TheNumbersBook.com 2010

Stewart: # 8.1, 8.4

8.1 Find the monomorphisms $\sigma_i : K \to \mathbb{C}$ for the following fields and determine the number s of the σ_i satisfying $\sigma_i(K) \subseteq \mathbb{R}$, and the number t of distinct conjugate pairs σ_i, σ_j such that $\overline{\sigma_i} = \sigma_j$:

- (i) $\mathbb{Q}(\sqrt{5})$
- (ii) $\mathbb{Q}(\sqrt{-5})$
- (iii) $\mathbb{Q}(\sqrt[4]{5})$
- (iv) $\mathbb{Q}(\zeta)$ where $\zeta = e^{2\pi i/7}$
- (v) $\mathbb{Q}(\zeta)$ where $\zeta = e^{2\pi i/p}$ for a rational prime p.
- (i) Note that the minimal polynomial is $x^2 5$ which has the roots $\pm \sqrt{5}$. The monomorphisms are

$$\sigma_1:\sqrt{5}\to\sqrt{5}$$

$$\sigma_2:\sqrt{5}\to-\sqrt{5}$$

and both are real, so s = 2 and t = 0.

(ii) Note that the minimal polynomial is $x^2 + 5$ which has the roots $\pm i\sqrt{5}$, so the monomorphisms are

$$\sigma_1:i\sqrt{5}\to i\sqrt{5}$$

$$\sigma_2:i\sqrt{5}\to -i\sqrt{5}$$

and both are imaginary, so s = 0, t = 1.

(iii) The minimal polynomial for $\sqrt[4]{5}$ is x^4-5 which has the roots $\sqrt[4]{5}$, $\omega^4\sqrt[4]{5}$, $\omega^2\sqrt[4]{5}$, $\omega^3\sqrt[4]{5}$ for $\omega=e^{\frac{2\pi i}{4}}$. Now note that $\omega=i$, $\omega^2=-1$ and $\omega^3=-i$. So the monomorphisms are

$$\sigma_1:\sqrt[4]{5}\to\sqrt[4]{5}$$

$$\sigma_2: \sqrt[4]{5} \rightarrow i\sqrt[4]{5}$$

$$\sigma_3:\sqrt[4]{5}\to -\sqrt[4]{5}$$

$$\sigma_4: \sqrt[4]{5} \rightarrow -i\sqrt[4]{5}$$

1

where σ_1, σ_3 are real and σ_2, σ_4 are complex. Thus, s = 2, t = 1.

(iv) The minimal polynomial for ζ is $x^7 - 1$ which has the roots ζ^k where k = 0, 1, 2, 3, 4, 5, 6 and the associated seven morphisms:

$$\sigma_{k+1}: \zeta \to \zeta^k$$

By Euler's formula, $\zeta^k = \cos(\frac{2\pi k}{7}) + i\sin(\frac{2\pi k}{7})$ so to find the number of morphisms that are real, it is sufficient to find values of k for which $\sin(\frac{2\pi k}{7}) = 0$. In other words, for $n \in \mathbb{Z}$, we require that

$$\frac{2\pi k}{7} = n\pi$$

$$2k = 7n$$

$$\downarrow \downarrow$$

$$2k \equiv 0 \mod 7$$

$$\downarrow \downarrow$$

$$k \equiv 0 \mod 7 \text{ (because 7 doesn't divide 2)}$$

The unique solution to this is k = 0 (out of 0, 1, 2, 3, 4, 5, 6) and so σ_1 is the only real monomorphism. The other six monomorphisms have a nontrivial imaginary part. Thus, s = 1, t = 3.

(v) For p = 2, the minimal polynomial is $x^2 - 1$ so the roots are ± 1 , both real so s = 2. Now suppose p is odd and consider the associated p monomorphisms:

$$\sigma_{k+1}: \zeta \to \zeta^k$$

for $k \in \{0, \dots, p-1\}$. Using the same approach as above, we find all real monomorphisms by looking at values of k for which $\sin(\frac{2\pi k}{p}) = 0$. In other words, for any $n \in \mathbb{Z}$,

$$\frac{2\pi k}{p} = n\pi$$

$$2k = np$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Since p is prime, all positive integers less than it are relative prime to it, so the unique solution to the above equality is k=0, corrsesponding to $\sigma_1: \zeta \to 1$. Thus, s=1 and $t=\frac{p-1}{2}$.

