# Решающие деревья. Random Forest. Бустинг.

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Санкт-Петербург, 2025

### Решающие деревья

#### Решающее дерево — это бинарное дерево, где

- ullet во всех внутренних вершинах v задан некоторый предикат  $eta_v: \mathbf{X} o 0.1$ ,
- ullet в каждой листовой вершине v задан прогноз  $c_v \in \mathbf{Y}$  (для

классификации возможно:  $c_v \in \mathbb{R}_+^{\mathbb{K}}, \quad \sum_{k=1}^K c_{v_k} = 1$  — вектор вероятностей принадлежности к классу).



Рис.: Решающее бинарное дерево

### Постановка задачи

Решающие деревья можно применять как для задач регрессии, так и для задач классификации.

Пусть  $\mathbf{X}$  — множество объектов,  $\mathbf{Y}$  — множество ответов,  $y: \mathbf{X} \to \mathbf{Y}$  — некоторая зависимость.

Есть обучающая выборка  $\mathbf{D}=\{(x_i,y_i)\}_{i=1}^n$ , где  $x_i$  — входные данные,  $y_i$  — известные ответы.

- ullet  $y_i \in \{1,\ldots,K\} \Rightarrow$  задача классификации.
- ullet  $y_i \in \mathbb{R} \Rightarrow$  задача регрессии.

### Решающие деревья в задаче регрессии

Пусть  $\mathbf{X} \in \mathbb{R}^{n \times p}$  — матрица данных (где p — признаки, n — наблюдения),  $\mathbf{Y} \in \mathbb{R}^n$  — отклик.

**Идея**: разбиение совокупности всех возможных значений  $\mathbf{X}_1,\dots,\mathbf{X}_p$  на J непересекающихся областей  $R_1,\dots,R_J$ . Предсказание для объекта x:

$$f(x) = \sum_{j=1}^{J} c_j \mathbf{1}(x \in R_j).$$

Многомерные прямоугольники  $R_1, \ldots, R_J$  выбираем так, чтобы минимизировать сумму квадратов остатков:

$$RSS = \sum_{j=1}^{J} \sum_{i \in \mathbf{R}_{j}} (y_{i} - f(x_{i}))^{2} \to \min_{R_{1},...,R_{J}}.$$

Тогда

$$\hat{c}_j = \frac{1}{|R_j|} \sum_{x_i \in R_i} y_i.$$

## Решающие деревья в задаче регрессии



Рис.: Плохо обобщает закономерность и более склонна к переобучению

### Решающие деревья в задаче классификации

В задаче классификации  $R_1,\ldots,\,R_J$  минимизируется число ошибок классификации

$$M(j) = 1 - \max_{k} (\hat{p}_{jk}),$$

где  $\hat{p}_{jk}$  — доля объектов обучающей выборки класса k попавших в  $R_j$ .

На практике чаще используют две других метрики:

$$ullet$$
  $G(j) = \sum_{k=1}^K \hat{p}_{jk} (1 - \hat{p}_{jk})$  — индекс Джини,

ullet  $CI(j) = -\sum_{k=1}^K \hat{p}_{jk} \log \hat{p}_{jk}$  — коэффициент перекрестной энтропии.

Предсказание для объекта х:

$$f(x) = \underset{k \in \mathbf{Y}}{\operatorname{argmax}} \ \hat{p}_{jk}.$$

## Решающие деревья в задаче классификации



Рис.: Информационные индексы M, G, CI в случае двух классов

### Решающие деревья в задаче классификации



Рис.: Разделяющая граница дерева решений очень рваная и на ней много острых углов, что говорит о переобучении и слабой обобщающей способности

### Жадный алгоритм построения решающего дерева

Нахождение оптимального дерева — это NP-полная задача. Пусть X — исходное множество обучающей выборки, а  $X_m$  — множество объектов, попавших в текущий лист (в самом начале  $X_m = X$ ). Тогда жадный алгоритм можно верхнеуровнево описать следующим образом:

- $lue{}$  Создаём вершину v;
- ② Если выполнен критерий остановки  ${
  m Stop}(X_m)$ , то останавливаемся, объявляем эту вершину листом и ставим ей в соответствие ответ  ${
  m Ans}(X_m)$ , после чего возвращаем её;
- ① Иначе: находим предикат  $B_{j,t}$  (сплит), который определит наилучшее разбиение текущего множества объектов  $X_m$  на две подвыборки  $X_l$  и  $X_r$ , максимизируя критерий ветвления  $\operatorname{Branch}(X_m,j,t)$ ;
- lacktriangled Для  $X_l$  и  $X_r$  рекурсивно повторим процедуру.

