

Chapter 5

Synchronous generators

$$N = N_s = \frac{120 F}{P}$$

~~to~~ Stetson

36 Insel, as will State Aug 98

$$\left. \begin{array}{l} S_{\text{tar}} \\ V_{\text{ph}} = \sqrt{3} V_{\text{pn}} \\ I_{\text{pn}} = I_L \end{array} \right\} \begin{array}{l} A \\ V_L = V_{\text{pn}} \\ I_L = \sqrt{3} I_L \end{array}$$

$$P = 3V_{ph}I_{ph} \cos\theta$$

$$P = \sqrt{3} V_L I_L \cos\phi$$

the rotor

① Salient pole ((salient))

اللوكالدو (الخط) في الممارسة

$$(\subset^*, b\cup^*))$$

$$P \geq 4 \quad \left\{ \begin{array}{l} P \leq 4 \end{array} \right.$$

مسقط و مسقط

~~Port~~ → Play

Stator \rightarrow Armature

2 Brokers will be responsible for

۲) طفیل ہوں

2. D.C \rightarrow htr

6 A& \rightarrow States

② Non solvent pole (an salt)

Concours à l'école des hautes études en sciences sociales

اینکو ایکسپریس

$$f = \frac{N_s P}{120}$$

$$f = 50 \text{ Hz}$$

\leftarrow ١٦٣ سیم \rightarrow ١٦٣ سیم \leftarrow ١٦٣ سیم \rightarrow ١٦٣ سیم
 South poles \leftarrow ١٦٣ سیم \rightarrow ١٦٣ سیم

١٦٣ سیم \leftarrow ١٦٣ سیم \rightarrow ١٦٣ سیم
 in South poles \leftarrow ١٦٣ سیم \rightarrow ١٦٣ سیم

South \leftarrow ١٦٣ سیم \rightarrow North \leftarrow ١٦٣ سیم \rightarrow ١٦٣ سیم

$$E_a = 4.44 T_{ph} \Phi F$$

$$\Phi \cdot ١٥ \leftarrow \begin{cases} T \\ \text{Number. turns per phase} \end{cases} \rightarrow \begin{cases} \text{Flux/pole} \\ \text{Poles} \end{cases} \quad \text{Frequency} = \frac{P N_s}{120}$$

$V_{D.C}$

$V_{ph} \approx ١٠٠$

V_{ph}

V_L

$S \rightarrow 10 \text{ kVA}$, $380V/220$ Y/A

I_L / I_{Line} Y/A

$$S = I_L V_L \sqrt{3}$$

$$E_a = 4.44 T_{ph} \phi F$$

Rotor

R_a → Armature resistance / phase

X_s → Armature Reactance / Phase

$$Z_s = R_a + jX_s$$

$$V_t = E_a - I_a (R_a + jX_s)$$

$$E_a = V_t + I_a (R_a + jX_s)$$

$$\bar{E}_a = E \angle 15^\circ$$

Load

$$Lag P.F \rightarrow v$$

$$Lead P.F \leftarrow i$$

$$Unity P.F \rightarrow i \rightarrow v$$

δ → Power angle, Load angle, Torque angle

$$\begin{array}{l} \text{أجل} \quad \text{أجل} \quad \text{أجل} \\ \text{أجل} \quad \text{أجل} \quad \text{أجل} \\ \text{أجل} \quad \text{أجل} \quad \text{أجل} \end{array}$$

$$P = 3 V_t I_a \cos \theta$$

$$I_a = \frac{P}{3 V_t \cos \theta}$$

$$V_t = |V_t| \angle 0^\circ$$

$$I_a = \frac{S}{3 V_t} L \angle \cos \theta$$

Phasor Diagram for lag P.F

$$X_S \gg R$$

Const P.F

Lagging P.F

* Power factor

$$\text{Let } R_L = 0$$

$$E_a = V_b + I_a (jX_S)$$

$$I_a X_S \cos \theta = E_a \sin \delta$$

$$3V_b I_a X_S \cos \theta = 3V_b E_a \sin \delta$$

$$P = 3V_b I_a \cos \theta = 3 \frac{V_b}{X_S} E_a \sin \delta$$

$$P_{\max} = \frac{3 E_a N_a}{X_s} \quad \text{at} \quad \delta = 90^\circ$$

$$P_a = \frac{3 V_t E_a}{X_s} \sin \delta \quad \text{at} \quad R_a = 0$$

$$T_a = \frac{P_a}{\omega} = \frac{3 V_t E_a}{\omega X_s} \sin \delta \quad \omega = \frac{2\pi N_s}{60}$$

$$T_a = T_{\max} \sin \delta$$

Power Flow of Synchronous Generators

$$P_{jn} = T_{jn} \neq$$

Parameters R_c, x_5

Measurement of Synchronous Generator Parameters: (R_g, L_g)

