Bank Customer Churn Prediction

1. Data Exploration

Load data

```
In [1]:
           import pandas as pd
           import numpy as np
           df=pd.read_csv('Churn_Modelling.csv')
 In [4]:
           df.head()
 In [6]:
 Out[6]:
             RowNumber CustomerId Surname
                                               CreditScore
                                                           Geography
                                                                       Gender
                                                                              Age
                                                                                    Tenure
                                                                                              Balance
                                                                                                      Num
          0
                       1
                                                                                                 0.00
                            15634602
                                      Hargrave
                                                      619
                                                               France
                                                                       Female
                                                                                42
                                                                                         2
          1
                       2
                            15647311
                                           Hill
                                                      608
                                                                                         1
                                                                                             83807.86
                                                                Spain
                                                                       Female
          2
                       3
                            15619304
                                                                                            159660.80
                                         Onio
                                                      502
                                                               France
                                                                       Female
          3
                       4
                            15701354
                                                      699
                                                                       Female
                                                                                                 0.00
                                          Boni
                                                                France
                                                                                39
                                                                                         1
                       5
                            15737888
                                       Mitchell
                                                      850
                                                                                43
                                                                                           125510.82
                                                                Spain
                                                                       Female
           df.info()
 In [8]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 10000 entries, 0 to 9999
          Data columns (total 14 columns):
           #
                Column
                                  Non-Null Count
                                                   Dtype
                                  10000 non-null
           0
                                                   int64
               RowNumber
                                  10000 non-null
           1
               CustomerId
                                                   int64
           2
               Surname
                                  10000 non-null
                                                   object
           3
               CreditScore
                                  10000 non-null
                                                   int64
           4
               Geography
                                  10000 non-null
                                                   object
           5
               Gender
                                  10000 non-null
                                                   object
           6
                                  10000 non-null
                                                   int64
               Age
           7
               Tenure
                                  10000 non-null
                                                   int64
           8
                                  10000 non-null
                                                   float64
               Balance
           9
                                                   int64
               NumOfProducts
                                  10000 non-null
           10
               HasCrCard
                                  10000 non-null
                                                   int64
           11
               IsActiveMember
                                  10000 non-null
                                                   int64
           12
               EstimatedSalary
                                  10000 non-null
                                                   float64
           13
               Exited
                                  10000 non-null
                                                   int64
          dtypes: float64(2), int64(9), object(3)
          memory usage: 1.1+ MB
           # Check numerical features
In [15]:
           df.describe()
Out[15]:
                 RowNumber
                               CustomerId
                                             CreditScore
                                                                                                 NumOfPro
                                                                Age
                                                                           Tenure
                                                                                        Balance
                 10000.00000 1.000000e+04 10000.000000 10000.000000
                                                                     10000.000000
                                                                                    10000.000000
                                                                                                    10000.00
          count
```

Age

Tenure

CreditScore

RowNumber

CustomerId

					_					
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.5		
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.5		
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.00		
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.00		
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.00		
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.00		
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.00		
	4							>		
In [7]:		ck number og	f nique value.	s for each co	Lumn					
Out[7]:	HasCrC IsActi Estima Exited	merId me Score mphy e me roducts mard veMember mtedSalary	10000 10000 2932 460 3 2 70 11 6382 4 2 2 9999							
In [9]:	<pre># get target variable y=df['Exited']</pre>									
In [10]:		descriptive	e statistics	of y						
Out[10]:	mean std min 25% 50% 75% max	10000.00 0.20 0.40 0.00 0.00 0.00 1.00 Exited, dty	3700 2769 0000 0000 0000 0000 0000							
In [13]:	<pre># check proportion of y=1 (same as mean shown above) print(round(y.sum()/y.shape[0]*100,2), '%')</pre>									
	20.37 %									

Explore features

```
In [16]: import matplotlib.pyplot as plt
import seaborn as sns
```

Balance NumOfPro

```
In [18]: # explore numerical features: 'CreditScore', 'Age', 'Tenure', 'NumberOfProducts', 'Bala
_,axss = plt.subplots(2,3, figsize=[20,10])
sns.boxplot(x='Exited', y ='CreditScore', data=df, ax=axss[0][0])
sns.boxplot(x='Exited', y ='Age', data=df, ax=axss[0][1])
sns.boxplot(x='Exited', y ='Tenure', data=df, ax=axss[0][2])
sns.boxplot(x='Exited', y ='NumOfProducts', data=df, ax=axss[1][0])
sns.boxplot(x='Exited', y ='Balance', data=df, ax=axss[1][1])
sns.boxplot(x='Exited', y ='EstimatedSalary', data=df, ax=axss[1][2])
```

