

Cryptographie

Concepts de la cryptographie

Votre instructeur

Thierry DECKER mail@thierry-decker.com

Cryptographie Concepts Sommaire

- Le domaine général CRYPTOLOGIE
 - Deux Branches
 - Cryptographie : art du chiffrement possession de la/les clé(s)
 - Cryptanalyse : art du déchiffrement sans possession de la/les clé (s)

Cryptographie Concepts Sommaire

- Survol de la cryptographie
- Chiffrement symétrique vs asymétrique
- Signature digitale
- Non-répudiation
- Méthodes de chiffrement et déchiffrement
 - Chiffrement par bloc
 - Chiffrement de flux
 - Cryptographie à courbe elliptique (ECC) -> "Crypto Monnaies"
 - Cryptographie quantique (Suprématie Quantique)
- Hachage cryptographique
- Stéganographie
- Utilisation de technologies éprouvées

- Qu'est-ce que la cryptographie?
 - Science et étude de la dissimulation de l'information
 - Cacher l'information en la convertissant d'un texte clair en un texte chiffré (Chiffrement)
 - Puis d'un texte chiffré en un texte en clair (déchiffrement)

- Algorithmes publics connus
- Longueur de clé définissant la robustesse du chiffrement
- La clé ne doit pas pouvoir être déduite du texte chiffré (dans un temps raisonnable)
- Le texte en clair ne doit pas pouvoir être déduit du texte chiffré sans avoir la clé (dans un temps raisonnable)

- Bénéfices de la cryptographie
- Confidentialité
 - Protéger l'information en transit
 - Protéger l'information stockée
- Non-répudiation et authentification
 - Un message chiffré avec votre clé privée ou signée avec votre signature numérique vient forcément de vous

- Bénéfices de la cryptographie
- Contrôle d'accès
 - Avec le chiffrement symétrique, seul le ou les détenteur(s) de la clé secrète peut déchiffrer le message
 - Avec le chiffrement asymétrique, un certificat numérique peut être utilisé pour l'authentification et donc le contrôle de l'accès au message
- Intégrité
 - Les résumés de messages (Message Digest) peuvent-être utilisés pour savoir si le message a été trafiqué pendant son transport ou depuis le calcul du dernier résumé

- Comment la cryptographie fonctionne-t-elle?
- Un "chiffre" est une paire d'algorithme de chiffrement et de déchiffrement
- Un chiffre et une/des clé(s)
 - o Un algorithme chiffre le message en lui appliquant une clé
 - o Un autre algorithme déchiffre le message en lui appliquant une clé
- Certains algorithmes sont plus forts que d'autres
- De longues clés font un chiffrement plus fort
 - Des clés de 40 bits ne sont pas sûres
- Chiffres classiques
 - Chiffres de rotation ou décalage (Caesar)
 - Chiffres de transposition (permutation) "Vigenere" (apporte de la diffusion)

Cryptographie Symétrique vs Asymétrique

- Chiffrement Symétrique
 - La même clé est utilisée pour le chiffrement et le déchiffrement
 - La gestion des clés est le principal problème
 - Garder la clé secrète (distribution des clés)
 - Partager de façon sûre la clé
 - Généralement plus rapide que le chiffrement asymétrique seul
 - La force du chiffrement est affecté par :
 - La longueur de la clé
 - Nombre d'itération au travers de l'algorithme
 - o "Potentiellement" vulnérable aux attaques en force brute
 - Changement régulier de clé pour pallier à cette vulnérabilité

Cryptographie Symétrique vs Asymétrique

- Chiffrement Asymétrique
 - Une paire de clés (mathématiquement liées) est utilisée :
 - Une clé pour chiffrer
 - Une autre clé pour déchiffrer
 - Une clé est accessible publiquement (clé publique)
 - L'autre clé doit rester secrète (clé privée)
 - Chaque clé peut chiffrer ou déchiffrer
 - Chiffrer à l'aide de la clé publique, déchiffrer avec la clé privée
 - Chiffrer à l'aide de la clé privée, déchiffrer avec la clé publique
 - Une des deux clés ne peut être utilisée pour chiffrer et déchiffrer

Cryptographie Signature numérique

- Chiffrement asymétrique utilisé
- Permet de signer des données ou des messages
- Fournit l'authenticité, la non-répudiation et l'intégrité
- Confirme que les données ou le message reçu proviennent bien de celui qui prétend en être l'émetteur des données ou du message

Cryptographie Non-répudiation

- S'assurer que l'auteur du message ne puisse réfuter plus tard le fait d'en avoir été à l'origine
- Le chiffrement asymétrique permet de mettre en place cette sécurité
- Seule la clé privée à pu être utilisée pour chiffrer ou signer un message
- Possibilité d'ajouter des services de non-répudiation dans le chiffrement ou la signature numérique
 - Preuve de l'origine
 - Preuve que l'information a été reçue et bien correctement reçue (intégrité)
- Ne prend pas en compte l'accès physique non autorisé
 - o Envoyer un message depuis le poste de travail d'un tiers
 - Ne fonctionne que si la clé privée reste privée

Cryptographie Chiffrement par bloc

- Chiffrement symétrique
- Les messages sont découpés en blocs de longueur fixe et chiffrés individuellement
- Généralement des blocs de 64 ou 128 bits
- Si le dernier bloc est plus court, du bourrage est ajouté (zéros, uns ou des patterns plus complexes selon l'algorithme)
- Chaque bloc chiffré à la même longueur que le bloc non chiffré
- La robustesse est liée à la non réutilisation des clés

