Neural networks: Associative memory

Prof. Sven Lončarić

sven.loncaric@fer.hr http://www.fer.hr/ipg

- Introduction
- Associative memories
- Correlation matrix as an associative memory
- Error correction learning
- Pseudoinverse matrix as an associative memory
- Discussion
- Problems

- In neurobiological context, a memory represents relatively permanent neural changed caused by an interaction of an organism and environment
- For memory to be useful, it must be accessible by the neural system
- A memory is "filled" through a learning process
- Memories can be divided into:
 - Short term memory (contains the current state of the environment)
 - Long term memory (contains permanently stored knowledge)

- This section deals with a distributed memory similar to the brain that uses associations
- Associative memory is an important part of human memory
- The main property of an associative memory is mapping of input patterns into output patterns of neural activity

- During learning an input pattern called a key is presented to the memory that transforms it into a memorized pattern
- During recall a noised or incomplete version of the original key is presented to the memory
- Regardless of the imperfect input key, the associative memory outputs the corresponding memorized output pattern

Properties of associative memories

- An associative memory is distributed
- Input pattern (key) and output (memorized pattern) are vectors
- Information is stored in memory using a large number of neurons
- Information contained in the key determines the "address" of the pattern in the memory
- Memory is noise tolerant
- Possible interactions of memorized patterns posibility of errors

- Autoassociative memory:
 - Input vector (key) is associated to itsself in the memory
 - Dimension of input and output vectors is the same
- Heteroassociative memory:
 - Arbitrary input vectors (keys) are associated with arbitrary memorized vectors
 - Dimension of input and output vectors can be different
- In both cases a memorized pattern can be recalled using an input vector that is incomplete or noised version of the original key

- Linear associative memory:
 - Neurons work in linear mode (linear combination)
 - Let a and b be input and output from associative memory then the input-output mapping is represented by b=Ma, where M is the memory matrix

- Nonlinear associative memory
 - Input-output relation is described by: b=f(M,a)a, where f(.,.)
 is a nonlinear function

A model of associative memory

 A model of linear associative memory with artificial neurons is shown below:

- Let us assume that we have a memory with one input layer and one layer with p linear neurons
- Let us assume that for input \mathbf{a}_k we obtain output \mathbf{b}_k
- Let us assume that the memory stores q inputoutput pairs
- We could express the input-output relations as:

$$\mathbf{b}_{k} = \mathbf{W}(\mathbf{k})\mathbf{a}_{k}, k = 1, ..., q$$

where $\mathbf{W}(k)$ is a matrix of dimensions $p \times p$ that depends only on \mathbf{a}_k and \mathbf{b}_k

- For q input-output pairs we obtain matrices W(1), ...,
 W(q)
- Furthermore, we could form a matrix of dimensions p×p that represents the sum of matrices W(k):

$$\mathbf{M} = \sum_{k=1}^{q} \mathbf{W}(k)$$

 Matrix M defines a relation between the input and the output patterns

 A memory matrix M can also be represented using a recursive expression:

$$\mathbf{M}_{k} = \mathbf{M}_{k-1} + \mathbf{W}(k), \quad k = 1, 2, ..., q$$

where $\mathbf{M}_{0} = \mathbf{0}$

- M_{k-1} is an old matrix value for the first k-1 associations
- M_k is an updated matrix that also takes into account the k-th association
- As the number of stored associations q increases the influence of individual new pairs to the memory decreases

Correlation matrix

- Let us assume that a memory has matrix M that represents the stored associations a_k, b_k, where k = 1, 2, ..., q
- An estimate of the matrix M (called correlation matrix) can be calculated using:

$$\hat{\mathbf{M}} = \sum_{k=1}^{q} \mathbf{b}_k \mathbf{a}_k^T$$

• The term $\mathbf{b}_k \mathbf{a}_k^T$ is the outer product of key \mathbf{a}_k and stored pattern \mathbf{b}_k and is a matrix of dimension $p \times p$

This estimate can be written as:

$$\hat{\mathbf{M}} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_q \end{bmatrix} \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_q^T \end{bmatrix} = \mathbf{B}\mathbf{A}^T$$

where $\mathbf{A}=[\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_q]$ and $\mathbf{B}=[\mathbf{b}_1 \ \mathbf{b}_2 \ ... \ \mathbf{b}_q]$

- A is the matrix of input patterns (keys) of dimension p×q
- B is the matrix of stored patterns of dimension p×q

- Let us assume that a pattern a_j is input into associative memory that has stored q patterns
- The output of the memory will be:

$$\mathbf{b} = \hat{\mathbf{M}} \mathbf{a}_{j} = \sum_{k=1}^{q} \mathbf{b}_{k} \mathbf{a}_{k}^{T} \mathbf{a}_{j} = \sum_{k=1}^{q} \left(\mathbf{a}_{k}^{T} \mathbf{a}_{j} \right) \mathbf{b}_{k}$$

