MAT 5030 Chapter 5: One and two-sample tests

Kazuhiko Shinki

Wayne State University

Introduction

Recall that *hypothesis testing* is a decision making rule between a null hypothesis H_0 and an alternative hypothesis H_1 .

Usually the two hypotheses are NOT symmetric. H_0 is rejected only when there is a strong evidence that H_0 is unlikely. H_0 is accepted otherwise.

Example:

We found that 51 out of 100 newborn babies are male and want to test

- "H₀: 50% of babies are male in U.S." against
- "H₁: Not 50% of babies are male in U.S.".

Due to the small sample size, we probably do not reject H_0 (so do accept H_0) but still neither support H_0 nor H_1 .

Example: Math PhD Salary

The following figures are starting salary for 7 math PhDs: \$45,000, \$80,000, \$50,000, \$95,000, \$65,000, \$110,000, \$48,000.

Suppose sallaries follow a normal distribution. Test if the average starting salary μ for math PhDs is significantly different from \$79,500. (For example, \$79,500 is the average salary for all PhDs in US).

• $H_0: \mu = 79,500 \text{ vs } H_1: \mu \neq 79,500.$

Idea: Reject H_0 if $(\bar{x} - 79,500)$ is far from zero. The question is what is "far from".

Theorem:

Let x_1, \dots, x_n are observations from independent and identically distributed (*IID*) normal distribution $N(\mu_0, \sigma^2)$. Then,

$$T := \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \sim t(n - 1) \tag{1}$$

Note:

- "~" means the right hand side follows the distribution on the left hand side. t(k) is t-distribution with degrees of freedom k.
- T is called t-statistic.

Reject H_0 , if the realization of |T| is extremely large for t(n-1). Typically reject H_0 when T falls in the most extreme 5% of the range (called *rejection region* with a 5% significance level).

Unlikely values under the null

Note: code for the previous figures

```
# 1st figure (slides no.9)
X < -0.05*(-100:100)
plot(X, dt(X, df=6), type="l", xlim=c(-5,5))
lines(c(-0.9465, -0.9465), c(0,dt(-0.9465,df=6)))
# 2nd figure (slides no.5)
plot(X, dt(X, df=6), type="l", xlim=c(-5,5),
  main="Unlikely values under the null")
Q \leftarrow qt(0.975,df=6) \# Q = 2.4469
SQ \leftarrow seq(Q, 5, length = 50)
for (i in 1:50){
lines(c(SQ[i],SQ[i]), c(0,dt(SQ[i],df=6)))
lines(c(-SQ[i], -SQ[i]), c(0,dt(-SQ[i],df=6)))
}
```

Go back to our example:

If $H_0: \mu = 79,500$ is true, the sample mean salary follows t(7-1) = t(6). The actually sample mean is

$$T = \frac{70428.57 - 79500}{25356.51/\sqrt{7}} = -0.94652.$$

Want to see if this number is an usual realization of t(6).

Rejection region:

If we set the upper and lower 2.5% each of the total area as the rejection region, we reject H_0 if T > 2.447 or T < -2.447 (namely |T| > 2.447) since

```
> qt(0.975,df=6)
[1] 2.446912
> qt(0.025,df=6)
[1] -2.446912
```

Since |T| = |-0.94652| < 2.447, H_0 is not rejected. Math PhDs' starting salary is NOT significantly different from all PhDs'.

Notation for t random variables:

Let T be a *t*-random variable with DF = n. Define $t_{\alpha}(n)$ ($0 < \alpha < 1$) be the constant such that

$$P(T \leq t_{\alpha}(n)) = \alpha.$$

Note:

- $-t_{\alpha}(n) = t_{1-\alpha}(n)$ because t-distribution is symmetric around 0.
- $t_{\alpha}(n)$ depends on the degrees of freedom n, but we often omit n.
- Notation \mathbf{z}_{α} is used for a standard normal distribution.

