# Ψηφιακή Επεξεργασία Εικόνας (ΨΕΕ) – ΜΥΕ037 Εαρινό εξάμηνο 2023-2024

**Spatial Filtering** 

Άγγελος Γιώτης

a.giotis@uoi.gr

#### Contents

### In this lecture we will look at spatial filtering techniques:

- Neighbourhood operations
- What is spatial filtering?
- Smoothing operations
- What happens at the edges?
- Correlation and convolution
- Sharpening filters
- Combining filtering techniques

### Neighbourhood Operations

Neighbourhood operations simply operate on a larger neighbourhood of pixels than point operations *Origin* 

Neighbourhoods are mostly a rectangle around a central pixel

Any size rectangle and any shape filter are possible



### Simple Neighbourhood Operations

### Some simple neighbourhood operations include:

- Min: Set the pixel value to the minimum in the neighbourhood
- Max: Set the pixel value to the maximum in the neighbourhood
- Median: The median value of a set of numbers is the midpoint value in that set (e.g. from the set [1, 7, 15, 18, 24] the median is 15).

### Simple Neighbourhood Operations

### Some simple neighbourhood operations include:

- Average/Mean: Set the pixel value to the mean value over all the pixels in the neighbourhood
- Sometimes the median works better than the average

# Simple Neighbourhood Operations - Examples

```
Min(1, 7, 15, 18, 24) = 1

Max(1, 7, 15, 18, 24) = 24

Mean(1, 7, 15, 18, 24) = 13

Median(1, 7, 15, 17, 18, 24) = 16

(even case: median = average of the two

median values 15 and 17)
```

#### The Spatial Filtering Process



The above is repeated for every pixel in the original image to generate the filtered image

### Spatial Filtering: Equation Form



$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Filtering can be given in equation form as shown above

Notations are based on the image shown to the left

### Spatial Filtering: Equation Form



$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Filtering can be given in equation form as shown above

Notations are based on the image shown to the left

### Smoothing Spatial Filters

- One of the simplest spatial filtering operations we can perform is a smoothing operation
  - Simply average all of the pixels in a neighbourhood around a central value
  - Especially useful in removing noise from images
  - Also useful for highlighting gross detail

| 1/9 | 1/9 | 1/9 |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |

### Smoothing Spatial Filtering



The above is repeated for every pixel in the original image to generate the smoothed image.

A. Giotis – Digital Image Processing (MYE037)

### Image Smoothing Example

- The image at the top left is an original image of size 500\*500 pixels
- The subsequent images show the image after filtering with an averaging filter of increasing sizes
  - -3, 5, 9, 15 and 35
- Notice how detail begins to disappear



### Weighted Smoothing Filters

 More effective smoothing filters can be generated by allowing different pixels in the neighbourhood different weights in the averaging function

- Pixels closer to the central pixel are more important
- Often referred to as a weighted averaging

| <sup>1</sup> / <sub>16</sub> | <sup>2</sup> / <sub>16</sub> | <sup>1</sup> / <sub>16</sub> |
|------------------------------|------------------------------|------------------------------|
| <sup>2</sup> / <sub>16</sub> | <sup>4</sup> / <sub>16</sub> | <sup>2</sup> / <sub>16</sub> |
| <sup>1</sup> / <sub>16</sub> | <sup>2</sup> / <sub>16</sub> | <sup>1</sup> / <sub>16</sub> |

### Another Smoothing Example

 By smoothing the original image we get rid of lots of the finer detail which leaves only the gross features for thresholding



### Averaging Filter vs. Median Filter Example



Original Image With Noise

Image After Averaging Filter

Image After Median Filter

- Filtering is often used to remove noise from images
- Sometimes a median filter works better than an averaging filter

### Spatial smoothing and image approximation

 Spatial smoothing may be viewed as a process for estimating the value of a pixel from its neighbours.

 What is the value that "best" approximates the intensity of a given pixel given the intensities of its neighbours?

We have to define "best" by establishing a criterion.

