ECE 443/518 – Computer Cyber Security Lecture 10 Diffie-Hellman and Man-in-the-Middle Attack

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

September 26, 2022

Outline

Diffie-Hellman Key Exchange

Reading Assignment

► This lecture: UC 8.1,8.5,13.3.1

► Next lecture: UC 10.1 – 10.3

Midterm Exam

- ► Lecture 1 ~ Lecture 13
- ► Students registered for main campus section: Wed. 10/12, 11:25 AM 12:40 PM, in class.
 - A physical calculator is allowed. Laptop or any other electronic device or calculator apps running on them are not allowed.
 - Closed book/notes. A letter-size page of cheat sheet is allowed.
- Students registered for online sections: contact Charles Scott, scott@iit.edu, from the Center of Learning Innovation to make arrangement, and confirm with me.
 - No make-up exam will be offered if you fail to do so.
 - You may confirm with me directly if you plan to take the exam with the main campus section as mentioned above.
- ► 100+20 points
 - ► See Homework 2 and 3 for sample questions.
 - You are required to show steps of calculations.
 - Points may be deducted if key steps are missing even if the answers are correct.
- ► Emergency/extraordinary reasons for make-up midterm exams are accepted only with documented proof like docter's notes.

ECE 443/518 - Computer Cyber Security, Fall 2022, Dept. of ECE, IIT

Outline

Diffie-Hellman Key Exchange

Perfect Forward Secrecy (PFS)

Fig. 6.5 Basic key transport protocol with AES as an example of a symmetric cipher

(Paar and Pelzl)

- Oscar, realizing there is no hope to factor every n for RSA, decided to build a machine to factor a few n's he/she might be interested of.
 - Oscar has recorded <u>all</u> communications encrypted using the simple hybrid protocol.
- ▶ How could Bob could protect k's if k_{pr} is compromised?
 - Will it help if Alice/Bob generates another RSA key-pair randomly per communication?

History of Diffie-Hellman Key Exchange

- ▶ 1976: created by Whitfield Diffie and Martin Hellman
 - First public-key algorithm in open literature.
- ▶ 1977: patent granted in US
- 2005: variants are included in NSA Suite B Cryptography
 - ► Together with AES and SHA-2

DHKE

Diffie-Hellman Key Exchange

Alice choose
$$a=k_{pr,A}\in\{2,\ldots,p-2\}$$
 compute $A=k_{pub,A}\equiv\alpha^a \bmod p$ choose $b=k_{pr,B}\in\{2,\ldots,p-2\}$ compute $B=k_{pub,B}\equiv\alpha^b \bmod p$

(page 207, Paar and Pelzl)

- DHKE setup
 - A large prime p and an integer α chosen from $2, 3, \ldots, p-2$.
 - Usually chosen/published by a well-known entity and used by a large group of people.
- Ney exchange: upon completion, a shared secret k_{AB} is established between Alice and Bob.
 - Assume one of the public key is sent over an authentic channel.
- ▶ Time complexity: $O(N^3)$.

Example

- $p = 29, \alpha = 2$.
- ► Alice: $k_{pr,A} = 5$
 - $k_{pub,A} = 2^5 \mod 29 = 3$
- ▶ Bob: $k_{pr,B} = 12$
 - $k_{pub,B} = 2^{12} \mod 29 = 7$
- Alice: $k_{AB} = (k_{pub,B})^{k_{pr,A}} \mod p = 7^5 \mod 29 = 16$ Bob: $k_{AB} = (k_{pub,A})^{k_{pr,B}} \mod p = 3^{12} \mod 29 = 16$

The Discrete Logarithm Problem

Given a prime number p, an integer $\alpha \in \{2, 3, ..., p-2\}$, and an integer B, solve for an integer b,

$$\alpha^b \equiv B \pmod{p}$$
.

- ▶ A passive adversary may obtain $k_{pr,B}$ and then k_{AB} .
- ▶ Brute-force: compute $\alpha^k \mod p$ for k = 1, 2, ..., p 1
 - ► Time complexity: $O(2^N N^2)$.
- Better algorithm exists, but still of exponential time.
- The Diffie-Hellman problem: compute α^{ab} mod p given α^a mod p and α^b mod p with α and p known.
 - It is unknown if this could be done without solving discrete logarithm first.
 - \triangleright DHKE is believed to be secure for large enough N.
- ▶ Will Alice be able to learn Bob's private key?

