

G = (V, E)Graf prostv

 $V = \{v_i : i = 1, \dots, 19\}$ Wierzchołki

Rząd |V| = 19

 $E = \{e_j : j = 1, \dots, 28\}$ Krawędzie

Rozmiar |E| = 28

Np. $e_{16} = \{v_{11}, v_{14}\}$

Np. wierzchołki v_{11} i v_{14} są sąsiednie Sąsiedztwo

Incydencja Np. wierzchołek v_{11} jest incydentny z krawędzią \boldsymbol{e}_{16}

Stopień wezła Np. $deg(v_9) = 4$ Lemat o uściskach dłoni Np. $deg(v_1) = deg(v_3)$

 $\mathbb{E}[deg] = \frac{1 \times 2 + 2 \times 5 + 3 \times 7 + 4 \times 2 + 5 \times 3}{19} = 2\frac{|E|}{|V|} \approx 2,95$ Np. między v_7 a v_{14} : niebieska $< v_7, v_{14} >_{\text{nieb}} = < v_7, v_9, v_{11}, v_{14} > = < e_9, e_{14}, e_{16} >$ Średni stopień węzła

Ścieżka

i czerwona < $v_7, v_{14}>_{\mathsf{czerw}} = < v_7, v_{10}, v_{11}, v_{12}, v_{13}, v_{15}, v_{14}> = < e_{10}, e_{15}, e_{17}, e_{18}, e_{19}, e_{20}>$

Długość ścieżki Np. $|\langle v_7, v_{14} \rangle_{\text{czerw}}| = 6$

Np. między wierzchołkami v_7 a v_{14} : $dist(v_7, v_{14}) = \min_k \{ |\langle v_7, v_{14} \rangle_k | \} = 3$ Odległość Średnica $d(G) = \max_{i,j} dist(v_i, v_j) = \max_{i,j} \min_{k} \{ | \langle v_i, v_j \rangle_k | \} = dist(v_1, v_{19}) = 9$

Zbiór rozspajający Np. $\{e_4, e_5, e_{15}, e_{16}, e_{19}\}$

Rozcięcie Np. $\{e_4, e_5\}$ Most Np. e_3 $\lambda(G) = 1$ Spójność krawędziowa Zbiór separujący Np. $\{v_1, v_5, v_6\}$ Separator Np. $\{v_5, v_6\}$ Np. v_7 Przegub

Spójność wierzchołkowa $\kappa(G) = 1$

Podgrafy Pełny, np. $K_3 = (\{v_{16}, v_{17}, v_{19}\}, \{e_{24}, e_{26}, e_{27}\})$

Cykliczny, np. $C_4 = (\{v_7, v_8, v_{10}, v_{11}\}, \{e_8, e_{10}, e_{13}, e_{15}\})$

Liniowy, np. $P_3 = (\{v_2, v_4, v_5\}, \{e_3, e_4\})$

Dwudzielny pełny, np. $K_{2,3} = (\{v_8, v_{10}\} \cup \{v_7, v_9, v_{11}\}, \{e_8, e_{10}, e_{11}, e_{12}, e_{13}, e_{15}\})$

Np. $T = (V, \{e_1, e_2, e_3, e_4, e_5, e_6, e_8, e_{11}, e_{12}, e_{14}, e_{17}, e_{18}, e_{19}, e_{20}, e_{22}, e_{24}, e_{25}, e_{27}\})$ Drzewo rozpinające

Macierz sąsiedztwa Np. dla podgrafu $(\{v_1, v_2, v_3, v_4\}, \{e_1, e_2, e_3\})$:

$$\mathbf{A} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

Np. dla podgrafu ($\{v_1, v_2, v_3, v_4\}, \{e_1, e_2, e_3\}$): Macierz incydencji

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Digraf D

Digraf ważony D = (V, A, w)

Łuki $A = \{a_i : i = 1, ..., 4\}$

Np. $a_{\underline{1}} = (v_1, v_2)$

Macierz incydencji digrafu $\mathbf{B} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$

Waga łuku Np. $\overline{w}(a_1) = 3$ Siła węzła Np. dla v_1 wynosi 5

Źródło v_1 Ujście v_5

Przepływność Np. $c(v_1, v_3) = 4$

Przepływ między v_1 a v_5 ma wartość $5\frac{1}{2}$, bo $f(v_3, v_5) + f(v_4, v_5) = 5\frac{1}{2}$ "Węzłowe prawo Kirchhoffa" Np. dla v_3 : $f(v_1, v_3) + f(v_2, v_3) + f(v_4, v_3) = f(v_3, v_4) + f(v_3, v_5)$

"węziowe prawo Kirchnona

dla przepływu

Łącze nasycone Np. (v_1, v_2) , bo $f(v_1, v_2) = c(v_1, v_2)$