МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта
- 2. определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре

В работе используются:

- прибор Ребиндера с термостатом и микроманометром
- исследуемые жидкости
- стаканы

2 Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r} \tag{1}$$

где σ — коэффициент поверхностного натяжения, $P_{\text{внутри}}$ и $P_{\text{снаружи}}$ — давление внутри пузырька и снаружи, r — радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

3 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис. ??). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране К2 заполняется водой. Затем кран К2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана К1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром (устройство микроманометра описано в Приложении).

Обычно кончик иглы лишь касается поверхности жидкости, чтобы исключить влияние гидростатического давления столба жидкости. Однако при измерении температурной зависимости коэффициента поверхностного натяжения возникает ряд сложностей. Во-первых, большая

Рис. 1: Схема установки

теплопроводность металлической трубки приводит к тому, что температура на конце трубки заметно ниже, чем в глубине жидкости. Во-вторых, тепловое расширение поднимает уровень жидкости при увеличении температуры.

Обе погрешности можно устранить, погрузив кончик трубки до самого дна. Полное давление, измеренное при этом микроманометром, $P = \Delta P + \rho g h$. Заметим, что $\rho g h$ от температуры практически не зависит, так как подъём уровня жидкости компенсируется уменьшением её плотности (произведение ρh определяется массой всей жидкости и поэтому постоянно). Величину $\rho g h$ следует измерить двумя способами. Во-первых, замерить величину $_1 = \Delta P'$, когда кончик трубки только касается поверхности жидкости. Затем при этой же температуре опустить иглу до дна и замерить $_2 = \rho g h + \Delta P''$ ($\Delta P'$, $\Delta P''$ – давление Лапласа). Из-за несжимаемости жидкости можно положить $\Delta P' = \Delta P''$ и тогда $\rho g h = _2 - _1$. Во-вторых, при измерениях $_1$ и $_2$ замерить линейкой глубину погружения иглы $_1$ Это можно сделать, замеряя расстояние между верхним концом иглы и любой неподвижной частью прибора при положении иглы на поверхности и в глубине колбы.

4 Результаты измерений и обработка данных

4.1 Проверка установки

Проверим герметичность установки: наполним аспиратор водой, вставим иглу в сосуд так, чтобы кончик иглы касался спирта. Плотно закроем обе колбы пробками, откроем кран К1 и добъемся пробулькивания пузырьков воздуха. Замерим показания микроманометра. Закроем кран К1, если после этого показания не будут меняться, то значит система герметична.

4.2 Начало измерений

Откроем кран K1, подберём частоту падения капель из иглы, так чтобы она была не чаще, чем 1 раз в 5 секунд.

4.3 Измерение диаметра иглы

Измерим максимальное давление $\Delta P_{\text{спирт}}$ при пробулькивании пузырьков:

T, C°	22,3					$h_{\rm cp}$
<i>h</i> , дел	48,0	47,0	47,0	47,0	47,0	47,2
σ_h , дел	0,5	0,5	0,5	0,5	0,5	0,5

Таблица 1: Измерение предельного давления пробулькивания на поверхности спирта

Как видно случайной погрешностью можно принебречь по сравнению с приборной. Тогда значение $h_{\text{спирт}} = (47.2 \pm 0.5)$ дел. Тогда дваление $\Delta P_{\text{спирт}}$ можно вычислить по формуле:

$$\Delta P_{\text{спирт}} = \rho g h_{\text{спирт}} \cdot 0.2 = 10^3 \cdot 9.81 \cdot 0.0472 \cdot 0.2 \approx (92.6 \pm 1.0) \text{ \Pia}$$

Тогда диаметр иглы можно найти по формуле:

$$d = \frac{4\sigma_{\text{спирт}}}{\Delta P_{\text{спирт}}} = \frac{4 \cdot 22, 3 \cdot 10^{-3}}{92,6} \approx 0,96 \text{ мм}$$

Погрешность можно вычислить по формуле:

$$\sigma_d = d \frac{\sigma(\Delta P_{\text{chippt}})}{\Delta P_{\text{chippt}}} = 0.96 \cdot \frac{1.0}{92.6} \approx 0.01 \text{ mm}$$

Тогда диаметр иглы равен $d_{\text{пов}} = (0.96 \pm 0.01)$ мм

Диаметр измеренный микроскопом: $d_{\text{микр}} = (0.95 \pm 0.01)$ мм.

Как видно эти результаты очень хорошо совпадают.

4.4 Измерения воды с иглой на поверхности

Проведём аналогичное измерение максимального давления для воды:

T, C°	22,5					$h_{\rm cp}$
<i>h</i> , дел	114,0	114,0	114,0	114,0	114,0	114,0
σ_h , дел	0,5	0,5	0,5	0,5	0,5	0,5

Таблица 2: Измерение предельного давления пробулькивания на поверхности воды

Тгда давление P_1 можно вычислить по формуле:

$$P_1 = \rho g h_{\text{вода}} \cdot 0.2 = 10^3 \cdot 9.81 \cdot 0.114 \cdot 0.2 \approx (223.7 \pm 1.0) \text{ }\Pi\text{a}$$

Измерим расстояние $h_1 = (26,00 \pm 0,25)$ мм.

4.5 Измерения воды с иглой у дна

Утопим иглу до предела (поворачивать до щелчка). Измерим расстояние $h_2=(7,00\pm0,25)$ мм. Тогда $\Delta h=h_1-h_2=(19\pm0,5)$ мм.

Результаты измерения максимального давления запишем в таблицу 3.

