Sparsity and Matrix Estimation

Dimitris Stamos Slides by Massimiliano Pontil

University College London

Today's Plan

- ► Sparsity in linear regression
- ► Formulation as a convex program Lasso
- Group Lasso
- Matrix estimation problems (Collaborative Filtering, Multi-task Learning, Inverse Covariance, Sparse Coding, etc.)
- Nonlinear extension

L1-regularization

Least absolute shrinkage and selection operator (LASSO):

$$\min_{\|w\|_1 \le \alpha} \frac{1}{2} \|y - Xw\|_2^2$$

where
$$\|w\|_1 = \sum_{j=1}^d |w_j|$$

ℓ_1 -norm regularization encourages sparsity

Consider the case X = I:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w - y\|_2^2 + \lambda \|w\|_1$$

Lemma: Let $H_{\lambda}(t)=(|t|-\lambda)_{+}\mathrm{sgn}(t),\ t\in\mathbb{R}.$ The solution \hat{w} is given by

$$\hat{w}_i = H_{\lambda}(y_i), \quad i = 1, \dots, d$$

Proof: First note that the problem decouples:

 $\hat{w}_i = \operatorname{argmin} \left\{ \frac{1}{2} (w_i - y_i)^2 + \lambda |w_i| \right\}. \text{ By symmetry } \hat{w}_i y_i \geq 0, \text{ thus w.l.o.g. we can assume } y_i \geq 0. \text{ Now, if } \hat{w}_i > 0 \text{ the objective function is differentiable and setting the derivative to zero gives } \hat{w}_i = y_i - \lambda. \text{ Since the minimum is unique we conclude that } \hat{w}_i = (y_i - \lambda)_+.$

Optimality conditions

Directional derivative of f at w in the direction d

$$D^+ f(w; d) := \lim_{\epsilon \to 0^+} \frac{f(w + \epsilon d) - f(w)}{\epsilon}$$

Theorem 1: $\hat{w} \in \arg\min_{w \in \mathbb{R}^d} f(w)$ iff $D^+ f(\hat{w}; d) \geq 0 \ \forall d \in \mathbb{R}^d$

- the directional derivative of a convex function is always well defined and finite
- ▶ if f is differentiable then at w then $D^+f(w;d) = d^\top \nabla f(w)$ and Theorems says that \hat{w} is a solution iff $\nabla f(\hat{w}) = 0$

Optimality conditions (cont.)

If f is convex its subdifferential at w is defined as

$$\partial f(w) = \{ u : f(v) \ge f(w) + u^{\mathsf{T}}(v - w), \ \forall v \in \mathbb{R}^d \}$$

- $ightharpoonup \partial f$ is a set-valued function
- lacktriangle the elements of $\partial f(w)$ are called the subgradients of f at w
- ▶ intuition: $u \in \partial f(w)$ if the affine function $f(w) + u^{\scriptscriptstyle \top}(v-w)$ is a global underestimator of f

Theorem 2: $\hat{w} \in \arg\min_{w \in \mathbb{R}^d} f(w)$, iff $0 \in \partial f(\hat{w})$

Optimality conditions (cont.)

Theorem 2:
$$\hat{w} \in \arg\min_{w \in \mathbb{R}^d} f(w)$$
, iff $0 \in \partial f(\hat{w})$

▶ if f is differentiable then $\partial f(w) = \{\nabla f(w)\}$ and Theorem 2 says that \hat{w} is a solution iff $\nabla f(\hat{w}) = 0$

Some properties of gradients are still true for subgradients, e.g.:

- $ightharpoonup \partial(af)(w) = a\partial f(w)$, for all $a \ge 0$
- ▶ If f and g are convex then $\partial (f+g)(w) = \partial f(w) + \partial g(w)$

Optimality conditions for Lasso

$$\min \|y - Xw\|_2^2 + \lambda \|w\|_1$$

by Theorem 2 and the properties of subgradients, w is a optimal solution iff

$$X^{\mathsf{T}}(y - Xw) \in \lambda \partial \|w\|_1$$

▶ to compute $\partial \|w\|_1$ use the sum rule and the subgradient of the absolute value: $\partial |t| = \{\operatorname{sgn}(t)\}$ if $t \neq 0$ and $\partial |t| = \{u : |u| \leq 1\}$ if t = 0

