Section 1.3 – Linear Differential Equations

Basic Assumption

The equation can be solved for y'; that is, the equation can be written in the form y' = f(x, y)

A linear differential equation of order n has the form

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x)$$

A *first order* linear equation is given by the form:

$$y' + p(x)y = f(x)$$

If $f(x) = 0 \rightarrow y' = p(x)y$. This linear equation is said to be *homogeneous*. (Otherwise it is *nonhomogeneous or inhomogeneous*).

p(x) & f(x) are called the coefficients and continuous function on some interval I.

Linear	Non-linear
$x' = \sin(t)x$	$x' = t \sin x$
$y' = e^{2t} y + \cos t$	$y' = 1 - y^2$
$x' = (3t+2)x + t^2 - 1$	

Solution of the homogenous equation

$$\frac{dx}{dt} = a(t)x \implies \frac{dx}{x} = a(t)dt$$

$$\int \frac{dx}{x} = \int a(t)dt$$

$$\ln|x| = \int a(t)dt + C$$
Convert to exponential form
$$|x| = e^{\int a(t)dt + C} = e^{C}e^{\int a(t)dt}$$
Let $A = e^{C}$

$$x(t) = A.e^{\int a(t)dt}$$

Example

Solve:
$$x' = \sin(t) x$$

Solution

$$\frac{dx}{dt} = \sin(t) x$$

$$x(t) = A.e^{\int \sin(t)dt}$$

$$= A.e^{-\cos t}$$

$$\frac{dx}{x} = \sin(t) dt$$

$$\int \frac{dx}{x} = \int \sin(t) dt$$

$$\ln|x| = \int \sin(t) dt + C$$

$$\ln|x| = -\cos(t) + C$$

$$\underline{x} = e^{-\cos(t) + C}$$

Solving a linear first-order Equation (Properties)

- 1. Put a linear equation into a standard form y' + p(x)y = f(x)
- 2. Identify p(x) then find $y_h = e^{-\int p dx}$
- 3. Multiply the standard form by y_h
- 4. Integrate both sides

Solution of the Inhomogeneous Equation

$$x' = p(t)x + f(t)$$

$$x' - px = f$$

$$u(t) = e^{-\int p(t)dt}$$

$$(ux)' = u(x' - px) = uf$$

$$u(t)x(t) = \int u(t)f(t)dt + C$$

1st Method

Example

Find the general solution to: $x' = x + e^{-t}$

Solution

$$x' - x = e^{-t}$$

$$x' - p(t)x = f(t)$$

$$e^{-\int 1 dt} = e^{-t}$$

$$e^{-t} (x' - x) = e^{-t} e^{-t}$$

$$(e^{-t} x)' = e^{-2t}$$

$$e^{-t} x(t) = \int e^{-2t} dt$$

$$e^{-t} x(t) = -\frac{1}{2}e^{-2t} + C$$

$$x' - p(t)x = f(t)$$

$$e^{\int p(t)dt} x' - e^{\int p(t)dt} p(t)x = e^{\int p(t)dt} f(t)$$

$$(e^{\int p(t)dt} x)' = f(t) e^{\int p(t)dt}$$

$$e^{\int p(t)dt} x = \int f(t) e^{\int p(t)dt}$$

Solution of the Nonhomogeneous Equation

$$y' + p(x)y = f(x)$$

Let assume:
$$y = y_h + y_p$$

$$y = y_h + y_p$$
 where
$$\begin{cases} y_h & Homogeneous Solution \\ y_p & Paticular Solution \end{cases}$$

