Results and Analysis

Parallelization of a BruteForce Algorithm

Elaine Motley

University of the West of England Parallel Computing UFCFFL-15-M

Results

All of the runtime results are displayed in the attached spreadsheet "Results.xlsx" There were a total of 334 program runs in various modes eg OMP 3 threads and mean execution times calculated. The total runtime for all the tests was 23540 s (approx. 6.5 hrs).

As the key was known, it was possible to position the first character of the key at different positions within the search alphabet and note execution times accordingly. This was purely for testing purposes, and if user input is taken for the ciphertext, plaintext and IV values, the program would find the relevant key.

The spreadsheet displays all of the results of the various positions of the first character. Positions 1,2,3,4,8,16, and 36 (the end of the search alphabet) were tested, as well as an exhaustive search where the search alphabet was adjusted to not include the first character.

Table 1 shows a summary of the results and the associated speed-up times. The speed up times have been calculated by dividing the benchmarked serial time by the mean execution time of the relevant program.

Table 1

		Position of first character of key within search alphabet of length 36					
Version of							
program run		8	16	36	Exhaustive		
Serial	Mean Time	92.31	197.69	461.21	474.45		
OMP 1 thread	Mean Time	104.92	226.22	522.80	542.41		
	Speed-up	0.88	0.87	0.88	0.87		
MPI 1 proc	Mean Time	91.65	195.86	468.45	515.89		
	Speed-up	1.01	1.01	0.98	0.92		
OMP 2 threads	Mean Time	68.56	168.34	384.64	411.14		
	Speed-up	1.35	1.17	1.20	1.15		
	Mean Time	40.56	94.23	228.46	245.01		
MPI 2 procs	Speed-up	2.28	2.10	2.02	1.94		
ONAD 2 there also	Mean Time	59.40	146.09	335.75	364.01		
OMP 3 threads	Speed-up	1.55	1.35	1.37	1.30		
MPI 3 procs	Mean Time	27.68	68.21	149.70	162.55		
	Speed-up	3.33	2.90	3.08	2.92		
OMP 4 threads	Mean Time	35.81	106.11	283.72	304.87		
	Speed-up	2.58	1.86	1.63	1.56		
MPI 4 procs	Mean Time	14.91	42.28	111.13	124.82		
	Speed-up	6.19	4.68	4.15	3.80		
MPI 5 procs	Mean Time	17.42	52.50	121.30	134.10		
	Speed-up	5.30	3.77	3.80	3.54		
MPI 6 procs	Mean Time	21.08	40.57	100.90	122.35		
	Speed-up	4.38	4.87	4.57	3.88		
MPI 7 procs	Mean Time	24.13	49.26	119.65	133.89		
	Speed-up	3.83	4.01	3.85	3.54		
MPI 8 procs	Mean Time	0.72	28.49	111.32	124.82		
	Speed-up	127.42	6.94	4.14	3.80		

Figure 1 show the results of the various program runs for different positions of the first key character:

Exhaustive Search (character not in the alphabet, so key not found).

End of alphabet (character is at the end of the search alphabet, in this case position 36).

Posn 16 (normal position of the first character of the key within the search alphabet).

Posn 8 (first character positioned towards the beginning of the search alphabet

Figure 1

Due to time constraints for testing, some of the longer searches were only run 2 or 3 times, rather than the planned 5. All program runs executed on UWE cluster 164.11.39.11 from a Lenovo Laptop (4 cores, i7 processor)

It can be seem that there is a general reduction in time for all 3 tests as the number of threads/processors increase. However, there are spikes in the OMP 3 thread and OMP 4 thread results. This is probably due how the search alphabet is distributed among the threads. It is also clear from this chart that there is no significant decrease in time when the number of processors is greater than 4. The exception to this is when the number of processors in the MPI run for the End of Alphabet search was 6. This produced the best overall time for that particular test. MPI parallelization using 8 processes when the first character was positioned at position 8 produced a very quick result (0.72s), which was a speed up of a factor of 127.42 over the serial version. Again, this was because of the way the search alphabet was distributed between the processes. Position 8 would be among the first batch to be processed and hence a very quick result.

