Platelet

 $\begin{array}{cc} Team \ Reference \ Material \\ {}_{(unlimited \ version)} \end{array}$

凌皓煜 陈 彤

顾 逸

目录

1	Gra	ph Theory	1
	1.1	2-SAT (ct)	1
	1.2	割点与桥 (ct)	2
	1.3	Steiner tree (lhy)	3
	1.4	K 短路 (lhy)	3
	1.5	最大团	7
	1.6	一般图最大匹配	7
	1.7	KM 算法 (Nightfall)	7
	1.8	支配树 (Nightfall,ct)	8
	1.9	虚树 (ct)	10
	1.10	点分治 (ct)	11
	1.11	树上倍增 (ct)	12
		Prufer 编码	13
	1.13	Link-Cut Tree (ct)	13
	1.14	圆方树 (ct)	15
			15
		最大流 (ct)	15
			17
			19
			19
			19
	TC		
	1.20	MIN (81,m3)	10
2	Mat	\mathbf{h}	21
2		h int64 相乘取模 (Durandal)	21
2	Mat	h int64 相乘取模 (Durandal)	21 21 21
2	Mat 2.1	h int64 相乘取模 (Durandal)	21 21
2	Mat 2.1 2.2	h int64 相乘取模 (Durandal)	21 21 21
2	Mat 2.1 2.2 2.3	h int64 相乘取模 (Durandal)	21 21 21 22
2	Mat 2.1 2.2 2.3 2.4	h int64 相乘取模 (Durandal)	21 21 21 22 22
2	Mat 2.1 2.2 2.3 2.4 2.5	h int64 相乘取模 (Durandal)	21 21 21 22 22 22
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct)	21 21 22 22 22 22 22
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct) Miller Rabin & Pollard Rho (gy)	21 21 22 22 22 22 22 23
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 . 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy)	21 21 22 22 22 22 23 25
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct)	21 21 22 22 22 22 22 23 25 25
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	h int64 相乘取模 (Durandal) ex-Euclid (gy) . 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 . 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct) FFT NTT FWT (lhy,ct,gy)	21 21 22 22 22 22 23 25 25 26
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct) FFT NTT FWT (lhy,ct,gy) Lagrange 插值 (ct)	21 21 22 22 22 22 23 25 26 29
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct) FFT NTT FWT (lhy,ct,gy) Lagrange 插值 (ct)	21 21 22 22 22 22 23 25 25 26 29 30
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 . 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct) FFT NTT FWT (lhy,ct,gy) Lagrange 插值 (ct) 杜教筛 (ct) BSGS (ct,Durandal)	21 21 22 22 22 22 23 25 26 29 30 31
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct) FFT NTT FWT (lhy,ct,gy) Lagrange 插值 (ct) 杜教筛 (ct) BSGS (ct,Durandal) 2.13.1 BSGS (ct)	21 21 22 22 22 22 23 25 25 26 29 30 31 31
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct) FFT NTT FWT (lhy,ct,gy) Lagrange 插值 (ct) 杜教筛 (ct) BSGS (ct,Durandal) 2.13.1 BSGS (ct) 2.13.2 ex-BSGS (Durandal)	21 21 22 22 22 23 25 25 26 29 30 31 31 32
2	Mat 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	h int64 相乘取模 (Durandal) ex-Euclid (gy) 中国剩余定理 (Durandal) 线性同余不等式 (Durandal) 组合数 高斯消元 (ct) Miller Rabin & Pollard Rho (gy) $O(m^2 \log n)$ 线性递推 (lhy) 线性基 (ct) FFT NTT FWT (lhy,ct,gy) Lagrange 插值 (ct) 杜教筛 (ct) BSGS (ct,Durandal) 2.13.1 BSGS (ct) 2.13.2 ex-BSGS (Durandal) 直线下整点个数 (gy)	21 21 22 22 22 23 25 25 26 29 30 31 31 32 32

3	Geo	metry 36
	3.1	点、直线、圆 (gy)
	3.2	平面最近点对 (Grimoire)
	3.3	凸包游戏 (Grimoire)
	3.4	半平面交 (Grimoire)
	3.5	点在多边形内 (Grimoire)
	3.6	最小圆覆盖 (Grimoire)
	3.7	最小球覆盖 (Grimoire)
	3.8	圆并 (Grimoire)
	3.9	圆与多边形并 (Grimoire)
		三角剖分 (Grimoire)
	3.11	三维几何基础 (Grimoire)
	3.12	三维凸包 (Grimoire)
	3.13	三维绕轴旋转 (gy)
	3.14	几何知识 (gy)
4	Stri	
	4.1	KMP (ct)
	4.2	AC 自动机
	4.3	后缀数组 (ct)
	4.4	后缀自动机 (ct,lhy)
	4.5	Manacher (ct)
	4.6	回文树 (ct)
	-	
	4.7	最小表示法 (ct)
5	Dat	a Structure 62
9	5.1	支 队 (ct)
	-	
	5.2	
	5.3	带权并查集 (ct)
	5.4	可并堆 (ct)
	5.5	zkw 线段树 (ct)
	5.6	李超线段树 (ct)
	5.7	吉利线段树
	5.8	二进制分组 (ct)
	5.9	Splay (ct)
	5.10	Treap (ct)
	5.11	可持久化平衡树 (ct)
		CDQ 分治 (ct)
		Bitset (ct)
		斜率优化 (ct)
		树分块
		DLX
	5.10	DLA
6	Oth	ers 85
Ū	6.1	vimrc (gy)
	6.2	STL 释放内存 (Durandal)
	6.3	开栈 (Durandal)
	6.4	O3 (gy)
	6.5	Java Template (gy)
	6.6	Big Fraction (gy)
	6.7	模拟退火 (ct)
	6.8	三分 (ct)
	6.9	Zeller Congruence (gy)
	6.10	博弈论模型 (gy)
		和分表(integral table com)

Chapter 1

Graph Theory

1.1 2-SAT (ct)

```
struct Edge {
       Edge *next;
       int to;
  } *last[maxn << 1], e[maxn << 2], *ecnt = e;
5 inline void link(int a, int b)
       *++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
  }
   int dfn[maxn], low[maxn], timer, st[maxn], top, id[maxn], colcnt, n;
   bool fail, used[maxn];
10
   void tarjan(int x, int fa)
11
12
       dfn[x] = low[x] = ++timer; st[++top] = x;
13
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
14
           if (iter -> to != fa)
15
16
               if (!dfn[iter -> to])
17
18
                   tarjan(iter -> to, x);
19
                    cmin(low[x], low[iter -> to]);
20
21
               else if (!id[iter -> to]) cmin(low[x], dfn[iter -> to]);
22
23
       if (dfn[x] == low[x])
25
           ++colcnt; bool flag = 1;
           for (; ;)
27
28
               int now = st[top--];
29
               id[now] = colcnt;
30
               if (now \le 2 * n)
31
32
                   flag \&= !used[id[now <= n ? now + n : now - n]];
33
                   now <= n ? fail |= (id[now + n] == id[now]) : fail |= (id[now - n] == id[now]);</pre>
34
35
               if (now == x) break;
36
           }
37
           used[colcnt] = flag;
38
39
40 }
41 int ans[maxn], tot;
42 int main()
```

1.2. 割点与桥 (ct) 1. Graph Theory

```
43 {
44
           build your graph here.
45
       */
46
       for (R int i = 1; !fail && i <= n; ++i) if (!dfn[i]) tarjan(i, 0);</pre>
47
       if (fail)
48
       {
49
           puts("Impossible");
50
           return 0;
51
       }
52
       for (R int i = 1; i <= n; ++i) if (used[id[i]]) ans[++tot] = i;
53
       printf("%d\n", tot);
       std::sort(ans + 1, ans + tot + 1);
55
       for (R int i = 1; i <= tot; ++i) printf("%d ", ans[i]);</pre>
56
       return 0;
57
```

1.2 割点与桥 (ct)

割点

```
int dfn[maxn], low[maxn], timer, ans, num;
void tarjan(int x, int fa)
3 | {
       dfn[x] = low[x] = ++timer;
       for (Edge *iter = last[x]; iter; iter = iter -> next)
5
            if (iter -> to != fa)
6
7
                if (!dfn[iter -> to])
9
                     tarjan(iter -> to, x);
cmin(low[x], low[iter -> to]);
10
11
                     if (dfn[x] <= low[iter -> to])
12
13
                         cut[x] = 1;
14
                         if (!fa && dfn[x] < low[iter \rightarrow to]) num = 233;
15
                         else if (!fa) ++num;
16
17
18
                else cmin(low[x], dfn[iter -> to]);
19
20
21
  | }
22
  int main()
23
       for (int i = 1; i <= n; ++i)
24
            if (!dfn[i])
25
            ₹
26
                num = 0;
27
                tarjan(i, 0);
28
                if (num == 1) cut[i] = 0;
29
            }
30
```

桥

```
int dfn[maxn], low[maxn], timer;
void tarjan(int x, int fa)
{
```

1. Graph Theory 1.3. Steiner tree (lhy)

```
dfn[x] = low[x] = ++timer;
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
5
           if (iter -> to != fa)
6
7
               if (!dfn[iter -> to])
8
9
                   dfs(iter -> to, x);
10
                    cmin(low[x], low[iter -> to]);
11
                    if (dfn[x] < low[iter -> to]) ans[x][iter -> to] = ans[iter -> to][x] = 1;
12
13
               else cmin(low[x], dfn[iter -> to]);
14
           }
15
16
```

1.3 Steiner tree (lhy)

```
void Steiner_Tree()
1
2
3
       memset(f, 0x3f, sizeof(f));
       for(int i = 1; i <= n; i++)
5
           f[0][i] = 0;
       for(int i = 1; i <= p; i++)</pre>
           f[1 << (i - 1)][idx[i]] = 0;
       int S = 1 << p;</pre>
       for(int s = 1; s < S; s++)</pre>
9
10
           for(int i = 1; i <= n; i++)
11
12
                for(int k = (s - 1) \& s; k; k = (k - 1) \& s)
13
                    f[s][i] = min(f[s][i], f[k][i] + f[s^k][i]);
15
           }
16
           SPFA(f[s]);
17
       }
18
       int ans = inf;
       for(int i = 1; i <= n; i++)
19
            ans = min(ans, f[S - 1][i]);
20
21
```

1.4 K 短路 (lhy)

```
const int MAXNODE = MAXN + MAXM * 2;
  bool used[MAXN];
int n, m, cnt, S, T, Kth, N, TT;
  int rt[MAXN], seq[MAXN], adj[MAXN], from[MAXN], dep[MAXN];
  LL dist[MAXN], w[MAXM], ans[MAXK];
  struct GivenEdge{
6
      int u, v, w;
      GivenEdge() {};
      GivenEdge(int _u, int _v, int _w) : u(_u), v(_v), w(_w){};
  }edge[MAXM];
  struct Edge{
11
      int v, nxt, w;
12
      Edge() {};
13
      Edge(int _v, int _nxt, int _w) : v(_v), nxt(_nxt), w(_w) \{\};
15 }e[MAXM];
```

1.4. K 短路 (lhy) 1. Graph Theory

```
inline void addedge(int u, int v, int w)
17 {
       e[++cnt] = Edge(v, adj[u], w); adj[u] = cnt;
18
19
   void dij(int S)
20
21
       for(int i = 1; i <= N; i++)</pre>
22
23
           dist[i] = INF;
24
           dep[i] = 0x3f3f3f3f;
25
           used[i] = false;
26
           from[i] = 0;
27
       }
28
       static priority_queue<pair<LL, int>, vector<pair<LL, int> >, greater<pair<LL, int> > hp;
29
       while(!hp.empty())hp.pop();
30
       hp.push(make_pair(dist[S] = 0, S));
31
       dep[S] = 1;
32
       while(!hp.empty())
33
           pair<LL, int> now = hp.top();
35
           hp.pop();
36
           int u = now.second;
37
           if(used[u])continue;
38
           else used[u] = true;
39
           for(int p = adj[u]; p; p = e[p].nxt)
40
41
               int v = e[p].v;
42
43
               if(dist[u] + e[p].w < dist[v])</pre>
44
                   dist[v] = dist[u] + e[p].w;
45
                   dep[v] = dep[u] + 1;
46
                   from[v] = p;
47
                   hp.push(make_pair(dist[v], v));
48
49
           }
50
51
       for(int i = 1; i <= m; i++)</pre>
                                       w[i] = 0;
52
       for(int i = 1; i <= N; i++)</pre>
53
           if(from[i])w[from[i]] = -1;
54
       for(int i = 1; i <= m; i++)
55
56
           57
58
               w[i] = -dist[edge[i].u] + (dist[edge[i].v] + edge[i].w);
59
           }
60
           else
61
           {
62
               w[i] = -1;
63
           }
64
       }
65
66
67 inline bool cmp_dep(int p, int q)
68
       return dep[p] < dep[q];</pre>
69
  }
70
71 struct Heap{
       LL key;
```

1. Graph Theory 1.4. K 短路 (lhy)

```
int id, lc, rc, dist;
73
        Heap() {};
74
        Heap(LL k, int i, int l, int r, int d) : key(k), id(i), lc(l), rc(r), dist(d) {};
75
        inline void clear()
76
77
            key = 0;
78
            id = lc = rc = dist = 0;
79
80
    }hp[MAXNODE];
81
    inline int merge_simple(int u, int v)
82
83
        if(!u)return v;
84
        if(!v)return u;
85
        if(hp[u].key > hp[v].key)
86
87
            swap(u, v);
88
        }
89
        hp[u].rc = merge_simple(hp[u].rc, v);
90
        if(hp[hp[u].lc].dist < hp[hp[u].rc].dist)</pre>
91
        {
92
            swap(hp[u].lc, hp[u].rc);
93
        }
94
        hp[u].dist = hp[hp[u].rc].dist + 1;
95
        return u;
96
97
    inline int merge_full(int u, int v)
98
99
        if(!u)return v;
100
101
        if(!v)return u;
102
        if(hp[u].key > hp[v].key)
103
        {
            swap(u, v);
104
        }
105
        int nownode = ++cnt;
106
        hp[nownode] = hp[u];
107
        hp[nownode].rc = merge_full(hp[nownode].rc, v);
108
        if(hp[hp[nownode].lc].dist < hp[hp[nownode].rc].dist)</pre>
109
110
            swap(hp[nownode].lc, hp[nownode].rc);
111
112
113
        hp[nownode].dist = hp[hp[nownode].rc].dist + 1;
114
        return nownode;
115
   priority_queue<pair<LL, int>, vector<pair<LL, int> >, greater<pair<LL, int> > Q;
116
    int main()
117
118
        while(scanf("%d%d", &n, &m) != EOF)
119
120
            scanf("%d%d%d%d", &S, &T, &Kth, &TT);
121
            for(int i = 1; i <= m; i++)
122
123
                 int u, v, w;
124
                 scanf("%d%d%d", &u, &v, &w);
125
                 edge[i] = \{u, v, w\};
126
127
            N = n;
128
            memset(adj, 0, sizeof(*adj) * (N + 1));
129
```

1.4. K 短路 (lhy) 1. Graph Theory

```
cnt = 0;
130
            for(int i = 1; i <= m; i++)
131
                 addedge(edge[i].v, edge[i].u, edge[i].w);
132
            dij(T);
133
            if(dist[S] > TT)
134
            {
135
                 puts("Whitesnake!");
136
                 continue;
137
            }
138
            for(int i = 1; i <= N; i++)
139
                 seq[i] = i;
140
            sort(seq + 1, seq + N + 1, cmp_dep);
141
            cnt = 0;
142
            memset(adj, 0, sizeof(*adj) * (N + 1));
143
            memset(rt, 0, sizeof(*rt) * (N + 1));
144
            for(int i = 1; i <= m; i++)</pre>
145
                 addedge(edge[i].u, edge[i].v, edge[i].w);
146
            rt[T] = cnt = 0;
147
            hp[0].dist = -1;
148
            for(int i = 1; i <= N; i++)</pre>
149
150
                 int u = seq[i], v = edge[from[u]].v;
151
                 rt[u] = 0;
152
                 for(int p = adj[u]; p; p = e[p].nxt)
153
154
                     if(~w[p])
155
                     {
156
                          hp[++cnt] = Heap(w[p], p, 0, 0, 0);
157
                          rt[u] = merge_simple(rt[u], cnt);
158
159
                 }
160
                 if(i == 1)continue;
161
                 rt[u] = merge_full(rt[u], rt[v]);
162
            }
163
            while(!Q.empty())Q.pop();
164
            Q.push(make_pair(dist[S], 0));
165
            edge[0].v = S;
166
            for(int kth = 1; kth <= Kth; kth++)</pre>
167
168
                 if(Q.empty())
169
                 {
170
171
                     ans[kth] = -1;
                     continue;
^{172}
173
                 pair<LL, int> now = Q.top(); Q.pop();
174
                 ans[kth] = now.first;
175
                 int p = now.second;
176
                 if(hp[p].lc)
177
                 {
178
                     Q.push(make_pair(+hp[hp[p].lc].key + now.first - hp[p].key, hp[p].lc));
179
                 }
180
                 if(hp[p].rc)
181
                 {
182
                     Q.push(make_pair(+hp[hp[p].rc].key + now.first - hp[p].key, hp[p].rc));
183
                 }
184
                 if(rt[edge[hp[p].id].v])
185
                 {
186
                     Q.push(make_pair(hp[rt[edge[hp[p].id].v]].key + now.first, rt[edge[hp[p].id].v]));
187
                 }
188
            }
189
```

1. Graph Theory 1.5. 最大团

```
if(ans[Kth] == -1 \mid \mid ans[Kth] > TT)
190
              {
191
                   puts("Whitesnake!");
192
              }
193
              else
194
              {
195
                  puts("yareyaredawa");
196
197
         }
198
199
```

1.5 最大团

1.6 一般图最大匹配

1.7 KM 算法 (Nightfall)

 $O(n^3)$, 1-based,最大权匹配 不存在的边权值开到 $-n \times (|MAXV|)$, ∞ 为 $3n \times (|MAXV|)$ 匹配为 (lk_i,i)

```
long long KM(int n, long long w[N][N])
2
       long long ans = 0;
       int x, py, p;
       long long d;
       for(int i = 1; i <= n; i++)
           lx[i] = ly[i] = 0, lk[i] = -1;
       for(int i = 1; i <= n; i++)
           for(int j = 1; j \le n; j++)
               lx[i] = max(lx[i], w[i][j]);
10
11
       for(int i = 1; i <= n; i++)</pre>
12
13
           for(int j = 1; j \le n; j++)
14
               slk[j] = inf, vy[j] = 0;
           for(lk[py = 0] = i; lk[py]; py = p)
15
16
                vy[py] = 1; d = inf; x = lk[py];
17
                for(int y = 1; y <= n; y++)</pre>
18
                    if(!vy[y])
19
20
                        if(lx[x] + ly[y] - w[x][y] < slk[y])
21
                             slk[y] = lx[x] + ly[y] - w[x][y], pre[y] = py;
22
                        if(slk[y] < d)d = slk[y], p = y;
23
                    }
24
                for(int y = 0; y \le n; y++)
25
                    if(vy[y])lx[lk[y]] = d, ly[y] += d;
26
                    else slk[y] -= d;
27
28
           for(; py; py = pre[py])lk[py] = lk[pre[py]];
29
30
       for(int i = 1; i <= n; i++)
31
           ans += lx[i] + ly[i];
32
       return ans;
33
34
```

1.8 支配树 (Nightfall,ct)

DAG (ct)

```
1 struct Edge {
       Edge *next;
       int to;
  };
  Edge *last[maxn], e[maxm], *ecnt = e; // original graph
   Edge *rlast[maxn], re[maxm], *recnt = re; // reversed-edge graph
  Edge *tlast[maxn], te[maxn << 1], *tecnt = te; // dominate tree graph</pre>
   int deg[maxn], q[maxn], fa[maxn][20], all_fa[maxn], fa_cnt, size[maxn], dep[maxn];
  inline void link(int a, int b)
10 {
       *++ecnt = (Edge) {last[a], b}; last[a] = ecnt; ++deg[b];
11
12 }
13 inline void link_rev(R int a, R int b)
14
       *++recnt = (Edge) {rlast[a], b}; rlast[a] = recnt;
15
16 }
  inline void link_tree(R int a, R int b)
19
       *++tecnt = (Edge) {tlast[a], b}; tlast[a] = tecnt;
20 }
21 inline int getlca(R int a, R int b)
22 | {
       if (dep[a] < dep[b]) std::swap(a, b);</pre>
23
       R int temp = dep[a] - dep[b];
24
       for (R int i; temp; temp -= 1 << i)
25
       a = fa[a][i = __builtin_ctz(temp)];
for (R int i = 16; ~i; --i)
26
27
           if (fa[a][i] != fa[b][i])
29
               a = fa[a][i], b = fa[b][i];
       if (a == b) return a;
30
       return fa[a][0];
31
32
  void dfs(R int x)
33
   {
34
       size[x] = 1;
35
       for (R Edge *iter = tlast[x]; iter; iter = iter -> next)
36
           dfs(iter -> to), size[x] += size[iter -> to];
37
  int main()
40
       q[1] = 0;
41
       R int head = 0, tail = 1;
42
       while (head < tail)
43
44
           R int now = q[++head];
45
46
           fa_cnt = 0;
           for (R Edge *iter = rlast[now]; iter; iter = iter -> next)
47
               all_fa[++fa_cnt] = iter -> to;
48
           for (; fa_cnt > 1; --fa_cnt)
49
               all_fa[fa_cnt - 1] = getlca(all_fa[fa_cnt], all_fa[fa_cnt - 1]);
50
           fa[now][0] = all_fa[fa_cnt];
51
           dep[now] = dep[all_fa[fa_cnt]] + 1;
52
           if (now) link_tree(fa[now][0], now);
53
           for (R int i = 1; i \le 16; ++i)
54
               fa[now][i] = fa[fa[now][i - 1]][i - 1];
55
```

一般图 (Nightfall)

```
struct Dominator_Tree{
       int n, s, cnt;
       int dfn[N], id[N], pa[N], semi[N], idom[N], p[N], mn[N];
3
       vector<int> e[N], dom[N], be[N];
       void ins(int x, int y){e[x].push_back(y);}
5
       void dfs(int x)
6
           dfn[x] = ++cnt; id[cnt] = x;
           for(auto i:e[x])
10
11
                if(!dfn[i])dfs(i), pa[dfn[i]] = dfn[x];
                be[dfn[i]].push_back(dfn[x]);
12
           }
13
       }
14
       int get(int x)
15
16
           if(p[x] != p[p[x]])
17
18
                if(semi[mn[x]] > semi[get(p[x])])mn[x] = get(p[x]);
19
20
               p[x] = p[p[x]];
           }
21
           return mn[x];
22
       }
23
       void LT()
24
       {
25
           for(int i = cnt; i > 1; i--)
26
27
               for(auto j:be[i])semi[i] = min(semi[i], semi[get(j)]);
29
               dom[semi[i]].push_back(i);
                int x = p[i] = pa[i];
30
               for(auto j:dom[x])
31
                    idom[j] = (semi[get(j)] < x ? get(j) : x);
32
               dom[x].clear();
33
           }
34
           for(int i = 2; i <= cnt; i++)
35
36
                if(idom[i] != semi[i])idom[i] = idom[idom[i]];
37
                dom[id[idom[i]]].push_back(id[i]);
38
           }
39
       }
40
       void build()
41
42
           for(int i = 1; i <= n; i++)</pre>
43
               dfn[i] = 0, dom[i].clear(), be[i].clear(), p[i] = mn[i] = semi[i] = i;
44
           cnt = 0, dfs(s), LT();
45
46
```

1.9. 虚树 (ct) 1. Graph Theory

47 };

1.9 虚树 (ct)

```
struct Edge {
       Edge *next;
       int to;
   } *last[maxn], e[maxn << 1], *ecnt = e;</pre>
   inline void link(int a, int b)
5
       *++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
       *++ecnt = (Edge) {last[b], a}; last[b] = ecnt;
  }
  int a[maxn], n, dfn[maxn], pos[maxn], timer, inv[maxn], st[maxn];
10
int fa[maxn], size[maxn], dep[maxn], son[maxn], top[maxn];
bool vis[maxn];
  void dfs1(int x)
13
   {
14
       vis[x] = 1; size[x] = 1; dep[x] = dep[fa[x]] + 1;
15
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
           if (!vis[iter -> to])
           {
19
               fa[iter -> to] = x;
               dfs1(iter -> to);
20
               size[x] += size[iter -> to];
21
               size[son[x]] < size[iter -> to] ? son[x] = iter -> to : 0;
22
23
24
   void dfs2(int x)
25
26
       vis[x] = 0; top[x] = x == son[fa[x]] ? top[fa[x]] : x;
27
       dfn[x] = ++timer; pos[timer] = x;
28
       if (son[x]) dfs2(son[x]);
29
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
30
           if (vis[iter -> to]) dfs2(iter -> to);
31
       inv[x] = timer;
32
33
  inline int getlca(int a, int b)
34
35
       while (top[a] != top[b])
36
           dep[top[a]] < dep[top[b]] ? b = fa[top[b]] : a = fa[top[a]];
       return dep[a] < dep[b] ? a : b;</pre>
  inline bool cmp(int a, int b)
40
41
       return dfn[a] < dfn[b];</pre>
42
  }
43
   inline bool isson(int a, int b)
44
45
   {
       return dfn[a] <= dfn[b] && dfn[b] <= inv[a];</pre>
46
47
   typedef long long 11;
   bool imp[maxn];
  struct sEdge {
       sEdge *next;
      int to, w;
53 } *slast[maxn], se[maxn << 1], *secnt = se;
54 inline void slink(int a, int b, int w)
55 | {
```

