LLC tank pre-design calculations

Table of contents

- Voltage Gain Theoretical Overview
- Inputs and Specifications
- Transfo ratio and Voltage Gain
- Lm, Lr, Cr tank
- References

Voltage Gain – Theoretical Overview

The voltage gain function (normalized) expression is:

 $M_g = \left[\frac{f_n^2}{\left(f_n^2 - 1 \right) \cdot f_n^2 - 1 \cdot f_n^$

 $$$ L_n = \frac{L_r}{C_r}}{R_e}, \quad f_n = \frac{f_{sw}}{f_0}, \quad f_0 = \frac{1}{2\pi}\left\{L_r C_r\right\} $$$

See page 3 formula (23) [1].

You can found all formula of this chapeter in the same ref

Inputs and Specifications

 $$ \left(V_{\ln_{\min}} &= 360 \right) \left(10pt \right) V_{\ln_{nom}} &= 380 \right) \left(10pt \right) V_{\ln_{nom}} &= 380 \right) \left(10pt \right) V_{\ln_{max}} &= 400 \right) \left(10pt \right) V_{\ln_{max}} &= 400 \right) \left(10pt \right) V_{\ln_{max}} &= 42 \right) \left(10pt \right) V_{\ln_{max}} &= 48 \right) \left(10pt \right) V_{\ln_{max}} &= 54 \right) \left(10pt \right) V_{\ln_{max}} &= 54 \right) \left(10pt \right) V_{\ln_{max}} &= 54 \right) \left(10pt \right) V_{\ln_{max}} &= 1200 V_{\ln_$

Inputs data

```
{'V_In_min': 360.0,
'V_In_nom': 380.0,
'V_In_max': 400.0,
'Vo_min': 42.0,
'Vo_nom': 48.0,
'Vo_max': 54.0,
'Power': 1200.0,
'f_nom': 100000.0}
```

Transfo ratio and Voltage Gain

 $\ \left(V_{\ln_{nom}} \right) \ \$

Choose an integer value to simplify the transformer design.

 $\ \left(n \right) = \operatorname{(n \cdot ght)} = \operatorname{(n \cdot ght)} = \operatorname{(a \cdot ght)} = 4 \$

 $\label{thm:prop:special} $$\left[\operatorname{ligned} \operatorname{ligned} \en \cdot \operatorname{li$

Lm, Lr, Cr tank

Below we will use grid search to find the best values for Ln and Qe.

The idea:

- Change Ln in the range: start = 1, stop = 10, step = 0.01 (around 100 points)
- Change Qe in the range: start = 0.1, stop = 1, step = 0.01 (around 10 points)

We will select the Ln and Qe values that give an Mg value closest to Mg_max110.

Top 6 (Ln, Qe) Combinations Matching Mg max110

The following 6 values of Ln and Qe closely match the target voltage gain Mg_max110.

These rows were selected based on the criterion that Mg ape is nearly equal to Mg max110.

 $\ \$ \begin{aligned} \mathrm{Mg}_{max110} &= 1.400 \; \end{aligned} \$

	Lnc	Qec	Lm_uH	Lr_uH	Cr_nF	fn_min	fn_max	fsw_min	fsw_max	Mg_ape
0	2.41	0.64	61.127	25.364	99.867314	0.6375	1.3790	63750.0	137900.0	1.400142
1	3.00	0.55	65.392	21.797	116.209238	0.6017	1.5622	60170.0	156220.0	1.400062
2	3.46	0.50	68.562	19.816	127.830162	0.5707	1.7698	57070.0	176980.0	1.399923
3	3.68	0.48	70.005	19.023	133.156419	0.5471	1.9035	54710.0	190350.0	1.400284
4	4.21	0.44	73.413	17.438	145.261548	0.5324	2.4133	53240.0	241330.0	1.400277
5	4.71	0.41	76.532	16.249	155.890441	0.5077	3.6928	50770.0	369280.0	1.400231

--- fn_min

- fn max

--- Mg_max

Mg min

..... fa1

Grid search for Ln and Qe to find the best pair of values.

 $\$ \begin{aligned} \mathrm{Lnc} &= 3 \; \\[10pt] \mathrm{Qec} &= 0.550 \; \end{aligned} \$

Qe=0.40

0e = 0.50

Lnc = 3 and Qec = 0.55 represent an optimal compromise due to the following:

Qe=0.20

Oe=0.30

• Moderate gain slope (ΔM/Δf):

Qe=0.00

0e = 0.10

In the inductive region, the gain rises gradually with frequency, enabling stable control without abrupt sensitivity shifts.

