Microbiome Analysis

Israel Barrantes

israel.barrantes@uni-rostock.de

Inst. Biostatistics and Informatics in Medicine and Ageing Research Rostock University Medical Center

2024-10-23

Data and Links for Hands-on Practice

https://github.com/barrantesisrael/mbtmicrobiome2023

Why the command line for Bioinformatics?

- **Reproducibility**: Command-line tools and programming enable the creation of reproducible workflows. By writing scripts or workflows, researchers can document and automate their analyses, ensuring that others can replicate their results.
- Pipelines: programs talking to each other (pipes)
- Redirection: programs write and read to files
- **Text Streams**: Allow us to both couple programs together and process data without storing huge amounts of data in our computers' memory

Modularity

- Modular workflows allow us to experiment with alternate methods and approaches, since independent components can be easily swapped out
- In a modular workflow each component is independent, which makes it easier to inspect intermediate results for inconsistencies and isolate problematic steps
- Modular components allow us to choose tools and languages that are appropriate for specific tasks
- Modular programs are reusable and applicable to many types of data

Buffalo, V. (2015) Bioinformatics Data Skills. O'Reilly Media, Sebastopol CA.

Reproducibility

- Literate programming: Chunks of programming (analytical code) with human-readable text (comments)
- **Version control**: Tracking changes made to sets of files (of a project), typically program source code, scripts and documentation
- Environment control: Versions of all programs (plus libraries, packages, OS) used; archival copies for future reference. Example: sessionInfo()
- Persistent data sharing: collaborative, transparent, accessible science
- Documentation, e.g. README file
- Project (data + code + ...) validation
- **Command-line tools** and programming enable the creation of reproducible workflows (aka pipelines). By writing scripts or workflows, researchers can document and automate their analyses, ensuring that others can replicate their results.
- Modularity of the command-line: Possibility of running long pipelines of programs, one after another + piping

Ziemann et al. Brief Bioinform. 2023 Sep 22;24(6):bbad375

The 16S rRNA gene for community profiling

- Operational taxonomic unit (OTU): Operational concept of classification
- Community profiling: Identifying OTUs in samples
- 16S rRNA part of the 30S small subunit (SSU) of the prokaryotic ribosome
 - All prokayotes have one (or more) copy of this gene
 - NOT true for any protein coding genes
- Different parts of the gene exhibit different levels of conservation
 - More conserved regions can be used to analyse distantly related species
 - More variable regions can be used to analyse more closely related species
- Gene ~1540 nt
 - Not too short so as to be uninformative; not too long so as to be unmanageable
- Most 16S rRNA gene is highly conserved between different species
 - Hypervariable regions: Nine much less conserved (V1 V9)

Microbiome analysis

Sequence Data Formats

FASTA

head -10 egfr_flank.fasta
>ENSMUSG00000020122|ENSMUST00000138518

CCCTCCTATCATGCTGTCAGTGTATCTCTAAATAGCACTCTCAACCCCCGTGAACTTGGT
TATTAAAAACATGCCCCAAAGTCTGGGAGCCAGGGCTGCAGGGAAATACCACAGCCTCAGT
TCATCAAAACAGTTCATTGCCCCAAAATGTTCTCAGCTGCAGCTTTCATGAGGTAACTCCA
GGGCCCACCTGTTCTCTGGT

>ENSMUSG00000020122|ENSMUST00000125984

GAGTCAGGTTGAAGCTGCCCTGAACACTACAGAGAAGAGGGCCTTGGTGTCCTGTTGTC
TCCAGAACCCCAATATGTCTTGTGAAGGGCACACACCCCTCAAAGGGGTGTCACTTCTT
CTGATCACTTTTGTTACTGTTTACTAACTGATCCTATGAATCACTGTGTCTTCTCAGAGG
CCGTGAACCACGTCTGCAAT

>id, description sequence....

