# 2017 서울대학교 프로그래밍 경시대회

September 8, 2017

## 수고하셨습니다

- 총 참가자 45명
- 총 제출 횟수: 931
- 총 정답 횟수: 182
- 참고로 문제 배치는 랜덤입니다.

# Div2A. 여우 사인

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

#### Div2A. 여우 사인

- 여우는 사랑입니다.
- 입력이 정확히 (1,3), (1,4), (3,4) 세 개의 쌍으로만 이루어져 있는지 판별하면 됩니다.

## Div2B. 고장난 시계

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 박상언

# Div2B. 고장<u>난 시계</u>

- 판이 크지는 않아요.
- 반드시 전구가 배치되어야 하는 곳과 그렇지 않은 곳이 있어요.
- 나머지는 잘 채워나가면 돼요.

# Div2C. 타일 뒤집기 (Easy)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

### Div2C. 타일 뒤집기 (Easy)

- 어떤 타일의 바로 위나 같은 행의 타일을 뒤집을 수 없을 때, 그 타일을 뒤집으려면 반드시 바로 아래 타일을 뒤집어야 합니다.
- 첫 행부터 답이 되는 타일을 뒤집고, 현재 상태와 답을 비교해서 다음 행에서 뒤집어야 할 타일을 구하면 됩니다.

# Div2D & Div1B. 관악산 등산

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

## Div2D & Div1B. 관악산 등산

- Corea가 가는 경로는 항상 높이가 증가하는 순입니다.
- $cnt_i = max_{H[j]>H[i]} cnt_j + 1$
- 높은 곳에 있는 쉼터부터 cnt를 결정하면 됩니다.

# Div2E. 넴모넴모 (Easy)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

## Div2E. 넴모넴모 (Easy)

- N×M이 작으므로 모든 배치를 탐색하면 됩니다.
- 깊이 우선 탐색 등을 이용해 배치할 수 없을 때마다 커팅하는 것을 의도했습니다.
- 일단 배치를 만들고 가능한지 검사하는 방식으로는 시간 내에 들기 힘듭니다.

## Div2F. 앵무새

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 오평석

#### Div2F. 앵무새

- 답은 100,000 이하로 나와요.
- 모든 가능한 분모에 대해 분자를 구하고, 그 결과가 입력과 같은지를 확인하면 돼요.

#### Div2G & Div1D. 셔틀버스

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

#### Div2G & Div1D. 셔틀버스

- 왼쪽 절반은 항상 왼쪽으로, 오른쪽 절반은 항상 오른쪽으로 이동합니다.
- 양쪽의 학생 수를 알면 주어진 자리가 비어 있는지, 혹은 몇 번째로 번호가 작은 학생이 앉아 있는지 구할 수 있습니다.
- 구간 트리 등의 자료구조를 사용하면 학생이 내리는 연산과 k
  번째 학생을 구하는 연산을 빠르게 처리할 수 있습니다.
- N이 홀수일 때 가운데에 앉은 학생은 맨 처음 내리는 학생의 위치에 따라 이동 방향이 달라집니다.

# Div2H. 홍삼 게임 (Easy)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

# Div2H. 홍삼 게임 (Easy)

- 각 지목권이 어떤 사람에게 있는지, 어떤 지목권이 사용될
  차례인지를 알고 있으면 게임의 상태를 나타낼 수 있습니다.
- 총 2 × N<sup>2</sup> 개의 상태에 대해 너비 우선 탐색 등의 방법으로 두 지목권이 겹칠 때까지의 최단거리를 구하면 됩니다.
- 어떤 지목권이 사용될 차례인지를 최단거리의 홀짝성으로 판별하면 틀립니다.

# Div2I. 전생했더니 슬라임 연구자였던 건에 대하여 (Easy)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 박성원

# Div21. 전생했더니 슬라임 연구자였던 건에 대하여 (Easy)

- 슬라임을 분해하는 과정을 오른쪽과 같이 이진트리로 모델링 할 수 있습니다.
- 단말노드의 개수는 소인수의 개수와 같습니다.



# Div21. 전생했더니 슬라임 연구자였던 건에 대하여 (Easy)

- 전체 높이를 최소로 만들려면 각 분할과정마다 단말노드가 절반으로 나눠지도록 하면 됩니다.
- $N = p_1^{q_1} p_2^{q_2} ...$  라면 답은  $\lceil log_2(p_1 + p_2 + ...) \rceil$
- 수의 범위가 작으니 DP로 접근할 수도 있습니다.