Shinki (Wayne State U)

Examples:

```
# t distribution with DF=6
> qt(0.975, df=6) # t_{0.975}(6)
[1] 2.446912
> qt(0.025, df=6) # t_{0.025}(6)
[1] -2.446912
# stnadard normal distribution
> qnorm(0.975) # z_{0.975}
[1] 1.959964
> qnorm(0.025) # z_{0.025}
[1] -1.959964
```

Summary: Testing Procedure (Two-sided)

Suppose $H_0: \mu = \mu_0$ (μ_0 is a constant) and $H_1: \mu \neq \mu_0$, and set a **significant level** α (e.g., 0.01, 0.05). Then,

• Reject H_0 if and only if $|T| > t_{1-\alpha/2}(n-1)$.

Note:

- $P(t_{\alpha/2} < T < t_{1-\alpha/2}) = 1 \alpha$.
- The idea is to reject H_0 if T falls in the top 100α % extreme range.

Summary: Testing Procedure (One-sided)

Suppose $H_0: \mu = \mu_0$ and $H_1: \mu < \mu_0$, and the significant level is α . Then,

• Reject H_0 if and only if $T < t_{\alpha}(n-1)$.

Note:

- For example, if df = 6 and $\alpha = 0.05$, reject if $T < t_{0.05}(6) = -1.943$.
- The idea is to reject H_0 if T (and hence \bar{x}) falls in the smallest 5% of the range because a small T (and \bar{x}) supports H_1 against H_0 .
- The definition of H_0 and H_1 presumes that μ is never larger than μ_0 .

The opposite case:

Suppose $H_0: \mu = \mu_0$ and $H_1: \mu > \mu_0$. Then,

• Reject H_0 if and only if $T > t_{1-\alpha}(n-1)$.

4 D > 4 D > 4 E > 4 E > E 990

> t.test(Income, mu = 79500)

Sample Code 1: By "t.test" function

```
One Sample t-test

data: Income

t = -0.9465, df = 6, p-value = 0.3804

alternative hypothesis: true mean is not equal to 79500

95 percent confidence interval:

46977.71 93879.43

sample estimates:

mean of x

70428.57
```

p-value:

- The *p-value* is
 - ▶ P(|T| > |t|) under H_0 if $H_1 : \mu \neq \mu_0$,
 - ▶ P(T > t) under H_0 if $H_1 : \mu > \mu_0$, and
 - ▶ P(T < t) under H_0 if $H_1 : \mu < \mu_0$.
- The p-value ranges in [0, 1].
- The p-value represents the probability that a more extreme event than T happens under H_0 .
- In general, H_0 is rejected if and only if p-value $< \alpha$.

Shinki (Wayne State U)

Example: Math PhD salary

When $H_1: \mu \neq 79500$,

p-value =
$$P(|T| > |-.94652|) = 2P(T > .94652)$$

= $2(1 - P(T < 0.9452)) = 0.3804205$

Sample code:

```
> N <- length(Income)
> DF <- N-1
> T <- (mean(Income) - 79500) / (sd(Income) / sqrt(N)) # t-statistics
> Thre <- qt(0.975, df=DF) # threshold for rejecting H_0
> P.val <- 2*(1- pt(abs(T),df=DF))
> c(N,DF,T,Thre,P.val,mean(Income))
[1]  7.0000000 6.0000000 -0.9465320 2.4469119 0.3804205
[6] 70428.5714286
```

Example: Hypertension

The average systolic blood pressure of hypertension patients in a hospital is 162.6 mmHg. 10 patients in the hospital took a prescription, and their blood pressure after 4 weeks are:

172, 150, 154, 147, 168, 141, 156, 164, 146, 159.

Test if the blood pressure decreased significantly after taking the prescription.

(Solutions:)

Let μ be the population average blood pressure after prescription. Want to test $H_0: \mu = 162.6$ against $H_1: \mu < 162.6$.

