

B4 - Mathematics

B-MAT-400

202unsold

Statistics for Selling Suit Stock

202unsold

binary name: 202unsold

repository name: 202unsold_\$ACADEMIC_YEAR

repository rights: ramassage-tek

language: everything working on "the dump"

compilation: when necessary, via Makefile, including re, clean and fclean rules

• Your repository must contain the totality of your source files, but no useless files (binary, temp files, obj files,...).

- All the bonus files (including a potential specific Makefile) should be in a directory named bonus.
- Error messages have to be written on the error output, and the program should then exit with the 84 error code (O if there is no error).

Steven is a suit-seller in Mississippi. Once a year, he gets rid of his unsold stock, selling separately jackets and trousers, at \$10, \$20, \$30, \$40 and \$50. He'd like to know how much each piece of clothing is likely to yield (expected value and variance).

Steven gave his statistician friend a mission: to deduce from his past results the probability to sell a x jacket and y trousers together. It appears that the probability is defined by the following formula (x and y being integers greater than y0, depending on the economic climate):

$$\frac{(a-x)(b-y)}{(5a-150)(5b-150)}$$

Let's call X, Y and Z, respectively, the random variables that represent "the price of a sold jacket", "the price of sold trousers" and "the price of a sold suit". Given the values of a and b, your software must print:

- an array summing up the joint law of (X, Y), and the marginal laws of X and Y,
- an array summing up the law of Z,
- expected values and variances of X, Y and Z.

USAGE

EXAMPLES

∇	abla Terminal								- +
\sim /B-MA'	T-400> .	/202unsc	old 60 70	0					
W 40		X=20			X=50				
Y=10		0.080	0.060	0.040		0.300			
Y=20	0.083	0.067	0.050	0.033	0.017	0.250			
Y=30	0.067	0.053	0.040	0.027	0.013	0.200			
Y = 40	0.050	0.040	0.030	0.020	0.010	0.150			
Y=50	0.033	0.027	0.020	0.013	0.007	0.100			
X law		0.267				1.000			
					60				
p(Z=z)					0.167	0.100	0.053	0.023	0.007
expected value of X:									
variance of X:									
expected value of Y:									
variance of Y:									
expected value of Z:									
variance of Z:									

Don't worry too much about tabulations in the printing format.