Syllabus: Flujo en Redes

Alejandra Tabares y David Álvarez-Martínez 2025

Horario y Lugar

Horario: Lunes y Jueves, 14:00 - 15:30.

Lugar: SD 402

Descripción

El curso presenta al estudiante los aspectos de modelaje y diseño algorítmico de un primer curso de optimización en redes. El curso tiene un enfoque de programación matemática, como continuación natural de un curso en optimización lineal (Principios de Optimización). Algunos temas siguen un enfoque combinatorio, sirviendo como un primer curso en el área de optimización combinatoria. El tema de optimización en redes tiene una amplia aplicabilidad, además de encontrar relaciones directas con la ciencia de redes y la matemática discreta. Algunos ejemplos de su uso incluyen redes de transporte, redes de comunicaciones, planeación de capital, programación de proyectos, mantenimiento y reemplazo de equipos, programación de producción, entre otros.

Objetivos

- Aplicar diversas técnicas de optimización del flujo de red para resolver problemas prácticos.
- Integrar enfoques basados en datos para mejorar la resolución de problemas.

• Desarrollar habilidades prácticas de modelado e implementación.

Contenido y Cronograma

Semana	Fechas	Tema
1	Ago 05 – Ago 09	Introducción, Conceptos básicos
2	Ago 12 - Ago 16	Programación lineal, Herramientas computacionales
3	Ago 19 - Ago 23	Representación de redes, Flujo como PL
4	Ago 26 – Ago 30	Problema de transporte
5	Sep 02 - Sep 06	Problemas de flujo a costo mínimo
6	Sep 09 - Sep 13	Problema de flujo máximo
7	Sep 16 - Sep 20	Problema de flujos de múltiples mercancías
8	Sep 23 - Sep 27	Analítica descriptiva y predictiva en problemas de flujo en redes
9	Sep 30 – Oct 04	Semana de Trabajo Individual
10	Oct 07 - Oct 11	Ruta más corta, Estructura de datos
11	Oct 14 - Oct 18	Complejidad, Label Correcting Algorithms
12	Oct 21 - Oct 25	Ruta más corta con restricciones de recursos
13	Oct 28 – Nov 01	Problema del Cartero Viajante, Ruteo de Vehículos
14	Nov 04 - Nov 08	Herramientas Computacionales: OSRM, LKH, Folium
15	Nov 11 - Nov 15	Analytics for Transportation Problems
16	Nov 18 – Nov 23	Ruteo de Vehículos (Split), Ruteo en Arcos

Evaluación

- Presentación 1: 20% (artículo sobre modelos de flujo en redes).
- Presentación 2: 20% (artículo sobre estrategias de aceleración para modelos de flujo en redes).
- \bullet Proyecto final: 60% (dividido en cuatro entregas de 15% cada una).

Referencias

• Ahuja, R. K., Magnanti, T. L., y Orlin, J. B. *Network Flows*. Prentice-Hall, 1993.

- Bazaraa, M. S., Jarvis, J. J., y Sherali, H. D. *Linear Programming and Network Flows*. Wiley, 1990.
- Toth, P., y Vigo, D. Vehicle Routing: Problems, Methods, and Applications. 2014.