P. Maurer

ENS Rennes

Recasages: 223, 262.

Référence : Polycopié de Thierry Levy (M1 Paris 6). On trouve des variantes de la preuve dans la plupart des livres de proba, mais c'est mieux de le connaître par coeur.

Convergence presque sûre des sous-martingales bornées dans L^1

On commence par quelques définitions et rappels sur les martingales à temps discret. Dans ce qui suit, on se donne un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ et une filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sur Ω , c'est-à-dire une suite croissante de parties de Ω et dont l'union sur \mathbb{N} vaut Ω .

Définition 1. On dit qu'une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ sur $(\Omega, \mathcal{F}, \mathbb{P})$ est une sousmartingale si

- 1. $\forall n \in \mathbb{N} \quad X_n \in L^1(\Omega, \mathcal{F}, \mathbb{P}).$
- 2. $\forall n \in \mathbb{N}$ X_n est \mathcal{F}_n -mesurable (on dit que la suite $(X_n)_{n \in \mathbb{N}}$ est adaptée à la filtration).
- 3. $\forall n \in \mathbb{N} \quad \mathbb{E}[X_{n+1}|\mathcal{F}_n] \ge X_n \ p.s.$

Remarque 2. Par définition de l'espérance conditionnelle, la propriété 3 équivaut à

$$\forall A \in \mathcal{F}_n \quad \mathbb{E}[X_{n+1} \mathbf{1}_A] > \mathbb{E}[X_n \mathbf{1}_A].$$

En effet, il est clair que 3. implique cette proposition. Réciproquement, supposons que pour tout $A \in \mathcal{F}_n$ on ait

$$\mathbb{E}[X_{n+1}\,\mathbf{1}_A] \geq \mathbb{E}[X_n\,\mathbf{1}_A].$$

Alors $\mathbb{E}[(X_{n+1}-X_n)\mathbf{1}_A]\geq 0$ pour tout $A\in\mathcal{F}_n$. On pose, pour $\varepsilon>0$:

$$A_{\varepsilon} := \{ \omega \in \Omega : \mathbb{E}[X_{n+1}|\mathcal{F}_n](\omega) - X_n(\omega) \le -\varepsilon \} \in \mathcal{F}_n$$

On a donc

$$0 \leq \mathbb{E}[(\mathbb{E}[X_{n+1}|\mathcal{F}_n] - X_n) \mathbf{1}_A] \leq -\varepsilon \mathbb{P}(A_{\varepsilon}).$$

On en déduit que $\mathbb{P}(A_{\varepsilon}) = 0$. Ceci étant vrai pour tout $\varepsilon > 0$, on en déduit $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$ p.s.

Définition 3. On dit qu'une variable aléatoire T sur $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans $\mathbb{N} \cup \{+\infty\}$ est un temps d'arrêt relativement à la filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ si

$$\forall n \in \mathbb{N} \cup \{+\infty\} \quad \{T \le n\} \in \mathcal{F}_n,$$

où on définit $\mathcal{F}_{\infty} = \sigma(\mathcal{F}_n : n \in \mathbb{N})$ comme la tribu engendrée par les éléments de l'ensemble des tribus \mathcal{F}_n .

Si T est un temps d'arrêt, on définit la tribu des évènements antérieurs à T par

$$\mathcal{F}_T := \{ A \in \mathcal{F}_\infty : \forall n \in \mathbb{N} \mid A \cap \{ T \le n \} \in \mathcal{F}_n \}.$$

Théorème 4. Si T est un temps d'arrêt et $(X_n)_{n\in\mathbb{N}}$ une sous-martingale, alors la suite $(X_{T\wedge n})_{n\in\mathbb{N}}$ est encore une sous-martingale.

Démonstration.

On se donne un entier $n \in \mathbb{N}$.

