Design and Analysis of Algorithms

Part 1

Program Costs and Asymptotic Notations

[CLRS 1, 2.1, 2.2, 3]

Giulio Chiribella

Hilary Term 2019

Fast computers vs efficient algorithms [CLRS 1]

Many recent innovations rely on

- \Box fast computers
- efficient algorithms.

Which is more important?

The importance of efficient algorithms

The *cost* of an algorithm can be quantified by the number of steps T(n) in which the algorithm solves a problem of size n.

Imagine that a certain problem can be solved by four different algorithms, with $T(n) = n, n^2, n^3$, and 2^n , respectively.

Question: what is the maximum problem size that the algorithm can solve in a given time?

Assume that a computer is capable of 10^{10} steps per second.

Cost T(n)	Maximum problem size solvable in					
(Complexity)	1 second 1 hour 1 year					
n	10^{10}	3.6×10^{13}	3×10^{17}			
n^2	10^{5}	6×10^{6}	5×10^8			
n^3	2154	33000	680000			
2^n	33	45	58			

Faster computers vs more efficient algorithms

Suppose a faster computer is capable of 10^{16} steps per second.

Cost T(n)	Max. size before	Max. size now
n	s_1	$10^6 \times s_1$
n^2	s_2	$1000 \times s_2$
n^3	s_3	$100 \times s_3$
2^n	s_4	$s_4 + 20$

A $10^6 \times$ increase in speed results in only a factor-of-100 improvement if cost is n^3 , and only an additive increase of 20 if cost is 2^n .

Conclusions As computer speeds increase ...

- 1. ... it is algorithmic efficiency that really determines the increase in problem size that can be achieved.
- 2. ... so does the size of problems we wish to solve.

 Thus, designing efficient algorithms become even more important!

From Algorism to Algorithms

Invented in India around AD 600, the *decimal system* was a revolution in quantitative reasoning. Arabic mathematicians helped develop arithmetic methods using the Indian decimals.

A 9th-century Arabic textbook by the Persian Al Khwarizmi was the key to the spread of the Indian-Arabic decimal arithmetic. He gave methods for basic arithmetic (adding, multiplying and dividing numbers), even the calculation of square roots and digits of π .

Derived from 'Al Khwarizmi', *algorism* means rules for performing arithmetic computations using the Indian-Arabic decimal system.

The word "algorism" devolved into *algorithm*, with a generalisation of the meaning to

Algorithm: a finite set of well-defined instructions for accomplishing some task.

Evaluating algorithms

Two questions we ask about an algorithm

- 1. Is it correct?
- 2. Is it efficient?

Correctness is of utmost importance.

It is easy to design a highly efficient but incorrect algorithm.

Efficiency with respect to:

- □ Running time
- ☐ Space (amount of memory used)
- ☐ Network traffic
- ☐ Other features (e.g. number of times secondary storage is accessed)

Measuring running time

On an actual computer, the running time of a *program* depends on many factors:

- 1. The running time of the algorithm.
- 2. The input of the program.
- 3. The quality of the implementation (e.g. quality of the code generated by the compiler).
- 4. The machine running the program.

We are concerned with 1.

Sorting [CLRS 2.1]

The Sorting Problem

Input: A sequence of n integers a_1, \dots, a_n .

Output: A permutation $a_{\sigma(1)}, \dots, a_{\sigma(n)}$ of the input such that

$$a_{\sigma(1)} \leq a_{\sigma(2)} \leq \cdots \leq a_{\sigma(n)}$$
.

The sequences are typically stored in arrays.

Insertion sort: Informal description

- The input is an integer array A[1..n], with $A[1] = a_1, A[2] = a_2, ..., A[n] = a_n$.
- The algorithm consists of n-1 iterations. At the j-th iteration, the first j+1 entries of the array $A[1 \dots n]$ are arranged in sorted order. To do this, the entry A[j+1] is compared with the entry A[i], $i \leq j$, starting from i=j.
 - If A[i] > A[j+1], the value A[i] is moved from the i-th position to the (i+1)-th position, and the counter i is decremented to i-1.
 - If $A[i] \le A[j+1]$, the value A[j+1] is put into the (i+1)-th position of the array and the iteration terminates.

	j	•			
1	2	3	4	5	6
2	5	4	6	1	3

			j	•	
1	2	3	4	5	6
2	4	5	6	1	3

				j	
1	2	3	4	5	6
1	2	4	5	6	3

					j	•
1	_	3		5		
1	2	3	4	5	6	

Observation. At the start of the j-th iteration, the subarray A[1...j] consists of the elements originally in A[1...j] but in sorted order.

