

Author Profiling Cross-genre evaluation

PAN-AP-2016 CLEF 2016 Évora, 5-8 September

Introduction

Author profiling aims at identifying personal traits such as age, gender, personality traits, native language... from writings.

This is crucial for:

- Marketing
- Security
- Forensics

Task goal

To investigate the effect of the cross-genre evaluation in the age and gender identification task.

Three languages:

Corpus

ENGLISH / SPANISH
Gender
Male vs. Female
Age Groups

18-24; 25-34; 35-49; 5

DUT Gender Male vs. Female

		Training	Training (Twitter)		Social Media)	Test (Blogs)		
		English	Spanish	English	Spanish	English	Spanish	
	18-24	26	16	70	16	10	4	
$\exists 2$	25-34	136	64	92	20	24	12	
200	35-49	182	126	102	16	32	26	
0+ 5	50-64	78	38	80	8	10	10	
	55+	6	6	4	4	2	4	
2	Σ	428	250	348	64	78	56	
СН							······	
		Training (T	witter)	Early birds (Reviews)	Test (Review	vs)	

384 50 500

Evaluation measures

The accuracy is calculated per task and language.

Then, the averages per task are calculated:

$$\overline{gender} = \frac{gender_en + gender_es + gender_nl}{3}$$

$$\overline{age} = \frac{age_en + age_es}{2}$$

$$\overline{joint} = \frac{joint_en + joint_es}{2}$$

Finally, the ranking is the global average:

$$ranking = \frac{\overline{gender} + \overline{age} + \overline{joint}}{3}$$

Statistical significance

Approximate randomisation testing*

*Eric W. Noreen. Computer intensive methods for testing hypotheses: an introduction. Wiley, New York, 1989.

Pairwise comparison of accuracies of all systems

```
p < 0.05 -> the systems are significantly different
```

Distances in age misidentification

- Missing predictions penalised with distance equal to 5
- Standard deviation of all the individual distances

Approaches

What kind of ...

Preprocessing

Features

Methods

... did the teams perform?

Approaches - Preprocessing

HTML cleaning to obtain plain text	Devalkeener, Ashraf et al., Bilan & Zhekova, Garciarena et al.
Lemmatization (no effect)	Bougiatiotis & Krithara
Stemming	Bakkar et al.
Punctuation signs	Bougiatiotis & Krithara, Gencheva et al., Modaresi et al.
Stop words	Agrawal & Gonçalves, Bakkar <i>et al.</i>
Lowercase	Agrawal & Gonçalves, Bougiatiotis & Krithara
Digits removal	Bougiatiotis & Krithara, Markov <i>et al.</i>
Twitter specific components: hashtags, urls, mentions and RTs	Agrawal & Gonçalves, Bougiatiotis & Krithara, Markov <i>et al.</i> , Bilan & Zhekova, Kocher & Savoy, Gencheva <i>et al.</i>
Feature selection (no effect)	Ashraf et al., Gencheva et al.
Transition point techniques	Markov <i>et al.</i>

Approaches - Features

Stylistic features: - Frequency of function words - Words out of dictionary - Slang - Capital letters - Unique words	Busger <i>et al.</i> , Ashraf <i>et al.</i> , Bougiatiotis & Krithara, Bilan & Zhekova, Gencheva <i>et al.</i> , Modaresi <i>et al.</i> , Pimas <i>et al.</i>
Specific sentences per gender - My wife, my man, my girlfriend And per age - "I'm" followed by a number	Gencheva et al.
Sentiment words	Gencheva et al., Pimas et al.
N-gram models	Ashraf <i>et al.</i> , Bougiatiotis & Krithara, Modaresi <i>et al.</i> , Bilan & Zhekova, Gencheva <i>et al.</i> , Garciarena <i>et al.</i> , Markov <i>et al.</i>
Parts-of-speech	Bilan & Zhekova, Busger et al., Gencheva et al., Ashraf et al.
Collocations	Bilan & Zhekova

