Nearest centroids, K-NN

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- Weighted account for objects
- 6 Popular distance measures
- Madaraya-Watson regression

Nearest centroids algorithm

- Consider training sample $(x_1, y_1), ... (x_N, y_N)$ with
 - \bullet N_1 representatives of 1st class
 - N₂ representatives of 2nd class
 - etc.
- Training:

Calculate centroids for each class c = 1, 2, ... C:

$$\mu_c = \frac{1}{N_C} \sum_{n=1}^N x_n \mathbb{I}[y_n = c]$$

- Classification:
 - For object *x* find most close centroid:

$$c = \arg\min_{i} \rho(x, \mu_i)$$

2 Associate x the class of the most close centroid:

$$\widehat{y}(x) = c$$

Illustration

Decision boundaries for 3-class nearest centroids

Questions

- What are discriminant functions $g_c(x)$ for nearest centroid?
- What is the complexity for:
 - training?
 - prediction?
- What would be the shape of class separating boundary?
- Can we use similar ideas for regression? Consider clustering.
- Is this method prone to the curse of dimensionality?

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- Weighted account for objects
- 5 Popular distance measures
- Madaraya-Watson regression

K-nearest neighbours algorithm

Classification:

- Find *k* closest objects to the predicted object *x* in the training set.
- Associate x the most frequent class among its k neighbours.

K-nearest neighbours algorithm

Classification:

- Find *k* closest objects to the predicted object *x* in the training set.
- Associate x the most frequent class among its k neighbours.

?

Regression:

- Find *k* closest objects to the predicted object *x* in the training set.
- Associate x average output of its k neighbours.

Comments

- K nearest neighbours algorithm is abbreviated as K-NN.
- k = 1: nearest neighbour algorithm¹
- Base assumption of the method²:
 - similar objects yield similar outputs

¹what will happen for K = N?

²what is simpler - to train K-NN model or to apply it?

Sample dataset

Example: K-NN regression

Dealing with similar rank

When several classes get the same rank, we can assign to class:

Dealing with similar rank

When several classes get the same rank, we can assign to class:

- with higher prior probability
- having closest representative
- having closest mean of representatives (among nearest neighbours)
- which is more compact, having nearest most distant representative

Nearest centroids, K-NN - Victor Kitov

Parameters of the method

- Parameters:
 - the number of nearest neighbours K
 - distance metric $\rho(x, x')$
- Modifications:
 - forecast rejection option³
 - variable K⁴

³Propose a rule, under what conditions to apply rejection in a) classification b) regression

⁴Propose a method of K-NN with adaptive variable K in different parts of the feature space

Properties

• Advantages:

- only similarity between objects is needed, not exact feature values.
 - so it may be applied to objects with arbitrary complex feature description
- simple to implement
- interpretable (case based reasoning)
- does not need training
 - may be applied in online scenarios
 - Cross-validation may be replaced with LOO.

Disadvantages:

- slow classification with complexity O(N)
- accuracy deteriorates with the increase of feature space dimensionality

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- Weighted account for objects
- 5 Popular distance measures
- Madaraya-Watson regression

Normalization of features

• Feature scaling affects predictions of K-NN?

Normalization of features

- Feature scaling affects predictions of K-NN?
 - yes, so normalize them
- Equal scaling equal impact of features
- Non-equal scaling non-equal impact of features
- Typical normalizations:

Name	Transformation	Properties
Standardization	$\frac{x_j - \mu_j}{\sigma_j}$	zero mean, unit variance.
Mean norm	$\frac{x_j - \mu_j}{\max(x_j) - \min(x_j)}$	zero mean, $[0,1]$ interval.
Range scaling	$\frac{x_j - \min(x_j)}{\max(x_j) - \min(x_j)}$	min=0,max=1, [0,1] interval.

- Which type of scaling is more robust to outliers?
- What type of scaling preserves the sparsity property? (many zero values)

The curse of dimensionality

- The curse of dimensionality: with growing *D* data distribution becomes sparse and insufficient.
- Example: histogram estimation⁵

⁵At what rate should training size grow with increase of *D* to compensate curse of dimensionality?

