F - Sum of Digits (easy version)

Description

The only difference between easy and hard versions is constraints of $\it k$.

We define s(x) as the sum of digits of x in decimalism.

Given four integers d, k, L, R, your task is to calculate the number of k-dimension vector a , which satisfies

$$L \leq a_i \leq R, \sum_{i=1}^k s(a_i) \equiv s(\sum_{i=1}^k a_i) \pmod{d}.$$

Input

The input contains four integers each in one line d,k,L,R $(1 \le L \le R \le 10^{18},k=2,1 \le d \le 9)$ in four lines.

Output

Output one integers in one line --- the number of k-dimension vector a module $10^9 + 7$.

Sample Input

6

2

10

12

Sample Output

9