MasteR of Tables

Tomasz Żółtak

Educational Research Institute (Warsaw, Poland) & University of Warsaw

WhyR? Conference Warsaw, 29.09.2019

Section 1

Introduction

Introductory remarks

- Initially I planned this to be a workshop (for beginners)...
- This speech will be only about package tables
- I haven't authored this package but I find it very useful and want to promote it's use

• Everyone sometimes needs to make a table (of percentages)

- Everyone sometimes needs to make a table (of percentages)
- If we ask "WhyR?"...

- Everyone sometimes needs to make a table (of percentages)
- If we ask "WhyR?"...
- ... many people need to make a lot of tables in their everyday work

- Everyone sometimes needs to make a table (of percentages)
- If we ask "WhyR?"...
- ... many people need to make a lot of tables in their everyday work
- Improving popularity of R in some domains (like social science) needs not only enabling people to use new, sophisticated, exciting methods of data analysis. . .

- Everyone sometimes needs to make a table (of percentages)
- If we ask "WhyR?"...
- ... many people need to make a lot of tables in their everyday work
- Improving popularity of R in some domains (like social science) needs not only enabling people to use new, sophisticated, exciting methods of data analysis. . .
- ... but also ability to support them in performing easy and rather burdensome everyday tasks.

But it's already so easy! (1)

str(titanic)

Let's try to make a rather simple table summarizing *Titanic* data:

		Count			Percent			
	Surv	Survived		Survived				
Class	No	Yes	Total	No	Yes	Total		
1st	122	203	325	37.54	62.46	100		
2nd	167	118	285	58.60	41.40	100		
3rd	528	178	706	74.79	25.21	100		
Crew	673	212	885	76.05	23.95	100		
Total	1490	711	2201	67.70	32.30	100		

assuming we have this data provided as a data frame:

```
## 'data.frame': 2201 obs. of 4 variables:
## $ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3
## $ Sex : Factor w/ 2 levels "Male","Female": 1 1 1 1 1 1 1 1 1
```

But it's already so easy! (2)

Neither so easy nor so pretty:

```
library(knitr)
counts = table(Class = titanic$Class, Survived = titanic$Survived)
counts = addmargins(counts, 1, list(Total = sum))
percents = 100*prop.table(counts, 1)
percents = addmargins(percents, 2, list(Total = sum))
counts = addmargins(counts, 2, list(Total = sum))
colnames(counts) = paste("#", colnames(counts))
colnames(percents) = paste("%", colnames(percents))
kable(cbind(counts, percents), digits = 2)
```

	# No	# Yes	# Total	% No	% Yes	% Total
1st	122	203	325	37.54	62.46	100
2nd	167	118	285	58.60	41.40	100
3rd	528	178	706	74.79	25.21	100
Crew	673	212	885	76.05	23.95	100
Total	1490	711	2201	67.70	32.30	100

But it's already so easy! (2)

Neither so easy nor so pretty:

```
library(knitr)
counts = table(Class = titanic$Class, Survived = titanic$Survived)
counts = addmargins(counts, 1, list(Total = sum))
percents = 100*prop.table(counts, 1)
percents = addmargins(percents, 2, list(Total = sum))
counts = addmargins(counts, 2, list(Total = sum))
colnames(counts) = paste("#", colnames(counts))
colnames(percents) = paste("%", colnames(percents))
kable(cbind(counts, percents), digits = 2)
```

	# No	# Yes	# Total	% No	% Yes	% Total
1st	122	203	325	37.54	62.46	100
2nd	167	118	285	58.60	41.40	100
3rd	528	178	706	74.79	25.21	100
Crew	673	212	885	76.05	23.95	100
Total	1490	711	2201	67.70	32.30	100

And it won't be any easier with tidy

Package tables

- Authored by Duncan Murdoch
 - Inspired by my [Duncan's] 20 year old memories of SAS PROC TABULATE
- Computes and displays complex tables of summary statistics.
 Output may be in LaTeX, HTML, plain text, or an R matrix for further processing.
 - tables uses knitr package to prepare HTML or LaTeX output of its objects (kableExtra can be used as well to make this output even better)
- Allows describing structure of a table with convenient formula interface.

		Count			Percent			
	Survi	ved		Surv	vived			
Class	No	Yes	Total	No	Yes	Total		
1st	122	203	325	37.54	62.46	100		
2nd	167	118	285	58.60	41.40	100		
3rd	528	178	706	74.79	25.21	100		
Crew	673	212	885	76.05	23.95	100		
Total	1490	711	2201	67.70	32.30	100		

Section 2

Features of the tables package

Formula syntax - numeric variables (1)

- what in rows ~ what in columns
- numeric variables:
 - variable * function to get statistic returned by a function
 - (label=variable) or (label=function) to assign labels
 - (variable > condition) to define subsets
 - Factor(variable) to treat variable as categorical (i.e. grouping factor)
 - foo + foo to define consecutive rows/columns
 - + 1 indicates adding total row/column

	Horse	Horsepower		
	mean	sd		
cyl == 4	82.64	20.93		
cyl > 4	180.24	60.24		
All	146.69	68.56		