Out[18]: <AxesSubplot:xlabel='Exited', ylabel='EstimatedSalary'>


```
In [22]: # explore categorical feature: 'Geography', 'Gender', 'HasCrCard', 'IsActiveMember'
   _,axss = plt.subplots(2,2, figsize=[20,10])
   sns.countplot(x='Exited', hue='Geography', data=df, ax=axss[0][0])
   sns.countplot(x='Exited', hue='Gender', data=df, ax=axss[0][1])
   sns.countplot(x='Exited', hue='HasCrCard', data=df, ax=axss[1][0])
   sns.countplot(x='Exited', hue='IsActiveMember', data=df, ax=axss[1][1])
```

Out[22]: <AxesSubplot:xlabel='Exited', ylabel='count'>

Out[24]:

```
In [24]: # correlations between features
    corr_score = df[['CreditScore', 'Age', 'Tenure', 'NumOfProducts', 'Balance', 'EstimatedS
    corr_score
```

	CreditScore	Age	Tenure	NumOfProducts	Balance	EstimatedSalary
CreditScor	e 1.000000	-0.003965	0.000842	0.012238	0.006268	-0.001384
Ag	e -0.003965	1.000000	-0.009997	-0.030680	0.028308	-0.007201
Tenur	e 0.000842	-0.009997	1.000000	0.013444	-0.012254	0.007784
NumOfProduct	o.012238	-0.030680	0.013444	1.000000	-0.304180	0.014204
Balanc	e 0.006268	0.028308	-0.012254	-0.304180	1.000000	0.012797
EstimatedSalar	y -0.001384	-0.007201	0.007784	0.014204	0.012797	1.000000

```
In [25]: # show heapmap of correlations
sns.heatmap(corr_score)
```

Out[25]: <AxesSubplot:>

No two features are significantly correlated given the plot.

2. Feature Preprocessing

```
In [26]: # ordinal encoding
    df['Gender'] = (df['Gender'] == 'Female')

In [27]: df.shape

Out[27]: (10000, 14)

In [29]: df = pd.get_dummies(df, columns=['Geography'])

In [30]: df.head(10)
```

Out[30]:		RowNumber	Customeric	d Surname	CreditSco	e Gender	Age	Tenure	Balance	NumOfPi	roducts
	0	1	1563460	2 Hargrave	61	9 True	42	2	0.00		1
	1	2	1564731	1 Hill	60	8 True	41	1	83807.86		1
	2	3	1561930	4 Onio	50	2 True	42	8	159660.80		3
	3	4	1570135	4 Boni	69	9 True	39	1	0.00		2
	4	5	1573788	8 Mitchell	85	0 True	43	2	125510.82		1
	5	6	1557401	2 Chu	64	5 False	44	8	113755.78		2
	6	7	1559253	1 Bartlett	82	2 False	50	7	0.00		2
	7	8	1565614	8 Obinna	37	6 True	29	4	115046.74		4
	8	9	1579236	5 He	50	1 False	44	4	142051.07		2
	9	10	1559238	9 H?	68	4 False	27	2	134603.88		1
	4										•
In [33]: Out[33]:	x .	_drop = ['F = df.drop(t head() CreditScore	co_drop, a	xis=1)				HasCrCa	rd IsActiv	e M ember	Estimate
	0	619		42 2	0.00		1		1	1	1(
	1	608		41 1	83807.86		1		0	1	1.
	2	502		42 8	159660.80		3		1	0	1 [.]
	3	699	True 3	39 1	0.00		2		0	0	(
	4	850	True 4	43 2	125510.82		1		1	1	-
	4										•
In [34]:	у.	head()									
Out[34]:	0 1 2 3 4 Nam	1 0 1 0 0 e: Exited,	dtype: in	t64							

3. Model Training and Result Evaluation

Split dataset

```
In [35]: from sklearn import model_selection
In [36]: # Reserve 25% for testing
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, test_size=0.2)
```

```
print('training data has ' + str(x_train.shape[0]) + ' observation with ' + str(x_train print('test data has ' + str(x_test.shape[0]) + ' observation with ' + str(x_test.shape training data has 7500 observation with 12 features test data has 2500 observation with 12 features
In [37]: # Scale the data, using standardization from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(x_train) x_train = scaler.transform(x_train) x_test = scaler.transform(x_test)
```

