

А. Ю. Коврижных,

Е. А. Конончук, Г.Е. Лузина,

Ю.А. Меленцова.

Контент лекций по численным методам:

краткое изложение теоритического материала для аудиторных занятий и самостоятельной работы студентов

Учебное электронное текстовое издание

Пособие предназначено для учебно-методического обеспечения практических занятий для бакалавров, специалистов и магистрантов естественнонаучного профиля

Подготовлено: кафедрой вычислительной математики ИМКН.

Екатеринбург

2012

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ	2
ТЕОРИЯ ПОГРЕШНОСТЕЙ	4
Лекции 1-2. Погрешность результата численного решения задачи (4 ч.)	4
Абсолютная и относительная погрешности	4
Погрешность чисел в позиционной записи	4
Погрешности, возникающие при выполнении арифметических операций	
Неустранимая погрешность функции	5
УСКОРЕНИЕ СХОДИМОСТИ ЧИСЛОВОГО РЯДА	6
Лекция 3. Улучшение сходимости числовых рядов (2 ч.).	6
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ	6
Лекции 4-5. Приближенные методы решения нелинейных уравнений (4 ч.)	6
Постановка задачи	6
Метод половинного деления.	8
Метод Ньютона	9
Модифицированный метод Ньютона	10
Метод хорд	11
Метод подвижных хорд	12
Метод простой итерации.	13
ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ	15
Лекция 6. Точные методы решения системы линейных алгебраических уравнений (2 ч.)	15
Компактная схема Гаусса.	15
Метод Гаусса с выбором главного элемента.	16
Норма векторов и матриц.	16
Лекция 7. Оценки погрешности при решении системы линейных алгебраических уравне Число обусловленности матрицы. (2 ч.)	
Лекции 8-9. Итерационные методы решения систем линейных алгебраических уравнени	
ч.).	
Метод простой итерации.	18
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ	19
Лекция 10. Численное решение систем нелинейных уравнений (2 ч.).	19
Постановка задачи	19
Метод Ньютона	19
Метод простых итераций	20
ЧИСЛЕННАЯ ИНТЕРПОЛЯЦИЯ	21
Лекции 11-15. Приближение функций с помощью интерполяционных многочленов (8 ч.).	21
Постановка задачи	21
Погрешность интерполяции.	22
Интерполяционный многочлен в форме Ньютона	22

ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ	23
Лекция 16. Численное дифференцирование (2 ч.)	
ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ.	
Лекции 17-21. Численное интегрирование (10 ч.)	
Постановка задачи.	
Элементарные квадратурные формулы:	
Составные формулы.	
Алгебраическая степень точности формул численного интегрирования	
Метод неопределенных коэффициентов для построения квадратурных формул	
Метод Рунге оценивания погрешности	
Формулы наивысшей алгебраической степени точности	
	29
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА	31
Лекции 22-27. Численные методы решения задачи коши для обыкновенных дифференциаль уравнений первого порядка (12 ч.).	
Постановка задачи	31
Методы, основанные на разложении решения задачи Коши в ряд Тейлора	
Разностные методы	34
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА	35
Лекции 28-32. Решение краевой задачи для обыкновенного дифференциального уравнения	
второго порядка (10 ч.)	35
Метод стрельбы.	35
Метод конечно-разностной прогонки.	36
МЕТОД НАИМЕНЬШИХ КВАДРАТОВ	38
Лекции 33-34. Решение линейных систем. Приближение таблично заданной функции (4 ч	.).38
Решение линейных систем по методу наименьших квадратов	38
Геометрический смысл МНК	38
- Приближение таблично заданной функции по методу наименьших квадратов	
ЧИСЛЕННЫЕ МЕТОДЫ В ТЕОРИИ ПРИБЛИЖЕНИЯ ФУНКЦИЙ	
Лекции 35-36. Интерполяция сплайнами. Кубические сплайны (4 ч.).	
ΠΜΤΕΡΔΤΌΡΔ	43

ТЕОРИЯ ПОГРЕШНОСТЕЙ

Лекции 1-2. Погрешность результата численного решения задачи (4 ч.)

Абсолютная и относительная погрешности.

Пусть x — точное, но, как правило, неизвестное значение величины, а x^* — известное приближенное значение для x.

Абсолютной погрешностью x^* называется величина Ax^* , для которой справедливо неравенство $|x-x^*| \leq Ax^*$. Абсолютная погрешность зависит от выбора системы единиц измерения x^* .

Величина Δx^* , удовлетворяющая неравенству $\frac{|x-x^*|}{|x^*|} \le \Delta x^*$, называется относительной погрешностью x^* . Относительная погрешность — величина безразмерная, иногда вычисляется в процентах.

Абсолютная и относительная погрешности связаны соотношением: $Ax^* = |x^*| \Delta x^*$.

Зная x^* и Ax^* можно найти диапазон, в котором находится точное значение x:

$$x^* - Ax^* \le x \le x^* + Ax^*$$
.

Таким образом, величина x находится в промежутке, определяемой величинами x^* и Ax^* и составляющей отрезок [a,b].

$$a = x^* - Ax^*$$
 x^* $b = x^* + Ax^*$

Погрешность чисел в позиционной записи.

Значащими цифрами в записи числа называются все цифры в его записи, начиная с первой ненулевой.

В числах 0,00120 и 1,20 значащие цифры подчеркнуты.

Значащая цифра называется *верной*, если абсолютная погрешность этого числа не превосходит половины единицы разряда, соответствующего этой цифре. Остальные цифры называются сомнительными.

Таким образом, в числе

 $x^* = a_1 10^n + a_2 10^{n-1} + \dots + a_m 10^{n-m+1}$ цифра a_k считается верной, если $A(x^*) \le 0.5 \cdot 10^{n-k+1}$.

Количеством верных цифр после запятой называется количество цифр в числе после запятой до первой сомнительной.

Вычислить приближенное число x^* с точностью $\varepsilon = 0.5 \cdot 10^{-n}$ означает необходимость сохранить верной значащую цифру, стоящую в n-м разряде после запятой.

Погрешности, возникающие при выполнении арифметических операций.

Пусть
$$x^* = \sum x_i^*$$
, тогда $Ax^* = \sum Ax_i^*$.

Если все x_i имеют один знак, то $\min\{\Delta(x_i^*)\} \le \Delta(x^*) \le \max\{\Delta(x_i^*)\}.$

Если
$$x^* = x_1^* - x_2^*$$
 , тогда $\Delta x^* = \frac{\left|x_1^* \middle| \Delta x_1^* + x_2^* \middle| \Delta x_2^* \middle|}{\left|x_1^* - x_2^* \middle|}$.

Относительная погрешность разности двух положительных чисел больше относительных погрешностей этих чисел, особенно если эти числа близки между собой. Это приводит к потере точности при вычитании близких чисел, что следует учитывать при выборе вычислительных схем.

При умножении и делении приближенных чисел их относительные погрешности складываются.

Пусть

$$r^* = \frac{x_1^* x_2^* \dots x_n^*}{y_1^* y_2^* \dots y_n^*}$$
, тогда $\Delta r^* = \sum_{i=1}^n \Delta x_i^* + \sum_{i=1}^n \Delta y_i^*$.

Неустранимая погрешность функции.

Рассмотрим функцию одной переменной y=f(x). Пусть $y^*=f(x^*)$, тогда $Ay^*=\left|f'(x^*)\right| Ax^*$, $\Delta y^*=\frac{\left|f'(x^*)\right|\cdot\left|x^*\right|\cdot\Delta x^*}{\left|f(x^*)\right|}$

Для функции нескольких переменных $y = f(x_1, x_2, ..., x_n)$ справедливы соотношения:

$$Ay^* \leq \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \cdot Ax_i^*, \ \Delta y^* = \frac{1}{|f(x_1, x_2, ..., x_n)|} \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \cdot |x_i^*| \cdot \Delta x_i^*$$

УСКОРЕНИЕ СХОДИМОСТИ ЧИСЛОВОГО РЯДА

Лекция 3. Улучшение сходимости числовых рядов (2 ч.).

Рассмотрим числовой ряд $\sum_{n=1}^{\infty} a_n$ с положительными членами a_n . Предположим, что ряд сходится и $S = \sum_{n=1}^{\infty} a_n$. Ряд $\sum_{n=1}^{\infty} b_n$ называется эталонным, если он сходится и $B = \sum_{n=1}^{\infty} b_n$ и $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, $0 < c < \infty$. Сумма S вычисляется с помощью эталонного ряда $S = \sum_{n=1}^{\infty} a_n - c \sum_{n=1}^{\infty} b_n + cB = \sum_{n=1}^{\infty} a_n \left(1 - c \frac{b_n}{a_n}\right) + cB$. Ряд $\sum_{n=1}^{\infty} a_n \left(1 - c \frac{b_n}{a_n}\right)$ сходится быстрее, чем исходный.

