Unsupervised Learning: Optimization-based clustering

Departament de Ciències Matemàtiques i Informàtica 11752 Aprendizaje Automático
11752 Machine Learning
Máster Universitario
en Sistemas Inteligentes

Alberto ORTIZ RODRÍGUEZ

Contents

- Introduction
- Membership-based clustering
- Supplementary material: Possibilistic clustering
- Supplementary material: Mixture models

Introduction

- These clustering approaches (most popular among unsupervised learning appro.) are based on the optimization of a cost function J using differential calculus techniques
- The cost function J is defined in terms of the data set $X = \{x_1, x_2, ..., x_N\}$ and the clustering $\mathcal{R} = \{C_1, C_2, ..., C_M\}$, for a **predefined number of clusters M**:

$$\mathcal{R} = \{C_1, C_2, \dots, C_M\}$$
 such that $\bigcup_{i=1}^M C_i = X$ and $J(X; \mathcal{R}) = \min_{\mathcal{R}'} \{J(X; \mathcal{R}')\}$

- Each cluster C_j is defined in terms of a set of **parameters** θ_j , which in turn depend on the features of the cluster we look for
 - e.g. $\theta_{\rm j}$ can be a point in L-dimensional space corresponding to the centroid of the cluster
- Therefore, the problem becomes into the determination of the optimum set of parameters θ:

$$\theta = \{\theta_1, \theta_2, \dots, \theta_M\} = \operatorname*{argmin}_{\theta'} J(X; \theta')$$

• Due to this optimization-based nature, with these algorithms, all the samples of the data set *X* are involved in the computation of the parameters of the clusters.

Contents

- Introduction
- Membership-based clustering
- Supplementary material: Possibilistic clustering
- Supplementary material: Mixture models

In a first version, these algorithms define the cost function in the following terms:

$$J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij} \wp(x_i, \theta_j)$$

- where $u_{ij} = 1$ if sample x_i is assigned to cluster C_i , otherwise $u_{ij} = 0$
- J is optimized with respect to U = $\{u_{ij}\}$ and $\theta = \{\theta_i\}$.
- \Rightarrow The clustering problem becomes into the determination of optimum U and θ .
 - if \(\rho \) is DM, the problem is min J; if \(\rho \) is SM, the problem is max J
- Example: given N = 5 and M = 2, the following describes an optimum clustering

$$\wp(x_i, \theta_j) = d_2(x_i, \theta_j), \theta_j \text{ is the centroid of } C_j$$

$$\theta_1 = \frac{x_1 + x_2}{2} = (1.5, 1.0), \theta_2 = \frac{x_3 + x_4 + x_5}{3} = (5.83, 5.0)$$

u_{ij}	C_1	C_2
x_1	1	0
x_2	1	0
x_3	0	1
x_4	0	1
x_5	0	1

i.e.
$$u_{11} = 1$$
, $u_{12} = 0$

 The previous problem, in which each sample belongs to exclusively one single cluster, is known as hard or crisp clustering:

$$\min / \max J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij} \wp(x_i, \theta_j)$$
subject to $u_{ij} \in \{0, 1\}, i = 1, \dots, N, j = 1, \dots, M$
with
$$\sum_{i=1}^{M} u_{ij} = 1, i = 1, \dots, N$$

- To find the optimum $U = \{u_{ij}\}$ and $\theta = \{\theta_j\}$, we can use differential calculus for each θ_j , but not for each u_{ij} , because J is not differentiable with respect to $u_{ij} \in \{0,1\}$.
- Instead, we adopt the following (sub-optimum) rule:
 - $\text{ Keeping } \theta_{j} \text{ constant, } j = 1, \dots, \text{ M, since } \textbf{for each } \textbf{x}_{i} \text{ only one } \textbf{u}_{ij} \text{ is 1} \text{ and the others are 0,} \\ we set \\ u_{ij} = \begin{cases} 1 & \text{if } \wp(x_{i}, \theta_{j}) = \min_{k} \wp(x_{i}, \theta_{k}) & (\wp \text{ is DM}) \\ & \text{if } \wp(x_{i}, \theta_{j}) = \max_{k} \wp(x_{i}, \theta_{k}) & (\wp \text{ is SM}) \\ 0 & \text{otherwise} \end{cases}$

since $J(X; U, \theta)$ is minimized if we assign each x_i to its closest/most similar cluster

• If we now keep constant $U = \{u_{ij}\}$, we can find $\theta = \{\theta_j\}$ using differential calculus and solving the resulting equation once \wp is chosen:

$$J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij} \wp(x_i, \theta_j) \Rightarrow \frac{\partial J(X; U, \theta)}{\partial \theta_j} = \sum_{i=1}^{N} u_{ij} \frac{\partial \wp(x_i, \theta_j)}{\partial \theta_j} = 0$$

We can now state the Generalized Clustering Hard Algorithmic Scheme (GCHAS):

 $u_{ij}(t) = \begin{cases} 1 & \text{if } \wp(x_i, \theta_j) = \min_k / \max_k \wp(x_i, \theta_k) & (\wp \text{ is DM/SM}) \\ 0 & \text{otherwise} \end{cases}$