На выходе получаем дерево, в каждом из листов которого содержится по крайней мере один объект исходной выборки.

#### Значение листа

 ${
m Ans}(X_m)$  вычисляет ответ для листа по попавшим в него объектам из обучающей выборки. Может быть:

- в случае задачи классификации меткой самого частого класса или оценкой дискретного распределения вероятностей классов для объектов, попавших в этот лист;
- в случае задачи регрессии средним, медианой или другой статистикой;
- простой моделью. К примеру, листы в дереве, задающем регрессию, могут быть линейными функциями или синусоидами, обученными на данных, попавших в лист.

### Критерии остановки

Критерий остановки  $\mathrm{Stop}(X_m)$  — функция, которая решает, нужно ли продолжать ветвление или пора остановиться.

- Ограничение максимальной глубины дерева.
- Ограничение минимального числа объектов в листе.
- Ограничение максимального количества листьев в дереве.
- Остановка в случае, если все объекты в листе относятся к одному классу.
- Остановка в случае, если изменение метрики меньше порога.

#### <u>За</u>мечание

Для очень глубоких деревьев имеем переобучение.

### Критерий ветвления

 $\operatorname{Branch}(X_m,\mathsf{feature},\mathsf{value})$  — функция, измеряющая, насколько улучшится финальная метрика дерева при предлагаемом сплите.

Пусть  $L(y_i,c)$  — функция потерь, c — константное предсказание. Информативность узла (хотим минимизировать):

$$H(X_m) = \frac{1}{|X_m|} \sum_{(x_i, y_i) \in X_m} L(y_i, c).$$

Если разделить на два узла:

$$\frac{1}{|X_m|} \left( \sum_{(x_i, y_i) \in X_l} L(y_i, c_l) + \sum_{(x_i, y_i) \in X_r} L(y_i, c) \right) = \\
= \frac{|X_l|}{|X_m|} H(X_l) + \frac{|X_r|}{|X_m|} H(X_r).$$

### Критерий ветвления

Тогда критерий ветвления:

$$Branch(X_m, j, t) = |X_m| \cdot H(X_m) - |X_l| \cdot H(X_l) - |X_r| \cdot H(X_r).$$

Чем больше изменение метрики, тем лучше.

- MSE:  $L(y_i, c) = (y_i c)^2$ ,  $H(X_m) = \sum_{(x_i, y_i) \in X_m} \frac{(y_i \overline{y})^2}{|X_m|}$ ;
- MAE:  $L(y_i, c) = |y_i c|$ ,  $H(X_m) = \sum_{(x_i, y_i) \in X_m} \frac{|y_i \text{MEDIAN}(Y_m)|}{|X_m|}$ ;
- Для классификации можно рассматривать: misclassification error  $(H(X_m) = 1 \max p_i, \ p_i$  доля класса i), энтропию  $(H(X_m) = -\sum_{k=1}^K p_k \log p_k)$  или критерий Джини  $(H(X_m) = \sum_{k=1}^K p_k (1 p_k))$ .

# Стрижка деревьев(pruning tree)

- **Проблема**: переобучение небольшое смещение, но большая дисперсия.
- Решение: объединяя некоторые  $R_j$  можем уменьшить дисперсию за счет небольшого увеличения смещения.
- Выращиваем дерево только до тех пор, пока уменьшение функции потерь из-за разбиения превышает некоторый (высокий) порог.
- Однако можно пропустить хорошее разбиение, остановившись слишком рано. Поэтому можно выращивать большие деревья  $T_0$ , а затем обрезать его для получения поддерева.