Для улучшения сходимости ряда с общим членом $a_n = \frac{p(n)}{q(n)}$, где p(n), q(n) — многочлены и разность между степенью q(n) и степенью p(n) не меньше, чем 2, используются эталонные ряды $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} = 1.6449340668..., \quad \sum_{n=1}^{\infty} \frac{1}{n^3} = 1.2020569032..., \quad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90} = 1.0823232337...$

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лекции 4-5. Приближенные методы решения нелинейных уравнений (4 ч.).

Постановка задачи.

Пусть дано нелинейное уравнение f(x) = 0, где f(x) — функция, определенная и непрерывная на некотором промежутке. Функция f(x) может быть задана в виде

алгебраического многочлена или трансцендентной функции (тогда ей соответствует алгебраическое или трансцендентное уравнение). В дальнейшем будем предполагать, что f(x) обладает достаточной гладкостью.

Требуется найти корни уравнения f(x) = 0, т.е. числа ξ_1 , ξ_2 ..., которые при подстановке их в уравнение превращают его в верное числовое равенство. Числа ξ_1 , ξ_2 ... называются также нулями функции f(x) (см. рис.1).

Рис. 2

Решение осуществляется в два этапа:

Первый этап. Отделение корней.

Находятся отрезки $[a_i,b_i]$, внутри каждого из которых содержится один корень $\xi_i \in [a_i,b_i]$. Этот этап называется процедурой отделения корней. По сути, на нем осуществляется грубое нахождение корней ξ_i . Эту процедуру проводят разными способами:

- 1. Иногда удается заменить уравнение эквивалентным ему уравнением p(x)=t(x), в котором функции $y_1 = p(x)$ $y_2 = t(x)$ имеют несложные графики. Абсциссы точек пересечения этих графиков будут корнями исходного уравнения.
- 2. При отделении корней уравнения общего вида часто используется следующая теорема: пусть функция f(x) непрерывна на отрезке [a, b] и на концах отрезка принимает значения разных знаков, т.е $f(a) \cdot f(b) < 0$. Тогда существует такая точка ξ , принадлежащая интервалу (a,b), в которой функция обращается в нуль. Заметим, что корень будет единственным, если f'(x) и f''(x) существуют и сохраняют знак на рассматриваемом отрезке.

Второй этап. Грубое значение каждого корня ξ_i уточняется с заданной точностью ε (малое положительное число) одним из численных методов, в которых реализуются последовательные приближения.

Ниже рассматриваются следующие итерационные методы уточнения корней нелинейного уравнения f(x) = 0.

- 1. Метод половинного деления.
- 2. Метод Ньютона (касательных).
- 3. Модифицированный метод Ньютона.
- 4. Метод хорд.
- 5. Метод подвижных хорд.
- 6. Метод простых итераций.

Метод половинного деления.

Для непрерывной монотонной функции f(x) условие $f(a) \cdot f(b) < 0$ означает существование на отрезке[a,b] корня уравнения f(x) = 0. Определив знак f(x) в средней точке $c = \frac{a+b}{2}$, можно выбрать из отрезков [a,c] и [c,b] тот, на котором f(x) меняет знак, а, значит, имеет корень. Далее, на новом отрезке вдвое меньшей длины следует взять среднюю точку, определить в ней знак f(x) и т.д. Итерационный процесс заканчивается, когда найдется отрезок длины меньше ε : $|b-a| < \varepsilon$. Тогда приближенное значение корня уравнения — середина последнего найденного отрезка.

Геометрическая интерпретация метода половинного деления представлена на Рис. 3.

Рис. 3

Метод Ньютона.

Пусть на [a, b] существует единственный корень уравнения f(x) = 0, f(x) - функция непрерывная вместе с первой производной на [a, b] и f'(x) сохраняет знак на отрезке [a, b].

Пусть x_0 — некоторое значение на отрезке [a, b]. Будем рассматривать его в качестве начального приближения к корню. Тогда следующее приближение получим по формуле:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Пусть x_n . — приближенное значение корня на n-й итерации. Тогда значение корня на (n+1)-й итерации вычисляется следующим образом:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Итерационный процесс заканчивается, когда $|x_{n+1}-x_n|<\varepsilon$. Тогда x_{n+1} — приближенное значение корня уравнения.

Теорема (о достаточных условиях сходимости метода Ньютона).

Пусть выполняются следующие условия:

- 1. Функция f(x) определена и дважды дифференцируема на [a, b];
- 2. Отрезку [a, b] принадлежит только один простой корень, так что $f(a) \cdot f(b) < 0$

- 3. Производные f'(x), f''(x) сохраняют знак на [a, b] и $f'(x) \neq 0$.
- 4. Начальное приближение x0 удовлетворяет неравенству f(x0) $f''(x0) \ge 0$.

Тогда с помощью метода Ньютона можно вычислить корень уравнения f(x) = 0 с любой точностью.

За начальное приближение x_0 принимается один из концов отрезка [a, b]. Если на [a, b] f''(x) сохраняет знак, то

$$x_0 = \begin{cases} a, & ec\pi u \ f(a) \cdot f''(a) > 0 \\ b, & ec\pi u \ f(b) \cdot f''(b) > 0 \end{cases}.$$

Геометрическая интерпретация метода Ньютона представлена на рис.4. В точке с координатами $(x_0, f(x_0))$ проводится касательная к графику функции y = f(x). Ее уравнение $y = f(x_0) + f'(x_0)(x - x_0)$. Точка пересечения этой касательной с осью Ox принимается за следующее приближение x_1 . Процесс построения касательных и нахождения точек пересечения с осью абсцисс повторяется до тех пор, пока приращение не станет меньше заданной величины ε .

Рис. 4

Модифицированный метод Ньютона

Методика применения модифицированного (или упрощенного) метода Ньютона совпадает с изложенной в п.2, но для расчета x_{n+1} используется формула:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$
.

Отличие от метода Ньютона заключается в том, что производная функции f(x) подсчитывается только в точке начального приближения, а на последующих итерациях не уточняется.

Геометрическая интерпретация упрощенного метода Ньютона представлена на Рис. 5. Первая итерация совпадает с первой итерацией метода Ньютона. На последующих итерациях соответствующие прямые параллельны касательной к кривой y = f(x), проведенной в начальной точке $(x_0, f(x_0))$.

Рис. 5

Метод хорд

В методе Ньютона требуется вычислять производную функции, что не всегда удобно. Можно заменить касательную хордой, один из концов которой неподвижен. Хорда — это отрезок прямой, проходящей через точки $(x_0, f(x_0))$, $(x_n, f(x_n))$ и пересекающей ось Ох в точке x_{n+1} .

Тогда рекуррентная формула для решения уравнения f(x) = 0 по методу хорд примет вид:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_0)} (x_n - x_0)$$

В качестве неподвижного конца x_0 принимается один из концов отрезка [a, b], а именно

$$x_0 = \begin{cases} a, & ec\pi u \ f(a) \cdot f''(a) > 0 \\ b, & ec\pi u \ f(b) \cdot f''(b) > 0 \end{cases}.$$

За x_1 выбирается второй конец отрезка.

Рис. 6

Геометрическая интерпретация метода хорд представлена на Рис. 6.

Метод подвижных хорд

Если хорду заменить секущей, которая строится по двум последним итерациям, получим следующую итерационную формулу:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1})$$

Этот метод называется методом подвижных хорд или методом секущих. В отличие от рассмотренных ранее методов, он является двухшаговым. В качестве x_0 принимается один из концов отрезка [a, b], а именно

$$x_0 = \begin{cases} a, & ecnu \ f(a) \cdot f''(a) > 0 \\ b, & ecnu \ f(b) \cdot f''(b) > 0 \end{cases}.$$

За x_1 выбирается второй конец отрезка.

Геометрическая интерпретация метода подвижных хорд представлена ниже (см. Рис. 7).

Рис. 7

Метод простой итерации.

Метод простой итерации уточнения корня уравнения f(x) = 0 состоит в замене этого уравнения эквивалентным ему уравнением $x = \varphi(x), x \in (a, b)$ и построении последовательности приближений к корню уравнения ξ по формуле: $x_{n+1} = \varphi(x_n), n=0, 1, 2, ...,$ где $x_0 \in (a, b).$

Итерационный процесс заканчивается, когда $|x_{n+1}-x_n|<\varepsilon$.

Достаточное условие сходимости метода простой итерации.

Пусть ζ - корень уравнения и $|\phi'(\zeta)| < 1$. Тогда существует отрезок $[\zeta - r, \zeta + r]$ такой, что для любого $x_0 \in [\zeta - r, \zeta + r]$ метод простой итерации сходится к корню ζ .

Представим геометрическую интерпретацию метода простой итерации. Задача сводится к нахождению абсциссы точки пересечения прямой y=x и кривой $y=\phi(x)$.

