苏州大学 <u>物理化学(一)下</u> 课程期中试卷 共4页

考试形式 闭 卷 2020 年 4 月 30 日

院	系:	材料与化学化工学部	年级:_		专业:	
学	号:		姓名: _		成绩:	
温	馨提	示 :				
无	需抄	题,请将答案写在作	业本或白纸	上,务必 <mark>写清</mark> 数	を题号!	
每	页右	上角都要写上序号、	姓名和学号	!编好页码,如	』3−1,表示一	·共3页,这
是	第一	·页;然后拍照上传,	不按要求提	交试卷将视为尹	E效试卷!谢》	射合作!
_		泽题(10*2 分 = 20 分)				
1.	按物	物质导电方式的不同而提	出的第二类导	体,下述对它特点	点的描述,哪一点	
	(A)	. 世中四陸汨帝的孔亨克+	क्षं -}-			(A)
		其电阻随温度的升高而 [‡] 其电阻随温度的升高而》				
	` ′	其导电的原因是离子的和				
		当电流通过时在电极上不		生		
2.		Cu 的相对原子量为 64, 月				Cu? (A)
	(A)	16 g (B) 32 g		(C) 64 g	(D) 127 g	
3	在 20	98 K 时离子强度为 0.015	5 mol • kg-1 的	7nCl 。的滚滴由	甘平均活度系	数 是 . (∧)
٥.		98 K 引属 1 強度分 0.013 0 0.7504 (B) 1.13	_	(C) 0.7793		数Æ;(A)
	` '	,			,	
4.	一个	电池反应确定的电池,E	值的正或负可	以用来说明:		(C)
	` '		` /	电池反应是否已达	这 平衡	
	(C)	电池反应自发进行的方	(D) F	电池反应的限度		
5	在 20	98 K 将两个 Zn(s)极分另	∥浸 λ 7n 2+ 活	· 度为 0.01 和 0.1	的滚沥山	组成的浓美由
٥.		电动势为:	UIX/C ZII II	/文/y 0.01 / 中 0.1		(B)
	(A)	_ / / / /	(B)	0.0295 V		,
	(C)	-0.059 V	(D)	(0.059lg0.004) V	1	
_	山 	叶 太阳扭上老火火火	<i>心心</i> 田盂进过	a 64a 目		(D)
Ο.	电解时,在阳极上首先发生氧化作用而放电的是: (I) (A) 标准还原电势最大者					(D)
		标准还原电势最小者				
	` ′	考虑极化后,实际上的	不可逆还原电	1势最大者		
	(D)	(D) 考虑极化后,实际上的不可逆还原电势最小者				

7. 下列示意图描述了原电池和电解池中电极的极化规律, 其中表示电解池阳极的是: (B)

8. 反应 A →产物 为一级反应, 2B → 产物 为二级反应, t (A) 和 t (B) 分别表示两反

应的半衰期,设 A 和 B 的初始浓度相等,当两反应分别进行的时间为 t=2t (A) 和

t=2t (B) 时, A, B 物质的浓度 c_A , c_B 的大小关系为: (C)

- - (B) $c_A = c_B$ (C) $c_A < c_B$ (D) 两者无一定关系
- 9. 某反应物起始浓度相等的二级反应, $k = 0.1 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$, $c_0 = 0.1 \text{ mol} \cdot \text{dm}^{-3}$,当反应 率降低 9 倍所需时间为: (A)
 - (A) 200 s

(A) $c_A > c_B$

- (B) 100 s
- (C) 30 s
- (D) 3.3 s
- 10. 在温度 T 时,实验测得某化合物在溶液中分解的数据如下:

初浓度 $c_0/\text{mol} \cdot \text{dm}^{-3}$

0.50

1.10 2.48

半衰期 t / s⁻¹

4280

174

则该化合物分解反应的级数为:

(D)

- (A) 零级
- (B) 一级反应 (C) 二级反应

885

(D) 三级反应

二、计算题 (共 5 题 60 分)

11.15 分

在 25℃时, 0.01 mol dm⁻³ 浓度的醋酸水溶液的摩尔电导率是 16.20×10⁻⁴ S m² mol⁻¹, 而 无限稀释情况下的极限摩尔电导率是 390.7×10⁻⁴ S m² mol⁻¹。计算:

- (1) 0.01 mol dm⁻³ 的醋酸水溶液在 25℃时的 pH 值;
- (2) 25℃, 0.1 mol dm⁻³的醋酸水溶液的摩尔电导率和 pH。

(1)
$$\alpha = \frac{\Lambda(\text{HAc})}{\Lambda_m^{\infty}(\text{HAc})} = 0.0415, \quad c(\text{H}^+) = c\alpha$$
 (2 $\%$)

$$pH = -lg[\frac{c(H^+)}{mol\ dm^{-3}}] = 3.38$$
 (3 $\%$)

