一、填空题: (每空1分,共15分)

- 1. 一个二端元件,其上电压 u、电流 i 取关联参考方向,已知 u=20V,i=5A,则该二端元件______(产生/吸收) 100W 的电功率。

- 4. 线性电路线性性质的最重要体现就是______性和_____性,它们反映了电路中激励与响应的内在关系。

二、简单计算题: (每题5分,共40分)

1. 己知 i₁=3A, i₃=6A, i₅=8A, i₆=-2A, 求电流 i₂、i₄。

2. 己知 R_1 =3 Ω , R_2 =2 Ω , R_3 =5 Ω , u_{S1} =-4V, u_{S2} =6V, u_{S3} =5V。 求电位 V_a 。

3. 求如图二端电路的等效电阻 R。

4. 试计算如图电路中的电压 I。

5.	某二端电路的电压 u 与电流 i 取关联参考方向,已知 u=30sin(314t+54°)V, i=10cos(314t
	+24°)A, 试求该二端电路的等效阻抗 Z, 吸收的有功功率 P、无功功率 Q。

6. 如图所示电路中,R=4Ω,L=40mH,C=0. 25uF, $\overset{\bullet}{U}_s$ =2 \angle 20°V。求:1) 谐振频率 $_{\rm fo}$,品质因数 Q;2) 谐振时电路中的电流 I。

7. 如图所示互感电路中,已知 $L_1 \!\!=\!\! 0.4 H,\, L_2 \!\!=\!\! 2.5 H,\, M \!\!=\!\! 0.8 H,\, i_1 \!\!=\!\! i_2 \!\!=\!\! 10 sin 500 t\, mA,求 \, u_1$ 。

8. 试求如图二端口电路的 Z 参数 Z_{11} 、 Z_{12} 、 Z_{22} 。

三、分析计算题: (每题9分, 共45分)

(必须有较规范的步骤,否则扣分,只有答案者,该题得零分)

1. 如图所示电路,试用节点法求电流 I。

2. 如图所示电路,求电阻 R 为何值时它获得最大功率 P_m ,且 P_m 为多大?

3. 如图所示电路,试用网孔法求 4A 电流源发出的功率 $P_{\,\, \xi}$ 。

4. 如图所示电路,t=0 时将 S 合上,求 $t \ge 0$ 时的 i_1 、 i_L 、 u_L 。

5. 如图所示电路,已知 $\overset{\bullet}{U}_{s=50 \angle 0^{\circ} \mathrm{V}}$, $\overset{\bullet}{I_{s}}_{s=10 \angle 30^{\circ} \mathrm{A}}$, $\mathrm{X_{L=5}\,\Omega}$, $\mathrm{X_{C=3}\,\Omega}$,求 $\overset{\bullet}{U}$ 。