Amdahls Law

Full Table of Results

Program Version	No of processors or threads	Posn of	Run1	Run2	Run3	Run4	Run5	Mean Time (s)	Mean Count	Count 1	Count 2	Count3
Serial		1 2 3 4 8 16 36	0.6966 13.6198 27.2633 39.6554 92.2113 197.7609 461.4178	0.6948 16.2965 26.5803 39.7008 92.1902 197.7441 461.0027	0.7017 13.4889 26.8435 39.7608 92.5307 197.5756	0.6985 13.6164 27.5186	0.6973 13.4662	0.70 14.10 27.05 39.71 92.31 197.69 461.21	3,166,925 61,953,485 122,419,661 182,885,837 424,750,540 908,479,948 2,117,755,480	3166925 61953485 122419661 182885837 424750540 908479948 2117755480	3166925 61953485 122419661 182885837 424750540 908479948 2117755480	316692 6195348 12241966 18288583 42475054 90847994
ОМР	1 thread	1 2 3 4 8 16 36 exhaustive	0.79522 15.296 30.372 45.733 105.16 224.32 522.77	473.9433 0.78819 15.343 30.722 46.396 104.82 224.32 522.82 546.02	0.79262 15.324 30.224 45.144 104.79 230.03	0.7902 15.321	0.79206 15.734	0.79 15.40 30.44 45.76 104.92 226.22 522.80 542.41	2,176,782,336 3,166,925 61,953,485 122,419,661 182,885,837 424,750,540 908,479,948 2,117,755,480 2,176,782,336	2176782336 3,166,925 61,953,485 122,419,661 182,885,837 424,750,540 908,479,948 2,117,755,480 2,176,782,336	2176782336 3,166,925 61,953,485 122,419,661 182,885,837 424,750,540 908,479,948 2,117,755,480 2,176,782,336	3,166,92 61,953,44 122,419,66 182,885,83 424,750,52 908,479,92
	2 threads	1 2 3 4 8 16 36 exhaustive	1.1859 0.56475 22.676 23.06 68.46 172.61	1.1929 0.55843 22.858 24.635 68.336 160.29 385.53 418.15	1.1855 0.59266 22.626 24.01 67.265 172.12 382.35 406.38	1.2123 0.55906 22.676 26.987 70.55	1.1961 0.5552 23.716 23.304 68.167	1.19 0.57 22.91 24.40 68.56 168.34 384.64 411.14	6,296,407 2,969,535 123,515,810 124,190,264 366,349,425 845,393,634 2,066,682,808 2,176,782,336	6,333,103 2,968,780 123,809,635 123,991,578 367,150,731 837,478,190 2,067,118,832 2,176,782,336	6,269,916 2,980,297 122,918,548 123,673,718 365,776,491 852,613,188 2,071,628,102 2,176,782,336	6,286,2 2,959,5 123,819,2 124,905,4 366,121,0 846,089,5 2,061,301,4 2,176,782,3
	3 threads	1 2 3 4 8 16 36 exhaustive	0.71526 29.388 60.275 145.42 337.23	1.514 0.75205 0.73994 30.274 58.782 147.46 330.68 363.54	1.5503 0.71733 0.73239 30.391 58.471 146.9 339.35 367.93	1.4988 0.72767 0.7148 29.404 59.523 145.57	1.5377 0.78491 0.73638 29.859 59.947 145.11	1.53 0.75 0.73 29.86 59.40 146.09 335.75 364.01	8,379,501 4,164,265 4,090,392 170,531,796 332,592,350 846,357,382 1,924,460,726 2,176,782,336	8,305,977 4,234,331 4,138,107 173,134,164 331,538,072 845,633,622 1,921,138,307 2,176,782,336	8,110,673 4,014,126 4,305,843 165,031,163 341,588,782 863,397,444 1,905,044,314 2,176,782,336	8,721,8 4,244,3 3,827,2 173,430,0 324,650,1 830,041,0 1,947,199,5 2,176,782,3
