easyFRAP: Quick Start Guide

Installation and step-by-step example

Installation Guidelines

1. Standalone version (if you don't have MATLAB installed on your computer):

- Download and install MATLAB Compiler Runtime. This is required for standalone applications to run outside MATLAB.
- Download easyFRAPXX.zip and run (double-click) easyFRAPXX.exe.

2. If you do have MATLAB installed:

Download the appropriate source files and run the code. It is advised to save the files in the MATLAB root directory.

Supported File Formats

Leica LAS AF: .csv files (comma-separated)

Olympus: .xls files

Zeiss: .txt (tab-delimited) or .xls files

ImageJ: .txt (tab-delimited) or .xls files

	Α	В	С	D					
1	Channel 1								
2	Axis [s]	ROI1[]	ROI2 []	ROI3 []					
3	0	190.8138	175.8727	6.606061					
4	0.067	176.9931	169.9662	7.121212					
5	0.134	171.6276	166.3296	5.939394					
6	0.201	174.8	164.1675	6.373737					
7	0.269	171.5931	161.406	5.626263					
8	0.341	170.5931	160.8813	7.434343					
9	0.408	166.5103	159.701	5.888889					
10	0.475	167.1103	158.4837	7					
11	0.544	171.0759	156.8855	6.828283					
12	0.611	163.4345	156.9576	8.323232					
13	0.678	168.469	156.2061	5.878788					
14	0.748	168.2276	156.3602	7.020202					

.csv	file.	2	head	ler	lines
. C	1110,	_	IICuc		111103

_											
	Channe1	1									
	Axis [s]	l		ROI1		ROI2		ROI3			
	0	190.	8137	931		175.	872	7196		6.606	060606
	0.067	176.	9931	.034		169.	966	2403		7.121	212121
	0.134	171.	6275	862		166.	329	6289		5.939	393939
	0.201	174.	8	164.1	1675	5404		6.37	3737	7374	
	0.269	171.	5931	.034		161.	405	9551		5.626	262626
	0.341	170.	5931	.034		160.	881	3168		7.434	343434
ı	0.408	166.	5103	3448		159.	700	9855		5.888	888889
ı	0.475	167.	1103	3448		158.	483	7492		7	
ı	0.544	171.	0758	3621		156.	885	5106		6.828	282828
ı	0.611	163.	4344	828		156.	957	6431		8.323	232323
ı	0.678	168.	4689	9655		156.	2063	1229		5.878	787879
ı	0.748	168.	2275	862		156.	360	2432		7.020	20202
ı	0.815	172.	0827	7586		155.	275	9488		5.636	363636
ı	0.882	171.	6896	5552		155.	488	7817		7.161	616162
ı	0.953	167.	6	155.4	451(38		6.040	0404	104	
ı	1.02	168.	9793	3103		155.	917	8025		6.838	383838
ı	1.087	168.	4758	3621		154.	242:	1891		5.444	444444
ı	1.154		2965			156.	5944	4642			616162
ı	1.221	173.	6344	828		156.	023	2753		7.181	818182
ı	1.289		3172			155.				5.959	59596
	1.361	165.	8137	931		156.	036	905		6.030	30303

.txt file, tab delimited, 2 header lines

	Α	В	С	D	Е
1	Image0068	8			
2	Records B	leach Even	t Markers		
3	Time (s)	Label			
4	3.9	BleachStar	rt		
5	4.2	BleachEnd	l		
6					
7	Series	Color			
8	Ch1 Regio	RGB:0	255	255	
9					
10	No	Time :0.00	ROI1	ROI2	ROI3
11	0	0	190.8138	175.8727	6.606061
12	1	0.067	176.9931	169.9662	7.121212
13	2	0.134	171.6276	166.3296	5.939394
14	3	0.201	174.8	164.1675	6.373737
15	4	0.269	171.5931	161.406	5.626263
16	5	0.341	170.5931	160.8813	7.434343
17	6	0.408	166.5103	159.701	5.888889
18	7	0.475	167.1103	158.4837	7
19	8	0.544	171.0759	156.8855	6.828283
20	9	0.611	163.4345	156.9576	8.323232
21	10	0.678	168.469	156.2061	5.878788
22	11	0.748	168.2276	156.3602	7.020202
23	12	0.815	172.0828	155.2759	5.636364
24	13	0.882	171.6897	155.4888	7.161616
25	14	0.953	167.6	155.451	6.040404
26	15	1.02	168.9793	155.9178	6.838384

.xls file, 10 header lines, 5 columns

Dataset Selection

- Name the experiment (optional)
- Define file format (.csv, .txt or .xls)
- 3. Choose folder containing the files
- 4. Press Upload

Dataset Selection

- Define the correspondence of the measurements to columns in the files
- 2. Press OK

Raw Data Visualization

The raw recovery curves in ROI1, ROI2, ROI3 are automatically visualized and information about the files is returned

Data Exclusion

Optionally:

