Programação dinâmica

Professor: Wladimir Araújo Tavares

A programação dinâmica é uma técnica de programação que ajuda a resolver de maneira eficiente uma classe de problemas que possuem sobreposição de subproblemas e uma substrutura ótima. A seguir, apresentaremos um problema com sobreposição de subproblemas.

Problema 1

Considere o seguinte problema:

Seja s_n o conjunto de palavras de tamanho n formada pelos caracteres $\{a,b,c\}$ que não possui dois caracteres a's consecutivos. Qual é a cardinalidade de s_n ?

Por exemplo,

```
• s_1 = \{a, b, c\}, |s_1| = 3
• s_2 = \{ab, ac, ba, bb, bc, ca, cb, cc\}, |s_2| = 8
```

Note que os seguintes casos podem acontecer: * bs_{n-1} , pode começar com a letra b seguido por uma palavra em s_{n-1} * cs_{n-1} , pode começar com a letra b seguido por uma palavra em s_{n-1} * abs_{n-2} ou acs_{n-2} , pode começar por ab ou ac seguido por uma palavra em s_{n-2} .

Note que o mesmo subproblema aparece mais de uma vez. Neste caso, podemos tirar proveito da programação dinâmica para desenvolver um algoritmo eficiente.

Podemos definir $x_n = |s_n|$ de maneira recursiva da seguinte maneira:

$$x_1 = 2 \ x_2 = 8 \ x_n = 2x_{n-1} + 2x_{n-2}$$

Implementação

Bottom-up

```
int num_palavra(int n){
   long long dp[n+1];

   dp[1] = 3;
   dp[2] = 8;
   for(int i = 3; i <= n; i++){
        dp[i] = 2*dp[i-1] + 2*dp[i-2];
   }

   return dp[n];
}</pre>
```

Top-down

```
#include "bits/stdc++.h"
#define MAXN 20
using namespace std;
int dp[MAXN];
int num_palavra(int n){
    if (dp[n] != -1)
        return dp[n];
        dp[n] = 2*num_palavra(n-1) + 2*num_palavra(n-2);
        return dp[n];
    }
}
int main()
    int n;
    cin >> n;
    memset(dp, -1, sizeof(dp) );
    dp[1] = 3;
    dp[2] = 8;
    cout << num palavra(n) << endl;</pre>
    return 0;
}
```

Problema 2

Dois jogadores disputavam um prêmio que seria dado a quem primeiro fizesse 3 pontos no jogo. Quando o primeiro jogador tinha 2 pontos e o segundo tinha 1 pontos, foi preciso interromper o jogo. Supondo que ambos os jogadores tem a mesma chance de ganhar um 1 ponto. Qual é a probabilidade do jogador 1 vencer a partida?

Seja $p_{i,j}$ a probabilidade do jogador 1 vencer a partida dado que o jogador 1 tem i pontos e o jogador 2 tem j pontos.

O valor de $p_{i,j}$ pode ser definido de maneira recursiva da seguinte maneira:

```
p_{nj} = 1.0, \quad \forall j, 1 \le j < n(1)

p_{in} = 0.0, \quad \forall i, 1 \le i < n(2)

p_{ij} = 0.5p_{i+1,j} + 0.5p_{i,j+1}, \quad \forall i, j, i \ne n, j \ne n(3)
```

Podemos preencher a tabela de subproblemas com as informações das equações

(1) e (2)

$\overline{p_{i,j}}$	1	2	3
1			0.0
2			0.0
3	1.0	1.0	*

Agora, podemos calcular $p_{2,2}$:

$$p_{2,2} = 0.5 * p_{3,2} + 0.5 * p_{2,3} = 0.5 * 1 + 0.5 * 0 = 0.5$$

$p_{i,j}$	1	2	3
1			0.0
2		0.5	0.0
3	1.0	1.0	*

Agora, podemos calcular $p_{2,1}$ e $p_{1,2}$

$$p_{2,1} = 0.5 * p_{3,1} + 0.5 * p_{2,2} = 0.5 * 1.0 + 0.5 * 0.5 = 0.75$$

$$p_{1,2} = 0.5 * p_{2,2} + 0.5 * p_{1,3} = 0.5 * 0.5 + 0.5 * 0 = 0.25$$

$p_{i,j}$	1	2	3
1		0.25	0.0
2	0.75	0.5	0.0
3	1.0	1.0	*

Agora, podemos calcular $p_{1,1}$:

$$p_{1,1} = 0.5 * p_{2,1} + 0.5 * p_{1,2} = 0.5 * 0.75 + 0.5 * 0.25 = 0.375 + 0.125 = 0.5$$

$p_{i,j}$	1	2	3
1	0.5	0.25	0.0
2	0.75	0.5	0.0
3	1.0	1.0	*

No problema acima, temos uma grande sobreposição de subproblemas. Se não utilizarmos a programação dinâmica, o mesmo subproblema será resolvido múltiplas vezes.