- On a $|X_{T \wedge n}| \le |X_0| + \cdots + |X_n|$, donc $X_{T \wedge n}$ est intégrable.
- La variable aléatoire $X_{T \wedge n}$ est $\mathcal{F}_{T \wedge n}$ -mesurable. Par ailleurs, on a $\mathcal{F}_{T \wedge n} \subset \mathcal{F}_n$: en effet, pour $A \in \mathcal{F}_{T \wedge n}$, on a $A \cap \{T \wedge n \leq n\} \in \mathcal{F}_n$, mais $\{T \wedge n \leq n\} = \Omega$, ce qui donne $A \in \mathcal{F}_n$. Donc $(X_{T \wedge n})_{n \in \mathbb{N}}$ est adaptée.
- Par ailleurs, puisque $\{T \ge n+1\} = \{T \le n\}^c \in \mathcal{F}_n$, l'application $\mathbf{1}_{\{T \ge n+1\}}$ est \mathcal{F}_n -mesurable, et on a donc

$$\mathbb{E}[X_{T \wedge (n+1)} - X_{T \wedge n} | \mathcal{F}_n] = \mathbb{E}[(X_{n+1} - X_n) \mathbf{1}_{\{T \geq n+1\}} | \mathcal{F}_n]$$

$$= \mathbf{1}_{\{T \geq n+1\}} \mathbb{E}[X_{n+1} - X_n | \mathcal{F}_n]$$

$$> 0.$$

donc
$$\mathbb{E}[X_{T \wedge (n+1)} | \mathcal{F}_n] \geq X_{T \wedge n}$$
.

Théorème 5. (Théorème d'arrêt)

Soit $S \leq T$ deux temps d'arrêt bornés. Soit $(X_n)_{n \in \mathbb{N}}$ une sous-martingale. Alors $X_T \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ et

$$\mathbb{E}[X_T | \mathcal{F}_S] \geq X_S$$

En particulier, il vient $\mathbb{E}[X_T] \geq \mathbb{E}[X_S]$.

Démonstration.

• Soit $k \in \mathbb{N}$ un entier tel que $\mathbb{P}(S \le T \le k) = 1$. On a alors

$$|X_T| \leq |X_0| + \cdots + |X_k| \in L^1(\Omega, \mathcal{F}, \mathbb{P}).$$

On en déduit que X_T est intégrable.

• Soit $A \in \mathcal{F}_S$. On va montrer que $\mathbb{E}[(X_T - X_S) \mathbf{1}_A] \ge 0$, et la remarque 2 permettra de conclure. On écrit

$$\mathbb{E}[(X_T - X_S) \, \mathbf{1}_A] = \sum_{n=0}^k \, \mathbb{E}[(X_{T \wedge k} - X_n) \, \mathbf{1}_{A \cap \{S=n\}}]$$

Soit $n \in [0, k]$. Par définition de \mathcal{F}_S , on a $A \cap \{S = n\} \in \mathcal{F}_n$. Par ailleurs, $(X_{T \wedge n})_{n \in \mathbb{N}}$ est une sous-martingale d'après la proposition précédente donc elle vérifie

$$\forall A \in \mathcal{F}_n \qquad \mathbb{E}[X_{T \wedge k} \mathbf{1}_A] \geq \mathbb{E}[X_{T \wedge n} \mathbf{1}_A].$$

En particulier, il vient

$$\mathbb{E}[(X_T - X_S) \mathbf{1}_A] \geq \sum_{n=0}^k \mathbb{E}[(X_{T \wedge n} - X_n) \mathbf{1}_{A \cap \{S=n\}}]$$

$$= 0,$$

puisque sur $\{S=n\}$, on a $T \geq S=n$ donc $T \wedge n=n$, donc $X_{T \wedge n}=X_n$.

Le développement en lui-même commence ici. On va d'abord démontrer un résultat d'analyse, qui justifie d'ailleurs le recasage de ce développement dans la leçon 223.

