VISÃO COMPUTACIONAL

AULA 6

CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES Cantos (corners)

CARACTERÍSTICAS DE IMAGENS: PONTOS E SUPERFÍCIES

CARACTERÍSTICAS PONTUAIS: CANTOS (CORNERS)

- Bordas (Edges)
 - Matemática Complicada
 - Podem, também, ser caracterizadas geométrica e intuitivamente
 - Projeção de fronteiras de objetos
 - Marcos superficiais
 - Outros elementos interessantes de uma cena

- Cantos (Corners)
 - Mais fácil de caracterizar matematicamente.
 - Não correspondem necessariamente a qualquer entidade geométrica da cena.
 - Não são apenas intersecções de linhas: são também estruturas com padrões de intensidade.
 - São estáveis através de seqüências de imagens.
 - Interessante para rastreamento de objetos através de seqüências.

A estrutura de um canto pode ser caracterizada através da matriz C, na vizinhança Q de um ponto *p* da imagem. (tensor de estrutura, matriz de autocorrelação ou matriz de segundo momento)

$$C = \begin{bmatrix} \sum_{x} E_{x}^{2} & \sum_{x} E_{x} . E_{y} \\ \sum_{x} E_{x} . E_{y} & \sum_{x} E_{y}^{2} \end{bmatrix}$$
 estrutura da intensidade da imagem

$$[E_x, E_y]^T = \text{gradiente da imagem} \; ; \qquad E_x = \frac{\partial E}{\partial x}$$

C é simétrica, e portanto pode ser diagonalizada: (Shi-Tomasi, 1994)

$$C = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

 λ_1 , λ_2 = autovalores ($\lambda_1 \ge \lambda_2$) de dois autovetores ortogonais (direções principais)

autovetores ==> representam direção da borda autovalores ==> representam intensidade da borda

• Exemplos

Se $\lambda_1 = \lambda_2 = 0$ \rightarrow Q perfeitamente uniforme

 $\lambda_2 = 0$; $\lambda_1 > 0$ • Q contém borda de degrau ideal, branco e preto e o autovetor de λ_1 é paralelo ao gradiente da imagem

 $\lambda_1 \ge \lambda_2 > 0$ Q contém o canto de um quadrado preto em fundo branco (ou vice-versa).

O canto é identificado por duas bordas agudas (variação forte). Portanto, com $\lambda_1 \ge \lambda_2$, um canto é um local onde o menor autovalor, λ_2 , é grande o suficiente.

Cantos achados em uma imagem sintética de 8 bits de um tabuleiro de xadrez corrompida por 2 operações de filtragem gaussiana de σ = 2. O canto é o ponto inferior direito de cada vizinhança 15x15.

(a) imagem original de um prédio. (b): vizinhança de 15x15 pixels de alguns dos pontos da imagem para os quais $\lambda_2 > 20$ (c): histograma dos valores de λ_2 por toda a imagem.

 Os pontos característicos são cantos na imagem com alto contraste e juntas T geradas pela intersecção de contornos de objetos

(a): imagem de uma cena externa. (b): cantos achados usando uma vizinhança de 15×15 . O canto é o ponto inferior direito de cada vizinhança 15×15 .

- Incluem também cantos do padrão de intensidade local não correspondentes a características óbvias da imagem.
- Em termos gerais, nos pontos de cantos, a superfície da intensidade da imagem tem 2 direções bem pronunciadas e distintas, associadas a autovalores de C, ambos significativamente diferentes de zero.

Algoritmo CORNERS

Entrada: Imagem I

2 parâmetros: limiar de
$$\lambda_2 ==> \tau$$
 tamanho de vizinhança (janela): 2N+1 pixeis

- 1. Compute o gradiente da imagem sobre a imagem I inteira;
- 2. Para cada ponto *p*:
 - a) forme a matriz C sobre a vizinhança Q, (2N+1)x(2N+1), de p
 - b) compute λ_2 , o menor autovalor de C;
 - c) se $\lambda_2 > \tau$ salve as coordenadas de p dentro de uma lista, L.
- 3. Classifique L em ordem decrescente de λ_2 .
- 4. Faça varredura da lista do topo à base: para cada ponto corrente, p, apague todos os pontos aparecendo posteriormente na lista que pertençam à vizinhança de p.

