# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003393

International filing date: 01 March 2005 (01.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-057379

Filing date: 02 March 2004 (02.03.2004)

Date of receipt at the International Bureau: 12 May 2005 (12.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# 日本国特許庁 JAPAN PATENT OFFICE

11. 3. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 3月 2日

出 願 番 号 Application Number: 特願2004-057379

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

番号
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

JP2004-057379

出 願 人
Applicant(s):

本田技研工業株式会社 株式会社佐賀鉄工所 株式会社神戸製鋼所



特許庁長官 Commissioner, Japan Patent Office 2005年 4月19日





特許願 【書類名】 【整理番号】 33001 平成16年 3月 2日 【提出日】 特許庁長官殿 【あて先】 C22C 38/00 【国際特許分類】 【発明者】 埼玉県和光市中央一丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 高島 光男 【氏名】 【発明者】 埼玉県和光市中央一丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 高田 健太郎 【氏名】 【発明者】 埼玉県和光市中央一丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 【氏名】 飯田 善次 【発明者】 佐賀県佐賀市神園一丁目5番30号 株式会社佐賀鉄工所内 【住所又は居所】 築山 勝浩 【氏名】 【発明者】 佐賀県佐賀市神園一丁目5番30号 株式会社佐賀鉄工所内 【住所又は居所】 江川 武彦 【氏名】 【発明者】 神戸市灘区灘浜東町2番地 株式会社神戸製鋼所 神戸製鉄所内 【住所又は居所】 並村 裕一 【氏名】 【発明者】 神戸市灘区灘浜東町2番地 株式会社神戸製鋼所 神戸製鉄所内 【住所又は居所】 茨木 信彦 【氏名】 【特許出願人】 000005326 【識別番号】 東京都港区南青山二丁目1番1号 【住所又は居所】 本田技研工業株式会社 【氏名又は名称】 【特許出願人】 392027254 【識別番号】 佐賀県佐賀市神園一丁目5番30号 【住所又は居所】 株式会社佐賀鉄工所 【氏名又は名称】 【特許出願人】 000001199 【識別番号】 株式会社神戸製鋼所 【氏名又は名称】 【代理人】 【識別番号】 100067828 【弁理士】 【氏名又は名称】 小谷 悦司 【選任した代理人】 【識別番号】 100075409 【弁理士】 【氏名又は名称】 植木 久一 【手数料の表示】 【予納台帳番号】 012472 【納付金額】 21,000円

特許請求の範囲

1

【提出物件の目録】 【物件名】

ページ: 2/E

【物件名】

明細書 1

【物件名】 【物件名】

図面 1

要約書 1

【包括委任状番号】

0216719

## 【書類名】特許請求の範囲

#### 【請求項1】

C:0.5~1.0%(質量%の意味、以下同じ)、Si:0.55~3%、Mn:0.2~2%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、及びA1:0.3%以下(0%を含まない)を含有し、初析フェライト、初析セメンタイト、ベイナイトおよびマルテンサイトの合計の面積率が20%未満であって、残部の組織がパーライトであるボルト用鋼を、

伸線加工した後、冷間圧造によってボルト形状とし、次いで $100\sim500$  Cの温度域でブルーイング処理することによって得られる引張強度1200 N/mm²以上の耐遅れ破壊特性および耐リラクセーション特性に優れた高強度ボルト。

## 【請求項2】

更にCr: 2.5%以下(0%を含まない)及びCo: 0.5%以下(0%を含まない)から選択された少なくとも1種を含有する請求項1に記載の高強度ボルト。

#### 【請求項3】

更にNi:1.0%以下(0%を含まない)を含有する請求項1又は2に記載の高強度ボルト。

## 【請求項4】

更にCu:1.0%以下 (0%を含まない)を含有する請求項1~3のいずれかに記載の高強度ボルト。

#### 【請求項5】

更にMo、V、Nb、Ti、及びWから選択された少なくとも1種を、合計で<math>0.5%以下 (0%を含まない) となる範囲で含有する請求項 $1\sim4$  のいずれかに記載の高強度ボルト。

#### 【請求項6】

更にBを0.003%以下(0%を含まない)を含有する請求項1~5のいずれかに記載の高強度ボルト。

#### 【請求項7】

残部の成分はFe及び不可避的不純物である請求項 $1\sim6$ のいずれかに記載の高強度ボルト。

## 【書類名】明細書

【発明の名称】耐遅れ破壊特性及び耐リラクセーション特性に優れた高強度ボルト 【技術分野】

## [0001]

本発明は、主に自動車用として使用される高強度ボルトに関するものであり、特に引張 強さ (強度) が $1200 \,\mathrm{N/mm^2}$ 以上でありながら耐遅れ破壊特性および耐リラクセー ション特性に優れた高強度ボルトに関するものである。

#### 【背景技術】

#### [0002]

一般の高強度ボルトには中炭素合金鋼 (SCM435, SCM440, SCr440等 )が使用され、焼入れ・焼戻しによって必要な強度を確保する様にしている。しかしなが ら、自動車や各種産業機械用として使用される一般の高強度ボルトでは、引張強さが約1  $200\,\mathrm{N/m\,m^2}$ を超える領域になると、遅れ破壊が発生する危険があり、使用上の制約 がある。

