01

PROGETTO MACHINE E DEEP LEARNING

Studente:

Mattia Gatto, 216649

Docenti:

Fabrizio Angiulli, Fabio Fassetti, Luca Ferragina

02

PROBLEM

Classificazione e anomaly detection di immagini

VISUALIZZAZIONE

Fase di analisi dei dati, per valutare l'insieme migliore di tecniche da definire per la fase di preprocessing.

Il formato dati è una cartella che dispone di 5477 immagini a colori, di dimensione 80*60, in formato jpg.

Vi sono 4 tipi di immagini:

- "handbags"
- "sports-shoes"
- "tops"
- "trousers"

PREPROCESSING

Le operazioni effettuate sul dataset di immagini sono state:

- Trasformazione tramite la libreria "opencv" delle immagini in matrici;
- Normalizzazione delle intensità dei pixel secondo un formato float che va da 0 a 1;
- trasformazione delle immagini in scala di grigi.

LABEL

Per quanto riguarda le label ho definito un'indicatore per ogni tipo:

- 0 per "handbags"
- 1 per "sports-shoes"
- 2 per "tops"3 per "trousers"

CLASSIFICAZIONE

Per ogni tecnica di classificazione, al termine dell'addestramento ho effettuato :

- la valutazione dell'accuratezza con il test set;
- la valutazione delle prestazioni sfruttando kfold validation;
- confrontato i risultati ottenuti tra kfold validation e testvalidation;

RETI NEURALI

• RETE DENSA

RETI NEURALI

• RETE CONVOLUZIONALE

• GAUSSIAN NAIVE BAYES

• K NEAREST NEIGHBOR

ANOMALY DETECTION

• RETE DENSA

12

13

PROBLEM

Classificazione e anomaly detection di Dati Sequenziali testuali

VISUALIZZAZIONE

Fase di analisi per valutare l'insieme migliore di tecniche da definire per la fase di preprocessing.

Il formato dati è un file excell che dispone di 10262 recensioni, ognuna delle quali ha una valutazione da 1 a 5.

• • • • •

14

PREPROCESSING

Attraverso l'utilizzo della libreria "nltk" al fine di riuscire elaborare ogni frase, infatti, per ognuna di esse vado ad effettuare:

- Tokenizatione;
- Processo di rimozione della punteggiatura;
- Stopping;
- Stemming;
- Feature_extraction: nello specifico TfidfVectorizer.

Per quanto riguarda le label le ho definite secondo questo foramato:

- O indica le label 1 e 2 cioè valutazione di tipo pessima.
- 1 indica la label 3 cioè valutazione di tipo normale.
- 2 indica le label 4 e 5 cioè valutazione di tipo ottima.

LABEL

Per quanto riguarda le label le ho definite secondo questo foramato:

- O indica le label 1 e 2 cioè valutazione di tipo pessima.
- 1 indica la label 3 cioè valutazione di tipo normale.
- 2 indica le label 4 e 5 cioè valutazione di tipo ottima.

ADABOOST

RETI NEURALI

• RETE DENSA

STIME DI DENSITÀ

• K NEAREST NEIGHBOR

ANOMALY DETECTION

• RETE DENSA

20

ESEMPIO DI SCRIPT

python MAIN.py -i immagini-3 :

```
Hai scelto immage!
Che algoritmo vuoi lanciare?
Classificazione:
        * (1) AdaBoost
        * (2) SVM
        * Reti neurali:
                + (3) Neural network
                + (4) Convolutional Neural network
        * Stime di Densità:
                + (5) Gaussian Naive Bayes
                + (6) Nearest Neighbor
Anomaly Detection:
        * (7) Density autoencoder
```

python MAIN.py -t test-3.xlsx :

```
Hai scelto text!
Che algoritmo vuoi lanciare?
Classificazione:
        * (1) AdaBoost
        * (2) SVM
        * Reti neurali:
                + (3) Neural network
        * Stime di Densità:
                + (4) Nearest Neighbor
Anomaly Detection:
        * (5) Density autoencoder
```

GRAZIE LATENZIONE