

Polygon Triangulation

Claudio Mirolo

Dip. di Scienze Matematiche, Informatiche e Fisiche Università di Udine, via delle Scienze 206 – Udine claudio.mirolo@uniud.it

Computational Geometry www.dimi.uniud.it/claudio

Outline

- Triangulating a simple polygon
 - definitions
 - existence of a triangulation
 - art gallery problem
- Monotone partition
 - monotonicity
 - plane sweep
 - analysis
- Triangulating a monotone polygon
 - invariant arrangement
 - computation costs

Outline

- Triangulating a simple polygon
 - definitions
 - existence of a triangulation
 - art gallery problem
- 2 Monotone partition
 - monotonicity
 - plane sweep
 - analysis
- Triangulating a monotone polygon
 - invariant arrangement
 - computation costs

Triangulation of a simple polygon

Triangulation of a simple polygon

Possible scenario...

Guarding an art gallery:

- Polygon triangulation at the core
- Three-coloring of a graph

Possible scenario...

Guarding an art gallery:

- Polygon triangulation at the core
- Three-coloring of a graph

Possible scenario...

Guarding an art gallery:

- Polygon triangulation at the core
- Three-coloring of a graph

Simple polygon:

- No crossings between (open) edges
- No inner holes

- Open line segment connecting two vertices...
- and wholly contained within the polygon

Simple polygon:

- No crossings between (open) edges
- No inner holes

- Open line segment connecting two vertices...
- and wholly contained within the polygon

Simple polygon:

- No crossings between (open) edges
- No inner holes

- Open line segment connecting two vertices...
- and wholly contained within the polygon

Simple polygon:

- No crossings between (open) edges
- No inner holes

- Open line segment connecting two vertices...
- and wholly contained within the polygon

Simple polygon:

- No crossings between (open) edges
- No inner holes

- Open line segment connecting two vertices...
- and wholly contained within the polygon

Simple polygon:

- No crossings between (open) edges
- No inner holes

- Open line segment connecting two vertices...
- and wholly contained within the polygon

Triangulation:

- Decomposition of a polygon into triangles
- by a maximal set
- of non-intersecting diagonals
- (Maximal set: consider collinear vertices, not in succession...)

Triangulation:

- Decomposition of a polygon into triangles
- by a maximal set
- of non-intersecting diagonals
- (Maximal set: consider collinear vertices, not in succession...)

Triangulation:

- Decomposition of a polygon into triangles
- by a maximal set
- of non-intersecting diagonals
- (Maximal set: consider collinear vertices, not in succession...)

Triangulation:

- Decomposition of a polygon into triangles
- by a maximal set
- of non-intersecting diagonals
- (Maximal set: consider collinear vertices, not in succession...)

Triangulation:

- Decomposition of a polygon into triangles
- by a maximal set
- of non-intersecting diagonals
- (Maximal set: consider collinear vertices, not in succession...)

Triangulation:

- Decomposition of a polygon into triangles
- by a maximal set
- of non-intersecting diagonals
- (Maximal set: consider collinear vertices, not in succession...)

- Proof: by induction on n
- n = 3: trivial, since P is a triangle
- Inductive assumption: k < n
- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices

- Proof: by induction on n
- n = 3: trivial, since P is a triangle
- Inductive assumption: k < n
- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices

- Proof: by induction on n
- n = 3: trivial, since P is a triangle
- Inductive assumption: k < n
- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices

A simple polygon P with n vertices can be partitioned into n-2 triangles

Proof: by induction on n

• n = 3: trivial, since P is a triangle

Inductive assumption: k < n

Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices

- Proof: by induction on n
- n = 3: trivial, since P is a triangle
- Inductive assumption: k < n</p>
- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices

- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices: k', k" < n
- k' + k'' = n + 2 since P' and P'' share two vertices
- By the induction assumption P'(P'') can be partitioned into k'-2 (k''-2) triangles...
- which amounts to k' + k'' 4 = n 2 triangles overall

- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices: k', k" < n
- k' + k'' = n + 2 since P' and P'' share two vertices
- By the induction assumption P'(P'') can be partitioned into k'-2 (k''-2) triangles...
- which amounts to k' + k'' 4 = n 2 triangles overall

- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices: k', k" < n
- k' + k'' = n + 2 since P' and P'' share two vertices
- By the induction assumption P'(P'') can be partitioned into k'-2 (k''-2) triangles...
- which amounts to k' + k'' 4 = n 2 triangles overall

- Split P by a diagonal into (simple) polygons
 P' with k' vertices and P" with k" vertices: k', k" < n
- k' + k'' = n + 2 since P' and P'' share two vertices
- By the induction assumption P'(P'') can be partitioned into k'-2 (k''-2) triangles...
- which amounts to k' + k'' 4 = n 2 triangles overall

- v leftmost vertex of P
- v' and v" previous/next of v
- Either no vertex of P inside the triangle v'vv"
- and v'v'' is a diagonal...

- v leftmost vertex of P
- v' and v" previous/next of v
- Either no vertex of P inside the triangle v'vv"
- and v'v'' is a diagonal...