На Рис. 8видно, что при $|\phi'(\zeta)| < 1$ итерационная последовательность x_0 , x_1 , x_2 , ... сходится к корню уравнения ξ .

Рис. 8

При $|\phi'(\zeta)| > 1$ (см.Рис. 9) процесс расходится несмотря на то, что точка x_0 очень близка к ξ .

Рис. 9

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Лекция 6. Точные методы решения системы линейных алгебраических уравнений (2 ч.).

Компактная схема Гаусса.

Пусть дана система линейных алгебраических уравнений Ax = b, где

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \ b = \begin{pmatrix} a_{1n+1} \\ a_{2n+1} \\ \dots \\ a_{nn+1} \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
— вектор-решение.

Матрица A приводится к виду A=BC, где B — нижняя треугольная матрица, а C — верхняя треугольная c единицами на диагонали.

$$B = \begin{pmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}, \quad C = \begin{pmatrix} 1 & c_{12} & c_{13} & \dots & c_{1n} \\ 0 & 1 & c_{23} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Элементы матрицы В вычисляются вначале для первого столбца (k=1), потом для второго (k=2) и т.д. по формулам $b_{ik}=a_{ik}-\sum_{m=1}^{k-1}b_{im}c_{mk},\ i=k,...,n$. После k-го столбца матрицы В вычисляется k-ая строка матрицы С по формулам $c_{kj}=\frac{a_{kj}-\sum_{m=1}^{k-1}b_{km}c_{mj}}{b_{kk}},\ j=k+1,...,n$. По такой же формуле с использованием

компонент вектор b вычисляется $c_{kn+1}=\frac{a_{kn+1}-\sum\limits_{m=1}^{k-1}b_{km}c_{mn+1}}{b_{kk}}$. Вычисление этих элементов называется прямым ходом. Для исходной системы получили BCx=b. Обозначим Cx=y. Тогда By=b. Итак, нужно решить две системы с треугольными

матрицами. Но вектор y уже получен. $y = \begin{pmatrix} c_{1n+1} \\ c_{2n+1} \\ \dots \\ c_{nn+1} \end{pmatrix}$. Таким образом, осталось решить

$$x_1+c_{12}x_2+c_{13}x_3+\ldots+c_{1n}x_n=c_{1n+1}$$
 $x_2+c_{23}x_3+\ldots+c_{2n}x_n=c_{2n+1}$ систему . Это не представляет особого $x_{n-1}+c_{n-1,n}x_n=c_{n-1,n+1}$ $x_n=c_{n,n+1}$

труда и называется обратным ходом $x_i = c_{in+1} - \sum_{m=i+1}^n c_{im} x_m, \quad i = n-1, n-2, ..., 1$.

Компактная схема Гаусса легко реализуется на ЭВМ, но приводит к большой погрешности при малых b_{ii} . Ее реализация вообще не возможна при $b_{ii}=0$.

Метод Гаусса с выбором главного элемента.

Метод Гаусса с выбором главного элемента заключается в следующем. Найдем максимальный по модулю коэффициент при неизвестных. Его называют главным элементом. Пусть это a_{ik} . Поменяем і-строку с первой строкой и к-ый столбец с первым столбцом. Таким образом, коэффициент a_{ik} окажется в левом верхнем углу. Теперь, как обычно в методе Гаусса, чтобы занулить коэффициенты при неизвестном первого столбца, домножим первое уравнение на необходимую константу и вычтем его из соответствующего уравнения системы. Получим систему (n-1)-го порядка. Теперь процедуру повторяем для системы (n-1)-го порядка. Такой подход позволяет избежать деления на малые числа и обеспечивает более высокую точность. В итоге придем к системе с верхней треугольной матрицей. Рассматривают и модификации этого метода, когда выбирают элемент, максимальный в строке (или в столбце).

Норма векторов и матриц.

Норма вектора b это число $\|b\|$, которое удовлетворяет следующим аксиомам $\|b\| \ge 0, \quad \|b\| = 0$ т. и т. т., когда b = 0, $\|\lambda b\| = |\lambda| \|b\|$, $\|a + b\| \le \|a\| + \|b\|$.

В дальнейшем мы будем рассматривать $\|b\|_1 = \sum_{i=1}^n \left|b_i\right|, \ \|b\|_2 = \sqrt{\sum_{i=1}^n b_i^2}, \ \|b\|_{\infty} = \max_{1 \leq i \leq n} \left|b_i\right|.$

Для матриц будем рассматривать только подчиненные нормы, которые определяются так: $\|A\| = \sup_{\|x\|=1} \|Ax\|$. Известно, что норма $\|A\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n \left|a_{ij}\right|$, норма $\|A\|_2 = \sqrt{\max \lambda(A^TA)}$, где $\lambda(Z)$ — собственное значение матрицы Z, норма $\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^n \left|a_{ij}\right|$.

Лекция 7. Оценки погрешности при решении системы линейных алгебраических уравнений. Число обусловленности матрицы. (2 ч.).

Предположим, что коэффициенты системы линейных алгебраических уравнений Ax = b заданы с погрешностями, которые образуют матрицу ΔA и вектор Δb . Чтобы найти неустранимую погрешность решения системы $-\Delta x$, нужно решить систему $\Delta A \cdot \Delta x = \Delta b$.

Отношение $\frac{\|\Delta x\|}{\|x\|}$ является аналогом относительной погрешности приближенного числа и характеризует качество вычисления приближенного решения системы.

Если коэффициенты матрицы A заданы точно, а правые части системы с погрешностью Δb , то $\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \|A\| \frac{\|\Delta b\|}{\|b\|}$. Число $\|A^{-1}\| \|A\|$ показывает, как погрешность решения системы зависит от погрешности исходных данных. Оно называется числом обусловленности и обозначается cond(A). Итак, $cond(A) = \|A^{-1}\| \|A\|$.

Лекции 8-9. Итерационные методы решения систем линейных алгебраических уравнений (4 ч.).

Метод простой итерации.

Идея этого метода простой итерации состоит в том, что система уравнений Ax=b преобразуется к виду $x=B\cdot x+c$ и ее решение находится как предел последовательности $x^{(k+1)}=B\cdot x^{(k)}+c$

Критерий сходимости метода простой итерации — все собственные числа матрицы В по абсолютной величине меньше 1. Иногда удобно использовать достаточные условия. Например, норма матрицы В меньше 1 (хотя бы одна). Пусть A = L + D + R, тогда:

для метода Якоби матрица $B = -D^{-1}(L+R), c = D^{-1}b$

Покоординатные формулы метода:

$$x_1^{(k+1)} = -\frac{1}{a_{11}} \left(a_{12} x_2^{(k)} + \dots + a_{1n} x_n^{(k)} \right) + \frac{b_1}{a_{11}}$$

$$x_2^{(k+1)} = -\frac{1}{a_{22}} \left(a_{21} x_1^{(k)} + a_{23} x_3^{(k)} + \dots + a_{2n} x_n^{(k)} \right) + \frac{b_2}{a_{22}}$$

$$\vdots$$

$$x_n^{(k+1)} = -\frac{1}{a_{nn}} \left(a_{n1} x_1^{(k)} + \dots + a_{nn-1} x_{n-1}^{(k)} \right) + \frac{b_n}{a_{nn}}$$

для метода Гаусса — Зейделя матрица $B = -(L + D)^{-1} R$, $c = (L + D)^{-1} b$

Покоординатные формулы метода:

$$x_{1}^{(k+1)} = -\frac{1}{a_{11}} \left(a_{12} x_{2}^{(k)} + \dots + a_{1n} x_{n}^{(k)} \right) + \frac{b_{1}}{a_{11}}$$

$$x_{2}^{(k+1)} = -\frac{1}{a_{22}} \left(a_{21} x_{1}^{(k+1)} + a_{23} x_{3}^{(k)} + \dots + a_{2n} x_{n}^{(k)} \right) + \frac{b_{2}}{a_{22}}$$

$$\vdots$$

$$x_{n}^{(k+1)} = -\frac{1}{a_{nn}} \left(a_{n1} x_{1}^{(k+1)} + \dots + a_{nn-1} x_{n-1}^{(k+1)} \right) + \frac{b_{n}}{a_{nn}}$$

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лекция 10. Численное решение систем нелинейных уравнений (2 ч.).

Постановка задачи.

Дана система n нелинейных уравнений с n неизвестными:

$$\begin{cases} f_1(x_1, ..., x_n) = 0 \\ f_2(x_1, ..., x_n) = 0, & (1) \\ ... \\ f_n(x_1, ..., x_n) = 0 \end{cases}$$

где $f_i(x_1,...,x_n)=0$: $R^n\to R$, i=1,...n, - нелинейные функции, определенные и непрерывные в некоторой области $G\subset \mathbb{R}^n$, или в векторном виде F(x)=0, где

$$x = (x_1, ..., x_n)^T, F(x) = [f_1(x), ... f_n(x)]^T.$$

Требуется найти такой вектор $x^* = (x_1^*, ..., x_n^*)^T$, который при подстановке в систему превращает каждое уравнение в верное равенство.

