STAT 31210: Homework 5

Caleb Derrickson

February 8, 2024

Collaborators: The TA's of the class, as well as Kevin Hefner, and Alexander Cram.

Contents

1	Problem 12.6	2
2	Problem 12.8	4
3	Problem 12.12	5
4	Problem 12.15	7
5	Problem 12.17	9
6	Problem 12.18	10
7	Problem 6.2 1 Problem 6.2, part a	11 11 12
8	Problem 6.5	13
9	Problem 6.11	14
10	Problem 6.14	15
	1 Problem 6.14, part a	15
	2 Problem 6.14, part b	16

Use the Dominated Convergence Theorem to prove Corollary 12.36 for differentiation under an integral sign.

Solution:

I will include the Dominated Convergence Theorem and Corollary 12.36 for reference.

Dominated Convergence Theorem: Suppose that (f_n) is a sequence of integrable functions, $f_n: X \to \overline{\mathbb{R}}$, on a measure space (X, A, μ) that converges pointwise to a limiting function $f: X \to \overline{\mathbb{R}}$. If there is an integrable function $g: X \to [0, \infty]$ such that

$$|f_n(x)| \le g(x)$$
 for all $x \in X$ and $n \in \mathbb{N}$,

then f is integrable and

$$\lim_{n \to \infty} \int f_n \ d\mu = \int f \ d\mu.$$

Corollary 12.36: Suppose that (X, A, μ) is a complete measure space, $I \subset \mathbb{R}$ is an open interval, and $f: X \times I \to \overline{\mathbb{R}}$ is a measurable function such that:

- $f(\cdot,t)$ is integrable on X for each $t \in I$;
- $f(x, \cdot)$ is differentiable in I for each $x \in X \setminus N$, where $\mu(N) = 0$;
- there is an integrable function $g:X\to [0,\infty]$ such that

$$\left| \frac{\partial f}{\partial t}(x,t) \right| \le g(x)$$
 a.e. in X for every $t \in I$.

Then

$$\varphi(t) = \int_{X} f(x, t) \ d\mu(x)$$

is a differentiable function of t in I, and

$$\frac{d\varphi}{dt}(t) = \int_X \frac{\partial f}{\partial t}(x,t) \ d\mu(x).$$

Suppose we have a sequence of functions $d_n: X \times I \to \overline{\mathbb{R}}$ defined as

$$d_n(x,t) = \frac{f(x,t+\frac{1}{n}) - f(x,t)}{1/n}$$

Note that this is the n-th approximation to $\frac{\partial f}{\partial t}$. Since for some n sufficiently large, there exists some $\varepsilon > 0$ for which $|d_n - \frac{\partial f}{\partial t}| < \varepsilon$. By the reverse triangle inequality, we see that

$$|d_n - \frac{\partial f}{\partial t}| < \varepsilon \implies |d_n| < |\frac{\partial f}{\partial t}| + \varepsilon.$$

Since the partial derivative is bounded by some $g: X \to [0, \infty]$, we have that $|d_n| \le g(x)$, since ε is arbitrary. Therefore, we have

$$\lim_{n \to \infty} \int_X d_n \ d\mu(x) = \int_X \lim_{x \to \infty} d_n \ d\mu(x) = \int_X \frac{\partial f}{\partial t}(x, t) \ d\mu(x).$$

Note that d_n is differentiable in I for all n, thus the derivative is defined. This then proves Corollary 12.36.

Let $f_n: X \to \mathbb{C}$. be a sequence of measurable functions converging to f pointwise almost everywhere. Suppose there exists $g \in L^p(X)$ such that $|f_n| \leq g$ almost everywhere. Then $f_n \to f$ in the L^p -norm.

Solution:

We can first note that $\lim_{n\to\infty} |f_n(x)| = |f(x)| \le |g(x)|$. This implies that $|f_n(x)| \le |g(x)|$, so we can rewrite the convergence of f_n as

$$|f_n - f|^p \le (|f_n| + |f|)^p \le (|g| + |g|)^p = 2^p |g|^p.$$

Since $g \in L^p$, we have that $\int |g|^p < \infty$, therefore, Theorem 12.35 applies. Therefore, we can write

$$\lim_{n \to \infty} ||f_n - f||_p^p = \lim_{n \to \infty} \int |f_n - f|^p d\mu = \int \lim_{n \to \infty} |f_n - f|^p = 0.$$

Therefore, $f_n \to f$ in the L^p norm.

