철강 업종의 Al활용 사례

2019.10.02

목차

- 철강 산업의 AI 적용 사례
- 철강 산업의 AI 적용 ISSUE
- AI 적용 사례 (1~5)
- 제조업 AI 지표 및 방향 설계
- 결론

철강 산업의 AI 적용 사례

세계 제조업의 미래 등대 공장_다보스포럼

: 4차 산업 혁명 시대에 맞아 최첨단 기술과 인프라를 적극 도입해 제조업의 미래를 제시한 스마트 팩토리를 의미

최첨단 3대 기술 : 연결, 지능, 유연한 자동화

<u>19년 7월 POSCO 등대공장 선정</u>

(독일: BMW,지멘스,보쉬 미국: 존슨앤존스 인도: 타타스틸 중국: 하이얼 등 다수)

<u>포스코가 보유한 철강 분야 국가 핵심 기술</u> (국가핵심기술 : 기술/경제적 가치가 높아 유출 시 중대한 악영향을 끼칠수 있는 기술)

- 인공지능 기반의 초정밀 도금 제어 기술
- 딥러닝 인공지능 기반 고로 조업 자동 제어 기술
- 초고강도 강판 제조를 위한 스마트 수 냉각 기술

철강 산업의 AI 적용 ISSUE

공정	공정 내용	ISSUE
제선	철광석을 녹여 쇳물(용선)을 만듬	고로 용선 온도 예측
제강	쇳물에 탄소등으로 첨가하여 용강을 생성	제강 전로 정련 온도 예측 및 자동화 조업
연주	냉각하여 슬라브 형태의 반제품 생성	슬라브 표면 품질 예측
압연	슬라브를 눌리고, 펴서 코일이나 판을 만듦	냉연 도금 부착량 예측 및 제어
환경/에너지	제품 생산 중 발생하는 분진,가스 등과 소비되는 전력량	부생 가스 발생량 예측/전력 사용량 예측

□ 목적에 맞는 지표를 설정하고 적절한 AI 모델을 선택하는 것이 중요

가공 산업 (자동차 조립 등)	소재 산업 (철강 제조)
■ 부품간 물리적 결합 : BOM→ reversible(가역)	■ 재료의 물리/화학 변화 : Recipe → irreversible
■ 단순/반복 작업 → 표준화 쉬움	■ 실시간 변동 대응: 경험/수식모델 → 표준화 어려움

Recipe/경험활용, 표준화 어려움 → 타 산업 분야 스마트 팩토리, Al 사례 단순 도입 불가

구분	수식(통계)/규칙 기반 모델	AI 기반 모델
설명	■ 학문적 이론이나 현장 전문가의 경험으로 부터 공정 인 자 간의 관계를 수식/규칙 으로 표현	■ 누적된 또는 학습된 데이터로부터 공정 인자 간의 관계 표현
장점	 상관성 도출 용이: 수식표현으로 인해 직관적 해석 쉬움 모델 개발 시간 짧음: 복잡도가 낮아 학습 시간 현장 적용성 용이: 일반 PC 에서도 모델 구동 가능 조업 환경 반영: 조업자의 경험 기반 	■ 우수한 특징 추출 능력: 다양한 데이타간의 연관성 추출 ■ 노이즈에 강함: 수많은 데이터 인자 사용 (노이즈 둔감) ■ 학습 유연성: 기존 수식모델 + 추가적인 지식 모델 ■ 사용 편의성
단점	 개발자/운영자가 이해하는 범위 내에서 성능 향상 가능 노이즈 많거나, 수식 모델이 수시로 변화는 환경에서 사용 불가 	■ 학습 시간 장시간, 대용량 데이터 필요, 문제 발생 시 논 리적 해석 불가

[사례1] QMS 를 활용 공정 및 품질 인자 예측 [1/6]

계측 데이터 중요성

- 계측데이터 신뢰성 하락 時 全부문 영향 有
 - → 신뢰성 확보 및 예지/실시간 정비 必

계측 정비 문제점

- 위험 설치 개소 多
 - → 열화 계측기 현장 점검 難
- 관리 point 多 vs. 담당 인원 少
 - → 예지정비 難 / 돌발 대응성 업무 진행

구분	개소	담당인원
일반 계측기	5K ↑	5名
특수 계측기	90↑	2名

인공지능(AI) 기반의 지능화 정비 시스템 구축

&

공정 데이터 및 계측 데이터 AI 학습

실시간 공정 데이터

실시간 계측 데이터

데이터 수집

AI 학습

학습 데이터 기반 정상 계측값 예측

실시간 공정 데이터

실시간 계측 데이터 예측/측정값 비교→상태확인

[사례1] QMS 를 활용 공정 및 품질 인자 예측 [2/6]

- ✓ AI 적용 시스템 개발 시 단계별 개발 프로세스 도출
- ✓ 기존 시스템(QMS)을 활용하여 AI적용 데모 시스템 구축을 통한 AI 활용 기술 효용성 검증