Pseudocode (CRLS-style)

INSERTION-SORT(A)

```
Input: An integer array A
Output: Array A sorted in non-decreasing order

for j = 1 to A.length - 1
key = A[j + 1]
M Insert A[j + 1] into the sorted sequence A[1 ... j].
i = j
while i > 0 and A[i] > key
A[i + 1] = A[i] // moves the value A[i] one place to the right i = i - 1
A[i + 1] = key
```

Characteristics of the CLRS pseudocode

Similar to Pascal, C and Java. Pseudocode is for communicating algorithms to humans: many programming issues (e.g. data abstraction, modularity, error handling, etc.) are ignored. English statements are sometimes used. "//" indicates that the reminder of the line is a comment. (In 2nd edition "⊳" is used.) Variables are local to the block, unless otherwise specified. Block structure is indicated by indentation. Assignment "x = y" makes x reference the same object as y. (In 2nd edition " \leftarrow " is used.) Boolean operators "and" and "or" are "short-circuiting".

Loop-invariant approach to correctness proof

Three key components of a loop-invariant argument:

- 1. *Initialization*: Prove that invariant (I) holds prior to first iteration.
- 2. *Maintenance*: Prove that if (I) holds just before an iteration, then it holds just before the next iteration.
- 3. *Termination*: Prove that when the loop terminates, the invariant (I), and the reason that the loop terminates, imply the correctness of the loop-construct.

The approach is reminiscent of mathematical induction:

- 1. Initialization corresponds to establishing the base case.
- 2. Maintenance corresponds to establishing the inductive case.
- 3. The difference is that we expect to exit the loop, whereas mathematical induction establishes a result for all natural numbers.

Correctness of Insertion-Sort

Invariant of outer loop: At the start of the j-th iteration, the subarray A[1...j] consists of the elements originally in A[1...j] but in sorted order.

Correctness of Insertion-Sort

Invariant of outer loop: At the start of the j-th iteration, the subarray A[1...j] consists of the elements originally in A[1...j] but in sorted order.

Initialization. When j = 1, the subarray A[1 ... j] is a singleton and trivially sorted.

Termination. The outer **for** loop terminates when j = n := A.length. With j = n, the invariant reads: A[1..n] consists of the elements originally in A[1..n] but in sorted order.

Correctness of Insertion-Sort

Invariant of outer loop: At the start of the j-th iteration, the subarray A[1...j] consists of the elements originally in A[1...j] but in sorted order.

Initialization. When j = 1, the subarray A[1 ... j] is a singleton and trivially sorted.

Termination. The outer **for** loop terminates when j = n := A.length. With j = n, the invariant reads: A[1...n] consists of the elements originally in A[1...n] but in sorted order.

Maintenance. Suppose input is sequence a_1, \dots, a_n .

We need to prove the following:

If at the start of the j-th iteration A[1...j] consists of a_1, \dots, a_j in sorted order, then at the start of the (j+1)-th iteration A[1...j+1] consists of a_1, \dots, a_{j+1} in sorted order.

The proof requires us to examine the behaviour of the inner **while** loop, under the promise that the subarray A[1...j] consists of a_1, \dots, a_j in sorted order.

Correctness of Insertion-Sort, continued

The inner while loop has the following property:

Property of the while loop: if A[1...j] consists of a_1, \dots, a_j in sorted order, then, at termination of the **while** loop, the sequence $A[1...i] \ key \ A[i+2...j+1]$ consists of a_1, \dots, a_{j+1} in sorted order.

This property implies the maintenance of the loop invariant of the **for** loop, because the array A[1...j+1] after the j-th iteration of the **for** loop is exactly the sequence A[1...i] key A[i+2...j+1].

Correctness of Insertion-Sort, continued

The inner while loop has the following property:

Property of the while loop: if A[1...j] consists of a_1, \dots, a_j in sorted order, then, at termination of the **while** loop, the sequence $A[1...i] \ker A[i+2...j+1]$ consists of a_1, \dots, a_{j+1} in sorted order.

This property implies the maintenance of the loop invariant of the **for** loop, because the array A[1...j+1] after the j-th iteration of the **for** loop is exactly the sequence A[1...i] key A[i+2...j+1].