A standard criterion is the the sum of squares differences.

$$E = \sum_{i=1}^{N} \left[ x(i) - m \right]^{2} \iff m = \underset{m}{\operatorname{arg min}} \left\{ \sum_{i=1}^{N} \left[ x(i) - m \right]^{2} \right\}$$

$$\frac{\partial E}{\partial m} = 0 \iff -2\sum_{i=1}^{N} (x(i) - m) = 0 \iff \sum_{i=1}^{N} x(i) = \sum_{i=1}^{N} m$$

$$\Leftrightarrow \sum_{i=1}^{N} x(i) = Nm \Leftrightarrow m = \frac{1}{N} \sum_{i=1}^{N} x(i)$$
 The average value

Another criterion is the the sum of absolute differences.

$$E = \sum_{i=1}^{N} |x(i) - m| \quad \Leftrightarrow m = \underset{m}{\operatorname{arg min}} \left\{ \sum_{i=1}^{N} |x(i) - m| \right\}$$

$$\frac{\partial E}{\partial m} = 0 \Leftrightarrow -\sum_{i=1}^{N} sgn(x(i) - m) = 0, \quad sign(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

There must be equal in quantity positive and negative values.

$$m = median\{x(i)\}$$

- The median filter is non linear:

```
median\{x + y\} \neq median\{x\} + median\{y\}
```

- It works well for impulse noise (e.g. salt and pepper).
- It requires sorting of the image values.
- It preserves the edges better than an average filter in the case of impulse noise.
- It is robust to impulse noise at 50%.



A. Giotis – Digital Image Processing (MYE037)

#### Strange Things Happen At The Edges!

At the edges of an image we are missing pixels to form a neighbourhood



A. Giotis – Digital Image Processing (MYE037)

### Strange Things Happen At The Edges! (cont...)

There are a few approaches to dealing with missing edge pixels:

- Omit missing pixels
  - Only works with some filters
  - Can add extra code and slow down processing

### Strange Things Happen At The Edges! (cont...)

### There are a few approaches to dealing with missing edge pixels:

- Pad the image
  - Typically with either all white or all black pixels
- Replicate border pixels
- Truncate the image
- Allow pixels wrap around the image
  - Can cause some strange image artefacts

### Strange Things Happen At The Edges! (cont...)



A. Giotis – Digital Image Processing (MYE037)

#### Correlation & Convolution

- The filtering we have been talking about so far is referred to as correlation with the filter itself referred to as the correlation kernel
- Convolution is a similar operation, with just one subtle difference



For symmetric filters it makes no difference.

A. Giotis – Digital Image Processing (MYE037)

### Correlation & Convolution (cont.)



### Correlation & Convolution (cont.)



A. Giotis – Digital Image Processing (MYE037)

# Fundamental properties of convolution and correlation

| Property     | Convolution                                   | Correlation                                                               |
|--------------|-----------------------------------------------|---------------------------------------------------------------------------|
| Commutative  | $f \star g = g \star f$                       | _                                                                         |
| Associative  | $f \star (g \star h) = (f \star g) \star h$   |                                                                           |
| Distributive | $f \star (g + h) = (f \star g) + (f \star h)$ | $f \Leftrightarrow (g+h) = (f \Leftrightarrow g) + (f \Leftrightarrow h)$ |

### Separable Filters

- A 2-D function G(x, y) is considered separable if it can be expressed as the product of two 1-D functions,  $G_1(x)$  and  $G_1(y)$ , such that:  $G(x, y) = G_1(x)G_2(y)$ .
- For example, the 2 \* 3 kernel

$$\boldsymbol{w} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

is seperable because it can be expressed as the outer product of the vectors  $\begin{bmatrix} 1 \end{bmatrix}$ 

$$\mathbf{c} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

### Separable Filters

$$\mathbf{c} \ \mathbf{r}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \mathbf{w}$$

- A separable kernel of size m × n can be expressed as the outer product of two vectors, v and w of size m × 1 and n × 1, respectively: w = vw<sup>T</sup>
- The product of a column vector and a row vector is the same as the 2-D convolution of the vectors.
- Convolving a separable kernel:  $w = w_1 \star w_2$ with an image is the same as convolving  $w_1$  with f first, and then convolving the result with  $w_2$