Formula syntax - numeric variables (2)

- what in rows ~ what in columns
- numeric variables:
 - variable * function to get statistic returned by a function
 - (label=variable) or (label=function) to assign labels
 - (logical expression) to define subsets
 - Factor(variable) to treat variable as categorical (i.e. grouping factor)
 - + to define consecutive rows/columns
 - + 1 indicates adding total row/column

```
tabular((cyl == 4) + (cyl > 4) + 1 ~ (Horsepower=hp)*(
  (q0.2 = quantile*Arguments(probs = 0.2)) +
      (q0.8 = quantile*Arguments(probs = 0.8)) +
      (`Number of cases`=length)),
    mtcars) %>% toKable("latex")
```

		Horsepower					
	q0.2	q0.8	Number of cases				
cyl == 4	65.0	97	11				
cyl > 4	123.0	230	21				
All	93.4	200	32				

Formula syntax - additional features (1)

- You can describe complex table structure using parenthesis
- Pseudofunction Format() allows defining how to print numbers
- Pseudofunction Heading() allows not to put variable/function name into rows/columns names

	Horse	Horsepower		r galon	
	mean	sd	mean	sd	Number of cases
cyl == 4	82.636	20.935	26.664	4.510	11
cyl > 4	180.238	60.240	16.648	3.150	21
All	146.688	68.563	20.091	6.027	32

Formula syntax - categorical variables (1)

- what in rows ~ what in columns
- categorical variables always use factors:
 - Factor(variable) to covert character variables to factors on the fly
 - variable to get counts; variable1 * variable2 to get subgroups
 - (label=variable) to assign label
 - variable*Percent("row") or variable*Percent("col") to compute percentages
 - + 1 indicates adding total row/column

		Age						
		Child				Adult		
		Class			Class			
Survived	1st	2nd	3rd	Crew	1st	2nd	3rd	Crew
No Yes	0 6	0 24	52 27	0	122 197	167 94	476 151	673 212

Formula syntax - categorical variables (2)

- what in rows ~ what in columns
- categorical variables (always use factors):
 - Factor(variable) to covert character variables to factors on the fly
 - variable to get counts; variable1 * variable2 to get subgroups
 - (label=variable) to assign label
 - variable*Percent("row") or variable*Percent("col") to compute percentages
 - + 1 indicates adding total row/column

	Age									
		Child			Adult			All		
	S	ex		S	ex			Sex		
Survived	Male pct.	Female pct.	All pct.	Male pct.	Female pct.	All pct.	Male pct.	Female pct.	All pct.	
No	54.69	37.78	47.71	79.72	25.65	68.74	78.8	26.81	67.7	
Yes	45.31	62.22	52.29	20.28	74.35	31.26	21.2	73.19	32.3	
All	100.00	100.00	100.00	100.00	100.00	100.00	100.0	100.00	100.0	

Formula syntax - additional features (2)

- Pseudofunction All() allows to use all variables in the data
 - You can indicate what kind of variables should be used (by default function uses only numeric ones but you can change this using function arguments)

			Species				
		setosa	versicolor	virginica			
Sepal.Length	mean	5.01	5.94	6.59			
	sd	0.35	0.52	0.64			
Sepal.Width	mean	3.43	2.77	2.97			
	sd	0.38	0.31	0.32			
Petal.Length	mean	1.46	4.26	5.55			
	sd	0.17	0.47	0.55			
Petal.Width	mean	0.25	1.33	2.03			
	sd	0.11	0.20	0.27			

Formula syntax - additional features (3)

- Pseudofunction DropEmpty() allows dropping empty (i.e. regrading to non existing observations) rows/columns
 - Below: no column for Child-Crew (column containing only 0 cells); other zero cells content replaced with "—"
 - Useful not to have NaNs while computing percentages

				Age	:			
		Child			Ad	ult		
		Class			Class			
Survived	1st %	2nd %	3rd %	1st %	2nd %	3rd %	Crew %	
No	_	_	65.82	38.24	63.98	75.92	76.05	
Yes All	100 100	100 100	34.18 100.00	61.76 100.00	36.02 100.00	24.08 100.00	23.95 100.00	

Formula syntax - additional features (4)

 Pseudofunction Paste() allows constructing complex cell content, i.e. showing confidence intervals

	Sep	Sepal length				
Species	mean	95% CI				
setosa versicolor virginica	5.006 5.936 6.588	[4.9, 5.1] [5.8, 6.1] [6.4, 6.8]				

Another way of using tables

- Sometimes one needs to compute (complicated) statistics with some other tools
- Still, one can use tables to easy arrange computed statistics into a table in a way you want
- I.e. survey data with weights or even complex sampling schemes
 - Compute statistics with svyby() or svytable() from the survey package
 - 2 Use as.dataframe() method on these results
 - Provide these as a data to tabular(); use function indentity or sum respectively as a summary function in a formula
 - If you want to compute percentages, define function: percent_sum = function(x, y) 100 * sum(x) / sum(y) and provide it while calling Percent() pseudofunction within a formula as fn argument

The end

Thank you for your attention!

Tomasz Żółtak tomek@zozlak.org