■ AI 기반 개발 이점 및 프로세스

■ 수시, 신속 모델 변경을 통한 정확한 모델 상시 유지

모델 개발 소스↔ 데이터 설계 및 정제 ↔ 학습 및 평가↔ 모델

▷ 성능 평가

▷ 업무 프로세스 변경

■ 인공 지능 활용 계측 정비 개발 배경

- AI 예측 결과와 조업 경험에 의한 영향 인자 일치성 검증
 - ✓ 가열로 최종 제질 온도 영향 인자 분석 및 예측
 - → 가열로 내부(예열-본열-균열대) 와 소재 온도 데이터 학습
 - ✓ 압연 라인 온도 계측 데이터 기반 재질 온도 예측
 - → RM,IM,PFM설비 온도와 워터박스 유량,압력 데이터 학습
 - ✓ 온도 데이터 대비 품질 변화 통합 연계 예측
 - → 가열로 영향 인자 대비 재품 품질 정보 데이터 연계 예측

공정	수집인자	예측인자
가열로	가열로 내부 공정 온도, 소재 온도 등 10종	가열로 소재 추출 온도
소형 압연	각 공정별 계측 온도 및 워터박스 압력, 유량 등 38종	강종별 레잉 헤드 온도 (스텔모어 초입)
가열로 통합 연계	소재/공정 온도 외 재로 시간 등 26 종	탈탄 및 산화 두께

❖ AI 개발 모델의 핵심은 정확한 모델을 신속 구현하고 수시 개선 하는데 있음

[사례1] QMS 를 활용 공정 및 품질 인자 예측 [3/6]

A09086042003 A09070062001 1165 A09070063003 A09070062003 A09070062002 1171 1175.8436565773209 A09070063004 1174 A09070042003**99.3**% 1184 1185.8865846649608 A09070022003 1186 1187,2373729461833 A09070042004 1187 1191.4152030743226 1188 A09070021004 1189 1188.7362295166795 A09070002002 1198 1197.9661566063835 Avg. of Thickness Decarbon by Billet No. 탈탄 적중율 : 99.5% 🗕 : 예측값 - : 실제값

Billet NO	Product_Key	LAYINGHEAD Outside Material Temp(27_443-B prediction
string	string	bigint 측정온도 double 예측온모
Text	Text	Integer 7 6 L T Decimal 9 T T
A08915021002	SCM435W	866 857.21591108554
A08915002005	SCM435W	869 868.576800382899
A08915043002	SCM435W	866 868.576800382899
A08915023001	SCM435W	866 871.49422035099
A08915021005	SCM435W	868 858.609562771604
A08915002002	SCM435W	867 872.344774255910
A08915021001	SCM435W	865 864.63198115214
A08915023002	SCM435W	868 871.83060923988
A08915002004	SCM435W	870 871.83060923988
A08915043003	SCM435W	870 855.8337458545
A08913024002	SCM435W	873 855.8337458545
A08913024001	SCM435W	875 855.936427915559
A08909061002	AISI51B20	855 855.75530704510
A08909061001	AISI51B20	ㅇㄷ저즈으, 853 855.01250153537
A08909021001	AISI51B20	온도 적중율: 853 855.012501535379
A08909041006	AISI51B20	866 855.973355796513
A08909061006	AISI51B20	90.3%
A08909021005	AISI51B20	858 855.75530704516
A08909001006	AISI51B20	860 855.75530704510
A08909041004	AISI51B20	863 855.75530704510
A08909041005	AISI51B20	864 855.75530704510
A08909001004	AISI51B20	865 855.83374585456
A08909041003	AISI51B20	863 855.75530704510
A08909061003	AISI51B20	861 855.75530704516
A08909001003	AISI51B20	862 855.75530704510
A08909001005	AISI51B20	※ 학습데이터 : 6개월 855.75530704510

❖ 공정 데이터 활용 AI 학습을 통한 설비 고장 예지 및 품질 예측 가능성 확인

[사례1] QMS 를 활용 공정 및 품질 인자 예측 [4/6]

[사례1] QMS 를 활용 공정 및 품질 인자 예측 [5/6]

①설비 특성 분석 및 ②데이터 수집 및 ④결과 비교 및 ③학습 및 예측 설계 전처리 평가 데이터 특성별 그룹화 학습 및 데이터 예측 데이터 수집 및 전처리 : 오류 데이터 및 불필요 항목 정리 : 강종별 공정 온도 데이터 구분 : 학습 방안 및 알고리즘 선택 MB_Result 학습 및 데이터 예측 데이터 특성별 그룹화 MB_Result 공정별 온도 변화 워터박스 상태 레잉헤드온도 데이터 수집 및 전처리 강종 및 MILL 소요시간

