Methodische Produktentwicklung

BRAND CAMP by Tom Fishburne

SKY DECKCARTOONS. COM

Vom Problem zur Lösung

Zunahme der Informationen zur Erzeugung einer Lösungsvielfalt

Einschränkung der Lösungsvielfalt

Entwicklungsprozess nach VDI 2223

Straßenbeleuchtung früher...

... und heute

Würden wir es glauben?

"Konstruieren Sie einen innovativen Wagenheber!"

Die Crux

Wenn bereits eine Lösung für ein Problem bekannt ist, dient diese immer (bewusst oder unbewusst) als Vorlage oder Inspiration für Neues.

♥ Wirkliche Innovationen entstehen so bestimmt nicht !!

Hauptfunktion und Nebenfunktionen

Hauptfunktion

Fahrzeug anheben

Nebenfunktion

- Befestigung im Fahrzeug bei Nichtgebrauch
- Demontierbar (einfachere Unterbringung)

Anforderungen

Hauptfunktion

Fahrzeug anheben

Nebenfunktion

- Befestigung im Fahrzeug bei Nichtgebrauch
- Demontierbar (einfachere Unterbringung)

Teilfunktion

- Fixierung am Fahrzeug
 Wo, Wie ?
- Fahrzeug oben halten

 Gewicht ?

Anforderungsliste

Nr.	Anforderung	Zahlenwert Toleranz	Forderung Wunsch	Name	Datum
1	Befestigungsmöglichkeit		F	AB	31.10.
2	Verfügbare Muskelkraft	100 N	F	EF	25.09.
3	Fahrzeugmasse	2000 kg	F	AB	05.11.
4	Unterbringung		W	GH	10.12.
5	Demontierbarkeit		W	CF	08.11.

Problem Lösungsraum erweitern Problem klären Problem analysieren Problem strukturieren Problem formulieren Lösungen suchen vorhandene Lösungen suchen und neue Lösungen generieren Lösungen systematisieren und ergänzen Lösung auswählen Lösungen analysieren Lösungen bewerten Lösung festlegen Lösung

Lösungsraum erweitern

- Bekannte oder zufällig gefundene Lösungen könnten unterschieden werden anhand:
 - Effekte, Form, Größe, Wirkflächen, Freiheitsgrade,
 Verbindungsarten, Fertigungsverfahren
- Gezielte Variation einzelner Merkmale vereinfacht die Suche nach alternativen Lösungen
- Zusammenfassung der Kombinationen einzelner Merkmale in Matrix-Form
- Zunächst freibleibende Felder deuten auf weitere, bisher unbekannte Lösungen hin (Systematische Erweiterung)

Aufgabe: "Objekt beschleunigen" (vgl. "Werfen")

Brainstorming:

- 1.Idee:
- 2.ldee:
- 3.ldee:
- 4.ldee:

2D-Ordnungschema: "Objekt beschleunigen"

Morphologischer Kasten

- Hilfsmittel zur Zusammenfassung von Teillösungen für Teilfunktionen
- Erlaubt die übersichtliche Kombination zu verschiedensten Gesamtlösungen

Funktion		Lösungen								
Teilfunktion 1	↑ Teillösung	j 1.1	Teille	ösung 🔁						
Teilfunktion 2	→ Teillösun g	2.1	Teillösung 2.2							
Teilfunktion 3	Teillösung 3.1	Tc Nö:	sung 3.2	Teillösung 3.3						
Teilfunktion 4	Teillösung 4.1	Teillö	sung 4.2	Teillösung 4.3						
Teilfunktion 5	Teillösung 5.1 Te	ei lösung 5.2	Teillösung 5	.3 Teillösung 5.4						
		1	1							
GesLös. A GesLös. B GesLös. C										

Methodeneinsatz zu vorchristlicher Zeit

Holzscheiben mit gruppierten Konstruktionsmerkmalen zur Entwicklung neuer Kampfmaschinen

(Archimedes v. Syracus, 287-212 v.Chr.)

