ASSIGNMENT5

deepak

2023-11-30

```
knitr::opts chunk$set(echo = TRUE)
##R MARKDOWN
#loading all the required libraries
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://g
oo.gl/ve3WBa
library(dendextend)
##
## -----
## Welcome to dendextend version 1.17.1
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## Suggestions and bug-reports can be submitted at: https://github.com/talgal
ili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags:
##
    https://stackoverflow.com/questions/tagged/dendextend
##
## To suppress this message use: suppressPackageStartupMessages(library(den
dextend))
## -----
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
      cutree
library(cluster)
library(tidyverse)
## — Attaching core tidyverse packages —
                                                             tidyverse 2.
0.0 -
## √ dplyr 1.1.3 √ readr 2.1.4
```

```
## √ forcats 1.0.0

√ stringr

                                     1.5.0
## √ lubridate 1.9.3

√ tibble

                                     3.2.1
## √ purrr 1.0.2
                        √ tidyr
                                     1.3.0
## - Conflicts -
                                                         tidyverse conflict
s() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all
conflicts to become errors
library(knitr)
#importing the data
cereals = read.csv("C:/Users/durga/Downloads/Cereals.csv")
numericaldata = data.frame(cereals[,4:16])
#omitting all the missing values present in the data
OmitMissing = na.omit(numericaldata)
#normalizing and scaling the data
Normalise = scale(OmitMissing)
#measuring the distance using the euclidian distance and computing the dissim
ilarity matrix
distance = dist(Normalise, method = "euclidian")
#performing hierarchial clustering using complete linkage and representing in
plot
hierarchial clustering = hclust(distance, method = "complete")
plot(hierarchial_clustering)
```

Cluster Dendrogram

distance hclust (*, "complete")

```
#rounding off the decimals
round(hierarchial_clustering$height, 3)
        0.143 0.196 0.575 0.698
                                   0.828
                                          0.904
                                                 1.003
                                                        1.004
                                                              1.201
                                                                     1.203
  [1]
## [11]
        1.254 1.378
                      1.408 1.421
                                   1.454
                                          1.463
                                                 1.474
                                                        1.517
                                                              1.608
                                                                     1.611
## [21]
       1.616 1.625
                      1.650 1.687
                                   1.692
                                          1.720 1.730
                                                        1.795
                                                              1.839
                                                                     1.897
                                                        2.381
## [31]
        1.919 1.982
                      2.015 2.046
                                   2.203
                                          2.224 2.339
                                                              2.394
                                                                     2.522
       2.563 2.574 2.579 2.668
                                                2.776
## [41]
                                   2.682
                                          2.734
                                                        2.787
                                                              3.229
                                                                     3.236
## [51]
        3.385 3.451
                      3.510 3.535
                                   3.717
                                          3.866 3.957
                                                        4.005 4.031
                                                                     4.168
        4.456 4.779 4.839
                             5.342 5.488 5.920 6.169
## [61]
                                                        6.669 6.731 7.650
## [71] 7.964 9.979 10.984
#performing clustering using AGNES
HCsingle = agnes(Normalise, method = "single")
HCcomplete = agnes(Normalise, method = "complete")
HCaverage = agnes(Normalise, method = "average")
HCward = agnes(Normalise, method = "ward")
#comparing the agglomerative cosfficients of single , complete, average, ward
print(HCsingle$ac)
## [1] 0.6067859
print(HCcomplete$ac)
## [1] 0.8353712
print(HCaverage$ac)
```

```
## [1] 0.7766075

print(HCward$ac)

## [1] 0.9046042

#according to the above values, ward method is the best with the value of 0.9
04.plotting ward using agnes and the dendogram

#determining optimal clusters
#using the ward method for hierarchial clustering
HC1 <- hclust(distance, method = "ward.D2" )
plot(HC1,cex=0.6)
rect.hclust(HCward,k=5, border=2:10)</pre>
```

Cluster Dendrogram

distance hclust (*, "ward.D2")

```
#from the above results i.e ward method graphs, th4e k value is considered as
5
#plotting agnes using the ward method
subgrp = cutree(HC1,k=5)
table(subgrp)

## subgrp
## 1 2 3 4 5
## 3 20 21 21 9

cereals <- as.data.frame(cbind(Normalise,subgrp))</pre>
```

