Speeding Up Multi-Scalar Multiplication Towards Efficient zkSNARKs

Guang Gong

Revised on June 9, 2022

Outline

Introduction

Existing methods

Pippenger's bucket method and its variant

New construction

Benchmark and further optimazation

• Multi-scalar Multiplication (MSM) over fixed points:

$$S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n, \ 0 \le a_i < r, P_i \in E.$$
 (1)

Multi-scalar Multiplication (MSM) over fixed points:

$$S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n, \ 0 \le a_i < r, P_i \in E.$$
 (1)

 MSM dominates the time consumption in the pairing-based trusted setup zkSNARKs.

Figure: credit: https://en.wikipedia.org/wiki/Zcash

Multi-scalar Multiplication (MSM) over fixed points:

$$S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n, \ 0 \le a_i < r, P_i \in E.$$
 (1)

Example: Groth16 [Gro16],

we may delete the groth16 formulas, they're long and complicated. proof computation: 3 MSM's,

$$A = G^{\alpha + \sum_{i=0}^{m} a_i u_i(x) + r\delta} \qquad \qquad B = H^{\beta + \sum_{i=0}^{m} a_i v_i(x) + s\delta}$$

$$C = G^{\frac{\sum_{i=\ell+1}^m a_i(\beta u_i(x) + \alpha v_i(x) + w_i(x)) + h(x)t(x)}{\delta}} + s\left(\alpha + \sum_{i=0}^m a_i u_i(x)\right) + r\left(\beta + \sum_{i=0}^m a_i v_i(x)\right) + rs\delta$$

proof verification: 3 pairings and 1 MSM.

$$e(A,B) = e(G^{\alpha},H^{\beta})e(G^{\sum_{i=0}^{\ell} \frac{\alpha_i\left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right)}{\gamma}},H^{\gamma})e(C,H^{\delta})$$

Multi-scalar Multiplication (MSM) over fixed points:

$$S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n, \ 0 \le a_i < r, P_i \in E.$$
 (1)

Example: Groth16 [Gro16],
 we may delete the groth16 formulas, they're long and complicated.
 proof computation: 3 MSM's,

$$A = G^{\alpha + \sum_{i=0}^{m} a_i u_i(x) + r\delta} \qquad \qquad B = H^{\beta + \sum_{i=0}^{m} a_i v_i(x) + s\delta}$$

$$C = G^{\frac{\sum_{i=\ell+1}^{m} a_i(\beta u_i(x) + \alpha v_i(x) + w_i(x)) + h(x)t(x)}{\delta} + s\left(\alpha + \sum_{i=0}^{m} a_i u_i(x)\right) + r\left(\beta + \sum_{i=0}^{m} a_i v_i(x)\right) + rs\delta}$$

proof verification: 3 pairings and 1 MSM.

$$e(A,B) = e(G^{\alpha},H^{\beta})e(G^{\sum_{i=0}^{\ell} a_i\left(\beta u_i(x) + \alpha v_i(x) + w_i(x)\right)}_{\gamma},H^{\gamma})e(C,H^{\delta})$$

 Circuit size in Zcash: for hash, tens of thousands; for nested hash, several millions.

 $S_{n,r}$ with small n.

 Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].

$S_{n,r}$ with small n.

- Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].
- Construction of number systems: basic digit sets [Mat82, BGMW92], multi-base number systems [DKS09, SIM12, YWLT13].

$S_{n,r}$ with small n.

- Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].
- Construction of number systems: basic digit sets [Mat82, BGMW92], multi-base number systems [DKS09, SIM12, YWLT13].
- Addition chains:
 PRAC chains [Mon92],
 DJB chains [Ber06],
 other multi-dimensional differential addition chains
 [Bro15, Rao15].

$S_{n,r}$ with small n.

- Binary method: doubling-and-addition, Knuth's 5 window algorithm [Knu97, BC89].
- Construction of number systems: basic digit sets [Mat82, BGMW92], multi-base number systems [DKS09, SIM12, YWLT13].
- Addition chains:
 PRAC chains [Mon92],
 DJB chains [Ber06],
 other multi-dimensional differential addition chains [Bro15, Rao15].
- Pippenger's bucket method and its variants.

