Analyzing the NYC Subway Dataset ¶

Questions

Overview

This project consists of two parts. In Part 1 of the project, you should have completed the questions in Problem Sets 2, 3, and 4 in the Introduction to Data Science course. This document addresses part 2 of the project. Please use this document as a template and answer the following questions to explain your reasoning and conclusion behind your work in the problem sets. You will attach a document with your answers to these questions as part of your final project submission.

Section 0. References

https://en.wikipedia.org/wiki/Nonparametric statistics

(https://en.wikipedia.org/wiki/Nonparametric statistics) https://en.wikipedia.org/wiki/Mann-

Whitney U test (https://en.wikipedia.org/wiki/Mann-Whitney U test)

http://dss.princeton.edu/online help/analysis/interpreting regression.htm

(http://dss.princeton.edu/online_help/analysis/interpreting_regression.htm)

https://en.wikipedia.org/wiki/Polynomial regression

(https://en.wikipedia.org/wiki/Polynomial regression)

Section 1. Statistical Test

1.1 Which statistical test did you use to analyze the NYC subway data? Did you use a one-tail or a two-tail P value? What is the null hypothesis? What is your p-critical value?

ANS:

```
We choose Mann-Whitney U test two-tail P value.
```

HO is "the distribution of Hourly entries for the two groups are equal"

We define $\alpha = 0.05$

1.2 Why is this statistical test applicable to the dataset? In particular, consider the assumptions that the test is making about the distribution of ridership in the two samples.

ANS:

```
In [146]: import pandas as pd
    import os
    import scipy.stats
    import numpy as np
    import statsmodels.api as sm
    alpha = 0.05
    filename = r'~/WorkSpace/Udemy-Datascience/IntroductionToDataScience
    e/P2-Analyzing-NYC/turnstile_weather_v2.csv'
    turnstile_weather = pd.read_csv(filename)

H0 = "\"the distribution of ENTRIESn_hourly for the two groups are equal\""
    not_H0 = "\"the distribution of ENTRIESn_hourly for the two groups are not equal\""
```

In [149]: %pylab inline import matplotlib.pyplot as plt rain df = turnstile weather[turnstile weather.rain == 1]['ENTRIES n hourly'] norain df = turnstile weather[turnstile weather.rain == 0]['ENTRIES n hourly'] df compare = pd.DataFrame({'rain': rain df, 'without rain': norain df}) df compare.plot(kind='hist', alpha=0.2,bins = range(0, 15000 + 500, 500)) ##, bins = range(0, 37 + 3, 3) # plt.set_title('Data Distribution') plt.suptitle('Data Distribution') plt.xlabel("ENTRIES hourly") plt.ylabel("frequency") plt.show() print "As you can see, the distribution is not normal."

Populating the interactive namespace from numpy and matplotlib

As you can see, the distribution is not normal.

```
In [150]: print "The number of rain data is %s ." % len(rain_df)
print "The number of without rain data is %s ." % len(norain_df)
```

The number of rain data is 9585 .

The number of without rain data is 33064 .

In [151]: import scipy

w,p = scipy.stats.shapiro(norain df)

print "The p-value for the hypothesis that the without rain data wa s drawn from a normal distribution is %.10f ." % p

w,p = scipy.stats.shapiro(rain df)

print "The p-value for the hypothesis that the with rain data was d rawn from a normal distribution is %.10f ." % p

The p-value for the hypothesis that the without rain data was draw n from a normal distribution is 0.0000000000 .

The p-value for the hypothesis that the with rain data was drawn f rom a normal distribution is 0.0000000000 .

Conclusion:

Part of the assumption of parametric tests like the T-test is that the distributions are normal.

As you can see the distribution is not normal so we use the Mann-Whitney over the T-test.

Ref: http://vassarstats.net/textbook/parametric.html (http://vassarstats.net/textbook/parametric.html)

Ref: https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney U test

(https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney U test) Ref:

https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test

(https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test)

1.3 What results did you get from this statistical test? These should include the following numerical values: p-values, as well as the means for each of the two samples under test.

ANS:

```
In [152]: def test has effect(df1,df2 , name df1, name df2 ,show graph= Fals
          e):
              U,p = scipy.stats.mannwhitneyu(df1,df2)
              df1 mean = np.mean(df1)
              df2 mean = np.mean(df2)
              #agg = turnstile weather.groupby(['is precipi'], as_index=Fals
          e).mean()
              if show graph:
                  df compare = pd.DataFrame({name df1: df1,
                             name df2: df2})
                  df compare.plot(kind='hist', alpha=0.2,bins = range(0, 1500
          0 + 500, 500) | ##,bins = range(0, 37 + 3, 3)
                  # plt.set title('Data Distribution')
                  plt.suptitle('Data Distribution')
                  plt.xlabel("ENTRIES hourly")
                  plt.ylabel("frequency")
                  plt.show()
                  print "As you can see, the distribution is not normal."
              p = 2*p
              print " After we perform mannwhitney t-test the conclusion is:"
              print " p-values for two-tailed is %.9f."%p
              if p < alpha :</pre>
                  print " We reject the null hypothesis. \n %s" % (not H0)
                  print " We accept the null hypothesis. \n %s" % (H0)
              print " %s mean is %.10f"% (name df1,df1 mean )
              print " %s mean is %.10f"% (name df2,df2 mean )
          df1 = turnstile weather[turnstile weather.rain == 1]['ENTRIESn hour
          ly']
          df2 = turnstile weather[turnstile weather.rain == 0]['ENTRIESn hour
          ly']
          test has effect(df1,df2 , 'with rain', 'without rain' )
           After we perform mannwhitney t-test the conclusion is:
           p-values for two-tailed is 0.000005482.
           We reject the null hypothesis.
           "the distribution of ENTRIESn hourly for the two groups are not e
          qual"
           with rain mean is 2028.1960354721
           without rain mean is 1845.5394386644
```

1.4 What is the significance and interpretation of these results?

ANS:

The distribution of "ENTRIESn_hourly" of 2 samples are statistically significance different.