- 1. choose $\theta_j(0)$ as initial estimates for $\theta_j, j = 1, \dots, M$
- $2. \quad t = 0$

repeat

3.1 for i = 1 to N

for j = 1 to M

the process can be reversed:

set θ and next calculate U

```
stage 1: estimate u<sub>ij</sub>
keeping θ<sub>j</sub> at their
previous values
```

previous values

4. t = t + 1

end

2 for j = 1 to M solve for $\theta_j(t+1)$ in $\sum_{i=1}^N u_{ij}(t) \frac{\partial \wp(x_i, \theta_j)}{\partial \theta_j} = 0$ end

until a termination criterion is met, e.g. $\|\theta(t) - \theta(t-1)\| < \epsilon$

- The most popular instance of GCHAS is the so-called K-means algorithm (also known as C-means or Isodata)
- Each cluster is represented by its centroid, $\theta_i = \mu_i$, and $\wp = d_2(x_i, \mu_i)^2$

1. choose
$$\mu_j(0)$$
 as initial estimates for $\mu_j, j = 1, \dots, M$

2. t = 0

repeat

$$\sum_{i=1}^{N} u_{ij}(t) \frac{\partial (x_i - \mu_j)^T (x_i - \mu_j)}{\partial \mu_j}$$

$$= 2 \sum_{i=1}^{N} u_{ij}(t) (x_i - \mu_j) = 0$$

$$\Rightarrow \mu_j(t+1) = \frac{\sum_{i=1}^{N} u_{ij}(t) x_i}{\sum_{i=1}^{N} u_{ij}(t)} \Rightarrow$$

3.1 for
$$i = 1$$
 to M

for $j = 1$ to M

$$u_{ij}(t) = \begin{cases} 1 & \text{if } d_2(x_i, \mu_j) = \min_k d_2(x_i, \mu_k) \\ 0 & \text{otherwise} \end{cases}$$

end

end

3.2 for $j = 1$ to M

$$u_i(t + 1) = \sum_{x_i \in C_j} x_i$$

$$\mu_j(t+1) = \frac{\sum_{x_i \in C_j} x_i}{n_j}$$
end

4. t = t + 1

until a termination criterion is met, e.g. $\|\mu(t) - \mu(t-1)\| < \epsilon$

- K-means is used widely and frequently finds reasonable solutions quickly
 - It is conceptually simple as well as its implementation
 - Its time complexity is $\mathcal{O}(NMq)$, where q is the number of iterations until convergence
 - if M <<< N and q <<< N, K-means becomes eligible for processing large datasets
- However, there are also major shortcomings:
 - Although K-means has been proved not to increase J between iterations, convergence to the global optimum cannot be ensured (solve for the optimum is NP-hard)
 - The outcome depends on the initial centroids
 - K-means is sensitive to outliers and noise
 - One or more clusters can be empty because of centroids too far away from any sample,
 i.e. the cluster has a representative but comprises no samples (due to bad initialization)
- To face these drawbacks:
 - One can run K-means several times (with different randomly chosen initial centroids)
 and keep the clustering leading to the lowest value of the cost function J
 - K-means++ modifies the setup stage of K-means by a smarter initialization stage
 - K-medoids faces the outlier-sensitivity and naturally avoids empty clusters

- K-means++ as initialization of K-means
 - The intuition behind K-means++ is that spreading out the M initial cluster centroids is beneficial, e.g. at least decreases the number of iterations until convergence
 - The following pseudo-code assumes the use of a distance as the proximity measure:
 - 1. t = 1
 - 2. Initialize the set of centroids S with a sample $\mu_t = x \in X$ chosen at random
 - 3. t = t + 1
 - 4. Compute the minimum distance of samples x_i in X to the centroids in S:

$$d(x_i, S)^2 = \min\{d(x_i, \mu_j)^2, x_i \notin S, \mu_j \in S\}$$

5. Randomly select the new centroid $\mu_t = x_i$ according to a probability proportional to $d(x_i, S)^2$, i.e. the larger the distance the higher the probability:

$$p(\mu_t = x_i) = \frac{d(x_i, S)^2}{\sum_{i=1}^{N} d(x_i, S)^2}, \quad d(x_i, S) = \min_{\mu_j \in S} \{d(x_i, \mu_j)\}$$

