Συναρτήσεις Συνέπειες Bolzano 2 (the rest)

Κωνσταντίνος Λόλας

Ένα μάθημα μόνο θεωρία

• Φτιάξτε άξονες

 Σχεδιάστε συνεχή συνάρτηση στο διάστημα [-2,2] που δεν έχει μέγιστο ή ελάχιστο

Ένα μάθημα μόνο θεωρία

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [-2,2] που δεν έχει μέγιστο ή ελάχιστο

Ένα μάθημα μόνο θεωρία

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [-2,2] που δεν έχει μέγιστο ή ελάχιστο

Θεώρημα μέγιστου ελάχιστου

Κάθε συνεχής σε κλειστό διάστημα συνάρτηση f έχει μέγιστο ΚΑΙ ελάχιστο στο Δ .

Λόλας

• Φτιάξτε άξονες

- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που νο μην περνάει τώρα από το 2.5

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που νο μην περνάει τώρα από το 2.5

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που να μην περνάει τώρα από το 2.5

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που να μην περνάει τώρα από το 2.5

Θεώρημα ενδιαμέσων τιμών (γενίκευση Bolzano)

Έστω μια συνεχής συνάρτηση f στο $[\alpha,\beta]$ με $f(\alpha)=\kappa$ και $f(\beta)=\lambda$ με $\lambda\neq\kappa$. Για κάθε $\eta\in(\kappa,\lambda)$ υπάρχει $x_0\in(\alpha,\beta)$ ώστε $f(x_0)=\eta$

Θεώρημα εικόνας διαστήματος συνεχούς συνάρτησης Έστω μια συνεχής συνάρτηση f στο $[\alpha,\beta]$. Η εικόνα $f([\alpha,\beta])$ είναι και πάλι διάστημα.

Φαντασία με Σ-Λ

- Γνησίως αύξουσα σε διάστημα έχει πάντα μέγιστο
- Γνησίως αύξουσα σε κλειστό διάστημα έχει πάντα μέγιστο Πού?

Φαντασία με Σ-Λ

- Γνησίως αύξουσα σε διάστημα έχει πάντα μέγιστο
- Γνησίως αύξουσα σε κλειστό διάστημα έχει πάντα μέγιστο Πού?

Φαντασία με Σ-Λ

- Γνησίως αύξουσα σε διάστημα έχει πάντα μέγιστο
- Γνησίως αύξουσα σε κλειστό διάστημα έχει πάντα μέγιστο Πού?

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα Έστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

•
$$f([\alpha, \beta]) = [f(\alpha), f(\beta)]$$

• $f([\alpha, \beta)) = [f(\alpha), \lim_{x \to \beta^-} f(x))$
• $f((\alpha, \beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$
• $f((\alpha, \beta)) = (\lim_{x \to \alpha^+} f(x), \lim_{x \to \beta^-} f(x))$

Με λίγα λόγιο

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα Έστω μια συνεχής στο $[\alpha,\beta]$, γνησίως αύξουσα συνάρτηση f.

•
$$f([\alpha, \beta]) = [f(\alpha), f(\beta)]$$

• $f([\alpha, \beta]) = [f(\alpha), \lim_{x \to \beta^-} f(x))$
• $f((\alpha, \beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$
• $f((\alpha, \beta)) = (\lim_{x \to \alpha^+} f(x), \lim_{x \to \beta^-} f(x))$

Με λίγα λόγιο

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα Έστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

$$f([\alpha, \beta]) = [f(\alpha), f(\beta)]$$

$$f([\alpha, \beta)) = [f(\alpha), \lim_{x \to \beta^{-}} f(x))$$

$$\quad \bullet \ f((\alpha,\beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$$

Με λίγα λόγιο

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα Έστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

$$\quad \quad \circ \ f([\alpha,\beta)) = [f(\alpha), \lim_{x \to \beta^-} f(x))$$

$$\bullet \ f((\alpha,\beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$$

Με λίγα λόγιο

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα

Έστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

•
$$f([\alpha, \beta]) = [f(\alpha), f(\beta)]$$

$$\quad \quad \circ \ f([\alpha,\beta)) = [f(\alpha), \lim_{x \to \beta^-} f(x))$$

$$\bullet \ f((\alpha,\beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$$

$$\bullet \ f((\alpha,\beta)) = (\lim_{x \to \alpha^+} f(x), \lim_{x \to \beta^-} f(x))$$

Με λίγα λόγια

Δίνεται η συνάρτηση $f(x) = 2^x$. Να δείξετε ότι υπάρχει $\xi \in (10, 11)$ ώστε $f(\xi) = 2023$.

