAS

SOLUCIÓN

(2)
$$x, h_1, x = 4, y = 0, h_1 = 10, h_2 = 0$$

(3)
$$y, h_2$$
 $x = 0, y = 3, h_1 = 0, h_2 = 5$

(4)
$$h_1, h_2, x = 0, y = 0, h_1 = 6, h_2 = 8$$

(c) Según (a) los vértices del polígono factible son

$$x = 0, y = 0$$

 $x = 0, y = 3$
 $x = 2, y = 4$
 $x = 4, y = 0$

y estos están en correspondencia con las soluciones básicas factibles indicadas por (4),(3),(1) y (2), respectivamente.

2.6.2 Importancia de las soluciones básicas factibles

Se demuestra que el valor óptimo del problema lineal estándar se obtiene necesariamente en una solución básica factible.

Por esta razón, la búsqueda del valor óptimo sobre la región factible se restringe al conjunto de las soluciones básicas factibles, que es finito.

Esta propiedad puede comprobarse cuando se resuelven gráficamente los problemas de programación lineal con dos variables de decisión, para los cuales, como se ha visto, las soluciones óptimas se ubican en algunos de los vértices del polígono factible. El ejemplo anterior muestra que los vértices son precisamente las soluciones básicas de la forma estándar del problema. Así, geométricamente, las soluciones básicas factibles son los vértices de la región factible, en el caso de dos variables.

2.7 Problemas propuestos

Problema 1

Exprese en forma estándar el problema

Maximizar
$$z = 2x_1 + 8 x_2$$

sujeto a $x_1 - 10x_2 \ge 8$
 $9x_1 + 15 x_2 \le 80$
y $x_1, x_2 \ge 0$.

Solución

Las restricciones son

$$x_1 - 10 x_2 - h_1 = 8$$

 $9x_1 + 15x_2 + h_2 = 80$
con todas las variables no negativas.

Problema 2

Halle la forma estándar de

Minimizar
$$z = 2x + y - u + 4v$$

sujeto $a - x + y \ge -6$
 $y - u \ge 4$
 $x + y + v = 10$
 $x, u, u \ge 0$
 y la variable y irrestricta.

Solución

Maximizar
$$z = 2x + y_1 - y_2 - u + 4v$$

sujeto a $x - y + h_1 = 6$
 $y - u - h_2 = 6$
 $x + y_1 - y_2 + v = 10$
y todas las variables no negativas en donde se ha reemplazado
 $y = y_1 - y_2$, diferencia de variables no negativas.

Problema 3

Considere el problema

Maximizar
$$z = 2x_1 + 4x_2 + 6x_3 - 2x_4$$

sujeto a $x_1 + x_2 \le 4$
 $x_1 \ge -3$
 $x_1 \le 0$
 $x_2 \ge 0$

Exprese el problema en la forma estándar.

Respuesta

Maximizar
$$z = -2u + 2x_2 + 6x_3 - 2x_4$$

sujeto a $-u + x_2 + h_1 = 4$
 $u - h_2 = 3$

todas las variables no negativas.

Puesto que x_1 es no positiva se ha hecho el cambio de variable x_1 =-u, de modo que u es una variable no negativa.

Problema 4

Sea el conjunto de restricciones

$$x_1 + 5x_2 + 4x_3 + 8x_4 - x_5 = 8$$

 $x_1 + 6x_2 + 2x_3 + 4x_4 - x_5 = 4$

halle todas las soluciones básicas factibles y las variables básicas correspondientes.

Respuesta

So	olucione	s básica	variables básicas		
x_1	x_2	x_3	x_4	x_5	asociadas
0	0	2	0	0	$\overline{x_1, x_3}$
0	0	0	1	0	x_{1}, x_{4}
0	0	2	0	0	x_{2}, x_{3}
0	0	0	1	0	x_{2}, x_{4}
0	0	2	0	0	x_{3}, x_{5}
0	0	0	1	0	x_4, x_5

Hay dos soluciones básicas factibles y seis pares de variables básicas.

Problema 5

Sea el conjunto de restricciones

$$x-y+2z-u=5$$

2x+y-z-2u=1
4x+3y+z-3u=13.

Determine si las siguientes variables son básicas y halle la solución básica factible correspondiente en cada uno de los casos

- (1) x, y, z
- (2) y, z, u

Respuesta

- (1) Haciendo u = 0 y resolviendo las ecuaciones se encuentra x = 1, y = 2, z = 3, u = 0, que es una solución básica factible, y las variables x, y, z son básicas.
- (2) Haciendo x = 0, el sistema tiene solución pero la variable u toma un valor negativo. Las variables no son básicas.

Problema 6

Sea el problema

Maximizar
$$z = 3x_1 + 2x_2$$

sujeto a $2x_1 + x_2 + x_3 = 45$
 $x_1 + 8x_2 + x_4 = 150$
y todas las variables no negativas.

- (1) Pruebe que las variables x_1 , x_2 son básicas hallando la solución básica respectiva.
- (2) Exprese la función objetivo en términos de las variables no básicas x_3 , x_4 , y pruebe que la solución básica hallada es óptima.

Respuesta

(1) La solución básica es $x_1 = 14$, $x_2 = 17$, $x_3 = 0$, $x_4 = 0$;

$$(2) \ z = 76 - \frac{x_3 + 22x_4}{15}$$

Capítulo 3 El método del símplex

3.1 Conceptos básicos del método del símplex

El método del símplex es un procedimiento para hallar una solución óptima de una programación lineal estándar en el conjunto de soluciones básicas factibles.

El método se aplica a un problema estándar para el que ya se dispone de una solución básica factible y su correspondiente conjunto de variables básicas.

A continuación se introducen los conceptos básicos del método del símplex por medio de ejemplos sencillos.

Ejemplo 1. Criterio de máximo

Sea el problema

Maximizar
$$z = x_1 - 9x_2 - x_3 + 5x_4$$

sujeto a $3x_1 - 3x_2 + x_3 = 15$
 $x_1 - 2x_2 + x_4 = 20$

y todas las variables no negativas.

El primer paso es determinar un conjunto de variables básicas del sistema de restricciones. En este problema, por simple inspección se observa que x_3 y x_4 son variables básicas, pues cada una está en una

ecuación distinta y con coeficiente 1, y la solución básica factible es $x_1 = 0$, $x_2 = 0$, $x_3 = 15$, $x_4 = 20$ en la cual la función objetivo tiene el valor $z_0 = 85$.

El segundo paso es expresar el problema mediante una tabla para facilitar las operaciones con las ecuaciones.

var. bás.	x_1	x_2	x_3	x_4	=b	
$\overline{x_3}$	3	-3	1	0	15	fila 1 = ecuación 1
x_4	1	-2	0	1	20	fila 2 = ecuación 2
c	1	-9	-1	5	0	fila c ecuación de z

Las dos primeras filas representan las ecuaciones de restricciones, y la última fila representa la función z escrita mediante la ecuación

$$x_1 - 9x_2 - x_3 - 5x_4 = z$$

La columna de la izquierda indica las variables básicas seleccionadas.

El propósito de disponer los datos de esta manera es expresar la función z de manera que no aparezcan las variables básicas, esto es, que estas tengan coeficientes nulos. Esto equivale a hacer cero los costos -1 y 5 de la fila c, para lo cual a la fila c: se suma la fila 1 y luego se resta 5 veces la fila 2, obteniéndose

Los coeficientes de la fila c': $c'_1 = -1$, $c'_2 = -2$, $c'_3 = 0$ y $c'_4 = 0$ se denominan costos reducidos, relativos a las variables básicas x_3 , x_4 .

Así, la tabla, incluyendo los costos reducidos, es

var. bás	\boldsymbol{x}_{1}	x_2	x_3	x_4	b
x_3	3	-3	1	0	15
x_{4}	1	-2	0	1	20
С	1	-9	-1	5	0
c'	-1	-2	0	0	-85

en donde la última fila da la expresión de la función objetivo z mediante la ecuación $-x_1$ $-2x_2$ + $0x_3$ + $0x_4$ = z - 85

de donde

$$z = 85 - x_1 - 2x_2 + 0x_3 + 0x_4$$

= $85 - x_1 - 2x_2$

El criterio de máximo indica que si todos los costos reducidos son ≤ 0 , entonces la tabla actual proporciona el valor máximo y se alcanza en la solución básica de la misma.

Esto puede demostrarse en este caso, ya que la representación de la función objetivo con los costos reducidos puede escribirse así

$$z - 85 = -x_1 - 2x_2 \le 0$$

en donde la desigualdad ≤ 0 se cumple porque los costos reducidos son ≤ 0 y las variables son ≥ 0 .

Luego $z \le 85$ = valor en la solución básica factible y por lo tanto $z_{Max}=85$ en $x_1=0, x_2=0, x_3=15, x_4=20.$

Según lo desarrollado se puede adelantar el criterio de máximo:

Si todos los costos reducidos son <=0, entonces la función objetivo tiene valor máximo en la solución básica factible.

Ejemplo 2. Criterio de divergencia

Sea el problema

Maximizar
$$z = x_1 - 3x_2 - x_3 + 5x_4$$

sujeto a $3x_1 - 3x_2 + x_3 = 15$
 $x_1 - 2x_2 + x_4 = 20$

y todas las variables no negativas.

Como puede apreciarse, este problema tiene el mismo conjunto de restricciones del ejemplo anterior y la función objetivo se diferencia de la anterior solo en el término de la variable x_2 , que ahora tiene coeficiente -3.

Escribiendo la tabla correspondiente con los costos de esta función objetivo y calculando los costos reducidos relativos a las variables básicas x_3 y x_4

var. bás	x_1	x_2	x_3	x_4	b
x_3	3	-3	1	0	15
x_4	1	-2	0	1	20
С	1	-3	-1	5	0
c'	-1	1	0	0	-85

Igual que antes para anular los costos -1 y 5 de las variables básicas, a la fila c se le suma la fila 1 y se le resta 5 veces la fila 2.

La fila c' da la siguiente expresión de la función objetivo z: $z = 85 - x_1 + x_2$ en términos de costos reducidos.

No se puede aplicar el criterio de máximo pues hay un costo reducido positivo, que es el coeficiente 1 de la variable x_2 .

El siguiente criterio es el de divergencia, según el cual si existe un costo reducido > 0 y la variable asociada tiene coeficientes ≤ en todas las restricciones, entonces el problema no tiene valor máximo, porque se puede hallar soluciones factibles en las cuales la función objetivo toma valores arbitrariamente grandes.

En este problema, el costo reducido positivo es el de la variable x_2 y sus coeficientes en las restricciones son -2 y -3, que son ≤ 0 .

Para comprobar que la función objetivo toma valores muy grandes se generan las siguientes soluciones factibles:

se hace
$$x_2 = t$$
, donde el parámetro t es ≥ 0 , se hace igual a cero la otra variable no básica $x_1 = 0$

y se hallan los valores de las variables básicas resolviendo las ecuaciones (dadas por las filas), así finalmente se obtiene

$$x_1 = 0$$

 $x_2 = t$
 $x_3 = 15 + 3t$
 $x_4 = 20 + 2t$

para cualquier $t \ge 0$.

Puede comprobarse que estos valores dan soluciones factibles, esto es satisfacen las restricciones y son ≥ 0 , en las que la función objetivo z vale

$$z = 85 - 0 + 2t = 85 + 2t$$

Puesto que t puede ser cualquier valor positivo, es claro que z no puede tomar un valor máximo.

Se anota el criterio de divergencia

Si algún costo reducido es > 0 y la variable asociada tiene coeficientes ≤ 0 en todas las restricciones, entonces la función objetivo no tiene valor máximo.

Ejemplo 3. Cambio de base. Criterio de la razón mínima

Sea el problema

Maximizar
$$z = x + 30y - u + 5v$$

con restricciones $z = x + 3y + u = 15$
 $x + 5y + v = 20$

En este ejemplo se verá que no se cumple ninguno de los criterios de máximo ni de divergencia. Entonces se elegirá una variable no básica para que reemplace a una variable básica, de modo que la función objetivo en la nueva solución básica factible tenga un valor mayor o igual que en la solución básica actual.

Solución

Usando las variables básicas u, v, la tabla del problema es

	var. bás	x	y	и	v	b
	и	3	3	1	0	15
	v	1	5	0	1	20
	С	1	30	-1	5	0
Ī	c'	-1	8	0	0	-115

No se cumple la condición de máximo porque hay un costo positivo, el coeficiente 8 de la variable *y*; tampoco se cumple el criterio de

divergencia pues no son ≤ 0 los elementos de la columna de la variable y, que es la única con costo reducido >0.

El procedimiento para cambiar una variable no básica por una básica es el siguiente. Puede ingresar al conjunto de variables básicas cualquier variable (no básica) cuyo costo reducido es positivo; en este caso, la variable y. Y debe salir una de las variables básicas u o v.

Si *y* se vuelve una variable básica la columna de sus coeficientes, debe ser una columna unitaria, con un elemento 1 *y* los otros iguales a cero. A fin de determinar cuál de las variables *u* o *v* es la adecuada para que salga del conjunto de variables básicas, se divide cada fila entre el respectivo coeficiente de *y*, para tener coeficientes iguales a 1:

	X	у	u	v	ь	
и	1	1	1/3	0	15/3 = 5	← dividiendo entre 3
v	1/5	1	0	1/5	20/5 = 4	_ ← dividiendo entre 5

y luego hay que restar una fila de la otra, para anular el otro elemento de la columna de y. No obstante, se ve inmediatamente que no se debe restar la fila 1 a la fila 2, pues de lo contrario resultaría el término constante 4-5 = -1, que sería el valor de una variable no negativa. Así, se debe seleccionar la fila 2 pues tiene el menor valor 4, o mínimo cociente, de manera que al restarla a la fila 1, todos los términos constantes sigan siendo no negativos.

La selección de la fila 2 indica que sale la variable básica actual *v*, y que en su lugar entra la variable *y*.

Los cálculos son:

var. bás	x	у	и	ν	b	razón	_
и	3	3	1	0	15	15/3 = 5	
ν	1	5	0	1	20	20/5 = 4	\leftarrow min, sale v
c'	-1	8	0	0	-115		-
		↑ en	tra vari	able y			

y expresando la tabla respecto de las variables básicas u, y

var. bás	x	У	и	v	b
и	12/5	0	1	-3/5	3
y	1/5	1	0	1/5	4
c'	-17 _{/5}	0	0	-8/5	-115 -8(4) = -157

dividiendo entre 5 la fila 2, y anulando los otros elementos de la columna de y, se obtienen los nuevos costos reducidos, relativos al nuevo conjunto de variables, y el valor constante -157.

La nueva tabla muestra todos los costos reducidos ≤ 0 , y por lo tanto se cumple el criterio de máximo.

Luego, el máximo de z es 157 y se obtiene en u = 3, y = 4, y las otras variables con valor cero.

Ahora establecemos el

Cambio de base y criterio de la razón mínima. Caso máximo

Se aplica cuando todos los costos reducidos positivos tienen al menos un elemento positivo en la columna de estos.

Sea $c_i' > 0$ un costo reducido positivo y

Criterio de la razón mínima

$$R = \text{mínimo de los valores } \frac{b_i}{a_{ij}}, \text{ con } a_{ij} > 0$$

que se obtienen dividiendo cada término constante b_i entre el elemento $a_{ij} > 0$ de la columna de x en la fila i (se omiten los cocientes que corresponden a valores negativos o nulos de los a_{ij}).

Cambio de variable básica

Si i' es la fila donde se obtienen la razón mínima R, entonces entra la variable x_j al conjunto de variables básicas y sale la variable básica x_j .

Además, el valor de z en la nueva solución básica factible es $z_0 + c'_j R$, esto tiene el incremento $c'_j R$.

3.2 Forma tabular del problema estándar

El método del símplex opera directamente con la tabla formada por los coeficientes y datos constantes del problema.

Sea

$$z = c_1 x_1 + \dots + c_j x_j + \dots + c_n x_n$$

sujeto a las restricciones

$$a_{11}x_1 + \dots + a_{1j} + \dots + a_{1n}x_n = b_1$$
 ...
$$a_{i1}x_1 + \dots + a_{ij}x_j + \dots + a_{in}x_x = b_1$$
 ecuación i ...
$$a_{m1}x_1 + \dots + a_{mi}x_i + \dots + a_{mn}x_x = b_m$$

y todas las variables no negativas

y variables básicas $x'_1, ..., x'_m$ que dan una solución factible.

Este problema se representa mediante la tabla:

en donde

• la fila *i* se forma con los coeficientes y término constante de la ecuación *i*,

- la fila de costos corresponde a los coeficientes de la función z,
- la columna de datos que corresponde a la variable básica x'_i es unitaria, es decir, todos los valores son ceros excepto 1 en esa fila,
- los costos reducidos, relativos a las variables básicas, se obtienen anulando los costos correspondientes a las columnas de cada variable básica: se suma -(costo de x'_i) por la fila i a la fila de costos, i = 1, ..., m,
- la solución básica factible es x'_i = b_i, para i = 1, ..., m y x_j = 0, en las otras variables,
- z_0 es el valor de la función objetivo en la solución básica.

La fila de costos reducidos representa la ecuación

$$c_1'x_1 + c_2'x_2 + \dots + c_n'x_n = z - z_0$$

Expresión de la función objetivo mediante costos reducidos

La función objetivo z es igual a la suma de los productos de los costos reducidos por las variables no básicas más el valor de la función en la solución básica factible:

$$z = c_1'x_1 + c_2'x_2 + \dots + c_nx_n' = z_0$$

en donde c' son los costos reducidos y z es el valor en la solución básica factible.

Nota

- Debe tenerse presente que la representación dada depende del conjunto de variables básicas seleccionado, y por lo tanto, en general ha de ser distinta para otro conjunto de variables básicas.
- Los costos reducidos asociados a las variables básicas tienen valor cero, por lo que la suma contiene solo los términos de las variables no básicas.

3.3 Criterios del símplex. Caso máximo

Criterio de máximo

Si todos los costos reducidos, relativos a un conjunto de variables básicas, son no negativos:

$$c'_{i} \le 0$$
, para $j = 1, 2, ..., n$,

entonces el valor máximo de la función objetivo es z_0 y una solución óptima es la solución básica factible de las variables básicas.

Prueba

Se tiene
$$z = c'_1 x_1 + c'_2 x_2 + ... + c_n x'_n = z_0$$
.

De las condiciones $c_1' \le 0$, ..., $c_n' \le 0$, y todas las variables $x_1 \ge 0$, ..., $x_n' \ge 0$ se concluye que la suma $s = c_1'x_1 + ... + c_n'x_n$ es menor que o igual a cero y por lo tanto $z = s + z_0 \le z_0$ = valor de z en la solución básica.

Esto demuestra que $z_{Max} = z_0$.

Criterio de divergencia

Si algún costo reducido es positivo y son no negativos todos los coeficientes de la columna de ese costo, entonces el problema no tiene valor máximo.

De un modo más preciso, si existe

$$c'_i > 0$$
, coeficiente reducido de la variable x_j
y $a_{ii} \le 0$, para todos los coeficientes de la variable x_i

entonces la función objetivo crece indefinidamente sobre la región factible y por lo tanto no tiene máximo.

Cambio de base y criterio de la razón mínima

Se aplica cuando todos los costos reducidos positivos tienen al menos un elemento positivo en la columna de estos.

Sea $c'_i > 0$ un costo reducido positivo. Entonces entra la variable x_j al conjunto de variables básicas y sale la variable básica x_i cuya razón $R = \frac{b_i}{a_{ii}}$ es mínima.

Además, el valor de z en la nueva solución básica es $z_0' = z_0 + c_j' R$, esto es, tiene el incremento $c_i' R \ (\geq 0)$.

3.4 Problema de minimización

El método del símplex se aplica de igual modo a problemas de minimización.

Esto puede hacerse de dos maneras:

Convirtiendo el problema de minimización en uno de maximización:

$$Min z = -Max(-z)$$

de modo que se resuelve el problema Maximizar (-z) con las restricciones dadas, y una vez que se obtiene el valor máximo, hay que cambiarle de signo para obtener el valor mínimo de z.

En este caso, el mínimo es precisamente el valor de la esquina inferior izquierda de la tabla final.

2) Directamente con la función objetivo *z*, en cuyo caso se utilizan los criterios del símplex para problemas de minimización:

Criterio de mínimo

Si todos los costos reducidos son $c_j' \ge 0$, entonces se obtiene el valor mínimo de z .

Criterio de divergencia (caso mínimo)

Si existe un costo reducido negativo $c'_j < 0$, y la columna de la variable x_j tiene todos los elementos ≤ 0 , entonces no existe valor mínimo, en efecto, en este caso la función z toma valores negativos arbitrarios.

Cambio de base

Se aplica cuando todos los costos reducidos < 0 tienen al menos un elemento ≥ 0 en su respectiva columna.

Sea c'_j < 0. Entonces entra la variable x_j y sale una variable x_i cuya razón sea mínima como en el problema de maximización.

Los siguientes ejemplos ilustran los dos métodos para resolver problemas de minimización.

Ejemplo 1

Minimizar
$$z = -4x + 2y$$

sujeto a $-x + 3y \le 14$
 $4x - y \le 10$
 x, y no negativas

transformando el problema en uno de maximización.

Solución

Agregando variables de holgura u, v a las restricciones para expresar el problema en forma estándar, las restricciones son:

$$-x + 3y + u = 14$$

 $4x - y + v = 10$

todas las variables no negativas.

Usando Min z = -4x + 2y = - Max z' = 4x - 2y se resuelve el problema de maximizar la función objetivo z' y en donde u, v son variables básicas.

La tabla inicial

v.b	x	У	и	ν	b	_
и	-1	3	1	0	14	
v	4	-1	0	1	10	$razón = \frac{10}{4} = 2.5 \leftarrow sale v$
c'	4	-2	0	0	0	\leftarrow costos de z'
	↑ e	ntra x				

Puesto que el costo reducido de x es 4 > 0, entra la variable x al conjunto de variables básicas, y por el criterio de la razón mínima sale v.

Así, la fila pivote es la segunda fila y el elemento 4 es el pivote para actualizar la tabla. Dividiendo la fila 2 entre 4, sumando la fila 2 a la fila 1 y restando 4 veces la fila 2 a la fila de c', resulta

v.b	x	у	и	ν	b
и	0	3.25	1	0.25	12.5
\boldsymbol{x}	1	-0.25	0	0.25	2.5
c'	0	-1	0	-1	-10

Puesto que todos los costos reducidos son ≤ 0 , tiene valor máximo 10 y se obtiene en x=2.50, y=0. Por lo tanto, el valor mínimo de z es -10, en x=2.5, y=0.

Ejemplo 2

Minimizar
$$z = -4x + 2y$$

sujeto a $-x + 3y \le 14$
 $4x - y \le 10$
 x, y no negativas
usando los criterios del símplex para minimización.

Solución

La tabla inicial es

v.b	x	y	и	v	b	
и	-1	3	1	0	14	_
v	4	-1	0	1	10	$razón = \frac{10}{4} = 2.5 \leftarrow sale v$
С	-4	2	0	0	0	\leftarrow costos de z
	↑ er	tra x			_	

No se cumple el criterio de mínimo: todos los costos reducidos son ≥ 0 ; ni el criterio de divergencia para el caso mínimo: hay un costo reducido negativo con los elementos de su columna ≤ 0 . Entonces se procede al cambio de variable básica.

Puesto que el costo reducido de x es -4< 0, entra la variable x al conjunto de variables básicas, y por el criterio de la razón mínima sale v.

Así, la fila pivote es la segunda fila y el elemento 4 es el pivote para actualizar la tabla. Dividiendo la fila 2 entre 4, sumando la fila 2 a la fila 1 y sumando 4 veces la fila 2 a la fila de c', resulta

v.b	x	У	и	ν	b
и	0	3.25	1	0.25	16.5
\boldsymbol{x}	1	-0.25	0	0.25	2.5
<i>c'</i>	0	1	0	1	10

Puesto que todos los costos reducidos son ≥ 0 se cumple el criterio de mínimo, y por lo tanto, z tiene valor mínimo -10, en x =2.50, y=0.

3.5 Problemas propuestos

Problema 1

Aplicando el método del símplex resuelva

Max
$$z = x_1 + x_2 - 6x_3 + x_4 + x_5$$

sujeto a $x_1 + 2x_2 - x_3 + x_4 = 80$
 $-2x_1 + 4x_2 - 3x_3 + x_5 = 120$
todas las variables no negativas.

Observe que x_4 , x_5 son variables básicas.

Respuesta

$$\operatorname{Max} z = 360$$

Una solución óptima es
$$x_1 = 80$$
, $x_5 = 280$, $x_2 = x_3 = x_4 = 0$.

Problema 2

Resuelva

Max
$$z = x_1 + x_2 - 6x_3$$

sujeto a $3x_1 + 2x_2 - x_3 \le 80$
 $-2x_1 + 4x_2 - 3x_3 \le 120$

Agregue variables de holgura a cada restricción y úselas como variables básicas.

Respuesta

Max = 37.50
Una solución óptima es
$$x_1 = 5$$
, $x_2 = 32.50$, $x_3 = 0$.

Problema 3

Resuelva el problema

Max
$$z = x + 2y$$

sujeto a $x - 2y \le 30$
 $-x + y \le 20$
 $2x + 4y \le 50$
 x,y no negativas.

Respuesta

Max
$$z = 25$$
.
Una solución óptima es $y = 12.50$, $x = 0$.

Problema 4

Resuelva el problema

Min
$$z = x - 2y + 100$$

sujeto a $x - 2y \le 30$
 $-x + y \le 20$
 $2x + y \le 50$
 x, y no negativas.

Respuesta

Min
$$z = 50$$
.
Una solución óptima es $x = 10$, $y = 30$.

Problema 5

Resuelva el problema

Maximizar z = 2x + 3y + 4u + vsujeto a 2x + 2y + 3u + v = 100; todas las variables no negativas.

Indicación: Use v como variable básica.

Respuesta

Max z = 150, en y = 50, y cero para las otras variables.

Problema 6

Encuentre el valor máximo de la función

$$z = 2x + 3y + 4u + v$$

sujeto a las restricciones
 $2x + 2y + 8u + v = 100;$
 x, u, v no negativas
la variable $y \le 0$.

Respuesta

Max z = 100, en x = 50, las otras variables valen cero.

Capítulo 4

Método del símplex: variables artificiales. Convergencia del algoritmo

4.1 Variables artificiales

Para aplicar el método del símplex es preciso que el problema dado en forma estándar tenga un conjunto inicial de variables básicas, que por lo general no es posible determinar fácilmente. No obstante, el mismo método permite encontrar variables básicas del problema, cuando existan. En efecto, el problema se modifica mediante la incorporación de variables artificiales, que forman inmediatamente un conjunto de variables básicas, y luego por el método del símplex estas se reemplazan o cambian por variables básicas del problema original.

Los dos ejemplos siguientes ilustran el uso de variables artificiales y muestran la resolución de los problemas de programación lineal por la técnica M y el método de dos fases.

Ejemplo. Técnica M

Aplicando la técnica M resuelva el problema

Maximizar
$$z = 4x + 2y - u + 3v$$

sujeto a $2x + 5y + 4u + 5v = 240$
 $-x + 5y - 3u + 2v = 60$

todas las variables no negativas.

Solución

Paso 1. Se agregan variables artificiales A_1 , A_2 a las restricciones

$$2x + 5y + 4u + 5v + A_1 = 240$$
$$-x + 5y - 3u + 2v + A_2 = 60$$

todas las variables no negativas, incluyendo las variables artificiales.

Paso 2. Se construye una nueva función objetivo z' restándole a z los términos M veces A_1 y M veces A_2 , uno por cada variable artificial añadida:

$$z' = 4x + 2y - u + 3v - MA_1 - MA_2$$

en donde M es una constante positiva muy grande.

El problema ahora consiste en maximizar z' sujeto a las restricciones del paso 1, y se puede aplicar el método del símplex pues A_1 y A_2 son variables básicas, con valores A_1 =240 y A_2 =60.

La elección del valor de M se hace a fin de lograr que las variables del problema original se vuelvan básicas en lugar de las variables artificiales.

Paso 3. Se aplica el método del símplex utilizando a las variables artificiales como variables básicas.

La solución del problema modificado proporciona también la solución del problema inicial pues:

1) si existe máximo de z', y no contiene a la constante M, esto es, las variables artificiales han sido eliminadas del conjunto de variables básicas o anuladas, entonces

máximo de
$$z = máximo de z'$$

2) de lo contrario, la función z no tiene valor máximo

var. bás	x	\mathcal{Y}	и	v	$A_{_1}$	A_2	b	razón
$\overline{A_1}$	2	5	4	5	1	0	240	240/2 = 120*
A_{2}^{\cdot}	-1	5	-3	2	0	1	60	-
<i>c</i>	4	2	-1	3	-M	-M	0	
c'	(4+M)	(2+10M)	(-1+M)	(3+7M)	0	0	300M	

Aplicando el método del símplex tenemos la tabla:

en donde los costos reducidos se obtienen sumando a la fila c de costos M veces la fila 1 y M veces la fila 2, para que las variables básicas A_1 y A_2 tengan costos reducidos nulos; por ejemplo, el costo reducido de la variable u es 1 + 4M - 3M = -1 + M

Se observa que no se cumple el criterio de máximo (todos los costos reducidos deben ser ≤ 0), ni tampoco se cumple el criterio de divergencia.

El costo reducido de x es 4+M, que es positivo, por lo tanto entra la variable x al conjunto de variables básicas, y sale la variable A_1 , pues tiene la razón mínima 120.

Para abreviar los cálculos, cada vez que sale una variable artificial —ya tiene valor cero— se suprime la columna de esta.

La tabla resultante es:

var.bás	x x	y	и	ν	A_{2}	b	razón
x	1	2.5	2	2.5	0	120	120/2.5 = 48
A_2	0	7.5	-1	4.5	1	180	180/7.5 = 24*
<i>c'</i>	(4+M)	(2+10M)	(-1+M)	(3+7M)	0	300M	
c"	0	(-8+7.5M)	(-9-M)	(-7-4.5 <i>M</i>)	0	-480 + 180M	

en donde la nueva fila de costos reducidos c'' se obtiene anulando el costo de la variable x: fila c''= fila c' menos (4+M) veces la fila 1; por ejemplo, el costo reducido de y es (2+10M)-(4+M) por 2.5=2+10M-10-2.5M=-8+7.5M.

 $[\]uparrow$ > 0, entra la variable x

Puesto que la constante M puede hacerse tan grande como se desee, los costos reducidos (-8 +7.5M), (-9-M) y (-7+4.5M) son positivo, negativo y positivo, respectivamente.

