Estudo de Caso - UR5

Disciplina: Robótica Industrial - ES827-A

Professora: Ludmila Correa de Alkmin e Silva

Equipe:

Ana Marina - anamasantos 94@gmail.com - RA134911

Eric Willian - ericwilliamb@hotmail.com - RA120888

Francesco Carella - c264363@g.unicamp.br - RA264363

Luca Genovese - <u>1264364@g.unicamp.br</u> - RA 264364

Pedro Menotti - pedromenotti@gmail.com - RA147652

Valdir Junior - vsj@ic.ufal.br - RA231045

Robô UR5

- Fabricado por Universal Robots.
- Robô colaborativo, certificado pela TÜV (A Associação de Inspeção Técnica Alemã).

850 mm / 33.5 ins

CARGA ÚTIL

5 kg / 11 lbs

ÁREA OCUPADA

Ø 149 mm

PESO

20.6 kg / 45.4 lbs

Robô UR5

- Composto por 6 juntas rotacionais, onde todas podem atingir uma rotação completa, +/- 360°.
- Desenvolvido para trabalho colaborativo.
- Possui uma rede de sensores de maneira a amenizar impactos.

Robô UR5 - Workspace

Tarefa Realizada

Tarefa

Manipular amostras na área de saúde ao lado de operadores:

O robô deverá levar uma amostra de sangue de um local para outro:

- Local 1
- Local 2
- Retornar ao ponto inicial para manipular a próxima amostra.

Caso Similar

Dois robôs UR5 são utilizados para otimizar a manipulação e organizado de amostras de sangue no Hospital da Universidade Copenhagem em Gentofte. A solução permitiu alcançar o marco de 90% das amostras coletadas terem sua análise encerrada em apenas hora, apesar do hospital ter tido sua demanda aumentada em 20%.

Disponível em: https://www.universal-robots.com/case-stories/gentofte-hospital/

Análise da Cinemática

Cinemática direta:

Tabela DH

A tabela DH obtida foi a seguinte:

Kinematics	heta [rad]	a [m]	d[m]	α [rad]
Link 1	0	0	0.089159	π/2
Link 2	0	-0.425	0	0
Link 3	0	-0.39225	0	0
Link 4	0	0	0.10915	π/2
Link 5	0	0	0.09465	-π/2
Link 6	0	0	0.0823	0

Obtenção dos parâmetros da cinemática direta

Os parâmetros DH obtidos foram referentes aos seguintes sistema de coordenadas escolhidos

Matrizes de transformação

Para obter as matrizes de transformação primeiramente foram obtidas de forma individual matriz homogênea correspondente de cada junta em relação a proxima:

$$T_i^{i-1} = \begin{bmatrix} c_{\theta i} - s_{\theta i} c_{\alpha i} & s_{\theta i} s_{\alpha i} & a_i c_{\theta i} \\ s_{\theta i} & c_{\theta i} c_{\alpha i} & -c_{\theta i} s_{\alpha i} & a_i s_{\theta i} \\ 0 & s_{\alpha i} & c_{\alpha i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Considerações finais

Vantagens e desvantagens do UR 5:

- Extrema flexibilidade devido a suas juntas de rotação total.
- Possui um sistema de segurança adequado para trabalhar lado a lado com humanos.
- Tem a capacidade de aprender movimentos manuais.
- Compacto.

- Baixa carga de carregamento.
- Área de trabalho extremamente restrita.

Simulações