AERO 422: Active Controls for Aerospace Vehicles

Frequency Response-Design Method

Raktim Bhattacharya

Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University.

Frequency Response

$$\xrightarrow{u(t)} \mathbb{P} \xrightarrow{y(t)}$$

- Let $u(t) = A_u \sin(\omega t)$
- Vary ω from 0 to ∞

A linear system's response to sinusoidal inputs is called the system's frequency response

Example

■ Let
$$P(s) = \frac{1}{s+1}, u(t) = \frac{\sin(t)}{\sin(t)}$$

$$y(t) = \frac{1}{2}e^{-t} - \frac{1}{2}\cos(t) + \frac{1}{2}\sin(t)$$

$$= \underbrace{\frac{1}{2}e^{-t}}_{\text{natural response}} + \underbrace{\frac{1}{\sqrt{2}}\sin(t - \frac{\pi}{4})}_{\text{forced response}}$$

- Forced response has form $A_u \sin(\omega t + \phi)$
- \blacksquare A_u and ϕ are functions of ω

Generalization

In general

$$\begin{split} Y(s) &= G(s) \frac{\omega_0}{s^2 + \omega_0^2} \\ &= \frac{\alpha_1}{s - p_1} + \cdots \frac{\alpha_n}{s - p_n} + \frac{\alpha_0}{s + j\omega_0} + \frac{\alpha_0^*}{s - j\omega_0} \\ \Longrightarrow y(t) &= \underbrace{\alpha_1 e^{p_1 t} + \cdots + \alpha_n e^{p_n t}}_{\text{natural}} + \underbrace{A_y \sin(\omega_0 + \phi)}_{\text{forced}} \end{split}$$

Forced response has same frequency, different amplitude and phase.

Generalization (contd.)

For a system P(s) and input

$$u(t) = A_u \sin(\omega_0 t),$$

forced response is

$$y(t) = A_u \mathbf{M} \sin(\omega_0 t + \mathbf{\phi}),$$

where

In polar form

$$P(j\omega_0) = Me^{j\phi}$$
.

Fourier Analysis

Fourier Series Expansion

Given a signal y(t) with periodicity T.

$$y(t) = \frac{a_0}{2} + \sum_{n=1,2,\dots} a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right)$$
$$a_0 = \frac{2}{T} \int_0^T y(t) dt$$
$$a_n = \frac{2}{T} \int_0^T y(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$
$$b_n = \frac{2}{T} \int_0^T y(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

requency Response Fourier Analysis Bode Plot Asymptotes Steady-State Stability Design

Fourier Series Expansion

Approximation of step function

Fourier Analysis

Fourier Transform

Step function

Fourier transform reveals the frequency content of a signal

requency Response Fourier Analysis Bode Plot Asymptotes Steady-State Stability Design

Fourier Transform

Step function – frequency content

Signals & Systems

Input Output

Fourier Series Expansion

$$\xrightarrow{\sum_{i} u_{i}(t)} P \xrightarrow{\sum_{i} y_{i}(t)}$$

Fourier Transform

$$\begin{array}{c|c} U(j\omega) & Y(j\omega) \\ \hline \end{array}$$

$$u_i(t) = a_i \sin(\omega_i t)$$

$$y_{i_{\text{forced}}}(t) = a_i M \sin(\omega_i t + \phi)$$

$$Y(j\omega) = P(j\omega)U(j\omega)$$

Suffices to study $P(j\omega)|P(j\omega)|$, $P(j\omega)$

Bode Plot

First Order System

- loglog scale
- $dB = 10 \log_{10}(\cdot)$
- \bullet 20dB = $10 \log_{10}(100/1)$

- $u(t) = A\sin(\omega_0 t)$
- $y_{\text{forced}}(t) = AM \sin(\omega_0 t + \phi)$

Second Order System

$$P(s) = 1/(s^2 + 0.5s + 1)$$

$$\omega_n = 1 \text{ rad/s}$$

$$u(t) = A\sin(\omega_0 t)$$

$$y_{\text{forced}}(t) = AM \sin(\omega_0 t + \phi)$$

requency Response Fourier Analysis Bode Plot Asymptotes Steady-State Stability Design

Lead Compensator

- Phase lead
- low gain at low frequency
- high gain at high frequency
- relate it to derivative control

