Microarchitetture ad Alte Prestazioni

Michele Favalli

Metriche per le prestazioni

- Latenza: intervallo di tempo che intercorre fra l'inizio e la fine nell'esecuzione di un certo task
 - latenza di un istruzione
 - latenza di un programma
- Throughput: numero di istruzioni elaborato nell'unità di tempo

Metriche per le prestazioni

- Latenza di un programma: tempo impiegato per eseguirlo
 - in generale si può calcolare come:

$$L = \sum_{i \in exec.instr.} CPI_i * T_{clock}$$

nella macchina a ciclo singolo si ha

$$L = \#exec.instr.*T_{clock}$$

Throughput misurato eseguendo un programma:

$$thr = \frac{\#exec.instr.}{L}$$

nella macchina a ciclo singolo si ha

$$thr = \frac{1}{T_{clock}} = f_{clock}$$

Pipelining

- PIPELINING. Tecnica implementativa in cui l'esecuzione di istruzioni multiple viene sovrapposta nel tempo, sul modello di una «catena di montaggio».
- SCOPO: Migliorare il throughput, non la latenza delle singole operazioni!*

Pipelining

PIPELINING. Tecnica implementativa in cui l'esecuzione di istruzioni multiple viene sovrapposta nel tempo, sul modello di una «catena di montaggio».

Una pipeline a 4 stadi è potenzialmente 4 volte più veloce rispetto alla versione base (ATTENZIONE, E' UNO SPEED-UP DI CASO MIGLIORE!)

Latenza per ogni bucato: 2 ore*

Throughput di bucati: 1 completato ogni 30 minuti.*

Una pipeline a N stadi è potenzialmente N volte più veloce rispetto alla versione base

Assunzioni:

- La pipeline è bilanciata (ogni stadio impiega lo stesso tempo)!
- C'è lavoro sufficiente per tenere la pipeline sempre piena!
- Si trascurano il transitorio iniziale e quello finale

CPU pipelined

- L'esecuzione di un istruzione deve essere spezzata in fasi che utilizzano risorse hardware indipendenti fra di loro e indipendenti dal tipo di istruzione
- Se nel bucato avessi avuto una singola lava/asciuga, non avrei potuto fare una piepline a 4 stadi
- IN una CPU per rendere indipendenti le risorse (ALU ad esempio) fra loro devo introdurre dei registri

Stadio n. 1 della piepeline: Instruction Fetch

Qual'è il «critical path»?

Instruction Register = Memory [ProgramCounter]
PC <= PC + 4</pre>

Stadio n. 2 della pipeline: Register Fetch e Instruction Decode

A e B sono da usare negli stadi successivi. E se non serviranno tutti perché non è una istruzione aritmetico-logica? Pazienza, non ho rovinato nulla!

Stadio n. 2 della pipeline: Register Fetch e Instruction Decode

Branch target address <= PC + 4 + offset (sign-esteso e moltiplicato per 4)

Note: PC+4 era stato calcolato nello stadio 1 e il BTA viene messo in ALUOut (nuovo registro)

Stadio n. 3 della pipeline: Execution

3a. Memory reference

Calcolo indirizzo per l'accesso in memoria ALUOut <= A + offset (sign-esteso)

Nota: A era stato scritto nello stadio 2, l'offset viene da IR e ALUOut viene sovrascritto rispetto al valore calcolato nello stadio 2

Stadio n. 3 della pipeline: Execution 3b. Istruzione aritmetico-logica (tipo R)

ALUOut <= A op B ALUOut viene sovrascritto rispetto al valore calcolato nello stadio 2

Stadio n. 3 della pipeline: Execution

3c. Branch

ALUOut è stato calcolato al ciclo precedente

Stadio n. 4 della pipeline: Memory access

Load

MDR <= Memory [ALUOut]

Store

Memory [ALUOut] <= B

B disponibile dal decode stage e AluOut dal execute stage

Stadio n. 5 della pipeline: Memory read completion (or Write-Back)

