

II2202: Quantitative tools with Excel and R

prof. Gerald Q. Maguire Jr. School of Information and Communication Technology (ICT)

2015.08.03

KTH Royal Institute of Technology http://web.ict.kth.se/~maguire

II2202 Fall 2015 © 2015 G. Q. Maguire Jr. All rights reserved. Prof. em. Marilyn E. Noz, Ph. D. School of Medicine
New York University

Some statistical concepts

Independent versus dependent variables

Independent variable – a variable that you can change

Dependent variable:

- A response or outcome
- This is what you will measure

Types of data

Nominal data unordered groups, e.g., male/female, left-

handed/right-handed, ...

Ordinal data rank ordered; the difference between item

numbered n and n+i does not tell you anything

other than that one is ranked ahead of the

other, e.g. Top 500 Universities, top 10

protocols in bytes, ...

Interval data continuous ranges mapped to some scale,

without a clear zero

Ratio data like interval data, but with a clear absolute zero

value

Metrics

Type of data	Example Metrics	Common statistics
Nominal data	Success/failure	Frequencies, Chi-square
Ordinal data	Ranking	Frequencies, Chi-square, Wilcoxian rank sum tests, Spearman rank correlation
Interval data	Likert scale, System Useability Scale,	All descriptive statistics (average, median, std. dev.,), Student's t-test, ANOVA, correlation, regression,
Ratio data	Task completion time, packet inter-arrival time,	All of the previous + geometric mean

Adapted from Table 2.3 on page 23 of [Tullis2008]

Measures of Central Tendency

Three most common measures are:

Mean arithmetic average

Median mid point of the distribution

(half the values are larger and half

are smaller)

Mode most common value

Selecting participants

Random samplingSystematic sampling – e.g. every 3rd personStratified sampling – based upon a representative subset

Samples of convenience

- Who can you get?
- Are they representative of the target population?

Sample size

- What is the goal?
- Is the difference expected to be large or small?
- What is an acceptable margin of error?

Within- vs. between-subjects

Within-subjects

- Also known as repeated-measures
- The same subject, but repeated measurements

Between-subjects

- Comparing results of subject_i with subject_k
- Avoids carry-over effects (where the subject learns from one trial and this causes a difference in subsequent trials)

Mixed design

Counterbalancing

To avoid carryover effects *vary the order of the tasks*:

- Randomize order
- Sets of predefined orders subject is randomly assigned to one of these sets

(Starting) Quantitative analysis of survey data

Overview

Gillian Raab, Professor of Applied Statistics at Napier University, shows the process of carrying out surveys as viewed by a statistician (roughly):

Adapted from the figure on his slide 7 in "Background to P|E|A|S project", 9 September 2004, http://www2.napier.ac.uk/depts/fhls/peas/workshops/workshop1presentationGR.ppt

Objective

What is the object of the survey?

- Finding a predictive model
- Finding hidden relationships
- Segmenting a population into strata
- Visualizing responses

 (e.g., Distance from a park versus frequency of visits to this park)
- Making a decision (e.g., where to put a park)
 What is (are) the research question(s)?

Considerations when designing studies

Ken Kelley and Scott E. Maxwell state:

"At a minimum, the following points must be considered when designing studies in the behavioral, educational, and social sciences:

- (a) the question(s) of interest must be determined;
- (b) the population of interest must be identified;
- (c) a sampling scheme must be devised;
- (d) selection of independent and dependent measures must occur;
- (e) a decision regarding experimentation versus observation must be made;
- (f) statistical methods must be chosen so that the question(s) of interest can be answered in an appropriate and optimal way;
- (g) sample size planning must occur so that an appropriate sample size given the particular scenario, as defined by points a through f, can be used;
- the duration of the study and number of measurement occasions need to be considered;
- (i) the financial cost (and feasibility) of the proposed study calculated."