# Div1A. 전생했더니 슬라임 연구자였던 건에 대하여 (Hard)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 박성원

# Div1A. 전생했더니 슬라임 연구자였던 건에 대하여 (Hard)

- offline 풀이 입니다.
- 두 승현이의 위치를 나타내는 상태 (u, v)를 정점으로 하는 그래프를 생각해요.
- 비용이 적은 순서대로 정점을 추가하면서 연결된 컴포넌트들을 유지해요.
- (x,y)와 (y,x)가 연결되는 순간에 추가된 정점의 비용이 (x,y)
  의 답이 돼요.
- 컴포넌트들은 disjoint-set 으로 관리하면 돼요.
- $O(nm + n^2 log n)$

# Div1C. 넴모넴모 (Hard)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

# Div1C. 넴모넴모 (Hard)

- 어떤 칸에 넴모를 배치할 수 있는지 확인하려면 그 칸의 왼쪽,
  위, 왼쪽 위 칸의 정보가 필요합니다.
- 따라서 어떤 칸의 이전 N + 1 개 칸의 정보만 알고 있으면 충분합니다.
- Bitmask DP로 해결 가능합니다.

# Div1E. 데굴데굴

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

### Div1E. 데굴데굴

- 수면이 덮는 점은 연속된 구간입니다.
- Two pointers 테크닉으로 구간을 잘 관리하면서 변의 개수를 잘 세면 됩니다.
- 물이 물병을 꽉 채우는 경우 등 주의할 경우가 조금 있습니다.

## Div1F. 전자기기

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 윤지학

#### Div1F. 전자기기

- 문제를 풀기 위해 아래 지식이 필요해요.
  - 2차원에서 직사각형 영역의 부분합을 빠르게 구하는 방법 (cf. BOJ 11660)
  - 주어진 히스토그램에서 가장 큰 직사각형의 넓이를 구하는 방법 (cf. BOJ 1725)
  - 포함배제의 워리

# Div1G. 타일 뒤집기 (Hard)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

# Div1G. 타일 뒤집기 (Hard)

- 이미지
- 플레이어가 뒤집는 타일의 집합을 xor 하면 결과로 뒤집히는 타일의 집합도 xor됩니다.
- 첫 번째 행에서 한 개의 타일만 뒤집어 보면 규칙성이 보입니다.

### Div1G. 타일 뒤집기 (Hard)

- 답이 되는 배치에 대해 각각의 타일은 첫 행에서 홀짝성이 같은 연속된 구간의 xor 합이 됩니다.
- 연속된 구간의 합은 두 prefix 합의 차로 나타낼 수 있습니다.
- 따라서 이분 컬러링 문제로 바꿔서 해결할 수 있습니다.

# Div1H. 홍삼 게임 (Hard)

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 임동재

### Div1H. 홍삼 게임 (Hard)

- 진행 중인 게임을 회전시켜도 답이 바뀌지는 않습니다.
- 두 지목권의 위치를 상대 위치로 관리하면 상태가 2N개로 줄어듭니다.

### Div11. 구간 합 최대

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 윤지학

#### Div11. 구간 합 최대

- 문제를 풀기 위해 아래 지식이 필요해요.
  - 2차원에서 직사각형 영역의 부분합을 빠르게 구하는 방법 (cf. BOJ 11660)
  - 주어진 히스토그램에서 가장 큰 직사각형의 넓이를 구하는 방법 (cf. BOJ 1725)
  - 포함배제의 워리

## Div1J. 그림 그리기

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 윤지학

#### Div1J. 그림 그리기

- 문제를 풀기 위해 아래 지식이 필요해요.
  - 2차원에서 직사각형 영역의 부분합을 빠르게 구하는 방법 (cf. BOJ 11660)
  - 주어진 히스토그램에서 가장 큰 직사각형의 넓이를 구하는 방법 (cf. BOJ 1725)
  - 포함배제의 워리

## Div1K. 정육면체를 사랑하는 사람

- 제출 횟수: ??
- 맞은 참가자 수: ??
- 정답률: ??%
- 처음 맞은 참가자: ??
- 출제자: 박성원

## Div1K. 정육면체를 사랑하는 사람

- 문제를 풀기 위해 아래 지식이 필요해요.
  - 2차원에서 직사각형 영역의 부분합을 빠르게 구하는 방법 (cf. BOJ 11660)
  - 주어진 히스토그램에서 가장 큰 직사각형의 넓이를 구하는 방법 (cf. BOJ 1725)
  - 포함배제의 원리

### 참고: 특별상 선정 기준

- 특정 문제를 처음으로 푼 참가자
- 대상 및 금상 수상자가 처음으로 푼 문제는 제외
- 해당 조건의 문제가 여러 개인 경우 푼 사람이 가장 적은 문제
- 푼 사람이 같은 경우 첫 번째로 맞춘 시간이 늦은 문제

# 감사합니다

이제 결과가 발표됩니다!