

CERTIFICATE OF QUANTITY

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

: TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

LOADPORT

: UNLEADED GASOLINE 91RON : YOSU, SOUTH KOREA

VESSEL

: IKIGAI

REPORT NO.

: YL23-20024350-C

DATE OF INSPECTION

: 14TH NOVEMBER 2023

THIS IS TO CERTIFY THAT the following quantity of Unleaded Gasoline 91Ron was loaded onboard the IKIGAI at Yosu, South Korea on 14th November 2023

> KILOLITRES AT 60 DEG F US BARRELS AT 60 DEG F KILOLITRES AT 15 DEG C **LONG TONS METRIC TONS** KILOLITRES AT 30 DEG C KILOLITRES AT OBSERVED

7,991.855
50,267
7,986.421
5,770.5
5,863.1
8,138.345
8,022.340

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources

CERTIFICATE OF QUALITY

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

: TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

LOADPORT

: UNLEADED GASOLINE 91RON : YOSU, SOUTH KOREA

VESSEL

: IKIGAI

REPORT NO.

: YL23-20024350-C

DATE OF INSPECTION

: 14TH NOVEMBER 2023

The followings are the results of analysis performed by supplier's laboratory on the sample of shore tank(s) before loading which drawn by SGS Inspector and observed by SGS Chemist during test.

est Items Additives Metal deactivator/silver corrosion inhibitor, mo Silicon, mg/L Antioxidant, mg/L Dye, mg/L	Test Method // Declaration Declaration	Limit Max 3.0	20D561
Metal deactivator/silver corrosion inhibitor, mg Silicon, mg/L Antioxidant, mg/L Dye, mg/L		Max 3.0	
Silicon, mg/L Antioxidant, mg/L Dye, mg/L		Max 3.0	
Antioxidant, mg/L Dye, mg/L	Declaration		Nil addition
Dye, mg/L		Max 1	Nil addition
	Declaration	Max 24.0	Nil addition
	Declaration	Max 6	Nil addition
Organometallic octane improvers	Declaration	Nil addition	Nil addition
Ferrocene	Declaration	Nil addition	Nil addition
Nitrogen containing octane enhancers	Declaration	Nil addition	Nil addition
Other additives, mg/L	Declaration	Report	Nil addition
ppearance	ASTM D4176 Proc 1		
Freewater		Pass	Pass
Particulate		Pass	Pass
Clear & Bright		Pass	Pass
ppearance: Visual	Visual	Clear and Bright	Clear & Bright
romatics:Total, vol%	ASTM D6839	17-35	24.4
enzene content, vol%	ASTM D6839	Max 1.0	0.60
olor of finished gasoline	Visual	Clear to Yellow	Light Yellow
orrosion:Copper (3hr@50°C), rating	ASTM D130	Max 1	1a
ensity :@15°C, kg/L	ASTM D4052	Report	0.7353
istillation:% evaporated @70℃, vol%	ASTM D86	Report	25.3
istillation:10% evaporated, ℃	ASTM D86	Max 65.0	55.7
istillation:50% evaporated, ℃	ASTM D86	Max 115.0	95.5
istillation:90% evaporated, ℃	ASTM D86	Max 183.0	153.6
istillation:Final boiling point, °C	ASTM D86	Max 210.0	195.0
oss, vol%	ASTM D86	Report	1.3
esidue, vol%	ASTM D86	Max 2.0	1.0
VP, kPa	ASTM D5191	Min 45.0	57.0
riveability index, number	Calculated	Max 580	524
hanol content, vol%	ASTM D4815	Nil addition	Nil addition
exible volatility index (FVI), number	Calculated	Max 90	73.8
um:Existent unwashed, mg/100mL	ASTM D381	Max 30	3.0
um:Washed, mg/100mL	ASTM D381	Max 5.0	1.0
duction period @ 100°C, minutes	ASTM D525	Min 360	380+
ead, mg/L	ASTM D3237	Max 5.0	<2.5

