Programming Assignment #2

Assignment Description

(100 points = 70% of demonstration + 30% of report)

Write a simple SIC simulator that reads a standard SIC object program into memory.

Basic Functionalities

(70 points for demonstrating the functionality)

The simulator takes two commands:

- (a) <u>load *ObjectFileName*</u>: loads a simple SIC simulator that reads a standard SIC object program into assigned location in memory.
- (b) **show**: shows the contents in the memory location for the loaded object program.

Advanced Functionalities

(10 more points for demonstrating the functionality)

In addition to basic functionalities, the simulator takes two more commands:

- (c) unload: releases the data structure for the loaded object program.
- (d) exit: exits the simulator successfully.

Moreover, the **load** command will show an error message if there is already an object program loaded in memory.

Full Functionalities

(20 more points for demonstrating the functionality)

In addition to advanced functionalities, the simulator takes one more command:

(e) **run**: simulates the execution of the loaded object program, and shows the contents of all registers when it ends.

Goals

- 1. Get familiar with C programming language.
- 2. Learn to use the I/O facilities and library functions provided by standard C.
- 3. Get experience with the system-level programming.
- 4. Get experience with separate compilation, make utility, and C debugger.

Lecturer: Professor Chung Yung

Guideline:

- 1. You have to demonstrate your program in person.
- 2. You will get 15% bonus if you succeed in demonstrating your program on December 23^{rd} , 2022. Official due for demonstrating program is January 6^{th} , 2023. After that, 15% penalty will be given for lateness. More precisely, if you get *X* in demonstration, and *Y* for the report:
 - \blacktriangleright (12/23) In-class demonstration = X * 70% * 115% + Y * 30%
 - \blacktriangleright (1/6) Your score = X * 70% + Y * 30%
 - \blacktriangleright Late = (X * 70% + Y * 30%) * 85%
- 3. Your report has to include the following elements:
 - 1) A coverpage.
 - 2) The problem description.
 - 3) Highlight of the way you write the program.
 - 4) The program listing.
 - 5) Test run results.
 - 6) Discussion.

Programming Assignment #2 Addendum

Example Object Programs

1)

HCOPY 0010000107A

T0010001E1410334820390010362810303010154820613C100300102A0C103900102D
T00101E150C10364820610810334C0000454F46000003000000
T0020391E041030001030E0205D30203FD8205D2810303020575490392C205E38203F
T0020571C1010364C0000F1001000041030E02079302064509039DC20792C1036
T002073073820644C000005

2)

E001000

MATH 0020000002D

T0020001E00201E1820241C201B0C20270020211820241C201B0C202A4C0000000001
T00201E09000005000007000003
E002000

Lecturer: Professor Chung Yung

Format of Output

(Similar to the following figure)

Memory address	Contents				
0000	xxxxxxx	xxxxxxx	xxxxxxx	xxxxxxx	
:	:	:	:	÷	
3FF0	xxxxxxx	xxxxxxx	xxxxxxx	xxxxxxx	
4000					
4010					
4020	03201D77	1040C705	0014		←PROGA
4030					
4040					
4050	<u></u>	00412600	00080040	51000004	
4060	000083				
4070					
4080		• • • • • • • •	*******	:::::::	
4090			031040	40772027	← -PROGB
40A0	05100014				
40B0					
40C0		41260000	00004051	00000400	
40D0	0000	41260000	08004051	00000400	
40E0 40F0	0083		0310	40407710	
	40C70510	0014	0310	40407710	←-PROGC
4100 4110	400/0310	0014			Thous
4110	1	00412600	00080040	51000004	
4120	000083xx	00412600	*****	xxxxxxx	
4140	xxxxxxxx	xxxxxxx	*****	*****	
4140	*****	*****	*****	*****	
:	:	:	:		

When demonstrating

- 1. Enter your program and a prompt.
- 2. Load test1.obj 1000
- 3. Show 1000
- 4. Run 1000
- 5. Show 1000
- 6. Unload
- 7. Load test2.obj 2000
- 8. Show 2000
- 9. Run 2000
- 10. Show 2000
- 11. Exit