

人工智能基础

主讲 刘树林

联系方式: 13817786572

lsl346@shu.edu.cn

答疑地点: 东区9号楼1019室

人工智能基础

第一章 绪论

什么是人工智能?

人工智能

(Artificial Intelligence, AI) ?

人工智能的定义

- ●定义1 人工智能是一种使计算机能够思维,使机器具有智力的 激动人心的新尝试。
- ●定义2 人工智能是那些与人的思维、决策、问题求解和学习等有关活动的自动化。
- ●定义3 人工智能是用计算模型研究智力行为。
- ●定义4 人工智能是研究使理解、推理和行为成为可能的计算。

人工智能的定义

- ●定义5 人工智能是一种能够模拟人智能的创造性机器。
- ●定义6 人工智能研究如何使计算机做事让人过得更好。
- ●定义7 人工智能是通过计算过程力图理解和模仿智能行为的学科。
- ●定义8 人工智能是计算机科学中与智能行为自动化有关的分支。

人工智能

(Artificial Intelligence, AI) ?

两个字: 拟人

何谓智能

"智能"是指高级生物(主要是人类)认知过程的能力。包括:感觉、表征、记忆、概念形成、意识、辨识、判断、推理、决策、知识形成、问题解决等。

智能包含的能力

感知能力

通过感知器官感知外界的能力。

记忆和思维能力

记忆: 对感知到的外界信息和由思维产生的内部知识的存储过程

思维:对已存储信息或知识的本质属性、内部知识的认识过程

学习和自适应能力

学习: 是一个具有特定目的的知识获取过程

是人的一种本能。不同人的学习方法、能力不同

自适应: 是一种通过自我调节适应外界环境的过程

是人的一种本能。不同人的适应能力不同

行为能力

是人们对感知到的外界信息作出动作反应的能力

群体智能与进化智能

- 人类社会的发展本身就是集体智慧的结晶
- ■一些生物群落(如蚁群,蜜蜂群,鸟群,鱼群) 的群体行为或社会行为表现出一定的智能;
- 这种由群体行为表现出的智能称为群体智能; 人类通过这种群体智能提出了一种蚁群算法。
- ■进化智能

AlphaGo点燃全球人工智能热潮 (里程碑)!

举世震惊

欢呼雀跃

忧心忡忡

不屑一顾

沮丧彷徨

人工智能的浪潮汹涌澎湃,在视觉图像识别、语音识别、文本处理等诸多方面人工智能已经达到或超越人类水平,在视觉艺术、程序设计方面也开始崭露头角,令人惊叹不已。在个人电脑时代、网络时代、手机时代之后,整个社会已经进入人工智能时代(2016,人工智能元年)。

AlphaGo点燃全球人工智能热潮(里程碑)!

AlphaGo: "学"出来的,自学成才(深度学习)

深 蓝: "教" 出来的, 死记硬背(传统方法)

围棋与国际象棋复杂程度不在一个数量级

Master战胜了60多位顶级围棋高手

对棋手的冲击:许多棋手在棋盘方寸间纵横一生, 所追寻的就是美轮美奂的神机妙手。如此深邃优美 ,玄奥抽象,一夜间变成了枯燥平淡的神经元参数 ,这令许多人心生幻灭。

人工智能的历史回顾

60多年来,人工智能走过了一条起伏和曲折的发展道路。回顾历史,可以按照不同时期的主要特征,将其产生与发展过程分为7个阶段。

孕育期: 1956年以前

人工智能的诞生: 1956年

黄金年代: 1956 - 1974

第一次AI低谷: 1974 - 1980

第二次繁荣: 1980 - 1987

第二次AI低谷: 1987 - 1993

低调中遍地开花: 1993 - 现在

人工智能的历史回顾-孕育期(1956年之前)

主要成就:

- 一 创立了数理逻辑,自动机理论,控制论,信息论和系统论
- -- 发明了电子数字计算机

主要贡献人物:

亚里士多德: 研究演绎推理 (三段论法)

弗朗西斯-培根: 研究归纳推理 (归纳法)

莱布尼兹:逻辑符号化

布尔:创立逻辑代数,用符号语言描述了思维活动中推理的基本法则

歌德尔: 数理逻辑

图灵: 1936年提出图灵机、1950年提出图灵测试

麦克洛奇与皮兹: 1943年提出MP模型,人工神经网络研究开端

莫克利: 1946年研制出ENIAC计算机

冯-诺伊曼:二进制计算机结构原理

香农: 1950年创立了信息论

维纳: 1948年创立了控制论

人工智能的历史回顾-形成期 (1956-1974)