## [0003]

遅れ破壊は、非腐食性環境下で起こるものと腐食性環境下で起こるものがあるが、その 発生は種々の要因が複雑にからみあっていると言われており、一概にその原因を特定する ことは困難である。上記の様な遅れ破壊性を左右する制御因子としては、焼戻し温度、組 織、材料硬さ、結晶粒度、各種合金元素等の関与が一応認められているものの、遅れ破壊 を防止する為の有効な手段が確立されている訳ではなく、試行錯誤的に種々の方法が提案 されているに過ぎないのが実状である。

## [0004]

これまでにも耐遅れ破壊特性を改善する技術が提案されている(特許文献1~3など) 。これらの技術では、各種の主要な合金元素を調整することによって、引張強さが140 0N/mm<sup>2</sup>以上の高強度ボルトでも耐遅れ破壊特性を改善しているが、遅れ破壊発生の 危険が完全に解消されたという訳ではなく、それらの適用範囲はごく限られた範囲に止ま っている。

## [0005]

耐遅れ破壊特性をさらに改善した技術として特許文献4がある。この特許文献4では、 高強度ボルト用鋼の組織を、焼入れ・焼戻し組織ではなくパーライト組織とし、次いで強 伸線加工とすることによって、引張強さ $1200\,\mathrm{N/mm^2}$ 以上の高強度ボルトを得てい る。そしてこの高強度ボルトに導入されたパーライト組織は、セメンタイトとフェライト の界面で水素をトラップし、界面に集積する水素を低減させる効果を有するため、耐遅れ 破壊特性が改善される。

#### [0006]

しかしパーライト鋼には特有の課題が存する。すなわち、高温で使用される締付用ボル トでは、使用中に耐力比が低くなり、締付力の低下を招く現象が生じる場合があり、こう した現象はリラクセーション(応力緩和)と呼ばれている。そして、特に焼入れ・焼戻し 鋼ではなくパーライト鋼をボルトなどに利用したときには、こうした現象に対する特性( リラクセーション特性)の低下が懸念される。こうした現象が生じるとボルトが伸びてし まい、初期の締付力を確保できない恐れがあるので、例えば自動車エンジン廻りなどに適 用するボルトでは、リラクセーション特性にも優れている必要がある。しかしながら、こ れまでの高強度ボルトでは、こうしたリラクセーション特性についてはあまり考慮されて おらず、特許文献5が知られている程度である。

## [0007]

特許文献5では、所定の成分のパーライト鋼を強伸線加工した後、冷間圧造によってボ ルト形状とし、次いで100~400℃の温度域でブルーイング処理している。ブルーイ ング処理すると、C、Nによる時効硬化が発揮されて塑性変形が防止され、ボルトの強度 や耐力比を向上させると共に、温度100~200℃での熱へたりを起こしにくくなるた めに、耐リラクセーション特性が改善されている。なおこの特許文献5は耐リラクセーシ

ョン特性を改善する発明であるにも拘わらず、Siと耐リラクセーション特性との関係に ついては開示しておらず、むしろSi含有量が過剰になると伸線後の鋼材の延性を低下さ せると共に、冷間圧造性を著しく低下させるため、Siは0. 5%以下にすべきであると している。

【特許文献1】特開昭60-114551号公報

【特許文献2】特開平2-267243号公報

【特許文献3】特開平3-243745号公報

【特許文献4】特開2000-337332号公報

【特許文献5】特開2001-348618号公報

## 【発明の開示】

【発明が解決しようとする課題】

#### [0008]

本発明は上記の様な事情に着目してなされたものであって、その目的は、引張強度12  $0.0 \, \mathrm{N/mm^2}$ 以上であって耐遅れ破壊特性に優れたパーライト組織の高強度ボルトにお いて、耐リラクセーション特性をさらに改善できる技術を確立することにある。

## 【課題を解決するための手段】

## [0009]

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、ブルーイング処理だ けを行っても耐リラクセーションの改善には限界があり、また単にSiを所定量以上とし てもブルーイング処理を行わなければ耐リラクセーション特性は全く改善されないのに対 して、所定量以上のSi添加とブルーイング処理とを組み合わせることで初めて耐リラク セーション特性を著しく改善できることを見出し、本発明を完成した。

#### [0010]

すなわち、本発明に係る高強度ボルトは、引張強度 $1200\mathrm{N/mm^2}$ 以上であっても 耐遅れ破壊特性および耐リラクセーション特性に優れているものであり、

C:0.5~1.0% (質量%の意味、以下同じ)、Si:0.55~3%、Mn:0 . 2~2%、P:0. 03%以下(0%を含まない)、S:0. 03%以下(0%を含ま ない)、及びA1:0.3%以下(0%を含まない)を含有し、初析フェライト、初析セ メンタイト、ベイナイトおよびマルテンサイトの合計の面積率が20%未満であって、残 部の組織がパーライトであるボルト用鋼を、伸線加工した後、冷間圧造によってボルト形 状とし、次いで100~500℃の温度域でブルーイング処理することによって得られる ものである。

#### [0011]

前記高強度ボルトは、更にCr:2.5%以下(0%を含まない)、Co:0.5%以 下 (0%を含まない)、Ni:1. 0%以下 (0%を含まない)、Cu:1. 0%以下 ( 0%を含まない)、B:0.003%以下(0%を含まない)などを含有していてもよく 、Mo、V、Nb、Ti、及びWなどを合計で0.5%以下(0%を含まない)となる範 囲で含有していてもよい。残部の成分はFe及び不可避的不純物であってもよい。

