Ejercicios de refuerzo

1. Consideramos la homografía

$$f: \mathbb{P}^3 \to \mathbb{P}^3, \ [\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3] \mapsto [3\mathbf{x}_0 - \mathbf{x}_1 + \mathbf{x}_3: \mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_3: \mathbf{x}_0 - \mathbf{x}_1 + 2\mathbf{x}_2 + \mathbf{x}_3: 2\mathbf{x}_3].$$

- (1) Demostrar que el conjunto de puntos fijos de f es un hiperplano H_1 de \mathbb{P}^3 y concluir que f es una elación.
- (2) Calcular todos los hiperplanos invariantes para f distintos de H_1 y demostrar que todos ellos pasan por un punto común P_0 .
 - (3) Calcular todas las rectas invariantes para f.
- (4) Consideramos el espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$. Demostrar que $f|_{\mathbb{A}_1} : \mathbb{A}_1 \to \mathbb{A}_1$ es una traslación y calcular el vector v de dicha traslación.
- (5) Elegid un hiperplano H_2 invariante para f distinto de H_1 . Demostrar que $f|_{\mathbb{A}_2} : \mathbb{A}_2 \to \mathbb{A}_2$ es una transvección y calcular una referencia afín de \mathbb{A}_2 tal que la matriz de $f|_{\mathbb{A}_2}$ tenga tantos coeficientes nulos como sea posible.

2. Consideramos la homografía

$$f:\mathbb{P}^3\to\mathbb{P}^3,\ [\mathtt{x}_0:\mathtt{x}_1:\mathtt{x}_2:\mathtt{x}_3]\mapsto [-\mathtt{x}_0-\mathtt{x}_1+\mathtt{x}_3:-\mathtt{x}_0-\mathtt{x}_1-\mathtt{x}_3:-2\mathtt{x}_2:\mathtt{x}_0-\mathtt{x}_1-\mathtt{x}_3].$$

- (1) Demostrar que el conjunto de puntos fijos de f está formado por un hiperplano H_1 de \mathbb{P}^3 y un punto fijo $P_0 \in \mathbb{P}^3 \setminus H_1$ y concluir que f es una homología.
- (2) Calcular todos los hiperplanos invariantes para f distintos de H_1 y demostrar que todos ellos pasan por el punto P_0 .
 - (3) Calcular todas las rectas invariantes para f.
- (4) Consideramos el espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$. Demostrar que $f|_{\mathbb{A}_1} : \mathbb{A}_1 \to \mathbb{A}_1$ es una homotecia y calcular su centro y su razón.
- (5) Elegid un hiperplano H_2 invariante para f distinto de H_1 . Demostrar que $f|_{\mathbb{A}_2} : \mathbb{A}_2 \to \mathbb{A}_2$ es una dilatación y calcular una referencia afín de \mathbb{A}_2 tal que la matriz de $f|_{\mathbb{A}_2}$ tenga tantos coeficientes nulos como sea posible.

3. Consideramos la homografía

$$f: \mathbb{P}^3 \to \mathbb{P}^3, \ [\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3] \mapsto [2\mathbf{x}_0 + \mathbf{x}_1 + 2\mathbf{x}_3: \mathbf{x}_0 + 2\mathbf{x}_1 - 2\mathbf{x}_3: -3\mathbf{x}_0 - 3\mathbf{x}_1 - 3\mathbf{x}_2: 2\mathbf{x}_0 - 2\mathbf{x}_1 - \mathbf{x}_3].$$

- (1) Demostrar que el conjunto de puntos fijos de f es la unión de dos rectas L_1 y L_2 , que no son coplanarias. Probar que f es una homografía involutiva.
- (2) Calcular todos los hiperplanos invariantes para f y probar que todos ellos contienen a L_1 o a L_2 .
 - (3) Calcular todas las rectas invariantes para f.
- (4) Elegid, para i=1,2, un hiperplano invariante H_i que contiene a L_i y consideramos el espacio afín $\mathbb{A}_i := \mathbb{P}^3 \setminus H_i$. Demostrar que $f|_{\mathbb{A}_i} : \mathbb{A}_i \to \mathbb{A}_i$ es una simetría paralela a una dirección W_i con respecto a una recta S_i para i=1,2. Calcular W_i y S_i para i=1,2. ¿Que relación existe entre las rectas proyectivas L_1 y L_2 y la dirección W_i y la recta S_i para i=1,2?

