UNIVERSITEIT TWENTE.

FINAL PROJECT THESIS

Developing a Tool for Learning Concept Maps

Author:
M.C. VAN DEN ENK
[s1004654]
m.c.vandenenk@student.utwente.nl

Supervisor: dr. A.H. Gijlers a.h.gijlers@utwente.nl

Contents

Ι	Introduction	4
Pr	roject Description	5
	Flashcard system	5
	Concept mapping	5
	Comparison of the two tools	5
	Flashmap	5
Co	ontext	6
	Five educational philosophies	6
	Perennialism	6
	Essentialism	7
	Progressivism	7
	Reconstructivism	8
	Existentionalism	8
	Discussion of the five educational philosophies	9
Τł	neoretical Framework	11
	Storage and retrieval	11
	Cognitive effects with regard to encoding practices	12
	Early metaphors for the brain	12
	The brain as an associative network	13
	Elaborative processing	13
	Implications for concept mapping	13
	Cognitive effects with regard to retrieval practices	14
	Interference and Decay	14
	Power laws forgetting and learning	15
	Spacing effect	16
	Implications for the flashcard system	18

		f4f8c4e
II	Design	19
III	Research	20
	Recommendations	21 22
	Appendices	23
References		24

Part I Introduction

Project Description

In this chapter, flashcard systems, concept mapping, and the flashmap will be explored on a practical level in order to establish their definitions together with a summary of arguments in favour or opposition of using them as tools for studying.

Flashcard system

Concept mapping

Comparison of the two tools

Flashmap

Context

As can be read in the previous chapter, the aim of this study is to develop and evaluate a tool designed for the purpose of meaningful memorisation. However, why is it actually important to memorise? This question has historically been debated since the days of the early Greek philosophers, and still remains relevant today. Therefore, it seems important to briefly reflect on this question before delving into the effectivity and specifications of the tool itself. This chapter does not aim to answer this age-old question, but rather tries to provide both some philosophical and historical context, for better understanding of the relevance of a better memorisation tool, and what is generally considered to be better. Furthermore, it will relate these questions more specifically to the tools investigated within this study.

Five educational philosophies

Curriculum theorisers have proposed many different systems of categories (Marsh & Willis, 1999), of which the aim is to investigate which goals people involved with education have, and which aspects they therefore regard as being important. Apps (1973) differentiates between the five philosophies of education, being *Perennialism*, *Essentialism*, *Progressivism*, *Reconstructionalism*, and *Existentionalist education*, which have also (at least partly) been acknowledged by other authors (Brameld, 1971; Ozmon & Johnson, 1967; Yilmaz, Altinkurt, & Cokluk, 2011; Howick, 1971). Furthermore, Yilmaz et al. (2011) have found these categories to be sufficiently valid and reliable upon measuring their prevalence among teachers. In this chapter, these categories will be discussed further individually in order to provide philosophical context towards the function of knowledge.

Perennialism

According to perennialism, there is no alterior motive for obtaining knowledge, but rather that it is a purpose on itself. This is along philosophy of Socrates, who concluded that knowledge is the only virtue. He concluded this based on that wisdom is the same as knowledge (Meno, 2000), that wisdom is one of the five cardinal virtues, and that all other virtues (e.g. justice) are merely derived from the virtue of wisdom.

The perennialists are mainly based on either the general philosophy of idealism or of realism. The most notable idealist perennialist are the scholastics, who focused on teaching the great classical and religious works in order to better understand their supreme being. Realist perennialists believe the classic works still have much implications today, and therefore should be taught to the next generation.

Methods generally practiced by are considered to be rather traditional, example of these are memorisation, reading, writing, drill, and recitation. It is also the only philosophy which has

many of its followers believing that education should be directed towards the intellectually gifted, and that other students should only receive vocational education.

Perennialism has been the leading philosophy in academics before the enlightenment. In the classical era, Greek students had to memorise and recite famous poetry, such as the Iliad and Odyssey by Homer, because these were believed to "provide great moral lessons and taught them what it meant to be a Greek" (Renshaw, 2008, p.139). This academic tradition was then perpetuated throughout the middle ages by the scholastics, who used the rationalism of the Greek philosophers to defend christian doctrine – most notably in the Summa Theologica by Thomas Aquinas. Scholastic instruction consisted of four elements: lectio, the reading of an authoritative text; mediatio, a reflection on the text; quaestio, questions from students about the text; and disputationes, a discussion about controversial quaestiones. With the coming of the enlightenment, academics made a transistion from using classical idealism as a source of truth and instead used experimentalism as a source of learning about the material world and verifying truth claims, and humanism as a means to a better understanding of the human endeavour. Nonetheless, perennialism remained a prominent philosophy in education until the industrial revolution in the 19th century, and still has a place in modern society in the form of for example the Great Book program proposed by Hutchins, albeit in a far lesser degree than before the enlightenment.

