

Question 1.	en a $\vec{\omega}$ = arg, $\min_{\vec{\omega}} E_{\vec{\nu}}(\vec{\omega})$
	les meilleurs paramètres pont coux qui correspondent
	$\hat{\lambda} = \nabla_{\vec{\omega}} \delta_b \left(\vec{\omega} \right) = 0$
	On a Pos 60(v)= V (T-W P)2 + 2 W W
	On a Pe ε ₀ (w) = V _w (T - W Φ) ² + λ W W) = V _w (T - W Φ) ² + λ V _w (W N
	= L(T_WTA) D=(T_WTA) + & D=(WTW)
	on soit que T'est indépendent de is donc Dis (T)=(
	Pco を (で)= _ L(T_ いな) ワロ (W 至) + トワロ (II wilt)
	(on a $\nabla_{w}(w^{*}) = b^{*}$)
	$\nabla_{\omega} = 2(\omega^{T}\phi_{-}\tau) \phi^{T} + 2\lambda \omega^{T}$
	$ \begin{array}{cccc} & \text{in } & \text{force } & \nabla_{G} \cdot \nabla_{b} \cdot \text{Lio}^{2}) = 0 \\ & & & & & & & & & & & & & & & & & & $
	on a $W^{T} \phi \cdot \phi^{T} - T \phi^{T} + \lambda W^{T} = 0$
	$W^{T}(\phi,\phi',\lambda I) = T\rho'$
	$W' = T\phi^{\dagger}(\partial \phi^{\dagger} + \lambda I)^{-1}$

Question 2:	Soit E la fonction de perte
	Soit E la fonction de perte Supposons que E est une entropie croisée
	E(ii) = = t; ln(y;) + (1-t;) ln(1-y;)
	(m) + (m) + (m) g;
	$\vec{\nabla} E(\vec{\omega}) = \vec{\xi} t_i \vec{\nabla} \left(\ln(y_i) \right) + (\lambda - t_i) \vec{\nabla} \left(\ln(\lambda - y_i) \right)$
	ラミナ, で(σ(ω ^τ φ;)) +(λ-t;) で(Λ-σ(ω ^τ φ;)) メータ:
	on \wedge $\overrightarrow{\nabla} \left(\sigma(\omega^{\varsigma} \varphi_{i}) \right) = \overrightarrow{\nabla} \left(\frac{1}{1 + c \varphi(-\omega^{\varsigma} \varphi_{i})} \right)$
	= (Ne comp (-w di))
	(1+ exp (-wT 4;))2
	₹(wta;) cap(-wta;)
	= + (1+enp(-wit))2
	$= \phi_i \cdot \sigma(\omega^{\tau} \phi_i) \left(\Lambda - \sigma(\omega^{\tau} \phi_i) \right)$
	= d. y. (1-yi)
	$\overrightarrow{\nabla} E(\overrightarrow{\omega}) = \underbrace{\overrightarrow{\xi}}_{i} t_{i} \underbrace{q_{i} \gamma_{i} (1 - y_{i})}_{\gamma_{i}} \underline{\qquad (\lambda - t_{i})} \underbrace{q_{i} \gamma_{i} (1 - y_{i})}_{1 - y_{i}}$
	Xi 1-8:
	$= \sum_{i=1}^{N} t_i \phi_i (\Lambda - g_i) - (\Lambda - t_i) \phi_i y_i$
	= = + + (t; -ty, -y; +txy)
	ウモ(ボ)= と b (t:-yi)

Question 3:	Définissons d'abord la forction d'entropie:
	E = - P, log P1 - P2 log P2 - P3 log P3
	Nous avons à contrainte à respecter:
	P = 2 p
	Le fonction lagrangierne at définie conne suit:
	L = E + L(p, + p2 + p3 - 1) + p(p2 - 2p2)
	les probabilités qui manimisent l'entrepie vésifient:
	$\frac{\partial L}{\partial \rho_0} = -\log \rho_0 - 1 + k = \mu = 0 (1)$
	3L = log p2 -1 + 2 - 2 p = 0 (2)
	$\frac{\partial L}{\partial r_3} = -\log r_3 - 1 + \lambda = 6 (3)$
	DL = patpents-1-0 (4)
	<u>θL</u> = Pη - 2 P ₂ = 0 (5)

(1)
$$-(2) = 1$$
 - $\log p_x + \log p_x + 2\mu = 0$

=) - $\log (2p_x) + \log p_x + 3\mu = 0$

=) $\mu = \frac{1}{3}$

(e) Equation decisionet:

$$\frac{\partial L}{\partial p_x} = -\log p_x - \frac{2}{3} + \lambda = 0 \text{ (1)}$$

$$\frac{\partial L}{\partial p_x} = -\log p_x - \frac{2}{3} + \lambda = 0 \text{ (2)}$$

$$\frac{\partial L}{\partial p_x} = -\log p_y - \frac{5}{3} + \lambda = 0 \text{ (2)}$$

$$\frac{\partial L}{\partial p_x} = -\log p_y - \Lambda + \lambda = 0 \text{ (3)}$$

$$\frac{\partial L}{\partial p_x} = \log p_y - \Lambda + \lambda = 0 \text{ (4)}$$

$$\frac{\partial L}{\partial p_x} = p_x - 2p_x = 0 \text{ (5)}$$
(3) => $-\log (\Lambda - p_x) - 1 + \lambda = 0$
=> $-\log (\Lambda - 3p_x) - \Lambda + \lambda = 0$
=> $-\log (\Lambda - 3p_x) - \Lambda + \lambda = 0$
=> $-\log (\Lambda - 3p_x) - \Lambda + \lambda = 0$
=> $-\log (\Lambda - 3p_x) - \Lambda + \lambda = 0$

$\rho_{n} = \frac{2}{3 + 2^{4/3}}$
$\frac{1}{3+2^{\ell/3}}$ (where $\frac{1}{3+2^{\ell/3}}$
$\rho_3 = 1 - 3\rho_2 = 1 - \frac{3}{3 + 2^{2/3}}$
$\rho_{\rm D} = \frac{2^{1/3}}{3 + 2^{2/3}}$