Meister Vorbereitungskurs Zusammenfassung

Jens Weißkopf

19. Oktober 2021

Inhaltsverzeichnis

1	Ant	ennen	technik
	1.1	Modu	lationsarten und Frequenzen
	1.2	DVB-	S
		1.2.1	Frequenzen
		1.2.2	S/N Signal-Rauschabstand (NM Noise Margin)
		1.2.3	Biterrorrate
		1.2.4	Ebenen
		1.2.5	Sonstiges
		1.2.6	DiSEqC (Digital Satelite Equipment Control
	1.3	DVB-	$\mathrm{T2}$
		1.3.1	Modulation
		1.3.2	S/N Signal-Rauschabstand (NM Noise Margin)
		1.3.3	Biterrorrate
		1.3.4	Öffentlich-rechtliche-Sender
		1.3.5	Modulationskette
		1.3.6	Sonstiges
	1.4		C
		1.4.1	Modulation
		1.4.2	
	1.5	Messg	
		1.5.1	
			VAROS 106
		1.0.2	
2	Dig	italtec	hnik 10
		2.0.1	Zahlenformate SPS
		2.0.2	SPS Eingangspegel (True / False)
3		thema	
	3.1		elfunktionen
	3.2	Dezim	ale Vielfache
	3.3		ratische Gleichung
	3.4	Poten	zen, Wurzeln, Logarithmen
	3.5	Komp	lexe Zahlen
4	Phy	sik	14
	4.1	Ohmis	sches Gesetz
		4.1.1	Im Gleichstromnetz
	4.2	Leistu	ng
			Im Drehstromnetz

	4.2.2	Im W	Vechsels	str	on	ne	etz	3										14
4.3	Leitun	gsbere	echnun	g														14
4.4	Magne	tismu	s															14
	4.4.1	Durc	hflutur	ıg														15
	4.4.2	Felds	tärke .															15
	4.4.3	Perm	eabilit	ät														15
	4.4.4	Magr	$_{ m retische}$	er l	Flı	188	5											15
	4.4.5	Magr	$_{ m etische}$	er l	Flı	188	sdi	ch	te	,								15
	4.4.6	Magr	$_{ m etische}$	e F	elc'	lko	on	sta	an	te								15
4.5	Gleich	strom																16
4.6	Wechs	elstroi	n															16
4.7	Drehst	rom																16
4.8	Konde	nsator							_			_		_				16

1 Antennentechnik

1.1 Modulationsarten und Frequenzen

Radio									
AM	50-70dBμV	87,5-108 MHz							
FM									
DAB	DAB								
COFDM	$28-94 dB \mu V$	47-68 MHz 174-230 MHz							
DVB-S									
Q(4)PSK	28-94dBμV	Low 10700-11700 MHz							
8PSK		High 11700-12750 MHz							

1.2 DVB-S

1.2.1 Frequenzen

Oszillator ZF

- Low 9750 MHz
- High 10600 MHz

Sat ZF

• 950 - 2150 MHz

1.2.2 S/N Signal-Rauschabstand (NM Noise Margin)

- QPSK >= 11 dB
- 8PSK >= 14 dB

1.2.3 Biterrorrate

- CBER $< 1 \cdot 10^{-4}$ vor Fehlerkorrektur
- VBER $< 1 \cdot 10^{-8}$ nach Fehlerkorrektur

FEC z.B. 5/6 5 Nutzbits bei 6 gesendeten bits.