Elegimos el primer costo reducido positivo y por lo tanto entra la variable y, y sale la variable A_2 , que tiene la razón mínima.

Luego eliminando la columna de A_2 y simplificando resulta la siguiente tabla

var.bás	x	y	и	ν	b
x	1	0	7/3	4	60
y	0	1	-2/15	9/15	24
c'	0	(-8+7.5M)	(-9-M)	(-7+4.5M)	-480+180M
<i>c</i> "	0	0	-151/15	-63/15	-288

en donde la c'' es la fila de costos reducidos respecto de las variables básicas x, y.

Puesto que todos los costos reducidos son <=0 se obtiene el valor máximo 288, y una solución óptima es x=60, y=24 variables artificiales. Por lo tanto, se ha encontrado la solución óptima del problema dado.

Ejemplo. Método de las dos fases

Aplicando el método de las dos fases resuelva el problema

Maximizar
$$z = 4x + 2y - u + 3v$$

sujeto a $2x + 5y + 4u + 5v = 240$
 $-x + 5y - 3u + 2v = 60$

todas las variables no negativas.

Solución

Fase 1

Se agregan las variables artificiales A_1 y A_2 a cada restricción

$$2x + 5y + 4u + 5v + A_1 = 240$$
$$-x + 5y - 3u + 2v + A_2 = 60$$

todas las variables no negativas, incluyendo las variables artificiales y se considera el problema de maximizar la función objetivo auxiliar

$$z' = -A_1 - A_2 = 0x + 0y + 0u + 0v - A_1 - A_2$$

formada por la suma de los opuestos de las variables artificiales.

De igual manera que en la técnica *M*, las variables artificiales proveen un conjunto inicial de variables básicas y por consiguiente se puede iniciar el método del símplex.

La función z' toma valores <=0, pues A_1 y A_2 son no negativas y satisface la siguiente propiedad: El valor máximo de z' es 0 si y solo sí el problema original tiene soluciones factibles.

Así, cuando se aplica el método del símplex para maximizar z', si máximo de z' es cero, es decir, las variables artificiales resultan con valores nulos, y por lo tanto desaparecen de las restricciones. Entonces el problema tiene soluciones factibles, y con las variables básicas resultantes, se puede proceder a la siguiente fase para optimizar la función.

De lo contrario, el problema no tiene valor máximo.

Fase 2

Se aplica solo si en la fase 1 se obtiene el valor óptimo 0.

Se halla el valor máximo de la función objetivo original usando la tabla de la fase 1, sin las columnas de las variables artificiales.

Los cálculos correspondientes a cada fase son los siguientes

Fase 1

	var. bás	x	У	и	v	$A_{_1}$	A_{2}	b	razón
	A_1	2	5	4	5	1	0	240	240/2 = 120*
	A_2^{\cdot}	-1	5	-3	2	0	1	60	-
-	С	0	0	0	0	-1	-1	0	
-	c'	1	10	1	7	0	0	300	
		↑ _{en}	tra v						

La fila de costos c representa la función objetivo auxiliar a maximizar

$$z' = -A_1 - A_2 = 0x + 0y + 0u + 0v - A_1 - A_2$$

y la fila c' de costos reducidos resulta de anular los costos de las variables básicas A_1 y A_2 .

Puesto que el costo reducido de la variable x es positivo, entra esta variable al conjunto de variables básicas y sale la variable A_1 , pues tiene razón mínima.

La tabla correspondiente es

var. bás	x	y	и	ν	A_{1}	A_2	b	razón			
x	1	2.5 7.5	2	2.5	0.5	0	120	48 24*			
A_2	0	7.5	-1	4.5	0.5 0.5	1	180	24*			
<i>c'</i>	0	7.5	-1	4.5	-0.5	0	180				
$\uparrow_{\text{entra }y}$											

Similarmente entra la variable y y sale la variable A_2 y resulta la tabla

var. bás	x	y	и	ν	A_1	A_2	b	
x	1	0	7/3	1	1/3	-1/3	60	•
У	0	1	-2/15	9/15	1/15	2/15	24	
c'	0	0	-2	0	-1	-1	0	

En este paso, se obtiene el valor máximo 0, ya que todos los costos reducidos son \leq 0, y por lo tanto, se procede a la fase 2.

Se observa que las variables básicas son *x*, *y*.

Fase 2

Se toma la tabla anterior, excluyendo las columnas de las variables artificiales y se procede a maximizar la función objetivo del problema inicial z = 4x + 2y - u + 3u

var. bás	\boldsymbol{x}	y	и	ν	b	
x	1	0	7/3	1	60	
y	0	1	-2/5	9/15	24	_
С	4	2	-1	3	0	
$\overline{c'}$	0	0	-16/5	-8/5	-288	= -4*60 - 2*24

en donde se han calculado los costos reducidos respecto de las variables básicas *x*, *y*.

Puesto que todos los costos reducidos son < = 0, se cumple el criterio del máximo, y se obtiene $z_{Max} = 288$, en x=60, y=24.

Se reitera la condición del método de las dos fases. Si en la fase 1 se obtiene un valor máximo distinto de cero, o no existe, entonces el problema original no tiene valor máximo.

Empleo de variables artificiales

La técnica *M* se aplica solo cuando el método del símplex se lleva a cabo mediante cálculos manuales, pues por simple inspección se determina el signo de los costos reducidos. Cuando se implementa el método mediante programas por computadoras es preferible usar el método de las dos fases.

No obstante que la inclusión de variables artificiales puede hacerse de un modo general, es decir simplemente agregar una variable artificial en cada restricción de igualdad, en los casos de cálculos manuales es conveniente añadir el menor número de ellas, teniendo presente que el propósito es disponer desde el comienzo de un conjunto de variables básicas. Así, se puede recomendar:

- a) usar como variable básica una variable que aparezca con coeficiente 1 en una restricción de igualdad y no se encuentre en ninguna de las otras restricciones;
- b) tomar como variable básica una variable de holgura por defecto, que corresponde a una restricción de desigualdad ≤;
- y c) agregar variables artificiales en las restantes restricciones.

Por ejemplo, si el problema es
maximizar
$$z = 2x - 4y + 5u + 3v - 6w$$

sujeto a $4x + 3y + v = 60$
 $3x - 2y + u + 6w \le 30$
 $-x + 2y - 3u + 2w = 50$

todas las variables no negativas entonces se puede tomar como variables básicas

- en la primera restricción: la variable v, pues aparece solo en esta restricción y con coeficiente 1,
- en la segunda restricción: la variable de holgura H_2
- en la tercera restricción: la variable artificial A_3

Y las restricciones se expresan mediante

$$4x + 3y + v = 60$$
$$3x - 2y + u + 6w + H_2 = 30$$
$$-x + 2y - 3u + 2w + A_3 = 50$$

con variables básicas v, H_2 y A_3 .

Si se aplica la técnica M, la función objetivo a maximizar es

$$z' = 2x - 4y + 5u + 3v - 6w - MA_3$$

en donde se resta el término $M\!A_3$ que corresponde a la única variable artificial presente.

Y si se sigue el método de las dos fases, en la fase 1 ha de maximizarse la función auxiliar

$$z' = -A_3 = 0x + 0y + 0u + 0v - 0w - 1A_3$$

4.2 Problemas propuestos

Problema 1

Usando la técnica M resuelva el problema:

Maximizar
$$z = 3x + y + u - 6v$$

sujeto a $x + 2y + 4u + 10v = 50$;
 $3x - v + 5u - 3v = 10$;

todas las variables no negativas.

Respuesta

$$z_{Max}$$
 = 50; una solución óptima es x = 20, y =10, u = v =0

Problema 2

Aplique la técnica M para resolver el problema

Maximizar
$$w = x + y - 2u + 5v$$

sujeto a $u + 4v \ge 68$;
 $8x + 5y + 2v \le 30$;

todas las variables no negativas.

Indicación

El problema a resolver puede ser escrito así
$$w = x + y - 2u + 5v - MA_1$$
 sujeto a $u + 4v - H_1 + A_1 = 68$ $8x + 5y + 2v + H_2 = 30$,

en donde A_1 y H_2 son variables básicas, A_1 es una variable artificial y H_2 es una variable de holgura (por defecto).

Respuesta

$$Z_{Max}$$
 =59. Una solución óptima es $x=y=0$, $u=9$, $v=15$.

Problema 3

Resuelva el problema 1 usando el método de las dos fases.

Problema 4

Aplique el método de las fases para resolver el problema 2.

Problema 5

Resuelva el problema

minimizar
$$w = x_1 + 2x_2 - 3x_3 + 4x_4$$

sujeto a $4x_1 + 6x_2 - 4x_3 \ge 100$
 $3x_1 + x_2 + 4x_3 + x_4 \le 40$

todas las variables negativas

- a) Por la técnica M
- b) Aplicando el método de las dos fases.

Indicación

Convierta el problema en uno de maximización

- maximizar
$$w_1 = -x_1 - 2x_2 + 3x_3 - 4x_4$$

y considere las restricciones
$$4x_1 + 6x_2 - 4x_3 - H_1 = 100$$
$$3x_1 + x_2 + 4x_3 + x_4 + H_2 = 40$$

Puede tomarse como variables básicas iniciales: una variable artificial A1 asociada a la primera restricción y la variable de holgura H_2 (por defecto) de la segunda restricción.

Respuesta

El valor mínimo de w es 25. Una solución óptima es x_2 =20, x_3 =5, y cero las otras variables.

Problema 6

Sea el problema

Maximizar
$$z = 20x + 10y - u$$

sujeto a $2x - 4y + u = 60$
 $-3x + y - 3u = 20$

todas las variables no negativas

- a) Sume miembro a miembro las restricciones y compruebe que no existen soluciones factibles (en particular, el problema no tiene máximo).
- b) Compruebe que el problema no tiene soluciones factibles calculando el valor máximo de $z' = -A_1 A_2$ (la función auxiliar de la fase 1)

sujeta a las condiciones
$$2x - 4y + u + A_1 = 60$$

 $-3x + y - 3u + A_2 = 20$

en donde A_1 y A_2 son variables artificiales.

4.3 Convergencia del algoritmo del símplex

En esta sección se presenta un análisis simplificado de la propiedad de convergencia del algoritmo del símplex. Mediante esta propiedad se asegura que el algoritmo termina en un número finito de pasos cuando se aplica a cualquier problema de programación lineal estándar.

Se han elaborado ejemplos en los cuales en la aplicación del método del símplex una tabla vuelve a aparecer después de algunos pasos, y por lo tanto hay un ciclo o grupo de tablas que se repiten indefinidamente, impidiendo que se obtenga la solución del problema.

El concepto de ciclo se explica a través de un ejemplo algo extenso por los cálculos. Luego se mencionan las condiciones en las que pueden ocurrir los ciclos. Y finalmente se describen dos métodos que garantizan la convergencia del algoritmo del símplex: la regla de Blands y el método de perturbación.

Uno de los primeros ejemplos de problemas de programación lineal con ciclos fue ofrecido por E. Beale. No obstante, a continuación se mostrará más bien uno tomado de un curso de la universidad de Toronto (http://www.math.toronto.edu/mpugh/Teaching/APM236_04/bland).

Ejemplo de un ciclo

Resolver el problema

maximizar
$$z = -13.25x_1 + 14.50x_4 - 98x_5 - 6.75x_6$$

sujeto a $2.75x_1 + x_2 + 0.50x_4 - 4x_5 - 0.75x_6 = 0$
 $0.25x_1 + x_3 + 0.50x_4 - 2x_5 - 0.25x_6 = 0$
 $-2.75x_1 - 0.50x_4 + 4x_5 + 0.75x_6 + x_7 = 0$

todas las variables no negativas.

 x_2 , x_3 y x_6 forman un conjunto inicial de variables básicas.

A continuación se aplica el método del símplex, haciendo elecciones sobre las variables de entrada y salida, y se obtiene la sucesión de tablas

$$T_1, T_2, T_3, T_4, T_5, T_6, T_7 = T_1, T_2, T_3, ...,$$

y se encuentra que la tabla T_7 es precisamente la tabla inicial T_1 , de modo que el grupo de tablas T_1 - T_6 forma un ciclo, esto es se repite indefinidamente.

Se empieza con la tabla:

 T_1 variables básicas x_2, x_3, x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_2}$	2.75	1	0	0.50	-4	-0.75	0	0
x_3	0.25	0	1	0.50	-2	-0.25	0	0
x_7	2.75 0.25 -2.75	0	0	-0.50	4	0.75	1	1
$\overline{c'}$	-13.25	0	0	14.50	-98	-6.75	0	0

La única variable que puede entrar es x_4 . Y por la razón mínima pueden salir x_2 , x_3 . Se elige x_2 .

La siguiente tabla es

 T_2 variables básicas x_4 , x_3 , x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
x_4	5.50	2	0	1	-8	-1.50	0	0
x_3	-2.50	-1	1	0	2	0.50	0	0
x_7	0	1	0	0	0	-1.50 0.50 0	1	1
c'	-93	-29	0	0	18	15	0	0

Hay dos posibles variables que pueden entrar x_5 o x_6 . Se elige x_5 . La única posible variable que puede salir es x_3 .

La tabla resultante es

 T_3 variables básicas x_4 , x_5 , x_7

v.b	x_1	x_2	x_3	X_4	x_5	x_6	x_7	b
$\overline{x_4}$	-4.5	-2	4	1	0	0.50	0	0
x_5	-1.25	-0.5	0.5	0	1	0.25	0	0
x_7	0	1	0	0	0	0.50 0.25 0	1	1
$\overline{c'}$	-70.50	-20	-9	0	18	10.50	0	0

La única variable que puede entrar es x_6 . Y pueden salir x_4 o x_5 . Se elige x_4 .

La siguiente tabla es

 T_4 variables básicas x_6 , x_5 , x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_6}$	-9	-4	8	2	0	1	0	0
x_{5}	1	0.5	-1.5	-0.5	1	0	0	0
x_7	0	1	0	2 -0.5 0	0	0	1	1
c'	24	22	-93	-21	0	0	0	0

Ahora pueden entrar x_1 o x_2 . Se elige x_1 . Y puede salir solo la variable x_5 .

La tabla resultante es

 T_5 variables básicas x_6 , x_1 , x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
x_6	0	0.5	-0.5	-2.5	9	1	0	0
x_1	1	0.5	-1.5	-0.5	1	0	0	0
x_7	0	1	0	-2.5 -0.5 0	0	0	1	1
$\overline{c'}$	0	10	-57	-9	-24	0	0	0

La única variable que puede entrar es x_2 . Y pueden salir x_6 o x_1 . Se elige x_6 .

La siguiente tabla es

 T_6 variables básicas x_2 , x_1 , x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_2}$	0	1	-11	-5	18	2	0	0
x_1	1	0	4	2	-8	-1	0	0
x_7	0	0	11	5	18 -8 -18	-2	1	1
c'	0	0	53	41	-204	-20	0	0

Hay dos variables que pueden ingresar x_3 y x_4 . Se elige x_3 . Entonces solo puede salir la variable x_1 .

Y la siguiente tabla es

 T_7 variables básicas x_2 , x_3 , x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_2}$	2.75	1	0	0.5	-4	0.75	0	0
x_3	0.25	0	1	0.5	-2	-0.25	0	0
x_7	2.75 0.25 -2.75	0	0	-0.5	4	0.75	1	1
c'	-13.25	0	0	14.5	-98	-6.75	0	0

Pero T_{7} es la tabla inicial tabla T_{1} y por lo tanto el algoritmo no termina.

4.4 MÉTODOS PARA EVITAR CICLOS: REGLA DE BLANDS Y PERTURBACIÓN

¿Cuándo puede ocurrir un ciclo?

Puede ocurrir un ciclo solo cuando son iguales a cero las razones mínimas de cambio de las tablas o la función objetivo no cambia su valor -se dice que las soluciones básicas son degeneradas, pues algunas variables básicas valen cero.

Dicho de otra manera, en un ciclo todas las tablas tienen razón de cambio igual a cero y la función objetivo permanece constante.

Esto es una consecuencia del siguiente hecho:

Si T es una tabla con razón de cambio mínima R>0, entonces la tabla T no puede repetirse o aparecer otra vez en los siguientes pasos del método del símplex.

En efecto, recordando (Sección 3.1) y asumiendo el caso de maximización, si \boldsymbol{z}_0 es el valor de la función objetivo \boldsymbol{z} en la tabla actual T y se produce un cambio de variable básica, en la tabla siguiente T' el valor de la función objetivo es

$$z_0' = z_0 + c_i' R$$

donde c' > 0 es el costo reducido de la variable entrante y $R \ge 0$ es la razón mínima.

De aquí se deduce que $z_0 = z_0'$, si R = 0, o $z_0 < z_0'$, si R > 0

Esto significa que los valores de la función objetivo en las tablas siguientes se mantienen, cuando la razón mínima es cero, o crecen, cuando la razón mínima es mayor que cero. Y en consecuencia, si *R*>0, la tabla *T* (y las anteriores) no puede aparecer en las iteraciones siguientes.

Si se evitan los ciclos, ¿el algoritmo necesariamente termina?

Sí, porque el número posible de tablas distintas es un número finito determinado M, y si se obvian los ciclos, ninguna tabla puede repetirse.

Por lo tanto, el proceso debe terminar a lo sumo en M pasos, cumpliéndose necesariamente uno de los criterios: el de óptimo o el de divergencia.

El valor de *M* es el número combinatorio

$$\binom{n}{m} = \frac{n!}{m!(n-n)!}$$

en donde

n = número de variables del problema

y *m*= número de variables básicas.

Para hacer evidente esto, basta observar que cada tabla está determinada por su respectivo conjunto de variables básicas, de manera que a lo sumo habrá tantas tablas como subconjuntos de m variables tomadas de n variables.

En el ejemplo desarrollado en la sección 3.3 se tiene n=7 y m=3, de modo que las posibles tablas son:

$$T_1$$
 variables básicas $\{x_1, x_2, x_3\}$

• • • •

 $T_{\scriptscriptstyle M}$ variables básicas $\{x_{\scriptscriptstyle 6}, x_{\scriptscriptstyle 7}, x_{\scriptscriptstyle 8}\}$

$$M = \binom{7}{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$$

es decir, en este caso a lo sumo se obtienen 35 tablas distintas.

¿Cómo se evitan los ciclos en el método del símplex?

Se describen dos métodos. Uno, bastante reciente debido a Blands, por su uso sencillo en programas por computadoras, y otro, de carácter más analítico, al que se llama método de perturbación.

Regla de (los menores índices dobles de) Blands

Se asume que el problema es de maximización y que las variables del problema estándar están referidas por subíndices; por ejemplo, los subíndices pueden ser los números de las posiciones de las columnas de las variables en la tabla inicial.

Puesto que el propósito es evitar los ciclos, por razones prácticas se recomienda aplicar la regla cuando en una tabla, en la que el algoritmo no termina, todos los costos reducidos positivos c > 0 tienen razón mínima igual a cero,

En este caso:

- 1) se elige como variable de entrada -al conjunto de variables básicas- la variable x_i que tiene el menor subíndice j de los $c'_i > 0$
- y 2) y si, respecto de la columna j, las variables básicas con razón mínima 0 son $x_{i1}, ..., x_{im}$

entonces sale la variable x_{is} que tiene el menor subíndice is

Nótese que en 1) y 2) se eligen las variables según los dos subíndices menores.

Solución del ejemplo 4.3 usando la regla de Blands

Observando que en tablas calculadas las razones mínimas siempre son cero se revisan los cálculos efectuados, pero esta vez se aplica la regla de Blands.

Las variables seleccionadas para entrar y salir se indican con un *

1) Tabla T_1 variables básicas x_2, x_3, x_7 variables entrantes: x_4^* entra x_4 , elección única variables de salida: x_2^*, x_3 sale x_2 , tiene menor subíndice 2<3.

2) Tabla T_2	variables básicas	x_4, x_3, x_7	
	variables entrantes:	x_{5}^{*}, x_{6}	entra x_5 , tiene menor
			subíndice
	variables de salida:	x_3^*	sale x_3 , elección única
3) Tabla T_3	variables básicas	x_4, x_5, x_7	
	variables entrantes:	x_6^*	entra x_6 , elección única
	variables de salida:	x_4^*, x_5	sale x_4 , subíndice menor
4) Tabla T_4	variables básicas	x_6, x_5, x_7	
	variables entrantes:	x_1^*, x_2	entra x_1 , subíndice menor
	variables de salida:	x_5^*	sale x_5 , elección única
5) Tabla T_5	variables básicas	x_6, x_1, x_7	
	variables entrantes:	x_2^*	entra x_2 , elección única
	variables de salida:	x_{6}, x_{1}^{*}	sale x_1 , menor subíndice

Nótese que en las tablas T_1 - T_4 las selecciones de las variables de entrada y salida aplicando la regla de Blands coinciden con las realizadas antes cuando se encontró el ciclo. Estas selecciones corresponden a escoger de modo simple como variable de entrada con costo reducido positivo a la que está en la columna de más a la izquierda, y como variable de salida, respecto de esta columna, a la variable básica con razón mínima igual a cero que se encuentra en la fila de más arriba

Repetimos la tabla T_5

 T_5 variables básicas x_6 , x_1 , x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_6}$	0	0.5	-0.5	-2.5	9	1	0	0
x_1	1	0.5	-1.5	-0.5	1	0	0	0
x_7	0	1	-0.5 -1.5 0	0	0	0	1	1
c'	0	10	-57	-9	-24	0	0	0

La única variable que puede entrar es x_2 . Y pueden salir x_6 o x_1 . En el caso que condujo al ciclo, se eligió como variable de salida x_6 . No obstante, si se aplica la regla de Blands debe salir x_1 , pues es la variable que tiene menor subíndice 1<6.

Se muestran las siguientes tablas.

Tabla T_6' variables básicas x_6, x_2, x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
x_6	-1	0	-4	-2	8	1	0	0
x_2	2	1	-3	-1	2	0	0	0
x_7	-2	0	3	1	8 2 -2	0	1	1
<i>c</i> '	-20	0	-27	1	-44	0	0	0

La única variable que puede entrar es x_4 . Y solo puede salir la variable x_7 .

Tabla T'_7 variables básicas x_6 , x_2 , x_4

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b	
x_6	-5	0	2	0	4	1	2	2	
x_2	0	1	0	0	0	0	1	1	
x_4	-2	0	2 0 3	1	-2	0	1	1	
c'			-30						$= -z_0$

El algoritmo termina, pues todos los costos reducidos son ≤ 0 .

El valor máximo es $z_0 = 1$, y se obtiene en $x_6 = 2$, $x_2 = 1$, $x_4 = 1$, y las otras variables con valor igual a cero.

Método de perturbación

Este método consiste en «perturbar» o modificar los términos constantes, lados derechos de las restricciones de igualdades, sumándoles potencias de un número positivo muy pequeño, de manera que cuando se aplica el algoritmo del símplex cualquier razón mínima resulta con valor positivo y por lo tanto la función objetivo siempre aumenta su valor (caso de maximización). Así, ninguna tabla puede repetirse y necesariamente se llega a una tabla terminal, en la cual la solución óptima se obtiene anulando o desapareciendo las cantidades añadidas.

Solución del ejemplo 4.3 usando perturbaciones

Se muestra la tabla inicial

Tabla T_1 variables básicas x_2, x_3, x_7

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
$\overline{x_2}$	2.75	1	0	0.5	-4	-0.75	0	3 = 3 + 0
x_3^-	0.25	0	1	0.5	-2	-0.25	0	$0 + \varepsilon^2 = \varepsilon^2$
x_7	-2.75	0	0	-0.5	4	0.75	1	$0 + \varepsilon = \varepsilon$ $0 + \varepsilon^2 = \varepsilon^2$ $1 + \varepsilon^3 = \varepsilon^3$
<i>c</i> '	-13.25	0	0	14.5	-98	-6.75	0	0

en donde se han agregado a las constantes del lado derecho las potencias ε , ε^2 , ε^3 , siendo e un número positivo arbitrariamente pequeño.

La única variable que puede entrar es x_4 . Para determinar la variable que debe salir se calculan las razones

variable
$$x_2$$
: la razón es $\frac{\varepsilon}{0.5} = 2\varepsilon$
variable x_3 : la razón es $\frac{\varepsilon^2}{0.5} = 2\varepsilon^2$

puesto que ε es muy pequeño, por ejemplo $\varepsilon = 0.1$, se ve que la razón mínima corresponde a x_3 . Así sale la variable x_3 .

La siguiente tabla es

v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
x_2	2.5	1	0	0	-2	-0.5	0	ε - ε
x_3	0.5	0	2	1	-4	-0.5	0	$2\epsilon^2$
x_7	-2.5	0	1	0	2	0.5	1	$ \begin{array}{c} \varepsilon - \varepsilon \\ 2\varepsilon^2 \\ 1 + \varepsilon^2 = \varepsilon^3 \end{array} $
<i>c</i> '	-20.5	0	-29	0	-40	0.5	0	-29ε ²

Ahora la variable que debe entrar es x_6 . Y la única que puede salir es x_7 , cuya razón es

$$\frac{1+\varepsilon^2+\varepsilon^3}{0.5}=2+2\varepsilon^2+2\varepsilon^3$$

т	1.1	1.	
1 2	tabla	correspondiente	es
\mathbf{L}^{α}	tabia	correspondicite	CO

,	v.b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
	$\overline{x_2}$	0	1	1	0	0	0	1	$1 + \varepsilon^2 + \varepsilon^3$
	x_4	-2	0	3	1	-2	0	1	$1+3\varepsilon^2+\varepsilon^3$
	x_6	-5	0	2	0	4	1	2	$1 + \varepsilon^2 + \varepsilon^3$ $1 + 3\varepsilon^2 + \varepsilon^3$ $2 + 2\varepsilon^2 + 2\varepsilon^3$
	c'	-18	0	-30	0	-42	0	-1	$-1 - 30\varepsilon^2 - \varepsilon^3$

Todos los costos reducidos son ≤ 0 , y por lo tanto el algoritmo termina con valor máximo. Eliminando ε de la tabla, o haciendo $\varepsilon = 0$, se obtiene el valor máximo 1, cuando $x_2=1$, $x_4=1$, $x_6=2$, y cero para las otras variables.

Nota

- 1. En la resolución manual de los problemas ejemplos de programación lineal como los ejercicios propuestos, por lo general no se requiere utilizar estos métodos para garantizar que el método del símplex finaliza. No obstante, hay varias clases de problemas, por ejemplo: el problema de transporte o el de proyectos de programación de tareas, en los cuales las soluciones básicas son degeneradas y por consiguiente es imprescindible dar la seguridad de que el método efectivamente termina.
- Por otra parte, la convergencia del método del símplex establece una propiedad importante que se cumple para cualquier problema de programación lineal estándar:

Si tiene valor óptimo, entonces

- a) este se alcanza en una solución básica factible
- y b) los costos reducidos de la función objetivo, respecto de las variables básicas, satisfacen el criterio de óptimo:

$$c'_{j} \le 0$$
, para el caso de maximización

o $c'_{j} \ge 0$, para el caso de minimización.

En el siguiente capítulo se hará uso de este hecho.

4.5 Problemas propuestos

Problema 1

(E. Beale) Aplique la regla de Blands para resolver el problema

Maximizar
$$z = 0.75x_4 - 20x_5 + 0.5x_5 - 6x_7$$

sujeto a $x_1 + 0.25x_4 - 8x_5 - x_6 + 9x_7 = 0$
 $x_2 + 0.5x_4 - 12x_5 - 0.5x_6 + 3x_7 = 0$
 $x_3 + x_6 = 1$

todas las variables no negativas.

Observe que x_1, x_2, x_3 forman un conjunto inicial de variables básicas.

Respuesta

Máximo de z = 1.25, en $x_1=0.75$, $x_4=1$, $x_6=1$, y las otras variables con valor cero.

Problema 2

Resuelva el problema anterior usando el método de perturbaciones.

Capítulo 5 Problema dual

5.1 DEFINICIÓN DEL PROBLEMA DUAL

A cada problema de programación lineal de maximización (o de minimización) se le asocia un problema de programación de minimización (o de maximización), al que se denomina problema *dual*, y al problema original se le llama *primal*. Esta asociación ofrece propiedades importantes:

- 1) los valores óptimos, cuando existen, de ambos problemas son iguales,
- 2) la tabla final del método del símplex, aplicado a cualesquiera de los problemas, proporciona soluciones óptimas de los dos problemas, por lo cual, es suficiente resolver uno de ellos, por ejemplo, aquel que tenga el menor número de restricciones o la forma más sencilla, cuando este sea el caso,
- y 3) cómo se afecta o varía el valor óptimo del problema primal cuando se modifican los valores de las constantes de los lados derechos de las restricciones, esto es cuando se aumentan o disminuyen los recursos disponibles.

Para simplificar la explicación fijamos el número de variables n=2 y el número de restricciones m=3, sin embargo, debe quedar claro que estos valores pueden ser enteros positivos cualesquiera.

Problema dual en el caso simétrico

Sea el problema primal

(P)

Maximizar
$$z = c_1 x_1 + c_2 x_2$$

sujeto a $a_{11} x_1 + a_{12} x_2 \le b_1$ (1)
 $a_{21} x_1 + a_{22} x_2 \le b_2$ (2)
 $a_{31} x_1 + a_{32} x_2 \le b_3$ (3)
 $x_1, x_2 \ge 0$

en donde todas las restricciones tienen signo \leq y las constantes b_1 , b_2 y b_3 , son números arbitrarios.

Se define el problema dual de P mediante

(D)

$$\begin{aligned} \text{Minimizar } w &= b_1 y_1 + b_2 y_2 + b_3 y_3 \\ \text{sujeto a} &\quad a_{11} y_1 + a_{21} y_2 + a_{31} y_3 \geq c_1 \\ &\quad a_{12} y_1 + a_{22} y_2 + a_{32} y_3 \geq c_1 \\ &\quad y_1, y_2, y_3 \geq c_1 \end{aligned}$$

en donde todas las restricciones tienen el signo ≥.

Se mencionan algunas características del problema dual:

1) Cada restricción (del problema) primal determina una variable dual, por ejemplo:

$$a_{11}x_1 + a_{12}x_2 \le b_1$$
 (1) \rightarrow variable dual y_1

- 2) Los coeficientes o costos de función objetivo del problema dual son precisamente las constantes b_i del segundo miembro de las restricciones primales, de manera que la función objetivo dual es $b_1 y_1 + b_2 y_2 + b_3 y_3$
- 3) Cada variable primal determina una restricción dual, por ejemplo, a la variable primal x_1 le corresponde la restricción dual:

$$a_{11}y_1 + a_{21}y_2 + a_{31}y_3 \ge c_1$$

en donde los coeficientes a_{11} , a_{21} , a_{31} son los coeficientes de la variable x_1 en las restricciones, y c_1 es el costo de x_1 en la función objetivo.

