Automatic Control

Analysis of the step response of prototype 1st and 2nd order systems

Effect of additional poles, zeros and delays on the step response of prototype systems

Automatic Control – M. Canale

Transfer function

Consider a stable first order system described by the transfer function

$$H(s) = \frac{K^*}{s - p} \rightarrow \begin{cases} K^* \rightarrow \text{gain} \\ p \rightarrow \text{pole} \end{cases}$$

Let

$$\tau = \left| \frac{1}{\rho} \right|, K = -\frac{K^*}{\rho}$$

The transfer fuction can be rewritten in the following form

$$H(s) = \frac{K}{1 + \tau s} \rightarrow \begin{cases} K \rightarrow \text{ dc gain} \\ \tau \rightarrow \text{ time constant} \end{cases}$$

Step response analysis of prototype 1st order systems

Automatic Control – M. Canale

Step response of a first order system: analytical form

In the presence of a step input u(t) with amplitude \bar{u} :

$$u(t) = \overline{u}\,\varepsilon(t) \stackrel{\mathcal{L}}{\rightarrow} U(s) = \frac{\overline{u}}{s}$$

the output response of the first order system

$$H(s) = \frac{K}{1 + \tau s}$$

can be computed as:

$$Y(s) = H(s)U(s) = \frac{K}{1+\tau s} \frac{\overline{u}}{s} \xrightarrow{\mathcal{L}^{-1}} Y(t) = \overline{u} K\left(1-e^{-\frac{t}{\tau}}\right), t \geq 0$$

Step response of a 1st order system: graphical course

Automatic Control – M. Canale

AC L07 5

10% ÷ 90% rise time

10% \div **90% rise time** t_r' is the time required to the step response to go from the 10% to the 90% of the steady-state value $y = y \infty$

Steady state value

Steady state value

 y_{∞} is the asymptotic value of the output response y(t) as $t \to \infty$

$$y_{\infty} = \lim_{t \to \infty} y(t) =$$

$$= \lim_{s \to 0} s \cdot Y(s) =$$

$$= \lim_{s \to 0} s \cdot \frac{K}{1 + \tau s} \frac{\overline{u}}{s} =$$

$$= K \cdot \overline{u}$$

Automatic Control – M. Canale

AC_L07 6

Settling time

The **settling time** $\pm \alpha$ % $t_{s,\alpha\%}$ is the amount of time required to the step response to reach and stay within the $\pm \alpha$ % of the steady- state value y_{∞} . Typical values of α are: $\alpha = 1$, $\alpha = 2$, $\alpha = 5$

Automatic Control – M. Canale

AC L07 9

Time constant evaluation

Automatic Control – M. Canale

AC L07 10

Derivation of a 1st order model through a graphical procedure

Problem formulation

Consider the 1st order system

$$H(s) = \frac{K}{1 + \tau s}$$

compute K and τ so that its output response in the presence of a step input of unitary amplitude ($\bar{u}=1$) is the one reported in the picture below.

you get:

$$K = \frac{Y_{\infty}}{II} = 3$$

Automatic Control – M. Canale

AC_L07 13

Automatic Control – M. Canale

AC L07 14

$$\tau = 0.75/3 = 0.25 \text{ s}$$

Step response analysis of prototype 2nd order systems

Transfer function

Consider a stable second order system described by the transfer function.

$$H(s) = K \frac{1}{1 + 2\frac{\zeta}{\omega_n} s + \frac{s^2}{\omega_n^2}} = K \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\Rightarrow \begin{cases} K \to \text{ gain} \\ \omega_n \to \text{ natural frequency} \\ 0 < \zeta < 1 \to \text{ damping ratio} \end{cases}$$

$$\tau = \frac{1}{\zeta\omega_n} \to \text{ time constant}$$

Automatic Control – M. Canale

AC_L07 17

Step response of a 2nd order system: analytical form

In the presence of a step input u(t) with amplitude \bar{u}

$$u(t) = \overline{u}\varepsilon(t) \stackrel{\mathcal{L}}{\rightarrow} U(s) = \frac{\overline{u}}{s}$$

the output response of the second order system

$$H(s) = K \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

can be computed as:

$$Y(s) = H(s)U(s) = K \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \frac{\overline{u}}{s} \xrightarrow{\zeta^2} y(t) =$$

$$= \overline{u} K \left(1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_n t} \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \arccos\left(\zeta\right)\right) \right), t \ge 0$$