Essentialism

Essentialism is generally seen as a child philosophy of perennialism, and is more goal oriented than its parent. Its purpose is to pass on knowledge to new generations in order for them to be able to function in society, and focuses on subject matter. It is also a very teacher oriented approach to education.

This philosophy also is based on both idealism and realism, whereas the idealists think the content comes from history, language and the classics, and the realists think it comes from the physical world, including mathematics and the natural sciences.

Just like perennialism, essentialist teaching methods are rather traditional, and include returning to the three R's, reading, lectures, memorisation, repetition, audio-visual materials, and examinations.

The earliest form recognisable as essentialist is the factory model of education (Stokes, 2013), which was a means to deliver education to the general public for the benefit of the whole society. This model was improved upon by introducing aspects of behaviourism with the introduction of reinforcement and repetition in order to shape the behaviour the teacher wanted. Furthermore, it introduced the audio-lingual method, where the whole class as a group chanted correct answers or key phrases. Furthermore, because of the importance of high-quality instruction, cognitivism contributed towards a better understanding of how to present materials more effectively. Essentialism still remains a popular philosophy in the form of people wanting to go 'back to basics' or wanting more order in the classroom.

Progressivism

Progressivism goes one step further than essentialists by teaching new students not only to function in society, but to go beyond and improve society. This is rather involved for it has its base in opposing authorianism instead of conforming to it.

It also has its root philosophy in experimentalism, where truth is not constant such as in idealism or realism, but rather is constantly in transition to a better understanding. Therefore,

a progressivist curriculum focuses itself not on teaching already existing knowledge, but rather on the methods existing to discover knowledge, such as the scientific method. This, however, does not mean that knowledge has become irrelevant. Students still have to be brought up to date with the newest developments in their field of interest, and thereby there is still some knowledge transfer necessary. The only difference is that this knowledge is never taught to be final, and the focus still lies within the transition and the still unknown parts.

Progressivists generally use more generative methods for instruction, such as enquiry learning, the scientific method and problem solving skills.

Starting from the philosophy of pragmatism of Peirce and James, progressivism became a serious contender for perennialism and essentialism in the 1920's, opposing their extreme authoritarian positions. As an educational practice, they grew larger with cognitivism and constructionism, where enquiry learning developed further and proved to be a more meaningful way of education. Yet, this approach was also criticised by the traditionalists, because it lacked rote learning and therefore could not be controlled, and was deemed highly inefficient for the students had to invent the wheel over and over again. However, progressivists argued that discovering truth is a very important part of learning, for it makes it meaningful and independent of an authoritarian truth. This idea of knowledge transmission also sprouted the idea of constructivism, a movement very close to progressivism.

Reconstructivism

There are many similarities between progressivism and reconstructivism, such as both subscribing to experimentalism, moral and epistemological relativism, and the goal of improving society instead of conforming to society. Yet, reconstructivists differ from progressivists in the sense that they are more concerned with the ends than the means. Their goal is not to teach problem solving, but rather problem solving itself, and that society should be repaired. This emphasises the idea that the current society is broken, and focuses on social problems such as inequalities.

One might conclude that reconstructivism is thereby not different from the traditional perennialism and essentialism, because these philosophies also focus on the ends rather than the means. However, these philosophies still assume that the truth is absolute, unchanging, and provided by previous generations, whereas reconstructivism is still rooted in experimentalism and as such states that the truth has to be discovered using the scientific method.

Reconstructivism stems from critical pedagogy, which is again based on postmodernism, antiracism, feminism, and queer theories. Critical pedagogy was also applied in other countries with problems of social injustice and poverty, such as the Philippines and South-Africa during the apartheid. Reconstructivism was then created by Theodore Brameld, who advocated for using it in the US for avoiding fascism and fighting the still prevalent institutionalised racism.

Existentionalism

Out of all described educational philosophies, existentionalism differentiates itself the most. Its core direction is towards individual self-fulfillment, and views education as an instrument for encouraging individual choice and autonomy. Not only does it oppose current authority, but it even goes far enough to state that there should be no authority, and that nobody should decide what students are supposed to learn. It also states that what a person is capable of knowing and experiencing is more important than what he knows.

