

Getting Started with OSK's

Mission Flight Software

These are a collection of notes that will be transformed into a document in OSK v3.2

OSK v3.1

- 1. System Engineering Introduction
- 2. Apply System Engineering Development Processes
- 3. Apply System Engineering V&V Processes

Introduction (1 of 2)

Spacecraft FSW development phases

Mission FSW Development Flow

Mission Concept System Analysis

Subsystem

Development

Spacecraft Integration

Operations

FSW Systems Engineering Process

Generic Spacecraft Model

SimSat Reference Mission

Mission Inputs

- Workbook style documentation steps users through FSW system engineering (SE) topics
- Applications addressed in small groups that collaborate to provide end-user functionality

Page 5
Mission FSW Quick Start Guide

SimSat App Screens

Each functional application group screen uses the following layout

Complete interface to each app

- All commands
- All telemetry packets
- "Display Table" Dump, transfer and display table in COSMOS Table Manager
- "Display File" Issue app's command to create a file, then transfer and display binary file in COSMOS Table Manager

Functional screens combine commands and telemetry from one or more apps that work together to perform a related tasks.

Launch videos, demos (predefined screen sequences) and tutorials (slides and/or scripts)

Use Case #2 – Develop a cFS-based FSW System

Project & **Systems**

- Ops Concept
- Requirement
 - Analysis,
 - Decomposition
 - Allocation
- Build vs Buy

Subsystems

- Refine FSW Requirements
- Develop Algorithms
- Procure HW Components
- Develop Inhouse **HW Components**
- Select & Procure **Processor Board**

FSW Development

FSW-cFS

Integrate & **Verify FSW**

Systems Engineering **Select & Configure cFS Community Apps**

Develop Custom cFS Apps

Develop Custom Platform Software

Port cFE to Processor/OS Spacecraft Integration & Test

Spacecraft Operations

Porting the cFE and Developing Platform Software

- OSK does not currently support platform development activities
- Preliminary plans to create a Code-As-You-Go (CAYG) cFE porting tutorials
 - YouTube video with git repos

FSW-cFS Systems Engineering

"Explore cFS/SimSat" Tab

- 1. SimSat reference mission slides and scripts
- 2. Launch application functional group screen (next slide)

SimSat Overview

Objectives

- SimSat is a fictional spacecraft that provides a reference mission context
- Provide a complete application suite illustrating
 - What apps are required to meet a mission's requirements
 - How they are configured and integrated as a system (not all apps configured yet)
 - Current app suite includes command & data handling (C&DH) apps
- Provide example scripts
 - Integration test script
 - Operational script
- Provide context for training exercises

SimSat is not integrated with the 42-simulator

Closed-loop 42-Simulator example scenario is not related to SimSat

SimSat Application Group Screens

- Each screen highlights the pre-configured SimSat apps that participate in achieving a particular user goal
- Similar organization to the cFE service screens: App ground interface, Functional screen link and a Learn section
- Some demos exist, but not all apps configured for SimSat and no tutorials have been created

File-Data Storage Demo

Developing New Apps

Developing New Apps

- OSK app generator creates "hello world" app source code and COSMOS command & telemetry definition files with templates for
 - 1. cFS User's Guide Style App
 - Design and code according to the cFS Developer Guide
 - 2. OSK Framework App
 - Adhere to cFS API principles but design according to the OSK framework design patterns and coding idioms
- Initial app development often done independent of COSMOS
 - "Hello world" tool useful for learning, but often useful to start with an existing app that has a top-level design close to your needs
 - 42 Interface (I42) and 42 FSW Controller (F42) serve as high level example
- Verify New Apps
 - OSK does not augment cFS' unit testing framework
 - OSK supports functional app testing and system integration testing using COSMOS Script Runner and Test Runner tools
 - Thin integration and functional test infrastructure built on top of COSMOS script API
 - Minimal example tests, more planned