FASTQ

@DJB775P1:248:D0MDGACXX:7:1202:12362:49613 TGCTTACTCTGCGTTGATACCACTGCTTAGATCGGAAGAGCACACGTCTGAA

+

+

@id, descriptionsequence+indicates end of sequencebase quality (Phred format)

FASTQ Quality

A quality value Q is an integer mapping of p (i.e., the probability that the corresponding base call is incorrect).

$$Q_{\rm sanger} = -10 \, \log_{10} p$$

$$Q_{sanger} = -10\log_{10} p$$

$$30 = -10\log_{10} p$$

$$\frac{30}{-10} = \log_{10} p$$

$$p = 10^{-3}$$

Quality Control

⊘Basic Statistics

Measure	Value			
Filename	pairedl_fastq			
File type	Conventional base calls			
Encoding	Sanger / Illumina 1.9			
Total Sequences	7793			
Sequences flagged as poor quality	0			
Sequence length	249-251			
%GC	54			

Per base sequence quality

Sequencing and Assembly

Assembly: PANDASeq

Aligns Illumina reads, and reconstruct an overlapping sequence.

Microbiome analysis

Kraken: Taxonomic assignment

Sequence classified as belonging to leaf of classification (highest-weighted RTL) path

OTU table

- Operational Taxonomic Unit (OTU)
- Represents the taxonomic composition of a microbial community obtained from DNA sequencing data.
- A typical OTU table contains sample data in the columns, taxa information in the rows, and the amount of amplicons on each cell.

