

Μαγνητικά Υλικά

Άσκηση 3 2022-23

Ηλιόπουλος Γεώργιος 03118815

Για τους υπολογισμούς και την εξαγωγή των γραφικών παραστάσεων χρησιμοποιήθηκε python. Αναλυτικά ο κώδικας με σχόλια βρίσκεται αναρτημένος στο github.

Μοντελοποίηση μαγνήτισης νανοσωματιδίου

Άσκηση 3.1 Βρόχος υστέρησης

Στη παρούσα άσκηση κάνουμε μία προσομοίωση εφαρμογής πεδίου σε ένα απομονωμένο, μονομαγνητικής περιοχής, ελλειψοειδές, ομοιόμορφα μαγνητισμένο μαγνητικό νανοσωματίδιο, με μονοαξονική ανισοτροπία K_u , σε $T=0^\circ K$.

Εικόνα 1: Μαγνητικό Νανοσωματίδιο

Η προσομοίωση γίνεται στο δισδιάστατο χώρο επιβάλλοντας πεδίο H υπό γωνία θ και εξάγουμε την γωνία φ της μαγνήτισης M.

Για να εξάγουμε την γωνία φ ξεκινάμε από την ολική ενέργεια του υλικού και ακολουθώντας μαθηματικούς υπολογισμούς καταλήγουμε σε μία σχέση μεταξύ της γωνίας φ και της γωνία θ . Αναλυτικά:

$$E = -E_{applied\ field} + E_{anisotropy} = -\mu_0 MH + K_u \sin^2 \varphi \Rightarrow$$

$$E = -\mu_0 MH \cos(\theta - \varphi) + K_u \sin^2 \varphi \tag{1}$$

Επειδή το υλικό πρέπει να βρίσκεται σε ισορροπία:

$$\frac{\partial E}{\partial \varphi} = 0 \stackrel{(1)}{\Rightarrow} -\mu_0 MH(-\cos\theta\sin\varphi + \sin\theta\cos\varphi) + 2K_u\cos\varphi\sin\varphi = 0$$

Από εδώ και στο εξής κανονικοποιούμε το εφαρμοζόμενο πεδίο ως εξής:

$$h_{\chi} = \frac{\mu_0 M H \cos \theta}{2K_u} \text{ for } h_{\chi} = \frac{\mu_0 M H \sin \theta}{2K_u}$$

$$\frac{\partial E}{\partial \varphi} = 0 \stackrel{(1)}{\Rightarrow} h_{\chi} \sin \varphi - h_{\chi} \cos \varphi + \cos \varphi \sin \varphi = 0$$
 (2)

Επίσης για να είμαστε σε σταθερή κατάσταση θα πρέπει $\frac{\partial^2 E}{\partial \varphi^2} > 0$ και για ασταθή κατάσταση $\frac{\partial^2 E}{\partial \varphi^2} < 0$. Παίρνουμε την οριακή συνθήκη μεταξύ σταθερότητα και αστάθεια $\frac{\partial^2 E}{\partial \varphi^2} = 0$.

$$\frac{\partial^2 \mathbf{E}}{\partial \varphi^2} = 0 \stackrel{(1)}{\Rightarrow}$$

$$h_x \cos\varphi + h_y \sin\varphi + \cos^2\varphi - \sin^2\varphi = 0 \tag{3}$$

Πολλαπλασιάζουμε την (2) με $sin\varphi$ και την (3) με $cos\varphi$ και τις προσθέτουμε:

$$h_x + \cos^3 \varphi = 0 \implies h_x^{2/3} = (-\cos^3 \varphi)^{2/3}$$
 (4)

Πολλαπλασιάζουμε την (2) με $cos \varphi$ και την (3) με $-sin \varphi$ και τις προσθέτουμε:

$$-h_y + \sin^3 \varphi = 0 \Rightarrow h_y^{2/3} = (\sin^3 \varphi)^{2/3}$$
 (5)

Έτσι από τις εξισώσεις (4) και (5) μπορούμε να εξάγουμε την οριακή συνθήκη:

$$h_x^{2/3} + h_v^{2/3} = 1$$

Η συνθήκη αυτή αντιστοιχεί στο Stoner Wohlfarth astroid που φαίνεται στην εικόνα 2.

Ετσι καταλήγουμε στη συνθήκη που η μαγνήτιση αλλάζει φορά. Η διαδικασία εξηγείται πιο αναλυτικά βάσει της εικόνας 2. Σε αυτή τη περίπτωση εφαρμόζουμε πεδίο από -1 έως +1 υπό γωνία 10° . Αρχικά η μαγνήτιση ακολουθεί τον προσανατολισμό του πεδίου παρόλο που $h_x^{2/3} + h_y^{2/3} > 1$ και έχει φορά από τα θετικά προς τα αρνητικά. Αυτό φαίνεται στην εικόνα 2 στα στιγμιότυπα A, B και C. Στο στιγμιότυπο D ισχύει πως $h_x^{2/3} + h_y^{2/3} > 1$ ενώ το πεδίο είναι στο 1° τεταρτημόριο και έτσι το κριτήριο αλλαγής ενεργοποιείται και τώρα η μαγνήτιση αλλάζει φορά, ξεκινάει δηλαδή από τα αρνητικά προς τα θετικά.