D.C Test

$$X_5 = 0$$

$$2 R_a = \frac{V_{oc}}{I_{dc}}$$

$$R_d = \frac{V_{DC}}{2 I_{DC}}$$

النهاية يوجع بـ داء المثلث
أصل المرض هو العدوى المطردة
وتحذير الملايين
وتزداد ١٦٥ يوماً التزداد

$$R_a = (1, 15 \rightarrow 1.25) \quad (R_a)_{dc}$$

لـمـا دـلـيـلـاً مـنـهـا

$$\frac{R_s}{(a.c)} = 1.2 \neq R_s(d.c)$$

$$R_t = \frac{V_{DC}}{I_{DC}}$$

$$\cancel{R_s} = \frac{2}{3} R_p$$

R_p $\cancel{\frac{V_{DC}}{I_{DC}}}$

$$R_{a(DC)} = 1.5 \frac{V_{DC}}{I_{DC}}$$

$$R_{a(DC)} = 1.2 R_{p(DC)}$$

3) Open Circuit Test

$$N_s = \checkmark$$

\approx μ air core

or B_F

or B_T

$$E_a = 4.44 T_m \phi F$$

$$E_a \propto \phi$$

I _F	0	0.1	...	I _m
V _{a.c.}	✓	✓	—	✓

3) Short Circuit test

$$N_s = \checkmark$$

$X_s \rightarrow X_{\text{leakage}}$
 $\rightarrow X_{\text{armature reaction}}$

I _F	0	✓
V _{p.c.}	0	✓ I _{s.c.}

$$Z_s = \frac{V_{rot}}{I_{S.c}^*} = \sqrt{s}$$

$$X_s = \sqrt{Z_s^2 - R_s^2} = \sqrt{ }$$

\rightarrow (line) \rightarrow (load) \rightarrow (source) \rightarrow (line) \rightarrow
 \rightarrow (line) \rightarrow (load) \rightarrow (source) \rightarrow (line) \rightarrow

Phase Sequence C.W.S. (1)

1, 2, 3 C.W.S. (2)

2 phase shift \rightarrow (1, 2)

phase shift = 0 (3)

Q2 480 V, 50 Hz Y-connected $P = 6$
 $X_S = 1 - n$ $I_{a_{PL}} = 60 A$ at 0.8 lag PF

$$P_{av} = 1.5 \text{ kW}$$

$$P_{cu} = 0$$

$$V_{t(\text{line})} = E_a = \frac{480}{\sqrt{3}} \text{ V}$$

a) N_s

b) V_t at Full Loading $\left\{ \begin{array}{l} \text{Lag 0.8} \\ \text{Lead 0.2} \end{array} \right.$

c) η at 0.8 Lead pf unity

d) T_h

$$N_s = \frac{120 F}{P} = \frac{120 * 50}{6} = 1000 \text{ rpm}$$

$$\begin{aligned} V_f &= E_a - I_a(X_S j) \\ |V_f| L^0 &= \frac{480}{\sqrt{3}} \angle 18^\circ - 60 \angle -\cos^{-1} 0.8 * 1 \angle 90^\circ \rightarrow ① \end{aligned}$$

$$P_d = \frac{\beta V_f E_a \sin \delta}{X_S} = \beta V_f I_a \cos \theta$$

$$\delta = \sin^{-1} [I_a X_S \cos \theta] = \checkmark \quad \text{in } ①$$

$$|V_f| = \checkmark$$

Ans

$$|V_f| L^0 = \frac{480}{\sqrt{3}} \angle 18^\circ - 60 \angle 1 + \cos^{-1} 0.8 * 1 \angle 90^\circ$$

$$\delta = \underline{\text{missed}}$$

$$\text{unity } S \rightarrow \underline{\text{P.F. = 1}}$$

$$|V_f| L^0 = \frac{480}{\sqrt{3}} \angle 18^\circ - 60 \angle 1 \angle 90^\circ$$

$$\eta = \frac{P_{out}}{P_m} = \frac{3 V_t I_a \cos \theta}{P_{out} + P_{fw} + P_m} = \checkmark$$

$$T_m = \frac{P_m}{\omega} = \frac{P_{out} + P_{fw} + P_m}{\left(\frac{2\pi M_s}{60}\right)} = \checkmark$$

Voltage Regulation

$\left[\begin{array}{l} 0.8 \text{ lag} \\ 0.8 \text{ lead} \\ \text{unity} \end{array} \right]$

$$V.R = \frac{V_{m1} - V_{R1}}{V_{f1}} * 100$$

$$= \frac{E - V_t}{V_t} * 100 = \checkmark$$