PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G06F 17/50

(11) International Publication Number: WO 98/06048

(43) International Publication Date: 12 February 1998 (12.02.98)

(21) International Application Number: PCT/CA97/00539

(22) International Filing Date: 31 July 1997 (31.07.97)

(30) Priority Data: 9616105.4 31 July 1996 (31.07.96) G

(71) Applicant (for all designated States except US): QUEEN'S UNIVERSITY AT KINGSTON [CA/CA]; Kingston, Ontario K7L 3N6 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHAMOVSKY, Igor, L. [RU/CA]; 6-202, 17 Van Order Drive, Kingston, Ontario K7M 1B5 (CA). ROSS, Gregory, M. [CA/CA]; 1090 Caitlin Crescent, Kingston, Ontario K7P 2S4 (CA). RIOPELLE, Richard, J. [CA/CA]; 32 Lakeshore Boulevard, Kingston, Ontario K7M 4J6 (CA). WEAVER, Donald, F. [CA/CA]; 27 Collegeview Crescent, Kingston, Ontario K7M 7J8 (CA).

(74) Agents: SCHUMACHER, Lynn, C. et al.; Hill & Schumacher, Suite 802, 335 Bay Street, Toronto, Ontario M5H 2R3 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: MOLECULAR MODELLING OF NEUROTROPHIN-RECEPTOR BINDING

(57) Abstract

The present invention relates to a computational method for identifying the bioactive conformations of peptide domains, in particular, the geometries of complexes of neurotrophins and their receptors. The bioactive conformation of the Nerve Growth Factor (NGF) amino and carboxyl termini (Trk binding domain) was determined. The complex of the NGF termini splits into two distinct regions: a rigid region (residues 9-11 and 112'-118') and a flexible loop (residues 1-8), the geometry of the rigid region, which is maintained by electrostatic interaction between Glu¹¹ and Arg¹¹⁸, is conserved in active molecules only. The separation of the flexible loop from the rigid region is necessary in order to eliminate an influence of the loop on the biologically active conformation of the rigid region. The present invention also relates to a method for identifying and theoretically modelling specific receptor binding sites for Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF) on their receptors, TrkA and TrkB, respectively. The present invention also relates to a method for identifying and theoretically modelling a receptor binding site for neurotrophins, such as NGF, BDNF, NT-3, and NT-4/5, of the common neurotrophin receptor p75^{NTR}.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	. SG	Singapore		
							•
1							

MOLECULAR MODELLING OF NEUROTROPHIN-RECEPTOR BINDING

FIELD OF THE INVENTION

5

The present invention relates to a computational method for identifying minimum-energy structures in molecular systems, and more particularly for determining the bioactive conformations of peptide domains. The invention relates to determination of the bioactive conformations of the amino and carboxyl termini of Nerve Growth Factor (NGF) and analogues thereof, and the 3-dimensional structures of their complexes with the 24-amino acid second leucine-rich motif (LRM) of TrkA which represents the binding site for NGF. The invention further relates to the theoretically identified geometries of the TrkB and the p75^{NTR} receptor binding sites and to the mechanisms of neurotrophin binding.

BACKGROUND OF THE INVENTION

15

20

25

30

10

The neurotrophins are a family of structurally and functionally related proteins, including Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), Neurotrophin-4/5 (NT-4/5) and Neurotrophin-6 (NT-6). These proteins promote the survival and differentiation of diverse neuronal populations in both the peripheral and central nervous systems (Hefti, 1986; Hefti and Weiner, 1986; Levi-Montalcini, 1987; Barde, 1989; Leibrock et al., 1989; Maisonpierre et al., 1990; Rosenthal et al., 1990; Hohn et al., 1990; Gotz et al., 1994; Maness et al., 1994) and are involved in the pathogenesis of diverse neurological disorders. Neurotrophins exert certain of their biological effects through specific interactions with a class of transmembrane receptor tyrosine kinases (TrkA, TrkB and TrkC) (Kaplan et al., 1991; Klein et al., 1991, 1992; Soppet et al., 1991; Squinto et al., 1991; Berkemeier et al., 1991; Escandon et al., 1993; Lamballe et al., 1991). Specificity of neurotrophin action results from their selective interactions with Trk. That is, TrkA only binds NGF (Kaplan et al., 1991; Klein et al., 1991); TrkB binds BDNF, NT-3 and NT-4/5 (Soppet et al., 1991; Squinto et al., 1991; Berkemeier et al., 1991; Escandon et al., 1993; Lamballe et al., 1991; Klein et al., 1992; Vale and Shooter, 1985; Barbacid, 1993); and TrkC exclusively binds NT-3 (Lamballe et al., 1991; Vale and Shooter, 1985). This is particularly evident when the Trk receptors are coexpressed with the common neurotrophin receptor p75NTR (For review see Meakin and Shooter, 1992; Barbacid, 1993; Chao, 1994; Bradshaw et al., 1994; Ibáñez, 1995).

35

The common neurotrophin receptor p75^{NTR} is a transmembrane glycoprotein structurally related to the tumor necrosis factor and CD-40 receptors (Meakin and Shooter,

5

10

15

20

25

30

35

1992; Rydén and Ibáñez, 1996). As all neurotrophins bind to p75NTR with similar affinity (Rodriguez-Tébar et al., 1990; Hallböök et al., 1991; Rodriguez-Tébar et al., 1992; Ibáñez, 1995), neurotrophin specificity is conventionally thought to be caused by the binding selectivity for Trk receptors which are differentially expressed in different neuronal populations (Ibáñez, 1995). However, accumulated experimental data on neurotrophin activity reveal important functional aspects of p75NTR (Heldin et al., 1989; Jing et al., 1992; Herrmann, 1993; Barker and Shooter, 1994; Dobrowsky et al., 1994, Matsumoto et al., 1995; Marchetti et al., 1996; Washiyama et al., 1996). The common neurotrophin receptor enhances functions and increases binding specificity of Trk receptors (Barker and Shooter, 1994; Mahadeo et al., 1994; Chao and Hempstead, 1995; Rydén and Ibáñez, 1996). In addition, p75NTR possesses unique, Trk-independent signalling properties which involve ceramide production through activation of the sphingomyelin cycle (Dobrowsky et al., 1994), apoptosis (cell death) (Van der Zee et al., 1996; Cassacia-Bonnefil et al., 1996; Frade et al., 1996), and activation of the transcription factor NFkB (Carter et al., 1996). Recently, p75NTR has been demonstrated to participate in human melanoma progression (Herrmann et al., 1993; Marchetti et al., 1996). Furthermore, NGF and NT-3 increase the production of heparin by 70W melanoma cells, which is associated with their metastatic potential (Marchetti et al., 1996). Although this effect has been shown to be mediated by the common neurotrophin receptor, neither BDNF nor NT-4/5 appeared to be active. Explicit modelling of the various neurotrophin receptors will be critical to the rational design of neurotrophin-based drugs.

NGF displays high and low affinity binding sites in sensory and sympathetic neurons and in pheochromocytoma PC12 cells (Sutter *et al.*, 1979; Landreth and Shooter, 1980; Schechter and Bothwell, 1981). The coexpression of the common neurotrophin p75^{NTR} receptor with TrkA is required to form the high affinity binding site (Hempstead *et al.*, 1991; Barker and Shooter, 1994; Mahadeo *et al.*, 1994; Chao and Hempstead, 1995). Several models of the TrkA-p75^{NTR} interaction have been proposed to explain high affinity NGF binding (Bothwell, 1991; Chao, 1992b; Chao and Hempstead, 1995; Wolf *et al.*, 1995; Ross *et al.*, 1996; Ross *et al.*, 1997). These models differ with respect to direct (conformational model) or indirect (ligand-presentation model) interaction of p75^{NTR} with TrkA. Direct TrkA-p75^{NTR} interaction is consistent with much of the existing experimental data.

NGF, a 118 amino acid protein, is an extremely important neurotrophin, being implicated in the pathogenesis of Alzheimer's disease, epilepsy and pain (Ben and Represa, 1990; McKee et al., 1991; Leven and Mendel, 1993; Woolf and Doubell, 1994; Rashid et al., 1995; McMahon et al., 1995). The binding of NGF to its receptors is determined by distinct sequences within its primary amino acid structure. While several regions of NGF participate in the NGF/TrkA interaction, mutation studies suggest that relatively few key residues, namely

those located in the NGF amino and carboxyl termini, are required for high affinity binding.

The hairpin loop at residues 29-35 is responsible for recognition by p75^{NTR} (Ibáñez *et al.*, 1992; Radziejewski *et al.*, 1992), while the amino and carboxyl termini are important binding determinants for recognition by the TrkA receptor (Shih *et al.*, 1994; Moore and Shooter, 1975; Suter *et al.*, 1992; Burton *et al.*, 1995; Kahle *et al.*, 1992; Luo and Neet, 1992; Drinkwater *et al.*, 1993; Treanor *et al.*, 1995; Taylor *et al.*, 1991). Truncation of either the amino or carboxyl terminus of NGF produces less active NGF analogues; similarly most deletion or point mutations of the amino terminus also lead to NGF analogues with diminished activity (Shih *et al.*, 1994; Burton *et al.*, 1992, 1995; Kahle *et al.*, 1992; Drinkwater *et al.*, 1993; Treanor *et al.*, 1995; Taylor *et al.*, 1991). On the other hand, the NGFΔ2-8 (NGF with residues 2-8 removed) and NGFΔ3-9 deletion mutants are almost as active as wild type NGF (Drinkwater *et al.*, 1993). These NGF structure-activity relationships in combination with the considerable species variability (mouse, human, guinea pig and snake) of the amino acid sequence of the NGF termini (McDonald *et al.*, 1991) are of potential value in understanding the NGF/TrkA interaction.

NGF exerts its biological activity as a non-covalent dimer (Treanor *et al.*, 1995; Burton *et al.*, 1995; McDonald *et al.*, 1991; Ibáñez *et al.*, 1993; Bothwell and Shooter, 1977). Two 118 residue NGF monomers are dimerized by hydrophobic and van der Waals interactions between their three anti-parallel pairs of β-strands; consequently, the amino terminus of one NGF monomer and the carboxyl terminus of the other are spatially juxtaposed (McDonald *et al.*, 1991). Furthermore, although a dimer has 2 pairs of termini, only one pair of termini is required for TrkA receptor recognition (Treanor *et al.*, 1995; Burton *et al.*, 1995). Accordingly, solving the conformation of the complex formed by the amino terminus of one monomer and the carboxyl terminus of the other in dimeric NGF is of fundamental relevance to understanding the interaction of NGF with TrkA.

The X-ray crystallographic 3-dimensional structure of a dimeric mouse NGF (mNGF) has been reported recently (McDonald *et al.*, 1991). However, within this structure, the amino terminus (residues 1-11) and the carboxyl terminus (residues 112-118) remain unresolved for both pairs of termini. High flexibility of the NGF termini makes it difficult to *experimentally* determine their bioactive conformations, particularly since transition metal ions commonly used in X-ray crystallography (McDonald *et al.*, 1991) have high affinity for His residues (Gregory *et al.*, 1993) which are present in the NGF amino terminus (Bradshaw *et al.*, 1994). Indeed, conformational alterations in the receptor binding domains of NGF caused by Zn²⁺ cations leading to its inactivation have been described recently (Ross *et al.*, 1997). Since the amino and carboxyl termini are crucial for NGF bioactivity as mediated via TrkA and because of the significance of NGF in multiple neurologic disease processes, the determination of the

biologically active conformation of these termini is an important and challenging problem for computational chemistry.

5

10

15

20

25

30

35

In contrast with NGF, little is known about the BDNF binding determinant for TrkB activation. Although there were several attempts to identify structural elements of BDNF that determine its receptor specificity (Ibáñez et al., 1991, 1993, 1995; Suter et al., 1992; Ilag et al., 1994; Kullander and Ebendal, 1994; Urfer et al., 1994; Lai et al., 1996), the results of mutational experiments are still controversial. Thus, the reported importance of residues 40-49 (variable loop region II) for TrkB related activity of BDNF (Ibáñez et al., 1991; llag et al., 1994) has not been confirmed by recent studies (Lai et al., 1996), in which it has also been shown that the key residues of the TrkB receptor binding domain of BDNF are situated between residues 80 and 109. The latter result is consistent with earlier observations that the BDNF termini are not involved in TrkB binding and that the key residues of the BDNF binding epitope are Arg⁸¹ and Gln⁸⁴ (Ibáñez et al., 1993). In addition, it has been found that receptor binding domains of BDNF and NT-3 are located in the same regions of the molecules, i.e. in their "waist" parts (Ibáñez et al., 1993; Urfer et al., 1994). As far as the NT-3 receptor binding domain is concerned, detailed mutational studies carried out by Urfer et al. (1994) revealed that it comprises a surface that includes major parts of the central β-strand stem, with the most important residues being Arg¹⁰³, Thr²², Glu⁵⁴, Arg⁵⁶, Lys⁸⁰ and Gln⁸³. These residues correspond to Arg¹⁰⁴, Thr²¹, Glu⁵⁵, Lys⁵⁷, Arg⁸¹ and Gln⁸⁴ of BDNF, respectively (McDonald et al., 1991).

The location of the neurotrophin binding sites within the Trk receptors is the subject of debate (MacDonald and Meakin, 1996). Published data indicate the existence of two putative neurotrophin binding sites of Trk proteins: the "second immunoglobulin-like domain" (residues Trp^{299t}-Asn^{365t}, denoted IgC2) and the "second leucine-rich motif" (LRM-2A and LRM-2B, residues Thr⁹⁷-Leu¹²⁰ of TrkA and TrkB, respectively) (Schneider and Schweiger, 1991; Kullander and Ebendal, 1994; Pérez et al., 1995; Urfer et al., 1995; Windisch et al., 1995a, 1995b, 1995c; MacDonald and Meakin, 1996; Rydén and Ibáñez, 1996).

p75^{NTR} belongs to a family of cell surface proteins that share a common pattern of four repeated cysteine-rich domains (CRDs) in the extracellular portion (Yan and Chao, 1991; Baldwin and Shooter, 1994). X-ray crystallographic studies on the extracellular portion of the related protein p55^{TNFR} revealed that CRDs fold independently of each other, and three conserved disulfide bonds maintain a specific geometry of each CRD which consists of two loops (Banner *et al.*, 1993) (loops A and B, Fig. 1a). Very little is known about the p75^{NTR} receptor functional epitope and, particularly, about residues directly participating in molecular recognition processes. All four CRD repeats of p75^{NTR} are found to be required for binding, with the second CRD being most important (Baldwin and Shooter, 1995). Residue Ser⁵⁰ of

p75^{NTR} seems to be essential for NGF binding (Baldwin and Shooter, 1995).

5

10

15

20

25

30

35

The results of site-directed mutagenesis suggest that the p75^{NTR} receptor binding domains within neurotrophins are juxtaposed positively charged residues located in two adjacent hairpin loops which represent variable region I (residues 23-35) and V (residues 93-98) (Ibáñez *et al.*, 1992; Rydén *et al.*, 1995; Ibáñez, 1994; Ibáñez, 1995; Rydén and Ibáñez, 1996) (Fig. 1c). In NGF, residues Lys³², Lys³⁴, and Lys⁹⁵ have been found to be involved in p75^{NTR} receptor binding, with Lys³² making the strongest contact, followed by Lys³⁴ and Lys⁹⁵. In addition, some role of Asp³⁰, Glu³⁵, Arg¹⁰³, Arg¹⁰⁰, Lys⁸⁸, and Ile³¹ in p75^{NTR} binding and biological activity has been demonstrated (Ibáñez *et al.*, 1992; Ibáñez, 1994). Two residues of variable region I, namely Arg³¹ and His³³, have been demonstrated to be essential for binding of NT-3 to p75^{NTR}, whereas similarly located Arg³⁴ and Arg³⁶ mediate binding of NT-4/5 (Rydén *et al.*, 1995). In contrast to NGF, a positively charged residue in variable region V is not critical for binding of NT-3 or NT-4/5 to p75^{NTR} (Rydén *et al.*, 1995). In BDNF, however, only residues of variable region V, Lys⁹⁵, Lys⁹⁶ and Arg⁹⁷, bind to p75^{NTR} and compensate for the lack of positively charged residues in variable loop region I (Rydén *et al.*, 1995).

Therefore, it is an object of the invention to establish explicit atom-level models of the Trk and p75^{NTR} recognition sites for neurotrophins.

It is a further object of the invention to provide atom-level models of the mechanism of interaction of neurotrophins and their receptors.

SUMMARY OF THE INVENTION

The inventors describe a method of characterizing the interaction between non-contiguous domains of a ligand and its receptor. The specific examples of the method described in detail below concern the interaction of nerve growth factor (NGF) with its TrkA receptor binding site, brain-derived neurotrophic factor (BDNF) with its TrkB receptor binding site, and the interaction of the neurotrophins (e.g., NGF, BDNF, NT-3, and NT-4/5) with the neurotrophin binding site of the common neurotrophin receptor p75^{NTR}.

In one aspect of the invention there is provided a variable basis Monte-Carlo (VBMC) simulated annealing method for identifying an optimal structure in a molecular system. The method comprises:

- (a) providing a Markov chain with an initial basis set of N configurational variables which define a structure for said molecular system;
- (b) translating the N configurational variables simultaneously along a basis vector to produce a new structure for the molecular system, wherein magnitude of translation is chosen randomly within a preselected range;

(c) calculating potential energy of the new state of the molecular system;

- (d) deciding whether to accept or reject the new structure using an effective temperature dependent transition function, and if the new structure is accepted, replacing the current structure with the accepted structure;
- (e) repeating steps (b) to (d), each repetition having a new basis vector, for a preselected first number of repetitions at a preselected upper temperature; then
 - (f) decreasing temperature according to a preselected cooling schedule;
- (g) repeating steps (b) to (d) and (f), each repetition having a new basis vector, for a preselected second number of repetitions; then
 - (h) storing current structure of the molecular system;

5

10

15

20

25

30

35

- (I) repeating steps (g) and (h) until a preselected number of stored structures have been accumulated; then
- (j) rotating the basis set of configurational variables according to an effective distribution of the accumulated structures so that basis vectors are directed along low-energy valleys of a potential energy hypersurface thereby accelerating conformational motions and structural transitions of the molecular system, and erasing accumulated structures from steps (h) and (l);
- (k) repeating steps (l) and (j) until, after an effective third number of repetitions, a preselected lower temperature limit is reached, thereby producing an unrefined global minimum structure; and
- (i) refining the global energy minimum structure so that at least one local minimum on the potential energy hypersurface is identified.

The present invention also provides a method of identifying structures of a peptide domain of a neurotrophin to bind with a binding site of a receptor. The method comprises providing a plurality of neurotrophin analogues wherein at least one of neurotrophin analogue binds the receptor, identifying an optimal or near-optimal structure for respective peptide domains of the neurotrophin analogues that bind the receptor by applying a preselected number of the variable basis Monte-Carlo (VBMC) annealing simulations described above to each of the respective peptide domains to identify minimum or near-minimum energy structures for the peptide domains, and comparing said minimum or near-minimum energy structures to identify common structural features shared by neurotrophin analogues exhibiting receptor mediated activity.

The step of providing neurotrophin analogues may include providing wild-type neurotrophin analogues or mutants thereof.

The present invention also provides a method of identifying structures of a domain of a ligand to bind with a binding site of a receptor, comprising providing a plurality of ligand

analogues wherein at least one ligand analogue binds the receptor, identifying an optimal or near-optimal structure for respective domains of the ligand analogues that bind the receptor by applying a preselected number of the variable basis Monte-Carlo (VBMC) annealing simulations described above to each of the respective domains to identify minimum or near-minimum energy structures for the domains; and comparing said minimum or near-minimum energy structures to identify common structural features shared by ligands exhibiting receptor mediated activity.

5

10

15

20

25

30

35

As would be apparent to a person skilled in the art, methods of the present invention are not limited to neurotrophin-receptor interactions, but are applicable to the characterization of other ligand-receptor interactions. That is, an array of ligands that are either known to interact with a specific receptor or are candidate ligands that may potentially interact with this receptor may be computationally analyzed to identify optimal or near-optimal structures that provide the desired interaction. In some embodiments of the invention, the ligand may have a peptide domain, e.g., the ligand may be a peptide hormone, such as insulin, prolactin, or growth hormone. In some embodiments, the ligands or candidate ligands under study may be native ligands, mutants of native ligands, or isosteres of native ligands. They may be structurally different but have similar binding activity or functional effect(s). The optimal or near-optimal structure identified may act as an agonist or antagonist. "Isosteric" is an art-recognized term and, for purposes of this disclosure, a first moiety is "isosteric" to a second when they have similar molecular topography and functionality. This term should not, therefore, be restricted to mere similarity in chemical bond configuration. Two compounds may have different chemical bond configurations but nonetheless be isosteric due their 3-dimensional similarity of form and chemical nature, e.g. relevant centers such as heteroatoms are located in the same position, charges and/or dipoles are comparable, and the like.

The present invention provides a ligand for binding with TrkA, wherein TrkA comprises a leucine rich motif (LRM) comprising amino acid residues 93 to 117, the coordinates of the residues of said LRM given in Appendix 1, said LRM motif having five binding areas, area A comprising amino acid residue Phe^{105tA} capable of hydrophobic bonding, area B comprising residues Phe^{111tA}, Phe^{113tA}, and Thr^{114tA} capable of hydrophobic bonding, area C comprising residues Asp^{109tA} and His^{112tA} capable of ionic interaction, area D comprising residue Lys^{100tA} capable of ionic interaction, and area E comprising residues Asn^{95tA} to Ile^{98tA} capable of multiple parallel β-strand type hydrogen bonding. The ligand includes at least three moieties each comprising effective atomic elements having spatial occupancy, relative atomic position, bond type and charge to define a three dimensional conformation of said ligand so that a first moiety can bind with a first binding area, a second moiety can bind with a second binding

area, and a third moiety can bind with a third binding area.

Put another way, the ligand comprises at least three moieties effectively spaced relative to each other so that a first moiety can bind with a first binding area, a second moiety can bind with a second binding area, and a third moiety can bind with a third binding area. More specifically, the ligand comprises at least one moiety being capable of hydrophobic bonding and being present in an effective position in the ligand to hydrophobically bind to area A, at least one positively charged moiety being present in an effective position in said ligand to ionically bind to area C, and at least one negatively charged moiety being present in an effective position in said ligand to ionically bind to area D.

The present invention also provides a method of designing a ligand to bind with an LRM of TrkA. The method comprises providing a template of said LRM of TrkA, said LRM comprising amino acid residue sequence 93 to 117 inclusive, said amino acid residues having spatial Cartesian coordinates given in Appendix 1 wherein binding area A in the sequence comprises residue Phe^{105tA} capable of hydrophobic bonding, binding area B comprises residues Phe^{111tA}, Phe^{113tA}, Thr^{114tA} capable of hydrophobic bonding, binding area C comprises residues Asp^{109tA} and His^{112tA} capable of ionic interaction, binding area D comprises Lys^{100tA} capable of ionic interactions, and binding area E comprises residues Asn^{95tA} to Ile^{98tA} capable of multiple parallel β-strand type hydrogen bonding and computationally evolving a chemical ligand using any effective algorithm with preselected spatial constraints so that said evolved ligand comprises at least three effective moieties of suitable identity and spatially located relative to each other in the ligand so that a first of the moieties hydrophobically interacts with binding area A, a second of the moieties ionically interacts with binding area C, and a third of the moieties ionically interacts with binding area D of the LRM of TrkA. The algorithm may be a genetic algorithm and the LRM may be the second LRM of a plurality of LRMs.

The invention further provides a method of designing a ligand to bind with an LRM of TrkA, comprising providing a template of said LRM of TrkA, said LRM comprising amino acid residue sequence 93 to 117 inclusive, the amino acid residues having spatial Cartesian coordinates given in Appendix 1 wherein binding area A comprises Phe^{105tA} capable of hydrophobic bonding, binding area B comprises Phe^{111tA}, Phe^{113tA}, Thr^{114tA} capable of hydrophobic bonding, binding area C comprises Asp^{109tA} and His^{112tA} capable of ionic interaction, binding area D comprises Lys^{100tA} capable of ionic interaction, and binding area E comprises Asn^{95tA} to Ile^{96tA} capable of hydrogen bonding. The method comprises computationally evolving a ligand using an effective algorithm so that said evolved ligand comprises at least three effective moieties located relative to each other in the ligand so that a first moiety can bind with a first of the five binding areas, a second moiety can bind with a second of the five binding areas, and a third moiety can bind with a third of the binding areas.

In another aspect the invention provides a ligand for binding with TrkB, wherein TrkB comprises a leucine-rich motif (LRM) comprising amino acid residues 93 to 117, the coordinates of the residues of said LRM given in Appendix 2, said LRM having five binding areas, binding area F comprising amino acid residue Asp^{1001B} capable of ionic interaction, binding area G comprising amino acid residue Lys^{1091B} capable of ionic interaction, binding area H comprising amino acid residues Lys^{1131B} capable of ionic interaction, binding area I comprising amino acid residue Arg^{941B} capable of ionic interaction, and binding area K comprising amino acid residue Lys^{1041B} capable of hydrogen bonding or ionic interaction. The ligand comprises at least three moieties effectively spaced relative to each other so that a first moiety can bind with a first binding area, a second moiety can bind with a second binding area, and a third moiety can bind with a third binding area.

The present invention provides a method of designing a ligand to bind with TrkB, wherein TrkB comprises a leucine-rich motif (LRM) comprising amino acid residues 93 to 117, the coordinates of the residues of said LRM given in Appendix 2, said LRM having five binding areas, binding area F comprising amino acid residue Asp^{1001B} capable of ionic interaction, binding area G comprising amino acid residue Lys^{1031B} capable of ionic interaction, binding area I comprising amino acid residue Arg^{941B} capable of ionic interaction, and binding area K comprising amino acid residue Arg^{941B} capable of hydrogen bonding or ionic interaction. The method comprises computationally evolving a ligand using an effective algorithm so that the evolved ligand comprises at least three effective moieties located relative to each other in the ligand so that a first moiety can bind with a first of said five binding areas, a second moiety can bind with a second of said five binding areas, and a third moiety can bind with a third of the binding areas. The algorithm may be a genetic algorithm.

The invention also provides a ligand for binding with the common neurotrophin receptor p75^{NTR}, wherein p75^{NTR} comprises a binding site including amino acid residues Cys^{39p} to Cys^{94p} inclusive, said residues of said binding site having spatial coordinates given in Appendix 3, said binding site having three binding areas including binding loop 2A comprising region Cys^{39p} to Cys^{58p} capable of attractive electrostatic interactions, binding loop 2B comprising region Cys^{58p} to Cys^{79p} capable of attractive electrostatic interactions, and binding loop 3A comprising region Cys^{79p} to Cys^{94p} capable of attractive electrostatic interactions. The ligand comprises at least two moieties effectively spaced relative to each other so that a first moiety can bind to a first loop and a second moiety can bind to a second loop.

The present invention also provides a method of designing a ligand for binding with the common neurotrophin receptor p75^{NTR}, wherein p75^{NTR} comprises a binding site including amino acid residues Cys^{39p} to Cys^{94p} inclusive. The residues of the binding site have spatial

coordinates given in Appendix 3. The binding site has three binding areas including binding loop 2A comprising region Cys^{39p} to Cys^{58p} capable of attractive electrostatic interaction, binding loop 2B comprising region Cys^{58p} to Cys^{79p} capable of attractive electrostatic interaction, and binding loop 3A comprising region Cys^{79p} to Cys^{94p} capable of attractive electrostatic interaction. The method comprises computationally evolving a ligand using an effective algorithm so that the evolved ligand comprises at least two effective moieties located relative to each other in the ligand so that a first moiety can bind to a first of the three loops and a second moiety can bind to a second loop of the three loops.

The invention provides a method of identifying a ligand to bind with a leucine rich motif (LRM) of TrkA. The method comprises providing a three dimensional conformation for the LRM. The LRM comprises amino acid residue sequence 93 to 117 inclusive, the amino acid residues having spatial Cartesian coordinates given in Appendix 1. The LRM has five binding areas, area A comprising amino acid residue Phe^{105tA} capable of hydrophobic interaction, area B comprising amino acid residues Phe^{111tA}, Phe^{113tA}, and Thr^{114tA} capable of hydrophobic interaction, area C comprising amino acid residues Asp^{105tA} and His^{112tA} capable of ionic interaction, area D comprising amino acid residue Lys^{100tA} capable of ionic interaction, and area E comprising Asn^{95tA} to Ile^{98tA} capable of multiple parallel β-strand type hydrogen bonding. The method includes providing a data base containing molecules coded for spatial occupancy, relative atomic position, bond type and/or charge; and screening the data base to select those molecules comprising moieties having a three dimensional conformation and effective charge that can bind with at least three of the five binding areas.

The invention provides a method of identifying a ligand to bind with a leucine rich motif (LRM) of TrkB. The method comprises providing a three dimensional conformation for the LRM. The LRM comprises amino acid residues 93 to 117, the coordinates of the residues of the LRM are given in Appendix 2, the LRM having five binding areas, binding area F comprising amino acid residue Asp¹⁰⁰¹⁸ capable of ionic interaction, binding area H comprising amino acid residue Lys¹⁰⁹¹⁸ capable of ionic interaction, binding area H comprising amino acid residue Arg⁹⁴¹⁸ capable of ionic interaction, binding area I comprising amino acid residue Arg⁹⁴¹⁸ capable of ionic interaction, and binding area K comprising amino acid residue Lys¹⁰⁴¹⁸ capable of hydrogen bonding or ionic interaction. The method includes providing a data base containing molecules coded for spatial occupancy, relative atomic position, bond type and/or charge; and screening the data base to select those molecules comprising moieties having a three dimensional conformation and effective charge that can bind with at least three of the five binding areas.

The present invention also provides a method of identifying a ligand to bind with common neurotrophin receptor p75^{NTR}. The method comprises providing a three dimensional

conformation for the common neurotrophin receptor p75^{NTR}, wherein p75^{NTR} comprises a binding site including amino acid residues Cys^{39p} to Cys^{94p} inclusive. The residues of the binding site have spatial coordinates given in Appendix 3, the binding site having three binding areas including binding loop 2A comprising region Cys^{39p} to Cys^{58p} capable of attractive electrostatic interaction, binding loop 2B comprising region Cys^{58p} to Cys^{79p} capable of attractive electrostatic interaction, and binding loop 3A comprising region Cys^{79p} to Cys^{94p} capable of attractive electrostatic interaction. The method includes providing a data base containing molecules coded for spatial occupancy, relative atomic position, bond type and/or charge; and screening the data base to select those molecules comprising moieties that can bind with at least two of the three binding loops.

In one aspect of the invention, a ligand (e.g., small molecule) designed to interact with a receptor such as Trk or p75NTR may be bifunctional, such that a first portion of the ligand binds to one receptor monomer and a second portion of the ligand binds to a second receptor monomer. Thus, a receptor dimer is effectively cross-linked by the interaction of ligand with both receptor monomers.

According to the invention, detailed information is provided regarding those amino acid residues of neurotrophins and of neutrophin receptors which are involved in neurotrophin-receptor binding. Such information includes the bioactive conformations of the respective peptide domains of the neurotrophins and receptors. This in turn permits the design of small molecules which interact with said amino acid residues or domains. Where such interaction block the residues or changes the conformation of the domain, the small molecule can inhibit neurotrophin-receptor binding, in certain cases abolishing it completely. As would be appreciated by a person skilled in the art, small molecule design according to this aspect of the invention is applicable to other ligand-receptor interactions in addition to neurotrophins, according to the methods disclosed herein.

As a person skilled in the art would appreciate, the invention not only provides molecules (ligands) that interact with receptors, but also molecules which, in their mimicry of a receptor's bioactive conformation, can bind to the receptor binding site of a ligand such as, for example, a neurotrophin. Such molecules, whether they interact with ligand or with receptor, can block native ligand-receptor interaction. In some embodiments of the invention, a small molecule which binds to a receptor may even trigger signal transduction similar to that of the native ligand, i.e., act as an agonist.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described, by example only, reference being had to the accompanying drawings, in which:

5

10

15

20

25

30

35

Figure 1 shows the amino acid sequences of the conformationally variable termini of the dimeric NGF analogues under study. The residues are numbered from 1 to 118 for the first monomer, and from 1' to 118' for the second monomer. The fixed parts of the proteins simulated by the X-ray geometry of mouse NGF (McDonald *et al.*, 1991) are underlined.

Figure 2 shows the structure of the complex of the amino and carboxyl termini of (1-118)hNGF homodimer. The carboxyl terminus is shown in grey, the amino terminus in white, and the interacting conservative region His⁷⁵ -Asn⁷⁷ of the "south" part of the NGF dimer, in black.

Figure 3 shows the structure of the complex of the amino and carboxyl termini of (1-118)mNGF homodimer.

Figure 4 shows the structure of the complex of the amino and carboxyl termini of dimeric mNGF Δ 3-9 molecule.

Figure 5 shows the structure of the complex of the amino and carboxyl termini of dimeric hNGF-H4D molecule.

Figure 6 shows the structure of the complex of the amino and carboxyl termini of dimeric mNGF Δ 1-8 molecule.

Figure 7 shows the structure of the complex of the amino and carboxyl termini of BDNF homodimer.

Figure 8 illustrates the TrkA leucine-rich motifs. Locations of parallel β-strands are illustrated by the shaded areas designated by symbol β. Fragments B1-B4 demonstrate NGF binding affinity, while N1-N4 do not (Windisch *et al.*, 1995a, 1995b).

Figure 9 shows sequences of the amino and carboxyl termini of fully active NGF analogues. Regions with rigid structures are underlined.

Figure 10 shows the predicted bioactive conformation of the NGF binding domain (a) and the structures of the NGF/LRM-2A complexes of hNGF (b), mNGF (c), mNGFΔ3-9 (d), and hNGF:NT-4/5 (e). Only residues essential for discussion are designated. A, B, C, D and E represent specific NGF/LRM-2A binding areas. The LRM-2A is illustrated in grey, NGF in white.

Figure 11 shows the TrkB receptor binding site of BDNF (a), predicted features of the BDNF/LRM-2B complex (b), and geometry of the "improper" NGF/LRM-2B complex (c). Only residues essential for discussion are designated. F, G, H, I and K represent specific BDNF/LRM-2B binding areas. The LRM-2B is illustrated in grey, BDNF and NGF in white.

Figure 12 is a detail of the LRM-2A conformation when bound to hNGF. The three groups of the β -strand involved in H-bonding with the parallel β -strand motif of the NGF analogues are designated by NH or CO. Hydrophobic residues are illustrated as light, polar uncharged as dark, charged as black.

5

Figure 13 presents principal residues of the NGF binding domain essential for TrkA receptor recognition. Conserved residues of NGF molecules among all characterized species (McDonald *et al.*, 1991) are designated by X, whereas those which are substituted in NGF molecules derived from different species by similar amino acids and NGF residues maintaining the bioactive conformation or interacting with specific binding areas A-E of the LRM-2A are indicated by X.

10

Figure 14 presents principal residues of the LRM-2A. The residues which are specific for TrkA (Windisch *et al.*, 1995a, 1995b) and critical for the present model are designated by X and \underline{X} , respectively.

15

Figure 15 is a schematic representation of the second leucine-rich motif of TrkA (residues 93tA to 116tA) (a) and TrkB (residues 93tB to 116tB) (b) as specific binding sites for NGF and BDNF, respectively. General consensus residues are shaded. Arrows designate distinct positions essential for molecular recognition processes.

20

Figure 16 represents the X-ray crystallography-derived geometry of the α-carbon trace of the two loops (2A and 2B) of the second cysteine-rich domain (white bonds) and the first loop (3A) of the third cysteine-rich domain (grey bonds) of p55^{TNFR} (Banner *et al.*, 1993) (a), the preferred geometry of the α-carbon trace of the corresponding fragment of p75^{NTR} (b), and the predicted bioactive conformation of mouse NGF (McDonald *et al.*, 1991); (c). White and grey bonds in panel (c) illustrate different protomers. The p75^{NTR} binding determinant of NGF (loops I and V) is denoted. Disulfide bonds are shown in black.

25

Figure 17 shows the sequence of a putative binding site for neurotrophins within p75^{NTR} aligned with the corresponding sequence of homologous p55^{TNFR}. Conserved pattern of disulfide bonds is illustrated. Abbreviation (h) stands for human (Johnson *et al.*, 1986), (r) for rat (Radeke *et al.*, 1987), and (c) for chicken (Large *et al.*, 1989) p75^{NTR}.

30

Figure 18 illustrates the most stable geometries of the complexes of the neurotrophins with the common neurotrophin receptor p75^{NTR}: with NGF (a); with BDNF (b); with NT-3 (c); with NT-4/5 (d). The α -carbon traces of the neurotrophins are shown in white, while that of the p75^{NTR} binding site is shown in grey. Disulfide bonds are illustrated in black. Only residues mentioned in the text are denoted.

35

Figure 19 demonstrates geometric compatibility of the van der Waals surfaces of BDNF (light) and the p75^{NTR} binding site (dark).

Figure 20 illustrates conformational changes of the p75NTR binding site upon BDNF

binding. Conformation of the p75^{NTR} receptor binding site before binding is illustrated in white, after binding in grey. The two conformations have been superimposed using the equilibrium positions of the reference α -carbon atoms located in loops 2A and 3A. Straight lines denote linear approximations of the conformations of the α -carbon traces of loop 2B in both structures.

DETAILED DESCRIPTION OF THE INVENTION

PART A

THEORETICAL STUDIES OF THE BIOACTIVE CONFORMATION OF NERVE GROWTH
FACTOR USING VBMC - A NOVEL VARIABLE BASIS MONTE-CARLO SIMULATED
ANNEALING ALGORITHM FOR PEPTIDES

BACKGROUND TO THE VBMC ALGORITHM

5

10

15

20

25

30

35

The structural optimization of the peptide domains under study required a rigorous search of conformational space. As with other theoretical peptide studies, such calculations are plagued by a multiple-minima problem (Gibson and Scheraga, 1988) which traditionally is addressed using either molecular dynamics, Monte Carlo approaches or other algorithms. The Monte Carlo method, although exceedingly powerful, is limited by the excessive CPU time requirements on existing computers. To remedy this problem, we have devised a novel

Variable Basis Monte Carlo simulated annealing algorithm for peptides (VBMC).

The potential energy hypersurface of a peptide has an enormous number of local minima (Gibson and Scheraga, 1988; Piela *et al.*, 1989, 1994), but usually only the global energy minimum structure is required. Despite efforts to elaborate an efficient method of global energy minimization (Gibson and Scheraga, 1988; Judson *et al.*, 1994), the multiple-minima problem is far from being solved. Although simulated annealing (Kirkpatrick *et al.*, 1983; Vanderbilt *et al.*, 1984) is mathematically correct and guarantees convergence to the global minimum in principle, the suggested "cooling" schedule appears to be far too slow for practical purposes, and faster "cooling" has to be used (Gidas, 1985; Kushner, 1987). Within the simulated annealing approach, thermal molecular motion can be simulated either by Monte Carlo (Kirkpatrick *et al.*, 1983; Nayeem *et al.*, 1991; Wilson *et al.*, 1988; Snow, 1992; Shamovsky *et al.*, 1992) or molecular dynamics (Lelj *et al.*, 1991; Villani and Tamburro, 1994) methods.

The major problem of the Monte Carlo technique is that motion of a molecular system along a Markov chain is very slow (Piela et al., 1994; Scheraga, 1989; Nayeem et al., 1991). On the other hand, the Monte Carlo technique has several considerable advantages over

molecular dynamics. First, it does not require calculating forces. Second, potential energy functions do not have to be continuous. Third, much larger steps in conformational space can be utilized (Li and Scheraga, 1988; Kincaid and Scheraga, 1982). Fourth, the additional iterative self-consistent SHAKE routine (Ryckaert *et al.*, 1977), which is used in molecular dynamics simulations to deal with holonomic constraints (Brooks III and Case, 1993), is not required in the Monte Carlo method. This has led to efforts to accelerate configurational motion within the Monte Carlo approach (Raj *et al.*, 1994; Snow, 1992; Kincaid and Scheraga, 1982; Rao *et al.*, 1979; Rossky *et al.*, 1978). The main reason for inefficiency with the conventional Monte Carlo method (Metropolis *et al.*, 1953) is a slow and cumbersome sequential change of configurational variables.

5

10

15

20

25

30

To overcome these problems, lessons can be learned from molecular dynamics. In molecular dynamics (Allen and Tildesley, 1987) configurational variables move simultaneously, and the soft modes of the system explicitly direct these motions. Soft modes are defined as low-energy valleys on the potential energy hypersurface. Although there have been attempts to direct Monte Carlo configurational motion along the soft modes (Raj *et al.*, 1994; Rao *et al.*, 1979; Rossky *et al.*, 1978), these improvements require calculating forces and, consequently, result in losing the main advantages of the Monte Carlo approach. An algorithm which would retain the advantages of the Monte Carlo method and direct configurational changes along the soft modes is thus required. One possible solution has recently been suggested (Szentpaly *et al.*, 1994).

The classical Monte Carlo-Metropolis method (Metropolis *et al.*, 1953) consists of modelling a Markov chain containing subsequent conformations of the molecule under study: $\mathbf{x}_0, \ \mathbf{x}_1, \ \mathbf{x}_2, \dots, \ \mathbf{x}_i, \dots, \ \text{where} \ \mathbf{x} \ (\mathbf{x}_i = \{\mathbf{x}_i^1 \dots \mathbf{x}_i^m \dots \mathbf{x}_i^N\})$ is the vector of independent structural parameters. Each vector \mathbf{x}_{i+1} is derived from the preceding one, \mathbf{x}_i , by means of a random change of one randomly chosen variable:

$$x_{i+1}^{m} = x_i^{m} + \lambda_m \cdot \xi \tag{1}$$

where ξ is a random quantity from the interval (-1,1) and λ_m is a maximal allowed increment of the given variable. N moves of the Markov chain (where N is the number of independent parameters) represent a Monte Carlo step. Whether the new state \mathbf{x}_{i+1} is accepted or rejected is decided according to a transition probability function. The following functional form of transition probability is used in the present expression (2) (Gunningham and Meijer, 1976):

35
$$W(x_i \Rightarrow x_{i+1}) = 1/[1 + \exp(\Delta E_i/kT)]$$
 (2)

where ΔE_i is the difference between conformational energies of the states x_{i+1} and x_i , k is the Boltzmann constant and T is absolute temperature.

Those skilled in the art will appreciate that other functional forms of transition functions may be used to screen state a new state x_{i+1} . For example, another effective temperature dependent transition function for screening a new state x_{i+1} derived from a previous state x_i is given by:

5

10

15

20

25

30

35

$$W(\mathbf{x}_{i} \Rightarrow \mathbf{x}_{i+1}) = 1, \qquad \text{if } E(\mathbf{x}_{i+1}) \leq E(W(\mathbf{x}_{i}))$$
$$= \exp(-\Delta E_{i}/kT), \qquad \text{if } E(\mathbf{x}_{i+1}) \geq E(W(\mathbf{x}_{i}))$$

where ΔE_i is the difference between conformational energies of the states x_{i+1} and x_i , k is the Boltzmann constant and T is absolute temperature.

The direct application of this conventional Monte Carlo technique to the conformational space study of protein structure is not efficient because the conformational variables of peptide chains appear to be mutually dependent, i.e., low-energy conformational motions involve several conformational variables. When applied to molecular systems such as protein secondary, tertiary or quaternary structure, equation (1), in which structural parameters are sequentially changed one after another, results in very small values of ξ and, consequently, in a very slow conformational motion (Piela *et al.*, 1994; Scheraga, 1989; Nayeem *et al.*, 1991). In order to model a *simultaneous* change of the structural parameters, we have used Eq.(3) (instead of the conventional (1)),

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \lambda_m \cdot \xi \cdot \mathbf{g}^m \tag{3}$$

where g^m is a randomly or sequentially chosen *basis vector* from a basis $G=\{g^m\}$, ξ is a random quantity from an interval (-1,1) and λ_m is a maximal acceptable move in direction g^m . In this study λ_m was constant and equal to 10°.

A basis G is formed from linear combinations of independent conformational parameters x for their change to be realized *along the soft modes* of the molecule. These modes are revealed by dispersion analysis of the distribution of the sequential configurational points of the Markov chain. The soft modes of the molecular system are to be directed along the axes of the dispersion ellipsoid because they should correspond to the directions of maximal deviations made by the independent variables during a certain period of simulation. Initially, basis G coincides with a unit matrix, i.e., G = I, and Eq.(3) is equivalent to (1). The rotation of basis G is carried out after every 150 Monte Carlo steps based on the particular scattering of the previous 150 configurations x. Basis vectors g^m are made equal to the eigenvectors of the covariant matrix D which has the following elements:

$$d_{ij} = (1/M) \cdot \sum_{n=1}^{M} (x_n^i - (1/M) \cdot \sum_{n=1}^{M} x_n^i) \cdot (x_n^j - (1/M) \cdot \sum_{n=1}^{M} x_n^j)$$
 (4)

where M is the number of points in the distribution (M=150), and x_n^i is the i-th structural parameter at the n-th Monte Carlo step. Vectors g^m form the orthonormalized basis and are used in the Markov chain instead of independent conformational parameters. Periodic rotations of basis G in Monte Carlo simulations result in a simultaneous change of all the conformational variables along the valleys of a potential energy surface, which considerably accelerates conformational motions and transitions (Szentpaly *et al.*, 1994).

The method disclosed herein is highly advantageous over known processes for several reasons. In the present process the preselected range from which the magnitude of translation is chosen is constant and does not depend on the basis set. Thus the present method is much more efficient than previous methods in part because the magnitude of translation along the basis vector is limited by a preselected range. The present method is also more efficient because rotation of the basis set of configurational variables is avoided at the upper temperatures and is implemented only at the lower temperatures.

IMPLEMENTATION OF THE VBMC ALGORITHM

5

10

15

20

25

30

35

VBMC was written in Fortran-77. The algorithm was then interfaced with the CHARMM force field (Brooks *et al.*, 1983; The force field parameters are extracted from CHARMM release 23.1, Molecular Simulations, Inc., Waltham, MA). Torsional distortion, van der Waals and electrostatic interactions, and hydrogen bonding were thus explicitly considered. The united atom approach was used for all carbons with non-polar hydrogens. Point atomic charges of Weiner *et al.* (Weiner *et al.*, 1984) were used. A dielectric constant equal to the interatomic separation in angstroms was utilized to implicitly simulate solvation effects (Weiner *et al.*, 1984). All calculations were performed on an 8-node IBM Scalable POWERparallel 2 [SP2] high performance computer at Queen's University, Kingston, Canada. Each Monte Carlo simulated annealing computation required up to 120 hours of CPU time.

Appendix 4 is attached. Appendix 4 is a computer program written in Fortran-77 and is a non-limiting example of a program used to perform the VBMC simulated annealing method in accordance with the present invention.

Each run of the VBMC algorithm provides a unique final structure which would represent the global energy minimum structure, regardless of the initial geometry, if the "cooling" was performed infinitely slowly. However, since this is impossible, several Monte Carlo simulated annealing computations must be performed from different starting points \mathbf{x}_0 , using different initial temperatures \mathbf{T}_0 , "cooling" schedules and random sequences. An initial temperature of 1000° K is sufficient. The Markov chain is kept at a constant temperature \mathbf{T}_0

for 10⁴ Monte Carlo steps before the initiation of "cooling". The temperature **T** is then decreased at every Monte Carlo move (3) by a small increment such that after 2·10⁴ Monte Carlo steps it reaches 120° K producing an unrefined global energy minimum structure.

