

Problem I. Number Sequence

Given a sequence of n integer numbers $a_1, a_2, ..., a_n$, a sub-sequence of the given sequence is $a_i, a_{i+1}, ..., a_j (1 \le i \le j \le n)$ which has the length (j - i + 1) and the sum $(a_i + a_{i+1} + ... + a_i)$. Your task is to find the sub-sequence which has the length divisible by 3 and has biggest sum.

Input

The first line is the length n ($3 \le n \le 300000$) of the given sequence.

The second line is the list of *n* numbers $a_1, a_2, ..., a_n$ ($|a_i| \le 10^9$) of the given sequence.

Output

Output is the biggest sum of the sub-sequence.

Examples

Standard Input	Standard Output
11	4
111-91111-11-9	

Note: The sub-sequence 1 1 1 1 -1 1 has the length of 6 (divisible by 3) and biggest sum is 4.