

QUICK_50RT

DONE BY:SAMIRA ALSAQQA, MOHAMMED ABUJBARA, MARYAM SABT AND SWATI POJARY

GROUP#10

STEP 01 TRBLE OF CONTENTS

- 1. Github repositories
- 2. whats quick sort (By: Samira)
- 3.quick sort algorithm(By: Swati)
- 4.pivot(By: Samira)
- 5. difference between quick sort & merge sort(By: Mohammed)
- 6. Advantages of Quick Sort(By: Mohammed)
- 7. Best Case Scenario(By: Maryam)
- 8. Applications of Quicksort(By: Swati)

GITHUB REPOSITORIES

- Mohammed Abujbara: https://github.com/MohamadAbujbara/mhmd-s-repo
- Samira AlSaqqa: https://github.com/SamiraAlsaqqa/gcis123
- Swati Pojaryhttps: //github.com/sw4tii/gcis123.git
- Maryam Sabt: https://github.com/maryamsabt/Maryam.git

WHATS QUICK SORT

A FAST AND EFFICIENT SORTING ALGORITHM

QUICK SORT

Quick Sort is renowned for its efficiency and speed, making it one of the most efficient sorting algorithms available.

IMPORTANCE OF SORTING

 Sorting plays a crucial role in various applications, such as searching, data analysis, and organizing databases.

```
Quick sort
How many numbers you war
Enter 7 elements:
 9
 23
 11
 27
 16
Sorted elements after ap
      11 16 23 27
```

QUICKSORT ALGORITHM

QUICK SORT IS A DIVIDE AND CONQUER ALGORITHM WHICH RELIES ON A PARTITION OPERATION:

TO PARTITION AN ARRAY AN ELEMENT CALLED A PIVOT IS SELECTED

All elements smaller than the pivot are moved before it and all greater elements are moved after it

The lesser and greater sublists are then recursively sorted

STEP 05

PIVOT

- 1. Correct position in final, sorted array
- 2. Items to the left are smaller
- 3. Items to the right are larger

3 8 (4) 6 3 2

DIFFERENCE BETWEEN QUICK SORT & MERGE SORT

QUICK SORT

Approach: Divide-and-conquer.

Pivot Selection: Crucial for performance.

Space Complexity: Typically O(log n), but can

degrade to O(n).

In-Place: Yes.

Stability: Not stable.

MERGE SORT

Approach: Divide-and-conquer.

Merge Step: Key operation.

Space Complexity: Always O(n).

In-Place: No.

Stability: Stable.

COMPARISON

- Quick sort's efficiency depends on pivot selection, while merge sort consistently performs in O(n log n).
- Quick sort is typically more space-efficient.
- Merge sort is stable, while quick sort is not inherently stable.

ROURNTAGES OF QUICK SORT

- Speed: Quick Sort is exceptionally fast and efficient, especially for large datasets.
- In-Place Sorting: It's an in-place sorting algorithm, which means it doesn't require additional memory.
- Practical Usage: Quick Sort is widely used in real-world applications due to its favorable average-case performance.

STEP 08

BEST CASE SCENARIO

The best-case scenario time complexity occurs when the pivot choice equally divides the arrays into equal sized sub-arrays during partitioning.

Time Complexity: O(nlog(n))

APPLICATIONS OF QUICKSORT

Some real-world applications of QuickSort include:

- In computer graphics, QuickSort is used for image rendering.
- In addition, it is used for data visualization.
- In numerical computations, QuickSort is used for matrix sorting

THANK HOU

I HOPE YOU LEARNED SOMETHING NEW!