

Teoria dos Grafos

Objetivo

- Fornecer uma base sobre a estrutura matemática dos grafos, visando a sua aplicação a eventos relacionados a área computacional
 - Desenvolver a capacidade para abordar problemas diversos que podem ser representados por meio de grafos.

Bibliografia

- BOAVENTURA NETTO, Paulo Oswaldo. Teoria e Modelos de Grafos. São Paulo: Edgard Blucher Ltda, 2006.
- LUCCHESI, Cláudio L. Introdução à teoria dos grafos. IMPA, 1979
- RABUSKE, M. A. Introdução à Teoria dos Grafos, Editora Daufsc - Universidade de Santa Catarina. 1992
- GERSTING, Judith L. Fundamentos Matemáticos para a Ciência da Computação 5^a ed. LTC

Definição

- **Definição 1** Um grafo **G** = (**V**,**E**) é uma estrutura matemática que consiste em dois conjuntos **V** (finito e não vazio), e **E** (relação binária sobre V). Os elementos de V são chamados vértices (ou nós) e os elementos de E são chamados arestas. Cada aresta tem um conjunto de um ou dois vértices associados a ela. GROSS e YELLEN (1999,p.2)
- **Definição 2** Um grafo é uma tripla ordenada **G(V,E,g)** onde :
 - V = um conjunto n\(\tilde{a}\)o vazio de v\(\text{értices}\) (ou n\(\text{ós}\))
 - E = um conjunto de arestas
 - g = uma função que associa a cada aresta a um par não-ordenado x-y de nós, chamados de extremidades de a.

Exemplo

Notações

$$G = (V,E)$$
 ou $G = (V(G),E(G))$ ou $G(V,E)$

Formalização

$$G = (V,E)$$

$$V = \{A, B, C, D\}$$

$$V = \{A, B, C, D\}$$
 $n = |V| \rightarrow *Ordem do grafo $G = 4$$

$$E = \{1,2,3,4,5,6,7\}$$
 ou

$$E = \{AB, AB, AC, BC, CD, DA, DA\}$$

História – Origem da Teoria dos Grafos

Problema das pontes de Konigsberg

 No Rio Pengel, junto à cidade de Königsberg (hoje Kaliningrado), na então Rússia, existem ilhas, formando quatro regiões interligadas por um total de sete pontes.

– É possível cruzar as 7 pontes numa caminhada contínua sem que se passe duas vezes por qualquer uma delas?

História – Origem da Teoria dos Grafos

• Problema das pontes de Konigsberg

O matemático suíço Leonhard Euler (1707 - 1783) ficou intrigado com o problema popularmente conhecido entre os habitantes e propôs uma solução em 1736.

Esta solução ficou conhecida como o caminho de Euler. Consiste na existência de um caminho em um grafo G onde cada aresta de G é usada apenas uma vez.

Áreas de Aplicação

- O estudo da teoria dos grafos engatinhou até os anos 40.
- Com o advento dos computadores, pode-se esquematizar soluções para vários problemas até então insolúveis.
 - ✓ Psicologia
 - ✓ Genética
 - ✓ Redes elétricas
 - ✓ Computação
 - ✓ Economia
 - ✓ Antropologia

- ✓ Processos industriais (PERT/CPM)
- ✓ Tática e logística
- ✓ Sistemas de comunicação
- ✓ Fluxos de rede
- ✓ Jogos
- ✓ Lingüística

Representação dos Grafos

Grafo dos estados do Brasil. Cada vértice é um dos estados da Republica Federativa do Brasil. Dois estados serão considerados adjacentes se tiverem uma fronteira comum.

Grafo G = (V,E) onde:

V = {Maria, Pedro, Joana, Luiz}

 $E = \{(v,w) \mid v \text{ \'e amigo de } w\}$

E = {(Maria, Pedro), (Joana, Maria), (Pedro, Luiz), (Joana, Pedro)}

Representação dos Grafos

Considerações

- Sob a perspectiva visual da inspeção visual
 - Fácil percepção do ponto de vista global para o ser humano.
 - Aspectos topológicos podem ser observados :
 Disposição dos vértices e arestas.
- Sob a perspectiva computacional
 - Necessidade de representação numérica interna
 - Estrutura de dados robusta e eficaz (Processamento e armazenamento)

Curiosidades – Redes Complexas

 Contextualizando o estudo de grafos na aplicação de redes complexas

Curiosidades – Redes Complexas

- Qual a razão de estudar as redes ?
 - Questões relacionadas à estrutura da rede podem nos ajudar a entender o **comportamento** "**coletivo**" de um sistema.
 - Exemplos:
 - Como a topologia de uma **Rede Social** pode afetar na **difusão de uma informação** ou de uma determinada doença ?
 - Como a estrutura de uma Rede Elétrica pode afetar na **solidez e estabilidade** de transmissão de energia.

- Questões relacionada ao estudo da rede
 - Qual o tamanho da rede ?
 - Como se formam as ligações entre os vértices ?
 - Que propriedades emergem e se desenvolvem ?
 - Como acontece o crescimento da rede
 - Quais são as regras para o crescimento?
 - Como classificá-las ?
 - Modelos já concebidos de Redes Complexas

Regulares ; Aleatórias ; Small World ; Livres de Escala

 Redes Regulares – Todos os vértices possuem a mesma quantidade de conexões.

 Redes Aleatórias – A conexão entre os vértices acontece de forma aleatória .
 Modelo proposto por Paul Erdös e Alfred Rényi. (Modelo ER, 1960)

Paul Erdös (1913-1996)

Alfréd Rényi (1921-1970)

Redes Small World

 Experimento de **Stanley Milgram** (1967): 160 cartas foram enviadas a pessoas em Omaha (Nebraska), com o pedido de que elas reenviassem a correspondência a conhecidos que pudessem fazê-la chegar mais perto do destinatário alvo: um corretor de valores em Boston (Massachusetts)

(1933 - 1984)

As cartas que chagaram ao seu destino passaram por aproximadamente 6 pessoas. Milgram descobriu que o **mundo é pequeno**

• Redes Small World – Modelo proposto por Watts e Strogatz em 1998 (Modelo WS). Esta rede não é completamente regular nem completamente aleatória. $(0 \le p \le 1)$.

 Redes Scale Free – Modelo proposto por Barabási e Albert em 1999 (Modelo BA). Sua principal característica implica que poucos vértices possuem muitas conexões e muitos vértices possuem poucas conexões.

Os vértices mais conectados tendem a possuir mais conexões. "O rico fica mais rico"

• Rede de Subestações de Transmissão de energia elétrica

Marcos Históricos

- Perspectiva da Teoria dos Grafos
 - Grafos (Leonhard Euler, 1736)
 - Grafos Aleatórios:
 - Modelo ER (Erdös & Rényi, 1960)
 - Redes regulares
 - Redes Small-World:
 - Milgram (1967)
 - Modelo WS (Watts & Strogatz, 1998)
 - Redes livres de escala:
 - Modelo BA (Barabási & Albert, 1999)

Exercício

• Construção de um Grafo

Cinco turistas se encontraram em um bar em Salvador e começaram a conversar, cada um falando de cada vez, com um só companheiro de mesa. O conhecimento de línguas é mostrado a seguir.

Construa um grafo que represente todas as possibilidades de cada turista dirigir a palavra a outro, sendo compreendido.

	INGLÊS	FRANCÊS	PORTUGUES	ALEMÃO	ESPANHOL
T1	Х	X	Х		Х
T2	Х	Х		Х	
Т3		Х	Х	Х	
T4	Х		Х	Х	Х
T5		Х		Х	Х