Case X=I: \hat{w} is a solution iff, for every $i=1,\ldots,d$, $y_i-\hat{w}_i=\lambda \mathrm{sgn}(\hat{w}_i)$ if $\hat{w}_i\neq 0$ and $|y_i-\hat{w}_i|\leq \lambda$ otherwise (verify that these formulae yield the soft thresolding solution on page 4)

General learning method

In generally we will consider optimization problems of the form

$$\min_{w \in \mathbb{R}^d} F(w), \text{ where } F(w) = f(w) + g(w)$$

Often f will be a data term: $f(w) = \sum_{i=1}^m E(w^{\scriptscriptstyle \top} x_i, y_i)$, and g a convex penalty function (non necessarily smooth, e.g. the ℓ_1 norm) We will later discuss a method to solve the above problem under the assumptions that f has some smoothness property and g is "simple", in the sense that the following problem is easy to solve

$$\min_{w} \frac{1}{2} \|w - y\|^2 + g(w)$$

Group Lasso

Enforce sparsity across a-priori known groups of variables:

$$\min_{W \in \mathbb{R}^d} f(w) + \lambda \sum_{\ell=1}^N \|w_{|J_\ell}\|_2$$

where J_1, \ldots, J_N are prescribed subsets of $\{1, \ldots, d\}$

- ▶ In the original formulation (Yuan and Lin, 2006) the groups form a partition of the index set $\{1, \ldots, n\}$
- ▶ Overlapping groups (Zhao et al. 2009; Jennaton et al. 2010): hierarchical structures such as DAGS Example: $J_1 = \{1, 2, ..., d\}, J_2 = \{2, 3, ..., d\}, ..., J_d = \{d\}$

Multi-task learning

- Learning multiple linear regression or binary classification tasks simultaneously
- Formulate as a matrix estimation problem $(W = [w_1, \dots, w_T])$

$$\min_{W \in \mathbb{R}^{d \times T}} \sum_{t=1}^{T} \sum_{i=1}^{m} E(w_t^{\top} x_{ti}, y_{ti}) + \lambda g(W)$$

- ightharpoonup Relationships between tasks modeled via sparsity constraints on W
- ► Few common important variables (special case of Group Lasso):

$$g(W) = \sum_{j=1}^{d} ||w^{j}||_{2}$$

Some references

Lasso:

- P.J. Bickel, Y. Ritov, and A.B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 37:1705–1732, 2009.
- R. Tibshirani. Regression Shrinkage and Selection via the Lasso, J. Royal Statistical Society B, 58(1):267–288, 1996.

► Group Lasso:

- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables *Journal of the Royal Statistical Society, Series B*, 68(1):49–67, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, 37(6A):3468–3497, 2009.
- R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. arXiv:0904.3523v2, 2009.

Multi-task learning:

- A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. *Machine Learning*, 73(3):243–272, 2008.
- G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20(2):1–22, 2010.

Multitask learning (MTL)

- ► Framework for solving a collection of related learning problems simultaneously
- ► When problems (tasks) are closely related, learning in parallel can be more efficient than learning tasks independently
- ► Example: Learning a set of linear classifiers for related objects (cars, lorries, bicycles)
- ► Further categorization is possible, e.g. hierarchical models, clustering of tasks

Multitask learning

- Fix probability measures μ_1, \ldots, μ_T on $\mathbb{R}^d \times \mathbb{R}$
- ▶ Draw data: $(x_{t1}, y_{t1}), \dots, (x_{tn}, y_{tn}) \sim \mu_t, \ t = 1, \dots, T$ (in practice n may vary with t)
- Learning method: $\min_{(f_1,\dots,f_T)\in\mathcal{F}} \frac{1}{T} \sum_{t=1}^T \frac{1}{n} \sum_{i=1}^n \ell(y_{ti},f_t(x_{ti}))$
- F is a set of vector-valued functions. A standard choice is a ball in a (reproducing kernel) Hilbert space. This provides a means to model interactions between the tasks in that functions with small norm have strongly related components
- Goal is to minimize the multitask error

$$R(f_1, ..., f_T) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{(x,y) \sim \mu_t} \ell(y, f_t(x))$$

