Polynomial Regression, Overfitting, Factorization Machines

Krisztian Buza

Department of Artificial Intelligence Eötvös Loránd University Budapest, Hungary

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

Example:

Let us calculate the dot product of these vectors:

$$\mathbf{v}_1 = (3, 4, 2, 0)$$

$$v_2 = (5, 0, 4, 8)$$

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

Example:

Let us calculate the dot product of these vectors:

$$v_1 = (3, 4, 2, 0)$$

 $v_2 = (5, 0, 4, 8)$

$$\mathbf{v}_2 = (5, 0, 4, 8)$$

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

Example:

Let us calculate the dot product of these vectors:

$$v_1 = (3, \frac{4}{2}, 2, 0)$$

$$v_2 = (5, 0, 4, 8)$$

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

Example:

Let us calculate the dot product of these vectors:

$$v_1 = (3, 4, 2, 0)$$

 $v_2 = (5, 0, 4, 8)$

$$\mathbf{v}_2 = (5, 0, \frac{4}{5}, 8)$$

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

Example:

Let us calculate the dot product of these vectors:

$$v_1 = (3, 4, 2, 0)$$

 $v_2 = (5, 0, 4, 8)$

$$v_2 = (5, 0, 4, 8)$$

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

Example:

Let us calculate the dot product of these vectors:

$$v_1 = (3, 4, 2, 0)$$

 $v_2 = (5, 0, 4, 8)$

Polynomial Regression

$$\hat{y} = w^{(0)} + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p$$

$$\hat{y} = w^{(0)} + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p =$$

$$= w^{(0)}x^0 + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p$$

$$\hat{y} = w^{(0)} + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p =$$

$$= w^{(0)}x^0 + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p = \sum_{j=0}^p w^{(j)}x^p$$

We consider models of the form

$$\hat{y} = w^{(0)} + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p =$$

$$= w^{(0)}x^0 + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p = \sum_{i=0}^p w^{(i)}x^i$$

where p is the degree of the polynomial

How to learn the parameters of the model

We consider models of the form

$$\hat{y} = w^{(0)} + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p =$$

$$= w^{(0)}x^0 + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p = \sum_{i=0}^p w^{(i)}x^i$$

where p is the degree of the polynomial

Introduce new features and use linear regression

$$\hat{y} = w^{(0)} + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p =$$

$$= w^{(0)}x^0 + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p = \sum_{j=0}^p w^{(j)}x^p$$

X	X ²	 X ^p	у
x_{1}	x_1^2	 x_1^p	y_1
x_2	x_{2}^{2}	 x_2^{p}	\mathcal{Y}_2
X_{i}	x_i^2	 X_i^p	\mathcal{Y}_{i}
\mathcal{X}_{n}	x_n^2	 x_n^p	\mathcal{Y}_n

Polynomial of 2nd degree

RMSE = 32227

Polynomial of 4th degree

RMSE = 17566

Polynomial of 6th degree

RMSE = 5206

Polynomial of 8th degree

RMSE ≈ 0

Let us Consider a Slightly Different Dataset...

Top row: models fitted on the data we used on the previous slides Bottom row: models fitted on slightly different data

What is the Problem with Polynomials of high degree (in the previous example)?

- 1. For some new observation (e.g. x = 1.9 or x = -1.8), the error of the model may be **very high**.
- 2. Slightly different data may lead to a substantially different model.

What happens? What is behind these problems?
 The model approximates the training data extremely closely, in other words: the model overfits the data.

Is This a Real-World Problem?

"The Stop sign is misclassified into our target class of Speed Limit 45 in 100% of the images taken according to our evaluation methodology."

