

MolSim WS 23/24

Sheet 5

Membranes, Parallelization, Contest No.2,

Nano-scale flow and Crystallization of Argon

Group C [Manuel, Tobias, Daniel]

02.02.2024

Simulation of a membrane

Harmonic Force

- ⇒ save neighbors for each particle
- ⇒ save spring constant k

The temporary force

- ⇒ acts on selected set of particles
- ⇒ acts for a specified amount of time

No Outflow boundaries

Simulation of a membrane

Simulation of a membrane

Domain partitioning:

- Parallelization works on a linearized queue of list of Cells
 - ⇒ this queue differentiates the 2 methods
- All members of 1 list can be worked on in parallel without race conditions
 - ⇒ deterministic result

Domain Partitioning

(b) c18 base step

Domain partitioning:

- Parallelization works on a linearized queue of list of Cells
 - ⇒ this queue differentiates the 2 methods
- All members of 1 list can be worked on in parallel without race conditions
 - ⇒ deterministic result
 - ⇒ faster than second method

Domain Partitioning

Particle Locking:

- Mutexes on the level of particles
- The list of cells in our queue is sorted randomly
- → very little idle time in big examples because of randomization
- ⇒ not deterministic
- ⇒ order of calculation matters a lot in chaotic systems

Particle Locking

Particle Locking

Performance: Speedup

AVG Speedup Comparison : Contest2 / Rayleigh-Taylor-Instability 3D (100,000 Particles, 3 sample runs)
Simulation of 1000 Iterations on CoolMUC (inter cluster)

Performance: MUP/s

AVG MUP/s Comparison : Contest2 / Rayleigh-Taylor-Instability 3D (100,000 Particles, 3 sample runs)
Simulation of 1000 Iterations on CoolMUC (inter cluster)

Performance: Time

AVG Time Comparison : Contest2 / Rayleigh-Taylor-Instability 3D (100,000 Particles, 3 sample runs)
Simulation of 1000 Iterations on CoolMUC (inter cluster)

Contest 2: Rayleigh-Taylor-Instability

- · Remarks:
 - 42 is the optimal amount of threads
 - Intel compiler has the best performance
- Data:
 - <u>19.25</u> seconds
 - 5 193 668 MUP/s

Contest 2: Rayleigh-Taylor-Instability

New features:

- 1. Fixed flag for particles
- 2. New thermostat interceptor

- 1. <u>Unhindered flow</u>
- 2. Cuboid obstacle
- 3. Spherical obstacle
- 4. High velocity

New features:

- 1. Fixed flag for particles
- 2. New thermostat interceptor

- 1. Unhindered flow
- 2. Cuboid obstacle
- 3. Spherical obstacle
- 4. High velocity

New features:

- 1. Fixed flag for particles
- 2. New thermostat interceptor

- 1. Unhindered flow
- 2. Cuboid obstacle
- 3. Spherical obstacle
- 4. High velocity

New features:

- 1. Fixed flag for particles
- 2. New thermostat interceptor

- 1. Unhindered flow
- 2. Cuboid obstacle
- 3. Spherical obstacle
- 4. High velocity

New features:

- 1. Fixed flag for particles
- 2. New thermostat interceptor

- 1. Unhindered flow
- 2. Cuboid obstacle
- 3. Spherical obstacle
- 4. High velocity

New features:

- 1. Fixed flag for particles
- 2. New thermostat interceptor

- 1. Unhindered flow
- 2. Cuboid obstacle
- 3. Spherical obstacle
- 4. High velocity

4

New features:

- Fixed flag for particles
- New thermostat interceptor

- 1. Unhindered flow
- 2. Cuboid obstacle
- 3. Spherical obstacle
- 4. High velocity

Implementation:

- Smoothed Lennard Jones Potential
- Measurements as Interceptors

Qualitative Analysis:

- Energy is taken out of the system until the attractive LJ outweighs Temperature
- Smaller and more holes in supercooled crystal

Quantitative Analysis:

- Diffusion & Temperature History
- Radial Distribution Function

Explanation:

- Fast nucleation rate
- Less time to distribute in space

Quantitative Analysis:

- Diffusion & Temperature History
- Radial Distribution Function

Explanation:

- Fast nucleation rate
- Less time to distribute in space

Summary of cool things

- We made a satisfying simulation of rubber cubes
- We read a paper by Prof. Bungatz
- We accelerated the simulation by threading
- We observed unstable chaotic system
- We analysed a particle flow on nano-scale
- We ran hours of argon simulation

References

Waves: https://www.pinterest.de/pin/harmonic-waves-in-architecture-google-search-musicperformance-music-performance-architecture-690247080384012557/

Domain partitioning: https://www.researchgate.net/profile/Fabio-Gratl/publication/357143093 N Ways to Simulate Short-

Range Particle Systems Automated Algorithm Selection with the Node-Level Library AutoPas/links/649acc9cc41fb852dd355f24/N-Waysto-Simulate-Short-Range-Particle-Systems-Automated-Algorithm-Selection-with-the-Node-Level-Library-AutoPas.pdf

Threads: https://en.wikipedia.org/wiki/Thread_pool

 $\textbf{Reynolds number} \ \underline{\textbf{https://www.nuclear-power.com/nuclear-engineering/fluid-dynamics/reynolds-number/reynolds-number-for-turbulent-flow/number-flow/number-for-turbulent-flow/number-$

Argon crystal https://en.wikipedia.org/wiki/Argon#/media/File:CsCrystals.JPG