The global energy minimum structure is then refined to identify the nearest local minimum or stationary point on the potential energy hypersurface. Refinement may be accomplished using any one of several non-linear minimization routines to identify the local minimum on the potential energy hypersurface. For example, gradient descent minimization and conjugate gradient minimization may be used. Quasi-Newton minimization methods such as the Newton-Raphson method may also be used. Other non-linear methods include the Marquardt method, the Powell method and a variable metric method. Those skilled in the art will be aware of the various non-linear routines which may be used for refinement and those mentioned herein are more fully described in *Nonlinear Programming: Theory, Algorithms, and Applications.* 1983. New York: John Wiley & Sons.

APPLYING VBMC TO NGF

ð

5

10

15

20

25

30

35

The aim of this computational study was to ascertain the biologically active conformation of the TrkA receptor binding determinant of NGF. A comprehensive review of the literature identified an initial study set of 17 proteins which have been assessed for TrkA mediated activity using comparable experimental methods. From these 17 analogues, a subset of six (three active and three inactive) which reflects the range of structural diversity was selected for preliminary study. Accordingly, in the present invention the low-energy conformations of the amino and carboxyl termini of six NGF analogues were obtained by means of Monte Carlo simulated annealing calculations. Three of these analogues retain full TrkA mediated activity: human NGF (hNGF; Shih et al., 1994; Burton et al., 1992), mouse NGF (mNGF; Burton et al., 1992; Drinkwater et al., 1993), and mNGFΔ3-9 (deletion 3-9 of mNGF; Drinkwater et al., 1993). The other three analogues are biologically inactive: hNGF-H4D (a point mutation of hNGF in which His [H] in position 4 is replaced by Asp [D]; Shih et al., 1994), mNGFΔ1-8 (Burton et al., 1992; Drinkwater et al., 1993; Taylor et al., 1991) and BDNF (Suter et al., 1992). The results and conclusions obtained from these six analogues were then validated by being applied to the remaining 11 analogues of the initial study set.

The amino acid sequences of the termini of the neurotrophin molecules under study are presented in Figure 1. Residues are numbered from 1 to 118 for the first monomer, and from 1' to 118' for the second monomer. The mutual orientation of the termini of the different monomers is determined by the disulfide bonds Cys¹⁵ - Cys⁸⁰ and Cys⁶⁸ - Cys¹¹⁰ and hydrophobic interactions Val¹⁴: Val^{14*} and Val¹⁰⁹: Val^{109*}, which are absolutely conserved in all neurotrophins (McDonald *et al.*, 1991). The conformational space of the peptide molecules

consists of flexible torsional angles determining geometry of the amino terminus of one monomer and the carboxyl terminus of the other, while keeping the rest of the dimer fixed in the known geometry of mNGF (McDonald *et al.*, 1991). Covalent bond lengths and bond angles of the termini are kept fixed. The geometry of each residue is determined only by flexible torsional angles of the peptide backbone (ϕ and ψ) and the side chain (χ_1 , χ_2 ,...). All torsional angles of amino acid Pro except for ψ are fixed. Torsional angles describing structural motifs with the essentially planar geometry (such as peptide bonds or conjugated regions in side chains) are kept fixed. Likewise, the configurations of the sp³-carbons are fixed. With these constraints, the total conformational space of the flexible termini of hNGF, mNGF and BDNF consists of 74, 73 and 67 variables, respectively.

RESULTS AND DISCUSSION

5

10

15

20

25

30

35

By diagonalizing the covariant matrix in the framework of the VBMC algorithm, rigid modes of a molecular system, which should slow down conformational changes, are supposed to be revealed simultaneously with soft modes of the system. To test the efficiency of the VBMC algorithm, its performance was compared with the conventional Monte-Carlo method at the equilibrium parts of the Markov chains generated at different constant temperatures. These comparisons showed that at high temperatures (700°-1000°K) the basis variability results in decreasing acceptance rates. On the other hand, the temperature decrease reinforces the advantage of the VBMC approach, and at temperatures below 600° acceptance rates of the VBMC Markov chains were significantly higher. Thus, at T=300° K the acceptance rate of the conventional Markov chain was found to be 0.22, which is very close to that recommended by Kincaid and Scheraga (1982) as optimal (0.20). The acceptance rate of the VBMC algorithm obtained at the same conditions was 0.26, i.e. 18% higher. These evaluations are in agreement with what one would expect. Indeed, at low temperatures only soft modes of molecules are involved in thermal motions, hence, they are especially populated in corresponding Monte-Carlo generated conformational ensembles and can be revealed from them. Higher acceptance rates of the low temperature VBMC Markov chains over conventional Markov chains mean that the average increase of the sizes of the Monte-Carlo moves along soft modes of the system are higher than their decrease along the rigid modes. Thus, the VBMC disclosed herein for evaluating peptide conformations not only changes directions of the Monte-Carlo moves, but also accelerates conformational changes by directing them along the soft modes of the molecule. Consequently, the present VBMC algorithm is more efficient than conventional Monte-Carlo method only at moderate and low temperatures, when thermal motions tend to take place along the valleys of the potential energy surface. This particular temperature region causes serious problems in known simulated annealing algorithms, and the VBMC method disclosed herein provides a solution

to these problems.

5

10

15

20

25

30

35

Seven independent VBMC simulations for each of the six molecular systems under study were performed. Simultaneously, local energy refinements were periodically carried out from a number of points generated during the "slow cooling" stage. All local minimizations resulted in higher energy stationary points on the potential energy surface than those produced by VBMC computations. This means that the VBMC technique as an approach to global minimization cannot be replaced by relatively inexpensive periodic energy refinements from the high-temperature conformational space; at high temperatures only high-energy conformers are sufficiently populated. Although VBMC runs did not converge to the same conformation, the final structures differed insignificantly; i.e., the peptide backbone conformation remained unchanged but there were limited differences in the side chain torsional angles. Multiple VBMC simulations identified rigid and flexible parts of the molecules. Minimum energy structures of all molecules are displayed in Figures 2-7 while Table 1 presents optimized conformational parameters of the amino and carboxyl termini of the considered NGF analogues.

GEOMETRIC SIMILARITY OF BIOACTIVE NGF CONFORMERS

Rigid regions of hNGF and mNGF which maintain the same conformation in all independent VBMC simulations are formed by residues 9-11 and 112'-118', creating a richly hydrogen bonded (H-bonded) 3-dimensional complex. Conformational variability within this rigid zone is primarily restricted to side chains and does not affect the geometry of the backbone. An interesting example of such side chain mobility occurs with Arg^{114'}, which is H-bonded to the carbonyl oxygen of the ninth amino acid of the amino terminus and which is therefore expected to have a fixed conformation. Nevertheless, Arg^{114'} has two distinct conformers in which the H-bonding is realized by the hydrogen atoms attached to the different NH₂ groups, with the energy difference being about 1 kcal/mol. In addition to local conformational variability, hNGF and mNGF have a region of "cooperative" flexibility which is made up of residues 1-8. Several distinct conformations exist within this region, with its conformational variability being caused by a number of possibilities for the H-bond network formed by residues 1-3.

Comparison of the most stable conformers of hNGF (Figure 2) and mNGF (Figure 3) reveals striking conformational similarity between their rigid regions in spite of several differences in the primary structure of the amino and carboxyl termini (Figure 1). As shown in Table 1, both termini have the same conformation, except for the variable region consisting of residues 1-3. The most stable H-bond networks in this area differ considerably because of the mT3hS substitution.

The essential difference between the amino acid sequences of the termini of hNGF

and mNGF is the mM9hR substitution, which does not change the geometry of the rigid region. Residues Met and Arg have different side chain types, i.e., the former is non-polar while the latter is polar and positively charged under physiological conditions. It is surprising that this substitution does not affect geometry since it introduces the positive charge of Arg⁹ which is located in an electrostatic field created by at least five neighbouring charged functional groups. Conformational stability of the rigid region of hNGF is maintained by the exact fit of the Arg⁹ side chain into a "hollow" in the rigid region, which is occupied by the Met⁹ side chain in mNGF. Furthermore, the Arg⁹ side chain, being in this "hollow", forms two additional interchain H-bonds with carbonyl oxygens of residues Val¹¹⁷ and Arg¹¹⁸. This further stabilizes the rigid region of hNGF.

The physical reason for the geometric similarity of the rigid regions of hNGF and mNGF is that the structural features of these two complexes are determined by similar H-bonding and electrostatic interactions. The major stabilizing factor is the H-bonding and electrostatic interaction of charged side chains of residues Glu¹¹ and Arg¹¹⁸. In addition, these side chains are involved in other H-bonding: the carboxyl oxygens of Glu¹¹ are bonded to the δ-NH group of His⁸, the hydroxyl group of Ser¹¹³ and the backbone NH group of Lys¹¹⁵; the side chain NH and NH₂ groups of Arg¹¹⁸ are bonded to the backbone Phe⁷ and Lys¹¹⁵ carbonyl groups. There are some other common interchain H-bonds in hNGF and mNGF. The ε-amino group of the Lys¹¹⁵ side chain forms a H-bond with the δ-carbonyl oxygen of the Asn⁷⁷ residue, situated at the "south" part of NGF structure (McDonald *et al.*, 1991).

In addition to H-bonding, the particular geometry of the rigid region in both molecules is also maintained by electrostatic interactions of positively charged residues, specifically His⁴, His⁸, Arg¹¹⁴, Arg¹¹⁸ and His⁷⁵. An electrostatic repulsion between His⁴ and boundary residues His⁸ and Arg¹¹⁸ of the rigid region forces His⁴ to be located as far as possible from the rigid region, separating the 1-8 loop from the rest of the structure. This tendency is further reinforced in hNGF by the presence of a third positively charged boundary residue Arg⁹. The His⁷⁵ amino acid located in the "south" part of NGF also participates in maintaining the structure of the rigid region. An electrostatic repulsion between His⁷⁵ and Arg¹¹⁴ prevents H-bonding of the amino group of Arg¹¹⁴ with the Asn⁷⁷ side chain and the Ser¹¹³ backbone: indeed, removing the ε-proton from His⁷⁵ results in two H-bond contacts which change the global energy minimum structure of the complex.

The separation of flexible loop 1-8 from the rigid region is also determined by residue Pro⁵. This amino acid imposes restrictions on conformational motion of the loop, making it "bent" at this particular point, and thereby defining the location of the adjacent His⁴ residue at the most distant point from the rigid region. Thus, residues His⁴ and Pro⁵ are primarily responsible for the separation of the flexible loop from the rigid region.

Although mNGF Δ 3-9 does not have the flexible loop, the energy optimized geometric features of its termini are very similar to those of the hNGF and mNGF rigid regions (Table 1, Figures 2-4). There are only two structural elements which are specific for the rigid region of mNGF Δ 3-9. First, although Arg^{118} has a different conformation, the result is functionally the same, namely both NH_2 groups of the Arg^{118} side chain are H-bonded to the Glu^{11} side chain. In addition, the ϵ -NH group of Arg^{118} , which is H-bonded to the Phe⁷ carbonyl group of the flexible loop in both hNGF and mNGF, faces the carbonyl terminus in mNGF Δ 3-9. Second, the "hollow", which is occupied by the ninth amino acid side chain in hNGF and mNGF, is now filled with the protein backbone of the remainder of the loop, i.e., residues 1-2. Functionally, the structure of the rigid region of mNGF Δ 3-9 resembles that of hNGF because of the stabilizing interchain H-bond contacts of the moieties located in the "hollow".

5

10

15

20

25

30

35

GEOMETRIC DISTINCTION OF NGF ANALOGUES INACTIVE FOR TrkA BINDING

The energy minimum structures of the complexes formed by the amino and carboxyl termini of molecules, hNGF-H4D, mNGFΔ1-8 and BDNF, which are inactive with respect to TrkA binding, do not possess the common structural features found in active molecules. Point mutation H4D in hNGF incorporates negative instead of positive charge into the 1-8 loop. As a result of this mutation, the loop is no longer separated from the rigid region, forming a united complex instead (Figure 5). In this complex the negatively charged carboxyl group of Asp⁴ is surrounded by four positively charged NH₂ groups of Arg⁹ and Arg¹¹⁴, and residue His⁸ is not H-bonded to the Glu¹¹ carboxyl group. Thus, because of the H4D point mutation, the common structural features inherent in hNGF and mNGF are lost from hNGF-H4D.

Deletion 1-8 also changes dramatically the most stable structure of the rigid region of mNGF (Figure 6). The newly created positively charged amino terminus is located between negatively charged carboxyl groups of Glu¹¹ and Arg¹¹⁸, with charged side chains of Arg¹¹⁴, Lys¹¹⁵ and Arg¹¹⁸ being substantially shifted from their preferred positions in active molecules. Thus, the electrostatic field caused by the positive charge of the new amino terminus in mNGFΔ1-8, located in the vicinity of the carboxyl group of Glu¹¹, is responsible for the destruction of the geometry of the rigid region inherent in the active molecules.

The complex formed by the amino and carboxyl termini of BDNF is also significantly different from those formed by the molecules active for TrkA binding (Figure 7, Table 1). There are several reasons for the considerable conformational changes in BDNF. First, negatively charged residue Asp⁵ eliminates the separation of the flexible loop from the rigid region, and interacts with the positively charged His³, Arg⁹ and amino terminus. Second, because of its long tail, Arg⁸ is unable to form the H-bond contact with the Glu¹¹ side chain and forms bifurcated H-bonds with the carbonyl group of Gly¹⁰. Third, Arg¹¹⁶ is H-bonded to

Glu⁶⁵ located in the "south" part of the molecule, which imposes a specific restriction on conformational possibilities of the carboxyl terminus of BDNF.

EXPLANATION FOR THE OBSERVED STRUCTURE-ACTIVITY RELATIONSHIPS

5

10

15

20

25

30

35

The principal result of the molecular simulations presented is that the NGF molecules with full TrkA mediated activity considered in this study have regions with similar 3-dimensional structure, whereas in all inactive analogues, the geometry of this region is altered, mainly by novel electrostatic interactions. It is therefore reasonable to attribute the TrkA mediated activity to a specific conformation of this particular region. The amino and carboxyl terminal regions therefore represent a "functional epitope" which contains relatively few contact residues mediating high affinity binding. The ability of a small number of residues to cause high affinity binding has previously been demonstrated in other systems and may represent a general property of protein-protein interfaces. Some experimental data consistent with this concept are presented below.

The VBMC computations show that the following amino acids are critical in determining the structure of the complex in wild type NGF dimers: His⁴, Pro⁵, His⁸, Arg⁹, Glu¹¹, His⁷⁵, Asn⁷⁷, Lys¹¹⁵ and Arg¹¹⁸. This is significant since residues His⁴, Pro⁵, Glu¹¹, His⁷⁵, Asn⁷⁷ and Lys¹¹⁵ are conserved in NGF molecules across all species (McDonald *et al.*, 1991). The overlap between these two sets reflects a tendency to maintain the particular geometry of the complex in natural NGF molecules. In addition, as demonstrated, the substitution of the important residue Arg⁹ by the essentially different Met⁹ does not result in geometric changes of the complex, which is consistent with equivalent bioactivity of hNGF and mNGF (Burton *et al.*, 1992). Thus, because of multiple physical factors maintaining the geometry of the complex, some species variability observed in NGF termini (McDonald *et al.*, 1991) is acceptable and does not cause geometric changes in the rigid region.

It is shown that each NGF terminus has several important residues, which determine the particular structure of the complex. This is consistent with high sensitivity of biological activity of NGF to the primary structure of both the amino and carboxyl termini (Klein *et al.*, 1991; Shih *et al.*, 1994; Burton *et al.*, 1992, 1995; Kahle *et al.*, 1992; Drinkwater *et al.*, 1993; Treanor *et al.*, 1995; Taylor *et al.*, 1991). The lack of the TrkA mediated activity of the mNGFΔ3-11, mNGFΔ3-12, mNGFΔ3-13, mNGFΔ3-14, mNGFΔ9-14 and mNGFΔ112-118 deletion mutants (Drinkwater *et al.*, 1993) is thus explained by the absence of the key residues Glu¹¹ and Arg¹¹⁸.

The separation of the flexible loop from the rest of the complex is crucial in permitting the rigid region to exist with definite geometric features. Residues His⁴ and Pro⁵ which cause this separation are absolutely conserved elements of the wild type NGF molecules derived from different species (McDonald *et al.*, 1991), and their compulsory location in the middle of

the flexible loop is well suited for facilitating the maximal separation. Point mutation P5A or H4D weakens or destroys the tendency of the loop to separate from the rigid region; accordingly, these mutations result in dramatic loss of TrkA related activity (Shih *et al.*, 1994).

5

10

15

20

25

30

35

The flexible loop is not an essential structural element for TrkA activation since the mNGFΔ3-9 deletion mutant, which does not contain the loop (Figure 4), is as active as wild type mNGF (Drinkwater et al., 1993). However, complete elimination of all loop residues results in almost inactive mutants mNGFΔ1-8 (Burton et al., 1992; Drinkwater et al., 1993; Taylor et al., 1991) and hNGFΔ1-9 (Shih et al., 1994; Burton et al., 1992, 1995; Kahle et al., 1992; Luo and Neet, 1992). Our molecular simulation studies enable the explanation for this apparent contradiction. It is demonstrated that the backbone of residues Ser8 -Ser9 in the mNGFΔ3-9 mutant is naturally incorporated into the structure of the rigid region because it matches the geometry of the "hollow" occupied by either Met9 or Arg9 side chain in wild type NGF dimers. On the contrary, total truncation of the flexible loop in the mNGFΔ1-8 deletion mutant results in placing the positively charged amino end in the vicinity of the key H-bonded Glu¹¹ and Arg¹¹⁸ charged side chains (Figure 3), which abolishes the desired geometry of the rigid region (Figure 6). The same applies to the hNGFΔ1-9 deletion mutant which has neither the 1-8 loop nor the stabilizing Arg⁹ residue (Figure 2). This being the case, biological activity of amino terminus deletions of NGF should be determined by the length of the remainder of the terminus rather than its particular sequence. Indeed, available experimental data confirm this point. Deletion mutant mNGFΔ2-8 which has exactly the same number of residues in the amino terminus as the highly active mNGFΔ3-9 mutant is also very active (Drinkwater et al., 1993). Some decrease in biological activity of mNGFΔ2-8 is likely to be caused by unfavorable directing of the Met9 hydrophobic side chain away from the complex whereas in the mNGFΔ3-9 deletion mutant this side chain is replaced by the hydrophilic hydroxyl group (Figure 4). Deletion mutants mNGF Δ 3-8 (Drinkwater et al., 1993) and hNGF Δ 1-5 (Shih et al., 1994), which contain a greater number of amino terminus residues, are remarkably less active than wild type NGF because the remainder of the loop is too long to occupy the "hollow" but too short to separate from the rigid region. The present explanations for the observed structure-activity relationships enable the prediction that, for example, a S2G mutation in the mNGF Δ 3-9 deletion mutant would retain high biological activity.

Although the bioactive conformation of the NGF binding determinant has been disclosed above, the question of which NGF residues are involved in NGF/TrkA recognition was not yet addressed. One would reason, most probably, those residues which are primarily responsible for maintaining the particular structure of the NGF termini do not directly interact with the receptor. Thus, side chains of His⁴, Pro⁵, His⁸, Met⁹, Arg⁹, Glu¹¹ and Arg¹¹⁸ are not expected to play a crucial role in molecular recognition. On the other hand, charged residues

Arg^{114*} and Lys^{115*} which are conserved in NGF molecules across all species (McDonald *et al.*, 1991) but not involved in principal intramolecular electrostatic interactions are candidates for the centres of intramolecular electrostatic recognition. Although both Arg^{114*} and Lys^{115*} participate in stabilizing intramolecular H-bonding within the bioactive conformations of the NGF termini, their electrostatic properties as charged residues are not utilized for this purpose.

The other structural element of the termini with potential for stereochemical fit to the TrkA receptor is a short exposed β-sheet motif located between the α-carbons of residues 7 and 9 (Figures 2,3). On the one hand, H-bonding between β-pleated sheets is rather common for protein-protein interactions (Kobe and Deisenhofer, 1993, 1994, 1995; Yoder *et al.*, 1993; Baumann *et al.*, 1993). On the other hand, a short exposed β-sheet motif is generally inherent in the structure of a leucine-rich repeat (Kobe and Deisenhofer, 1993, 1994, 1995) which has been recently identified as the TrkA recognition site for NGF (Windisch *et al.*, 1995a, 1995b). Other regions of NGF might also be involved in the NGF/TrkA recognition (Shih *et al.*, 1994; Ibáñez *et al.*, 1993). This will be discussed in depth below.

CONCLUSIONS

5

10

15

20

25

30

35

The Variable Basis Monte Carlo simulated annealing technique disclosed herein enables analysis of the low-energy conformational space of peptide molecules. Although multiple VBMC calculations do not consistently converge to the global energy minimum structure, they do permit the biologically active conformation to be evaluated. Definite physical factors maintain and distinguish the bioactive conformation of a molecule, and these factors can be understood by analyzing the low-energy conformational space. The precisely defined global energy minimum structure is unnecessary, especially considering that any empirical force field functions are not ideal. In biologically relevant molecular modelling, exploring the bioactive conformation is more important than determining the global energy minimum. VBMC is a useful tool for facilitating this exploration.

The present VBMC simulations predict that the amino (1-11) and carboxyl (112'-118') termini of dimeric (1-118)NGF form a complex comprised of a rigid region and a conformationally variable loop. The rigid region is formed by residues 9-11 and 112'-118' while the variable loop is formed by residues 1-8. The major stabilizing factor of the rigid region is the ionic contact of the Glu¹¹ and Arg^{118'} side chains. The separation of the loop from the rigid region arises from the electrostatic repulsion between His⁴ and boundary residues of the rigid region His⁸, Arg⁹ (in hNGF) and Arg^{118'}. The geometry of the complex explains observed structure-activity relationships. Accordingly, it is the conformation of the rigid region which is recognized by the TrkA receptor, defining the biologically active

conformation of NGF for TrkA activation.

The split of the complex of the NGF termini into two distinct moieties could have important biological implications. Although only the structure of the rigid region is recognized by the TrkA receptor, the flexible loop is able to control conformational stability of the biologically active conformation of the rigid region and, consequently, NGF-induced TrkA phosphorylation.

PART B

THEORETICAL MODELLING OF Trk-RECEPTOR RECOGNITION SITES FOR NGF AND BDNF

INTRODUCTION

5

10

15

20

25

30

35

As mentioned above, the location of the neurotrophin binding sites within the Trk receptors is the subject of debate (MacDonald and Meakin, 1996). Based upon published data, there is reason to believe that Trk proteins have two putative neurotrophin binding sites: the "second immunoglobulin-like domain" (IgC2, residues Trp²⁹⁹-Asn³⁶⁵) and the "second leucine-rich motif" (LRM-2A and LRM-2B, residues Thr97-Leu120 of TrkA and TrkB. respectively) (Schneider and Schweiger, 1991; Kullander and Ebendal, 1994; Pérez et al., 1995; Urfer et al., 1995; Windisch et al., 1995a, 1995b, 1995c; MacDonald and Meakin, 1996; Rydén and Ibáñez, 1996). LRM containing proteins are a diverse group with different functions and cellular locations, and are known to mediate strong and selective protein-protein interactions (Kobe and Deisenhofer, 1993, 1994, 1995). The amino acid sequence of an LRM is characterized by conserved hydrophobic consensus residues (Schneider et al., 1988; Schneider and Schweiger, 1991; Kobe and Deisenhofer, 1993, 1994, 1995). Typically, LRMs exist as repetitive cassettes, with an individual LRM representing a right-handed β - α hairpin unit (Kobe and Deisenhofer, 1993, 1994, 1995). Recent crystallographic studies on porcine ribonuclease inhibitor indicate that the side chains of the consensus residues form the hydrophobic core of the LRM modules, thereby determining their geometric features (Kobe and Deisenhofer, 1993).

According to the invention, the inventors report explicit atom-level models of the receptor sites for NGF and BDNF based on the structures of the second LRMs of TrkA (LRM-2A) and of TrkB (LRM-2B), respectively. To deduce these models, we have investigated the interaction of the bioactive conformation of the NGF amino and carboxyl termini region with the LRM-2A and of the "waist" region of BDNF with the LRM-2B. A series of four active NGF analogues, namely human NGF (hNGF) (Burton *et al.*, 1992; Shih *et al.*, 1994), mouse NGF (mNGF) (Burton *et al.*, 1992; Drinkwater *et al.*, 1993), the 3-9 deletion of mNGF (mNGFΔ3-9) (Drinkwater *et al.*, 1993) and the hNGF:NT-4/5 heterodimer (Treanor *et al.*, 1995), have been

docked to the LRM-2A of rat TrkA. For all four NGF molecules studied, a stereochemical fit of the LRM-2A to the amino and carboxyl region was achieved. These results indicate that the bioactive conformation of the NGF termini is a functional epitope which mediates high affinity binding via an interaction with the LRM-2A. This approach has also been applied to BDNF/LRM-2B docking, and their stereochemical fit, based mainly on electrostatic complementarity, has been identified and is described below.

5

10

15

20

25

30

35

METHODS

A sequence of three logical steps has been used to deduce the models of the interactions of NGF and BDNF with their respective Trk receptor binding sites: *Step 1:* The bioactive conformations of the amino and carboxyl termini of NGF analogues were determined. *Step 2:* The residues of the Trk proteins which form potential binding sites for NGF and BDNF were identified. *Step 3:* The interaction of the bioactive conformation of the NGF amino and carboxyl termini with the TrkA binding site and the BDNF β-strand stem region with the TrkB binding site were modeled computationally. Finally, the predicted features of the NGF/TrkA and BDNF/TrkB interaction models were validated against available experimental data. Residues of the first monomer of a neurotrophin are designated 1 to 118, those of the second monomer are designated 1' to 118'. Residues of the TrkA LRM-2A and the TrkB LRM-2B binding sites are designated by abbreviations tA and tB, respectively. Residues of the BDNF monomer are designated 1 to 119.

Step 1: REVEALING THE BIOACTIVE CONFORMATION OF THE NGF TERMINI

The most energetically favored conformations of the amino and carboxyl termini of NGF analogues have been obtained by VBMC computations and are described above. Since the 3-dimensional structures of the termini of fully active NGF molecules were found to be different from those of TrkA-inactive analogues, the former conformations were predicted to be "bioactive" for TrkA-mediated activity of NGF. That is, those geometric features that are exclusively inherent to active NGF molecules are expected to be compatible with the structure of the TrkA binding site for NGF. Since the geometry of the central β-strand stem of BDNF is rigid and has been established by X-ray crystallography (Radziejewski and Robinson, 1993), this logical step is bypassed for BDNF. Instead, it is assumed that the X-ray crystallography deduced conformation of the amino acid backbone of the TrkB binding determinant of BDNF represents its "bioactive" conformation.

Step 2: SELECTION OF THE LRM-2 BOUNDARIES WITHIN THE TRK RECEPTORS

Since there is controversy in the literature regarding the actual boundaries of LRMs (Schneider et al., 1988; Schneider and Schweiger, 1991; Kobe and Deisenhofer, 1993, 1994, 1995; Windisch et al., 1995a, 1995b), the following experimental background (Figure 8) was used to define boundaries for this computational study. According to Schneider and

colleagues (1988, 1991), the LRM domains of TrkA begin with Leu^{58tA}, Leu^{93tA} and Leu^{117tA}, whereas those boundaries are slightly shifted in the crystallographic studies of Kobe and Deisenhofer (1993). Furthermore, the boundaries of the "minimal" LRM module of TrkA (designated B4 in Figure 8), which demonstrates the same NGF binding affinity as wild type TrkA, are substantially shifted towards the carboxyl terminus (Windisch *et al.*, 1995a, 1995b) with respect to those suggested by Schneider and colleagues (1988, 1991). The same boundary shift has been suggested for the LRM-2B module (Windisch *et al.*, 1995a, 1995b, 1995c). However, a comparison of active (B1 and B4) and inactive (N4) LRM domains indicates that the presence of the "minimal" amino acid sequence (B4) does not ensure NGF binding. Understanding those factors which maintain the essential features of the LRM geometry in segments B1 and B4, and those factors which destroy them in N4, is of fundamental relevance to the correct assignment of the LRM boundaries.

5

10

15

20

25

30

35

β-Strand motifs exist in proteins only if hydrogen bonded (H-bonded) to other β-strands; otherwise their structure is unstable (Kobe and Deisenhofer, 1994). Tandem repeats of LRMs represent a prominent example of H-bonded parallel β-strand motifs. The general location of the β-strand motifs in the LRM, according to X-ray data, is illustrated in Figure 8; however, in a single LRM their particular geometry is destroyed (Kobe and Deisenhofer, 1993, 1994, 1995). Consequently, the only possibe way to exclude dramatic conformational changes in a protein domain upon disruption of the inter-strand H-bonding between β-strand motifs is to avoid those motifs. Accordingly, both boundaries of segment B4 are located in the middle of the β-strand regions of the adjacent LRMs such that this segment appears to be free of any β -strand. Nevertheless, the β -strand motif is a characteristic structural unit of LRMs, and thus it is likely that this unit is involved in the NGF/TrkA recognition process. Additionally, a short exposed β-strand motif has been detected in the bioactive conformation of the NGF termini, as described above. The incorporation of the β-strand regions at both sides of the B4 segment (as in N4) results in cooperative H-bonding between these β-strands and a complete loss of NGF binding, which indicates that accessibility of the β -strand motif for intermolecular contacts is essential. On the other hand, the separation of the entire LRM segment from the adjacent LRMs within the B1 molecule as a result of conformational kinking is likely to be energetically more favorable. since the entire LRM module has the internal stabilizing factors. Moreover, kinking between adjacent LRMs does not disrupt the structure of their β-strand motifs (since they remain H-bonded with their opposite sides), but makes them accessible for molecular recognition processes.

Accordingly, in the modelling of the present invention we used the conventional boundaries of the LRMs of TrkA and TrkB (Schneider *et al.*, 1988; Schneider and Schweiger,

1991), which keep the β-strand motif in the LRM, and we explicitly arranged H-bonding of this unit with the parallel β-strand motif of the NGF amino terminus to preserve it from conformational reorganizations. Thus, the segments between residues Leu^{93tA} and Leu^{117tA} in TrkA, and Leu^{93tB} and Leu^{117tB} in TrkB, were respectively designated the LRM-2A and the LRM-2B.

Step 3: COMPUTATIONAL SIMULATION OF THE NEUROTROPHIN/RECEPTOR INTERACTIONS

5

10

15

20

25

30

35

Docking interactions NGF/LRM-2A and BDNF/LRM-2B were simulated using a combined VBMC/CHARMM approach. As described above, the VBMC algorithm permits conformational space search; CHARMM (Brooks *et al.*, 1983) is a force field which defines conformational energy. The same approach was also used to study improper docking interactions of the central β-strand stem region of NGF with the LRM-2B, as a negative control.

The VBMC algorithm performs conformational and orientational space searches of a complicated molecular system with the aim of finding the structure which corresponds to the global minimum on the potential energy E_{tot} surface.

$$E_{tot} = E_t + E_w + E_e + E_{hb} + E_{aa} + E_{hv} + E_c$$
 (4)

The following potential energy terms have been considered in the framework of the united atom CHARMM force field (Brooks et al., 1983; The force field parameters are extracted from CHARMM version 23.1, Molecular Simulations, Inc., Waltham, MA): torsional distortion E, van der Waals interactions E, electrostatic interactions E, and hydrogen bonding E_{bb}. Since the united atom approach is not appropriate to treat rigorously the quadrupole-quadrupole interactions of benzene rings (which are important for determining their mutual orientations in proteins (Hunter and Sanders, 1990; Hunter et al., 1991), single quadrupoles have been placed at the centers of the benzene rings of phenylalanine, tryptophan and tyrosine, and the energy of the quadrupole-quadrupole interactions, Equ. has been calculated as suggested by Schauer and Bernstein (1985). (The potential energy function of two interacting benzene molecules, comprising E_m and E_w terms, has stationary points corresponding to both known electrostatically favorable "edge-to-face" and "offset stacked" orientations, with the dimerization energy of 1.94 kcal/mol agreeing well with ab initio quantum mechanical calculations (Hobza et al., 1994).) In addition, the conformationally dependent free energy of hydration, Ehr, has been calculated according to the hydration shell model including both nonspecific and specific hydration terms (Hopfinger, 1973; Hodes et al., 1979). Point atomic charges of Weiner and colleagues (1984) have been used. A dielectric constant equal to the interatomic separation in angstroms has been used to implicitly simulate solvation effects (Weiner et al., 1984).

The E_c term is used only for the NGF/LRM-2A complex and represents the distance constraints which restrain the H-bonding of residues Glu^{11} and Arg^{118} within the bioactive conformation of the NGF termini, as described above. In addition, two intermolecular H-bonds, arising from the alignment of complementary parallel β -strand motifs of NGF and LRM-2A, are also constrained and contribute to E_c . In the Monte Carlo conformational space search, E_c is defined as follows:

$$E_c = 10 \times \sum (d_{AB} - 1.8)^2$$
, (5)

where d_{AB} is the distance in angstroms between atoms A and B which are to be H-bonded. The E_c term is neglected when performing final energy minimization following the VBMC simulated annealing. In addition, this term has not been utilized when studying the mNGFΔ3-9/LRM-2A complex. Since, as described above, the mNGFΔ3-9 deletion mutant does not have a β-strand region, the geometry of its LRM-2A counterpart, namely Leu^{93tA}-lle^{98tA}, has been kept fixed in the crystallographic conformation (Kobe and Deisenhofer, 1993) during Monte Carlo simulations. The E_c term, being "soft", does not preclude conformational and orientational changes to occur during Monte Carlo simulations. This term increases rigidity of the bioactive conformation of the ligand, which allows us to utilize the knowledge obtained at *Step 1*, instead of explicit considerations of inactive NGF analogues, in *Step 3*. In addition, this term keeps conformations of the β-strands of both ligand and binding site from destruction, and thereby allows us to avoid an explicit consideration of the adjacent first LRM of TrkA. Furthermore, this term maintains the known orientation of the parallel β-strand motifs in the NGF/LRM-2A complex.

The amino acid sequences of the binding determinants of the NGF molecules studied are presented in Figure 9. The conformational space of the NGF analogues consists of torsional angles determining geometry of the amino terminus of one monomer (residues 1-11) and the carboxyl terminus of the other (residues 112'-118'), while keeping the rest of the dimer in the experimental geometry of mNGF (McDonald *et al.*, 1991). The conformational spaces of the LRM domains of TrkA and TrkB consist of torsional angles representing fragments Arg^{94tA} -Leu^{117tA} and Arg^{94tB} -Leu^{117tB}, respectively. Covalent bond lengths and bond angles have been kept fixed. The geometry of each i-th residue is determined only by flexible torsional angles of the backbone (ϕ_i and ψ_i) and the side chain (χ_i 1, χ_i 2,...). All torsional angles for prolines, except ψ_i have been fixed. Torsional angles describing structural motifs with planar geometries (such as peptide bonds or conjugated regions in side chains) were fixed. Likewise, the configurations of the sp³-carbons were fixed. The conformational space of BDNF consists only of torsional angles determining side-chain geometries of those residues which are located in the vicinity of its central β -strand stem and define a molecular surface (Table 2). In addition to the conformational variables of each complex, the six

orientational variables (three Euler angles and three translations along the coordinate axes) were used to describe the ligand-receptor orientations.

In accordance generally with the simulated annealing approach (Kirkpatrick *et al.*, 1983; Vanderbilt and Louie, 1984; Brünger, 1998; Nilges *et al.*, 1988; Wilson *et al.*, 1988; Wilson and Doniach, 1989), the molecular systems were kept at a constant temperature of 800°K for 2×10⁶ Monte Carlo moves before the initiation of "cooling". The temperature was then decreased at every Monte Carlo move by a small increment such that after 2×10⁶ Monte Carlo moves it reached 120°K. At this time, a local energy refinement was performed to identify the nearest stationary point on the potential energy surface. According to the VBMC algorithm described above, the basis of independent structural parameters was recalculated after every 7×10⁴ Monte Carlo moves to direct them along the valleys of the potential energy surface, thereby accelerating conformational and orientational changes.

All calculations were performed on an Indigo-2 Silicon Graphics Workstation and an 8-node IBM Scalable POWER parallel 2 [SP2] high performance computer.

RESULTS AND DISCUSSION

5

10

15

20

25

30

35

CONFORMATIONAL FLEXIBILITY WITHIN RECEPTOR ENVIRONMENTS

Five independent VBMC simulations from different initial configurations were performed for each of the six molecular complexes under study. The elimination of the distance constraints E_c in the complexes with the LRM-2A did not result in any noticeable conformational changes within the complexes. Although independent VBMC simulations did not always converge to the same geometry for the same molecule, the final structures differed insignificantly; i.e., the conformations of the peptide backbones remained unchanged with the exception of residues 1-3 of the NGF amino terminus and the terminal residue Leu^{117tA} of the LRM-2A. The differences between the VBMC generated structures were located in side-chain conformations of a limited number of residues, specifically Ser¹, Val¹¹⁷ (Thr¹¹⁷ in mNGF), Thr^{97tA} and Ser^{101tA}. These residues are not involved in intermolecular or intramolecular interactions, and do not affect the overall structures of the complexes. No considerable differences were identified in the independent VBMC-generated conformations of the BDNF/LRM-2B and the NGF/LRM-2B complexes.

A grid search of the internal space of the complexes using the water molecule radius 1.4 Å as a probe (Ponnuswamy and Manavalan, 1976) (as incorporated into the QUANTA program, Version 4.1, Molecular Simulations, Inc., Waltham, MA) showed that there is no internal cavity available for a solvent molecule in the hNGF/LRM-2A complex. This explains the rigidity of the complex and demonstrates the "perfect" stereochemical fit of the hNGF amino-carboxyl termini complex to the LRM-2A. Other complexes have some internal cavities, especially with the LRM-2B binding site.

SPECIFIC BINDING AREAS WITHIN RECEPTOR ENVIRONMENTS The TrkA Receptor Binding Site

5

10

15

20

25

30

35

Comparison of the most stable structures of the different complexes with the LRM-2A binding site (Figure 10) shows their striking conformational similarity. In all molecules, ligand-receptor binding is caused by similar hydrophobic, ionic, H-bonding and van der Waals interactions. There are five distinct areas (A-E) within the NGF/LRM-2A fit: areas A and B have hydrophobic interactions, areas C and D have ionic H-bonding, and area E has cooperative H-bonding between parallel β-strand motifs.

Area A represents the hydrophobic region at which residue Phe^{105tA} interacts with Trp⁷⁶, which in turn forms hydrophobic contacts with Phe¹² and Leu¹¹². The aromatic rings of Phe¹², Trp⁷⁶ and Phe^{105tA} are approximately perpendicular to each other, which is energetically favorable (Hunter and Sanders, 1990; Hunter *et al.*, 1991; Hobza *et al.*, 1994). This particular geometry would create a hole within the complex, if it was not filled by hydrophobic residue Leu¹¹².

In area B, Phe⁷ of NGF is placed within the hydrophobic core of the LRM-2A created by the consensus residues (Schneider *et al.*, 1988; Schneider and Schweiger, 1991; Kobe and Deisenhofer, 1993, 1994, 1995). Similar to the favorable orientation of the aromatic residues in area A, the aromatic rings of Phe^{111tA} and Phe^{113tA} are perpendicular to that of Phe⁷. On the other hand, residues Phe^{111tA} and Phe^{113tA} are not perpendicular to each other; their orientation instead resembles the favorable "offset stacked" geometry described by Hunter and others (Hunter and Sanders, 1990; Hunter *et al.*, 1991; Hobza *et al.*, 1994). As in area A, a hole created by the three neighboring favorably oriented aromatic rings is filled by a fourth residue, Thr^{114tA}. Interactions between aromatic rings in proteins is very common and represent an important conformational driving force (Warme and Morgan, 1978; Hunter *et al.*, 1991). Consequently, the fact that all three phenylalanine residues of the LRM-2A find their counterparts within the NGF binding domain supports the calculated structure of the NGF/LRM-2A complex.

In ionic binding area C, the negatively charged residue Asp^{105tA} exerts a central role. It is surrounded by the three positively charged amino acids His^{112tA}, Arg^{114*} and Lys^{115*} in hNGF, mNGF and mNGFΔ3-9, and by His^{112tA}, Arg^{115*} and Arg⁹ in hNGF:NT-4/5. Residue His^{112tA} plays a secondary role: it creates the electrostatic dipole Asp^{105tA} His^{112tA} in the LRM-2A, which imposes constraints on the spatial positions of the recognized positively charged residues of NGF, thereby reinforcing geometric selectivity in this area. Although the hNGF:NT-4/5 heterodimer has two substitutions in the C-area segment of the NT-4/5 carboxyl terminus, namely R114S and K115R, the geometry of the C area remains qualitatively the same, since residues Arg⁹ and Arg^{115*} of hNGF:NT-4/5 functionally replace the absent Lys^{115*}

and Arg¹¹⁴ amino acids, respectively. Although Arg⁹ also exists in the hNGF homodimer, it is not involved in the ionic binding in this molecule, since it is separated from area C due to electrostatic repulsions. Similarly, the charged amino end of mNGFΔ3-9, which functionally replaces Arg⁹, is also separated from area C. There is no place for the fourth positively charged residue in area C. Thus, in all molecules studied, the two positively charged amino acids of the ligand saturate the coordination possibilities of the receptor residue Asp^{109tA}.

Area C is partially isolated from its surrounding environment by flanking hydrophobic residues Val^{106tA} and Pro^{115tA}. Similarly, the principal charged residues of NGF, namely His⁸, Glu¹¹ and Arg¹¹⁸, are located between hydrophobic residues Ile⁶ (Val⁶ in mNGF), Val¹¹¹ (Leu¹¹³ in hNGF:NT-4/5) and Val^{99tA} within the complexes. Thus, residues Val^{99tA}, Val^{106tA} and Pro^{115tA} of the LRM-2A participate in "compartmentalization" of the principal ionic interactions of the complexes, thereby shielding them from the conformation destructive influence of solvation.

The organization of ionic binding area D is similar to that of area C. Positively charged residues Arg⁵⁹ and Arg⁶⁹ are located in the vicinity of negatively charged Asp¹⁶ within the NGF structure (McDonald *et al.*, 1991; Bradshaw *et al.*, 1994), such that the coordination of the latter is not full. The third positively charged residue, Lys^{100tA}, comes from the LRM-2A to complete the Asp¹⁶ coordination. In addition to the ionic binding, residue Lys^{100tA} forms an H-bond with the Ser¹³ side chain.

Area E consists of the H-bonded parallel β -strand motifs of the LRM-2A and NGF (Figure 10b, 10c and 10e), each of the β -strands having three peptide bonds. The LRM-2A β -strand motif is located between the α -carbon atoms of Asn^{95tA} and Ile^{98tA}, whereas the NGF β -strand is located between the α -carbons of the sixth and ninth residues. The locations of the β -strand regions in the uncomplexed LRM (Kobe and Deisenhofer, 1993) and NGF (see above) resemble those in the complexes considered. In the complexed LRM-2A, the β -strand motif is shortened by one peptide bond at its amino end to accommodate the His⁴ side chain of NGF. On the other hand, the two peptide bond β -strand of the uncomplexed NGF is lengthened by one peptide bond at its amino end in the complexes.

The TrkB Receptor Binding Site

5

10

15

20

25

30

35

Figure 11a illustrates the central β -strand stem region of BDNF, and Figure 11b presents the VBMC-generated structure of the BDNF/LRM-2B complex. In this complex, ligand-receptor binding is based mainly on intermolecular electrostatic interactions of either ionic or hydrogen bonding origin. There are five distinct binding areas (F-K) within the TrkB receptor environment: four salt bridges (areas F, G, H and I) and one H-bonding area K. In contrast with the NGF/LRM-2A binding pattern, there is no participation of the LRM-2B β -strand motif in cooperative H-bonding with the BDNF binding epitope.

In area F, the primary positively charged residue (Ibáñez et al., 1993) of the BDNF

binding domain, Arg⁸¹, is bound to Asp^{100tB}, the only negatively charged residue of the LRM-2B. It should be noted that Arg⁸¹ is exclusively inherent in BDNF molecules while being substituted by electrostatically neutral Thr in NGF or by Lys in NT-3 or NT-4/5 molecules (Bradshaw *et al.*, 1994), which indicates the importance of this area in neurotrophin recognition processes (see also Urfer *et al.*, 1994). On the contrary, residue Gln⁸⁴, identified by Ibáñez and co-workers (1993) as important, is not directly involved in specific intermolecular interactions within the LRM-2B domain.

5

10

15

20

25

30

35

In binding area G, the negatively charged residue Glu⁵⁵, which is absolutely conserved in all neurotrophins (Bradshaw et al., 1994), exerts a central role. It is surrounded by the three positively charged amino acids, Lys²⁵, Lys⁵⁷ and Lys^{109tB}. Two of them, belonging to the neurotrophin, are also highly conserved (Bradshaw et al., 1994). The third one, Lys 1091B, is specific for the TrkB receptor site (Windisch et al., 1995a, 1995b, 1995c). All BDNF residues of the G binding area, namely Lys²⁵, Lys⁵⁷ and Glu⁵⁵, have been shown to be essential in NT-3 structure for TrkC receptor activation (Urfer et al., 1994), which is in agreement with observations that the TrkB and TrkC binding domains are located in the same region of these neurotrophins. This particular arrangement of the three positively charged residues around one with a negative charge seems to be very common in neurotrophin-receptor recognition processes, since the NGF/LRM-2A interaction also includes two binding areas of this type (C and D). Existence of the absolutely conserved negatively charged residue Asp¹⁰⁶ in direct proximity to area G increases binding affinity of Lys^{109tB}, thereby highlighting some importance of this area in the BDNF/TrkB recognition processes. Although detailed mutational experiments did not demonstrate importance of the equivalent residue Asp¹⁰⁵ in NT-3 for TrkC related activities (Urfer et al., 1994), its direct involvement in the Zn2+ mediated regulation of neurotrophin bioactivities has been recently proven by multidisciplinary studies (Ross et al., 1997), and therefore, its location within the binding determinants of BDNF and NT-3 is consistent with these observations.

In area H, conserved residue Asp²⁴ of BDNF forms a salt bridge with specific TrkB residue Lys^{113tB}. Although Asp²⁴ has not been demonstrated to be involved in direct neurotrophin-receptor interactions, either for TrkB or TrkC related activities, it is highly conserved in neurotrophins (Bradshaw *et al.*, 1994) and located in direct proximity to Thr²² in NT-3, which has been shown to be included in the TrkC receptor binding domain (Urfer *et al.*, 1994). These observations are consistent with the present model of BDNF/TrkB binding, since substitution of the equivalent residue of BDNF, Thr²¹, by bulky Gln (Urfer *et al.*, 1994) would sterically hinder proper location of the LRM-2B domain (Figure 11b), whereas mutation D24A, although lacking one specific ligand-receptor interaction, would not significantly alter the BDNF/LRM-2B orientation resulting from multiple-point electrostatic complementarity. In

addition, the absence of negatively charged residue Asp²⁴ is shown to induce salt bridge interaction of Lys^{113tB} with neighboring Glu¹⁸, with only minor conformational alterations of the LRM-2B.

In area I, Glu¹⁸, a specific residue of BDNF (Bradshaw *et al.*, 1994), forms a salt bridge with the LRM-2B amino acid Arg^{94tB}. Residue Glu¹⁸ is also involved in intramolecular electrostatic interactions with Lys⁵⁷.