The main method of existentionalism is to put students into situations where they have to make meaningful choices, and to let them confront them alone in order to overcome personal

Educational	Perennialism	Essentialism	Progressivism	Reconstructivism	Existentialism
Philosophy					
Function of	As a purpose on	In order to func-	In order to im-	In order to change	In order to dis-
knowledge	itself	tion in society	prove society	society	cover oneself
Purpose of ed-	Preserving	Supplying	Supplying tools	Supplying tools for	Encouraging
ucation	knowledge	knowledge	for discovering	discovering inequal-	maximum in-
			knowledge	ities	dividual choice
					and autonomy
Philosophies	Classical ideal-	Idealism, real-	Experimentalism	Experimentalism	Existentialism
	ism, realism	ism			
Subject mat-	Classical litera-	Three R's	Scientific	Social problems	Personal reflec-
ter	ture		method		tion
Methodology	Memorisation,	Reading, lec-	Problem solving	Problem solving	Subjecting stu-
	reading, writ-	tures, memo-			dents to crises
	ing, drill,	risation, repe-			
	recitation	tition, audio-			
		visual materials,			
		examinations			
Authority	Ancient works	Teacher	Science	Socialists	Student

Table 1: A comparative summary on the five educational philosophies (Apps, 1973)

crises so he develops selfreliance and overcomes despair. These are completely different from the methods used by other philosophies, since they do not rely on values preexistent to actions and thereby merely waiting to be discovered.

Existentionalism has seen the least progress in comparison to the aforementioned philosophies, both because of its relative novelty and its radical difference in methodology. It is also the philosophy which is most difficult to implement in current schools. One could even argue that existentialists are opposed to institutionalised education, since it revolves around self discovery and has a very anti-authoritarian viewpoint in the sense that no one should have the authority on deciding what students have to learn. One might argue that democratic schools are a form of an existentionalist curriculum, since here the students get to vote on the content they get to learn, and this school teaches democracy not from theory, but by experience. However, it is not a full realisation, for students do not learn by overcoming personal crises. Another form could be the Dutch *Iederwijs*, a school where students are placed together in a learn-friendly environment and are allowed to do whatever they please. However, this *laissez-faire* method of education still does not challenge the students in any way, which still would be part of existentionalism.

Discussion of the five educational philosophies

Table 1 shows a comparitive summary on all aforementioned philosophies, giving an indication on the growing perspective on knowledge and learning methodology throughout history. In general the older philosophies, perennialism and essentialism, are labeled as the traditional philosophies, whereas the other three, progressivism, reconstructivism, and existentionalism, are often labeled as the modern philosophies. These two groups have the most apparent clashes: traditionalists place most trust in the current authorities where the modernists oppose them; traditionalists emphasise rote memorisation where modernists emphasise enquiry; and traditionalists want students to conform to society where modernists want students to change it.

Comparing these two general paradigms with the tools investigated within this thesis, the drill and practice used by the flashcards is most advocated for by the traditionalists, whereas the constructionist concept mapping technique fits mostly to the enquiry practice of the mod-

ernists. Flashcards are used by perennialists to memorise data such as dates and reproduction questions, and even more so by essentialists for drilling facts such as multiplication tables and spelling. Concept maps however would be used to shift the attention towards the meaning behind the surface concepts: progressivists use them to discover the ever expanding scientific body of knowledge, reconstructivists for demonstrating historical causality behind social inequalities and how these could be countered, and existentialists to let students map out their own experience and knowledge. However, this preference is not absolute, perennialists could for example also use concept mapping in order to let students figure out the arguments of Socrates in a philosophy assignment (an argument map), and a modernist could still use flashcards for drilling vocabulary.

It is important to consider the five educational philosophies when attempting to successfully develop the new learning tool flashmaps which combines the flashcards and concept maps. For example, one might ask themselves the questions 'what are the benefits of concept map visualisation of flashcards for essentialists' or 'why would an existentialist want to memorise the concept map', but also more practical questions such as 'should the concept map be provided to or constructed by the students' or 'in which order should the student traverse through the map'. These are questions which have to be addressed during the design and development of the new tool.

