Multi-path Back-propagation for Neural Network Verification

Authors: Zheng Ye, Shi Xiaomu, Liu Jiaxiang Shenzhen University

Neural Network Verification

 x_1 prediction: Stop

 δ small perturbation

 $x_1 + \delta$ prediction: 80km/h

Neural Network Verification

 x_1 prediction: Stop

 δ small perturbation

 $x_1 + \delta$ prediction: 80km/h

$$f(x_1) = \text{STOP}$$

 $f(x_1 + \delta) = 80 \text{km/h}$

Verify: Given f and C, $\forall x \in C$ f(x) = STOP

Neural Network Verification

 x_1 prediction: Stop

 δ small perturbation

 $x_1 + \delta$ prediction: 80km/h

$$f(x_1) = \text{STOP}$$

 $f(x_1 + \delta) = 80 \text{km/h}$

Verify: Given
$$f$$
 and C , $\forall x \in C$
 $f(x) \ge 0$

• One method: solve optimization problems

$$x_{1,1} \ge -1 \\ x_{1,1} \le 1$$

$$x_{2,1} = -x_{1,1} + x_{1,2}$$

$$x_{3,1} \cdots x_{6,1}$$

$$x_{1,1} \ge -1 \\ x_{1,2} \ge -1 \\ x_{1,2} \le 1$$

$$x_{2,2} = x_{1,1} - x_{1,2}$$

$$x_{3,2} \cdots x_{6,2}$$

$$x_{3,2} \cdots x_{6,2}$$

- One method: solve optimization problems (low efficiency)
- Back-propagate to calculate the lower and upper bounds of each node

$$x_{1,1} \ge -1 \\ x_{1,1} \le 1$$

$$x_{2,1} = -x_{1,1} + x_{1,2}$$

$$x_{3,1} \cdots x_{6,1}$$

$$x_{1,1} \ge -1 \\ x_{1,2} \ge -1 \\ x_{1,2} \le 1$$

$$x_{2,2} = x_{1,1} - x_{1,2}$$

$$x_{3,2} \cdots x_{6,2}$$

$$x_{3,2} \cdots x_{6,2}$$

- One method: solve optimization problems (low efficiency)
- Back-propagate to calculate the lower and upper bounds of each node

$$x_{1,1} \geq -1 \qquad x_{2,1} \geq -x_{1,1} + x_{1,2}$$

$$x_{1,1} \leq 1 \qquad x_{2,1} \leq -x_{1,1} + x_{1,2}$$

$$[-1,1] \qquad x_{1,1} \qquad -1 \qquad x_{2,1} \qquad ReLU \qquad x_{3,1} \qquad \cdots \qquad x_{6,1}$$

$$[-2,2] \qquad x_{1,2} \geq -1 \qquad x_{2,2} \geq x_{1,1} - x_{1,2}$$

$$x_{1,2} \leq 1 \qquad x_{2,2} \leq x_{1,1} - x_{1,2}$$

$$x_{2,2} \leq x_{1,1} - x_{1,2}$$

• ReLU neurons have three cases depending their input bounds:

 $\mathbf{u} \leq 0$: zero

 $l \ge 0$: linear

 $l \le 0 \le u$: piecewise

- ReLU neurons have three cases depending their input bounds:
- Linear bounds for non-linear ReLU:

 $\mathbf{u} \leq 0$: zero

 $l \ge 0$: linear

 $1 \le 0 \le u$: piecewise

- ReLU neurons have three cases depending their input bounds:
- Linear bounds for non-linear ReLU:

 $\mathbf{u} \leq 0$: zero

 $1 \le 0 \le \mathbf{u}$: piecewise

Goal: $\forall \mathbf{x}_1 \in \mathcal{C}, \ f(\mathbf{x}_1) \geq 0$

 $x_{6,1} \ge 0.25x_{1,1} - 0.25x_{1,2} - 1.5$

- Sound but not complete
- Tighter bounds bring better verification results

- Sound but not complete
- Tighter bounds bring better verification results

Multi-path Back-propagation

- Representative methods: DeepPoly, Fast-Lin, CROWN
- Specific cases of one path, being very fast but with loose bounds
- This work improves the bounds of back-propagation methods