Area K is the only region of the distinct BDNF/LRM-2B interactions which is not of ionic nature. The positively charged residue Lys^{104tB} forms multiple H-bond contacts with the BDNF loop I backbone carbonyl groups and the neutral Thr³⁵ side chain. The energy of such H-bonding is much lower than that of salt bridge contact, and, therefore, a substitution of the uncharged amino acid Thr³⁵ by a negatively charged residue would stabilize the particular structure of the BDNF/LRM-2B complex. In accordance with the present model, the experimental substitution of BDNF residues 34-41 by the corresponding segment of NGF, which includes the substitution of negatively charged residue Glu³⁵ for Thr³⁵, resulted in a significant increase in bioactivity of the resulting chimeric molecule relative to wild type BDNF in TrkB mediated survival (Lai *et al.*, 1996).

In addition to these five distinct binding areas of the BDNF/LRM-2B complex, there is one more area which reinforce binding specificity. The side chain of Pro^{60} , a specific residue of BDNF (Bradshaw *et al.*, 1994), demonstrates a perfect geometric fit into the hollow in the "zigzag"-shaped β -strand region of the LRM-2B (Figure 11b). This geometric complementarity indicates that Pro^{60} "recognizes" the β -strand motif of the receptor binding site. This interaction, obviously, does not significantly contribute to the total energy of the complex in the case of a perfect fit, but does represent a steric hindrance when this fit cannot be readily achieved. Accordingly, BDNF is very selective and does not bind non-cognate Trk receptors.

Figure 11c illustrates the VBMC-generated geometry of the "improper" NGF/LRM-2B complex. In this complex, specific binding areas F and I are absent due to lack of properly charged residues at positions 20 and 81, which would correspond to BDNF residues Glu¹⁸ and Arg⁸¹, respectively. In addition, residue Pro⁶⁰, determining the proper BDNF/LRM-2B orientation, is substituted in NGF molecules (Bradshaw *et al.*, 1994). These substitutions cause dramatic conformational and orientational alterations in the complexed LRM-2B domain (compare Figure 11b and 11c). Predicted Cartesian 3-dimensional coordinates of atoms of the TrkB LRM-2B binding site in the complex with BDNF are presented in Appendix 2.

NGF/TrkA Interactions

LIGAND-RECEPTOR INTERACTION ENERGY

5

10

15

20

25

30

35

Table 3 presents the components of the intermolecular energies of the NGF/TrkA

complexes. Stability of the NGF/LRM-2A complexes results primarily from attractive electrostatic and van der Waals interactions, with intermolecular H-bonding playing a secondary role. It should be noted, however, that in the framework of the molecular mechanical approach, the H-bonding energy is partially incorporated into the electrostatic interaction energy term, so the tabulated E_{hb} values reflect only part of the H-bonding energy. Accordingly, intermolecular H-bonding is more important for the NGF/LRM-2A interaction than it appears in Table 3. On the other hand, the intermolecular component of the E_{qq} term seems to be insignificant. The reason for the latter is that the aromatic moieties of Phe⁷, Trp⁷⁶, Phe^{105tA}, Phe^{111tA} and Phe^{113tA} are "preorganized" for intermolecular contacts with their counterparts in the complexes in electrostatically attractive geometry in which the quadrupole-quadrupole interaction energy term is not significant. In addition, hydrophobic ligand-receptor interaction energy is presumably extremely important for NGF/LRM-2A complex formation, but rigorous quantitative evaluation is currently not possible.

Since neither electrostatic interactions nor hydrogen bonding can significantly stabilize a ligand-receptor complex in a water environment, the stability of the complex generally results from van der Waals and hydrophobic interactions (Clackson and Wells, 1995). Considerable contribution of intermolecular van der Waals interaction energy E_w (Table 3) arises from the geometric complementarity of the NGF binding domain and the TrkA recognition site, such that the high value of the E_w term is due to a large number of intermolecular van der Waals contacts. This complementarity is a consequence of the right-handed twists of both the NGF amino-carboxyl termini complex and the LRM-2A, this geometric feature being characteristic of each of these domains in both uncomplexed (Kobe and Deisenhofer, 1993; Shamovsky *et al.*, 1996) and complexed conformations. Thus, purely geometric ligand-receptor compatibility together with distinct hydrophobic contacts play a crucial role in NGF/TrkA recognition, while attractive electrostatic interactions and H-bonding further reinforce specificity of binding, which is in agreement with generalizations made by Clackson and Wells (1995).

BDNF/TrkB and NGF/TrkB Interactions

Table 4 presents the components of the potential energies of the complexes of BDNF and NGF with the LRM-2B in their minimum-energy conformations. Data presented in section A of Table 4 indicate that the difference in total energies (92.0 kcal/mol) is almost exclusively a consequence of more favorable electrostatic interactions in the BDNF/LRM-2B complex than in the NGF/LRM-2B complex (negative control). Section B of Table 4 illustrates that the BDNF complex is also more favorable in terms of intermolecular electrostatic energy by 77.2 kcal/mol (85% of the difference in total electrostatic energies). On the contrary, intermolecular van der Waals interactions are more favorable in the "improper" NGF/LRM-2B complex.

Furthermore, the value of intermolecular van der Waals energy is significantly lower for NGF/LRM-2B than for the NGF/LRM-2A complex, whereas electrostatic contribution is more than twice as high. Consequently, in contrast to the NGF/TrkA binding pattern, molecular recognition of BDNF by the TrkB receptor binding site is almost exclusively based on electrostatic complementarity, whereas the roles of van der Waals and hydrophobic interactions are insignificant. At the same time, such a perfect electrostatic fit could not be achieved without a purely geometric compatibility of the BDNF and the LRM-2B binding domains in size and shape (Figure 11b).

INDUCED CONFORMATIONAL CHANGES

The NGF Amino and Carboxyl Termini

5

10

15

20

25

30

35

Conformations of the NGF amino and carboxyl termini remain almost the same after complexation with the LRM-2A (Table 5; compare Figure 10a with 10b, 10c, 10d and 10e). A few local conformational changes occur in the Arg¹¹⁴ and the Lys¹¹⁵ side chains, and in the backbones of residues Ser² and Phe⁷. As predicted above, conserved charged residues Arg¹¹⁴ and Lys¹¹⁵ do not participate in principal intermolecular interactions within the NGF termini but are expected to form ionic intermolecular contacts with the TrkA binding site. Indeed, these are the intermolecular ionic NGF/LRM-2A interactions in area C, which change considerably the side-chain conformations of Arg114 and Lys115 while keeping their backbone geometry intact. The LRM-2A-induced conformational changes in residue Phe⁷ are caused by the intermolecular H-bonding in area E while the geometry of Ser2 is slightly changed to accommodate the LRM-2A residue Thr114tA. The rest of the structure of the LRM-2A-complexed NGF termini retains the energy minimum conformation of the uncomplexed molecules because it is controlled by multiple intramolecular H-bonds. Consequently, the geometry of the NGF termini is "preorganized" for complexation with the LRM-2A, and only local conformational changes, primarily in residues Arg¹¹⁴ and Lys¹¹⁵, occur upon complexation. Geometric "preorganization" of the NGF termini as a ligand for binding to a leucine-rich motif is consistent with X-ray studies of Kobe and Deisenhofer (1995), who have demonstrated that ribonuclease A maintains a fixed geometry upon binding to the LRMs of ribonuclease inhibitor.

The LRM-2A Domain

Figure 12 illustrates the isolated structure of the LRM-2A from the hNGF/LRM-2A complex. Table 6 presents the equilibrium torsional angles of the hNGF-bound LRM-2A. As seen, the side chains of the general consensus residues, Leu^{93tA}, Leu^{96tA}, Ile^{96tA}, Leu^{103tA} and Phe^{111tA} (Schneider *et al.*, 1988; Schneider and Schweiger, 1991), form the hydrophobic core, similarly to their conformations in intact leucine-rich repeats (Kobe and Deisenhofer, 1993). Terminal consensus residue Leu^{117tA} is solvent-exposed due to a boundary effect. Amino

acids Ala^{107tA}, Pro^{108tA}, Ala^{110tA} and Phe^{113tA} are also incorporated into the LRM-2A hydrophobic core. On the other hand, residues Val^{99tA}, Phe^{105tA}, Val^{106tA} and Pro^{115tA} are not involved in hydrophobic interaction within the core, and apparently have specific roles in the recognition site of TrkA. The most hydrophilic residues of the LRM-2A, namely Arg^{94tA}, Lys^{100tA}, Arg^{104tA}, Asp^{109tA}, His^{112tA} and Arg^{116tA} are exposed from the hydrophobic core in the complexes. Amino acids Lys^{100tA}, Asp^{109tA} and His^{112tA} participate in specific intermolecular interactions, while the other three are solvent-exposed. The reasonable locations of the hydrophobic and hydrophilic residues of the LRM-2A within the NGF/LRM-2A complexes with respect to water environment supports the calculated structures.

10

15

20

25

30

35

5

NGF/LRM-2A binding spans almost the whole LRM-2A domain, i.e., an interval between residues Leu^{93tA} and Pro^{115tA} comprising three distinct regions: β -strand, α -helix, and loop connecting the carboxyl terminus of the β -strand and the amino terminus of the α -helix. This is in agreement with recent crystallographic studies on the ribonuclease A - porcine ribonuclease inhibitor complex (Kobe and Deisenhofer, 1995), in which these particular regions of leucine-rich repeats of ribonuclease inhibitor are also involved in the molecular recognition process. While the β-strand structure exists in the complexed LRM-2A, the α-helix motif is destroyed by intermolecular interactions with NGF. Accordingly, the LRM-2A β-strand determines the proper orientation of the ligand with respect to the recognition site of TrkA, but does not undergo noticeable conformational changes. Consequently, the cooperative ligand-receptor H-bonding in area E cannot directly mediate those changes in receptor conformation which trigger receptor phosphorylation processes. Available experimental data confirm this point. First, the mNGFΔ3-9 deletion mutant, which does not have the β-strand motif and, consequently, cannot specifically bind area E, is as active as wild type mNGF (Drinkwater et al., 1993). Second, the 24-residue LRM fragment Thr^{97tA}-Leu^{120tA} lacking the β-strand region (Kobe and Deisenhofer, 1993), demonstrates the same kinetics of binding to NGF as wild type TrkA (Windisch et al., 1995a, 1995b).

The LRM-2B Domain

Table 7 presents the equilibrium torsional angles of the LRM-2B in the complex with BDNF. Side chains of all general consensus residues of the LRM-2B, except for Phe^{111tB} and terminal amino acid Leu^{117tB}, form the hydrophobic core and thereby stabilize the characteristic hairpin shape of the LRM (Figure 11b). In contrast with the LRM-2A, aromatic residues of the LRM-2B, namely Phe^{105tB}, Tyr^{108tB} and Phe^{111tB}, do not seem to have any specific roles in BDNF/LRM-2B molecular recognition. They form a cluster in which their aromatic rings interact with each other and are about mutually perpendicular (Figure 11b). On the contrary, all charged residues of the LRM-2B, namely Arg^{94tB}, Asp^{100tB}, Lys^{104tB}, Lys^{109tB} and Lys^{113tB}, are involved in specific electrostatic interactions with BDNF.

Similar to the NGF/LRM-2A complex, almost the whole LRM-2B domain, from Leu⁹³¹⁸ to Lys¹¹³¹⁸, fits to the BDNF binding determinant (Figure 11b). On the other hand, there are significant differences of the neurotrophin-induced conformational alterations in the two LRM domains. First, since the BDNF binding domain does not have a β -strand motif which would fit to the β -strand of the LRM-2B, the characteristic geometric features of the latter are lost. Second, region Tyr¹⁰⁸¹⁸ to Asn¹¹⁶¹⁸ retains its α -helical structure in the BDNF-bound LRM-2B domain. The reason of this conformational stability is that the spacer between the two BDNF-bound residues, Lys¹⁰⁹¹⁸ and Lys¹¹³¹⁸ (3 residues), is consistent with the period of an α -helix (3.5 residues).

PRINCIPAL AMINO ACIDS INVOLVED IN MOLECULAR RECOGNITION Principal NGF Residues

5

10 ·

15

20

25

30

35

The amino acids of NGF which are primarily responsible for maintaining bioactive conformations (McDonald *et al.*, 1991; Shamovsky *et al.*, 1996) or which directly participate in NGF/TrkA recognition are specified in Figure 13. Almost all residues of the amino and carboxyl termini of NGF as well as the His⁷⁵-Asn⁷⁷ region are involved in specific intra- or intermolecular interactions. Only five amino acids of the 30-residue binding domain of NGF do not seem to be essential for either maintaining its bioactive conformation or binding to the recognition site of TrkA. These include Ser¹, Ser², Ser³, Ala¹¹⁶ and Val¹¹⁷.

The observation that the important amino acids of the NGF binding domain are conserved across all species while the apparently unimportant five residues are variable (Figure 13) (McDonald et al., 1991) supports the particular structural features of the NGF/LRM-2A complexes calculated herein. There are, however, exceptions which require explanation. In most cases, principal amino acids of NGF molecules derived from different species appear to be substituted by similar residues, e.g. I6V, F7L, L112I, S113T or R114K. In some special cases, the substituted amino acid is quite different but the particular substitution is still consistent with the present model, e.g. R9M, R9L or R118Q (McDonald et al., 1991; Shamovsky et al., 1996); in the case of the H8N substitution (McDonald et al., 1991), histidine and asparagine have the same topology with respect to H-bonding to the Glu¹¹ carboxyl oxygen. The structure of snake NGF (sNGF) requires special consideration. Principal hydrophobic residues Phe⁷ and Phe¹² are replaced by histidine residues in sNGF. Although these mutations could be accompanied by structural differences in snake TrkA, they are consistent with the present model. According to the survey of Warme and Morgan (1978), side-chain interactions of histidine with tryptophan or threonine are very common in natural proteins, which implies the existence of specific inter-residue affinities. This being the case, attractive interactions His⁷...Thr^{114tA} and His¹²...Trp⁷⁶ in areas B and A, respectively, may replace corresponding hydrophobic interactions with Phe⁷ and Phe¹².

Principal LRM-2A Residues

5

10

15

20

25

30

35

The principal residues of the LRM-2A are shown in Figure 14. The general consensus residues (Schneider et al., 1988; Schneider and Schweiger, 1991) maintain the specific geometry of the LRM (Kobe and Deisenhofer, 1993, 1994, 1995). The amino acids which form the distinct binding areas are involved in specific intermolecular interactions with the NGF binding domain. Since NGF does not activate the TrkB receptor, those residues which are specific for the TrkA receptor have been postulated to be directly involved in NGF/LRM-2A recognition (Windisch et al., 1995a, 1995b). As shown, the LRM-2A segment has nine specific residues, seven of them directly participating in NGF/LRM-2A recognition in the framework of the present model. Thus, Lys^{100tA} binds Asp¹⁶ in area D, Pro^{108tA} is completely buried inside the NGF/LRM-2A complex, residues Asp^{109tA}, His^{112tA} and Pro^{115tA} form binding area C. and residues Phe1131A and Thr114IA are involved in forming area B. The other specific residues, Arg104tA and Arg116tA, do not seem to be required for specific NGF/LRM-2A interactions. It is seen, furthermore, that binding areas A and E are not specific for the recognition site of TrkA, indicating that binding specificity of the LRM-2A is determined by Lys^{100tA}, Asp^{109tA} and Phe^{113tA}. The fact that these particular amino acids are replaced in the recognition site of TrkB by residues of a different chemical nature, namely Asp^{100tA}, Lys^{109tA} and Lys^{113tA}, respectively (Windisch et al., 1995a, 1995b), making NGF/TrkB binding impossible, supports the herein predicted details of NGF/LRM-2A recognition. Principal residue Phe 105th, although common to both the TrkA and TrkB recognition sites (Windisch et al., 1995a, 1995b), is also important for the NGF/TrkA recognition process, since oxidation of its counterpart, Trp⁷⁶, results in a complete loss of receptor binding (Merrell et al., 1975).

Principal BDNF residues

Since BDNF/TrkB molecular recognition is predicted to be primarily based on electrostatic complementarity, principal BDNF and LRM-2B residues are identified by analysing their contribution to the intermolecular electrostatic energy. Table 8 presents a comparison of individual contributions of residues of BDNF, NGF and the LRM-2B to the intermolecular electrostatic energy for the BDNF/LRM-2B and the NGF/LRM-2B complexes, with cutoff being ±10 kcal/mol. BDNF/TrkB molecular recognition is achieved by those residues that make significantly more favourable contacts with their counterparts than do corresponding residues in the "improper" NGF/LRM-2B interaction. Accordingly, in section A of Table 8, residues of BDNF that make more favourable contacts with the LRM-2B than do those of NGF by at least 10 kcal/mol, are highlighted. They are: Glu¹⁸, Asp²⁴, Glu⁵⁵, Arg⁶¹ and Gln⁸⁴. These residues make up the BDNF binding epitope for TrkB activation. Only two of them, Arg⁸¹ and Gln⁸⁴, have been previously identified (lbáñez *et al.*, 1993). The most unusual case is residue Gln⁸⁴, which does not markedly participate in electrostatic interactions

with the LRM-2B; however, its substitution by His⁸⁴ results in considerable repulsive interactions with positively charged residues of the receptor site. Therefore, Gln⁸⁴ cannot be referred to as a principal residue by itself in terms of the TrkB receptor binding, and its apparent importance (Ibáñez *et al.*, 1993) comes from unfavorable substitution by a positively charged His⁸⁴. The only residue of NGF which binds to the TrkB receptor site significantly more strongly than does the corresponding residue of BDNF is Glu³⁵, in agreement with observations (Lai *et al.*, 1996).

Principal LRM-2B residues

5

10

15

20

25

30

35

Section B of Table 8 identifies the LRM-2B residues which significantly contribute to specificity of binding. Amino acids Arg^{94tB}, Asp^{100tB}, Ser^{101tB}, Lys^{109tB} and Lys^{113tB} make significantly more favorable contacts with their counterparts in BDNF than with those in NGF. Additionally, these residues are responsible for specific binding in areas F-K. The only residue of the LRM-2B that favours the NGF counterpart is Lys^{104tB}, which is caused by the abovementioned effect of Glu³⁵.

Figure 15 illustrates schematically the geometry of the LRM-2A and the LRM-2B receptor sites. Those residues which are predicted to form specific bonds with their preferred ligand are shown by arrows. The similarity of the binding patterns of the two LRMs is striking, especially bearing in mind the differences pointed out in the nature of the intermolecular interactions, and that the binding patterns were identified in independent computations. Thus, binding specificity of TrkA and TrkB is determined by the residues located in distinct positions of their second LRMs, with their respective binding patterns being incompatible with each other.

It is shown that van der Waals and hydrophobic interactions play a more important role in TrkA than in TrkB recognition. As a part of this phenomenon, we have demonstrated that NGF/LRM-2A binding is characterized by greater geometric complementarity, such that the ligand-receptor complex does not contain marked internal cavities. A plausible explanation for these particular features of Trk receptor recognition is that the NGF binding determinant is flexible and, because of that, more is required to stabilize its bioactive conformation in solution. Accordingly, TrkA receptor binding involves physical factors that are more effective in an aqueous environment, namely van der Waals and hydrophobic interactions.

EXPLANATION FOR STRUCTURE-ACTIVITY RELATIONSHIPS

TrkA mediated activity has been evaluated for 27 point and deletion mutants of the TrkA binding domain of NGF: hNGF (Burton *et al.*, 1992; Shih *et al.*, 1994), mNGF (Burton *et al.*, 1992; Drinkwater *et al.*, 1993), mNGFΔ3-9 (Drinkwater *et al.*, 1993), (1-120)hNGF (Schmelzer *et al.*, 1992), (1-120)mNGF (Luo and Neet, 1992), (1-117)hNGF (Schmelzer *et al.*,

1992) and hNGF:NT-4/5 (Treanor *et al.*, 1995) retain full activity; mNGFΔ2-8, mNGFΔ61-66 (Drinkwater *et al.*, 1993), hNGF-R9A, hNGFΔ1-5 and hNGF-P5A (Shih *et al.*, 1994) demonstrate intermediate potency; hNGFΔ1-9 (Burton *et al.*, 1992; Kahle *et al.*, 1992; Luo and Neet, 1992; Drinkwater *et al.*, 1993; Shih *et al.*, 1994; Burton *et al.*, 1995), mNGFΔ1-8 (Taylor *et al.*, 1991; Burton *et al.*, 1992), mNGFΔ1-9, mNGFΔ9-13 (Woo *et al.*, 1995), mNGFΔ3-8, mNGFΔ3-11, mNGFΔ3-12, mNGFΔ3-13, mNGFΔ3-14, mNGFΔ9-14, mNGFΔ112-118 (Drinkwater *et al.*, 1993), hNGF-H4A, hNGF-H4D (Shih *et al.*, 1994), BDNF (Suter *et al.*, 1992), and NT-4/5 (Treanor *et al.*, 1995) are almost or completely inactive. The present model of NGF/LRM-2A recognition enables a comprehensive explanation for the structure-activity relationships.

As demonstrated, fully active hNGF, mNGF and hNGF:NT-4/5 fit to the five binding areas A-E of the recognition site of TrkA, while the mNGFΔ3-9 deletion mutant fits only to A, C and D, without any specific binding taking place in areas B or E. Therefore, there are three common geometric features of the four fully active molecules which distinguish them from the less active analogues. First, conformations of the amino and carboxyl termini of these NGF analogues are "preorganized" for binding to the principal LRM-2A binding areas A, C and D. Second, there is no stereochemical incompatibility in the binding areas B and E. Third, there is no hole inside the NGF/LRM-2A complexes.

The structures of the other three fully active NGF analogues, (1-120)hNGF, (1-120)mNGF and (1-117)hNGF, are consistent with the above criteria. Indeed, since the NGF carboxyl end is located on the surface of the NGF/LRM-2A complexes (Figure 10) and does not directly participate in principal intermolecular interactions, the lengthening of the NGF carboxyl terminus by two amino acids does not explicitly affect NGF/LRM-2A compatibility. As far as the (1-117)hNGF molecule is concerned, terminal residue Arg¹¹⁸ of NGF has been shown to form inter-chain ionic H-bonds with Glu¹¹ (see above) and, hence, seems to be important in maintaining the structure of the NGF bioactive conformation. On the other hand, there is a second factor stabilizing the bioactive conformation of the hNGF termini, namely inter-chain H-bonding of residue Arg⁹. Because of the latter binding, the above criteria are still fulfilled for (1-117)hNGF.

The deletion of principal residue Phe ¹², which participates in hydrophobic interactions in area A, results in a substantial loss of TrkA mediated activity of the mNGFΔ3-12, mNGFΔ3-13, mNGFΔ3-14 and mNGFΔ9-14 deletion mutants (Drinkwater *et al.*, 1993). Likewise, the absence of principal residues Arg^{114*} and Lys^{115*}, essential for the ionic binding in area C, results in dramatic loss of bioactivity of mNGFΔ112-118 (Drinkwater *et al.*, 1993). Similarly, geometric perturbations of the essential residues Arg⁵⁹ and Arg⁶⁹ in the mNGFΔ61-66 deletion mutant result in incomplete NGF/LRM-2A compatibility in area D and,

accordingly, a considerable loss of activity.

5

10

15

20

25

30 -

35

The specific location of the NGF ninth amino acid side chain in the "hollow" existing on the surface of the NGF rigid region has been predicted herein to be critical for high TrkA mediated activity. The present invention provides a detailed explanation for this prediction. That is, the "hollow" is buried inside the NGF/LRM-2A complex, and a moiety located in this "hollow" fills the cavity which otherwise would exist inside the complex and destroy NGF/LRM-2A compatibility. Since this moiety is located in the internal cavity of the complex (Figure 10), severe limitations are imposed on its size. A short side chain does not fill this cavity; therefore, the hNGF-R9A mutant demonstrates noticeably diminished activity (Shih *et al.*, 1994). The cavity preferably is filled either by a bulky amino acid side chain, such as arginine (e.g. hNGF), methionine (e.g. mNGF) or leucine (sNGF), or by the two residue peptide backbone (mNGFΔ3-9 or mNGFΔ2-8). A longer amino terminus tail (e.g. in mNGFΔ3-8, mNGFΔ9-13 or mNGFΔ1-5) cannot be accommodated in the internal cavity of the NGF/LRM-2A complex and, hence, interferes with binding areas B and E.

Most deletion or point mutations of the NGF amino terminus destroy the exposed β -strand motif Phe⁷-Arg⁹ and change the proper orientation of the Phe⁷ side chain, thereby affecting NGF/LRM-2A compatibility in areas B and E. Thus, incorporation of a negatively charged residue into the relatively long NGF amino terminus, as in hNGF-H4D, BDNF, NT-3 and NT-4/5, or substitution H8R, which is characteristic for BDNF and NT-4/5, has each been demonstrated to cause dramatic conformational changes in the complex of the neurotrophin amino-carboxyl termini, making it incompatible with the LRM-2A. This stereochemical incompatibility of the geometry of the NGF amino terminus with binding areas B and E of the LRM-2A is the reason for the partial or complete loss of TrkA-related activity of mNGF Δ 3-8, mNGF Δ 1-5, hNGF-P5A, hNGF-H4A, hNGF-H4D, mNGF Δ 1-8, hNGF Δ 1-9, mNGF Δ 1-9, mNGF Δ 3-11, BDNF and NT-4/5.

As demonstrated, both NGF monomers are directly involved in specific ligand-receptor interactions, i.e., the first monomer binds areas B, D and E, whereas the second one binds areas A and C. Consequently, the dimeric structure of NGF is necessary to retain high biological activity, which is also consistent with experimental data (Maness *et al.*, 1994). On the contrary, only one BDNF protomer is essential for TrkB binding (Figure 11a, 11b).

In addition, recent reports of experiments have demonstrated the importance of residues Phe⁷ (Kullander and Ebendal, 1996), Leu¹¹², Arg¹¹⁴ and Lys¹¹⁵ (Krüttgen *et al.*, 1996) for TrkA mediated activity of NGF. This is consistent with their participation in the specific NGF/LRM-2A binding in the framework of the present model.

CONCLUSIONS

The complexes of the amino and carboxyl termini of the four fully active NGF

analogues with the second leucine-rich motif of TrkA were obtained using Variable Basis Monte Carlo simulated annealing calculations. The same methodology was utilized to define the structure of the complex of the second leucine-rich motif of TrkB with the BDNF receptor binding determinant. The structural features of the resulting NGF/TrkA and BDNF/TrkB binding predictions are supported by the following: (i) geometric and electrostatic complementarity of the binding domains of NGF and BDNF to binding sites of TrkA and TrkB. respectively, without considerable conformational changes of the ligands; (ii) appropriate environments for hydrophobic and hydrophilic residues within the complexes; (iii) analysis of structural variability of both binding domains; and (iv) comprehensive explanation of currently published structure-activity relationships. Within these complexes, NGF/TrkA molecular recognition is based upon multiple-point intermolecular interactions of hydrophobic, van der Waals, ionic and hydrogen bonding type. Extensive intermolecular van der Waals contacts arise from complementarity of the NGF binding domain and the TrkA recognition site in size and shape. In addition, there are five specific binding areas within the receptor model: hvdrophobic A and B, ionic C and D and cooperative hydrogen bonding E. The NGF/TrkA stereochemical compatibility in areas A, C and D is required for TrkA receptor activation, whereas areas B and E reinforce binding specificity, making the NGF molecule a very sophisticated key triggering the chain of biological events following receptor phosphorylation. The 3-dimensional structures of the binding domains of the fully active NGF analogues are "preorganized" for stereochemical fit to the second leucine-rich motif of TrkA. Five distinct binding areas F-K were also identified in the BDNF/TrkB complex, although, in contrast with NGF/TrkA binding, BDNF/TrkB recognition is based primarily on ionic and hydrogen bonding interactions. In spite of significant differences in the nature of ligand-receptor interactions involved in TrkA and TrkB recognition processes, binding patterns of their receptor binding sites for NGF and BDNF are almost identical. The predicted mechanism of high affinity NGF/TrkA and BDNF/TrkB binding is consistent with the conformational model of TrkA-p75NTR interactions (Chao and Hempstead, 1995).

PART C

THEORETICAL MODELLING OF THE P75^{NTR} RECEPTOR RECOGNITION SITE FOR NEUROTROPHINS

INTRODUCTION

5

10

15

20

25

30

35

As summarized above, the neurotrophins represent a family of structurally and functionally related proteins which play a crucial role in the development, survival and maintenance of the sympathetic and sensory neurons (Purves, 1988; Snider and Johnson,

1989; Barde, 1989; Thoenen, 1991; Korsching, 1993; Persson and Ibáñez, 1993; Davies, 1994; Ibáñez, 1995). The neurotrophin family consists of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), and more recently discovered neurotrophin-6 (NT-6) (Berkmeier *et al.*, 1991; Barde, 1991; Barbacid, 1993; Bradshaw *et al.*, 1994; Chao, 1994; Gotz *et al.*, 1994). Each neurotrophin is capable of binding independently with the common neurotrophin receptor p75^{NTR}, as opposed to specific Trk receptor interactions.

METHODS

The geometric features of complexes of monomeric neurotrophins with the p75^{NTR} receptor binding site have been obtained by multiple molecular dynamics runs of 200-300 ps at constant temperatures between 300 and 400°K, followed by local energy refinements. The QUANTA V4.1 molecular modelling program (Molecular Simulations Inc., Waltham, MA) with the united atom CHARMM potential energy terms (Brooks *et al.*, 1983) has been used. Residues of p75^{NTR} are designated by abbreviation p.

15

20

10

5

According to the invention, we superimposed the binding domains of NGF, BDNF, NT-3 and NT-4/5 with a putative binding site of p75^{NTR} and carried out multiple molecular dynamics computations of the ligand-receptor complexes. These calculations revealed the 3-dimensional structures of the binding domains of the neurotrophins and p75^{NTR}, demonstrated their geometric and electrostatic complementarity, and identified principal residues involved in receptor recognition. All neurotrophins are believed to induce similar conformational changes in the p75^{NTR} binding site, generally located in the orientation of the sequential loops within the cysteine-rich repeats.

25

Initial geometries of individual components of the complexes were based upon the X-ray crystallographic coordinates of neurotrophins NGF (McDonald *et al.*, 1991), BDNF and NT-3 (Robinson *et al.*, 1995) and the p55^{TNFR} receptor extracellular domain (Banner *et al.*, 1993) which is homologous to p75^{NTR}. Geometry of the NT-4/5 monomer was constructed from the X-ray derived structure of NT-3 (Robinson *et al.*, 1995). Since NGF and other neurotrophins fold in similar rigid conformations, their molecular motions were restricted by imposing the following atom constraints. First, peptide backbones of the neurotrophins were fixed at their crystallographic coordinates. Further, conformations of the amino acid side chains of the neurotrophins were also fixed except for those located within and in the vicinity of the variable loop regions I and V (the p75^{NTR} binding determinant). Thus, amino acid side-chain motions were allowed for residues 23-35 and 93-98 (NGF numbering) as well as for eight additional neighboring residues, namely His⁸⁴ (Gln in other neurotrophins), Phe⁸⁶ (Tyr in other neurotrophins), Lys⁸⁶ (Arg in other neurotrophins), Trp⁹⁹, Arg¹⁰⁰, Phe¹⁰¹ (Trp in NT-3 and NT-4/5), Arg¹⁰³, and Asp¹⁰⁵. The flexible amino and carboxyl termini of the neurotrophins were

30

excluded to avoid artefactual spacial hindrances for the receptor binding.

Fig. 16a represents a fragment of the crystallographically resolved structure of the p55^{TNFR} extracellular domain (Banner *et al.*, 1993), corresponding to the second CRD (loops 2A and 2B) and the first loop of the third CRD (loop 3A). Fig. 17 illustrates the sequence of this fragment and its alignment with the three known p75^{NTR} peptides (Johnson *et al.*, 1986; Radeke *et al.*, 1987; Large *et al.*, 1989). Fig. 16b presents the minimum energy conformation of the corresponding fragment of human p75^{NTR}. As is apparent, its size and shape are complementary to the exposed p75^{NTR} binding determinant of NGF (Fig. 16c). Accordingly, this 58-amino acid fragment of p75^{NTR}, including the second and the beginning of the third CRDs (Fig. 17), has been considered as a putative binding site for neurotrophins. The artefactual charges on the terminal amino and carboxyl groups of the peptide representing the p75^{NTR} binding site were neglected.

Once the most stable equilibrium 3-dimensional structures of the complexes being studied were obtained, the residues contributing the most to the energy of intermolecular interactions were identified. Point atomic charges of Weiner *et al.* (1984) and a dielectric constant equal to the interatomic separation in angstroms (to implicitly simulate solvation effects) (Weiner *et al.*, 1984) were utilized to calculate the electrostatic intermolecular terms. The van der Waals intermolecular terms were evaluated by the united atom CHARMM force field (Brooks *et al.*, 1983). The calculations were performed on a 200 MHz Indigo-2 SiliconGraphics Workstation.

RESULTS AND DISCUSSION

5

10

15

20

25

30

35

The most stable structures of the complexes of the neurotrophins with the putative p75^{NTR} receptor binding site obtained by the molecular dynamics computations described herein are illustrated in Fig. 18. Table 9 presents net values of the electrostatic and van der Waals terms of the ligand-receptor interaction energy. Tables 9 and 10 list individual residues of the neurotrophins and the p75^{NTR} receptor which significantly contribute to the intermolecular electrostatic interaction energy. The highlighted residues represent the functional epitopes of the ligands (Table 9) and the receptor (Table 10), whereas the other listed residues, although being located within the binding interfaces, apparently do not participate in major ligand-receptor electrostatic interactions in the particular complex. Predicted Cartesian 3-dimensional coordinates of atoms of the p75^{NTR} binding sites in the complexes with NGF and BDNF are presented in Appendix 3.

Significant contributions of electrostatic interactions to the ligand-receptor interaction energy (Table 9) result from opposite net charges of the binding domains of neurotrophins (positively charged) and the common neurotrophin receptor (negatively charged), which effect is consistent with published predictions (Rydén et al., 1995). Data presented in Tables 9 and

10 demonstrate that, on the average, the interaction between the functional epitopes is responsible for 94% of intermolecular electrostatic energy, but only 43% of van der Waals interaction energy. Consequently, residues participating in strong and specific ligand-receptor interactions represent only a part of a bigger binding interface in which significant van der Waals contribution is accumulated from a large number of weak contacts, which is possible only as a consequence of geometric complementarity of the binding domains. Fig. 19 presents the structure of the BDNF/p75NTR complex as atomic van der Waals spheres and demonstrates the geometric fit of the binding domains. The van der Waals energy and, therefore, geometric complementarity of the binding interfaces in the NGF/p75NTR complex is significantly lower than in the other neurotrophin/p75NTR complexes (Table 9), which is consistent with its fastest rate of dissociation (Ibáñez, 1995). However, the pure geometric factor cannot explain the slowest rate of dissociation observed for the BDNF/p75^{NTR} complex (Ibáñez, 1995). Thus, stability of the complex arises from a combination of geometric and electrostatic complementarities of the binding interfaces, consistent with the generalizations of Clackson and Wells (1995). A specific feature of the neurotrophin/p75^{NTR} binding interfaces is that they do not include substantially hydrophobic residues, so they do not have a hydrophobic core, which has been found in many other protein-protein complexes (Clackson and Wells, 1995; Livnah et al., 1996). The predominant interactions within the binding domains of the complexes under study are of the salt-bridge type.

20

25

30

35

5

10

15

Specificity of binding of the neurotrophins to the p75NTR receptor is determined by charged residues within the binding domains (Rydén et al., 1995). As seen in Fig. 18, they create 3-dimensional networks in which most of them are in contact with more than one residue of the opposite charge. Therefore, any missing charge would destroy more than just one bond, but a significant portion of, if not the whole, network. That is, the electrostatic complementarity of the binding interfaces would be altered, which is consistent with the experimentally observed sensitivity of binding to mutations of charged residues (Ibáñez et al., 1992; Rydén et al., 1995; Rydén and Ibáñez, 1996). Both ligand and receptor provide the network with positive and negative charges (Table 9 and 10, Fig. 18), even though negative charges dominate in the receptor, and positive in the ligands. This particular spatial arrangement of the charges increases specificity of binding and prevents electrostatic repulsions within the same binding domains. For example, in all the complexes, positively charged residue Lys^{56p} of the receptor forms salt-bridges with negatively charged residues Asp^{75p} and Asp^{76p} of the receptor, thereby occupying one site of their coordination, such that only the opposite sides of the latter residues remain available for intermolecular ionic interactions (Fig. 18). Negatively charged residue Asp⁹³ of BDNF holds together positively charged residues Arg⁹⁷ and Arg¹⁰¹ of BDNF, such that they are both able to interact with

5

10

15

20

25

30

35

juxtaposed amino acids Asp^{75p} and Asp^{76p} of the receptor (Fig. 18b). Similarly, negatively charged residue Asp³⁰ of the neurotrophins forms a salt-bridge interaction with Arg¹⁰⁰, which directly interacts with p75^{NTR}.

In spite of the differences in the binding interfaces of the respective complexes, binding patterns of the p75^{NTR} receptor are similar. All three loops of the receptor binding site (2A, 2B and 3A) are involved in binding (Fig. 18). The principal residues of loop 2A are Asp^{47p} and Lys^{56p}; those of loop 2B are Asp^{75p} and Asp^{76p}; and those of loop 3A are Asp^{86p} and Glu^{89p}. As is seen in Table 10, loop 2B forms the strongest contacts. In addition to the principal binding pattern, the p75^{NTR} binding domain comprises specific residues for ionic interactions with particular neurotrophins (Table 10, Fig. 18). Thus, Arg^{80p} interacts only with Glu³⁵ of NGF; residue Glu^{53p} interacts only with Lys⁹⁶ of BDNF, and Glu^{60p} and Glu^{73p} interact only with residues of NT-3 and NT-4/5.

Site-directed mutagenesis studies of the p75^{NTR} binding site have suggested that mutation of any one of the residues Asp^{75p}, Asp^{76p} or Glu^{89p} to Ala does not affect NGF binding, whereas mutation of Ser^{50p}, which does not participate in major ionic interactions, results in the complete abolishment of binding (Baldwin and Shooter, 1995). The apparent discrepancy with the present theoretical studies can be explained, since the cited experimental observations are still controversial. Indeed, although both Asp^{75p} and Asp^{76p} are involved in ionic interactions in the loop 2B region with positively charged residues of neurotrophins, one of them might be enough to maintain binding to NGF. Likewise, the functional role of the missing residue Glu^{89p} in loop 3A might be fulfilled by adjacent Asp^{88p}. Residue Ser^{50p} of p75^{NTR} is predicted to be hydrogen bonded to Gln⁹⁶ of NGF (Fig. 18a), and its mutation to Asn, Ala or Thr, which abolishes receptor binding (Baldwin and Shooter, 1995), may create steric hindrances in the NGF/p75^{NTR} interface. The present molecular modelling studies suggest that Ser^{50p} is not important for binding of any other neurotrophin (Fig. 18, b-d).

In contrast to the p75^{NTR} receptor binding pattern, there are only two common residues of the binding interfaces of neurotrophins which directly interact with the receptor site, Arg¹⁰⁰ and Arg¹⁰³. Contribution of Arg¹⁰³ is significant in all the complexes, while Arg¹⁰⁰ seems to be less important for the NGF/p75^{NTR} binding.

As is seen in Table 9, most important residues of the NGF binding domain are (in order of decreasing significance) Lys³², Lys³⁴, Arg¹⁰³, Lys⁹⁵, and His⁸⁴, all of them forming specific ionic contacts with negatively charged residues of p75^{NTR} (Fig. 18a). Involvement of Lys³², Lys³⁴, and Lys⁹⁵ in p75^{NTR} binding has been very well established experimentally, with the same order of significance being observed (Ibáñez, 1994). The most important residues of NGF, Lys³² and Lys³⁴, bind to the loop 2B residues of p75^{NTR} (Fig. 18a). Here we

demonstrate that residue Lys⁸⁸ is not critical for p75^{NTR} binding, whereas residues Arg¹⁰³ and His⁸⁴ make direct ionic contacts with the receptor binding site. Importance of the latter residue has not been previously reported in the context of p75^{NTR} binding. The roles of Asp³⁰, Glu³⁵ and Arg¹⁰⁰ seem to be secondary, since their contributions are relatively small. Hydrophobic residue Ile³¹ is not directly involved in ligand-receptor interactions.

In BDNF, all three positively charged residues of variable region V, Lys⁹⁵, Lys⁹⁶ and Arg⁹⁷ (Rydén *et al.*, 1995), bind to negatively charged residues of the p75^{NTR} binding site, namely Asp^{47p}, Glu^{53p} and Asp^{75p}, respectively (Fig. 18b). In addition, the residues Arg⁸⁸ and Arg¹⁰¹ play a more important role than in the NGF case (Table 9); they bind to the loop 2B residues Asp^{75p} and Asp^{76p} of p75^{NTR}, thereby fulfilling the function of missing positively charged residues of loop I. The increased importance of residue Arg⁸⁸ in BDNF and other neurotrophins relative to that of Lys⁸⁸ in NGF (Table 9) is permitted by a longer side chain of Arg, which results in a decrease of the separation between opposite charges (Fig. 18). Because of missing residue His⁸⁴, only the positively charged residue Arg¹⁰⁴ binds to the loop 3A residues Asp^{88p} and Glu^{89p} of p75^{NTR}.

In NT-3, the loop 2B residues of the receptor Glu^{73p}, Asp^{75p}, and Asp^{76p} bind to Arg³¹, His³³, Arg¹⁰⁰, and Arg⁸⁷. Residue Asp^{47p} of loop 2A of the receptor also binds to Arg¹⁰⁰. Residue Lys⁹⁵ of variable region V does not form any salt-bridge contact with the receptor, consistent with its reported insignificance for NT-3 binding (Rydén *et al.*, 1995). Thus, the present results agree well with the established roles of Arg³¹ and His³³ of NT-3 (Rydén *et al.*, 1995; Rydén and Ibáñez, 1996) and predict the increased importance of residue Arg¹⁰⁰ in NT-3 for p75^{NTR} binding (Table 9). The binding pattern of NT-4/5 is similar to that of NT-3 (Fig. 18, c,d). The increased electrostatic contribution of Arg³⁶ with respect to corresponding NT-3 residue His³³ (Table 9) is caused by the longer side chain of the former, which results in formation of a salt-bridge contact with residue Glu^{60p} of the receptor (Fig. 18d).

Binding of a neurotrophin induces conformational changes in the p75^{NTR} binding site. The conformational space of the three loops (2A, 2B and 3A) is limited by eight disulfide bonds; therefore, the most significant changes occur in the junction areas of those loops. Fig. 20 illustrates the superimposed equilibrium geometries of the free and the BDNF-complexed p75^{NTR} binding site. The superimposition is performed by a least-square minimization technique using the α-carbon reference atoms of loops 2A and 3A. As is apparent, the orientation of loop 2B with respect to the two flanking loops is considerably changed upon binding. Because of striking similarities between the binding patterns of the p75^{NTR} receptor with the different neurotrophins, a similar conformational change takes place in all four complexes under investigation. The driving force behind this particular conformational transition is ionic interactions of the principal residues of loop 2B. Asp^{75p} and

Asp^{76p}, with positively charged residues of the neurotrophins, taking into account that spacial positions of the flanking loops 2A and 3A are fixed by ionic interactions of residues Asp^{47p}, Lys^{56p}, Asp^{88p}, and Glu^{89p} with corresponding residues of the neurotrophins (Fig. 18). Thus, structural variability between the neurotrophins does not preclude them from inducing similar conformational change in the common neurotrophin receptor.

5

10

15

20

25

30

35

The binding pattern of neurotrophins to the p75^{NTR} receptor predicted by the present molecular modelling studies can be additionally verified by checking conservation of the identified principal residues. The sequences of the binding site of the p75^{NTR} receptor from different species (Fig. 17) demonstrate that principal residues forming its common binding pattern, namely Asp^{47p}, Lys^{56p}, Asp^{75p}, Asp^{76p}, Asp^{88p}, and Glu^{89p}, are conserved in p75^{NTR}. The known variability of regions I and V among neurotrophins (Rydén *et al.*, 1995) implies that conservation of the principal residues of the p75^{NTR} binding determinants may be checked only within the same neurotrophin derived from different species. Study of a recent sequence alignment of neurotrophins (Bradshaw *et al.*, 1994) allowed us to conclude that the functional epitope of the neurotrophins (Table 9) is generally conserved within the same neurotrophin even though there are some exceptions, often represented by the substitution by a similar amino acid. Arg¹⁰⁰ and Arg¹⁰³ are the only two residues of the binding epitopes which are conserved throughout all neurotrophins (Bradshaw *et al.*, 1994). Other residues within the functional epitopes maintain specificity of binding of different neurotrophins.

The present model also represents a key to understanding the conservation of residues which do not directly participate in receptor binding. For example, Gly^{33} is absolutely conserved in all neurotrophins, yet is not involved in any specific interactions with the receptor binding site. However, within the present model, its conservation can be understood, since it is located very close to loop 3A of the receptor and forms van der Waals contacts with it (Fig. 18), such that any other residue would impose steric hindrance which would alter or destroy the ligand-receptor geometric complementarity.

The principal NGF/TrkA binding areas necessary to trigger TrkA phosphorylation and subsequent biological events have been discovered by the inventors. Specifically, the inventors have discovered that essentially the full binding site of the second leucine rich motif (LRM) of TrkA, amino acid residues 93 to 117, forms the binding site for NGF, and comprises five distinct binding areas, A, B, C, D and E. Appendix 1 provides the Cartesian coordinates of the LRM-2A residues defining the areas A to E in PDB format. Binding areas A and B bind hydrophobically to ligands, areas C and D form ionic bonds with charged portions on ligands and area E forms hydrogen bonds with ligands.

The stereochemical fit to at least three of these binding sites, A, C and D by a ligand is necessary to activate TrkA receptor. Binding areas B and E reinforce stereoselectivity of

the TrkA binding site by selecting an NGF analogue with a stereochemically compatible amino terminus.

Binding area A of the second LRM comprises hydrophobic interaction of residue Phe^{105tA}. Binding area B comprises hydrophobic interaction of residues Phe^{111tA}, Phe^{113tA} and Thr^{114tA}. Binding area C comprises attractive ionic interaction between a suitable portion on the ligand and Asp^{109tA}. Binding area D comprises attractive ionic interaction between a suitable portion on the ligand and residue Lys^{100tA}. Binding area E comprises multiple parallel β-strand type hydrogen bonding with region Asn^{95tA}-Ile^{98tA}.

5

10

15

20

25

30

35

Main structural features of the bioactive conformation of NGF include: 1) ionic hydrogen bonding between Glu^{11} in the amino terminus and Arg^{118} in the carboxyl terminus; 2) separation of the flexible loop 1-8 from the rigid region (9-11 and 112' to 118') because of electrostatic repulsions caused by His^4 and conformational restrictions imposed by Pro^5 ; 3) packing the side chain of Arg^9 or Met^9 in the "hollow" of the rigid region, this "hollow" being an indentation in the protein structure by residues Lys^{115} - Arg^{118} ; and 4) an embryonic β -sheet structure present between the α -carbons of the 7th and 9th residues.

Within NGF, residues Trp⁷⁶, Arg¹¹⁴, Lys¹¹⁵ and Asp¹⁶ comprise the pharmacophore which binds TrkA. Any synthetic molecule, whether peptide or non-peptide, which fits into binding areas A, C and D is contemplated to elicit a biological response (agonist) or block biological response (antagonist).