Approaches - Features

LDA	Bilan & Zhekova
Different readability indexes	Gencheva et al.
Vocabulary richness	Ashraf et al.
Correctness	Pimas et al.
Verbosity	Dichiu & Rancea
Second order representation [22]	Busger <i>et al.</i> , Bougiatiotis & Krithara, Markov <i>et al.</i>
Bag-of-words	Devalkeener, Kocher & Savoy, Bakkar <i>et al.</i>
Tf-idf n-grams	Agrawal & Gonçalves, Dichiu & Rancea
Word2vec	Bayot & Gonçalves

Approaches - Methods

Random Forest	Ashraf et al., Pimas et al.
J48	Ashraf et al.
LADTree	Ashraf et al.
Logistic regression	Modaresi <i>et al.</i> , Bilan & Zhekova
SVM	Bilan & Zhekova, Dichiu & Rancea, Bayot & Gonçalves, Markov <i>et al.</i> , Bougiatiotis & Krithara, Bakkar <i>et al.</i> , Busger <i>et al.</i>
SVM + bootstrap	Gencheva et al.
Stacking	Agrawal & Gonçalves
Class-RBM	Devalkeneer
Distance-based approaches	Kocher & Savoy, Garciarena et al.

Early birds evaluation in social media (EN/ES)

Eng	lish			Spanish					
Team	Joint	Gender	Age	Team	Joint	Gender	Age		
Waser*	0.2098	0.5230	0.3879	Bougiatiotis & Krithara	0.2031	0.5781	0.3438		
Busger et al.	0.1897	0.5575	0.3046	Kocher & Savoy	0.2031	0.5000	0.3125		
Devalkeneer	0.1839	0.5259	0.2931	Modaresi et al.	0.2031	0.6406	0.2813		
Dichiu & Rancea	0.1753	0.5345	0.2989	Busger et al.	0.1875	0.5313	0.2813		
Agrawal & Gonçalves	0.1724	0.5431	0.3103	Devalkeneer	0.1875	0.5625	0.3594		
Bougiatiotis & Krithara	0.1724	0.5345	0.3046	Garciarena et al.	0.1875	0.5625	0.2969		
Modaresi(a)	0.1724	0.5057	0.3218	Waser*	0.1875	0.7031	0.2813		
Bilan et al.	0.1667	0.5374	0.2902	Dichiu & Rancea	0.1719	0.5469	0.2813		
Gencheva et al.	0.1638	0.5287	0.2902	Gencheva et al.	0.1563	0.6250	0.2656		
Garciarena et al.	0.1609	0.5201	0.2816	Bilan et al.	0.1406	0.5781	0.2969		
Kocher & Savoy	0.1552	0.5144	0.2816	Modaresi(a)	0.1406	0.6250	0.2969		
Modaresi et al.	0.1552	0.5029	0.3017	Zahid	0.1406	0.5781	0.2969		
Zahid	0.1523	0.4885	0.3103	Agrawal & Gonçalves	0.1094	0.4688	0.2500		
Ashraf et al.	0.1494	0.4971	0.2902	Roman-Gomez	0.0938	0.5156	0.1563		
Roman-Gomez	0.1494	0.5144	0.2874	baseline	0.0625	0.5313	0.1094		
Bakkar <i>et al</i> .	0.1466	0.5029	0.2874						
baseline	0.1207	0.5402	0.2126						
Pimas et al.	0.0057	0.0201	0.0086						

Early birds evaluation in reviews (NL)

Team	Gender	Team	Gender
Roman-Gomez	0.6200	Dichiu & Rancea	0.5400
Waser*	0.6000	Garciarena et al.	0.5400
Gencheva et al.	0.5600	Zahid	0.5400
baseline	0.5600	Kocher & Savoy	0.5200
Bayot & Gonçalve	s 0.5400	Agrawal & Gonçalves	0.5000
Bilan et al.	0.5400	Busger et al.	0.5000

Team	Gender
Devalkeneer	0.5000
Modaresi et al.	0.5000
Modaresi(a)	0.5000
Poongunran	0.4800
Bougiatiotis & Krit	hara 0.4400