Bode Plot 00000000000

Lag Compensator

- Phase lag
- high gain at low frequency
- low gain at high frequency
- relate it to integral control

$$S(j\omega) + T(j\omega) = 1$$

- $P(s) = \frac{1}{(s+1)(s/2+1)}$
- C(s) = 10
- $S = G_{er} = \frac{1}{1+PC} = \frac{1}{1+10P}$
- $T = G_{yr} = \frac{PC}{1+PC} = \frac{10P}{1+10P}$

Bode Plot 00000000000

All transfer functions

With proportional controller

Piper Dakota Control System

Designed with root locus method

System

Transfer function from δ_e (elevator angle) to θ (pitch angle) is

$$P(s) = \frac{\theta(s)}{\delta_e(s)} = \frac{160(s+2.5)(s+0.7)}{(s^2+5s+40)(s^2+0.03s+0.06)}$$

Control Objective 1

Design an autopilot so that the step response to elevator input has $t_r < 1$ and $M_n < 10\% \implies \omega_n > 1.8 \text{ rad/s}$ and $\zeta > 0.6 2^{nd}$ order

Controller

$$C(s) = 1.5 \frac{s+3}{s+25} (1 + 0.15/s)$$

Fourier Ana

Bode Plot

Asymptotes

Piper Dakota Control System

Time Response

Piper Dakota Control System

Frequency Response

Fourier Analysis Bode Plot Asymptotes Steady-State Stability Design

Piper Dakota Control System

Frequency Response (contd.)

Asymptotes

Approximate Bode Plot

Useful for Design & Analysis

Let open-loop transfer function be

$$KG(s) = K \frac{(s - z_1)(s - z_2) \cdots}{(s - p_1)(s - p_2) \cdots}$$

Write in Bode form

$$KG(j\omega) = K_0 \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\cdots}$$

 K_0 is the DC gain of the system.

Example

$$G(s) = \frac{(s+1)}{(s+2)(s+3)} \implies G(j\omega) = \frac{j\omega+1}{(j\omega+2)(j\omega+3)} = \frac{1}{6} \frac{j\omega+1}{(j\omega/2+1)(j\omega/3+1)}$$

Approximate Bode Plot

contd.

Transfer function in Bode Form

$$KG(j\omega) = K_0 \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\cdots}$$

Three cases

- 1. $K_0(i\omega)^n$ pole, zero at origin
- 2. $(i\omega + 1)^{\pm 1}$ real pole, zero
- 3. $\left[\left(\frac{j\omega}{\omega_n}\right)^2+2\zeta\frac{j\omega}{\omega_n}+1\right]^{\pm 1}$ complex pole, zero

Case:1 $K_0(j\omega)^n$ pole, zero at origin

Gain

$$\log K_0|(j\omega)|^n = \log K_0 + n\log|jw| = \log K_0 + n\log w$$

Phase

Case:2 $(j\omega\tau + 1)^{\pm 1}$ real pole, zero

Gain

$$(j\omega\tau + 1) = \begin{cases} \approx 1, & \omega\tau << 1, \\ \approx j\omega\tau, & \omega\tau >> 1. \end{cases}$$

Frequency $\omega = 1/\tau$ is the break point

Case:2 $(j\omega\tau+1)^{\pm 1}$ real pole, zero (contd.)

Phase

$$\underline{/j\omega\tau + 1} = \begin{cases}
\approx 1, & \omega\tau << 1, & \underline{/1} = 0^{\circ} \\
\approx j\omega\tau, & \omega\tau >> 1, & \underline{/j\omega\tau} = 90^{\circ} \\
& \omega\tau \approx 1, & \underline{/j\omega\tau} + 1 = 45^{\circ}
\end{cases}$$

Example

$$G(s) = \frac{200(s+0.5)}{s(s+10)(s+50)}$$

Steady-State Errors

Closed-loop system

Closed-loop transfer function

$$G_{er} = \frac{1}{1 + PC} = K_0(j\omega)^n \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\cdots}$$

Steady-state gain

$$\lim_{s \to 0} sG_{er}(s) \frac{1}{s} \Leftrightarrow \lim_{\omega \to 0} |G_{er}(j\omega)|$$

$$PC = \frac{200(s+0.5)}{e(s+10)(s+50)}$$

Typically analysis is done with open-loop system

Open-loop system

Open-loop transfer function

$$PC = \frac{200(s+0.5)}{s(s+10)(s+50)} = \frac{K_0(j\omega)^n}{(j\omega\tau_a+1)(j\omega\tau_a+1)(j\omega\tau_b+1)\cdots}$$

