Задания по критерию Пирсона для работы в компьютерном классе

Критерий согласия Пирсона (хи-квадрат).

Задача 1. Среди первых $10\,002$ десятичных знаков числа $\pi-3$ цифры $0,1,\ldots,9$ встречаются $\nu=(968,1026,1021,974,1014,1046,1021,970,948,1014)$ раз, соответственно. Можно ли на уровне значимости 0.05 считать, что эти цифры случайны и встречаются в представлении числа π с одинаковыми вероятностями, равными 1/10. Найти фактический уровень значимости.

Задача 2. В течение Второй мировой войны на Лондон упало 537 самолетовснарядов. Вся территория Лондона была разделена на 576 участков площадью 0.25 кв. км. Таблица показывает число x_i участков, на которые упало ν_i снарядов.

x_j	0	1	2	3	4	5 или более
ν_j	229	211	93	35	7	1

Требуется с помощью критерия χ^2 (Пирсона) проверить, согласуются ли эти данные с гипотезой о том, что число снарядов, падавших на участки Лондона случайно и имеет распределение Пуассона с параметром λ , за значение которого принять выборочное среднее. Найти фактический уровень значимости.

Задача 3. Наблюдаемая случайная величина ξ имеет предположительно нормальный закон распределения. Получено n=50 наблюдений, после перехода к частотному представлению (группировки) данные сведены в таблицу

Границы интервалов группировки	[-1,0)	[0,1)	[1, 2)	[2,3)	[3, 4]
Частоты ν_j	7	25	8	9	1

Используя критерий χ^2 Пирсона с уровнем значимости $\alpha=0.1$, проверить, согласуются ли данные с гипотезой

$$H_0: \ F_\xi = \Phi\left(rac{x-\mu}{\sigma}
ight)$$
 т.е. с гипотезой о нормальном распределении с.в. $\xi,$

где Φ — функция распределения стандартного нормального закона N(0,1). За значения параметров μ и σ^2 гипотетического распределения принять их выборочные оценки (выборочными значениями в случае сгруппированных данных считаются середины интервалов группировки). Найти фактический уровень значимости.

Задача 4. Имеются данные о количестве студентов двух групп, решивших в течение месяца 0, 1-7, 8-15, > 15 задач.

Число задач	0	1 - 7	8 - 15	> 15
Группа І	9	8	5	4
Группа II	3	5	9	11

Проверить гипотезу о том, что студенты обеих групп одинаково активно решают задачи (гипотезу однородности). Использовать критерий однородности Пирсона с уровнем значимости $\alpha=0.05$. Найти фактический уровень значимости.

Задача 5. Имеются данные о характере активности в течение суток 50 мужчин и 150 женщин. Типы активности: сова, жаворонок, неопределенный тип. Данные представлены в таблице сопряженности признаков.

	жаворонки	совы	неопределенный тип	Всего
Мужчины	17	22	11	50
Женщины	43	78	29	150
Всего	60	100	40	200

Проверить по критерию χ^2 независимость признаков. Уровень значимости $\alpha=0.1.$ Найти фактический уровень значимости.

Задача 6. В эксперименте каждый индивидуум идентифицировался по двум признакам: ξ_1 — цвет глаз (голубые, серые, карие) и ξ_1 — цвет волос (блондин, брюнет, шатен, рыжий). Результаты представлены в таблице сопряженности признаков.

цв.глаз\ цв.волос	блондин	брюнет	шатен	рыжий	Всего
голубые	1768	807	189	47	2811
серые	115	438	288	16	857
карие	946	1387	746	53	3132
Всего	2829	2632	1223	116	6800

Используя критерий χ^2 проверить гипотезу о независимость признаков. Уровень значимости $\alpha=0.001.$ Найти фактический уровень значимости.

Задача 7. Измерен рост студентов трех групп. Получены следующие результата: *Группа I:* 182, 169, 182, 176, 180, 170, 174, 182, 173, 182, 180, 168, 165.

Группа II: 167, 170, 164, 188, 182, 190, 162, 164, 160, 167, 163, 185, 156, 194, 174, 161, 185, 159, 161, 189, 167, 184, 184.

Группа III: 178, 186, 159, 167, 166, 164, 160, 164, 159, 172, 168, 170, 156, 158, 170, 176. Используя критерий χ^2 проверить гипотезу об однородности данных (т.е. о принадлежности данных одной и той же генеральной совокупности). Уровень значимости $\alpha=0.1$. Найти фактический уровень значимости.

Задача 8. Смоделировать две выборки из нормальных распределений N(0,2) и N(-1,4) объемами 100 и 150 соответственно. Используя критерий χ^2 проверить гипотезу об однородности данных на уровне значимости $\alpha=0.1$.