

Forward Kinematics Algorithm

Given $(q_1, ..., q_n)$, find (p_{0n}, R_{0n}) .

- 1. Define the base frame \mathcal{E}_0 and origin \mathcal{O}_0 .
- 2. Define the *zero configuration*, the configuration at which all joint displacements are defined to be zero and all frames are aligned, $\mathcal{E}_i = \mathcal{E}_0$, i = 1, ..., n + 1.
- 3. Choose origins of *i*th body, O_i , along the motion axis \vec{h}_i .
- 4. While the chain is in the zero configuration,
 - (a) find h_i (\vec{h}_i represented in \mathcal{E}_{i-1}) by expressing \vec{h}_i in \mathcal{E}_0 (since $\mathcal{E}_{i-1} = \mathcal{E}_0$).
 - (b) find $p_{i-1,i}$ ($\vec{p}_{i-1,i}$ represented in \mathcal{E}_{i-1}) by representing $\vec{p}_{i-1,i}$ in \mathcal{E}_0 (since $\mathcal{E}_{i-1} = \mathcal{E}_0$).
- 5. Apply the forward kinematic equations to obtain (p_{0T}, R_{0T}) .

$$R_{0T}(q) = R_{01}(q_1)R_{12}(q_2)\dots R_{n-1,n}(q_n)R_{nT}$$

$$p_{0T}(q) = p_{01} + R_{01}(q_1)p_{12} + \dots + R_{0,n-1}(q_1,\dots,q_{n-1})p_{n-1,n} + R_{0,n}(q_1,\dots,q_n)p_{nT}.$$

If *i*th joint is revolute: $p_{i-1,i}$ is a constant vector, $R_{i-1,i} = \mathbf{rot}(h_i, q_i)$.

If *i*th joint is prismatic: $p_{i-1,i} = p_{i-1,i}(0) + q_i h_i$ where $p_{i-1,i}(0)$ is a constant vector from the zero configuration, $R_{i-1,i} = I$.

Forward Kinematics Implementation

To implement forward kinematics numerically, we need the following *constant* vectors:

• Axes of motion: $(h_i)_{i-1}$

• Link vectors: $(p_{i-1,i}(0))_{i-1}$

To find these vectors, first put the chain in the "zero configuration" (you choose!), i.e., when all joint angles are zero. In this configuration, all frames are aligned, so

$$(h_i)_{i-1} = (h_i)_0, \quad (p_{i-1,i})_{i-1} = (p_{i-1,i})_0$$

which means we just read off these vectors in the inertial frame.

Summary of procedure for forward kinematics:

- put chain in the chosen zero configuration
- choose origin of *i*th frame along h_i
- Express \vec{h}_i and $\vec{p}_{i,i+1}$ all in E_0 .
- Apply forward kinematics formula.

Now let's look at some examples!

Example: SCARA Arm (4 DOF, RRRP)

$$x = [1,0,0]^T, \dot{y} = [0,1,0]^T, z = [0,0,1]^T$$

$$h_1 = h_2 = h_3 = h_4 = z$$

$$p_{01} = 0, p_{12} = \ell_1 y, p_{23} = \ell_2 y, p_{34} = \ell_3 z$$

$$R_{01} = \mathbf{rot}(z, q_1), R_{12} = \mathbf{rot}(z, q_2), R_{23} = \mathbf{rot}(z, q_3), R_{34} = I$$

forward kinematics: rotation

$$R_{04} = R_{01}R_{12}R_{23}R_{34}$$

forward kinematics: position

$$p_{04} = R_{01}p_{12} + R_{01}R_{12}p_{23} + R_{01}R_{12}R_{23}(p_{34} + q_4h_4).$$

Example: Rhino Arm (6 DOF, PRRRRR)