Main idea:

More propagation paths will get more bounds

The union of these sound bounds is also a sound bound

$$\begin{array}{l} x_{3,1} \geq 0.5 x_{2,1} \\ x_{3,1} \leq -0.5 x_{2,1} + 1 \end{array}$$

$$x_{3,1} \ge 0$$

$$x_{3,1} \le -0.5x_{2,1} + 1$$

$$\begin{aligned} x_{3,1} &\geq 0.5 x_{2,1} \\ x_{3,1} &\leq -0.5 x_{1,1} + 0.5 x_{1,2} + 1 \end{aligned}$$

$$x_{3,1} \ge 0$$

 $x_{3,1} \le -0.5x_{1,1} + 0.5x_{1,2} + 1$

$$x_{5,1} \ge -0.5x_{1,1} + 0.5x_{1,2} - 0.5$$

 $x_{5,1} \le -0.5x_{1,1} + 0.5x_{1,2} + 1.5$

$$x_{5,1} \ge 0$$

 $x_{5,1} \le -0.25x_{1,1} + 0.25x_{1,2} + 1.5$

Two-path propagation: Two bounds for comparing (one dimension example)

Two-path propagation: Two bounds for comparing (one dimension example)

Multi-path Back-propagation

- Same ReLU over-approximation along one path, but not necessary
- Absolutely within propagation framework
- $O(MN^2)$ time complexity, where M is the path number
 - Little additional cost
 - Highly parallelable
- At least has the accuracy of any one path, *i.e.*, DeepPoly

Experiments

- Implement multi-path back-propagation method as tool AbstraCMP
- Use robust radius as the accuracy metric
 - Compare with single path method DeepPoly
 - Compare with LP-ALL, which solve LP for each node
- Larger robustness radius means higher over-approximation accuracy

Experiments

ACAS Xu Network, 4 random inputs on 45 networks

(a) 输入1在45个网络上的鲁棒半径

(c) 输入3在45个网络上的鲁棒半径

(b) 输入2在45个网络上的鲁棒半径

(d) 输入 4 在 45 个网络上的鲁棒半径

Experiments

- Intuitively, more paths will bring better results
- But this improvement is not sustainable

Experiments

MNIST and CIFAR10, verified cases under δ (greater is better)

网络	方法	扰动大小 δ								
		0.010	0.012	0.015	0.017	0.020	0.022	0.025	0.027	0.030
MNIST 10×80	DeepPoly	91	88	79	67	46	33	27	20	10
	AbstraCMP	94	91	82	70	48	38	31	24	12
MNIST 20×50	DeepPoly	73	70	49	40	31	22	16	13	7
	AbstraCMP	80	72	58	49	37	27	20	18	10
网络	方法	扰动大小 <i>δ</i>								
		0.0005	0.0010	0.0015	0.0020	0.0025	0.0030	0.0035	0.0040	0.0045
CIFAR10 15×200	DeepPoly	93	87	75	64	57	48	35	32	21
	AbstraCMP	94	88	79	70	61	55	47	35	29
CIFAR10 16×250	DeepPoly	93	76	59	42	33	20	14	8	3
	AbstraCMP	95	79	62	49	37	23	16	10	4

Experiments

- LP-ALL needs over 41 hours for one result in our experiments while AbstraCMP needs only around 400 seconds
- Bridge the gap between propagation methods and LP-ALL

Summary and Future Works

- Improve the back-propagation methods using multiple paths
- Analyze the accuracy of multi-path propagation