- v leftmost vertex of P
- v' and v" previous/next of v
- Either no vertex of P inside the triangle v'vv"
- and v'v'' is a diagonal...

- v leftmost vertex of P
- v' and v" previous/next of v
- Either no vertex of P inside the triangle v'vv"
- and v'v" is a diagonal...

- Or let u be the leftmost of P's vertices lying inside v'vv"
- and uv is a diagonal
- since no vertex within v'vv" falls in the vertical strip between v and u
- and there cannot be crossing edges

- Or let u be the leftmost of P's vertices lying inside v'vv"
- and uv is a diagonal
- since no vertex within v'vv" falls in the vertical strip between v and u
- and there cannot be crossing edges

- Or let u be the leftmost of P's vertices lying inside v'vv"
- and uv is a diagonal
- since no vertex within v'vv" falls in the vertical strip between v and u
- and there cannot be crossing edges

But can we always find a diagonal?

- Or let u be the leftmost of P's vertices lying inside v'vv"
- and uv is a diagonal
- since no vertex within v'vv" falls in the vertical strip between v and u
- and there cannot be crossing edges

- Guarding simple polygons
- How many cameras (guarding points)?
- Each triangle must be guarded!
- Minimum number of cameras: NP-hard problem
- Pragmatic approach: place cameras at vertices shared by several triangles

- Guarding simple polygons
- How many cameras (guarding points)?
- Each triangle must be guarded!
- Minimum number of cameras: NP-hard problem
- Pragmatic approach: place cameras at vertices shared by several triangles

- Guarding simple polygons
- How many cameras (guarding points)?
- Each triangle must be guarded!
- Minimum number of cameras: NP-hard problem
- Pragmatic approach: place cameras at vertices shared by several triangles

- Guarding simple polygons
- How many cameras (guarding points)?
- Each triangle must be guarded!
- Minimum number of cameras: NP-hard problem
- Pragmatic approach: place cameras at vertices shared by several triangles

- Guarding simple polygons
- How many cameras (guarding points)?
- Each triangle must be guarded!
- Minimum number of cameras: NP-hard problem
- Pragmatic approach: place cameras at vertices shared by several triangles

 Three-coloring: vertices of each triangle are colored differently

 Three-coloring, e.g. RGB: vertices of each triangle are colored differently

- Three-coloring, e.g. RGB: vertices of each triangle are colored differently
- But does one such color assignment exist?
- If it does, we can choose the less frequent color
- guarding points = vertices of this color
- At most $\lfloor \frac{n}{3} \rfloor$ cameras

- Three-coloring, e.g. RGB: vertices of each triangle are colored differently
- But does one such color assignment exist?
- If it does, we can choose the less frequent color
- guarding points = vertices of this color
- At most $\lfloor \frac{n}{3} \rfloor$ cameras

- Three-coloring, e.g. RGB: vertices of each triangle are colored differently
- But does one such color assignment exist?
- If it does, we can choose the less frequent color
- guarding points = vertices of this color
- At most $\lfloor \frac{n}{3} \rfloor$ cameras

- Three-coloring, e.g. RGB: vertices of each triangle are colored differently
- But does one such color assignment exist?
- If it does, we can choose the less frequent color
- guarding points = vertices of this color
- At most $\lfloor \frac{n}{3} \rfloor$ cameras

 In the example, for instance, choose either red or blue vertices as guarding points

- Observation: the dual graph is a tree...
- since removing the edge corresponding to a diagonal results into two disconnected components — no holes
- Depth-first visit of the dual graph/tree starting from (the node corresponding to) any triangle
- Root triangle: any valid three-coloring
- The third, not yet colored vertex of each visited triangle is assigned the color not used in the traversed edge

- Observation: the dual graph is a tree...
- since removing the edge corresponding to a diagonal results into two disconnected components — no holes!
- Depth-first visit of the dual graph/tree starting from (the node corresponding to) any triangle
- Root triangle: any valid three-coloring
- The third, not yet colored vertex of each visited triangle is assigned the color not used in the traversed edge

- Observation: the dual graph is a tree...
- since removing the edge corresponding to a diagonal results into two disconnected components — no holes!
- Depth-first visit of the dual graph/tree starting from (the node corresponding to) any triangle
- Root triangle: any valid three-coloring
- The third, not yet colored vertex of each visited triangle is assigned the color not used in the traversed edge

- Observation: the dual graph is a tree...
- since removing the edge corresponding to a diagonal results into two disconnected components — no holes!
- Depth-first visit of the dual graph/tree starting from (the node corresponding to) any triangle
- Root triangle: any valid three-coloring
- The third, not yet colored vertex of each visited triangle is assigned the color not used in the traversed edge

- Observation: the dual graph is a tree...
- since removing the edge corresponding to a diagonal results into two disconnected components — no holes!
- Depth-first visit of the dual graph/tree starting from (the node corresponding to) any triangle
- Root triangle: any valid three-coloring
- The third, not yet colored vertex of each visited triangle is assigned the color not used in the traversed edge

- Observation: the dual graph is a tree...
- since removing the edge corresponding to a diagonal results into two disconnected components — no holes!
- Depth-first visit of the dual graph/tree starting from (the node corresponding to) any triangle
- Root triangle: any valid three-coloring
- The third, not yet colored vertex of each visited triangle is assigned the color not used in the traversed edge

