Beyond Runs Expectancy

Jim Albert Bowling Green State University

June 26, 2014

Abstract

George Lindsey was one of the first to present run scoring distributions of teams of Major League Baseball. One drawback of Lindsey's approach is that his calculations represented a situation where the team is average. By use of a multinomial / multilevel modeling approach, we look more carefully how run-scoring distributions vary between teams and how run-scoring is affected by different covariates such as ballpark, pitcher quality, and clutch situations. By use of exchangeable models over ordinal regression coefficients, one gets a better understanding which covariates represent meaningful differences between run-scoring of teams.

1 Introduction

1.1 George Lindsey and the runs expectancy matrix

One the pioneers in sabermetics was George Lindsey, a defense consultant in Canada who had a great love for baseball. Lindsey wrote two remarkable papers in the 1960's that had a great influence on the quantitative analysis of baseball. In particular, [9] focused on several questions of baseball strategy such as stealing a base, sacrificing to sacrifice a runner to second base, and issuing an intentional walk. Lindsay observed that these questions could be answered by the collection of appropriate data.

"By collecting statistics from a large number of baseball games it should be possible to examine the probability distributions of the number of runs resulting from these various situations. Object of all choices is ... to maximize the probability ... of winning the game." Lindsay noted that the probability of winning at a point during the game depends on the current score and inning and presented tables of $W(I, H_i)$, the probability a team with a lead of I runs at the home half of the ith inning H_i will win the game.

In this paper, Lindsey also considered the runs scoring distribution of a team during an inning. He focused on the run potential, the number of runs a team will score in the remainder of the inning. He noted that the run potential depends on the current number of outs and the runners on base. Since there are three possible number of outs and eight possible runner configurations, there are $3 \times 8 = 24$ possible out/runner situations, and Lindsey focused on computing

the probability of scoring exactly R runs in the remainder of the inning given T outs and runners on base B.

To learn about run potential, Lindsey's father collected run-scoring data for over 6000 half-innings in games during the 1959 and 1960 seasons, and Lindsey was able to find empirical run-scoring distributions for each of the 24 situations. By computed the mean runs for each situation, he produced the runs expectancy matrix as displayed in Table 1.

Table 1: Lindsey's runs expectancy matrix from Lindsey (1963)

	Bases Occupied							
Outs	0	1	2	3	1,2	1,3	2,3	1,2,3
0 Outs	0.46	0.81	1.19	1.39	1.47	1.94	1.96	2.22
1 Out	0.24	0.50	0.67	0.98	0.94	1.12	1.56	1.64
2 Outs	0.10	0.22	0.30	0.36	0.40	0.53	0.69	0.82

At the beginning of an inning with no outs and bases empty, a team will score, on average, 0.46 runs in the remainder of the inning. In contrast, when the bases are loaded with one out, a team will score 1.64 runs in the rest of the inning.

The runs expectancy table has been illustrated in a number of sabermetrics books [15], [4], [8], and [14] for deciding on proper baseball strategy, for learning about the value of plays, and for evaluating players. For example, Chapter 7 of [4] shows the use of run expectancies in determining the values of singles, doubles, triples, and home runs that leads to use of linear weights to measure batting performances. Chapter 9 of [4] uses the run expectancy table to assess the value of common baseball strategies such as a sacrifice bunt, intentional walk, and stealing a base.

Lindsay in [9] cautioned that the run expectancy table represented the situation where all players were "average".

"It must be reiterated that these calculations pertain to the mythical situation in which all players are 'average'. The allowance for the deviation from average performance of the batter at the plate, and those expected to follow him, or of runners on the bases, can be made by a shrewd manager who knows his players.

Also Lindsey in [9] mentioned the possibility of extending this analysis to runscoring of teams with non-average players.

"If it were desired to provide a manager with a guide to the advisability of attempting various strategies in different situations, it would be possible to complete calculations of the type outlined here for all stages of the game and scores, pertaining to average players. It would also be possible, although onerous, to compute tables for nonaverage statistics, perhaps based on the past records of the individual players on the team."

1.2 Modeling runs scored in an inning

A related line of research is the use of probability models to represent the number of runs scored in an inning or a game. Fits of basic discrete probability models do not accurately represent actual runs scored in an inning. To demonstrate this claim, the $\operatorname{Poisson}(\lambda)$ and $\operatorname{negative binomial}(n,p)$ models were separately fit to all inning runs scored in the 2013 season and the fitted probabilities for these two models and the actual run-scoring distribution are displayed in Table 2. Looking at the table, the Poisson fit underestimates the probability of a scoreless inning. Generally, the Poisson fit understates the actual variability in runs scored. The negative binomial fit is better than the Poisson, but this model overestimates the probability of scoring one run and underestimates the probability of scoring two runs.

Since basic probability models appear inaccurate, more sophisticated models for run scoring have been proposed in the literature. For example, [12] represents the probability of scoring x runs in an inning by the sum

$$h(x) = \sum_{x+3}^{x+6} f(N)g(x|N),$$

where N represents the number of batters in the inning. In this paper, the probability function f(N) is represented by a modification of a negative binomial distribution, and the conditional distribution of the number of runs given the number of batters, g(x|N), is modeled by a truncated binomial distribution. Another approach in [16] provides an exponential formula for the probability a team averaging A runs per game scores R runs in a particular inning.

Table 2: Basic probability model fits to runs scored in MLB. The Actual column gives the observed fractions of scoring 0, 1, 2, ... runs in the 2013 season and the Poisson and NB columns give the estimated fractions from fitting the Poisson and negative binomial distributions.

