

Adversarial Cybersecurity: Censorship Circumvention

对抗性网络安全: 审查规避

- 1987年9月14日,中国第一封跨国电子邮件由北京发往德国卡尔斯鲁厄理工学院(Karlsruhe Institute of Technology)
- 37年后的今天,2024年5月27日

一言 王 我,Gaukas Wang

- 科罗拉多大学博尔德校区
 - 计算机工程
 - 博士研究生
- University of Colorado Boulder
- **Computer Engineering**
- Ph.D. Student

- 专精领域
 - 计算机网络 Computer Networking
 - 网络安全 Network Security
 - 反审查 Anti-Censorship

- 爰好
 - 电子游戏
 - 烹饪
 - 收藏烈酒 融酒

学术发表

- Acuerdo: Fast Atomic Broadcast over RDMA (ICPP 2022)
- Chasing Shadows: A security analysis of the ShadowTLS proxy (FOCI 2023)
- MRTOM: Mostly Reliable Totally Ordered Multicast (ICDCS 2023)
- Just add WATER: WebAssembly-based Circumvention Transports (FOCI 2024)
- Extended Abstract: Oscur0: One-shot Circumvention without Registration (FOCI 2024)

科研团队

- Refraction Networking 折射网络
- 导师

Prof. Eric Wustrow

Prof. J. Alex Halderman University of Michigan

对抗性网络安全

对抗性网络安全

• 网络安全

• 对抗性

对抗性网络安全

• 网络安全

- 对抗性
 - 实时
 - 互动
 - 解决"人造问题"

网络审查

- 网络服务审查
 - 网站屏蔽
 - 网站关停
 - 网络干扰
- 内容审查
 - 即时通讯消息过滤
 - 内容平台关键词列表

•

审查机制

被审查的内容

审查的最终目的

- 社会/道德/宗教信仰因素
 - 色情内容, 异教, 敌对宣传
- 管控言论与舆情
 - Twitter, Facebook, WhatsApp, Telegram
- 过滤公共信息来源
 - Wikipedia, Google
- 建立商业壁垒
 - TikTok

- 前提:审查者通常对受审查的网络拥有绝对控制/管辖/所有权
 - 国家级审查者
 - 区域级审查者
 - 组织级审查者(企业,学校)
- 做法:干扰/过滤/阻断具有部分特定目的的网络流量

- IP 地址与报文(Packet,又译封包)
 - IP 地址:邮政地址
 - 报文:邮件/信封/包裹

- IP 地址封锁
 - 审查者将IP地址加入黑名单
 - 拒绝向指定IP"投递"报文
 - 拒绝"投递"来自指定IP的报文

- 域名系统(DNS)
 - 记住大量 IP 地址很不现实
 - DNS 用于"解析"域名
 - 例:www.sd-jnyz.com "解析"到 IP 地址 123.6.40.224
- DNS 过滤
 - 审查者将部分域名 (如 www.google.com)加入黑名单
 - 受控制的 DNS 服务器
 - 拒绝解析这些域名
 - 故意解析到错误的 IP 地址
 - 不受控制的 DNS 服务器尝试正确解析
 - 注入伪造的错误解析结果

- 深度报文检测 DPI (Deep Packet Inspection)
 - 默认情况下报文均为**明文** (IPSec等技术除外)
 - 相当于不封口的信封

- 报文过滤
 - 使用 DPI 技术检测所有的报文
 - 找出"可疑"报文
 - 内容/关键词对比
 - 篡改/丢弃"可疑"报文

- 传输控制协议 Transmission Control Protocol (TCP)
 - 所有报文都属于一个"连接"
 - 连接需要被建立,并在使用后手动关闭
 - 已经关闭的连接无法重新打开
- 连接重置
 - 伪造连接双方的身份
 - 向连接对方发送"关闭连接"的命令
 - 结局:连接被关闭,无法继续使用

审查的副作用

- 审查所需的基础设施可以被用于发动网络攻击
 - Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)
- 审查机制可能意外泄露(被审查)用户的隐私以及其他保密数据
 - Bleeding Wall: A Hematologic Examination on the Great Firewall (FOCI'2024)
- 审查机制的存在直接导致民意反弹
 - 史翠珊效应 (Streisand effect)
 - 激励更多反审查项目(包括审查规避工具)被创造

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

- Denial-of-Service Attack 服务拒绝攻击
 - **Distributed** Denial-of-Service 分布式服务拒绝攻击

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

- Reflected Amplification Attack 反射放大攻击
 - 绝大部分网络通讯协议中,每个请求对应一个响应
 - 通常情况下,响应比请求的尺寸(以字节计)大很多

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

· 内容审查机制使用中间盒(Middlebox) 来**伪造**响应

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

· 内容审查机制使用中间盒(Middlebox) 来**伪造**响应

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

· 内容审查机制使用中间盒(Middlebox)来伪造响应

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

• 内容审查机制使用中间盒(Middlebox)来伪造响应

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

副作用:基础设施被用于发起网络攻击

Weaponizing Middleboxes for TCP Reflected Amplification (USENIX Security'21)

