TD3 Algèbre linéaire

$\mathcal{F}.\mathcal{J}$

18 décembre 2023

Feuille d'exercices 3 : Espaces euclidiens / Espaces affines

To-do:

Exos: fin 3, 4, 8, 9, fin 11, 12

1 Mise en bouche

Exercice 1. Dans \mathbb{R}^3 , soit p le projecteur orthogonal sur \mathcal{P} d'équation x + 2y - 2z = 0 et u le vecteur u = (1, 1, 1). Déterminer l'image p(u) de u. En déduire la distance $d(u, \mathcal{P})$.

Solution : Notons F le plan \mathcal{P} , G l'orthogonal de F, p_F la projection orthogonale sur F et p_G la projection orthogonale sur l'othogonal de F i.e G. Un schéma rapide nous donne la relation entre p_F et p_G : $\forall u \in \mathbb{R}^3$, $p_F(u) = u - p_G(u)$. $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - 2z = 0\} = \{(x, y, z) \in \mathbb{R}^3 \mid \langle (x, y, z) \mid (1, 2, -2) \rangle = 0\} = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - 2z = 0\}$

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - 2z = 0\} = \{(x, y, z) \in \mathbb{R}^3 \mid \langle (x, y, z) \mid (1, 2, -2) \rangle = 0\} = vect((1, 2, -2))^{\perp}.$$

On a donc $G = F^{\perp} = \mathcal{P}^{\perp} = vect((1,2,-2))$, la projection sur G est donc plus facile étant donné que nous n'avons qu'un seul vecteur, ainsi : $p_G((x,y,z)) = \frac{\langle (x,y,z)|(1,2,-2)\rangle}{\|(1,2,-2)\|^2}(1,2,-2)$. D'où $p_F((1,1,1)) = (1,1,1) - \frac{\langle (1,1,1)|(1,2,-2)\rangle}{\|(1,2,-2)\|^2}(1,2,-2) = (1,1,1) - \frac{1}{9}(1,2,-2) = \frac{1}{9}(8,7,11)$. On a $d(u,\mathcal{P}) := \|u - p_F(u)\| = \|p_G(u)\| = 1/3$

Exercice 2. Soit
$$M = \frac{1}{9} \begin{pmatrix} 1 & 8 & -4 \\ 8 & 1 & 4 \\ -4 & 4 & 7 \end{pmatrix}$$
 et soit f l'application linéaire associée à M dans la base capanique. Montrer que f est une isométrie et prégiser se nature

base canonique. Montrer que f est une isométrie et préciser sa nature.

Solution : On a ${}^tMM = I_3$ donc M est la matrice d'une isométrie. Calculons le déterminant pour savoir si il s'agit d'une isométrie directe ou indirecte : |M| = -1. On peut aussi comparer le signe du déterminant du bloc 2×2 en bas à gauche et on le compare au signe du coefficent en haut à droite : si c'est de même signe alors le déterminant sera 1 sinon -1, cette astuce ne fonctionne que si l'on sait que c'est la matrice d'une isométrie. Donc M est la matrice d'une symétrie.

Exercice 3. Pour $A, B \in M_n(\mathbb{R})$, on définit $\varphi(A, B) = \text{Tr}({}^tAB)$. Montrer que φ définit un produit scalaire sur $M_n(\mathbb{R})$.

Solution : Un produit scalaire est une application bilinéaire, symétrique et définie positive. Commençons par montrer la symétrie :

Soit $A, B \in M_n(\mathbb{R})$ $\varphi(A, B) = \text{Tr}({}^tAB)$ et $\varphi(B, A) = \text{Tr}({}^tBA)$, mais on a $\varphi(A, B) = \text{Tr}({}^t({}^tAB))$ i.e $\varphi(A, B) = \text{Tr}({}^tBA)$), donc φ est symétrique.

Nous avons montré la symétrie avant la bilinéarité pour n'avoir à montrer que la linéarité par rapport à une variable, montrons la linéarité à gauche : soit $A, B, C \in M_n(\mathbb{R}), \gamma \in \mathbb{K}, \varphi(A, B + \mathbb{R})$

 γC) = Tr(${}^tA(B + \gamma C)$) = Tr(${}^tAB + {}^tA\gamma C$) = Tr(tAB) + γ Tr(tAC) = $\varphi(A, B)$ + $\gamma\varphi(A, C)$, donc φ est linéaire par rapport à sa seconde variable, étant également symétrique, elle est donc bilinéaire.

Il ne nous reste plus qu'à montrer que φ est définie positive : soit $A \in M_n(\mathbb{R}), \ \varphi(A, A) = \operatorname{Tr}({}^t A A) = a_{i,i}^2, \ \forall i \in \{1, ..., n\}, \ \operatorname{donc} \ \varphi \ \operatorname{est} \ \operatorname{positive}, \ \operatorname{de} \ \operatorname{plus} \ \operatorname{Tr}({}^t A A) = 0 \iff A = 0$

- Exercice 4. 1. Dans \mathbb{R}^2 muni du produit scalaire usuel, démontrer que pour tout $u, v \in \mathbb{R}^2$ de norme 1, il existe une unique réflexion r telle que r(u) = v. Préciser ses éléments caractéristiques.
 - 2. Lorsque $u=(\frac{1}{2};\frac{\sqrt{3}}{2})$ et v=(-1,0), représenter ces éléments caratéristiques sur un schéma, puis donner la matrice associée à la réflexion dans la base canonique.

Exercice 5. Soit E un \mathbb{R} -espace vectoriel euclidien de dimension n. Soient u, v deux vecteurs orthogonaux non nuls de E et de norme 1. On note F le sous-espace vectoriel engendré par u et v. Pour tout $x \in E$, on pose

$$f(x) = x - \langle u, x \rangle u - \langle v, x \rangle v.$$

1. Montrer que pour tout $x, f(x) \in F^{\perp}$.

Solution: $\forall x \in E, f(x) \in F^{\perp} \iff \forall x \in E, \langle f(x) \mid u \rangle = \langle f(x) \mid v \rangle = 0, (\{u, v\} \text{ BON de } F), \text{ on a donc } \langle f(x) \mid u \rangle = \langle x - \langle u, x \rangle u - \langle v, x \rangle v \mid u \rangle = \langle x \mid u \rangle - \langle u \mid x \rangle ||u||^2 - \langle v \mid x \rangle \langle v \mid u \rangle = \langle x \mid u \rangle - \langle u \mid x \rangle = 0, \text{ on a le même résultat pour } v, \text{ donc } \forall x \in E, f(x) \in F^{\perp}.$

2. Montrer que f est une projection orthogonale et préciser ses caractéristiques géométriques.

Solution: Après un rapide calcul on trouve que $\forall x \in E, \ f(f(x)) = f(x)$ donc f est bien une projection; Montrons maintenant que f est un endomorphisme orthogonal : i.e montrons que $\forall x \in E, \|f(x)\| = 1$

on a $||f(x)||^2 = \langle f(x) | f(x) \rangle =$ Et non une projection orthogonale n'est pas une isométrie : f n'est pas bijective!! (confé-

Et non une projection orthogonale n'est pas une isométrie : f n'est pas bijective!! (conférer la matrice diagonale d'une projection $\neq id$).

