

Mathematics: analysis and approaches Higher level Paper 1

Topic: Derivatives				
	Candidate name			
75 minutes				

Instructions to candidates

- Write your name in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions.
- Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [53 marks].

Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

Using the first principle, show that the derivative of $(x + 1)^3$ is $3(x + 1)^2$.

$\lim_{h \to 0} \frac{(x+h+1)^3 - (x+1)^3}{h} M$ $= \lim_{h \to 0} \frac{(x+h+1)^3 + 3h(x+1)^2 + 3h^2(x+v) + h^3 - (x+1)^3}{h} M$					
= lìm	$3(x+1)^{2} + 3h(x+1) + h^{2}$ M				
= 3Cx	(+1) ² Al				

2. [Maximum mark: 6]

Find the limit: $\lim_{x \to 0} \frac{\sec^4 x - \cos^2 x}{x^4 - x^2}$.

5	lim 4ser3x tanx + 2005X 5inx NA A
	√→ 0
<u> -</u>	$\lim_{x \to 0} U \sec^3 x \cdot \frac{\tan x}{x(4x^2-2)} + \lim_{x \to 0} \frac{\sin 2x}{2x(4x^2-2)} \cdot 2$
=	$\lim_{x \to 0} \frac{4 \sec^3 x + 2}{4x^2 - 2} \text{Al}$
<u></u> .	4+2 = -3 A
	-2

3. [Maximum mark: 8]

Consider the curve with the equation $x^3 + 4y^3 = xy$.

(a) Find an expression for $\frac{dy}{dx}$.

[3]

(b) Find the coordinates of all points where the tangent to the curve is vertical.

[5]

(a) $3x^2 + 12y^2y' = y + xy'$) d'flerentiate both side $(12y^2 - x)y' = y - 3x^2$

 $y' = \frac{\gamma - 3x^2}{12y^2 - x}$

(b) $12 y^2 - x = 0 \implies x = 12 y^2 \bigcirc$ $x^3 + u y^3 = x y \bigcirc$

sub 0 into 0 : MI

 $12^{3} \cdot y^{6} + 4y^{3} = 12y^{3}$

 $12^3 y^6 - 8y^3 = 0$

 $y^3(12^3y^3-8)=0$

 $\Rightarrow \gamma = 0 \stackrel{A}{\downarrow}_{0} / 12^{3} \gamma^{3} = 8 \Leftrightarrow \gamma = \frac{2}{12}$

Sub back: $x=0 \text{ or } x=12.\frac{1}{6^3}=\frac{2}{36}=\frac{1}{18}$

(0,0) O((2, 1/8) A

4. [Maximum mark: 8]

Tom and Jerry travels from point A to point B along two different paths: Tom travels along the semi-circle with radius of 1 km at the speed of 1 km/h, and Jerry travels along the diameter AB at the speed of $\frac{1}{\pi}$ km/h.

Find the rate of change of the distance between Tom and Jerry at the time when Jerry travels half way through.

JX(I)	en Jelly . dx =	is mid b	by throag	$h, t = \frac{1}{2}$	E = Z Al
	dx dt =	π Al			

5. [Maximum mark: 7]

Consider the function $f(x) = \sqrt{x^2 ln(x) + 4 - x^2}$, where $x \in \mathbb{R}$, x > 0.

- (a) Show that the distance , l, between the origin and any point on the graph is given by $l = \sqrt{x^2 ln(x) + 4}$. [1]
- (b) Hence, find the *x*-coordinate of the point on the graph of *f* which is the closest to the origin. [6]

(a) $d = \sqrt{f^2 \omega + x^2}$ = $\sqrt{x^2 \ln x + y}$

(b) $J^{1} = \frac{2 \times \ln x + x}{2 \sqrt{x^{2} \ln x + y}}$ | MI product rate

Set d'≥o: MI

 $2 \times \ln x + X = 0$

 $2\ln x + 1 = 0 M$

lnx = -4

 $X = e^{-\frac{1}{2}} A$

Answer **all** questions in the answer booklet provided. Please start each question on a new page.

6. [Maximum mark: 19]

Consider the curve C defined by the equation $e^{x+y} - 1 = x^2 + y^2$.

(a) Show that
$$\frac{dy}{dx} = \frac{2x - e^{x+y}}{e^{x+y} - 2y}$$
. [5]

- (b) Show that there is no point on the graph where the tangent is horizontal. [7]
- (c) Show that the graph of C is symmetric about the line y = x. [3]
- (d) Find the coordinates of the point on the curve \mathcal{C} where the tangent has a gradient of -1.

(a)
$$e^{x+y} (1+y') = 2x+2yy'$$

$$(e^{x+y}-2y) y' = 2x-e^{x+y} AI$$

$$y' = \frac{2x-e^{x+y}}{e^{x+y}-2y} AI$$

(b) Assume, by contradiction, thou's point with holizontal tangent. MI

$$\begin{cases}
2x - e^{x+y} = 0 & \Rightarrow e^{x+y} = 2x & 0 \\
e^{x+y} - 1 = x^2 + y^2 & 0 & M
\end{cases}$$

Sub 0 to 0 MI

$$2x - 1 = x^{2} + y^{2} \quad AI$$

$$c = x^{2} - 2x + 1 + y^{2} = (x - 1)^{2} + y^{2} \quad MI$$

$$\Rightarrow (x,y) = (1,0) \quad A$$

but (1,0) is not on the curve as
$$e^{\circ} + 1 \neq o + 0 \quad (contradiction) \quad Al$$

(d) Swall
$$\times$$
 & \times we obtain: MI
$$e^{Y+X} - 1 = Y^2 + X^2 \quad \text{Al}$$
which is the same curve as the original. Al

(d)
$$\frac{dx}{dy} = -1$$
 MI

$$\Rightarrow x = y$$
 Al

$$\Rightarrow e^{2x} - 1 = 2x^2$$

Note x=0 is the solution Al

$$\Rightarrow$$
 $x = y = 0$ \triangle