Al诞生于一次历史性的聚会

- 1956年夏季,达特莫斯大学的麦卡锡、哈佛大学的明斯基、贝尔实验室的香农和IBM公司的罗切斯特(IBM计算机设计者之一),邀请了一批年轻科学家,共同探讨用机器模拟人工智能的问题,其中包括后来著名的人工智能专家塞缪尔、纽厄尔和西蒙等共10人。举行了一次长达2个月的暑期研讨班(seminar)。
- 这些青年学者的研究专业包括数学、心理学、神经生理学、 信息论和电脑科学,分别从不同角度共同探讨人工智能的可能性。
- 麦卡锡、明斯基、纽厄尔和西蒙都是"图灵奖"的获奖者。
- 在这次会上,麦卡锡提议使用"Artificial Intelligence" 这一术语。 从此,人工智能作为一门学科正式诞生了。

人工智能的历史回顾-形成期 (1956-1974)

西蒙的乐观预言

西蒙与纽厄尔于1958年做出了如下的预言:

- 10年内, 计算机将成为世界象棋冠军;
- 10年内, 计算机将发现并证明新的数学定理;
- 10年内,计算机将谱写出能被评论家认可的乐曲。

在人工智能在各个方面广泛开展研究,很多研究机构与学术组织出现,很多重要概念与理论在这一阶段相继提出。但是,研究的重点是以"推理"为中心的。人们普遍认为:人工智能等价于推理。

人工智能的历史回顾-第一次低谷(1974 - 1980)

感知器与联结主义遭到冷落

1969年,明斯基与白伯脱共同发表了《Perceptrons》,书中证明单层人工神经网络无法实现一个简单的异或门,对人工神经网络前景持悲观态度,70年代人工神经网络的研究处于低潮。

联结主义的研究因此停滞了十年。

人工智能的历史回顾-第一次低谷(1974 - 1980)

预言未实现 人工智能遭遇危机

1971年,应政府的要求,英国剑桥大学的应用 数学家詹姆士在进行了一番研究后,发表了一篇关 于人工智能的综合报告,该报告对人工智能做了批 判,他甚至说:"人工智能即便不是骗局,也是庸 人自扰"。这篇报告当时产生了巨大的影响,英国 的人工智能研究经费被削减,机构被解散。美国 IBM 公司也开始放弃了它一向热衷的人工智能研究。 整个人工智能学界遭遇到了前所未有的危机。

人工智能的历史回顾-第一次低谷(1974 - 1980)

坚持与复兴

- ■20世纪70年代中期,专家系统作为一个新兴的 分支得到了发展。从此,人工智能摆脱了那高 高大上的形象,开始投入到实际应用中。
- ■1977年,赫伯特·西蒙的研究生、斯坦福大学青年学者费根鲍姆,在第五届国际人工智能大会上提出了"知识工程"的概念
- ■标志着AI研究从传统的以推理为中心,进入到以知识为中心的新阶段。人工智能重新获得人们的普遍重视,逐步跨进了复兴期。

人工智能的历史回顾-第二次高潮 (1980 - 1987)

人们普遍认为:人工智能等价于知识

人工智能的历史回顾-第二次低谷 (1987 - 1993)

以知识为重点的人工智能也遇到了问题

人工智能的历史回顾-遍地开花 (1993-)

以学习为重点的人工智能快速发展

1、符号主义(逻辑演绎)

符号主义认为可以从模拟人脑功能的角度来实现人工智能,代表人物是纽厄尔、西蒙、吴文俊等。认为人的认知基元是符号,而且认知过程就是符号操作过程,智能行为是符号操作的结果。

大量的数学推导、定理证明是有强烈主观意识的,是基于公理系统的符 号演算方法。

与人类智慧相比,人工智能的符号主义方法依然处于相对幼稚的阶段。 即便如此,人工智能在某些方面的表现已经超越人类。

2、联结主义(归纳总结)

联结主义又称为仿生学派或生理学派。其原理为神经网络及神经网络间的连接机制和学习算法。

人类大量的视觉听觉信号的感知处理都是下意识的,是基于大脑皮层神经网络的学习方法。

人工智能中的联结主义的基本思想是模拟人类大脑的神经元网络。

人们逐步发现,人类具有多个视觉中枢,并且这些视觉中枢是阶梯级联,具有层次结构。在大脑皮层上有多个视觉功能区域(v1至 v5等),低级区域的输出成为高级区域的输入。低级区域识别图像中像素级别的局部的特征,例如边缘折角结构,高级区域将低级特征组合成全局特征,形成复杂的模式,模式的抽象程度逐渐提高,直至语义级别。