⁻ To be continued -

Page 3 of 12 Annex to report No.: YL23-20024350-C

Test Items	Test Method	Limit	Test Results
1 est items	1 est Memod	LITTIC	20D561
Octane number:Motor (Mon), number	ASTM D2700	Min 81.0	82.0
Octane number:Research (Ron), number	ASTM D2699	Min 91.0	91.3
Odor		Pass	Pass
Olefins content, vol%	ASTM D6839	Max 18.0	16.8
Oxygen content, mass%	ASTM D4815	Max 2.7	0.1
Oxygenate type:DIPE, vol%	ASTM D4815	Max 1.0	Not detected
Oxygenate type:ETBE, vol%	ASTM D4815	Max 1.0	Not detected
*Oxygenate as component, vol%	Declaration	Nil addition	Nil addition
Oxygenate type:MTBE, vol%	ASTM D4815	Max 1.0	0.7
Oxygenate type:TBA, vol%	ASTM D4815	Max 0.5	Not detected
Particulate contamination, mg/L	ASTM D5452	Max 3.0	0.20
Phosphorus, mg/L	ASTM D3231	Max 1.3	0.30
Silver strip corrosion:3Hr @50℃, Classification	ASTM D7671	Max 1	0
Sulfur, mg/kg	ASTM D5453	Max 50	27
Sulfur:Mercaptan, mg/kg	ASTM D3227	Max 15	<3
*Unhydrotreated steam cracked naphtha			
As component, vol%	Declaration	Nil addition	Nil addition
As contaminant, vol%	Declaration	Max 0.5	Nil
Oxygenate:Total, vol%	ASTM D4815	Max 1.0	0.7

Remark:

1) The properties above marked with asterisk(*) are declared by terminal

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources

Oil, Gas & Chemical Commodities

The results shown in this test report specifically refer to the sample(s) tested as received unless otherwise stated. All tests have been performed using the tatest revision of the methods indicated, unless specifically marked otherwise on the report. Precision parameters apply in the determination of the above results. Users of the data shown on this report should refer to the latest published revisions of ASTM D3244; IP 367 and ISO 4259 and when utilising the test data to determine conformance with any specification or process requirement. With respect to the UOP methods listed in the report below the user is referred to the method and the statement within it specifying that the precision statements were determined using UOP Method 999. This Test Report is Issued under the Company's General Conditions of Service (opp available upon request or on the company website at www.sgs.com). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. This report shall not be reproduced except in full, without the written approval of the laboratory.

approve to the landed by the Company under its General Conditions of Service accessible at http://www.sgs.com/tems_and_conditions.htm. Attention is drawn to the fimitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Chent's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. In accordance with Client's instructions, the Company's involvement has been limited to witnessing/observing a third party's intervention(s) the third party's laboratory/test house or other facilities and installations used for the intervention(s). The Company's sole responsibility was to be present at the time of the third party's intervention(s) to forward the results, or confirm the occurrence, of the intervention(s). The Company is not responsible for the condition or calibration

[&]quot;This product meets the requirements of the Fuel Quality Standards Act 2000 Petrol Determination 2019"

ULLAGE REPORT

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

LOADPORT

: UNLEADED GASOLINE 91RON : YOSU, SOUTH KOREA

VESSEL

: IKIGAI

REPORT NO.

: YL23-20024350-C

DATE OF INSPECTION

14TH NOVEMBER 2023

Tank	LOADIN Ullage	Trim	Equip't	Di Corr'd	Total Obs	/d.: 11.50 Free \		t. : 11.90 Temp.	Tank	rim = 0.40M Gross Obs		Gross Std
No.	(M)	/ List Corr.	/ Dens. Corr.	Ullage (M)	Volume (K/L)	Innage (M)	Vol. (K/L)	(°F)	Shell Corr.	Volume (K/L)	T-6B	Volume (K/L)
5P	4.840	0.000	0.000	4.840	3,791.400		0.000	63.9	N/A		0.9972	3,780.784
58	3.330	0.000	0.000	3.330	4,219.400	N/F	0.000	63.0	N/A	The second secon		4,210.539
										+		
TOTAL					8,010.800		0.000	63.5		8,010.800		7,991.323

API@60F : 60.9

WCF (T-12) : 8.7110

Sea Condition : Slight Sea

Used Table: : ASTM D-1250 table 6B, 12, 4 & 1

Gauging Equip't: MMC 8334N

Total Loaded Onboard Quantity

7.991.323

KILOLITRES AT 60 DEG F

50,264

US BARRELS AT 60 DEG F

7,985.944

KILOLITRES AT 15 DEG C

5,770.2

LONG TONS

5,862.8

METRIC TONS

8,137.803

KILOLITRES AT 30 DEG C

Yosu, South Korea 14th November 2023

8,010.800

KILOLITRES AT OBSERVED

Signed by Ma

of IKIGAI

SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources

Oil, Gas & Chemical Commodities

FOR ULLAGE & TEMPERATURE ONLY

TANKER TIME SHEET

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

: TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

LOADPORT

: UNLEADED GASOLINE 91RON

VESSEL

: YOSU, SOUTH KOREA : IKIGAI

REPORT NO.

