

Notions de circuits électriques Circuits électriques – chapitre 2

Introduction Objectifs

Pour représenter un montage électrique, les électriciens dessinent un schéma électrique en symbolisant les éléments.

- + Quels sont ces symboles?
- + Comment réalise-t-on un schéma électrique?
- + Comment réalise-t-on un montage électrique à partir d'un schéma?

Introduction Quelques définitions

- + L'électricité est un terme général qui englobe une variété de phénomènes résultant de la présence de flux provenant de charges électriques.
- + Un circuit électrique est une interconnexion de composantes électriques, généralement pour accomplir une tâche utile ou répondre à un fonctionnement donné.
- + dipôle électrique, un composant électrique comportant deux bornes.

Les éléments d'un circuit électrique

+ Identifier les éléments de base qui constitue un circuit électrique élémentaire :

Les éléments d'un circuit électrique

- + Connaître le rôle de chaque élément est primordial:
 - La pile est le générateur, c'est elle qui produit le courant électrique dans le circuit.
 - La lampe est le récepteur, elle utilise le courant produit par le générateur
 - L'interrupteur est un élément de commande du circuit, il permet de fermer ou d'ouvrir le circuit.
 - Les fils électriques permettent la liaison entre les différents éléments du circuit.

Les éléments d'un circuit électrique

+ D'une manière générale, un circuit électrique peut être constitué de plusieurs dipôles de types différents :

Elément	Son utilité
Générateur	Appareil qui permet de fournir l'énergie électrique au circuit. Il agit comme une pompe à électrons.
Récepteur	Appareil qui utilise l'énergie électrique et la transforme en une autre forme d'énergie (ex : mécanique, thermique)
Interrupteur	Elément qui a pour rôle de bloquer le passage du courant électrique.
Conducteur	Elément permettant la liaison électrique des composants

Réalisation d'un circuit simple commande d'une lampe

+ On veut réaliser notre premier circuit électrique; pour cela, on dispose d'une pile, d'un interrupteur, d'une lampe et de fils de connexion.

Réalisation d'un circuit simple commande d'une lampe

Explication

- + Un circuit électrique simple est formé par une boucle qui comporte un générateur, un interrupteur, une lampe (ou un autre dipôle récepteur) reliés par des fils de connexion.
- + Si la lampe brille, le courant électrique circule : on dit que le circuit est <u>fermé</u>.
- + Si la lampe reste éteinte, le courant ne circule plus : on dit que le circuit est <u>ouvert</u>.

Électricité dans la matière L'atome

Pour comprendre comment est obtenu le courant électrique, il faut savoir de quoi est composée la matière.

+ Les 3 éléments de base qui constituent un atome :

Les électrons	
Les protons Les neutrons	Noyau

Électricité dans la matière L'atome

Représentation sur un schéma

Charge: *Positive*

Électricité dans la matière Courant électrique

- + Il existe deux grandes familles de matériaux:
 - Les isolants: les électrons sont liés aux noyaux des atomes
 - Les conducteurs : les électrons sont libres, ils peuvent changer d'atome.
- + Dans un conducteur les électrons circulent avec liberté, ce que créé instantenement ce qu'on appelle un courant électrique.
- + La condition pour que les électrons puissent circuler dans un matériau conducteur :
 - □ Que le circuit soit fermé et qu'il y ait une source d'energie.

Électricité dans la matière Courant électrique

Définition

Le courant électrique est la conséquence du déplacement d'électrons dans un conducteur. L'intensité est la quantité de courant passant dans ce conducteur à un instant donné.

Unités de mesure:

+ Symbole: I

+ Unité: A

Électricité dans la matière Courant électrique

Mesure du courant électrique

- + On peut mesurer la quantité du courant circumant dans un circuit électrique à l'aide de l'appareil de mesure qu'on appelle : Ampèremètre.
- + L'Ampèremètre doit toujours être branché en série.

Électricité dans la matière Tension électrique

Définition

- + Un générateur en état de fonctionnement comporte une force interne appelée « *force électromotrice*» Cette force se traduit par la présence d'une tension entre ses bornes.
- + La tension est présente aux bornes du générateur tant que celui-ci possède de l'énergie, même si aucun récepteur n'est branché!
- + La tension signale la présence d'énergie électrique.
- + On l'appelle aussi différence de potentiel.

Électricité dans la matière Tension électrique

Unité de mesure

+ Symbole: U

+ Unité: V

Exemple de presentation de tension électrique:

Électricité dans la matière Tension électrique

Mesure de la tension électrique

- + On peut mesurer la tension électrique dans aux bornes d'un composant à l'aide de l'appareil de mesure qu'on appelle : Voltmètre.
- + Le Voltmètre doit toujours être branché en parallèle.

Conventions de représentation

On appelle dipôle un élément d'un circuit électrique possédant deux bornes ou deux pôles. Chaque dipôle électrique possède son propre symbole normalisé.

- Chaque élément d'un circuit est représenté par son symbole.
- On dit que l'on représente le circuit électrique par un schéma.

Conventions de représentation

gén	érateurs	lampe	interrupteurs		moteur	fil conducteur
- -	—G—	$-\!\!\otimes\!\!-$	~ ~		$-\!$	
pile	alimentation collège		ouvert	fermé		

Schéma électrique

Comment procéder?

- 1. On dessine un rectangle au crayon
- 2. On efface les endroits où seront placés les éléments.
- 3. On dessine alors les symboles des éléments du circuit.

Schéma électrique: exemple 1 de schéma

Dans ce circuit schématisé, l'interrupteur est fermé.

Schéma électrique: exemple 2 de schéma

Dans ce circuit schématisé, l'interrupteur est ouvert.

Schéma électrique: remarque

On représente les fils de connexion toujours par des traits horizontaux ou verticaux.

Court-circuit du générateur

Expérience: on réalise le montage suivant:

Court-circuit du générateur

Observation:

+ Lorsque l'on ferme le circuit, la paille de fer brûle.

Interprétation:

- Les bornes de la pile sont directement reliées entre elles sans aucun dipôles : on dit que la pile est en court-circuit.
- Dans ce cas, le courant devient très intense et échauffe fortement la paille de fer jusqu'à ce qu'elle brûle.

Court-circuit du générateur

Dans un montage, il y a court-circuit quand les deux bornes du générateur sont directement reliées par des fils de connexion.

Un court-circuit présente un danger d'incendie et de destruction du générateur.