Hence, it only remains to prove the validity of the above property. The proof, provided in the next slide, uses a loop invariant for the **while** loop.

Correctness of Insertion-Sort, concluded

Invariant of while loop:

- (I1) A[1 ... i] A[i+2 ... j+1] is $a_1, \dots a_j$ in sorted order
- (I2) all elements in A[i+2...j+1] are strictly greater than key.

Initialization. For i = j, (I1) is true because A[1, ... j] was promised to be a_1, \dots, a_j in sorted order, and (I2) is trivially true because the array A[j+2...j+1] is empty.

Termination. Termination occurs if either i=0 or $A[i] \le key$. In both cases, (I1) and (I2) guarantee that the sequence $A[1..i] \ker A[i+2..j+1]$ contains the same elements as $a_1, \dots a_{j+1}$ in sorted order.

Maintenance. For a given i, the body of the loop is executed only if A[i] > key. In that case, A[i+1] gets the value A[i]. After this change, the sequence A[1 ... i-1] A[i+1 ... j+1] is $a_1, \dots a_j$ in sorted order, and all elements in A[i+1 ... j+1] are strictly greater than key.

Hence, (I1) and (I2) still hold when i is decremented to i-1.

Running time analysis [CLRS 2.2]

Running time is

 $\sum_{\rm all\ statements} (cost\ of\ statement) \cdot (number\ of\ time\ statement\ executed)$

CLRS assume the following model: for a given pseudocode

- \Box Line *i* takes constant time c_i .
- ☐ When a **for** or **while** loop exits normally, the test is executed *one more time* than the loop body.

This model is well justified when each line of the pseudocode contains:

- □ a constant number of basic arithmetic operations
 (add, subtract, multiply, divide, remainder, floor, ceiling)
- □ a constant number of data movement instructions (load, store, copy)
- a constant number of control instructions
 (conditional and unconditional branch, subroutine call and return)