1. Graph Theory 1.10. 点分治 (ct)

```
*++secnt = (sEdge) {slast[a], b, w}; slast[a] = secnt;
56
  l٦
57
  int main()
58
   {
59
       scanf("%d", &n);
60
       for (int i = 1; i < n; ++i)
61
62
           int a, b; scanf("%d%d", &a, &b);
63
           link(a, b);
64
       }
65
       int m; scanf("%d", &m);
66
       dfs1(1); dfs2(1);
67
       memset(size, 0, (n + 1) << 2);
68
       for (; m; --m)
69
70
           int top = 0; scanf("%d", &k);
71
           for (int i = 1; i <= k; ++i) scanf("%d", &a[i]), vis[a[i]] = imp[a[i]] = 1;
72
           std::sort(a + 1, a + k + 1, cmp);
73
           int p = k;
74
           for (int i = 1; i < k; ++i)
75
76
                int lca = getlca(a[i], a[i + 1]);
77
                if (!vis[lca]) vis[a[++p] = lca] = 1;
78
           }
79
           std::sort(a + 1, a + p + 1, cmp);
80
           st[++top] = a[1];
81
           for (int i = 2; i <= p; ++i)
82
83
                while (!isson(st[top], a[i])) --top;
84
                slink(st[top], a[i], dep[a[i]] - dep[st[top]]);
85
86
                st[++top] = a[i];
           }
87
89
                write your code here.
90
           for (int i = 1; i <= p; ++i) vis[a[i]] = imp[a[i]] = 0, slast[a[i]] = 0;</pre>
91
           secnt = se;
92
93
       return 0;
94
95
```

1.10 点分治 (ct)

```
int root, son[maxn], size[maxn], sum;
  bool vis[maxn];
  void dfs_root(int x, int fa)
       size[x] = 1; son[x] = 0;
5
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
6
7
           if (iter -> to == fa || vis[iter -> to]) continue;
8
           dfs_root(iter -> to, x);
9
10
           size[x] += size[iter -> to];
           cmax(son[x], size[iter -> to]);
11
12
       cmax(son[x], sum - size[x]);
13
       if (!root || son[x] < son[root]) root = x;</pre>
14
15
void dfs_chain(int x, int fa, int st1, int st2)
```

1.11. 树上倍增 (ct) 1. Graph Theory

```
17 {
18
           write your code here.
19
       */
20
       for (Edge *iter = last[x]; iter; iter = iter -> next)
21
22
           if (vis[iter -> to] || iter -> to == fa) continue;
23
           dfs_chain(iter -> to, x);
24
25
26
   void calc(int x)
27
28
       for (Edge *iter = last[x]; iter; iter = iter -> next)
29
30
           if (vis[iter -> to]) continue;
^{31}
           dfs_chain(iter -> to, x);
32
33
               write your code here.
34
35
       }
36
  void work(int x)
   {
39
       vis[x] = 1;
40
       calc(x);
41
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
42
43
           if (vis[iter -> to]) continue;
44
           root = 0;
45
46
           sum = size[iter -> to];
47
           dfs_root(iter -> to, 0);
48
           work(root);
       }
49
  }
50
51 | int main()
52 | {
       root = 0; sum = n;
53
       dfs_root(1, 0);
54
       work(root);
55
       return 0;
56
```

1.11 树上倍增 (ct)

```
int fa[maxn][17], mn[maxn][17], dep[maxn];
  bool vis[maxn];
   void dfs(int x)
   {
4
       vis[x] = 1;
5
       for (int i = 1; i <= 16; ++i)
6
           if (dep[x] < (1 << i)) break;
           fa[x][i] = fa[fa[x][i - 1]][i - 1];
9
           mn[x][i] = dmin(mn[x][i - 1], mn[fa[x][i - 1]][i - 1]);
10
11
       for (Edge *iter = last[x]; iter; iter = iter -> next)
12
           if (!vis[iter -> to])
13
14
               fa[iter \rightarrow to][0] = x;
15
```

1. Graph Theory 1.12. Prufer 编码

```
mn[iter -> to][0] = iter -> w;
16
                dep[iter \rightarrow to] = dep[x] + 1;
17
                dfs(iter -> to);
18
           }
19
20
   inline int getlca(int x, int y)
21
22
       if (dep[x] < dep[y]) std::swap(x, y);</pre>
23
       int t = dep[x] - dep[y];
24
       for (int i = 0; i \le 16 \&\& t; ++i)
25
            if ((1 << i) & t)
26
                x = fa[x][i], t = 1 << i;
27
       for (int i = 16; i >= 0; --i)
28
           if (fa[x][i] != fa[y][i])
29
30
                x = fa[x][i];
31
                y = fa[y][i];
32
33
       if (x == y) return x;
34
       return fa[x][0];
35
36
   inline int getans(int x, int f)
37
38
       int ans = inf, t = dep[x] - dep[f];
39
       for (int i = 0; i \le 16 \&\& t; ++i)
40
           if (t & (1 << i))
41
            {
42
                cmin(ans, mn[x][i]);
43
                x = fa[x][i];
44
45
                t ^= 1 << i;
           }
46
47
       return ans;
```

1.12 Prufer 编码

1.13 Link-Cut Tree (ct)

```
struct Node *null;
   struct Node {
        Node *ch[2], *fa, *pos;
        int val, mn, 1, len; bool rev;
        // min_val in chain
        inline bool type()
6
            return fa -> ch[1] == this;
        }
9
        inline bool check()
10
11
             return fa -> ch[type()] == this;
12
        }
13
14
        inline void pushup()
15
             pos = this; mn = val;
16
             ch[0] \rightarrow mn < mn ? mn = ch[0] \rightarrow mn, pos = ch[0] \rightarrow pos : 0;
17
             ch[1] \rightarrow mn < mn ? mn = ch[1] \rightarrow mn, pos = ch[1] \rightarrow pos : 0;
18
             len = ch[0] \rightarrow len + ch[1] \rightarrow len + 1;
19
20
```

```
inline void pushdown()
22
            if (rev)
23
            {
24
                ch[0] -> rev ^= 1;
25
                ch[1] -> rev ^= 1;
26
                std::swap(ch[0], ch[1]);
27
                rev ^= 1;
28
            }
29
       }
30
       inline void pushdownall()
31
32
            if (check()) fa -> pushdownall();
33
            pushdown();
34
       }
35
       inline void rotate()
36
37
            bool d = type(); Node *f = fa, *gf = f -> fa;
38
            (fa = gf, f \rightarrow check()) ? fa \rightarrow ch[f \rightarrow type()] = this : 0;
39
            (f \rightarrow ch[d] = ch[!d]) != null ? ch[!d] \rightarrow fa = f : 0;
40
            (ch[!d] = f) \rightarrow fa = this;
42
            f -> pushup();
       }
43
       inline void splay(bool need = 1)
44
45
            if (need) pushdownall();
46
47
            for (; check(); rotate())
                if (fa -> check())
48
                     (type() == fa -> type() ? fa : this) -> rotate();
49
50
            pushup();
       }
51
52
       inline Node *access()
53
            Node *i = this, *j = null;
54
            for (; i != null; i = (j = i) -> fa)
55
56
                i -> splay();
57
                i -> ch[1] = j;
58
                i -> pushup();
59
            }
60
            return j;
61
       }
62
       inline void make_root()
64
65
            access();
            splay();
66
            rev ^= 1;
67
68
       inline void link(Node *that)
69
70
            make_root();
71
72
            fa = that;
73
            splay(0);
74
       inline void cut(Node *that)
75
76
77
            make_root();
            that -> access();
78
            that -> splay(0);
79
            that -> ch[0] = fa = null;
80
            that -> pushup();
```

1. Graph Theory 1.14. 圆方树 (ct)

```
}
  } mem[maxn];
84 inline Node *query(Node *a, Node *b)
85
       a -> make_root(); b -> access(); b -> splay(0);
86
       return b -> pos;
87
88
   inline int dist(Node *a, Node *b)
89
90
       a -> make_root(); b -> access(); b -> splay(0);
91
       return b -> len;
92
```

1.14 圆方树 (ct)

```
int dfn[maxn], low[maxn], timer, st[maxn], top, id[maxn], scc;
   void dfs(int x)
2
3
       dfn[x] = low[x] = ++timer; st[++top] = x;
       for (Edge *iter = last[x]; iter; iter = iter -> next)
5
           if (!dfn[iter -> to])
6
           {
                dfs(iter -> to);
               cmin(low[x], low[iter -> to]);
9
                if (dfn[x] == low[iter->to])
10
                {
11
                    int now, elder = top, minn = c[x];
12
13
14
                    {
15
                        now = st[top--];
16
17
                        cmin(minn, c[now]);
18
                    while (iter -> to != now);
19
                    for (int i = top + 1; i <= elder; ++i)</pre>
20
                        add(scc, st[i], minn);
21
                    add(scc, x, minn);
22
               }
23
24
           else if (!id[iter -> to]) cmin(low[x], dfn[iter -> to]);
25
```

1.15 最小割

1.16 最大流 (ct)

Dinic (ct)

```
struct Edge {
    Edge *next, *rev;
    int to, cap;
} *last[maxn], *cur[maxn], e[maxm], *ecnt = e;
inline void link(R int a, R int b, R int w)
{
    *++ecnt = (Edge) {last[a], ecnt + 1, b, w}; last[a] = ecnt;
    *++ecnt = (Edge) {last[b], ecnt - 1, a, 0}; last[b] = ecnt;
}
```

1.16. 最大流 (ct) 1. Graph Theory

```
int ans, s, t, q[maxn], dep[maxn];
inline bool bfs()
12 {
       memset(dep, -1, (t + 1) << 2);
13
       dep[q[1] = t] = 0; int head = 0, tail = 1;
14
       while (head < tail)
15
16
            int now = q[++head];
17
            for (Edge *iter = last[now]; iter; iter = iter -> next)
18
                if (dep[iter -> to] == -1 && iter -> rev -> cap)
19
                     dep[q[++tail] = iter \rightarrow to] = dep[now] + 1;
20
21
       return dep[s] != -1;
22
23
24 int dfs(int x, int f)
  | {
25
       if (x == t) return f;
26
       int used = 0;
27
       for (Edge* &iter = cur[x]; iter; iter = iter -> next)
28
            if (iter \rightarrow cap && dep[iter \rightarrow to] + 1 == dep[x])
                int v = dfs(iter -> to, dmin(f - used, iter -> cap));
31
                iter -> cap -= v;
32
                iter \rightarrow rev \rightarrow cap += v;
33
                used += v;
34
                if (used == f) return f;
35
36
       return used;
37
38
39
   inline void dinic()
40
       while (bfs())
41
42
            memcpy(cur, last, sizeof cur);
43
            ans += dfs(s, inf);
44
45
   }
46
```

SAP (lhy)

```
void SAP(int n, int st, int ed)
   {
       for(int i = 1; i <= n; i++)</pre>
           now[i] = son[i];
       sumd[0] = n;
       int flow = inf, x = st;
       while(dis[st] < n)
       {
           back[x] = flow;
9
           int flag = 0;
10
           for(int i = now[x]; i != -1; i = edge[i].next)
11
12
                int y = edge[i].y;
13
                if(edge[i].f \&\& dis[y] + 1 == dis[x])
14
15
                    flag = 1;
16
                    now[x] = i;
17
                    pre[y] = i;
18
                    flow = min(flow, edge[i].f);
19
                    x = y;
20
```

1. Graph Theory 1.17. 费用流 (ct)

```
if(x == ed)
21
22
                         ans += flow;
23
                         while(x != st)
24
                         {
25
                              edge[pre[x]].f -= flow;
26
                              edge[pre[x] ^ 1].f += flow;
27
                              x = edge[pre[x]].x;
28
                         }
29
                         flow = inf;
30
                     }
31
32
                     break;
                }
33
           }
34
            if(flag)continue;
35
            int minn = n - 1, tmp;
36
            for(int i = son[x]; i != -1; i = edge[i].next)
37
38
                int y = edge[i].y;
39
                if(edge[i].f && dis[y] < minn)</pre>
40
41
                     minn = dis[y];
42
                     tmp = i;
43
                }
44
            }
45
            now[x] = tmp;
46
            if(!(--sumd[dis[x]]))return;
47
            sumd[dis[x] = minn + 1]++;
48
            if(x != st)flow = back[x = edge[pre[x]].x];
49
50
       }
51
```

1.17 费用流 (ct)

Dinic(ct)

```
struct Edge {
       Edge *next, *rev;
       int from, to, cap, cost;
  } *last[maxn], *prev[maxn], e[maxm], *ecnt = e;
  inline void link(int a, int b, int w, int c)
       *++ecnt = (Edge) {last[a], ecnt + 1, a, b, w, c}; last[a] = ecnt;
       *++ecnt = (Edge) {last[b], ecnt - 1, b, a, 0, -c}; last[b] = ecnt;
9
   int s, t, q[maxn << 2], dis[maxn];
10
   ll ans;
11
   bool inq[maxn];
12
   #define inf Ox7fffffff
13
   inline bool spfa()
14
15
       for (int i = 1; i <= t; ++i) dis[i] = inf;</pre>
16
       int head = 0, tail = 1; dis[q[1] = s] = 0;
17
       while (head < tail)</pre>
18
19
           int now = q[++head]; inq[now] = 0;
20
           for (Edge *iter = last[now]; iter; iter = iter -> next)
21
               if (iter -> cap && dis[iter -> to] > dis[now] + iter -> cost)
22
               {
23
```

1.17. 费用流 (ct) 1. Graph Theory

```
dis[iter -> to] = dis[now] + iter -> cost;
24
                    prev[iter -> to] = iter;
25
                    !inq[iter -> to] ? inq[q[++tail] = iter -> to] = 1 : 0;
26
27
28
       return dis[t] != inf;
29
30
   inline void mcmf()
31
32
       int x = inf;
33
       for (Edge *iter = prev[t]; iter; iter = prev[iter -> from]) cmin(x, iter -> cap);
34
       for (Edge *iter = prev[t]; iter; iter = prev[iter -> from])
35
36
           iter -> cap -= x;
37
           iter \rightarrow rev \rightarrow cap += x;
38
           ans += 111 * x * iter -> cost;
39
40
41
```

zkw(lhy)

```
int aug(int no, int res)
2 {
      if(no == ED)return mincost += 111 * pil * res, res;
3
      v[no] = 1;
4
      int flow = 0;
      for(int i = son[no]; i != -1; i = edge[i].next)
6
          if(edge[i].f \ \&\& \ !v[edge[i].y] \ \&\& \ !edge[i].c)\\
7
8
               int d = aug(edge[i].y, min(res, edge[i].f));
9
               edge[i].f -= d, edge[i ^ 1].f += d, flow += d, res -= d;
10
11
               if(!res)return flow;
          }
12
      return flow;
13
  }
14
15 bool modlabel()
16
      long long d = 0x3f3f3f3f3f3f3f3f11;
17
      for(int i = 1; i <= cnt; i++)</pre>
18
          if(v[i])
19
               for(int j = son[i]; j != -1; j = edge[j].next)
21
                   22
          }
23
      if(d == 0x3f3f3f3f3f3f3f3f11)return 0;
24
      for(int i = 1; i <= cnt; i++)</pre>
25
          if(v[i])
26
          {
27
               for(int j = son[i]; j != -1; j = edge[j].next)
28
                   edge[j].c -= d, edge[j ^ 1].c += d;
29
30
      pil += d;
31
32
      return 1;
33
34 void minimum_cost_flow_zkw()
  \
35
      pil = 0;
36
      int nowans = 0;
```

```
nowf = 0;
38
       do{
39
            401
40
                for(int i = 1; i <= cnt; i++)
41
                     v[i] = 0;
42
                nowans = aug(ST, inf);
43
                nowf += nowans;
44
            }while(nowans);
45
       }while(modlabel());
46
47
```

1.18 有上下界的网络流 (Durandal)

B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v) 流量的上界,设 F(u,v) 表示边 (u,v) 的实际流量设 G(u,v) = F(u,v) - B(u,v),则 $0 \le G(u,v) \le C(u,v) - B(u,v)$

• 无源汇的上下界可行流

建立超级源点 S^* 和超级汇点 T^* ,对于原图每一条边 (u,v) 在新网络中连如下三条边: $S^* \to v$,容量为 B(u,v); $u \to T^*$,容量为 B(u,v); $u \to v$,容量为 C(u,v) - B(u,v)。最后求新网络的最大流,判断从 超级源点 S^* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v) + B(u,v)。

- 有源汇的上下界可行流 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边。按照无源汇的上下界可行流一样做即可,流量即为 $T\to S$ 边上的流量。
- 有源汇的上下界最大流
 - 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 ∞,下界为 x 的边。x 满足二分性质,找到最大的 x 使得新网络存在有源汇的上下界可行流即为原图的最大流。
 - 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 S^* → T^* 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 S → T 的最大流即可。
- 有源汇的上下界最小流
 - 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 x,下界为 0 的边。x 满足二分性质,找到最小的 x 使得新网络存在有源汇的上下界可行流即为原图的最大流。
 - 按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,但是注意不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 的边,上界为 ∞ 的边。因为这条边的下界为 0,所以 S^* , T^* 无影响,再求一次 $S^* \to T^*$ 的最大流。若超级源点 S^* 出发的边全部满流,则 $T \to S$ 边上的流量即为原图的最小流,否则无解。

1.19 差分约束

1.20 **图论知识** (gy,lhy)

弦图

弦图: 任意点数 ≥ 4 的环皆有弦的无向图

单纯点:与其相邻的点的诱导子图为完全图的点完美消除序列:每次选择一个单纯点删去的序列

弦图必有完美消除序列

O(m+n) 求弦图的完美消除序列:每次选择未选择的标号最大的点,并将与其相连的点标号 +1,得到完美消除序列的反序

最大团数 = 最小染色数:按完美消除序列从后往前贪心地染色

最小团覆盖 = 最大点独立集:按完美消除序列从前往后贪心地选点加入点独立集

计数问题

• 有根树计数

$$\begin{split} a_1 &= 1 \\ a_{n+1} &= \frac{\sum\limits_{j=1}^n j \cdot a_j \cdot S_{n,j}}{n} \\ S_{n,j} &= \sum\limits_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j} \end{split}$$

• 无根树计数

$$\begin{cases} a_n - \sum_{i=1}^{n/2} a_i a_{n-i} & n \text{ is odd} \\ a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1) & n \text{ is even} \end{cases}$$

• 完全图生成树计数 n^{n-2}

• 矩阵-树定理

设 $\mathbf{A}[G]$ 为图 G 的邻接矩阵、 $\mathbf{D}[G]$ 为图 G 的度数矩阵,则图 G 的不同生成树的个数为 $\mathbf{C}[G] = \mathbf{D}[G] - \mathbf{A}[G]$ 的任意一个 n-1 阶主子式的行列式值。

- 偶数点完全图完备匹配计数 (n-1)!!
- 无根二叉树计数 (2n-5)!!
- 有根二叉树计数 (2n-3)!!

最大权闭合子图

给定一个带点权的有向图, 求其最大权闭合子图。

从源点 S 向每一条正权点连一条容量为权值的边,每个负权点向汇点 T 连一条容量为权值绝对值的边,有向图原来的边容量为 ∞ 。求它的最小割,与源点 S 连通的点构成最大权闭合子图,权值为正权值和 - 最小割。

最大密度子图

给定一个无向图,求其一个子图,使得子图的边数 |E| 和点数 |V| 满足 $\frac{|E|}{|V|}$ 最大。

二分答案 k,使得 $|E|-k|V| \ge 0$ 有解,将原图边和点都看作点,边 (u,v) 分别向 u 和 v 连边求最大权闭合子图。

Chapter 2

Math

2.1 int64 相乘取模 (Durandal)

```
int64_t mul(int64_t x, int64_t y, int64_t p) {
   int64_t t = (x * y - (int64_t) ((long double) x / p * y + 1e-3) * p) % p;
   return t < 0 ? t + p : t;
}</pre>
```

2.2 ex-Euclid (gy)

```
// return gcd(a, b)
   // ax+by=gcd(a,b)
   int extend_gcd(int a, int b, int &x, int &y) {
       if (b == 0) \{
           x = 1, y = 0;
5
6
           return a;
       int res = extend_gcd(b, a % b, x, y);
       int t = y;
9
       y = x - a / b * y;
10
       x = t;
11
       return res;
12
13
   // return minimal positive integer x so that ax+by=c
   // or -1 if such x does not exist
   int solve_equ(int a, int b, int c) {
17
       int x, y, d;
       d = extend_gcd(a, b, x, y);
18
       if (c % d)
19
          return -1;
20
       int t = c / d;
21
       x *= t;
22
       y *= t;
23
       int k = b / d;
24
       x = (x \% k + k) \% k;
25
26
       return x;
27
   // return minimal positive integer x so that ax==b \pmod{p}
   // or -1 if such x does not exist
29
30 int solve(int a, int b, int p) {
      a = (a \% p + p) \% p;
31
       b = (b \% p + p) \% p;
```

```
return solve_equ(a, p, b);

34
}
```

2.3 中国剩余定理 (Durandal)

返回是否可行,余数和模数结果为 r_1, m_1

```
bool CRT(int &r1, int &m1, int r2, int m2) {
    int x, y, g = extend_gcd(m1, m2, x, y);
    if ((r2 - r1) % g != 0) return false;
    x = 111 * (r2 - r1) * x % m2;
    if (x < 0) x += m2;
    x /= g;
    r1 += m1 * x;
    m1 *= m2 / g;
    return true;
}</pre>
```

2.4 线性同余不等式 (Durandal)

必须满足 $0 \le d < m$, $0 \le l \le r < m$, 返回 $\min\{x \ge 0 \mid l \le x \cdot d \mod m \le r\}$, 无解返回 -1

```
int64_t calc(int64_t d, int64_t m, int64_t l, int64_t r) {
    if (1 == 0) return 0;
    if (d == 0) return -1;
    if (d * 2 > m) return calc(m - d, m, m - r, m - l);
    if ((1 - 1) / d < r / d) return (1 - 1) / d + 1;
    int64_t k = calc((-m % d + d) % d, d, l % d, r % d);
    if (k == -1) return -1;
    return (k * m + l - l) / d + l;
}</pre>
```

2.5 组合数

2.6 高斯消元 (ct)

增广矩阵大小为 $m \times (n+1)$

```
db a[maxn] [maxn], x[maxn];
  int main()
3 | {
       int rank = 0;
       for (int i = 1, now = 1; i <= m && now <= n; ++now)
       {
           if (fabs(a[i][now]) < eps)</pre>
                for (int j = i + 1; j \le m; ++j)
9
                    if (fabs(a[j][now]) > fabs(a[i][now]))
10
11
                        for (int k = now; k \le n + 1; ++k)
12
                             std::swap(a[i][k], a[j][k]);
13
14
           }
15
           if (fabs(a[i][now]) < eps) continue;</pre>
16
17
           for (int j = i + 1; j \le m; ++j)
```

```
{
                db temp = a[j][now] / a[i][now];
19
                for (int k = now; k \le n + 1; ++k)
20
                    a[j][k] = temp * a[i][k];
21
22
           ++i; ++rank;
23
24
       if (rank == n)
25
26
           x[n] = a[n][n + 1] / a[n][n];
27
           for (int i = n - 1; i; --i)
28
29
                for (int j = i + 1; j \le n; ++j)
30
                    a[i][n + 1] -= x[j] * a[i][j];
31
                x[i] = a[i][n + 1] / a[i][i];
32
           }
33
       }
34
       else puts("Infinite Solution!");
35
       return 0;
36
37
```

2.7 Miller Rabin & Pollard Rho (gy)

In Java, use BigInteger.isProbablePrime(int certainty) to replace miller_rabin(BigInteger number)

