

Chapter 5

MATERIAL TECHNOLOGY

OUTLINE

1	Introduction to Materials							
2	Types of Materials							
3	Material Properties							
4	Material Selection							
5	Consecutive Exercise							

INTRODUCTION TO MATERIALS

MATERIALS

Materials may be defined as substance of which something is composed or made of.

Production and processing of materials constitute a large part of our economy

OVERVIEW OF MATERIALS

Main groups of materials

F	Ferrous Materials							
_	Iron Alloys							
_	Iron Alloys							
	Wrought Iron							
	Alloys / Steels							
	Casting Alloys							
	■Cast steel							
	Malleable cast							
	iron							

Chilled cast

iron

Cast iron

Non-Ferrous Metals

- Aluminum
- Beryllium
- Chrome
- Copper
- Gallium
- Germanium
- Gold
- Indium
- Lead
- Magnesium
- Mercury
- Nickel
- Platinum
- Silver
- Silicon
- Tantalum
- Tin/Pewter
- Titanium
- Tungsten/Wolfram
- Zinc

Powder and Sintered Materials

- Filter materials
- Friction materials
- Self-lubrication bearing materials
- Sintered ferrous materials
- Sintered superalloys
- Contact materials
- Sintered magnetic materials
- Carbides
- Non-metallic hard materials

Non-Metallic Materials

- Plastics
 - Polymerisates
 - Polycondensates
 - Polyadducts
 - Cellulose derivatives
- Wood
 - Solid wood
 - Veneer
 - Fiberboard
 - Chipboard
 - Composite panel
- Minerals
 - Natural stone
 - Mortar and concrete
 - Mineral binders
 - Ceramic
 - Technical glass

FERROUS MATERIALS

	Ferrous Materials												
Sintered Iron	Wrought Iron Alloys / Steel Casting Alloys												
	Construction steel	Steels for special heat treatment	Steel for tools	Steels for thermal stress	Steels for corrosive stress	Steels w/ special characteristics	Cast steel	Chilled- cast iron	Cast iron	Malle- able cast iron			
	General construction steel Building construction steel Prestressing steel Wire steel Rail steel	Case hardening steel Tempered steel Steel for dip hardening Nitriding steel	Tool steel High-speed steel Cold-working steel Hot-working steel	Boiler-construction steel Linepipe steel Creep-resistant steel High-temperature steel Heat-resistant steel Valve steel Cryogenic steel	Corrosion-resistant steel Weather-resistant steel	Magnetic steels Compressed hydrogen resistant steel Free-cutting steel Rolling bearing steel Spring steel	unalloyed alloyed High temperature Heat resistant corrosion-resistant	Solid chilled-cast iron Shell chilled-cast iron alloyed chilled-cast iron	with flake graphite with spheroidal graphite Alloyed cast iron				

An alloy is a combination of metals or of a metal and another element. Alloys are defined by a metallic bonding character.

Alloy	Composition	Properties	Uses
Bronze	• 90% copper • 10% tin	Hard and strong Doesn't corrode easily Has shiny surface	To build statues and monuments. In the making of medals, swords and artistic materials.
Brass	• 70% copper • 30% zinc	Harder than copper	In the making of musical instruments and kitchenware.
Steel	• 99% iron • 1% carbon	Hard and strong	 In the construction of building and bridges. In the building of the body of cars and railway tracks.
Stainless steel	• 74% iron • 8% carbon • 18% chromium	Shiny Strong Doesn't rust	To make cutlery and surgical instruments.
Duralumin	• 93% aluminum • 3% copper • 3% magnesium • 1% manganese	Light Strong	To make the body of aeroplanes and bullet trains.
Pewter	• 96% tin • 3% copper • 1% antimony	Luster Shiny Strong	In the making of souvenirs.

An alloy may be a solid solution of metal elements (a single phase) or a mixture of metallic phases (two or more solutions).

STEEL GRADES

Steel grades classify various steels by their composition and physical properties

SAE designation	Туре
1xxx	Carbon steels
2xxx	Nickel steels
3xxx	Nickel-chromium steels
4xxx	Molybdenum steels
5xxx	Chromium steels
6xxx	Chromium-vanadium steels
7xxx	Tungsten steels
8xxx	Nickel-chromium- molybdenum steels
9xxx	Silicon-manganese steels

10xx	Plain carbon (Mn 1.00% max.)
11xx	Resulfurized
12xx	Resulfurized and rephosphorized
15xx	Plain Carbon (Mn 1.00-1.65% max.)

ALUMINUM ALLOYS

Aluminium alloys are alloys in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin and zinc.

