Supplement

The supplement contains the detailed proofs of our results (Section A), a few technical lemmas used during these arguments (Section B), the McDiarmid inequality for self-containedness (Section C), and the pseudocode of the two-sample test performed in Experiment-2 (Section D).

A. Proofs of Theorem 1 and Theorem 2

This section contains the detailed proofs of Theorem 1 (Section A.1) and Theorem 2 (Section A.2).

A.1. Proof of Theorem 1

The structure of the proof is as follows:

$$\begin{array}{ll} \text{1. We show that } \|\hat{\mu}_{\mathbb{P},Q} - \mu_{\mathbb{P}}\|_{K} \leq (1+\sqrt{2})r_{Q,N}, \text{ where} \\ r_{Q,N} &= \sup_{f \in B_{K}} \text{MON}_{Q} \Big[\underbrace{\langle f, K(\cdot,x) - \mu_{\mathbb{P}} \rangle_{K}}_{f(x) - \mathbb{P}f} \Big], \text{ i.e.} \end{array}$$

the analysis can be reduced to B_K .

2. Then $r_{Q,N}$ is bounded using empirical processes.

Step-1: Since \mathcal{H}_K is an inner product space, for any $f \in \mathcal{H}_K$

$$||f - K(\cdot, x)||_{K}^{2} - ||\mu_{\mathbb{P}} - K(\cdot, x)||_{K}^{2}$$

$$= ||f - \mu_{\mathbb{P}}||_{K}^{2} - 2\langle f - \mu_{\mathbb{P}}, K(\cdot, x) - \mu_{\mathbb{P}}\rangle_{K}.$$
(14)

Hence, by denoting $e = \hat{\mu}_{\mathbb{P},Q} - \mu_{\mathbb{P}}$, $\tilde{g} = g - \mu_{\mathbb{P}}$ we get

$$\begin{split} &\|e\|_{K}^{2} - 2r_{Q,N} \|e\|_{K} \\ &\stackrel{(a)}{\leq} \|e\|_{K}^{2} - 2\mathrm{MON}_{Q} \left[\left\langle \frac{e}{\|e\|_{K}}, K(\cdot, x) - \mu_{\mathbb{P}} \right\rangle \right]_{K} \|e\|_{K} \\ &\stackrel{(b)}{\leq} \mathrm{MON}_{Q} \left[\|e\|_{K}^{2} - 2 \left\langle \frac{e}{\|e\|_{K}}, K(\cdot, x) - \mu_{\mathbb{P}} \right\rangle_{K} \|e\|_{K} \right] \\ &\stackrel{(c)}{\leq} \mathrm{MON}_{Q} \left[\|\hat{\mu}_{\mathbb{P},Q} - K(\cdot, x)\|_{K}^{2} - \|\mu_{\mathbb{P}} - K(\cdot, x)\|_{K}^{2} \right] \end{split}$$

$$\stackrel{(d)}{\leq} \sup_{g \in \mathcal{H}_K} \mathsf{MON}_Q \left[\left\| \hat{\mu}_{\mathbb{P},Q} - K(\cdot,x) \right\|_K^2 - \left\| g - K(\cdot,x) \right\|_K^2 \right]$$

$$\overset{(e)}{\leq} \sup_{g \in \mathcal{H}_K} \mathsf{MON}_Q \left[\left\| \mu_{\mathbb{P}} - K(\cdot, x) \right\|_K^2 - \left\| g - K(\cdot, x) \right\|_K^2 \right]$$

$$\overset{(f)}{=} \sup_{g \in \mathcal{H}_K} \left\{ 2\mathsf{MON}_Q \bigg[\underbrace{ \left\langle \tilde{g}, K(\cdot, x) - \mu_{\mathbb{P}} \right\rangle_K}_{\|\tilde{g}\|_K \left\langle \frac{\tilde{g}}{\|\tilde{g}\|_K}, K(\cdot, x) - \mu_{\mathbb{P}} \right\rangle_K} \bigg] - \|\tilde{g}\|_K^2 \right\}$$

$$\stackrel{(g)}{=} \sup_{g \in \mathcal{H}_K} \left\{ 2 \left\| \tilde{g} \right\|_K r_{Q,N} - \left\| \tilde{g} \right\|_K^2 \right\} \stackrel{(h)}{\leq} r_{Q,N}^2, \tag{15}$$

where we used in (a) the definition of $r_{Q,N}$, (b) the linearity⁷ of $MON_Q[\cdot]$, (c) Eq. (14), (d) \sup_g , (e) the definition of

 $\hat{\mu}_{\mathbb{P},Q}$, (f) Eq. (14) and the linearity of $\mathrm{MON}_Q\left[\cdot\right]$, (g) the definition of $r_{Q,N}$. In step (h), by denoting $a=\|\tilde{g}\|_K$, $r=r_{Q,N}$, the argument of the sup takes the form $2ar-a^2$; $2ar-a^2\leq r^2\Leftrightarrow 0\leq r^2-2ar+a^2=(r-a)^2$.

