## MINH HỌA CÁC BÀI TOÁN VỀ ĐƯỜNG VÀ CHU TRÌNH



Đường  $\overline{a^3bcecje}$ 



Đường efgfgakc (xóa e)



Đường  $\overline{cij}$  (xóa c)



Cầu *jf* (xóa j)



Đường  $\overline{fig}$  (xóa f)



Đường  $\overline{ghb}$  (xóa g) Cầu  $\overline{bk}$  (xóa b)





G có chu trình Euler (C) :  $\overline{a^3bcecjefgfgakcijfighbkiha}$ 



Đường  $\overline{a^2bazrxrxcbcyz}$ 





H có chu trình Euler (C):  $\overline{a^2bazrxrxcbcyzbyxqcqpcpqra}$ .

Giả sử H có chu trình Hamilton là (L).



d(q) = d(t) = 2 nên  $\overline{aq}$ ,  $\overline{pq}$ ,  $\overline{st}$ ,  $\overline{tx} \in (L)$ 



 $\overline{xy} \notin (L)$  nên  $\overline{cy}$ ,  $\overline{yz} \in (L)$  và  $\overline{bc} \notin (L)$ 



 $\overline{aq}$  ,  $\overline{ab} \in (L) \Rightarrow \overline{ar} \not\in (L)$ .

$$\overline{st}$$
,  $\overline{bs} \in (L) \Rightarrow \overline{rs} \notin (L)$ .



Xem như  $\overline{xy} \notin (L)$ . Suy ra  $\overline{cx} \in (L)$ 



 $\overline{bc} \notin (L) \text{ nên } \overline{ab}, \overline{bs} \in (L)$ 



$$\overline{ar}\not\in(\mathsf{L}),\,\overline{rs}\not\in(\mathsf{L})\Longrightarrow\overline{pr}\in(\mathsf{L})$$

(L) chỉ đi qua một cạnh  $\overline{pr}$  tại r!







Ta có  $w(\overline{ab}) = 7$ ,  $w(\overline{cd}) = -4$  và w(G) = 1 + 2 + 2 + 3 + 4 + 5 + 5 + 6 + 7 = 35.





Đường đơn (P):  $\overline{abecbd}$  với w(P) = 2 + 3 + 4 - 9 + 1 = 1.

Mạch sơ cấp âm (C):  $\overline{abedcfa}$  với w(C) = -9 + 8 + 5 + 1 - 7 - 8 = -10 < 0.











Trong G:



$$d^*(a,c) = 4 < d(a,c) = +\infty$$



$$d^*(b,c) = 3 < d(b,c) = 9$$



$$d^*(a,b) = d(a,b) = 2$$

Trong H:



Cho đồ thị liên thông có trọng số G.

\* Xét (P) là đường đi ngắn nhất (tuyệt đối) từ đỉnh x đến đỉnh z trong G. Giả sử đỉnh y (vô tình) thuộc (P). Đặt (P<sub>1</sub>) và (P<sub>2</sub>) lần lượt là phần đường (P) nối (x đến y) và nối (y đến z). Khi đó (P<sub>1</sub>) và (P<sub>2</sub>) lần lượt cũng là đường đi ngắn nhất nối (x đến y) và nối (y đến z). Hơn nữa  $w(P) = w(P_1) + w(P_2)$ .



\* Xét đỉnh t của G và t ∉ (P). Gọi (Q) là đường đi ngắn nhất từ đỉnh x đến đỉnh z trong G sao cho (Q) phải đi qua t (có điều kiện). Đặt (Q₁) và (Q₂) lần lượt là đường đi ngắn nhất nối (x đến t) và nối (t đến z). Khi đó w(Q) = w(Q₁) + w(Q₂) ≥ w(P).





$$w(Q) = w(Q_1) + w(Q_2) = (4 + 8 + 1 + 2) + (3 + 9 + 5) = 15 + 17 = 32 > w(P) = 28.$$





 $L_i(u)$  = độ dài đường tạm thời từ a đến u  $L_i(v)$  = độ dài đường tạm thời từ a đến v  $L_i(w)$  = độ dài đường tạm thời từ a đến w