(2)
$$K_a = \frac{\alpha^2}{1-\alpha} \left(\frac{c}{c^s}\right) = 1.80 \times 10^{-5}$$
 (3 $\%$)

当
$$c$$
=0.1 mol dm⁻³ 时, α = 0.0133 (2 分)

$$pH = -lg[\frac{c(H^+)}{mol dm^{-3}}] = 2.88$$
 (2 $\%$)

 $\Lambda_m(HAc) = \alpha \Lambda_m^{\infty}(HAc) = 0.520 \times 10^{-3} \,\mathrm{S \cdot m^2 \cdot mol^{-1}}$

12. 10 分

$$\varphi^{\ominus}$$
 (Al³⁺/Al) = -1.66 V, φ^{\ominus} (Sn⁴⁺/Sn) = 0.007 V, φ^{\ominus} (Sn²⁺/Sn) = -0.14 V

- (1) 请根据上述反应设计一电池, 当离子活度皆为 0.1 时, 求电池的电动势.
- (2) 通过计算说明上述正向反应在上面给定条件下能否自发进行,反应的标准平衡 常数多大?

[答] (1) Al(s) | Al³⁺(
$$a$$
=0.1) | Sn⁴⁺(a =0.1),Sn²⁺(a =0.1) | Pt
$$E = E^{\exists} - RT/6F \times \ln[(a^{3}(\operatorname{Sn}^{2+})(a^{2}(\operatorname{Al}^{3+})/(a^{3}(\operatorname{Sn}^{4+}))]$$

$$= (\phi^{\exists}(\operatorname{Sn}^{2+}/\operatorname{Sn}^{4+}) + 1.66) - RT/6F \times \ln(0.1)^{2}$$

$$\operatorname{Sn}^{4+} + 4e^{-} \longrightarrow \operatorname{Sn}$$

$$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$$

相减得 Sn⁴⁺ + 2e⁻ → Sn²⁺

$$\Delta_{\rm r}G_{\rm m}^{\$}({\rm Sn}^{2+},{\rm Sn}^{4+}) = \Delta_{\rm r}G_{\rm m}^{\$}({\rm Sn},{\rm Sn}^{4+}) - \Delta_{\rm r}G_{\rm m}^{\$}({\rm Sn},{\rm Sn}^{2+})$$
$$= -2F\phi^{\exists}({\rm Sn}^{2+},{\rm Sn}^{4+})$$

求得:
$$\phi^{\exists}$$
 (Sn²⁺,Sn⁴⁺)= 0.154 V 代入上式得 $E = 1.834 \text{ V}$ (3 分)

$$(2) E > 0$$
, 正向反应能自发进行 $(1 分)$

$$\lg K^{\exists} = zFE^{\exists}/2.303RT = 182$$
 $K^{\exists} = 10^{182}$ → ∞ (2 \Re)

13.15 分

298 K 时,有下列电池: Pt,Cl₂(p)|HCl(0.1 mol • kg⁻¹)|AgCl(s)|Ag(s), 试求:

- (1) 电池的电动势;
- (2) 电动势温度系数和有 1mol 电子电量可逆输出时的热效应;
- (3) AgCl(s)的分解压。

已知 $\Delta_f H_m$ (AgCl)= - 1.2703×10⁵ J mol⁻¹, Ag(s), AgCl(s)和 Cl₂(g)的规定熵值 S_m 分别为: 42.70, 96.11 和 243.87 J • K⁻¹ • mol⁻¹。

[答] 电池反应为:

AgCl(s)→Ag(s)+
$$\frac{1}{2}$$
Cl₂(p^{\exists}) (2 分)

(1)
$$E = E^{\$} = -\frac{\Delta_{\rm r} G_{\rm m}^{\$}}{zE} = -\frac{\Delta_{\rm r} H_{\rm m}^{\$} - T \Delta_{\rm r} S_{\rm m}^{\$}}{zE}$$

$$\Delta_{r}H_{m}^{\$} = -\Delta_{f}H_{m}^{\$}(AgCl) = 1.2703 \times 10^{5} \text{ J} \cdot \text{mol}^{-1}$$

$$\Delta_{r}S_{m}^{\$} = (42.70 + \frac{1}{2}(243.87) - 96.11) = 68.52 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$
(5 \(\frac{\partial}{2}\))

但 F--1105 V

(2)
$$Q_{\rm r} = T \Delta_{\rm r} S_{\rm m}^{\ \exists} = 2.042 \times 10^4 \,\rm J$$
 (2 $\%$)

$$\left(\frac{\partial E}{\partial T}\right)_{p} = \frac{\Delta_{r} S_{m}^{\$}}{z E} = 7.1 \times 10^{-4} \text{ V} \cdot \text{K}^{-1}$$
(2 \(\frac{\partial}{r}\))