Final evaluation in blogs (EN/ES)

Eng	glish			Spar	nish		
Team	Joint	Gender	Age	Team	Joint	Gender	Age
Bougiatiotis & Krithara	a 0.3974	0.6923	0.5513	Busger et al.	0.4286	0.7143	0.5179
Busger et al.	0.3846	0.6410	0.5897	Modaresi et al.	0.4286	0.6964	0.5179
Modaresi et al.	0.3846	0.7564	0.5128	Bilan et al.	0.3750	0.6250	0.4643
Bilan et al.	0.3333	0.7436	0.4487	Markov et al.	0.3750	0.6607	0.4464
Waser*	0.3205	0.5897	0.4359	Dichiu & Rancea	0.3214	0.6429	0.4643
Devalkeneer	0.3205	0.6026	0.4487	Bayot & Gonçalves	0.3036	0.5893	0.4821
Modaresi(a)	0.3205	0.6667	0.4487	Modaresi(a)	0.3036	0.6964	0.4464
Markov et al.	0.2949	0.6154	0.4487	Devalkeneer	0.2857	0.5179	0.4821
Roman-Gomez	0.2821	0.6538	0.3974	Agrawal & Gonçalves	0.2857	0.5357	0.4821
Dichiu & Rancea	0.2692	0.6154	0.4103	Deneva	0.2679	0.7321	0.3214
Gencheva et al.	0.2564	0.6795	0.3718	Waser*	0.2679	0.5893	0.4107
Kocher & Savoy	0.2564	0.5769	0.4103	Bougiatiotis & Krithara	0.2500	0.6786	0.3214
Ashraf et al.	0.2564	0.5769	0.3718	Gencheva et al.	0.2500	0.6250	0.3214
Bayot & Gonçalves	0.2179	0.6282	0.3590	Garciarena et al.	0.2500	0.5000	0.4286
Deneva	0.2051	0.5128	0.3718	Zahid	0.2143	0.4821	0.4464
Bakkar et al.	0.2051	0.5385	0.3718	Kocher & Savoy	0.1964	0.5357	0.3393
Agrawal & Gonçalves	0.1923	0.5128	0.3846	Roman-Gomez	0.1250	0.5000	0.2500
Zahid	0.1923	0.5000	0.3846	baseline	0.1250	0.5000	0.1786
Aceituno	0.1667	0.5000	0.3205	Aceituno	0.0893	0.4643	0.2143
Garciarena et al.	0.1538	0.4615	0.3718				
Pimas et al.	0.1410	0.5769	0.3205				
baseline	0.0897	0.5641	0.1923				

Final evaluation in reviews (NL)

Team	Gender	Team	Gender	Team	Gender
Bayot & Gonçalve	s 0.5680	Poongunran	0.5140	Modaresi et al.	0.5040
Roman-Gomez	0.5620	Gencheva et al.	0.5100	Busger et al.	0.5000
Bilan et al.	0.5500	Markov et al.	0.5100	Modaresi(a)	0.5000
Waser*	0.5320	Agrawal & Gonçalves	0.5080	Deneva	0.4980
baseline	0.5300	Devalkeneer	0.5060	Bougiatiotis & Krithar	a 0.4160
Dichiu & Rancea	0.5260	Aceituno	0.5040		
Garciarena et al.	0.5260	Kocher & Savoy	0.5040		

