#### **Tania Soutonglang**

# CS 581 Spring 2024 Written Assignment #01

Due: Saturday, February 10, 2024, 11:59 PM CST

Points: 30

#### Instructions:

1. Use this document template to report your answers. Name the complete document as follows:

LastName\_FirstName\_CS581\_Written01.doc (only MS Word or PDF files accepted!)

2. Submit the final document to Blackboard Assignments section before the due date. No late submissions will be accepted.

#### **Objectives:**

- 1. (10 points) Demonstrate your understanding of MiniMax search algorithm,
- 2. (10 points) Demonstrate your understanding of A\* search algorithm,
- 3. (10 points) Demonstrate your understanding of a basic Genetic Algorithm.

### Problem 1 [5 pts]:

Apply MiniMax algorithm on the following game tree. What is the maximum utility that MAX can achieve, assuming MIN plays optimally?



Maximum utility: 9

# Problem 2 [5 pts]:

This is the same game as in Problem 1. Hand trace the alpha-beta search. Show the updated bounds on the nodes. Clearly mark which branches are pruned, if any.















## Problem 3 [10 pts]:

Consider the following problem **state space** (undirected and weighted) graph (fig. 1) representing a map with cities (vertices) and roads (maps).



Figure 1: Problem state space ("cities and roads").

The table (Table 1) below provides adjacency matrices for the state space graph above (Driving distances) and a corresponding (but not shown) straight-line distances graph. Data in matrices represents action host and heurisitic function value, respectively.

|   | a) Driving distances |     |     |     |         |          |          |     |     |     |     |  |
|---|----------------------|-----|-----|-----|---------|----------|----------|-----|-----|-----|-----|--|
|   | H                    | K   | E   | J   | С       | В        | G        | D   | F   | I   | A   |  |
| Н | 0                    | 0   | 102 | 0   | 0       | 0        | 0        | 114 | 0   | 87  | 0   |  |
| K | 0                    | 0   | 0   | 64  | 0       | 0        | 112      | 0   | 129 | 0   | 0   |  |
| E | 102                  | 0   | 0   | 0   | 0       | 68       | 0        | 170 | 0   | 50  | 180 |  |
| J | 0                    | 64  | 0   | 0   | 0       | 0        | 0        | 0   | 112 | 0   | 0   |  |
| С | 0                    | 0   | 0   | 0   | 0       | 164      | 0        | 0   | 0   | 0   | 0   |  |
| В | 0                    | 0   | 68  | 0   | 164     | 0        | 0        | 0   | 0   | 0   | 116 |  |
| G | 0                    | 112 | 0   | 0   | 0       | 0        | 0        | 205 | 127 | 0   | 0   |  |
| D | 114                  | 0   | 170 | 0   | 0       | 0        | 205      | 0   | 293 | 0   | 158 |  |
| F | 0                    | 129 | 0   | 112 | 0       | 0        | 127      | 293 | 0   | 0   | 0   |  |
| I | 87                   | 0   | 50  | 0   | 0       | 0        | 0        | 0   | 0   | 0   | 0   |  |
| A | 0                    | 0   | 180 | 0   | 0       | 116      | 0        | 158 | 0   | 0   | 0   |  |
|   |                      |     |     | b)  | Straigh | t-line d | listance | es  |     |     |     |  |
|   | H                    | K   | E   | J   | С       | В        | G        | D   | F   | I   | A   |  |
| H | 0                    | 234 | 93  | 278 | 229     | 116      | 151      | 82  | 242 | 66  | 172 |  |
| K | 234                  | 0   | 322 | 53  | 463     | 348      | 84       | 258 | 105 | 284 | 384 |  |
| E | 93                   | 322 | 0   | 368 | 149     | 63       | 242      | 139 | 335 | 41  | 152 |  |
| J | 278                  | 53  | 368 | 0   | 505     | 390      | 126      | 291 | 91  | 332 | 417 |  |
| С | 229                  | 463 | 149 | 505 | 0       | 116      | 380      | 230 | 458 | 191 | 138 |  |
| В | 116                  | 348 | 63  | 390 | 116     | 0        | 265      | 119 | 342 | 96  | 89  |  |
| G | 151                  | 84  | 242 | 126 | 380     | 265      | 0        | 176 | 113 | 206 | 301 |  |
| D | 82                   | 258 | 139 | 291 | 230     | 119      | 176      | 0   | 231 | 133 | 126 |  |
| F | 242                  | 105 | 335 | 91  | 458     | 342      | 113      | 231 | 0   | 305 | 353 |  |
| I | 66                   | 284 | 41  | 332 | 191     | 96       | 206      | 133 | 305 | 0   | 178 |  |
| A | 172                  | 384 | 152 | 417 | 138     | 89       | 301      | 126 | 353 | 178 | 0   |  |

Table 1: Adjacency matrices for the problem.

