#### Pannon Egyetem Mérnöki Kar

SEGÉDLET

#### Műszaki hőtan elméleti kérdések

Műszaki hőtan Műszaki áramlástan és hőtan II. Műszaki áramlás- és hőtan

# Tartalomjegyzék

| $\mathbf{A}$ | lapadatok                                                                        | <b>2</b> |
|--------------|----------------------------------------------------------------------------------|----------|
|              | A tárgy adatai                                                                   | 2        |
|              | Ajánlott szakirodalom                                                            |          |
| 1.           | Hőtani alapfogalmak                                                              | 3        |
| 2.           | A tökéletes (ideális) gáz és állapotváltozásai                                   | 4        |
| 3.           | Valóságos gázok és gőzök, halmazállapot-változás                                 | 5        |
| 4.           | Hőkörfolyamatok                                                                  | 6        |
| <b>5.</b>    | Nem visszafordítható folyamatok                                                  | 7        |
| <b>6.</b>    | <b>Hűtőgépek, hűtőkörfolyamatok</b> 6/24.feladat: Kompresszoros hűtőgép működése | <b>8</b> |
| 7.           | Hőterjedés                                                                       | 11       |
| 8.           | A hőcserélők felépítése                                                          | 12       |

#### Alapadatok

#### A tárgy adatai

Név: Műszaki hőtan Kód: VEMKGEB242H

Kreditérték: 2 (1 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

#### A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

#### Ajánlott szakirodalom

- Dr. Pleva László, Zsíros László: Műszaki hőtan, Pannon Egyetemi Kiadó (ebből kimarad: 59-62; 66-69; 100-104; 114-209; 237-245; 280-309 oldalak)
- M. A. Mihajev: A hőátadás számításának gyakorlati alapjai, Tankönyvkiadó, Budapest, 1990.

## Hőtani alapfogalmak

A tökéletes (ideális) gáz és állapotváltozásai

Valóságos gázok és gőzök, halmazállapot-változás

# Hőkörfolyamatok

## Nem visszafordítható folyamatok

### Hűtőgépek, hűtőkörfolyamatok

#### 6/24.feladat: Kompresszoros hűtőgép működése

| Szerző | Hevesi Tamás (J3TV3W)         |
|--------|-------------------------------|
| Szak   | Anyagmérnöki alapszak.        |
| Félév  | 2019/2020 II. (tavaszi) félév |

Mutassa be a kompresszoros  $(NH_3)$  hűtőgép működését expanziós gépes és fojtószelepes esetben! Rajzolja fel a hűtőkörfolyamatot T-s diagramban és a hűtőgép kapcsolási vázlatát! Ha mindegyik nevezetes pontban ismertek az állapotjelzők, akkor hogyan számítható a hűtőtérből elvont hő  $(q_H)$ , a kompresszor sűrítési munkája  $w_K$ , a körfolyamatból elvezetett/a kondenzátorban leadott hő  $(q_K)$ , az expanzós gép álal szolgáltatott munka  $(w_T)$  vagy az elvont hő csökkenése  $(\Delta q_H)$ , és a fajlagos hűtőteljesítmény  $(\varepsilon)$ ?

#### Kompresszoros hűtőgép expanziós géppel(turbinával)



6.1. ábra. Kompresszoros hűtőgép expanziós géppel

A hűtőgépet hidegfejlesztés  $(q_H)$  céljából üzemeltetjük, ami felírható az elpárologtatóból távozó és oda belépő hűtőközeg entalpiakülönbségéből. A kompresszorban munkabefektetéssel sűrítjük össze a hűtőközeget. Ez az egyetlen munkabefektetés az egész ciklus során.

• a hűtőből elvont hő:

$$q_H = h_1 - h_4$$

• a kompresszor által felhasznált munka:

$$w_K = h_2 - h_1$$

• a körfolyamatokból elvezetett/ a kondenzátorban leadott hő:

$$q_K = h_2 - h_3$$

A turbina nagy előnye, hogy működés közben a befektetett munka egy része visszanyerhető, így maximalizálható a fajlagos hűtőteljesítmény is.

• a turbina által szolgáltatott munka:

$$w_T = h_3 - h_4$$

• a fajlagos hűtőteljesítmény:

$$\varepsilon = \frac{q_H}{w} = \frac{q_H}{w_K - w_T} = \frac{h_1 - h_4}{h_2 - h_1 - (h_3 - h_4)}$$

#### Kompresszoros hűtőgép fojtószeleppel



6.2. ábra. Kompresszoros hűtőgép fojtószeleppel

A fojtás izentalpiás folyamat, tehát a kondenzátorból kifolyó hűtőközeg entalpiája fojtás előtt  $(h_3)$  és után  $(h_4^*)$  ugyanaz. A T-s diagramból rögtön látszik, hogy a hűtés  $(q_H)$  most kisebb, hiszen elesünk a visszanyert munkarésztől  $(w_T)$ .

• a hűtőből elvont hő csökkenése:

$$\Delta q_H = h_4^* - h_4 = h_3 - h_4 = w_T$$

• a hűtőből elvont hő:

$$q_H = h_1 - h_4^* = h_1 - h_3$$

A fajlagos hűtőteljesítmény $(\varepsilon)$  mindig a nyert hideg  $(q_H)$  és a munka (w) viszonya. Ebben az esetben a munka (w) megegyezik a kompresszor által felhasznált munkával  $(w_K)$ .

$$\varepsilon = \frac{q_H}{w} = \frac{q_h}{w_K} = \frac{h_1 - h_3}{h_2 - h_1}$$

A fojtószeleppel szerelt kompresszoros hűtőgép esetében kisebb hőt tudunk elvonni a környezetből, de a kondenzátorban leadott hő és a kompresszor által felhasznált munka változatlan marad.

# Hőterjedés

# A hőcserélők felépítése