#visualising the results on scatterplot fviz_cluster(list(data = Normalise, cluster = subgrp))

Cluster plot

#selecting the best breakfast cereal cluster with high protein, fibre and low in sugar and sodium.

```
#choosing the healthy cereal cluster
```

Newdatacereals = numericaldata

Newdatacereals_omit = na.omit(Newdatacereals)

Clust = cbind(Newdatacereals_omit, subgrp)

Clust[Clust\$subgrp==1,] calories protein fat sodium fiber carbo sugars potass vitamins shelf wei ## ght ## 1 70 1 130 10 6 280 25 3 1 ## 3 70 1 260 9 5 320 25 3 1 ## 4 50 140 14 8 0 330 25 3 1 rating subgrp ## cups ## 1 0.33 68.40297 1 ## 3 0.33 59.42551 1 ## 4 0.50 93.70491 1 Clust[Clust\$subgrp==2,]

##	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	we
ight ## 2	120	3	5	15	2.0	8.0	8	135	0	3	
1.00 ## 8	130	3	2	210	2.0	18.0	8	100	25	3	
1.33 ## 14	110	3	2	140	2.0	13.0	7	105	25	3	
1.00											
## 20 1.00	110	3	3	140	4.0	10.0	7	160	25	3	
## 23 1.00	100	2	1	140	2.0	11.0	10	120	25	3	
## 28	120	3	2	160	5.0	12.0	10	200	25	3	
1.25 ## 29	120	3	0	240	5.0	14.0	12	190	25	3	
1.33 ## 35	120	3	3	75	3.0	13.0	4	100	25	3	
1.00	120	5	5	/5	3.0	13.0	4	100	25	5	
## 40 1.30	140	3	1	170	2.0	20.0	9	95	100	3	
## 42	100	4	2	150	2.0	12.0	6	95	25	2	
1.00 ## 45	150	4	3	95	3.0	16.0	11	170	25	3	
1.00											
## 46 1.00	150	4	3	150	3.0	16.0	11	170	25	3	
## 47	160	3	2	150	3.0	17.0	13	160	25	3	
1.50 ## 50	140	3	2	220	3.0	21.0	7	130	25	3	
1.33 ## 52	130	3	2	170	1.5	13.5	10	120	25	3	
1.25											
## 53 1.33	120	3	1	200	6.0	11.0	14	260	25	3	
## 57 1.00	100	4	1	135	2.0	14.0	6	110	25	3	
## 59	120	3	1	210	5.0	14.0	12	240	25	2	
1.33 ## 60	100	3	2	140	2.5	10.5	8	140	25	3	
1.00 ## 71	140	3	1	190	4.0	15.0	14	230	100	3	
1.50	140	5	1	130	4.0	13.0	14	230	100	3	
##	cups ra		ogrp 2								
	0.75 37.6		2								
	0.50 40.4		2								
	0.50 40.4 0.75 36.1		2								
	0.67 40.9		2								
## 29	0.67 41.6	91549	2								

```
## 35 0.33 45.81172
                           2
                           2
## 40 0.75 36.47151
## 42 0.67 45.32807
                           2
                           2
## 45 1.00 37.13686
## 46 1.00 34.13976
                           2
## 47 0.67 30.31335
                           2
## 50 0.67 40.69232
                           2
## 52 0.50 30.45084
                           2
## 53 0.67 37.84059
                           2
## 57 0.50 49.51187
                           2
## 59 0.75 39.25920
                           2
## 60 0.50 39.70340
                           2
## 71 1.00 28.59278
                           2
Clust[Clust$subgrp==3,]
      calories protein fat sodium fiber carbo sugars potass vitamins shelf we
##
ight
## 6
                           2
                                180
                                       1.5
                                          10.5
                                                      10
                                                             70
                                                                       25
                                                                               1
           110
                      2
1
## 7
            110
                      2
                           0
                                125
                                       1.0
                                            11.0
                                                      14
                                                             30
                                                                       25
                                                                               2
1
## 11
            120
                      1
                           2
                                220
                                      0.0
                                            12.0
                                                      12
                                                             35
                                                                       25
                                                                               2
1
                                                       9
                                                             45
                                                                       25
                                                                               2
## 13
            120
                      1
                           3
                                210
                                      0.0
                                           13.0
1
## 15
            110
                      1
                           1
                                180
                                       0.0
                                           12.0
                                                      13
                                                             55
                                                                       25
                                                                               2
1
                                                                               2
## 18
            110
                      1
                           0
                                 90
                                       1.0
                                            13.0
                                                      12
                                                             20
                                                                       25
1
## 19
                      1
                           1
                                180
                                                      13
                                                             65
                                                                       25
                                                                               2
            110
                                       0.0
                                           12.0
1
                                                                               2
## 25
                      2
                           1
                                125
                                                      13
                                                                       25
            110
                                       1.0
                                           11.0
                                                             30
1
## 26
            110
                      1
                           0
                                200
                                       1.0
                                           14.0
                                                      11
                                                             25
                                                                       25
                                                                               1
1
## 30
            110
                      1
                           1
                                135
                                      0.0
                                            13.0
                                                      12
                                                             25
                                                                       25
                                                                               2
1
## 31
            100
                      2
                           0
                                 45
                                       0.0
                                            11.0
                                                      15
                                                             40
                                                                       25
                                                                               1
1
                           1
                                                       9
                                                             45
                                                                       25
                                                                               2
## 32
            110
                      1
                                280
                                       0.0
                                            15.0
1
## 36
            120
                      1
                           2
                                220
                                       1.0
                                           12.0
                                                      11
                                                             45
                                                                       25
                                                                               2
1
## 37
            110
                      3
                           1
                                250
                                       1.5 11.5
                                                      10
                                                             90
                                                                       25
                                                                               1
1
                                                                               1
## 38
            110
                      1
                           0
                                180
                                      0.0
                                           14.0
                                                      11
                                                             35
                                                                       25
1
```