Since $y'_h + py_h = 0$

The homogeneous equation is given by $y'_h + p(x)y_h = 0$

$$y_h' = -p(x)y_h$$

$$y_h = e^{-\int p dx}$$

$$y_p = u(x)y_h = u.e^{-\int pdx}$$

$$y_p' + p(x)y_p = f(x)$$

$$\left(uy_h\right)' + puy_h = f$$

$$u'y_h + uy_h' + puy_h = f$$

$$u'y_h + u(y_h' + py_h) = f$$

$$u'y_h = f$$

$$\frac{du}{dx} = \frac{f}{y_h}$$

$$du = \frac{f}{-\int pdx} dx$$

$$= f.e \int p dx dx$$

$$u = \int f . e^{\int p dx} dx$$

$$y_p = u.e^{-\int p dx}$$

$$u = \left(\int f \cdot e^{\int p dx} dx\right) e^{-\int p dx}$$

$$y_{p} = e^{-\int pdx} \int f \cdot e^{\int pdx} dx$$

$$y = Ce^{-\int pdx} + e^{-\int pdx} \int f \cdot e^{\int pdx} dx$$

$$y = y_h + y_p$$

$$y = e^{-\int pdx} \left(C + \int f \cdot e^{\int pdx} dx \right)$$

homogeneous

Example

Find the general solution of $x' = x \sin t + 2te^{-\cos t}$ and the particular solution that satisfies x(0) = 1.

Solution

$$x' - x\sin t = 2te^{-\cos t}$$

$$P(t) = \sin t, \quad Q(t) = 2te^{-\cos t}$$

$$x_h = e^{-\int \sin t dt} = e^{\cos t}$$

$$\int Q(t)x_h dt = \int 2te^{-\cos t}e^{\cos t} dt = \int 2t dt = t^2$$

$$x(t) = e^{-\cos t} \left(t^2 + C\right)$$

$$x(0) = \left((0)^2 + C\right)e^{-\cos 0} = 1$$

$$Ce^{-1} = 1$$

$$C = e$$

$$x(t) = \left(t^2 + e\right)e^{-\cos t}$$

Example

Find the general solution of $x' = x \tan t + \sin t$ and the particular solution that satisfies x(0) = 2.

Solution

$$x' - (\tan t)x = \sin t$$

$$P(t) = -\tan t, \quad Q(t) = \sin t$$

$$e^{-\int \tan t dt} = e^{\ln(\cos t)} = \cos t$$

$$\int (\sin t)(\cos t) dt = -\int \cos t d(\cos t) = -\frac{1}{2}\cos^2 t$$

$$x(t) = \frac{1}{\cos t} \left(-\frac{1}{2}\cos^2 t + C \right) = -\frac{1}{2}\cos t + \frac{1}{\cos t}C$$

$$= -\frac{1}{2}\cos t + \frac{1}{\cos t}C$$

$$x(0) = -\frac{1}{2}\cos(0) + \frac{C}{\cos(0)} = 2$$

$$-\frac{1}{2} + C = 2 \implies C = \frac{5}{2}$$

$$x(t) = -\frac{1}{2}\cos t + \frac{5}{2\cos t}$$

Linear Differential Operators

L[y] = y' + p(x)y is a linear operator.

$$\triangleright$$
 $L[f+g]=L[f]+L[g]$

Proof

$$L[f] + L[g] = f' + p(x)f + g' + p(x)g$$

$$= (f' + g') + p(x)(f + g)$$

$$= (f + g)' + p(x)(f + g)$$

$$= L[f + g]$$

$$ightharpoonup L[cf] = cL[f]$$

Proof

$$L[cf] = (cf)' + p(x)(cf)$$
$$= cf' + cp(x)f$$
$$= c(f' + p(x)f)$$
$$= cL[f]$$

Any operation L that has the two properties

$$\begin{cases} L \begin{bmatrix} y_1 + y_2 \end{bmatrix} = L \begin{bmatrix} y_1 \end{bmatrix} + L \begin{bmatrix} y_2 \end{bmatrix} \\ L [cy] = cL[y], & c \text{ is constant} \end{cases}$$

is a linear operation.

Differential is a linear operation; integration is a linear operation.

Notes

1. Integrating an expression that is not the differential of any elementary function is called non-elementary.

$$\int e^{x^2} dx \qquad \int x \tan x dx \qquad \int \frac{e^{-x}}{x} dx$$

$$\int \sin x^2 dx \qquad \int \cos x^2 dx \qquad \int \frac{\sin x}{x} dx \qquad \int \frac{\cos x}{x} dx$$

2. In math some important functions are defined in terms of non-elementary integrals. Two such functions are the error function and the complementary error function.

