

IN THE SPECIFICATION:

1	Please amend the specification at page 6, line 1 as follows:
2	" BRIEF DESCRIPTION OF THE DRAWINGS
3	The objects and features of the present invention, which are believed to be
4	novel, are set forth with particularity in the appended claims. The present invention, both as
5 .	to its organization and manner of operation, together with further objects and advantages.
6	may best be understood by reference to the following description, taken in connection with
7	the accompanying drawings, of which:
8	Figure 1 is a drawing of a conventional triangulation-based EL System;
9	Figure 2 is an example of what a present day mapping display looks like when
10	using the setup of the system of Figure 1;
11	Figure 3 is a drawing of a preferred embodiment of the present invention and how
12	it is used; and
13	Figure 4 is an example of how the probability field mapping display of the present
14	invention can be presented to an EL System operator; and
15	Figure 5 depicts the method for using the mobile DF set and probability fields to
16	determine progressive estimated positions (EPs)."
17	
18	
1	Please amend the specification at page 11, line 4:
2	" This invention employs a specialized recursive method in the computer to
3	process the LOB data that is continually being stored. This specialized method is the

- 4 topic of another patent application entitled: "Technique and Algorithm for Reducing
- 5 Measurement Uncertainties in Emitter Location Systems," Provisional Application Ser.
- 6 No. 60/449,442, now "Real-time Emitter Locating System and Method," U.S. Patent
- 7 Application number 10/785.353, incorporated herein by reference. The whole process
- 8 begins after a "cross-over" point is first found. A cross-over point is the intersection
- 9 between the last best LOB data entryies from a pair of DF sets and the newly arrived
- 10 LOB. This cross-over point, when fixed on a map, is the original triangulated position
- 11 (hereafter referred to as the "cross-over position point") of the transmitter. In order to
- 12 ascertain the changing position of a moving transmitter, the approach depicted in Figure 5
- 13 is employed. Once the cross-over position point is found, successive estimated position
- 14 points (of the transmitter) are determined by moving the mobile DF set in direction 26.
- 15 generating a connecting vector between the real-time LOB from the mobile DF set to the
- 16 transmitter, and thereby assigning the EP as being along the connecting vector. These
- 17 position points (EPs) are then continually fed into a separate system/process that draws
- the "probability fields"."