Introduction to Commutative Algebra

M. F. Atiyah & I. G. MacDonald

November 10, 2021

Contents

1	Rings and Ideals	1
	1.1 Exercise	10
2	TODO Problems	18

1 Rings and Ideals

A **ring homomorphism** is a mapping f of a ring A into a ring B s.t.

- 1. f(x+y) = f(x) + f(y)
- 2. f(xy) = f(x)f(y)
- 3. f(1) = 1

An **ideal** $\mathfrak a$ of a ring A is a subset of A which is an additive subgroup and is s.t. $A\mathfrak a\subseteq \mathfrak a$. The quotient group $A/\mathfrak a$ inherits a uniquely defined multiplication from A which makes it into a ring, called the **quotient ring** $A/\mathfrak a$. The elements of $A/\mathfrak a$ are the cosets of $\mathfrak a$ in A, and the mapping $\phi:A\to A/\mathfrak a$ which maps each $x\in A$ to its coset $x+\mathfrak a$ is a surjective ring homomorphism

Proposition 1.1. There is a one-to-one order-preserving correspondence between the ideals b of A which contain a, and the ideals \bar{b} of A/a, given by $b = \phi^{-1}(\bar{b})$.

Proof. Let $S_1=\{\mathfrak{b}:\mathfrak{b} \text{ an ideal of } A \text{ and } \mathfrak{a}\subseteq\mathfrak{b}\}$ and $S_2=\{\bar{\mathfrak{b}}:\bar{\mathfrak{b}} \text{ an ideal of } A/\mathfrak{a}\}$, π is the natural map $\pi(S)=S/\mathfrak{a}$, we prove that

$$\varphi: S_1 \to S_2 \qquad \mathfrak{b} \mapsto \pi(\mathfrak{b})$$

is an bijection.

First assume that $\mathfrak{a} \subseteq \mathfrak{b}$, we prove that $\pi^{-1}\pi(\mathfrak{b}) = \mathfrak{b}$. Apparently $\mathfrak{b} \subseteq \pi^{-1}\pi(\mathfrak{b})$. For any $b \in \pi^{-1}\pi(\mathfrak{b})$, there is a $s \in \mathfrak{b}$ s.t. $\pi(b) = \pi(s)$. Thus $b-s \in \ker \pi = \mathfrak{a}$. As $\mathfrak{a} \subseteq \mathfrak{b}$, we have $b \in \mathfrak{b}$. Hence $\pi^{-1}\pi(\mathfrak{b}) = \mathfrak{b}$.

Thus for any $\mathfrak{b}_1,\mathfrak{b}_2\in S_1$ and $\varphi(\mathfrak{b}_1)=\pi(\mathfrak{b}_1)=\pi(\mathfrak{b}_2)=\varphi(\mathfrak{b}_2)$, we have $\pi^{-1}\pi(\mathfrak{b}_1)=\pi^{-1}\pi(\mathfrak{b}_2)$. Thus φ is injective.

For any $\bar{\mathfrak{b}} \in S_2$, $\pi^{-1}(\bar{\mathfrak{b}})$ contains $\mathfrak{a} = \pi^{-1}(\{0\})$. Hence φ is surjective Order-preserving means $\mathfrak{a} \subseteq \mathfrak{b} \subseteq \mathfrak{c}$ iff $\bar{\mathfrak{b}} \subseteq \bar{\mathfrak{c}}$

If $f:A\to B$ is any ring homomorphism, the **kernel** of f is an ideal $\mathfrak a$ of A, and the image of f is a subring C of B; and f induces a ring isomorphism $A/\mathfrak a\cong C$

We shall sometimes use the notation $x \equiv y \mod \mathfrak{a}$; this means that $x - y \in \mathfrak{a}$

A **zero-divisor** in a ring A is an element x which divides 0, i.e., for which there exists $y \neq 0$ in A s.t. xy = 0. A ring with no zero-divisor $\neq 0$ (and in which $1 \neq 0$) is called an **integral domain**.

An element $x \in A$ is **nilpotent** if $x^n = 0$ for some n > 0. A nilpotent element is a zero-divisor (unless A = 0)

A **unit** in A is an element x which "divides 1", i.e., an element x s.t. xy=1 for some $y\in A$. The element y is then uniquely determined by x, and is written x^{-1} . The units in A form a (multiplicative) abelian group

The multiples ax of an element $x \in A$ from a **principal** ideal, denoted by (x) or Ax. x is a unit iff (x) = A = (1). The **zero** ideal (0) is denoted by (0)

A **field** is a ring A in which $1 \neq 0$ and every non-zero element is a unit. Every field is an integral domain

Proposition 1.2. *Let* A *be a ring* \neq 0*. Then the following are equivalent:*

- 1. A is a field
- 2. the only ideals in A are 0 and (1)
- 3. every homomorphism of A into a non-zero ring B is injective

Proof. $2 \to 3$. Let $\phi: A \to B$ be a ring homomorphism. Then $\ker \phi$ is an ideal $\neq (1)$ in A, hence $\ker \phi = 0$, hence ϕ is injective

 $3 \to 1$. Let x be an element of A which is not a unit. Then $(x) \neq (1)$, hence B = A/(x) is not the zero ring. Let $\phi : A \to B$ be the natural homomorphism of A onto B with kernel (x). By hypothesis, ϕ is injective, hence (x) = 0, hence x = 0

An ideal $\mathfrak p$ in A is **prime** if $\mathfrak p \neq (1)$ and if $xy \in \mathfrak p \Rightarrow x \in \mathfrak p$ or $y \in \mathfrak p$ An ideal $\mathfrak m$ in A is **maximal** if $\mathfrak m$ in A is **maximal** if $\mathfrak m \neq (1)$ and if no ideal $\mathfrak a$ s.t. $\mathfrak m \subset \mathfrak a \subset (1)$ (**strict** inclusions). Equivalently

 \mathfrak{p} is prime $\Leftrightarrow A/\mathfrak{p}$ is an integral domain \mathfrak{m} is maximal $\Leftrightarrow A/\mathfrak{m}$ is a field

Proof. If \mathfrak{m} is maximal and suppose $a \notin \mathfrak{m}$. Then $J = \{ra + i : i \in \mathfrak{m} \text{ and } r \in A\}$ is an ideal. Hence J = A. So there is $r \in A, \mathfrak{m} \in I \text{ s.t. } 1 = ra + i$. So we have $1 \equiv ra \mod \mathfrak{m}$. Hence we find the inverse of $a + \mathfrak{m}$

If A/\mathfrak{m} is a field and suppose $\mathfrak{m} \subset \mathfrak{n} \subset A$. Let $a \in \mathfrak{m} \setminus \mathfrak{n}$, then there exists a $b \in A$ s.t. $ab-1 \in \mathfrak{m}$. So ab+m=1 for some $m \in \mathfrak{m}$. But $ab \in \mathfrak{n}$ and $m \in \mathfrak{m} \subset \mathfrak{n}$, then we have $1 \in \mathfrak{n}$ and $\mathfrak{n} = A$.

