

Ensemble learning

Ensemble learning

- Combining multiple models
 - The basic idea
- Bagging
 - Bias-variance decomposition, bagging with costs
- Randomization
 - Random forests, rotation forests
- Boosting
 - AdaBoost, the power of boosting

..........

- Additive regression
 - Numeric prediction, additive logistic regression
- Interpretable ensembles
 - Option trees, alternating decision trees, logistic model trees
- Stacking

Combining multiple models

- Basic idea: build different "experts", let them vote
- Advantage:
 - often improves predictive performance
- Disadvantage:
 - usually produces output that is very hard to analyze
 - but: there are approaches that aim to produce a single comprehensible structure

Snapshot Learning

- Useful with deep learned models when you do not have enough data for a validation set
 - Also, if you have lots of data and want to use multiple models without taking the time to train each model (e.g. if they take a week to train)
- Take a deep learned model trained for N epochs. Choose to save the weights at every g epochs from start_epoch. This will enable you to have k=(N – start_epoch)/g deep neural network classifiers whose predictions can be voted
- Original paper shows Cyclic learning rate works best for snapshot learning. Like all else, depends on data

Snapshot Learning

- Why would this work? Assuming you have reasonable models for each of the k weight sets, they likely make different errors. A vote may get problem examples correct
 - Consider that the models may struggle to get the boundary correct for some examples (training) that will cause the same issue in testing
- How do you choose k and which epochs should their weights reflect?
 - If you have validation data, you can choose every g epochs starting on say epoch; based on a point where the validation loss is not wildly changing
 - No validation data, when train data loss has stabilized a little

Bagging

- Combining predictions by voting/averaging
 - Each model receives equal weight
- "Idealized" version:
 - Sample several training sets of size n
 (instead of just having one training set of size n)
 - Build a classifier for each training set
 - Combine the classifiers' predictions
- Learning scheme is unstable -> almost always improves performance
 - Unstable learner: small change in training data can make big change in model (e.g., when learning decision trees)

Bias-variance decomposition

- The bias-variance decomposition is used to analyze how much restriction to a single training set affects performance
- Assume we have the idealized ensemble classifier discussed on the previous slide
- We can decompose the expected error of any individual ensemble member as follows:
 - Bias = expected error of the ensemble classifier on new data
 - Variance = component of the expected error due to the particular training set being used to built our classifier
 - Total expected error = bias + variance
- Note (A): we assume noise inherent in the data is part of the bias component as it cannot normally be measured
- Note (B): multiple versions of this decomposition exist for zero-one loss but the basic idea is always the same

More on bagging

- Idealized version of bagging improves performance because it eliminates or reduces the variance component of the error
 - Note: in some pathological hypothetical situations the overall error may increase when zero-one loss is used (i.e., there is negative "variance")
 - The bias-variance decomposition was originally only known for numeric prediction with squared error where the error never increases
- Problem: we only have one dataset!
- Solution: generate new datasets of size n by sampling from the original dataset with replacement
- This is what bagging does and even though the datasets are all dependent, bagging often reduces variance, and, thus, error
 - Can be applied to numeric prediction and classification

- Can help a lot if the data is noisy
- Usually, the more classifiers the better, with diminishing returns

Bagging classifiers

Model generation

```
Let n be the number of instances in the training data
For each of t iterations:
Sample n instances from training set
(with replacement)
Apply learning algorithm to the sample
Store resulting model
```

Classification

.........

```
For each of the t models:
Predict class of instance using model
Return class that is predicted most often
```

Bagging with costs

- Bagging unpruned decision trees is known to produce good probability estimates
 - Where, instead of voting, the individual classifiers' probability estimates are averaged
 - Note: this can also improve the zero-one loss
- Can use this with the minimum-expected cost approach for learning problems with costs
 - Note that the minimum-expected cost approach requires accurate probabilities to work well
- Problem: ensemble classifier is not interpretable

 MetaCost re-labels the training data using bagging with costs and then builds a single tree from this data

Randomization and random forests

- Can randomize learning algorithm instead of input
- Some algorithms already have a random component: e.g., initial weights in a neural net
- Most algorithms can be randomized, e.g., greedy algorithms:
 - Pick N options at random from the full set of options, then choose the best of those N choices
 - E.g.: attribute selection in decision trees
- More generally applicable than bagging: e.g., we can use random subsets (of attributes) in a nearest-neighbor classifier
 - Bagging does not work with stable classifiers such as nearest neighbor classifiers
- Can be combined with bagging
 - When using decision trees, this yields the heavily used random forests method for building ensemble classifiers

Random Forests

- Use bagging for each tree
- Randomly select k < total features/attributes
 - Select best feature for the random subset of k features
- No pruning
- Build 200-1000 trees. Vote their output to obtain a class prediction

