01:640:311H - Homework n

Pranav Tikkawar

April 8, 2025

1. Write an ε - δ proof that the function $f(x) = x^2 - 2x$ is continuous at x = 2.

Solution: Let $\epsilon > 0$. Take $\delta = \min\left(1, \frac{\epsilon}{3}\right)$. Since $|x-2| < 1 \implies |x| < |x-2| + 2 < 1 + 2 = 3$. Also not that f(2) = 0. Then, we have

$$|x-2| < \delta \implies |f(x)| = |x^2 - 2x| = |x(x-2)|$$
$$= |x| \cdot |x-2| < |x| \cdot \delta$$
$$= 3 \cdot \frac{\epsilon}{3} = \epsilon$$

2. Suppose $f: A \to \mathbb{R}$ is continuous at a point $c \in A$. Prove that if $f(c) \neq 0$, then there exists a $\delta > 0$ such that $f(x) \neq 0$ for any $x \in V_{\delta}(c) \cap A$.

Solution: Let $\epsilon = |f(c) - 0| > 0$. Since f is continuous at c, there exists $\delta > 0$ such that $|f(x) - f(c)| < \epsilon$ for all $x \in V_{\epsilon}(c) \cap A$.

Then, we have

$$|f(x) - f(c)| < \epsilon$$
$$-\epsilon < f(x) - f(c) < \epsilon$$
$$-|f(c)| < f(x) - f(c) < |f(c)|$$

Either f(x) < 0 or f(x) > 0.

If f(x) < 0, then 2f(c) < f(x) < 0

If f(x) > 0, then 0 < f(x) < 2f(c)

Thus, $f(x) \neq 0$ for all $x \in V_{\delta}(c) \cap A$.

3. Using only the ε - δ definition of continuity, prove that if $f, g : A \to \mathbb{R}$ are continuous at a point $c \in A$, then f + g is also continuous at c.

Solution: Suppose f and g are continuous at c. Then, for any $\epsilon > 0$, there exists $\delta_1 > 0$ such that $|f(x) - f(c)| < \frac{\epsilon}{2}$ for all $x \in V_{\delta_1}(c) \cap A$ and there exists $\delta_2 > 0$ such that $|g(x) - g(c)| < \frac{\epsilon}{2}$ for all $x \in V_{\delta_2}(c) \cap A$.

Let $\delta = \min(\delta_1, \delta_2)$. Then, for all $x \in V_{\delta}(c) \cap A$, we have

$$\begin{split} |(f+g)(x) - (f+g)(c)| &= |f(x) + g(x) - f(c) - g(c)| \\ &= |(f(x) - f(c)) + (g(x) - g(c))| \\ &\leq |f(x) - f(c)| + |g(x) - g(c)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{split}$$

Thus, f + g is continuous at c.

4. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is continuous and U is open, then $f^{-1}(U) = \{x \in \mathbb{R} : f(x) \in U\}$ is open.

Solution: Suppose f is continuous and U is open. Let $x \in f^{-1}(U)$ then $f(x) \in U$.

Since U is open there exists an $\epsilon > 0$ such that there exist $V_{\epsilon}(f(x)) \subset U$

Since f is continuous we know there exists a $\delta > 0$ such that $|y - x| < \delta \implies |f(y) - f(x)| < \epsilon$ for all $y \in \mathbb{R}$.

Thus for an arbitrary $y \in V_{\delta}(x)$ we have $f(y) \in V_{\epsilon}(f(x)) \subset U$

Thus $y \in f^{-1}(U)$ and hence $V_{\delta}(x) \subset f^{-1}(U)$

Thus $f^{-1}(U)$ is open.

5. Suppose $f, g : [a, b] \to \mathbb{R}$ are two continuous functions. Prove that the set $T = \{x : f(x) = g(x)\}$ is a closed set.

Solution: Suppose x is a limit point of T. Then there exists a sequence $\{x_n\} \subset T$ such that $x_n \to x$ and $x_n \neq x$ for all n.

Since f and g are continuous, we have $\lim_{n\to\infty} f(x_n) = f(x)$ and $\lim_{n\to\infty} g(x_n) = g(x)$.

Since we have that $f(x_n) = g(x_n)$ for all n, we have f(x) = g(x).

Thus, $x \in T$ and hence T is closed.

6. Let $f:[a,b]\to\mathbb{R}$ be increasing. Prove that $\lim_{x\to a^+} f(x)$ exists.

Solution: Since f is increasing on [a, b], the set $S = \{f(x) : x \in (a, b]\}$ is bounded below by f(a). By the completeness of \mathbb{R} , S has a greatest lower bound (infimum). Let:

$$L = \inf S = \inf \{ f(x) : x \in (a, b] \}.$$

We will show that $\lim_{x\to a^+} f(x) = L$.

1. Let $\epsilon > 0$. By the definition of infimum, there exists $y \in (a, b]$ such that:

$$f(y) < L + \epsilon$$
.

2. Let $\delta = y - a > 0$. For all x satisfying $a < x < a + \delta$, we have:

$$a < x < y \le b$$
.

3. Since f is increasing:

$$L \le f(x) \le f(y) < L + \epsilon$$
.

4. Combining these inequalities:

$$|f(x) - L| = f(x) - L < \epsilon$$
 for all $x \in (a, a + \delta)$.

By the definition of a right-hand limit, we conclude:

$$\lim_{x \to a^+} f(x) = L.$$