Data Provided: None

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Autumn Semester 2009-2010 (2 hours)

Integrated Circuit Technology 6

Answer **THREE** questions. **No marks will be awarded for a solution to a fourth question.** Solutions will be considered in the order that they are presented in the answer book. Trial answers will be ignored if they are clearly crossed out. **The number given after each section of a question indicates the relative weighting of that section.**

1.	a.	Define sheet resistance. Describe diagrammatically, two methods to measure the sheet resistance of a material.	(4)
	b	Given a piece of material, explain how you would determine whether it is a direct or indirect bandgap semiconductor. Use diagrams as necessary	(3)
	c	Explain with the aid of a diagram what is meant by Hall effect.	(2)
	d	Name 4 crystal lattice systems.	(2)
	e	Explain how the Miller index of a lattice plane in crystalline silicon is defined.	(3)
	f	What is a Burgers vector? Explain with the help of a diagram the method to determine the Burgers vector?	(3)
	g	Name 4 unwanted transition element impurities in Si: What deleterious effect do they have? What is the name of the technique used to remove unwanted impurities of this type?	(3)
2.	a.	Show by means of diagrams three generic designs of a CVD chamber. In a CVD reactor, what is a susceptor and what is it made of and why?	(4)
	b	Describe the operation of CVD and MOCVD reactors. What factors affect the growth characteristics in both cases ?	(10)
	c	What are the requirements of reagent materials in a MOCVD reactor?	(4)
	d	Name common gaseous sources of Arsenic, phosphorus, boron, gallium, indium and aluminium.	(2)
3.	a.	What is a hetero-epitaxial pseudomorphic layer? Give diagrams of two such layers with built-in strain opposite to one another. How and under what conditions does such a pseudomorphic layer relax: consider separately the low misfit and high misfit regimes?	(10)
	b	A silicon ingot is grown by the Czochralski technique. The ingot is doped with	

Arsenic and the initial concentration of impurity in the melt is 0.01%. If the segregation coefficient of Arsenic in Si is 0.3, what is the initial concentration of Arsenic in the grown ingot?

If C_0 is the initial concentration of the impurity in the melt, C_s is the final concentration of the impurity in the crystal, x is the fraction of melt solidified and k_0 is the impurity segregation coefficient, then, given that

$$C_S = k_0 C_0 (1 - x)^{k_0 - 1}$$

e

- Calculate the fraction of the melt solidified when the concentration of Arsenic in the ingot has risen by a factor of 30 from its initial value. (5)
- c Describe two ways by which an oxide can be implemented on a silicon wafer?

 Name one key feature of each method.

 (5)
- 4. a Name main operating advantages and disadvantages of circuits produced using CMOS and bipolar technology. (3)
 - In a CMOS process flow what step defines the Active area? What is the role of
 (a) LOCOS (b) Field threshold adjust implant
 (3)
 - c Name two methods of etching insulating films? What are the etch characteristics of each method?
 - d Explain what is meant by a salicide process? Name typical silicides used in modern day CMOS processes?(4)

CVD is used to grow a silicon epitaxial layer upon a silicon substrate at a

temperature of 1000 °C. If the layer growth rate is $0.5 \mu m/min$ and the substrate activate is heavily doped with boron, deduce by calculation whether autodoping of the layer would be expected to be a problem? You can assume that the activation energy for boron diffusion in silicon (E_a) is 3.46 eV, the boron diffusion pre-exponential factor (D₀) is $0.76 \text{ cm}^2/\text{s}$ and Boltzmann's constant (k) is $8.62 \times 10^{-5} \text{ eV/K}$.

EEE6042 2 END OF PAPER