#### Gaussian filter

- Separable
  - Fast computation
- Isotropic
  - Independent of orientation
- The product of two Gaussians is also a Gaussian
- The convolution of two Gaussians is also a Gaussian

$$w(s,t) = Ke^{-\left(\frac{s^2+t^2}{2\sigma^2}\right)}$$

### Gaussian filter (cont.)



A sampling size of  $6\sigma \times 6\sigma$  is sufficient

### Gaussian filter (cont.)



**FIGURE 3.36** (a)A test pattern of size  $1024 \times 1024$ . (b) Result of lowpass filtering the pattern with a Gaussian kernel of size  $21 \times 21$ , with standard deviations  $\sigma = 3.5$ . (c) Result of using a kernel of size  $43 \times 43$ , with  $\sigma = 7$ . This result is comparable to Fig. 3.33(d). We used K = 1 in all cases.

#### Gaussian filter (cont.)



EIGHDE 2 27 (a) Desult of filtering Fig. 2 26(a) using a Coussian ka

**FIGURE 3.37** (a) Result of filtering Fig. 3.36(a) using a Gaussian kernels of size  $43 \times 43$ , with  $\sigma = 7$ . (b) Result of using a kernel of  $85 \times 85$ , with the same value of  $\sigma$ . (c) Difference image.

### Sharpening Spatial Filters

- Previously we have looked at smoothing filters which remove fine detail
- Sharpening spatial filters seek to highlight fine detail
  - Remove blurring from images
  - Highlight edges
- Sharpening filters are based on spatial differentiation

### Sharpening Spatial Filters

- We want to measure the rate of change.
- We consider an example in 1D.



### **Sharpening Spatial Filters**





#### Derivative Filters Requirements

- First derivative filter output
  - Zero at constant intensities
  - Non zero at the onset of a step or ramp
  - Non zero along ramps

- Second derivative filter output
  - Zero at constant intensities
  - Non zero at the onset and end of a step or ramp
  - Zero along ramps of constant slope

#### 1<sup>st</sup> Derivative

Discrete approximation of the 1st derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

 It is just the difference between subsequent values and measures the rate of change of the function

#### 1st Derivative



A. Giotis – Digital Image Processing (MYE037)

#### 2<sup>nd</sup> Derivative

Discrete approximation of the 2<sup>nd</sup> derivative:

$$\frac{\partial^2 f}{\partial^2 x} = f(x-1) - 2f(x) + f(x+1)$$

#### 2<sup>nd</sup> Derivative



#### 2<sup>nd</sup> Derivative

- Edges in images typically behave like the 'ramps' we examined. The first derivative is constant and produces thick zones at the edges.
- The second derivative gives non-zero response only at the beginning and end of the edge, while being zero in the middle.

#### Derivatives



# Using Second Derivatives For Image Enhancement

- A common sharpening filter is the Laplacian
  - Isotropic
    - Rotation invariant: Rotating the image and applying the filter is the same as applying the filter and then rotating the image.
    - In other words, the Laplacian of a rotated image is the rotated Laplacian of the original image.
  - One of the simplest sharpening filters
  - We will look at a digital implementation

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

### The Laplacian

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial^2 v} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

#### The Laplacian (cont...)

$$\nabla^{2} f = -4f(x, y)$$

$$+ f(x+1, y) + f(x-1, y)$$

$$+ f(x, y+1) + f(x, y-1)$$

| 0 | 1  | 0 |
|---|----|---|
| 1 | -4 | 1 |
| 0 | 1  | 0 |

### The Laplacian (cont...)

 Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities



Original Image

Laplacian Filtered Image



Laplacian
Filtered Image
Scaled for Display

### The Laplacian (cont...)

- The result of a Laplacian filtering is not an enhanced image
- We have to do more work
- Subtract the Laplacian result from the original image to generate our final sharpened enhanced image

$$g(x,y) = f(x,y) - \nabla^2 f$$



Laplacian
Filtered Image
Scaled for Display

#### Laplacian Image Enhancement



 In the final, sharpened image, edges and fine detail are much more obvious

## Laplacian Image Enhancement





A. Giotis – Digital Image Processing (MYE037)

#### Simplified Image Enhancement

 The entire enhancement can be combined into a single filtering operation:

$$g(x,y) = f(x,y) - \nabla^2 f$$
  
= 5 f(x,y) - f(x+1,y) - f(x-1,y)  
-f(x,y+1) - f(x,y-1)