Linear MTL

- "task" = "linear model"
 - Regression: $y_{ti} = \langle w_t^*, x_{ti} \rangle + \epsilon_{ti}$
 - Binary classification: $y_{ti} = \operatorname{sign}\langle w_t^*, x_{ti} \rangle \epsilon_{ti}$
- ▶ Learning method: $\min_{[w_1,...,w_T] \in \mathcal{S}} \frac{1}{T} \sum_{t=1}^T \frac{1}{n} \sum_{i=1}^n \ell(y_{ti}, \langle w_t, x_{ti} \rangle)$
- \blacktriangleright Set ${\cal S}$ encourages "common structure" among tasks, e.g. the ball of a matrix norm or other regularizer
- ▶ Independent task learning (ITL): $S = \underbrace{\mathcal{B} \times \cdots \times \mathcal{B}}_{T \text{ times}}$

Linear MTL (cont.)

$$\min_{[w_1, ..., w_T] \in \mathcal{S}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{n} \sum_{i=1}^{n} \ell(y_{ti}, \langle w_t, x_{ti} \rangle)$$

▶ Typical scenario: **many tasks** but only **few examples per task**. If n < d we don't have enough data to learn the tasks one by one. However if the tasks are "related" and set $\mathcal S$ or the associated regularizer captures such relationships in a simple way, learning the tasks jointly greatly improves over ITL.

Applications

User modelling:

- each task is to predict a user's ratings of products
- the ways different people make decisions about products are related

Multiple object detection in scenes:

- \diamond detection of each object corresponds to a binary classification task: $y_{ti} \in \{-1,1\}$
- learning common features enhances performance
- early work in using multilayer neural networks (now called deep networks) with shared hidden weights

Many more: affective computing, bioinformatics, health informatics, marketing science, neuroimaging, NLP, speech,...

Goal

The multitask error of $W = [w_1, \dots, w_T]$ is

$$R(W) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{(x,y) \sim \mu_t} \ell(y, \langle w_t, x \rangle)$$

It is possible to give bounds on the uniform deviation

$$\sup_{W \in \mathcal{S}} \left\{ R(W) - \frac{1}{T} \sum_{t=1}^{T} \frac{1}{n} \sum_{i=1}^{n} \ell(y_{ti}, \langle w_t, x_{ti} \rangle) \right\}$$

and derive bounds for the excess error

$$R(\hat{W}) - \min_{W \in \mathcal{S}} R(W)$$

Regularizers for linear MTL

$$\min_{[w_1, ..., w_T] \in \mathcal{S}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{n} \sum_{i=1}^{n} \ell(y_{ti}, \langle w_t, x_{ti} \rangle)$$

Often we drop the constraint and consider penalty methods

$$\min_{w_1,...,w_T} \frac{1}{T} \sum_{t=1}^T \frac{1}{n} \sum_{i=1}^n \ell(y_{ti}, \langle w_t, x_{ti} \rangle) + \lambda \Omega(w_1, ..., w_T)$$

Regularizers for linear MTL

Different regularizers encourage different types of commonalities between the tasks:

- Variance (or other convex quadratic regularizers) encourages closeness to the mean
- Joint sparsity (or other structured sparsity regularizers) encourages few shared variables
- ► Trace norm (or other spectral regularizers which promote low rank solutions) encourages few shared features
- More sophisticated regularizers which combine the above, promote clustering of tasks, etc.

Quadratic regularizer

$$\Omega(W) = \sum_{s,t=1}^{T} \langle w_s, E_{st} w_t \rangle$$

where the matrix $E = (E_{st})_{s,t=1}^T \in \mathbb{R}^{dT \times dT}$ is positive definite

ightharpoonup Example: let $\gamma \in [0,1]$ and

$$\Omega_{\text{Var}}(W) = \frac{1}{T} \sum_{t=1}^{T} \|w_t\|^2 + \frac{1-\gamma}{\gamma} \text{Var}(w_1, ..., w_T)$$

