Hypothesis Testing

Prof. Pradeep Ravikumar pradeepr@cs.cmu.edu

Motivation

- Any data analysis algorithm applied to a set of data will produce some result(s)
 - There have been claims that the results reported in more than 50% of published papers are false (loannidis, 2005)
- Results may be a result of random variation
 - Any particular data set is a finite sample from a larger population
 - Often significant variation among instances in a data set
 - Unusual events or coincidences do happen, especially when looking at lots of events
 - For this and other reasons, results may not replicate, i.e., generalize to other samples of data
- Data scientists need to help ensure that results of data analysis are not <u>false discoveries</u>, i.e., not meaningful or reproducible

Significance & Hypothesis Testing

 Testing approaches are used to help avoid many of these problems

Ultimate verification lies in the real world

Testing

- Make inferences (decisions) about that validity of a result
- For this, we need two things:
 - A statement that we want to disprove
 - ◆ Called the null hypothesis (H₀)
 - The null hypothesis is typically a statement that the result is merely due to random variation
 - It is the opposite of what we would like to show
 - A random variable, R, called a test statistic
 - ◆ The distribution of R under H₀ is called the null distribution
 - The value of R is obtained from the result and is typically numeric

Examples of Null Hypotheses

A coin or a die is a fair coin or die.

 The difference between the means of two samples is 0

 The purchase of a particular item in a store is unrelated to the purchase of a second item, e.g., the purchase of bread and milk are unconnected

Significance Testing

Significance testing was devised by the famous statistician Ronald Fisher

 For many years, significance testing has been a key approach for justifying the validity of scientific results

Introduced the concept of p-value, which is widely used and misused

How Significance Testing Works

- Analyze the data to obtain a result
 - For example, data could be from flipping a coin 10 times to test its fairness
- The result is expressed as a value of the test statistic, R
 - For example, let *R* be the number of heads in 10 flips
- Compute the probability of seeing the current value of R or something more extreme
 - This probability is known as the p-value of the test statistic

How Significance Testing Works ...

- If the p-value is sufficiently small, we say that the result is statistically significant
 - We say we reject the null hypothesis, H₀
 - A threshold on the p-value is called the **significance** level, α
 - ◆ Often the significance level is 0.01 or 0.05
- If the p-value is not sufficiently small, we say that we fail to reject the null hypothesis
 - Sometimes we say that we accept the null hypothesis, but a high p-value does not necessarily imply the null hypothesis is true

p-value =
$$P(R|H_0) \neq P(H_0|R) = \frac{P(R|H_0) P(H_0)}{P(R)}$$

Example: Testing a coin for fairness

- H_0 : P(X=1) = P(X=0) = 0.5
- Define the test statistic R to be the number of heads in 10 flips
- Set the significance level α to be 0.05
- The number of heads R has a binomial distribution
- For which values of R would you reject H₀?

k	P(S=k)
0	0.001
1	0.01
2	0.044
3	0.117
4	0.205
5	0.246
6	0.205
7	0.117
8	0.044
9	0.01
10	0.001

Neyman-Pearson Hypothesis Testing

- Devised by statisticians Neyman and Pearson in response to perceived shortcomings in significance testing
 - Explicitly specifies an alternative hypothesis, H₁
 - Significance testing cannot quantify how an observed results supports H₁
 - Define an alternative distribution which is the distribution of the test statistic if H₁ is true
 - We define a critical region for the test statistic R
 - ◆ If the value of R falls in the critical region, we reject H₀
 - ◆ We may or may not accept H₁ if H₀ is rejected
 - The **significance level**, α , is the probability of the critical region under H₀

Hypothesis Testing ...

- Type I Error (α): Error of incorrectly rejecting the null hypothesis for a result.
 - It is equal to the probability of the critical region under H_0 , i.e., is the same as the significance level, α .
 - Formally, $\alpha = P(R \in Critical Region | H_0)$
- Type II Error (β): Error of falsely calling a result as not significant when the alternative hypothesis is true.
 - It is equal to the probability of observing test statistic values outside the critical region under H₁
 - Formally, β = P(R ∉ Critical Region | H₁).

Hypothesis Testing ...

