

Quantum Key Distribution

Quantum Capita Selecta

Bernardo Villalba Frías, PhD

b.r.villalba.frias@hva.nl

Cryptography

- "Secure communication and data in the presence of third parties"
- Caesar cipher (100–44 BC)
- Enigma (WWII)
- Today: RSA, AES

Symmetric-key encryption

- Same key for encryption and decryption
- Private key shared between two or more parties
- Examples:
 - AES, Twofish, Serpent
- Downside:
 - Secure channel for key exchange
 - Too many keys

Asymmetric-key encryption

- Different key for encryption and decryption
 - Public key: widely disseminated
 - Private key: known only by the owner
- Examples:
 - RSA, Elliptic—curve cryptography
- Downside:
 - Widespread security compromise

One-time pad (OTP)

- Symmetric—key encryption
- Modular addition (XOR)
 - Message and key
- Impossible to break if the key is:
 - Truly random
 - 2. Key length \geq message length
 - 3. Never reused
 - 4. Secret

One-time pad (OTP)

Encoding

$$\begin{aligned} \mathsf{Message} &= 1\,1\,1\,1\,1\,0\,0\,0\,0\,0 \to m_i \\ \mathsf{Key} &= 0\,1\,0\,1\,1\,1\,0\,0\,1\,0 \to k_i \\ \mathsf{Encoded\ message} &= 1\,0\,1\,0\,0\,1\,0\,0\,1\,0 \to e_i = m_i \oplus k_i \end{aligned}$$

Decoding

Encoded message =
$$1010010010 \rightarrow e_i$$

Key = $01011110010 \rightarrow k_i$
Decoded message = $11111100000 \rightarrow e_i \oplus k_i = m_i$

$$e_i \oplus k_i = (m_i \oplus k_i) \oplus k_i = m_i \oplus (k_i \oplus k_i) = m_i \oplus 0 = m_i$$

How to establish a secret key?

We need a secure channel to share the secret key

- 1) Pre-share secret key
- 2) Encrypted messages

Superdense coding

Transmit two bits by sending one qubit

Quantum Key Distribution

- A provably secure protocol
- Allows to create private keys bits between two parties over a public channel
- These keys can be used to implement a classical private—key cryptosystem
- Security of key is based on principles of quantum information
 - No—cloning theorem
 - Information gain implies disturbance

No-cloning theorem

- No quantum circuit can clone an arbitrary quantum state
- However, orthogonal states can be cloned

Information gain implies disturbance

- Measurements are destructive
- Any attempt to distinguish between two non-orthogonal quantum states disturbs the signal

Eight step protocol which requires Alice and Bob to:

- Have true random number generators
- Share a classical authenticated channel
- Share a quantum channel
- Prepare and measure in the computational (Z) and X basis

- Alice randomly chooses a basis $B_i \in \{X, Z\}$ and randomly and privately picks a bit $b_i \in \{0, 1\}$
- Alice prepares qubit $|q_i\rangle$ according to:

B_i	b_i	$ \psi_i\rangle$
\overline{Z}	0	$ 0\rangle$
Z	1	$ 1 \rangle$
X	0	$ + \rangle$
X	1	

• Alice sends the resulting qubit $|q_i\rangle$ to Bob

- Bob measures qubit $|q_i\rangle$ in a basis $B_i \in \{X, Z\}$ that he picks randomly. He privately records the measurement outcome m_i
- Alice and Bob repeat the previous steps a large number of times (N)

- Alice and Bob publicly announce the N bases they have each used. Importantly, Alice does not reveal her b_i nor does Bob reveal his m_i
- Alice and Bob sift out the $M \leq N$ runs in which they used the same basis $(B_i = \widetilde{B_i})$ and throw away the rest.

 Alice and Bob randomly pick a subset of the sifted pairs (b_i, m_i) and compare them using a classical communication channel. If the outcomes correlate perfectly, they can confidently use the remaining ones as a sifted key!

• Randomness in selecting the basis B_i and B_i ensures a 75% of correctness in the message

$$\{B_i, b_i\} \to \begin{cases} B_i = \widetilde{B}_i & 50\% \\ B_i \neq \widetilde{B}_i & \begin{cases} b_i = m_i & 25\% \Rightarrow 75\% \\ b_i \neq m_i & 0\% \end{cases}$$

• Eavesdroppers have to randomly pick a basis $\overline{B_i}$, hence disturbance is introduced

- To detect an eavesdropper with probability 99.9999% → need to compare 72 bits
- As a post—processing step, Alice and Bob apply additional operations on the remaining bits to obtain a shared private key:
 - Information reconciliation (e.g. cascade protocol)
 - Privacy amplification (e.g. hash function)

- Limited quantum complexity
 - Preparation to zero state, Pauli X gate, Hadamard gate, and measurement in the computational basis.
- Secure
 - Key is truly random (generated by Alice)
 - Eavesdroppers can be detected
- Large overhead

QKD is already commercially available!

E91 protocol

- Based on Bell states (generated by any source)
- Uses 3 measurement basis:
 - Alice: $\{Z_0, Z_{\frac{\pi}{8}}, Z_{\frac{\pi}{4}}\}$
 - Bob: $\{Z_0, Z_{\frac{\pi}{8}}, Z_{-\frac{\pi}{8}}\}$
- Same requirements as BB84

- Have true random number generators
- Share a classical authenticated channel
- Share Bell states

E91 protocol

- The entangled qubits are distributed between Alice and Bob and they:
 - Randomly choose a measurement basis
 - Measure their qubits and store the results
 - Announce their measurement basis
 - Two groups of qubits are created:
 - Group A: measured with the same basis
 - Used to generate the key
 - Group B: measured with different basis
 - Used to detect eavesdroppers (correlation measurement)

E91 protocol

- More quantum complexity compared to BB84
 - Preparation to zero state, Hadamard gate, CNOT gate, and measurement in the computational basis
 - Entangled states are sensitive to noise
- Secure
 - The key is undetermined until measurement (key generation)
 - Eavesdroppers can be detected

Other QKD protocols

- BB92 protocol
 - Based on BB84
 - Uses only 1 measurement basis
- Six–States protocol
 - Similar to BB84 with an additional basis
- Coherent One Way protocol
 - Tailored for weak coherent qubits
- Differential Phase Shift protocol
 - Randomized phase modulation of the qubits