Метод Ньютона.

Задать вектор начального приближения $x^{(0)} = \left(x_1^{(0)}, \dots, x_n^{(0)}\right)^T$.

Решить систему линейных алгебраических уравнений:

$$J(x^{(k)}) \cdot \Delta x^{(k)} = -F(x^{(k)})$$

относительно $\Delta x^{(k)}$,

где
$$\Delta x^{(k)} = x^{(k+1)} - x^{(k)}$$

$$J(x) = \begin{vmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(x)}{\partial x_1} & \cdots & \frac{\partial f_n(x)}{\partial x_n} \end{vmatrix}$$

Вычислить следующее приближение $x^{(k+1)} = x^{(k)} + \Delta x^{(k)}$

Итерационный процесс заканчивается при выполнении условия $\|x^{(k+1)} - x^{(k)}\| < \varepsilon$, где ε - заданная точность, а вектор решения $x^* \approx x^{(k+1)}$.

Таким образом, для применения метода Ньютона необходимо выполнение следующих двух условий:

- частных производных существование первого порядка OT функций $f_i(x_1,...,x_n)$, i=1,...,n по всем переменным $x_j,j=1,...,n$;
- матрица Якоби для системы (1) на каждой итерации $k=0,1,\ 2,\ ...$ должна быть невырожденной.

Метод простых итераций.

Для использования метода простых итераций система (1) записывается в следующей эквивалентной форме:

$$\begin{cases} x_1 = \varphi_1(x_1, \dots, x_n) \\ x_2 = \varphi_2(x_1, \dots, x_n) \\ \dots \\ x_n = \varphi_n(x_1, \dots, x_n) \end{cases}$$

 $\begin{cases} x_1 = \varphi_1(x_1, ..., x_n) \\ x_2 = \varphi_2(x_1, ..., x_n) \\ ... \\ x_n = \varphi_n(x_1, ..., x_n) \end{cases}$ векторном виде $x = \Phi(x)$, где $x = (x_1, ..., x_n)^T$, $\Phi(x) = (x_1, ..., x_n)^T$ $[\varphi_1(x), \dots \varphi_n(x)]^T$.

Тогда, если известно начальное приближение $x^{(0)} = \left(x_1^{(0)}, \dots, x_n^{(0)}\right)^T$, можно построить алгоритм метода простых итераций:

$$x_i^{(k+1)} = \varphi_i(x_1^{(k)}, \dots, x_n^{(k)})$$

Итерационный процесс заканчивается при выполнении условия $\|x^{(k+1)} \|x^{(k)}\| < \varepsilon$, где ε - заданная точность, а вектор решения $\|x^*\| \approx x^{(k+1)}$.

Можно показать, что метод простых итераций сходится к решению системы (1), если $||J(x^{(k)})|| < 1$,

$$J(x) = \begin{pmatrix} \frac{\partial \varphi_1(x)}{\partial x_1} & \cdots & \frac{\partial \varphi_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_n(x)}{\partial x_1} & \cdots & \frac{\partial \varphi_n(x)}{\partial x_n} \end{pmatrix}$$

ЧИСЛЕННАЯ ИНТЕРПОЛЯЦИЯ

Лекции 11-15. Приближение функций с помощью интерполяционных многочленов (8 ч.).

Постановка задачи

Пусть известны значения некоторой функции f в n+1 различных точках x_0 , $x_1, ..., x_n$, которые обозначим следующим образом: $f_0, f_1, ..., f_n$.

Возникает задача приближенного восстановления функции f в произвольной точке x. Часто для решения этой задачи строится алгебраический многочлен

$$L_n(x) = \sum_{i=0}^n a_i x^i$$
 степени n , такой, что: $L_n(x_i) = f_i$, $i = 0, 1, ..., n$

Этот многочлен называется *интерполяционным*. Точки x_i называются узлами интерполяции.

Для удобства изложения под многочленом степени n мы будем подразумевать многочлен степени не выше n. Например, если $f_i = 0$, $i = 0, 1, \ldots, n$, то интерполяционный многочлен $L_n(x)$ тождественно равен нулю, но его тоже будем называть интерполяционным многочленом n-й

Интерполяционный многочлен (1), записанный в форме

$$L_n(x) = \sum_{i=0}^{n} f(x_i) \prod_{i \neq j}^{n} \frac{x - x_j}{x_i - x_j}$$

называют интерполяционным многочленом Лагранжа.

Пусть
$$n = 1$$
, тогда $L_1(x) = f_0 \frac{x - x_1}{x_0 - x_1} + \frac{x - x_0}{x_1 - x_0} f_1$

При n=2

$$\begin{split} L_2(x) &= \frac{(x-x_1)}{(x_0-x_1)} \frac{(x-x_2)}{(x_0-x_2)} \, f_0 + \frac{(x-x_0)}{(x_1-x_0)} \frac{(x-x_2)}{(x_1-x_2)} \, f_1 + \\ &+ \frac{(x-x_0)}{(x_2-x_0)} \frac{(x-x_1)}{(x_2-x_1)} \, f_2 \end{split}$$

и это квадратичная интерполяция

Погрешность интерполяции.

Всегда можно написать равенство $f(x) = L_n(x) + R_n(x)$,

Можно получить следующую оценку $R_n(x)$ — остаточного члена интерполяционного многочлена в форме Лагранжа:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_n(x) , \text{ где } \omega_n(x) = (x-x_0) \cdot (x-x_1) \cdot \dots \cdot (x-x_n).$$
$$|R_n(x)| \leq \frac{M_{n+1}}{(n+1)!} |\omega_n(x)|, \text{ где } M_{n+1} = \max |f^{(n+1)}(x)|$$

Интерполяционный многочлен в форме Ньютона.

Интерполяционный многочлен в форме Ньютона, построенный по точкам $x_0, x_1, ..., x_n$ имеет вид:

$$L_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + \ldots + f(x_0, x_0, x_{n-1})(x - x_0) + \ldots + f(x_{n-1}, x_{n-1})(x - x_0) + \ldots + f(x$$

где $f(x_{0;\ldots,}x_{k-1})$ — разделенная разность k-1 —го порядка.

$$f(x_k; x_{k+1}) = \frac{f_{k+1} - f_k}{x_{k+1} - x_k}$$
 — разделенная разность 1 – го порядка;

$$f(x_i; \ldots; x_{i+k+1}) = \frac{f(x_{i+1}; \ldots x_{i+k+1}) - f(x_i; \ldots x_{i+k})}{x_{i+k+1} - x_i} -$$

разделенная разность k + 1 – го порядка;

$$R_n(x) = f(x; x_0; \ldots; x_n) \omega_n(x);$$

Если в некоторых узлах известны не только значения функции, но и значения ее производных, (порядок может быть разным), то такие узлы называются кратными.

Пусть:

в узле x_o известны $f_0, f'_0, \dots, f_0^{(k0-1)},$

в узле x_I известны $f_I, f'_I, \dots, f_I^{(kI-I)}$,

в узле x_m известны $f_m, f'_m, \dots, f_m^{(km-1)}$;

тогда кратность узла x_i равна k_i .

Пусть суммарная кратность узлов $k_0 + k_I + \ldots + k_m = n+1$, тогда по ним можно построить интерполяционный многочлен Эрмита степени n, используя

соотношение:
$$f(x_i, x_i, ..., x_i) = \frac{f^{(k_i-1)}(x_i)}{(k_i-1)!}$$

ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ.

Лекция 16. Численное дифференцирование (2 ч.).

Простейшие формулы численного дифференцирования получаются в результате дифференцирования интерполяционных формул. При дифференцировании разделенных разностей следует руководствоваться правилом:

$$\frac{d}{dx}f(x, x_0, \dots, x_n) = f(x, x, x_0, \dots, x_n);$$

$$\frac{d^2}{dx^2}f(x, x_0, \dots, x_n) = 2f(x, x, x, x_0, \dots, x_n); u m.\partial.$$

Основные формулы с погрешностями:

$$n=1$$
 (два узла):

В приведенных формулах ξ есть некоторая точка (своя для каждой из формул) из интервала (x_0 , x_n), n — степень интерполяционного многочлена.

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ.

Лекции 17-21. Численное интегрирование (10 ч.).

Постановка задачи.

Пусть требуется вычислить определенный интеграл $I = \int_a^b f(x) dx$, где f(x) непрерывна на [a, b].