Ken Kelley and Scott E. Maxwell, Sample Size Planning with Applications to Multiple Regression: Power and Accuracy for Omnibus and Targeted Effects, [Kelley2008]

http://nd.edu/~kkelley/publications/chapters/Kelley Maxwell Chapter SSMR 2008.pdf

Questionnaire Research Flow Chart

Adapted from pg. 3 of David S. Walonick, A Selection from Survival Statistics [Walonick2010], https://www.statpac.com/surveys/surveys.pdf

Sampling methods

Probability

- Random sampling & systematic sampling (every Nth person) ⇒ equal probability of selection
- Sampling proportional to size (PPS) concentrates on the largest segments of the population
- Stratified sampling (members of each stratum (a sub-population) share some characteristic)
- Advantage: can calculate sampling error

Nonprobability

- Accidental, Haphazard, convenience sampling ⇒ these might not be representative of the target population
- Purposeful sampling with a purpose in mind
 - Modal instance sampling –focused on 'typical' case
 - Expert sampling choosing experts for your samples
 - Quota sampling proportional vs. non-proportional
 - Heterogeneity sampling to achieve diversity in samples
 - Snowball sampling get recommendations of others to sample, from your samples

For further details of Nonprobability sampling see: [Trochim2006] http://www.socialresearchmethods.net/kb/sampnon.php

Sample size

Choosing the size of your sample is related to your expected signal to noise ratio and your desired confidence.

Statisticians speak about **statistical power**, for details see [Trochim2010]

http://www.socialresearchmethods.net/kb/power.php

See also: [Kelley2008] [Maxwell2008 [Kelley2003a] [Kelley2003b] [Kelley2008a]

Getting started with data analysis

Assuming that the survey has already be conducted and that the data has been entered into a computer system, what is the next step?

Preliminary analysis

Descriptive statistics

Exploratory data analysis

Plots (points, lines, scatterplots, ...), histograms, ...

Types of analysis

Design-based analysis

- In this approach randomness is induced by the random selection of sample or the assignment of samples to a subset
- Choice of a statistical model can be used for modelbased inference

Model-based analysis

In this approach randomness is because of the **innate** randomness in the measurements (in the case of surveys – these are the responses)

Modeling techniques

Prediction, classification (using neural networks, Bayesian networks, trees, ...), regression

Clustering, segmentation

Fitting to an a priori model

Factor analysis, principle components analysis

Weights

When we have samples, we need to make sure that these samples are representative of the total population – to do this we may need to establish weights

For details of weights see:

James R. Chromy and Savitri Abeyasekera, "Statistical analysis of survey data" [Chromy2005]

http://www.cpc.unc.edu/projects/addhealth/data/guides/weight1.pdf

Significance

Significance is a statistical term indicating *your confidence* in your conclusion that a real difference exists or that a relationship actually exists, i.e., that the result is unlikely to be due simply to chance.

If your hypothesis states a direction of this difference – use a **One-Tailed** significance test, otherwise use a **Two-Tailed** significance test.

Note: Significant **does not** imply important, interesting, or meaningful!

Similarly not all observations that are not statistically significant are unimportant, uninteresting, ...

Testing for significance

- 1. Decide on your significance level α
- 2. Calculate your statistical value p
- 3. If $p < \alpha$, then the result is significant, else it is not significant

An alternative view is:

confidence = (signal/noise) * √sample size

For details of the above equation see: David L. Sackett, Why randomized controlled trials fail but needn't:2. Failure to employ physiological statistics, or the only formula a clinician-trialist is ever likely to need (or understand!). [Sackett2001] http://www.cmaj.ca/cgi/content/full/165/9/1226

See also: Understanding Hypothesis Testing: Example #1, Department of Statistics, West Virginia University, last modified 4 April 2000 http://www.stat.wvu.edu/SRS/Modules/HypTest/exam1.html

Next steps

- 1. Search the literature and read extensively
- 2. Consult a statistician to get help with your statistical analysis
 (In most cases this is going to cost you money, but can save you a lot of time and effort.)
- 3. Doing some statistical analysis yourself

Using Excel for statistics and plotting

Experiment 1

Captured packets using Wireshark during a long (2150.12 second) VoIP call

⇒ at least: 107,505 RTP packets in each direction

⇒ 429 RTCP packets in one direction

http://www.Wireshark.org

Load the data, then extract relevant RTP packets

Starting with a tab separated file of the form:

```
"No." "Time" "Source" "Destination" "Protocol" "RSSI" "Info" "1443" "17685.760952" "90.226.255.70" "217.211.xx.xx" "RTP" "PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seq=183, Time=46386
```

Extract the traffic going to me, i.e., with the 217.211.xx.xx destination and Protocol = RTP