- Tree-traversal invariant: for all visited triangles a valid three-coloring has been computed
- ullet No cycles o coloring process is not overconstrained
- Hence $\lfloor \frac{n}{3} \rfloor$ cameras are always enough...
- but may also be necessary

- Tree-traversal invariant: for all visited triangles a valid three-coloring has been computed
- ullet No cycles ightarrow coloring process is not overconstrained
- Hence $\lfloor \frac{n}{3} \rfloor$ cameras are always enough...
- but may also be necessary

- Tree-traversal invariant: for all visited triangles a valid three-coloring has been computed
- ullet No cycles o coloring process is not overconstrained
- Hence $\lfloor \frac{n}{3} \rfloor$ cameras are always enough...
- but may also be necessary

- Tree-traversal invariant: for all visited triangles a valid three-coloring has been computed
- ullet No cycles o coloring process is not overconstrained
- Hence $\lfloor \frac{n}{3} \rfloor$ cameras are always enough...
- but may also be necessary

- Tree-traversal invariant: for all visited triangles a valid three-coloring has been computed
- ullet No cycles ightarrow coloring process is not overconstrained
- Hence $\lfloor \frac{n}{3} \rfloor$ cameras are always enough...
- but may also be necessary:

- A simple polygon with n vertices
 can be triangulated in O(n log n) see later
- Then, for the *art-gallery* problem...
- a (suboptimal) solution of $\lfloor \frac{n}{3} \rfloor$ guarding points
- can be computed in $O(n \log n)$

- A simple polygon with n vertices can be triangulated in O(n log n) — see later
- Then, for the art-gallery problem...
- a (suboptimal) solution of $\lfloor \frac{n}{3} \rfloor$ guarding points
- can be computed in $O(n \log n)$

- A simple polygon with n vertices
 can be triangulated in O(n log n) see later
- Then, for the art-gallery problem...
- a (suboptimal) solution of $\lfloor \frac{n}{3} \rfloor$ guarding points
- can be computed in $O(n \log n)$

- A simple polygon with n vertices can be triangulated in O(n log n) — see later
- Then, for the art-gallery problem...
- a (suboptimal) solution of $\lfloor \frac{n}{3} \rfloor$ guarding points
- can be computed in $O(n \log n)$

Outline

- Triangulating a simple polygon
 - definitions
 - existence of a triangulation
 - art gallery problem
- Monotone partition
 - monotonicity
 - plane sweep
 - analysis
- Triangulating a monotone polygon
 - invariant arrangement
 - computation costs

Triangulation based on the above proposition is inefficient...

- Parition into monotone components: plane sweep
- Triangulation of each monotone component: plane sweep

Triangulation based on the above proposition is inefficient...

- Parition into monotone components: plane sweep
- Triangulation of each monotone component: plane sweep

Triangulation based on the above proposition is inefficient. . .

- Parition into monotone components: plane sweep
- Triangulation of each monotone component: plane sweep

Triangulation based on the above proposition is inefficient...

- Parition into monotone components: plane sweep
- Triangulation of each monotone component: plane sweep

Triangulation based on the above proposition is inefficient. . .

- Parition into monotone components: plane sweep
- Triangulation of each monotone component: plane sweep

Approach to triangulation: Simple polygon

Approach to triangulation: Monotone partition

Approach to triangulation: Triangulation

- Not an intrinsic property: relative to a reference direction d
- Weaker property than convexity
- Line segments perpendicular to d connecting points within a monotone region M are wholly inside M
- Usually: either x-monotone or y-monotone regions

- Not an intrinsic property: relative to a reference direction d
- Weaker property than convexity
- Line segments perpendicular to d connecting points within a monotone region M are wholly inside M
- Usually: either x-monotone or y-monotone regions

- Not an intrinsic property: relative to a reference direction d
- Weaker property than convexity
- Line segments perpendicular to d connecting points within a monotone region M are wholly inside M
- Usually: either x-monotone or y-monotone regions

- Not an intrinsic property: relative to a reference direction d
- Weaker property than convexity
- Line segments perpendicular to d connecting points within a monotone region M are wholly inside M
- Usually: either x-monotone or y-monotone regions

- The intersection of a vertical line and an x-monotone polygon P is either empty or connected (a segment)
- P's upper and lower boundaries are well defined
- While walking from the leftmost vertex to the rightmost vertex along the upper/lower boundary...
- we never move backwards

- The intersection of a vertical line and an x-monotone polygon P is either empty or connected (a segment)
- P's upper and lower boundaries are well defined
- While walking from the lettmost vertex to the rightmost vertex along the upper/lower boundary...
- we never move backwards

- The intersection of a vertical line and an x-monotone polygon P is either empty or connected (a segment)
- P's upper and lower boundaries are well defined
- While walking from the leftmost vertex to the rightmost vertex along the upper/lower boundary...
- we never move backwards

- The intersection of a vertical line and an x-monotone polygon P is either empty or connected (a segment)
- P's upper and lower boundaries are well defined
- While walking from the leftmost vertex to the rightmost vertex along the upper/lower boundary...
- we never move backwards