Theoretical Framework

Storage and retrieval

Although the whole brain is involved in storing memories, the frontal lobes, medial septum and the hippocampus are the most prominent areas facilitating the process of memorising (J. Anderson, 2015) (see figure 1). The prefrontal regions are responsible for the creation and retrieval of memories, whereas the hipocampal and surrounding areas are responsible for permanent storage of these memories. Because of this dynamic, Atkinson and Shiffrin (1968) conceived a modal theory of memory, displayed in figure 2. In this model, information is perceived as sensory input, and is then shortly stored in the sensory memory. If the perceiver has paid enough attention to the input, it is then transfered (or encoded) into short-term memory. When the input is strong enough, that is, rehearsed often enough within short term memory, it can be more permanently stored in long-term memory. If not, the input fades away from memory and is forgotten. When a memory exists in long-term memory, it has to be retrieved into short-term memory in order to be remembered and used.

This model was heavily influenced by developments in electrical engineering and computer sciences, and can be thought of as functioning like a complex computer, where data is written on a hard drive (the long-term memory), and can be used by first retrieving it into working memory (or short-term memory) and later be transferred to the hard drive again. However, the way the brain works is different from a computer in the sense that a brain has to put effort into memorising data, and that a brain forgets data over time. Therefore, instead of merely inputting the data, learning requires a more rigid approach.

Karpicke (2012) describes two seperate learning practices based on the modal model of memory, namely encoding and retrieval practices, where encoding practices are focused on meaningful

Figure 1: The brain areas mainly involved in storing and retrieving declarative knowledge (White, 2003)

Figure 2: The modal model of memory proposed by Atkinson and Shiffrin (1968)

encoding or construction of knowledge, and retrieval practiced are more focused on the reconstruction and rehearsal of knowledge. He states that both practices are essential to enhancing learning. Flashcards are a famous retrieval practice, emphasising drilling the same facts over and over again by means of pairs by association, whereas concept maps are known to be an encoding practice where the student has to connect diverse concepts within one topic by meaningful relations.

The following sections will elaborate on cognitive effects with regard to both encoding and retrieval practices, and relating them with their relevance to the effectiveness of concept mapping and flashcard systems respectively.

Cognitive effects with regard to encoding practices

The first step of memorisation is always encoding, because (logically speaking) it first has to be processed and encoded in either Short-Term or Long-Term Memory in order to be retrieved or used later on. After all, one cannot retrieve a memory which is not already there. It therefore is important to first acknowledge by which means knowledge is encoded, and in what kind of structure it is then stored.

Early metaphors for the brain

For centuries, a lot of metaphors describing memory characterised the brain as a room where a person could store physical things, such as a library filled with books or a storehouse with items (Roediger, 1980). The fact that this metaphor seems intuitive and is easy to understand, it is one of the most popular metaphors, and is still prevalent today. It is for example explicitly used in many popular depictions of memory, such as in the film Inside Out (2015), where memories are stored as physical balls. There even exists a widely-used memorisation technique called the loci method, which lets students envision a house where they have to store memories physically in the room. They can then later retrieve the memories by walking through the house and walking along the places they stored the memories at (J. Anderson, 2015).

Yet, there are certain flaws with this model. Firstly, with regards to retrieval practices, it depicts memories as static objects which only have to be stored there and consequently being remembered forever (although inside out already addressed this partly by showing the decay theory of memory by the balls being thrown away when never used, and illustrated strong flashbulb memories as being 'core memories' stored seperately), misleading students, teachers and scientists into focusing more on encoding practices than on retrieval practices (Karpicke, 2012). Furthermore, it treats memories as existing as separate objects, which does not correspond with how memories are encoded in the brain. As a matter of fact, already in the 19th century, Cajal discovered that memories were patterns of electricity through neurons by means of synapses (Bliss & Collingridge, 1993). This enabled another spatial metaphor, namely that of a switchboard,

where the synapses were represented by electrical wires (Roediger, 1980). Later on, when the field of computer science begun to emerge, this metaphor transformed to that of a computer, enabling the conception of the modal model of memory. This is already a more useful metaphor than the physical space metaphor, since it is more biologically accurate, and it emphasises the need of communication between certain nodes (encoding and retrieval between the different memory systems).

However, the metaphor of a computer still has its flaws. A computer stores information on certain independent addresses in the form of binary data, and thereby implies that one can store data for later use without any need for comprehension of the data, and that the data can be formatted in any way the user would like to. Yet, the brain is differently structured, which has consequences for successfull encoding.

