Eigenvalues and eigenvectors:

- **Eigenvalues** for a matrix A are the solutions to the equation $det(A \lambda I) = 0$.
 - \circ Σ eigenvalues = trace of the matrix.
 - The trace of a square matrix is the sum of all its diagonal elements
 - \circ Π eigenvalues = determinant of matrix
 - The matrix is invertible if Π eigenvalues $\neq 0$
- **Eigenvectors** are **linearly independent vectors** that represent the nullspace of $A \lambda I$.
 - o To find all eigenvectors for a matrix:
 - Find all eigenvalues of the matrix A by solving $det(A \lambda I) = 0$.
 - For each one of them (consider repetitions), find the corresponding eigenvector by solving the equation $(A \lambda I) x = 0$
- If $Ax = \lambda x$ then λ is an eigenvalue and x is an eigenvector of the matrix A.
 - ο $Ax = \lambda x$, $Bx = \alpha x$ does not necessarily imply that $\alpha + \lambda$ is an eigenvalue of A+B
 - It's true of A and B share the same eigenvectors
 - Same with multiplication.
 - o If the matrix has a **complex eigenvalue**, then its conjugate is also an eigenvalue of the same matrix.
 - o **Symmetric matrices** have real eigenvalues and perpendicular eigenvectors.
 - Because the eigenvectors are perpendicular, then the matrix S (details are next) is orthogonal matrix and is denoted by Q
 - It's known that $Q^{-1} = Q^{T}$, this will help in diagonalization process.
 - Q is the same as S, but its column vectors have to be **normalized**.
 - \circ **Antisymmetric** matrices (A^T = -A) have all eigenvalues imaginary (in form ci).
 - o In **triangular** matrices, eigenvalues are the elements on the main diagonal.
 - \circ Eigenvalues for A^k = eigenvalues for A, but raised to the power k.
 - Eigenvalues of A^T are the same as eigenvalues of A.

Matrix diagonalization: $A = SAS^{-1}$

- The process of converting A into a diagonal matrix which shares the same characteristics with A.
- This iterative algorithm was discussed in the tutorial, but not in MIT lecture notes.
 - o https://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
- The straightforward algorithm is to find all eigenvalues and eigenvectors of A, then:
 - Onstruct the matrix S where S is the matrix with all linearly independent eigenvectors of A as columns. $S = [x_1 \ x_2 \ ... \ x_n]$
 - \circ Λ is the diagonal matrix with all distinct eigenvalues at the main diagonal
 - Then we have: $S^{-1}AS = \Lambda$, $A^k = S\Lambda^k S^{-1}$
- The matrix A of dimension n*n is diagonalizable iff it has n linearly independent eigenvectors.
 - ο The **algebraic** multiplicity of an eigenvalue e is the power to which (λe) divides the characteristic polynomial.
 - The **geometric** multiplicity of an eigenvalue e is the number of linearly independent eigenvectors associated with it.
 - Distinct eigenvalues imply linearly independent eigenvectors, the converse is not always true.
 - A is diagonalizable iff for every eigenvalue that has multiplicity k, we have k linearly independent corresponding eigenvectors.

Applications of eigenvalues and vectors:

• The system of n differential equation in the form:

$$\begin{cases} \frac{du_1}{dt} = \sum_{i=1}^n \mathbf{a}_{1i} u_i \\ \dots & \text{is equivalent to } \frac{d\mathbf{u}}{dt} = A\mathbf{u} \text{ where } \mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

• The general solution for this system will be:

$$\mathbf{u}(t) = e^{At}u(0) = Se^{\Lambda t}S^{-1}u(0), e^{\Lambda t} = \begin{pmatrix} e^{\lambda_1 t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_n t} \end{pmatrix}$$

- Real parts of eigenvalues of A determine the stability of the solution,
 - ο If $Re(\lambda) > 0$ for at least 1 λ then the solution is **not stable** and has no steady state.
 - Else if Re(λ) < 0 for all λ 's then solution is stable and u(t) \rightarrow 0 when t $\rightarrow \infty$
 - Else if at least one $\lambda = 0$ (all others are negative) then the system has a steady state and $u(\infty)$ approaches some finite value.
- We don't need to calculate eigenvalues for the matrix to do the stability test, alternatively we use matrix pivots:
 - Signs of matrix pivots = signs of its eigenvalues.