Rotation forests: motivation

- Bagging creates ensembles of accurate classifiers with relatively low diversity
 - Bootstrap sampling creates training sets with a distribution that resembles the original data
- Randomness in the learning algorithm increases diversity but sacrifices accuracy of individual ensemble members
 - This is why random forests normally require hundreds or thousands of ensemble members to achieve their best performance
- So-called rotation forests have the goal of creating accurate and diverse ensemble members

Rotation forests

- Combine random attribute sets, bagging and principal components to generate an ensemble of decision trees
- An iteration of the algorithm for creating rotation forests, building k ensemble members, involves
 - Randomly dividing the input attributes into k disjoint subsets
 - Applying PCA to each of the k subsets in turn
 - Learning a decision tree from the k sets of PCA directions
- Further increases in diversity can be achieved by creating a bootstrap sample in each iteration before applying PCA
- Performance of this method compares favorably to that of random forests on many practical datasets

Boosting

- Bagging can easily be parallelized because ensemble members are created independently
- Boosting is an alternative approach
- Also uses voting/averaging
- But: weights models according to performance
- Iterative: new models are influenced by performance of previously built ones
 - Encourage new model to become an "expert" for instances misclassified by earlier models
 - Intuitive justification: models should be experts that complement each other
- Many variants of boosting exist, we cover a couple

Boosting using AdaBoost.M1

Model generation

```
Assign equal weight to each training instance
For t iterations:
Apply learning algorithm to weighted dataset,
store resulting model
Compute model's error e on weighted dataset
If e = 0 or e ≥ 0.5:
   Terminate model generation
For each instance in dataset:
   If classified correctly by model:
      Multiply instance's weight by e/(1-e)
Normalize weight of all instances
```

Classification

```
Assign weight = 0 to all classes

For each of the t (or less) models:

For the class this model predicts

add -log e/(1-e) to this class's weight

Return class with highest weight
```

Comments on AdaBoost.M1

- Boosting needs weights ... but
- can adapt learning algorithm ... or
- can apply boosting without weights:
 - Resample data with probability determined by weights
 - Disadvantage: not all instances are used
 - Advantage: if error > 0.5, can resample again
- The AdaBoost.M1 boosting algorithm stems from work in computational learning theory
- Theoretical result:
 - Training error decreases exponentially as iterations are performed
- Other theoretical results:
 - Works well if base classifiers are not too complex and

.........

their error does not become too large too quickly as more iterations are performed

More comments on boosting

- Continue boosting after training error = 0?
- Puzzling fact: generalization error continues to decrease!
 - Seems to contradict Occam's Razor
- Possible explanation: consider margin (confidence), not just error
 - A possible definition of *margin*: difference between estimated probability for true class and nearest other class (between −1 and 1)
 - Margin continues to increase with more iterations
- AdaBoost.M1 works well with so-called weak learners; only condition: error does not exceed 0.5
 - Example of weak learner: decision stump
- In practice, boosting sometimes overfits if too many iterations are performed (in contrast to bagging)

Additive regression

- Using statistical terminology, boosting is a greedy algorithm for fitting an additive model
- More specifically, it implements forward stagewise additive modeling
- Forward stagewise additive modeling for numeric prediction:

.........

- Build standard regression model (e.g., regression tree)
- Gather residuals, learn model predicting residuals (e.g. another regression tree), and repeat
- To predict, simply sum up individual predictions from all regression models

Comments on additive regression

- Additive regression greedily minimizes squared error of ensemble if base learner minimizes squared error
- Note that it does not make sense to use additive regression with standard multiple linear regression
 - Why? Sum of linear regression models is a linear regression model and linear regression already minimizes squared error
- But: can use forward stagewise additive modeling with simple linear regression to implement multiple linear regression
 - Idea: build simple (i.e., one-attribute) linear regression models in each iteration of additive regression, pick attribute that yields lowest error
 - Use cross-validation to decide when to stop performing iterations
 - Automatically performs attribute selection!