Introduction (2 of 2)

- OSK supports integrating and testing cFS community apps, OSK apps, and user mission-specific apps into a functional FSW system that runs within OSK's software-in-the-loop (SIL) environment
- Nothing precludes OSK from being used in later mission lifecycle phases, however, creating the hardware in-the-loop (HIL) interfaces, developing simulators, and migrating ground system artifacts (if COSMOS is not used) are not covered by OSK.
- These efforts are represented by the gray arrows. The green arrow pointing to the processor card is not within the OSK boundaries because porting the cFE to a hardware platform is not directly covered by OSK, however, a cFS community platform list https://github.com/OpenSatKit/cfs-platform-list is maintained by the OSK project and provides links to cFS porting resources.
- OSK is not required to develop cFS apps, however, note the following
 - You will eventually need a ground interface and test script environment
 - You can leave OSK's SimSat environment and develop new apps in a new mission or target or use OSK's Sandbox target

Mission FSW Systems Engineering Steps

- 1. Create an initial app model from OSK's generic spacecraft model using mission concepts of operations, mission requirements, and the spacecraft hardware architecture often in the form of a block diagram
 - Initial goal is to create a "good enough" architecture based on the maturity of the information at hand
 - Designing FSW is a very iterative process with top-down and bottom-up technical and non-technical forces at work
 - Trades are often made throughout the requirements analysis and spacecraft design phases that impact FSW. These forces are both technical and non-technical concerns may also influence decisions that impact the technical design
- 2. Analyze OSK's SimSat mission app model to understand what capabilities exist within OSK
- 3. Work through system engineering topics and app groups to design new apps and understand how to configure cFS community apps
- 4. Work through spacecraft lifecycle to determine the need for
 - Different versions of apps for different test environments
 - Simulation apps that can serve
- 5. Determine how you want to use OSK in the spacecraft lifecycle
 - Create OSK mission target
 - Plan migration to PIL and other environments
- 6. If OSK will be used in a verification role then develop test artifacts as needed
- Mission FSW Quick Start Guide FSW validation should occur in a high-fidelity test environment

FSW System Engineering Process

OSK Generic Spacecraft Model

OSK Generic Spacecraft Model

- Show how generic model can be tailored for different missions. First focus on CubeSats, larger mission can extrapolate.
- Three main tailoring areas
 - Device I/O
 - Closed loop control needs
 - Mission ops
- **Examples**
 - COTS vs inhouse ADCS
 - Payload control (closed vs open loop) and data management
 - Need for a mission manager app or ACS mode manager type app coupled with autonomy app group to achieve con ops
- In order to work through the steps an example user mission is needed to show how to create a user model and then create a plan for how to migrate from SimSat to the user model needs

System Engineering Topics

- System Engineering topics do not have a one-to-one correlation with app groups
- ConOps, mission requirements, and a hardware block diagram are required inputs
 - This is an iterative process so reapply these inputs
 - Spacecraft lifecycle can be considered a process input and iteratively examined to determine what's needed
- Goal is to manage complexity by working through topics
 - Topics are not 100% orthogonal (non-overlapping)
 - Create a ConOps and show how it impacts different apps groups

SE Topics

- 1. Device I/O
- 2. Close-loop control
- 3. Mission Ops & autonomy
- Data-File management
- Runtime Environment
- 6. FDIR
- 7. Interface & control apps
- Maintenance
- 9. Time
- 10. Parameters and configuration

V&V Topics

- 1. Unit tests
- 2. App functional tests
- . Integration tests
- System and ops tests

Simple Satellite (SimSat)

Default OSK app configuration is for a fictitious satellite called SimpleSat (SimSat)