Curse of dimensionality

- Case of K-nearest neighbours:
 - assumption: objects are distributed uniformly in feature space
 - ball of radius R has volume $V(R) = CR^D$, where $C = \frac{\pi^{D/2}}{\Gamma(D/2+1)}$.
 - ratio of volumes of balls with radius $R \varepsilon$ and R:

$$\frac{V(R-\varepsilon)}{V(R)} = \left(\frac{R-\varepsilon}{R}\right)^D \stackrel{D\to\infty}{\longrightarrow} 0$$

- most of volume concentrates on the border of the ball, so there lie the nearest neighbours.
- nearest neighbours stop being close by distance
- Good news: in real tasks the true dimensionality of the data is often less than D and objects belong to the manifold with smaller dimensionality.

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- Weighted account for objects
- 6 Popular distance measures
- Madaraya-Watson regression

Equal voting

• Define K nearest neighbors: $(z_1, y_1), (z_2, y_2), ...(z_K, y_K)$.

$$\rho(x,z_1) \leq \rho(x,z_2) \leq \ldots \leq \rho(x,z_K)$$

• Regression:

$$\widehat{y}(x) = \frac{1}{K} \sum_{k=1}^{K} y_k$$

Classification:

$$g_c(x) = \sum_{k=1}^K \mathbb{I}[y_k = c], \quad c = 1, 2, ...C.$$
 $\widehat{y}(x) = \underset{c}{\text{arg max}} g_c(x)$

Weighted voting

• Weighted regression:

$$\widehat{y}(x) = \frac{\sum_{k=1}^{K} w(k, \, \rho(x, z_k)) y_k}{\sum_{k=1}^{K} w(k, \, \rho(x, z_k))}$$

Weighted voting

• Weighted regression:

$$\widehat{y}(x) = \frac{\sum_{k=1}^{K} w(k, \rho(x, z_k)) y_k}{\sum_{k=1}^{K} w(k, \rho(x, z_k))}$$

Weighted classification:

$$g_c(x) = \sum_{k=1}^K w(k, \rho(x, z_k)) \mathbb{I}[y_k = c], \quad c = 1, 2, \dots C.$$

$$\widehat{y}(x) = \arg\max_{c} g_c(x)$$

Commonly chosen weights

Index dependent weights:

$$w_k = \alpha^k, \quad \alpha \in (0,1)$$

$$w_k = \frac{K+1-k}{K}$$

Distance dependent weights:

$$w_k = \begin{cases} \frac{\rho(z_K, x) - \rho(z_k, x)}{\rho(z_K, x) - \rho(z_1, x)}, & \rho(z_K, x) \neq \rho(z_1, x) \\ 1 & \rho(z_K, x) = \rho(z_1, x) \end{cases}$$
$$w_k = \frac{1}{\rho(z_k, x)}$$

Example: K-NN regression with weights

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- Weighted account for objects
- 6 Popular distance measures
- 6 Nadaraya-Watson regression

Popular distance measures⁶

Название	$\rho(x,z)$
Euclidean	$\sqrt{\sum_{i=1}^{D}(x^{i}-z^{i})^{2}}$
L_p	$\sqrt[p]{\sum_{i=1}^{D}(x^i-z^i)^p}$
L_{∞}	$\max_{i=1,2,\dots D} x^i - z^i $
L_1	$\sum_{i=1}^{D} x^i - z^i $
Canberra (macro avg.)	$\frac{1}{D} \sum_{i=1}^{D} \frac{ x^i - z^i }{ x^i + z^i }$
Lance-Williams (micro avg.)	$\frac{\sum_{i=1}^{D} x^{i} - z^{i} }{\sum_{i=1}^{D} x^{i} + z^{i} }$

If have S(x,z), then $\rho(x,z) = K(S(x,z))$ for $\downarrow K$, e.g.

$$\rho(x,z) = 1 - S(x,z)$$
 $\rho(x,z) = \frac{1}{S(x,z)}$

⁶Build circles with radius 1 for $L_1, L_2, L_{5\phi}$ 4distances.

Cosine measure

 Cosine measure: objects are close if the angle between them is small.

$$sim(x, z) = \frac{x^T z}{\|x\| \|z\|} = \frac{\sum_{i=1}^{D} x^i z^i}{\sqrt{\sum_{i=1}^{D} (x^i)^2} \sqrt{\sum_{i=1}^{D} (z^i)^2}}$$

• $\langle x, z \rangle = x^T z = ||x|| \, ||z|| \cos(\alpha)$, where α - angle between x and z.

- measure $\in [-1,1]$, invariant to ||x||, ||z||.
 - convenient for text representations=word counts.