- ⇒ Do this by sorting on column Protocol and Destination
- ⇒ Select the desired rows and move to new sheet

Note: Either preprocess the "Info" filed into separate columns (for PT, SSRC, Seq, and Time) or write an Excel function to do this for you

From network to local user agent

Difference in RTP clock from previous sample

Inter-arrival times (in seconds) of RTP packets

eta)	Mean	160	
(Be	Standard Error	0	
10	Median	160	
20	Mode	160	
ce	Standard Deviation	0	
Ж	Sample Variance	0	
oft	Kurtosis	#DIV/0!	
ros	Skewness	#DIV/0!	
Mic	Range	0	
E	Minimum	160	
t fo	Maximum	160	
.nd	Sum	17200960	
Raw output fom Microsoft Excel 2010 (Beta	Count	107506	
a≷	Confidence Level(95.0%)	0	
ď			

Mean	0.019999999	
Standard Error	9.28526E-08	
Median	0.020004	
Mode	0.020005	
Standard Deviation	3.04446E-05	
Sample Variance	9.26874E-10	
Kurtosis	12.36652501	
Skewness	-2.054662184	
Range	0.000374	
Minimum	0.019815	
Maximum	0.020189	
Sum	2150.11991	
Count	107506	
Confidence Level(95.0%)	1.8199E-07	

First look at the RTP clock (Time) differences

Conclusion: 160 audio samples per frame, with a frame time of 0.20 ms ⇒ 8 K sample/second sampling rate – consistent with ITU-T G.711 PCMA encoding

Plot RTP inter-arrival times as measured by Wireshark

Compute histogram of inter-arrival times

Plot Cumulative Distribution of inter-arrival times

Add grid lines

As numbers - near median

	seconds	frequency	Cumulative %
	0.019995	687	9.92%
	0.019996	895	10.75%
	0.019997	1334	11.99%
	0.019998	209	12.18%
Mean _	0.019999	1898	13.95%
	0.020000	2671	16.44%
	0.020001	3403	19.60%
	0.020002	4747	24.02%
	0.020003	7742	31.22%
Median	0.020004	13059	43.37%
Mode	0.020005	17121	59.30%
	0.020006	13630	71.98%
	0.020007	8211	79.62%
	0.020008	5404	84.64%
	0.020009	570	85.18%
	0.020010	3158	88.11%
	0.020011	2305	90.26%
	0.020012	1787	91.92%
	0.020013	1262	93.09%
ADVANCED QU	JANTITATIVE 0.020014	ll2202, FALL 2015	93.92% 34

With varying numbers of samples

Descriptive Statistics	First 100	First 1K	First 10K	First 100K
Mean	0.02000071	0.020000066	0.020000004	0.02
Standard Error	2.12714E-06	7.53406E-07	2.51164E-07	9.69855E-08
Median	0.020005	0.020004	0.020004	0.020004
Mode	0.020005	0.020005	0.020005	0.020005
Standard Deviation	2.12714E-05	2.38248E-05	2.51164E-05	3.06695E-05
Sample Variance	4.52471E-10	5.67621E-10	6.30831E-10	9.40618E-10
Kurtosis	28.87137928	21.46428225	19.07376827	12.23083198
Skewness	-5.453831468	-4.509853108	-3.831289593	-2.003065575
Range	0.000135	0.000252	0.000277	0.000374
Minimum	0.01988	0.019872	0.019868	0.019815
Maximum	0.020015	0.020124	0.020145	0.020189
Sum	2.000071	20.000066	200.000044	1999.999951
Count	100	1000	10000	100000
Confidence Level(95.0%)	4.2207E-06	1.47844E-06	4.92331E-07	1.9009E-07

IIZZUZ, FALL ZUIS ADVANCED QUANTITATIVE 35

Zooming in on interesting behavior

Looking in more detail at a relatively "flat" region

Is there some pattern?

Although this is **not** continuous data, connecting with lines shows the values oscillate

Adding grid lines

Are grid lines alone sufficient?

Scatter plots of frame # versus time

Zoom in on last few samples

Add a trendline and show equation

Computing new axis

Relative time (seconds)

Now add the trendline

How does the measured data differ from the expected data?