Section 2. Linear Regression

2.1 What approach did you use to compute the coefficients theta and produce prediction for ENTRIESn_hourly in your regression model:

OLS using Statsmodels or Scikit Learn Gradient descent using Scikit Learn Or something different?

ANS: We decide to go for OLS.

2.2 What features (input variables) did you use in your model? Did you use any dummy variables as part of your features?

ANS:

```
In [153]: df1 = turnstile_weather[turnstile_weather.fog == 1]['ENTRIESn_hourl
    y']
    df2 = turnstile_weather[turnstile_weather.fog == 0]['ENTRIESn_hourl
    y']
    test_has_effect(df1,df2 , 'with fog', 'without fog',show_graph=True
)
```


As you can see, the distribution is not normal.

After we perform mannwhitney t-test the conclusion is:
p-values for two-tailed is 0.006688382.

We reject the null hypothesis.

"the distribution of ENTRIESn_hourly for the two groups are not e qual"

with fog mean is 1631.9809069212 without fog mean is 1889.1161496566

```
In [154]: resolution = 0.2
   turnstile_weather['is_precipi'] = turnstile_weather['precipi'].app
   ly(lambda x: 0 if x == 0 else 1 )

df1 = turnstile_weather[turnstile_weather.is_precipi == 0]['ENTRIES
   n_hourly']
   df2 = turnstile_weather[turnstile_weather.is_precipi == 1]['ENTRIES
   n_hourly']
   print "is_precipi == 0 data size is %s "%len(df1)
   print "is_precipi == 1 data size is %s "%len(df2)
   test_has_effect(df1,df2 , 'with precipi is 0', 'with precipi is not
   0' ,show_graph=True)
```

is_precipi == 0 data size is 39827
is precipi == 1 data size is 2822

As you can see, the distribution is not normal.

After we perform mannwhitney t-test the conclusion is:
p-values for two-tailed is 0.000191212.

We reject the null hypothesis.

"the distribution of ENTRIESn_hourly for the two groups are not e qual"

with precipi is 0 mean is 1896.7423104929

with precipi is not 0 mean is 1743.3093550673

In [155]: resolution = 10
 turnstile_weather['tempi_group'] = turnstile_weather['tempi'].appl
 y(lambda x: np.round(x/resolution)*resolution)
 agg = turnstile_weather.groupby(['tempi_group'], as_index=False).me
 an()
 df1 = turnstile_weather[turnstile_weather.tempi_group == 70]['ENTRI
 ESn_hourly']
 df2 = turnstile_weather[turnstile_weather.tempi_group == 80]['ENTRI
 ESn_hourly']

 test_has_effect(df1,df2 , 'with low temp', 'with high temp' ,show_g
 raph=True)

As you can see, the distribution is not normal.

After we perform mannwhitney t-test the conclusion is:
p-values for two-tailed is 0.000000000.

We reject the null hypothesis.

"the distribution of ENTRIESn_hourly for the two groups are not e qual"

with low temp mean is 2021.6490019960 with high temp mean is 2291.7881670534

In [156]: resolution = 5
 turnstile_weather['wspdi_group'] = turnstile_weather['wspdi'].appl
 y(lambda x: np.round(x/resolution)*resolution)
 agg = turnstile_weather.groupby(['wspdi_group'], as_index=False).me
 an()

 df1 = turnstile_weather[turnstile_weather.wspdi_group == 0]['ENTRIE
 Sn_hourly']
 df2 = turnstile_weather[turnstile_weather.wspdi_group == 5]['ENTRIE
 Sn_hourly']
 test_has_effect(df1,df2 , 'with low wspdi', 'with high wspdi' ,sho
 w_graph=True)

As you can see, the distribution is not normal.

After we perform mannwhitney t-test the conclusion is:
p-values for two-tailed is 0.000000000.

We reject the null hypothesis.

"the distribution of ENTRIESn_hourly for the two groups are not e qual"

with low wspdi mean is 1549.0320479863

with high wspdi mean is 1715.1301188904

Conclusion:

We use rain, fog, tempi as features in our model and add UNIT, hour, ws pdi and day week to features using dummy varible.

```
In [157]: features = turnstile weather[['rain','fog','tempi']]
          dummy units = pd.get dummies(turnstile weather['UNIT'], prefix='uni
          t')
          features = features.join(dummy units)
          dummy hour = pd.get dummies(turnstile weather['hour'], prefix='hou
          r')
          features = features.join(dummy hour)
          dummy day week = pd.get dummies(turnstile weather['day week'], pref
          ix='day week')
          features = features.join(dummy day week)
          # dummy tempi = pd.get dummies(turnstile weather['tempi group'], pr
          efix='tempi group')
          # features = features.join(dummy tempi)
          dummy wspdi = pd.get dummies(turnstile weather['wspdi group'], pref
          ix='wspdi group')
          features = features.join(dummy wspdi)
```

2.3 Why did you select these features in your model? We are looking for specific reasons that lead you to believe that

the selected features will contribute to the predictive power of your model.

Your reasons might be based on intuition. For example, response for fog might be: "I decided to use fog because I thought that when it is very foggy outside people might decide to use the subway more often."

Your reasons might also be based on data exploration and experimentation, for example: "I used feature X because as soon as I included it in my model, it drastically improved my R2 value."

ANS:

UNIT, Hour, day of week has obviously effect the ENTRIES n_hourly.

We decide to do not use station because it corresponding to the remote unit.

"rain,fog,tempi and precipi" has an effect by the t-test conclusion.

