Nonparametric_code H24105323

Liau Zhi Xuan

2024-11-11

1

4

5

6

目录

Correlation

Theil-Sen

LOESS

KDE
Correlation
library(Hmisc)
Attaching package: 'Hmisc'
The following objects are masked from 'package:base':
format.pval, units
<pre>data(airquality) str(airquality)</pre>
'data.frame': 153 obs. of 6 variables:
\$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA
\$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 \$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6
\$ Temp : int 67 72 74 62 56 66 65 59 61 69
\$ Month : int 5 5 5 5 5 5 5 5 5 5 5
\$ Day : int 1 2 3 4 5 6 7 8 9 10
describe(airquality)

airquality

6 Varia	ables	153 Obse	rvations					
Ozone								
n	missing	distinct	Info	Mean	Gmd	.05	.10	
116	37	67	0.999	42.13	35.28	7.75	11.00	
	.50	.75						
18.00	31.50	63.25	87.00	108.50				
lowest :	1 4	6 7 8	, highest	: 115 118	122 135	168		
Solar.R								
n	missing	distinct	Info	Mean	Gmd	.05	.10	
146	7	117	1	185.9	102.7	24.25	47.50	
	.50	.75	.90	.95				
115.75	205.00	258.75	288.50	311.50				
lowest :	7 8	13 14 19	, highest	: 320 322	323 332	334		
Wind								
n	missing	distinct	Info	Mean	Gmd	.05	.10	
153	0	31	0.997	9.958	3.964	4.60	5.82	
.25	.50	.75	.90	.95				
7.40	9.70	11.50	14.90	15.50				
		2.8 3.4				8.4 20.1	20.7	
Temp								
n	missing	distinct	Info	Mean	Gmd	.05	.10	
153	0	40	0.999	77.88	10.74	60.2	64.2	
.25	.50	.75	.90	.95				
72.0	79.0	distinct 40 .75 85.0	90.0	92.0				
lowest :	56 57 58	59 61, hig	hest: 92	93 94 96	97			
Month								
n	missing	distinct	Info	Mean	Gmd			
		5						
Value	5	6 7	8	9				
		30 31						
Proportio	on 0.203 (0.196 0.203	0.203 0.	196				
		table, var						
Day								
n	missing	distinct	Info	Mean	Gmd	.05	.10	
153	0	31	0.999	15.8	10.26	2.0	4.0	
.25	.50	.75	.90	.95				
8.0	16.0	31 .75 23.0	28.0	29.4				
lowest :	1 2 3	4 5, hig	hest: 27	28 29 30	31			

```
# Spearman
  spearman_test <- cor.test(airquality$0zone, airquality$Temp, method = "spearman")</pre>
Warning in cor.test.default(airquality$0zone, airquality$Temp, method =
"spearman"): Cannot compute exact p-value with ties
   spearman_test
    Spearman's rank correlation rho
data: airquality$0zone and airquality$Temp
S = 58778, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
     rho
0.774043
  # Kendall
  kendall_test <- cor.test(airquality$0zone, airquality$Temp, method = "kendall")</pre>
  kendall_test
    Kendall's rank correlation tau
data: airquality$0zone and airquality$Temp
z = 9.1599, p-value < 2.2e-16
alternative hypothesis: true tau is not equal to 0
sample estimates:
      tau
0.5862988
  boxplot(airquality$0zone, main = "Boxplot of Ozone", ylab = "Ozone")
```

Boxplot of Ozone

Theil-Sen

```
library(mblm)
  data("airquality")
  # NA Theil-Sen
  airquality_clean <- na.omit(airquality)</pre>
  theilsen_model <- mblm(Ozone ~ Temp, data = airquality_clean)</pre>
  summary(theilsen_model)
mblm(formula = Ozone ~ Temp, dataframe = airquality_clean)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-31.846 -8.513
                8.154 19.487 127.154
Coefficients:
            Estimate
                          MAD V value Pr(>|V|)
(Intercept) -148.154
                       86.590
                                   19 <2e-16 ***
Temp
               2.333
                        1.050
                                 6214
                                        <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 25.51 on 109 degrees of freedom
```

Theil-Sen Regression: Ozone vs Temp

LOESS

Loess Fit: Ozone vs Temp

KDE

```
library(Hmisc)
data("faithful") # Old Faithful
str(faithful) #eruptions waiting
```

'data.frame': 272 obs. of 2 variables: \$ eruptions: num 3.6 1.8 3.33 2.28 4.53 ... \$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...

describe(faithful)

faithful

2 Variables 272 Observations									
eruptions	1								
n	missing	${\tt distinct}$	Info	Mean	Gmd	.05	.10		
272	0	126	1	3.488	1.266	1.800	1.852		
.25	.50	.75	.90	.95					
2.163	4.000	4.454	4.700	4.817					
lowest :	1.6 1.6	667 1.7	1.733 1.75	, highes	st: 4.933	5 5.0	33 5.067	5.1	
waiting									
n	missing	${\tt distinct}$	Info	Mean	Gmd	.05	.10		
272	0	51	0.999	70.9	15.37	48	51		

```
.25 .50 .75 .90 .95
58 76 82 86 89
```

lowest : 43 45 46 47 48, highest: 91 92 93 94 96

par(mfrow = c(1,1))

#----kernels <- c("epanechnikov", "biweight", "triangular", "gaussian", "rectangular") colors <- c("blue", "red", "green", "purple", "orange")</pre> par(mfrow = c(2, 3), mar = c(4, 4, 2, 1))# Loop through each kernel and plot KDE individually for (i in 1:length(kernels)) { kde <- density(faithful\$eruptions, kernel = kernels[i],bw="SJ")</pre> plot(kde, main = paste("Kernel:", kernels[i]), xlab = "Eruption duration (mins)", ylab = "Density", col = colors[i], lwd = 2, ylim = c(0, 0.65)) } #-----# Gaussian & SJ kde_choosen<- density(faithful\$eruptions,kernel="gaussian",bw="SJ")</pre> kde_choosen Call: density.default(x = faithful\$eruptions, bw = "SJ", kernel = "gaussian") Data: faithful\$eruptions (272 obs.); Bandwidth 'bw' = 0.14 У Min. :1.180 Min. :0.0001834 1st Qu.:2.265 1st Qu.:0.0422638 Median :3.350 Median :0.1709243 Mean :3.350 Mean :0.2301726 3rd Qu.:4.435 3rd Qu.:0.4134348 Max. :5.520 Max. :0.5945634


```
# kde_default$x x
  # kde_default$y
  pdf_values <- data.frame(Duration = kde_choosen$x, Density = kde_choosen$y)</pre>
  head(pdf_values)
 Duration
                Density
1 1.179869 0.0001833851
```

2 1.188363 0.0002229529 3 1.196857 0.0002696114

4 1.205350 0.0003278130

5 1.213844 0.0003968097

6 1.222338 0.0004779552