Please see:

https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms

Intermediate Summary

- **Overfitting**: the model fits the training data very well, but it does not generalize well to unseen instances
- Lessons learned:
 - In order to have a fair (unbiased) estimate of the error of the model, you must use <u>new</u>* data when you evaluate the model
 (*new data = data that has not been used while the model was trained)
 - The learning process must be modified in order to avoid overfitting

Intermediate Summary

- **Overfitting**: the model fits the training data very well, but it does not generalize well to unseen instances
- Lessons learned:
 - In order to have a fair (unbiased) estimate of the error of the model, you must use new* data when you evaluate the model
 (*new data = data that has not been used while the model was trained)
 test data
 - The learning process must be modified in order to avoid overfitting

Intermediate Summary

- Overfitting: the model fits the training data very well, but it does not generalize well to unseen instances
- Lessons learned:
 - In order to have a fair (unbiased) estimate of the error of the model, you must use new* data when you evaluate the model
 (*new data = data that has not been used while the model was trained)
 test data
 - The learning process must be modified in order to avoid overfitting

training data (a.k.a. "train data") - the data that has been used to determine the appropriate values of model parameters

Underfitting

- The "opposite" of overfitting
 - the model is too simple,
 - therefore, it is not able to appropriately capture the regularities.

Regularization

How to Avoid Overfitting?

- Limit the degree of the polynomial
- In general: limit the complexity (capacity, expressive power) of the model
- Penalize models if the absolute value of the parameters is high

"Good" and "Bad" Models

$$d=2$$

$$\hat{y} = 243232 + 548482x + 306067x^2$$

$$d = 8$$

$$\hat{y} = 244650 + 247270x + + 61758x^2 + 468874x^3 + + 501191x^4 + (-111649)x^5 + + (-289177)x^6 + (-22128)x^7 + + 54911x^8$$

Regression with Regularization

 Objective function (a.k.a. cost function) without regularization (this is what we considered so far):

$$E = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

• Objective function with L_1 regularization:

$$E = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{p} |w^{(i)}|$$

• Objective function with L_2 regularization:

$$E = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{p} (w^{(i)})^2$$

Polynomial Regression with L_2 Regularization

- Find appropriate parameter values with gradient descent

 - Step 1 Set $w^{(0)}, w^{(1)}, ..., w^{(p)}$ to some random values Step 2 $w^{(0)} \leftarrow w^{(0)} \epsilon \frac{1}{n} \sum_{i=1}^n 2(\hat{y}_i y_i)$

for
$$j$$
 in 1... m

$$w^{(j)} \leftarrow w^{(j)} - \epsilon \left(\frac{1}{n} \sum_{i=1}^{n} 2x_i^p (\hat{y}_i - y_i) + \lambda \ 2w^{(j)}\right)$$

where

$$\hat{y}_i = \sum_{j=1}^m w^{(j)} x_i^{(j)}$$

 Step 3 Repeat Step 2 as long as you can non-negligibly decrease the error

Polynomial Regression with L_1 Regularization

- Find appropriate parameter values with gradient descent
 - Step 1 Set $w^{(0)}, w^{(1)}, ..., w^{(p)}$ to some random values

- Step 2
$$w^{(0)} \leftarrow w^{(0)} - \epsilon \frac{1}{n} \sum_{i=1}^{n} 2(\hat{y}_i - y_i)$$
 for j in $1...m$ $w^{(j)} \leftarrow w^{(j)} - \epsilon \left(\frac{1}{n} \sum_{i=1}^{n} 2x_i^p(\hat{y}_i - y_i) + \lambda \, sgn(w^{(j)})\right)$ where $\hat{y}_i = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$ $sgn(w^{(j)}) = 1$ if $w^{(j)} > 0$ $sgn(w^{(j)}) = -1$ otherwise

 Step 3 Repeat Step 2 as long as you can non-negligibly decrease the error

Models without and with Regularization (d = 8)

without regularization

$$\hat{y} = 244650 + 247270x + + 61758x^2 + 468874x^3 + + 501191x^4 + + (-111649)x^5 + + (-289177)x^6 + + (-22128)x^7 + + 54911x^8$$

with L_2 regularization $\lambda=7$

$$\hat{y} = 314642 + 115814x + +40039x^{2} + 90224x^{3} + +52954x^{4} + +65828x^{5} + +47012x^{6} + +5949x^{7} + +(-21071)x^{8}$$