## BƯỚC 1:

$$a = v_1$$

$$p_1(v) = -, L_1(v) = d(a,v) = +\infty$$

$$a = v_1$$
 $p_1(v) = a, L_1(v) = d(a,v) = w(\overline{av}) < +\infty$ 



 $L_1(v_2) = \min \{ L_1(v) \mid v \in V \setminus V_1 \}$ 

## BƯỚC 2:

Các trường hợp không cần chỉnh sửa (nếu chỉnh sửa sẽ không tốt hơn):



$$\begin{split} &d(v_2\,,\,v) = +\,\infty \ \text{hoặc} \ [\ d(v_2\,,\,v) < +\,\infty \ \text{và} \ L_1(v) \leq L_1(v_2) + d(v_2,\,v)\ ] : \text{giữ nguyên} \\ &L_2(v) = L_1(v) = \textbf{4} \ \text{và} \ p_2(v) = p_1(v) = a = v_1. \end{split}$$

Các trường họp cần phải chính sửa cho được tốt hơn:



 $d(v_2\,,\,v) < +\,\infty \ \ v\grave{a} \ \ L_1(v) > L_1(v_2) + d(v_2\,,\,v) \ : \ chỉnh \ sửa \ \ L_2(v) = L_1(v_2) + d(v_2\,,\,v) \ \ v\grave{a} \ \ p_2(v) = v_2.$ 



## BƯỚC i với i≥3:

Các trường hợp không cần chỉnh sửa (nếu chỉnh sửa sẽ không tốt hơn):



$$\begin{split} &d(v_i\,,\,v) = +\,\infty \;\; \text{hoặc} \;\; [\; d(v_i\,,\,v) < +\,\infty \;\; \text{và} \;\; L_{\,i\,-\,1}(v) \leq L_{\,i\,-\,1}(v_i) + d(v_i,\,v) \;] : \text{giữ nguyên} \\ &L_i(v) = L_{\,i\,-\,1}(v) = \textbf{8} \;\; \text{và} \;\; p_i(v) = p_{\,i\,-\,1}(v). \end{split}$$

Các trường hợp cần phải chỉnh sửa cho được tốt hơn:





$$d(v_i\,,\,v) < +\, \infty \ \, v \grave{a} \ \, L_{\,i\,-\,1}(v) \geq L_{\,i\,-\,1}(v_i) + d(v_i\,,\,v) : chỉnh \, sửa$$

$$L_i(v) = L_{i-1}(v_i) + d(v_i, v)$$
 và  $p_i(v) = v_i$ .

**Buốc** 1:  $T_1 = (V_1 = \{ v_1 = a \}, E_1 = \emptyset).$ 

| V | b     | c     | e     | f      | g     | h     | i     | j     | k     | T |
|---|-------|-------|-------|--------|-------|-------|-------|-------|-------|---|
| a | (1,a) | (∞,-) | (∞,-) | (10,a) | (∞,-) | (∞,-) | (6,a) | (3,a) | (∞,-) |   |

$$\mathbf{a} \bullet \overset{+\infty}{\times} \mathbf{x} \bullet \mathbf{c} \qquad \mathbf{a} \bullet \overset{+\infty}{\times} \mathbf{x} \bullet \mathbf{e} \qquad \mathbf{a} \bullet \overset{+\infty}{\times} \mathbf{x} \bullet \mathbf{g} \qquad \mathbf{a} \bullet \overset{+\infty}{\times} \mathbf{x} \bullet \mathbf{h} \qquad \mathbf{a} \bullet \overset{+\infty}{\times} \mathbf{x} \bullet \mathbf{k}$$

$$\mathbf{a} \bullet \overset{\mathbf{1}}{\longrightarrow} \mathbf{b} \qquad \mathbf{a} \bullet \overset{\mathbf{10}}{\longrightarrow} \mathbf{f} \qquad \mathbf{a} \bullet \overset{\mathbf{6}}{\longrightarrow} \mathbf{i} \qquad \mathbf{a} \bullet \overset{\mathbf{3}}{\longrightarrow} \mathbf{j}$$