The present invention provides a ligand for binding with TrkA, wherein TrkA comprises a second leucine rich motif (LRM) region comprising amino acid residues 93 to 117, the coordinates of the residues of said LRM given in Appendix 1, said LRM motif having five binding areas, area A comprising hydrophobic interaction of amino acid residue Phe^{105tA}, area B comprising hydrophobic interaction of amino acid residues Phe^{111tA}, Phe^{113tA}, and Thr^{114tA}, area C comprising ionic interaction of amino acid residues Asp^{109tA} and His^{112tA}, area D comprising ionic interaction of amino acid residue Lys^{100tA}, and area E comprising multiple parallel β-strand type hydrogen bonding of region Asn^{95tA} to Ile^{98tA}. The ligand comprises at least one functional group being capable of hydrophobic bonding and being present in an effective position in the ligand to hydrophobically bind to area A, at least one positively charged functional group being present in an effective position in the ligand to ionically bind to area C, and at least one negatively charged functional group being present in an effective position in the ligand to ionically bind to area D.

Secondary features of the ligand include at least one effective functional group present in a position in the ligand to hydrophobically bind to area B of TrkA, and a functional group present in an effective position in the ligand to hydrogen bind to area E of TrkA.

The invention further provides the ligand comprising amino acid residues, at least one

of the residues being capable of hydrophobic bonding and being present in an effective position in the ligand to hydrophobically bind to Phe^{105IA} in area A on the TrkA receptor, at least one of the residues being a positively charged residue present in an effective position in the ligand to ionically interact with Asp^{109IA} and His^{112IA} forming area C on the TrkA receptor, and one of the residues being a negatively charged residue present in an effective position in the ligand to ionically bind to Lys^{100IA} in area D on the TrkA receptor.

5

10

15

20

25

30

35

The present invention also provides a method of designing a ligand to bind with an LRM binding site on TrkA. The method includes computationally evolving a chemical ligand using an effective genetic algorithm with preselected spatial constraints so that the evolved ligand comprises at least three effective functional groups of suitable identity and spatially located relative to each other in the ligand so that a first of the functional groups hydrophobically interacts with binding area A, a second of the functional groups ionically interacts with binding area C, and a third one of the functional groups ionically interacts with binding area D of the second LRM of TrkA. Those skilled in the art will be aware of the various techniques which may be used for *de novo* ligand design. For example, packages such as Quanta, Discover and Insight provide computational methodologies for generating ligands.

Some ligands according to the present invention may be peptides or peptidomimetics. Morgan and co-workers (Morgan *et al.*, 1989) define peptide mimetics as "structures which serve as appropriate substitutes for peptides in interactions with receptors and enzymes". The mimetic must possess not only affinity but also efficacy and substrate function. For purposes of this disclosure, the terms "peptide mimetic" and "peptidomimetic" are used interchangeably according to the above excerpted definition. That is, a peptidomimetic exhibits function(s) of a particular peptide, without restriction of structure. Peptidomimetics of the invention, e.g., analogues of the neurotrophin and receptor binding sites described herein, may include amino acid residues or other chemical moieties which provide functional characteristics described herein.

Known compounds may also be screened to determine if they satisfy the spatial and functional requirements for binding with the second LRM of TrkA. The molecules in the data bases are screened to determine if they contain effective moieties spaced relative to each other so that a first moiety hydrophobically interacts with binding area A, a second of moiety ionically interacts with binding area C, and a third moiety ionically interacts with binding area D of the second LRM of TrkA.

The contents of all references and appendices (see Appendices 1, 2, 3, and 4) cited throughout this application are hereby expressly incorporated by reference.

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Table 1. Equilibrium variable torsional angles (in degrees) of the amino and carboxyl termini of the most stable conformations of the NGF dimers and analogues.*

	Active structures						s Inactive structures							
No.		hN	IGF	ml	NGF	ml	NGFD3-9	hΝ	IGF-H4D	ml	NGFD1-8	1	BDNF	
						An	nino termi	nus						
11	Ψ	E	82.9	E	85.9	E	89.2	Е	80.9	E	63.7	E	68.2	
	ф		55.7		56.3		57.8		57.2		47.9		56.3	
	χ1		-69.8		-72.0		-72.1		-75.0		-66.2		-76	
	χ2		72.7		71.7		66.0		72.6		71.2		70.	
	χЗ		-120.4		-111.7		-107.0		-104.8		-102.8		-97	
10	Ψ	G	-89.1	G	-95.1	G	-88.0	G	-129.5	G	-81.6	G	-13	
	ф		-172.5		-178.6		-177.5		104.7		-80.8		155	
9	Ψ	R	-36.1	M	-21.1	s	146.5	R	-46.5	M	-66.6	R	71.	
	ф		-92.8		-91.4		-103.6		-80.9	,	157.5		-12	
	χ1		-77.2		-75.2		-66.7		-115.0		-142.4		-73	
	χ2		-173.9		-179.7		64.0		69.5		-69.7		-17	
	χ3		-175.5		179.9		-		-141.9		178.3		-71	
	χ4		134.3		-		•		98.1		-		-10	
8	Ψ	Н	118.6	Н	110.4	S	106.1	Н	151.6		-	R	105	
	ф		-116.5		-110.4		52.8		-53.7		• •		-10	
	χ1		-89.7		-90.9		-45.9		-62.0		•		179	
	χ2		-73.8		-71.5		-172.3		-72 .5		-		-10	
	χ3		-		-		-		-		-		162	
	χ4		-		-		-		-		• '		133	
7	Ψ	F	135.7	F	129.4		-	F	142.3		-	A	161	
	ф		-68.8		-89.0		-		-114.8		•		-16	
	χ1		-171.6		-163.9		-		-170.7		•		-	
	χ2		-96.3		-91.5		-		-100.2 .		•		•	
6	Ψ	I	40.3	٧	61.7		-	i	40.0		-	P	114	
	ф		40.4		47.7		-		39.9		-		-	
	χ1		-159.7		-177.3		-		-159.7		-		-	
	χ2		87.1		-		-		88.6		-		-	

· · · · · · · · · · · · · · · · · · ·		
WO 98/06048	PC	T/CA97/00539

_		_						_					
5	Ψ	P	156.0	P	149.8		-	Р	105.5			D	82.8
	ф		-		-		-		-		-		56.5
	χ1		-		-		-		-		-		-176.9
	χ2		-		-		-		-		-		-112.8
4	Ψ	Н	121.4	H	122.1		-	D	117.9		-	.S	136.2
	ф		-129.2		-129.8		- .		-102.8		-		-53.4
	χ1		-162.5		-163.3		-		-66.4		-		-172.9
	χ2		-69.1		-69.2		-		-97.5		-		-178.3
3	Ψ	S	2.1	T	-1.9		-	S	-25.0		-	Н	153.8
	ф		-91.9		-84.5		-		-68.2		-		48.2
	χ1		-171.8		-174.9		-		39.3		-		82.1
	χ2		-53.2		-51.2		-		-120.5		-		69.8
2	Ψ	S	138.5	S	139.4		-	S	38.5		-		-
	ф		-128.9		-114.1		-		50.8		-		-
	χ1		173.3		169.7		-		-173.2		-		-
	χ2		-141.9		-139.8		-		-120.6		-		-
1	Ψ	S	133.0	s	127.9		-	S	131.9		-		•
	ф		48.6		49.4		-		-133.8		-		-
	χ1		-43.2		-44.1		-		-43.5		-		-
	χ2		-171.5		-172.4		-		-173.6		-		-
				····		Cart	ooxyl term	ninus	3	<u> </u>			
112'	ф	L	-113.3	L	-113.0	L	-112.4	L	-112.0	L	-111.5	L	-110.6
	Ψ		98.8		98.7		99.2		97.7		89.9		100.1
	χ1		-72.3		-71.6		-71.6		-71.7		-71.8		-72.1
	χ2		163.7	•	163.0		162.6		162.2		161.9		161.1
113'	ф	S	-83.4	S	-77.2	S	-77.4	S	-76.8	S	-91.9	T	-89.5
٠	Ψ		136.1		146.0		143.5		141.7		149.4		134.0
	χ1		177.0		179.4		176.3		175.6		169.6		57.4
	Λ.				60.6		59.0		57.5		73.2		-179.7
	χ2		65.2		00.0								
114'		R	65.2 -66.7	R	-71.5	R	-78.0	R	<i>-</i> 75.1	R	-117.0	1	-57.9
114'	χ2	R		R		R	-78.0 -59.3	R	-75.1 -57.1	R	-117.0 -31.9	1	-57.9 -32.2
114'	χ2 φ ψ	R	-66.7	R	-71.5	R				R		1	-32.2
114'	χ2 Φ	R	-66.7 -47.0	R	-71.5 -53.7		-59.3		-57.1	R	-31.9	1	

WO 98/06048	PCT/CA97/00539

		χ4		138.4		140.3		141.5		124.7		173.4		-
	115'	ф	K	-163.2	K	-162.1	K	-167.1	K	-163.0	K	-133.4	K	-167.7
		Ψ		110.6		132.0		153.3		157.6		141.7		126.1
		χ1		-139.8		-143.3		-140.1		-137.8		-164.0		-142.2
5		χ2		78.7		81.7		85.0		79.3		172.4		83.5
		χЗ		-96.4		-97.9		-95.8		-97.4		133.9		-100.4
	•	χ4		129.5		120.9		131.0		133.6		-73.6		109.2
		χ5		-39.1		-35.6		-47.7		-44.1		9.6		-9.5
	116'	ф	A	-60.5	Α	-69.6	Α	-58.2	A	-63.9	A.	-51.6	R	-61.4
10		Ψ		-47.5		-40.7		-47.5		-42.4		-45.3		-39.3
		χ1		-		-		-		-		•		-80.9
		χ2		-		-		-		-		-		-173.4
		χЗ		-		-		-		_		-		174.3
		χ4		-		-		-		-		-		129.6
15	117'	ф	٧	-71.8	T	-85.5	T	-64.6	٧	-41.0	T	-114.6	G	-73.3
		Ψ		112.0		116.4		108.2		130.2		168.4		77.3
		χ1		-74.3		53.4		50.9		-66.2		57.2		-
		χ2		-		60.5		58.0		-		-170.5		-
	118'	ф	R	-93.8	R	-118.2	R	-58.5	R	-125.2	R	-51.5	R	-49.0
20		Ψ		-57.9		-48.4		-37.6		141.3		-56.3		-40.3
		χ1		-104.3		-80.9		-109.5		-126.2		-153.8		-125.9
		χ2		79.1		109.1		73.3		106.7		88.0		98.0
		χЗ		147.7		116.1		-76.3		-78.8		-74.9		-76.6
		χ4		147.0		116.1		-87.2		-98.5		-125.9		-111.5

^{25 *}Torsional angles are designated according to the IUPAC-IUB rules (1970).

Table 2. Residues of BDNF and NGF defining the surfaces of their central β -strand stems, the side-chain thermal motion of which is taken into account when optimizing the structures of the complexes with the LRM-2B.

5	BDN	IF	NGF			
	lle ¹⁶	Lys ⁵⁷	-	Lys ⁵⁷		
	Glu ¹⁸	Asn ⁵⁹	Val ¹⁸	Arg ⁵⁹		
	Val ²⁰	Met ⁶¹	Val ²⁰	Ser ⁶¹		
10	Thr ²¹	Lys ⁶⁵	Val ²²	-		
	Asp ²⁴	Gln ⁷⁹	Asp ²⁴	Туг ⁷⁹		
	Lys ²⁵	Arg ⁸¹	Lys ²⁵	Thr ⁸¹		
	Lys ²⁸	Thr ⁸²	Thr ²⁶	Thr ⁸²		
	Thr ²⁷	Gln ⁸⁴	Thr ²⁷	His ⁸⁴		
15	Val ²⁹	Tyr ⁸⁶	Thr ²⁹	Phe ⁸⁶		
	Thr ³⁵	Arg ¹⁰⁴	Glu ³⁵	Arg ¹⁰³		
•	Glu ⁵⁵	Asp ¹⁰⁶	Glu ⁵⁵	Asp ¹⁰⁵		

Table 3. Components of the molecular mechanical potential energy of the intermolecular NGF/LRM-2A interactions (in kcal/mol)

25	Term	hNGF	mNGF	mNGFΔ3-9	hNGF:NT-4/5
	E ,	-61.2	-57.9	-39.3	-65.1
	E _e	-96.2	-87.9	-99.0	-65.2
	E _{hb}	-7.4	-5.9 -3.1	-4.6	
30	Eqq	-0.3	-0.3 -0.1	-0.1	
	Total	-165.1	-152.0	-141.5	-135.1
				 	

20

Table 4. Components of the molecular mechanical potential energy of the BDNF/LRM-2B and the NGF/LRM-2B complexes (in kcal/mol)

5

A. Components of the potential energy

		BDNF/LRM-2B	NGF/LRM-2B	Difference*
	E,	89.3	82.3	-7.0
10	E _{el}	-183.8	-93.1	<u>90.7</u>
	E _{hb}	-31.0	-21.5	9.5
	Et	114.9	114.0	-0.9
	E_{qq}	0.4	0.0	-0.4
15	Total	-10.2	81.8	92.0

B. Components of the intermolecular interactions energy

20

25

	BDNF/LRM-2B	NGF/LRM-2B	Difference*
E _w	-48.0	-64.9	-16.9
E _{el}	-221.4	-144.2	<u>77.2</u>
E _{hb}	-5.6	-4.3	1.3
Total	-275.0	-213.5	61.5

30

*Difference of the energy terms within the minimum-energy structures of the NGF/LRM-2B and the BDNF/LRM-2B complexes. Underlined values demonstrate that the difference in intermolecular electrostatic interactions dominates in the differences in potential energies of the complexes.

Table 5. Equilibrium variable torsional angles (in degrees) of the amino and carboxyl termini of the most stable conformations of the uncomplexed (UC) and complexed (C) NGF analogues.*

N	lo.			hNGF			mNGF		mNGFΔ3-9		
				UC	С		UC	С		UC	С
						Am	ino termir	nus			
1	1	ψ	E	82.9	78.2	E	85.9	85.4	E	89.2	96.6
		φ		55.7	60.3		56.3	56.3		57.8	60.3
		X		-69.8	-69.3		-72.0	-69.4		-72.1	-73.7
		χ2		72.7	70.2		71.7	71.3		66.0	67.0
		χЗ		-120.4	-117.6		-111.7	-117.1		-107.0	-109.2
1	0	Ψ	G	-89.1	-122.1	G	-95.1	-103.2	G	-88.0	-94.8
		φ		-172.5	-166.5		-178.6	174.1		-177.5	168.7
9		Ψ	R	-36.1	-25.7	M	-21.1	-14.3	S	146.5	166.1
		φ		-92.8	-84.2		-91.4	-77.3		-103.6	-132.1
	-	χ1		-77.2	-92.9		-75.2	-84.9		-66.7	-179.1
		χ2		-173.9	-174.1		-179.7	179.0		64.0	122.2
		хз		-175.5	158.1		179.9	171.5		-	-
		<i>X</i> 4		134.3	136.4		-	-		-	-
8		Ψ	H	118.6	98.3	H	110.4	96.1	S	106.1	156.1
		Φ		-116.5	-127.3		-110.4	-121.8		52.8	46.0
		X		-89.7	-108.0		-90.9	-104.1		-45.9	-35.5
		X 2		-73.8	-87.9		-71.5	-65.8		-172.3	-174.1
7		ψ	F	135.7	113.6	F	129.4	106.7		-	-
		φ		-68.8	-122.4		-89.0	-130.8		-	-
		X		-171.6	-147.2		-163.9	-143.9		-	•
		X2		-96.3	-85.8		-91.5	-87.5		•	-
6		Ψ	I	40.3	57.9	V	61.7	67.9		-	-
		Φ		40.4	38.5		47.7	48.3		-	-
		X		-159.7	-165.7		-177.3	-177.3		-	-
		χ2		87.1	88.3		-	-		-	-
5		Ψ	P	156.0	164.8	P	149.8	153.3		-	· -

	WC	70/00	U40							rcı	ICA9 //0033
	4	Ψ	H	121.4	125.4	Н	122.1	122.9		-	-
		φ		-129.2	-133.8		-129.8	-125.9			-
		X		-162.5	-163.2		-163.3	-161.8		-	-
		<i>x</i> 2		-69.1	-71.9		-69.2	-69.9		-	-
5	3	Ψ	S	2.1	-4.9	T	-1.9	-5.1		-	-
		φ		-91.9	-78.9		-84.5	-82.3		-	-
		X		-171.8	-172.3		-174.9	-171.4		-	-
		X 2		-53.2	-51.2		-51.2	-52.3		-	-
	2	Ψ	S	138.5	135.7	S	139.4	139.4		-	-
10		φ		-128.9	-157.5		-114.1	-160.3		-	-
		X		173.3	173.4		169.7	170.3		-	-
		X 2		-141.9	-133.0		-139.8	-134.5		-	-
	1	Ψ	S	133.0	129.5	S	127.9	128.6		-	
		φ		48.6	46.6		49.4	53.8		-	-
15		X		-43.2	-41.9		-44.1	-44.0		-	-
		χ2		-171.5	-171.0		-172.4	-170.9		-	-
											
						Carb	oxyl term	inus			
20	112'	φ	L	-113.3	-113.1	L	-113.0	-114.1	L	-112.4	-113.7
		Ψ		98.8	95.5		98.7	99.3		99.2	103.9
		<i>X</i> 1		-72.3	-72.1		-71.6	-72.1		-71.6	-72.1
		<i>X</i> 2		163.7	163.2		163.0	164.1		162.6	163.8
	113'	φ	S	-83.4	-72.5	S	-77.2	-70.5	S	-77.4	-63.0
25		Ψ		136.1	147.9		146.0	148.6		143.5	145.8
		X		177.0	179.1		179.4	-177.9		176.3	-177.0
		χ2		65.2	56.0		60.6	56.3		59.0	52.4
	114'	φ	R	-66.7	-101.6	R	-71.5	-92.5	R	-78.0	-92.3
		Ψ		-47.0	-41.9		-53.7	-43.8		-59.3	-50.4
30		X		-99.1	-175.3		-145.6	-173.2		-93.4	-167.4
		<i>x</i> 2		-173.1	-130.0		-179.8	-114.8		-171.5	-101.4
		χЗ		170.4	159.9		-173.6	151.4		-172.9	172.3
		<i>χ</i> 4		138.4	-117.4		140.3	-139.0		141.5	-130.9
	115'	φ	K	-163.2	-155.3	K	-162.1	-152.2	K	-167.1	-161.4
35		Ψ		110.6	111.2		132.0	111.0		153.3	132.6

WO 98/06048

PCT/CA97/00539

		X		-139.8	-150.7		-143.3	-156.2		-140.1	-144.6
		X 2		78.7	-170.9		81.7	-170.0		85.0	-177.7
		<i>X</i> 3		-96.4	177.2		-97.9	-174.3		-95.8	-169.3
		X 4		129.5	-165.4		120.9	-173.7		131.0	175.4
5		<i>X</i> 5		-39.1	-63.2		-35.6	-61.4		-47.7	-53.3
	116'	φ	A	-60.5	-62.3	A	-69.6	-61.7	A	-58.2	-67.9
		Ψ		-47.5	-43.9		-40.7	-47.8		-47.5	-40.4
	-117'	φ	\mathbf{v}	-71.8	-106.1	T	-85.5	-106.0	T	-64.6	-74.3
		Ψ		112.0	107.0		116.4	98.5		108.2	107.7
10		X		-74.3	<i>-</i> 75.0		53.4	55.1		50.9	56.6
		<i>X</i> 2		-	-		60.5	63.2		58.0	54.0
	118'	φ	R	-93.8	-58.0	R	-118.2	-58.4	R	-58.5	-79.4
		Ψ		-57.9	-53.7		-48.4	-59.7		-37.6	-49.6
		X		-104.3	-88.5		-80.9	-84.7		-109.5	-135.3
15		<i>X</i> 2		79.1	74.4		109.1	79.7		73.3	108.0
		<i>X</i> 3		147.7	161.4		116.1	147.5		-76.3	-70.1
		<i>x</i> 4		147.0	119.7		116.1	118.7		-87.2	-135.3

PCT/CA97/00539

WO 98/06048

^{*}Torsional angles are designated according to the IUPAC-IUB rules (1970). Torsional angles undergoing considerable changes upon LRM-2A binding are shown in bold.

Table 6. Optimized conformational variables (in degrees) of hNGF-complexed LRM-2A.*

No.	Туре	φ	Ψ	X 1	χ2	χЗ	χ4	X 5
94tA	Arg	-161.6	-62.5	-169.2	-164.9	66.8	172.2	
95tA	Asn	-114.1	132.0	33.0	-111.6			
96tA	Leu	-131.9	114.2	-161.2	141.1			
97tA	Thr	-145.0	125.0	-179.9	-176.6			
98tA	lle	-123.1	21.6	61.3	105.7			
99tA	Val	-61.2	107.3	175.7				
100tA	Lys	54.4	40.8	-75.6	161.7	-174.8	166.2	-41.3
101tA	Ser	-97.4	-40.0	-176.4	167.7			
102tA	Gly	144.4	46.5					
103tA	Leu	-135.6	155.5	-85.0	90.0			
104tA	Arg	-81.7	179.3	-33.6	165.0	-52.8	-144.7	
105tA	Phe	-68.6	-40.8	-159.4	93.3		•	
106tA	Val	-106.1	94.3	176.1				
107tA	Ala	-173.5	-54.8					
108tA	Pro		-26.2					
109tA	Asp	-85.5	64.7	-116.1	102.8			
110tA	Ala	117.5	-57.2					
111tA	Phe	-79.4	135.3	38.4	89.8			
112tA	His	-132.1	78.5	-67.1	89.9			
113tA	Phe	-120.8	-29.0	54.6	95.4			
114tA	Thr	-59.9	-56.0	-23.4	-176.5			
115tA	Pro		-47.9					
116tA	Arg	-150.8	142.7	46.8	98.5	-100.4	155.7	
117tA	Leu	-76.3	-39.4	57.0	117.9			

^{*}Torsional angles are designated according to the IUPAC-IUB rules (1970).

Table 7. Optimized conformational variables (in degrees) of BDNF-complexed LRM-2B.*

No.	Туре	φ	Ψ	XI	<i>X</i> 2	ХЗ	<i>X</i> 4	<i>)</i> 5
941B	Arg	-109.3	-54.2	-69.7	169.4	-171.6	119.4	
95tB	Asn	-163.6	141.0	-129.4	-109.4			
96tB	Leu	-81.9	86.5	-92.9	-58.2			
97tB	Thr	-138.3	143.5	-177.9	169.6	•		
98tB	lle	-136.4	136.6	-164.6	86.9			
99tB	Val	-107.6	151.8	-70.1				
100tB	Asp	-68.8	-72.8	23.6	95.2			
101tB	Ser	36.4	36.0	-156.1	157.6			
102tB	Gly	42.0	44.4					
103tB	Leu	-118.2	149.0	49.9	87.1			
104tB	Lys	-92.9	68.5	-147.2	173.5	91.3	-169.5	45
105tB	Phe	73.7	-78.5	-160.5	-111.0			
106tB	Vai	52.6	19.9	-174.2				
107tB	Ala	-113.9	26.4					
108tB	Tyr	-58.7	-20.3	-46.5	102.7	-74.2		
109tB	Lys	-71.4	-27.6	62.1	-113.2	176.6	176.6	-55
110tB	Ala	-91.7	-32.6					
111tB	Phe	-63.5	-37.4	-168.3	83.6			
112tB	Leu	-60.3	-43.2	-169.7	91.0			
113tB	Lys	-61.5	-48.0	-78.9	152.7	-167.9	63.2	22.
114tB	Asn	-59.4	-36.6	-70.9	-107.4			
115tB	Ser	-68.6	-32.9	-60.0	68.6			
116tB	Asn	-80.7	-45.4	-83.4	-96.8			
117tB	Leu	-127.8	-58.8	-75.6	105.5			

^{*}Torsional angles are designated according to the IUPAC-IUB rules (1970).

Table 8. Contributions of individual residues to intermolecular electrostatic interaction energies of the complexes BDNF/LRM-2B and NGF/LRM-2B (in kcal/mol)*.

A. Binding epitopes of neurotrophins

	Total	-232.8		-133.7	99.1
15	Asp ¹⁰	⁶ -39.7	Asp ¹⁰⁵	-46.4	-6.7
	Arg ¹⁰⁴	-14.3	Arg ¹⁰³	-9.5	4.8
	Gin ⁸⁴	1.2	His ⁸⁴	11.5	10.3
	Arg ⁸¹	-32.2	Thr ⁸¹	0.1	32.3
	Lys ⁵⁷	27.1	Lys ⁵⁷	22.5	-4.6
10	Glu ⁵⁵	-50.2	Glu ⁵⁵	-18.9	31.3
	Thr ³⁵	-11.4	Glu ³⁵	-50.5	-39.1
	Gly ³³	-11.9	Gly ³³	-13.4	-1.5
	Lys ²⁵	25.3	Lys25	15.5	-9.8
	Asp ²⁴	-65.1	Asp ²⁴	-44.9	20.2
5	Glu ¹⁸	-61.6	Val ¹⁸	0.3	61.9
	BDNF	F/LRM-2B	NGF/LF	RM-2B	Difference‡

B. Binding epitopes of the LRM-2B

20	BDNF/LF	RM-2B	NGF/LRM-2B	Difference‡
	Arg ^{94tB} -4	10.9	4.2	45.1
*	Asn ^{95tB}	0.2	-12.8	-13.0
	Asp ^{100tB}	-42.1	-9.3	32.8
	Ser ^{101tB}	-17.9	-0.1	17.8
25	Gly ^{102tB} -1	1.3	-12.0	-10.7
	Lys ^{104tB}	-18.5	-48.1	-29.6
	Lys ^{109tB}	-46.4	-21.5	24.9
	Lys ^{113tB}	-54.6	-37.2	17.4
30	Total	-221.5	-136.8	84.7

35

*The ±10 kcal/mol cutoff of intermolecular electrostatic interaction energy has been used to identify binding epitopes within the complexes. ‡Difference of the intermolecular electrostatic interaction energies of the given residue within the minimum-energy structures of the NGF/LRM-2B and the BDNF/LRM-2B complexes. Residues within the binding epitopes of BDNF and the LRM-2B which cause their binding specificity are bolded.

Table 9. Contributions of individual residues of the neurotrophins to the intermolecular interaction energy of their complexes with the common neurotrophin receptor p75^{NTR} (kcal/mol)*

NGF			BDNF			NT-3			NT-4/5	,	
Res.	EL	VDW	Res.	EL	VDW	Res.	EL	VDW	Res.	EL	VDW
D-30	17.9	-0.9	D-30	25.0	-1.8	D-29	24.6	-2.6	D-32	19.8	-1.8
K-32	-94.9	-6.0	S-32	0.5	-4.5	R-31	-48.2	-8.0	R-34	-42.6	-9.3
K-34	-88.8	-3.3	G-34	-1.8	-3.1	H-33	-35.0	-7.1	R-36	-57.2	-7.7
E-35	-10.0	-2.2	T-35	1.7	-1.4	Q-34	0.5	-2.3	D-37	-0.8	-1.7
H-84	-30.9	-1.0	Q-84	1.19	-2.4	Q-83	8.0	-0.7	Q-83	0.6	-1.0
F-86	-0.2	-0.3	Y-86	-0.5	-0.5	Y-85	-13.4	0.3	Y-96	-9.2	-0.3
K-88	-8.5	-0.1	R-88	-12.7	-0.2	R-87	-20.0	-0.3	R-98	-16.2	-0.2
D-93	-9.0	-1.3	D-93	13.7	-2.2	E-92	24.1	-2.8	D-103	9.0	-2.1
K-95	-63.7	-5.6	K-95	-82.9	-7.6	N-94	-0.1	-0.2	Q-105	-0.3	-0.2
Q-96	-0.3	-3.7	K-96	-58.2	2.0	K-95	-49.6	-2.6	G-106	-0.6	-0.6
A-97	0.2	-0.2	R-97	-79.3	-5.7	L-96	-0.5	-6.7	R-107	-28.0	-11.2
R-100	-11.8	-0.7	R-101	-59.2	-1.1	R-100	-79.3	1.7	R-111	-57.8	-1.9
R-103	-64.5	0.0	R-104	-64.2	-1.6	R-103	-51.5	0.6	R-114	-55.3	-2.9
D-105	10.6	-0.2	D-106	8.3	-0.2	D-105	5.5	-0.1	D-116	4.8	-0.1
Total	-336.1	-15.6	,	-317.8	-18.2		-248.3	-15.6	-	-237.3	-35.0
	100%	55%		99%	39%		97%	32%		102%	61%
Net	-337.3	-32.3		-321.4	-46.7		-254.8	-48.9		-233.0	-57.5

*EL and VDW denote electrostatic and van der Waals terms of the ligand-receptor interaction energy, respectively. The ±10 kcal/mol cutoff of the intermolecular electrostatic interaction energy has been used to identify the functional epitopes (bolded). "Total" electrostatic and van der Waals contributions of the functional epitopes to the "net" values of the intermolecular interaction energy calculated over the whole binding interface are presented. Residue numbering corresponds to the general alignment of neurotrophins (Bradshaw et al., 1994).

30

Table 10. Contributions of individual residues of p75^{NTR} to the intermolecular interaction energy of their complexes with neurotrophins (kcal/mol)*.

NGF			BDNF	•		NT-3			NT-4/	5	
Res.	EL	VDW	Res.	EL	VDW	Res.	EL	VDW	Res.	EL	VDW
D-47	-46.0	0.2	D-47	-67.1	0.1	D-47	-50.5	-0.3	D-47	-26.7	-4.1
E-53	-2.6	-0.2	E-53	-55.4	1.6	E-53	-6.6	-0.2	E-53	-3.6	-0.1
P-54	-12.4	-2.8	P-54	-13.5	-2.5	P-54	-15.1	0.2	P-54	-5.3	-0.8
C-55	-1.4	-0.9	C-55	-8.4	-1.3	C-55	-14.9	-1.0	C-55	-3.0	-1.2
K-56	21.8	-4.5	K-56	13.2	-4.8	K-56	32.9	-5.0	K-56	14.8	-5.8
E-60	-6.2	-0.3	E-60	-3.0	-0.1	E-60	-10.0	-0.2	E-60	-10.4	-0.4
E-73	-4.2	0.0	E-73	-9.7	-0.2	E-73	-12.5	-0.3	E-73	-11.2	-0.3
D-75	-56.5	0.6	D-75	-77.1	0.4	D-75	-65.5	-1.1	D-75	-59.4	-2.7
D-76	-91.6	-2.0	D-76	-22.3	-8.4	D-76	-39.9	-3.7	D-76	-39.3	-5.1
R-80	-18.5	-3.9	R-80	2.9	-2.1	R-80	5.3	-4.0	R-80	3.1	-4.3
D-88	-49.1	0.4	D-88	-39.8	-0.4	D-88	-34.4	0.4	D-88	-33.1	-1.2
E-89	-32.5	-1.6	E-89	-25.2	-6.2	E-89	-33.8	-3.8	E-89	-33.0	-5.9
Total	-285.4	-13.6		-287.2	2 -20.2		-243.7	-14.8	.	-198.3	 -25.5
•	84%	42%		89%	43%		96%	30%		85%	44%

^{*}See footnote to Table 9.

Appendix 1. Geometry of the LRM-2A in PDB format.*

	REMARK	1 The bioactive conf	formation of the second LRM of TrkA.
	REMARK	C 2 HSC stands for	charged HIS
5	REMARK	< 3	
	ATOM	1 N LEUS 93 1	19.399 -23.034 -15.306 1.00 -0.45
	ATOM	2 CA LEUS 93	18.757 -22.140 -14.332 1.00 -0.07
	ATOM	3 C LEUS 93 1	19.555 -20.869 -14.130 1.00 0.53
	ATOM	4 O LEUS 93 2	20.777 -20.864 -14.044 1.00 -0.50
10	ATOM	5 CB LEU S 93	18.635 -22.886 -13.002 1.00 0.02
	MOTA	6 CG LEUS 93	17.661 -22.206 -12.037 1.00 0.05
	MOTA	7 CD1 LEU S 93	16.251 -22.083 -12.617 1.00 -0.01
	ATOM	8 CD2 LEU S 93	17.517 -22.968 -10.718 1.00 -0.01
	ATOM	9 1H LEUS 93	19.651 -23.930 -14.841 1.00 0.15
15	ATOM	10 2H LEUS 93	18.742 -23.223 -16.089 1.00 0.15
	ATOM	11 3H LEUS 93	20.260 -22.582 -15.677 1.00 0.15
	ATOM	12 N ARG S 94	18.551 -20.159 -13.624 1.00 -0.52
	ATOM	13 CA ARG S 94	18.777 -19.044 -12.708 1.00 0.24
	ATOM	14 C ARG S 94	17.460 -18.800 -12.010 1.00 0.53
20	ATOM	15 O ARG S 94	17.364 -18.941 -10.781 1.00 -0.50
	ATOM	16 CB ARG S 94	19.316 -17.812 -13.451 1.00 0.05
	ATOM	17 CG ARG S 94	19.818 -16.700 -12.515 1.00 0.06
	ATOM	18 CD ARG S 94	20.009 -15.345 -13.215 1.00 0.11
	MOTA	19 NE ARG S 94	18.720 -14.803 -13.642 1.00 -0.49
25	ATOM	20 CZ ARG S 94	18.631 -13.550 -14.138 1.00 0.81
	MOTA	21 NH1 ARG S 94	19.703 -12.767 -14.256 1.00 -0.63
	ATOM	22 NH2 ARG S 94	17.444 -13.087 -14.518 1.00 -0.63
	ATOM	23 H ARG S 94	17.611 -20.389 -13.873 1.00 0.25
	ATOM	24 HE ARG S 94	17.892 -15.358 -13.571 1.00 0.29
30	ATOM	25 1HH1 ARG S 94	19.604 -11.843 -14.627 1.00 0.36
	ATOM	26 2HH1 ARG S 94	20.606 -13.094 -13.977 1.00 0.36
	ATOM	27 1HH2 ARG S 94	17.363 -12.161 -14.887 1.00 0.36
	ATOM	28 2HH2 ARG S 94	16.633 -13.666 -14.434 1.00 0.36
	ATOM	29 N ASNS 95	16.446 -18.435 -12.789 1.00 -0.52
35	MOTA	30 CA ASN S 95	15.116 -18.165 -12.251 1.00 0.22
	ATOM	31 C ASN S 95	14.111 -19.178 -12.745 1.00 0.53

	ATOM	32 O ASN S 95	14.047 -19.466 -13.950 1.00 -0.50
	ATOM	33 CB ASN S 95	14.629 -16.742 -12.566 1.00 0.00
	ATOM	34 CG ASN S 95	15.171 -16.300 -13.911 1.00 0.68
	ATOM	35 OD1 ASN S 95	16.007 -15.410 -13.997 1.00 -0.47
5	ATOM	36 ND2 ASN S 95	14.657 -16.965 -14.959 1.00 -0.87
	ATOM	37 H ASN S 95	16.591 -18.340 -13.774 1.00 0.25
	MOTA	38 1HD2 ASN S 95	14.948 -16.750 -15.892 1.00 0.34
	ATOM	39 2HD2 ASN S 95	13.976 -17.684 -14.820 1.00 0.34
	ATOM	40 N LEUS 96	13.325 -19.720 -11.819 1.00 -0.52
10	ATOM	41 CA LEUS 96	12.308 -20.713 -12.151 1.00 0.20
	ATOM	42 C LEUS 96	11.023 -20.296 -11.479 1.00 0.53
	ATOM	43 O LEUS 96	10.934 -20.287 -10.242 1.00 -0.50
	ATOM	44 CB LEUS 96	12.767 -22.109 -11.701 1.00 0.02
	ATOM	45 CG LEUS 96	12.022 -23.268 -12.383 1.00 0.05
15	ATOM	46 CD1 LEU S 96	12.921 -24.464 -12.732 1.00 -0.01
	ATOM	47 CD2 LEU S 96	10.797 -23.704 -11.562 1.00 -0.01
•	ATOM	48 H LEUS 96	13.428 -19.444 -10.863 1.00 0.25
	ATOM	49 N THRS 97	10.026 -19.951 -12.289 1.00 -0.52
	ATOM	50 CA THR S 97	8.726 -19.526 -11.778 1.00 0.27
20	ATOM	51 C THRS 97	7.604 -19.988 -12.678 1.00 0.53
	ATOM	52 O THR S 97	7.607 -19.702 -13.884 1.00 -0.50
	ATOM	53 CB THR S 97	8.692 -18.000 -11.598 1.00 0.21
	ATOM	54 OG1 THR S 97	7.420 -17.594 -11.097 1.00 -0.55
	ATOM	55 CG2 THR S 97	9.014 -17.248 -12.899 1.00 0.01
25	ATOM	56 H THR S 97	10.163 -19.980 -13.279 1.00 0.25
	ATOM	57 HG1 THR S 97	7.431 -16.635 -11.053 1.00 0.31
	ATOM	58 N ILES 98	6.645 -20.701 -12.095 1.00 -0.52
	ATOM	59 CA ILE S 98	5.499 -21.213 -12.841 1.00 0.20
	MOTA	60 C ILES 98	4.166 -20.765 -12.292 1.00 0.53
30	MOTA	61 O ILES 98	3.134 -21.406 -12.544 1.00 -0.50
	ATOM	62 CB ILE S 98	5.633 -22.735 -13.006 1.00 0.03
	ATOM	63 CG1 ILE S 98	5.655 -23,480 -11.662 1.00 0.02
	ATOM	64 CG2 ILE S 98	6.841 -23.109 -13.880 1.00 0.00
	ATOM	65 CD1 ILE S 98	4.338 -24.216 -11.369 1.00 0.00
35	ATOM	66 H ILES 98	6.703 -20.897 -11.116 1.00 0.25
	ATOM	67 N VALS 99	4.183 -19.667 -11.541 1.00 -0.52

	ATOM	68 CA VALS 99	2.969 -19.119 -10.945 1.00 0.20
	ATOM	69 C VALS 99	1.976 -18.727 -12.013 1.00 0.53
	ATOM	70 O VALS 99	2.172 -17.725 -12.717 1.00 -0.50
	ATOM	71 CB VALS 99	3.389 -17.945 -10.045 1.00 0.03
5	ATOM	72 CG1 VALS 99	2.188 -17.207 -9.432 1.00 0.01
	ATOM	73 CG2 VAL S 99	4.444 -18.324 -8.993 1.00 0.01
	ATOM	74 H VALS 99	5.050 -19.197 -11.376 1.00 0.25
	ATOM	75 N LYSS 100	0.911 -19.514 -12.136 1.00 -0.52
	ATOM	76 CA LYS S 100	-0.131 -19.257 -13.126 1.00 0.23
10	MOTA	77 C LYS S 100	0.517 -19.154 -14.486 1.00 0.53
	ATOM	78 O LYS S 100	0.146 -18.291 -15.296 1.00 -0.50
	ATOM	79 CB LYS S 100	-0.916 -17.989 -12.753 1.00 0.04
	ATOM	80 CG LYS S 100	-1.911 -18.178 -11.597 1.00 0.05
	ATOM	81 CD LYS S 100	-2.337 -16.845 -10.961 1.00 0.05
15	ATOM	82 CE LYS S 100	-3.230 -17.043 -9.726 1.00 0.22
	MOTA	83 NZ LYS S 100	-3.328 -15.780 -8.983 1.00 -0.27
•	ATOM	84 H LYS S 100	0.814 -20.308 -11.536 1.00 0.25
	ATOM	85 1HZ LYS S 100	-2.395 -15.321 -8.953 1.00 0.31
	ATOM	86 2HZ LYS S 100	-3.649 -15.972 -8.012 1.00 0.31
20	ATOM	87 3HZ LYS S 100	-4.008 -15.150 -9.454 1.00 0.31
	ATOM	88 N SERS 101	1.485 -20.030 -14.739 1.00 -0.52
	ATOM	89 CA SERS 101	2.199 -20.048 -16.012 1.00 0.36
	ATOM	90 C SER S 101	1.652 -21.075 -16.974 1.00 0.53
	ATOM	91 O SER S 101	1.546 -20.813 -18.182 1.00 -0.50
25	ATOM	92 CB SER S 101	3.695 -20.297 -15.758 1.00 0.19
	ATOM	93 OG SER S 101	4.426 -20.237 -16.981 1.00 -0.55
	ATOM	94 H SERS 101	1.736 -20.701 -14.041 1.00 0.25
	ATOM	95 HG SER S 101	5.354 -20.203 -16.738 1.00 0.31
	ATOM	96 N GLY S 102	1.302 -22.243 -16.444 1.00 -0.52
30	ATOM	97 CA GLY S 102	0.758 -23.329 -17.254 1.00 0.25
	ATOM	98 C GLY S 102	1.148 -24.732 -16.854 1.00 0.53
	ATOM	99 O GLY S 102	1.526 -25.548 -17.708 1.00 -0.50
	MOTA	100 H GLY S 102	1.413 -22.390 -15.461 1.00 0.25
	ATOM	101 N LEUS 103	1.058 -25.015 -15.558 1.00 -0.52
35	ATOM	102 CA LEUS 103	1.402 -26.331 -15.027 1.00 0.20
	ATOM	103 C LEUS 103	0.326 -26.726 -14.045 1.00 0.53

	ATOM	104 O LEUS 103	-0.356 -25.860 -13.476 1.00 -0.50
	ATOM	105 CB LEU S 103	2.792 -26.289 -14.372 1.00 0.02
	MOTA	106 CG LEUS 103	3.957 -26.492 -15.354 1.00 0.05
	ATOM	107 CD1 LEU S 103	4.502 -25.183 -15.949 1.00 -0.01
5	ATOM	108 CD2 LEU S 103	5.078 -27.333 -14.723 1.00 -0.01
	ATOM	109 H LEUS 103	0.745 -24.311 -14.920 1.00 0.25
	ATOM	110 N ARG S 104	0.170 -28.031 -13.843 1.00 -0.52
	ATOM	111 CA ARG S 104	-0.832 -28.558 -12.921 1.00 0.24
	MOTA	112 C ARG S 104	-0.225 -28.464 -11.541 1.00 0.53
10	ATOM	113 O ARG S 104	0.920 -28.016 -11.387 1.00 -0.50
	ATOM	114 CB ARG S 104	-1.253 -29.984 -13.311 1.00 0.05
	ATOM	115 CG ARG S 104	-1.250 -30.233 -14.827 1.00 0.06
	ATOM	116 CD ARG S 104	-1.308 -31.721 -15.207 1.00 0.11
	ATOM	117 NE ARG S 104	-0.254 -32.467 -14.521 1.00 -0.49
15	ATOM	118 CZ ARG S 104	0.365 -33.502 -15.129 1.00 0.81
	ATOM	119 NH1 ARG S 104	0.042 -33.880 -16.366 1.00 -0.63
•	ATOM	120 NH2 ARG S 104	1.319 -34.159 -14.478 1.00 -0.63
	ATOM	121 H ARG S 104	0.754 -28.678 -14.334 1.00 0.25
	.ATOM	122 HE ARG S 104	0.018 -32.215 -13.592 1.00 0.29
20	ATOM	123 1HH1 ARG S 104	0.519 -34.651 -16.789 1.00 0.36
	ATOM	124 2HH1 ARG S 104	-0.672 -33.401 -16.875 1.00 0.36
	ATOM	125 1HH2 ARG S 104	1.786 -34.927 -14.915 1.00 0.36
	ATOM	126 2HH2 ARG S 104	1.569 -33.884 -13.549 1.00 0.36
	ATOM	127 N PHE S 105	-0.990 -28.886 -10.538 1.00 -0.52
25	ATOM	128 CA PHE S 105	-0.535 -28.854 -9.152 1.00 0.21
	MOTA	129 C PHE S 105	
	ATOM	130 O PHES 105	1.596 -29.679 -8.447 1.00 -0.50
	ATOM	131 CB PHE S 105	-1.656 -29.230 -8.170 1.00 0.04
	ATOM	132 CG PHE S 105	-1.354 -28.726 -6.778 1.00 0.01
30	ATOM	133 CD1 PHE S 105	-1.851 -27.471 -6.366 1.00 -0.01
	ATOM	134 CD2 PHE S 105	-0.575 -29.526 -5.913 1.00 -0.01
	ATOM	135 CE1 PHE S 105	-1.566 -27.007 -5.067 1.00 0.00
	ATOM	136 CE2 PHE S 105	-0.290 -29.063 -4.616 1.00 0.00
	ATOM	137 CZ PHE S 105	-0.788 -27.809 -4.206 1.00 0.00
35	ATOM	138 H PHE S 105	-1.906 -29.236 -10.732 1.00 0.25
	ATOM	139 N VALS 106	0.329 -31.021 -9.758 1.00 -0.52

	ATOM	140 CA VALS 106	1.297 -32.114 -9.787 1.00 0.20
	ATOM	141 C VALS 106	1.984 -32.186 -11.130 1.00 0.53
	ATOM	142 O VALS 106	1.469 -32.815 -12.067 1.00 -0.50
	MOTA	143 CB VALS 106	0.545 -33.403 -9.418 1.00 0.03
5	ATOM	144 CG1 VAL S 106	1.433 -34.654 -9.506 1.00 0.01
	ATOM	145 CG2 VAL S 106	-0.212 -33.313 -8.084 1.00 0.01
	ATOM	146 H VALS 106	-0.530 -31.131 -10.258 1.00 0.25
	ATOM	147 N ALA S 107	3.145 -31.545 -11.226 1.00 -0.52
	ATOM	148 CA ALA S 107	3.920 -31.529 -12.463 1.00 0.22
10 .	ATOM	149 C ALA S 107	5.237 -30.854 -12.163 1.00 0.53
	ATOM	150 O ALA S 107	6.308 -31.425 -12.415 1.00 -0.50
	ATOM	151 CB ALA S 107	3.199 -30.751 -13.576 1.00 0.03
	ATOM	152 H ALA S 107	3.504 -31.056 -10.432 1.00 0.25
	ATOM	153 N PRO S 108	5.161 -29.640 -11.625 1.00 -0.26
15	ATOM	154 CA PRO S 108	6.351 -28.871 -11.283 1.00 0.11
	ATOM	155 C PRO S 108	7.264 -29.638 -10.357 1.00 0.53
	ATOM	156 O PRO S 108	8.481 -29.403 -10.336 1.00 -0.50
	ATOM	157 CB PRO S 108	5.782 -27.574 -10.686 1.00 0.00
	ATOM	158 CG PRO S 108	4.356 -27.900 -10.256 1.00 0.04
20	ATOM	159 CD PRO S 108	3.932 -28.917 -11.305 1.00 0.08
	ATOM	160 N ASP S 109	6.680 -30.556 -9.591 1.00 -0.52
	ATOM	161 CA ASP S 109	7.439 -31.374 -8.649 1.00 0.25
	ATOM	162 C ASP S 109	7.956 -32.544 -9.451 1.00 0.53
	ATOM	163 O ASP S 109	7.574 -33.697 -9.200 1.00 -0.50
25	ATOM	164 CB ASP S 109	6.510 -31.884 -7.536 1.00 -0.21
	ATOM	165 CG ASP S 109	6.933 -31.318 -6.195 1.00 0.62
	ATOM	166 OD1 ASP S 109	6.290 -30.391 -5.711 1.00 -0.71
	ATOM	167 OD2 ASP S 109	7.907 -31.800 -5.626 1.00 -0.71
	ATOM	168 H ASP S 109	5.692 -30.697 -9.657 1.00 0.25
30	ATOM	169 N ALAS 110	8.824 -32.252 -10.416 1.00 -0.52
	ATÓM	170 CA ALA S 110	9.406 -33.282 -11.270 1.00 0.22
	ATOM	171 C ALA S 110	10.898 -33.275 -11.034 1.00 0.53
	ATOM	172 O ALA S 110	11.481 -34.304 -10.662 1.00 -0.50
	ATOM	173 CB ALA S 110	9.132 -33.009 -12.758 1.00 0.03
35	ATOM	1,74 H ALA S 110	9.090 -31.300 -10.566, 1.00 0.25
	ATOM	175 N PHES 111	11.517 -32.118 -11.249 1.00 -0.52

