Noise-Based Textures: Sums of Noise Functions

Production Computer Graphics
Eric Shaffer

Altering Noise Functions

Can alter the functions by summing them

- Use different amplitudes and frequencies
- Spatial frequency describes how quickly function varies with position
- Band-limited → finite max spatial frequency

Fractal Sum

Create a new function summing shifted noise functions

$$fractal_sum = noise(p) + \frac{1}{2} \, noise(2 * p) + \frac{1}{4} \, noise(4 * p) + \dots$$

Fractal Sum

$$fractal_sum(p) = \mathop{\tilde{\bigcirc}}_{j=0}^{n-1} \frac{noise(2^{j}p)}{2^{j}}$$

$$fractal_sum(p) = \frac{noise(p)}{1} + \frac{noise(2p)}{2} + \frac{noise(4p)}{4} + \dots$$

$$fractal_sum \widehat{\widehat{\bigcirc}}_{\hat{e}}^{\hat{e}} = \mathop{\tilde{\bigcirc}}_{\hat{e}}^{\hat{e}} - \mathop{\tilde{\bigcirc}}_{\hat{e}}^{\hat{e}} + \mathop{\tilde{\bigcirc}}_{\hat{e}}^{\hat{e}} - \mathop{\tilde{\bigcirc}}_{\hat{e}}^{\hat{e}} + \mathop{\tilde{\bigcirc}}_{\hat{e}}^{\hat{e}} +$$

- Create a new function summing shifted noise functions
- Each successive term has
 - half the amplitude
 - twice the spatial frequency
- Terms that differ by a factor of 2 are called octaves
- Can scale value to lie in [0,1]

Example

Turbulence

Turbulence (Perlin 85) is similar to fractal sum

But it uses the absolute value of the noise function

Turbulence

2D cross sections of the turbulence function with 1 (a), 2 (b), 3 (c), and 8 (d) octaves

Fractional Brownian Motion (fBm)

fBm generalizes fractal sum

- amplitudes change according a to ratio (gain)
- spatial frequencies change according to a ratio (lacunarity)

What do we get with gain=0.5 and lacunarity=2?

fBM Varying Gain

1.0

fBM Varying Gain

Varying the gain in the fBm function with six octaves and lacunarity = 2. From (a) to (e), gain = 0.0; 0.25; 0.5; 0.75; 1.0.

fBm Varying Lacunarity

Varying the lacunarity in the fBm function with six octaves and gain = 0.5. From (a) to (e), lacunarity = 0.5; 1; 2; 4; 8.

Marble?

We will use a ramp to select a marble color

$$u = [1 + \sin(y)]/2.$$

Marble

...we need to add some noise first

$$p.y = p.y + a(fractal_sum(p))$$

$$u = \frac{[1 + \sin(y)]}{2}$$

Marble Examples

Sandstone