samples

Example OTU Table

samples

A	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0	Р	Q	R	S	T
# Constructed from biom file	1																		
#OTU ID	Platz18	Platz10	Platz14	Platz2	Platz11	Platz16 P	Platz15	Platz13	Platz1	Platz3	Platz17	Platz5	Platz7	Platz6	Platz4	Platz12	Platz8	Platz9	9 taxonomy
18413ece715a299f717980e782e3ed1c	5293	1874	1168	2984	2079	917	2077	815	1843	4594	20519	3310	0	4913	3782	7958	4478	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae; g_Faecalibacterium
d0a610a019d5ce4e211611d2f9ad7520	3066	867	486	1603	2480	0	1570	523	845	2248	8864	2608	0	2821	2093	3935	1777	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae; g_Faecalibacterium
437fc004ec290da2418d69d46f821a57	2930	0	0	859	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
8711aaef804cc58e66f4b21a43d3442a	2592	0	6748	0	0	185	4	0	0	0	0	0	0	8	1961	0	0	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae
61227bf9cb3b907c5286c7896659b588	2227	434	1208	0	3566	0	0	0	0	0	0	1975	0	173	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
536eefdfbba4535eba8401214519b2e2	1602	853	1332	328	0	45	0	0	0	775	0	136	0	0	11151	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
9352c04b5484253922e9338eb71ba883	1529	0	0	5	0	14	4	3	0	0	0	14	10	103	32	254	3	20	0 d_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Lactococcus
588e76106293f918e78f335a099321f7	1471	0	0	446	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
ec51863a70cd9a8ab8f28e4375e9da0c	1430	231	0	793	295	0	2645	0	49	0	0	2460	0	328	2	341	9055	1	1 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae; g_Ruminococcus; s_Ru
2 0a9454a4d21fc3586e7463275ca64e39	1307	0	4036	0	0	79	2	5	0	0	0	0	0	5	1052	0	0	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae
3 c2c37a901bbb7868fc23502d83a61c11	1108	257	690	0	4794	0	0	0	0	0	0	1663	0	0	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
4 fbf417e4726cbd91feebbb8818c69573	1014	1477	13014	2041	810	1016	595	1742	6224	1356	6785	2054	4637	5730	20656	2739	10593	5278	8 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae; g_Agathobacter
af2ca0bbcf42a577694f3d91fc29594c	917	0	0	384	0	0	4762	0	0	0	0	0	0	0	1897	843	193	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae
5 3520606da0f7747137aee7e2331cc14f	866	787	1996	239	1032	367	561	1245	2719	371	747	955	7424	5337	0	1804	1907	1085	5 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae; g_Blautia
7 84a0b6767a2fc10ad3fbf446712e5b2d	852	264	439	0	0	7	3	0	2450	4	0	0	30	173	2456	109	0	22	2 d_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus
fa4d87aed60165b86e55598bd3631781	806	349	1033	816	1282	3131	940	2417	5160	1325	4523	1264	0	1806	617	1887	2830	1615	5 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae
4c6c1327d3295eaf9ff519be24059fa9	799	0	735	92	0	0	0	0	0	387	0	191	2	0	6406	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
cec04be4ab4f4cbe3375ae5aa15d2ff7	784	168	2623	285	706	395	496	1853	9551	1777	10190	3131	0	58	12957	5225	9953	19141	1 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
1 054bfff28f2ed72af30d4cc85a31701f	775	0	0	3665	0	883	1194	0	788	2085	1360	3054	0	5429	2427	3576	2557	1408	8 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae; g_Subdoligranulum
b497525ee3fcf2183f2667f8648723d9	772	0	3	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0 d_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Lactococcus
88c037a8f27f07c8b4088511eba6679f	755	0	2164	0	1353	0	0	6477	0	0	0	297	0	363	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
4 0521fe8c285174073d2e20a166b972bb	545	4	0	702	0	122	0	11961	4300	5847	0	478	0	2456	0	3606	6131	1385	5 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
7b194de3e2f4a5746e5cad8adc54bc92	528	0	0	198	0	0	3206	0	0	0	0	0	0	0	0	0	98	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae
4221b5e418260469d1e30d1bbf803fae	523	771	7846	1106	962	0	427	1108	3313	0	0	1613	0	3194	11635	0	5147	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae; g_Agathobacter
b58244c9e38034ba80c794b323c36d6d	515	0	0	0	0	0	0	0	0	0	0	0	0	0	346	0	0	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae; g_Faecalibacterium
8 c114a0220545f73a2362c1072926a48b	497	188	648	415	1478	1347	563	1399	2660	0	0	958	0	913	0	0	1498	810	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae
a5fd013da1d4de3b9261a41b051a07c9	469	0	1247	0	1347	0	374	852	1509	195	0	840	3123	3030	0	922	0	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae; g_Blautia
8633d67a4c3f1ecef4244fc45f74f767	451	0	0	2158	0	358	854	0	0	1045	0	2476	0	2884	1377	0	0	0	0 d_Bacteria; p_Firmicutes; c_Clostridia; o_Oscillospirales; f_Ruminococcaceae; g_Subdoligranulum
bcd72c9441a6d1d2f0ef50627f8fc7ff	446	98	1721	201	948	118	373	1363	5446	737	0	2853	0	25	7342	0	5412	10165	5 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
fb7b2069972a9a26524653070b77dcd0	438	1562	1516	662	485	388	759	4459	2561	2216	4959	711	8985	6811	1156	5581	1450	4641	1 d_Bacteria; p_Firmicutes; c_Clostridia; o_Lachnospirales; f_Lachnospiraceae; g_Blautia
d51740e49a6fe4984e0afdca13133c23	414	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Prevotellaceae
1e1df519b746020db781dbeb323fabb4	406	185	270	0	0	2	2	0	1348	1	0	0	0	126	1311	39	0	49	9 d_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus
834c3607d747f3dc278b590c3ea213c0	403	0	0	285	111	0	395	0	0	0	775	0	0	613	362	0	0	0	0 d_Bacteria; pFirmicutes; cClostridia; oOscillospirales; fRuminococcaceae; gFaecalibacterium
c5646bc185ef619743be4e3b5cf919ff	384	873	1284	153	949	112	843	227	11224	591	0	0	0	2	0	798	7088	0	0 d_Bacteria; p_Actinobacteriota; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidob
d60b3a685294e41bcd11f72d0555181f	344	349	0	860	502	449	153	150	4162	885	0	2266	0	0	0	634	1150	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Tannerellaceae; g_Parabacteroides; s_
8 4c437305a6132032f9c2318be9cabc25	342	0	0	402	0	44	0	8062	2298	3062	0	335	0	1366	0	1885	3105	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
357932f2acdb1f12289aff4b2ff932df	333	0	1514	0	1842	0	0	4839	0	0	0	246	0	273	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
4b67dcbdc7b4587b187b1fa71a4a942a	301	0	0	76	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
0h9932af1033aAda11A20102cc055535	272	33	0	303	138	319	360	21	0/17	2508	2071	15/6	0	0	0	1736	2861	0	0 d. Racteria: n. Racteroidota: c. Racteroidia: o. Racteroidales: f. Rikenellaceae: g. Alictines

