1. Deviving the Residual Error for PCA:

a. Prove that $||\vec{x}_i - \sum_{j=1}^{n} z_{ij}\vec{v}_j||^2 = \vec{x}_i^T x_i - \sum_{j=1}^{n} \vec{v}_j^T \vec{x}_i \vec{x}_i^T \vec{v}_j$

we prove this algebraically:

11 \$\frac{1}{2}i - \frac{1}{2} = (\frac{1}{2}i - \frac{1}{2}i \frac{1}{2}i)^T (\frac{1}{2}i - \frac{1}{2}i \frac{1}{2}i)^T). By expansion:

= *** ** - (= *ij vj) ** - ** (= *ij vj) + (= *ij vj) * (= *ij vj) *

= 元、元、一2景をはびれ、生意意をはずをはず。一章で(喜をはもは)す。

⇒ 対え、- 2 きょうがえ、+ きがえ、えです、Hence, by simplification:

b. show that 灰= 大震(成成,一震动成,是动成,是动人,是人,是人,是人,

Since $\vec{V}_i^T \geq \vec{V}_i = \lambda_i \vec{V}_i^T \vec{V}_i = \lambda_i$, we show the following algebraically:

ホー六島(ズス・島がズスが前) = 六島スでえ、一巻ので(大島スマン)つ。 $= \frac{1}{n} \sum_{i=1}^{n} \vec{x}_i \vec{x}_i - \sum_{i=1}^{n} \sum_{i=1}^{n} \vec{x}_i \rightarrow \left(\frac{n}{n} \sum_{i=1}^{n} \vec{x}_i \cdot \vec{x}_i - \sum_{i=1}^{n} \vec{x}_i \right), \text{ as desired.}$

c. If k=d, there is no truncation, so $J_D=\infty$. Use this to show that the error from only using k< d terms is given by the following:

Since we can partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{k} \lambda_j$ and $\sum_{j=k+1}^{d} \lambda_j$, then: $J_{k} = \frac{1}{16}\sum_{i=1}^{6} \vec{x}_{i}^{T}\vec{x}_{i} - \sum_{j=1}^{6} \lambda_{j} + \sum_{j=k+1}^{6} \lambda_{j} = \begin{bmatrix} \frac{1}{16} \\ \frac{1}{16} \end{bmatrix}, \text{ as desired.}$

2. L. - Regularization:

Consider the ℓ_i norm of a vector $x \in \mathbb{R}^n$: $||\vec{x}||_i = \frac{7}{2}|\vec{x}_i|_i$.

Draw the norm-ball $B_K = \frac{7}{2}\vec{x}_i \cdot ||\vec{x}||_i \leq k^2$ for k=1, on the same plot, draw the Euclidean norm-ball $B_K = \frac{7}{2}\vec{x}_i \cdot ||\vec{x}||_2 \leq k^2$ for k=1 behind $B_K = \frac{7}{2}\vec{x}_i \cdot ||\vec{x}||_2 \leq k^2$ for k=1 behind $B_K = \frac{7}{2}\vec{x}_i \cdot ||\vec{x}||_2 \leq k^2$.

Now, show that the optimization problem:

MINIMIZE f(x), subject to 11x11p < k

is equivalent to: minimize $f(x) + \lambda 11 \times 11p$. Then, argue why using l_1 -regularization (adding a $\lambda 11 \times 11$) term to the objective) will give sparser solutions than using l_2 -regularization.

We re-write our original problem as inf sup $L(x,\lambda) = \inf_{x} \sup_{\lambda \geq 0} f(x) + \lambda(\|x\|_p - k)$. In its dual, we can "flip" the infimum and supremum, such that:

Since the minimizing value of $f(x) + \lambda(II\tilde{x}IIp - k)$ over x is equivalent to the minimizing value of $f(x) + \lambda(I|\tilde{x}IIp)$, and $(-\lambda k)$ does not depend an x, we know that the optimizing x will solve! minimize $f(x) + \lambda(I|\tilde{x}IIp)$ for some value $\lambda \geq \emptyset$. Hence, in tandem with our plot, ℓ_1 -regularization is the projection of our actual optimal solution onto some well-defined ℓ_1 norm-ball. As our ℓ_1 ball has snarper edges, the probability of landing on an edge and not on the face [where both elements of the vector are non-zero] is infinitely larger than the ℓ_2 ball. Specifically, this is due to the rotation invariance of the ℓ_2 , which does not hold for the ℓ_1 ball. Furthermore, if we were to then generalize this to higher dimensions, the ℓ_1 -penalty would encourage more weights to be zero, compared to the ℓ_2 ball, as desired.