Natural frequency and damping coefficient

Natural frequency (ω_n) and damping coefficient (ζ) of a couple of complex conjugate poles $\sigma_0 \pm j\omega_0$ are defined as follows.

$$\sigma_0 = -\zeta \omega_n \qquad \omega_0 = \omega_n \sqrt{(1 - \zeta^2)}$$

$$\omega_n = \sqrt{(\sigma_0^2 + \omega_0^2)} \qquad \zeta = -\sigma_0 / \sqrt{(\sigma_0^2 + \omega_0^2)}$$

$$\omega_n > 0 \qquad |\zeta| < 1$$

Automatic Control – M. Canale

AC_L07 18

Step response of a 2nd order system: graphical course

$$y(t) = \overline{u} \, K \left(1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \left(\omega_n \sqrt{1 - \zeta^2} t + \arccos(\zeta) \right) \right), t \ge 0$$

Steady state and peak values

Steady state value y_{∞} is the asymptotic value of the output response y(t) as $t \to \infty$

$$y_{\infty} = \lim_{t \to \infty} y(t) = \lim_{s \to 0} s \cdot Y(s) =$$

$$= \lim_{s \to 0} s \cdot K \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \frac{\overline{u}}{s} = K \cdot \overline{u}$$

Peak value y_{max} is the maximum value of y(t).

$$y_{\text{max}} = \max_{t} y(t)$$

Peak time \hat{t} is the time instant for which

$$y_{\text{max}} = y(\hat{t})$$

Automatic Control - M. Canale

AC_L07 21

AC L07 23

Maximum overshoot

• The **maximum overshoot** \hat{s} is defined as $\hat{s} = \frac{Y_{\text{max}} - Y_{\infty}}{Y_{\infty}}$

• The quantity
$$\hat{s}$$
 can be also expressed in percentual terms $\hat{s}_{\%}$

$$\hat{s}_{\%} = 100 \cdot \hat{s}$$

 In practice, the same symbol ŝ is used to indicate ŝ_{0/0}

Steady state and peak values

Automatic Control – M. Canale

AC L07 22

Rise time

• The **rise time** t_r is the time required to the step response to reach for the first time the steady state value $\rightarrow y = y_{\infty}$.

Automatic Control – M. Canale

AC_L07 24

10-90% rise time

• The **10%** \div **90% rise time** t_r' is the time required to the step response to go from the 10% to the 90% of the steady-state value $y = y_{\infty}$.

Automatic Control – M. Canale

AC_L07 25

AC L07 27

Step response parameters vs. ω_{n} and ζ

In a second order system of the form

$$H(s) = K \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

the parameters of the step response just defined can be expressed as functions of ω_{n} and ζ

$$\hat{S} = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}, \quad \hat{t} = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$$

$$t_r = \frac{1}{\omega_n \sqrt{1-\zeta^2}} (\pi - \arccos(\zeta)), \quad t_r' \approx \frac{2.16\zeta + 0.6}{\omega_n}$$

$$t_{s,\alpha\%} = \frac{1}{\omega_n \zeta} \ln(\alpha/100)^{-1}$$

Settling time

• The **settling time** $\pm \alpha$ % $t_{s,\alpha\%}$ is the amount of time required to the step response to reach and stay within the $\pm \alpha$ % of the steady-state value y_{α} . Typical values of α are: $\alpha = 1$, $\alpha = 2$, $\alpha = 5$.