6. if t < M go to step 3

• **K-means++** initialization: Python code

```
def initialize(X, K):
    S = [X[0]]
    for k in range (1, K):
         D2 = numpy.array([min([numpy.inner(s-x,s-x) for s in S]) for x in X])
         probs = D2/D2.sum() # x in S will lead to prob = 0 and will not be chosen
         cumprobs = probs.cumsum()
         r = scipy.rand()
         for j,p in enumerate(cumprobs):
             if r < p:
                  i = j
                  break
         S.append(X[i])
    return S
     r is generated uniformly in the inteval [0,1] \Rightarrow
        10% probability of r falling in 1st interval
        30% probability of r falling in 2nd interval
        20% probability of r falling in 3rd interval
        40% probability of r falling in 4th interval
    10%
             30%
                      20%
                                   40%
  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
```

```
example (of centroid selection):
probs = [0.1, 0.3, 0.2, 0.4]
cumprobs = [0.1, 0.4, 0.6, 1.0]
if r < cumprobs[0]:</pre>
    # this event has probability 0.1
    i = 0
elif r < cumprobs[1]: # r ≥ cumprobs[0]</pre>
    # this event has probability 0.2
    i = 1
elif r < cumprobs[2]: # r \ge cumprobs[1]
    # this event has probability 0.3
    i = 2
elif r < cumprobs[3]: \# r \ge cumprobs[2]
    # this event has probability 0.4
    i = 3
```

• Example: 4 Gaussian clases, 25 samples each

- K-medoids PAM (Partioning Around Medoids) algorithm
 - Each cluster is represented by a sample from X, a medoid, instead of its centroid
 - Therefore, the cost function becomes:

$$J(X; U, \theta) = \sum_{x_i \in X - \mathcal{M}} \sum_{x_j \in \mathcal{M}} u_{ij} \wp(x_i, x_j)$$

where M is the set of samples which are medoids

- At every iteration:
 - K-medoids assigns each sample to the closest medoid (≡ closest cluster)
 - 2. K-medoids checks whether there exists a sample x_i which can replace a medoid x_j and reduce J

If this is possible, the medoid is redefined and a new iteration takes place; otherwise, the process stops

- This procedure:
 - is applicable to non-quantitative data,
 - avoids empty clusters, i.e. each cluster comprises at least one sample (= medoid),
 - tends to be less sensitive to outliers and noise
- CLARA and CLARANS are variants of PAM intended for dealing with large datasets

- A relaxation of constraint $u_{ii} \in \{0,1\}$ leads to the so-called **soft clustering problems**
- One of these problems is the fuzzy clustering problem, whose formulation is:

$$\min / \max J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} \wp(x_i, \theta_j)$$
subject to $u_{ij} \in [0, 1], i = 1, \dots, N, j = 1, \dots, M$
with
$$\sum_{j=1}^{M} u_{ij} = 1, i = 1, \dots, N$$
and $0 < \sum_{i=1}^{N} u_{ij} \le N, j = 1, \dots, M$

where:

- → is a **DM** for fuzzy clustering algorithms
- $-u_{ij} \in [0,1]$ represents the **grade of membership** of sample x_i to cluster C_i
 - u_{ij} is related to u_{ik} , $k \neq j$ because of the **second constraint**
- q is named as a **fuzzyfier** which gives more or less importance to u_{ij} \wp is DM and $q>1\Rightarrow u_{ij}^q< u_{ij}\Rightarrow u_{ij}^q\wp(x_i,\theta_j)< u_{ij}\wp(x_i,\theta_j)$ \Rightarrow reduces the influence of \wp , what can be useful for dealing with **outliers**

Now, we can find the optimum U and θ using differential calculus:

$$J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} \wp(x_i, \theta_j), \text{ subject to } \sum_{j=1}^{M} u_{ij} = 1, i = 1, \dots, N$$

– To find the **optimum U** = $\{u_{ij}\}$ we need to introduce the following **Lagrangian function** because of the constraints on uii:

$$\mathcal{L}(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} \wp(x_i, \theta_j) - \sum_{i=1}^{N} \lambda_i \left(\sum_{j=1}^{M} u_{ij} - 1 \right)$$

The partial derivative of $\mathcal{L}(X; U, \theta)$ with respect to u_{rs} is

$$\frac{\partial \mathcal{L}(X; U, \theta)}{\partial u_{rs}} = q u_{rs}^{q-1} \wp(x_r, \theta_s) - \lambda_r$$

We can now equal to 0 and solve for u_{rs} :

we can now equal to 0 and solve for
$$u_{\rm rs}$$
.
$$qu_{rs}^{q-1}\wp(x_r,\theta_s)-\lambda_r=0\Rightarrow u_{rs}=\left(\frac{\lambda_r}{q\wp(x_r,\theta_s)}\right)^{\frac{1}{q-1}},s=1,\ldots,M$$

$$\sum_{j=1}^M u_{rj}=1\Rightarrow\sum_{j=1}^M\left(\frac{\lambda_r}{q\wp(x_r,\theta_j)}\right)^{\frac{1}{q-1}}=1\Rightarrow\lambda_r=\frac{q}{\left(\sum_{j=1}^M\left(\frac{1}{\wp(x_r,\theta_j)}\right)^{\frac{1}{q-1}}\right)^{q-1}}$$

$$\Rightarrow u_{rs}=\frac{1}{\sum_{j=1}^M\left(\frac{\wp(x_r,\theta_s)}{\wp(x_r,\theta_j)}\right)^{\frac{1}{q-1}}}$$
 update 22/01/2024)

• Now, we can find optimum U and θ using differential calculus:

$$J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} \wp(x_i, \theta_j), \text{ subject to } \sum_{j=1}^{M} u_{ij} = 1, i = 1, \dots, N$$