[사례1] QMS 를 활용 공정 및 품질 인자 예측 [6/6] ②데이터 수집 및 ①설비 특성 분석 및 설계 ③학습 및 예측 ④결과 비교 및 평가 전처리 소형 압연 온도 및 타겟 인자 학습 모델 공정 데이터 (1~6월) (공정 온도 대비 타겟온도 변화) 소형 압연 온도 및 품질 예측 결과 공정 데이터 입력 공정 데이터 (7월) (강종별 타겟 온도예측) (타겟 온도 데이터 제외) 공정 데이터 입력 비교 평가 (타겟 온도 결과) ※ 실측값 대비 예측값 오차 발생 → 모델 보완 또는 인자 추가 必 ※ 워터박스 조건 및 공정 온도 영향 ★ → 워터박스 압력 및 유량 관리 철저 Zone#1.WZ#2(2///B) Press 01 Zone#1.WZ#1(1WB)_Flow 0 RM_Inside_Material_Temp(17_4... 0% (TM_Outside_Material_Temp(27... 0) Product_Key is SAE1010 09 Zone#2.WZ#1(1WB)_Flow 0* 영향 인자 AI 자동 분석 공정 데이터 학습 강종별 타겟 온도 비교 결과

[사례2] 연주 공정의 면세로 크랙 탐지 기술 [1/2]

장점: 크랙 판정 속도 매우 빠름

단점: 크랙 탐지 영역 제한적

정해진 크랙 패턴만 탐지

AI 기반 이미지 학습 모델 개발

[사례2] 연주 공정의 면세로 크랙 탐지 기술 [2/2]

AI 모델이 크랙 미발생 슬라브 적중율 우위

강종 개발, 설비 특성 등의 여러 환경에 적용 가능하도록 모델 수시 변경 필요

(사례3) AI 기반 도금량 예측 모델제어

(사례4) AI 기반 정비 지원 시스템 (1/2)

정비지원시스템은 Level 2, 3 시스템의 설비정보, 알람, 휴지정보 등을 수집, 이 자료를 기반으로 설비와 알람의 연관성을 매핑한 기준 정보 관리로 설비 고장에 대한 정보를 사전에 감지하여 수리, 조치함으로 설비효율 향상 도모

[사례4] AI 기반 정비 지원 시스템 [2/2]

정비지원시스템은 Level 2, 3 시스템의 설비정보, 알람, 휴지정보 등을 수집,

[사례5 진행 중] 과기부 민간지능서비스확산 과제 수행

- 현장용 인공지능 서비스 운영 플랫폼: Al Program들이 24 x 365 자율적으로 실행될 수 있는 플랫폼

(사례5 진행 중) 과기부 민간지능서비스확산 과제 수행

[사례5 진행 중] 과기부 민간지능서비스확산 과제 수행

4.분석 Tool

[사례5 진행 중] 과기부 민간지능서비스확산 과제 수행

연주 공정 냉각수 제어에 따른 품질 예측

대상 공정

연주 공정

관리포인트

적정 냉각 제어 (과다: 경화로 설비 고장; 과소: 불량)

수집 정보

구간별 냉각 수분량 계측, 에어 스프레이 유량 계측, 출측 온도. 유량 제어용 컨트롤 밸브 개폐 정보 等

설비 정보

설비 상태에 관한 진동계 및 전력부하계 정보

품질 정보

특수강 밀도(또는 경도), Overweight Level 等

기타 정보

제어 공정 로그, 설비 알람 이력 로그 等

AI 활용

적정 냉각수 제어에 대한 최적 Recipe 찾기 (+ 품질 이상 발생 시 원인 분석 및 상황 조치 전파)

● 성공정 미분(-45m) 상한격의(33%↑) 주요 가능인자:
③ 마 학학성분("C") 하한치 → 격의 Heat ("C" 0.13↑)
② 수분사 압력 증대 → 120 bar 조업 유지
③ 탈수/건조 온도 저하 → 80℃ 이상 유지
④ 뉴메틱 설비 trouble → 뉴배
③ Sampler 동작 → Sampler

- 라 리 Recipe

완전 자동화를 위하여는 기계 지능의 진화는 어디까지

되어야 하는가!

▷ CPS 구성

- 원형 공장 구현
- 공통 핵심 기능
- 부품 단위 실증

▷ 인간-기계 협업

- A I 분석 축적
- 담당직원 판정
- 분석 에이전트

▷ 제조 조기 경보

- 실시간 분석
- 이상 상태 감지
- 국제 표준 평가

Theory

평가정보관리

- ⊳MES KPI
- ▷제조조기경보
- best practice

학습정보관리

- ▷강화학습
- belief theory
- ▷인간-기계협업

분석정보관리

- ▷AI (딥-러닝)
- ▷Alarm생애관리
- Abnormal Situation
 Management

기준정보관리

- ▷원형이론
- ▷에이전트
- ▷메타데이타
- ▷시나리오

Standard

: ISO22400

: ISO62264 (ISA95)

: ISO19450

: ANSI/ISA-18.2

: HIL Human-in-the-Loop

: Statistics

: Deep Learning

: IEC61512 (ISA88)

: RAMI4.0

: AutomationML

: IEC81346

: IEC62541 (OPC/UA)

: oneM2M

: MQTT,CoAP,NB-IOT

결 론

- 지속적인 내용 공유와 소통 협업을 통해 IT+OT+사람 간의 공감대 높은 상황 인지 필요
- 데이터 특성과 과거 수행 경험을 고려한 알고리즘 선택
- 명확하게 정의된 문제(OT) 에 대한 새로운 해결방안(IT) 제시
- 문제의 목적과 목표에 맞게 적절한 AI모델 및 평가 지표 선택