The brain as an associative network

Unlike a computer, the brain is not organised with bits with physical addresses, but rather structured as an associative network. This entails the data being stored and retrieved by means of associated peers. In the brain, the neurons function as the nodes, and the synapses function as the edges. When information is encoded, new neurons are marked, and these are connected to other relevant, already marked neurons in the network. When something then has to be retrieved from memory, neurons signal relevant neighbouring neurons in order to activate the relevant parts of the brain. More generally speaking, when stimulated with a retrieval cue, the brain can then use neural pathways to find a corresponding item in the brain. These networks are sometimes referred to as semantic networks, and the implication for retrieval as spreading activation (J. Anderson, 2015). This effect has also been found on a cognitive level, for example Kintsch, Welsch, Schmalhofer, and Zimny (1990) has found that material is often not literally encoded, but rather as a set of abstract meaning units representing certain associations between concepts.

Elaborative processing

Because information is retrieved in the brain via related nodes and edges in the semantic network, strong neural pathways facilitate the retrieval process. One way of creating these pathways is elaborative processing (Karpicke, 2012; J. Anderson, 2015), which focuses on meaningful processing of the content. Craik and Lockhart (1972) conducted an experiment where students were to freely recall from a list of words, where the students had to train the words by one of the following techniques: answering questions about structural details (e.g. is it in capital letters); about phonemical details (e.g. the word rhyming on another word); whether the word fits into a certain category; and whether the word fits in a certain sentence. They found that students had higher retrieval rates in ascending order of these techniques. Another research by Nelson (1979) presented students with paired associates that where either semantic or phonetic (in this case rhymes), and students showed a significantly higher recall of semantic associates. Both of these study demonstrate the importance of meaningful processing for retention.

Implications for concept mapping

Reflecting on the previously described theory of associated networks, it appears that a semantic network is very similar in structure to concept maps, and thereby the maps provide an accurate representation of the way information is retrieved from the brain. Nesbit and Adesope (2006) speculate that because of this, more and better retrieval cues are created when learning from or

generating a concept map. Furthermore, a concept map displays the relations between certain concepts, and thereby focuses more on the meaning behind the content than just the content itself. However, Karpicke (2012) also states that although it might seem to be an effective tool for elaborative processing, there has not been enough randomised and controlled experiments which examine the most effective ways to use is as a learning activity.

Cognitive effects with regard to retrieval practices

According to Karpicke (2012), a lot of educational practices have placed an emphasis on finding optimal ways to encode knowledge and experiences, but that retrieval practices have received less attention, even so basic research has indicated that retrieval is still important to consider in any analysis of leraning. This is mainly due to the fact that information is not stored exactly and indefinitely, but rather that memories are forgotten over time. Two theories have been proposed and debated over explaining why forgetting occurs, namely by interference of other redundant memories and by decay of existing memories.

Interference and Decay

The theory of interference being responsible for forgetting has been demonstrated by an experiment by J. Anderson (1974). The participants were asked to memorise sentences in the form A $jperson_{\delta}$ is in the $jlocation_{\delta}$, where sometimes multiple persons where associated with only one location, and some locations with only one person. They found that if a sentence contained locations or persons with multiple associations this had an impact on the recognition time for that sentence, and even more so if both the location and the person had multiple associations. The explanation for this phenomenon is that since memories are retrieved by means of spreading activation and only limited activation can spread from one source (J. Anderson, 2015), the activity has to be divided over different branches in the semantic network, increasing the retrieval difficulty of the correct node. The increase in difficulty is also related to as the fan effect.

The effect of decaying memories takes place in the connections between neurons, and therefore it is important to first examine how neurons communicate signals. Figure 3 displays a schematic representation of a neuron in which it can be seen how the soma (cell body) is connected via an axon to the dendritic tree of other cells. The neuron can transmit stimuli by creating an action potential in the nucleus, transmitting this signal through the axon to the terminal button in the connected telodendrion (in the image refered to as the terminal aborization). There, neurotransmitters are released from vesicles, and after they have crossed the synaptic cleft there is a certain chance of being received by postsynaptic receptors. When this is the case, the nucleus of the receiving cell is triggered via the connected dendrite to also create an action potential, where the whole process is repeated (Bliss & Collingridge, 1993). The strength of a certain connection between neurons is therefore dependent on the action potential generated by a nucleus, the amount of telodendria over which the action potential has to be distributed (hence the aforementioned fan effect), the amount of neurotransmitters in the terminal button, and the amount of postsynaptic receptors in the dendrite of the next neuron.