Difference between expected and measured

Does the difference matter? Plot scaled to 1/10 of the inter-arrival time period ⇒ No

Difference between expected and measured

For traffic in the opposite direction

Mean	0.020000275
Standard Error	3.6743E-07
Median	0.020004
Mode	0.020005
Standard Deviation	0.000120472
Sample Variance	1.45135E-08
Kurtosis	670.0855429
Skewness	0.482218958
Range	0.012759
Minimum	0.013625
Maximum	0.026384
Sum	2150.109545
Count	107504
Confidence Level(95.0%)	7.20157E-07

Uplink inter-arrival times

Inter-arrival time on uplink

II2202, FALL 2015 **ADVANCED QUANTITATIVE** 50

What is going on?

Note the spikes near:	time in seconds	difference in time in seconds
16453	329.06	
46682	933.64	604.58
76657	1533.14	599.5
106512	2130.24	597.1

Q: What happens roughly every 600 seconds?

A: DHCP requests

RTCP descriptive statistics

Mean	5.00006104
Standard Error	6.54393E-05
Median	4.999861
Mode	4.99986
Standard Deviation	0.001355399
Sample Variance	1.83711E-06
Kurtosis	48.80806181
Skewness	7.096344028
Range	0.010758
Minimum	4.99911
Maximum	5.009868
Sum	2145.026186
Count	429
Confidence Level(95.0%)	0.000128622

Plot of inter-arrival times of RTCP reports

Inter-arrival times of RTCP reports

Histogram of RTCP inter-arrivals

RTCP inter-arrival times

RTCP CDF

Cumulative Distribution of RTCP report inter-arrival times

Remarks

Some problems with Excel:

- It is not easy to change, add, or subtract data points without having to manual redo all the analysis
- It is not easy to write general functions in Excel and then use these over and over again as either more data comes in or the experiment is redesigned.

As an alternative, you might want to think about learning a different way of analyzing your data. While it might take some effort to learn this new method, it will stand you in good stead in your future work.

R

R is an open source successor to the statistics package S and Splus S was developed by the statisticians at Bell Labs to help them help others with their problems

<u>Josef Freuwald</u> (when a graduate student in Linguistics at the University of Pennsylvania, now Lecturer in Sociolinguistics in Linguistics and English at the University of Edinburgh) said:

"Quite simply, R is the statistics software paradigm of our day."

http://www.ling.upenn.edu/~joseff/rstudy/week1.html#why

And its free! Additionally, it supports Windows, Linux, and Mac OS

"As the Cantonese say, yauh peng, yauh leng, which means both inexpensive and beautiful."

from Norman Matloff, The Art of R Programming: A Tour of Statistical Software
 Design [Matloff2011]

Commercial alternatives to R

Microsoft's Excel – we saw this earlier in the lecture

MathWorks' MATLAB – Statistics Toolbox™

http://www.mathworks.se/products/statistics/

Statistical Analysis with SAS/STAT® Software

http://www.sas.com/en_us/software/analytics/stat.html

IBM® SPSS® Advanced Statistics

http://www-03.ibm.com/software/products/en/spss-advanced-stats

Stata® http://stata.com/

TIBCO Spotfire S+® http://spotfire.tibco.com/

. . .

R Resources

Comprehensive R Archive Network (CRAN) http://cran.r-project.org/

Lots of tutorials:

- http://www.r-tutor.com/
- http://heather.cs.ucdavis.edu/~matloff/r.html

•

R Packages

Lots of libraries called packages:

 Basic packages (included with the distribution): base, datasets, grDevices, graphics, grid, methods, splines, stats, stats4, tcltk, tools, utils

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Which-add_002don-packages-exist-for-R_003f

 Add-on packages from lots of others (including commercial packages such as https://plot.ly/)

• • •

Why use a programming language versus using a spreadsheet?

