Supplement 4

Reviewer analysis requests: Number of pain sites

Peter Kamerman

Last knitted: 16 October 2021

Contents

1	Imp	ort an	d check	z data			1	
2	Dat	a anal					4	
	2.1 Process data							
2.2 Summary statistics							4	
		2.2.1	Total gr	roup			4	
		2.2.2	For each	h categorical variable			5	
			2.2.2.1	By diabetes				
			2.2.2.2	By TB			5	
Ÿ				ots				
		2.3.1		h categorical variable				
			2.3.1.1	Count by diabetes			6	
			2.3.1.2	Count by TB			9	
		2.3.2	Continu	ious variables				
			2.3.2.1	Beck's Depression Inventory II			12	
3	Sess	sion in	formatio	on			13	

1 Import and check data

```
# Import
data <- read_rds('data-cleaned/data-pain-sites.rds')</pre>
demo <- read_rds('data-cleaned/data-demographics.rds') %>%
  select(ID, Site, Diabetes, TB, BDI) # Select required columns
# Check
## Pain sites
dim(data)
## [1] 599
names(data)
   [1] "ID"
                             "Head"
                                                  "Throat"
## [4] "Shoulder"
                             "Arms"
                                                  "Elbows"
                             "Chest"
## [7] "Wrists.Hands"
                                                  "Upper_back"
```

```
## [10] "Lower back"
                                                           "Abdomen"
                                                                                                      "Cervical_spine"
                                                           "Lumbosacral_spine" "Groin"
## [13] "Thoracic_spine"
## [16] "Hips"
                                                           "Legs"
                                                                                                      "Knees"
## [19] "Ankles.Feet"
                                                           "Buttocks"
                                                                                                      "Site"
glimpse(data)
## Rows: 599
## Columns: 21
                                                <chr> "RPB73", "RPB74", "RPB75", "RPB76", "RPB77", "RPB78"~
## $ ID
                                                <chr> "No", "No", "No", "Yes", "Yes", "No", "No", "No", "Y~
## $ Head
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Yes~
## $ Throat
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"-
## $ Shoulder
## $ Arms
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"~
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"~
## $ Elbows
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"~
## $ Wrists.Hands
                                                <chr> "No", "No", "No", "Yes", "No", "No", "No", "No", "Ye~
## $ Chest
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"-
## $ Upper_back
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "No"~
## $ Lower_back
                                                <chr> "No", "No", "Yes", "Yes", "No", "No", "Yes", "No", "~
## $ Abdomen
## $ Cervical_spine
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"~
                                                <chr> "No", 
## $ Thoracic_spine
## $ Lumbosacral_spine <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "No"~
## $ Groin
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"-
                                                <chr> "No", "No", "No", "No", "No", "No", "No", "Yes", "No~
## $ Hips
                                                <chr> "No", "No", "No", "No", "Yes", "No", "Yes", "N~
## $ Legs
                                                <chr> "No", "No", "No", "No", "Yes", "No", "Yes", "N~
## $ Knees
## $ Ankles.Feet
                                                <chr> "No", "No", "No", "No", "Yes", "No", "Yes", "N~
## $ Buttocks
                                                <chr> "No", "No", "No", "No", "No", "No", "Yes", "No~
                                                <chr> "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP"~
## $ Site
data %>%
        select(-ID, -Site) %>%
        mutate_if(is.character, factor) %>%
        skim()
```

Table 1: Data summary

Name	Piped data
Number of rows	599
Number of columns	19
Column type frequency:	
factor	19
Group variables	None

Variable type: factor

skim_variable	missing	complete	n_unique	top_counts
Head	0	599	2	No: 402, Yes: 197
Throat	0	599	2	No: 580, Yes: 19
Shoulder	0	599	2	No: 552, Yes: 47

skim_variable	missing	complete	n_unique	top_counts
Arms	0	599	2	No: 574, Yes: 25
Elbows	0	599	2	No: 577, Yes: 22
Wrists.Hands	0	599	2	No: 563, Yes: 36
Chest	0	599	2	No: 481, Yes: 118
Upper_back	0	599	1	No: 599
Lower_back	0	599	2	No: 557, Yes: 42
Abdomen	0	599	2	No: 440, Yes: 159
Cervical_spine	0	599	2	No: 569, Yes: 30
Thoracic_spine	0	599	2	No: 525, Yes: 74
Lumbosacral_spine	0	599	2	No: 506, Yes: 93
Groin	0	599	2	No: 545, Yes: 54
Hips	0	599	2	No: 559, Yes: 40
Legs	0	599	2	No: 500, Yes: 99
Knees	0	599	2	No: 515, Yes: 84
Ankles.Feet	0	599	2	No: 415, Yes: 184
Buttocks	0	599	2	No: 580, Yes: 19

```
## Demographics
dim(demo)
## [1] 599
                                                                                                    5
names(demo)
## [1] "ID"
                                                                                                                                                                                                                                 "Diabetes" "TB"
                                                                                                                                                                                                                                                                                                                                                                                                          "BDI"
                                                                                                                                             "Site"
glimpse(demo)
## Rows: 599
## Columns: 5
                                                                                                            <chr> "RPB73", "RPB74", "RPB75", "RPB76", "RPB77", "RPB78", "RPB80"~
 ## $ ID
                                                                                                            <chr> "RP", 
## $ Site
## $ Diabetes <chr> "No", "~
                                                                                                            <chr> "No", "No", "No", "Yes", "No", "Yes", "No", "No"
## $ TB
## $ BDI
                                                                                                            <dbl> 23, 25, 5, 25, 24, 24, 8, 22, 9, 8, 8, 7, 3, 9, 26, 5, 33, NA~
demo %>%
                              select(-ID, -Site) \%
                              mutate_if(is.character, factor) %>%
                              skim()
```

