

Equazioni dinomiche:

Assunzione: Le costombi di tempo del motore e del trasdultore di posizione siono trascurabili rispelto alla costombe di tempo dell'albero mecconico

$$\int \ddot{\theta} = -\beta \dot{\theta} + n = -\beta \dot{\theta} - k \theta$$

$$n = k e = k (\theta_d - \theta) = -k \theta$$

$$y = \theta$$

Rappresentatione in matio d'Atato: $X_1 = \theta$, $X_2 = \theta$

$$\begin{cases} \dot{x}_1 = \dot{\theta} = x_2 \\ \dot{x}_2 = \dot{\theta} = -\beta \dot{\theta} - \frac{K}{5} \dot{\theta} = -\beta x_2 - \frac{K}{5} x_4 \\ \dot{x}_1 = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{K}{5} & -\beta \end{bmatrix} \times K \in \mathbb{R}$$

Come scegliere k in mode che O(t) tenda Os=O il più velocemente possibile?

che O(t) tenda Os=O il più velocemente Come regliere k in mode da avere Re[7,2] la più negativa > Re[x] $\Rightarrow \sum \text{ refroatione ho avea sempre}$ un modo e^{dt} , $d > -\frac{\beta}{27}$ → i modi elementori non potromno mai convergere a O più rapidomnte di e-1/27 t 7 limiti alla prontezza del sistema di controllo

\Rightarrow	Usom d parte	lo ma re reale de	troatione gli autovo	shahica da Nerj del	lle shafo pos E refroazio	sjamo ollenero nato negativa	e mer a piacere
						i di controllo!	