Test Set	First Wrong Answer
2	2047
2,3	1,373,653
31,73	9,080,191
2, 3, 5	25, 326, 001
2, 3, 5, 7	(INT32_MAX)3,215,031,751
2, 7, 61	4,759,123,141
2, 13, 23, 1662803	1, 122, 004, 669, 633
2, 3, 5, 7, 11	2, 152, 302, 898, 747
2, 3, 5, 7, 11, 13	3, 474, 749, 660, 383
2, 3, 5, 7, 11, 13, 17	341, 550, 071, 728, 321
2, 3, 5, 7, 11, 13, 17, 19, 23	3,825,123,056,546,413,051
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37	(INT64_MAX)318,665,857,834,031,151,167,461
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41	3,317,044,064,679,887,385,961,981

```
const int test_case_size = 12;
   const int test_cases[test_case_size] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
   int64_t multiply_mod(int64_t x, int64_t y, int64_t p) {
       int64_t t = (x * y - (int64_t) ((long double) x / p * y + 1e-3) * p) % p;
       return t < 0 ? t + p : t;
   int64_t add_mod(int64_t x, int64_t y, int64_t p) {
       return (Oull + x + y) % p;
   int64_t power_mod(int64_t x, int64_t exp, int64_t p) {
10
       int64_t ans = 1;
11
       while (exp) {
12
           if (exp & 1)
13
               ans = multiply_mod(ans, x, p);
14
          x = multiply_mod(x, x, p);
15
```

```
exp >>= 1;
16
       }
17
18
       return ans;
  }
19
   bool miller_rabin_check(int64_t prime, int64_t base) {
20
       int64_t number = prime - 1;
21
       for (; ~number & 1; number >>= 1)
22
           continue;
23
       int64_t result = power_mod(base, number, prime);
24
       for (; number != prime - 1 && result != 1 && result != prime - 1; number <<= 1)
25
           result = multiply_mod(result, result, prime);
26
       return result == prime - 1 || (number & 1) == 1;
27
  }
28
   bool miller_rabin(int64_t number) {
29
       if (number < 2)
30
           return false;
31
       if (number < 4)
32
           return true;
33
       if (~number & 1)
35
           return false;
       for (int i = 0; i < test_case_size && test_cases[i] < number; i++)</pre>
36
           if (!miller_rabin_check(number, test_cases[i]))
37
               return false;
38
       return true;
39
   }
40
   int64_t gcd(int64_t x, int64_t y) {
41
42
       return y == 0 ? x : gcd(y, x % y);
43
   int64_t pollard_rho_test(int64_t number, int64_t seed) {
       int64_t x = rand() \% (number - 1) + 1, y = x;
45
       int head = 1, tail = 2;
46
       while (true) {
47
           x = multiply_mod(x, x, number);
48
           x = add_mod(x, seed, number);
49
           if (x == y)
50
               return number;
51
           int64_t answer = gcd(std::abs(x - y), number);
52
           if (answer > 1 && answer < number)
53
               return answer;
55
           if (++head == tail) {
56
               y = x;
               tail <<= 1;
57
           }
58
       }
59
   }
60
   void factorize(int64_t number, std::vector<int64_t> &divisor) {
61
       if (number > 1) {
62
           if (miller_rabin(number)) {
63
               divisor.push_back(number);
64
65
           } else {
               int64_t factor = number;
66
               while (factor >= number)
67
                    factor = pollard_rho_test(number, rand() % (number - 1) + 1);
68
               factorize(number / factor, divisor);
69
               factorize(factor, divisor);
70
           }
```

```
72 }
73 }
```

2.8 $O(m^2 \log n)$ 线性递推 (lhy)

```
typedef vector<int> poly;
   //\{1, 3\} \{2, 1\} an = 2an-1 + an-2, calc(3) = 7
   struct LinearRec{
       int n, LOG;
       poly first, trans;
       vector<poly> bin;
       poly add(poly &a, poly &b)
           poly res(n * 2 + 1, 0);
9
           for(int i = 0; i <= n; i++)
10
               for(int j = 0; j \le n; j++)
11
                    (res[i + j] += 111 * a[i] * b[j] % mo) %= mo;
12
           for(int i = 2 * n; i > n; i--)
13
14
15
                for(int j = 0; j < n; j++)
                    (res[i - 1 - j] += 111 * res[i] * trans[j] % mo) %= mo;
16
                res[i] = 0;
17
           }
18
           res.erase(res.begin() + n + 1, res.end());
19
           return res;
20
21
       LinearRec(poly &first, poly &trans, int LOG): LOG(LOG), first(first), trans(trans)
22
23
           n = first.size();
24
           poly a(n + 1, 0);
           a[1] = 1;
27
           bin.push_back(a);
28
           for(int i = 1; i < LOG; i++)</pre>
               bin.push_back(add(bin[i - 1], bin[i - 1]));
29
30
       int calc(long long k)
31
32
           poly a(n + 1, 0);
33
           a[0] = 1;
34
           for(int i = 0; i < LOG; i++)</pre>
35
                if((k >> i) & 1)a = add(a, bin[i]);
36
37
           int ret = 0;
           for(int i = 0; i < n; i++)</pre>
38
                if((ret += 111 * a[i + 1] * first[i] % mo) >= mo)ret -= mo;
39
           return ret;
40
       }
41
42
```

2.9 线性基 (ct)

```
    tmp = __builtin_ctzll(x);
    if (!b[tmp])
    {
        b[tmp] = x;
        break;
    }
    x ^= b[tmp];
}
```

2.10 FFT NTT FWT (lhy,ct,gy)

FFT (ct)

0-based

```
#include <cstdio>
   #include <cmath>
3 #include <algorithm>
   #define R register
5 #define maxn 262144
6 typedef double db;
  const db pi = acos(-1);
   char S[1 << 20], *T = S;
  inline int F()
9
10
       R char ch; R int cnt = 0;
11
       while (ch = *T++, ch < '0' || ch > '9');
12
       cnt = ch - '0';
13
       while (ch = *T++, ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
14
15
       return cnt;
  1
16
   struct Complex {
17
       db x, y;
18
       inline Complex operator * (const Complex &that) const {return (Complex) {x * that.x - y *
19
          → that.y, x * that.y + y * that.x};}
       //inline Complex operator + (const Complex \&that) const \{return\ (Complex)\ \{x+that.x,\ y+that.x,\ y+that.x,\ y+that.x,\ y+that.x,\ y+that.x,\ y+that.x,\ y+that.x,\ y+that.x,\ y+that.x
20
       inline Complex operator += (const Complex &that){x+=that.x;y+=that.y;}
       inline Complex operator - (const Complex &that) const {return (Complex) {x - that.x, y -
         \hookrightarrow that.y};}
23 } buf_a[maxn], buf_b[maxn], buf_c[maxn], w[maxn], c[maxn], a[maxn], b[maxn];
   void bit_reverse(R Complex *x, R Complex *y)
25
26
       for (R int i = 0; i < n; ++i) y[i] = x[i];</pre>
27
       Complex tmp;
28
       for (R int i = 0, j = 0; i < n; ++i)
29
30
            (i>j)?tmp=y[i],y[i]=y[j],y[j]=tmp,0:1;
31
            for (R int 1 = n >> 1; (j \hat{} = 1) < 1; 1 >>= 1);
32
33
34 | }
  void init()
35
  {
36
37
       R int h=n>>1;
```

```
for (R int i = 0; i < h; ++i) w[i+h] = (Complex) \{cos(2 * pi * i / n), sin(2 * pi * i / n)\};
       for (R int i = h; i--; )w[i]=w[i<<1];
39
   }
40
   void dft(R Complex *a)
41
   {
42
       R Complex tmp;
43
       for(R int p = 2, m = 1; m != n; p = (m = p) << 1)
44
           for(R int i = 0; i != n; i += p) for(R int j = 0; j != m; ++j)
45
46
47
                tmp = a[i + j + m] * w[j + m];
                a[i + j + m] = a[i + j] - tmp;
48
                a[i + j] += tmp;
49
           }
50
  }
51
   int main()
52
53
       fread(S, 1, 1 << 20, stdin);
54
       R int na = F(), nb = F(), x;
55
       for (R int i = 0; i <= na; ++i) a[i].x=F();
56
       for (R int i = 0; i <= nb; ++i) b[i].x=F();
57
       for (n = 1; n < na + nb + 1; n <<= 1);
       bit_reverse(a, buf_a);
59
       bit_reverse(b, buf_b);
60
       init();
61
       dft(buf_a);
62
       dft(buf_b);
63
       for (R int i = 0; i < n; ++i) c[i] = buf_a[i] * buf_b[i];
64
       std::reverse(c + 1, c + n);
65
       bit_reverse(c, buf_c);
66
67
       dft(buf_c);
       for (R int i = 0; i \le na + nb; ++i) printf("%d%c", int(buf_c[i].x / n + 0.5), "
68
         \rightarrow \n"[i==na+nb]);
       return 0;
69
70
```

NTT (gy)

0-based

```
const int N = 1e6 + 10;
  const int64_t MOD = 998244353, G = 3;
3 int rev[N];
   int64_t powMod(int64_t a, int64_t exp) {
       int64_t ans = 1;
       while (exp) {
           if (exp & 1)
               (ans *= a) %= MOD;
           (a *= a) %= MOD;
9
           exp >>= 1;
10
11
       return ans;
12
13
   void number_theoretic_transform(int64_t *p, int n, int idft) {
14
       for (int i = 0; i < n; i++)
15
           if (i < rev[i])</pre>
16
               std::swap(p[i], p[rev[i]]);
17
       for (int j = 1; j < n; j <<= 1) {
18
           static int64_t wn1, w, t0, t1;
19
```

```
wn1 = powMod(G, (MOD - 1) / (j << 1));
           if (idft == -1)
21
               wn1 = powMod(wn1, MOD - 2);
22
           for (int i = 0; i < n; i += j << 1) {
23
               w = 1;
24
               for (int k = 0; k < j; k++) {
25
                    t0 = p[i + k];
26
                   t1 = w * p[i + j + k] \% MOD;
27
                   p[i + k] = (t0 + t1) \% MOD;
28
                   p[i + j + k] = (t0 - t1 + MOD) \% MOD;
29
30
                    (w *= wn1) \%= MOD;
               }
31
           }
32
       }
33
       if (idft == -1) {
34
           int nInv = powMod(n, MOD - 2);
35
           for (int i = 0; i < n; i++)
36
               (p[i] *= nInv) %= MOD;
37
       }
38
  }
39
   int64_t *ntt_main(int64_t *a, int64_t *b, int n, int m) {
       static int64_t aa[N], bb[N];
41
       static int nn, len;
42
       len = 0;
43
       for (nn = 1; nn < m + n; nn <<= 1)
44
           len++;
45
       for (int i = 0; i < nn; i++) {
46
47
           aa[i] = a[i];
48
           bb[i] = b[i];
       }
49
       rev[0] = 0;
50
       for (int i = 1; i < nn; i++)
51
           rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
52
       number_theoretic_transform(aa, nn, 1);
53
       number_theoretic_transform(bb, nn, 1);
54
       for (int i = 0; i < nn; i++)
55
           (aa[i] *= bb[i]) %= MOD;
56
       number_theoretic_transform(aa, nn, -1);
57
       return aa;
58
59
```

FWT (lhy)

0-based

```
void fwt(int n, int *x, bool inv = false)
   {
2
       for(int i = 0; i < n; i++)</pre>
3
           for(int j = 0; j < (1 << n); j++)
4
               if((j >> i) & 1)
5
6
                    int p = x[j ^ (1 << i)], q = x[j];
7
                    if(!inv)
                    {
                        //xor
10
                        x[j ^ (1 << i)] = p - q;
11
                        x[j] = p + q;
12
                        //or
13
                        x[j ^ (1 << i)] = p;
14
                        x[j] = p + q;
15
```

```
//and
16
                         x[j ^ (1 << i)] = p + q;
17
                         x[j] = q;
18
                    }
19
                    else
20
21
                         //xor
22
                         x[j ^ (1 << i)] = (p + q) >> 1;
23
                         x[j] = (q - p) >> 1;
24
25
                         x[j ^ (1 << i)] = p;
26
                         x[j] = q - p;
27
28
                         //and
                        x[j ^ (1 << i)] = p - q;
29
                        x[j] = q;
30
                    }
31
                }
32
33
   void solve(int n, int *a, int *b, int *c)
34
35
       fwt(n, a);
36
       fwt(n, b);
37
       for(int i = 0; i < (1 << n); i++)
38
           c[i] = a[i] * b[i];
39
       fwt(n, c, 1);
40
41
```

2.11 Lagrange 插值 (ct)

```
求解 \sum_{i=1}^{n} i^k \mod (10^9 + 7)
```

```
const int mod = 1e9 + 7;
  int f[maxn], pre[maxn], suf[maxn], inp[maxn], p[maxn];
3 inline int qpow(int base, int power)
4
       int ret = 1;
5
       for (; power; power >>= 1, base = 111 * base * base % mod)
6
          power & 1 ? ret = 111 * ret * base % mod : 0;
       return ret;
  bool vis[maxn];
  int pr[maxn], prcnt, fpow[maxn];
  int main()
12
13
       int n = F(), k = F();
14
       // *******
15
       fpow[1] = 1;
16
       for (int i = 2; i \le k + 2; ++i)
17
18
           if (!vis[i]) pr[++prcnt] = i, fpow[i] = qpow(i, k);
19
20
           for (int j = 1; j \le prcnt && i * pr[j] \le k + 2; ++j)
21
               vis[i * pr[j]] = 1;
22
               fpow[i * pr[j]] = 111 * fpow[i] * fpow[pr[j]] % mod;
23
               if (i % pr[j] == 0) break;
24
           }
25
26
       // ******* pre-processing
```

2.12. 社教筛 (ct) 2. Math

```
for (int i = 1; i \le k + 2; ++i) f[i] = (f[i - 1] + fpow[i]) % mod;
       if (n \le k + 2) return !printf("%d\n", f[n]);
29
       pre[0] = 1;
30
       for (int i = 1; i <= k + 3; ++i) pre[i] = 111 * pre[i - 1] * (n - i) % mod;
31
       suf[k + 3] = 1;
32
       for (int i = k + 2; i >= 0; --i) suf[i] = 111 * suf[i + 1] * (n - i) % mod;
33
34
       for (int i = 1; i \le k + 2; ++i) p[i] = (111 * p[i - 1] * i) % mod;
35
       inp[k + 2] = qpow(p[k + 2], mod - 2);
36
       for (int i = k + 1; i \ge 0; --i) inp[i] = (111 * inp[i + 1] * (i + 1)) % mod;
37
       int ans = 0;
38
       for (int i = 1; i \le k + 2; ++i)
39
40
           int temp = inp[k + 2 - i]; if ((k + 2 - i) & 1) temp = mod - temp;
41
           int tmp = 111 * pre[i - 1] * suf[i + 1] % mod * temp % mod * inp[i - 1] % mod * f[i] % mod;
42
           ans = (ans + tmp) % mod;
43
       printf("%d\n", ans );
45
       return 0;
46
47
```

2.12 杜教筛 (ct)

```
int phi[maxn], pr[maxn / 10], prcnt;
  11 sph[maxn];
  bool vis[maxn];
   const int moha = 3333331;
  struct Hash {
       Hash *next;
       int ps; ll ans;
  } *last1[moha], mem[moha], *tot = mem;
9 inline ll S1(int n)
   {
10
       if (n < maxn) return sph[n];</pre>
11
       for (R Hash *iter = last1[n % moha]; iter; iter = iter -> next)
12
           if (iter -> ps == n) return iter -> ans;
13
       11 \text{ ret} = 111 * n * (n + 111) / 2;
       for (11 i = 2, j; i \le n; i = j + 1)
16
       {
           j = n / (n / i);
17
           ret -= S1(n / i) * (j - i + 1);
18
19
       *++tot = (Hash) {last1[n \% moha], n, ret}; last1[n \% moha] = tot;
20
21
       return ret;
22
   int main()
23
24
       int T; scanf("%d", &T);
25
       phi[1] = sph[1] = 1;
26
       for (int i = 2; i < maxn; ++i)</pre>
27
28
           if (!vis[i]) pr[++prcnt] = i, phi[i] = i - 1;
29
           sph[i] = sph[i - 1] + phi[i];
30
           for (int j = 1; j <= prcnt && 111 * i * pr[j] < maxn; ++j)</pre>
31
```

```
{
32
                vis[i * pr[j]] = 1;
33
                if (i % pr[j])
34
                    phi[i * pr[j]] = phi[i] * (pr[j] - 1);
35
                else
36
                {
37
                    phi[i * pr[j]] = phi[i] * pr[j];
38
                    break;
39
40
           }
41
42
       for (; T; --T)
43
44
            int N; scanf("%d", &N);
45
           printf("%lld\n", S1(N));
46
47
       return 0;
48
49
```

2.13 BSGS (ct,Durandal)

2.13.1 BSGS (ct)

p 是素数, 返回 $\min\{x \ge 0 \mid y^x \equiv z \pmod{p}\}$

```
const int mod = 19260817;
  struct Hash
2
   {
3
       Hash *next;
       int key, val;
   } *last[mod], mem[100000], *tot = mem;
6
   inline void insert(R int x, R int v)
       *++tot = (Hash) {last[x \% mod], x, v}; last[x \% mod] = tot;
9
  }
10
   inline int query(R int x)
11
12
       for (R Hash *iter = last[x % mod]; iter; iter = iter -> next)
13
           if (iter -> key == x) return iter -> val;
14
       return -1;
15
16
   inline void del(R int x)
       last[x \% mod] = 0;
19
  }
20
   int main()
21
22
       for (; T; --T)
23
24
           R int y, z, p; scanf("%d%d%d", &y, &z, &p);
25
           R int m = (int) sqrt(p * 1.0);
26
           y %= p; z %= p;
27
           if (!y && !z) {puts("0"); continue;}
28
           if (!y) {puts("Orz, I cannot find x!"); continue;}
29
30
           R int pw = 1;
           for (R int i = 0; i < m; ++i, pw = 111 * pw * y % p) insert(111 * z * pw % p, i);
31
           R int ans = -1;
32
           for (R int i = 1, t, pw2 = pw; i \le p / m + 1; ++i, pw2 = 111 * pw2 * pw % p)
33
               if ((t = query(pw2)) != -1) {ans = i * m - t; break;}
34
           if (ans == -1) puts("Orz, I cannot find x!");
35
```

```
else printf("%d\n", ans );
tot = mem; pw = 1;
for (R int i = 0; i < m; ++i, pw = 111 * pw * y % p) del(111 * z * pw % p);
}
return 0;
}</pre>
```

2.13.2 ex-BSGS (Durandal)

必须满足 $0 \le a < p$, $0 \le b < p$, 返回 $\min\{x \ge 0 \mid a^x \equiv b \pmod{p}\}$

```
int64_t ex_bsgs(int64_t a, int64_t b, int64_t p) {
       if (b == 1)
           return 0;
       int64_t t, d = 1, k = 0;
       while ((t = std::__gcd(a, p)) != 1) {
           if (b \% t) return -1;
           k++, b /= t, p /= t, d = d * (a / t) \% p;
           if (b == d) return k;
       }
9
       map.clear();
10
       int64_t m = std::ceil(std::sqrt((long double) p));
11
       int64_t a_m = pow_mod(a, m, p);
12
       int64_t mul = b;
13
14
       for (int j = 1; j \le m; j++) {
           (mul *= a) \%= p;
15
16
           map[mul] = j;
17
       for (int i = 1; i <= m; i++) {
18
           (d *= a_m) \% = p;
19
20
           if (map.count(d))
               return i * m - map[d] + k;
21
22
23
       return -1;
  |}
25 int main() {
26
       int64_t a, b, p;
       while (scanf("%lld%lld", &a, &b, &p) != EOF)
27
           printf("%lld\n", ex_bsgs(a, b, p));
28
       return 0;
29
30
```

2.14 直线下整点个数 (gy)

必须满足 $a \ge 0, b \ge 0, m > 0$,返回 $\sum_{i=0}^{n-1} \frac{a+bi}{m}$

```
int64_t count(int64_t n, int64_t a, int64_t b, int64_t m) {
    if (b == 0)
        return n * (a / m);
    if (a >= m)
        return n * (a / m) + count(n, a % m, b, m);
    if (b >= m)
        return (n - 1) * n / 2 * (b / m) + count(n, a, b % m, m);
    return count((a + b * n) / m, (a + b * n) % m, m, b);
}
```

2. Math 2.15. 单纯形

2.15 单纯形

2.16 辛普森积分

2.17 数学知识 (gy)

求和公式

•
$$\sum_{k=1}^{n} (2k-1)^2 = \frac{1}{3}n(4n^2-1)$$

•
$$\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$$

•
$$\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$$

•
$$\sum_{k=1}^{n} k^4 = \frac{1}{30}n(n+1)(2n+1)(3n^2+3m-1)$$

•
$$\sum_{k=1}^{n} k^5 = \frac{1}{12}n^2(n+1)^2(2n^2+2n-1)$$

•
$$\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$$

•
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$$

•
$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{1}{5}n(n+1)(n+2)(n+3)(n+4)$$

错排公式

 D_n 表示 n 个元素错位排列的方案数

$$D_1 = 0, D_2 = 1$$

$$D_n = (n-1)(D_{n-2} + D_{n-1}), n \ge 3$$

$$D_n = n! \cdot (1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!})$$

$$D_n = n! \cdot (1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!})$$

Fibonacci sequence

$$F_0 = 0, F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

$$F_n = F_{n-1} + F_{n-2}$$

$$F_{n+1} \cdot F_{n-1} - F_n^2 = (-1)^n$$

$$F_{-n} = (-1)^n F_n$$

$$F_{n+k} = F_k \cdot F_{n+1} + F_{k-1} \cdot F_n$$

$$\gcd(F_m, F_n) = F_{\gcd(m,n)}$$

$$F_m \mid F_n^2 \Leftrightarrow nF_n \mid m$$

$$F_m \mid F_n^2 \Leftrightarrow nF_n \mid m$$

$$F_n = \frac{\varphi^n - \Psi^n}{\sqrt{5}}, \varphi = \frac{1 + \sqrt{5}}{2}, \Psi = \frac{1 - \sqrt{5}}{2}$$

$$F_n = \frac{\varphi^n}{\sqrt{5}} + \frac{1}{2}, \varphi > 0$$

$$F_n = \lfloor \frac{\varphi^n}{\sqrt{5}} + \frac{1}{2} \rfloor, n \ge 0$$

$$n(F) = \left| \log_{\omega} \left(F \cdot \sqrt{5} + \frac{1}{2} \right) \right|$$

Stirling number (1st kind)

用 $\binom{n}{k}$ 表示 Stirling number (1st kind), 为将 n 个元素分成 k 个环的方案数

$$\begin{bmatrix} n+1 \\ k \end{bmatrix} = n \begin{bmatrix} n \\ k \end{bmatrix} + \begin{bmatrix} n \\ k-1 \end{bmatrix}, k > 0$$
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0, n > 0$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0, n > 0$$

2.17. 数学知识 (gy) 2. Math

$$\begin{bmatrix} n \\ k \end{bmatrix}$$
 为将 n 个元素分成 k 个环的方案数
$$\begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle {n \atop k} \right\rangle \binom{x+k}{2n}$$

Stirling number (2nd kind)

用
$${n \brace k}$$
 表示 Stirling number (2nd kind), 为将 n 个元素划分成 k 个非空集合的方案数 ${n+1 \brace k} = k \begin{Bmatrix} n \brace k + \begin{Bmatrix} n \cr k-1 \end{Bmatrix}, k > 0$ ${0 \brace 0} = 1, {n \brack 0} = {n \brack 0} = 0, n > 0$ ${n \brack k} = \frac{1}{k!} \sum_{j=0}^k (-1)^{k-j} {k \brack j} j^n$ ${n \brack k}$ ${n \brack k}$ ${n \brack k-1} = \sum_{k=0}^n {n \brack k} {n \brack k} {n \brack k}$

Catalan number

$$c_n$$
 表示长度为 $2n$ 的合法括号序的数量
$$c_1 = 1, c_{n+1} = \sum_{i=1}^n c_i \times c_{n+1-i}$$

$$c_n = \frac{\binom{2n}{n+1}}{n+1}$$

Bell number

$$B_n$$
 表示基数为 n 的集合的划分方案数
$$B_i = \begin{cases} 1 & i = 0 \\ \sum_{k=0}^{n} \binom{n}{k} B_k & i > 0 \end{cases}$$

$$B_n = \sum_{k=0}^{n} \binom{n}{k} B_k \quad i > 0$$

$$B_{p^m+n} \equiv mB_n + B_{n+1} \pmod{p}$$

五边形数定理

$$p(n)$$
 表示将 n 划分为若干个正整数之和的方案数
$$p(n) = \sum_{k \in \mathbb{N}^*} (-1)^{k-1} p(n - \frac{k(3k-1)}{2})$$

Bernoulli number

$$\sum_{j=0}^{m} {m+1 \choose j} B_j = 0, m > 0$$

$$B_i = \begin{cases} 1 & i = 0 \\ -\sum_{j=0}^{i-1} {i+1 \choose j} B_j & i > 0 \end{cases}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}$$

Stirling permutation

1,1,2,2...,n,n 的排列中,对于每个 i,都有两个 i 之间的数大于 i 排列方案数为 (2n-1)!!