Dependent features: Mahalanobis distance

- Objects along y = x are more similar than along y = -x.
- Mahalanobis distance=Euclidean distance in decorrelated feature space (for decorrelated features).

Table of Contents

- Nearest centroids
- 2 K nearest neighbours
- Special properties
- Weighted account for objects
- 6 Popular distance measures
- 6 Nadaraya-Watson regression

Minimum squared error estimate

For training sample $(x_1, y_1), ... (x_N, y_N)$ consider finding constant $\hat{y} \in \mathbb{R}$:

$$L(\widehat{y}) = \sum_{i=1}^{N} (\widehat{y} - y_i)^2 \to \min_{\widehat{y} \in \mathbb{R}}$$

$$\frac{\partial L}{\partial \widehat{y}} = 2 \sum_{i=1}^{N} (\widehat{y} - y_i) = 0, \text{ so } \widehat{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Minimum squared error estimate

For training sample $(x_1, y_1), ... (x_N, y_N)$ consider finding constant $\hat{y} \in \mathbb{R}$:

$$L(\widehat{y}) = \sum_{i=1}^{N} (\widehat{y} - y_i)^2 \to \min_{\widehat{y} \in \mathbb{R}}$$

$$\frac{\partial L}{\partial \widehat{y}} = 2 \sum_{i=1}^{N} (\widehat{y} - y_i) = 0, \text{ so } \widehat{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

We need to model general curve y(x):

Minimum squared error estimate

For training sample $(x_1, y_1), ... (x_N, y_N)$ consider finding constant $\hat{y} \in \mathbb{R}$:

$$L(\widehat{y}) = \sum_{i=1}^{N} (\widehat{y} - y_i)^2 \to \min_{\widehat{y} \in \mathbb{R}}$$

$$\frac{\partial L}{\partial \widehat{y}} = 2 \sum_{i=1}^{N} (\widehat{y} - y_i) = 0, \text{ so } \widehat{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

We need to model general curve y(x):

Nadaraya-Watson regression - localized averaging approach.

Nadaraya-Watson regression

• Find locally constant prediction for each x.

$$\widehat{y}(x) = \operatorname*{arg\ min}_{\widehat{y} \in \mathbb{R}} \sum_{i=1}^{N} w_i(x) (\widehat{y} - y_i)^2 = \frac{\sum_{i=1}^{N} y_i w_i(x)}{\sum_{i=1}^{N} w_i(x)}$$

• Weights should \downarrow as $\rho(x, x_i) \uparrow$ die to $\downarrow K(\cdot)$, called kernel.

$$w_i(x) = K\left(\frac{\rho(x, x_i)}{h}\right)$$

- h(x) some ≥ 0 function called bandwidth.
 - Intuition: "window width", consider h(x) = h, $K(u) = \mathbb{I}[u \le 1]$.
- Equivalent names: local constant regression, kernel regression.

Функция ядра

Kernel $K(u)$	Formula
top-hat	$\mathbb{I}[u <1]$
linear	$\max\{0,1- u \}$
Epanechnikov	$\max\{0, 1 - u^2\}$
exponential	$e^{- u }$
Gaussian	$e^{-\frac{1}{2}u^2}$
quartic	$(1-u^2)^2 \mathbb{I}[u <1]$

Comments

- Weight enables non-linearity but should be recalculated for every x.
- Under general conditions $\widehat{y}(x) \stackrel{P}{\to} E[y|x]$
- Particular selection of K(u) does not influence accuracy as much as h.
- K(u) affects continuity, smoothness and comp. efficiency.
- Can select h(x) adaptively.
 - h(x) lower for higher local density of points,
 - e.g. h(x) distance to K-th nearest neighbor of x.

⁷What choice of h(x) and K(u) yield K-NN?

Local linear regression

Instead of a local constant, you can optimize locally linear regression::

$$\sum_{i=1}^{N} w_i(x) (x^{\mathsf{T}} \beta - y_i)^2 \to \min_{\beta \in \mathbb{R}}; \quad \widehat{y}(x) = x^{\mathsf{T}} \beta$$

It is more stable, better approximating regions of low object density, but computationally more difficult..

Summary

- Important parameters of K-NN:
 - K: controls model complexity
 - $\rho(x,x')$
- Output depends on feature scaling.
 - scaling to equal / non-equal scatter possible.
- Prone to curse of dimensionality.
- Fast training but long prediction.
 - some efficiency improvements are possible though
- Weighted account for objects possible.
- Nearest centroid has different properties.