Tencent腾讯

后台开发通道面试陈述

申请晋升职级: T10

申报人:梁承希(cyrilliang)

来自:视频产品技术部/媒资产品中心/媒资短视频应用组

时间: 2020/3/19

梁承希 (cyrilliang)

项目经历

- * 2009/09---2016/03 西安电子科技大学 硕士
- * 2016/03---2017/12 腾讯视频-媒资平台组 媒资基础资料开发管理 乘风-内容抓取系统、地域播控系统、游戏推荐项目等
- * 2018/12---2019/1 腾讯视频-速看后台开发组速看 APP 后台服务开发速看推荐系统引擎搭建&开发
- * 2019/01---至今 腾讯视频-媒资短视频应用组 短视频业务开发 媒资重构项目

考核情况

最近一年考核 四星+四星 五星两次 四星三次 三星两次

评审项目

《腾讯视频媒资重构》第一负责人

目录

- 媒资重构项目概述
- 难点:接入层与数据存储重构
- 难点: 媒资数据同步优化
- 成果与展望

1 媒资重构项目概述

2 媒资重构项目概述

媒资是什么

腾讯视频架构

『 媒资平台承载内容的生产与分发,为频道运营提供最重要的基础运营系统,为各条业务线输送最基础最核心的媒资数据。』

2 媒资重构项目概述

重构背景

19年起,开始进行向综合视频 平台转型 (netflex+youtube) 无法直接扩容 高爆库还有三个月的时间 高爆库还有三个月的时间 高爆车还有三个月的时间 高爆车还有三个月的时间 17.年日增3.00% 19年日增8.00% 19年日	业务调整	存储数据容量告急	性能问题严峻	系统间耦合严重	系统可维护性差
平台转型 (netflex+youtube) 15 年前, vid日增量10W以内 17 年日增30W 19年日增80W 18 第編库还有三个月的时间 26 直接访问 DB, 数量 37 年日增30W 19年日增80W 37 年日增30W 19年日增80W	19年起,开始进行向综合视频			扫表逻辑繁多,达十数个	烟囱式开发,代码冗余,特殊逻辑多,抽象性差
17 年日增30/// 19年日增80///	15 年前,vid日增量10W以内				实现方式五花八门,数据 访问不收敛
超过2T的实例无法直接迁移 TDW 同步程序同步延迟 方使用 基础	17 年日增30W, 19年日增80W 整体的架构不满足发展要求	超过2T的实例无法直接迁移		直接暴露 DB 从库给业务 方使用	基础技术老旧,老框架/平台 不再维护

挑战

时间有限 人力较紧张 迁移数据规模大

事故影响面广

业务逻辑复杂

保证上游无感知

涉及核心业务程序

性能提升要求高

1

媒资重构项目概述

项目拆解

数据层重构

- · 数据接入层设计&开发
- 底层数据存储选型
- 存储容量模型评估

核心同步程序优化

- · Union 同步程序优化
- · TDW 同步程序优化

逻辑服务改造

- 逻辑写点收敛
- 主写点迁移

数据迁移

- 媒资精品数据迁移
- · 媒资 vv 数据迁移

接入业务逻辑收敛

- 数据总线服务
- 媒资统一数据平台

2 难点:接入层与数据存储重构

接入层重构

2 海量数据存储方案

- 对外表现是一张大横表
- · 纵向按列拆分数据,便于扩展和 迁移
- · 切换底层数据存储,开发新的 adapter即可,上游不感知

底层数据存储选型

存储	数据扩展能力	支持存 储容量	写性 能	读性能	运维支 持度	事务支持度	业界使用 案例
单实例MySQL	低	低	低	低	高	支持	-
MongoDB	高	中	中	中	低	支持	58同城
Cassandra	高	高	高	中	低	部分支持	Netflix
HBase	高	高	高	_ 中_	低_	部分支持	腾讯看点_
TDSQL分布式	高	高	高	高	高	支持	微众银行
TiDB	高	高	高	高	中	支持	知乎/头条

