

Biosignals Decoder: Improve available classifiers through data augmentation using generative Al

Alessio Negrini, 25th January 2024 Seminar Presentation, Information & Market Engineering (IISM)

Agenda

- Motivation
- Related Work
- Gen AI: Variational Autoencoder
 - Theoretical Introduction
 - Architecture
- Results of the VAE
 - Learning Curves, Reconstructions and Latent Space
- Effect on the EEGNet
- Conclusion

Motivation

Setup

- Collecting EEG Data is very time consuming and difficult
- EEG data has high variance, depending on person, day, sleeping, ...
- What if, if we can synthesize EEG Data to overcome those challenges?
- In the following we will focus on EEG data collected during a Field Study:

Information & Market Engineering

Institute of Information Systems and Marketing

Related Work

- Variational Autoencoder (Kingma et al. 2013 [1])
- $\blacksquare \beta$ -VAE (Higgins et al. 2022 [2])
- TimeVAE (Desai et al. 2021 [3])

Alessio Negrini

- EEGNet (Lawhern et al. 2016 [4])
- Conditional VAE (Sohn et al.2015 [5])

Variational Autoencoder

Theoretical Introduction

Alessio Negrini

- Introduced by Kingma et. al 2013 [1]
- Consists of two neural networks: Encoder and Decoder
- \blacksquare Encoder maps input data to mean μ and std σ vector representing the parameter of a multivariate gaussian that we're sampling z from
- Decoder takes latent variable z for reconstruction.

[2]

- ■i.e.
 - Total Loss = Reconstruction Loss + β · Kullback-Leibler-Divergence

Variational Autoencoder

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
Accessed 18.01.2024, Modified adding Encoder/Decoder label

Variational Autoencoder

Architecture

Encoder Decoder

Layer (type)	Output Shape	Param #	Connected to
input_11 (InputLayer)	[(None, 250, 7)]	0	-
flatten_5 (Flatten)	(None, 1750)	0	input_11[0][0]
dense_30 (Dense)	(None, 32)	56032	flatten_5[0][0]
batch_normalization_25 (BatchNormalization)	(None, 32)	128	dense_30[0][0]
dense_31 (Dense)	(None, 16)	528	batch_normalization_25[0][0]
batch_normalization_26 (BatchNormalization)	(None, 16)	64	dense_31[0][0]
dense_32 (Dense)	(None, 16)	272	batch_normalization_26[0][0]
z_mean (Dense)	(None, 8)	136	dense_32[0][0]
z_log_var (Dense)	(None, 8)	136	dense_32[0][0]
sampling_5 (Sampling)	(None, 8)	0	z_mean[0][0], z_log_var[0][0]

Layer (type)	Output Shape	Param #	Connected to
input_12 (InputLayer)	[(None, 8)]	0	-
dense_33 (Dense)	(None, 16)	144	input_12[0][0]
batch_normalization_27 (BatchNormalization)	(None, 16)	64	dense_33[0][0]
dense_34 (Dense)	(None, 16)	272	batch_normalization_27[0][0]
batch_normalization_28 (BatchNormalization)	(None, 16)	64	dense_34[0][0]
dense_35 (Dense)	(None, 32)	544	batch_normalization_28[0][0]
batch_normalization_29 (BatchNormalization)	(None, 32)	128	dense_35[0][0]
decoder_final_dense (Dense)	(None, 1750)	57750	batch_normalization_29[0][0]
reshape_5 (Reshape)	(None, 250, 7)	0	decoder_final_dense[0][0]

Results: Learning Curves

Alessio Negrini

- Training on 128 Epochs, Batch Size: 4, Optimizer: Adam, Val Split: 0.2
- Latent Dimension: 8, Condition: Hard Math Tasks, $\beta = 0.01$

Results II: **Reconstruction Examples**

- Reconstruction Mean Absolute **Percentage Error** somewhat around 15%
- In example on the right side:
 - $MAPE(X_{21}, \hat{X}_{21}) \approx 5\%$

Alessio Negrini

- Not fully able to reconstruct input data
- → Multivariate EEG Data reconstruction too complex for low amount of samples

Results III: Visualization of the latent space

- Latent Dimension is 8
- Visualization in 2D using **Principal Component** Analysis (PCA)
- Mental Workload {1, 2} form a cluster in latent space
- We can sample from latent space to generate new data

Information & Market Engineering

Institute of Information Systems and Marketing

Results IV: Sampling from the latent space

Seed (-1.5; -1.2), Class 1

Seed (0.8; -0.9), Class 2

10

Results V: Training on EEGNet

- EEGNet Architecture used from Lawhern et al. 2016 [4]
 - Minor adjustments in the complexity, e.g. less kernels, ...
- Run fitting $n_runs = 25$ with $\{0\%, 25\%, 50\%, 100\%\}$ added reconstructed data to X train

11

0% Reconstructed / Synthesized Data

Alessio Negrini

25% Reconstructed / Synthesized Data

Information & Market Engineering

Institute of Information Systems and Marketing

50% Reconstructed / Synthesized Data

14

Karlsruhe Institute of Technology

100% Reconstructed / Synthesized Data

→ Stability increased, Less Validation Loss ©

Information & Market Engineering

Institute of Information Systems and Marketing

Aggregation Data of last Epoch (#32)

% Synth. Added	Mean Loss	SD Loss	Mean Val Loss	SD Val Loss	Mean ACC	SD ACC	Mean Val ACC	SD Val ACC
0%	0.2318	0.0129	0.1926	0.0777	0.9273	0.0113	0.9784	0.0625
25%	0.2934	0.0094	0.1789	0.0479	0.9130	0.0087	0.9942	0.0162
50%	0.2512	0.0158	0.1518	0.0461	0.9173	0.0111	0.9986	0.0039
100%	0.2101	0.0151	0.1420	0.0475	0.9524	0.0150	0.9956	0.0164

Conclusion

- Due to lack of training data (roughly 440 samples per condition) very difficult to apply Deep Learning approaches
- Huge hyperparameter space difficult to find optimal architecture and params
- Preprocessing / Data Wrangling took a lot of time also
- EEG Data has very high variance, depending on Person, day, ...
- However, synthesizing EEG data is possible!
 - → Significant need for more training samples
- Adding synthetic data improves generalization ability of EEGNet
 - And also stabilizes training! ©

References

- [1] Kingma et. al 2013, Auto-Encoding Variational Bayes https://arxiv.org/abs/1312.6114, Accessed 19.01.2024
- [2] Higgins et. al 2022, β-VAE: Learning basic visual concepts with a constrained variational framework https://openreview.net/pdf?id=Sy2fzU9gl, Accessed 19.01.2024
- [3] Desai et. al 2021, TimeVAE: A Variational Auto-Encoder for Multivariate Time Series Generation https://arxiv.org/abs/2111.08095, Accessed 19.01.2024
- [4] Lawhern et al. 2016, EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces https://arxiv.org/abs/1611.08024, Accessed 19.01.2024
- [5] Sohn et al. 2015, Learning Structured Output Representation using Deep Conditional Generative Models https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf, Accessed 19.01.2024

Thanks for listening. **Any questions?**