A saída é uma lista de pontos característicos em que $\lambda_2 > \tau$ e cujas vizinhanças não se sobreponham.

- Os parâmetros τ e (2N+1) podem ser estimados de:
 - $\tau \rightarrow$ histograma de λ_2 da imagem

Algoritmo baseado no de Tomasi & Kanade, 1991

• O algoritmo é bem robusto

Outros Detectores Similares

(Equações diferentes para o cálculo da "força" do canto)

• Harris & Stephen (1988)

det (C) -
$$\alpha$$
.traço (C)² = $\lambda_2 \lambda_1 - \alpha (\lambda_2 + \lambda_1)^2$; $\alpha \approx 0.06$

- Não exige o uso de raiz quadrada e ainda é invariante à rotação e reduz o peso de características parecidas com borda onde $\lambda_1 >> \lambda_2$
- Triggs (2004)

$$\lambda_2 - \alpha . \lambda_1$$
 ; $\alpha \cong 0.05$

• Brown, Szeliski & Winder (2005)

det (C)/traço (C) =
$$(\lambda_2, \lambda_1)/(\lambda_2 + \lambda_1)$$

Detector de Harris: a) vista 1; b) zoom da vista 1; c) vista 2; d) zoom da vista 2

Desvantagens do Detector de Harris ou similares

É sensível a mudanças de escala

Se a distância entre a câmera e a cena muda, fazendo com que os objetos pareçam maiores ou menores, o detector de Harris não consegue encontrar os mesmos cantos de forma confiável. Isso é um problema em muitas aplicações do mundo real.

Detecta texturas finas

O detector é muito sensível a detalhes pequenos e repetitivos, como folhas de árvores. Ou seja, pode não detectar características que representem a estrutura maior da cena, detectando apenas o "ruído" da textura fina.

Surge a necessidade de um método de detecção de pontos de interesse que seja mais **robusto a variações de escala** e capaz de identificar características de maior importância na imagem.

Objeto mais próximo → mais detalhes → menor escala

Objeto mais distante → menos detalhes → maior escala

$$\nabla^2 \mathbf{I} = \mathbf{L} \otimes \left(\mathbf{G}(\sigma) \otimes \mathbf{I} \right) = \underbrace{\left(\mathbf{L} \otimes \mathbf{G}(\sigma) \right)}_{\text{LoG}} \otimes \mathbf{I}$$

Pode ser aproximado por

$$DiffG(u, v; \sigma_1, \sigma_1) = G(\sigma_1) - G(\sigma_2) = \frac{1}{2\pi\sigma_1^2\sigma_2^2} \left[\sigma_2^2 e^{-\frac{u^2 + v^2}{2\sigma_1^2}} - \sigma_1^2 e^{-\frac{u^2 + v^2}{2\sigma_2^2}} \right] \qquad \sigma_1 > \sigma_2 \qquad \text{Em geral} \qquad \sigma_1 = 1.6 \, \sigma_2$$

Imagem sintética, com blocos de 5x5, 9x9, 17x17 e 33x33 pixeis

Aplicação do filtro LoG normalizado, com sigma variável (desvio padrão do filtro gaussiano)

Quadrados vistos em diferentes escalas, como se fossem o mesmo quadrado visto de distâncias

Azul = positivo

diferentes

A escala é simulada em objetos de diferentes tamanhos: Sigma maior -> maior escala

Aplicação do filtro LoG normalizado, com *sigma* variável

Vermelho = negativo Azul = positivo

Aplicação do filtro LoG normalizado, com *sigma* variável

Vermelho = negativo Azul = positivo

Magnitude do LoG no centro de cada quadrado.