Prove the following generalization of Hölder's inequality: if $1 \le p_i \le \infty$, where i = 1, ..., n satisfy

$$\sum_{i=1}^{n} \frac{1}{p_i} = 1$$

and $f_i \in L^{p_i}(X,\mu)$, then $f_1 \cdots f_n \in L^1(X,\mu)$ and

$$\left| \int f_1 \cdots f_n \ d\mu \right| \leq \|f_1\|_{p_1} \cdots \|f_n\|_{p_n}.$$

Solution:

This claim will be proven via induction on n.

• Base Case: n=1

Then the summation runs only over one p_i , in particular p_1 . Since $\frac{1}{p_1} = 1$, this implies that $p_1 = 1$. Then

$$\left| \int f_1 \, d\mu \right| = \|f_1\|_1 \le \|f_1\|_1$$

Since equality is a subcase of "\le ".

• Induction Hypothesis:

Next we assume the inequality above holds for some cases up to and including the case k, k > 1. This implies that

$$\sum_{i=1}^{k} \frac{1}{p_i} = 1,$$

and

$$\left| \int f_1 \cdots f_k \ d\mu \right| \le \|f_1\|_{p_1} \cdots \|f_k\|_{p_k}.$$

We will now show that the subsequent case, k + 1, holds.

• Induction Case: n = k + 1.

Since each $1 \le p_i \le \infty$, we need to consider the case when $p_{k+1} = \infty$. If this is true, then

$$\sum_{i=1}^{k+1} \frac{1}{p_i} = \sum_{i=1}^{k} \frac{1}{p_i} = 1.$$

Thus, Hölder's inequality can be applied, where we separate the function f_{k+1} from the first k functions. Then,

$$\left| \int f_1 \cdots f_{k+1} \ d\mu \right| \le \|f_1 \cdots f_k\|_1 \|f_{k+1}\|_{\infty}.$$

Then, we can apply the induction hypothesis to get

$$\left| \int f_1 \cdots f_{k+1} \ d\mu \right| \le \|f_1\|_{p_1} \cdots \|f_k\|_{p_k} \|f_{k+1}\|_{\infty}$$

Which is what we wanted to show.

We next assume that $p_{k+1} \neq \infty$. Define the following Hölder conjugates:

$$p := \frac{p_{k+1}}{p_{k+1} - 1}, \quad q := p_{k+1}$$

Applying Hölder's Inequality in a similar fashion to the previous case gives,

$$||f_1 \cdots f_k f_{k+1}||_1 \le ||f_1 \cdots f_k||_p ||f_{k+1}||_q$$

Which by the Induction Hypothesis, satisfies the given equality. Next, we need to show that the summation is satisfied. From the definition of p, q, we have

$$\sum_{i=1}^{k+1} \frac{1}{p_i} = \frac{1}{p} + \frac{1}{q} = 1 - \frac{1}{p_{k+1}} + \frac{1}{p_{k+1}} = 1$$

If $f \in L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$, where p < q, prove that $f \in L^r(\mathbb{R}^n)$ for any p < r < q, and show that

$$\|f\|_r \leq (\|f\|_p)^{\frac{1/r-1/q}{1/p-1/q}} (\|f\|_q)^{\frac{1/p-1/r}{1/p-1/q}},$$

This result is one of the simplest examples of an *interpolation inequality*.

Solution:

Suppose there are constants $\alpha \in (0,1)$, and m, n > 1 be conjugates. By Hölder's Inequality, we then have

$$||f||_r^r = \int |f|^r = \int |f|^{\alpha r} |f|^{(1-\alpha)r} \le \left(\int |f|^{\alpha mr}\right)^{1/m} \left(\int |f|^{(1-\alpha)nr}\right)^{1/n}$$

We wish to have the right hand side to have the form given, that is, we need to choose α, m, n such that

$$\alpha mr = p \tag{1}$$

$$(1 - \alpha)nr = q \tag{2}$$

$$\frac{1}{m} + \frac{1}{n} = 1 \tag{3}$$

We will first solve for α . Note that (1) implies that $\alpha = \frac{p}{mr}$. (2) implies $\frac{1}{n} = \frac{(1-\alpha)r}{q}$, and (3) implies $\frac{1}{m} = 1 - \frac{1}{n}$. Plugging this all in, we have that

$$\alpha = \frac{p}{r} \left(1 - \frac{(1 - \alpha)r}{q} \right).$$

We can then solve for α .

