Resolución del segundo parcial

Ejercicio 1. Sean W_1 y W_2 los subespacios de \mathbb{R}^5 definidos por:

$$W_1 = \{(x, y, z, u, v) \in \mathbb{R}^5 : u + v = 0, x + y + z = 0\},\$$

 $W_2 = \langle (1, -1, 1, -1, 1), (0, 1, 0, 0, 0) \rangle.$

- (a) Dar una base del subespacio $W_1 \cap W_2$ y calcular su dimensión.
- (b) Dar una base del subespacio $W_1 + W_2$ y calcular su dimensión.
- (c) Decidir si el vector (1, 1, -2, 1, 1) pertenece a $W_1 + W_2$.

Solución:

(a) Buscamos primero una descripción implícita (como soluciones de un sistema homogéneo) de W_2 . Para ésto, usamos que:

$$(x, y, z, u, v) \in W_2 \quad \Leftrightarrow \exists c_1, c_2 \in \mathbb{R} : (x, y, z, u, v) = c_1(1, -1, 1, -1, 1) + c_2(0, 1, 0, 0, 0) = (c_1, -c_1 + c_2, c_1, -c_1, c_1)$$

 \Leftrightarrow el siguiente sistema tiene solución c_1, c_2 :

$$\begin{cases}
c_1 = x \\
-c_1 + c_2 = y \\
c_1 = z \\
-c_1 = u \\
c_1 = v.
\end{cases}$$

Reducimos por filas la matriz ampliada del sistema $(F_2 + F_1, F_3 + F_4, F_4 + F_5, F_5 - F_1)$:

Así obtenemos una descripción implícita de W_2 como el espacio de soluciones del siguiente sistema homogéneo:

$$W_2: \begin{cases} z + u = 0 \\ u + v = 0 \\ -x + v = 0. \end{cases}$$

Reuniendo estas ecuaciones (omitiendo las repetidas en este caso) con las que describen a W_1 , obtenemos un sistema de ecuaciones que describe a $W_1 \cap W_2$ implícitamente:

$$W_1 \cap W_2: \begin{cases} u+v=0 \\ x+y+z=0 \\ z+u=0 \\ u+v=0 \\ -x+v=0. \end{cases} \Leftrightarrow \begin{cases} u+v=0 \\ x+y+z=0 \\ z+u=0 \\ -x+v=0. \end{cases}$$

Resolvemos ahora el sistema para encontrar una base de $W_1 \cap W_2$ ($F_2 + F_4$, $F_2 - F_3$, $F_2 + F_1$, $F_3 - F_1$, y permutaciones de filas):

El sistema tiene entonces una variable libre -v- y toda solución es de la forma

$$(v, -2v, v, -v, v) = v (1, -2, 1, -1, 1).$$

Por lo tanto el conjunto $\{(1,-2,1,-1,1)\}$ es base de $W_1 \cap W_2$ y dim $(W_1 \cap W_2) = 1$.

(b). Buscamos en primer lugar un conjunto de generadores de W_1 (resolviendo el sistema de ecuaciones que lo describe). En este caso hay 3 variables libres -x, y, u- y un vector $(x, y, z, u, v) \in W_1$ si y sólo si:

$$(x, y, z, u, v) = (x, y, -x - y, u, -u) = x (1, 0, -1, 0, 0) + y (0, 1, -1, 0, 0) + u (0, 0, 0, 1, -1).$$

Luego, los vectores (1, 0, -1, 0, 0), (0, 1, -1, 0, 0) y (0, 0, 0, 1, -1) generan (y de hecho son base de) W_1 .

Reuniendo los conjuntos de generadores de W_1 y de W_2 obtenemos generadores de $W_1 + W_2$:

$$W_1 + W_2 = \langle \alpha_1 = (1, -1, 1, -1, 1), \alpha_2 = (0, 1, 0, 0, 0), \alpha_3 = (1, 0, -1, 0, 0), \alpha_4 = (0, 1, -1, 0, 0), \alpha_5 = (0, 0, 0, 1, -1) \rangle.$$

Para encontrar una base de $W_1 + W_2$ (además de una descripción implícita, que será usada para resolver la parte (c)) planteamos una combinación lineal:

$$(*) (x, y, z, u, v) = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + x_4\alpha_4 + x_5\alpha_5.$$

Igualando las componentes de esta igualdad, resulta un sistema de ecuaciones, con incógnitas x_1, x_2, x_3, x_4, x_5 , cuya matriz ampliada es:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 & x \\ -1 & 1 & 0 & 1 & 0 & y \\ 1 & 0 & -1 & -1 & 0 & z \\ -1 & 0 & 0 & 0 & 1 & u \\ 1 & 0 & 0 & 0 & -1 & v \end{pmatrix}.$$