17 / 53

Sample code:

```
> X <- c(172, 150, 154, 147, 168, 141, 156, 164, 146, 159)
> t.test(X, mu=162.6, alternative="less")
One Sample t-test
data: X
t = -2.1604, df = 9, p-value = 0.02952
alternative hypothesis: true mean is less than 162.6
95 percent confidence interval:
     -Tnf 161.5548
sample estimates:
mean of x
    155.7
```

 H_0 is rejected with a significance level 0.05 since p-value is less than 0.05.

Confidence Interval:

We often want to construct a 95% (or in general $100 \times (1 - \alpha)$ %) confidence interval [a, b] for μ to say " μ is within [a, b] with 95% probability".

The result of the sample code 1 (p.14) reads that the 95% confidence interval for μ is **[46977.71, 93879.43]**, meaning μ is within this range with 95% probability.

$$P(46977 \le \mu \le 93879) = 0.95$$
?

No. μ is a parameter, which is a constant, and 46977 and 93879 are also constants. There are no randomness for the condition

'46977 $\leq \mu \leq$ 93879'. $P(46977 \leq \mu \leq 93879)$ should be either 0 or 1.

$$P(A \le \mu \le B) = 0.95$$
:

However, 46977 and 93879 are realization of random variables. The formal definition of a confidence interval is as follows.

Definition: Confidence Interval

Suppose **A** and **B** are functions of X_1, \dots, X_n , so **A** and **B** are random variables. When

$$P(A \le \mu \le B) = 1 - \alpha,$$

we say [A, B] is a $100 \times (1 - \alpha)\%$ confidence interval for μ .

Shinki (Wayne State U)

Note:

Different intervals $[A_1, B_1]$ and $[A_2, B_2]$ may satisfy

$$P(A_1 \le \mu \le B_1) = P(A_2 \le \mu \le B_2) = 1 - \alpha,$$

so often the shortest interval which satisfies the definition is called a confidence interval.

Example:

If
$$X \sim N(\mu, 1)$$
 (and hence $Z = X - \mu \sim N(0, 1)$), then

$$P(X - 1.96 \le \mu \le X + 1.96) = P(-1.96 \le Z \le 1.96) = 0.95.$$

$$P(X - 2.33 \le \mu \le X + 1.75) = P(-1.75 \le Z \le 2.33) = 0.95.$$

Theorem:

Suppose $X_1, \dots, X_n \sim N(\mu, \sigma^2)$. Then, the $100 \times (1 - \alpha)\%$ confidence interval of μ is

$$\left[\bar{X}-t_{1-\alpha/2}\cdot\frac{S}{\sqrt{n}},\ \bar{X}+t_{1-\alpha/2}\cdot\frac{S}{\sqrt{n}}\right]$$

where the degrees of freedom for $t_{1-\alpha/2}$ is n-1.

Note:

The normal assumption is usually hard to verify for a small sample, but the violation of the assumption does not impact the conclusion much if there are no extreme observations.

4□ → 4個 → 4 분 → 4 분 → 9 9 0 0

Proof of the Theorem:

$$X_{1}, \dots, X_{n} \sim N(\mu, \sigma^{2})$$

$$\Rightarrow \bar{X} \sim N(\mu, \sigma^{2}/n)$$

$$\Rightarrow \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$\Rightarrow P\left(-t_{1-\alpha/2} \leq \frac{\bar{X} - \mu}{S/\sqrt{n}} \leq t_{1-\alpha/2}\right) = 1 - \alpha.$$

$$\Rightarrow P\left(\bar{X} - t_{1-\alpha/2} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{1-\alpha/2} \frac{S}{\sqrt{n}}\right) = 1 - \alpha. \quad \blacksquare$$

We need some algebra to show (2).

4□ > 4問 > 4 = > 4 = > = 90

Example: Math PhD salary

```
> CI.lower <- mean(Income) - qt(0.975,df=6) * sd(Income)/sqrt(7)
> CI.upper <- mean(Income) + qt(0.975,df=6) * sd(Income)/sqrt(7)
> c(CI.lower,CI.upper)
[1] 46977.71 93879.43
```

When normality assumption of *t*-test is severely violated, *Wilcoxon signed-rank test* can be used.

This test only assumes symmetry of the distribution of observations (so we say this test is *robust* against violation of normality).

