

Red Team

Kunal Lad

Goal

- Adversarial agent which learns to exploit loopholes in agent's policy during training.
- Demonstrate effectiveness of Red Teams in Reinforcement Learning approaches.

Motivation

- Many RL environments have adversarial events which occur rarely
- Epsilon greedy agents might not encounter them enough
- Red Team can train to generate adversarial rare inputs

Training Environment

- Partially Observable Environment
 - State: Distance measured along 6 sensory arms
- Discrete Actions
 - Turn Left (+0.2 radians)
 - Turn Right (-0.2 radians)
 - Straight (0 radians)
- Transitions: Physics based simulator
- Reward (Discounted Episodic, γ = 0.9)
 - -50000 on crash
 - Min Distance on all sensor arms OR Sum of distances on all sensor arms

Training Environment (Red Team)

- Partially Observable Environment
 - State: Distance measured along 6 sensory arms
- Discrete Actions
 - Turn Left (+0.2 radians)
 - Turn Right (-0.2 radians)
 - Straight (0 radians)
- Transitions: Physics based simulator
- Reward (Discounted Episodic, γ = 0.9)
 - o -50000 on crash

Test Environment

- Partially Observable Environment
 - State: Distance measured along 6 sensory arms
- Discrete Actions
 - Turn Left (+0.2 radians)
 - Turn Right (-0.2 radians)
 - Straight (0 radians)
- Transitions: Physics based simulator
- Reward (Discounted Episodic, γ = 0.9)
 - +1000 on collision with agent
 - (Max Distance on all arms) OR
 - (Sum of distances on all arms)

Methodology

- Q Learning with function approximation
- Train separate models for agent and red team (trained jointly)
 - 2 Hidden Layers
 - Relu Activations
 - Adam Optimizer
 - Replay (Buffer size 50000)

Results

Normal Agent

Red Team

Conclusion

"If you know the enemy and yourself, you need not fear the result of hundred battles"