Runs	Actual	Poisson	NB
		$\lambda = 0.462$	n = 0.399, p = 0.464
0	0.738	0.630	0.736
1	0.146	0.291	0.158
2	0.066	0.067	0.059
3	0.029	0.010	0.025
4	0.013	0.001	0.012
5	0.005	0.000	0.005
6	0.002	0.000	0.003
7	0.001	0.000	0.001

1.3 Multilevel modeling

Another research theme in modeling of sports data is the use of multilevel or hierarchical models to estimate parameters from several groups. Efron and Morris in [5] illustrate the use of an exchangeable model to estimate true batting averages of 18 players from the 1970 season. Albert in [2] [1] provide further illustrations of the use of an exchangeable model to estimate a set of true batting rates or pitching rates. These models can be extended to the regression framework. Morris in [11] uses an multilevel regression model to assess if Ty Cobb was ever a true .400 hitter. Albert in [3] uses an exchangeable regression model to simultaneously estimate the true pitching trajectories for a number of pitchers.

1.4 Plan of the paper

This paper provides an multilevel modeling framework for understanding run scoring of teams in Major League Baseball, and understanding how team run scoring is affected by several factors, such as ballpark, pitcher quality, and runners in scoring position. The basic multilevel model, described in Section 2.1, simultaneously estimates means from several populations, say the average number of runs scored for 30 MLB teams, when the means are believed to follow a normal curve model with unknown mean and standard deviation.

As in Lindsay's work, we focus on the number of runs scored in a half-inning. A run scoring distribution for a particular team is represented by a multinomial distribution with underlying probabilities over the classes 0 runs, 1 run, 2 runs, 3 runs, and 4 or more runs. Section 2.2 describes a multilevel model for simultaneously a

set of multinomial probability vectors. By using this model to estimating the run scoring distributions for the 30 MLB teams, one obtains "improved" estimates at the teams' abilities to score runs.

After estimating teams' scoring distributions, we next explore team situational effects. An ordinal regression model, described in Section 2.3, is a useful method for describing how run-scoring probabilities change as one changes a predictor such the quality of a pitcher. This model can be described in terms of the odds of scoring at least a particular number of runs. It is called a proportional odds model as a change in the predictor will result in the odds of scoring runs being increased by a constant factor. Section 3.2 introduces the use of odds in comparing run scoring distributions of the National and American Leagues. Section 3.3 extends this approach to compare run scoring of the 30 teams and illustrates the value of multilevel modeling.

Section 4 focuses on the effect of the following covariates on team run scoring.

- (Home Effects) Teams generally score more runs at home compared to away games. What is the general size of the home/away effect for scoring runs and how does this effect vary among the teams?
- (Pitcher Effects) Clearly, the pitcher has a significant impact on runscoring. A strong starting pitcher can neutralize the runs scored by even the best-scoring team in baseball. Generally, one expects that a team's run scoring is negatively associated with the quality of the pitcher. How can one quantify this pitcher effect, and how does this effect differ among teams?
- (Runner Advancement) Run scoring can be viewed as a two-step process

 batters get on base and then other batters advance them to home. Do
 teams differ in their ability to get runners home?

We address each of these questions by a multilevel ordinal regression model where the effect of the covariate can vary across teams. Section 5 summarizes the findings and outlines how this methodology can be generalized to provide reasonable runscoring distributions for teams in specific situations.

2 Methods

2.1 Estimating a group of means

Consider the problem of estimating a collection of means from several populations. One observes sample means $y_1, ..., y_N$, where the sample mean from the jth population, y_j is distributed normal with mean θ_j and known standard error σ_j . We describe this situation in a baseball setting, where $N = 30, y_1, ..., y_{30}$ correspond

to the sample mean numbers of runs scored in a half-inning for the thirty teams for a season, and $\theta_1, ..., \theta_N$ are the corresponding population means of runs scored.

One can obtain obtained improved estimates at the population means by means of the following multilevel model. We assume that the means $\theta_1, ..., \theta_{30}$ represent a sample from a normal curve with mean μ and standard deviation τ . The locations of the normal curve parameters μ and τ are unknown, and so (under a Bayesian framework) vague or imprecise prior distributions are assigned to these parameters.

One can fit this multilevel model from the observed sample means of runs scored for the 30 teams. In particular, we estimate the population mean and standard deviation μ and τ by $\hat{\mu}$ and $\hat{\tau}$, respectively. The estimate $\hat{\mu}$ represents the overall or combined estimate of a population mean of the runs scored from the 30 teams and the estimate $\hat{\tau}$ represents the spread of these population means.

Three sets of estimates

There are three types of estimates of the population means. If we estimate each population mean only by using data from the corresponding sample, we obtain *individual* estimates

$$\hat{\theta}_{i}^{I} = y_{i}, \ j = 1, ..., N.$$

On the other extreme, if we assume that the population means are equal, that is, $\theta_1 = ... = \theta_N$, then we'd estimate θ_i by the *combined* estimate

$$\hat{\theta}^C = \frac{\sum_{j=1}^N y_j / \sigma_j^2}{\sum_{j=1}^N 1 / \sigma_j^2},$$

where the sample mean y_i is weighted by the inverse of the sampling variance $1/\sigma_i^2$.