$$\mathbf{d}(\mathbf{a}, \mathbf{c}) = \mathbf{d}(\mathbf{a}, \mathbf{e}) = \mathbf{d}(\mathbf{a}, \mathbf{g}) = \mathbf{d}(\mathbf{a}, \mathbf{h}) = \mathbf{d}(\mathbf{a}, \mathbf{k}) = +\infty \quad \text{nên} \left( \mathbf{L}_{1}(\mathbf{c}), \mathbf{p}_{1}(\mathbf{c}) \right), \left( \mathbf{L}_{1}(\mathbf{e}), \mathbf{p}_{1}(\mathbf{e}) \right),$$

$$(\mathbf{L}_{1}(\mathbf{g}), \mathbf{p}_{1}(\mathbf{g})), \left( \mathbf{L}_{1}(\mathbf{h}), \mathbf{p}_{1}(\mathbf{h}) \right) \quad \mathbf{v} \grave{\mathbf{a}} \quad \left( \mathbf{L}_{1}(\mathbf{k}), \mathbf{p}_{1}(\mathbf{k}) \right) \quad \mathbf{d} \grave{\mathbf{e}} \grave{\mathbf{u}} \quad \mathbf{l} \grave{\mathbf{a}} \quad (\mathbf{L}_{1}(\mathbf{e}), \mathbf{p}_{1}(\mathbf{e})),$$

$$(\mathbf{d}(\mathbf{a}, \mathbf{b}) = \mathbf{1}, \mathbf{d}(\mathbf{a}, \mathbf{f}) = \mathbf{10}, \mathbf{d}(\mathbf{a}, \mathbf{i}) = \mathbf{6}, \mathbf{d}(\mathbf{a}, \mathbf{j}) = \mathbf{3} \quad \mathbf{nên} \quad \left( \mathbf{L}_{1}(\mathbf{b}), \mathbf{p}_{1}(\mathbf{b}) \right) = (\mathbf{1}, \mathbf{a}), \left( \mathbf{L}_{1}(\mathbf{f}), \mathbf{p}_{1}(\mathbf{f}) \right) = (\mathbf{10}, \mathbf{a}),$$

$$(\mathbf{L}_{1}(\mathbf{i}), \mathbf{p}_{1}(\mathbf{i})) = (\mathbf{6}, \mathbf{a}) \quad \mathbf{v} \grave{\mathbf{a}} \quad \left( \mathbf{L}_{1}(\mathbf{j}), \mathbf{p}_{1}(\mathbf{j}) \right) = (\mathbf{3}, \mathbf{a}). \quad \mathbf{L}_{1}(\mathbf{b}) = \mathbf{1} = \min\{ \mathbf{L}_{1}(\mathbf{v}) \mid \mathbf{v} \in \mathbf{V} \setminus \mathbf{V}_{1} \} \quad (\mathbf{b} = \mathbf{v}_{2}).$$

**Buốc 2**:  $T_2 = (V_2 = V_1 \cup \{b\}, E_2 = E_1 \cup \{\overline{p_1(b)b} = \overline{ab}\})$ .

| V | b     | c            | e     | f      | g            | h            | i     | j     | k            | T               |
|---|-------|--------------|-------|--------|--------------|--------------|-------|-------|--------------|-----------------|
| a | (1,a) | $(\infty,-)$ | (∞,-) | (10,a) | $(\infty,-)$ | $(\infty,-)$ | (6,a) | (3,a) | $(\infty,-)$ |                 |
| b | _     | (5,b)        | (∞,-) | (10,a) | (∞,-)        | (∞,-)        | (6,a) | (3,a) | $(\infty,-)$ | $\overline{ab}$ |

 $b \circ + \circ \times \bullet e \quad b \circ + \circ \times \bullet g \quad b \circ + \circ \times \bullet h \quad b \circ + \circ \times \bullet i \quad b \circ + \circ \times \bullet j \quad b \circ + \circ \times \bullet k$ 





