

Hands-on workshop with sensorized mechatronic platforms

Prof. Calogero Oddo, **Dr. Fabrizia Auletta**

3rd February 2025

The Multisensory Scanner integrates:

Vision data for surface 3D reconstruction

Acoustic data for bio-material ultrasonic characterization

Al technologies for data integration and processing

Our core technology integrates:

Vision data from n.2 RGB-D cameras

Acoustic data from 16 MHz needle ultrasonic probe

Al technologies run on a dedicated workstation (e.g., PC, Desktop)

The Multisensory Scanner ideal workflow

The Multisensory Scanner **hands-on** workflow

Image/Depth Acquisition

- Object detection in camera reference frame and transformation in scanner reference frame
- Definition of the point to inspect

- Get platform state and data
- Send point to inspect to platform
- Set platform state:
 - to move actuators to point
 - to touch the object
 - to stop contact and return home

The Multisensory Scanner **hands-on** workflow

The Multisensory Scanner **hands-on** workflow

Multisensory Scanner research results

Experimental results of the first prototype of the platform proved its ability to localize areas of different biomechanical characteristics inserted in

laboratory-made Agar phantoms, based on mechanical (a, top panel) and acoustic (a, bottom panel) measurements [1], excised animal liver, based on the combined evaluation of amplitude (CIA) and shape (CIS) of the acoustic signal measured by the ultrasound probe [2].

Multisensory Scanner research results

- The first apparatus was coupled with a novel tele-palpation apparatus [1] to enable the detection of nodules with various distinct stiffness buried in an adhoc polymeric phantom [2]
- The effectiveness was proved under two experimental conditions of real-time telepresence:
 - with the platform placed in the visible range of a user
 - with the platform and the user being 50 km apart.

Available data

- Camera images uploaded in shared folder (<u>link</u>)
- Remaining data, shared over UDP connection
 - port 8190
 - Semicolon (;) separated string, containing either 16 or 4017 numbers (double)

Available data – interpretation

Scanner State

Scanner position

Load cell data

Ultrasound data

Timestamp

• Said **S(i)** the received string via UDP:

- S(0) == 1 if platform is operative, 0 otherwise
- S(1) == 1 if platform is in the set position, 0 otherwise
- S(2) == 1 if linear actuator is touching the sample, O otherwise
- S(3) == 1 if linear actuator exceeded its travel range, 0 otherwise
- S(8) == 1 if linear actuator is in position (0,0,0), 0 otherwise
- S(9) state id of the PLC state machine
- S(14) timestamp in seconds of scanner data acquisition
- S(15) timestamp in seconds of ultrasound data acquisition

Available data – interpretation

Scanner State

Scanner position

Load cell data

Ultrasound data

Timestamp

- Said **S(i)** the received string via UDP:
 - S(4) + S(11)/1000

millimeters, is position X

• S(5) + S(12)/1000

millimeters, is position Y

• S(6) + S(13)/1000 + S(7)/200

millimeters, is position Z

- S(10) / 27648 (if |S(10)| < 27648) Newton, is Force along Z S(10) / 32767 (otherwise)
- S(16:4017)

Ultrasound data

To be received data

Scanner next state

Scanner next position

- UDP connection
 - port 8191
- Semicolon (;) separated string

To be received data

Sequence of command to send	Expected behavior	
ID *	 Scanner recognize user and allow user control 	
ID; S0; X; Y; Z **	 Scanner moves to position X, Y, Z 	
ID; S1	Scanner start moving downward and stop if in contact	
ID; S2	Scanner stop contact and returns home	

^{*} Each user will set their own ID

^{**} X, Y, Z represent the position in millimiters

Multi sensory scanner – state machine

Other resources available

- Transformation matrix in
 - folder name "test_cal"
- Images and pointcloud of the empty platform in
 - folder name "test_O_empty_20250203" for rear RGBD camera
 - folder name "test_1_empty_20250203" for front RGBD camera
- Remember: D405 identifies rear camera
 - **D435** identifies front camera

LET'S TRY IT

Sensory augmentation collaborative robotics Table Ctronics Table Collaborative robotics Bidelectronics Fings Consumer electronics Find Mechanoteceptors Wearable technologies Happy Telepresence displays Went Treating Mension of Control of the Street of the Stre Tactile sensurs & Heart piguecharics aring the see Michael and Michael aring a see of the see o Wictorestion Semination of Sem Industry 4.0 Haptic displays

Object detection suggestions

- Read information about the scene, including camera settings, images, and point cloud data.
- Load calibration files to understand how cameras are positioned.
- Load a base reference mask that represents the platform.
- Verify that the cameras used for capturing the scene are the same as those in the calibration.
- Ensure they have the same type and serial number to avoid mismatches.
- For each captured scene, get the point cloud data (3D points of the object).
- Use stored transformation data to align it to the platform.
- Apply the necessary transformations so that object points are placed in the platform's reference frame.
- Compare each captured image with a reference image from calibration.
- Identify the region where the object is located.
- Extract a mask (a filtered version of the point cloud) that contains only the object.

Available data - recap

Scanner State

Scanner position

Load cell data

Ultrasound data

Timestamp

	isReady_Festo	1 if platform is operative, 0 otherwise	bit	
	isArrived_Festo	1 if platform is in the set position, 0 otherwise	bit	
	isTouching_SMAC	1 if linear actuator is touching the sample, 0 otherwise	bit	
	isMaxStroke_SMAC	1 if linear actuator exceeded its travel range, 0 otherwise	bit	
	posx	x-axis position (integer part)	mm	
tri-axial	posy	y-axis position (integer part)	mm	
motorized	posz	z-axis position (integer part)	mm	
platform	posz2	voice coil z-axis position	a.u.	
	isHome_SMAC	1 if platform is in position (0,0,0), 0 otherwise	bit	
	state_Festo	state id of the PLC state machine	number	
	Fz	normal force	a.u.	
	posx	x-axis position (fractional part)	mm	
	posy	y-axis position (fractional part)	mm	
	posz	z-axis position (fractional part)	mm	
	CPXEts	timestamp of data collection	seconds	
Ultrasound	USts	timestamp of data collection	seconds	
	0-3999	ultrasound signal	a.u.	