MATH 15910 - Problem Set 5

Sohini Banerjee

November 4, 2023

1

1.1

Let $a=\frac{p}{q},\ b=\frac{r}{s}$, and $c=\frac{x}{y}$ where $p\epsilon\mathbb{Z},\ q\epsilon\mathbb{Z},\ r\epsilon\mathbb{Z},\ s\epsilon\mathbb{Z},\ x\epsilon\mathbb{Z},\ and\ y\epsilon\mathbb{Z}.$ By definition, we know that $\frac{p}{q}<\frac{r}{s}$ if and only if $\frac{r}{s}-\frac{p}{q}>0$. Since a< b, we know that $\frac{r}{s}-\frac{p}{q}>0$ holds. This means $\frac{r}{s}-\frac{p}{q}+0>0$ (identity element for addition). So, $\frac{r}{s}-\frac{p}{q}+(c+(-c))>0$ (additive inverse for addition) or $\frac{r}{s}-\frac{p}{q}+(\frac{x}{y}+(-\frac{x}{y}))>0$. This means $(\frac{r}{s}+\frac{x}{y})-(\frac{p}{q}+\frac{x}{y})>0$ (associativity for addition and distributivity), or (b+c)-(a+c)>0. Thus, by definition, a+c< b+c.

1.2

Let $a=\frac{p}{q},\ b=\frac{r}{s},$ and $c=\frac{x}{y}$ where $p\epsilon\mathbb{Z},\ q\epsilon\mathbb{Z},\ r\epsilon\mathbb{Z},\ s\epsilon\mathbb{Z},\ x\epsilon\mathbb{Z},$ and $y\epsilon\mathbb{Z}.$ Also, assume c>0. By definition, we know that $\frac{p}{q}<\frac{r}{s}$ if and only if $\frac{r}{s}-\frac{p}{q}>0$. Since a< b, we know that $\frac{r}{s}-\frac{p}{q}>0$ holds. Rational numbers are closed under addition, so $\frac{r}{s}-\frac{p}{q}\epsilon\mathbb{Q}.$ Let us denote $\frac{r}{s}-\frac{p}{q}$ as $\frac{m}{n}.$ Since $\frac{m}{n}>0$, we know that $m\cdot n>0$ (by proposition shown in class) because $\frac{r}{s}-\frac{p}{q}>0.$ Also, since c>0, $x\cdot y>0.$ Thus, $\frac{x}{y}\cdot\frac{m}{n}=\frac{x\cdot m}{y\cdot n}>0$ because $(x\cdot m)\cdot (y\cdot n)=(x\cdot y)\cdot (m\cdot n)>0$ (associativity of multiplication). With $\frac{r}{s}-\frac{p}{q}>0$ and $\frac{x}{y}>0$, we know that $\frac{x}{y}\cdot (\frac{r}{s}-\frac{p}{q})>\frac{x}{y}\cdot 0$, or $\frac{x}{y}\cdot (\frac{r}{s}-\frac{p}{q})>0$ (by proposition shown in class). This means $\frac{x}{y}\cdot \frac{r}{s}-\frac{x}{y}\cdot \frac{p}{q}>0$ (distributivity). This means $c\cdot b-c\cdot a>0.$ Rational numbers are closed under multiplication, so $c\cdot b\epsilon\mathbb{Q}$ and $c\cdot a\epsilon\mathbb{Q}.$ Also, $c\cdot a=a\cdot c$ and $c\cdot b=b\cdot c$ (commutativity of multiplication). Thus, by definition, $c\cdot b-c\cdot a>0$ means $a\cdot c< b\cdot c.$

$\mathbf{2}$

We will prove this using contradiction. Since $a \in \mathbb{Q}$, we can write $a = \frac{p}{q}$ where $p \in \mathbb{Z}$ and $q \in \mathbb{Z}$ such that p and q are co-prime. This means $a^2 = (\frac{p}{q})^2 = \frac{p^2}{q^2} = 5$. Rewriting this, we get $p^2 = 5q^2$. So, $5 \mid p^2$, or $5 \mid (p \cdot p)$. Since 5 is prime and 5 divides $p \cdot p$, we know $5 \mid p$ (by theorem in problem). Thus, we can

write p = 5n where $n\epsilon\mathbb{Z}$. Substituting into $p^2 = 5q^2$, we get $(5n)^2 = 5q^2$, or $25n^2 = 5q^2$. Simplifying, we get $5n^2 = q^2$. Since $n\epsilon\mathbb{Z}$, we know that then $5 \mid q^2$ or $5 \mid q$ (by theorem in problem). So, we have that $5 \mid p$ and $5 \mid q$, but this is a contradiction because we assumed that p and q are co-prime, so they should have no common factors other than 1. We have shown that the proposition is true by contradiction. Thus, there does not exist an $a\epsilon\mathbb{Q}$ such that $a^2 = 5$.

