Domain: Automobile

Project 04: Automobile data

This dataset contains information about cars

Attribute Information:

Attribute

Attribute Range

1. symboling

-3, -2, -1, 0, 1, 2, 3.

2. normalized-losses

continuous from 65 to 256.

3. make

alfa-romero, audi, bmw, chevrolet,dodge,honda, isuzu, jaguar, mazda, mercedes-benz, mercury, mitsubishi,nissan,peugot,plymouth,porsche, renault, saab, subaru, toyota, volkswagen volvo

diesel, gas. std, turbo. four, two.

hardtop, wagon, sedan, hatchback, convertible.

4wd, fwd, rwd. front. rear.

continuous from 86.6120.9.
continuous from 141.1 to 208.1.
continuous from 60.3 to 72.3.
continuous from 47.8 to 59.8.
continuous from 1488 to 4066.
dohc,dohcv,l,ohc,ohcf,ohcv,rotor.
eight,five,four,six,three,twelve,two.

continuous from 61 to 326.

1bbl, 2bbl, 4bbl, idi, mfi, mpfi, spdi, spfi.

continuous from 2.54 to 3.94. continuous from 2.07 to 4.17. continuous from 7 to 23. continuous from 48 to 288. continuous from 4150 to 6600 continuous from 13 to 49. continuous from 16 to 54. continuous from 5118 to 45400.

4. fuel-type

5. aspiration

6. num-of-doors7. body-style

8. drive-wheels9. engine-location

10. wheel-base11. length12. width

13. height14. curb-weight

15. engine-type16. number-of-cylinders

17. engine-size

18. fuel-system

19. bore 20. stroke

21. compression-ratio22. horsepower23. peak-rpm24. city-mpg25. highway-mpg

26. price

Exploration ideas

Loading and cleaning data.

Variable analysis to see its impact on automobile pricing.

Summary Statistics of different variables.

Univariate and bivariate analysis

Make, Curb-weight, Drive wheels analysis.

import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import pandas_profiling import collections import warnings warnings.filterwarnings('ignore') %matplotlib inline

In [64]:

Print multiple statements in same line from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all"

Loading and Cleaning Data

In [65]:

automobile=pd.read_csv("Automobile_data.txt", sep = ',')
automobile.head()

Out[65]:

	symboling	normalized- losses	make	fuel- type	DO RUM YES ONE-	num- of- doors	body- style	drive- wheels	engine- location	wheel- base		engine- size	fuel- system	bore	stroke	compression- ratio
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.0
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.0
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5		152	mpfi	2.68	3.47	9.0
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8		109	mpfi	3.19	3.40	10.0
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4	***	136	mpfi	3.19	3.40	8.0

5 rows × 26 columns

In [66]:

report = pandas_profiling.ProfileReport(automobile) # convert profile report as html file #report.to_file("automobile.html")

Summary Statistics of different variables

In [67]:

automobile.dtypes

Out[67]:

int64 symboling normalized-losses object make object fuel-type object aspiration object num-of-doors object body-style object object drive-wheels engine-location object wheel-base float64 float64 length width float64 float64 height curb-weight int64 engine-type object num-of-cylinders object engine-size int64 fuel-system object bore object stroke object compression-ratio float64 horsepower object peak-rpm object city-mpg int64 highway-mpg int64 price object

In [68]:

dtype: object

#automobile.info()

automobile.describe(include='all')

Out[68]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size	fuel- system	bore	stroke	comp
count	205.000000	205	205	205	205	205	205	205	205	205.000000	 205.000000	205	205	205	205.00
unique	NaN	52	22	2	2	3	5	3	2	NaN	 NaN	8	39	37	NaN
top	NaN	?	toyota	gas	std	four	sedan	fwd	front	NaN	 NaN	mpfi	3.62	3.40	NaN
freq	NaN	41	32	185	168	114	96	120	202	NaN	 NaN	94	23	20	NaN
mean	0.834146	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	98.756585	 126.907317	NaN	NaN	NaN	10.142
std	1.245307	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	6.021776	 41.642693	NaN	NaN	NaN	3.9720
min	-2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	86.600000	 61.000000	NaN	NaN	NaN	7.0000
25%	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	94.500000	 97.000000	NaN	NaN	NaN	8.6000
50%	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	97.000000	 120.000000	NaN	NaN	NaN	9.0000
75%	2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	102.400000	 141.000000	NaN	NaN	NaN	9.4000
max	3.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	120.900000	 326.000000	NaN	NaN	NaN	23.000

