Deep Learning MSDS 631

Sequence Models

Michael Ruddy

<u>Overview</u>

- Sequences
- Amped up RNNs (LSTMs + GRUs)
- Encoder Decoder (Seq2Seq)

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Examples
 - Text
 - Time Series
- Models
 - Continuous Bag of Words (CBOW)
 - 1D CNN
 - Recurrent Neural Network (RNN)

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Examples
 - Text
 - Time Series
- Models
 - Continuous Bag of Words (CBOW)
 - 1D CNN
 - Recurrent Neural Network (RNN)
 - Attention (Next!)

- Models
 - Continuous Bag of Words (CBOW)
 - 1D CNN
 - Recurrent Neural Network (RNN)

only 0 pad in front, not in the end

- Average feature vectors together to get fixed length input
- Loose a lot information about the sequence

- Models
 - Continuous Bag of Words (CBOW)
 - 1D CNN
 - Recurrent Neural Network (RNN)
- Doesn't care about sequence length
- Uses filters to construct features from local interactions
- Difficult to capture long range dependencies

- Models
 - Continuous Bag of Words (CBOW)
 - 1D CNN
 - Recurrent Neural Network (RNN)
- Updates a hidden state as the sequence is fed into the RNN
- Vanishing/Exploding gradient problem
- Doesn't have great long-term memory
- Slow (can't parallelize updates to a hidden state)

- Models
 - Continuous Bag of Words (CBOW)
 - 1D CNN
 - Recurrent Neural Network (RNN)
 - LSTMs, GRUs, and more!
- Fancier updates to a hidden state as the sequence is fed into the NN
- Helps with Vanishing/Exploding gradient problem
- Helps with long-term memory
- Still Slow (can't parallelize updates to a hidden state)

RNNs

- Vanilla RNN

$$y_i = W_y ec{h}_i$$

- Gated Recurrent Unit
- Idea: Change the function f to address common RNN problems

z decides wether to update at all r decides how it updated

W and U are learnable

 $\overline{z_i} = \sigma(W_z ec{a}_i + U_z ec{h}_{i-1})$

 $r_i = \sigma(W_r ec{a}_i + U_r ec{h}_{i-1})$

Initial update

- Reset gate determines what to forget
- Here ⊙means element-wise product

Recurrent Unit

- Same basic idea
- Different f

Recurrent Unit

- Same basic idea

Recurrent Unit

- Same basic idea
- Different f

 y_i

The LSTM

- Long Short-Term Memory
- Idea: Change the function f to address common RNN problems and add a "cell" state

The LSTM

- Long Short-Term Memory
- Idea: Change the function f to address common RNN problems and add a "cell" state

 y_i

The LSTM y_i $ec{h}_{i-1}$

RNNs

- Different styles based on desired inputs/outputs

Image: Andrej Karpathy

Questions?

- From last lecture?
- From the lab assignment?

RNNs

- Different styles based on desired inputs/outputs

Image: Andrej Karpathy

RNNs $ec{h}_{i-1}$ $ec{h}_N$ $\overrightarrow{a_i}$ $ec{a}_N$

- Generate a sequence from a single input

one to many

- Generate a sequence from a single input

- Generate a sequence from a single input

- Late parts of input sequence don't inform early predictions

- Late parts of input sequence don't inform early predictions
- Problem in translation

Ich muss auf den Markt gehen. — I must go to the Market

- Late parts of input sequence don't inform early predictions
- Problem in translation

Ich muss auf den Markt gehen. — Imust go to the Market

- Late parts of input sequence don't inform early predictions
- Problem in translation

Ich muss auf den Markt gehen. — I must go to the Market

many to many

- Late parts of input sequence don't inform early predictions
- Problem in translation
- Bidirectional RNN

many to many

Image source

- Late parts of input sequence don't inform early predictions
- Problem in translation
- Bidirectional RNN
 - SLOW

many to many

Image source

- Generate a sequence using encoder/decoder framework
- Idea: Different RNNs for encoding vs. decoding

- Generate a sequence using encoder/decoder framework
- Idea: Different RNNs for encoding vs. decoding

- Generate a sequence using encoder/decoder framework
- Idea: Different RNNs for encoding vs. decoding

- Generate a sequence using encoder/decoder framework
- Idea: Different RNNs for encoding vs. decoding

- Generate a sequence using encoder/decoder framework
- Idea: Different RNNs for encoding vs. decoding

many to many

- Generate a sequence using encoder/decoder framework
- Idea: Different RNNs for encoding vs. decoding