Automatic Control – M. Canale

AC L07 26

Analysis vs. ζ

Automatic Control – M. Canale

AC_L07 29

Special case $\zeta = 1$ (2/3)

The graphical behavior is:

Note the absence of oscillations and overshoot in the transient phase before reaching the steady state value y_∞

Special case
$$\zeta = 1$$
 (1/3)

When $\zeta = 1$, the transfer function:

$$H(s) = K \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

becomes

$$H(s) = \frac{K}{(1+\tau s)^2}, \tau = \frac{1}{\omega_n}$$
 \rightarrow two coincident \mathbb{R} poles in $s = -1/\tau$

The output response in the presence of a step input of amplitude \bar{u} is

$$y(t) = \overline{u} \cdot K\left(1 - e^{-\frac{t}{\tau}} - \frac{t}{\tau}e^{-\frac{t}{\tau}}\right), t \geq 0$$

Automatic Control – M. Canale

AC_L07 30

Special case $\zeta = 1$ (3/3)

The response characteristics can be studied through the following parameters:

- Steady state value y_{∞}
- Rise time 10% 90% t'_r
- Settling time $\pm \varepsilon\% t_{s, \varepsilon\%}$

The table below provides approximate relationships between the response parameters y_{∞} , t_r' , $t_{s,\,\epsilon\%}$ and the transfer function parameters K and τ

Y∞	t' _r	<i>t</i> _{s, 5%}	<i>t</i> _{s, 1%}
ū·K	≈ 3.36· <i>τ</i>	≈ 4.74 · <i>τ</i>	≈ 6.64· <i>τ</i>

Case $\zeta = 1$ graphical behavior vs. τ

 $\zeta = 1$ $\tau = 2, 1, 0.5, 0.25$ s

Automatic Control – M. Canale

AC L07 33

Automatic Control - M. Canale

Problem formulation

Consider the 2nd order system:

$$H(s) = K \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

compute K, $\zeta \in \omega_n$ so that its output response in the presence of a step input of unitary amplitude ($\bar{u} = 1$) is the one reported in the picture below

Derivation of a 2nd order model

through a graphical procedure

Since $y_{\infty} = K \cdot \overline{u} = 5$, $\overline{u} = 1$

you get

$$K = \frac{Y_{\infty}}{II} = 5$$

Computation of $\zeta(1/2)$

Since
$$y_{\infty} = 5$$
, $y_{\text{max}} = 5.81$

the maximum overshoot is given by: $\hat{s} = \frac{Y_{\text{max}} - Y_{\infty}}{Y_{\infty}} = 0.162$

Automatic Control – M. Canale

AC L07 37

AC L07 39

Computation of $\zeta(2/2)$

Recalling the maximum overshoot expression as a function of ζ :

$$\hat{\boldsymbol{\varsigma}} = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}} \Rightarrow \zeta = \frac{\left|\ln(\hat{\boldsymbol{\varsigma}})\right|}{\sqrt{\pi^2 + \ln^2(\hat{\boldsymbol{\varsigma}})}}$$

then:

$$\zeta = \frac{\left|\ln(\hat{s})\right|}{\sqrt{\pi^2 + \ln^2(\hat{s})}} \underset{\hat{s}=0.162}{\approx} 0.5$$

Automatic Control – M. Canale

AC_L07 38

Using the peak time expression as a function of of ω_{n} and ζ :

$$\hat{t} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \Rightarrow \omega_n = \frac{\pi}{\hat{t} \sqrt{1 - \zeta^2}} = \frac{2 \text{ rad/s}}{\zeta_{=0.5, \hat{t}=1.81}}$$

Effect of additional poles, zeros and delays on the step response of prototype systems

Effect of an additional pole

Automatic Control – M. Canale

2nd order system with an additional real negative pole

$$y(t) = 1 + 1.1547e^{-0.5t} \cos(0.866t + 2.618) \varepsilon(t)$$

Time course of the response

Time course of the response modes

2nd order system with an additional real negative pole

Consider the following prototype second order system

$$H(s) = \frac{K}{1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \rightarrow \begin{cases} K = 1 \\ \omega_n = 1 \\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s,} \begin{cases} \sigma_0 = -0.5 \\ \omega_0 = 0.866 = \frac{\sqrt{3}}{2} \end{cases}$$

