$\Sigma(1670)$ Bumps

$$I(J^P) = 1(??)$$

OMITTED FROM SUMMARY TABLE

Formation experiments are listed separately in the preceding entry.

Probably there are two states at the same mass with the same quantum numbers, one decaying to $\Sigma \pi$ and $\Lambda \pi$, the other to $\Lambda(1405)\pi$. See the note in front of the preceding entry.

Σ (1670) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
≈ 1670 OUR ESTIMAT	TE					
$1670\pm$ 4		¹ CARROLL	76	DPWA		Isospin-1 total σ
1675 ± 10		² HEPP	76	DBC	_	$K^- N 1.6 – 1.75 \text{ GeV}/c$
$1665\pm~1$		APSELL	74	HBC		$K^- p \ 2.87 \ {\rm GeV}/c$
$1688\pm~2$ or 1683 ± 5	1.2k	BERTHON	74	HBC	0	Quasi-2-body σ
1670 ± 6		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma \pi \pi 4 \text{ GeV}$
1668 ± 10		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma 3\pi \text{ 4 GeV}$
1660 ± 10		ALVAREZ	63	HBC	+	K^-p 1.51 GeV/ c
• • • We do not use the	he follo	wing data for ave	rages,	fits, lim	its, et	.c. • • •
1668 ± 10	150	³ FERRERSORIA	4 81	OMEG	_	$\pi^ p$ 9,12 GeV/ c
1655 to 1677		TIMMERMAN	S76	HBC	+	$K^- p 4.2 \text{ GeV}/c$
1665 ± 5		BUGG	68	CNTR		K^-p , d total σ
1661 ± 9	70	PRIMER	68	HBC	+	See BARNES 69E
1685		ALEXANDER	62 C	HBC	-0	$\pi^- p$ 2–2.2 GeV/ c

Σ (1670) WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
67.0 ± 2.4		APSELL	74	HBC		K^-p 2.87 GeV/ c
110 ± 12		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma \pi \pi 4 \text{ GeV}$
$135 \begin{array}{c} +40 \\ -30 \end{array}$		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma 3\pi \ 4 \ \text{GeV}$
40 ± 10		ALVAREZ	63	HBC	+	
• • • We do not ι	ise the follo	wing data for av	erages	s, fits, lir	nits, et	tc. • • •
90 ±20		3 FERRERSORIA	481	OMEG	_	$\pi^ p$ 9,12 GeV/ c
52		¹ CARROLL	76	DPWA		Isospin-1 total σ
48 to 63		TIMMERMAN	S76	HBC	+	$K^- p 4.2 \text{ GeV}/c$
30 ± 15		BUGG	68	CNTR		
60 ± 20	70	PRIMER	68	HBC	+	See BARNES 69E
45		ALEXANDER	62 C	HBC	-0	

Σ (1670) DECAY MODES (PRODUCTION EXPERIMENTS)

	Mode
$\overline{\Gamma_1}$	$N\overline{K}$
Γ_2	$\Lambda\pi$
Γ_3	$\Sigma \pi$
Γ_4	$\Lambda\pi\pi$
Γ_5	$\Sigma \pi \pi$
Γ_6	$\Sigma \pi \pi \Sigma (1385) \pi$
Γ_7	$\Lambda(1405)\pi$

Σ (1670) BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

$\Gamma(N\overline{K})/\Gamma(\Sigma\pi)$						Γ_1/Γ_3
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
< 0.03		TIMMERMAN	S76	HBC	+	$K^- p$ 4.2 GeV/ c
< 0.10		BERTHON	74	HBC	0	Quasi-2-body σ
< 0.2		AGUILAR	70 B	HBC		
< 0.26		BARNES	69E	HBC	+	$K^- p$ 3.9–5 GeV/ c
0.025		BUGG	68	CNTR	0	Assuming $J = 3/2$
< 0.24	0	PRIMER	68	HBC	+	K^-p 4.6–5 GeV/ c
< 0.6		LONDON	66	HBC	+	$K^- p \ 2.25 \ \text{GeV}/c$
< 0.19	0	ALVAREZ	63	HBC	+	$K^- p \ 1.15 \ {\sf GeV}/c$
≥ 0.5 ± 0.25		SMITH	63	HBC	-0	
$\Gamma(\Lambda\pi)/\Gamma(\Sigma\pi)$						Γ_2/Γ_3
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
0.76 ± 0.09		ESTES	74	НВС	0	$K^- p 2.1, 2.6 \text{ GeV}/c$
0.45 ± 0.15		BARNES	69E	HBC	+	$K^- p 3.9-5 \text{ GeV}/c$
0.15 ± 0.07		HUWE	69	HBC	+	,
$0.11 \!\pm\! 0.06$	33	BUTTON	68	HBC	+	K^-p 1.7 GeV/ c
• • • We do not us	e the followi	ng data for aver	ages,	fits, limi	ts, etc.	. • • •
$\leq 0.45 \pm 0.07$		TIMMERMAN	S76	HBC	+	K^-p 4.2 GeV/ c
$0.55 \!\pm\! 0.11$		BERTHON	74	HBC	0	Quasi-2-body σ
0	0	PRIMER	68	HBC	+	See BARNES 69E
< 0.6		LONDON	66	HBC	+	$K^- p \ 2.25 \ \text{GeV}/c$
1.2	130	ALVAREZ	63	HBC	+	$K^- p \ 1.15 \ {\sf GeV}/c$
1.2		SMITH	63	HBC	-0	
$\Gamma(\Lambda\pi\pi)/\Gamma(\Sigma\pi)$						Γ_4/Γ_3
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
<0.6	-	LONDON	66	НВС	+	K [−] p 2.25 GeV/c
0.56	90	ALVAREZ	63	HBC	+	$K^{-}p$ 1.15 GeV/c
0.17		SMITH	63	HBC	-0	•