When you want to do something:

- over and over again and/or
- systematically

Experiment 1

Captured packets using Wireshark during a long (2150.12 second) VoIP call

⇒ at least: 107,505 RTP packets in each direction

⇒ 429 RTCP packets in one direction

http://www.Wireshark.org

Load the data, then extract relevant RTP packets

Starting with a tab separated file of the form:

```
"No."
       "Time"
                       "Source"
                                      "Destination" "Protocol"
   "RSSI"
               "Info"
"1443"
                                      "217.211.xx.xx"
       "17685.760952"
                       "90.226.255.70"
                                                      "RTP"
       "PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seg=183, Time=46386 "
Extract the traffic going to me:
To Chip<-subset(data1, Source == "90.226.255.70",
  ⁻droṗ=TRUE)
Extract only the RTP protocol packets:
To Chip RTP<-subset (To Chip, Protocol == "RTP",
  _drop≡TRUE)
```


Summary

```
summary(To Chip RTP)
                           Time
     No.
                                                        Source
Min. : 1443
                       Min.
                               :17686
                                                     90.226.255.70 :107515
1st Ou.: 55331
                       1st Ou.:18223
                                                     217.211.xx.xx :
Median :109224
                       Median :18761
                                                    41.209.78.223 :
                                                                           0
Mean
        :109223
                       Mean
                              :18761
                                                     62.20.251.42 :
                                                                           0
3rd Qu.:163110
                       3rd Qu.:19298
                                                                           0
                                                     81.228.11.66 :
Max.
        :217022
                       Max.
                               :19836
                                                     90.226.251.20 :
                                                                           0
                                                                           0
                                                     (Other)
Destination
                           Protocol
                                              RSSI
                                             Mode:logical
217.211.47.125:107515
                           RTP
                                   :107515
41.209.78.223 :
                          ARP
                                             NA's:107515
62.20.251.42 :
                          DHCP
81.228.11.66 :
                          ICMP
90.226.251.20 :
                          NTP
90.226.255.70 :
                           RTCP
(Other)
                           (Other):
Tnfo
PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seq=0, Time=10502866
                                                            1
PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seq=10000, Time=12102866 :
                                                            1
PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seq=10000, Time=1617106 :
                                                            1
PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seq=10001, Time=12103026 :
                                                            1
PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seq=10001, Time=1617266 :
                                                            1
PT=ITU-T G.711 PCMA, SSRC=0x6E21893F, Seq=10002, Time=12103186 :
                                                            1
(Other)
                                                       :107509
```


Inter-arrival delays

```
lvh<-nrow(To Chip RTP)</pre>
[1] 107515
lvh<-lvh-1> lvh
[1] 107514
To Chip RTP delay=vector(length=(nrow(To Chip RTP)-1))
for (i in 1:1vh) {
To Chip RTP delay[i] <- To Chip RTP$Time[i+1] -
 To Chip RTP$Time[i]
summary(To Chip RTP delay)
   Min.
            1st Ou. Median
                                  Mean
                                            3rd Ou.
                                                        Max.
0.01981
            0.02000 0.02000
                                  0.02000
                                            0.02001
  0.02019
                              (Note that these times are in seconds.)
```


plot(To_Chip_RTP_delay)

hist(To_Chip_RTP_delay)

Histogram of To_Chip_RTP_delay

boxplot(To_Chip_RTP_delay, pch=20,

Interarrival delay vs. sequence #__

```
for (i in
   1:length(To Chip RTP$Info))
7.1<-
   strsplit(To Chip RTP$Info[i],
z2<-strsplit(z1[[1]][3], "=")</pre>
To Chip RTP sequence no[i] <-
  z2[[1]][2]
plot (To Chip RTP sequence no[2:leng
  th(To_Chip_RTP_sequence_no)],To_
  Chip RTP delay, pch=20,
  cex=0.25
```


Sequence number

II2202, FALL 2015 **QUANTITATIVE TOOLS** 69

RTP Clock vs. sequence

```
To_Chip_RTP_clock<-1
for (i in
  1:length(To_Chip_RTP$Info)) {
z1<-
  strsplit(To Chip RTP$Info[i],
   ",")
z2<-strsplit(z1[[1]][4], "=")</pre>
To_Chip_RTP_clock[i] <-
  z2[[1]][2]
plot ( To_Chip_RTP_clock,
  To_Chip_RTP_sequence_no,
  pch=20, cex=0.25)
```


Inter-arrival times of RTP packets: From network to local user agent

Using Excel:

Raw output fom Microsoft Excel 2010 (Beta) Mean 0.019999999 Standard Error 9.28526E-08 Median 0.020004 Mode 0.020005 Standard Deviation 3.04446E-05 Sample Variance 9.26874E-10 **Kurtosis** 12.36652501 Skewness -2.054662184 Range 0.000374 Minimum 0.019815 Maximum 0.020189 Sum 2150.11991 Count 107506 Confidence Level(95.0%) 1.8199E-07