By use of the multilevel model, we obtain improved estimates of the population means that compromise between the individual and combined estimates. The multilevel (ML) estimate of the population mean for team j, $\hat{\theta}_{j}^{ML}$, is given by

$$\hat{\theta}_{j}^{ML} = \frac{1/\sigma_{j}^{2}}{1/\sigma_{j}^{2} + 1/\hat{\tau}^{2}} y_{j} + \frac{1/\hat{\tau}^{2}}{1/\sigma_{j}^{2} + 1/\hat{\tau}^{2}} \hat{\mu}.$$

The estimate of the mean runs scored for the jth team, $\hat{\theta}_j^{ML}$ shrinks the individual team estimate y_j towards the combined $\hat{\mu}$, where the size of the shrinkage depends on the ratio of the estimated population standard deviation $\hat{\tau}$ to the standard error σ_j . If $\hat{\tau}$ is small relative to the standard error σ_j , then the multilevel estimate $\hat{\theta}_j^{ML}$ will be close in value to the combined estimate. In contrast, if the estimate $\hat{\tau}$ is large (relative to the standard error), the multilevel estimate will be close to the individual estimate.

2.1.1 Example

This multilevel model was fit to the sample means of runs scored for the 30 teams in the 2013 season. We obtain the estimates $\hat{\mu} = 0.461, \hat{\tau} = 0.045$, so the population means of the runs scored are estimated by a normal curve with mean 0.461 and standard deviation 0.045. In the 2013 season, Anaheim averaged 0.500 runs scored per inning with a standard error of 0.027. The individual estimate of Anaheim's mean runs scored is $y_j = 0.500$ and the combined estimate is given by $\hat{\theta}^C = \hat{\mu} = 0.461$. The improved multilevel estimate of Anaheim's mean is given by

$$\hat{\theta}_{ANA}^{ML} = \frac{1/0.027^2}{1/0.027^2 + 1/0.045} \, 0.500 + \frac{1/0.045}{1/0.027^2 + 1/0.045} \, 0.461 = 0.490$$

Here the multilevel estimate of Anaheim mean shrinks the individual estimate 26% towards the combined estimate. Across all teams, the median shrinkage is 23%. Since this is a relatively small value, this indicates that there are meaningful differences in run scoring between the 30 teams in this season.

2.2 Estimating collections of multinomial data

A related problem is estimating a multinomial population. Suppose we classify data into k bins and observe the vector of frequencies $W = (w_1, ..., w_k)$. The vector W is assumed to have a multinomial distribution with sample size $N = w_1 + ... + w_k$ and probability vector $p = (p_1, ..., p_k)$, where p_j represents the probability that an observation falls in the jth bin. In our setting, we classify the number of runs scored in an inning in the five bins 0, 1, 2, 3, and 4 or more runs, and the frequencies $w_1, ..., w_5$ represent the number of innings where a particular team scores the different number of runs.

This type of multinomial data on runs scored is collected for each of the 30 baseball teams. Let $W^1, ..., W^{30}$ denote the vectors of frequencies of runs scored for the 30 teams. We assume the vector for the jth team W^j is multinomial with probability vector p^j . We are interested in estimating the probability vectors $p^1, ..., p^{30}$. As in the population means case, we can consider individual, combined, and multilevel estimates for the probability vectors.

Individual estimates

Suppose we use the data from only the jth team to learn about its run scoring tendencies. Then the probabilities of falling in the different run groups are estimated by the individual estimates:

$$\hat{p}^{Ij} = (\hat{p}_1^j, ..., \hat{p}_k^j) = \left(\frac{w_1^j}{N^j}, ..., \frac{w_k^j}{N^j}\right),$$

where $w_1^j, ..., w_k^j$ are the bin counts for the jth team and N^j is the number of innings for the jth team.

Combined estimates

Instead, suppose we assume that the probabilities of falling in the different runs group are the same for all teams; that is, $p^1 = \dots = p^{30}$. Then we can estimate each team's probability vector by the combined estimate

$$\hat{p}^{C} = (p_{1}^{C}, ..., \tilde{p}_{k}^{C}) = \left(\frac{\sum w_{1}^{j}}{\sum N^{j}}, ..., \frac{\sum w_{k}^{j}}{\sum N^{j}}\right).$$

Here we are pooling the bin counts for all teams to get the probability estimate for a particular bin.

Multilevel estimates

We wish to get improved estimates at the team probability vectors $p^1, ..., p^{30}$ that compromise between the individual estimates and the combined estimates. This is accomplished by means of the following multilevel model. We assume that the unknown probability vectors $p^1, ..., p^{30}$ are a random sample from a Dirichlet distribution with mean vector η and precision K with density proportional to

$$g(p) \propto \prod_{j=1}^{30} p_j^{K\eta_j - 1},$$

where $\eta = (\eta_1, ..., \eta_{30})$. The parameters η and K are assigned vague prior distributions.

One fits this multilevel model to the observed count data and one obtains estimates at K and η – call them \hat{K} and $\hat{\eta}$. The estimate $\hat{\eta}$ is approximately the combined estimate \hat{p}^C . Then the multilevel estimate at the probability vector of team j is given by

$$\hat{p}_{ML}^{j} = \frac{N_{j}}{N_{j} + \hat{K}} \ \hat{p}^{j} + \frac{\hat{K}}{N_{j} + \hat{K}} \ \hat{\eta}.$$

As anticipated, the multilevel model estimate for the probability vector of team j is approximately a weighted average of the individual estimate \hat{p}^j and the combined estimate \hat{p}^C . The weights depend on the ratio of the precision parameter estimate \hat{K} and the multinomial sample size N_j . We will illustrate the application of this model in simultaneously estimating the run-scoring distributions of the 30 teams in Section 3.3. (An early use of this Dirchlet distribution in modeling is given in [6] and a good survey of smoothing estimates for multinomial data is provided in [13].)