Further Remarks on Regression

Regularized Linear Regression

- Regularization can be applied to (multivariate) linear regression as well:
 - L_1 regularization → LASSO
 - L_2 regularization \rightarrow Ridge Regression
- L_1 regularization encourages sparsity

Polynomial Regression with Multiple Variables

We consider models of the form

$$\hat{y} = w^{(0)} + w^{(1,1)}x^{(1)} + w^{(1,2)}x^{(2)} + \dots + + w^{(2,1)}(x^{(1)})^2 + w^{(2,2)}(x^{(2)})^2 + w^{(2,3)}(x^{(1)}x^{(2)})$$

Polynomial Regression with Multiple Variables

We consider models of the form

$$\hat{y} = w^{(0)} + w^{(1,1)}x^{(1)} + w^{(1,2)}x^{(2)} + \dots + w^{(2,1)}(x^{(1)})^2 + w^{(2,2)}(x^{(2)})^2 + w^{(2,3)}(x^{(1)}x^{(2)})$$

new features corresponding to the model

					_										
X ⁽¹⁾	X ⁽²⁾		X ^(m)	у		X ⁽⁰⁾	X ⁽¹⁾	X ⁽²⁾		X ^(m)	$(x^{(1)})^2$	$(x^{(2)})^2$	$X^{(1)}X^{(2)}$		у
$x_1^{(1)}$	$x_1^{(2)}$		$x_1^{(m)}$	y_1		1	$x_I^{(1)}$	$x_I^{(2)}$		$x_I^{(m)}$	$(x_I^{(1)})^2$	$(x_I^{(2)})^2$	$x_I^{(1)} x_I^{(2)}$		y_1
$x_{2}^{(1)}$	$x_{2}^{(2)}$	•••	$x_2^{(m)}$	\mathcal{Y}_2		1	$x_{2}^{(1)}$	$x_{2}^{(2)}$		$x_2^{(m)}$	$(x_2^{(1)})^2$	$(x_2^{(2)})^2$	$x_2^{(1)}x_2^{(2)}$	•••	\mathcal{Y}_2
															
$x_i^{(1)}$	$x_i^{(2)}$		$x_i^{(m)}$	\mathcal{Y}_{i}	,	1	$x_i^{(1)}$	$x_i^{(2)}$	•••	$x_i^{(m)}$	$(x_i^{(1)})^2$	$(x_i^{(2)})^2$	$x_i^{(1)}x_i^{(2)}$		\mathcal{Y}_{i}
$x_n^{(1)}$	$x_n^{(2)}$		$x_n^{(m)}$	\mathcal{Y}_n		1	$x_n^{(1)}$	$x_n^{(2)}$		$x_n^{(m)}$	$(x_n^{(1)})^2$	$(x_n^{(2)})^2$	$x_n^{(1)}x_n^{(2)}$		\mathcal{Y}_n

Factorization Machines (optional)

Factorization Machines

We want to consider all pairwise interactions

$$\hat{y} = w^{(0)} + w^{(1)}x^{(1)} + w^{(2)}x^{(2)} + w^{(3)}x^{(3)} + \dots + w^{(1,2)}(x^{(1)}x^{(2)}) + w^{(1,3)}(x^{(1)}x^{(3)}) + \dots$$

but: we do not want to introduce quadratically many parameters (and features)

Factorization Machines

For each of the variables, we introduce a vector

$$\mathbf{v}^{(i)} = (v^{(i,1)}, ..., v^{(i,f)})$$

so that the scalar product of two vectors will be characteristic to the interaction between the two variables.