2. Math 2.17. 数学知识 (gy)

Eulerian number

Eulerian number (2nd kind)

Möbius function

$$\mu(n) = \begin{cases} 1 & n \text{ is a square-free positive integer with an even number of prime factors} \\ -1 & n \text{ is a square-free positive integer with an odd number of prime factors} \\ 0 & n \text{ has a squared prime factor} \end{cases}$$

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n=1 \\ 0 & n>1 \\ g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d}) \end{cases}$$

Lagrange polynomial

给定次数为
$$n$$
 的多项式函数 $L(x)$ 上的 $n+1$ 个点 $(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)$ 则 $L(x)=\sum\limits_{j=0}^n y_j\prod\limits_{0\leq m\leq n,m\neq j}\frac{x-x_m}{x_j-x_m}$

Chapter 3

Geometry

3.1 点、直线、圆 (gy)

```
using number = long double;
const number eps = 1e-8;
3 number _sqrt(number x) {
      return std::sqrt(std::max(x, (number) 0));
5 }
  number _asin(number x) {
      x = std::min(x, (number) 1), x = std::max(x, (number) -1);
      return std::asin(x);
9
  number _acos(number x) {
10
       x = std::min(x, (number) 1), x = std::max(x, (number) -1);
11
       return std::acos(x);
12
13
14 int sgn(number x) {
       return (x > eps) - (x < -eps);
15
16
  int cmp(number x, number y) {
17
       return sgn(x - y);
18
  }
19
  struct point {
20
      number x, y;
       point() {}
       point(number x, number y) : x(x), y(y) {}
       number len2() const {
24
          return x * x + y * y;
25
26
       number len() const {
27
           return _sqrt(len2());
28
29
       point unit() const {
30
           return point(x / len(), y / len());
       point rotate90() const {
33
           return point(-y, x);
34
35
       friend point operator+(const point &a, const point &b) {
36
           return point(a.x + b.x, a.y + b.y);
```

3.1. 点、直线、圆 (gy)

```
38
       friend point operator-(const point &a, const point &b) {
39
           return point(a.x - b.x, a.y - b.y);
40
41
       friend point operator*(const point &a, number b) {
42
           return point(a.x * b, a.y * b);
43
44
       friend point operator/(const point &a, number b) {
45
           return point(a.x / b, a.y / b);
46
47
       friend number dot(const point &a, const point &b) {
48
49
           return a.x * b.x + a.y * b.y;
50
       friend number det(const point &a, const point &b) {
51
           return a.x * b.y - a.y * b.x;
52
53
       friend number operator == (const point &a, const point &b) {
54
           return cmp(a.x, b.x) == 0 && cmp(a.y, b.y) == 0;
55
56
   };
57
   number dis2(const point &a, const point &b) {
       return (a - b).len2();
59
60
   number dis(const point \&a, const point \&b) {
61
       return (a - b).len();
62
   }
63
   struct line {
64
       point a, b;
65
       line() {}
66
67
       line(point a, point b) : a(a), b(b) {}
68
       point value() const {
           return b - a;
69
70
  };
71
   bool point_on_line(const point &p, const line &l) {
72
       return sgn(det(p - 1.a, p - 1.b)) == 0;
73
  }
74
   // including endpoint
75
  bool point_on_ray(const point &p, const line &l) {
77
       return sgn(det(p - 1.a, p - 1.b)) == 0 &&
78
           sgn(dot(p - 1.a, 1.b - 1.a)) >= 0;
79
   // including endpoints
80
   bool point_on_seg(const point &p, const line &1) {
81
       return sgn(det(p - 1.a, p - 1.b)) == 0 &&
82
           sgn(dot(p - 1.a, 1.b - 1.a)) >= 0 &&
83
           sgn(dot(p - 1.b, 1.a - 1.b)) >= 0;
84
85
   bool seg_has_intersection(const line &a, const line &b) {
86
       if (point_on_seg(a.a, b) || point_on_seg(a.b, b) ||
87
               point_on_seg(b.a, a) || point_on_seg(b.b, a))
88
           return /* including endpoints */ true;
89
       return sgn(det(a.a - b.a, b.b - b.a)) * sgn(det(a.b - b.a, b.b - b.a)) < 0
90
           && sgn(det(b.a - a.a, a.b - a.a)) * sgn(det(b.b - a.a, a.b - a.a)) < 0;
91
92
   point intersect(const line &a, const line &b) {
93
       number s1 = det(a.b - a.a, b.a - a.a);
94
       number s2 = det(a.b - a.a, b.b - a.a);
```

3.1. 点、直线、圆 (gy) 3. Geometry

```
return (b.a * s2 - b.b * s1) / (s2 - s1);
   }
97
   point projection(const point &p, const line &1) {
98
       return 1.a + (1.b - 1.a) * dot(p - 1.a, 1.b - 1.a) / (1.b - 1.a).len2();
99
100
   number dis(const point &p, const line &l) {
101
       return std::abs(det(p - 1.a, 1.b - 1.a)) / (1.b - 1.a).len();
102
103
   point symmetry_point(const point &a, const point &o) {
104
       return o + o - a;
105
106
   point reflection(const point &p, const line &l) {
107
108
       return symmetry_point(p, projection(p, 1));
   }
109
   struct circle {
110
       point o;
111
       number r;
112
       circle() {}
113
       circle(point o, number r) : o(o), r(r) {}
114
115 };
   bool intersect(const line &1, const circle &a, point &p1, point &p2) {
116
       number x = dot(l.a - a.o, l.b - l.a);
117
       number y = (1.b - 1.a).len2();
118
       number d = x * x - y * ((1.a - a.o).len2() - a.r * a.r);
119
       if (sgn(d) < 0) return false;</pre>
120
       point p = 1.a - (1.b - 1.a) * (x / y), delta = (1.b - 1.a) * (_sqrt(d) / y);
121
       p1 = p + delta, p2 = p - delta;
122
       return true;
123
124
125
   bool intersect(const circle &a, const circle &b, point &p1, point &p2) {
       if (a.o == b.o \&\& cmp(a.r, b.r) == 0)
           return /* value for coincident circles */ false;
127
       number s1 = (b.o - a.o).len();
128
       if (cmp(s1, a.r + b.r) > 0 \mid \mid cmp(s1, std::abs(a.r - b.r)) < 0)
129
            return false;
130
       number s2 = (a.r * a.r - b.r * b.r) / s1;
131
       number aa = (s1 + s2) / 2, bb = (s1 - s2) / 2;
132
       point p = (b.o - a.o) * (aa / (aa + bb)) + a.o;
133
       point delta = (b.o - a.o).unit().rotate90() * _sqrt(a.r * a.r - aa * aa);
134
       p1 = p + delta, p2 = p - delta;
135
       return true;
136
137
   bool tangent(const point &p0, const circle &c, point &p1, point &p2) {
138
       number x = (p0 - c.o).len2();
139
       number d = x - c.r * c.r;
140
       if (sgn(d) < 0) return false;</pre>
141
       if (sgn(d) == 0)
142
            return /* value for point_on_line */ false;
143
       point p = (p0 - c.o) * (c.r * c.r / x);
144
145
       point delta = ((p0 - c.o) * (-c.r * \_sqrt(d) / x)).rotate90();
       p1 = c.o + p + delta;
146
       p2 = c.o + p - delta;
147
       return true;
148
149
   bool ex_tangent(const circle &a, const circle &b, line &l1, line &l2) {
150
       if (cmp(std::abs(a.r - b.r), (b.o - a.o).len()) == 0) {
151
            point p1, p2;
152
            intersect(a, b, p1, p2);
153
            11 = 12 = line(p1, p1 + (a.o - p1).rotate90());
154
```

```
155
            return true;
        } else if (cmp(a.r, b.r) == 0) {
156
            point dir = b.o - a.o;
157
            dir = (dir * (a.r / dir.len())).rotate90();
158
            11 = line(a.o + dir, b.o + dir);
159
            12 = line(a.o - dir, b.o - dir);
160
            return true;
161
        } else {
162
            point p = (b.o * a.r - a.o * b.r) / (a.r - b.r);
163
            point p1, p2, q1, q2;
164
            if (tangent(p, a, p1, p2) && tangent(p, b, q1, q2)) {
165
                11 = line(p1, q1);
166
                12 = line(p2, q2);
167
                return true;
168
            } else {
169
                return false;
170
            }
171
172
173
    bool in_tangent(const circle &a, const circle &b, line &l1, line &l2) {
174
        if (cmp(a.r + b.r, (b.o - a.o).len()) == 0) {
175
176
            point p1, p2;
177
            intersect(a, b, p1, p2);
            11 = 12 = line(p1, p1 + (a.o - p1).rotate90());
178
            return true;
179
        } else {
180
            point p = (b.o * a.r + a.o * b.r) / (a.r + b.r);
181
            point p1, p2, q1, q2;
182
            if (tangent(p, a, p1, p2) && tangent(p, b, q1, q2)) {
183
                11 = line(p1, q1);
184
185
                12 = line(p2, q2);
                return true;
186
            } else {
                return false;
188
189
        }
190
191
```

3.2 平面最近点对 (Grimoire)

```
bool byY(P a,P b){return a.y<b.y;}</pre>
   LL solve(P *p,int l,int r){
       LL d=1LL << 62;
       if(l==r)
           return d;
5
       if(l+1==r)
6
           return dis2(p[1],p[r]);
       int mid=(1+r)>>1;
9
       d=min(solve(1,mid),d);
       d=min(solve(mid+1,r),d);
10
       vector<P>tmp;
11
       for(int i=1;i<=r;i++)</pre>
12
13
            if(sqr(p[mid].x-p[i].x) \le d)
14
                tmp.push_back(p[i]);
       sort(tmp.begin(),tmp.end(),byY);
15
       for(int i=0;i<tmp.size();i++)</pre>
16
            for(int j=i+1; j<tmp.size()&&j-i<10; j++)</pre>
17
                d=min(d,dis2(tmp[i],tmp[j]));
18
       return d;
19
```

20 }

3.3 凸包游戏 (Grimoire)

给定凸包, $O(n \log n)$ 完成询问:

- 点在凸包内
- 凸包外的点到凸包的两个切点
- 向量关于凸包的切点
- 直线与凸包的交点

传入凸包要求 1 号点为 Pair(x,y) 最小的

```
1 const int INF = 1000000000;
2 struct Convex
3 {
       vector<Point> a, upper, lower;
       Convex(vector<Point> _a) : a(_a) {
           n = a.size();
           int ptr = 0;
           for(int i = 1; i < n; ++ i) if (a[ptr] < a[i]) ptr = i;</pre>
           for(int i = 0; i <= ptr; ++ i) lower.push_back(a[i]);</pre>
10
           for(int i = ptr; i < n; ++ i) upper.push_back(a[i]);</pre>
11
           upper.push_back(a[0]);
12
13
       int sign(long long x) { return x < 0 ? -1 : x > 0; }
14
       pair<long long, int> get_tangent(vector<Point> &convex, Point vec) {
15
           int 1 = 0, r = (int)convex.size() - 2;
16
           for(; 1 + 1 < r; ) {
17
               int mid = (1 + r) / 2;
18
               if (sign((convex[mid + 1] - convex[mid]).det(vec)) > 0) r = mid;
19
               else 1 = mid;
20
           }
21
           return max(make_pair(vec.det(convex[r]), r)
22
                , make_pair(vec.det(convex[0]), 0));
23
24
       void update_tangent(const Point &p, int id, int &i0, int &i1) {
25
           if ((a[i0] - p).det(a[id] - p) > 0) i0 = id;
26
           if ((a[i1] - p).det(a[id] - p) < 0) i1 = id;</pre>
27
       void binary_search(int 1, int r, Point p, int &i0, int &i1) {
29
           if (1 == r) return;
30
           update_tangent(p, 1 % n, i0, i1);
31
           int sl = sign((a[1 % n] - p).det(a[(1 + 1) % n] - p));
32
           for(; 1 + 1 < r; ) {
33
               int mid = (1 + r) / 2;
34
               int smid = sign((a[mid % n] - p).det(a[(mid + 1) % n] - p));
35
               if (smid == sl) l = mid;
36
               else r = mid;
37
           }
38
           update_tangent(p, r % n, i0, i1);
39
40
       int binary_search(Point u, Point v, int 1, int r) {
41
           int sl = sign((v - u).det(a[1 % n] - u));
42
           for(; 1 + 1 < r; ) {
43
               int mid = (1 + r) / 2;
44
               int smid = sign((v - u).det(a[mid % n] - u));
45
```

```
if (smid == sl) l = mid;
46
               else r = mid;
47
           }
48
           return 1 % n;
49
50
       // 判定点是否在凸包内, 在边界返回 true
51
       bool contain(Point p) {
52
           if (p.x < lower[0].x || p.x > lower.back().x) return false;
53
           int id = lower_bound(lower.begin(), lower.end()
54
               , Point(p.x, -INF)) - lower.begin();
55
           if (lower[id].x == p.x) {
56
               if (lower[id].y > p.y) return false;
57
           } else if ((lower[id - 1] - p).det(lower[id] - p) < 0) return false;</pre>
58
           id = lower_bound(upper.begin(), upper.end(), Point(p.x, INF)
59
               , greater<Point>()) - upper.begin();
60
           if (upper[id].x == p.x) {
61
               if (upper[id].y < p.y) return false;</pre>
62
           } else if ((upper[id - 1] - p).det(upper[id] - p) < 0) return false;</pre>
63
           return true;
64
65
       // 求点 p 关于凸包的两个切点, 如果在凸包外则有序返回编号
66
       // 共线的多个切点返回任意一个, 否则返回 false
67
       bool get_tangent(Point p, int &i0, int &i1) {
68
           if (contain(p)) return false;
69
           i0 = i1 = 0;
70
           int id = lower_bound(lower.begin(), lower.end(), p) - lower.begin();
71
           binary_search(0, id, p, i0, i1);
72
           binary_search(id, (int)lower.size(), p, i0, i1);
73
           id = lower_bound(upper.begin(), upper.end(), p
74
75
               , greater<Point>()) - upper.begin();
76
           binary_search((int)lower.size() - 1, (int)lower.size() - 1 + id, p, i0, i1);
77
           binary_search((int)lower.size() - 1 + id
               , (int)lower.size() - 1 + (int)upper.size(), p, i0, i1);
78
79
           return true;
80
       // 求凸包上和向量 vec 叉积最大的点,返回编号,共线的多个切点返回任意一个
81
       int get_tangent(Point vec) {
82
           pair<long long, int> ret = get_tangent(upper, vec);
83
           ret.second = (ret.second + (int)lower.size() - 1) % n;
84
           ret = max(ret, get_tangent(lower, vec));
85
           return ret.second;
86
       }
87
       // 求凸包和直线 u,v 的交点, 如果无严格相交返回 false.
       //如果有则是和 (i,next(i)) 的交点,两个点无序,交在点上不确定返回前后两条线段其中之一
89
       bool get_intersection(Point u, Point v, int &i0, int &i1) {
90
           int p0 = get_tangent(u - v), p1 = get_tangent(v - u);
91
           if (sign((v - u).det(a[p0] - u)) * sign((v - u).det(a[p1] - u)) < 0)  {
92
               if (p0 > p1) swap(p0, p1);
93
               i0 = binary_search(u, v, p0, p1);
94
               i1 = binary_search(u, v, p1, p0 + n);
95
               return true:
96
           } else {
97
               return false;
98
           }
99
       }
100
   };
101
```

3.4 半平面交 (Grimoire)

```
struct P{
       int quad() const { return sgn(y) == 1 \mid \mid (sgn(y) == 0 \&\& sgn(x) >= 0);}
3 | };
  struct L{
4
       bool onLeft(const P &p) const { return sgn((b - a)*(p - a)) > 0; }
5
       L push() const{ // push out eps
           const double eps = 1e-10;
           P delta = (b - a).turn90().norm() * eps;
           return L(a - delta, b - delta);
10
11 | };
  bool sameDir(const L &10, const L &11) {
       return parallel(10, 11) && sgn((10.b - 10.a)^(11.b - 11.a)) == 1;
13
14 }
bool operator < (const P &a, const P &b) {
       if (a.quad() != b.quad())
16
           return a.quad() < b.quad();</pre>
17
       else
18
           return sgn((a*b)) > 0;
19
20
21
   bool operator < (const L &10, const L &11) {</pre>
22
       if (sameDir(10, 11))
           return 11.onLeft(10.a);
23
24
       else
           return (10.b - 10.a) < (11.b - 11.a);</pre>
25
  1}
26
  | bool check(const L &u, const L &v, const L &w) {
27
       return w.onLeft(intersect(u, v));
28
29
   vector<P> intersection(vector<L> &1) {
30
       sort(1.begin(), 1.end());
31
       deque<L> q;
32
33
       for (int i = 0; i < (int)1.size(); ++i) {</pre>
34
           if (i && sameDir(l[i], l[i - 1])) {
35
                continue;
           }
36
           while (q.size() > 1
37
                && !check(q[q.size() - 2], q[q.size() - 1], l[i]))
38
                    q.pop_back();
39
           while (q.size() > 1
40
                && !check(q[1], q[0], 1[i]))
41
42
                    q.pop_front();
           q.push_back(l[i]);
43
44
       while (q.size() > 2
45
           && !check(q[q.size() - 2], q[q.size() - 1], q[0]))
46
                q.pop_back();
47
       while (q.size() > 2
48
           && !check(q[1], q[0], q[q.size() - 1]))
49
                q.pop_front();
50
       vector<P> ret;
51
       for (int i = 0; i < (int)q.size(); ++i)</pre>
52
       ret.push_back(intersect(q[i], q[(i + 1) % q.size()]));
53
54
       return ret;
55
```

3.5 点在多边形内 (Grimoire)

```
bool inPoly(P p,vector<P>poly){
       int cnt=0;
       for(int i=0;i<poly.size();i++){</pre>
3
           P a=poly[i],b=poly[(i+1)%poly.size()];
           if(onSeg(p,L(a,b)))
5
                return false;
           int x=sgn(det(a,p,b));
           int y=sgn(a.y-p.y);
           int z=sgn(b.y-p.y);
10
           cnt+=(x>0&&y<=0&&z>0);
           cnt-=(x<0\&\&z<=0\&\&y>0);
11
       }
12
       return cnt;
13
14
```

3.6 最小圆覆盖 (Grimoire)

```
struct line{
       point p,v;
3
   point Rev(point v){return point(-v.y,v.x);}
  point operator*(line A,line B){
       point u=B.p-A.p;
       double t=(B.v*u)/(B.v*A.v);
       return A.p+A.v*t;
  }
   point get(point a,point b){
10
       return (a+b)/2;
11
  }
12
  point get(point a,point b,point c){
13
       if(a==b)return get(a,c);
14
       if(a==c)return get(a,b);
15
       if(b==c)return get(a,b);
16
17
       line ABO=(line)\{(a+b)/2, Rev(a-b)\};
       line BCO=(line)\{(c+b)/2,Rev(b-c)\};
       return ABO*BCO;
19
   }
20
   int main(){
21
       scanf("%d",&n);
22
       for(int i=1;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);</pre>
23
       random_shuffle(p+1,p+1+n);
24
       0=p[1];r=0;
25
       for(int i=2;i<=n;i++){
26
            if(dis(p[i],0)<r+1e-6)continue;
27
            0=get(p[1],p[i]);r=dis(0,p[i]);
28
            for(int j=1;j<i;j++){</pre>
29
                if(dis(p[j],0)<r+1e-6)continue;</pre>
30
                0=get(p[i],p[j]);r=dis(0,p[i]);
31
                for(int k=1;k<j;k++){</pre>
32
                    if(dis(p[k],0)<r+1e-6)continue;
33
                    0=get(p[i],p[j],p[k]);r=dis(0,p[i]);
34
35
36
       }printf("%.21f %.21f %.21f\n",0.x,0.y,r);
37
       return 0;
38
39
```

3.7 最小球覆盖 (Grimoire)

```
bool equal(const double & x, const double & y) {
       return x + eps > y and y + eps > x;
  double operator % (const Point & a, const Point & b) {
       return a.x * b.x + a.y * b.y + a.z * b.z;
5
6
  Point operator * (const Point & a, const Point & b) {
       return Point(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
10
   struct Circle {
       double r; Point o;
11
12 };
  struct Plane {
13
       Point nor:
14
       double m;
15
       Plane(const Point & nor, const Point & a) : nor(nor){
16
           m = nor \% a;
17
18
19 };
Point intersect(const Plane & a, const Plane & b, const Plane & c) {
       Point c1(a.nor.x, b.nor.x, c.nor.x), c2(a.nor.y, b.nor.y, c.nor.y), c3(a.nor.z, b.nor.z,
         \rightarrow c.nor.z), c4(a.m, b.m, c.m);
       return 1 / ((c1 * c2) % c3) * Point((c4 * c2) % c3, (c1 * c4) % c3, (c1 * c2) % c4);
22
23 }
  bool in(const Point & a, const Circle & b) {
24
       return sign((a - b.o).len() - b.r) <= 0;
25
26
   bool operator < (const Point & a, const Point & b) {
27
       if(!equal(a.x, b.x)) {
28
           return a.x < b.x;
29
30
       if(!equal(a.y, b.y)) {
31
32
           return a.y < b.y;
33
       if(!equal(a.z, b.z)) {
34
           return a.z < b.z;
35
36
       return false;
37
38
  bool operator == (const Point & a, const Point & b) {
       return equal(a.x, b.x) and equal(a.y, b.y) and equal(a.z, b.z);
41 }
  vector<Point> vec;
42
   Circle calc() {
43
       if(vec.empty()) {
44
           return Circle(Point(0, 0, 0), 0);
45
       }else if(1 == (int)vec.size()) {
46
47
           return Circle(vec[0], 0);
       }else if(2 == (int)vec.size()) {
48
           return Circle(0.5 * (vec[0] + vec[1]), 0.5 * (vec[0] - vec[1]).len());
49
       }else if(3 == (int)vec.size()) {
50
           double r((vec[0] - vec[1]).len() * (vec[1] - vec[2]).len() * (vec[2] - vec[0]).len() / 2 /
             \hookrightarrow fabs(((vec[0] - vec[2]) * (vec[1] - vec[2])).len()));
           return Circle(intersect(Plane(vec[1] - vec[0], 0.5 * (vec[1] + vec[0])),
52
                               Plane(vec[2] - vec[1], 0.5 * (vec[2] + vec[1])),
53
                        Plane((vec[1] - vec[0]) * (vec[2] - vec[0]), vec[0])), r);
54
       }else {
55
           Point o(intersect(Plane(vec[1] - vec[0], 0.5 * (vec[1] + vec[0])),
```

3. Geometry 3.8. 圆并 (Grimoire)

```
Plane(vec[2] - vec[0], 0.5 * (vec[2] + vec[0])),
57
                      Plane(vec[3] - vec[0], 0.5 * (vec[3] + vec[0])));
58
            return Circle(o, (o - vec[0]).len());
59
       }
60
61
   Circle miniBall(int n) {
62
       Circle res(calc());
63
       for(int i(0); i < n; i++) {</pre>
64
            if(!in(a[i], res)) {
65
                vec.push_back(a[i]);
66
                res = miniBall(i);
67
                vec.pop_back();
68
                if(i) {
69
                    Point tmp(a[i]);
70
                    memmove(a + 1, a, sizeof(Point) * i);
71
                    a[0] = tmp;
72
                }
73
           }
74
75
       return res;
76
77
78
   int main() {
79
       int n;
       sort(a, a + n);
80
       n = unique(a, a + n) - a;
81
       vec.clear();
82
       printf("%.10f\n", miniBall(n).r);
83
```

3.8 圆并 (Grimoire)

```
double ans[2001];
   struct Point {
2
       double x, y;
3
       Point(){}
       Point(const double & x, const double & y) : x(x), y(y) {}
5
       void scan() {scanf("%lf%lf", &x, &y);}
6
       double sqrlen() {return sqr(x) + sqr(y);}
       double len() {return sqrt(sqrlen());}
       Point rev() {return Point(y, -x);}
       void print() {printf("%f %f\n", x, y);}
       Point zoom(const double & d) {double lambda = d / len(); return Point(lambda * x, lambda * y);}
11
  } dvd, a[2001];
  Point centre[2001];
13
   double atan2(const Point & x) {
14
       return atan2(x.y, x.x);
15
16
  Point operator - (const Point & a, const Point & b) {
17
       return Point(a.x - b.x, a.y - b.y);
18
19
  Point operator + (const Point & a, const Point & b) {
20
       return Point(a.x + b.x, a.y + b.y);
21
22
   double operator * (const Point & a, const Point & b) {
23
24
       return a.x * b.y - a.y * b.x;
  }
25
  Point operator * (const double \& a, const Point \& b) {
26
       return Point(a * b.x, a * b.y);
27
28 | }
```

3.8. 圆并 (Grimoire) 3. Geometry

```
29 double operator % (const Point & a, const Point & b) {
       return a.x * b.x + a.y * b.y;
30
31 }
32 struct circle {
       double r; Point o;
33
       circle() {}
34
       void scan() {
35
           o.scan();
36
           scanf("%lf", &r);
37
       }
38
   } cir[2001];
39
   struct arc {
40
       double theta;
41
       int delta;
42
       Point p;
43
       arc() {};
44
       arc(const double & theta, const Point & p, int d) : theta(theta), p(p), delta(d) {}
45
46 \} \text{vec[4444];}
47 int nV;
48 inline bool operator < (const arc & a, const arc & b) {
       return a.theta + eps < b.theta;
51 | int cnt;
  inline void psh(const double t1, const Point p1, const double t2, const Point p2) {
       if(t2 + eps < t1)
53
           cnt++;
54
       vec[nV++] = arc(t1, p1, 1);
55
       vec[nV++] = arc(t2, p2, -1);
56
57
   inline double cub(const double & x) {
58
59
       return x * x * x;
60
  inline void combine(int d, const double & area, const Point & o) {
       if(sign(area) == 0) return;
62
       centre[d] = 1 / (ans[d] + area) * (ans[d] * centre[d] + area * o);
63
       ans[d] += area;
64
  | }
65
  bool equal(const double & x, const double & y) {
66
       return x + eps> y and y + eps > x;
67
  |}
68
  bool equal(const Point & a, const Point & b) {
69
       return equal(a.x, b.x) and equal(a.y, b.y);
71 | }
72
  | bool equal(const circle & a, const circle & b) {
73
       return equal(a.o, b.o) and equal(a.r, b.r);
74
  ٦
  bool f[2001];
75
   int main() {
76
       int n, m, index;
77
       while(EOF != scanf("%d%d%d", &m, &n, &index)) {
78
79
           for(int i(0); i < m; i++) {
80
               a[i].scan();
81
           }
82
           for(int i(0); i < n; i++) {</pre>
83
               cir[i].scan();//n 个圆
84
85
           for(int i(0); i < n; i++) {//这一段在去重圆 能加速 删掉不会错
86
               f[i] = true;
87
               for(int j(0); j < n; j++) if(i != j) {</pre>
88
```

