$\mathbb{R} eal\ Analysis$

Aryaman Maithani

https://aryamanmaithani.github.io/

Autumn Semester 2020-21

Contents

1	Sets and stuff	2
2	Topology	3
3	Continuity and derivatives	4
4	Integration	5
5	Sequence and series of functions	6

 $\S 1$ Sets and stuff 2

§1. Sets and stuff

§2 Topology 3

§2. Topology

1. Let X be a metric space and let $U \subset X$. Define the boundary of U as

$$\partial U = \bar{U} \cap \overline{(U^c)}.$$

Show that $\partial U = U \setminus U^{\circ}$.

2. Prove or disprove that

$$(\partial U)^{\circ} = \varnothing$$

for any subset U of any metric space X.

HINT: Disprove it. Even in the case that $X = \mathbb{R}^n$.

3. Let (X, d) be a metric space and $x \in X$. Let $\delta > 0$. Define the following sets:

$$B_{\delta}(x) := \{ y \in X \mid d(x, y) < \delta \},\$$

 $C_{\delta}(x) := \{ y \in X \mid d(x, y) \le \delta \}.$

Show that $\overline{B_{\delta}(x)} \subset C_{\delta}(x)$.

Can this inclusion be proper?

HINT: Not if you stay in \mathbb{R}^n . Think about other spaces.

4. Topological Nim

You and your friend want to play Topological Nim. Here's how it works:

Let X be your favourite compact metric space and r>0 your favourite (positive) real number.

Each player removes an open disk of radius r from the space on their turn (only the center of the disk must not have been removed in a prior move), until one player—the winner—removes what remains of the space on his turn.

Show that no matter what moves are played, the game stops after a finite number of moves. (In other words, there is no infinite sequence of legal moves.)

Bonus: Fix $n \in \mathbb{N}$ and r > 0. Assuming optimal play, who will win the game if

$$X = S^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$$

with the standard metric?

(The answer will depend on r.)

Credits: https://puzzling.stackexchange.com/questions/99859/

§3. Continuity and derivatives

§4 Integration 5

§4. Integration

$\S 5.$ Sequence and series of functions