Computerized Simulation Exercise No. 3

name : Seyed Mohammad Ghoreishy teacher : Seyed Amirhossein Tabatabaei

Date: 1403.09.26

Contents

1	Exercise 1	2
2	Exercise 2	3
3	Exercise 3	4
4	Exercise 4	5
5	Exercise 5	6
6	Exercise 6	6
7	Exercise 7	6

Write a program using the **accept-reject method** to generate random numbers following a custom probability distribution defined by the piecewise function as follows:

$$f(x) = \begin{cases} 2x & 0 \le x \le 0.5\\ 2(1-x) & 0.5 < x \le 1. \end{cases}$$

```
import numpy as np
import numpy as numpy as
```


Simulate the distribution of angles at which particles scatter when the probability distribution of scattering angles is proportional to $\cos^2(x)$. Use the **accept-reject method** to generate the angles.

```
taport numpy as np
taport numpy as nampy as numpy as
```


Simulate service times for customers in a queue. Assume service times follow a specific distribution (e.g., $f(x) = xe^{-x}$), and use the **accept-reject method** to generate the times. Analyze the average waiting time.

```
import numpy as np
import numpy as np
import nampfoit(b,py)not as plt

def service_time_distribution(s):
    return x * np.exp(x) if x > 0 clse 0

def accept_reject_sampling(target_func, proposal_func, domain, n_samples, max_val):
    samples = []
    while len(samples) < n_samples:
        x = np.random.exponential())
    if y = target_func(x) / (max_val * proposal_func(x)):
        samples_samples)
    return np.array(samples)

def plot_results(amples, target_func, bins=50):
    x_als = nm.linspace(0, max(samples), 1000)
    f_vals = np.array(larget_func(x) / for x in x_vals])
    plt.figuret_func(x) / for x_in x_vals])
    plt.figuret_func(x) / for x_in x_vals])
    plt.figuret_func(x) / for x_in x_vals
    plt.figuret_func(x)
```


Generate random numbers for a triangular distribution defined on $\left[a,b\right]$ with mode c.

Implement a random number generator for the Rayleigh distribution with variance σ^2 .

6 Exercise 6

Imagine a bank with multiple counters where customers arrive randomly. The arrival times of customers are independent and can be modeled using an exponential distribution. Similarly, the time taken to service a customer at a counter (service time) is also random and follows an exponential distribution.

Tasks:

- Simulate customer arrivals and service times over a period.
- Analyze key metrics such as:
 - Average waiting time,
 - Counter utilization (how busy they are),
 - Total time customers spend in the system.

7 Exercise 7

A logistics company operates a fleet of drones to deliver packages. Each package has a random destination within a defined area, and each drone has constraints like maximum payload and battery range. Packages arrive randomly over time, and drones are dispatched accordingly.

Inputs:

- Delivery area: A 2D space (e.g., a grid of 10×10 km).
- Drone characteristics: Speed, maximum payload, and battery range.
- Package data: Randomly generated delivery locations, weights, and arrival times.

Tasks:

- 1. Generate random package data.
- 2. Develop drone dispatch logic.
- 3. Simulate drone movements.

- 4. Analyze metrics such as:
 - Average delivery time,
 - \bullet Total distance traveled by all drones.