2.3 Groups of ordinal multinomial data with regression

Ordinal logistic regression

Suppose one observes the vector of run frequencies $w = (w_1, ..., w_k)$ which is multinomial with probability vector $p = (p_1, ..., p_k)$. The categories 1, ..., k are ordinal – in our setting, these categories will be "0 runs", "1 run", "2 runs", etc. Define the probability

$$\theta_c = p_c + \dots + p_k$$

which represents the probability of scoring at least c runs. The odds of scoring at least c runs is given by

 $odds = \frac{\theta_c}{1 - \theta_c}.$

Suppose one observes a variable x that influences the run-scoring probabilities p. The ordinal logistic model (see [10] and [7]) says that the log of the odds of scoring at least c runs is a linear function of x. This model is written as

$$\log\left(\frac{\theta_c}{1-\theta_c}\right) = \gamma_c + x\beta,$$

where γ_c and β are unknown parameters. A unit increase in the covariate x results in the log odds of scoring c or more runs to be increased by β . By taking the exponential of both sides, this model can be written in the "proportional odds" form:

$$\frac{\theta_c}{1 - \theta_c} = \exp\left(\gamma_c + x\beta\right).$$

For each unit increase in the variable x, the odds of scoring at least c runs will increase by a factor of $\exp(\beta)$. This proportional odds model has the special property that the odds of scoring c or more runs will increase (with a unit increase of x) by a factor of $\exp(\beta)$ for all values of c. We illustrate this basic ordinal regression model in comparing the run-scoring distributions of the NL and AL in Section 3.2.

Ordinal logistic regression over groups

As a more general set-up, suppose we observe run-scoring frequencies for N=30 teams, where the frequencies for the *j*th team w^j is multinomial with probability vector $p^j = (p_1^j, ..., p_k^j)$. With the same covariate x, we fit the ordinal logistic model to w^j of the form

$$\log\left(\frac{\theta_c^j}{1-\theta_c^j}\right) = \gamma_c^j + x\beta_j,$$

where $\theta_c^j = p_c^j + ..., p_k^j$. In our setting, the regression coefficient β_j represents the additive increase in the logit of scoring at least c runs for the j team for each unit increase in x, and $\exp(\beta_j)$ represents the multiplicative increase in the odds of scoring c or more runs. After performing separate fits of the ordinal model to the run-scoring data for each of the N teams, we obtain the estimates $\hat{\beta}_1, ..., \hat{\beta}_N$ with associated standard errors $\sigma_1, ..., \sigma_N$.

One can now use the estimation of separate means methodology of Section 2.1 to get improved (multilevel) estimates at the regression effects. The true regression effects $\beta_1, ..., \beta_N$ are given a normal distribution with mean μ and standard deviation τ , we place vague priors on μ and τ . Improved estimates are provided by fitting this multilevel model – the estimates have the general form

$$\hat{\beta}_{j}^{ML} = \frac{1/\sigma_{j}^{2}}{1/\sigma_{i}^{2} + 1/\hat{\tau}^{2}} \,\hat{\beta}_{j} + \frac{1/\hat{\tau}^{2}}{1/\sigma_{i}^{2} + 1/\hat{\tau}^{2}} \,\hat{\mu}.$$

These multilevel estimates $\{\hat{\beta}_j^{ML}\}$ adjust the individual estimates $\{\hat{\beta}_j\}$ towards a combined estimate $\hat{\mu}$. As will be seen in a later section, the degree of adjustment depends on the sizes of the estimate of the standard deviation of the true effects $\hat{\tau}$ relative to the size of the standard error estimates $\{\sigma_j\}$.

3 League and Team Differences in Scoring

3.1 Run scoring of all teams in 2013 season

We begin by collecting in Table 3 the runs scored for all complete innings (three outs) in the 2013 season. Since scoring five or more runs in an inning is relatively

Table 3: Frequency table of runs scored for all complete innings in 2013 season.

Runs	Count	Runs	Count
0	32315	6	81
1	6400	7	38
2	2899	8	14
3	1254	9	4
4	584	10	1
5	207	11	1

rare, Table 4 collapses the data from Table 3 by combining the counts of runs four or greater into the class "4+".

Table 4: Counts and percentages of inning runs scored with the new category "4+".

Runs	0	1	2	3	4+
Count	32315	6400	2899	1254	930
Percentage	73.80	14.60	6.60	2.90	2.10

3.2 Logits and comparing scoring of the NL and AL

To motivate our general approach, a useful reexpression of a proportion p is the logit $L = \log\left(\frac{p}{1-p}\right)$. For example, using data from Table 4, the logit of the proportion of innings where at least one run is scored is

$$L = \log\left(\frac{1 - 0.738}{0.738}\right) = -1.036.$$

This particular logit is computed by dividing the data by the breakpoint "0/1 runs" and comparing the proportions of the categories "1 or more runs" and "0 runs". In a similar way, one can divide the data by each of the breakpoints "1/2 runs", "2/3 runs", and 3/4+ runs" and compute the logits of the resulting proportions. If we do this for all breakpoints, Table 5 is obtained.

Table 5: Logits of runs scored for all breakpoints

Breakpoint	0/1 runs	1/2 runs	2/3 runs	3/4 + runs
Proportion scoring "large" runs	0.262	0.116	0.050	0.021
Proportion scoring "small" runs	0.738	0.884	0.950	0.979
$Logit = log \frac{Proportion large}{Proportion small}$	-1.036	-2.031	-2.944	-3.842

Logits are useful in comparing groups of ordinal data such as runs scored. To illustrate, suppose we want to compare the runs scored per inning of National and American League teams in the 2013 season. First we obtain the counts of runs scored by the two leagues as displayed in Table 6. Each row of counts of the table is converted to proportions, and then logits are computed using each of the four breakpoints. The logits for each league are displayed in Table 7 and the "Difference" row gives the difference in the logits for the two leagues.