$$\alpha = \frac{p}{r} \left(1 - \frac{(1 - \alpha)r}{q} \right) \tag{Given.}$$

$$\alpha = \frac{p}{r} \left(1 - \frac{r}{q} \right) + \frac{\alpha p}{q} \tag{Distributing.}$$

$$\alpha \left(1 - \frac{p}{q} \right) = \frac{p}{r} \left(1 - \frac{r}{q} \right) \tag{Rearranging.}$$

$$\alpha = \left(\frac{pq - rp}{rq} \right) \left(\frac{q - p}{q} \right)^{-1} \tag{Rearranging.}$$

$$= \left(\frac{pq - rp}{rq} \right) \left(\frac{q}{q - p} \right) \tag{Taking inverse.}$$

$$= \frac{pq - rp}{rq - rp}$$
 (Simplifying.)
$$= \frac{1/r - 1/q}{1/p - 1/q}$$
 (Dividing by rpq .)

From the original equation, we now have that

$$||f||_r \le \left((||f||_p^p)^{1/m} (||f||_q^q)^{1/n} \right)^{1/r} = ||f||_p^{p/mr} ||f||_q^{q/nr}.$$

From (1) and (2), we can substitute the powers by α and $1 - \alpha$, respectively. Note that

$$1 - \alpha = 1 - \frac{1/r - 1/q}{1/p - 1/q} = \frac{1/p - 1/q}{1/p - 1/q} - \frac{1/r - 1/q}{1/p - 1/q} = \frac{1/p - 1/r}{1/p - 1/q}.$$

We therefore have the desired inequality.

Prove that the unit ball in $L^p([0,1])$, where $1 \le p \le \infty$, is not strongly compact.

Solution:

As a counterexample, we let $n \in \mathbb{N}$, so that $I_n = (2^{-n}, 2^{-(n-1)})$, and $f_n = 2^{n/p} \chi_{I_n}$. Note that

$$||f_n||_p = \int_0^1 |2^{n/p} \chi_{I_n}(x)| \ d\mu(x) = \int_{2^{-n}}^{2^{-n+1}} 2^n \ d\mu(x) = 2^n (2^{-n+1} - 2^{-n}) = 2 - 1 = 1.$$

Similarly, we have that $||f_n - f_m|| \infty = 1$. For $m \neq n$. For $p \in [1, \infty)$, we have that

$$||f_n - f_m||_p = (2^n \chi_{I_n}(x) - 2^m \chi_{I_m}(x) d\mu(x))^{1/p} = (1+1)^{1/p} = 2^{1/p}.$$

Note that the integral above can be broken into two integrals, which are both of the previous integral. Since we have the difference under the sup-norm is 1, we cannot take infinitely large p to maintain the p-norm less than ε . Therefore, no subsequence of (f_n) can be Cauchy, so none can converge.

Give an example of a bounded sequence in $L^1([0,1])$ that does not have a weakly convergent subsequence. Why does this not contract the Banach-Analoglu Theorem?

Solution:

The choice of f_n is similar to Problem 2.17, with $f_n = 2^n \chi_{I_n}$. Suppose that (f_{n_j}) is a subsequence of (f_n) , and define a function $g \in L^{\infty}$ by

$$g = \sum_{j=1}^{\infty} (-1)^j \chi_{I_{n_j}}.$$

Take $\varphi \in (L^1)^*$ as $\varphi(f) = \int fg$. Then,

$$\int_0^1 2^{n_j} \chi_{I_{n_j}}(x) \sum_{k=1}^\infty (-1)^k \chi_{I_{n_k}}(x) \ d\mu(x) = \int_{2^{-n_j}}^{2^{-n_j+1}} 2^{n_j} (-1)^j \ d\mu(x) = 2^{n_j} (2^{-n_j} - 2^{-n_j+1}) (-1)^j = (-1)^j.$$

Note that when taking the sum, the only term that will survive with respect to the outside indicator function is the one related to n_j . Therefore, (f_{n_j}) cannot converge weakly. Note that this does not contradict the Banach-Alaoglu Theorem since L^1 is not reflexive.