In Eq. (15), we obtained an equation $a^2-2ra\leq r^2$ where $a:=\|e\|_K\geq 0$. Hence $r^2+2ra-a^2\geq 0$, $r_{1,2}=\left[-2a\pm\sqrt{4a^2+4a^2}\right]/2=\left(-1\pm\sqrt{2}\right)a$, thus by the nonnegativity of $a,r\geq (-1+\sqrt{2})a$, i.e., $a\leq \frac{r}{\sqrt{2}-1}=(\sqrt{2}+1)r$. In other words, we arrived at

$$\|\hat{\mu}_{\mathbb{P},Q} - \mu_{\mathbb{P}}\|_{K} \le \left(1 + \sqrt{2}\right) r_{Q,N}. \tag{16}$$

It remains to upper bound $r_{Q,N}$.

Step-2: Our goal is to provide a probabilistic bound on

$$\begin{split} r_{Q,N} &= \sup_{f \in B_K} \text{MON}_Q \left[x \mapsto \langle f, K(\cdot, x) - \mu_{\mathbb{P}} \rangle_K \right] \\ &= \sup_{f \in B_K} \max_{q \in [Q]} \{ \underbrace{\langle f, \mu_{S_q} - \mu_{\mathbb{P}} \rangle_K}_{=:r(f,q)} \}. \end{split}$$

The N_c corrupted samples can affect (at most) N_c of the $(S_q)_{q \in [Q]}$ blocks. Let $U := [Q] \backslash C$ stand for the indices of the uncorrupted sets, where $C := \{q \in [Q] : \exists n_j \text{ s.t. } n_j \in S_q, \ j \in [N_c]\}$ contains the indices of the corrupted sets. If

$$\forall f \in B_K : \underbrace{\left| \left\{ q \in U : r(f, q) \ge \epsilon \right\} \right|}_{\sum_{g \in U} \mathbb{I}_{r(f, q)} > \epsilon} + N_c \le \frac{Q}{2}, \quad (17)$$

then for $\forall f \in B_K$, $\operatorname{med}_{q \in [Q]}\{r(f,q)\} \leq \epsilon$, i.e. $\sup_{f \in B_K} \operatorname{med}_{q \in [Q]}\{r(f,q)\} \leq \epsilon$. Thus, our task boils down to controlling the event in (17) by appropriately choosing ϵ .

• Controlling r(f,q): For any $f \in B_K$ the random variables $\langle f, k(\cdot, x_i) - \mu_{\mathbb{P}} \rangle_{\mathfrak{H}_K} = f(x_i) - \mathbb{P}f$ are independent, have zero mean, and

$$\mathbb{E}_{x_{i} \sim \mathbb{P}} \langle f, k(\cdot, x_{i}) - \mu_{\mathbb{P}} \rangle_{K}^{2} = \langle f, \Sigma_{\mathbb{P}} f \rangle_{K}$$

$$\leq \|f\|_{K} \|\Sigma_{\mathbb{P}} f\|_{K} \leq \|f\|_{K}^{2} \|\Sigma_{\mathbb{P}}\| = \|\Sigma_{\mathbb{P}}\|$$
(18)

using the reproducing property of the kernel and the covariance operator, the Cauchy-Schwarz (CBS) inequality and $\|f\|_{\mathcal{H}_K}=1$. For a zero-mean random variable z by the Chebyshev's

For a zero-mean random variable z by the Chebyshev's inequality $\mathbb{P}(z>a) \leq \mathbb{P}(|z|>a) \leq \mathbb{E}(z^2)/a^2$, which implies $\mathbb{P}\left(z>\sqrt{\mathbb{E}(z^2)/\alpha}\right) \leq \alpha$ by a $\alpha=\mathbb{E}(z^2)/a^2$ substitution. With z:=r(f,q) $(q\in U)$, using $\mathbb{E}\left[z^2\right]=\mathbb{E}\left\langle f,\mu_{S_q}-\mu_{\mathbb{P}}\right\rangle_K^2=\frac{Q}{N}\mathbb{E}_{x_i\sim\mathbb{P}}\left\langle f,k(\cdot,x_i)-\mu_{\mathbb{P}}\right\rangle_K^2$ and Eq. (18) one gets that for all $f\in B_K$, $\alpha\in(0,1)$ and $q\in U\colon \mathbb{P}\left(r(f,q)>\sqrt{\frac{\|\Sigma_{\mathbb{P}}\|Q}{\alpha N}}\right)\leq \alpha$. This means $\mathbb{P}\left(r(f,q)>\frac{\epsilon}{2}\right)\leq \alpha$ with $\epsilon\geq 2\sqrt{\frac{\|\Sigma_{\mathbb{P}}\|Q}{\alpha N}}$.

 $^{{}^{7}}MON_{Q}[c_{1}+c_{2}f]=c_{1}+c_{2}MON_{Q}[f]$ for any $c_{1},c_{2}\in\mathbb{R}$.

