Part II: Models of dark energy and modified gravity

- 1. Dynamical dark energy: quintessence
- 2. Examples of modified gravity
- 3. Structure formation as a model discriminator
- 4. (Observational tests)

Theories of dark energy

- A useful approach is to introduce features as new parameters in observables. These can then be probed by experiments/observations
- This needs to be complemented by theories: provide a self-consistent description to justify a specific effect.
- Challenge: A single parameter in a consistent theoretical framework may contaminate several observables. "A bug or a feature?"

V.	Scalar-field models of dark energy	20
	A. Quintessence	20
	B. K-essence	22
	C. Tachyon field	23
	D. Phantom (ghost) field	24
	E. Dilatonic dark energy	25
	F. Chaplygin gas	26
VI.	Cosmological dynamics of scalar fields in the presence of a barotropic perfect fluid	26
	A. Autonomous system of scalar-field dark energy models	27
	1. Fixed or critical points	27
	2. Stability around the fixed points	27
	B. Quintessence	28
	1. Constant λ	28
	2. Dynamically changing λ	30
	C. Phantom fields	30 30
	D. Tachyon fields 1. Constant λ	31
	1. Constant λ 2. Dynamically changing λ	31
	E. Dilatonic ghost condensate	33
	E. Dilatoliic ghost condensate	55
VII.	Scaling solutions in a general Cosmological background	34
	A. General Lagrangian for the existence of scaling solution	34
	B. General properties of scaling solutions	35
	C. Effective potential corresponding to scaling solutions	36
	1. Ordinary scalar fields	36
	2. Tachyon	36
	3. Dilatonic ghost condensate	36
	D. Autonomous system in Einstein gravity	37
VIII.	The details of quintessence	37
	A. Nucleosynthesis constraint	37
	B. Exit from a scaling regime	38
	C. Assisted quintessence	38
	D. Particle physics models of Quintessence	39
	1. Supergravity inspired models	39
	2. Pseudo-Nambu-Goldstone models	42
	E. Quintessential inflation	43
IX.	Coupled dark energy	44
121.	A. Critical points for coupled Quintessence	45
	B. Stability of critical points	45
	1. Ordinary field $(\epsilon = +1)$	46
	2. Phantom field $(\epsilon = -1)$	47
	C. General properties of fixed points	48
	D. Can we have two scaling regimes?	48
	E. Varying mass neutrino scenario	50
	F. Dark energy through brane-bulk energy exchange	50
Y	Dark energy and varying alpha	51
21.	A. Varying alpha from quintessence	51
	B. Varying alpha from tachyon fields	52

