

Disciplina: Limnologia Física (60h)

Aulas: 2ª-feira (13:30-15:30) e 4ª-feira (13:30-15:30) – PM02 **Professores:** Rafael de Carvalho Bueno e Tobias Bleninger

Monitor: Diego Casas

Objetivos Didáticos:

A disciplina EAMB7040 tem por objetivo aprofundar o domínio da limnologia física, principalmente explorando os principais mecanismos físicos que regem a hidrodinâmica de lagos e reservatórios. A disciplina aplicará conceitos fundamentais da mecânica dos fluidos (e.g., equações governantes, equação de estado, número adimensionais), assim como diversas técnicas envolvendo cálculo básico (e.g. integração, derivação, soluções de equações diferenciais, séries de Fourier e transformadas de Fourier), na área da limnologia física. Ao fim do curso é esperado que o aluno seja capaz de compreender os processos físicos que são responsáveis pela hidrodinâmica de lagos e reservatórios, compreendendo, assim, como os processos químicos (e.g., compostos químicos e substâncias dissolvidas na água podem ser dispersadas nestes ecossistemas), físicos (e.g., influencia na dinâmica do sedimento, turbidez e na dispersão de poluentes) e biológicos (e.g., dinâmica de algas, peixes e outros seres vivos) podem ser influenciados em lagos e reservatórios.

Unidades Didáticas:

Unidade	Conteúdo		
01	Revisão dos fundamentos da Matemática		
02	Mecânica dos Fluidos aplicada à escoamentos estratificados		
03	Difusão e Advecção		
04	Estratificação de Lagos e Equação de Estado		
05	Estabilidade, Mistura e Turbulência		
06	Ondas Superficiais e Interfaciais		
07	Seichas Internas		
08	Dinâmica de Lagos		
09	Degeneração de Seichas Internas		

Programa:

No.	Dia	Data	Conteúdo
1	seg.	4-mar	Introdução e motivação
2	qua.	6-mar	Fundamentos da matemática
3	seg.	11-mar	Exercício aberto e revisão
4	qua.	13-mar	Fundamentos da matemática (Lab 01)
5	seg.	18-mar	Mecânica dos Fluidos
6	qua.	20-mar	Mecânica fluidos (Lab 02)
7	seg.	25-mar	Difusão e advecção
8	qua.	27-mar	Difusão-advecção (Lab 03)
9	seg.	1-abr	Estratificação em lagos
10	qua.	3-abr	Estratificação em lagos (Lab 04)
11	seg.	8-abr	Estabilidade, mistura e turbulência
12	qua.	10-abr	Estabilidade, mistura e turbulência
13	seg.	15-abr	Estabilidade, mistura e turbulência (Lab 05)
14	qua.	17-abr	Exercício aberto e revisão
15	seg.	22-abr	Prova P1
16	qua.	24-abr	Ondas interfaciais
17	seg.	29-abr	Ondas interfaciais (Lab 06)
18	qua.	1-mai	Sem aula (feriado)

19	seg.	6-mai	Sem aula (Congresso)
20	qua.	8-mai	Sem aula (Congresso)
21	seg.	13-mai	Seichas interfaciais – Parte 1
22	qua.	15-mai	Seichas interfaciais – Parte 2
23	seg.	20-mai	Seichas internas (Lab 07)
24	qua.	22-mai	Exercício aberto e revisão
25	seg.	27-mai	Exercício aberto e revisão
26	qua.	29-mai	Prova P2 + Entrega preliminar do artigo
27	seg.	3-jun	Dinâmica de lagos
28	qua.	5-jun	Dinâmica de lagos (Lab 08)
29	seg.	10-jun	Degeneração de seichas internas
30	qua.	12-jun	Visita – Reservatório do Passaúna (Lab 09)
31	seg.	17-jun	Palestra (Dr. Rafael de Carvalho Bueno)
32	qua.	19-jun	Palestra (Dr. Andreas Lorke)
33	seg.	24-jun	Revisão + Exercícios substitutos ao laboratório
34	qua.	26-jun	Prova 3 + entrega final do artigo
35	seg.	1-jul	Sem aula
36	qua.	3-jul	Exame Final

Forma de avaliação:

$$M = \frac{1}{4} \left(\max(P_1, P_2) + P_3 + T + \frac{1}{N} \sum L_i \right)$$

onde P_1 é a prova 1, P_2 é a prova 2, P_3 é a prova 3, T é um trabalho simulando um artigo científico, L_i são exercícios/perguntas referentes ao laboratório i (i=1,2,3,...10). Todos os objetos de avaliação serão avaliados na escala de 0 a 100.