3. Geometry 3.8. 圆并 (Grimoire)

```
if(equal(cir[i], cir[j]) and i < j or !equal(cir[i], cir[j]) and cir[i].r <
                                          \hookrightarrow eps) {
                                              f[i] = false;
 90
                                              break;
 91
                                      }
 92
                              }
 93
 94
                      int n1(0);
 95
                      for(int i(0); i < n; i++)
 96
                              if(f[i])
 97
                                      cir[n1++] = cir[i];
 98
                      n = n1;//去重圆结束
 99
                      fill(ans, ans + n + 1, 0);//ans[i] 表示被圆覆盖至少 i 次的面积
100
                      fill(centre, centre + n + 1, Point(0, 0));//centre[i] 表示上面 ans[i] 部分的重心
101
                      for(int i(0); i < m; i++)</pre>
102
                              combine(0, a[i] * a[(i + 1) % m] * 0.5, 1. / 3 * (a[i] + a[(i + 1) % m]));
103
                      for(int i(0); i < n; i++) {
104
                              dvd = cir[i].o - Point(cir[i].r, 0);
105
                              nV = 0;
106
                              vec[nV++] = arc(-pi, dvd, 1);
107
                              cnt = 0;
                              for(int j(0); j < n; j++) if(j != i) {
109
                                      double d = (cir[j].o - cir[i].o).sqrlen();
110
                                      if(d < sqr(cir[j].r - cir[i].r) + eps) {
111
                                              if(cir[i].r + i * eps < cir[j].r + j * eps)
112
                                                     psh(-pi, dvd, pi, dvd);
113
                                      }else if(d + eps < sqr(cir[j].r + cir[i].r)) {</pre>
114
                                              double lambda = 0.5 * (1 + (sqr(cir[i].r) - sqr(cir[j].r)) / d);
115
                                              Point cp(cir[i].o + lambda * (cir[j].o - cir[i].o));
116
                                              Point nor((cir[j].o - cir[i].o).rev().zoom(sqrt(sqr(cir[i].r) - (cp -
117

    cir[i].o).sqrlen())));
                                              Point frm(cp + nor);
                                              Point to(cp - nor);
119
                                              psh(atan2(frm - cir[i].o), frm, atan2(to - cir[i].o), to);
120
                                      }
121
                              }
122
                              sort(vec + 1, vec + nV);
123
                              vec[nV++] = arc(pi, dvd, -1);
124
                              for(int j = 0; j + 1 < nV; j++) {
125
                                      cnt += vec[j].delta;
126
                                      //if(cnt == 1) {//如果只算 ans[1] 和 centre[1], 可以加这个 if 加速.
127
                                              double theta(vec[j + 1].theta - vec[j].theta);
                                              double area(sqr(cir[i].r) * theta * 0.5);
129
                                              combine(cnt, area, cir[i].o + 1. / area / 3 * cub(cir[i].r) * Point(sin(vec[j +
130
                                                  \rightarrow 1].theta) - sin(vec[j].theta), cos(vec[j].theta) - cos(vec[j + 1].theta)));
                                              combine(cnt, -sqr(cir[i].r) * sin(theta) * 0.5, 1. / 3 * (cir[i].o + vec[j].p + order * orde
131
                                                  \hookrightarrow \text{vec[j + 1].p)};
                                              combine(cnt, vec[j].p * vec[j + 1].p * 0.5, 1. / 3 * (vec[j].p + vec[j +
132
                                                  → 1].p));
                                      //}
133
                              }
134
135
                      combine(0, -ans[1], centre[1]);
136
                      for(int i = 0; i < m; i++) {
137
                              if(i != index)
138
                                      (a[index] - Point((a[i] - a[index]) * (centre[0] - a[index]), (a[i] - a[index]) %
139
                                          \hookrightarrow (centre[0] - a[index])).zoom((a[i] - a[index]).len())).print();
                              else
140
                                      a[i].print();
141
                      }
142
```

```
143 }
144 return 0;
145 }
```

3.9 圆与多边形并 (Grimoire)

```
double form(double x){
       while (x>=2*pi)x==2*pi;
3
       while(x<0)x+=2*pi;
       return x;
  }
   double calcCir(C cir){
       vector<double>ang;
       ang.push_back(0);
       ang.push_back(pi);
       double ans=0;
10
       for(int i=1;i<=n;i++){</pre>
11
           if(cir==c[i])continue;
12
           P p1,p2;
13
           if(intersect(cir,c[i],p1,p2)){
                ang.push_back(form(cir.ang(p1)));
16
                ang.push_back(form(cir.ang(p2)));
           }
17
       }
18
       for(int i=1;i<=m;i++){</pre>
19
           vector<P>tmp;
20
           tmp=intersect(poly[i],cir);
21
           for(int j=0;j<tmp.size();j++){</pre>
22
                ang.push_back(form(cir.ang(tmp[j])));
23
           }
24
       }
25
       sort(ang.begin(),ang.end());
26
       for(int i=0;i<ang.size();i++){</pre>
27
           double t1=ang[i],t2=(i+1==ang.size()?ang[0]+2*pi:ang[i+1]);
28
           P p=cir.at((t1+t2)/2);
29
           int ok=1;
30
           for(int j=1;j<=n;j++){</pre>
31
                if(cir==c[j])continue;
32
                if(inC(p,c[j],true)){
33
                    ok=0;
35
                    break;
                }
36
           }
37
           38
                if(inPoly(p,poly[j],true)){
39
                    ok=0;
40
                    break;
41
                }
42
           }
43
           if(ok){
44
45
                double r=cir.r,x0=cir.o.x,y0=cir.o.y;
                ans += (r*r*(t2-t1) + r*x0*(sin(t2) - sin(t1)) - r*y0*(cos(t2) - cos(t1)))/2;
46
           }
47
       }
48
       return ans;
49
  }
50
51 P st;
```

```
52 bool bySt(P a,P b){
       return dis(a,st) < dis(b,st);</pre>
53
   }
54
   double calcSeg(L 1){
55
       double ans=0;
56
       vector<P>pt;
57
       pt.push_back(1.a);
58
       pt.push_back(1.b);
59
       for(int i=1;i<=n;i++){</pre>
60
            P p1,p2;
61
            if(intersect(c[i],1,p1,p2)){
62
63
                 if(onSeg(p1,1))
                      pt.push_back(p1);
64
                 if(onSeg(p2,1))
65
                     pt.push_back(p2);
66
            }
67
       }
68
       st=l.a;
69
       sort(pt.begin(),pt.end(),bySt);
70
       for(int i=0;i+1<pt.size();i++){</pre>
71
            P p1=pt[i],p2=pt[i+1];
72
73
            P p=(p1+p2)/2;
74
            int ok=1;
            for(int j=1; j<=n; j++){</pre>
75
                 if(sgn(dis(p,c[j].o),c[j].r)<0){
76
                      ok=0;
77
                      break;
78
                 }
79
            }
80
81
            if(ok){
82
                 double x1=p1.x,y1=p1.y,x2=p2.x,y2=p2.y;
83
                 double res=(x1*y2-x2*y1)/2;
84
                 ans+=res;
            }
85
       }
86
       return ans;
87
```

3.10 三角剖分 (Grimoire)

```
Triangulation::find 返回包含某点的三角形 Triangulation::add_point 将某点加入三角剖分 某个 Triangle 在三角剖分中当且仅当它的 has\_children 为 0 如果要找到三角形 u 的邻域,则枚举它的所有 u.edge[i].tri,该条边的两个点为 u.p[(i + 1) % 3], u.p[(i + 2) % 3] 通过三角剖分构造 V 图:连接相邻三角形外接圆圆心注意初始化内存池和 Triangulation :: LOTS 复杂度 O(n\log n)
```

```
const int N = 100000 + 5, MAX_TRIS = N * 6;
const double eps = 1e-6, PI = acos(-1.0);
struct P {
    double x,y; P():x(0),y(0){}
    P(double x, double y):x(x),y(y){}
    bool operator ==(P const& that)const {return x==that.x&&y==that.y;}
};
inline double sqr(double x) { return x*x; }
double dist_sqr(P const& a, P const& b){return sqr(a.x-b.x)+sqr(a.y-b.y);}
bool in_circumcircle(P const& p1, P const& p2, P const& p3, P const& p4) {//p4 in C(p1,p2,p3)}
```

```
double u11 = p1.x - p4.x, u21 = p2.x - p4.x, u31 = p3.x - p4.x;
      double u12 = p1.y - p4.y, u22 = p2.y - p4.y, u32 = p3.y - p4.y;
12
      double u13 = sqr(p1.x) - sqr(p4.x) + sqr(p1.y) - sqr(p4.y);
13
      double u23 = sqr(p2.x) - sqr(p4.x) + sqr(p2.y) - sqr(p4.y);
14
      double u33 = sqr(p3.x) - sqr(p4.x) + sqr(p3.y) - sqr(p4.y);
15
      16
        \rightarrow u11*u22*u33;
      return det > eps;
17
18
  \rightarrow (b.y-a.y)*(p.x-a.x);}
  typedef int SideRef; struct Triangle; typedef Triangle* TriangleRef;
  struct Edge {
21
      TriangleRef tri; SideRef side; Edge() : tri(0), side(0) {}
22
      Edge(TriangleRef tri, SideRef side) : tri(tri), side(side) {}
23
24 | };
  struct Triangle {
25
      P p[3]; Edge edge[3]; TriangleRef children[3]; Triangle() {}
26
      Triangle(P const& p0, P const& p1, P const& p2) {
27
          p[0] = p0; p[1] = p1; p[2] = p2;
28
          children[0] = children[1] = children[2] = 0;
30
      bool has_children() const { return children[0] != 0; }
31
      int num_children() const {
32
          return children[0] == 0 ? 0
33
              : children[1] == 0 ? 1
34
              : children[2] == 0 ? 2 : 3;
35
36
      bool contains(P const& q) const {
37
          double a=side(p[0],p[1],q), b=side(p[1],p[2],q), c=side(p[2],p[0],q);
38
39
          return a >= -eps && b >= -eps && c >= -eps;
40
  } triange_pool[MAX_TRIS], *tot_triangles;
  void set_edge(Edge a, Edge b) {
      if (a.tri) a.tri->edge[a.side] = b;
43
      if (b.tri) b.tri->edge[b.side] = a;
44
45 | }
  class Triangulation {
46
      public:
47
          Triangulation() {
48
              const double LOTS = 1e6; //初始为极大三角形
49
              the_root = new(tot_triangles++) Triangle(P(-LOTS,-LOTS),P(+LOTS,-LOTS),P(0,+LOTS));
50
51
          TriangleRef find(P p) const { return find(the_root,p); }
52
          void add_point(P const& p) { add_point(find(the_root,p),p); }
53
54
      private:
          TriangleRef the_root;
55
          static TriangleRef find(TriangleRef root, P const& p) {
56
              for(;;) {
57
                  if (!root->has_children()) return root;
58
                  else for (int i = 0; i < 3 && root->children[i] ; ++i)
59
                          if (root->children[i]->contains(p))
60
                              {root = root->children[i]; break;}
61
              }
62
          }
63
          void add_point(TriangleRef root, P const& p) {
64
              TriangleRef tab, tbc, tca;
65
              tab = new(tot_triangles++) Triangle(root->p[0], root->p[1], p);
66
              tbc = new(tot_triangles++) Triangle(root->p[1], root->p[2], p);
67
              tca = new(tot_triangles++) Triangle(root->p[2], root->p[0], p);
68
              set_edge(Edge(tab,0),Edge(tbc,1)); set_edge(Edge(tbc,0),Edge(tca,1));
69
```

```
set_edge(Edge(tca,0),Edge(tab,1)); set_edge(Edge(tab,2),root->edge[2]);
70
               set_edge(Edge(tbc,2),root->edge[0]); set_edge(Edge(tca,2),root->edge[1]);
71
               root->children[0]=tab; root->children[1]=tbc; root->children[2]=tca;
72
               flip(tab,2); flip(tbc,2); flip(tca,2);
73
74
           void flip(TriangleRef tri, SideRef pi) {
75
               TriangleRef trj = tri->edge[pi].tri; int pj = tri->edge[pi].side;
76
               if(!trj || !in_circumcircle(tri->p[0],tri->p[1],tri->p[2],trj->p[pj])) return;
77
               TriangleRef trk = new(tot_triangles++) Triangle(tri->p[(pi+1)%3], trj->p[pj],
78
                  → tri->p[pi]);
               TriangleRef trl = new(tot_triangles++) Triangle(trj->p[(pj+1)%3], tri->p[pi],
79
                  \hookrightarrow \text{trj->p[pj])};
               set_edge(Edge(trk,0), Edge(trl,0));
80
               set\_edge(Edge(trk,1), tri->edge[(pi+2)\%3]); set\_edge(Edge(trk,2), trj->edge[(pj+1)\%3]);
81
               set\_edge(Edge(trl,1),\ trj->edge[(pj+2)\%3]);\ set\_edge(Edge(trl,2),\ tri->edge[(pi+1)\%3]);
82
               tri->children[0]=trk; tri->children[1]=trl; tri->children[2]=0;
83
               trj->children[0]=trk; trj->children[1]=trl; trj->children[2]=0;
84
               flip(trk,1); flip(trk,2); flip(trl,1); flip(trl,2);
85
           }
86
87
   int n; P ps[N];
   void build(){
90
       tot_triangles = triange_pool; cin >> n;
       for(int i = 0; i < n; ++ i) scanf("%lf%lf",&ps[i].x,&ps[i].y);</pre>
91
       random_shuffle(ps, ps + n); Triangulation tri;
92
       for(int i = 0; i < n; ++ i) tri.add_point(ps[i]);</pre>
93
94
```

3.11 三维几何基础 (Grimoire)

```
struct P {
       double x, y, z;
2
       P(){}
3
       P(double _x, double _y, double _z):x(_x),y(_y),z(_z){}
4
       double len2(){
5
           return (x*x+y*y+z*z);
6
       double len(){
           return sqrt(x*x+y*y+z*z);
10
   bool operator==(P a,P b){
       return sgn(a.x-b.x)==0 && sgn(a.y-b.y)==0 && sgn(a.z-b.z)==0;
13
   }
14
   bool operator<(P a,P b){</pre>
15
       return sgn(a.x-b.x) ? a.x<b.x : (sgn(a.y-b.y)?a.y<b.y : a.z<b.z);
16
   }
17
   P operator+(P a,P b){
18
       return P(a.x+b.x,a.y+b.y,a.z+b.z);
19
20
   P operator-(P a,P b){
21
       return P(a.x-b.x,a.y-b.y,a.z-b.z);
22
23
  P operator*(P a,double b){
24
       return P(a.x*b,a.y*b,a.z*b);
25
  }
26
  P operator/(P a, double b){
27
       return P(a.x/b,a.y/b,a.z/b);
28
29 }
```

```
30 P operator*(const P &a, const P &b) {
                        return P(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
31
32 | }
33 double operator (const P &a, const P &b) {
                        return a.x*b.x+a.y*b.y+a.z*b.z;
34
35
          double dis(P a,P b){return (b-a).len();}
36
          double dis2(P a,P b){return (b-a).len2();}
          // 3D line intersect
38
         P intersect(const P &a0, const P &b0, const P &a1, const P &b1) {
39
                        double t = ((a0.x - a1.x) * (a1.y - b1.y) - (a0.y - a1.y) * (a1.x - b1.x)) / ((a0.x - b0.x) * (a1.y - b1.y) / ((a0.x - b0.x)) / ((a0.x -
40
                               \rightarrow (a1.y - b1.y) - (a0.y - b0.y) * (a1.x - b1.x));
                        return a0 + (b0 - a0) * t;
41
42 | }
          // area-line intersect
43
44 P intersect(const P &a, const P &b, const P &c, const P &10, const P &11) {
                        P p = (b-a)*(c-a); // 平面法向量
45
                        double t = (p^(a-10)) / (p^(11-10));
46
                        return 10 + (11 - 10) * t;
47
48
```

3.12 三维凸包 (Grimoire)

```
int mark[1005][1005],n, cnt;;
   double mix(const P &a, const P &b, const P &c) {
       return a^(b*c);
3
4
   double area(int a, int b, int c) {
       return ((info[b] - info[a])*(info[c] - info[a])).len();
6
  }
   double volume(int a, int b, int c, int d) {
       return mix(info[b] - info[a], info[c] - info[a], info[d] - info[a]);
9
10 }
   struct Face {
11
       int a, b, c; Face() {}
12
       Face(int a, int b, int c): a(a), b(b), c(c) {}
13
       int &operator [](int k) {
14
           if (k == 0) return a; if (k == 1) return b; return c;
       }
16
17 };
  vector <Face> face;
18
   inline void insert(int a, int b, int c) {
       face.push_back(Face(a, b, c));
20
21 }
   void add(int v) {
22
       vector <Face> tmp; int a, b, c; cnt++;
23
       for (int i = 0; i < SIZE(face); i++) {</pre>
24
           a = face[i][0]; b = face[i][1]; c = face[i][2];
25
           if (sgn(volume(v, a, b, c)) < 0)
26
           mark[a][b] = mark[b][a] = mark[b][c] = mark[c][b] = mark[c][a] = mark[a][c] = cnt;
27
           else tmp.push_back(face[i]);
28
       } face = tmp;
29
       for (int i = 0; i < SIZE(tmp); i++) {</pre>
30
           a = face[i][0]; b = face[i][1]; c = face[i][2];
31
           if (mark[a][b] == cnt) insert(b, a, v);
32
           if (mark[b][c] == cnt) insert(c, b, v);
33
```

3. Geometry 3.13. 三维绕轴旋转 (gy)

```
if (mark[c][a] == cnt) insert(a, c, v);
34
       }
35
   }
36
   int Find() {
37
       for (int i = 2; i < n; i++) {
38
           P ndir = (info[0] - info[i])*(info[1] - info[i]);
39
           if (ndir == P()) continue; swap(info[i], info[2]);
40
           for (int j = i + 1; j < n; j++) if (sgn(volume(0, 1, 2, j)) != 0) {
41
               swap(info[j], info[3]); insert(0, 1, 2); insert(0, 2, 1); return 1;
42
43
       }
44
45
       return 0;
46
   //find the weight center
47
   double calcDist(const P &p, int a, int b, int c) {
48
       return fabs(mix(info[a] - p, info[b] - p, info[c] - p) / area(a, b, c));
49
50
   //compute the minimal distance of center of any faces
51
   P findCenter() { //compute center of mass
52
       double totalWeight = 0;
53
       P center(.0, .0, .0);
       P first = info[face[0][0]];
       for (int i = 0; i < SIZE(face); ++i) {</pre>
56
           P p = (info[face[i][0]]+info[face[i][1]]+info[face[i][2]]+first)*.25;
57
           double weight = mix(info[face[i][0]] - first, info[face[i][1]] - first, info[face[i][2]] -
58

    first):
           totalWeight += weight; center = center + p * weight;
59
60
       center = center / totalWeight;
61
       return center;
62
63
64
   double minDis(P p) {
       double res = 1e100; //compute distance
65
       for (int i = 0; i < SIZE(face); ++i)</pre>
66
           res = min(res, calcDist(p, face[i][0], face[i][1], face[i][2]));
67
       return res;
68
  }
69
   void findConvex(P *info,int n) {
70
       sort(info, info + n); n = unique(info, info + n) - info;
71
       face.clear(); random_shuffle(info, info + n);
72
       if(!Find())return abort();
73
74
       memset(mark, 0, sizeof(mark)); cnt = 0;
75
       for (int i = 3; i < n; i++) add(i);
76
```

3.13 三维绕轴旋转 (gy)

右手大拇指指向 axis 方向, 四指弯曲方向旋转 w 弧度

```
Protate(const P& s, const P& axis, double w) {
    double x = axis.x, y = axis.y, z = axis.z;
    double s1 = x * x + y * y + z * z, ss1 = msqrt(s1),
        cosw = cos(w), sinw = sin(w);
    double a[4][4];
    memset(a, 0, sizeof a);
    a[3][3] = 1;
    a[0][0] = ((y * y + z * z) * cosw + x * x) / s1;
    a[0][1] = x * y * (1 - cosw) / s1 + z * sinw / ss1;
    a[0][2] = x * z * (1 - cosw) / s1 - y * sinw / ss1;
}
```

3.14. 几何知识 (gy) 3. Geometry

```
a[1][0] = x * y * (1 - cosw) / s1 - z * sinw / ss1;
       a[1][1] = ((x * x + z * z) * cosw + y * y) / s1;
12
       a[1][2] = y * z * (1 - cosw) / s1 + x * sinw / ss1;
13
       a[2][0] = x * z * (1 - cosw) / s1 + y * sinw / ss1;
14
       a[2][1] = y * z * (1 - cosw) / s1 - x * sinw / ss1;
15
       a[2][2] = ((x * x + y * y) * cos(w) + z * z) / s1;
16
       double ans[4] = \{0, 0, 0, 0\}, c[4] = \{s.x, s.y, s.z, 1\};
17
       for (int i = 0; i < 4; ++ i)
18
           for (int j = 0; j < 4; ++ j)
19
               ans[i] += a[j][i] * c[j];
20
       return P(ans[0], ans[1], ans[2]);
21
22
```

3.14 几何知识 (gy)

Pick theorem

顶点为整点的简单多边形,其面积 A,内部格点数 i,边上格点数 b 满足: $A=i+\frac{b}{2}-1$

欧拉示性数

- 三维凸包的顶点个数 V, 边数 E, 面数 F 满足: V-E+F=2
- 平面图的顶点个数 V , 边数 E , 平面被划分的区域数 F , 组成图形的连通部分的数目 C 满足: V-E+F=C+1

几何公式

• 三角形 半周长 $p = \frac{a+b+c}{2}$ 面积 $S = \frac{1}{2}aH_a = \frac{1}{2}ab \cdot \sin C = \sqrt{p(p-a)(p-b)(p-c)} = pr = \frac{abc}{4B}$ 中线长 $M_a = \frac{1}{2}\sqrt{2(b^2+c^2)-a^2} = \frac{1}{2}\sqrt{b^2+c^2+2bc\cdot\cos A}$ 角平分线长 $T_a = \frac{\sqrt{bc((b+c)^2 - a^2)}}{b+c} = \frac{2bc}{b+c} \cos \frac{A}{2}$ 高 $H_a = b \sin C = \sqrt{b^2 - (\frac{a^2 + b^2 - c^2}{2a})^2}$ 内切圆半径 $r = \frac{S}{p} = 4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}} = p\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}$ 外接圆半径 $R = \frac{abc}{4S} = \frac{a}{2\sin A}$ 旁切圆半径 $r_A = \frac{2S}{-a+b+c}$ 重心 $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$ $x_1^2 + y_1^2 \quad y_1 \quad 1 \mid$ x_1 $x_1^2 + y_1^2$ 1 $\begin{array}{cccc} x_2^2 + y_2^2 & y_2 & 1 \\ x_3^2 + y_3^2 & y_3 & 1 \end{array}$ x_2 $x_2^2 + y_2^2$ 1 x_3 $x_3^2 + y_3^2$ 外心 ($x_1 \quad y_1 \quad 1$ $x_1 \quad y_1 \quad 1$ $|x_2| |x_2| |y_2| |1$ $|x_2| |x_2| |y_2| |1$ x_3 y_3 1 $\mid x_3 \quad y_3 \quad 1 \mid$ 内心 $(\frac{ax_1+bx_2+cx_3}{a+b+c},\frac{ay_1+by_2+cy_3}{a+b+c})$ $x_2x_3 + y_2y_3$ 1 y_1 $x_2x_3 + y_2y_3$ x_1 1 $x_3x_1 + y_3y_1$ x_2 1 $x_3x_1 + y_3y_1$ 1 y_2 $x_1x_2 + y_1y_2$ $x_1x_2 + y_1y_2$ x_3 y_3 1 1 $x_1 \quad y_1$ $x_1 \quad y_1$ $|x_2| |x_2| |y_2|$ $|x_2| |x_2| |y_2| |1$ 1 $\begin{vmatrix} x_3 & y_3 & 1 \end{vmatrix}$ x_3 y_3 1 旁心 $\left(\frac{-ax_1+bx_2+cx_3}{-a+b+c}, \frac{-ay_1+by_2+cy_3}{-a+b+c}\right)$

3. Geometry

3.14. 几何知识 (gy)

• 员

弧长
$$l=rA$$

弦长 $a=2\sqrt{2hr-h^2}=2r\cdot\sin\frac{A}{2}$
弓形高 $h=r-\sqrt{r^2-\frac{a^2}{4}}=r(1-\cos\frac{A}{2})$
扇形面积 $S_1=\frac{1}{2}lr=\frac{1}{2}Ar^2$
弓形面积 $S_2=\frac{1}{2}r^2(A-\sin A)$

• Circles of Apollonius

已知三个两两相切的圆,半径为
$$r_1, r_2, r_3$$
 与它们外切的圆半径为
$$\frac{r_1r_2r_3}{r_1r_2+r_2r_3+r_3r_1-2\sqrt{r_1r_2r_3(r_1+r_2+r_3)}}$$
与它们内切的圆半径为
$$\frac{r_1r_2r_3}{r_1r_2+r_2r_3+r_3r_1+2\sqrt{r_1r_2r_3(r_1+r_2+r_3)}}$$