(3)
$$\ln K_p^{\$} = \frac{zE^{\$}F}{RT} = -43.04;$$
 $K_p^{\$} = 2.03 \times 10^{-19};$ $(\frac{p_{\text{Cl}_2}}{p^{\$}})^{\frac{1}{2}} = K_p^{\$}$ $p_{\text{Cl}_2} = 4.2 \times 10^{-33} \text{ Pa}$ (4 $\%$)

14.10 分

298 K 时,以 Pt 为阳极, Fe 为阴极,电解浓度为 1 mol·kg⁻¹的 NaCl 水溶液(活度系数为 0.66)。 设电极表面有 $H_2(g)$ 不断逸出时的电流密度为 0.1A·cm⁻², Pt 上逸出 $Cl_2(g)$ 的超电势可近似看作零。 若 Tafel 公式为 $\eta = a + blg(j/1A$ ·cm⁻²),且 Tafel 常数 a = 0.73 V,

b = 0.11V, φ^{\ominus} (Cl₂/Cl⁻)=1.36 V,请计算实际的分解电压。

15. 10 分

二甲醚的气相分解反应是一级反应:

$$CH_3OCH_3(g) \longrightarrow CH_4(g) + H_2(g) + CO(g)$$

813 K 时,把二甲醚充入真空反应球内,测量球内压力的变化,数据如下:

$$t/s$$
 390 777 1587 3155 ∞ p/k Pa 40.8 48.8 62.4 77.9 93.1

请计算该反应在 813 K 时的反应速率常数 k 和半衰期 t_{\perp} 。

[答]
$$CH_3OCH_3(g) \longrightarrow CH_4(g) + H_2(g) + CO(g)$$
 总压 p_T
 $t = 0$ p_0 0 0 0 p_0
 $t = t$ p $p_0 - p$ $p_0 - p$ $p_0 - p$ $3p_0 - 2p$
 $t = \infty$ 0 p_0 p_0 p_0 p_0 $3p_0$
 $\therefore p = (3p_0 - p_T)/2$ $p_0 = \frac{1}{3}$ $p_\infty = 31.0$ kPa
$$k = \frac{1}{t} \ln \frac{2p_\infty}{3(p_\infty - p_t)}$$
 将 t , p_t 数据分别代入,求 k
求平均值 $k_{\text{平均}} = 4.41 \times 10^{-4} \, \text{s}^{-1}$ (4分)
$$t_{\frac{1}{3}} = \ln 2/k = 1.57 \times 10^3 \, \text{s}$$

三、问答题(共2题 20分)

16.10 分

为什么韦斯顿标准电池一般采用含 Cd 12.5%的 Cd-Hg 齐?请写出韦斯顿电池的表达式、电池反应和画出相应的相图来加以说明。

[答](1) Cd-Hg(12%Cd) | CdSO₄ •
$$2\frac{2}{3}$$
 H₂O(饱和) | Hg₂SO₄(s) | Hg(l) (3 分)

(2) 反应:
$$Cd-Hg$$
 齐 $+Hg_2SO_4(s)=Cd^{2+}+SO_4^{2-}+2Hg(l)$ (3分)

(3) 12%的 Cd-Hg 齐处在 ab 线上, 虽含 Cd 量略有变化, 但 Cd-Hg 齐液相中的组成 (a 点)保持不变。所以 E 稳定。 (4 分)

17.10 分

有一反应 $mA \rightarrow nB$ 是一基元反应,其动力学方程为 $-\frac{1}{m} \frac{\mathrm{d}c_{\mathrm{A}}}{\mathrm{d}t} = kc_{\mathrm{A}}^{m}$, c_{A} 单位是 $\mathrm{mol} \cdot \mathrm{dm}^{-3}$,

问:

- (1) k 的单位是什么?
- (2) 写出 B 的生成速率方程 $\frac{\mathrm{d}c_{\mathrm{B}}}{\mathrm{d}t}$;
- (3) 分别写出当m=1和 $m\neq 1$ 时k的积分表达式。
- [答] (1) 若时间以s表示,则k单位为 $dm^{3(m-1)} \cdot mol^{1-m} \cdot s^{-1}$

(2)
$$\frac{\mathrm{d}c_{\mathrm{B}}}{\mathrm{d}t} = -\frac{n}{m} \frac{\mathrm{d}c_{\mathrm{A}}}{\mathrm{d}t} = nkc_{\mathrm{A}}^{m}$$

(3)
$$m=1$$
, $k=\frac{1}{mt}\ln\frac{c_{A,0}}{c_A}$

$$m \neq 1$$
, $k = \frac{1}{t(m-1)} (c_{A,0}^{1-m} - c_{A}^{1-m})$