### Cost-complexity pruning

- Получим большое дерево  $T_0$  и обрежем его в узле t, получив поддерево  $T^t \subset T_0$ .
- Рассмотрим последовательность деревьев проиндексированных положительным параметром  $\alpha$ . Каждому  $\alpha$  соответствует поддерево  $T \subset T_0$ , минимизирующее критерий

$$Q_{\alpha}(T) = Q(T) + \alpha |l(T)|,$$

где Q(T) — разница между прогнозируемым и фактическим выходом модели на этапе её обучения,  $\alpha \geq 0, \; |l(T)|$  — число листьев в поддереве T.

• Выберем  $\alpha$  с помощью кросс-валидации и возьмем соответствующее поддерево.

## Преимущества и недостатки решающих деревьев

### Преимущества:

- Простота интерпретации.
- Простота визуализации.
- Пригодность и для задач регрессии, и для задач классификации.
- Возможность работы с пропусками в данных.
- Возможность работы с категориальными значениями.

#### Недостатки:

 Метод явялется неустойчивым и склонным к переобучению.

#### Замечание

Агрегирования множества деревьев решений такими способами, как bagging, random forest и boosting, позволяет значительно улучшить качество предсказания.

### Bootstrap

Метод бутстрэпа заключается в следующем:

- ullet Дана выборка  ${f X}$  размера M .
- Равномерно возьмем из выборки M объектов с возвращением (из-за возвращения среди них окажутся повторы), обозначим новую выборку через  $\mathbf{X}_1$ .
- ullet Повторив N раз, сгенерируем  ${\sf N}$  подвыборок  ${f X}_1,\ldots,{f X}_N.$



### Пример построения композиции алгоритмов.

- Дана конечная выборка  $\mathbf{X} = (x_i, y_i)$  с вещественными ответами.
- Равномерно возьмем из выборки l объектов с возвращением (из-за возвращения среди них окажутся повторы), обозначим новую выборку через  ${f X}_1.$
- ullet Повторив N раз, сгенерируем  ${\sf N}$  подвыборок  ${f X}_1,\ldots,{f X}_N.$
- Обучим по каждой из них линейную модель регрессии, получив базовые алгоритмы  $b_1(x),\ldots,\ b_N(x).$
- ullet Пусть  $\exists$  модель  $y(x) = \sum eta_i x_i + arepsilon_i$  и p(x) распределение  ${f X}$ .
- Ошибка каждой функции регрессии:  $\varepsilon_j(x) = b_j(x) y(x), \ j = 1, \dots, \ N.$
- Матожидание среднеквадратичной ошибки:  $\mathbf{E}_x(b_j(x)-y(x))^2=\mathbf{E}_x\varepsilon_j^2(x).$

## Среднеквадратичная ошибка

Средняя ошибка построенных функций регрессии:

$$\mathbf{E}_1 = \frac{1}{N} \sum_{j=1}^{N} \mathbf{E}_x \varepsilon_j^2(x).$$

Пусть ошибки несмещены и некоррелированы:

$$\mathbf{E}_x \varepsilon_j(x) = 0, \quad \mathbf{E}_x \varepsilon_j(x) \varepsilon_j(x) = 0, \quad i \neq j.$$

Построим теперь новую функцию регрессии, которая будет усреднять ответы построенных нами функций:

$$\alpha(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x).$$

Тогда

$$E_N = \mathbf{E}_x \left( \frac{1}{N} \sum_{j=1}^N b_j(x) - y(x) \right)^2 = \mathbf{E}_x \left( \frac{1}{N} \sum_{j=1}^N \varepsilon_j(x) \right)^2 =$$

## Среднеквадратичная ошибка

$$= \frac{1}{N^2} \mathbf{E}_x \left( \sum_{j=1}^N \varepsilon_j^2(x) + \sum_{i \neq j} \varepsilon_i(x) \varepsilon_j(x) \right) = \frac{1}{N} E_1.$$

Таким образом, усреднение ответов позволило уменьшить средний квадрат ошибки в N раз (при этом смещение остаётся тем же).