Variation der Lage

Variation der Anzahl

Variation der Verbindungsstruktur

Variation der Kompaktheit

a) massiv

b) hohl bzw. geschlossen

c) offen

d) massiv bzw. hohl

e) offen

Umwelt System Systemgrenze

Wagenheber als System

Abstrakte Betrachtungsweise (Black-Box-Prinzip)

Ein System interagiert über die Systemgrenzen hinweg mit seiner Umwelt

Systemgrenzen sollte derart festgelegt werden, dass die Zahl der Interaktionen gering ist und die Arten (Funktionen) der Interaktion bekannt bzw. einfach bestimmbar sind

Umwelt KFZ Mensch **System** Untergrund Systemgrenze

Wagenheber als System

Wirkzusammenhänge (Relationen)

Abstrakte Betrachtungsweise (Black-Box-Prinzip)

Ein System interagiert über die Systemgrenzen hinweg mit seiner Umwelt

Systemgrenzen sollte derart festgelegt werden, dass die Zahl der Interaktionen gering ist und die Arten (Funktionen) der Interaktion bekannt bzw. einfach bestimmbar sind

Umwelt KFZ Mensch Element Element Element Element Element **System** Untergrund Systemgrenze

Wagenheber als System

Wirkzusammenhänge (Relationen)

Abstrakte Betrachtungsweise (Black-Box-Prinzip)

Ein System interagiert über die Systemgrenzen hinweg mit seiner Umwelt

Systemgrenzen sollte derart festgelegt werden, dass die Zahl der Interaktionen gering ist und die Arten (Funktionen) der Interaktion bekannt bzw. einfach bestimmbar sind

Umwelt KFZ Mensch Element Element Element Element **System** Untergrund Systemgrenze

Wagenheber als System

Wirkzusammenhänge (Relationen)

Abstrakte Betrachtungsweise (Black-Box-Prinzip)

Ein System interagiert über die Systemgrenzen hinweg mit seiner Umwelt

Systemgrenzen sollte derart festgelegt werden, dass die Zahl der Interaktionen gering ist und die Arten (Funktionen) der Interaktion bekannt bzw. einfach bestimmbar sind

Systemtheorie (Black-Box-Prinzip)

Komplexität der Produkte nimmt stetig zu V_{S+} Vout

Verständnis eines Produkts durch Verständnis aller Einzelteile nicht mehr gegeben

Umsatzarten → drei "allgemeine Größen"

Energie – Information – Stoff

Funktionen → der drei allgemeinen Größen

→ Betrachtung auf abstrakter Ebene

Ermitteln von Funktionen

Hauptfunktion

Wagen anheben

Funktionsstruktur

Teilfunktionen

- elementare Funktionen
- Fixieren am Fahrzeug
 - → Stoff verbinden
- Muskelkraft verstärken
 - → Energie ändern
- Fahrzeug oben halten
 - → Energie speichern

Funktionen realisieren Suche nach Effekten

Effekte

- sind in der Natur vorkommende physikalische und chemische Phänomene
- können nur "entdeckt" aber nicht "erfunden" werden
- Die Nutzbarmachung eines Effekts kann sehr wohl eine Erfindung sein

Eingang 9 10 11 12 13 14 15 16 17 18 19 20 Ausgang

Furnktizipsissungur

Beispiel: Antrieb eines Schwenkarms

- Ausgangsgröße: Winkelbeschleunigung
- Wahl der Form der Eingangsenergie
 - → elektrische Energie vorteilhaft
- Suche nach einem Effekt oder Effektketten
 - → Anpassung der Funktionsstruktur

Eing	ang	F	p _i	s	v	а	М	L	φ	ω	Ŋ	f	p _d	٧	m	I	U	Е	Н	Т	Q
Ausg	ang	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
F	1	•	•	•	•	•	•		•	•			•	•	•	•	•	•	•	•	
pi	2	•			•																
s	3	•		•	•		•					•	•			•				•	
٧	4	•	•	•	•					•			•				•				
а	5	•				•				•											
М	6	•						•	•	•	•										
L	7																				
φ	8						•														
ω	9			•			•	•													
Ŋ	10						•														
f	11	•		•	•										•					•	
p_d	12	•		•	•									•						•	
V	13												•								
m	14																				
I	15			•												•	•				
U	16	•		•	•					•		•	•			•	•			•	
Е	17																				
Н	18																			•	
Т	19																				•
Q	20	•		•								•				•				•	