The Elgamal Encryption Scheme

- An extension of DHKE for encryption.
- After successfully completing DHKE, Alice sends $y = k_{AB}x \mod p$ to Bob.
 - ▶ Plaintext $x \in \{1, 2, ..., p 1\}$
 - $\qquad \qquad \textbf{Ciphertext } y \in \{1, 2, \dots, p-1\}$
- ▶ Bob decrypts y by solving $k_{AB}x \equiv y \pmod{p}$ for x via EEA or other algorithms.
- **Ephemeral** keys: k_{AB} should be used only once.
 - A passive adversary who learned a pair of x and y could solve $k_{AB}x \equiv y \pmod{p}$ for k_{AB} and decrypts all other ciphertext with the same k_{AB} .

Elgamal Encryption Protocol

- Rearrange messages: Elgamal looks very signifia 228 PRS And Petzl)
 - Assume Bob's public key is sent over an authentic channel.
 - Alice's message could be sent over an insecure channel.
 - Need padding for similar reasons as RSA.

DHKE vs. RSA

- Good alternatives of each other.
 - Their security depends on different problems that we don't know how to solve efficiently yet.
 - While DHKE was originally designed for key exchange, its variants can match with the functionalities provided by RSA.
- Both DHKE and RSA may need an authentic channel for communicating a public key.
- In practice, both DHKE and RSA use keys a few thousand bits long to be secure.
- DHKE can be generalized to other mathematical structures.
 - ► E.g. elliptic-curve cryptography (ECC), which requires much less bits to achieve same level of security as DHKE, and is widely adopted currently.

Outline

Diffie-Hellman Key Exchange

The Authentic Channel

Fig. 6.4 Basic protocol for public-key encryption

(Paar and Pelzl)

- We do see how RSA and DHKE (Elgamal) both use the above protocol for public key encryption.
- ▶ Both require Alice to receive Bob's public key on an authentic channel.
 - ► What if not?

- Assume Bob's public key $k_{pub,B}$ is sent through an insecure channel.
- Oscar the active adversary replaces k_{pub,B} that Alice receives.
 - ▶ With Oscar's public key $k_{pub,O}$.
- ▶ Alice receives $k_{pub,O}$ and encrypts x as $y = e_{k_{pub,O}}(x)$.
- Oscar replaces y that Bob receives.
 - $\blacktriangleright \text{ With } y' = e_{k_{pub,B}}(x).$
 - Note that Oscar simply decrypts y to obtain x since y is encrypted with $k_{pub,O}$: $x = d_{k_{pr,O}}(y)$.
- Man-in-the-Middle: Oscar sits between Alice and Bob, and replaces all messages on either direction.
 - Neither Alice and Bob will be able to detect it!

Man-in-the-Middle and DHKE

Man-in-the-Middle Attack Against the DHKE

(Paar and Pelzl)

- ► This attack also applies to the original DHKE assuming both Alice and Bob's public keys are not sent via an authentic channel.
 - Oscar then have two secret keys, one with Alice and one with Bob, that can be used for any following communications.
- ► What if, as originally assumed, one of Alice and Bob's public keys is sent via an authentic channel?
- ▶ Does man-in-the-middle attack apply to symmetric ciphers?

Identity

- The problem of man-in-the-middle attack is with identity.
 - Alice sees Oscar as Bob.
 - Bob sees Oscar as Alice.
- ► The authentic channel authenticates that a public key belongs to a particular identity.
 - ► To create an authentic channel, we need to study how to establish identity who is Bob?
- ▶ Can we establish identity without the authentic channel?
 - Yes if the public key is the identity, but how?
 - Note that in a successful man-in-the-middle attack, communications between Alice and Oscar is secure against any third party including Bob, and communications between Oscar and Bob is secure against any third party including Alice.

Summary

- DHKE
 - ► Setup: prime $p, \alpha \in \{2, 3, ..., p 2\}$.
 - Alice: $k_{pr,A}$, publish $k_{pub,A} = \alpha^{k_{pr,A}} \mod p$
 - ▶ Bob: $k_{pr,B}$, publish $k_{pub,B} = \alpha^{k_{pr,B}} \mod p$
 - ightharpoonup Alice and Bob: $k_{AB} \equiv (k_{pub,B})^{k_{pr,A}} \equiv (k_{pub,A})^{k_{pr,B}} \pmod{p}$
 - Assumption: Oscar cannot solve $\alpha^b \equiv B \pmod{p}$ for b in polynomial time.
- ► Man-in-the-Middle attack