2.4 What are the parameters (also known as "coefficients" or "weights") of the non-dummy features in your linear regression model?

```
In [186]: X = features
    y = np.array(turnstile_weather['ENTRIESn_hourly'])
    X = sm.add_constant(X)
    olsmod = sm.OLS(y, X)
    olsres = olsmod.fit()
    ynewpred = olsres.predict(X)
    intercept , params = olsres.params[0],olsres.params[1:]
    print(olsres.summary())
```

OLS Regression Results

		=========	=========	
Dep. Vari		У	R-squared:	
Model:		OLS	Adj. R-squar	od.
0.543		ОПР	Auj. K-Squar	eu:
Method:	ŢΑ	act Sanarec	F-statistic:	
197.2	TE	ast squares	r-statistic.	
Date:	Ψне	10 Nov 2015	Prob (F-stat	istic).
0.00	140,	10 110 2015	1100 (1 5000	.15010)•
Time:		00:04:28	Log-Likeliho	ood:
-3.8448e+	0.5	00.01.20	nog ninciine	.04.
No. Obser		42649	ATC:	
7.695e+05	V G C L C II S V	12019	11101	
Df Residu	als:	42390	BTC:	
7.717e+05	Q15.	12000	2101	
Df Model:		258		
	e Type:			
	=======================================			
=======	=======			
	coe	f std err	t	P> t
[95.0% Co				' '
-				
const	1772.853	4 63.005	28.138	0.000
	1896.344			
rain	-32.471	0 25.903	-1.254	0.210
-83.241	18.299			
fog	-182.057	4 100.800	-1.806	0.071
-379.628	15.513			
tempi	-14.717	3 1.362	-10.807	0.000
-17.386	-14.717 -12.048			
unit_R003	-1693.655	9 153.828	-11.010	0.000
	-1392.150			
	-1326.017	7 150.816	-8.792	0.000
	-1030.416			
	-1341.283	2 152.123	-8.817	0.000
-1639.446	-1043.120			
unit_R006	-1162.627	3 148.755	-7.816	0.000
-1454.189	-871.065			
unit_R007	-1526.396	7 153.030	-9.974	0.000
-1826.339	-1226.454			
	-1528.324	0 153.465	-9.959	0.000
	-1227.530			
_	-1526.514	2 150.828	-10.121	0.000
	-1230.888			
	5563.975	6 146.934	37.867	0.000
	5851.969			
	6915.985	3 146.146	47.322	0.000
	7202.435			
	814.426	1 146.146	5.573	0.000
527.977	1100.875			

		analyz_nyc		
 -	-1009.1465	146.935	-6.868	0.000
	-721 . 150	146 146	16 622	0.000
2142.971	2429.4207	146.146	16.623	0.000
	5997.2138	146.620	40.903	0.000
5709.836				
unit_R019	1464.7466	146.336	10.009	0.000
1177.925	1751.568			
_	4605.5175	146.146	31.513	0.000
4319.068	4891.967	146 022	10 042	0 000
	2915.5924 3203.584	146.933	19.843	0.000
	7749.9100	146.146	53.029	0.000
7463.461	8036.359	140.140	33.023	0.000
	4385.0874	146.146	30.005	0.000
4098.638				
unit_R024	1426.6750	146.728	9.723	0.000
1139.085				
_	3561.6390	146.336	24.339	0.000
3274.817				
	1199.5229	146.146	8.208	0.000
913.074 unit R029	1485.972 5461.4960	116 116	37.370	0.000
5175.047		140.140	37.370	0.000
unit R030		146.146	9.112	0.000
1045.240			,,,,,	
	2583.4584	146.146	17.677	0.000
2297.009	2869.908			
unit_R032		146.538	18.276	0.000
2390.934	2965.370			
unit_R033		146.146	44.247	0.000
6180.020	6752.918 -651.9222	152 026	1 266	0.000
	-352.361	132.630	-4.200	0.000
	1028.8096	146.933	7.002	0.000
740.819			, , , , ,	
unit_R036	-1057.2232	149.884	-7.054	0.000
	-763.447			
unit_R037	-933.6930 -644.773	147.407	-6.334	0.000
 -	-1587.3834	150.723	-10.532	0.000
	-1291.964 -1067.9196	154 730	6 902	0.000
	-764.645	134.730	-0.902	0.000
	-533.4530	147.011	-3.629	0.000
	-245.308			
unit_R041	1331.5014	146.146	9.111	0.000
	1617.951			
 -	-1185.1288	148.549	-7.978	0.000
	-893.970	146 146	7 (5:	0 000
	1118.6358	146.146	/.654	0.000
	1405.085 2910.0444	146 146	19 912	0.000
2623.595		140.140	17.712	0.000
	-			

		analyz_nyc		
	6576.4960	146.146	44.999	0.000
	6862.945			
	1004.3078	146.146	6.872	0.000
717.859		146 025	15 276	0.000
	2259.2547	146.935	15.376	0.000
	2547.251 3366.0498	146.146	23.032	0.000
_	3652.499	140.140	23.032	0.000
	-585.4247	152 039	_3 851	0.000
	-287.426	132.037	3.031	0.000
	1392.0730	147.017	9.469	0.000
	1680.229			
unit_R054	-307.8866	146.932	-2.095	0.036
	-19.896			
	6557.1628	146.226	44.843	0.000
	6843.769			
	-322.9592	146.934	-2.198	0.028
	-34.966			
	3114.4369 3400.886	146.146	21.310	0.000
	-1125.9778	146 541	-7.684	0.000
_	-1123.9778 -838.755	140.541	-/.004	0.000
unit R059		149.796	-3.909	0.000
	-291.940			
	-982.7879	148.547	-6.616	0.000
-1273.943	-691.633			
unit_R061	-1186.9780	154.195	-7.698	0.000
	-884.752			
 -	968.2971	146.146	6.626	0.000
681.848		152 744	4 1 6 4	0.000
-941.468	-640.1265	153./44	-4.164	0.000
	-931.9130	150.217	-6.204	0.000
 -	-637.486	150.217	-0.204	0.000
	-940.5654	151.949	-6.190	0.000
	-642.743			
unit_R066	-1546.9678	152.839	-10.122	0.000
	-1247.400			
unit_R067	-937.0028	154.285	-6.073	0.000
	-634.601			
 -	-1346.2432	154.291	-8.725	0.000
	-1043.829	151 507	E 610	0 000
	-851.8829 -554.750	151.597	-5.619	0.000
	19.2756	146.146	0.132	0.895
-267.174	305.725	110.110	0.132	0.033
	1843.6035	146.146	12.615	0.000
 -	2130.053			
 -	1794.3124	146.933	12.212	0.000
	2082.304			
unit_R082	-266.2321	146.933	-1.812	0.070
	21.759	446 44	2 22-	0 000
	1358.0121	146.146	9.292	0.000
10/1.563	1644.461			