: YL23-20024350-C

DATE OF INSPECTION

: 14TH NOVEMBER 2023

DATE	TIME		PARTICULARS
09-Nov-2023	0512 hrs	n	End of sea passage
09-Nov-2023	0615 hrs	*	Notice of readiness tendered
09-Nov-2023	0648 hrs	sk	Dropped anchor at Yosu "B" anchorage
09-Nov-2023	1030 hrs		Surveyor onboard
09-Nov-2023	1036-1236 hrs		Tank inspection & Passed
09-Nov-2023	1242 hrs		Surveyor left her
13-Nov-2023	0742 hrs	*	Pilot on board
13-Nov-2023	0748 hrs	*	Anchor aweigh
13-Nov-2023	0854 hrs	*	First line ashore
13-Nov-2023	0924 hrs	×	All made fast to No.3 GSC product wharf
13-Nov-2023	0924 hrs	*	Notice of readiness accepted
13-Nov-2023	1024 hrs	×	Connected loading arm
13-Nov-2023	1042 hrs	*	Commenced loading for Jet A-1
13-Nov-2023	1054 hrs	*	Commenced loading for Gasoil
13-Nov-2023	1924 hrs	*	Completed loading for JET A-1
13-Nov-2023	2012 hrs	*	Commenced loading for Gasoline 91Ron
14-Nov-2023	0130 hrs	*	Completed loading for 91 Ron
14-Nov-2023	0630 hrs		Surveyor onboard
14-Nov-2023	0742 hrs	*	Completed loading for Gasoil 10ppm
14-Nov-2023	0742-0942 hrs		Tank gauging, sampling & cargo calculation
14-Nov-2023	0812 hrs	w	Disconnected loading arm
14-Nov-2023	1130 hrs	*	Document on board
14-Nov-2023	1140 hrs		Surveyor left her
14-Nov-2023	1200 hrs	rk	Vessel schedule to sail

Remark:

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector **Natural Resources** Oil, Gas & Chemical Commodities

Times marked *are reported as per statement of facts issued by the installation and/or ship without any responsibility on our part for their accuracy.

TANK CLEANLINESS/TANK INSPECTION REPORT PRIOR LOADING

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

UNLEADED GASOLINE 91RON

LOADPORT

DITED OF OCCUPE OF OCCUPE

VESSEL

YOSU, SOUTH KOREA

VESSEL

: IKIGAI

REPORT NO.

YL23-20024350-C

DATE OF INSPECTION

14TH NOVEMBER 2023

SUBJECTED CARGO TANKS (The below data was given by the ship's master/Chief officer.)

Vessel Tanks	Last Cargo	2nd Last Cargo	3rd Last Cargo	Tank Coating	Type
5P/S	GASOIL 10PPM	GASOIL 10PPM	GASOIL 10PPM	Ероху	A

The cleaning work for the cargo tank(s) of the vessel was completely performed prior to our attendance.

Cleaning Method: Type A

- 1. Well drained tank, line and pumps
- 2. Inerted

• Cleaning Method: Type B

- 1. B/W with cold fresh water for 1hr
- 2. well drained tank, line and pumps
- 3. Gas free & Mopped
- 4. Inerted

• INERTED CONDITION THEREFORE UNSAFE FOR ENTRY.

All designated tanks, numbered: 5P/S

The tanks were under an inert gas blanket and therefore no visual inspection could be made.

The designated cargo tank(s) were inspected by manual sounding using the sounding rod with oil and water finding paste for the residue, water and OBQ on tank bottoms

From this observation, no measurable liquid was detected using a sounding rod at closed system gauging points.

No measurement aft left & right of the measurement points were possible. All ship's lines and pumps were said to be clean by Chief officer.