最高放大系数可达 10^8

Bleeding Wall: A Hematologic Examination on the Great Firewall (FOCI'2024)

- DNS伪造攻击 DNS Spoofing Attack
 - DNS 域名系统将域名解析成 IP 地址
 - DNS 协议本身不使用任何加密
 - 审查者通过**抢答**错误的结果来干扰域名解析
- 防火长城 the Great Firewall of China
 - 最活跃的 DNS 伪造攻击来源(没有之一)
 - 极高并发
 - 设计简单 简陋
 - 双向攻击
 - 中国 -> 国外
 - 国外 -> 中国

Bleeding Wall: A Hematologic Examination on the Great Firewall (FOCI'2024)

- 防火长城据信重复使用相同机组进行多种攻击
- 用于多种审查攻击的程序同时运行于同一台(多台)机器上
- 多个程序的内存共存

Bleeding Wall: A Hematologic Examination on the Great Firewall (FOCI'2024)

• 2010年,gfwrev 发现以下程式代码可以用于诱发 GFW 的内存泄漏

while true; do printf "\0\0\1\0\0\1\0\0\0\0\0\6wux.ru\300" | nc -uq1 \$SOME_IP 53 | hd -s20; done

- 2020年,gfw.report 解释了此攻击背后的(假想)原理
- 2024年,Sakamoto(化名)等人改进此攻击,成功泄露**数百万 条极度敏感信息**
 - 用户名以及密码
 - 姓名与身份证号
 - 银行卡号,过期日,安全码

Bleeding Wall: A Hematologic Examination on the Great Firewall (FOCI'2024)

- 基本原理:**越界读取**
 - 读取不属于程序本身的内存
 - 软件设计中常见的内存安全问题之一
- 泄漏效率:**低**
 - 每次攻击仅能泄漏 124 字节
- 危害程度:极高
 - 论文声称作者在 3 日内泄漏了数百万条极度敏感信息
 - 原因:防火长城用于处理极大量流量

史翠珊效应: 欲盖弥彰

 美国艺人芭芭拉·史翠珊在2003年状告摄影师肯尼思·阿德尔曼 (Kenneth Adelman)和其网站"Pictopia.com",令其移除阿德尔曼所拍摄的12,000张加州海岸摄影中含有的对史翠珊住所的空中摄影,以保护史翠珊的隐私。结果史翠珊败诉,次月有多达420,000人前来浏览阿德尔曼的网站。

史翠珊效应: 欲盖弥彰

- 美国艺人芭芭拉·史翠珊在2003年状告摄影师肯尼思·阿德尔曼 (Kenneth Adelman)和其网站"Pictopia.com",令其移除阿德尔曼所拍摄的12,000张加州海岸摄影中含有的对史翠珊住所的空中摄影,以保护史翠珊的隐私。结果史翠珊败诉,次月有多达420,000人前来浏览阿德尔曼的网站。
- 冬,邾黑肱以滥来奔,贱而书名,重地故也。君子曰:"名之不可不慎也如是。夫有所有名,而不如其已。以地叛,虽贱必书地,以名其人,终为不义,弗可灭已。是故君子动则思礼,行则思义,不为利回,不为义疚。或求名而不得,或欲盖而名章,惩不义也。"(左传·昭公三十一年)

史翠珊效应: 欲盖弥彰

- 美国艺人芭芭拉·史翠珊在2003年状告摄影师肯尼思·阿德尔曼 (Kenneth Adelman)和其网站"Pictopia.com",令其移除阿德尔曼所拍摄的12,000张加州海岸摄影中含有的对史翠珊住所的空中摄影,以保护史翠珊的隐私。结果史翠珊败诉,次月有多达420,000人前来浏览阿德尔曼的网站。
- 冬,邾黑肱以滥来奔,贱而书名,重地故也。君子曰:"名之不可不慎也如是。夫有所有名,而不如其已。以地叛,虽贱必书地,以名其人,终为不义,弗可灭已。是故君子动则思礼,行则思义,不为利回,不为义疚。或求名而不得,或欲盖而名章,惩不义也。"(左传·昭公三十一年)
- 此地无银三百两

- 三个要素
- 测量
- 分析

• 规避 (Circumvention)

- 三个要素
- 测量
 - 观测审查事件的发生
- 分析

• 规避 (Circumvention)

- 三个要素
- 测量
 - 观测审查事件的发生
- 分析
 - 稳定复现审查事件
 - 构建假想模型描述审查机制
- 规避 (Circumvention)

- 三个要素
- 测量
 - 观测审查事件的发生
- 分析
 - 稳定复现审查事件
 - 构建假想模型描述审查机制
- 规避 (Circumvention)
 - 使用技术手段绕过审查机制
 - "翻墙"

- 三个要素
- 测量
 - 观测审查事件的发生
- 分析
 - 稳定复现审查事件
 - 构建假想模型描述审查机制
- 规避 (Circumvention)
 - 使用技术手段绕过审查机制
 - "翻墙"