11 rows × 26 columns

In [69]:

automobile.isnull().sum()

Out[69]:

symboling 0 normalized-losses 0 make 0 fuel-type 0 0 aspiration num-of-doors 0 body-style 0 drive-wheels 0 engine-location 0 0 wheel-base 0 length 0 width height 0 curb-weight 0 engine-type 0 0 num-of-cylinders engine-size 0 fuel-system 0 bore 0 0 stroke compression-ratio 0 horsepower 0 0 peak-rpm 0 city-mpg highway-mpg 0 price 0

```
dtype: int64
In [70]:
# Find out number of records having '?' value for normalized losses
automobile['normalized-losses'].loc[automobile['normalized-losses'] == '?'].count()
Out[70]:
41
In [71]:
# Setting the missing value to mean of normalized losses and conver the datatype to integer
nl = automobile['normalized-losses'].loc[automobile['normalized-losses'] != '?']
nlmean = nl.astype(str).astype(int).mean()
automobile['normalized-losses'] = automobile['normalized-losses'].replace('?',nlmean).astype(int)
automobile['normalized-losses'].head()
Out[71]:
0 122
1 122
2 122
3 164
4 164
Name: normalized-losses, dtype: int32
In [72]:
# Find out the number of values which are not numeric
automobile['price'].str.isnumeric().value_counts()
Out[72]:
True 201
False
         4
Name: price, dtype: int64
In [73]:
# List out the values which are not numeric
automobile['price'].loc[automobile['price'].str.isnumeric() == False]
Out[73]:
9
    ?
44 ?
45 ?
129 ?
Name: price, dtype: object
```

In [74]:

```
#Setting the missing value to mean of price and convert the datatype to integer price = automobile['price'].loc[automobile['price'] != '?'] pmean = price.astype(str).astype(int).mean() automobile['price'] = automobile['price'].replace('?',pmean).astype(int) automobile['price'].head()
```

Out[74]:

- 0 13495
- 1 16500
- 2 16500
- 3 13950
- 4 17450

Name: price, dtype: int32

In [75]:

Checking the numberic and replacing with mean value and conver the datatype to integer automobile['horsepower'].str.isnumeric().value_counts()
horsepower = automobile['horsepower'].loc[automobile['horsepower'] != '?']
hpmean = horsepower.astype(str).astype(int).mean()
automobile['horsepower'] = automobile['horsepower'].replace('?',pmean).astype(int)

Out[75]:

True 203 False 2

Name: horsepower, dtype: int64

In [76]:

automobile.loc[automobile['horsepower']].quantile(1.00)

Out[76]:

symboling 3.0 normalized-losses 231.0 120.9 wheel-base length 208.1 width 71.7 height 59.8 4066.0 curb-weight engine-size 308.0 23.0 compression-ratio horsepower 184.0 city-mpg 45.0 50.0 highway-mpg

price 40960.0 Name: 1.0, dtype: float64

In [77]:

automobile.describe(include='all')