	analyz_nyc		
unit_R084 8262.2863	3 146.146	56.534	0.000
7975.837 8548.736	146 025	5 741	0.000
unit_R085 843.5019 555.507 1131.497	9 146.935	5./41	0.000
unit R086 831.6035	146.146	5.690	0.000
545.154 1118.053	140.140	3.030	0.000
unit R087 -539.9019	147.735	-3.655	0.000
_829.465			
unit_R089 -1255.3585	146.935	-8.544	0.000
-1543.355 -967.362			
unit_R090 -1370.5178 -1672.923 -1068.113	3 154.287	-8.883	0.000
unit R091 -658.5260	152.920	-4.306	0.000
-958.252 -358.800	132.920	-4.300	0.000
unit R092 219.1146	150.312	1.458	0.145
-75.499 513.729			
unit_R093 247.3605	151.163	1.636	0.102
-48.922 543.643			
unit_R094 -7.9565	147.012	-0.054	0.957
-296.102 280.189			
unit_R095 398.7608	3 148.222	2.690	0.007
108.243 689.279 unit_R096 585.2179	1/16 61/1	3.992	0.000
297.851 872.585	7 140.014	3.772	0.000
	146.620	8.227	0.000
918. 8 74 1493.629			
unit_R098 66.1627	7 146.146	0.453	0.651
-220.287 352.612			
unit_R099 623.1896	146.146	4.264	0.000
336.740 909.639	7 147 022	0 107	0 000
unit_R100 -1211.7167 -1501.452 -921.982	147.823	-8.197	0.000
unit R101 1057.5820	146.146	7.236	0.000
771.133 1344.031	, 1101110	,,,,,	
unit R102 1946.4207	7 146.146	13.318	0.000
1659.971 2232.870			
unit_R103 -377.8285	152.029	-2.485	0.013
-675.808 -79.849			
unit_R104 -418.4314	147.008	-2.846	0.004
-706.571 -130.292 unit R105 1596.1197	7 1/6 1/6	10.921	0.000
1309.670 1882.569	140.140	10.921	0.000
unit R106 -711.6355	154.284	-4.612	0.000
-1014.036 -409.235			
unit_R107 -1303.7224	154.759	-8.424	0.000
-1607.054 -1000.391			
unit_R108 3485.2863	3 146.146	23.848	0.000
3198.837 3771.736		40 44-	
unit_R111 1482.4100	146.146	10.143	0.000
1195.961 1768.859 unit R112 -73.0956	5 146 614	_0 499	0.618
-360.462 214.271	, IIO.OII	0.477	0.010
unit_R114 -858.9462	2 146.731	-5.854	0.000
-1146.541 -571.351			

		analyz_nyc		
	-487.7642	146.336	-3.333	0.001
	-200.943			
	1461.5552	146.146	10.001	0.000
	1748.004	152 021	E 016	0.000
_1200_754	-899.2615 -597.769	155.621	-3.646	0.000
	92.4627	149.038	0.620	0.535
	384.580		00020	
	-249.0357	151.154	-1.648	0.099
-545.301	47.229			
unit_R121	-283.3014 11.133	150.220	-1.886	0.059
unit_R122 527.425	817.9531	148.227	5.518	0.000
	-114.8121	148 549	_0 773	0.440
	176.348	140.549	0.773	0.110
	-1103.4509	152.389	-7.241	0.000
$-140\overline{2.137}$	-804.765			
unit_R126	123.4638 409.913	146.146	0.845	0.398
unit_R127		146.146	20.967	0.000
	3350.623 703.0714	1/6 226	4 909	0.000
416.465		140.220	4.000	0.000
unit R139		146.540	5.447	0.000
510.937				
	1599.9100	146.146	10.947	0.000
	1886.359			
_	165.9476 452.397	146.146	1.135	0.256
	5046.7218	146 146	34 532	0.000
4760.273		140.140	34.332	0.000
	23.1992	148.959	0.156	0.876
-268 . 763	315.162			
	-1020.1679	154.745	-6.593	0.000
	-716.865	150 006	4 0.61	0 000
unit_R184	-758.2779 -458.717	152.836	-4.961	0.000
	-456.717 -653.5763	148 139	-4.412	0.000
	-363.220	110.133	1.112	0.000
	599.8546	146.538	4.093	0.000
312.636				
	-343.3938	149.795	-2.292	0.022
	-49.793	140.065	1 760	0 070
unit_R194 -29.809	262.1646	148.965	1./60	0.078
	-400.7090	147.331	-2.720	0.007
_	-111.937			
unit_R198	383.7891	146.934	2.612	0.009
95.796	671.782			
	-1016.0686	148.963	-6.821	0.000
	-724.098	147 010	4 660	0 000
	-690.4024 -400.495	14/.910	-4.668	0.000
-200.310	-400.493			