- START vertex
- END vertex
- Upper/lower REGULAR vertex
- SPLIT vertex
- MERGE vertex

- START vertex
- END vertex
- Upper/lower REGULAR vertex
- SPLIT vertex
- MERGE vertex

- START vertex
- END vertex
- Upper/lower REGULAR vertex
- SPLIT vertex
- MERGE vertex

- START vertex
- END vertex
- Upper/lower REGULAR vertex
- SPLIT vertex
- MERGE vertex

- START vertex
- END vertex
- Upper/lower REGULAR vertex
- SPLIT vertex
- MERGE vertex

- START vertex
- END vertex
- Upper/lower REGULAR vertex
- SPLIT vertex
- MERGE vertex

Example – START vertices:

Example – START vertices: 6, 17

Example – END vertices:

Example – *END* vertices: 0, 3, 10

Example – Lower REGULAR:

Example - Lower REGULAR: 7, 8, 9, 18, 19

Example – Upper REGULAR:

Example – Upper *REGULAR*: 1, 4, 5, 11, 12, 13, 14

Example – SPLIT vertices:

Example – SPLIT vertices: 2, 15

Example – *MERGE* vertices:

Example – *MERGE* vertices: 16

- Polygon P locally not x-monotone near SPLIT and MERGE vertices
- i.e., *SPLIT*/*MERGE* vertices ⇒ *P* not *x*-monotone
- Moreover (remarkable property):
 no SPLIT/MERGE vertices ⇒ P x-monotone
- Idea: splitting P by diagonals at SPLIT and MERGE vertices

- Polygon P locally not x-monotone near SPLIT and MERGE vertices
- i.e., SPLIT/MERGE vertices ⇒ P n
- Moreover (remarkable property):
 no SPLIT/MERGE vertices ⇒ P x
- Idea: splitting P by diagonals at SPLIT and MERGE vertice

 Polygon P locally not x-monotone near SPLIT and MERGE vertices

• i.e., SPLIT/MERGE vertices ⇒ P

Moreover (remarkable property):
 no SPLIT/MERGE vertices ⇒ P x-

 Idea: splitting P by diagonals at SPLIT and MERGE vertices

- Polygon P locally not x-monotone near SPLIT and MERGE vertices
- i.e., SPLIT/MERGE vertices ⇒ P not x-monotone
- Moreover (remarkable property):
 no SPLIT/MERGE vertices ⇒ P x-monotone
- Idea: splitting P by diagonals at SPLIT and MERGE vertices

- Polygon P locally not x-monotone near SPLIT and MERGE vertices
- i.e., SPLIT/MERGE vertices ⇒ P not x-monotone
- Moreover (remarkable property):
 no SPLIT/MERGE vertices ⇒ P x-monotone
- Idea: splitting P by diagonals at SPLIT and MERGE vertices

- Polygon P locally not x-monotone near SPLIT and MERGE vertices
- i.e., SPLIT/MERGE vertices ⇒ P not x-monotone
- Moreover (remarkable property):
 no SPLIT/MERGE vertices ⇒ P x-monotone
- Idea: splitting P by diagonals at SPLIT and MERGE vertices

Proof of the monotonicity property

- Suppose P is not x-monotone, then a vertical line I intersects P in two or more disconnected segments
- Let pp' be the lowest such segment, from its upper endpoint p'...
- Walk along P's boundary in such a way that P lies to the left
- Until I is crossed again at some point q, say above p'
- Then the leftmost point u along the path from p' to q is a SPLIT vertex

Proof of the monotonicity property

- Suppose P is not x-monotone, then a vertical line I intersects P in two or more disconnected segments
- Let pp' be the lowest such segment, from its upper endpoint p'...
- Walk along P's boundary in such a way that P lies to the left
- Until / is crossed again at some point q, say above p'
- Then the leftmost point u along the path from p' to q is a SPLIT vertex

Proof of the monotonicity property

- Suppose P is not x-monotone, then a vertical line I intersects P in two or more disconnected segments
- Let pp' be the lowest such segment, from its upper endpoint p'...
- Walk along P's boundary in such a way that P lies to the left
- Until / is crossed again at some point q, say above p'
- Then the leftmost point u along the path from p' to q is a SPLIT vertex

- Suppose P is not x-monotone, then a vertical line I intersects P in two or more disconnected segments
- Let pp' be the lowest such segment, from its upper endpoint p'...
- Walk along P's boundary in such a way that P lies to the left
- Until I is crossed again at some point q, say above p'
- Then the leftmost point u along the path from p' to q is a SPLIT vertex

- Suppose P is not x-monotone, then a vertical line I intersects P in two or more disconnected segments
- Let pp' be the lowest such segment, from its upper endpoint p'...
- Walk along P's boundary in such a way that P lies to the left
- Until / is crossed again at some point q, say above p'
- Then the leftmost point u along the path from p' to q is a SPLIT vertex