Hence a maximal ideal is prime. The zero ideal is prime iff A is an integral domain

If $f:A\to B$ is a ring homomorphism and $\mathfrak q$ is a prime ideal in B, then $f^{-1}(\mathfrak q)$ is a prime ideal in A, for $A/f^{-1}(\mathfrak q)$ is isomorphic to a subring of $B/\mathfrak q$ and hence has no zero-divisor $\neq 0$. (Explanation. Since $\mathfrak q$ is prime, $B/\mathfrak q$ is an integral domain and a subring of an integral domain is still an integral domain. Define the map $\varphi(a+f^{-1}(\mathfrak q))=f(a)+\mathfrak q$ and we need to show its a homomorphism. Then we show its injective.)

But if $\mathfrak n$ is a maximal ideal of B it is not necessarily true that $f^{-1}(\mathfrak n)$ is maximal in A; all we can say for sure is that it is prime. (Example: $A=\mathbb Z$, $B=\mathbb Q$, $\mathfrak n=0$).

Theorem 1.3. Every ring $A \neq 0$ has at least one maximal ideal

Proof. This is the standard application of Zorn's lemma. Let Σ be the set of all ideals $\neq (1)$ in A. Order Σ by inclusion. Σ is not empty, since $0 \in \Sigma$. To apply Zorn's lemma we must show that every chain in Σ has an upper bound in Σ ; let then (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α , β we have either $\mathfrak{a}_{\alpha} \subseteq \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\beta} \subseteq \mathfrak{a}_{\alpha}$. Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Then \mathfrak{a} is an ideal and $1 \notin \mathfrak{a}$. Hence $\mathfrak{a} \in \Sigma$ and is an upper bound of the chain. Hence Σ has a maximal element

Corollary 1.4. If $a \neq (1)$ is an ideal of A, there exists a maximal ideal of A containing a

Proof. Apply 1.3 to A/\mathfrak{a} and 1.3

Corollary 1.5. Every non-unit of A is contained in a maximal ideal.

A ring A with exactly one maximal ideal $\mathfrak m$ is called a **local ring**. The field $k=A/\mathfrak m$ is called the **residue field** of A

- **Proposition 1.6.** 1. Let A be a ring and $\mathfrak{m} \neq (1)$ an ideal of A s.t. every $x \in A \mathfrak{m}$ is a unit in A. Then A is a local ring and \mathfrak{m} its maximal ideal.
 - 2. Let A be a ring and $\mathfrak m$ a maximal ideal of A s.t. every element of $1+\mathfrak m$ is a unit in A. Then A is a local ring
- *Proof.* 2. Let $x \in A \mathfrak{m}$. Since \mathfrak{m} is maximal, the ideal generated by x and \mathfrak{m} is (1), hence there exist $y \in A$ and $t \in \mathfrak{m}$ s.t. xy + t = 1; hence xy = 1 t belongs to $1 + \mathfrak{m}$ and therefore is a unit. Now use 1

A ring with only a finite number of maximal ideals is called semi-local

Example 1.1. n

- 1. $A = k[x_1, ..., x_n]$, k a field. Let $f \in A$ be an irreducible polynomial. By unique factorization, the ideal (f) is prime
- 2. $A=\mathbb{Z}$. Every ideal in \mathbb{Z} is of the form (m) for some $m\geq 0$. The ideal (m) is prime iff m=0 or a prime number. All the ideals (p), where p is a prime number, are maximal: $\mathbb{Z}/(p)$ is the field of p elements
- 3. A **principal ideal domain** is an integral domain in which every ideal is principal. In such a ring every non-zero prime ideal is maximal. For if $(x) \neq 0$ is a prime ideal and $(y) \supset (x)$, we have $x \in (y)$, say x = yz, so that $yz \in (x)$ and $y \notin (x)$, hence $z \in (x)$; say z = tx. Then x = yz = ytx, so that yt = 1 and therefore (y) = (1).

Proposition 1.7. The set \mathfrak{N} of all nilpotent elements in a ring A is an ideal, and A/\mathfrak{N} has no nilpotent $\neq 0$

Proof. If $x \in \mathfrak{N}$, clearly $ax \in \mathfrak{N}$ for all $a \in A$. Let $x, y \in \mathfrak{N}$: say $x^m = 0$, $y^n = 0$. By the binomial theorem, $(x+y)^{n+m-1}$ is a sum of integer multiples of products x^ry^s , where r+s=m+n-1;

Let $\bar{x} \in A/\mathfrak{N}$ be represented by $x \in A$. Then \bar{x}^n is represented by x^n , so that $\bar{x}^n = 0 \Rightarrow x^n \in \mathfrak{N} \Rightarrow (x^n)^k = 0$ for some $k > 0 \Rightarrow x \in \mathfrak{N} \Rightarrow \bar{x} = 0$

The ideal \mathfrak{N} is called the **nilradical** of A

Check When is nilradical not a prime ideal, which is related to Exercise 1.1.18.

