1 - Introduzione ai Sistemi Operativi

Sommario

Cos'è un Sistema Operativo?

macchina astratta
gestore di risorse

Storia dei S.O.

- generazioni 1-5 dei S.O.
- Storia di Internet e World Wide Web

Componenti dei S.O.

architetture Hardware

Tipi di S.O. e scopi dei S.O.

Concetti base dei S.O.

Strutture di S.O.

- Monolitica
- a Livelli
- Microkernel
- S.O. di rete e S. O. Distribuiti

S. Balsamo - Università Ca' Foscari Venezia - SO1.42

42

Sistemi Operativi come gestore delle risorse

Progettare un sistema operativo

Conoscere le risorse hardware e software che deve gestire

- processori
- memoria
- · memoria secondaria (es. hard disks)
- altre periferiche I/O
- processi
- thread
- file
- Database

S. Balsamo – Università Ca' Foscari Venezia – SO1.4

Componenti dei Sistemi Operativi

- componenti hardware gestite da un sistema operativo
- evoluzione dell'hardware per supportare le funzioni del S.O.
- ottimizzazione delle prestazioni delle varie componenti hardware
- nozione di application programming interface (API)
- compilazione linking loading

S. Balsamo - Università Ca' Foscari Venezia - SO1.43

43

Compo	nenti Hai	dware	– CPU - E	voluzione	
-					
Evolu	zione dei micro	oprocesso	ri con architettura	Intel	
Microprocessore	Bit	Anno	Transistor	Produttore	
4004	4	1971	2,25 K	Intel	
8080	8	1974	5 K	Intel	
Z80	8/16	1976	6 K	Zilog	
8088	8/16	1979	29 K	Intel	
80286	16	1982	134 K	Intel,Amd	
80386	32	1985	275 K	Intel,Amd	
80486	32/64	1989	1,2 M	Intel,Amd	
Pentium	32/64	1993	3,1 M	Intel	
Pentium III	32/64	1999	9,5 M	Intel	
Athlon	32/64	1999	22 M	Amd	
Pentium IV	32/64/128	2000	40 M	Intel	
Opteron	32/64/128	2003	100 M	Amd	
Itanium 2	32/64/128	2004	220M	Intel	
Opteron quad core	32/64/128	2006	460 M	Amd	
Core 2 Quad	32/64/128	2006	582 M	Intel	
Xeon MP 6 core	32/64/128	2008	1.900 M	Intel	
Itanium quad core	32/64/128	2008	2.000 M	Intel	

47

49 Componenti Hardware - CPU • Un processore è hardware che esegue in linguaggio macchina - La CPU esegue le istruzioni di un programma - Il Coprocessore esegue le istruzioni per usi speciali • Es., grafici o coprocessori audio - I registri sono memorie ad alta velocità della memoria situati su processori • I dati devono essere nei registri prima che un processore possa operarvi - Lunghezza delle istruzioni = dimensione di un'istruzione in linguaggio macchina • Alcuni processori supportano diverse lunghezze di istruzioni S. Balsamo – Università Ca' Foscari Venezia – SO1.49

Componenti Hardware - CPU

- · Il tempo di elaborazione si misura in cicli
 - Una oscillazione completa di un segnale elettrico
 - Fornito dal generatore di clock di sistema
 - La velocità del processore è misurata in GHz (miliardi di cicli al secondo)
 - I desktop moderni eseguono centinaia di megahertz o vari GHz

S. Balsamo - Università Ca' Foscari Venezia - SO1.5

50

52

50

Componenti Hardware – CPU

Prestazioni di una CPU

 $T = N_i / IPS$ IPS = F x IPC = F / CPI

T tempo di esecuzione

N_i numero di istruzioni di un programma
IPS numero di istruzioni per secondo
F frequenza di clock del processore
IPC numero di istruzioni per ciclo di clock

CPI cicli di clock per istruzione

T può migliorare con

- aumento di F

- → miniaturizzazione
- riduzione N_i, per lo stesso lavoro → CISC / RISC
 - (Complex/Reduced Instr. Set)
- aumento di IPC ovvero riduzione CPI
- → pipeline→ CPU superscalare

A. Tanenbaum – Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO1.5

Componenti Hardware – CPU

Registri

Speciali visibili al programmatore:

Program Counter - PC

Stack Pointer

Program Status Word - PSW

Modalità

utente

nucleo (kernel)