Заменим подынтегральную функцию каким-либо интерполяционным многочленом $L_n(x)$ и получим квадратурную формулу вида:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} L_{n}(x)dx + R[f] = \sum_{k=0}^{n} A_{k} f(x_{k}) + R[f],$$

где x_k — узлы интерполяции, A_k — коэффициенты квадратурной формулы, называемые весами, зависящие только от выбранных узлов, но не от вида функции f(x).

R[f] – погрешность или остаточный член формулы.

$$R[f] = \int_{a}^{b} (f(x) - L_n(x)) dx.$$

Таким образом,
$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$
. Если $A_{k} = \prod_{\substack{i=0 \ k \neq i}}^{n} \frac{x - x_{i}}{x_{k} - x_{i}}$, то формула

называется интерполяционной квадратурной формулой.

Элементарные квадратурные формулы:

формула левых прямоугольников:

$$\int_{a}^{b} f(x)dx \approx (b-a) \cdot f(a); \quad |R[f]| \le \max_{[a,b]} |f'(x)| \frac{(b-a)^{2}}{2}$$

Рис. 10

формула правых прямоугольников:

$$\int_{a}^{b} f(x)dx \approx (b-a) \cdot f(b); \quad \left| R[f] \right| \leq \max_{[a,b]} \left| f'(x) \right| \frac{(b-a)^{2}}{2}$$

Рис. 11

формула средних прямоугольников:

$$\int_{a}^{b} f(x)dx \approx (b-a) \cdot f(\frac{a+b}{2}); |R[f]| \leq \max_{[a,b]} |f''(x)| \frac{(b-a)^{3}}{24}$$

Рис. 12

формула трапеций:

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2} \cdot (f(a) + f(b)); |R[f]| \le \max_{[a,b]} |f''(x)| \frac{(b-a)^{3}}{12}$$

Рис. 13

формула Симпсона:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b));$$

$$\left| R[f] \right| \leq \max_{[a,b]} \left| f^{(4)}(x) \right| \frac{(b-a)^{5}}{2880}$$

Составные формулы.

На практике, поскольку длина отрезка [a, b] может быть велика, пользуются составными формулами. Для их получения на отрезке [a, b] вводят достаточно густую сетку: $a = x_0 < x_1 < \ldots < x_n = b$; $x_i = x_{i-1} + h$, $i = 1, \ldots, n$, где $h = \frac{b-a}{n}$. Интеграл считают как сумму интегралов по каждому отрезку $[x_{i-1}, x_i]$, на которых применяют какую-либо простую формулу. Приведем составные формулы с погрешностями для рассмотренных выше простых формул.

Составная формула левых прямоугольников:

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=0}^{n-1} f(x_i); |R[f]| \leq \max_{[a,b]} |f'(x)| \frac{(b-a)}{2} h$$

Рис. 14

Составная формула правых прямоугольников:

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{n} f(x_{i}); \left| R[f] \right| \leq \max_{[a,b]} \left| f'(x) \right| \frac{(b-a)}{2} h$$

Рис. 15

Составная формула средних прямоугольников:

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{n} f(\frac{x_{i-1} + x_{i}}{2}); \quad \left| R[f] \right| \leq \max_{[a,b]} \left| f''(x) \right| \frac{(b-a)}{24} h^{2}$$

Рис. 16

Составная формула трапеций:

$$\int_{a}^{b} f(x)dx \approx h(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_{i}));$$

$$\left| R[f] \right| \leq \max_{[a,b]} \left| f''(x) \right| \frac{(b-a)}{12} h^{2}$$

Рис. 17

Составная формула Симпсона:

$$\begin{split} &\int_{a}^{b} f(x) dx \approx \frac{h}{6} (f(x_0) + 4f(x_{1/2}) + 2f(x_2) + \ldots + 2f(x_{n-1}) + 4f(x_{n-1/2}) + f(x_n)); \\ &\Gamma \mathrm{Де} \ x_{i+1/2} = \frac{x_i + x_{i+1}}{2} \\ &\left| R[f] \right| \leq \max_{[a,b]} \left| f^{(4)}(x) \right| \frac{(b-a)}{2880} h^4 \,. \\ &\left(\, \mathrm{Здесь} \, h = \frac{b-a}{n} \right) \end{split}$$

Если погрешность квадратурной формулы $R[f] \leq Ch^p$, где C – некоторая постоянная, то говорят, что формула имеет порядок погрешности по h равный p.

Алгебраическая степень точности формул численного интегрирования.

Рассмотрим применение простой формулы численного интегрирования для случая, когда f(x) является многочленом. Если формула точна для всех многочленов степени $\leq N$ и не точна для многочлена степени N+1, то N — алгебраическая степень точности данной формулы (N_a) . Так,

для формулы правых и левых прямоугольников N_a =0; для формулы средних прямоугольников и трапеций N_a = 1; для формулы Симпсона N_a =3.

Требование точности формулы для многочленов заданной степени используется при построении квадратур методом неопределенных коэффициентов.

Метод неопределенных коэффициентов для построения квадратурных формул.

Рассмотрим метод неопределенных коэффициентов на примере построения формулы «трех восьмых». Узлы определяются следующим образом: $x_0=a$, $x_1=\frac{a+b}{3}$, $x_2=2\frac{a+b}{3}$, $x_3=b$.

Тогда формула имеет вид:
$$\int_a^b f(x)dx \approx A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2) + A_3 f(x_3)$$
.

Алгебраическая степень точности этой формулы равна трем, следовательно, она должна быть верна для $f(x) = x^i$, $c\partial e i = 0,1,2,3$. Подставляя эти функции формулу, получаем систему уравнений относительно коэффициентов A_i .

Метод Рунге оценивания погрешности.

Пусть I_h — приближенное значение интеграла, посчитанное по составной формуле с шагом h, а R_h — его погрешность; $I_{h/2}$ — приближенное значение интеграла, посчитанное по составной формуле с шагом h/2, и $R_{h/2}$ — его погрешность. Пусть порядок погрешности этой формулы m . Тогда справедливо следующее правило Рунге:

$$R_{h/2} = \frac{I_{h/2} - I_h}{2^m - 1}.$$

Для составных формул правых и левых прямоугольников справедливо:

$$R_{h/2}=I_{h/2}-I_h.$$

Для составных формул средних прямоугольников и трапеций справедливо:

$$R_{h/2} = \frac{I_{h/2} - I_h}{3}$$

Для составной формулы Симпсона справедливо:

$$R_{h/2} = \frac{I_{h/2} - I_h}{15}$$

Формулы наивысшей алгебраической степени точности.

Рассмотрим интерполяционную квадратурную формулу

$$I[f] = \int_{a}^{b} p(x)f(x)dx \approx S_{n}[f] = \sum_{k=0}^{n} A_{k}f(x_{k}), (1)$$

$$A_{k} = \int_{a}^{b} p(x) \prod_{\substack{i=0 \ i \neq k}}^{n} \frac{x - x_{i}}{(x_{k} - x_{i})} dx. (2)$$

Считаем, что узлы x_0 , ..., x_n различны и принадлежат отрезку [a, b].

Справедливы следующие теоремы.

Теорема 1. Для того чтобы формула (1)-(2) была точна для всех полиномов степени 2n + 1, необходимо и достаточно, чтобы полином $\omega_n(x) = (x - x_0) \dots (x - x_n)$ был ортогонален с весом p(x) всякому полиному Q(x) степени n и ниже, т.е.

$$\int_{a}^{b} p(x)\omega_{n}(x)Q(x)dx = 0$$

Теорема 2. Пусть $p(x) \ge 0$ на [a, b], существуют интегралы $\int_a^b p(x)|x|^m dx$, m = 0, ..., 2n + 1 и $\int_a^b p(x) dx > 0$. Тогда существует единственный полином $G(x) = x^{n+1} + a_1 x^n + \cdots + a_n x + a_{n+1}$,

ортогональный с весом p(x)всякому полиному Q(x) степени n, т.е.

$$\int_{a}^{b} p(x)G(x)Q(x)dx = 0$$

Коэффициенты этого полинома удовлетворяют однозначно разрешимой системе линейных алгебраических уравнений:

$$a_{1} \int_{a}^{b} p(x)x^{n} dx + a_{2} \int_{a}^{b} p(x)x^{n-1} dx + \dots + a_{n+1} \int_{a}^{b} p(x) dx = -\int_{a}^{b} p(x)x^{n+1} dx$$

$$a_{1} \int_{a}^{b} p(x)x^{n+1} dx + a_{2} \int_{a}^{b} p(x)x^{n} dx + \dots + a_{n+1} \int_{a}^{b} p(x)x dx = -\int_{a}^{b} p(x)x^{n+2} dx$$
 (6)

$$a_1 \int_a^b p(x)x^{2n}dx + a_2 \int_a^b p(x)x^{2n-1}dx + \dots + a_{n+1} \int_a^b p(x)x^ndx = -\int_a^b p(x)x^{2n+1}dx$$

Теорема 3. Полином G(x), существование которого гарантируется теоремой 2, имеет n+1 различных корней, принадлежащих интервалу (a, b).