毕加索的名画《格尔尼卡》

深度学习神经网络经学习得到的不同层次的特征

视觉中枢的层次与深度神经网络结构相互佐证

第一次浪潮

- 在1943年,科学家Warren McCulloch 和Walter Pitts提出了神经网络作为一个计算模型的理论;
- 1957年,康内尔大学教授 Frank Rosenblatt提出了"感知器" (perceptron)模型。

感知器是第一个用算法来精确定义的神经网络,第一个具有自组织自 学习能力的数学模型,是日后许多新的神经网络模型的始祖。感知器的技术在20世纪60年代带来人工智能的第一个高潮。

第一次低谷

● 1969 年,Marvin Minsky 和 Seymour Papert在出版的《感知器: 计算几何简介》一书中强烈地批判了感知器模型。

单层的神经网络无法解决不可线性分割的问题,典型例子如 异或门;其次,当时的计算能力低下无法支持神经网络模型所需 的计算量。此后的十几年,以神经网络为基础的人工智能研究进 入低潮。

第二次浪潮

Minsky提出的尖锐问题后来被逐步解决。传统的感知器用所谓"梯度下降"的算法纠错时,其运算量和神经元数目的平方成正比,因而计算量巨大。1986年7月,Hinton 和 David Rumelhart合作在《自然》发表论文,系统地提出了应用反向传播算法,把纠错的运算量下降到只和神经元数目成正比。同时,通过在神经网络里增加一个所谓隐层,反向传播算法同时也解决了感知器无法解决的异或门难题。

第二次浪潮

Hinton的博士后Yann Lecun于1989年发表了论文《反向传 播算法在手写邮政编码上的应用》。他用美国邮政系统提供的 近万个手写数字的样本来训练神经网络系统,在独立的测试样本 中错误率低至5%, 达到实用水准。他进一步运用"卷积神经网 技术, 开发出商业软件, 用于读取银行支票上的手写数字, 这个支票识别系统在20世纪90年代末占据了美国20%的市场。

第二次低谷

贝尔实验室的Vladmir Vapnik在1963年提出了支持向量机 (SVM) 的算法。在数据样本线性不可分的时候,支持向量机使用所谓"核机制"的非线性映射算法,将线性不可分的样本转化到高维特征空间,使其线性可分。

作为一种分类算法,从20世纪90年代初开始,SVM在图像和语音识别上找到了广泛的用途。在手写邮政编码的识别问题上,SVM技术在1998年错误率降至0.8%,2002年最低达到了0.56%,远远超越同期的传统神经网络。

第二次低谷

这时,传统神经网络的反向传播算法遇到了本质难题——梯度消失。这个问题在1991年被德国学者 Sepp Hochreiter第一次清晰提出并阐明原因。简单地说,就是成本函数从输出层反向传播时,每经过一层,梯度衰减速度极快,学习速度变得极慢,神经网络很容易停滞于局部最优解而无法自拔。同时,算法训练时间过长会出现过度拟合,把噪音当成有效信号。

SVM理论完备、机理简单、容易重复,得到主流追捧。 SVM技术在图像和语音识别方面的成功使得神经网络的研究重 新陷入低潮。

第三次浪潮

(1) 改进算法

2006年, Hinton 和合作者发表论文《深信度网络的一种快速算法》。在这篇论文里, Hinton 在算法上的核心是借用了统计力学里的"玻尔兹曼分布"的概念, 使用所谓的"限制玻尔兹曼机" (RBM)来学习。

第三次浪潮

(1) 改进算法 (有效初始化)

RBM 相当于一个两层网络,可以对神经网络实现"没有监督的训练"。深信度网络就是几层 RBM 叠加在一起,RBM可以从输入数据中进行预先训练,自行发现重要特征,对神经网络连接的权重进行有效的初始化。经过RBM 预先训练初始化后的神经网络,再用反向传播算法微调,效果得到大幅度提升。

