GR5067 Natural Language Processing Quantitative Methods – Social Sciences (QMSS)

Professor: Patrick Houlihan

Introduction

- Professor: Patrick Houlihan, PhD
 - o Email: <u>pjh2144@columbia.edu</u>
 - Office Hours: Monday 06:30pm-7:45pm
 - Please contact me in advance
- Class:
 - When: Mon 8:10pm-10:00pm EST
 - Location: Kent Hall 413
- TAs:
 - Lin Zhu lz2808@columbia.edu
 - Sibo Geng sg4010@columbia.edu
 - Zeya Ahmad <u>za2291@columbia.edu</u>

Introduction

- Expectations
- My Background
- TA Introduction
- Syllabus Review
- Project Review
- Required Installations
- What is Natural Language Processing?
- Python
- Natural Language Toolkit (NLTK)

Expectations

- Familiar with a programming language, i.e. R, Java, Matlab
- Previous experience with Python a plus, though NOT a show stopper
- Lots of data wrangling as text can be quite messy
- Professor and TAs are here to help
- Effort and Grade are directly correlated
 - You get out of the class what you put in

Professor Background

- Spent 15+ years in semiconductors
 - Altera
 - Nvidia
- Last 10 years been surrounded by big data
 - Dissertation:
 - Forecasting Asset Price Direction Through Sentiment
 - Publications:
 - Risk Premium of Social Media Sentiment
 - Can Sentiment Analysis and Options Volume Anticipate Future Returns?
 - Leveraging a call-put ratio as a trading signal
 - Leveraging Social Media to Predict Continuation and Reversal in Asset prices
- Founded financial data analytics company SentiQuant
- Currently Senior Vice President, Data Science at Publicis Media

Syllabus Review

- HW 50%
 - o 4 HWs
 - Equal Weighted
- Project 50%
 - o Paper 30%
 - Presentation 20%

Textbooks

https://web.stanford.edu/~jurafsky/

Natural Language Processing with Python (https://www.nltk.org/book/)

Project Review

- Team based project 50% total grade
 - Presentation 20%
 - Paper 30%
- Illustrate knowledge of Python and NLP techniques

Nice to Know

- Optional but highly recommended
- Create GitHub accounts:
 - https://github.com/

Required Installations

- Python 3.X version
 - https://www.anaconda.com/download/
- NLTK download and Install

What is Natural Language Processing?

- Interaction between computers and human (natural) languages
 - Understanding Process meaning of spoken/typed words
 - Generation Expression into natural (human) language i.e. English
- Processing of vast amounts of natural language data (text)
- Brief History
 - Started in 50's
 - Alan Turing
 - Turing test
 - Test of intelligent behavior

Applications of Natural Language Processing

- Language Modeling
 - Predict next word based on previous words
- Speech Recognition
 - Mapping acoustical signals to a natural language
- Word Associations
 - Determine synonyms and related words for a word or phrase
- Sentiment Analysis
 - Determine tone or mood of author or entire society
- Text Classification
 - Predict categorical associations of text
- Topical Extraction
 - Determine main topic/theme of a body of text

Python

- Big emphasis on Python (not of Serpentes Suborder) programming language
- Python Programming Language
 - Code instructions in a program
 - Syntax valid structures and commands
 - Output Messages printed by program
 - Shell Interpreter
 - Integrated Development Environment (IDE) Software to write and test software

(base) C:\Users\pathouli\myStuff\academia\columbia\socialSciences\GR5067\HW\1>python
Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Python Syntax

Python uses indentation

- Variables
 - Variables are case sensitive, myVar is different than myvar
 - o Do:
 - Start variable name with a letter
 - O Don't:
 - No whitespace
 - Begin with a number
 - Use operator symbols like between words

Python Math Commands

Command name	Description
abs (value)	absolute value
ceil(value)	rounds up
cos (value)	cosine, in radians
floor(value)	rounds down
log(value)	logarithm, base e
log10 (value)	logarithm, base 10
max(value1 , value2)	larger of two values
min(value1, value2)	smaller of two values
round (value)	nearest whole number
sin(value)	sine, in radians
sqrt(value)	square root

To use some of these you need to import the math library → from math import *

Python