Variationen

Vorteil der Abstrahierung:

- Einfacheres Erzeugen alternativer Lösungen
- Variation der Funktionsstruktur auf der abstrakten Ebene
- Variation der physikalischen Effekte
- Freimachen von "Althergebrachtem"
- Überwindung von Blockaden

	Dhuaitalia	ohor Effekt (Drinnin)		Physitistics by Effect (Primin)						
		cher Effekt (Prinzip)		Physikalis	cher Effekt (Prinzip)					
Name Nummer	Prinzipskizze	Gleichung	Anwendung Literatur	Name Nummer	Prinzipskizze	Gleichung	Anwendung Literatur			
Kohäsion fester Körper			Formschluß	Coulombsche	l _E		Bremse,			
lester Korper	D T III Id	F = F		Reibung	μ		Reibschluß			
$F_1 = f(F_2)$	←	$F_1 = F_2$		$E = \mathcal{E}(E)$		$F = \mu F_n$				
$I_1 - J(I_2)$	$F_1 \downarrow f_2$	für $D > d$		$F_1 = f(F_2)$	V Y///// F	μ Reibwert				
	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>						(4.0)			
01.01-1 Hebel			Kraftübersetzung,	01.01-8 Rollende			[16] Rollwiderstand			
riebei	F ₁ ▲		Zahnrad,	Reibung	α		Holiwiderstatid			
	r ₁ + r ₂	_ E _	Hebelgetriebe	, ricing	_(\J\FQ)_	$F_w = \mu_r F_Q$				
$F_1 = f(F_2)$	- & /	$F_2 = \frac{r_1}{r_2} F_1$		$F_1 = f(F_2)$	Fa	$\mu_r = \tan \alpha = \frac{f}{g}$ (Reibwert)				
	11111	- 2		1 3 (-2)	7/11/ F. 30 V. Fw////	$\mu_r = \tan \alpha = \frac{-(\text{Relowert})}{r}$				
01.01-2	ω Γ2		[16]	01.01-9	F _R		[2]			
Kniehebel	F ₂		Backenbrecher	Umschlin-	, ,		Ankerspill,			
	α_1			gungsreibung		$F_{s2} = e^{\mu\alpha}F_{s1}$	Schiffspoller,			
	F ₁ 7	$F_{-} = \frac{F_{-}}{F_{-}}$			17:00 X	$F_R = \left(e^{\mu\alpha} - 1\right) F_{s1}$	Bandbremse			
$F_1 = f(F_2)$		$F_2 = \frac{F_1}{\tan \alpha_1 + \tan \alpha_2}$		$F_1 = f(F_2)$	<i>\\</i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F_R Reibkraft				
	92				- 1 1 L	μ Reibwert				
01.01-3	- inth		[15]	01.01-10	F _{s1} F _{s2}	•	[2]			
Keil ohne Reibung	Fα↓		Bewegungs-	Adhäsion	_		Kleben,			
neibung			schraube		F ₁		Löten (Stoffschluß)			
$F_1 = f(F_2)$		$F = \tan \alpha F_o$		$E = \mathcal{E}(E)$	←	$F_1 = F_2 < \tau_{zul} \cdot A$	(0.0.10011100)			
$\Gamma_1 = J(\Gamma_2)$	α			$F_1 = f(F_2)$	<u> </u>	-1 -22M				
			(0)		F ₂					
01.01-4 Keil mit			[2] Schraubenverbin-	01.01-11	E. V///		Hammar			
Reibung	For F2 Curp2		duna	Stoß	2 /// ma		Hammer			
	F ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$F = \frac{\tan(\alpha \pm \rho_2) \pm \tan \rho_1}{1 - (\alpha + \rho_2)} F_0$			m ₁ V ₂	$F_2 = \frac{\Delta t_1}{\Delta t_1} F_1$				
$F_1 = f(F_2)$	1F3 24 7	$1 \mp \tan(\alpha \pm \rho_2) \tan \rho_3$		$F_1 = f(F_2)$	F1 11 11 1	ΔI_2				
3(-2)	F ₂	für Heben und Senken		11-3(12)	⇒	für F_1 , F_2 = konst.				
01.01-5	-10 KIF1		[2]	04.04.40	v_1 Δt_1 Δt_2		[16]			
Seileck	F ₂		Seilstatik	01.01-12 Druckfort-	Δ.		Hydraulik,			
	-			pflanzung	^1 A ₂		Pneumatik			
	β-/	F - F 0				$F_2 = \frac{A_2}{A} F_1$				
$F_1 = f(F_2)$	- 	$F_3 = F_1 \cos \alpha + F_2 \cos \beta$		$F_1 = f(F_2)$		$r_2 = \frac{1}{A_1} r_1$				
	- / a 1				F ₂	- 7				
01.01-6	F ₃ /		[15]	01.01-13	F ₁		[16]			
Flaschenzug	Maria San San San San San San San San San Sa		Hebezeug	Trägheit			Raketenantrieb			
- 1	E. TES	$F = \frac{1}{2} F$			E D:					
E (E)	F FINNE	$r - \frac{1}{n}r_Q$			- N	$F = \frac{d}{dt} p_i$				
$F_1 = f(F_2)$	73 F4	$F = \frac{1}{n}F_Q$ $F_2 = F_1 + F_0$ n Anzahl der Rollen		$F = f(p_i)$		dt^{P_i}				
	72 81 8	n Anzahl der Rollen								
01.01-7	1 1 7 2		[2]	01.02-1			[1]			