The corresponding step response is given by

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$

Automatic Control – M. Canale

AC L07 42

2nd order system with an additional real negative pole

Example 1: a prototype second order system with an additional real negative pole with a bigger time constant

$$H(s) = \frac{K}{\left(1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}\right)\left(1 - \frac{s}{\rho}\right)}$$

$$\rightarrow \begin{cases} K = 1 \\ \omega_n = 1 \\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s, } \begin{cases} \rho = -0.2 \\ \tau_\rho = \left|\frac{1}{\rho}\right| = 5 \text{ s} \end{cases}$$

The corresponding step response is given by

$$y(t) = (1 - 1.19e^{-0.2t} + 0.252e^{-0.5t}\cos(0.866t + 0.7137))\varepsilon(t)$$

Automatic Control – M. Canale

AC L07 43

Automatic Control – M. Canale

AC_L07 44

2nd order system with an additional real negative pole

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$

$$y(t) = (1 + 1.19e^{-0.2t} + 0.252e^{-0.5t}\cos(0.866t + 0.7137))\varepsilon(t)$$

Time course of the response (note the presence of a significant **tail effect** during the transient extinction).

Time course of the response modes.

Automatic Control – M. Canale

AC_L07 45

2nd order system with an additional real negative pole

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$

$$y(t) = [1] \frac{1}{1}e^{-t} + 1.1547e^{-0.5t}\cos(0.866t + 1.5708))\varepsilon(t)$$

Time course of the response (note the presence of a small **tail effect** during the transient extinction).

Time course of the response modes.

2nd order system with an additional real negative pole

Example 2: a prototype second order system with an additional real negative pole with a similar time constant

$$H(s) = \frac{K}{\left(1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}\right)\left(1 - \frac{s}{p}\right)}$$

$$\Rightarrow \begin{cases} K = 1 \\ \omega_n = 1 \\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s, } \begin{cases} p = -1 \\ \tau_p = \left|\frac{1}{p}\right| = 1 \text{ s} \end{cases}$$

The corresponding step response is given by

$$y(t) = (1 - e^{-t} + 1.1547e^{-0.5t}\cos(0.866t + 1.5708))\varepsilon(t)$$

Automatic Control – M. Canale

AC L07 46

2nd order system with an additional real negative pole

Example 3: a prototype second order system with an additional real negative pole with a smaller time constant

$$H(s) = \frac{K}{\left(1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}\right)\left(1 - \frac{s}{p}\right)}$$
Example $3 \to \begin{cases} K = 1\\ \omega_n = 1\\ \zeta = 0.5 \end{cases}$, $\tau = \frac{1}{\zeta\omega_n} = 2$ s, $\tau = \frac{1}{p} = 0.1$ s

The corresponding step response is given by

$$y(t) = (1 - 0.011e^{-10t} + 1.2105e^{-0.5t}\cos(0.866t + 2.5271))\varepsilon(t)$$

2nd order system with an additional real negative pole

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$

$$y(t) = (1 + 0.011e^{-10t} + 1.2105e^{-0.5t}\cos(0.866t + 2.5271))\varepsilon(t)$$

Time course of the response (no tail effect).

Time course of the response modes.

Automatic Control – M. Canale

AC_L07 49

2nd order system with an additional real negative zero

Example 1: a prototype second order system with an additional real negative zero placed at a lower frequency wrt ω_n

$$H(s) = \frac{K\left(1 - \frac{s}{z}\right)}{1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \rightarrow \begin{cases} K = 1\\ \omega_n = 1\\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s, } z = -0.2$$

The corresponding step response is given by

$$y(t) = (1 + 5.2915e^{-0.5t}\cos(0.866t - 1.7609))\varepsilon(t)$$

Effect of an additional negative zero

Automatic Control – M. Canale

2nd order system with an additional real negative zero

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$
$$y(t) = (1 + 5.2915e^{-0.5t}\cos(0.866t - 1.7609))\varepsilon(t)$$

Time course of the response (note a significant overshoot increase).

2 1 0 -1 0 5 10 1

Time course of the response modes.