Reduciendo por filas esta matriz (e.g. $F_2 + F_1$, $F_3 + F_4$, $F_5 + F_4$, $F_1 + F_3$, $F_2 + F_3$, $F_3 + F_4$, $F_1 - F_3$, $(-1)F_3$, y permutaciones de filas), obtenemos:

$$(**) \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & -1 & -u \\ 0 & 1 & 0 & 0 & 0 & x+y+z+u \\ 0 & 0 & 1 & 0 & 1 & x+u \\ 0 & 0 & 0 & 1 & -1 & -x-z-2u \\ 0 & 0 & 0 & 0 & u+v \end{pmatrix}.$$

Concluímos entonces que los vectores del conjunto de generadores correspondientes a las columnas de la última MERF que contienen a los coeficientes principales (columnas 1, 2, 3 y 4 en este caso)

$$\alpha_1 = (1, -1, 1, -1, 1), \alpha_2 = (0, 1, 0, 0, 0), \alpha_3 = (1, 0, -1, 0, 0), \alpha_4 = (0, 1, -1, 0, 0)$$

son base de $W_1 + W_2$, y dim $(W_1 + W_2) = 4$. (Observar que se cumple la relación dim $(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.)

(c). El desarrollo del ítem anterior nos da una descripción implícita de $W_1 + W_2$ como el subespacio de soluciones del sistema homogéneo

$$u + v = 0$$
.

(En efecto, un vector $(x, y, z, u, v) \in W_1 + W_2 \Leftrightarrow$ el sistema que surge de la combinación lineal (*) tiene solución $\Leftrightarrow u + v = 0$, en vista de (**).)

Como el vector (1, 1, -2, 1, 1) no satisface esta ecuación, entonces $(1, 1, -2, 1, 1) \notin W_1 + W_2$.

Ejercicio 2. Sea $\mathcal{B} = \{(1,1,0), (0,0,1), (1,0,2)\} \subseteq \mathbb{R}^3$.

- (a) Hallar la matriz de cambio de base de la base ordenada $\mathcal{B}' = \{(0,0,1), (0,1,0), (1,0,0)\}$ a la base ordenada \mathcal{B} .
- (b) Hallar las coordenadas de un vector $(x, y, z) \in \mathbb{R}^3$ en la base ordenada \mathcal{B} .

Solución:

(a). Las columnas de la matriz $P_{\mathcal{B}',\mathcal{B}}$ son las coordenadas de los vectores de la base ordenada \mathcal{B}' en la base ordenada \mathcal{B} , es decir:

$$P_{\mathcal{B}',\mathcal{B}} = [[(0,0,1)]_{\mathcal{B}}|[(0,1,0)]_{\mathcal{B}}|[(1,0,0)]_{\mathcal{B}}].$$

Buscamos entonces estas matrices de coordenadas: cada una corresponde a un sistema de ecuaciones con la misma matriz de coeficientes -la que tiene a los vectores de \mathcal{B} como columnas-, que resolvemos simultáneamente $(F_1 - F_2, F_3 - 2F_1, y)$ permutaciones de filas):

Por lo tanto
$$P_{\mathcal{B}',\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -1 & 1 \end{pmatrix}$$
.

Nota: Este ítem se podría haber resuelto, de manera alternativa, buscando primero $P_{\mathcal{B},\mathcal{B}'}$ (lo cual no requiere cálculos, ya que \mathcal{B}' es una permutación de la base ordenada canónica de \mathbb{R}^3) y luego usando que $P_{\mathcal{B},\mathcal{B}'}^{-1} = P_{\mathcal{B}',\mathcal{B}}$.

(b). Dado un vector $(x, y, z) \in \mathbb{R}_3$, su matriz de coordenadas en la base ordenada \mathcal{B}' es en este caso:

$$[(x,y,z)]_{\mathcal{B}'} = \begin{pmatrix} z \\ y \\ x \end{pmatrix}.$$

Por la propiedad que caracteriza a la matriz de cambio de base, la matriz de coordenadas que se pide es:

$$[(x,y,z)]_{\mathcal{B}} = P_{\mathcal{B}',\mathcal{B}} [(x,y,z)]_{\mathcal{B}'} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} z \\ y \\ x \end{pmatrix} = \begin{pmatrix} y \\ z + 2y - 2x \\ -y + x \end{pmatrix}.$$

Ejercicio 3. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y - 2z, -x + y + 2z).$$

- (a) Dar una base y una descripción implícita del núcleo de T.
- (b) Dar una base y una descripción implícita de la imagen de T.
- (c) Hallar la matriz de T con respecto a las bases ordenadas C y \mathcal{B}' de \mathbb{R}^3 y \mathbb{R}^2 , respectivamente, donde

3

$$\mathcal{C} = \{(1,0,0), (0,1,0), (0,0,1)\}, \qquad \qquad \mathcal{B}' = \{(0,1), (1,0)\}.$$

Solución:

(a). Dado que tenemos una fórmula explícita para T(x, y, z), la definición del núcleo nos da una descripción implícita (sistema de ecuaciones homogéno) para el núcleo de T:

$$Nu(T) = \{(x, y, z) : T(x, y, z) = (0, 0)\} = \left\{ (x, y, z) : \begin{cases} x - y - 2z = 0 \\ -x + y + 2z = 0 \end{cases} \right\}.$$

Para hallar una base de Nu(T) resolvemos el sistema que lo describe:

El sistema tiene dos variables libres: y, z. Una base del espacio de soluciones se obtiene dando los valores y = 1, z = 0 y y = 0, z = 1. Por lo tanto

$$\{((1,1,0),(2,0,1))\}$$

es base de Nu(T).

