Gerald Amiel Ballena

Professional Summary

Versatile bioinformatics specialist with extensive experience in developing scalable workflows, computational biology, and machine learning. Successfully processed multi-terabyte datasets, streamlined bioinformatics pipelines to enhance reproducibility, and enabled actionable insights in environmental and public health projects.

Experience

2024 - Present

Project Technical Specialist

University of the Philippines, College of Public Health

- O Developed scalable bioinformatics workflows for high-throughput sequence analysis (2.5 Terabytes each).
- Automated data preprocessing workflows using Snakemake, reducing manual load by 90% when data is available while also enhancing reproducibility and removing human error.
- Collaborated with cross-disciplinary teams on projects involving public health, microbiology, and science of environmental engineering.
- o Enhanced data analysis pipelines, leading to actionable insights for surveillance and public health research.

Education

University of the Philippines Diliman.....

Graduated: July 2022

Thesis: In silico assessment of the association of pathogenicity and metal-resistance potential of *Fusarium* spp.

Pre-print Link

Accomplishments: DOST ASTHRDP-Scholarship

Calculated Effective GPA (MS): 1.72

University of the Philippines Baguio.

Graduated: June 2018

Accomplishments: Advanced Placement Exam: Advanced Algebra

Philippine Science High School CAR Campus

Graduated: March 2014

Accomplishments: Focused on STEM curriculum with a strong emphasis on research and scientific inquiry.

Skills

Technical Skills.

Programming Languages: Python (Fluent), R (Advanced), Bash (Intermediate), Perl & BioPerl (Intermediate), C++ (Fair).

Bioinformatics Tools: Kraken2, MetaPhlAn, MEGAHIT, Snakemake, Prokka, Jellyfish, BUSCO, and others.

Workflow Automation: Snakemake, Conda, YAML (Configuration Files).

Data Visualization: ggplot2, Plotly, matplotlib, QGIS. **High-Performance Computing**: Slurm, Docker.

Soft Skills

Collaboration: Proficient in leading cross-disciplinary projects and fostering effective team collaboration.

Technical Writing: Skilled in preparing technical reports and documentation using TeX tools such as TeXStudio and Overleaf.

Problem-Solving: Adept at diagnosing and optimizing bioinformatics pipelines to enhance efficiency, reproducibility, and both statistical and scientific robustness.

Certifications and Relevant Coursework

Certifications	
Fundamental: AI Fundamentals	
Fundamental: Data Literacy	
Advanced: PH527x: Principles, Statistical and Comp	putational Tools for Reproducible Data Science 2024
Relevant Courses.	
Introductory : Introduction to Data Engineering	2020
Introductory: COVID-19 Contact Tracing	
Introductory: Mind Control: Managing Your Mental Health During COVID-19	
Intermediate: Supervised Learning with sci-kit learn	
Introductory: COVID-19: What You Need to Know	
Introductory: Essential Epidemiologic Tools for Public Health Practice	
Advanced: Ensemble Methods in Python (Bagging, Boosting, Stacking)	
Intermediate : Biostatistics in Public Health	
 Summary Statistics in Public Health 	 Simple Regression Analysis in Public Health
Hypothesis Testing In Public Health	Multiple Regression Analysis in Public Health
11ypothesis Testing III Tubile Treatti	With the regression manysis in rubile relatin
Intermediate: Genomic Data Science	2024
 Introduction to Genomic Technologies 	 Tools for Genomic Data Science
 Python for Genomic Data 	O Command line tools for Genomic Data Science
Intermediate: Genomic Analysis track	
Bioconductor in R	O Differential Expression Analysis with limma
RNA-Seq with Bioconductor	O CHIP-Seq with Bioconductor in R
Intermediate: Visualizing Geospatial Data in R	2024
Advanced : Hyperparameter Tuning in R, Designing	Machine Learning Workflows in Python2024
Advanced: Bioinformatics via Coursera	
(<i>University of California, San Diego</i>) ○ Finding Hidden Messages (with Honors)	
Professional Development	

Scripts and Workflows

Key Pipelines and Workflows: Developed and implemented scalable workflows and pipelines using Snakemake, Python, and Bash for metagenomic analysis, diversity profiling, and bioinformatics tool management. Highlights include:

- Metagenomic Analysis Pipeline: Automated workflows for trimming, taxonomic profiling (Kraken2, Bracken), and diversity calculations (scikit-bio), ensuring high reproducibility and scalability.
- Comprehensive Binning Workflow: Designed workflows for assembly, binning (MetaWRAP, MEGAHIT), and MAG validation (CheckM2), streamlining large-scale metagenomic projects.
- **Plasmid and ARG Analysis:** Built pipelines for plasmid detection and antimicrobial resistance profiling using **metaSPAdes**, **PlasmidFinder**, and **RGI**.
- O Diversity Analysis: Developed Python-based scripts and R workflows for alpha/beta diversity metrics (Shannon, Chao1, Bray-Curtis) and visualizations using **ggplot2**.

Automation and Custom Tools: Created tools and workflows for parameter optimization, repository mining, and bioinformatics tool management:

- Randomized Parameter Testing: Automated preprocessing parameter exploration for tools like Trimmomatic, Cutadapt, and fastp, enabling systematic optimization.
- Bioconda Repository Mining: Developed a Python-based scraper to extract and filter bioinformatics tools for metagenomics and AMR research.
- General Bootstrapping Workflow: Automated sampling of paired-end reads for diversity and functional analyses using seqtk.
- Tool Management: Streamlined dependency discovery, YAML updates, and Conda-based environment management for reproducible pipelines.

Advanced Analysis and Statistical Workflows: Designed workflows for k-mer analysis, contaminant detection, and statistical evaluations:

- **K-mer Analysis:** Automated frequency distribution fitting, entropy calculations, and alignment validation for metagenomic datasets (**Jellyfish**, **MASH**).
- Contaminant Filtering: Built pipelines for k-mer mapping and statistical testing against known contaminant databases (UniVec, PhiX, KMA).
- **Visualization Pipeline:** Developed R-based workflows for ridgeline and violin plots, NMDS, and heatmaps to visualize diversity and taxonomic profiles.