Created: 5/30/2017 17:20

$\Gamma(\Sigma\pi\pi)/\Gamma(\Sigma\pi$)							Γ_5/Γ_3
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN		<u>COMM</u>		
largest at small angles		ESTES		HBC		•	2.1,2.6 G	eV/ <i>c</i>
• • • We do not u	se the follo	wing data for ave	erages,	fits, lim	nits, etc	C. ● ●	•	
< 0.2		² HEPP	76	DBC	_	K^-N	1.6-1.75	${\sf GeV}/c$
0.56	180	ALVAREZ	63	HBC	+	К [—] р	1.15 GeV	/c
$\Gamma(\Lambda(1405)\pi)/\Gamma$ VALUE	$(\Sigma\pi)$ $EVTS$	DOCUMENT ID)	TECN	CHG	COM	IMENT	Γ_7/Γ_3
1.8 ± 0.3 to		3,4 TIMMERMA		HBC	+		<i>p</i> 4.2 Ge\	//c
0.02 ± 0.07							-	•
largest at small angles		ESTES	74	HBC	±	K	p 2.1,2.6	GeV/c
$3.0^{\circ} \pm 1.6^{\circ}$	50	LONDON	66	HBC	+	κ^-	p 2.25 Ge	V/c
• • • We do not u	se the follo	wing data for ave	erages,	fits, lim	nits, etc	C. ● ●	•	
0.58 ± 0.20	17	PRIMER	68	HBC	+	See	BARNES	69E
$\Gamma(\Sigma\pi)/\Gamma(\Sigma\pi\pi$)							Γ_3/Γ_5
VALUE		<u>DOCUMENT</u>	T ID				COMMENT	
varies with prod. a	ngle	⁵ APSELL		74 HE			√ p 2.87	,
1.39 ± 0.16		BERTHO		74 HE			Quasi-2-bo	-
2.5 to 0.24		⁴ EBERHAF		59 HE			(p 2.6 (,
$< 0.4 \\ 0.30 \pm 0.15$		BIRMING LONDON		56 HE 56 HE			< ⁻ p 3.5 (< ⁻ p 2.25	•
0.30 ± 0.13		LONDON	•	JO 11L	JC 7	,	ν ρ 2.23	Gev/C
$\Gamma(\Lambda(1405)\pi)/\Gamma$	$(\mathbf{\Sigma}\pi\pi)$							Γ_7/Γ_5
VALUE		<u>DOCUMEN</u>					COMMENT	
0.97 ± 0.08		TIMMERI					(p 4.2 (
1.00 ± 0.02		APSELL	7	74 HE	3C	ŀ	√ [−] p 2.87	GeV/c
$0.90 ^{igoplus 0.10}_{-0.16}$		EBERHAF	RD 6	55 HE	3C +	- <i>F</i>	√ p 2.45	GeV/c
$\Gamma(\Lambda(1405)\pi)/\Gamma$	(Σ(1385)	π)						Γ_7/Γ_6
<u>VALUE</u>		DOCUMENT	T ID	TE	CN C	HG C	COMMENT	
<0.8		EBERHAF	RD 6	55 HE	3C +	- <i>F</i>	√ [−] p 2.45	${\sf GeV}/c$
$\Gamma(\Lambda\pi\pi)/\Gamma(\Sigma\pi\pi)$	$\pi)$							Γ_4/Γ_5
VALUE		<u>DOCUMEN</u>					COMMENT	
0.35 ± 0.2		BIRMING	SHAM	66 HI	BC -	+ <i>i</i>	K ⁻ p 3.5	GeV/ <i>c</i>
$\Gamma(\Lambda\pi)/\Gamma(\Sigma\pi\pi)$ VALUE		<u>DOCUMEN</u>	T ID	TE	-CN (THG (COMMENT	Γ_2/Γ_5
<0.2		BIRMING					K ⁻ р 3.5	GeV/c
_	(-)	_					•	•
$\Gamma(\Lambda\pi)/[\Gamma(\Lambda\pi)]$	+Ι (Σπ)	-	T ID	7.	-CN		I ₂ /([₂ +Γ ₃)
<u>VALUE</u> <0.6		<u>DOCUMEN</u> AGUILAR		<u>78</u> 70в НІ	E <u>CN</u> BC			
∼ 0.0		AGUILAR	ν	IUD MI				