	4 threads	1 2 3 4 8 16 36 exhaustive	0.81854 0.88126 35.885 106.26 284.26 308.84	1.7199 0.99138 0.79409 0.80702 34.205 109.42 286.43 301.52	1.7302 0.8014 0.82157 0.80699 36.926 106.5 281.06 304.26	1.7335 0.80708 0.79433 0.87651 37.346 101.57 285.65	1.7287 0.81322 0.77678 0.87086 34.665 106.8 281.19	1.73 0.85 0.80 0.85 35.81 106.11 283.72 304.87	10,791,724 5,244,124 4,887,542 5,174,164 221,207,260 670,777,631 1,883,212,272 2,176,782,336			
MPI	1 proc	1 2 3 4 8 16 36 exhaustive	26.3393 39.35706 91.48913 196.2155 460.4248 515.8911	26.38305 39.40234 91.98718 195.6466 476.4738	0.68732 13.36216 26.40797 39.56521 91.47026 195.7246			0.72 13.63 26.38 39.44 91.65 195.86 468.45 515.89	3,166,925 61,953,485 122,419,661 182,885,837 424,750,540 908,479,948 2,117,755,480 2,176,782,336			
	2 procs	1 2 3 4 8 16 36 exhaustive	13.75085 13.74297 40.59607 94.21589 228.638	14.80422 13.91009 40.57155 94.44507	0.704952 0.333499 13.74726 13.75808 40.51024 94.02402			0.72 0.33 14.10 13.80 40.56 94.23 228.46 245.01	3,166,925 1,487,309 61,953,485 61,953,485 182,885,836 424,750,540 1,029,364,312			
	3 procs	1 2 3 4 8 16 36 exhaustive	0.333831 13.94175 27.51158 68.31525 149.8516	28.06831 68.16699	0.714607 0.33418 0.334147 13.90437 27.4609 68.15397			0.71 0.33 0.33 13.91 27.68 68.21 149.70 162.55	3,166,925 1,487,309 1,487,309 61,953,485 122,419,660 303,818,188 666,567,256 725,594,112			
	4 procs	1 2 3 4 8 16 36 exhaustive	0.337645 0.338109 14.08414 41.5167 112.1576	0.35383 14.57588 42.69525	0.738594 0.340914 0.340757 0.340749 16.07193 42.63943			0.74 0.34 0.34 0.34 14.91 42.28 111.13 124.82	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 182,885,836 485,168,728 544,195,584			
	5 procs	1 2 3 4 8 16 36 exhaustive	0.457666 0.425101 16.15433 56.79571 120.3621	0.541452 0.517274 0.33711 17.75586	1.435989 0.417733 0.344432 0.655874 18.35608 49.47918			1.20 0.43 0.44 0.47 17.42 52.50 121.30 134.10	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 182,885,836 424,702,552 483,729,408			
	6 procs	1 2 3 4 8 16 36 exhaustive	0.402147 0.415148 21.58406 40.55182 100.9222	0.61605 0.668302 0.66035 20.86207 40.45869	1.105558 0.66695 0.423609 0.4909 20.79847 40.71363			1.09 0.57 0.50 0.52 21.08 40.57 100.90 122.35	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 122,419,660 303,770,200 362,797,056			
	7 procs	1 2 3 4 8 16 36 exhaustive	1.058003 0.68131 0.71069 0.384869 23.50498 50.01321 119.1086	0.987399 0.697367 0.689936 0.696285 24.24896 49.61092 120.187	1.499253 0.68555 0.444216 0.692383 24.63445 48.15976			1.18 0.69 0.61 0.59 24.13 49.26 119.65 133.89	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 122,419,660 303,770,200 362,797,056			
	8 procs	1 2 3 4 8 16 36 exhaustive	0.700729 0.601441 0.697114 28.22435 111.3138	1.52364 0.701961 0.688372 0.713404 0.696355 28.54018 111.3317	1.446222 0.695412 0.759351 0.708346 0.77999 28.70439			1.49 0.71 0.72 0.67 0.72 28.49 111.32 124.82	3,166,925 1,487,309 1,487,309 1,487,309 1,487,308 61,953,484 243,304,024 302,330,880			