3

We need to show that l is the greatest lower bound for A if and only if for any $\epsilon > 0$, there exists $a\epsilon A$ such that $0 \le a - l < \epsilon$. We need to demonstrate both directions of the statement.

- First, we need to show that if l is the greatest lower bound for A, then for any $\epsilon > 0$, there exists $a\epsilon A$ such that $0 \le a l < \epsilon$. Assume that there exists $\epsilon' > 0$ such that no $a\epsilon A$ permits $0 \le a l < \epsilon'$ to be true. This means for any $a\epsilon A$, $a l \ge \epsilon'$, or that $l + \epsilon' \le a$ for any $a\epsilon A$. So, $l + \epsilon'$ is a lower bound for A, but we also know that $l + \epsilon' > l$, so l is not the greatest lower bound, proving the contrapositive.
- Next, we need to show that if for any $\epsilon > 0$, there exists $a\epsilon A$ such that $0 \le a l < \epsilon$, then l is the greatest lower bound for A. Assume that l is not the greatest lower bound of A. Then, let l' be the greatest lower bound for A, so l' > l. This means l' l > 0, so there exists $a\epsilon A$ such that $0 \le a l < l' l$. From a l < l' l, we get that l' > a, which means l' cannot be the lower bound of A, which is a contradiction to what we assumed.

By proving both directions of the statement, we can conclude that l is the greatest lower bound for A if and only if for any $\epsilon > 0$, there exists $a\epsilon A$ such that $0 \le a - l < \epsilon$.

4

We need to show this in two steps: first, $sup(C) \leq sup(A) + sup(B)$ and that $sup(A) + sup(B) \leq sup(C)$, which together would imply that sup(C) = sup(A) + sup(B).

- For the first condition, we know that for all $a\epsilon A$, $a \leq sup(A)$ and for all $b\epsilon B$, $b \leq sup(B)$ by definition of supremum. Adding these inequalities together, we get that $a+b \leq sup(A) + sup(B)$. Since a+b is an arbitrary element in C, we know that sup(A) + sup(B) is an upper bound for C. Thus, we can conclude that $sup(C) \leq sup(A) + sup(B)$.
- For the second condition, let $a \in A$ be an arbitrary element. We know for all $b \in B$ that $a + b \leq sup(A + B)$. This is equivalent to $a \leq sup(A + B) b$.

Since a is an arbitrary element of A, sup(A+B)-b is an upper bound for A, or that $sup(A) \leq sup(A+B)-b$. Rearranging this, we get that $b \leq sup(A+B)-sup(A)$. Since b is an arbitrary element of B, we know that sup(A+B)-sup(A) is an upper bound for B. This means $sup(B) \leq sup(A+B)-sup(A)$, or that $sup(A)+sup(B) \leq sup(A+B)$, which means $sup(A)+sup(B) \leq sup(C)$.

So, we know that $sup(C) \leq sup(A) + sup(B)$ and $sup(A) + sup(B) \leq sup(C)$, which means sup(C) = sup(A) + sup(B).

5

5.1

Assume for contradiction that a>b. By definition of order relation, this means a-b>0. We know that since $\frac{1}{2}>0$, $\frac{1}{2}\cdot(a-b)>\frac{1}{2}\cdot0$ (multiplication property for order), so $\frac{1}{2}\cdot(a-b)>0$ (by proposition shown in class), or that $\frac{a-b}{2}>0$. Since the statement applies to all $\epsilon>0$, let $\epsilon=\frac{a-b}{2}$. Then, $a\leq b+\epsilon$, so $a\leq b+\frac{a-b}{2}$. This means $2a\leq 2b+a-b$ (multiplication property of order), or that $a\leq b$, but this is a contradiction because we assumed that a>b. Thus, if for any $\epsilon>0$, $a\leq b+\epsilon$, then $a\leq b$.

5.2

We know that any $b \in B$ is an upper bound for A because for all $a \in A$, every $b \in B$ follows that $a \leq b$. If an element $b \in B$ is an upper bound for A, we can say that $sup(A) \leq b$. We know that $sup(A) \leq b$ for all $b \in B$, which means that sup(A) is a lower bound for B. This is equivalent to noting that $sup(A) \leq inf(B)$. Thus, if $a \leq b$ for all $a \in A$ and $b \in B$, then $sup(A) \leq inf(B)$.