

知识总览

图的基本操作:

- Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。
- Neighbors(G,x): 列出图*G*中与结点*x*邻接的边。
- InsertVertex(G,x): 在图G中插入顶点x。
- DeleteVertex(G,x): 从图*G*中删除顶点*x*。
- AddEdge(G,x,y): 若无向边(x, y)或有向边<x, y>不存在,则向图G中添加该边。
- RemoveEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图G中删除该边。
- FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。
- NextNeighbor(G,x,y): 假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。
- Get_edge_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set_edge_value(G,x,y,v): 设置图G中边(x, y)或<x, y>对应的权值为v。

• Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。

data

Α

В

C

D

3

邻接矩阵

O(1)

	Α	В	С	D	E	F
Α	0	1	1	10	0	0
В	1	0	0	0	1	1
C	1	0	0	0	1	0
D	1	0	0	0	0	1
E	0	1	1	0	0	0
F	0	1	0	1	0	0

• Adjacent(G,x,y): 判断图G是否存在边<x, y>或(x, y)。

邻接矩阵

O(1)

• Neighbors(G,x):列出图G中与结点x邻接的边。

data

В

D

邻接矩阵

O(|V|)

O(1)~O(|V|)

• Neighbors(G,x): 列出图*G*中与结点*x*邻接的边。

有向图

邻接矩阵

O(|V|)

0

万一是个稀疏 图呢?

出边: O(1)~O(|V|)

邻接表 入边: O(|E|)

	data	*first	_					
0	Α			1	Λ			
1	В	٨						
2	◇ C	_	\longrightarrow	0	٨			
3	D	_	\longrightarrow	0	٨			
4	E	_	\longrightarrow	1		\rightarrow	2	٨
5	F		\longrightarrow	1		\rightarrow	3	٨

InsertVertex(G,x): 在图G中插入顶点x。

	data
0	Α
1	В
2	С
3	D
4	E
5	F
6	X

X Α В Ε

O(1)

邻接矩阵

DeleteVertex(G,x): 从图G中删除顶点x。

Α

В

D

邻接矩阵

	Α	В	C	D	E	F
Α	0	1	1	.1	0	0
В	1	0	0	0	1	1
C	1	0	0	0	1	0
D	1	0	0	0	0	1
ψE	0	1	1	0	0	0
F	0	1	0	1	0	0

• DeleteVertex(G,x): 从图*G*中删除顶点*x*。

• DeleteVertex(G,x): 从图*G*中删除顶点*x*。

0

2

5

邻接矩阵 O(|V|)

lata		Α	В	C	D	Ε	F
Α	Α	0	1	0	0	0	0
В	В	0	0	0	0	0	0
C	C	1	0	0	0	0	0
D	D	1	0	0	0	0	0
É	Ε	0	1	1	0	0	0
F	F	0	1	0	1	0	0

删出边: O(1)~O(|V|)

删入边: O(|E|)

邻接表

	data	*first	_					
0	Α		\longrightarrow	1	٨			
1	В	٨						
2	S C	_	\longrightarrow	0	٨			
3	D	_	\longrightarrow	0	٨			
4	Е			1		→	2	٨
5	F	_	\longrightarrow	1		\longrightarrow	3	٨

AddEdge(G,x,y): 若无向边(x,y)或有向边<x,y>不存在,则向图G中添加该边。

		邻	邻接矩阵			0(1)		
	data		Α	В	C	D	+È	
i	Α	Α	0	1	1	1	0	
	В	В	1	0	0	0	1	
	С	C	1	0	0	0	1	
	D	D	1	0	0	0	0	
	E	o É	0	1	1	0	0	
	Fo	F	0	1	0	1	0	

• RemoveEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图G中删除该边。

	邻		0(1)			
data		Α	В	C	D	E	
Α	Α	0	1	1	1	0	
В	В	1	0	0	0	1	
С	C	1	0	0	0	1	
D	D	1	0	0	0	0	
E	E	0	1	1	0	0	
F	F	0	1	0	1	0	
				,			

• FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。

FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点 或图中不存在x,则返回-1。

邻接矩阵

data

Α

D

3

5

O(1)~O(|V|)

	Α	В	C	D	Ε	F		
Α	0	1	0	0	0	0		
В	0	0	0	0	0	0		
C	1	0	0	0	0	0		
D	1	0	0	0	0	0		
Ε	0	1	1	0	0	0		
F	0	1	0	1	0	0	1	

找出边邻接点: O(1)

找入边邻接点: O(1) ~O(|E|)

• NextNeighbor(G,x,y): 假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。

- Get_edge_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set_edge_value(G,x,y,v): 设置图 *G*中边(x, y)或<x, y>对应的权值为v。
- Adjacent(G,x,y): 判断图G是否存在边<x, y>或(x, y)。

雷同,核心在于找到边

知识回顾与重要考点

- Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。
- Neighbors(G,x):列出图G中与结点x邻接的边。
- InsertVertex(G,x): 在图G中插入顶点x。
- DeleteVertex(G,x): 从图G中删除顶点x。
- AddEdge(G,x,y): 若无向边(x, y)或有向边<x, y>不存在,则向图G中添加该边。
- RemoveEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图G中删除该边。
- FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。
- NextNeighbor(G,x,y): 假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。
- Get_edge_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set_edge_value(G,x,y,v): 设置图*G*中边(x, y)或<x, y>对应的权值为v。

此外,还有<mark>图的遍历算法</mark>,包括深度优先遍历和广度优先遍历。

