Домашнее задание 1

Сдать задание нужно до 26 октября. (16:00).

Контест: https://contest.yandex.ru/contest/14656/enter/

Контест для заочников: https://contest.yandex.ru/contest/14907/enter/

От каждой задачи нужно решить только один свой вариант. Варианты прописаны в ведомости:

https://drive.google.com/open?id=1RqX6nsJVEaEKUrAOnhR847Z9rco44GT8Z_fJbUu1RP0

Сдаваемый код должен удовлетворять минимальным правилам кодирования:

https://docs.google.com/document/d/1NxQAhxyhoRD59sURVDn1eUniqDWQKxqergrJgx-bRFo

Задача № 1 (5 баллов)

Во всех задачах из следующего списка следует написать структуру данных, обрабатывающую команды push* и pop*.

Формат входных данных.

В первой строке количество команд n. n ≤ 1000000.

Каждая команда задаётся как 2 целых числа: a b.

a = 1 - push front

a = 2 - pop front

a = 3 - push back

a = 4 - pop back

Для очереди используются команды 2 и 3. Для дека используются все четыре команды.

Если дана команда pop*, то число b - ожидаемое значение. Если команда pop вызвана для пустой структуры данных, то ожидается "-1".

Формат выходных данных.

Требуется напечатать YES - если все ожидаемые значения совпали. Иначе, если хотя бы одно ожидание не оправдалось, то напечатать NO.

1 1. Реализовать очередь с динамическим зацикленным буфером.

- 11 Carricoparis o reports o Arricania rectania cartinate in plant of the point	
in	out
3	YES
3 44	
3 50	
2 44	
2	YES
2 -1	
3 10	
2	NO
3 44	
2 66	

1_2. Реализовать дек с динамическим зацикленным буфером.

in	out
3	YES
1 44	
1 44 3 50	

2 44	
2	YES
2 -1	
1 10	
2	NO
3 44	
3 44 4 66	

1_3. Реализовать очередь с помощью двух стеков. Использовать стек, реализованный с помощью динамического буфера.

in	out
3	YES
3 44	
3 50 2 44	
2 44	
2	YES
2 -1	
3 10	
2	NO
3 44 2 66	
2 66	

1_*. Реализовать очередь при помощи нескольких стеков. Каждая операция рор front и push back должна выполняться за O(1).

Задача № 2 (5 баллов)

Решение всех задач данного раздела предполагает использование кучи.

2_1. Жадина.

Вовочка ест фрукты из бабушкиной корзины. В корзине лежат фрукты разной массы. Вовочка может поднять не более К грамм. Каждый фрукт весит не более К грамм. За раз он выбирает несколько самых тяжелых фруктов, которые может поднять одновременно, откусывает от каждого половину и кладет огрызки обратно в корзину. Если фрукт весит нечетное число грамм, он откусывает большую половину. Фрукт массы 1гр он съедает полностью.

Определить за сколько подходов Вовочка съест все фрукты в корзине.

<u>Формат входных данных.</u> Вначале вводится n - количество фруктов и n строк с массами фруктов. n ≤ 50000.

Затем К - "грузоподъемность". К ≤ 1000.

Формат выходных данных. Неотрицательное число - количество подходов к корзине.

in	out
3	4
122	
2	
3	5
4 3 5	
6	

7	3
1111111	
3	

2_2. Быстрое сложение.

Для сложения чисел используется старый компьютер. Время, затрачиваемое на нахождение суммы двух чисел равно их сумме.

Таким образом для нахождения суммы чисел 1,2,3 может потребоваться разное время, в зависимости от порядка вычислений.

$$((1+2)+3) \rightarrow 1+2+3+3=9$$

 $((1+3)+2) \rightarrow 1+3+4+2=10$
 $((2+3)+1) \rightarrow 2+3+5+1=11$

Требуется написать программу, которая определяет минимальное время, достаточное для вычисления суммы заданного набора чисел.

<u>Формат входных данных.</u> Вначале вводится n - количество чисел. Затем вводится n строк - значения чисел (значение каждого числа не превосходит 10^9, сумма всех чисел не превосходит 2*10^9). Формат выходных данных. Натуральное число - минимальное время.

in	out
5 5 2 3 4 6	45
5 3 7 6 1 9	56

2 3. Тупики.

На вокзале есть некоторое количество тупиков, куда прибывают электрички. Этот вокзал является их конечной станцией. Дано расписание движения электричек, в котором для каждой электрички указано время ее прибытия, а также время отправления в следующий рейс. Электрички в расписании упорядочены по времени прибытия. Когда электричка прибывает, ее ставят в свободный тупик с минимальным номером. При этом если электричка из какого-то тупика отправилась в момент времени X, то электричку, которая прибывает в момент времени X, в этот тупик ставить нельзя, а электричку, прибывающую в момент X+1 — можно.

В данный момент на вокзале достаточное количество тупиков для работы по расписанию. Напишите программу, которая по данному расписанию определяет, какое минимальное количество тупиков требуется для работы вокзала.

<u>Формат входных данных.</u> Вначале вводится n - количество электричек в расписании. Затем вводится n строк для каждой электрички, в строке - время прибытия и время отправления. Время - натуральное число от 0 до 10^9. Строки в расписании упорядочены по времени прибытия.

<u>Формат выходных данных.</u> Натуральное число - минимальное количеством тупиков. Максимальное время: 50мс, память: 5Мб.

in	out
1 10 20	1
2	2
10 20 20 25	

	2
10 20	
20 25	
10 20 20 25 21 30	

2_4. Скользящий максимум.

Дан массив целых чисел A[0..n), n не превосходит 10⁸. Также задан размер некоторого окна (последовательно расположенных элементов массива) в этом массиве k, k<=n. Требуется для каждого положения окна (от 0 и до n-k) вывести значение максимума в окне. Скорость работы O(n log n), память O(n).

<u>Формат входных данных.</u> Вначале вводится n - количество элементов массива. Затем вводится n строк со значением каждого элемента. Затем вводится k - размер окна.

Формат выходных данных. Разделенные пробелом значения максимумов для каждого положения окна.

in	out
3 1 2 3 2	2 3
9 0 7 3 8 4 5 10 4 6 4	8 8 8 10 10 10