An ordinal regression model is a useful way to summarize the relationship seen in Table 7. If θ_c is the probability of scoring at least c runs, then the model is

$$\log\left(\frac{\theta_c}{1-\theta_c}\right) = \gamma_c + x\beta,$$

where the $\{\gamma_c\}$ are parameters defining the cutpoints of the probabilities of scoring on the logit scale, x indicates the league (x = 1 if AL and x = 0 if NL), and β is

Table 6: Runs scored per inning by the American and National Leagues in the 2013 season

Runs	0	1	2	3	4+
American League	15963	3246	1497	654	500
National League	16352	3154	1402	600	430

Table 7: Logits of runs scored for all breakpoints for the two leagues

Breakpoint	0/1 runs	1/2 runs	2/3 runs	3/4 + runs	Median
American League	-0.996	-1.980	-2.887	-3.755	
National League	-1.074	-2.082	-3.011	-3.912	
Difference	0.078	0.102	0.124	0.157	0.113

the increase in the log odds of scoring c runs or more for the AL league. If we fit this model to the 2013 run scoring data, we obtain the estimates

$$\hat{\gamma}_1 = -0.994, \hat{\gamma}_2 = -1.990, \hat{\gamma}_3 = -2.907, \hat{\gamma}_4 = 3.790, \hat{\beta} = 0.0822.$$

Note that the estimates of γ_c are approximately equal to the logit values given in Table 7. Due to the designated hitter, more runs are scored by American League teams and the size of this effect is measured by the coefficient estimate $\hat{\beta}$. On the logit scale, the the probability an American League team scores a large number of runs is 0.0822 greater than the probability a National League team scores a large number of runs. There is a nice approximation for differences in logits – for small values of x, an increase of x on the logit scale is approximately a $100 \times x$ percentage increase on the probability scale. Here a logit increase of 0.0822 is equivalent to a 8.22% increase in the probability, so in the 2013 season, the probability an American League team scores a large number of runs is 8.22% greater than the probability a National League team scores a large number of runs.

To gain some historical perspective on the run-scoring advantage of the American League, this ordinal regression model was fit for each of the 16 seasons 1998 through 2013. Figure 1 displays a graph of the AL advantage (on the logit scale) against season. It is interesting to note that there is substantial variability in the AL advantage – for example the advantage was 0.121 in 1998 and decreased sharply to 0.019 in 2007. But there is no clear pattern in the changes in AL advantage over this time period. Generally, on the logit scale, the probability an AL team scores a large number of runs is about 0.06 larger than the probability a NL team scores a large number of runs.

Figure 1: American League run-scoring advantage over the National League for the seasons 1998 to 2013, the advantage is the estimate of the parameter β in the fit of the original regression model. A smoothing curve indicates that the American League advantage in scoring runs has remained pretty constant over this time intervals.

3.3 Comparing scoring of teams

How does run scoring vary across teams? If we break down this runs table by the batting team in Table 8, we see some interesting variation in runs scored. If one looks at the percentage of big innings (four runs or more), Boston's percentage of big innings is 3.2, contrasted with Miami's percentage of 1.4. Boston's percentage of scoreless innings is 68.9, while the New York Mets were scoreless in 75.8 percent of their innings.

The logit approach described in Section 3.1 is used to facilitate comparisons in team scoring. Logits were computed for each team using the four breakpoints. For example, for Philadelphia, we computed the four logits

$$\log\left(\frac{P(1+\mathit{runs})}{P(0\mathit{runs})}\right), \log\left(\frac{P(2+\mathit{runs})}{P(0,1\mathit{runs})}\right), \log\left(\frac{P(3+\mathit{runs})}{P(0,1,2\mathit{runs})}\right), \log\left(\frac{P(4+\mathit{runs})}{P(0,1,2\mathit{runs})}\right)$$

To help in interpretation, the collection of logits for each team was converted to a residual by subtracting the MLB logits found in Table 5, and the team logit residuals are displayed in Figure 2. Teams with lines above the horizontal line at zero represent above-average scoring teams. The run scoring for most of the teams fall within 0.1 (on the logit scale) of the average. Note that some of the team lines are not monotone which indicate the presence of some chance variability in these run scoring estimates.

Figure 2: Logit run scoring estimates for all teams. A team's residual logits were obtained by subtracting the overall logits.

3.4 Multilevel modeling of team run distributions

Since there appears to be chance variability in the estimates of run scoring for the individual teams, there may be some advantage to estimating the run scoring distributions simultaneously using a multilevel model. The exchangeable model of Section 2.2 is fit to the run distributions for the 30 teams. The estimate of the smoothing parameter K is 1973. Most teams play close to the median number of innings 1457. So the size of the shrinkage of the individual estimates towards the combined estimate is

$$\frac{1973}{1973 + 1457} = 0.57.$$

The multilevel estimates shrink the observed percentages approximately 57% towards the combined estimate. Figure 3 displays the logit reexpression of these multilevel estimates. We see these multilevel estimates adjust the individual estimates towards the combined estimate represented by the horizontal line at zero. One attractive feature of these estimates is that they remove some of the non-monotone behavior of the individual estimates that we saw in Figure 2.