However, this test has a *lower power* than one-sample t-test. That is, it is harder to reject H_0 even when the data are the same.

Theorem:

Suppose X_1, \dots, X_n are IID and symmetric continuous random variables. We want to test $H_0: \mu = \mu_0$ with a significant level α .

The **signed rank** (R_i) of X_i is the rank of $|X_i - \mu_0|$ in increasing order multiplied by 1 (if $X_i - \mu_0 \ge 0$) or -1 (if $X_i - \mu_0 < 0$).

$$W_{+} := \sum_{R_{i}>0} |R_{i}|$$

$$W_{-} := \sum_{R_{i}<0} |R_{i}|$$

$$V := \min(W_{+}, W_{-})$$

The distribution of V does not depend on the distribution of X_i 's. Note that $W_+ + W_- = \frac{n(n+1)}{2}$ is constant, so a smaller V means a larger difference between W_+ and W_- and hence a larger difference between the 2 groups.

Rejection region:

Let α be the significance level (e.g., $\alpha=0.05$). One can find the largest integer $\mathbf{v}>\mathbf{0}$ such that:

$$P(V \le v) \le \alpha$$
 under the null hypothesis $\mu = \mu_0$.

Reject H_0 if and only if $V \leq v$.

Example: Math PhD Salary

Data: 45000, 80000, 50000, 95000, 65000, 110000, 48000.

 $H_0: \mu = 79500.$

i	X_i	$X_i - 79500$	signed rank
1	45000	-34500	-7
2	80000	500	1
3	50000	-29500	-4
4	95000	15500	3
5	65000	-14500	-2
6	110000	30500	5
7	48000	-31500	-6

$$W_{+}=9, W_{-}=19, V=9.$$

Given n, a small V rejects H_0 .

Sample Code: "wilcox.test"

```
> wilcox.test(Income, mu=79500)

Wilcoxon signed rank test
```

```
data: Income
V = 9, p-value = 0.4688
alternative hypothesis:
```

alternative hypothesis: true location is not equal to 79500

Note:

The output indicates $P(V \le 9) = 0.4688$, so H_0 is not rejected. The p-value is larger than the p-value of the t-test (recall that smaller p-values can reject H_0).

Exercise 1:

Do a simulation to calculate $P(S \le 9)$ when the sample size is 7. I.e., repeat, say 10,000 times, a procedure to generate 7 random numbers from a symmetric distribution with mean zero and calculate V.

Exercise 2:

Use a different symmetric distribution with mean zero to do the same simulation as Exercise 1. The results are similar or much different?

Note:

Wilcoxon signed rank test assumes there are no ties ('ties' mean observations with the same absolute deviation or observation(s) which exactly equal to the population mean).

If the data have ties, we should use an adjusted version of the test: 'wilcox.exact' in the 'exactRankTests' package.

Review:

Most *hypothesis testing* has the following procedure:

- O Calculate a test statistic .
- Determine the distribution of the test statistic under H₀, either mathematically or by simulation.
- **3 Reject H₀** if the test statistic is in an **extreme range** in favor of **H₁** (i.e., 5% most extreme range if $\alpha = 0.05$).

5.3 Two-sample test

Suppose we want to test the hypothesis $\mu_X - \mu_Y = d$ (d is a constant, usually zero) with the following two-sample data.

	Group 1	Group 2
Sample	x_1,\cdots,x_n	y_1, \cdots, y_m
Sample mean	\bar{x}	$ar{y}$
Sample S.D.	S _X	Sy
Population dist'n	$N(\mu_X, \sigma_X^2)$	$N(\mu_Y, \sigma_Y^2)$

5.3 Two-sample test

Case 1: $\sigma_X = \sigma_Y$

If we have a strong belief that $\sigma = \sigma_X = \sigma_Y$, a good estimate for σ^2 is:

$$s^{2} = \frac{(n-1)s_{x}^{2} + (m-1)s_{y}^{2}}{n+m-2}$$

$$= \frac{1}{n+m-2} \left\{ \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + \sum_{j=1}^{m} (y_{j} - \bar{y})^{2} \right\}$$

Shinki (Wayne State U)

5.3 Two-sample test

Then we may use the following fact.

