

 $E_t = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ i \end{bmatrix} = \frac{i}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- 1. Determine the Jones' vector of the transmitted wave, when a linearly polarized beam at 45° is impinging on a HWP with vertical fast axis, followed by a QWP with vertical fast axis, followed by linear polarizer with vertical transmission axis.
- 2. Determine the transmitted intensity with respect to the incident intensity.

Linear polarizer vert. transm. axis vert. fast axis HWP
$$E_t = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 It is transmitted half of the incident light
$$E_t = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad I_t \propto |E_t|^2 = \left| \frac{i}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

The outcoming beam is linearly polarized along the vertical axis.

Reflection

Reflection and refraction

Reflection and refraction

$$n \qquad n_1 \sin \theta_i = n_2 \sin \theta_t$$

Snell's law

Fermat's principle

... or the lifeguard's principle!

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

the path taken between two points, A and B, by a ray of light is the one that can be **traversed in the least time!**

Snell's law

$n_1 \sin \theta_1 = n_2 \sin \theta_2$

$$d = \frac{t}{\cos(\theta_2)}\sin(\theta_1 - \theta_2)$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 = \dots = n_m \sin \theta_m$$

Snell's law

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 = \dots = n_m \sin \theta_m$$

Snell's law

The refractive index increases with density (and decreases with temperature at a given altitude)

Triangular prism

Angular deviation

$$\delta = \theta_i - \theta_t + \theta_e - \theta_i^{int}$$

$$\delta = \theta_i + \theta_\rho - \alpha$$

Minimum deviation

$$\theta_i = \theta_e$$
 $\theta_t = \frac{1}{2}$

$$\delta_{\min} = 2\theta_i - \alpha$$

Snell's law
$$\sin \theta_i = n \sin \theta_t$$

$$\sin\left(\frac{\delta_{\min} + \alpha}{2}\right) = n(\lambda)\sin\left(\frac{\alpha}{2}\right)$$

Triangular prism

Angular deviation

$$\delta = \theta_i - \theta_t + \theta_e - \theta_i^{int}$$

$$\delta = \theta_i + \theta_a - \alpha$$

Minimum deviation

$$\theta_i = \theta_e \qquad \theta_t = \frac{\alpha}{2}$$

$$\delta_{\min} = 2\theta_i - \alpha$$

Snell's law
$$\sin \theta_i = n \sin \theta_t$$

$$\sin\left(\frac{\delta_{\min} + \alpha}{2}\right) = n(\lambda)\sin\left(\frac{\alpha}{2}\right)$$

Rainbow

Optics and Laser Physics T. Cesca

Bright band

H. M. Nussenzveig, 'The Theory of the Rainbow', Scientific American (1977)

Rainbow

Primary arch

Secondary arch

The secondary arch is created when light enters the drop in the bottom part and makes two reflections inside the drop.

$$\Delta = 2\pi + 2\theta_i - 6\theta_t = 2\pi + 2\arcsin\left(\frac{b}{R}\right) - 6\arcsin\left(\frac{b}{nR}\right)$$

$$\Delta_{\text{max}} = 360^{\circ} + 2(72^{\circ}) - 6(45.5^{\circ}) \approx 230^{\circ}$$

Parhelia (sun dogs)

Optics and Laser Physics T. Cesca

Parhelia (sun dogs)

Optics and Laser Physics T. Cesca

TE Polarization (s)

(in German: "senkrecht", perpendicular)

Transverse Electric

Boundary conditions: continuity of tangential components

nns:
$$E_i + E_r = E_t$$

$$-B_i \cos \theta_i + B_r \cos \theta_r = -B_t \cos \theta_t$$

TM Polarization (p)

Transverse Magnetic

Boundary conditions: continuity of tangential components

$$B_i - B_r = B_t$$

$$E_i \cos \theta_i + E_r \cos \theta_r = E_t \cos \theta_t$$

Normal incidence

Optics and

With the notation adopted, TE and TM polarizations are equivalent (indistinguishable) at normal incidence.