Contents

1	Introduction	3
2	Present value relations	5
	2.1 Cashflows and Assets	5

Chapter 1

Introduction

There four components of economy that we will investigate:

- 1. Households
- 2. Product market
- 3. Labor market
- 4. Financial intermediaries

There are two aspects of financial analysis:

- 1. valuating assets
- 2. managing assets: Objective + Valuation = Decision

The two factors that make finance interesting are time and risk. Six principle of finance:

- 1. No free lunches.
- 2. Other things equal, individuals:
 - Want more money than less (non-satiation)
 - Prefer money now to later (impatience)
 - Prefer to avoid risk (risk aversion)
- 3. All agents act to further their own self-interest
- 4. Financial market prices shift to equalize supply and demand
- 5. Financial markets are highly adaptive and competitive
- 6. Risk-sharing and frictions are central to financial innovation

1. Introduction

Chapter 2

Present value relations

2.1 Cashflows and Assets

Cashflow is the flow of cash:). Asset is a sequence of cashflows.

$$Asset_t = \{CF_t, CF_{t+1}, \ldots\}$$

The value of an asset is a function of its cashflows.

Value of
$$asset_t = V_t(CF_t, CF_{t+1}, \ldots)$$

There are two distinct cases we valuating an assets

- with no uncertainty; all the cashflows are known
- with uncertainty;

2.1.1 No uncertainty

A numeraire date should be picked, typically t = 0, then cashflows are converted to **present** value

$$V_0(\mathrm{CF}_1,\mathrm{CF}_2,\ldots) = \left(\frac{\$_1}{\$_0}\right) \times \mathrm{CF}_1 + \left(\frac{\$_2}{\$_0}\right) \times \mathrm{CF}_2 + \ldots$$

then the **net present value** is

$$V_0(\mathrm{CF}_0,\mathrm{CF}_1,\ldots) = \mathrm{CF}_1\left(\frac{\$_1}{\$_0}\right) \times \mathrm{CF}_1 + \ldots$$

- 1. when there is up front investment CF_0 is negative.
- 2. Note that any CF_t can be negative (future costs).

$$\$_0 = (1+r)\$_1$$

 $\$_0 = (1+r)^2\$_2$
 \vdots
 $\$_0 = (1+r)^T\$_T$

where r is opportunity cost of capital and $\frac{\$_t}{\$_0}$ is called the discount factor.