Clase nº35

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

26 de Noviembre 2021

Objetivo de la clase

- Conocer y utilizar propiedades de una serie.
- ► Conocer y utilizar criterios de convergencia de series.

Teorema 23

Si la serie $\sum_{n=1}^{\infty} a_n$ es de términos no negativos, es decir, $a_n \ge 0$ para todo $n \in \mathbb{N}$ y si la sucesión de sumas parciales es:

- 1. Acotada superiormente, entonces la serie es convergente.
- 2. No es acotada superiormente, entonces la serie diverge a $+\infty$.

Ejemplo 27: Serie armónica

La serie armónica, $\sum_{n=1}^{+\infty} \frac{1}{n}$, diverge a $+\infty$.

Observación

La serie armónica nos permite ver que el recíproco de la propiedad

1 no siempre es verdad, ya que $\lim_{n \to +\infty} \frac{1}{n} = 0$, pero $\sum_{n=1}^{+\infty} \frac{1}{n}$ diverge.

Ejemplo 28: Serie geométrica

Estudie si la serie geométrica

$$\sum_{n=1}^{+\infty} r^{n-1} = 1 + r + r^2 + \dots + r^{i-1} + \dots$$

converge o diverge.

Ejemplo 29

Hallar

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}$$

Teorema 24: Criterio de la integral

Si $\sum_{n=1}^{\infty} a_n$ es una serie de términos no negativos y si $f:[1,\infty[\to \mathbb{R}]]$ es una función no negativa, decreciente e integrable, tal que $\lim_{x \to +\infty} f(x) = 0$ y $f(n) = a_n$, para todo $n \in \mathbb{N}$. Entonces,

- 1. $0 \le \lim_{n \to +\infty} \left\{ S_n \int_1^n f(x) \, dx \right\} \le a_1.$
- 2. $\sum_{n=1}^{+\infty} a_n$ converge si y sólo si $\int_{1}^{+\infty} f(x) dx$ converge.

Ejemplo 30

Determine la convergencia de

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Teorema 25: Criterio de comparación

Si $\sum_{n=1}^{+\infty} a_n$ y $\sum_{n=1}^{+\infty} b_n$ son series de términos positivos tales que para algún $K \in \mathbb{R}$ y algún $N \in \mathbb{N}$ se cumple que:

- 1. $a_n \leq Kb_n$ para todo $n \geq N$ entonces, la convergencia de la serie $\sum_{n=1}^{+\infty} b_n$ implica la convergencia de la serie $\sum_{n=1}^{+\infty} a_n$.
- 2. $a_n \ge Kb_n$ para todo $n \ge N$ entonces, la divergencia de la serie $\sum_{n=1}^{+\infty} b_n$ implica la divergencia de la serie $\sum_{n=1}^{+\infty} a_n$.

Ejemplo 31

Determine la convergencia de

$$\sum_{n=1}^{\infty} \frac{n^2 + 5}{n^5}$$

Teorema 26: Criterio de comparación al límite

Si $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ son series de términos positivos y si además se cumple que:

$$\lim_{n\to+\infty}\frac{a_n}{b_n}=K.$$

entonces:

- 1. Si $K \in \mathbb{R}^+$, $\sum_{n=1}^{+\infty} a_n$ converge si y sólo si $\sum_{n=1}^{+\infty} b_n$ converge.
- 2. Si K=0, entonces la convergencia de $\sum_{n=1}^{\infty}b_n$ implica la $+\infty$

convergencia de
$$\sum_{n=1}^{+\infty} a_n$$
.

Teorema 26: Criterio de comparación al límite

Si $\sum_{n=1}^{+\infty} a_n$ y $\sum_{n=1}^{+\infty} b_n$ son series de términos positivos y si además se cumple que:

$$\lim_{n\to+\infty}\frac{a_n}{b_n}=K.$$

entonces:

3. Si $K=+\infty$, entonces la divergencia de $\sum_{n=1}^{\infty}b_n$ implica la divergencia de $\sum_{n=1}^{+\infty}a_n$.

Ejemplo 32

Determinar si la siguiente serie converge

$$\sum_{n=1}^{+\infty} \frac{n^2 e^{-2n}}{n^2 + 1}.$$

Teorema 27: Criterio de D'Alembert o de la razón o del cuociente

Si

$$\rho = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n},$$

entonces la serie de términos positivos,

$$\sum_{n=1}^{+\infty} a_n$$
 es $\left\{ egin{array}{ll} \mbox{convergente si} &
ho < 1, \ \mbox{divergente si} &
ho > 1, \ \mbox{no se puede concluir nada si} &
ho = 1. \end{array}
ight.$

Ejemplo 33

Determinar si la siguiente serie converge

$$\sum_{n=1}^{+\infty} \frac{(n+1)(n+2)}{n!}.$$

Teorema 28: Criterio de la raíz o de Cauchy

Si

$$\rho = \lim_{n \to +\infty} (a_n)^{\frac{1}{n}},$$

entonces la serie de términos positivos,

$$\sum_{n=1}^{+\infty} a_n \text{ es } \begin{cases} & \textit{convergente si} & \rho < 1, \\ & \textit{divergente si} & \rho > 1, \\ & \textit{no se puede concluir nada si} & \rho = 1. \end{cases}$$

Ejemplo 34

Determine si la siguiente serie es convergente o divergente

$$\sum_{n=1}^{+\infty} 2^n$$

Ejemplo 35

Determine si la siguiente serie es convergente o divergente

$$\sum_{n=1}^{+\infty} 2^{-n}$$

Series de términos alternados

Definición 29

Si a_n es positivo para cada n, la serie $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ se llama serie alternada.

Observación

Como el comportamiento de una serie no cambia si se modifica un número finito de términos, podemos tener series alternadas de la forma

$$\sum (-1)^n a_n \quad o \quad \sum (-1)^{n-1} a_n,$$

siendo $a_n > 0$. También, se puede considerar series alternadas donde el índice toma un valor inicial $n = n_0$.

Series de términos alternados

Teorema 30: Criterio de Leibniz

Si la sucesión $\{a_n\}$ es una sucesión decreciente que converge a cero, entonces la serie alternada $\sum_{n=1}^{+\infty} (-1)^{n+1} a_n$ converge. Además, si S denota la suma y S_n es su enésima suma parcial, se tiene la desigualdad $0<(-1)^n(S-S_n)< a_{n+1}$.

Ejemplo 36

Determine si la siguiente serie es convergente o divergente

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

Ejercicio propuesto

Utilizando los criterios vistos, determine si la siguiente serie es convergente o divergente:

a)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$
.

b)
$$\sum_{n=1}^{+\infty} \frac{n^2}{n^4 + 1}$$
.

c)
$$\sum_{n=0}^{+\infty} ne^{-n^2}.$$

d)
$$\sum_{n=1}^{+\infty} 2^{-n-(-1)^n}$$
.

e)
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n}}{n+1}.$$

f)
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{\ln n}.$$

Ejercicio propuesto

¿Se puede determinar la convergencia o divergencia de

$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1}$$

utilizando el Criterio de D'Alembert?

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
		trascendentes tempranas	Learning	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	Juan de	de una variable	Hill	
3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
		con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.