- The cFS can be used for many different types of embedded systems. A spacecraft was chosen due to the increased usage of the cFS on CubeSats
- SimSat provides a reference mission to provide context to
 - Illustrate what applications are required and how they are configured and integrated as a system to meet the requirements
 - Demonstrate an example integration test script
 - Demonstrate an operational script
- This does not include
 - Porting SimSat to a new platform
 - Integrating hardware devices
- SimSat is a
 - Low Earth Orbit (LEO) satellite with one nadir-pointing science instrument
 - The instrument has
 - A detector that produces 10 bytes of data per second
 - A power the following sequence: Apply power, wait for instrument initialization (~20s), and command to enable science

SimSat Applications (1 of 4)

SimSat Applications (2 of 4)

- The previous slide shows a cFS "bubble" chart where each app is a bubble and they communicate via messages on the software bus.
 - The blue cFS apps are reusable open source apps that are available on https://github.com/nasa/xx where 'xx' is the abbreviated app name
 - The green OSK apps were written specifically for OSK
 - The external COSMOS and 42 interfaces use UDP and TCP respectively
- Apps are designed to perform a dedicated function with clear interfaces and they operate in groups to achieve higher level mission objectives
- Runtime Environment Apps
 - Kit Command Ingest (KIT_CI) receives CCSDS command packets from COSMOS and sends them on the Software Bus
 - Kit Telemetry Output (KIT_TO) reads CCSDS telemetry packets from the Software Bus and sends them to COSMOS
 - **Kit Scheduler (KIT_SCH)** contains tables that define when to send messages on the Software Bus
 - Apps can use these messages to perform synchronous activities, e.g. sending their housekeeping status packet

SimSat Applications (3 of 4)

• Data/File Management

- File Manager (FM) provides a ground interface for performing common directory and file operations
- Data Storage (DS) reads packets from the software bus and writes them to files according to tabledefined
- **Housekeeping (HK)** creates new telemetry packets from pieces of other telemetry packets. The new packets are written to the SB and can be stored and/or telemetered.
- Trivial File Transfer Protocol (TFTP) transfers files between the flight and ground COSMOS. There's an open source CCSDS File Delivery Protocol (CFDP) app that will be added in a future release.

Autonomy

- Limit Checker (LC) monitors one or more telemetry values and start stored command relative time sequences (RTSs) in response to limit violations
- **Stored Command (SC)** Provides services to execute preloaded, table-defined command sequences at predetermined absolute or relative time intervals

SimSat Applications (4 of 4)

Attitude Determination and Control Apps

- **42 Interface (I42)** manages a TCP/IP connection to 42 and transfers actuators/sensor packets to/from 42
- 42 FSW (F42) Implements the "ThreeAxisFsw" attitude control algorithm defined in 42

Maintenance

- **Memory Dwell (MD)** creates telemetry packets containing contents of memory location specified in dwell tables
- Memory Manager (MM) provides read/write access to memory

Health & Safety

- Checksum (CS) monitors checksums across table-defined static code/data regions and reports errors
- Health & Safety (HS) monitors table-defined application check-in and event messages and reporting errors and/or starting a RTS to address the issue

Apply the System Engineering Development Processes

System Engineering Topics

SE Topics

- Device I/O
- Close-loop control
- Mission Ops & autonomy
- Data-File management
- Runtime Environment
- **FDIR**
- Interface & control apps
- Maintenance
- Time
- 10. Parameters and configuration

V&V Topics

- 1. Unit tests
- App functional tests
- Integration tests
- System and ops tests

- 1. What data must be downlinked to meet mission goals?
- 2. What are the contact frequencies, durations, and data rates?
- 3. What parts of operations need to be automated?
- 4. What level of fault detection, isolation, and recovery (FDIR) is necessary?
- Bottom-up
- 1. What processor card is being used and is a realtime operating system required?
- 2. What device interfaces does the FSW need to manage and how are they connected?
- 3. Make versus buy decisions. Some top-down decisions impact bottom-up design.