MANE

Inspection time: 1036 hrs - 1236 hrs on 09th November 2023

hief Officer *

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources

Oil, Gas & Chemical Commodities

Signed by 44

FOR RECEIPT ONLY WITHOUT ANY PREJUDICE

SAMPLE REPORT

: GS CALTEX CORPORATION CONSIGNOR

CONSIGNEE : TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION : ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY : UNLEADED GASOLINE 91RON

LOADPORT : YOSU, SOUTH KOREA

VESSEL : IKIGAI

REPORT NO. : YL23-20024350-C DATE OF INSPECTION : 14TH NOVEMBER 2023

Kindly note that we, undersigned surveyor, has drawn following samples

Sample Source	<u>Type</u>	Size	Q'ty	Seal No.	Distribution
1. Shore tank sample before loading.					
Shore Tk. 20D-561	Composite	4 Litres	1	0844148	Retained SGS lab.
Shore Tk. 20D-561	Composite	4 Litres	1	0844149	For Receiver
Shore Tk. 20D-561	Composite	4 Litres	1	0844150	For Master
Shore Tk. 20D-561(U.M.L)	U.M.L	1 Litre	3	0844151	Retained SGS lab.
Shore Tk. 20D-561(U.M.L)	U.M.L	1 Litre	3	0844152	For Receiver
Shore Tk. 20D-561(U.M.L)	U.M.L	1 Litre	3	0844153	For Master
2. Line drip sample during loading.					
Ship's manifold at start of loading	Line drip	4 Litres	1	0844154	Retained SGS lab.
Ship's manifold at start of loading	Line drip	4 Litres	1	0844155	For Receiver
Ship's manifold at start of loading	Line drip	4 Litres	1	0844156	For Master
Shore line drip sample during loading	Line drip	1 Litre	1	0844157	Retained SGS lab.
Shore line drip sample during loading	Line drip	1 Litre	1	0844158	For Receiver
Shore line drip sample during loading	Line drip	1 Litre	1	0844159	For Master
3. Ship's tank one-foot sample during lo	ading.				
Individual ship's 1st foot sample	One foot	1 Litre	2	0844160	Retained SGS lab.
Ship's tank 1foot composite sample	One foot	4 Litres	1	0844161	Retained SGS lab.
Ship's tank 1foot composite sample	One foot	4 Litres	1	0844162	For Receiver
Ship's tank 1foot composite sample	One foot	4 Litres	1	0844163	For Master
4. Ship's tank final sample after loading					
Individual ship's tank sample	Individual	1 Litre	2	0844164	Retained SGS lab.
Ship's tank composite sample	Composite	4 Litres	1	0844165	Retained SGS lab.
Ship's tank composite sample	Composite	4 Litres	1	0844166	For Receiver
Ship's tank composite sample	Composite	4 Litres	1	0844167	For Master
Deadbottom sample	Deadbottom	1 Litre	2	0844168	Retained SGS lab.
5. Additional samples for chevron's test	ing				
Shore Tk. 20D-561	Composite	4 Litres	2	No sealed	Retained SGS lab.
Ship's tank composite sample	Composite	4 Litres	2	No sealed	Retained SGS lab.
The above samples will be retained only 3	months unless	s written in	structio	ons to be contrary are	received.

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector **Natural Resources** Oil, Gas & Chemical Commodities

MASTER'S RECEIPT OF SAMPLES

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

: UNLEADED GASOLINE 91RON

LOADPORT

: YOSU, SOUTH KOREA

VESSEL

: IKIGAI

REPORT NO.

: YL23-20024350-C

DATE OF INSPECTION

14TH NOVEMBER 2023

The following samples for Consignee was duly received by the Master of the vessel dated on 14th November 2023

Size of Sample	SGS S	eal Number	Cample Course
Size of Sample	For receiver For Maste		Sample Source
4 Litres X 2 Cans	0844149	0844150	Shore tank No.20D-561 before loading
1 Litre X 6 Cans	0844152	0844153	Shore tank No.20D-561 (UML) before loading
4 Litres X 2 Cans	0844155	0844156	Ship's manifold at start of loading
4 Litres X 2 Cans	0844158	0844159	Shore line drip sample during loading
4 Litres X 2 Cans	0844162	0844163	Ship's tank 1foot composite sample
4 Litres X 2 Cans	0844166	0844167	Ship's tank composite sample after loading

FOR RECEIPT ONLY WITHOUT ANY PREJUDICE Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector **Natural Resources**

MASTER'S RECEIPT OF DOCUMENTS

CONSIGNOR : GS CALTEX CORPORATION

CONSIGNEE : TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION : ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY : UNLEADED GASOLINE 91RON

