DATA SCIENCE CLASS 2: LINEAR REGRESSION

AGENDA 2

O. BASIC FORM II. CATEGORICAL VARIABLES

LINEAR REGRESSION

O. BASIC FORM

Q: What is the motivation for learning about linear regression?

- widely used
- runs fast
- easy to use (not a lot of tuning required)
- highly interpretable
- basis for many other methods

TYPES OF MACHINE LEARNING PROBLEMS

	continuous	categorical
supervised unsupervised	<pre></pre>	<pre></pre>

TYPES OF MACHINE LEARNING PROBLEMS

supervised regression classification unsupervised dimension clustering reduction

BASIC FORM

Q: What is a regression model?

A: A functional relationship between input & a continuous response variable.

BASIC FORM

Q: What is a regression model?

A: A functional relationship between input & a continuous response variable.

The simple linear regression model captures a linear relationship between a single input variable *x* and a response variable *y*:

Q: What is a regression model?

A: A functional relationship between input & a continuous response variable.

The simple linear regression model captures a linear relationship between a single input variable *x* and a response variable *y*:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

$$y = \beta_0 + \beta_1 x + \varepsilon$$

$$y = \beta_0 + \beta_1 x + \varepsilon$$

A: y = response variable (the one we want to predict)

$$y = \beta_0 + \beta_1 x + \varepsilon$$

A: y = response variable (the one we want to predict)

x = input variable (the one we use to train the model)

$$y = \beta_0 + \beta_1 x + \varepsilon$$

A: y = response variable (the one we want to predict)

x = input variable (the one we use to train the model)

 β_0 = intercept (where the line crosses the y-axis)

$$y = \beta_0 + \beta_1 x + \varepsilon$$

A: y = response variable (the one we want to predict)

x = input variable (the one we use to train the model)

 β_0 = intercept (where the line crosses the y-axis β_1 = regression coefficient (the model parameter)

$$y = \beta_0 + \beta_1 x + \varepsilon$$

A: y = response variable (the one we want to predict) x = input variable (the one we use to train the model)

 β_0 = intercept (where the line crosses the y-axis β_1 = regression coefficient (the model parameter) ε = residual (the error)

$$y = \beta_0 + \beta_1 x + \varepsilon$$

BASIC FORM

We can extend this model to several input variables, giving us the multiple linear regression model:

We can extend this model to several input variables, giving us the multiple linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$

II. CATEGORICAL VARIABLES

Q: How do we deal with categorical variables? (i.e., with k levels)

Major (k=4)

Computer Science

Engineering

Business

Literature

Business

Engineering

Q: How do we deal with categorical variables? (i.e., with k levels)

A: Create a k-1 binary ("dummy") variables.

Major (k=4)	Engineering	Business	Literature
Computer Science	0	0	0
Engineering	1	0	0
Business	0	1	0
Literature	0	0	1
Business	0	1	0
Engineering	1	0	0

Computer Science is the reference

CATEGORIAL VARIABLES

Q: Why k-1 and not k?

A: Because k-1 captures all possible outputs, and to avoid multicollinearity.

Q: Why k-1 and not k?

A: Because k-1 captures all possible outputs, and to avoid multicollinearity.

Q: Does it matter which factor level I leave out? A: Yes, this is the reference point for all other factor levels.

Q: Is this the only way to represent categorical data?

A: This is the conventional way to represent nominal data, however, ordinal data can be represented with integers. Q: Is this the only way to represent categorical data? A: This is the conventional way to represent nominal data, however, ordinal data can be represented with integers.

Q: What does this mean?

A: Categories that can be ranked (i.e., strongly disagree, disagree, neutral, agree, strongly agree) can be represented as 1, 2, 3, 4, 5.