Series Number	Alloying Elements	Alloy Category	Typical Applications
1XXX	Aluminum	Commercially Pure	Electrical, Power Grid & Transmission
2XXX	Copper	Heat-Treatable	Aircraft, Cylinders and Pistons
3XXX	Manganese	Non Heat- Treatable	Coocking Utensils, Beverage Cans
4XXX	Silicon	Non Heat- Treatable	Structural and Automotive
5XXX	Magnesium	Non Heat- Treatable	Storage tanks, Marine, Pressure vessels
6XXX	Magnesium & Silicon	Heat-Treatable	Structural and Automotive
7XXX	Zinc	Heat-Treatable	Aircraft

MATERIAL VARIETY IN CARS

Plastics

Steel

Aluminum

Fiberglass

Carbon Fiber

Leather

Magnesium

Titanium

MATERIALS IN CAR MANUFACTURING

TYPES OF MATERIALS

COMBINATION OF MATERIALS

Based on chemical make up and atomic structure, solid materials can be combined to form new materials

Materials have properties that make them useful in structure, machines, devices, products, and systems.

METALS

Composed of one or more metallic elements, e.g. iron, copper, aluminum, in bulk or powder form

- Metals are inorganic and crystalline in nature
- Metallic element may combine with nonmetallic elements, e.g. Silicon Carbide, Iron Oxide
- High strength and deformability

Good thermal and electric conductors

CERAMICS

Metallic and nonmetallic elements are chemically bonded together.

- Inorganic but can be either crystalline, non-crystalline or mixture of both.
- high hardness, abrasion resistance, brittleness and chemical inertness
- Categorized in oxide and nonoxide ceramics
- Examples:
 - Porcelain
 - Glass
 - Silicon nitride.

Ceramics are typically insulative and more resistant to high temperatures and harsh environments than metals and polymers

POLYMERS

Mainly organic substances and derivatives of carbon and hydrogen.

- 3 categories
 - thermoplastic polymers
 - thermosetting polymers
 - Elastomers (rubbers)
- Most plastic polymers are light in weight and soft (compared to metals)
- Polymer materials have typically low densities and may be extremely flexible
- Examples
 - Polyvinyl Chloride (PVC)
 - Polyester, etc.
- Applications:
 - Appliances
 - DVDs
 - Fabrics, etc.

Poor conductors of electricity and hence used as insulators

COMPOSITES

Composition of two or more materials in the first three categories, e.g. metals, ceramics and polymers, that has properties from its constituents

- Mixture of two or more materials.
- Consists of a filler material and a binding material
- Materials only bond, will not dissolve in each other.
- Examples
 - Fiberglass (reinforcing material in a polyester or epoxy matrix)
 - Concrete (gravels or steel rods reinforced in cement and sand)
- Applications
 - Aircraft wings and engine
 - construction

Class of engineering material that provides almost an unlimited potential for higher strength, stiffness, and corrosion resistance

MATERIAL SCIENCE AND ENGINEERING - TETRAHEDRON

Tetrahedron diagram shows how the performance-to-cost ratio of materials depends upon the composition, microstructure, synthesis, and processing

MATERIAL PROPERTIES

CLASSIFICATION OF MATERIAL PROPERTIES

The properties of a material that determine its behavior under applied forces are known as mechanical properties

A sound knowledge of mechanical properties of materials provides the basis for predicting behavior of materials under different load conditions and designing the components out of them.

MECHANICAL PROPERTIES – STRESS

Pressure due to applied load tension, compression, shear, torsion, and their combination.

Stress,
$$\sigma = \frac{\text{Force}}{\text{Cross-Sectional Area}} = \frac{F}{A_0}$$

Most common measurements of stress: [psi - pounds per square inch| [Pa - Pascal or Newton/m2|

Mathematically, stress is expressed as force divided by cross-sectional area.

MECHANICAL PROPERTIES – STRAIN

Response of the material to stress (i.e. physical deformation such as elongation due to tension).

Mathematically, strain is the change in length divided by original length

MECHANICAL PROPERTIES - DUCTILITY

It is the property of a material which enables it to draw out into thin wires (deformation under tensile stress)

Alloy Properties	Zinc Alloy			Aluminum	Alloy	Bronze	Steel		
	Die Cast Zemak 3	Per.mold ZA-12	Per.Mold ZA-27	Per.Mold 356-F	Per.Molt 356-T6	Die Cast 380	Wrought Al 6061-T6	Sand Cast C93200	Mild Steel 1018
Elongation (% in 2")	10	2.20	2.50	5.0	3.5	3	12	20	15-18

The percent elongation and the reduction in area in tension is often used as empirical measures of ductility.

TENSILE TEST

A tensile test measures the resistance of a material to a static or slowly applied force

Tensile tests are used to determine the tensile strength and elongation at fracture

MECHANICAL PROPERTIES - STRENGTH

The strength of a material is its capacity to withstand destruction under the action of external loads

- Compressive strength: measurement of the force required to push apart a material
- Yield strength: measurement of the force to permanently bend a material
- Ultimate strength: maximum stress that any material will withstand before destruction

	Aluminur	n Alloy	Bronze	Steel					
Alloy Properties	Die Cast Zemak 3	Per.mold ZA-12	Per.Mold ZA-27	Per.Mold 356-F	Per.Molt 356-T6	Die Cast 380	Wrought Al 6061- T6	Sand Cast C93200	Mild Steel 1018
Tensile Strength MPa	283	328	426	180	228	324	310	241	440
Yield Strength MPa	221	268	371	125	166	165	241	124	370
Shear Strength MPa	214	241	325	NA	179	186	207	NA	NA

It determines the ability of a material to withstand stress without failure.