When n is big $(2^{17} \le n \le 2^{23}$, or $10^5 \le n \le 10^7$).

- SOTA: Pippenger's bucket method and its variants.
- zkSNARK-oriented implementations, Zcash, TurboPLONK, Bellman, gnark, choose Pippenger's bucket method.

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

All points are sorted into 7 buckets according to the scalars,

$$S_{13,8} = 1 \cdot (P_6 + P_{11}) + 2 \cdot (P_1 + P_9) + 3 \cdot (P_2 + P_7) + 4 \cdot (P_{12})$$

+ $5 \cdot (P_5 + P_{13}) + 6 \cdot (P_4 + P_8) + 7 \cdot (P_3 + P_{10})$
:= $1S_1 + 2S_2 + \ldots + 7S_7$.

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

All points are sorted into 7 buckets according to the scalars,

$$S_{13,8} = 1 \cdot (P_6 + P_{11}) + 2 \cdot (P_1 + P_9) + 3 \cdot (P_2 + P_7) + 4 \cdot (P_{12})$$

+ $5 \cdot (P_5 + P_{13}) + 6 \cdot (P_4 + P_8) + 7 \cdot (P_3 + P_{10})$
:= $1S_1 + 2S_2 + \ldots + 7S_7$.

The accumulated sum $\sum_{i=1}^{7} iS_i$ can be computed via

$$S_7$$

+ $(S_7 + S_6)$
+ $(S_7 + S_6 + S_5)$
...
+ $(S_7 + S_6 + S_5 + \dots + S_1)$.

Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7 + 6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

All points are sorted into 7 buckets according to the scalars,

$$S_{13,8} = 1 \cdot (P_6 + P_{11}) + 2 \cdot (P_1 + P_9) + 3 \cdot (P_2 + P_7) + 4 \cdot (P_{12})$$

+ $5 \cdot (P_5 + P_{13}) + 6 \cdot (P_4 + P_8) + 7 \cdot (P_3 + P_{10})$
:= $1S_1 + 2S_2 + \ldots + 7S_7$.

• S_i 's: 13-7=6 additions, $\sum_{i=1}^{7} iS_i$: $2\times 6=12$ additions. In total, 18 additions.

If r is small enough:

$$S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n.$$

• All points are sorted into r-1 buckets according to the scalars,

$$S_{n,r} = 1S_1 + 2S_2 + \dots + (r-1)S_{r-1}$$

= $S_{r-1} + (S_{r-1} + S_{r-2}) + \dots + (S_{r-1} + S_{r-2} + \dots + S_1).$

• S_i 's: n-r+1 additions, $\sum_{i=1}^{r-1} iS_i$: $2\times (r-2)$ additions. In total, n+r-3 additions.

• If r is big (over BLS12-381 curve, $r\approx 2^{256}$), every scalar is decomposed into q-ary form,

$$a_{i} = a_{i0} + a_{i1}q + \dots + a_{i,h-1}q^{h-1}.$$

$$S_{n,r} = a_{1}P_{1} + a_{2}P_{2} + \dots + a_{n}P_{n}$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} \cdot (q^{j}P_{i}), 0 \leq a_{ij} < q,$$

$$\vdots = S_{nh,q}.$$

• If r is big (over BLS12-381 curve, $r\approx 2^{256}$), every scalar is decomposed into q-ary form,

$$a_{i} = a_{i0} + a_{i1}q + \dots + a_{i,h-1}q^{h-1}.$$

$$S_{n,r} = a_{1}P_{1} + a_{2}P_{2} + \dots + a_{n}P_{n}$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} \cdot (q^{j}P_{i}), 0 \leq a_{ij} < q,$$

$$\vdots = S_{nh,q}.$$

Precomputation (nh Points):

$${q^{j}P_{i} \mid i=1,2,...,n, \ j=0,1,2,...,h-1},$$

• Using aforementioned method, all points are sorted into q-1 buckets, in total, nh+q-3 additions [BGMW95].