Page 28
Mission FSW Quick Start Guide

Page 29
Mission FSW Quick Start Guide

SimSat App Screens

Each functional application group screen uses the following layout

Complete interface to each app

- All commands
- All telemetry packets
- "Display Table" Dump, transfer and display table in COSMOS Table Manager
- "Display File" Issue app's command to create a file, then transfer and display binary file in COSMOS Table Manager

Functional screens combine commands and telemetry from one or more apps that work together to perform a related tasks. Launch videos, demos (predefined screen sequences) and tutorials (slides and/or scripts)

App Interactive Resources (1 of 2)

- 1. Launch Data/File Management Screen from OSK main screen
- 2. Access FM commands, telemetry, tables, files and users guide.

App Interactive Resources (2 of 2)

App System Scripting Resources

4# This script configures SimSat to illustrate

5# as a system to meet mission operational ob

8 # grouped screen.

6# very simple. The descriptions in this script are kept to a hi 7# more details can be found in the tutorials in each simsat fun

Ops Example use the **COSMOS Script Runner**

Select and Configure cFS Community Apps

Page 34
Mission FSW Quick Start Guide

Select and Configure cFS Community Apps

Leverage Community Apps

- OSK's SimSat application groups provide a system context for users to learn how apps work together to achieve a goal
 - Slides, YouTube videos, and built-in demos
 - Example operational script
 - The above resources are not complete, and the plan is to continually update them
- Prototype tools for generating default Data Storage, KIT_TO, and Housekeeping table source files
 - Links to tools from application group screens

Verify Community Apps

- NASA app unit tests can be run as needed
- OSK apps do not currently have unit tests
- OSK supports functional app testing and system integration testing using COSMOS Script Runner and Test Runner tools
 - Thin integration and functional test infrastructure built on top of COSMOS script API
 - No functional tests exist

OSK SimSat NASA cFS Libs & Apps

Name	Description	Cmd, Tlm, Tbl Defined	Video	Notes
CFDP (CF)	Implements the CCSDS File Delivery Protocol (CFDP)	Partial	No	Compiled, but not loaded by default. Downlink flow control semaphore not implemented
CFS_LIB	Utility functions	N/A	No	
Checksum (CS)	Compute checksums across table-defined memory blocks	All	No	
Data Storage (DS)	Read packets from the software bus and store them in files	All	Group	
File Manager (FM)	Provide basic directory & file management services	All	Group Solo	
Housekeeping (HK)	Combine parts of packets into new packets	All	Group Solo	
Health & Safety (HS)	Provide system health & safety checks	All	No	
Limit Checker (LC)	Monitor values in packets and activate stored commands as needed	All	No	
Memory Dwell (MD)	Create telemetry packets containing user defined memory locations	All	No	
Memory Manager (MM)	Provide interface to read/write (load/dump) memory locations.	All	No	Use with caution!
Software Bus Network (SBN)	Software Bus Network	None	No	Compiled, but not configured or loaded by default.
Stored Command (SC)	Manage absolute time and relative time command sequences		No	

Page 36
Mission FSW Quick Start Guide

OSK SimSat Custom Libs & Apps

Name	Description	Cmd, Tlm, Tbl	Video	Notes
expat_lib	XML Parser	n/a	No	Only used by demo apps
osk_c_fw	Application framework for apps written in C	n/a	No	Used for all OSK SimSat apps
osk_42_lib	Utilities to manage 42's interface	n/a	No	Allows default options to be used for 42's socket interface code generation utility & 42's acapp to be used unchanged
F42	Manages execution of 42's "acapp" controller	All	No	
142	Manages sensor/actuator interfaces for F42	All	No	
ISIM	Simulates an instrument for SimSat demos	All	No	
KIT_CI	Ingest commands over UDP socket and send them on software bus	All	Group	Functionally similar NASA's lab_ci
KIT_SCH	Send table-defined messages on the software bus	All	Group	Schedule algorithm similar to sch_lab. Message and scheduler table implemented in JSON.
KIT_TO	Receive telemetry packets from the software bus and output them over a UDP socket	All	Group	Output JSON filter table determines packet output rates. OSK table tool can generate the table for a CSV file.
TFTP	Implement Trivial File Transport Protocol	All	No	Default file transfer protocol. Doesn't preclude use of CF app.