- Suppose P is not x-monotone, then a vertical line I intersects P in two or more disconnected segments
- Let pp' be the lowest such segment, from its upper endpoint p'...
- Walk along P's boundary in such a way that P lies to the left
- Until / is crossed again at some point q, say above p'
- Then the leftmost point u along the path from p' to q is a SPLIT vertex

- If q is not above p', it must be the case that q = p (since there are no points of P below p)
- Then from p' walk along P's boundary in the opposite direction
- Until / is crossed again at q'
 above p'
- Notice that q' = p would mean that $l \cap P = pp'$ is connected
- Then the rightmost point v along the path from p' to q' is a MERGE vertex

- If q is not above p', it must be the case that q = p (since there are no points of P below p)
- Then from p' walk along P's boundary in the opposite direction
- Until / is crossed again at q'
 above p'
- Notice that q' = p would mean that $l \cap P = pp'$ is connected
- Then the rightmost point v along the path from p' to q' is a MERGE verter

- If q is not above p', it must be the case that q = p (since there are no points of P below p)
- Then from p' walk along P's boundary in the opposite direction
- Until / is crossed again at q'
 above p'
- Notice that q' = p would mean that $l \cap P = pp'$ is connected
- Then the rightmost point v along the path from p' to q' is a MERGE vertex

- If q is not above p', it must be the case that q = p (since there are no points of P below p)
- Then from p' walk along P's boundary in the opposite direction
- Until / is crossed again at q'
 above p'
- Notice that q' = p would mean that $l \cap P = pp'$ is connected
- Then the rightmost point v along the path from p' to q' is a MERGE vertex

- If q is not above p', it must be the case that q = p (since there are no points of P below p)
- Then from p' walk along P's boundary in the opposite direction
- Until / is crossed again at q'
 above p'
- Notice that q' = p would mean that $I \cap P = pp'$ is connected
- Then the rightmost point v along the path from p' to q' is a MERGE vertex

- If q is not above p', it must be the case that q = p (since there are no points of P below p)
- Then from p' walk along P's boundary in the opposite direction
- Until / is crossed again at q'
 above p'
- Notice that q' = p would mean that $I \cap P = pp'$ is connected
- Then the rightmost point v along the path from p' to q' is a MERGE vertex

- Goal: Partition of *P* into *x*-monotone components
- Means: Diagonals splitting P at SPLIT/MERGE vertices
- Approach: Plane sweep

- Goal: Partition of P into x-monotone components
- Means: Diagonals splitting P at SPLIT/MERGE vertices
- Approach: Plane sweep

- Goal: Partition of P into x-monotone components
- Means: Diagonals splitting P at SPLIT/MERGE vertices
- Approach: Plane sweep

- Events: *P*'s vertices (all available since the beginning)
- Event types: START, END, LOWER_REGULAR, UPPER_REGULAR, SPLIT, MERGE
- Sweep-line structure:

 (just) lower boundaries of the monotone components being built

- Events: P's vertices (all available since the beginning)
- Event types: START, END, LOWER_REGULAR, UPPER_REGULAR, SPLIT, MERGE
- Sweep-line structure:

 (just) lower boundaries of the
 monotone components being built

- Events: P's vertices (all available since the beginning)
- Event types: START, END, LOWER_REGULAR, UPPER REGULAR, SPLIT, MERGE
- Sweep-line structure:
 (iust) lower bounds
 - (just) lower boundaries of the monotone components being built

- SPLIT event: diagonal can be promptly drawn
- MERGE event: pending task
- Appropriate vertices to be connected with MERGE vertices will be found later

- SPLIT event: diagonal can be promptly drawn
- MERGE event: pending task
- Appropriate vertices to be connected with MERGE vertices will be found later

- SPLIT event: diagonal can be promptly drawn
- MERGE event: pending task
- Appropriate vertices to be connected with MERGE vertices will be found later

- SPLIT vertices to the left of the sweep line: diagonal added
- MERGE vertices to the left of the sweep line: . . .
- diagonal added if and only if a second vertex of P falls in the trapezoid between edges b and it
- v = helper(b)

- SPLIT vertices to the left of the sweep line: diagonal added
- MERGE vertices to the left of the sweep line: . . .
- diagonal added if and only if a second vertex of P falls in the trapezoid between edges b and
- v = helper(b)

- SPLIT vertices to the left of the sweep line: diagonal added
- MERGE vertices to the left of the sweep line: . . .
- diagonal added if and only if a second vertex of P falls in the trapezoid between edges b and t
- v = helper(b)

- SPLIT vertices to the left of the sweep line: diagonal added
- MERGE vertices to the left of the sweep line: . . .
- diagonal added if and only if a second vertex of P falls in the trapezoid between edges b and t
- v = helper(b)

insert(e) :

- insert lower boundary edge e into the sweep-line structure
- \bullet helper(e) := v

insert(e) :

- insert lower boundary edge e into the sweep-line structure
- \bullet helper(e) := v

insert(e) :

- insert lower boundary edge e into the sweep-line structure
- helper(e) := v

- u := helper(e)
- if type(u) = MERGE then add diagonal uv
- remove lower boundary edge e from the sweep-line structure

- u := helper(e)
- if type(u) = MERGE then add diagonal uv
- remove lower boundary edge e from the sweep-line structure