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} q^{j} P_{i}, 0 \le a_{i} \le q$$

• If $a_{ij} = m_{ij}b_{ij}$, $m_{ij} \in M$ (multiplier), $b_{ij} \in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} q^{j} P_{i}, 0 \le a_{i} \le q$$

• If $a_{ij}=m_{ij}b_{ij}$, $m_{ij}\in M$ (multiplier), $b_{ij}\in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

• Precompute (nh|M| points) $\{mq^jP_i\mid 1\leq i\leq n, 0\leq j\leq h-1, m\in M\}$, then it takes $\approx nh+|B|$ additions to compute $S_{n,r}$.

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} q^{j} P_{i}, 0 \le a_{i} \le q$$

• If $a_{ij}=m_{ij}b_{ij}$, $m_{ij}\in M$ (multiplier), $b_{ij}\in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

- Precompute (nh|M| points) $\{mq^jP_i\mid 1\leq i\leq n, 0\leq j\leq h-1, m\in M\}$, then it takes $\approx nh+|B|$ additions to compute $S_{n,r}$.
- Pippenger's bucket method variant 1, $M=\{1\},\ B=\{0,1,2,...,q-1\}, \ \text{it takes} \approx nh+q \ \text{additions}.$

Let us summary the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} q^{j} P_{i}, 0 \le a_{i} \le q$$

• If $a_{ij}=m_{ij}b_{ij}$, $m_{ij}\in M$ (multiplier), $b_{ij}\in B$ (bucket),

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

- Precompute (nh|M| points) $\{mq^jP_i\mid 1\leq i\leq n, 0\leq j\leq h-1, m\in M\}$, then it takes $\approx nh+|B|$ additions to compute $S_{n,r}$.
- Pippenger's bucket method variant 2 (notice that -P can be easily computed given P), $M=\{1,-1\},\ B=\{0,1,2,...,\lceil q/2\rceil\}$, it takes $\approx nh+q/2$ additions.

Question: Construct B, s.t. $|B| \approx q/\ell$? then $S_{n,r}$ takes $\approx hn + q/\ell$ additions.

- (G.W. Luo, G. Gong, C.K. Weng) Let q be a prime s.t. 2 is a primitive element in \mathbb{F}_q , ℓ and h be small positive integers s.t. $2^{\ell-1} < q$ and $q^{h-1} < r \le 2^{\ell-1}q^{h-1}$.
- The multiplier set is

$$M = \{2^i \mid 0 \le i \le \ell - 1\} \cup \{-1\},\$$

- (G.W. Luo, G. Gong, C.K. Weng) Let q be a prime s.t. 2 is a primitive element in \mathbb{F}_q , ℓ and h be small positive integers s.t. $2^{\ell-1} < q$ and $q^{h-1} < r \le 2^{\ell-1}q^{h-1}$.
- The multiplier set is

$$M = \{2^i \mid 0 \le i \le \ell - 1\} \cup \{-1\},\$$

• The corresponding bucket set $(|B| \approx q/\ell)$ is

$$B = \{i \mid 0 \le i \le 2^{\ell-1}\} \cup \{2^{i \cdot \ell} \bmod q \mid 0 \le i \le \lfloor q/\ell \rfloor\}.$$

The idea behind the construction is that

$$\{i \mid 1 \le i < q\} = \{2^i \bmod q \mid 0 \le i \le q - 2\}.$$

- (G.W. Luo, G. Gong, C.K. Weng) Let q be a prime s.t. 2 is a primitive element in \mathbb{F}_q , ℓ and h be small positive integers s.t. $2^{\ell-1} < q$ and $q^{h-1} < r \le 2^{\ell-1}q^{h-1}$.
- The multiplier set is

$$M = \{2^i \mid 0 \le i \le \ell - 1\} \cup \{-1\},\$$

• The corresponding bucket set $(|B| \approx q/\ell)$ is

$$B = \{i \mid 0 \le i \le 2^{\ell-1}\} \cup \{2^{i \cdot \ell} \bmod q \mid 0 \le i \le \lfloor q/\ell \rfloor\}.$$

The idea behind the construction is that

$$\{i \mid 1 \le i < q\} = \{2^i \bmod q \mid 0 \le i \le q - 2\}.$$

 Note: Elements in the bucket set is no longer consecutive, a new accumulation algorithm is needed.