4 Covariate Effects

4.1 General method

Section 3 introduced the use of logits in the comparison of run-scoring distributions. To explore the effect of specific covariates like home/away, pitcher quality, and clutch hitting on scoring, we fit the general ordinal logistic model of the form

$$\log\left(\frac{\theta_c}{1-\theta_c}\right) = \gamma_c + x\beta,$$

where θ_c is the probability of scoring at least c runs, and x is the covariate of interest (either of the categorical or measurement type). To understand how the covariate influences run scoring for all MLB teams, we use the following two-step modeling approach.

- 1. The ordinal logistic model is first fit separately to run-scoring data for each of the 30 teams. One obtains the regression effects $\hat{\beta}_1, ... \hat{\beta}_{30}$ with associated estimated standard errors $\hat{\sigma}_1, ... \hat{\sigma}_{30}$.
- 2. The multilevel exchangeable model in Section [3] is used to simultaneously estimate the regression effects. We assume the estimated covariate effect $\hat{\beta}_j$ is normal with mean β_j and standard error $\hat{\sigma}_j$. Once the estimates $\hat{\beta}_1, ... \hat{\beta}_{30}$ are computed, we are interested in simultaneously estimating the set of true

Figure 3: Logit run scoring estimates for all teams using a multilevel model. The residual logits were obtained by subtracting the overall logits.

effects $\beta_1, ..., \beta_{30}$. The improved estimate of the covariate effect for the jth team is a compromise between the individual estimate $\hat{\beta}_j$ and a combined estimate $\hat{\beta}^C$. The size of the shrinkage of the individual estimates towards the combined estimate depends on the size of $\hat{\tau}$, the spread of the true effect $\{\beta_j\}$.

4.2 Home versus away effects

To consider a team's scoring advantage of playing at home, write the logit of the probability of scoring at least c runs by

$$\log\left(\frac{\theta_c}{1-\theta_c}\right) = \gamma_c + HOME \times \beta,$$

where the variable HOME is equal to 1 if the team is playing at home, and HOME = 0 otherwise. If one computes the difference in the logits of the probability of scoring at least c runs at home θ_c^H , and away θ_c^A , one obtains

$$\log\left(\frac{\theta_c^H}{1-\theta_c^H}\right) - \log\left(\frac{\theta_c^A}{1-\theta_c^A}\right) = \beta,$$

or

$$\left(\frac{\theta_c^H}{1-\theta_c^H}\right)/\left(\frac{\theta_c^A}{1-\theta_c^A}\right) = \exp(\beta).$$

This ordinal regression model is initially fit to run-scoring data for all teams in the 2013 season and one obtains the covariate estimate $\hat{\beta} = 0.032$. The interpretation is that the ratio of the odds of scoring at least c runs at home and away is equal to $\exp(0.032) = 1.032$. Specifically, the probability that a team scores at least one run in an inning is increased by 3% at home, the probability a team scores at least two runs in an inning is increased by 3%, and so on.

Since ballparks are known to have a significant impact on scoring, it is natural to fit this home/away model for each of the 30 teams. Figure 4 displays the individual estimates of the parameters $\beta_1, ..., \beta_{30}$ as black dots where the endpoints of the bars correspond to the estimates plus and minus the standard errors. As expected, the individual home/away estimates show substantial variability from the New York Mets ($\hat{\beta}_j = -0.31$) to the Colorado Rockies ($\hat{\beta}_j = 0.52$).

Next we apply the multilevel model of Section [3] to simultaneously estimate the 30 home effects $\beta_1, ..., \beta_{30}$. One obtains the multilevel estimates $\hat{\mu} = 0.071$ and $\hat{\tau} = 0.114$. The estimate $\hat{\mu}$ represents an average ballpark effect and $\hat{\tau}$ is an estimate at the spread of the true ballpark effects. Here the multilevel model estimates of $\{\beta_j\}$ shrink the individual estimates 52% of the way towards the combined estimate $\hat{\mu}$. The red bars in Figure 4 show the posterior means plus

Figure 4: Individual and multilevel home field run effects for all teams. The black line represents the individual estimate plus and minus the standard error and the red line represents the multilevel estimate plus and minus the standard error.

and minus the posterior standard deviations. Since the size of the shrinkage is relatively small, this indicates that there is sizeable variation between the true home park effects.

4.3 Pitcher effects

The same ordinal regression approach can to be used to learn about the pitcher effect on team run-scoring. The logit of the probability of scoring at least c runs in a half-inning is given by

$$\log\left(\frac{\theta_c}{1-\theta_c}\right) = \gamma_c + PITCHER \times \beta,$$

where the variable PITCHER is a measure of the quality of the pitcher who starts to pitch the half-inning.

The challenge in this approach is to find a good measure of pitcher quality. Many pitchers are of the relief type with a small number of plate appearances, and the measurements of pitcher quality typically show high variability. We use a multilevel model approach to obtain improved estimates of pitcher quality and these improved estimates are used as covariates in the ordinal model for run scoring.

To begin, we use a run value approach illustrated in [4], [8], and [14] to measure the quality of all pitchers who played in the 2013 season. For each plate appearance, we measure the run value as

RUNS = Run Potential after PA - Run Potential before PA + Runs Scored,

where the run potential values come from the runs expectancy matrix (see Table 1) using 2013 season data. For the jth pitcher in the 2013 season, we compute the mean run value \bar{y}_j and the number of PA's n_j . We assume that \bar{y}_j is approximately normally distributed with mean μ_j and standard error $\sigma/\sqrt{n_j}$, where σ is estimated using all of the run values for the season. If we have N pitchers, then we estimate the population means $\mu_1, ..., \mu_N$ by use of an exchangeable multilevel model (see Section 2) and the corresponding multilevel estimates $\hat{\mu}_1, ..., \hat{\mu}_N$ are used as surrogates for the qualities of the N pitchers in the ordinal regression model.

