Problem Set 7

Computer Vision 2020 University of Bern

1 Epipolar Geometry

- 1. In this exercise we will derive the essential and fundamental matrices for a pair of cameras related by a rigid transformation $[\mathbf{R}|\mathbf{t}]$, by looking at the common 3D point \mathcal{P} .
 - Let $\mathbf{X}_1 = [X_1 \ Y_1 \ Z_1]^T \in R^3$ be the coordinates of $\mathcal P$ defined in the first camera coordinate system with origin in the first camera center C_1 . Let $\mathbf R$ be the rotation matrix and $\mathbf t$ be the translation vector that transform the first camera coordinate system into the second camera coordinate system with origin C_2 . Remember that $\mathbf R$ is a 3×3 orthogonal matrix with $\mathbf R\mathbf R^T = \mathbf I$ and $\mathbf t \in R^3$. Finally, let the coordinates of the 3D point $\mathcal P$ in the second camera coordinate system be $\mathbf X_2 = [X_2 \ Y_2 \ Z_2]^T \in R^3$.
 - (a) How do you compute the projection $\mathbf{m}_1 = [x_1 \ y_1 \ 1]^T$ of \mathcal{P} in the first coordinate system using the coordinate of \mathbf{X}_1 and how do you compute the projection $\mathbf{m}_2 = [x_2 \ y_2 \ 1]^T$ of \mathcal{P} in the second coordinate system using the coordinate of \mathbf{X}_2 ?
 - (b) Give the relationship between X_1 and X_2 using R and t.
 - (c) How are the projections \mathbf{m}_1 and \mathbf{m}_2 related (always taking the first image plane as coordinate system)?
 - (d) Suppose that \mathcal{P} lies on a plane $\mathcal{P} \in \pi$, where π has a normal vector \mathbf{n}_1 (expressed in the first camera coordinate system) and its distance to C_1 is d_1 . Assuming that \mathbf{n}_1 verifies $\|\mathbf{n}_1\| = \sqrt{\mathbf{n}_1^T \mathbf{n}_1} = 1$, give the equation of the plane π .

- (e) Use the results above, including $\mathcal{P} \in \pi$, to find a transformation of the form $\mathbf{m}_2 = T\mathbf{m}_1$.
- (f) Given the normalized image coordinates \mathbf{m}_1 and \mathbf{m}_2 express the transformation of two points \mathbf{p}_1 and \mathbf{p}_2 in pixel coordinates with the help of the intrinsic matrix \mathbf{K} .
- (g) Try to find a relationship between \mathbf{m}_1 and \mathbf{m}_2 without knowing the normal of the plane passing from \mathcal{P} .
- (h) Give the relation between the points \mathbf{p}_1 and \mathbf{p}_2 in pixel coordinates.
- 2. The epipolar geometry is the intrinsic projective geometry between two views I and I'. It depends only on the cameras' intrinsic parameters and their relative pose (rotation and translation between the camera centers). The **Fundamental Matrix F** is a 3×3 matrix with rank(**F**) = 2.
 - (a) How is the fundamental matrix \mathbf{F} related to pairs of corresponding points x, x' in the two images?
 - (b) How are the fundamental matrices \mathbf{F} , going from I and I', and \mathbf{F} ', going from I' and I, related?
 - (c) What is the geometric meaning of the epipoles **e** and **e**?? How are they related to the fundamental matrix (algebraically)?
 - (d) Are the epipoles always visible in the two views?
 - (e) How can one determine the epipolar line **I'** passing trough a given point **x'**?
 - (f) What is the effect of applying the fundamental matrix F to a point x?

2 Calibrated Reconstruction

For a given essential matrix E with singular value decomposition $E = U \operatorname{diag}(1, 1, 0)V^T$ and first camera matrix $P = [I \mid 0]$, there are four possible choices for the second camera matrix P', namely

$$P' = [UWV^T \mid u_3]$$
 or $[UWV^T \mid -u_3]$ or $[UW^TV^T \mid u_3]$ or $[UW^TV^T \mid -u_3]$,

where W is a specific orthogonal matrix and u_3 is the third column of U. The Figure below illustrates the geometric interpretation of the first solution. Draw the three missing configurations.

(c) (d)