Έστω η συνεχής και γνησίως φθίνουσα συνάρτηση $f:[1,3]\to\mathbb{R}$. Να δείξετε ότι υπάρχει ακριβώς ένα $x_0\in(1,3)$ ώστε

$$f(x_0) = \frac{f(1) + f(2) + f(3)}{3}$$

Λύση

Λόλας Συναρτήσεις 10/22

Δίνεται η συνάρτηση $f(x) = (x-1)^4(x-3)^2$, $x \in \mathbb{R}$. Να αποδείξετε ότι η f έχει δύο θέσεις ελαχίστων x_1, x_2 με $x_1 < x_2$. Στη συνέχεια να δείξετε ότι υπάρχει ένα τουλάχιστον $x_0 \in (x_1, x_2)$ που η συνάρτηση παρουσιάζει μένιστο στο $[x_1, x_2]$.

Έστω $f:[1,2]\to\mathbb{R}$ μία συνεχής συνάρτηση της οποίας η γραφική παράσταση βρίσκεται πάνω από την ευθεία $\varepsilon:y=x.$ Να δείξετε ότι υπάρχει ένα τουλάχιστον σημείο της C_f που απέχει από την ευθεία ε περισσότερο από ότι απέχουν τα υπόλοιπα σημεία της C_f .

Έστω η συνεχής συνάρτηση $f:[2,4]\to\mathbb{R}$. Να δείξετε ότι υπάρχει ενα τουλάχιστον $x_0 \in (2,4)$ ώστε

$$f(x_0) = \frac{f(2) + 2f(3) + 3f(4)}{6}$$

Λόλας 13/22 Συναρτήσεις

Δίνεται η συνάρτηση $f(x) = e^x + x$

- \bullet Να βρείτε το σύνολο τιμών της f
- \bullet Να βρείτε το f(B) όταν

```
• B = [0, 1]
• B = [0, 1)
• B = (-\infty, 0]
```

• Να βρείτε τη μέγιστη και την ελάχιστη τιμή της f, όταν είναι ορισμένη στο $\mathbf{B} = [0,1]$.

Δίνεται η συνάρτηση $f(x) = e^x + x$

- \bullet Να βρείτε το σύνολο τιμών της f
- lackbox Να βρείτε το f(B) όταν
 - B = [0, 1]• B = [0, 1)• $B = (-\infty, 0]$
- Να βρείτε τη μέγιστη και την ελάχιστη τιμή της f, όταν είναι ορισμένη στο $\mathbf{B} = [0,1]$.

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- Να βρείτε το f(B) όταν
 - B = [0,1]
 B = [0,1)
 B = (0,0)
 - $B = (-\infty, 0]$
- Να βρείτε τη μέγιστη και την ελάχιστη τιμή της f, όταν είναι ορισμένη στο $\mathbf{B} = [0,1]$.

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- ullet Να βρείτε το f(B) όταν
 - B = [0, 1]
 - B = [0, 1)
 - $B = (-\infty, 0]$
- Να βρείτε τη μέγιστη και την ελάχιστη τιμή της f, όταν είναι ορισμένη στο $\mathbf{B} = [0,1]$.

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- Να βρείτε το f(B) όταν
 - \bullet B = [0, 1]
 - \bullet B = [0,1)
 - B = $(-\infty, 0]$

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- Να βρείτε το f(B) όταν
 - \bullet B = [0, 1]
 - \bullet B = [0,1)
 - B = $(-\infty, 0]$
- Να βρείτε τη μέγιστη και την ελάχιστη τιμή της f, όταν είναι ορισμένη στο B = [0, 1].

Δίνεται η συνάρτηση $f(x) = \frac{1}{x} - \ln x$

- ① Να δείξετε ότι η f αντιστρέφεται και να βρείτε το πεδίο ορισμού της f^{-1}
- ② Να δείξετε ότι η εξίσωση f(x) = 2023 έχει ακριβώς μία ρίζο
- \bigcirc Να εξετάσετε αν υπάρχει $x_0 \in (0,1]$ τέτοιο ώστε $f(x_0) = e^{x_0} 2e^{x_0}$

Λόλας Συναρτήσεις 15/22

Δίνεται η συνάρτηση $f(x) = \frac{1}{x} - \ln x$

- Φ Να δείξετε ότι η f αντιστρέφεται και να βρείτε το πεδίο ορισμού της f^{-1}
- $oldsymbol{2}$ Να δείξετε ότι η εξίσωση f(x) = 2023 έχει ακριβώς μία ρίζα
- 3 Να εξετάσετε αν υπάρχει $x_0 \in (0,1]$ τέτοιο ώστε $f(x_0) = e^{x_0} 2$

