All the Stuff You Need To Know

Dr. Chelsea Parlett-Pelleriti

Mean, Median, Mode

Standard Deviation, Standard Error

Logarithms

Log rules:

Derivatives

Second Derivatives

Partial Derivative

Integrals

Elbow Method

Linear Combinations

Example:

Linear Combinations

Generally:

$$\sum_{i=0}^{n} w_i * x_i$$

Matrices and Vectors

- Data as a Matrix/Vector (it's just an excel spreadsheet)
- Matrix Algebra

 $\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$

1. What are the directions of stretch and squish?

2. How much do we stretch and squish?

$$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \quad Ax = \lambda x$$

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 1 & 0.5 \\ 0.5 & 1 \end{vmatrix} Ax = \lambda x$$

$$|A - \lambda I| = 0$$

$|A - \lambda I| = 0$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$(1 - \lambda)(1 - \lambda) - (0.5)(0.5)$$

$$-\lambda I = 0$$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$(1 - \lambda)(1 - \lambda) - (0.5)(0.5)$$

$$\lambda^2 - 2\lambda + 0.75$$

$$\lambda = 1.5, 0.5$$

$$(\lambda-1.5)(\lambda-0.5)$$

$$\lambda = 1.5, 0.5$$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$\lambda = 1.5, 0.5$$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix} \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}$$

Variance and Covariance

Which has higher variance?

$$\frac{\Sigma(x_i - \mu)^2}{N}$$

Variance and Covariance

Which has higher covariance?

$$\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{N}$$

Normal Distribution

- Symmetric, Unimodal
- "Bell Curve"
- 68-95-99.7 rule
- CLT

Data Types

- Continuous
- Categorical
 - Nominal
 - Dummy
 - Ordinal
 - Interval
- Boolean
- Text

Entropy

$$H(p) = -\sum_{i=1}^{N} p(x_i) * log(p(x_i))$$
 Measure of surprise

Entropy

$$H(p) = -\sum_{i=1}^{N} p(x_i) * log(p(x_i))$$
 Measure of surprise

Probability

Conditional Probability

Bayes Rule

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Covid	+ Test	Count
Yes	Yes	40
Yes	No	10
No	Yes	5
No	No	145

Likelihood

Maximum Likelihood Estimation

Odds

$$\frac{p}{1-p}$$

Prediction vs. Inference

Prediction

Prediction vs. Inference

Inference