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \qquad erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt$$

Exercises Section 1.3 – Linear Differential Equations

Find the general solution of the first-order, linear equation.

1.
$$y' - y = 3e^t$$

2.
$$y' + y = \sin t$$

$$3. y' + y = \frac{1}{1 + e^t}$$

4.
$$y' - y = e^{2t} - 1$$

5.
$$y' + y = te^{-t} + 1$$

6.
$$y' + y = 1 + e^{-x} \cos 2x$$

7.
$$y' + y \cot x = \cos x$$

8.
$$y' + y \sin t = \sin t$$

$$9. y' = \cos x - y \sec x$$

10.
$$y' + (\tan x) y = \cos^2 x$$
, $-\frac{\pi}{2} < x < \frac{\pi}{2}$

11.
$$y' + (\cot t) y = 2t \csc t$$

12.
$$y' + (1 + \sin t) y = 0$$

13.
$$y' + \left(\frac{1}{2}\cos x\right)y = -\frac{3}{2}\cos x$$

14.
$$\frac{dy}{dx} + y = e^{3x}$$

15.
$$y' - ty = t$$

16.
$$y' = 2y + x^2 + 5$$

17.
$$xy' + 2y = 3$$

18.
$$\frac{dy}{dt} - 2y = 4 - t$$

19.
$$y' + 2y = 1$$

20.
$$y' + 2y = e^{-t}$$

21.
$$y' + 2y = e^{-2t}$$

22.
$$y' - 2y = e^{3t}$$

23.
$$y' + 2y = e^{-x} + x + 1$$

24.
$$y' + 2xy = x$$

25.
$$y' - 2ty = t$$

26.
$$y' + 2ty = 5t$$

27.
$$y' - 2xy = e^{x^2}$$

28.
$$y' + 2xy = x^3$$

29.
$$y' - 2y = t^2 e^{2t}$$

30.
$$x'-2\frac{x}{t+1}=(t+1)^2$$

31.
$$y' + \frac{2}{t}y = \frac{\cos t}{t^2}$$

32.
$$y' - 2(\cos 2t)y = 0$$

33.
$$y' + 2y = \cos 3t$$

34.
$$y' - 3y = 5$$

35.
$$y' + 3y = 2xe^{-3x}$$

36.
$$y' + 3t^2y = t^2$$

37.
$$y' + 3x^2y = x^2$$

38.
$$y' + \frac{3}{t}y = \frac{\sin t}{t^3}, \quad (t \neq 0)$$

39.
$$y' + \frac{3}{x}y = 1 + \frac{1}{x}$$

40.
$$y' + \frac{3}{2}y = \frac{1}{2}e^x$$

41.
$$y' + 5y = t + 1$$

42.
$$xy' - y = x^2 \sin x$$

43.
$$x \frac{dy}{dx} + y = e^x$$
, $x > 0$

44.
$$x \frac{dy}{dx} + 2y = 1 - \frac{1}{x}, \quad x > 0$$

45.
$$y \frac{dx}{dy} + 2x = 5y^3$$

46.
$$ty' + y = \cos t$$

47.
$$xy' + 2y = x^2$$

48.
$$xy' = 2y + x^3 \cos x$$

49.
$$xy' + 2y = x^{-3}$$

50.
$$ty' + 2y = t^2$$

51.