Implementação

```
#include "bits/stdc++.h"
#define MAXP 100
using namespace std;
double dp[MAXP+1][MAXP+1];
double prob(int i, int j, int n){
    if( i == n) return 1.0;
    else if( j == n ) return 0.0;
    else if( dp[i][j] > 0) return dp[i][j];
    else {
        dp[i][j] = 0.5*prob(i+1, j, n) + 0.5*prob(i, j+1, n);
        return dp[i][j];
    }
}
int main()
{
    int n;
    for(int i = 0; i <= MAXP; i++)</pre>
        for(int j = 0; j \leftarrow MAXP; j++)
            dp[i][j] = -1;
    cout << prob(15,13,20) << endl;
    return 0;
}
//0.725586
```

Problema 3

Dado um vetor a de tamanho n que a soma dos seus elementos é igual a M, e dado algum $K \leq M$, queremos saber se existe um subconjunto dos números do vetor a tal que a soma desse subconjunto dá exatamente K?

Por exemplo, se $a = \{2, 3, 1, 4\}$ e K = 7, podemos encontrar o subconjunto $\{3, 4\}$ cuja soma é igual a 7.

Primeiramente, vamos adicionar um elemento a mais no conjunto com valor 0. No exemplo anterior, o vetor ficaria igual a $a = \{0, 2, 3, 1, 4\}$

Vamos definir o nosso subproblema da seguinte maneira m[i][j] = true, se é possível encontrar um subconjunto do conjunto $\{a[0], a[1], \ldots, a[i]\}$ tal que a

soma do conjunto é igual a j.

O caso base do nosso problema será:

$$m[0][0] = true \ m[0][j] = false, \quad \forall j,j>0$$

No caso geral, temos a seguinte recorrência:

$$m[i][j] = m[i-1][j], j < a[i]$$

$$m[i][j] = m[i-1][j]$$
 or $m[i-1][j-a[i]],$ caso contrário

Perceba o seguinte, se j for menor que o valor de a[i], o elemento i não pode ser usado para nenhum subconjunto com a soma igual a j. Se j for maior que a[i], então precisamos checar se a soma j era possível antes ou se a soma j-a[i] era possível antes.

Bottom-up

 $a = \{0, 2, 3, 1, 4\}$

Caso Base:

$\overline{m[i][j]}$	0	1	2	3	4	5	6	7
0	Т	F	F	F	F	F	F	F

$$i = 1, a[1] = 2$$

$\overline{m[i][j]}$	0	1	2	3	4	5	6	7
0	Τ	F	F	F	F	F	F	F
1	\mathbf{T}	\mathbf{F}	${\rm T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

$$i = 2, a[2] = 3$$

$\overline{m[i][j]}$	0	1	2	3	4	5	6	7
0	Т	F	F	F	F	F	F	F
1	${\rm T}$	F	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
2	Τ	F	Τ	Τ	F	Τ	F	F

$$i = 3, a[3] = 1$$

m[i][j]	0	1	2	3	4	5	6	7
0	Τ	F	F	F	F	F	F	F
1	Τ	\mathbf{F}	Τ	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

$\overline{m[i][j]}$	0	1	2	3	4	5	6	7
2	Τ	F	Т	Τ	F	Τ	\mathbf{F}	F
3	${\rm T}$	\mathbf{T}	\mathbf{F}					

i = 4, a[3] = 4

$\overline{m[i][j]}$	0	1	2	3	4	5	6	7
0	Т	F	F	F	F	F	F	F
1	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	F
2	${ m T}$	\mathbf{F}	${ m T}$	${\rm T}$	\mathbf{F}	${\rm T}$	\mathbf{F}	F
3	${\rm T}$	${ m T}$	${ m T}$	${\rm T}$	${\rm T}$	${\rm T}$	${\rm T}$	\mathbf{F}
4	Τ	Τ	Τ	Τ	Τ	Τ	\mathbf{T}	\mathbf{T}