Conjuntos, colecciones y enumeración Matemáticas Discretas (TC1003)

M.C. Xavier Sánchez Díaz sax@tec.mx

Outline

Definición y propiedades

2 Operaciones con conjuntos

3 Equivalencias y leyes de conjuntos

Definición y propiedades de los conjuntos

Un conjunto es un concepto abstracto, construido para referirse a una colección de elementos.

Usualmente representamos los conjuntos con letras mayúsculas (usualmente usando letras próximas a la A), y delimitamos sus contenidos con llaves (*curly brackets*):

Ejemplo

A es el conjunto de los primeros cinco **números naturales**, es decir aquellos que *nos sirven para contar*:

$$A = \{1, 2, 3, 4, 5\}$$

Definición y propiedades de los conjuntos

Un conjunto es un concepto abstracto, construido para referirse a una colección de elementos.

Usualmente representamos los conjuntos con letras mayúsculas (usualmente usando letras próximas a la A), y delimitamos sus contenidos con llaves (*curly brackets*):

Ejemplo

A es el conjunto de los primeros cinco **números naturales**, es decir aquellos que *nos sirven para contar*:

$$A = \{1, 2, 3, 4, 5\}$$

Definición y propiedades de los conjuntos

Un conjunto puede enumerarse o describirse:

Enumeración

$$A = \{1, 2, 3, 4, 5\}$$

Descripción

- ullet $A={
 m el}$ conjunto de los primeros cinco números naturales
- ullet $B={
 m el}$ conjunto de personas en este salón
- ullet C = el conjunto de estudiantes del Campus Monterrey

¿Qué es un conjunto? Definición y propiedades de los conjuntos

Un conjunto es una colección en la que no existe orden alguno:

Ejemplo

Si
$$A = \{1, 2, 3, 4, 5\}$$
 y $B = \{2, 3, 1, 5, 4\}...$

- ¿Cuál de los dos es el conjunto de los cinco primeros números naturales?
- ¿Cuáles son los elementos del primer conjunto y cuáles son los del segundo?

Podemos usar el símbolo \in para denotar pertenencia, e.g. $2 \in A$ significa que el 2 es un elemento que pertenece a A o que está en A.

Definición y propiedades de los conjuntos

Podemos contar los elementos que hay dentro de un conjunto. A la cantidad de elementos dentro de un conjunto le llamamos cardinalidad.

Ejemplo

```
Si A = \{1, 2, 3, 4, 5\}...
```

- Q: ¿Cuál es la cardinalidad de A?
- A: 5

Nota

Aunque es poco común, a veces pueden observarse conjuntos con elementos repetidos. Si este fuera el caso, asume que sólo existe una copia de cada elemento.

Definición y propiedades de los conjuntos

Podemos contar los elementos que hay dentro de un conjunto. A la cantidad de elementos dentro de un conjunto le llamamos cardinalidad.

Ejemplo

Si $A = \{1, 2, 3, 4, 5\}...$

• Q: ¿Cuál es la cardinalidad de A?

• A: 5

Nota

Aunque es poco común, a veces pueden observarse conjuntos con elementos repetidos. Si este fuera el caso, asume que sólo existe una copia de cada elemento.

Definición y propiedades de los conjuntos

Podemos contar los elementos que hay dentro de un conjunto. A la cantidad de elementos dentro de un conjunto le llamamos cardinalidad.

Ejemplo

Si $A = \{1, 2, 3, 4, 5\}...$

• Q: ¿Cuál es la cardinalidad de A?

• A: 5

Nota

Aunque es poco común, a veces pueden observarse conjuntos con elementos repetidos. Si este fuera el caso, asume que sólo existe una copia de cada elemento.

¿Qué es un conjunto? Definición y propiedades de los conjuntos

Story time: conjuntos finitos e infinitos

Definición y propiedades de los conjuntos

Para denotar la cardinalidad de un conjunto contable, usualmente usamos el símbolo #(A), mientras que usamos dos barras verticales para denotar la cardinalidad de un conjunto no contable.