#### Simplified Image Enhancement (cont...)

 This gives us a new filter which does the whole job in one step



#### Variants On The Simple Laplacian

 There are lots of slightly different versions of the Laplacian that can be used:

| 0 | 1  | 0 |
|---|----|---|
| 1 | -4 | 1 |
| 0 | 1  | 0 |

Standard Laplacian

| 1 | 1  | 1 |
|---|----|---|
| 1 | -8 | 1 |
| 1 | 1  | 1 |

Variant of Laplacian



## Unsharp masking

- Used by the printing industry
- Subtracts an unsharped (smooth) image from the original image f(x,y).
  - –Blur the image

$$b(x,y)=Blur\{f(x,y)\}$$

-Subtract the blurred image from the original (the result is called the *mask*)

$$g_{mask}(x,y)=f(x,y)-b(x,y)$$

–Add the mask to the original

$$g(x,y)=f(x,y)+k g_{mask}(x,y), k$$
 being non negative

#### Unsharp masking (cont...)

Sharpening mechanism

If k>1, the process is referred to as **highboost filtering** 



A. Giotis – Digital Image Processing (MYE037)

### Unsharp masking (cont...)

Original image

Blurred image (Gaussian 5x5,  $\sigma=3$ )

Mask

Unsharp masking (k=1)

Highboost filtering (k=4.5)

DIP-XE

DIP-XE



DIP-XE

DIP-XE

# Using First Derivatives For Image Enhancement

$$\nabla f = \begin{bmatrix} G_x & G_y \end{bmatrix}^T = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^T$$

- Although the derivatives are linear operators, the gradient magnitude is not.
- Also, the partial derivatives are not rotation invariant (isotropic).
- The magnitude of the gradient vector is isotropic.

$$\left| |\nabla f| \right| = \sqrt{G_x^2 + G_y^2}$$

# Using First Derivatives For Image Enhancement (cont...)

 In some applications it is more computationally efficient to approximate:

$$||\nabla f|| \approx |G_x| + |G_y|$$

- This expression preserves relative changes in intensity but it is not isotropic.
- Isotropy is preserved only for a limited number of rotational increments which depend on the filter masks (e.g. 90 deg.).

# Sobel Operators

 Sobel operators introduce the idea of differentiating by giving more importance to the center point:

| -1 | -2 | -1 |
|----|----|----|
| 0  | 0  | 0  |
| 1  | 2  | 1  |

| -1 | 0 | 1 |
|----|---|---|
| -2 | 0 | 2 |
| -1 | 0 | 1 |

 Note that the coefficients sum to 0 to give a 0 response at areas of constant intensity.

#### Sobel operator Example



- Sobel gradient aids to eliminate constant or slowly varying shades of gray and assist automatic inspection.
- It also enhances small discontinuities in a flat gray filed.
- General comments
  - 1st derivatives tend to produce more thick edges
  - 2<sup>nd</sup> order derivatives have better response to detail (thin edge)
  - 2<sup>nd</sup> order derivatives produce double response to edges.

# Combining Spatial Enhancement Methods

- Successful image enhancement is typically not achieved using a single operation
- Rather we combine a range of techniques in order to achieve a final result
- This example will focus on enhancing the bone scan to the right



# Combining Spatial Enhancement Methods (cont...)



A. Giotis – Digital Image Processing (MYE037)

# Combining Spatial Enhancement Methods (cont...)



Image (d) smoothed with a 5\*5 averaging filter A. Giotis –

# Combining Spatial Enhancement Methods (cont...)

#### Compare the original and final images



A. Giotis – Digital Image Processing (MYE037)

#### Summary

In this lecture we have looked at the idea of spatial filtering and in particular:

- Neighbourhood operations
- The filtering process
- Smoothing filters
- Dealing with problems at image edges when using filtering
- Correlation and convolution
- Sharpening filters
- Combining filtering techniques