The running time of INSERTION-SORT

Recall the pseudocode:

```
1 for j = 1 to A.length - 1

2 key = A[j + 1]

3 // Insert A[j + 1] into the sorted sequence A[1 ... j].

4 i = j

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```

Setting n := A.length, the running time is

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 (n-1) + c_5 \sum_{j=1}^{n-1} t_j + c_6 \sum_{j=1}^{n-1} (t_j - 1) + c_7 \sum_{j=1}^{n-1} (t_j - 1) + c_8 (n-1),$$

where t_j is the number of times the test of the **while** loop is executed for a given value of j (note that t_j may also depend on the input).

Worst-case analysis

- ☐ The input array contains distinct elements in reverse sorted order i.e. is strictly decreasing.
- Why? Because we have to compare $key = a_{j+1}$ with every element to left of the (j+1)-th element, and so, compare with j elements in total.
- Thus $t_j = j + 1$. We have $\sum_{j=1}^{n-1} t_j = \sum_{j=1}^{n-1} (j+1) = \frac{n(n+1)}{2} 1$, and so,

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (\frac{n(n+1)}{2} - 1)$$

$$+ c_6 (\frac{n(n-1)}{2}) + c_7 \frac{n(n-1)}{2} + c_8 (n-1)$$

$$= an^2 + bn + c$$

for appropriate a, b and c.

Hence T(n) is a quadratic function of n.

Best-case analysis

- \Box The array is already sorted.
- Always find $A[i] \le key$ upon the first iteration of the **while** loop (when i = j).
- \Box Thus $t_i = 1$.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$
$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

I.e. T(n) is a *linear* function of n.

Average-case analysis (informal)

- \square Randomly choose n numbers as input.
- On average, the key in A[j] is less than half the elements in A[1...j] and greater than the other half, and so, on average **while** loop has to look halfway through the sorted subarray A[1...j] to decide where to drop the key.
- \Box Hence $t_j = j/2$.
- ☐ Although average-case running time is approximately half that of the worst-case, it is still quadratic.

Moral. Average-case complexity can be *asymptotically* as bad as the worst-case.

Average-case analysis is not straightforward:

- □ What is meant by "average input" depends on the application.
- \square The mathematics can be difficult.

Features of insertion sort: a summary

- ☐ Worst-case quadratic time.
- ☐ Linear-time on already sorted (or nearly sorted) inputs.
- ☐ *Stable*: Relative order of elements with equal keys is maintained.
- ☐ *In-place*: Only a constant amount of extra memory space (other than that which holds the input) is required, regardless of the size of the input.
- □ *Online*: it can sort a list as it is received.

The Big-O notation [CLRS 3]

Let $f, g : \mathbb{N} \longrightarrow \mathbb{R}^+$ be functions. Define the set

$$O(g(n)) := \{ f : \mathbb{N} \longrightarrow \mathbb{R}^+ : \exists n_0 \in \mathbb{N}^+ . \exists c \in \mathbb{R}^+ . \forall n . \}$$

$$n \ge n_0 \longrightarrow f(n) \le c \cdot g(n) \}$$

In words, $f \in O(g)$ if there exist a positive integer n_0 and a positive real c such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Informally O(g) is the set of functions that are bounded above by g, ignoring constant factors, and ignoring a finite number of exceptions.

If $f \in O(g)$, then we say that "g is an asymptotic upper bound for f"

$$O(g(n)) := \{ f : \mathbb{N} \longrightarrow \mathbb{R}^+ : \exists n_0 \in \mathbb{N}^+ : \exists c \in \mathbb{R}^+ : \forall n : n \geq n_0 \rightarrow f(n) \leq c \cdot g(n) \}$$

- 1. $3^{98} \in O(1)$ [regarding 3^{98} and 1 as (constant) functions of n]. Take $n_0 = 1$ and $c = 3^{98}$.
- 2. $5n^2 + 9 \in O(n^2)$. Take $n_0 = 3$ and c = 6. Then for for all $n \ge n_0$, we have $9 \le n^2$, and so $5n^2 + 9 < 5n^2 + n^2 = 6n^2 = cn^2$.
- 3. Take $g(n) = n^2$ and $f(n) = 7n^2 + 3n + 11$. Then $f \in O(g)$.
- 4. Some more functions in $O(n^2)$: $1000n^2$, n, $n^{1.9999}$, $n^2/\lg \lg \lg n$ and 6.

Properties of Big-O

Lemma 1. Let $f, g, h : \mathbb{N} \longrightarrow \mathbb{R}^+$. Then:

- 1. For every constant c > 0, if $f \in O(g)$ then $c f \in O(g)$.
- 2. For every constant c > 0, if $f \in O(g)$ then $f \in O(cg)$.
- 3. If $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$ then $f_1 + f_2 \in O(g_1 + g_2)$.
- 4. If $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$ then $f_1 + f_2 \in O(\max(g_1, g_2))$.
- 5. If $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$ then $f_1 \cdot f_2 \in O(g_1 \cdot g_2)$.
- 6. If $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$.
- 7. Every polynomial of degree $l \geq 0$ is in $O(n^l)$.
- 8. For any c > 0 in \mathbb{R} , we have $\lg(n^c) \in O(\lg(n))$.
- 9. For every constant c, d > 0, we have $\lg^c(n) \in O(n^d)$.