Je kleiner die Zahlenkombination,
desto besser die Fehlerkorrektur,
desto geringer dienutzbare Bitrate

1.2.4 Ebenen

1.2.5 Sonstiges

15-20pW Leistung welche vom Satellitensignal am LNB ankommt

Skew Drehung LNB

Azimut horizontale Ausrichtung Elevation vertikale Ausrichtung

1.2.6 DiSEqC (Digital Satelite Equipment Control

22kHz Rechteck Signal mit $U_{SS} = 0,6V$

1.3 DVB-T2

1.3.1 Modulation

16 QAM $35\text{-}74 \text{ dB}\mu\text{V}$ 64 QAM $39\text{-}74 \text{ dB}\mu\text{V}$

1.3.2 S/N Signal-Rauschabstand (NM Noise Margin)

>=3 dB

1.3.3 Biterrorrate

• CBER $< 1 \cdot 10^{-2}$ vor Fehlerkorrektur

1.3.4 Öffentlich-rechtliche-Sender

K29 / K34 / K42

1.3.5 Modulationskette

Signal > 64QAM > COFDM > Luft

1.3.6 Sonstiges

Orthogonal \thickapprox rechtwinklig $\thickapprox 90^\circ \Rightarrow$ Günstige Filter \Rightarrow Höhere Packdichte der Transponter

1.4 DVB-C

1.4.1 Modulation

 $64 \text{ QAM} => 39\text{-}74 \text{ dB}\mu\text{V}$

1.4.2 Öffentlich-rechtliche-Sender

S39

1.5 Messgerät

1.5.1 AMA 300

Abbildung 1: AMA 300

ANA/DIG Umschaltung Analog Digital

RANGE Sat, UHF, etc.

LNB 14/18V, 0/22, DiSEqC (mit Taste 1 o. 2)

ANALYZE Spektrumanalyzer

RESET Falls Gerät sich aufhängt

Beispiel Aufgabe:

Frequenz 12545MHz

Lage H Sympolrate 22000

• ANA/DIG?

- RANGE Wählen SAT ...
- LNB Horizontal / Vertikal? Low oder Highband? Sympolrate (22000 o. 27500)?

- DiSEqC Satellit 1 oder Satellit 2?
- \bullet Signalstärke, S/N, CBER, VBER, Bild, NIT (welcher Satelit? Eutel o. ASTRA?)
- auswerten und beurteilen (gut, schlecht?)

1.5.2 VAROS 106

Abbildung 2: VAROS 106

ANALYZE Spektrumanalyzer

Viele Transponter ersichtlich \rightarrow DVB-C Wenige Transponter ersichtlich \rightarrow DVB-T2 Rot = digitale Transponter Grün = Analoge Transponter

2 Digitaltechnik

 $egin{array}{lll} 10 & = & \operatorname{Dezimal} \ 16 & = & \operatorname{Hexadezimal} \end{array}$

4 Byte = Doubleword

MSB = Most significant bit (linkes bit) BCD Code = 4 Bit, Dezimal 0-9 kodierbar

 $\begin{array}{ll} {\rm Tetraden} & 0000-1001\ 0-9 \\ {\rm Pseudotetraden} & 1010-1111\ 10\text{-}15 \end{array}$

2.0.1 Zahlenformate SPS

Bool 1 bit INT Integer 16 bit UINT 16 bit WORD 16 bit REAL 32 bit

2.0.2 SPS Eingangspegel (True / False)

-3 - 5V Logisch "0"

5 – 11V nicht definierter Bereich

11 – 30V Logisch "1"

3 Mathematik

3.1 Winkelfunktionen

Eselsbrücke

G A G A

H H A G

SIN COS TAN COT

G = Gegenkathete

A = Ankathete

H = Hypotenuse

Abbildung 3: Rechtwinkliges Dreieck

3.2 Dezimale Vielfache

Piko	p	10^{-12}
Nano	n	10^{-9}
Mikro	$\mid \mu \mid$	10^{-6}
Milli	m	10^{-3}
Zenti	c	10^{-2}
Dezi	d	10^{-1}
		10^{-0}
Deka	da	10^{1}
Hekto	h	10^{2}
Kilo	$\mid k \mid$	10^{3}
Mega	M	10^{6}
Giga	G	10^{9}
Tera	T	10^{12}

3.3 Quadratische Gleichung

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3.4 Potenzen, Wurzeln, Logarithmen

```
a^n = c
\sqrt[n]{c} = a
log_{ac} = n
log_{10}c = lg\ c\ (Zehnerlogarithmus)
log_{ec} = ln\ c\ (Natuerlicher Logarithmus, e = 2,781...)
log_{2}c = lb\ c\ (Zweier Logarithmus)
```