$$\begin{split} &d(b,\,e)=d(b,\,g)=d(b,\,h)=d(b,\,i)=d(b,\,j)=d(b,\,k)=+\,\infty\,\,\textit{n\'en}\ \, (\,\,L_2(e),\,p_2(e)\,\,),\,(\,\,L_2(g),\,p_2(g)\,\,),\\ &(\,\,L_2(h),\,p_2(h)\,\,),\,(\,\,L_2(i),\,p_2(i)\,\,),\,(\,\,L_2(j),\,p_2(j)\,\,)\ \, \text{v\'en}\ \, (\,\,L_2(k),\,p_2(k)\,\,)\,\,\,\textit{y\,h\'et\,d\'ong}\ \, 1\,. \end{split}$$

$$L_1(c) = \infty > L_1(b) + d(b, c) = 1 + 4 = 5 \text{ nên có } (L_2(c), p_2(c)) = (5, \mathbf{b}).$$

$$L_1(f) = 10 \le L_1(b) + d(b, f) = 1 + 10 = 11$$
 nên  $(L_2(f), p_2(f))$  y hệt dòng 1.

Ta có  $L_2(\mathbf{j}) = \mathbf{3} = \min\{ L_2(\mathbf{v}) \mid \mathbf{v} \in \mathbf{V} \setminus \mathbf{V}_2 \} (\mathbf{j} = \mathbf{v}_3).$ 

**Buốc 3**:  $T_3 = (V_3 = V_2 \cup \{ j \}, E_3 = E_2 \cup \{ \overline{p_2(j)j} = \overline{aj} \}).$ 

| $\mathbf{V}$ | b | c           | e             | f      | g     | h     | i           | j     | k      | T               |
|--------------|---|-------------|---------------|--------|-------|-------|-------------|-------|--------|-----------------|
| b            | _ | (5,b)       | (∞,-)         | (10,a) | (∞,-) | (∞,-) | (6,a)       | (3,a) | (∞,-)  | $\overline{ab}$ |
| j            | _ | (5,b)       | (∞,-)         | (10,a) | (∞,-) | (9,j) | (5,j)       | _     | (11,j) | aj              |
| • +          |   | <b>←</b> •c | <b>j</b> • +○ | ° X •  | e j⊷  | +∞    | <b>X</b> •f | j•–   | +∞     | X •             |



 $d(j,c) = d(j,e) = d(j,f) = d(j,g) = +\infty$   $n\hat{e}n$   $(L_3(c), p_3(c)), (L_3(e), p_3(e)), (L_3(f), p_3(f))$  và  $(L_3(g), p_3(g))$  y  $h\hat{e}t$   $d\hat{o}ng$  2.

$$L_2(h) = \infty > L_2(j) + d(j, h) = 3 + 6 = 9$$
 nên có  $(L_3(h), p_3(h)) = (9, j)$ .

$$L_2(i) = 6 > L_2(j) + d(j, i) = 3 + 2 = 5$$
 nên có  $(L_3(i), p_3(i)) = (5, j)$ .

$$L_2(k) = \infty > L_2(j) + d(j, k) = 3 + 8 = 11 \text{ nên có } (L_3(k), p_3(k)) = (11, j).$$

**Buốc** 4:  $T_4 = (V_4 = V_3 \cup \{c\}, E_4 = E_3 \cup \{\overline{p_3(c)c} = \overline{bc}\}).$ 

| V | b | c     | e      | f      | g     | h      | i     | j | k      | T               |
|---|---|-------|--------|--------|-------|--------|-------|---|--------|-----------------|
| j | _ | (5,b) | (∞,-)  | (10,a) | (∞,-) | (9, j) | (5,j) | _ | (11,j) | āj              |
| c | _ | _     | (10,c) | (6,c)  | (7,c) | (9,j)  | (5,j) | _ | (11,j) | $\overline{bc}$ |



 $d(c, h) = d(c, i) = d(c, k) = + \infty \ \textit{nên} \ (\ L_4(h), p_4(h)\ ), (\ L_4(i), p_4(i)\ ) \ \textit{và} \ (\ L_4(k), p_4(k)\ ) \ \textit{y hệt}$  dòng 3.

$$L_3(e) = \infty > L_3(c) + d(c, e) = 5 + 5 = 10 \ \textit{nên c\'o} \ (\ L_4(e), \, p_4(e)\ ) \ = (\textbf{10}, \, \textbf{c}).$$

$$L_3(f) = 10 > L_3(c) + d(c, f) = 5 + 1 = 6$$
  $n\hat{e}n \ c\acute{o} \ (L_4(f), p_4(f)) = (6, c).$ 

$$L_3(g) = \infty > L_3(c) + d(c, g) = 5 + 2 = 7$$
 nên có  $(L_4(g), p_4(g)) = (7, c)$ .