 $\gamma=1$: independent tasks; $\gamma=0$: identical tasks

▶ Regularizer favours weight vectors which are close to the mean

Variance regularizer

$$\min_{w_1,...,w_T} \frac{1}{Tn} \sum_{t,i} \ell(y_{ti}, \langle w_t, x_{ti} \rangle) + \lambda \left(\frac{1}{T} \sum_{t=1}^T ||w_t||^2 + \frac{1-\gamma}{\gamma} \text{Var}(w_1, ..., w_T) \right)$$

is equivalent to

$$\min_{w_0, u_1, \dots, u_T} \frac{1}{Tn} \sum_{t,i} \ell(y_{ti}, \langle w_0 + u_t, x_{ti} \rangle) + \lambda \left(\frac{1}{\gamma T} \sum_{t=1}^T \|u_t\|^2 + \frac{1}{1-\gamma} \|w_0\|^2 \right)$$

To see it make the change of variable $w_t = w_0 + u_t$ and minimize over w_0

Variance regularizer (cont.)

$$\min_{w_0, u_1, \dots, u_T} \frac{1}{Tn} \sum_{t, i} \ell(y_{ti}, \langle w_0 + u_t, x_{ti} \rangle) + \lambda \left(\frac{1}{\gamma T} \sum_t ||u_t||^2 + \frac{1}{1 - \gamma} ||w_0||^2 \right)$$

We write the above as

$$\min_{w_0} \frac{1}{T} \sum_{t=1}^{T} \min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(y_{ti}, \langle w, x_{ti} \rangle) + \frac{\lambda}{\gamma} \|w - w_0\|^2 \right\} + \frac{\lambda}{1 - \gamma} \|w_0\|^2$$

This makes it apparent that we regularize around some common vector \boldsymbol{w}_0

Structured sparsity: few shared variables

▶ Favour matrices with many zero rows:

$$\|W\|_{2,1} := \sum_{j=1}^d \sqrt{\sum_{t=1}^T w_{tj}^2}$$

► Special case of group Lasso method

Matrices W favoured by different regularizers (green = 0, blue = 1):

Clustered MTL

- ► T Tasks are clustered into Q groups (e.g. classifiers for cars, lorries, bicycles and pedestrians, dogs..)
- Control mean task magnitude, between cluster variance and within cluster variance

$$\Omega_m(W) = T \|\bar{w}\|^2 = \text{tr} W U W^{\top}
\Omega_b(W) = \sum_q T_q \|\bar{w}_q - \bar{w}\|^2 = \text{tr} W (M - U) W^{\top}
\Omega_w(W) = \sum_{q,t \in J_q} \|w_t - \bar{w}_q\|^2 = \text{tr} W (I - M) W^{\top}$$

where $U=11^{\scriptscriptstyle op}/T$, and $M_{st}=1/T_q$ if w_s,w_t in cluster q

The *k*-Support Norm

► The vector *k*-support norm is defined by the unit ball

$$\mathbf{conv}\left\{w \in \mathbb{R}^d : \mathbf{card}(w) \le k, \|w\|_2 \le 1\right\}$$

▶ The norm can be written as

$$||w||_{(k)} = \inf \left\{ \sum_{g \in \mathcal{G}} ||v_g||_2 : \operatorname{supp}(v_g) \subset g, \sum_{g \in \mathcal{G}} v_g = w \right\}$$

where \mathcal{G} is the set of all subsets of $\{1, 2, \dots, d\}$ of size k.

▶ Special cases: k = 1 (ℓ_1 -norm) and k = d (ℓ_2 -norm)

Unit Balls

▶ We recognise the special cases k = 1 and k = d.

- lacktriangle The unit balls suggest the norm is not differentiable for k
 eq d
- For $k \neq d$ the unit ball has sharp corners at the axes, suggesting the norm may promote sparsity

Some references

- MTL, quadratic and spectral: [Maurer. The Rademacher complexity of linear transformation classes. COLT, 2006],
 [Cavallanti, Cesa-Bianchi, and Gentile. Linear algorithms for online multitask classification, JMLR, 2010]
- MTL, multitask feature learning: [Maurer and Pontil. Excess risk bounds for multitask learning with trace norm regularization. COLT, 2013]
- MTL, few shared variables / group Lasso: [Lounici, Pontil, Tsybakov, van de Geer. Oracle inequalities and optimal inference under group sparsity. Annals of Statistics, 2011], [Obozinski, Wainwright, Jordan. Support union recovery in high dimension multivariate regression. Annals of Statistics, 2011]
- ▶ LTL, multitask feature learning: [Maurer. Transfer bounds for linear feature learning. Machine Learning, 2009]