Proposition 1.8. *The nilradical of A is the intersection of all the prime ideals of A*

Proof. Let \mathfrak{N}' denote the intersection of all the prime ideals of A. If $f \in A$ is nilpotent and if \mathfrak{p} is a prime ideal, then $f^n = 0 \in \mathfrak{p}$ for some n > 0, hence $f \in \mathfrak{p}$. Hence $f \in \mathfrak{N}'$

Conversely, suppose that f is not nilpotent. Let Σ be the set of ideals $\mathfrak a$ with the property

$$n>0\Rightarrow f^n\notin\mathfrak{a}$$

Then Σ is not empty because $0 \in \Sigma$. Zorn's lemma can be applied to the set Σ , ordered by inclusion, and therefore Σ has a maximal element. We shall show that $\mathfrak p$ is a prime ideal. Let $x,y \notin \mathfrak p$. Then the ideals $\mathfrak p + (x)$, $\mathfrak p + (y)$ strictly contain $\mathfrak p$ and therefore do not belong to Σ ; hence

$$f^m \in \mathfrak{p} + (x), \quad f^n \in \mathfrak{p} + (y)$$

for some m,n. It follows that $f^{m+n}\in\mathfrak{p}+(xy)$, hence the ideal $\mathfrak{p}+(xy)$ is not in Σ and therefore $xy\notin\mathfrak{p}$. Hence we have a prime ideal \mathfrak{p} s.t. $f\notin\mathfrak{p}$, so that $f\notin\mathfrak{N}'$

The **Jacobson radical** \mathfrak{R} of A is defined to be the intersection of all the maximal ideals of A. It can be characterized as follows:

Proposition 1.9. $x \in \Re$ iff 1 - xy is a unit in A for all $y \in A$

Proof. ⇒: Suppose 1-xy is not a unit. By 1.1.4 it belongs to some maximal ideal \mathfrak{m} ; but $x \in \mathfrak{R} \subseteq \mathfrak{m}$, hence $xy \in \mathfrak{m}$ and therefore $1 \in \mathfrak{m}$, which is absurd \Leftarrow : Suppose $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then \mathfrak{m} and x generate the unit ideal (1), so that we have u+xy=1 for some $u \in \mathfrak{m}$ and some $y \in A$. Hence $1-xy \in \mathfrak{m}$ and is therefore not a unit.

If \mathfrak{a} , \mathfrak{b} are ideals in a ring A, their $\operatorname{sum} \mathfrak{a} + \mathfrak{b}$ is the set of all x + y where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the smallest ideal containing \mathfrak{a} and \mathfrak{b} . More generally, we may define the $\operatorname{sum} \sum_{i \in I} a_i$ of any family (possibly infinite) of ideals \mathfrak{a}_i of A; is elements are all $\operatorname{sums} \sum x_i$, where $x_i \in \mathfrak{a}_i$ for all $i \in I$ and almost all of the x_i (i.e., all but a finite set) are zero. It is the smallest ideal of A which contains all the ideals \mathfrak{a}_i

The **product** of two ideals \mathfrak{a} , \mathfrak{b} in A is the ideal $\mathfrak{a}\mathfrak{b}$ **generated** by all products xy, where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the set of all finite sums $\sum x_i y_i$ where each $x_i \in \mathfrak{a}$ and each $y_i \in \mathfrak{b}$

We have the distributive law

$$\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}$$

In the ring \mathbb{Z} , \cap and + are distributive over each other. This is not the case in general. **modular law**

$$\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{b} \text{ if } \mathfrak{a} \supseteq \mathfrak{b} \text{ or } \mathfrak{a} \supseteq \mathfrak{c}$$

$$\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \mathfrak{b} \text{ provided } \mathfrak{a} + \mathfrak{b} = (1)$$

If $x \in \mathfrak{a} \cap \mathfrak{b}$, there is a + b = 1. Hence $xa + xb = x \in \mathfrak{ab}$

Two ideals $\mathfrak{a},\mathfrak{b}$ are said to be **coprime** if $\mathfrak{a}+\mathfrak{b}=(1)$. Thus for coprime ideals we have $\mathfrak{a}\cap\mathfrak{b}=\mathfrak{a}\mathfrak{b}$.

Let A be a ring and $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ ideals of A. Define a homomorphism

$$\phi:A\to\prod_{i=1}^n(A/\mathfrak{a}_i)$$

by the rule $\phi(x) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n)$

Proposition 1.10. 1. If \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$, then $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$

- 2. ϕ is surjective iff \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$
- 3. ϕ is injective iff $\bigcap \mathfrak{a}_i = (0)$

Proof. 1. Induction on n. The case n=2 is dealt with above. Suppose n>2 and the result true for $\mathfrak{a}_1,\ldots,\mathfrak{a}_{n-1}$, and let $\mathfrak{b}=\prod_{i=1}^{n-1}\mathfrak{a}_i=\bigcap_{i=1}^{n-1}\mathfrak{a}_i$. As we have $x_i+y_i=1$ $(x_i\in\mathfrak{a}_i,y_i\in\mathfrak{a}_n)$ and therefore

$$\prod_{i=1}^{n-1} x_i = \prod_{i=1}^{n-1} (1-y_i) \equiv 1 \mod \mathfrak{a}_n$$

Hence $\mathfrak{a}_n + \mathfrak{b} = (1)$ and so

$$\prod_{i=1}^n \mathfrak{a}_i = \mathfrak{b}\mathfrak{a}_n = \mathfrak{b} \cap \mathfrak{a}_n = \bigcap_{i=1}^n \mathfrak{a}_i$$

2. \Rightarrow : Let's show for example that $\mathfrak{a}_1, \mathfrak{a}_2$ are coprime. There exists $x \in A$ s.t. $\phi(x) = (1,0,\dots,0)$; hence $x \equiv 1 \mod \mathfrak{a}_1$ and $x \equiv 0 \mod \mathfrak{a}_2$, so that

$$1 = (1 - x) + x \in \mathfrak{a}_1 + \mathfrak{a}_2$$

 $\Leftarrow: \text{ It is enough to show, for example, that there is an element } x \in A \\ \text{ s.t. } \phi(x) = (1,0,\dots,0). \text{ Since } \mathfrak{a}_1 + \mathfrak{a}_i = (1) \ (i>1) \text{ we have } u_i + v_i = 1 \\ (u_i \in \mathfrak{a}_1, v_i \in \mathfrak{a}_i). \text{ Take } x = \prod_{i=2}^n v_i, \text{ then } x = \prod (1-u_i) \equiv 1 \mod \mathfrak{a}_1. \\ \text{ Hence } \phi(x) = (1,0,\dots,0)$

3. $\bigcap \mathfrak{a}_i$ is the kernel of ϕ

Proposition 1.11. 1. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be prime ideals and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

2. Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ be ideals and let \mathfrak{p} be a prime ideal containing $\bigcap_{i=1}^n \mathfrak{a}_i$. Then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i. If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i