## 【発明の効果】

## [0012]

本発明によれば耐遅れ破壊特性に優れたパーライト鋼材から得られるボルトに特有の課 題を改善できる。すなわち、Siを所定量以上添加することによって耐リラクセーション 特性を著しく改善できる。

#### 【発明を実施するための最良の形態】

#### $[0\ 0\ 1\ 3]$

本発明で使用するボルト用鋼(高強度ボルト用鋼)は、通常、線状又は棒状の形態を有 するものであり、より詳細には線状又は棒状に熱間加工された鋼材及びその後熱処理され た鋼材(線材)と、該線材を主として伸線等の冷間加工を施すことによって得られるもの (鋼線) の両方を含むものであり、好ましくは鋼線を意味する。そして該高強度ボルト用 鋼は、パーライト鋼の一種であり、より具体的には、初析フェライト、初析セメンタイト

、ベイナイトおよびマルテンサイトの合計の面積率が20%未満であって、残部の組織が パーライト(即ち、パーライト組織の面積率が80%超)となっている。初析フェライト や初析セメンタイトが多くなると、伸線時に縦割れを起こすために強伸線加工が困難とな り、ボルトの強度を所定値以上とすることが困難となる。また初析セメンタイトとマルテ ンサイトが多くなると、伸線時に断線を引き起こし易くなる。更に、ベイナイトはパーラ イトに比べて加工硬化量が少なくなるので、強伸線加工による強度上昇が望めないので少 なくする必要がある。これらの組織に対してパーライト組織は、セメンタイトとフェライ トの界面で水素をトラップし、粒界に集積する水素を低減させる効果があり、耐遅れ破壊 特性向上の観点からできるだけ多くする必要がある。なおパーライト組織の面積率は、好 ましくは90%以上、さらに好ましくは95%以上とすることが推奨される。

## [0014]

また本発明の高強度ボルト用鋼は、C:0.5~1.0%(質量%の意味、以下同じ) 、Si:0.55~3%、Mn:0.2~2%、P:0.03%以下(0%を含まない) 、S:0.03%以下(0%を含まない)、及びA1:0.3%以下(0%を含まない) を含有している。以下、各成分の限定理由について説明する。

#### $[0\ 0\ 1\ 5]$

Cは、ボルトの強度を上げるために有効かつ経済的な元素であり、C含有量を増加させ るにつれて、強度が増加する。ボルトにおける目標強度を確保するため、Cは0.5%以 上、好ましくは0.55%以上、さらに好ましくは0.60%以上含有させる。しかしな がら、C量が過剰になると初析セメンタイトの析出量が増加し、靭延性の低下が顕著とな って伸線加工性を劣化させる。従ってC量は、1.0%以下、好ましくは0.9%以下、 さらに好ましくは O. 85%以下とする。最も望ましいC量は、共析炭素量をCeとした とき、 $C_e \pm 0$ . 2% (好ましくは $C_e \pm 0$ . 1%、特に $C_e \pm 0$ . 05%) である。

## [0016]

Siは、ブルーイング処理したボルトの耐リラクセーション特性をさらに改善すること ができる。リラクセーションを引き起こす最大の原因である軟らかいフェライト中に固溶 して、固溶強化作用を発揮するためであると思料される。従ってSi量は0.55%以上 、好ましくは0.7%以上、さらに好ましくは1.0%以上、特に1.5%以上とする。 なおSiは熱間圧延やパテンティング処理(鉛パテンティング処理など)の加熱時に鋼材 の脱炭を促進させる作用がある。通常は脱炭を起こさせないように操業条件を設定するが 、積極的に脱炭を促進させれば、表面を軟化させることができ、Siを増量してもボルト 圧造時の割れ発生を抑制することもできる。しかしSiを多くし過ぎると芯部の延性が低 下する。従ってSi量は、3%以下、好ましくは2.5%以下、更に好ましくは2.0% 以下とする。

#### [0017]

Mnは脱酸剤としての効果と、線材の焼入性を向上させて線材の断面組織の均一性を高 める効果を有する。Mn量は0.2%以上、好ましくは0.4%以上、さらに好ましくは 0. 5%以上とする。しかしMn量が過剰になると、Mnの偏析部にマルテンサイトやベ イナイトなどの過冷組織が生成して伸線加工性を劣化させやすくなる。従ってMn量は2 %以下、好ましくは1.5%以下、さらに好ましくは1.0%以下とする。

#### [0018]

Pは粒界偏析を起こして、耐遅れ破壊特性を劣化させる元素である。そこでP含有量は 0. 03%以下、好ましくは0. 02%以下、さらに好ましくは0. 015%以下、特に 0.010%以下に抑制する。

#### $[0\ 0\ 1\ 9]$

Sは鋼中でMnSを形成し、応力が負荷されたときに応力集中箇所となる。従って、耐 遅れ破壊特性の改善にはS含有量をできるだけ減少させることが望ましい。こうした観点 からS量は0.03%以下、好ましくは0.02%以下、さらに好ましくは0.015%以下、特に0.010%以下に抑制する。