- u := helper(e)
- if type(u) = MERGE then add diagonal uv
- remove lower boundary edge e from the sweep-line structure

- u := helper(e)
- if type(u) = MERGE then add diagonal uv
- remove lower boundary edge e from the sweep-line structure

- v upper boundary vertex just above edge b
- u := helper(b)
- if either type(u) = MERGE or type(v) = SPLIT then add diagonal uv
- helper(b) := v

- v upper boundary vertex just above edge b
- u := helper(b)
- if either type(u) = MERGE or type(v) = SPLIT then add diagonal uv
- helper(b) := v

- v upper boundary vertex just above edge b
- u := helper(b)
- if either type(u) = MERGE or type(v) = SPLIT then add diagonal uv
- helper(b) := v

- v upper boundary vertex just above edge b
- u := helper(b)
- if either type(u) = MERGE or type(v) = SPLIT then add diagonal uv
- helper(b) := v

- v upper boundary vertex just above edge b
- u := helper(b)
- if either type(u) = MERGE
 or type(v) = SPLIT then
 add diagonal uv
- helper(b) := v

Event processing

START event:

insert(e'')

Event processing

START event:

• *insert*(*e*")

START event:

- insert(e'')
 - insert lower boundary edge e" into the sweep-line structure
 - helper(e'') := v

END event:

remove(e')

END event:

• remove(e')

END event:

- remove(e')
 - u := helper(e')
 - if type(u) = MERGE then add diagonal uv
 - remove lower boundary edge e' from the sweep-line structure

- remove(e')
- insert(e'')

- remove(e')
- insert(e'')

- remove(e')
- insert(e")

- remove(e')
 - u := helper(e')
 - if type(u) = MERGE then add diagonal uv
 - remove lower boundary edge e' from the sweep-line structure
- insert(e")

- remove(e')
- insert(e'')
 - insert lower boundary edge e" into the sweep-line structure
 - helper(e'') := v

UPPER_REGULAR event:

process(v)

UPPER_REGULAR event:

process(v)

UPPER_REGULAR event:

- process(v)
 - u := helper(b)
 - if type(u) = MERGE then
 // type(v) ≠ SPLIT
 add diagonal uv
 - helper(b) := v

- process(v)
- insert(e'')

- process(v)
- insert(e'')

- process(v)
- insert(e")

- process(v)
 - u := helper(b)

 - helper(b) := v
- insert(e'')

- process(v)
- insert(e")
 - insert lower boundary edge e'' into the sweep-line structure
 - helper(e'') := v

- remove(e')
- process(v)

- remove(e')
- process(v)

- remove(e')
- process(v)

- remove(e')
 - *u* := helper(*e'*)
 - if type(u) = MERGE then add diagonal uv
 - remove lower boundary edge e' from the sweep-line structure
- process(v)

- remove(e')
- process(v)
 - u := helper(b)
 - if type(u) = MERGE then
 // type(v) ≠ SPLIT
 add diagonal uv
 - helper(b) := v

Identifying vertex type: lower/upper REGULAR

e', e" on the opposite sides of the sweep line

e' on the left side

e" on the left side

Identifying vertex type: lower/upper REGULAR

e', e" on the opposite sides of the sweep line

e' on the left side

e'' on the left side

Identifying vertex type: START, SPLIT

e', e" both to the right of the sweep line

Identifying vertex type: START, SPLIT

e', e" both to the right of the sweep line

Identifying vertex type: END, MERGE

e', e'' both to the left of the sweep line

right turn

Identifying vertex type: END, MERGE

e', e'' both to the left of the sweep line

- The idea essentially goes back to Lee & Preparata (1977)
- Aiming at "regularizing" a planar subdivision into y-monotone components
- Plane-sweep descending pass:
 "incoming" diagonals for SPLIT vertices
- Plane-sweep ascending pass: "outcoming" diagonals for MERGE vertices

- The idea essentially goes back to Lee & Preparata (1977)
- Aiming at "regularizing" a planar subdivision into y-monotone components
- Plane-sweep descending pass:
 "incoming" diagonals for SPLIT vertices
- Plane-sweep ascending pass: "outcoming" diagonals for MERGE vertices

- The idea essentially goes back to Lee & Preparata (1977)
- Aiming at "regularizing" a planar subdivision into y-monotone components
- Plane-sweep descending pass: "incoming" diagonals for SPLIT vertices
- Plane-sweep ascending pass: "outcoming" diagonals for MERGE vertices

- The idea essentially goes back to Lee & Preparata (1977)
- Aiming at "regularizing" a planar subdivision into y-monotone components
- Plane-sweep descending pass:
 "incoming" diagonals for SPLIT vertices
- Plane-sweep ascending pass: "outcoming" diagonals for MERGE vertices

- Easy access to the x-monotone subpolygons: DCEL
- Cross-pointers between DCEL edges and corresponding edges in the sweep-line structure
- Diagonal inserted in constant time provided the treatment of faces is delayed to the end

- Easy access to the x-monotone subpolygons: DCEL
- Cross-pointers between DCEL edges and corresponding edges in the sweep-line structure
- Diagonal inserted in constant time provided the treatment of faces is delayed to the end