Plan

- ► Trace norm regularization
- ▶ Low rank matrix factorization formulation
- Algorithm and analysis
- Experiments
- ▶ Multitask learning with non-linear output constraints
- Ongoing work and planned collaborations

Matrix learning problem

Aim: learn a low rank matrix from data (e.g. known subset of entries)

$$\min_{W \in \mathbb{R}^{n \times m}} \ell(W) + \lambda ||W||_*$$

with ℓ an error term and $||W||_*$ the trace norm (sum of singular values)

Approach: solve the related optimization problem

$$\min_{A,B} \ \ell(AB^{\top}) + \frac{\lambda}{2} (\|A\|_F^2 + \|B\|_F^2)$$

Result: we derive an efficient algorithm that dynamically expands the parameter space, provably converging to a global optimum.

Different settings

$$\min_{W \in \mathbb{R}^{n \times m}} f_{\lambda}(W), \qquad f_{\lambda}(W) = \ell(W) + \lambda \|W\|_{*}$$

▶ Matrix completion (Srebro & Rennie, 2005). Let $M \in \mathbb{R}^{n \times m}$ be a binary "mask" and $Y \in \mathbb{R}^{n \times m}$ contains the observed entries:

$$\ell(W) = \|M \odot (Y - W)\|_F^2$$

▶ Multitask learning (Argyriou et al., 2006). Let $w_1, ..., w_m$ be the columns of W and (X_j, y_i) the dataset for the j-th task:

$$\ell(W) = \sum_{j=1}^{m} ||y_j - X_j w_j||^2$$

► Collaborative filtering with attributes (Abernethy et al., 2009). Sampling a function $(x, z) \mapsto z^{\top} W x$ with noise:

$$\ell(W) = \sum_{i=1}^{N} (y_i - z_i^{\top} W x_i)^2$$

Matrix learning with PFB

If ℓ is **convex and differentiable**, with Lipschitz continuous gradient we can use **proximal forward-backward** (PFB) (e.g. Bauschke & Combettes, 2017)

$$W_{k+1} = \operatorname{Prox}_{\gamma \lambda \|\cdot\|_*} (W_k - \gamma \nabla \ell(W_k)), \quad k \in \mathbb{N}$$

PROs.

- ▶ Convex Problem ⇒ converges to global minimizer
- ▶ Convergence rate O(1/k) (faster with accelerated methods)

CONs.

- ▶ One SVD per iteration! $O(nm\min(n, m))$ time complexity.
- ightharpoonup O(nm) memory requirement even if the solution is low rank.

Factorization based formulation

Variational form for the nuclear norm

$$||W||_* = \sum_{i=1}^n \sigma_i = \frac{1}{2} \min \left\{ ||A||_F^2 + ||B||_F^2 \right\}$$

s.t. $r \in \mathbb{N}, A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{m \times r}, AB^\top = W$

 \Rightarrow alternative problem in A and B

$$\min_{\substack{A \in \mathbb{R}^{n \times r} \\ B \in \mathbb{R}^{m \times r}}} g_{\lambda,r}(A,B), \qquad g_{\lambda,r}(A,B) = \ell(AB^{\top}) + \frac{\lambda}{2} (\|A\|_F^2 + \|B\|_F^2)$$

where r is now a hyperparameter.

Theorem. The problems of minimizing f_{λ} and $g_{\lambda,r}$ are equivalent for sufficently large r.

Matrix learning with factorization based methods

PROs.

➤ Smooth functional ⇒ we can use any first or second order optimization method, e.g. Gradient Descent (GD)

$$A_{k+1} = A_k - \gamma \left(\nabla \ell (A_k B_k^\top) B_k + \lambda A_k \right)$$

$$B_{k+1} = B_k - \gamma \left(\nabla \ell (A_k B_k^\top)^\top A_k + \lambda B_k \right)$$

- ightharpoonup O(nmr) time complexity per iteration
- ightharpoonup O((m+n)r) space complexity

CONs.

- ▶ Not convex: Guarantees for global optimality?
- ▶ In practice *r* is unknown. How to find it?