(b). Considerando el sistema más general

$$\begin{cases}
x - y - 2z = a \\
-x + y + 2z = b,
\end{cases}$$

cuya matriz de coeficientes es la misma que ya hemos reducido en ítem (a), podemos encontrar una descripción implícita de la imagen de T. En efecto, $(a,b) \in \text{Im}(T) \Leftrightarrow \text{el sistema (†) tiene solución.}$

Por lo tanto, $\text{Im}(T) = \{(a, b) \in \mathbb{R}^2 : a + b = 0\}$ es una descripción implícita de Im(T).

Para encontrar una base de Im(T) resolvemos el sistema que lo describe: $a+b=0 \Leftrightarrow b=-a$.

Luego una base de $\operatorname{Im}(T)$ es $\{(1,-1)\}$. (Observamos que se cumple la relación $\dim \operatorname{Im}(T) + \dim \operatorname{Nu}(T) = 2 + 1 = \dim \mathbb{R}^3$.)

(c). La matriz que se pide tiene como columnas a las matrices de coordenadas de las imágenes por T de los vectores de la base ordenada \mathcal{C} en la base ordenada \mathcal{B}' :

$$[T]_{\mathcal{C},\mathcal{B}'} = \begin{pmatrix} -1 & 1 & 2\\ 1 & -1 & -2 \end{pmatrix}.$$

Ejercicio 4. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar en cada caso la respuesta.

- (a) El conjunto $\{(1,0,-1),(-i,0,i)\}$ se extiende a una base de \mathbb{C}^3 .
- (b) Si W_1 y W_2 son subespacios de $F^{2\times 2}$ tales que dim $W_1 = \dim W_2 = 3$, entonces $W_1 \cap W_2 \neq \{0\}$.
- (c) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,-1)=(2,-1) y T(1,0,0)=(1,1).

Solución:

(a). <u>Falso:</u> Como (-i, 0, i) = (-i)(1, 0, -1), entonces (-i)(1, 0, -1) + (-1)(-i, 0, i) = 0 y por lo tanto el conjunto $\{(1, 0, -1), (-i, 0, i)\}$ es linealmente dependiente.

Dado que ninguna base (por ser LI) contiene subconjuntos LD, entonces $\{(1,0,-1),(-i,0,i)\}$ no se extiende a una base de \mathbb{C}^3 .

4

(b). <u>Verdadero:</u> Por el teorema de la dimensión de la suma de dos subespacios:

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

En este caso:

$$\dim(W_1 + W_2) = 3 + 3 - \dim(W_1 \cap W_2) \le \dim F^{2 \times 2} = 4,$$

la última desigualdad porque $W_1 + W_2$ es un subespacio de $F^{2\times 2}$.

Luego dim $(W_1 \cap W_2) \ge 6 - 4 = 2$ y por lo tanto $W_1 \cap W_2 \ne \{0\}$.

(c). <u>Verdadero:</u> Como los vectores $\alpha_1 = (1, 0, -1)$ y $\alpha_2 = (1, 0, 0)$ son LI, entonces se extienden a una base de \mathbb{R}^3 (aunque no de manera única). Por ejemplo, a la base:

$$\{(1,0,-1),(1,0,0),(0,1,0)\}.$$

Ahora podemos usar que, eligiendo un vector arbitrario $\beta \in \mathbb{R}^2$, existe una única transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^2$ tal que

$$T(1,0,-1) = (2,-1), T(1,0,0) = (1,1), y T(0,1,0) = \beta.$$

Esto ya demuestra la existencia de T y concluye la demostración de este ítem.

Podemos también dar una transformación explícita T que cumple lo requerido, una vez que hayamos fijado también una elección del vector β . Tomemos por ejemplo $\beta = (0,0)$.

Dado que (x, y, z) = (-z)(1, 0, -1) + (x + z)(1, 0, 0) + y(0, 1, 0), entonces por la linealidad de T:

$$T(x,y,z) = (-z)T(1,0,-1) + (x+z)T(1,0,0) + yT(0,1,0) = (-z)(2,-1) + (x+z)T(1,1) + y(0,0) = (x-z,x+2z).$$