• **Reduction to** ϕ : As a result

$$\sum_{q \in U} \mathbb{P}\left(r(f,q) \geq \frac{\epsilon}{2}\right) \leq |U|\alpha$$

happens if and only if

$$\begin{split} & \sum_{q \in U} \mathbb{I}_{r(f,q) \ge \epsilon} \\ & \leq |U|\alpha + \sum_{q \in U} \left[\mathbb{I}_{r(f,q) \ge \epsilon} - \underbrace{\mathbb{P}\left(r(f,q) \ge \frac{\epsilon}{2}\right)}_{\mathbb{E}\left[\mathbb{I}_{r(f,q) \ge \frac{\epsilon}{2}}\right]} \right] =: A. \end{split}$$

Let us introduce $\phi: t \in \mathbb{R} \to (t-1)\mathbb{I}_{1 \le t \le 2} + \mathbb{I}_{t \ge 2}$. ϕ is 1-Lipschitz and satisfies $\mathbb{I}_{2 \le t} \le \phi(t) \le \mathbb{I}_{1 \le t}$ for any $t \in \mathbb{R}$. Hence, we can upper bound A as

$$A \leq |U|\alpha + \sum_{q \in U} \left[\phi \left(\frac{2r(f,q)}{\epsilon} \right) - \mathbb{E}\phi \left(\frac{2r(f,q)}{\epsilon} \right) \right]$$

by noticing that $\epsilon \leq r(f,q) \Leftrightarrow 2 \leq 2r(f,q)/\epsilon$ and $\epsilon/2 \leq r(f,q) \Leftrightarrow 1 \leq 2r(f,q)/\epsilon$, and by using the $\mathbb{I}_{2 \leq t} \leq \phi(t)$ and the $\phi(t) \leq \mathbb{I}_{1 \leq t}$ bound, respectively. Taking supremum over B_K we arrive at

$$\begin{split} \sup_{f \in B_K} \sum_{q \in U} \mathbb{I}_{r(f,q) \geq \epsilon} \\ \leq |U|\alpha + \underbrace{\sup_{f \in B_K} \sum_{q \in U} \left[\phi\left(\frac{2r(f,q)}{\epsilon}\right) - \mathbb{E}\phi\left(\frac{2r(f,q)}{\epsilon}\right)\right]}_{=:Z}. \end{split}$$

• Concentration of Z around its mean: Notice that Z is a function of x_V , the samples in the uncorrupted blocks; $V = \cup_{q \in U} S_q$. By the bounded difference property of Z (Lemma 4) for any $\beta > 0$, the McDiarmid inequality (Lemma 6; we choose $\tau := Q\beta^2/8$ to get linear scaling in Q on the r.h.s.) implies that

$$\mathbb{P}\left(Z < \mathbb{E}_{x_V}[Z] + Q\beta\right) \ge 1 - e^{-\frac{Q\beta^2}{8}}.$$

• Bounding $\mathbb{E}_{x_V}[Z]$: Let M=N/Q denote the number of elements in S_q -s. The $\mathcal{G}=\{g_f:f\in B_K\}$ class with $g_f:\mathcal{X}^M\to\mathbb{R}$ and $\mathbb{P}_M:=\frac{1}{M}\sum_{m=1}^M\delta_{u_m}$ defined as

$$g_f(u_{1:M}) = \phi\left(\frac{\langle f, \mu_{\mathbb{P}_M} - \mu_{\mathbb{P}} \rangle_K}{\epsilon}\right)$$

is uniformly bounded separable Carathéodory (Lemma 5), hence the symmetrization technique (Steinwart & Christmann, 2008, Prop. 7.10), (Ledoux & Talagrand, 1991) gives

$$\mathbb{E}_{x_V}[Z] \le 2\mathbb{E}_{x_V} \mathbb{E}_{\mathbf{e}} \sup_{f \in B_K} \left| \sum_{q \in U} e_q \phi\left(\frac{2r(f,q)}{\epsilon}\right) \right|,$$

where $\mathbf{e}=(e_q)_{q\in U}\in\mathbb{R}^{|U|}$ with i.i.d. Rademacher entries $[\mathbb{P}(e_q=\pm 1)=\frac{1}{2}\ (\forall q)].$

• **Discarding** ϕ : Since $\phi(0) = 0$ and ϕ is 1-Lipschitz, by Talagrand's contraction principle of Rademacher processes (Ledoux & Talagrand, 1991), (Koltchinskii, 2011, Theorem 2.3) one gets

$$\begin{split} & \mathbb{E}_{x_V} \mathbb{E}_{\mathbf{e}} \sup_{f \in B_K} \left| \sum_{q \in U} e_q \phi \left(\frac{2r(f, q)}{\epsilon} \right) \right| \\ & \leq 2 \mathbb{E}_{x_V} \mathbb{E}_{\mathbf{e}} \sup_{f \in B_K} \left| \sum_{q \in U} e_q \frac{2r(f, q)}{\epsilon} \right|. \end{split}$$

