

AIME-GSW03

Low energy semiconductor gas sensor based on WO₃ nanorods particles

FEATURES

- Detection of Ammonia NH3, Nitrogen Dioxide NO2 and Ethanol C2H6O
- Two integrated gas sensors
- Temperature sensor
- Thermal resistor
- Low cost
- Low energy consumption
- Easy to use

DESCRIPTION

The AIME-GSWO3 is a semiconductor gas sensor developed by INSA Toulouse students for their 5th year in Innovative Smart System (ISS). It was made in the AIME's labs. This gas sensor uses Tungsten Trioxide WO3 nanorods particles. It is composed of two sensitive active sides, a wide N-doped Poly-Silicium layer to heat the sensor up to 300°C and an aluminum resistor layer to measure the temperature of the sensor.

Fig 1: AIME-GSWO3

PIN LAYOUT

Pin number	Function		
1 – 6	Temperature sensor (Aluminum resistor)		
2 – 4	Gas sensor #1		
3 – 8	Thermal resistor (Polysilicon resistor)		
7 – 9	Gas sensor #2		
5	NC		
10	NC		

GENERAL CHARACTERISTICS

Туре	Chemical sensor			
Materials	 Silicon N-doped poly-silicon (heater) Aluminum (temperature measurements) Nanoparticles of Tungsten Trioxide (WO3) 			
Sensor Type	Active (power supply required)			
Gas Measurement	Resistive measure			
Temperature Measurement	Resistive measure			
Detectable Gases	 Alcohols (-OH) Ammonia (NH3) Carbon Monoxide (CO) Dihydrogen (H2) Ethanol (C2H60) Hydrogen Sulfide (SO2) Methane (CH4) Nitrogen Dioxide (NO2) 			
Typical Detection Range	> 1 ppm			
Package	TO-5-10 (10 pins)			
Head Diameter	9.5 mm			
Head Height	4.7 mm			
Package Height	25 mm			
Pin Diameter	0.6 mm			
Mounting	Through hole fixed (THT)			

GAS SENSOR CHARACTERISTICS

ELECTRICAL CHARACTERISTICS

			Values		
		Units	Min	Typical	Max
Resistance	Gas Sensor	GΩ	0.01	1	100
	Temperature Sensor	Ω	57	65	-
	Heater	Ω	70	85	-
Voltage	Gas Sensor	V	-	3.3	-
	Temperature Sensor	V	3.3	5	-
	Heater	V	10	15	20

CONFIGURATION

The package is a 10-Lead TO-5 metal:

APPLICATION

The resistance of the sensor has a magnitude of Giga Ohm. This means that a voltage divider is not efficient to measure the voltage. The figure shown above shows a circuit that uses an operational amplifier with a low offset voltage Therefore, it is possible to convert the current of the sensor into its resistance using the following formula:

$$R_{sensor} = \left(1 + \frac{R_3}{R_2}\right) \bullet R_1 \bullet \frac{Vcc}{V_{adc}} - R1 - R5$$