- To find the **optimum** $\theta = \{\theta_j\}$ we calculate the partial derivative with respect to θ_j and equal it to 0: $\frac{\partial J(X;U,\theta)}{\partial \theta_j} = \sum_{i=1}^N u_{ij}^q \frac{\partial \wp(x_i,\theta_j)}{\partial \theta_j} = 0, \quad j=1,\dots,M$

Summing up, we have:

$$u_{rs} = \frac{1}{\sum_{j=1}^{M} \left(\frac{\wp(x_r, \theta_s)}{\wp(x_r, \theta_i)}\right)^{\frac{1}{q-1}}}, \quad \sum_{i=1}^{N} u_{ij}^q \frac{\partial \wp(x_i, \theta_j)}{\partial \theta_j} = 0, j = 1, \dots, M$$

- There are two issues with the expressions we have just obtained:
 - The expression leading to the calculation of θ = $\{\theta_j\}$ depends on the particular proximity function we are using, so the derivative and the underlying equation cannot be solved in general
 - Besides, the two expressions are coupled, what prevents from obtaining closed-form expressions

• REMARK: Notice that
$$J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} \wp^{2}(x_{i}, \theta_{j}) \Rightarrow u_{rs} = \frac{1}{\sum_{j=1}^{M} \left(\frac{\wp(x_{r}, \theta_{s})}{\wp(x_{r}, \theta_{j})}\right)^{\frac{2}{q-1}}}$$

- One way of proceeding is to employ a two-stage iterative algorithm named GCFAS
 - 1. choose $\theta_i(0)$ as initial estimates for $\theta_i, j = 1, \dots, M$
 - 2. t = 0 repeat

until a termination criterion is met, e.g. $\|\theta(t) - \theta(t-1)\| < \epsilon$

- the algorithm can also be started from U(0) instead of $\theta(0)$
- u_{ij} cannot be calculated for x_i if $\exists j$ such that $\wp(x_i, \theta_i(t)) = 0$, e.g. \wp is DM
 - check this case and set u_{ij} so that x_i is arbitrarily shared among clusters C_i

$$\sum_{j|\wp(x_i,\theta_j)=0} u_{ij} = 1$$

• If θ_j is a point representative of cluster C_j , e.g. its (fuzzy) centroid, and $\wp(x_i, \theta_i(t))$ is the squared Euclidean distance then:

$$\wp(x_i, \theta_j) = d_2(x_i, \theta_j)^2 = (x_i - \theta_j)^T (x_i - \theta_j)$$

$$\Rightarrow \sum_{i=1}^N u_{ij}^q(t) \frac{\partial \wp(x_i, \theta_j)}{\partial \theta_j} = 0 \Rightarrow \sum_{i=1}^N u_{ij}^q(t) 2 (x_i - \theta_j(t+1)) = 0$$

$$\Rightarrow \sum_{i=1}^N u_{ij}^q(t) x_i = \theta_j(t+1) \sum_{i=1}^N u_{ij}^q(t)$$

$$\Rightarrow \theta_j(t+1) = \frac{\sum_{i=1}^N u_{ij}^q(t) x_i}{\sum_{i=1}^N u_{ij}^q(t)}$$

- The resulting algorithm is named Fuzzy c-Means (FCM) or Soft / Fuzzy k-Means
- This result is also valid if $\wp(x_i,\theta_j) = (x_i-\theta_j)^T A(x_i-\theta_j)$ for A symmetric, positive definite (i.e. all eigenvalues are positive) e.g. **A**-1 is the **fuzzy covariance matrix** of C_j : $A^{-1} = \sum_{x_i} u_{ij}^q (x_i-\theta_j) (x_i-\theta_j)^T$ In this case, $\wp(x_i,\theta_i(t))$ is termed as the **Mahalanobis distance**

- Fuzzy c-Means clustering algorithm (FCM):
 - 1. choose $\theta_j(0)$ as initial estimates for $\theta_j, j = 1, \dots, M$
 - 2. t = 0

repeat

3.1 for
$$i = 1$$
 to N
for $j = 1$ to M

$$u_{ij}(t) = \frac{1}{\sum_{k=1}^{M} \left(\frac{d_2(x_i,\theta_j(t))^2}{d_2(x_i,\theta_k(t))^2}\right)^{\frac{1}{q-1}}}$$
end
end

3.2 for j = 1 to M

$$\theta_{j}(t+1) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t)x_{i}}{\sum_{i=1}^{N} u_{ij}^{q}(t)}$$
end

4.
$$t = t + 1$$

until a termination criterion is met, e.g. $\|\theta(t) - \theta(t-1)\| < \epsilon$

Example: N = 140 samples, M = 2 clusters, q = 2

- Other FC algorithms: Gustafson-Kessel algorithm for hyperplanes clustering
 - Planar clusters are represented by centers c_i and covariance matrices Σ_i , i.e. $\theta_i = (c_i, \Sigma_i)$

min
$$J_{GK}(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} d_{GK}(x_{i}, \theta_{j})$$

subject to $\sum_{j=1}^{M} u_{ij} = 1, i = 1, \dots, N$
and $d_{GK}(x_{i}, \theta_{j}) = |\Sigma_{j}|^{1/L} (x_{i} - c_{j})^{T} \Sigma_{j}^{-1} (x_{i} - c_{j})$