TDSQL 分布式 (MDB 已支持) 核心精品视频数据

TIDB (MDB 已支持) 非核心视频数据

媒资诉求

- ▶ 性能要求 -> 高
- 写多读多,万级QP5;
- > 安全性要求 -> 高
- 影响外网各个平台外显;
- 影响视频播放;
- → 可维护性可扩展性 -> 高
- 数据膨胀速度快,需要支持 快速扩容能力;
- 业务诉求
- 媒资一些业务数据需要支持 事务;
- 尽可能兼容SQL,降低维护 和迁移成本

旧My5QL实例

- 10横表+1000纵表结构
- 4亿数据,已快撑满

- · CDB不再维护
- 需手动迁移、扩容实例

TDSQL 分布式

- · MDB 管理平台统一运营
- 自动扩容工具,业务无感知
- · 运维建议+业务场景 2库每库 64表
- 读写性能 10W QP5 左右
- TP95 5ms

2 海量数据存储方案

TiDB: NewSQL

- > TiDB Server
- 无状态,平行扩容
- > PD Server
- 管理数据集群;
- Raft 协议保证数据安全高可用;
- > TiKV Server
- 数据存储 Key-Value 存储引 擎;

单表存储, 无需进行再分表

应用于20+亿的 VV 视频库 & 下一阶段存储

3 难点: 媒资数据同步优化

旧同步程序逻辑

业务场景诉求

- 同步要尽可能实时
- 数据不能丢失
- 性能要足够高
- 不应当产生积压导致数据 发生同步延迟
- 重点剧重要程度高

新同步程序逻辑

优化点

- 轻重分离, 重点剧重点照顾
- 队列分流制,避免异常流量导致数据阻塞
- 充分异步并发,提高单机性能
- 更新数据存储在 kafka, 避免单机故障

MORE

- 支持多种队列 kafka/hippo&多种应用特性
- 开源协同,能力集成到部门开发框架5PP_RPC中, 给兄弟团队提供使用〔媒资/红骑push/视频推荐〕
- 配置化实现场景定制, 无需修改代码

优化后指标对比

比对项目	旧同步服务	新同步服务	
单机并发性能	200 QPS	2000 QPS	
最大支持并发数	3000 QPS	20000 QPS+	
平均同步延迟	1min 左右	亚秒级	
可维护性	低	高	

- * 新服务最大并发数受限于下游 Union 写服务最大支持量
- * 旧服务已经有三年未进行过代码变更和发布

3 媒资数据同步优化 —— TDW 数据同步

背景

查看父子关联 Х

- 依赖业务方有数百个
- 耗时要求高,要小时表
- 数据同步量大, 计算量大
- 维护成本高,经常加字段

同步新旧方案对比

- 性能提升: 同步耗时 5~10 小时 缩减到 2小时内 (中间表1小时左右)
- 可维护性提升: 1、字段管理配置化, 无需进行代码修改; 2、加字段半天缩减到5分钟;

3 媒资数据同步优化 —— TDW 数据同步

任务ID	任务名称	周期	数据时间	状态	尝试(次)	开始时间 🗸	运行时长	查看	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 08:00:00	•	0/3	预:2019-08-23 09:40:00		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 07:00:00	•	0/3	预:2019-08-23 08:40:00		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 06:00:00	•	0/3	预:2019-08-23 07:40:00		父任务 日志 异常	TDW 数据延迟前后对L
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 05:00:00	•	0/3	预:2019-08-23 06:40:00		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 04:00:00	•	0/3	预:2019-08-23 05:40:00		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 03:00:00	•	0/3	预:2019-08-23 04:40:00		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 02:00:00	•	0/3	预:2019-08-23 03:40:00		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 01:00:00	3	1/3	2019-08-23 09:34:04		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-23 00:00:00	3	1/3	2019-08-23 08:58:58		父任务 日志 异常	
20160629100925110	video_t_video_info_extend	小时报	2019-08-22 23:00:00	Ø	1/3	2019-08-23 08:	检索 / 任多	S实例(任务名: vide	o_t_video_info_extend_hour_res 媒资视频基础信息结果表,任务ID:20190814161842596) <u>《</u>