Como se observa en la siguiente representación tabular, esta restricción dual se forma con los coeficientes de la columna de x_1

$$\begin{array}{c|ccccc} & x_1 & x_2 & \leq \\ \hline y_1 & a_{11} & a_{12} & b_1 \\ y_2 & a_{21} & a_{22} & b_2 \\ y_3 & a_{31} & a_{32} & b_3 \\ \hline \geq & c_1 & c_2 & z \\ \end{array}$$

Max
$$z = c_1 x + c_2 x$$

Min $w = b_1 y_1 + b_2 y_2 + b_3 y_3$

Se dice que la definición dada corresponde al caso simétrico, porque las formas de los problemas presentan las siguientes particularidades:

- uno de los problemas es de maximización y tiene restricciones de desigualdades ≤,
- 2) el otro problema es de minimización y tiene restricciones de desigualdades ≥,
- y 3) las variables de ambos problemas son no negativas.

A partir de esta definición de problema dual se puede hallar el problema dual de cualquier problema de programación lineal (véanse los ejemplos 2 y 3 siguientes).

Ejemplo 1

Halle el dual del problema

Maximizar
$$z = 12x_1 + 8x_2$$

sujeto a $3x_1 + x_2 \le 40$
 $-x_1 + 3x_2 \le 20$
 $4x_1 - 2x_2 \le 15$
 $6x_1 - 5x_2 \le -6$
 x_1, x_2 no negativos

Solución

Aplicando directamente la definición de problema dual se obtiene:

Minimizar
$$w = 40y_1 + 20y_2 + 15y_3 - 6y_4$$

sujeto a $3y_1 - y_2 + 4y_3 + 6y_4 \ge 12$
 $y_1 + 3y_2 - 2y_3 - 5y_4 \ge 8$
 y_1, y_2, y_3 no negativos.

Ejemplo 2

En este ejemplo se muestra que el problema dual de un problema de minimización es un problema de maximización.

Encuentre el problema dual de

Minimizar
$$z = 4x_1 + 2x_2$$

sujeto a $x_1 + 3x_2 \ge 5$
 $4x_1 - x_2 \le 2$
 x_1, x_2 no negativas.

Solución

Usando *Minimizar* $z = 4x_1 + 2x_2 = -Maximizar$ $z' = (-4x_1 - 2x_2)$ y haciendo que las restricciones tengan signo \leq , para aplicar la definición de problema dual, se considera el problema primal

-Maximizar
$$z' = -4x_1 - 2x_2$$

sujeto a $-x_1 - 3x_2 \le -5$
 $4x_1 - x_2 \le 2$
 x_1, x_2 no negativas
y el problema dual es
-Minimizar $w' = -5y_1 + 2y_2$
o Maximizar $w = 5y_1 - 2y_2$
sujeto a $-y_1 + 4y_2 \ge -4$
 $-3y_1 - y_2 \ge -2$
 y_1, y_2 no negativas

Ejemplo 3

Halle el dual de

Maximizar
$$z = -2x_1 + 3x_2 + 5x_3$$

sujeto a $x_1 - 3x_2 + x_3 \le 10$
 $2x_1 + 4x_2 - 2x_3 \le -4$
 x_1, x_2, x_3 no negativas

y muestre que a la segunda restricción, que es de igualdad, le corresponde una variable dual irrestricta.

Solución

Teniendo en cuenta la equivalencia de números a = b

si y solo si
$$a \le b$$
 y $-a \le -b$

la segunda restricción puede ser reemplazada por dos desigualdades \leq y el problema dado se expresa así:

Maximizar
$$z = -2x_1 + 3x_2 + 5x_3$$

sujeto a $x_1 - 3x_2 + x_3 \le 10$
 $2x_1 + 4x_2 - 2x_3 \le -4$
 $-2x_1 - 4x_2 + 2x_3 \le 4$
 x_1, x_2, x_3 no negativas

Denominando y_1, y_2, y_3 a las variables duales el problema dual es

Minimizar
$$w = 10y_1 - 4y_2' + 4y_3'$$

sujeto a $1y_1 + 2y_2' - 2y_3' \ge -2$
 $-3y_1 + 4y_2' - 4y_3' \ge 3$
 $1y_1 - 2y_2' + 2y_3' \ge 5$
 y_1, y_2', y_3' no negativas

Y haciendo $y_2 = y_2' - y_3'$, esta variable es irrestricta y se reemplaza tanto en la función objetivo como en las restricciones, de modo que el problema dual adquiere la expresión final

Minimizar
$$w = 10y_1 - 4(y_2' - y_3') = 10y_1 - 4y_2$$

sujeto a
$$y_1 + 2y_2 \ge -2$$

 $-3y_1 + 4y_2 \ge 3$
 $y_1 - 2y_2 \ge 5$
 y_1 no negativa, y_2 irrestricta.

5.2 Formas típicas de problemas duales

Se anotan algunas formas de problemas duales que se aplican frecuentemente.

a) Dual del problema de minimización simétrico
 El problema dual de

$$\begin{aligned} & \textit{Min } z = c_1 x_1 + \ldots + c_n x_n \\ & \text{sujeto a} & a_{11} x_1 + \ldots + a_{1n} x_n \geq b_1 \\ & a_{m1} x_1 + \ldots + a_{mn} x_n \geq b_m \\ & \text{todas las } x_i \geq 0 \\ & \text{es } \textit{Max } w = b_1 y_1 + \ldots + b_m y_m \\ & \text{sujeto a} & a_{11} y_1 + \ldots + a_{m1} y_m \leq c_1 \\ & \ldots \\ & a_{1n} y_1 + \ldots + a_{mn} y_m \leq c_n \\ & \text{todas las } y_i \text{ no negativas.} \end{aligned}$$

Ejemplo

El problema dual de

Minimizar
$$z = -2x_1 + 5x_2 + 3x_3$$

sujeto a $x_1 + x_2 - 3x_3 \ge -10$
 $-x_1 + 3x_2 + 4x_3 \ge 4$
todas las variables x_i no negativas
es Maximizar $x = -10y_1 + 4y_2$
sujeto a $y_1 - y_2 \le -2$
 $y_1 + 3y_2 \le 5$
 $-3y_1 + 4y_2 \le 3$
 y_1, y_2 no negativas.

b) Dual del problema de maximización estándar
 El problema dual del problema

$$\begin{aligned} & \textit{Maximizar } z = c_1 x_1 + \ldots + c_n x_n \\ & \text{sujeto a} \quad a_{11} x_1 + \ldots + a_{1n} x_n = b_1 \\ & \ldots \\ & a_{m1} x_1 + \ldots + a_{mn} x_n = b_m \\ & \ldots \\ & \text{todas las } x \geq 0 \\ & \text{es } \textit{Minimizar } w = b_1 y_1 + \ldots + b_m y_m \\ & \text{sujeto a} \quad a_{11} y_1 + \ldots + a_{m1} y_m \geq c_1 \\ & \ldots \\ & a_{1n} y_1 + \ldots + a_{mn} y_m \geq c_n \\ & \text{todas las } y_i \text{ irrestrictas.} \end{aligned}$$

Ejemplo

El problema dual de
$$Maximizar z = -2x_1 + 5x_2 + 3x_3$$

sujeto a $x_1 + x_2 - 3x_3 = -10$
 $-x_1 + 3x_2 + 4x_3 = 4$
todas las variables x_i no negativas
es $Minimizar x = -10y_1 + 4y_2$
sujeto a $y_1 - y_2 \ge -2$
 $y_1 + 3y_2 \ge 5$
 $-3y_1 + 4y_2 \ge 3$
 y_1, y_2 irrestrictas.

c) Dual del problema de minimización estándar
 En este caso, el dual es de maximización, las restricciones duales tienen el signo ≤, y las variables son irrestrictas.

5.3 Reglas para hallar el problema dual

Para hallar el problema dual de un problema arbitrario de programación lineal P se aplican las siguientes reglas que se deducen de la definición del problema dual de tipo simétrico.

1) Si P es de maximización:

Todas las restricciones de P deben ser \leq o =, convirtiendo las restricciones \geq $a \leq$, si es necesario.

A una restricción de P de signo ≤ le corresponde una variable dual no negativa.

Y si P es de minimización:

Todas las restricciones de P deben ser \geq o =, convirtiendo las restricciones \leq $a \geq$, si es necesario.

A una restricción de P de signo ≥ le corresponde una variable dual no negativa.

- 2) A una restricción de P de signo = le corresponde una variable dual irrestricta.
- 3) La función objetivo del problema dual es $w = b_1 y_1 + ... + b_m y_m$ en donde los b_i son las constantes de los miembros derechos de las restricciones de P.

Si P es de maximización el problema dual es de minimización. Y si P es de minimización el problema dual es de maximización.

4) A una variable x_i de P le corresponde la restricción dual $a_1, y_1 + ... + a_m, y_m \{\geq, =, \leq\} c_i$

en donde:

- 4.1) a_{1i} , ..., a_{mi} son los coeficientes de x_i en las restricciones (esto es, los coeficientes de la columna de x_i en la representación tabular)
- 4.2) c_i costo de x_i de la función objetivo de P
- 4.3) el signo de la restricción dual es

= si x_i es irrestricta \geq si x_i es no negativa y P es de maximización o \leq si x_i es no negativa y P es minimización.

Ejemplo

Utilice las reglas para encontrar el problema dual de

Minimizar
$$z = -2x_1 + 5x_2 + 4x_3$$

sujeto a $x_1 - 2x_2 + 9x_3 \le 12$
 $2x_1 + 6x_2 + x_3 = 8$
 $-x_1 + 3x_2 \ge -7$
 x_1 no negativa
 x_2, x_3 irrestrictas

Solución

1) Determinación de variables y función objetivo del dual.

Puesto que el problema primal es de minimización las restricciones solo pueden tener los signos = $o \ge$. Así, se invierte el signo de la primera restricción $-x_1 + 2x_2 - 9x_3 \ge -12$, y el conjunto de restricciones con las respectivas variables duales es

(1)
$$-x_1 + 2x_2 - 9x_3 \ge -12 \rightarrow y_1$$
 no negativa

(2)
$$2x_1 + 6x_2 + x_3 = 8 \rightarrow y_2$$
 no negativa

(3)
$$-x_1 + 3x_2 \ge -7 \quad \rightarrow y_2 \text{ no negativa}$$

Y el problema dual tiene por propósito maximizar la función objetivo

$$w = -12y_1 + 8y_2 - 7y_3$$
.

2) Restricciones duales

Correspondiente a la variable x_1 la restricción dual es $-y_1+2y_2-y_3 \le -2$ (coeficiente de x_1 en z) en donde se elige el signo \le pues x_1 es no negativa y el problema primal es de minimización.

Para la variable x_2 se obtiene la restricción dual $2y_1 + 6y_2 + 3y_3 = 5$ siendo el signo = pues x_2 es irrestricta.

Y de igual modo para la variable primal irrestricta x_3 la restricción dual $-9y_1 + 1y_2 + 0y_3 = -7$ Por lo tanto, el problema dual es $\begin{aligned} Maximizar & w = -12y_1 + 8y_2 - 7y_3 \\ & \text{sujeto a} & -y_1 + 2y_2 - y_3 \leq -2 \\ & 2y_1 + 6y_2 + 3y_3 = 5 \\ & -9y_1 + y_2 = -7 \\ & y_1, y_3 \text{ no negativas, } y_2 \text{ irrestricta.} \end{aligned}$

5.4 Problemas propuestos

Problema 1. Halle el problema dual de

Maximizar
$$z = 20x_1 + 6x_2 - 5x_3 + 18x_4$$

sujeto a $x_1 + 2x_3 + x_4 \le 20$
 $-2x_1 + 2x_2 - 3x_4 \le 5$
 $6x_1 + 2x_2 - 3x_3 \le 50$
todas las variables ≥ 0 .

Respuesta

Minimizar
$$w = 20y_1 + 15y_2 + 50y_3$$

sujeto a $y_1 - 2y_2 + 6y_3 \ge 20$
 $2y_2 + 2y_3 \ge 6$
 $2y_1 - 3y_3 \ge -5$
 $y_1 - 3y_2 \ge 18$
todas las variables no negativas.

Problema 2. Determine el problema dual de

Minimizar
$$z = 2x_1 + 9x_2 + 3x_3$$

sujeto a $-x_1 - 6x_2 \ge -3$
 $x_1 + 4x_2 + x_3 \ge 2$
 $-2x_1 - 14x_2 \ge -7$
todas las variables no negativas.

Respuesta

Maximizar
$$w = -3y_1 + 2y_2 - 7y_3$$

sujeto a $-y_1 + y_2 - 2y_3 \le 2$
 $-6y_1 + 4y_2 - 14y_3 \le 9$
 $y_2 \le 3$
todas las variables no negativas.

Problema 3. Halle el problema dual de

Maximizar
$$z = 5x_1 + 3x_2 - 3x_3$$

sujeto a $x_1 + 6x_2 - 5x_3 = 16$
 $4x_1 - 3x_2 + 8x_3 = 20$
todas las variables no negativas.

Respuesta

Maximizar
$$w = 16y_1 + 20y_2$$

sujeto a $y_1 + 4y_2 \ge 5$
 $6y_1 - 3y_2 \ge 3$
 $-5y_1 + 8y_2 \ge -3$
todas las variables irrestrictas.

Problema 4. Encuentre el problema dual de

Minimizar
$$z = 5x_1 + 3x_2 - 3x_3$$

sujeto a $x_1 + 6x_2 - 5x_3 = 16$
 $4x_1 - 3x_2 + 8x_3 = 20$
todas las variables no negativas.

Respuesta

Maximizar
$$w = 16y_1 + 20y_2$$

sujeto a $y_1 + 4y_2 \ge 5$
 $6y_1 - 3y_2 \ge 3$
 $-5y_1 + 8y_2 \ge -3$
todas las variables irrestrictas.

Problema 5. Determine el problema dual de

Maximizar
$$z = 20x_1 - 15x_2 + 50x_3$$

sujeto a $2x_1 + x_2 - 5x_3 \ge 6$
 $-2x_1 + 3x_3 \le 5$
 $x_1 - 3x_2 = 18$
 x_1 irrestricta, x_2 , x_3 no negativas.

Respuesta

El problema dual es

Minimizar
$$w = -6y_1 + 5y_2 + 18y_3$$

sujeto a $-2y_1 - 2y_2 + y_3 = 20$, con signo = pues x_1 es irrestricta
 $-y_1 - 3y_3 \ge -15$
 $5y_1 + 3y_2 \ge 6$

 y_1, y_2 no negativas, pues las restricciones primales son $\leq y_3$ es irrestricta, porque la restricción primal tiene signo =.

5.5 Propiedades del problema dual

Se describen las propiedades básicas de los problemas dual y primal.

P1) El dual del problema dual es el problema primal.

Ejemplo

Si el problema primal es

(P)
$$Max z = 6x_1 - 5x_2 + 2x_3$$

sujeto a $x_1 + 4x_2 - x_3 \le 10$
 $-2x_1 + 3x_2 + 4x_3 = 6$

todas las variables irrestrictas

el problema dual es

(D)
$$Min \ w = 10y_1 + 6y_2$$

sujeto a $y_1 - 2y_2 \ge 6$
 $4y_1 + 3y_2 \ge -5$
 $-y_1 + 4y_2 \ge 2$

 y_1 no negativa, y_2 irrestricta

y el dual de (D) es el problema (P) (salvo el nombre de las variables).

P2) Propiedad de dualidad débil

Si el problema primal P es de maximización, entonces los valores de la función objetivo z(x) de P son menores que o iguales a los valores de la función objetivo w(y) de D, esto es

$$z(x) \le w(y)$$

para toda solución factible x de P, y toda solución factible y del problema dual D.

[Si el problema primal P es de minimización, se cumple

$$z(x) \ge w(y)$$
.

Además, si en algún par de soluciones factibles x_0 y y_0 se satisface la igualdad

$$z(x_0) = w(y_0)$$

entonces $z(x_0) =$ óptimo $P = w(y_0) =$ óptimo de D.

Ejemplo. Sean los problemas primal y dual

(P)
$$Max \ z = 4x_1 + 5x_2$$
 (D) $Min \ w = 20y_1 + 50y_2$
sujeto a sujeto a $x_1 + 2x_2 \le 20$ $y_1 + 6y_2 \le 4$
 $6x_1 + 7x_2 \le 50$ $2y_1 + 7y_2 \le 5$
 x_1, x_2 no negativas y_1, y_2 no negativas

Entonces se tiene

$$z(x_1, x_2) = z = 4x_1 + 5x_2$$

$$\leq (y_1 + 6y_2)x_1 + (2y_1 + 7y_2)x_2 \quad (1)$$

$$= x_1y_1 + 6x_1y_2 + 2x_2y_1 + 7x_2y_2$$

$$= (x_1 + 2x_2)y_1 + (6x_1 + 7x_2)y_2$$

$$\leq 20y_1 + 50y_2 \quad (2)$$

$$= w = w(y_1, y_2)$$

en donde (1) se obtiene multiplicando por x_1 , x_2 las restricciones duales

$$\begin{array}{cccc} 4 \leq y_1 + 6y_2 & \rightarrow & 4x_1 \leq (y_1 + 6y_2)x_1 \\ 5 \leq 2y_1 + 7y_2 & \rightarrow & 5x_2 \leq (2y_1 + 7y_2)x_2 \end{array}$$

y se preservan los signos \leq de las desigualdades pues x_1 , x_2 son factores no negativos, y de igual manera se justifica (2), por las restricciones primales y los valores no negativos de y_1 , y_2 . Así, se cumple $z(x_1, x_2) \leq w(y_1, y_2)$.

P3) El problema primal P y su respectivo dual D tienen igual valor óptimo, cuando existen, esto es, se cumple

Máximo P = Mínimo D, si P es de maximización Mínimo P = Máximo D, si P es de minimización.

P4) Cálculo de una solución óptima del dual del problema de maximización

Si se aplica el método del símplex a un problema de maximización y se obtiene el valor máximo, entonces además de la solución óptima de este problema, la tabla final contiene una solución óptima del problema dual $y_1, ..., y_m$, que es dada por las expresiones

$$y_i = c_{ji} - c'_{ji}$$
 $i = 1, 2, ..., m$

en donde

 $c_1, c_2, ..., c_m$ son los costos de las variables básicas de la tabla inicial

 $c'_1, c'_2, ..., c'_m$ son los costos reducidos de estas variables en la tabla final.

Caso simétrico

Si el problema es de maximización simétrico, las variables de holguras forman por defecto el conjunto de variables básicas, una solución óptima del dual es

$$y_i = -c_i', \quad i = 1, 2, ..., m$$

siendo $c'_i,...,c'_m$ los costos reducidos de las variables de holgura en la tabla final.

Nota

- 1. En la sección 5.6 se exponen los conceptos y propiedades que justifican estas fórmulas de una solución óptima del dual.
- 2. Para el problema estándar de minimización, si se resuelve usando el criterio de mínimo, todos los $c'_j \ge 0$, las expresiones de la solución óptima del dual son las mismas:

$$y_i = c_{ii} - c'_{ii}, i = 1, 2, ..., m.$$

Pero si se resuelve convirtiendo el problema a uno de maximización

$$Min z = -Max(-z)$$

es decir, si se resuelve Max(-z), los y, son los valores opuestos

$$y_i = c_i' - c_i$$

donde los costos se refieren a las tablas de -z.

Ejemplo 1. Resuelva

Maximizar
$$z = 4x_1 + 12x_2 - 6x_3 + x_4$$

sujeto a $5x_1 + 8x_2 + x_3 = 90$
 $2x_1 + 4x_2 + x_4 = 40$
todas las variables no negativas

Halle una solución óptima del problema dual.

Solución

La tabla inicial es

T1	vb	x_1	x_2	x_3	x_4	
	x_3	5*	8	1	0	90 40
	x_4	2	4	0	1	40
	С	4	12	-6	1	0
	c'	32	56	0	0	500

Las variables básicas iniciales son x_3 , x_4 , y los costos de estas variables son $c_3 = -6$, $c_4 = 1$

T3 vb
$$x_1$$
 x_2 x_3 x_4 x_1 1 0 1 -2 10 x_2 0 1 -0.5 1.25 5 c' 0 0 -4 -6 -100

Puesto que se cumple el criterio de máximo, la solución $x_1=10$, $x_2=5$, $x_3=x_4=0$, es óptima y el valor máximo de z es 100.

El problema dual tiene valor mínimo 100 y una solución óptima es

$$y_1 = c_3 - c_3' = (-6) - (-4) = -2$$

 $y_2 = c_4 - c_4' = (1) - (-6) = 7$

Ejemplo 2

Aplicando el método del símplex resuelva el problema primal

(P) Maximizar
$$z = 4x_1 + 5x_2$$

sujeto a $-x_1 + x_2 \le 2$
 $8x_1 - 3x_2 \le 24$
 x_1, x_2 , no negativas

usando como variables básicas iniciales las variables de holgura h_1 , h_2 , respectivamente.

Y encuentre una solución óptima del problema dual.

Solución

Señalando por * el elemento pivote en cada paso las tablas resultantes para resolver (P) son

T1=Tabla inicial

vb	x_1	x_2	$h_{_1}$	$h_2^{}$	b
h_1	-1	1	1	0	2
h_2	1*	-3	0	1	24
c'	4	5	0	0	0

T2

vb	x_1	x_2	$h_{_1}$	h_2	b
h_{1}	0	5/8*	1	1/8	5
x_1	1	⁻³ / ₈	0	1/8	3
	0	13/2	0	-1/2	0

T3=Tabla final

vb	x_1	x_2	$h_{_1}$	h_2	b
x_2	0	1	8/5	1/5	8
\boldsymbol{x}_1	1	0	$^{3/}_{5}$	2	6
c'	0	0	-52/ ₅	-9/ ₅	-64

Así, el valor máximo de (P) es 64 y se obtiene en x_2 =8, x_1 =6. Los costos reducidos de la tabla final con

$$c_1' = 0$$
, $c_2' = 0$, $c_3' = -10.40$, $c_4' = -1.8$

y por lo tanto una solución óptima del dual es

$$y_1 = -c_3' = -\left(-\frac{52}{5}\right) = 10.40$$

$$y_2 = -c_4' = -(-1.8) = 1.8$$

5.6 Problemas propuestos

Problema 1. Sea el problema de programación lineal

Minimizar
$$z = 8x_1 + 12x_2$$

sujeto a $2x_1 + 2x_2 \ge 9$
 $x_1 - x_2 \ge 3$
 $x_1 + 2x_2 \ge 6$
 $x_1 + x_2 \ge 5$
 $x_i \ge 0$

- a) Halle el problema dual
- b) Resuelva el problema dual e indique soluciones óptimas de los dos problemas.

Respuesta

a) El problema dual es

Maximizar
$$w = 9y_1 + 3y_2 + 6y_3 + 5y_4$$

sujeto a $2y_1 + y_2 + y_3 + y_4 \le 8$
 $2y_1 - y_2 + 2y_3 + y_4 \le 8$

todas las variables no negativas

b) El valor máximo de w es 44 y se alcanza en $y_2 = \frac{4}{3}$, $y_3 = \frac{20}{3}$, y las otras variables con valor cero.

La función objetivo z tiene valor mínimo 44 y una solución óptima es $x_1 = 4$, $x_2 = 1$.

Problema 2 Resuelva el problema

Maximizar
$$z = 20x_1 + 6x_2 - 5x_3 + 18x_4$$

sujeto a $x_1 2x_3 + x_4 \le 20$
 $-2x_1 + 2x_2 - 3x_4 \le 15$
 $6x_1 + 2x_2 - 3x_3 \le 50$

todas las variables ≥ 0

y determine una solución óptima del problema dual.

Respuesta

Máximo de
$$z = 510$$
 en $x_2 = 25$, $x_4 = 20$, y las otras variables con valor cero.
Mínimo del dual = 510 en $y_1 = 18$, $y_2 = 0$, $y_3 = 3$.

Problema 3

Halle el valor mínimo y una solución óptima del problema dual de

$$\begin{aligned} \textit{Maximizar } z &= 5x_1 - 3x_2 + 2x_3 + 6x_4 \\ \text{sujeto a} & x_1 - 2x_2 + 4x_4 \leq 6 \\ 2x_1 + x_2 + x_3 + 10x_4 \leq 14 \\ x_1 - x_2 + 11x_4 \leq 9 \\ x_2 \geq 0 \end{aligned}$$

Respuesta

El valor mínimo del problema dual es 34 y una solución óptima es $y_1 = 1$, $y_2 = 2$, $y_3 = 0$.

Problema 4

Utilizando el problema dual resuelva el problema

Minimizar
$$z = 50x_1 + 30x_2 + x_3$$

sujeto a $5x_1 + 5x_2 + 4x_3 \ge 50$;
 $x_1 + x_2 + 2x_3 \ge 20$;
 $7x_1 + 6x_2 - 3x_3 \ge 30$;
 $x_2 \ge 0$

Respuesta

El valor mínimo es 246 y se obtiene en $x_1 = 0$, $x_2 = 8$, $x_3 = 6$.

Problema 5

Un granjero cría cerdos para venta y desea determinar las cantidades de los distintos tipos de alimentos que debe dar a cada cerdo para satisfacer ciertos requisitos nutricionales a un costo mínimo. En la siguiente tabla se indica las unidades de cada clase de ingrediente nutritivo básico contenido en cada alimento, los requerimientos y los costos de los alimentos.

	Unidades	por kilo de	alimento	
Ingrediente	maíz	grasa	alfalfa	Requerimiento mínimo diario
carbohidratos	90	20	40	200
proteínas	30	80	60	180
Vitaminas	10	20	60	150
Costo por kilo	3	1	2	

- a) Formule el modelo de programación lineal.
- b) Resuelva el problema aplicando el método del símplex al problema dual.

Respuesta

a) Sean x_1 , x_2 , x_3 , las cantidades (en kilos) de los tres alimentos, respectivamente, para alimentar un cerdo, y sea C el costo correspondiente.

El problema es minimizar
$$C = 3x_1 + x_2 + 2x_3$$

sujeto a $90x_1 + 20x_2 + 40x_3 \ge 200$
 $30x_1 + 80x_2 + 60x_3 \ge 180$
 $10x_1 + 20x_2 + 60x_3 \ge 150$
 x_i no negativos

b) El costo mínimo es 9.60 y se obtiene tomando 1.60 kilos de maíz y 2.40 kilos de alfalfa.

5.7 VECTOR DUAL DE UNA SOLUCIÓN BÁSICA FACTIBLE

A continuación se justifican formalmente las expresiones que dan una solución óptima del problema dual, indicadas en la propiedad P4 de 5.5.

En la exposición se usará un ejemplo a fin de facilitar la explicación y progresivamente se generalizará empleando la notación de matrices.

El ejemplo es el problema de maximización estándar:

Maximizar
$$z = 4x_1 + 12x_2 + 7x_3 + 3x_4$$

sujeto a $5x_1 + 8x_2 + 4x_3 + x_4 = 60$
 $2x_1 + 4x_2 + 3x_3 + x_4 = 50$
todas las variables no negativas

Las variables x_3 , x_4 son básicas factibles. En efecto, haciendo cero las otras variables, el sistema de ecuaciones

$$4x_3 + x_4 = 60$$

$$3x_3 + x_4 = 50$$
(1)

tiene la solución única $x_3 = 10$, $x_4 = 20$, y por lo tanto resulta la solución básica factible $x_1 = 0$, $x_2 = 0$, $x_3 = 10$, $x_4 = 20$.

Sea ahora el sistema de ecuaciones con dos incógnitas y_1, y_2

$$4y_1 + 3y_2 = 7 y_1 + y_2 = 3$$
 (2)

en donde la primera ecuación se forma con los coeficientes que x_3 tiene en las restricciones y la constante del lado derecho es el costo de x_3 en la función objetivo, y de modo similar, la segunda ecuación, con los coeficientes de x_4 y lado derecho el costo de esta variable.

El hecho de que (1) tenga solución única implica que (2) también posee solución única, que en efecto es dada por

$$y_1 = -2, \quad y_2 = 5.$$

Se llama vector dual de las variables básicas x_3 , x_4 al vector

$$Y = [y_1 \ y_2] = [-2 \ 5]$$

solución del sistema (2).

Para generalizar este caso, se expresa 2) abreviadamente como la ecuación matricial con incógnita el vector dual $Y = [y_1, y_2]$

$$\begin{bmatrix} y_1 \ y_2 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 3 \end{bmatrix} \tag{2}$$

en donde el lado izquierdo es el producto del vector dual multiplicado por la matriz de los coeficientes de las variables x_3 , x_4 en las restricciones y el lado derecho es la fila de los costos de estas variables.

Se puede ver que la ecuación matricial equivale al sistema (2):

El primer miembro (es la fila que) resulta de sumar y_1 veces la primera fila de la matriz y y_2 veces la segunda fila

$$[(4y_1 + 3y_2)(y_1 + y_2)] = [7 \quad 3]$$

e igualando los respectivos componentes se obtiene (2).

Calculamos nuevamente el vector dual pero esta vez resolviendo la ecuación matricial, pues por el cálculo de matrices el vector dual puede despejarse directamente de (2)' empleando la matriz inversa de la matriz de coeficientes.

Se indican los pasos para hallar la matriz inversa mediante operaciones de filas como las se aplican en el método del símplex

- se opera sobre la matriz aumentada con la matriz identidad
- se divide la fila 1 entre el pivote 4 y se resta 3 veces esta fila a la fila 2

• se divide la fila 2 entre el pivote 1/4 y se suma -1/4 esta fila a la fila 1

y la matriz inversa es

$$\begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix}$$

Ahora se puede despejar el vector dual de (2)'

$$\begin{bmatrix} y_1 & y_2 \end{bmatrix} = \begin{bmatrix} 7 & 3 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 7 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 5 \end{bmatrix}$$

que son los valores encontrados resolviendo el sistema de ecuaciones (2).

En general, se define el *vector dual* de un conjunto de variables básicas $x_1, ..., x_m$, por

$$Y = [\bar{y}_1 ... \bar{y}_m] = [c_1 ... c_m] \cdot B^{-1}$$
 (3)

producto de la fila de costos de las variables básicas por la matriz B^{-1} , inversa de la matriz B formada por los coeficientes de las variables básicas en las restricciones.

En forma abreviada, $vector\ dual = c_{bas}.B^{-1}$ en donde c_{bas} es la fila de costos de las variables básicas.

Vector dual y costos reducidos

Retomando el programa ejemplo se hallarán los costos reducidos en términos del vector dual $Y = [\bar{y}_1 \bar{y}_2] = [-2 \quad 5]$ de las variables x_3, x_4 .