Future Works

- Will extend to other activation functions & network structures
- Will use more efficient GPU implementation

$$x_{1,1} \ge -1$$
 $x_{2,1} \ge x_{1,1} + x_{1,2}$ $x_{3,1} \ge 0$ $x_{5,1} \ge x_{4,1}$ $x_{61} \ge x_{51} + x_{52}$ $x_{1,1} \le 1$ $x_{2,1} \le x_{1,1} + x_{1,2}$ $x_{3,1} \le 0.5x_{2,1} + 1$ $x_{2,1} \le x_{3,1} \le x_{2,1} \le x_{3,1} \le x_{2,1} \le x_{3,1} \le x_{3,1}$

$$x_{5,2} \ge 0$$

 $x_{5,2} \le x_{4,2}$
 $x_{5,1} \ge 0$
 $x_{5,1} \le 0.25x_{1,1} + 0.25x_{1,2} + 2$

$$x_{1,1} \ge -1 \\ x_{1,1} \le 1$$

$$x_{2,1} \ge x_{1,1} + x_{1,2}$$

 $x_{2,1} \le x_{1,1} + x_{1,2}$

$$x_{3,1} \ge 0$$

$$x_{3,1} \le 0.5x_{2,1} + 1$$

$$x_{5,1} \ge x_{4,1}$$

 $x_{5,1} \le x_{4,1}$
 $x_{5,1} \ge 0$
 $x_{5,1} \le x_{1,1} + 2$

$$x_{61} \ge x_{51} + x_{52}$$

$$x_{61} \le x_{51} + x_{52}$$

$$x_{6,1} \ge 0$$

$$x_{6,1} \le 1.25x_{1,1} + 0.25x_{1,2} + 3.5$$

$$x_{5,2} \ge 0$$

 $x_{5,2} \le x_{4,2}$
 $x_{5,1} \ge 0$
 $x_{5,1} \le 0.25x_{1,1} + 0.25x_{1,2} + 2$

$$x_{6,1} \le x_{4,1} + 0.5x_{4,2} + 1$$

$$x_{6,1} \le x_{3,1} + x_{3,2} + 0.5(x_{3,1} - x_{3,2}) + 1$$

 $\le 1.5x_{3,1} + 0.5x_{3,2} + 1$

$$x_{6,1} \le x_{1,1} + 0.5x_{1,2} + 3$$
$$\le 4.5$$

$$x_{6,1} \le x_{1,1} + 0.5x_{1,2} + 3$$

$$\le 4.5$$

$$x_{6,1} \le 1.25x_{1,1} + 0.25x_{1,2} + 3.5$$

App. II: Exponential Constraints of LP

$$x_{3,1} \ge 0$$

 $x_{3,1} \ge x_{2,1}$
 $x_{3,1} \le 0.5x_{2,1} + 1$ $x_{4,1} \ge x_{3,1} + x_{3,2}$

$$x_{3,2} \ge 0$$

 $x_{3,2} \ge x_{2,2}$
 $x_{3,2} \le 0.5x_{2,2} + 1$

App. II: Exponential Constraints of LP

$$x_{4,1} \ge 0$$
 $x_{3,1} \ge 0$
 $x_{4,1} \ge x_{2,1}$
 $x_{3,1} \ge x_{2,1}$
 $x_{4,1} \ge x_{2,2}$
 $x_{4,1} \le x_{2,2}$
 $x_{4,1} \ge x_{2,1} + x_{2,2}$

$$x_{3,2} \ge 0$$

 $x_{3,2} \ge x_{2,2}$
 $x_{3,2} \le 0.5x_{2,2} + 1$

App. III: DeepPoly Heuristic

 $|\mathbf{l}| \ge \mathbf{u} : k = 0$

 $|\mathbf{l}| < \mathbf{u} : k = 1$

App. IV: About DeepPoly Heuristic

- Has DeepPoly get the best upper and lower bound lines?
 - No
 - Alpha-CROWN [Kaidi Xu et al.]
- Local optimum (DeepPoly heuristic) verse global optimum ($x_{i,j}$ bounds)

App. V: Experiments

- Implement multi-path back-propagation method as tool AbstraCMP
- Use robust radius as the accuracy metric
 - Larger robustness radius means higher over-approximation accuracy
 - Compare with single path method DeepPoly
 - Compare with LP-ALL, which solve LP for each node
- Binary search for robust radius δ

$$f(x_1 + \delta_1) \ge 0$$
 satisfied $f(x_1 + \delta_2) \ge 0$ unsatisfied $f(x_1 + \delta_3) \ge 0$ satisfied $f(x_1 + \delta_k) \ge 0$ satisfied $\wedge f(x_1 + \delta_k + \epsilon) \ge 0$ unsatisfied