One widely studied effect with regard to the increase and decrease of action potential and strength of memory traces is called long-term potentiation (LTP) (J. Anderson, 2015). Whenever a neurotransmitter is received by by a receptor, not only is the next nucleus activated to release its action potential, but also more receptors are activated, so that the postsynaptic membrane is able to receive more neurotransmitters at the next activation. Furthermore, another process is activated altering the dna in the neuron, causing it to create proteins for more stable increased

Figure 3: A schematic image of a neuron with a closeup of a synapse (Matsaridis, 2013)

sensitivity towards stimuli. It is also speculated that there might be a retrograde effect, causing presynaptci modifications such as the creation of more neurotransmitted in the presenaptic vessicles (Bliss & Collingridge, 1993). This all results in an increased sensitivity in the postsynaptic neuron towards action potential in the presynaptic neuron, which then again increases the stength of this particular memory trace. Over time, if a specific neural pathway is not used, the effects of LTP decrease again, causing its strength to decrease and thereby causing decay. This also explains the *testing effect*, the effect of retrieval strengthening memory more than extra opportunities for further encoding, even when the retrieval is only carried out internally without any outward response (Edge, Fitchett, Whitney, & Landay, 2012).

Although both the effect of interference and decay have been proposed as separate theories and have been debated, they are still mutually inclusive, and J. Anderson (2015) therefore concludes that forgetting results both from decay and from interference.

Power laws forgetting and learning

Now that the relevant theories for learning and forgetting have been discussed, it is important to investigate with which rate people learn and forget. Already in 1885, Ebbinghaus discovered the power law of learning, referred to as the inversal exponential nature of forgetting (Edge et al., 2012; Pavlik & Anderson, 2005). The implication of this model is that memory not only systematically deteriorates with delay, but also that this loss is negatively accelerated, meaning that the rate of change gets smaller with increasing delay (J. Anderson, 2015). Wickelgren (1974) already proposed the formula $m = \lambda(1+\beta t)^{-\psi}$, where m is memory strength (the probability of recognition), t is time, λ is the state of long-term memory at t = 0, ψ is the rate of forgetting, and β is the scaling parameter (see figure 4a). This formula has also found to be accurate by (Wixted & Carpenter, 2007). The effect also has been directly related to LTP in the rat hippocampus by

stimulating neural pathways directly with electrical signals (Raymond & Redman, 2006).

A similar effect has been found for the effectiveness of repetition: Newell and Rosenbloom (1981) have proposed a power law of learning, stating that a learning curve is similarly inversal exponantial (see also R. Anderson (2001) and Wixted and Ebessen (1991)). Murre and Chessa (2011) propose $P = p(t) = 1 - e^{-\mu_i t}$ as a function describing this power law, where P or p is the probability of recognition after t iterations and μ is the learning rate of student i (see figure 4b). This power law has the effect that repetitions have a positive effect on retrieval probability, however that this effect diminishes with more repetitions. Again, this effect has also been demonstrated in the context of LTP in rat hippocampi (Barnes, 1979).

Spacing effect

The spacing effect is a well known effect occuring within paired-associate learning, and demonstrates that repeated items are better remembered when both occurences are seperated by other events or items than when they are presented in immediate succession (Verkoeijen & Delaney, 2008; Logan, Castel, Haber, & Viehman, 2012; Siegel & Kahana, 2014; Xue et al., 2011; Karpicke & Blunt, 2011), which is demonstrated with diverse populations (Verkoeijen & Delaney, 2008; Logan et al., 2012), under various learning conditions (Verkoeijen & Delaney, 2008; Logan et al., 2012), and in both explicit and implicit memory tasks (Verkoeijen & Delaney, 2008). Items in immediate succession are called massed items, and items in seperated succession are called spaced items.

One can test the spacing effect either by using pure lists or mixed lists. When using pure lists, one compares the effect of learning a list containing only massed items with a list containing only spaced items, and using mixed lists one measures the effect of learning both massed items and spaced items in one list, comparing their individual retentions. Verkoeijen and Delaney (2008) states that the vast majority of studies are conducted using mixed lists and found that spaced items where consistenly better recalled than massed items, yet studies using pure lists are relatively rare and have produced contradictory outcomes. They conducted a study providing participants first with an all-massed list, then letting them write down as many words as they could remember, and repeat an identical procedure for an all-spaced list with a 2 minute break inbetween. They conducted this experiment with short-lagged spaced items (with 1-4 items in between) and long-lagged spaced items (with 4-13), and found only a spacing effect in the latter experiment. However, Wahlheim, Maddox, and Jacoby (2014) adds to this that repetition is only increases when a student detects the repetition of an item, and therefore the lag should not be too long.

