无线传感器网络简介

一级 分类	二级分类	三级分类	
物理量	力学量	压力、力矩、位移、速度、加速度、位置、尺度、密度、粘度、浊度、硬度、雨量等	
	热学量	温度、热流、热导率、热扩散率等	
	光[学量]	激光、可见光、红外光、紫外光、照度、亮度、色度、图像、能见度等	
	磁[学量]	磁场、磁通量等	
	电学量	电流、电压、电场等	
	微波		
	射线	X 射、 α 射线、 β 射线、 γ 射线、射线剂量等	
化学量	气体	一氧化碳、二氧化碳、氧化硫、二氧化硫、硫化氢、氧气、臭氧、氢气、氯化氢、二氧化氮等	
	重金属检测	铅、铬、铜、钴、锌、砷、镍、汞等	
	湿度	绝对湿度、相对湿度	
	离子	PH、成分、离子活度等	
生物量	生理量	体压、脉搏、心音、体温、血流、呼吸、细胞膜等	
	生化量	酶、亲和性、微生物、细胞、组织、脂、氨基酸类分子、药物等	

http://www.sohu.com/a/204477403_116417

可穿戴键盘

- 无线传感器网络技术概述
- 无线传感器网络MAC协议
- 无线传感器网络路由协议
- 无线传感器网络的定位技术

计算机设备的演化历史

研究历史

Sound Speed

Direct
Path
Boitom
Bounce
Convergence
Zone

■ 二十世纪70年代,冷战时期的声音检测系统(Sound Surveillance System-SOSUS)

IUSS Manning in the Late 80s

研究历史

- 1980年,美国国防高级研究计划局的分布式传感器网络项目(Distributed Sensor Networks-DSN)
- 卡耐基梅隆、麻省理工、马萨诸塞
- 许多空间上散布的传感器节点以相互协作、 自动化的方式进行工作,经过处理所得到的 信息将路由到最需要该信息的节点
- 第一个真正具有现代意义的无线传感器网络项目

- 1993起, WINS (Wireless Integrated Network Sensors)项目
 - 美国Rockwell研究中心和加州大学洛杉矶分校
 - 前身是LWIM(低功率无线集成微传感器)计划,基于低功率电子技术,研制集信号处理、无线通信、数字控制和多种传感能力等功能于一体的传感器节点
 - 将嵌入在设备、设施和环境中的传感器、控制器和处理器建成分布式网络并能够通过Internet进行访问

研究历史—军事领域

- 美国陆军的研究计划
 - 灵巧传感器网络通信(2001-2005,通用通信基础设施)
 - 搜集敌方数据,监视战场动态并重构战场,
 - 无人值守地面传感器群 (支持陆军更广阔视野)
 - 灵活部署传感器到需要的地方,执行特定任务
 - ■战场环境侦察与监视系统(侦察和情报)
 - 传感器网络+机载和车载型侦察与特色设备构成 一个多层智能化传感系统,更详尽准确的探测 战场情报

- 美国海军的研究计划
 - •传感器网络系统:战术和战略级的传感器信息管理
 - 网状传感器系统CEC(Cooperative engagement capability): 装载在舰艇和战斗机群上,可以多源获取数据,进行高精度侦察

- 美国Sandia国家实验室和能源部
 - 共同研究用于地铁、车站等场所的防范 恐怖袭击的对策系统
 - 融检测有毒的、奇特的化学传感器和网络技术于一体
 - 传感器一旦检测到某种有害物质,就会自动向管理中心通报,并自动采取急救措施

- 1995年,美国国家智能交通系统项目规划
- 有效地使用传感器网络进行交通管理,可以对车速、车距进行控制,还能提供道路通行状况信息、最佳的行驶路线,发生交通事故时可以自动和事故抢救中心联系

重点领域与 优先主题

研究历史一我国

- 2002年,国家自然科学基金、下一代互联网示范工程、 863计划等支持相关课题
- 2006年《国家中长期科学与 技术发展规划纲要》为信息 技术确定了3个前沿方向,其 中两个与WSN直接相关,分 别是智能感知技术和自组织 网络技术
- 国家重点研发计划:物联网 与智慧城市专项