Définition 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

On se donne $a < b \in \mathbb{R}$ et on définit $\tau_1 = \inf\{k \ge 1 : u_k \le a\}$, avec la convention $\inf(\varnothing) = +\infty$. On définit alors par récurrence

$$\tau_{2n} := \inf \{ k > \tau_{2n-1} : u_k \ge b \} \quad et \quad \tau_{2n+1} := \inf \{ k > \tau_{2n} : u_k \le a \}.$$

On peut alors définir le nombre de traversées montantes de l'intervalle [a, b] par

$$U_{\infty}(a,b) := \sum_{k=1}^{+\infty} \mathbf{1}_{\{\tau_{2k} < +\infty\}},$$

ainsi que le nombre de traversées avant l'instant n par

$$U_n(a,b) := \sum_{k=1}^{+\infty} \mathbf{1}_{\{\tau_{2k} \le n\}}.$$

Par exemple, sur le dessin suivant, on a $U_{11}(a,b) = 1$:

Remarque 7.

Faire un dessin rapide au tableau est appréciable, la définition formelle des τ_k étant un quand même un peu lourde.

Lemme 8. Une suite $(u_n)_{n\in\mathbb{N}}$ converge dans $\overline{\mathbb{R}}$ si et seulement si pour tout $(a,b)\in\mathbb{Q}^2$ tels que a < b, on a $U_{\infty}(a,b) < +\infty$.

Démonstration. On raisonne par double implication. On note $\ell^- = \liminf u_n$ et $\ell^+ = \limsup u_n$. \cong Si la suite $(u_n)_{n \in \mathbb{N}}$ converge, alors $\ell^- = \ell^+$. On se donne a < b deux rationnels, et on distingue deux cas :

- Si $a < \ell$, alors il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on ait $u_n > a$. Donc $U_{\infty}(a, b) \le N$.
- Sinon, on a $b > a > \ell$, et il existe $N' \in \mathbb{N}$ tel que pour tout $n \ge N'$, on ait $u_n < b$. Donc $U_{\infty}(a,b) \le N'$.

 \longleftarrow Par contraposée, on suppose que $\ell^- < \ell^+$, et on prend a et b deux rationnels tels que

$$\ell^- < a < b < \ell^+$$
.

Comme ℓ^- et ℓ^+ sont respectivement les plus petites et plus grandes valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$, cette dernière passe une infinité de fois en dessous de a et au dessus de b, donc $U_{\infty}(a,b)=+\infty$.

On peut maintenant énoncer le théorème principal de ce développement.

Théorème 9. Soit $(X_n)_{n\in\mathbb{N}}$ une sous-martingale telle que

$$\sup_{n\in\mathbb{N}}\mathbb{E}(X_n^+)<+\infty.$$

Alors il existe une variable aléatoire X_{∞} intégrable telle que $(X_n)_{n\in\mathbb{N}}$ converge presque sûrement vers X.

Démonstration.

Pour $(a,b) \in \mathbb{Q}^2$ tels que a < b, on définit de la même manière que dans la définition 6 les variables aléatoires $T_1 := \inf\{k \ge 1 : X_k \le a\}$, puis :

$$T_{2n} := \inf\{k > \tau_{2n-1} : X_k \ge b\}$$
 et $T_{2n+1} := \inf\{k > \tau_{2n} : X_k \le a\}$.

La suite $(T_n)_{n\in\mathbb{N}}$ est une suite croissante de temps d'arrêt. On pose encore

$$U_{\infty}(a,b) := \sum_{k=1}^{+\infty} \mathbf{1}_{\{T_{2k} < +\infty\}}$$
 et $U_n(a,b) := \sum_{k=1}^{+\infty} \mathbf{1}_{\{T_{2k} \le n\}}$.

Etape 1 : on va démontrer l'inégalité des montées de Doob, qui est la suivante :

$$(b-a) \mathbb{E}[U_n(a,b)] \le \mathbb{E}[(X_n-a)^+]. \tag{1}$$

D'après le théorème d'arrêt, on a

$$0 \leq \mathbb{E}[X_{T_{2k+1\wedge n}} - X_{T_{2k\wedge n}}]$$

$$= \mathbb{E}[(X_{T_{2k+1\wedge n}} - X_{T_{2k\wedge n}})\mathbf{1}_{\{T_{2k}\leq n\}}]$$