OSK cFS Additional Libs & Apps

Name	Description	Cmd, Tlm, Tbl Defined	Video	Notes
osk_cpp_lib	Application framework for apps written in C++	n/a	No	Prototype only used by C++ demo app
mqtt_lib	MQTT utilities	n/a	No	Unchanged from Alan Cudmore's repo: https://github.com/alanc98/mqtt_lib
Benchmark (BM)	Provides Dhrystone, Whetstone, and custom cFS measurements	All	No	Prototype needs review and documentation.
File Manager (FileMgr)	Same functions as NASA's FM	All	No	Refactor of NASA's FM app using osk_c_fw. Investigates moving most config parameters to a runtime startup file.
Heater Control (HC)	Simple bang-bang controller for demo purposes	All	No	Used in Limit Checker demo
Heater Sim (HSIM)	Simple heater simulation to provide feedback to HC app	All	No	Used in Limit Checker demo
MQTT	Bridge between a MQTT broker and the software bus	All	No	Early prototype with partial MQTT implementation. Refactor of Alan Cudmore's app from repo: https://github.com/alanc98/mqtt_app .
osk_c_demo	Sample app to illustrate how to use osk_c_fw	All	No	Not all osk_c_fw features demonstrated. Does not include JSON initialization configuration file.
osk_cpp_demo	Sample app to illustrate how to use osk_cpp_fw	All	No	Preliminary prototype.

Use Case #3 - Package and Distribute Apps

Exploratory stage of development

Current efforts

- Exploring use of runtime rather than compile-time configurations
- Defining app metadata in JSON file
- Interactive GUI to manage app discovery and dynamic loading/ unloading

Plans

- Evaluate CCSDS Electronic Data Sheets
 - Joe Hickey extensions to GRC, https://github.com/jphickey/edslib
- Work with the cFS community in defining app packaging specs

Local App Discovery and Installation Demo

Use Case #4 – Use OSK for Education and Technology Efforts F

Classroom demonstrations & interactive exercises

- Target audience includes range of grade levels without software development experience
- Software-only or COSMOS connected to a hardware platform
- In person or students access a remote system

Technology development

- Intended for software engineers with wide range of flight or ground applications
 - Distributed systems, AI, autonomy, security, etc

What OSK configurations can meet these needs?

- Current VM distribution
- Low-cost low-assembly hardware platform
- Cloud-based remote access

Tune, Verify, & Validate

Performance Monitor Tool

Commands							
Set Fi	lter Mask	Se	et Trigge	ег Ма	isk		
Start D	ata Collect	St	Stop Data Collect				
Ge	et File	Lau	nch Ana	lysis	Tool		
Status State	0 Mode	0 Tr	igger Co	ount	0		
Masks							
Filter	00000000	00000000	000000	000	00000000		
Trigger	00000000	00000000	000000	000	00000000		
Log Stats							
Start	0	E	ind [0		
Count	0	Remaining to	Write		0		
File Transfer							
Pu	ıt File		Get F	ile			
PUT_FILE_COUN	IT: 0	GET_FILE_C	OUNT:		0		
Ground Working	Directory						
Flight Working [)irectory						
T tigric Working E	heccory						

- Capture FSW performance data using screen
- Download file and <Launch Analysis Tool>

SimSat Integration Script

- Runs test script using Script Runner
- Issues Noop command to every application and verifies telemetry response