Chiamate di sistema

TRAP istruzione che cambia la modalità da utente a kernel

Cambiamento di stato

'Legge' di Moore

Transistor raddoppia ogni 18 mesi

CPU multi core

S. Balsamo – Università Ca' Foscari Venezia – SO1.51

51

52

55 Componenti Hardware - CPU Multithreading (hyperthreading) una CPU può tenere lo stato di due thread con scambio entro 1 nanosec Multi core CPU più processori completi (core) su un chip => sistema operativo multiprocessore es: chip con 4 core e memoria cache L2 Core 1 Core 2 Core 1 Core 2 L2 cache Core 3 Core 4 Core 3 Core 4 A. Tanenbaum - Modern Operating Systems S. Balsamo - Universita Ca' Foscari Venezia - SO1.55

55

Componenti Hardware – memoria principale RAM Random Access Memory · volatile, accesso diretto, ovunque · DRAM (dinamica) richiede aggiornamento del circuito · SRAM (statica) non lo richiede · banda (larghezza) quanti dati possono essere trasferiti per unità di tempo ROM - Read Only Memory · non volatile, veloce, economica, programmata dal costruttore EEPROM, memoria Flash - Electrical Erasable · non volatile, riscrivibile, molto più lenta della RAM CMOS · volatile, spesso per memorizzare data e ora A. Tanenbaum - Modern Operating Systems S. Balsamo - Università Ca' Foscari Venezia - SO1.60

Componenti Hardware – memoria - registri e cache · Registri: interni alla CPU · Nessun ritardo di accesso dalla CPU Capacità limitata - 32x32 bit per CPU a 32 bit - 64x64 bit per CPU a 64 bit Cache: livelli Ogni livello più lento del precedente - L1 interno alla CPU (es. 16KB) - L2 ritardo di 1/2 cicli di clock (es. MB) · Cache hit Validità della cache • Uso della cache per migliorare le prestazioni (ridurre i tempi) · Progettazione complessa - Dimensione - Quando/dove inserire - Politiche di rimozione dalla cache A. Tanenbaum - Modern Operating Systems S. Balsamo – Università Ca' Foscari Venezia – SO1.59

Componenti Hardware – memoria secondaria - dischi

- La memoria secondaria conserva grandi quantità (capacità) di dati persistenti (non volatile) a basso costo
- Accesso ai dati su un disco rigido è più lento rispetto alla memoria principale
 - Movimento meccanico della testa di lettura / scrittura es. 1 ms per cilindro
 - · Latenza di rotazione

es. 5-10 millisec

Tempo di trasferimento

es. 50-150MB/s

- Dispositivo a blocchi
- La memoria secondaria rimovibile facilita il backup e il trasferimento dei dati
 - · CD (CD-R, CD-RW)
 - DVD (DVD-R, DVD+R)
 - Zip disk
 - Floppy disk
 - · Schede di memoria flash
 - Nastri

S. Balsamo – Università Ca' Foscari Venezia – SO1 6

64

62

Componenti Hardware - dischi

- Dispositivo

interfaccia semplice

- Controllore (driver)

si interfaccia con il S.O. diverso per ogni S.O. che supporta

su uno o più chip

Come si inserisce un driver nel S.O.

- inserzione manuale e riavviare
- in un file del S.O. e riavviare
- senza riavviare plug-and-play

Driver

ha registri per comunicare

i registri sono detti spazio di una porta di I/O

o sono mappati nello spazio indirizzi del S.O. – normali istruzioni o sono in una porta speciale di I/O – istruzioni speciali

A. Tanenbaum - Modern Operating Systems

S. Balsamo - Università Ca' Foscari Venezia - SO1.6-

Componenti Hardware – memoria secondaria - dischi Testina di lettura/scrittura (1 per superficie) Superficie 7 Superficie 6 Superficie 5 Superficie 4 Superficie 3 Direzione del movimento del braccio Superficie 2 Superficie 1 Superficie 0 Struttura di una unità disco piatti, tracce, cilindri, settori A. Tanenbaum - Modern Operating Systems S. Balsamo – Università Ca' Foscari Venezia – SO1 63

63

Componenti Hardware – dischi

Gestione I/O: tre modalità

- busy waiting

chiamate di sistema→ chiamate al driver

→ avvio I/O → attesa attiva di fine I/O

- interrupt

- → avvio I/O → attesa interruzione del dispositivo a fine I/O
- → driver genera interruzione di I/O
- → si seleziona il corrispondente gestore dell'interruzione

- DMA (Direct Memory Access)

hardware particolare che svincola la CPU dal controllo di alcuni dispositivi di I/O