$$xy' + 2(y + x^2) = \frac{\sin x}{x}$$

52.
$$xy' + 4y = x^3 - x$$

53.
$$xy' + (x+1)y = e^{-x} \sin 2x$$

54.
$$xy' + (3x+1)y = e^{3x}$$

55.
$$xy' + (2x - 3)y = 4x^4$$

56.
$$2xy'' - 3y = 9x^3$$

57.
$$2y' + 3y = e^{-t}$$

58.
$$2y' + 2ty = t$$

59.
$$3xy' + y = 10\sqrt{x}$$

60.
$$3xy' + y = 12x$$

61.
$$x^2y' + xy = 1$$

62.
$$x^2y' + x(x+2)y = e^x$$

63.
$$y^2 + (y')^2 = 1$$

64.
$$(1+x)y' + y = \sqrt{x}$$

65.
$$(1+x)y' + y = \cos x$$

66.
$$(x+1)y' + (x+2)y = 2xe^{-x}$$

67.
$$(x+1)y'-xy=x+x^2$$

68.
$$(1+x^3)y' = 3x^2y + x^2 + x^5$$

69.
$$(t+1)\frac{ds}{dt} + 2s = 3(t+1) + \frac{1}{(t+1)^2}, \quad t > -1$$

70.
$$(x+2)^2$$
 $y' = 5 - 8y - 4xy$

71.
$$(x^2-1)y'+2y=(x+1)^2$$

72.
$$(x^2 + 4)y' + 2xy = x^2(x^2 + 4)$$

73.
$$(1+e^t)y'+e^ty=0$$

74.
$$(t^2+9)y'+ty=0$$

75.
$$e^{2x}y' + 2e^{2x}y = 2x$$

76.
$$\tan \theta \frac{dr}{d\theta} + r = \sin^2 \theta, \quad 0 < \theta < \frac{\pi}{2}$$

77.
$$(\cos t) y' + (\sin t) y = 1$$

78.
$$\cos x \frac{dy}{dx} + (\sin x) y = 1$$

$$79. \quad \cos^2 x \sin x \frac{dy}{dx} + \left(\cos^3 x\right) y = 1$$

80.
$$\frac{dr}{d\theta} + r \sec \theta = \cos \theta$$

81.
$$\frac{dr}{d\theta} + r \tan \theta = \sec \theta$$

82.
$$\frac{dP}{dt} + 2tP = P + 4t - 2$$

83.
$$ydx - 4(x + y^6)dy = 0$$

$$84. \quad ydx = \left(ye^y - 2x\right)dy$$

85.
$$(x+y+1)dx - dy = 0$$

86.
$$\frac{dy}{dx} = x^2 e^{-4x} - 4y$$

87.
$$(x^2 + 1)y' + xy - x = 0$$

88.
$$\frac{dx}{dt} = 9.8 - 0.196x$$

89.
$$\frac{di}{dt} + 500i = 10 \sin \omega t$$

90.
$$2\frac{dQ}{dt} + 100Q = 10\sin 60t$$

Find the solution of the initial value problem

91.
$$y' - 3y = 4$$
; $y(0) = 2$

92.
$$y' = y + 2xe^{2x}$$
; $y(0) = 3$

93.
$$(x^2 + 1)y' + 3xy = 6x;$$
 $y(0) = -1$

94.
$$t \frac{dy}{dt} + 2y = t^3$$
, $t > 0$, $y(2) = 1$

95.
$$\theta \frac{dy}{d\theta} + y = \sin \theta$$
, $\theta > 0$, $y\left(\frac{\pi}{2}\right) = 1$

