

TIGER ELECTRONIC CO.,LTD

WNP 4225 CP 1 CF T

'UGXGP'DARLINGTON'ARRAYS

The WNP 4225A are monolithic high-voltage, high-current Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with commoncathode clamp diodes for switching inductive loads. The collectorcurrent rating of a single Darlington pair is 500 mA. The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The WNP 2003A has a 2.7-k series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

- 500-mA Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- **Output Clamp Diodes**
- Inputs Compatible With Various Types of Logic
- **Relay Driver Applications**

ORDERING INFORMATION

WNN2003AN """ Plastic WLN2003ADT SOIC $T_A = -20$ °C to 85°C for all packages

LOGIC SYSBOL

COM CLAMP 16 1C 1B 2 15 2C 2B 14 3C 3B 13 4B 4C 12 5 5C 6 11 6C 6B

SCHEMATICS (each Darlington Pair)

All resistor values shown are nominal.

 $WLN2003A: R_B = 2.7 \text{ kW}$

LOGIC DIAGRAM

Absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

NOTE 1: All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.

DISSIPATION RATING TABLE $T_A = 85^{\circ}C$ $T_A = 25$ °C DERATING FACTOR PACKAGE POWER RATING ABOVE TA = 25°C POWER RATING 950 mW 7.6 mW/°C D 494 mW N 1150 mW 9.2 mW/°C 598 mW

Electrical characteristics, TA = 25°C (unless otherwise noted)

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

PARAMETER		TEST	TEST CONDITIONS		ULN2003A			20000000	
		FIGURE			MIN	TYP	YP MAX	UNIT	
VI(on)	On-state input voltage	6	V _{CE} = 2 V	I _C = 125 mA				٧	
				$I_C = 200 \text{ mA}$			2.4		
				$I_C = 250 \text{ mA}$			2.7		
				$I_C = 275 \text{ mA}$					
				$I_C = 300 \text{ mA}$			3		
				$I_C = 350 \text{ mA}$					
VCE(sat)	Collector-emitter saturation voltage	5	$I_{I} = 250 \mu A$	I _C = 100 mA		0.9	1.1	٧	
			$I_{I} = 350 \mu A$	$I_{C} = 200 \text{ mA}$		1	1.3		
			$I_{I} = 500 \mu A$	I _C = 350 mA		1.2	1.6		
ICEX	Collector cutoff current	1	V _{CE} = 50 V,	I _I = 0			50	μА	
		2	V _{CE} = 50 V,	I _I = 0			100		
			T _A = 70°C	V _I = 1 V					
VF	Clamp forward voltage	8	$I_F = 350 \text{ mA}$			1.7	2	٧	
II(off)	Off-state input current	3	V _{CE} = 50 V, T _A = 70°C	I _C = 500 μA,	50	65		μА	
Ц	Input current	4	V _I = 3.85 V			0.93	1.35	mA	
			V _I = 5 V						
			V _I = 12 V					P 1/8 (8)	
I _R	Clamp reverse current	7	V _R = 50 V	1			50	500	
			V _R = 50 V,	T _A = 70°C			100	μА	
Ci	Input capacitance		V _I = 0,	f = 1 MHz		15	25	pF	

260°C

switching characteristics, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	See Figure 9		0.25	1	μS
t _{PHL}	Propagation delay time, high-to-low-level output	See rigule s		0.25	1	μS
Vон	High-level output voltage after switching	V_S = 50 V, $I_O \approx$ 300 mA, See Figure 10	VS-20			mV

PARAMETER MEASUREMENT INFORMATION

v_I Open V_{CE}

Figure 2. I_{CEX} Test Circuit

Figure 4. I_I Test Circuit

NOTE: I_I is fixed for measuring V_{CE(sat)}, variable for measuring h_{FE}.

Figure 5. hFE, VCE(sat) Test Circuit

Figure 6. V_{I(on)} Test Circuit

Figure 7. IR Test Circuit

Figure 8. V_F Test Circuit

Figure 9. Propagation Delay-Time Waveforms

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_{\rm O}$ = 50 . B. $C_{\rm L}$ includes probe and jig capacitance.

C. $V_{IH} = 3 V$;

Figure 10. Latch-Up Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

COLLECTOR CURRENT vs INPUT CURRENT

THERMAL INFORMATION

APPLICATION INFORMATION

Figure 16. TTL to Load

Figure 17. Use of Pullup Resistors to Increase Drive Current

N SUFFIX PLASTIC DIP (MS - 001BB)

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. $Maximum \, mold \, flash \, or \, protrusions \, 0.25 \, mm \, (0.010) \, per \, side.$

16					
	Dimension, mm				
Symbol	MIN	MAX			
A	18.67	19.69			
В	6.10	7.11			
C		5.33			
D	0.36	0.56			
F	1.14	1.78			
G	2.54				
Н	7.62				
J	0° 10°				
K	2.92	3.81			

7.62

0.20

0.38

 \mathbf{L}

 \mathbf{M}

N

8.26

0.36

D SUFFIX SOIC (MS - 012AC)

NOTES:

- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

	Dimension, mm			
Symbol	MIN	MAX		
A	9.80	10.00		
В	3.80	4.00		
С	1.35	1.75		
D	0.33	0.51		
F	0.40	1.27		
G	1.27			
Н	5.72			
J	0°	8°		
K	0.10	0.25		
M	0.19	0.25		
P	5.80	6.20		
R	0.25 0.50			