• Furthermore, we can rewrite this as:

$$\mathbf{b} = \left(\mathbf{a}_{j}^{T} \mathbf{a}_{j}\right) \mathbf{b}_{j} + \sum_{k=1}^{q} \left(\mathbf{a}_{k}^{T} \mathbf{a}_{j}\right) \mathbf{b}_{k}$$

Memory recall

- Let us assume that the input vectors (keys) are normalized: $\mathbf{a}_{k}^{T}\mathbf{a}_{k}=1$
- Then it holds that:

where:

$$\mathbf{b} = \mathbf{b}_j + \mathbf{v}_j$$

$$\mathbf{v}_{j} = \sum_{k=1}^{q} \left(\mathbf{a}_{k}^{T} \mathbf{a}_{j} \right) \mathbf{b}_{k}$$

$$k \neq j$$

$$\mathbf{b} = \mathbf{b}_{j} + \mathbf{v}_{j}$$

- The first term in the above expression represents the desired memory recall for key a_j
- The second term represents a "crosstalk" between key a_i and other stored keys (i.e. noise)
- If input patterns are statistically independent than the second term represents Gaussian noise
- This noise limits the number of reliably stored patterns

$$\mathbf{v}_{j} = \sum_{k=1}^{q} \left(\mathbf{a}_{k}^{T} \mathbf{a}_{j} \right) \mathbf{b}_{k}$$

• Let us assume that the input vectors \mathbf{a}_{j} (keys) compose an orthonormal set of vectors, i.e.

$$\mathbf{a}_k^T \mathbf{a}_j = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases}$$

- In that case the noise \mathbf{v}_i jednak nuli
- The number of linearly independent vectors of dimension p is equal to p
- This means that the memory capacity is equal to the vector dimension (in this case p)

- If a set of input patterns is not orthogonal it is possible to use Gram-Schmidt procedure to orthonormalize the ste of linearly independent vectors
- A disadvantage of this simple approach is that the memory has no way of error correction
- To overcome this drawback it is possible to use an error correction algorithm

- Let $\mathbf{M}(n)$ be the matrix learned in step n
- Input vector \mathbf{a}_k is presented to the memory and gives output vector $\mathbf{M}(n)$ \mathbf{a}_k
- An error vector can be defined as:

$$\mathbf{e}_k(n) = \mathbf{b}_k - \mathbf{M}(n) \mathbf{a}_k$$

where \mathbf{b}_k is the output associated with input \mathbf{a}_k

The error vector can be used for learning as:
 (correction) = (learning-rate) × (error) × (input)

• In this case we can write:

$$\Delta \mathbf{M}(n) = \eta \mathbf{e}_k(n) \mathbf{a}_k^T = \eta [\mathbf{b}_k - \mathbf{M}(n) \mathbf{a}_k] \mathbf{a}_k^T$$

• Correction $\Delta \mathbf{M}(n)$ is used to update matrix \mathbf{M} :

$$\mathbf{M}(n+1) = \mathbf{M}(n) + \Delta \mathbf{M}(n), \quad \mathbf{M}(0) = \mathbf{0}$$

- A constant positive parameter η generates a short term memory because recent patterns will be better memorized compared to older patterns
- For this reason the parameter η is sometimes decreased with time n to approach zero when memory is full

Pseudoinverse memory

 Another type of linear associative memory is a memory that minimizes the error of associative memory:

$$e = \left\| \mathbf{B} - \hat{\mathbf{M}} \mathbf{A} \right\|$$

where **A** is a key matrix of dimension $p \times q$, and **B** is a matrix of desired outputs of dimension $p \times q$

Euclidean norm gives the error of the associative memory

Linear algebra tells us that the error e is minimal for:

$$\hat{\mathbf{M}} = \mathbf{B}\mathbf{A}^{+}$$

where A+ is a pseudoinverse matrix of matrix A

- The above equation is called the pseudoinverse learning rule and the memory is called pseudoinverse memory
- The sufficient condition for the perfect association is:

$$A^+A = I$$

• Then it holds that:

$$\hat{\mathbf{M}}\mathbf{A} = \mathbf{B}\mathbf{A}^{+}\mathbf{A} = \mathbf{B}\mathbf{I} = \mathbf{B}$$

 In some applications better resistance to noise is shown by correlation memory and in some other cases pseudoinverse memory shows better results

- Problem 3.1.
 - Modify expressions for correlation memory assuming different dimensions of input and output vector.
- Problem 3.2.
 - Let input vectors be defined as:

$$\mathbf{a}_1 = [1 \ 0 \ 0 \ 0]^T$$
, $\mathbf{a}_2 = [0 \ 1 \ 0 \ 0]^T$, $\mathbf{a}_3 = [0 \ 0 \ 1 \ 0]^T$ and output vector as:

$$\mathbf{b}_1 = [5 \ 1 \ 0]^\mathsf{T}, \ \mathbf{b}_2 = [-2 \ 1 \ 6]^\mathsf{T}, \ \mathbf{b}_3 = [-2 \ 4 \ 3]^\mathsf{T}$$

Determine a memory matrix **M** and show that the memory recall is correct.