Λόλας Συναρτήσεις 15/22

Δίνεται η συνάρτηση $f(x) = \frac{1}{x} - \ln x$

- Να δείξετε ότι η f αντιστρέφεται και να βρείτε το πεδίο ορισμού της f^{-1}
- Να δείξετε ότι η εξίσωση f(x) = 2023 έχει ακριβώς μία ρίζα
- Να εξετάσετε αν υπάρχει $x_0 \in (0,1]$ τέτοιο ώστε $f(x_0) = e^{x_0} 2$

Λόλας Συναρτήσεις 15/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνεχής συνάρτηση. Στο σχήμα φαίνονται τα διαστήματα μονοτονίας της f και οι οριακές τιμές της στο $-\infty$ και στο $+\infty$.

- Να βρείτε το σύνολο τιμών της f
- Να δείξετε ότι η συνάρτηση έχει ακριβώς δύο ρίζες
- Να βρείτε το πλήθος των ριζών της εξίσωσης $f(x) = \alpha$ για τις διάφορες τιμές του $\alpha \in \mathbb{R}$

Λόλας Συναρτήσεις 16/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνεχής συνάρτηση. Στο σχήμα φαίνονται τα διαστήματα μονοτονίας της f και οι οριακές τιμές της στο $-\infty$ και στο $+\infty$.

- Να βρείτε το σύνολο τιμών της f
- Να δείξετε ότι η συνάρτηση έχει ακριβώς δύο ρίζες
- Να βρείτε το πλήθος των ριζών της εξίσωσης $f(x)=\alpha$ για τις διάφορες τιμές του $\alpha\in\mathbb{R}$

Λόλας Συναρτήσεις 16/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνεχής συνάρτηση. Στο σχήμα φαίνονται τα διαστήματα μονοτονίας της f και οι οριακές τιμές της στο $-\infty$ και στο $+\infty$.

- Να βρείτε το σύνολο τιμών της f
- Να δείξετε ότι η συνάρτηση έχει ακριβώς δύο ρίζες
- Να βρείτε το πλήθος των ριζών της εξίσωσης $f(x)=\alpha$ για τις διάφορες τιμές του $\alpha\in\mathbb{R}$

Λόλας Συναρτήσεις 16/22

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της

$$\frac{f(\alpha) - 1}{x - x_1} + \frac{f(\beta) - 1}{x - x_2} = 0$$

Λόλας Συναρτήσεις 17/22

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της
- Να δείξετε ότι η η f έχει ακριβώς δύο ρίζες ετερόσημες

$$\frac{f(\alpha) - 1}{x - x_1} + \frac{f(\beta) - 1}{x - x_2} = 0$$

Συναρτήσεις Λόλας 17/22

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της
- Να δείξετε ότι η η f έχει ακριβώς δύο ρίζες ετερόσημες
- 3 Αν x_1, x_2 ($x_1 < x_2$) οι ρίζες του ερωτήματος 2., να δείξετε ότι η εξίσωση

$$\frac{f(\alpha)-1}{x-x_1}+\frac{f(\beta)-1}{x-x_2}=0$$

έχει τουλάχιστον μία ρίζα στο διάστημα (x_1, x_2) για κάθε α , $\beta \in \mathbb{R} - 0$

Λόλας Συναρτήσεις 17/22

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της
- Να δείξετε ότι η η f έχει ακριβώς δύο ρίζες ετερόσημες
- 3 Αν x_1, x_2 ($x_1 < x_2$) οι ρίζες του ερωτήματος 2., να δείξετε ότι η εξίσωση

$$\frac{f(\alpha)-1}{x-x_1}+\frac{f(\beta)-1}{x-x_2}=0$$

έχει τουλάχιστον μία ρίζα στο διάστημα (x_1, x_2) για κάθε α , $\beta \in \mathbb{R} - 0$

4 Αν $\kappa \le 0 \le \lambda$ και ισχύει $e^{\kappa} - 1 = \ln(\lambda + 1) - \kappa$, να βρείτε τις τιμές κ και λ .