Dynamics of dark energy
Copeland et al. hep-th/0603057

3	Alt		Theories of Gravity with Extra Fields	49
	3.1	Scalar-T	Censor Theories	49
		3.1.1	Action, field equations, and conformal transformations	49
		3.1.2 I	Brans-Dicke theory	52
		3.1.3	General scalar-tensor theories	59
		3.1.4	The chameleon mechanism	66
	3.2	Einstein	-Æther Theories	68
		3.2.1 1	Modified Newtonian dynamics	68
		3.2.2	Action and field equations	69
		3.2.3 1	FLRW solutions	70
			Cosmological perturbations	71
		3.2.5	Observations and constraints	73
	3.3		Theories	75
		3.3.1 I	Rosen's theory, and non-dynamical metrics	76
			Orummond's theory	77
			Massive gravity	77
		3.3.4 B	Somovity.	79
			Signavity	80
	2.4		Simetric MOND	
	3.4		Vector-Scalar Theories	81
		3.4.1 A	actions and field equations	82 84
			lewtonian and MOND limits	
			Iomogeneous and isotropic cosmology	86 91
			'osmological perturbation theory	93
	3.5		heories	96
	5.5		The Einstein-Cartan-Sciama-Kibble Theory	96
				99
		3.5.2	calar-Tensor-Vector Theory	99
4	Hig	her Deri	vative and Non-Local Theories of Gravity	101
4	Hig 4.1		9	101 101
4		f(R) Th	eories	101
1		f(R) Th 4.1.1 A	eories	$\frac{101}{102}$
1		f(R) Th 4.1.1 A 4.1.2 V	eories	101 102 106
4		f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E	eories	101 102 106 111
4		f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C	eories	101 102 106 111 114
4		f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S	eories	101 102 106 111 114 120
4	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General	eories	101 102 106 111 114 120 123
1	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A	eories	101 102 106 111 114 120 123 123
4	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V	eoriesction, field equations and transformationsveak-field limitvact solutions, and general behaviourvosmologytability issuescombinations of Ricci and Riemann curvaturection and field equations Veak-field limit	101 102 106 111 114 120 123 123 125
4	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E	eoriesction, field equations and transformationsveak-field limitvact solutions, and general behaviourvosmology tability issuescombinations of Ricci and Riemann curvaturection and field equationsveak-field limitvact solutions, and general behaviour	101 102 106 111 114 120 123 123 125 126
4	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E 4.2.4 P	eories	101 102 106 111 114 120 123 123 125 126 128
4	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E 4.2.4 P 4.2.5 C	eories	101 102 106 111 114 120 123 123 125 126 128
1	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E 4.2.4 P 4.2.5 C Hořava-I	eories	101 102 106 111 114 120 123 123 125 126 128 131
1	4.1	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E 4.2.4 P 4.2.5 C Hořava-I 4.3.1 T	eories	101 102 106 111 114 120 123 123 125 126 128 131 137
1	4.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	eoriesction, field equations and transformationsveak-field limitxact solutions, and general behaviourcosmologytability issuescombinations of Ricci and Riemann curvaturection and field equationsveak-field limitxact solutions, and general behaviourthysical cosmology and dark energyterpoicsifschitz Gravityhe projectable theoryhe non-projectable theoryhe non-projectable theory	101 102 106 111 114 120 123 123 125 126 128 131 137 141
1	4.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	eoriesction, field equations and transformationsVeak-field limitxact solutions, and general behaviourcosmology tability issuescombinations of Ricci and Riemann curvaturection and field equationsVeak-field limitxact solutions, and general behaviourhysical cosmology and dark energyther topicsifschitz Gravityhe projectable theoryhe non-projectable theoryspects of Hořava-Lifschitz cosmology	101 102 106 111 114 120 123 125 126 128 131 137 141 144 146
1	4.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	eoriesction, field equations and transformationsVeak-field limitxact solutions, and general behaviourcosmologytability issuescombinations of Ricci and Riemann curvaturection and field equationsVeak-field limitxact solutions, and general behaviourthysical cosmology and dark energyther topicsfischitz Gravitythe projectable theorythe non-projectable theoryspects of Hořava-Lifschitz cosmologythe ΘCDM model	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 146 148
1	4.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	eoriesction, field equations and transformationsvact solutions, and general behaviourvact solutions, and general behaviourvact solutions of Ricci and Riemann curvaturection and field equationsvact solutions, and general behaviourvact solutions, and general behaviourvact solutions, and general behaviourvact solutions and dark energyvact topicsfischitz Gravityvact projectable theoryvact solutionsvact sol	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 146 148
1	4.2	f(R) Th	eories	101 102 106 111 114 120 123 123 125 126 128 131 141 144 146 148 148 150
1	4.2	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E 4.2.4 P 4.2.5 C Hofava-I 4.3.1 T 4.3.2 T 4.3.3 A 4.3.4 T 4.3.5 H Galileon 4.4.1 C	eories	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 148 148 150 151
4	4.2	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E 4.2.4 P 4.2.5 C Hořava-I 4.3.1 T 4.3.2 T 4.3.3 A 4.3.4 T 4.3.5 T Galileon 4.4.1 C 4.4.2 C	eories	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 148 148 150 151 157
4	4.2	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 A 4.2.2 V 4.2.3 E 4.2.4 P 4.2.5 C 4.3.1 T 4.3.2 T 4.3.3 A 4.3.4 T 4.3.5 E Galileon 4.4.1 C 4.4.2 C 4.4.3 D	eoriesction, field equations and transformationsveak-field limitxact solutions, and general behaviourcosmologytability issuescombinations of Ricci and Riemann curvaturection and field equationsveak-field limitxact solutions, and general behaviourthysical cosmology and dark energyther topicsifschitz Gravityhe projectable theoryhe projectable theoryspects of Hořava-Lifschitz cosmologyme OCDM modelme OCDM model	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 148 148 150 151 157
4	4.2	f(R) Th 4.1.1 A 4.1.2 V 4.1.3 E 4.1.4 C 4.1.5 S General 4.2.1 4.2.2 V 4.2.3 E 4.2.4 P 4.2.5 C Ho5ava-I 4.3.1 4.3.1 T 4.3.2 T 4.3.3 A 4.3.4 T 4.4.1 C 4.4.2 C 4.4.3 E 4.4.4 C 4.4.4 C	eories action, field equations and transformations Veak-field limit actions solutions, and general behaviour cosmology tability issues combinations of Ricci and Riemann curvature. action and field equations Veak-field limit actions and general behaviour chysical cosmology and dark energy other topics affischitz Gravity The projectable theory The non-projectable theory aspects of Hořava-Lifschitz cosmology The OCDM model IMT-da Silva theory Salieon modification of gravity adalieon BI galileon Galileon cosmology	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 148 148 150 151 157 158 160
4	4.2	f(R) Th	eoriesction, field equations and transformationsveak-field limitxact solutions, and general behaviourcosmologytability issuescombinations of Ricci and Riemann curvaturection and field equationsveak-field limitxact solutions, and general behaviourthysical cosmology and dark energyther topicsifschitz Gravityhe projectable theoryhe projectable theoryspects of Hořava-Lifschitz cosmologyme OCDM modelme OCDM model	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 148 150 151 157 158 160 161
4	4.2	f(R) Th	eories action, field equations and transformations Veak-field limit axact solutions, and general behaviour cosmology tability issues combinations of Ricci and Riemann curvature. action and field equations Veak-field limit axact solutions, and general behaviour chysical cosmology and dark energy other topics affischitz Gravity The projectable theory The non-projectable theory aspects of Hořava-Lifschitz cosmology The OCDM model CMT-da Silva theory Salileon modification of gravity Oblig galileon alileon cosmology fulti-galileons heories	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 148 150 151 157 158 160 161 164
4	4.2	f(R) Th	eories action, field equations and transformations Veak-field limit axact solutions, and general behaviour cosmology tability issues combinations of Ricci and Riemann curvature. action and field equations Veak-field limit axact solutions, and general behaviour chysical cosmology and dark energy other topics diffschitz Gravity che projectable theory aspects of Hořava-Lifschitz cosmology che OCDM model composite theory selector of Hořava-Lifschitz cosmology che ocupant dark energy selector of Hořava-Lifschitz cosmology che ocupant dalieon selector of gravity covariant galileon dalileon cosmology fulti-galileons	101 102 106 111 114 120 123 123 125 126 128 131 137 141 144 148 150 151 157 157 160 161 164 164