• Switching from |U| to N terms: Applying an other symmetrization [(a)], the CBS inequality, $f \in B_K$, and the Jensen inequality

$$\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}} \sup_{f \in B_{K}} \left| \sum_{q=1}^{Q} e_{q} \frac{r(f,q)}{\epsilon} \right| \\
\stackrel{(a)}{\leq} \frac{2Q}{\epsilon N} \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'} \left[\sup_{f \in B_{K}} \left| \sum_{n \in V} e'_{n} \left\langle f, K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right\rangle_{K} \right| \right] \\
= \left\langle f, \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\rangle_{K} \\
\leq \frac{2Q}{\epsilon N} \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'} \left[\sup_{f \in B_{K}} \underbrace{\|f\|_{K}}_{=1} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K} \right] \\
= \frac{2Q}{\epsilon N} \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K} \\
\leq \frac{2Q}{\epsilon N} \sqrt{\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'}} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K} \\
\leq \frac{2Q}{\epsilon N} \sqrt{\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'}} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K} \\
\leq \frac{2Q}{\epsilon N} \sqrt{\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'}} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K} \\
\leq \frac{2Q}{\epsilon N} \sqrt{\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'}} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K} \\
\leq \frac{2Q}{\epsilon N} \sqrt{\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'}} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K} \\
\leq \frac{2Q}{\epsilon N} \sqrt{\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'}} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K}$$

In (a), we proceed as follows:

$$\begin{split} & \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}} \sup_{f \in B_{K}} \left| \sum_{q \in U} e_{q} \frac{r(f, q)}{\epsilon} \right| \\ & = \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}} \sup_{f \in B_{K}} \left| \sum_{q \in U} e_{q} \frac{\langle f, \mu_{S_{q}} - \mu_{\mathbb{P}} \rangle_{K}}{\epsilon} \right| \\ & \stackrel{(c)}{\leq} \frac{2Q}{N\epsilon} \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}} \mathbb{E}_{\mathbf{e}'} \sup_{f \in B_{K}} \left| \sum_{n \in V} e'_{n} e''_{n} \langle f, K(\cdot, x_{n}) - \mu_{\mathbb{P}} \rangle_{K} \right| \\ & = \frac{2Q}{N\epsilon} \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'} \sup_{f \in B_{K}} \left| \sum_{n \in V} e'_{n} \langle f, K(\cdot, x_{n}) - \mu_{\mathbb{P}} \rangle_{K} \right|, \end{split}$$

where in (c) we applied symmetrization, $\mathbf{e}' = (e'_n)_{n \in V} \in \mathbb{R}^{|V|}$ with i.i.d. Rademacher entries, $e''_n = e_q$ if $n \in S_q$ $(q \in U)$, and

we used that $(e'_n e''_n \langle f, K(\cdot, x_n) - \mu_{\mathbb{P}} \rangle_K)_{n \in V} \stackrel{\text{dist}}{=} (e'_n \langle f, K(\cdot, x_n) - \mu_{\mathbb{P}} \rangle_K)_{n \in V}$. In step (b), we had

$$\mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'} \left\| \sum_{n \in V} e'_{n} \left[K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right] \right\|_{K}^{2}$$

$$= \mathbb{E}_{x_{V}} \mathbb{E}_{\mathbf{e}'} \sum_{n \in V} \left[e'_{n} \right]^{2} \left\langle K(\cdot, x_{n}) - \mu_{\mathbb{P}}, K(\cdot, x_{n}) - \mu_{\mathbb{P}} \right\rangle_{K}$$

$$= |V| \mathbb{E}_{x \sim \mathbb{P}} \left\langle K(\cdot, x) - \mu_{\mathbb{P}}, K(\cdot, x) - \mu_{\mathbb{P}} \right\rangle_{K}$$

$$= |V| \mathbb{E}_{x \sim \mathbb{P}} \operatorname{Tr} \left(\left[K(\cdot, x) - \mu_{\mathbb{P}} \right] \otimes \left[K(\cdot, x) - \mu_{\mathbb{P}} \right] \right)$$

$$= |V| \operatorname{Tr}(\Sigma_{\mathbb{P}})$$

exploiting the independence of e'_n -s and $[e'_n]^2 = 1$.

Until this point we showed that for all $\alpha \in (0,1)$, $\beta > 0$, if $\epsilon \geq 2\sqrt{\frac{\|\Sigma_{\mathbb{P}}\|Q}{\alpha N}}$ then

$$\sup_{f \in B_K} \sum_{q=1}^Q \mathbb{I}_{r(f,q) \geq \epsilon} \leq |U|\alpha + Q\beta + \frac{8Q\sqrt{|V|\operatorname{Tr}(\Sigma_{\mathbb{P}})}}{\epsilon N}$$

with probability at least $1-e^{-\frac{Q\beta^2}{8}}$. Thus, to ensure that $\sup_{f\in B_K}\sum_{q=1}^Q\mathbb{I}_{r(f,q)\geq\epsilon}+N_c\leq Q/2$ it is sufficient to choose (α,β,ϵ) such that $|U|\alpha+Q\beta+\frac{8Q\sqrt{|V|\operatorname{Tr}(\Sigma_{\mathbb{P}})}}{\epsilon N}+N_c\leq \frac{Q}{2},$ and in this case $\|\hat{\mu}_{\mathbb{P},Q}-\mu_{\mathbb{P}}\|_K\leq (1+\sqrt{2})\epsilon.$ Applying the $|U|\leq Q$ and $|V|\leq N$ bounds, we want to have

$$Q\alpha + Q\beta + \frac{8Q\sqrt{\text{Tr}(\Sigma_{\mathbb{P}})}}{\epsilon\sqrt{N}} + N_c \le \frac{Q}{2}.$$
 (19)