Contributions

- ▶ We derive an efficient algorithm (both in memory and time) that dynamically expands the parameter space, leveraging the low-rank structure of the problem
- ► Algorithm implements a strategy to escape saddle points, provably converging to a global optimum
- We provide necessary and sufficient conditions for global optimality, which are efficiently to verify
- Algorithm significantly outperforms state of the art

Let r=1, $A_0'\in\mathbb{R}^n$, $B_0'\in\mathbb{R}^m$. Then,

Let r=1, $A_0' \in \mathbb{R}^n$, $B_0' \in \mathbb{R}^m$. Then,

1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $g_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .

Let r=1, $A_0' \in \mathbb{R}^n$, $B_0' \in \mathbb{R}^m$. Then,

- 1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $g_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .
- 2. If the largest singular value of $\nabla \ell(A_r B_r^{\top})$ is less than λ : **Stop**.

Let
$$r=1$$
, $A_0' \in \mathbb{R}^n$, $B_0' \in \mathbb{R}^m$. Then,

- 1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $g_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .
- 2. If the largest singular value of $\nabla \ell(A_r B_r^{\top})$ is less than λ : **Stop**.
- 3. Perform a step in a **descent direction** for $g_{\lambda,r+1}$ from $([A_r\ 0],[B_r\ 0])$ to a point $(A'_r,B'_r),\ A'_r\in\mathbb{R}^{n\times(r+1)},B'_r\in\mathbb{R}^{m\times(r+1)}$

Let
$$r=1$$
, $A_0' \in \mathbb{R}^n$, $B_0' \in \mathbb{R}^m$. Then,

- 1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $g_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .
- 2. If the largest singular value of $\nabla \ell(A_r B_r^{\top})$ is less than λ : **Stop**.
- 3. Perform a step in a **descent direction** for $g_{\lambda,r+1}$ from $([A_r\ 0],[B_r\ 0])$ to a point (A'_r,B'_r) , $A'_r\in\mathbb{R}^{n\times(r+1)},B'_r\in\mathbb{R}^{m\times(r+1)}$
- 4. Increase r to r+1 and go back to Step 1.

Let
$$r=1$$
, $A_0' \in \mathbb{R}^n$, $B_0' \in \mathbb{R}^m$. Then,

- 1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $g_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .
- 2. If the largest singular value of $\nabla \ell(A_r B_r^{\top})$ is less than λ : **Stop**.
- 3. Perform a step in a **descent direction** for $g_{\lambda,r+1}$ from $([A_r\ 0],[B_r\ 0])$ to a point (A'_r,B'_r) , $A'_r\in\mathbb{R}^{n\times(r+1)},B'_r\in\mathbb{R}^{m\times(r+1)}$
- 4. Increase r to r+1 and go back to Step 1.

This procedure is bound to stop at most for $r = \min(n, m)$. (in practice it stops much earlier)

A criterion for global optimality

Theorem. Let (\bar{A}, \bar{B}) be a critical point for $g_{\lambda,r}$. Then $\bar{W} = \bar{A}\bar{B}^{\top}$ is a global minimizer for f_{λ} if and only if

$$\sigma_{\max}\big(\ell(\bar{W})\big) \leq \lambda$$

Remarks:

- In general it is NP-hard to determine whether a critical point of a non-convex function is a global minimizer.
- Significantly faster than the full SVD.

Let $r=1, \ A_0' \in \mathbb{R}^n, \ B_0' \in \mathbb{R}^m$. Then,

- 1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $q_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .
- 2. If the largest singular value of $\nabla \ell(A_r B_r^{\top})$ is less than λ : **Stop**.
- 3. Perform a step in a **descent direction*** for $g_{\lambda,r+1}$ from $([A_r\ 0],[B_r\ 0])$ to a point (A'_r,B'_r) , $A'_r\in\mathbb{R}^{n\times(r+1)},B'_r\in\mathbb{R}^{m\times(r+1)}$
- 4. Increase r to r+1 and go back to Step 1

This procedure is bound to stop at most for $r = \min(n, m)$ (in practice it stops much earlier)

Escaping from critical points

Theorem. Let (A,B) be a critical point of $g_{\lambda,r}$ with $\sigma_{\max}(\nabla \ell(AB^\top)) > \lambda$ (i.e. not a global minimizer). If $\operatorname{rank}(A) < r$ or $\operatorname{rank}(B) < r$ then (A,B) is a **strict saddle** point (i.e. the corresponding Hessian has at least one negative eigenvalue).