- Following the same derivation procedure as before:
 - $3.1 \ \ \mathbf{for} \ \mathbf{i} = 1 \ \mathbf{to} \ \mathbf{N}$ $\mathbf{for} \ \mathbf{j} = 1 \ \mathbf{to} \ \mathbf{M}$ $u_{ij}(t) = \frac{1}{\sum_{k=1}^{M} \left(\frac{d_{GK}(x_i,\theta_j(t))}{d_{GK}(x_i,\theta_k(t))}\right)^{\frac{1}{q-1}}}$ end end
 - 3.2 for j = 1 to M $c_{j}(t+1) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t)x_{i}}{\sum_{i=1}^{N} u_{ij}^{q}(t)}$ $\Sigma_{j}(t+1) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t)(x_{i}-c_{j}(t))(x_{i}-c_{j}(t))^{T}}{\sum_{i=1}^{N} u_{ij}^{q}(t)}$ end

- Other FC algorithms: hyperellipsoids clustering
 - Adaptive Fuzzy C-Shells clustering (AFCS), where a hyperellipsoid is represented by its center c_j and its shape, defined by a symmetric, positive definite matrix A_j , i.e. $\theta_j = (c_j, A_j)$

min
$$J_{nr}(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^q d_{nr}^2(x_i, \theta_j)$$

subject to $\sum_{j=1}^{M} u_{ij} = 1, i = 1, \dots, N$
and $d_{nr}(x_i, \theta_j) = \sqrt{(x_i - c_j)^T A_j(x_i - c_j)} - 1$

- d_{nr} is the normalized radial distance (distance to the center of the hyperellipsoid)
- very similar to hyperplanes clustering: $A_i = \Sigma_i^{-1}$

- Last remarks about membership-based clustering:
 - K-means is considered as hard clustering (HC) against FCM which is considered as soft clustering (SC) as a result of the relaxation of the membership-related constraints
 - Actually, K-means can be regarded as a particular case of FCM
 - HC algorithms are not as **robust** as their SC counterparts when other than point representatives are used, e.g. the **hard-clustering version of the GK algorithm for hyperplanes clustering** needs an adequate number of samples from all underlying clusters to avoid degenerate cases where Σ_i is not invertible
 - If the descriptor of a sample x_i changes slightly, an HC algorithm might lead to reassigning x_i from one cluster to another, while, for the case of a SC algorithm, the membership values u_{i*} might be modified but drastic changes will be more difficult to occur
 - In general terms, the fuzzy concepts embedded in SC algorithms make them more flexible than HC algorithms, i.e. able to deal better with noise and data uncertainty
 - By means of FCM, we obtain soft assignments from samples to clusters, what in turn reflects assignments uncertainty (because of the data uncertainty itself) over the most appropriate assignment

Contents

- Introduction
- Membership-based clustering
- Supplementary material: Possibilistic clustering
- Supplementary material: Mixture models

• The formulation for the **possibilistic clustering** (PC) problem is similar to FC:

$$\min / \max J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} \wp(x_{i}, \theta_{j})$$
subject to $u_{ij} \in [0, 1], i = 1, ..., N, j = 1, ..., M$
with $\max_{j=1,...,M} u_{ij} > 0, i = 1, ..., N$
and $0 < \sum_{i=1}^{N} u_{ij} \le N, j = 1, ..., M$

where:

- ℘ is a DM for possibilistic clustering algorithms
- u_{ij} now represents the grade of compatibility of sample x_i with cluster C_j or the possibility that sample x_i belongs to cluster C_j
 - u_{ij} is no longer coupled to u_{ik} , $k \neq j$, due to the change in the 2nd constraint
 - the possibility that x_i belongs to C_i depends on exclusively x_i and θ_i
 - it is thus independent of the possibilities that x_i belongs to any other cluster
- q does not play the same role as in FC, we will clarify this later
- PC behaves better than FC for noisy datasets and depends less on a good election of M

- The direct optimization of the previous cost function leads to the trivial zero-solution
- In order to avoid that situation, we have to incorporate an **additional term** into J:

$$J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij}^{q} \wp(x_i, \theta_j) + \sum_{j=1}^{M} \eta_j \sum_{i=1}^{N} (1 - u_{ij})^{q} = \sum_{j=1}^{M} \left(\sum_{i=1}^{N} u_{ij}^{q} \wp(x_i, \theta_j) + \eta_j \sum_{i=1}^{N} (1 - u_{ij})^{q} \right)$$