Choosing $\alpha=\beta=\frac{\delta}{3}$ in Eq. (19), the sum of the first two terms is $Q\frac{2\delta}{3}$; $\epsilon\geq \max\left(2\sqrt{\frac{3\|\Sigma_{\mathbb{P}}\|Q}{\delta N}},\frac{24}{\delta}\sqrt{\frac{\mathrm{Tr}\left(\Sigma_{\mathbb{P}}\right)}{N}}\right)$ gives $\leq Q\frac{\delta}{3}$ for the third term. Since $N_c\leq Q(\frac{1}{2}-\delta)$, we got

$$\|\hat{\mu}_{\mathbb{P},Q} - \mu_{\mathbb{P}}\|_{K} \le c_{1} \max \left(\sqrt{\frac{3\|\Sigma_{\mathbb{P}}\|Q}{\delta N}}, \frac{12}{\delta}\sqrt{\frac{\operatorname{Tr}(\Sigma_{\mathbb{P}})}{N}}\right)$$

with probability at least $1-\mathrm{e}^{-\frac{Q\delta^2}{72}}$. With an $\eta=\mathrm{e}^{-\frac{Q\delta^2}{72}}$, and hence $Q=\frac{72\ln\left(\frac{1}{\eta}\right)}{\delta^2}$ reparameterization Theorem 1 follows.

A.2. Proof of Theorem 2

The reasoning is similar to Theorem 1; we detail the differences below. The high-level structure of the proof is as follows:

- First we prove that $\left| \operatorname{MMD}_{Q}(\mathbb{P}, \mathbb{Q}) \operatorname{MMD}(\mathbb{P}, \mathbb{Q}) \right| \leq r_{Q,N}$, where $r_{Q,N} = \sup_{f \in B_{K}} \left| \underset{q \in [Q]}{\operatorname{med}} \left\{ \left\langle f, \left(\mu_{S_{q}, \mathbb{P}} \mu_{S_{q}, \mathbb{Q}} \right) \left(\mu_{\mathbb{P}} \mu_{\mathbb{Q}} \right) \right\rangle_{K} \right\} \right|.$
- Then $r_{O,N}$ is bounded.

Step-1:

• $\widehat{\mathrm{MMD}}_Q(\mathbb{P},\mathbb{Q}) - \mathrm{MMD}(\mathbb{P},\mathbb{Q}) \leq r_{Q,N}$: By the subadditivity of supremum $[\sup_f (a_f + b_f) \leq \sup_f a_f + \sup_f b_f]$ one gets

$$\begin{split} \widehat{\mathrm{MMD}}_Q(\mathbb{P},\mathbb{Q}) &= \sup_{f \in B_K} \max_{q \in [Q]} \left\{ \left\langle f, \left(\mu_{S_q,\mathbb{P}} - \mu_{S_q,\mathbb{Q}} \right) - \left(\mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \right) \right. \\ &+ \left. \left(\mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \right) \right\rangle_K \right\} \\ &\leq \sup_{f \in B_K} \max_{q \in [Q]} \left\{ \left\langle f, \left(\mu_{S_q,\mathbb{P}} - \mu_{S_q,\mathbb{Q}} \right) - \left(\mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \right) \right\rangle_K \right\} \\ &+ \sup_{f \in B_K} \left\langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \right\rangle_K \\ &\leq \sup_{f \in B_K} \left| \max_{q \in [Q]} \left\{ \left\langle f, \left(\mu_{S_q,\mathbb{P}} - \mu_{S_q,\mathbb{Q}} \right) - \left(\mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \right) \right\rangle_K \right\} \right| \\ &= r_{Q,N} \\ &+ \mathrm{MMD}(\mathbb{P}, \mathbb{Q}). \end{split}$$

 $\begin{array}{lll} \bullet \ \operatorname{MMD}_Q(\mathbb{P},\mathbb{Q}) & - & \widehat{\operatorname{MMD}}_Q(\mathbb{P},\mathbb{Q}) & \leq & r_{Q,N} \\ \operatorname{Let} & a_f & := & \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_K \ \text{ and } \ b_f & := \\ & \underset{q \in [Q]}{\operatorname{med}} \left\{ \left\langle f, (\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}) - (\mu_{S_q,\mathbb{P}} - \mu_{S_q,\mathbb{Q}}) \right\rangle_K \right\}. \ \text{Then} \end{array}$

$$\begin{split} a_f - b_f \\ &= \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_K \\ &+ \mathsf{med}_{q \in [Q]} \left\{ \left\langle f, (\mu_{S_q, \mathbb{P}} - \mu_{S_q, \mathbb{Q}}) - (\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}) \right\rangle_K \right\} \\ &= \mathsf{med}_{q \in [Q]} \left\{ \left\langle f, \mu_{S_q, \mathbb{P}} - \mu_{S_q, \mathbb{Q}} \right\rangle_K \right\} \end{split}$$