,16			Joint		Gende	r	Age	
PAN'16	Social media vs.	Team	Social Media	Blogs	Social Media	Blogs	Social Media	Blogs
₾	blogs in English	Agrawal & Gonçalves	0.1724	0.1923	0.5431	0.5128	0.3103	0.3846
	blogs in English	Ashraf et al.	0.1494	0.2564	0.4971	0.5769	0.2902	0.3718
		Bakkar <i>et al</i> .	0.1466	0.2051	0.5029	0.5385	0.2874	0.3718
		Bilan et al.	0.1667	0.3333	0.5374	0.7436	0.2902	0.4487
		Bougiatiotis & Krithara	0.1724	0.3974	0.5345	0.6923	0.3046	0.5513
		Busger et al.	0.1897	0.3846	0.5575	0.6410	0.3046	0.5897
		Devalkeneer	0.1839	0.3205	0.5259	0.6026	0.2931	0.4487
		Dichiu & Rancea	0.1753	0.2692		0.6154		0.4103
		Garciarena et al.	0.1609	0.1538		0.4615		0.3718
		Gencheva et al.		0.2564		0.6795		0.3718
		Kocher & Savoy	0.1552	0.2564	0.5144	0.5769	0.2816	0.4103
		Modaresi(a)	0.1724	0.3205		0.6667		0.4487
		Modaresi et al.	0.1552	0.3846		0.7564		0.5128
		Pimas et al.		0.1410		0.5769		0.3205
		Roman-Gomez		0.2821		0.6538		0.3974
		Waser*	0.2098	0.3205		0.5897		0.4359
		Zahid	0.1523	0.1923	0.4885	0.5000	0.3103	0.3846
ng		Min		0.1410		0.4615		0.3205
		Q1		0.2051		0.5769		0.3718
o		Median		0.2692		0.6026		0.4103
Author Profiling		Mean		0.2745		0.6109		0.4253
2		SDev		0.0794		0.0827		0.0704
ij		Q3	0.1724	0.3205		0.6667		0.4487
Ę		Max	0.2098	0.3974	0.5575	0.7564	0.3879	0.5897

16		89	Joint		Gender		Age	
PAN'16	Social media	Team	Social Media	Blogs	Social Media	Blogs	Social Media	Blogs
<u> </u>	vs. blogs in	Agrawal & Gonçalves	0.1094	0.2857		0.5357		0.4821
		Bilan <i>et al</i> .	0.1406	0.3750		0.6250		0.4643
	Spanish	Bougiatiotis & Krithara		0.2500		0.6786		0.3214
	Spariisti	Busger et al.	0.1875	0.4286	0.5313	0.7143	0.2813	0.5179
		Devalkeneer	0.1875	0.2857		0.5179	0.3594	0.4821
		Dichiu & Rancea	0.1719	0.3214	0.5469	0.6429	0.2813	0.4643
		Garciarena et al.	0.1875	0.2500	0.5625	0.5000	0.2969	0.4286
		Gencheva et al.	0.1563	0.2500	0.6250	0.6250	0.2656	0.3214
		Kocher & Savoy	0.2031	0.1964	0.5000	0.5357	0.3125	0.3393
		Modaresi(a)	0.1406	0.3036	0.6250	0.6964	0.2969	0.4464
		Modaresi et al.	0.2031	0.4286	0.6406	0.6964	0.2813	0.5179
		Roman-Gomez	0.0938	0.1250	0.5156	0.5000	0.1563	0.2500
		Waser*	0.1875	0.2679	0.7031	0.5893	0.2813	0.4107
		Zahid	0.1406	0.2143	0.5781	0.4821	0.2969	0.4464
		Min	0.0938	0.1250	0.4688	0.4821	0.1563	0.2500
D D		Q1	0.1406	0.2500	0.5352	0.5224	0.2813	0.3572
Profiling		Median	0.1797	0.2768	0.5703	0.6072	0.2891	0.4464
ro		Mean	0.1652	0.2844	0.5725	0.5957	0.2857	0.4209
<u>-</u>		SDev	0.0356	0.0848	0.0615	0.0831	0.0468	0.0819
10		Q3	0.1875	0.3170	0.6133	0.6697	0.2969	0.4776
uthor		Max	0.2031	0.4286	0.7031	0.7143	0.3594	0.5179

⋖

Distances in age identification

English

Spanish

2014 vs. 2016 in social media (English)

2014 vs. 2016 in blogs (English)

2014 vs. 2016 in social media (Spanish)

2014 vs. 2016 in blogs (Spanish)

