

## ARREGLOS BIDIMENSIONALES MATRICES

PROF. SONIA VELÁSQUEZ



# ARREGLOS BIDIMENSIONALES - MATRICES



## ARREGLOS BIDIMENSIONALES.

- Este tipo de arreglos al igual que los anteriores es un tipo de dato estructurado, finito ordenado y homogéneo. El acceso a ellos también es en forma directa por medio de un par de índices.
- Los arreglos bidimensionales se usan para representar datos que pueden verse como una tabla con filas y columnas. La primera dimensión del arreglo representa las columnas, cada elemento contiene un valor y cada dimensión representa una relación
- La representación en memoria se realiza de dos formas : almacenamiento por columnas o por renglones.
- Un arreglo bidimensional tiene dos dimensiones y es un caso particular de los arreglos multidimensionales. En C#, las dimensiones se manejan por medio de un par de corchetes, dentro de los que se escriben, separados por comas, los valores de las dos dimensiones.

## **Arreglos bidimensionales**

# ¿Cómo se recorren los arreglos bidimensionales con ciclos repetitivos?



Es necesario utilizar dos ciclos repetitivos para recorrer un arreglo bidimensional, uno para las filas y uno para las columnas.

Un ciclo se incluye dentro del otro.

Para el ejemplo del arreglo llamado matriz, los datos que imprime son:

## **Arreglos bidimensionales**

Recorriendo primero filas y después columnas

Número de filas Número de columnas

for (int i=0; i<2; i++) for (int j=0; j<3; j++)

System.out.println(matriz[i][j]);

El ciclo externo recorre las filas

El ciclo interno recorre las columnas

|   | Mat | triz |   |
|---|-----|------|---|
|   | 0   | 1    | 2 |
| 0 | 10  | 5    | 1 |
| 1 | 23  | 9    | 7 |
|   |     |      |   |

| Ciclo<br>xterno<br>i | Ciclo<br>interno<br>j | Matriz<br>[i][j] |
|----------------------|-----------------------|------------------|
| 0                    | 0                     | 10               |
|                      | 1 ⊨                   | 5                |
|                      | 2                     | 1                |
| 1                    | 0                     | 23               |
|                      | 1                     | 9                |
|                      | 2 🚽                   | 7                |

Mientras la variable externa i (fila) hace una iteración, la variable interna j (columna), recorre todas las columnas.

### ESTRUCTURA DE ARREGLO BIDIMENSIONAL

Nombre[i,j]



Donde i es el índice que determina las filas y J las columnas [6,4]

| María   | Juan  | Carlos | Frank  |
|---------|-------|--------|--------|
| Martha  | José  | Noel   | Julio  |
| Esther  | Juana | Sofía  | Leonel |
| Pedro   | Luisa | Рере   | Aura   |
| Felicia | lván  | Ana    | Max    |
| Belkis  | Marco | Paula  |        |

Creando la tabla nombre con 6 filas y 4 columnas [6X4], para un total de 24 elementos.

 Para poder llenar o tener acceso a los datos de los arreglos bidimensinales (tabla) se tendrá que utilizar dos estructuras repetitivas uno para llenar las filas y el otro para llenar las columnas

```
Ejemplo
For (int i=0; i < 6; i++)
{
        For (int j=0; j < 4; j++)
        {
            Escribir ("De el nombre");
           Leer (nombre [i,j]);
        }
}</pre>
```

Primero se ejecuta el for interno hasta llenar y luego continua con el for externo

### ESTRUCTURA DE ARREGLO BIDIMENSIONAL

|   | 0       | I     | 2      | 3      |  |
|---|---------|-------|--------|--------|--|
| 0 | María   | Juan  | Carlos | Frank  |  |
| I | Martha  | José  | Noel   | Julio  |  |
| 2 | Esther  | Juana | Sofía  | Leonel |  |
| 3 | Pedro   | Luisa | Рере   | Aura   |  |
| 4 | Felicia | Iván  | Ana    | Max    |  |
| 5 | Belkis  | Marco | Paula  | ••••   |  |