5a. Memory Reference

Registro destinazione[rt] <= MDR

Stadio n. 5 della pipeline: Memory read completion (or Write-Back)

5b. Istruzione aritmetico-logica

Registro destinazione [rd] <=ALUOut

Schema complessivo

Sommario

Le istruzioni MIPS possono essere suddivise in 5 operazioni fondamentali (ottimizzate):

- IF Instruction Fetch
- ID Instruction Decode and Register Reading
- EX Execute or Address Calculation
- MEM Memory access
- WB Write Back in register file

Vantaggi del pipelining

Restringiamo l'attenzione a sole 8 istruzioni per semplicità; Assumiamo i seguenti tempi di esecuzione per le seguenti istruzioni:

Instruction class	Instruction fetch	Register read	ALU operation	Data access	Register write	Total time
Load word (1w)	200 ps	100 ps	200 ps	200 ps	100 ps	800 ps
Store word (sw)	200 ps	100 ps	200 ps	200 ps		700 ps
R-format (add, sub, and, or, slt)	200 ps	100 ps	200 ps		100 ps	600 ps
Branch (beq)	200 ps	100 ps	200 ps			500 ps

- In una implementazione a singolo ciclo, il periodo di clock sarebbe determinato dall'istruzione più lenta.
 - In questo caso, 800 ps
- Nel caso del pipelining, il periodo di clock sarebbe determinato dall'operazione (stadio) più lenta.
 - In questo caso, 200 ps

Single-Cycle vs. Pipelining

Single-Cycle: Periodo di clock a 800 ps

Pipelining: Periodo di clock a 200 ps

Nel pipelining, il «critical path» è di solito nell'esecuzione dell'ALU o nell'accesso in memoria.

Vantaggio per il throughput

 Avevamo detto che...... Una pipeline ad N stadi aumenta il throughput potenzialmente di N volte

.....quel «potenzialmente» è importante!

Slide precedente: abbiamo introdotto 5 stadi di pipeline, dunque mi attendo un 5x di throughput

Invece, lo speed-up per operazione è stato di 800ps/200ps=4! NON TORNA! Spiegazione: la pipeline non era perfettamente bilanciata!

Slide precedente: 3 istruzioni eseguono in 2400ps (single-cycle) vs. 1400ps (pipelined)

Lo speed-up in questo caso non è stato neppure di 4, ma di 1.7! Spiegazione: 3 istruzioni sono poche, e si avverte ancora il ruolo del tempo di caricamento della pipeline. Se si considerano ad. es. 1M istruzioni, lo speed-up torna circa 4!

Metriche per le prestazioni nel caso pipelined

- La latenza delle singole istruzioni può aumentare se la pipeline non è bilanciata (ovvero divisa in stadi con uguale ritardo)
- La latenza nell'esecuzione di un programma migliora in maniera pari al numero di stadi della pipeline se questa è bilanciata, se il num. di istr. è molto grande
- Quello che migliora è la frequenza di clock

Metriche per le prestazioni nel caso pipelined

- Cosa succede alle formule che avevamo usato nel caso a ciclo singolo?
- Sotto le ipotesi restrittive che abbiamo fatto e altre che vedremo, rimane valido che la latenza è uguale a:

$$L = \#exec.instr.*T_{clock}$$

infatti viene terminata un istruzione a ogni ciclo di clock

 Quindi anche la formula del throughput misurato eseguendo un programma rimane valida:

$$thr = \frac{\#exec.\,instr.}{L} = \frac{1}{T_{clock}} = f_{clock}$$

Problemi della pipeline

• Prima forse è meglio una pausa

Hazards

- Ci sono situazioni col pipelining nelle quali la prossima istruzione non può essere eseguita nel ciclo di clock successivo (HAZARD)
 - Hazard Strutturali
 - Hazard Dati
 - Hazard di Controllo
- Penalità tipica introdotta dagli hazard: stalli della pipeline!