2nd order system with an additional real negative zero

Example 2: a prototype second order system with an additional real negative zero placed at a similar frequency wrt ω_n

$$H(s) = \frac{K\left(1 - \frac{s}{z}\right)}{1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \rightarrow \begin{cases} K = 1\\ \omega_n = 1\\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s, } z = -1$$

The corresponding step response is given by

$$y(t) = (1+1.1547e^{-0.5t}\cos(0.866t-2.618))\varepsilon(t)$$

Automatic Control - M. Canale

AC_L07 53

2nd order system with an additional real negative zero

Example 3: a prototype second order system with an additional real negative zero placed at a higher frequency wrt ω_n

$$H(s) = \frac{K\left(1 - \frac{s}{z}\right)}{1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \rightarrow \begin{cases} K = 1\\ \omega_n = 1\\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s,} z = -10$$

The corresponding step response is given by

$$y(t) = (1 + 1.015e^{-0.5t}\cos(0.866t + 2.7069))\varepsilon(t)$$

2nd order system with an additional real negative zero

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$
$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t - 2.618))\varepsilon(t)$$

Time course of the response (note a slight overshoot increase).

Time course of the response modes.

Automatic Control – M. Canale

AC L07 54

2nd order system with an additional real negative zero

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$

$$y(t) = (1 + 1.015e^{-0.5t}\cos(0.866t + 2.7069))\varepsilon(t)$$

Time course of the response (note a negligible overshoot increase).

1 0.5 0 -0.5 -1 0 5 10 15 t (s)

Time course of the response modes.

Effect of an additional positive zero

Automatic Control – M. Canale

2nd order system with an additional real positive zero

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$
$$y(t) = (1 + 6.4291e^{-0.5t}\cos(0.866t + 1.7270))\varepsilon(t)$$

Time course of the response (note the significant **inverse response** behavior).

Time course of the response modes.

2nd order system with an additional real positive zero

Example 1: a prototype second order system with an additional real positive zero(*) placed at a lower frequency wrt ω_n

$$H(s) = \frac{K\left(1 - \frac{s}{z}\right)}{1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \rightarrow \begin{cases} K = 1\\ \omega_n = 1\\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s, } z = 0.2$$

The corresponding step response is given by

$$y(t) = (1 + 6.4291e^{-0.5t}\cos(0.866t + 1.7270))\varepsilon(t)$$

(*) zeros with positive real part are referred to as **nonminimum phase zeros**

Automatic Control – M. Canale

AC_L07 58

2nd order system with an additional real positive zero

Example 2: a prototype second order system with an additional real positive zero placed at a similar frequency wrt ω_{σ}

$$H(s) = \frac{K\left(1 - \frac{s}{z}\right)}{1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \rightarrow \begin{cases} K = 1\\ \omega_n = 1\\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s, } z = 1$$

The corresponding step response is given by

$$y(t) = (1 + 2e^{-0.5t}\cos(0.866t + 2.0944))\varepsilon(t)$$

2nd order system with an additional real positive zero

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$
$$y(t) = (1 + 2e^{-0.5t}\cos(0.866t + 2.0944))\varepsilon(t)$$

t (s)

Time course of the response (note the inverse response behavior).

Time course of the response modes.

Automatic Control – M. Canale

AC L07 61

2nd order system with an additional real positive zero

$$y(t) = (1 + 1.1547e^{-0.5t}\cos(0.866t + 2.618))\varepsilon(t)$$
$$y(t) = (1 + 1.2166e^{-0.5t}\cos(0.866t + 2.5357))\varepsilon(t)$$

Time course of the response (note the negligible inverse response behavior).

t (s)

1
0.5
0
-0.5
-1
0
5
10
15

Time course of the response modes.

2nd order system with an additional real positive zero

Example 3: a prototype second order system with an additional real positive zero placed at a higher frequency wrt ω_n

$$H(s) = \frac{K\left(1 - \frac{s}{z}\right)}{1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \rightarrow \begin{cases} K = 1\\ \omega_n = 1\\ \zeta = 0.5 \end{cases}, \tau = \frac{1}{\zeta\omega_n} = 2 \text{ s,} z = 10$$

The corresponding step response is given by

$$y(t) = (1 + 1.2166e^{-0.5t}\cos(0.866t + 2.5357))\varepsilon(t)$$

Automatic Control – M. Canale

AC L07 62

Effects of additional zeros on prototype step response

The step response of a stable LTI system with tf of the form

$$\widetilde{H}(s) = H(s)\left(1 - \frac{s}{z}\right) = H(s) - \frac{s}{z}H(s)$$

is always given by the algebraic sum of the step response of H(s) and of its time derivative multiplied by -1/z.