Consider C([0,1]) with the sup-norm. Let

$$N = \left\{ f \in C([0,1]) : \int_0^1 f(x) \ dx = 0 \right\}$$

be the closed linear subspace of C([0,1]) of functions with zero mean. Let

$$X = \{ f \in C([0,1]) : f(0) = 0 \}$$

and define $M = N \cap X$.

Problem 6.2, part a

If $u \in C([0,1])$, prove that

$$d(u, N) = \inf_{n \in N} ||u - n|| = |\overline{u}|$$

where $|\overline{u}| = \int_0^1 u(x) \ dx$ is the mean of u, so the infimum is attained when $n = u - \overline{u} \in N$.

Solution:

We first consider two cases, where $u \in C([0,1]) \setminus N$, $u \in N$. If $u \in N$, then $d(u,N) = \inf_{n \in N} \|u - n\| = 0$, since the norm is positive function, and equals zero only when the term inside is equal zero. This implies n = u is the unique element. If $u \in C([0,1]) \setminus N$, we then have by Theorem 6.13 that there us a unique closest element for u in N, denoted y, such that

$$||u - y|| = \min_{z \in N} ||u - z||.$$

Furthermore, the element y is the unique element of N with the property that $(u-y) \perp N$. Denote $y=u-\overline{u}$. Note that since $u \notin N$, $\int_0^1 u(x) \ dx \neq 0$, thus $\overline{u} \notin N$. We next need to show that $y \in N$. This is shown by the following:

$$\int_0^1 u(x) - \overline{u} \, dx = \int_0^1 u(x) \, dx - \int_0^1 \overline{u} \, dx = \overline{u} - \overline{u} = 0.$$

Next we need to show that $(u - y) \perp N$. Take $n \in N$, then

$$\int_0^1 (u - y)(x)n(x) \, dx = \overline{u} \int_0^1 n(x) = 0.$$

Therefore, $d(u, N) = |\overline{u}|$.

Problem 6.2, part b

If $u(x) = x \in X$, show that

$$d(x, M) = \inf_{m \in M} \|u - m\| = 1/2,$$

but that the infimum is not attained for any $m \in M$.

Solution:

From part a, we see that

$$d(x,M) = \left| \int_0^1 x \, dx \right| = \frac{1}{2}.$$

Therefore, we choose $y=x-\frac{1}{2}$. Note that $y \notin M$, however, since setting x=0, then $y=-\frac{1}{2}$. This violates the property any element has in M. Therefore, the claim has been shown.

Suppose that $\{H_n : n \in \mathbb{N}\}$ is a set of orthogonal closed subspaces of a Hilbert space H. We define the infinite direct sum

$$\bigoplus_{n=1}^{\infty} H_n = \left\{ x_n : x_n \in H_n \text{ and } \sum_{n=1}^{\infty} \left\| x_n \right\|^2 < \infty \right\}.$$

Prove that $\bigoplus_{n=1}^{\infty} H_n$ is a closed linear subspace of H.

Solution:

For the sake of simplicity, let $H=\bigoplus_{n=1}^{\infty}$. To show that H closed, take a sequence x_n in H. We want to show that $x_n\to x\in H$. Note that, since $x_n\in H$, then x_n can be written as a summation of sequences y_n^k , for which each $y_n^k\in H_k$. Then $x_n=\sum_k y_n^k$. Then,

$$||x_n - x_m||^2 = \left\| \sum_k y_n^k - y_m^k \right\|^2 = \sum_k \|y_n^k - y_m^k\|^2$$

Note that since each H_k is closed, then $\sum_k \left\| y_n^k - y_m^k \right\|^2 \to 0$. Note that summing over all k implies

$$\|y_n^k - y_m^k\|^2 \le \sum_k \|y_m^k - y_n^k\|^2 \to 0.$$

This tells us $||y_n^k - y_m^k|| \to 0$ for all k. Since each H_k is closed, we have that $y_n^k \to y^k$ for some $y^k \in H_k$. We can then show that $x_n \to \sum_k y^k$.

$$\left\| x_n - \sum_k y^k \right\|^2 = \left\| \sum_k (y_n^k - y_n) \right\|^2 = \sum_k \left\| y_n^k - y_n \right\|^2 \le \liminf_{m \to \infty} \sum_k \left\| y_n^k - y_m^k \right\|^2.$$