Created: 5/30/2017 17:20

$\Gamma(\Sigma(1385)\pi)/\Gamma(\Sigma\pi)$

 Γ_6/Γ_3

VALUE	DOCUMENT ID	TECN	COMMENT
$\leq 0.21 \pm 0.05$	TIMMERMANS76	HBC	$K^- p$ 4.2 GeV/ c

Σ (1670) QUANTUM NUMBERS (PRODUCTION EXPERIMENTS)

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
$J^P = 3/2^-$	400	BUTTON	68	HBC	\pm	$\Sigma^0 \pi$
$J^{P} = 3/2^{-}$		EBERHARD	67	HBC	+	Λ (1405) π
$J^{P} = 3/2^{+}$		LEVEQUE	65	HBC		$\Lambda(1405)\pi$

Σ (1670) FOOTNOTES

Σ (1670) REFERENCES (PRODUCTION EXPERIMENTS)

FERRERSORIA	81	NP B178 373	A. Ferrer Soria et al.	(CERN, CDEF, EPOL+)
CARROLL	76	PRL 37 806	A.S. Carroll et al.	(BNL) I
HEPP	76	NP B115 82	V. Hepp <i>et al.</i>	(CERN, HEID, MPIM) I
TIMMERMANS	76	NP B112 77	J.J.M. Timmermans et al.	` (NIJM, CERN+) JP
APSELL	74	PR D10 1419	S.P. Apsell <i>et al.</i>	(BRAN, UMD, SYRA+) I
BERTHON	74	NC 21A 146	A. Berthon <i>et al.</i>	(CDEF, RHEL, SACL+)
ESTES	74	Thesis LBL-3827	R.D. Estes	(LBL)
AGUILAR	70B	PRL 25 58	M. Aguilar-Benitez <i>et al.</i>	(BNL, SYRA)
BARNES	69E	BNL 13823	V.E. Barnes <i>et al.</i>	(BNL, SYRA)
EBERHARD	69	PRL 22 200	P.H. Eberhard <i>et al.</i>	(LRL)
HUWE	69	PR 181 1824	D.O. Huwe	(LRL)
BUGG	68	PR 168 1466	D.V. Bugg et al.	(RHEL, BIRM, CAVE) I
BUTTON	68	PRL 21 1123	J. Button-Shafer	(MASA, LRL) JP
PRIMER	68	PRL 20 610	M. Primer et al.	(SYRA, BNL)
EBERHARD	67	PR 163 1446	P. Eberhard <i>et al.</i>	
	٠.			(LRL, ILL) IJP
BIRMINGHAM	66	PR 152 1148	M. Haque <i>et al.</i>	(BIRM, GLAS, LOIC, OXF+)
LONDON	66	PR 143 1034	G.W. London et al.	(BNL, SYRA) IJ
EBERHARD	65	PRL 14 466	P.H. Eberhard <i>et al.</i>	(LRL, ILL) I
LEVEQUE	65	PL 18 69	A. Leveque <i>et al.</i>	(SACL, EPOL, GLAS+) JP
ALVAREZ	63	PRL 10 184	L.W. Alvarez et al.	(LRL) I
SMITH	63	Athens Conf. 67	G.A. Smith	(LRL)
ALEXANDER	62C	CERN Conf. 320	G. Alexander <i>et al.</i>	(LRL) I

Created: 5/30/2017 17:20

 $^{^{1}}$ Total cross-section bump with (J+1/2) $\Gamma_{\mbox{el}}$ / $\Gamma_{\mbox{total}}$ = 0.23.

 $^{^2}$ Enhancements in $\Sigma\pi$ and $\Sigma\pi\pi$ cross sections. 3 Backward production in the $\Lambda\pi^-\,K^+$ final state.

⁴ Depending on production angle.

⁵ APSELL 74, ESTES 74, and TIMMERMANS 76 find strong branching ratio dependence on production angle, as in earlier production experiments.