Using R functions:

```
mean (To Chip RTP delay): 0.02
library(plotrix);
std.error(To Chip RTP delay): 9.284597e-08
The mode is the most frequently occurring
value (hence via
https://stat.ethz.ch/pipermail/r-help/1999-
December/005668.html):
names(sort(-table(To Chip RTP delay)))[1]:
"0.0200049999984913"
sd(To Chip RTP delay): 3.044357e-05
var(To Chip RTP delay): 9.268109e-10
library (moments);
   kurtosis(To Chip RTP delay): 15.36689
   skewness (To Chip RTP delay): -2.054706
min(To Chip RTP delay): 0.019815
max(To Chip RTP delay): 0.020189
sum(To Chip RTP delay): 2150.28
length(To Chip RTP delay): 107514
qnorm(0.975)*std.error(To Chip RTP delay):
1.819748e-07
```

Note: count ≠ length and the two programs get a different value for kurtosis

R vs. Excel histogram

hist(To_Chip_RTP_delay, ylab="Frequency of specific interarrival time", xlab="Inter-arrival time in seconds", main="Histogram of RTP inter-arrival times", breaks=46)

Plot as a Cumulative Distribution (CDF)

plot(ecdf(To_Chip_RTP_delay), pch=20, cex=1, main="CDF", xlab="Interarrival times (seconds)", ylab="Cumulative frequency of inter-arrival"); grid()

cex = size of text or symbol for plot

1 = default

main = major label

ylab = y label

xlab = x label

grid() adds the grid in the background

With varying numbers of samples

Descriptive Statistics	First 100	First 1K	First 10K	First 100K
Mean	0.02000071	0.020000066	0.02000004	0.02
Standard Error	2.12714E-06	7.53406E-07	2.51164E-07	9.69855E-08
Median	0.020005	0.020004	0.020004	0.020004
Mode	0.020005	0.020005	0.020005	0.020005
Standard Deviation	2.12714E-05	2.38248E-05	2.51164E-05	3.06695E-05
Sample Variance	4.52471E-10	5.67621E-10	6.30831E-10	9.40618E-10
Kurtosis	28.87137928	21.46428225	19.07376827	12.23083198
Skewness	-5.453831468	-4.509853108	-3.831289593	-2.003065575
Range	0.000135	0.000252	0.000277	0.000374
Minimum	0.01988	0.019872	0.019868	0.019815
Maximum	0.020015	0.020124	0.020145	0.020189
Sum	2.000071	20.000066	200.000044	1999.999951
Count	100	1000	10000	100000
Confidence Level(95.0%)	4.2207E-06	1.47844E-06	4.92331E-07	1.9009E-07

With varying numbers of samples

Descriptive Statistics		First 100	First 1K	First 10K	First 100K
Mean		foo<-function(n){			
Standard Error		v <-1:12			
Median		ˈ v[1]=mean(ಸಂ_c ˈ v[2]=std error(₃	•)	
Mode		_ v[2]=std.error(τo_Chip_RTP_delay[1:n]) v[3]=names(sort(-table(τo_Chip_RTP_delay[1:n])))[1]			
Standard Deviation		v[4]=sd(To_Chip_R			
Sample Variance		- v[5]=var(το_Chip_RTP_delay[1:n]) _ v[6]=kurtosis(το_Chip_RTP_delay[1:n]))	
Kurtosis		v[7]=skewness(To_Chip_RTP_delay[1:n]) v[8]=min(To_Chip_RTP_delay[1:n]) v[9]=max(To_Chip_RTP_delay[1:n]) v[10]=sum(To_Chip_RTP_delay[1:n]) v[11]=length(To_Chip_RTP_delay[1:n])			
Skewness					
Range					Ī
Minimum					
Maximum		v[12]=qnorm(0 return(v)}	.965)*std.error(1	o_Chip_RTP_delay [1	:nJ)
Sum		\ / *	00),foo(1000),foo	o(10000),foo(10	0000))
Count		mat1<-matrix(s	seq1, ncol=4))
Confidence Level(95.0%)					,