> Λόλας Συναρτήσεις 17/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής, γνησίως φθίνουσα και έχει σύνολο τιμών το $f(\mathbb{R})=(0,+\infty)$. Να βρείτε τα όρια:

- $\lim_{x\to+\infty}\frac{f(x)-x}{x+f(x)}$
- $\lim_{x \to -\infty} \frac{e^x}{f(x)}$
- $\lim_{x \to +\infty} \frac{\ln f(x)}{f(x)}$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής, γνησίως φθίνουσα και έχει σύνολο τιμών το $f(\mathbb{R})=(0,+\infty)$. Να βρείτε τα όρια:

- $\lim_{x \to -\infty} \frac{e^x}{f(x)}$
- $\lim_{x \to +\infty} \frac{\ln f(x)}{f(x)}$

Λόλας Συναρτήσεις 18/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής, γνησίως φθίνουσα και έχει σύνολο τιμών το $f(\mathbb{R})=(0,+\infty)$. Να βρείτε τα όρια:

- $\lim_{x \to -\infty} \frac{e^x}{f(x)}$
- $\lim_{x \to +\infty} \frac{\ln f(x)}{f(x)}$

Έστω $f: \mathbf{A} \to \mathbb{R}$ μία συνάρτηση με $\mathbf{A} = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- Να βρείτε το σύνολο τιμών της
- 2 Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- (3) Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\bullet \lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$
 - $\lim_{x \to +\infty} \frac{f(x)^{-x}}{x+f^{-1}(x)}$
 - $\lim_{x \to -\infty} \frac{1}{f^{-1}(x)}$

Λόλας Συναρτήσεις 19/22

Έστω $f: \mathbf{A} \to \mathbb{R}$ μία συνάρτηση με $\mathbf{A} = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- 1 Να βρείτε το σύνολο τιμών της
- 2 Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- (3) Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:

•
$$\lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$$
• $\lim_{x \to +\infty} \frac{f^{-1}(x)}{x+f^{-1}(x)}$

 $\lim_{x \to -\infty} \frac{1}{f^{-1}(x)}$

Λόλας Συναρτήσεις 19/22

Έστω $f: \mathbf{A} \to \mathbb{R}$ μία συνάρτηση με $\mathbf{A} = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- Να βρείτε το σύνολο τιμών της
- ② Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- ③ Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$ $\lim_{x \to +\infty} \frac{f^{-1}(x) x}{x + f^{-1}(x)}$ $\lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$

Έστω $f: A \to \mathbb{R}$ μία συνάρτηση με $A = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- 1 Να βρείτε το σύνολο τιμών της
- Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- **3** Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\bullet \lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$
 - $\bullet \lim_{x \to +\infty} \frac{f^{-1}(x) x}{x + f^{-1}(x)}$

Λόλας Συναρτήσεις 19/22

Έστω $f: A \to \mathbb{R}$ μία συνάρτηση με $A = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- 1 Να βρείτε το σύνολο τιμών της
- Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- **3** Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\bullet \lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$
 - $\bullet \lim_{x \to +\infty} \frac{f^{-1}(x) x}{x + f^{-1}(x)}$
 - \bullet $\lim_{f \to 1(x)}$

Λόλας Συναρτήσεις 19/22

Έστω $f:[0,1]\to\mathbb{R}$ μία συνάρτηση η οποία είναι 1-1, συνεχής και ισχύει

Να δείξετε ότι $f(x) \neq 0$ για κάθε $x \in [0,1]$

Να βρείτε όλες τις συνεχείς συναρτήσεις $f:\mathbb{R}\to\mathbb{R}$, για τις οποίες ισχύει $f^3(x)=f(x)$ για κάθε $x\in\mathbb{R}$

Λόλας Συναρτήσεις 21/22

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

- ③ Λύσεις Ασκήσεων
 - Άσκηση 1
 - Άσκηση 2
 - Άσκηση 3
 - Άσκηση 4
 - 🍳 Άσκηση 5
 - Άσκηση 6

Με θεώρημα ενδιαμέσων τιμών. Η συνάρτηση είναι συνεχής στο [10,11] με f(10)=1024 και f(11)=2048. Αφού $2023\in(1024,2048)$ υπάρχει x_0 ...

Πίσω στην άσκηση

Με Bolzano ή με μέγιστης ελάχιστης τιμής και ΘΕΤ.

$$f(3) < f(2) < f(1)$$

$$3f(3) < f(1) + f(2) + f(3) < 3f(1)$$

$$f(3) < \frac{f(1) + f(2) + f(3)}{3} < f(1)$$

Πίσω στην άσκηση

Λόλας Συναρτήσεις 3/7

Προφανές ελάχιστο στα $x_1=1$ και $x_2=3$. Ως συνεχής στο [1,3] έχει σίγουρα ΚΑΙ μέγιστο στο (1,3)

Πίσω στην άσκηση

Η συνάρτηση 'απόστασης' f(x)-x είναι ορισμένη στο κλειστό διάστημα και έχει σίγουρα μέγιστο

Πίσω στην άσκηση

Λόλας

Όμοια με την Άσκηση 2

Πίσω στην άσκηση

- Είναι γνησίως αύξουσα άρα $(f(+\infty), f(-\infty))$
- Προφανώς [f(0), f(1)]...

Πίσω στην άσκηση