by $\operatorname{med}_{q \in [Q]} \{-z_q\} = -\operatorname{med}_{q \in [Q]} \{z_q\}$. Applying the $\sup_f (a_f - b_f) \ge \sup_f a_f - \sup_f b_f$ inequality (it follows from the subadditivity of \sup):

$$\begin{split} \widehat{\text{MMD}}_{Q}(\mathbb{P}, \mathbb{Q}) \\ &\geq \text{MMD}(\mathbb{P}, \mathbb{Q}) \\ &- \sup_{f \in B_{K}} \underbrace{ \underset{q \in [Q]}{\text{med}} \left\{ \left\langle f, (\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}) - (\mu_{S_{q}, \mathbb{P}} - \mu_{S_{q}, \mathbb{Q}}) \right\rangle_{K} \right\}}_{- \underset{q \in [Q]}{\text{med}} \left\{ \left\langle f, (\mu_{S_{q}, \mathbb{P}} - \mu_{S_{q}, \mathbb{Q}}) - (\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}) \right\rangle_{K} \right\}} \\ &\geq \text{MMD}(\mathbb{P}, \mathbb{Q}) \\ &- \underset{f \in B_{K}}{\text{sup}} \left| \underset{q \in [Q]}{\text{med}} \left\{ \left\langle f, (\mu_{S_{q}, \mathbb{P}} - \mu_{S_{q}, \mathbb{Q}}) - (\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}) \right\rangle_{K} \right\} \right|. \end{split}$$

Step-2: Our goal is to control

$$\begin{split} r_{Q,N} &= \sup\nolimits_{f \in B_K} \left| \operatorname{med}_{q \in [Q]} \left\{ r(f,q) \right\} \right|, \text{ where } \\ r(f,q) &:= \left\langle f, (\mu_{S_q,\mathbb{P}} - \mu_{S_q,\mathbb{Q}}) - (\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}) \right\rangle_K. \end{split}$$

The relevant quantities which change compared to the proof of Theorem 1 are as follows. • Median rephrasing:

$$\begin{split} \sup_{f \in B_K} \left| & \max_{q \in [Q]} \{ r(f,q) \} \right| \leq \epsilon \\ \Leftrightarrow \forall f \in B_K : -\epsilon \leq \max_{q \in [Q]} \{ r(f,q) \} \leq \epsilon \\ \Leftarrow \forall f \in B_K : |\{q : r(f,q) \leq -\epsilon \}| \leq Q/2 \\ & \text{and } |\{q : r(f,q) \geq \epsilon \}| \leq Q/2 \\ \Leftarrow \forall f \in B_K : |\{q : |r(f,q)| \geq \epsilon \}| \leq Q/2. \end{split}$$

Thus, $\forall f \in B_K : |\{q \in U : |r(f,q)| \ge \epsilon\}| + N_c \le \frac{Q}{2}$, implies $\sup_{f \in B_K} \left| \operatorname{med}_{q \in [Q]} \{r(f,q)\} \right| \le \epsilon$.

• Controlling |r(f,q)|: For any $f \in B_K$ the random variables $[f(x_i) - f(y_i)] - [\mathbb{P}f - \mathbb{Q}f]$ are independent, zeromean and

$$\mathbb{E}_{(x,y) \sim \mathbb{P} \otimes \mathbb{Q}} ([f(x) - \mathbb{P}f] - [f(y) - \mathbb{Q}f])^{2}$$

$$= \mathbb{E}_{x \sim \mathbb{P}} [f(x) - \mathbb{P}f]^{2} + \mathbb{E}_{y \sim \mathbb{Q}} [f(y) - \mathbb{Q}f]^{2}$$

$$\leq \|\Sigma_{\mathbb{P}}\| + \|\Sigma_{\mathbb{Q}}\|,$$

where $\mathbb{P} \otimes \mathbb{Q}$ is the product measure. The Chebyshev argument with z = |r(f,q)| implies that $\forall \alpha \in (0,1)$

$$(\mathbb{P} \otimes \mathbb{Q}) \left(|r(f,q)| > \sqrt{\frac{(\|\Sigma_{\mathbb{P}}\| + \|\Sigma_{\mathbb{Q}}\|) Q}{\alpha N}} \right) \leq \alpha.$$

This means $(\mathbb{P} \otimes \mathbb{Q}) (|r(f,q)| > \epsilon/2) \leq \alpha$ with $\epsilon \geq 2\sqrt{\frac{(\|\Sigma_{\mathbb{P}}\| + \|\Sigma_{\mathbb{Q}}\|)Q}{\alpha N}}$.

