

Functional Analysis I

Tutorial Assignment 4

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: Let X and Y be compact metric spaces. We call an operator $T:C(X)\longrightarrow C(Y)$ positive if $f\geq 0 \Rightarrow T(f)\geq 0$. Prove that if $T:C(X)\longrightarrow C(Y)$ is a linear positive operator, then T is continuous and $\|T\|=\|T(\mathbf{1})\|$ where $\mathbf{1}\in C(X)$ is the constant function equal to 1.

Exercise 2: Let $S_1, S_2 \in L(E)$ and assume that S_1S_2 is boundedly invertible.

- (i) Show that ran $S_1 = E$, ker $S_2 = \{0\}$, and that ran S_2 is closed.
- (ii) Show that ran $S_2S_1 = \operatorname{ran} S_2$, $\ker S_2S_1 = \ker S_1$.
- (iii) Show that $E = \operatorname{ran} S_2 \oplus \ker S_1$ (direct sum). Hint: $x = S_2(S_1S_2)^{-1}S_1x + \dots$

Exercise 3: Let E and F be normed spaces and let $L \subset E$ be a linear subspace. Suppose that $T: L \to F$ is bijective. Prove that T us closed if and only if T^{-1} is closed. Now, let $E = F = \ell_2$ and and set

$$L := \{(x_n)_n \in \ell_2 : (nx_n)_n \in \ell_2\}.$$

Moreover, define the operator $T: L \to \ell_2$ by $T((x_n)_n) := (nx_n)_n$ and prove the following statements:

- (i) L is a linear subspace.
- (ii) T is bijective.
- (iii) T^{-1} is closed (what is T^{-1} ?)
- (iv) T is closed.
- (v) L is not closed.

Exercise 4: Let X be a normed space, $Y\subseteq X$ a linear subspace, and $i:Y\to X$ the inclusion operator. Prove that $i^*:X^*\to Y^*$ is the restriction operator, i.e., $i^*(x^*)=x^*|_Y$ for all $x^*\in X^*$.

Exercise 5: Let E, F, and G be normed spaces. Show $(ST)^* = T^*S^*$ for $T \in L(E,F)$ and $S \in L(F,G)$.