- Easy access to the x-monotone subpolygons: DCEL
- Cross-pointers between DCEL edges and corresponding edges in the sweep-line structure
- Diagonal inserted in constant time provided the treatment of faces is delayed to the end

- Easy access to the x-monotone subpolygons: DCEL
- Cross-pointers between DCEL edges and corresponding edges in the sweep-line structure
- Diagonal inserted in constant time provided the treatment of faces is delayed to the end

- No SPLIT and MERGE vertices
- Hence: x-monotone subpolygons (see above property)
- But may diagonals cross each other?
- Consider possible cases and helper's role

- No SPLIT and MERGE vertices
- Hence: x-monotone subpolygons (see above property)
- But may diagonals cross each other?
- Consider possible cases and helper's role

- No SPLIT and MERGE vertices
- Hence: x-monotone subpolygons (see above property)
- But may diagonals cross each other?
- Consider possible cases and helper's role

- No SPLIT and MERGE vertices
- Hence: x-monotone subpolygons (see above property)
- But may diagonals cross each other?
- Consider possible cases and helper's role

- Event processing steps: n
- Plane-sweep processing: O(n log n)
 (event queue, sweep-line structure)
- Specific operations: O(1) per step (adding diagonals, accessing/updating DCEL — but faces)
- Overall: $O(n \log n)$ running time and O(n) storage

- Event processing steps: n
- Plane-sweep processing: O(n log n)
 (event queue, sweep-line structure)
- Specific operations: O(1) per step (adding diagonals, accessing/updating DCEL — but faces)
- Overall: $O(n \log n)$ running time and O(n) storage

- Event processing steps: n
- Plane-sweep processing: O(n log n)
 (event queue, sweep-line structure)
- Specific operations: O(1) per step (adding diagonals, accessing/updating DCEL — but faces)
- Overall: $O(n \log n)$ running time and O(n) storage

- Event processing steps: n
- Plane-sweep processing: O(n log n)
 (event queue, sweep-line structure)
- Specific operations: O(1) per step (adding diagonals, accessing/updating DCEL — but faces)
- Overall: $O(n \log n)$ running time and O(n) storage

- Event processing steps: n
- Plane-sweep processing: O(n log n)
 (event queue, sweep-line structure)
- Specific operations: O(1) per step (adding diagonals, accessing/updating DCEL — but faces)
- Overall: $O(n \log n)$ running time and O(n) storage

Outline

- Triangulating a simple polygon
 - definitions
 - existence of a triangulation
 - art gallery problem
- Monotone partition
 - monotonicity
 - plane sweep
 - analysis
- Triangulating a monotone polygon
 - invariant arrangement
 - computation costs

- Vertices are processed left to right
- Lower vs. upper half-boundary
- "Greedy" approach: diagonals are added whenever possible
- Auxiliary stack: pending vertices, from both lower and upper boundary

- Vertices are processed left to right
- Lower vs. upper half-boundary
- "Greedy" approach: diagonals are added whenever possible
- Auxiliary stack: pending vertices, from both lower and upper boundary

- Vertices are processed left to right
- Lower vs. upper half-boundary
- "Greedy" approach: diagonals are added whenever possible
- Auxiliary stack: pending vertices, from both lower and upper boundary

- Vertices are processed left to right
- Lower vs. upper half-boundary
- "Greedy" approach: diagonals are added whenever possible
- Auxiliary stack: pending vertices, from both lower and upper boundary

"Funnel"-shaped area to be triangulated

- One vertex on a half-boundary
 - Chain of reflex vertices + last visited vertex on the opposite half-boundary
- Starting with the first two vertices in the stack
- Next vertex to be considered may be on either side...

- One vertex on a half-boundary
- Chain of reflex vertices + last visited vertex on the opposite half-boundary
- Starting with the first two vertices in the stack
- Next vertex to be considered may be on either side...

- One vertex on a half-boundary
- Chain of reflex vertices + last visited vertex on the opposite half-boundary
- Starting with the first two vertices in the stack
- Next vertex to be considered may be on either side...

- One vertex on a half-boundary (e.g. lower boundary)
- Chain of reflex vertices + last visited vertex on the opposite half-boundary (e.g. upper boundary)
- Starting with the first two vertices in the stack
- Next vertex to be considered may be on either side...

"Funnel"-shaped area to be triangulated...

Next vertex opposite to the chain

Invariant "funnel" arrangement

"Funnel"-shaped area to be triangulated...