A. Tanenbaum - Modern Operating Systems

S. Balsamo - Università Ca' Foscari Venezia - SO1.65

65

68 Componenti Hardware - bus · Un bus è un insieme di tracce - Le tracce sono sottili collegamenti elettrici che trasportano informazioni tra dispositivi hardware - Una porta è un bus che collega solo due dispositivi - Un canale di I/O è un bus condiviso da diversi dispositivi per eseguire operazioni di I/O · Gestisce I/O indipendentemente dalla CPU del sistema - Esempio, il bus 'frontside' (FSB) collega una CPU alla memoria principale - bus dati e bus indirizzi Velocità misurata in MHz - PCle (Pheripheal Component Interconnect Express) collega una CPU ai • Lo standard PCI Express raggiunge fino a 16 o 64 Gbpsec · Velocità che raddoppiano ogni 3-5 anni AGP (Accelerated Graphic Port) per schede grafiche A. Tanenbaum - Modern Operating Systems S. Balsamo - Università Ca' Foscari Venezia - SO1.68

Componenti Hardware — Direct Memory Access (DMA)

• DMA migliora il trasferimento dati fra la memoria e le periferiche I/O

— Le periferiche e i controllori trasferiscono direttamente i dati da e verso la memoria

— Il processore è libero di eseguire le istruzioni sw

— Il canale DMA usa un controllore I/O per gestire il trasferimento dei dati

• Notifica al processore quando una operazione I/O è terminata

— Migliora le prestazioni del sistema nel caso di un elevato numero di operazioni of I/O (es., mainframes e servers)

S. Balsamo - Università Ca' Foscari Venezia - SO

67

73

70

72

Componenti Hardware – bus

• USB (universal serial bus)

nata per connettere dispositivi lenti oggi USB 3.0 a 5 Gbps non occorre riavviare il sistema per usare i dispositivi

• SCSI (small computer system interface)

bus ad alte prestazioni es. hard disk, scanner, lettori DVD obbiettivo: compatibilità dei dispositivi oggi usato prevalentemente per server, workstations velocità da 5 MBps a 640 MBps

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO1.7

71

73

Sistemi Operativi – Tipi e scopi

• Sistemi Operativi pensati per alto livello di astrazione

- Occorre definire speciali requisisti di progetto e supporto hw
 - · Grande memoria principale
 - · Hardware per usi speciali
 - · Grande numero di processi
- Sistemi integrati (embedded)
 - Caratterizzato da un insieme limitato di risorse specializzate
 - Forniscono funzionalità per vari tipi di dispositivi come telefoni cellulari e PDA
 - Gestione efficiente delle risorse fondamentali per la costruzione di un buon sistema operativo

S. Balsamo – Università Ca' Foscari Venezia – SO1.7

ς

77

Sistemi Operativi - Tipi

• Sistemi operativi per mainframe

- Grandi capacità di I/O
- Servizi: batch, transazioni, time-sharing
- Es. IBM OS/390, Linux
- · Sistemi operativi per server
 - Molti utenti
 - Servizi: archiviazione, web server, ISP
 - Es. Solaris SUN, FreeBSD, Windows Server, Linux
- Sistemi operativi per multiprocessore
 - Molte CPU
 - Computer paralleli, multiprocessori
 - Comunicazione, coerenza, connessione
 - Es: Windows, Linux

S. Balsamo – Università Ca' Foscari Venezia – SO1.7-

74

76

74

76

Sistemi Operativi - Tipi

- · Sistemi operativi per real-time
 - Obbiettivi con scadenza (deadline)
 - Hard real-time stretto improrogabile
 - Soft real-time lasco scadenza flessibile
 - Es. controllo di automazione, sistemi audio mltimediali
- Sistemi operativi per smart-card
 - Es. pagamento elettronico, trasporti, amministrativi
 - Semplici s.o.

S. Balsamo – Università Ca' Foscari Venezia – SO1.76

Sistemi Operativi - Tipi

- Sistemi operativi per PC
 - Multiprogrammazione, un utente
 - Es. Linux, FreeBSD, Widows 7, 8, Apple OSX
- Sistemi operativi per palmari (pda)
 - CPU multicore, fotocamera, sensori, GPS, molte app
 - Es. Android, iOS
- Sistemi operativi integrati (embedded)
 - per sistemi di calcolo con accezione generale
 - controllo di dispositivi (es. tv, autoveicoli, lettori mp3)
 - Sw su ROM
- · Sistemi operativi per sensori
 - Es. TinyOS

S. Balsamo – Università Ca' Foscari Venezia – SO1.75

75

Sistemi Operativi – esempi di tipi

Batch

- Interattivi in time sharing (es. Unix)
- Per P.C. (es. Windows, Mac OSX, Linux)
- Real-time (es. telefonia, sistemi di controllo)
- Multimedia (es. video on demand)
- Transazionali (es. operazioni brevi, banche dati)
- Per dispositivi mobili (es. smartphone, PDA, tablet)
- Embedded (integrati, elettrodomestici, automazione)

A. Tanenbaum - Modern Operating Systems

77

S. Balsamo – Università Ca' Foscari Venezia – SO1.7
