Homework 5

Madilyn Simons

1. To prove φ_{α} is closed under addition, first let f, g be any elements of S[x]. We know that f+g is also an element of S[x] because the coefficients of f and g are elements of S, which is a ring. This implies that the coefficients of f and g are closed under addition, so the coefficients of f+g are also in S.

With this having be said, we can prove φ_{α} is closed under addition as such:

$$\varphi_{\alpha}(f+g) = (f+g)(\alpha) = f(\alpha) + g(\alpha) = \varphi_{\alpha}(f) + \varphi_{\alpha}(g)$$

We know $f \cdot g$ is an element of S[x] since S is closed under multiplication, so the coefficients of $f \cdot g$ are elements of S.

We can prove φ_{α} is closed under multiplication as such:

$$\varphi_{\alpha}(f \cdot g) = (f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha) = \varphi_{\alpha}(f) \cdot \varphi_{\alpha}(g)$$

Thus, φ_{α} is a ring homomorphism.

2. Let $f(\alpha)$, $g(\alpha)$ be any elements in $S[\alpha]$. By the definition of $S[\alpha]$, f(x), g(x) as elements of S[x]. Since S[x] is a ring homomorphism, (f+g)(x) is an element of S[x]. If (f+g)(x) is an element of S[x], then $(f+g)(\alpha)$ is an element of $S[\alpha]$ and $S[\alpha]$ is closed under addition.

Similarly, f(x)g(x) is an element of S[x]. This implies that $f(\alpha)g(\alpha)$ is an element of $S[\alpha]$ and so $S[\alpha]$ is closed under multiplication.

For $S[\alpha]$ to be a subring of R, 0_R must be an element of $S[\alpha]$. Define the function $f: S[x] \to R$ by $f(x) = 0_R$. As such, $f(\alpha) = 0_R$ is an element of $S[\alpha]$.

Let $f(x) = a_0 + a_1x + ... + a_nx^n$ be any element of S[x]. By definition, a_i is an element of R for all non-negative integers i, and for all a_i , there exists a b_i in R such that $a_i + b_i = 0_R$. Therefore, there exists a function $g(x) = b_0 + b_1x + ... + b_nx^n$ in S[x] such that $f(x) + g(x) = 0_R$. As a direct result, for any $f(\alpha)$ in $S[\alpha]$ there exists a $g(\alpha)$ such that $f(\alpha) + g(\alpha) = 0_R$.

Thus, $S[\alpha]$ is a subring of R.

3. Let $(a_0 + a_1x + ... + a_nx^n)$, $(b_0 + b_1x + ... + b_nx^n)$ be elements of $R_1[x]$.

We can prove G is closed under addition as such:

$$G((a_0 + a_1x + \dots + a_nx^n) + (b_0 + b_1x + \dots + b_nx^n))$$

$$= G(a_0 + a_1x + \dots + a_nx^n + b_0 + b_1x + \dots + b_nx^n)$$

$$= F(a_0) + F(a_1)x + \dots + F(a_n)x^n + F(b_0) + F(b_1)x + \dots + F(b_n)x^n$$

$$= (F(a_0) + F(a_1)x + \dots + F(a_n)x^n) + (F(b_0) + F(b_1)x + \dots + F(b_n)x^n)$$

$$= G(a_0 + a_1x + \dots + a_nx^n) + G(b_0 + b_1x + \dots + b_nx^n)$$

We can prove G is closed under multiplication as such:

$$G((a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_nx^n))$$

$$= G(a_0b_0 + \dots + a_nb_mx^{n+m})$$

$$= F(a_0b_0) + \dots + F(a_nb_m)x^{n+m}$$

$$= F(a_0)F(b_0) + \dots + F(a_n)F(b_m)x^{n+m}$$

$$= (F(a_0) + F(a_1)x + \dots + F(a_n)x^n)(F(b_0) + F(b_1)x + \dots + F(b_m)x^m)$$

$$= G(a_0 + a_1x + \dots + a_nx^n)G(b_0 + b_1x + \dots + b_nx^n)$$

Therefore G is also a a ring homomorphism.