Privacy Proofs for OpenDP: Partition Map (Transformation)

Summer 2022

Contents

1	Algorithm Implementation	1
	1.1 Code in Rust	. 1
	1.2 Pseudo Code in Python	. 1
2	Proof	2

1 Algorithm Implementation

1.1 Code in Rust

The current OpenDP library contains the make_map_partition_trans function constructing a Transformation for partitioned data based on a list of Transformations. This is defined in lines 12-73 of the file mod.rs in the Git repository https://github.com/opendp/opendp/blob/449222066a006a19d15bb68e62a87105ce49eb15/rust/src/comb/partition_map/mod.rs#L12-L73.

1.2 Pseudo Code in Python

Preconditions

To ensure the correctness of the output, we require the following preconditions:

- User-specified types:
 - Variable transformations must be a vector of elements of class transformation.
 - output_metric::Distance must have trait TotalOrd.
 - input_domain: must have trait Domain.
 - output_domain: must have trait Domain.
 - input_metric: must have trait Metric.
 - output_metric: must have trait metric.

Postconditions

• A transformation is returned (i.e., if a transformation cannot be returned successfully, then an error should be returned).

Pseudo Code

```
1 def make_map_partition_trans(trans: List[Transformation]) -> Transformation
      input_domain = ProductDomain(t.input_domain for t in trans)
      output_domain = ProductDomain(t.output_domain for t in trans)
3
      def function(data: Vec<DI::Carrier>) -> Vec<DO::Carrier>:
          output = []
          for part, t in zip(data, trans):
              output.append(t.function(part))
          return output
      input_metric = ProductMetric(trans.input_metric)
9
      output_metric = ProductMetric(trans.output_metric)
10
      stability_map(d_in: input_metric::Distance) -> output_metric::Distance:
          return max(t.map(d_in) for t in trans)
12
13
14
      return Transformation(input_domain, output_domain, function,
      input_metric, output_metric, stability_map)
```

2 Proof

The necessary definitions for the proof can be found at "List of definitions used in the proofs".

Theorem 2.1. For every setting of the input parameter transformations to make_map_partition_trans such that the given preconditions hold, make_map_partition_trans raises an exception (at compile time or runtime) or returns a valid transformation with the following properties:

- 1. (Appropriate output domain). For every vector v in the input domain, function(v) is in the output domain.
- 2. (Domain-metric compatibility). The domain input_domain matches one of the possible domains listed in the definition of input_metric, and likewise output_domain matches one of the possible domains listed in the definition of output_metric.
- 3. (Stability guarantee). For every pair of elements v, w in input_domain and for any d_in, where d_in has the associated type for input_metric, if v, w are d_in-close under input_metric, then function(v), function(w) are stability_map(d_in)-close under output_metric.

Proof.

- 1. (Appropriate output domain). Let t_i denote the ith element of the variable transformations. Since t_i is a transformation, for any v_i in the input domain of t_i , function $_i(v_i)$ is in the output domain of t_i . Therefore, for any $v = \{v_i\}_i$ in the ProductDomain of the input domains of t_i , function $_i(v) = \{function_i(v_i)\}_i$ is in the ProductDomain of the input domains of t_i . That is, for every v in the input domain of make_map_partition_trans, function $_i(v)$ is in the output domain of make_map_partition_trans.
- 2. (Domain-metric compatibility). The input_domain of make_map_partition_trans is ProductDomain and the input_metric is ProductMetric. Since each component

t of the variable transformations is a transformation, t.input_domain matches one of the possible domains listed in the definition of t.input_metric. Therefore, the product of t.input_domain is compatible with the product of t.input_metric. The same argument holds for output_metric.

3. (Stability guarantee.) Let t_i be the *i*th element of the variable transformations, and MI and MO denote the input_metric and the output_metric of t_i , respectively. Since for any i, t_i is a Transformation, for any v_i , w_i in the input domain of t_i ,

$$d_{\mathtt{MI}}(v_i, w_i) \leq \mathtt{d}_{\mathtt{-in}}$$

implies

$$d_{MO}(f_i(v_i), f_i(w_i)) \leq t_i.stability_map(d_in) \cdot d_{MI}(v_i, w_i),$$

where f_i denotes the function in t_i , v_i and w_i are the *i*th component of v and w, respectively. Let $d_{PM,MI}$ denote the distance under ProductMetric(MI). By definition 1(i),

$$d_{\texttt{PM},\texttt{MI}}(v,w) = \sum_i d_{\texttt{MI}}(v_i,w_i)$$

Note that given $d_{PM,MI}(v, w) \leq d_{-in}$, by the nature of partitioned data, all $d_{MI}(v_i, w_i)$ are zeros except for at most one. Let g denote the function in make_map_partition_trans. By Definition 1(ii), we then have

$$\begin{split} d_{\texttt{PM},\texttt{MO}}(g(v),g(w)) &= \sum_{i} d_{\texttt{MO}}(f_{i}(v_{i}),f_{i}(w_{i})) \\ &\leq \sum_{i} \texttt{t}_{i}.\texttt{stability_map}(\texttt{d_in}) \cdot d_{\texttt{MI}}(v_{i},w_{i}) \\ &\leq max_{i}(\texttt{t}_{i}.\texttt{stability_map}(\texttt{d_in}) \cdot d_{\texttt{MI}}(v_{i},w_{i})) \\ &\leq max_{i}(\texttt{t}_{i}.\texttt{stability_map}(\texttt{d_in})) \cdot \texttt{d_in}. \end{split}$$

Therefore, we have shown that g(v) and g(w) are stability_map(d_in)-close if v and w are d_in-close.

Definition 1 (Distance under ProductMetric). Let $d_{PM,M}$ denote the distance under ProductMetric(M) where M is a valid metric. Then $d_{PM,M}$ is defined as the sum of distance under each M. Specifically, for any v, w in the input domain and v_i , w_i denote their ith entry, respectively,

(i) for input metric MI,

$$d_{\mathit{PM},\mathit{MI}}(v,w) = \sum_i d_{\mathit{MI}}(v_i,w_i).$$

(ii) for output metric MO,

$$d_{\mathit{PM},\mathit{MO}}(g(v),g(w)) = \sum_i d_{\mathit{MO}}(f_i(v_i),f_i(w_i)),$$

where g and f_i denote the function in their corresponding Transformation.

3