e.g. ~/data2024/mbtmicrobiome2024.tsv

Steps for the bioinformatics analysis of microbiome data

Alignment to rRNA sequences from standard databases	Т	F
microRNA identification	Т	F
RNA structure prediction	Т	F
Quality control	Т	F
Denoising or quality filtering	Т	F

Assembly in microbiome analysis means?

Discard sequences with poor FASTQ quality	Т	F
Comparison (alignment) of the amplicon sequences versus known rRNAs from ribosomal rRNA databases	Т	F
Preparing OTU tables by counting the number of rRNA matches present for each taxa	Т	F
Merging fragments (in FASTQ format) into whole sequences (in FASTA format)	Т	F
Building a small database of ribosomal RNAs	Т	F

Data and Links for Hands-on Practice

https://github.com/barrantesisrael/mbtmicrobiome2023

Microbiome analysis

Data Analysis

- How do the samples group with each other?
 - Principal Components
- How much diversity is there in a sample?
 - Alpha diversity
- How does the diversity differ between samples?
 - Beta diversity
- What is the taxonomic content of the sample?
 - With reference only to known taxa
 - Including unknown taxa
- Rarefaction: Adjusting for differences in library sizes across samples to aid comparisons

Willis A. Front. Microbiol. 2019; 10: 2407, https://doi.org/10.3389/fmicb.2019.02407

Why R for Bioinformatics?

- Freely available
- User- friendly resources to learn R
- R editors and integrated development environments (IDEs)
- Active user community
- Large code repositories: CRAN, Bioconductor; github
- Ready-made packages and functions for bioinformatics
- Scientific reproducibility: Code, library (versions), Rmarkdown, Jupyter notebooks

Sample Ordination

What happens when you try the same at the Genus level (fill="Genus")?

What happens when you try the same for dietary differences (merge_samples (psTemp, "Ernaehrung"))?

Abundance (composition) plots show:

The phyla and genera compositions simultaneously for all samples in the same plot	Т	F
The genera (genus) and species composition simultaneously of a microbial community	Т	F
The abundance of all taxonomic levels at the same time for every individual sample	Т	F
The abundance of all taxonomic levels at the same time for every sample group	Т	F
The composition of a given single taxonomic level for a microbial community	Т	F

R for Bioinformatics

Requires a commercial licence for use	Т	F
Large code repositories	Т	F
Jupyter Notebooks are limited to Python and hence cannot be used with the R programming language	Т	F
Ready-made packages and functions for bioinformatics	Т	F
Reproducibility depends on R library versions	Т	F

Rarefaction is a method that adjusts for differences in library sizes across samples to aid comparisons	Т	F
The principal components method is used to visualize how samples group together	Т	F
Genera composition tells the abundance of species in a sample or group of samples	Т	F
The taxonomic content of a sample (or group) can only be studied using known taxa	Т	F
Alpha diversity measures can be seen as a summary statistic of a single population (within-sample diversity)	Т	F