#### [0020]

A 1 は窒化物系介在物や酸化物系介在物を生成し、伸線性を低下させる。従ってA 1 は 0. 3%以下、好ましくは 0. 1%以下、さらに好ましくは 0. 05%以下とし、特に伸線性を重視する場合には 0. 03%以下(好ましくは 0. 02%以下、特に 0. 010%以下)とする。一方、A 1 は鋼中のNを捕捉してA 1 Nを形成し、結晶粒を微細化することによって耐遅れ破壊特性の向上にも寄与するため、A 1を積極的に添加してもよい。この場合、A 1 量は、例えば 0. 01%以上、好ましくは 0. 02%以上、さらに好ましくは 0. 03%以上とする。

#### [0021]

さらに前記高強度ボルト用鋼は、本発明の目的を阻害しない範囲で他の元素を含有していてもよく、例えば、第1の追加元素(Cr、Co など)、第2の追加元素(Ni など)、第3の追加元素(Cu など)、第4の追加元素(Mo、V、Nb、Ti、W など)、第5の追加元素(B など)を単独で又は適宜組み合わせて添加してもよい。以下、追加の元素について説明する。

#### [0022]

第1の追加元素であるC r E C o は、E C r : 2. 5%以下(0%を含まない)、E C o は、初析セメンタイトの析出を抑制する効果があり、初析セメンタイトの低減を図る本発明の高強度ボルトにおける添加成分としては特に有効である。こうした効果は、いずれもその含有量が増加するほど増大するが、効果を顕著とするためにはE C r : 0. 05%以上(例えば0. 2%以上、特に0. 1%以上)、E C o : 0. 01%以上(例えば、0. 03%以上、特に0. 05%以上)とすることが推奨される。なお過剰に添加しても効果が飽和して不経済となる。従ってE C r : 2. 5%以下(好ましくは2. 0%以下、さらに好ましくは1. 2%以下)、E C o : 0. 5%以下(好ましくは0. 3%以下、さらに好ましくは0. 2%以下)とする。なおE C r E C o は、いずれか一方だけを添加してもよく、両方を添加してもよい。

## [0023]

第2の追加元素であるNiについては、1.0%以下(0%を含まない)の範囲で添加してもよい。Niはボルトの強度向上にあまり寄与しないが、伸線材の靭性を高める効果を有する。この効果はNiの含有量が増加するほど増大するが、効果を顕著とするためには、Ni量は、好ましくは0.05%以上、さらに好ましくは0.1%以上、特に0.15%以上とすることが推奨される。しかしNiが過剰になると、変態終了時間が長くなりすぎ、設備の大型化や生産性の低下をきたす。従ってNi量は、1.0%以下、好ましくは0.5%以下、さらに好ましくは0.3%以下とする。

## [0024]

第3の追加元素であるCuは、1.0%以下(0%を含まない)の範囲で添加してもよい。Cuは析出硬化作用によってボルトの高強度化に寄与する元素である。この効果はCuの含有量が増加するほど増大するが、効果を顕著とするためには、Cu量は、好ましくは0.05%以上、さらに好ましくは0.1%以上、特に0.2%以上とすることが推奨される。しかしCuが過剰になると、粒界脆化を起こして耐遅れ破壊特性を劣化させる原因となる。従ってCu量は、1.0%以下、好ましくは0.5%以下、さらに好ましくは0.3%以下とする。

#### [0025]

第4の追加元素であるMo、V、Nb、Ti、Wなどは、合計で0.5%以下(0%を含まない)となる範囲で添加してもよい。これらMo、V、Nb、Ti、Wは、微細な炭窒化物を形成し、耐遅れ破壊特性の向上に寄与する。この効果はこれらの元素の合計量が増加するほど増大し、該合計量は、好ましくは0.02%以上、さらに好ましくは0.05%以上とする。しかしこれらの元素の合計量が過剰になると、耐遅れ破壊特性を却って阻害し、靭性も劣化する。従ってこれらの元素の合計量は、0.5%以下、好ましくは0.2%以下、さらに好ましくは0.15%以下とする。なおMo、V、Nb、Ti、Wなどは単独で添加してもよく、2種以上を適宜組み合わせて添加してもよい。

#### [0026]

第5の追加元素であるBは、0.003%以下(0%を含まない)の範囲で添加してもよい。Bは焼入性向上のために添加される。この効果はBの含有量が増加するほど増大するが、効果を顕著とするためには、B量は、好ましくは0.0005%以上、さらに好ましくは0.0010%以上とすることが推奨される。しかしBが過剰になると靭性を阻害する。従ってB量は、0.003%以下、好ましくは0.0025%以下、さらに好ましくは0.0020%以下とする。

## [0027]

残部はFe及び不可避不純物であってもよい。

## [0028]

なお本発明で使用するボルト用鋼は、伸線加工、ブルーイング処理等を施してボルトとしたときに所定強度を有することができる程度の引張強度を有していればよく、例えば、 $1000\,\mathrm{N/mm^2}$ 以上、好ましくは $1100\,\mathrm{N/mm^2}$ 以上、さらに好ましくは $1200\,\mathrm{N/mm^2}$ 以上、特に $1300\,\mathrm{N/mm^2}$ 以上程度である。

## [0029]

そして本発明のボルトは、前記ボルト用鋼(線材又は鋼線)を、伸線加工した後、冷間でボルト圧造し、次いで $100\sim500$   $\mathbb C$ の温度域でブルーイング処理することによって得られるものである。このようなボルトは、引張強度 $1200\,\mathrm{N/mm^2}$ 以上(好ましくは $1400\,\mathrm{N/mm^2}$ 以上、さらに好ましくは $1500\,\mathrm{N/mm^2}$ 以上、特に $1600\,\mathrm{N/mm^2}$ 以上)の高強度でありながら、耐遅れ破壊特性および耐リラクセーション特性に優れている。