• 棱台

体积
$$V = \frac{1}{3}h(A_1 + A_2 + \sqrt{A_1A_2})$$

正棱台侧面积 $S = \frac{1}{2}(p_1 + p_2)l$, l 为侧高

• 球

体积
$$V = \frac{4}{3}\pi r^3$$

表面积 $S = 4\pi r^2$

球台

侧面积
$$S = 2\pi rh$$

体积 $V = \frac{1}{6}\pi h(3(r_1^2 + r_2^2) + h_h)$

球扇形

球面面积
$$S=2\pi rh$$
 体积 $V=\frac{2}{3}\pi r^2h=\frac{2}{3}\pi r^3h(1-\cos\varphi)$

• 球面三角形

考虑单位球上的球面三角形,
$$a,b,c$$
 表示三边长(弧所对球心角), A,B,C 表示三角大小(切线夹角) 余弦定理 $\cos a = \cos b \cdot \cos c + \sin a \cdot \sin b \cdot \cos A$ 正弦定理 $\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$ 球面面积 $S = A + B + C - \pi$

• 四面体

体积
$$V = \frac{1}{6} \left| \overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) \right|$$

Chapter 4

String

4.1 KMP (ct)

KMP

```
int main()
{
    for (int i = 2, j = 0; i <= n; ++i)
    {
        for (; j && s[j + 1] != s[i]; j = fail[j]);
        s[i] == s[j + 1] ? ++j : 0;
        fail[i] = j;
    }
    return 0;
}</pre>
```

exKMP

 $extend_i$ 表示 T 与 $S_{i,n}$ 的最长公共前缀

```
int next[maxn], extend[maxn], fail[maxn];
void getnext(R char *s, R int len)
3 {
       fail[1] = 0;
       R int p = 0;
       memset(next, 0, (len + 2) << 2);
       for (R int i = 2; i \le len; ++i)
           while (p && s[p + 1] != s[i]) p = fail[p];
           s[p + 1] == s[i] ? ++p : 0;
10
           fail[i] = p;
11
           p ? cmax(next[i - p + 1], p) : 0;
12
13
14
   void getextend(R char *s, R int lens, R char *t, R int lent)
15
16
17
       getnext(t, lent);
       R int a = 1, p = 0;
18
       for (R int i = 1; i <= lens; ++i)</pre>
19
20
           if (i + next[i - a + 1] - 1 >= p)
21
22
               cmax(p, i - 1);
```

4.2. AC 自动机

```
while (p < lens && p - i + 1 < lent && s[p + 1] == t[p - i + 2]) ++p;
a = i;
extend[i] = p - i + 1;
}
else extend[i] = next[i - a + 1];
}
}
</pre>
```

4.2 AC 自动机

4.3 后缀数组 (ct)

```
char s[maxn];
   int sa[maxn], rank[maxn], wa[maxn], wb[maxn], cnt[maxn], height[maxn];
  inline void build(int n, int m)
       int *x = wa, *y = wb, *t;
       for (int i = 1; i \le n; ++i) cnt[x[i] = s[i] - 'a' + 1]++;
6
       for (int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
       for (int i = n; i; --i) sa[cnt[x[i]]--] = i;
       for (int j = 1; j < n \mid | (j == 1 \&\& m < n); j <<= 1, t = x, x = y, y = t)
9
10
           memset(cnt + 1, 0, m << 2);
11
           int p = 0;
12
           for (int i = n - j + 1; i \le n; ++i) y[++p] = i;
13
           for (int i = 1; i <= n; ++i)
14
15
                ++cnt[x[i]];
16
                sa[i] > j ? y[++p] = sa[i] - j : 0;
17
           }
18
           for (int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
19
20
           for (int i = n; i; --i) sa[cnt[x[y[i]]]--] = y[i];
21
                    m = 0;
22
           for (int i = 1; i <= n; ++i)
               y[sa[i]] = (i == 1 \mid | x[sa[i]] != x[sa[i - 1]] \mid | x[sa[i - 1] + j] != x[sa[i] + j])?
23
                 \hookrightarrow ++m : m;
24
       for (int i = 1; i <= n; ++i) rank[sa[i]] = i;
25
       for (int i = 1, j, k = 0; i <= n; height[rank[i++]] = k)</pre>
26
           for (k ? --k : 0, j = sa[rank[i] - 1]; s[i + k] == s[j + k]; ++k);
27
```

4.4 后缀自动机 (ct,lhy)

后缀自动机 (lhy)

4.4. 后缀自动机 (ct,lhy) 4. String

```
else
11
          {
12
               SAM *q = p \rightarrow next[c];
13
               if (q \rightarrow val == p \rightarrow val + 1) np \rightarrow fa = q;
14
               else
15
               {
16
                     SAM *nq = ++tot;
17
                     memcpy(nq -> next, q -> next, sizeof nq -> next);
18
                     nq \rightarrow val = p \rightarrow val + 1;
19
20
                     nq \rightarrow fa = q \rightarrow fa;
21
                     q \rightarrow fa = np \rightarrow fa = nq;
                     for (; p \&\& p \rightarrow next[c] == q; p = p \rightarrow fa) p \rightarrow next[c] = nq;
22
               }
23
         }
24
   }
25
```

后缀自动机 (ct)

```
struct SAM {
        SAM *next[26], *fa;
2
        int val;
   } mem[maxn], *last = mem, *tot = mem;
   void extend(int c)
5
   {
6
        R SAM *p = last, *np;
        last = np = ++tot; np -> val = p -> val + 1;
        for (; p \&\& !p \rightarrow next[c]; p = p \rightarrow fa) p \rightarrow next[c] = np;
        if (!p) np -> fa = rt[id];
10
        else
11
        {
12
             SAM *q = p \rightarrow next[c];
13
             if (q -> val == p -> val + 1) np -> fa = q;
15
             else
             {
16
                  SAM *nq = ++tot;
17
                  memcpy(nq -> next, q -> next, sizeof nq -> next);
18
                  nq \rightarrow val = p \rightarrow val + 1;
19
                  nq \rightarrow fa = q \rightarrow fa;
20
21
                  q \rightarrow fa = np \rightarrow fa = nq;
22
                   for (; p \&\& p \rightarrow next[c] == q; p = p \rightarrow fa) p \rightarrow next[c] = nq;
             }
23
        }
24
   }
25
```

广义后缀自动机 (ct)

```
struct sam {
        sam *next[26], *fa;
        int val;
   } mem[maxn << 1], *tot = mem;</pre>
   inline sam *extend(R sam *p, R int c)
5
        if (p -> next[c])
            R sam *q = p \rightarrow next[c];
9
             if (q \rightarrow val == p \rightarrow val + 1)
10
                 return q;
11
             else
12
             {
13
```

4. String 4.5. Manacher (ct)

```
14
                    R sam *nq = ++tot;
                    memcpy(nq -> next, q -> next, sizeof nq -> next);
15
                   nq \rightarrow val = p \rightarrow val + 1;
16
                   nq \rightarrow fa = q \rightarrow fa;
17
                    q \rightarrow fa = nq;
18
                    for ( ; p \&\& p \rightarrow next[c] == q; p = p \rightarrow fa)
19
                         p -> next[c] = nq;
20
                    return nq;
21
              }
22
         }
23
24
         R sam *np = ++tot;
25
         np \rightarrow val = p \rightarrow val + 1;
         for ( ; p && !p -> next[c]; p = p -> fa) p -> next[c] = np;
26
         if (!p)
27
              np \rightarrow fa = mem;
28
         else
29
         {
30
              R sam *q = p \rightarrow next[c];
31
              if (q \rightarrow val == p \rightarrow val + 1)
32
                   np \rightarrow fa = q;
33
              else
34
35
              {
36
                    R sam *nq = ++tot;
                    memcpy(nq -> next, q -> next, sizeof nq -> next);
37
                   nq \rightarrow val = p \rightarrow val + 1;
38
                   nq \rightarrow fa = q \rightarrow fa;
39
                    q \rightarrow fa = np \rightarrow fa = nq;
40
                    for (; p \&\& p \rightarrow next[c] == q; p = p \rightarrow fa)
41
                         p -> next[c] = nq;
42
              }
43
         }
44
45
         return np;
46
```

4.5 Manacher (ct)

```
char str[maxn];
   int p1[maxn], p2[maxn], n;
  void manacher1()
3
       int mx = 0, id;
       for(int i = 1; i <= n; ++i)</pre>
           if (mx \ge i) p1[i] = dmin(mx - i, p1[(id << 1) - i]);
           else p1[i] = 1;
9
           for (; str[i + p1[i]] == str[i - p1[i]]; ++p1[i]);
10
           if (p1[i] + i - 1 > mx) id = i, mx = p1[i] + i - 1;
11
12
13
   void manacher2()
14
15
       int mx = 0, id;
16
       for(int i = 1; i <= n; i++)</pre>
17
18
           if (mx \ge i) p2[i] = dmin(mx - i, p2[(id << 1) - i]);
19
           else p2[i] = 0;
20
           for (; str[i + p2[i] + 1] == str[i - p2[i]]; ++p2[i]);
21
           if (p2[i] + i > mx) id = i, mx = p2[i] + i;
22
23
```

4.6. 回文树 (ct) 4. String

```
24 }
  int main()
26
       scanf("%s", str + 1);
27
       n = strlen(str + 1);
28
       str[0] = '#';
29
       str[n + 1] = '$';
30
       manacher1();
31
       manacher2();
32
33
       return 0;
```

4.6 回文树 (ct)

```
char str[maxn];
int next[maxn][26], fail[maxn], len[maxn], cnt[maxn], last, tot, n;
3 inline int new_node(int 1)
4 | {
       len[++tot] = 1;
       return tot;
  }
  inline void init()
9
  {
       tot = -1;
10
       new_node(0);
11
       new_node(-1);
12
       str[0] = -1;
13
       fail[0] = 1;
14
15
   inline int get_fail(int x)
16
17
       while (str[n - len[x] - 1] != str[n]) x = fail[x];
18
       return x;
19
20
  inline void extend(int c)
^{21}
   {
22
23
       int cur = get_fail(last);
24
       if (!next[cur][c])
25
26
           int now = new_node(len[cur] + 2);
27
           fail[now] = next[get_fail(fail[cur])][c];
28
           next[cur][c] = now;
29
30
       last = next[cur][c];
31
       ++cnt[last];
32
33
  long long ans;
34
   inline void count()
35
36
       for (int i = tot; i; --i)
37
38
           cnt[fail[i]] += cnt[i];
39
           cmax(ans, 111 * len[i] * cnt[i]);
40
41
42 | }
43 int main()
44 {
45
       scanf("%s", str + 1);
```

4. String 4.7. 最小表示法 (ct)

4.7 最小表示法 (ct)

```
int main()
  {
2
       int i = 0, j = 1, k = 0;
3
       while (i < n && j < n && k < n)
5
           int tmp = a[(i + k) \% n] - a[(j + k) \% n];
6
           if (!tmp) k++;
           else
9
               if (tmp > 0) i += k + 1;
10
               else j += k + 1;
11
               if (i == j) ++j;
12
               k = 0;
13
           }
14
15
       j = dmin(i, j);
16
       for (int i = j; i < n; ++i) printf("%d ", a[i]);
17
       for (int i = 0; i < j - 1; ++i) printf("%d ", a[i]);
       if (j > 0) printf("%d\n", a[j - 1]);
19
       return 0;
20
21
```

Chapter 5

Data Structure

5.1 莫队 (ct)

```
int size;
   struct Query {
       int 1, r, id;
       inline bool operator < (const Queuy &that) const {return 1 / size != that.1 / size ? 1 < that.1
        \hookrightarrow: ((1 / size) & 1 ? r < that.r : r > that.r);}
5 | } q[maxn];
6 int main()
7 | {
       size = (int) sqrt(n * 1.0);
       std::sort(q + 1, q + m + 1);
       int 1 = 1, r = 0;
10
       for (int i = 1; i <= m; ++i)
           for (; r < q[i].r; ) add(++r);
14
           for (; r > q[i].r; ) del(r--);
           for (; 1 < q[i].1; ) del(1++);
15
           for (; 1 > q[i].1; ) add(--1);
16
17
               write your code here.
18
19
20
       return 0;
21
```

5.2 ST 表 (ct)

```
int a[maxn], f[20][maxn], n;
int Log[maxn];

void build()
{
    for (int i = 1; i <= n; ++i) f[0][i] = a[i];

    int lim = Log[n];
    for (int j = 1; j <= lim; ++j)
    {
        int *fj = f[j], *fj1 = f[j - 1];
        for (int i = 1; i <= n - (1 << j) + 1; ++i)
        fj[i] = dmax(fj1[i], fj1[i + (1 << (j - 1))]);
}
</pre>
```

5. Data Structure 5.3. 带权并查集 (ct)

```
14 int Query(int 1, int r)
15 {
       int k = Log[r - 1 + 1];
16
       return dmax(f[k][1], f[k][r - (1 << k) + 1]);
17
   }
18
   int main()
19
   {
20
       scanf("%d", &n);
21
       Log[0] = -1;
22
       for (int i = 1; i <= n; ++i)
23
24
           scanf("%d", &a[i]);
25
           Log[i] = Log[i >> 1] + 1;
26
       }
27
       build();
28
       int q;
29
       scanf("%d", &q);
30
       for (; q; --q)
31
32
           int 1, r; scanf("%d%d", &1, &r);
33
           printf("%d\n", Query(1, r));
34
35
36
```

5.3 带权并查集 (ct)

```
struct edge
   {
2
       int a, b, w;
3
       inline bool operator < (const edge &that) const {return w > that.w;}
   int fa[maxn], f1[maxn], f2[maxn], f1cnt, f2cnt, val[maxn], size[maxn];
  int main()
       int n, m; scanf("%d%d", &n, &m);
9
       for (int i = 1; i <= m; ++i)
10
           scanf("%d%d%d", &e[i].a, &e[i].b, &e[i].w);
11
       for (int i = 1; i <= n; ++i) size[i] = 1;
12
       std::sort(e + 1, e + m + 1);
13
       for (int i = 1; i <= m; ++i)
14
       {
           int x = e[i].a, y = e[i].b;
16
           for (; fa[x]; x = fa[x]);
17
           for (; fa[y]; y = fa[y]);
18
           if (x != y)
19
20
               if (size[x] < size[y]) std::swap(x, y);</pre>
21
               size[x] += size[y];
22
               val[y] = e[i].w;
23
               fa[y] = x;
24
           }
25
       }
26
       int q; scanf("%d", &q);
27
       for (; q; --q)
28
29
           int a, b; scanf("%d%d", &a, &b); f1cnt = f2cnt = 0;
30
           for (; fa[a]; a = fa[a]) f1[++f1cnt] = a;
31
           for (; fa[b]; b = fa[b]) f2[++f2cnt] = b;
32
```

5.4. 可并堆 (ct) 5. Data Structure

```
if (a != b) {puts("-1"); continue;}
while (f1cnt && f2cnt && f1[f1cnt] == f2[f2cnt]) --f1cnt, --f2cnt;
int ret = 0x7ffffffff;
for (; f1cnt; --f1cnt) cmin(ret, val[f1[f1cnt]]);
for (; f2cnt; --f2cnt) cmin(ret, val[f2[f2cnt]]);
printf("%d\n", ret);
}
return 0;
}
```

5.4 可并堆 (ct)

```
struct Node {
       Node *ch[2];
       ll val; int size;
       inline void update()
           size = ch[0] \rightarrow size + ch[1] \rightarrow size + 1;
       }
  } mem[maxn], *rt[maxn];
  Node *merge(Node *a, Node *b)
9
10
       if (a == mem) return b;
11
       if (b == mem) return a;
12
       if (a -> val < b -> val) std::swap(a, b);
13
       // a -> pushdown();
14
15
       std::swap(a -> ch[0], a -> ch[1]);
16
       a -> ch[1] = merge(a -> ch[1], b);
17
       a -> update();
       return a;
```

5.5 zkw 线段树 (ct)

0-based

```
inline void build()
       for (int i = M - 1; i; --i) tr[i] = dmax(tr[i << 1], tr[i << 1 | 1]);
  }
5 inline void Change(int x, int v)
   {
       x += M; tr[x] = v; x >>= 1;
       for (; x; x >>= 1) tr[x] = dmax(tr[x << 1], tr[x << 1 | 1]);
  }
9
  inline int Query(int s, int t)
10
11
       int ret = -0x7fffffff;
12
       for (s = s + M - 1, t = t + M + 1; s ^ t ^ 1; s >>= 1, t >>= 1)
13
14
           if (~s & 1) cmax(ret, tr[s ^ 1]);
15
           if (t & 1) cmax(ret, tr[t ^{\hat{}} 1]);
16
       }
17
       return ret;
18
  ۱,
19
20 int main()
21 {
       int n; scanf("%d", &n);
```

5. Data Structure 5.6. 李超线段树 (ct)

```
for (M = 1; M < n; M <<= 1);
23
       for (int i = 0; i < n; ++i)
24
           scanf("%d", &tr[i + M]);
25
       for (int i = n; i < M; ++i) tr[i + M] = -0x7ffffffff;
26
       build();
27
       int q; scanf("%d", &q);
28
       for (; q; --q)
29
30
           int 1, r; scanf("%d%d", &1, &r); --1, --r;
31
           printf("%d\n", Query(1, r));
32
33
34
       return 0;
35
```

5.6 李超线段树 (ct)

```
1 int size [maxn], dep [maxn], son [maxn], fa [maxn], top [maxn], dfn [maxn], pos [maxn], timer, rig [maxn];
2 11 dis[maxn];
3 bool vis[maxn];
 4 // 树链剖分 begin
5 void dfs1(int x);
6 void dfs2(int x){cmax(rig[top[x]], dfn[x]);}
  inline int getlca(int a, int b);
   // 树链剖分 end
  struct Seg {
9
       Seg *ls, *rs;
10
       ll min, k, b, vl, vr;
11
       // min 表示区间最小值
12
       // k 表示区间内 直线标记的斜率
13
       // b 表示区间内 直线标记的截距
14
       // vl, vr 表示区间内 x 的最小值和最大值
15
       inline void update()
16
17
       {
           min = dmin(ls -> min, rs -> min);
18
           k > 0 ? cmin(min, k * vl + b) : cmin(min, k * vr + b);
19
20
   } ssegg[maxn << 2], *scnt = ssegg, *rt[maxn];</pre>
21
   void build(int 1, int r)
22
23
       R Seg *o = scnt; o \rightarrow k = 0; o \rightarrow b = inf;
24
       o -> vl = dis[pos[1]]; o -> vr = dis[pos[r]]; o -> min = inf;
       if (1 == r) return ;
26
27
       int mid = 1 + r >> 1;
       o -> ls = ++scnt; build(1, mid);
28
       o -> rs = ++scnt; build(mid + 1, r);
29
       o -> update();
30
31
   int ql, qr, qk;
32
33
   void modify(R Seg *o, int 1, int r, int k, ll b)
34
35
       int mid = 1 + r >> 1;
36
       if (ql <= l && r <= qr)
37
38
           if (1 == r)
39
40
               cmin(o \rightarrow min, k * o \rightarrow vl + b);
41
               return ;
42
```

5.6. 李超线段树 (ct) 5. Data Structure

```
}
43
             11
44
             val = o -> vl * k + b,
45
             var = o \rightarrow vr * k + b,
46
             vbl = o -> vl * o -> k + o -> b,
47
             vbr = o -> vr * o -> k + o -> b;
48
             if (val <= vbl && var <= vbr)
49
50
                  o \rightarrow k = k; o \rightarrow b = b;
51
                  o -> update();
52
                  return ;
53
             }
 54
             if (val \geq= vbl && var \geq= vbr) return ;
 55
             ll dam = dis[pos[mid]], vam = dam * k + b, vbm = dam * o \rightarrow k + o \rightarrow b;
56
             if (val >= vbl && vam <= vbm)</pre>
57
58
                  modify(o -> ls, l, mid, o -> k, o -> b);
59
                  o \rightarrow k = k; o \rightarrow b = b;
60
61
             else if (val <= vbl && vam >= vbm)
62
                  modify(o -> ls, l, mid, k, b);
             else
 65
             {
                  if (vam <= vbm && var >= vbr)
 66
                  {
 67
                      modify(o \rightarrow rs, mid + 1, r, o \rightarrow k, o \rightarrow b);
 68
                      o \rightarrow k = k; o \rightarrow b = b;
 69
70
                  else
71
 72
                      modify(o -> rs, mid + 1, r, k, b);
             }
 73
 74
             o -> update();
 75
             return ;
        }
 76
        if (ql <= mid) modify(o -> ls, l, mid, k, b);
77
        if (mid < qr) modify(o -> rs, mid + 1, r, k, b);
 78
        o -> update();
79
 80
81 | 11 query(R Seg *o, int 1, int r)
 82
        if (ql <= 1 && r <= qr) return o -> min;
 83
        int mid = 1 + r \gg 1; ll ret = inf, tmp;
 84
 85
        cmin(ret, dis[pos[dmax(ql, 1)]] * o \rightarrow k + o \rightarrow b);
 86
        cmin(ret, dis[pos[dmin(qr, r)]] * o \rightarrow k + o \rightarrow b);
 87
        if (ql <= mid) tmp = query(o -> ls, l, mid), cmin(ret, tmp);
        if (mid < qr) tmp = query(o -> rs, mid + 1, r), cmin(ret, tmp);
 88
        return ret;
 89
90
    inline void tr_modify(int x, int f)
91
92
        while (top[x] != top[f])
93
94
             ql = dfn[top[x]]; qr = dfn[x];
95
             modify(rt[top[x]], ql, rig[top[x]], qk, qb);
 96
             x = fa[top[x]];
97
        }
98
        ql = dfn[f]; qr = dfn[x];
99
        modify(rt[top[x]], dfn[top[x]], rig[top[x]], qk, qb);
100
101 }
inline ll tr_query(int s, int t)
103 {
```

5. Data Structure 5.6. 李超线段树 (ct)

```
11 ret = inf, tmp;
104
        while (top[s] != top[t])
105
106
            if (dep[top[s]] < dep[top[t]])</pre>
107
            {
108
                 ql = dfn[top[t]]; qr = dfn[t];
109
                 tmp = query(rt[top[t]], ql, rig[top[t]]);
110
                 cmin(ret, tmp);
111
                 t = fa[top[t]];
112
            }
113
            else
114
115
                 ql = dfn[top[s]]; qr = dfn[s];
116
                 tmp = query(rt[top[s]], ql, rig[top[s]]);
117
                 cmin(ret, tmp);
118
                 s = fa[top[s]];
119
            }
120
        }
121
        ql = dfn[s]; qr = dfn[t]; ql > qr ? std::swap(ql, qr), 1 : 0;
122
        tmp = query(rt[top[s]], dfn[top[s]], rig[top[s]]);
123
        cmin(ret, tmp);
124
125
        return ret;
   l٦
126
   int main()
^{127}
128
        int n, m; scanf("%d%d", &n, &m);
129
        for (int i = 1; i < n; ++i)
130
        {
131
            int a, b, w; scanf("%d%d%d", &a, &b, &w); link(a, b, w);
132
133
134
        dfs1(1); dfs2(1);
        for (int i = 1; i <= n; ++i)
135
            if (top[i] == i)
136
137
                 rt[i] = ++scnt;
138
                 build(dfn[i], rig[i]);
139
140
        for (; m; --m)
141
142
            int opt, s, t, lca; scanf("%d%d%d", &opt, &s, &t);
143
            lca = getlca(s, t);
144
            if (opt == 1)
145
146
            {
                 int a; ll b; scanf("%d%lld", &a, &b);
147
148
                 lca = getlca(s, t);
                 qk = -a; qb = a * dis[s] + b;
149
                 tr_modify(s, lca);
150
                 qk = a; qb = a * dis[s] - dis[lca] * 2 * a + b;
151
                 tr_modify(t, lca);
152
            }
153
            else
154
155
                 printf("%lld\n", tr_query(s, t));
156
            }
157
158
        return 0;
159
160
```

5.7. 吉利线段树 5. Data Structure

5.7 吉利线段树

5.8 二进制分组 (ct)