审查规避工具 审查机制 被审查的内容

规避审查的最常见手段

- 建立受保护的私有信道
 - VPN, 代理 (Proxy)
- 需要一台未被屏蔽/阻断的服务器
- 使用强加密
- 审查者无法获知代理服务器被用于 访问受限内容

反"反审查"

- 被动的审查者(如学校/企业)
 - 以合规为目的
 - 审查设施陈旧
 - 审查机制滞后
 - 常见工具可以轻易绕过
- 积极的审查者(政府)
 - 积极发展新的审查机制
 - 并防止旧的审查机制被绕过
 - 反"反审查"
- 简单的审查规避工具本身并不"抗审查"

反"反"反审查"": 抗审查的审查规避

- 简易的审查规避工具会被积极的审查者屏蔽
- 创造具有审查抗性的审查规避工具
- 规避者的劣势
 - 去中心化,行动缺乏组织性
 - 项目开源,设计完全公开
- 新思路
 - 附加损害
 - 快速迭代
 - 百花齐放

Conjure: Summoning Proxies from Unused Address Space (CCS'19)

- 折射网络 (Refraction Networking)
 - 又名诱饵路由 (Decoy Routing)
 - 使用虚构的网络地址作为代理服务器
 - 通过其他方式使网络流量被转发(折射)到实际上的代理服务器

Conjure: Summoning Proxies from Unused Address Space (CCS'19)

https://refraction.network

Conjure: Summoning Proxies from Unused Address Space (CCS'19)

- Conjure:从未使用的地址空间召唤代理
 - 最新一代的折射网络技术
- 与互联网自由地区的网络提供商 (ISP) 合作
- 审查规避工具试图连接到网络提供商负责连接的**任意**可用网段
- 网络提供商负责甄别流量是否用于规避
 - 并转发规避流量到真实的代理服务器
 - 其他普通流量将被正常传输

Conjure: Summoning Proxies from Unused Address Space (CCS'19)

- 假设
 - 假审查者无法承受彻底从国际互联网断开的代价
 - 审查者不可能屏蔽整个国际互联网
 - 理想情况下,使用合作的提供商包围审查者
 - 所有国际互联网的 IP 地址都可用作审查规避
- 结果
 - 审查者被迫选择彻底断开国际互联网或默许这种规避方式
- 反例
 - 伊朗于 2024年4月 屏蔽了 Conjure 使用的一个网段 (共包含 256 个 IP 地址)
 - 壮士断腕?

抗审查的审查规避:快速迭代

- 积极的审查者屏蔽流行审查规避方式
 - 1. 某个规避方式变得流行
 - 2. 审查者开始研究该方式
 - 3. 审查者设计出(较)精确识别并屏蔽的方法
 - 4. 审查者部署并启用此屏蔽
- 当已知规避策略停止工作(被屏蔽)
 - 1. 确定技术原理
 - 2. 设计新的策略
 - 3. 更新既存工具 (复杂:不同工具需要分别更新)
 - 4. 发布新版工具 (缓慢:手机平台需要应用商店审核)
 - 5. 用户下载新版 (低效:需要重新安装整个程序)

抗审查的审查规避:快速迭代

- WebAssembly
 - 全设备/平台支持
 - Linux, macOS, Windows
 - Android, iOS
 - 跨编程语言支持
 - C/C++
 - Go
 - Python
 - Rust
 - 模块化
 - 灵活度高,方便更新

抗审查的审查规避:快速迭代

- WATER: WebAssembly Transport Executables Runtime
 - 用 WebAssembly 承载规避策略
 - 将每种规避策略打包成一个模块
 - 为基于 WebAssembly 的规避策略提供宿主/驱动程序
 - 更高的工作利用效率
 - 同一个模块可以在所有不同工具上使用
 - 更快的更新速度
 - 下发单个文件更新规避策略,绕过应用商店审核
 - 无需重新安装宿主驱动程序

抗审查的审查规避:百花齐放

- 积极的审查者屏蔽流行审查规避方式
 - 1. 某个规避方式变得流行
 - 2. 审查者开始研究该方式
 - 3. 审查者设计出(较)精确识别并屏蔽的方法
 - 4. 审查者部署并启用此屏蔽
- 大规模的生成不同(但安全)的规避策略
- 审查者无法有效的针对任意一种"流行"策略
 - 因为没有任何策略是"流行"的

抗审查的审查规避:百花齐放

- 使用统一的宿主程序运行不同的策略
 - 如 WATER

抗审查的审查规避工具

针对反审查工具的干扰

审查规避工具

审查机制

被审查的内容

抗审查的审查规避工具

针对反审查工具的干扰

审查规避工具

审查机制

被审查的内容

抗审查的审查规避工具
针对反审查工具的干扰
审查规避工具
审查机制
被审查的内容

"防火长城之父"方滨兴院士:"审查与规避之间会有一场永不休止的争斗"