Unit 13 - Heap

CS 201 - Data Structures II
Spring 2023
Habib University

Syeda Saleha Raza

Motivation

• Efficient implementation of priority queue

Heap

- Heap is a binary tree (NOT BST)
- Heap:
 - Completeness Property: Heap has restricted structure. It must be a complete binary tree.
 - Ordering Property: Relates parent value with that of its children
- MaxHeap property: Value of parent must be greater than
 both its children
- MinHeap property: Value of parent must be less than both its children
- Heap with n elements has height O(lg n)

http://saravanan-thirumuruganathan.github.io/cse5311Fall2014/slides/7 Heap UnionFind/7 Heap UnionFind.pdf

Heap

Heap Property

Heap-Order Property: In a heap T, for every position p other than the root, the key stored at p is greater than or equal to the key stored at p's parent.

Complete Binary Tree property

- Perfectly balanced, except for bottom level
- Elements were inserted top-to-bottom and left-to-right

http://saravanan-thirumuruganathan.github.io/cse5311Fall2014/slides/7 Heap UnionFind/7 Heap UnionFind.pdf

Binary Heap

Accessing left/right child and parent

```
left(i)
return 2 \cdot i + 1

right(i)
return 2 \cdot (i + 1)

parent(i)
return (i - 1) \operatorname{div} 2
```

Insertion – Bubbling up

Deletion - Trickling down

Example

- Build a heap using the following keys:
 - -9,6,14,3,7,11

Exercise

- Build a heap using the following keys:
 - -9,3,8,2,1,10,21,7

Complexity of min, remove_min and insertion

Complexity

- Insertion
- Min
- Remove_min

Complexity

Theorem 10.1. A BinaryHeap implements the (priority) Queue interface. Ignoring the cost of calls to resize(), a BinaryHeap supports the operations add(x) and remove() in O(log n) time per operation.

Meldable Heap

 A randomized meldable heap (also Meldable Heap or Randomized Meldable Priority Queue) is defined as a priority queue based data structure in which the underlying structure is also a heapordered binary tree. However, there are no hard and fast rules on the shape of the underlying binary tree.

Meldable Heap

Merge

Figure 10.4: Merging h_1 and h_2 is done by merging h_2 with one of $h_1.left$ or $h_1.right$.

Merge

```
merge(h_1, h_2)
   if h_1 = nil then return h_2
   if h_2 = nil then return h_1
    if h_2.x < h_1.x then (h_1, h_2) \leftarrow (h_2, h_1)
   if random_bit() then
       h_1.left \leftarrow merge(h_1.left, h_2)
       h_1.left.parent \leftarrow h1
    else
       h_1.right \leftarrow merge(h_1.right, h_2)
       h_1.right.parent \leftarrow h1
   return h<sub>1</sub>
```

Add(..) operation using merge

```
add(x)
u \leftarrow new\_node(x)
r \leftarrow merge(u, r)
r.parent \leftarrow nil
n \leftarrow n + 1
return true
```

Remove() operation using merge

```
remove()
x \leftarrow r.x
r \leftarrow merge(r.left, r.right)
if \ r \neq nil \ then \ r.parent \leftarrow nil
n \leftarrow n-1
return \ x
```

Resources

- Data Structures and Algorithms in Python, by Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser. 2013. (1st. ed.). Wiley Publishing
- Open Data Structures (pseudocode edition), by Pat Morin. Available online at http://opendatastructures.org

Thanks