Se escriben las restricciones con la función objetivo

multiplicando las restricciones por y_1 , y_2 , respectivamente y restando miembro a miembro de la ecuación de z se obtiene

$$c_1'x_1 + c_2'x_2 + c_3'x_3 + c_4'x_4 = z - z_0$$

en donde

$$c'_{1} = 4 - (5y_{1} + 3y_{2}) = -1$$

$$c'_{2} = 12 - (8y_{1} + 4y_{2}) = 8$$

$$c'_{3} = 7 - (4y_{1} + 3y_{2}) = 0$$

$$c'_{4} = 3 - (y_{1} + y_{2}) = 0$$

$$c_{0} = 60y_{1} + 50y_{2} = 130$$

después de evaluarlos en $\overline{y}_1 = -2$, $\overline{y}_2 = 5$.

Nótese que son nulos los valores c'_3 , c'_4 pues y_1 , y_2 se han definido precisamente como soluciones de las ecuaciones (2).

Así, $z = -x_1 + 8x_2 + 130$ es la representación de z sin las variables básicas x_3, x_4 .

Nótese que c_2' se expresa por

$$c_2' = c_2 - \left[\overline{y}_1 \ \overline{y}_2 \right] \begin{bmatrix} 8 \\ 4 \end{bmatrix} = c_2 - \left[\overline{y}_1 \ \overline{y}_2 \right]$$
 por columna de x_2

y de modo similar para los otros costos reducidos. En consecuencia, formalmente se tiene la siguiente definición de un costo reducido en términos del vector dual.

Definición

Se denomina costo reducido de una variable x_j , relativo a un conjunto de variables básicas, al número

$$\begin{bmatrix} c'_j = c_j - (\bar{y}_1 a_{1j} + \dots + \bar{y}_m a_{mj}) \end{bmatrix}$$
o
$$\begin{bmatrix} c'_j = c_j - Y \cdot A^j \end{bmatrix}$$

en donde c_j es el costo de la variable, Y el vector dual de las variables básicas, y A^j la columna formada por los coeficientes de a_{ij} de x_j en las restricciones i = 1...m.

Los costos reducidos de las variables básicas son nulos por definición de vector dual. En efecto, Y se define por

$$Y = c_{bas} \cdot B^{-1}$$
o $Y \cdot B = c_{bas}$

(B es la matriz formada por las columnas de las variables básicas), de modo que si c_i es el costo de la variable básica x_i entonces

Y.(columna de coeficientes de variable
$$x_i$$
)= c_i
Y. $A^i = c_i$

de donde $c'_i = c_i - Y$. $A^i = 0$.

La función objetivo se escribe en términos de los costos reducidos así:

$$z = c_1'x_1 + \dots + c_n'x_n + z_0$$

siendo $z_0 = Y \cdot b$, el producto del vector Y por la columna de constantes de los miembros derechos de las restricciones, y también el valor de z en la solución básica factible, dado por

$$z_0=\overline{y}_1b_1+\overline{y}_2b_2+\ldots+\overline{y}_mb_m$$
 o
$$z_0=Y\cdot b$$

producto del vector dual por la columna de las constantes b_i de los lados derechos de las restricciones.

Criterio de óptimo y solución dual

Caso de maximización

Se cumplen todos los $c'_j \le 0$ si y solo si el vector dual Y es una solución factible del problema dual. Y, en este caso,

valor máximo de z = valor mínimo del problema dual = z_0

y el vector dual es una solución óptima del problema dual.

Este resultado se sigue de

$$c'_{j} = c_{j} - (a_{1j}\bar{y}_{1} + \dots a_{mj}\bar{y}_{m})$$

de manera que

$$c'_{j} \le 0$$
 si y solo si $a_{1_{i}} \overline{y}_{1} + \dots a_{m_{i}} y_{j} \ge c_{j}$

en donde la segunda desigualdad es precisamente la restricción dual correspondiente a la variable primal x_i .

Así, se cumple $c'_j \le 0$ para todo j si y solo si $y_1,...,y_m$ es una solución factible del problema dual.

Se omiten los detalles de la parte restante.

Caso de minimización

Se cumple:

todos los $c'_j \ge 0$ si y solo si el vector dual Y es una solución factible del problema dual.

Y en este caso,

valor mínimo de z = valor máximo del problema dual = z_0 y el vector dual es una solución óptima del problema dual.

Una solución óptima dual

En la propiedad P4 de 5.5 se indicó una solución óptima del problema dual de un problema estándar. En verdad, la solución señalada no es otra que el vector dual de la solución básica factible que cumple el criterio de máximo.

Según la definición de costos reducidos respecto de un conjunto de variables básicas se tiene

$$c'_{j} = c_{j} - (a_{1j}\overline{y}_{1} + \dots + a_{ij}\overline{y}_{i} + a_{mj}\overline{y}_{m})$$

en donde los a_{p_i} son los coeficientes de la columna de la variable x_i .

Luego, si esta columna es unitaria, con 1 en la posición i, y cero en las otras posiciones, esto es $a_{ij} = 1$, y $a_{pj} = 0$, si p es distinto de i, se tiene $c'_j = c_j - \overline{y}_i$ de donde $\overline{y}_i = c_i - c'_i$.

De esto se sigue que cuando se aplica el método del símplex, y se obtiene el valor máximo, los costos reducidos de las variables básicas actuales pueden usarse para calcular el vector dual, seleccionando solo aquellos costos reducidos de las variables básicas iniciales, pues tienen columnas unitarias.

Ejemplo

Por el método del símplex resuelva

Maximizar
$$z = 4x_1 + 12x_2 - 6x_3 + x_4$$

sujeto a $5x_1 + 8x_2 + x_3 = 90$
 $2x_1 + 4x_2 + x_4 = 40$

todas las variables no negativas

indicando el vector dual de cada tabla. Halle una solución óptima del problema dual.

Solución

La tabla inicial es

T1

vb	x_1	x_2	x_3	x_4	
x_3	5*	8	1	0	90
x_4	2	4	0	1	40
С	4	12	-6	1	0
c'	32	56	0	0	500

Las variables básicas iniciales son x_3 , x_4 , y los costos de estas variables son $c_3 = -6$, $c_4 = 1$.

Para las variables básicas x_3 , x_4 , el vector dual es

$$\overline{y}_1 = c_3 - c_3' = -6 - 0 = -6$$

 $\overline{y}_2 = c_4 - c_4' = 1 - 0 = 1$

T2

vb	x_1	x_2	x_3	x_4	
x_1	1	1.6	0.2	0	18
x_4	0	0.8*	-0.4	1	4
c'	0	4.8	-6.4	0	-76

El vector dual de
$$x_1$$
, x_4 es

$$\overline{y}_1 = c_3 - c_3' = -6 + 6.4 = 0.4$$

 $\overline{y}_2 = c_4 - c_4' = 1 - 0 = 1$

T3

vb	x_1	x_2	x_3	x_4	
x_1	1	0	1	-2	10
x_2	0	1	-0.5	1.25	5
c'	0	0	-4	-6	-100

El vector dual de x_1 , x_2 tiene componentes

$$\overline{y}_1 = c_3 - c_3' = -6 - (-4) = -2$$

 $\overline{y}_2 = c_4 - c_4' = 1 - (-6) = 1$

Puesto que se cumple el criterio de máximo, la solución $x_1 = 10, x_2 = 5, x_3 = x_4 = 0$ es óptima y el valor máximo de z es 100. De esto se sigue que el problema dual tiene valor mínimo 100 y una solución óptima dada por el vector dual $y_1 = -2, y_2 = 7$.

Capítulo 6 Análisis de sensibilidad post óptimo

6.1 Introducción

El análisis de sensibilidad post óptimo se refiere a estudiar cómo cambia el valor óptimo de la función objetivo si se modifican algunos de los elementos o parámetros de un problema de programación lineal tales como

- variar el nivel de recurso o constante del lado derecho de una restricción
- modificar un costo de la función objetivo
- incluir una nueva variable
- agregar otra restricción

En lo que sigue se explican estos casos mediante el desarrollo de algunos ejemplos.

6.2 Pasos del análisis

Los pasos para efectuar este análisis son básicamente los siguientes:

- 1) se determina o se elige una solución óptima del problema
- y 2) preservando las variables básicas determinadas en el paso 1) se varía uno de los parámetros del problema, mientras los demás

permanecen fijos, a fin de hallar el rango o intervalo de variación y el correspondiente valor óptimo de la función objetivo.

El procedimiento para realizar el paso 2) consiste en resolver el problema modificado repitiendo los cálculos efectuados en el paso 1), es decir, se hacen los mismos cambios de variables básicas que condujeron a la solución. Así, se obtiene una tabla que tiene las mismas variables básicas y para que proporcione una solución óptima se exige que los costos reducidos satisfagan los criterios de optimalidad y que la solución encontrada tenga valores no negativos.

6.3 Programa ejemplo

El siguiente programa sirve de ejemplo para exponer los conceptos del análisis post óptimo.

Sea el problema

Maximizar z = 4x + 5ysujeto a $2x + y \le 6$ $y \le 2$ x,y no negativas

La representación gráfica del problema es

Nótese que, por los datos del problema, es obvio que si se aumenta uno de los costos, 4 ó 5, o uno de los recursos, 6 ó 2, el valor máximo de la función crece o se mantiene.

Introduciendo variables de holgura h_1, h_2 el problema se escribe en forma estándar

$$Max z = 4x + 5y$$
$$2x + y + h_1 = 6$$
$$y + h_2 = 2$$

y resolviendo por el método del símplex se obtiene:

Tabla inicial

vb	x	y	$h_{_1}$	$h_2^{}$	b
h_1	2	1	1	0	6
h_2	0	1	0	1	2
$\overline{c'}$	4	5	0	0	0

Tabla final

	vb	x	y	$h_{_1}$	h_2	b
Ī	х	1	0	1/2	-1/2	2
	y	0	1	0	1	2
	c'	0	0	-2	-3	-18

de donde el valor máximo es z_0 =18, en x=2, y=2, h_1 = h_2 =0.

6.4 VARIACIÓN DE UN COSTO FIJANDO LA SOLUCIÓN ÓPTIMA

Cuando se modifican los costos permanece invariable la región de factibilidad, y por ende las soluciones básicas factibles.

El objetivo del análisis es determinar cuál es el intervalo en el que puede variar un coeficiente de costo, manteniendo fijos los otros costos, y cuál es el valor óptimo del problema, si se exige que se preserve la solución óptima.

La determinación del rango de variación es sencilla:

• en la tabla final se anota la fila de costos de la función objetivo, con el nuevo costo,

- se calculan los costos reducidos anulando los costos de las variables básicas mediante operaciones de filas,
- se exige la condición de óptimo: todos los costos reducidos son
 ≤ 0, para el caso de máximo, o ≥ 0, para el caso de mínimo; esto
 da lugar a un conjunto de desigualdades de las cuales se obtiene
 el intervalo de variación del costo.

Ejemplo La función objetivo del problema es

$$z = 4x + 5y + 0h_1 + 0h_2$$

- a) ¿Entre qué valores puede variar el costo de la variable x y qué valores toma z si x=2, y=2, h₁=0, =h₂=0 sigue siendo solución óptima del problema?
- b) Igual para el costo de la variable h_2
- c) ¿Qué sucede si el costo de la variable x sale del rango o intervalo hallado en la parte a)?

Solución

a) Si c_1 es el costo de x, y se conservan los otros costos, la función objetivo es $z = c_1 x + 5y + 0h_1 + 0h_2$ Usando la tabla final, se anulan los costos de x,y, para hallar los nuevos costos reducidos,

vb	x	y	$h_{_1}$	$h_2^{}$	b
x	1	0	1/2	-1/2	2
У	0	1	0	1	2
С	$c_{_1}$	5	0	0	0
$\overline{c'}$	0	0	$-c_{1}/2$	$(c_1/2-5)$	-2c1-10

$$c' = c - c_1$$
 veces (fila 1) – 5 veces (fila 2)

Para que la solución x = y = 2 siga siendo óptima, es suficiente que se cumpla el criterio de máximo, todos los costos reducidos deben ser ≤ 0 , por lo que debe tenerse

$$-\frac{c_1}{2} \le 0$$
 y $\frac{c_1}{2} - 5 \le 0$

esto es $0 \le c_1 \le 10$

y el valor máximo de $z=2c_1+10$ $z=2c_1+10$, dependiendo de c_1 , varía de z=10 a 30. Por ejemplo, si $c_1=7$, el valor máximo de z es 24 en la misma solución óptima.

b) Designando por c_3 el costo de h_1 y procediendo de modo similar

vb	x	y	$h_{_1}$	h_2	b
x	1	0	1/2	-1/2	2
_ <i>y</i>	0	1	0	1	2
С	4	5	c_3	0	0
c'	0	0	(c_3-2)	-3	-10

$$y c_3 - 2 \le 0 \text{ o } c_3 \le 2.$$

Así, c_3 puede ser cualquier número ≤ 2 , y la función objetivo permanece constante cuando la solución óptima es x=y=2, $h_1=h_2=0$.

c) Si el coeficiente de costo c_1 de x toma un valor fuera del intervalo de variación [0,10], por ejemplo, c_1 = -3 o c_1 =11, entonces la solución básica, vértice B(2,2), deja de ser óptima, y en este caso, el valor máximo se alcanza en otra solución óptima, uno de los otros vértices A(0,2) o C(3,0).

6.5 VARIACIÓN DEL LADO DERECHO DE UNA RESTRICCIÓN FIJANDO LAS VARIABLES BÁSICAS

Ahora se estudia el problema cuando se varía el lado derecho de una restricción. Se observa que:

 no cambian los costos reducidos, por lo que se mantiene la condición de óptimo, al variar el lado derecho cambia la región de factibilidad y por lo tanto también cambian los valores de las soluciones básicas factibles.

El propósito del análisis es determinar el intervalo en el que puede variar el lado derecho exigiendo que las variables básicas sigan dando una solución óptima del problema.

Cuando se modifica el lado derecho de una restricción, las variables básicas toman un valor que depende de este parámetro. Estos valores deben ser no negativos para que la solución sea factible (y óptima).

Ejemplo Sea el problema

Maximizar
$$z = 4x + 5y$$

sujeto $2x + y \le b_1$
 $y \le 2$

y $z\max(b_1)$ el valor máximo de z, que depende de b_1 , en la solución básica x=2, y=2, por ejemplo, para $b_1=6$ se obtuvo $z\max(6)=8$.

¿Entre qué valores puede variar el lado derecho b_1 de la primera restricción, si las variables básicas x, y dan una solución óptima?

Halle $zmax(b_1)$ y la solución óptima respectiva.

Solución

Consiste en aplicar el método del símplex al problema max z = 4x + 5y

$$2x + y + h_1 = b_1$$
$$y + h_2 = 2$$

asumiendo que las variables básicas *x*, *y* son básicas y dan una solución óptima.

Tabla inicial

vb	x	У	$h_{_1}$	$h_2^{}$	b
h_1	2*	1	1	0	b ₁
$h_2^{}$	0	1	0	1	2
c'	4	5	0	0	0

Usando el pivote 2* la siguiente tabla es

vb	x	У	\boldsymbol{h}_1	h_2	b	razón
X	1	1/2	1/2	-1/2	$b_{1}/2$	$\mathbf{b}_{_{1}}$
h_2	0	1	0	1	2	2
c'	0	3	-2	0	-2 b ₁	

Ahora debe ingresar la variable y, y pueden salir x o h_1 . Puesto que se exige que x,y sean las variables básicas ha de salir h_2 , y por la razón mínima, para esto se requiere que $b_1 \ge 2$, de lo contrario, saldría x. Así, asumiendo cierta esta condición entra la variable y en lugar de h_2 .

Usando el pivote 1* se obtiene la tabla

Luego $b_1 \ge 2$ y el valor máximo de z es z max $(b_1) = 2b_1 + 6$ y una solución óptima es $x = b_{\frac{1}{2}-1}$, y = 2, $h_1 = h_2 = 0$.

6.6 Inclusión de variable

Se incluye una nueva variable de decisión y se determinan las condiciones que debe cumplir el costo de la variable o alguno de sus coeficientes para que se mantenga la solución óptima del problema original.

Ejemplo Sea el problema

P1) Maximizar
$$z = 4x + 5y$$

sujeto a $2x + y \le 6$
 $y \le 2$
 x, y no negativas

Se incluye la variable no negativa u con coeficiente de costo c_3 y términos 3u, 4u en las restricciones, de modo que el problema modificado es

P2) Maximizar
$$z = 4x + 5y + c_3u$$

sujeto a $2x + y + 3u \le 6$
 $y + 4u \le 2$
 x, y, u no negativas

¿Para qué valores de c_3 el valor máximo de z cambia (en este caso aumenta)?

Solución

Introduciendo variables de holgura se obtiene

Tabla inicial

vb	x	y	и	$h_{_1}$	h_2	b
h_1	2*	1	3	1	0	6
h_2	0	1	4	0	1	2
<i>c'</i>	4	5	c_3	0	0	0

Aplicando el método de símplex, de modo que las variables *x*, *y*, en ese orden, se vuelven básicas, se obtiene

Tabla final

en donde
$$c_3' = c_3 - 4(3/2) - 5(4) = c_3 - 22$$

Para que x = 2, y = 2 siga siendo solución óptima, se requiere $c_3 \le 0$, esto es $c_3 - 22 \le 0$, o $c_3 \le 22$.

Así, si $c_3 \le 22$ no cambia la solución óptima.

Por otra parte, si $c_3 > 22$, entonces $c_3 > 0$ y la variable u ingresa en lugar de y, pues tiene la razón mínima 2/4, y z aumenta en 1/2 c_3' , esto es zmax = $18 + c_3' / 2 = 18 + (c_3 - 22) / 2$ cuando $c_3 > 22$.

Resumiendo, si $c_3 > 2$ el valor máximo de z aumenta.

6.7 Inclusión de restricción

En el siguiente ejemplo se desarrolla el análisis de sensibilidad cuando se añade una restricción y se determinan las condiciones para que se preserven las variables básicas del programa original.

Ejemplo Sea el problema

P1) Maximizar
$$z = 4x + 5y$$

sujeto a $2x + y \le 6$
 $y \le 2$
 x,y no negativas

Se agrega la restricción $x + 2y \le b$ de modo que el problema modificado es

P2) Maximizar
$$z = 4x + 5y$$

sujeto a $2x + y \le 6$
 $y \le 2$
 $x + 2y \le b_3$
 x, y no negativas

¿Para qué valores de b_3 se preserva la solución óptima del problema P1)?

Solución

Usando variables de holguras el problema P2) tiene la tabla

	x	y	$h_{_1}$	$h_2^{}$	h_3	b
h_1	2*	1	1	0	0	6
h_2	0	1	0	1	0	6 2 b ₃
h_3	1	2	1 0 0	0	1	b ₃
<i>c'</i>	4	5	5	5	5	0

Exigiendo que entren las variables x,y al conjunto de variables básicas, según el orden de los pasos seguidos para resolver P1), entra x y sale h_1 , de modo que $6/2 \le b_3/1$, o $3 \le b_3$.

Usando el pivote 2* la siguiente tabla es

vb	x	y	$h_{_1}$	h_2	h_3	ь
<u>x</u>	1	1/2	1/2	0	0	3
h_2	0	1*	0 -½	1	0	2
h_3^2	0	3/2	-1/2	0	1	b ₃ -3
$\overline{c'}$	0	3	-2	0	0	-12

Ahora debe entrar y y salir h_2 , de manera que la razón mínima es

$$\frac{2}{1} \leq \frac{\left(b_3 - 3\right)}{\left(3/2\right)}$$

esto es $3 \le b_3 - 3$, o $6 \le b_3$.

Simplificando la tabla según el pivote 1* resulta

				h_2		
x	1	0	1/2	-1/2	0	2
y	0	1	0	1	0	2
h_3	0	0	-1/2	-3/2	1	$ \begin{array}{c} 2\\2\\b_3-3-3/2(2)=b_3-6 \end{array} $
c'	0	0	-2	-3	0	-18

Así, si $b_3 \ge 6$, el valor máximo sigue siendo 18 y la solución óptima es $x=2, y=2, h_3=b_3$ -6.

Nota

Si $0 \le b_3 < 6$ la solución óptima cambia, disminuyendo el valor máximo; y si $b_3 < 0$ la región factible es vacía.

6.8 Dualidad y análisis de sensibilidad

La solución óptima del dual, o valores duales, da una información inmediata de cómo varía el valor óptimo del problema cuando se modifican individualmente los lados derechos de las restricciones.

Vector dual y valores marginales

Sea y_i el valor dual de la restricción i con lado derecho b_i .

El valor óptimo del problema cambia en y_i veces δ unidades cuando b_i se cambia en δ unidades.

(Se supone que b_i y b_i + δ están dentro del rango permitido de este parámetro).

De modo más preciso:

 \overline{y}_i es la razón de cambio del valor óptimo por unidad de cambio del lado derecho de la restricción i.

Debido a esta propiedad a y_i también se le denomina valor (o costo) marginal o precio de sombra del recurso b_i .

Ejemplo

Maximizar
$$z = 4x + 5y$$

sujeto a $2x + y \le 6$
 $y \le 2$
 x,y no negativas

Los valores duales son $\overline{y}_1 = 2$, $\overline{y}_2 = 3$.

Así, $y_1 = 2$ es el incremento del máximo de z por unidad de incremento del lado derecho de la primera restricción. Por ejemplo, si 6 se reemplaza por 10, el valor máximo crecerá en 2*(10-6)=8 unidades.

De igual modo, si se disminuye de 2 a 1 el lado derecho de la segunda restricción, el valor óptimo cambiará en \overline{y}_2 veces (1-2) = 3(-1) = -3, esto es, decrecerá en 3 unidades.

Nota

La propiedad se deduce de la expresión del valor óptimo z_0 en términos de los valores duales y los lados derechos (Propiedad P4 de 5.5):

$$z_0 = \overline{y}_1 b_1 + \dots + \overline{y}_i b_i + \dots + \overline{y}_m b_m$$

y del hecho que los valores duales (la solución dual) no cambian si se altera el lado derecho de una restricción.

Propiedad de holgura complementaria

Esta propiedad establece que cuando la solución óptima de un problema satisface una restricción con un signo de desigualdad, entonces el valor óptimo del problema no cambia si se modifica (ligeramente) el lado derecho de esa restricción.

La propiedad se justifica observando que la solución óptima será la misma, y por lo tanto se mantendrá el valor óptimo, si se modifica solamente el lado derecho de esa restricción.

Usualmente esta propiedad se expresa utilizando el valor marginal y la holgura de la restricción.

La medida de cuánto recurso requiere, o usa, la solución óptima de la restricción *i* es dada por

$$\overline{h}_i$$
 = holgura de la restricción i
= $b_i - L_i$

en donde

b, es el lado derecho

 L_i es el valor del lado izquierdo de la restricción i calculado en la solución óptima

Obsérvese que h_i es 0 si $b_i = L_i$, o distinto de 0 si $L_i < b_i$ o $L_i > b_i$.

Por otra parte, se sabe que el valor dual y_i de la restricción i es la medida de cambio del valor óptimo por variaciones de b_i .

Y la propiedad de holgura complementaria puede expresarse así:

Sí
$$\overline{h}_i$$
 es distinto de cero entonces $\overline{y}_i = 0$

(si b_i es distinto de L_i entonces el valor óptimo no mejora cuando se varía b_i).

Como ejemplo, se calculan las holguras de las restricciones del problema

Maximizar
$$z = x + y$$

sujeto a $3x-y \le 6$
 $y \le 3$
 $x + y \ge 2$
 x,y no negativas

El valor máximo del problema es z max=6 y la solución óptima es x=3, y=3.

Reemplazando x=3, y=3 en las restricciones se calculan las holguras

$$3(3)-3=6$$

 $3=3$
 $3+3>2$

de modo que $\overline{h}_1 = 0$, $\overline{h}_2 = 0$, $\overline{h}_3 = -4$.

Los valores duales son $\overline{y}_1 = 1/3$, $\overline{y}_2 = 4/3$, $\overline{y}_3 = 0$.

Puede comprobarse que se cumple $\bar{h}_i \bar{y}_i = 0$, i=1,2,3.

La tercera restricción merece una atención particular. Esta tiene holgura \overline{h}_3 distinta de 0 y valor marginal \overline{y}_3 igual 0, lo que indica que el valor óptimo 6 no varía si se modifica (ligeramente) el lado derecho 2 (b_3 tiene rango \leq 6); por ejemplo, la solución óptima será la misma si en lugar de la restricción $x+y\geq 2$ se considera la restricción $x+y\geq 4$.

6.9 Costos reducidos y asignación de valores a variables no básicas

Sean z_0 el valor óptimo de un problema, x_j una variable no básica de la solución óptima (el valor de x_j es por lo tanto 0), y c_j' el respectivo costo reducido. Se supone c_j' distinto de cero. (Si el problema es de maximización $c_i' < 0$, y si es minimización $c_i' > 0$).

Para obtener una solución óptima en la que la variable x_j asuma un valor $b_0>0$, se considera el problema modificado con una nueva restricción

$$x_i = b_0$$
.

Si este problema tiene solución óptima z_1 , entonces

$$z_1 = z_0 + c'_i b_0$$

Así, en el caso de maximización se tiene z_1 menor que z_0 en $-c'_jb_0$ y en el caso de minimización z_1 es mayor que z_0 en $-c'_jb_0$.

Ejemplo

El problema

Maximizar
$$z = 4x + 5y$$

sujeto a $2x + y + u = 6$
 $y + v = 2$
 x,y, u, v no negativas

tiene valor óptimo $z_0 = 18$ en x = 2, y = 2, u = v = 0.

Los costos reducidos son $c_1'=0$, $c_2'=0$, $c_3'=-2$, $c_4'=-3$ y la función objetivo se expresa por

$$z = 18 - 2u - 3v.$$

De acuerdo a lo indicado, si se desea una solución óptima con u=3, se considera el problema incluyendo la restricción u=3

$$Maximizar z = 4x + 5y$$

sujeto a
$$2x + y + u = 6$$

 $y + v = 2$
 $u = 2$

x, y, u, v no negativas

y por lo indicado, el valor máximo de este problema es $z_1 = 18 + c_3'(3) = 18 - 2(3) = 12$.

6.10 Matriz de operaciones en la tabla final

Cuando se aplica el método del símplex, la tabla inicial tiene un conjunto de variables básicas cuyas columnas forman la matriz identidad.

En la tabla final del algoritmo, la matriz M determinada por esas columnas almacena las operaciones de filas realizadas a partir de la tabla inicial.

Esto significa que cualquier columna de la tabla final se obtiene multiplicando M por la misma columna de la tabla inicial:

Por ejemplo, aplicando el método del símplex a la

Tabla inicial

vb	x	y	$h_{_1}$	h_2	b
h_1	2	1	1	0	6
h_2	0	1	0	1	2
c'	4	5	0	0	0

se obtiene

Tabla final

En este caso, la matriz de operaciones M, determinada por las columnas de h_1 y h_2 , es

$$M = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

Puede comprobarse que si se multiplica *M* por la columna de *y* de la tabla inicial se obtiene la columna de *y* en la tabla final:

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \left(\frac{1}{2}\right) & (1) & + & \left(-\frac{1}{2}\right) & (0) \\ (0) & (1) & + & (1) & (0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

o si se multiplica *M* por la columna de constantes, o lados derechos de la tabla final, se obtiene la columna de constantes en la tabla final

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \end{bmatrix} = \begin{bmatrix} (\frac{1}{2}) & (6) & + & (-\frac{1}{2}) & (2) \\ (0) & (6) & + & (1) & 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

De igual modo, si en la columna de constantes de la tabla inicial se reemplaza 6 por b_1 , la columna de constantes de la tabla final es

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ 2 \end{bmatrix} = \begin{bmatrix} b_1 / 2 & -1 \\ 2 & 2 \end{bmatrix}$$

Así, mediante el uso de la matriz *M* se puede recalcular inmediatamente la tabla final cuando se altera un lado derecho de una restricción inicial o cuando se agrega una nueva variable, lo que implica agregar la columna de sus coeficientes en la tabla inicial.

Por otra parte, los valores duales pueden ser obtenidos a partir de los costos de las variables básicas de la tabla inicial y de los costos reducidos de estas en la tabla final (véase Propiedad P4 de 5.5)

$$y_i = c_i - c'_i$$

De todo lo dicho se concluye que los cálculos del análisis de sensibilidad post óptimo pueden hacerse, de manera más simple, cuando se utilizan la tabla final y la matriz M de operaciones.

Nota

Sea B la matriz de coeficientes de las variables básicas finales, la matriz M de operaciones está formada por las filas de la matriz inversa B.

Ejemplo

Como una aplicación de lo expuesto se desea determinar el rango de variación del lado derecho 2 de la segunda restricción del problema dado por la tabla (inicial)

vb	x	y	$h_{_1}$	$h_2^{}$	b
h_1	2	1	1	0	6
h_2	0	1	0	1	2*
$\overline{c'}$	4	5	0	0	0

y cuya tabla final es

Si en la tabla inicial se cambia 2 por b_2 , la columna inicial de cons-

tantes es
$$\begin{bmatrix} 6 \\ b_2 \end{bmatrix}$$
.

Y en la tabla final esta columna se convierte en

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & (6) & + & \left(-\frac{1}{2} \right) & (b_2) \\ (0) & (6) & + & (1) & (b_2) \end{bmatrix} = \begin{bmatrix} 3 - \frac{b_2}{2} \\ b_2 \end{bmatrix}$$

Los componentes son los valores de las variables x,y; por lo tanto, deben ser no negativos, de modo que $3 - \frac{b_2}{2} \ge 0$ y $b_2 \ge 0$.

De donde resulta el rango $0 \le b_2 \le 6$.

Cálculo del valor máximo

Se puede usar la columna inicial de *b* y los valores duales

$$z\max = \overline{y}_1(6) + \overline{y}_2(b_2) = 2(6) + 3b_2 = 12 + 3b_2$$

O se puede usar la tabla final reduciendo los costos originales

vb	x	y	$h_{_1}$	h_2	b
x	1	0	1/2	-1/2	3-b ₂ /2
y	0	1	0	1	b_2
С	4	5	0	0	0
c'	0	0	*	*	-zmax

$$-z \max = -4(3-b_2/2)-5(b_2)$$

de donde $z \max = 12 + 3b_2$.

6.11 Problemas resueltos

Problema 1 Sea el problema

Maximizar
$$z = 2x + 4y + u + 3v$$

sujeto a $x + 3y + u \le 15$ (1)
 $2x + 6y - 4u \ge 12$ (2)
 x, y, u no negativos

Indique cómo varía el valor máximo de la función objetivo cuando

- a) se incrementa un coeficiente de costo
- b) se incrementa el lado derecho de la restricción (1) de signo ≤
- c) se incrementa el lado derecho de la restricción (2) de signo ≥.

