Syntagmatic Relation Discovery: Mutual Information

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Syntagmatic Relation Discovery: Mutual Information

Mutual Information I(X;Y): Measuring Entropy 张旭不同 pairs 初至的五色. Reduction

How much reduction in the entropy of X can we obtain by knowing Y?

Mutual Information: I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

Properties:
- Non-negative: I(X;Y)≥0

- Symmetric: I(X;Y)=I(Y;X)

- I(X;Y)=0 iff X & Y are independent

When we fix X to rank different Ys, I(X;Y) and H(X|Y) give the same order but I(X;Y) allows us to compare different (X,Y) pairs.

0.1:0.4

Mutual Information I(X;Y) for Syntagmatic Relation Mining

Mutual Information: I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

Whenever "eats" occurs, what other words also tend to occur?

Which words have high mutual information with "eats"?

$$I(X_{eats}; X_{meats}) = I(X_{meats}; X_{eats})$$

$$I(X_{eats}; X_{the}) = I(X_{the}; X_{eats})$$

$$I(X_{eats}; X_{the}) - I(X_{eats}) \times I(X_{eats}) - I(X_{eats}) \times I(X_{ea$$

Rewriting Mutual Information (MI) Using KL-divergence

The observed joint distribution of X_{W1} and X_{W2}

$$I(X_{w1}; X_{w2}) = \sum_{u \in \{0,1\}} \sum_{v \in \{0,1\}} p(X_{w1} = u, X_{w2} = v) \log_2 \frac{p(X_{w1} = u, X_{w2} = v)}{p(X_{w1} = u)p(X_{w2} = v)}$$

The expected joint distribution of X_{W1} and X_{W2} if X_{W1} and X_{W2} were independent

MI measures the divergence of the actual joint distribution from the expected distribution under the independence assumption. The larger the divergence is, the higher the MI would be.

_

Probabilities Involved in Mutual Information

$$I(X_{w1}; X_{w2}) = \sum_{u \in \{0,1\}} \sum_{v \in \{0,1\}} p(X_{w1} = u, X_{w2} = v) log_2 \frac{p(X_{w1} = u, X_{w2} = v)}{p(X_{w1} = u) p(X_{w2} = v)}$$

Presence & absence of w1: $p(X_{W1}=1) + p(X_{W1}=0) = 1$ Presence & absence of w2: $p(X_{W2}=1) + p(X_{W2}=0) = 1$

$$p(X_{W2}=1) + p(X_{W2}=0) = 1$$

Co-occurrences of w1 and w2: 只有这件种情况

 $\frac{p(X_{W1}=1, X_{W2}=1) + p(X_{W1}=1, X_{W2}=0) + p(X_{W1}=0, X_{W2}=1) + p(X_{W1}=0, X_{W2}=0) = 1}{\uparrow}$

Both w1 & w2 occur

None of them occurs

Relations Between Different Probabilities

Presence & absence of w1: $p(X_{W1}=1) + p(X_{W1}=0) = 1$ Presence & absence of w2: $p(X_{W2}=1) + p(X_{W2}=0) = 1$

Co-occurrences of w1 and w2:

$$p(X_{\textcolor{red}{W1}}=1,\,X_{\textcolor{red}{W2}}=1) + p(X_{\textcolor{red}{W1}}=1,\,X_{\textcolor{red}{W2}}=0) + p(X_{\textcolor{red}{W1}}=0,\,X_{\textcolor{red}{W2}}=1) + p(X_{\textcolor{red}{W1}}=0,\,X_{\textcolor{red}{W2}}=0) = 1$$

Constraints:

$$p(X_{W1}=1, X_{W2}=1) + p(X_{W1}=1, X_{W2}=0) = p(X_{W1}=1)$$

$$p(X_{W1}=0, X_{W2}=1) + p(X_{W1}=0, X_{W2}=0) = p(X_{W1}=0)$$

$$p(X_{W1}=1, X_{W2}=1) + p(X_{W1}=0, X_{W2}=1) = p(X_{W2}=1)$$

$$p(X_{W1}=1, X_{W2}=0) + p(X_{W1}=0, X_{W2}=0) = p(X_{W2}=0)$$

7

Computation of Mutual Information

Presence & absence of w1:

$$p(X_{W1}=1) + p(X_{W1}=0) = 1$$

Presence & absence of w2:

