

- 1 Redukcja wymiarowości (PCA, t-SNE)
- 2 Gradient Boosting
- 3 xgBoost
- 4 Regularyzacja

- 1 Redukcja wymiarowości (PCA, t-SNE)
- 2 Gradient Boosting
- 3 xgBoost
- 4 Regularyzacja

- 1 Redukcja wymiarowości (PCA, t-SNE)
- 2 Gradient Boosting
- 3 xgBoost
- 4 Regularyzacja

- 1 Redukcja wymiarowości (PCA, t-SNE)
- 2 Gradient Boosting
- 3 xgBoost
- 4 Regularyzacja

Im większy wymiar, tym znacznie więcej danych potrzebujemy. Tym samym wykładniczo rośnie liczba możliwych wariantów, co znacznie zwiększa złożoność obliczeniową naszych algorytmów.

info Share

- Zmniejszenie rozmiaru danych, co przekłada się na wydajność algorytmów uczenia maszynowego,
- łatwiejsze zidentyfikowanie podstawowej struktury danych,
- zapobieganie przetrenowaniu modelu.

- Metody w oparciu o szukanie czynników pomiędzy wymiarami,
- metody w oparciu o rzutowanie jednego wymiaru na inny.

Metody w oparciu o szukanie czynników pomiędzy wymiarami

Principal Component Analysis (PCA)

Metody w oparciu o szukanie czynników pomiędzy wymiarami

Independent Component Analysis (ICA)

Metody w oparciu o szukanie czynników pomiędzy wymiarami

Factor Analysis

Metody w oparciu o szukanie czynników pomiędzy wymiarami

• t-SNE

Metody w oparciu o rzutowanie jednego wymiaru na inny

ISOMAP

Metody w oparciu o rzutowanie jednego wymiaru na inny

UMAP

Metody w oparciu o rzutowanie jednego wymiaru na inny

UMAP

Principal

Components

Analysis

- 1. Redukcja wymiarowości danych
- 2. Analiza wizualna i wizualizacja danych
- 3. Preprocessing danych przed modelem
- 4. Wykrywanie skorelowanych cech
- 5. Kompresja danych
- 6. Rozpoznawanie obrazów i analiza tekstur
- 7. Analiza genomiki i biologii molekularnej

- Nieskorelowane
- 2. Ułożone malejąco pod kątem zmienności
- 3. Wariancja jako maksymalizowana kryterium
- 4. Minimalna korelacja z poprzednimi składowymi

Jeśli X1,X2,...,Xp są oryginalnymi zmiennymi, a PC1,PC2,...,PCp są głównymi składowymi, to pierwsza główna składowa PC1 jest kombinacją liniową a1X1+a2X2+...+apXp, gdzie a1,a2,...,ap to współczynniki tak dobrane, aby maksymalizować wariancję PC1, przy czym a1^2+a2^2+...+ap^2=1.

I. Średnia

$$\overline{X}_i = \frac{1}{n} \sum_{j=1}^n X_{ij}$$

info Share ACADEMY

2. Standaryzacja

info Share ACADEMY

3. Macierz kowariancji

$$S = \frac{1}{n-1} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^T$$

4. Wartości własne i wektory własne

$$det(S - I\lambda) = 0$$

5. Sortowanie wartości własnych

6. Wybór głównych składowych

7. Transformacja danych

iris = datasets.load_iris()

iris setosa

iris versicolor

iris virginica

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

iris = datasets.load_iris()

data = iris.data

columns = iris.feature_names

scaler = StandardScaler()

norm = scaler.fit_transform(df)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	-0.900681	1.019004	-1.340227	-1.315444
1	-1.143017	-0.131979	-1.340227	-1.315444
2	-1.385353	0.328414	-1.397064	-1.315444
3	-1.506521	0.098217	-1.283389	-1.315444
4	-1.021849	1.249201	-1.340227	-1.315444

from sklearn.decomposition import PCA

 $pca = PCA(n_components=2)$

principal_components = pca.fit_transform(normalized_df)

pc_df = pd.DataFrame(data=principal_components, columns=['PC1', 'PC2'])

