ÁLGEBRAS DE LIE

EXERCÍCIOS :: AULA 02

- 2.1. Dada uma álgebra de Lie \mathfrak{g} e duas subálgebras $\mathfrak{h}_1, \mathfrak{h}_2 \subseteq \mathfrak{g}$, mostre que $(\mathfrak{h}_1 \cap \mathfrak{h}_2)$ é uma subálgebra de \mathfrak{h}_1 e de \mathfrak{h}_2 .
- 2.2. Dadas uma álgebra de Lie \mathfrak{g} , uma subálgebra $\mathfrak{h}_1 \subseteq \mathfrak{g}$, e uma subálgebra $\mathfrak{h}_2 \subseteq \mathfrak{h}_1$, mostre que \mathfrak{h}_2 é uma subálgebra de \mathfrak{g} .
- 2.3. Dada uma álgebra de Lie \mathfrak{g} e dois ideais $I_1, I_2 \subseteq \mathfrak{g}$, mostre que $(I_1 \cap I_2)$ é um ideal de I_1 e de I_2 .
- 2.4. Dados uma álgebra de Lie \mathfrak{g} , um ideal $I_1 \subseteq \mathfrak{g}$, e um ideal $I_2 \subseteq I_1$, mostre que I_2 é uma ideal de \mathfrak{g} .
- 2.5. Dados uma álgebra de Lie $\mathfrak g$ e ideais $I,J\subseteq \mathfrak g$, mostre que I+J é um ideal de $\mathfrak g$ e que I,J são ideais de I+J.
- 2.6. Encontre exemplos de subálgebras $\mathfrak{h}_1, \mathfrak{h}_2$ de uma álgebra de Lie \mathfrak{g} , tais que $\mathfrak{h}_1 + \mathfrak{h}_2$ é uma subálgebra de \mathfrak{g} , e tais que $\mathfrak{h}_1 + \mathfrak{h}_2$ não é uma subálgebra de \mathfrak{g} .
- 2.7. Demonstre o Segundo Teorema do Isomorfismo para álgebras de Lie (parte (c) do teorema da aula).
- 2.8. Demonstre o Terceiro Teorema do Isomorfismo para álgebras de Lie (parte (d) do teorema da aula).
- 2.9. Mostre que o centro de $\mathfrak{gl}_n(\mathbb{C})$ é $Z(\mathfrak{gl}_n(\mathbb{C})) = \mathbb{C}I_n$ (o conjunto de matrizes escalares) e que o centro de $\mathfrak{sl}_n(\mathbb{C})$ é trivial.

Date: 13 de março de 2019.