Applying a function to a list of arguments

Descriptive Statistics	First 100	First 1K	First 10K	First 100K
Mean	0.02000071	0.020000066	0.020000004	0.02
Standard Error	foo<-function(m,n) v[1]=mean(m[1:n])			
Median	v[2]=std.error(m[1	:n])		
Mode	<pre>v[3]=names(sort(-) v[4]=sd(m[1:n])</pre>	table(m[1:n])))[1]		
Standard Deviation	v[5]=var(m[1:n])			
Sample Variance	<pre>v[6]=kurtosis(m[1: v[7]=skewness(m[</pre>	- - 1		
Kurtosis	v[8]=min(m[1:n])			
Skewness	<pre>- v[9]=max(m[1:n]) v[10]=sum(m[1:n])</pre>			
Range	v[11]=length(m[1:r v[12]=qnorm(0.96		\	
Minimum	return(v)}		,	
Maximum	fee<-function(n) {foo(To Chi	p RTP delay,	, 10^n)}
Sum	,	, ,		, , , , , , , , , , , , , , , , , , ,
Count	<pre>- lapply(c(2:5), fee) [[1]] [1] "0.0200006800000119" "2.12697347407497e-06" "0.0200049999984913"</pre>			
Confidence Level(95.0%)		407497e-05" "4.5240161		

Uplink inter-arrival times stats

```
library(plotrix); library(moments) foo
<-function(m,n){v <- 1:12
v[1]=mean(m[1:n])
v[2]=std.error(m[1:n])
v[3]=names(sort(-table(m[1:n])))[1] "0.0200049999984913"
v[4]=sd(m[1:n])
v[5]=var(m[1:n])
v[6]=kurtosis(m[1:n])
v[7]=skewness(m[1:n])
v[8]=min(m[1:n])
v[9]=max(m[1:n])
v[10]=sum(m[1:n])
v[11]=length(m[1:n])
v[12]=qnorm(0.965)*std.error(m[1:n])
return(v)}
```

```
foo(From Chip RTP delay, 10<sup>5</sup>)
"0.02000027577"
"3.63331229733734e-07"
"0.000114895423102849"
"1.32009582499827e-08"
"742.581556664333"
"0.633658007213615"
"0.0136249999995925"
"0.0263840000006894"
"2000.027577"
"100000"
"6.58323732971544e-07"
```

```
What to put into a report:
      0.020000 s
     3.63e - 07 s
     0.020005 s
     0.000115 s
     1.32e-08 s
   742.58
     0.634
     0.013625 s
     0.026384 s
  2000.027577 s
100000
     6.58e - 07 s
```

Truncated to meaningful number of digits, added units, decimal align the numbers, set in fixed width font (Courier)

II2202, FALL 2015 **ADVANCED QUANTITATIVE** 77

How does the measured data differ from the expected data?

0.00005

```
for (i in
   1:length(To_Chip_RTP$Time)) {
Time difference[i] =
(To Chip RTP$Time[i]-To Chip RTP$Time[1])-
   ((as.numeric(To Chip RTP clock[i])-
   as.numeric(To_Chip RTP clock[1]))/8000)
plot ( Time difference [800:
       length(Time difference)]
   , pch=20, cex=0.25)
                  Scale the bullet
                  to 1/4 size
```

QUANTITATIVE TOOLS

ime_difference[800:length(Time_difference)] 0.0000.0 -0.00005 0e+00 2e+04 4e+04 6e+04

> II2202, FALL 2015 78

Index

8e+04

1e+05

How does the measured data differ from the expected data?

Since delay can not be negative, the real difference can be found by subtracting the min() ⇒

```
hist(
   Time_difference[800:length(Time_difference)]-
   min(Time_difference[800:
   length(Time_difference)]),
   breaks=100)
```

Number of bins to use

Uplink inter-arrival times

For traffic in the opposite direction

Difference histogram and difference plot ⇒ the clock is drifting wrt the Wireshark clock