用线段树维护时间的操作序列,每次操作一个一个往线段树里面插,等到一个线段被插满的时候用归并来维护 区间的信息。查询的时候如果一个线段没有被插满就递归下去。定位到一个区间的时候在区间里面归并出来的 信息二分。

```
int x[maxn], tnum;
   struct Seg {
       int 1, r, a, b;
  p[maxn * 200];
  int lef[maxm << 2], rig[maxm << 2], pcnt, ta, tb, ql, qr, n, m, k, ans;</pre>
6 void update(R int o, R int 1, R int r)
       lef[o] = pcnt + 1;
       for (R int i = lef[o << 1], j = lef[o << 1 | 1], head = 1; i <= rig[o << 1] || j <= rig[o << 1
         \hookrightarrow | 1]; )
           if (p[i].r <= p[j].r)
10
11
               p[++pcnt] = (Seg) {head, p[i].r, 111 * p[i].a * p[j].a % m, (111 * p[j].a * p[i].b +
12
                  \rightarrow p[j].b) \% m;
                head = p[i].r + 1;
14
                p[i].r == p[j].r ? ++j : 0; ++i;
           }
15
           else
16
           {
17
                p[++pcnt] = (Seg) {head, p[j].r, 111 * p[i].a * p[j].a % m, (111 * p[j].a * p[i].b +
18
                  \rightarrow p[j].b) \% m};
                head = p[j].r + 1; ++j;
19
20
21
       rig[o] = pcnt;
22
23 int find(R int o, R int t, R int &s)
24
       R int 1 = lef[o], r = rig[o];
25
       while (1 < r)
26
       {
27
           R int mid = 1 + r >> 1;
28
           if (t <= p[mid].r) r = mid;</pre>
29
           else 1 = mid + 1;
30
         printf("%d %d t %d s %d %d %d\n", p[l].l, p[l].r, t, s, p[l].a, p[l].b);
32
       s = (111 * s * p[1].a + p[1].b) % m;
34
   void modify(R int o, R int 1, R int r, R int t)
35
   {
36
       if (1 == r)
37
       {
38
           lef[o] = pcnt + 1;
39
           ql > 1 ? p[++pcnt] = (Seg) {1, ql - 1, 1, 0}, 1: 0;
40
           p[++pcnt] = (Seg) {q1, qr, ta, tb};
41
           qr < n ? p[++pcnt] = (Seg) {qr + 1, n, 1, 0}, 1: 0;
42
           rig[o] = pcnt;
43
44
           return ;
       }
45
       R int mid = 1 + r >> 1;
46
       if (t <= mid) modify(o << 1, 1, mid, t);</pre>
47
       else modify(o << 1 | 1, mid + 1, r, t);
48
```

5. Data Structure 5.9. Splay (ct)

```
if (t == r) update(o, 1, r);
49
  }
50
   void query(R int o, R int 1, R int r)
51
52
       if (ql <= l && r <= qr)
53
54
           find(o, k, ans);
55
           return ;
56
57
       R int mid = 1 + r >> 1;
58
       if (ql <= mid) query(o << 1, 1, mid);</pre>
59
       if (mid < qr) query(o << 1 | 1, mid + 1, r);
60
61
   int main()
62
63
       R int type; scanf("%d%d%d", &type, &n, &m);
64
       for (R int i = 1; i <= n; ++i) scanf("%d", &x[i]);
65
       R int Q; scanf("%d", &Q);
66
       for (R int QQ = 1; QQ \leftarrow Q; ++QQ)
67
68
           R int opt, 1, r; scanf("%d%d%d", &opt, &1, &r);
69
           type & 1 ? 1 \hat{} ans, r \hat{} ans : 0;
70
           if (opt == 1)
71
            {
72
                scanf("%d%d", &ta, &tb); ++tnum; ql = 1; qr = r;
73
                modify(1, 1, Q, tnum);
74
           }
75
           else
76
77
                scanf("%d", \&k); type \& 1 ? k = ans : 0; ql = 1; qr = r;
78
79
                ans = x[k];
80
                query(1, 1, Q);
                printf("%d\n", ans);
81
           }
82
       }
83
       return 0;
84
85
```

5.9 Splay (ct)

指针版

```
struct Node *null;
   struct Node {
       Node *ch[2], *fa;
       int val; bool rev;
       inline bool type()
6
           return fa -> ch[1] == this;
7
       }
8
       inline void pushup()
9
10
11
       inline void pushdown()
12
13
           if (rev)
14
15
                ch[0] -> rev ^= 1;
16
                ch[1] -> rev ^= 1;
17
```

5.9. Splay (ct) 5. Data Structure

```
std::swap(ch[0], ch[1]);
                 rev ^= 1;
19
            }
20
        }
21
        inline void rotate()
22
23
            bool d = type(); Node *f = fa, *gf = f -> fa;
24
             (fa = gf, f \rightarrow fa != null) ? fa \rightarrow ch[f \rightarrow type()] = this : 0;
25
             (f \rightarrow ch[d] = ch[!d]) != null ? ch[!d] \rightarrow fa = f : 0;
26
             (ch[!d] = f) \rightarrow fa = this;
27
            f -> pushup();
28
29
        inline void splay()
30
31
            for (; fa != null; rotate())
32
                 if (fa -> fa != null)
33
                      (type() == fa -> type() ? fa : this) -> rotate();
34
35
        }
36
   } mem[maxn];
```

维修序列

```
int fa[maxn], ch[maxn][2], a[maxn], size[maxn], cnt;
int sum[maxn], lmx[maxn], rmx[maxn], mx[maxn], v[maxn], id[maxn], root;
  bool rev[maxn], tag[maxn];
4 inline void update(R int x)
   {
5
       R \text{ int } ls = ch[x][0], rs = ch[x][1];
       size[x] = size[ls] + size[rs] + 1;
       sum[x] = sum[ls] + sum[rs] + v[x];
       mx[x] = gmax(mx[ls], mx[rs]);
       cmax(mx[x], lmx[rs] + rmx[ls] + v[x]);
10
       lmx[x] = gmax(lmx[ls], sum[ls] + v[x] + lmx[rs]);
11
       rmx[x] = gmax(rmx[rs], sum[rs] + v[x] + rmx[ls]);
12
13
  inline void pushdown(R int x)
14
   {
15
       R int ls = ch[x][0], rs = ch[x][1];
16
       if (tag[x])
17
18
           rev[x] = tag[x] = 0;
           if (ls) tag[ls] = 1, v[ls] = v[x], sum[ls] = size[ls] * v[x];
20
           if (rs) tag[rs] = 1, v[rs] = v[x], sum[rs] = size[rs] * v[x];
21
           if (v[x] >= 0)
22
           {
23
               if (ls) lmx[ls] = rmx[ls] = mx[ls] = sum[ls];
24
               if (rs) lmx[rs] = rmx[rs] = mx[rs] = sum[rs];
25
           }
26
           else
27
28
               if (ls) lmx[ls] = rmx[ls] = 0, mx[ls] = v[x];
29
               if (rs) lmx[rs] = rmx[rs] = 0, mx[rs] = v[x];
30
           }
31
       }
32
       if (rev[x])
33
34
           rev[x] ^= 1; rev[ls] ^= 1; rev[rs] ^= 1;
35
           swap(lmx[ls], rmx[ls]);swap(lmx[rs], rmx[rs]);
36
           swap(ch[ls][0], ch[ls][1]); swap(ch[rs][0], ch[rs][1]);
37
```

5. Data Structure 5.9. Splay (ct)

```
}
38
  }
39
  inline void rotate(R int x)
40
41
       R int f = fa[x], gf = fa[f], d = ch[f][1] == x;
42
       if (f == root) root = x;
43
       (ch[f][d] = ch[x][d ^ 1]) > 0 ? fa[ch[f][d]] = f : 0;
44
       (fa[x] = gf) > 0? ch[gf][ch[gf][1] == f] = x : 0;
45
       fa[ch[x][d ^1] = f] = x;
46
47
       update(f);
48
   inline void splay(R int x, R int rt)
49
50
       while (fa[x] != rt)
51
52
           R int f = fa[x], gf = fa[f];
53
           if (gf != rt) rotate((ch[gf][1] == f) ^ (ch[f][1] == x) ? x : f);
54
           rotate(x);
55
56
       update(x);
57
   void build(R int 1, R int r, R int rt)
59
60
       if (1 > r) return;
61
       R int mid = 1 + r >> 1, now = id[mid], last = id[rt];
62
       if (1 == r)
63
       {
64
           sum[now] = a[1];
65
           size[now] = 1;
66
67
           tag[now] = rev[now] = 0;
68
           if (a[1] >= 0) lmx[now] = rmx[now] = mx[now] = a[1];
           else lmx[now] = rmx[now] = 0, mx[now] = a[1];
69
       }
70
71
       else
       {
72
           build(1, mid - 1, mid);
73
           build(mid + 1, r, mid);
74
75
       v[now] = a[mid];
76
       fa[now] = last;
77
       update(now);
78
       ch[last][mid >= rt] = now;
79
80
  }
   int find(R int x, R int rank)
81
82
       if (tag[x] || rev[x]) pushdown(x);
83
       R int ls = ch[x][0], rs = ch[x][1], lsize = size[ls];
84
       if (lsize + 1 == rank) return x;
85
       if (lsize >= rank)
86
           return find(ls, rank);
87
88
           return find(rs, rank - lsize - 1);
89
90
   inline int prepare(R int 1, R int tot)
91
92
       R int x = find(root, 1 - 1), y = find(root, 1 + tot);
93
       splay(x, 0);
94
       splay(y, x);
95
       return ch[y][0];
96
97
98 std::queue <int> q;
```

5.9. Splay (ct) 5. Data Structure

```
99 inline void Insert(R int left, R int tot)
   {
100
        for (R int i = 1; i <= tot; ++i ) a[i] = FastIn();
101
        for (R int i = 1; i <= tot; ++i )</pre>
102
            if (!q.empty()) id[i] = q.front(), q.pop();
103
            else id[i] = ++cnt;
104
        build(1, tot, 0);
105
        R int z = id[(1 + tot) >> 1];
106
        R int x = find(root, left), y = find(root, left + 1);
107
        splay(x, 0);
108
        splay(y, x);
109
        fa[z] = y;
110
        ch[y][0] = z;
111
        update(y);
112
        update(x);
113
114
   void rec(R int x)
115
   {
116
        if (!x) return ;
117
        R \text{ int } ls = ch[x][0], rs = ch[x][1];
118
        rec(ls); rec(rs); q.push(x);
119
        fa[x] = ch[x][0] = ch[x][1] = 0;
120
        tag[x] = rev[x] = 0;
121
122
   inline void Delete(R int 1, R int tot)
123
124
        R int x = prepare(1, tot), f = fa[x];
125
        rec(x); ch[f][0] = 0;
126
        update(f); update(fa[f]);
127
128
129
   inline void Makesame(R int 1, R int tot, R int val)
130
        R int x = prepare(1, tot), y = fa[x];
131
        v[x] = val; tag[x] = 1; sum[x] = size[x] * val;
132
        if (val >= 0) lmx[x] = rmx[x] = mx[x] = sum[x];
133
        else lmx[x] = rmx[x] = 0, mx[x] = val;
134
        update(y); update(fa[y]);
135
136
   inline void Reverse(R int 1, R int tot)
137
138
        R int x = prepare(1, tot), y = fa[x];
139
        if (!tag[x])
140
141
        {
            rev[x] ^= 1;
142
143
            swap(ch[x][0], ch[x][1]);
            swap(lmx[x], rmx[x]);
144
            update(y); update(fa[y]);
145
146
147
   inline void Query(R int 1, R int tot)
148
149
        R int x = prepare(1, tot);
150
        printf("%d\n",sum[x]);
151
152
   #define inf ((1 << 30))
153
154 | int main()
155
        R int n = FastIn(), m = FastIn(), 1, tot, val;
156
        R char op, op2;
157
        mx[0] = a[1] = a[n + 2] = -inf;
158
        for (R int i = 2; i <= n + 1; i++ )
```

5. Data Structure 5.10. Treap (ct)

```
{
160
            a[i] = FastIn();
161
        }
162
        for (R int i = 1; i <= n + 2; ++i) id[i] = i;
163
        n += 2; cnt = n; root = (n + 1) >> 1;
164
        build(1, n, 0);
165
        for (R int i = 1; i <= m; i++ )
166
167
            op = getc();
168
            while (op < 'A' \mid \mid op > 'Z') op = getc();
169
170
            getc(); op2 = getc();getc();getc();getc();
            if (op == 'M' && op2 == 'X')
171
^{172}
                printf("%d\n",mx[root] );
173
            }
174
            else
175
            {
176
                1 = FastIn() + 1; tot = FastIn();
177
                if (op == 'I') Insert(1, tot);
178
                if (op == 'D') Delete(1, tot);
179
                if (op == 'M') val = FastIn(), Makesame(1, tot, val);
180
                if (op == 'R')
181
                    Reverse(1, tot);
182
                if (op == 'G')
183
                     Query(1, tot);
184
            }
185
        }
186
        return 0;
187
188
```

5.10 Treap (ct)

```
struct Treap {
       Treap *ls, *rs;
2
       int size;
3
       bool rev;
4
       inline void update()
5
6
           size = ls -> size + rs -> size + 1;
       }
       inline void set_rev()
10
       {
           rev ^= 1;
11
           std::swap(ls, rs);
12
       }
13
       inline void pushdown()
14
       {
15
           if (rev)
16
17
               ls -> set_rev();
18
               rs -> set_rev();
19
20
               rev = 0;
           }
21
       }
22
  } mem[maxn], *root, *null = mem;
23
  struct Pair {
24
       Treap *fir, *sec;
25
26 };
27 Treap *build(R int 1, R int r)
```

5.10. Treap (ct) 5. Data Structure

```
28 {
       if (1 > r) return null;
       R int mid = 1 + r >> 1;
30
       R Treap *now = mem + mid;
31
       now \rightarrow rev = 0;
32
       now -> ls = build(1, mid - 1);
33
       now -> rs = build(mid + 1, r);
34
       now -> update();
35
       return now;
36
37
  inline Treap *Find_kth(R Treap *now, R int k)
38
39
       if (!k) return mem;
40
       if (now -> ls -> size >= k) return Find_kth(now -> ls, k);
41
       else if (now -> ls -> size + 1 == k) return now;
42
       else return Find_kth(now -> rs, k - now -> ls -> size - 1);
43
44
Treap *merge(R Treap *a, R Treap *b)
46
       if (a == null) return b;
47
       if (b == null) return a;
48
       if (rand() \% (a \rightarrow size + b \rightarrow size) < a \rightarrow size)
49
50
            a -> pushdown();
51
            a -> rs = merge(a -> rs, b);
52
            a -> update();
53
            return a;
54
       }
55
56
       else
57
58
            b -> pushdown();
            b -> ls = merge(a, b -> ls);
            b -> update();
60
            return b;
61
62
63 | }
64 Pair split(R Treap *now, R int k)
65 {
       if (now == null) return (Pair) {null, null};
66
       R Pair t = (Pair) {null, null};
67
       now -> pushdown();
       if (k \le now \rightarrow ls \rightarrow size)
70
           t = split(now -> ls, k);
71
           now -> ls = t.sec;
72
           now -> update();
73
            t.sec = now;
74
75
       else
76
77
            t = split(now \rightarrow rs, k - now \rightarrow ls \rightarrow size - 1);
78
            now -> rs = t.fir;
79
           now -> update();
80
            t.fir = now;
81
82
       return t;
83
84 }
s5 inline void set_rev(int 1, int r)
86 {
       R Pair x = split(root, 1 - 1);
```

```
88     R Pair y = split(x.sec, r - 1 + 1);
89     y.fir -> set_rev();
90     root = merge(x.fir, merge(y.fir, y.sec));
91 }
```

5.11 可持久化平衡树 (ct)

```
char str[maxn];
2
   struct Treap
3
       Treap *ls, *rs;
       char data; int size;
       inline void update()
            size = ls -> size + rs -> size + 1;
  } *root[maxn], mem[maxcnt], *tot = mem, *last = mem, *null = mem;
10
  inline Treap* new_node(char ch)
11
12
       *++tot = (Treap) {null, null, ch, 1};
       return tot;
15
  }
   struct Pair
16
17
       Treap *fir, *sec;
18
  };
19
   inline Treap *copy(Treap *x)
20
21
       if (x == null) return null;
22
       if(x > last) return x;
23
24
       *++tot = *x;
25
       return tot;
26
  Pair Split(Treap *x, int k)
27
28
       if (x == null) return (Pair) {null, null};
29
       Pair y;
30
       Treap *nw = copy(x);
31
       if (nw \rightarrow ls \rightarrow size >= k)
32
33
           y = Split(nw -> ls, k);
35
           nw -> ls = y.sec;
           nw -> update();
36
37
           y.sec = nw;
       }
38
       else
39
       {
40
           y = Split(nw \rightarrow rs, k - nw \rightarrow ls \rightarrow size - 1);
41
           nw -> rs = y.fir;
42
           nw -> update();
43
            y.fir = nw;
44
45
46
       return y;
47
   Treap *Merge(Treap *a, Treap *b)
48
49
       if (a == null) return b;
50
       if (b == null) return a;
51
       Treap *nw;
52
```

```
if (rand() \% (a -> size + b -> size) < a -> size)
54
            nw = copy(a);
55
            nw -> rs = Merge(nw -> rs, b);
56
        }
57
        else
58
        {
59
            nw = copy(b);
60
            nw -> ls = Merge(a, nw -> ls);
61
62
        nw -> update();
63
64
        return nw;
65
   Treap *Build(int 1, int r)
66
67
        if (1 > r) return null;
68
        R int mid = 1 + r >> 1;
69
        Treap *nw = new_node(str[mid]);
70
        nw -> ls = Build(1, mid - 1);
71
       nw -> rs = Build(mid + 1, r);
72
        nw -> update();
74
        return nw;
75 }
76 int now;
77 inline void Insert(int k, char ch)
78
        Pair x = Split(root[now], k);
79
        Treap *nw = new_node(ch);
80
        root[++now] = Merge(Merge(x.fir, nw), x.sec);
81
82
83
   inline void Del(int 1, int r)
84
        Pair x = Split(root[now], 1 - 1);
85
        Pair y = Split(x.sec, r - 1 + 1);
86
        root[++now] = Merge(x.fir, y.sec);
87
   }
88
   inline void Copy(int 1, int r, int 11)
89
90
        Pair x = Split(root[now], 1 - 1);
91
        Pair y = Split(x.sec, r - 1 + 1);
92
        Pair z = Split(root[now], 11);
93
        Treap *ans = y.fir;
95
        root[++now] = Merge(Merge(z.fir, ans), z.sec);
96
   void Print(Treap *x, int 1, int r)
97
98
   {
        if (!x) return;
99
        if (1 > r) return;
100
        R int mid = x \rightarrow ls \rightarrow size + 1;
101
        if (r < mid)
102
103
            Print(x -> ls, l, r);
104
            return ;
105
        }
106
       if (1 > mid)
107
108
            Print(x -> rs, 1 - mid, r - mid);
109
            return ;
110
111
        Print(x -> ls, l, mid - 1);
112
        printf("%c", x -> data );
113
```

5. Data Structure 5.12. CDQ 分治 (ct)

```
Print(x \rightarrow rs, 1, r - mid);
114
115 }
   void Printtree(Treap *x)
116
    {
117
        if (!x) return;
118
        Printtree(x -> ls);
119
        printf("%c", x -> data );
120
        Printtree(x -> rs);
121
122
123
    int main()
124
        srand(time(0) + clock());
125
        null \rightarrow ls = null \rightarrow rs = null; null \rightarrow size = 0; null \rightarrow data = 0;
126
        int n = F();
127
        gets(str + 1);
128
        int len = strlen(str + 1);
129
        root[0] = Build(1, len);
130
        while (1)
131
        {
132
             last = tot;
133
             R char opt = getc();
134
             while (opt < 'A' || opt > 'Z')
135
136
                  if (opt == EOF) return 0;
137
                  opt = getc();
138
             }
139
             if (opt == 'I')
140
             {
141
                  R int x = F();
142
143
                  R char ch = getc();
144
                  Insert(x, ch);
             }
145
             else if (opt == 'D')
146
147
                  R int 1 = F(), r = F();
148
                  Del(1, r);
149
             }
150
             else if (opt == 'C')
151
152
                  R \text{ int } x = F(), y = F(), z = F();
153
                  Copy(x, y, z);
154
             }
155
             else if (opt == 'P')
156
157
             {
                  R \text{ int } x = F(), y = F(), z = F();
158
                  Print(root[now - x], y, z);
159
                  puts("");
160
161
162
        return 0;
163
164
```

5.12 CDQ 分治 (ct)

```
struct event
{
    int x, y, id, opt, ans;
} t[maxn], q[maxn];
void cdq(int left, int right)
```

5.13. Bitset (ct) 5. Data Structure

```
if (left == right) return ;
       R int mid = left + right >> 1;
       cdq(left, mid);
9
       cdq(mid + 1, right);
10
       //分成若干个子问题
11
12
       ++now;
       for (int i = left, j = mid + 1; j \le right; ++j)
13
14
           for (; i \le mid \&\& q[i].x \le q[j].x; ++i)
15
16
               if (!q[i].opt)
                   add(q[i].y, q[i].ans);
17
           //考虑前面的修改操作对后面的询问的影响
18
           if (q[j].opt)
19
               q[j].ans += query(q[j].y);
20
       }
21
22
       R int i, j, k = 0;
       //以下相当于归并排序
23
       for (i = left, j = mid + 1; i <= mid \&\& j <= right; )
24
           if (q[i].x \le q[j].x)
               t[k++] = q[i++];
27
           else
28
               t[k++] = q[j++];
29
30
       for (; i <= mid; )</pre>
31
          t[k++] = q[i++];
32
       for (; j <= right; )</pre>
33
          t[k++] = q[j++];
34
35
       for (int i = 0; i < k; ++i)
           q[left + i] = t[i];
36
```

5.13 Bitset (ct)

```
namespace Game {
2 #define maxn 300010
3 #define maxs 30010
4 uint b1[32][maxs], b2[32][maxs];
5 | int popcnt[256];
6 inline void set(R uint *s, R int pos)
       s[pos >> 5] = 1u << (pos & 31);
9 }
10 inline int popcount(R uint x)
11 | {
       return popcnt[x >> 24 \& 255]
12
            + popcnt[x >> 16 & 255]
13
            + popcnt[x >> 8 & 255]
14
            + popcnt[x
                             & 255];
15
16
   void main() {
17
       int n, q;
18
       scanf("%d%d", &n, &q);
19
       char *s1 = new char[n + 1];
20
       char *s2 = new char[n + 1];
21
       scanf("%s%s", s1, s2);
22
```

5. Data Structure 5.14. 斜率优化 (ct)

```
uint *anss = new uint[q];
23
       for (R int i = 1; i < 256; ++i) popcnt[i] = popcnt[i >> 1] + (i & 1);
24
       #define modify(x, _p)\
25
26
           for (R \ int \ j = 0; \ j < 32 \& j <= \_p; \ ++j) \setminus
27
                set(b##x[j], p - j); \
28
29
       for (R int i = 0; i < n; ++i)
30
           if (s1[i] == '0') modify(1, 3 * i)
31
           else if (s1[i] == '1') modify(1, 3 * i + 1)
32
           else modify(1, 3 * i + 2)
33
       for (R int i = 0; i < n; ++i)
34
           if (s2[i] == '1') \mod ify(2, 3 * i)
35
           else if (s2[i] == '2') \mod ify(2, 3 * i + 1)
36
           else modify(2, 3 * i + 2)
37
       for (int Q = 0; Q < q; ++Q) {
38
           R int x, y, 1;
39
           scanf("%d%d%d", &x, &y, &1); x *= 3; y *= 3; 1 *= 3;
40
           uint *f1 = b1[x \& 31], *f2 = b2[y \& 31], ans = 0;
41
           R int i = x \gg 5, j = y \gg 5, p, lim;
42
           for (p = 0, lim = 1 >> 5; p + 8 < lim; p += 8, i += 8, j += 8)
43
44
               ans += popcount(f1[i + 0] & f2[j + 0]);
45
               ans += popcount(f1[i + 1] \& f2[j + 1]);
46
                ans += popcount(f1[i + 2] & f2[j + 2]);
47
                ans += popcount(f1[i + 3] & f2[j + 3]);
48
49
                ans += popcount(f1[i + 4] & f2[j + 4]);
50
                ans += popcount(f1[i + 5] & f2[j + 5]);
                ans += popcount(f1[i + 6] & f2[j + 6]);
51
                ans += popcount(f1[i + 7] & f2[j + 7]);
52
           }
53
           for (; p < lim; ++p, ++i, ++j) ans += popcount(f1[i] & f2[j]);
54
           R uint S = (1u << (1 & 31)) - 1;
55
           ans += popcount(f1[i] & f2[j] & S);
56
           anss[Q] = ans;
57
58
       output_arr(anss, q * sizeof(uint));
59
   }
60
  }
61
```

5.14 斜率优化 (ct)

对于斜截式 y = kx + b,如果把 k_i 看成斜率,那 dp 时需要最小化截距,把斜截式转化为 $b_i = -k_i x_j + y_j$,就可以把可以转移到这个状态的点看作是二维平面上的点 $(-x_j, y_j)$,问题转化为了在平面上找一个点使得斜率为 k_i 的直线的截距最小。这样的点一定在凸包上,这样的点在凸包上和前一个点的斜率 $\leq k_i$,和后面一个点的斜率 $\geq k_i$ 。这样就可以在凸包上二分来加速转移。当点的横坐标 x_i 和斜率 k_i 都是单调的,还可以用单调队列来维护凸包。

单调队列

```
int a[maxn], n, 1;
ll sum[maxn], f[maxn];
inline ll sqr(ll x) {return x * x;}
#define y(_i) (f[_i] + sqr(sum[_i] + l))
```