Ejemplo

Si
$$A = \{1, 2, 3, 4, 5\}$$
 entonces $\#(A) = 5$ o bien $|A| = 5$

Algunos autores usan una notación; otros, otra. No importa cuál usemos, intentemos ser consistentes.

¿Qué es un conjunto? Definición y propiedades de los conjuntos

Para denotar la **cardinalidad** de un conjunto *contable*, usualmente usamos el símbolo #(A), mientras que usamos dos barras verticales para denotar la cardinalidad de un conjunto no contable.

Ejemplo

Si
$$A = \{1, 2, 3, 4, 5\}$$
 entonces $\#(A) = 5$ o bien $|A| = 5$

Algunos autores usan una notación; otros, otra. No importa cuál usemos, intentemos ser consistentes.

Operaciones con conjuntos

Podemos **comparar** dos conjuntos en cuanto a tamaño, pero también podemos saber si uno está incluido dentro de otro.

Ejemplo

Si $A={
m el}$ conjunto de habitantes de Nuevo León y $B={
m es}$ el conjunto de habitantes de Monterrey, entonces sabemos que B es un subconjunto de A

Usamos la notación $B\subseteq A$ para decir que B es un subconjunto de A; cada elemento de B está en A...

Operaciones con conjuntos

Podemos **comparar** dos conjuntos en cuanto a tamaño, pero también podemos saber si uno está incluido dentro de otro.

Ejemplo

Si $A={
m el}$ conjunto de habitantes de Nuevo León y $B={
m es}$ el conjunto de habitantes de Monterrey, entonces sabemos que B es un subconjunto de A.

Usamos la notación $B \subseteq A$ para decir que B es un subconjunto de A; cada elemento de B está en A...

Operaciones con conjuntos

Podemos **comparar** dos conjuntos en cuanto a tamaño, pero también podemos saber si uno está incluido dentro de otro.

Ejemplo

Si $A={
m el}$ conjunto de habitantes de Nuevo León y $B={
m es}$ el conjunto de habitantes de Monterrey, entonces sabemos que B es un subconjunto de A.

Usamos la notación $B\subseteq A$ para decir que B es un subconjunto de A; cada elemento de B está en $A\dots$

Operaciones con conjuntos

Podemos **comparar** dos conjuntos en cuanto a tamaño, pero también podemos saber si uno está incluido dentro de otro.

Ejemplo

Si $A={
m el}$ conjunto de habitantes de Nuevo León y $B={
m es}$ el conjunto de habitantes de Monterrey, entonces sabemos que B es un subconjunto de A.

Usamos la notación $B\subseteq A$ para decir que B es un subconjunto de A; cada elemento de B está en A. . .

Operaciones con conjuntos

Si $A={\sf el}$ conjunto de habitantes de Nuevo León y $B={\sf es}$ el conjunto de habitantes de Monterrey, entonces sabemos que B es un subconjunto propio de A:

Inclusión propia

- Si todos los elementos de B están en A, sabemos que $B \subseteq A$.
- Si todos los elementos de B están en A, pero no todos los elementos de A están en B, entonces $B\subset A$

A esto último se le llama inclusión propia (que es el caso de los de Monterrey y los de Nuevo León), y da *más información* que la simple inclusión.

Mini-story time: orden estricto

Operaciones con conjuntos

Si $A={\sf el}$ conjunto de habitantes de Nuevo León y $B={\sf es}$ el conjunto de habitantes de Monterrey, entonces sabemos que B es un subconjunto propio de A:

Inclusión propia

- Si **todos** los elementos de B están en A, sabemos que $B \subseteq A$.
- Si todos los elementos de B están en A, pero no todos los elementos de A están en B, entonces $B\subset A$

A esto último se le llama inclusión propia (que es el caso de los de Monterrey y los de Nuevo León), y da *más información* que la simple inclusión.