Next vertex following the chain

Invariant "funnel" arrangement

- Sorting vertices left to right: O(n)
 (from boundary items in counterclockwise order)
- Iterations to process next vertex: O(n)
- At each iteration at most two vertices are (re-)pushed onto stack
- ullet Overall operations on stack and stacked vertices: O(n)

- Sorting vertices left to right: O(n)
 (from boundary items in counterclockwise order)
- Iterations to process next vertex: O(n)
- At each iteration at most two vertices are (re-)pushed onto stack
- ullet Overall operations on stack and stacked vertices: O(n)

- Sorting vertices left to right: O(n)
 (from boundary items in counterclockwise order)
- Iterations to process next vertex: O(n)
- At each iteration at most two vertices are (re-)pushed onto stack
- ullet Overall operations on stack and stacked vertices: O(n)

- Sorting vertices left to right: O(n)
 (from boundary items in counterclockwise order)
- Iterations to process next vertex: O(n)
- At each iteration at most two vertices are (re-)pushed onto stack
- Overall operations on stack and stacked vertices: O(n)

- Partitioning a simple polygon into monotone subpolygons: O(n log n)
- Triangulating all monotone subpolygons: O(n)
- Triangulating a simple polygon: $O(n \log n)$
- Storage requirements: O(n)

- Partitioning a simple polygon into monotone subpolygons: O(n log n)
- Triangulating all monotone subpolygons: O(n)
- Triangulating a simple polygon: $O(n \log n)$
- Storage requirements: O(n)

- Partitioning a simple polygon into monotone subpolygons: O(n log n)
- Triangulating all monotone subpolygons: O(n)
- Triangulating a simple polygon: $O(n \log n)$
- Storage requirements: O(n)

- Partitioning a simple polygon into monotone subpolygons: O(n log n)
- Triangulating all monotone subpolygons: O(n)
- Triangulating a simple polygon: $O(n \log n)$
- Storage requirements: O(n)

- What about polygons with holes?
- The assumption that there are no holes was never used!
- More in general, essentially the same algorithm works for any planar subdivision within a bounding box
- Triangulating a planar subdivision:
 O(n log n) running time and O(n) storage

- What about polygons with holes?
- The assumption that there are no holes was never used!
- More in general, essentially the same algorithm works for any planar subdivision within a bounding box
- Triangulating a planar subdivision:
 O(n log n) running time and O(n) storage

- What about polygons with holes?
- The assumption that there are no holes was never used!
- More in general, essentially the same algorithm works for any planar subdivision within a bounding box
- Triangulating a planar subdivision:
 O(n log n) running time and O(n) storage

- What about polygons with holes?
- The assumption that there are no holes was never used!
- More in general, essentially the same algorithm works for any planar subdivision within a bounding box
- Triangulating a planar subdivision:
 O(n log n) running time and O(n) storage

Outline

Related results

5 References

Related results

- Optimal algorithm for triangulating a simple polygon (Chazelle, 1990 & 1991): O(n)
- Tetrahedralization of a simple polytope in 3D may require $\Theta(n^2)$ additional vertices!
- There are indeed polyhedra which cannot be decomposed into fewer than Ω(n²) convex parts (Chazelle, 1984)

Related results

- Optimal algorithm for triangulating a simple polygon (Chazelle, 1990 & 1991): O(n)
- Tetrahedralization of a simple polytope in 3D may require Θ(n²) additional vertices!
- There are indeed polyhedra which cannot be decomposed into fewer than $\Omega(n^2)$ convex parts (Chazelle, 1984)

Related results

- Optimal algorithm for triangulating a simple polygon (Chazelle, 1990 & 1991): O(n)
- Tetrahedralization of a simple polytope in 3D may require Θ(n²) additional vertices!
- There are indeed polyhedra which cannot be decomposed into fewer than $\Omega(n^2)$ convex parts (Chazelle, 1984)

Chazelle, 1984

$$\alpha' \left\{ \begin{matrix} \vdots \\ \vdots \\ \varepsilon \end{matrix} \right. \alpha \left\{ \begin{matrix} \vdots \\ \vdots \\ \varepsilon \end{matrix} \right. \beta' \left\{ \begin{matrix} \ddots \\ \ddots \\ \vdots \\ N+\varepsilon \end{matrix} \right. \beta \left\{ \begin{matrix} N+1 \\ 1 \\ \vdots \\ N+1 \end{matrix} \right\} + \varepsilon$$
 (c)

Chazelle, 1984

3.3. Decomposing P into convex parts. We define Σ as the portion of P comprised between the two hyperbolic paraboloids z=xy and $z=xy+\varepsilon$ and the four planes x=0, x=N, y=0, y=N. Σ is a cylinder parallel to the z-axis, of height ε , whose base is the region of the hyperbolic paraboloid z=xy with $0 \le x, y \le N$ (Fig. 5). Let Q_1, \dots, Q_m be any convex decomposition of P and let Q_1^* denote the intersection of Q_i and Σ . Since Σ lies inside P, the set of Q_1^* forms a partition of Σ . Note that Q_1^* may consist of 0, 1, or several blocks, most of which are likely not to be polyhedra. Our goal is to prove that $m \ge cN^2$ for some constant ε , by showing that the volume of Q_1^* cannot be too large. By volume of Q_1^* , we mean the sum of all the volumes of the blocks composing Q_1^* . We first characterize the shape and the orientation of the large Q_1^* 's, which permits us to derive an upper bound on their maximum volume.

Fig. 5. The warped region Σ .

Outline

Related results

6 References

References

B. Chazelle (1991)
Triangulating a Simple Polygon in Linear Time
Discrete & Computational Geometry, 6(5)

B. Chazelle (1984)
Convex Partitions of Polyhedra:
A Lower Bound and Worst-case Optimal Algorithm
SIAM Journal on Computing, 13(3)