	anaryz_nyc		
unit_R202 490.4928	147.013	3.336	0.001
202.345 778.641 unit_R203 29.8105	150 642	0 100	0.843
-265.454 325.075	130.043	0.190	0.043
unit_R204 -272.5524 -559.002 13.897	146.146	-1.865	0.062
-559.002 13.897			
unit_R205 -228.9959 -518.720 60.728	147.817	-1.549	0.121
unit_R207 277.4172	146.540	1.893	0.058
-9.803 564.638 unit_R208 773.3186	147 810	5 232	0.000
483.608 1063.029	117.010	3.232	0.000
unit_R209 -964.1558 -1265.485 -662.827	153.738	-6.271	0.000
unit_R210 -1199.4997	149.801	-8.007	0.000
-1493.113 -905.886	146 146	4 606	0 000
unit_R211 684.8777 398.428 971.327	146.146	4.080	0.000
unit_R212 -35.0703	146.538	-0.239	0.811
-322.288 252.147			
unit_R213 -576.2380	149.375	-3.858	0.000
-869.016 -283.460			
unit_R214	154.199	-7.064	0.000
-1391.472 -787.006 unit_R215 -126.4400	146 934	0 961	0.390
-414.434 161.554	140.734	-0.001	0.370
unit_R216 -955.4743	146.933	-6.503	0.000
-1243.465 -667.483			
unit_R217 -752.0586	153.741	-4.892	0.000
-1053.395 -450.722	146 610	1 700	0 000
unit_R218 249.6617 -37.712 537.035	146.618	1./03	0.089
unit R219 -469.3956	147.013	-3.193	0.001
-757.543 -181.248		01250	0.00=
unit_R220 -240.3965 -526.846 46.053	146.146	-1.645	0.100
-526.846 46.053			
unit_R221 -342.2014	154.201	-2.219	0.026
-644.438 -39.965 unit_R223 389.1639	146 614	2 654	0.008
101.797 676.531	140.014	2.034	0.000
unit_R224 -999.5511	150.222	-6.654	0.000
-1293.988 -705.114			
unit_R225 -1148.2865	148.142	-7.751	0.000
-1438.648 -857.925	152 020	6 000	0 000
unit_R226 -1039.8991 -1339.626 -740.172	152.920	-6.800	0.000
unit_R227 -621.1330	146.146	-4.250	0.000
-907.582 -334.684			
unit_R228 -607.4424	153.291	-3.963	0.000
-907.896 -306.989	 _		
unit_R229 -1176.1316	152.388	-7.718	0.000
-1474.816 -877.448 unit R230 -1215.1252	150.644	_8.066	0.000
unit_R230 -1215.1252 -1510.390 -919.860	70.044	3.300	0.000

	anaryz_nyc		
unit_R231 -754.9510	148.139	-5.096	0.000
-1045.307 -464.595			
unit_R232	151.949	-4.743	0.000
-1018.510 -422.862	155 122	4 211	0.000
unit_R233 -653.2971 -957.359 -349.235	155.152	-4.211	0.000
unit_R234 -1443.0872	153.750	-9.386	
-1744.441 -1141.733	133.730	J.300	0.000
unit_R235 852.1249	146.541	5.815	0.000
564.902 1139.348			
unit_R236 -213.2885 -503.004 76.427	147.813	-1.443	0.149
-503.004 76.427			
unit_R237 -1106.3668 -1406.957 -805.776	153.361	-7.214	0.000
-1406.957 -805.776	146 610	0 505	0 011
unit_R238 371.6645 84.291 659.038	146.618	2.535	0.011
unit_R239 -823.9717	146 146	_5 638	0.000
-1110.421 -537.522	140.140	-3.030	0.000
unit_R240 935.0171	147.330	6.346	0.000
646.248 1223.786			
unit_R242 -1183.5001	149.380	-7.923	0.000
-1476.289 -890.711			
unit_R243 -368.5493	151.593	-2.431	0.015
-665.674 -71.424	151 500	0.004	0.051
unit_R244 -135.5100 -432.627 161.607	151.589	-0.894	0.371
-432.02/ 101.00/	153 200	6 965	0.000
unit_R246 -1067.5961 -1368.045 -767.147	133.207	-0.703	0.000
unit_R247 -1617.8973			
-1923.823 -1311.971			
unit_R248 1380.4881	146.540	9.421	0.000
1093.267 1667.709			
unit_R249 -369.0032	148.548	-2.484	0.013
-660.161 -77.845	140 275	F 070	0 000
unit_R250 -758.4554 -1051.234 -465.677	149.375	-5.078	0.000
unit_R251 -450.9028			
-739.674 -162.132			
unit_R252 -765.3310 -1053.322 -477.341	146.932	-5.209	0.000
-1053.322 -477.341			
unit_R253 -998.3039	152.054	-6.565	0.000
-1296.332 -700.276			
unit_R254 858.1375	146.620	5.853	0.000
570.760 1145.515 unit R255 -969.8776	1/17 016	6 557	0.000
-1259.797 -679.959	147.910	-0.337	0.000
unit_R256 -658.5975	146.933	-4.482	0.000
-946.589 -370.606			
unit_R257 163.2003	146.146	1.117	0.264
-123.249 449.650			
unit_R258 -201.1006	147.331	-1.365	0.172
-489.872 87.671	140 547	F 200	0.000
unit_R259 -800.6017 -1091.757 -509.446	148.54/	-5.390	0.000
-1091./3/ -309.440			

		anaryz_nyc		
	-653.5131	159.531	-4.096	0.000
	-340.830			
	-185.0256	149.878	-1.235	0.217
	108.738			
	-1308.2648	156.078	-8.382	0.000
	-1002.349	440.074		
	-1597.9984	149.374	-10.698	0.000
	-1305.222	146 540	0.500	
	-1251.1566	146.540	-8.538	0.000
	-963.936	152 202	E 007	0 000
	-884.8970 -586.205	132.393	-3.607	0.000
-1103.309	-828.7194 -541.351	1/6 615	5 652	0.000
_1116_N200	_541 351	140.013	-3.032	0.000
unit R269	-843.9177	146.935	-5.743	0.000
	-555.923	110.555	3.713	0.000
	-1265.1981	153,288	-8.254	0.000
	-964.751			
	-1381.9898	152.834	-9.042	0.000
-1681.547	-1082.432			
unit_R273	-378.7498	153.745	-2.463	0.014
-680.093	-77.406			
unit_R274	-787.9245	151.945	-5.186	0.000
	-490.109			
unit_R275		149.888	-5.699	0.000
-1148.057	-560.490			
unit_R276	-314.2621 -27.813	146.146	-2.150	0.032
	-1339.9156	157.531	-8.506	0.000
	-1031.153	450 005		
	-1380.1016	152.397	-9.056	0.000
	-1081.401 -985.4616	140 042	6 612	0 000
	-693.336	149.042	-0.012	0.000
	-1114.6907	156 551	7 120	0.000
	-807.848	130.331	-/.120	0.000
	-450.9962	148.544	-3.036	0.002
-742 . 145		110.511	3.030	0.002
unit R282	-143.6877	146.935	-0.978	0.328
-431 . 683	-143.6877 144.308			
	-956.9343			0.000
	-668.944			
unit_R285	-1186.5201	154.374	-7.686	0.000
-1489.096	-883.944			
unit_R287		154.663	-7.901	0.000
	-918.848			
	78.9691	146.146	0.540	0.589
	365.418			
	-800.4005	149.798	-5.343	0.000
	-506.794	4.00		
unit_R295		169.657	-6.955	0.000
	-847.399	146 146	2 222	0 001
	488.0336	146.146	3.339	0.001
201.584	//4.483			

