GND □ 7

JANUARY 1981 -- REVISED DECEMBER 1983

8 2Y

- Functionally and Mechanically Identical To 'LS13, 'LS14, and 'LS132, Respectively
- Improved Line-Receiving Characteristics
- P-N-P Inputs Reduce System Loading
- Excellent Noise Immunity With Typical Hysteresis of 0.7 V

description

Each circuit functions as a NAND gate or inverter, but because of the Schmitt action, it has different input threshold levels for positive (V_{T+}) and for negative going (V_{T-}) signals. The hysteresis or backlash, which is the difference between the two threshold levels $(V_{T+}-V_{T-})$, is typically 900 millivolts.

These circuits are temperature-compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

logic diagram (each gate or inverter)

'LS18

. —

LS24

'LS19

SN74LS19 ... D, J OR N PACKAGE (TOP VIEW)

SN74LS24 ... D, J OR N PACKAGE (TOP VIEW)

1A 🗆	1	U14 □ VC0
18 🗆	2	13 AB
17□	3	12 3 4A
2A 🗆	4	11 4Y
28 🗆	5	10 3B
2Y[6	9 3A
GND [7	8 J 3Y

SN74LS18 ... D, J OR N PACKAGE (TOP VIEW)

1A 1 14 VCC 1B 12 13 2D NC 13 12 D 2C 1C 14 11 NC 1D 15 10 2B 1Y 16 9 2A

SN74LS18 . . . FN PACKAGE (TOP VIEW)

SN74LS19 ... FN PACKAGE (TOP VIEW)

SN74LS24 . . . FN PACKAGE

NC - No internal connection

PRODUCTION DATA

This document contains information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

This Material Copyrighted By Its Respective Manufacturer

schematic (each gate)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage	
Operating free-air temperature range: SN74LS'	0°C to 70°C
Storage temperature range	- 65°C to 150°C

recommended operating conditions

	-	SN74LS'			
	M	N N	ЭМ	MAX N	UNIT
Supply voltage, VCC	4.	5	5	5.25	V
High-level output current, IOH				- 400	μΑ
Low-level output current, IOL				8	mA
Operating free-air temperature, TA		0	-	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED		TEST CONDITIONS [†]					UNIT	
PARAMETER								
V _{T+}	V _{CC} = 5 V			1.65	1.9	2.15	V	
V _T _	$V_{CC} = 5V$	·		0.75	1.0	1.25	V	
Hysteresis (V _{T+} - V _{T-})	V _{CC} = 5 V			0.4	0.9		V	
Vik	V _{CC} = MIN,	I _I = - 18 mA				1.5	V	
Voн	V _{CC} = MIN,	$V_I = V_T - min$	I _{OH} = -0.4 mA	2.7	3.4		V	
		., .,	I _{OL} = 4 mA		0.25	0.4		
VOL	V _{CC} = MIN,	$V_I = V_{T+max}$	I _{OL} = 8 mA		0.35	0.5	٧	
I _{T+}	$V_{CC} = 5 V$,	$V_I = V_{T+}$			- 2	- 20	μΑ	
I _T _	$V_{CC} = 5V$,	V _I = V _T -			- 5	- 30	μΑ	
I _I	V _{CC} = MAX,	V _I = 7 V				0.1	mA	
ин .	V _{CC} = MAX,	V _I = 2.7 V				20	μА	
l _{IL}	V _{CC} = MAX,	V _I = 0.4 V				- 50	μА	
IOS	V _{CC} = MAX,	$V_I = V_O = 0V$		- 20		- 100	mA	
			'LS18		3.3	6		
І ссн	$V_{CC} = MAX$	$V_{\parallel} = 0 V$	'LS19		9.9	18	mA	
	l l		'LS24		6.6	12	1	
			'LS18	1	5.7	10		
ICCL	V _{CC} = MAX,	$V_{I} = 4.5 V$	'LS19		17	30	mA	
			'LS24		11	20	1	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$.

§Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, see figure 1

24244555	FROM	то	TEST CONDITIONS	'LS18		'LS19			'LS24				
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
^t PLH	Any	Y	$R_L = 2 k\Omega$, $C_L = 15 pF$		13	20		13	20		13	20	ns
^t PHL	Any	Ÿ			37	55		18	30		25	40	ns

tpLH = Propagation delay time, low-to-high-level output

TTL DEVICES

tpHL = Propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. All diodes are IN3064 or equivalent,
 - B. C_L includes probe and circuit capacitance.
 - C. The generator characteristics are; P_RR = IMHz, t_r = 15 ns, t_p = 6 ns, Z_{out} = 50 Ω .

FIGURE 1

3-103