Numerical Irreducible Decomposition for Multiprojective Varieties

SIAM Minisymposium on Theoretical Advances in Numerical Algebraic Geometry

4 August 2017

Work with Anton Leykin and Jose Israel Rodriguez.

Numerical Irreducible Decomposition

 $V\subset\mathbb{P}^n$ of dimension m is represented by a witness set $W:=V\cap M$, for $M\subset\mathbb{P}^n$ a general linear subspace of codimension m. $\#W=\deg V$.

If the irreducible decomposition of V is $V^1 \cup \cdots \cup V^s$, then numerical irreducible decomposition computes the partition $W = W^1 \sqcup W^2 \sqcup \cdots \sqcup W^s$, where $W^i := V^i \cap M$.

Two steps:

(1) Monodromy. Move the slice M in loops to compute a partition

$$W = U^1 \sqcup U^2 \sqcup \cdots \sqcup U^t,$$

where each U^i lies in one component V^{a_i} of V.

(2) Use the trace test to verify that $U^i = V^{a_i} \cap M$.

Multihomogeneous Witness Sets

A subvariety $V \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ of dimension m has multidegrees $d_{m_1,\dots,m_r}(V)$ for $0 \leq m_i \leq n_i$ with $m_1 + \cdots + m_r = m$:

$$d_{m_1,\ldots,m_r}(V) := \#V \cap (M_1 \times \cdots \times M_r),$$

where $M_i \subset \mathbb{P}^{n_i}$ is a general linear subspace of codimension m_i .

<u>Definition</u> (Hauenstein-Rodriguez) $W_{m_1,...,m_r} := V \cap (M_1 \times \cdots \times M_r)$. These form a multihomogeneous witness set collection.

Advantages:

- (1) Reflects the structure of V in $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$.
- (2) Smaller than simply embedding V into $\mathbb{P}^{\prod (n_i+1)-1}$ via the Segre embedding, which has an enormous degree.
- Hauenstein and Rodriguez: Many algorithms can take advantage of a multihomogeneous witness set collection.
- We give some details for numerical irreducible decomposition.

Polymatroid Polytopes

Let $V \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ be irreducible of dimension m. Set

$$S(V) := \{(m_1, \dots, m_r) \mid d_{m_1, \dots, m_r}(V) \neq 0\}.$$

For $I \subset [n]$, we have the projection

$$\pi_I \colon \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r} \longrightarrow \prod_{i \in I} \mathbb{P}^{n_i} =: \mathbb{P}^I.$$

By dimension/codimension considerations, S(V) is a subset of

$$\{(m_1,\ldots,m_r)\mid \sum_i m_i=m \text{ and } \sum_{i\in I} m_i\leq \dim \pi_I(V)\}$$
.

Theorem. (Castillo, Li, and Zhang)

S(V) is this set, $\Pi(V)$, which is a polymatroid polytope.

 $\rightsquigarrow \Pi(V)$ is the multihomogeneous dimension of V.

It may be determined from a point of V using the local dimension test.

Numerical Irreducible Decomposition

Let $V \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$.

This has an (unknown) irreducible decomposition, $V = V^1 \cup \cdots \cup V^s$.

Suppose further that we have all (or part of) a witness set collection $W_{m_1,...,m_r} := V \cap (M_1 \times \cdots \times M_r)$ for V.

Numerical irreducible decomposition computes partitions $\bigsqcup_i W^i_{m_1,\dots,m_r}$

of W_{m_1,\ldots,m_r} , where

$$W^i_{m_1,\ldots,m_r} := V^i \cap (M_1 \times \cdots \times M_r).$$

<u>Step 0</u>. As we may compute $\Pi(V^i)$ from any point of V^i , we may assume that every component of V has the same support.

Monodromy Break Up

Given $W_{m_1,...,m_r} = V \cap (M_1 \times \cdots \times M_r)$ and an unknown decomposition $V = V^1 \cup \cdots \cup V^s$, numerical irreducible decomposition computes the sets $W^i_{m_1,...,m_r} = V^i \cap (M_1 \times \cdots \times M_r)$.