		anaryz_nyc		
	-503.7708	148.551	-3.391	0.001
	-212.608			
	-645.3072	146.934	-4.392	0.000
-933.301				
	-1454.3298	154.751	-9.398	0.000
	-1151.016			
	-979.1828	151.601	-6.459	0.000
	-682.042			
unit_R309	-943.8603	151.171	-6.244	0.000
	-647.563			
	-492.7003	152.909	-3.222	0.001
	-192.996			
	-1356.7305	150.650	-9.006	0.000
	-1061.453			
_	-1406.0248	147.332	-9.543	0.000
	-1117.251			
	-1747.1601	155.213	-11.257	0.000
	-1442.939			
	-1199.7076	147.735	-8.121	0.000
	-910.144			
	-396.9874	148.960	-2.665	0.008
	-105.023			
 -	-649.3696	146.146	-4.443	0.000
	-362.920			
	30.9239	148.962	0.208	0.836
	322.892			
	-497.0385	151.950	-3.271	0.001
	-199.214			
_	-1435.9524	150.749	-9.525	0.000
	-1140.481	440 =04		
	-765.4439	149.794	-5.110	0.000
	-471.845	155 000	0 166	0 000
	-1428.0644	155.802	-9.166	0.000
	-1122.690	155 004	11 420	0.000
	-1782.2849	155.804	-11.439	0.000
	-1476.907	152 040	11 217	0 000
	-1726.7415	153.940	-11.21/	0.000
	-1425.017 -1853.5135	151 260	10 050	0 000
	-1853.5135 -1557.026	151.208	-12.253	0.000
	-1263.0971	147 522	0 560	0.000
	-1263.09/1 -973.950	147.523	-8.502	0.000
	-1310.4959	155 500	0 122	0.000
	-1310.4939	133.369	-0.423	0.000
	-1297.5825	150 651	9 613	0.000
	-1002.304	130.031	-0.013	0.000
	-516.5363	151 075	_3 419	0.001
	-220.426	131.073	-3.413	0.001
	-1660.5788	151.154	_10.986	0.000
	-1364.314	131.134	10.000	0.000
	-1621.9985	154.387	-10.506	0.000
	-1319.397	_31.007	101300	3.000
	-681.1600	150.413	-4.529	0.000
-975 . 973			_ 3 O _ 3	

		analyz_nyc		
unit_R358	-1588.2745	154.383	-10.288	0.000
	-1285.680			
	-1290.9864	150.216	-8.594	0.000
	-996.560	151 050	7 076	0.000
unit_R3/I	-1075 . 1879	151.950	-/.0/6	0.000
	-777.364 -1092.1437	153 200	7 125	0.000
	-791.695	133.209	-7.123	0.000
	-1144.8127	153.732	-7.447	0.000
	-843.495			
unit_R382	-888.3056 -594.367	149.967	-5.923	0.000
_	-1442.6820	155.141	-9.299	0.000
	-1138.602	1.45 4.00	5 014	0.000
_	-768 . 6038	147.409	-5.214	0.000
	-479.679 -12.8098	156 5/3	0 082	0.935
	294.017	130.343	-0.002	0.933
	-1689.8554	154.199	-10.959	0.000
	-1387.622			
	-1743.6190	153.748	-11.341	0.000
	-1442.270			
	-1557.9066	149.800	-10.400	0.000
	-1264.295	010 406	0 115	0.000
	-1723.8581 -1307.499	212.426	-8.115	0.000
	-1919.0066	153 //0	_12 506	0.000
	-1618.243	133.443	-12.500	0.000
	-146.5138	22.942	-6.386	0.000
_	-101.546			
hour_4	-1262.6161	23.046	-54.787	0.000
	-1217.446			
_	-933.0556	25.152	-37.096	0.000
	-883 . 757	27 014	EE 774	0 000
1502.188	1556.9001 1611.613	27.914	55.//4	0.000
	853.3062	28.019	30.455	0.000
798.389	908.223		001100	
	1704.8326	23.671	72.021	0.000
	1751.229			
	0 201.5390	24.149	8.346	0.000
	248.871			
	1 611.4333	26.223	23.317	0.000
560.036		27.351	23.297	0.000
583.588	2 637 . 1959	27.331	23.291	0.000
	3 638.0988	26.061	24.485	0.000
587.019				
	4 609.2279	27.107	22.475	0.000
556.098	662.357			
	5 -286.9554	27.344	-10.494	0.000
	-233.361	04 000	06.000	0 000
	6 -637.6860	24.220	-26.329	0.000
-005.15/	-590.215			

wspdi_group_0.0	407.5296	43.545	9.359	0.000
322.180 492.879				
wspdi_group_5.0	420.9405	37.125	11.338	0.000
348.175 493.706				
wspdi_group_10.0	439.0652	37.128	11.826	0.000
366.293 511.838				
wspdi_group_15.0	447.9262	40.897	10.953	0.000
367.767 528.085				
wspdi_group_20.0	425.9491	69.628	6.118	0.000
289.477 562.421				
	-368.5571	166.255	-2.217	0.027
-694.421 -42.694				

=========

30246.342 Omnibus: Durbin-Watson: 1.525 Prob(Omnibus): 0.000 Jarque-Bera (JB): 1103688.475 Skew: 2.979 Prob(JB): 0.00 Kurtosis: 27.199 Cond. No. 1.36e+17

Warnings:

- [1] Standard Errors assume that the covariance matrix of the error s is correctly specified.
- [2] The smallest eigenvalue is 9.36e-27. This might indicate that there are

strong multicollinearity problems or that the design matrix is sin gular.