- Power: which is the probability of the critical region under H_1 , i.e., $1-\beta$.
 - Power indicates how effective a test will be at correctly rejecting the null hypothesis.
 - Low power means that many results that actually show the desired pattern or phenomenon will not be considered significant and thus will be missed.
 - Thus, if the power of a test is low, then it may not be appropriate to ignore results that fall outside the critical region.

Binary Hypothesis Testing

- Binary θ ; new terminology:
 - null hypothesis H_0 :

$$X \sim p_X(x; H_0)$$
 [or $f_X(x; H_0)$]

- alternative hypothesis H_1 :

$$X \sim p_X(x; H_1)$$
 [or $f_X(x; H_1)$]

Binary Hypothesis Testing

- Binary θ ; new terminology:
- null hypothesis H_0 :

$$X \sim p_X(x; H_0)$$
 [or $f_X(x; H_0)$]

- alternative hypothesis H_1 :

$$X \sim p_X(x; H_1)$$
 [or $f_X(x; H_1)$]

Partition the space of possible data vectors

Rejection region R:

reject H_0 iff data $\in R$

Binary Hypothesis Testing

- Partition the space of possible data vectors
 Rejection region R:
 reject H₀ iff data ∈ R
- Types of errors:
 - Type I (false rejection, false alarm): H_0 true, but rejected

$$\alpha(R) = \mathbf{P}(X \in R; H_0)$$

 Type II (false acceptance, missed detection):
 H₀ false, but accepted

Example: Classifying Medical Results

- The value of a blood test is used as the test statistic, R, to identify whether a patient has a particular disease or not.
 - H_0 : For patients **not** having the disease, R has distribution $\mathcal{N}(40, 5)$
 - H_1 : For patients having the disease, R has distribution $\mathcal{N}(60, 5)$

Example: Classifying Medical Results

- The value of a blood test is used as the test statistic, R, to identify whether a patient has a particular disease or not.
 - H_0 : For patients **not** having the disease, R has distribution $\mathcal{N}(40, 5)$
 - H_1 : For patients having the disease, R has distribution $\mathcal{N}(60, 5)$

$$\alpha = \int_{50}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(R-u)^2}{2\sigma^2}} dR = \int_{50}^{\infty} \frac{1}{\sqrt{50\pi}} e^{-\frac{(R-40)^2}{50}} dR = 0.023, \mu = 40, \sigma = 5$$

$$\beta = \int_{-\infty}^{50} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(R-u)^2}{2\sigma^2}} dR = \int_{-\infty}^{50} \frac{1}{\sqrt{50\pi}} e^{-\frac{(R-60)^2}{50}} dR = 0.023, \, \mu = 60, \, \sigma = 5$$

Power = $1 - \beta = 0.977$

Bayesian Hypothesis Testing

- Parameter Θ takes one of m values $\{\theta_1, \ldots, \theta_m\}$.
- Hypothesis $H_i \equiv \text{event } \{\Theta = \theta_i\}$
- Hypothesis Testing: given observation x, select one of the hypotheses H_1, \ldots, H_m
- MAP Rule: Select the hypothesis with the largest posterior probability
 - Select H_i if $\mathbb{P}(\Theta = \theta_i | X = x) = p_{\Theta|X}(\theta_i | x)$ is largest if $p_{\Theta}(\theta_i) p_{X|\Theta}(x|\theta_i)$ (if X is discrete) if $p_{\Theta}(\theta_i) f_{X|\Theta}(x|\theta_i)$ (if X is continuous) is largest

Example la

 We have two biased coins; coin 1 and coin 2; with biases (i.e. probability of heads) equal to p_1 and p_2 respectively. We choose a coin at random, and want to infer its identity based on the outcome of a single toss. Use the MAP Rule to do so.

Example la

 We have two biased coins; coin 1 and coin 2; with biases (i.e. probability of heads) equal to p_1 and p_2 respectively. We choose a coin at random, and want to infer its identity based on the outcome of a single toss. Use the MAP Rule to do so.

- Consider random variables Θ, X .
 - $\Theta = 1$ indicates coin 1, and $\Theta = 2$ indicates coin 2.

X=1 is coin flips heads, X=0 for tails.

