- (1) (a) $R = \{(4, 15), (4, 18), (5, 16), (6, 15) .$
- (c) R is not a function because $(4,15) \in R$ and $(4,18) \in R$, meaning there are two "outputs" for the input 4.
- (2) These functions are equal, because $(x + 1)(x + 3) = x^2 + 4x + 3 = x^2 + 4x + 4 = 1 = (x + 2)^2 1$, so the outputs are the same for every input. Furthermore, their domains are the same.
- (3) (a) All students have studied calculus.
 - (b) For every student **X**, **X** has studied calculus.
- (4) (a) There is a student \boldsymbol{x} in this class such that \boldsymbol{x} has visited Mexico.
 - (b) There exists a student in this class that has visited Mexico.
- (5) (a) $A = \{1, 2, 3, 4, 6, 12, 1, 2, 3, 4, 6, 12\}$. Ah ha! Did you forget the negative integers?
 - (b) $A = \{n \in Z : n \mid 12\}.$
- **(6)** This will simplify to $p \lor r$. Use the Associative Law and the Absorption Law. (See page 35 for the list of logical equivalences)

(7)

- (8) (a) True (b) False (c) True
- (9) $-2 \le x < 0$ means $(-2 \le x) \land (x < 0)$, so by DeMorgan's Law, its negation is $(-2 > x) \lor (x \ge 0)$.
- (10) The converse is "If I am big or I am brave, then I am an adult."

 The inverse is "If I am not an adult, then I am not big and I am not brave."

The contrapositive is "If I am not big and I am not brave, then I am not an adult."

Remember that the implication $p \to q$ can be rewritten as $\sim p \lor q$, and so $\sim (p \to q) \equiv p \land (\sim q)$. Therefore, the negation of the given statement is "I am an adult and I am not big and I am not brave."

- (11) (a) Since s p and p are given, then by modus tollens, we may deduce $\sim s$. Now we know $s \lor g$ and $\sim s$ are given, so by elimination, we may deduce g. We know $g \rightarrow n$ are given, so we may deduce n by modus ponens. (See page 61 for a list of valid argument forms.)
- (12) (b) Outline: To make a simpler circuit, notice that if we write the negation of S:

Input			Output
P	Q	R	Š
1	1	1	0
1	1	O	0
1	0	1	1
1	0	O	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

It's easy to make a circuit for this table, and then negate the final result.

(13) Answer only: 10100010.

(14)

There is a building X in the city such that for any fire station Y, the distance between X and Y is more than 2 miles.

(15) If X^2 is odd, then X is odd. If we replace "necessary" with "sufficient," then the statement would read: "If X is odd, then X^2 is odd."