Theorem:

If all X_i 's and Y_j 's are independent and $\sigma_X = \sigma_Y$,

$$T:=\frac{\bar{x}-\bar{y}}{s\sqrt{\frac{1}{n}+\frac{1}{m}}}\sim t(n+m-2)$$

where t(n + m - 2) means t-distribution with degrees of freedom n + m - 2.

Note: $H_0: \mu_X = \mu_Y$ is rejected against $H_1: \mu_X \neq \mu_Y$ if $|T| > t_{1-\alpha/2}$.

Shinki (Wayne State U) Math 5030 Chapter 5 36 / 53

Example:

The following data are the average math test scores for 5-th graders in 7 Detroit and 5 Dearborn schools. Test if the two groups have significant difference with a significance level at 5%.

Detroit: 519.7; 494.7; 501.5; 499.1; 493.1; 505.0; 529.1.

Dearborn: 530.1; 507.6; 525.0; 518.1; 520:4.

Sample Code:

```
> DT < -c(519.7, 494.7, 501.5, 499.1, 493.1, 505.0, 529.1)
> DB < -c(530.1, 507.6, 525.0, 518.1, 520.4)
> t.test(DT, DB,var.equal=T)
        Two Sample t-test
data: DT and DB
t = -2.0747, df = 10, p-value = 0.06477
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -29.473808 1.050951
sample estimates:
mean of x mean of v
 506.0286 520.2400
```

The difference is not significantly different at 5% significance level since p-value > **0.05**.

Exercise 3:

Calculate a T-statistic of a two-sample test for the above example, by only using mean and sd functions as well as basic mathematical functions (square root, +, -, *, /).

Then, calculate the p - value by using the pt function.

Case 2: $\sigma_X \neq \sigma_Y$

If $\sigma_X \neq \sigma_Y$, there is not beautiful mathematical theory for testing $\mu_X = \mu_Y$, but the following approximate result can be used.

Theorem:

$$T := \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}} \sim t(k)$$

where

$$k = \frac{\left(\frac{S_{\chi}^{2}}{n} + \frac{S_{\gamma}^{2}}{m}\right)^{2}}{\frac{S_{\chi}^{4}}{n^{2}(n-1)} + \frac{S_{\gamma}^{4}}{m^{2}(m-1)}}.$$

The t-test based on the above result is called "Welch's t-test".

Note: The t-distribution with non-integer degrees of freedom k is defined by its density function:

$$f_k(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}$$

Shinki (Wayne State U)

> t.test(DT, DB) # Welch's t-test

Example:

```
Welch Two Sample t-test

data: DT and DB

t = -2.2462, df = 9.917, p-value = 0.0487

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-28.32447136 -0.09838578

sample estimates:

mean of x mean of y

506.0286 520.2400
```

 $H_0: \mu_X = \mu_Y$ is rejected.

Under the same setting as Section 5.3, we may want to test $H_0: \sigma_\chi^2 = \sigma_\gamma^2$ against $H_1: \sigma_\chi^2 \neq \sigma_\gamma^2$. We can use the following fact.

Theorem:

Under the setting in Section 5.3,

$$F := \frac{S_{\chi}^{2}}{S_{\gamma}^{2}} \sim F(n-1, m-1). \tag{3}$$

where F(n-1, m-1) is an F-distribution with the degrees of freedom n-1 (numerator) and m-1 (denominator).

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Procedure:

We reject H_0 against H_1 at significance level α (e.g., 0.05) if and only if

$$F < F_{\alpha/2}(n-1, m-1)$$
 or $F > F_{1-\alpha/2}(n-1, m-1)$

(Sample code:)

> var.test(DT,DB)

Example: Math score in Detroit and Dearborn

```
F test to compare two variances

data: DT and DB

F = 2.5429, num df = 6, denom df = 4, p-value = 0.3855
alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:
    0.2764875 15.8353062
sample estimates:
ratio of variances
```

 H_0 is not rejected since p-value > 0.05.