Cada quadrado tem um pico de Laplaciano em uma escala diferente

Supõe-se uma imagem 3D, com a terceira dimensão sendo a escala. Plota-se o círculo vermelho correspondente à dimensão com maior Laplaciano, na sua respectiva coordenada, conforme no gráfico

- SIFT (Scale-Invariant Feature Transform) – ou PCA (Principal Component Analysis) + SIFT
 - Baseado em cálculo de gradientes e na sequência de Diferença Gaussiana, com redução e diagonalização de janelas no PCA.

PATENTEADO

- SIFT (Scale-Invariant Feature Transform) ou PCA (Principal Component Analysis) + SIFT
 - Baseado em cálculo de gradientes e na sequência de Diferença Gaussiana, com redução e diagonalização de janelas no PCA.
 - Detecção de Cantos: SIFT usa uma diferença de Gaussianas (DoG)
 para identificar cantos em diferentes escalas, tornando-o
 invariante à escala.
 - Descritor: Cria um descritor de 128 dimensões com base na orientação dos gradientes em torno do canto, o que o torna robusto à rotação.
 - Vantagens: Alta precisão e robustez a variações de escala, rotação e iluminação.
 - Desvantagens: Computacionalmente caro e patenteado.

SURF – Speeded-Up Robust Feature

Mais rápido mas menos preciso que o SIFT

- Baseado em máximos de uma sequência aproximada de Hessian of Gaussian (matriz de duplo gradiente)
- Robusto a variações de brilho, escala e rotação
- Detecção de Cantos: SURF usa o determinante Hessiano baseado em imagens integrais para acelerar a detecção de cantos.
- Descritor: Utiliza um descritor baseado em Haar wavelets, que é mais rápido de calcular que o SIFT.
- Vantagens: Mais rápido que o SIFT, mantendo boa precisão e robustez.
- Desvantagens: Menos preciso que o SIFT em algumas situações.

SURF – Speeded-Up Robust Feature

Descritores SURF mostrando a região suporte (correspondendo à escala: parte interna do círculo) e a orientação (da borda dominante) como uma linha radial

Mesma imagem com cantos detectados pelo detector de Harris

SURF – Speeded-Up Robust Feature

- Pode ser visto como um *descritor* de gradiente em sub-regiões.
- Robusto a variações de brilho, escala e rotação

Histograma de número de pontos característicos pela escala em escala logarítmica

BRISK – (Binary Robust Invariant Scalable Keypoints)

- Detecção de Cantos: BRISK usa o detector AGAST (Adaptive and Generic Accelerated Segment Test) para detecção rápida de cantos.
- Descritor: Utiliza um descritor binário, que é muito mais rápido de calcular e comparar do que os descritores SIFT e SURF.
 - Vantagens: Muito rápido e eficiente em termos de memória, adequado para aplicações em tempo real.
 - Desvantagens: Menos preciso que SIFT e SURF em algumas situações.

Comparativo

- •SIFT é o mais preciso e robusto, mas também o mais lento.
- •SURF oferece um bom equilíbrio entre velocidade e precisão.
- •BRISK é o mais rápido, ideal para aplicações em tempo real, mas pode ser menos preciso.

Característica	SIFT	SURF	BRISK
Detecção de pontos-chave	DoG	Determinante Hessiano	AGAST
Descritor	Gradientes orientados	Haar wavelets	Binário
Velocidade	Lento	Médio	Rápido
Precisão	Alta	Média	Média
Robustez	Alta	Média	Média
Patenteado	Sim	Não	Não

 Há outros detectores de cantos, como FAST, BRIEF, FREAK, ORB (Oriented Fast + Rotated BRIEF) etc.

