IL PROBLEMA DEI MINIMI QUADRATI!
CASO DISCRETO, APPROSSIMAZIONE Pm

$$(x_i, y_i)$$
 $i=1,...,N$

(i modi sei mon sono necessareiamente distinti)

Sia m < N (m << N)

Cerco pm E Pm (polinomi algebrici)

t.c. :

$$di = yi - pm(sei)$$
 $i = 1, ..., N$

$$\sum_{i=1}^{N} (y_i - p_m(x_i))^2 = \min_{i=1}^{N} (y_i - p_m(x_i))^2$$

-Pm ∈ IPm

$$\sum_{i=1}^{N} (d_{i}^{*})^{2} = \min_{i=1}^{N} (d_{i})^{2}$$

$$p_{m}(x) = a_{m}x + a_{m-1}x + ... + a_{x} + a_{0}$$

 $p_{m}(x) = a_{m}x + a_{m}x$ $(a_{m}, a_{m-1}, ..., a_{2}, a_{1}, a_{0})$ $\in \mathbb{R}^{m+1}$

$$mv = 0$$
 $\sum_{i=1}^{N} (y_i - a_o)^2 = mun \sum_{i=1}^{N} (y_i - a_o)^2$
 $a_o \in \mathbb{R}$

$$\Delta_0^* = \frac{1}{N} \sum_{i=1}^N y_i = \text{mean}(y)$$

$$\frac{N}{\sum_{i=1}^{N} (y_{i} - a_{i} z_{i} - a_{o})^{2}} = \min_{i=1}^{N} \sum_{i=1}^{N} (y_{i} - a_{i} z_{i} - a_{o})^{2}$$

$$(a_{1}, a_{o}) \in \mathbb{R}^{2}$$

in put:
$$x$$
, y vettori $[x_1,...,x_N]$ $[y_1,...,y_N]$ $f(x_i)$ m_i , z (compionamento)

Capo particolare: Xi distinti, m= N-1: INTERPOLAZIONE