Steady-state error step

$$e_{\rm ss} = \frac{1}{1 + K_p}, \; K_p := K_0.$$

Steady-state error ramp

$$e_{\rm ss} = \frac{1}{K_v}$$

- System type is the slope of the low frequency asymptote
- K_v is the value of low frequency asymptote at $\omega = 1 \text{ rad/s}$

Stability Analysis

Stability

Given open-loop data

$$C(s) = K, P(s) = \frac{1}{s(s+1)^2}$$

Stable for K < 2

- All points on root locus satisfy 1 + P(s)C(s) = 0
- $\blacksquare P(s)C(s) = -1 \implies$ |P(s)C(s)|=1 and $/P(s)C(s) = 180^{\circ}$
- At neutral stability point $s=j\omega$

$$|P(j\omega)C(j\omega)| = 1$$

 $/P(j\omega)C(j\omega) = 180^{\circ}$

Fourier Analysis Bode Plot Asymptotes Steady-State **Stability** Design

Stability

$$|P(j\omega)C(j\omega)| < 1$$
 at $/P(j\omega)C(j\omega) = 180^\circ$

Fourier Analysis E

Bode Plot

Asymptotes 0000000 Steady-State

Gain Margin

Open loop Bode Plot

Gain Margin (GM): factor by which gain can be increased at $/P(j\omega)C(j\omega)=-180^{\circ}$

Phase Margin

Open loop Bode Plot

Phase Margin (PM): amount by which phase exceeds -180° at $|P(j\omega)C(j\omega)| = 1$

Stability 0000000000

Nyquist Plot

- Relates open-loop frequency response to number of unstable closed-loop poles
- Residue theorem in complex analysis
- Plot $P(j\omega)C(j\omega)$ in the complex plain
- Number of encirclements of -1 equals Z P of 1 + P(s)C(s)

Nyquist Plot

contd.

$$\blacksquare$$
 Write $P(s)C(s)=KG(s)=K\frac{N(s)}{D(s)}$

$$\implies 1 + P(s)C(s) = \frac{D(s) + KN(s)}{D(s)}$$

- Poles of 1 + P(s)C(s) = Poles of G(s) none of them on RHP
- Number of encirclements = number of zeros of 1 + P(s)C(s)on RHP number of poles of closed-loop system

Nyquist Plot

Example:
$$P(s)C(s) = \frac{K}{s(s+1)^2}$$

Nyquist Plot

Determining Gain

- \blacksquare Given $P(s)C(s)=\frac{K}{s(s+1)^2},$ what is K for stability?
- Encirclement of 1/K + G(s) = 0

Nyquist Plot

Gain and Phase Margin

Nyquist plot of P(s)C(s)

Frequency Domain Design

Design Using Bode Plot of $P(j\omega)C(j\omega)$

Loop Shaping

Develop conditions on the Bode plot of the open loop transfer function

- Sensitivity $\frac{1}{1+PC}$
- Steady-state errors: slope and magnitude at $\lim_{\omega} \to 0$
- Robust to sensor noise
- Disturbance rejection
- \blacksquare Controller roll off \implies not excite high-frequency modes of plant
- Robust to plant uncertainty

Look at Bode plot of $L(j\omega) := P(j\omega)C(jw)$

Frquency Domain Specifications

Constraints on the shape of $L(j\omega)$

- Choose $C(j\omega)$ to ensure $|L(j\omega)|$ does not violate the constraints
- Slope ≈ -1 at ω_c ensures $PM \approx 90^\circ$

Plant Uncertainty

$$P(j\omega) = P_0(j\omega)(1 + \Delta P(j\omega))$$

Sensor Characteristics

Noise spectrum

$$G_{yn} = -\frac{PC}{1 + PC}$$

Reference Tracking

Bandlimited else conflicts with noise rejection

$$G_{yr} = \frac{PC}{1 + PC}$$

$$G_{yn} = -\frac{PC}{1+PC}$$

Disturbance Rejection

Bandlimited else conflicts with noise rejection

$$G_{yd} = \frac{P}{1 + PC}$$

$$G_{yn} = -\frac{PC}{1+PC}$$