96.
$$\frac{dy}{dx} + xy = x$$
, $y(0) = -6$

97.
$$ty' + 2y = 4t^2$$
, $y(1) = 2$

98.
$$(1+t^2)y' + 4ty = (1+t^2)^{-2}, \quad y(1) = 0$$

99.
$$y' + y = e^t$$
, $y(0) = 1$

100.
$$y' + \frac{1}{2}y = t$$
, $y(0) = 1$

101.
$$y' = x + 5y$$
, $y(0) = 3$

102.
$$y' = 2x - 3y$$
, $y(0) = \frac{1}{3}$

103.
$$xy' + y = e^x$$
, $y(1) = 2$

104.
$$y \frac{dx}{dy} - x = 2y^2$$
, $y(1) = 5$

105.
$$xy' + y = 4x + 1$$
, $y(1) = 8$

106.
$$y' + 4xy = x^3 e^{x^2}$$
, $y(0) = -1$

107.
$$(x+1)y' + y = \ln x$$
, $y(1) = 10$

108.
$$x(x+1)y' + xy = 1$$
, $y(e) = 1$

109.
$$y' - (\sin x) y = 2 \sin x$$
, $y(\frac{\pi}{2}) = 1$

110.
$$y' + (\tan x) y = \cos^2 x$$
, $y(0) = -1$

111.
$$L\frac{di}{dt} + RI = E$$
, $i(0) = i_0$

112.
$$\frac{dT}{dt} = k \left(T - T_m \right) \quad T(0) = T_0$$

113.
$$y' + y = 2$$
, $y(0) = 0$

114.
$$xy' + 2y = 3x$$
, $y(1) = 5$

115.
$$y' - 2y = 3e^{2x}$$
, $y(0) = 0$

116.
$$xy' + 5y = 7x^2$$
, $y(2) = 5$

117.
$$xy' - y = x$$
, $y(1) = 7$

118.
$$xy' + y = 3xy$$
, $y(1) = 0$

119.
$$xy' + 3y = 2x^5$$
, $y(2) = 1$

120.
$$y' + y = e^{x}$$
, $y(0) = 1$

121.
$$xy' - 3y = x^3$$
, $y(1) = 10$

122.
$$y' + 2xy = x$$
, $y(0) = -2$

123.
$$y' = (1 - y)\cos x$$
, $y(\pi) = 2$

124.
$$(1+x)y' + y = \cos x$$
, $y(0) = 1$

125.
$$y' = 1 + x + y + xy$$
, $y(0) = 0$

126.
$$xy' = 3y + x^4 \cos x$$
, $y(2\pi) = 0$

127.
$$y' = 2xy + 3x^2e^{x^2}$$
, $y(0) = 5$

128.
$$(x^2 + 4)y' + 3xy = x$$
, $y(0) = 1$

129.
$$y' - 2y = e^{3x}$$
; $y(0) = 3$

130.
$$y' - 3y = 6$$
; $y(0) = 1$

131.
$$2y' + 3y = e^x$$
; $y(0) = 0$

132.
$$(x^2 + 1)y' + 3x^3y = 6xe^{-3x^2/2}, y(0) = 1$$

133.
$$y' + y = 1 + e^{-x} \cos 2x$$
; $y\left(\frac{\pi}{2}\right) = 0$

134.
$$2y' + (\cos x)y = -3\cos x$$
; $y(0) = -4$

135.
$$y' + 2y = e^{-x} + x + 1$$
; $y(-1) = e^{-x}$

136.
$$y' + \frac{y}{x} = xe^{-x}$$
; $y(1) = e - 1$

137.
$$y' + 4y = e^{-x}$$
; $y(1) = \frac{4}{3}$

138.
$$x^2y' + 3xy = x^4 \ln x + 1$$
; $y(1) = 0$

139.
$$y' + \frac{3}{x}y = 3x - 2$$
 $y(1) = 1$

140.
$$(\cos x) y' + y \sin x = 2x \cos^2 x$$
 $y(\frac{\pi}{4}) = \frac{-15\sqrt{2}\pi^2}{32}$

141.
$$(\cos x) y' + (\sin x) y = 2\cos^3 x \sin x - 1$$
 $y(\frac{\pi}{4}) = 3\sqrt{2}$

