GIST 8118 Lecture 04 Spatial Enhancement

- Lecture
 - Spatial Frequency
 - Filtering
 - Edge detection
 - Edge Enhancement
 - Edge Mapping
- Lab
 - Module 4
 - Filtering
 - Create a line network

Why Filter

- Extract useful information
 - Find roads in an area
 - Identify areas of vegetation vs man made structures
- Create vector lines for
 - Shoreline
 - Boundaries
 - Roads
 - Look for Edges
- Identify areas of sameness

Spatial frequency

- number of changes in brightness value per unit distance in any part of an image
 - low frequency tonally smooth, gradual changes
 - high frequency tonally rough, abrupt changes

Vancouver Example

Identify the frequency of the three (A B C) images

Low -

Medium -

High -

Profile of Vancouver

Spatial Filtering

- Can adjust frequency by looking at surrounding DN's and adjusting pixel DN
- Spatial filters suppress certain frequencies and pass or emphasize other frequencies
 - High pass filter
 - emphasize fine detail and highlight edges, pass high frequencies
 - aka high frequency enhancers
 - Low pass filters
 - pass low frequencies and emphasize gradual change smooth image remove noise
 - aka low frequency enhancers

Spatial Filtering

- Requires
 - filter
 - Kernel
 - Convolution mask
 - Image
- Results in
 - Filtered image
 - New channel with data in database

Example Average filter

- Filter = 3x3
 - Coefficient is 1
 - smooths the image data
 - eliminate noise.
 - A 3 x 3 average filter (kernel)
 - computes the sum of all image pixels under filter kernel and then divides the sum by the total sum of the kernel
- Image = Band 4 landsat 8 Vancouver
- Result = smoother band 4

1	1	1
1	1	1
1	1	1

Pixel/Line 283, 512

6128+6115+6078+6066+6082+6041+6084+6064+6039 = 54,697 / 9 = 6,077

Convolution

- Calculations are preformed on entire image
- One pixel at a time
- Known as: Convolution
- Demo in example filtering pdf

Filters with coefficients

$$DN_{ij} = INT \left(\frac{\sum_{j=1}^{nrows} \left(\sum_{i=1}^{ncolumns} C_i \times DN_i \right)}{n} \right)$$

where

- i = row location
- j = column location
- Ci = coefficient of kernel at position i, j
- DNi = of the original data at position i, j
- -n=
 - the sum of the coefficients of the kernel or
 - 1 if the sum of coefficients is zero
 - In example on right n=8
- DNij = output pixel value

Example: centre pixel calculation

Original image sample: 8 6 6 5 2 8 6 8

Kernel:
-1 -1 -1
-1 16 -1
-1 -1 -1

Result image sample
? ? ? ? ?
? 11 ? ?
? ? ? ? ?
? ? ? ?

$$j=1$$
 $j=2$ $j=3$
 $i=1$ $(-1)(8) + (-1)(6) + (-1)(6) = -8 -6 -6 = -20$
 $i=2$ $(-1)(2) + (16)(8) + (-1)(6) = -2 +128 -6 = 120$
 $i=3$ $(-1)(2) + (-1)(2) + (-1)(8) = -2 -2 -8 = -12$
(n) Sum = 88

$$n = 16 - 8 = 8$$

output
$$DN_{i,j} = 88 / 8 = 11$$

Frequency Enhancement

- High frequency enhancement
 - Emphasize difference
 - High contrast
 - High pass
- Low frequency enhancement
 - Emphasize sameness
 - Low contrast
 - Low pass
- See handout for examples

Filters in Geomatica

- Focus
 - Filter dialog from context menu of layer

Filters in Geomatica (2)

- Algorithms in library
- Modeler

Create a LINE network e.g. Shoreline (road)....