If |z| is "big", the step response of H(s) dominates over the one of -s/z H(s)...

at the opposite, if |z| is "small", the step response of -s/z H(s) dominates over the one of H(s).

Effects of additional zeros on prototype step response

$$\tilde{H}(s) = H(s)\left(1 - \frac{s}{z}\right) = H(s) - \frac{s}{z}H(s)$$

when |z| is "small", the step response of -s/zH(s) dominates over the one of H(s).

In particular, when the response of H(s) is strongly monotonic increasing during the transient:

- if z < 0 (i.e. real negative zero), the time derivative term introduces an increase of the maximum overshoot (the smaller is |z|, the bigger is this effect).
- if z > 0 (i.e. real positive zero), the behaviors of -s/z H(s) and H(s) have opposite signs and the time derivative term introduces an **inverse response** behavior during the initial part of the transient (the smaller is |z|, the bigger is this effect).

Automatic Control - M. Canale

AC_L07 65

Time delay in dynamic systems

Time delay occurs in dynamic systems when there is a delay between the commanded input and the start of the output response.

For example, consider a heating system that operates by heating water for pipeline distribution to radiators at distant locations. Since the hot water must flow through the line, the radiators will not begin to get hot until after a certain time delay. Thus, the time between the command for more heat and the beginning of the rise in temperature at a distant location along the pipeline is the time delay.

Effect of time delay

Automatic Control – M. Canale

Automatic Control – M. Canale

Time delay in dynamic systems

In the picture below there is a delay of 2 s between the step commanded output (red) and the output response (blue).

Modeling time delay

An LTI system whose dynamic behavior is described by a tf H(s) in the presence of a time delay of θ s can be represented as

$$H_{delay}(s) = H(s)e^{-\theta s}$$

The corresponding state space representation is

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t - \theta) \\ y(t) = Cx(t) + Du(t - \theta) \end{cases}$$

Automatic Control – M. Canale

AC_L07 69

Padé approximation of time delay

$$H_{delay}(s) = H(s)e^{-\theta s}$$

Note that the transfer function of an LTI system with delay is not real rational. Example

$$H_{delay}(s) = \frac{e^{-2s}}{s^2 + s + 1}$$

In order to obtain a real rational representation of a transfer function with delay, the following functions referred to as **Padé approximation** of 1st and 2nd order respectively are employed to approximate the time delay term $e^{-\theta s}$.

$$e^{-\theta s} pprox rac{1-rac{ heta}{2}s}{1+rac{ heta}{2}s}, \quad e^{-\theta s} pprox rac{1-rac{ heta}{2}s+rac{ heta^2s^2}{12}}{1+rac{ heta}{2}s+rac{ heta^2s^2}{12}}$$

Transfer function with delay

• Definition of transfer function with delay in MatLab

$$H(s) = \frac{e^{-2s}}{s^2 + s + 1}$$

• Define the Laplace variabile s using tf statement

>> s=tf('s');

Define

 $>> H=1/(s^2+s+1);$

>> H.inputdelay=2;

Transfer function:

Automatic Control – M. Canale

AC L07 70

Padé approximation of time delay

Example:
$$H(s) = \frac{e^{-2s}}{s^2 + s + 1}$$

$$H_1(s) = \frac{1}{s^2 + s + 1} \cdot \frac{1 - s}{1 + s}$$

$$H_2(s) = \frac{1}{s^2 + s + 1} \cdot \frac{1 - s + \frac{s^2}{3}}{1 + s + \frac{s^2}{3}}$$

PADE Pade approximation of time delays.

Automatic Control – M. Canale

AC L07 73