Благодаря этим теоремам квадратурную формулу Гаусса строим следующим образом:

1) Из системы (6) находим коэффициенты a_1 , ..., a_{n+1} полинома G(x);

- 2) Находим n+1 корней x_0 , ..., x_n полинома G(x) и берем их в качестве узлов квадратурной формулы;
- 3) Находим коэффициенты A_k квадратурной формулы (1)-(2). Остаточный член R[f] формулы Гаусса для функции $f(x) \in W_{2n+2}$ равен

$$R[f] = \frac{f^{2n+2}(\xi)}{(2n+2)!} \cdot \int_{a}^{b} p(x)\omega_n^2(x)dx, \quad \xi \in (a,b)$$

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Лекции 22-27. Численные методы решения задачи коши для обыкновенных дифференциальных уравнений первого порядка (12 ч.).

Постановка задачи.

Рассмотрим задачу Коши для дифференциального уравнения 1-го порядка: найти решение уравнения

$$y' = f(x, y), x \in [x_0, x_0 + L], y(x_0) = y_0$$
 (1)

Если функция f(x,y) непрерывна и удовлетворяет условию Липшица по y в некоторой окрестности начальной точки x_0 , то можно указать такой отрезок $[x_0, x_0 + L]$, на котором решение задачи (1) существует и единственно. Численные методы позволяют приближенно вычислить искомое решение y(x) в некоторых точках $x_i \in [x_0, x_0 + L]$.

Решение ищется в виде последовательности значений $y_0, y_1, y_2, \ldots, y_n$, где y_i – приближенное значение точного решения y(x) в точке x_i .

Методы, основанные на разложении решения задачи Коши в ряд Тейлора.

Пусть f(x, y) имеет в рассматриваемой области непрерывные и ограниченные частные производные. Тогда можно записать для решения (1) разложение в ряд Тейлора:

$$y(x) = y_0 + y'(x_0)(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{y^{(k)}(\xi)}{k!}(x - x_0)^k + \dots$$
 где $y'(x_0) = f(x_0, y_0)$

 $y''(x_0) = f'_x(x_0, y_0) + f'_y(x_0, y_0)f(x_0, y_0)$ и т.д. Оборвем разложение на члене,

$$y(x) \approx \sum_{i=0}^{k} \frac{y(x_0)^{(i)}}{i!} (x - x_0)^i$$
 (2)

содержащем $(x-x_0)^k$. Таким образом, можно записать приближенное равенство Если значение $|x-x_0|$ больше радиуса сходимости ряда

$$\sum_{i} \frac{y(x_0)^{(i)}}{i!} (x - x_0)^{i},$$

то погрешность (2) не стремится к 0 при $k \to \infty$ и предлагаемый метод неприменим. Тогда целесообразно поступить следующим образом: разобьем отрезок $[x_0, x_0 + L]$ на отрезки $[x_j \ _l, x_j], j = 1$,..., N. Имеем систему равноотстоящих узлов $x_j = x_0 + j \cdot h$, где h = L/n.

Говорят, что порядок точности метода на одном шаге равен p+1, если найдется такое $C \neq 0$, что

$$|y_1 - y(x_1)| \le Ch^{p+1}$$

Решая задачу (1) на $[x_j, x_j + h]$, предположим, что точно известно значение $y(x_i) = y_i$, имеем:

$$y(x_j + h) \approx y_{j+1} = y(x_j) + y'(x_j)h + \frac{y''(x_j)}{2!}h^2 + \dots + \frac{y^{(k)}(x_j)}{k!}h^k$$

погрешность на одном шаге — $O(h^{k+1})$, а погрешность на всем промежутке $[x_0, \, x_0 + L]\,$ вносится на каждом отрезке (всего на $O(h^{-1})$ отрезках), тогда на всем промежутке погрешность равна $O(h^k)$

Пусть k = 1. Полученный метод имеет вид:

$$\mathbf{y}_{\mathbf{j}+1} = \mathbf{y}_{\mathbf{j}} + \mathbf{h} \ \mathbf{f}(\mathbf{x}_{\mathbf{j}}, \mathbf{y}_{\mathbf{j}})$$

и называется методом Эйлера. Его одношаговая погрешность равна $O(h^2)$. Погрешность на всем промежутке — O(h), таким образом, это метод первого порядка точности относительно h.

Построенные подобным образом более точные методы требуют вычисления на каждом шаге не только значения функции f(x, y), но и ее частных производных. Это существенно усложняет решение задачи. Поэтому при разработке более точных методов стремятся заменить вычисление производных функции f(x, y) нахождением значений самой функции в нескольких точках. Эта идея лежит в основе построения методов Рунге – Кутты.

Пусть известно значение решения задачи (1) в некоторой точке x и требуется вычислить его в точке x+h . Справедливо следующее равенство

$$y(x+h) = y(x) + \int_{0}^{h} y'(x+t)dt$$

Если вычислять интеграл по формуле трапеций, то получим

$$y(x+h) = y(x) + \frac{h}{2}(f(x,y) + f(x+h,y(x+h))) + O(h^3)$$

Заменяя в этой формуле неизвестное у(x+h) приближенным значением, полученным по методу Эйлера, получим метод Эйлера с пересчетом:

$$y_{j+1} = y_j + \frac{h}{2}(f(x_j, y_j) + f(x_{j+1}, y_j + hf(x_j, y_j)))$$

Если вычислять по формуле средних прямоугольников, то получим **метод Коши**:

$$y_{j+1} = y_j + hf(x_j + \frac{h}{2}, y_j + \frac{h}{2}f(x_j, y_j))$$

Наиболее часто используется метод Рунге — Кутты четвертого порядка точности. В этом методе y_i — приближенные значения $y(x_i)$ вычисляются по формулам

$$y_{i+1} = y_i + \Delta y_i$$
, $\Delta y_i = (K_1^{(i)} + 2K_2^{(i)} + 2K_3^{(i)} + K_4^{(i)})/6$, где $K_1^{(i)} = hf(x_i, y_i)$, $K_2^{(i)} = hf(x_i + h/2, y_i + K_1^{(i)}/2)$, $K_3^{(i)} = hf(x_i + h/2, y_i + K_2^{(i)}/2)$, $K_4^{(i)} = hf(x_i + h, y_i + K_3^{(i)})$.

Разностные методы.

Пусть известны значения y_{m-k} , y_{m-k+1} , . . . , y_m в равноотстоящих узлах

$$x_{m-i}$$
, $i = 0, 1, ..., k$; $x_{m-i+1} = x_{m-i} + h$.

Для функции f(x, y(x)) по значениям

 $f_{m-i} = f(x_{m-i}, y_{m-i}), i = 0, 1, \ldots, k$ можно построить интерполяционный многочлен Лагранжа степени k . Заменив в интегральном представлении уравнения (1) подынтегральную функцию f(x, y(x)) интерполяционным многочленом $L_k(x)$, получим формулу метода Адамса

$$y_{m+1} = y_m + h \sum_{i=0}^{k} \beta_i f_{m-i}$$

Все эти формулы — явные . Если добавить в список известных значений y_{m+1} и по $\kappa+2$ значениям построить интерполяционный многочлен степени $\kappa+1$, получим неявную формулу

$$y_{m+1} = y_m + h \sum_{i=-1}^{k} \beta_i f_{m-i}$$

Устойчивость решения.

Для устойчивости тривиального решения разностного уравнения необходимо и достаточно, чтобы все корни ρ_i характеристического уравнения

$$\rho^{k+1} = a_0 \rho^k + a_1 \rho^{k-1} + a_2 \rho^{k-2} + \dots + a_k \rho^0$$

лежали в единичном круге $|\rho_i| \le 1$,

а те у которых $|\rho_i| = 1$ не были бы кратными. Разностный метод называется **нуль-устойчивым**, если тривиальное решение устойчиво.

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

Лекции 28-32. Решение краевой задачи для обыкновенного дифференциального уравнения второго порядка (10 ч.).

Рассмотрим обыкновенное дифференциальное уравнение второго порядка $y'' = f(x,y,y') \text{ и линейные краевые условия } \alpha_0 y'(a) + \alpha_1 y(a) = \alpha_2 \text{ , } \beta_0 y'(b) + \beta_1 y(b) = \beta_2 \text{ ,}$ где $(\alpha_0)^2 + (\alpha_1)^2 \neq 0$, $(\beta_0)^2 + (\beta_1)^2 \neq 0$. Будем предполагать, что решение задачи существует и единственно.

Метод стрельбы.