Reprenons correctement, on a donc montré que f était une projection, il nous reste à montrer que c'est une projection orthogonale;

On a montré dans 1. que pour tout x on avait $f(x) \in F^{\perp}$ autrement dit l'image de f est F^{\perp} , comme on a $F \oplus F^{\perp} = E$ on a une projection sur F^{\perp} parallèlement à F, c'est donc une projection orthogonale par définition.

3. Dans \mathbb{R}^3 , on choisit u=(1,1,1) et v=(1,-1,1). En adaptant le résultat précédent, exprimer à l'aide de u et v la projection orthogonale de mêmes caractéristiques que dans la question précédente.

Solution : Donc dans \mathbb{R}^3 , f nous donne $p_{F^{\perp}} = (-x + 2z, -y, -2x - z)$

Exercice 6. Soit $y \in \mathbb{R}^n$ tel que ||y|| = 1. Pour tout $x \text{ de } \mathbb{R}^n$, on pose

$$f(x) = x - 2\langle x, y \rangle y.$$

1. Montrer que f est une isométrie et préciser sa nature.

Solution : Pour montrer que f est une isométrie, le cours nous donne une définition et une propriété, soit on montre que $\forall x, y \in E = \mathbb{R}^n, \langle f(x) \mid f(y) \rangle = \langle x \mid y \rangle$, soit, et c'est ce que nous allons faire ici, on montre que $\forall x \in E, ||f(x)|| = ||x||$.

Soit donc $x \in E$, on a $||f(x)||^2 = \langle f(x) | f(x) \rangle = \langle x - 2\langle x, y \rangle y | x - 2\langle x, y \rangle y \rangle = ||x||^2 + 4\langle x | y \rangle^2 - 4\langle x | y \rangle \langle x | y \rangle = ||x||^2$, ainsi, f est bien une isométrie.

Pour sa nature, calculons $f^2: f(f(x)) = x$, ainsi f est une symétrie.

On peut préciser ses caractéristiques : notons s la symétrie, on voit que s est déterminée comme suit : $s = id - 2p_F$, avec p_F la projection orthogonale sur F = vect(y), donc s est la symétrie par rapport à F^{\perp} , c'est donc une réflexion, car dim(F) = 1, (symétrie par rapport à un hyperplan).

2. On choisit n=3 et $y=\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)$. Existe-t-il une base dans laquelle la matrice de f s'écrit simplement?

Solution : il nous suffit de prendre une base adaptée à la décomposition $F \oplus F^{\perp}$, avec F = vect(y).

Comment obtenir alors la matrice de f dans la base canonique?

Solution: Cherchons la base dans laquelle la matrice de f sera diagonale, on a déjà un vecteur normé pour F, cherchons une BON de F^{\perp} , il nous suffit pour cela de chercher un vecteur orthogonal à $y: v_1 = (0, 1, 0)$ est bien orthogonal à y, pour le dernier on peut prendre $v_2 = y \wedge v_1 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$ qui est bien normé, dans la base $\mathcal{B} = \{v_1, v_2, y\}$, la matrice de f sera diagonale, de plus si on note $\mathcal{P} = P_{\mathcal{C}an,\mathcal{B}}$ la matrice de passage de la base canonique vers \mathcal{B} alors la matrice de f dans la base canonique sera donnée par : $\mathcal{P}D\mathcal{P}^{-1}$.

Exercice 7. Soit (u, v) une famille orthonormée de vecteurs de \mathbb{R}^n . Pour tout x de \mathbb{R}^n , on pose

$$f(x) = x - \langle x, u + v \rangle u - \langle x, v - u \rangle v.$$

Montrer que f est une isométrie et préciser sa nature.

Solution : f est une isométrie si et seulement si f préserve la norme : après un long calcul fastidieux on trouve bien que $||f(x)||^2 = ||x||^2$ donc f est une isométrie

Donner sa matrice dans une base bien choisie.

Solution : Je trouve $f^2(x) = x - 2(\langle x \mid u \rangle u + \langle x \mid v \rangle v)$, y-a-t'il une erreur dans l'énoncé?

Exercice 8. Soit p un projecteur d'un espace vectoriel euclidien E. Montrer que p est orthogonal si et seulement si pour tout $x \in E$, $||p(x)|| \le ||x||$.

Solution : Donc déjà p n'est pas une isométrie, ne pas dire que ||p(x)|| = ||x||.

- * Montrons \Rightarrow : Supposons p projecteur orthogonal; donc p est la projection sur un sous-espace vectoriel F parallèlement à F^{\perp} , on a la décomposition suivante de l'espace : $E = F \oplus F^{\perp}$, i.e que $\forall x \in E$ on a $x_1 \in F$ et $x_2 \in F^{\perp}$: $x = x_1 + x_2$, mais $p(x) = p(x_1 + x_2) = p(x_1) + p(x_2) = p(x_1) = x_1$ donc en élevant au carré pour utiliser le théorème de Pythagore on a $||p(x)||^2 = ||p(x_1) + p(x_2)||^2 = ||p(x_1)||^2 = ||x_1||^2 \le ||x||^2 = ||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2$. C'est ce que nous voulions montrer.
- ★ Montrons \Leftarrow : supposons que $\forall x \in E$, $||p(x)|| \leq ||x||$, montrons que p est un projecteur orthogonal; A FINIR!

Exercice 9. 1. Soit $\alpha \in \mathbb{R}$. Montrer que pour $P, Q \in \mathbb{R}_n[X]$,

$$\varphi(P,Q) = \sum_{k=0}^{n} P^{(k)}(\alpha)Q^{(k)}(\alpha)$$

où $P^{(k)}$ désigne la dérivée k-ième de P, définit un produit scalaire sur $\mathbb{R}_n[X]$.

