stat 5014-homework 2

Mengkun Chen (mengkun21@vt.edu)

Problem 2

Part A

Specific learning objectives:

- Advanced tools to make proper plots
- Git for version control
- Parallel computing

Part B

Three density functions in centered format with equation number:

• Normal distribution: N(0,1)

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{1}$$

• Exponential distribution: $Exp(\beta)$

$$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}} \tag{2}$$

• Gamma distribution: $Gamma(\alpha, \beta)$

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-\frac{x}{\beta}}$$
(3)

Problem 3

Steps in performing reproducible research:

- 1. Record every involved step, intermediate results, raw data behind plots that may influence the execution between raw data to final results. Track all these using version control system.
- Challenges: Documentation can easily get out of sync with how the analysis was really performed in final version.

- 2. Avoid manual data manipulation and rely on execution of programs if possible.
- Challenges: Sometimes manual data manipulation can't be avoid. It's tough to record detailed notes about manual changes.
- 3. Archive the exact versions of the programs actually used. Store a full virtual machine image of the operating system and program.
- Challenges: Even though the operating system is recorded, we should still modify the program if the program is operated on the other operating system or different version.
- 4. Set random seeds if randomness included in the analysis.
- Challenges: When random seeds are set, the result will lose some randomness.
- 5. Store outputs when result is generated and connect textual statements to underlying results.
- Challenges: The storage may be used up if a bunch of files are stored during this process.
- 6. Make all the scripts, runs and results public and easily accessible.
- Challenges: Data privacy may become a big concern.

Problem 4

```
if (!require("data.table")) {
   install.packages("data.table")
}
library(data.table)
covid_raw<-fread("https://opendata.ecdc.europa.eu/covid19/casedistribution/csv")
us<-covid_raw[covid_raw$countriesAndTerritories == "United_States_of_America",]
us_filtered<-us[us$month %in% 6:7,]
us_filtered$index<-rev(1:dim(us_filtered)[1])
fit<-lm('Cumulative_number_for_14_days_of_COVID-19_cases_per_1000000'~index, data = us_filtered)</pre>
```

Part A1

```
# non-numeric variables
cat_sum<-summary(us_filtered[,c(1,7,8,9,11)])
cat_tab<-matrix(0, nrow = 3, ncol = 5)
for (i in 1:3) {
    for (j in 1:5) {
        cat_split<-unlist(strsplit(cat_sum[i,j], ":"))
        cat_tab[i,j]<-gsub(" ", "", cat_split[2])
    }
}
colnames(cat_tab)<-colnames(cat_sum)
rownames(cat_tab)<-c("Length", "Class", "Mode")
knitr::kable(cat_tab, align = "c")</pre>
```

	dateRep	countries And Territories	geoId	country territory Code	continentExp
Length	61	61	61	61	61
Class	character	character	character	character	character
Mode	character	character	character	character	character

	day	month	year	cases	deaths	population	14-days cumlative covid-19 case	index
Min.	1.00	6.000	2020	18665	242.0	329064917	89.76	1
1st Qu.	8.00	6.000	2020	25540	500.0	329064917	92.43	16
Median	16.00	7.000	2020	45221	767.0	329064917	150.94	31
Mean	15.75	6.508	2020	44666	791.6	329064917	170.16	31
3rd Qu.	23.00	7.000	2020	61796	982.0	329064917	247.01	46
Max.	31.00	7.000	2020	78427	2437.0	329064917	282.72	61

We have limited ourselves to 61 time points.

```
sum(is.na(us_filtered))
```

[1] 0

There are no missing values in the dataset.

Part A2

```
if (!require("stargazer")) {
   install.packages("stargazer")
}
library(stargazer)
stargazer(fit, type = "latex", align = TRUE, title = "Summary table of linear model")
```

- % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Tue, Sep 14, 2021 7:05:53 PM % Requires LaTeX packages: dcolumn

Part B

Table 3: Summary table of linear model

	$Dependent\ variable:$					
	'Cumulative_number_for_14_days_of_COVID-19_cases_per_100000'					
index	4.107***					
	(0.145)					
Constant	42.853***					
	(5.165)					
Observations	61					
\mathbb{R}^2	0.932					
Adjusted R ²	0.930					
Residual Std. Error	19.922 (df = 59)					
F Statistic	$803.464^{***} (df = 1; 59)$					
Note:	*p<0.1; **p<0.05; ***p<0.01					

```
if (!require("broom")) {
   install.packages("broom")
}
library(broom)
fit.diags<-augment(fit)</pre>
```

Residuals vs. Fitted


```
# normal Q-Q
qqnorm(fit.diags$.resid)
qqline(fit.diags$.resid)
```

Normal Q-Q Plot

scale-location


```
# residual vs. leverage
plot(fit.diags$.cooksd, fit.diags$.std.resid, xlab = "Leverage",
    ylab = "Standardized Residuals", main = "Residuals vs. Leverage")
```

Residuals vs. Leverage

Part C

auto correlation plot for residuals
acf(residuals(fit))

Series residuals(fit)

Problem 5

```
layout(matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE), respect = TRUE)
# residuals vs. fitted
par(mar = c(4, 4, 4, 0))
plot(fit.diags$.fitted, fit.diags$.resid, xlab = "Fitted", ylab = "Residuals",
     main = "Residuals vs. Fitted", axes = FALSE)
axis(side = 1, at = seq(50, 300, by = 50))
axis(side = 2, at = seq(-20, 40, by = 20))
# normal Q-Q
par(mar = c(4, 0, 4, 0))
qqnorm(fit.diags$.resid, axes = FALSE, ylab = "")
axis(side = 1, at = -2:2)
qqline(fit.diags$.resid)
# scale-location
par(mar = c(4, 4, 4, 0))
plot(fit.diags$.fitted, fit.diags$.std.resid, xlab = "Fitted",
     ylab = "Standardize Residuals", main = "scale-location", axes = FALSE)
axis(side = 2, at = -1:2)
axis(side = 1, at = seq(50, 300, by = 50))
```

```
# residual vs. leverage
par(mar = c(4, 0, 4, 0))
plot(fit.diags$.cooksd, fit.diags$.std.resid, xlab = "Leverage",
         ylab = "", main = "Residuals vs. Leverage", axes = FALSE)
axis(side = 1, at = seq(0, 0.15, by = 0.05))
```