21	Charles alders	Ranking	Team	Global	English	Spanish	Dutch
A V	Final ranking	1	Busger et al.	0.5263	0.3846	0.4286	0.5000
Դ		2	Modaresi et al.	0.4934	0.3205	0.4286	0.5040
		3	Bilan et al.	0.4834	0.3333	0.3750	0.5500
	$\overline{gender} = \frac{gender_en + gender_es + gender_nl}{2}$	4	Modaresi(a)	0.4602	0.3205	0.3036	0.5000
	- 3	5	Markov et al.	0.4593	0.2949	0.3750	0.5100
	$\overline{age} = \frac{age_en + age_es}{2}$	6	Bougiatiotis & Krithara	0.4519	0.3974	0.2500	0.4160
	icint and icint as	7	Dichiu & Rancea	0.4425	0.2692	0.3214	0.5260
	$\overline{joint} = rac{joint_en + joint_es}{2}$	8	Devalkeneer	0.4387	0.3205	0.2968	0.5060
	2	9	Waser*	0.4293	0.3205	0.2679	0.5320
		10	Bayot & Gonçalves	0.4255	0.2179	0.3036	0.5680
	Τ	11	Gencheva et al.	0.4015	0.2564	0.2500	0.5100
		12	Agrawal & Gonçalves	0.3971	0.1923	0.2857	0.5080
	<u> </u>	13	Deneva	0.3880	0.2051	0.2679	0.4980
	$ranking = rac{\overline{gender} + \overline{age} + \overline{joint}}{3}$	14	Kocher & Savoy	0.3800	0.2564	0.1964	0.5040
	$7anning = \frac{1}{3}$	15	Roman-Gomez	0.3664	0.2821	0.1250	0.5620
		16	Garciarena et al.	0.3660	0.1538	0.2500	0.5260
7)		17	Zahid	0.3154	0.1923	0.2143	_
		18	Aceituno	0.2949	0.1667	0.0893	0.5040
		19	Poongunran	0.1793	()	-	0.5140
		20	Ashraf et al.	0.1688	0.2564	-	_
		21	Bakkar et al.	0.1560	0.2051	-	_
		22	Pimas et al.	0.1410	0.1410	-	-

PAN-AP 2016 best results

·	Age and Gender						
Language	Joint	Gender	Age				
English	0.3974	0.7564	0.5897				
Spanish	0.4286	0.7321	0.5179				
Dutch	-	0.5680	-				

Conclusions

- High combination of features: stylometric, n-grams, POS, collocations... First positions with:
 - Second order representation
 - Word2vec

Spanish.

- Early birds (social media in English and Spanish; reviews in Dutch):
 - Higher results for gender identification in Spanish than in English.
 - In Dutch and English most participants below baseline.
- Final evaluation (blogs in English and Spanish; reviews in Dutch):
 - Similar results for English and Spanish.
 - Most Dutch results below baseline.
- The effect of the cross-genre evaluation is higher in social media than in blogs:
 - Results in blogs are higher than in social media, except in case of gender identification in Spanish.
 - Distances in age identification are lower in blogs than in social media.
- Comparative results between 2014 and 2015 suggests:
 - There is no strong effect in the cross-genre evaluation in social media in English.
 - There is a strong impact in Spanish social media, specially in joint and age identification.
 - o In blogs the effect is positive on age and joint identification in English and gender and joint in
 - Depending on the genre, the cross-genre may have a positive effect:
 - Learning from Twitter: spontaneous, without censorship, high number of tweets per user.
 - Evaluating on Blogs: difficult to obtain good labeled data.

Task impact

	PARTICIPANTS	COUNTRIES	CITATIONS
PAN-AP 2013	21	16	67 (+28)
PAN-AP 2014	10	8	41 (+25)
PAN-AP 2015	22	13	42 (+25)
PAN-AP 2016	22	15	5

Industry at PAN (Author Profiling)

Bitdefender®

Sponsors

On behalf of the author profiling task organisers:

Thank you very much for participating and hope to see you next year!!