Introduction au Machine Learning

Laure Delisle 19 février 2020

Background

Laure Delisle - Research engineer

- ... sabbatical
- Element Al
- Lastline
- CEA
- L Airbus defence

:

- NDH Kids

Machine Learning 101 - plan

Machine learning

- définition
- ML vs Intelligence Artificielle / Deep Learning / Data Science
- taxonomie

Process, données, vocabulaire

- données, data preparation
- training
- mesure de performance

En pratique

dataset NSL-KDD (classification, clustering)

Objectifs pédagogiques

Machine learning

- Définition, taxonomie
- Algorithmes
- Techniques
- L Mise en application

Machine Learning (apprentissage machine)

Ensemble de techniques, reposant sur des **statistiques** et **algorithmes**, par lesquelles un **programme** informatique est capable d'**apprendre par expérience** à réaliser un ensemble de **tâches** sous contrainte d'une **mesure de performance**.

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	OC	OD	0E	OF
00000000	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00
00000010	B8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000030	00	00	00	00	00	00	00	00	00	00	00	00	80	00	00	00
00000040	0E	1F	BA	0E	00	B4	09	CD	21	B8	01	4C	CD	21	54	68
00000050	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F
00000060	74	20	62	65	20	72	75	6E	20	69	6E	20	44	4F	53	20
00000070	6D	6F	64	65	2E	OD	OD	0A	24	00	00	00	00	00	00	00
00000080	50	45	00	00	4C	01	03	00	8D	FA	81	4D	00	00	00	00
00000090	00	00	00	00	E0	00	02	01	0B	01	08	00	00	0A	00	00
000000A0	00	08	00	00	00	00	00	00	9E	28	00	00	00	20	00	00
000000B0	00	40	00	00	00	00	40	00	00	20	00	00	00	02	00	00
000000C0	04	00	00	00	00	00	00	00	04	00	00	00	00	00	00	00
000000D0	0.0	80	00	00	00	02	00	00	01	82	00	00	03	00	40	85
000000E0	00	00	10	00	00	10	00	00	00	00	10	00	00	10	00	00
000000000	00	00	00	00	10	00	00	00	00	00	00	00	00	00	00	00

$$S(x)=rac{1}{1+e^{-x}}$$

AI, DL, DS?

Intelligence artificielle

L Système capable de réaliser des tâches qui nécessite normalement une intelligence organique (prise de décision, perception visuelle, compréhension du langage...). [1]

Deep Learning

Learning, regroupant des algorithmes de **réseaux de neurones**, inspirés de la structure neuronale du cerveau.

Data Science

Ensemble de techniques pour **préparer**, **visualiser**, **analyser des données** pour en extraire des informations ou prendre des décisions.

[1] From the Oxford Dictionary

Interconnexion - ML, AI, DL, DS

Machine Learning

Data Science
data ingestion
data preparation

operational research classic computer vision classic pattern recognition

Taxonomie - Machine Learning

Apprentissage supervisé

- données 'labellées' (étiquetées)
- régression
- ^L classification

var 1	• • •	var n	target
'blanc'	• • •	83.2	А
'vert'	• • •	47.5	В
'blanc'	• • •	75.7	?

Apprentissage non supervisé

- données non 'labellées'
- ^L clustering

Apprentissage par renforcement

- environnement + actions + récompenses + agent autonome
- end-to-end
- inverse
- L par démonstration

Catalystes et limites

```
Historique
- régression: 1805 (Legendre), 1809 (Gauss)
- classification: 1955 (KMeans)
- clustering: 1990's (Kernel machines, Graphical models)
deep learning: 1958 (Perceptron), 1986 (Backpropagation)

Catalystes
- plus de données, dataset plus larges
- modèles plus complexes
puissance de calcul (CPU, GPU, TPU)
```

Limites

données adéquates et préparées
 overfitting
 connaissance du domaine
 déploiement en production