$$\leq \mathbb{E}[(X_{T_{2k+1\wedge n}} - X_{T_{2k\wedge n}})(\mathbf{1}_{\{T_{2k}\leq n < T_{2k+1}\}} + \mathbf{1}_{\{T_{2k+1}\leq n\}})]$$

$$\leq \mathbb{E}[(X_n - b)\mathbf{1}_{\{T_{2k}\leq n < T_{2k+1}\}}] + (a - b)\mathbb{P}(T_{2k+1}\leq n)$$

$$= \mathbb{E}[(X_n - a)\mathbf{1}_{\{T_{2k}\leq n < T_{2k+1}\}}] + (a - b)\mathbb{P}(T_{2k}\leq n),$$

où l'on a utilisé dans la dernière égalité la linéarité de l'espérance et le fait que

$$\mathbb{P}(T_{2k} \le n < T_{2k+1}) = \mathbb{P}(T_{2k} \le n) - \mathbb{P}(T_{2k+1} \le n).$$

Par ailleurs, on remarque que $\{T_{2k} \le n \le T_{2k+1}\} \subset \{U_n(a,b) = k\}$. Ainsi, on a

$$(X_n - a)\mathbf{1}_{\{T_{2k} \le n \le T_{2k+1}\}} \le (X_n - a)^+ \mathbf{1}_{\{T_{2k} \le n \le T_{2k+1}\}}$$

 $\le (X_n - a)\mathbf{1}_{\{U_n(a,b)=k\}}.$

Et de plus, $\{T_{2k} \le n\} = \{U_n(a,b) \ge k\}$. On en déduit que

$$(b-a) \mathbb{P}(U_n(a,b) \ge k) \le \mathbb{E}[(X_n-a)^+ \mathbf{1}_{\{U_n(a,b)=k\}}].$$

En sommant sur $k \ge 0$, on en déduit (1).

Etape 2: conclusion

Par hypothèse, sup $\mathbb{E}[(X_n-a)^+]<+\infty$, et le théorème de convergence monotone donne

$$\lim_{n \to +\infty} U_n(a,b) = U_{\infty}(a,b).$$

En utilisant encore ce théorème dans l'inégalité de Doob $(b-a) \mathbb{E}[U_n(a,b)] \leq \mathbb{E}[(X_n-a)^+]$, on en déduit que $\mathbb{E}[U_\infty(a,b)] < +\infty$, donc $U_\infty(a,b)$ est finie \mathbb{P} -presque sûrement. On a donc

$$\mathbb{P}\left(\underbrace{\bigcap_{(a,b)\in\mathbb{Q}}\left\{U_{\infty}(a,b)<+\infty\right\}}_{\mathcal{A}}\right)=1.$$

Or sur \mathcal{A} , la suite $(X_n)_{n\in\mathbb{N}}$ converge vers une limite X_∞ d'après le lemme 8. Aussi, $(X_n)_{n\in\mathbb{N}}$ converge \mathbb{P} -presque sûrement vers X_∞ .

D'après le lemme de Fatou, on a

$$\mathbb{E}[X_{\infty}^+] \le \liminf \mathbb{E}[X_n^+] < \infty.$$

D'autre part, comme $(X_n)_{n\in\mathbb{N}}$ est une sous-martingale, on a

$$\mathbb{E}[X_n^-] = \mathbb{E}[X_n^+] - \mathbb{E}[X_n] \le \mathbb{E}[X_n^+] - \mathbb{E}[X_0] \le \sup_{m \in \mathbb{N}} \mathbb{E}[X_m^+] - \mathbb{E}[X_0],$$

ce qui, de nouveau via le lemme de Fatou, confirme que

$$\mathbb{E}[X_{\infty}^{-}] \leq \liminf \mathbb{E}[X_{n}^{-}] \leq \sup_{m \in \mathbb{N}} \mathbb{E}[X_{m}^{+}] - \mathbb{E}[X_{0}] < +\infty.$$

Par conséquent, $\mathbb{E}[|X_{\infty}|] < +\infty$, donc X_{∞} est intégrable.