2025/08/04 11:22 1/6 Leistungsschalterfeld

Leistungsschalterfeld

Konstruktionsrichtlinie (Anweisung) Rolf Janssen Niederspannungsschaltanlage

Inhaltsverzeichnis Konstruktionsrichtlinie

Mechanischer Aufbau

Ein Leistungsschalterfeld besteht aus dem geschotteten Schienenraum, dem Steuergeräteraum, dem Leistungsschalterraum sowie dem Kabelanschlussraum. Die innere Unterteilung ist gemäß Form 3a. Bei der Bestückung des Steuergeräteraums muss beachtet werden, dass im Bereich der Sammelschienenverbindungen (rechte Seitenwand) keine Bestückung vorgenommen wird. Der typische Aufbau eines Einspeisefeldes ist in der folgenden Abbildung gezeigt.

Mindestfeldbreiten abhängig von Leistungsschaltertyp und -baugröße

In den nachfolgenden Tabellen werden die Mindestfeldbreiten zu Feldern mit einem offenen Leistungsschalter angegeben, ohne Unterscheidung zwischen Einspeise-/ Abgangs- oder Kuppelfeldern.

Bei den Feldbreiten mit farblich schwächer ausgeprägtem Hintergrund müssen reduzierte Nennströme beachtet werden, alle anderen Leistungsschalter dürfen mit dem vollen Bemessungsstrom betrieben werden. Die Kupferschienen der Leistungsschalterfelder sind entsprechend der Vorlagen auszuführen, unabhängig von der gewählten Schutzart, da die effektive Lüftungsfläche gleich groß ist.

Last update: 2025/07/09 12:23

Legende zu den Mindestfeldbreiten der Ausführungen HSS hinten und HSS oben:

- * 1 Bemessungsstrom = 1500A
- * 2 Bemessungsstrom = 3000A
- * 3 Bemessungsstrom = 4650A
- * 4 Bemessungsstrom = 4700A
- * 5 Bemessungskurzzeitstromfestigkeit [1s] = 45kA
- * 6 Bemessungsstrom = 3300A
- * 7 Bemessungsstrom mit forcierter Kühlung: 1 akt. Lüfter = 3400A, 2 akt. Lüfter = 3700A
- * 9 Bemessungskurzzeitstromfestigkeit [1s] = 50kA oder N bekommt denselben Phasenmittenabstand der Außenleiter
- * 10 Bemessungsstrom = 3000A
- * 11 Bemessungsstrom = 4800A bei 700mm Feldtiefe!
- * 12 Bemessungsstrom bei Längskupplung ca. 3500A, Wärmeprüfung offen!

Kupferschienenquerschnitte und Phasenmittenabstände am Leistungsschalter

Bemessungsstrom der Verteilschienen

Die Verteilschienen der Leistungsschalterfelder sind entsprechend der nachfolgenden Tabelle auszuführen, unabhängig von der gewählten Schutzart. Aufgrund hoher Temperaturreserven und des sich nur wenig verringerten Luftstroms innerhalb eines Leistungsschalterfeldes bei IP4X, ist bei der Strombelastbarkeit der Verteilschienen kein Reduzierungsfaktor nötig.

Querschnitt in mm²	Strombelastbarkeit in A nach DIN 43671	Strombelastbarkeit in A R. J. bis IP4X
ABB Emax2 1x40x10 Siemens 3WL: 1x40x10	715	630
ABB Emax2 2x40x10 Siemens 3WL: 1x50x10	852	800
ABB Emax2 2x50x10 Siemens 3WL: 1x60x10	985	1000
ABB Emax2 2x50x10 Siemens 3WL: 2x40x10	1290	1250
ABB Emax2 2x60x10 Siemens 3WL: 2x60x10	1720	1600
ABB Emax2 2x80x10 Siemens 3WL: 2x80x10	2110	2000
ABB Emax2 2x100x10 Siemens 3WL: 2x100x10	2480	2500
ABB Emax2 3x100x10 Siemens 3WL: 3x100x10	3260	3200
ABB Emax2 oben: 2x3x80x10 unten: 4x100x10 Siemens 3WL: 4x100x10	3980	4000

http://wiki.rolf-janssen.de/ Printed on 2025/08/04 11:22

2025/08/04 11:22 3/6 Leistungsschalterfeld

Bemessungsströme der Verteilschienen

Leistungsschalter der Hersteller Siemens und Schneider dürfen mit dem Bemessungsstrom betrieben werden, bis 4000A (Baugröße III oder NW40b). Achtung: es muss immer der Bemessungsstrom des Rahmens beachtet werden!

Bei ABB und Eaton/Möller sind Reduzierungsfaktoren zu beachten, diese werden in den Herstellerkatalogen beschrieben!

Die Angabe des Kupferquerschnitts und des Bemessungsstroms der Verteilschienen wird in der Aufbauzeichnung ebenso angegeben wie die Type, die Baugröße und der Nennstrom des Leistungsschalters. Die Abmessungen und der Bemessungsstrom der Hauptsammelschiene werden ebenfalls in der Fertigungsvorgabe angegeben.

VERTEILSCHIENE:	CU:
L1/L2/L3:	4x100x10 (4000A)
N:	2x2x80x10

LEISTUNGSSCHALTER:		
TYPE / BAUGRÖSSE	SIEMENS 3WL /	BG III
AUSFÜHRUNG:	EINSCHUB 🛚	FESTAUFBAU

Fertigungsvorgabe in der Aufbauzeichnung

Kurzschlussfestigkeit der Verteilschienen

Die Kurzschlussfestigkeit der Verteilschienen in Leistungsschalterfeldern ist in nachfolgender Tabelle angegeben. Die Kurzschlussfestigkeit der weiteren Schienenpakete wurde durch Vergleich mit einer Referenzkonstruktion ermittelt (entsprechend Norm IEC61439-1, Kapitel 10.11.4). Der Neutralleiter wurde jeweils mit 60% des Außenleiterkurzschlussstroms geprüft.

Querschnitt in mm²	Bemessungskurzzeittstromfestigkeit Icw in kA (1s)
1x40x10	100
1x50x10	100
2x40x10	100
2x60x10	100
2x80x10	100
2x100x10	100
3x100x10	100
4x100x10	100

Kurzschlussfestigkeit der Verteilschienen in Leistungsschalterfeldern

Standardstromwandler

In dieser Tabelle sind zu den Verteilschienen passende Stromwandler der Firmen MBS und Celsa aufgelistet.

Es sind Standardstromwandler der Genauigkeitsklasse 1 angegeben. Ab Bemessungsströmen von 2000A macht sich der Fremdfeldeinfluss bemerkbar und führt bei Verwendung von Standard-Stromwandler zu einem zusätzlichen Messfehler. Fremdfeldneutrale Stromwandler kompensieren diesen Effekt und sollten auf jeden Fall für Verrechnungszwecke eingesetzt werden.

Standard-Stromwandler MBS					
Stromwandler	Fenster in mm	Übersetzung in A	R.J. TNr.	Übersetzung in A	R.J. TNr.
ASK 41.4 (10VA)	40×10	600/1	54-1421	600/5	54-0858
ASK 51.4 (10VA)	50×10 40×30	800/1	54-1048	800/5	54-0859
ASK 63.6 (10VA)	60×30	1000/1	54-1841	1000/5	54-2559
ASK 51.4 (10VA)	40×30	1250/1	54-0601	1250/5	54-0701
ASK 63.6 (10VA)	60×30	1600/1	54-2549	1600/5	54-2555
ASK101.4 (10VA)	100×10 80×30	2000/1	54-1438	2000/5	54-1180
ASK105.6 (10VA)	100×55	2500/1	54-2989	2500/5	54-1492
ASK105.6 (15VA)	100×55	3200/1	54-1391	3200/5	
ASK127.6 (10VA)	120×70	4000/1	54-2880	4000/5	
ASK129.10 (15VA)	120×90	5000/1	54-1586	5000/5	54-1802
Standard-Stromy	vandler Cel	sa			
Stromwandler	Fenster in mm	Übersetzung in A	R.J. TNr.	Übersetzung in A	R.J. TNr.
CELSA ALO 4012 (5VA)	40×13 31×31	600/1	54-3063	600/5	54-3064
CELSA ALO 5012 (10VA)	50×13 40×31	800/1	54-3065	800/5	54-3066
CELSA ALO 6015.8 (5VA)	64×16 54×32 42×42	1000/1	54-2823	1000/5	54-2961
CELSA AST 615-K (10VA)	60×10 50×30	1250/1	54-2619	1250/5	54-2632
CELSA AST 815-K (10VA)	80×10 60×30	1600/1	54-2638	1600/5	54-2641
CELSA ALO 10030- (K) (10VA)	101×31 84×64	2000/1	54-2642	2000/5	54-2643
CELSA ALO 10030- (K) (10VA)	101×31 84×64	2500/1	54-2644	2500/5	54-2657
CELSA AST1056-K (15VA)	100×50	3200/1	54-2658	3200/5	54-2659
CELSA AST1272-K (10VA)	120×70	4000/1	54-2686	4000/5	54-2687
CELSA AST1659H-k (10VA)	120×90	5000/1	54-2688	5000/5	54-2690

Erdungs- und Kurzschliessvorrichtung

Eine Erdungs- und Kurzschliessvorrichtung kann vor und nach Leistungsschaltern montiert werden.

Die Anschlusspunkte der E&K-Garnitur müssen in den Aufbauzeichnungen der Leistungsschalterfelder eingezeichnet werden, um der Fertigung die Vorgabe zu erteilen. Die Kurzschlussfestigkeit beträgt 100kA für 0,5s (3-poliger Kurzschluss).

Die Montage wird mittels Erdungsstange vorgenommen, danach müssen die Schraubverbindungen

http://wiki.rolf-janssen.de/ Printed on 2025/08/04 11:22

mit einem Drehmomentschlüssel (74Nm) nachgezogen werden.

Aufgrund der unterschiedlichen Länge des Erdungsseils (2m oberhalb LS, 1,2m unterhalb LS) sind jeweils zwei E&K-Garnituren pro Systemgröße vorhanden.

Die Teilenummer der Wandhalterung inkl. Montagestange lautet 100-8500-0000-0020. Auf der Wandhalterung lassen sich zwei Garnituren befestigen.

Systemgröße	Teilenummer OBEN	Teilenummer UNTEN	Verwendung
70 mm	100-8500-0000-0021	100-8500-0000-0031	Eaton IZMX16; Siemens 3WL10; ABB Emax2 E1.2
90 mm	100-8500-0000-0022	100-8500-0000-0032	Siemens 3WA11; ABB Emax2 E1.2, E2.2
115 mm	100-8500-0000-0023	100-8500-0000-0033	Schneider NW08-32
130 mm	100-8500-0000-0024	100-8500-0000-0034	Siemens 3WA12; ABB Emax2 E2.2, E4.2, E6.2
130/210 mm	100-8500-0000-0024	100-8500-0000-0035	Siemens 3WA13
130/245 mm	100-8500-0000-0024	100-8500-0000-0036	Siemens 3WA13 5000A
Zubehör			
Haltevorrichtung inkl. Isolierstage	100-8500-0000-0020 Maßblätter: Haltevorrichtung Isolierstange		
Ersatz Isolierstange	25-1965 (die Schraubenkopfaufnahme wird häufig überlastet)		

Montage einer Erdungs- und Kurzschliessgarnitur

Haltevorrichtung für E&K-Vorrichtung

mitgeltende Dokumente

Betriebsanleitung Rolf Janssen E&K Einrichtung

Überprüfung der EuK (EaS) [Siemens KSE] Einrichtung vor Benutzung

DIN EN 61439-1

DIN EN 61439-2

mitgeltende Informationen

Nächstes Kapitel: MCC Feld

zurück: Inhaltsverzeichnis Konstruktionsrichtlinie

[ls, feld, vertikalschienen, verteilschiene, euk, eas, kse, stromwandler, standardstromwandler, wandler]

From:

http://wiki.rolf-janssen.de/ - Wiki der Rolf Janssen Gruppe

Permanent link:

http://wiki.rolf-janssen.de/doku.php?id=elektro:richtlinie_ns:ls_feld

Last update: 2025/07/09 12:23

http://wiki.rolf-janssen.de/ Printed on 2025/08/04 11:22

×