Микроклимат

Микроклимат оценивают сочетанием четырёх факторов:

- 1. Температура воздуха $t_{_{\rm B}}$, ${}^{_{\rm 0}}{\rm C}$.
- 2. Скорость движения воздуха $V_{\rm B}$, м/с.
- 3. Относительная влажность ф, %.
- 4. Интенсивность теплового излучения Вт/м².

Организм человека постоянно находится в состоянии теплообмена с окружающей средой.

Вследствие белкового, углеводного и жирового обмена в организме вырабатывается тепло (теплопродукция) $Q_{\rm T}$, количество которого зависит от рода деятельности и интенсивности выполняемой работы. Это тепло для спокойного состояния человека составляет 80 - 100 вт.

Отдача тепла от тела человека

Теплопродукция организма отдаётся в окружающую среду посредством конвекции, излучением тепла и испарением влаги с поверхности кожи.

Тепло, передающееся конвекцией \mathbf{Q}_{κ} (вт) определяется:

$$Q_{\kappa} = \alpha F (t_m - t_e),$$

где α - коэффициент теплоотдачи, который зависит от скорости движения воздуха, вт/(м²*град.); F - площадь поверхности тела, м²; $t_{_{\rm T}}$, $t_{_{\rm B}}$ - температура тела и воздуха.

Конвективная отдача тепла зависит от скорости движения и температуры воздуха.

Отдача тепла излучением $Q_{изл.}$ (вт) происходит, если температура тела больше температуры стен.

Теплоотдача за счёт **испарения** влаги $Q_{\text{исп.}}$ (вт) с поверхности кожи зависит от влажности воздуха, а для открытых участков тела ещё и от скорости его движения.

Абсолютная влажность воздуха (A, г/кг) - это количество водяного пара, содержащегося в 1кг воздуха при данной температуре и давлении.

<u>Максимальная влажность</u> (F, г/кг) - это количество водяного пара, которое может содержаться в 1кг воздухе при тех же условиях.

Относительная влажность Ф определяется:

$$\varphi = \frac{A}{F} 100, \%$$

Уравнение теплового комфорта

Нормальные для определённого вида деятельности теплоощущения человека характеризуются уравнением теплового комфорта:

$$\mathbf{Q}_{\mathbf{T}} = \mathbf{Q}_{\mathbf{K}} + \mathbf{Q}_{\mathbf{H}3\mathbf{J}} + \mathbf{Q}_{\mathbf{H}\mathbf{C}\mathbf{H}}$$

В организме человека имеется психофизиологическая система терморегуляции, позволяющая ему адаптироваться к изменениям климатических факторов и поддерживать нормальную постоянную температуру тела. Терморегуляция осуществляется двумя процессами: выработкой тепла и теплоотдачей, течение которых регулируется ЦНС. При нарушении этого уравнения возможно ухудшение самочувствия, переохлаждение или перегрев организма.

Гипотермия

Гипотермия (переохлаждение) начинается, когда теплопотери становятся больше теплопродукции организма, а система терморегуляции не справляется с этими изменениями.

$$(Q_{\kappa} + Q_{usn.} + Q_{ucn.}) > Q_m$$

Нарушается кровоснабжение, что вызывает такие простудные заболевания, как невриты, радикулиты, заболевания верхних дыхательных путей.

В результате гипотермии наблюдается отклонение от нормального поведения, а затем апатия, усталость, ложное ощущение благополучия, замедленные движения, угнетение психики, а в тяжёлых случаях - потеря сознания и летальный исход.

Гипертермия

Гипертермия (перегрев) наблюдается при нарушении уравнения теплового комфорта, когда внешняя теплота $Q_{\text{в.т}}$ суммируется с теплопродукцией организма, и эта сумма превышает величину теплопотерь.

 $(Q_m + Q_{e.m}) > (Q_{\kappa} + Q_{usn.} + Q_{ucn.})$

При гипертермии возникает головная боль, учащённый пульс, снижение артериального давления, поверхностное дыхание, тошнота. При тяжёлом поражении возможна потеря сознания. Эти симтомы характерны для теплового и для солнечного удара.