Solución

- a) Si se incrementa cualquiera de los coeficientes de costos la función objetivo crece o mantiene su valor porque los valores de las variables son no negativos. Por lo tanto, lo mismo sucede con el valor máximo.
- b) Si $15 < b_1$, entonces la desigualdad $x + 3y + u \le 15$ (1) implica la desigualdad $x + 3y + u \le b_1$ (1)'

y por consiguiente la región factible del problema original es un subconjunto de la región factible del problema modificado. De aquí se sigue que el máximo sobre la última región es mayor que o igual al máximo original.

Así, el valor máximo tiene el mismo sentido de variación del lado derecho de una restricción ≤.

c) Si $12 < b_2$, ahora la desigualdad $2x + 6y - 4u \ge b_2$ (2)' implica la desigualdad $2x + 6y - 4u \ge 12$ (2) y esto significa que la región factible del problema modificado es parte de la región factible del problema original. Luego el máximo del problema modificado es menor que o igual al máximo original.

Nota

- 1. Si la restricción es de igualdad, en general no se puede indicar en qué sentido varía el valor óptimo, ya que las regiones factibles del problema original y del problema modificado son disjuntas, e incluso es posible que el problema modificado no tenga valor óptimo.
- 2. Si el problema es de minimización, el valor mínimo varía en
 - el mismo sentido en que cambia el lado derecho de una restricción ≥: si este aumenta el valor mínimo es mayor o se mantiene.
 - sentido opuesto al sentido en que cambia el lado derecho de una restricción ≤: si este aumenta el valor mínimo es menor o se mantiene.

Problema 2 Sea el problema

Maximizar
$$z = 3x_1 + 7x_2 + 4x_3 + 9x_4$$

sujeto a $x_1 + 4x_2 + 5x_3 + 8x_4 \le 9$
 $x_1 + 2x_2 + 6x_3 + 4x_4 \le 7$
 $x_i \ge 0$

- a) Resuelva el problema por el método del símplex.
- b) Encuentre el rango de variación del coeficiente de costo de x_2 si se mantiene la solución óptima.
- c) Halle el intervalo de variación del lado derecho de la segunda restricción, si las variables básicas de la parte a) dan la solución óptima.

Solución

a) Introduciendo variables de holgura se tiene la tabla inicial

vb	x_1	x_2	x_3	x_4	$h_{_1}$	h_2	b
$\overline{h_1}$	1	4	5	8	1	0	9
h_2	1*	2	6	4	0	1	7
c'	3	7	4	9	0	0	0
vb	x_1	\boldsymbol{x}_2	x_3	x_4	$h_{_1}$	$h_2^{}$	b
$\overline{h_1}$	0	2*	-1	4	1	-1	2
x_1	1	2	6	4	0	1	7
$\overline{c'}$	0	1	-14	-3	0	-3	-21
vb	x_1	x_2	x_3	x_4	$h_{_1}$	$h_2^{}$	b
$\overline{x_2}$	0	1	-1/2	2	1/2	-1/2	1
x_1	1	0	7	0	-1	2	5
-c'	0	0	27/2	-5	-1/2	- ⁵ / ₂	-22

b) Llamando c_2 al costo de x_2 en la tabla final se escriben los costos de la función objetivo y se calculan los nuevos costos reducidos (fila c' = fila c menos c_2 veces fila 1 menos 3 veces fila 2), respecto de las variables básicas x_1, x_2 :

vb	\boldsymbol{x}_1	x_2	x_3	x_4	$h_{_1}$	h_{2}	b
x_2	0	1	-1/2	2	1/2	-1/2	1
x_1	1	0	7	0	-1	2	5
С	3	c_2	4	9	0	0	0
c'	0	0	$(-17+c_2/2)$	9-2 c ₂	$(3-c_2/2)$	$(-6+c_2/2)$	-c ₂ -15

Y exigiendo que se cumpla el criterio de máximo (todos $c'_i \le 0$)

$$-17+c_2/2 \le 0, \ 9-2c_2 \le 0, \ 3-c_2/2 \le 0, \ -6+c_2/2 \le 0$$
 o $c_2 \le 34, \ c_2 \ge 9/2, \ c_2 \ge 6, \ c_2 \le 12$

de donde resulta el intervalo $6 \le c_2 \le 12$, y el valor máximo max $z = c_2 + 15$, en la misma solución óptima: $x_1 = 1$, $x_2 = 5$, y las otras variables con valor cero.

c) Las restricciones son

$$x_1 + 4x_2 + 5x_3 + 8x_4 \le 9$$

$$x_1 + 2x_2 + 6x_3 + 4x_4 \le b_2$$

Puesto que se mantienen las variables básicas x_1 , x_2 calculamos la columna de las constantes de la tabla final multiplicando la matriz de las columnas de h_1 y h_2 por la columna inicial de constantes (según 6.10)

$$\begin{vmatrix} \frac{1}{2} & -\frac{1}{2} \\ -1 & 2 \end{vmatrix} \begin{vmatrix} 9 \\ b_2 \end{vmatrix} = \begin{vmatrix} \frac{9}{2} - \frac{b_2}{2} \\ -9 & +2b_2 \end{vmatrix}$$

y exigiendo que los componentes de la columna sean ≥0

$$9/2 - b_2/2 \ge 0, -9 + 2b_2 \ge 0,$$

o
$$9 \ge 2$$
 y $b_2 \ge \frac{9}{2}$

Finalmente, se obtiene $4.5 \le b_2 \le 9$.

El valor máximo es

$$z \max = y_1(9) + y_2(b_2) = 1/2(9) + 5/2b_2$$
$$= (9 + 5b_2)/2$$

usando los valores duales $\bar{y}_1 = 0 - (-1/2) = 1/2$, $\bar{y}_2 = 0 - (-9/2) = 9/2$ que se obtienen de los costos reducidos de las variables h_1 , h_2 .

Problema 3 Sea el problema

Minimizar
$$z = 2x_1 + 24x_2 + 20x_3 + 20x_4$$

sujeto a $-x_1 + 8x_2 + x_3 = 4$
 $x_1 - 3x_2 + x_4 = 5$
 $y \quad x_i \ge 0$

- a) Resuelva el problema por el método del símplex.
- b) Encuentre el intervalo de variación del costo de la variable x_1 e indique el valor mínimo respectivo.
- c) Determine el rango del lado derecho de la segunda restricción y el valor mínimo correspondiente.
- d) El valor mínimo del problema es 64, ¿cuánto debe valer el lado de la restricción 2 para obtener el valor mínimo 40?

Solución

a) Se aplicarán los criterios para problemas de minimización: se obtiene mínimo si todos los costos reducidos son ≥ 0 y entra una variable si tiene costo reducido < 0.

Tomando como variables básicas x_3 , x_4 se obtiene la tabla inicial

	vb	x_1	x_2	x_3	x_4	b
	x_3	-1	8*	1	0	4
	x_4	1	-3	0	1	5
	С	2	24	20	20	0
Ī	c'	2	-76	0	0	-180

puesto que $c_2 = -76 < 0$ entra x_2 y sale x_3 .

Usando el pivote 8* la siguiente tabla es

vb	\boldsymbol{x}_1	x_2	x_3	x_4	b
x_2	-1/8	1	1/8	0	1/2
x_4	5/8*	0	3/8	1	13/2
c'	-60/8	0	76/8	0	-142

de $c'_1 = -60/8$ entra x_1 y sale x_4 .

Se obtiene la tabla final

vb	\boldsymbol{x}_1	x_2	x_3	x_4	b
x_2	0	1	1/5 3/5	1/1	9/5
x_1	1	0	3/5	8/5	52/5
c'	0	0	14	12	-64

Así, el valor mínimo es 64 y se obtiene en x_1 =10.40, x_2 =1.80, x_3 = x_4 =0.

b)

en donde
$$c'_3 = 20 - 2475 - 3c_1/5$$

 $c'_4 = 20 - 24/5 - 8c_1/5$
 $-z_0 = 0 - 24(9/5) - 52/5c_1$ o $z_0 = (216 + 52c_1)/5$

Exigiendo la condición de mínimo $c_3' \ge 0$ y $c_4' \ge 0$ de donde 76-3 $c_1 \ge 0$ y 76-8 $c_1 \ge 0$

o
$$c_1 \ge 76/3$$
 y $c_1 \ge 76/8$
y tomando el menor $c_1 \ge 76/8 = 9.50$.

Luego, el coeficiente de costo de x_1 puede ser cualquier número \leq 9.50, mientras se mantenga la solución óptima. Y el valor mínimo de z es $z_0 = 43.20 + 10.4c_1$.

c) Según lo indicado en 6.10, la columna final de constantes es igual al producto de la matriz de las columnas x_3 , x_4 (que son las variables básicas iniciales) por la columna inicial

esto es
$$\begin{vmatrix} 1/5 & 1/5 \\ 3/5 & 8/5 \end{vmatrix} \begin{vmatrix} 4 \\ b_2 \end{vmatrix} = \begin{vmatrix} 4/5 & + & b_2/5 \\ 12/5 & + & 8b_2/5 \end{vmatrix}$$

que debe tener componentes ≥ 0 para que la solución sea factible:

$$4/5 + b_2/5 \ge 0$$
 y $12/5 + 8b_2/5 \ge 0$
o $b_2 \ge -4$ y $b_2 \ge -15/2$
y la condición es $b_2 \ge -15/2$.

De la tabla final hallada en la parte a) obtenemos los valores duales

$$\bar{y}_1 = c_3 - c_3' = 20 - 14 = 6$$

$$\bar{y}_2 = c_4 - c_4' = 20 - 12 = 8$$
y el valor mínimo es $z \min = \bar{y}_1 b_1 + \bar{y}_2 b_2 = 6(4) + 8b_2$

$$= 24 + 8b_2$$

d) Se resuelve la ecuación $z \min = 24 + 8b_2 = 40$, de donde $b_2 = 2$.

Problema 4

Una fábrica produce tres productos P1, P2, P3, que son procesados en dos talleres. La siguiente tabla muestra los tiempos de procesamiento, en horas, de una unidad de producto y las capacidades de producción (horas disponibles de procesamiento) de cada taller.

	Horas de proc	eso de unidad o	de producción	Capacidad de	
	P1	P2	Р3	producción en horas	
Taller 1	2	4	8	180	
Taller 2	4	2	5	550	

La utilidad es de 4, 6 y 12 por unidad de los productos, respectivamente.

- a) ¿Cuántas unidades de cada producto deben producirse para obtener la mayor utilidad?
- b) ¿En qué rango puede variar la utilidad unitaria de P1 sin cambiarla solución óptima?
- c) Halle el valor marginal cuando se incrementa la capacidad de producción del taller 1.
- d) ¿En qué rango puede variar la capacidad de producción del taller 1 sin cambiar las variables de la solución máxima, esto es, produciendo exclusivamente los productos determinados en la parte a)?

Solución

a) Designando por x_i el número de unidades a producir de P_i y por U la utilidad total el problema a resolver es

Maximizar
$$U = 4x_1 + 6x_2 + 12x_3$$

sujeto a $2x_1 + 4x_2 + 8x_3 \le 180$
 $4x_1 + 2x_2 + 5x_3 \le 150$
 $x_i \ge 0$.

Agregando variables de holgura se tiene la tabla inicial

Ti

	vb	x_1	x_2	x_3	$h_{_1}$	h_2	b
•	$h_{_1}$	2	4	8	1	0	180
•	h_2	4	2	5	0	1	150
	c'	4	2	12	0	0	0

Resolviendo por el método del símplex resulta la tabla final con la solución óptima.

Tf

vb			x_3			
x_2	0	1	11/6	2/6	-1/6	35
x_1	1	0	1/3	-1/6	2/6	20
c'	0	0	-1/3	-4/3	-1/3	-290

Luego la utilidad máxima es 290 y se obtiene produciendo 20 unidades del producto P_1 y 35 unidades del producto P_2 .

b) Haciendo c_1 la utilidad unitaria de P_1 , manteniendo las utilidades de los otros productos, se calculan los costos reducidos empleando la tabla final

vb	x_1	x_2	x_3	$h_{_1}$	h_2	b
x_2	0	1	11/6	2/6	-1/6	35
x_1	1	0	1/3	-1/6	2/6	20
С	c_1	6	12	0	0	0
c'	0	0	c_3'	c_4'	c' ₅	$-U_0$

en donde
$$\begin{aligned} c_3' &= 12 - 6(11/6) - c_1(1/3) \\ c_4' &= 0 - 6(2/6) - c_1(-1/5) \\ c_5' &= 0 - 6(-1/6) - c_1(2/6) \\ -U_0 &= -6(35) - c_1(20 = -210 - 20c_1) \end{aligned}$$

Para preservar la solución óptima basta que se cumpla el criterio de máximo $c_i' \le 0$, y por lo tanto se tienen las desigualdades

$$1 - c_1 / 3 \le 0$$
 o $3 \le c_1$
 $-2 + c_1 / 6 \le 0$ o $c_1 \le 12$
 $1 - 2c_1 / 6 \le 0$ o $3 \le c_1$

que se satisfacen a la vez si c_1 está en el rango $3 \le c_1 \le 1$ y la utilidad máxima correspondiente es U max = $U_0 = 210 + 20c_1$.

c) El valor marginal cuando se incrementa la capacidad del taller 1 según 6.5 es dado por el valor dual de esta restricción (usando los costos de h_1 , la variable de holgura de la restricción)

$$\overline{y}_1 = c_4 - c_4' = 0 - (-4/3) = 4/3.$$

Así, cada vez que se aumenta una hora en el taller 1 (dentro del rango permitido) la utilidad máxima aumenta en 4/3.

d) La columna de constantes del problema modificado es $\begin{vmatrix} b_1 \\ 150 \end{vmatrix}$ y multiplicando la matriz formada por las columnas de las variables básicas se obtiene la columna en la tabla final

$$\begin{vmatrix} 2/6 & -1/6 \\ -1/6 & 2/6 \end{vmatrix} \begin{vmatrix} b_1 \\ 150 \end{vmatrix} = \begin{vmatrix} b_1' \\ b_2' \end{vmatrix}$$

en donde
$$b'_1 = 2/6b_1 - 1/6(150)$$

 $b'_2 = -1/6b_1 + 2/6(150)$

y para que la solución sea factible (y en este caso es óptima) estos valores deben ser no negativos.

Así,
$$b_1/3 - 25 \ge 0$$

 $-b_1/6 + 50 \ge 0$

y b_1 varía en el rango $75 \le b_1 \le 300$ con la solución máxima

$$x_1 = b_1' = (b_1 - 75)/3, \ x_2 = b_2' = (300 - b_1)/6$$

De $\overline{y}_1 = 4/3$, $\overline{y}_2 = 0 - (-1/3) = 1/3$, se obtiene la utilidad máxima

$$U \max = y_1 b_1 + y_2 b_2 = 4/3b_1 + 1/3(150)$$
$$= (4b_1 + 150)3$$

Problema 5 Inclusión de variable

En el problema anterior se propone la producción de un nuevo producto P_4 con tiempos de procesamiento 2 y 3 horas por unidad en los talleres 1 y 2, respectivamente. ¿Cuánto debe ser la utilidad unitaria de P_4 para mejorar la utilidad total?

Solución

Sean x_4 el número de unidades a producir y c_4 la utilidad unitaria del producto P_4 .

El problema se expresa así *Maximizar U* =
$$4x_1 + 6x_2 + 12x_3 + c_4x_4$$
 sujeto a $2x_1 + 4x_2 + 8x_3 + 2x_4 \le 180$ $4x_1 + 2x_2 + 5x_3 + 3x_4 \le 150$ $x_i \ge 0$

de modo que x_4 es la nueva variable agregada al problema.

Agregando variables de holgura h_1 y h_2 la tabla inicial es

Ti

					$h_{_1}$		
$\overline{h_1}$	2	4	8	2	1 0	0	180
h_2	4	2	5	3	0	1	150
$\overline{c'}$	4	6	12	$c_{\scriptscriptstyle A}$	0	0	0

La tabla final es la misma que la hallada en el problema 5 añadida con la nueva columna de x_4 igual al producto de la matriz que almacena las operaciones de fila, formada por las columnas de las variables h_1 y h_2 , multiplicada por la columna de x_4

$$\begin{vmatrix} 2/6 & -1/6 \\ -1/6 & 2/6 \end{vmatrix} \begin{vmatrix} 2 \\ 3 \end{vmatrix} = \begin{vmatrix} 1/6 \\ 4/6 \end{vmatrix}$$

Tf

vb	x_1	x_2	x_3	x_4	$h_{_1}$	h_2	b
$\overline{x_2}$			11/6				
x_1	1	0	1/3	4/6	-1/6	2/6	20
c	4	6	12	c_4	0	0	0
c'	0	0	-1/3	c' ₄	-4/3	-1/3	-290

donde c'_4 = costo reducido de x_4 = c_4 - 6(1/6) - 4(4/6).

Si $c_4' \le 0$, o $c_4 \le 17$, la solución óptima sigue siendo x_1, x_2 , y la utilidad máxima se mantiene en 290, por lo que no es conveniente producir

 P_4 ; si por el contrario, $c_4 > 17$, entra la variable x_4 y la utilidad máxima es mayor (en este caso x_5 ingresará en lugar de x_1 , produciéndose P_4 en lugar de P_1 ; en efecto, si se actualiza la tabla se obtiene $x_2 = 30$, $x_4 = 30$ y $U \max = 290 + c_4'(30) = 290 + 30$ ($c_4 - 17$), si $c_4 \ge 17$.

Por lo tanto, la utilidad unitaria de P_4 debe ser mayor que 17 para mejorar la utilidad total.

Problema 6 Inclusión de restricción

Si en el problema 4 se requiere adicionalmente que el número de unidades del producto P_3 sea al menos 12, encuentre la utilidad máxima.

Solución

Añadiendo la restricción
$$x_3 \ge 12$$
 o $x_3 - h_3 = 12$, el problema es
 $Maximizar\ U = 4x_1 + 6x_2 + 12x_3$
sujeto a $2x_1 + 4x_2 + 8x_3 \le 180$
 $4x_1 + 2x_2 + 5x_3 \le 150$
 $x_3 - h_3 = 12$
 $x_i \ge 0,\ h_3 \ge 0$

Desde luego este problema puede ser resuelto directamente.

Se abrevian los cálculos si se usa la tabla final del problema con las dos primeras restricciones y se le agrega la fila de la nueva restricción

x_1	x_2	x_3	$h_{_1}$	h_2	h_3	b
0	1	11/6	2/6	-1/6	0	35
1	0	1/3	-1/6	2/6	0	20
0	0	1*	0	0	-1	12

Se observa que se puede eliminar x_3 de las dos primeras restricciones o lo que es lo mismo anular los coeficiente 11/6 y 1/3 de la columna de x_3 : a la fila 1 se le resta 11/6 veces la fila 3, y a la fila 2 se le resta 1/3 veces la fila 3, y se obtiene la tabla con las variables básicas x_1 , x_2 , x_3

Maynard Kong

	x_1					h_3	
$\overline{x_2}$	0	1	0	2/6	-1/6	11/6	13
x_1^{-}	1	0	0	-1/6	2/6	1/3	16
x_3	0	0	1	0	0	11/6 1/3 -1	12
С	4	6	12	0	0	0 -37/3	0
$\overline{c'}$	0	0	0	-4/3	-1/3	-37/3	-286

Luego la máxima utilidad es 286 y se obtiene produciendo 16, 13 y 12 unidades de los productos P_1 , P_2 y P_3 , respectivamente.

Capítulo 7 Problemas de transporte y asignación

7.1 Introducción

Desde m fuentes o puntos de oferta se desea enviar un conjunto de unidades de un producto a n destinos o puntos de demanda. Cada fuente i puede suministrar s_i unidades y cada punto y de destino debe recibir d_y unidades. El costo de envío de una unidad desde y hacia y es dado por una cantidad y, de manera que si entre estos puntos se envían y unidades el costo respectivo es el producto y por y por y

Se desea determinar un plan de envío que minimice el costo total, es decir, hallar las cantidades x_{ij} que tienen que enviarse de las fuentes a los destinos de manera que el costo total de envío, la suma de los costos individuales c_{ij} x_{ij} , sea el menor posible.

Ejemplo 1

La siguiente tabla muestra los costos unitarios, los suministros y las demandas de un problema de transporte con 3 fuentes y 4 destinos.

		D1	D2	D3	D4	suministros
	F1	10	5	3	8	100
	F2	6	8	12	7	200
	F3	11	7	6	3	100
demandas		70	130	120	80	

Los datos de la fila 1 indican que en el punto F1 hay 100 unidades para ser enviadas a los destinos D1, D2, D3 y D4, a un costo de 10, 5, 3 y 8 por unidad, respectivamente.

La fila de demandas contiene las cantidades 70, 130, 120 y 80, que se requieren en los destinos *D*1, *D*2, *D*3 y *D*4.

El siguiente ejemplo muestra cómo un problema de transporte puede ser formulado como un problema de programación lineal.

Ejemplo 2

Exprese el problema de transporte del ejemplo 1 como un problema de programación lineal.

Solución

Sea x_{ij} = el número de unidades que se envían desde el punto O_i al punto D_i , i=1,2,3,j=1,2,3,4.

El problema de programación lineal correspondiente es

Minimizar
$$C = 10x_{11} + 5x_{12} + 3x_{13} + 8x_{14}$$

 $+ 6x_{21} + 8x_{22} + 12x_{23} + 7x_{24}$
 $+ 11x_{31} + 7x_{32} + 6x_{33} + 3x_{34}$
sujeto a $x_{11} + x_{12} + x_{13} + x_{14} = 100$ (F1)
 $x_{21} + x_{22} + x_{23} + x_{24} = 200$ (F2)
 $x_{31} + x_{32} + x_{33} + x_{34} = 100$ (F3)
 $x_{11} + x_{21} + x_{31} = 70$ (D1)
 $x_{12} + x_{22} + x_{32} = 130$ (D2)
 $x_{13} + x_{23} + x_{33} = 120$ (D3)
 $x_{14} + x_{24} + x_{34} = 70$ (D4)
 y todos los x_{ij} no negativos.

La restricción (F1) expresa el hecho de que las 100 unidades del punto F1 se reparten x_{11} al punto D1, x_{12} al punto D2, x_{13} al punto D3 y x_{14} al punto D4.

Y la restricción (D1) representa la condición que la cantidad 70 requerida en el punto D1 es igual a la suma de las cantidades x_{11} , x_{21} y x_{31} provenientes de los tres puntos de oferta F1, F2 y F3.

7.2 Problema de transporte balanceado

Se dice que un problema de transporte es balanceado si el suministro total es igual a la demanda total, esto es, si se cumple la igualdad

$$S = D$$

en donde $S = \text{suma de los suministros } S_i$

 $D = \text{suma de las demandas } d_i$

El problema de transporte del ejemplo 1 es balanceado pues

$$S = 100 + 200 + 100 = 400$$

 $D = 70 + 130 + 120 + 80 = 400$

Se demuestra que todo problema de transporte balanceado tiene solución óptima.

Si el problema de transporte no es balanceado, entonces el conjunto de restricciones no tiene soluciones, es decir, el sistema de ecuaciones es incompatible. No obstante, este tipo de problemas puede convertirse en uno balanceado así:

si S < D, se agrega una fuente ficticia con suministro D - S

y si S > D, se agrega un destino ficticio con demanda S - D

de modo que el problema resulta balanceado.

En el primer caso, el suministro agregado representa la cantidad que falta en las fuentes para cumplir con las demandas, o que no se puede enviar a los destinos; y en el segundo caso, la demanda agregada es la cantidad que excede la demanda requerida, o sobra en las fuentes.

Al agregar una fuente o un destino ficticio es necesario considerar los costos unitarios de envíos, que pueden ser especificados explícitamente, esto es, asignando costos a las unidades que falten o sobren, o implícitamente, asumiendo valores ceros, cuando estos costos no se mencionen.

Ejemplo 3
Sea el problema de transporte dado por la tabla

demandas

Las cantidades que no se envíen a los destinos tienen una multa de 4, 3 y 5 por unidad, respectivamente.

Se observa que el suministro total 150 es menor que la demanda total 180, por lo que se procede a balancear el problema. Se crea una fuente ficticia F3 con suministro 180-150=30 y costos 4, 3 y 5.

demandas

7.3 MÉTODO DEL SÍMPLEX SIMPLIFICADO

Un problema de transporte puede ser resuelto por el método del símplex. Sin embargo, la aplicación del método requiere un número grande de operaciones pues hay operar con mxn variables x_{ij} sin contar las variables artificiales.

Para resolver un problema de transporte balanceado se usa una versión simplificada del algoritmo del símplex, basada en las propiedades

particulares que tiene el problema. Como se verá en lo que sigue, mediante este algoritmo simplificado se busca una solución óptima realizando exclusivamente operaciones de sumas y restas con los datos del problema.

El método opera directamente con la tabla del problema, registrando en cada celda (i, j) el costo c_{ij} y el valor actual x_{ij} de las unidades de envío de la fuente i al destino j.

Número de variables básicas

En un problema de transporte balanceado todo conjunto de variables básicas se compone de m + n - 1 variables, siendo m el número de filas (o fuentes) y n el número de columnas (o destinos).

Por ejemplo, el problema de transporte del ejemplo 1 tiene 3 + 4 - 1 = 6 variables básicas.

Cálculo de un conjunto inicial de variables básicas

Se tratarán dos métodos:

- el de la esquina noroeste
- el de la celda de costo mínimo.

Mediante estos métodos se elige una celda (i, j), esto es, una variable x_{ij} , para asignarle la mayor cantidad posible según el suministro disponible en la fuente i y la demanda restante en el destino j; para ello se elige el menor de los dos valores, de manera que uno de los dos puntos queda satisfecho. Luego se marca la fila o columna elegida para ser omitida en las selecciones siguientes. Si los dos valores son iguales, se elige cualquiera de ellas.

Si el número de variables básicas así obtenidas es menor que m+n-1, estas se completan eligiendo las variables necesarias, con valor cero, entre las celdas no asignadas de la última fila o columna del proceso (véase el paso 5 del ejemplo 5 siguiente).

En los ejemplos siguientes se ilustran los dos métodos.

Ejemplo 4 Método de la esquina noroeste

Halle una solución básica factible del problema de transporte siguiente por el método de la esquina noroeste.

Solución

Este problema tiene las variables
$$x_{11}, x_{12}, x_{13}, x_{14}$$

$$x_{21}, x_{22}, x_{23}, x_{24}$$

$$x_{31}, x_{32}, x_{33}, x_{34}$$

y por lo tanto cualquier conjunto de variables básicas se compone de 3+4-1= 6 variables.

	L	1	D	2	\mathcal{L}	93	\mathcal{L}	94	
<i>E</i> 1		10		5		3		8	100
F1	$x_{11}^{}$		<i>x</i> ₁₂		x_{13}		<i>x</i> ₁₄		100
		6		8		12		7	200
F2	$x_{21}^{}$		x_{22}		x_{23}		x_{24}		200
F2		11		7		6		3	100
F3	x_{31}		x_{32}		x_{33}		<i>x</i> ₃₄		100
	7	0	13	30	12	20	8	0	

Paso 1

Se elige la celda ubicada en la esquina noroeste de la tabla, esto es, la celda (1,1), que corresponde a la variable x_{11} .

Puesto que la fuente 1 puede suministrar 100 unidades y el destino 1 requiere 70, se asigna x_{11} = mínimo $\{100,70\}$ = 70, es decir, se envían 70 unidades a D1, con lo que queda satisfecha la demanda en D1, y en la fuente 1 quedan por enviar 100-70=30 unidades. Las otras fuentes ya no deben realizar envíos a D1, o envían 0 unidades, de manera que quedan resueltos los envíos de la columna 1.

Luego x_{11} =70 es una variable básica, las variables x_{21} y x_{31} son no básicas y reciben valor cero.

8 100/20
100/30 ←
7
200
3
100

Se marca con x la columna 1 para indicar que ya se asignaron las celdas de esta columna y por lo tanto quedará excluida en las selecciones posteriores.

Adicionalmente se ha escrito el símbolo * para hacer notar que las celdas están en una columna marcada.

Paso 2

Se selecciona la celda x_{12} , que está en la esquina noroeste de las celdas restantes, y se le asigna $min \{30,130\} = 30$, que corresponde a la fila 1. Luego la siguiente variable básica es x_{12} =30; se resta 30 al suministro actual 30 de la fila y también a la demanda 130 de la columna 2 y se marca la fila 1.

		X							
v		10		5		3		8	100/30/0
X	70		30		*		*		100/30/0
		6		8		12		7	200
	*								200
		11		7		6		3	
	*								100
	7()/0	130	/100	12	20	8	0	

Paso 3

Se selecciona la celda x_{22} y se le asigna el valor $100 = min\{200,100\}$, se resta 100 al suministro de la fila 2 y a la demanda 2, y se marca la columna 2.

Paso 4

Se selecciona la celda x_{23} con valor $100 = min\{100,120\}$, se resta 100 del suministro de la fila 2 y de la demanda 3, y se marca la fila 3.

Paso 5

Se selecciona la celda x_{33} con valor $20 = min\{100,20\}$, se resta 20 del suministro restante de la fila 2 y de la demanda pendiente de la columna 3, y se marca la fila 3.

Paso 6

Se selecciona la celda x_{34} con valor $80 = min\{80,80\}$, se resta 80 del suministro de la fila 3 y de la demanda 4, y se marca la última fila o columna.

La tabla final es

	D1		D2		D3		D4	
<i>F</i> 1	10			5		3		8
1' 1	70		30					
F2		6		8		12		7
ΓΖ			100		100			
F3		11		7		6		3
ГЭ					20		80	

en donde solo se señalan los valores de las variables básicas y las otras variables son no básicas y tienen valor cero.

Se obtiene una solución básica factible

$$x_{11} = 70, x_{12} = 30, x_{22} = 100, x_{23} = 100, x_{33} = 20, x_{34} = 80.$$

Estos valores indican que de la fuente 1 se envían 70 y 30 unidades a los destinos 1 y 2, respectivamente; de la fuente 2 se envían 100 y 100

unidades a los destinos 2 y 3; y de la fuente 3, se envían 20 y 80 unidades a los destinos 3 y 4. Nótese que se cumplen todas las condiciones de suministros y demandas.

El costo total de este plan de envío es

$$C = 10 \times 70 + 5 \times 30 + 8 \times 100 + 12 \times 100 + 6 \times 20 + 3 \times 80 = 3210.$$

Ejemplo 5 Método de la celda de costo mínimo

Determine una solución básica factible del problema de transporte siguiente por el método de la celda de costo mínimo.