$$p(X_{W2}=1) + p(X_{W2}=0) = 1$$

Co-occurrences of w1 and w2:

$$p(X_{W1}=1, X_{W2}=1) + p(X_{W1}=1, X_{W2}=0) + p(X_{W1}=0, X_{W2}=1) + p(X_{W1}=0, X_{W2}=0) = 1$$

$$p(X_{W1}=1, X_{W2}=1) + p(X_{W1}=1, X_{W2}=0) = p(X_{W1}=1)$$

$$p(X_{W1}=0, X_{W2}=1) + p(X_{W1}=0, X_{W2}=0) = p(X_{W1}=0)$$

$$p(X_{W1}=1, X_{W2}=1) + p(X_{W1}=0, X_{W2}=1) = p(X_{W2}=1)$$

$$p(X_{W1}=1, X_{W2}=0) + p(X_{W1}=0, X_{W2}=0) = p(X_{W2}=0)$$

We only need to know $p(X_{W1}=1)$, $p(X_{W2}=1)$, and $p(X_{W1}=1, X_{W2}=1)$.

其他不断可能被急逐

Estimation of Probabilities (Depending on the Data) 程机 划分位 切一位:

) #-W/ × × ·		W1	W2	
count(w1)	Segment_1	1	0	Only W1 occurred
$p(X_{w1} = 1) = \frac{count(w1)}{N}$				Both occurred
count(w2)	Segment_3	1	1	Both occurred
$p(X_{w2} = 1) = \frac{count(w2)}{N}$	Segment_4	0	0	Neither occurred
$p(X_{w1} = 1, X_{w2} = 1) = \frac{count(w1, w2)}{N}$	•••			
11	Segment_N	0	1	Only W2 occurred

Count(w1) = total number segments that contain W1
Count(w2) = total number segments that contain W2
Count(w1, w2) = total number segments that contain both W1 and W2

9

Smoothing: Accommodating Zero Counts

		W1	W2		
$p(X_{w1} = 1) = \frac{\text{count}(w1) + 0.5}{N+1}$ $\text{count}(w2) + 0.5$	1/4 PseudoSeg_1	0	0		
カルト いった プランス	¼ PseudoSeg_2	1	0		
$p(X_{w2} = 1) = \frac{\text{South}(w2) + \text{Siz}}{N+1}$	1/4 PseudoSeg_3	0	1		
$p(X_{w1} = 1, X_{w2} = 1) = \frac{count(w1, w2) + 0.25}{N+1}$ \(\frac{1}{N} \) PseudoSeg_4			1		
かるなる。からである。 からなる は、	Segment_1	1	0		
Smoothing. Add pseudo data so that no event has zero counts	•••				
(pretend we observed extra data)	Segment_N 7	0	1		
Actually 6	Actually observed data				

Summary of Syntagmatic Relation Discovery

- Syntagmatic relation can be discovered by measuring correlations between occurrences of two words.
- Three concepts from Information Theory:
 - Entropy H(X): measures the uncertainty of a random variable X
 - Conditional entropy H(X|Y): entropy of X given we know Y
- Mutual information I(X;Y): entropy reduction of X (or Y) due to knowing Y (or X) こなり にいる X 学者 的 人類 教文.
- Mutual information provides a principled way for discovering syntagmatic relations.

Summary of Word Association Mining

- Two basic associations: paradigmatic and syntagmatic
 - Generally applicable to any items in any language (e.g., phrases or entities as units)
- Pure statistical approaches are available for discovering both (can be combined to perform joint analysis).
 - Generally applicable to any text with no human effort
 - Different ways to define "context" and "segment" lead to interesting variations of applications
- Discovered associations can support many other applications.

Additional Reading

- Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press. Cambridge, MA: May 1999. (Chapter 5 on collocations)
- Chengxiang Zhai, Exploiting context to identify lexical atoms: A statistical view of linguistic context. Proceedings of the International and Interdisciplinary Conference on Modelling and Using Context (CONTEXT-97), Rio de Janeiro, Brzil, Feb. 4-6, 1997. pp. 119-129.
- Shan Jiang and ChengXiang Zhai, Random walks on adjacency graphs for mining lexical relations from big text data. Proceedings of IEEE BigData Conference 2014, pp. 549-554.