Two theories have been presented explaining this phenomenon, namely the contextual variability theory and the study-phase retrieval theory (Siegel & Kahana, 2014). The first theory entails that because context is not static but continuous, and that therefore spaced items are studied in a greater variety of contexts and therefore easier to recall in yet other contexts than massed items due to the so-called encoding-specificity principle (J. Anderson, 2015). This principle entails that the probability of recalling an item depends on the similarity of the context during the encoding. The study-phase retrieval theory entails that additional retrieval cues for the repetition of an item are generated by earlier occurrences and their associated contexts being associated with the repeated item. These theories are not mutually exclusive (Siegel & Kahana, 2014).

Inspired by the power laws of learning and forgetting, Karpicke and Bauernschmidt (2011) conducted an experiment to test the effect of constant or varying lags between items have a significant effect on learning. They tested this by conducting a similar experiment to Verkoeijen and Delaney (2008), however in this experiment they only tested pure lists with three different

 $\it (a)$ The power law of forgetting, with m as the probability of recognition and t as the time passed since learning

(b) The power law of forgetting, with p(t) as the probability of recognition and t as the iterations of learning

Figure 4: The power laws

lag intervals to test for an absolute spacing effect, and for each lag interval category they tested for an expanding lag condition (where the lag would increase for the repetition of each next item), an equal lag condition (where the lag would remain constant) and a contracting lag condition (where the lag would decrease for the repetition of each next item) in order to test for a relative spacing effect. From their findings they confirmed the effect of absolute spacing, namely that longer gaps between items do have an effect on long-term retention, yet they did not find a relative spacing effect. However, this has not been tested for spacing for longer intervals, such as intervals spanning multiple days or weeks.

Although researchers have found at least an absolute spacing effect throughout multiple studies, students do not judge their learning to be improved by it, even when they demonstrated a significantly higher recall rate (Logan et al., 2012).

Implications for the flashcard system

Part II

Design

Part III

Research

Part IV Recommendations

f4f8c4e Recommendations

Epilogue

Part V Appendices

f4f8c4e Appendices

References

Anderson, J. (1974). Retrieval of propositional information from long-term memory. Cognitive Psychology, 6(4), 451–474. doi: 10.1016/0010-0285(74)90021-8

- Anderson, J. (2015). Cognitive psychology and its implications (8th ed.). Worth publishers.
- Anderson, R. (2001). The power law as an emergent property. Memory & Cognition, 7, 1061–1068. doi: 10.3758/BF03195767
- Apps, J. (1973). Toward an working philosophy of adult education. Publications in continuing education.
- Atkinson, R., & Shiffrin, R. (1968). The psychology of learning and motivation: Advances in research and theory. In K. Spence (Ed.), (pp. 89–195). New York: Academic Press.
- Barnes, C. (1979). Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. *Journal of Comparative Physiology*, 43, 74–104.
- Bliss, T., & Collingridge, G. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. *Nature*, 361, 31–39. doi: 10.1038/361031a0
- Brameld, T. (1971). Patterns of educational philosophy. divergence and convergence in culturological perspective. Holt, Rinehart and Winston, Inc.
- Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning & Verbal Behavior, 11(6), 671–684. doi: 10.1016/S0022-5371(72)80001-X
- Edge, D., Fitchett, S., Whitney, M., & Landay, J. (2012). Memreflex: Adaptive flashcards for mobile microlearning. doi: 10.1145/2371574.2371641
- Howick, W. H. (1971). Philosophies of western education. Interstate Printers & Publishers.
- Karpicke, J. (2012). Retrieval-based learning: Active retrieval promotes meaningful learning. Current Directions in Psychological Science, 21(3), 157–163. doi: 10.1177/0963721412443552
- Karpicke, J., & Bauernschmidt, A. (2011). Spaced retrieval: Absolute spacing enhances learning regardless of relative spacing. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 37(5), 1250–1257. doi: 10.1037/a0023436
- Karpicke, J., & Blunt, J. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. *Science*, 331, 772–775. doi: 10.1126/science.1199327
- Kintsch, W., Welsch, D., Schmalhofer, F., & Zimny, S. (1990). Sentence memory: A theoretical analysis. *Journal of Memory and Language*, 29, 133–159.
- Logan, J., Castel, A., Haber, S., & Viehman, E. (2012). Metacognition and the spacing effect: the role of repetition, feedback, and instruction on judgments of learning for massed and spaced rehearsal. *Metacognition Learning*, 7, 175–195. doi: 10.1007/s11409-012-9090-3
- Marsh, C., & Willis, G. (1999). Curriculum. alternative approaches, ongoing issues (2nd ed.). Prentice-Hall.
- Matsaridis, G. (2013, April). Neuroscience for beginners v2.0: Lesson 2 the materialistic mind your brain's ingredients. Retrieved from http://neuroscientist.weebly.com/blog/