## [0030]

伸線加工を行うのは、圧延のまま或いは鍛造ままでは高強度ボルトに必要な寸法精度が得られず、また最終的に所定の強度を達成することが困難なためである。強伸線加工によって一部のパーライト組織中のセメンタイトが微細に分散され、水素トラップ能力を向上させると共に、伸線方向に沿って組織が並ぶことによって亀裂の進展の抵抗になる。伸線条件は、ボルトとしたときに所定の引張強度が得られる程度の強伸線加工であればよいが、例えば、減面率が $3.0 \sim 8.5\%$ 程度(好ましくは $5.0 \sim 7.0\%$ 程度)となるような加工を行うことが推奨される。

## [0031]

ブルーイング処理は、Siによる耐リラクセーション特性を利用する本発明にとっては必須の工程である。すなわちブルーイング処理を行えば、C、Nによる時効硬化が発揮されて塑性変形が防止され、ボルトの強度や耐力比を向上させる点で有用であり、温度  $100 \sim 200$   $\mathbb C$  での熱へたりを起こしにくくなるために、前記 Si 添加の効果(リラクセーションの原因となるフェライトへの固溶強化)と相俟って耐リラクセーション特性を著しく改善するのに有用である。また本発明では Si を増量しているため、高温のブルーイング処理を行っても、該ブルーイング処理時における引張強さや耐力の低下を抑制することができる。従って引張強さや耐力を向上させることが可能であると共に、耐リラクセーション特性を高めることができる。なおブルーイング処理温度が低すぎると、時効硬化が不十分となってボルトの強度向上や耐力比の向上が少なくなり、耐リラクセーション特性の改善が不十分となる。従ってブルーイング処理温度は、100  $\mathbb C$ 以上、好ましくは 200  $\mathbb C$ 以上、さらに好ましくは 300  $\mathbb C$ 以上とする。従ってブルーイング処理温度が、500  $\mathbb C$ 以下、好ましくは 100  $\mathbb C$ 以下とする。

## 【実施例】

## [0032]

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される



実験例1

下記表 1 に示す化学成分組成を有する供試鋼( $A\sim M$ )を用い、下記表 2 に示す線径( $8.0\sim11.5\,\mathrm{mm}\,\phi$ )まで熱間圧延した後、下記表 2 に示す条件でパテンティング処理(加熱温度:940%、恒温変態: $510\sim620\%$ で4分間)した。なお供試鋼Mは、比較の為、焼入れ・焼戻しを行って100%焼戻しマルテンサイト組織にした。得られた鋼線の組織、脱炭の程度、及び引張強度を調べた。前記組織調査では、下記の方法で初析フェライト、初析セメンタイト、ベイナイトおよびマルテンサイトまたはパーライト組織を分類し、各組識の面積率を求めた。

#### [0034]

「各組識の分類」

鋼線の横断面を埋め込み、研磨後、5%ピクリン酸アルコール液に15~30秒間浸漬して腐食させた後、走査型電子顕微鏡(SEM)によってD/4(Dは直径)部を組織観察した。そして、1000~3000倍で5~10視野撮影し、パーライト組織部分を確定した後、画像解析装置によって各組識の面積率を求めた。尚、パーライト組織と区別がつきにくい、ベイナイト組織や初析セメンタイト組織については図2(図面代用顕微鏡組織写真)に示す様な組織をベイナイト組織とし、図3(図面代用顕微鏡組織写真)に示す様な組織を初析セメンタイト組織と判断した。これらの組織の傾向として、初析フェライトと初析セメンタイトは、旧オーステナイト結晶粒界に沿って析出し、マルテンサイトは塊状に析出する。

[0035]

結果を表2に示す。

[0036]

