HW1 Q1
Composite Law for Rotational Grans formations with current frame: R2 = R1 R2
But this formula docon't hold true when we are doing extational transformation we't a fixed frame is
$R_0^2 = R \cdot R_s^2$ where R is the everyweetation of autation arelative to the fixed frame.
To answer the given question: $R_{A}^{13} = R_{1}^{13} \cdot R_{A}$
$= R_{y,\pi/2} R_{\infty,\pi/2}$
$= \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$
$= \begin{array}{c ccccccccccccccccccccccccccccccccccc$
=
$ = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}. $
Since we are not translating the frame, we have used just the rotation matrix.

HW1 Q2
1) Base frame_0, New Frame 1
$T_i^{\circ} = \begin{pmatrix} R_i^{\circ} & d_i^{\circ} \\ 0 & 1 \end{pmatrix}$
= 1 0 0 0 Since no rotation of ascis 0 1 0 1 is involved, the rotation
0 1 0 1 is unvelved, the rotation
0 0 1 1 matrix will be I.
0001/
Base frame - 0, New Frame - 2
$T_2^0 = \begin{pmatrix} R_2 & d_2 \\ 0 & 1 \end{pmatrix}$
0 1/
= 1 0 0 -0.5 =
0 1 0 1.5
0 0 1 1.1
00001
(3) Base frame - 0, New Frame - 3
To Podo
$T_3^{\circ} - \begin{pmatrix} R_8 & d_3^{\circ} \\ 0 & 1 \end{pmatrix}$
1
- 0 1 0 -05 Rotation matrix can be 1 0 0 1.5 easily derived using 0 0 -1 3 observation.
1 0 0 1.5 easily derived using 0 0 -1 3 observation.
0 0 - 1 3 Abservation
0 0 1
E Base Frame = 3, New Frame - 2
$T_2^3 = T_0^3 \cdot T_2$
2 = 10 - 12

```
HW18 2
      0
         -0.5.5
                       0-0.5 1
                           1.5
1
          1.5
      0
                           1-1
0
      -1
           3
                   0 0 1
    0
                   0 0
       0
       0 0 2-207
      0 02.20
     0
    0 -1 1.9
     0 0 1
```

HW1Q4 JE RMXn · JJ C RMXM that satisfies

JJ T p ui = liui which implies that $(JJ^{T}-\lambda_{i}J)$ is singular & therefore old $(JJ^{T}-\lambda_{i}J)=0$ We can use the above equation to find eigenvalues \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda \lambda \text{for JTT} The singular values for the Jacobian matrix I are given by eguare noot of eigenvalue of 55 Let o; = VI; SVD of a matrix $J \Rightarrow J = U \Sigma V^T$ where U = [ui uz -- Um], V = [ui vz -- Vm] are arthogonal matrix ex 2 E E RMXn : JJ'ui = ri²ui JJ TU = UZm where \(\Sigma m =

HW104 Vm = J TU Z m Manipulability measure ie volume of the ellipsoid = koroz om where k is constant that depends on dimension in of the ellipsoid The manipulability measure is defined by W= 002 -- on olet JJT = det J det JT $= \frac{\text{del J det J}}{= (\lambda_1 \lambda_2 - \cdot \lambda_m) (\lambda_1 \lambda_2 - \cdot \lambda_m)}$ $= (\lambda_1^2 \lambda_2^2 - \cdot \lambda_m^2)$ W = \ det JJ T = | \ \ \ \ \ \ \ \ | = | det J | $\mu = \pi \circ (\theta)$ If I is singular, then all of its leigenrectors are o Thus, $\mu(\theta) = 0$ in the above case.

		HW1 Q3				
	Forward	l kinematice	of a probot	nofers to the	he calculati	on of
	the pos	t kinematice ition & sciental nt values.	ion of its	end - effector	frame f	leom
	di = Ris	ik length placement along votation along x Rotation along x	e axis (ax	us of stotali	ton)	
			a.xu	62	8	
	In gen	10	n 0 1	Ail	1 0 0	ai v
	17,	= Cvi _ svi svi cvi	i 0 0 1 di	Aî =	O Cdi - So	ci O
		\ 0 0	0 1		0 0	0 1
	Ai ($P = A_{i'} \cdot A$	l ==			
	Tn (9	$)=A_1,A_2$	A n			
0,1		e Penarint- Hard	tenberg con	vention:		
1)	Links	ai	di	dì	vi	
	1	Q ₁	†Π/2	0	91	
	2	ℓ_2	+Π/2	0	-02	
	3	L ₂	0	0	03	
	T#3 = A	1. A ₂ . A ₃				
						State of the State

			43/47		E.10 JULIA	
	13 723					
i)	links	ai	di	34	di	vi
The world	1	ls	+11/2		-0	01
	2	L ₂	-TV2		0	-02
	3	l ₃	90-03		0	03
					- Miles	48 - 31433 - 32
(iii)	hinks	ai	√i	100	di	Vi
	1	l ₁	+11/2	37	0	01
	2	J ₂	0	13. 1	0	-92
	3	lz	+ 11/2		0	-03
						lossing int
iv)	hink	ai	di		di	92 c
19	1	l ₁	+11/2	Tire.	0	01
	2	la :	+ 17/2	182-	0	_0 ₂
1 1343 3	3	θ3	0	-0	0	0
1000	19/0.11/		10	0	9 /	
			100		27	