MECHANICAL PROPERTY – PLASTICITY

The plasticity of a material is its ability to undergo some degree of permanent deformation up to the yield point without rupture or failure

Plastic deformation will take place only after the yield point (elastic limit) is exceeded

MECHANICAL PROPERTIES – ELASTICITY

Elasticity of a material is the power of coming back to its original position after deformation when the stress or load is removed

Elastic modulus (=Young's modulus) indicates the strength or stiffness of materials

MECHANICAL PROPERTY – ELASTIC/YOUNG'S MODULUS

A mechanical property measuring the stiffness of a solid material in the linear elasticity regime of a uniaxial deformation

$$\lambda = \frac{stress}{strain}$$

Young's modulus defines the relationship between stress (force per unit area) and strain (proportional deformation) in a material

MECHANICAL PROPERTY - MODULUS-DENSITY CHART

MECHANICAL PROPERTY – SPECIFIC MODULUS - SPECIFIC STRENGTH CHART

MECHANICAL PROPERTIES - STIFFNESS

The resistance of a material to elastic deformation or deflection is called stiffness or rigidity.

e.g. steel beam is stiffer or more rigid than aluminium beam.

$$k = \frac{F}{\delta} = \frac{force \ on \ the \ body}{displacement \ (change \ in \ length) \ produced \ by \ the \ force}$$

The complementary concept to stiffness is flexibility; the more flexible an object is, the less stiff it is

MECHANICAL PROPERTIES - RESILIENCE

It is the capacity of a material to absorb energy elastically

- Proof resilience: maximum energy which can be stored in a body up to elastic limit
- Modulus of resilience: proof resilience per unit volume

It is measured by the amount of energy absorbed per unit volume within elastic limit. (this property is essential for spring materials)

MECHANICAL PROPERTIES - HARDNESS

Hardness is the resistance to plastic deformation; usually defined in terms of the ability of a material to resist to scratching, abrasion, cutting, indentation, or penetration

	Zinc Alloy			Aluminum	Alloy	Bronze	Steel		
Alloy Properties	Die Cast Zemak 3	Per.mold ZA-12	Per.Mold ZA-27	Per.Mold 356-F	Per.Mold 356-T6	Die Cast 380	Wrought Al 6061-T6	Sand Cast C93200	Mild Steel 1018
Hardness [Brinell # / HB]	82	89	119	40-70	70	80	95	85	126

Large hardness means resistance to plastic deformation or cracking in compression

MECHANICAL PROPERTIES - BRITTLENESS

It is the property of breaking without much permanent distortion.

Non-ductile material is considered to be brittle material. (e.g, glass, cast iron, etc.)

MECHANICAL PROPERTIES - CREEP

The slow and progressive deformation of a material with time at constant stress

- Permanent deformation (elongation) due to continuous load
- Soft materials (lead, zinc, tin, etc.) creep at room temperature
- Heavy metals (iron and copper) tend to creep with increase in temperature

It is most generally defined as time-dependent strain occurring under stress

MECHANICAL PROPERTIES - FATIGUE

Fatigue fractures are progressive beginning as minute cracks and grow under the action of fluctuating stress

- Permanent deformation & failure of material due to rapidly cyclic or varying load
- Fatigue life affected by
 - temperature
 - surface finish
 - heat treatment

Surface of a Fatigue Fracture

This phenomenon leads to fracture under repeated or fluctuating stress

FATIGUE TEST

MATERIAL SELECTION

MATERIAL SELECTION PROCEDURE

NUMERICAL EVALUATION PROCEDURE

Weighting Factors of Material Properties

Scaling the Material Properties

Scaled property =

 $\frac{\textit{Numerical value of mat.property} * 100}{\textit{Max.value in the list}}$

Cost per Unit Strength (€/Nm)

 $\frac{\textit{Specific gravity}\,(^{\textit{kg}}/_{\textit{m}^3})}{\textit{Working strength}\,(\textit{MPa})} * \textit{relative cost per unit weight}\,(\textit{€/kg})$

where.

 $Working strength = \frac{Yield strength}{Safety factor}$

Calculating the Material Performance Index (y)

$$\gamma = \sum_{i=1}^{n} \beta_i * \alpha_i$$

where,

 $\beta = scaled material property$

 α = weighting factor of material property

Calculating the Figure of Merit (M)

$$M = \frac{\gamma}{C} * 100$$

where,

 $\gamma = material\ performance\ index$

 $C = cost \ of \ material \ per \ unit \ strength$

EXERCISE 5.1

There are different kind of materials for bicycle frames

BMX steel and aluminium

Mountain Bike steel, aluminium, carbon fiber, Titanium

Racing Bicycle steel tubing, aluminium and titanium

Touring Bicycle
Aluminium, steel and titanium

Different materials for different purposes

EXERCISE 5.1

 Select a proper material for a bicycle frame manufacturing using the spreadsheets S16-S20