Повышенная влажность воздуха более 75% ускоряет развитие гипертермии и гипотермии.

Нормирование микроклимата

Климатические факторы действуют на человека комплексно. В то же время установлены комфортные значения для каждого фактора:

Температура воздуха 20 - 23 °C.

Относительная влажность 40 - 60 %.

Скорость движения воздуха для лёгкой работы 0,2 - 0,4 м/с.

Для производственных помещений факторы микроклимата (t_в,

 V_B , ϕ) нормируют как оптимальные и допустимые в зависимости от периода года (тёплый, холодный) и от категории работы по степени тяжести (лёгкая, средней тяжести и тяжёлая).

категории физических работ:

- І легкие работы, не требующие физического напряжения.
 - Ia энергозатраты до 120 ккал/ч (139 Bт)
 - Iб энергозатраты 121-150 ккал/ч (140-174 Bт)
- II средней тяжести.
 - IIa энергозатраты от 151 до 200 ккал/ч (175-232 Вт)
 - IIб энергозатраты от 201 до 250 ккал/ч (233-290 Bт).
- III тяжелые работы, связанные с систематическим физическим напряжением.
 - Расход энергии более 250 ккал/ч (290 Вт).

Категория работ	Пери- од года	Температура, °С		Допустимая	Скорость движения, м/с	
		оптималь- ная	допусти -мая	относительная влажность, не более, %	оптималь- ная, не более	допусти- мая
Легкая - Іа	X	22 - 24	21 – 25	75	0,1	≤ 0,1
	Т	23 - 25	22 - 28	55 (при 28°C)	0,1	0,1-0,2
Легкая - Іб	X	21 - 23	20 - 24	75	0,1	≤0,2
	Т	22 - 24	21 - 28	60 (при 27°C)	0,2	0,1-0,3
Средней тяжести - IIa	X	18 - 20	17 - 23	75	0,2	≤0,3
	Т	21 - 23	18 - 27	65 (при 26°C)	0,3	0,2-0,4
Средней тяжести - IIб	X	17 - 19	15 - 21	75	0,2	≤0,4
	Т	20 - 22	16 - 27	70 (при 25°C)	0,3	0,2-0,5
Тяжелая - III	X	16 - 18	13 - 19	75	0,3	≤0,5
	Т	18 - 20	15 - 26	75 (при 24°C)	0,4	0,2-0,6

<u>Улучшение микроклимата</u>

Улучшение микроклимата достигается:

В холодный период года применением теплоизолирующих материалов и систем отопления.

В тёплый период года использованием вентиляции и систем кондиционирования воздуха (**СКВ**).

Системы отопления делят на:

паровые;

водяные;

воздушные;

электрические;

топливные.

Цель отопления - компенсировать потери теплоты.

Вентиляция по способу перемещения воздуха делится на: естественную;

искусственную;

смешанную.

Назначение вентиляции - это поглощение избыточной теплоты или нагревание воздуха.

Системы отопления

Потери теплоты в помещении $Q_{\rm n}$ складываются из потерь на ограждениях $Q_{\rm orp.}$ и на остеклении $Q_{\rm oct.}$. Система отопления должна иметь теплопроизводительность не меньше, чем величина теплопотерь. $Q_{\rm n}=Q_{\rm ocn.}+Q_{\rm ocm.}$;

$$Q_{opp.} = F_{opp.} K_{opp.} (t_{eh.} - t_{hap.});$$

$$Q_{ocm.} = F_{ocm} K_{ocm.} (t_{вн.} - t_{нар.}),$$

где $F_{\text{огр.}}$, $F_{\text{ост.}}$ - площадь ограждений и остекления, м²; $K_{\text{огр.}}$, $K_{\text{ост.}}$ - коэффициенты теплопередачи, вт/(м²*град.); $t_{\text{вн.}}$, $t_{\text{нар.}}$ - температура внутреннего и наружного воздуха, 0 С.

Естественная вентиляция

Естественная вентиляция осуществляется гравитационным давлением за счёт разности плотностей холодного и тёплого воздуха, а также ветровым напором.

