Logică Digitală

LazR ('3')

7 Martie, 2024

Cuprins

Capitolul 1: Algebra Booleana										3
1.1 Axiomele algebrei booleene										į
1.2 Teoremele algebrei booleene										4

Capitolul 1:Algebra Booleana

1.1 Axiomele algebrei booleene

Algebra booleeană este definită asupra unei mulțimi de elemente B cu 2 operatori binari, + și \cdot , care satisfac 6 axiome.

Proprietatea închiderii

- (i) B este închisă cu privire la operatorul +;
- (ii) B este închisă cu privire la operatorul \cdot .

Element neutru

- (i) $\forall a \in B! \exists 0 \ni a + 0 = a;$
- (ii) $\forall a \in B! \exists 1 \ni a \cdot 1 = a$.

Comutativitate

- (i) $\forall a, b \in Ba + b = b + a$;
- (ii) $\forall a, b \in Ba \cdot b = b \cdot a$.

Distributivitate

- (i) $\forall a, b, c \in Ba \cdot (b+c) = a \cdot b + a \cdot c$;
- (ii) $\forall a, b, c \in Ba + (b \cdot c) = (a+b) \cdot (a+c)$.

Complementul

- (i) $\forall x \in B \exists x' \in B \ni x + x' = 1;$
- (ii) $\forall x \in B \exists x' \in B \ni x \cdot x' = 0.$

Mulțimea B conține cel puțin două elemente distincte

$$\exists x, y \in B, x \neq y.$$

Elementele mulțimii B sunt 0 și 1. Operatorii algebrei booleene sunt sau-logic și si-logic.

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

x	y	$x \cdot y$
0	0	0
0	1	0
1	0	0
_1	1	1

Operatorii booleeni se aplică în *ordinea* următoare: paranteze, NOT, AND, OR.

Observație

- (i) Axiomele algebrei booleene sunt prezentate în perechi, fiecare pereche fiind $dual\breve{a}$ celeilalte;
- (ii) O axiomă se poate obține din duala sa, modificând "+" în "-" și "1" în 0.

1.2 Teoremele algebrei booleene

Idempotența

- (i) x + x = x;
- (ii) $x \cdot x = x$.

Demonstrație:

- (i) $x + x = (x + x) \cdot 1 = (x + x) \cdot (x + x') = x + (x \cdot x') = x + 0 = x$.
- (ii) $x \cdot x = (x \cdot x) + 0 = (x \cdot x) + (x \cdot x') = x \cdot (x + x') = x \cdot 1 = x$.

Element absorbant

- (i) x + 1 = 1;
- (ii) $c \cdot 0 = 0$.

Demonstrație:

- (i) x + 1 = x + x + x' = x + x' = 1.
- (ii) $x \cdot 0 = x \cdot x \cdot x' = x \cdot x' = 0$.

Absorbtie

- (i) $y \cdot x + x = x$;
- (ii) $(y+x)\cdot x = x$.

Demonstrație:

- (i) $y \cdot x + x = y \cdot x + x \cdot 1 = x \cdot (y+1) = x \cdot 1 = x$.
- (ii) $(y+x) \cdot x = (y+x) \cdot (x+0) = x + (y \cdot 0) = x + 0 = x$.

Involutie

$$(x')' = x.$$

Demonstrație:

$$(x')' + x' = 0 \Rightarrow (x')' = x.$$