- A trick to combat overfitting in additive regression: shrink predictions of base models by multiplying with pos. constant < 1
 - Caveat: need to start additive regression with initial model that predicts the mean, in order to shrink towards the mean, not 0

Additive logistic regression

- Can apply additive regression in conjunction with the logit transformation to get an algorithm for classification
 - More precisely, an algorithm for class probability estimation
 - Probability estimation problem is transformed into a regression problem
 - Regression scheme is used as base learner (e.g., regression tree learner)
- Implemented using forward stagewise algorithm: at each stage, add base model that maximizes the probability of the data
- We consider two-class classification in the following
- If f_j is the jth regression model, and \mathbf{a} is an instance, the ensemble predicts probability

$$p(1|\mathbf{a}) = \frac{1}{1 + e^{-\sum f_j(\mathbf{a})}}$$

..........

for the first class (compare to logistic regression model)

LogitBoost

Model generation

```
For j = 1 to t iterations:
   For each instance a[i]:
     Set the target value for the regression to
     z[i] = (y[i] - p(1|a[i])) / [p(1|a[i]) × (1-p(1|a[i])]
     Set the weight of instance a[i] to p(1|a[i]) × (1-p(1|a[i]))
   Fit a regression model f[j] to the data with class
     values z[i] and weights w[i]
```

Classification

```
Predict 1^{st} class if p(1 \mid a) > 0.5, otherwise predict 2^{nd} class
```

- Greedily maximizes probability if base learner minimizes squared error
- Difference from AdaBoost.M1: optimizes probability/likelihood instead of a special loss function called exponential loss
- Can be extended to multi-class problems

.........

 Overfitting avoidance: shrinking and cross-validation-based selection of the number of iterations apply

Option trees

- Ensembles are not easily interpretable
- Can we generate a single model?
 - One possibility: "cloning" the ensemble by using large amounts of artificial data that is labeled by the ensemble
 - Another possibility: generating a single structure that represents an ensemble in a compact fashion
- Option tree: decision tree with option nodes

- Idea: follow all possible branches at option node
- Predictions from different branches are merged using voting or by averaging probability estimates

- Can be learned by modifying a standard decision tree learner:
 - Create option node if there are several equally promising splits (within a userspecified interval)
 - When pruning, error at option node is average error of options

Alternating decision trees

- Can also grow an option tree by incrementally adding nodes to it using a boosting algorithm
- The resulting structure is called an alternating decision tree, with splitter nodes and prediction nodes
 - Prediction nodes are leaf nodes if no splitter nodes have been added to them yet
 - Standard alternating tree applies to 2-class problems but the algorithm can be extended to multi-class problems
 - To obtain a prediction from an alternating tree, filter the instance down all applicable branches and sum the predictions
 - Predictions from all relevant predictions nodes need to be used, whether those nodes are leaves or not
 - Predict one class or the other depending on whether the sum is positive or negative

.........

Example tree

Growing alternating trees

- An alternating tree is grown using a boosting algorithm, e.g., the LogitBoost algorithm described earlier:
 - Assume that the base learner used for boosting produces a single conjunctive if-then rule in each boosting iteration (an if-then rule for least-squares regression if LogitBoost is used)
 - Each rule could simply be added into the current alternating tree, including the numeric prediction obtained from the rule
 - Problem: tree would grow very large very quickly
 - Solution: base learner should only consider candidate regression rules that extend existing branches in the alternating tree
 - An extension of a branch adds a splitter node and two prediction nodes (assuming binary splits)
 - The standard approach chooses the best extension among all possible extensions applicable to the tree, according to the loss function used
 - More efficient heuristics can be employed instead

Logistic model trees

- Alternating decision trees may still be difficult to interpret
 - The number of prediction nodes that need to be considered for any individual test instance increases exponentially with the depth of tree in the worst case
- But: can also use boosting to build decision trees with linear models at the leaves (trees without options)
 - These trees are often more accurate than standard decision trees but remain easily interpretable because they lack options
- Algorithm for building *logistic model trees* using LogitBoost:
 - Run LogitBoost with simple linear regression as the base learner (choosing the best attribute for linear regression in each iteration)
 - Interrupt boosting when the cross-validated accuracy of the additive model no longer increases
 - Once that happens, split the data (e.g., as in the C4.5 decision tree learner) and resume boosting in the subsets of data that are generated by the split
 - This generates a decision tree with logistic regression models at the leaves

.........

 Additional overfitting avoidance: prune tree using cross-validation-based cost-complexity pruning strategy from CART tree learner

Stacking

- Question: how to build a heterogeneous ensemble consisting of different types of models (e.g., decision tree and neural network)
 - Problem: models can be vastly different in accuracy
- Idea: to combine predictions of base learners, do not just vote, instead, use meta learner
 - In stacking, the base learners are also called level-0 models
 - Meta learner is called level-1 model
 - Predictions of base learners are input to meta learner
- Base learners are usually different learning schemes
- Caveat: cannot use predictions on training data to generate data for level-1 model!
 - Instead use scheme based on cross-validation

Generating the level-1 training data

- Training data for level-1 model contains predictions of level-0 models as attributes; class attribute remains the same
- Problem: we cannot use the level-0 models predictions on their training data to obtain attribute values for the level-1 data
 - Assume we have a perfect rote learner as one of the level-0 learner
 - Then, the level-1 learner will learn to simply predict this level-0's learners predictions, rendering the ensemble pointless
- To solve this, we generate the level-1 training data by running a cross-validation for each of the level-0 algorithms
 - Then, the predictions (and actual class values) obtained for the test instances encountered during the cross-validation are collected
 - This pooled data obtained from the cross-validation for each level-0 model is used to train the level-1 model
- If validation data is available, it can be used for level-1 model training

..........