Process, méthodes, vocabulaire

```
Données
     types
   - manquantes
   - déséquilibrées
     aberrantes
Variables
    sélection (filtre, wrapper, embedded) engineering
     réduction de dimension
Phases
```

Process, méthodes, vocabulaire

```
Training
- loss
- descente de gradient
- vanishing/exploding gradient
optimization

Validation / testing
- cross-validation, validation/test, out-of-time
- mesures de performance
- compromis variance/biais
overfitting, underfitting
```

Données - types

```
7
```

```
Tabulaires
- numériques
- catégoriques
- ordinales
```

```
Séquentielles
temporelles
texte
```

Données manquantes (missing)

Pourquoi ? - au hasard conditionnellement à une autre variable

Données aberrantes (outliers)


```
Pourquoi ?
```

au hasard

erreur de mesure

conditionnellement à une autre variable

Stratégie

suppression (col, observation) choix d'une méthode plus robuste

Données déséquilibrées (unbalanced)

Biais

sous-représentation le modèle apprend davantage depuis la classe majoritaire

Stratégie

up-sampling la classe minoritaire down-sampling la classe majoritaire collecter davantage de données, changer de dataset

Risk

L study by Joy Buolamwini, M.I.T. [1]

Facial Recognition Is Accurate, if You're a White Guy

Training, testing

Apprentissage

calcul d'erreur

ajustement par descente du gradient

Test - mesure de performance

données non utilisées pour l'apprentissage

matrice de confusion (accuracy/precision/recall/F1)

SSE, R^2

Validation

3eme jeu de données pour ajuster des hyperparamètres

Risques

overfitting, underfitting exploding gradient

Régression

Contexte

données labellées (apprentissage **supervisé**) label numérique

Modèle

Y = f(**X**, **β**) **X**: variables

β : paramètres du modèles

L Y: variables

Mesure de performance L SSE, R²

Classification

Contexte

données labellées (apprentissage supervisé)
 label catégorique

Modèles

régression logistique, Naive Bayes
arbres de décision, random forest
réseaux de neurones

Mesure de performance

matrice de confusionaccuracy, precision, recall, F1

TP - classification

Objectifs 0

- load le dataset NSL-KDD (intrusion detection)
- préparation des données
- train / test split
- fit du modèle
- prédiction et évaluation

Méthodes mise en oeuvre

- type de ML : supervisé > classification
- algorithme : Decision Tree / XGBoost
- techniques : one-hot encoding, standardization
- metric : confusion matrix

Dataset

- https://plg.uwaterloo.ca/~gvcormac/treccorpus07/

Clustering

```
Contexte
- données non labellées (apprentissage non-supervisé)
label catégorique
```

```
Modèles
- kNN, k-means
- hiérarchique, locally sensitive hashing
density-based
```

Mesure de performance
- homogénéité, completeness
- silhouette
critère de variance ratio (Calinski-Harabaz)

TP - clustering

Objectifs

- load le dataset NSL-KDD (intrusion detection)
- préparation des données
- expérimentation avec différents modèles
- évaluation de la qualité des clusters

Méthodes mise en oeuvre

- type de ML : non-supervisé > clustering
- algorithme: K-means, DBSCAN
- metric : silhouette, homogénéité

General resources

Datasets

- http://archive.ics.uci.edu/ml/index.php (many open datasets to practice)

Apprentissage par renforcement

http://incompleteideas.net/book/RLbook2018.pdf (bible du domaine)

Deep Learning

https://www.deeplearningbook.org/ (bible, un peu datée (2016))

Pour aller plus loin

https://www.udacity.com/course/deep-learning-pytorch--ud188 (pytorch)

Régression (2)

Hypothèses

- Y est une variable continue les variables X sont linéairement indépendantes les observations sont indépendantes (erreurs non corrélées)

Régression linéaire

```
| polynome (2D) Y = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_n x^n
multivariate Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n = \beta x (with x_0 = 1)
```