Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3211		_ К работе допущен	
Студент	Сидякин Я.А.	Работа выполнена	
Преподава	тельТимофеева Э.О	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.01

Исследование распределения случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

- 2. Задачи, решаемые при выполнении работы.
- 1) Провести многократные измерения определенного интервала времени.
- 2) Построить гистограмму распределения результатов измерения.
- 3) Вычислить среднее значение и дисперсию полученной выборки.
- 4) Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 3. Объект исследования.

Распределение случайной величины.

4. Метод экспериментального исследования.

Многократное измерение 5-ти секундного промежутка времени секундомером и его анализ.

- 5. Рабочие формулы и исходные данные.
 - 1) Плотность вероятности (закон распределения исследуемой величины):

$$\rho\left(t\right) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}.$$

2) Функция Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

3) Выборочное среднее:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

4) Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

5) Максимальное значение плотности:

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}.$$

6) Соотношение для вероятности попадания результата измерения в интервал [t1, t2]:

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}$$

7) В случае наиболее употребительных на практике интервалов (так называемых стандартных) эта вероятность при условии реализации нормального распределения случайной величины имеет следующие значения:

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], \quad P_{\sigma} \approx 0.683$$

 $t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], \quad P_{2\sigma} \approx 0.954$
 $t \in [\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma], \quad P_{3\sigma} \approx 0.997$

8) Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

9) Доверительный интервал:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle},$$

10) Доверительная вероятность:

$$\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t]).$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Часы с секундной стрелкой	Прибор для измерения времени	Секунды (60)	0.5 c
2	Цифровой секундомер	Прибор для измерения времени	Секунды (60)	0.0005 c

- 7. Схема установки (перечень схем, которые составляют Приложение 1).
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Nº	ti , c	$ti - \langle t \rangle N$, c	(ti − ⟨t⟩N)^2 , c^2
1	5,02	-0,09	0,01
2	5,38	0,27	0,07
3	5,32	0,21	0,04
4	5,00	-0,11	0,01
5	5,22	0,11	0,01
6	5,02	-0,09	0,01
7	5,03	-0,08	0,01
8	5,20	0,09	0,01
9	5,36	0,25	0,06
10	5,05	-0,06	0,00
11	5,33	0,22	0,05
12	5,27	0,16	0,03
13	5,02	-0,09	0,01
14	5,13	0,02	0,00
15	5,18	0,07	0,00
16	5,22	0,11	0,01
17	5,28	0,17	0,03
18	5,12	0,01	0,00
19	5,16	0,05	0,00
20	5,38	0,27	0,07
21	5,18	0,07	0,00
22	5,35	0,24	0,06
23	5,29	0,18	0,03
24	4,97	-0,14	0,02
25	5,15	0,04	0,00
26	5,16	0,05	0,00
27	5,05	-0,06	0,00
28	5,14	0,03	0,00
29	5,07	-0,04	0,00
30	5,20	0,09	0,01
31	4,98	-0,13	0,02
32	5,02	-0,09	0,01

33	5,21	0,10	0,01
34	5,16	0,05	0,00
35	5,33	0,22	0,05
36	5,01	-0,10	0,01
37	5,27	0,16	0,03
38	5,03	-0,08	0,01
39	5,12	0,01	0,00
40	5,13	0,02	0,00
41	5,00	-0,11	0,01
42	4,87	-0,24	0,06
43	5,03	-0,08	0,01
44	5,08	-0,03	0,00
45	4,95	-0,16	0,03
46	5,02	-0,09	0,01
47	4,98 5,02	-0,13	0,02
49	5,02	-0,09 0,14	0,01 0,02
	5,08		
50		-0,03	0,00
51	5,30	0,19	0,04
52	5,26	0,15	0,02
53	5,03	-0,08	0,01
54	5,00	-0,11	0,01
55	5,13	0,02	0,00
56	5,07	-0,04	0,00
57	4,97	-0,14	0,02
58	4,96	-0,15	0,02
59	5,27	0,16	0,03
60	5,37	0,26	0,07
61	4,99	-0,12	0,01
62	5,00	-0,11	0,01
63	5,20	0,09	0,01
64	5,19	0,08	0,01
65	5,19	0,08	0,01
66	5,23	0,12	0,01
67	5,03	-0,08	0,01
68	4,94	-0,17	0,03
69	5,04	-0,07	0,00
70	5,03	-0,08	0,01
71	5,31	0,20	0,04
72	5,11	0,00	0,00
73			
	4,98	-0,13	0,02
74	4,98	-0,13	0,02
75	5,03	-0,08	0,01
76	5,09	-0,02	0,00
77	5,24	0,13	0,02
78	4,95	-0,16	0,03
79	4,98	-0,13	0,02
80	4,96	-0,15	0,02