5	Hig	ther Dimensional Theories of Gravity 172	
	5.1	Kaluza-Klein Theories of Gravity	
		5.1.1 Kaluza-Klein compactifications	
		5.1.2 Kaluza-Klein cosmology	
	5.2	The Braneworld Paradigm	
		3	
		5.2.1 The ADD model	
	5.3	Randall-Sundrum Gravity	
		5.3.1 The RS1 model	
		5.3.2 The RS2 model	
		5.3.3 Other RS-like models	
		5.3.4 Action and equations of motion	
		5.3.5 Linear perturbations in RS1 and RS2 189	
	5.4	Brane Cosmology	
		5.4.1 Brane based formalism – covariant formulation 197	
		5.4.2 Bulk based formalism – moving branes in a static bulk 199	
		5.4.3 Cosmological perturbations	
	5.5	Dvali-Gabadadze-Porrati Gravity	
		5.5.1 Action, equations of motion, and vacua 207	
		5.5.2 Linear perturbations on the normal branch 209	
		5.5.3 Linear perturbations (and ghosts) on the self-accelerating branch . 211	
		5.5.4 From strong coupling to the Vainshtein mechanism	
		5.5.5 DGP cosmology	
	5.6	Higher Co-Dimension Braneworlds	
		5.6.1 Cascading gravity	
		5.6.2 Degravitation	
	5.7	Einstein Gauss-Bonnet Gravity	
		5.7.1 Action, equations of motion, and vacua	
		5.7.2 Kaluza-Klein reduction of EGB gravity	
		5.7.3 Co-dimension one branes in EGB gravity 240	
		5.7.4 Co-dimension two branes in EGB gravity 244	

Modified Gravity and Cosmology Clifton et al. arXiv:1106.2476

Quintessence: $w_{DE}(t)$ from single scalar field

In field theory, explicit t dependence \leftarrow VEV of a (clock) field.

We now know that (at least one) scalar field exists

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R + S_{\phi}$$

$$S_{\phi} = \int d^4x \sqrt{-g} \left[-\frac{1}{2} g^{\mu\nu} \left(\partial_{\mu} \phi \right) \left(\partial_{\nu} \phi \right) - V(\phi) \right]$$

energy momentum tensor

$$T_{\mu\nu}^{\phi} = (\partial_{\mu}\phi)(\partial_{\nu}\phi) - g_{\mu\nu} \left[\frac{1}{2} g^{\alpha\beta} (\partial_{\alpha}\phi)(\partial_{\beta}\phi) + V(\phi) \right] \qquad T_{\mu\nu}^{\phi} = -\frac{2}{\sqrt{-\sigma}} \frac{\delta(\sqrt{-g} L_{\phi})}{\delta g^{\mu\nu}}$$

$$T_{\mu\nu}^{\phi} = -\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g} L_{\phi})}{\delta g^{\mu\nu}}$$

scalar field equation

$$\frac{\delta S_{\phi}}{\delta \phi} = 0 \qquad \nabla^{\mu} \nabla_{\mu} \phi - V'(\phi) = 0 \quad \Longleftrightarrow \quad \nabla^{\mu} T^{\phi}_{\mu\nu} = 0$$

Background

Energy density and pressure

$$\rho_{\phi} = -T_0^0 = \frac{1}{2}\dot{\phi}^2 + V(\phi) \qquad \phi = \phi(t)$$

$$P_{\phi} = \frac{1}{3}T_i^i = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

