Deep Learning II: Advanced Neural Network Architectures

8DM50 Machine Learning in Medical Imaging and Biology

Jelmer Wolterink 28-09-2020

Deep Learning II

Me

- -Assistant professor @ University of Twente
- -Deep learning for medical image analysis cardiovascular image analysis (CT, MR)

Today

- 1. Advanced neural network architectures
- 2. Interpretability and generative adversarial networks
- 3. Practical assignment in Keras

In this lecture

Convolutional neural networks

- Recap
- Advanced architectures

Neural networks for sequential data

- Recurrent neural networks
- Long short term memory (LSTM) units

CNNs for pixelwise prediction

- Patch-based segmentation
- Encoder-decoder architectures

Recap: Convolutional neural networks

Demo

A standard convolu

- Convolutional laye
- Subsampling oper
- Fully-connected la

network consists of

ısform input into feature maps

reduce size of feature maps, e.g. max pooling

erform classification (multi-layered perceptron)

UNIVERSITY OF TWENTE.

What happened between 1998 and now?

Data

Algorithms

UNIVERSITY OF TWENTE.

Data: ImageNet challenge

Benchmark for image classification/object detection

Data

- > 1,200,000 RGB images
- Images show one of **1000** classes

Task

- Detect label of image
- Top-1\top-5 accuracy

AlexNet

- Substantially outperformed 'conventional' methods in 2012
- Convolutional + subsampling + fully connected layers
- Trained in parallel on two GPUs
- Training time
 - **2012**: 5 to 6 days (2 x GTX 580 3GB GPU)
 - **2017**: 24 minutes (supercomputer 32,000 cores)
- Large 11 x 11 convolution kernels

Overfitting

Reasons

- Too many parameters
- Not enough data

Solution

• Reduce number of parameters

Kernel size

100

Input Hidden Output

UNIVERSITY OF TWENTE.

Kernel size

100

1 weight 100 Platypus Hidden Hidden Input Output

> UNIVERSITY OF TWENTE.

Kernel size

100

11 X **11** = **121** weights

Input Hidden Output

UNIVERSITY OF TWENTE.

Using smaller kernels

• Large kernels have many parameters: $7 \times 7 = 49$ parameters

• Smaller kernels reduce parameters: $3 \times (3 \times 3) = 27$ parameters

• More nonlinearities means more abstraction

VGG-Net

			onfiguration		
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	iı	e)			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512

GoogLeNet (Inception v1)

- 22 layer-network
- Very deep compared to LeNet/AlexNet
- SOTA on ImageNet (when published)

Inception module

- Combine parallel multi-scale convolutions
- Let the model pick best filter size

- Bottleneck layers: 1 x 1 convolutions
 - Aggregate feature maps
 - Prevent explosion in number of parameters

Auxiliary classifiers

Auxiliary classifiers provide extra supervision

- Vanishing gradients
- Enforce useful features at intermediate layers
- Only used during training

Residual connections

Very deep networks

- allow learning of better representations
- are difficult to optimize due to vanishing gradients

Residual connections can skip layers H(x) = x + F(x)

A deep network is at least as strong as it's shallower variant

If adding layers doesn't help, just use the skip connection

Residual network (ResNet)

- Organize layers in blocks
- Use bottleneck layers
- Residual connections barely add computational complexity
- SOTA on ImageNet (when published)
- Inspired
 - Wide residual nets (50-layer wide ResNet > 152-layer ResNet)
 - DenseNets: get identity mapping from all previous layers

Dense networks

Downsampling

- We often want to go from a large image to a single prediction
- Use downsampling operations like pooling
- Pooling is not trainable

3	3	4	1		
6	7	5	3	7	5
0	2	1	2	3	4
2	3	3	4		

Complexity vs. accuracy

Example: Organ localization in CT

Sequences

- A lot of data is sequential
- E.g. videos, audio, text, ECG, medical images, ...
- Can we use this in our neural network?

Recurrent neural networks (RNNs)

- It would be good to use information that came before
- A feedforward neural network has no 'memory'
- Consider training a neural network to predict the next word
 - "It's September, the weather is ..."

Recurrent neural networks (RNNs)

- It would be good to use information that came before
- A feedforward neural network has no 'memory'
- Consider training a neural network to predict the next word
 - "It's September, the weather is ..."

Unrolling a recurrent neural network

Unrolling a recurrent neural network

- Traditional RNNs have poor memory
- Previous outputs will get overwritten

Long short-term memory (LSTM)

Cell state

2.Gates

- Forget gate
- Input gate
- Output gate

Recurrent vs. feedforward

- Recurrent networks are intuitively appealing, but
 - feedforward networks are faster (parallel), simpler and they often very competitive

"It's September, the weather is ..."

- One way to deal with large contexts in feedforward networks
 - dilated convolutions

Dilated convolutions

In each layer, add more spacing between elements

- increase receptive field
- prevent explosion in number of parameters

Back to images Classification Regression CNN CNN Heart 300 ml **Image CNN CNN** Voxel

CNNs for pixelwise prediction

LeNet, AlexNet, VGG-Net, GoogLeNet all predict one value per image

Often, we want to predict one value per pixel/voxel

- Image = patch centered at voxel
- Label = class of center voxel

Myocardium

Right ventricle

Combination of thousands of image classification tasks

UNIVERSITY OF TWENTE.

Combination of thousands of image classification tasks

UNIVERSITY OF TWENTE.

Sliding window approaches are inefficient

- Each patch is processed separately
- Lots of redundant operations
- We would like to re-use/share operations

All-convolutional network

Example

	No	No								
Layer	1	2	3	4	5	6	7	8	9	10
Convolution	3×3	3×3	3×3	3×3	3×3	3×3	3×3	3×3	1×1	1×1
Dilation	1	1	2	4	8	16	32	1	1	1
Field	3×3	5×5	9×9	17×17	33×33	65×65	129×129	131×131	131×131	131×131
Channels	32	32	32	32	32	32	32	32	192	3
Parameters	320	9248	9248	9248	9248	9248	9248	9344	6912	579

Encoder-decoder architecture: U-Net

Training

2D or 3D images

2D data

3D data

UNIVERSITY OF TWENTE.

https://en.wikipedia.org/wiki/Histopathology https://en.wikipedia.org/wiki/Fundus_photography https://en.wikipedia.org/wiki/Chest_radiograph

3D networks

Many medical images are 3D instead of 2D

- MR images
- CT images

Can we just use 3D layers instead of 2D layers? Sure!

- 3D convolution layers in Keras, TensorFlow, PyTorch, etc.
- 3D network architectures (e.g. U-Net, V-Net)

But

- Is your data really 3D (think about acquisition)? Isotropy?
- Increase in memory consumption + operations + parameters

Summary

Advanced architectures

- AlexNet, GoogleNet, VGG-Net, ResNet
- Deeper, larger, better + some tricks

Recurrent neural networks

• RNNs + LSTMs

Per image prediction != per voxel prediction

- All-convolutional networks
- Encoder-decoder architectures

2D/3D data

Most 2D neural networks extend to 3D

PRODUCTS ▼ ENTERPRISE ▼ DEVELOPERS ▼ COMPANY ▼ DEMO PRICING LOG IN

UNIVERSITY OF TWENTE.