- 2. Montrer qu'il existe une unique base (P_0, \ldots, P_n) orthonormale pour le produit scalaire φ telle que chaque P_i soit de degré i et de terme de degré maximal positif.
- 3. Calculer $P_i^{(k)}(\alpha)$ pour tout $k \in \mathbb{N}$.

2 Systèmes d'équations affines

Exercice 10. On note F l'ensemble des $(x, y, z) \in \mathbb{R}^3$ vérifiant le système d'équations suivant :

$$\begin{cases} 2x - y + 3z = 1, \\ x + 4y - 6z = -2. \end{cases}$$

1. Montrer que F est un sous-espace affine de \mathbb{R}^3 et préciser sa direction \overrightarrow{F} . Quelle est la nature de F? Donner une équation paramétrique de F.

Solution : Soit $u = (x, y, z) \in \mathbb{R}^3$, posons $l_1(u) = 2x - y + 3z$ et $l_2(u) = x + 4y - 6y$, on soit que $\forall \alpha \in \mathbb{R}$, $l_1(u) \neq \alpha l_2(u)$, ainsi les deux lignes du système d'équations sont indépendantes, donc le système est surjectif, *i.e* que le point (1, -2) est atteint, ainsi l'ensemble des solutions du système est un espace affine de dimension : nombre de variable - nombre de lignes indépendantes = 1, la direction du sous-espace affine est l'ensemble S_0 des solutions au système d'équation homogène associé :

$$\begin{cases} 2x - y + 3z = 0, \\ x + 4y - 6z = 0. \end{cases}$$

en utilisant la méthode du pivot de Gauss on trouve que $S_0 = \{(-2, 5, 3)\}$

On peut aussi comprendre ce que l'on fait, on veut trouver (x,y,z) tel qu'il soit perpendiculaire à $v_1=(2,-1,3)$ et à $v_2=(1,4,-6)$, mais on connaît un tel vecteur, c'est $v_1 \wedge v_2$! Pour chercher une solution particulière au système initiale on peut poser z=0 (en effet le système restant est bien surjectif donc on pourra bien trouver une solution) on a donc :

$$\begin{cases} 2x - y = 1, \\ x + 4y = -2 \end{cases}$$

ce qui nous donne finalement :

$$\begin{cases} 2x - y = 1, \\ 9y = -5. \end{cases}$$

On a donc comme équation paramétrique de $F = (\frac{2}{9}, -\frac{5}{9}, 0) + vect((-2, 5, 3))$

2. Écrire ce système sous forme matricielle, puis à l'aide d'une application linéaire f. Identifier le sous-espace affine F à l'aide de f.

Solution : on a donc $A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 4 & -6 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ Telle que le système s'écrit sous la forme AX = B On peut considérer l'application $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ telle que $(x, y, z) \mapsto (l_1(x, y, z), l_2(x, y, z))$, on a donc dans ces conditions $F = (\frac{2}{9}, -\frac{5}{9}, 0) + ker(f)$

3. Interpréter le système d'équations à l'aide d'hyperplans.

Solution: $F = (\frac{2}{9}, -\frac{5}{9}, 0) + ker(l_1) \cap ker(l_2)$. Rappel: le noyau d'une forme linéaire non nulle est un hyperplan.

Exercice 11. Soient $\lambda \in \mathbb{R}$ un paramètre.

1. À quelles conditions sur λ les deux systèmes d'équations

$$\begin{cases} -x + \lambda y - 3z &= \lambda - 1 \\ x - 3y + \lambda z &= -2 \end{cases} \qquad \begin{cases} y + z &= -\lambda + 2 \\ \lambda x - 2z &= 0 \end{cases}$$

décrivent-ils des droites affines de \mathbb{R}^3 ?

Solution : Une droite affine est de dimension 1, donc il faut que les deux lignes des deux systèmes soient indépendantes, pour le premier système, cette condition est remplie quand $\lambda \neq 3$ pour le second système quelque soit la valeur de λ les deux lignes sont indépendantes.

4

2. On suppose les conditions du 1. satisfaites. Trouver pour chaque droite son équation paramétrique.

Solution : Soit donc $\lambda \neq 3$ pour le premier système ; Pour trouver la direction de la droite affines du système 1 on cherche l'ensemble des solutions du système homogène associé :

$$\begin{cases} -x + \lambda y - 3z &= 0\\ x - 3y + \lambda z &= 0 \end{cases}$$

cela revient a chercher un vecteur (x, y, z) orthogonal aux vecteurs $v_1 = (-1, \lambda, -3)$ et $v_2 = (1, -3, \lambda)$, il nous suffit donc de calculer le produit vectoriel $v_1 \wedge v_2 = (\lambda^2 - 9, \lambda - 3, 3 - \lambda) = (\lambda + 3, 1, -1)$ car $\lambda \neq 3$. Donc $D_1 = (1, 1, 0) + vect(\lambda + 3, 1, -1)$.

Pour le système 2 n'importe quelle valeur de λ nous donne une droite affine, donc une fois de plus on calcul le produit vectoriel qui nous donne la direction de la droite affine $D_2: (0,1,1) \wedge (\lambda,0,-2) = (-2,\lambda,-\lambda)$, d'où $D_2 = (-2,2,-\lambda) + vect(-2,\lambda,-\lambda)$.

3. Etudier selon la valeur de λ les positions relatives de ces 2 droites. On précisera lorsqu'elles sont parallèles, confondues, sécantes.

Solution : *Parallélisme : Deux sous-espace affine sont parallèles s'ils ont mêmes directions, *i.e* si $(\lambda + 3, 1, -1) = \alpha(-2, \lambda, -\lambda)$, ce qui nous amène à résoudre un système qui nous donne les valeurs de λ qui conviennent : $\lambda \in \{-1, -2\}$

*Confondues : Deux droites sont confondues si leurs directions sont égales et si les points de l'une appartiennent également à l'autre, i.e existe-t-il un $t \in \mathbb{R}$ tel que

$$\begin{pmatrix} -2\\2\\-\lambda \end{pmatrix} + t \begin{pmatrix} -2\\\lambda\\-\lambda \end{pmatrix} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

Exercice 12. Soient α, β, a, b, c des réels. On considère trois plans P_1 , P_2 et P_3 de \mathbb{R}^3 , d'équations respectives : $x + 2y + \beta z = a$, 2x + 4y = b et $\alpha x + (\alpha + 1)y = c$. Déterminer, suivant les valeurs de α, β, a, b, c , la dimension du sous-espace affine $P_1 \cap P_2 \cap P_3$ (si cette intersection est non vide).

