Измерение C_p воздуха

Цель работы

Вычислить телоёмкость воздуха при постоянном давлении.

Оборудование

- 1. Теплоизолированная труба
- 2. Термопара
- 3. Газовый счётчик
- 4. Секундомер
- 5. Вольтметр & Амперметр

Результаты эксперимента

В результате двух опытов при различных потоках получили следующие данные:

	Сила тока	Напряжение питания	ЭДС термопары mV	$oldsymbol{Pacxod}_{\it \Pi}/c$
0	0.115	4	70	0.00021
1	0.127	4.51	89	0.00021
2	0.141	5	110	0.00021
3	0.156	5.5	135	0.00021
4	0.171	6	164	0.00021
5	0.114	4.05	129	0.000105
6	0.127	4.51	172	0.000105
7	0.137	4.85	196	0.000105
8	0.141	5.03	212	0.000105
9	0.151	5.36	242	0.000105
10	0.163	5.78	281	0.000105
11	0.168	5.95	300	0.000105
12	0.175	6.21	327	0.000105

Обработка результатов

Построение графиков

Для каждого проведённого эксперимента построим график зависимости $m\Delta T$ от IV. Методом наименьших квадратов вычислим коэффициенты α и β наилучших прямых. И по полученным данным вычислим точки пересечения прямой с осью ординат.

Эксперимент 1

Эксперимент 2

Рассчёт C_p

Из коэффициента наклона графика можно оценить теплоёмкость воздуха при постоянном давлении:

$$C_p = lpha \cdot \mu$$

Молярная масса сухого воздуха - $28.97 \epsilon / \text{моль}$. В результате:

Первый эксперимент

$$C_{p1}=31.5\pm0.3$$
 Дж $/K$

Второй эксперимент

$$C_{p2}=29.6\pm0.4$$
 Дж $/K$

Вывод

С точностью $\sim 2\%$ удалось вычислить теплоёмкость воздуха при постоянном давлении. Сравним значение с *табличным*. Если рассматривать воздух как двухатомный идельаный газ получаем:

$$C_p = C_v + R \sim 29.1\,$$
Дж $/K$

Значение, полученное в первом эксперименте отличается от *табличного* на $\sim 5\%$. А значение, полученное во втором, на $\sim 0.3\%$.

Таким образом, более точным оказался эксперимент 2 - именно в нём было получено наибольшее количество эксперементальных точек. Помимо этого во втором эксперименте мощность увеличивалась с меньшим *шагом*, из-за чего газ быстрее приходил в равновесное состояние, соответствующее данным затратам тепла.

Помимо вышесказанного, потери тепла во втором эксперименте оказались меньше потерь в первом. $P_1=0.04Bm$, $P_2=0.03Bm$ - мощность тепловых потерь в первом и втором эксперименте соответственно.