Сведем решение краевой задачи к решению задач Коши. Пусть $\alpha_0 \neq 0$. Введем параметр μ . Положим $y(a) = \mu$. Тогда из краевого условия на левом конце $y'(a) = \frac{\alpha_2 - \mu \alpha_1}{\alpha_0}$. Пришли к задаче Коши. Ее решение будет зависеть от параметра μ . Обозначим его $y(x,\mu)$. Параметр μ будем подбирать таким образом, чтобы выполнилось краевое условие на правом конце $\beta_0 y'(b,\mu) + \beta_1 y(b,\mu) = \beta_2$. Получилось нелинейное уравнение относительно μ . Его нужно решить какимнибудь численным методом, например, методом деления отрезка пополам, выбрав концы отрезка μ_0 и μ_1 так, чтобы искомый корень μ нелинейного уравнения принадлежал μ_0 и μ_1 так, чтобы искомый корень μ нелинейного уравнения Коши. Для численного решения задачи Коши, введя еще одну функцию μ 0 у μ 1 коши. Для численного решения задачи Коши, введя еще одну функцию μ 1 коши.

сведем уравнение y'' = f(x, y, y') к системе y' = z с начальными условиями z' = f(x, y, z)

$$y(a) = \mu$$

 $z(a) = \frac{\alpha_2 - \mu \alpha_1}{\alpha_2}$. Тогда интересующее нас нелинейное уравнение запишется так

 $\beta_0 z(b,\mu) + \beta_1 y(b,\mu) = \beta_2$. Таким образом, решение краевой задачи свелось к многократному решению задачи Коши каким-нибудь численным методом, например, методом Эйлера, и численному решению нелинейного уравнения.

Приближенное решение краевой задачи получим, решив задачу Коши при $\overline{\mu} = \mu$.

Метод конечно-разностной прогонки.

линейную краевую задачу y'' = p(x)y + q(x), p(x) > 0Рассмотрим $y'(a) - \alpha_1 y(a) = \alpha_2, \ y'(b) + \beta_1 y(b) = \beta_2, \ \alpha_1 > 0, \beta_1 > 0.$

Разобьем отрезок [a,b] на п равных частей точками $x_0, x_1, ..., x_n$ с шагом $h = \frac{b-a}{a}$. Рассмотрим уравнение y'' = p(x)y + q(x) в точках x_i и заменим производную по формулам численного дифференцирования

$$y''(x_i) = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + O(h^2)$$
. Получим $\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} - p(x_i)y_i = q(x_i)$, $i = 1,...,n-1$.

Запишем (n-1) уравнений системы линейных алгебраических уравнений

$$\frac{1}{h^2}y_{i-1}-y_i\left(\frac{2}{h^2}+p(x_i)\right)+\frac{1}{h^2}y_{i+1}=q(x_i),\quad i=1,...,n-1\ \text{с неизвестными}\ y_0,...,y_n\ .$$
 Чтобы

найти нулевое уравнение системы, в краевом условии на левом конце заменим производную по формуле $y'(x_0) = \frac{y_1 - y_0}{h} + O(h)$. Получим уравнение

$$-\left(\frac{1}{h} + \alpha_{1}\right)y_{0} + \frac{1}{h}y_{1} = \alpha_{2}$$
. Последнее уравнение системы найдем из краевого условия

на правом конце, заменив производную по формуле $y'(x_n) = \frac{y_n - y_{n-1}}{h} + O(h)$.

Получим $-\frac{1}{h}y_{n-1} + \left(\frac{1}{h} + \beta_1\right)y_n = \beta_2$. Система имеет трехдиагональную матрицу

$$A = \begin{pmatrix} -\left(\frac{1}{h} + \alpha_1\right) & \frac{1}{h} & 0 & \dots & 0 \\ \frac{1}{h^2} & -\left(\frac{2}{h^2} + p(x_1)\right) & \frac{1}{h^2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \frac{1}{h^2} \\ 0 & 0 & 0 & \dots & \frac{1}{h} + \beta_1 \end{pmatrix}, \text{ обладающую диагональным}$$

преобладанием, так как p(x) > 0 и $\alpha_1 > 0$, $\beta_1 > 0$. Порядок аппроксимации построенной разностной схемы O(h).

Плохой порядок аппроксимации получился из-за замены производных в недостаточно точной формулой условиях дифференцирования. Воспользуемся формулами погрешностью $y'(x_0) = \frac{y_1 - y_{-1}}{2h} + O(h^2)$, $y'(x_n) = \frac{y_{n+1} - y_{n-1}}{2h} + O(h^2)$. Подставим их в краевые условия. Получим $\frac{y_1-y_{-1}}{2h}-\alpha_1y_0=\alpha_2$, $\frac{y_{n+1}-y_{n-1}}{2h}+\beta_1y_n=\beta_2$. Но y_{-1} и y_{n+1} нам не известны. Чтобы исключить y_{-1} , запишем уравнение системы при i=0. $y_{-1} + y_1 - (2 + h^2 p_0) y_0 = h^2 q_0$. Сложим эти уравнения. $-(2+h^2p_0+2h\alpha_1)y_0+2y_1=2h\alpha_2+h^2q_0$. Запишем уравнение системы при i=n. $\frac{1}{h^2} y_{n-1} - y_n \left(\frac{2}{h^2} + p(x_n) \right) + \frac{1}{h^2} y_{n+1} = q(x_n).$ Имеем $y_{n+1} - y_{n-1} + 2h\beta_1 y_n = 2h\beta_2$, $y_{n-1} + y_{n+1} - (2 + h^2 p_n) y_n = h^2 q_n$. Вычтем эти уравнения. Получим последнее уравнение $-2y_{n-1}+\left(2+h^2p_n+2h\beta_1\right)y_n=2h\beta_2-h^2q_n$. Вновь пришли к системе с трехдиагональной матрицей, обладающей диагональным преобладанием. Порядок аппроксимации построенной разностной схемы $O(h^2)$. Рассмотренный метод получения разностной схемы называется методом фиктивного узла.

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Лекции 33-34. Решение линейных систем. Приближение таблично заданной функции (4 ч.).

Решение линейных систем по методу наименьших квадратов.

Рассмотрим прямоугольную матрицу:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \ddots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

Пусть в матрице число строк превышает число столбцов (n≤ m), причём все строки линейно независимы. Систему уравнений вида

$$Ax \approx y$$

где $X = \{x_1, x_2, \dots, x_n\}^T$ — вектор-столбец решения, $y = \{y_1, y_2, \dots, y_n\}^T$ — вектор-столбец правой части, назовём **переопределённой**. Как можно видеть, в такой системе число уравнений превышает число неизвестных, и для неё не существует "классического" решения.

Согласно методу наименьших квадратов, МНК – решение (\dot{x}) есть решение системы:

$$A^{T}Ax = A^{T}v$$

Геометрический смысл МНК.

Пусть $h_1,\ h_2,\ \dots,h_n$ –столбцы матрицы А. Запишем систему в виде $\mathrm{Ax}=\sum_{k=1}^n h_k x_k.$

Тогда решение задачи сводится к отысканию x_1, x_2, \ldots, x_n так, чтобы линейная комбинация $\sum_{k=1}^n h_k x_k$ приближала вектор y наилучшим образом. Наилучшим приближением будет \widehat{y} - проекция этого вектора на подпространство $H = \langle h_1, h_2, \ldots, h_n \rangle$. При этом y - \widehat{y} должен быть ортогонален всем векторам h_1, h_2, \ldots, h_n .

Это требование приводит к системе уравнений:

 $(h_i, y - \sum_{k=1}^n h_k x_k) = 0$, $i = 1, \ldots, n$. Ее решение и будет МНК – решением исходной системы.

Приближение таблично заданной функции по методу наименьших квадратов.

В методе наименьших квадратов аппроксимирующая функция ищется в виде

$$\Phi_m(x) = \sum_{i=1}^m a_i \varphi_i(x), m < n,$$

(возможно, m << n)

Пусть известны значения некоторой функции f в п различных точках $x_1, ..., x_n$, которые обозначим следующим образом: $f_1, ..., f_n$.

Пусть в евклидовом пространстве Е дана линейно независимая система

$$\Phi_m(x) = \sum_{i=1}^m a_i \varphi_i(x),$$

функций ϕ_1 , ϕ_2 ,..., ϕ_m , $m \leq n$.