Организованная естественная вентиляция - **аэрация**.

Естественная вентиляция дефлекторами

а - работает на приток;

б - эжекционный, работает на вытяжку

Дефлекторы

а - с плавным раструбом; б - эжекционный;

в - трёхгранный; г - круглый.

Искусственная вентиляция

При искусственной вентиляции воздух подаётся осевыми или центробежными (радиальными) вентиляторами.

Вентилятор характеризуется:

Производительность вентилятора определяется:

Производительностью (подачей) L, м³/ч.

Развиваемым давлением р, Па.

Электрической мощностью N, квт.

 $L = 3600 \; F \; V$

Коэффициентом полезного действия η.

где F - площадь сечения вентиляционного патрубка, M^2 ; V - скорость движения воздуха, M/c.

Осевой вентилятор

1 - корпус; 2 - крылатка;

3 - электродвигатель.

Центробежный вентилятор

1 - электродвигатель; 2 - кожух;

3 - крылатка; 4 - станина.

Осевые вентиляторы применяют, когда требуется получить значительную производительность, а центробежные - для обеспечения высокого давления.

Поглощение избыточной теплоты $Q_{_{\mu_{3}6}}$

Количество воздуха **L**, которое надо подать в помещение для поглощения избыточной теплоты определяется:

$$L = \frac{Q_{u3\delta.}}{C \rho (t_{BH.} - t_{Hap.})},$$

где С- удельная теплоёмкость воздуха, вт/кг*град.; ρ - плотность воздуха, кг/м³.

Избыточная теплота определяется теплом, излучаемым от людей $Q_{\text{люд.}}$, оборудования $Q_{\text{обор.}}$, освещения $Q_{\text{осв.}}$, солнечной радиации $Q_{\text{рад.}}$, и теплом, выходящим через ограждения $Q_{\text{огр.}}$

$$Q_{uso.} = Q_{noo.} + Q_{ooop.} + Q_{oco.} + Q_{pao.} - Q_{oop.}$$

Местная приточная вентиляция - воздушное душирование

Система кондиционирования воздуха (СКВ)

СКВ обеспечивает для человека оптимальный микроклимат

Рис. 2 Схема кондиционера

1 — вентилятор; 2 — увлажнитель; 3 — калорифер второй ступени; 4 — охладитель; 5 — калорифер первой ступени; 6 — воздушный фильтр.

В режиме охлаждения воздух охлаждается и осущается (4,3)

В режиме отопления воздух нагревается и увлажняется (5,2)

Вредные вещества

Химические вредные вещества по характеру воздействия на человека и по вызываемым последствиям делят на группы:

- 1. Обще токсичные (ртуть, соединения фосфора).
- 2. Раздражающие (кислоты, щёлочи, аммиак, хлор, сера).
- 3. Аллергенные (соединения никеля, алкалоиды).
- 4. Нервно-паралитические (аммиак, сероводород).
- 5. Удушающие (окись углерода, ацетилен, инертные газы).
- 6. Наркотические (бензол, дихлорэтан, ацетон, сероуглерод).
- 7. Канцерогенные (ароматические углеводороды, асбест).
- 8. Мутагенные (соединения свинца, ртути, формальдегид).
- 9. Влияющие на репродуктивную функцию (свинец, ртуть).

Действие вредных веществ на человека

Раздражение дыхательных путей, слизистых оболочек, приступы кашля, боли в горле.

Тошнота, рвота, одышка, учащённый пульс

Учащённое дыхание, уменьшение поступления кислорода в лёгкие

Уменьшение рабочей поверхности лёгких, профессиональные заболевания - пневмокониозы

CO,

Фиброгенные

пыли - металлические, пластмассовые, кремниевые, древесные и др. Раздражение глаз, тошнота, боль в груди, удушье, головокружение, рвота; летальный исход может наступить от сердечной недостаточности.

Раздражение дыхательных путей, поражение дыхательного центра, летальный исход наступает от отёка лёгких.