【表1】

表1

|     |      |                        |      |       |       | 32    |       |        |                              |  |  |  |  |  |  |
|-----|------|------------------------|------|-------|-------|-------|-------|--------|------------------------------|--|--|--|--|--|--|
| 鋼   |      | 化学成分(質量%) <sup>※</sup> |      |       |       |       |       |        |                              |  |  |  |  |  |  |
| 鋼記号 | C    | Si                     | Mn   | Р     | S     | Αl    | N     | 0      | その他                          |  |  |  |  |  |  |
| Α   | 0.64 | 1.46                   | 0.66 | 0.013 | 0.010 | 0.002 | 0.005 | 0.0014 | Cr: 0.68                     |  |  |  |  |  |  |
| В   | 0.64 | 1.46                   | 0.60 | 0.011 | 0.010 | 0.002 | 0.005 | 0.0019 | V:0.104                      |  |  |  |  |  |  |
| С   | 0.83 | 0.92                   | 0.74 | 0.008 | 0.006 | 0.037 | 0.006 | 0.0008 |                              |  |  |  |  |  |  |
| D   | 0.64 | 2.05                   | 0.90 | 0.010 | 0.008 | 0.003 | 0.005 | 0.0013 | Cr: 0.98, Ni: 0.26, V: 0.092 |  |  |  |  |  |  |
| E   | 0.60 | 1.94                   | 0.93 | 0.012 | 0.005 | 0.033 | 0.005 | 0.0014 |                              |  |  |  |  |  |  |
| F   | 0.62 | 2.54                   | 0.51 | 0.015 | 0.012 | 0.034 | 0.005 | 0.0010 | Cr:0.50、Mo:0.10、Co:0.05      |  |  |  |  |  |  |
| G   | 0.60 | 2.89                   | 0.51 | 0.010 | 0.008 | 0.035 | 0.006 | 0.0011 | Cr:0.51、B:0.0015             |  |  |  |  |  |  |
| Н   | 0.82 | 0.55                   | 0.78 | 0.009 | 0.007 | 0.034 | 0.005 | 0.0008 | Cr:0.70                      |  |  |  |  |  |  |
| I   | 0.65 | 1.50                   | 0.65 | 0.015 | 0.014 | 0.035 | 0.005 | 0.0009 | Cu: 0.25                     |  |  |  |  |  |  |
| J   | 0.85 | 0.25                   | 0.77 | 0.010 | 0.006 | 0.048 | 0.004 | 0.0007 |                              |  |  |  |  |  |  |
| к   | 0.82 | 0.26                   | 0.71 | 0.015 | 0.009 | 0.041 | 0.005 | 0.0007 | Cr: 0.18                     |  |  |  |  |  |  |
| L   | 0.77 | 0.45                   | 0.72 | 0.012 | 0.012 | 0.039 | 0.005 | 0.0008 | Cr: 0.17                     |  |  |  |  |  |  |
| М   | 0.34 | 0.19                   | 0.70 | 0.016 | 0.009 | 0.033 | 0.003 | 0.0009 | Gr:0.95、Mo:0.18              |  |  |  |  |  |  |

※:残部はFe及び不可避不純物

## 【表2】

表2

| Γ | 蹄度<br>Im <sup>2</sup> )      |                |      | 83       | 87   | 1370 | 1346 | 1305 | 1314 | 1450 | 1220 | 1381 | 1398 | 1305 | 1399 | 1268      | 1305 | 1310                                         | 組織                                   |
|---|------------------------------|----------------|------|----------|------|------|------|------|------|------|------|------|------|------|------|-----------|------|----------------------------------------------|--------------------------------------|
|   | 引張強度<br>(N/mm <sup>2</sup> ) |                | 1360 | 1358     | 1287 | 3    | 5    | =    | =    | 4    | 12   | 13   | ≘    | = 13 | =    | 12        | =    | =                                            | ンチイン                                 |
|   |                              | パーライト          | 90   | 97       | 95   | 06   | 95   | 93   | 06   | 96   | 85   | 06   | 85   | 90   | 95   | 95        | 95   | 90                                           | 100%マルテンサイト組織                        |
|   |                              | マルテンサイト        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0                                            | 分→WC)村。                              |
|   | 組織<br>(面積%)                  | ^.1†1ŀ         | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0                                            | (460°C×90                            |
|   |                              | 初析<br>セジタイ     | 0    | 0        | 0    | 0    | 0    | 0    | 5    | 0    | 0    | 0    | 0    | 5    | 0    | 0         | 0    | 0                                            | Q)、焼戻し                               |
| ` |                              | 初析725个         | 10   | ဗ        | ഹ    | 10   | 5    | 7    | 5    | 10   | 15   | 10   | 15   | ည    | 5    | 5         | 5    | 10                                           | 0←次06×1                              |
|   | パテンテイング                      | 回道来が通過でいる。(つ。) | 9009 | 909      | 620  | 009  | 009  | 620  | 260  | 009  | 260  | 009  | 009  | 260  | 009  | 510       | 525  | 535                                          | 体入九(880°C×30分→0Q)、焼戻し(460°C×90分→WC)材 |
|   | 熱間圧延材                        | 凝依<br>(mm)     | 10.5 | 8.0      | 8.0  | 10.5 | 8.0  | 8.0  | 10.5 | 10.5 | 11.5 | 10.5 | 10.5 | 10.5 | 8.0  | 8.0       | 8.0  | 8.0                                          | 110                                  |
|   | 盤篠門卟                         |                | WA1  | WA2      | WA3  | WB1  | WB2  | WB3  | Ş    | ₽    | WE.  | WF   | WG   | WH   | M    | ſ <b></b> | ₹    | 뭃                                            | VA/A/                                |
|   | 盤咒卟                          |                | 1    | <b>A</b> |      |      | ш    |      | O    | Δ    | Ш    | 11.  | G    | Ξ    | _    | -         | ×    | <u>                                     </u> | 2                                    |
|   | 試験心                          |                | T-   | 2        | က    | 4    | 5    | 9    | 7    | 8    | 6    | 2    | =    | 12   | 13   | 4         | 캰    | 16                                           | ţ                                    |

[0038]

上記鋼線を下記表 3 に示す線径(7. 0 6 mm  $\phi$  または 5. 2 5 mm  $\phi$ ) まで強伸線し (減面率:55~62%)、伸線性を評価すると共に、得られた強伸線材の引張強度、耐 遅れ破壊特性、及び冷間加工性を調べた。なお伸線性の評価基準は以下の通りである。ま た耐遅れ破壊特性及び冷間加工性の評価は、以下のようにして行った。

## [0039]

[伸線性]

良好:所定の線径まで問題なく伸線でき、伸線後の引張試験においても異常破断が見ら れない。

不良:伸線中に又は伸線後の引張試験時に、カッピー破断、縦割れ破断などの異常破断 出証特2005-3035362 が見られる。

[0041]