	PC1	PC2	Target
0	-2.264703	0.480027	0
1	-2.080961	-0.674134	0
2	-2.364229	-0.341908	0
3	-2.299384	-0.597395	0
4	-2.389842	0.646835	0

Przeprowadź Analizę Składowych Głównych (PCA) na zbiorze danych o winach.

from sklearn.datasets import load_wine wine = load_wine()


```
def plot_information_loss(dataset, title):
  X = dataset.data
  scaler = StandardScaler()
  X_scaled = scaler.fit_transform(X)
  pca = PCA().fit(X_scaled)
  cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
  plt.figure(figsize=(10, 5))
  plt.plot(range(1, len(cumulative_variance) + 1), cumulative_variance, marker='o', linestyle='-',
color='b')
  plt.title(f'Cumulative Variance Explained - {title}')
  plt.xlabel('Number of Principal Components')
  plt.ylabel('Cumulative Variance Explained')
  plt.grid(True)
  plt.show()
wine = load_wine()
plot_information_loss(wine, 'Wine Recognition')
```

infoShareAcademy.com

- 1. Redukcja wymiarowości
- 2. Wizualizacja danych
- 3. Usuwanie korelacji
- 4. Przyśpieszenie algorytmów uczenia maszynowego
- 5. Analiza grup
- 6. Korekcja zakłóceń (denosing)
- 7. Ekstrakcja cech
- 8. Analiza genomiki i biologii
- 9. Kompresja danych

Wyliczenie podobieństw:

info Share ACADEMY

infoShareAcademy.com

Ostatecznie mierzymy odległości pomiędzy wszystkimi punktami a punktem zainteresowania...

Narysuj je na krzywej normalnej...

...a następnie zmierzyć
odległości od punktów do
krzywej, aby uzyskać
nieskalowane wyniki
podobieństwa w
odniesieniu do
interesującego punktu.

Teraz losowo rzutujemy dane na oś liczbową...

... i oblicz wyniki podobieństwa punktów na osi liczbowej.

ML xgBoost

t-SNE – idea działania

Podobnie jak poprzednio, otrzymujemy macierz wyników podobieństwa, ale w tej macierzy panuje bałagan...

t-SNE przesuwa punkty po trochu i w każdym kroku wybiera kierunek, który sprawia, że macierz po lewej stronie bardziej przypomina macierz po prawej stronie.

Używa małych kroków, ponieważ przypomina trochę grę w szachy i nie da się jej rozwigzać od razu. Zamiast tego wykonuje jeden ruch na raz.

sklearn.manifold.TSNE

class sklearn.manifold.TSNE(n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate='auto', n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric='euclidean', metric_params=None, init='pca', verbose=0, random_state=None, method='barnes_hut', angle=0.5, n_jobs=None) [source]

Dlaczego t-SNE?

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler

iris = datasets.load_iris()

X = iris.data

y = iris.target

X_normalized = StandardScaler().fit_transform(X)

tsne = TSNE(n_components=2, random_state=42)
X_tsne = tsne.fit_transform(X_normalized)

infoShareAcademy.com


```
plt.figure(figsize=(8, 6))
for i, c in zip(range(3), ['red', 'green', 'blue']):
        plt.scatter(X_tsne[y == i, 0], X_tsne[y == i, 1], c=c,
label=iris.target_names[i])
```

plt.title('t-SNE Visualization of Iris Dataset')

plt.xlabel('t-SNE Component 1')
plt.ylabel('t-SNE Component 2')
plt.legend()
plt.show()

infoShareAcademy.com

Zadanie 14.2 (instrukcja)

Przeprowadź analizę struktury zbioru danych dotyczącego samochodów za pomocą algorytmu t-SNE.

from sklearn.datasets import load_vehicles

vehicles = load_vehicles()
data = pd.DataFrame(vehicles.data,
columns=vehicles.feature_names)
target = vehicles.target

Weak learner 2

Weak learner 3

Weak learner 4

Weak learner 5

Bagging

Parallel

Boosting

Sequential

- 1. Niska złożoność
- 2. Niska dokładność indywidualna
- 3. Słaba generalizacja
- 4. Różnorodność (Diversity)
- 5. Niski koszt trenowania

xgBoost: A Scalable Tree Boosting System

Tianqi Chen University of Washington tqchen@cs.washington.edu Carlos Guestrin University of Washington guestrin@cs.washington.edu

Każdy kolejny model stara się przewidzieć błąd wszystkich modeli przed nim. Tzn. model 2 przewiduje błąd modelu 1 + średniej, model 1 modeluje błąd średniej.