LOADPORT : YOSU, SOUTH KOREA

VESSEL : IKIGAI

REPORT NO. : YL23-20024350-C
DATE OF INSPECTION : 14TH NOVEMBER 2023

I hereby acquired the following documents from the surveyor at Yosu, South Korea dated on 14th November 2023

Certificate	For Consignee	For Master
CERTIFICATE OF QUANTITY	1 Сору	1 Сору
CERTIFICATE OF QUALITY	1 Сору	1 Copy
ULLAGE REPORT	1 Copy	1 Сору
TANKER TIME SHEET	1 Copy	1 Copy
TANK CLEANLINESS/TANK INSPECTION REPORT PRIOR LOADING	1 Сору	1 Сору
MASTER'S RECEIPT OF SAMPLES	1 Сору	1 Copy
MASTER'S RECEIPT OF DOCUMENTS	1 Copy	1 Copy
MATERIAL SAFETY DATA SHEET	1 Сору	1 Copy

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources

Oil, Gas & Chemical Commodities

FOR RECEIPT ONLY
WITHOUT ANY PREJUDICE

SHORE TANK GAUGING REPORT

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

: TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

LOADPORT

: UNLEADED GASOLINE 91RON

VESSEL

: YOSU, SOUTH KOREA : IKIGAI

REPORT NO.

: YL23-20024350-C

DATE OF INSPECTION

: 14TH NOVEMBER 2023

SHORE TANK'S SOUNDING BEFORE AND AFTER LOADING

Shore tank No.: 20D-561

Term	Innage	T.O.V.	Free Water		.V. Free Water		Temp.	Shell	Roof	G.O.V.	API	V.C.F.	G.S.V.
	(M)	(K/L)	(M)	(K/L)	(°F)	Corr.	(K/L)	(K/L)	at 60°F	T-6B	(KL.)		
OP	7.081	13,039.242	N/F	0.000	65.3	N/A	-0.270	13,038.972	60.9	0.9962	12,989.424		
CL	2.760	5,016.902	N/F	0.000	65.3	N/A	-0.270	5,016.632	60.9	0.9962	4,997.569		

Delivered quantity:

7,991.855 KL at 60 °F

Total Delivered Quantity

Unit	20D-561	TOTAL
KILOLITRES AT 60 DEG F	7,991.855	7,991.855
US BARRELS AT 60 DEG F	50,267	50,267
KILOLITRES AT 15 DEG C	7,986.421	7,986.421
LONG TONS	5,770.5	5,770.5
METRIC TONS	5,863.1	5,863.1
KILOLITRES AT 30 DEG C	8,138.345	8,138.345
KILOLITRES AT OBSERVED	8,022.340	8,022.340

Shore line is fully packed before and after loading by Line pack Method

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector **Natural Resources**

VESSEL'S EXPERIENCE STATEMENT

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

UNLEADED GASOLINE 91RON

LOADPORT

: YOSU, SOUTH KOREA

VESSEL

: IKIGAI

REPORT NO.

: YL23-20024350-C

DATE OF INSPECTION

14TH NOVEMBER 2023

Voyage	Cargo	Date	K	VL .	Diff.	VLR	Doct	
No.	Cargo	Date	Ship	B/L	Ship-BL	Ship/BL	Port	*
90009	MULTI	09/10/2023	37,411.704	37,486.600	-74.896	0.99800	Yosu	
90008	MOGAS/JET	13/09/2023	10,533.626	10,533.765	-0.139	0.99999	Geelong	
90008	GASOIL	23/08/2023	39,600.503	39,582.984	17.519	1.00044	Chiba	
90007	JET A-1/ULSD	17/07/2023	36,693.393	36,719.800	-26.407	0.99928	Yosu	
90006	JET A-1/ULSD	06/06/2023	39,885.828	39,921.881	-36.053	0.99910	Daesan/Yosu	*
90005	ULSD/ULG91	24/04/2023	36,948.967	37,001.396	-52.429	0.99858	Yosu	
90004	ULG91/ULSD/JET A-1	14/03/2023	36,548.151	36,562.847	-14.696	0.99960	Yosu	
90003	ULSD/ULG91/ULG88	30/01/2023	36,953.205	36,986.401	-33.196	0.99910	Ulsan/Yosu	
90002	ULSD/ULG91	16/12/2022	38,983.110	38,972.000	11.110	1.00029	Yosu	
90001	ULSD/ULG91	05/11/2022	36,400.398	36,406.800	-6.402	0.99982	Yosu	
			5					
Total			349,958.885	350,174.474	-215.589	0.99938	Average VLR	
Qualifying			310,073.057		-179.536	0.9994	V.E.F.	
Present vo	yage		7,991.323	7,991.855	-0.532	0.99993	-0.007%	