Out[77]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size	fuel- system	bore	stroke	comp ratio
count	205.000000	205.000000	205	205	205	205	205	205	205	205.000000	 205.000000	205	205	205	205.00
unique	NaN	NaN	22	2	2	3	5	3	2	NaN	 NaN	8	39	37	NaN
top	NaN	NaN	toyota	gas	std	four	sedan	fwd	front	NaN	 NaN	mpfi	3.62	3.40	NaN
freq	NaN	NaN	32	185	168	114	96	120	202	NaN	 NaN	94	23	20	NaN
mean	0.834146	122.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	98.756585	 126.907317	NaN	NaN	NaN	10.142
std	1.245307	31.681008	NaN	NaN	NaN	NaN	NaN	NaN	NaN	6.021776	 41.642693	NaN	NaN	NaN	3.9720
min	-2.000000	65.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	86.600000	 61.000000	NaN	NaN	NaN	7.0000
25%	0.000000	101.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	94.500000	 97.000000	NaN	NaN	NaN	8.6000
50%	1.000000	122.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	97.000000	 120.000000	NaN	NaN	NaN	9.0000
75%	2.000000	137.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	102.400000	 141.000000	NaN	NaN	NaN	9.4000
max	3.000000	256.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	120.900000	 326.000000	NaN	NaN	NaN	23.000

11 rows × 26 columns

In [78]:

#Checking the outlier of horsepower

automobile.loc[automobile['horsepower'] > 288]

Out[78]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	2 A.S. A.	engine- location	wheel- base		engine- size	fuel- system	bore	stroke	compression ratio
130	0	122	renault	gas	std	four	wagon	fwd	front	96.1	***	132	mpfi	3.46	3.90	8.7
131	2	122	renault	gas	std	two	hatchback	fwd	front	96.1		132	mpfi	3.46	3.90	8.7

2 rows × 26 columns

In [79]:

4

#Excluding the outlier data for horsepower

automobile [np.abs(automobile.horsepower-automobile.horsepower.mean()) <= (3*automobile.horsepower.std())]

Out[79]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base		engine- size	fuel- system	bore	stroke	compre
0	3	122	alfa-romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.00
1	3	122	alfa-romero	gas	std	two	convertible	rwd	front	88.6		130	mpfi	3.47	2.68	9.00
2	1	122	alfa-romero	gas	std	two	hatchback	rwd	front	94.5		152	mpfi	2.68	3.47	9.00
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8		109	mpfi	3.19	3.40	10.00
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4		136	mpfi	3.19	3.40	8.00
5	2	122	audi	gas	std	two	sedan	fwd	front	99.8		136	mpfi	3.19	3.40	8.50
6	1	158	audi	gas	std	four	sedan	fwd	front	105.8	444	136	mpfi	3.19	3.40	8.50
7	1	122	audi	gas	std	four	wagon	fwd	front	105.8		136	mpfi	3.19	3.40	8.50
8	1	158	audi	gas	turbo	four	sedan	fwd	front	105.8	111	131	mpfi	3.13	3.40	8.30
9	0	122	audi	gas	turbo	two	hatchback	4wd	front	99.5		131	mpfi	3.13	3.40	7.00
			7***				22									
195	-1	74	volvo	gas	std	four	wagon	rwd	front	104.3	-110	141	mpfi	3.78	3.15	9.50
196	-2	103	volvo	gas	std	four	sedan	rwd	front	104.3		141	mpfi	3.78	3.15	9.50
197	-1	74	volvo	gas	std	four	wagon	rwd	front	104.3		141	mpfi	3.78	3.15	9.50
198	-2	103	volvo	gas	turbo	four	sedan	rwd	front	104.3		130	mpfi	3.62	3.15	7.50
199	-1	74	volvo	gas	turbo	four	wagon	rwd	front	104.3		130	mpfi	3.62	3.15	7.50
200	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1		141	mpfi	3.78	3.15	9.50
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1		141	mpfi	3.78	3.15	8.70
202	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1		173	mpfi	3.58	2.87	8.80
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109.1	-110	145	idi	3.01	3.40	23.00
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1		141	mpfi	3.78	3.15	9.50

203 rows × 26 columns

In [80]:

Find out the number of invalid value automobile['bore'].loc[automobile['bore'] == '?']

Out[80]:

55 ?

56 ?

57 ?

58 ?