	D1	D2	D3	D4	
F1	10	5	3	8	100 200 100
F2	6	8	12	7	200
F3	11	7	6	3	100
	70	130	120	80	•

Solución

Paso 1

Las celdas de costo mínimo 3 son (1,3) y (3,4).

Se elige una de ellas, por ejemplo (1,3), y se asigna a la variable $x_{13} = min \{100,120\}=100$, se marca la fila 1, que da el valor mínimo, y se resta 100 del suministro de la fila 1 y de la demanda de la columna 3.

x	10	5	3	8	100/0
Λ.	*	*	100	*	100/0
	6	8	12	7	200
					200
	11	7	6	3	100
					100
	70	130	120/20	80	

Paso 2

Entre las celdas que quedan, la que tiene costo mínimo 3 es la celda (3,4); luego la variable x_{34} recibe el valor $min \{100,80\} = 80$, se resta este valor al suministro 100 de la fila 3 y a la demanda 80 de la columna 4 y se marca la columna 4, pues corresponde al valor mínimo.

							X		
		10		5		3		8	100/0
X	*		*		100		*		100/0
		6		8		12		7	200
							*		200
		11		7		6		3	100/20
							80		100/20
	7	0	13	30	120	/20	80)/0	•

Paso 3

Entre las celdas que quedan, una de costo mínimo 6 es la celda (2,1); luego la variable x_{21} recibe el valor $min \{200, 70\} = 70$, se resta este valor al suministro 200 de la fila 2 y a la demanda 70 de la columna 1 y se marcan las celdas de la columna 1, pues corresponde al valor mínimo.

Paso 4

Entre las celdas restantes, la que tiene costo mínimo 6 es la celda (3,3); luego la variable x_{33} recibe el valor $min \{20, 20\} = 20$, se resta este valor al suministro 20 de la fila 3 y a la demanda 20 de la columna 3 y se marcan las celdas de la fila 3 o de la columna 3, pues corresponden al valor mínimo y tienen igual número de celdas libres. Se marca la fila 3.

Paso 5

Entre las celdas que quedan, la que tiene costo mínimo 8 es la celda (3,2); luego la variable x_{32} recibe el valor $min \{130,130\} = 130$, se resta este valor al suministro 130 de la fila 3 y a la demanda 130 de la columna 3.

	2	ζ.			X						
		10		5		3		8	100/0		
Х	*		*		100		*		100/0		
		6		8		12		7	200/120/120/0		
	70		130				*		200/130/130/0		
		11		7		6		3	100/20/0		
Х	*		*		20		80		100/20/0		
	70	/0	130/1	130/0	120/	20/0	80)/0	•		

En este paso se puede marcar la columna 2 o la fila 2 pues tienen igual valor. La parte que queda en la tabla corresponde a las celdas (2,2) y (2,3).

Si se marca la columna 2 se prosigue al paso 6.

Si se marca la fila 2, ya no es posible seleccionar más variables básicas pues no quedan celdas para seleccionar. No obstante, se sabe que se requieren 6=3+4-1 variables básicas y hasta este momento hay 5 variables. En este caso, se completa el conjunto tomando en esta fila la celda (2,3), es decir x_{23} como variable básica con valor 0, y el proceso termina.

Paso 6

Se elige la única celda que queda $x_{33} = min \{0,0\} = 0$.

Finalmente, se obtiene el conjunto de variables básicas

$$x_{13} = 100, x_{21} = 70, x_{22} = 130, x_{23} = 0, x_{33} = 20, x_{34} = 80.$$

Para estas asignaciones el costo total es

$$3 \times 100 + 6 \times 70 + 8 \times 130 + 12 \times 0 + 6 \times 20 + 3 \times 80 = 2100.$$

	10		5		3		8
				100			
	6		8		12		7
70		130		0			
	11		7		6		3
				20		80	

Se observa que este plan de envíos requiere un costo total que es menor que el costo calculado en el ejemplo 4.

Criterio de óptimo

Sean c'_{ij} los costos reducidos relativos a un conjunto de variables básicas de un problema de transporte. Si se cumple que todos los $c'_{ij} \geq 0$, entonces, por el criterio de óptimo del método del símplex, se obtiene una solución óptima del problema, esto es, la solución determinada por las variables básicas proporciona el valor mínimo del costo total.

A continuación se explican dos formas de calcular los costos reducidos.

Cálculo de costos reducidos usando variables duales

En un problema de transporte balanceado, los costos reducidos son dados por

$$c'_{ij} = c_{ij} - u_i - v_j$$

en donde u_i , v_i , i = 1, ..., m, j = 1, ..., n

son los valores de las variables duales de las m+n restricciones del problema.

Para hallar los valores de las variables duales se resuelven las m + n - 1 ecuaciones con incógnitas u_i , v_i

$$0 = c'_{ii}$$
 o $u_i + v_j = c_{ii}$

para cada celda (i,j) de una variable básica x_{ii} .

Si se resuelve el sistema se obtienen infinitas soluciones que dependen de un parámetro, de modo que para determinar una única solución del sistema se asigna a una de las variables duales un valor particular. Se demuestra que los valores de los costos reducidos no dependen de la elección de este valor.

Ejemplo 6

Encuentre los costos reducidos correspondientes a las variables básicas de la siguiente tabla de transporte.

	v_1		v_2		v_3		$v_4^{}$	
		10		5		3		8
u_1					100			
		6		8		12		7
u_2	70		130		0			
		11		7		6		3
u_3					20		80	

Solución

Se anotan las variables duales u_i de las filas en el lado izquierdo de la tabla y las variables duales v_i de las columnas en el lado superior de la tabla.

Para hallar los valores de las variables duales se resuelve el sistema de ecuaciones que resulta de anular los costos reducidos de las variables básicas:

$$0 = c'_{13} = c_{13} - u_1 - v_3 \quad \text{o} \quad 0 = 3 - u_1 - v_3 \tag{1}$$

$$0 = c'_{21} = c_{21} - u_2 - v_1$$
 o $0 = 6 - u_2 - v1$ (2)

$$0 = c'_{22} = c_{22} - u_2 - v_2 \quad \text{o} \quad 0 = 8 - u_2 - v_2 \tag{3}$$

$$0 = c'_{23} = c_{23} - u_2 - v_3$$
 o $0 = 12 - u_2 - v_3$ (4)

$$0 = c'_{33} = c_{33} - u_3 - v_3 \quad \text{o} \quad 0 = 6 - u_3 - v_3 \tag{5}$$

$$0 = c'_{34} = c_{34} - u_3 - v_4 \quad \text{o} \quad 0 = 3 - u_3 - v_4 \tag{6}$$

Y se completa el sistema asignando a una variable dual un valor particular, por ejemplo

$$u_1 = 0 \tag{7}$$

Resolviendo las ecuaciones, de (7) y (1) se obtiene $v_3 = 3$; luego usando este valor en (4) $u_2 = 9$; y de (3) $v_2 = -1$; y así sucesivamente.

Los valores de las variables duales son:

$$u_1 = 0$$
, $u_2 = 9$, $u_3 = 3$
 $v_1 = -3$, $v_2 = -1$, $v_3 = 3$, $v_4 = 0$

Por lo tanto, los costos reducidos de las variables no básicas son:

$$c'_{11} = c_{11} - u_1 - v_1 = 10 - 0 - (-3) = 13$$

$$c'_{12} = c_{12} - u_1 - v_2 = 5 - 0 - (-1) = 6$$

$$c'_{13} = c_{13} - u_1 - v_3 = 8 - 0 - 0 = 8$$

$$c'_{24} = c_{24} - u_2 - v_4 = 7 - 9 - 0 = -2$$

$$c'_{31} = c_{31} - u_3 - v_1 = 11 - 3 - (-3) = 11$$

$$c'_{32} = c_{32} - u_3 - v_2 = 7 - 3 - (-1) = 5$$

Cálculo directo de los costos reducidos

El sistema de ecuaciones puede resolverse de una manera sencilla utilizando la tabla

	$v_{_1}$	v_2	v_3	v_4
2	10	5	3	8
$u_1 = 3$			100	
12	6	8	12	7
$u_2 = 12$	70	130	0	
6	11	7	6	3
$u_3 = 6$			20	80

- Se elige la fila o columna que tenga más variables básicas y a la variable dual correspondiente se le asigna el valor 0, por ejemplo, en este caso se puede elegir columna 3 que tiene tres variables básicas y hacer v₃ = 0.
- Los valores de u_i correspondientes a cada celda básica (i,3) son los mismos costos básicos

$$u_1 = 3$$
, $u_2 = 12$ y $u_3 = 6$
ya que para estas celdas $0 = c'_{i3}$
equivale a $0 = c_{i3} - u_i - 0$ o $u_i = c_{i3}$

- Puesto que (2,1) es una celda básica, $u_2 + v_1 = 6$ esto es, 12 sumado con v_1 es 6, y por lo tanto $v_1 = -6$.
- Puesto que (2,2) es una celda básica, $u_2 + v_2 = 8$ esto es, la suma de 12 y v_2 es 8, y por lo tanto $v_2 = -4$.
- Puesto que (3,4) es una celda básica $u_3 + v_4 = 3$, esto es, la suma de 6 y v_4 es 3, y por lo tanto $v_4 = -3$.

Estos cálculos dan:

$$u_1 = 3$$
, $u_2 = 12$, $u_3 = 6$
 $v_1 = -6$, $v_2 = -4$, $v_3 = 0$, $v_4 = -3$

	1	1	v ₂		$v_{\mathfrak{g}}$	3	v ₄	
2		10		5		3		8
$u_{1}=3$		13		6	100			8
–12		6		8		12		7
$u_2 = 12$	70		130		0			-2
6		11		7		6		3
$u_{3}=6$		11		5	20		80	

y los costos reducidos c'_{ii} se calculan restando a c_{ii} los valores de u_i y v_i :

$$c'_{11} = c_{11} - u_1 - v_1 = 10 - 3 - (-6) = 13$$

 $c'_{12} = c_{12} - u_1 - v_2 = 5 - 3 - (-4) = 6$

$$c'_{13} = c_{13} - u_1 - v_3 = 8 - 0 - 0 = 8$$

$$c'_{24} = c_{24} - u_2 - v_4 = 7 - 9 - 0 = -2$$

$$c'_{31} = c_{31} - u_3 - v_1 = 11 - 3 - (-3) = 11$$

$$c'_{32} = c_{32} - u_3 - v_2 = 7 - 6 - (-4) = 5.$$

Ciclos en un problema de transporte

Un ciclo se compone de una sucesión de $k \ge 4$ celdas distintas

$$(i,j)--(i_2,j_2)\cdots--(i_k,j_k)$$

tales que:

- la primera celda es no básica y las demás son básicas,
- la primera y la última celda están en la misma fila o en la misma columna, esto es i = i_k o j = j_k,
- dos celdas consecutivas están en una misma fila o en una horizontal misma columna, de modo que forman un segmento horizontal o vertical,
- y los segmentos son alternadamente horizontales y verticales.

Las celdas se enumeran a partir de 1.

Propiedades de un ciclo

- Para cada celda no básica existe un único ciclo que pasa por la celda.
- 2. El costo reducido c'_{ij} de la variable x_{ij} es igual a Si Sp en donde Si = suma de los costos de las celdas del ciclo con índice impar Sp = suma de los costos de las celdas del ciclo con índice par.
- 3. Si $c_{ij}' < 0$, esto es, si la variable no básica x_{ij} puede entrar al conjunto de variables básicas, la variable que sale se encuentra en el ciclo y además las celdas de este son las únicas afectadas por las operaciones de actualización que se realicen en la tabla.

Ejemplo 7 Sea la tabla del problema de transporte

10		5		3		8
20	10					
6		8		12		7
			50		30	
11		7		6		3
					70	
16		4		6		3
	40		10			

en la que se indica un conjunto de celdas básicas, con las cantidades de envíos.

Halle el ciclo que pasa por la celda no básica en cada caso

- a) (2,2)
- b) (3,2)

y calcule el costo reducido.

Solución

a) El ciclo que pasa por la celda no básica (2,2) es

o
$$\frac{1}{(2,2)}$$
 -- $\frac{2}{(2,3)}$ -- $\frac{3}{(4,3)}$ -- $\frac{4}{(4,2)}$

costo reducido $c'_{22} = Si - Sp = (8+6) - (12+4) = -2.$

b) El ciclo que contiene a la celda (3,2) es

y el costo reducido
$$c'_{32} = (7 + 7 + 6) - (3 + 12 + 4) = 1$$
.

Cambio de variable

Sea una celda (i,j) (o variable x_{ij}) no básica con costo reducido $c'_{ij} < 0$ Entonces

- a) (i,j) ingresa al conjunto de celdas básicas
- b) sale la celda del ciclo que tiene menor valor asignado

$$M = minimo \{x_{pq} \text{ tal que la celda } (p,q) \text{ es par} \}$$

y c) se actualizan los valores de las celdas:

se suma M a las celdas impares del ciclo y se resta M a las celdas pares.

En particular, la nueva variable básica tiene el valor M y el costo total disminuye en la cantidad $c'_{ij}x$ M.

El siguiente ejemplo muestra completamente el método simplificado.

Ejemplo 8

Un fabricante de jabones y detergentes tiene 3 plantas *P1*, *P2* y *P3*, desde las cuales se debe enviar los productos a cinco ciudades. Las demandas de ventas en las ciudades son de 600, 300, 500, 200 y 400 cajas, respectivamente, y las plantas pueden producir 900, 800 y 300 cajas.

La siguiente tabla muestra los costos unitarios de envíos de cajas de los productos:

	C1	C2	C3	<i>C</i> 4	C5
P1	20	30	15	45	40
<i>P</i> 2	80	30 90 15	60	70	50
<i>P</i> 3	55	15	80	90	40

Resuelva el problema por el método del símplex simplificado.

Solución

1) Se halla una solución básica inicial por el método de la esquina noroeste.

	20		30		15		45		40
600		300		0					
	80		90		60		70		50
				500		200		100	
	55		15		80		90		40
								300	

2) Usando variables duales se calculan los costos reducidos, los que en la tabla se indican entre paréntesis.

	ν	1	v	2	v	3	v	4	v	5
	6	5	7	5	6	0	7	0	5	0
<i>u</i> 1=-45		20		30		15		45		40
	600		300		0		(2	0)	(3	5)
u2=0		80		90		60		70		50
<i>u2</i> –0		(15)		(15)	500		200		100	
<i>u</i> 3=-10		55		15		80		90		40
u310		(0)		(-50)		(30)		(30)	300	

Maynard Kong

Puesto que la celda (3,2) tiene costo reducido negativo $c'_{32} = -50$ esta celda entra al conjunto de variables básicas.

Para determinar la variable básica que debe salir se halla el ciclo que pasa por (3,2)

y el valor mínimo de las celdas pares

$$M = minimo \{300, 500, 300\} = 300$$

corresponde a las celdas (3,5) y (1,2). Como celda saliente se elige una de ellas, por ejemplo, (3,5).

	20		30		15		45		40
600		300•		0					
	80		90		60		70		50
				500		200		100	
	55		15		80		90		40
		•						300	

Luego, se suma 30 a las celdas impares del ciclo y se resta 30 a las celdas pares.

3) La tabla con el nuevo conjunto de variables básicas es

	v1	<i>v</i> 2		v	3	ν	4	ν	5
	65	75		6	0	7	0	5	0
<i>u</i> 1=-45	20		30		15		45		40
	600	0		300			(20)		(35)
<i>u</i> 2=0	80		90		60		70		50
	(15)	((25)	200		200		400	
<i>u</i> 3=-60	55		15		80		90		40
	(50)	300			(80)		(80)		(50)

Se calculan los costos reducidos () haciendo u2 = 0.

Puesto que todos los costos reducidos son ≥ 0 se alcanza el costo mínimo.

Finalmente,

- de la planta 1 se deben enviar 600 y 300 cajas a las ciudades 1 y 3,
- de la planta 2 se deben enviar 200, 200 y 400 cajas a las ciudades 3, 4 y 5
- y de la planta 3, 300 cajas a la ciudad 2.

Y el menor costo total de envío es

$$= 20 \times 600 + 15 \times 300 + 60 \times 200 + 70 \times 200 + 50 \times 400 + 15 \times 300$$

=67000

Resumen del método simplificado

Para resolver un problema de transporte balanceado se aplican los siguientes pasos:

- 1. Se halla una solución básica inicial, por ejemplo, por el método de la esquina noroeste.
- Se hallan los costos reducidos usando las variables o celdas básicas de la tabla.
- 3. Si todos los costos reducidos son ≥ 0, se obtiene una solución óptima y el proceso finaliza.
- 4. Se elige una celda con costo reducido negativo para que ingrese al conjunto de variables básicas.

Se halla el ciclo que pasa por la celda.

Se calcula el valor mínimo de las celdas pares del ciclo.

Se actualiza la tabla: se suma el valor mínimo a las celdas impares y se resta este a las celdas pares.

Se va al paso 2).

7.4 Problemas propuestos

Problema 1

Una compañía que manufactura llantas o neumáticos tiene 4 plantas A, B, C y D desde las cuales se deben enviar 500, 700, 200 y 600 llantas a la central de almacenamiento. Se puede emplear los camiones de la empresa, que pueden transportar un total de 300 llantas con costos de 10, 6, 4 y 7 soles por llanta desde las plantas. Tres empresas de camiones han hecho propuestas para transportar las llantas con los siguientes costos unitarios

Planta	empresa 1	empresa 2	empresa 3
A	8	2	7
B	9	5	1
C	3	7	5
D	7	2	4
	1000	400	300

en donde la última fila indica la cantidad total que cada empresa puede transportar.

a) Formule el problema como un modelo de transporte para minimizar el costo de envíos.

Nota:

Incluya la columna de costos que corresponde a los camiones de la compañía y equilibre el problema si no es balanceado.

b) Halle el costo mínimo y una solución óptima.

Respuesta

Se agrega a la tabla la cuarta columna con los datos de los camiones de la empresa y se obtiene un problema balanceado

b) El costo mínimo es 9400 y una solución óptima es dada por

$$A1 = 100,$$
 $A2 = 400,$
 $B1 = 100,$ $B3 = 300,$ $B4 = 300,$
 $C1 = 200,$
 $D1 = 600.$

en donde, por ejemplo, *B*3 indica que de la planta *B* se envían 300 llantas usando los camiones de la empresa 3.

Problema 2

El problema de transporte definido por la tabla

_				-
	5	2	7	10
	6	5	6	80
	3	4	5	20
_	80	20	50	-

Los costos de multa por las unidades que falten en los destinos son 2, 1 y 3, respectivamente.

Encuentre un plan de envío con costo mínimo.

Respuesta

El costo mínimo es 630 y una solución óptima es la siguiente:

de la fuente 1 se envían 10 unidades al destino 2,

de la fuente 2 se envían 30 unidades al destino 1 y 50 unidades al destino 3.

de la fuente 3 se envían 20 unidades al destino 1,

y las unidades que faltan en los destinos 1 y 2 son 30 y 10, respectivamente.

Problema 3

Se da la siguiente matriz de costos de transporte:

1	2	1	20
2	4	5	40
2	3	3	30
30	20	20	

Los costos de almacenamiento en las fuentes 1, 2 y 3 son de 5, 4 y 3 soles por unidad para los productos que no se envíen y se exige que todas las unidades de la fuente 2 sean enviadas para dar espacio a un nuevo producto.

Determine una solución óptima que minimice el costo de envíos.

Respuesta

Teniendo en cuenta las condiciones del problema se considera la tabla

1	2	2	5	20
2	4	5	M	40
2	3	3	3	30
30	20	20	20	

en donde la columna 4 representa los costos de las cantidades que no se envían (o sobran).

Para exigir que de la fuente 2 se envíen todas las unidades la variable x24 debe valer 0, lo cual se consigue usando un costo M bien grande, como se observa en la tabla, de modo que esta variable aparecerá como no básica, y por lo tanto será nula.

El costo mínimo es 230. Los envíos son:

de la fuente 1 al destino 3: 20 unidades,

de la fuente 2 a los destinos 1 y 2, 30 y 10 unidades, respectivamente,

de la fuente 3 al destino 2, 10 unidades,

y en esta fuente quedan 20 unidades.

Problema 4

Se considera el problema de asignar 4 diferentes categorías de máquinas a cinco tipos de tareas. Los números de máquinas disponibles en las cuatro categorías son 15, 35, 20 y 30, respectivamente; y se deben realizar 20, 20, 40, 10 y 10 tareas en los respectivos tipos. Las máquinas de la categoría 4 no pueden ser asignadas a las tareas de tipo 4. La tabla de costos unitarios de ejecución de tarea por máquina es

	T1	<i>T</i> 2	<i>T</i> 3	<i>T</i> 4	<i>T</i> 5
M1	10	2	3	15	9
M2	5	10	15	2	4
<i>M</i> 3	15	5	14	7	15
M4	20	15	13	-	8

- a) Formule el problema como un modelo de transporte para minimizar el costo de asignación.
- b) Encuentre el costo mínimo y una solución óptima del problema.

Respuesta

Para que las máquinas de la categoría 4 no realicen las tareas de tipo 4 se debe tener una asignación nula, x_{44} =0; con este propósito se pone un costo unitario M muy grande en la celda (4,4).

Nota

Si se desea operar con un valor particular de M, por ejemplo, se puede tomar

$$M = \text{SuministroTotal} \times \text{máximoCosto} = 100 \times 20 = 2000$$

o cualquier cantidad mayor.

El costo mínimo es 650 y una solución óptima es:

- a M1 se asigna 15 tareas de tipo 3,
- a M2 se asignan 20, 10 y 5 tareas de tipos 1, 4 y 5,
- a M3 se asigna 20 tareas de tipo 2,
- y a M4 se asignan 25 y 5 tareas de tipos 3 y 5.

7.5 Problema de transbordo

En un problema de transporte, los envíos se realizan directamente desde las fuentes a los destinos. Un problema de transbordo es un problema similar en el que además hay puntos, llamados puntos de transbordo, a través de los cuales pueden realizarse envíos desde las fuentes a los destinos. Estos puntos también pueden ser algunas de las fuentes y algunos de los destinos.

En el siguiente ejemplo se presenta un problema de transbordo y se indica el procedimiento para expresarlo como un problema de transporte, y por lo tanto para resolverlo por el método del símplex simplificado.

Ejemplo

Desde los puntos A y B se deben enviar 60 y 140 unidades de un producto a los puntos C y D, que requieren 120 y 80 unidades, respectivamente. Los costos unitarios de envíos son dados por la siguiente tabla:

Punto partida	Punto llegada	Costo unitario
A	C	16
A	D	8
A	X	7
B	A	4
B	D	18
D	C	2
X	C	8

- a) Exprese el problema en la forma de problema de transporte.
- b) Halle un plan de envío que minimice el costo de este problema de transbordo.

Solución

- a) En este problema los puntos fuentes son *A* y *B*, y los puntos de destino son *C* y *D*, y el problema está balanceado pues son iguales a 200 tanto la oferta total como la demanda total.
 - Ahora se clasifican los puntos:
 - 1) los puntos puros fuentes (*PF*), los puntos fuentes que no reciben envíos: *B*

- 2) los puntos puros destinos (*PD*), los puntos destinos que no realizan envíos: *C*
- 3) puntos de transbordo de tipo fuente (*TF*), los puntos fuentes que reciben envíos: *A*
- 4) puntos de transbordo de tipo destino (TD), los puntos destinos que suministran envíos: D
- 5) puntos de transbordo puro (*TP*), los puntos que sirven exclusivamente para pasar envíos a través de ellos: *X*.

Luego se forma una tabla de transporte tomando como <u>fuentes o filas</u>: todos los puntos de transbordo y los puntos puros fuentes

y <u>destinos o columnas</u>: todos los puntos de transbordo y los puntos puros destinos.

La tabla de costos del problema es:

		TF	TD	TP	PD	
		A	D	X	C	
TF	A	0	8	7	16	200+60
TD	D	-	0	-	2	200
TP	X	-	-	0	8	200
PF	В	4	18	-	-	140
		200	200+80	200	120	•

en donde el signo - indica que no hay conexión o envío, y por lo tanto se reemplazará pon una cantidad muy grande *M*. Obsérvese que se asigna el valor cero como costo de envío de un punto a sí mismo.

Para calcular las cantidades de suministros y demandas, en los puntos de transbordo se elige una capacidad suficiente para que pasen la totalidad de los productos suministrados y por eso se suele usar el valor común S = suministro total, que en este caso es 200.

Luego se establecen los valores de suministros y demandas:

• un punto puro fuente tiene suministro igual al suministro original, por ejemplo, el punto *B* tiene suministro 140

- un punto puro destino tiene demanda es igual a la demanda original, por ejemplo, el punto *C* tiene demanda 120,
- un punto transbordo fuente tiene suministro *S* más el suministro original y demanda *S*; por ejemplo, el punto *A* tiene suministro 260=200+60 y demanda 200 (esto significa que realmente *A* suministra la diferencia 60),
- un punto transbordo destino tiene suministro *S* y demanda *S* más la demanda original; por ejemplo, el punto *D* tiene suministro 200 y demanda 280=200+80 (esto significa que realmente *D* requiere la diferencia 80),
- un punto transbordo puro tiene suministro S y demanda S, por ejemplo, el punto X tiene suministro y demanda 200 (lo que expresa el hecho de que los productos solo pasan por X).

Así, el problema de transbordo dado se expresa como un problema de transporte mediante la tabla

	Α	D	X	C	_
A	0	8	7	16	260 200 200 140
D	M	0	M	2	200
X	M	M	0 M	8	200
B	4	18	M	M	140
	200	280	200	120	

b) Aplicando el método del símplex simplificado se halla la tabla con solución óptima

	A		D		X		C	
A		0		8		7		16
	60		200		0			
D		M		0		M		2
			80				120	
X		M		M		0		8
					200			
В		4		18		M		M
	140							

De aquí se obtiene el siguiente plan de envío: las 140 unidades de *B* se envían a la fuente *A*, que se agregan a las 60 unidades existentes allí; y desde *A* se envían 200 unidades a *D*, de las cuales se quedan 80 y 120 se envían a *C*.

Así, al final C y D reciben las cantidades exigidas 80 y 120. El costo mínimo total es

$$2400 = 0 \times 60 + 8 \times 200 + 7 \times 0 + 0 \times 80 + 2 \times 120 + 0 \times 200 + 4 \times 140$$
.

7.6 Problema de asignación

En un problema de asignación se dispone de *m* máquinas y de *n* tareas. Cada máquina puede realizar una de las tareas a un costo dado. Se desea determinar el costo total mínimo para ejecutar el mayor número de tareas utilizando máquinas distintas.

Este es un caso especial del problema de transporte, en el que las máquinas son las fuentes, las tareas son los destinos y las cantidades de suministro y demanda son iguales a 1 (y 0), y por lo tanto se puede resolver mediante el método del símplex simplificado; sin embargo, el procedimiento es bastante ineficiente por lo cual se prefieren con algoritmos más directos, tales como el método húngaro y el algoritmo de Munkres, que aprovechan las propiedades del problema de asignación.

Se dice que el problema de asignación es balanceado si *m*=*n*, es decir, si el número de máquinas coincide con el número de tareas, y se trata de asignar a cada máquina exactamente una tarea distinta (lo que implica que cada tarea es realizada por una única máquina) de modo que se minimice el costo.

Ejemplo 1

La siguiente tabla contiene los costos de 3 máquinas M1, M2 y M3 para realizar las tareas o trabajos T1, T2 y T3.

$$\begin{array}{c|ccccc}
T1 & T2 & T3 \\
M1 & 1 & 2 & 3 \\
M2 & 2 & 4 & 6 \\
M3 & 3 & 6 & 9
\end{array}$$

- a) Exprese el problema como uno de transporte.
- b) Formule el problema de programación lineal.

Solución

a) Haciendo 1 las cantidades de suministros y demandas se tiene la tabla del problema de transporte balanceado.

$$\begin{array}{c|ccccc} & T1 & T2 & T3 \\ M1 & 1 & 2 & 3 & 1 \\ M2 & 2 & 4 & 6 & 1 \\ M3 & 3 & 6 & 9 & 1 \\ & & & & & & & & & & & & & & & & \\ \end{array}$$

b) Sea $x_{ij} = 1$ o 0, según que la máquina i realice la tarea j o no.

El problema de programación lineal es:

Minimizar
$$C = x_{11} + 2x_{12} + 3x_{13}$$

 $+ 2x_{21} + 4x_{22} + 6x_{23}$
 $+ 3x_{31} + 6x_{32} + 9x_{33}$
sujeto a $x_{11} + x_{12} + x_{13} = 1$ ($M1$ realiza una tarea)
 $x_{21} + x_{22} + x_{23} = 1$ ($M2$ realiza una tarea)
 $x_{31} + x_{32} + x_{33} = 1$ ($x_{31} + x_{32} + x_{33} = 1$ (se realiza $x_{31} + x_{32}$

Nota

En lugar de asumir que las variables toman los valores 1 ó 0, es suficiente considerar la restricción de no negatividad (*) porque el método del símplex simplificado permite encontrar una solución óptima que tiene valores enteros, debido a las operaciones de sumas y restas con las cantidades de suministros y demandas (Ver 7.3).

Además, por las restricciones de igualdades, estos valores enteros y no negativos no exceden a 1, y por lo tanto han de ser 1 ó 0.

Propiedad del problema de asignación

Si se suma (o resta) un valor constante k a los costos de una fila (o de una columna) las soluciones factibles y óptimas no cambian. En efecto, el conjunto de restricciones es el mismo y

$$NuevoCostoTotal = CostoActual + k$$

Esto puede comprobarse en el ejemplo previo, en donde

CostoActual
$$= x_{11} + 2x_{12} + 3x_{13} + 2x_{21} + 4x_{22} + 6x_{23} + 3x_{31} + 6x_{32} + 9x_{33}$$

y si se suma la constante k a primera fila de costos, por ejemplo, entonces

NuevoCostoTotal = CostoTotal +
$$k(x_{11} + x_{12} + x_{13})$$

= CostoTotal + k

pues la suma de las variables asociadas a la fila 1 es igual a 1 según la primera restricción.

Esta propiedad se aplica en la búsqueda de una solución óptima pues mediante sumas y restas de ciertas constantes a las filas (o columnas) se trata de obtener una tabla de costos (no negativos) con suficientes ceros. Si es posible lograr una asignación completa usando los costos ceros, entonces esta asignación tiene un costo total cero, y por lo tanto es mínimo.

