NOME: CORRECÇÃO TURMA

Departamento de Engenharia Electrotécnica e de Computadores

Sistemas Digitais (2000/2001)

1^a chamada – 26/Junho/2001

Duração: 2horas, sem consulta.

Antes de iniciar a prova, tenha em atenção as seguintes recomendações:

- Leia atentamente toda a prova antes de a iniciar.
- Mostre e justifique adequadamente todos os passos das suas respostas.
- A prova deverá ser resolvida no enunciado. Se necessário, utilize o verso para continuar a sua resolução.
- Assine todas as folhas que entregar, indicando em cada uma o número de páginas/folhas que entregou.
- 1 Pretende-se construir um sistema electrónico para prever o estado do tempo com base na medida da variação de pressão atmosférica verificada nas últimas 6 horas. O sistema é formado por um sensor de pressão atmosférica com saída digital Pa, um sistema de memória que armazena o historial da pressão e fornece, em cada instante, o valor da pressão atmosférica P6h existente há 6 horas, e um circuito subtractor para calcular a variação de pressão Vp.

a) Sabendo que a pressão atmosférica **Pa** medida pelo sensor de pressão (em mBar) é positiva e nunca ultrapassa o valor 1100₁₀, diga, justificando, qual é o número mínimo de bits necessários para representar essa grandeza.

Como o valor de pressão que se pretende representar apenas assume valores positivos, bastará utilizar a representação binária de números positivos. Como com N bits é possível representar números inteiros positivos entre 0 e 2^N -1, deveremos determinar um número (inteiro) N que satisfaça a inequação:

donde se tira: $1100 <= 2^{N}-1$ $N >= \log_{2}(1100+1)$, N inteiro N = 11 (ou $2^{11}-1=2047$)

Note que não necessita de calcular log2(1101)! Basta saber de cor a "tabuada" das potências inteiras de dois: $log_2(2048)$ = 11, ou 2^{11} =2048.

b) Sabendo que a variação de pressão Vp (positiva ou negativa) nunca excede 40 mBar em valor absoluto, indique, justificando, qual o número mínimo de bits necessário para representar, em complemento para dois, essa variação de pressão.

A variação de pressão Vp pode assumir valores no intervalo [-40, +40] e deverá ser representada em complemento para dois. Como com N bits podemos representar números com sinal em complemento para dois entre [- 2^{N-1} ,+ 2^{N-1} -1], o menor número de bits que permite representar o intervalo pretendido é 7: - 2^{7-1} =-64 e + 2^{7-1} -1=+63

c) Sabendo que o valor actual de pressão é 923 mBar e há 6 horas atrás era de 957 mBar, obtenha o valor da variação de pressão (pressão actual Pa menos a pressão há 6 horas atrás P6h) efectuando a operação de subtracção em binário e tendo em conta as respostas dadas nas alíneas anteriores.

Nota: $923_{10} = 1110011011_2$ e $957_{10} = 11101111101_2$.

Realizando a operação de subtracção em binário em 10 bits (note que basta realizar a operação de subtracção em 10 bits porque os dois valores são inferiores a 1024) obtemos:

1110011011 -1110111101 1111011110

Como o resultado deverá ser representado em 7 bits (ver b)), então o valor da variação de pressão pretendido são os 7 bits menos significativos do resultado da subtracção realizada acima: 1011110 (-34)

RECÇÃO_____TURMA

2 - Considere um circuito que realiza a operação de multiplicação por 3 de um número positivo de 4 bits representado por $D_3D_2D_1D_0$ compreendido entre 0 e 9, como se mostra na figura:

a) Construa a tabela de verdade que traduz a funcionalidade prevista para o circuito.

Como se pretende que o circuito produza o resultado da multiplicação por 3 de números de 4 bits entre 0 e 9, então podemos considerar que as saídas P4~P0 são indiferentes (x na tabela) quando as entradas D3~D0 representam números superiores a 9:

$D_3\;D_2\;D_1\;D_0$	P_4 P_3 P_2 P_1 P_0				
0 0 0 0	0 0 0 0 0				
0 0 0 1	0 0 0 1 1				
0 0 1 0	0 0 1 1 0				
0 0 1 1	0 1 0 0 1				
0 1 0 0	0 1 1 0 0				
0 1 0 1	0 1 1 1 1				
0 1 1 0	10010				
0 1 1 1	1 0 1 0 1				
1 0 0 0	1 1 0 0 0				
1 0 0 1	1 1 0 1 1				
1 0 1 0	X X X X X				
1 0 1 1	X X X X X				
1 1 0 0	X X X X X				
1 1 0 1	X X X X X				
1 1 1 0	X X X X X				
1 1 1 1	X X X X X				

b) Obtenha as expressão simplificadas na forma de soma-de-produtos para a função P4(D3,D2,D1,D0), e na forma de produto-de-somas para a função P2(D3,D2,D1,D0).