			•
	ATOM	176 CA PHE S 111	12.956 -31.964 -11.061 1.00 0.21
	ATOM	177 C PHE S 111	13.127 -31.810 -9.568 1.00 0.53
	ATOM	178 O PHE S 111	12.376 -31.064 -8.923 1.00 -0.50
	ATOM	179 CB PHE S 111	13.497 -30.712 -11.770 1.00 0.04
5	ATOM	180_CG PHE S 111	12.526 -29.559 -11.656 1.00 0.01
	ATOM	181 CD1 PHE S 111	12.618 -28.673 -10.561 1.00 -0.01
	ATOM	182 CD2 PHE S 111	11.542 -29.391 -12.654 1.00 -0.01
	ATOM	183 CE1 PHE S 111	11.710 -27.601 -10.462 1.00 0.00
	ATOM	184 CE2 PHE S 111	10.634 -28.321 -12.556 1.00 0.00
10	ATOM	185 CZ PHE S 111	10.727 -27.436 -11.461 1.00 0.00
	ATOM	186 H PHES 111	10.987 -31.324 -11.549 1.00 0.25
	ATOM	187 N HSC S 112	14.112 -32.515 -9.019 1.00 -0.52
	ATOM	188 H HSC S 112	14.681 -33.099 -9.597 1.00 0.25
	ATOM	189 CA HSC S 112	14.393 -32.465 -7.587 1.00 0.19
15	ATOM	190 CB HSC S 112	13.775 -33.685 -6.885 1.00 0.21
	ATOM	191 CG HSC S 112	12.263 -33.637 -6.920 1.00 0.10
	ATOM	192 CD2 HSC S 112	11.396 -33.062 -5.986 1.00 0.35
	ATOM	193 ND1 HSC S 112	11.533 -34.176 -7.915 1.00 -0.61
	ATOM	194 HD1 HSC S 112	11.881 -34.643 -8.703 1.00 0.48
20	ATOM	195 CE1 HSC S 112	10.215 -33.947 -7.619 1.00 0.72
	ATOM	196 NE2 HSC S 112	10.132 -33.262 -6.434 1.00 -0.69
	ATOM	197 HE2 HSC S 112	9.308 -32.971 -5.991 1.00 0.49
	ATOM	198 C HSC S 112	15.841 -32.262 -7.208 1.00 0.53
	ATOM	199 O HSC S 112	16.534 -33.221 -6.836 1.00 -0.50
25	ATOM	200 N PHE S 113	16.299 -31.017 -7.301 1.00 -0.52
	ATOM	201 CA PHE S 113	17.678 -30.673 -6.967 1.00 0.21
	ATOM	202 C PHES 113	17.554 -29.654 -5.860 1.00 0.53
	ATOM	203 O PHE S 113	18.444 -29.545 -5.003 1.00 -0.50
	ATOM	204 CB PHE S 113	18.418 -30.047 -8.160 1.00 0.04
30	MOTA	205 CG PHE S 113	17.666 -28.854 -8.702 1.00 0.01
	ATOM	206 CD1 PHE S 113	18.011 -27.554 -8.270 1.00 -0.01
	ATOM	207 CD2 PHE S 113	16.627 -29.064 -9.635 1.00 -0.01
	ATOM	208 CE1 PHE S 113	17.306 -26.447 -8.780 1.00 0.00
	ATOM	209 CE2 PHE S 113	15.922 -27.959 -10.145 1.00 0.00
35	ATOM	210 CZ PHE S 113	16.268 -26.661 -9.712 1.00 0.00

	ATOM	211 H PHE S 113	15.686 -30.289 -7.608 1.00 0.25
	MOTA	212 N THR S 114	16.454 -28.908 -5.874 1.00 -0.52
	ATOM	213 CA THR S 114	16.200 -27.883 -4.866 1.00 0.27
	MOTA	214 C THR S 114	16.150 -28.477 -3.478 1.00 0.53
5	ATOM	215 O THR S 114	16.898 -28.053 -2.585 1.00 -0.50
	ATOM	216 CB THR S 114	14.903 -27.124 -5.185 1.00 0.21
	ATOM	217 OG1 THR S 114	14.606 -27.224 -6.576 1.00 -0.55
	ATOM	218 CG2 THR S 114	14.967 -25.648 -4.762 1.00 0.01
	ATOM	219 H THR S 114	15.774 -29.046 -6.595 1.00 0.25
10	ATOM	220 HG1 THR S 114	13.824 -26.691 -6.734 1.00 0.31
	ATOM	221 N PRO S 115	15.270 -29.457 -3.296 1.00 -0.26
	ATOM	222 CA PRO S 115	15.113 -30.124 -2.008 1.00 0.11
	ATOM	223 C PRO S 115	16.420 -30.691 -1.510 1.00 0.53
	ATOM	224 O PRO S 115	16.789 -30.490 -0.343 1.00 -0.50
15	ATOM	225 CB PRO S 115	14.024 -31.174 -2.277 1.00 0.00
	ATOM	226 CG PRO S 115	14.008 -31.384 -3.788 1.00 0.04
•	ATOM	227 CD PRO S 115	14.364 -29.999 -4.305 1.00 0.08
	ATOM	228 N ARG S 116	17.122 -31.399 -2.390 1.00 -0.52
	ATOM	229 CA ARG S 116	18.405 -32.006 -2.048 1.00 0.24
20	ATOM	230 C ARG S 116	19.201 -32.059 -3.330 1.00 0.53
	ATOM	231 O ARG S 116	18.642 -32.307 -4.408 1.00 -0.50
	ATOM	232 CB ARG S 116	18.212 -33.381 -1.388 1.00 0.05
	ATOM	233 CG ARG S 116	17.213 -34.284 -2.128 1.00 0.06
	ATOM	234 CD ARG S 116	17,881 -35.312 -3.055 1.00 0.11
25	ATOM	235 NE ARG S 116	17.832 -34.856 -4.444 1.00 -0.49
	ATOM	236 CZ ARG S 116	18.735 -35.300 -5.346 1.00 0.81
	ATOM	237 NH1 ARG S 116	19.694 -36.161 -5.009 1.00 -0.63
	ATOM	238 NH2 ARG S 116	18.663 -34.866 -6.600 1.00 -0.63
	ATOM	239 H ARG S 116	16.767 -31.523 -3.317 1.00 0.25
30	ATOM	240 HE ARG S 116	17.128 -34.209 -4.737 1.00 0.29
	ATOM	241 1HH1 ARG S 116	20.347 -36.471 -5.701 1.00 0.36
	ATOM	242 2HH1 ARG S 116	19.767 -36.501 -4.072 1.00 0.36
	ATOM	243 1HH2 ARG S 116	19.324 -35.186 -7.279 1.00 0.36
	ATOM	244 2HH2 ARG S 116	17.947 -34.219 -6.864 1.00 0.36
35	ATOM	245 N LEUS 117	20.506 -31.828 -3.216 1.00 -0.52
	ATOM	246 CA LEUS 117	21.399 -31.846 -4.370 1.00 0.23

	•	
WO 98/06048		PCT/CA97/00539

•	ATOM	247 C LEUS 117	21.643 -33.299 -4.741 1.00 0.50
	ATOM	248 O LEUS 117	21.687 -33.594 -5.933 1.00 -0.25
	ATOM	249 CB LEU S 117	22.706 -31.110 -4.038 1.00 0.02
	ATOM	250 CG LEUS 117	23.454 -31.672 -2.818 1.00 0.05
5	ATOM	251 CD1 LEU S 117	24.851 -32.222 -3.147 1.00 -0.01
	ATOM	252 CD2 LEU S 117	23.506 -30.647 -1.674 1.00 -0.01
	ATOM	253 OXT LEU S 117	21.785 -34.114 -3.834 1.00 -0.25
	ATOM	254 H LEUS 117	20.894 -31.634 -2.315 1.00 0.25
	END		
_			

10

^{*}Principal residues are bolded.

Appendix 2. Geometry of the LRM-2B in PDB format.*

REMARK 1 The bioactive conformation of the second LRM of TrkB.

REMARK 2

ď,

1 N LEUS 93 -32.287 14.723 17.944 1.00 -0.45 MOTA 5 -33.186 15.831 17.679 1.00 -0.07 **ATOM** 2 CA LEUS 93 **ATOM** -32.411 17.027 17.215 1.00 0.53 3 C LEUS 93 MOTA 4 O LEUS 93 -31.203 17.150 17.385 1.00 -0.50 **ATOM** 5 CB LEUS 93 -33.996 16.167 18.941 1.00 0.02 6 CG LEUS 93 -35.339 15.426 19.042 1.00 0.05 **ATOM** 10 7 CD1 LEUS 93 -36,286 15,694 17,861 1,00 -0,01 **ATOM** -35.131 13.920 19.266 1.00 -0.01 **ATOM** 8 CD2 LEU S 93 **ATOM** 91H LEUS 93 -31.777 14.490 17.116 1.00 0.15 10 2H LEUS 93 -32.810 13.922 18.239 1.00 0.15 MOTA 11 3H LEUS 93 -31.641 14.971 18.665 1.00 0.15 MOTA 15 12 N ARGS 94 ATOM -33.510 17.650 16.801 1.00 -0.52 MOTA 13 CA ARG S 94 -33.484 19.028 16.320 1.00 0.24 **ATOM** 14 C ARGS 94 -34.175 19.857 17.377 1.00 0.53 -33.609 20.841 17.874 1.00 -0.50 15 O ARGS 94 ATOM **ATOM** 16 CB ARG S 94 -34.128 19.146 14.929 1.00 0.05 20 ATOM 17 CG ARG S 94 -33.300 18.494 13.811 1.00 0.06 **ATOM** 18 CD ARG S 94 -34.051 18.379 12.475 1.00 0.11 **ATOM** 19 NE ARG S 94 -33.282 17.579 11.523 1.00 -0.49 20 CZ ARG S 94 -33.792 16.435 11.016 1.00 0.81 ATOM **ATOM** 21 NH1 ARG S 94 -35.003 15.996 11.360 1.00 -0.63 25 **ATOM** 22 NH2 ARG S 94 -33.068 15.730 10.153 1.00 -0.63 -34.386 17.167 16.817 1.00 0.25 MOTA 23 H ARG S. 94 **ATOM** 24 HE ARG S 94 -32.370 17.873 11.238 1.00 0.29 25 1HH1 ARG S 94 **ATOM** -35.352 15.145 10.968 1.00 0.36 -35.565 16.510 12.008 1.00 0.36 **ATOM** 26 2HH1 ARG S 94 30 **ATOM** 27 1HH2 ARG S 94 -33.433 14.882 9.769 1.00 0.36 28 2HH2 ARG S 94 **ATOM** -32.159 16.050 9.887 1.00 0.36 -35.397 19.461 17.721 1.00 -0.52 ATOM 29 N ASNS 95 **ATOM** 30 CA ASN S 95 -36,183 20,166 18,729 1.00 0.22 ATOM 31 C ASN S 95 -37.332 19.318 19.219 1.00 0.53 -37.969 18.605 18.430 1.00 -0.50 35 **ATOM** 32 O ASN S 95 **ATOM** 33 CB ASN S 95 -36.706 21.522 18.229 1.00 0.00

	ATOM	34 CG ASN S 95 -36.363 22.606 19.233 1.00 0.68
	ATOM	35 OD1 ASN S 95 -37.231 23.137 19.913 1.00 -0.47
	ATOM	36 ND2 ASN S 95 -35.056 22.909 19.294 1.00 -0.87
	ATOM	37 H ASN S 95 -35.797 18.657 17.281 1.00 0.25
5	ATOM	38 1HD2 ASN S 95 -34.725 23.610 19.925 1.00 0.34
	ATOM	39 2HD2 ASN S 95 -34.397 22.435 18.709 1.00 0.34
•	ATOM	40 N LEUS 96 -37.598 19.391 20.520 1.00 -0.52
	ATOM	41 CA LEUS 96 -38.679 18.626 21.134 1.00 0.20
	ATOM	42 C LEUS 96 -39.965 19.383 20.901 1.00 0.53
10	ATOM	43 O LEUS 96 -40.388 20.181 21.751 1.00 -0.50
	ATOM	44 CB LEUS 96 -38.396 18.419 22.630 1.00 0.02
	ATOM	45 CG LEUS 96 -37.665 17.107 22.956 1.00 0.05
	ATOM	46 CD1 LEU S 96 -38.413 15.848 22.489 1.00 -0.01
	ATOM	47 CD2 LEU S 96 -36.219 17.129 22.436 1.00 -0.01
15	ATOM	48 H LEUS 96 -37.044 19.987 21.103 1.00 0.25
	ATOM	49 N THR S 97 -40.588 19.136 19.753 1.00 -0.52
•	ATOM	50 CA THR S 97 -41.840 19.794 19.394 1.00 0.27
	ATOM	51 C THR S 97 -42.809 18.826 18.759 1.00. 0.53
	ATOM	52 O THR S 97 -42.400 17.929 18.007 1.00 -0.50
20	ATOM	53 CB THR S 97 -41.572 20.990 18.466 1.00 0.21
	ATOM	54 OG1 THR S 97 -42.795 21.657 18.160 1.00 -0.55
	ATOM	55 CG2 THR S 97 -40.854 20.578 17.171 1.00 0.01
	ATOM	56 H THR S 97 -40.193 18.480 19.110 1.00 0.25
	ATOM	57 HG1 THR S 97 -42.562 22.479 17.722 1.00 0.31
25	ATOM	58 N ILES 98 -44.093 19.003 19.059 1.00 -0.52
	ATOM	59 CA ILE S 98 -45.140 18.142 18.518 1.00 0.20
	ATOM	60 C ILES 98 -46.361 18.894 18.043 1.00 0.53
	ATOM	61 O ILES 98 -46.834 19.818 18.721 1.00 -0.50
	ATOM	62 CB ILE S 98 -45.444 17.014 19.516 1.00 0.03
30	ATOM	63 CG1 ILE S 98 -46.244 15.862 18.888 1.00 0.02
	ATOM	64 CG2 ILE S 98 -46.123 17.547 20.788 1.00 0.00
	ATOM	65 CD1 ILE S 98 -45.346 14.810 18.219 1.00 0.00
	ATOM	66 H ILES 98 -44.356 19.747 19.673 1.00 0.25
	ATOM	67 N VALS 99 -46.872 18.500 16.880 1.00 -0.52
35	ATOM	68 CA VALS 99 -48.051 19.135 16.298 1.00 0.20
	ATOM	69 C VALS 99 -49.253 18.226 16.395 1.00 0.53

	ATOM	70 O VALS 99 -49.110 16.994 16.408 1.00 -0.50
	ATOM	71 CB VALS 99 -47.698 19.525 14.854 1.00 0.03
	ATOM	72 CG1 VAL S 99 -46.688 20.681 14.780 1.00 0.01
	ATOM	73 CG2 VAL S 99 -47.287 18.331 13.978 1.00 0.01
5	ATOM	74 H VALS 99 -46.441 17.747 16.383 1.00 0.25
	ATOM	75 N ASP S 100 -50.436 18.829 16.461 1.00 -0.52
	ATOM	76 CA ASP S 100 -51.684 18.077 16.557 1.00 0.25
	MOTA	77 C ASP S 100 -51.849 17.392 15.222 1.00 0.53
	ATOM	78 O ASP S 100 -51.673 16.169 15.115 1.00 -0.50
10	ATOM	79 CB ASP S 100 -52.858 19.041 16.789 1.00 -0.21
	ATOM	80 CG ASP S 100 -52.508 20.428 16.287 1.00 0.62
	MOTA	81 OD1 ASP S 100 -52.854 20.755 15.156 1.00 -0.71
	ATOM	82 OD2 ASP S 100 -51.889 21.189 17.023 1.00 -0.71
	ATOM	83 H ASP S 100 -50.481 19.828 16.445 1.00 0.25
15	ATOM	84 N SER S 101 -52.187 18.177 14.202 1.00 -0.52
	ATOM	85 CA SER S 101 -52.382 17.652 12.854 1.00 0.29
•	ATOM	86 C SER S 101 -53.017 16.282 12.846 1.00 0.53
	ATOM	87 O SER S 101 -52.684 15.439 12.000 1.00 -0.50
	ATOM	88 CB SER S 101 -51.034 17.621 12.116 1.00 0.19
20	ATOM	89 OG SER S 101 -51.236 17.656 10.705 1.00 -0.55
	ATOM	90 H SER S 101 -52.314 19.157 14.356 1.00 0.25
	ATOM	91 HG SER S 101 -50.419 17.987 10.324 1.00 0.31
	ATOM	92 N GLY S 102 -53.930 16.058 13.786 1.00 -0.52
	ATOM	93 CA GLY S 102 -54.626 14.779 13.900 1.00 0.25
25	ATOM	94 C GLY S 102 -53.788 13.536 13.720 1.00 0.53
	ATOM	95 O GLY S 102 -54.199 12.596 13.024 1.00 -0.50
	ATOM	96 H GLY S 102 -54.153 16.782 14.439 1.00 0.25
	ATOM	97 N LEUS 103 -52.615 13.527 14.347 1.00 -0.52
	ATOM	98 CA LEU S 103 -51.701 12.392 14.263 1.00 0.20
30	ATOM	99 C LEUS 103 -51.521 11.844 15.658 1.00 0.53
	ATOM	100 O LEUS 103 -51.586 12.596 16.643 1.00 -0.50
	ATOM	101 CB LEUS 103 -50.367 12.833 13.641 1.00 0.02
	ATOM	102 CG LEUS 103 -49.757 14.089 14.284 1.00 0.05
•	ATOM	103 CD1 LEU S 103 -48.873 13.793 15.505 1.00 -0.01
35	ATOM	104 CD2 LEU S 103 -49.015 14.944 13.244 1.00 -0.01
	ATOM	105 H LEUS 103 -52.343 14.319 14.894 1.00 0.25

	ATOM	106 N LYS S 104	-51.296 10.536 15.747 1.00 -0.52
	ATOM	107 CA LYS S 104	-51.102 9.870 17.032 1.00 0.23
	ATOM	108 C LYS S 104	-49.623 9.824 17.329 1.00 0.53
	ATOM	109 O LYS S 104	-49.013 8.744 17.326 1.00 -0.50
5	ATOM	110 CB LYS S 104	-51.738 8.471 17.005 1.00 0.04
	ATOM	111 CG LYS S 104	-52.308 8.008 18.355 1.00 0.05
	ATOM	112 CD LYS S 104	-53.074 6.679 18.249 1.00 0.05
	MOTA	113 CE LYS S 104	-52.171 5.461 18.503 1.00 0.22
	ATOM	114 NZ LYS S 104	-52.891 4.233 18.143 1.00 -0.27
10	ATOM	115 H LYS S 104	-51.256 9.986 14.913 1.00 0.25
	ATOM	116 1HZ LYS S 104	-53.368 4.364 17.227 1.00 0.31
	ATOM	117 2HZ LYS S 104	-53.600 4.018 18.873 1.00 0.31
	ATOM	118 3HZ LYS S 104	-52.219 3.443 18.071 1.00 0.31
	ATOM	119 N PHES 105	-49.043 10.993 17.585 1.00 -0.52
15	ATOM	120 CA PHE S 105	-47.619 11.101 17.889 1.00 0.21
	MOTA	121 C PHES 105	-46.933 10.882 16.562 1.00 0.53
	ATOM	122 O PHE S 105	-46.495 11.844 15.914 1.00 -0.50
	ATOM	123 CB PHE S 105	-47.162 10.024 18.886 1.00 0.04
	ATOM	124 CG PHE S 105	-45.861 10.412 19.549 1.00 0.01
20	ATOM	125 CD1 PHE S 105	-44.683 9.692 19.251 1.00 -0.01
	MOTA	126 CD2 PHE S 105	-45.849 11.493 20.457 1.00 -0.01
	MOTA	127 CE1 PHE S 105	-43.474 10.058 19.873 1.00 0.00
	ATOM	128 CE2 PHE S 105	-44.641 11.860 21.078 1.00 0.00
	ATOM	129 CZ PHE S 105	-43.466 11.139 20.780 1.00 0.00
25	ATOM	130 H PHE S 105	-49.592 11.829 17.571 1.00 0.25
	ATOM	131 N VALS 106	-46.838 9.619 16.156 1.00 -0.52
			-46.200 9.259 14.893 1.00 0.20
			-44.818 9.859 14.800 1.00 0.53
			-44.261 9.989 13.699 1.00 -0.50
30			-47.136 9.709 13.760 1.00 0.03
			-46.649 9.261 12.372 1.00 0.01
			-48.612 9.356 14.005 1.00 0.01
			-47.213 8.889 16.726 1.00 0.25
	ATOM		-44.263 10.225 15.951 1.00 -0.52
35	ATOM		-42.930 10.820 16.013 1.00 0.22
	ATOM	141 C ALA S 107	-42.034 9.846 16.740 1.00 0.53

	ATOM	142 O ALA S 107	-41.035 10.247 17.354 1.00 -0.50
	ATOM	143 CB ALA S 107	-42.939 12.156 16.772 1.00 0.03
	ATOM	144 H ALA S 107	-44.766 10.093 16.805 1.00 0.25
	ATOM	145 N TYR S 108	-42.388 8.565 16.671 1.00 -0.52
5	ATOM	146 CA TYR S 108	-41.616 7.513 17.325 1.00 0.25
	ATOM	147 C TYR S 108	-40.181 7.445 16.861 1.00 0.53
	ATOM	148 O TYR S 108	-39.320 6.888 17.557 1.00 -0.50
	ATOM	149 CB TYR S 108	-42.269 6.142 17.090 1.00 0.02
	ATOM	150 CG TYR S 108	-43.761 6.173 17.332 1.00 0.00
10	ATOM	151 CD1 TYR S 108	-44.625 6.208 16.220 1.00 -0.04
	ATOM	152 CD2 TYR S 108	-44.248 6.166 18.656 1.00 -0.04
	ATOM	153 CE1 TYR S 108	-46.012 6.237 16.436 1.00 0.10
	MOTA	154 CE2 TYR S 108	-45.636 6.196 18.871 1.00 0.10
	ATOM	155 CZ TYR S 108	-46.500 6.231 17.759 1.00 -0.12
15	ATOM	156 OH TYR S 108	-47.863 6.259 17.970 1.00 -0.37
•	ATOM	157 H TYR S 108	-43.207 8.308 16.159 1.00 0.25
•	ATOM	158 HH TYR S 108	-48.199 7.127 17.791 1.00 0.34
	ATOM	159 N LYSS 109	-39.921 8.011 15.685 1.00 -0.52
	ATOM	160 CA LYS S 109	-38.579 8.021 15.112 1.00 0.23
20	ATOM	161 C LYSS 109	-37.724 8.976 15.910 1.00 0.53
	ATOM	162 O LYSS 109	-36.497 8.811 15.985 1.00 -0.50
	ATOM	163 CB LYS S 109	-38.641 8.396 13.622 1.00 0.04
	ATOM	164 CG LYS S 109	-39.200 9.801 13.345 1.00 0.05
	ATOM	165 CD LYS S 109	-40.553 9.764 12.617 1.00 0.05
25	ATOM	166 CE LYS S 109	-41.148 11.167 12.416 1.00 0.22
	MOTA	167 NZ LYS S 109	-42.394 11.066 11.645 1.00 -0.27
	ATOM	168 H LYS S 109	-40.662 8.444 15.173 1.00 0.25
	ATOM	169 1HZ LYS S 109	-42.761 12.020 11.449 1.00 0.31
	ATOM	170 2HZ LYS S 109	-43.099 10.531 12.191 1.00 0.31
30	ATOM	171 3HZ LYS S 109	-42.209 10.576 10.746 1.00 0.31
	ATOM	172 N ALA S 110	-38.368 9.974 16.509 1.00 -0.52
	ATOM	173 CA ALA S 110	-37.671 10.972 17.314 1.00 0.22
	ATOM	174 C ALA S 110	-37.673 10.482 18.742 1.00 0.53
	ATOM	175 O ALA S 110	-36.724 10.741 19.497 1.00 -0.50
35	ATOM	176 CB ALA S 110	-38.368 12.341 17.251 1.00 0.03
	ATOM	177 H ALA S 110	-39.360 10.050 16.409 1.00 0.25

	ATOM	178 N PHE S 111 -38.736 9.775 19.114 1.00 -0.52	
	ATOM	179 CA PHE S 111 -38.873 9.238 20.465 1.00 0.21	
	ATOM	180 C PHE S 111 -37.731 8.259 20.599 1.00 0.53	
	ATOM	181 O PHE S 111 -37.123 8.144 21.673 1.00 -0.50	
5	ATOM	182 CB PHE S 111 -40.207 8.499 20.656 1.00 0.04	
	ATOM	183 CG PHE S 111 -40.461 8.200 22.115 1.00 0.01	
	ATOM	184 CD1 PHE S 111 -41.035 9.191 22.942 1.00 -0.0	ļ
	ATOM	185 CD2 PHE S 111 -40.116 6.930 22.626 1.00 -0.0	i
	ATOM	186 CE1 PHE S 111 -41.269 8.906 24.301 1.00 0.00)
10	ATOM	187 CE2 PHE S 111 -40.349 6.645 23.983 1.00 0.00)
	ATOM	188 CZ PHE S 11140.924 7.636 24.807 1.00 0.00	
	ATOM	189 H PHE S 111 -39.467 9.602 18.455 1.00 0.25	
,	ATOM	190 N LEUS 112 -37.439 7.552 19.511 1.00 -0.52	
	ATOM	191 CA LEU S 112 -36.360 6.568 19.494 1.00 0.20	
15	ATOM	192 C LEUS 112 -35.074 7.293 19.811 1.00 0.53	
	ATOM	193 O LEUS 112 -34.249 6.798 20.594 1.00 -0.50	
•	ATOM	194 CB LEU S 112 -36.305 5.868 18.127 1.00 0.02	
	ATOM	195 CG LEU S 112 -35.374 4.646 18.082 1.00 0.05	
	ATOM	196 CD1 LEU S 112 -36.074 3.321 18.421 1.00 -0.01	1
20	ATOM	197 CD2 LEU S 112 -34.628 4.563 16.740 1.00 -0.0	i
	MOTA	198 H LEUS 112 -37.970 7.692 18.675 1.00 0.25	
	MOTA	199 N LYS S 113 -34.900 8.464 19.205 1.00 -0.52	
	ATOM	200 CA LYS S 113 -33.705 9.275 19.417 1.00 0.23	
	ATOM	201 C LYS S 113 -33.633 9.650 20.878 1.00 0.53	
25	ATOM	202 O LYS S 113 -32.578 9.508 21.513 1.00 -0.50	
	ATOM	203 CB LYS S 113 -33.728 10.505 18.496 1.00 0.04	1
	ATOM	204 CG LYS S 113 -33.318 10.217 17.043 1.00 0.0	5
	ATOM	205 CD LYS S 113 -33.954 11.198 16.045 1.00 0.09	5
	ATOM	206 CE LYS S 113 -33.790 10.739 14.587 1.00 0.23	2
30	ATOM	207 NZ LYS S 113 -34.498 9.467 14.390 1.00 -0.27	
	ATOM	208 H LYS S 113 -35.605 8.807 18.585 1.00 0.25	
	ATOM	209 1HZ LYS S 113 -35.239 9.365 15.113 1.00 0.3	ļ
	ATOM	210 2HZ LYS S 113 -33.826 8.678 14.472 1.00 0.3	l
	ATOM	211 3HZ LYS S 113 -34.933 9.453 13.446 1.00 0.3	l
35	ATOM	212 N ASN S 114 -34.754 10.128 21.412 1.00 -0.52	
	ATOM	213 CA ASN S 114 -34.832 10.531 22.813 1.00 0.2	2

	4.7014	044 0 401 0444 04500 0070 00700 400 050
		214 C ASN S 114 -34.508 9.379 23.733 1.00 0.53
		215 O ASN S 114 -33.878 9.570 24.784 1.00 -0.50
	ATOM	216 CB ASN S 114 -36.198 11.131 23.180 1.00 0.00
	ATOM	217 CG ASN S 114 -36.349 12.495 22.535 1.00 0.68
5	MOTA	218 OD1 ASN S 114 -37.101 12.669 21.585 1.00 -0.47
	ATOM	219 ND2 ASN S 114 -35.597 13.457 23.097 1.00 -0.87
	ATOM	220 H ASN S 114 -35.572 10.217 20.844 1.00 0.25
	ATOM	221 1HD2 ASN S 114 -35.623 14.393 22.746 1.00 0.34
	MOTA	222 2HD2 ASN S 114 -35.002 13.248 23.873 1.00 0.34
10	ATOM	223 N SER S 115 -34.937 8.182 23.342 1.00 -0.52
	ATOM	224 CA SER S 115 -34.696 6.977 24.131 1.00 0.29
	ATOM	225 C SER S 115 -33.240 6.580 24.160 1.00 0.53
	ATOM	226 O SER S 115 -32.755 6.037 25.165 1.00 -0.50
	ATOM	227 CB SER S 115 -35.553 5.825 23.584 1.00 0.19
15	MOTA	228 OG SER S 115 -36.939 6.156 23.655 1.00 -0.55
	ATOM	229 H SER S 115 -35.440 8.096 22.482 1.00 0.25
•	ATOM	230 HG SER S 115 -37.081 6.859 23.017 1.00 0.31
	ATOM	231 N ASN S 116 -32.540 6.850 23.062 1.00 -0.52
	ATOM	232 CA ASN S 116 -31.121 6.522 22.949 1.00 0.22
20	ATOM	233 C ASN S 116 -30.264 7.559 23.632 1.00 0.53
	ATOM	234 O ASN S 116 -29.329 7.216 24.372 1.00 -0.50
	ATOM	235 CB ASN S 116 -30.671 6.343 21.490 1.00 0.00
	ATOM	236 CG ASN S 116 -30.988 4.935 21.025 1.00 0.68
	ATOM	237 OD1 ASN S 116 -30.139 4.053 21.046 1.00 -0.47
25	ATOM	238 ND2 ASN S 116 -32.252 4.764 20.603 1.00 -0.87
	ATOM	239 H ASN S 116 -32.991 7.290 22.286 1.00 0.25
	ATOM	240 1HD2 ASN S 116 -32.564 3.872 20.275 1.00 0.34
	ATOM	241 2HD2 ASN S 116 -32.898 5.528 20.611 1.00 0.34
	ATOM	242 N LEUS 117 -30.578 8.828 23.387 1.00 -0.52
30	ATOM	243 CA LEUS 117 -29.835 9.937 23.980 1.00 0.23
	ATOM	244 C LEUS 117 -30.840 10.862 24.645 1.00 0.50
	ATOM	245 O LEUS 117 -31.725 11.354 23.951 1.00 -0.25
	ATOM	246 CB LEU S 117 -29.015 10.660 22.900 1.00 0.02
	ATOM	247 CG LEU S 117 -27.751 9.905 22.458 1.00 0.05
35	ATOM	248 CD1 LEU S 117 -27.875 9.246 21.075 1.00 -0.01
	ATOM	249 CD2 LEU S 117 -26.506 10.802 22.546 1.00 -0.01

ATOM 250 OXT LEU S 117 -30.723 11.077 25.849 1.00 -0.25 ATOM 251 H LEU S 117 -31.344 9.038 22.780 1.00 0.25 END

*Principal residues are bolded.

Appendix 3. Geometry of the p75^{NTR} binding site for neurotrophins in PDB format.*

·	REMARK	1 Second CRD of p75 ^{NTR} , bound to NGF.
5	REMARK	ζ 2
	ATOM	1 N CYS R 39 -32.488 -11.161 6.915 1.00 0.00
	MOTA	2 CA CYS R 39 -33.024 -9.817 7.111 1.00 0.00
	ATOM	3 C CYS R 39 -33.595 -9.148 5.878 1.00 0.00
	ATOM	4 O CYS R 39 -34.221 -8.095 5.967 1.00 0.00
10	ATOM	5 CB CYS R 39 -31.991 -8.907 7.780 1.00 0.00
	ATOM	6 SG CYS R 39 -30.272 -9.354 7.401 1.00 0.00
	ATOM	7 1H CYS R 39 -31.698 -11.178 6.287 1.00 0.00
	ATOM	8 2H CYS R 39 -32.170 -11.586 7.775 1.00 0.00
	ATOM	9 3H CYS R 39 -33.166 -11.799 6.523 1.00 0.00
15	ATOM	10 N LEUR 40 -33.398 -9.779 4.707 1.00 0.00
	ATOM	11 CA LEUR 40 -34.095 -9.260 3.530 1.00 0.00
•	ATOM	12 C LEUR 40 -35.322 -10.097 3.220 1.00 0.00
	MOTA	13 O LEUR 40 -36.442 -9.632 3.041 1.00 0.00
	ATOM	14 CB LEUR 40 -33.148 -9.230 2.327 1.00 0.00
20	ATOM	15 CG LEUR 40 -31.880 -8.404 2.561 1.00 0.00
	ATOM	16 CD1 LEU R 40 -30.862 -8.604 1.438 1.00 0.00
	ATOM	17 CD2 LEU R 40 -32.184 -6.924 2.806 1.00 0.00
	ATOM	18 H LEUR 40 -32.867 -10.625 4.675 1.00 0.00
	ATOM	19 N ASPR 41 -35.034 -11.407 3.188 1.00 0.00
25	ATOM	20 CA ASP R 41 -36.070 -12.408 2.947 1.00 0.00
	ATOM	21 C ASPR 41 -35.822 -13.609 3.848 1.00 0.00
	ATOM	22 O ASPR 41 -34.792 -13.673 4.525 1.00 0.00
	ATOM	23 CB ASP R 41 -36.054 -12.772 1.449 1.00 0.00
	ATOM	24 CG ASP R 41 -37.195 -13.703 1.074 1.00 0.00
30	ATOM	25 OD1 ASP R 41 -38.299 -13.520 1.568 1.00 0.00
	ATOM	26 OD2 ASP R 41 -36.979 -14.633 0.314 1.00 0.00
	ATOM	27 H ASPR 41 -34.111-11.739 3.385 1.00 0.00
	ATOM	28 N SER R 42 -36.757 -14.563 3.825 1.00 0.00
	ATOM	29 CA SER R 42 -36.565 -15.812 4.545 1.00 0.00
35	ATOM	30 C SER R 42 -35.305 -16.572 4.150 1.00 0.00
	MOTA	31 O SERR 42 -34.755 -17.350 4.918 1.00 0.00

	ATOM	32 CB SER R 42 -37.816 -16.678 4.398 1.00 0.00
	ATOM	33 OG SER R 42 -38.988 -15.930 4.780 1.00 0.00
	ATOM	34 H SERR 42 -37.497 -14.449 3.168 1.00 0.00
	ATOM	35 HG SER R 42 -39.404 -15.604 3.984 1.00 0.00
5	ATOM	36 N VALR 43 -34.794 -16.284 2.940 1.00 0.00
	ATOM	37 CA VALR 43 -33.503 -16.883 2.574 1.00 0.00
	ATOM	38 C VALR 43 -32.270 -16.339 3.305 1.00 0.00
	ATOM	39 O VALR 43 -31.128 -16.743 3.081 1.00 0.00
	ATOM	40 CB VALR 43 -33.300 -16.823 1.054 1.00 0.00
10	ATOM	41 CG1 VAL R 43 -34.389 -17.623 0.337 1.00 0.00
	ATOM	42 CG2 VAL R 43 -33.208 -15.383 0.537 1.00 0.00
	MOTA	43 H VALR 43 -35.321 -15.679 2.336 1.00 0.00
	ATOM	44 N THR R 44 -32.539 -15.360 4.166 1.00 0.00
	ATOM	45 CA THR R 44 -31.443 -14.732 4.879 1.00 0.00
15	ATOM	46 C THR R 44 -31.701 -14.680 6.367 1.00 0.00
	ATOM	47 O THR R 44 -32.659 -14.063 6.830 1.00 0.00
	ATOM	48 CB THR R 44 -31.171 -13.339 4.300 1.00 0.00
	ATOM	49 OG1 THR R 44 -32.382 -12.578 4.130 1.00 0.00
	ATOM	50 CG2 THR R 44 -30.430 -13.431 2.962 1.00 0.00
20	ATOM	51 H THR R 44 -33.481 -15.090 4.359 1.00 0.00
	ATOM	52 HG1 THR R 44 -33.031 -12.981 4.718 1.00 0.00
	ATOM	53 N PHER 45 -30.805-15.368 7.080 1.00 0.00
	ATOM	54 CA PHE R 45 -30.829 -15.256 8.526 1.00 0.00
	ATOM	55 C PHER 45 -30.085-13.996 8.932 1.00 0.00
25	ATOM	56 O PHER 45 -29.293 -13.430 8.175 1.00 0.00
	MOTA	57 CB PHE R 45 -30.243 -16.531 9.157 1.00 0.00
	ATOM	58 CG PHE R 45 -30.514 -16.587 10.647 1.00 0.00
	ATOM	59 CD1 PHE R 45 -31.844 -16.581 11.126 1.00 0.00
	ATOM	60 CD2 PHE R 45 -29.423 -16.628 11.539 1.00 0.00
30	MOTA	61 CE1 PHE R 45 -32.085 -16.592 12.512 1.00 0.00
	ATOM	62 CE2 PHE R 45 -29.661 -16.637 12.927 1.00 0.00
	ATOM	63 CZ PHE R 45 -30.989 -16.611 13.400 1.00 0.00
	ATOM	64 H PHER 45 -30.025 -15.788 6.623 1.00 0.00
	ATOM	65 N SER R 46 -30.382 -13.575 10.161 1.00 0.00
35	ATOM	66 CA SER R 46 -29.961 -12.259 10.626 1.00 0.00
	ATOM	67 C SER R 46 -28.732 -12.274 11.517 1.00 0.00

	ATOM	68 O SERR 46 -28.497 -11.407 12.346 1.00 0.00
	ATOM	69 CB SER R 46 -31.156 -11.630 11.337 1.00 0.00
	ATOM	70 OG SER R 46 -31.890 -12.664 12.026 1.00 0.00
	ATOM	71 H SER R 46 -31.046 -14.080 10.714 1.00 0.00
5	ATOM	72 HG SER R 46 -32.811 -12.512 11.820 1.00 0.00
	ATOM	73 N ASPR 47 -27.906 -13.314 11.317 1.00 0.00
	ATOM	74 CA ASPR 47 -26.772 -13.543 12.226 1.00 0.00
	ATOM	75 C ASP R 47 -25.567 -12.610 12.077 1.00 0.00
	ATOM	76 O ASPR 47 -24.410 -13.027 12.086 1.00 0.00
10	ATOM	77 CB ASP R 47 -26.337 -15.025 12.168 1.00 0.00
	ATOM	78 CG ASP R 47 -25.807 -15.429 10.794 1.00 0.00
	ATOM	79 OD1 ASP R 47 -26.456 -15.180 9.790 1.00 0.00
	ATOM	80 OD2 ASP R 47 -24.712 -15.961 10.694 1.00 0.00
•	MOTA	81 H ASPR 47 -28.048 -13.919 10.531 1.00 0.00
15	MOTA	82 N VALR 48 -25.857 -11.312 11.875 1.00 0.00
	ATOM	83 CA VAL R 48 -24.733 -10.395 11.691 1.00 0.00
	ATOM	84 C VALR 48 -24.130 -9.906 13.003 1.00 0.00
	MOTA	85 O VALR 48 -22.914 -9.763 13.131 1.00 0.00
	ATOM	86 CB VAL R 48 -25.108 -9.258 10.720 1.00 0.00
20	ATOM	87 CG1 VAL R 48 -26.299 -8.421 11.194 1.00 0.00
	MOTA	88 CG2 VAL R 48 -23.886 -8.416 10.349 1.00 0.00
	ATOM	89 H VALR 48 -26.767 -10.954 12.073 1.00 0.00
	ATOM	90 N VALR 49 -25.034 -9.713 13.984 1.00 0.00
	ATOM	91 CA VAL R 49 -24.767 -9.685 15.431 1.00 0.00
25	ATOM	92 C VALR 49 -23.506 -9.045 16.022 1.00 0.00
	MOTA	93 O VALR 49 -23.103 -9.361 17.142 1.00 0.00
	ATOM	94 CB VAL R 49 -25.003 -11.080 16.043 1.00 0.00
	ATOM	95 CG1 VAL R 49 -26.440 -11.541 15.783 1.00 0.00
	ATOM	96 CG2 VAL R 49 -23.973 -12.125 15.594 1.00 0.00
30	ATOM	
	ATOM	98 N SER R 50 -22.912 -8.118 15.261 1.00 0.00
	ATOM	
	ATOM	
	ATOM	
35	ATOM	
	ATOM	103 OG SER R 50 -20.525 -9.489 16.273 1.00 0.00

	ATOM	104 H SERR 50	-23.312 -7.897 14.372 1.00 0.00
	ATOM	105 HG SER R 50	-21.302 -9.403 16.827 1.00 0.00
	ATOM	106 N ALA R 51	-21.454 -6.446 13.572 1.00 0.00
	ATOM	107 CA ALAR 51	-21.546 -5.403 12.562 1.00 0.00
5	ATOM	108 C ALA R 51	-23.013 -5.196 12.263 1.00 0.00
	ATOM	109 O ALA R 51	-23.862 -5.866 12.848 1.00 0.00
	ATOM	110 CB ALA R 51	-20.808 -5.825 11.288 1.00 0.00
	ATOM	111 H ALA R 51	-21.633 -7.392 13.330 1.00 0.00
	ATOM	112 N THRR 52	-23.266 -4.259 11.348 1.00 0.00
10	ATOM	113 CA THR R 52	-24.606 -3.698 11.228 1.00 0.00
	ATOM	114 C THRR 52	-25.679 -4.557 10.579 1.00 0.00
	ATOM	115 O THRR 52	-26.564 -5.091 11.239 1.00 0.00
	ATOM	116 CB THR R 52	-24.481 -2.344 10.532 1.00 0.00
	ATOM	117 OG1 THR R 52	-23.205 -1.766 10.845 1.00 0.00
15	ATOM	118 CG2 THR R 52	-25.624 -1.389 10.891 1.00 0.00
	MOTA	119 H THRR 52	-22.533 -3.835 10.820 1.00 0.00
,	ATOM	120 HG1 THR R 52	-23.136 -0.977 10.314 1.00 0.00
	ATOM	121 N GLUR 53	-25.602 -4.625 9.241 1.00 0.00
	ATOM		-26.765 -5.151 8.526 1.00 0.00
20	MOTA	123 C GLUR 53	-26.656 -6.149 7.362 1.00 0.00
	ATOM	124 O GLUR 53	
	ATOM	125 CB GLU R 53	-27.678 -3.966 8.146 1.00 0.00
	ATOM	126 CG GLUR 53	-27.452 -3.289 6.779 1.00 0.00
	ATOM	127 CD GLUR 53	
25	ATOM	128 OE1 GLU R 53	
	ATOM		-25.284 -2.484 7.329 1.00 0.00
	ATOM	130 H GLUR 53	-24.901 -4.146 8.704 1.00 0.00
	MOTA	131 N PROR 54	-25.448 -6.634 6.953 1.00 0.00
	MOTA	132 CA PRO R 54	
30	MOTA	133 C PRO R 54	-26.227 -8.929 6.351 1.00 0.00
	ATOM	134 O PROR 54	
	ATOM	135 CB PRO R 54	
	ATOM		-23.286 -6.653 6.033 1.00 0.00
	MOTA		-24.070 -6.275 7.278 1.00 0.00
35	ATOM	138 N CYS R 55	
	ATOM	139 CA CYS R 55	-27.561 -10.782 5.715 1.00 0.00

	ATOM	140 C CYS R 55	-26.758 -12.020 5.403 1.00 0.00
	MOTA	141 O CYS R 55	-25.722 -11.942 4.747 1.00 0.00
	ATOM	142 CB CYS R 55	-28.884 -10.816 4.980 1.00 0.00
	ATOM	143 SG CYS R 55	-29.966 -9.423 5.373 1.00 0.00
5	ATOM	144 H CYS R 55	-26.798 -9.206 4.422 1.00 0.00
	ATOM	145 N LYS R 56	-27.264 -13.165 5.871 1.00 0.00
	ATOM	146 CA LYS R 56	-26.589 -14.362 5.398 1.00 0.00
	ATOM	147 C LYS R 56	-27.549 -15.386 4.837 1.00 0.00
	ATOM	148 O LYS R 56	-28.519 -15.789 5.477 1.00 0.00
10	MOTA	149 CB LYS R 56	-25.714 -14.916 6.522 1.00 0.00
	ATOM	150 CG LYS R 56	-24.805 -16.085 6.153 1.00 0.00
	ATOM	151 CD LYS R 56	-23.591 -16.147 7.077 1.00 0.00
	ATOM	152 CE LYS R 56	-23.022 -17.552 7.202 1.00 0.00
	ATOM	153 NZ LYS R 56	-23.951 -18.331 8.015 1.00 0.00
15	ATOM	154 H LYS R 56	-28.051 -13.262 6.482 1.00 0.00
	ATOM	155 1HZ LYS R 56	-23.881 -18.006 8.995 1.00 0.00
•	ATOM	156 2HZ LYS R 56	-23.728 -19.338 7.946 1.00 0.00
	ATOM	157 3HZ LYS R 56	-24.928 -18.196 7.691 1.00 0.00
	ATOM	158 N PROR 57	-27.236 -15.830 3.598 1.00 0.00
20	ATOM	159 CA PRO R 57	-27.952 -16.989 3.057 1.00 0.00
	ATOM	160 C PROR 57	-27.718 -18.237 3.898 1.00 0.00
	ATOM	161 O PROR 57	-26.590 -18.524 4.312 1.00 0.00
	ATOM	162 CB PRO R 57	-27.397 -17.079 1.631 1.00 0.00
	ATOM	163 CG PRO R 57	-26.018 -16.418 1.682 1.00 0.00
25	ATOM	164 CD PRO R 57	-26.218 -15.301 2.698 1.00 0.00
	ATOM	165 N CYS R 58	-28.842 -18.939 4.129 1.00 0.00
	ATOM	166 CA CYS R 58	-28.833 -20.145 4.956 1.00 0.00
	ATOM	167 C CYS R 58	-28.246 -21.406 4.309 1.00 0.00
	ATOM	168 O CYS R 58	-27.067 -21.414 3.958 1.00 0.00
30	ATOM	169 CB CYS R 58	-30.219 -20.336 5.550 1.00 0.00
	ATOM	170 SG CYS R 58	-31.446 -20.570 4.242 1.00 0.00
	ATOM	171 H CYS R 58	-29.694 -18.544 3.776 1.00 0.00
	ATOM	172 N THRR 59	-29.040 -22.485 4.171 1.00 0.00
	ATOM	173 CA THR R 59	-28.405 -23.777 3.884 1.00 0.00
35	ATOM	174 C THRR 59	-29.331 -24.758 3.170 1.00 0.00
	ATOM	175 O THR R 59	-30.560 -24.647 3.205 1.00 0.00

