

FairStorage

Demand Forecasting

Ahmed Fedi Lassoued
Daniel Lim
Tristan Koh
Vasu Namdeo
Zen Goh

01

Executive Summary

Executive Summary

TASK

Ensure that enough stock is available to meet forecasted demand

ISSUE

Data is profuse, difficult to parse out real granular trends

SOLUTION

Use Computational Methods to aid in Time Series Forecasting

02

Exploratory Data Analysis

Structure of Data

```
30490 Total records
```

3049 Items

1919 Days

10 Different stores

- 3 Categories of items (beauty, cleaning, food)
- Subcategories of items (beauty1-2, cleaning1-2, food1-3)
- 3 Different regions (east, central west)

Prices – Initial Observations

Gradual increase of prices for beauty and food Slight decrease for prices of cleaning products

Increase of overall prices
Lack of any obvious trend across months

Prices – Increasing Prices (by Region)

Difference between the regions becomes smaller in recent years

Orders – Increasing Demand

Note the outliers, occurring near the end of every calendar year

Orders – Single Peak Trend

2011 stands as the only exception, unlikely for trend to reoccur

Volatility from Apr - Jun

Orders – Significant Seasonal Trend by Week

Sales are high on the weekends, decrease by a decreasing amount over the weekdays and begin to rise back up Thursday onwards

Orders — **Decomposition Plot**

Seasonality

Indicates strong cycles or seasonality in the data

Residuals

Variance does not change much over the years

Stationarity — ADF v KPSS

Non-stationary

p-value = 0.48 > 0.05Not statistically significant

KPSS Results of KPSS Test: Test Statistic 6.443358 0.010000 p-value Lags Used 20.000000 Critical Value (10%) 0.347000 Critical Value (5%) 0.463000 Critical Value (2.5%) 0.574000 Critical Value (1%) 0.739000

Non-stationary

p-value = 0.01 < 0.05 Statistically significant

Reject null hypothesis of stationary

Cannot reject null hypothesis of non-stationary

Stationarity – Lag Plots

Stationarity — ACF & PACF

7-Day Seasonality

Proceed with Differencing

Stationarity – Differenced ADF v KPSS

Stationary

p-value = 0.00 < 0.05 Statistically significant

Reject null hypothesis of non-stationary

Stationary

p-value = 0.10 > 0.05 Not statistically significant

Cannot reject null hypothesis of stationary

03

Best Approach

Modelling Overview

Selection of Window Average

	RMSE
Naive Model	4.61
Seasonal Naive Model	4.80
Window Average Model	4.49
Seasonal Window Average Model	4.70

Optimizing Lengths for Window Average

In order to expedite the fine tuning process, created our own 80-20 train test split by taking all days before 29 Jan 2015 as the training set and days after as the test set.

04

Alternative Modelling

Error Trend Seasonality Model

Assessed RMSE on Kaggle for 3 ETS methods

Best performing model

Holt-Winters' Seasonality model; ETS(A,A,A)

3rd Place in Score

(S)ARIMA

We used the "from pmdarima.arima import auto_arima" which optimizes given an information criterion and provides the most optimal order of difference(d), and hyper-parameters, (p) and (q).

Since we detected seasonality, we attempted SARIMA as well

4th Place in Score

ARIMA

We first applied ARIMA on the average units sold
Then, we aggregated per category; found new & better predictions
Next, we repeated the last step for subcategories
Finally, we did the same for stores
With each new iteration, we found better and better result

4th Place in Score

ML Approach - Overview

The technical process for ML predictions was to

- 1) Restructure train.csv to long form data
- 2) Select 1% of records randomly (462K datapoints)
- 2) Manipulate the data to introduce new time-based and price features
- 3) Fit an LGBM model

ML Approach – Negative Correlation of Price and Sales

Price should be included as a feature in our model

$$Corr = -0.15$$

ML Approach – Feature Engineering

Date features such as day of the year, week of the month etc.

Price lags up to 7 days

ML Approach — Fit and Result

Obtain LGBM Model by training on 1% of the data for computational efficiency

Testing on 20%: RMSE of 3.87

Forecasted last 21 days of test set: RMSE of 2.01

05 Limitations

Dynamic Time Wrapping

Why DTW?
Matching Time Series

Issues faced? Volume of data

Clustering

Attempting Dynamic Time Wrapping Clustering

Clustering based on existing labelled categories

Next steps applying hierarchical clustering

Trying ETS performance on labels

Using ETS on subcategories performs well for some categories

Here the prediction is performing well for Beauty_2, Food_1, and Food_2
This is applying Beauty_1 on the rest

Computational Limitations

The absolute size of this data set makes it difficult to conduct comprehensive modelling techniques

ML Specific

Data could be subset by time instead of randomly selected

More feature engineering could be done: Price data, time lags and rolling window

Group by different subsets to train separate models (e.g. store, categories etc.)

06

Business Insights

Weekly Trend By Category

Monthly Trend By Category

Weekly Trend per Region

Monthly Trend per Region

Insights from Best Method

The Window Average method forecasted a standard output for each item across the 21 days

Stores can either maintain sufficient stocks as predicted, or adjust their pricing strategies according to the forecasted demand to drive orders toward or away accordingly

Scalable and computationally efficient

Demand Forecast

	id	d_1920	d_1921	d_1922	d_1923	d_1924	d_1925	d_1926	d_1927	d_1928	 d_1936	d_1937	d_1938	d_1939	d_1940
14	Beauty_1_015_East_1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3063	Beauty_1_015_East_2	8	8	8	8	8	8	8	8	8	8	8	8	8	8
6112	Beauty_1_015_East_3	6	6	6	6	6	6	6	6	6	6	6	6	6	6
9161	Beauty_1_015_East_4	3	3	3	3	3	3	3	3	3	3	3	3	3	3
12210	Beauty_1_015_Central_1	3	3	3	3	3	3	3	3	3	3	3	3	3	3
15259	Beauty_1_015_Central_2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
18308	Beauty_1_015_Central_3	5	5	5	5	5	5	5	5	5	5	5	5	5	5
21357	Beauty_1_015_West_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
24406	Beauty_1_015_West_2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
27455	Beauty_1_015_West_3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Utility of Demand Forecast

Remain competitive and attract more customers where needed

Improve store operations and customer experience -> Increased customer loyalty

Providing the right products and services at the right time