Así, a partir de la tabla del problema de asignación inicial se obtienen otras tablas (u otros problemas) equivalentes, en los cuales una asignación óptima se consigue a través de los costos ceros.

Para resolver un problema de asignación se exponen el método húngaro y el algoritmo de Munkres.

Ejemplo 2 Método húngaro

Aplicando el método húngaro resuelva el problema de asignación balanceado cuy a matriz de costos es:

	<i>T</i> 1	<i>T</i> 2	<i>T</i> 3
M1	1	2	3
M2	2	4	6
<i>M</i> 3	3	6	9

Solución

Paso 1

Se obtiene un cero en cada fila, restando a cada fila el valor mínimo de la fila

Paso 2

Se obtiene un cero en cada columna, restando a cada columna el valor mínimo de la columna

$$\begin{array}{c|cccc}
0 & 1 & 2 \\
0 & 2 & 4 \\
0 & 3 & 6
\end{array}
\rightarrow
\begin{array}{c|ccccc}
0 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}$$
min 0 1 2

Paso 3

Se trata de asignar usando las celdas de costos ceros.

Estas celdas son (1,1), (1,2), (1,3), (2,1) y (3,1). La celda (3,1), por ejemplo, indica que se puede asignar la máquina M3 a la tarea T1, y así con las otras celdas.

Si se asigna M1 a T1, ya no es posible asignar M2 ni M3; y si se asigna M1 a T2, entonces M2 puede asignarse a T1, pero M3 no puede asignarse.

Puede comprobarse que no es posible obtener una asignación completa usando los costos ceros actuales.

Paso 4

Se producen nuevos costos ceros. Con este propósito se cubren las filas y columnas que contengan a todos los ceros actuales, utilizando el menor número de filas y columnas, en este caso con la fila 1 y la columna.

$$\begin{array}{c|cccc}
x & & & \\
x & 0 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}$$
\tag{columna cubierta}

Se halla el mínimo de las celdas no cubiertas.

$$M = \text{mínimo } \{1, 2, 2, 4\} = 1$$

Luego se resta M a cada celda no cubierta y se suma a las celdas de las intersecciones de las filas y columnas cubiertas, en este caso se trata solamente de la celda (1,1)

Ahora se puede lograr la asignación usando los ceros marcados: (1,3), (2,2) y (3,1), o sea M1 realiza la tarea 3, M2 la tarea 2 y M3 la tarea 1, y el costo mínimo se obtiene usando los costos de la tabla inicial

$$C = 3 + 4 + 3 = 10.$$

Nota

- 1. Se repiten los pasos 3 y 4 hasta lograr una asignación completa.
- 2. Para aplicar este método se requiere que el problema de asignación sea balanceado, es decir que se cumpla la condición m=n, en donde m es el número de máquinas y n el número de tareas. Si m<n o m>n, el problema se balancea agregando máquinas ficticias o tareas ficticias, según sea el caso, con costos ceros.

El método húngaro es bastante simple y puede usarse en problemas de asignación en los que el número de tareas o máquinas es relativamente pequeño. No obstante, presenta limitaciones que restringen su aplicación en general. Una se refiere al número de iteraciones por la ocurrencia de soluciones básicas factibles con variables básicas nulas y otra a la forma de determinar la asignación usando los ceros, por los posibles casos que hay que probar.

El algoritmo de Munkres es más complejo y se basa en el método húngaro. Presenta la ventaja de ser más preciso y se aplica a problemas de asignación balanceados o no. En efecto, si $k = mínimo \{m, n\}$, en k pasos determina una solución óptima del problema y en cada paso i=1, 2, ..., k, obtiene i asignaciones.

En el siguiente ejemplo se ilustran los conceptos relativos a este algoritmo.

Ejemplo 3 Algoritmo de Munkres

Aplicando el algoritmo de Munkres resuelva el problema de asignación cuya matriz de costos es

	<i>T</i> 1	<i>T</i> 2	<i>T</i> 3
M1	1	4	6
<i>M</i> 2	2	2	3
М3	3	6	9
<i>M</i> 4	4	8	12

en donde se trata de seleccionar las máquinas para que realicen todas las tareas a un costo total mínimo.

Nótese que se trata de un problema no balanceado.

Solución

El procedimiento consiste de $k = min \{4,3\} = 3$ pasos. Se usará la notación:

- cero marcado, con el símbolo *, para indicar una celda con valor cero que da una asignación de una máquina a una tarea
- cero primo, con el símbolo ', para referir un nuevo cero que es parte del proceso de construcción de ceros
- y cero primo libre a un cero primo que no tiene un cero marcado en su fila.

Además se empleará una x para señalar una columna o fila cubierta.

Igual que en el método húngaro, cada vez que se reste un valor mínimo a las celdas no cubiertas por filas o columnas se suma este valor mínimo a las celdas que están en la intersección de filas y columnas cubiertas.

Paso 1

Se obtiene una asignación posible.

Se halla el mínimo de los costos de la tabla M=1 y se resta a cada celda.

0'	3	5
1	1	2
2	5	8
3	7	11

Se prima el nuevo cero que se halla en la celda (1,1). Este cero primo es libre pues no tiene cero marcado en su fila.

Por lo tanto se le marca y se obtiene la asignación:

M1 realiza T1.

0*	3	5
1	1	2
2	5	8
3	7	11

En este paso, si hay varios ceros se prima solo uno de ellos.

Paso 2

Se obtienen dos asignaciones posibles.

Se cubre la columna que contiene a la celda marcada, en este caso, la columna 1; se halla el mínimo de las celdas no cubiertas,

M = 1, y se resta a cada celda no cubierta.

А		
0*	3	5
1	1	2
2	5	8
3	7	11

x = columna (o fila) cubierta

	X		
ſ	0*	2	4
	1	0'	1
	2	4	7
	3	6	10

Se prima el nuevo cero de la celda (2,2) y puesto que es libre, pues no tiene un cero marcado en su fila, se le marca

0*	2	4
1	0*	1
2	4	7
3	6	10

Así, hasta ahora hay dos asignaciones posibles indicadas por los ceros marcados.

Paso 3

Se obtienen tres asignaciones.

Se cubren las columnas 1 y 2 de los ceros marcados.

X	X	
0*	2	4
1	0*	1
2	4	7
3	6	10

Se halla el mínimo, M=1, de los costos de las celdas no cubiertas, se resta a cada una de estas celdas y se suma a la celda (2,1).

X	X	
0*	2	3
1	0*	0,
2	4	6
3	6	9

El nuevo cero primo está en la celda (2,3).

Este cero primo no es libre, pues tiene el cero marcado (2,2) en su fila, de modo que se debe continuar buscando un cero libre.

Con este propósito, se cubre la fila 2 y se descubre la columna 2 del cero marcado (2,2).

columna 1 cubierta

$$\begin{array}{c|cccc}
x & & & & & \\
\hline
0^* & 2 & 3 & & \\
1 & 0^* & 0' & \leftarrow & \text{fila 2 cubierta} \\
2 & 4 & 6 & & & \\
3 & 6 & 9 & & & \\
\end{array}$$

Se halla el mínimo de las celdas no cubiertas, M=2, se resta a cada celda no cubierta y se suma M a la celda (2,1) que está en la intersección (en los pasos 1 y 2 no hubo intersecciones de líneas cubiertas).

El nuevo cero primo está en la celda (1,2). Tampoco es libre pues tiene el cero marcado (1,1) en su fila y el proceso continúa.

Se cubre la fila 1 y se descubre la columna 1.

Se halla el mínimo de las celdas no cubiertas, M=2 y se resta a cada celda no cubierta (nótese que solo hay filas cubiertas y por lo tanto no hay celdas en interseccionadas para sumarles M).

$$\begin{array}{c|cccc}
x \\
x & 0* & 0' & 1 \\
x & 3 & 0* & 0' \\
0' & 0 & 3 \\
1 & 2 & 5
\end{array}$$
(3.1)

El nuevo primo elegido (3,1) es libre y termina el proceso de construir nuevos ceros.

A partir del último cero primo (3,1) se busca el cero marcado en su columna: (1,1); luego el cero primo de la fila de este cero marcado:(1,2); a continuación el cero marcado de la columna 2: (2,2); y finalmente el cero primo de la fila 2: (2,3), que no tiene cero marcado en su columna.

El resultado es la ruta o secuencia de ceros

o en la tabla

Finalmente, se marcan los ceros primos de la ruta obtenida, se les quita la marca a los ceros marcados de la ruta y en la tabla se suprime el símbolo ' a los ceros primos:

$$0* - 0 - 0* - 0* - 0* (3,1) - (1,1) - (1,2) - (2,2) - (2,3)$$

de modo que la tabla tiene los datos:

Ahora ya se dispone de 3 asignaciones y el algoritmo termina La solución óptima se obtiene así:

la celda marcada (1,2) indica que a M1 se le asigna T2, la celda marcada (2,3) indica que a M2 se le asigna T3, la celda marcada (3,1) indica que a M3 se le asigna T1.

El costo total mínimo es C = 3 + 4 + 3 = 10, que resulta de usar la tabla inicial

Nota

- 1. En el parte 3.1 se pudo elegir como cero primo a (3,2) y obtener otra solución óptima.
- 2. En cada paso del algoritmo se construyen ceros primos hasta encontrar un cero primo *P*1 libre. Luego, a partir de este cero libre se encuentra una ruta o secuencia de ceros:

en donde, con excepción del último, para cada primo Pi el siguiente cero Mi es un cero marcado en la columna de Pi.

A continuación, usando la ruta, se marcan los ceros primos y se les quita la marca a los ceros marcados. Aquí se observa que el número de ceros marcados (o asignaciones) aumenta en 1, pues el número de ceros primos es igual al de ceros marcados en la ruta más uno.

7.7 Problemas propuestos

Problema 1

Aplicando el método húngaro, encuentre el costo mínimo y una asignación óptima para el problema dado por la tabla de costos

	<i>T</i> 1	<i>T</i> 2	<i>T</i> 3
M1	10	8	12
<i>M</i> 2		20	16
<i>M</i> 3	12	6	30

Respuesta

El costo mínimo es 24 = 6 + 6 + 12.

Problema 2

La siguiente tabla contiene el tiempo en horas que requiere una máquina para realizar una tarea.

Halle el tiempo total mínimo para completar las cuatro tareas por las cuatro máquinas.

Respuesta

El tiempo total mínimo es 55 = 16 + 12 + 12 + 15.

Problema 3

Aplique el método húngaro para resolver el problema de asignación cuya tabla de costos es

La celda - indica que la máquina 4 no puede realizar la tarea 1.

Respuesta

En la celda - se pone un costo muy grande M y se agrega la columna 5, o tarea ficticia 5, con costos ceros, para tratar un problema balanceado.

El costo total mínimo es 18 = 6 + 2 + 4 + 6 + 0, que corresponde a la solución óptima

6*	7	2	9	0
6	8	2*	8	0
3	4	2	4*	0
-	6*	2	8	0
9	6	2	12	0*

La asignación de la columna 5 indica que la máquina 5 no realiza ninguna tarea.

Problema 4

Utilice el algoritmo de Munkres para determinar una solución óptima del problema de asignación de la siguiente matriz de costos

9	2	4	3	7
2	1	5	6	6
8	5	4	3	1

Respuesta

Se indican los pasos del algoritmo.

Paso 1

8	1	3	2	6
1	0*	4	5	5
7	4	3	2	0

Paso 2

8	1	3	2	6
1	0*	4	5	5
7	4	3	2	0*

Paso 3

El cero primo de la celda (1,2) es libre y por lo tanto se obtiene la ruta de ceros

$$0' - 0* - 0'$$
 $(1,2) - (2,2) - (2,1)$

Capítulo 7. Problemas de transporte y asignación

Luego se marcan los ceros primos, y se elimina la marca al cero (2,2)

$$0^*$$
 - 0^* (2,2) - (2,1)

0* (1,2)		(2,2)		0* (2,1)
8	0*	1	0	6
0*	0	3	4	6
5	3	1	0	0*

que en la tabla inicial corresponde a la solución óptima

9	2*	4	3	7
2*	1	5	6	6
8	5	4	3	1*

Capítulo 8 Análisis de redes

8.1 Introducción

En este capítulo se estudian algunas aplicaciones basadas en el modelo de red que se refieren a los siguientes problemas:

- hallar una ruta óptima,
- encontrar el flujo máximo a través de una red,
- y programar las actividades de un proyecto.

Por definición, una red, o grafo dirigido, se compone de:

- 1) un conjunto finito de símbolos, llamados nodos o estados: *a, b, ...*
- 2) para cada nodo n hay asociados cero o más nodos sucesores: $s_1, s_2, ..., s_n$

en donde cada asociación es formalmente el par ordenado (n, s_i) , o n, s_i , llamado arco dirigido de n al nodo sucesor s,

y 3) cada arco es valorado, esto es, tiene un valor dado positivo.

El siguiente ejemplo muestra varias maneras de describir o representar una red.

Ejemplo 1

1) Representación gráfica

Gráficamente, los nodos se representan encerrados por elipses u óvalos y cada arco por una flecha valorada que sale de un nodo y apunta al nodo sucesor

2) Descripción explícita

La red se define indicando listas de sucesores de nodos y valores de los arcos

nodo	sucesor-valor
а	<i>b</i> -20, <i>c</i> -10, <i>d</i> -16
b	<i>c</i> -8, <i>e</i> -14, <i>f</i> -25
c	d-30
d	<i>f</i> -15
e	<i>b</i> -12, <i>f</i> -8

o una lista de arcos valorados

3) Representación matricial

	а	b	С	d	e	f
a	-	20	10	16	-	-
b	-	-	8	-	14	25
c	-	-	-	30	-	-
d	-	-	-	-	-	15
e	-	12	-	-	-	8

El signo - indica la ausencia de valor.

8.2 Rutas en una red

Una ruta es una sucesión de nodos

$$x_0 x_1 \dots x_n \qquad (n \ge 0)$$

tal que

 x_1 es sucesor de x_0

•••

 x_n es sucesor de x_{n-1}

Si $n \ge 1$, la ruta es simplemente la secuencia de n arcos

$$x_0 x_1$$

$$x_1 x_2$$

•••

$$X_{n-1}X_n$$

en donde, el nodo de llegada de un arco, con excepción del último, es igual al nodo de partida del siguiente arco.

Los nodos x_0 y x_n se denominan nodos inicial y final de la ruta, respectivamente; también se suele decir que la ruta parte de x_0 y termina en x_n , o que une x_0 con x_n .

Se define el valor de una ruta como la suma de los valores de los arcos que la componen.

Según la aplicación particular, este valor recibe frecuentemente un nombre específico, por ejemplo, costo (longitud o tiempo) de la ruta.

Se conviene en asignar el valor 0 a una ruta compuesta por un solo nodo (o sea cuando n=0, y sin arcos).

Ejemplo 2
Las siguientes son algunas rutas con sus valores en la red del ejemplo 1:

Ruta	Valor
abe	34 (=20+14)
abcd	58 (=20+8+30)
cdf	45
c	0
abef	42

Por ejemplo, la ruta *abe* tiene valor 34, que es la suma de los valores 20 y 14 de los arcos *ab* y *be*.

8.3 Problema de ruta óptima

Este problema consiste en hallar una ruta que tiene valor mínimo, o ruta óptima, con nodos inicial y final dados.

En el siguiente ejemplo se explica el algoritmo de cota y ramificación para encontrar una ruta óptima.

Ejemplo 3 Algoritmo de cota y ramificación

Determine una ruta de valor mínimo que una el nodo a con el nodo f en la red del ejemplo 1.

Solución

El algoritmo utiliza dos listas de datos:

LRUTA que se compone de rutas valoradas para probarlas.

LVIS compuesta por nodos visitados o tratados, y se usa para

evitar que vuelvan a considerarse nodos ya probados.

Inicialmente,

LRUTA contiene la ruta a–0, formada por el nodo de partida a y con valor 0, que puede pensarse como la ruta que sale y termina en a; y la lista LVIS es vacía.

т	1 1	1 1	1 1 .
La siguiente 1	tabla muestra	los basos de	el algoritmo
La signicité (tabia iliaestia	100 pasos av	angoritino.

PASO	LRUTA	D	LVIS	RUTAS EXTENDIDAS
1	a-0*	а	а	ab-20, ac-10, ad-16
2	ab-20, ac-10*, ad-16	с	a, c	acd-40
3	ab-20, ad-16*, acd-40**	d	a,c,d	ada-25*, adf-31
4	ab-20*, adfc-31	c	a,c,d,b	abc-28*, abe-34, abf-45
5	adf-31*, abe-34, abf-45	f	a,c,d,b	Ruta óptima hallada <i>adf</i> con valor mínimo 31

En la columna D se consigna el destino o nodo de llegada de la ruta marcada con *.

Paso 1

Se marca la (única) ruta a-0, y su destino a se registra en D; se compara el destino a con el nodo final f del problema y por ser distintos se agrega a la lista LVIS; luego se extiende la ruta a-0 usando los sucesores b,c y d de a, y los valores de los arcos; por ejemplo,

a-0 con el arco ab de valor 20 es la ruta ab-20, 20 = 0 +20, a-0 con el arco ac de valor 10 es la ruta ac-10, 10 = 0 +10,

y así, para el otro nodo sucesor d.

La ruta marcada se elimina de LRUTA y se agregan allí las rutas extendidas *ab*-20, *ac*-10 y *ad*-16

Paso 2

Se marca en LRUTA la ruta de menor valor (si hay más de una, se marca cualquiera): ac-10; se copia c en D; puesto que es distinto de f, se pone c en LVIS; se extiende ac por los sucesores de c, en este caso se

obtiene la ruta ac-10 con el arco cd de valor 30, por lo cual resulta la ruta extendida acd-40, 40= 10 + 30.

En LRUTA se elimina la ruta marcada y se agrega la ruta extendida.

Paso 3

Se marca la ruta de menor valor: *ad*-16; se anota *d* en D; se extiende *ad* por los sucesores de *d* y se obtienen las rutas extendidas

La primera ruta *ada-25** se elimina pues *a* está en LVIS, a fin de evitar ciclos o que el algoritmo tenga más iteraciones.

En LRUTA se elimina la ruta marcada *ad*-16 y se agrega la ruta extendida *adf*-31

También se eliminan las otras rutas que tienen el mismo destino *d* y valor mayor que 16, en este caso, la ruta *acd*-40.

Paso 4

Se marca la ruta de menor valor: *ab*-20; se registra *b* en D; y se extiende *ab* por medio de los sucesores de *b*:

en donde se descarta o elimina la ruta *abc* pues *c* está en la lista LVIS. Se elimina la ruta marcada y se agregan las rutas extendidas.

Paso 5

Se marca la ruta de menor valor: adf-31, cuyo destino es f, igual al nodo final, por lo tanto el algoritmo concluye y se indica que adf es una ruta óptima que une a con f, y su valor mínimo es 31.

Nota

1. En cada paso del algoritmo, la ruta marcada es óptima desde el punto de inicio al destino seleccionado en la columna D y los

- valores de estas rutas son no decrecientes: 0, 10, 16, 20, 31, para el ejemplo 3.
- 2. El algoritmo finaliza cuando el destino de la ruta marcada coincide con el nodo final o cuando la lista LRUTA queda vacía. En el primer caso se indica que la ruta marcada es óptima y en el segundo caso se indica que no existe ruta entre los nodos dados.
- Una simple modificación del algoritmo permite encontrar todas las rutas óptimas entre dos nodos (que desde luego han de tener el mismo valor mínimo).

8.4 Problemas propuestos

Problema 1

Sea la red con arcos valorados

```
ab-8, ac-11, ad-16
bc-2, be-20
cf-15
df-14, dg-30
eg-8
fg-10
```

- a) Halle una ruta óptima del nodo b al nodo g.
- b) Encuentre una ruta óptima del nodo c al nodo b.
- c) Halle todas la rutas con valor mínimo del nodo a al nodo g.

Respuesta

- a) bcfg-27.
- b) No existe ruta.
- c) abeg-36, acfg-36.

Problema 2

El precio de una nueva máquina es de 500. El costo de mantenimiento de la máquina es de 200 el primer año, 400 el segundo año, 600 el tercer año y 800 el cuarto año de uso. Suponiendo que la máquina no tiene valor de reventa, halle el costo mínimo de comprar y utilizar la máquina durante un lapso de cuatro años, si se compra una máquina al comienzo del primer año.

Respuesta

El problema se modela como una red cuyos nodos son los años 1, 2, 3, 4 y 5. Y para cada par de años i < j, se considera el costo de una máquina que se compra al comienzo del año i y se mantiene hasta el comienzo del año j, esto conduce a definir el arco ij con costo c_{ij} = costo de comprar una máquina al comienzo del año i más el costo de mantenimiento por los años i, i+1, ..., j-1.

Así, por ejemplo:

$$c_{12} = 500 + 200 = 700$$
, $c_{13} = 1100$, $c_{14} = 1700$, $c_{15} = 2500$
 $c_{23} = 700$, $c_{24} = 1100$, $c_{25} = 1700$
 $c_{34} = 700$, $c_{35} = 1100$
 $c_{45} = 700$

Usando estos datos, una ruta de 1 a 5 representa un plan de renovación de máquinas, por ejemplo, la ruta 1245 significa que se compra una máquina al comienzo de los años 1,2 y 4, y el costo correspondiente es 700(12) + 1100(24) + 700(45) = 2500 en donde, entre paréntesis, se indica el arco o lapso respectivo

El problema es entonces hallar una ruta de costo mínimo que una los nodos 1 y 5.

Una ruta óptima es 1 3 5 con costo 2200, esto es, se debe comprar la segunda máquina al comienzo del tercer año.

Problema 3

Encuentre una ruta de valor mínimo entre los nodos 1 y 6 de la red

Respuesta

La única ruta óptima es 1346 y el valor mínimo es 22.

Problema 4

Determine el valor del arco bd y una ruta óptima, si 21 es el valor mínimo de una ruta que une a con f en la red

Respuesta

El valor del arco bd es 11 y una ruta óptima es abdf.

Problema 5

La siguiente tabla contiene el costo y el tiempo de un viaje, indicado por el par de valores *c*; *t*, desde una ciudad a otra:

	A	В	C	D	Е
A	-	10;50	25;50	50;30	-
В	-	-	18;30	20;20	50;30
C	-	-	-	-	40;20
D	-	-	-	-	20;80

- a) Encuentre una ruta de costo mínimo de la ciudad A a la ciudad
 E e indique el tiempo total de los viajes.
- b) Halle una ruta de A hacia E cuyo tiempo de viaje sea mínimo e indique el costo de la ruta.

Respuesta

- a) ABDE con costo mínimo 50 y requiere un tiempo de 150.
- b) ACE que toma el menor tiempo de viaje 70 y cuesta 65.

8.5 Problema de flujo máximo

Se considera una red por la que pasa un fluido que ingresa por un nodo f llamado fuente y sale por otro nodo s llamado sumidero.

Se supone que el fluido se desplaza usando los arcos como canales, siguiendo las direcciones de estos, y que los valores de los arcos son las capacidades o cantidades máximas que pueden fluir a través de ellos. Además, se asume que no hay pérdida de fluido, esto es, se exige que en cada nodo la suma de las cantidades que llegan a él sea igual a la suma de las cantidades que salen de ese nodo (ley de Kirchoff).

Este problema puede ser formulado como un problema de programación lineal y por lo tanto puede resolverse mediante el algoritmo del símplex. Sin embargo, se dispone de un método más directo y eficiente conocido como algoritmo de Ford-Fulkerson.

Las ideas básicas del método son:

- las cantidades se transmiten a través de rutas que salen de la fuente y terminan en el sumidero,
- la cantidad máxima que puede pasar a través de una ruta, es igual al valor mínimo de las capacidades de los arcos de la ruta.

Propiedad del corte mínimo

Se denomina corte en una red a un conjunto de arcos tales que si se suprimen en la red no existe ruta de la fuente al sumidero.

El valor de un corte es la suma de las capacidades de sus arcos. Sea la red con capacidades de flujos, fuente A y sumidero F.

Se muestran algunos cortes con sus respectivos valores:

corte	valor
AB, AC	30 (=10+20)
AB, BE, CE	34 (=10+16+8)
BD, BE, CE	29 (=5+16+8)
DF, EF	32 (=17+15)
AB, EF	25 (=10+15)
AB, CE	18 (=10+8)

Los arcos AB y AC forman un corte de la red, pues si se suprimen no es posible hallar rutas que unen A con F; también, los arcos AB y EF forman un corte, por la misma razón, y de igual manera para los otros conjuntos de arcos.

La propiedad de corte mínimo establece que

flujo máximo a través de red = mínimo valor de los cortes.

Por ejemplo, para la red indicada, por simple inspección se encuentra que el corte formado por los arcos *AB*, *CE* tiene valor mínimo 18, de donde se sigue que el flujo máximo en la red es 18.

Esta propiedad puede usarse para determinar en problemas sencillos (con pocos arcos) el flujo máximo por medio de un corte mínimo.

En el siguiente ejemplo se explica el algoritmo de Ford-Fulkerson para determinar el flujo máximo y las cantidades por los canales para obtenerlo.

Ejemplo 4 Algoritmo de Ford-Fulkerson

Halle el flujo máximo y las cantidades correspondientes para la red anterior.

Solución

Se suprimen las direcciones de los arcos y en cada arco se anota la capacidad cerca del nodo de partida del arco y 0 cerca del nodo de llegada del arco:

El significado de esta notación es el siguiente, por ejemplo

$$A \xrightarrow{20} 0$$

indica que se puede enviar hasta 20 unidades de A hacia C y ninguna unidad desde C hacia A;

y si durante el proceso del algoritmo se tuviese

$$A \xrightarrow{12} \qquad \qquad 8 \qquad \qquad C$$

entonces se puede enviar hasta 12 unidades de A hacia C o bien 8 unidades de C hacia A.

Paso 1

Se hace flujo actual = 0.

Se selecciona la ruta

$$A_{10} 0 B_5 0 D_{17} 0^F$$

y se trata de enviar la máxima cantidad de fluido a través de ella según las capacidades disponibles: de *A* a *B* se puede enviar 10 unidades, de *B* a *D* se puede enviar 5 y de *D* a *F*, 17 unidades; luego, la máxima cantidad que puede fluir por esta ruta es

$$M = \min \{ 10, 5, 17 \} = 5$$

En consecuencia, se satura la ruta, es decir, se resta 5 de cada capacidad del inicio de cada arco y se suma a la capacidad cercana del final de cada arco

Se observa que ya no puede enviarse fluido de *B* a *C*, pues quedó 0 unidades.

Paso 2

Se satura la ruta $A B E F \text{ con } M = \min\{5,16,15\} = 5$

Ya no se puede enviar flujo de A hacia B.

Paso 3

Se satura la ruta $A C E F \text{ con } M = \min \{20, 8, 10\} = 8$

El proceso concluye pues ya no es posible encontrar más rutas de *A* a *F* que permitan flujos. En efecto, no se puede usar el arco *AB* ni el arco *CE*, pues tienen capacidades nulas en los nodos de partida. Por lo tanto, el flujo máximo es 18.

Para obtener el plan de envío de flujo, o la distribución de las cantidades que se envían, se anotan las direcciones de los arcos y sobre los arcos se escriben solo las cantidades positivas enviadas, o sea las cantidades que están en el extremo final del arco, que en la figura aparecen marcadas con *:

o

Ejemplo 5

Encuentre el flujo máximo de s a f en la red

Solución

Como en el ejemplo 5, para aplicar el algoritmo de Ford-Fulkerson se escribe la red en la forma:

Paso 1

Se satura la ruta s p q f con el valor $M = \min\{1, 1, 1\} = 1$

Paso 2

Se satura la ruta $s \neq p f$ con el valor $M = \min\{3,1,1\} = 1$

Se observa que no hay más rutas de s a f que puedan ser saturadas, el proceso termina y se obtiene el flujo máximo 2.

La distribución del flujo es

que se obtiene escribiendo los arcos con sus flechas y sobre estos solo las cantidades positivas próximas a los extremos finales. (Por el arco pq no hay flujo y por lo tanto no se indica ningún valor).

8.6 Problemas propuestos

Problema 1

Encuentre el flujo máximo y una distribución óptima para la red

Respuesta El flujo máximo es 5.

Una distribución óptima es

Problema 2

Halle el flujo máximo en la siguiente red

en donde pq es un arco no dirigido, esto es, se puede enviar fluido en ambas direcciones.

Respuesta

Reemplace el arco no dirigido pq por dos arcos dirigidos, uno de p a q y otro de q a p, con la misma capacidad 3, y aplique el algoritmo de Ford-Fulkerson. El valor del flujo máximo es 9.

Problema 3

Determine el máximo número de mensajes por hora que se puede enviar desde a hacia d, si pueden ser enviados hasta 500 mensajes por hora entre dos cualesquiera de los puntos a,b,c y d.

Respuesta 1500.

Problema 4 Problema de emparejamiento (o matching)

La siguiente tabla muestra las capacidades de las personas P,Q,R para realizar las tareas X, Y, Z

Una celda con la letra *C* indica que la persona de la fila de la celda tiene la capacidad para realizar la tarea de la columna de la celda.

Se desea asignar a cada persona una tarea de modo que el número de asignaciones (emparejamientos) sea el mayor posible.

Indicación

Este problema de asignación puede ser resuelto por los métodos expuestos en el Capítulo 7. No obstante, también puede tratarse como un problema de flujo.

Trace una red con arcos de valor 1 dirigidos de las personas a las tareas correspondientes a las celdas compatibles, por ejemplo, el arco de P a X con valor 1.

Cree una fuente *s* y trace arcos de valor 1 de *s* a *P,Q,R*; y también agregue un sumidero *f* y trace arcos de valor 1 de *X*, *Y*, *Z* a *f*.

Obtenga el flujo máximo y determine el emparejamiento máximo usando la distribución óptima correspondiente.

Problema 5

Los datos siguientes son las capacidades de una red con fuentes *A*, *B* y *C*, y sumideros *J* y *K*:

$$c(A,D) = 12, \quad c(A,E) = 8,$$

 $c(B,E) = 5, \quad c(B,J) = 10,$
 $c(C,F) = 8,$
 $c(D,E) = 4, \quad c(D,I) = 6,$
 $c(B,E) = 5, \quad c(B,J) = 10,$
 $c(E,F) = 9, \quad c(E,H) = 6, \quad c(E,I) = 9$
 $c(F,G) = 6,$
 $c(G,H) = 3,$
 $c(H,K) = 6,$
 $c(I,J) = 12, \quad c(I,K) = 10$

Aplique el algoritmo de Ford Fulkerson para hallar los flujos máximos que se pueden enviar desde las fuentes a los sumideros.

