Connected Subspaces of the Real Line David Yang and Adin Aberbach

1 Introduction and Relevant Theorems

Definition 1.1 (Linear Continuum)

A simply ordered set L having more than one element is called a **linear continuum** if the following hold:

- 1. L has the least upper bound property.
- 2. If x < y, there exists z such that x < z < y.

Example (Example 1, page 155). The ordered square (under the dictionary topology) is a linear continuum. (See example in textbook for more details.)

Definition 1.2 (Path and Path Connectedness)

Given points x and y of the space X, a **path** in X from x to y is a continuous map $f: [a, b] \to X$ of some closed interval in the real line into X, such that f(a) = x and f(b) = y.

A space X is said to be **path connected** if every pair of points of X can be joined by a path in X.

Theorem 1.1 (Theorem 21.3, page 130). Let $f: X \to Y$. If the function f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is metrizable.

Theorem 1.2 (Theorem 23.4, page 150). Let A be a connected subspace of X. If $A \subset B \subset \overline{A}$, then B is also connected.

Theorem 1.3 (Theorem 23.5, page 150). The image of a connected space under a continuous map is connected.

Theorem 1.4 (Theorem 24.1, page 153). If L is a linear continuum in the order topology, then L is connected, and so are intervals and rays in L.

Theorem 1.5 (Theorem 24.3, page 154 – Intermediate Value Theorem). Let $f: X \to Y$ be a continuous map, where X is a connected space and Y is an ordered set in the order topology. If a and b are two points of X and if r is a point of Y lying between f(a) and f(b), then there exists a point c of X such that f(c) = r.

2 Main Examples

Example (Example 6, page 156). The ordered square I_o^2 is connected but not path connected.

Proof. By Theorem 24.1, since I_o^2 is a linear continuum under the order topology, it is connected. We will show that it is not path connected by showing that there is no path between points $p = 0 \times 0$ and $q = 1 \times 1$ in I_o^2 .

Suppose for the sake of contradiction that there is a path $f:[a,b] \to I_o^2$. f is a continuous map from the connected interval [a,b] to I_o^2 . By the Intermediate Value Theorem, the image set f([a,b]) (which contains p and q, the smallest and largest elements in I_o^2) must contain every point $x \times y$ of I_o^2 .

Consider the subsets

$$U_x = f^{-1} (x \times (0,1))$$

for each $x \in I$. Note that since f is continuous, each U_x is open. Furthermore, by construction, each U_x is disjoint, as $f^{-1}(x \times (0,1)) \cap f^{-1}(y \times (0,1))$ for $x \neq y$.

For each $x \in I$, pick a rational number $q_x \in \mathbb{Q} \cap U_x$. Consider the map $g: I \to \mathbb{Q}$

$$q(x) = q_x$$
.

Since each Q_x is disjoint, this is an injective mapping from I into \mathbb{Q} . Consequently, we find that $|\mathbb{Q}| \geq |I|$. But \mathbb{Q} is countable whereas I is uncountable, so we have a contradiction.

We conclude that there is no path between points p and q in I_o^2 , so I_o^2 is not path connected. \square

Example. Let S denote the following subset of the plane:

$$S = \{x \times \sin\left(\frac{1}{x}\right) \mid 0 < x < 1\}.$$

 \overline{S} is known as the **topologist's sine curve**, and is not path-connected.

Before we begin, note that by Theorem 23.5, S is connected.

Furthermore, by Theorem 23.4, it follows that $\overline{S} = S \cup \{0 \times [-1, 1]\}$ is connected.

Proof. Suppose for the sake of contradiction that there is a path $f:[a,c]\to \overline{S}$ beginning at 0×0 and ending at some point of S. Define

$$L = \{t \mid f(t) \in 0 \times [-1, 1]\}.$$

Since f is c continuous, L is closed, so it has a larger element, which we can denote as b. By construction, $f \mid [b, c]$ (f restricted to the interval [b, c]) is a path with $f(b) \in 0 \times [-1, 1]$ and $f((b, c]) \subseteq S$. For the remainder of the proof, we will focus on the restricted map $f \mid [b, c]$.

Let f(t)=(x(t),y(t)). Note that by definition of b, x(b)=0 and x(t)>0 for any t>b. Furthermore, $y(t)=\sin\left(\frac{1}{x(t)}\right)$ for t>b.

To show that f is in fact not continuous, we show that there is a sequence of points $(t_n) \subseteq [b, c]$ such that $t_n \to b$ and $y(t_n) = (-1)^n$, contradicting the result from Theorem 21.3.

Let $n \in \mathbb{N}$. Choose u such that

$$x(b) < u < x\left(b + \frac{1}{n}\right)$$

satisfying $\sin\left(\frac{1}{u}\right)=(-1)^n$; such a value u exists as there are infinitely many oscillations between x(b)=0 and $x\left(b+\frac{1}{n}\right)$.

Since x is a continuous function from a connected set [b,c] to the ordered set [0,1] in \overline{S} , it follows from the Intermediate Value Theorem that there exists some $t_n \in (b,b+\frac{1}{n})$ satisfying $x(t_n) = u$.

Thus, we've constructed a sequence of points $(t_n) \subseteq [b, c]$ such that $t_n \to b$ and $y(t_n) = (-1)^n$; since the sequence $f(t_n) = (x(t_n), y(t_n))$ does not converge to f(b), we know by Theorem 21.3 that f is not continuous. We conclude that \overline{S} is not path-connected.