#### Замечание

Рассмотренный пример не очень применим на практике, так как мы предположили, что ошибки некоррелированы, это редко выполняется. Если это предположение неверно, то уменьшение ошибки оказывается не таким значительным.

## Bagging

Bagging — метод, который позволяет уменьшить разброс модели. Этот метод обучает некоторое число алгоритмов так, что каждый алгоритм обучается на отдельных выборках, которые получены из исходной с помощью bootstrap.



Puc.: Схема реализации bagging

## Peaлизация bagging

Пусть имеется обучающая выборка  ${f X}$ .

- $oldsymbol{0}$  С помощью bootstrap сгенерируем из  $oldsymbol{X}$  выборки  $oldsymbol{X}_1,\ldots,\,oldsymbol{X}_N.$
- $oldsymbol{2}$  На каждой выборке строим решающее дерево  $b_n(x)$ :
  - ullet дерево строится, пока в каждом листе не окажется не более  $n_{\min}$  объектов.
  - при каждом разбиении сначала выбирается m случайных признаков из p, оптимальное разделение ищется только среди них.
- находим оценку:
  - ullet для задачи регрессии:  $lpha(x) = rac{1}{N} \sum_{n=1}^N b_n(x)$  .
  - для задачи классификации с K классами: записываем класс предсказанный каждым деревом, итоговое предсказание часто встречающийся класс среди предсказаний.

## Bagging в задаче регрессии



Рис.: Лучше обобщает закономерность и менее склонна к переобучению, чем любое отдельное дерево

# Bagging в задаче классификации



Рис.: Граница сглаженная и практически нет признаков переобучения

## Ошибка out-of-bag

- Дерево  $b_n$ , обученное с помощью bootstrap, использует в среднем 2/3 наблюдений.
- Оставшиеся 1/3 наблюдений, которые не вошли в bootstrap-выборку  $\mathbf{X}_n$ , являются контрольными для данного дерева.
- Значит, можно для каждого объекта  $x_i$  найти деревья, которые были обучены без него, и вычислить по их ответам out-of-bag ошибку:

$$OOB = \sum_{i=1}^{l} L \left( y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin \mathbf{X}_n]} \sum_{n=1}^{N} [x_i \notin \mathbf{X}_n] b_n(x_i) \right),$$

где L(y, z) — функция потерь.

### Random forest

Модель Random Forest — улучшение бэггинга решающих деревьев. Деревья становятся менее коррелированными благодаря тому, что при построении дерева в каждой вершине признак выбирается из случайного подмножества заданного размера p.

Практическая рекомендация: для классификации —  $p=\sqrt{d}$ , где d — общее число признаков; для регрессии — p=d/3.

Ограничения в построении дерева выбираются так, чтобы деревья получались глубокими — такие деревья имеют низкое смещение.

Количество деревьев может быть определено по графику ошибок от числа деревьев. Также стоит учесть вычислительную сложность, хотя случайный лес хорошо параллелится.

## Random forest в задаче регрессии



Рис.: Различие случайного леса и бэггинга на деревьях решений заключается в том, что в случайном лесе выбирается случайное подмножество признаков, и лучший признак для разделения узла определяется из подвыборки признаков, в отличие от бэггинга, где все функции рассматриваются для разделения в узле

## Random forest в задаче классификации



Рис.: Граница сглаженная и практически нет признаков переобучения

## Boosting

**Boosting** — техника последовательного обучения множества слабых базовых моделей для построения более качественной общей модели предсказания. В этом случае используется одно обучающее множество. Первая модель в последовательности обучается предсказывать, а последующие стремятся уменьшить ошибки предсказания предыдущих.

В итоге получаем аддитивную модель как взвешенную последовательность множества базовых.

Paccмотрим в общем виде **Gradient Boosting** для задачи регрессии и **AdaBoost** для задачи классификации.

## Gradient Boosting для задачи регрессии

В качестве базовой модели берем дерево решений. Boosting использует комбинацию большого количества деревьев. Деревья строятся последовательно, при этом каждое следующее дерево использует информацию предыдущих деревьев.