Since each $\|y_n^k - y_m^k\|$ can be made less than ε for sufficiently large m, n, we have that $\|x_n - \sum_k y^k\|^2 < \varepsilon$. Therefore, $x = \sum_k y^k$. We now need to show that $y_k \in H$. Note that

$$\sum_{k} \|y^{k}\|^{2} \le \liminf_{m \to \infty} \sum_{k} \|y_{m}^{k}\|^{2} = \liminf_{m \to \infty} \|x_{m}\|^{2} = \|x\|^{2} < \infty.$$

Therefore, $y_k \in H$, so H is closed.

Prove that if M is a dense linear subspace of a Hilbert space H, then H has an orthonormal basis consisting of elements in M. Does the same result hold for arbitrary dense subsets of H?

Solution:

Since we are not given information on the dimensionality of H, we need to consider two separate cases of when H is finite or infinite dimensional. We will first consider the case when H is finite dimensional. Since any subspace of a linear space is closed in finite dimensions, the only dense linear subspace of H is the space H itself. The claim that H then has an orthonormal basis from M holds since H has an orthonormal basis.

Next consider the case when H is infinite dimensional. Since we suppose that M is a dense linear subspace of H, we can take H to be separable. Because of this, there is a countable dense subset $\{x_n : n \in \mathbb{N}\}$ of H. Note that this subset is agnostic to M. Since M itself is dense in H, we can take a sequence $x_{m,n} \in M$ such that $x_{m,n} \to x_n$ as $m \to \infty$. Then the set $\{x_{m,n} : m, n \in \mathbb{N}\}$ is a countable subset of M, which is dense in H.

To connect this new set to H, suppose that we have an arbitrary subset P of M that is dense in H. Let $P_B = \{x_n : n \in \mathbb{N}\}$ then be the largest linearly independent subset of P. Then since P_B spans every element of B, $B \subseteq P_B$, thus P_B is dense in H. Therefore, the closure of P_B is then equal to H. Via Gram-Schmidt, we can take the basis P_B and transform it into an orthonormal set of vectors, P_N whose closed span is equal to the span of P_B . This implies that P_N is an orthonormal basis of H. Since we have that elements of P_N are linear combinations of elements of P_N , thus P_N is an orthonormal basis of P_N whose elements belong to the dense linear subspace P_N .

To give a counterexample for any arbitrary dense subset, take $H = \mathbb{R}^2$, and consider P_B to be any rotation of the basis vectors, e_1, e_2 by an irrational angle, say $n\pi$ degrees for any $n \in \mathbb{N}$. Then, P_B is dense in H, however, P_B does not have a finite set of linearly independent vectors. Since π is irrational, rotations of the basis vectors will never overlap since, if they did, then that would imply that π was irrational, which is not the case. Therefore, the result cannot hold for arbitrary dense subsets of a Hilbert space.

Define the Hermite polynomials H_n by

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right).$$

Problem 6.14, part a

Show that

$$\varphi_n(x) = e^{-x^2/2} H_n(x)$$

is an orthogonal set in $L^2(\mathbb{R})$.

Solution:

First, since each φ_n is orthogonal to every function of the form $e^{(-x^2/2)}p_m$, where p_m is a polynomial of lower degree of n, we just need to show that $e^{-x^2/2}x^m$ is orthogonal to φ_n . Integrating by parts m times, and taking each residual from integration by parts to go to zero, we can see that

$$\int_{\mathbb{R}} e^{-x^2/2} \varphi_n(x) \ dx = (-1)^n \int_{\mathbb{R}} x^m \frac{d^n}{dx^n} \left(e^{-x^2} \right) \ dx = (-1)^{m+n} m! \int_{\mathbb{R}} \frac{d^{n-m}}{dx^{n-m}} \left(e^{-x^2} \right) \ dx = 0.$$

The last integral is equal zero since the differentiated function vanishes as $|x| \to \infty$.

Problem 6.14, part b

show that the n-th Hermite function φ_n is an eigenfunction of the linear operator

$$H = -\frac{d^2}{dx^2} + x^2$$

with eigenvalue $\lambda_n = 2n + 1$.