▶ Suppose X = 0 (tails). Then, we select hypothesis $\Theta = 1$ if

$$p_{\Theta}(1)p_{X|\Theta}(0|1) > p_{\Theta}(2)p_{X|\Theta}(0|2)$$

 $(1-p_1) > (1-p_2)$

 We have two biased coins; coin 1 and coin 2; with biases (i.e. probability of heads) equal to p_1 and p_2 respectively. We choose a coin at random, and want to infer its identity based on the outcome of n coin tosses. Use the MAP Rule to do so.

 We have two biased coins; coin 1 and coin 2; with biases (i.e. probability of heads) equal to p_1 and p_2 respectively. We choose a coin at random, and want to infer its identity based on the outcome of n coin tosses. Use the MAP Rule to do so.

- Consider random variables Θ, X .
 - $\Theta = 1$ indicates coin 1, and $\Theta = 2$ indicates coin 2.
 - X = k if k heads in the n coin flips.

▶ Suppose X = k. Then, we select hypothesis $\Theta = 1$ if

$$p_{\Theta}(1)p_{X|\Theta}(k|1) > p_{\Theta}(2)p_{X|\Theta}(k|2)$$

 $p_1^k(1-p_1)^{n-k} > p_2^k(1-p_2)^{n-k}$

▶ Suppose X = k. Then, we select hypothesis $\Theta = 1$ if

$$p_1^k (1 - p_1)^{n-k} > p_2^k (1 - p_2)^{n-k}$$

Likelihood Ratio Test (LRT)

• Bayesian case (MAP rule): choose H_1 if:

$$P(H_1 | X = x) > P(H_0 | X = x)$$

or

$$\frac{P(X = x \mid H_1)P(H_1)}{P(X = x)} > \frac{P(X = x \mid H_0)P(H_0)}{P(X = x)}$$

or

$$\frac{P(X = x \mid H_1)}{P(X = x \mid H_0)} > \frac{P(H_1)}{P(H_0)}$$

(likelihood ratio test)

Likelihood Ratio Test (LRT)

Bayesian case (MAP rule): choose H_1 if:

$$P(H_1 | X = x) > P(H_0 | X = x)$$

or

$$\frac{P(X = x \mid H_1)P(H_1)}{P(X = x)} > \frac{P(X = x \mid H_0)P(H_0)}{P(X = x)}$$

or

$$\frac{P(X = x \mid H_1)}{P(X = x \mid H_0)} > \frac{P(H_1)}{P(H_0)}$$

(likelihood ratio test)

Nonbayesian version: choose H_1 if

$$\frac{\mathbf{P}(X=x;H_1)}{\mathbf{P}(X=x;H_0)} > \xi \quad \text{(discrete case)}$$

$$\frac{f_X(x; H_1)}{f_X(x; H_0)} > \xi \qquad \text{(continuous case)}$$

Likelihood Ratio Test (LRT)

• Bayesian case (MAP rule): choose H_1 if:

$$P(H_1 | X = x) > P(H_0 | X = x)$$
 or

$$\frac{P(X = x \mid H_1)P(H_1)}{P(X = x)} > \frac{P(X = x \mid H_0)P(H_0)}{P(X = x)}$$

or

$$\frac{P(X = x \mid H_1)}{P(X = x \mid H_0)} > \frac{P(H_1)}{P(H_0)}$$

(likelihood ratio test)

• Nonbayesian version: choose H_1 if

$$\frac{\mathbf{P}(X=x;H_1)}{\mathbf{P}(X=x;H_0)} > \xi \quad \text{(discrete case)}$$

$$\frac{f_X(x; H_1)}{f_X(x; H_0)} > \xi \qquad \text{(continuous case)}$$

- threshold ξ trades off the two types of error
 - choose ξ so that $P(\text{reject } H_0; H_0) = \alpha$ (e.g., $\alpha = 0.05$)

We have a six-sided die that we want to test for fairness, and we formulate two hypotheses for the probabilities of the six faces:

$$H_0$$
 (fair die): $p_X(x; H_0) = \frac{1}{6}$. $x = 1, ..., 6$, H_1 (loaded die): $p_X(x; H_1) = \begin{cases} \frac{1}{4}, & \text{if } x = 1, 2, \\ \frac{1}{8}, & \text{if } x = 3, 4, 5, 6. \end{cases}$

