Problemes Llista 5

INTEGRACIÓ

1. En cada cas, dibuixeu una regió que tingui per àrea la integral definida corresponent

(a)
$$\int_0^2 (2x+5) dx$$
 (b) $\int_{-2}^2 |x| dx$ (c) $\int_{-1}^1 (1-|x|) dx$

(d)
$$\int_{-3}^{3} \sqrt{9-x^2} dx$$
 (e) $\int_{0}^{4} (4x-x^2) dx$ (f) $\int_{0}^{1} \frac{1}{1+x^2} dx$

2. Un objecte es mou al llarg de l'eix X de manera que la seva velocitat en funció del temps és $v(t) = 2 - 3t + t^2$ m/s. Se sap que la posició inicial és x(0) = 3.

(a) Determineu la posició de l'objecte en qualsevol instant t.

(b) Determineu els intervals de temps en què el moviment és cap a la dreta o cap a l'esquerra.

(c) Determineu la posició a l'instant t=3 i calculeu la distància total recorreguda a l'interval $0 \le t \le 3$.

3. Se sap que la densitat lineal d'un filferro de longitud 1m. és el quadrat de la distància a un dels seus extrems. Calculeu la massa del filferro.

4. En cada cas, feu un dibuix de les gràfiques de les corbes donades i calculeu l'àrea de la regió que limiten:

(a)
$$y = x^2 + 2x + 1$$
, $y = 2x + 5$ (b) $y = x$, $y = \sin x$, $x = \pi/2$

(c)
$$y = \cos x$$
, $y = 4x^2 - \pi^2$ (d) $y = x^3 - 3x^2 + 3x - 1$, $y = x - 1$

(e)
$$y = x^2 - 4x + 3$$
, $y = -x^2 + 2x + 3$ (f) $y = 8x$, $y = x$, $y = 8/x^2$

5. Calculeu les primitives següents directament o amb un canvi de variable.

(a)
$$\int \frac{x^3}{1+x^4} dx$$
 (b) $\int \frac{1}{x \ln x} dx$ (c) $\int \frac{x}{\sqrt{1+x^2}} dx$

(d)
$$\int \sin(e^{5x})e^{5x} dx$$
 (e) $\int \frac{\sin x}{\sqrt[4]{\cos^3 x}} dx$ (f) $\int \frac{\sin x + \cos x}{\sqrt{\sin x - \cos x}} dx$

(g)
$$\int \frac{x^3}{1+x^2} dx$$
 (h) $\int \frac{x}{\sqrt{1-x^4}} dx$ (i) $\int x \sin(x^2+1) dx$

6. Calculeu les primitives següents integrant per parts:

(a)
$$\int xe^{-2x} dx$$
 (b) $\int x^3 \sin x dx$ (c) $\int x^2 \ln x dx$

(d)
$$\int e^{2x} \sin(3x) dx$$
 (e) $\int \sin(\ln x) dx$ (f) $\int x \arctan x$

(g)
$$\int (x^2 - 2x + 5)e^{-x} dx$$
 (h) $\int \frac{\ln x}{\sqrt{x}} dx$ (i) $\int \sin^2 x dx$

7. Calculeu les primitives següents fent canvis de variable convenients

(a)
$$\int \frac{1+x}{1+\sqrt{x}} \, dx$$

(b)
$$\int \frac{1}{\sqrt{e^x - 1}} \, dx$$

(a)
$$\int \frac{1+x}{1+\sqrt{x}} dx$$
 (b) $\int \frac{1}{\sqrt{e^x-1}} dx$ (c) $\int \frac{1}{e^{2x}+e^{-2x}} dx$

(d)
$$\int \frac{1}{x(\ln x)\sqrt{\ln(\ln x)}} dx$$
 (e) $\int \frac{1}{\sqrt{x} + \sqrt[3]{x}} dx$ (f) $\int \frac{\arctan\sqrt{x}}{\sqrt{x} + \sqrt{x^3}} dx$

(e)
$$\int \frac{1}{\sqrt{x} + \sqrt[3]{x}} \, dx$$

(f)
$$\int \frac{\arctan\sqrt{x}}{\sqrt{x} + \sqrt{x^3}} \, dx$$

(g)
$$\int e^{\sqrt{x}} dx$$

(h)
$$\int (x+1)(x-2)^{10} dx$$
 (i) $\int \sqrt{1+\sqrt{x}} dx$

(i)
$$\int \sqrt{1+\sqrt{x}} \, dx$$

- 8. Els canvis $x = r \sin t$, $x = r \cos t$ funcionen bé per calcular primitives que contenen l'expressió
 - (a) Feu el canvi de variable $x = r \sin t$ i transformeu la primitiva $\int \sqrt{r^2 x^2} dx$ en una primitiva en la variable t.
 - (b) Calculeu $\int_{1}^{\pi/2} \sqrt{r^2 x^2} \, dx.$
 - (c) Comproveu que de l'apartat anterior es dedueix la fórmula coneguda de l'àrea d'un cercle.
- 9. Calculeu les integrals impròpies següents en cas que siguin convergents o si no establiu la seva divergència

(a)
$$\int_{1}^{\infty} \frac{dx}{(x-1)^2}$$
 (b) (c) $\int_{0}^{\pi/2} \frac{\cos x}{\sin x} dx$

(c)
$$\int_0^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

(d)
$$\int_0^\infty \frac{\arctan x}{1+x^2} dx$$
 (e)
$$\int_1^\infty \frac{dx}{x \ln x}$$
 (f)
$$\int_1^\infty \frac{dx}{x(\ln x)^2}$$

(e)
$$\int_{1}^{\infty} \frac{dx}{x \ln x}$$

(f)
$$\int_{1}^{\infty} \frac{dx}{x(\ln x)^2}$$

- 10. (a) Calculeu les primitives $\int xe^{-x} dx$ i $\int x^2e^{-x} dx$.
 - (b) Dibuixeu les gràfiques de $y = xe^{-x}$ i $y = x^2e^{-x}$ i calculeu els punts d'intersecció.
 - (c) Calculeu l'àrea total limitada per les corbes $y = x^2 e^{-x}$ i $y = x e^{-x}$.
- 11. La temperatura d'un indret des de les 6h. fins a les 12h. del matí ve donada per la fórmula

$$T(t) = 5 + 15\sin(\frac{\pi t}{12}) \quad (0 \le t \le 6)$$

on t representa el temps (en hores a partir de les 6 del matí). Determineu la temperatura mitjana entre les 8 i les 12.

- 12. Com aplicació del Principi de Cavalieri, calculeu els volums dels sòlids següents
 - (a) Un cilindre inclinat un angle de $\pi/6$ respecte de la vertical d'alçada 10m. i radi de la base
 - (b) Una piràmide de base un quadrat de 4m. de costat i d'alçada 12m.
 - (c) Un con recte amb alçada h i base un cercle de radi r.
 - (d) El volum de revolució obtingut quan la regió $\{(x,y): 0 \le x \le 2, 0 \le y \le x^2\}$ gira al voltant de l'eix X.
 - (e) El sòlid intersecció de dos cilindres de radi r i eixos perpendiculars.