4. Consideramos la aplicación proyectiva

$$f: \mathbb{P}^3 \longrightarrow \mathbb{P}^3, \ [\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3] \mapsto [\mathbf{x}_0 - 2\mathbf{x}_1: -\mathbf{x}_1: 2\mathbf{x}_0 - 2\mathbf{x}_1 - \mathbf{x}_2: 2\mathbf{x}_0 - 2\mathbf{x}_1 - \mathbf{x}_3]$$

1

- (i) Calcular el conjunto de puntos fijos de f y los planos invariantes para f.
- (ii) Calcular las rectas invariantes para f.

- (iii) Consideramos el hiperplano $H_1: \mathbf{x}_0 \mathbf{x}_1 = 0$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_1$. Demostrar que la restricción $f|_{\mathbb{A}}: \mathbb{A} \to \mathbb{A}$ es una homotecia, calcular su centro y su razón.
- (iv) Consideramos el hiperplano H_2 : $\mathbf{x}_1 = 0$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_2$. Demostrar que la restricción $f|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$ es una simetría, calcular su conjunto de puntos fijos y su dirección.
- 5. Consideramos la aplicación proyectiva

$$f: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3, \; [\mathtt{x}_0: \mathtt{x}_1: \mathtt{x}_2: \mathtt{x}_3] \mapsto [4\mathtt{x}_0 - \mathtt{x}_1 + \mathtt{x}_3: 2\mathtt{x}_0 + \mathtt{x}_1 + 2\mathtt{x}_3: 6\mathtt{x}_0 - 6\mathtt{x}_1 + 3\mathtt{x}_2 + 6\mathtt{x}_3: \mathtt{x}_0 - \mathtt{x}_1 + 4\mathtt{x}_3]$$

- (i) Calcular el conjunto de puntos fijos de f y los planos invariantes para f. Calcular el punto proyectivo $P_0 \in \mathbb{P}^3$ por el que pasan todos los hiperplanos invariantes para f.
- (ii) Calcular las rectas invariantes para f.
- (iii) Consideramos el hiperplano $H_1: \mathbf{x}_0 \mathbf{x}_1 + \mathbf{x}_3 = 0$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_1$. Demostrar que la restricción $f|_{\mathbb{A}}: \mathbb{A} \to \mathbb{A}$ es una traslación y calcular el vector v de dicha traslación.
- (iv) Consideramos el hiperplano H_2 : $\mathbf{x}_0 \mathbf{x}_3 = 0$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_2$. Demostrar que la restricción $f|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$ es una transvección y encontrar una referencia cartesiana \mathcal{R} de \mathbb{A} tal que la matriz de $f|_{\mathbb{A}}$ tenga tantos ceros como sea posible.
- 6. Consideramos la aplicación proyectiva

$$f: \mathbb{P}^3 \longrightarrow \mathbb{P}^3, \ [\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3] \mapsto [-3\mathbf{x}_0 + 2\mathbf{x}_2: \mathbf{x}_0 - \mathbf{x}_1 - \mathbf{x}_2: -4\mathbf{x}_0 + 3\mathbf{x}_2: -\mathbf{x}_0 + \mathbf{x}_2 - \mathbf{x}_3]$$