Proof. 1. induction on n in the form

$$\mathfrak{a} \not\subseteq \mathfrak{p}_i (1 \leq i \leq n) \Rightarrow \mathfrak{a} \not\subseteq \bigcup_{i=1}^n \mathfrak{p}_i$$

It is true for n=1. If n>1 and the result is true for n-1, then for each i there exists $x_i\in \mathfrak{a}$ s.t. $x_i\notin \mathfrak{p}_j$ whenever $j\neq i$. If for some i we have $x_i\notin \mathfrak{p}_i$, we are through. If not, then $x_i\in \mathfrak{p}_i$ for all i. Consider the element

$$y = \sum_{i=1}^n x_1 x_2 \cdots x_{i-1} x_{i+1} \cdots x_n$$

we have $y\in \mathfrak{a}$ and $y\notin \mathfrak{p}_i$ $(1\leq i\leq n).$ Hence $\mathfrak{a}\nsubseteq\bigcup_{i=1}^n\mathfrak{p}_i$

2. Suppose $\mathfrak{p} \not\supseteq \mathfrak{a}_i$ for all i. Then there exist $x_i \in \mathfrak{a}_i$, $x_i \notin \mathfrak{p}$ $(1 \leq i \leq n)$ and therefore $\prod x_i \in \prod \mathfrak{a}_i \subseteq \bigcap \mathfrak{a}_i$; but $\prod x_i \notin \mathfrak{p}$ since \mathfrak{p} is prime. Hence $\mathfrak{p} \not\supseteq \bigcap \mathfrak{a}_i$

If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} \subseteq \mathfrak{a}_i$ and hence $\mathfrak{p} = \mathfrak{a}_i$ for some i.

For prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_n$, if $\bigcap_{i=1}^n \mathfrak{p}_i = \mathfrak{p}$ is a prime ideal, then $\mathfrak{p} = \mathfrak{p}_i$ for some i. If there are more than one minimal ideal, this could never happen

If \mathfrak{a} , \mathfrak{b} are ideals in a ring A, their **ideal quotient** is

$$(\mathfrak{a}:\mathfrak{b}) = \{x \in A : x\mathfrak{b} \subseteq \mathfrak{a}\}\$$

which is an ideal. In particular, $(0:\mathfrak{b})$ is called the **annihilator** of \mathfrak{b} and is also denoted by $\mathrm{Ann}(\mathfrak{b})$: it is the set of all $x \in A$ s.t. $x\mathfrak{b} = 0$. In this notation the set of all zero-divisors in A is

$$D=\bigcup_{x\neq 0} \mathrm{Ann}(x)$$

If b is a principal ideal (x), we shall write (a:x) in place of (a:(x))

Example 1.2. If $A = \mathbb{Z}$, $\mathfrak{a} = (m)$, $\mathfrak{b} = (n)$, where say $m = \prod_p p^{\mu_p}$, $n = \prod_p p^{\nu_p}$, then $(\mathfrak{a} : \mathfrak{b}) = (q)$ where $q = \prod_p p^{\gamma_p}$ and

$$\gamma_p = \max(\mu_p - \nu_p, 0) = \mu_p - \min(\mu_p, \nu_p)$$

Hence q = m/(m, n), where (m, n) is the h.c.f. of m and n

Exercise 1.0.1. 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$

- 2. $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- 3. $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b})$
- 4. $(\bigcap_i \mathfrak{a}_i : \mathfrak{b}) = \bigcap_i (\mathfrak{a}_i : \mathfrak{b})$
- 5. $(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}) = \bigcap (\mathfrak{a}: \mathfrak{b}_{i})$

Proof. 3. $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = \{x \in A : x\mathfrak{c} \subseteq \mathfrak{a} : \mathfrak{b}\}$. for any $c \in \mathfrak{c}$, $xc\mathfrak{b} \subseteq \mathfrak{a}$. Hence $x\mathfrak{c}\mathfrak{b} \subseteq \mathfrak{a}$.

5.
$$(\mathfrak{a}:\sum_i\mathfrak{b}_i)=\{x\in A:x\sum_i\mathfrak{b}_i\subseteq\mathfrak{a}\}$$

If \mathfrak{a} is any ideal of A, the **radical** of \mathfrak{a} is

$$r(\mathfrak{a}) = \{x \in A : x^n \in \mathfrak{a} \text{ for some } n > 0\}$$

if $\phi:A\to A/\mathfrak{a}$ is the standard homomorphism, then $r(\mathfrak{a})=\phi^{-1}(\mathfrak{N}_{A/\mathfrak{a}})$ and hence $r(\mathfrak{a})$ is an ideal by 1.7

Exercise 1.0.2. 1. $r(\mathfrak{a}) \supseteq \mathfrak{a}$

- 2. $r(r(\mathfrak{a})) = r(\mathfrak{a})$
- 3. $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- 4. $r(\mathfrak{a}) = (1)$ iff $\mathfrak{a} = (1)$.
- 5. $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$
- 6. if \mathfrak{p} is prime, $r(\mathfrak{p}^n) = \mathfrak{p}$ for all n > 0

Proof. 5. $x \in r(\mathfrak{a} + \mathfrak{b})$ iff $x^n \in \mathfrak{a} + \mathfrak{b}$. $y \in r(r(\mathfrak{a}) + r(\mathfrak{b}))$ iff $y^m = a + b$, where $a^{n_a} \in \mathfrak{a}$ and $b^{n_b} \in \mathfrak{b}$. Then $(y^m)^{n_a + n_b} = (a + b)^{n_a + n_b} \in \mathfrak{a} + \mathfrak{b}$

6.
$$x \in r(\mathfrak{p}^n)$$
 iff $x^m \in \mathfrak{p}^n$, then $x^m = p_1 \cdots p_n \in \mathfrak{p}$

Proposition 1.12. The radical of an ideal $\mathfrak a$ is the intersection of the prime ideals which contain $\mathfrak a$

Proof. Apply 1.8 to A/\mathfrak{a} .

Nilradical of A/\mathfrak{a} is the radical of \mathfrak{a} .