Parametr C jest rozmiarem kroku, jaki robimy w naszej optymalizacji. Jest to tzw. learning rate.

$$\mathrm{obj}(heta) = L(heta) + \Omega(heta)$$

MSE

Funkcja Softmax

Lasso Regularization(L1)

loss =
$$\sum_{i=0}^{n} \left(y_i - X_i eta
ight)^2 + \sum_{j=0}^{m} \left|eta_j
ight|$$

Lasso Regularization(L2)

loss =
$$\sum_{i=0}^n \left(y_i - X_i eta \right)^2 + \sum_{j=0}^m eta_j^2$$

$$ext{Koszt} = ext{Funkcja Straty} + lpha \sum_{i=1}^n |w_i|$$

$$ext{Koszt} = ext{Funkcja Straty} + lpha \sum_{i=1}^n w_i^2$$

import xgboost as xgb

Pandas DataFrame

NumPy array

xgBoost DMatrix

objective: określa użytą funkcję straty (loss)

regresja

reg:squarederror

klasyfikacja

reg:logistic

binary:logistic

- Modyfikacją pierwszego jest booster:dart.
- Do dyspozycji jest jeszcze booster:gblinear.
- Nie jest zbyt popularny.
- Do treningu używamy funkcji .train() zamiast znanej .fit()

Kara za złożoność modelu.

Istotne hiperparametry modelu:

alpha - regularyzacja L1 (lasso)

lambda - regularyzacja L2 (ridge)

- **booster** (gbtree/gblinear/dart)
- learning_rate
- gamma
- max_depth
- n_estimators
- subsample
- objective
- colsample_bytree
- n_jobs
- verbosity
- eval_metric
- missing

Rysunek drzewa:

xgb.plot_tree()

1 parametrem jest wytrenowany model.

2 parametrem jest głębokość rysunku.

Wykres istotności cech:

xgb.plot_importance()

Parametrem jest model.

- Szybki i wydajny.
- Algorytm można zrównoleglić.
- Bardzo dokładny dla danych o ilości próbek większej niż liczba cech.
- Odpowiedni dla danych numerycznych oraz kategorycznych.
- Używany w problemach regresji i klasyfikacji.
- Kompatybilny z API scikit-learn.
- Szeroki wybór wbudowanych parametrów strojenia modelu.

- Nie jest odpowiedni do problemów lepiej rozwiązywalnych przez algorytmy uczenia głębokiego:
 - o rozpoznawania obrazów,
 - o przetwarzania języka naturalnego,
 - z małą liczbą przypadków uczących,
 - danych, gdzie ilość featurów jest porównywalna lub większa od ilości próbek.

import pandas as pd import xgboost as xgb import numpy as np import time

data =
pd.read_csv("../data/kc_house_data.csv")
data.head()

id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat	long	sqft_living15	sqft_lot15
0 7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0	7	1180	0	1955	0	98178	47.5112	-122.257	1340	5650
1 6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	7	2170	400	1951	1991	98125	47.7210	-122.319	1690	7639
2 5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0	6	770	0	1933	0	98028	47.7379	-122.233	2720	8062
3 2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0	7	1050	910	1965	0	98136	47.5208	-122.393	1360	5000
4 1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0	8	1680	0	1987	0	98074	47.6168	-122.045	1800	7503

Przykładowy trening:

y = data['price']

x = data.drop(['id', 'price', 'date', 'zipcode'], axis=1)

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

xg_reg = xgb.XGBRegressor(random_state=123, n_estimators=5, max_depth=7)

xg_reg.fit(x_train, y_train)

y_pred = xg_reg.predict(x_test)

array([736183.4, 339161.88, 664775.1, ..., 443761., 543238.06, 285922.28], dtype=float32)

xg_reg.score(x_test, y_test)

