1. What is a parameter?

A parameter is a variable in a machine learning model that the algorithm learns from data during training (e.g., weights in linear regression).

2. What is correlation?

Correlation is a statistical measure that shows how two variables move in relation to each other.

3. What does negative correlation mean?

It means as one variable increases, the other decreases. They move in opposite directions.

4. Define Machine Learning. What are the main components in Machine Learning?

Machine Learning is the ability of machines to learn from data without being explicitly programmed. **Main components**:

- Data
- Model
- Loss Function
- Optimizer
- Evaluation Metric

5. How does loss value help in determining whether the model is good or not?

A lower loss value indicates the model's predictions are close to the actual values, suggesting better performance.

6. What are continuous and categorical variables?

- **Continuous**: Numeric values with infinite possibilities (e.g., height, salary).
- Categorical: Values that represent categories or labels (e.g., gender, color).

7. How do we handle categorical variables in Machine Learning? What are the common techniques?

Common techniques:

- Label Encoding
- One-Hot Encoding
- Ordinal Encoding

8. What do you mean by training and testing a dataset?

- **Training Set**: Used to fit the model.
- **Testing Set**: Used to evaluate model performance on unseen data.

9. What is sklearn.preprocessing?

A module in Scikit-learn for data preprocessing (e.g., scaling, encoding).

10. What is a Test set?

A separate portion of data used to evaluate the model after training.

11. How do we split data for model fitting (training and testing) in Python?

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

12. How do you approach a Machine Learning problem?

Steps:

- Understand the problem
- Collect and clean data
- Perform EDA
- Feature Engineering
- Train model
- Evaluate and tune
- Deploy

13. Why do we have to perform EDA before fitting a model to the data?

EDA helps understand patterns, detect outliers, and prepare data appropriately for modeling.

14. What is correlation?

(Repeated – see Q2)

15. What does negative correlation mean?

(Repeated – see Q3)

16. How can you find correlation between variables in Python?

df.corr() # For numeric columns

17. What is causation? Explain difference between correlation and causation with an example.

- **Causation**: One variable causes a change in another.
- Correlation: Two variables move together, but one doesn't cause the other.
 Example: Ice cream sales and drowning are correlated but not causally related (temperature is the hidden cause).

18. What is an Optimizer? What are different types of optimizers?

Optimizers adjust model parameters to reduce loss.

Examples:

- SGD: Simple gradient descent
- Adam: Adaptive moment estimation

• RMSprop: Maintains moving average of squared gradients

19. What is sklearn.linear_model?

A Scikit-learn module for linear models like LinearRegression, LogisticRegression, etc.

20. What does model.fit() do? What arguments must be given?

Trains the model using training data.

model.fit(X_train, y_train)

21. What does model.predict() do? What arguments must be given?

Predicts target values for input data.

model.predict(X_test)

22. What are continuous and categorical variables?

(Repeated – see Q6)

23. What is feature scaling? How does it help in Machine Learning?

Scaling standardizes feature ranges (e.g., 0–1). It improves convergence and accuracy in models like SVM, KNN.

24. How do we perform scaling in Python?

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

25. What is sklearn.preprocessing?

(Repeated – see Q9)

26. How do we split data for model fitting (training and testing) in Python?

(Repeated – see Q11)

27. Explain data encoding.

Data encoding transforms categorical data into numeric form.

Examples: Label Encoding, One-Hot Encoding.