Exercice 13. On note F l'ensemble des quintuplets $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$ vérifiant le système d'équations affine suivant :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 1, \\ x_1 - x_2 & + x_4 - x_5 & = 1, \\ -x_1 + 3x_2 + x_3 - x_4 + 2x_5 & = -1. \end{cases}$$

Montrer que F est un sous-espace affine de \mathbb{R}^5 , donner sa dimension, sa direction \overrightarrow{F} et une base de celle-ci.

Solution : Rappel : F est un sous-espace affine de \mathbb{R}^5 s'il existe un sous-espace vectoriel $\vec{F} \subset \mathbb{R}^5$.

Si on note L_1, L_2, L_3 les trois lignes du système, on voit que $L_1 = 2L_2 + L_3$, on peut donc éliminer L_3 et ne garder que les deux premières, ce qui nous donne le système suivant :

On voit que L_1 et L_2 sont indépendantes, donc le système est surjectif, donc F est bien un sousespace affine de dimension 3. La direction est donnée par l'ensemble de solutions du système homogène associé :

qui nous donne :

$$\begin{cases} x_2 = -x_1 - x_3 - x_4, \\ x_5 = 2x_1 + x_3 + 2x_4, \end{cases}$$

D'où la direction $\vec{F} = vect((1, -1, 0, 0, 2), (0, -1, 1, 0, 1), (0, -1, 0, 1, 2))$

3 Droites et plans dans \mathbb{R}^3

Exercice 14. On se place dans \mathbb{R}^3 .

1. Déterminer une équation du plan V engendré par les vecteurs (1,2,1) et (0,1,1) et passant par l'origine.

Solution : On a donc par définition V = (0, 0, 0) + vect((1, 2, 1), (0, 1, 1))

On a $\vec{V} = vect((1,2,1),(0,1,1))$, on veut une représentation cartésienne de ce sous-espace vectoriel , on veut donc trouver une forme linéaire l telle que $\vec{V} = \{\vec{u} \in \mathbb{R}^3 \mid l(\vec{u}) = 0\}$, mais le lemme de représentation nous ramène à chercher un vecteur $\vec{w} \in \mathbb{R}^3$ tel que $\vec{V} = \{\vec{u} \in \mathbb{R}^3 \mid \langle \vec{w} \mid \vec{u} \rangle = 0\} = vect(\vec{w})^{\perp}$, étant en dimension finie, nous avons l'égalité suivante : $\vec{V}^{\perp} = (vect(\vec{w})^{\perp})^{\perp} = vect(\vec{w})$, nous sommes donc ramené à chercher une base de l'orthogonal de \vec{V} . Le vecteur \vec{w} est perpendiculaire à (1,2,1) et à (0,1,1), donc $\vec{w} = (1,2,1) \wedge (0,1,1) = (1,-1,1)$, d'où $\vec{V} = \{\vec{u} \in \mathbb{R}^3 \mid \langle (1,-1,1) \mid \vec{u} \rangle = 0\} = \{\vec{u} \in \mathbb{R}^3 \mid x-y+z=0\} = V$

2. Déterminer une équation du plan V' parallèle à V et passant par le point (0,0,1). Quelle est son équation paramétrique?

Solution : On a V et V' parallèle donc V' admet une équation cartésienne de la forme $x-y+z=\alpha,\ \alpha\in\mathbb{R}$ mais V' passe par (0,0,1) i.e $(0,0,1)\in V',\ i.e$ α est nécessairement égale à 1, on a donc $V'=\{\vec{u}\in\mathbb{R}^3\mid x-y+z=1\}$

Pour l'équation paramétrique, c'est simple; V et V' sont parallèles donc par définition $\vec{V} = \vec{V'} = vect((1,2,1),(0,1,1))$, d'où V' = (0,0,1) + vect((1,2,1),(0,1,1)).

3. Soit D la droite passant par (1,0,0) et dirigée par le vecteur (1,0,1). Déterminer les points d'intersection de V' et de D.

Solution : On a une équation paramétrique de D=(1,0,0)+vect((1,0,1)), autrement dit $(x,y,z)\in D\iff (x,y,z)=(1,0,0)+t(1,0,1)$ ce qui nous donne le système suivant :

$$\begin{cases} x - 1 = t, \\ y = 0, \\ z = t. \end{cases}$$

On a donc $D=\{\vec{u}\in\mathbb{R}^3\mid x-z=1\ {\rm et}\ y=0\},$ l'intersection est donnée par le système suivant :

$$D \cap V' = \begin{cases} x - & z = 1, \\ y & = 0, \\ x - y + z = 1. \end{cases}$$

Le point d'intersection est (1,0,0)

Exercice 15. Déterminer une équation de la droite de \mathbb{R}^3 passant par les points A = (1, 1, 1) et B = (1, 0, 2).

Solution: $D = A + vect(\vec{AB}) = \{(x, y, z) \in \mathbb{R}^3 \mid x = 1 \text{ et } y + z = 2\}$

Exercice 16. Dans l'espace \mathbb{R}^3 , on considère le plan P d'équation x+y+z=1.

1. Déterminer une équation de plan P' passant par les points $A=(2,-1,0),\ B=(0,0,2)$ et C=(-1,1,2).

Solution : Le plan est dirigé par les vecteurs \vec{AB} et \vec{AC} , on a donc $P = A + vect(\vec{AB}, \vec{AC}) = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 2y + z = 2\}.$

2. Déterminer la nature de $\overrightarrow{P} \cap \overrightarrow{P'}$.

Solution: x + y + z = 0 et 2x + 2y + z = 0 ne sont pas proportionnelles donc les deux plans ne sont pas parallèles, ainsi la dimension de l'intersection de \vec{P} avec \vec{P}' est de dimension 1, c'est donc une droite vectorielle.

7

3. Déduire de la question précédente que $P\cap P'$ est non vide, et préciser sa nature.

Solution : On a $P \cap P'$ donnée par le système suivant :

$$\begin{cases} x + y + z = 1, \\ 2x + 2y + z = 2. \end{cases}$$

On voit que $A \in P \cap P'$ donc $P \cap P' \neq \emptyset$, c'est donc une sous-espace affine de dimension 1, c'est donc une droite affine.