第三次浪潮

(1) 改进算法

2011 年,加拿大的蒙特利尔大学学者Xavier Glorot和 Yoshua Bengio发表论文《深而稀疏的修正神经网络》。论文的 算法中使用一种称为"修正线性单元" (rectified linear unit, RELU) 的激励函数。和使用别的激励函数的模型相比,RELU识 别错误率更低,而且其有效性对于神经网络是否进行"预先训练 并不敏感。RELU 的导数是常数,非零即一,不存在传统激 励函数在反向传播计算中的"梯度消失问题"。

第三次浪潮

(1) 改进算法

由于统计上约一半的神经元在计算过程中输出为零,使用

RELU 的模型计算效率更高,而且自然而然地形成了所谓"稀疏

表征",用少量的神经元可以高效、灵活、稳健地表达抽象复杂

的概念。

第三次浪潮

(1) 改进算法

2012年7月,Hinton发表论文《通过阻止特征检测器的共 同作用来改讲神经网络》 。为了解决过度拟合的问题,论文中 采用了一种新的被称为"丢弃"的算法。丢弃算法的具体实施是 在每次培训中给每个神经元一定的几率(比如 50%),假装它不存 在, 计算中忽略不计。使用丢弃算法的神经网络被强迫用不同的 独立的神经元的子集来接受学习训练。避免了过度拟合,不会 因为外在输入的很小噪音导致输出质量的很大差异。

第三次浪潮

(1) 改进算法

第三次浪潮

(2) 使用GPU提高计算能力

2009年6月,斯坦福大学的Rajat Raina 和吴恩达(Andrew Ng) [11] 合作发表论文《用GPU大规模无监督深度学习》,论 文模型里的参数总数(就是各层不同神经元之间链接的总数)达到 1亿。与之相比,Hinton在2006年的论文里用到的参数数目只 有170万。论文结果显示,使用GPU的运行速度和用传统双核 CPU相比,最快时要快近70倍。在一个四层、1亿个参数的深信 度网络上,使用GPU把程序运行时间从几周降到一天。

第三次浪潮

(2) 使用GPU提高计算能力

2010年瑞士学者 Dan Ciresan和合作者发表论文《Deep big simple neural nets excel on handwritten digit recognition》,其中使用的还是20世纪80年代的反向传播计算方法,但是计算搬移到GPU 上实现,在反向传播计算时速度比传统 CPU 快了 40 倍。

第三次浪潮

(2) 使用GPU提高计算能力

2012 年还在斯坦福大学做研究生的黎越国(Quoc Viet Le) 领衔,和他的导师吴恩达,以及众多谷歌的科学家联合发表论文《用大规模无监督学习建造高层次特征》。黎越国的文章中使用了九层神经网络,网络的参数数量高达10亿,是Ciresan 2010年论文中的模型的100倍,是2009年Raina 论文模型的10倍。

第三次浪潮

(3) 海量的训练数据

在黎越国文章中,用于训练这个神经网络的图像都是从谷歌 的录像网站youtube上截屏获得。1000万个原始录像,每个录 像只截取一张图片,每张图片有4万个像素。与之相比,先前 大部分论文使用的训练图像,原始图像的数目大多在10万以下 ,图片的像素大多不到1 000。黎越国的计算模型分布式地在1 000台机器 (每台机器有16个CPU内核)上运行, 花了三天三夜才 完成培训。互联网的大规模普及,智能手机的广泛使用,使得规 模庞大的图像数据集能够被采集,并在云端集中存储处理。大数 据的积累为深度学习提供了数据保障。

对人工智能的期望与担忧

期望:弱人工智能

强人工 智能

超人工智能

超级智能体

人工智能超越人类的控制 而进入自我进化与生存阶段 担忧: 1、透明人与空心人

2、黑化

3、责任

4、立法

5、被人工智能控制

6、威胁人类生存

人工智能应用领域

- 1、问题求解:八皇后问题、旅行者问题等
- 2、机器学习:是人工智能核心
- 3、专家系统:智能计算机程序系统
- 4、模式识别:是机器学习的核心内容
- 5、自动定理证明:人工智能重要应用领域
- 6、自动程序设计:人工智能重要应用领域
- 7、自然语言理解:人工智能重要应用领域
- 8、机器人学:人工智能重要应用领域
- 9、人工神经网络: 是模式识别的核心内容
- 10、智能检索:人工智能重要应用领域

本课程主要内容与要求

- 1、绪论
- 2、人脑认知
- 3、经典人工智能
- 4、经典人工神经网络
- 5、统计学习方法
- 6、深度学习
- 7、强化学习

部分内容需要应用Phython语言编程实现