

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 2 ปีการศึกษา 2555 Linear Control Seystem

วิชา ENE 341 ระบบควบคุมเชิงเส้น

ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ) สอบ วันศุกร์ที่ 8 พฤษภาคม พ.ศ. 2556 เวลา 13:00 -16:00น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 8 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน **ให้ทำทุกข้อ**
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้เลขนัยสำคัญ 2 ตำแหน่ง
- 3. อนุญาตให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อสอบข้อที่	1	2	3	4	คะแนนรวม
คะแนนเต็ม	25	25	25	25	100
คะแนนที่ได้					

ชื่อ-สกล		
	เลขที่นั่งสอบ	

รศ.ตร.วุฒิชัย อัศวินชัยโชติ ผู้ออกข้อสอบ (โทร 9061)

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการเหราก่าควิชาแล้ว

(รศ.ตร.วุฒิชัย อัศวินชัยโชติ) หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ-สกุล	
รหัสประจำตัวเลขที่นั่งสอบ	

ข้อ 1. (25 คะแนน) พิจารณารูปด้านล่าง จงหาค่า K และ p ที่ทำให้ระบบแบบปิดต่อไปนี้มีเส_้ถียรภาพ Consider the below figure. Find the range of K and p such that the system is stable.

ชื่อ-สกุล	
รหัสประจำตัว	

ข้อ 2. (25 คะแนน) จงเขียนเส้นทางการเดินของราก (Root Locus) ของระบบต่อไปนี้ดัง เสดงในรูป ด้านล่างพร้อมทั้งแสดงวิธีทำโดยละเอียด และหาช่วงของค่า *K* ที่ทำให้ระบบเกิดสภาวะ underdamped and overdamped response

Sketch the root-locus plot for the systems and find the range of K such that the response of the system is underdamped and overdamped.

รหัสประจำตัวเลขที่นั่งสอบเลขที่นั่งสอบ	
ชย-ตเ[ต	• • • • • • • • • • • • • • • • • • • •
ชื่อ-สกุล	!
•	

ข้อ 3. (25 คะแนน) พิจารณารูปภาพด้านล่าง

Consider the following figure.

จงออกแบบตัวควบคุม $D(s)=K_P+rac{K_I}{s}$ เพื่อให้ได้ระบบควบคุมแบบปิดที่มีคุณสมบัติดังต่อไปนี้ Damping ratio = 0.6 และ Time constant = 1/0.75 วินาที และปราศจากค่าความผิดพลาดการ ตอบสนองจากสัญญาณ step input

Design the controller $D(s) = K_P + \frac{K_I}{s}$ such that the closed-loop system meets the required specifications: Damping ratio = 0.6, Time constant = 1/0.75 second and zero steady state error for a step input.

ชื่อ-สกุล	!
รหัสประจำตัวเลขที่นั่งสอบเลขที่นั่งสอบ	i
	1

ข้อ 4. (25 คะแนน)

A) จงอธิบายความแตกต่างระหว่างระบบควบคุมแบบเปิดและระบบควบคุมแบบปิด พร้อมทั้งยกตัวอย่าง 5 ตัวอย่างของอุปกรณ์ไฟฟ้าหรืออิเล็กทรอนิกส์ที่ใช้ภายในบ้านทั้งแบบระบบควบคุมแบบเปิดและระบบ ควบคุมแบบเปิดอย่างละ 5 ตัวอย่าง (10 คะแนน)

A) Explain the difference between the open-loop control system and the closed-loop control system including 5 examples of each type of the system. (10 points)

- B) จงเขียนรูป Bode Diagram ของสมการต่อไปนี้ (15 คะแนน)
- B) Sketch the bode magnitude and phase plot of the following open-loop function. (15 points)

$$L(s) = \frac{K}{s(1+s/6)(1+s/100)}$$

Good Luck and Have A Happy Summer Holiday ©