43

0.0 12.0

## 1	48	100	2	1	220	2.0	15.0	6	90	25	1
## 1	49	120	2	1	190	0.0	15.0	9	40	25	2
## 1	67	110	2	1	70	1.0	9.0	15	40	25	2
## 1	74	110	1	1	140	0.0	13.0	12	25	25	2
## 1	77	110	2	1	200	1.0	16.0	8	60	25	1
##	CIII	os rating	cuh	ann							
##		75 29.50954		3 3							
				3							
##		33.17409									
		75 18.04285		3							
		75 19.82357		3							
		00 22.73645		3							
		00 35.78279		3							
		00 22.39651		3							
		00 32.20758		3							
##	26 0.	75 31.43597		3							
##	30 0.	75 28.02576		3							
##	31 0.	88 35.25244		3							
##	32 0.	75 23.80404		3							
##	36 1.	00 21.87129		3							
##	37 0.	75 31.07222		3							
##	38 1.	33 28.74241		3							
##	43 1.	00 26.73451		3							
		00 40.10596		3							
		57 29.92429		3							
		75 31.23005		3							
		00 27.75330		3							
		75 36.18756		3							
	,, o.	75 50.10750									
Clu	ust[Cl	ust\$subgrp=	=4 ,]								
##	ca	lories prot	ein -	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf we
igh	nt										
##	9	90	2	1	200	4	15	6	125	25	1
1											
##	10	90	3	0	210	5	13	5	190	25	3
1											
##	12	110	6	2	290	2	17	1	105	25	1
1											
##	16	110	2	0	280	0	22	3	25	25	1
1			_	-						_5	
##	17	100	2	0	290	1	21	2	35	25	1
1	_,	100	_	J	250		21		,,,	23	-
##	22	110	2	0	220	1	21	3	30	25	3
1		110	_	U	220		21	,	50	25	5
##	24	100	2	0	190	1	18	5	80	25	3
##	4	100	_	Ø	130	1	10	3	00	25	3