IF	ID	EX	MEM	WB				
	IF	ID	EX	MEM	WB		,	
		IF	ID	Bubble	Bubble	EX	MEM	WB

Hazard Strutturali (esempio)

Ogni risorsa deve essere utilizzata in un solo stadio di pipeline!

Hazard Dati - Il Problema

 La pipeline deve essere fermata perché uno stadio ha bisogno del completamento di un altro per poter eseguire correttamente

- Tutte le istruzioni dopo la ADD fanno uso del suo risultato
- Il write-back del registro \$s0 avviene solo nell'ultimo stadio della pipeline
- Le operazioni SUB, AND accedono ad un valore errato del registro \$s0
- Se il register file implementa «internal forwarding», l'istruzione OR legge il valore corretto.

Forwarding unit

Hazard Dati - Implicazioni

Gli hazard dati implicano «perdite di performance».

Abbiamo inserito tre «bolle» nella pipeline per evitare l'inconsistenza!

Hazard Dati – La soluzione

Utilizziamo l'informazione appena è prodotta

Non dobbiamo aspettare che il registro \$s0 sia aggiornato, perché il suo valore futuro è disponibile direttamente all'ingresso dello stadio MEM.

Hazard Dati

 Non tutti gli hazard dati possono essere risolti con bypassing, e alla fine stalli di pipeline sono inevitabili.

Vale solo per la connessione diretta tra operazioni che sono successive nel tempo.

Soluzione

 Non tutti gli hazard dati possono essere risolti con bypassing, e alla fine stalli di pipeline sono inevitabili.

Linguaggio C

$$A = B + E;$$

$$C = B + F;$$

Linguaggio ASM

```
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
lw $t4, 8($01)
add $t5, $t1,$t4
sw $t5, 16($t0)
```


TROVARE e RISOLVERE GLI HAZARD NEL CODICE!

Iw \$t1, 0(\$t0)
Iw \$t2, 4(\$t0)
add \$t3, \$t1, \$t2
sw \$t3, 12(\$t0)
Iw \$t4, 8(\$01)
add \$t5, \$t1, \$t4
sw \$t5, 16(\$t0)

Iw \$t1, 0(\$t0)
Iw \$t2, 4(\$t0)
add \$t3, \$t1, \$t2
sw \$t3, 12(\$t0)
Iw \$t4, 8(\$01)
add \$t5, \$t1, \$t4
sw \$t5, 16(\$t0)

le prime due istruzioni non hanno dipendenze

Iw \$t1, 0(\$t0)
Iw \$t2, 4(\$t0)
add \$t3, \$t1, \$t2
sw \$t3, 12(\$t0)
Iw \$t4, 8(\$01)
add \$t5, \$t1, \$t4
sw \$t5, 16(\$t0)

Non si può fare. I registri sono aggiornati troppo tardi! E con il bypassing?

Iw \$t1, 0(\$t0)
Iw \$t2, 4(\$t0)
add \$t3, \$t1, \$t2
sw \$t3, 12(\$t0)
Iw \$t4, 8(\$01)
add \$t5, \$t1, \$t4
sw \$t5, 16(\$t0)

Ora, con un doppio bypassing risolvo il problema: Register File Internal forwarding e Write-back-to-Exe Dentro al register file, mentre scrivo un registro lo posso anche leggere!

D EX	MEM	WB	1 1 1 1 1 1 1
		'. 	±
		i -	
4(\$t0) <i>[w \$t1, 0(\$t0)</i>	i	j J	
LL lw, \$t2, 4(\$t0)			i i
\$t1, \$t2 STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	
12(\$t0)	2 STALL	lw, \$t2, 4(\$t0)	1
lemal sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	
icina:	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	i L
<u> </u>		<u> </u>	
<u> </u>	<u>i</u>	i !	¦
	 	, , ,	
;	! !	 	
1	<i>O(\$t0)</i> 4(\$t0) LL	$O(\$t0)$ $4(\$t0)$ $Iw \$t1, O(\$t0)$ LL $Iw, \$t2, 4(\$t0)$ $Iw \$t1, O(\$t0)$ $\$t1, \$t2$ $\$TALL$ $Iw, \$t2, 4(\$t0)$ $12(\$t0)$ $$TALL$ 3000×10^{-10}	O(\$t0) $4($t0)$ $Iw $t1, O($t0)$ NLL $Iw, $t2, 4($t0)$ $Iw $t1, O($t0)$ $$t1, $t2$ $$TALL$ $Iw, $t2, 4($t0)$ $Iw $t1, O($t0)$ $12($t0)$ $$TALL$ $$$

