CS 321 HW - 1

Assignment:

1) (5 points) For the DFA M below, give its formal definition as a quintuple. Verbally describe the language, L(M), accepted by M.

Answer:

 $Q = \{q0,q1,q2,q3\}$ – Set of states; $F \{q_1,q_3\}$ – Set of final states;

 $\Sigma = \{0,1\}$ – Input alphabet; $\delta: Q \times \Sigma \rightarrow Q$ – transition function;

q₀ – Initial state;

δ	0	1
q0	q1	q3
q1	q1	q2
q2	q2	q2
q3	q1	q3

 $L(M) = \{0^n \mid n \ge 1\} \cup \{1^p \mid p \ge 1\} \cup \{(1)^m (0)^k \mid m, k \ge 1\}$

Assignment:

2) (12 points) For each of the following languages over the alphabet Σ = {a, b}, give a DFA that recognizes the language.

Answers:

a)
$$L_1 = \{ \lambda, b, ab \}$$

b) L_2 = { $w \in \Sigma$ * | $w \in$

c) For any string $w \in \Sigma^*$, let $n_a(w)$ denote the number of a's in w. For example, $n_a(abbbba) = 2$. Define the language:

$$L_3 = \{ \ w \in \Sigma \ * \ | \ n_a(w) \ mod \ 3 = 1 \}.$$

d) $L_4 = L_3^-$ where L_3 is the language in part c).

Assignment:

3) (4 points) Let L = $\{w \in \{0, 1\}^* \text{ such that } w \text{ is a binary representation of an odd integer}\}$. Show that L is a regular language.

Answer:

Language L is regular if this language is a DFA M such as L => L(M) = { $w \in \Sigma^* | \delta^* \left(q_{0,} w\right) \in F$ }

Assignment:

- 4) (4 points)
- a) Find an nfa with three states that accepts the language $L=\{a^n:n\geq 1\;\}\cup \{\;b^m\;a^k\colon m\geq 0,\,k\geq 0\;\}.$

Answer:

b) Do you think that the language in part (a) can be accepted by an nfa with fewer than three states?

Answer:

We can use only two states for our machine and getting the same result according with language:

$$L = \{a^n : n \ge 1 \} \cup \{ b^m a^k : m \ge 0, k \ge 0 \}$$

Because state { $b^m a^k$: $m \ge 0$, $k \ge 0$ } including $\{a^n : n \ge 1$ }.