

Deep learning and automation in the visual cortex

Fernanda L. Ribeiro, PhD

School of Electrical Engineering and Computer Science, The University of Queensland

DeepRetinotopy – The Toolbox

Renton, Dao et al., Nature Methods (2024)

Part 1 – Predicting retinotopic maps with deepRetinotopy

Acquisition of experimental data

https://cai.centre.uq.edu.au/facilities/human-imaging/7t-magnetom

- Time consuming
- Expensive
- Clinical population

Models of Retinotopy

Ribeiro, Benson, and Puckett, under review

Models of retinotopic organization in human visual cortex

DeepRetinotopy – The Toolbox

CRICOS code 00025B

DeepRetinotopy

Output

 Polar angle / eccentricity;

- Surface topology;
- Vertices' coordinates;
- Feature vectors;

Non-Euclidean data in Neuroscience

Cortical surface

Human Connectome Project

https://balsa.wustl.edu/study/show/9Zkk

Benson et al., Journal of Vision (2018)

High-resolution data from 181 participants:

- Anatomical data
 - Curvature
 - Myelin
- Functional data
 - Polar angle
 - Eccentricity

10

Retinotopic mapping with geometric deep learning

DeepRetinotopy - Individual variability

DeepRetinotopy – The Toolbox

Renton, Dao et al., Nature Methods (2024)

Let's generate (or almost) some retinotopic maps for a participant in the NYU dataset!

When you are done, then it is visualization time!

Do you want to contribute?

https://github.com/felenitaribeiro/deepRetinotopy_TheToolbox

Part 2 – Could we automate visual area boundary delineation? Maybe...

DeepRetinotopy – The Toolbox

DeepRetinotopy – The Toolbox

Visual field sign analysis

Sereno et al., Science (1995); Sereno et al., Cerebral Cortex (1994); Ribeiro et al., eLife (2023)

Visual field sign analysis

Noisy empirical data = noisy sign maps

Smooth predicted data = good-looking sign maps!

21

Sign map or rate of change or derivatives

Sign map or rate of change or derivatives

$$rate\ of\ change = \frac{(angle2-angle1)}{(location2-location1)}$$

Negative!

Sign map or rate of change or derivatives

$$rate\ of\ change = \frac{(angle2-angle1)}{(location2-location1)}$$

Positive!

Sign map or rate of change or derivatives

$$rate\ of\ change = \frac{(angle2\ - angle1)}{(location2\ - location1)}$$

Negative!

Let's generate sign maps from the predicted retinotopic maps we got in part 1!

When you are done, then it is visualization time!

Thank you!

