**Second Degree Equations Part 3** 

Given a parabola

$$y = ax^2 + bx + c$$

we can find three things.

First, we can find  $x_+$  and  $x_-$  such that  $ax^2 + bx + c = 0$  with  $x_+, x_- = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

Then, we can find the vertex of the parabola with

$$(x_{vertex}, y_{vertex}) = \left(\frac{-b}{2a}, \frac{-(b^2 - 4ac)}{4a}\right)$$

The most straigt-forward way to graph a parabola is to plot a couple of points on it, and then connect them.

Let's try to graph  $y = x^2 - 4$ 

First we can calculate and graph

$$x_+, x_- = 2, -2$$



$$y = x^2 - 4$$

Now let's calclate the vertex

$$(x_{vertex}, y_{vertex}) = \left(\frac{-b}{2a}, \frac{-(b^2 - 4ac)}{4a}\right)$$
$$= \left(\frac{0}{2}, \frac{-(0 - 4(1)(-4))}{4}\right)$$
$$= \left(0, \frac{-(16)}{4}\right) = (0, -4)$$





$$y = x^2 - 4$$

Let's make a chart to record our points. We'll start with the vertex at the center.

| X  | y           |  |  |
|----|-------------|--|--|
|    |             |  |  |
| -2 | 0<br><br>-4 |  |  |
|    |             |  |  |
| 0  |             |  |  |
|    |             |  |  |
| 2  | 0           |  |  |
|    |             |  |  |

$$y = x^2 - 4$$

Now we can compute x = -1

$$(-1)^2 - 4 = -3$$

| X  | y        |  |  |
|----|----------|--|--|
|    |          |  |  |
| -2 | 0        |  |  |
| -1 | -3<br>-4 |  |  |
| 0  |          |  |  |
|    |          |  |  |
| 2  | 0        |  |  |
|    |          |  |  |

$$y = x^2 - 4$$

Now let's compute x = 1

$$(1)^2 - 4 = -3$$

| X  | y              |  |  |
|----|----------------|--|--|
|    |                |  |  |
| -2 | 0              |  |  |
| -1 | -3<br>-4<br>-3 |  |  |
| 0  |                |  |  |
| 1  |                |  |  |
| 2  | 0              |  |  |
|    |                |  |  |

$$y = x^2 - 4$$

Lastly let's do x = -3, and x = 3

$$(-3)^2 - 4 = 5$$
  $(3)^2 - 4 = 5$ 

| X  | y        |  |  |
|----|----------|--|--|
| -3 | 5        |  |  |
| -2 | 0        |  |  |
| -1 | -3       |  |  |
| 0  | -4<br>-3 |  |  |
| 1  |          |  |  |
| 2  | 0        |  |  |
| 3  | 5        |  |  |

## Plotting the points

With this chart, let's plot the points we found!



All that's left to do now is draw in the line!

# Plotting the points



True or False: we only have to compute values on one side of the vertex



# **Trivia Question**

True or False: we should always graph  $x_+$  and  $x_-$ 

False! If  $x_+$  and  $x_-$  are not rational numers, we shouldn't really try to plot them.

For example, if

$$x_+, x_- = \frac{3 \pm \sqrt{12}}{6}$$

we shouldn't bother plotting the points.

## Let's practice!

In groups of 3 graph the following parabolas using the method we've just seen

$$x^2 + 2x - 3$$

$$x^2 - 4x + 2$$

$$-2x^2 - 4x + 2$$

#### Problem 1

$$x_{+}, x_{-} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} = 1, -3$$

$$(x_{vertex}, y_{vertex}) = \left(\frac{-b}{2a}, \frac{-(b^{2} - 4ac)}{4a}\right) = \left(\frac{-2}{2}, \frac{-(4 + 12)}{4}\right) = (-1, -4)$$



#### Problem 2

$$x_{+}, x_{-} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm \sqrt{8}}{2} = \text{not nice}$$

$$(x_{vertex}, y_{vertex}) = \left(\frac{-b}{2a}, \frac{-(b^{2} - 4ac)}{4a}\right) = \left(\frac{4}{2}, \frac{-(16 - 8)}{4}\right) = (2, -2)$$



#### **Problem 3**

$$x_{+}, x_{-} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{4 \pm \sqrt{16 + 16}}{-4} = \frac{4 \pm \sqrt{32}}{-4} = \text{not nice}$$

$$(x_{vertex}, y_{vertex}) = \left(\frac{-b}{2a}, \frac{-(b^{2} - 4ac)}{4a}\right) = \left(\frac{4}{-4}, \frac{-(16 + 16)}{-8}\right) = (-1, 4)$$



#### Vertex Form of a Parabola

We have been working with parabolas with equations that look like

$$y = ax^2 + bx + c$$

But there is a way to re-arrange our terms to get our expression into *vertex form*.

Given a parabola, we can find

$$(x_{vertex}, y_{vertex}) = (h, k)$$

We can then write our parabola as

$$y = a(x - h)^2 + k$$

This makes the symmetry of the parabola easy to see!

#### Vertex Form of a Parabola

True or False: The vertex form of a quadratic expression is easier to work with.

True! We don't have to calculate the vertex, only read it. Calculating points is also easier!

$$(x_{vertex}, y_{vertex}) = (h, k)$$
  
 $y = a(x - h)^2 + k$ 

$$(x-2)^2 + 4$$
$$5(x+5)^2 - 10$$
$$-2(x-12)^2 + 6$$

$$(x-2)^{2} + 4 \rightarrow (2,4)$$

$$5(x+5)^{2} - 10$$

$$-2(x-12)^{2} + 6$$

$$(x-2)^{2} + 4 \rightarrow (2,4)$$

$$5(x+5)^{2} - 10 \rightarrow (-5,-10)$$

$$-2(x-12)^{2} + 6$$

$$(x-2)^{2} + 4 \rightarrow (2,4)$$

$$5(x+5)^{2} - 10 \rightarrow (-5,-10)$$

$$-2(x-12)^{2} + 6 \rightarrow (12,6)$$

### Practice!

Spend the last few minutes graphing the equation

$$y = (x - 2)^2 - 2$$



## Wrapping up

Today we learned how to graph parabolas by calculating points.

Next time we will learn how to use our knowledge to solve real world problems!