- Select one or more samples from the list box
- Selected samples are automatically plotted in red
- Press **Delete** to exclude them from the dataset
- 2. Press **Restore** to restore them
- ✓ The plots are automatically refreshed

Bleaching Parameters

- Insert number of prebleach, bleach and postbleach images
- Insert initial values to discard (optional)
- 3. Press Compute
- ✓ The bleaching depth and gap ratio values are calculated
- 4. Press **Reset** to restore the initial values and repeat the computation

Normalization

- Choose
 Normalization method
- 2. Press Normalize
- ✓ The Normalized plots (individual and mean) are visualized
- ✓ Click on the plots to export them for better examination

Attention: R-square must be close to 1, small values indicate bad fits and thus inaccurate estimates

- 1. Choose a sample from the list box
- ✓ It is automatically plotted
- Choose fitting equation
- 3. Press Fit
- ✓ The fitted curve and residuals are plotted
- ✓ The mobile fraction and t_{half} are calculated and shown on the right
- ✓ Goodness-of-fit statistics (R-square) are also provided

- Press Fit Mean Data
- ✓ The fitted curve and residuals for the mean are plotted
- ✓ The mobile fraction and t-half concerning the mean are calculated and shown on the right
- ✓ Goodness-of-fit statistics (R-square) are also provided

Press **Save** and:

- Select file to save the results
- Select sample(s)

✓ easyFRAP performs
curve fitting to all
selected samples
and saves the results
(individual and mean
values) in a separate
file

Exported fitting results

- On Windows platforms, the computed data are saved on an .xls file that contains all the necessary information (numerical values and header/sample information)
- On Mac platforms, 2 separate files are saved: a .csv file with all numerical values and a .txt file (with the same name) with all header/sample information

Exported files - Windows

				→ Cho	oice of nor	malization	and fittin	g method	
4	А		В	С	D	Е	F	G	Н
1	double	dou	ble ex	xponential					
2	sample	t-ha	lf (sec	mean	std	mobile fra	mean	std	R-square
3	1.csv		0.52	0.55	0.09	0.97	0.95	0.04	0.96
4	10.csv		0.5			0.96			0.95
5	11.csv		0.68			0.99			0.94
6	12.csv		0.54			0.94			0.94
7	13.csv		0.47			0.88			0.93
3	14.csv		0.6			0.97			0.93
)	15.csv		0.78			1			0.94
	2.csv		0.53			0.88			0.93
	3.csv		0.51			0.88			0.92
	4.csv		0.51			0.93			0.96
3	5.csv		0.48			0.95			0.94
4	6.csv		0.48			1			0.92
5	7.csv		0.47			0.96			0.95
6	8.csv		0.65			0.97			0.96
7	9.csv		0.5			0.98			0.92

Exported files(Mac)

.csv file:

	Α	В	С	
1	0.52	0.97	0.96	
2	0.5	0.96	0.95	
3	0.68	0.99	0.94	
4	0.54	0.94	0.94	
5	0.47	0.88	0.93	
6	0.6	0.97	0.93	
7	0.78	1	0.94	
8	0.53	0.88	0.93	
9	0.51	0.88	0.92	
10	0.51	0.93	0.96	
11	0.48	0.95	0.94	
12	0.48	1	0.92	
13	0.47	0.96	0.95	
14	0.65	0.97	0.96	
15	0.5	0.98	0.92	

.txt file:

```
double double_exponential sample t-half mobile_fraction R-square
1.csv
10.csv
11.csv
12.csv
13.csv
14.csv
15.csv
2.csv
3.csv
4.csv
5.csv
6.csv
7.csv
8.csv
9. csv
```

Top menu

- Export images and save them in various formats
- 2. Save all resulting data (raw, normalized data and curve fitting results) in separate files
- 3. Perform Batch analysis

Exported Normalized data

For Mac users: again 2 separate files are saved: a .csv file with all numerical values and a .txt file (with the same name) with the header information

Experiment selection:

- Select parent directory that contains all your experiments
- 2. Select file format
- Choose the experiments of interest from the list box and press Upload

Experiment selection:

- Provide number of header lines, column measurement correspondence and bleaching parameters
- ✓ The data are uploaded
- 2. Press **Plot** to plot all raw intensity values

Attention: when you provide the number of header lines, do not count the empty ones!

Normalization:

- 1. Select Normalization method
- 2. Press Normalize
- ✓ The data are normalized and saved to .xls files in the parent directory named after the experiments (e.g. Normalized data - test1.xls)
- 2. Press **Plot** to plot all normalized intensity values

For Mac users: header information is saved on a separate .txt file in the same directory

Fitting:

- Select fitting method
- 2. Press Fit
- ✓ The data are fitted and the results (mobile fraction, t-half, their means and standard deviations) are saved to .xls files in the parent directory named after the experiments (e.g. Fitting resultstest1.xls)
- 2. Press **Plot** to plot all fitted curves and residuals

For Mac users: header information is saved on a separate .txt file in the same directory