EXTRAÇÃO DE TIPOS SUPERFÍCIE EM IMAGENS DE PROFUNDIDADE

- Objetos 3-D podem ser descritos em termos da forma e posição das superfícies de que são feitos.
- Por exemplo: Cone ==> 1 superfície cônica
 1 superfície plana
- Descrições baseadas em superfície podem ser usadas para:
 - Classificação
 - Estimativa de Posição
 - Engenharia Reversa
 - Uso generalizado em Computação Gráfica
- Imagens de profundidade são a versão digitalizada (amostrada) das superfícies visíveis na cena
 - A forma da superfície na imagem e a forma das superfícies na cena visível são as mesmas (desprezando distorções).

SEGMENTAÇÃO E CLASSIFICAÇÃO DE SUPERFÍCIES

- Uma das formas de classificação de superfícies é a **Segmentação H-K**, que utiliza as *curvaturas média* (*H*) e *gaussiana* (*K*) para classificação de superfícies, especialmente em imagens de profundidade (x,y,z).
- A técnica se baseia na *geometria diferencial* para analisar a forma local de uma superfície em cada ponto.
- As **curvaturas H e K** são calculadas a partir das derivadas da superfície e fornecem informações importantes sobre a sua curvatura. Envolvem princípios fundamentais em muitos algoritmos em VC.
- Deep Learning é outra abordagem mais moderna para segmentação.

Segmentação H-K de Imagens de Profundidade

Dada uma imagem I na forma r_{ij} , compute uma nova imagem registrada com I (mesmo sistema de coordenadas), do mesmo tamanho, em que cada pixel é associado com uma classe de forma local selecionada de um dado dicionário

São necessárias as seguintes ferramentas:

- Dicionário de classes de formas
- Algoritmo determinando que classe de forma melhor aproxima da superfície em cada pixel
- Algoritmos para cálculo de vetores normais e curvaturas de superfícies a partir de nuvem de pontos

- Definindo Classes de Formas (Perfis)
 - Necessária definição local da forma
 - Teoria vem da Geometria Diferencial
 - Usam-se os sinais da curvatura H média e da curvatura K Gaussiana

• Segmentação H-K

• Particiona uma imagem de profundidade em regiões de forma homogênea, chamadas "pedaços (ou segmentos) de superfícies" (surface patches). Base em geometria diferencial.

H = curvatura média;

K = curvatura gaussiana

k₁, k₂= máxima e mínima curvaturas da superfície em um ponto

Côncava: k > 0Convexa: k < 0

Ilustração das formas locais resultantes da classificação H-K.

- Geometria Diferencial Elementar
 - A parametrização de uma superfície mapeia pontos (u,v) no domínio de pontos p no espaço.

$$p(u, v) = (x(u, v), y(u, v), z(u, v))$$

• A normal à superfície no ponto p é

$$\vec{n}(p) = \frac{\vec{p}_u \times \vec{p}_v}{\|\vec{p}_u \times \vec{p}_v\|}$$

 $p_{u}(u,v)$ $p_{v}(u,v)$ $p_{v}(u,v)$ $p_{v}(u,v)$ $p_{v}(u,v)$ $p_{v}(u,v)$

varrem o plano tangente à superficie no ponto (x, y, z) = p(u, v)

Diagrama ilustrando a geometria da curva que passa por um ponto em um plano interceptante (plano normal) que contém o vetor normal à superfície no ponto.

Uma superfície definida parametricamente que mostra o plano tangente e a normal à superfície.

- Um plano normal à superfície passando por p forma uma curva plana e contém n;
- Passando o plano normal por *p* em todas as direções têm-se diferentes curvas planas;
- k₁ é a máxima curvatura de uma curva plana e k₂ a mínima
- Define-se

$$K = k_1 \cdot k_2$$

$$H = \frac{k_1 + k_2}{2}$$

em que
$$k = \frac{y''}{(1+(y')^2)^{3/2}} = (1/raio de curvatura)$$

(se a superfície é convexa k < 0, se côncava k > 0)

• Estimativa de Formas Locais

• Para uma imagem de profundidade r_{ij} , (x,y,h(x,y))