Positive definite matrices:

- A positive definite matrix (A) is the matrix that satisfy any of these properties:
 - $\circ \quad x^TAx>0 \text{ for any nonzero real vector } x.$
 - if $x^T A x = 0$ then the matrix is positive semi-definite.
 - All the eigenvalues of M are strictly positive.
 - o All the upper-left submatrices have positive determinants (Sylvester criterion).
 - o All the pivots (without row exchanges) are strictly positive.
 - The k-th pivot $d_k = \det(A_k)/\det(A_{k-1})$ "upper left submatrices", $\det(A_0) = 1$.
 - lacktriangle The pivots are the nonzero elements of D in the LDL^T decomposition.
 - The pivots are the elements that are used in Gaussian elimination
 - The pivots are the nonzero leading elements in REF.
 - \circ It can be decomposed to A = R^TR, R has independent column vectors.
- **Property:** if A and B are both symmetric and positive definite, then so is A+B.
- Before discussing applications, we need to know that some polynomials have a corresponding symmetric matrix that is used to know some of their characteristics.
 - Let $\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2 \dots \ \mathbf{x}_n]$ be a vector of variables.
- Examples:
 - o For $P(\mathbf{x}) = ax_1^2 + bx_2^2 + 2c x_1 x_2$
 - The corresponding matrix $A = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$.
 - o For $P(\mathbf{x}) = ax_1^2 + bx_2^2 + cx_3^2 + 2hx_1x_2 + 2gx_1x_3 + 2fx_2x_3$
 - The corresponding matrix $A = \begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix}$.

Applications of symmetric positive definite matrices.

- Solving $P(\mathbf{x}) > 0$ is the same as determining if the corresponding matrix A is positive definite, we can use eigenvalues test or Sylvester criterion.
 - o Same for solving $P(\mathbf{x}) < 0$ and negative definite
- For finding minima:
 - \circ Let $P(\mathbf{x})$ be a polynomial that has a corresponding positive definite matrix, then:
 - $A\mathbf{x} = \mathbf{b} \Leftrightarrow P(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{T} A \mathbf{x} \mathbf{x}^{T} \mathbf{b}$.
 - Ax = b is the SLE that results from setting all the partial derivatives to 0, A is the corresponding matrix for the polynomial P.
 - We have $P_{min}(\mathbf{x}) = -\frac{1}{2}b^{T}A^{-1}b$, the minimum value of the polynomial.
- To check if a point P(x, y) is a minima or maxima or saddle point for a multivariable function $f(\mathbf{x})$
 - Construct the Hessian matrix of second partial derivatives.
 - If H is positive definite $\rightarrow P$ is a local min.
 - If H is negative definite $\rightarrow P$ is a local max.
 - If H is Indefinite $\rightarrow P$ is a saddle point.
 - If H is \pm semi-definite \rightarrow test is inconclusive.

Theorem 1.1 (Sylvester's criterion). Let A be an $n \times n$ symmetric matrix. Then:

- $A \succ 0$ if and only if $\Delta_1 > 0, \Delta_2 > 0, \ldots, \Delta_n > 0$.
- $A \prec 0$ if and only if $(-1)^1 \Delta_1 > 0, (-1)^2 \Delta_2 > 0, \dots, (-1)^n \Delta_n > 0$.
- A is indefinite if the first Δ_k that breaks both patterns is the wrong sign.
- Sylvester's criterion is inconclusive (A can be positive or negative semidefinite, or indefinite) if the first Δ_k that breaks both patterns is 0.
- To find the axes of rotation of a quadratic curve.
 - Represent the equation of the curve as $\mathbf{x}^{T}A\mathbf{x} = \mathbf{c}$
 - Decompose A into $QΛQ^T$.
 - o Now we have the original equation as $(\mathbf{x}^TQ)\Lambda(Q^T|\mathbf{x}) = c \to X^T\Lambda X = c$
 - Construct the new polynomial from that system in the form of $\lambda_1 u^2 + \lambda_2 v^2 = c$
 - Axes of rotation are u = 0, v = 0.