We have a six-sided die that we want to test for fairness, and we formulate two hypotheses for the probabilities of the six faces:

$$H_0$$
 (fair die): $p_X(x; H_0) = \frac{1}{6}$. $x = 1, ..., 6$, H_1 (loaded die): $p_X(x; H_1) = \begin{cases} \frac{1}{4}, & \text{if } x = 1, 2, \\ \frac{1}{8}, & \text{if } x = 3, 4, 5, 6. \end{cases}$

$$L(x) = \begin{cases} \frac{1/4}{1/6} = \frac{3}{2}, & \text{if } x = 1, 2, \\ \frac{1/8}{1/6} = \frac{3}{4}, & \text{if } x = 3, 4, 5, 6. \end{cases}$$

We have a six-sided die that we want to test for fairness, and we formulate two hypotheses for the probabilities of the six faces:

$$L(x) = \begin{cases} \frac{1/4}{1/6} = \frac{3}{2}, & \text{if } x = 1, 2, \\ \frac{1/8}{1/6} = \frac{3}{4}, & \text{if } x = 3, 4, 5, 6. \end{cases}$$

$$\xi < \frac{3}{4}$$
: reject H_0 for all x ;

We have a six-sided die that we want to test for fairness, and we formulate two hypotheses for the probabilities of the six faces:

$$L(x) = \begin{cases} \frac{1/4}{1/6} = \frac{3}{2}, & \text{if } x = 1, 2, \\ \frac{1/8}{1/6} = \frac{3}{4}, & \text{if } x = 3, 4, 5, 6. \end{cases}$$

$$\xi < \frac{3}{4}$$
: reject H_0 for all x ; $\frac{3}{4} < \xi < \frac{3}{2}$: accept H_0 if $x = 3, 4, 5, 6$; reject H_0 if $x = 1, 2$;

We have a six-sided die that we want to test for fairness, and we formulate two hypotheses for the probabilities of the six faces:

$$L(x) = \begin{cases} \frac{1/4}{1/6} = \frac{3}{2}, & \text{if } x = 1, 2, \\ \frac{1/8}{1/6} = \frac{3}{4}, & \text{if } x = 3, 4, 5, 6. \end{cases}$$

$$\xi < \frac{3}{4}$$
: reject H_0 for all x ;
$$\frac{3}{4} < \xi < \frac{3}{2}$$
: accept H_0 if $x = 3, 4, 5, 6$; reject H_0 if $x = 1, 2$;
$$\frac{3}{2} < \xi$$
: accept H_0 for all x .

We have a six-sided die that we want to test for fairness, and we formulate two hypotheses for the probabilities of the six faces:

$$\xi < \frac{3}{4}$$
: reject H_0 for all x :
$$\frac{3}{4} < \xi < \frac{3}{2}$$
: accept H_0 if $x = 3, 4, 5, 6$; reject H_0 if $x = 1, 2$;
$$\frac{3}{2} < \xi$$
: accept H_0 for all x .

probability of false rejection $P(\text{Reject } H_0: H_0)$

$$\alpha(\xi) = \begin{cases} 1. & \text{if } \xi < \frac{3}{4}, \\ \mathbf{P}(X = 1.2; H_0) = \frac{1}{3}. & \text{if } \frac{3}{4} < \xi < \frac{3}{2}, \\ 0. & \text{if } \frac{3}{2} < \xi. \end{cases}$$

We have a six-sided die that we want to test for fairness, and we formulate two hypotheses for the probabilities of the six faces:

$$\xi < \frac{3}{4}$$
: reject H_0 for all x ;
$$\frac{3}{4} < \xi < \frac{3}{2}$$
: accept H_0 if $x = 3, 4, 5, 6$; reject H_0 if $x = 1, 2$;
$$\frac{3}{2} < \xi$$
: accept H_0 for all x .