- First
 - Edge detection
 - filter
- Second
 - Edge Enhancement
 - Math
- Third
 - Edge Mapping
 - THR algorighm
- Fourth (optional)
 - Convert to Vector
 - RTV algorighm
- Fifth (optional)
 - Change format
 - Export to other format e.g. SHAPEFILE
- Look at your results

Edge detection

- Smooth out areas of low spatial frequency and highlight edges
 - local changes
- Possible methods:
 - 1) calculating spatial derivatives (differencing)
 - 2) edge detecting template (Zero-sum kernels):
 - A directional (compass templates)
 - B non-directional (Laplacian)
 - All are Edge enhancement kernels
 - 3) subtracting a smoothed image from the original

Method 1 - Spatial differencing

Vertical:

$$-DN_{i,j} = DN_{i,j} - DN_{i,j+1} + K$$

	j1	j2	j3	j4	
i1					
i2					
i3					

• Horizontal:

$$- DN_{i,j} = DN_{i,j} - DN_{i-1,j} + K$$

constant K added to make output positive

Example: Vertical Difference

OLI band 4

FVDIF (Vertical Differentiation Filter) - algorithm OLI band 4

Method 2 - Zero sum kernels

- the sum of all coefficients in the kernel equals zero.
- n is set = 1 since division by zero is impossible
- Result
 - zero in areas where all input values are equal
 - low in areas of low spatial frequency
 - extreme in areas of high spatial frequency
 - high values become higher, low values lower

Method 2 A – Directional filters

- Calculate difference in a given direction
 - the directional gradient
- Line features (i.e. rivers and roads)
 - More than one pixel wide
 - pairs of edges
 - Linear Edge detection templates
 - Single pixel wide
 - Linear Line Detecting Templates

Example Templates

Example: Linear Edge Detecting Templates

Example: Linear Line Detecting Templates

```
      Vertical: -1 2 -1
      Horizontal: -1 -1 -1

      -1 2 -1
      2 2 2

      -1 2 -1
      -1 -1 -1
```

Linear Line detection example

Vertical Line

Horizontal Line

2A Directional - Compass gradient

- Produce a maximum output for vertical (or horizontal) brightness value changes from the specified direction.
- For example a North compass gradient enhances changes that increase in a northerly direction,
 - i.e. from south to north:

Example Compass gradient

North (south to north edges)

South (north to south edges)

Method 2B Non-directional

Laplacian

- 0 -1 0
- insensitive to direction. $_{0}^{-1}$ $_{-1}^{4}$ $_{0}^{-1}$
- highlights points, lines and eages
- suppresses uniform, smoothly varying regions
- Result: Single edges
- Sobel
 - Non linear
 - Two kernels
 - Result: Double edges

Examples – Non directional

Laplacian 1

Sobel

Edge Enhancement

- add the edges back into the original image
- Result:
 - to increase contrast in the vicinity of the edge
 - ARI algorithm
- E.g.
 - Band 4 apply sobel filter output sobel image
 - Sobel image + band 4
 - output = sobel edge enhanced band4 image
 - Display RGB composite with
 - R = SOBEL edge enhanced band3,
 - G = band2,
 - B = band1

Example with OLI B4

Original RGB 4,3,2

Edge Mapping

- Find Threshold
 - DN value of edge detection output image
- Result:
 - a binary map of edges vs. non-edges
 - 1 = edge
 - 0 = non edge
- THR algorithm
- Your Caution
 - Threshold too low:
 - too many isolated pixels classified as edges and edge boundaries too thick
 - Threshold too high:
 - boundaries will consist of thin, broken segment

Example Acquire Lines

Edge Map - THR

Convert to Vector

Next Step

- Clean up data to have functional line network
 - Shorelines
 - Roads
- Use editing tools
 - PCI Geomatica
 - ArcGIS

Spatial vs. Spectral Enhancement

- Spatial-based Enhancement
 - modifies a pixel's values based on the values of the surrounding pixels
 - local operator
- Spectral-based Enhancement
 - modifies a pixel's values based solely on the pixel's values
 - point operator
- Difference = ???