• Switching from |U| to N terms: With $(xy)_V = \{(x_i,y_i): i\in V\}$, in '(b)' with $\tilde{x}_n:=K(\cdot,x_n)-\mu_{\mathbb{P}}$, $\tilde{y}_n:=K(\cdot,y_n)-\mu_{\mathbb{Q}}$ we arrive at

$$\mathbb{E}_{(xy)_{V}} \mathbb{E}_{\mathbf{e}'} \left\| \sum_{n \in V} e'_{n} \left(\tilde{x}_{n} - \tilde{y}_{n} \right) \right\|_{K}^{2}$$

$$= \mathbb{E}_{(xy)_{V}} \mathbb{E}_{\mathbf{e}'} \sum_{n \in V} \left[e'_{n} \right]^{2} \left\langle \tilde{x}_{n} - \tilde{y}_{n}, \tilde{x}_{n} - \tilde{y}_{n} \right\rangle_{K}$$

$$= |V| \mathbb{E}_{(xy) \sim \mathbb{P}} \left\| \left[K(\cdot, x) - \mu_{\mathbb{P}} \right] - \left[K(\cdot, y) - \mu_{\mathbb{Q}} \right] \right\|_{K}$$

$$= |V| \left[\operatorname{Tr} \left(\Sigma_{\mathbb{P}} \right) + \operatorname{Tr} \left(\Sigma_{\mathbb{Q}} \right) \right].$$

• These results imply

$$Q\alpha + Q\beta + \frac{8Q\sqrt{\operatorname{Tr}\left(\Sigma_{\mathbb{P}}\right) + \operatorname{Tr}\left(\Sigma_{\mathbb{Q}}\right)}}{\epsilon\sqrt{N}} + N_c \le Q/2.$$

$$\begin{array}{ll} \epsilon & \geq & \max\left(2\sqrt{\frac{3(\|\Sigma_{\mathbb{P}}\|+\|\Sigma_{\mathbb{Q}}\|)Q}{\delta N}}, \frac{24}{\delta}\sqrt{\frac{\operatorname{Tr}\left(\Sigma_{\mathbb{P}}\right)+\operatorname{Tr}\left(\Sigma_{\mathbb{Q}}\right)}{N}}\right), \\ \alpha = \beta = \frac{\delta}{2} \text{ choice gives that} \end{array}$$

with probability at least $1-e^{-\frac{Q\delta^2}{72}}$. $\eta=e^{-\frac{Q\delta^2}{72}}$, i.e. $Q=\frac{72\ln(\frac{1}{\eta})}{\delta^2}$ reparameterization finishes the proof of Theorem 2.

B. Technical Lemmas

Lemma 3 (Supremum).

$$\left|\sup_{f} a_f - \sup_{f} b_f\right| \le \sup_{f} |a_f - b_f|.$$

Lemma 4 (Bounded difference property of Z). Let $N \in \mathbb{Z}^+$, $(S_q)_{q \in [Q]}$ be a partition of [N], $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a kernel, μ be the mean embedding associated to K, $x_{1:N}$ be i.i.d. random variables on \mathcal{X} , $Z(x_V) = \sup_{f \in B_K} \sum_{q \in U} \left[\phi\left(\frac{2\left\langle f, \mu_{S_q} - \mu_{\mathbb{P}}\right\rangle_K}{\epsilon}\right) - \mathbb{E}\phi\left(\frac{2\left\langle f, \mu_{S_q} - \mu_{\mathbb{P}}\right\rangle_K}{\epsilon}\right) \right]$, where $U \subseteq [Q]$, $V = \bigcup_{q \in U} S_q$. Let x'_{V_i} be x_V except for the $i \in V$ -th coordinate; x_i is changed to x'_i . Then

$$\sup_{x_{V} \in \mathcal{X}^{|V|}, x_{i}' \in \mathcal{X}} \left| Z(x_{V}) - Z(x_{V_{i}}') \right| \le 4, \ \forall i \in V.$$

Proof. Since $(S_q)_{q\in [Q]}$ is a partition of [Q], $(S_q)_{q\in U}$ forms a partition of V and there exists a unique $r\in U$ such that $i\in S_r$. Let

$$\begin{split} Y_q &:= Y_q(f, x_V), \\ q &\in U = \phi\left(\frac{2\left\langle f, \mu_{S_q} - \mu_{\mathbb{P}}\right\rangle_K}{\epsilon}\right) - \mathbb{E}\phi\left(\frac{2\left\langle f, \mu_{S_q} - \mu_{\mathbb{P}}\right\rangle_K}{\epsilon}\right), \\ Y_r' &:= Y_r(f, x_{V_i}'). \end{split}$$

In this case

$$\begin{aligned} & \left| Z\left(x_{V}\right) - Z\left(x_{V_{i}}^{\prime}\right) \right| \\ & = \left| \sup_{f \in B_{K}} \sum_{q \in U} Y_{q} - \sup_{f \in B_{K}} \left(\sum_{q \in U \setminus \{r\}} Y_{q} + Y_{r}^{\prime} \right) \right| \\ & \leq \sup_{f \in B_{K}} \left| Y_{r} - Y_{r}^{\prime} \right| \leq \sup_{f \in B_{K}} \left(\underbrace{\left| Y_{r} \right|}_{\leq 2} + \underbrace{\left| Y_{r}^{\prime} \right|}_{\leq 2} \right) \leq 4, \end{aligned}$$

where in (a) we used Lemma 3, (b) the triangle inequality and the boundedness of ϕ [$|\phi(t)| \le 1$ for all t].

