PC817 Series

** Lead forming type (| type) and taping reel type (P type) are also available. (PC8171/PC81 7P) (Page 656) ** TÜV (VDE0884) approved type is also available as an option.

■ Features

1. Current transfer ratio

(CTR:MIN. 50% at It = 5mA)

- 2. High isolation voltage between input and output (V_{iso} :5 000 V_{rms})
- 3. Compact dual-in-line package

PC817 : 1-channel type PC827 : 2-channel type PC837 : 3-channel type PC847 : 4-channel type

4. Recognized by UL, file No. E64380

■ Applications

Photocoupler

- 1. Computer terminals
- 2. System appliances, measuring instruments

High Density Mounting Type

- 3. Registers, copiers, automatic vending machines
- 4. Electric home appliances, such as fan heaters, etc.
- 5. Medical instruments, physical and chemical equipment
- Signal transmission between circuits of different potentials and impedances

(Unit: mm)

■ Outline Dimensions •C817

■ Absolute Maximum Ratings

(Ta	=	25	٣١	١

	Parameter	Symbol	Rating	Unit
Input	Forward current	IF	50	mA
	*! Peak forward current	$I_{\rm FM}$	1	A
	Reverse voltage	V _R	6	V
	Power dissipation	P	70	mW
	Collector -emitter voltage	VCEO	35	v
output	Emitter -collector voltage	V _{ECO}	6	V
	Collector current	$I_{\rm C}$	50	mA
	Collector power dissipation	Pc	150	mW
Total power dissipation		P _{tot}	200	mW
**Isolation voltage		V_{iso}	5000	V _{rms}
Operating temperature		T, pr	-30 to +100	$^{\circ}$ C
Storage temperature		T_{stg}	-55 to $+125$	"c
*'Soldering temperature		$T_{\rm sol}$	260	C

^{*1} Pulse width $\leq 100 \,\mu$ s, Duty ratio -0.001

■ Electro-optical Characteristics

 $(Ta = 25^{\circ}C)$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage	$V_{\rm F}$	I _F =20mA		1.2	1,4	V
	Peak forward voltage	V_{FM}	$I_{FM} = 0.5A$	_	_	3.0	v
	Reverse current	I_R	$V_R = 4V$			10	μΑ
	Terminal capacitance	Ct	V=0, $f=1kHz$	-	30	250	рF
Output	Collector dark current	I_{CEO}	$V_{CE} = 20V$			10-7	A
	'Current transfer ratio	CTR	$I_F = 5_{mA}, V_{CE} = 5V$	50	ı	600	%
	Collector-emitter saturation voltage	V _{CE(sat)}	$I_F = 20 \text{mA}$, $I_C = 1 \text{mA}$	_	0.1	0.2	V
Transfer	Isolation resistance	Riso	DC500V, 40 to 60%RH	5×10^{10}	1011	_	Ω
charac	Floating capacitance	Cf	V=O, f=1MHz	-	0.6	1.0	pF
teristics	'Cut -off frequency -	f_c	$V_{CE}=5V$, $I_C=2mA$, $R_L=100\Omega$, $-3dB$	-	80	_	kHz
Resp	Response time Rise tim	e t _r	$V_{CE} = 2V, I_C = 2mA, R_1 = 100 \Omega$	_	4	18	μs
	Fall time	t _f		_	3	18	μs

^{*4} Classification table of current transfer ratio is shown below.

Model No.	Rank mark	CTR (%)
PC817A	A	80 to 160
PC817B	В	130 to 260
PC817C	С	200 to 400
PC817D	r)	300 to 600
PC8 * 7A8	A or H	80 to 260
PC8 ※ 7BC	B or C	130 to 400
PC8 * 7CD	C or D	200 to 600
PC8 * 7AC	A, B or C	80 to 400
PC8※7BD	B, C or D	130 to 600
PC8 * 7AD	A, B, C or D	80 to 600
PC8 ** 7	A, B. C, D or N ₀ mark	50 to 600

[※] ∶1 or 2 or 3 or 4

Fig. 1 Forward Current vs.

Ambient Temperature

^{*240} to 60%RH, AC for 1 minute

^{*3} For 10 seconds

Fig. 2 Collector Power Dissipation VS.
Ambient Temperature

Fig. 4 Current Transfer Ratio vs. Forward Current

Fig. 6 Collector Current vs.
Collector-emitter Voltage

Fig. 3 Peak Forward Current vs. Duty Ratio

Fig. 5 Forward Current vs. Forward Voltage

Fig. 7 Relative Current Transfer Ratio vs.

Ambient Temperature

Fig. 8 Collector-emitter Saturation Voltage vs.
Ambient Temperature

Figmlo Response Time vs. Load Resistance

Test Circuit for Response Time

Test Circuit for Frepuency Response

Fig. 9 Collector Dark Current vs. Ambient Temperature

Fig.11 Frequency Response

Fig.12 Collector-emitter Saturation Voltage vs. Forward Current

• Please refer to the chapter "Precautions for Use" (Page 78 to 93)