4. Déterminer les caractéristiques géométriques de $P \cap P'$ (point et base de sa direction). Solution : $P \cap P' = A + vect((-1, 1, 0))$

4 Autres exemples d'espaces affines

Exercice 17. Déterminer parmi les sous-ensembles suivants ceux qui sont des sous-espaces affines de \mathbb{R}^3 et préciser alors leurs directions et leurs dimensions.

- 1. $V_1 = \{(x, y, z) \in \mathbb{R}^3, x + 2y + z = 1\}$ Solution: V_1 est un sous-espace affine de direction $\vec{V_1} = \{(x, y, z) \in \mathbb{R}^3, x + 2y + z = 0\}$, d'où $\vec{V_1} = \{(x, y, z) \in \mathbb{R}^3, z = -x - 2y\} = vect((1, 0, -1), (0, 1, -2))$. V est de dimension
- 2. $V_2 = \{(x, y, z) \in \mathbb{R}^3, x + 2y + z = 1 \text{ et } x = y = 0\}$ Solution: V_2 est de dimension 3 - 1 = 2, sa direction est donnée par $\vec{V_2} = \{(x, y, z) \in \mathbb{R}^3, z = 0\} = vect((1, 0, 0), (0, 1, 0))$
- 3. $V_3 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 = 1\}$ Solution: Pas espace affine car $\vec{V_3} = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 = 1\}$ n'est pas un sous-espace vectoriel
- 4. $V_4 = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2xy + y^2 = 0\}$ Solution: $V_4 = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2xy + y^2 = 0\} = \{(x, y, z) \in \mathbb{R}^3, (x+y)^2 = 0\}$ i.e c'est l'ensemble des vecteurs $(x, y, z) \in \mathbb{R}^3$ tels que x+y=0 donc $V_4 = vect((1, -1, 0), (0, 0, 1)), V_4$ est de dimension 2.
- 5. $V_5 = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2xy + y^2 = 1\}$

Exercice 18. Soit $n \in \mathbb{N}^*$. On note E_n l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} qui sont polynomiales de degré inférieur ou égal à n. Soit $F_0 = \{f \in E_n, \int_0^1 f(t)dt = 0\}$ et $F_1 = \{f \in E_n, \int_0^1 f(t)dt = 1\}$.

- 1. Montrer que F_0 est un \mathbb{R} -espace vectoriel.
- 2. Montrer que F_1 est un espace affine dont l'espace vectoriel sous-jacent est F_0 . Quelle est la dimension de F_1 ?
- 3. On suppose n=4. Montrer que la partie V de F_1 formée des polynômes divisibles par $\left(x-\frac{1}{2}\right)^2$ est un plan affine de F_1 .

Exercice 19. Soit a et b deux réels. Montrer que les suites de réels $(u_n)_{n\geq 0}$ vérifiant $u_{n+1} = au_n + b$ pour tout $n \geq 0$ est un sous-espace affine de l'espace vectoriel des suites réelles. Préciser la dimension de ce sous-espace affine.

Exercice 20. Soit E un sous-espace vectoriel de $\mathbb{R}[X]$, on note $F = \{P \in E, P'(0) = 1\}$.

- 1. Montrer que F est un sous-espace affine de E.
- 2. On suppose que $E = \mathbb{R}_5[X]$. Déterminer la nature de F ainsi qu'une base de sa direction.
- 3. On suppose ici que $E = \mathbb{R}[X]$. Montrer que F est un hyperplan affine.

5 Exercices théoriques

Exercice 21. Soit E un espace affine.

- 1. Soit F une partie non vide de E. Montrer que F est un sous-espace affine de E si et seulement si toute droite passant par deux points distincts de F est contenue dans F.
- 2. Décrire le sous-espace affine engendré par deux droites affines non coplanaires dans un espace affine.
- 3. Soient F_1 et F_2 deux sous-espaces affines de E. Montrer que $F_1 \cup F_2$ est un sous-espace affine de E si et seulement si $F_1 \subset F_2$ ou $F_2 \subset F_1$.

Exercice 22. On considère deux sous-espaces affines V et W d'un espace affine E et on note T le sous-espace affine engendré par $V \cup W$.

- 1. Pour tout $a \in V$ et tout $b \in W$, montrer qu'on a $\overrightarrow{T} = \overrightarrow{V} + \overrightarrow{W} + \text{Vect}(\overrightarrow{ab})$.
- 2. Pour tout $a \in V$ et tout $b \in W$, montrer que V rencontre W si et seulement si le vecteur \overrightarrow{ab} est dans $\overrightarrow{V} + \overrightarrow{W}$.
- 3. En déduire que dim $(T) = \dim (()\overrightarrow{V} + \overrightarrow{W}) + 1$ si V ne rencontre pas W, et que dim $(T) = \dim (()\overrightarrow{V} + \overrightarrow{W})$ sinon.

Transformations affines-Définitions 6

Exercice 23. Dans \mathbb{R}^2 , on note $a=(0,0),\ b=(1,0),\ c=(1,1)$ et d=(0,1). Représenter l'image de *abcd* par les applications affines suivantes :

- 1. l'application f telle que f(a) = b et $\begin{pmatrix} 3 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$ est la matrice de \overrightarrow{f} dans la base canonique.
- 2. l'application g telle que g(a) = c et $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est la matrice de \overrightarrow{g} dans la base canonique;

Solution : Par définition d'une application affine on a $\overrightarrow{f}(\overrightarrow{ab}) = \overrightarrow{f(a)f(b)} = f(b) - f(a)$ *i.e* dans notre cas : $g(x) = g(a) + \vec{g}(\vec{ax})$.

Donc dans notre cas on a $g(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x - 0 \\ y - 0 \end{pmatrix}$ On a donc les images suivantes : $g(b) = (1, 2), \ g(c) = (0, 2), \ g(d) = (0, 1)$

3. l'application h telle que h(a) = d et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est la matrice de \overrightarrow{h} dans la base canonique.

Solution : On a $h(x) = h(a) + \vec{h}(\vec{ax})$.

Donc dans notre cas on a $h(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x - 0 \\ y - 0 \end{pmatrix}$ On a donc les images suivantes : h(b) = (0, 2), h(c) = (1, 2), h(d) = (2, 1)

4. h et g sont-elles égales? Donner une application affine envoyant g(a), g(b), g(c) sur h(a), h(b), h(c). Ecrire la matrice de son application linéraire associée. Que constate-t-on?

