1

Assignment 14

Matish Singh Tanwar

Abstract—This document solves a problem of Linear Algebra.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment 14

1 Problem

Let $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function B(a, b) = ab. Which of the following is true-

- 1) B is a linear transformation
- 2) B is a positive definite bilinear form
- 3) *B* is symmetric but not positive definite
- 4) B neither linear nor bilinear

2 SOLUTION

Quadratic form of B is given by:-

$$B(a,b) = a(1)b \tag{2.0.1}$$

where a is a one dimensional vector and b is also a one dimensional vector.

(1) is 1×1 matrix.

Options	Explanation
B is a linear transformation	Let the transformation be $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that,
	B(a,b) = ab
	$B(c(a,b)) = c^2 B(a,b)$
	Hence B is not a linear transform.
	Hence incorrect.
B is a positive definite bilinear form	$f: \mathbb{V} \times \mathbb{V} \to \mathbb{F}$ where \mathbb{V} is a vector space and \mathbb{F} is a field
Bilinear Form	f is a bilinear if the following holds true -
	$1.f(c\alpha_1 + \alpha_2, \beta) = cf(\alpha_1, \beta) + f(\alpha_2, \beta)$
	2. $f(\alpha_1, c\beta_1 + \beta_2) = cf(\alpha_1, \beta_1) + f(\alpha_1, \beta_2)$
	Now, $B(ca_1 + a_2, b) = (ca_1 + a_2)b = cB(a_1, b) + B(a_2, b)$
	And, $B(a_1, cb_1 + b_2) = a_1(cb_1 + b_2) = cB(a_1, b_1) + B(a_1, b_2)$
	Hence B is a bilinear form.
Symmetric	Again a bilinear form f is symmetric if $f(\alpha, \beta) = f(\beta, \alpha)$
	Here, $B(a,b) = ab = ba = B(b,a)$ hence B is symmetric.
Positive Definite	A symmetric bilinear f is positive definite if
	$f(\alpha,\alpha) > 0 \ \forall \alpha \neq 0$
	Here, $B(a, a) = a^2 > 0 \ \forall a \neq 0$
	Conclusion: <i>B</i> is symmetric and positive definite bilinear form.
	Hence Correct.
B is symmetric but not positive definite	From previous proof it is obvious that
	B is both symmetric as well as positive definite
	Hence incorrect
B neither linear nor bilinear	From previous proofs it is obvious that
	B is bilinear.
	Hence incorrect.
Result	B is symmetric and positive definite bilinear form

TABLE 1: Finding Correct Option