Iw \$t1, 0(\$t0)
Iw \$t2, 4(\$t0)
add \$t3, \$t1, \$t2
sw \$t3, 12(\$t0)
Iw \$t4, 8(\$01)
add \$t5, \$t1, \$t4
sw \$t5, 16(\$t0)

E' necessario un nuovo tipo di Forwarding da Write-Back a Memory

Time	IF	FID	EX	MEM	WB	
	lw \$t1, 0(\$t0)		 	 		· +
	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	 	 	, 	
	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	; !	i '	
	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	 	i L
	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	
	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	
	L	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	
	! !		lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	i L
	' 			lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	
	i !			 	lw \$t4, 8(\$t0)	
				 		!
1				 	 	
▼				 		1 1

Iw \$t1, 0(\$t0)
Iw \$t2, 4(\$t0)
add \$t3, \$t1, \$t2
sw \$t3, 12(\$t0)
Iw \$t4, 8(\$01)
add \$t5, \$t1, \$t4
sw \$t5, 16(\$t0)

Time	IF	FID	>EX	MEM	WB	
	lw \$t1, 0(\$t0)	 			'	
	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)				
i	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)		i !	
¦ a	ndd \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	! !	! !
	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	
	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	
	STALL	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	
	add \$t5, \$t1, \$t4	STALL	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	
 	ا ا	add \$t5, \$t1, \$t4 🔫		lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	! !
	·	i 	add_\$t5,_\$t1,_\$t4 - 🗲	STALL		
	! !	 		add \$t5, \$t1, \$t4	STALL	
	 	 			add \$t5, \$t1, \$t4	
-	 	{}			i 	
 	ا ا 	 			 	
i !	į	į				
	v ¢+1 0/¢+0)	 			 	

Iw \$t1, 0(\$t0) Iw \$t2, 4(\$t0) add \$t3, \$t1, \$t2 sw \$t3, 12(\$t0) Iw \$t4, 8(\$01) add \$t5, \$t1, \$t4 sw \$t5, 16(\$t0)

\$t1 è letto aggiornato, mentre per \$t4 è necessario il bypass Write-Back-to-Exe

Time	IF	F ID	EX	МЕМ	WB		
	[<u> [w \$t1, 0(\$t0)</u>			,			
	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	 	,			
	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	,			
	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)			
	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)		
	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	lw, \$t2, 4(\$t0)		
	STALL	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	STALL	. [
	add \$t5, \$t1, \$t4	STALL	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	. <u>.</u>	
	sw \$t5, 16(\$t0)	add.\$t5,\$t1,\$t4	STALL	lw \$t4, 8(\$t0)	sw \$t3, 12(\$t0)	<u> </u>	
	i 	sw \$t5, 16(\$t0)	add \$t5, \$t1, \$t4	STALL	lw \$t4, 8(\$t0)		
	 		sw \$t5, 16(\$t0)	add \$t5, \$t1, \$t4	STALL	<u> </u>	
↓	i !		i 	sw \$t5, 16(\$t0) 🗲	add \$t5, \$t1, \$t4	<u>.</u>	
					sw \$t5, 16(\$t0)		Ļ
	-i			ii		· - ·	
						-	
	1	l l		į		i	

Tempo di completamento: 13 cicli!

