MATH 178 Homework #9
Tamir Enkhjargal
May 2019

AES

5.

First we will need to expand the key we are given: 1100 1011 1111 1110

W[0] = 1100 1011	(1)
W[1] = 1111 1110	(2)
$W[2] = W[0] \oplus RCON(1) \oplus Sub(Rot(W[1]))$	(3)
=Rot(W[1]) = 1110 1111	(4)
= Sub(Rot(W[1])) = 1111 0111	(5)
$= 11110111 \oplus 10000000 \oplus 11001011$	(6)
$W[2] = exttt{1011} exttt{1100}$	(7)
$W[3] = W[1] \oplus W[2]$	(8)
$= 111111110 \oplus 101111100$	(9)
$W[3] = exttt{0100 0010}$	(10)
$W[4] = W[2] \oplus RCON(2) \oplus Sub(Rot(W[3]))$	(11)
=Rot(W[3]) = 0010 0100	(12)
= Sub(Rot(W[3])) = 1010 1101	(13)
$= 10101101 \oplus 00110000 \oplus 10111100$	(14)
$W[4] = {\tt 0010\ 0001}$	(15)
$W[5] = W[3] \oplus W[4]$	(16)
$= 01000010 \oplus 00100001$	(17)
$W[5] = exttt{0110 0011}$	(18)
$K_0 = 1100 \ 1011 \ 1111 \ 1110$	(19)
$K_1 = $ 1011 1100 0100 0010	(20)
$K_2 = exttt{0010} exttt{0001} exttt{0110} exttt{0011}$	(21)

Now, we can use CBC alongside Simplified AES. The initialization vector XOR'ed with our PT_1 is 0100001101001111 \oplus 100011010001011=1100111001000100.

As a reminder simplified AES goes like:

$$A_{K2} \circ SR \circ NS \circ A_{K1} \circ MC \circ SR \circ NS \circ A_{K0}$$

$$CT_1 = CT_0 \oplus K_0$$
 (1)
 $= 11001111001000100 \oplus 11001011111111111$ (2)
 $CT_1 = 0000 \ 0101 \ 1011 \ 1010$ (3)
 $CT_2 = NS(CT_1)$ (4)
 $CT_2 = 1001 \ 0001 \ 0011 \ 0000$ (5)
 $CT_3 = SR(CT_2)$ (6)

$$CT_3 = 1001 \ 0000 \ 0011 \ 0001$$
 (7)

$$CT_4 = MC(CT_3)$$
 (8)

$$CT_4 = 1001 \ 0010 \ 0111 \ 1101$$
 (9)

$$CT_5 = CT_4 \oplus K_1$$
 (10)

$$= 10010010011111101 \oplus 1011110001000010$$
 (11)

$$CT_5 = 0010 \ 1110 \ 0011 \ 1111$$
 (12)

$$CT_6 = NS(CT_5)$$
 (13)

$$CT_6 = 1010 \ 1111 \ 1011 \ 0111$$
 (14)

$$CT_7 = SR(CT_6)$$
 (15)

$$CT_7 = 1010 \ 0111 \ 1011 \ 1111$$
 (16)

$$CT_8 = CT_7 \oplus K_2$$
 (17)

$$= 10100111101111111 \oplus 0010000101100011$$
 (18)

$$CT_8 = 1000 \ 0110 \ 1101 \ 1100$$
 (19)

Our final ciphertext from the first round in CBC is 10000110111100. XOR'ing the CT and the PT_2 will get us the "initialization".

$1000011011011100 \oplus 0100010101001110 = \mathtt{1100} \ \mathtt{0011} \ \mathtt{1001} \ \mathtt{0010}$

$CT_1 = CT_0 \oplus K_0$	(1)
$= 1100001110010010 \oplus 11001011111111110$	(2)
$CT_1 = 0000$ 1000 0110 1100	(3)
$CT_2 = NS(CT_1)$	(4)
$CT_2 = 1001$ 0110 1000 1100	(5)
$CT_3 = SR(CT_2)$	(6)
$CT_3 = $ 1001 1100 1000 0110	(7)
$CT_4 = MC(CT_3)$	(8)
$CT_4 = 1100$ 1110 0011 0000	(9)
$CT_5 = CT_4 \oplus K_1$	(10)
$= 1100111000110000 \oplus 1011110001000010$	(11)
$CT_5 = exttt{0111} exttt{0010} exttt{0111} exttt{0010}$	(12)
$CT_6 = NS(CT_5)$	(13)
$CT_6 = $ 0101 1010 0101 1010	(14)
$CT_7 = SR(CT_6)$	(15)
$CT_7 = $ 0101 1010 0101 1010	(16)
$CT_8 = CT_7 \oplus K_2$	(17)
$= 0101101001011010 \oplus 0010000101100011$	(18)
$CT_8 = $ 0111 1011 0011 1001	(19)
$CT_{total} =$ 1000 0110 1101 1100 0111 1011 0011 1011	(20)

8.

i)

Cipher Block Chaining (CBC) mode decryption

Figure 1: CBC decryption, as taken from Wikipedia

- ii) Assuming both Alice and Bob have shared the same key and IV, when one-bit from the CT transfer is corrupted, as we saw from the diffusion example in class, the real AES will have enough rounds so that a single changed bit will affect all bits in the next CT/PT completely. Therefore, Bob would only be able to decrypt and get PT_1 to PT_3 correctly.
- iii) Regardless of "nice" PT or "not nice" PT, it doesn't matter to the computer and AES. Bob will still only be able to determine PT_1 and PT_3 because the complete diffusion of the incorrect bit transferring into the next blocks.

NT

18.

Reduce $17^{53} \pmod{97}$ $b=17,\ n=43,\ m=97,\ S[\]=\{1,1,0,1,0,1\},\ k=5$

$b \pmod{97}$	s	a
		1
17	s[0]=1	17
$17^2 = 95$	s[1]=0	17
$95^2 = 4$	s[2]=1	68
$4^2 = 16$	s[3]=0	68
$16^2 = 62$	s[4]=1	45
$62^2 = 61$	s[5]=1	29

LM

4.

The last four hex ciphertext is 9A3F. Encrypting and decrypting using the same key gets me the plaintext back.