Прости числа 1

Простите числа представляват интерес за много хора, от много дълго време. Освен това се появяват сравнително често на състезания по програмиране. Именно за това в настоящата задача ще трябва да напишете програма, която да отговаря на серия от различни типове заявки върху простите числа в интервала [2, 10^8].

Жокер: В задачи, подобни на тази се използва подхода precomputing. Идеята е веднъж, в началото на програмата да генерираме и запазим всички възможни отговори, за които очакваме да бъдем питани, след което за всяка заявка да извеждаме отговора с константна или логаритмична сложност. За да можем да отговаряме на заявките, предварително трябва да намерим всички прости числа в интервала [2; 10^8]. След което за повечето от тях ще прилагаме различни модификации на двоично търсене върху вече намерените прости числа (с логаритмична сложност), а за заявката за най-малък прост делител ще отговаряме с константна сложност. Важно е да се спомене, че в процеса на търсенето на простите числа и запазването им в масив те са сортирани в нарастващ ред, което ни позволява да използваме двоичното търсене.

Оптимизиран алгоритъм за намиране на прости числа:

Ще разгледаме сравнително прост алгоритъм за намиране на всички прости числа (по-големи от едно цели числа, които се делят само на себе си и на едно) в интервала [2;N]. Най-известния алгоритъм за тези цел е не без известния алгоритъм "Решето на Ератостен". ЗАДЪЛЖИТЕЛНО ПРОЧЕТЕТЕ ЗА "Решето на Ератостен" (Eratosten's Sieve) В ИНТЕРНЕТ, ИНАЧЕ ЩЕ ВИ Е ТРУДНО ДА РАЗБЕРЕТЕ ДОЛУОПИСАНИЯ АЛГОРИТЪМ. Той обаче има сложност O(NloglogN). Съществува линеен алгоритъм, който е над два пъти по-бърз, но негов недостатък е че заема памет от порядъка на N (както и "Решето на Ератостен"), което го прави неприложим за N > 10^8. Въпреки това той е особено полезен и поради един свой "страничен ефект" – факторизация (представяне на дадено число, като произведение само от прости числа) на всички числа в интервала [2;N], което може да бъде полезно в някои задачи.

Описание на алгоритъма: Алгоритъма се базира на теоремата, че всяко цяло число X, може да бъде представено по единствен уникален начин:

$$X = P_{min} \cdot I_{unique}$$

където P_{min} е най-малкото, просто число делящо X, а I_{unique} е единствено уникално

число. Доказателството е очевидно: Ясно е че най-малкото, просто число делящо X е конкретно уникално число. $I_{unique} = X / P_{min}$. Щом X и P_{min} са уникални, то следва, че и частното им е уникално.

Нека lp[] е масив, инициализиран с нули, в който за всяко і в интервала [2;N] ще пазим неговия най-малък прост делител, а намерените до момента прости числа ще пазим в масива pr∏.

За всяко і от 2 до N разглеждаме следните два случая:

lp[i] == 0 – това означава, че i е просто, следователно няма други делители, а оттук lp[i] = i, след което добавяме i в края на pr[].

 $lp[i] \neq 0$ – това означава, че і е съставно и неговия най-малък прост делител се явява lp[i].

За всяко просто число pr[j] <= lp[i] е вярно, че съществува съставно число $x_i = i * pr[j]$, за което pr[j] е най-малкия му прост делител, а i е уникално число, т.е. $lp[x_i] = pr[j]$. Ако pr[j] > lp[i], то уникалното представяне на x_i според горната теорема щеше да е $x_i = i * pr[j] = lp[i] * (i * pr[j] / lp[i])$ и i нямаше да е $l_{unique} = (i * pr[j] / lp[i])$ за това x_i , при което pr[j] > lp[i]. Използвайки това, запълваме всички възможни кратни на i $lp[x_i]$ елементи на lp[j], за които pr[j] <= lp[i], по следния начин: Въртим цикъл по j, докато j < pr.size() (броя на намерените прости числа до момента) и pr[j] <= lp[i] и i * pr[j] <= N. В цикъла маркираме, че числото $x_i = i * pr[j]$ не е просто и има най-малък прост делител pr[j], така: lp[i * pr[j]] = pr[j]. След края на изпълнението на гореописания алгоритъм масива pr[j] ще съдържа всички прости числа в интервала [2;N]

При изпълнение на заявките използувайте двоично търсене в масива pr[], чрез std::lower_bound(pr.begin(), pr.end(), SEARCHED_VALUE) или std::lower_bound(pr, pr + 100000000, SEARCHED_VALUE), ako pr[] е стандартен C/C++ масив.

Input Format

Разгледайте следващата таблица, описваща типовете заявки и очаквания отговор за всяка от тях:

Тип заявка	Очакван отговор				
Aab	Броя на простите числа в интервала [a, b].				
B k	Най-малкият прост делител на k.				
C k	1 - ако k е просто число и 0 в противен случай.				
D k	1 - ако k обърнато на обратно (след премахването на водещите нули, има такива) е просто число и 0 - в противен случай.				
E k	Най-близкото просто число до k. Ако две числа са еднакво близо до k, да се изведат и двете в нарастващ ред.				
F k	Броят на простите числа, по-малки от k.				
quit	Прекратяване изпълнението на програмата.				

Първият символ за всяка от командите може да е малка или главна латинска буква.

Constraints

Числата в заявките са в интервала [2, 10^8]

Output Format

За всяка заявка от поредния ред от входните данни, изпечатайте отговорът за нея на нов ред.

Sample Input 0

A 3 7		
B 176		
C 95		
D 11		
E 5		
F 20		
E 6 quit		
quit		

Sample Output 0