$$D\hat{e} \ \acute{y} \ L_4(\mathbf{i}) = \mathbf{5} = \min\{ L_4(\mathbf{v}) \mid \mathbf{v} \in \mathbf{V} \setminus \mathbf{V}_4 \} \ (\mathbf{i} = \mathbf{v}_5).$$

**Buốc** 5:  $T_5 = (V_5 = V_4 \cup \{i\}, E_5 = E_4 \cup \{\overline{p_4(i)i} = \overline{ji}\}).$ 

| V | b | c | e      | f     | g     | h      | i     | j | k      | T  |
|---|---|---|--------|-------|-------|--------|-------|---|--------|----|
| c | _ | _ | (10,c) | (6,c) | (7,c) | (9, j) | (5,j) |   | (11,j) |    |
| i | _ | _ | (10,c) | (6,c) | (7,c) | (8,i)  | _     | _ | (11,j) | ji |



 $d(i, e) = d(i, g) = d(i, k) = + \infty \ \textit{nên} \ (L_5(e), p_5(e)), (L_5(g), p_5(g)) \ \textit{và} \ (L_5(k), p_5(k)) \ \textit{y hệt}$  dòng 4.

$$L_4(f) = 6 \le L_4(i) + d(i, f) = 5 + 4 = 9$$
 nên (  $L_5(f)$ ,  $p_5(f)$ ) y hệt dòng 4.

$$L_4(h) = 9 > L_4(i) + d(i, h) = 5 + 3 = 8$$
  $n\hat{e}n \ c\acute{o} \ (L_5(h), p_5(h)) = (8, i).$ 

Để ý 
$$L_5(\mathbf{f}) = \mathbf{6} = \min\{ L_5(v) \mid v \in V \setminus V_5 \} (\mathbf{f} = v_6).$$

**Buốc** 6:  $T_6 = (V_6 = V_5 \cup \{f\}, E_6 = E_5 \cup \{\overline{p_5(f)f} = \overline{cf}\}).$ 

| $oldsymbol{V}$ | b | c | e      | f     | g     | h     | i | j | k      | T  |
|----------------|---|---|--------|-------|-------|-------|---|---|--------|----|
| i              | _ | _ | (10,c) | (6,c) | (7,c) | (8,i) | _ | _ | (11,j) | ji |
| f              | _ | 1 | (10,c) | 1     | (7,c) | (7,f) | _ | 1 | (11,j) | cf |





 $d(f, e) = d(f, k) = +\infty \ n\hat{e}n \ (L_6(e), p_6(e)) \ và \ (L_6(k), p_6(k)) \ y \ h\hat{e}t \ d\hat{o}ng \ 5.$ 

$$L_5(g) = 7 \le L_5(f) + d(f, g) = 6 + 4 = 10 \ \text{n\'en} \ (\ L_6(g), p_6(g)\ ) \ \text{y h\'et d\'eng} \ 5.$$

$$L_5(h) = 8 > L_5(f) + d(f, h) = 6 + 1 = 7$$
 nên có  $(L_6(h), p_6(h)) = (7, f)$ .

Để ý 
$$L_6(\mathbf{g}) = \mathbf{7} = \min\{ L_6(\mathbf{v}) \mid \mathbf{v} \in \mathbf{V} \setminus \mathbf{V}_6 \} (\mathbf{g} = \mathbf{v}_7).$$

**Buróc** 7:  $T_7 = (V_7 = V_6 \cup \{g\}, E_7 = E_6 \cup \{\overline{p_6(g)g} = \overline{cg}\}).$ 

| V | b | c | e      | f | g     | h     |   |   | k      |               |
|---|---|---|--------|---|-------|-------|---|---|--------|---------------|
| f | _ | _ | (10,c) | _ | (7,c) | (7,f) | _ | _ | (11,j) | <del>cf</del> |
| g | _ | _ | (9,g)  | _ | _     | (7,f) | _ | _ | (11,j) | <del></del>   |







