Composite gas targets for controlled injection and acceleration in laser plasma wakefields

M. Hansson¹, B. Aurand¹, X. Davoine², K. Svensson¹, A. Persson¹, C.-G. Wahlström¹, and O. Lundh¹

¹Department of Physics, Lund University, P.O. Box 118, 22100 Lund, Sweden ²CEA, DAM, DIF, Bruyéres-le-Châtel, 91297 Arpajon, France

> 33rd European Conference on Laser Interaction with Matter Paris, September 3, 2014

Laser wakefield acceleration

- High accelerating field Small scale accelerators
- Intrinsically short electron bunches

Injection in density gradients

- Wave-breaking as the particle velocities approaches the phase velocity of the wake
- Wake phase velocity decreases behind the laser pulse in a density downramp
 - ⇒ Lower threshold for self-injection

Experimental set-up

Laser pulse characteristics

- *E* = 600 mJ
- $T_{\text{FWHM}} = 40 \, \text{fs}$
- $\lambda = 800 \, \text{nm}$

- $D_{\text{FWHM}} = 19 \,\mu\text{m}$
- $I = 4 \cdot 10^{18} \, \text{W/cm}^2$
- $a_0 = 1.3$

Experimental set-up

Gas target

Two nozzles supplying gas:

- Two regions of different density
- Gradient between the regions
- Freedom to move the gradient
- Different gas species

Experimental set-up

Gas target

Two nozzles supplying gas:

- Two regions of different density
- Gradient between the regions
- · Freedom to move the gradient
- Different gas species

Target characterization

- Gas target introduces phase shifts in probe beam
- · Phase shifts measured using wavefront sensor

Target characterization

Phase map and shadowgram

Residual phase shift due to gas from narrow tube

Target characterization

Density distribution calculated from phase shift measurements

Two separate gas sources

- Two regions of gas
- Gradient between the regions

Degrees of freedom

- Peak density
- Plateau density
- Gradient position

2 mm nozzle

Plateau density: $13 \cdot 10^{18} \, \text{cm}^{-3}$

2 mm nozzle

Plateau density: 13 · 10¹⁸ cm⁻³

2 mm nozzle

Plateau density: $4 \cdot 10^{18} \, \text{cm}^{-3}$

Plateau density: 13 · 10¹⁸ cm⁻³

2 mm nozzle

400 μ m tube

Combined target

Peak density: $12 \cdot 10^{18} \, \text{cm}^{-3}$ Plateau density: $4 \cdot 10^{18} \, \text{cm}^{-3}$

Simulations

Simulations using CALDER-CIRC¹

¹Lifschitz et al J. Comput. Phys. 228, 1803-1814 (2009)

Simulations

Tuning the acceleration length

Peak density: $10 \cdot 10^{18} \, \text{cm}^{-3}$ Plateau density: $3 \cdot 10^{18} \, \text{cm}^{-3}$

10 shots for each position

Extending the density plateau after the density ramp increases the electron bunch energy

Tuning the acceleration length

Peak density: $10 \cdot 10^{18} \, \text{cm}^{-3}$ Plateau density: $3 \cdot 10^{18} \, \text{cm}^{-3}$

10 shots for each position

Extending the density plateau after the density ramp increases the electron bunch energy

Tuning the accelerating field

Peak density: $10 \cdot 10^{18} \, \text{cm}^{-3}$

10 shots for each position

Increasing the plateau density increases electron bunch energy

Tuning the electron bunch charge

Plateau density: 3 · 10¹⁸ cm⁻³

Increasing the peak density increases the electron bunch charge

Stability

Average peak energy: 62 MeV \pm 5% Average bunch charge: 7 pC \pm 13%

Peak density: $10 \cdot 10^{18} \, \text{cm}^{-3}$ Plateau density: $3 \cdot 10^{18} \, \text{cm}^{-3}$

100 consecutive shots

17 minutes

Summary

- Composite target for density down-ramp injection
- Electron energy control by:
 - · Down-ramp position
 - Density in accelerator region
- · Electron bunch charge control by:
 - · Peak density

Thank you for your attention!

Acknowledgements

Swedish Research Council
Knut and Alice Wallenberg Foundation
Swedish Foundation for Strategic Research
Laserlab-Europe/CHARPAC
EuCARD2/ANAC2

