Cas	Densité marginale Fonction de répartition	
(D)	$f_X(x_i) = \sum_j f_{XY}(x_i, y_j)$	$F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i, y_j)$
(C)	$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y)dy$	$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x',y')dx'dy'$

 \square Covariance – On définit la covariance de deux variables aléatoires X et Y, que l'on note σ_{XY}^2 ou plus souvent Cov(X,Y), de la manière suivante :

$$Cov(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

 \square Corrélation – En notant σ_X, σ_Y les écart-types de X et Y, on définit la corrélation entre les variables aléatoires X et Y, que l'on note ρ_{XY} , de la manière suivante :

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Remarques : on note que pour toute variable aléatoire X, Y, on a $\rho_{XY} \in [-1,1]$. Si X et Y sont indépendants, alors $\rho_{XY} = 0$.

□ Distributions importantes – Voici les distributions importantes à savoir :

Type	Distribution	PDF	$\psi(\omega)$	E[X]	Var(X)
(D)	$X \sim \mathcal{B}(n, p)$ Binomial	$P(X = x) = \binom{n}{x} p^x q^{n-x}$ $x \in [0,n]$	$(pe^{i\omega}+q)^n$	np	npq
	$X \sim \text{Po}(\mu)$ Poisson	$P(X = x) = \frac{\mu^x}{x!}e^{-\mu}$ $x \in \mathbb{N}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ
(C)	$X \sim \mathcal{U}(a, b)$ Uniforme	$f(x) = \frac{1}{b-a}$ $x \in [a,b]$	$\frac{e^{i\omega b} - e^{i\omega a}}{(b-a)i\omega}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	$X \sim \mathcal{N}(\mu, \sigma)$ Gaussien	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	$e^{i\omega\mu - \frac{1}{2}\omega^2\sigma^2}$	μ	σ^2
	$X \sim \text{Exp}(\lambda)$ Exponentiel	$f(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}_+$	$\frac{1}{1 - \frac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

5.1.5 Estimation des paramètres

 \square Échantillon aléatoire – Un échantillon aléatoire est une collection de n variables aléatoires $X_1, ..., X_n$ qui sont indépendantes et identiquement distribuées avec X.

□ Estimateur – Un estimateur est une fonction des données qui est utilisée pour trouver la valeur d'un paramètre inconnu dans un modèle statistique.