Figure 5 displays a histogram of the run value measures of the 679 pitchers in the 2013 season. These multilevel estimates shrink the individual mean run value estimates towards the overall value, the degree of shrinkage depending on the number of batters faced. For pitchers who faced fewer than 100 batters, the shrinkage exceeds 80%; for a starter facing 900 batters, the shrinkage was only 35%. In this particular season, Clayton Kershaw stands out with a run value

Figure 5: Histogram of abilities of all pitchers in 2013 season.

measure of -0.036 – since he faced 934 batters, he saved $934 \times -0.036 = -33.6$ runs during the 2013 season.

If the ordinal regression model with pitcher quality covariate is fit to data for all teams, one obtains the estimate $\hat{\beta} = 19.51$. The standard deviation of all pitcher abilities is 0.012. So if the pitcher's ability measure is increased by one standard deviation, one predicts a team's log odds of scoring runs to increase by $19.51 \times 0.012 = 0.23$.

By fitting the multilevel ordinal regression model, we learn about the pitcher effects for all 30 teams. Figure 6 displays individual (team) effects by black bars and the multilevel model estimates are displayed by red bars. The individual estimates show substantial variation. For example, Seattle's regression coefficient is $\hat{\beta}_j = 9.84$ and Philadelphia's coefficient is $\hat{\beta}_j = 28.24$, indicating that the Phillies were much more able to take advantage of poor pitching than Seattle in the 2013 season. The multilevel estimates in this case shrink the individual estimates about 76% towards the average value. Seattle and Philadelphia's pitcher effects, under the multilevel model, are corrected to 16.85 and 21.05, respectively.

Figure 6: Individual and multilevel pitcher effects for all teams. The black line represents the individual estimate plus and minus the standard error and the red line represents the multilevel estimate plus and minus the standard error.

4.4 Advancing baserunners home (clutch effects)

Run scoring generally is viewed as a two-step process. A team places runners on bases and then these runners are advanced to home. There is a special focus in the media on advancing runners who are in scoring position (on second and third base). One commonly hears about the number of runners left on base and the proportion of runners in scoring position who score. Do teams really differ in their abilities to advance runners from scoring position?

To address this clutch hitting question, an ordinal regression model is constructed. For each half-inning, one records the total number of (unique) runners SP who are in scoring position (either on second or third base) and the number of these runners R who eventually score. (Note that R can be smaller than the number of runs that score in the half-inning since runners who score don't need to be in scoring position.) As before, we classify R into the categories 0, 1, 2, 3, and "4 or more", and consider the ordinal regression model

$$\log\left(\frac{\theta_c}{1-\theta_c}\right) = \gamma_c + SP \times \beta,$$

where θ_c is the probability that R is at least c. This model is first fit to data for all teams. One obtains the estimate $\hat{\beta} = 2.395$ which indicates that for each additional runner in scoring position, the log odds of scoring runs is increased by 2.395.

To see how this clutch hitting statistic varies between teams, this ordinal regression model was fit separately for all teams. Anaheim and the New York Mets had the smallest and largest regression estimates of $\hat{\beta}_j = 2.19$ and $\hat{\beta}_j = 2.60$, respectively. This indicates that the Mets were the best team in baseball in 2013 from a clutch-hitting perspective and Anaheim was the worst. However, when we use the multilevel model to simultaneously estimate the true clutch regression coefficients for all teams, we learn that this observed variability in clutch measures is primarily due to chance. Figure 7 displays the individual and multilevel clutch estimates for all teams. Here the shrinkage is about 93% and we see that the individual clutch estimates are shrunk almost entirely towards the common value in the multilevel model fit. The interpretation is that although teams obviously have different abilities to score runs, teams appear to have similar abilities to advance runners in scoring position.

5 Summary and Concluding Comments

The primary objective of this work is to provide a better understanding of the run-scoring patterns in Major League Baseball. Instead of focusing on the mean

Figure 7: Individual and multilevel clutch effects for all teams. The black line represents the individual estimate plus and minus the standard error and the red line represents the multilevel estimate plus and minus the standard error.

number of runs scored in a half-inning, we focus on the probability distribution of runs scored. We are interested in how this run-scoring distribution varies among teams and the effect of various covariates such as the ballpark, pitcher/defense, and clutch situations.

The primary method is ordinal regression of the multinomial run-scoring outcome and the use of multilevel modeling to estimate run-scoring over different groups. One finding is that there are some covariates such as ballpark where there are clear team-specific run-scoring advantages. This is not surprising since it is well-known that Coors Field (home of Colorado Rockies) is very advantagous for run-scoring and other parks such as Citi Field (home of the New York Mets) are more restrictive for scoring runs. But there are other covariates such as clutch-hitting where there are little differences between teams in scoring runs. It should be clarified that we do observe differences in teams' advancing runners in scoring position, but there is little evidence to suggest that teams have different clutch-hitting abilities. If the media understands this conclusion, then there would be less discussion about teams' batting performances when runners are in scoring position.

