PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 15

MAT1106 — Introducción al Cálculo Fecha: 2020-10-22

Problema 1:

- (a) Demuestre que $\lim_{n\to\infty} \sqrt{1-\frac{1}{n^2}} = 1$.
- (b) Demuestre que $\lim_{n\to\infty} \cos\left(\frac{1}{n}\right) = 1$.
- (c) Demuestre que $\lim_{n\to\infty} n \sin\left(\frac{1}{n}\right) = 1$.
- (d) Encuentre el límite de $\left(\frac{3n-5}{4+3n}\right)^5$.

Solución problema 1:

Problema 2:

Sean x_n e y_n sucesiones tales que $x_n \to x$ e $y_n \to y$. Demuestre lo siguiente:

(a)
$$(x_n + y_n) \to x + y$$

(b)
$$(x_n y_n) \to xy$$

Solución problema 2:

Problema 3:

Sean $p(x) = a_k x^k + \ldots + a_0$ y $q(x) = b_j x^j + \ldots + b_0$, con a_k y b_j distintos de 0.

1) Demuestre que si k > j

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = \pm \infty$$

2) Demuestre que si k = j

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = \frac{a_k}{b_j}$$

3) Demuestre que si k < j

$$\lim_{n\to\infty}\frac{p(n)}{q(n)}=0$$

Solución problema 3:

Problema 4:

Sea x_n una sucesión convergente y $\varepsilon > 0$, demuestre que existe una subsucesión x_{n_k} tal que para todo $k \in \mathbb{N}$ se tiene

$$\left| x_{n_k} - x_{n_{k+1}} \right| < \varepsilon.$$

Solución problema 4:

Problema 5:

Sea x_n una sucesión. Definimos $s_n = \sum_{k=1}^n x_k$. Asuma que $s_n \to L$ y que x_n es siempre positiva. Definimos

$$r_n = \lim_{m \to \infty} \sum_{k=n+1}^m x_k.$$

- (a) Encuentre r_n de manera explicita.
- (b) Demuestre que $r_n \to 0$.

Solución problema 5:

_