Scalar field equation

lar field equation
$$\dot{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \iff \dot{\rho}_{\phi} + 3H(\rho_{\phi} + P_{\phi}) = 0$$
 friction

For accelerated expansion, the scalar field needs to slowly roll down the potential

 $V = \frac{1}{2}m^2\phi^2$

$$\dot{\phi}^2 << V(\phi) \qquad w_{\phi} = \frac{P_{\phi}}{\rho_{\phi}} \approx -1$$

Quintessence potentials

• Freezing model, e.g.

$$V(\phi) = M^{4+n}\phi^{-n}$$

The scalar field dynamics freezes at late time and approaches $w_{\phi} \approx -1$

• Thawing models, e.g.

$$V(\phi) = M^4 \cos^2\left(\frac{\phi}{f}\right)$$

Scalar initially held at $w_{\phi} \approx -1$ by Hubble friction. Recently started to roll down towards minimum. (similar to inflation)

Linder & Caldwell astro-ph/0505494

Fundamental issues

Consider a massive scalar field

$$V(\phi) = \frac{1}{2} m^2 \phi^2 , \quad \varepsilon_{\phi} \equiv \frac{1}{2\kappa^2} \left(\frac{V'}{V} \right)^2 = \frac{2M_{pl}^2}{\phi^2} <<1 \quad \to \quad \phi > M_{pl} = 10^{18} \text{GeV}$$

$$V(\phi_0) = \rho_{DE} = 10^{-48} \text{GeV}^4 \quad \to \quad m = \left(\frac{\rho_{DE}}{\phi^2} \right)^{\frac{1}{2}} = 10^{-42} \text{GeV} \approx H_0$$

Correction to the potential

$$V(\phi) = \frac{1}{4} \lambda \phi^4 < \rho_{DE} \quad \to \quad \lambda < 10^{-120}$$

these small numbers are very difficult to protect against quantum corrections

Lovelock's theorem [1971]

- GR+Λ is the unique metric theory assuming:
- a. EOM originates from an action
- b. 3+1 dimensions
- c. EOM has at most 2nd order derivatives
- d. no other (hidden or explicit) fields
- e. diffeomorphism invariant action
- f. no non-local operators
- A modified theory of GR should break at least one of these. This lecture briefly focusses only on breaking (d), as it includes breaking either of (b),(c),(e).

The fuzzy line between dynamical DE and MG

- We will modify gravity by adding new fields.
- Wait... Quintessence is a new field. Is it modified gravity?
- Dark energy nomenclature proposed by Clifton, Ferreira, Padilla, Skordis [arXiv:1106.2476]

Warning: not everyone follows this terminology, e.g. non-minimal quintessence

Horndeski Theory [1974]

Scalar-Tensor extension of Lovelock

• Lagrangian
$$\mathscr{L}_H = \sum_{i=2}^5 \mathscr{L}_i.$$
 $\mathscr{L}_2 = K(\phi, X),$ $\mathscr{L}_3 = -G_3(\phi, X)\Box \phi,$

$$\mathcal{L}_2 = K(\phi, X),$$

$$\mathcal{L}_3 = -G_3(\phi, X) \square \phi,$$

$$\mathscr{L}_4 = G_4(\phi, X)R + G_{4,X} \left[\left(\Box \phi \right)^2 - \left(\nabla_{\mu} \nabla_{\nu} \phi \right)^2 \right],$$

Independently discovered by Deffayet et al. 2011

$$X \equiv -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

Three examples:

 $\mathscr{L}_{5} = G_{5}(\phi, X)G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi - \frac{1}{6}G_{5,X}\left[\left(\Box\phi\right)^{3} - 3\left(\Box\phi\right)\left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{2} + 2\left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{3}\right]$

Covariant Galileon K, $G_3 \sim X$, $G_5 \sim X^2$

Self-acceleration

Generically, Horndeski theories have (potentially dangerous) implications: $G_N \neq 0$, speed of GW $\neq 1$ etc...

Enter GW170817/GRB170817A

- BNS merger, time delay between GW and GRB ~ 1.74 s
- Conservative limit, $d=26 \mathrm{Mpc}$, $\Delta t \sim 10 \mathrm{s}$ gives

$$-3 \times 10^{-15} < \frac{c_g}{c} - 1 < 0.7 \times 10^{-15}$$

Ezquiaga, Zumalacàrregui arXiv:1710.05901

Viable after GW170817

FIG. 2: Summary of the viable (left) and non-viable (right) scalar-tensor theories after GW170817. Only simple Horndeski theories, $G_{4,X} \approx 0$ and $G_5 \approx \text{constant}$, and specific beyond Horndeski models, conformally related to $c_q = 1$ Horndeski or disformally tuned, remain viable.

Scalar-Tensor theory is not the only way

- Beyond Horndeski, DHOST (degeneracies)
- Other fields, e.g. massive gravity, bimetric theory;
- From higher dimensions: DBI;
- Non-local actions,
 e.g. non-local GR/massive gravity;
- Constrained actions, e.g. unimodular gravity;
- Non-metric,
 e.g. emergent scenarios, squared Yang-Mills;
- and many more...