- The additional term depends on u_{ij} to avoid the zero-solution and also to reduce the effect of outliers
- η_i are suitably chosen positive constants, which will be discussed later
- To find the **optimum U** = $\{u_{ij}\}$ we calculate the partial derivative with respect to u_{ij} and equal it to 0: $\frac{\partial J(X;U,\theta)}{\partial u_{ij}} = q u_{ij}^{q-1} \wp(x_i,\theta_j) q \eta_j (1-u_{ij})^{q-1} = 0$

$$\Rightarrow \left(\frac{u_{ij}}{1 - u_{ij}}\right)^{q - 1} = \frac{\eta_j}{\wp(x_i, \theta_j)} \Rightarrow u_{ij} = \frac{1}{1 + \left(\frac{\wp(x_i, \theta_j)}{\eta_j}\right)^{\frac{1}{q - 1}}}$$

- u_{ij} is inversely proportional to $\wp(x_i, \theta_i)$, what in effect reduces the influence of outliers
- Since the second term of J does not involve the cluster representatives θ_j , one may conclude that the **updating of** θ_i **is carried out the same way as for FC**.

Generalized Clustering Possibilistic Algorithmic Scheme (GCPAS):

- 1. choose η_i and $\theta_i(0)$ as initial estimates for $\theta_i, j = 1, \dots, M$
- 2. t = 0 repeat

$$3.1 \ \ \textbf{for} \ \mathbf{i} = 1 \ \textbf{to} \ \mathbf{N}$$

$$for \ \mathbf{j} = 1 \ \textbf{to} \ \mathbf{M}$$

$$u_{ij}(t) = \frac{1}{1 + \left(\frac{\wp(x_i,\theta_j(t))}{\eta_j}\right)^{\frac{1}{q-1}}}$$
 end end

3.2 **for** j = 1 **to** M solve for
$$\theta(j+1)$$
 in $\sum_{i=1}^{N} u_{ij}^{q}(t) \frac{\partial \wp(x_i, \theta_j)}{\partial \theta_j} = 0$ **end**

4.
$$t = t + 1$$

until a termination criterion is met, e.g. $\|\theta(t) - \theta(t-1)\| < \epsilon$

- the algorithm can also be started from U(0) instead of $\theta(0)$
- there are no longer issues with $\wp(x_i, \theta_i(t)) = 0$
- all FC algorithms can be transformed into their PC counterparts: PCM, PGK, APCS, PCES

- Possibilistic c-Means clustering algorithm (PCM):
 - 1. choose η_j and $\theta_j(0)$ as initial estimates for $\theta_j, j = 1, \dots, M$
 - 2. t = 0

repeat

$$3.1 \ \ \textbf{for} \ \mathbf{i} = 1 \ \textbf{to} \ \mathbf{N}$$

$$\mathbf{for} \ \mathbf{j} = 1 \ \textbf{to} \ \mathbf{M}$$

$$u_{ij}(t) = \frac{1}{1 + \left(\frac{d_2(x_i,\theta_j)^2}{\eta_j}\right)^{\frac{1}{q-1}}}$$

$$\mathbf{end}$$

$$\mathbf{end}$$

3.2 for j = 1 to M

$$\theta_{j}(t+1) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t)x_{i}}{\sum_{i=1}^{N} u_{ij}^{q}(t)}$$
end

4.
$$t = t + 1$$

until a termination criterion is met, e.g. $\|\theta(t) - \theta(t-1)\| < \epsilon$

Role of q:

 q determines the kind of "compatibility" function implemented by the algorithm

$$u_{ij} = \frac{1}{1 + \left(\frac{\wp(x_i, \theta_j)}{\eta_j}\right)^{\frac{1}{q-1}}}$$

- $q = 1 \Rightarrow u_{ii} = 0$, $\forall x_i \mid \mathcal{D}(x_i, \theta_i) > \eta_i$
- q → + ∞ \Rightarrow u_{ii} tends to constant 0.5 \forall x_i

• Role of η_i :

- $-\eta_i$ determines the dissimilarity level between x_i and C_i at which $u_{ii} = 0.5$
 - ⇒ defines the "size" and "shape" of the cluster
 - \Rightarrow defines the influence of a specific point x_i on the estimation of the C_i representative
- one way to estimate the value of $\boldsymbol{\eta}_{\boldsymbol{j}}$ is to run FCM and after its convergence

$$\eta_j = \frac{\sum_{i=1}^N u_{ij}^q \wp(x_i, \theta_j)}{\sum_{i=1}^N u_{ij}^q} \quad \text{or} \quad \eta_j = \frac{\sum_{u_{ij} > \tau} u_{ij}^q \wp(x_i, \theta_j)}{\sum_{u_{ij} > \tau} 1}, \text{ for an adequate threshold } \tau$$