Was ist bekannt?

- 1. Wagen (Stoff) anheben (Potentielle Energie erhöhen)
- 2. Wagen oben halten (zugeführte Energie speichern)

A: Schwerenwagenheber

Muskelkraft einbringen → mechanische Kraftverstärkung

Energie Speichern → Effekt: Reibung (Nachteilig, da hoher Kraftaufwand)

B: Hydraulischer Wagenheber

Muskelkraft einbringen → hydraulisch-mechanische Kraftverstärkung

Energie speichern → Stoff trennen (Rückschlagventil für Hydrauliköl)

C: innovative Lösung?

Alternative Lösung

Lösungsauswahl

Analysieren (Eigenschaften ermitteln)

- Grundsätzliche Überlegungen
- Berechnungen
- Simulationen (FEM, CFD ...)
- Versuche,
- Prototypen

Bewerten

 Vergleich mehrer Lösungen hinsichtlich Ihrer Eignung das gewünschte Ziel zu erfüllen (siehe Anforderungsliste)

Festlegen

Auswahl des "besten Kompromisses"

Auswahl anhand von K.O.-Kriterien

Anforderung	Fahr- rad	Motor- rad	PKW	LKW
Nur Führerschein Klasse A und B vorhanden	J	J	J	N
Witterungsunabhängig	N	N	J	J
Lösung verwendbar	N	N	J	N

Einfache Punktbewertung

Anforderung	Fahr- rad	Motor- rad	PKW	LKW	
Geringe Kosten	6	4	2	1	
Hohe Geschwindigkeit		1	6	5	3
Hoher Komfort	2	4	6	4	
Hohe Nutzlast	1	2	4	6	
Summe	10	16	17	14	
Relativ [%]	58	94	100	82	

1 = Anforderung nicht erfüllt ... 6 = Anforderung sehr gut erfüllt

Gewichtete Punktbewertung

Anforderung	Gew.	Fahr- rad		Motor- rad		PKW		LKW	
	G	Е	E-G	Е	E-G	Е	E-G	Е	E-G
Geringe Kosten	3	6	18	4	12	2	6	1	3
Hohe Geschwindigkeit	5	1	5	6	30	5	25	3	15
Hoher Komfort	4	2	8	4	16	6	24	4	16
Hohe Nutzlast	1	1	1	2	2	4	4	6	6
Summe			32		60		59		40
Relativ [%]			53		100		98		67

E: 1 = Anforderung nicht erfüllt ... 6 = Anforderung sehr gut erfüllt