Indicación

Convierta el problema en uno de fuente y sumidero únicos:

Sea S = suma de las capacidades de los arcos que salen de las fuentes A, B y C; agregue una fuente que conecte a A, B y C, cada arco con capacidad igual a S. Y de igual manera conecte J y K a un sumidero único con la misma capacidad S.

8.7 Programación de proyectos

Un proyecto consiste en un conjunto de actividades o trabajos con las siguientes características:

- 1. cada actividad tiene una duración o tiempo requerido para realizarla o ejecutarla,
- 2. existe un orden en la ejecución de las actividades, que se describe así: una actividad *A* precede a una actividad *B* (o *A* es predecesor de *B*, o *B* es sucesor de *A*) si *A* debe completarse antes de que *B* comience,
- y 3. hay actividades que no tienen predecesoras, o actividades iniciales, y también hay actividades sin sucesoras, o actividades finales.

Ejemplo 6

La siguiente tabla muestra las actividades de un proyecto y sus respectivos tiempos de ejecución

ACTIVIDAD	PREDECESORES	TIEMPO
A	-	14
В	-	12
C	A, B	2
D	В	6
E	C, D	4

Algunos problemas interesantes de la programación de proyectos son:

- hallar el tiempo mínimo para completar todas las actividades del proyecto siguiendo el orden establecido y además encontrar cuáles actividades son críticas en el proyecto, esto es, aquellas cuyo retraso aumenta la duración mínima del proyecto, y cuáles pueden retrasarse sin afectar este tiempo,
- determinar el costo mínimo de ejecución del proyecto, dados los costos de las actividades, para terminarlo en un tiempo especificado.

Estos problemas se resuelven representando el proyecto como una red en donde:

- un nodo (es un símbolo que) representa la ocurrencia del evento de terminación de conjunto de actividades y el inmediato inicio de las actividades siguientes,
- un arco es una actividad que sale del nodo donde se inicia su ejecución y se conecta al nodo en el que concluye y el valor del arco es la duración de la actividad.

Así, si la actividad A es predecesora de la actividad B, en la red esta relación de orden queda expresada mediante un nodo al que llega el arco de A y de donde sale el arco de B.

Usualmente, los nodos se designan por los números 1, 2, ..., n, siendo 1 y n los nodos de inicio y terminación del proyecto, respectivamente.

En la representación de red se requiere que de un nodo i a otro nodo j se conecte a lo sumo una actividad o arco dirigido, de modo que la única actividad, si existe, pueda ser referida por el par ordenado (i, j). Para satisfacer esta condición, cuando hay dos actividades que conectan los mismos nodos, se crea una actividad ficticia de duración cero que siga a una de las actividades y termine en el nodo de llegada. En forma explícita, si A y B son actividades que salen del nodo i y llegan al nodo j, como se muestra en la figura

entonces se crea una actividad ficticia F que siga o suceda a A:

Obsérvese que se ha agregado el nodo k y que A puede referirse por el par (i,k), F por (k,j) y B por (i,j).

Las actividades sucesoras de A y B han de salir del nodo j; y si hay actividades que son sucesoras de A pero no de B, estas saldrán del nodo k.

Ejemplo 7

Trace una red que represente el proyecto del ejemplo 6.

Solución

Paso 1 Actividades iniciales

Puesto que A y B no tienen predecesores, son actividades iniciales y por lo tanto parten del nodo inicial, al que se designa por 1. Y llamando 2 y 3 a los nodos finales de A y B, se tiene

Paso 2 Actividades que siguen a las iniciales

C es sucesor común de A y B, y D es sucesor de B (y no de A). Aplicando la regla se crea una actividad artificial que siga a A o a B:

D es sucesor de B pero no de A, de modo que se selecciona la segunda forma

Paso 3 Actividades finales

E es sucesor común de C y D, luego E parte de 4 y 5, nodos que pueden juntarse en uno solo, al que se le llama 4, y de allí sale E.

Incluyendo los tiempos de las actividades se obtiene la red

en donde las actividades *A*, *B*, *C*, *D* y *E* son representadas por los arcos o pares ordenados (1,2), (1,3), (2,4), (3,4) y (4,5), respectivamente, y la actividad artificial *F* por el arco (3,2).

También se puede expresar la red mediante la lista de pares ordenados de nodos

Actividad	Tiempo
(1,2)	14
(1,3)	12
(2,4)	2
(3,2)	0
(3,4)	4
(4,5)	4

Nótese que gracias a esta notación las relaciones de precedencia de las actividades quedan determinadas implícitamente por los pares, por ejemplo a (1,2) le siguen (2,3) y (2,4), etc.; y también se establece un orden entre los nodos: 1 es el primero, a 1 le siguen los nodos sucesores 2 y 3, a 2 le sigue 4, a 3 le siguen los nodos 2 y 4, y a 4 el último nodo 5.

Tiempos más tempranos y más tardíos

Se asume que el proyecto es dado por una red cuyos nodos son 1,2,...,n, en donde 1 es el nodo inicial, n es el nodo final, y las actividades son dadas por pares ordenados de nodos (i,j) y los correspondientes tiempos de ejecución por t_{ii} .

Para cada nodo i se definen los tiempos más tempranos:

TE(i) = tiempo más temprano del nodo i

 menor tiempo de terminación de todas las actividades que concurren o llegan al nodo i

Se conviene en hacer TE(1)= tiempo de inicio del proyecto = 0. A TE(n) se le llama tiempo mínimo para completar o terminar el proyecto.

También se definen los tiempos más tardíos

TT(i) = tiempo más tardío del nodo i

 mayor tiempo de inicio de las actividades que salen del nodo, para que el proyecto se complete en el tiempo mínimo

De la definición se sigue que el tiempo más tardío del nodo final n es igual al tiempo mínimo: TT(n) = TE(n)

Con el propósito de ilustrar cómo se deducen las fórmulas para calcular los tiempos más tempranos se considera la siguiente parte de una red para hallar el tiempo más temprano del nodo 4, que se indica por t:

Se requiere que previamente se hayan calculado los tiempos más tempranos de los nodos predecesores 2 y 3 del nodo 4, los que este caso son dados por 14 y 12, respectivamente.

Entonces el tiempo *t* en el que ocurre el nodo 4 debe ser mayor o igual que el tiempo más temprano en cualquiera de los nodos predecesores más el tiempo que toma la ejecución de la actividad que la conecta, es decir

$$t \ge 14 + 2$$
 y $t \ge 12 + 6$
o $t \ge \text{máximo} \{14 + 2, 12 + 6\} = 18$

es decir *t* debe ser al menos igual a 18 unidades de tiempo y por lo tanto el menor valor de *t* es 18; en resumen

$$t \ge \text{máximo} \{14 + 2, 12 + 6\} = 18$$

Los tiempos más tempranos se calculan a partir de nodo inicial 1

$$TE(1)=0$$

y para un nodo nodo i, i > 1, el tiempo más temprano es dado por

$$TE(i) = \text{máximo } \{TE(p) + \text{tiempo de } (p,i)\}$$

en donde p recorre todos los predecesores de i, y se asume que se conocen los tiempos más tempranos de estos.

El último valor que se calcula es el tiempo TE(n) del nodo final, que es el tiempo mínimo de terminación del proyecto.

Similarmente las fórmulas para los tiempos más tardíos pueden deducirse siguiendo un argumento como el se expone luego.

Sea la siguiente parte de una en la que intenta hallar el tiempo más tardío del nodo 3:

sabiendo que los tiempos más tardíos de los nodos sucesores 2 y 4 ya se conocen, y son 16 y 18.

Sea *t* el tiempo en que ocurre el nodo 3; entonces *t* más el tiempo que requiere cada actividad debe ser menor o igual que el tiempo de cada nodo 2 y 4:

$$t+2 \le 16 \text{ y } t+6 \le 18$$

o $t \le 16-2 \text{ y } t \le 18-6$

que equivale a $t \le \min\{16 - 2, 18 - 6\} = 12$

es decir t puede ser cuando más 12 unidades, y por lo tanto el mayor valor es t =12; en resumen

$$t = \text{mínimo } \{16 - 2, 18 - 6\}$$

Para calcular los tiempos más tardíos se tienen las siguientes fórmulas:

$$T(n) = TE(n) = \text{tiempo mínimo del proyecto}$$

y para un nodo i < n

$$T(i) = \min \{T(s) - \text{tiempo}(i, s)\}$$

en donde s recorre todos los sucesores de i, y se asume conocidos los tiempos tardíos de estos.

Nótese que los tiempos más tardíos se calculan empezando desde el nodo final *n*.

Ejemplo 8

Calcule los tiempos más tempranos y más tardíos de la red del ejemplo 7.

Solución

Usando la representación gráfica de la red los tiempos más temprano y más tardío de un nodo *i* se registran cerca de nodo en la forma

$$TT(i) \leftarrow$$
 tiempo más tardío

$$|TE(i)| \leftarrow$$
 tiempo más temprano

Primero se calculan los tiempos más tempranos, que se anotan en las celdas inferiores.

- (P1) Se hace cero el tiempo más temprano en el nodo inicial 1, o sea TE(1)=0.
- (P2) Los nodos sucesores de 1 son 2 y 3. No es posible calcular el tiempo más temprano del nodo 2 pues falta el tiempo más temprano de su predecesor 3. Se calcula el tiempo más temprano del nodo 3.

$$TE(3) = \text{máximo } \{TE(1) + 12\} = \text{máximo } \{0 + 12\} = 12$$

(P3) Se calcula el tiempo más temprano del nodo 2, pues se conocen los tiempos más tempranos de sus predecesores 1 y 3.

$$TE(2) = \text{máximo } \{TE(1) + 10, TE(3) + 0\}$$

= máximo $\{0 + 10, 12 + 0\} = 12$

P4) Cálculo del tiempo más temprano del nodo 4.

$$TT(4) = \text{máximo } \{TE(2) + 6, TE(3) + 2\}$$

= máximo $\{12 + 6, 12 + 4\} = 18$

P5) Cálculo del tiempo más temprano del nodo final 5.

$$TT(5) = \text{máximo } \{TE(4) + 4\}$$

= máximo $\{18 + 4\} = 22$

En consecuencia, el tiempo mínimo del proyecto es 22 unidades. Ahora se hallan los tiempos más tardíos.

- P5') Se hace TT(5) = TE(5) = 22
- P4') $TT(4) = minimo \{ TT(5) 4 \} = 22 4 = 18$
- P3') $TT(2) = minimo \{TT(4) 2\} = 16$
- P2') $TT(3) = minimo \{TT(2) 0, TT(4) 6\}$ = minimo \{ 16, 18 - 6 \} = 12
- P1') $TT(1) = minimo \{TT(2) 14, TT(3) 12\}$ = minimo $\{16 - 2, 12 - 12\} = 0$

Actividad crítica. Ruta crítica

Se dice que una actividad (i, j) es crítica si se cumplen las condiciones

$$TE(i) = TT(i)$$

 $TE(j) = TT(j)$
 $TT(i) = TE(i) + duración de (i, j)$

es decir, si coinciden los tiempos más tempranos y más tardíos en los nodos *i*, *j* y la diferencia entre estos es exactamente la duración de la actividad.

Una ruta que parte del nodo inicial 1 y termina en el nodo final n es crítica si todas las actividades que la componen son críticas.

La suma de los tiempos de las actividades de una ruta crítica es igual al tiempo mínimo del proyecto.

En el proyecto del ejemplo 8 se tiene la ruta crítica formada por las actividades críticas que aparecen marcadas con *: (1,3), (3,4) y (4,5):

Ninguna actividad crítica puede retrasarse o extender su duración sin causar un retraso del proyecto. Por el contrario, una actividad no crítica como (2,4), respecto de los tiempos más tempranos, puede retrasarse hasta el tiempo 16 o extender su duración de 2 a 4, sin retrasar el proyecto; y de igual manera sucede con la actividad no crítica (1,2) respecto de los tiempos más tardíos.

Reducción del tiempo mínimo de un proyecto

Se trata de reducir el tiempo mínimo de un proyecto reduciendo los tiempos de las actividades con un costo por unidad de tiempo reducido.

Ejemplo 9 Sea el proyecto

TIEMPO					
ACTIVIDAD PREDECESORES NORMAL REDUCIDO					
A	-	8	5	10	
В	A	5	3	15	
C	A	2	1	20	
D	B, C	4	2	8	
Е	В	3	2	12	
F	D, E	4	3	14	

en donde para cada actividad se indican los tiempos normal y reducido, en días, y en la columna CRU, el costo por día de reducción.

Por ejemplo, la actividad A puede realizarse normalmente en 8 días o en un tiempo menor hasta 5 días pagando 10 unidades por cada día de reducción.

- a) Determine el tiempo mínimo del proyecto usando los tiempos normales.
- b) Calcule el tiempo mínimo del proyecto usando los tiempos reducidos y el costo por reducción.
- c) Halle el costo mínimo del proyecto cuando se completa en el tiempo mínimo calculado en la parte b), pues es posible disminuir el costo por reducción si no se reducen totalmente las actividades no críticas.

Solución

a) Representando el proyecto mediante una red y usando los tiempos normales se calculan solo los tiempos más tempranos

donde *A*, *B*, *C*, *D*, *E* y *F* son los arcos (1,2), (2,3), (2,4),(4,5), (3,5) y (5,6), respectivamente.

Luego, el tiempo mínimo de terminación del proyecto es 20 días.

b) Se calculan los tiempos más tempranos y más tardíos usando los tiempos reducidos:

Por lo tanto, el tiempo mínimo del proyecto usando todas los tiempos reducidos es 13 días.

La única ruta crítica está formada por los nodos 1 2 3 5 y 6, que son los nodos extremos de las actividades críticas marcadas por *. El costo de reducción es la suma de los productos del costo diario por el número de días reducidos correspondiente a cada actividad:

$$costo = 10x(8-5) + 15x(5-3) + 20x(2-1) + 8x(4-2) + 12x(3-2) + 14x(4-3)$$

= 122

c) Se calcula ahora el costo mínimo cuando el proyecto se termina en el tiempo mínimo de 13 días.

El costo 122 obtenido en b) se hizo reduciendo totalmente los tiempos de ejecución de las actividades; por ejemplo, la actividad *A*, o (1,2), se redujo de 8 a 5 días. Se puede disminuir el costo determinando las actividades cuyos tiempos pueden aumentar sin afectar el tiempo mínimo de terminación del proyecto.

El tiempo de una actividad crítica no puede extenderse, pues de hacerlo aumentaría el tiempo mínimo del proyecto.

Las actividades no críticas son las únicas cuyos tiempos pueden aumentarse, y en este proyecto son:

$$B = (2,4)$$
 de 1 a 2 días, y con un costo unitario de 20, $C = (4,5)$ de 2 a 4 días, y con un costo unitario de 8

y los aumentos deben ser tales que no excedan el tiempo de 13 días.

Se elige la actividad C por tener mayor costo unitario. Sea t el tiempo en que puede aumentarse esta actividad, entonces se tiene

$$1 + t \le 2,$$

y $5 + 1 + t + 2 + 3 \le 13,$

en donde el término de la izquierda es el tiempo total de la ruta 1 2 4 5 6, que no debe exceder a 13.

Luego $t \le 1$ y $t \le 2$,

y el máximo valor de t es 1, con lo cual la actividad C se aumenta en 1 día, esto es, se realiza en 2 días.

A continuación se considera la otra actividad no crítica D=(4,5). Si t es el tiempo de aumento

$$2+t \le 4$$

y $5+2(2+t)+3 \le 13$
o $t \le 2$ y $t \le 1$,

el mayor valor es t=1, que es el tiempo de aumento, y por lo tanto el tiempo de la actividad D se extiende a 3, sin afectar el tiempo mínimo.

Ya no es posible obtener más aumentos de los tiempos de las actividades y se calcula el nuevo costo:

costo mínimo =
$$122 - 20 \times 1 - 8 \times 1 = 94$$

que resulta de restar al costo total los costos correspondientes a los dos aumentos en los tiempos: 20×1 para la actividad B y 8×1 para la actividad D.

Este costo también puede calcularse directamente a partir de los tiempos normales y los tiempos empleados:

costo mínimo =
$$10 \times (8-5) + 15 \times (5-3) + 20 \times (2-2) + 8 \times (4-3)$$

+ $12x(3-2) + 14x(4-3)$
= 94

Aplicaciones de la programación lineal a los proyectos

Los problemas de proyectos relacionados con tiempos mínimos y costos mínimos, cuando se reducen las actividades, pueden formularse como problemas de programación lineal y por lo tanto ser resueltos por el método del símplex.

Para ilustrar estas aplicaciones se considera otra vez el proyecto del ejemplo 9.

Ejemplo 10 Sea el proyecto

TIE		
NORMAL	REDUCIDO	CRU
8	5	10
5	3	15
2	1	20
4	2	8
3	2	12
4	3	14
	NORMAL 8 5 2 4	5 3 2 1 4 2 3 2

con tiempos normales y reducidos y costo unitario por día reducido.

- a) Determine el problema de programación lineal para hallar el tiempo mínimo del proyecto asumiendo tiempos normales.
- b) Determine el problema de programación lineal para hallar el tiempo mínimo del proyecto asumiendo tiempos reducidos.
- c) Este proyecto se completa en 20 días empleando tiempos normales y en 13 días si se aplican los tiempos reducidos. Formule el

problema de programación lineal para obtener un costo mínimo cuando el proyecto se completa en 13 días.

Solución

Sea ti el tiempo de ocurrencia del nodo i, i = 2,..., 6.

Entonces, el problema del tiempo mínimo se formula como el problema de programación lineal

Minimizar tiempo =
$$t6$$

sujeto a $t_2 \ge 8$ (nodo 2)
 $t_3 \ge t_2 + 5$ (nodo 3)
 $t_4 \ge t_2 + 2$ (nodo 4)
 $t_5 \ge t_3 + 3$ (nodo 5)
 $t_5 \ge t_4 + 4$
 $t_6 \ge t_5 + 4$ (nodo 6)
y $t_i \ge 0$

Nota

La resolución de este problema, por el método del símplex, da el tiempo mínimo 20, y una solución óptima es

$$t_2 = 8$$
, $t_3 = 13$, $t_4 = 12$, $t_5 = 16$ y $t_6 = 20$.

Compárese esta solución con la obtenida en el ejemplo 9 usando los tiempos más tempranos y más tardíos.

b) Similarmente usando los tiempos reducidos

Minimizar tiempo = t_6

sujeto a
$$t_2 \ge 5$$
 (nodo 2)
 $t_3 \ge t_2 + 3$ (nodo 3) (o $t_3 - t_2 \ge 3$)
 $t_4 \ge t_2 + 1$ (nodo 4) (o $t_4 - t_2 \ge 1$)
 $t_5 \ge t_3 + 2$ (nodo 5) (o $t_5 - t_3 \ge 2$)
 $t_5 \ge t_4 + 2$ (o $t_5 - t_4 \ge 2$)
 $t_6 \ge t_5 + 3$ (nodo 6) (o $t_6 - t_5 \ge 3$)
y $t_i \ge 0$

Nota

La resolución de este problema, por el método del símplex, da el tiempo mínimo 13, y una solución óptima es

$$t_2 = 5$$
, $t_3 = 8$, $t_4 = 8$, $t_5 = 10$ y $t_6 = 13$.

c) Sea a el número de días que se reduce el tiempo normal 8 de la actividad A, de modo que esta se ejecuta en 8-a días; similarmente, sean b, c, d, e y f para las otras actividades. La red del proyecto es entonces

Sea t_i el tiempo de ocurrencia del nodo i, i=2,...,6

El problema es

$$t_6 \le 13 \tag{2}$$

$$a \le 3$$

$$b \le 2$$

$$c \le 1$$

$$d \le 2$$

$$e \le 1$$

$$f \le 1$$

$$(3)$$

$$y \quad a,b,c,d,e,f \quad y \quad t_i \ge 0$$

Las restricciones (1) expresan las condiciones de las ocurrencias de los nodos; la restricción (2) indica que el nodo t_6 debe ocurrir en un tiempo no mayor que 13; y las restricciones (3) establecen las cantidades máximas que pueden disminuirse los días de las actividades, por ejemplo, la actividad A puede reducirse hasta 3 = 8-5 días.

El costo mínimo resultante es 94 y una solución óptima es dada por los tiempos t_2 = 5, t_3 =8, t_4 =7, t_5 =10, t_6 =13, y los números de días de reducción son a=3, b=2, c=0, d=1, e=1 y f=1, respecto de los tiempos normales.

Nota

El proyecto estudiado puede terminarse en 20 días en condiciones normales y en 13 días usando los tiempos reducidos. El costo (mínimo)

del proyecto debido a las reducciones de las actividades crece de 0 a 94. Usando el modelo de programación lineal puede calcularse el costo del proyecto en términos del tiempo, y viceversa, cuando uno de ellos toma un valor intermedio, por ejemplo:

- 1) hallar el costo si el tiempo del proyecto es 14 días
- o 2) determinar el tiempo del proyecto si se propone un costo de 30.

En el primer caso es suficiente reemplazar 13 por 14 en la restricción 2) del ejemplo 10 y resolver el problema. El costo resultante es 71.

Y en el segundo caso, el problema de programación lineal es

Minimizar Tiempo =
$$t_6$$

sujeto a $t_2 \ge 8 - a$
 $t_3 \ge t_2 + (5 - b)$
 $t_4 \ge t_2 + (2 - c)$
 $t_5 \ge t_3 + (3 - e)$
 $t_5 \ge t_4 + (4 - d)$
 $t_6 \ge t_5 + (4 - f)$
 $a \le 3$
 $b \le 2$
 $c \le 1$
 $d \le 2$
 $e \le 1$
 $f \le 1$
 $10a + 15b + 20c + 8d + 12e + 14f \le 30;$ (1)

y todas las variables no negativas.

La restricción (1) expresa la condición de que el costo atribuido a las reducciones no excede a 30.

Se obtiene el tiempo mínimo 17 días.

8.8 Problemas propuestos

Problema 1

En la siguiente tabla se indican las relaciones de precedencia y duraciones de un proyecto compuesto por 8 actividades:

ACTIVIDAD	PREDECESORES	DURACIÓN (días)
\overline{A}	-	5
B	-	4
C	A	9
D	A	8
E	В,С	10
F	В,С	13
G	D,E	3
H	F,G	7

- a) Trace una red del proyecto.
- b) Calcule los tiempos más tempranos y más tardíos de los nodos.
- c) Indique el tiempo mínimo de terminación del proyecto y halle las rutas críticas.
- d) Determine las actividades no críticas y hasta cuántos días pueden retrasarse *B* sin exceder el tiempo mínimo del proyecto.

Respuesta

- c) El tiempo mínimo es 34 días. Hay dos rutas críticas: *A C F H* y *A C E G H*.
- d) B y D pueden retrasarse hasta 10 y 16 días, respectivamente.

Problema 2

El proyecto de construcción de una casa comprende el conjunto de actividades que se listan en la siguiente tabla

ACTIVIDAD	DESCRIPCIÓN	PREDECESORES	DURACIÓN (días)
A	Construir cimientos	-	10
B	Construir paredes y techos	A	14
C	Instalar cables eléctricos	В	4
D	Instalar ventanas	В	6
E	Poner revestimiento	D	8
F	Pintar la casa	В,Е	4

- a) Calcule el tiempo mínimo requerido para construir la casa.
- b) Indique una ruta crítica.

Respuesta

- a) 42 días
- b) *ABDEF*

Problema 3

Los datos de un proyecto de actividades son

ACTIVIDAD	PREDECESORES			COSTO POR DÍA REDUCIDO
\overline{A}	-	6	6	0
В	A	9	7	8
C	A	6	5	9
D	В,С	8	4	6
E	В	7	5	12
F	C	10	6	6

- a) Trace el diagrama de red.
- b) Halle el tiempo mínimo empleando tiempos normales.
- c) Halle los tiempos más tempranos y más tardíos, el tiempo mínimo y una ruta crítica usando tiempos reducidos.
- d) Para el tiempo mínimo hallado en c) determine el menor costo por los días reducidos.

Respuesta

- b) 23 días
- c) El tiempo mínimo es 18 días y la ruta crítica es A B E.
- d) El costo mínimo es 78 y se obtiene ejecutando en 6, 7, 6, 5, 5 y 6 días las actividades *A*,*B*,*C*,*D* y *E*, respectivamente.

Problema 4

Se desea fabricar un producto que se compone de tres partes P_1 , P_2 y P_3 . Se estima que el diseño de las partes requiere 8 semanas y que la fabricación de las partes se realiza en 5, 8 y 4 semanas, respectivamente.

El proceso consiste de las siguientes etapas:

- prueba de P₁ que toma 2 semanas
- ensamblar P_1 y P_2 1 semana
- añadir P_3 a P_1 y P_2 , 2 semanas

¿Cuál es el tiempo mínimo de terminación del proyecto? Indique las actividades críticas.

Respuesta

El proyecto puede terminarse en 19 semanas.

Las actividades críticas son: diseñar las partes, fabricar P_2 , ensamblar P_1 y P_2 , y agregar P_3 .

Problema 5

La red de un proyecto de actividades es descrita por los siguientes datos:

ACTIVIDAD	DURACIÓN
(1,2)	10
(1,3)	8
(2,4)	6
(3,4)	4
(3,5)	6
(3,6)	2
(4,7)	3
(5,7)	7
(6,7)	1

- a) Calcule los tiempos más tempranos y más tardíos.
- b) La holgura total de una actividad o arco (i,j) de duración t se define por

$$HT(i,j) = TT(j) - TE(i) - t$$

= tiempo tardío de j - tiempo temprano de i - duración de (i,j)

y representa el tiempo que se puede retrasar el inicio de la actividad respecto del tiempo más temprano sin prolongar el tiempo mínimo del proyecto.

Calcule las holguras totales de las actividades.

Las actividades críticas son precisamente las que tiene holgura total cero.

c) También se define la holgura libre de (*i,j*) mediante

$$HL(i,j) = TE(j) - TE(i) - t$$

= tiempo temprano de j – tiempo temprano de i – duración de (i,j)

que representa el tiempo que se puede retrasar el inicio de la actividad sin retrasar las actividades siguientes, teniendo en cuenta solo los tiempos más tempranos.

Halle las holguras libres de las actividades.

Indicación

Use la notación gráfica de los tiempos más tempranos y más tardíos

Respuesta

b) y c) para la actividad (2,6)

$$HT(2,6) = 2$$
 (= 18 - 10 - 6)
 $HL(2,6) = 0$ (= 16 - 10 - 6)

Problema 6

La red de un proyecto de actividades es descrita por los siguientes datos

ACTIVIDAD	TN	TR	CN	CR
(1,2)	8	6	80	120
(1,3)	12	8	70	90
(2,4)	10	9	50	60
(3,4)	6	5	90	100
(3,5)	8	6	100	110
(3,6)	6	4	40	50
(4,7)	5	3	60	70
(5,7)	14	13	120	125
(6,7)	6	5	30	40

en donde *TN* y *TR* se refieren a los tiempos normal y reducido, en días, y *CN* y *CR* a los costos normal y reducido de cada actividad.

- a) Determine el tiempo mínimo del proyecto aplicando tiempos reducidos.
- b) Para cada actividad halle el costo por cada día reducido

$$CDR = \frac{incremento\ de\ cos\ to}{cantidad\ de\ días\ reducidos} = \frac{CR - CN}{TN - TR}$$

- c) Halle el costo del proyecto (suma de los costos de todas las actividades) usando tiempos normales.
- d) Halle el costo del proyecto usando tiempos reducidos y el costo asociado a las reducciones de los días.
- e) Calcule el costo mínimo del proyecto cuando se termina en el tiempo mínimo obtenido en a).

Respuesta

- a) 27 días
- b) Algunos costos reducidos son:

ACTIVIDAD	CDR
(1,2)	20
(3,7)	5
(5,7)	5

- c) y d) El proyecto cuesta 640 usando tiempos normales y 765 empleando tiempos reducidos. El costo debido a las reducciones es 125, la diferencia entre los dos costos anteriores.
- e) El costo mínimo es 675. Solo deben usarse los días reducidos de las actividades críticas (1,3), (3,5) y (5,7).

ÍNDICE ALFABÉTICO

A		
	actividad crítica	225
	algoritmo de cota y ramificación	200
	algoritmo de Ford-Fulkerson	208
	algoritmo de Munkres	186
C		16/
	cálculo de costos reducidos usando variables duales u-v	164
	cambio de variable básica	63
	ciclos en el problema del transporte	168
	convergencia del algoritmo del símplex	83
	criterio de divergencia	59
	criterio de la razón mínima	61
	criterio de máximo	66
	criterio de mínimo	67
D		
	Dantzig, George	42
F		/1
	forma estándar del problema de programación lineal	41
	forma tabular del problema estándar	64
	función lineal	32
	función objetivo	12

Maynard Kong

M		
	método de la celda de costo mínimo	161
	método de la esquina noroeste	171
	método de las dos fases	76
	método de perturbación	83
	método del símplex	42
	método del símplex simplificado (problema de transporte)	156
	método húngaro	181
	modelo de programación matemática	19
P	nuchlama da asismasión	181
	problema de asignación	
	problema de la dieta problema de mezcla	23 13
	problema de optimización	12
	problema de optimización lineal	31
	problema de transporte balanceado	155
	problema del corte mínimo	26
	problema dual	95
	problema primal	95
	programa matemático	17
	propiedad de corte mínimo	208
	propiedad de holgura complementaria	134
	proyecto	216
R		
-`	red o grafo dirigido	197
	región de factibilidad	17
	regla de Blands	83
	resolución geométrica de problemas con dos variables	34
	ruta crítica	225
	rutas en una red	199
S	solución factible	32
	solución óptima del problema dual de maximización	108
	soluciones básicas factibles	48

ÍNDICE ALFABÉTICO

T		
t	récnica M	73
t	iempo mínimo de un proyecto	226
t	iempos más tardíos	220
t	ciempos más tempranos	220
t	tiempos normales	226
t	ciempos reducidos	226
V		
٠,	valor máximo	12
1	valor mínimo	12
1	valor optimo	12
,	variables artificiales	73
1	variables básicas	48
1	variables de decisión	20
1	vector dual de una solución básica factible	114
1	vector dual y valores marginales	133

SE TERMINÓ DE IMPRIMIR EN
LOS TALLERES GRÁFICOS DE
TAREA ASOCIACIÓN GRÁFICA EDUCATIVA
PSJE. MARÍA AUXILIADORA 156, BREÑA
CORREO E.: TAREAGRAFICA@TERRA.COM.PE
TELÉFONO: 332-3229 FAX: 424-1582
SE UTILIZARON CARACTERES
ADOBE GARAMOND PRO EN 11 PUNTOS
PARA EL CUERPO DEL TEXTO
ABRIL 2010 LIMA – PERÚ