**Your task:** Apply the **A\* Search** algorithm to the problem with following initial/goal states:

initial state (IS): F

goal state (GS): I

Show how the tree search develops:

- assume that root node (corresponding to F) was already dequeued from the frontier (see updated Reached structure below) and is ready to be expanded,
- show the search tree after first TWO (2) expansions,
- show changes in the frontier and reached/visited structures <u>BEFORE AND AFTER</u> EVERY NODE EXPANSION

| Frontier | Frontier structure [front ← rear] |  |  |  |  |  |  |  |  |  |  |  |  |
|----------|-----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Parent   | F                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| State    | G                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| f()      | 333                               |  |  |  |  |  |  |  |  |  |  |  |  |

| Reached , | / visited | I   |     |    |   |  |  |  |  |
|-----------|-----------|-----|-----|----|---|--|--|--|--|
| Parent    | 1         | F   | G   | D  | Н |  |  |  |  |
| State     | F         | G   | D   | Н  |   |  |  |  |  |
| distance  | 0         | 206 | 133 | 66 | 0 |  |  |  |  |
| from      |           |     |     |    |   |  |  |  |  |
| IS        |           |     |     |    |   |  |  |  |  |

Show your work below (make sure it is legible)



### Problem 4 [10 pts]:

You are solving an optimization problem using a basic Genetic Algorithm. Algorithm parameters are:

- Individual representation:
  - binary with 16<sup>th</sup> bits,
  - first 8 bits correspond to a base<sub>2</sub> (binary) encoding of base<sub>10</sub> variable ("gene") X value,
  - second 8 bits correspond to a base<sub>2</sub> (binary) encoding of base<sub>10</sub> variable ("gene") Y value,
- Population size N = 6,
- Fitness function:

$$f(X,Y) = -(X^2 + Y^2) + 28000$$

- Selection mechanism:
  - order individuals according to their fitness in descending order (in case of ties: the individual that was first in unordered population goes first here as well)
  - offspring is created by pairing two subsequent parents with "wraparound":
    - parent<sub>1</sub> + parent<sub>2</sub> -> child<sub>1</sub>,
    - parent<sub>2</sub> + parent<sub>3</sub> -> child<sub>2</sub>,
    - **....**,
    - parent<sub>N-1</sub> + parent<sub>N</sub> -> child<sub>N</sub>,
    - parent<sub>N</sub> + parent<sub>1</sub> -> child<sub>N</sub>
- Probability of crossover P<sub>c</sub> = 1,
- Crossover mechanism: 2-point crossover with crossover points after the 4<sup>th</sup> and 12<sup>th</sup> bit (counting from the left),
- Probability of mutation  $P_m = 0$ .

Your initial population is shown below:

| Generation 1 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Individual 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Individual 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Individual 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| Individual 4 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| Individual 5 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| Individual 6 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

| Generation   | 1 Evaluation |     |         |                   |
|--------------|--------------|-----|---------|-------------------|
| Individual   | X            | Υ   | Fitness | Fitness ratio [%] |
| Individual 1 | 255          | 0   | 0       | 0.00%             |
| Individual 2 | 0            | 255 | 0       | 0.00%             |
| Individual 3 | 240          | 15  | 7,200   | 9.97%             |
| Individual 4 | 15           | 240 | 7,200   | 9.97%             |
| Individual 5 | 85           | 85  | 50,575  | 70.05%            |
| Individual 6 | 170          | 170 | 7,225   | 10.01%            |

Now, apply the Genetic Algorithm specified above. Stop after Generation 4 is created and evaluated:

- populate and show Generation and Generation Evaluation tables every time a new generation is created,
- generate Fitness = f(Generation) plot. It is enough to plot best individual of the generation's fitness.

| Generation   | 2 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Individual 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| Individual 2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| Individual 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Individual 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Individual 5 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| Individual 6 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

|   | Х   | Υ   | Fitness  | Fitness (Scaled) | Fitness ratio [%] |
|---|-----|-----|----------|------------------|-------------------|
| 1 | 90  | 165 | -7,325   | 94,725           | 20.42%            |
| 2 | 165 | 90  | -7,325   | 94,725           | 20.42%            |
| 3 | 255 | 255 | -102,050 | 0                | 0.00%             |
| 4 | 0   | 0   | 28,000   | 130,050          | 28.03%            |
| 5 | 240 | 240 | -87,200  | 14,850           | 3.20%             |
| 6 | 15  | 15  | 27,550   | 129,600          | 27.93%            |

| Generation   | 3 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Individual 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Individual 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| Individual 3 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| Individual 4 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| Individual 5 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| Individual 6 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|   | Х   | Υ   | Fitness | Fitness (Scaled) | Fitness ratio [%] |
|---|-----|-----|---------|------------------|-------------------|
| 1 | 15  | 0   | 27,775  | 122,400          | 25.97%            |
| 2 | 0   | 15  | 27,775  | 122,400          | 25.97%            |
| 3 | 85  | 85  | 13,550  | 108,175          | 22.95%            |
| 4 | 170 | 170 | -29,800 | 64,825           | 13.75%            |
| 5 | 95  | 245 | -41,050 | 53,575           | 11.37%            |

| 6 | 240 255 -94,625 | 0 | 0.00% |
|---|-----------------|---|-------|
|---|-----------------|---|-------|

| Generation   | 4 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Individual 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Individual 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| Individual 3 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| Individual 4 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| Individual 5 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| Individual 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|   | Х   | Υ   | Fitness  | Fitness (Scaled) | Fitness ratio [%] |
|---|-----|-----|----------|------------------|-------------------|
| 1 | 0   | 0   | 28,000   | 130,050          | 25.36%            |
| 2 | 15  | 15  | 27,550   | 129,600          | SS                |
| 3 | 90  | 165 | -7,325   | 94,725           | 18.47%            |
| 4 | 165 | 90  | -7,325   | 94,725           | 18.47%            |
| 5 | 80  | 245 | -38,425  | 63,625           | 12.41%            |
| 6 | 255 | 255 | -102,050 | 0                | 0.00%             |

# Best Fit vs. Generation

