

Пусть A' и B' — основания биссектрисс из углов A и B соответственно; $M_c,\ M_b,\ M_a$ — середины сторон $AB,\ AC,\ BC$ соответственно; I — инцентр треугольника $ABC,\ a\ E$ — середина отрезка A'B'.

Сперва заметим, что EQM_cP — прямоугольник. Действительно, он параллелограмм, так как $EP=QM_c=\frac{B'A}{2}$ и $QM_c\parallel B'A\parallel EP$, и $\angle QM_cP=\angle C=90^\circ$ ($M_aM_c\parallel CA\perp CB\parallel M_bM_c$). Таким образом, $QEPM_c$ — вписанный, причём QP и EM_c — диаметры описанной около него окружности. Заметим теперь, что нам осталось показать, что точка H также принадлежит указанной окружности. В самом деле, тогда угол QHP будет прямым, как угол, опирающийся на диаметр QP. Для этого необходимо и достаточно доказать, что E,I,H — коллинеарны. Тогда из условия имеем, что угл EHM_c — прямой, а значит H лежит на нашей окружности.

Лемма. E, I, H – коллинеарны.

Покажем, что IH пересекает A'B' в середине. Пусть $\angle A = 2\alpha$ и $\angle B = 2\beta$, и пусть $IH \cap A'B' = F$. Далее, $\angle A'IE = \angle AIH = 90^{\circ} - \alpha$, $\angle B'IE = \angle BIH = 90^{\circ} - \beta$.

Покажем, что $S_{IFA'}=S_{IFB'}$, что и будет означать, что F=E. Мы знаем, что $S_{IFA'}=\frac{IF\cdot IA'\cdot\sin{(90^\circ-\alpha)}}{2}$ и что $S_{IFB'}=\frac{IF\cdot IB'\cdot\sin{(90^\circ-\beta)}}{2}$. То есть осталось показать, что $IA'\cdot\cos\alpha=IB'\cdot\cos\beta$. Остаётся заметить, что $IA'\cdot\cos\alpha=r=IB'\cdot\cos\beta$, где r – радиус вписанной в ABC окружности.