Table 3: Data summary

Name	Piped data
Number of rows	599
Number of columns	3
Column type frequency:	
factor	2
numeric	1
Group variables	None

Variable type: factor

skim_variable	missing	complete	n_unique	top_counts
Diabetes	241	358		No: 342, Yes: 16
TB	228	371		No: 261, Yes: 110

Variable type: numeric

skim_variable	missing	complete	mean	sd	p0	p25	p50	p75	p100
BDI	348	251	17.91	9.74	1	10	17	25	46

2 Data analysis

2.1 Process data

2.2 Summary statistics

2.2.1 Total group

```
analysis_set %>%
  select(Count) %>%
  skim()
```

Table 6: Data summary

Name	Piped data
Number of rows	599
Number of columns	1

Column type frequency: numeric	1
Group variables	None

Variable type: numeric

skim_variable	missing	complete	mean	sd	p0	p25	p50	p75	p100
Count	0	599	2.26	1.7	0	1	2	3	12

2.2.2 For each categorical variable

```
analysis_set %>%
  select(Count, Diabetes) %>%
  filter(complete.cases(.)) %>%
  group_by(Diabetes) %>%
  skim()
```

2.2.2.1 By diabetes

Table 8: Data summary

Name	Piped data
Number of rows	358
Number of columns	2
Column type frequency:	
numeric	1
Group variables	Diabetes

Variable type: numeric

skim_variable	Diabetes	missing	complete	mean	sd	p0	p25	p50	p75	p100
Count	No	0	342	2.30	1.83	0	1.00	2	3	12
Count	Yes	0	16	2.88	1.63	0	1.75	3	4	5

```
analysis_set %>%
  select(Count, TB) %>%
  filter(complete.cases(.)) %>%
  group_by(TB) %>%
  skim()
```

2.2.2.2 By TB

Table 10: Data summary

Name	Piped data
Number of rows	371
Number of columns	2
Column type frequency:	
numeric	1
Group variables	ТВ

Variable type: numeric

skim_variable	ТВ	missing	complete	mean	sd	p0	p25	p50	p75	p100
Count	No	0	261	2.28	1.90	0	1	2	3	12
Count	Yes	0	110	2.43	1.61	0	1	2	3	7

2.3 Exploratory plots

2.3.1 For each categorical variable

```
analysis_set %>%
   select(Count, Diabetes) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(Count) +
   geom_histogram(binwidth = 1,
                  colour = '#FFFFFF') +
   labs(title = 'Diabetes mellitus',
        subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Diabetes), ])})'),
         x = 'Number of sites',
         y = 'Count') +
   facet_wrap(~Diabetes) +
   coord_flip() +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
         plot.subtitle = element_text(size = 12),
         panel.grid = element_blank(),
          axis.text = element_text(colour = '#000000'),
          axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
```

2.3.1.1 Count by diabetes

Diabetes mellitus

(Complete cases = 358)


```
diabetes <- analysis_set %>%
    select(Count, Diabetes) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(y = Count,
        x = Diabetes) +
   geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#FFFFFF',
               colour = '#000000',
               stroke = 0.8,
               alpha = 0.5) +
   geom_boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0,
                 size = 0.8,
                 alpha = 0) +
    scale_x_discrete(labels = c('No', 'Yes')) +
   labs(title = 'Diabetes mellitus',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Diabetes), ])})'),
         y = 'Number of sites') +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
```

```
plot.caption = element_text(size = 12),
panel.grid = element_blank(),
axis.title.x = element_blank(),
axis.text = element_text(colour = '#000000'),
axis.line = element_line(size = 0.5),
axis.ticks = element_line(size = 0.5)); diabetes
```

Diabetes mellitus

(Complete cases = 358)


```
wilcox.test(Count ~ Diabetes, data = analysis_set)
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: Count by Diabetes
## W = 2092.5, p-value = 0.105
## alternative hypothesis: true location shift is not equal to 0
```

```
scale_y_continuous(limits = c(0, 150),
                   breaks = c(0, 50, 100, 150)) +
labs(title = 'TB infection',
     subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                         analysis_set$TB), ])})'),
     x = 'Number of sites',
     y = 'Count') +
facet_wrap(~TB) +
coord_flip() +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
      plot.subtitle = element_text(size = 12),
      panel.grid = element blank(),
      axis.text = element_text(colour = '#000000'),
      axis.line = element_line(size = 0.5),
      axis.ticks = element_line(size = 0.5))
```