1/3

2019-08-23 07:2

TDW 数据延迟前后对比

- · 数据总线已接入20+个业 务,外部接入服务方10+个
- · 统一管理媒资数据的消息通 知接入和读写接入
- 对接入业务进行鉴权、频控、调用统计

新服务 - 总请求量

新服务 – 请求平均耗时

性能优化效果

*接口耗时 TP95 10ms

*数据更新接口耗时

200ms

40ms

视频修改CGI – 平均耗时对比

视频修改CGI – 失败量对比

*数据更新成功率由

99.9%

99.999%

*视频详情页耗时

500ms

20ms

项目获部门技术革新奖

培养&培训

- 培养人: victortang, sullivanzhu, roysun, swingszhang, joyyhe
- 部门课程: 乘风系统介绍
- 部门课程: 从0到1搭建推荐系统
- · 部门课程: Go 语言开发培训

公共组件开发

- · 5PP 微线程多类型并发工具库〔组〕
- Python JCE RPC 客户端 (中心)
- · Python 通用开发工具库〔中心〕
- 5PP_RPC 生产&消费者组件 [部门]

相关文章

- 《网络高性能服务的本质探究》
- 《速看推荐系统搭建》
- 《Continuaion 与并发》
- 《函数式编程的思维方式》

附录

数据迁移流程

SPP_RPC 消息消费者&生产者组件特性列表

如果你有额外的配置需求,可以在 runtime_conf 节点添加下面这些参数:

- push_gap_time_ms 每次推送到消费者的停留时间间隔(毫秒)以防过快消费压死下游业务,缺省为0
- overload_strategy 消息过载策略,可以设置的值有:
 - 0:不处理(默认值)
 - 1:直接抛弃
 - 。 2:转发到其他消息队列
- overload_gap_sec 消息过载时差判定(秒),不设置过载保护则置为0
- overload_prod_id 消息过载后转发的生产者id(当过载策略为2时需要,相应生产者ID对应配置文件中的 "name")
- overload_max_gap_sec 极限过载时间(秒)(当数据延迟超过此阈值时,无论是否设置转发队列,所有消息都将抛弃,以避免阻塞,不开启该功能则置为0)
- err_forward_prod_id 失败后转发的生产者id(重试后仍然失败但不希望阻塞且不希望丢弃消息,可以抛到异常队列里进行无限重试逻辑)
- open_uniq_key_in_batch 是否开启批次内key去重(当 queue/partition 按照key路由时,可以使用该模式保证全局同一时刻内不会处理同一个key的消息,避免冲突,目前是先来先处理 辑,处理前提是消息带有key
- delay_to_consume_ms 延迟消费,如果需要延迟消费,可以配置上该配置项,即可实现收到消息后等待 xx ms 再进行处理,以满足一些缓存延迟生效需要延迟读取等场景

DB 容量存储模型

存储容量模型评估

- 一张逻辑表->128张物理表
- · 单物理表最大2G
- 年复合增长量10%
- 日增量100W
- 单 VID 信息大小 18K
- 全纵表结构
- · 未来5年,需支撑数十亿~百 亿数据

2库,每库64表

日增量占存储 = 18K*100W = 18G

所需分表数 = 365(天)*5(年)*18(G)/2(G)/128 = 128

数据总线

数据总线

性能测试

cyrilliang 创建于2019-08-26, cyrilliang 更新于2020-03-10 浏览量 (77)

☑ 编辑 ☆ 关注 💬 评论 🗜 更多

总结论

- TDSQL 基本能够满足媒资场景的业务需求
- 当前 3 proxy,8 实例的配置下,单行数据操作的压测情况为:插入性能:9WQPS左右,查询性能:9WQPS左右(利用上从库,可以再*3),修改性能:10WQPS左右, 当表的数据存储行数达到3亿时,仍然可以有稳定的性能
- 当前查询性能瓶颈主要在proxy上,增加proxy也可以提升性能
- 单proxy, 8实例下的插入性能在 QPS 3W8 时已接近极限, CPU 已达到 80%+
- 尽量不要使用过多的DB连接,连接过多,TDSQL的性能会急剧下降,请求延迟将会大大增加
- 单表达到4亿存储量级时(8 实例),单表插入性能急剧下降,下降为约3~5k QPS,查询性能和修改性能则基本不受影响

压测细节

插入性能

TestCase: 最高链接数测试

测试机器数量: 4, proxy 数量 1

执行命令:

目录

TDSQL 压测指标