Ezquiaga, Zumalacàrregui arXiv:1807.09241

Summary of models

DE/MG models

There are many models but we still do not have a compelling alternative to ΛCDM

Observations may give us a clue:
Is it the cosmological constant or a light degree of freedom?
Does it cluster or couple to matter?

cf. CMB (before WMAP)

Gawiser & Silk astro-ph/9806197

How to test DE/MG models

Einstein equations

$$G_{\mu\nu} = \kappa^2 T_{\mu\nu}^M + \kappa^2 E_{\mu\nu}, \quad E_{\mu\nu} = T_{\mu\nu}^{DE} + G_{\mu\nu}^{MG} \qquad \nabla^{\mu} (T_{\mu\nu}^M + E_{\mu\nu}) = 0$$

- Background (homogeneity & Isotropy) $E_{\nu}^{\mu} = {\rm diag}\; (-\rho_E, P_E, P_E, P_E)$ everything is determined by the equation of state $w_E = P_E / \rho_E$
- Small Inhomogeneity [in Newtonian gauge]

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Psi)d\eta^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j} \right] \qquad H = \frac{a'}{a}$$

Linear scalar perturbations with respect to 3-space (assumed to be flat)

Cosmological perturbation theory

- Fourier transformation and decomposition
- Scalar harmonics:

$$S \propto e^{i k_j x^j}$$
, $S_j = -i \hat{k}_j S$, $S_{ij} = \left(\frac{\delta_{ij}}{3} - \hat{k}_i \hat{k}_j\right) S$

- $\nabla^2 S = -k^2 S$ and $S_i^i = 0$
- Any scalar, vector and tensor can be written in terms of these:

$$V_i = V S_i, \qquad A_{ij} = A_L \delta_{ij} + A_T S_{ij}$$

Kodama & Sasaki 1985 Mukhanov, Feldman, Brandenberger 1990 Malik & Wands 2008

Matter content

Energy momentum tensor

$$T_{I\nu}^{\mu} = \begin{pmatrix} -(\rho_I + \delta \rho_I), & (\rho_I + P_I)v_{Ii} \\ -(\rho_I + P_I)v_I^i, & (P_I + \delta P_I)\delta_j^i + P_I \Pi_{Ij}^i \end{pmatrix} \qquad v^i = v S^i, \text{ : velocity}$$

$$\Pi_j^i = \Pi S_j^i \text{ : anisotropic stress}$$

Conservation of energy momentum tensor

for now, we assume matter and dark component obeys the conservation independently [if not assumed, interacting DE: $\nabla^{\mu}(E_{\mu\nu}) = Q_{\nu}^{DE}$]

$$\frac{d\delta\rho_{I}}{d\eta} + 3\mathcal{H}(\delta\rho_{I} + \delta P_{I}) = -(\rho_{I} + P_{I})(kv_{I} - 3\dot{\Phi}) \qquad w_{m} = P_{m} / \rho_{m} = 0, \quad \delta P_{m} = \Pi_{m} = 0,$$

$$\left(\frac{d}{d\eta} + 4\mathcal{H}\right) \left[\frac{(\rho_{I} + P_{I})v_{I}}{k}\right] = \delta P_{I} - \frac{2}{3}P_{I}\Pi_{I} + (\rho_{I} + P_{I})\Psi \qquad w_{E} = P_{E} / \rho_{E}, \quad \delta P_{E}, \quad \Pi_{E},$$

Equations for linear perturbations

Einstein equations

$$k^{2}\Phi = -4\pi G a^{2} (\rho_{m} \Delta_{m} + \rho_{E} \Delta_{E}), \quad \rho_{I} \Delta_{I} = \delta \rho_{I} + 3(\rho_{I} + P_{I}) \frac{H}{k} v_{I}$$
$$k^{2}(\Psi - \Phi) = -8\pi G a^{2} P_{E} \Pi_{E}$$

• Conservation of energy momentum tensor for matter $(k/H)^2 >> 1$

$$\Delta_m' = -H \theta_m$$
, $\theta_m = (k/H) v_m$: velocity divergence

$$\theta_m' + H \left(1 + \frac{H'}{H^2}\right) \theta_m = \frac{k^2}{H} \Psi$$

$$\Delta_m'' + H \Delta_m' = -k^2 \Psi$$

Evolution of matter is determined by the Newtonian potential Dark component affects the evolution through the Newtonian potential