8.4 Let $K = \mathbb{Q}(\theta)$ where $\theta \in \mathbb{R}$ and $\theta^3 = 3$. What is the map σ in this case? Pick a basis K and verify Theorem 8.1 for it.

Let $\theta = \sqrt[3]{3}$ and note that the three monomorphisms are

$$\sigma_{1}: \theta \to \theta$$

$$\sigma_{2}: \theta \to \omega \theta$$

$$\sigma_{3}: \theta \to \omega^{2} \theta$$

where $\omega=e^{\frac{2\pi i}{3}}$. Since ω is imaginary, s=1 and t=1. By definition on Page 146, we have

$$\sigma:\mathbb{Q}(\theta)\to L^{1,1}\cong\mathbb{R}^1\times\mathbb{C}^1\cong\mathbb{R}^1\times(\mathbb{R}^1\times\mathbb{R}^1)\cong\mathbb{R}^3$$

defined by $\sigma=(\sigma_1,\sigma_2)$ or, equivalently, by $\sigma(\alpha)=(\sigma_1(\alpha),Re(\sigma_2(\alpha)),Im(\sigma_2(\alpha)))$. To simplify things, we compute the real and imaginary parts of ω^k for k=1,2:

$$Re(\omega) = -\frac{1}{2}$$
 $Im(\omega) = \frac{\sqrt{3}}{2}$ $Re(\omega^2) = -\frac{1}{2}$ $Im(\omega^2) = -\frac{\sqrt{3}}{2}$

We now verify Theorem 8.1. Note that $\{1, \theta, \theta^2\}$ is a basis for $\mathbb{Q}(\theta)$. Then

$$\sigma(1) = \begin{bmatrix} \sigma_1(1) \\ Re(\sigma_2(1)) \\ Im(\sigma_2(1)) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\sigma(\theta) = \begin{bmatrix} \sigma_1(\theta) \\ Re(\sigma_2(\theta)) \\ Im(\sigma_2(\theta)) \end{bmatrix} = \begin{bmatrix} \theta \\ Re(\omega\theta) \\ Im(\omega\theta) \end{bmatrix} = \begin{bmatrix} \theta \\ -\frac{1}{2}\theta \\ \frac{\sqrt{3}}{2}\theta \end{bmatrix}$$

$$\sigma(\theta^2) = \begin{bmatrix} \sigma_1(\theta^2) \\ Re(\sigma_2(\theta^2)) \\ Im(\sigma_2(\theta^2)) \end{bmatrix} = \begin{bmatrix} \theta^2 \\ Re(\omega^2\theta^2) \\ Im(\omega^2\theta^2) \end{bmatrix} = \begin{bmatrix} \theta^2 \\ -\frac{1}{2}\theta^2 \\ -\frac{\sqrt{3}}{2}\theta^2 \end{bmatrix}$$

To show that they are linearly independent over \mathbb{R} , we need to show that if $\lambda_1 \sigma(1) + \lambda_2 \sigma(\theta) + \lambda_3 (\sigma(\theta^2)) = 0$ then $\lambda_1 = \lambda_2 = \lambda_3 = 0$ for $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$. Rewriting, we have

$$0 = \lambda_1 \sigma(1) + \lambda_2 \sigma(\theta) + \lambda_3 (\sigma(\theta^2)) = \lambda_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} \theta \\ -\frac{\theta}{2} \\ \frac{\sqrt{3}}{2} \theta \end{bmatrix} + \lambda_3 \begin{bmatrix} \theta^2 \\ -\frac{\theta^2}{2} \\ -\frac{\sqrt{3}}{2} \theta^2 \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 + \lambda_2 \theta + \lambda_3 \theta^2 \\ \lambda_1 - \frac{\lambda_2}{2} \theta - \frac{\lambda_3}{2} \theta^2 \\ \frac{\sqrt{3}\lambda_2}{2} \theta - \frac{\sqrt{3}\lambda_3}{2} \theta^2 \end{bmatrix}$$

The third entry implies $\lambda_2 = \theta \lambda_3$. Plugging this into the second entry yields $\lambda_1 = \lambda_3 \theta^2$. Plugging these into the first entry yields $3\lambda_3\theta^2 = 0$. Since $\theta^2 \neq 0$, it must be that λ_3 and thus λ_1, λ_2 are zero. Thus, $\sigma(1), \sigma(\theta)$ and $\sigma(\theta^2)$ are linearly independent, as dictated by Theorem 8.1.