[耐遅れ破壊特性]

前記強伸線材から、図1に示すM8×P1.25 [図1(a)、線径:7.06 mm  $\phi$ の鋼線から]またはM6×P1.0[図1(b)、線径:5.25 mm  $\phi$ の鋼線から]のスタッドボルトを作製し、遅れ破壊試験を行った。遅れ破壊試験は、ボルトを酸中に浸漬後(15%HC1×30分)、水洗・乾燥して大気中で応力負荷(負荷応力は引張強さの90%)し、100時間後の破断の有無で評価した(〇:破断なし、×:破断あり)。

【0042】 【表3】

表3

|          |    |     |            | রহ ও              |     |                              |          |  |
|----------|----|-----|------------|-------------------|-----|------------------------------|----------|--|
| 試        | 鋼  | 鋼   | 強          | 伸線工               | 伸線材 | 遅れ                           |          |  |
| 験<br>No. | 記号 | 線記号 | 減面率<br>(%) | 伸線後<br>線径<br>(mm) | 伸線性 | 引張強度<br>(N/mm <sup>2</sup> ) | 破壊<br>特性 |  |
| 1        |    | WA1 | 55         | 7.06              | 良好  | 1609                         | 0        |  |
| 2        | Α  | WA2 | 57         | 5.25              | 良好  | 1615                         | 0        |  |
| 3        |    | WA3 | 57         | 5.25              | 良好  | 1561                         | 0        |  |
| 4        |    | WB1 | 55         | 7.06              | 良好  | 1619                         | 0        |  |
| 5        | В  | WB2 | 57         | 5.25              | 良好  | 1623                         | 0        |  |
| 6        |    | WB3 | 57         | 5.25              | 良好  | 1584                         | 0        |  |
| 7        | С  | wc  | 55         | 7.06              | 良好  | 1637                         | 0        |  |
| 8        | D  | WD  | 55         | 7.06              | 良好  | 1699                         | 0        |  |
| 9        | E  | WE  | 62         | 7.06              | 良好  | 1507                         | 0        |  |
| 10       | F  | WF  | 55         | 7.06              | 良好  | 1622                         | 0        |  |
| 11       | G  | WG  | 55         | 7.06              | 良好  | 1632                         | 0        |  |
| 12       | Н  | WH  | 55         | 7.06              | 良好  | 1624                         | 0        |  |
| 13       | I  | WI  | 57         | 5.25              | 良好  | 1658                         | 0        |  |
| 14       | J  | WJ  | 57         | 5.25              | 良好  | 1640                         | 0        |  |
| 15       | К  | WK  | 57         | 5.25              | 良好  | 1631                         | 0        |  |
| 16       | L  | WL  | 57         | 5.25              | 良好  | 1628                         | 0        |  |
| 17       | М  | WM  | 59         | 7.06              |     | 1318                         | ×        |  |

## [0043]

上記のようにして得られた強伸線材を、一部、温度  $200 \sim 400$   $\mathbb C$ でブルーイング処理した。ブルーイング処理したもの及びブルーイング処理しなかったものの両方について、引張強さ、及び 0.2% 耐力を調べた。またリラクセーション試験を  $\mathbb L$   $\mathbb$ 

【0044】 リラクセーション値(%) = [( $W_1-W_2$ )  $/W_1$ ]  $\times 100$ 結果を表4及び図4に示す。 【0045】 【表4】

