FOUNDATIONS OF $\mathbb{Y}_3(\mathbb{Q}_p)$ ANALYSIS

PU JUSTIN SCARFY YANG

1. Introduction

In this work, we aim to rigorously develop a theory of analysis on the structure $\mathbb{Y}_3(\mathbb{Q}_p)$, avoiding conventional phenomena such as the Cauchy Integral Formula and the Cauchy-Riemann Equations. Instead, we explore whether new phenomena arise naturally in this context. This serves as the foundation for $\mathbb{Y}_3(\mathbb{Q}_p)$ analysis and opens pathways for novel mathematical discoveries.

2. Structure of $\mathbb{Y}_3(\mathbb{Q}_p)$

Let $\mathbb{Y}_3(\mathbb{Q}_p)$ denote a mathematical structure defined on the p-adic field \mathbb{Q}_p . We begin by setting up its algebraic properties, topological space, and any unique constructs that may arise from the interplay of \mathbb{Y}_3 with p-adic numbers.

- 2.1. **Basic Properties.** Define $\mathbb{Y}_3(\mathbb{Q}_p)$ as a vector space over \mathbb{Q}_p with the following properties:
 - (a) $\mathbb{Y}_3(\mathbb{Q}_p)$ contains elements that respect the additive and scalar multiplication properties of vector spaces over \mathbb{Q}_p .
 - (b) A distinguished basis $\{e_i\}_{i=1}^n$ for $\mathbb{Y}_3(\mathbb{Q}_p)$ such that every element can be uniquely expressed as a linear combination of the e_i 's.

3. METRIC AND TOPOLOGY

We define a metric $d: \mathbb{Y}_3(\mathbb{Q}_p) \times \mathbb{Y}_3(\mathbb{Q}_p) \to [$ parts that could be well-ordered in terms of] \mathbb{Q}_p that respects p-adic properties and ensures $\mathbb{Y}_3(\mathbb{Q}_p)$ forms a complete metric space.

Definition 3.0.1 (Metric on $\mathbb{Y}_3(\mathbb{Q}_p)$). Let $x, y \in \mathbb{Y}_3(\mathbb{Q}_p)$. Define the distance d(x, y) by

$$d(x,y) = |x - y|_{\mathbb{Y}_3(\mathbb{Q}_p)}$$

where $|\cdot|_{\mathbb{Y}_3(\mathbb{Q}_p)}$ is an absolute value adapted to $\mathbb{Y}_3(\mathbb{Q}_p)$ that extends the p-adic norm on \mathbb{Q}_p and maps to values in [parts that could be well-ordered in terms of] \mathbb{Q}_p .

Definition 3.0.2 (Topology of $\mathbb{Y}_3(\mathbb{Q}_p)$). The topology on $\mathbb{Y}_3(\mathbb{Q}_p)$ is induced by the metric d, with a basis of open sets given by open balls

$$B(x,r) = \{ y \in \mathbb{Y}_3(\mathbb{Q}_p) \mid d(x,y) < r \}.$$

4. Function Theory on $\mathbb{Y}_3(\mathbb{Q}_p)$

We now consider functions defined on $\mathbb{Y}_3(\mathbb{Q}_p)$ and examine conditions for differentiability and continuity in this context.

4.1. Definitions of Continuity and Differentiability.

Definition 4.1.1 (Continuity). A function $f: \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is said to be continuous at a point $x \in \mathbb{Y}_3(\mathbb{Q}_p)$ if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$d(f(x), f(y)) < \epsilon$$
 whenever $d(x, y) < \delta$.

Definition 4.1.2 (Differentiability). A function $f: \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is differentiable at x if there exists a linear map $Df_x: \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ such that

$$\lim_{y \to x} \frac{d(f(y) - f(x) - Df_x(y - x))}{d(y, x)} = 0.$$

5. EXPLORATION OF NEW PHENOMENA

As we proceed with developing this theory, we remain open to discovering new phenomena and properties that could emerge in $\mathbb{Y}_3(\mathbb{Q}_p)$ analysis. These may include new types of convergence, integral transformations, or differential properties unique to the p-adic setting of \mathbb{Y}_3 .