Growth of structure – LCDM

1) LCDM
$$E_{\mu\nu} = -\Lambda g_{\mu\nu}$$

$$k^{2}\Phi = -4\pi G a^{2} \rho_{m} \Delta_{m}$$

$$\Phi - \Psi = 0$$

$$\Delta_{m} + H \Delta_{m} - 4\pi G a^{2} \rho_{m} \Delta_{m} = 0$$

$$\Delta_m "+ H \Delta_m '- 4\pi G a^2 \rho_m \Delta_m = 0$$

We define the growth function $D_{_{\!\scriptscriptstyle\perp}}$ as the growing mode solution for Δ_m

in MD era,
$$a \propto \eta^2$$
, $H^2 = 8\pi G a^2 \rho_m/3$ \longrightarrow $D_+ \propto a$

at late times, due to the cosmological constant, $H^{2} = \frac{8\pi Ga^{2}}{2} (\rho_{m} + \rho_{\Lambda})$ gravity becomes weaker

EdS

Growth of structure – smooth DE

2) smooth DE
$$\delta \rho_E = \pi_E = 0$$

using $N = \ln a$ $\Delta_m "+ H \Delta_m '- 4\pi G a^2 \rho_m \Delta_m = 0$
 $\ddot{D}_+ + \frac{1}{2} (1 - 3\Omega_{DE} w_{DE}) \dot{D}_+ - \frac{3}{2} \Omega_m D_+ = 0$
 $\dot{\Omega}_m = 3 w_{DE} (1 - \Omega_m) \Omega_m, \quad \Omega_{DE} = 1 - \Omega_m$

For a fixed present-day Ω_{DE} , if $w_{DE} > -1$, DE density is larger in the past suppressing the growth compared with LCDM $w_{DE}(z) = w_0 + w_a \frac{z}{1+z}$

Growth rate

Growth rate

$$f = \frac{d \ln \Delta_m}{d \ln a} = \frac{a}{D_+} \frac{dD_+}{da}$$

$$\dot{f} + f^2 + \left[\frac{1}{2} - \frac{3}{2} w_{DE} (1 - \Omega_m) \right] f = \frac{3}{2} \Omega_m$$

$$f = \Omega_m^{\gamma}, \quad \gamma = 0.545 + 0.05(1 + w_{DE}(z = 1))$$

1.0 (w_0, w_a) --- (-1.35,0) 0.9 --- (-1.3,0.2)--- (-1.1,-0.4) 0.8 --- (-1.1,0) 0.7 --- (-0.95,0.1) 0.6 --- (-0.9,0) --- (-0.8,0.3) 0.5 1.0 1.5 --- (-0.65,0) \boldsymbol{z}

Dossett & Ishak 1311.0726

 $w = w_0 + w_a \frac{z}{z+1}$

 γ is insensitive to the equation of state w_{DE} (but the growth rate depends on w_{DE} through Ω_m)

Growth of structure – clustering DE

3) Clustering DE $\delta \rho_E \neq 0 \quad (\pi_E = 0)$

Let's consider a toy model for dark component with non-zero sound speed

$$\delta P_E = c_{sE}^2 \delta \rho_E$$

assuming that the dark component dominates the universe

$$\Delta_E$$
"+ \mathcal{H} Δ_E '+ $\left(c_{sE}^2k^2 - 4\pi Ga^2\rho_E\right)\Delta_E = 0$

For $k > k_J = \sqrt{\frac{4\pi G a^2 \rho_E}{c_{sE}}}$ pressure wins over gravity and Δ_E does not grow

clustering DE requires small sound speed $(k_J/a)^{-1}$: Jean's length

Quintessence

Sound speed

$$c_{s\phi}^2 \equiv \frac{\delta P_{\phi}}{\delta \rho_{\phi}} \bigg|_{\nu_{\phi}=0} = 1, \quad \nu_{\phi} \propto \delta \phi$$

propagation speed

scalar field equation of motion
$$S_{\phi} = \int d^4x \left[-\frac{1}{2} g^{\mu\nu} \left(\partial_{\mu} \phi \right) \left(\partial_{\nu} \phi \right) - V(\phi) \right]$$

$$\delta \ddot{\phi} + 3H \delta \phi + c_{p\phi}^2 \frac{k^2}{a^2} \delta \phi + \dots = 0$$

for standard kinetic term, $c_{p\phi}^2 = c_{s\phi}^2 = 1$ thus the scalar field does not cluster below the horizon scale thus can be approximated as smooth DE $\delta \rho_{\scriptscriptstyle E} = \pi_{\scriptscriptstyle E} = 0$

Quintessence

 Note that this does not mean we can ignore the perturbations of scalar field entirely

Caldwell: An introduction to quintessence

Growth of structure – clustering DE/MG

Poisson equation

$$k^{2}\Phi = -4\pi a^{2}G\left(1 + \frac{\rho_{E}\Delta_{E}}{\rho_{m}\Delta_{m}}\right)\rho_{m}\Delta_{m}$$

clustering DE acts like modifications of gravity for dark matter

$$k^2 \Phi = -4\pi a^2 G_{\text{eff}}(k, \eta) \rho_m \Delta_m$$

Anisotropic stress

$$k^2(\Psi - \Phi) = -8\pi G a^2 P_E \Pi_E$$

 $\Pi_F = 0$ for quintessence but it appears typically in modified gravity models

Zoology of DE/MG models

Clustering DE $(\Omega_{\scriptscriptstyle E}, w_{\scriptscriptstyle E}, \delta \rho_{\scriptscriptstyle E})$ K-essence

