《数据结构》期末考试卷(A)答案及评分标准									
班级		学号			姓名				
题数		=		三	四		五	总	分
得分									
本题 -	一、单选	题〖每题	1.5 分	,共计	30分〗				
1. C	2.	В	3.	В	4.	A		5.	С
6. D	7.	D	8.	D	9.	С		10.	C
11. C	12.	В	13.	C	14.	С		15.	В
16. D	17.	A	18.	В	19.	D		20.	C
本题									
1. <u>×</u>	2	×	3.	×	_ 4	×		5	√
6. <u>×</u>	7	√	8.	X	_ 9	. <u>×</u>		10	X
本题 三、填空题〖每题 1 分,共计 10 分〗 得分									
1. \underline{s} - $\underline{next} = \underline{p}$	<u>2.</u>	栈		3	14		4	n-	<u>+1</u>
5. <u>M2+M3</u>	6.	45		7	<u>n-1</u>		8	基	数
9	1, 4, 2,	3		10.	-1	1, 4, 6,	8, 20, 7	, 15, 9	

本题 得分

四、简答题《每题6分,共计30分》

- 1、设一棵二叉树的先序遍历序列为ABDFCEGH、中序遍历序列为BFDAGEHC, 试:

 - (1) 画出这棵二叉树; (2) 将这棵二叉树转换成对应的树(或森林)。

答: (1)

(2)

2、

2、已知某图的邻接表如下图所示,按此存储结构,分别写出从 V₁ 出发执行深度优先搜索和广度 优先搜索算法遍历该图所得到的顶点访问序列。

- 答: 执行深度优先搜索算法遍历该图得到的顶点访问序列为: V₁, V₂, V₅, V₃, V₄, V₆。 执行广度优先搜索算法遍历该图得到的顶点访问序列为: $V_1, V_2, V_3, V_4, V_5, V_6$ 。
- 3、试用 Dijkstra 算法求下图中从顶点 A 到其余各顶点的最短路径,要求给出执行算法过程中 各步的状态。

答:答案一:_____

终点	从 A 到各终点的 D 值和最短路径的求解过程								
	i=1	i=2	i=3	i=4	i=5				
В	6 (A, B)	5 (A, C, B)							
С	3 (A, C)	(12, 0, 2)							
D	8	11 (A, C, D)	10 (A, C, B, D)	10 (A, C, B, D)					
Е	∞	7 (A, C, E)	7 (A, C, E)						
F	∞	∞	∞	13 (A, C, E, F)	12 (A, C, B, D, F)				
V_{j}	C	В	E	D	F				
S	{A, C}	{A, B, C}	$\{A, B, C, E\}$	$\{A, B, C, D, E\}$	$\{A, B, C, D, E, F\}$				

答案二:

- 4、采用哈希函数 H(k) = 3*k MOD 13, 其中 MOD 表示取余运算,并用线性探测再散列法处理 冲突。在地址空间[0..12]中对关键字序列(22,41,53,46,30,13,1,67,51)执行:

 - (1) 构造哈希表 (画示意图): (2) 计算等概率下查找成功时的平均查找长度。

答: (1) 散列地址计算如下:

22:
$$(22 \times 3) \text{ MOD } 13 = 1$$

41:
$$(41 \times 3) \text{ MOD } 13 = 6$$

53:
$$(53 \times 3) \text{ MOD } 13 = 3$$

46:
$$(46 \times 3) \text{ MOD } 13 = 8$$

$$30: (30 \times 3) \text{ MOD } 13 = 12$$

13:
$$(13 \times 3) \text{ MOD } 13 = 0$$

1:
$$(1\times3)$$
 MOD $13=3$ (冲突)

$$(1\times3)$$
 MOD $13=3$ (冲突) 67: (67×3) MOD $13=6$ (冲突)

51:
$$(51 \times 3) \text{ MOD } 13 = 10$$

散列表如下:

		3							
13	22	53	1	41	67	46	51	30	

(2)
$$ASL(9) = (1 \times 7 + 2 \times 2) \times 1/9 = 11/9$$

5、对给定的关键字序列(48, 38, 65, 95, 73, 13, 27, 50)从小到大进行快速排序,画出排序过程示意图。

答:下列两种解答都正确!

答案一:

1)	27	38	13	48	73	95	65	50
2)	13	27	38	48	50	65	73	95
0.)	10	07	20	40	ГΛ	CF	70	0.5

3) 13 **27** 38 **48 50** 65 **73** 95

答案二:

1)	13	38	27	48	73	95	65	50
2)	13	38	27	48	65	50	73	95
3)	13	27	38	48	50	65	73	95

本题 得分

五、算法设计题〖每题 10 分,共计 20 分〗

评分标准:写出结构类型定义得1分,写出正确的函数规范,得1分,写出完整正确的程序得8分。

```
1. typedef struct lnode{
   int data;
   struct lnode *next;
}LNode;
/*假设数列存储在带有头结点的单链表里,改函数判断是否等差数列
bool f( LNode *head ){
    if(!head->next||!head->next->next) return true;
    LNode * p = head - next;
    int d = p - next - data - p - data;
    p = p->next;
    while(p->next){
         if(p->next->data - p->data != d) return false;
         p = p->next;
     }
    return true;
}
2. typedef struct bitnode{
       int data;
       struct bitnode *lchild, *rchild;
     }BiTNode;
bool isSimilar(BiTNode *S, BiTNode *T){
   if(!S && !T) return true;
   else if(!S) return false;
   else if(!T) return false;
   return isSimilar(S->lchild, T->lchild) && isSimilar(S->rchild, T->rchild);
}
```