Feuille d'exercices nº 4

Conventions. Dans la suite, tous les anneaux sont commutatifs. On fixera également un anneau A.

Les anneaux et ses idéaux

Exercice 1. Soit $I \neq A$ un idéal.

- (1) Montrer que I est premier si et seulement si vaut le "Lemme d'Euclide" : étant donnés $x, y \in A$ tels que $xy \in I$, alors soit $x \in I$, soit $y \in I$.
- (2) Montrer que I est maximal si et seulement si les uniques idéaux contenant I sont I et A.

Exercice 2. Montrer que pour chaque couple $a, b \in \mathbb{C}$, l'idéal (X - a, Y - b) de $\mathbb{C}[X, Y]$ est maximal. *Indication*: Si ev : $\mathbb{C}[X, Y] \to \mathbb{C}$ désigne l'évaluation $f \mapsto f(a, b)$, déterminer $\operatorname{Ker}(\operatorname{ev})$.

Exercice 3. Soit $f: A \to B$ un morphisme d'anneaux faisant de B une A-algèbre. Soit I un idéal de A; on définit son extension à B comme étant

$$I \cdot B := \left\{ \begin{array}{l} \text{éléments de la forme } b_1 a_1 + \dots + b_n a_n \\ \text{avec } n > 0 \text{ entier quelconque,} \\ a_1, \dots, a_n \in I \text{ et } b_1, \dots, b_n \in B \end{array} \right\}.$$

Montrer que $I \cdot B$ est un idéal de B. Ensuite, prouver que

$$A[X]/I \cdot A[X] \simeq (A/I)[X].$$

Exercice 4. Soient I un idéal de A et $\overline{A} = A/I$ l'anneau quotient. La projection canonique sera désignée par $\pi: A \to \overline{A}$.

(1) Montrer que

$$\Psi: \{ \mathrm{id\'eaux} \ \mathrm{contenant} \ I \} \longrightarrow \big\{ \mathrm{id\'eaux} \ \mathrm{de} \ \overline{A} \big\}$$

$$J \longrightarrow \pi(J)$$

est bien définie et bijective. Ensuite, déterminer l'inverse de Ψ .

(2) Soit J un idéal contenant I. Montrer que $A/J \simeq \overline{A}/\pi(J)$.

(3) Soient a_1, \ldots, a_n des éléments de A et J l'idéal (a_1, \ldots, a_n) . Montrer que

$$A/(I+J) \simeq \overline{A}/(\pi(a_1),\ldots,\pi(a_n)).$$

(4) Soient $f \in \mathbf{Q}[X]$ et $g \in \mathbf{Q}[Y]$ de degré strictement positifs. Montrer que $\mathbf{Q}[X,Y]/(f,g)$ est un \mathbf{Q} -espace vectoriel de dimension finie.

Exercice 5 (Le théorème Chinois). Deux idéaux I et J de A sont dits co-maximaux si I + J = A.

(1) Montrer que si I et J sont co-maximaux, alors $I \cdot J = I \cap J$ et

$$A/I \cdot J \simeq A/I \times A/J$$
.

(2) Donner un exemple d'un couple d'idéaux co-maximaux I, J sous les conditions suivante. (a) $A = \mathbf{Q}[X]$. (b) $A = \mathbf{Q}[X, Y]$ et ni I, ni J est maximal.

Exercice 6 (Somme de deux carrés). Soit p > 2 un nombre premier et $\square_p := \{a^2 : a \in \mathbf{F}_p^*\}$ l'ensemble des carrés non-nuls dans \mathbf{F}_p .

- (1) Montrer que les racines de $X^{\frac{p-1}{2}} 1$ sont précisément \square_p . (On pourra utiliser le principe du berger pour déterminer $\#\square_p$.)
- (2) En déduire que $-1 \in \square_p$ si et seulement si $p \equiv 1 \mod 4$.
- (3) Montrer que $p\mathbf{Z}[i]$ est maximal si et seulement si $-1 \notin \square_p$.
- (4) Utiliser le fait que $\mathbf{Z}[i]$ est un anneau factoriel pour montrer que $p\mathbf{Z}[i]$ est maximal si et seulement si p n'est pas somme de deux carrés, c'est-à-dire, $p \notin \{a^2 + b^2 : a, b \in \mathbf{Z}\}$. (Indication : Si $z \mid p$, alors $\overline{z} \mid p$ aussi.)