Curso: Estadística Multivariada

Tarea 7

Fecha de entrega: martes 17 de marzo de 2020

Instrucciones

• Subirla a la plataforma en un zip que contenga el código y el archivo pdf con los resultados

1 Problemas

- 1. Recuerde que la matriz **H** está definida por $H = Z(Z'Z)^{-1}Z'$ con elementos diagonales h_{jj} .
 - (a) Muestre que \boldsymbol{H} es una matriz idempotente.
 - (b) Muestre que $0 < h_{jj} < 1, j = 1, 2, ..., n$, y que $\sum_{j=1}^{n} h_{jj} = r + 1$, donde r es el número de variables independientes en el modelo de regresión (De hecho, $(1/n) \le h_{jj} < 1$).
- 2. Regresión lineal múltiple.
 - (a) Utilice el conjunto de datos states.txt.
 - (b) Ajuste un modelo que pronostique la energía consumida per capita (energía) con respecto al porcentaje de residentes que viven en áreas metropolitanas (metro). Reporte lo siguiente:
 - i. Examine / grafique los datos antes de aplicar el modelo
 - ii. Escriba el modelo e interpretelo
 - iii. Grafique el modelo para buscar desviaciones de los supuestos del modelado
 - (c) Seleccione uno o más predictores adicionales para agregar al modelo y repita los pasos anteriores. ¿Es este modelo significativamente mejor que el modelo con la variable metro solo como único predictor?
- 3. Los datos del archivo "costofliving.txt" enumeran algunas estadísticas del costo de vida para cada uno de los 50 estados de los USA. Los tres costos son: alquileres de apartamentos, costo de casas y el índice de costo de vida.
 - (a) Realiza una regresión lineal multivariada para explicar estas tres métricas en términos de las poblaciones estatales e ingresos medios. ¿Son útiles estas variables independientes para explicar conjuntamente las variables de costo?
 - (b) Ajusta tres modelos de regresión lineal de manera separada y verifica la utilidad de las variables independientes en cada uno ellos. Compara los resultados con los obtenidos en el inciso (a)
- 4. Considere los datos de contaminación del aire (datoscontaminacion). Sea $Y_1 = NO_2$ y $Y_2 = O_3$, las dos respuestas (contaminantes) correspondientes a las variables predictoras Z_1 =viento y Z_2 =radiacion solar

- (a) Desarrolle un análisis de regresión usando únicamente la primera respuesta Y_1
 - i. Sugiera y ajuste modelos de regresión lineal apropiados
 - ii. Analice los residuales
 - iii. Construya un intervalo de predicción del 95% para NO_2 correspondiente a $z_1=10$ y $z_2=80$
- (b) Desarrolle un análisis de regresión multivariada múltiple usando las respuestas Y_1 y Y_2
 - i. Sugiera y ajuste modelos de regresión lineal apropiados
 - ii. Analice los residuales
 - iii. Construya un elipsoide de predicción del 95% para ambas NO_2 y O_3 , para $z_1=10$ y $z_2=80$. Compare esta elipse con el intervalo de predicción en la parte (a)iii. Comente