Tutorial 4

Problem 1. (K. & K. Ex. 2.15) A disk rotates with constant angular velocity ω , as shown. Two masses m_A and m_B , slide without friction in a groove passing through the center of the disk. They are connected by a light string of length ℓ , and are initially held in position by a catch, at distance r_A from the center. Neglect gravity. At t = 0, the catch is removed and the masses are free to slide.

- 1. Draw the force diagram on each mass for the moment immediately after the catch is removed,
- 2. Determine for this moment, the tension of the string in terms of the masses ℓ and ω ,
- 3. Determine \ddot{r}_A for this moment.

Problem 2. (K & K, Ex. 3.9) A uniform rope of mass m and length ℓ is attached to a block of mass M. The rope is pulled with force F. Find the tension at distance x from the end of the rope. Neglect gravity.