De esta forma se ira llenando la tabla Posición nombre [0,0] = María nombre [0,1] = Juan nombre [0,2] = Carlos nombre [0,3] = Frank nombre [1,0] = Martha nombre [1,1] = José nombre [1,2] = Noel nombre [1,3] = Julio

#### Declaración

- La declaración de un arreglo consiste en establecer las características del arreglo y sus elementos, por medio de la siguiente sintaxis:
- <tipo>[,] < identificador > ;
- tipo: indica el tipo correspondiente a los elementos del arreglo
- identificador: es el nombre del arreglo, y
- [,]: representan las dimensiones del arreglo y encierra dos números enteros, cuyo producto corresponde al número de elementos del arreglo, vemos la diferencia entre [] de los unidimensionales y el [,] de los bidimensionales.

#### Ejemplos:

- //Arreglo bidimensional identificado matriz tipo doble
- double [,] matriz;

•

- //Arreglo bidimensional identificado contra tipo entero
- int [,] contra;
- Observe que, en la declaración, el espacio entre los corchetes está vacío. Esto se debe a que, durante dicha operación, no se reserva espacio en la memoria.

#### Creación

- La creación de un arreglo bidimensional consiste en reservar espacio en la memoria para todos sus elementos, utilizando la siguiente sintaxis:
- < identificador > = new <tipo> [ dim I, dim 2 ];
- **new**: es el operador para gestionar espacio de memoria, en tiempo de ejecución,
- dim l y dim2: son valores enteros que representan las dimensiones del arreglo.

#### • Ejemplos:

- //Arreglo bidimensional tipo doble, identificado (nombre) matriz tamaño 2x3
- double [,] matriz = new double [2,3];

•

- //Arreglo bidimensional tipo entero, identificado ubicación, tamaño 4x2
- int [,] ubicación = new int[4, 2];

#### Inicialización.

- Un arreglo es un objeto que, cuando es creado por el compilador, se le asignan automáticamente valores iniciales predeterminados a cada uno de sus elementos, de acuerdo a los siguientes criterios:
- Si el tipo del arreglo es **numérico**, a sus elementos se les asigna el valor **cero**.
- Si el tipo del arreglo es char, a sus elementos se les asigna el valor '\u0000' (nulo).
- Si el tipo del arreglo es **bool**, a sus elementos se les asigna el valor **false**.
- Si el tipo del arreglo es una clase, a sus elementos se les asigna el valor null.
- Cuando se requiere asignar valores iniciales diferentes de los predeterminados, es posible agrupar las operaciones de declaración, creación e inicialización en una sola instrucción, por ejemplo:

#### • double [,] matriz = $\{\{1.5, 0, 4, -6.5, 2\}, \{2.3, 9, 3.5, 4.8, 6.2\}\}$ ;

- int [,] ubicación = { {2, 4}, {6, 8}, {9, 10}, {5, 1}};
- string [,] funcionario = { ("Fernando", "Director") , { "Pedro", "Coordinador"}, { "Luís", "Profesor"} );

#### Acceso

• Se puede acceder a los valores de los elementos de un arreglo bidimensional a través del nombre del arreglo y dos subíndices. Los subíndices deben escribirse entre corchetes y representa la posición del elemento en el arreglo. Así, podemos referirnos a un elemento del arreglo escribiendo el nombre del arreglo y los subíndices del elemento entre corchetes. Los valores de los subíndices empiezan en cero para el primer elemento, hasta el tamaño del arreglo menos uno.

- Ejemplo:
- //Declarar un arreglo con 9 elementos tipo entero
- int [,] valor= new int[3,3];
- •
- int x;
- •
- // El valor que se asigna al campo que se encuentra en la posicion 2,3 es = 2
- valor[2,2] = 9;
- x = valor[2, 2];//El valor que toma x es 2

## ORIENTACIONES PARA TRABAJO

Revisar guía de ejercicios propuestos