Name: bore, dtype: object

In [81]:

Replace the non-numeric value to null and conver the datatype automobile['bore'] = pd.to_numeric(automobile['bore'],errors='coerce') automobile.dtypes

Out[81]:

symboling int64 int32 normalized-losses object make fuel-type object aspiration object num-of-doors object body-style object object drive-wheels engine-location object wheel-base float64 length float64 width float64 height float64 curb-weight int64 object engine-type num-of-cylinders object int64 engine-size fuel-system object bore float64 stroke object compression-ratio float64 int32 horsepower object peak-rpm int64 city-mpg highway-mpg int64 price int32 dtype: object

atypo. objec

In [82]:

Replace the non-number value to null and convert the datatype automobile['stroke'] = pd.to_numeric(automobile['stroke'],errors='coerce') automobile.dtypes

Out[82]:

symboling int64 normalized-losses int32 make object fuel-type object aspiration object num-of-doors object body-style object drive-wheels object object engine-location

wheel-base float64 float64 length width float64 height float64 curb-weight int64 engine-type object num-of-cylinders object engine-size int64 fuel-system object bore float64 stroke float64 compression-ratio float64 int32 horsepower object peak-rpm city-mpg int64 int64 highway-mpg price int32 dtype: object

In [83]:

Convert the non-numeric data to null and convert the datatype
automobile['peak-rpm'] = pd.to_numeric(automobile['peak-rpm'],errors='coerce')
automobile.dtypes

Out[83]:

symboling int64 normalized-losses int32 object make fuel-type object aspiration object num-of-doors object body-style object object drive-wheels engine-location object wheel-base float64 length float64 float64 width float64 height curb-weight int64 engine-type object num-of-cylinders object engine-size int64 fuel-system object bore float64

```
stroke
               float64
compression-ratio float64
                   int32
horsepower
                 float64
peak-rpm
city-mpg
                 int64
                    int64
highway-mpg
price
                int32
dtype: object
In [84]:
# remove the records which are having the value '?'
automobile['num-of-doors'].loc[automobile['num-of-doors'] == '?']
automobile = automobile[automobile['num-of-doors'] != '?']
automobile['num-of-doors'].loc[automobile['num-of-doors'] == '?']
Out[84]:
27 ?
63 ?
Name: num-of-doors, dtype: object
Out[84]:
Series([], Name: num-of-doors, dtype: object)
In [85]:
automobile['num-of-doors'].loc[automobile['num-of-doors'] == '?']
Out[85]:
Series([], Name: num-of-doors, dtype: object)
Univariate Analysis
In [86]:
#Make wise vehicles manufactured
automobile.make.value_counts().nlargest(10).plot(kind='bar', figsize=(15,5), color='olive')
plt.title("Number of vehicles by make")
plt.ylabel('Number of vehicles')
```

plt.xlabel('Make');

In [87]:

#Insurance risk automobile.symboling.hist(bins=6,color='yellowgreen'); plt.title("Insurance risk ratings of vehicles") plt.ylabel('Number of vehicles') plt.xlabel('Risk rating');

In [88]: #Normalized losses

automobile['normalized-losses'].hist(bins=5,color='g'); plt.title("Normalized losses of vehicles") plt.ylabel('Number of vehicles') plt.xlabel('Normalized losses');

In [89]:

#Fuel Type Histogram
automobile['fuel-type'].value_counts().plot(kind='bar',color='mediumseagreen')
plt.title("Fuel type frequence diagram")
plt.ylabel('Number of vehicles')
plt.xlabel('Fuel type');

In [90]:

#Fuel type PIE chart automobile['aspiration'].value_counts().plot.pie(figsize=(6,6), autopct='%.2f') plt.title("Fuel type pie diagram") plt.ylabel('Number of vehicles') plt.xlabel('Fuel type');

In [91]:

#Horse Power histogram

automobile. horsepower [np.abs (automobile. horsepower-automobile. horsepower.mean ()) <= (3*automobile. horsepower.std ())]. hist (bins=5, color='crimson');

plt.title("Horse power histogram")
plt.ylabel('Number of vehicles')

plt.xlabel('Horse power');

In [92]:

