Introduction to Machine Learning

Regularization Lasso vs. Ridge

Learning goals

- Properties of ridge vs. lasso
- Coefficient paths
- What happens with corr. features
- Why we need feature scaling

LASSO VS. RIDGE GEOMETRY

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{2} \qquad \text{s.t. } \|\boldsymbol{\theta}\|_{p}^{p} \leq t$$

- In both cases (and for sufficiently large λ), the solution which minimizes $\mathcal{R}_{reg}(\theta)$ is always a point on the boundary of the feasible region.
- As expected, $\hat{\theta}_{\text{lasso}}$ and $\hat{\theta}_{\text{ridge}}$ have smaller parameter norms than $\hat{\theta}$.
- For lasso, solution likely touches a vertex of constraint region.
 Induces sparsity and is a form of variable selection.
- For p > n: lasso selects at most n features Zou and Hastie 2005

COEFFICIENT PATHS AND 0-SHRINKAGE

Example 1: Motor Trend Car Roads Test (mtcars)

We see how only lasso shrinks to exactly 0.

NB: No real overfitting here, as data is so low-dim.

COEFFICIENT PATHS AND 0-SHRINKAGE /2

Example 2: High-dim., corr. simulated data: p = 50; n = 100

$$y = 10 \cdot (x_1 + x_2) + 5 \cdot (x_3 + x_4) + 1 \cdot \sum_{j=5}^{14} x_j + \epsilon$$

36/50 vars are noise; $\epsilon \sim \mathcal{N}\left(0,1\right)$; $\mathbf{x} \sim \mathcal{N}\left(\mathbf{0},\Sigma\right)$; $\Sigma_{k,l} = 0.7^{|k-l|}$

REGULARIZATION AND FEATURE SCALING

- Typically we omit θ_0 in penalty $J(\theta)$ so that the "infinitely" regularized model is the constant model (but can be implementation-dependent).
- Unregularized LM has rescaling equivariance, if you scale some features, can simply "anti-scale" coefs and risk does not change.
- Not true for Reg-LM: if you down-scale features, coeffs become larger to counteract. They are then penalized stronger in $J(\theta)$, making them less attractive without any relevenat reason.
- So: usually standardize features in regularized models, whether linear or non-linear!

REGULARIZATION AND FEATURE SCALING / 2

- ullet Let the DGP be $y=\sum_{j=1}^5 heta_j x_j + arepsilon$ for $oldsymbol{ heta}=(1,2,3,4,5)^ op, \ arepsilon \sim \mathcal{N}(0,1)$
- Suppose x_5 was measured in m but we change the unit to cm ($\tilde{x}_5 = 100 \cdot x_5$):

Method	$\hat{ heta}_1$	$\hat{ heta}_{ extsf{2}}$	$\hat{ heta}_3$	$\hat{ heta}_{ extsf{4}}$	$\hat{ heta}_{ extsf{5}}$	MSE
OLS	0.983	2.147	3.005	3.917	5.204	0.812
OLS rescaled	0.983	2.147	3.005	3.917	0.052	0.812

- Estimate $\hat{\theta}_5$ gets scaled by 1/100 while other estimates and MSE are invariant
- Running ridge regression with $\lambda=10$ on same data shows that rescaling of of x_5 does not result in inverse rescaling of $\hat{\theta}_5$ (everything changes!)
- This is because $\hat{\theta}_5$ now lives on small scale while L2 constraint stays the same. Hence remaining estimates can "afford" larger magnitudes.

Method	$\hat{ heta}_1$	$\hat{ heta}_{ extsf{2}}$	$\hat{ heta}_3$	$\hat{ heta}_{ extsf{4}}$	$\hat{ heta}_{ extsf{5}}$	MSE
ridge	0.709	1.873	2.661	3.557	4.636	1.366
ridge rescaled	0.802	1.942	2.675	3.569	0.051	1.079

 For lasso, especially for very correlated features, we could arbitrarily force a feature out of the model through a unit change.

CORRELATED FEATURES: L1 VS L2

Simulation with n = 100:

$$y = 0.2x_1 + 0.2x_2 + 0.2x_3 + 0.2x_4 + 0.2x_5 + \epsilon$$

 x_1 - x_4 are independent, but x_4 and x_5 are strongly correlated.

- L1 removes x_5 early, L2 has similar coeffs for x_4 , x_5 for larger λ
- Also called "grouping property": for ridge highly corr. features tend to have equal effects; lasso however "decides" what to select
- L1 selection is somewhat "arbitrary"

CORRELATED FEATURES: *L*1 **VS** *L*2 / 2

More detailed answer: The "random" decision is in fact a complex deterministic interaction of data geometry (e.g., corr. structures), the optimization method, and its hyperparamters (e.g., initialization). The theoretical reason for this behavior relates to the convexity of the penalties > Zou and Hastie 2005.

Considering perfectly collinear features $x_4 = x_5$ in the last example, we can obtain some more formal intuition for this phenomenon:

• Because L2 penalty is strictly convex:

$$x_4 = x_5 \implies \hat{\theta}_{4,ridge} = \hat{\theta}_{5,ridge}$$
 (grouping prop.)

• *L*1 penalty is not *strictly* convex. Hence, no unique solution exists if $x_4 = x_5$, and sum of coefficients can be arbitrarily allocated to both features while remaining minimizers (no grouping property!): For any solution $\hat{\theta}_{4,lasso}$, $\hat{\theta}_{5,lasso}$, equivalent minimizers are given by

$$\tilde{\theta}_{4,lasso} = s \cdot (\hat{\theta}_{4,lasso} + \hat{\theta}_{5,lasso}) \text{ and } \tilde{\theta}_{5,lasso} = (1-s) \cdot (\hat{\theta}_{4,lasso} + \hat{\theta}_{5,lasso}) \, \forall s \in [0,1]$$

SUMMARY Tibshirani 1996 Zou and Hastie 2005

- Neither ridge nor lasso can be classified as better overall
- Lasso can shrink some coeffs to zero, so selects features: ridge usually leads to dense solutions, with smaller coeffs
- Lasso likely better if true underlying structure is sparse ridge works well if there are many (weakly) influential features
- Lasso has difficulties handling correlated predictors; for high correlation, ridge dominates lasso in performance
- Lasso: for (highly) correlated predictors, usually an "arbitrary" one is selected, with large coeff, while the others are (nearly) zeroed
- Ridge: coeffs of correlated features are similar