(iv) Rhino robot

$$h_1 = y, h_2 = z, h_3 = h_4 = h_5 - x, h_6 = y$$

$$p_{01} = \ell_1 y, p_{12} = 0, p_{23} = \ell_2 z, p_{34} = \ell_3 y, p_{45} = \ell_4 y, p_{56} = \ell_6 y$$

forward kinematics: rotation

$$R_{06} = \mathbf{rot}(h_2, q_2)\mathbf{rot}(h_3, q_3)\mathbf{rot}(h_4, q_4)\mathbf{rot}(h_5, q_5)\mathbf{rot}(h_6, q_6)$$

forward kinematics: position

$$p_{06} = (p_{01} + q_1h_1) + p_{12} + R_{12}p_{23} + R_{12}R_{23}p_{34} + R_{12}R_{23}R_{34}p_{45} + R_{12}R_{23}R_{34}R_{45}p_{56}.$$

MATLAB code (on course webpage): scara.m, rhino.m (also elbow.m and puma560.m) which call the general forward kinematics code fwdkin.m to compute R_{0T} and p_{0T} showarm.m and showatt.m for visualization.

Relationship to Denavit-Hartenberg Parameters

In describing the relative rotation and translation between consecutive frames, we need $(p_{i-1,i}, R_{i-1,i}) \in SE(3)$ which can be parameterized by at least 6 parameters.

The Denavit-Hartenberg (DH) parameterization choose each frame in a particular way so that one needs only 4 parameters to describe the relative configuration between consecutive frames.

Rotation

DH and Modified DH: Rotation

Relative orientation:

- If \vec{h}_i is not parallel to \vec{h}_{i-1} , choose $\vec{a}_{i-1} = \frac{\vec{h}_{i-1} \times \vec{h}_i}{\|\vec{h}_{i-1} \times \vec{h}_i\|}$.

 If \vec{h}_i is parallel to \vec{h}_{i-1} , choose \vec{a}_{i-1} as the common normal (i.e., \vec{a}_{i-1} is a unit vector perpendicular to \vec{h}_i and \vec{h}_{i-1}).
- There exists a unique angle β_{i-1} (we shall see a numerically stable solution method for it soon) such that

$$\vec{h}_i = \mathbf{rot}(\vec{a}_{i-1}, \beta_{i-1}) \vec{h}_{i-1}.$$

• Note that \vec{a}_{i-1} and \vec{a}_i are both perpendicular to \vec{h}_i . Therefore, there exists a unique angle γ_i such that

$$\vec{a}_i = \mathbf{rot}(\vec{h}_i, \gamma_i) \vec{a}_{i-1}.$$

 $(\vec{h_i}, \vec{a_i})$ defines a frame (use cross product to generate the third coordinate vector). To propagate $(\vec{h_{i-1}}, \vec{a_{i-1}})$ to $(\vec{h_i}, \vec{a_i})$, we only need (β_{i-1}, γ_i) (one less parameters than full rotation!).

DH and Modified DH: Translation

Define

 O_i^{s} = intersection between \vec{a}_{i-1} and \vec{h}_i

 $O_i^m =$ intersection between \vec{a}_i and \vec{h}_i

If \vec{h}_{i-1} and \vec{h}_i are parallel, choose a location of \vec{a}_i along \vec{h}_i .

Let

 $c_i =$ length of the vector from O_i^s to O_i^m along \vec{h}_i

 $b_i =$ length of the vector from O_{i-1}^m to O_i^s along \vec{a}_{i-1}

If we choose O_i^s as the origin of frame i, then the vector from O_{i-1}^s to O_i^s is

$$\vec{p}_{i-1,i} = c_{i-1}\vec{h}_{i-1} + b_i\vec{a}_{i-1}$$
 Standard D-H.

If we choose O_i^m as the origin of frame i, then the vector from O_{i-1}^m to O_i^m is

$$\vec{p}_{i-1,i} = b_i \vec{a}_{i-1} + c_i \vec{h}_i$$
 Modified D-H.

To describe the vector between consecutive origins, we only need (c_i, b_i) – two parameters instead of three!