Ilustração de formas locais resultantes da classificação H-K

K H		Local shape class	
0	0	plane	
0	+	concave cylindrical	
0	-	convex cylindrical	
+	+	concave elliptic	
+	-	convex elliptic	
_	any	hyperbolic	

Esquema de classificação de entalhes

$$K = k_1.k_2$$

$$H = \frac{k_1 + k_2}{2}$$

• Estimativas de Formas Locais

 \circ Para uma imagem de profundidade $r_{i,j}$, (x, y, h(x, y)),

$$K = \frac{h_{xx}.h_{yy} - h_{xy}^{2}}{(1 + h_{x}^{2} + h_{y}^{2})^{2}}$$

2. H =
$$\frac{(1 + h_x^2).h_{yy} - 2.h_x.h_y.h_{xy} + (1 + h_y^2).h_{xx}}{(1 + h_x^2 + h_y^2)^{\frac{3}{2}}}$$

onde os índices indicam derivações parciais.

Entretanto, alguns pontos têm de ser considerados:

- 1) As imagens contêm ruídos que precisam ser atenuados, para reduzir as distorções numéricas nos cálculos das derivadas e curvaturas (o pior ruído é o da quantização ou da precisão limitada do sensor de profundidade)
- 2) Os resultados ainda podem conter **pequenos defeitos** em função do ruído, e que podem ser eliminados por filtragem adicional (morfologia de imagens ==> shrinking and expansion)
- 3) Retalhos planos deveriam ter H = K = 0, mas estimativas numéricas de H e K **nunca são exatamente zero**. Portanto limiares-zero para H e K devem ser estabelecidos. A precisão de extração de retalhos planos depende do ruído, orientação do plano e limiares p/ H-K.
- 4) Estimativas de derivadas e curvaturas não fazem sentido em **descontinuidades**. Para evitar descontinuidades, deve-se utilizar um detector de contornos de degraus (CANNY_EDGE_DETECTOR), identificar as bordas e retirá-las (descontinuidades) da superfície.

Segmentação H-K

VANTAGENS

- •Invariância a rotação e translação: As curvaturas H e K são invariantes a rotações e translações da superfície, tornando a técnica robusta a diferentes posturas do objeto.
- •Descrição da forma local: Fornecem uma descrição precisa da forma da superfície em cada ponto.

DESVANTAGENS

- •Sensibilidade a ruído: O cálculo de H e K pode ser sensível a ruído nos dados de profundidade.
- •Complexidade computacional: A estimação precisa das curvaturas pode ser computacionalmente cara.

APLICAÇÕES

- •Reconhecimento de objetos: Classificar objetos 3D com base em suas formas.
- •Segmentação de imagens: Dividir a imagem em regiões com diferentes tipos de superfície.
- •Reconstrução 3D: Melhorar a qualidade de modelos 3D reconstruídos a partir de imagens de profundidade.

Algoritmos RANGE_SURF_PATCHES

Entrada é I (imagem de superfícies), na **forma r**_{ij}, e um conjunto de rótulos de formas $[s_1, ..., s_6]$ associados às classes da lista.

- 1) Aplicar atenuação Gaussiana a I, obtendo-se I_s.
- 2) Calcular as derivadas das imagens I_x, I_y, I_{xx}, I_{yy}.
- 3) Calcular H e K (p/ imagem de profund.).
- 4) Calcular a forma da imagem, S, atribuindo um rótulo de imagem, S_i, a cada pixel, de acordo com as regras da lista.

A saída é a forma de imagem S.

(a): Imagem de profundidade, em tom de cinza (mais escuro mais próximo ao sensor). (b): depois de suavização, em tom de cinza. (c): o mesmo que b, como plotagem isométrica 3-D. (d):Segmentos detectados pela segmentação H-K

(a): Imagem de profundidade, em tom de cinza (mais escuro mais próximo ao sensor). (b): depois de suavização, em tom de cinza. (c): o mesmo que b , como plotagem isométrica 3-D. (d):Segmentos detectados pela segmentação H-K