	ATOM	176 CB THR R 59	-27.872 -24.385 5.190 1.00 0.00
	ATOM	177 OG1 THR R 59	-27.853 -23.393 6.235 1.00 0.00
	ATOM	178 CG2 THR R 59	-26.489 -25.021 5.023 1.00 0.00
	ATOM	179 H THRR 59	-30.024 -22.480 4.346 1.00 0.00
5	ATOM	180 HG1 THR R 59	-27.610 -23.881 7.025 1.00 0.00
	ATOM	181 N GLUR 60	-28.701 -25.728 2.496 1.00 0.00
	ATOM	182 CA GLUR 60	-29.419 -26.674 1.647 1.00 0.00
	ATOM	183 C GLUR 60	-30.161 -27.753 2.390 1.00 0.00
	ATOM	184 O GLUR 60	-29.788 -28.927 2.459 1.00 0.00
10	ATOM	185 CB GLUR 60	-28.473 -27.229 0.578 1.00 0.00
	ATOM	186 CG GLU R 60	-28.436 -26.362 -0.692 1.00 0.00
•	ATOM	187 CD GLUR 60	-28.332 -24.886 -0.343 1.00 0.00
	ATOM	188 OE1 GLU R 60	-29.269 -24.151 -0.619 1.00 0.00
	ATOM	189 OE2 GLU R 60	-27.340 -24.471 0.243 1.00 0.00
15	ATOM	190 H GLUR 60	-27.701 -25.728 2.526 1.00 0.00
	ATOM	191 N CYS R 61	-31.270 -27.273 2.945 1.00 0.00
•	ATOM	192 CA CYS R 61	-32.170 -28.156 3.661 1.00 0.00
	ATOM	193 C CYSR 61	-33.085 -28.944 2.755 1.00 0.00
	ATOM	194 O CYS R 61	-34.299 -28.751 2.709 1.00 0.00
20	ATOM	195 CB CYS R 61	-32.910 -27.347 4.714 1.00 0.00
	ATOM	196 SG CYS R 61	-31.740 -26.942 6.031 1.00 0.00
	ATOM	197 H CYS R 61	-31.509 -26.320 2.772 1.00 0.00
	ATOM	198 N VALR 62	-32.425 -29.827 1.999 1.00 0.00
	ATOM	199 CA VALR 62	-33.134 -30.711 1.091 1.00 0.00
25	ATOM	200 C VALR 62	-32.620 -32.122 1.268 1.00 0.00
	ATOM	201 O VALR 62	-31.507 -32.351 1.744 1.00 0.00
	ATOM	202 CB VAL R 62	-32.966 -30.257 -0.371 1.00 0.00
	ATOM	203 CG1 VAL R 62	-33.771 -28.988 -0.662 1.00 0.00
	ATOM	204 CG2 VAL R 62	-31.491 -30.099 -0.762 1.00 0.00
30	ATOM	205 H VALR 62	-31.439 -29.935 2.116 1.00 0.00
	ATOM	206 N GLY R 63	-33.482 -33.057 0.831 1.00 0.00
	ATOM	207 CA GLY R 63	-33.115 -34.472 0.773 1.00 0.00
	ATOM	208 C GLY R 63	-32.332 -34.987 1.965 1.00 0.00
	ATOM	209 O GLY R 63	-32.817 -35.076 3.086 1.00 0.00
35	ATOM	210 H GLY R 63	-34.346 -32.742 0.449 1.00 0.00
	ATOM	211 N LEUR 64	-31.064 -35.302 1.662 1.00 0.00

	ATOM	212 CA LEUR 64	-30.174 -35.897 2.660 1.00 0.00
	ATOM	213 C LEUR 64	-29.939 -35.063 3.905 1.00 0.00
	ATOM	214 O LEUR 64	-29.748 -35.602 4.993 1.00 0.00
	ATOM	215 CB LEUR 64	-28.818 -36.268 2.047 1.00 0.00
5	MOTA	216 CG LEUR 64	-28.759 -37.594 1.273 1.00 0.00
	ATOM	217 CD1 LEU R 64	-29.223 -38.770 2.135 1.00 0.00
	ATOM	218 CD2 LEU R 64	-29.458 -37.548 -0.089 1.00 0.00
	ATOM	219 H LEUR 64	-30.789 -35.155 0.715 1.00 0.00
	ATOM	220 N GLNR 65	-29.920 -33.749 3.667 1.00 0.00
10	MOTA	221 CA GLN R 65	-29.848 -32.806 4.767 1.00 0.00
	ATOM	222 C GLN R 65	-31.138 -32.025 4.898 1.00 0.00
	ATOM	223 O GLN R 65	-31.327 -30.896 4.444 1.00 0.00
	ATOM	224 CB GLN R 65	-28.607 -31.923 4.628 1.00 0.00
	ATOM	225 CG GLN R 65	-27.300 -32.698 4.852 1.00 0.00
15	ATOM	226 CD GLN R 65	-27.227 -33.242 6.271 1.00 0.00
•	ATOM	227 OE1 GLN R 65	-28.016 -32.916 7.148 1.00 0.00
٠	ATOM	228 NE2 GLN R 65	-26.211 -34.066 6.484 1.00 0.00
	ATOM	229 H GLN R 65	-30.093 -33.389 2.753 1.00 0.00
	ATOM	230 1HE2 GLN R 65	-26.039 -34.449 7.390 1.00 0.00
20	ATOM	231 2HE2 GLN R 65	-25.596 -34.408 5.773 1.00 0.00
	ATOM	232 N SER R 66	-32.061 -32.731 5.554 1.00 0.00
	ATOM	233 CA SER R 66	-33.390 -32.190 5.816 1.00 0.00
	ATOM	234 C SER R 66	-33.405 -31.182 6.954 1.00 0.00
			-33.405 -31.182 6.954 1.00 0.00 -32.729 -31.340 7.966 1.00 0.00
25	ATOM	235 O SER R 66	
25	ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66	-32.729 -31.340 7.966 1.00 0.00
25	ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00
25	ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00
25	ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00
25	ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66 240 N MET R 67	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00 -33.695 -34.243 4.566 1.00 0.00
	ATOM ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66 240 N MET R 67	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00 -33.695 -34.243 4.566 1.00 0.00 -34.238 -30.147 6.731 1.00 0.00 -34.452 -29.049 7.683 1.00 0.00
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66 240 N MET R 67 241 CA MET R 67	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00 -33.695 -34.243 4.566 1.00 0.00 -34.238 -30.147 6.731 1.00 0.00 -34.452 -29.049 7.683 1.00 0.00 -34.580 -29.454 9.146 1.00 0.00
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66 240 N MET R 67 241 CA MET R 67 242 C MET R 67 243 O MET R 67	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00 -33.695 -34.243 4.566 1.00 0.00 -34.238 -30.147 6.731 1.00 0.00 -34.452 -29.049 7.683 1.00 0.00 -34.580 -29.454 9.146 1.00 0.00
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66 240 N MET R 67 241 CA MET R 67 242 C MET R 67 243 O MET R 67 244 CB MET R 67	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00 -33.695 -34.243 4.566 1.00 0.00 -34.238 -30.147 6.731 1.00 0.00 -34.452 -29.049 7.683 1.00 0.00 -34.580 -29.454 9.146 1.00 0.00 -35.591 -30.030 9.547 1.00 0.00
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66 240 N MET R 67 241 CA MET R 67 242 C MET R 67 243 O MET R 67 244 CB MET R 67 245 CG MET R 67	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00 -33.695 -34.243 4.566 1.00 0.00 -34.238 -30.147 6.731 1.00 0.00 -34.452 -29.049 7.683 1.00 0.00 -34.580 -29.454 9.146 1.00 0.00 -35.591 -30.030 9.547 1.00 0.00 -35.701 -28.290 7.216 1.00 0.00
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	235 O SER R 66 236 CB SER R 66 237 OG SER R 66 238 H SER R 66 239 HG SER R 66 240 N MET R 67 241 CA MET R 67 242 C MET R 67 243 O MET R 67 244 CB MET R 67 245 CG MET R 67 246 SD MET R 67	-32.729 -31.340 7.966 1.00 0.00 -34.355 -33.332 6.140 1.00 0.00 -34.545 -34.205 5.013 1.00 0.00 -31.773 -33.614 5.922 1.00 0.00 -33.695 -34.243 4.566 1.00 0.00 -34.238 -30.147 6.731 1.00 0.00 -34.452 -29.049 7.683 1.00 0.00 -34.580 -29.454 9.146 1.00 0.00 -35.591 -30.030 9.547 1.00 0.00 -35.701 -28.290 7.216 1.00 0.00 -36.123 -27.081 8.053 1.00 0.00

	ATOM	248 H METR 67	-34.671 -30.083 5.833 1.00 0.00
	ATOM	249 N SER R 68	-33.535 -29.137 9.905 1.00 0.00
	ATOM	250 CA SER R 68	-33.655 -29.183 11.360 1.00 0.00
	ATOM	251 C SER R 68	-34.023 -27.827 11.919 1.00 0.00
5	ATOM	252 O SER R 68	-34.862 -27.691 12.800 1.00 0.00
	ATOM	253 CB SER R 68	-32.358 -29.637 12.009 1.00 0.00
	ATOM	254 OG SER R 68	-31.643 -30.509 11.115 1.00 0.00
	ATOM	255 H SER R 68	-32.761 -28.695 9.455 1.00 0.00
	ATOM	256 HG SER R 68	-31.558 -30.009 10.294 1.00 0.00
10	ATOM	257 N ALA R 69	-33.375 -26.830 11.302 1.00 0.00
	ATOM	258 CA ALA R 69	-33.917 -25.487 11.420 1.00 0.00
	ATOM	259 C ALA R 69	-34.131 -24.964 10.022 1.00 0.00
	ATOM	260 O ALA R 69	-33.406 -25.351 9.101 1.00 0.00
	ATOM	261 CB ALA R 69	-32.949 -24.567 12.163 1.00 0.00
15	MOTA	262 H ALA R 69	-32.643 -27.065 10.660 1.00 0.00
	MOTA	263 N PROR 70	-35.166 -24.103 9.901 1.00 0.00
•	ATOM	264 CA PRO R 70	-35.349 -23.341 8.665 1.00 0.00
	ATOM	265 C PROR 70	-34.275 -22.271 8.587 1.00 0.00
	ATOM	266 O PROR 70	-33.227 -22.350 9.229 1.00 0.00
20	ATOM	267 CB PRO R 70	-36.770 -22.793 8.852 1.00 0.00
	ATOM	268 CG PRO R 70	-36.928 -22.604 10.359 1.00 0.00
	ATOM	269 CD PRO R 70	-36.166 -23.793 10.921 1.00 0.00
	ATOM	270 N CYSR 71	-34.550 -21.233 7.785 1.00 0.00
	ATOM	271 CA CYS R 71	-33.601 -20.119 7.809 1.00 0.00
25	ATOM	272 C CYS R 71	-33.970 -19.007 8.772 1.00 0.00
	ATOM	273 O CYSR 71	-33.266 -18.019 8.957 1.00 0.00
	ATOM	274 CB CYS R 71	-33.418 -19.571 6.407 1.00 0.00
	ATOM	275 SG CYS R 71	-33.225 -20.894 5.186 1.00 0.00
	ATOM	276 H CYSR 71	-35.393 -21.195 7.252 1.00 0.00
30	ATOM	277 N VALR 72	-35:153 -19.212 9.378 1.00 0.00
	ATOM	278 CA VALR 72	-35.518 -18.365 10.505 1.00 0.00
	ATOM	279 C VALR 72	-35.220 -19.134 11.781 1.00 0.00
	ATOM	280 O VALR 72	-34.442 -20.088 11.731 1.00 0.00
	ATOM	281 CB VAL R 72	-36.968 -17.871 10.369 1.00 0.00
35	ATOM	282 CG1 VAL R 72	-37.035 -16.768 9.311 1.00 0.00
	ATOM	283 CG2 VAL R 72	-37.963 -18.992 10.064 1.00 0.00

	ATOM	284 H VALR 72	-35.684 -20.042 9.226 1.00 0.00
	ATOM	285 N GLUR 73	-35.790 -18.668 12.904 1.00 0.00
	ATOM	286 CA GLUR 73	-35.488 -19.248 14.217 1.00 0.00
	ATOM	287 C GLUR 73	-34.000 -19.471 14.515 1.00 0.00
5	ATOM	288 O GLUR 73	-33.279 -18.511 14.794 1.00 0.00
	ATOM	289 CB GLU R 73	-36.399 -20.461 14.483 1.00 0.00
	ATOM	290 CG GLUR 73	-37.842 -20.111 14.899 1.00 0.00
	ATOM	291 CD GLUR 73	-38.628 -19.399 13.805 1.00 0.00
	ATOM	292 OE1 GLU R 73	-39.196 -20.066 12.948 1.00 0.00
10	ATOM	293 OE2 GLU R 73	-38.693 -18.173 13.816 1.00 0.00
	ATOM	294 H GLUR 73	-36.613 -18.100 12.819 1.00 0.00
	ATOM	295 N ALAR 74	-33.549 -20.733 14.428 1.00 0.00
	ATOM	296 CA ALA R 74	-32.139 -20.969 14.723 1.00 0.00
	ATOM	297 C ALAR 74	-31.209 -20.464 13.628 1.00 0.00
15	ATOM	298 O ALAR 74	-31.627 -19.858 12.643 1.00 0.00
	ATOM	299 CB ALA R 74	-31.896 -22.456 14.994 1.00 0.00
•	ATOM	300 H ALA R 74	-34.142 -21.443 14.054 1.00 0.00
	ATOM	301 N ASPR 75	-29.901 -20.717 13.841 1.00 0.00
	ATOM	302 CA ASP R 75	-28.988 -20.165 12.838 1.00 0.00
20	ATOM	303 C ASPR 75	-28.978 -20.946 11.540 1.00 0.00
	ATOM	304 O ASPR 75	-28.907 -22.175 11.568 1.00 0.00
	ATOM	305 CB ASP R 75	-27.570 -19.881 13.412 1.00 0.00
	ATOM	306 CG ASP R 75	-26.502 -20.949 13.148 1.00 0.00
	ATOM	307 OD1 ASP R 75	-25.764 -20.841 12.170 1.00 0.00
25	ATOM	308 OD2 ASP R 75	-26.375 -21.893 13.918 1.00 0.00
	ATOM	309 H ASP R 75	-29.610 -21.308 14.596 1.00 0.00
	ATOM	310 N ASPR 76	-29.031 -20.167 10.438 1.00 0.00
	ATOM	311 CA ASP R 76	-28.563 -20.650 9.133 1.00 0.00
	ATOM	312 C ASP R 76	-28.887 -22.099 8.799 1.00 0.00
30	ATOM	313 O ASP R 76	-28.004 -22.960 8.851 1.00 0.00
	ATOM	314 CB ASP R 76	-27.048 -20.433 9.048 1.00 0.00
	ATOM	315 CG ASP R 76	-26.651 -19.628 7.832 1.00 0.00
	ATOM	316 OD1 ASP R 76	-26.280 -20.197 6.821 1.00 0.00
	ATOM	317 OD2 ASP R 76	-26.657 -18.412 7.895 1.00 0.00
35	ATOM	318 H ASPR 76	-29.310 -19.218 10.546 1.00 0.00
	ATOM	319 N ALA R 77	-30.181 -22.342 8.504 1.00 0.00

	ATOM	320 CA ALA R 77 -30.727 -23.675 8.210 1.00 0.00
	MOTA	321 C ALA R 77 -29.903 -24.882 8.622 1.00 0.00
	ATOM	322 O ALA R 77 -28.947 -25.313 7.977 1.00 0.00
	ATOM	323 CB ALA R 77 -31.146 -23.786 6.745 1.00 0.00
5	ATOM	324 H ALA R 77 -30.762 -21.532 8.486 1.00 0.00
	ATOM	325 N VAL R 78 -30.293 -25.370 9.804 1.00 0.00
•	ATOM	326 CA VAL R 78 -29.473 -26.437 10.365 1.00 0.00
	ATOM	327 C VAL R 78 -29.674 -27.730 9.608 1.00 0.00
	ATOM	328 O VAL R 78 -30.689 -28.419 9.719 1.00 0.00
10	ATOM	329 CB VAL R 78 -29.705 -26.621 11.875 1.00 0.00
	ATOM	330 CG1 VAL R 78 -28.824 -27.731 12.461 1.00 0.00
	ATOM	331 CG2 VAL R 78 -29.474 -25.311 12.630 1.00 0.00
•	ATOM	332 H VALR 78 -31.196 -25.121 10.147 1.00 0.00
	ATOM	333 N CYS R 79 -28.632 -28.038 8.838 1.00 0.00
15	ATOM	334 CA CYS R 79 -28.713 -29.247 8.033 1.00 0.00
	ATOM	335 C CYS R 79 -27.339 -29.828 7.920 1.00 0.00
•	ATOM	336 O CYS R 79 -26.525 -29.376 7.119 1.00 0.00
	ATOM	337 CB CYS R 79 -29.320 -28.928 6.669 1.00 0.00
	ATOM	338 SG CYS R 79 -31.114 -28.721 6.825 1.00 0.00
20	ATOM	339 H CYS R 79 -27.953 -27.324 8.640 1.00 0.00
	ATOM	340 N ARG R 80 -27.136 -30.778 8.851 1.00 0.00
	ATOM	341 CA ARG R 80 -25.874 -31.473 9.118 1.00 0.00
	ATOM	342 C ARG R 80 -26.145 -32.410 10.286 1.00 0.00
	ATOM	343 O ARG R 80 -27.174 -32.258 10.947 1.00 0.00
25	ATOM	344 CB ARG R 80 -24.794 -30.457 9.480 1.00 0.00
•	ATOM	345 CG ARG R 80 -23.510 -30.612 8.671 1.00 0.00
	ATOM	346 CD ARG R 80 -23.609 -30.483 7.144 1.00 0.00
	ATOM	347 NE ARG R 80 -22.248 -30.464 6.602 1.00 0.00
	ATOM	348 CZ ARG R 80 -21.752 -29.350 6.025 1.00 0.00
30	ATOM	349 NH1 ARG R 80 -20.446 -29.201 5.899 1.00 0.00
	ATOM	350 NH2 ARG R 80 -22.565 -28.390 5.605 1.00 0.00
	ATOM	351 H ARG R 80 -27.930 -31.029 9.408 1.00 0.00
	ATOM	352 HE ARG R 80 -21.632 -31.222 6.850 1.00 0.00
	ATOM	353 1HH1 ARG R 80 -20.066 -28.349 5.510 1.00 0.00
35	ATOM	354 2HH1 ARG R 80 -19.803 -29.904 6.220 1.00 0.00
	ATOM	

		·
	ATOM	356 2HH2 ARG R 80 -23.555 -28.546 5.585 1.00 0.00
	ATOM	357 N CYS R 81 -25.254 -33.378 10.546 1.00 0.00
	ATOM	358 CA CYS R 81 -25.630 -34.302 11.618 1.00 0.00
	ATOM	359 C CYS R 81 -24.657 -34.425 12.779 1.00 0.00
5	ATOM	360 O CYS R 81 -23.437 -34.482 12.654 1.00 0.00
	ATOM	361 CB CYS R 81 -25.971 -35.691 11.060 1.00 0.00
	ATOM	362 SG CYS R 81 -27.286 -35.685 9.805 1.00 0.00
	ATOM	363 H CYS R 81 -24.383 -33.437 10.057 1.00 0.00
	ATOM	364 N ALA R 82 -25.276 -34.521 13.965 1.00 0.00
10	ATOM	365 CA ALA R 82 -24.515 -34.749 15.194 1.00 0.00
	ATOM	366 C ALA R 82 -25.304 -35.664 16.121 1.00 0.00
	ATOM	367 O ALA R 82 -26.298 -36.259 15.706 1.00 0.00
	ATOM	368 CB ALA R 82 -24.220 -33.410 15.880 1.00 0.00
	ATOM	369 H ALA R 82 -26.275 -34.483 13.959 1.00 0.00
15	ATOM	370 N TYR R 83 -24.873 -35.700 17.401 1.00 0.00
	ATOM	371 CA TYR R 83 -25.613 -36.307 18.519 1.00 0.00
•	ATOM	372 C TYR R 83 -25.565 -37.827 18.584 1.00 0.00
	ATOM	373 O TYRR 83 -24.974 -38.412 19.487 1.00 0.00
	MOTA	374 CB TYR R 83 -27.078 -35.829 18.634 1.00 0.00
20	ATOM	375 CG TYR R 83 -27.226 -34.328 18.781 1.00 0.00
	ATOM	376 CD1 TYR R 83 -26.962 -33.725 20.028 1.00 0.00
	ATOM	377 CD2 TYR R 83 -27.670 -33.574 17.674 1.00 0.00
	ATOM	378 CE1 TYR R 83 -27.210 -32.351 20.189 1.00 0.00
	ATOM	379 CE2 TYR R 83 -27.914 -32.198 17.834 1.00 0.00
25	ATOM	380 CZ TYR R 83 -27.710 -31.608 19.099 1.00 0.00
	MOTA	381 OH TYR R 83 -28.024 -30.273 19.294 1.00 0.00
	ATOM	382 H TYR R 83 -23.940 -35.374 17.555 1.00 0.00
	ATOM	383 HH TYR R 83 -28.217 -29.854 18.456 1.00 0.00
	MOTA	384 N GLY R 84 -26.236 -38.425 17.591 1.00 0.00
30	MOTA	385 CA GLY R 84 -26.228 -39.880 17.476 1.00 0.00
	ATOM	386 C GLY R 84 -25.429 -40.269 16.256 1.00 0.00
	ATOM	387 O GLY R 84 -24.379 -40.900 16.321 1.00 0.00
	ATOM	388 H GLY R 84 -26.647 -37.841 16.890 1.00 0.00
	ATOM	389 N TYRR 85 -25.951 -39.784 15.120 1.00 0.00
35	ATOM	390 CA TYR R 85 -25.110 -39.752 13.923 1.00 0.00
	ATOM	391 C TYR R 85 -24.142 -38.590 13.997 1.00 0.00

	ATOM	392 O TYRR 85	-24.434 -37.463 13.597 1.00 0.00
	ATOM	393 CB TYR R 85	-25.941 -39.668 12.637 1.00 0.00
	ATOM	394 CG TYR R 85	-26.885 -40.843 12.509 1.00 0.00
	ATOM	395 CD1 TYR R 85	-26.367 -42.140 12.304 1.00 0.00
5	ATOM	396 CD2 TYR R 85	-28.271 -40.602 12.591 1.00 0.00
	ATOM	397 CE1 TYR R 85	-27.258 -43.221 12.185 1.00 0.00
	ATOM	398 CE2 TYR R 85	-29.161 -41.681 12.467 1.00 0.00
	ATOM	399 CZ TYR R 85	-28.645 -42.978 12.269 1.00 0.00
	ATOM	400 OH TYR R 85	-29.528 -44.039 12.161 1.00 0.00
10	ATOM	401 H TYRR 85	-26.801 -39.267 15.189 1.00 0.00
	MOTA	402 HH TYRR 85	-30.392 -43.682 11.979 1.00 0.00
	ATOM	403 N TYRR 86	-23.001 -38.941 14.593 1.00 0.00
	ATOM	404 CA TYRR 86	-21.996 -37.958 14.983 1.00 0.00
	MOTA	405 C TYR R 86	-21.418 -37.177 13.824 1.00 0.00
15	ATOM	406 O TYRR 86	-21.126 -35.992 13.937 1.00 0.00
	ATOM	407 CB TYR R 86	-20.809 -38.602 15.710 1.00 0.00
•	ATOM	408 CG TYR R 86	-21.207 -39.697 16.673 1.00 0.00
	ATOM	409 CD1 TYR R 86	-20.850 -41.023 16.352 1.00 0.00
	ATOM	410 CD2 TYR R 86	-21.890 -39.374 17.863 1.00 0.00
20	MOTA	411 CE1 TYR R 86	-21.141 -42.050 17.264 1.00 0.00
	MOTA	412 CE2 TYR R 86	-22.184 -40.403 18.774 1.00 0.00
	ATOM	413 CZ TYR R 86	-21.785 -41.722 18.473 1.00 0.00
	ATOM	414 OH TYRR 86	-22.023 -42.711 19.413 1.00 0.00
	MOTA	415 H TYRR 86	-22.958 -39.890 14.897 1.00 0.00
25	ATOM	416 HH TYRR 86	-21.495 -43.480 19.212 1.00 0.00
	ATOM	417 N GLNR 87	-21.218 -37.946 12.732 1.00 0.00
	ATOM	418 CA GLN R 87	-20.570 -37.470 11.510 1.00 0.00
	ATOM	419 C GLN R 87	-19.097 -37.109 11.556 1.00 0.00
	MOTA	420 O GLN R 87	-18.514 -36.712 12.563 1.00 0.00
30	ATOM	421 CB GLN R 87	-21.334 -36.316 10.855 1.00 0.00
	ATOM	422 CG GLN R 87	-22.628 -36.720 10.170 1.00 0.00
	ATOM	423 CD GLN R 87	
	ATOM	424 OE1 GLN R 87	-23.553 -34.880 8.908 1.00 0.00
	ATOM	425 NE2 GLN R 87	-22.130 -36.305 7.879 1.00 0.00
35	ATOM	426 H GLNR 87	-21.584 -38.879 12.734 1.00 0.00
	ATOM	427 1HE2 GLN R 87	-22.399 -35.962 6.979 1.00 0.00

		428 2HE2 GLN R 87 -21.431 -37.016 7.960	
	ATOM	429 N ASP R 88 -18.536 -37.210 10.345 1	.00 0.00
		430 CA ASP R 88 -17.727 -36.069 9.929 1	
	ATOM	431 C ASP R 88 -18.634 -35.318 8.978 1.	00.00
5	ATOM	432 O ASP R 88 -19.200 -35.901 8.064 1.	00.00
	ATOM	433 CB ASP R 88 -16.408 -36.490 9.269 1	.00 0.00
	ATOM	434 CG ASPR 88 -15.384 -35.376 9.431 1	0.00
	ATOM	435 OD1 ASP R 88 -14.915 -34.822 8.442	1.00 0.00
	ATOM	436 OD2 ASP R 88 -15.051 -35.032 10.560	1.00 0.00
10	ATOM	437 H ASPR 88 -19.040 -37.751 9.666 1.	00.00
	ATOM	438 N GLUR 89 -18.883 -34.048 9.301 1.	00.00
	ATOM	439 CA GLU R 89 -20.163 -33.427 8.949 1	.00 0.00
	ATOM	440 C GLUR 89 -20.666 -33.353 7.500 1.	00.00
	ATOM	441 O GLUR 89 -21.862 -33.159 7.271 1.	00.00
15	ATOM	442 CB GLUR 89 -20.252 -32.098 9.722 1	1.00 0.00
	ATOM	443 CG GLU R 89 -19.934 -30.765 9.024	1.00 0.00
	ATOM	444 CD GLUR 89 -18.588 -30.734 8.336	1.00 0.00
	ATOM	445 OE1 GLU R 89 -18.494 -31.092 7.174	1.00 0.00
	ATOM	446 OE2 GLU R 89 -17.616 -30.321 8.940	1.00 0.00
20	ATOM	447 H GLUR 89 -18.289 -33.640 9.988 1.	00 0.00
	ATOM	448 N THR R 90 -19.709 -33.499 6.555 1.	00 0.00
	ATOM	449 CA THR R 90 -19.933 -32.941 5.217 1	.00 0.00
	ATOM	450 C THR R 90 -21.285 -33.118 4.552 1.	00 0.00
	ATOM	451 O THR R 90 -21.938 -34.160 4.600 1.	.00 0.00
25	ATOM	452 CB THR R 90 -18.810 -33.347 4.255 1	.00 0.00
	ATOM	453 OG1 THR R 90 -17.674 -33.836 4.984	1.00 0.00
	ATOM	454 CG2 THR R 90 -18.392 -32.204 3.324	1.00 0.00
	ATOM	455 H THR R 90 -18.784 -33.648 6.889 1.	00 0.00
	ATOM	456 HG1 THR R 90 -17.327 -33.064 5.444	1.00 0.00
30	ATOM	457 N THR R 91 -21.647 -32.017 3.895 1.	00.00
	ATOM	458 CA THR R 91 -22.860 -31.897 3.097 1	.00 0.00
	ATOM	459 C THR R 91 -23.258 -33.149 2.323 1.	00 0.00
	ATOM	460 O THR R 91 -22.484 -33.676 1.526 1.	.00 0.00
	ATOM	461 CB THR R 91 -22.647 -30.720 2.141 1	.00 0.00
35	ATOM	462 OG1 THR R 91 -21.666 -29.793 2.666	1.00 0.00
	ATOM	463 CG2 THR R 91 -23.964 -30.007 1.827	1.00 0.00

	ATOM	464 H THRR 91	-20.984 -31.271 3.860 1.00 0.00
	ATOM	465 HG1 THR R 91	-20.894 -29.846 2.096 1.00 0.00
	ATOM	466 N GLYR 92 -	-24.499 -33.584 2.577 1.00 0.00
	ATOM	467 CA GLY R 92	-24.978 -34.710 1.781 1.00 0.00
5	ATOM	468 C GLYR 92	-24.860 -36.093 2.409 1.00 0.00
	ATOM	469 O GLYR 92	-25.335 -37.085 1.850 1.00 0.00
	ATOM	470 H GLYR 92	-25.022 -33.210 · 3.337 1.00 0.00
	ATOM	471 N ARG R 93	-24.236 -36.138 3.595 1.00 0.00
	ATOM	472 CA ARG R 93	-24.173 -37.427 4.280 1.00 0.00
10	ATOM	473 C ARG R 93	-24.418 -37.314 5.777 1.00 0.00
	ATOM	474 O ARG R 93	-24.453 -36.210 6.315 1.00 0.00
	ATOM	475 CB ARG R 93	-22.867 -38.152 3.925 1.00 0.00
	ATOM	476 CG ARG R 93	-21.604 -37.313 4.120 1.00 0.00
	ATOM	477 CD ARG R 93	-20.324 -38.083 3.779 1.00 0.00
15	ATOM	478 NE ARG R 93	-19.135 -37.298 4.115 1.00 0.00
•	ATOM	479 CZ ARG R 93	-18.683 -37.255 5.391 1.00 0.00
	ATOM	480 NH1 ARG R 93	-17.741 -36.386 5.728 1.00 0.00
	ATOM	481 NH2 ARG R 93	-19.200 -38.034 6.329 1.00 0.00
	ATOM	482 H ARG R 93	-23.801 -35.328 3.987 1.00 0.00
20	ATOM	483 HE ARG R 93	-18.726 -36.705 3.421 1.00 0.00
	ATOM	484 1HH1 ARG R 93	-17.400 -36.385 6.666 1.00 0.00
	ATOM	485 2HH1 ARG R 93	-17.378 -35.697 5.095 1.00 0.00
	ATOM	486 1HH2 ARG R 93	-18.999 -37.871 7.294 1.00 0.00
	ATOM	487 2HH2 ARG R 93	-19.832 -38.785 6.135 1.00 0.00
25	ATOM	488 N CYSR 94	-24.653 -38.506 6.371 1.00 0.00
	MOTA	489 CA CYS R 94	-24.768 -38.726 7.818 1.00 0.00
	ATOM	490 C CYS R 94	-24.488 -40.182 8.172 1.00 0.00
	ATOM		-25.041 -41.119 7.594 1.00 0.00
			-26.138 -38.358 8.397 1.00 0.00
30			-26.692 -36.659 8.083 1.00 0.00
	ATOM	494 H CYS R 94	-24.611 -39.336 5.816 1.00 0.00
	ATOM		-23.572 -40.320 9.142 1.00 0.00
			-22.945 -41.588 9.514 1.00 0.00
	ATOM	497 C GLUR 95	-22.224 -41.383 10.836 1.00 0.00
35	ATOM	498 O GLUR 95	-22.258 -40.278 11.382 1.00 0.00
	ATOM	499 CB GLUR 95	-21.981 -42.075 8.412 1.00 0.00

```
ATOM 500 CG GLU R 95 -20.721 -41.229 8.154 1.00 0.00
      ATOM
             501 CD GLU R 95 -21.085 -39.811 7.761 1.00 0.00
      ATOM 502 OE1 GLU R 95 -21.467 -39.570 6.627 1.00 0.00
      ATOM 503 OE2 GLU R 95 -20.997 -38.922 8.591 1.00 0.00
5
      ATOM 504 H GLU R 95 -23.203 -39.480 9.540 1.00 0.00
      ATOM 505 N ALA R 96
                              -21.599 -42.462 11.332 1.00 0.00
      ATOM 506 CA ALA R 96 -20.851 -42.305 12.578 1.00 0.00
      ATOM 507 C ALA R 96 -19.527 -41.574 12.413 1.00 0.00
      ATOM 508 O ALA R 96 -18.742 -41.952 11.544 1.00 0.00
10
      ATOM 509 CB ALA R 96 -20.605 -43.668 13.231 1.00 0.00
      ATOM 510 OXT ALA R 96 -19.293 -40.619 13.151 1.00 0.00
      ATOM
             511 H ALA R 96 -21.711 -43.344 10.871 1.00 0.00
      END
```

15 REMARK 1 Second CRD of p75NTR, bound to BDNF.

REMARK 2

•	ATOM	1 N CYS R 39	-28.731 -23.425 17.186 1.00 0.00
	ATOM	2 CA CYS R 39	-29.491 -22.215 17.484 1.00 0.00
	ATOM	3 C CYS R 39	-30.988 -22.434 17.523 1.00 0.00
20	ATOM	4 O CYS R 39	-31.773 -21.495 17.660 1.00 0.00
•	ATOM	5 CB CYS R 39	-29.203 -21.102 16.474 1.00 0.00
	ATOM	6 SG CYS R 39	-27.698 -21.312 15.471 1.00 0.00
	ATOM	71H CYSR 39	-27.735 -23.264 17.148 1.00 0.00
	ATOM	82H CYSR 39	-28.868 -24.153 17.874 1.00 0.00
25	ATOM	93H CYSR 39	-28.982 -23.835 16.298 1.00 0.00
	ATOM	10 N LEUR 40	-31.381 -23.704 17.336 1.00 0.00
	ATOM	11 CA LEUR 40	-32.802 -24.005 17.397 1.00 0.00
	ATOM	12 C LEUR 40	-33.098 -24.788 18.662 1.00 0.00
	ATOM	13 O LEUR 40	-32.371 -24.712 19.645 1.00 0.00
30	ATOM	14 CB LEUR 40	-33.224 -24.736 16.114 1.00 0.00
	ATOM	15 CG LEUR 40	-33.141 -23.868 14.854 1.00 0.00
	ATOM	16 CD1 LEUR 40	-33.498 -24.664 13.599 1.00 0.00
	ATOM	17 CD2 LEU R 40	-33.987 -22.598 14.968 1.00 0.00
	ATOM	18 H LEUR 40	-30.734 -24.467 17.314 1.00 0.00
35	ATOM	19 N ASPR 41	-34.194 -25.545 18.604 1.00 0.00
	ATOM	20 CA ASPR 41	-34.394 -26.559 19.630 1.00 0.00

	ATOM	21 C ASP R 41 -33.510 -27.762 19.326 1.00 0.00
	ATOM	22 O ASPR 41 -32.569 -27.678 18.542 1.00 0.00
	ATOM	23 CB ASP R 41 -35.888 -26.923 19.676 1.00 0.00
	ATOM	24 CG ASP R 41 -36.282 -27.631 18.391 1.00 0.00
5	ATOM	25 OD1 ASP R 41 -36.462 -28.842 18.426 1.00 0.00
	ATOM	26 OD2 ASP R 41 -36.364 -26.975 17.359 1.00 0.00
	ATOM	27 H ASP R 41 -34.766 -25.640 17.790 1.00 0.00
	ATOM	28 N SER R 42 -33.860 -28.892 19.945 1.00 0.00
	ATOM	29 CA SER R 42 -33.192 -30.156 19.648 1.00 0.00
10	ATOM	30 C SER R 42 -32.956 -30.499 18.173 1.00 0.00
	ATOM	31 O SER R 42 -31.967 -31.144 17.816 1.00 0.00
	ATOM	32 CB SER R 42 -33.975 -31.256 20.359 1.00 0.00
	ATOM	33 OG SER R 42 -34.507 -30.738 21.597 1.00 0.00
	ATOM	34 H SER R 42 -34.638 -28.916 20.568 1.00 0.00
15	ATOM	35 HG SER R 42 -35.328 -31.194 21.757 1.00 0.00
	ATOM	36 N VALR 43 -33.884 -30.042 17.310 1.00 0.00
•	ATOM	37 CA VALR 43 -33.712 -30.372 15.895 1.00 0.00
	ATOM	38 C VALR 43 -32.454 -29.826 15.235 1.00 0.00
	ATOM	39 O VALR 43 -31.932 -30.402 14.281 1.00 0.00
20	ATOM	40 CB VALR 43 -34.955 -30.058 15.044 1.00 0.00
	ATOM	41 CG1 VAL R 43 -36.186 -30.773 15.604 1.00 0.00
	ATOM	42 CG2 VAL R 43 -35.182 -28.560 14.824 1.00 0.00
	ATOM	43 H VALR 43 -34.615 -29.433 17.633 1.00 0.00
	ATOM	44 N THR R 44 -31.938 -28.722 15.786 1.00 0.00
25	ATOM	45 CA THR R 44 -30.651 -28.248 15.283 1.00 0.00
	ATOM	46 C THR R 44 -29.869 -27.538 16.372 1.00 0.00
	ATOM	47 O THR R 44 -30.165 -26.391 16.716 1.00 0.00
	ATOM	48 CB THR R 44 -30.833 -27.333 14.062 1.00 0.00
	ATOM	49 OG1 THR R 44 -31.913 -27.770 13.215 1.00 0.00
30	ATOM	50 CG2 THR R 44 -29.538 -27.231 13.256 1.00 0.00
	ATOM	51 H THR R 44 -32.435 -28.226 16.507 1.00 0.00
	ATOM	52 HG1 THR R 44 -31.927 -28.725 13.271 1.00 0.00
	ATOM	53 N PHE R 45 -28.911 -28.291 16.916 1.00 0.00
	ATOM	54 CA PHE R 45 -28.186 -27.770 18.069 1.00 0.00
35	ATOM	55 C PHE R 45 -26.993 -26.926 17.656 1.00 0.00
	MOTA	56 O PHE R 45 -26.806 -26.646 16.478 1.00 0.00

	ATOM	57 CB PHE R 45 -2	27.822 -28.924 19.006 1.00 0.00
	ATOM	58 CG PHER 45 -2	26.899 -29.937 18.362 1.00 0.00
	ATOM		27.449 -31.094 17.770 1.00 0.00
	ATOM	60 CD2 PHE R 45 -	25.503 -29.718 18.376 1.00 0.00
5	ATOM	61 CE1 PHE R 45 -	26.592 -32.040 17.179 1.00 0.00
	ATOM	62 CE2 PHE R 45 -	24.646 -30.663 17.785 1.00 0.00
	ATOM	63 CZ PHE R 45 -2	25.200 -31.813 17.186 1.00 0.00
	ATOM	64 H PHER 45 -2	8.575 -29.099 16.440 1.00 0.00
	ATOM	65 N SER R 46 -2	6.169 -26.504 18.621 1.00 0.00
10	ATOM	66 CA SER R 46 -2	25.321 -25.406 18.156 1.00 0.00
	MOTA	67 C SER R 46 -2	3.805 -25.596 18.062 1.00 0.00
	MOTA	68 O SER R 46 -2	3.139 -25.015 17.205 1.00 0.00
	MOTA	69 CB SER R 46 -2	25.722 -24.118 18.887 1.00 0.00
	ATOM	70 OG SER R 46 -	27.050 -24.244 19.441 1.00 0.00
15	ATOM	71 H SER R 46 -2	6.281 -26.700 19.596 1.00 0.00
	ATOM	72 HG SER R 46 -	26.881 -24.590 20.319 1.00 0.00
•	ATOM	73 N ASPR 47 -2	3.284 -26.424 18.982 1.00 0.00
	ATOM	74 CA ASPR 47 -2	21.847 -26.704 19.149 1.00 0.00
	ATOM	75 C ASPR 47 -2	0.914 -25.513 19.394 1.00 0.00
20	ATOM	76 O ASPR 47 -1	9.707 -25.533 19.159 1.00 0.00
	ATOM	77 CB ASP R 47 -	21.313 -27.830 18.204 1.00 0.00
			00 007 07 450 40 050 4 00 0 00
	ATOM	78 CG ASP R 47 -	20.687 -27.453 16.853 1.00 0.00
	ATOM MOTA		-20.787 -28.220 15.898 1.00 0.00
		79 OD1 ASP R 47	
25	ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47	-20.787 -28.220 15.898 1.00 0.00
25	ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00
25	ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00
25	ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -2	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00
25	ATOM ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -2 84 C VAL R 48 -1	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00 20.791 -23.190 20.089 1.00 0.00
25	ATOM ATOM ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -1 84 C VAL R 48 -1 85 O VAL R 48 -1	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00 20.791 -23.190 20.089 1.00 0.00 9.752 -23.030 21.212 1.00 0.00
·	ATOM ATOM ATOM ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -2 84 C VAL R 48 -1 85 O VAL R 48 -1 86 CB VAL R 48 -2	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00 20.791 -23.190 20.089 1.00 0.00 9.752 -23.030 21.212 1.00 0.00 9.796 -22.163 22.083 1.00 0.00
·	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -1 84 C VAL R 48 -1 85 O VAL R 48 -1 86 CB VAL R 48 -2 87 CG1 VAL R 48	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00 20.791 -23.190 20.089 1.00 0.00 9.752 -23.030 21.212 1.00 0.00 9.796 -22.163 22.083 1.00 0.00 21.762 -22.000 20.041 1.00 0.00
·	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -1 85 O VAL R 48 -1 86 CB VAL R 48 -1 87 CG1 VAL R 48 88 CG2 VAL R 48	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00 20.791 -23.190 20.089 1.00 0.00 9.752 -23.030 21.212 1.00 0.00 9.796 -22.163 22.083 1.00 0.00 21.762 -22.000 20.041 1.00 0.00 -22.331 -21.847 18.628 1.00 0.00
·	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -1 85 O VAL R 48 -1 86 CB VAL R 48 -2 87 CG1 VAL R 48 88 CG2 VAL R 48 89 H VAL R 48 -2	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00 20.791 -23.190 20.089 1.00 0.00 9.752 -23.030 21.212 1.00 0.00 9.796 -22.163 22.083 1.00 0.00 21.762 -22.000 20.041 1.00 0.00 -22.331 -21.847 18.628 1.00 0.00 -22.865 -22.095 21.103 1.00 0.00
·	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	79 OD1 ASP R 47 80 OD2 ASP R 47 81 H ASP R 47 -2 82 N VAL R 48 -2 83 CA VAL R 48 -1 85 O VAL R 48 -1 86 CB VAL R 48 -2 87 CG1 VAL R 48 88 CG2 VAL R 48 89 H VAL R 48 -2 90 N VAL R 49 -1	-20.787 -28.220 15.898 1.00 0.00 -20.046 -26.421 16.716 1.00 0.00 3.930 -26.730 19.679 1.00 0.00 1.525 -24.456 19.953 1.00 0.00 20.791 -23.190 20.089 1.00 0.00 9.752 -23.030 21.212 1.00 0.00 9.796 -22.163 22.083 1.00 0.00 21.762 -22.000 20.041 1.00 0.00 -22.331 -21.847 18.628 1.00 0.00 -22.865 -22.095 21.103 1.00 0.00 2.434 -24.585 20.351 1.00 0.00

	ATOM	93 O VAL R 49 -16.199 -21.808 22.647 1.00 0.00
	ATOM	94 CB VALR 49 -16.621 -24.942 21.815 1.00 0.00
	ATOM	95 CG1 VAL R 49 -16.113 -25.126 20.379 1.00 0.00
	ATOM	96 CG2 VAL R 49 -15.490 -24.948 22.848 1.00 0.00
5	ATOM	97 H VALR 49 -18.738 -24.575 20.398 1.00 0.00
	ATOM	98 N SER R 50 -16.984 -21.895 20.512 1.00 0.00
	ATOM	99 CA SER R 50 -16.545 -20.542 20.170 1.00 0.00
	ATOM	100 C SER R 50 -17.478 -20.015 19.099 1.00 0.00
	ATOM	101 O SER R 50 -18.142 -20.822 18.450 1.00 0.00
10	ATOM	102 CB SER R 50 -15.104 -20.582 19.665 1.00 0.00
	ATOM	103 OG SER R 50 -14.388 -21.603 20.381 1.00 0.00
	ATOM	104 H SER R 50 -17.472 -22.447 19.837 1.00 0.00
	ATOM	105 HG SER R 50 -14.702 -21.503 21.280 1.00 0.00
	ATOM	106 N ALA R 51 -17.535 -18.689 18.939 1.00 0.00
15	ATOM	107 CA ALA R 51 -18.444 -18.111 17.945 1.00 0.00
	ATOM	108 C ALA R 51 -18.009 -18.327 16.502 1.00 0.00
	ATOM	109 O ALA R 51 -17.384 -17.480 15.860 1.00 0.00
	ATOM	110 CB ALA R 51 -18.633 -16.614 18.202 1.00 0.00
	ATOM	111 H ALA R 51 -16.914 -18.119 19.470 1.00 0.00
20	ATOM	112 N THR R 52 -18.362 -19.542 16.034 1.00 0.00
	ATOM	113 CA THR R 52 -17.855 -20.040 14.756 1.00 0.00
	ATOM	114 C THR R 52 -18.740 -21.103 14.084 1.00 0.00
	ATOM	115 O THR R 52 -18.814 -22,264 14.488 1.00 0.00
	ATOM	116 CB THR R 5216.422 -20.581 14.935 1.00 0.00
25	ATOM	117 OG1 THR R 52 -15.633 -19.712 15.770 1.00 0.00
	ATOM	118 CG2 THR R 52 -15.723 -20.802 13.589 1.00 0.00
	ATOM	119 H THR R 52 -18.809 -20.200 16.644 1.00 0.00
	ATOM	120 HG1 THR R 52 -15.985 -18.832 15.634 1.00 0.00
	ATOM	121 N GLUR 53 -19.349 -20.674 12.968 1.00 0.00
30	ATOM	122 CA GLUR 53 -20.398 -19.674 13.115 1.00 0.00
	ATOM	123 C GLU R 53 -21.732 -20.164 13.692 1.00 0.00
	ATOM	124 O GLUR 53 -22.195 -19.586 14.668 1.00 0.00
	MOTA	125 CB GLU R 53 -20.639 -18.835 11.840 1.00 0.00
	MOTA	126 CG GLU R 53 -19.550 -18.814 10.755 1.00 0.00
35	MOTA	127 CD GLU R 53 -19.530 -20.110 9.955 1.00 0.00
	MOTA	128 OE1 GLU R 53 -20.581 -20.583 9.522 1.00 0.00