probability of false rejection $P(\text{Reject } H_0: H_0)$

probability of false acceptance $P(Accept H_0: H_1)$

$$\alpha(\xi) = \begin{cases} 1, & \text{if } \xi < \frac{3}{4}, \\ \mathbf{P}(X = 1, 2; H_0) = \frac{1}{3}, & \text{if } \frac{3}{4} < \xi < \frac{3}{2}, \\ 0, & \text{if } \frac{3}{2} < \xi. \end{cases}$$

$$\alpha(\xi) = \begin{cases} 1, & \text{if } \xi < \frac{3}{4}, \\ \mathbf{P}(X = 1, 2; H_0) = \frac{1}{3}, & \text{if } \frac{3}{4} < \xi < \frac{3}{2}, \\ 0, & \text{if } \frac{3}{2} < \xi. \end{cases}$$

$$\beta(\xi) = \begin{cases} 0, & \text{if } \xi < \frac{3}{4}, \\ \mathbf{P}(X = 3, 4, 5, 6; H_1) = \frac{1}{2}, & \text{if } \frac{3}{4} < \xi < \frac{3}{2}, \\ 1, & \text{if } \frac{3}{2} < \xi. \end{cases}$$

Example I: Tradeoff

probability of false rejection $P(\text{Reject } H_0: H_0)$

probability of false acceptance $P(Accept H_0: H_1)$

$$\alpha(\xi) = \begin{cases} 1, & \text{if } \xi < \frac{3}{4}, \\ \mathbf{P}(X = 1, 2; H_0) = \frac{1}{3}, & \text{if } \frac{3}{4} < \xi < \frac{3}{2}, \\ 0, & \text{if } \frac{3}{2} < \xi. \end{cases}$$

$$\alpha(\xi) = \begin{cases} 1. & \text{if } \xi < \frac{3}{4}, \\ \mathbf{P}(X = 1.2: H_0) = \frac{1}{3}. & \text{if } \frac{3}{4} < \xi < \frac{3}{2}, \\ 0. & \text{if } \frac{3}{2} < \xi. \end{cases}$$

$$\beta(\xi) = \begin{cases} 0. & \text{if } \xi < \frac{3}{4}. \\ \mathbf{P}(X = 3.4.5, 6; H_1) = \frac{1}{2}. & \text{if } \frac{3}{4} < \xi < \frac{3}{2}, \\ 1. & \text{if } \frac{3}{2} < \xi. \end{cases}$$

Summary: Likelihood Ratio Test

- Start with a target value α for the false rejection probability.
- Choose a value for ξ such that the false rejection probability is equal to α :

$$P(L(X) > \xi; H_0) = \alpha.$$

• Once the value x of X is observed, reject H_0 if $L(x) > \xi$.

A surveillance camera checks a certain area and record a signal X = W, or X = 1 + W, depending on whether an intruder is absent or present (hypotheses H_0 or H_1 respectively).

Assume that W ~ N(0,v), for some known v > 0. Write out the Likelihood Ratio Test for testing the presence of an intruder (i.e. hypothesis H₀ or H₁), given the camera signal x.

A surveillance camera checks a certain area and record a signal X = W, or X = 1 + W, depending on whether an intruder is absent or present (hypotheses H₀ or H₁ respectively).

Assume that W ~ N(0,v), for some known v > 0. Write out the Likelihood Ratio Test for testing the presence of an intruder (i.e. hypothesis H₀ or H₁), given the camera signal x.

$$f_X(x; H_0) = \frac{1}{\sqrt{2\pi v}} \exp\left\{-\frac{x^2}{2v}\right\}, \qquad f_X(x; H_1) = \frac{1}{\sqrt{2\pi v}} \exp\left\{-\frac{(x-1)^2}{2v}\right\},$$

Likelihood Function:

$$L(x) = \frac{f_X(x; H_1)}{f_X(x; H_0)} = \exp\left\{\frac{x^2 - (x-1)^2}{2v}\right\} = \exp\left\{\frac{2x - 1}{2v}\right\}.$$

A surveillance camera checks a certain area and record a signal X = W, or X = 1 + W, depending on whether an intruder is absent or present (hypotheses H_0 or H_1 respectively).

Assume that W ~ N(0,v), for some known v > 0. Write out the Likelihood Ratio Test for testing the presence of an intruder (i.e. hypothesis H₀ or H₁), given the camera signal x.

Likelihood Ratio:

$$L(x) = \frac{f_X(x; H_1)}{f_X(x; H_0)} = \exp\left\{\frac{x^2 - (x-1)^2}{2v}\right\} = \exp\left\{\frac{2x-1}{2v}\right\}.$$

LRT Test:

$$L(x) > \xi \equiv x > v \log \xi + \frac{1}{2}$$

A surveillance camera checks a certain area and record a signal X = W, or X = 1 + W, depending on whether an intruder is absent or present (hypotheses H_0 or H_1 respectively).