Page 44
Mission FSW Quick Start Guide

Functional Test Scripts

SimSat Operation Script Example

Page 46
Mission FSW Quick Start Guide

Running with 42 Simulator

Needs Needs

Needs updates since v2.4

Merge with apply systems engineering processes

Starting the Simulation

- Select < *Run 42 Sim* > which will start the 42 simulator in a new terminal window.
- The 42 configuration files used in the simulation are located in directory *OpenSatKit/42/OSK*
- The simulation takes a while to initialize

Page 48
Mission FSW Quick Start Guide

Preparing 42 Simulation

□ CFS_KIT SIM	_42_SCREEN						
	42 Sir	nulati	on				
Run 42 Sim	Reco	nnect (42	Disc	onnect 42		
Set Whl Tgt Mom	Manag	Manage Ctrl Tbl			Config SunValid		
142		F42					
Cmd Valid	0	Cr	nd Valid	l	0		
Cmd Error	0	Cr	nd Erro	г	0		
42 Connected	FALSE	Co	ontrol E	xec Cnt	0		
42 Cycles	0	Su	ın Valid		0		
Sensor Pkts	0	0'	VR Sun '	Valid	SE_42_SIM		
Actuator Pkts	0						
Attitude Control							
Att Err X	Att Err Y		Att Err	7			
0.000000	0.0000	000		00000	Plot		
Wheel 1 Cmd	Wheel 2 Cm	d	Wheel 3	Cmd			
0.000000	0.0000	000	0.0	000000	Plot		
Momentum Control							
Mom Err X	Mom Err Y		Mom E	rΖ			
0.000000	0.0000	00	0.0	00000	Plot		
MTB 1 Cmd	MTB 2 Cmd		MTB 3 C	md			
0.000000	0.0000			000000	Plot		
Whl 1 Tgt Mom	Whl 2 Tgt Moi		hl 3 Tgt				
0.000000	0.0000	00	0.0	000000	Plot		
SA Gimbal Comman	ds						
SA Gimbal							
0.000000	Plot						

- From the kit main page on the previous slide select <42 Simulator> and the screen to the left will appear.
- The 2nd row of buttons allow you to change the behavior of the control algorithms running in the FSW and are described on the next slides
- Before running the sim you will open some additional windows that will be used for your class exercise
 - Manage Control Table
 - Plot Attitude Errors

Page 49
Mission FSW Quick Start Guide

Managing Control Table

	E42 Cont	ral Tabla		
	F42 Cont	roi i abie		
Get Current Valu	es Load Scre	een Values	Resto	ore Defaults
PD Gain Paramete	_			
	г	_		
W		Z		
and the same				
Wheel Target Mon	nentum Limits			
Lower		Upper		
_		Upper		
		Upper		
_		Upper		
Lower		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper Y-Axis		Axis
Lower Moment of Inertia	Y			Axis 0.098000

- Selecting *Manage Control Table* on the 42 Sim screen produces the screen to the left.
- Select < *Get Current Values* > and it will populate the screen with the current control table values. This takes a little time because it is transferring a file from flight to ground
- Edit the screen as desired and click <*Load Screen Values*> to replace the current control table values
- The defaults can be restored by clicking **<***Restore Defaults***>**

Page 50
Mission FSW Quick Start Guide

Plot Attitude Errors

• Selecting <Plot> button next to the attitude errors produces the screen below

Page 51
Mission FSW Quick Start Guide

Additional Configuration Options

- The kit includes two additional configuration options that can be manipulated
 - 1. Wheel target Momentum
 - 2. Sun Valid Configuration

Configure Sun Valid

- Selecting *<Config SunValid>* to override the current sun valid flag
- The plot below shows gimbal command

- The linear portion had a valid sun and the bend occurred when the SunValid was overridden to false.

Page 53

Sim Termination

- Click *Disconnect* 42> to end a 42 simulation that is running with the FSW
- To terminate the flight software click on the terminal window with the FSW messages and then enter ctrl-c
- Each of the cosmos windows will need to be closed individually. If you close the COSMOS TlmViewer window first it prompt you to close all of the telemetry screens at once.