Model Training

```
from sklearn.ensemble import RandomForestClassifier
In [38]:
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.linear model import LogisticRegression
          # Logistic Regression
          classifier logistic = LogisticRegression()
          # K Nearest Neighbors
          classifier_KNN = KNeighborsClassifier()
          # Random Forest
          classifier RF = RandomForestClassifier()
          # Train the model, predict on test data, and get accuracy of test data
In [51]:
          model_names = ['Logistic Regression','KNN','Random Forest']
          model_list = [classifier_logistic, classifier_KNN, classifier_RF]
          count = 0
          for classifier in model list:
              classifier.fit(x_train, y_train)
              classifier.predict(x test)
              model_score=classifier.score(x_test, y_test)
              print('Accuracy of test data of ' + model names[count]+': '+str(model score))
              count +=1
         Accuracy of test data of Logistic Regression: 0.808
         Accuracy of test data of KNN: 0.8268
         Accuracy of test data of Random Forest: 0.8596
          # Use 5-fold Cross Validation to get the accuracy for different models
In [52]:
          model_names = ['Logistic Regression','KNN','Random Forest']
          model list = [classifier logistic, classifier KNN, classifier RF]
          count = 0
          for classifier in model list:
              cv score = model selection.cross val score(classifier, x train, y train, cv=5)
              print(cv score)
              print('Model accuracy of ' + model_names[count] + ' is ' + str(cv_score.mean()))
              count += 1
         [0.81933333 0.80666667 0.80666667 0.80933333 0.82
                                                                 1
         Model accuracy of Logistic Regression is 0.8124
         [0.82533333 0.836
                                0.814
                                           0.824
                                                      0.832
                                                                 1
         Model accuracy of KNN is 0.826266666666666
```

```
[0.876     0.864     0.856     0.85333333     0.868     ] Model accuracy of Random Forest is 0.86346666666668
```

Use Grid Search to Find Optimal Hyperparameters

```
In [53]: from sklearn.model_selection import GridSearchCV

# helper function for printing out grid search results
def print_grid_search_metrics(gs):
    print ("Best score: " + str(gs.best_score_))
    print ("Best parameters set:")
    best_parameters = gs.best_params_
    for param_name in sorted(best_parameters.keys()):
        print(param_name + ':' + str(best_parameters[param_name]))
```

Optimal Hyperparameters - LogisticRegression

```
# Possible hyperparamter options for Logistic Regression Regularization
In [55]:
          # Penalty is choosed from L1 or L2
          # C is the lambda value(weight) for L1 and L2
          # ('l1', 1) ('l1', 5) ('l1', 10) ('l2', 1) ('l2', 5) ('l2', 10)
          parameters = {
               'penalty':('l1', 'l2'),
              'C':(0.01, 1, 5, 10, 100)
          Grid_LR = GridSearchCV(LogisticRegression(solver='liblinear'),parameters, cv=5)
          Grid LR.fit(x train, y train)
Out[55]: GridSearchCV(cv=5, estimator=LogisticRegression(solver='liblinear'),
                       param_grid={'C': (0.01, 1, 5, 10, 100), 'penalty': ('l1', 'l2')})
          # the best hyperparameter combination
In [56]:
          \# C = 1/Lambda
          print_grid_search_metrics(Grid_LR)
         Best score: 0.8124
         Best parameters set:
         C:1
         penalty:12
          # best model
In [57]:
          best LR model = Grid LR.best estimator
In [66]:
          best_LR_model
Out[66]: LogisticRegression(C=1, solver='liblinear')
```

Optimal Hyperparameters - KNN

```
In [58]: # Possible hyperparamter options for KNN
# Choose k
parameters = {
         'n_neighbors':[1,3,5,7,9]
}
Grid_KNN = GridSearchCV(KNeighborsClassifier(),parameters, cv=5)
Grid_KNN.fit(x_train, y_train)
```

In [59]:

best k

n neighbors:9

print grid search metrics(Grid KNN)

Best score: 0.832266666666667

Best parameters set:

```
best KNN model = Grid KNN.best estimator
In [60]:
In [65]:
          best KNN model
Out[65]: KNeighborsClassifier(n_neighbors=9)
        Optimal Hyperparameters - Random Forest
In [61]:
          # Possible hyperparamter options for Random Forest
          # Choose the number of trees
          parameters = {
              'n_estimators' : [40,60,80]
          Grid_RF = GridSearchCV(RandomForestClassifier(),parameters, cv=5)
          Grid_RF.fit(x_train, y_train)
Out[61]: GridSearchCV(cv=5, estimator=RandomForestClassifier(),
                      param grid={'n estimators': [40, 60, 80]})
          # best number of tress
In [62]:
          print_grid_search_metrics(Grid_RF)
         Best score: 0.863466666666666
         Best parameters set:
         n_estimators:80
          # best random forest
In [63]:
          best RF model = Grid RF.best estimator
          best_RF_model
In [64]:
```