References

[Chromy2005] Jan	nes R. Chromy and Savitri Abeyasekera, 'Chapter XIX: Statistical analysis of survey data', in <i>Household Sample Surveys in Developing and Transition Countries</i> , New York, N.Y.: United Nations, 2005 [Online] Available: http://www.cpc.unc.edu/projects/addhealth/data/guides/weight1.pdf
[Faraway2004]	Julian J Faraway, <i>Linear Models with R.</i> London: Chapman & Hall/CRC, 2004, ISBN: 978-0-203-50727-8 [Online]. Available: http://www.myilibrary.com?id=23179. [Accessed: 03-Aug-2015]
[Goldvasser2012]	Dov Goldvasser, Marilyn E. Noz, G.Q. Maguire, Henrik Olivecrona, Charles R. Bragdon, and Henrik Malchau, 'A New Technique for Measuring Wear in Total Hip Arthroplasty Using Computed Tomography', <i>The Journal of Arthroplasty</i> , vol. 27, no. 9, pp. 1636–1640.e1, Oct. 2012. DOI: 10.1016/j.arth.2012.03.053
[McCown2015]	Frank McCown, 'Producing Simple Graphs with R', 30-Apr-2015. [Online]. Available: http://www.harding.edu/fmccown/r/ . [Accessed: 03-Aug-2015]
[Matloff2008]	Norman Matloff, 'R for Programmers', 27-Nov-2008. [Online]. Available: http://heather.cs.ucdavis.edu/~matloff/R/RProg.html . [Accessed: 03-Aug-2015]
[Matloff2011]	Norman Matloff, <i>The Art of R Programming: A Tour of Statistical Software Design</i> , 1st ed. San Francisco, CA, USA: No Starch Press, 2011, ISBN: 1-59327-384-3.
[Matloff2013]	Norm Matloff, 'A Course in Probabilistic and Statistical Modeling in Computer Science', 23-Jun-2013. [Online]. Available: http://heather.cs.ucdavis.edu/~matloff/probstatbook.html . [Accessed: 03-Aug-2015]
[Matloff2015]	Norm Matloff, 'From Algorithms to Z-Scores: Probabilistic and Statistical Modeling in Computer Science', 05-Jul-2015. [Online]. Available: http://heather.cs.ucdavis.edu/~matloff/132/PLN/ProbStatBook.pdf . [Accessed: 03-Aug-2015]
[Matloff2015a]	Norm Matloff, 'Getting Started with the R Data Analysis Package', 02-Jul-2015. [Online]. Available: http://heather.cs.ucdavis.edu/~matloff/r.html . [Accessed: 03-Aug-2015]

References

[Raab2004]	Gillian Raab, 'Background to P E A S project', Napier University, 09-Sep-2004 [Online]. Available: http://www2.napier.ac.uk/depts/fhls/peas/workshops/workshop1presentationGR.ppt
[Sackett2001]	David L. Sackett, 'Why randomized controlled trials fail but needn't: 2. Failure to employ physiological statistics, or the only formula a clinician-trialist is ever likely to need (or understand!)', Canadian Medical Association Journal (<i>CMAJ</i>), vol. 165, no. 9, pp. 1226–1237, Oct. 2001. PubMedID (PMID): 11706914
[Tullis 2008]	Tom Tullis and Bill Albert, <i>Measuring the user experience: collecting, analyzing, and presenting usability metrics</i> . Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2008, ISBN: 978-0-12-373558-4.
[Walonick2010]	David S. Walonick, 'A Selection from Survival Statistics', in <i>Survival statistics</i> , Bloomington, MN, USA: StatPac,Inc., 2010. ISBN 0-918733-11-1. https://www.statpac.com/surveys/surveys.pdf
[Walonick2003]	David S Walonick, <i>Survival statistics</i> . Minneapolis, Minn.: StatPac, 2003, ISBN: 978-0-918733-11-5. http://www.statpac.com/surveys/
[Wexler2010]	Michael Wexler, 'The Net Takeaway: R', Jun-2010. [Online]. Available: http://www.nettakeaway.com/tp/?s=R . [Accessed: 03-Aug-2015] (VP of Web Analytics at Barnes and Noble.com)
[Wickham2009]	Hadley Wickham, <i>Ggplot2: elegant graphics for data analysis</i> . New York: Springer, 2009, ISBN: 978-0-387-98140-6. website for the book: http://had.co.nz/ggplot2/book/
[Wickham2015]	Hadley Wickham, 'had.co.nz', 2015. [Online]. Available: http://had.co.nz/. [Accessed: 03-Aug-2015]
[WVU2000]	Department of Statistics, West Virginia University, 'Understanding Hypothesis Testing: Example #1', 04-Apr-2000. [Online]. Available: http://www.stat.wvu.edu/SRS/Modules/HypTest/exam1.html. [Accessed: 03-Aug-2015]