- (i) Calcular el conjunto de puntos fijos de f y los hiperplanos invariantes para f.
- (ii) Calcular las rectas invariantes para f.
- (iii) Consideramos el hiperplano $H_1: \mathbf{x}_0 \mathbf{x}_2 = 0$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_1$. Demostrar que la rectricción $f|_{\mathbb{A}}: \mathbb{A} \to \mathbb{A}$ es una homotecia, calcular su centro y su razón.
- (iv) Consideramos el hiperplano H_2 : $\mathbf{x}_1 = 0$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_2$. Demostrar que la rectricción $f|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$ es una simetría, calcular su conjunto de puntos fijos y su dirección.
- 7. Sea $\pi : \mathbb{P}^3 \longrightarrow \mathbb{P}^3$ la proyección cónica de centro la recta $L_1 := \{ \mathbf{x}_0 \mathbf{x}_1 = 0, \mathbf{x}_0 + \mathbf{x}_1 = 0 \}$ y base $L_2 := \{ \mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2 = 0, \mathbf{x}_0 \mathbf{x}_1 + \mathbf{x}_2 \mathbf{x}_3 = 0 \}$.
- (i) Calcular la matriz de π con respecto a la referencia proyectiva estándar.
- (ii) Consideramos el hiperplano $H: \mathbf{x}_0 + 2\mathbf{x}_1 = 0$ y el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H$. Demostrar que $\pi(H) \subset H$ y que la restricción $\rho := \pi|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$ es una proyección afín.
- (iii) Sea $\sigma: \mathbb{A} \to \mathbb{A}$ la simetría asociada a ρ y sea $f:=\overline{\sigma}: \mathbb{P}^3 \to \mathbb{P}^3$ la completación proyectiva de σ . Calcular el conjunto de puntos fijos de f y los hiperplanos invariantes para f.
- (iv) Demostrar que para cada punto $P \in \mathbb{P}^3$ existe una recta invariante para f que pasa por P.
- **8.** Sea $\pi: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ la aplicación proyectiva

$$\pi: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3, \ [\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3] \mapsto [3\mathbf{x}_0 - x_2 + \mathbf{x}_3: \mathbf{x}_0 + 2\mathbf{x}_1 - \mathbf{x}_2 + \mathbf{x}_3: \mathbf{x}_0 + \mathbf{x}_2 + \mathbf{x}_3: -2\mathbf{x}_0 + 2\mathbf{x}_2]$$

- (i) Demostrar que π es una proyección cónica y calcular su centro Z y su base X.
- (ii) Demostrar que si H es un hiperplano que contiene a Z entonces $\pi(Z) \subset Z$.
- (iii) Elegid un hiperplano H_1 que contiene a Z y consideramos el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H_1$. Demostrar que la restricción $\rho := \pi|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$ es una proyección afín.
- (iv) Sea $\sigma: \mathbb{A} \to \mathbb{A}$ la simetría asociada a ρ y sea $f:=\overline{\sigma}: \mathbb{P}^3 \to \mathbb{P}^3$ la completación proyectiva de σ . Calcular el conjunto de puntos fijos de f y los hiperplanos invariantes para f.
- (v) Demostrar que para cada punto $P \in \mathbb{P}^3$ existe una recta invariante para f que pasa por P.

- 9. Sea $\pi: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ la aplicación proyectiva $\pi: \mathbb{P}^3 \dashrightarrow \mathbb{P}^3, \ [\mathbf{x}_0: \mathbf{x}_1: \mathbf{x}_2: \mathbf{x}_3] \mapsto [6\mathbf{x}_0 4x_2: 2\mathbf{x}_0 + 4\mathbf{x}_1 + 4\mathbf{x}_3: 3\mathbf{x}_0 \mathbf{x}_2: -3\mathbf{x}_0 + 2\mathbf{x}_2]$
- (i) Demostrar que π es una proyección cónica y calcular su centro Z y su base X.
- (iii) Sea L la recta de ecuaciones $x_0 + x_2 = 0$, $x_0 x_1 = 0$. Calcular $\pi(L)$.
- (ii) Demostrar que $H:=f^{-1}([0:1:0:0])$ es un hiperplano de \mathbb{P}^3 y que $f(H)\subset H$.
- (iv) Consideramos el espacio afín $\mathbb{A} := \mathbb{P}^3 \setminus H$. Demostrar que la restricción $\rho := \pi|_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}$ es una proyección afín.
- (v) Sea $\sigma: \mathbb{A} \to \mathbb{A}$ la simetría asociada a ρ y sea $f:=\overline{\sigma}: \mathbb{P}^3 \to \mathbb{P}^3$ la completación proyectiva de σ . Calcular el conjunto de puntos fijos de f y los hiperplanos invariantes para f.