Mini-story time: orden estricto

Operaciones con conjuntos

¿Qué información tenemos en cada caso? Reflexiona un momento...

- \bullet $A \subseteq E$
- \bullet $B \subseteq A$
- $A \subseteq B \vee B \subseteq A$

Cuando dos conjuntos tienen lo mismo, decimos que son idénticos (duh).

Operaciones con conjuntos

¿Qué información tenemos en cada caso? Reflexiona un momento...

- $A \subseteq B$
- \bullet $B \subseteq A$
- $A \subseteq B \ y \ B \subseteq A$

Cuando dos conjuntos tienen lo mismo, decimos que son idénticos (duh).

Operaciones con conjuntos

¿Qué información tenemos en cada caso? Reflexiona un momento...

- $A \subseteq B$
- \bullet $B \subseteq A$
- $A \subseteq B \ y \ B \subseteq A$

Cuando dos conjuntos tienen lo mismo, decimos que son idénticos (duh).

Operaciones con conjuntos

¿Qué información tenemos en cada caso? Reflexiona un momento...

- $A \subseteq B$
- \bullet $B \subseteq A$
- $A \subseteq B$ y $B \subseteq A$

Cuando dos conjuntos tienen lo mismo, decimos que son idénticos (duh)

Operaciones con conjuntos

¿Qué información tenemos en cada caso? Reflexiona un momento...

- $A \subseteq B$
- \bullet $B \subseteq A$
- $A \subseteq B$ y $B \subseteq A$

Cuando dos conjuntos tienen lo mismo, decimos que son idénticos (duh)

Operaciones con conjuntos

¿Qué información tenemos en cada caso? Reflexiona un momento...

- $A \subseteq B$
- \bullet $B \subseteq A$
- $A \subseteq B$ y $B \subseteq A$

Cuando dos conjuntos tienen lo mismo, decimos que son idénticos (duh).

Operaciones con conjuntos

¿Qué información tenemos en cada caso? Reflexiona un momento...

- $A \subseteq B$
- \bullet $B \subseteq A$
- $A \subseteq B$ y $B \subseteq A$

Cuando dos conjuntos tienen lo mismo, decimos que son idénticos (duh).

Más sobre subconjuntos

Operaciones con conjuntos

¿Cuántos subconjuntos posibles puedes enumerar para el conjunto $A = \{2,4,6,8,10\}$?

Hint: considera las distintas maneras de meter sus elementos a una sub-caja.

El Conjunto Potencia

Operaciones con conjuntos

El conjunto potencia de A, denotado por $\wp(A)$, es el conjunto de todos los posibles subconjuntos en A.

$$|\wp(A)| = 2^{|A|}.$$

Puedes enumerar todos los elementos de $\wp(A)$ si $A = \{1, 2, 3, 4\}$?

El Conjunto Potencia

Operaciones con conjuntos

El conjunto potencia de A, denotado por $\wp(A)$, es el conjunto de todos los posibles subconjuntos en A.

Teorema 1

$$|\wp(A)| = 2^{|A|}$$
.

Puedes enumerar todos los elementos de $\wp(A)$ si $A = \{1, 2, 3, 4\}$?

El Conjunto Potencia

Operaciones con conjuntos

El conjunto potencia de A, denotado por $\wp(A)$, es el conjunto de todos los posibles subconjuntos en A.

Teorema 1

$$|\wp(A)| = 2^{|A|}$$
.

Puedes enumerar todos los elementos de $\wp(A)$ si $A = \{1, 2, 3, 4\}$?

Cualquier conjunto A el cual no tiene elementos, i.e. |A|=0 es un conjunto vacío.

El conjunto vacío, usualmente representado como \emptyset o $\{\}$ es una parte esencial de la teoría de conjuntos:

- Es siempre un subconjunto de cualquier conjunto, i.e., $\emptyset \subset A$
- Es equiparable a la nada, que es distinto del 0

Cualquier conjunto A el cual no tiene elementos, i.e. |A|=0 es un conjunto vacío.

