ECE374 SP23 HW3

Contributors

Zhirong Chen (zhirong4)

Ziyuan Chen (ziyuanc3)

Problem 2

For each of the following languages over the alphabet $\Sigma=\{0,1\}$, either prove that the language is regular (by constructing a DFA or regular expression) or prove that the language is not regular (using fooling sets). Recall that Σ^+ denotes the set of all nonempty strings over Σ .

(a)
$$L_{2a}=\{0^n1^nw\mid w\in\Sigma^* ext{ and } n\geq 0\}$$

(b)
$$L_{2b} = \{w0^n w \mid w \in \Sigma^* \text{ and } n > 0\}$$

(c)
$$L_{2c} = \{xwwy \mid w, x, y \in \Sigma^+\}$$

(d)
$$L_{2d} = \{xwwx \mid w, x \in \Sigma^+\}$$

Solution

(a) Regular.

The regular expression is $(0+1)^*$.

Note that for $n \geq 0$, the language $0^n 1^n (0+1)^*$ is a subset of $(0+1)^*$.

(b) Non-regular. Let the fooling set be

$$F = \{0^n1^n \mid n \ge 0\}$$

Let $a,b\in F, a=0^i1^i, b=0^j1^j$, where i
eq j . Also let $c=0^{i+1}1^i$.

(c) Non-regular. Let the fooling set be

$$F = \{0^{n+1}1^n \mid n > 0\}$$

Let $a,b\in F, a=0^{i+1}1^i, b=0^{j+1}1^j$, where i
eq j . Also let $c=1^i0^{i+1}$.

(d) Non-regular. Let the fooling set be

$$F = \{0^n 1^n \mid n > 0\}$$

Let $a,b\in F, a=0^i1^i, b=0^j1^j$, where $i\neq j$. Also let $c=1^i0^i$.

In each case, $ac \in A$ and $bc \notin A$. Considering that F is an infinite set and each of its elements belongs to a distinct state, the corresponding language is non-regular.