Solution

- 1.) Write an equation for the dissociation of each of the following in water
- a.) $BaCl_2(s) \rightarrow Ba^{2+}(aq) + 2 Cl^{-}(aq)$
- b.) AgNO₃ (s) \rightarrow Ag⁺ (aq) + NO₃⁻ (aq)
- c.) $Mg(OH)_2$ (s) \rightleftharpoons $Mg(OH)_2$ (s) (insoluble)
- d.) Na_2SO_4 (s) $\to 2 Na^+$ (aq) + SO_4^{2-} (aq)
- e.) NH_4NO_3 (s) $\to NH_4^+$ (aq) + NO_3^- (aq)
- f.) $(NH_4)_3PO_4$ (s) $\rightarrow 3 NH_4^+$ (aq) + PO_4^{3-} (aq)
- 2.) Which of the above solutions are electrical conductors All of them are conductors **except** Mg(OH)₂
- 3.) If 1.00 L of a 1.00 mol/L solution of AgNO₃ was mixed, then
- a.) $[Ag^{+}] = 1.00 \text{ mol/L}$
- b.) $[NO_3^-] = 1.00 \text{ mol/L}$
- 4.) If 500.0 mL of a 1.00 mol/L solution of BaCl2 was mixed, then
- a.) Moles of $Ba^{2+} = 0.500 \text{ mol}$
- b.) $[Ba^{2+}] = 1.00 \text{ mol/L}$
- c.) Moles of $Cl^- = 1.00 \text{ mol}$ (2 moles per mole of $BaCl_2$)
- d.) $[Cl^{-}] = 2.00 \text{ mol/L}$
- 5.) If 500.0 mL of 1.00 mol/L NaCl was added to the solution in question 4, then (New total volume = 1000.0 mL = 1.00 L)
- a.) $[Ba^{2+}] = 0.500 \text{ mol} \div 1.00 \text{ L} = 0.500 \text{ mol/L}$
- b.) $[Cl^{-}] = (1.00 \text{ mol from BaCl}_2 + 0.500 \text{ mol from NaCl}) \div 1.00 \text{ L} = 1.50 \text{ mol/L}$

More solutions

- 1.) For each of the following combinations of equal volumes of 0.2 mol/L aqueous solutions
- 1.) Identify the possible products by formula
- 2.) State which (if any) product has a low solubility (will precipitate)
- 3.) If there is a precipitate, write the formula equation and net ionic equation for the reaction
- a.) MgS + Sr(OH)₂
- 1.) $Mg(OH)_2$ (s) + SrS (aq)
- 2.) Mg(OH)₂ (s)
- 3.) MgS (aq) + Sr(OH)₂ (aq) \rightarrow Mg(OH)₂ (s) + SrS (aq) Mg²⁺ (aq) + 2 OH⁻ (aq) \rightarrow Mg(OH)₂ (s)
- b.) $CuBr_2 + Pb(NO_3)_2$
- 1.) $Cu(NO_3)_2$ (aq) + PbBr₂ (s)
- 2.) PbBr₂ (s)
- 3.) $CuBr_2 (aq) + Pb(NO_3)_2 (aq) \rightarrow Cu(NO_3)_2 (aq) + PbBr_2 (s)$ $Pb^{2+} (aq) + 2 Br^{-} (aq) \rightarrow PbBr_2 (s)$
- c.) FeBr₃ + Srl₂
- 1.) Fel₃ (aq) + SrBr₂ (aq)
- 2.) Neither
- d.) Ba(NO₃)₂ + Li₂SO₄
- 1.) BaSO₄ (s) + LiNO₃ (aq)
- 2.) BaSO₄ (s)
- 3.) $Ba(NO_3)_2$ (aq) + Li_2SO_4 (aq) \rightarrow $BaSO_4$ (s) + 2 $LiNO_3$ (aq) Ba^{2+} (aq) + SO_4^{2-} (aq) \rightarrow $BaSO_4$ (s)
- e.) K₃PO₄ + CuCl₂
- 1.) 6 KCl (aq) + Cu₃(PO₄)₂ (s)
- 2.) Cu₃(PO₄)₂ (s)
- 3.) 2 K_3PO_4 (aq) + 3 $CuCl_2$ (aq) \rightarrow 6 KCl (aq) + $Cu_3(PO_4)_2$ (s) 3 Cu^{2+} (aq) + 2 PO_4^{3-} (aq) \rightarrow $Cu_3(PO_4)_2$ (s)
- f.) Zinc (II) sulphate and lithium carbonate
- 1.) ZnCO₃ (s) + Li₂SO₄ (aq)
- 2.) ZnCO₃ (s)
- 3.) $ZnSO_4$ (aq) + Li_2CO_3 (aq) $\rightarrow ZnCO_3$ (s) + Li_2SO_4 (aq) Zn^{2+} (aq) + CO_3^{2-} (aq) $\rightarrow ZnCO_3$ (s)
- g.) Iron (III) nitrate and magnesium sulphide
- 1.) Fe_2S_3 (s) + $Mg(NO_3)_2$ (aq)
- 2.) Fe₂S₃ (s)

- h.) Beryllium sulphate and ammonium carbonate
- 1.) BeCO₃ (s) + (NH₄)₂SO₄ (aq)
- 2.) BeCO₃ (s)
- 3.) BeSO₄ (aq) + (NH₄)₂CO₃ (aq) \rightarrow BeCO₃ (s) + (NH₄)₂SO₄ (aq) Be²⁺ (aq) + CO₃²⁻ (aq) \rightarrow BeCO₃ (s)
- i.) Cobalt (II) sulphate and lithium carbonate
- 1.) $CoCO_3$ (s) + Li_2SO_4 (aq)
- 2.) CoCO₃ (s)
- 3.) $CoSO_4$ (aq) + Li_2CO_3 (aq) \rightarrow $CoCO_3$ (s) + Li_2SO_4 (aq) Co^{2+} (aq) + CO_3^{2-} (aq) \rightarrow $CoCO_3$ (s)
- j.) Magnesium sulphate and strontium hydroxide
- 1.) $Mg(OH)_2$ (s) + $SrSO_4$ (s)
- 2.) Mg(OH)₂ (s)
- 3.) MgSO₄ (aq) + Sr(OH)₂ (aq) \rightarrow Mg(OH)₂ (s) + SrSO₄ (s) Mg²⁺ (aq) + 2 OH⁻ (aq) \rightarrow Mg(OH)₂ (s) Sr²⁺ (aq) + SO₄²⁻ (aq) \rightarrow SrSO₄ (s)