Similar matrices:

- A and B are similar if $B = M^{-1}AM$, for some non-singular matrix M.
- The matrices that have the same eigenvalues are all similar to each other and similar to Λ .
 - Because all of them can be decomposed into $A = SAS^{-1}$
 - o They don't necessarily have the same eigenvectors.

Singular value decomposition: $A = U\Sigma V^T$

- U: eigenvectors matrix (S) of AA^T, V: eigenvectors matrix (S) of A^TA
- Both U and V are orthogonal matrices $\Rightarrow UU^T = I = VV^T$
 - $\circ \quad \text{All } v_i \text{ and } u_i \text{ (eigenvectors) should be normalized.}$
- Σ is a diagonal scale matrix = the sqrt of eigenvectors of A^TA or AA^T
- $\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_r \end{bmatrix} = \sqrt{\Lambda}, \Lambda = eigenvalues(A^TA) = eigenvalues(AA^T)$
 - o The last equality doesn't hold for non-square matrices.

- **Informal description of calculating SVD for non-square matrices:**
 - o A^TA and AA^T will still be square matrices, but they will not have the same dimensions. We can still find U (dimension a*b) and V (dimension c*d).
 - ο In order for the equality $A = U\Sigma V^T$ to hold, Σ should have dimension b*c.
 - If needed, add more zero rows/columns to satisfy that requirement.

SVD and the fundamental spaces:

- From the fact that $Av_i = \sigma_i u_i$ we conclude (r = Rank(A), A is n*n matrix)
 - \circ $v_1, v_2, ..., v_r$ is an orthonormal bases for the row space of A.
 - \circ $u_1, u_2, ..., u_r$ is an orthonormal bases for the column space of A.
 - \circ $v_{r+1}, ..., v_n$ is an orthonormal bases for the null space of A.
 - \circ $u_{r+1}, ..., u_n$ is an orthonormal bases for the left null space of A.
 - if r = n, the null space and the left null space contain only the zero vector.

Left and right inverse

- For square non-singular matrices, the left and right inverse are the same.
- For rectangular matrices, the left and right inverse cannot be the same.
 - o Consider the rectangular matrix A with dimension n*m.

 - A_{left}⁻¹ = (A^TA)⁻¹A^T is the matrix that satisfies the property A_{left}⁻¹ A = I_m.
 A_{right}⁻¹ = A^T(AA^T)⁻¹ is the matrix that satisfies the property AA_{right}⁻¹ = I_n.
 - These matrices are not necessarily unique.

Pseudoinverse

- Suppose we have several distinct vectors $x_1, x_2, ..., x_n$ and we multiplied each of them from the left by a non-zero matrix A to get $Ax_1, Ax_2, ..., Ax_n$
- This operation is invertible, by multiplying the resulting vectors from the left by the pseudoinverse of A.
- The pseudoinverse for a matrix A is the matrix A^+ s.t $\mathbf{x} = A^+A\mathbf{x} \ \forall x \in Rowspace(A)$.
- AA_{left}^{-1} and $A_{right}^{-1}A$ are both possible pseudoinverses for A.
- If $A = U\Sigma V^T$ then $A^+ = V\Sigma^+U^T$, Σ^+ is the same as Σ with every σ_i inverted to be $1/\sigma_i$.
 - \circ If $\sigma_i = 0$, then we keep it 0 while calculating Σ^+