142.
$$t y' + 2y = t^2 - t + 1$$
 $y(1) = \frac{1}{2}$

143.
$$t y' - 2y = t^5 \sin 2t - t^3 + 4t^4$$
 $y(\pi) = \frac{3}{2}\pi^4$

144.
$$2y' - y = 4\sin 3t$$
 $y(0) = y_0$

145.
$$y' + 2y = 2 - e^{-4t}$$
 $y(0) = 1$

146.
$$y' - y = -\frac{1}{2}e^{t/2}\sin 5t + 5e^{t/2}\cos 5t$$
 $y(0) = 0$

147.
$$y' + 2y = 3$$
; $y(0) = -1$

148.
$$y' + (\cos t) y = \cos t$$
; $y(\pi) = 2$

149.
$$y' + 2ty = 2t$$
; $y(0) = 1$

150.
$$y' + y = \frac{e^{-t}}{t^2}$$
; $y(1) = 0$

151.
$$ty' + 2y = \sin t$$
; $y(\pi) = \frac{1}{\pi}$

152.
$$y' + \frac{2}{t}y = \frac{\cos t}{t^2}$$
; $y(\pi) = 0$

153.
$$(\sin t) y' + (\cos t) y = 0$$
; $y(\frac{3\pi}{4}) = 2$

154.
$$y' + 3t^2y = t^2$$
; $y(0) = 2$

155.
$$ty' + y = t \sin t$$
; $y(\pi) = -1$

156.
$$y' + y = \sin t$$
; $y(\pi) = 1$

157.
$$y' + y = \cos 2t$$
; $y(0) = 5$

158.
$$y' + 3y = \cos 2t$$
; $y(0) = -1$

159.
$$y' - 2y = 7e^{2t}$$
; $y(0) = 3$

160.
$$y' - 2y = 3e^{-2t}$$
; $y(0) = 10$

161.
$$y' + 2y = t^2 + 2t + 1 + e^{4t}$$
; $y(0) = 0$

162.
$$y'-3y=2t-e^{4t}$$
; $y(0)=0$

163.
$$y' + y = t^3 + \sin 3t$$
; $y(0) = 0$

164.
$$y' + 2y = \cos 2t + 3\sin 2t + e^{-t}$$
; $y(0) = 0$

165.
$$y' + y = e^{3t}$$
; $y(0) = y_0$

166.
$$t^2y' - ty = 1$$
; $y(1) = y_0$

167.
$$y' + ay = e^{at}$$
; $y(0) = y_0, a \neq 0$

168.
$$3y' + 12y = 4$$
; $y(0) = y_0$

Find a solution to the initial value problem that is continuous on the given interval [a, b]

169.
$$y' + \frac{1}{x}y = f(x), \quad y(1) = 1$$
 $f(x) = \begin{cases} 3x, & 1 \le x \le 2 \\ 0, & 2 < x \le 3 \end{cases}$ $[a, b] = [1, 3]$

$$f(x) = \begin{cases} 3x, & 1 \le x \le 2\\ 0, & 2 < x \le 3 \end{cases}$$

$$[a, b] = [1, 3]$$

170.
$$y' + (\sin x)y = f(x), \quad y(0) = 3$$
 $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ -\sin x, & \pi < x \le 2\pi \end{cases}$ $[a, b] = [0, 2\pi]$

$$f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ -\sin x, & \pi < x \le 2\pi \end{cases}$$

$$[a, b] = [0, 2\pi]$$

171.
$$y' + p(t)y = 2$$
, $y(0) = 1$

$$p(t) = \begin{cases} 0, & 0 \le t \le 1 \\ \frac{1}{t}, & 1 < t \le 2 \end{cases}$$
 $[a, b] = [0, 2]$

$$[a, b] = [0, 2]$$

172.
$$y' + p(t)y = 0$$
, $y(0) = 3$

172.
$$y' + p(t)y = 0$$
, $y(0) = 3$
$$p(t) = \begin{cases} 2t - 1, & 0 \le t \le 1 \\ 0, & 1 < t \le 3 \\ -\frac{1}{t}, & 3 < t \le 4 \end{cases} [a, b] = [0, 4]$$

$$[a, b] = [0, 4]$$

Find the solution of the initial value problem. Discuss the interval of existence and provide a sketch of your solution

173.
$$xy' + 2y = \sin x$$
; $y\left(\frac{\pi}{2}\right) = 0$

174.
$$(2x+3)y' = y + (2x+3)^{1/2}$$
; $y(-1) = 0$

175. The following system of differential equations is encountered in the study of the decay of a special type of radioactive series of elements

$$\frac{dx}{dt} = -\lambda_1 x \qquad \qquad \frac{dy}{dt} = \lambda_1 x - \lambda_2 y$$

Where λ_1 and λ_2 are constants.

Discuss how to solve this system subject to $x(0) = x_0$, $y(0) = y_0$