- 10. For every constant c > 0 and d > 1, we have $n^c \in O(d^n)$.
- 11. For every constant $0 \le c \le d$, we have $n^c \in O(n^d)$.

Example. Show that

$$57n^3 + 4n^2 \cdot \lg^5(n) + 17n + 498 \in O(n^3)$$

by appealing to Lemma 1.

$$\lg^{5}(n) \in O(n) \qquad :: 9$$

$$4n^{2} \cdot \lg^{5}(n) \in O(4n^{3}) \qquad :: 5$$

$$57n^{3} + 4n^{2} \cdot \lg^{5}(n) + 17n + 498 \in O(57n^{3} + 4n^{3} + 17n + 498) \qquad :: 3$$

$$57n^{3} + 4n^{3} + 17n + 498 \in O(n^{3}) \qquad :: 7$$

$$57n^{3} + 4n^{2} \cdot \lg^{5}(n) + 17n + 498 \in O(n^{3}) \qquad :: 6$$

A shorthand for Big-O

Instead of writing $f \in O(g)$ we often write

$$f(n) = O(g(n))$$

(read "f is Big-O of g").

A shorthand for Big-O

Instead of writing $f \in O(g)$ we often write

$$f(n) = O(g(n))$$

(read "f is Big-O of g").

It is also convenient to write

$$f_1(n) = f_2(n) + O(g(n))$$

meaning that

$$f_1(n) = f_2(n) + h(n),$$

where h(n) is a generic function in O(g(n)).

Pitfalls of the shorthand

When writing

$$f(n) = O(g(n))$$

we must bear in mind that it is a shorthand for $f(n) \in O(g(n))$.

Here "=" is **not** an equality between two objects.

In particular, it does **not** have the transitive property:

$$f(n) = O(g(n))$$
 and $h(n) = O(g(n))$ does **not** imply $f(n) = h(n)!$

Two elements of the same set are not necessarily the same element!

Example

$$\square$$
 $n = O(n^3)$ and $n^2 = O(n^3)$ but $n \neq n^2$.

So why use the shorthand?

- It is convenient to write equations like $f(n) = g(n) + O(n^d)$, or f(n) = g(n) (1 + O(1/n))
- ☐ The Big-O shorthand is a very common mathematical notation, in use since more than 100 years ago.
- \square We already abuse the "=" symbol in computer science: think of the pseudocode instruction i=i-1.

\mathbf{Big} - Ω

The Big-O notation is useful for upper bounds. There is an analogous notation for lower bounds, called the Big-Omega. We write

$$f(n) = \Omega(g(n))$$

to mean "there exist a positive integer n_0 and a positive real c such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$."

If $f \in \Omega(g)$, then we say that "g is an asymptotic lower bound for f".

Example

- 1. $n^n = \Omega(n!)$
- 2. $2^n = \Omega(n^{10})$.

Exercise

Prove that $f(n) = \Omega(g(n))$ iff g(n) = O(f(n)).

When the function g(n) is both an asymptotic upper bound and an asymptotic lower bound for f(n), we say that "g is an **asymptotic tight bound** for f", and we write

$$f(n) = \Theta(g(n)).$$

Equivalently, $f = \Theta(g)$ means that there exist positive reals c_1 and c_2 and a positive integer n_0 such that for all $n \ge n_0$, we have

$$c_1g(n) \le f(n) \le c_2g(n).$$

We can think of f and g as having the "same order of magnitude".

- 1. $5n^3 + 88n = \Theta(n^3)$
- $2. \quad 2 + \sin(\lg n) = \Theta(1)$
- 3. $n! = \Theta(n^{n+1/2}e^{-n})$. Consequence of Stirling's Approximation.
- 4. For all a, b > 0, $\log_a n = \Theta(\log_b n)$. Consequence of the relation $\log_b a = \frac{\log_c a}{\log_c b}$. From now on, we will be "neutral" and write $\Theta(\log n)$, without specifying the base of the logarithm.

- 1. $5n^3 + 88n = \Theta(n^3)$
- $2. \quad 2 + \sin(\lg n) = \Theta(1)$
- 3. $n! = \Theta(n^{n+1/2}e^{-n})$. Consequence of Stirling's Approximation.
- 4. For all a, b > 0, $\log_a n = \Theta(\log_b n)$. Consequence of the relation $\log_b a = \frac{\log_c a}{\log_c b}$. From now on, we will be "neutral" and write $\Theta(\log n)$, without specifying the base of the logarithm.

Question. OK, we have seen that $\log_a n$ is a Big-Theta of $\log_b n$. But is $2^{\log_a n}$ a Big-Theta of $2^{\log_b n}$?

- 1. $5n^3 + 88n = \Theta(n^3)$
- $2. \quad 2 + \sin(\lg n) = \Theta(1)$
- 3. $n! = \Theta(n^{n+1/2}e^{-n})$. Consequence of Stirling's Approximation.
- 4. For all a, b > 0, $\log_a n = \Theta(\log_b n)$. Consequence of the relation $\log_b a = \frac{\log_c a}{\log_c b}$. From now on, we will be "neutral" and write $\Theta(\log n)$, without specifying the base of the logarithm.

Question. OK, we have seen that $\log_a n$ is a Big-Theta of $\log_b n$. But is $2^{\log_a n}$ a Big-Theta of $2^{\log_b n}$?

No! Recall that $a^{\log_b c} = c^{\log_b a}$ for all a, b, c > 0. Using this relation, we have $2^{\log_a n} = n^{\log_a 2}$ and $2^{\log_b n} = n^{\log_b 2}$. If $a \neq b$, we have two different powers of n, but $n^c = \Theta(n^d)$ only if c = d.

Revision

Logarithms.

 $\log_2 n$ is sometimes written $\lg n$, and $\log_e n$ is sometimes written $\ln n$.

Recall the following useful facts. Let a, b, c > 0.

$$a = b^{\log_b a}$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

A form of Stirling's approximation.

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$