Smooth DE (Ω_E, w_E) Quintessence Modified gravity $(\Omega_E, w_E, \delta \rho_E, \pi_E)$ (screening mechanisms)

Interacting DE $(\Omega_E, w_E, \delta \rho_E, Q_E^{\mu})$ (violation of equivalence principle)

• Background H(z)

Supernovae: luminosity distance

CMB/Baryon Acoustic Oscillation (BAO): angular diameter distance

ESA Planck

Weak lensing

$$ds^{2} = a^{2} \left[-(1+2\Psi)d\eta^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j} \right]$$

Convergence (photons follow geodesic)

$$\kappa(\vec{n}) = \int d\chi \frac{(\chi_s - \chi)\chi}{\chi_s} \nabla_{\perp}^2 \phi_W (\eta_0 - \chi, \chi \vec{n}), \quad \phi_W = \frac{1}{2} (\Psi + \Phi)$$
geometry

Galaxy shape is determined by shear which can be computed from convergence

Bartelmann & Schneider astro-ph/9912508

CMB

Integrated Sachs-Wolfe (ISW) effect

The time variation of lensing potential causes a shift of photon temperature

$$\Theta_{\ell}(k) = \int_0^{\eta} d\eta \, \frac{\partial \phi_W(k, \eta)}{\partial \eta} \, j_{\ell}[k(\eta_0 - \eta)]$$

lensing

CMB is also lensed

$$\Theta_{lensed}(\vec{n}) = \Theta(\vec{n} + \vec{d})$$

$$\vec{d} = \vec{\nabla} \psi, \quad \psi(\vec{n}) = -2 \int d\chi \frac{(\chi_{LSS} - \chi)\chi}{\chi_{LSS}} \phi_W(\eta_0 - \chi, \chi \vec{n}), \quad \phi_W = \frac{1}{2} (\Psi + \Phi)$$

http://cmbcorrelations.pbworks.com

 Redshift distortions galaxies have peculiar velocities clustering of galaxies in redshift space is enhanced along the line of sight

$$\delta^{s}(k,\mu) = \Delta_{m}(k) - \mu^{2}\theta(k), \quad \mu^{2} = \frac{\left(\vec{k} \cdot \vec{n}\right)^{2}}{k^{2}}$$

Hamilton astro-ph/9708102

If the continuity equation holds, the velocity dispersion is related to the growth rate

The continuity equation holds, the velocity dispersion is related to the growth of
$$\delta^s(k,\mu) = \Delta_m(k) \left(1 - \mu^2 \frac{\theta(k)}{\Delta_m(k)}\right) = \Delta_m(k) \left(1 + \mu^2 f\right) \qquad \Delta_m' = -H \ \theta_m$$

$$f = \frac{d \ln \Delta_m}{d \ln a} = \frac{a}{D_+} \frac{dD_+}{da}$$

Background expansion history

Background expansion is determined by the equation of state

Parametrisation

$$w_{DE} = w_0 + w_a (1-a) = w_0 + w_a \frac{z}{1+z}$$

Linder astro-ph/0311403

Model based parametrisation

Parametrisation

$$1 + w_{\phi} \approx \frac{2}{3} \varepsilon_{\phi} \Omega_{\phi}(a)$$

$$\varepsilon_{\phi} = \frac{1}{2\kappa^2} \left(\frac{V'}{V}\right)^2, \quad \Omega_{\phi} = \frac{\rho_{\phi}}{\rho_{\phi} + \rho_{m}}$$

$$\varepsilon_{s} = \varepsilon_{\phi}(\rho_{m} = \rho_{DE})$$

$$\varepsilon_{\infty} = \varepsilon_{\phi} \Omega_{\phi}(a \to 0)$$

Planck 1502.01590

Expansion history v structure growth

LCDM/Smooth DE

There is a one-to-one correspondence between background expansion history and growth of structure

Expansion history v structure growth

Clustering DE/MG

structure growth is controlled also by $\delta \!
ho_{\!\scriptscriptstyle E}$

Even if it has the same expansion history as smooth DE, structure growth is different

Consistency test

Assume that the Universe is described by a clustering DE/MG model but we still try to fit the date using smooth DE

$$w(z) = w_0 + w_1 z,$$

SNe+CMB

SNe+weak lensing

Inconsistent!