Assume that W ~ N(0,v), for some known v > 0. Write out the Likelihood Ratio Test for testing the presence of an intruder (i.e. hypothesis H₀ or H₁), given the camera signal x.

Likelihood Ratio:

$$L(x) = \frac{f_X(x; H_1)}{f_X(x; H_0)} = \exp\left\{\frac{x^2 - (x-1)^2}{2v}\right\} = \exp\left\{\frac{2x - 1}{2v}\right\}.$$

LRT Test:

$$L(x) > \xi \equiv x > v \log \xi + \frac{1}{2}$$

Rejection Region:

$$R = \{x \mid x > \gamma\} \qquad \gamma = v \log \xi + \frac{1}{2};$$

A surveillance camera checks a certain area and record a signal X = W, or X = 1 + W, depending on whether an intruder is absent or present (hypotheses H_0 or H_1 respectively).

Assume that W ~ N(0,v), for some known v > 0. Write out the Likelihood Ratio Test for testing the presence of an intruder (i.e. hypothesis H₀ or H₁), given the camera signal x.

LRT Test:

$$L(x) > \xi \equiv x > v \log \xi + \frac{1}{2}$$

Rejection Region:

$$R = \{x \mid x > \gamma\} \qquad \gamma = v \log \xi + \frac{1}{2};$$

$$\alpha = \mathbf{P}(X > \gamma; H_0) = \mathbf{P}(W > \gamma),$$

so that for a specified value of α , we can obtain the value of γ from a table/calculator

A surveillance camera checks a certain area and record a signal X = W, or X = 1 + W, depending on whether an intruder is absent or present (hypotheses H₀ or H₁ respectively).

Assume that W ~ N(0,v), for some known v > 0. Write out the Likelihood Ratio Test for testing the presence of an intruder (i.e. hypothesis H₀ or H₁), given the camera signal x.

LRT Test:

$$L(x) > \xi \equiv x > v \log \xi + \frac{1}{2}$$

Rejection Region:

$$R = \{x \mid x > \gamma\} \qquad \gamma = v \log \xi + \frac{1}{2};$$

False Rejection Probability:

$$\alpha = \mathbf{P}(X > \gamma; H_0) = \mathbf{P}(W > \gamma),$$

so that for a specified value of α , we can obtain the value of γ from a table/calculator

False Acceptance Probability:

$$\beta = \mathbf{P}(X \leq \gamma; H_1) = \mathbf{P}(1 + W \leq \gamma) = \mathbf{P}(W \leq \gamma - 1),$$

A Discrete Example. Consider n = 25 independent tosses of a coin. Under hypothesis H_0 (respectively, H_1), the probability of a head at each toss is equal to $\theta_0 = 1/2$ (respectively, $\theta_1 = 2/3$). Let X be the number of heads observed. If we set the false rejection probability to 0.1, what is the rejection region associated with the LRT?

A Discrete Example. Consider n = 25 independent tosses of a coin. Under hypothesis H_0 (respectively, H_1), the probability of a head at each toss is equal to $\theta_0 = 1/2$ (respectively, $\theta_1 = 2/3$). Let X be the number of heads observed. If we set the false rejection probability to 0.1, what is the rejection region associated with the LRT?

We observe that when X = k, the likelihood ratio is of the form

$$L(k) = \frac{\binom{n}{k} \theta_1^k (1 - \theta_1)^{n-k}}{\binom{n}{k} \theta_0^k (1 - \theta_0)^{n-k}} = \left(\frac{\theta_1}{\theta_0} \cdot \frac{1 - \theta_0}{1 - \theta_1}\right)^k \cdot \left(\frac{1 - \theta_1}{1 - \theta_0}\right)^n = 2^k \left(\frac{2}{3}\right)^{25}.$$

A Discrete Example. Consider n = 25 independent tosses of a coin. Under hypothesis H_0 (respectively, H_1), the probability of a head at each toss is equal to $\theta_0 = 1/2$ (respectively, $\theta_1 = 2/3$). Let X be the number of heads observed. If we set the false rejection probability to 0.1, what is the rejection region associated with the LRT?

