Имитационная модель американских опционов

Анастасия Миллер

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н. Ермаков С.М. Рецензент: к.ф.-м.н. Товстик Т.М.

Санкт-Петербург 20 мая 2015 г.

Основные понятия

Определение

Опцион — договор, по которому потенциальный покупатель или потенциальный продавец актива (товара, ценной бумаги) получает право, но не обязательство, совершить покупку или продажу данного актива по заранее оговорённой цене в определённый договором момент в будущем или на протяжении определённого отрезка времени.

Основные понятия

Справедливой ценой опциона будет максимальная выручка, которую можно получить от исполнения опциона:

$$\max_{\tau \in [0;T]} E\left(e^{-rt} \left(S_{\tau} - K\right)^{+}\right)$$

1

Дискретные оценки: состояние актива меняется только в определённых точках $t_0, \ldots, t_n \in [0;T]$, $n < \infty$.

 $^{^1}S_ au$ в зависимости от контекста обозначает либо состояние базового актива, либо цену, которую можно получить за него на рынке $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Формулировка задачи

Дискретизация процесса даёт оценку

$$\begin{cases} V_i(X_i) = \max \left\{ e^{-rt_i} \left(S_{t_i} - K \right)^+, EV_{i+1}(X_{i+1}) \right\}, i \in 1: n-1 \\ V_n(X_n) = e^{-rt_n} \left(S_{t_n} - K \right)^+ \end{cases}$$

здесь $V_0(X_0)$ — цена опциона, исполняемого n раз в году, на момент выписывания которого базовый актив был в состоянии X_0 .

Задача: оценить $V_0(X_0)$ методами, включающими построение траекторий по случайным деревьям

Случайные траектории

Будем оценивать $V_0(S_0)$ методом Монте-Карло.

Промоделируем много вариантов жизни базового актива.

Траектория — набор состояний S_{t_1},\ldots,S_{t_n} .

Рис.: Возможные траектории цены базового актива, горизонтальная линия — цена страйк

Случайные деревья

Дерево – способ получить больше траекторий в том же объёме памяти. Построение обычного дерева:

картинка про дерево

Случайные деревья

Число вершин в дереве -

$$\sum_{k=0}^{n} b^k = \frac{b^{n+1} - 1}{b - 1} = O(b^n)$$

Идея (Ермаков): число вершин уменьшится, если считать достаточно близкие вершины одинаковыми.

Квантили эмпирического распределения

 $S_i^j, i \in 1: b, j \in 1: k$ — все промоделированные состояния базового актива, относящиеся к одному времени.

$$F_{S_i^j}(x) = \frac{1}{bk} \# \left\{ (i,j) \in 1: b \times 1: k \Big| S_i^j < x \right\}$$

Группировка по квантилям:

$$A_{j} = \left\{ S_{i}^{j} \middle| \frac{j-1}{n} < F_{S_{\tau}} \left(S_{i}^{j} \right) < \frac{j}{n} \right\}$$

Все вершины, принадлежащие множеству A_j , заменяются на $\operatorname{med} A_j$.

Случайные деревья

Рис.: Пример прореживания дерева

Оценки $V_0(X_0)$ по прореженному и точному дереву

Используемые оценки — оценки Броади-Глассермана, разработанные для деревьев с $O(b^n)$ вершинами

Рис.: Прореженное дерево

Рис.: Обычное дерево

Планы

- Закончить рассмотрение оценки по гистограмме, в т.ч. найти аналитически математическое ожидание оценки
- 2 Рассмотреть оценку по кластерам
- 3 Рассмотреть другие оценки