	ATOM	129 OE2 GLU R 53	-18.455 -20.666 9.758 1.00 0.00
	ATOM	130 H GLUR 53	-19.314 -21.243 12.150 1.00 0.00
	ATOM	131 N PROR 54	-22.382 -21.186 13.062 1.00 0.00
	ATOM	132 CA PRO R 54	-23.801 -21.374 13.363 1.00 0.00
5	ATOM	133 C PROR 54	-24.087 -22.600 14.224 1.00 0.00
	ATOM	134 O PROR 54	-23.206 -23.245 14.790 1.00 0.00
	ATOM	135 CB PRO R 54	-24.322 -21.543 11.933 1.00 0.00
	ATOM	136 CG PRO R 54	-23.279 -22.449 11.267 1.00 0.00
•	ATOM	137 CD PRO R 54	-21.973 -22.056 11.958 1.00 0.00
10	ATOM	138 N CYS R 55	-25.389 -22.945 14.169 1.00 0.00
	ATOM	139 CA CYS R 55	-25.953 -24.243 14.552 1.00 0.00
	ATOM	140 C CYS R 55	-25.269 -25.446 13.903 1.00 0.00
	ATOM	141 O CYS R 55	-24.242 -25.300 13.245 1.00 0.00
	ATOM	142 CB CYS R 55	-27.451 -24.242 14.222 1.00 0.00
15	ATOM	143 SG CYS R 55	-28.150 -22.588 13.922 1.00 0.00
	ATOM	144 H CYS R 55	-26.029 -22.260 13.834 1.00 0.00
	ATOM	145 N LYS R 56	-25.873 -26.628 14.098 1.00 0.00
	ATOM		-25.241 -27.917 13.821 1.00 0.00
	ATOM	147 C LYS R 56	-26.256 -29.045 13.957 1.00 0.00
20	ATOM	148 O LYS R 56	-26.703 -29.417 15.037 1.00 0.00
	ATOM		-24.073 -28.150 14.789 1.00 0.00
	ATOM	150 CG LYS R 56	-23.350 -29.501 14.702 1.00 0.00
	ATOM	151 CD LYS R 56	-22.658 -29.801 13.373 1.00 0.00
	ATOM	152 CE LYS R 56	-21.673 -30.966 13.503 1.00 0.00
25	ATOM	153 NZ LYS R 56	-20.454 -30.524 14.191 1.00 0.00
	ATOM	154 H LYS R 56	-26.725 -26.673 14.623 1.00 0.00
	ATOM	155 1HZ LYS R 56	-19.887 -31.370 14.402 1.00 0.00
	ATOM	156 2HZ LYS R 56	-20.632 -30.000 15.073 1.00 0.00
	ATOM	157 3HZ LYS R 56	-19.886 -29.946 13.544 1.00 0.00
30	ATOM	158 N PRO R 57	-26.633 -29.599 12.787 1.00 0.00
	ATOM	159 CA PRO R 57	-27.416 -30.837 12.811 1.00 0.00
	ATOM	160 C PROR 57	-26.644 -31.966 13.476 1.00 0.00
	ATOM	161 O PROR 57	-25.420 -31.911 13.609 1.00 0.00
	ATOM	162 CB PRO R 57	-27.665 -31.109 11.323 1.00 0.00
35	ATOM	163 CG PROR 57	-27.447 -29.776 10.607 1.00 0.00

	ATOM	164 CD PROR 57	-26.356 -29.119 11.441 1.00 0.00
	ATOM	165 N CYS R 58	-27.418 -32.994 13.860 1.00 0.00
	ATOM	166 CA CYS R 58	-26.761 -34.217 14.319 1.00 0.00
	ATOM	167 C CYS R 58	-26.309 -35.070 13.141 1.00 0.00
5	ATOM	168 O CYS R 58	-26.576 -34.743 11.987 1.00 0.00
	ATOM	169 CB CYS R 58	-27.709 -34.963 15.259 1.00 0.00
	ATOM	170 SG CYS R 58	-27.015 -36.478 15.973 1.00 0.00
	ATOM	171 H CYS R 58	-28.408 -32.886 13.776 1.00 0.00
	ATOM	172 N THR R 59	-25.623 -36.173 13.459 1.00 0.00
10	ATOM	173 CA THR R 59	-25.066 -37.074 12.445 1.00 0.00
	ATOM	174 C THR R 59	-26.048 -38.160 11.949 1.00 0.00
	ATOM	175 O THR R 59	-27.196 -38.234 12.397 1.00 0.00
	ATOM	176 CB THR R 59	-23.767 -37.636 13.055 1.00 0.00
	ATOM	177 OG1 THR R 59	-23.270 -36.723 14.052 1.00 0.00
15	ATOM	178 CG2 THR R 59	-22.667 -37.924 12.029 1.00 0.00
	ATOM	179 H THR R 59	-25.398 -36.368 14.415 1.00 0.00
	ATOM	180 HG1 THR R 59	-22.729 -37.252 14.644 1.00 0.00
	ATOM	181 N GLUR 60	-25.578 -38.985 10.999 1.00 0.00
	ATOM	182 CA GLUR 60	-26.467 -40.006 10.445 1.00 0.00
20	ATOM	183 C GLUR 60	-26.899 -41.149 11.355 1.00 0.00
	ATOM	184 O GLUR 60	-26.152 -42.083 11.672 1.00 0.00
	ATOM	185 CB GLUR 60	-25.943 -40.541 9.111 1.00 0.00
	ATOM	186 CG GLUR 60	-27.011 -40.494 8.010 1.00 0.00
	ATOM	187 CD GLU R 60	-28.263 -41.228 8.450 1.00 0.00
25	ATOM	188 OE1 GLU R 60	-28.349 -42.428 8.253 1.00 0.00
	ATOM	189 OE2 GLU R 60	-29.161 -40.605 9.003 1.00 0.00
	ATOM	190 H GLUR 60	-24.642 -38.859 10.693 1.00 0.00
	ATOM	191 N CYS R 61	-28.169 -41.001 11.750 1.00 0.00
	ATOM	192 CA CYS R 61	-28.775 -41.881 12.742 1.00 0.00
30	ATOM	193 C CYS R 61	-29.712 -42.937 12.185 1.00 0.00
	ATOM	194 O CYS R 61	-30.148 -43.845 12.890 1.00 0.00
	ATOM	195 CB CYS R 61	-29.564 -41.086 13.782 1.00 0.00
	ATOM	196 SG CYS R 61	-28.791 -39.568 14.416 1.00 0.00
	ATOM	197 H CYS R 61	-28.690 -40.307 11.255 1.00 0.00
35	ATOM	198 N VALR 62	-30.069 -42.806 10.908 1.00 0.00
	ATOM	199 CA VALR 62	-31.084 -43.768 10.496 1.00 0.00

	ATOM	200 C VALR 62 -	30.571 -44.884 9.598 1.00 0.00
	ATOM	201 O VALR 62 -	30.480 -46.055 9.964 1.00 0.00
	MOTA	202 CB VALR 62	-32.301 -43.050 9.878 1.00 0.00
	ATOM	203 CG1 VAL R 62	-33.489 -44.005 9.713 1.00 0.00
5	ATOM	204 CG2 VAL R 62	-32.705 -41.812 10.685 1.00 0.00
	ATOM	205 H VALR 62 -	29.584 -42.202 10.268 1.00 0.00
	MOTA	206 N GLYR 63 -	-30.336 -44.466 8.349 1.00 0.00
	ATOM	207 CA GLY R 63	-30.443 -45.442 7.270 1.00 0.00
	ATOM	208 C GLY R 63	-29.148 -45.809 6.584 1.00 0.00
10	ATOM	209 O GLY R 63	-29.004 -46.882 6.009 1.00 0.00
	ATOM	210 H GLYR 63	-30.082 -43.508 8.197 1.00 0.00
	ATOM	211 N LEUR 64 -	-28.206 -44.867 6.628 1.00 0.00
	ATOM	212 CA LEUR 64	-26.859 -45.283 6.260 1.00 0.00
	ATOM	213 C LEUR 64	-26.145 -45.795 7.489 1.00 0.00
15	ATOM	214 O LEUR 64	-25.525 -46.855 7.545 1.00 0.00
	ATOM	215 CB LEUR 64	-26.088 -44.113 5.644 1.00 0.00
•	ATOM	216 CG LEUR 64	-26.754 -43.525 4.397 1.00 0.00
	ATOM	217 CD1 LEU R 64	-26.073 -42.229 3.958 1.00 0.00
	ATOM	218 CD2 LEU R 64	-26.848 -44.540 3.255 1.00 0.00
20	ATOM	219 H LEUR 64	-28.391 -43.992 7.076 1.00 0.00
	ATOM	220 N GLNR 65	-26.262 -44.951 8.515 1.00 0.00
	ATOM	221 CA GLN R 65	-25.639 -45.245 9.796 1.00 0.00
	ATOM	222 C GLN R 65	-26.708 -45.080 10.851 1.00 0.00
	ATOM	223 O GLN R 65	-27.738 -44.460 10.612 1.00 0.00
25	ATOM	224 CB GLN R 65	-24.456 -44.300 10.006 1.00 0.00
	ATOM	225 CG GLN R 65	-23.336 -44.444 8.965 1.00 0.00
	ATOM	226 CD GLN R 65	-22.421 -45.624 9.253 1.00 0.00
	ATOM	227 OE1 GLN R 65	-21.315 -45.443 9.762 1.00 0.00
	ATOM	228 NE2 GLN R 65	-22.857 -46.816 8.833 1.00 0.00
30	ATOM	229 H GLN R 65	-26.850 -44.141 8.449 1.00 0.00
	ATOM	230 1HE2 GLN R 65	-22.292 -47.635 8.846 1.00 0.00
	ATOM	231 2HE2 GLN R 65	-23.800 -46.898 8.500 1.00 0.00
	ATOM	232 N SERR 66	-26.473 -45.715 12.001 1.00 0.00
	ATOM	233 CA SER R 66	-27.657 -45.886 12.838 1.00 0.00
35	ATOM	234 C SER R 66	-27.604 -45.224 14.204 1.00 0.00
•	ATOM	235 O SER R 66	-26.542 -44.815 14.682 1.00 0.00

	ATOM	236 CB SER R 66	-28.013 -47.373 12.884 1.00 0.00
	ATOM	237 OG SER R 66	-27.869 -47.927 11.565 1.00 0.00
	ATOM	238 H SER R 66	-25.586 -46.141 12.173 1.00 0.00
	ATOM	239 HG SER R 66	-28.474 -47.423 11.013 1.00 0.00
5	ATOM	240 N MET R 67	-28.808 -45.110 14.779 1.00 0.00
	ATOM	241 CA METR 67	-29.048 -44.257 15.939 1.00 0.00
	ATOM	242 C MET R 67	-28.294 -44.575 17.212 1.00 0.00
	ATOM	243 O METR 67	-28.404 -45.649 17.800 1.00 0.00
	ATOM	244 CB MET R 67	-30.556 -44.203 16.197 1.00 0.00
10	ATOM	245 CG MET R 67	-31.008 -42.933 16.916 1.00 0.00
	MOTA	246 SD MET R 67	-32.793 -42.833 17.123 1.00 0.00
	ATOM	247 CE MET R 67	-33.244 -42.903 15.380 1.00 0.00
	ATOM	248 H METR 67	-29.573 -45.360 14.189 1.00 0.00
	ATOM	249 N SERR 68	-27.557 -43.553 17.633 1.00 0.00
15	ATOM	250 CA SER R 68	-26.992 -43.620 18.977 1.00 0.00
	ATOM	251 C SER R 68	-27.868 -42.986 20.035 1.00 0.00
•	ATOM	252 O SER R 68	-27.813 -43.326 21.215 1.00 0.00
	ATOM	253 CB SER R 68	-25.615 -42.989 18.978 1.00 0.00
	ATOM	254 OG SER R 68	-25.029 -43.228 17.693 1.00 0.00
20	ATOM	255 H SER R 68	-27.423 -42:756 17.044 1.00 0.00 .
	ATOM	256 HG SER R 68	-24.083 -43.177 17.834 1.00 0.00
	ATOM	257 N ALA R 69	-28.706 -42.060 19.521 1.00 0.00
	ATOM	258 CA ALA R 69	-29.837 -41.437 20.214 1.00 0.00
	ATOM	259 C ALA R 69	-30.311 -40.307 19.312 1.00 0.00
25	ATOM	260 O ALA R 69	-29.592 -39.924 18.387 1.00 0.00
	ATOM	261 CB ALA R 69	-29.406 -40.835 21.565 1.00 0.00
	ATOM	262 H ALA R 69	-28.493 -41.701 18.610 1.00 0.00
	ATOM	263 N PROR 70	-31.506 -39.724 19.607 1.00 0.00
	ATOM	264 CA PRO R 70	-31.722 -38.322 19.207 1.00 0.00
30	ATOM	265 C PROR 70	-30.580 -37.436 19.699 1.00 0.00
	ATOM	266 O PROR 70	-29.722 -37.895 20.456 1.00 0.00
	ATOM	267 CB PRO R 70	-33.063 -37.990 19.869 1.00 0.00
	ATOM	268 CG PRO R 70	-33.779 -39.331 20.022 1.00 0.00
	ATOM	269 CD PRO R 70	-32.637 -40.289 20.334 1.00 0.00
35	ATOM	270 N CYSR 71	-30.549 -36.191 19.227 1.00 0.00
	ATOM	271 CA CYS R 71	-29.381 -35.417 19.642 1.00 0.00

	ATOM	272 C CYS R 71	-29.730 -34.124 20.337 1.00 0.00
	MOTA	273 O CYS R 71	-30.848 -33.618 20.262 1.00 0.00
	ATOM	274 CB CYS R 71	-28.418 -35.200 18.474 1.00 0.00
	ATOM	275 SG CYS R 71	-27.801 -36.785 17.835 1.00 0.00
5	ATOM	276 H CYS R 71	-31.299 -35.781 18.711 1.00 0.00
	ATOM	277 N VALR 72	-28.733 -33.641 21.079 1.00 0.00
	ATOM	278 CA VALR 72	-28.793 -32.337 21.739 1.00 0.00
	ATOM	279 C VALR 72	-27.441 -31.695 21.515 1.00 0.00
	ATOM	280 O VALR 72	-26.587 -32.323 20.897 1.00 0.00
10	ATOM	281 CB VAL R 72	-29.087 -32.477 23.244 1.00 0.00
	ATOM	282 CG1 VAL R 72	-30.554 -32.827 23.502 1.00 0.00
	ATOM	283 CG2 VAL R 72	-28.125 -33.455 23.932 1.00 0.00
	ATOM	284 H VALR 72	-27.860 -34.132 21.089 1.00 0.00
	ATOM	285 N GLUR 73	-27.282 -30.465 22.038 1.00 0.00
15 .	ATOM	286 CA GLUR 73	-25.992 -29.787 21.908 1.00 0.00
	ATOM	287 C GLUR 73	-24.848 -30.522 22.569 1.00 0.00
	ATOM	288 O GLUR 73	-24.610 -30.447 23.773 1.00 0.00
	ATOM	289 CB GLU R 73	-26.073 -28.328 22.365 1.00 0.00
	ATOM	290 CG GLUR 73	-24.825 -27.556 21.923 1.00 0.00
20	ATOM	291 CD GLUR 73	-24.974 -26.067 22.159 1.00 0.00
	ATOM	292 OE1 GLU R 73	-25.947 -25.478 21.698 1.00 0.00
	ATOM	293 OE2 GLU R 73	-24.103 -25.484 22.793 1.00 0.00
	ATOM	294 H GLUR 73	-28.030 -30.065 22.564 1.00 0.00
	ATOM	295 N ALAR 74	-24.183 -31.276 21.690 1.00 0.00
25	ATOM	296 CA ALA R 74	-22.982 -32.030 22.006 1.00 0.00
	ATOM	297 C ALA R 74	-22.211 -32.099 20.717 1.00 0.00
	ATOM	298 O ALA R 74	-22.796 -32.213 19.640 1.00 0.00
	ATOM	299 CB ALA R 74	-23.328 -33.451 22.455 1.00 0.00
	MOTA	300 H ALA R 74	-24.600 -31.329 20.777 1.00 0.00
30	ATOM	301 N ASPR 75	-20.889 -31.945 20.853 1.00 0.00
	ATOM	302 CA ASP R 75	-20.105 -31.837 19.633 1.00 0.00
	ATOM	303 C ASP R 75	-20.167 -33.101 18.799 1.00 0.00
	ATOM	304 O ASP R 75	-20.254 -34.213 19.326 1.00 0.00
	ATOM	305 CB ASP R 75	-18.676 -31.418 19.976 1.00 0.00
35	ATOM	306 CG ASP R 75	-18.194 -30.327 19.038 1.00 0.00
	ATOM	307 OD1 ASP R 75	-17.534 -29.398 19.470 1.00 0.00

	ATOM	308 OD2 ASP R 75	-18.410 -30.388 17.841 1.00 0.00
	ATOM	309 H ASPR 75	-20.452 -31.968 21.747 1.00 0.00
	ATOM	310 N ASPR 76	-20.194 -32.858 17.466 1.00 0.00
	ATOM	311 CA ASP R 76	-20.556 -33.842 16.433 1.00 0.00
5	ATOM	312 C ASPR 76	-21.294 -35.063 16.965 1.00 0.00
	ATOM	313 O ASP R 76	-20.725 -36.140 17.153 1.00 0.00
	ATOM	314 CB ASP R 76	-19.324 -34.222 15.591 1.00 0.00
	ATOM	315 CG ASP R 76	-18.850 -33.033 14.765 1.00 0.00
	ATOM	316 OD1 ASP R 76	-18.213 -32.134 15.285 1.00 0.00
10	ATOM	317 OD2 ASP R 76	-19.132 -32.953 13.580 1.00 0.00
	ATOM	318 H ASPR 76	-19.875 -31.943 17.215 1.00 0.00
	ATOM	319 N ALAR 77	-22.571 -34.806 17.303 1.00 0.00
	ATOM	320 CA ALA R 77	-23.290 -35.694 18.218 1.00 0.00
	ATOM	321 C ALAR 77	-23.531 -37.073 17.651 1.00 0.00
15	ATOM	322 O ALA R 77	-23.725 -37.259 16.456 1.00 0.00
	ATOM	323 CB ALA R 77	-24.619 -35.075 18.644 1.00 0.00
	ATOM	324 H ALAR 77	-23.001 -34.012 16.881 1.00 0.00
	ATOM	325 N VALR 78	-23.455 -38.052 18.556 1.00 0.00
	ATOM	326 CA VALR 78	-22.704 -39.281 18.232 1.00 0.00
20	ATOM	327 C VALR 78	-23.295 -40.388 17.344 1.00 0.00
	ATOM	328 O VALR 78	-23.041 -41.583 17.543 1.00 0.00
	ATOM	329 CB VALR 78	-22.160 -39.877 19.542 1.00 0.00
	ATOM	330 CG1 VAL R 78	-21.189 -38.911 20.224 1.00 0.00
	ATOM	331 CG2 VAL R 78	-23.287 -40.288 20.497 1.00 0.00
25	ATOM	332 H VALR 78	-23.598 -37.743 19.493 1.00 0.00
	ATOM	333 N CYS R 79	-24.111 -40.011 16.349 1.00 0.00
	ATOM	334 CA CYS R 79	-24.667 -41.058 15.490 1.00 0.00
	ATOM	335 C CYS R 79	-23.639 -41.706 14.569 1.00 0.00
	ATOM	336 O CYS R 79	-23.161 -41.097 13.611 1.00 0.00
30	MOTA	337 CB CYS R 79	-25.854 -40.535 14.695 1.00 0.00
	ATOM	338 SG CYS R 79	-27.265 -40.010 15.706 1.00 0.00
	MOTA	339 H CYS R 79	-24.146 -39.049 16.105 1.00 0.00
	ATOM	340 N ARG R 80	-23.326 -42.955 14.966 1.00 0.00
	ATOM	341 CA ARG R 80	-22.220 -43.688 14.354 1.00 0.00
35	ATOM	342 C ARG R 80	-22.617 -45.027 13.739 1.00 0.00
	ATOM	343 O ARG R 80	-22.898 -45.120 12.547 1.00 0.00

	ATOM	344 CB ARG R 80 -21.047 -43.866 15.333 1.00 0.00
	ATOM	345 CG ARG R 80 -19.958 -42.787 15.285 1.00 0.00
	ATOM	346 CD ARG R 80 -19.283 -42.600 13.916 1.00 0.00
	ATOM	347 NE ARG R 80 -18.739 -43.844 13.361 1.00 0.00
5	ATOM	348 CZ ARG R 80 -19.343 -44.423 12.298 1.00 0.00
	ATOM	349 NH1 ARG R 80 -18.915 -45.588 11.814 1.00 0.00
	ATOM	350 NH2 ARG R 80 -20.397 -43.844 11.740 1.00 0.00
	ATOM	351 H ARG R 80 -23.849 -43.366 15.715 1.00 0.00
	ATOM	352 HE ARG R 80 -17.952 -44.277 13.804 1.00 0.00
10	ATOM	353 1HH1 ARG R 80 -19.409 -46.064 11.082 1.00 0.00
	ATOM	354 2HH1 ARG R 80 -18.080 -46.022 12.174 1.00 0.00
	ATOM	355 1HH2 ARG R 80 -20.880 -44.269 10.976 1.00 0.00
	ATOM	356 2HH2 ARG R 80 -20.749 -42.984 12.102 1.00 0.00
	ATOM	357 N CYS R 81 -22.630 -46.086 14.566 1.00 0.00
15	ATOM	358 CA CYS R 81 -22.946 -47.400 14.002 1.00 0.00
	ATOM	359 C CYS R 81 -23.527 -48.331 15.049 1.00 0.00
	ATOM	360 O CYS R 81 -22.830 -49.080 15.728 1.00 0.00
	ATOM	361 CB CYS R 81 -21.732 -48.025 13.284 1.00 0.00
	ATOM	362 SG CYS R 81 -22.046 -48.494 11.547 1.00 0.00
20	ATOM	363 H CYS R 81 -22.342 -45.997 15.517 1.00 0.00
	MOTA	364 N ALA R 82 -24.869 -48.212 15.160 1.00 0.00
	ATOM	365 CA ALA R 82 -25.712 -49.047 16.033 1.00 0.00
	ATOM	366 C ALA R 82 -25.041 -49.677 17.246 1.00 0.00
	ATOM	367 O ALA R 82 -24.801 -50.881 17.310 1.00 0.00
25	ATOM	368 CB ALA R 82 -26.390 -50.148 15.212 1.00 0.00
	ATOM	369 H ALA R 82 -25.322 -47.577 14.537 1.00 0.00
	ATOM	370 N TYR R 83 -24.697 -48.786 18.189 1.00 0.00
	ATOM	371 CA TYR R 83 -23.809 -49.240 19.256 1.00 0.00
	ATOM	372 C TYR R 83 -24.319 -50.384 20.116 1.00 0.00
30	ATOM	373 O TYR R 83 -25.492 -50.522 20.451 1.00 0.00
	ATOM	374 CB TYR R 83 -23.268 -48.059 20.087 1.00 0.00
	ATOM	375 CG TYR R 83 -24.247 -47.511 21.108 1.00 0.00
	ATOM	376 CD1 TYR R 83 -25.207 -46.556 20.715 1.00 0.00
	ATOM	377 CD2 TYR R, 83 -24.147 -47.951 22.445 1.00 0.00
35	ATOM	378 CE1 TYR R 83 -26.058 -46.003 21.688 1.00 0.00
	ATOM	379 CE2 TYR R 83 -25.001 -47.400 23.417 1.00 0.00

	ATOM	380 CZ TYR R 83	-25.937 -46.419 23.031 1.00 0.00
	ATOM	381 OH TYR R 83	-26.753 -45.849 23.995 1.00 0.00
	ATOM	382 H TYR R 83	-25.061 -47.858 18.145 1.00 0.00
	ATOM	383 HH TYRR 83	-27.139 -45.055 23.619 1.00 0.00
5	ATOM	384 N GLYR 84	-23.359 -51.236 20.478 1.00 0.00
	ATOM	385 CA GLY R 84	-23.783 -52.411 21.232 1.00 0.00
	ATOM	386 C GLY R 84	-23.284 -53.694 20.609 1.00 0.00
	ATOM	387 O GLY R 84	-23.189 -54.732 21.259 1.00 0.00
	ATOM	388 H GLYR 84	-22.420 -51.099 20.167 1.00 0.00
10	ATOM	389 N TYRR 85	-22.925 -53.551 19.317 1.00 0.00
	ATOM	390 CA TYR R 85	-21.764 -54.346 18.941 1.00 0.00
	ATOM	391 C TYRR 85	-20.520 -53.484 19.090 1.00 0.00
r	ATOM	392 O TYRR 85	-20.632 -52.266 19.248 1.00 0.00
	MOTA	393 CB TYR R 85	-21.930 -54.959 17.539 1.00 0.00
15	ÀTOM	394 CG TYR R 85	-21.890 -53.946 16.413 1.00 0.00
	ATOM	395 CD1 TYR R 85	-23.084 -53.333 15.975 1.00 0.00
	MOTA	396 CD2 TYR R 85	-20.649 -53.671 15.805 1.00 0.00
	ATOM	397 CE1 TYR R 85	-23.042 -52.477 14.860 1.00 0.00
	ATOM	398 CE2 TYR R 85	-20.609 -52.814 14.697 1.00 0.00
20	ATOM	399 CZ TYR R 85	-21.808 -52.257 14.215 1.00 0.00
	ATOM	400 OH TYR R 85	-21.760 -51.493 13.062 1.00 0.00
	· ATOM	401 H TYRR 85	-23.172 -52.734 18.790 1.00 0.00
	ATOM	402 HH TYR R 85	-20.964 -51.753 12.596 1.00 0.00
	ATOM	403 N TYRR 86	-19.354 -54.143 19.022 1.00 0.00
25	ATOM	404 CA TYR R 86	-18.070 -53.498 19.330 1.00 0.00
	ATOM	405 C TYRR 86	-17.547 -52.466 18.319 1.00 0.00
	ATOM	406 O TYRR 86	-16.457 -52.635 17.784 1.00 0.00
	ATOM	407 CB TYR R 86	-17.072 -54.652 19.552 1.00 0.00
	ATOM	408 CG TYRR 86	-15.786 -54.368 20.316 1.00 0.00
30	ATOM	409 CD1 TYR R 86	-15.322 -53.061 20.597 1.00 0.00
	ATOM	410 CD2 TYR R 86	-15.053 -55.502 20.719 1.00 0.00
	ATOM	411 CE1 TYR R 86	-14.087 -52.896 21.255 1.00 0.00
	ATOM	412 CE2 TYR R 86	-13.825 -55.340 21.380 1.00 0.00
	ATOM	413 CZ TYR R 86	-13.346 -54.040 21.627 1.00 0.00
35	ÀTOM	414 OH TYRR 86	-12.110 -53.911 22.244 1.00 0.00
	ATOM	415 H TYRR 86	-19.425 -55.102 18.757 1.00 0.00

•	ATOM	416 HH TYR R 86 -11.829 -53.003 22.149 1.00 0.00
	ATOM	417 N GLN R 87 -18.334 -51.399 18.081 1.00 0.00
	ATOM	418 CA GLN R 87 -17.800 -50.310 17.258 1.00 0.00
	ATOM	419 C GLN R 87 -17.117 -49.255 18.112 1.00 0.00
5	ATOM	420 O GLN R 87 -17.704 -48.681 19.022 1.00 0.00
	ATOM	421 CB GLN R 87 -18.910 -49.706 16.371 1.00 0.00
	ATOM	422 CG GLN R 87 -18.725 -48.273 15.812 1.00 0.00
	ATOM	423 CD GLN R 87 -17.729 -48.089 14.663 1.00 0.00
	ATOM	424 OE1 GLN R 87 -17.701 -47.027 14.040 1.00 0.00
10	ATOM	425 NE2 GLN R 87 -16.936 -49.120 14.374 1.00 0.00
	ATOM	426 H GLN R 87 -19.143 -51.256 18.647 1.00 0.00
	ATOM	427 1HE2 GLN R 87 -16.239 -49.104 13.659 1.00 0.00
	ATOM	428 2HE2 GLN R 87 -16.869 -50.003 14.846 1.00 0.00
	ATOM	429 N ASP R 88 -15.845 -49.028 17.759 1.00 0.00
15	ATOM	430 CA ASP R 88 -15.041 -48.001 18.429 1.00 0.00
	ATOM	431 C ASP R 88 -14.442 -47.101 17.361 1.00 0.00
•	ATOM	432 O ASP R 88 -14.123 -47.592 16.276 1.00 0.00
	ATOM	433 CB ASP R 88 -13.968 -48.725 19.273 1.00 0.00
	ATOM	434 CG ASP R 88 -12.942 -47.819 19.953 1.00 0.00
20	ATOM	435 OD1 ASP R 88 -11.758 -48.104 19.876 1.00 0.00
	ATOM	436 OD2 ASP R 88 -13.294 -46.831 20.580 1.00 0.00
	MOTA	437 H ASP R 88 -15.429 -49.592 17.039 1.00 0.00
	ATOM	438 N GLUR 89 -14.306 -45.805 17.710 1.00 0.00
	ATOM	439 CA GLU R 89 -13.680 -44.795 16.839 1.00 0.00
25	ATOM	440 C GLU R 89 -14.515 -44.403 15.614 1.00 0.00
	ATOM	441 O GLUR 89 -15.309 -43.460 15.616 1.00 0.00
	MOTA	442 CB GLU R 89 -12.257 -45.283 16.493 1.00 0.00
	MOTA	443 CG GLU R 89 -11.293 -44.524 15.571 1.00 0.00
	MOTA	444 CD GLUR 89 -10.219 -45.518 15.145 1.00 0.00
30	ATOM	445 OE1 GLU R 89 -9.962 -45.681 13.957 1.00 0.00
	ATOM	446 OE2 GLU R 89 -9.644 -46.177 15.998 1.00 0.00
	ATOM	447 H GLUR 89 -14.511 -45.638 18.676 1.00 0.00
	ATOM	448 N THR R 90 -14.293 -45.184 14.553 1.00 0.00
35	ATOM	

	ATOM	452 CB THR R 90 -13.307 -45.598 12.397 1.00 0.00
	ATOM	453 OG1 THR R 90 -12.719 -46.613 13.229 1.00 0.00
	ATOM	454 CG2 THR R 90 -12.269 -44.936 11.490 1.00 0.00
	ATOM	455 H THR R 90 -14.031 -46.141 14.672 1.00 0.00
5	ATOM	456 HG1 THR R 90 -11.932 -46.206 13.613 1.00 0.00
	ATOM	457 N THR R 91 -15.264 -42.906 11.946 1.00 0.00
	ATOM	458 CA THR R 91 -16.086 -42.598 10.774 1.00 0.00
	ATOM	459 C THR R 91 -15.551 -43.214 9.474 1.00 0.00
	ATOM	460 O THR R 91 -15.041 -42.576 8.553 1.00 0.00
10	ATOM	461 CB THR R 91 -16.263 -41.089 10.611 1.00 0.00
	ATOM	462 OG1 THR R 91 -15.526 -40.320 11.595 1.00 0.00
	ATOM	463 CG2 THR R 91 -17.753 -40.737 10.608 1.00 0.00
	ATOM	464 H THR R 91 -14.546 -42.271 12.218 1.00 0.00
	ATOM	465 HG1 THR R 91 -16.170 -40.159 12.292 1.00 0.00
15	ATOM	466 N GLYR 92 -15.638 -44.548 9.437 1.00 0.00
	MOTA	467 CA GLY R 92 -14.952 -45.240 8.341 1.00 0.00
	ATOM	468 C GLY R 92 -14.947 -46.747 8.485 1.00 0.00
	ATOM	469 O GLYR 92 -15.038 -47.506 7.517 1.00 0.00
	ATOM	470 H GLY R 92 -16.190 -45.008 10.134 1.00 0.00
20	ATOM	471 N ARG R 93 -14.906 -47.132 9.766 1.00 0.00
	ATOM	472 CA ARG R 93 -15.165 -48.526 10.101 1.00 0.00
	ATOM	473 C ARG R 93 -16.597 -48.659 10.561 1.00 0.00
	ATOM	474 O ARG R 93 -17.179 -47.725 11.108 1.00 0.00
	ATOM	475 CB ARG R 93 -14.257 -49.027 11.231 1.00 0.00
25	ATOM	476 CG ARG R 93 -12.866 -49.498 10.801 1.00 0.00
	ATOM	477 CD ARG R 93 -12.088 -50.205 11.924 1.00 0.00
	ATOM	478 NE ARG R 93 -11.530 -49.278 12.906 1.00 0.00
	ATOM	479 CZ ARG R 93 -11.885 -49.270 14.210 1.00 0.00
	ATOM	480 NH1 ARG R 93 -11.321 -48.407 15.046 1.00 0.00
30	ATOM	481 NH2 ARG R 93 -12.806 -50.108 14.666 1.00 0.00
	ATOM	482 H ARG R 93 -14.866 -46.429 10.469 1.00 0.00
	ATOM	483 HE ARG R 93 -10.826 -48.644 12.583 1.00 0.00
	ATOM	484 1HH1 ARG R 93 -11.678 -48.273 15.969 1.00 0.00
	ATOM	485 2HH1 ARG R 93 -10.552 -47.825 14.774 1.00 0.00
35	ATOM	486 1HH2 ARG R 93 -13.112 -50.146 15.616 1.00 0.00
	ATOM	487 2HH2 ARG R 93 -13.266 -50.761 14.058 1.00 0.00

	ATOM	488 N CYS R 94 -17.121 -49.864 10.349 1.00 0.00
	ATOM	489 CA CYS R 94 -18.327 -50.307 11.053 1.00 0.00
	ATOM	490 C CYS R 94 -18.187 -51.790 11.280 1.00 0.00
	ATOM	491 O CYS R 94 -18.340 -52.598 10.361 1.00 0.00
5	ATOM	492 CB CYS R 94 -19.611 -50.063 10.264 1.00 0.00
	ATOM	493 SG CYS R 94 -20.314 -48.399 10.429 1.00 0.00
	ATOM	494 H CYS R 94 -16.640 -50.508 9.754 1.00 0.00
	ATOM	495 N GLUR 95 -17.798 -52.106 12.524 1.00 0.00
	ATOM	496 CA GLU R 95 -17.382 -53.477 12.826 1.00 0.00
10	ATOM	497 C GLU R 95 -18.334 -54.564 12.388 1.00 0.00
	ATOM	498 O GLUR 95 -19.545 -54.380 12.270 1.00 0.00
	ATOM	499 CB GLU R 95 -17.063 -53.650 14.313 1.00 0.00
	ATOM	500 CG GLU R 95 -15.587 -53.436 14.658 1.00 0.00
	ATOM	501 CD GLU R 95 -15.185 -51.998 14.416 1.00 0.00
15	ATOM	502 OE1 GLU R 95 -14.757 -51.672 13.318 1.00 0.00
	ATOM	503 OE2 GLU R 95 -15.280 -51.193 15.328 1.00 0.00
•	ATOM	504 H GLUR 95 -17.570 -51.381 13.172 1.00 0.00
	ATOM	505 N ALA R 96 -17.715 -55.723 12.129 1.00 0.00
	ATOM	506 CA ALA R 96 -18.517 -56.877 11.727 1.00 0.00
20	ATOM	507 C ALA R 96 -18.962 -57.733 12.900 1.00 0.00
	ATOM	508 O ALA R 96 -20.158 -57.994 13.010 1.00 0.00
	ATOM	509 CB ALA R 96 -17.748 -57.740 10.723 1.00 0.00
	ATOM	510 OXT ALA R 96 -18.116 -58.127 13.704 1.00 0.00
	ATOM	511 H ALA R 96 -16.728 -55.754 12.290 1.00 0.00
25	END	

^{*}Principal residues are bolded.

Appendix 4. The Fortran-77 source code of the VBMC algorithm.*

_			
	SUBROUTINE MONTE(XMIN,N,S0)		
C*			
C*	Variable Basis Monte Carlo simulated annealing:		
C*	XMIN - initial configurational variables and		
C*	final variables for subsequent local energy		
C*	refinement.		
C*	N - the number of configurational variables.		
C*	S0 - initial energy.		
C*	FUN - potential energy function.		
C*			
	IMPLICIT REAL*8(A-H,O-Z)		
	DIMENSION XX(250),X(250),XMIN(1)		
	DIMENSION Y(500,250),C(250,250),E(250),V(250,250)		
	IYES=0		
•	ITEST=0		
	READ(5,1)N1,N4,N5,NG1,ITE,IPR1,N33		
	IF(N1.EQ.0)RETURN		
	WRITE(6,3000)ITE,S0		
	TT=ITE		
30	000 FORMAT(/10X,'INITIAL TEMPERATURE',17,		
	1 ' INITIAL ENERGY ',F15.6/)		
	PR1=IPR1		
	PR2=PR1*2.D0		
	WRITE(6,210)PR1,PR1		
2	210 FORMAT(' RANDOM TORSIONAL INCREMENT -'		
	2 ,F5.2,' TO +',F5.2,' GRAD')		
	WRITE(6,302)		
3	02 FORMAT(10X,'*VARIABLE BASIS MC SIMULATED ANNEALIN		
C*	Boltzmann factor.		
	T=-1./(0.001987*TT)		
С	*** TEMPERATURE T=ITE ***		
•	1 FORMAT(15I5)		
	N1=N*N1		
	N3=N		

K=N

C* Cooling schedule.

DT=(!TE-120)/(N5*N3)

NG=NG1

5 IF(NG.EQ.0)NG=1

C* Initial set of random number generator.

CALL SRAND(NG)

WRITE(6,2)N1,N3,N4,N5,NG

2 FORMAT(/5X,'MONTE-CARLO PARAMETERS:'/

10 *5X,'BLIND CUT',110/

*5X,'BYPASS',110/

*5X,'FREQUENCY OF CONTROL OUTPUT',110/

*5X,'LENGTH OF ANNEALING REGION', 110/

*5X,'INITIAL SET OF THE RANDOM GENERATOR ',110/)

15 IBEGIN=0

MNCARL=0

LQ=0

17=0

L1=0

20 EMIN=1.D37

S3=0.

S4=0.

C* Initial set of basis of independent variables.

DO 88 I=1,N

25 DO 88 J=1,N

V(I,J)=0.D0

IF(I.EQ.J)V(I,J)=1.D0

88 CONTINUE

DO 2005 I=1,N

30 2005 X(I)=XMIN(I)

264 S1=0.

S2=0.

L=0

C* Method Monte Carlo.

35 IYES=0

KG=0

L2=0

1=0

26 |=|+1

C* Random choice of a variable to move.

5 H=RAND()

IK=IDINT(H*N)+1

RA=RAND()

D=RA*PR2-PR1

C* Variable Basis Markov chain: move along basis vectors.

10 DO 513 II=1,N

513 XX(II)=X(II)+V(II,IK)*D

CALL FUN(N,XX,SS)

C* SS - potential energy of the configuration XX.

S=SS-S0

15 BI=S*T

IF(BI.GT.50.D0) GOTO 263

C* CALCULATION OF TRANSITION PROBABILITY

IF(BI.LT.-50.D0) GOTO 262

B=DEXP(BI)

20 W7=B/(B+1.D0)

C* DOES TRANSITION TAKE PLACE?

Z=RAND()

IF(W7-Z)262,263,263

C* ** NO **

25 262 CONTINUE

GOTO 274

C* ** YES! **

263 S0=SS

IYES=IYES+1

30 DO 1314 II=1,N

1314 X(II)=XX(II)

C* Blind cut off

274 IF(IBEGIN.EQ.1) GOTO 266

MNCARL=MNCARL+1

35 IF(MNCARL-N1)26,1264,265

1264 WRITE(6,1265)MNCARL,S0

```
1265 FORMAT('Initial point has been cut off', I10, 1PD17.9)
       C*
              Cut off upon criteria.
           GOTO 264
        265 S1=S1+S0
 5
          S2=S2+S0*S0
           L=L+1
           IF(L.NE.20*N) GOTO 26
          L=0
           SR1=S1/I
10
           DISP1=S2/I-SR1**2
           IF(DABS(SR1-S0)-DSQRT(DISP1))270,270,271
        271 ITEST=0
           GOTO 272
        270 ITEST=ITEST+1
15
        272 YES=(1.D2*IYES)/I
           WRITE(6,268)I,S0,SR1,DISP1,ITEST,YES
        268 FORMAT('Cut off', 18, 3D14.7, 13, 2PF7.1)
           IF(I.GE.50000)GOTO 267
           IF(ITEST-3) 26,267,267
20
        267 IBEGIN=1
           WRITE(6,1265)MNCARL,S0
           WRITE(6,269)
        269 FORMAT(//45X,'Equilibrium has been reached '/)
           GOTO 264
25
       C*
               N3 - parameter of bypassing.
       C*
               DT - cooling schedule.
        266 L=L+1
           IF(TT.LE.120.D0)GOTO 3333
       C*
               Slow cooling.
30
           TT=TT-DT
       C*
               Boltzmann factor.
           T=-1.D0/(1.987D-3*TT)
           IF(L.LT.N3)GOTO 26
           L=0
35
           KG=KG+1
       C*
              Accumulating N33 sequential points of the Markov chain.
```

```
DO 1992 J=1,N
        1992 Y(KG,J)=X(J)
          L1=L1+1
          L2=L2+1
 5
          IF(S0.GE.EMIN)GOTO 1957
          EMIN=S0
           DO 1961 IJ=1,N
       1961 XMIN(IJ)=X(IJ)
           LQ=LQ+1
10
           WRITE(6,100)LQ,I,EMIN,TT,(XMIN(J),J=1,N)
       100 FORMAT(/' LQ',217,D17.9,F7.1/(1X,10F12.3))
       447 FORMAT(/' CR',2I7,D17.9,F7.1/(1X,10F12.3))
       1957 IF(KG.LT.N33)GOTO 45
       C*
               Computing covariant matrix of the distribution of
15
       C*
               the N33 accumulated points in the configurational
       C*
               space.
           KG=0
           DO 71 II=1,K
           YYY=0.0
20
           DO 82 J=1,N33
         82 YYY=YYY+Y(J,II)
           YYY=YYY/N
           DO 54 J=1,N33
         54 Y(J,II)=Y(J,II)-YYY
25
         71 CONTINUE
           DO 710 II=1,K
           DO 710 J=1,K
           S=0.0
           DO 711 LL=1,N33
30
        711 S=S+Y(LL,II)*Y(LL,J)
        710 C(II,J)=S
       C*
               Covariant matrix is ready.
               Roration of basis V:
           CALL SDIAG2(250,K,C,E,V)
35
         45 IF(L2.LT.N4) GOTO 26
```

```
L2=0
          YES=(1.D2*IYES)/I
          WRITE(6,72)I,L1,EMIN,S0,TT,YES
        72 FORMAT(' CO',2I10,2D15.6,F7.1,2PF7.1)
5
          IF(L1.LT.N5) GOTO 26
       3333 WRITE(6,1111)
       1111 FORMAT(//10X,'END OF MONTE CARLO STAGE')
          RETURN
          END
10
           SUBROUTINE SDIAG2(M,N,A,D,X)
       C*
       C*
              Diagonalization of symmetric matrix A (NxN).
       C*
              Results: D - eigenvalues; X - eigenvectors.
       C*
15
           IMPLICIT REAL*8(A-H,O-Z)
           DIMENSION A(M,M),D(M),X(M,M)
           DIMENSION E(250)
           EPS=1.0D-14
           TOL=1.0D-30
20
           IF(N.EQ.1)GOTO 400
           DO 10 I=1,N
           DO 10 J=1,I
         10 X(I,J)=A(I,J)
           DO 150 NI=2,N
25
           II=N+2-NI
           DO 150 I=II,II
           L=1-2
           H=.0D0
           G=X(I,I-1)
30
           IF(L)140,140,20
         20 DO 30 K=1,L
         30 H=H+X(I,K)**2
           S=H+G*G
           IF(S.GE.TOL)GOTO 50
35
           H=.0D0
           GOTO 140
```

```
50 IF(H)140,140,60
         60 L=L+1
           F=G
           G=DSQRT(S)
5
           IF(F)75,75,70
         70 G=-G
         75 H=S-F*G
           X(I,I-1)=F-G
           F=.0D0
10
           DO 110 J=1,L
           X(J,I)=X(I,J)/H
           S=.0D0
           DO 80 K=1,J
         80 S=S+X(J,K)*X(I,K)
15
           J1=J+1
           IF(J1.GT.L)GOTO 100
           DO 90 K=J1,L
         90 S=S+X(K,J)*X(I,K)
         100 E(J)=S/H
20
         110 F=F+S*X(J,I)
           F=F/(H+H)
           DO 120 J=1,L
         120 E(J)=E(J)-F*X(I,J)
           DO 130 J=1,L
25
           F=X(I,J)
           S=E(J)
           DO 130 K=1,J
         130 X(J,K)=X(J,K)-F*E(K)-X(I,K)*S
         140 D(I)=H
30
         150 E(I-1)=G
         160 D(1)=X(1,1)
           X(1,1)=1.D0
           DO 220 I=2,N
           L=I-1
35
           IF(D(I))200,200,170
         170 DO 190 J=1,L
```

```
S=.0D0
           DO 180 K=1,L
        180 S=S+X(I,K)*X(K,J)
           DO 190 K=1,L
 5
        190 X(K,J)=X(K,J)-S*X(K,I)
        200 D(I)=X(I,I)
          X(I,I)=1.D0
        210 DO 220 J=1,L
           X(I,J)=.0D0
10
        220 X(J,i)=.0D0
           B=.0D0
           F=.0D0
           E(N)=.0D0
           DO 340 L=1,N
15
           H=EPS*(DABS(D(L))+DABS(E(L)))
           IF(H.LE.B)GOTO 235
           B=H
        235 DO 240 J=L,N
           IF(DABS(E(J)).LE.B)GOTO 250
20
        240 CONTINUE
        250 IF(J.EQ.L)GOTO 340
        260 P=(D(L+1)-\dot{D}(L))*.5D0/E(L)
           R=DSQRT(P*P+1.D0)
           IF(P)270,280,280
25
        270 P=P-R
           GOTO 290
        280 P=P+R
         290 H=D(L)-E(L)/P
           DO 300 I=L,N
30
         300 D(I)=D(I)-H
           F=F+H
           P=D(J)
           C=1.D0
           S=0.D0
35
           J1=J-1
           DO 330 NI=L,J1
```

```
II=L+J1-NI
          DO 330 I=II,II
          G=C*E(I)
          H=C*P
 5
          IF(DABS(P).LT.DABS(E(I)))GOTO 310
          R=DSQRT(C*C+1.D0)
          E(I+1)=S*P*R
          S=C/R
10
          C=1.D0/R
          GOTO 320
        310 C=P/E(I)
          R=DSQRT(C*C+1.D0)
          E(i+1)=S*E(i)*R
15
          S=1.D0/R
          C=C/R
        320 P=C*D(I)-S*G
           D(I+1)=H+S*(C*G+S*D(I))
          DO 330 K=1,N
20
          H=X(K,I+1)
          X(K,I+1)=X(K,I)*S+H*C
        330 X(K,I)=X(K,I)*C-H*S
           E(L)=S*P
           D(L)=C*P
25
          IF(DABS(E(L)).GT.B)GOTO 260
         340 D(L)=D(L)+F
        NI=N-1
         350 DO 380 I=1,NI
          K=I
30
           P=D(I)
           J1=I+1
           DO 360 J=J1,N
          IF(D(J).GE.P)GOTO 360
           K=J
35
          P=D(J)
         360 CONTINUE
```

IF(K.EQ.I)GOTO 380

D(K)=D(I)

D(I)=P

DO 370 J=1,N

5 P=X(J,I)

X(J,I)=X(J,K)

370 X(J,K)=P

380 CONTINUE

RETURN

10 400 D(1)=A(1,1)

X(1,1)=1.D0

RETURN

END

15

*The essential places of the VBMC algorithm (different from conventional Monte Carlo technique) are bolded.

