1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1A	2A	3A	4A	5A	6A	7A		8		1B	2B	3B	4B	5B	6B	7B	8B
H 2,1 H 1,0079 Väte 1s1 -1+1																	Helium 1s ²
Litium	4 1,5 Be 9,01218 Beryllium He2s ² +2											${\stackrel{5}{\rm B}}_{10,81}^{2,0}$ Bor ${\stackrel{He2s^2p^1}{\rm He}}_{+3}$	6 2,5 C 12,011 Kol He2s ² p ² +2 +4	$ \stackrel{7}{N} $ 14,0067 Kväve $ \stackrel{He2s^2p^3}{{}_{-3}+2+3+4+5} $	8 3,5 O 15,9994 Syre He2s ² p ⁴ -1 -2	$\begin{matrix} 9 & 4,0 \\ F & 18,9984 \end{matrix}$ Fluor $\begin{matrix} He2s^2p^5 \end{matrix}$	Ne 20,179 Neon He2s ² p ⁶
Na 22,9897 Natrium	12 1,2 Mg 24,305 Magnesium Ne3s ² +2											13 1,5 Al 26,9815 Aluminium Ne3s ² p ¹ +3	14 1,8 Si 28,0855 Kisel Ne3s ² p ² +4	Posfor Ne3s ² p ³ -3 +3 +5	16 2,5 S 32,06 Svavel Ne3s ² p ⁴ -2 +2 +4 +6	17 3,0 C1 35,453 Klor Ne3s ² p ⁵ -1 +1 +3 +5 +7	18 Ar 39,948 Argon Ne3s ² p ⁶
K 39,098 Kalium	20 1,0 Ca 40,08 Kalcium Ar4s ² +2	21 1,3 Sc 44,9559 Skandium Ar3d ¹ 4s ² +3	22 1,5 Ti 47,90 Titan $Ar3d^24s^2$ +3 +4	$\begin{array}{c} 23 & 1,6 \\ V & 50,9415 \\ \text{Vanadin} \\ Ar3d^34s^2 \\ +2+3+4+5 \end{array}$	24 1,6 Cr 51,996 Krom $Ar3d^54s^1$ +2+3+6	25 1,5 Mn 54,9380 Mangan $Ar3d^54s^2$ +2 +3 +4 +6 +7	26 1,8 Fe 55,847 Järn Ar3d ⁶ 4s ² +2+3+6	27 1,8 CO 58,9332 Kobolt Ar3d ⁷ 4s ² +2+3	28 1,8 Ni 58,71 Nickel Ar3d ⁸ 4s ² +2+3	29 1,9 Cu 63,546 Koppar $Ar3d^{10}4s^{1}$ +1+2+3	${\rm Zn}^{0}$ 65,38 Zink ${\it Ar3d}^{10}{\it 4s}^{2}$ +2	31 1,6 Ga 69,72 Gallium Ar3d ¹⁰ 4s ² p ¹	32 1,8 Ge 72,58 Germanium $Ar3d^{10}4s^2p^2$ +2 +4	33 2,0 A S 74,9216 Arsenik Ar3d ¹⁰ 4s ² p ³ -3 +3 +5	34 2,4 Se 78,96 Selen Ar3d ¹⁰ 4s ² p ⁴ -2+2+4+6	$\begin{array}{ccc} 35 & 2.8 \\ \mathbf{Br} & 79,904 \\ \mathbf{Brom} \\ Ar3d^{10}4s^2p^5 \\ -1+1+3+5 \end{array}$	36 Kr 83,80 Krypton Ar3d ¹⁰ 4s ² p ⁶ +2