* Non-qualifying voyage:

a) First voyage after drydock

b) Voyage prior to structural modifications

c) Part cargo

d) No shore measurement available

e) Not enough data available

f) Not used at clients request

g) Out of average ratio range +/- 0.3%

h) Ship to Ship

* Note:

API MPMS Chapter 17.9 / EI HM 49 - 3rd edition on July 2019

B/L Figure

: 7,991.855

Ship Loaded Present Voyage: 7,991.323

V.E.F.

0.9994

Theoretical Ship's Figure

7,996.121

Difference

: 4.266

Pct

: 0.053%

Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources

Oil, Gas & Chemical Commodities

Signed by Master/Chief of IKIGAI

> FOR RECEIPT ONLY WITHOUT ANY PREJUDICE

SLOP REPORT

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

: TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

: UNLEADED GASOLINE 91RON

LOADPORT

YOSU, SOUTH KOREA

VESSEL

IKIGAI

REPORT NO.

YL23-20024350-C

DATE OF INSPECTION

14TH NOVEMBER 2023

1) BEFORE LOADING

DRAFT= FWD/AFT: 6.40 M /7.80 M

DATE: 09th Nov 2023

Tank	Dip/Uli	Interface	Corrected		Oily	T.O.V.	Water	G.O.V.
No.	M	M	Ullage	Interface	Temp	M3	Vol.	OIL
ROT	9.060	9.950	9.060	9.950	N/A	25.000	5.100	19.900
Total						25.000	5.100	19.900

2) AFTER LOADING

DRAFT= FWD/AFT: 11.50 M / 11.90 M

DATE: 14th November 2023

Tank	Dip/Ull	Interface	Corrected		Oily	T.O.V.	Water	G.O.V.
No.	M	M	Ullage	Interface	Temp	M3	Vol.	OIL
ROT	9.060	9.950	9.060	9.950	N/A	25.000	5.100	19.900
Total						25.000	5.100	19.900

Signed by Ma

of IKIGAI

FOR RECEIPT ONLY WITHOUT ANY PREJUDICE Yosu, South Korea 14th November 2023 SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources

LETTER OF PROTEST

CONSIGNOR

: GS CALTEX CORPORATION

CONSIGNEE

: TO THE ORDER OF CHEVRON U.S.A. INC. (SINGAPORE BRANCH)

DESTINATION

: ONE OR MORE SAFE PORT(S), AUSTRALIA

COMMODITY

LOADPORT

: UNLEADED GASOLINE 91RON : YOSU, SOUTH KOREA

VESSEL

: IKIGAI

REPORT NO.

YL23-20024350-C

DATE OF INSPECTION

14TH NOVEMBER 2023

At Loading

At Discharge

At Transfers

Our inspector observed the following discrepancies/circumstances that could be detrimental to correct ascertainment of quantity or that could adversely affect or hinder satisfactory performance and/or result of our inspection/intervention.

Observations:

1) Quantity discrepancy between Bill of Lading figure and Ship's figure

Unit	K/L at 60°F	BBLS at 60°F	K/L at 15°C	Long Tons	Metric Tons
BL Figure	7,991.855	50,267	7,986.421	5,770.5	5,863.1
Ship's Figure	7,991.323	50,264	7,985.944	5,770.2	5,862.8
Difference	-0.532	-3	-0.477	-0.3	-0.3
Percentage	-0.007%	-0.006%	-0.006%	-0.005%	-0.005%

2) VEF adjusted

: Vessel Experience Factor 0.9994

<u>Unit</u>	K/L at 60°F	BBLS at 60°F	K/L at 15°C	Long Tons	Metric Tons
B/L Figure	7,991.855	50,267	7,986.421	5,770.5	5,863.1
Ship's Figure	7,996.121	50,294	7,990.738	5,773.7	5,866.3
Difference	4.266	27	4.317	3.2	3.2
Percentage	0.053%	0.054%	0.054%	0.055%	0.055%

Signed by Master/Chief Officer of IKIGAI

FOR RECEIPT ONLY WITHOUT ANY PREJUDICE Yosu, South Korea 14th November 202: SGS Korea Co., Ltd.

Kai Kim / Inspector Natural Resources