PCM as mode-seeking algorithm:

$$J(X; U, \theta) = \sum_{j=1}^{M} \left(\sum_{i=1}^{N} u_{ij}^{q} \wp(x_{i}, \theta_{j}) + \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q} \right) = \sum_{j=1}^{M} J_{j}(X; u_{j}, \theta_{j})$$

$$u_{ij} = \frac{1}{1 + \left(\frac{\wp(x_{i}, \theta_{j})}{\eta_{j}} \right)^{\frac{1}{q-1}}} \Rightarrow \wp(x_{i}, \theta_{j}) = \eta_{j} \left(\frac{1 - u_{ij}}{u_{ij}} \right)^{q-1}$$

$$J_{j} = \sum_{i=1}^{N} u_{ij}^{q} \eta_{j} \left(\frac{1 - u_{ij}}{u_{ij}} \right)^{q-1} + \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q}$$

$$= \eta_{j} \sum_{i=1}^{N} u_{ij} (1 - u_{ij})^{q-1} + \eta_{j} \sum_{i=1}^{N} (1 - u_{ij}) (1 - u_{ij})^{q-1}$$

$$= \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q-1}$$

- \Rightarrow minimization of J requires maximizing u_{ij} , which, in turn, requires minimization of $\wp(x_i, \theta_j)$
- \Rightarrow C_i should end placed in a **region dense in samples**, i.e. the modes of the dataset
- ⇒ if we run PCM for M clusters but X comprises K < M natural clusters, some of the M clusters will coincide with others
- ⇒ the number of clusters in X need not be known a priori

- Alternative GCPAS:
 - An alternative possibilistic scheme can be derived from a new cost function:

$$J(X; U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{M} u_{ij} \wp(x_i, \theta_j) + \sum_{j=1}^{M} \eta_j \sum_{i=1}^{N} (u_{ij} \ln u_{ij} - u_{ij})$$
$$= \sum_{j=1}^{M} \left(\sum_{i=1}^{N} u_{ij} \wp(x_i, \theta_j) + \eta_j \sum_{i=1}^{N} (u_{ij} \ln u_{ij} - u_{ij}) \right)$$

- q is no longer involved
- It can be shown that, for this case:

$$u_{ij} = e^{-\frac{\wp(x_i, \theta_j)}{\eta_j}}$$

u_{ii} decreases more rapidly than in the standard scheme

• Example (standard PCM): N = 140 samples, M = 2 clusters, q = 2, η_i set by FCM

Contents

- Introduction
- Membership-based clustering
- Supplementary material: Possibilistic clustering
- Supplementary material: Mixture models

• These algorithms assume that there are M clusters underlying the dataset, each coming from a population obeying a certain probability distribution, so that the goal is to discover the parameters of the mixture. They are also termed as **soft clustering**.

Example: We have a dataset such as:

... and, in effect, there are 3 clusters, everyone coming from a different Gaussian:

We guess there are M = 3 clusters normally distributed ...

• We intend to discover the parameters of the three Gaussians (μ_i, Σ_i) and the assignments of samples to clusters.

 We adopt an optimization-based approach which assigns each sample x_i to the cluster with highest likelihood:

$$\max \prod_{i=1}^{N} p(x_i|\theta), \quad \theta = \{\theta_j\}$$

and we model the probability of each sample introducing weights m

$$p(x_i|\theta) = \sum_{j=1}^{M} \pi_j p(x_i|\theta_j)$$

since, a priori, we do not know which sample belongs to which cluster,

$$\pi_j = \sum_{i=1} r_{ij}$$

so that:
$$j = \arg\max\{r_{ik}\} \Rightarrow \text{ assign sample } x_i \text{ to cluster } C_j$$

- Therefore, the output of the optimization process is the parameters θ_{j} of the clusters and the weights r_{ii}
 - e.g. for the previous example, we can plot samples \mathbf{x}_i using a colour code proportional to the corresponding \mathbf{r}_{ij}

Adopting a log-likelihood approach and assuming i.i.d samples, J is defined as:

$$J(X; \pi, \theta) = \ln p(X) = \ln \prod_{i=1}^{N} p(x_i | \theta) = \ln \prod_{i=1}^{N} \left(\sum_{j=1}^{M} \pi_j p(x_i | \theta_j) \right) = \sum_{i=1}^{N} \ln \left(\sum_{j=1}^{M} \pi_j p(x_i | \theta_j) \right)$$

$$\pi_j = \sum_{i=1}^{N} r_{ij} \text{ and } r_{ij} = p(z_{ij} = 1 | x_i)$$

 $z_{ij} = 1$ if x_i comes from cluster C_j , with $z_{ij} = 0$ for $k \neq j$

 The maximum likelihood optimization problem hence becomes:

$$\max J(X; \pi, \theta)$$
subject to $0 \le \pi_j \le 1, \quad j = 1, \dots, M$

$$\sum_{j=1}^{M} \pi_j = 1$$

- The elements of the N \times M matrix **Z** = $\{z_{ij}\}$ are known as **latent variables** in this problem.
- r_{ij} is named as the **responsibility** that cluster C_j takes for explaining x_i .
- π_j are the **mixing coefficients**, which somehow can be seen as the amount of explanation of the data performed by cluster C_j .