One possible generalization of this approach is to model run-scoring of all teams by a large ordinal regression model where one includes all covariates that one believes have an impact on run scoring. Using our general notation, one can write the ordinal logistic model as

$$\log\left(\frac{\theta_c^j}{1-\theta_c^j}\right) = \gamma_c^j + x_1\beta_{j1} + \dots + x_k\beta_{jk},$$

where θ_c^j represents the probability of scoring at least c runs for the jth team, $x_1, ..., x_k$ represent k possible covariates (such as league, ballpark, and pitcher quality), and $\beta_{j1}, ..., \beta_{jk}$ represent the regression effects for the jth team. In the multilevel modeling framework, one could assign $\gamma_c^1, ..., \gamma_c^N$ a common multivariate normal distribution, and likewise assume each of the sets of team covariate effects $\{\beta_{jk}, j=1,...,N\}$ come from a common normal distribution. This model is more complicated to fit due to the large number of unknown parameters, but it would accomplish the same smoothing effect as demonstrated in this paper. Team scoring distributions would be shrunk towards an overall scoring distribution – this is accomplished by the common multivariate normal distribution played on the bin cutpoint parameters γ_c^j . In a similar fashion, team effects for a particular covariate such as pitcher quality would be shrunk or moved towards a common covariate effect. This particular approach is promising and can help us better understand relevant covariates that affect run scoring.

References

- [1] James Albert. Pitching statistics, talent and luck, and the best strikeout seasons of all-time. *Journal of Quantitative Analysis in Sports*, 2(1):2, 2006.
- [2] Jim Albert. A batting average: does it represent ability or luck? Technical report, Working Paper, 2004.
- [3] Jim Albert. Is roger clemens' whip trajectory unusual? *Chance*, 22(2):8–20, 2009.
- [4] Jim Albert and Jay Bennett. Curve Ball. Springer, 2003.
- [5] Bradley Efron and Carl Morris. Data analysis using stein's estimator and its generalizations. *Journal of the American Statistical Association*, 70(350):311–319, 1975.
- [6] Irving John Good. A bayesian significance test for multinomial distributions. Journal of the Royal Statistical Society. Series B (Methodological), pages 399–431, 1967.
- [7] Valen E Johnson and James H Albert. Ordinal Data Modeling. Springer, 1999.
- [8] Jonah Keri and Baseball Baseball Prospectus. Baseball Between the Numbers: Why Everything You Know About the Game is Wrong. Basic Books, 2007.
- [9] George R Lindsey. An investigation of strategies in baseball. *Operations Research*, 11(4):477–501, 1963.
- [10] Peter McCullagh. Regression models for ordinal data. *Journal of the Royal Statistical Society, Series B*, 42(2):109–142, 1980.
- [11] Carl N Morris. Parametric empirical bayes inference: theory and applications. Journal of the American Statistical Association, 78(381):47–55, 1983.
- [12] Bernard Rosner, Frederick Mosteller, and Cleo Youtz. Modeling pitcher performance and the distribution of runs per inning in major league baseball. The American Statistician, 50(4):352–360, 1996.
- [13] Jeffrey S Simonoff. Smoothing categorical data. *Journal of Statistical Plan*ning and Inference, 47(1):41–69, 1995.
- [14] Tom M Tango, Mitchel G Lichtman, and Andrew E Dolphin. *The book:* playing the percentages in baseball. Potomac Books, Inc., 2007.

- [15] John Thorn, Pete Palmer, and David Reuther. The Hidden Game of Baseball: A Revolutionary Approach to Baseball and Its Statistics. Doubleday Garden City, New York, 1984.
- [16] Keith Wollner. An analytic model for per-inning scoring distributions. *Base-ball Prospectus*, 2000.

Table 8: Percentages of different inning runs scored for all teams in the 2013 season.

	BAT_TEAM	R0	R1	R2	R3	R4
1	ANA	72.4	15.5	6.5	2.8	2.8
2	ARI	74.6	13.1	7.1	3.3	1.9
3	ATL	74.2	13.5	6.9	2.9	2.5
4	BAL	71.1	16.0	7.2	3.4	2.3
5	BOS	68.9	15.9	7.9	4.1	3.2
6	CHA	75.7	14.2	6.4	2.0	1.6
7	CHN	76.3	12.9	6.3	2.7	1.7
8	CIN	72.7	16.2	6.2	2.7	2.2
9	CLE	71.4	15.4	7.4	3.5	2.4
10	COL	72.4	15.1	7.0	3.4	2.1
11	DET	72.0	13.6	7.4	3.4	3.5
12	HOU	76.7	13.0	5.3	3.2	1.8
13	KCA	74.4	14.0	5.6	3.4	1.9
14	LAN	73.2	15.3	7.5	2.3	1.7
15	MIA	79.1	12.5	4.9	2.2	1.4
16	MIL	74.6	14.4	6.6	2.5	1.9
17	MIN	74.6	15.2	6.0	2.7	1.5
18	NYA	74.6	14.2	6.1	2.9	2.2
19	NYN	75.8	13.6	6.3	2.5	1.7
20	OAK	72.0	14.4	7.9	2.6	3.1
21	PHI	75.6	13.8	6.5	2.1	1.9
22	PIT	74.4	15.4	5.8	2.6	1.8
23	SDN	74.8	15.1	5.7	2.5	1.8
24	SEA	74.6	14.7	6.9	2.2	1.6
25	SFN	74.6	14.9	5.6	3.4	1.6
26	SLN	71.6	15.5	6.8	3.0	3.2
27	TBA	71.9	16.1	7.2	2.9	1.8
28	TEX	72.5	14.8	7.6	2.6	2.5
29	TOR	72.4	14.8	7.4	3.2	2.2
30	WAS	74.1	14.4	6.7	3.0	1.9