PRACA DOMOWA 3

Z poniższych zadań należy wybrać 5 zadań

Zadanie 1. Załóżmy, że f_n są jednostajnie ciągłe na \mathbb{R} oraz $f_n \rightrightarrows f$ na \mathbb{R} . Wykaż, że f jest jednostajnie ciągła na \mathbb{R} .

Zadanie 2. Mówimy, że ciąg $\{f_n\}$ jest ciągiem funkcji jednakowo ciągłych na X, jeśli dla dowolnego $\varepsilon > 0$ istnieje taka $\delta > 0$, że

$$|x - y| < \delta \Rightarrow |f_n(x) - f_n(y)| < \varepsilon$$

dla $x, y \in X$ oraz wszystkich $n \in \mathbb{N}$. Udowodnić, że każdy ciąg funkcyjny funkcji ciągłych jednostajnie zbieżny na zbiorze zwartym jest ciągiem funkcji jednakowo ciągłych na tym zbiorze.

Zadanie 3. Zbadać zbieżność punktową, jednostajną na \mathbb{R} , jednostajną na \mathbb{R}_+ , jednostajną na \mathbb{R}_- oraz zbieżność niemal jednostajną (jednostajną na odcinkach [a,b]) ciągu

$$f_n(x) = e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right).$$

Zadanie 4. Zbadać zbieżność jednostajna i niemal jednostajną oraz ciągłość sumy szeregu

$$\sum_{n=0}^{\infty} |x|^p e^{-nx^2}, \quad p > 0, x \in \mathbb{R}.$$

Zadanie 5. Niech $f_n \in C([0,1])$. Załóżmy, że $\sum_{n=0}^{\infty} f_n(x)$ zbiega jednostajnie na [0,1). Czy szereg $\sum_{n=0}^{\infty} f_n(1)$ musi być zbieżny?

Zadanie 6. Niech $f(x) = \frac{x}{\sqrt{1+x^2}}$, $x \in \mathbb{R}$. Utwórzmy ciąg funkcyjny $\{f_n\}$ określony na \mathbb{R} przyjmując, że $f_1(x) = f(x)$ oraz $f_{n+1}(x) = f(f_n(x))$ dla $n = 1, 2, \ldots$ Wyznaczyć obszar zbieżności i funkcję graniczną ciągu $\{f_n\}$ oraz zbadać charakter jego zbieżności na obszarze zbieżności.