- ▶ For $r > \min(n, m)$ it is always true that $\operatorname{rank}(A) < r \Rightarrow$ every critical point is either a global minimizer or a strict saddle!
- ▶ But GD does not converge to strict saddle points (Lee et al. 2016).

Corollary. For $r > \min(n, m)$, gradient descent applied to $g_{\lambda, r}$ converges only to global minimizers.

Let r=1, $A_0' \in \mathbb{R}^n$, $B_0' \in \mathbb{R}^m$. Then,

- 1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $g_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .
- 2. If the largest singular value of $\nabla \ell(A_r B_r^{\top})$ is less than λ : **Stop**.
- 3. Perform a step in a **descent direction*** for $g_{\lambda,r+1}$ from $([A_r\ 0],[B_r\ 0])$ to a point $(A'_r,B'_r),\ A'_r\in\mathbb{R}^{n\times(r+1)},B'_r\in\mathbb{R}^{m\times(r+1)}$
- 4. Increase r to r+1 and go back to Step 1

This procedure is bound to stop at most for $r = \min(n, m)$. (in practice it stops much earlier)

Escaping from critical points

Corollary. Let u and v be any two left and right singular vectors of $\nabla \ell(AB^\top)$ associated to a singular values larger than λ . Then, for any any $q \in \mathbb{R}^r$ for which Aq = 0, we have Bq = 0 (and vice-versa). Moreover, if $\operatorname{rank}(A) < r$, then (uq^\top, vq^\top) is a descent direction for $g_{\lambda,r}$ at (A,B).

- ▶ If A and B are not full rank, we can explicitly find an escape direction!
- ▶ If A and B are full rank, then [A, 0], [B, 0]:
 - is a critical point for $g_{\lambda,r}$
 - is not full rank
- ▶ We can "inflate" the problem by one column, from r to r+1, and find an escape direction!

Let
$$r=1$$
, $A_0'\in\mathbb{R}^n$, $B_0'\in\mathbb{R}^m$. Then,

- 1. **Apply GD** (or other descent methods) from (A'_{r-1}, B'_{r-1}) to minimize $g_{\lambda,r}$ until convergence to a critical point (A_r, B_r) .
- 2. If the largest singular value of $\nabla \ell(A_r B_r^{\top})$ is less than λ : Stop.
- 3. Perform a step in a **descent direction*** for $g_{\lambda,r+1}$ from $([A_r\ 0],[B_r\ 0])$ to a point (A'_r,B'_r) , $A'_r\in\mathbb{R}^{n\times(r+1)},B'_r\in\mathbb{R}^{m\times(r+1)}$
- 4. Increase r to r+1 and go back to Step 1.

This procedure is bound to stop at most for $r = \min(n, m)$ (in practice it stops much earlier)

Experiments - Movielens

▶ Movies rated (1 to 5) by users. Large scale matrix factorization:

$$\ell(W) = \|M \odot (Y - AB^{\top})\|_F^2$$

- \blacktriangleright 50% user ratings for training, 25% validation, 25% test.
- ▶ Movielens 100k (ml100k), 1M (ml1m) and 10M (ml10m).

Competitors: Active ALT (Hsieh et al. 2014), ALS Soft-impute (Hastie et al. 2015)

Experiments - Movielens (test error)

Normalized Mean Absolute Error (NMAE): mean of the entry-wise absolute errors normalized by the maximum discrepancy $\max_{i,j}(Y_{ij}) - \min_{i,j}(Y_{ij})$.

	NMAE	ml100k time(s)	rank	NMAE	ml1m time(s)	rank	NMAE	ml10m time(s)	rank
ALT	0.2165	97	93	0.1806	4133	179	0.1670	205023	225
ALS-SI	0.1956	40	16	0.1749	832	31	0.1648	51205	36
Ours	0.1959	2	11	0.1751	39	25	0.1659	3150	41

Experiments - recovered rank

When does the condition for global optimality activate?

- ▶ Synthetic (Left): random 100×100 matrix $Y = AB^{\top} + E$, product of two 100×10 matrices plus Gaussian noise E on the entries.
- ▶ Movielens 100k (Right): 943×1682 matrix with 100k available ratings.

Comparison with rank recovered by Proximal method (ISTA).