More generally, we may define the radical r(E) of any **subset** E of A in the same way. It is **not** an ideal in general. We have $r(\bigcup_{\alpha} E_{\alpha}) = \bigcup r(E_{\alpha})$ for any family of subsets E_{α} of A

Proposition 1.13. $D = set \ of \ zero-divisors \ of \ A = \bigcup_{x \neq 0} r(\mathsf{Ann}(x))$

$$\textit{Proof. } D = r(D) = r(\textstyle\bigcup_{x \neq 0} \mathsf{Ann}(x)) = \textstyle\bigcup_{x \neq 0} r(\mathsf{Ann}(x)) \qquad \qquad \Box$$

Example 1.3. If $A=\mathbb{Z}$, $\mathfrak{a}=(m)$, let p_i $(1\leq i\leq r)$ be the distinct prime divisors of m. Then $r(\mathfrak{a})=(p_1\cdots p_r)=\bigcap_{i=1}^n(p_i)$

Proposition 1.14. Let \mathfrak{a} , \mathfrak{b} be ideals in a ring A s.t. $r(\mathfrak{a})$, $r(\mathfrak{b})$ are coprime. Then \mathfrak{a} and \mathfrak{b} are coprime.

Proof.
$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})) = r(1) = (1)$$
, hence $\mathfrak{a} + \mathfrak{b} = (1)$

Let $f:A\to B$ be a ring homomorphism. If $\mathfrak a$ is an ideal in A, the set $f(\mathfrak a)$ is not necessarily an ideal in B (e.g. $\mathbb Z\to\mathbb Q$). We define the **extension** $\mathfrak a^e$ of $\mathfrak a$ to be the ideal $Bf(\mathfrak a)$ generated by $f(\mathfrak a)$ in B: explicitly, $\mathfrak a^e$ is the set of all sums $\sum y_i f(x_i)$ where $x_i\in\mathfrak a$, $y_i\in B$

If \mathfrak{b} is an ideal of B, then $f^{-1}(\mathfrak{b})$ is always an ideal of A, called the **contraction** \mathfrak{b}^c of \mathfrak{b} . If \mathfrak{b} is prime, then \mathfrak{b}^c is prime. If \mathfrak{a} is prime, \mathfrak{a}^e need not be prime $(f: \mathbb{Z} \to \mathbb{Q}, \mathfrak{a} \neq 0$, then $\mathfrak{a}^e = \mathbb{Q}$, which is not a prime ideal)

We can factorize f as follows:

$$f \xrightarrow{p} f(A) \xrightarrow{j} B$$

where p is surjective and j is injective

Example 1.4. Consider $\mathbb{Z} \to \mathbb{Z}[i]$, where $i = \sqrt{-1}$. A prime ideal (p) of \mathbb{Z} may or may not stay prime when extended to $\mathbb{Z}[i]$. In fact $\mathbb{Z}[i]$ is a principal ideal domain (because it has a Euclidean algorithm, i.e., a Euclidean ring) and the situation is as follows:

- 1. $(2^e) = ((1+i)^2)$, the **square** of a prime ideal in $\mathbb{Z}[i]$
- 2. if $p \equiv 1 \mod 4$ then $(p)^e$ is the product of two distinct prime ideals (for example, $(5)^e = (2+i)(2-i)$)

3. if $p \equiv 3 \mod 4$ then $(p)^e$ is prime in $\mathbb{Z}[i]$

Let $f: A \to B$, a and b be as before. Then

Proposition 1.15. 1. $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$, $\mathfrak{b} \supseteq \mathfrak{b}^{ce}$

- 2. $\mathfrak{b}^c = \mathfrak{b}^{cec}$, $\mathfrak{a}^e = \mathfrak{a}^{ece}$
- 3. If C is the set of contracted ideals in A and if E is the set of extended ideals in B, then $C = \{\mathfrak{a} \mid \mathfrak{a}^{ec} = \mathfrak{a}\}$, $E = \{\mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b}\}$, and $\mathfrak{a} \mapsto \mathfrak{a}^e$ is a bijective map of C onto E, whose inverse is $\mathfrak{b} \mapsto \mathfrak{b}^c$.

Proof. 3. If $\mathfrak{a} \in C$, then $\mathfrak{a} = \mathfrak{b}^c = \mathfrak{b}^{cec} = \mathfrak{a}^{ec}$; conversely if $\mathfrak{a} = \mathfrak{a}^{ec}$ then \mathfrak{a} is the contraction of \mathfrak{a}^e .

Proof. 1.

Exercise 1.0.3. If $\mathfrak{a}_1, \mathfrak{a}_2$ are ideals of A and if $\mathfrak{b}_1, \mathfrak{b}_2$ are ideals of B, then

$$(\mathfrak{a}_1+\mathfrak{a}_2)^e=\mathfrak{a}_1^e+\mathfrak{a}_2^e\quad (\mathfrak{b}_1+\mathfrak{b}_2)^c\supseteq \mathfrak{b}_1^c+\mathfrak{b}_2^c$$

1.1 Exercise

Exercise 1.1.1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit

Proof. x is a element of a nilradical, which is the intersection all prime ideals. Since every maximal ideal is a prime ideal, then nilradical is a subset of Jacobson radical. Then $1-(-u^{-1})x$ is a unit for some unit u, hence u+x is a unit

Exercise 1.1.2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f=a_0+a_1x+\cdots+a_nx^n\in A[x]$. Prove that

- 1. f is a unit in A[x] iff a_0 is a unit in A and a_1,\ldots,a_n are nilpotent [if $b_0+b_1x+\cdots+b_mx^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r}=0$. Hence show that a_n is nilpotent and then use Exercise 1.1.1]
- 2. f is nilpotent iff a_0, \dots, a_n is nilpotent

- 3. f is a zero-divisor iff there exists $a \neq 0$ in A s.t. af = 0
- 4. f is said to be **primitive** if $(a_0, \dots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive iff f and g are primitive

Proof. 1. Suppose $g = \sum_{i=0}^m b_i x^i$ s.t. fg = 1. For r = 0, $a_n b_m = 0$ obviously.

Now suppose this is true for all p < r. Now we prove $a_n^{r+1}b_{m-r} = 0$. The m+n-rth term's coefficient is $\sum_{i=0}^r a_{n-i}b_{m-r+i} = 0$. Then

$$a_n^{r+1} \sum_{i=0}^r a_{n-i} b_{m-r+i} = a_n^{r+1} b_{m-r} = 0$$

Thus $a_n^{m+1}b_0=0$ and hence $a_n^{m+1}=0$ as b_0 is a unit. So $f-a_nx^n$ is a unit and we can continue.