1 ##	33	100	3	1	140	3	15	5	85	25	3
1 ##	34	110	3	0	170	3	17	3	90	25	3
1 ##	39	110	2	1	170	1	17	6	60	100	3
1 ##	41	110	2	1	260	0	21	3	40	25	2
1		90	3	0	170	3	18	2	90	25	3
1 ##		100	3	0	320	1	20	3	45	100	3
1											
## 1		110	1	0	240	0	23	2	30	25	1
## 1		110	2	0	290	0	22	3	35	25	1
## 1	68	110	6	0	230	1	16	3	55	25	1
## 1	70	110	2	1	200	0	21	3	35	100	3
## 1	72	100	3	1	200	3	16	3	110	100	3
- ## 1	73	110	2	1	250	0	21	3	60	25	3
## 1	75	100	3	1	230	3	17	3	115	25	1
##	76	100	3	1	200	3	17	3	110	25	1
1											
##	•	rating	subgi	rp							
##	9 0.67	49.12025		4							
##	10 0.67	53.31381		4							
##	12 1.25	50.76500		4							
		41.44502		4							
		45.86332		4							
		46.89564		4							
		44.33086		4							
##	33 0.88	52.07690		4							
##	34 0.25	53.37101		4							
##	39 1.00	36.52368		4							
		39.24111		4							
		59.64284		4							
		41.50354		4							
		41.99893									
				4							
		40.56016		4							
		53.13132		4							
##	70 1.00	38.83975		4							
##	72 1.00	46.65884		4							
##	73 0.75	39.10617		4							

```
## 75 0.67 49.78744
                          4
## 76 1.00 51.59219
                          4
Clust[Clust$subgrp==5,]
##
      calories protein fat sodium fiber carbo sugars potass vitamins shelf we
ight
## 27
                      3
                                 0
                                        3
                                                     7
                                                                     25
           100
                                             14
                                                           100
                                                                             2
1.00
## 44
           100
                      4
                          1
                                 0
                                                     3
                                                            95
                                                                     25
                                                                             2
                                        0
                                             16
1.00
## 55
            50
                      1
                          0
                                 0
                                        0
                                             13
                                                     0
                                                            15
                                                                      0
                                                                             3
0.50
                      2
                          0
                                 0
                                                     0
                                                                      0
                                                                             3
## 56
            50
                                        1
                                             10
                                                            50
0.50
## 61
            90
                      2
                          0
                                 0
                                        2
                                             15
                                                     6
                                                           110
                                                                     25
                                                                             3
1.00
            80
                      2
                          0
                                 0
                                        3
                                                     0
                                                            95
                                                                      0
                                                                             1
## 64
                                             16
0.83
## 65
            90
                      3
                          0
                                 0
                                        4
                                             19
                                                     0
                                                           140
                                                                      0
                                                                             1
1.00
                          0
                                 0
## 66
            90
                      3
                                        3
                                             20
                                                     0
                                                           120
                                                                      0
                                                                             1
1.00
                      2
                                                     5
                                                                             2
            90
                          0
                                        3
                                                            90
                                                                     25
## 69
                                15
                                             15
1.00
##
      cups
           rating subgrp
## 27 0.80 58.34514
                          5
## 44 1.00 54.85092
                          5
## 55 1.00 60.75611
                          5
## 56 1.00 63.00565
                          5
## 61 0.50 55.33314
                          5
## 64 1.00 68.23588
                          5
## 65 0.67 74.47295
## 66 0.67 72.80179
                          5
## 69 1.00 59.36399
                          5
#here we calculate the mean rating in order determine the healthy cluster cer
mean(Clust[Clust$subgrp==1,"rating"])
## [1] 73.84446
mean(Clust[Clust$subgrp==2,"rating"])
## [1] 38.26161
mean(Clust[Clust$subgrp==3,"rating"])
## [1] 28.84825
mean(Clust[Clust$subgrp==4,"rating"])
```

```
## [1] 46.46513
mean(Clust[Clust$subgrp==5,"rating"])
## [1] 63.0184
#From the above results it is clearly evident that mean rating is highest for subgroup 1.
#so, it is recommended to choose subgrp 1 as the healthy diet cluster.
```