$$P4 = D2.D1 + D3$$

 $P2 = (D2+D1) \cdot (D2+D0') \cdot (D1'+D2'+D0)$

NOME: _____TURMA

3 – A firma Caricas&caricas Lda. pretende projectar o sistema de controlo para uma máquina de fabrico de cápsulas para garrafas de cerveja (caricas), cortando rodelas de uma tira de metal por acção de uma prensa cortante. A tira de metal desloca-se sob a prensa por acção de um par de rolos accionados por um motor, que é ligado colocando o sinal de controlo MOTOR com o nível lógico 1. Para localizar a tira metálica sob a prensa existem dois sensores fotoeléctricos (S1 e S2) colocados como se indica na figura, que são activados (valor lógico 1) sempre que é interrompido o feixe luminoso emitido pelos LEDs L1 e L2 (estes LEDs podem estar sempre ligados e não é necessário que sejam comandados pelo sistema de controlo). O sensor S1 detecta a

presença da tira metálica imediatamente antes da prensa e **S2** detecta o metal imediatamente após a prensa. A prensa é actuada por um sinal de controlo (**PRENSA**) sempre que se detecte que existe tira de metal ainda não cortada debaixo da prensa. Quando **PRENSA** é actuado (valor lógico 1), a prensa desce cortando uma rodela de metal, subindo automaticamente por acção de um sistema pneumático. Para verificar o estado da prensa, existe um sensor **PRENSA_SUBIDA** que apresenta o valor lógico 1 quando a prensa está na posição superior, pronta para realizar novo corte.

O sistema de controlo deve posicionar a tira metálica sob a prensa, accionar a prensa para cortar uma rodela de metal, esperar que a prensa volte à posição superior e voltar a colocar correctamente a tira de metal por forma a cortar nova rodela. O processo é repetido da maneira que se ilustra na figura seguinte, até que a tira metálica chegue ao fim, altura em que o sistema de controlo deve parar. Admite-se que quando o sistema é ligado não existe chapa de metal sob a prensa (S1=0 e S2=0).

Complete o diagrama de estados apresentado na figura da próxima página que descreve o funcionamento do sistema de controlo.

TURMA

NOME:____CORRECÇÃO_____

3 - (continuação)

NOME:_____CORRECÇÃO_____TURMA

4 − A tabela de transição de estados da figura descreve uma máquina de estados de Moore com uma entrada X e uma saída Z:

estado	próxim	no estado	saída	11.0 ~ 1			
presente	X=0	X=1	Z	codificação de estados			
A	A	В	0	A=001			
В	C	В	0	B=101			
C	A	D	0	C=111			
D	C	E	0	D=011			
E	C	В	1	E=100			

a) Supondo a codificação de estados representada na figura, desenhe o esquema do circuito lógico que implementa a máquina de estados, utilizando *flip-flops* do tipo D, e garantindo que para os estados não especificados o estado seguinte é o estado A e a saída Z é indiferente. (utilize o verso da folha)

Como temos 5 estados, necessitamos de 3 flip-flops para representar a variável de estado: Q_2, Q_1, Q_0 . Vamos construir a tabela de transição de estados utilizando a codificação dada, e assumindo, para os estados não especificados (códigos 000, 010 e 110), que o próximo estado é o estado A (001):

	estado presente	próximo estado	saída				
A B C D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_2^* Q_1^* Q_0^*$ $X=0$ $X=1$ $0 \ 0 \ 1 \ 1 \ 0 \ 1$ $1 \ 1 \ 1 \ 1 \ 0 \ 0$ $1 \ 1 \ 1 \ 1 \ 0 \ 0$	Saida	codificação de estados A=001 B=101 C=111			
E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	D=011 E=100			

estados não definidos: próximo estado = estado A (001)

Partindo da tabela acima, vamos agora construir os mapas de Karnaugh para obter expressões minimizadas para as funções Q_2^* , Q_1^* , Q_0^* e Z, e desenhar o circuito lógico completo para o circuito:

NOME:____CORRECÇÃO

_TURMA

$$Q2* = Q2'.Q1.Q0 + Q2'.Q0.X + Q2.Q1'$$

$$Q1* = Q2.Q1'.X' + Q2.Q1.Q0.X + Q2'.Q1.Q0.X'$$

$$Q0* = Q2+Q1'+Q0'+X'$$

$$Z = Q2.Q1'.Q0'$$

Um circuito lógico que realiza a máquina de estados é o seguinte:

NOME: CORRECÇÃO

TURMA

b) Indique as alterações a efectuar no circuito anterior se, para os estados não especificados, o estado seguinte pudesse ser apenas o estado A ou o estado B.

