Syntax and Semantics of V^-

Roger Burtonpatel

October 22, 2023

1 Syntax

We present a grammar of V^- :

Programs	P	::=	$\{d\}$	definition
Definitions	d	::=	$\operatorname{val} x = e$	bind name to expression
Expressions	e	::= 	if $g_{lpha}\left\{ \left[\left] g_{lpha} ight\}$ fi $K\{e\}$	name if-fi value constructor application
Guarded Expressions	g_{lpha}	 = 	$e_1 \ e_2$ $\rightarrow \alpha$ $e; \ g_{\alpha}$ $E\{x\} \cdot g_{\alpha}$ $e_1 = e_2; \ g_{\alpha}$	function application terminating α intermediate expression existential equation
Value Constructors	K	::=		cons empty list name beginning with # name beggining with capital letter signed integer literal

A *name* is any token that is not an integer literal, does not contain whitespace, a bracket, or parenthesis, and is not a value constructor name or a reserved word.

rab: Would like help cleaning up the format on this, specifically with regards to the regex. The one downside of this nicer package is that descriptions will not wrap, so describing an integer literal in english isn't an option as far as I can tell.

2 Refinement ordering on environments

$$\rho \subseteq \rho'$$
 when $dom \rho \subseteq dom \rho'$
and $\forall x \in dom \rho : \rho(x) \subseteq \rho'(x)$

3 Forms of Judgement for V^- :

Metavaria	Metavariables				
v^{α}	a (possibly empty) sequence of values.				
eq	equation				
${f reject}$	equation rejection				
r	$v^{\alpha} \mid \mathbf{reject}$: a result of a sequence of values or rejection				
ho	environment: $name \rightarrow \mathcal{V}_{\perp}$				
$\rho\{x\mapsto y\}$	environment extended with name x mapping to y				
${\mathcal T}$	Context of all temporarily stuck equations (a sequence)				
e	An expression				
g	A guarded expression				

Sequences					
	the empty sequence Concatenate sequence S_1 and sequence S_2 Cons x onto sequence S_2				

Expressions

An expression evaluates to produce possibly-empty sequence of values.

A guarded expression evaluates to produce a **result**. A result is either a possibly-empty sequence of values or reject.

$$r ::= v^{\alpha} \mid \mathbf{reject}$$

$$\rho; \ \mathcal{T} \vdash \alpha \Downarrow v^{\alpha} \ \ (\text{EVAL-EXPR})$$

$$\rho; \ \mathcal{T} \vdash g \Downarrow r \ \ (\text{EVAL-GUARDED-EXPR})$$

4 Sequences

The trivial sequence is ε . Sequences can be concatenated with infix \cdot . In an appropriate context, a value like x stands for the singleton sequence containing x.

$$\varepsilon \cdot ys \equiv ys$$
$$ys \cdot \varepsilon \equiv ys$$
$$(xs \cdot ys) \cdot zs \equiv xs \cdot (ys \cdot zs)$$

5 Rules (Big-step Operational Semantics) for V^- :

Evaluating Guarded Expressions

(EVAL-ARROWEXPR)
$$\frac{\rho; \ \varepsilon \vdash e \Downarrow v^{\alpha}}{\rho; \ \varepsilon \vdash \to e \Downarrow v^{\alpha}}$$
(EVAL-EXISTS)
$$\frac{\rho\{x \mapsto \bot\}; \ \mathcal{T} \vdash g \Downarrow r}{\rho; \ \mathcal{T} \vdash \exists x. \ g \Downarrow r}$$
(G-EVAL-WITH-CTX)
$$\frac{\rho; \ eq \cdot \mathcal{T} \vdash g \Downarrow r}{\rho; \ \mathcal{T} \vdash eq; \ g \Downarrow r}$$

Evaluating General Expressions

$$(\text{IF-FI-SUCCESS}) \quad \frac{\rho; \ \mathcal{T} \vdash g \Downarrow v^{\alpha}}{\rho; \ \mathcal{T} \vdash \text{IF } g \square \dots \text{FI} \Downarrow v^{\alpha}}$$

$$(\text{IF-FI-REJECT}) \quad \frac{\rho; \ \mathcal{T} \vdash g \Downarrow \mathbf{reject} \qquad \rho; \ \mathcal{T} \vdash \text{IF } \dots \text{FI} \Downarrow v^{\alpha}}{\rho; \ \mathcal{T} \vdash \text{IF } g \square \dots \text{FI} \Downarrow v^{\alpha}}$$

$$(\text{VCON-EMPTY}) \quad \frac{\rho; \ \mathcal{T} \vdash e_i \Downarrow v_i^{\alpha} \qquad 1 \leq i \leq n}{\rho; \ \mathcal{T} \vdash K(e_1, \dots e_n) \Downarrow K(v_1^{\alpha}, \dots v_i^{\alpha})}$$