Demos

Screen-based Demos: FM Example (1 of 2)

Each demo follows a common user screen configuration

Page 56
Mission FSW Quick Start Guide

Screen-based Demos: FM Example (2 of 2)

Page 57
Mission FSW Quick Start Guide

Application Functional Screens

File Management

- <List to Packet> commands File Manage (FM)
 - To send a directory listing
 - The command uses a directory listing alphabetical "offset" to determine which file to start with in the listing
- OSK uses the verbs *list* and *send* to indicate information is sent in a telemetry packet.
- Write is used when information is written to a file

- <List to Packet> commands File Manage (FM)
 - To send a directory listing
 - The command uses a directory listing alphabetical "offset" to determine which file to start with in the listing

Page 59
Mission FSW Quick Start Guide

Table Management

	Table M	anagement		
able Management				
Load Table	V	alidate	Ad	ctivate
Abort Load	Dur	mp Table	o Table Disp	
Table Registry	1	Table Registry Lis	sting 🔻	
Display Registry Write Regis	stry to File	NAME:		
Table Manager Housekeeping		SIZE:		
Cmd Valid Cnt	0	CRITICAL:		(
Cmd Error Cnt	0	TABLE_LOADED	O_ONCE:	(
Last Updated Table		LOAD_PENDING	G:	(
Last File Loaded		DUMP_ONLY:		(
Last File Dumped		DBL BUFFERED):	(
Last Table Loaded		LAST UPD TIM	E SECONDS:	(
		FILE_CREATE_T	_	(
		LAST FILE LOA		
		OWNER APP N		
			-	
ile Transfer		1		
Put File			Get File	
PUT_FILE_COUNT:		O GET_FILE_COU	NT:	(
Ground Working Directory				
Flight Working Directory				
Tight Working Directory				
light Event Messages				

- Load a new FSW table
 - <*Put File*> transfers file from ground to flight
 - <Load Table> into table buffer
 - <*Validate*> table via app validation function
 - <*Activate*> new table
- *Display Registry* sends a table's registry information in a telemetry packet
- Dump and display FSW table *<Dump Table>* to onboard file <Get File> transfers file from flight to ground <Display Table> launches COSMOS Table Manager to view file. Requires binary file definition.

Page 60

Memory Management

- Memory Manager (MM) and Memory Dwell (MD) apps are typically used for inflight maintenance.
- MM commands allow direct access to any memory location
- MD generates telemetry packets that contain the contents of table-specified memory locations
 - Only 1 dwell table telemetry packet is defined
 - < Jam Dwell Table > allows the dwell table to be loaded without using the table load service
- The FSW can easily be corrupted using memory manager
- The memory management demo is a good place to start since it demonstrates MM and MD using safe memory locations

