Intégrales généralisées

Exercice 2 Montrer que les intégrales suivantes sont semi-convergentes :

Exercice 2 Montrer que les integrales suivantes sont semi-convergentes :
$$\int_{\pi}^{+\infty} \frac{\cos x}{\sqrt{x}} dx \qquad \int_{-1}^{+\infty} \cos(x^2) dx \qquad \int_{\pi}^{+\infty} x^2 \sin(x^4) dx \qquad \int_{\pi}^{+\infty} \frac{e^{i\sqrt{x}}}{x} dx$$

Exercice 3 Pour quelles valeurs réelles de
$$\alpha$$
 et β réelles les intégrales suivantes convergent-elles ?
$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}(x-1)^{\beta}} \qquad \int_{0}^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx \qquad \int_{0}^{+\infty} \frac{x^{\alpha}e^{-x}}{1+x^{\beta}} dx \qquad \int_{0}^{+\infty} \frac{dx}{x^{\alpha}+x^{\beta}} dx$$

Exercice 4 1°. Montrer que l'intégrale $\int_0^\infty \frac{\ln x}{1+x^2} dx$ est convergente et la calculer.

Exercice 5 1°. Montrer que l'intégrale $I = \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt$ est convergente.

2°. Pour
$$\epsilon > 0$$
, on pose $I_{\epsilon} = \int_{\epsilon}^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt$. Montrer que $I_{\epsilon} = \int_{\epsilon}^{2\epsilon} \frac{e^{-t}}{t} dt$. 3°. Déterminer $\lim_{\epsilon \to 0_{+}} I_{\epsilon}$ et la valeur exacte de I .

Exercice 6 1°. Justifier la convergence de l'intégrale $I = \int_0^\infty \frac{\sin^3(t)}{t^2} dt$.

2°. Montrer que, pour
$$t \in \mathbb{R}$$
, $\sin(3t) = 3\sin(t) - 4\sin^3(t)$.
3°. Montre que pour tout $x > 0$, $\int_x^{+\infty} \frac{\sin^3(t)}{t^2} dt = \frac{3}{4} \int_x^{3x} \frac{\sin(t)}{t^2} dt$.

Exercice 7 Soit $\lambda \in \mathbb{R}$.

- 1°. Déterminer l'ensemble D des valeurs de λ telles que l'intégrale $I(\lambda) = \int_0^{+\infty} \frac{dt}{(1+t^2)(1+t^{\lambda})}$
- 2°. Montrer que pour tout $\lambda \in D$, $I(\lambda) = \frac{\pi}{4}$.

Exercice 8 Soient les fonctions

$$u: x \mapsto \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt, \qquad v: x \mapsto \left(\int_0^x e^{-t^2} dt\right)^2.$$

1°. Montrer que u est dérivable sur $\mathbb R$ et que :

$$\forall x \in \mathbb{R}, \ u'(x) = -2x \int_0^1 e^{-x^2(1+t^2)} dt.$$

- 2°. En déduire que la fonction u+v est constante sur sur \mathbb{R} .
- 3°. Calculer (u+v)(0) et $\lim_{x\to +\infty} u(x)$.
- 4°. En déduire la valeur de $I = \int_{c}^{+\infty} e^{-t^2} dt$.

Exercice 9 Etudier la convergence de $I = \int_{1}^{+\infty} \frac{(\sin t) dt}{t^{\alpha}}$ en fonction de α .

- **Exercice 10** Soit f une fonction continue bornée sur $[0, +\infty[$. 1°. Montrer que les intégrales $\int_0^{+\infty} \frac{f(x)}{1+x^2} dx$ et $\int_0^{+\infty} \frac{f(\frac{1}{x})}{1+x^2} dx$ sont convergentes.

 - 3°. Soit $n \ge 0$. Calculer $\int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^n)} dx$ et $\int_0^{+\infty} \frac{x^n}{(1+x^2)(1+x^n)} dx$.

- **Exercice 11** On pose $I = \int_0^{+\infty} \sin(t^2) dt$ et $J = \int_0^{+\infty} \frac{\sin(u)}{2\sqrt{u}} du$. 1°. Montrer que les intégrales I et J sont de même nature. 2°. En considérant $f(x) = \int_0^x \frac{\sin(u)}{2\sqrt{u}} du$ et en procédant à une intégration par parties, montrer que J converge.
 - 3° . En déduire que I est convergente et que I = J.

Exercice 12 Etudier l'intégrabilité sur]0,1] de la fonction : $x \mapsto \frac{1}{x} - \left| \frac{1}{x} \right|$.

Exercice 13 Soit $f \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R})$

On suppose que f et f' sont intégrables sur $[0, +\infty[$. Montrer que f tend vers 0 en $+\infty$. On suppose que f^2 et f'^2 sont intégrables sur $[0, +\infty[$. Déterminer la limite de f en $+\infty$.

Exercice 14 Soit la fonction f définie sur $[0, +\infty[$ par :

$$f(x) = \begin{cases} n^4t + n - n^5 & \text{si } t \in [n - \frac{1}{n^3}, n], \ n \ge 2\\ -n^4t + n + n^5 & \text{si } t \in [n, n + \frac{1}{n^3}], \ n \ge 2\\ 0 & \text{sinon} \end{cases}$$

Montrer que f est continue, non bornée et intégrable sur $[0, +\infty[$.

Exercice 15 Soit une fonction f à valeurs réelles continue et intégrable sur $[1, +\infty[$, telle que $\int_{1}^{+\infty} f(x)dx = 0 \text{ et } \int_{1}^{+\infty} |f(x)|dx = 1.$

 $\text{Montrer que la fonction } x \mapsto \frac{f(x)}{x} \text{ est intégrable sur } [1,+\infty[\text{ et que } \Big| \int_{1}^{+\infty} \frac{f(x)}{x} dx \Big| \leq \frac{1}{2}.$

Exercice 16 Pour x > 0, on pose $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 1°. Montrer que la fonction Γ est définie, sur $]0, +\infty[$.
- 2°. Montrer que $\forall x \in]0, +\infty[, \Gamma(x+1) = x\Gamma(x).$
- 3° . Calculer $\Gamma(1)$. En déduire les valeurs de Γ sur \mathbb{N}^* .
- 4°. On rappelle que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$. Montrer que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

En déduire une expression de $\Gamma\left(\frac{1}{2}+n\right)$ pour $n\in\mathbb{N}.$