T, C°	22,5					$h_{\rm cp}$
<i>h</i> , дел	220,0	220,0	221,0	222,0	221,0	220,8
σ_h , дел	0,5	0,5	0,5	0,5	0,5	0,5

Таблица 3: Измерение предельного давления пробулькивания на глубине воды

Тогда давление P_2 можно вычислить:

$$P_2 = \rho gh \cdot 0.2 = 10^3 \cdot 9.81 \cdot 0.2208 \cdot 0.2 \approx (433.2 \pm 1.0) \text{ Ha}$$

Теперь, можно вычислить $\Delta P = P_2 - P_1 = (210 \pm 2)$ Па. Тогда глубина погружения иглы вычисляется как:

$$h_{ ext{погр}} = rac{\Delta P}{
ho g} = rac{210}{9.81 \cdot 1000} pprox (21.4 \pm 0.2)$$
 мм

Как видно это отличается от измеренного линейкой, вероятно это связано с тем, что при измерениях за точку отсчёта могла быть по ошибке взята подвижная часть установки.

4.6 Измерение зависимости $\sigma(T)$

Проведём измерения, аналогичные предыдущему пункту, только для других значений температуры, результаты измерений запишем в табоицу 4. Для каждого измерения сразу посчитаем давление и коэффициент поверхностного натяжения и их погрешности по формулам:

$$P = \rho g h \cdot 0.2, \ \sigma_P = \rho g \sigma_h \cdot 0.2, \ \sigma = \frac{dP}{4}, \ \sigma_\sigma = \sigma \sqrt{\varepsilon_d^2 + \varepsilon_P^2}$$

	T, C°	<i>h</i> , дел									
\overline{N}		1	2	3	4	5	ср	Р, Па	σ_P , Π a	σ , м H /м	σ_{σ} , м $H/$ м
1	29,1	232,0	231,0	232,0	231,0	232,0	231,6	303,5	2,0	72,1	0,6
2	34,4	230,0	230,0	231,0	230,0	231,0	230,4	301,2	2,0	71,5	0,6
3	39,4	228,0	228,0	229,0	229,0	229,0	228,6	297,6	2,0	70,7	0,6
4	44,2	227,0	227,0	227,0	226,0	227,0	226,8	294,1	2,0	69,8	0,6
5	49,2	225,0	225,0	224,0	225,0	226,0	225,0	290,6	2,0	69,0	0,6
6	54,0	224,0	224,0	224,0	223,0	224,0	223,8	288,2	2,0	68,5	0,6
7	59,0	222,0	222,0	222,0	221,0	222,0	221,8	284,3	2,0	67,5	0,6

Таблица 4: Измерение предельного давления пробулькивания на дне воды для различных температур

4.7 График зависимости $\sigma(T)$

Построим график зависимости σ от T, воспользовавшись МНК.

Посчитаем коэффициенты наилучших прямых по формуле:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}, \text{ a } b = \langle y \rangle - k \langle x \rangle$$
 (2)

Погрешности для k и b рассчитываются по формулам:

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
 (3)

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{4}$$

Все промежуточные значения МНК запишем в таблицу 5.

	x	y	x^2	y^2	$x \cdot y$
1	302,26	0,0721	91361,11	0,0052	21,788
2	307,56	0,0715	94593,15	0,0051	21,999
3	312,56	0,0707	97693,75	0,0050	22,094
4	317,36	0,0698	100717,37	0,0049	22,167
5	322,36	0,0690	103915,97	0,0048	22,246
6	327,16	0,0685	107033,67	0,0047	22,394
7	332,16	0,0675	110330,27	0,0046	22,427
ср	317,35	0,0699	100806,47	0,0049	22,159

Таблица 5: Промежуточные значения МНК

$$k = \frac{22,159 - 317,35 \cdot 0,0699}{100806,47 - 317,35^2} \approx -155 \cdot 10^{-6} \frac{H}{M \cdot K}$$

$$\sigma_k = \frac{1}{\sqrt{7}} \sqrt{\frac{0,0049 - 0,0699^2}{100806,47 - 317,35^2} - (-155 \cdot 10^{-6})^2} \approx 4 \cdot 10^{-6} \frac{H}{M \cdot K}$$

$$b = 0,0699 - (-155 \cdot 10^{-6}) \cdot 317,35 \approx 0,11911 \frac{H}{M}$$

$$\sigma_b = 4 \cdot 10^{-6} \cdot \sqrt{100806,47 - 317,35^2} \approx 0,00004 \frac{H}{M}$$

Получается

$$\frac{d\sigma}{dT} = (-155 \pm 4) \cdot 10^{-6} \frac{\mathrm{H}}{\mathrm{M} \cdot \mathrm{K}}$$

График изобразим на рисунке 3

4.8 Другие графики зависимости

Построим график зависимости теплоты образования единицы поверхности жидкости q от T, зависимость имеет вид: $q=-T\frac{d\sigma}{dT}$

А так же график зависимости поверхностной энергии U единицы площади F от T:

$$\frac{U}{F} = \sigma - T \frac{d\sigma}{dT} \tag{5}$$

Промежуточные значения запишем в таблицу 6

N	1	2	3	4	5	6	7
T, K	302,26	307,56	312,56	317,36	322,36	327,16	332,16
q, Дж/м ²	0,047	0,048	0,048	0,049	0,050	0,051	0,052
U/F, Дж/м ²	0,119	0,119	0,119	0,119	0,119	0,119	0,119

Таблица 6: Промежуточные значения МНК

Оба графика изобразим на рисунке ??.

Рис. 2: График зависимости σ от T

Рис. 3: График зависимости q и U/F от T