Qe=chosed

Mg_max_110%

• Limited frequency span (f_min to f_max):

These parameters restrict the switching frequency range, simplifying component design, controller implementation, and consistent ZVS operation.

Equivalent resistor

 $\label{left} $\ \left(n \right)^{2} \cdot \left(n \right)^{2}$

Lm, Lr, Cr values

Verification

 $\begin{aligned} \mathbf{Cr} \cdot 1 \times 10^{-9} } \\ \mathbf{Cr} \cdot 1 \times 10^{-9} } \\ \mathbf{Re}_{110} \cdot 1.1 } = \frac{0.000}{116.209 \cdot 1 \times 10^{-9}} } \\ 22.637 \cdot 1.1 } &= 0.550 \cdot [10pt] \mathbf{E}_{0.550} : \end{aligned} $$

Fsw limites and primary secondary currents

\$\begin{aligned} \mathrm{fsw} \min} &= \operatorname{round} \left(\mathrm{fn} \min} \cdot f \nom} \, 2 \right) = \operatorname{round} \left(0.602 \cdot 100000.000 ,\ 2 \right) &= 60170.000 \; \;\textrm{(Hz)} \\ [10pt] \mathrm{fsw}_{max} &= \operatorname{round} \left(\mathrm{fn}_{max} \cdot f_{nom} ,\ 2 \right) = \operatorname{round} \left(1.562 \cdot 100000.000 ,\ 2 \right) &= 156220.000 \; \;\textrm{(Hz)} \\[10pt] $\mathrm{mathrm}\{\mathrm{wmin}\} \&= 2 \cdot \mathrm{jcdot} \cdot \mathrm{mathrm}\{\mathrm{fsw}\}_{\mathrm{min}} = 2 \cdot 3.142 \cdot 60170.000 \&= 378059.260 :$ 156220.000 &= 981559.209 \; \;\textrm{(rad/s)} \\[10pt] \mathrm{lm}_{rms} &= 2 \cdot \sqrt { 2 } \cdot n \cdot $\frac{\mathbf{Vo}_{nom}}{ \dot x} = 2 \cdot \frac{2} \cdot 4 \cdot \frac{\mathbf{Vo}_{nom}}{ \dot x} = 2 \cdot \frac{2} \cdot \frac{4 \cdot \mathbf{Vo}_{nom}}{ \dot x} = 2 \cdot \frac{2} \cdot \frac{4 \cdot \mathbf{Vo}_{nom}}{ \dot x} = 2 \cdot \frac{2} \cdot \frac{4 \cdot \mathbf{Vo}_{nom}}{ \dot x} = 2 \cdot \frac{2} \cdot \frac{4 \cdot \mathbf{Vo}_{nom}}{ \dot x} = 2 \cdot \frac{2} \cdot$ $\ \end{arms} \ \$ $2 \} = 1.1 \cdot 3.142 \cdot$ [10pt] \mathrm{los} ${\rm s} = \mathrm{nathrm}\{\log \} / \mathrm{n} = 7.636 \cdot 4 = 30.545 ; \$ [10pt] \mathrm{\lr} {\rms} &= \sqrt {\\left(\mathrm{\lm} \rms} \\right) ^{ 2 } + \\left(\mathrm{\loe} \\right) ^{ 2 } } = \sqrt {\left(6.992 \right) ^{ 2 } + \left(7.636 \right) ^{ 2 } } &= 10.354 \; \;\textrm{(Arms)} \\[10pt] $L_{second_{uH}} &= \frac{h^{2} \left(h^{1} \right) ^{2} } = \frac{65.392}{\left(4 \right) ^{2} } &= \frac{1}{4}$

Output data

	Output datas
Lnc	3.000000e+00
Qec	5.500000e-01
Cr_nF	1.162090e+02
n	4.000000e+00
Lr_uH	2.179700e+01
Lm_uH	6.539200e+01
fsw_min	6.017000e+04
fsw_max	1.562200e+05
lm_rms	6.992000e+00
lo	2.500000e+01
loe_rms	7.636000e+00
los_rms	3.054500e+01
lr_rms	1.035400e+01
L_second_uH	4.087000e+00
Re_nom	2.490100e+01
Re_110	2.263700e+01
Cr	1.162090e-07
Lr	2.179700e-05
Lm	6.539200e-05

References

[1] Hong Huang, Designing an LLC Resonant Half-Bridge Power Converter. Available: https://bbs.dianyuan.com/upload/community/2013/12/01/1385867010-65563.pdf [2] Code Python notebook used to make this PDF