0.7300266688026265

from sklearn.metrics import mean_squared_error, mean_absolute_error, import sklearn.metrics

rmse = np.sqrt(mean_squared_error(y_test, y_pred))
mae = sklearn.metrics.mean_absolute_error(y_test, y_pred)

RMSE - gbtree: 192431.47170763818 MAE - gbtree: 113103.9277917534

xgb.plot_importance(xg_reg)

Zadanie 14.3 (instrukcja)

Dla zbioru danych dotyczącego cukrzycy (load_diabetes) dostępny w bibliotece scikit-learn, stwórz model regresji przy użyciu xgBoost, który przewiduje progresję choroby na podstawie różnych cech pacjentów.

from sklearn.datasets import load_diabetes data = load_diabetes()

Klasyfikacja:

import xgboost as xgb
import numpy as np
import time
from sklearn import datasets
import matplotlib.pyplot as plt

```
x, y = datasets.make_classification(
    n_samples=2500, n_features=20, n_informative=3, n_redundant=2
)
```


from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=23)

xgb_cl = xgb.XGBClassifier(n_estimators=100, max_depth=3, use_label_encoder=False, eval_metric='error')

xgb_cl.fit(x_train, y_train)

from sklearn.metrics import accuracy_score

y_pred = xgb_cl.predict(x_test)
acc = accuracy_score(y_test, y_pred)
print("acc: ", acc)

acc: 0.948

Wytrenuj klasyfikator xgboost na syntetycznym zbiorze danych i porównaj go z Random Forest (na tych samych parametrach).

Zaawansowana klasyfikacja:

import xgboost as xgb
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_csv("../data/income_evaluation.csv", sep='\s*,\s*', header=0,
encoding='ascii', engine='python')
df.head()

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss	hours-per-week	native-country	income
0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
1	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
3	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

Konwersja danych kategorycznych do numerycznych:

sklearn.preprocessing.LabelEncoder

from sklearn.preprocessing import LabelEncoder

```
list_to_encode = [
  'workclass', 'education', 'marital-status', 'occupation',
  'relationship', 'race', 'sex', 'native-country'
]
```


df_encoded = pd.get_dummies(df, columns=list_to_encode)
df_encoded.head()

	age	fnlwgt	education- num	capital- gain	capital- loss	per- week	income	workclass_?	workclass_Federal- gov	workclass_Local- gov		native- country_Portugal
0	39	77516	13	2174	0	40	<=50K	0	0	0		0
1	50	83311	13	0	0	13	<=50K	0	0	0	515	0
2	38	215646	9	0	0	40	<=50K	0	0	0	***	0
3	53	234721	7	0	0	40	<=50K	0	0	0		0
4	28	338409	13	0	0	40	<=50K	0	0	0	-77	0

5 rows x 109 columns

Wybór cech:

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

y = le.fit_transform(df_encoded['income'])

x = df_encoded.drop(['income'], axis=1)

data_dm = xgb.DMatrix(data=x.values, label=y)

Kroswalidacja:

```
params = {
  "objective": "reg:logistic",
  "max_depth": 3,
  "booster": "gbtree",
  "learning_rate": 0.8
cv_results = xgb.cv(
  dtrain=data_dm,
  params=params,
  nfold=4,
  num_boost_round=250, metrics=["error",
"auc"], as_pandas=True)
```



```
plt.figure(figsize=(15, 7))
plt.title("Błąd na danych treningowych i testowych")
plt.plot(cv_results["train-error-mean"], color="b")
plt.plot(cv_results["test-error-mean"], color="r")
# plt.ylim((0, 0.2))
plt.hlines([cv_results["test-error-mean"].min()], xmin=0, xmax=250, color="g")
plt.xlabel("llość klasyfikatorów")
plt.ylabel("Wartość funkcji błędu")
```


info Share


```
plt.figure(figsize=(15, 7))
plt.title("AUC na danych treningowych i
testowych")
plt.plot(cv_results["train-auc-mean"], color="b")
plt.plot(cv_results["test-auc-mean"], color="r")
plt.xlabel("llość klasyfikatorów")
plt.ylabel("Wartość auc")
```