El conjunto vacío, usualmente representado como \emptyset o $\{\}$ es una parte **esencial** de la teoría de conjuntos:

- Es siempre un subconjunto de cualquier conjunto, i.e., $\emptyset \subset A$
- Es equiparable a la nada, que es distinto del 0

Cualquier conjunto A el cual no tiene elementos, i.e. |A|=0 es un conjunto vacío.

El conjunto vacío, usualmente representado como \emptyset o $\{\}$ es una parte **esencial** de la teoría de conjuntos:

- Es siempre un subconjunto de cualquier conjunto, i.e., $\emptyset \subset A$
- Es equiparable a *la nada*, que es distinto del 0.

Cualquier conjunto A el cual no tiene elementos, i.e. |A|=0 es un conjunto vacío.

El conjunto vacío, usualmente representado como \emptyset o $\{\}$ es una parte **esencial** de la teoría de conjuntos:

- Es siempre un subconjunto de cualquier conjunto, i.e., $\emptyset \subset A$
- Es equiparable a la nada, que es distinto del 0.

Cualquier conjunto A el cual no tiene elementos, i.e. |A|=0 es un conjunto vacío.

El conjunto vacío, usualmente representado como \emptyset o $\{\}$ es una parte **esencial** de la teoría de conjuntos:

- Es siempre un subconjunto de cualquier conjunto, i.e., $\emptyset \subset A$
- Es equiparable a la nada, que es distinto del 0.

Cualquier conjunto A el cual no tiene elementos, i.e. |A|=0 es un conjunto vacío.

El conjunto vacío, usualmente representado como \emptyset o $\{\}$ es una parte **esencial** de la teoría de conjuntos:

- Es siempre un subconjunto de cualquier conjunto, i.e., $\emptyset \subset A$
- Es equiparable a la nada, que es distinto del 0.

La lógica en los conjuntos

Operaciones con conjuntos

Podemos conectar el tema de **lógica proposicional** con los conjuntos de muchas maneras. La primera de ella es para describir los conjuntos.

Ejemplo

El conjunto A de los primeros 5 números naturales, podemos describirlo formalmente como

$$A = \{ n \mid n \in \mathbb{N} \land n \le 5 \}$$

Nota

Algunos autores usan | y otros :. Cualquiera de los dos jala. Luego veremos aplicaciones extras de cada símbolo.

Mini story time: \mathbb{N} y uso de , y ;

La lógica en los conjuntos

Operaciones con conjuntos

Podemos conectar el tema de **lógica proposicional** con los conjuntos de muchas maneras. La primera de ella es para describir los conjuntos.

Ejemplo

El conjunto A de los primeros 5 números naturales, podemos describirlo formalmente como

$$A = \{ n \mid n \in \mathbb{N} \land n \le 5 \}$$

Nota

Algunos autores usan | y otros :. Cualquiera de los dos jala. Luego veremos aplicaciones extras de cada símbolo.

Mini story time: \mathbb{N} y uso de , y ;

La lógica en los conjuntos

Operaciones con conjuntos

Podemos conectar el tema de **lógica proposicional** con los conjuntos de muchas maneras. La primera de ella es para describir los conjuntos.

Ejemplo

El conjunto A de los primeros 5 números naturales, podemos describirlo formalmente como

$$A = \{ n \mid n \in \mathbb{N} \land n \le 5 \}$$

Nota

Algunos autores usan | y otros :. Cualquiera de los dos jala. Luego veremos aplicaciones extras de cada símbolo.

Mini story time: \mathbb{N} y uso de , y ;

Operaciones con conjuntos

De igual manera, existe una **correspondencia** de cada uno de los operadores lógicos que vimos con **operaciones con conjuntos**:

Intersección y Conjunción

 $x \in A \land x \in B \vdash x \in A \cap E$

¿Qué significa esto?