- The mixture problem can be solved by means of the Expectation-Maximization (EM) algorithm.
 - EM is an iterative algorithm that comprises two steps:
 - The **E step**, where the latent variables z_{ij} are re-estimated (keeping constant the parameters of the clusters)
 - The **M step**, where the distribution parameters are re-estimated (keeping constant the latent variables z_{ij})
 - EM is useful to solve other problems apart from clustering on the basis of a mixture model
- The most widely used mixture model is the **mixture of Gaussians** (MOG), also called a **Gaussian mixture model** (GMM):

$$J(X; \pi, \theta) = \sum_{i=1}^{N} \ln \left(\sum_{j=1}^{M} \pi_{j} p(x_{i} | \theta_{j}) \right) = \sum_{i=1}^{N} \ln \left(\sum_{j=1}^{M} \pi_{j} \mathcal{N}(x_{i} | \mu_{j}, \Sigma_{j}) \right)$$
$$\mathcal{N}(x | \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}}, \mathcal{N}(x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^{L} |\Sigma_{j}|}} \exp \left(-\frac{1}{2} (x - \mu_{j})^{T} \Sigma_{j}^{-1} (x - \mu_{j}) \right)$$

 Because of the shape of a Gaussian pdf, this algorithm is useful for detecting compact and hyperellipsoidal clusters

Algorithm EM for Gaussian mixtures:

- choose $\mu_j(0)$ and $\Sigma_j(0)$ as initial estimates for $\theta_j, j = 1, \ldots, M$
- choose the mixing coefficients π_i
- 3. t = 0

repeat

$$\begin{array}{c} \underline{\text{E-step}}\text{: estimate } \mathbf{r}_{\text{ij}}\\ \text{keeping } \boldsymbol{\theta}_{\text{j}} \text{ and } \boldsymbol{\pi}_{\text{j}} \text{ at}\\ \text{their previous}\\ \text{values} \end{array}$$

M-step: estimate θ_i values

$$\begin{cases} 4.1 & \textbf{for } i = 1 \textbf{ to } N \\ & \textbf{for } j = 1 \textbf{ to } M \\ r_{ij}(t) = \frac{\pi_j(t)\mathcal{N}(x_i; \mu_j(t), \Sigma_j(t))}{\sum_{k=1}^{M} \pi_k(t)\mathcal{N}(x_i; \mu_k(t), \Sigma_k(t))} \\ & \textbf{end} \\ & \textbf{end} \end{cases}$$

$$\begin{cases} 4.2 & \textbf{for } j = 1 \textbf{ to } M \end{cases}$$

$$N_{j}(t+1) = \sum_{i=1}^{N} r_{ij}(t)$$

$$\mu_{j}(t+1) = \frac{1}{N_{j}(t+1)} \sum_{i=1}^{N} r_{ij}(t) x_{i}$$

$$\Sigma_{j}(t+1) = \frac{1}{N_{j}(t+1)} \sum_{i=1}^{N} r_{ij}(x_{i} - x_{j}(t+1)) = \frac{N_{j}(t+1)}{N}$$
end

4.3 t = t + 1

until a termination criterion is met

values
$$\begin{bmatrix} \text{end} \\ \text{end} \end{bmatrix}$$

$$\frac{\text{M-step: estimate } \theta_{j}}{\text{and } \pi_{j} \text{ keeping}} \begin{bmatrix} 4.2 & \text{for } j = 1 \text{ to } M \\ N_{j}(t+1) = \sum_{i=1}^{N} r_{ij}(t) \\ \mu_{j}(t+1) = \frac{1}{N_{j}(t+1)} \sum_{i=1}^{N} r_{ij}(t) x_{i} \\ \sum_{j}(t+1) = \frac{1}{N_{j}(t+1)} \sum_{i=1}^{N} r_{ij}(x_{i} - \mu_{j}(t+1))(x_{i} - \mu_{j}(t+1))^{T} \\ \text{values} \end{bmatrix}$$

$$\tau_{i}(t+1) = \frac{N_{j}(t+1)}{N_{j}(t+1)} \begin{bmatrix} N_{j}(t+1) & N_{j}(t+1) &$$

 $J(t) = \sum_{i=1}^{N} \ln \left(\sum_{j=1}^{M} \pi_j(t) \mathcal{N}(x_i | \mu_j(t), \Sigma_j(t)) \right)$

and check for convergence of either the parameters or the log-likelihood

termination criterion: $J(t) - J(t-1) < \epsilon$

<u>Example</u>: rescaled Old Faithful data set, M = 2

Final remarks:

Remember that, once the mixture model has been fitted, we can make use of

$$r_{ij} = p(C_j|x_i) > p(C_k|x_i) = r_{ik}, k \neq j \Rightarrow \text{ assign sample } x_i \text{ into } C_j$$

for "hard" sample allocation to clusters

- The E-step can be computationally demanding because of the calculations of Σ_i^{-1} .
 - One way to relax this is to assume that all covariance matrices are diagonal or that they are all equal to each other (only one inversion is required at each iteration step).
- The EM-GMM algorithm reduces to K-means when $\Sigma_i = \sigma^2$ and $\pi_i = 1/M$.

Unsupervised Learning: Optimization-based clustering

Departament de Ciències Matemàtiques i Informàtica 11752 Aprendizaje Automático
11752 Machine Learning
Máster Universitario
en Sistemas Inteligentes

Alberto ORTIZ RODRÍGUEZ