EL6463 Advanced Hardware Design

Final

Name: Chen Shen

netID: cs5236

FSM Diagram

Corner Cases

Case 1 (Functional Simulation)

Case 1 (Timing Simulation)

The first case shows the detect function.

As is said in the specification, when a sequence going as '00110' occurs, the signal Detect will output a HIGH. Otherwise, its output remains LOW.

Case 2 (Functional Simulation)

Case 2 (Timing Simulation)

The second case shows that the reset signal is synchronous. From the figures, we can find the reset signal is set to be HIGH within a half clock period. And it goes back to LOW before the next rising edge of clock signal. Thus, in this case, nothing happens. We can check the current state machine to verify that.

Case 3 (Functional Simulation)

Case 3 (Timing Simulation)

The third case shows the overlapping. After one sequence is detected, we can see from the signal Data that another '0' is read. Because the sequence begins with two '0' and also ends up with one '0', when another '0' comes, it will not go back to the initial state which shows

no bits matched. Instead, the state changes to s2, which tells us there has been two bits matched already.

Case 4 (Functional Simulation)

Case 4 (Timing Simulation)

The last case shows another corner case. In this case, 3 consecutive '0' are inputted. Thus, it will lead to a mismatch when the third '0' comes. However, the state remains to be s2 correctly because the two most recent bits are "00", which matches the first two bits in the target sequence.

Function Simulation

Timing Simulation

I also put the figures of the whole simulation to show the tabs of function and timing.

In this project, we can hardly see the delay in timing simulation even it is zoomed in to 1 ps (in the following figure). Perhaps, it is some features in Vivado regarding the FSM. Anyway, I have not find the solution yet.

Resource Utilization

Since the down counter shares a common basic architecture with the up counter, they have the same resource utilization.

	Synthesis stage	Place and Route stage
LUT and FF pairs usage	22 LUTs and 58 FFs	15
IOB usage	26	26
RAM/DSP blocks used (if any)	0	0

Speed of the design

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	7.724 ns	Worst Hold Slack (WHS):	0.190 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Falling Endpoints:	0	Number of Falling Endpoints:	0	Number of Falling Endpoints:	0
Total Number of Endpoints	20	Total Number of Endpoints	20	Total Number of Endpoints	22

Critical path delay: 2.276 ns

Maximum clock frequency: 439.367 Hz

Latency: 1 clock cycle