Solution: Les deux applications ne sont clairement pas égales.

Une application affine est entièrement déterminée par sont action sur un repère donc on sait qu'il existe une unique application affine k telle que k(g(a)) = h(a), k(g(b)) = h(b),k(g(c)) = h(c).

Déterminons la matrice : de g(a)g(b) =

 $\overrightarrow{k}(\overrightarrow{g(a)g(b)}) = \overrightarrow{k}((0,1)) = \overrightarrow{h(a)h(b)} = (0,1)$

$$\overrightarrow{k}(\overrightarrow{g(a)g(c)}) = \overrightarrow{h(a)h(c)} = (1,1)$$

Et on a

Exercice 24. Soit f une application affine qui envoie abcd sur a'b'c'd', comme indiqué sur l'une des figures suivantes.

- 1. Justifier que f ne définit une application affine que dans un seul des cas représentés. Montrer qu'elle est alors unique.
- 2. f est-elle bijective?
- 3. Donner la matrice de l'application linéaire associée dans la base $(\overrightarrow{ab},\overrightarrow{ad})$ puis dans la base $(\overrightarrow{ab}, \overrightarrow{ac})$. En déduire l'expression matricielle de f dans le répère (a, b, c).

Exercice 25. Déterminer toutes les applications affines d'un espace affine de dimension 1.

7 Translations-Homothéties

Exercice 26. Démontrer qu'une application affine qui commute avec toutes les translations est elle-même une translation.

Exercice 27. On définit quatre points a = (1,1), a' = (-2,2), b = (1,3) et b' = (-2,1). Montrer qu'il existe une homothétie h transformant a en a' et b en b'. Préciser son centre et son rapport.

Solution : Supposons que h existe et notons c sont centre et k sont rapport. On a par définition des applications affines $\overrightarrow{h}(\overrightarrow{ab}) = \overrightarrow{a'b'}$, i.e que l'on a $k\overrightarrow{ab} = \overrightarrow{a'b'}$. De là on a la valeur de $k = -\frac{1}{2}$.

Posons $c:=\begin{pmatrix} x \\ y \end{pmatrix}$ pour $x,y\in\mathbb{R}$ on a donc un système d'équation donné par $h(a)=c+k\overrightarrow{cd}$, de là on tire x=-1 et $y=\frac{5}{3}$.

Exercice 28. Soit f une transformation affine du plan. Soient a, b et c trois points non alignés. On note a', b' et c' les images respectives de a, b et c par f. On suppose que (a'b') est parallèle à (ab), (a'c') à (ac) et (b'c') à (bc). Montrer que f est une homothétie ou une translation.

Solution: On a donc $\overrightarrow{ab} = \lambda_1 \overrightarrow{a'b'}$, $\overrightarrow{ac} = \lambda_2 \overrightarrow{a'c'}$ et $\overrightarrow{bc} = \lambda_3 \overrightarrow{b'c'}$. Si on écrit la matrice de f dans la base $\mathcal{B} = (\overrightarrow{ab}, \overrightarrow{ac})$, on a $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

Exercice 29 (*Theorème de Desargues*.). Soient deux triangles non aplatis abc et a'b'c' sans sommets communs. On suppose que (ab) est parallèle à (a'b'), que (bc) est parallèle à (b'c') et que (ac) est parallèle à (a'c'). Montrer que les droites (aa'), (bb') et (cc') sont concourantes ou parallèles.

Exercice 30. Soit E un espace affine, a et b deux points (non nécessairement distincts) de E et λ , μ deux réels non nuls et différents de 1. On note h l'homothétie de centre a et de rapport λ et h' celle de centre b et de rapport μ .

- 1. On suppose $\lambda \mu = 1$. Déterminer la nature de $h' \circ h$ et $h \circ h'$.
- 2. On suppose $\lambda = 1/3$ et $\mu = 2$. Déterminer $h' \circ h$ et $h \circ h'$.

Exercice 31. Montrer que 2 homothéties commutent si et seulement si elles ont le même centre.

Exercice 32. Soient A=(2,1) et B=(-1,1) deux points du plan affine \mathbb{R}^2 . Déterminer les caractéristiques de la composée des deux homothéties $h=h_{A,1/2}\circ h_{B,3}$. Solution|contenu= $\vec{h}=\frac{1}{2}\mathrm{id}\circ 3\mathrm{id}=\frac{3}{2}\mathrm{id}$ donc h est une homothétie de rapport $\frac{3}{2}$. Son centre C est déterminé par : $\frac{3}{2}\overrightarrow{CB}=\overrightarrow{Ch(B)}=\overrightarrow{Ch_{A,1/2}(B)}=\overrightarrow{CA}+\frac{1}{2}\overrightarrow{AB}=\overrightarrow{CB}+\frac{1}{2}\overrightarrow{BA}$, soit $\overrightarrow{CB}=\overrightarrow{BA}$. C est donc le symétrique de A par rapport à B. Ou algébriquement : $C=B+\overrightarrow{AB}=(-1,1)+(-3,0)=(-4,1)$.

8 Applications affines

Exercice 33. Soit $s: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par : s(x,y,z) = (-2y+z-2,-x-y+z-2,-x-2y+2z-2). Déterminer la nature de cette application affine.

Exercice 34. Soit A=(2,1) et B=(-1,1) deux points du plan affine \mathbb{R}^2 . Déterminer les caractéristiques de la composée des deux homothéties $h=h_{A,1/2}\circ h_{B,3}$

Solution: $\overrightarrow{h_{A,\frac{1}{2}}(h_{B,3})} = \frac{1}{2}\overrightarrow{id}3\overrightarrow{id} = \frac{3}{2}\overrightarrow{id}$, c'est donc une homothétie de rapport $\frac{3}{2}$, cherchons le centre i.e le point fixe :

Si on note $h := h_{M,\frac{3}{2}} = h_{A,1/2} \circ h_{B,3} =$, on cherche donc le point M tel que h(M) = M, i.e $h_{A,1/2} \circ h_{B,3}(M) = M$.

On pose $M' := h_{B,3}(M)$, comme $h_{B,3}(M) = B + 3\overrightarrow{BM}$ on a $\overrightarrow{BM'} = 3\overrightarrow{BM}$ on réserve l'expression pour plus tard.