Model Evaluation - Confusion Matrix

Out[64]: RandomForestClassifier(n_estimators=80)

```
from sklearn.metrics import confusion_matrix
In [74]:
          from sklearn.metrics import classification report
          from sklearn.metrics import precision score
          from sklearn.metrics import recall score
          # calculate accuracy, precision and recall
          def cal_evaluation(classifier, cm):
              tn = cm[0][0]
              fp = cm[0][1]
              fn = cm[1][0]
              tp = cm[1][1]
              accuracy = (tp + tn) / (tp + fp + fn + tn + 0.0)
              precision = tp / (tp + fp + 0.0)
              recall = tp / (tp + fn + 0.0)
              print (classifier)
              print ("Accuracy is: " + str(accuracy))
```

```
print ("precision is: " + str(precision))
print ("recall is: " + str(recall))
print ()

# print out confusion matrices
def draw_confusion_matrices(confusion_matricies):
    for cm in confusion_matrices:
        classifier, cm = cm[0], cm[1]
        cal_evaluation(classifier, cm)
```

```
In [75]:
    confusion_matrices = [
        ("Logistic Regression", confusion_matrix(y_test, best_LR_model.predict(x_test))),
        ("K nearest neighbor", confusion_matrix(y_test, best_KNN_model.predict(x_test))),
        ("Random Forest", confusion_matrix(y_test, best_RF_model.predict(x_test)))
        draw_confusion_matrices(confusion_matrices)
```

```
Logistic Regression
Accuracy is: 0.808
precision is: 0.5857988165680473
recall is: 0.1944990176817289

K nearest neighbor
Accuracy is: 0.8336
precision is: 0.6837944664031621
recall is: 0.33988212180746563

Random Forest
Accuracy is: 0.8544
precision is: 0.7508650519031141
recall is: 0.4263261296660118
```

Feature Selection

Feature Selection - Logistic Regression

```
# add L1 regularization to logistic regression
In [84]:
          # check the coef for feature selection
          scaler = StandardScaler()
          X l1 = scaler.fit transform(x)
          LRmodel 11 = LogisticRegression(penalty="11", C = 0.07, solver='liblinear')
          LRmodel l1.fit(X l1, y)
          indices = np.argsort(abs(LRmodel_l1.coef_[0]))[::-1]
          print ("Logistic Regression (L1) Coefficients")
          for ind in range(x.shape[1]):
              print("{0} : {1}".format(x.columns[indices[ind]],round(LRmodel l1.coef [0][indices[
         Logistic Regression (L1) Coefficients
         Age : 0.744
         IsActiveMember : -0.5184
         Geography Germany: 0.3157
         Gender: 0.2503
         Balance : 0.1566
         CreditScore : -0.0537
         NumOfProducts : -0.0503
         Tenure : -0.0351
         EstimatedSalary: 0.017
         Geography France: -0.0099
```

```
Geography Spain: 0.0
          # add L2 regularization to logistic regression
In [86]:
          # check the coef for feature selection
          np.random.seed()
          scaler = StandardScaler()
          X 12 = scaler.fit transform(x)
          LRmodel 12 = LogisticRegression(penalty="12", C = 0.1, solver='liblinear', random state
          LRmodel 12.fit(X 12, y)
          LRmodel_12.coef_[0]
          indices = np.argsort(abs(LRmodel 12.coef [0]))[::-1]
          print ("Logistic Regression (L2) Coefficients")
          for ind in range(x.shape[1]):
              print ("{0} : {1}".format(x.columns[indices[ind]],round(LRmodel_12.coef_[0][indices
         Logistic Regression (L2) Coefficients
         Age: 0.751
         IsActiveMember : -0.5272
         Gender: 0.2591
         Geography_Germany: 0.2279
```

NumOfProducts: -0.0586
Tenure: -0.0452
EstimatedSalary: 0.0272
HasCrCard: -0.0199

Geography_France : -0.1207 Geography_Spain : -0.089 CreditScore : -0.0637

Balance : 0.162

HasCrCard : -0.0099

Feature Selection - Random Forest

```
# check feature importance of random forest for feature selection
In [87]:
          forest = RandomForestClassifier()
          forest.fit(x, y)
          importances = forest.feature importances
          indices = np.argsort(importances)[::-1]
          # Print the feature ranking
          print("Feature importance ranking by Random Forest Model:")
          for ind in range(x.shape[1]):
              print ("{0} : {1}".format(x.columns[indices[ind]],round(importances[indices[ind]],
         Feature importance ranking by Random Forest Model:
         Age: 0.2411
         EstimatedSalary: 0.1464
         CreditScore : 0.1433
         Balance : 0.1428
         NumOfProducts: 0.128
         Tenure : 0.0818
         IsActiveMember: 0.0395
         Geography_Germany: 0.0224
         Gender: 0.0186
         HasCrCard: 0.0184
         Geography France: 0.0097
         Geography Spain: 0.008
 In [ ]:
```