Probability Theory and Random Processes (MA225)

Lecture 13

Indian Institute of Technology Guwahati

July-Nov 2022

Functions of Random Variables: Technique 1

In Technique 1, we try to find the JCDF of Y = g(X) given the distribution of X. As before, we will discuss this technique using examples.

Example 1: Let X_1 and X_2 be *i.i.d.* U(0, 1) random variables. Find the CDF of $Y = X_1 + X_2$.

Example 2: Let the JPDF of (X_1, X_2) be given by

$$f_{X_1, \, X_2}(x_1, \, x_2) = \begin{cases} e^{-x_1} & \text{if } 0 < x_1 < x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Find the JCDF of $Y_1 = X_1 + X_2$ and $Y_2 = X_2 - X_1$.

MA225

Functions of RVs: Technique 2 for DRV

Theorem: Let $X=(X_1,\,X_2,\,\ldots,\,X_n)$ be a DRV with JPMF f_X and support S_X . Let $g_i:\mathbb{R}^n\to\mathbb{R}$ for all $i=1,\,2,\,\ldots,\,k$. Let $Y_i=g_i(X)$ for $i=1,\,2,\,\ldots,\,k$. Then $Y=(Y_1,\,\ldots,\,Y_k)$ is a DRV with JPMF

$$f_{\boldsymbol{Y}}(y_1,\,\ldots,\,y_k) = \begin{cases} \sum_{\boldsymbol{x}\in A_{\boldsymbol{y}}} f_{\boldsymbol{X}}(\boldsymbol{x}) & \text{if } (y_1,\,\ldots,\,y_k) \in S_{\boldsymbol{Y}} \\ 0 & \text{otherwise,} \end{cases}$$

where $A_{\boldsymbol{y}} = \{ \boldsymbol{x} \in S_{\boldsymbol{X}} : g_i(\boldsymbol{x}) = y_i, \ i = 1, \dots, k \}$ and $S_{\boldsymbol{Y}} = \{ (g_1(\boldsymbol{x}), \dots, g_k(\boldsymbol{x})) : \boldsymbol{x} \in S_{\boldsymbol{X}} \}.$

MA225

Functions of RVs: Technique 2 for DRV

Example 3: $X_1 \sim P(\lambda_1)$ and $X_2 \sim P(\lambda_2)$ and they are independent. Then $X_1 + X_2 \sim P(\lambda_1 + \lambda_2)$.

Example 4: $X_1 \sim Bin(n_1, p)$ and $X_2 \sim Bin(n_2, p)$ and they are independent. Then $X_1 + X_2 \sim Bin(n_1 + n_2, p)$.

Example 5: $X_i \sim Bin(n_i, p)$, i = 1, 2, ..., m and X_i 's are independent. Then $\sum_{i=1}^m X_i \sim Bin(\sum_{i=1}^m n_i, p)$.