

Coordination of Big Data/ML Tasks

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Our focus in this course

Content

- Pipeline coordination
 - Orchestration style
 - Choreography style
- ML Model Serving
- Experiment Management
- Study log

Pipeline coordination

Examples of Requirements

Discussion:

- ML Phases & Tasks
- Software stack
- Execution environments
 - Computing resources
- R3E

Figure source: https://docs.microsoft.com/en-us/azure/machine-learning/concept-ml-pipelines

The pipeline view of big data/ML systems

Multiple levels:

- Meta-workflow or -pipeline
- Inside each phase: pipeline/workflow or other types of programs

Airflow, function-a-as-service, Spark, Tensorflow, Keras, PyTorch,...

Main issues related to coordination

- How to coordinate phases and tasks in big data/ML systems
 - Automation is an important requirement
- How to assure R3E for the pipeline execution
 - End-to-end R3E requires coordination
 - Issues in internal and external services
- How to manage experiment data
 - Trial computing configurations
 - Inputs/results

W3H: what, when, where and how for R3E issues

Where - Location of the issue

Key notions

- Workflow and Task/Activity/Step
- Important notes on the abstraction
 - A task can encapsulate a "complex workflow"
- Software frameworks
- Platform services
 - Services offering features/functionality for executing "tasks"
 - Single or multiple the providers?
- Execution environments and resources
 - Single platform or cross (heterogeneous) platforms

A task encapsulating a workflow via API

Coordination Styles

Coordination models for Big Data/ML systems

Orchestration and reactiveness/choreography

Orchestration

- Task graphs and dependencies are based on control or data
- Triggered based on completeness of tasks or the availability of data

Reactiveness/Choreography

 Follow reactive model: tasks are reacted/triggered based on messages

Orchestration and Reactiveness

System issues impacting R3E and coordination

Main situations:

- Within the same system/infrastructure
 - All services and computing resources belong to the same platform/infrastructure
 - *E.g.*, running everything with Google Cloud or Microsoft Azure
- Across systems/infrastructures
 - Services in different clouds or cloud data centers
 - *E.g.*, *Edge-cloud* infrastructures
- The same software stack or not?
- How such situations would affect the coordination/R3E?

Workflows

- Examples like
 - Apache Airflow, Azure ML Pipeline
- Often running in the same infrastructure
- Task-driven or data-driven specification
- Generic workflows
 - Use to implement different tasks, such as machine provisioning, service calls, data retrieval
 - Examples: Airflow, Argo Workflows
- Specific workflows for specific purposes
 - E.g., Kubeflow (https://github.com/kubeflow/pipelines)

Workflow used in ML pipelines

Azure ML Pipelines

Orchestration architectural style: design

Workflow architectures are known

 Big Data/ML systems: leverage many types of services and cloud technologies

Required components

- Workflow/Pipeline specifications/languages (also UI)
- Data and computing resource management
- Orchestration engines (with different types of schedulers)

Execution environments

- Cloud platforms (e.g., VMs, containers, Kubernetes)
- External services

Examples: Kubeflows

- End-to-end Orchestration
- Orchestration is based on workflows
- Using "Orchestration controllers"
- Discussion: dealing R3E with ML workflows?
 - Where, What, When and How

https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/

Examples: Coordinating tasks

- Discussion: dealing R3E with ML workflows?
 - Where, What, When and How

Source: Kreics Krists, "Quality of analytics management of data pipelines for retail forecasting,", Aalto CS Master thesis, 2019

Examples: Exchanging metrics for R3E coordination

Monitoring various metrics, including user-defined quality of data

Source: Kreics Krists, "Quality of analytics management of data pipelines for retail forecasting", Aalto CS Master thesis, 2019

Choreography: Reactive systems for Big Data/ML

Do you remember key principles of reactive systems?

Reactive systems

Source: https://www.reactivemanifesto.org/

- Responsive: quality of services
- Resilient: deal within failures
- Elastic: deal with different workload and quality of analytics
- Message-driven: allow loosely coupling, isolation, asynchronous

Reactive systems for Big Data/ML: methods

- Have different components as services
 - Components can come from different software stacks
- Elastic computing platforms
 - Platforms should be deployed on-demand in an easy way
- Using messages to trigger tasks carried out by services
 - Messages for controls and for data
 - Heavily relying on message brokers and serverless (function-as-a-service)

Examples: do-it-your-self ML classification for BIM

- Discussion: dealing R3E with ML workflows?
 - Where, What, When and How

Source: Minjung Ryu, "Machine Learning-based Classification System for Building Information Models ", Aalto CS Master thesis, 2020

Dynamic ML Serving

ML Model Serving

- Allow different versions of ML models to be provisioned
 - Runtime deployment/provisioning of models
 - "Model as code" → can be deployed into a hosting environment
- Why? Anything related to R3E?
 - Concurrent deployments with different "pay-per-use" principles (elasticity as well?)
 - A/B testing and continuous delivery for ML (https://martinfowler.com/articles/cd4ml.html)
- Existing platforms
 - Increasingly support by different vendors as a concept of "AI asa service" (check https://github.com/EthicalML/awesome-production-machine-learning#model-

deployment-and-orchestration-frameworks

ML Model Serving design

Example: TensorFlow Extended Serving

- Lifecycle
 - Load, serving and unloading
- Metrics & Policies

Figure source: https://www.tensorflow.org/tfx/serving/architecture

Example of Prediction.io

- Discussion: dealing R3E with ML workflows?
 - Elastic objects?
 - Where, What, When and How

Figure source: https://predictionio.apache.org/system/

Experiment management

Problems

We need to run many experiments

- Known domain and well-known books (e.g., "Design and Analysis of Experiments" by Douglas C. Montgomery)
- How does it work in ML?
- Coordinating runs in experiments is also an important task
 - How does this help to understand and support R3E?
- What do we need?
 - Tools/frameworks for tracking experiments

Notions

A single run/trial

- Inputs, results, required software artefacts
- Computing resources, logs/metrics

Experiment

A collection of runs/trials/executions gathered in a specific context

Steps

- Parameterization: generate different parameters
- Deployment: prepare suitable environments
- Execution: run and collect metrics
- Analysis and Sharing: analyze experiment data

Experiment tracking

But remember it is very large system! Which tools can we use?

Examples

Experiment in Azure ML SDK

https://docs.microsoft.com/enus/python/api/overview/azure/ml/?view=azure-mlpy#experiment

MLFlows

https://mlflow.org/

Kubeflows

https://www.kubeflow.org/docs/pipelines/overview/concepts/

Examples: MLFlow APIs

Experiment

```
mflow.start_run()/end_run()
```

Logs/metrics collection

```
mflow.set_tag()
mflow.log_*()
```

- Tracking data management
 - Local files, Databases, HTTP server, Databrick logs

Study log

P1 - Take one of the following aspects:

Robustness, Reliability, Resilience or Elasticity

P2 - Check one of the following aspects:

Orchestration, ML model serving or Experiment Management

In a specific software framework (F3) that you find interesting/relevant to your work:

discuss how do you see F3 supports P1 in doing P2

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