Alternativa

Linguaggio C

$$A = B + E;$$

 $C = B + F;$

L'ordine delle istruzioni nel codice assembler definisce una relazione di ordine parziale

Se il compilatore si accorge degli hazard, mi puo' cambiare l'ordine di esecuzione!

	3	6
,	4.1	0(410)
٦w	\$t1,	0(\$t0)
1 w	\$t2,	4(\$t1)
1w	\$t4,	8(\$01)
add	\$t3,	\$t1,\$t2
SW	\$t3,	12(\$t0)
add	\$t5,	\$t1,\$t4
SW	\$t5,	16(\$t0)

Iw \$t1, 0(\$t0) Iw \$t2, 4(\$t0) Iw \$t4, 8(\$01) add \$t3, \$t1, \$t2 sw \$t3, 12(\$t0) add \$t5, \$t1, \$t4 sw \$t5, 16(\$t0)

Time	IF	FID	EX	MEM	WB	
	lw \$t1, 0(\$t0)			J		
	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)		 		i I
	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	1 	 	!
	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	 	
		add \$t3, \$t1, \$t2 🔸	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	
	'	 	add \$t3, \$t1, \$t2 🔸	lw \$t4, 8(\$t0)	[w, \$t2, 4(\$t0)	
				add \$t3, \$t1, \$t2	Tw \$t4, 8(\$t0)	
	1			 	add \$t3, \$t1, \$t2	
				1		
	i !			1	 	1
	!			!		
1	·	 		i i		
▼		!		1	! ! :	į

Time	IF	FID	EX	МЕМ	WB	
	lw \$t1, 0(\$t0)					- -
	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	i +	<u> </u>	 	
	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	i		
	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)		i i
	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	
	!	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)	īw, \$t2, 4(\$t0)	
	 		sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	Tw \$t4, 8(\$t0)	
		 	1	sw \$t3, 12(\$t0) 🕢	add \$t3, \$t1, \$t2	
		┐ ! +]	sw \$t3, 12(\$t0)	
	<u>i</u>	<u> </u>	i I	i i		
	<u> </u>	' ' 	! !	, , ,		
↓	!	!	!	!		
▼		i	1	;		-

Iw \$t1, 0(\$t0)
Iw \$t2, 4(\$t0)
Iw \$t4, 8(\$01)
add \$t3, \$t1, \$t2
sw \$t3, 12(\$t0)
add \$t5, \$t1, \$t4
sw \$t5, 16(\$t0)

Iw \$t1, 0(\$t0) Iw \$t2, 4(\$t0) Iw \$t4, 8(\$01) add \$t3, \$t1, \$t2 sw \$t3, 12(\$t0) add \$t5, \$t1, \$t4 sw \$t5, 16(\$t0)

Time	IF	FID	EX	MEM	WB		
	lw \$t1, 0(\$t0)						
	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)			 	_	
	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)				
	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	! !	i	
	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)	lw \$t1, 0(\$t0)	-[
	add \$t5, \$t1, \$t4	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)	lw, \$t2, 4(\$t0)		
	sw \$t5, 16(\$t0)	add \$t5, \$t1, \$t4	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2	lw \$t4, 8(\$t0)		[
	 	sw \$t5, 16(\$t0)	add \$t5, \$t1, \$t4	sw \$t3, 12(\$t0)	add \$t3, \$t1, \$t2		
			sw \$t5, 16(\$t0)	add \$t5, \$t1, \$t4	sw \$t3, 12(\$t0)		
				sw \$t5, 16(\$t0) 🛶	add \$t5, \$t1, \$t4		
					sw \$t5, 16(\$t0)		
\							
	1	l l		l		i	

Tempo completamento: 11 cicli!

Vincoli di costo

- I processori, per motivi di costo, non implementano tutti i possibili bypass tra stadi di pipeline.
- Di conseguenza, il compilatore sfrutta i bypass esistenti, e laddove non disponibili:
 - o cambia l'ordine di esecuzione e risolve
 - o deve introdurre cicli di NOP
- Effetto degli stalli sulle prestazioni?