Number Theory

Sheet 1 — MTH3251

Basic Concepts in Number Theory

- 1. Let $a, b, c \in \mathbb{Z}$, prove the following properties
 - i If $c \mid a$ and $c \mid b$, then $c \mid a \pm b$
 - ii If $a \mid b$, then $a \mid bc$
 - iii If $a \mid b$ and $b \mid c$, then $a \mid c$
 - iv If $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ for $m, n \in \mathbb{Z}$
- \not Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, prove the following congruence identities:
 - i If $a \equiv b \pmod{m}$, then $(a+c) \equiv (b+c) \pmod{m}$
 - ii If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $(a+c) \equiv (b+d) \pmod{m}$
 - iii If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- 3. Use induction to prove that $5 \mid n^5 n$ for any positive integer n
- 4. Use induction to prove that $n! > n^2$ for every integer $n \ge 4$, whereas $n! > n^3$ for every integer $n \ge 6$.
- 5. Prove the Bernoulli inequality: If 1 + a > 0, then $(1 + a)^n \ge 1 + na$
- 6. The numbers 1051, 1529, and 2246 have the same remainder r when divided by some integer d. Find d and r.
- 7. Use the Division Algorithm to prove the following:
 - i The square of any integer is either of the form 3k or 3k+1
 - ii The cube of any integer has one of the forms: 9k, 9k + 1, or 9k + 8
 - iii The fourth power of any integer is either of the form 5k or 5k+1
- 8. For $n \ge 1$, prove that n(n+1)(2n+1)/6 is an integer. [Hint: By the Division Algorithm, n has one of the forms 6k, 6k + 1, ..., 6k + 5; prove the result in each of these six cases.]
- 9. For $n \ge 1$, prove that the integer $n(7n^2 + 5)$ is of the form 6k.
- 10. If n is an odd integer, show that $n^4 + 4n^2 + 11$ is of the form 16k.