2 542941

(Sample code (continued):)

```
> N <- length(DT)
> M <- length(DB)
> var(DT)/var(DB)
[1] 2.542941

> qf(0.975, df1=N-1, df2=M-1) # thresholds for rejection
[1] 9.197311
> qf(0.025, df1=N-1, df2=M-1) # thresholds for rejection
[1] 0.1605868

> 2*(1- pf(2.542941, df1=N-1, df2=M-1)) # p-value
[1] 0.3855074
```

The rejection region for this test is:

F < 0.1605, or F > 9.1973

If the normal assumption in 5.3 is not satisfied, you can use the following procedure.

Procedure:

Combine all observations X_i 's and Y_j 's (let N := n + m and rank all observations by increasing order. Let

$$\begin{array}{rcl} U_X & := & \displaystyle \sum_{i=1}^n rank(X_i) - \frac{n(n+1)}{2} \\ \\ U_Y & := & \displaystyle \sum_{j=1}^m rank(Y_j) - \frac{m(m+1)}{2} \\ \\ U & := & \displaystyle min(U_X, U_Y) \end{array}$$

Our H_0 is that 'X and Y have the same *size* (location parameter)', and H_1 is that 'X is significantly larger than or smaller than Y'.

Reject H_0 if $U < u_{\alpha}$ where u_{α} is the largest integer such that

$$P(U \le u_{\alpha}) \le \alpha$$
 (under H_0).

 \boldsymbol{u}_{α} can be found by simulation.

A hypothesis testing based on the above procedure is called **Wilcoxon** rank-sum test or **Mann-Whitney test** .

Shinki (Wayne State U)

Example: Math score in Detroit and Dearborn

```
> DT
[1] 519.7 494.7 501.5 499.1 493.1 505.0 529.1
> DB
[1] 530.1 507.6 525.0 518.1 520.4
> rank(c(DT,DB))
[1] 8 2 4 3 1 5 11 12 6 10 7 9
> sum(rank(c(DT,DB))[1:7]) - 7*(7+1)/2
[1] 6
> sum(rank(c(DT,DB))[8:12]) - 5*(5+1)/2
[1] 29
> wilcox.test(DT,DB)
```

Wilcoxon rank sum test

```
data: DT and DB \mathbb{W} = 6, p-value = 0.07323 alternative hypothesis: true location shift is not equal to 0
```

Shinki (Wayne State U) Math 5030 Chapter 5 49 / 53

Exercise 4:

Suppose n = 7 and m = 5. Calculate $u_{0.01}$, $u_{0.05}$ and $u_{0.10}$.

5.6 The paired t test

IF two samples are two variables from the same experimental units, you can take the difference between two samples then do a one-sample test.

Example: Average Wear for Two Types of Tires

Automobile	Tire A	Tire B	D = A - B
1	10.6	10.2	0.4
2	9.8	9.4	0.4
3	12.3	11.8	0.5
4	9.7	9.1	0.6
5	8.8	8.3	0.5
mean	$\bar{x_1} = 10.24$	$\bar{x_2} = 9.76$	$\bar{d} = 0.48$
S.D.	$s_1 = 1.316$	$s_2 = 1.328$	s = 0.083

5.6 The paired t test

```
> A < -c(10.6, 9.8, 12.3, 9.7, 8.8)
> B < -c(10.2, 9.4, 11.8, 9.1, 8.3)
> t.test(A-B)
        One Sample t-test
data: A - B
t = 12.8285, df = 4, p-value = 0.0002128
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.3761149 0.5838851
sample estimates:
mean of x
     0.48
```

Note: "t.test(A, B, paired=TRUE)" makes the same result.

5.7 The matched-pairs Wilcoxon test

For a paired samples whose difference do not follow a normal distribution, we can use Wilcoxon signed rank test.

Recall that while normality is not required, it is still required that the distribution is symmetric.