Εικόνα 2: Στιγμιότυπα για επιβαλλόμενο πεδίο Η για 4 διαφορετικά πλάτη h

Για να βρούμε τις γωνίες φ της μαγνήτισης χρειάζεται να λύσουμε την εξίσωση (2). Οι λύσεις της εξίσωσης μπορούν βάσει της βιβλιογραφίας [1] να δοθούν και από την γραμμική εξίσωση

$$h_y k^4 + 2(h_x - 1)k^3 + 2(h_x + 1)k - h_y = 0$$
 (6)

όπου $k = tan \frac{\varphi}{2}$.

Από την εξίσωση 6 προκύπτουν 2 ή 4 πραγματικές λύσεις για τις γωνίες φ για κάθε τιμή μέτρου του κανονικοποιημένου πεδίου από -1 έως +1. Για την πρώτη τιμή κοιτώντας το σχήμα επιλέγουμε τη γωνία που είναι πιο κοντά στις 180° , κάνουμε στην ουσία αρχικοποίηση. Για τις επόμενες τιμές επιλέγουμε κάθε φορά την γωνία που είναι πιο κοντά στην γωνία για την προηγούμενη τιμή πεδίου, αφού η μαγνήτιση ακολουθεί το εφαρμοζόμενο πεδίο όπως φαίνεται στην εικόνα 1. Όσο το πεδίο είναι στο 2° τεταρτημόριο, δεδομένου πως ξεκινάμε από αρνητικές τιμές πεδίου προς θετικές, δεν λαμβάνουμε υπόψιν τον περιορισμό $h_x^{\ 2/3} + h_y^{\ 2/3} < 1$. Όταν το πεδίο περάσει στο 1° τεταρτημόριο αρχίζουμε να ελέγχουμε αυτόν τον περιορισμό. Όταν ισχύσει για πρώτη φορά $h_x^{\ 2/3} + h_y^{\ 2/3} > 1$ τότε η μαγνήτιση αλλάζει φορά και πλέον η γωνία της δεν είναι κοντά στη γωνία της προηγουμένης λύσης.

Όλα τα παραπάνω εφαρμόζουμε για τις γωνίες πεδίου 10°, 20°, 30°, 45°, 60°, 70°, 80° και εξάγουμε προγραμματιστικά λύσεις για τις γωνίες φ. Για γωνίες 0° και 90° αν πάμε να λύσουμε βάσει της εξίσωσης 6 προκύπτουν διαιρέσεις με το μηδέν, οπότε για αυτές τις γωνίες πρέπει να εφαρμόσουμε άλλη μεθοδολογία.

Για εφαρμοζόμενο πεδίο υπό γωνία 0° η μαγνήτιση εφάπτεται με τον μαλακό άξονα και έχει γωνία 180° μέχρι το εφαρμοζόμενο πεδίο να ξεπεράσει την τιμή 1. Όταν το

πεδίο γίνει μεγαλύτερο από 1 βάσει του κριτηρίου αλλαγής η μαγνητίση αντιστρέφεται και έχει πλέον γωνία 0° .

Για εφαρμοζόμενο πεδίο υπό γωνία 90° έχουμε ειδική περίπτωση όπου δεν έχουμε συνιστώσα h_x αλλά όλο το εφαρμοζόμενο πεδίο είναι στον σκληρό άξονα.

$$(2) \stackrel{\theta=90^{\circ}}{\Longrightarrow} -h_{y}cos\varphi + sin\varphi cos\varphi = 0 \stackrel{cos\varphi\neq0^{1}}{\Longrightarrow} h = sin\varphi$$

Έτσι έχουμε τώρα υπολογίσει τις γωνίες της μαγνήτισης για εφαρμοζόμενο πεδίο 0° , 10° , 20° , 30° , 45° , 60° , 70° , 80° και 90° και μέτρο από -1 εώς +1. Για να εξάγουμε το βρόχο υστέρησης m(h) πλοτάρουμε για κάθε τιμή γωνίας θ το $\cos(\theta-\varphi)$, εκτός της περίπτωσης $\theta=90^{\circ}$ όπου πλοτάρουμε το $\sin(\varphi)$.

Βάσει όλων των παραπάνω εξάγουμε τους βρόχους υστέρησης για κάθε γωνία εφαρμοζόμενου πεδίου που φαίνονται στην εικόνα 3.