信息产业及现代服务业

- (40) 现代服务业信息支撑技术及大型应用软件 [1]
- (41) 下一代网络关键技术与服务 [1]
- (42) 高效能可信计算机 [1]
- (43) 传感器网络及智能信息处理
- (44) 数字媒体内容平台
- (45) 高清晰度大屏幕平板显示
- (46) 面向核心应用的信息安全

其他领域(的优先主题),也离不开传感器网络: 交通运输业:智能交通管理、交通运输安全与应急保障 制造业:数字化和智能化设计制造 环境:环境监测与环境保护 水和矿产资源等

2009年1月15日 纽约 客机撞鸟

全美航空公司1549航班迫降事件

2009年1月15日 纽约 客机撞鸟 全美航空公司1549航班迫降事件

論//@When-in-doubt-work-out: //@TEDNews:马来西亚航空MH370失踪至今,依旧没有消息。让我们祈祷有奇迹出现。TED讲者Ric Elias是一名空难劫后余生的幸存者。他描述了惊心动魄的坠机过程,以及他从中得到的人生启示。期盼 MH370上的239个生命也能如此幸运。

@TEDNews V

"想像你在3千呎高空,舱内黑烟密布,引擎嘎嘎作响。空姐说:'没事,应该只是撞上鸟了。'我们离目的地很近,已能看到曼哈顿。2分钟后,机长把飞机对准哈迪逊河,关闭引擎。整台飞机如此安静。他说:'即将迫降,小心冲击。'空姐眼中满是恐惧。完了。"《坠机让我学到的三件事》 《网页链接

▲ 收起 | Q 查看大图 | ⑤ 向左旋转 | C 向右旋转

什么是无线传感器网络

- WSN-Wireless Sensor Networks
 - 由部署在观测环境附近的**大量的微型、廉价、低功耗**的传感器节点组成,通过无线通信方式形成一个多跳的无线网络系统。
- 传感器网络的三个基本要素:
 - 传感器,感知对象,观察者
- 传感器网络的基本功能
 - 协作地感知、采集、处理和发布感知信息

现代感知方法

- 传感器网络覆盖感知对象区域
- 每个传感器完成其临近感知对象的观测
- 多传感器协同完成感知区域的大观测任务
- 使用多跳路由算法向用户报告观测结果

[nternet Sensor Nodes Σζζ Users **Query** Application Field

WSN典型操作2 query result gateway Sensory data Sensory data Sensory data Sensory data

传感器网络的节点

●传感器节点

- **为能:** 采集、处理、控制和通信等
- > 网络功能: 兼顾节点和路由器
- > 资源受限:存储、计算、通信、能量

Sink节点

- > 功能:连接传感器网络与Internet等外部网络, 实现两种协议栈之间的通信协议转换,发布管 理节点的监测任务,转发收集到的数据。
- >特点:连续供电、功能强、数量少等

无线传感器节点的结构

野外露天型WSN节点实证测试

无线传感器网络的特点

- 大规模网络: 地理区域大, 部署密集
- 自组织网络:不确定性,拓扑结构变化
- 资源受限: 计算、存储、通讯、能量
- 动态拓扑: 节点故障,通讯故障,移动性,节点加入
- 可靠网络: 适应环境条件, 鲁棒性, 容错性
- 应用相关:没有统一的通信协议平台
- ■以数据为中心

无线传感器网络的设计目标

- ■精度高
 - 对监测目标进行近距离密集抽样
- 灵活性强
 - ■随机性布设、网络自组织
- ■可靠性高
 - 系统高可靠性
- 经济性好
 - ■节点廉价

WSN与ad hoc网络比较

	WSN	ad hoc
网络目标	数据为中心	地址为中心
网络规模	巨大(上万个节点)	较大(上百个节点)
节点能量	电量严格受限(电池供电)	电量不严格受限
存储和计算能力	严格受限(128KFlash+8KRAM MCU)	不受限 (ARM DSP)
带宽	几十Kbps到几百Kbps	几十Mbps以上
设计目标	最大程度节能	QoS保证
成本	<1\$/node	较高

无线传感器网络应用

- 军事应用
- ■环境监测
- 医疗健康
- ■动物保护
- 灾难救援
- ■智能交通
- ■智能家居

.