Lemma 5 (Uniformly bounded separable Carathéodory family). Let $\epsilon > 0$, $N \in \mathbb{Z}^+$, $Q \in \mathbb{Z}^+$, $M = N/Q \in \mathbb{Z}^+$, $\phi(t) = (t-1)\mathbb{I}_{1 \leq t \leq 2} + \mathbb{I}_{t \geq 2}$, $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a continuous kernel on the separable topological domain \mathcal{X} , μ is the mean embedding associated to K, $\mathbb{P}_M := \frac{1}{M} \sum_{m=1}^M \delta_{u_m}$, $\mathfrak{G} = \{g_f : f \in B_K\}$, where $g_f : \mathcal{X}^M \to \mathbb{R}$ is defined as

$$g_f(u_{1:M}) = \phi\left(\frac{2\langle f, \mu_{\mathbb{P}_M} - \mu_{\mathbb{P}}\rangle_K}{\epsilon}\right).$$

Then \mathfrak{G} is a uniformly bounded separable Carathéodory family: (i) $\sup_{f \in B_K} \|g_f\|_{\infty} < \infty$ where $\|g\|_{\infty} = \sup_{u_{1:M} \in \mathfrak{X}^M} |g(u_{1:M})|$, (ii) $u_{1:M} \mapsto g_f(u_{1:M})$ is measurable for all $f \in B_K$, (iii) $f \mapsto g_f(u_{1:M})$ is continuous for all $u_{1:M} \in \mathfrak{X}^M$, (iv) B_K is separable.

Proof.

- (i) $|\phi(t)| \le 1$ for any t, hence $\|g_f\|_{\infty} \le 1$ for all $f \in B_K$.
- (ii) Any $f \in B_K$ is continuous since $\mathfrak{R}_K \subset C(\mathfrak{X}) = \{h : \mathcal{X} \to \mathbb{R} \text{ continuous}\}$, so $u_{1:M} \mapsto (f(u_1), \dots, f(u_M))$ is continuous. ϕ is Lipschitz, specifically continuous. The continuity of these two maps imply that of $u_{1:M} \mapsto g_f(u_{1:M})$, specifically it is Borel-measurable.
- (ii) The statement follows by the continuity of $f\mapsto \langle f,h\rangle_K$ $(h=\mu_{\mathbb{P}_M}-\mu_{\mathbb{P}})$ and that of ϕ .
- (iv) B_K is separable since \mathcal{H}_K is so by assumption.

C. External Lemma

Below we state the McDiarmid inequality for self-containedness.

Lemma 6 (McDiarmid inequality). Let $x_{1:N}$ be \mathfrak{X} -valued independent random variables. Assume that $f: \mathfrak{X}^N \to \mathbb{R}$ satisfies the bounded difference property

$$\sup_{u_1, \dots, u_N, u'_r \in \mathcal{X}} |f(u_{1:N}) - f(u'_{1:N})| \le c, \quad \forall n \in [N],$$

where $u'_{1:N} = (u_1, \dots, u_{n-1}, u'_n, u_{n+1}, \dots, u_N)$. Then for any $\tau > 0$

$$\mathbb{P}\left(f(x_{1:N}) < \mathbb{E}_{x_{1:N}}\left[f(x_{1:N})\right] + c\sqrt{\frac{\tau N}{2}}\right) \ge 1 - e^{-\tau}.$$

D. Pseudocode of Experiment-2

The pseudocode of the two-sample test conducted in Experiment-2 is summarized in Algorithm 3.

Algorithm 3 Two-sample test (Experiment-2)

Input: Two samples: $(X_n)_{n\in[N]}$, $(Y_n)_{n\in[N]}$. Number of bootstrap permutations: $B\in\mathbb{Z}^+$. Level of the test: $\alpha\in(0,1)$. Kernel function with hyperparameter $\theta\in\Theta$: K_θ . Split the dataset randomly into 3 equal parts:

$$[N] = \bigcup_{i=1}^{3} I_i, \quad |I_1| = |I_2| = |I_3|.$$

Tune the hyperparameters using the 1st part of the dataset:

$$\widehat{\theta} = \operatorname{argmax}_{\theta \in \Theta} J_{\theta} := \widehat{\operatorname{MMD}}_{\theta} \left((X_n)_{n \in I_1}, (Y_n)_{n \in I_1} \right).$$

Estimate the $(1 - \alpha)$ -quantile of $\widehat{\mathrm{MMD}}_{\widehat{\theta}}$ under the null, using B bootstrap permutations from $(X_n)_{n \in I_2} \cup (Y_n)_{n \in I_2}$: $\hat{q}_{1-\alpha}$.

Compute the test statistic on the third part of the dataset:

$$T_{\widehat{\theta}} = \widehat{\mathrm{MMD}}_{\widehat{\theta}} \left((X_n)_{n \in I_3}, (Y_n)_{n \in I_3} \right).$$

Output: $T_{\hat{\theta}} - \hat{q}_{1-\alpha}$.