#### Алгоритм:

- ① Устанавливаем b(x) = 0 и  $r_i = y_i$  для всех i на обучающем множестве  $(\mathbf{X}, \ r)$ .
- ② Для n = 1, 2, ..., N повторяем:
  - Обучаем дерево  $b_n$  с d сплитами (d+1) терминальных узлов) на обучающем множестве  $(\mathbf{X},\ r)$ .
  - Обновляем  $b \colon b(x) \leftarrow b(x) + \lambda b_n(x)$
  - Обновляем остатки:  $r_i \leftarrow r_i \lambda b_n(x_i)$
- Возвращаем модель:

$$b(x) = \sum_{n=1}^{N} \lambda b_n(x).$$

## Gradient Boosting для задачи регрессии: основная идея

Заметим, что мы обучаемся на антиградиент (пусть  $\lambda=1$ ):

$$r_i = y_i - b(x_i) = -\frac{d}{dz} \frac{1}{2} (z - y_i)^2 |_{z=b(x_i)}$$

**Идея**: предсказание следующего алгоритма должно быть противоположно производной L(y,z) в точке  $z=b(x_i)$ . Тогда вектор сдвигов совпадает с антиградиентом L.

Таким образом, добавляя новый алгоритм, мы делаем шаг градиентного спуска. А  $\lambda$  является learning rate.

# Gradient Boosting для задачи регрессии

#### Три настраиваемых параметра:

- ① Количество деревьев N. При слишком большом значении N может привести к переобучению. Можно использовать кросс-валидацию для выбора N.
- ② Параметр регуляризации  $\lambda$  небольшое положительное число, которое контролирует скорость обучения. При очень малом значении  $\lambda$  необходимо использовать очень большое значение N, чтобы получить приемлимый результат.
- $\odot$  Количество сплитов d в каждом дереве. Параметр определяет сложность ансамбля.

### AdaBoost для задачи классификации

#### Общая идея:

- Последовательно строим модель на базе слабых классификаторов при этом уменьшаем ошибку классификатора на предыдущем шаге.
- Если на обучающем множестве были случаи неправильной классификации, то для этих наблюдений увеличивается вес.
- Следующий классификатор при обучении использует эти веса, чтобы сделать акцент на случаях, где была ошибка.
- После этого обученный классификатор может сам давать ошибочные классификации, что ведет к изменению весов наблюдений для последующего классификатора.
- Каждый классификатор в последовательности имеет свой вес.
- Таким образом, получаем конечный классификатор как линейную комбинацию последовательно обученных классификаторов.

## AdaBoost для задачи классификации

#### Алгоритм:

- **①** Инициализация весов наблюдений  $w_i = \frac{1}{n}$  где  $i = 1, 2, \ldots, n$ .
- $\bullet$  for m=1 to M:
  - Обучение классификатора  $T_m(x)$  на обучающих данных с весами  $w_i$  .
  - ullet Вычисление ошибки:  $err_m = rac{\sum_{i=1}^n w_i \mathbf{1}(y_i 
    eq T_m(x_i))}{\sum_{j=1}^n w_j}$  .
  - Вычисление веса классификатора  $G_m(x)$ :  $\alpha_m = \log\left[\frac{1-err_m}{err_m}\right] + \log(K-1),$  где K количество классов.
  - Обновление весов  $w_i \leftarrow w_i \times \exp(\alpha_m \times \mathbf{1}(y_i \neq T_m(x_i)))$ .
  - ullet Нормализация весов  $w_i$ .

$$C(x) = \operatorname*{argmax}_{k} \left\{ \sum_{m=1}^{M} \alpha_{m} \times \mathbf{1}(T_{m}(x) = k) \right\}.$$

#### Заключение

#### B Random forest:

- Используются глубокие деревья, так как от базовых алгоритмов требуется низкое смещение.
- Разброс устраняется за счет усреднения ответов различных деревьев.

### B Boosting:

- Каждый следующий алгоритм понижает ошибку композиции.
- Переобучение при большом количестве базовых моделей.
- Можно понизить смещение моделей, но разброс или останется таким же, или увеличится.
- Используются неглубокие решающие деревья.