#Curb weight histogram automobile['curb-weight'].hist(bins=5,color='salmon'); plt.title("Curb weight histogram") plt.ylabel('Number of vehicles') plt.xlabel('Curb weight');

In [93]:

#Drive Wheels bar chart automobile['drive-wheels'].value_counts().plot(kind='bar',color='orangered') plt.title("Drive wheels diagram") plt.ylabel('Number of vehicles') plt.xlabel('Drive wheels');

In [94]:

#Number of doors bar chart automobile['num-of-doors'].value_counts().plot(kind='bar',color='dodgerblue') plt.title("Number of doors frequency diagram") plt.ylabel('Number of vehicles') plt.xlabel('Number of doors');

Make, Curb-weight, Drive wheels Analysis

Make : Toyota car has most number of vehicles with more than 40% than the 2nd highest Nissan Curb-weight : Cars Curb weight between 1500 and 4000 approximately

Drive wheels: front wheel drive has most number of cars followed by rear wheel and four wheel. There are very less number of cars for four wheel drive.

In [95]:

```
corr = automobile.corr()
sns.set_context("notebook", font_scale=1.0, rc={"lines.linewidth": 2.5})
plt.figure(figsize=(13,7))
a = sns.heatmap(corr, annot=True, fmt='.2f')
rotx = a.set_xticklabels(a.get_xticklabels(), rotation=90)
roty = a.set_yticklabels(a.get_yticklabels(), rotation=30)
```

Out[95]:

<matplotlib.figure.Figure at 0x38436959e8>

Bivariate Analysis

In [96]:

#Boxplot of Price and make plt.rcParams['figure.figsize']=(23,10) ax = sns.boxplot(x="make", y="price", data=automobile)

In [97]:

#Scatter plot of price and engine size g = sns.lmplot('price',"engine-size", automobile);

Variable analysis to see its impact on automobile pricing

Findings: Below are our findings on the make and price of the car

The most expensive car is manufacture by Mercedes benz and the least expensive is Chevrolet The premium cars costing more than 20000 are BMW, Jaquar, Mercedes benz and Porsche Less expensive cars costing less than 10000 are Chevrolet, Dodge, Honda, Mitsubishi, Plymoth and Subaru

Rest of the cars are in the midrange between 10000 and 20000 which has the highest number of cars

In [98]:

#Scatter plot of normalized losses and symboling g = sns.lmplot('normalized-losses',"symboling", automobile);

In [99]:

#Scatter plot of Engine size and Peak RPM plt.scatter(automobile['engine-size'],automobile['peak-rpm']) plt.xlabel('Engine size') plt.ylabel('Peak RPM');

In [100]:

#Scatter plot of City and Highway MPG, Curb weight based on Make of the car g = sns.lmplot('city-mpg',"curb-weight", automobile, hue="make", fit_reg=False);

In [101]:
g = sns.lmplot('highway-mpg',"curb-weight", automobile, hue="make",fit_reg=False);

In [102]:
#Drive wheels and City MPG bar chart
automobile.groupby('drive-wheels')['city-mpg'].mean().plot(kind='bar', color = 'lime');
plt.title("Drive wheels City MPG")

plt.ylabel('City MPG') plt.xlabel('Drive wheels');

In [103]:

#Drive wheels and Highway MPG bar chart
automobile.groupby('drive-wheels')['highway-mpg'].mean().plot(kind='bar', color = 'green');
plt.title("Drive wheels Highway MPG")
plt.ylabel('Highway MPG')
plt.xlabel('Drive wheels');

In [104]:

#Boxplot of Drive wheels and Price
plt.rcParams['figure.figsize']=(10,5)
ax = sns.boxplot(x="drive-wheels", y="price", data=automobile)

In [105]:

#Normalized losses based on body style and no. of doors pd.pivot_table(automobile,index=['body-style','num-of-doors'], values='normalized-losses').plot(kind='bar',color='orange') plt.title("Normalized losses based on body style and no. of doors") plt.ylabel('Normalized losses') plt.xlabel('Body style and No. of doors');