Cryptographie Chiffrement par bloc

- La robustesse est liée à la non réutilisation des clés
- Si deux ou plusieurs blocs sont chiffrés avec la même clé, un attaquant à une chance de les comparer et de casser le chiffrement
- Un bon bloc chiffré ne doit pas permettre à un attaquant de déduire la clé
- Peu de changement sur un bloc doit provoquer un grand changement sur le résultat du chiffrement
- Plus lent que le chiffrement de flux

Cryptographie Chiffrement de flux

- Chiffrement symétrique
- Un flux continu de bits/octets est chiffré, un bit/octet à la fois
- Plus rapide, utilisant moins de ressources que le chiffrement par bloc
- Des générateurs d'espaces de clé pseudo-aléatoires sont utilisés
- Ces espaces de clés se répèteront éventuellement
 - o Plus la période sera longue et plus le chiffrement sera robuste

Cryptographie Cryptographie à courbe elliptique (ECC)

- Chiffrement asymétrique
- Permet un chiffrement asymétrique plus rapide et plus robuste avec des clés plus courtes
- Design mathématique compact
- Utilise des courbes elliptiques à la place d'entiers comme clés
- Utilisé dans de nombreuses variantes utilisable notamment des les appareils mobiles possèdant peu de ressources de traitement

Cryptographie Cryptographie quantique

- Utilise la physique en lieu et place des mathématiques
- Concept émergent et coûteux, toujours en recherche
- Le principe est que lorsque nous mesurons l'information, nous perturbons cette information
 - Lorsque l'on observe des photons polarisés, nous changeons leur polarisation
 - Lorsque l'on mesure la température de l'eau, nous changeons la température de l'eau en introduisant un thermomètre
- La cryptographie quantique permet de dire que l'information a été espionnée ou non pendant son transport
 - En polarisant un photon dans une direction pour zéro et une autre direction pour 1
 - O Si quelqu'un espionne ces données, la polarisation sera changée
- Une implémentation est QKD (Quantum Key Distribution)

Cryptographie Hachage cryptographique

- Ni un chiffrement, ni un déchiffrement
- Le hachage crée une valeur qui est le résumé ou le "digest" d'un message
- Deux messages ne peuvent pas créer le même "hash" lorsqu'ils sont traités pas le même algorithme
- Deux messages peuvent avoir le même "hash" si la clé est courte ou qu'un attaquant utilise une attaque de collision
- Algorithme à sens unique
 - o On ne peut obtenir le texte clair à partir de son "hash" même avec la clé

Cryptographie Hachage cryptographique

- Utilisé pour l'intégrité : Si l'information est modifiée alors le "hash" sera différent
 - Message Digest
 - Signature numérique
 - Message Authentication Codes (MAC)
- Utilisé pour le stockage des mots de passe
 - Stockage sûr
 - Vérification : Le "hash" du mot de passe entré doit être identique au "hash" stocké
 - Un mot de passe ne peut donc pas être retrouvé, seulement réinitialisé
 - Le mot de passe de l'utilisateur n'est jamais stocké

Cryptographie Hachage cryptographique

 Une fonction mathématique qui prend n'importe quel message de n'importe quelle longueur et retourne une suite de bits de longueur fixe

Cryptographie Hachage et signatures numériques

Intégrité et non-répudiation

Cryptographie Chiffrement de transport

- Le chiffrement est également utilisé pour protéger les transmissions au travers des réseaux publics
 - O VPN:
 - IPSec
 - OpenVPN
 - Communications entre Navigateurs et Serveurs Web
 - TLS/SSL
 - HTTPS
 - Transferts de données et gestion à distance
 - SSH
 - SCP
 - SFTP
 - etc.

Cryptographie Chiffrement de transport

- TLS, par exemple, utilise à la fois le chiffrement asymétrique et symétrique
- Le chiffrement asymétrique pour échanger une clé secrète
- Le chiffrement symétrique pour le transfert de données chiffrées à l'aide de la clé secrète échangée

Cryptographie Stéganographie

- Cacher ou embarquer un message dans un autre
- Comme écrire un message secret avec de l'encre invisible et...
- Ecrire un texte en clair par dessus
- L'objectif est de ne pas attirer l'attention
- Le message peut être caché dans une image, un fichier audio ou vidéo
 - Une méthode pour les images est d'utiliser le dernier bit du code couleur de chaque pixel pour cacher l'information
 - On peut également chiffrer les données avant ou après que le message ait été caché...

Cryptographie Stéganographie

- Appelé parfois "Electronic Watermarking" quand une image est ainsi labellisée afin d'éviter le piratage
- Des outils sont disponibles
- Souvent utilisés pour des activités illicites (vol de données ou dans des pays ou le chiffrement est interdit)

Cryptographie Technologies éprouvées

- N'utiliser que des algorithmes qui, à ce jour, sont considérés comme "forts"
 - o Penser au compromis entre sécurité, vitesse et facilité de mise en place
- Se tenir informé des nouveautés de la cryptographie
 - Par le passé, des algorithmes largement utilisés ont été "cassés" (WEP, MD5, etc.)
 - De nouvelles méthodes apparaissent régulièrement
- Tirer parti d'un chiffrement fort avec une bonne gestion des clés

Cryptographie - Q&A

Merci de votre attention!