5.14. 斜率优化 (ct) 5. Data Structure

```
5 \mid \#define \ x(\_i) \ (2 * sum[\_i])
6 inline double slope(int i, int j)
7 | {
       return (y(i) - y(j)) / (1.0 * (x(i) - x(j)));
  }
9
int q[maxn];
11 int main()
12
   {
       n = F(), 1 = F() + 1;
13
       for (int i = 1; i <= n; ++i) a[i] = F(), sum[i] = sum[i - 1] + a[i];
14
15
       for (int i = 1; i <= n; ++i) sum[i] += i;
       f[0] = 0;
16
17
       memset(f, 63, size of (f));
18
       for (int i = 1; i \le n; ++i)
19
20
           int pos;
21
           for (int j = 0; j < i; ++j)
22
23
                long long tmp = f[j] + sqr(sum[i] - sum[j] - l);
               f[i] > tmp ? f[i] = tmp, pos = j : 0;
26
27
28
       int h = 1, t = 1;
29
       q[h] = 0;
30
       for (int i = 1; i <= n; ++i)
31
32
           while (h < t \&\& slope(q[h], q[h + 1]) \le sum[i]) ++h;
33
           f[i] = f[q[h]] + sqr(sum[i] - sum[q[h]] - 1);
34
           while (h < t && slope(q[t - 1], i) < slope(q[t - 1], q[t])) --t;
35
36
           q[++t] = i;
37
       printf("%lld\n", f[n] );
38
       return 0;
39
40
```

线段树

```
2 int dep[maxn], fa[maxn], son[maxn], dfn[maxn], timer, pos[maxn], size[maxn], n, top[maxn];
3 11 d[maxn], p[maxn], q[maxn], l[maxn], f[maxn];
4 int stcnt;
5 void dfs1(int x);
6 void dfs2(int x);
7 #define P pair<ll, ll>
  #define mkp make_pair
  #define x first
  #define y second
10
   #define inf ~OULL >> 2
11
  inline double slope(const P &a, const P &b)
12
13
       return (b.y - a.y) / (double) (b.x - a.x);
14
  }
15
  struct Seg
16
17
       vector<P> v;
18
       inline void add(const P &that)
19
20
           int top = v.size();
21
```

5. Data Structure 5.14. 斜率优化 (ct)

```
P *v = this \rightarrow v.data() - 1;
22
           while (top > 1 && slope(v[top - 1], v[top]) > slope(v[top], that)) --top;
23
           this -> v.erase(this -> v.begin() + top, this -> v.end());
24
           this -> v.push_back(that);
25
26
       inline ll query(ll k)
27
28
           if (v.empty()) return inf;
29
           int 1 = 0, r = v.size() - 1;
30
           while (1 < r)
31
32
                int mid = 1 + r >> 1;
33
                if (slope(v[mid], v[mid + 1]) > k) r = mid;
34
                else l = mid + 1;
35
36
           cmin(1, v.size() - 1);
37
           return v[1].y - v[1].x * k;
38
39
  } tr[1 << 19];
40
   void Change(int o, int 1, int r, int x, P val)
41
42
       tr[o].add(val);
43
       if (1 == r) return;
44
       int mid = 1 + r >> 1;
45
       if (x <= mid) Change(o << 1, 1, mid, x, val);</pre>
46
       else Change(o << 1 | 1, mid + 1, r, x, val);
47
48
   int ql, qr, now, tmp;
49
   ll len;
50
   inline 11 Query(int o, int 1, int r)
51
52
       if (ql \le l \&\& r \le qr \&\& d[tmp] - d[pos[r]] > len) return inf;
53
       if (q1 \le 1 \&\& r \le qr \&\& d[tmp] - d[pos[1]] \le len)
54
           return tr[o].query(p[now]);
55
       11 ret = inf, temp;
56
       int mid = 1 + r >> 1;
57
       if (ql <= mid) temp = Query(o << 1, 1, mid), cmin(ret, temp);</pre>
58
       if (mid < qr) temp = Query(o << 1 | 1, mid + 1, r), cmin(ret, temp);
59
       return ret;
60
61
   inline ll calc()
62
63
       ll ret = inf;
65
       ll lx = l[now];
66
       tmp = now;
       while (lx \geq= 0 && tmp)
67
68
           len = lx;
69
           ql = dfn[top[tmp]];
70
           qr = dfn[tmp];
71
           11 g = Query(1, 1, n);
72
           cmin(ret, g);
73
           lx -= d[tmp] - d[fa[top[tmp]]];
74
           tmp = fa[top[tmp]];
75
76
       return ret;
77
78
  int main()
79
   {
80
       n = F(); int t = F();
81
       for (int i = 2; i <= n; ++i)
```

5.15. 树分块 5. Data Structure

```
{
           fa[i] = F(); ll dis = F(); p[i] = F(), q[i] = F(), l[i] = F();
84
           link(fa[i], i); d[i] = d[fa[i]] + dis;
85
       }
86
       dfs1(1);
87
       dfs2(1);
88
       Change(1, 1, n, 1, mkp(0, 0));
89
       for (now = 2; now \le n; ++now)
90
91
           f[now] = calc() + q[now] + d[now] * p[now];
92
           Change(1, 1, n, dfn[now], mkp(d[now], f[now]));
93
           printf("%lld\n", f[now] );
94
       }
95
       return 0;
96
97
```

5.15 树分块

树分块套分块:给定一棵有点权的树,每次询问链上不同点权个数

```
int col[maxn], hash[maxn], hcnt, n, m;
1 int near[maxn];
3 bool vis[maxn];
4 int mark[maxn], mcnt, tcnt[maxn], tans;
5 int pre[256] [maxn];
6 struct Block {
       int cnt[256];
  } mem[maxn], *tot = mem;
  inline Block *nw(Block *last, int v)
9
10
       Block *ret = ++tot;
11
       memcpy(ret -> cnt, last -> cnt, sizeof (ret -> cnt));
12
13
       ++ret -> cnt[v & 255];
14
       return ret;
  lγ
15
   struct Arr {
16
       Block *b[256];
17
       inline int v(int c) {return b[c >> 8] -> cnt[c & 255];}
18
  } c[maxn];
19
  inline Arr cp(Arr last, int v)
20
21
       Arr ret;
       memcpy(ret.b, last.b, sizeof (ret.b));
23
       ret.b[v >> 8] = nw(last.b[v >> 8], v);
       return ret;
25
  }
26
   void bfs()
27
   {
28
       int head = 0, tail = 1; q[1] = 1;
29
       while (head < tail)
30
31
           int now = q[++head]; size[now] = 1; vis[now] = 1; dep[now] = dep[fa[now]] + 1;
32
           for (Edge *iter = last[now]; iter; iter = iter -> next)
33
               if (!vis[iter -> to])
                   fa[q[++tail] = iter -> to] = now;
35
36
       for (int i = n; i; --i)
37
       {
38
           int now = q[i];
39
           size[fa[now]] += size[now];
40
```

5. Data Structure 5.15. 树分块

```
size[son[fa[now]]] < size[now] ? son[fa[now]] = now : 0;</pre>
41
       }
42
       for (int i = 0; i < 256; ++i) c[0].b[i] = mem;
43
       for (int i = 1; i <= n; ++i)
44
       {
45
            int now = q[i];
46
            c[now] = cp(c[fa[now]], col[now]);
47
            top[now] = son[fa[now]] == now ? top[fa[now]] : now;
48
49
50
   inline int getlca(int a, int b) ;
51
   void dfs_init(int x)
52
53
       vis[x] = 1; ++tcnt[col[x]] == 1 ? ++tans : 0;
54
       pre[mcnt][x] = tans;
55
       for (Edge *iter = last[x]; iter; iter = iter -> next)
56
           if (!vis[iter -> to]) dfs_init(iter -> to);
57
       --tcnt[col[x]] == 0 ? --tans : 0;
58
59
  int jp[maxn];
60
61 int main()
62
       scanf("%d%d", &n, &m);
63
       for (int i = 1; i <= n; ++i) scanf("%d", &col[i]), hash[++hcnt] = col[i];
64
       std::sort(hash + 1, hash + hcnt + 1);
65
       hcnt = std::unique(hash + 1, hash + hcnt + 1) - hash - 1;
66
       for (int i = 1; i \le n; ++i) col[i] = std::lower_bound(hash + 1, hash + hcnt + 1, col[i]) -
67
         \hookrightarrow hash;
       for (int i = 1; i < n; ++i)
68
69
70
            int a, b; scanf("%d%d", &a, &b); link(a, b);
71
       }
72
       bfs();
       int D = sqrt(n);
73
       for (int i = 1; i <= n; ++i)
74
            if (dep[i] \% D == 0 \&\& size[i] >= D)
75
            {
76
                memset(vis, 0, n + 1);
77
                mark[i] = ++mcnt;
78
                dfs_init(i);
79
80
       for (int i = 1; i <= n; ++i) near[q[i]] = mark[q[i]] ? q[i] : near[fa[q[i]]];</pre>
81
       int ans = 0;
82
83
       memset(vis, 0, n + 1);
84
       for (; m; --m)
85
           int x, y; scanf("%d%d", &x, &y);
86
           x = ans; ans = 0;
87
           int lca = getlca(x, y);
88
            if (dep[near[x]] < dep[lca]) std::swap(x, y);</pre>
89
            if (dep[near[x]] >= dep[lca])
90
91
                Arr *_a = c + near[x];
92
                Arr *_b = c + y;
93
                Arr *_c = c + lca;
94
                Arr *_d = c + fa[lca];
95
                for (; !mark[x]; x = fa[x])
96
                     if (a \rightarrow v(col[x]) + b \rightarrow v(col[x]) = c \rightarrow v(col[x]) + d \rightarrow v(col[x]) &&
97
                       \hookrightarrow !vis[col[x]])
                         vis[jp[++ans] = col[x]] = 1;
98
                for (int i = 1; i <= ans; ++i) vis[jp[i]] = 0;
99
```

5.16. DLX

```
ans += pre[mark[near[x]]][y];
            }
101
            else
102
            {
103
                for (; x = lca; x = fa[x]) vis[col[x]] ? vis[jp[++ans] = col[x]] = 1 : 0;
104
                for (; y = lca; y = fa[y]) |vis[col[y]] ? vis[jp[++ans] = col[y]] = 1 : 0;
105
                !vis[col[lca]] ? vis[jp[++ans] = col[lca]] = 1 : 0;
106
                for (int i = 1; i <= ans; ++i) vis[jp[i]] = 0;</pre>
107
108
           printf("%d\n", ans);
109
110
        return 0;
111
112
```

5.16 DLX

Chapter 6

Others

6.1 vimrc (gy)

```
se et ts=4 sw=4 sts=4 nu sc sm lbr is hls mouse=a
  sy on
  ino <tab> <c-n>
  ino <s-tab> <tab>
  au winnew * winc L
  nm <f6> ggVG"+y
  nm <f7> :w<cr>:!rm ##<cr>:make<cr>
  nm <f8> :!@@<cr>
  nm <f9> :!@@ < in<cr>
  nm <s-f9> :!(time @@ < in &> out) &>> out<cr>:sp out<cr>
  au filetype cpp cm @@ ./a.out | cm ## a.out | se cin fdm=syntax mp=g++\ %\ -std=c++11\ -Wall\
    \hookrightarrow -Wextra\ -Wconversion\ -02
12 map <c-p> :ha<cr>
13 se pheader=%n\ %f
  au filetype java cm @@ java %< | cm ## %<.class | se cin fdm=syntax mp=javac\ %
  au filetype python cm @@ python % | se si fdm=indent
  au bufenter *.kt setf kotlin
  au filetype kotlin cm @@ kotlin _%<Kt | cm ## _%<Kt.class | se si mp=kotlinc\ %
```

6.2 STL 释放内存 (Durandal)

```
template <typename T>
   __inline void clear(T &container) {
     container.clear();
     T(container).swap(container);
}
```

6.3 开栈 (Durandal)

```
register char *_sp __asm__("rsp");
int main() {
   const int size = 400 << 20; // 400 MB
   static char *sys, *mine(new char[size] + size - 4096);
   sys = _sp; _sp = mine;
   _main(); // main method</pre>
```

 $6.4. \ O3 \ (gy)$ 6. Others

```
7
    _sp = sys;
8
    return 0;
9
```

6.4 O3 (gy)

```
__attribute__((optimize("-03"))) int main() { return 0; }
```

6.5 Java Template (gy)

```
import java.io.*;
   import java.math.*;
   import java.util.*;
  public class Template {
       // Input
5
       private static BufferedReader reader;
       private static StringTokenizer tokenizer;
       private static String next() {
           try {
10
               while (tokenizer == null || !tokenizer.hasMoreTokens())
11
                   tokenizer = new StringTokenizer(reader.readLine());
12
           } catch (IOException e) {
               // do nothing
13
14
           return tokenizer.nextToken();
15
16
       private static int nextInt() {
17
           return Integer.parseInt(next());
18
19
       private static double nextDouble() {
20
           return Double.parseDouble(next());
21
22
       private static BigInteger nextBigInteger() {
23
           return new BigInteger(next());
24
25
       public static void main(String[] args) {
26
           reader = new BufferedReader(new InputStreamReader(System.in));
27
           Scanner scanner = new Scanner(System.in);
29
           while (scanner.hasNext())
               scanner.next();
30
       }
31
       // BigInteger & BigDecimal
32
       private static void bigDecimal() {
33
           BigDecimal a = BigDecimal.valueOf(1.0);
34
           BigDecimal b = a.setScale(50, RoundingMode.HALF_EVEN);
35
           BigDecimal c = b.abs();
36
           // if scale omitted, b.scale is used
37
           BigDecimal d = c.divide(b, 50, RoundingMode.HALF_EVEN);
38
           // since Java 9
39
           BigDecimal e = d.sqrt(new MathContext(50, RoundingMode.HALF_EVEN));
40
           BigDecimal x = new BigDecimal(BigInteger.ZERO);
41
           BigInteger y = BigDecimal.ZERO.toBigInteger(); // RoundingMode.DOWN
42
           y = BigDecimal.ZERO.setScale(0, RoundingMode.HALF_EVEN).unscaledValue();
43
44
       // sqrt for Java 8
45
```

```
// can solve scale=100 for 10000 times in about 1 second
46
       private static BigDecimal sqrt(BigDecimal a, int scale) {
47
            if (a.compareTo(BigDecimal.ZERO) < 0)</pre>
48
                return BigDecimal.ZERO.setScale(scale, RoundingMode.HALF_EVEN);
49
            int length = a.precision() - a.scale();
50
            BigDecimal ret = new BigDecimal(BigInteger.ONE, -length / 2);
51
            for (int i = 1; i <= Integer.highestOneBit(scale) + 10; i++)</pre>
52
                ret = ret.add(a.divide(ret, scale,
53
                  → RoundingMode.HALF_EVEN)).divide(BigDecimal.valueOf(2), scale,
                  → RoundingMode.HALF_EVEN);
            return ret;
54
55
       // can solve a=2^10000 for 100000 times in about 1 second
56
       private static BigInteger sqrt(BigInteger a) {
57
            int length = a.bitLength() - 1;
58
            BigInteger 1 = BigInteger.ZERO.setBit(length / 2), r = BigInteger.ZERO.setBit(length / 2);
59
            while (!1.equals(r)) {
60
                BigInteger m = 1.add(r).shiftRight(1);
61
                if (m.multiply(m).compareTo(a) < 0)</pre>
62
                    1 = m.add(BigInteger.ONE);
63
                else
64
                    r = m;
65
66
67
            return 1;
       }
68
       // Collections
69
       private static void arrayList() {
70
           List<Integer> list = new ArrayList<>();
71
72
            // Generic array is banned
73
            List[] lists = new List[100];
74
            lists[0] = new ArrayList<Integer>();
            // for List<Integer>, remove(Integer) stands for element, while remove(int) stands for
75
              \rightarrow index
            list.remove(list.get(1));
76
            list.remove(list.size() - 1);
77
            list.clear():
78
            Queue<Integer> queue = new LinkedList<>();
79
            // return the value without popping
80
            queue.peek();
81
            // pop and return the value
82
            queue.poll();
83
            Queue<Integer> priorityQueue = new PriorityQueue<>();
85
            Deque<Integer> deque = new ArrayDeque<>();
86
            deque.peekFirst();
87
            deque.peekLast();
            deque.pollFirst();
88
            TreeSet<Integer> set = new TreeSet<>();
89
            TreeSet<Integer> anotherSet = new TreeSet<>(Comparator.reverseOrder());
90
            set.ceiling(1);
91
            set.floor(1);
92
            set.lower(1);
93
            set.higher(1);
94
            set.contains(1);
95
            HashSet<Integer> hashSet = new HashSet<>();
96
            HashMap<String, Integer> map = new HashMap<>();
97
            map.put("", 1);
98
            map.get("");
99
            map.forEach((string, integer) -> System.out.println(string + integer));
100
            TreeMap<String, Integer> treeMap = new TreeMap<>();
101
            Arrays.sort(new int[10]);
102
```

6.6. Big Fraction (gy) 6. Others

```
Arrays.sort(new Integer[10], (a, b) -> {
                if (a.equals(b)) return 0;
104
                if (a > b) return -1;
105
                return 1;
106
            });
107
            Arrays.sort(new Integer[10], Comparator.comparingInt((a) -> (int) a).reversed());
108
            long a = 1_000_000_000_000_000_000L;
109
            int b = Integer.MAX_VALUE;
110
            int c = 'a';
111
112
113
```

6.6 Big Fraction (gy)

```
fun gcd(a: Long, b: Long): Long = if (b == OL) a else gcd(b, a % b)
   class Fraction(val a: BigInteger, val b: BigInteger) {
       constructor(a: Long, b: Long) : this(BigInteger.valueOf(a / gcd(a, b)), BigInteger.valueOf(b /
         \hookrightarrow \gcd(a, b)))
       operator fun plus(o: Fraction): Fraction {
           var gcd = b.gcd(o.b)
           val tempProduct = (b / gcd) * (o.b / gcd)
           var ansA = a * (o.b / gcd) + o.a * (b / gcd)
           val gcd2 = ansA.gcd(gcd)
           ansA /= gcd2
           gcd /= gcd2
10
           return Fraction(ansA, gcd * tempProduct)
11
12
       operator fun minus(o: Fraction): Fraction {
14
           var gcd = b.gcd(o.b)
15
           val tempProduct = (b / gcd) * (o.b / gcd)
           var ansA = a * (o.b / gcd) - o.a * (b / gcd)
16
           val gcd2 = ansA.gcd(gcd)
17
           ansA /= gcd2
18
           gcd /= gcd2
19
           return Fraction(ansA, gcd * tempProduct)
20
21
       operator fun times(o: Fraction): Fraction {
22
           val gcd1 = a.gcd(o.b)
23
           val gcd2 = b.gcd(o.a)
24
           return Fraction((a / gcd1) * (o.a / gcd2), (b / gcd2) * (o.b / gcd1))
25
26
  }
27
```

6.7 模拟退火 (ct)

6. Others $6.8. \equiv \Re(ct)$

```
return maxx;
10
11 }
12 int main()
   {
13
       srand(time(NULL) + clock());
14
       db x = 0, fnow = f(x);
15
       fans = 1e30;
16
       for (db T = 1e4; T > 1e-4; T *= 0.997)
17
18
           db nx = x + randp() * T, fnext = f(nx);
19
           db delta = fnext - fnow;
20
           if (delta < 1e-9 || exp(-delta / T) > rand01())
21
22
                x = nx;
23
                fnow = fnext;
24
           }
25
26
27
       return 0;
28
```

6.8 三分 (ct)

```
inline db cubic_search()
{
    double 1 = -1e4, r = 1e4;
    for (int i = 1; i <= 100; ++i)
    {
        double ll = (l + r) * 0.5;
        double rr = (ll + r) * 0.5;
        if (check(ll) < check(rr)) r = rr;
        else l = ll;
    }
    return (l + r) * 0.5;
}</pre>
```

6.9 Zeller Congruence (gy)

```
int day_in_week(int year, int month, int day) {
   if (month == 1 || month == 2)
        month += 12, year--;
   int c = year / 100, y = year % 100, m = month, d = day;
   int ret = (y + y / 4 + c / 4 + 5 * c + 13 * (m + 1) / 5 + d + 6) % 7;
   return ret >= 0 ? ret : ret + 7;
}
```

6.10 博弈论模型 (gy)

• Wythoff's game

给定两堆石子,每次可以从任意一堆中取至少一个石子,或从两堆中取相同的至少一个石子,取走最后 石子的胜

```
先手胜当且仅当石子数满足:
```

```
\lfloor (b-a) \times \phi \rfloor = a, (a \le b, \phi = \frac{\sqrt{5}+1}{2})
先手胜对应的石子数构成两个序列:
Lower Wythoff sequence: a_n = \lfloor n \times \phi \rfloor
```

Upper Wythoff sequence: $b_n = \lfloor n \times \phi^2 \rfloor$

• Fibonacci nim

给定一堆石子,第一次可以取至少一个、少于石子总数数量的石子,之后每次可以取至少一个、不超过 上次取石子数量两倍的石子,取走最后石子的胜 先手胜当且仅当石子数为斐波那契数

6.11 积分表 (integral-table.com)

$$\int s^{0} ds = \frac{1}{\ln s} s^{0} + 1, \quad n \neq -1$$

$$\int \frac{1}{s} ds = \ln |s|$$

$$\int \frac{1}{s} ds = \ln |s|$$

$$\int u ds = u v - \int v ds$$

$$\int \frac{1}{u + b} ds = \frac{1}{u} \ln |ss + b|$$

$$\int \frac{1}{(s + a)^{2}} ds = -\frac{1}{s - a}$$

$$\int (s + a)^{3} ds = \frac{(s + a)^{3} + 1}{n - 1}$$

$$\int s(s + a)^{3} ds = \frac{(s + a)^{3} + 1}{n - 1}$$

$$\int \frac{1}{1 + s^{2}} ds = \frac{1}{1 + a} \ln |ss + b|$$

$$\int \frac{1}{1 + s^{2}} ds = \frac{(s + a)^{3} + 1}{n - 1}$$

$$\int s(s + a)^{3} ds = \frac{(s + a)^{3} + 1}{n - 1} \sin^{-1} s$$

$$\int \frac{1}{1 + s^{2}} ds = \frac{1}{1 + a} \ln |s^{2} + b|$$

$$\int \frac{1}{1 + s^{2}} ds = \frac{1}{1 + a} \ln |s^{2} + b|$$

$$\int \frac{1}{1 + s^{2}} ds = \frac{1}{1 + a} \ln |s^{2} + b|$$

$$\int \frac{1}{a^{2} + b^{2}} ds = \frac{1}{1 + a} \ln |s^{2} + b|$$

$$\int \frac{s^{2}}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s^{2}}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s^{2}}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int \frac{s}{a^{2} + b^{2}} ds = \frac{1}{s} \ln |s^{2} + b|$$

$$\int$$

$$\int \sin^3 ax \, dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a}$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax$$

$$\int \cos^2 ax \, dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}$$

$$\int \cos x \sin x \, dx = \frac{1}{2} \sin^2 x + c_1 = -\frac{1}{2} \cos^2 x + c_2 = -\frac{1}{4} \cos 2x + c_3$$

$$\int \cos ax \sin bx \, dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, \, a \neq b$$

$$\int \sin^2 ax \cos bx \, dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$$

$$\int \sin^2 x \cos x \, dx = \frac{1}{3} \sin^3 x$$

$$\int \cos^2 ax \sin bx \, dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a+b)x]}{4(2a+b)}$$

$$\int \cos^2 ax \sin ax \, dx = -\frac{1}{3a} \cos^3 ax$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)}$$

$$\int \sin^2 ax \cos^2 ax \, dx = \frac{x}{8} - \frac{\sin 4ax}{32a}$$

$$\int \tan ax \, dx = -\frac{1}{a} \ln \cos ax$$

$$\int \tan^2 ax \, dx = -x + \frac{1}{a} \tan ax$$

 $\int \tan^3 ax dx = \frac{1}{2} \ln \cos ax + \frac{1}{2a} \sec^2 ax$

 $\int \sec x \, dx = \ln|\sec x + \tan x| = 2 \tanh^{-1} \left(\tan \frac{x}{2}\right)$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax$$

$$\int \sec^3 x \ dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln |\sec x + \tan x|$$

$$\int \sec x \tan x \ dx = \sec x$$

$$\int \sec^2 x \tan x \ dx = \frac{1}{a} \sec^2 x$$

$$\int \sec^n x \tan x \ dx = \frac{1}{a} \sec^n x, n \neq 0$$

$$\int \csc x \ dx = \ln |\tan \frac{x}{2}| = \ln |\csc x - \cot x| + C$$

$$\int \csc^2 ax \ dx = -\frac{1}{a} \cot ax$$

$$\int \csc^3 x \ dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln |\csc x - \cot x|$$

$$\int \csc^n x \cot x \ dx = -\frac{1}{a} \csc^n x, n \neq 0$$

$$\int \sec x \csc x \ dx = \ln |\tan x|$$

$$\int x \cos x \ dx = \cos x + x \sin x$$

$$\int x \cos x \ dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\int x^2 \cos x \ dx = 2x \cos x + (x^2 - 2) \sin x$$

$$\int x^2 \cos x \ dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$

$$\int x \sin x \ dx = -x \cos x + \sin x$$

$$\int x \sin x \ dx = -x \cos x + \sin x$$

$$\int x \sin ax \ dx = \frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$$

$$\int x^2 \sin x \ dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$$

$$\int x \cos^2 x \ dx = \frac{x^2}{4} + \frac{1}{8} \cos 2x + \frac{1}{4} x \sin 2x$$

$$\int x \sin^2 x \ dx = \frac{x^2}{4} - \frac{1}{8} \cos 2x - \frac{1}{a} x \sin 2x$$