 $d(g, k) = +\infty$   $n\hat{e}n$  (L<sub>7</sub>(k), p<sub>7</sub>(k)) y hệt dòng 6.

$$L_6(h) = 7 \leq L_6(g) + d(g,\,h) = 7 + 5 = 12 \ \textit{n\'en} \ (\ L_7(h),\,p_7(h)\ ) \ \textit{y h\'et d\'ong} \ 6.$$

$$L_6(e) = 10 > L_6(g) + d(g, h) = 7 + 2 = 9 \text{ nên có } (L_7(e), p_7(e)) = (9, g).$$

$$\vec{\text{D}}$$
ể ý  $L_7(\mathbf{h}) = 7 = \min\{L_7(\mathbf{v}) \mid \mathbf{v} \in \mathbf{V} \setminus \mathbf{V}_7\} (\mathbf{h} = \mathbf{v}_8).$ 

**Buốc 8**:  $T_8 = (V_8 = V_7 \cup \{h\}, E_8 = E_7 \cup \{\overline{p_7(h)h} = \overline{fh}\}).$ 

| V | b | c | e     | f | g | h     | i | j | k      | T         |
|---|---|---|-------|---|---|-------|---|---|--------|-----------|
| g | _ | _ | (9,g) |   | _ | (7,f) |   | _ | (11,j) | cg        |
| h | _ | _ | (9,g) | _ | _ | _     | _ | _ | (10,h) | <u>fh</u> |





$$L_7(e) = 9 \le L_7(h) + d(h, e) = 7 + 8 = 15 \ \textit{n\'en} \ (\ L_8(e), \, p_8(e)\ ) \ \textit{y h\'et d\'ong} \ 7.$$

$$L_7(k) = 11 > L_7(h) + d(h, k) = 7 + 3 = 10 \ \textit{nên c\'o} \ (\ L_8(k), p_8(k)\ ) \ = (\textbf{10}, \ \textbf{h}).$$

$$\label{eq:definition} \begin{split} & \vec{D} \hat{e} \ \ \acute{y} \ \ L_8(\boldsymbol{e}) = \boldsymbol{9} = min\{ \ L_8(\boldsymbol{v}) \ | \ \boldsymbol{v} \in \boldsymbol{V} \setminus \boldsymbol{V}_8 \ \} \ (\ \boldsymbol{e} = \boldsymbol{v}_9 \ ). \end{split}$$

**Buốc 9**:  $T_9 = (V_9 = V_8 \cup \{e\}, E_9 = E_8 \cup \{\overline{p_8(e)e} = \overline{ge}\}).$ 

| V | b | c | e     | f | g | h | i | j | k      | T                 |
|---|---|---|-------|---|---|---|---|---|--------|-------------------|
| h | _ | _ | (9,g) | _ | _ | _ | _ | _ | (10,h) | <u>fh</u>         |
| e | _ | _ | _     | _ | _ | I | 1 | _ | (10,h) | <del></del><br>ge |

 $L_8(e,k) = +\infty$  nên  $(L_9(k), p_9(k))$  y hệt dòng 8.

$$\label{eq:definition} \vec{\text{D}} \hat{\text{e}} \ \ \dot{\text{y}} \ \ L_9(\textbf{k}) = \textbf{10} = \min\{ \ L_9(\textbf{v}) \ | \ \textbf{v} \in \textbf{V} \setminus \textbf{V}_9 \ \} \ ( \ \textbf{k} = \textbf{v}_{10} \ ).$$

**Burớc 10**:  $T_{10} = (V_{10} = V_9 \cup \{k\}, E_{10} = E_9 \cup \{\overline{p_9(k)k} = \overline{hk}\}).$ 

| V | b     | c     | e     | f     | g     | h     | i     | j     | k      | T             |
|---|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------------|
| e | _     | 1     | -     | _     | _     | 1     | 1     | _     | (10,h) | <del>ge</del> |
| k | (1,a) | (5,b) | (9,g) | (6,c) | (7,c) | (7,f) | (5,j) | (3,a) | (10,h) | hk            |

Dòng 10 y hệt dòng 9.