Построим обобщенный многочлен, коэффициенты которого подберем так, чтобы значение

было минимальным. Функцию $\Phi_m(x)$ с набором коэффициентов,

$$F = \sum_{k=1}^{n} (f_k - \sum_{i=1}^{m} a_i \varphi_i(x_k))^2$$

удовлетворяющих этому требованию, называют **наилучшим приближением по методу наименьших квадратов**. В этом случае коэффициенты многочлена $\Phi_m(x)$ — точка экстремума квадратичной формы $F(a_1, a_2, \dots, a_m)$. Здесь F — функция многих переменных, принимающая неотрицательные значения. Известно, что квадратичная форма (F) достигает своего неотрицательного минимума. Если (a_1^0 , a_2^0 , ..., a_m^0) — точка экстремума, то выполняются необходимые условия экстремума:

$$\frac{\partial F}{\partial a_1}(a_1, a_2, \dots, a_m) = 0$$

. . .

$$\frac{\partial F}{\partial a_m}(a_1, a_2, \dots, a_m) = 0$$

$$a_1 \sum_{k=1}^{m} \varphi_1(x_k) \varphi_1(x_k) + \dots + a_m \sum_{k=1}^{m} \varphi_1(x_k) \varphi_m(x_k) = \sum_{k=1}^{m} \varphi_1(x_k) f_k$$

После дифференцирования получим систему уравнений:

$$a_1 \sum_{k=1}^{m} \varphi_m(x_k) \varphi_1(x_k) + \dots + a_m \sum_{k=1}^{m} \varphi_m(x_k) \varphi_m(x_k) = \sum_{k=1}^{m} \varphi_m(x_k) f_k$$

Известно, что определитель этой системы не равен нулю. Поэтому система имеет единственное решение при любой функции f.

Для компактной записи полученной системы удобно использовать скалярное произведение.

Тогда i — е уравнение полученной системы, называемой нормальной, можно записать следующим образом:

$$\sum_{j=1}^{m} a_j(\varphi_j, \varphi_i) = (f, \varphi_i),$$

$$i = 1, \dots, m.$$

Полученные в результате решения этой системы коэффициенты дадут многочлен наилучшего среднеквадратичного приближения функции f.

Примером линейно независимой системы функций $\varphi_1, \dots, \varphi_m$ может служить система: $\varphi_1(x) = 1, \ \varphi_2(x) = x, \dots, \ \varphi_m(x) = x^{m-1}$.

ЧИСЛЕННЫЕ МЕТОДЫ В ТЕОРИИ ПРИБЛИЖЕНИЯ ФУНКЦИЙ

Лекции 35-36. Интерполяция сплайнами. Кубические сплайны (4 ч.).

Пусть на отрезке [a,b] задана сетка Δ : $a=x_0 < x_1 < \cdots < x_N < b$.

Функция $S_{m,k}(x)$, определенная на отрезке [a,b], называется **полиномиальным сплайном** степени m дефекта k $(1 \le k \le m)$ с узлами сетки Δ , если $S_{m,k}(x) \in C^{(m-k)}[a,b]$ и на каждом i – ом отрезке $[x_{i-1},x_i]$, $i=\overline{1,N}$ $S_{m,k}(x)$ является полиномом m – й степени.

Сплайн $S_{m,k}(x)$ называется **интерполяционным** для функции f(x) на сетке Δ , если

$$S_{m,k}(x_i) = f(x_i) \triangleq f_i, i = \overline{0,N}.$$

Интерес представляют **кубические** сплайны $S_{3,1}(x)$. На каждом из отрезков $[x_{i-1}, x_i]$ сплайн $S_{3,1}(x) \triangleq S_3(x)$ представляет собой многочлен третьей степени

$$S_3^{(i)}(x) = a_i + m_i(x - x_i) + \frac{M_i}{2}(x - x_i)^2 + \frac{d_i}{6}(x - x_i)^3$$
, $x_{i-1} \le x \le x_i$, (1) где

$$a_i = S_3^{(i)}(x), \qquad m_i = S_3'(x_i), \qquad M_i = S_3''(x_i),$$
 $d_i = S_3'''(x_i + 0) = S_3'''(x_i - 0), \quad i = \overline{1, N}.$

Полагаем

$$a_0 \triangleq S_3(x_0), \qquad m_0 = S_3'(x_0), \qquad M_0 = S_3''(x_0).$$

Для интерполяционного сплайна его 4N коэффициентов находятся из 2N условий интерполяции

$$S_3^{(i)}(x_{i-1}) = f_{i-1}, \qquad S_3^{(i)}(x_i) = f_i, \qquad i = \overline{1, N},$$

из (2N-2) условий сопряжения

$$S_3^{(i)\prime}(x_i) = S_3^{(i+1)\prime}(x_i), \qquad S_3^{(i)\prime\prime}(x_i) = S_3^{(i+1)\prime\prime}(x_i), \qquad i = \overline{1, N-1},$$

и из двух краевых условий.

Наиболее употребительными являются краевые условия следующих типов:

$$S_3'(a) = f'(a), S_3'(b) = f'(b),$$

$$S_3''(a) = f''(a), \ S_3''(b) = f''(b),$$

$$S_3'(a) = S_3'(b), \ S_3''(a) = S_3''(b)$$

$$S_3'''(x_1 - 0) = S_3'''(x_1 + 0), \qquad S_3'''(x_{N-1} - 0) = S_3'''(x_{N-1} + 0).$$

Условия типа III появляются для периодических функций f(x) с периодом b-a.

Известно, что интерполяционный кубический сплайн, удовлетворяющий одному из четырех типов краевых условий, существует и единственен.

Параметры интерполяционного сплайна $S_3(x)$ определяются с помощью M_i по явным формулам

$$a_{i} = f_{i}, d_{i} = \frac{1}{h_{i}} (M_{i} - M_{i-1}), m_{i} = \frac{h_{1}}{2} M_{i} - \frac{h_{i}^{2}}{6} d_{i} + \frac{f_{i} - f_{i-1}}{h_{i}}, (2)$$

$$h_{i} = x_{i} - x_{i-1}, i = \overline{1, N-1}.$$

В свою очередь, M_i , в случае, например, краевых условий типа II находятся из системы уравнений

$$2M_{0} = 2f_{0}^{"}, \qquad (3)$$

$$\mu_{i}M_{i-1} + 2M_{i} + \lambda_{i}M_{i+1} = \frac{6}{h_{i} + h_{i+1}} \left(\frac{f_{i+1} - f_{i}}{h_{i+1}} - \frac{f_{i} - f_{i-1}}{h_{1}} \right), \quad i = \overline{1, N - 1}, \qquad (4)$$

$$2M_{N} = 2f_{N}^{"}, \qquad (5)$$

$$\mu_{i} = \frac{h_{i}}{h_{i} + h_{i+1}}, \qquad \lambda_{i} = 1 - \mu_{i} = \frac{h_{i+1}}{h_{i} + h_{i+1}}.$$

Отметим, что система (4) одна и та же для краевых условий любого типа: она вытекает из условий интерполяции и сопряжения.

Параметры интерполяционного сплайна $S_3(x)$ можно определить по явным формулам также и с помощью m_i , которые, например, для краевых условий типа I находятся из системы уравнений

$$2m_{0} = 2f'_{0},$$

$$\lambda_{i}m_{i-1} + 2m_{i} + \mu_{i}M_{i+1} = 3\left(\mu_{i}\frac{f_{i+1} - f_{i}}{h_{i+1}} + \lambda_{i}\frac{f_{i} - f_{i-1}}{h_{1}}\right), \quad i = \overline{1, N-1},$$

$$2m_{N} = 2f'_{N}.$$
(8)

Здесь для краевых условий типов I-IV не меняется система (7).

ЛИТЕРАТУРА.

- 1. Бабенко К.И. Основы численного анализа. М.: Наука, 1986. 452 с.
- 2. Бахвалов Н.С. Численные методы. М.: Наука, 1973. 632 с.
- 3. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987. 598 с.
- 4. Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. М.: Физматгиз, 1959. 464 с.
- Березин И.С., Жидков Н.П. Методы вычислений. Т. 2. М.: Наука, 1966. 430 с.
- 6. Вержбицкий В.М. Численные методы. Линейная алгебра и нелинейные уравнения. М.: ОНИКС 21 век, 2005. 432 с.
- 7. Вержбицкий В.М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: ОНИКС 21 век, 2005. 400 с.
- 8. Волков Е.А. Численные методы. М: Наука, 1982. 248 с.
- 9. Калиткин Н.Н. Численные методы. 2-е издание. СПб.: БХВ-Петербург, 2011. 586 с.
- 10. Крылов В.И., Бобков В.В., Монастырный П.И. Начала теории вычислительных методов (в 5 томах). Интерполирование и интегрирование. Минск, Наука и техника, 1983. 287 с.
- 11. Крылов В.И., Бобков В.В., Монастырный П.И. Начала теории вычислительных методов (в 5 томах). Линейная алгебра и нелинейные уравнения. Минск, Наука и техника, 1985. 279 с.
- 12. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1989. 608 с.
- 13. Петров И.Б., Лобанов А.И. Лекции по вычислительной математике. М.: БИНОМ, 2006. 524 с.
- 14. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989. \\430 с.
- 15. Фадеев А.К., Фадеева В.Н. Вычислительные методы линейной алгебры. СПб.: Лань, 2002. 736 с.
- 16. Формалев В.Ф., Ревизников Д.Л. Численные методы. М.: ФИЗМАТЛИТ, 2006. 400 с.