On a d'autre part $h_{A,1/2}(M') = A + \frac{1}{2}\overrightarrow{AM'}$, (on veut h(M) = M donc $h_{A,1/2}(M') = M$), d'où $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AM'}$, par la relation de chasles on se ramène à $\overrightarrow{AM} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BM'})$ on remplace $\overrightarrow{BM'}$ ce qui nous donne $\overrightarrow{AM} = \frac{1}{2}(\overrightarrow{AB} + 3\overrightarrow{BM}) = \frac{1}{2}(\overrightarrow{AB} + 3(\overrightarrow{BA} + \overrightarrow{AM}))$, on obtient finalement $\overrightarrow{AM} = 2\overrightarrow{AB}$ et de là on tire M = (-4, 1).

Exercice 35. Dans \mathbb{R}^3 , calculez la projection orthogonale du point A = (5, -5, 5) sur la droite définie par le système

$$\begin{cases}
-4x - 7y = 178, \\
-8x - 7y = 398.
\end{cases}$$

Solution : Soit \mathcal{D} la droite définie par le système ci dessus. On veut la projection orthogonale p du point A sur la droite \mathcal{D} .Posons A' = p(A). On sait que $p(A) \in \mathcal{D}$ et que $\overrightarrow{AA'}$ est orthogonale à \mathcal{D}

Du système ce dessus on tire qu'un point $(x, y, z) \in \mathbb{R}^3$ appartient à la droite \mathcal{D} si et seulement si (x, y, z) = (-55, 6, z), i.e $\mathcal{D} = (-55, 6, 0) + \mathbb{R}(0, 0, 1)$.

En posant A' := (x', y', z'), on a AA' = (x' - 5, y' + 5, z - 5) et en exprimant le produit scalaire $\langle AA' \mid (0, 0, 1) \rangle = 0$, on en tire que z' = 5.

Ainsi, comme $A' \in \mathcal{D}$, A' s'écrit sous la forme (-55, 6, z) avec $z \in \mathbb{R}$ et que $AA' \perp (0, 0, 1)$ on en tire que A' = (-55, 6, 5).

Exercice 36. Dans \mathbb{R}^3 , calculez la projection orthogonale du point M=(-1,-5,-10) sur la droite déterminée par les points A=(10,8,1) et B=(11,3,-6).

Solution : Un rapide dessin permet de visualiser la situation, si on note \mathcal{D} la droite et M' le projeté de M sur \mathcal{D} on voit que $\overrightarrow{MM'} \perp \overrightarrow{AB}$ et que évidemment $M' \in \mathcal{D}$, le premier point se traduit par le fait que $\langle \overrightarrow{AB} \mid \overrightarrow{MM'} \rangle = 0$, le second point qu'il existe $t \in \mathbb{R}$ tel que $M' = A + t\overrightarrow{AB}$.

Exercice 37. Dans \mathbb{R}^3 , calculez la projection othogonale du point M=(5,-5,5) sur le plan définie par l'équation 24x+37y+22z=-76.

Solution : Si on note $\overrightarrow{n} = (24, 37, 22)$ le vecteur normal au plan, et le point M' le projeté du point M sur le plan, on a $\overrightarrow{MM'}$ parallèle au vecteur normal $\overrightarrow{n'}$, autrement dit $\exists t \in \mathbb{R}$ tel que $\overrightarrow{MM'} = t\overrightarrow{n'}$, de plus le point $M' \in \mathcal{P}$, on trouve t et on remplace pour trouver les coordonnées de M'.

Exercice 38. Dans le plan affine \mathbb{R}^2 muni du repère cartésien (O, e_1, e_2) , on considère la droite \mathcal{D} d'équation 2x + y - 2 = 0. Donner l'expression analytique de la symétrie par rapport à \mathcal{D} de direction $e_1 + e_2$.

Solution : Un rapide dessin nous permet une fois de plus de considérer la situation : on voit que le milieu (que l'on appelera m) de [MM'] appartient à \mathcal{P} et que $\overline{MM'}//(e_1+e_2)$, si on pose M'=(x,y,z) le symétrique de M=(x,y,z) par la symétrie on a $m=\left(\frac{(x+x')}{2},\frac{(y+y')}{2}\right)$, comme m appartient à la droite, il vérifie l'équation donc on a $2\times\frac{(x+x')}{2}+\frac{(y+y')}{2}-2=0$, il nous reste à exploiter le fait que $\overline{MM'}//(e_1+e_2)$, information que l'on peut interprété par le fait qu'il existe un $t\in\mathbb{R}$ tel que $\overline{MM'}=t(e_1+e_2)$

Exercice 39. Soit $s: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par : s(x,y,z) = (-2y+z-2,-x-y+z-2,-x-2y+2z-2). Déterminer la nature de cette application affine ainsi que ces caractéristiques.

Exercice 40. Soit $p: \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par : $p(x,y) = \left(\frac{2x+y}{3} + 2, \frac{2x+y}{3} - 4\right)$ Montrer que $p^2 = p$ et déterminer p géométriquement (points fixes, etc.).

Exercice 41. Notons s_A la symétrie centrale de centre A et t_u la translation de vecteur u, montrer que $s_B \circ s_A = t_{2\overrightarrow{AB}}$, en déduire que pour tous $A, B, C, D \in \mathcal{E}$, ABCD est un parallélogramme si et seulement si $s_D \circ s_C \circ s_B \circ s_A = \mathrm{id}_{\mathcal{E}}$.

Exercice 42. Identifier l'application affine f du plan qui envoie respectivement les points A = (1,0), B = (2,-1) et C = (1,1) sur les points A' = (1,-1), B' = (-1,-3) et C' = (3,-1) Solution :

Exercice 43. On considère une translation τ et une homothétie h d'un espace affine E. Identifier les applications :