Como o estado A é codificado como 001 e o estado B como 101, apenas seria alterada a função lógica que realiza a função Q_2^* , já que para os 3 estados não especificados (000, 010 e 110) esta função passaria a ser indiferente. O novo mapa de Karnaugh para a função Q_2^* seria então:

$$Q2* = Q2'.Q1 + Q2'.X + Q2.Q1'$$

O circuito lógico seria modificado (simplificado) apenas na parte que produz a função Q_2^* , necessitando agora de 3 portas AND de duas entradas e uma porta OR de 3 entradas:

NOME: ____CORRECÇÃO _____TURMA

5 –

a) Usando um *shift-register* 74x194 (ver tabela abaixo) e circuitos lógicos adicionais, construa um circuito síncrono com uma entrada X e uma saída Z que coloca na saída o valor lógico 1 sempre que detectar na entrada X a sequência de valores 1011 em 4 transições de relógio consecutivas, como se mostra no exemplo seguinte:

Para construir o circuito pedido, vamos configurar o 74x194 em modo shift-left (S1=1, S0=0) e ligar a entrada LIN à entrada X do circuito pedido. Desta forma, teremos sempre presente nas saídas QA~QD o estado ocorrido na entrada X em 4 transições consecutivas do sinal de relógio. Para detectar a sequência pedida, basta ligar às saídas QA~QD um circuito combinacional que produza uma saída 1 sempre que as saídas tenham o estado 1011 (uma porta AND com uma entrada negada):

função	S1	ន0	QA*	QB*	QC*	QD*	
hold	0	0	QA	QB	QC	QD	_
shift right	0	1	RIN	QA	QB	QC	
shift left	1	0	QB	QC	QD	LIN	
load	1	1	A	В	С	D	

b) Modifique o circuito anterior por forma a que apenas sejam detectadas sequências não sobrepostas, como se exemplifica na figura seguinte:

Para detectar apenas sequências não sobrepostas é necessário que, no próximo estado a seguir à detecção de uma sequência válida:

- i) seja carregado para o primeiro bit (QD ou o mais à direita se considerarmos o sentido do deslocamento para a esquerda) o valor presente na entrada X.
- ii) os restantes bits (QC,QB e QA) sejam colocados com zero para "estragar" o resto da sequência já detectada

NOME:____CORRECÇÃO_____TURMA

Como a função Load é activada com S1=1 e S0=0, basta ligar a saída Z à entrada S0 (quando detectar a sequência, Z=1 e faz Load, quando não detecta sequência, Z=0 e faz shift-left), ligar a entrada D à entrada X e as entradas C, B e A a zero (quando faz Load carrega para QD~QA o valor X000, onde X representa o valor lógico presente na entrada X):

- 6 Considere o circuito da figura, baseado num contador *up-down* 74x169, cuja funcionalidade é descrita pela tabela abaixo.
- a) Admitindo o estado inicial Q_D,Q_C,Q_B,Q_A=0000, determine a sequência (em binário) produzida nas saídas Q_D,Q_C,Q_B,Q_A.

Página 10

Analisando o circuito podemos concluir que:

- i) o sentido de contagem é definido pelo estado da saída QD': QD=0 conta para cima, QD=1 conta para baixo
- ii) quando QD~QA=0101 é feito um Load de 1011
- iii) quando QD~QA=1000 é feito um Load de 0011

A sequência de valores ocorridos nas saídas do contador será:

b) Modifique o circuito apresentado de forma a acrescentar-lhe uma entrada X, activa no nível lógico alto, que permita reinicializar as saídas com o valor Q_D , Q_C , Q_B , Q_A =0011.

Para reinicializar as saídas com 0011, pode-se ligar a entrada X negada a uma terceira entrada da porta AND que controla o sinal Load do contador. Para que esse Load provoque o carregamento com 0011, teremos de modificar o circuito que alimenta a entrada D do contador de forma a que nesse caso seja imposto um 1 na entrada D (note que C, B e A estão já ligadas aos valores lógicos pretendidos). Um circuito que realiza essa função é o seguinte:

- FIM -