20

25

30

35

REFERENCES

Allen, M.P., and D.J.Tildesley. 1987. Computer Simulation of Liquids. Claredon Press: Oxford.

Baldwin, A.N., and E.M. Shooter. 1994. J.Biol. Chem. 269:11456-11461.

5 Baldwin, A.N., and E.M. Shooter, 1995. J.Biol.Chem. 270:4594-4602.

Banner, D.W., A. D'Arcy, W. Janes, R. Gentz, H.-J. Schoenfeld, C. Broger, H. Loetscher, and W. Lesslauer. 1993. *Cell* 73:431-445.

Barbacid, M. 1993. Oncogene 8:2033-2042.

Barbacid, M. 1994. J. Neurobiol. 25:1386-1403.

10 Barde, Y.-A. 1989. *Neuron* 2:1525-1534.

Barker, P.A., and E.M.Shooter. 1994. Neuron 13:203-215.

Baumann, U.; Wu, S.; Flaherty, K.M.; McKay, D.B. 1993. EMBO J. 12: 3357-3364.

Ben Ari, Y.; Represa, A. 1990. TINS 13: 312-318.

Benedetti, M., A. Levi, and M.V. Chao. 1993. Proc. Natl. Acad. Sci. U.S.A. 90:7859-7863.

Berkemeier, L., J. Winslow, D. Kaplan, K. Nicolics, D. Goeddel, and A. Rosenthal. 1991.

Neuron 7:857-866.

Bothwell, M.A. 1991. Cell 65:915-918.

Bothwell, M.A., Shooter, E.M. 1977. J. Biol. Chem. 23: 8532-8536.

Bradshaw, R.A., J. Murray-Rust, C.F. Ibáñez, N.Q. McDonald, R. Lapatto, and T.L. Blundell.

20 1994. Protein Science 3:1901-1913.

Brooks, B.R., R.E. Bruccoleri, B.D. Olason, D.J. States, S. Swaminathan, and M. Karplus. 1983. *J. Comput. Chem.* 4:187-217.

Brooks III, C.L., and D.A. Case, 1993. Chem. Rev. 93: 2487-2502.

Brünger, A.T. 1988. J. Mol. Biol. 203:803-816.

Burton, L.E., C.H. Schmelzer, E. Szönyi, C. Yedinak, and A. Gorrell. 1992. *J. Neurochem.* 59:1937-1945.

Burton, G., C. Schmelzer, M. Sadic, F. Hefti, and J. Treanor. 1995. Soc. Neurosci. Abs. 21:1061.

Carter, B.D., C. Kaltschmidt, B. Kaltschmidt, N. Offenhäuser, R. Böhm-Matthaei, P. A.

30 Baeuerle, and Y.-A. Barde. 1996. Science 272:542-545.

Cassacia-Bonnefil, P., B.D. Carter, R.T. Dobrowsky, and M.V. Chao. 1996. *Nature* 383:716-719.

Chang, G., W.C. Guida, and W.C. Still. 1989. J. Am. Chem. Soc. 111:4379-4386.

Chao. M.V. 1992a. Cell 68:995-997.

35 Chao, M.V. 1992b. Neuron 9:583-593.

Chao, M. 1994. J. Neurobiol. 25:1373-1385.

Chao, M.V., and B.L. Hempstead. 1995. Trends Neurosci. 18:321-326.

Clackson, T., and J.A. Wells. 1995. Science 267:383-386.

Clary, D.O., and L.F. Reichardt. 1994. Proc. Natl. Acad. Sci. U.S.A. 91:11133-11137.

- 5 Davies, A.M. 1994. J. Neurobiol. 25:1334-1348.
 - Dobrowsky, R., M.H. Werner, A.M. Castellino, M.V. Chao, and Y.A. Hannun. 1994. *Science* 265:1596-1599.
 - Drinkwater, C.C., P.A. Barker, U. Suter, and E.M. Shooter. 1993. *J. Biol. Chem.* 268:23202-23207.
- Escandon, E., L.E. Burton, E. Szonyi, and K.J. Nikolics. 1993. Neurosci. Res. 34:601-613.
 Frade, J.M., A. Rodrigues-Tébar, Y.-A. Barde. 1996. Nature 383:166-168.
 Gibson, K.D., and H.A Scheraga. 1988. In Structure and Expression: Vol. 1. From Proteins to Ribosomes, Sarma, M.H., Sarma, R.H., Eds.; Adenine Press: Guilderland, NY, pp. 67-94.
 Gidas, B. 1985. J. Stat. Phys. 39: 73-131.
- 15 Glass, D.; Nye, S.; Hantzopoulos, P.; Macchi, M.; Squinto, S.; Goldfarb, M.; Yancopoulos, G. 1991. *Cell* 66: 405-413.
 - Gotz, R.; Koster, R.; Winkler, C.; Raulf, F.; Lottspeich, F.; Schard, M.; Thoenen, H. 1994. *Nature* 372: 266-269.
 - Gregory, D.S., A.C.R. Martin, J.C. Cheetham, and A.R. Rees. 1993. *Protein Engineering* 6:29-35.
 - Gunningham, G.W.; Meijer, P.H.E. 1976. J. Comp. Phys. 20: 50-63.
 - Hallböök, F., C.F. Ibáñez, and H. Persson. 1991. Neuron 6:845-858.
 - Hefti, F.H. 1986. J. Neurosci. 6:2155-2162.
 - Hefti, F.H., and Weiner, W.J. 1986. Annals of Neurology 20:275-281.
- Heldin, C.H., A. Ernlund, C. Rorsman, and L. Rönnstrand. 1989. *J. Biol. Chem.* 264:8905-8912.
 - Hempstead, B.L., D. Martin-Zanca, D.L. Kaplan, L.F. Parada, and M.V. Chao. 1991. *Nature* 350:678-683.
 - Herrmann, J.L., D.G. Menter, J. Hamada, D. Marchetti, M. Nakajima, and G.L. Nicolson.
- 30 1993. Mol. Biol. 4:1205-1216.

20

- Hobza, P., H.L. Selzle, and E.W. Schlag. 1994. J. Am. Chem. Soc. 116:3500-3506.
- Hodes, Z.I., G. Némethy, and H.A. Scheraga. 1979. Biopolymers 18:1565-1610.
- Hohn, A.; Leibrock, J.; Bailey, K.; Barde, Y.-A. 1990. Nature 344: 339-341.
- Hopfinger, A.J. 1973. Conformational Properties of Macromolecules. Academic Press, New
- 35 York-London. pp. 70-85.

Hunter, C.A., and J.K.M. Sanders. 1990. J. Am. Chem. Soc. 112:5525-5534.

Hunter, C.A., J. Singh, and J.M. Thornton. 1991. J. Mol. Biol. 218:837-846.

Ibáñez, C.F., T. Ebendal, and H. Persson. 1991. EMBO J. 10:2105-2110.

Ibáñez, C.F., T. Ebendal, G. Barbany, J. Murray-Rust, T.L. Blundell, and H. Persson. 1992.

5 Cell 69:329-341.

Ibáñez, C.F., L. Ilag, J. Murray-Rust, and H. Persson. 1993. EMBO J. 12:2281-2293.

Ibáñez, C.F. 1994. J. Neurobiol. 25:1349-1361.

Ibáñez, C.F. 1995. Trends Biotech. 13:217-227.

llag, L.L., P. Lönnerberg, H. Persson, and C.F. Ibáñez. 1994. J. Biol. Chem.

10 269:19941-19946.

IUPAC-IUB Commission on Biochemical Nomenclature. 1970. Biochemistry 9:3471-3479.

Jing, S.Q., P. Tapley, and M. Barbacid. 1992. Neuron 9:1067-1079.

Johnson, D., A. Lanahan, C.R. Buck, A. Sehgal, C. Morgan, E. Mercer, M. Bothwell, and M. Chao. 1986. *Cell* 47:545-554.

15 Judson, R.S.; Jaeger, E.P.; Treasurywala, A.M. 1994. J. Mol. Struct. (Theochem) 308: 191-206.

Kahle, P., L.E. Burton, C.H. Schmelzer, and C. Hertel. 1992. *J. Biol. Chem.* 267:22707-22710.

Kaplan, D.R.; Hempstead, B.L.; Martin-Zanca, D.; Chao, M.V.; Parada, L.F. 1991. Science

20 252: 554-558.

Kapian, D.R., and R.M. Stephens. 1994. J. Neurobiol. 25:1404-1417.

Kincaid, R.H.; Scheraga, H.A. 1982. J. Comput. Chem. 3: 525-547.

Kirkpatrick, S., C.D. Gelatt, Jr., and M.P. Vecchi. 1983. Science 220:671-680.

Klein, R.; Jing, S.; Nanduri, V.; O'Rourke, E.; Barbacid, M. 1991. Cell 65: 189-197.

25 Klein, R.; Lamballe, F.; Bryant, S.; Barbacid, M. 1992. Neuron 8: 947-956.

Kobe, B., and J. Deisenhofer. 1993. Nature 366:751-756.

Kobe, B., and J. Deisenhofer. 1994. Trends Biochem. Sci. 19:415-421.

Kobe, B., and J. Deisenhofer. 1995. Nature 374:183-186.

Korsching, S. 1993. J. Neurosci. 13:2739-2748.

30 Krüttgen, A., J.V. Heymach, P. Kahle, and E.M. Shooter. 1996. Soc. Neurosci. Abs. 22:557.

Kullander, K., and T. Ebendal. 1994. J. Neurosci. Res. 39:195-210.

Kullander, K., and T. Ebendal. 1996. Soc. Neurosci. Abs. 22:557.

Kushner, H.J. 1987. SIAM J. Appl. Math. 47: 169-185.

Lai, K.-O., D.J. Glass, D. Geis, G.D. Yancopoulos, and N.Y. lp. 1996. J. Neurosci. Res.

35 46:618-629.

Lamballe, F.; Klein, R.; Barbacid, M. 1991. Cell 66: 967-970.

Landreth, G.E., and E.M. Shooter. 1980. Proc. Natl. Acad. Sci. U.S.A. 77: 4751-4755.

Large, T.H., G. Weskamp, J.C. Helder, M.J. Radeke, T.P. Misko, E.M. Shooter, and L.F. Reichardt. 1989. *Neuron* 2:1123-1134.

- 5 Leibrock, J.; Lottspeich, A.H.; Hohn, A.; Hofer, M.; Hengerer, B.; Masiakowski, P.; Thoenen, H.; Barde, Y.-A. 1989. *Nature* 341: 149-152.
 - Lelj, F.; Grimaldi, P.; Cristianziano, P.L. 1991. Biopolymers 31: 663-670.
 - Leven, G.R.; Mendel, L.M. 1993. TINS 16: 353-359.
 - Levi-Montalcini, R. 1987. EMBO J. 6:1145-1154.
- Li, Z.; Scheraga, H.A. 1988. *J. Mol. Struct. (Theochem)* 179: 333-352.

 Livnah, O., E.A. Stura, D.L. Johnson, S.A. Middleton, L. S. Mulcahy, N.C. Wrighton, W.J.

 Dower, L.K. Jolliffe, and I.A. Wilson. 1996. *Science* 273:464-471.

 Loeb, D.M.; Maragos, J.; Martin-Zanca, D.; Chao, M.V.; Parada, L.F.; Greene, L.A. 1991. *Cell* 66: 961-966.
- Luo, Y., and K.E. Neet. 1992. J. Biol. Chem. 267:12275-12283.
 MacDonald, J.I.S., and S.O. Meakin. 1996. Mol. Cell. Neurosci. 7:371-390.
 Mahadeo, D., L. Kaplan, M.V. Chao, and B.L. Hempstead. 1994. J. Biol. Chem. 269:6884-6891.
 - Maisopierre, P.C.; Belluscio, L.S.S.; Squinto, S.; Ip, N.Y.; Furth, M.E.; Lindsay, R.M.;
- 20 Yancopoulos, G.D. 1990. Science 247: 1446-1451.
 - Maness, L.M., A.J. Kastin, J.T. Weber, W.A. Banks, B.S. Beckman, and J.E. Zadina. 1994. *Neurosci. Biobehav. Rev.* 18:143-159.
 - Marchetti, D., McQuillan, D.J., W.C. Spohn, D.D. Carson, and G.L. Nicolson. 1996. *Cancer Res.* 56:2856-2863.
- 25 Matsumoto, K., R.K. Wada, J.M. Yamashiro, D.R. Kaplan, and C.J. Thiele. 1995. Cancer Res. 55:1798-1806.
 - McDonald, N.Q., R. Lapatto, J. Murray-Rust, J. Gunning, A. Wlodawer, and T.L. Blundell. 1991. *Nature* 354:411-414.
 - McKee, A.C.; Kosik, K.S.; Kowal, N.W. 1991. Ann. Neurol. 30: 156.
- McMahon, S.B.; Bennett, D.L.H.; Priestley, J.V.; Shelton, D.L. 1995. *Nature Med.* 1: 774-780. Meakin, S.O., and E.M. Shooter. 1992. *Trends Neurosci.* 15:323-331.
 - Merrell, R., M.W. Pulliam, L. Randono, L.F. Boyd, R.A. Bradshaw, and L. Glaser. 1975. *Proc. Natl. Acad. Sci. U.S.A.* 72:4270-4274.
 - Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. 1953. J. Chem.
- 35 Phys. 21: 1087-1092.

Moore, J.B., and E.M. Shooter. 1975. Neurobiology 5:369-381.

Morgan et al. 1989. In Annual Reports in Medicinal Chemistry. Ed.: Vinick, F.J. Academic Press, San Diego, CA, pp. 243-252.

- Nayeem, A.; Vila, J.; Scheraga, H.A. 1991. J. Comput. Chem. 12: 594-605.
- 5 Nilges, M., G.M. Clore, and A.M. Gronenborn. 1988. FEBS Lett. 229:317-324.

Paine, G.H.; Scheraga, H.A. 1985. Biopolymers 24: 1391-1436.

Pérez, P., P.M. Coll, B.L. Hempstead, D. Martin-Zanca, and M.V. Chao. 1995. *Mol. Cell. Neurosci.* 6:97-105.

- Persson, H., and C.F. Ibáñez. 1993. Curr. Opin. Neurol. Neurosurg. 6:11-18.
- Piela, L.; Kostrowicki, J.; Scheraga, H.A. 1989. J. Phys. Chem. 93: 3339-3346.
 Piela, L.; Olszewski, K.A.; Pillardy, J. 1994. J. Mol. Struct. (Theochem) 308: 229-239.
 Ponnuswamy, P.K., and P. Manavalan. 1976. J. Theor. Biol. 60:481-486.
 Purves, D. 1988. Body and Brain. A Trophic Theory of Neural Connectors. Cambridge, MA: Harvard University Press, pp. 1-1231.
- Radeke, M.J., T.P. Misko, C. Hsu, L.A. Herzenberg, and E.M. Shooter. 1987. *Nature* 325:593-597.

Radziejewski, C., and R.C. Robinson. 1993. Biochemistry 32:13350-13356.

Radziejewski, C.; Robinson, R. C.; DiStefano, P.S.; Taylor, J.W. 1992. *Biochemistry* 31: 4431-4436.

- Raj, N.; Morley, S.D.; Jackson, D.E. 1994. *J. Mol. Struct. (Theochem)* 308: 175-190.
 Rao, M.; Pangali, C.; Berne, B.J. 1979. *Mol. Phys.* 37: 1773-1798.
 Rashid, K.; van der Zee, C.E.E.M.; Ross, G.M.; Chapman, C.A.; Stanisz, J.; Riopelle, R.J.;
 Racine, R.J.; Fahnestock, M. 1995. *Proc. Natl. Acad. Sci. U.S.A.* 92: 9495-9499.
 Ripoll, D.R.; Scheraga, H.A. 1988. *Biopolymers* 27: 283-1303.
- Robinson, R.C., C. Radziejewski, D.I. Stuart, and E.Y. Jones. 1995. *Biochemistry* 34:4139-4146.

Rodrigues-Tébar, A., G. Dechant, and Y.-A. Barde. 1990. Neuron 4:487-492.

Rodrigues-Tébar, A., G. Dechant, R. Gotz, and Y.-A. Barde. 1992. EMBO J. 11:917-922.

Rosenthal, A.; Goeddel, D.V.; Nguyen, T.; Lewis, M.; Shih, A.; Laramee, G.R.; Nikolics, K.;

- 30 Winslow, J.W. 1990. Neuron 4: 767-773.
 - Ross, A.H., M.-C. Daou, C. A. McKinnon, P.J. Condon, M.B. Lachyankar, R.M. Stephens, D.R. Kaplan, and D.E. Wolf. 1996. *J. Cell Biol.* 132:945-953.
 - Ross, G.M., I.L. Shamovsky, G. Lawrance, M. Solc, S.M. Dostaler, S.L. Jimmo, D.F. Weaver, and R.J. Riopelle. 1997. *Nature Med.* 3:872-878.
- 35 Rossky, P. J.; Doll, J. D.; Friedman, H. L. 1978. J. Chem. Phys. 69: 4628-4633.

Rovelli, G.; Heller, R.A.; Canossa, M.; Shooter, E.M. 1993. *Proc. Natl. Acad. Sci. USA* 90: 8717-8721.

Ryckaert, J.-P., Ciccotti, G.; Berendsen, H.J.C. 1977. J. Comput. Phys. 23:327-341.

Rydén, M., J. Murray-Rust, D. Glass, L.L. Ilag, M. Trupp, G.D. Yancopoulos, N.Q. McDonald,

5 and C.F. Ibáñez. 1995. EMBO J. 14:1979-1990.

Rydén, M., and C.F. Ibáñez, C.F. 1996. J. Biol. Chem. 271:5623-5627.

Schauer, M., and E.R. Bernstein. 1985. J. Chem. Phys. 82:3722-3727.

Schechter, A.L., and M.A. Bothwell. 1981. Cell 24:867-874.

Scheraga, H.A. 1989. Prog. Clin. Biol. Res. 289: 3-18.

10 Scheraga, H.A. 1994. Pol. J. Chem. 68: 889-891.

Schmelzer, C.H., L.E. Burton, W.-P. Chan, E. Martin, C. Gorman, E. Canova-Davis, V.T.

Ling, M.B. Sliwkowski, G. McCray, J.A. Briggs, T.H. Nguyen, and G. Polastri. 1992. *J. Neurochem.* 59:1675-1683.

Schneider, R., E. Schneider-Scherzer, M. Thumher, B. Auer, and M. Schweiger. 1988. EMBO

15 *J.* 7:4151-4156.

Schneider, R., and M. Schweiger. 1991. Oncogene 6:1807-1811.

Shamovsky, I.L.; Yarovskaya, I.Yu.; Khrapova, N.G.; Burlakova, E.B. 1992. *J. Mol. Struct.* (*Theochem*) 253: 149-159.

Shamovsky, I.L., G.M. Ross, R.J. Riopelle, and D.F. Weaver. 1996. J. Am. Chem. Soc.

20 118:9743-9749.

Shih, A., G.R. Laramee, C.H. Schmelzer, L.E. Burton, and J.W. Winslow. 1994. *J. Biol. Chem.* 269:27679-27686.

Simon, I.; Nemethy, G.; Scheraga, H.A. 1978. Macromolecules 11: 797-804.

Snider, W.D., and E.M. Johnson. 1989. Ann. Neurol. 26:489-506.

25 Snow, M.E. 1992. J. Comput. Chem. 13: 579-584.

Soppet, D.; Escandon, E.; Maragos, J.; Middlemas, D.S.; Reid, S.W.; Blair, J.; Burton, L.E.;

Stanton, B.; Kaplan, D.R.; Hunter, T.; Nikolics, K.; Parada, L.F. 1991. Cell 65: 895-903.

Squinto, S.P.; Stitt, T.N.; Aldrich, T.H.; Davis, S.; Bianco, S.M.; Radziejewski, C.; Glass, D.J.;

Masiakowski, P.; Furth, M.E.; Valenzuela, D.M.; DiStefano, P.S.; Yancopoulos, G.D. 1991.

30 Cell 65: 885-893.

Suter, U., C. Angst, C.-L. Tien, C.C. Drinkwater, R.M. Lindsay, and E.M. Shooter. 1992. *J. Neurosci.* 12:306-318.

Sutter, A., R.J. Riopelle, R.M. Harris-Warrick, and E.M. Shooter. 1979. *J. Biol. Chem.* 254:5972-5982.

35 Szentpsly, L.V.; Shamovsky, I.L.; Nefedova, V.V.; Zubkus, V.E. 1994. J. Mol. Struct.

(Theochem) 308: 125-140.

Taylor, R.A.V., J.F. Kerrigan, F.M. Longo, M. deBoisblanc, and W.C. Mobley. 1991. Soc. Neurosci. Abs. 17: 712.

Thoenen, H. 1991. Trends Neurosci. 14: 165-170.

Treanor, J.J.S., C. Schmelzer, B. Knusel, J.W. Winslow, D.L. Shelton, F. Hefti, K. Nikolics, and L.E. Burton. 1995. *J. Biol. Chem.* 270: 23104-23110.

Ullrich, A., and J. Schlessinger. 1990. Cell 61: 203-212.

Urfer, R., P. Tsoulfas, D. Soppet, E. Escandón, L.F. Parada, and L.G. Presta. 1994. *EMBO J.* 13:5896-5909.

10 Urfer, R., P. Tsoulfas, L. O'Connell, D.L. Shelton, L.F. Parada, and L.G. Presta. 1995. EMBO J. 14:2795-2805.

Vale, R.D.; Shooter, E.M. 1985. Methods Enzymol. 109: 21-39.

Vanderbilt, D., and S.G. Louie. 1984. J. Comput. Phys. 56:259-271.

Van der Zee, C.E.E., G.M. Ross, R.J. Riopelle, and T. Hagg. 1996. Science 274: 1729-1732.

15 Villani, V.; Tamburro, A.M. 1994. J. Mol. Struct. (Theochem) 308: 141-157.

Warme, P.K., and R.S. Morgan. 1978. J. Mol. Biol. 118: 289-304.

Washiyama, K., Y. Muragaki, L.B. Rorke, V.M.-Y.Lee, S.C. Feinstein, M.J. Radeke, D.

Blumberg, D.R. Kaplan, and J.Q. Trojanowski. 1996. Amer. J. Path. 148:929-940.

Weiner, S.J., P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta Jr., and

20 P.Weiner. 1984. J.Am.Chem.Soc. 106:765-784.

Weskamp, G.; Reichardt, L.F. 1991. Neuron 6: 649-663.

Wilson, C., and S. Doniach. 1989. Proteins 6:193-209.

Wilson, S.R., W. Cui, J.W. Moscowitz, and K.E. Schmidt. 1988. *Tetrahedron Lett.* 29:4373-4376.

Windisch, J.M., B. Auer, R. Marksteiner, M.E. Lang, and R. Schneider. 1995a. *FEBS Lett.* 374:125-129.

Windisch, J.M., R. Marksteiner, and R. Schneider. 1995b. J. Biol. Chem. 270: 28133-28138.

Windisch, J.M., R. Marksteiner, M.E. Lang, B. Auer, and R. Schneider. 1995c. *Biochemistry* 34:11256-11263.

Wolf, D.E., C.A. McKinnon, M.-C. Daou, R.M. Stephens, D.R. Kaplan, and A.H. Ross. 1995.
J. Biol. Chem. 270:2133-2138.

Woo, S.B., D.E. Timm, and K.E. Neet. 1995. J. Biol. Chem. 270:6278-6285.

Woo, S.B., and K.E. Neet. 1996. J. Biol. Chem. 271:24433-24441.

Woolf, C.J.; Doubell, T.A. 1994. Current Opinions in Neurobiol. 4: 525-534.

35 Yan, H., and M.V. Chao. 1991. J. Biol. Chem. 266:12099-12104.

Yoder, M.D.; Keen, N.T.; Jurnak, F. 1993. Science 260: 1503-1507.

WHAT IS CLAIMED IS:

5

10

15

20

25

30

35

1. A variable basis Monte-Carlo (VBMC) simulated annealing method for identifying an optimal structure in a molecular system, comprising:

- (a) providing a Markov chain with an initial basis set of N configurational variables which define a structure for said molecular system;
- (b) translating the N configurational variables simultaneously along a basis vector to produce a new structure for the molecular system, wherein magnitude of translation is randomly chosen within a preselected range;
 - (c) calculating potential energy of the new structure of the molecular system;
- (d) deciding whether to accept or reject the new structure using an effective temperature dependent transition function, and if the new structure is accepted, replacing the current structure with the accepted structure;
- (e) repeating steps (b) to (d), each repetition having a new basis vector, for a preselected first number of repetitions at a preselected upper temperature; then
 - (f) decreasing temperature according to a preselected cooling schedule;
- (g) repeating steps (b) to (d) and (f), each repetition having a new basis vector, for a preselected second number of repetitions; then
 - (h) storing current structure of the molecular system;
- (I) repeating steps (g) and (h) until a preselected number of stored structures have been accumulated: then
- (j) rotating the basis set of configurational variables according to an effective distribution of the accumulated structures so that basis vectors are directed along low-energy valleys of a potential energy hypersurface thereby accelerating conformational motions and structural transitions of the molecular system, and erasing accumulated structures from steps (h) and (l);
- (k) repeating steps (l) and (j) until, after an effective third number of repetitions, a preselected lower temperature limit is reached, thereby producing an unrefined global minimum structure; and
- (I) refining the global energy minimum structure so that at least one local minimum on the potential energy hypersurface is identified.
- 2. The method of claim 1, wherein the basis vector is chosen randomly within said preselected range.
- 3. The method of claim 1, wherein the basis vector is chosen deterministically within said

preselected range.

4. The method of claim 1 wherein the preselected second number of repetitions is N or a multiple thereof.

5

- 5. The method of claim 1 wherein the preselected second number of repetitions is at least about 2N.
- 6. The method of claim 1 wherein the refining step is non-linear minimization.

10

- 7. The method of claim 6, wherein the refining step is gradient descent minimization.
- 8. The method of claim 6, wherein the refining step is conjugate gradient minimization.
- 15 9. The method of claim 6, wherein the refining step is a quasi-Newton minimization method.
 - 10. The method of claim 9, wherein the quasi-Newton method is Newton -Raphson method.

20

30

- 11. The method of claim 6, wherein the refining step is Marquardt method.
- 12. The method of claim 6, wherein the refining step is a variable metric method.
- 25 13. The method of claim 6, wherein the refining step is Powell method.
 - 14. The method of claim 1 wherein said molecular system is at least one peptide domain comprising amino acid residues, each amino acid residue comprising a main chain having α -carbon atoms, carbonyl carbon atoms and nitrogen atoms, said basis set of configurational variables comprising torsional angles (ψ_i) between said α -carbon atoms and neighbouring carbonyl carbon atoms, and torsional angles (φ_i) between said α -carbon atoms and neighbouring nitrogen atoms.
- 15. The method of claim 14 wherein torsional angles describing planar portions of said peptide domains are held constant.

15

25

30

16. The method of claim 14 wherein said effective temperature dependent transition function for screening a new state x_{i+1} derived from a previous state x_i is given by:

$$W(x_i \Rightarrow x_{i+1}) = 1/[1 + \exp(\Delta E_i / kT)]$$

- where ΔE_i is the difference between conformational energies of the states x_{i+1} and x_i , k is the Boltzmann constant and T is absolute temperature.
 - 17. The method of claim 14 wherein said effective temperature dependent transition function for screening a new state x_{i+1} derived from a previous state x_i is given by:

$$W(x_i \Rightarrow x_{i+1}) = 1$$
, if $E(x_{i+1}) \le E(W(x_i))$

10 = $\exp(-\Delta E_i/kT)$, if $E(x_{i+1}) \ge E(W(x_i))$

where ΔE_i is the difference between conformational energies of the states x_{i+1} and x_i , k is the Boltzmann constant and T is absolute temperature.

- 18. The method of claims 14, 15, 16 or 17 wherein said preselected upper temperature is about 1000°K.
- 19. The method of claim 18 wherein said preselected lower temperature is about 120°K.
- 20. A method of identifying structures of a peptide domain of a neurotrophin to bind with a binding site of a receptor, comprising;
 - a) providing a plurality of neurotrophin analogues wherein at least one neurotrophin analogue binds said receptor;
 - b) identifying an optimal or near-optimal structure for respective peptide domains of the neurotrophin analogues that bind said receptor by applying a preselected number of the variable basis Monte-Carlo (VBMC) annealing simulations according to claim 1 to each of the respective peptide domains to identify minimum or near-minimum energy structures for said peptide domains; and
 - c) comparing said minimum or near-minimum energy structures to identify common structural features shared by neurotrophin analogues exhibiting receptor mediated activity.
 - 21. The method according to claim 20 wherein said common structural features are absent from neurotrophin analogues that do not exhibit receptor-mediated activity.
- 35 22. A method of identifying structures of a domain of a ligand to bind with a binding site of

a receptor, comprising;

5

10

20

30

35

 a) providing a plurality of ligand analogues wherein at least one ligand analogue binds said receptor;

- b) identifying an optimal or near-optimal structure for respective domains of the ligand analogues that bind said receptor by applying a preselected number of the variable basis Monte-Carlo (VBMC) annealing simulations according to claim 1 to each of the respective domains to identify minimum or near-minimum energy structures for said domains; and
- c) comparing said minimum or near-minimum energy structures to identify common structural features shared by ligands exhibiting receptor mediated activity.
 - 23. The method according to claim 22 wherein said common structural features are absent from ligand analogues that do not exhibit receptor-mediated activity.
- The method according to claim 20 wherein said neurotrophin is NGF, and said receptor is TrkA.
 - 25. The method according to claim 20 wherein said neurotrophin is brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotrophin-4 (NT-4), and said receptor is TrkB.
 - 26. The method according to claim 20 wherein said neurotrophin is neurotrophin-3 (NT-3) and said receptor is TrkC.
- 25 27. The method according to claim 20 wherein said receptor is the common neurotrophin receptor p75^{NTR}.
 - 28. A ligand for binding with TrkA, wherein TrkA comprises a leucine rich motif (LRM) comprising amino acid residues 93 to 117, wherein coordinates of the residues of said LRM are given in Appendix 1, said LRM having five binding areas, area A comprising amino acid residue Phe^{105tA} capable of hydrophobic interaction, area B comprising amino acid residues Phe^{111tA}, Phe^{113tA}, and Thr^{114tA} capable of hydrophobic interaction, area C comprising amino acid residues Asp^{105tA} and His^{112tA} capable of ionic interaction, area D comprising amino acid residue Lys^{100tA} capable of ionic interaction, and area E comprising Asn^{95tA} to lle^{98tA} capable of multiple parallel β-strand type hydrogen bonding, the ligand comprising;

at least three moieties each comprising effective atomic elements having spatial

occupancy, relative atomic position, bond type and charge to define a three dimensional conformation of said ligand so that a first moiety can bind with a first binding area, a second moiety can bind with a second binding area, and a third moiety can bind with a third binding area.

5

- 29. The ligand according to claim 28 wherein the first moiety can hydrophobically bond with binding area A, the second moiety can ionically bind with binding area C, and the third moiety can ionically bind with binding area D.
- 10 30. The ligand according to claim 29 comprising a fourth moiety effectively spaced with respect to the other moieties so it can hydrophobically bond with binding area B.
 - 31. The ligand according to claim 29 comprising a fourth moiety effectively spaced with respect to the other moieties so it can hydrogen bond with binding area E.

15

20

25

- 32. The ligand according to claim 29 wherein the first moiety is capable of hydrophobic bonding to Phe^{105tA} in binding area A, the second moiety is positively charged and present in an effective position in said ligand to ionically interact with Asp^{109tA} and His^{112tA} in binding area C, and the third moiety is negatively charged and present in an effective position in said ligand to ionically interact with Lys^{100tA} in binding area D.
- 33. The ligand according to claim 32 wherein the moiety hydrophobically bonded to Phe^{105tA} in binding area A is Trp, wherein the positively charged moiety which ionically interacts with Asp^{109tA} and His^{112tA} in binding area C is Arg and Lys, and wherein the negatively charged moiety which ionically interacts with Lys^{100tA} in binding area D is Asp.
- ..
 - 34. The ligand according to claim 32 wherein said first, second and third moieties are amino acids or isosteres thereof.
- 35. The ligand according to claim 30 wherein said fourth moiety is an amino acid or isostere thereof.
 - 36. The ligand according to claim 31 wherein said fourth moiety is an amino acid or isostere thereof.

35

37. A method of designing a ligand to bind with a LRM of TrkA, comprising:

providing a template of said LRM of TrkA, said LRM comprising amino acid residue sequence 93 to 117 inclusive, said amino acid residues having spatial Cartesian coordinates given in Appendix 1 wherein said binding area A comprises Phe^{105tA} capable of hydrophobic bonding, binding area B comprises Phe^{111tA}, Phe^{113tA}, Thr^{114tA} capable of hydrophobic bonding, binding area C comprises Asp^{109tA} and His^{112tA} capable of ionic interaction, binding area D comprises Lys^{100tA} capable of ionic interaction, and binding area E comprises Asn^{95tA} to Ile^{98tA} capable of hydrogen bonding; and

5

10

15

25

30

35

computationally evolving a ligand using an effective algorithm so that said evolved ligand comprises at least three effective moieties located relative to each other in the ligand so that a first moiety can bind with a first of said five binding areas, a second moiety can bind with a second of said five binding areas, and a third moiety can bind with a third of said binding areas.

- 38. The method according to claim 37 including the step of generating said ligand under a constraint that the evolved ligand comprises said first effective moiety spatially located to hydrophobically bind with binding area A, said second moiety spatially located to ionically interact with binding area C, and said third moiety spatially located to ionically interact with binding area D.
- 20 39. The method according to claim 37 including the step of generating said ligand under a constraint that the evolved ligand comprises an effective moiety spatially located to hydrophobically interact with binding area B.
 - 40. The method according to claim 37 including the step of generating said ligand under a constraint that the evolved ligand comprises an effective moiety spatially located to hydrogen bond with binding area E.
 - 41. A ligand for binding with TrkB, wherein TrkB comprises a leucine-rich motif (LRM) comprising amino acid residues 93 to 117, the coordinates of the residues of said LRM given in Appendix 2, said LRM having five binding areas, binding area F comprising amino acid residue Asp^{100tB} capable of ionic interaction, binding area G comprising amino acid residue Lys^{109tB} capable of ionic interaction, binding area H comprising amino acid residue Lys^{113tB} capable of ionic interaction, binding area I comprising amino acid residue Arg^{94tB} capable of ionic interaction, and binding area K comprising amino acid residue Lys^{104tB} capable of hydrogen bonding or ionic interaction, the ligand comprising:

at least three moieties each comprising effective atomic elements having spatial

occupancy, relative atomic position, bond type and charge to define a three dimensional conformation of said ligand so that a first moiety can bind with a first binding area, a second moiety can bind with a second binding area, and a third moiety can bind with a third binding area.

5

42. The ligand according to claim 41 wherein one of said at least three moieties can ionically bind with binding area F, another of said at least three moieties can ionically bind with binding area G, and another of said at least three moieties can form a hydrogen bond or ionically bind with binding area K.

10

- 43. The ligand according to claim 42 wherein said ligand includes a fourth moiety effectively spaced relative to said at least three moieties so that it can ionically bind with binding area H.
- 15 44. The ligand according to claim 42 wherein said ligand includes a fourth moiety effectively spaced relative to said at least three moieties so that it can ionically bind with binding area I.
- 45. The ligand according to claim 41 wherein the first moiety is positively charged and present in an effective position in said ligand to ionically bind to Asp¹⁰⁰¹⁸ in binding area F, the second moiety is negatively charged and present in an effective position in said ligand to ionically interact with Lys¹⁰⁹¹⁸ in binding area G, and the third moiety is neutral or negatively charged and capable of hydrogen bonding or ionically bonding to Lys¹⁰⁴¹⁸ in binding area K.
- 46. The ligand according to claim 45 wherein a fourth moiety is negatively charged and present in an effective position in said ligand to ionically bind to Lys^{113iB} in binding area H, and wherein a fifth moiety is negatively charged and present in an effective position in said ligand to ionically bind to Arg^{94iB} in binding area I.
- 47. The ligand according to claim 46 wherein the positively charged moiety ionically bonded to Asp^{100tB} in binding area F is Arg, wherein the charged moiety which ionically interacts with Lys^{109tB} in binding area G is Glu and Lys, and wherein the negatively charged moiety ionically bonded with Lys^{113tB} in binding area H is Asp.
- 35 48. The ligand according to claim 47 wherein the negatively charged amino acid residue ionically bonded to Arg^{94IB} in binding area I is Glu.

49. The ligand according to claim 45 wherein the neutral or negatively charged moiety capable of hydrogen bonding or ionically bonding to Lys^{104tB} in binding area K is Thr.

50. The ligand according to claim 45 wherein said first, second and third moieties are amino acids or isosteres thereof.

• 5

20

25

30

35

- 51. The ligand according to claim 46 wherein said fourth and fifth moieties are amino acids or isosteres thereof.
- 52. A method of designing a ligand to bind with TrkB, wherein TrkB comprises a leucine-rich motif (LRM) comprising amino acid residues 93 to 117, the coordinates of the residues of said LRM given in Appendix 2, said LRM having five binding areas, binding area F comprising amino acid residue Asp¹⁰⁰¹⁸ capable of ionic interaction, binding area G comprising amino acid residue Lys¹⁰⁹¹⁸ capable of ionic interaction, binding area H comprising amino acid residue Lys¹¹³¹⁸ capable of ionic interaction, binding area I comprising amino acid residue Arg⁹⁴¹⁸ capable of ionic interaction, and binding area K comprising amino acid residue Lys¹⁰⁴¹⁸ capable of hydrogen bonding or ionic interaction, the method comprising:

computationally evolving a ligand using an effective algorithm so that said evolved ligand comprises at least three effective moieties located relative to each other in the ligand so that a first moiety can bind with a first of said five binding areas, a second moiety can bind with a second of said five binding areas, and a third moiety can bind with a third of said binding areas.

53. A ligand for binding with the common neurotrophin receptor p75^{NTR}, wherein p75^{NTR} comprises a binding site including amino acid residues Cys^{39p} to Cys^{94p} inclusive, said residues of said binding site having spatial coordinates given in Appendix 3, said binding site having three binding areas including binding loop 2A comprising region Cys^{39p} to Cys^{58p} capable of attractive electrostatic interaction, binding loop 2B comprising region Cys^{58p} to Cys^{79p} capable of attractive electrostatic interaction, and binding loop 3A comprising region Cys^{79p} to Cys^{94p} capable of attractive electrostatic interaction, the ligand comprising;

at least two moieties each comprising effective atomic elements having spatial occupancy, relative atomic position, bond type and charge to define a three dimensional conformation of said ligand so that a first moiety can bind with a first binding area, and a second moiety can bind with a second binding area.

54. The ligand according to claim 53 wherein said ligand is an agonist, and wherein one

of said at least two moieties binds to loop 2B.

5

35

55. The ligand according to claim 53 further comprising a third moiety wherein said first moiety can bind to loop 2A, said second moiety can bind to loop 2B and said third moiety can bind to loop 3A.

- 56. The ligand according to claim 53 wherein said first moiety binds to any two of Asp^{47p}, Lys^{58p} and Glu^{53p}.
- The ligand according to claim 53 wherein said binding loop 2A includes amino acid residues Asp^{47p} and Lys^{56p} and said first moiety ionically binds to said residues Asp^{47p} and Lys^{56p}.
- 58. The ligand according to claim 53 wherein said binding loop 2B includes amino acid residues Asp^{75p} and Asp^{75p} and said second moiety ionically binds to said residues Asp^{75p} and Asp^{76p}.
- 59. The ligand according to claim 55 wherein said binding loop 3A includes amino acid residues Asp^{88p} and Glu^{89p} and said third moiety ionically binds to said residues Asp^{88p} and Glu^{89p}.
 - 60. The ligand according to claim 55 wherein said third moiety binds to any two of 'Asp^{88p}, Glu^{89p} and Arg^{80p}.
- A method of designing a ligand for binding with the common neurotrophin receptor p75^{NTR}, wherein p75^{NTR} comprises a binding site including amino acid residues Cys^{39p} to Cys^{94p} inclusive, said residues of said binding site having spatial coordinates given in Appendix 3, said binding site having three binding areas including binding loop 2A comprising region Cys^{39p} to Cys^{58p} capable of attractive electrostatic interaction, binding loop 2B comprising region Cys^{58p} to Cys^{79p} capable of attractive electrostatic interaction, and binding loop 3A comprising region Cys^{79p} to Cys^{94p} capable of attractive electrostatic interaction, the method comprising;

computationally evolving a ligand using an effective algorithm so that said evolved ligand comprises at least two effective moieties located relative to each other in the ligand so that a first moiety can bind to a first of said three loops and a second moiety can bind to a second loop of said three loops.

62. A method of identifying a ligand to bind with a leucine rich motif (LRM) of TrkA, comprising:

5

10

15

20

25

30

35

providing a three dimensional conformation for said LRM, said LRM comprising amino acid residue sequence 93 to 117 inclusive, said amino acid residues having spatial Cartesian coordinates given in Appendix 1, said LRM having five binding areas, area A comprising amino acid residue Phe^{105tA} capable of hydrophobic interaction, area B comprising amino acid residues Phe^{111tA}, Phe^{113tA}, and Thr^{114tA} capable of hydrophobic interaction, area C comprising amino acid residues Asp^{109tA} and His^{112tA} capable of ionic interaction, area D comprising amino acid residue Lys^{100tA} capable of ionic interaction, and area E comprising Asn^{95tA} to Ile^{98tA} capable of multiple parallel β-strand type hydrogen bonding:

providing a data base containing molecules coded for spatial occupancy, relative atomic position, bond type and/or charge; and

screening said data base to select those molecules comprising moieties having a three dimensional conformation and effective charge that can bind with at least three of said five binding areas.

63. A method of identifying a ligand to bind with a leucine rich motif (LRM) of TrkB, comprising:

providing a three dimensional conformation for said LRM, said LRM comprising amino acid residues 93 to 117, the coordinates of the residues of said LRM given in Appendix 2, said LRM having five binding areas, binding area F comprising amino acid residue Asp¹⁰⁰¹⁸ capable of ionic interaction, binding area G comprising amino acid residue Lys¹⁰⁹¹⁸ capable of ionic interaction, binding area H comprising amino acid residue Lys¹¹³¹⁸ capable of ionic interaction, binding area I comprising amino acid residue Arg⁹⁴¹⁸ capable of ionic interaction, and binding area K comprising amino acid residue Lys¹⁰⁴¹⁸ capable of hydrogen bonding or ionic interaction;

providing a data base containing molecules coded for spatial occupancy, relative atomic position, bond type and/or charge; and

screening said data base to select those molecules comprising moieties having a three dimensional conformation and effective charge that can bind with at least three of said five binding areas.

64. A method of identifying a ligand to bind with common neurotrophin receptor p75^{NTR}, comprising:

providing a three dimensional conformation for the common neurotrophin receptor p75^{NTR}, wherein p75^{NTR} comprises a binding site including amino acid residues Cys^{39p} to

Cys^{94p} inclusive, said residues of said binding site having spatial coordinates given in Appendix 3, said binding site having three binding areas including binding loop 2A comprising region Cys^{39p} to Cys^{58p} capable of attractive electrostatic interaction, binding loop 2B comprising region Cys^{58p} to Cys^{79p} capable of attractive electrostatic interaction, and binding loop 3A comprising region Cys^{79p} to Cys^{94p} capable of attractive electrostatic interaction;

providing a data base containing molecules coded for spatial occupancy, relative atomic position, bond type and/or charge; and

screening said data base to select those molecules comprising moleties that can bind with at least two of said three binding loops.

10

5

15

1/29

First monomer: amino terminus 10 15 hNGF HPIFHRGE<u>FSVC...</u> S mNGF ST H V F H M G Ε mNGF∆3-9 S G Ε <u>F S V C ...</u> hNGF-H4D S D P F H R G Ε F S V mNGFΔ1-8 Μ G Ε <u>F</u> S V BDNF RRG E L S V Second monomer: carboxyl terminus 112' 118' hNGF ... C V C V L S R K R mNGF ... C V C V L S R mNGFΔ3-9 CVCVL S R K hNGF-H4D C V C V L S R K R mNGF∆1-8 ... C V C V L S R K A **BDNF** ... C V C T L T

R

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

WO 98/06048 PCT/CA97/00539

Figure 8

 \propto

9/29

		D	D	 D	::
	15	O	O	ပ	S
			>	>	>
snı		> \	S	S	S
amino terminus	•	ப	ய	ш	IL
ter		Ш	ш	Ш	Ш
o c	10	Ŋ	Ŋ	Ŋ	ഗ
mir		α	Σ	S	\simeq
		I	Ţ	ഗ	I
ner		ட	ш	ı	Ц.
monomer:		- .	>	1	
	ស	۵	<u>α</u>	1	۵
First		工	I	ı	I
Fi		ن	⊢ .	1	S
		S	S	•	တ
	⊣	S	S.	1	တ
		hNGF	mNGF	mNGF∆3-9	hNGF:NT-4/5 S
			•		

carboxyl terminus Second monomer:

_				
118	œ	œ	œ	α
115'	>	—	—	C
	⋖	⋖	Ø	F
	×	¥	×	α
	\propto	œ	α	c,
	S	တ	S	
		ب	لنــ	
	>	>	>	}-
110	ပ	ပ	ပ	ပ
	>	>	>	>
	ပ	ပ	ပ	ပ
) > :: >
	Z	z	z	>
-	≥	3	3	>
75,	エ	I	工	I
	:	; \	¥	۲ :
	-1	•1	•1	
	hNGF	mNGF	mNGF∆3-9	hNGF:NT-4/5

Figure 9

Figure 10a

Figure 10b

Figure 10c

Figure 10d

Figure 10e

Figure 11a

Figure 11b

Figure 11c

Figure 12

Figure 13

 \times α × ×I ۵ × Щ ×I CBI ×I 8 110tA ⋖ Ω \times \mathbf{C} × ᡗ ×I ⋖ Ь > 105tA \mathbb{Z} ග J Z 95tA ا 3 93tA \times Interact with NGF Form binding site Specific for trkA LRM sequence Consensus

Figure 14

a

Figure 15

Figure 16

· Second Cysteine-Rich Domain

p75 ^{NTR} (h)	39	CLDSVTFSDVVSATEPCKPCT
p75 ^{NTR} (r)	39	CLDNVTFSDVVSATEPCKPCT
p75 ^{NTR} (c)	40	CLDSVTYSDTVSATEPCKPCT
p55 ^{TNFR}	41	C-ESGSFTASENHLRHCLSCS
p75 ^{NTR} (h) ⁻ p75 ^{NTR} (r) p75 ^{NTR} (c) p55 ^{TNFR}	60 60 61 61	E C V G L Q S M S A P C V E A D D A V C E C L G L Q S M S A P C V E A D D A V C Q C V G L H S M S A P C V E S D D A V C K C R K E M G Q V E I S S C T V D R D T V C

Third Cysteine-Rich Domain

p75 ^{NTR} (h)	ያበ	PCAVCVVODD	
		R C A Y G Y Y Q D E T T G R C E A	
$p75^{NTR}(r)$		R C A Y G Y Y Q D E E T G H C E A	
p75 ^{NTR} (c)	81	R C A V G V R O D E	•
D55TNFR		R C A Y G Y F Q D E L S G S C K E	,
p55	83	GCRKNQYRHYWSENLFQCFN	[

Figure 17

Figure 18a

Figure 18b

Figure 18c

Figure 18d