3.5 Komplexe Zahlen

Abbildung 4: Komplexe Zahlen

 $X \text{ Achse (Abszisse)} \Rightarrow \text{Realteil a}$

Y Aches (Ordinate) \Rightarrow Imaginärteil b (i Taste auf dem Taschenrechner)

 $\varphi=$ Winkel zwischen a und b (\angle Taste auf dem Taschenrechner in RAD)

4 Physik

4.1 Ohmisches Gesetz

4.1.1 Im Gleichstromnetz

$$U = R \cdot I \ [V]; \quad R = \frac{U}{I} \ [\Omega]; \quad I = \frac{U}{R} \ [A]$$

4.2 Leistung

$$P = U \cdot I; \quad P = I^2 \cdot R; \quad P = U^2 \cdot T [W]$$

4.2.1 Im Drehstromnetz

$$P = U \cdot I \cdot \cos \varphi \cdot \sqrt{3} \ [W]$$

4.2.2 Im Wechselstromnetz

$$P = U \cdot I \cdot \cos \varphi \ [W]$$

4.3 Leitungsberechnung

$$A = \frac{2 \cdot l \cdot I \cdot \cos \varphi}{\gamma \cdot \Delta u}$$

$$\Delta u = \frac{2 \cdot l \cdot I \cdot \cos \varphi}{\gamma \cdot A}$$

$$A = \frac{\sqrt{3} {\cdot} l {\cdot} I {\cdot} cos \; \varphi}{\gamma {\cdot} \Delta u}$$

$$\Delta u = \frac{\sqrt{3} \cdot l \cdot I \cdot \cos \varphi}{\gamma \cdot A}$$

4.4 Magnetismus

Ferromagnetische Stoffe:

Eisen

Nickel

Cobalt

4.4.1 Durchflutung

$$\Theta = l \cdot N \quad \Theta = Theta$$

4.4.2 Feldstärke

 $H \sim \frac{1}{l}$ l=Feldlinienlänge

$$H = \frac{\Theta}{l} \quad [\frac{A}{m}]$$

4.4.3 Permeabilität

 $\Phi \sim \mu$

$$\mu = \mu_0 \cdot \mu_r$$
 \hat{r} erelative Permeabilität

4.4.4 Magnetischer Fluss

 $\Phi \sim A$ Fläche

 $\Phi \sim H$ Feldstärke

$$\Phi = \mu \cdot A \cdot H \quad [Vs] = [Wb]Weber \quad \Phi = Phi$$

4.4.5 Magnetischer Flussdichte

$$B = \frac{\Phi}{A} \quad [\frac{Vs}{mm^2}] = [T]Tesla$$

$$B = \mu \cdot H$$

$$\mu = \frac{B}{H} \quad [\frac{Vs}{Am}]$$

4.4.6 Magnetische Feldkonstante

$$\mu_0 = 4 \cdot \pi \cdot 10^{-7} \quad [Am]$$

$$\mu_0 = 1,257 \cdot 10^{-6} \quad [Am]$$

4.5 Gleichstrom

4.6 Wechselstrom

$$U = Z \cdot I$$

$$P = U \cdot I \cdot cos\varphi$$

$$S = U \cdot I$$

$$Z = \sqrt{R^2 + X^2}$$

R = Wirkwiderstand

X = Blindwiderstand

 $Z \widehat{=} Scheinwiderstand$

$$S = \sqrt{P^2 + Q^2}$$

 $P \widehat{=} Wirkleistung[W]$

Q = Blindleistung[var]

S = Scheinleistung[VA]

$$cos\varphi = \frac{R}{Z}$$

$$X_L = 2 \cdot \pi \cdot f \cdot L$$

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

4.7 Drehstrom

$$S = U \cdot I \cdot \sqrt{3} \cdot \cos\varphi$$

$$P = U \cdot I \cdot cos\varphi$$

4.8 Kondensator