ANS:

In [159]: print "rain coefficients is %.10f"%params[0]
print "fog coefficients is %.10f"%params[1]

rain coefficients is -32.4709952114 fog coefficients is -182.0574321738

2.5 What is your model's R2 (coefficients of determination) value?

In [160]: print olsres.rsquared

0.545517676888

```
In [161]: def plot residuals(turnstile weather, predictions):
              name df1 = "Prediction by our models"
              df1 = (turnstile weather['ENTRIESn hourly'] - predictions)
              name df2 = "Predict by mean value"
              df2 = (turnstile weather['ENTRIESn_hourly'] - turnstile_weathe
          r['ENTRIESn hourly'].mean())
              df compare = pd.DataFrame({name df1: df1,
                         name df2: df2})
              df compare = pd.DataFrame({name df1: df1,
                         name df2: df2})
              df compare.plot(kind='hist', alpha=0.2,bins = range(-6000, 6000
          , 300))
              plt.suptitle('Predict ENTRIESn hourly Error compare between Our
          model and Mean')
              plt.xlabel("ENTRIES hourly Error")
              plt.ylabel("frequency")
              fig = matplotlib.pyplot.gcf()
              fig.set size inches(18.5, 10.5, forward=True)
              plt.show()
              return
```

ANS:

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced R squared, is a number that indicates how well data fit a statistical model.

Our model's R2 is 0.54629540704.

The result indicates that the model explains 54.63% of the variability of the response data around its mean.

2.6 What does this R2 value mean for the goodness of fit for your regression model? Do you think this linear model to predict ridership is appropriate for this dataset, given this R2 value?

```
In [162]: predictions = ynewpred
```

ANS:

Our R2(0.546) indicates that the regression line fits the data more than any other models that R2 less than 0.546 and still has the chance to improve the model for make it closer to 1.

As you can see our model's prediction is obviously better than predict by mean.

Section 3. Visualization

3.1 One visualization should contain two histograms: one of ENTRIESn_hourly for rainy days and one of ENTRIESn_hourly for non-rainy days.

You can combine the two histograms in a single plot or you can use two separate plots.

If you decide to use to two separate plots for the two histograms, please ensure that the x-axis limits for both of the plots are identical. It is much easier to compare the two in that case.

For the histograms, you should have intervals representing the volume of ridership (value of ENTRIESn_hourly) on the x-axis and the frequency of occurrence on the y-axis. For example, each interval (along the x-axis), the height of the bar for this interval will represent the number of records (rows in our data) that have ENTRIESn_hourly that falls in this interval.

Remember to increase the number of bins in the histogram (by having larger number of bars). The default bin width is not sufficient to capture the variability in the two samples.

ANS:

As you can see, the distribution is not normal.

3.2 One visualization can be more freeform. You should feel free to implement something that we discussed in class (e.g., scatter plots, line plots) or attempt to implement something more advanced if you'd like. Some suggestions are:

Ridership by time-of-day

Ridership by day-of-week

ANS:

```
In [165]: agg = turnstile weather.groupby(['day week'], as index=False).mea
          n()
          x data = agg['day week']
          y data = agg['ENTRIESn hourly']
          plt.plot(x data, y data, label="average all day")
          plt.scatter(x=agg['day week'], y=agg['ENTRIESn hourly'])
          for hour in range(0,25):
              agg = turnstile weather[turnstile weather.hour == hour].groupb
          y(['day week'], as index=False).mean()
              x_data = agg['day_week']
              y data = agg['ENTRIESn hourly']
              if np.mean(y data) > 0 :
                  plt.plot(x_data, y_data, label="average hour %s"%hour)
                  plt.scatter(x=agg['day week'], y=agg['ENTRIESn hourly'])
          plt.legend(bbox to anchor=(1.05, 1), loc=2, borderaxespad=0.)
          plt.suptitle('Relation between average ENTRIESn hourly for each hou
          r and day week')
          plt.xlabel("day week")
          plt.ylabel("ENTRIESn hourly")
          fig = matplotlib.pyplot.gcf()
          fig.set size inches(18.5, 10.5, forward=True)
          plt.show()
          print "As you can see the average ENTRIESn hourly of hour 20 and 12
          is obviously higher than other"
```


As you can see the average ENTRIESn_hourly of hour 20 and 12 is ob viously higher than other

Section 4. Conclusion

Please address the following questions in detail. Your answers should be 1-2 paragraphs long.

4.1 From your analysis and interpretation of the data, do more people ride the NYC subway when it is raining or when it is not raining?

ANS:

From rain's coefficeent(-54.5780521669) in linear regression and P value is 0.210 so we conclude that:

Rain are not associated with changes in the response (ENTRIESn_hourly).

4.2 What analyses lead you to this conclusion? You should use results from both your statistical tests and your linear regression to support your analysis.

ANS:

From the null hypothesis testing results with 2 samples rain and with out rain return p value = 0.00000274106957 it mean that the possibility of distribution different has occured by chance is about 0.0002741% so we assume that

The distributions of both populations are not equal.

But the p-value from linear regression summary (0.210) is greater than the common alpha level of 0.05, which indicates that:

Rain is not statistically significant effect on ENTRIESn_hourly.

Section 5. Reflection

Please address the following questions in detail. Your answers should be 1-2 paragraphs long.

5.1 Please discuss potential shortcomings of the methods of your analysis, including:

Dataset, Analysis, such as the linear regression model or statistical test.

ANS

Dataset:

Following the data:

The data has only one month data and I quite sure that "month" has an effect on "ENTRIESn_hourly" so If we have more data in every month is possible that our model is more fit on the different month.

