Supervised Projective Learning with Orthogonal Completeness

Tyler J Grear

Code 610.1 Intern

Global Modeling and Assimilation Office

NASA Goddard Space Flight Center

7-23-2021

Dimension reduction (DR)

- Dimensions:
 - Features, independent variables, degrees of freedom (df), predictors, etc.

- Samples:
 - Observations, frames, measurements, time, etc.

Dimension reduction (DR): a projectile example

Supervised Projective Learning with Orthogonal Completeness

- Supervised: class labels associated with data
- Projective: develop projection operators (linear operators)
- Learning: optimization formalized as a recurrent neural network (RNN)
- Orthogonal Completeness: procured basis sets are constrained to satisfy the completeness theorem such that:

$$\langle j, s | i, s \rangle = \delta_{ji}$$
 and $\sum_{i=1}^{p} |i, s\rangle \langle i, s| = I$

Molecular function recognition by supervised projection pursuit machine learning

Tyler Grear, Chris Avery, John Patterson & Donald J. Jacobs ™

Scientific Reports 11, Article number: 4247 (2021) | Cite this article

910 Accesses | 1 Citations | 3 Altmetric | Metrics

Example: Essential Dynamics (PCA)

Empirical orthogonal function (EOFs) Basis vectors

Each of these "modes" of motion are mapped to a single eigenvector from PCA.

We can map the PCA motions to the exact atoms taking part as shown by the coloring here.

What is projection pursuit?

Randomly generated unit vectors are iterated through a high-dimensional space while an objective function is optimized to identify interesting univariate projections.

$$f(x) = \max[var(\mathbf{Xr})]$$

$$f(x) = \max[cov(\mathbf{t}, \mathbf{u})]^2$$

$$f(x) = \max |kurt(x)|$$

Projection pursuit in SPLOC

The decision triad

1) Signal-to-noise

2) Statistical significance

3) Quality of clustering

The decision triad

1)
$$S_k(\alpha, \beta) = \begin{cases} \sqrt{sbn^2 + rex^2} + 1 & \text{when } > S_d \\ \sqrt{snr^2 + rex^2} + 1 & \text{when } < S_i \\ S_m & \text{otherwise} \end{cases}$$

2)
$$f_d(x) = [1 + \exp(16(x_d - x))]^{-p_d(x)}$$

 $f_i(x) = [1 - [1 + \exp(16(x_i - x))]^{-1}]^{p_i(x)}$

3)

The synthetic molecules

The training data

• Labeled functional:

Labeled nonfunctional:

• {FFF,FFL}

 Remaining 20/24 synthetic molecules are not labeled (unknown to machine).

Testing set

SPLOC basis vector spectrum

Mode feature space plane

Thank you for your time,

Tyler J Grear

Code 610.1 intern
Global Modeling and Assimilation Office
NASA Goddard Space Flight Center
7-23-2021

https://github.com/BioMolecularPhysicsGroup-UNCC/MachineLearning