Ī	I	I	I
81	5,09	-0,02	0,00
82	5,07	-0,04	0,00
83	5,15	0,04	0,00
84	5,07	-0,04	0,00
85	4,85	-0,26	0,07
86	5,02	-0,09	0,01
87	5,20	0,09	0,01
88	5,20	0,09	0,01
89	5,13	0,02	0,00
90	4,90	-0,21	0,04
91	5,17	0,06	0,00
92	5,28	0,17	0,03
93	4,93	-0,18	0,03
94	5,11	0,00	0,00
95	5,00	-0,11	0,01
96	5,32	0,21	0,04
97	4,92	-0,19	0,04
98	5,10	-0,01	0,00
99	5,25	0,14	0,02
100	5,07	-0,04	0,00
	/ 4\ NI = 4.4	$\sum_{i=1}^{N} N_i = 1$ (ti -	
	⟨ t⟩ N = 5,11 c	$\langle t \rangle N$) = 0,45 c	σN = 0,12949 c
	-		$\rho max = 3,08087 \text{ c}^{-1}$
L	1	1	

Выборочное среднее:

 $\langle t \rangle N = 511 / 100 = 5.11 c$

Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{100-1} \sum_{i=1}^{N} (t_i - 5.11)^2}$$
 = 0,12949 c

Максимальное значение плотности: 1

$$\rho_{\text{max}} = \frac{1}{0,12949\sqrt{2\pi}} = 3,08087 \text{ c}^{\text{-}}1$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Границы	ΔΝ	$\Delta N / N\Delta t$, c^-1	t, c	ρ, c -1
интервалов, с				
[4.85; 4.90)	2	0.4	4,875	2,48923
[4.90; 4.95)	4	0.8	4,925	2,69948
[4.95; 5.00)	12	2.1	4,975	2,87152
[5.00; 5.05)	21	4.2	5,025	2,99611
[5.05; 5.10)	11	2.1	5,075	3,06633
[5.10; 5.15)	10	2.0	5,125	3,0782
[5.15; 5.20)	10	2.0	5,175	3,03102
[5.20; 5.25)	10	2.0	5,225	2,92749

[5.25; 5.30)	9	1.8	5,275	2,77344
[5.30; 5.35)	6	1.1	5,325	2,57725
[5.35; 5.40)	5	1.0	5,375	2,34915

	Начало	Конец	ΔΝ	ΔN / N	Р
	интервала, с	интервала, с			
(t) N +- σN	5,23949	4,98051	62	0,62	0,683
(t) N +- 2σN	5,36898	4,85102	96	0,96	0,954
(t) N +- 3σN	5,49847	4,72153	100	1	0,997

- 10. Расчет погрешностей измерений (для прямых и косвенных измерений).
 - Коэффицент Стьюдента: tα,N = 1,984
 - 2) Доверительный интервал: $\Delta t = t\alpha, N \cdot \sigma \langle t \rangle = 1,984 * 0,013 = 0,026$
 - 3) Доверительная вероятность: $\alpha = P(t \in [4,85;5,37])$
- 11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

$$t = 5,14 + -0,026 c$$

$$\sigma_{\langle t
angle} = \,$$
 0,013 c

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы мы исследовали распределение случайной величины. По результатам вычислений построили гистограмму распределения результатов измерения. Вычислили среднее значение и дисперсию полученной выборки. Сравнили гистограмму с графиком функции Гаусса.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.