Rb 85,468 Rubidium	38 1,0 Sr 87,62 Strontium <i>Kr</i> 5 <i>s</i> ² +2	${\displaystyle \mathop{Y}^{1,2}}_{88,9059} \ {\displaystyle \mathop{Yttrium}_{Kr4d}}_{15s^2} \ {\displaystyle \mathop{F}^{1,2}}_{13} \ {\displaystyle $	$ \begin{array}{cccc} 40 & 1,4 \\ Zr & 91,22 \end{array} $ Zirkonium $Kr4d^25s^2 + 4$	Niob Kr4d ⁴ 5s ¹ +3 +5	42 1,8 Mo 95,94 Molybden $Kr4d^55s^1$ +2+3+4+5+6	$\begin{array}{c} 43 & 1,9 \\ Tc & 98,9062 \end{array}$ Teknetium $Kr4d^55s^2$ +2+4+7	Ru 101,07 Rutenium Kr4d ⁷ 5s ¹ +2+3+4+6+8	Rodium Kr4d ⁸ 5s ¹ +2+3+4+5	Palladium Kr4d ¹⁰ +2+4	$\begin{array}{c} 47 & 1,9 \\ \mathbf{Ag} & 107,868 \\ \text{Silver} & Kr4d^{10}5s^{1} \\ +1+2+3 & \end{array}$	48 1,7 $^{\circ}$ Cd 112,41 $^{\circ}$ Kadmium $^{\circ}$	$\begin{array}{ll} 49 & 1,7 \\ \textbf{In} & 114,82 \\ \textbf{Indium} & Kr4d^{10}5s^2p^1 \\ +1+3 & \end{array}$	$\begin{array}{c} 50 & 1.8 \\ \textbf{Sn} & 118,69 \\ \text{Tenn} & Kr4d^{10}5s^2p^2 \\ +2 +4 & \end{array}$	$\begin{array}{ccc} 51 & 1,9 \\ \mathbf{Sb} & 121,75 \\ \text{Antimon} & \\ Kr4d^{10}5s^2p^3 \\ -3+3+4 & \end{array}$	$ \begin{array}{ccc} 52 & 2,1 \\ \textbf{Te} & 127,60 \\ \textbf{Tellur} & Kr4d^{10}5s^2p^4 \\ -2 + 4 + 6 \end{array} $	$\begin{matrix} 53 & 2.5 \\ I & 126,905 \\ Jod & Kr4d^{10}5s^2p^5 \\ -1+1+5+7 \end{matrix}$	Xenon Kr4d ¹⁰ 5s ² p ⁶ +2+4+6+8
Cs 132,905 Cesium Xe6s ¹	Barium Xe6s ² +2	57 1,0 La 138,906 Lantan Xe5d ¹ 6s ² +3	72 1,3 Hf 178,49 Hafnium $Xe4f^{14}5d^26s^2$ +4	73 1,5 Ta 180,948 Tantal $Xe4f^{14}5d^36s^2$ +3 +4 +5	74 1,7 W 183,85 Volfram <i>Xe</i> 4 <i>f</i> ¹⁴ 5 <i>d</i> ⁴ 6 <i>s</i> ² +2 +3 +4 +5 +6	75 1,9 Re 186,2 Rhenium Xe4f ¹⁴ 5d ⁵ 6s ² +2+3+4+6+7	76 2,2 OS 190,2 Osmium Xe4f ¹⁴ 5d ⁶ 6s ² +3 +4 +6 +8	$\begin{array}{ccc} 77 & 2,2 \\ Ir & 192,22 \\ Iridium & Xe4f^{14}5d^76s^2 \\ +2+3+4+6 & \end{array}$	78 2,2 Pt 195,09 Platina $Xe4f^{14}5d^{9}6s^{1}$ +2 +4 +6	79 2,4 Au 196,967 Guld $Xe4f^{14}5d^{10}6s^1$ +1+3	80 1,9 Hg 200,59 Kvicksilver $Xe4f^{14}5d^{10}6s^2$ +1 +2	$\begin{array}{ccc} 81 & 1,8 \\ \textbf{Ti} & 204,37 \\ \text{Tallium} & \\ Xe4f^{14}5d^{10}6s^2p^{10} \\ +1+3 & \end{array}$	Bly 207,2 Bly Xe4f ¹⁴ 5d ¹⁰ 6s ² p ² +2+4	$\begin{array}{ccc} 83 & 1.9 \\ \mathbf{Bi} & 208.981 \\ \text{Vismut} \\ 2 & Xe4f^{14}5d^{10}6s^2p^3 \\ +3+5 & \end{array}$	Polonium 8 Xe4f ¹⁴ 5d ¹⁰ 6s ² p ³ +2 +4 +6	85 2,2 At (210) Astat 4 Xe4f ¹⁴ 5d ¹⁰ 6s ² p ⁵ -1 +1 +3 +5 +7	$\begin{array}{c} 86 \\ Rn \\ Radon \\ Xe4f^{14}5d^{10}6s^2p^6 \\ +2 \end{array}$
Fr (223) Frankium Rn7s ¹	Radium Rn7s ² +2	89 1,1 Ac 227,028 Aktinium Rn6d ¹ 7s ² +3	104 Ku (257) Kurtjatorium <i>Rn5f</i> ¹⁴ 6 <i>d</i> ² 7 <i>s</i> ² +4	105 Ha (262) Hahnium Rn5f ¹⁴ 6d ³ 7s ² +5													
			58 Ce 140,12 Cerium Xe4f ¹ 5d ¹ 6s ² +3+4	Pr 140,908 Praseodym Xe4f ³ 6s ² +3+4	Neodym Xe4f ⁴ 6s ² +3	61 Pm (145) Prometium $Xe4f^15d^16s^2$ +3	62 Sm 150,4 Samarium Xe4f ⁶ 6s ² +2+3	63 Eu 151,96 Europium Xe4f ⁷ 6s ² +2+3	64 Gd 157,25 Gadolinium Xe4f ⁷ 5d ¹ 6s ² +3	65 Tb 158,925 Terbium $Xe4f^96s^2$ +3 +4	Dy 162,50 Dysprosium Xe4f ¹⁰ 6s ² +3	67 Ho 164,930 Holmium Xe4f ¹¹ 6s ² +3	68 Er 167,26 Erbium Xe4f ¹¹ 6s ² +3	Tm 168,934 Tulium Xe4f ¹³ 6s ² +3	70 Yb 173,04 Ytterbium Xe4f ¹⁴ 6s ² +2+3	T1 Lu 174,97 Lutetium Xe4f ¹⁴ 5d ¹ 6s ² +3	
			90 Th 232,038 Thorium $Rn6d^27s^2$ +4	Pa 231,036 Protaktinium Rn5f ² 6d ¹ 7s ² +4+5	$\begin{array}{c} 92 \\ \mathbf{U} \\ \text{Uran} \\ Rn5f^3 6d^27s^2 \\ +3 +4 +5 +6 \end{array}$	93 Np 237,048 Neptunium Rn5f ⁴ 6d ¹ 7s ² +3 +4 +5 +6 +7	Pu (244) Plutonium Rn5f ⁶ 7s ² +3 +4 +5 +6	95 Am (243) Americium Rn5f ⁷ 7s ² +3 +4 +5 +6	96 Cm (247) Curium Rn5f ⁷ 6d ¹ 7s ² +3+4	97 Bk (247) Berkelium Rn5f ⁹ 7s ² +2 +3 +4	98 Cf (251) Kalifornium Rn5f ¹⁰ 7s ² +2 +3 +4	99 Es (254) Einsteinium Rn5f ¹¹ 7s ² +2+3	100 Fm (257) Fermium Rn5f ¹² 7s ² +2+3	101 Md (258) Mendelevium Rn5f ¹³ 7s ² +2+3	Nobelium Rn5f ¹⁴ 7s ² +2+3	Lawrencium Rn5f ¹⁴ 6d ¹ 7s ² +3	
Väte		Metaller			Övergångsmetaller			Halvmetaller			Inte metaller			Ädelgaser			