I am quite sure that "public holiday" has an effect on "ENTRIESn_hourly" so If we has the parameter, our prediction will be more significant accurate.

Statistical Test:

The Statistical Test is only comparing the differences between the conditions of one feature; rain, when clearly other are other variables that seem to affect the ridership even more.

Regression Model

```
def plot residuals2(turnstile weather, effect parameter='tempi'):
In [187]:
              name df1 = "Prediction by our models"
              turnstile weather['Predict ENTRIESn hourly error'] = (turnstil
          e weather['ENTRIESn hourly'] - predictions)
              agg = turnstile weather
                agg = turnstile_weather.groupby([effect_parameter], as_inde
          #
          x=False).mean()
              agg = agg.sort([effect parameter])
              x data = agg[effect parameter]
              y data = agg['Predict ENTRIESn hourly error']
              fig = matplotlib.pyplot.gcf()
              fig.set size inches(18.5, 10.5, forward=True)
          #
                plt.plot(x_data, y_data)
              plt.plot([40,90], [0,0])
              plt.xlabel("tempi")
              plt.ylabel("prediction's error")
              plt.suptitle('Predict ENTRIESn_hourly Error')
              plt.scatter(x=agg[effect parameter], y=agg['Predict ENTRIESn ho
          urly_error'], alpha = 0.05)
              x1, x2, y1, y2 = plt.axis()
              plt.axis((x1,x2,-5000,5000))
              plt.show()
              return
          plot residuals2(turnstile weather, effect parameter='tempi')
```

Predict ENTRIESn_hourly Error

As you see "Predict ENTRIESn_hourly" is quite acurrate (0 horizontal line draw through the middle of intense blue dot cluster) so I think linear model in this context is good enough.

Any way if we find out other pattern such as cyclic or polynomial the linear model will be less appropriate.

5.2 (Optional) Do you have any other insight about the dataset that you would like to share with us?

ANS:

```
In [188]:
          for day week in range (0,7):
              agg = turnstile weather[turnstile weather.day week == day wee
          k].groupby(['hour'], as index=False).mean()
              x data = agg['hour']
              y_data = agg['ENTRIESn hourly']
              if np.mean(y data) > 0 :
                  plt.plot(x data, y data, label="day week %s"%day week)
                  plt.scatter(x=agg['hour'], y=agg['ENTRIESn hourly'])
          plt.legend(bbox to anchor=(1.05, 1), loc=2, borderaxespad=0.)
          plt.xlabel("hour")
          plt.ylabel("average ENTRIESn hourly")
          plt.suptitle('Relation between average ENTRIESn_hourly for each da
          y week and hour')
          fig = matplotlib.pyplot.gcf()
          fig.set size inches(18.5, 10.5, forward=True)
          plt.show()
```

Relation between average ENTRIESn_hourly for each day_week and hour

| — day week 0 | — day week 1 | — day week 2 | — day week 3 | — day week 3 | — day week 6 | — day week 7 | — day week 7 | — day week 8 | — day week 8 | — day week 9 | — da

There are 2 patterns of Hourly_entries by hour first is day_week 0-4 second is dayweek 5-6.

Peek Hour for Hourly entries are about at 12:00 and 20:00.

```
In [189]: # agg2 = turnstile weather.groupby(['conds'])
          # for key, cond in agg2['conds']:
          # #
                  print key
                if key in ['Clear', 'Light Drizzle', 'Heavy Rain', 'Light Rai
          n']:
                    agg = turnstile weather[turnstile weather.conds == key].g
          roupby(['hour'], as index=False).mean()
          #
                    x data = agg['hour']
          #
                    y data = agg['ENTRIESn hourly']
          # #
                      print np.mean(y data)
          #
                    if np.mean(y data) > 0:
          #
                        plt.plot(x data, y data, label="cond %s"%key)
          #
                        plt.scatter(x=agg['hour'], y=agg['ENTRIESn hourly'])
          # plt.legend(bbox to anchor=(1.05, 1), loc=2, borderaxespad=0.)
          # plt.xlabel("hour")
          # plt.ylabel("average ENTRIESn hourly")
          # plt.suptitle('Relation between average ENTRIESn hourly for each c
          ond and hour')
          # fig = matplotlib.pyplot.gcf()
          # fig.set size inches(18.5, 10.5, forward=True)
          # plt.show()
```

```
In [190]: fig = matplotlib.pyplot.gcf()
          fig.set size inches(18.5, 10.5)
          turnstile weather['predict ENTRIESn hourly'] = predictions
          agg = turnstile_weather.groupby(['DATEn'], as_index=False).mean()
          # agg['datetime obj'] = pd.to datetime(agg['DATEn'])
          # aqq['datetime obj'] = pd.DatetimeIndex (aqq['DATEn'])
          # agg['datetime obj'] = agg['DATEn'].astype('datetime64[ns]')
          from time import strptime
          \# agg = agg[:30]
          aqq['datetime obj'] = pd.to datetime(agg['DATEn'])
          # print agg['datetime_obj'][0].day
          agg['datetime num'] = agg['datetime obj'].apply(lambda x: x.day )
          agg = agg.sort(['datetime num'])
          # print len(agg)
          import matplotlib.dates as mdates
          x_data = agg['datetime_num']
          y data = agg['ENTRIESn hourly']
          y2 data = agg['predict ENTRIESn hourly']
          plt.scatter(x=agg['datetime num'], y=agg['ENTRIESn hourly'])
          plt.plot(agg['datetime num'], agg['ENTRIESn hourly'],label="Actua
          1")
          plt.plot(agg['datetime num'], agg['predict ENTRIESn hourly'],labe
          l="Predict")
          plt.legend(bbox to anchor=(1.05, 1), loc=2, borderaxespad=0.)
          plt.xlabel("date")
          plt.ylabel("average ENTRIESn hourly")
          plt.suptitle('average ENTRIESn hourly at each date for actual vs pr
          edict')
          plt.show()
```

average ENTRIESn_hourly at each date for actual vs predict

The pattern are cyclic.

In []:	