Домашнее задание по вычислительной математике

Илья Михеев

last upd 26 сентября 2021 г.

1 Погрешности вычислений

I.6.4

У нас есть 2 ряда:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{k+1} \frac{x^k}{k}$$
$$\ln(1+x) = m \ln 2 - 2\left(y + \frac{y^3}{3} + \dots + \frac{y^{2k-1}}{2k-1} + \dots\right)$$

где
$$1+x=2^mz$$
 и $z\in[0,\!5;1],$ а $y=\frac{1-z}{1+z}$

Второй ряд имеет преимущества и недостатки. Во-первых: в таком случае у нас $y \in \left[0; \frac{1}{3}\right]$, таким образом, каким бы большим у нас не было число x, мы можем претендовать на необходимую погрешность, отбрасывая гораздо меньшее количество членов (Замечу, что в 1ом ряду у нас напротив при больших x всё плохо с погрешностью). Но, сразу же нужно заметить, что при $y \to 0$ становится тяжелее вычислить члены этого ряда, что затрудняет оценку точности (в таком случае у нас $1+x \to 2^m$). Особенно будет заметно преимущество первого ряда при $x \to -0$, где погрешность у второго будет легче вычисляться за счет существования квадратного члена при малых x. Погрешность в рядах тейлора всегда будет не более последнего отбрасываемого члена (из теории)

I.8.18

a)

В данной модели удалось представить 23 числа.

б)

$$\varepsilon_{\mathrm{maii}} = 0.125$$

забавная ситуация, что слева от единицы следующее число располагается на расстоянии 0,125, а справа — 0,25. На всякий случай взял 0,25, так как в методичке было равенство $1+\varepsilon_{\text{маш}}$.

$$OFL = 3.5$$

$$UFL = 0.125$$

I.8.5

Найти погрешность по производной для функции $u=\sqrt{t}$, если заданы точка приближения $t^*=4$, значение функции u^* в этой точке и погрешность $\Delta t^*=0.1$.

$$\Delta u(t^*) = \sup_{|t-t^*| < 0,1} |u'(t)| |\Delta t^*|$$
$$\Delta u(t^*) = \frac{\Delta t^*}{2\sqrt{t^* - \Delta t^*}} \approx 0.0253$$

I.8.28

$$\left| \frac{-11f_0 + 18f_1 - 9f_2 + 2f_3}{6h} - f'(x_0) \right| \le \left| \frac{Mh^3}{4} \right|$$

где $|f^{IV}(\xi)| \leq M, h$ — шаг. То есть у формулы третий порядок аппроксимации. предположим, что $|\varepsilon_{\text{маш}}| \leq E$, тогда

$$r_2 = \frac{(11+18+9+2)E}{6h} = \frac{20E}{3h}$$

$$r = r_1 + r_2 = \frac{Mh^3}{4} + \frac{20E}{3h}$$

$$h_{\text{OHT}} = \sqrt[4]{\frac{80E}{9M}}$$

$$r^* = \sqrt[4]{\left(\frac{80}{9}E\right)^3 \cdot M}$$

где $h_{\text{онт}}$ — оптимальный шаг численного дифференцирования, а r^* — максимальная точность.

I.9.2

График слева демонстрирует подсчет Горнером, метод справа — вычислением функции в точке. Горнер плох для вычисления нуля, потому что идет много операций (сложения, умножения) на величинах, порядка ε , из-за чего резко теряется точность вычисления значения, что не дает определить нуль функции. (В отличии от вычисления напрямую, где нам дается нуль с большой точностью)

2 Прикладная линейная алгебра

II.7.7

Доказать, что для вектора $x=(x_1,x_2)$ и h>0 выражение $||x||_h=max(|x_1|,|x_2-x_1|/h)$ является нормой. Найти матричную норму, подчиненную этой векторной норме.

Проверим 3 аксиомы норм.

1. $||x||_h = 0 \leftrightarrow x = 0$ Очевидно,