• Result: $S_{n,r}$ over fixed points can be computed using at most

$$\approx nh + q/\ell$$

additions, with the help of ℓnh precomputed points

$$\left\{ mq^{j}P_{i} \mid 1 \leq i \leq n, 0 \leq j \leq h-1, m \in \{1, 2, ..., 2^{\ell-1}\} \right\},\,$$

- where $h = \lceil \log_q r \rceil$.
- For $\ell=12$, the new construction saves 5% to 13% (depends on n) computational cost comparing to the most popular variant of Pippenger's bucket method.

Benchmark over BLS12-381 curve

\overline{n}	ℓ	q	h	B	d	Number of additions
2^{16}	12	443413	14	40715	136	9.584×10^{5}
2^{17}	12	1310269	13	112939	125	1.817×10^{6}
2^{18}	12	1310269	13	112939	125	3.521×10^{6}
2^{19}	12	1310269	13	112939	125	6.929×10^{6}
2^{20}	12	4715027	12	396669	158	1.298×10^{7}
2^{21}	12	4715027	12	396669	158	2.556×10^{7}
2^{22}	12	21919501	11	1830350	173	4.797×10^{7}
2^{23}	12	21919501	11	1830350	173	9.411×10^{7}

Benchmark over BLS12-381 curve

Further optimization

Observation:

$$\{i \mid 1 \le i < q\} = \{2^i \bmod q \mid 0 \le i \le q - 2\}$$
$$= \{2^i \bmod q \mid -(q-3)/2 \le i \le (q-1)/2\}.$$

Bucket set can be further reduced to ($|B| \approx q/(2\ell)$)

$$B = \left\{i \mid 0 \leq i \leq 2^{\ell}\right\} \cup \left\{2^{i \cdot \ell} \bmod q \mid 0 \leq i \leq \lfloor (q-1)/2\ell \rfloor\right\}$$

Further optimization

Observation:

$$\{i \mid 1 \le i < q\} = \{2^i \bmod q \mid 0 \le i \le q - 2\}$$
$$= \{2^i \bmod q \mid -(q-3)/2 \le i \le (q-1)/2\}.$$

Bucket set can be further reduced to ($|B| \approx q/(2\ell)$)

$$B = \left\{i \mid 0 \leq i \leq 2^{\ell}\right\} \cup \left\{2^{i \cdot \ell} \bmod q \mid 0 \leq i \leq \lfloor (q-1)/2\ell \rfloor\right\}$$

GLV endomorphism

$$\lambda P = \lambda \cdot (x, y) = (\xi x, y), \ \lambda^3 = 1 \in \mathbb{F}_r, \xi^3 = 1 \in \mathbb{F}_p,$$

 $\lambda pprox \sqrt{r}$, every scalar $a=a_0+a_1\lambda$, so

$$S_{n,r} = S_{2n,\lambda}.$$

It further reduce the precomputation by a factor of 2.

Conclusion: $S_{n,r}$ over fixed points can be computed using at most

$$\approx 2n\lceil h/2\rceil + q/(2\ell)$$

additions, with the help of $\approx \ell n \lceil h/2 \rceil$ precomputed points

$$\left\{ mq^{j}P_{i} \mid 1 \leq i \leq n, 0 \leq j \leq \lceil h/2 \rceil - 1, m \in \{1, 2, ..., 2^{\ell-1}\} \right\},$$

where $h = \lceil \log_q r \rceil$, and q is a prime selected to minimize the complexity.

Happy Birthday to Prof. Doug Stinson!

Thanks