Solution:

First, let

$$A = \frac{d}{dx} + x, \quad A^* = -\frac{d}{dx} + x.$$

We will first show that $AA^* - 1 = H$. Taking a test function ψ , we see that,

$$(AA^*)\psi = A(A^*\psi)$$

$$= A\left(-\frac{d\psi}{dx} + x\psi\right)$$

$$= -A\left(\frac{d\psi}{dx}\right) + A\left(x\psi\right)$$

$$= -\left(\frac{d^2\psi}{dx^2} + x\frac{d\psi}{dx}\right) + \frac{d}{dx}\left(x\psi\right) + x^2\psi$$

$$= -\left(\frac{d^2\psi}{dx^2} + x\frac{d\psi}{dx}\right) + x\frac{d\psi}{dx} + \psi + x^2\psi$$

$$= -\frac{d^2\psi}{dx^2} + \psi + x^2\psi$$

$$= \left(-\frac{d^2}{dx^2} + 1 + x^2\right)\psi$$

Therefore, the action that AA^* preforms on ψ is equivalent to the form above, which is equivalent to H+1. This implies that $AA^*-1=H$, which is what we wanted to show.

Next, we need to prove the following recurrence relation between Hermite Polynomials:

$$\frac{dH_n}{dx} = 2nH_{n-1} = -H_{n+1} + 2xH_n$$

We can relate the first and the third relations together via:

$$\frac{dH_n}{dx} = (-1)^n \frac{d}{dx} \left[e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right) \right]$$

$$= (-1)^n e^{x^2} \frac{d^{n+1}}{dx^{n+1}} \left(e^{-x^2} \right) + (-1)^n 2x e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right)$$

$$= -H_{n+1} + 2xH_n$$

Next, we can observe the differentiation term in the n+1 Hermite polynomial.

$$\frac{d^{n+1}}{dx^{n+1}} \left(e^{-x^2} \right) = \frac{d^n}{dx^n} \left(-2xe^{-x^2} \right)$$
$$= -2x \frac{d^n}{dx^n} \left(e^{-x^2} \right) - 2n \frac{d^{n-1}}{dx^{n-1}} \left(e^{-x^2} \right)$$

We can then multiply both sides by $(-1)^{n+1}e^{x^2}$ to get

$$H_{n+1} = 2xH_n - 2nH_{n-1}$$

Using the found equation above, we can remove the H_n term from both sides to get

$$\frac{dH_n}{dx} = 2nH_{n-1}$$

Next, we need to investigate the actions A and A^* have on on φ_n . From the found relations above, we have

$$A\varphi_{n} = \left(\frac{d}{dx} + x\right) \left(e^{-x^{2}/2}H_{n}\right)$$

$$= \frac{d}{dx} \left[e^{-x^{2}/2}H_{n}\right] + xe^{-x^{2}/2}H_{n}$$

$$= -xe^{-x^{2}/2}H_{n} + e^{-x^{2}/2}\frac{dH_{n}}{dx} + xe^{-x^{2}/2}H_{n}$$

$$= e^{-x^{2}/2}\frac{dH_{n}}{dx}$$

$$= 2ne^{-x^{2}/2}H_{n-1}$$

$$= 2n\varphi_{n-1}$$

Similarly,

$$A^*\varphi_n = \left(-\frac{d}{dx} + x\right) \left(e^{-x^2/2}H_n\right)$$

$$= -\frac{d}{dx} \left[e^{-x^2/2}H_n\right] + xe^{-x^2/2}H_n$$

$$= xe^{-x^2/2}H_n - e^{-x^2/2}\frac{dH_n}{dx} + xe^{-x^2/2}H_n$$

$$= e^{-x^2/2}\left(-\frac{dH_n}{dx} + 2xH_n\right)$$

$$= e^{-x^2/2}H_{n+1}$$

$$= \varphi_{n+1}$$

We can now finally see that action H has on φ_n . Via everything we have shown above, we can write

$$H\varphi_n = (AA^* - 1)\varphi_n$$

$$= AA^*\varphi_n - \varphi_n$$

$$= A(\varphi_{n+1}) - \varphi_n$$

$$= 2(n+1)\varphi_n - \varphi_n$$

$$= (2n+1)\varphi_n$$

Therefore, φ_n is an eigenfunction of H with eigenvalue 2n+1.