1 Uvod v teorijo grup

1.1 Grupa permutacij

- Zapis s transpoziciji: $(i_1i_2\dots i_n)=(i_1i_n)(i_1I_{n-1})\dots (i_1i_3)(i_1i_2)$
- Inverz k-cikla: $(i_1i_2...i_k)^{-1} = (i_ki_{k-1}...i_2i_1)$
- Konjugiranje: $\pi \in S_n \implies \pi(i_1 i_2 \dots i_k) \pi^{-1} = (\pi(i_1) \pi(i_2) \dots \pi(i_k))$
- Generatorji:

$$- S_n = \langle (12), (13), (1n) \rangle = \langle (12)(23) \dots (n-1, n) \rangle = \langle (12), (12 \dots n) \rangle$$

1.2 Diedrska grupa D_{2n}

- $z^k r = r^{-k} z = r^{n-k} z$
- $r^k z$ so zrcaljenja, $(r^k z)^2 = 1$

1.3 Podgrupe

• $H, K \le G \implies |HK| = \frac{|H||K|}{|H \cap K|}$.

1.4 Ciklične grupe

- Vsaka podgrupa ciklične grupe je ciklična
- Podgrupe v \mathbb{Z} so oblike $n\mathbb{Z}, n \in \mathbb{N}$
- Podgrupe v \mathbb{Z}_n so \mathbb{Z}_d , kjer $d \mid n$
- $G = \langle a \rangle, |G| < \infty \implies G = \langle a^k \rangle \iff \gcd(k, n) = 1$
- $k \in Z_n \implies \operatorname{red} k = \frac{n}{\gcd(n,k)}$
- Konjugiranje ohranja red elementa

1.5 Generatorji grup

Oglejmo množico vseh možnih produktov in inverzov ter pokažemo, da je podgrupa.

1.6 Splošno

- $f: X \to X$ preslikava. Velja:
 - -f ima levi inverz: $g \circ f = \text{id}$ natanko tedaj, ko je f injektivna. Če f tudi ni surjektivna, potem ima več levih inverzov.
 - -fima desni inverz: $f\circ h=\mathrm{id}$ natanko tedaj, ko je f surjektivna. Če f tudi ni surjektivna, potem ima več desnih inverzov.

2 Uvod v teorijo kolobarjev

- Kolobar K je Boolov, če $\forall x \in K . x^2 = x$. Boolov kolobar je komutativen in ima karakteristiko 2.
- Kolobar \mathbb{Z} ni algebra nad nobenim poljem.
- Naj bo A končno-razsežna algebra. Tedaj
 - $\forall a \in A \setminus \{0\} . (\exists b \in A \setminus \{0\} . ab = 0 \lor ba = 0) \lor (\exists a^{-1} . a^{-1}a = aa^{-1} = 1).$
 - $\forall a \in A . \exists b \in A . ab = 1 \lor ba = 1 \implies a^{-1} = b.$
 - Če je A obseg, je vsaka podalgebra podobseg.

2.1 Algebra kvaternionov

- $i^2 = j^2 = k^2 = ijk = -1$
- $\bullet \ \ Z(\mathbb{H})=\mathbb{R}, \ Z(Q)=\{-1,1\}.$
- $\forall h \in \mathbb{H} . \exists \alpha, \beta \in \mathbb{R} . h^2 + \alpha h + \beta = 0$, kjer $-\alpha = h + \overline{h}$ in $\beta = h\overline{h}$.

2.2 Kolobar Z_n

- Kolobar Z ima 2 obrnljivih elementa: 1 in -1
- V \mathbb{Z}_n element $k \in \mathbb{Z}_n$ je obrnljiv natanko tedaj, ko $\gcd(k,n) = 1$.
- $|\mathbb{Z}_n^*| = \phi(n)$, kjer je ϕ Eulerjeva funkcija. Če he p praštevilo, potem $|\mathbb{Z}_p| = p 1$.

2.3 Generatorji

 Poglejmo kaj mora vsebovati kolobar (vedno vsebuje enoto), ki je generiran z neko množico A, ter pokažemo, da je dobljena množica podkolobar.

3 Homomorfizmi

- Homomorfizem $\varphi: \mathbb{Z} \to G$, $\varphi(1) = a$ obstaja za vsak $a \in G$. Homomorfizem $\varphi: \mathbb{Z}^n \to G$, $\varphi(1) = a$ natanko tedaj, ko $a^n = 1$.
- Naj bo $\varphi: G \to G'$ homomrfizem grup in naj ima element $a \in G$ končen red. Tedaj red $\varphi(a) \mid \text{red } a$. Če je φ vložitev, potem reda sta enaka.
- Homorfna slika idempotenta je idempotent.

4 Kvocientne strukture

4.1 Kvocientne grupe

- $\langle r \rangle$ je edinka v D_{2n} za $n \geq 3$.
- Če je $G/_{Z(G)}$ ciklična, potem je G Abelova.

4.2 1. izrek o izomorfizmu

• To, da je podgrupa $N \triangleleft G$ edinka v G lahko dokažemo tako, da najdemo ustrezni homomorfizem φ , za kateri ker $\varphi = N$.

4.3 Kvocientni kolobarji

- Za vsak kolobar K velja, da $\forall a \in K$. $aK = \{ak \mid k \in K\} = Ka$ je ideal.
- Enostavnost kolobarja K uporabimo/dokažemo tako, da predpostavimo, da podan ideal ni trivialen, torej mora biti enak K.
- Kolobar $M_n(D)$ je enostaven, če je D obseg.
- Center enostavnega kolobarja je polje. Komutativen kolobar je enostaven natanko tedaj, ko je polje.
- Naj bosta K_1 in K_2 kolobarja. Tedaj vsak ideal direktnega produkta $K_1 \times K_2$ je oblike $I_1 \times I_2$, kjer je I_1 ideal v K_1 ter I_2 ideal v K_2 .

5 Splošno 3

• Z(g(X))označujemo glavni ideal kolobarja polinomovF[X], generiran s polinomom $g(X) \in F[X],$ torej

$$(g(X)) = \{g(x)f(x) \, | \, f(x) \in F[X]\}.$$

5 Splošno

5.1 Matrike

- Naj bo $A \in M_n(\mathbb{R})$, rang A = 1. Tedaj $\exists \lambda \in \mathbb{R} . A^2 = \lambda A$. Tako matriko lahko zapišemo tudi v obliki: stolpec krat vrstica.
- $E_{ij} \cdot E_{kl} = \delta_{jk} E_{il}$