

TPL 2 - Aplicaciones 1: Cliente/Servidor - Telnet

Fecha de Entrega: 03/04/2024

URL de Entrega: https://tinyurl.com/TyR-2024-TP2

 $\textbf{Objetivo:} \ \ \text{Familiarizar el trabajo con aplicaciones cliente/servidor y, como primer ejemplo de}$

aplicación de la pila TCP/IP, conocer el propósito y funcionamiento del protocolo telnet.

Para el estudio previo de los temas se sugiere la siguiente lectura:

Modelo cliente/servidor: Capítulo 17 (hasta pagina 546) [FOR09]

Multiplexación en capas de transporte de la pila TCP/IP: "TCP/IP Processes, Multiplexing and Client/Server Application Roles", y temas siguientes hasta "Common TCP/IP Applications and Assigned Well-Known and Registered Port Numbers"

Establecimiento de conexiones TCP, Negociación de 3 Vías (three way handshake): https://www.youtube.com/watch?v=ixBAG8apsFM (minuto 2:0 en adelante)

Protocolo Telnet: Capítulo 20.1 [FOR09]

Primer parte: Creación de un modelo simple Cliente/Servidor

Utilice para esta parte de la práctica el laboratorio de práctica *kathara-lab_conf_inicial* y configure las interfaces de *pc1* y *pc2* tal como lo hizo en el primer trabajo práctico de laboratorio. Verifique conectividad entre ambos hosts.

Defina un número de puerto para el proceso servidor (superior a 1024).

En el host anfitrión verifique el nombre de la interfaz virtual creada por kathara (kt-xxxx).

Realice una captura de todo el proceso utilizando en el host anfitrión la herramienta tcpdump o tshark sobre la interfaz correspondiente, y guardándola en un archivo en formato pcap para su posterior análisis.

En el host pc1 deberá ejecutar la utilidad nc actuando como servidor, indicando como parámetro el número de puerto elegido. Una vez iniciado, este servicio quedará en modo de escucha o listening. En el otro host (pc2) ejecute la utilidad nc como cliente indicando como parámetros la IP del servidor y número de puerto.

Si generó correctamente los procesos servidor y cliente, debería poder ver una especie de "chat". Intercambie varios mensajes con el otro dispositivo y finalice la conexión (en cualquiera de los host presione CTRL+C). Luego detenga la captura (CTRL+C).

Analice la captura almacenada en el archivo utilizando tshark y diversos parámetros de visualización (consulte la guía de comandos provista por la materia).

- a) "Extraiga" de la captura solamente los datos intercambiados a nivel aplicación y remítalos.
- b) Realice un diagrama representando el intercambio de tramas indicando las que corresponden al establecimiento de la conexión TCP, a las de transmisión de datos a nivel aplicación, y a las del cierre de la conexión TCP.
- c) ¿Todas las tramas en las que identifica el protocolo TCP transportan datos de aplicación?. ¿Si no es así puede explicar el porqué?

Segunda parte: Protocolo de acceso remoto TELNET

Instale e inicie en **Kathará** el laboratorio de Telnet provisto por los docentes, disponible en https://github.com/redesunlu/kathara-labs/blob/main/tarballs/kathara-lab telnet.tar.gz

El laboratorio cuenta con dos hosts. El primer host actuará como cliente telnet (*client*), mientras que el segundo host actuará como servidor remoto de telnet (*remote*).

Asigne una dirección IP al host *cliente* dentro de la red 172.16.0.0/24. (puede elegir cualquiera del rango 172.16.0.1-254 exepto 172.16.0.10)

En el host anfitrión verifique el nombre de la interfaz virtual creada por kathara (kt-xxxx) e inicie una captura de tráfico sobre la misma.

En la terminal del host *cliente*, conéctese mediante telnet al host *remoto*, cuya dirección IP es 172.16.0.10. Utilice el nombre de usuario alumno y la clave ultrasecreta.

Con la sesión iniciada en remoto, ejecute el siguiente comando respetando la sintaxis.

```
who && who | openssl dgst
```

Copie la salida de dicho comando como resolución de este ejercicio (como texto). Añada además todos los comandos que ejecutó para lograr dicho resultado.

Salga del host remoto escribiendo el comando exit

Detenga y guarde la captura de tráfico. Remítala como parte de la tarea.

Analice la captura:

- a) Identifique e indique las tramas que corresponden a la transmisión de datos a nivel aplicación, cuáles a protocolos auxiliares (si existen) y al establecimiento y cierre de la conexión TCP. (referenciando por número de trama en la captura)
- b) Comente las características de la información en tránsito con respecto a la confidencialidad.

Bibliografía

[FOR09] Capítulo 17: "Introduction to the Application Layer" (hasta pagina 546)

[FOR09] Capítulo 20: "Remote Login: TELNET and SSH"

Recursos en internet

 Para cada uno de los protocolos (TELNET, HTTP, DNS, FTP, etc.) a desarrollar a lo largo de la cursada, busque cuales son los Request For Comments (RFC) o Internet Draft que los describen, siguiendo la cadena de actualizaciones. Recurra a http://www.faqs.org, http://www.rfc-editor.org, y http://www.ietf.org

Referencia

[FOR09] FOROUZAN, B.A. TCP IP Protocol Suite. McGraw-Hill Higher Education, 2009.

Preguntas (guía de lectura)

En la capa de aplicación ¿a qué se denomina cliente y a qué servidor?.

En el stack TCP/IP, ¿cómo es posible que un protocolo de transporte brinde servicio a n procesos ejecutándose en un mismo host?.

¿Cuáles son las características y usos del protocolo telnet?.

¿Qué problemática resuelve NVT?.