- 1. $f_1 := \tau \circ h \circ \tau^{-1}$; Solution: On a $\overrightarrow{f_1} = \overrightarrow{id} \circ \overrightarrow{\lambda id} \circ \overrightarrow{id} = \overrightarrow{\lambda id}$. Montrons que $\overrightarrow{f_1}$ est une homothétie, cherchons le centre: Soit c le centre de h i.e h(c) = c, on a $f_1(\tau(c)) = \tau(c)$, ainsi $\tau(c)$ est le centre de l'homothétie f_1 .
- 2. $f_2 := h^{-1} \circ \tau \circ h$; Solution: On a $f_2 = \frac{1}{\lambda} i \overrightarrow{d} \circ i \overrightarrow{d} \circ \lambda i \overrightarrow{d} = i \overrightarrow{d}$, cela ressemble à une translation, cherchons le vecteur \overrightarrow{u} tel que $f_2(A) = A + \overrightarrow{u}$: On note $A''' := f_2(A)$ d'où $\overrightarrow{AA'''} = \overrightarrow{u}$, si on avance petit à petit on a en notant c le centre de l'homothétie h et \overrightarrow{v} le vecteur de la translation τ on a : $h(A) = A' = c + \lambda \overrightarrow{cA}$ ce qui nous donne $\overrightarrow{cA'} = \lambda \overrightarrow{cA}$, ensuite on a $\tau(A') = A'' = A' + \overrightarrow{v}$ i.e $\overrightarrow{A'A''} = \overrightarrow{v}$ et enfin $h^{-1}(A'') = A''' = c + \frac{1}{\lambda}\overrightarrow{cA''}$ d'où $\overrightarrow{cA'''} = \frac{1}{\lambda}\overrightarrow{cA''}$. Par la relation de Chasles on a $\overrightarrow{AA'''} = \overrightarrow{AA'} + \overrightarrow{A'A''} + \overrightarrow{A''A''} + \overrightarrow{A''A''} = \overrightarrow{Ac} + \overrightarrow{cA'} + \overrightarrow{v} + \overrightarrow{A''c} + \overrightarrow{cA'''} = \overrightarrow{Ac} + \lambda \overrightarrow{cA} + \overrightarrow{v} - \lambda \overrightarrow{cA'''} + c\overrightarrow{A'''}$, on a donc $\overrightarrow{AA'''} = (1 - \lambda)\overrightarrow{Ac} + \overrightarrow{v} + (1 - \lambda)\overrightarrow{cA'''}$ i.e $\overrightarrow{AA'''} = (1 - \lambda)\overrightarrow{AA'''} + \overrightarrow{v}$, d'où $\overrightarrow{AA'''} = \frac{\overrightarrow{v}}{\lambda} = \overrightarrow{u}$
- 3. $f_3 := \tau \circ h \circ \tau$.

Exercice 44. Questions de cours...

- 1. Quelle est la nature de l'ensemble d'équation $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix} X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$? Retrouver l'application linéaire associée à la matrice, identifiez dans quel espace sont les solutions à ce système, puis donnez les solutions de ce système.
- 2. Déterminez les matrices associées à l'intersection de deux sous-espaces affines de \mathbb{R}^3 d'équation x+y+z=2 et x-2y-z=3. Donnez une représentation paramétrique de cette intersection.
- 3. Déterminez une représentation cartésienne de $V = \{(3+t,2+t,1+2t), t \in \mathbb{R}\}$ et de $W = \{(3s+t-1,2s+t,s+2t+3), s,t \in \mathbb{R}\}$
- 4. Montrez que $\overrightarrow{ad} = 0$, puis que $\overrightarrow{ab} = -\overrightarrow{ba}$.
- 5. Montrez que s'il existe $a_0 \in E$ pour lequel l'application $b \in E \mapsto \overrightarrow{a_0b} \in \overrightarrow{E}$ est bijective, alors pour tout a, l'application $b \in E \mapsto \overrightarrow{ab} \in \overrightarrow{E}$ est encore bijective.
- 6. Justifiez le fait que le milieu de (a, b) est aussi le milieu de (b, a).

- 7. Soit (a, b, c, d) un quadruplet, montrer que $\overrightarrow{ab} = \overrightarrow{dc} \iff \overrightarrow{ad} = \overrightarrow{bc} \iff$ "le milieu de (a, c) est égal au milieu de (b, d)".
- 8. Une réunion de sous espaces affines est-elle un sous espace affine? Donnez des exemples.
- 9. Montrez qu'une application affine est une translation si et seulement si son application linéaire associée est l'identité.
- 10. Donnez la nature de l'image d'une droite affine. Que peut-on dire si f est bijective?
- 11. Montrez que les applications affines préservent les barycentres.
- 12. Soit $t_{\overrightarrow{u}}$ une translation de vecteur $\overrightarrow{u} \neq \overrightarrow{0}$. Donnez un exemple de partie invariante mais pas fixe par $t_{\overrightarrow{u}}$, et un exemple de partie stable mais pas invariante par $t_{\overrightarrow{u}}$.
- 13. Soit a, b deux points distincts du plan. Donnez une condition sur a', b' pour qu'il existe une homothétie h telle que h(a) = a' et h(b) = b'. COnstruire un centre de h dans ce cas.
- 14. Montrez qu'une transformation affine du plan qui préserve trois directions deux à deux distinctes est une homothétie ou une translation.
- 15. Expliquez la distinction entre "préserver les directions" et "préserver le parallélisme".
- 16. Construire des exemples de symétries glissées qui ne sont pas des symétries.
- 17. Est-ce que une application affine préserve les milieux? Justifier.
- 18. Est-ce qu'il existe des sous espaces affines dont l'intersection n'est pas un sous espaces affines?
- 19. Est-ce que $D = \{(2+t, -t, 3t+1) \mid t \in \mathbb{R}\}$ est faiblement parallèle à $P = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 2y + z = 1\}$?
- 20. Montrer qu'une application affine $f: E \to F$ est surjective si et seulement si l'application linéaire associée est surjective.
- 21. Montrer qu'une application affine $f: E \to F$ est injective si et seulement si l'application linéaire associée est injective.

9 formes quadratiques

Exercice 45 (Vrai-Faux). Répondre par vrai ou faux en justifiant.

- 1. Soit A = (1,0,0), B = (0,1,0), C = (0,0,1) tel que (O,A,B,C) forme un repère. Il existe une unique transformation affine qui envoie le triangle OAB sur ABC.
- 2. Si dans \mathbb{R}^2 , q et q' sont deux formes quadratiques de signe (1,1), alors q+q' est de signe (1,1) aussi.
- 3. Soit φ une forme bilinéaire sur E, et q la forme quadratique associée : soit $u \in E$, alors $q(u) = 0 \iff \varphi(u, v) = 0, \ \forall v \in E$.

Exercice 46. Soit $q(x,y) = x^2 - 2y^2$ une application de \mathbb{R}^2 .

- 1. Est-ce que q est une forme quadratique?
- 2. Est-ce que le cône isotrope forme un sous espace affine?
- 3. Expliciter le cône isotrope.