Appendices f4f8c4e

lesson-2-the-materialistic-mind-your-brains-ingredients (Retrieved September 9, 2016)

- Meno, P. (2000). Stevenson, d.c. The Internet Classics Archive.
- Murre, J., & Chessa, A. (2011). Power laws from individual differences in learning and forgetting: mathematical analyses. *Psychonomic bulletin & review*, 18(3), 592–597. doi: 10.3758/s13423-011-0076-y
- Nelson, D. L. (1979). Remembering pictures and words: Appearance, significance, and name. In L. S. Cermak & F. I. M. Craik (Eds.), Levels of processing in human memory (p. 45-76). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Nesbit, J., & Adesope, O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76(3), 413–448. doi: 10.3102/00346543076003413
- Newell, A., & Rosenbloom, P. (1981). Mechanisms of skill acquisition and the law of practice. In (Vol. 1, pp. 1–55).
- Ozmon, H., & Johnson, J. (1967). Value implications in children's reading material (Tech. Rep.). U.S. Department of Health, Education, and Welfare: Office of Education; Bureau of Research.
- Pavlik, I., & Anderson, J. (2005). Practice and forgetting effects on vocabulary memory: an activation-based model of the spacing effect. Cognitive Science, 29(4), 559-586. doi: $10.1207/s15516709cog0000_14$
- Raymond, C., & Redman, S. (2006). Spatial segregation of neuronal calcium signals encodes different forms of ltp in rat hippocampus. *Journal of Physiology*, 570, 97–111. doi: 10.1113/jphysiol.2005.098947
- Renshaw, J. (2008). In search of the greeks. A&C Black.
- Roediger, H. (1980). Memory metaphors in cognitive psychology. Memory & Cognition, 8(3), 231-246. doi: 10.3758/BF03197611
- Siegel, L. L., & Kahana, M. J. (2014). A retrieved context account of spacing and repetition effects in free recall. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 40(3), 755-764.
- Stokes, K. (2013). The impact of the factory model of education in central texas (Unpublished master's thesis). Baylor University.
- Verkoeijen, P., & Delaney, P. (2008). Rote rehearsal and spacing effects in the free recall of pure and mixed lists. *Journal of Memory and Language*, 58, 35–47. doi: 10.1016/j.jml.2007.07.006
- Wahlheim, C., Maddox, G., & Jacoby, L. (2014). The role of reminding in the effects of spaced repetitions on cued recall: Sufficient but not necessary. *Journal of Experimental Psychology:* Learning, Memory, and Cognition, 40(1), 94–105. doi: 10.1037/a0034055
- White, A. (2003). What happened? alcohol, memory blackouts and the brain. Alcohol research and health, 27(2), 186–196. doi: 10.3390/ijerph6112783
- Wickelgren, W. (1974). Single-trace fragility theory of memory dynamics. Memory & Cognition, 2,775-780. doi: 10.3758/BF03198154
- Wixted, J., & Carpenter, S. (2007). The wickelgren power law and the ebbinghaus savings function. *Psychological Science*, 18(2), 133–134. doi: 10.1111/j.1467-9280.2007.01862.x
- Wixted, J., & Ebessen, E. (1991). On the form of forgetting. Psychological Science, 2(6), 409-415. doi: 10.1111/j.1467-9280.1991.tb00175.x
- Xue, G., Mei, L., Chen, C., Lu, Z.-L., Poldrack, R., & Dong, Q. (2011). Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression. *Journal of Cognitive Neuroscience*, 23(7), 1624–1633.
- Yilmaz, K., Altinkurt, Y., & Cokluk, O. (2011). Developing the educational belief scale: The validity and reliability study. *Educational Sciences: Theory and Practice*, 11(1), 343–350.