Thus, the model equation is:

$$\hat{y}(\mathbf{x}) = w^{(0)} + \sum_{i=1}^{n} w^{(i)} x^{(i)} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(\sum_{k=1}^{f} v^{(i,k)} v^{(j,k)} \right) x^{(i)} x^{(j)}$$

S. Rendle (2010): Factorization machines. 10th IEEE International Conference on Data Mining (ICDM), pp. 995–1000.

Algorithm Training the Factorization Machine*

Require: Training data D, number of epochs e, learning rate ϵ , standard deviation σ **Ensure:** Weights $w^{(0)}, w^{(1)}, \dots w^{(m)}$ and $v^{(1,1)}, \dots, v^{(n,f)}$

- 1: Initialize $w^{(0)}, w^{(1)}, \dots w^{(m)}$ and $v^{(1,1)}, \dots, v^{(n,f)}$ from standard normal distribution with zero mean and standard deviation σ
- 2: **for** epoch in $1 \dots e$ **do**
- 3: **for** each $(x, y) \in D$ in random order **do**

4:
$$\hat{y} \leftarrow w^{(0)} + \sum_{i=1}^{m} w^{(i)} x^{(i)} + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \left(\sum_{k=1}^{f} v^{(i,k)} v^{(j,k)} \right) x^{(i)} x^{(j)}$$

5:
$$w^{(0)} \leftarrow w^{(0)} - \epsilon \ 2(\hat{y} - y)$$

6: for i in $1 \dots m$ do

7:
$$w^{(i)} \leftarrow w^{(i)} - \epsilon \ 2(\hat{y} - y)x^{(i)}$$

8: **for** i in $1 \dots m$ **do**

9: **for** j in $1 \dots f$ **do**

10:
$$v^{(i,j)} \leftarrow v^{(i,j)} - \epsilon \ 2(\hat{y} - y)(x^{(i)} \sum_{k=1}^{m} v^{(k,j)} x^{(k)} - v^{(i,j)} (x^{(i)})^2)$$

11: **return** $w^{(0)}, w^{(1)}, \dots, w^{(m)}$ and $v^{(1,1)}, \dots, v^{(n,f)}$

* Stochastic Gradient Descent

K. Buza, T. Horváth (2019): Factorization Machines for Blog Feedback Prediction, 11th International Conference on Computer Recognition Systems (CORES)

Summary

Summary

- Polynomial Regression
- Overfitting
 - It is important in general!
 - In order to have an unbiased estimate of the accuracy of the model, a new dataset (test data) should be used when the model is evaluated
- Regularization
- Factorization Machines

Essential Concepts

- Overfitting
- Underfitting
- Degree of a Polynomial
- Regularization
- Training data
- Test data
- Lasso
- Ridge Regression

- (Factorization machine)
- (Stochastic Gradient Descent)

Presentations' about Social, Economical, Technological or Moral Aspects of Al

Students' Presentations' about Social, Economical, Technological or Moral Aspects of Al

- Form groups of 2-3 students
- Each group
 - should select a topic → e-mail to buza@inf.elte.hu deadline: 9th October 2019
 - you are welcome to propose **new topics**, the ones on the next slides are possible topics, but you do not need to select from that list
 - (the same topic will only be assigned to one group, "First Come First Served")
 - is expected to deliver a short presentation on the 20th or 27th November (≈10 minutes, 4 – 6 slides)

Possible topics

- Roles in a machine learning team, job titles
- Steps of a machine learning and data science project
- Al transformation playbook https://landing.ai/ai-transformation-playbook/
- Al pitfalls
- Short survey of AI applications (application domains)
- Short survey of AI techniques (methods)

Possible topics

- General ethical guidelines
- Ethical issues and guidelines related to a particular application (e.g. self-driving car)
- Al in the light of a selected religion
- legal framework of AI (most essential legal principles)
- Al vs. privacy (Siri)

- Sofia (robot, citizen of Saudi Arabia)
- IBM Watson (and "his" medical studies)

Possible topics

- Al applications using
 - Amazon Web Services
 - Google Collab
 - Hungarian HPC
- What is GPU and TPU?
- Cython
- Clean code guidelines for machine learning
- Presentation of a Python library
- Gartners curve overoptimism?
- Agile Software Development for machine learning
- Gradient Descent (GD) variants: Stochastic GD and Batch GD advantages and disadvantages compared with "standard" GD