2. \Rightarrow . Goal: for any prime ideal $\mathfrak p$ in A, f is 0 in $(A/\mathfrak p)[x]$. This is because f^n is 0 in $(A/\mathfrak p)[x]$ and $A/\mathfrak p$ is an integral domain. Then for a_0,\dots,a_n is contained in every prime ideal and hence are nilpotent

If f is nilpotent and a_k is nilpotent, then $f-a_kx^k$ is still nilpotent since nilradical is an ideal

- \Leftrightarrow . Nilradical \Re is an ideal. As a_0,\dots,a_n is nilpotent in A[x], their A[x]-combination is still nilpotent
- 3. Choose a polynomial $g=b_0+b_1x+\cdots+b_mx^m$ of least degree m s.t. fg=0. Then $a_nb_m=0$ and $a_ngf=0$. As g is of least degree, we have $a_ng=0$. Then $fg=a_0g+\cdots+a_{n-1}x^{n-1}g+a_ng=a_0g+\cdots+a_{n-1}x^{n-1}g=0$. Hence for all $0\leq i\leq n$, $a_ig=0$. Arbitrary coefficient of g is what we want
- 4. If fg is primitive, then $(\sum_{\max\{0,k-m\}}^{\min\{n,k\}}a_ib_{k-i})_{k\in[0,n+m]}=(1)$. Change the coefficient one by one

By extract, we can get $(a_0^k b_k)_{k \in [0, n+m]} = (1)$. Then $(b_k) = (1)$.

Exercise 1.1.3. In the ring A[x], the Jacobson radical is equal to the nilradical

Proof. Suppose \Re is the Jacobson radical and $f \in \Re$, then 1 - fx is a unit by Proposition 1.9. By Exercise 1.1.2 (1) all coefficients of f are nilpotent, then f is nilpotent by Exercise 1.1.2 (2)

Exercise 1.1.4. Let A be the ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that

- 1. f is a unit in A[[x]] iff a_0 is a unit in A
- 2. If f is nilpotent, then a_n is nilpotent for all $n \geq 0$.
- 3. f belongs to the Jacobson radical of A[[x]] iff a_0 belongs to the Jacobson radical of A
- 4. The contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A, and \mathfrak{m} is generated by \mathfrak{m}^c and x.
- 5. Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof. 1. \Leftarrow . We compute b_n from $a_0,\dots,a_n,b_0,\dots,b_{n-1}$ and $\sum_{i=0}^n a_i b_{n-i} = 0$. Multiply it with a_0 , we get $b_n + a_0 \sum_{i=1}^n a_i b_{n-i} = 0$

- 2. Note that nilradical is an ideal. If a_k is nilpotent in A, then $a_k x$ is nilpotent in A[[x]], and $f a_k x^k$ is nilpotent. And we continue
- 3. For any $b \in A$, 1 bf is a unit, and by (1), $1 ba_0$ is a unit.
- 4. From (3), a maximal ideal \mathfrak{m} at least contains xA[[x]]. Let $\mathfrak{m}=\mathfrak{m}^c+xA[[x]]$. Now

$$A[[x]]/\mathfrak{m}\cong (A[[x]]/xA[[x]])/(\mathfrak{m}/xA[[x]])\cong A/\mathfrak{m}^c$$

Thus m is maximal

5. Given a prime ideal \mathfrak{p} of A, consider

$$\phi: A[[x]] \to A \to A/\mathfrak{p}$$

Then $\ker \phi = \mathfrak{p} + xA[[x]]$ and $A[[x]]/\ker \phi \cong A/\mathfrak{p}$ and hence $\ker \phi$ is a prime ideal.

Exercise 1.1.5. A ring A is s.t. every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e s.t. $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal

Proof. If there is a $x \in A$ s.t. $x \in \mathfrak{R}$ and $x \notin \mathfrak{N}$. Then $(x) \nsubseteq \mathfrak{N}$ and there is $y \in A$ s.t. $y^2x^2 = x^2$ and hence $(y^2 - 1)x^2 = 0$. As $x^2 \neq 0$, $y^2 = 1$. Hence $\mathfrak{R} = (1)$, which is not possible

Exercise 1.1.6. Let A be a ring where every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal

Proof.
$$\mathfrak p$$
 the prime ideal and $x \notin \mathfrak p$, as $x(x^{n-1}-1)=0 \in \mathfrak p$, $x^{n-1}-1 \in \mathfrak p$. Then $x^{n-1} \equiv 1 \mod \mathfrak p$ and $(x+\mathfrak p)(x^{n-2}+\mathfrak p)=1+\mathfrak p$.

Exercise 1.1.7. Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements w.r.t. inclusion

Proof. Equivalently to say that nilradical is prime.

Exercise 1.1.8. Let \mathfrak{a} be an ideal \neq (1) in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a})$ iff \mathfrak{a} is an intersection of prime ideals

Proof. ⇒. From Proposition 1.12

$$\Leftarrow$$
. If $x^n \in \mathfrak{a}$, then $x \in \mathfrak{a}$.

Exercise 1.1.9. Let A be a ring, $\mathfrak N$ its nilradical. Show that the following are equivalent

- 1. *A* has exactly one prime ideal
- 2. every element of *A* is either a unit or nilpotent
- 3. A/\mathfrak{N} is a field

Proof. $2 \rightarrow 3$. \mathfrak{N} is maximal

 $1 \rightarrow 2$. Obvious:D

$$3 \rightarrow 1$$
. Then \mathfrak{N} is maximal

Exercise 1.1.10. A ring is **Boolean** if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that

- 1. 2x = 0 for all $x \in A$
- 2. every prime ideal \mathfrak{p} is maximal, and A/\mathfrak{p} is a field with two elements
- 3. every finitely generated ideal in *A* is principal

Proof. 1. $2x = x + x^2 = 0$

2. Maximality by Exercise 1.1.6. For any $x \notin \mathfrak{p}$, $(x+\mathfrak{p})(1+\mathfrak{p}) = 1+\mathfrak{p}$ and so $x \equiv 1 \mod \mathfrak{p}$. For any $x \in \mathfrak{p}$, $x \equiv 0 \mod \mathfrak{p}$.

3. Let x, y be elements of an ideal \mathfrak{a} . Define z := x + y + xy, note that xz = x + y + y = x. Hence (x, y) = (z)

Exercise 1.1.11. A local ring contains no idempotent $\neq 0, 1$

Proof. If \mathfrak{m} is the unique maximal ring. Then $x \in \mathfrak{m}$ iff for all $y \in A$, 1 - xy is a unit.