More on stacking

- Stacking is hard to analyze theoretically: "black magic"
- If the base learners can output class probabilities, use those as input to meta learner instead of plain classifications
 - Makes more information available to the level-1 learner
- Important question: which algorithm to use as the meta learner (aka level-1 learner)?
 - In principle, any learning scheme
 - In practice, prefer "relatively global, smooth" models because
 - base learners do most of the work and
 - this reduces the risk of overfitting
- Note that stacking can be trivially applied to numeric prediction too

Our experimental evaluation:

- Five well-known ensemble methods.
- 57 public-domain datasets.
- 5 x 2-fold cross-val and F-test.
 (5 x 2-fold rather than 10-fold because ...)
- Friedman-Holm test based on ranks.

Do fancier methods improve on bagging?

Random subspaces.

- Randomly select N_F of possible features.
- Create classifier using selected features.
- Repeat N_C times.

```
(b=3.5, c=0.5; honest)
(a=1, b=3.5, c=0.5; honest)
(a=2, b=3.2, c=0.3; fraud)
(a=1, b=3.5; honest)
(a=1, b=3.5; honest)
(a=2, b=3.2; fraud)
```

Bagging

.........

- Randomly select examples with replacement to make up the training data.
- Usually, you create a bag that is the same size as the original data.
- Typically, 100 or more bagged classifiers are created.

Random trees.

- During the tree-building process:
 - Find the best N_s splits at each node.
 - Randomly select one of these N_s tests.
- Repeat to create N_C trees.

Issues: continuous / discrete features?

Random forests.

- Bag to select data for creating a tree.
- In creating a tree:
 - At each node, randomly select N_F features.
 - Select the best test among these features.
- Repeat to create N_C trees.

Boosting

- Focus on misclassified examples by weighting them more.
- Either use integer weights with repeated examples or incorporate weights into the learning algorithm.
- AdaBoost.M1 works as shown on the next slide.

AdaBoost.M1

- Assign equal weight to each training instance.
- For each of t iterations
 - Apply Learning algorithm to weighted dataset and store resulting model.
 - Compute error e of model on weighted dataset and store error.
 - If e equal to 0 or e >= 0.5:
 - Terminate model generation.
 - For Each instance in dataset:
 - If instance classified correctly by model:
 - Multiply weight of instance by e/(1-e).
 - Normalize weight of all instances.

AdaBoost.M1- Clasification

- Assign weight of 0 to all classes.
- For each of the t (or less) models:
 - Add –log(e/(1-e)) to weight of class predicted by model.
- Return class with highest weight

Experimental comparison.

- 1,000-classifier ensemble by each method.
- Boosting also evaluated at 50 classifiers.
- Accuracy of others compared to bagging.
- Compare statistically significant wins and losses in accuracy out of 57 datasets.
- Use Bonferroni correction, F-Test with 5x2 fold cross validation.

- Rank the classifiers from 1 for the most accurate on a data set to 8 for the least accurate.
- Two tie at 3, get a rank of 3.5.
- Apply the nonparametric Freidman test to see if there are differences with many classifiers and many data sets.

- If Freidman test indicates there is a difference, the Holm test can be used.
- The Holm test allows the comparison of one classifier (bagging) against the rest by differences in rank.
- This approach does not have a problem with overlapping training sets.

(statistical significance at 0.05 level)

	Win	Loss	"Tie"	Average Rank
Random Forests-2	5	2	50	3.32
Random Forests-Ig	6	0	51	3.7
Random Trees	2	4	51	4.53
Random Subspaces	5	9	43	5.39
Boosting (50)	6	0	51	5.15
Boosting (1000)	8	0	49	3.34
Bagging	-	-	-	6.06

.........

Conclusions.

- Boosting and RF-lg improve on accuracy of bagging in about 10% of datasets.
- Boosting appears to benefit from larger ensemble sizes than once thought.
- Friedman-Holm tells us only boosting-50 and random subspaces fail to improve on bagging.
- Methods to automatically choose ensemble size may be important topic to develop.

Conclusions.

 While most approaches are not much more accurate than bagging, they are consistently more accurate.

You have reached the end of the lecture.

.........

Reference:
I. H. Witten, E. Frank, M. A. Hall and C. J. Pal (2016). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann