自

## 北京科技大学 2013--2014 学年第二学期

# 高等数学AII试卷(A卷)

|  | 院(系) | 班级 | 学号 | 姓名 | 考试教室 |
|--|------|----|----|----|------|
|--|------|----|----|----|------|

| 试卷卷面成绩 |   |   |    |    |    |    |    |     | 占课       |          |                          |   |       |    |
|--------|---|---|----|----|----|----|----|-----|----------|----------|--------------------------|---|-------|----|
| 题号     |   | = | =  |    |    | 四  |    | .15 | 程考<br>核成 | 平时<br>成绩 | 课程<br>考核                 |   |       |    |
|        | 1 |   | 11 | 12 | 13 | 14 | 15 | 16  | 17       | 18       | 小   核成<br>计   绩<br>  70% | 绩 | 占 30% | 成绩 |
| 得分     |   |   |    |    |    |    |    |     |          |          |                          |   |       |    |
| 评      |   |   |    |    |    |    |    |     |          |          |                          |   |       |    |
| 阅      |   |   |    |    |    |    |    |     |          |          |                          |   |       |    |
| 审      |   |   |    |    |    |    |    |     |          |          |                          |   |       |    |
| 核      |   |   |    |    |    |    |    |     |          |          |                          |   |       |    |

说明: 1、要求正确地写出主要计算或推导过程,过程有错或只写答案者不得分;

- 2、考场、学院、班、学号、姓名均需写全,不写全的试卷为废卷;
- 3、涂改学号及姓名的试卷为废卷;
- 4、请在试卷上答题,在其它纸张上的解答一律无效.

得 分

### 一、填空题(本题共20分,每小题4分)

- 1. 微分方程  $y' + y = e^{-x}$  的通解为\_\_\_\_\_\_.
- 2. 曲线  $x = \frac{t}{1+t}$ ,  $y = \frac{1+t}{t}$ ,  $z = t^2$  在对应于 t = 1的点处的切线方程为
- 3. 若  $2xy dx + x^2 dy$  在整个 xOy 平面是某二元函数 u(x,y) 的全微分,则这样的一个 u(x,y) = \_\_\_\_\_\_.
- 4. 设 Σ 是 锥 面  $z = \sqrt{x^2 + y^2}$  及 平 面 z = 1 所 围 成 的 区 域 的 整 个 边 界 曲 面 , 则  $\iint_{\Sigma} (x^2 + y^2) \, \mathrm{d}S = \underline{\hspace{1cm}}.$ 
  - 5. 积分  $\int_0^2 dx \int_x^2 e^{-y^2} dy$  的值等于\_\_\_\_\_\_.

## 二、选择题(本题共20分,每小题4分)

- 6. 微分方程  $y'' y = e^x + 1$ 的一个特解应具有形式 【 1.
- (A)  $a e^x + b$ .
- (B)  $ax e^x + b$ .
- (C)  $a e^x + bx$ .
- (D)  $ax e^x + bx$ .
- 7. 设 $f(x,y) = \frac{y^2}{a^2} \frac{x^2}{b^2} + 1$ ,则下列结论不正确的是 【
  - (A) f(x,y) 是连续的.
- (B) f(x,y)是可微的.
- (C) f(x,y)有驻点.
- (D) f(x,y)有极值.
- 8. 设 L 是椭圆  $\frac{x^2}{5} + \frac{y^2}{6} = 1$ ,其周长为k,则  $\oint_L (6x^2 + 5y^2 + 7x^5y) ds = 【$ 
  - (A) 30k.

(B) 5k.

(C) 6k.

- (D) 7k.
- 9. 设函数 f 连续,  $F(u,v) = \iint_{D_u} \frac{f(x^2+y^2)}{\sqrt{x^2+y^2}} dx dy$ ,其中  $D_{uv}$  为图中阴影部分,则  $\frac{\partial F}{\partial u} = \frac{\partial F}{\partial u}$
- 1.



- 10. 函数 z=f(x,y) 在点 (x,y) 处的二阶偏导数  $f_{xy}(x,y)$  及  $f_{yx}(x,y)$  都存在,则  $f_{xy}(x,y)$  及  $f_{yx}(x,y)$  在点(x,y) 处连续是 $f_{xy}=f_{yx}$  的 【
  - (A) 充分而非必要条件.(B) 必要而非充分条件.(C) 充分必要条件.(D) 既非充分又非必要条件.
- (D) 既非充分又非必要条件.

得 分

### 三、计算题(本题共48分,每小题8分)

上上上上 11. 求 f(x,y,z) = xy + yz + zx 在点 (1,1,2) 沿方向 l 的方向导数,其中 l 的方向角分别为  $60^\circ$ ,  $45^\circ$ ,  $60^\circ$ .

12. 求直线 
$$L:$$
 
$$\begin{cases} 4x-y+3z-1=0\\ x+5y-z+2=0 \end{cases}$$
 在平面  $2x-y+5z-3=0$  上的投影直线.

13. 设 $z = f(xy, \frac{x}{y}) + g(\frac{y}{x})$ , 其中f, g均可微,且f具有二阶连续偏导数,求 $\frac{\partial z^2}{\partial x \partial y}$ .

14. 计算  $I = \iint_{\Sigma} (2x + z) \, \mathrm{d} \, y \, \mathrm{d} \, z + z \, \mathrm{d} \, x \, \mathrm{d} \, y$ , 其中  $\Sigma$  为有向曲面  $z = x^2 + y^2 (0 \le z \le 1)$ ,其 法向量与 z 轴正向的夹角为锐角.

15. 计算曲线积分  $I = \oint_L \frac{x \, \mathrm{d} \, y - y \, \mathrm{d} \, x}{4x^2 + y^2}$ , 其中 L 是以点 (1,0)为中心,R 为半径的圆周 (R>1),取逆时针方向.

16. 计算 $\iint_{\Omega} z \, \mathrm{d} v$ , 其中 $\Omega$ 是由曲面 $z = \sqrt{2 - x^2 - y^2}$ 及 $z = x^2 + y^2$ 所围成的闭区域.

得 分

# 四、综合题与证明题(本题共12分,每小题6分)

17. 设
$$u = f\left(\ln\sqrt{x^2 + y^2 + z^2}\right)$$
有二阶连续偏导数,且满足方程
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \left(x^2 + y^2 + z^2\right)^{-\frac{3}{2}},$$

求函数u.

18. 设 
$$f(t)$$
 是连续函数,证明: 
$$\iint_{|x|+|y|\leq 1} f(x+y) \, \mathrm{d} \, x \, \mathrm{d} \, y \ = \int_{-1}^1 f(u) \, \mathrm{d} \, u \ .$$