If
$$x^2 = x$$
, then $x(1-x) = 0$. As $1-x$ is not a unit, $x \notin \mathfrak{m}$.

Construction of an algebraic closure of a field

Exercise 1.1.12. Let K be a field and let Σ be the set of all irreducible monic polynomials f in one indeterminate with coefficients in K. Let A be the polynomial ring over K generated by indeterminate x_f , one for each $f \in \Sigma$. Let $\mathfrak a$ be the ideal of A generated by the polynomials $f(x_f)$ for all $f \in \Sigma$. Show that $\mathfrak a \neq (1)$

Let \mathfrak{m} be a maximal ideal of A containing \mathfrak{a} , and let $K_1=A/\mathfrak{m}$. Then K_1 is an extension field of K in which each $f\in \Sigma$ has a root. Repeat the construction with K_1 in place of K, obtaining a field K_2 , and so on. Let $L=\bigcup_{n=1}^\infty K_n$. Then L is a field in which each $f\in \Sigma$ splits completely into linear factors. Let \overline{K} be the set of all elements of L which are algebraic over K. Then \overline{K} is an algebraic closure of K.

Proof. Irreducible polynomials have degree greater than 1. There is no linear combination that the degree of the sum is 0

Let $K_0=K$ be a field. Given a non-negative integer n for which the field, K_n , is defined, let Σ_n be the set of monic irreducible elements of $K_n[x]$ and let A_n be the polynomial ring over K_n generated by the set of indeterminates $\{x_f\mid f\in\Sigma\}$. Define \mathfrak{a}_n be the ideal of A_n generated by the set $\{f(x_f)\in A\mid f(\Sigma_n)\}$. Since K_n is a field, A_n is a domain. Thus every element of \mathfrak{a}_n has positive degree and \mathfrak{a}_n doesn't contain 1. Let \mathfrak{m}_n be a maximal ideal of A_n containing \mathfrak{a}_n and define $K_{n+1}=A_n/\mathfrak{m}_n$. The map

$$K_n \to A_n \to A_n/\mathfrak{m}_n = K_{n+1}$$

given by the inclusion and quotient maps, is a field homomorphism. Thus it is injective and we may identify K_n with a subfield of K_{n+1} . Note that for any $0 \neq k \in K_n$, $k \notin \mathfrak{m}$. Thus the kernel of the map is only $\{0\}$.

Let $\overline{K} = \bigcup_{n \geq 0} K_n$. If $x, y \in \overline{K}$, then they are contained in some subfields K_n, K_m . Letting $k = \max\{m, n\}, x, y \in K_k$. Therefore the sum, difference,

and product of x,y are in K_k . Any field arithmetic of \overline{K} can be performed in a subfield, \overline{K} is a field.

Let f be an irreducible monic polynomial in $\overline{K}[x]$. Since f has only finitely many coefficients, there is some n s.t. f is an irreducible monic polynomial in $K_n[x]$. By construction, f has a root in K_{n+1} , hence in \overline{K} . By the Euclidean division, f must have degree 1. Therefore, \overline{K} is algebraic closed.

By construction, the field extension K_{n+1}/K_n is algebraic for every n.

Exercise 1.1.13. In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that the set Σ has minimal elements and that every maximal element of Σ is a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals

Proof. If x is a zero-divisor, then Ax is a set of zero-divisors. Thus Σ is not empty and has a minimal element w.r.t. inclusion.

For a maximal ideal $\mathfrak p$ in Σ , suppose $x,y\notin \mathfrak p$, then $\mathfrak p+(x)+(y)\notin \Sigma$. Then there is an element p+x'x+y'y that is not a zero-divisor. If xy is zero-divisor, then (p'xy)(p+x'x+y'y)=0, a contradiction

The prime spectrum of a ring

Exercise 1.1.14. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- 1. if $\mathfrak a$ is the ideal generated by E, then $V(E) = V(\mathfrak a) = V(r(\mathfrak a))$
- 2. $V(0) = X, V(1) = \emptyset$
- 3. if $(E_i)_{i \in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I}E_i\right)=\bigcap_{i\in I}V(E_i)$$

4. $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A

These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the **Zariski topology**. The topological space X is called the **prime spectrum** of A, and is written as $\operatorname{Spec}(A)$

Proof. 1. If $\mathfrak{a}=(E)$, then \mathfrak{a} is the minimal ideal containing E. Hence $V(E)=V(\mathfrak{a})$. For any prime ideal \mathfrak{p} containing \mathfrak{a} and any $a\in r(\mathfrak{a})$. Then $a^n\in \mathfrak{a}$ for some n. Then $a^n\in \mathfrak{p}$, implying $a\in \mathfrak{p}$. Hence $V(\mathfrak{a})\subseteq V(r(\mathfrak{a}))$.

- 2. Obvious
- 3. trivial
- 4. As $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, if $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$ then $\mathfrak{ab} \subseteq \mathfrak{p}$. On the other hand, if $\mathfrak{ab} \subseteq \mathfrak{p}$, then we have shown either $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$ (Proposition 1.11). Thus $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$

Exercise 1.1.15. Draw pictures of $Spec(\mathbb{Z})$, $Spec(\mathbb{R})$, $Spec(\mathbb{R}[x])$, $Spec(\mathbb{Z}[x])$

Proof. \mathbb{Z} is PID, for any $E\subseteq \mathbb{Z}$, let $n=\min\{m\in E\mid m>1\}$. Let $\mathfrak{a}=(n)$. Then $(E)=\mathfrak{a}.$ Suppose $n=p_1^{n_1}\dots p_r^{n_r}$, then $V(E)=\{p_1\mathbb{Z},\dots,p_r\mathbb{Z}\}$.

 \mathbb{R} is a field and so there is only trivial ideals.

 $\mathbb{C}[x]$ is a PID. Prime ideals are of the form (f), where f is a monic irreducible or f=0. As irreducible elements of $\mathbb{C}[x]$ is of the form x-a. Thus $\mathrm{Spec}\,\mathbb{C}[x]$ is actually the complex plane.