Page 61
Mission FSW Quick Start Guide

Recorder Management

		Management 1			
ta Storage App Statu					
Enable/Disable	Dest Fil	e 14 Info	Dest	File 58 Info	
Cmd Valid Cnt	0 Cmd Error	Cnt	0 State		(
et Destination File Co	nfiguration				
Enable/Disable	Sequer	ice Count	File	name Type	
File Path Name	File Ba	se Name	File	Extension	
Max File Size	Maxi	File Age	Clos	e 1/All Files	
Tbl Load Count	0	Tbl Access Err	Cnt		
File Write Valid Cnt		File Write Inva			(
Hdr Update Valid Cnt	0	Hdr Update In	valid Cnt		(
et Packet Filter Config					4
Dest File	Add Message	Algorith	m	Filter Type	1
			200	10.000000000000000000000000000000000000	
	_	Thi Access Err	Cnt		(
Tbl Load Cnt	0	Tbl Access Err			0
	0	Tbl Access Err Pkt Ignored Cr	nt		0
Tbl Load Cnt Pkt Discard Cnt	0	Pkt Ignored Cr	nt		C
Tbl Load Cnt Pkt Discard Cnt Pkt Filtered Cnt	0	Pkt Ignored Cr	nt		C
Tbl Load Cnt Pkt Discard Cnt Pkt Filtered Cnt Packet Filter File	0 0	Pkt Ignored Cr	nt		C
Tbl Load Cnt Pkt Discard Cnt Pkt Filtered Cnt Packet Filter File	0 0 0 0 File	Pkt Ignored Cr	Get File		C
Tbl Load Cnt Pkt Discard Cnt Pkt Filtered Cnt Packet Filter File	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pkt Ignored Cri	Get File		0
Tbl Load Cnt Pkt Discard Cnt Pkt Filtered Cnt Packet Filter File ile Transfer Put PUT_FILE_COUNT:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pkt Ignored Cri	Get File		0
Tbl Load Cnt Pkt Discard Cnt Pkt Filtered Cnt Packet Filter File ile Transfer Put PUT_FILE_COUNT:	File 0	Pkt Ignored Cri	Get File		0
Tbl Load Cnt Pkt Discard Cnt Pkt Filtered Cnt Packet Filter File Ile Transfer Put PUT_FILE_COUNT: Ground Working Direct	File 0	Pkt Ignored Cri	Get File		0

Page 62
Mission FSW Quick Start Guide

Autonomy Management

tored Command(SC) A	pp - Rela	tive Tin	ne Seq	uence	s(RTS)		
Start RTS	Stop	RTS	E	nable	RTS	Disa	ble RTS
Start Group	Stop G	ігоир	En	able G	iroup	Disab	le Group
Cmd Valid Cnt		0	Cmd	Еггог (Cnt		0
TS Status RTS EXECUTI	NG 0	49 48	8 33 0000	32	00 0	. 1	
Active Cnt 00	000 Next	Err Cnt			Next T	ID Cnt	000000
	Err R	RTS#		0000	Err RTS	Offset	0000
imit Checker(LC) App Reset WP Stats		et AP Sta	ats :	0000 Set AP	,		O000
imit Checker(LC) App	Rese				,		
Reset WP Stats Set App State Cmd Valid Cnt	Rese Ap	et AP Sta	• Cm	Set AP	State 0		
mit Checker(LC) App Reset WP Stats Set App State	Rese Ap ction Poi	pp State	• Cm	Set AP	State 0		Prem Off
Reset WP Stats Set App State Cmd Valid Cnt Watch Points(WP) A Watch Points (2-bi	Rese Ap ction Poi	nts(AP)	0 Cm 0 Statu 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 or Cnt		Prem Off

Page 63
Mission FSW Quick Start Guide

Application Management

App Summary App/Task Registry Enable App Events	xecutive Service St Cmd Ctr Registered Apps pp Info	0	Cmd Err Ctr Registered Tasks	0	
App/Task Registry	Registered Apps				
		0 F	Registered Tasks	0	
Enable App Events	pp Info				
	pp Info				
Disable App Events A					
Add KIT_TO Msg	Name		Entry Point	→	- < Get App Info
Start App	Main Task Name		Main Task ID	0	services to ser
Start App	APP ID	0	Priority	0	command-spe
Stop App	Туре	0	# Child Tasks	0	1
Reload App	File Name		Exception	0	
Get App Info	Code Size	0	Data Size	0	
Create App Tool	BSS Size	0	Stack Size	0	
e Transfer Put File	2		Get File	1	• <app reg<="" task="" th=""></app>
PUT_FILE_COUNT:	0	GET_FILE_CO	JNT:	0	executive servi
Ground Working Directory		, – –			information to
					to ground via a
Flight Working Directory				(_{Im})	U
ght Event Messages					

• < Get App Info > commands cFE executive services to send a telemetry packet with the command-specified app

<*App/Task Registry*> commands cFE executive services to write app or task information to a file that can be transferred to ground via a <*Get File*>