Operaciones con conjuntos

De igual manera, existe una **correspondencia** de cada uno de los operadores lógicos que vimos con **operaciones con conjuntos**:

Intersección y Conjunción

$$x \in A \land x \in B \vdash x \in A \cap B$$

¿Qué significa esto?

Operaciones con conjuntos

De igual manera, existe una **correspondencia** de cada uno de los operadores lógicos que vimos con **operaciones con conjuntos**:

Intersección y Conjunción

$$x \in A \land x \in B \vdash x \in A \cap B$$

¿Qué significa esto?

Operaciones con conjuntos

De igual manera, existe una **correspondencia** de cada uno de los operadores lógicos que vimos con **operaciones con conjuntos**:

Intersección y Conjunción

$$x \in A \land x \in B \vdash x \in A \cap B$$

¿Qué significa esto?

Diagramas de Venn

Operaciones con conjuntos

Un diagrama de Venn es una manera efectiva de ilustrar las relaciones entre dos conjuntos.

Diagramas de Venn

Operaciones con conjuntos

Un diagrama de Venn es una manera efectiva de ilustrar las relaciones entre dos conjuntos.

La lógica en los conjuntos: Unión

Operaciones con conjuntos

Unión y Disyunción

$$x \in A \lor x \in B \vdash x \in A \cup B$$

La unión, así como la disyunción, es asociativa, conmutativa y distributiva sobre la intersección.

La lógica en los conjuntos: Complemento

Operaciones con conjuntos

Complemento y Negación

$$x \notin A \vdash x \in \mathcal{C}(A)$$

Para poder contextualizar el complemento de A como todo aquello que no es A, hay que delimitar qué es todo. A ese todo le llamamos universo, y es usualmente representado con la letra U.

Mini story time: Proofwiki Complement definition

Operaciones adicionales: Diferencia

Operaciones con conjuntos

La idea de tener un **universo** nos deja pensando en que el **complemento** de un conjunto A es la diferencia del **universo menos** A:

Diferencia

$$C(A) \equiv U - A \equiv U \setminus A$$

Ejemplo: diferencia

Si el universo consta de dos conjuntos A y B, entonces

$$x \in A \land x \not \in B \vdash x \in A \setminus B$$

Operaciones adicionales: Diferencia simétrica

Operaciones con conjuntos

La diferencia simétrica es una diferencia mutuamente excluyente:

Diferencia simétrica

Si el universo consta de dos conjuntos A y B, entonces

$$(x \in A \land x \not\in B) \lor x (\in B \land x \not\in A) \vdash x \in A \oplus B$$

¿Cuál sería el diagrama de Venn para esta operación?

Operaciones adicionales: Diferencia simétrica

Operaciones con conjuntos

La diferencia simétrica es una diferencia mutuamente excluyente:

Diferencia simétrica

Si el universo consta de dos conjuntos A y B, entonces

$$(x \in A \land x \not\in B) \lor x (\in B \land x \not\in A) \vdash x \in A \oplus B$$

¿Cuál sería el diagrama de Venn para esta operación?

Equivalencias

Equivalencias y leyes de conjuntos

- $A \cup A \equiv A$
- $A \cap A \equiv A$
- $A \cup B \equiv B \cup A$
- $A \cap B \equiv B \cap A$
- $A \cup (B \cup C) \equiv (A \cup B) \cup C$
- $A \cap (B \cap C) \equiv (A \cap B) \cap C$
- $C(A \cup B) \equiv C(A) \cap C(B)$
- $C(A \cap B) \equiv C(A) \cup C(B)$
- $\bullet \ A \cap (A \cup B) \equiv A \equiv A \cup (A \cap B)$
- $A \cap (B \cup C) \equiv (A \cup B) \cap (A \cup C)$
- $\bullet \ A \cup (B \cap C) \equiv (A \cap B) \cup (A \cap C)$
- $C(A) \cap A \equiv \emptyset$
- C(C(A)) = A
- $A \cup \emptyset \equiv A$
- $A \cap \emptyset \equiv \emptyset$