For any ideal \mathfrak{a} of $\mathbb{C}[x]$, $\mathfrak{a}=(f)$. By the Fundamental Theorem of Algebra, $f=\prod_{i=1}^k(x-a_i)^{\alpha_i}$ for some complex numbers a_1,\dots,a_k and positive integers α_1,\dots,α_k . Define \sqrt{f} as $\prod_{i=1}^k(x-a_i)$. Since non-zero prime ideals of $\mathbb{C}[x]$ are maximal, we have

$$V(\mathfrak{a}) = V(f) = V(\sqrt{f}) = \bigcup_{i=1}^k V(x-a_i) = \{(x-a_1), \dots, (x-a_k)\}$$

Therefore non-empty open subsets of $\operatorname{Spec} \mathbb{C}[x]$ are cofinite sets containing $\{0\}$

Exercise 1.1.16. For each $f \in A$, let X_f denote the complement of V(f) in $X = \operatorname{Spec}(A)$. The sets X_f are open. Show that they form a basis of open sets for the Zariski topology, and that

- 1. $X_f \cap X_g = X_{fg}$
- 2. $X_f = \emptyset$ iff f is nilpotent

- 3. $X_f = X$ iff f is a unit
- 4. $X_f = X_g \text{ iff } r((f)) = r((g))$
- 5. X is quasi-compact (that is, every open covering of X has a finite subcovering)
- 6. More generally, each X_f is quasi-compact
- 7. An open subset of X is quasi-compact iff it is a finite union of sets X_f The sets X_f are called **basic open sets** of $X=\operatorname{Spec}(A)$

Proof. For any $\mathfrak{p}\in X$, let $x\in A\setminus \mathfrak{p}$. Then $\mathfrak{p}\notin V(x)$. Hence $\mathfrak{p}\in X_x$ If $\mathfrak{p}\in X_f\cap X_g$, then as $V(f)\cup V(g)=V(fg)$, then $\mathfrak{p}\in X_{fg}$. Hence this form a basis of open sets for the Zariski topology

- 1. $X_f \cap X_g = V(f)^c \cap V(g)^c = (V(f) \cup V(g))^c = (V(fg))^c = X_{fg}$
- 2. $X_f = \emptyset$ iff V(f) = X iff $f \in \mathfrak{N}$
- 3. $X_f = X$ iff $V(f) = \emptyset$. Note that any ideal can be extended to a maximal ideal which is prime, thus f is not contained in any ideal, which means f is a unit
- 4. $r((f)) \subseteq r((g))$ iff every ideal containing (g) contains (f) iff $V(f) \subseteq V(g)$.
- 5. A collection $\mathcal C$ of closed sets has finite intersection property iff for any finite $V(E_1),\ldots,V(E_n)\in\mathcal C$, $\bigcap V(E_i)=V(\bigcup E_i)\neq\emptyset$ iff for any finite $V(E_1),\ldots,V(E_n)\in\mathcal C$, $\bigcup E_i$ doesn't contain a unit. Thus $\bigcup_{\mathcal C}V(E_i)$ doesn't contain a unit and hence $\bigcap_{\mathcal C}V(E_i)\neq\emptyset$
 - Let $\{X_f\}_{f\in E}$ be an open cover of X. Taking complements shows that V(E) is empty. Therefore (E)=(1). This in turn implies that there are $f_1,\dots,f_n\in E$ and $a_1,\dots,a_n\in A$ s.t. $1=\sum_{i=1}^n a_if_i$. Thus $V(f_1,\dots,f_n)$ is empty
- 6. Suppose an open covering $\{X_g\}_{g\in E}$ of X_f , then $\bigcap_{g\in E}V(g)=V(\bigcup_{g\in E}g)=V(E)\subseteq V(f)$, which means that every prime containing E contains f, then $f\in r((E))$ (Proposition 1.12). So there are $g_1,\dots,g_n\in E$, $a_1,\dots,a_n\in A$ and a positive integer m s.t. $f^m=\sum_{i=1}^n a_ig_i$. Thus $V(f)\supseteq V(g_1,\dots,g_n)$. Hence $X_f\subseteq\bigcup_{i=1}^n X_{g_i}$

7. For any quasi-compact open sets U of X, $U=\bigcup_{f\in E}X_f$. And as it's quasi-compact, there is $E_0\subseteq_f E$ s.t. $U=\bigcup_{f\in E_0}X_f$

Exercise 1.1.17. It is sometimes convenient to denote a prime ideal of A by a letter such as x or y when thinking of it as a point of $X = \operatorname{Spec}(A)$. When thinking of x as a prime ideal of A, we denote it by \mathfrak{p}_x . Show that

- 1. the set $\{x\}$ is closed (we say that x is a "closed point") in $\operatorname{Spec}(A)$ iff \mathfrak{p}_x is maximal
- 2. $\overline{\{x\}} = V(\mathfrak{p}_x)$
- 3. $y \in \overline{\{x\}}$ iff $\mathfrak{p}_x \subseteq \mathfrak{p}_y$
- 4. X is a T_0 -space (this means that if x,y are disjoint points of X, then either there is a neighborhood of x which does not contain y, or else there is a neighborhood of y which does not contain x)
- *Proof.* 1. $\{x\}$ is closed iff there is $E\subseteq A$ s.t. $\{x\}=V(E)$ which means \mathfrak{p}_x cannot be expanded anymore
 - 2. $y \in \overline{\{x\}}$ iff \forall open $U \ni y, x \in U$ iff $\forall E \ y \notin V(E), x \notin V(E)$ iff $\forall E \ x \in V(E) \Rightarrow y \in V(E)$. As $x \in V(x), y \in V(x)$. If $y \in V(x)$, for any $x \in V(E)$, we have $y \in V(x) \subseteq V(E)$
 - 3. $y \in \overline{\{x\}}$ iff $y \in V(x)$ iff $x \subseteq y$
 - 4. If $x \subseteq y$, then $x \notin V(y)$ and $y \in V(y)$. If $x \nsubseteq y$, then $(x) \nsubseteq y$ and so $y \notin V(x)$.

If every neighborhood of x contains y and vice versa. Then $y \in \overline{\{x\}}$ and $x \in \overline{\{y\}}$. So x = y

Exercise 1.1.18. A topological space X is said to be **irreducible** if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that $\operatorname{Spec}(A)$ is irreducible iff the nilradical of A is a prime ideal

2 TODO Problems

1.1: need more field knowledge to deal with $\mathbb{R}[x]$ and $\mathbb{Z}[x]$