Lecture 2 (8/29/2023)

Outline

- 1) Statistical models
- 2) Estimation
- 3) Decision theory

Statistical Models

Probability us statistics

Probability: Distribution P fully specified
What can we say about X~P?

Deductive

Statistics: Observe data X from unknown dist. P

What can we conclude about P?

Inductive

Statistical model Family & of candidate probability distributions for data X

Assume $X \sim P$ for some $P \in \mathcal{P}$ X yields evidence about which P (hopefully)

Parametric us. Nonparametric

Parametric model dists indexed by parameter 0 € @ P = {P : 0 = @} Typically $\Theta \subseteq \mathbb{R}^d$, d called model dimension Example X ~ Binom(n, 0) for $\Theta \in [0,1]$ n "known," O "unknown" (by analyst) $\mathcal{F} = \left\{ Binom(n, \Theta) : \Theta \in [0, 1] \right\}$ Nonparametric model no natural way to index 5 Still usually makes assumptions, e.g. - independence - shape constraints (e.g. unimodal density) c (independent & ident. distr.) Example X, ..., X, iid P P any distr. on TR $P = \{P^n : P \text{ is a distr. on } \mathbb{R} \}$ (for $X = (X_1, ..., X_n)$) We can use "parametric notation" $P = \{P_{\Theta} : \Theta \in \Theta\} \text{ wlog}$

(could take 0=P = P)

Bayesian vs. Frequentist' Inference

Assume X~P O unknown

Bayesian assumption: O random with known dist.

Inference = calculating dist. $(\theta | x)$ (posterior)

Considered a strong assumption
(will consider interp., pros & cons later)

Alternate perspective: treat 0 as fixed, unknown Methods designed without knowledge of 0

Study frequency properties as 0 varies

Estimation

Setup Model 9 = {Po: 0 & @}

Estimand q(0) (something we want to know)

Observe X, calculate estimate $\delta(x)$

δ(·) called estimator.

We want to evaluate & compare estimators

Example Flip a biased coin a times DE [0,1] probability of heads X = # heads ~ Binom (n, 0)

Gool: estimate 0

Natural estimator is $\delta_o(x) = \frac{x}{n}$ How good is it?

Loss and Risk

Loss function L(0, d)

Disutility of guessing g(0) = d

Typically non-negative, with L(0,d) = 0 iff d=g(0)

[Different for every realization]

Squared error loss: $2(0,d) = (d-g(0))^2$

Risk function: expected loss of an estimator

 $R(\theta; \delta(i)) = \mathbb{E}_{\theta} \left[L(\theta, \delta(x)) \right]$

Ttells us which parameter value is in effect, NOT what randomness to integrate over

Risk for sq. error loss is mean squared error (MSE)

 $MSE(0; \delta(\cdot)) = \mathbb{E}_{\theta} \left[\left(J(x) - g(\theta) \right)^2 \right]$

What is
$$MSE(\Theta; \delta_0)$$
? $(\delta_0(x) = \frac{x}{n})$

$$E_{\Theta}\left[\frac{x}{n}\right] = \Theta \qquad (\underbrace{nnbiased})$$

$$\Rightarrow MSE(\Theta; \delta_0) = E_{\Theta}\left(\frac{x}{n} - \Theta^2\right)$$

$$= Var_{\Theta}\left(\frac{x}{n}\right)$$

$$= \frac{1}{n}\Theta(1-\Theta)$$

Other possibilities (based on adding psendo-flips)
$$\delta_1(x) = \frac{x+1}{n+2} \qquad \delta_2(x) = \frac{x+2}{n+4} \qquad \delta_3(x) = \frac{x+1}{n}$$

Mean squared error for binomial estimators (n=16)

Comparing estimators

We want to choose of to minimize R ... but this is generally not possible

An estimator & is inadmissible if 75 with

a) $R(\Theta; J^*) \leq R(\Theta, J)$ for all Θ

b) R(0,5*) < R(0,5) for some 0

We say 5# strictly dominates 5

Ji is inadmissible because Jo dominates it

(all 0)

Is there any uniformly best estimator for the binomial example?

Resolving ambiguity

Main strategies to resolve ambiguity:

1) Summarize risk function by a scalar:

Average - case risk

Minimize $\int R(\theta; \delta) d\pi (\theta)$ for some measure π , called prior

If π is probability measure,

same as $\exists \theta \sim \pi \left[R(\theta; \delta) \right]$ $\Rightarrow \exists \theta \sim \pi \left[R(\theta; \delta) \right]$ Binomial: δ_1 is $\exists \theta \sim \theta = 0$. $\exists \theta \sim \theta = 0$.

Minimize Sup R(Θ; δ)

Minimize Sup R(Θ; δ)

Minimax estimator

Closely related to Bayes

Binomial: δ₂ is minimax (for n=16)

2) Restrict choices of estimatos

a) Restrict to unbiased estimators:

 $\mathbb{E}_{\Theta}[S(x)] = g(\Theta)$ for all Θ

Binomial: & is best unbiased estimator