We observe that when X = k, the likelihood ratio is of the form

$$L(k) = \frac{\binom{n}{k} \theta_1^k (1 - \theta_1)^{n-k}}{\binom{n}{k} \theta_0^k (1 - \theta_0)^{n-k}} = \left(\frac{\theta_1}{\theta_0} \cdot \frac{1 - \theta_0}{1 - \theta_1}\right)^k \cdot \left(\frac{1 - \theta_1}{1 - \theta_0}\right)^n = 2^k \left(\frac{2}{3}\right)^{25}.$$

LRT Test: reject H_0 if $X > \gamma$.

A Discrete Example. Consider n = 25 independent tosses of a coin. Under hypothesis H_0 (respectively, H_1), the probability of a head at each toss is equal to $\theta_0 = 1/2$ (respectively, $\theta_1 = 2/3$). Let X be the number of heads observed. If we set the false rejection probability to 0.1, what is the rejection region associated with the LRT?

We observe that when X = k, the likelihood ratio is of the form

$$L(k) = \frac{\binom{n}{k} \theta_1^k (1 - \theta_1)^{n-k}}{\binom{n}{k} \theta_0^k (1 - \theta_0)^{n-k}} = \left(\frac{\theta_1}{\theta_0} \cdot \frac{1 - \theta_0}{1 - \theta_1}\right)^k \cdot \left(\frac{1 - \theta_1}{1 - \theta_0}\right)^n = 2^k \left(\frac{2}{3}\right)^{25}.$$

LRT Test: reject H_0 if $X > \gamma$.

Want γ so that false rejection prob. is at most 0.1!

A Discrete Example. Consider n = 25 independent tosses of a coin. Under hypothesis H_0 (respectively, H_1), the probability of a head at each toss is equal to $\theta_0 = 1/2$ (respectively, $\theta_1 = 2/3$). Let X be the number of heads observed. If we set the false rejection probability to 0.1, what is the rejection region associated with the LRT?

LRT Test: reject H_0 if $X > \gamma$.

Want γ so that false rejection prob. is at most 0.1!

$$P(X > \gamma; H_0) \le 0.1$$
, or

$$\sum_{i=\gamma+1}^{25} {25 \choose i} 2^{-25} \le 0.1.$$

Numerical evaluations yield $\gamma = 16$

Example IV

Problem: Artemisia moves to a new house and she is "fifty-percent sure" that the phone number is 2537267. To verify this, she uses the house phone to dial 2537267, she obtains a busy signal, and concludes that this is indeed the correct number. Assuming that the probability of a typical seven-digit phone number being busy at any given time is 1%, what is the probability that Artemisia's conclusion was correct?

 H_0 : the phone number is 2537267,

 H_1 : the phone number is not 2537267,

Under H_0 , we expect a busy signal with certainty:

$$\mathbf{P}(B \mid H_0) = 1.$$

Under H_1 , the conditional probability of B is

$$P(B | H_1) = 0.01.$$

$$\mathbf{P}(H_0) = \mathbf{P}(H_1) = 0.5.$$

Example IV

Problem: Artemisia moves to a new house and she is "fifty-percent sure" that the phone number is 2537267. To verify this, she uses the house phone to dial 2537267, she obtains a busy signal, and concludes that this is indeed the correct number. Assuming that the probability of a typical seven-digit phone number being busy at any given time is 1%, what is the probability that Artemisia's conclusion was correct?

 H_0 : the phone number is 2537267,

 H_1 : the phone number is not 2537267,

$$\mathbf{P}(H_0) = \mathbf{P}(H_1) = 0.5.$$

Under H_0 , we expect a busy signal with certainty:

$$\mathbf{P}(B \mid H_0) = 1.$$

Under H_1 , the conditional probability of B is

$$P(B | H_1) = 0.01.$$

$$\mathbf{P}(H_0 \mid B) = \frac{\mathbf{P}(B \mid H_0)\mathbf{P}(H_0)}{\mathbf{P}(B \mid H_0)\mathbf{P}(H_0) + \mathbf{P}(B \mid H_1)\mathbf{P}(H_1)} = \frac{0.5}{0.5 + 0.005} \approx 0.99.$$