Ishak et.al. astro-ph/0507184

Consistency relation

In GR, gravitation equations are given by

$$H^{2} = \frac{8\pi G}{3} \rho_{T}, \quad \rho_{T} = \sum_{i} \rho_{i}$$

$$\frac{k^{2}}{a^{2}} \Phi = 4\pi G a^{2} \rho_{T} \delta_{T}, \quad \rho_{T} \delta_{T} = \sum_{i} \rho_{i} \delta_{i}$$

Consistency relation

Peculiar velocity (Redshift distortions)

$$k^2 \Psi = \frac{d(a\theta_m)}{dt}$$

Galaxy distribution

$$\delta_g = b_T \delta_T$$

We have just enough number of observations to check the relation

Parametrisation

- Dark component

 We need to specify $(\delta P_{\!\scriptscriptstyle E},\pi_{\!\scriptscriptstyle E})$
- Parametrisation of Einstein equations

$$k^{2}\Psi = -4\pi G a^{2} \mu(k,a) \rho_{m} \Delta_{m}$$

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Psi)d\eta^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j} \right]$$

$$\Phi = \eta(k,a)\Psi$$

equivalently, we can also parametrise the lensing potential

$$k^{2}\Psi = -4\pi G a^{2}\mu(k,a)\rho_{m}\Delta_{m}$$

$$k^{2}\frac{(\Psi + \Phi)}{2} = -4\pi G a^{2}\Sigma(k,a)\rho_{m}\Delta_{m}, \quad \Sigma = \frac{\mu(1+\eta)}{2} \qquad \mu = \eta = \Sigma = 1 \text{ for smooth DE}$$

Weak lensing and Redshift Distortions

• Combining WL ($\phi_W = (\Phi + \Psi)/2$) and RSD (θ_m) we can break the degeneracy

$$k^{2}\Psi = -4\pi G a^{2} \mu(k,a) \rho_{m} \Delta_{m}$$

$$k^{2}(\Psi + \Phi) = -4\pi G a^{2} \Sigma(k,a) \rho_{m} \Delta_{m}, \quad \Sigma = \frac{\mu(1+\eta)}{2}$$

$$\theta_{m}' + H \left(1 + \frac{H'}{H^{2}}\right) \theta_{m} = \frac{k^{2}}{H} \Psi$$

$$\Delta_{m}'' + H \Delta_{m}' + 4\pi G a^{2} \mu(k,a) \rho_{m} \Delta_{m} = 0$$

$$\mu(a) = 1 + \mu_3 a^3$$
, $\Sigma(a) = 1 + \Sigma_3 a^3$

Planck 2015 results

Assuming LCDM background

$$\mu(a) = 1 + \overline{\mu} \Omega_{DE}(a), \quad \Sigma(a) = 1 + \overline{\Sigma} \Omega_{DE}(a)$$

$$\mu_0 = \mu(1), \quad \Sigma_0 = \Sigma(1)$$

Max. degeneracy	Planck TT+lowP	Planck TT+lowP +BSH	Planck TT+lowP +WL	Planck TT+lowP +BAO/RSD	Planck TT+lowP +WL+BAO/RSD
					$1.03 \pm 0.34 (3.0\sigma)$ $0.51^{+0.21}_{-0.30} (1.7\sigma)$

tension with LCDM

Planck 1502.01590

Tension with LCDM in Planck data

Lensing amplitude

CMB lensing requires a larger amplitude than LCDM in the power spectrum $A_{lens} = 1.22 \pm 0.10$

(cf. this tension does not exist for lensing measured from trispectrum)

Amplitude of fluctuations

The late time amplitude of fluctuations in LCDM predicted from primordial amplitude measured by CMB is larger than that measured by weak lensing (CFHTLS) Planck 1502.01590

Valentino et.al. 1509.07501 Σ_0

Future forecasts

Next 3-5 years

Zhao et.al. 1510.08216

DES (2012-2017) imaging eBOSS (2014-2018) spectroscopic Several parameters at the 5-10% level

Next 5-10 years

Euclid (2020-)
10 parameters at the 1% level

$Euclid (2020-) \\ http://sci.esa.int/euclid/$

R-LO	The Euclid Mission will by itself allow us to understand the nature of the apparent acceleration of the Universe and test gravity on cosmological scales from the measurement of the cosmic expansion history and the growth rate of structures.
R-L0.1	To determine the nature of the apparent acceleration, Euclid will distinguish effects produced by a cosmological constant from those produced by a dynamical dark energy. This must be done by achieving a minimum FoM>400 from Euclid data alone.
R-L0.2	To experience effects of gravity on cosmological scales, Euclid will probe the growth of structure and will separately constrain the two relativistic potentials, Ψ and Φ . This can be done by achieving an absolute 1σ precision of 0.02 on the growth index, γ , from Euclid data alone.

Abazajian et.al. Dark Energy and CMB [2014]

From theory to observations

initial conditions

fluid approach
Effective Field Theory
many free functions

 $\mu(k_i, z_i), \Sigma(k_i, z_i)$

 $C_{\ell}^{IJ}(z)$ galaxy count Lensing ISW systematics