表4

| 試験<br>No. | 鋼記号 | 鋼線記号    | ブルーイング<br>処理温度<br>(°C) | 引張強度<br>(N/mm <sup>2</sup> ) | 0.2%<br>耐力<br>(N/mm <sup>2</sup> ) | 載荷荷重<br>(N/mm <sup>2</sup> ) | リラクセーション値<br>(%) |  |
|-----------|-----|---------|------------------------|------------------------------|------------------------------------|------------------------------|------------------|--|
| 2         |     |         | なし                     | 1615                         | 1436                               | 1149                         | 10.55            |  |
| 2A        |     |         | 200                    | 1713                         | 1642                               | 1314                         | 9.14             |  |
| 2B        |     | WA2     | 300                    | 1700                         | 1638                               | 1310                         | 8.87             |  |
| 2C        | A   | ľ       | 400                    | 1681                         | 1628                               | 1302                         | 8.39             |  |
| 3         |     |         | なし                     | 1561                         | 1363                               | 1090                         | 10.48            |  |
| ЗА        |     | WA3     | 200                    | 1671                         | 1595                               | 1276                         | 7.72             |  |
| 5         |     |         | なし                     | 1623                         | 1453                               | 1162                         | 10.50            |  |
| 5A        | _   | WB2     | 200 1746 1709 1        |                              | 1367                               | 8.76                         |                  |  |
| 6         | В   | 14/17/0 | なし                     | 1584                         | 1389                               | 1111                         | 10.30            |  |
| 6A        |     | WB3     | 200                    | 1690                         | 1617                               | 1294                         | 8.87             |  |
| 7A        |     |         | 200                    | 1754                         | 1705                               | 1364                         | 9.11             |  |
| 7B        | C   | wc      | 300                    | 1734                         | 1643                               | 1314                         | 8.89             |  |
| 7C        |     |         | 400                    | 1728                         | 1624                               | 1299                         | 8.47             |  |
| 8A        |     |         | 200                    | 1821                         | 1765                               | 1412                         | 7.81             |  |
| 8B        | D   | WD      | 300                    | 1807                         | 1715                               | 1372                         | 7.55             |  |
| 8C        |     |         | 400                    | 1787                         | 1699                               | 1359                         | 7.41             |  |
| 9A        |     |         | 200                    | 1628                         | 1594                               | 1275                         | 8.21             |  |
| 9B        | Ε   | WE      | 300                    | 1611                         | 1542                               | 1234                         | 8.10             |  |
| 9C        |     | İ       | 400                    | 1608                         | 1538                               | 1230                         | 7.99             |  |
| 10A       |     | 14/5    | 200                    | 1741                         | 1701                               | 1361                         | 7.51             |  |
| 10B       | F   | WF      | 300                    | 1738                         | 1698                               | 1358                         | 7.40             |  |
| 11A       |     | , wo    | 200                    | 1758                         | 1724                               | 1379                         | 7.31             |  |
| 11B       | G   | WG      | 300                    | 1751                         | 1715                               | 1372                         | 7.26             |  |
| 12A       |     | 16/11   | 200                    | 1711                         | 1668                               | 1334                         | 9.55             |  |
| 12B       | Н   | WH      | 300                    | 1698                         | 1625                               | 1300                         | 9.26             |  |
| 13A       | ,   | 14.77   | 200                    | 1751                         | 1711                               | 1369                         | 8.67             |  |
| 13B       | I   | WI      | 300                    | 1742                         | 1708                               | 1366                         | 8.11             |  |
| 14A       |     | L SAZ   | 200                    | 1758                         | 1680                               | 1344                         | 12.31            |  |
| 14B       | J   | WJ      | 300                    | 1750                         | 1658                               | 1326                         | 10.49            |  |
| 15A       | 1/  | 1407    | 200                    | 1740                         | 1660                               | 1328                         | 12.52            |  |
| 15B       | K   | WK      | 300                    | 1727                         | 1551                               | 1241                         | 10.70            |  |
| 16A       |     | \A/I    | 200                    | 1745                         | 1671                               | 1337                         | 11.01            |  |
| 16B       | L   | WL      | 300                    | 1734                         | 1572                               | 1258                         | 10.51            |  |

[0046]

焼入れ・焼戻し鋼(マルテンサイト鋼)であるMは、遅れ破壊特性が不十分であった( 出証特2005-3035362



[0047]

パーライト鋼としたJ~Lは、耐遅れ破壊特性が改善されている(表3参照)。しかし Si量が 0. 55%未満であるため、耐リラクセーション特性に限界があった(表4参照 ) 。

[0048]

これらに対して、鋼A~Iは、パーライト鋼であるために耐遅れ破壊特性に優れている (表3参照)。しかもSi量を0.55%以上としてブルーイング処理を行っているため 、耐リラクセーション特性がさらに改善された(図4の白丸および黒丸参照)。なおこの 図4から明らかなように、単にSi量を0.55%以上としても、ブルーイング処理を行 わないと、耐リラクセーション特性は改善されず(図4のバツ印参照)、Si増量とブル ーイング処理を組み合わせることによって耐リラクセーション特性が改善できる。

#### 【図面の簡単な説明】

[0049]

- 【図1】耐遅れ破壊試験に用いるスタッドボルトの形状を示す概略説明図である。
- 【図2】ベイナイト組織を示す図面代用写真である。
- 【図3】初析セメンタイト組織を示す図面代用写真である。
- 【図4】Si量、ブルーイング処理の有無、及びリラクセーション値の関係を示すグ ラフである。



(a)



【図2】







 $5 \,\mu$  m (×3000)





## 【書類名】要約書

【要約】

【課題】 引張強度1200N/mm<sup>2</sup>以上であって耐遅れ破壊特性に優れたパーライト 組織の高強度ボルトにおいて、耐リラクセーション特性をさらに改善する。

【解決手段】  $C:0.5\sim1.0\%$ (質量%の意味、以下同じ)、 $Si:0.55\sim3$ %、Mn:0.2~2%、P:0.03%以下(0%を含まない)、S:0.03%以下 (0%を含まない)、及びA1:0.3%以下(0%を含まない)を含有し、初析フェラ イト、初析セメンタイト、ベイナイトおよびマルテンサイトの合計の面積率が20%未満 であって、残部の組織がパーライトであるボルト用鋼を、

伸線加工した後、冷間圧造によってボルト形状とし、次いで100~500℃の温度域 でブルーイング処理することによって得られる引張強度1200N/mm²以上の耐遅れ 破壊特性および耐リラクセーション特性に優れた高強度ボルト。

特願2004-057379

出願人履歴情報

識別番号

[000005326]

1. 変更年月日 [変更理由]

1990年 9月 6日 新規登録

住所氏名

東京都港区南青山二丁目1番1号

本田技研工業株式会社

特願2004-057379

出願人履歴情報

識別番号

[392027254]

1. 変更年月日 [変更理由] 住 所

氏 名

1992年 8月26日

新規登録

佐賀県佐賀市神園一丁目5番30号

株式会社佐賀鉄工所

特願2004-057379

出願人履歴情報

識別番号

[000001199]

1. 変更年月日

2002年 3月 6日

[変更理由]

住所変更

住 所

兵庫県神戸市中央区脇浜町二丁目10番26号

氏 名 株式会社神戸製鋼所