Max Freeman

max freeman@berkeley.edu | linkedin.com/in/maxfreeman | Mountain View, CA

Education

University of California, Berkeley

Master of Engineering in Mechanical Engineering, Concentration in Controls & Robotics

August 2024 - May 2025

GPA: 3.98

Cornell University

Bachelor of Science in Mechanical Engineering

September 2020 - May 2024

GPA: 3.77 | Magna Cum Laude

Skills

Mechatronics: Sensors & Actuators | Embedded Systems | CAN, I2C, UART, Ethernet | Oscilloscopes & Multimeters Robotics & Controls: Feedback Control (PID, LQR, MPC) | Sensor Fusion | Dynamics & Kinematics Software & Tools: Python | C++ | ROS2 | MATLAB/Simulink | Linux | Git | Bash | Jira | PCAN-View | Wireshark Prototyping & Mechanical Design: SolidWorks (CAD/FEA) | Rapid Prototyping | 3D Printing | Sheet Metal Design

Highlighted Experience and Projects

Systems Integration Intern, Toyota Research Institute

July 2025 - Present

- Support cross-functional integration of mechanical, electrical, and software systems to enable rapid prototyping and testing of next-generation research vehicles.
- Integrate a steering wheel encoder on a prototype vehicle, taking ownership of CAN communication setup, wire harnessing and connector fabrication, and the design of a custom 3D-printed mount using SolidWorks.
- Develop a ROS2 node in Python to convert raw steering angle data into vehicle yaw rate estimates using a kinematic bicycle model, publishing the signal to the localization stack to improve pose estimation.
- Integrate an NVIDIA Jetson for on-vehicle monitoring and diagnostics, defining interface requirements with researchers, designing custom sheet metal mounting brackets, and packaging peripherals—including an LCD touchscreen, GPIO-connected button, and harnessing—into a highly confined vehicle space.
- Design state-machine logic in MATLAB/Simulink and deploy to the PDM via dSPACE MicroAutoBox to implement vehicle soft shutdown, ensuring safe power sequencing and protecting data integrity during testing.

Lead Robotics Engineer, Multimodal Autonomous Platform Design (MEng Capstone)

September 2024 - May 2025

- Led a team of 4 engineers in developing a hybrid ground-aerial robot, owning hardware bring-up, control system implementation, and testing strategy across both driving and flight modes.
- Built and deployed a ROS2-based flight controller in Python using a cascaded PID architecture with integrated safety checks; validated stability and responsiveness through iterative flight tests.
- Designed and executed a staged flight validation plan, leading 10+ tethered flight tests to verify subsystem functionality, capture debug logs, and identify failure modes while minimizing hardware risk.
- Implemented and tuned Model Predictive Control (MPC) algorithms for trajectory planning and obstacle avoidance, achieving <5 cm lateral error to final position setpoints in hardware testing.
- Developed custom Python-based logging and visualization tools to support hardware testing of both control modes, enabling rapid debugging and performance validation.
- Analyzed test logs to isolate root causes of instability and control issues, iteratively refining controller behavior to improve system robustness and tracking accuracy.

Hardware Test & Integration Intern, Lit Motors

June 2024 - July 2024

- Contributed to test infrastructure development and subsystem design refinement at a fast-paced startup building a two-wheeled self-balancing vehicle actuated by Control Moment Gyroscopes (CMGs).
- Led development of a dual-plane dynamic balancing test rig for CMG evaluation, integrating structural hardware, sensors, and a belt-drive system to identify weight imbalances and reduce vibrations.
- Designed the rig in SolidWorks using a mix of 3D-printed and machined parts, enabling rapid prototyping and flexible reconfiguration to support varying shaft lengths and hardware geometries.

Embedded Autonomous Vehicle Project, Cornell University

January 2024 - May 2024

- Managed end-to-end development of a small-scale autonomous ground vehicle, integrating sensors and motor drivers on an Arduino Nano and implementing control logic in C++ and Python.
- Interfaced with Time-of-Flight and IMU sensors over I2C, developing sensor fusion algorithms and software-based filters in C++ to minimize sensor output noise by over 50%, enhancing sensor accuracy.
- Implemented and tuned distance-based PID controllers to improve tracking, reducing settling time by 40%.
- Diagnosed hardware and sensing issues using oscilloscope traces and telemetry data, resolving integration faults, and improving system performance.