Эритроциты крови захватывают окись углерода и уже не переносят в достаточной степени кислород. Головная боль, тошнота, слабость, потеря сознания, летальный исход.

Неблагоприятные изменения в составе крови

NH₃

Cl₂

CO

Pb

Слабость, апатия, утомляемость (ртутная неврастения), ртутный тремор.

Факторы риска сердечно-сосудистых заболеваний - ртуть, свинец, кадмий, кобальт, никель, цинк, олово, сурьма, медь.

Соединение с гемоглобином, образование метагемоглобина, кислородное голодание

Отравление, обезвоживание, потеря сознания, паралич дыхания и двигательного центра.

Тяжёлые металлы

Нитраты

Пестициды - соединения мышьяка, хлора, фосфора

Нормирование вредных веществ

Мерой содержания пылей и газообразных веществ в воздухе является их концентрация в мг/м³.

Устанавливаются нормативные показатели:

- 1. Относительно безопасные уровни воздействия (ОБУВ).
- 2. Предельно допустимая концентрация (ПДК) это такая концентрация, при которой за рабочий стаж не должно возникнуть профессиональных заболеваний.
- 3. Средние смертельные дозы при попадании в желудок (ССДЖ), при нанесении на кожу (ССДК), концентрации в воздухе (ССКВ).

По наиболее высокому значению из этих показателей вредные вещества делят на четыре класса: чрезвычайно опасные (1), высоко опасные (2), умеренно опасные (3) и малоопасные (4).

<u>Уменьшение действия вредных</u> веществ

Оздоровление воздушной среды достигается использованием:

- 1. Средств автоматизации производства.
- 2. Герметизацией вредных процессов.
- 3. Устройством укрытий, окрасочных камер.
- 4. Вентиляции для разбавления вредных веществ.
- 5. Местной вытяжной вентиляции закрытого и открытого типа для удаления вредных веществ.
- 6. Методов нейтрализации для очистки воздуха от продуктов сгорания топлива.
- 7. Фильтров и пылеуловителей.
- 8. Респираторов и противогазов.

Разбавление вредных веществ до допустимых концентраций

Количество воздуха L ($м^3/ч$), которое надо подать в помещение для разбавления вредных веществ определяется по формуле:

$$L = \frac{G}{q_{\Pi I\!\!\!/\!\!\!/\!\!\!/\!\!\!/}},$$

где G - количество выделяющихся вредных веществ, мг/ч; $q_{\Pi J K}$ - предельно допустимая концентрация, мг/м³.

В помещениях с постоянным пребыванием людей минимально необходимое количество воздуха определяется из расчёта разбавления **углекислого газа** до предельной концентрации. Для выполнения этого требования необходимо подать в помещение 33 м³/ч на одного человека.

Местная вентиляция

При локальном выделении вредных веществ применяют местную вытяжную вентиляцию, которая бывает:

- 1. Закрытого типа (вытяжные шкафы, окрасочные камеры, кожухи, укрывающие пылящее оборудование).
- 2. Открытого типа (вытяжные зонты, вытяжные панели).

Количество воздуха, которое надо удалить через устройство закрытого типа, определяется по формуле:

$$L = 3600 \, F \, V$$
,

где F - суммарная площадь сечения рабочих проёмов, м²; V - скорость движения воздуха, которая принимается в пределах 0,15-1,5 м/с в зависимости от класса опасности вещества.

Схема устройств для очистки вентиляционных выбросов от пыли:

- а камера пылеосадочная; б циклон.
- 1 корпус; 2 удаление очищенного воздуха;
- 3 удаление скопившейся пыли.

B) 6)

Местная вытяжная вентиляция

- а вытяжная панель;
- б поворотная панель;
- в установка вытяжной панели на рабочем месте.

Бортовые вытяжные устройства

- а односторонняя вытяжка;
- б двусторонняя вытяжка;
- 1 корпус гальванической ванны;
- 2 воздуховоды;
- 3 щели для прохождения загрязнённого воздуха.

Индивидуальные средства защиты от вредных веществ

- а респиратор «Лепесток;
- б универсальные респираторы РУ-60М.