

Very Large Scale Integration II - VLSI II Introduction to Digital World

Prof. Dr. Berna ÖRS

Araş. Gör. Fırat Kula

ITU VLSI Laboratories

Istanbul Technical University

Syllabus (Tentative)

- Week 1
 - Introduction to Digital World
 - Digital Design Methodology
 - Verilog Basics
- Week 2
 - Verilog Basics
- Week 3
 - Full Custom gate design
- Week 4
 - Design example using Verilog
 - Behavioral Simulation Using Xcellium
- Week 5
 - Synthesis Using GENUS
 - Place and Route Using Encounter
- Week 6
 - Signout
 - Verilog and Full Custom Design Integration
- Week 7
 - Instruction Set Architecture
 - RISCV Instruction Set Architecture
- Week 8
 - Memory Structures
 - Cache Hierarchies
- Week 9
 - Hardware Arithmetic

Syllabus (Tentative)

- Week 10
 - RF & Datapath & Single Cycle Control
- Week 11-12
 - Basic Pipelining
 - Hazard Handling
- Week 13-14
 - Q&A

Text Books

- Morris Mano, Charles Kime, Tom Martin, Logic and Computer Design Fundamentals, Pearson Education Limited, 5th Edition, 2015.
- John L. Hennessy, David A. Patterson, Computer Architecture:
 A Quantitative Approach, Morgan Kaufmann, 6th Edition, 2017.
- Frank Vahid, Digital Design with RTL Design, Verilog and VHDL, Wiley, 2nd Edition, 2010.
- Frank Vahid, Tony Givargis, Embedded System Design: A Unified Hardware/Software Introduction, John Wiley & Sons, 2002.

Time Table (Tentative)

- 1st Homework
 - Reseach about available Technologies
- 2nd Homework
 - Custom gate design and implementation
- 3rd Homework
 - Combinational circuit design and implementation
- 4th Homework
 - Finite state machine design and implementation
- 5th Homework
 - Memory design for your processor
 - Research about RISC-V ISA
- 6th Homework
 - ALU design for your processor
- 7th Homework
 - Datapath design for your processor
 - Controlpath design for your processor
 - Single cycle control processor design
- 8th Homework
 - Pipeline design for your processor
 - Hazard handler design for your processor
 - Testing your processor
- 9th Homework
 - Documentation of your processor

INNOVATION • QUALITY • RELIABILITY

5

Grading

- Average of first 6 homeworks will be grade for midterm
- Average of last 3 will be grade for final
- Term grade=midterm*0,6+final*0,4

Outline

- Why Digital?
- Why NOT Digital?
- Considerations of Digital Technology
- Limitations of Digital Technology

Why Digital?

- Ease of Design
 - Low Idea-to-Product Time

Why Digital?

- Ease of Design
 - Portability

Why Digital?

- Ideal World
 - Immunity to Noise

*

ENGINEERING THE FUTURE

Why Digital?

- Ideal World
 - Only mathematical and logical operations
 - Zero error for some operations
 - Customizable precision

Why Digital?

- Ideal World
 - Easy Signal Processing

INNOVATION • QUALITY • RELIABILITY

12

*

ENGINEERING THE FUTURE

Why Digital?

- Programmability
 - Can be programmable on the fly
 - Can change the behavior completely

Why Digital?

Technology (scaling) driven

Why NOT Digital?

- Sound
- Electromagnetic Waves
 - Light etc.
- All other sensory data
 - Pressure
 - Temperature
 - Humidity etc.
- Short, The World is ANALOG

Considerations of Digital Technology

Trade-off Triangle

Limitations of Digital Technology

Total Power = Dynamic Power + Static Power

Dynamic Power → C.f.V_{DD}²

Static Power → Leakage Currents

Limitations of Digital Technology

Power Density = Power Consumption per Unit Area

INNOVATION • QUALITY • RELIABILITY

18

www.vlsi.itu.edu.tr 06.02.2023

Limitations of Digital Technology

Subthreshold Leakage Currents

Limitations of Digital Technology

- Gate Leakage
 - Thinner gates → faster transistors but more leakage

Homework I

- Do a literature research on logic families
 - Keywords (not limited to): ECL, CMOS, Domino, NORA,
 Zipper, Pass-transistor Logic

*

ENGINEERING THE FUTURE

References

- http://download.intel.com/pressroom/kits/45nm/pin.jpg
- http://www.clipartheaven.com/show/clipart/tools_&_hardware/ wheelbarrow-gif.html
- http://www.topnews.in/health/files/Aircraft-noise.jpg
- http://www.ami.ac.uk/courses/ami4822 dsi/u02/index.asp
- http://en.wikipedia.org/wiki/Digital_signal_processor
- http://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/ Digital.signal.svg/567px-Digital.signal.svg.png
- http://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png
- http://ixbtlabs.com/articles2/intel-65nm/
- http://www.tomshardware.com/reviews/cheap-thrills,1335.html