Álgebra Universal e Categorias

1º teste

		duração: 1h30min
Nome:		Número:
	Grupo I	

Para cada uma das questões deste grupo, indique a sua resposta no espaço disponibilizado a seguir à questão.

1. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra do tipo (2,1), onde $A=\{1,2,3,4,5\}$ e $f^{\mathcal{A}}:A^2\to A,\ g^{\mathcal{A}}:A\to A$ são as operações definidas por

Indique, sem justificar, todos os subuniversos de \mathcal{A} . Represente o reticulado $(\operatorname{Sub},\subseteq)$ por um diagrama de Hasse.

Resposta:

- 2. Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
 - (a) Para qualquer álgebra \mathcal{A} e para quaisquer $X,Y\subseteq A$, tem-se $Sg^{\mathcal{A}}(X\cup Y)\subseteq Sg^{\mathcal{A}}(X)\cup Sg^{\mathcal{A}}(Y)$. Resposta:

(b) Para qualquer álgebra \mathcal{A} e para quaisquer $X,Y\subseteq A$, tem-se $Sg^{\mathcal{A}}(X\cap Y)\subseteq Sg^{\mathcal{A}}(X)\cap Sg^{\mathcal{A}}(Y)$. Resposta:

3. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1), onde $A=\{0,1,2,3\}$, $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

e cujo reticulado de congruências pode ser representado pelo diagrama indicado ao lado.

(a) Sem apresentar os cálculos, indique $\Theta(2,3)$ e $\Theta(0,3)$. Diga, justificando, se $\Theta(2,3)\cup\Theta(0,3)$ é uma congruência em $\mathcal{A}.$

Resposta:

(b) Determine a álgebra quociente $\mathcal{A}/\Theta(2,3)$.

Resposta:

(c) Diga, justificando, se a álgebra ${\mathcal A}$ é congruente-distributiva. Resposta:

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

- 1. Seja $\mathcal{A}=(A;F)$ uma álgebra unária. Mostre que se S_1 e S_2 são subniversos de \mathcal{A} , então $S_1\cup S_2$ é um subuniverso de \mathcal{A} .
- 2. Sejam $\mathcal{A}=(A;F)$ uma álgebra unária, B um subuniverso de \mathcal{A} e θ uma relação binária em A definida por $a\theta b$ se e só se a=b ou $\{a,b\}\subseteq B$.

Mostre que θ é uma congruência em \mathcal{A} .

3. Justifique que, para qualquer álgebra $\mathcal{A}=(A;F)$, se $|A|\leq 2$, então $\mathrm{Eq}(A)=\mathrm{Con}\mathcal{A}$. Dê exemplo de uma álgebra $\mathcal{A}=(A;F)$ tal que |A|>2 e $\mathrm{Eq}(A)=\mathrm{Con}\mathcal{A}$.