Εικόνα 3: Βρόχοι υστέρησης για γωνίες εφαρμοζόμενου πεδίου 0° , 10° , 20° , 30° , 45° , 60° , 70° , 80° και 90°

Παρατηρούμε πως όσο αυξάνεται η γωνία μεταξύ του εφαρμοζόμενου πεδίου και του εύκολου άξονα x τόσο στενεύει ο βρόχος υστέρησης. Για ίδια τιμή πεδίου – έστω 0.25A/m – η μαγνήτιση είναι μικρότερη όσο αυξάνεται η γωνία, δηλαδή το νανοσωματίδιο μαγνητίζεται πιο δύσκολα όσο απομακρύνεται το πεδίο από τον εύκολο άξονα μαγνήτισης. Βάσει της εξίσωσης 1 η ενέργεια εφαρμοζόμενου πεδίου μειώνεται και πλέον παίζει κυρίαρχο ρόλο η ενέργεια ανισοτροπίας.

 $^{^{1}\}cosarphi
eq0$ αφού η μαγνήτιση δεν θα αποκτήσει ποτέ γωνία 180° , δεν θα πάει στον σκληρό άξονα

Άσκηση 3.2 Ενέργεια

Βάσει της εξίσωσης (1) και γνωρίζοντας τις γωνίες μαγνήτισης από το προηγούμενο ερώτημα μπορούμε εύκολα να εξάγουμε την ενέργεια για γωνίες εφαρμοζόμενου πεδίου 0°, 45° και 90°.

$$E = -\mu_0 MH cos(\theta - \varphi) + K_u sin^2 \varphi$$

Οι τιμές του πεδίου χρειάζονται αποκανονικοποίηση, δηλαδή εφαρμόζουμε $H = h \cdot 2 \cdot K_u$.

Έχουμε 2 υλικά στη διάθεση μας ένα σκληρό και ένα μαλακό με διαφορετικές παραμέτρους.

Πίνακας 1: Οι παράμετροι για τα δύο υλικά

Τα διαγράμματα που προκύπτουν για τις ενέργειες των δύο υλικών φαίνονται στην εικόνα 4.

Εικόνα 4: Οι ενέργειας για τα δύο υλικά για γωνίες εφαρμοζόμενου πεδίου 0°,45° και 90°

Παρατηρήσεις:

 Παρατηρούμε πως τα δύο γραφήματα ποιοτικά είναι ίδια, αυτό που αλλάζει είναι οι τιμές της ενέργειας. Για το υλικό 1 (μαλακό μαγνητικό υλικό) απαιτείται λιγότερη

- ενέργεια για να μαγνητιστεί από ότι στο υλικό 2 (σκληρό μαγνητικό υλικό) που είναι 2 τάξεις μεγέθους μεγαλύτερη.
- Και για τις 3 γωνίες η ενέργεια για πεδίο μέτρου μηδέν είναι μηδενική. Αυτό συμβαίνει γιατί σε αυτό το σημείο η ενέργεια του εφαρμοζόμενου πεδίου είναι μηδενική και η μαγνήτιση πέφτει πάνω στον εύκολο άξονα. Αφού η μαγνήτιση πέφτει στον εύκολο άξονα και η ενέργεια ανισοτροπίας είναι μηδενική $(E_{anisotropy} = K_u \sin^2 \varphi \stackrel{\varphi=180^\circ}{=} 0)$. Η ενέργεια ανισοτροπίας εκφράζει την τάση του υλικού να προσανατολιστεί στον εύκολο άξονα μαγνήτισης [2], οπότε στη περίπτωση μας είναι λογικό να βγαίνει μηδενική.
- Όταν η ενέργεια έχει αρνητική τιμή η ενέργεια του εφαρμοζόμενου πεδίου είναι μεγαλύτερη της ενέργειας ανισοτροπίας, δίνουμε δηλαδή ενέργεια στο υλικό προκειμένου να διατηρηθεί σε αυτή τη θέση η μαγνήτιση.
- Όταν το εφαρμοζόμενο πεδίο είναι υπό γωνία 0° η ενέργεια που απεικονίζεται είναι μόνο η ενέργεια πεδίου. Αυτό συμβαίνει γιατί η μαγνήτιση είναι συνεχώς στον εύκολο άξονα και άρα η ενέργεια ανισοτροπίας είναι μηδέν.

Βιβλιογραφία

- [1] A. Ktena, D. I. Fotiadis, P. D. Spanos, A. Berger, and C. V. Massalas, "Identification of 1D and 2D Preisach models for ferromagnets and shape memory alloys," *Int. J. Eng. Sci.*, vol. 40, no. 20, pp. 2235–2247, 2002, doi: 10.1016/S0020-7225(02)00116-7.
- [2] J. M. D. Coey, "Magnetism and magnetic materials," *Magn. Magn. Mater.*, vol. 9780521816144, pp. 10, Jan. 2010, doi: 10.1017/CBO9780511845000.