Standard DH Parameters

In Standard DH parameterization, *i*th frame is given by $(\mathcal{E}_i^s, \mathcal{O}_i^s)$ with $\mathcal{E}_{i-1}^s = [\vec{a}_{i-1}, \vec{h}_i \times \vec{a}_{i-1}, \vec{h}_i]$, $i = 1, \ldots, n$ (note that $\vec{z}_{i-1} = \vec{h}_i$!). Then

$$\mathcal{E}_{i}^{s} = \mathbf{rot}(\vec{a}_{i}, \beta_{i+1})\mathbf{rot}(\vec{h}_{i}, \gamma_{i})\mathcal{E}_{i-1}^{s}.$$

Multiply \mathcal{E}_i^{s*} on both sides:

$$I = \mathbf{rot}(x, \beta_{i+1}) R_{i,i-1} \mathbf{rot}(z, \gamma_i)$$

where $x = [1, 0, 0]^T$ and $z = [0, 0, 1]^T$. Then

$$R_{i-1,i} = \mathbf{rot}(z, \gamma_i)\mathbf{rot}(x, \beta_{i+1}).$$

For translation,

$$(\vec{p}_{i-1,i})_{i-1} = c_{i-1}R_{i,i-1}z + b_ix.$$

Modified DH Parameters

In Modified DH parameterization, *i*th frame is given by $(\mathcal{E}_i^m, \mathcal{O}_i^m)$ with $\mathcal{E}_i^m = [\vec{a}_i, \vec{h}_i \times \vec{a}_i, \vec{h}_i]$, $i = 1, \dots, n$. Then

$$\mathcal{E}_i^m = \mathbf{rot}(\vec{h}_i, \gamma_i) \mathbf{rot}(\vec{a}_{i-1}, \beta_i) \mathcal{E}_{i-1}^m.$$

Multiply \mathcal{E}_i^{m*} on both sides:

$$I = \mathbf{rot}(z, \gamma_i) R_{i,i-1} \mathbf{rot}(x, \beta_i)$$

where $x = [1,0,0]^T$ and $z = [0,0,1]^T$. Then

$$R_{i-1,i} = \mathbf{rot}(x, \beta_i)\mathbf{rot}(z, \gamma_i).$$

For translation,

$$(\vec{p}_{i-1,i})_{i-1} = c_i R_{i-1,i} z + b_i x.$$

Summary of SDH vs. MDH

SDH

$$\mathcal{E}_{i} = [\vec{a}_{i}, \vec{h}_{i+1} \times \vec{a}_{i}, \vec{h}_{i+1}], i = 0, 1, \dots, n-1$$
 $\alpha_{i} = \beta_{i+1}$ (twist angle), $q_{i} = \gamma_{i}$
 $R_{i-1,i} = \mathbf{rot}(z, q_{i})\mathbf{rot}(x, \alpha_{i})$
 $\ell_{i} = b_{i}, d_{i} = c_{i-1}$
 $(p_{i-1,i})_{i-1} = d_{i}R_{i,i-1}z + \ell_{i}x.$

MDH

$$\mathcal{E}_i = [\vec{a}_i, \vec{h}_i \times \vec{a}_i, \vec{h}_i], i = 1, \dots, n$$

 $\alpha_i = \beta_i$ (twist angle), $q_i = \gamma_i$
 $R_{i-1,i} = \mathbf{rot}(x, \alpha_i)\mathbf{rot}(z, q_i)$
 $\ell_{i-1} = b_i, d_i = c_i$
 $(p_{i-1,i})_{i-1} = d_i R_{i-1,i} z + \ell_{i-1} x.$

 $(\alpha_i, q_i, \ell_i, d_i)$ are called the (S or M) DH parameters for joint i.

Forward kinematics remains the same, except with the $(R_{i-1,i}, p_{i-1,i})$ from above. Zero configuration corresponds to all \vec{a}_i 's are aligned.