2.3.1.2 Count by TB

TB infection

(Complete cases = 371)


```
tb <- analysis_set %>%
    select(Count, TB) %>%
    filter(complete.cases(.)) %>%
    ggplot(data = .) +
    aes(y = Count,
        x = TB) +
```

```
geom_point(size = 2,
           shape = 21,
           position = position_jitter(height = 0.2, width = 0.2),
           fill = '#FFFFFF',
           colour = '#000000',
           stroke = 0.8,
           alpha = 0.5) +
geom_boxplot(outlier.colour = '#FFFFFF',
             outlier.size = 0,
             size = 0.8,
             alpha = 0) +
scale_x_discrete(labels = c('No', 'Yes')) +
labs(title = 'TB infection',
     subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                         analysis_set$TB), ])})'),
     y = 'Number of sites') +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
      plot.subtitle = element_text(size = 12),
      plot.caption = element_text(size = 12),
      panel.grid = element_blank(),
      axis.title.x = element_blank(),
      axis.text = element_text(colour = '#000000'),
      axis.line = element_line(size = 0.5),
      axis.ticks = element_line(size = 0.5)); tb
```

TB infection

(Complete cases = 371)


```
wilcox.test(Count ~ TB, data = analysis_set)
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: Count by TB
## W = 13260, p-value = 0.2365
## alternative hypothesis: true location shift is not equal to 0
```

2.3.2 Continuous variables

```
alpha = 0.5) +
labs(title = 'Depression',
     subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                         analysis_set$BDI), ])})'),
     x = "Beck's Depression Inventory II (0 to 63)",
     y = 'Number of sites') +
scale_x_continuous(limits = c(0, 60),
                   breaks = seq(0, 60, by = 20)) +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
      plot.subtitle = element_text(size = 12),
      plot.caption = element_text(size = 12),
      panel.grid = element_blank(),
      axis.text = element_text(colour = '#000000'),
      axis.line = element_line(size = 0.5),
      axis.ticks = element_line(size = 0.5)); bdi
```

2.3.2.1 Beck's Depression Inventory II

Depression

(Complete cases = 251)


```
cor.test(analysis_set$Count, analysis_set$BDI,
    method = 'spearman',
    exact = FALSE)
```

##
Spearman's rank correlation rho

```
##
## data: analysis_set$Count and analysis_set$BDI
## S = 2241585, p-value = 0.01781
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.1494652
```

3 Session information

```
sessionInfo()
```

```
## R version 4.0.4 (2021-02-15)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
## [1] knitr_1.33
                        skimr_2.1.3
                                        forcats_0.5.1
                                                         stringr_1.4.0
## [5] dplyr_1.0.7
                                        readr 1.4.0
                                                         tidyr_1.1.3
                        purrr_0.3.4
##
   [9] tibble 3.1.3
                        ggplot2_3.3.5
                                        tidyverse 1.3.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.1.1 xfun_0.25
                                                               haven_2.3.1
                                            repr_1.1.3
## [5] colorspace_2.0-2 vctrs_0.3.8
                                                               htmltools_0.5.1.1
                                            generics_0.1.0
                          yaml_2.2.1
## [9] base64enc_0.1-3
                                            utf8_1.2.2
                                                               rlang_0.4.11
## [13] pillar_1.6.2
                          glue_1.4.2
                                            withr_2.4.2
                                                               DBI_1.1.1
## [17] dbplyr_2.1.0
                          modelr_0.1.8
                                            readxl_1.3.1
                                                               lifecycle_1.0.0
## [21] munsell_0.5.0
                          gtable_0.3.0
                                                              rvest_1.0.0
                                            cellranger_1.1.0
## [25] evaluate_0.14
                          labeling_0.4.2
                                            fansi_0.5.0
                                                               highr_0.9
## [29] broom_0.7.9
                          Rcpp_1.0.7
                                            scales_1.1.1
                                                               backports_1.2.1
## [33] jsonlite_1.7.2
                          farver_2.1.0
                                                               hms_1.0.0
                                            fs_{1.5.0}
## [37] digest_0.6.27
                          stringi_1.7.3
                                            grid_4.0.4
                                                               cli_3.0.1
## [41] tools_4.0.4
                          magrittr_2.0.1
                                            crayon_1.4.1
                                                               pkgconfig_2.0.3
## [45] ellipsis_0.3.2
                          xml2_1.3.2
                                            reprex_1.0.0
                                                               lubridate_1.7.10
## [49] assertthat_0.2.1 rmarkdown_2.10
                                            httr_1.4.2
                                                               rstudioapi_0.13
## [53] R6_2.5.0
                          compiler_4.0.4
```