Monodromy loops (moving the M_i) give a partition whose parts are subsets of the $W^i_{m_1,...,m_r}$. This forms a possibly finer partition than numerical irreducible decomposition.

When $\Pi(V)$ is not a point, membership testing between the partitions for (m_1, \ldots, m_r) and (m'_1, \ldots, m'_r) in $\Pi(V)$ enables further coarsening.

(Developing a reasonable heuristic for gluing adjacent witness sets is on our 'to-do list'.)

Trace Test

- (1) Hauenstein and Rodriguez discovered that, despite one's expectations/hope, there is no simple 'multihomogeneous trace test'.
- (2) An alternative is to use a witness set collection W_{m_1,\ldots,m_r} for $(m_1,\ldots,m_r)\in\Pi(V)$ to construct a witness set for Seg(V), where $Seg:\mathbb{P}^{n_1}\times\cdots\times\mathbb{P}^{n_r}\to\mathbb{P}^{\prod_i(n_i+1)-1}$ is the Segre map. This is not practical because both the ambient dimension and degree are enormous.
- (3) Another alternative is to use the witness set collection W_{m_1,\ldots,m_r} to construct a witness set for $V\cap\mathbb{C}^{n_1+\cdots+n_r}$. The ambient dimension remains the same and the degree is the sum of the multidegrees.

We can do better.

Dimension Reduction

When $\dim \Pi(V) < r-1$, components of V are products, $V = W \times U$, where $W \in \mathbb{P}^I$ and $U \subset \mathbb{P}^{[n] \setminus I}$. This reduces to $\dim \Pi(V) = r-1$.

When $\dim \Pi(V)=r-1$, select an (r-1)-simplex Δ in $\Pi(V)$ and slice with a product to get $V':=V\cap L^{m_1'}\times\cdots\times L^{m_r'+1}$ such that

- (1) V^\prime is a curve, as is each component of V^\prime
- (2) $\Pi(V')$ is a simplex.
- (3) The witness sets and witness set partitions for V^\prime are those of V restricted to the simplex.

Replace V' by its intersection C with an affine open subset of $L^{m'_1} \times \cdots \times L^{m'_r+1}$. The witness sets of V' can be used to get a witness set for C. This is used for the ordinary trace test in this affine subset.

When r=2

Assume that V is not a product. Given nonzero adjacent multidegrees $d_{l+1,m}$ and $d_{l,m+1}$, $L'\subset \mathbb{P}^a$ and $M'\subset \mathbb{P}^b$ of codimensions l and m containing hyperplanes $L\subset L'$ and $M\subset M'$, then

$$W_{10} := V \cap (L \times M')$$
 and $W_{01} := V \cap (L' \times M)$

are the corresponding multihomogeneous witness sets.

 $C:=V\cap (L'\times M')$ is an irreducible curve with multidegrees $d_{10}=d_{l+1,m}$ and $d_{01}=d_{l,m+1}$ having witness sets W_{10} and W_{01} .

Working in an affine patch $\mathbb{C}^p \oplus \mathbb{C}^q$ on $L' \times M'$, C has degree $d_{10} + d_{01}$ and $W_{01} \cup W_{10}$ can be used to get a witness set $W = C \cap H$, which we may use for a trace test in the affine space $\mathbb{C}^n \oplus \mathbb{C}^m$.

Example

Suppose that $C \subset \mathbb{P}^1 \times \mathbb{P}^1$ is defined locally by $y^2x = 1$.

Left: Linear spaces $x=x_0$ and $y=y_0$, line H:h=0, and the curve $g(\frac{1}{2})$, where $g(t):=(x-x_0)(y-y_0)(1-t)+th$. These are g(t) at $t=0,\frac{1}{2},1$.

Right: the parallel slices $h=\tau$ are in green, and the averages of witness points $(\frac{1}{3}$ of the trace) lies on the brown line.