WSN的应用一国防军事

传感器系统

面向军事指挥和军事演练的战场信息侦测示范传感网

39

部署 信息采集 故情监测

红杉树微气候监测

红杉树微气候监测

冰河监测

利用WSN监测冰河的变化 情况,目的在于通过冰河 变化情况来推断地球气候 的变化。

火山监测

A volcanic earthquake (such as an explosion) occurs at the volcanic vent and radiates acoustic waves into the atmosphere and seismic waves in the ground,

大鸭岛海燕行为监测

电子牧场

油轮维护

the top 100 IT projects in 2004

室内定位

WSN的应用一健康观测

- 病人生命特征监测
- 长者行为监测

Technologies supporting informal family & friends care network

Technologies for telemedicine—remote diagnostics and virtual physician visits

第一代

第一代

RF Signal

Smartphone serving as caretaker's remote monitor

Quarter-coin-sized circuit board

Ultra-thin film presser e sensor

升级版

WSN的应用一医疗护理

4. This semiconductor camera (a) crafted by Zarlink Semiconductor lies at the heart of Given Imaging's PillCam vitamin-sized capsule for gastrointestinal studies (b).

医疗健康

- ■海上物联网
 - 智能漂浮传感器感知海域的活动信息
 - 卫星网络进行云端存储和实施分析
- ■海底物联网
 - 人造设施:水下电缆、波浪传感器、水利 发电设备
 - 信号传输: Seatooth无线连接技术

关键性能指标

- 网络的工作寿命
- ■网络覆盖范围
- 网络搭建成本和难易程度
- 网络响应时间

WSN网络体系结构

- ■物理层

 - ■一般选用ISM频段

- 数据链路层
 - 数据成帧、差错校验 和帧检测
 - MAC协议:媒体访问和错误控制;建立可靠点对点或点对多点的通信链路,减少无效能量损耗。

- 网络层
 - 路由协议:用于监控 网络拓扑变化,定位 网络拓扑变化,定位 目标节点位置,产生、维护和选择路由,以 及节点间路由信息交换。

- 传输层
 - 负责将无线传感器网络的数据提供给外部网络。
 - 由于硬件条件限制, 传输层协议开发存在 一定困难,多采用特 殊节点网关。

- 应用层
 - 主要任务是获取数据 并进行初步处理,这 与具体的应用场合和 环境密切相关,必须 针对不同的应用需求 进行设计。

- 能源管理平台:管理传感器节点如何使用能量;
- 移动管理平台: 检测和注册传感器节点 的移动,维护到汇聚点 的路由,使得传感器节 点能够跟踪它的邻居;
- 任务管理平台:在一个给定的区域内平 衡和调度监测任务

ZigBee/IEEE 802.15.4

- IEEE 802.15.4
 - For Low-Rate WPAN
 - 3 bands, 27 channels
 - 868 MHz: 1 channel, 20 kb/s
 - 915 MHz: 10 channels, 40 kb/s
 - 2.4 GHz: 16 channels, 250 kb/s
 - Simple CSMA/CA
 - Long battery life
 - Low cost
 - Optional security
- ZigBee
 - Upper layers
 - Application profiles

面临挑战

- 如何在如此有限通信能力的条件下,高质量地完成感知数据的查询、分析、挖掘与 传输?
- 如何为多源信息传输选择优化通信路径?
- 节点移动,断接频繁,通信路径重构成为 突出问题?路由算法必须具有自适应性?
- 如何使传感器网络在工作中节省能量,实现能源均衡,最大化网络生命周期?

- 如何使用大量具有有限计算能力的传感器设计 能源有效的高性能分布式算法?
- 如何使传感器网络软硬件具有高强壮性和容错性?
- 如何建立以数据为中心的传感器网络?
- 如何设计高效率、能源有效、实时的海量感知数据流的查询、分析和挖掘的分布式算法?

.

谢谢!