

Pointing, Acquisition, and Tracking for Small Satellite Laser Communications

Peter Grenfell, Alexa Aguilar, Kerri Cahoy, Michael Long
pgrenfell@mit.edu
Space Telecommunications, Astronomy, and Radiation Lab
(STAR Lab)
MIT Department of Aeronautics and Astronautics

Overview

- Crosslink Mission Baseline Requirements
- Crosslink Mission Concept of Operations
- Pointing, Acquisition, and Tracking (PAT) Design
 - Coarse Pointing System (CPS)
 - Fine Pointing System (FPS)
 - Optical Layout
- PAT System Modeling & Verification
- Summary

CLICK Baseline Requirements

- CubeSat Laser Infrared CrosslinK (CLICK) Mission
 - Low cost, compact, low complexity lasercom (MIT, UF, NASA)
- < 2U, < 3 kg terminals, 200 mW transmitter
 - Full-duplex, > 20 Mbps from 25 km to 580 km, BER < 10^-4
 - Precision ranging < 50 cm
- The narrow 14.6 arcsec data beam requires precision PAT system
 - Coarse Pointing System (CPS) with beacon
 - Fine Pointing System (FPS)

Mission	Beam Divergence Angle	Link Type	
Aerocube – OCSD [1]	540 arcsec (2.6 mrad)	LEO to Ground	
OSIRIS [2]	41.2 arcsec (200 urad)	LEO to Ground	
CLICK	14.6 arcsec	LEO to LEO	
NFIRE [3]	10.3 arcsec (50 urad)	LEO to LEO or Ground	
LLCD [4]	0.515 arcsec (2.5 urad)	Lunar to Ground	

CLICK Concept of Operations

Launch Vehicle Separation and Ejection

Low-Rate RF crosslink
Deployment to exchange orbit
Drag Range parameters

GPS
GP

Low

Drag

High

Drag

Lasercom Beamwidths

Beacon: **0.75 deg**, FWHM

Transmit: 14.6 arcsec, FWHM

Lasercom Crosslink Demo

Dual one-way ranging RF downlink of test data after

Ground Station

Locations: MIT & NASA ARC

Pointing, Acquisition, and Tracking (PAT) Design

PAT Approach: Coarse and Fine | | | | | |

PAT Staged Control Steps

1. Initialization

Establish baseline acquisition state

2. Acquisition

Establish duplex laser beacon crosslink

3. Coarse Pointing

Maintain beacon inertial pointing

4. Fine Pointing

Establish and maintain lasercom data crosslink

Lasercom Crosslink

RF Crosslink

Beacon Crosslink

Both Beacon and Data Crosslink

Coarse Pointing Approach

Lasercom Terminal Spacecraft Bus Beacon Input Beacon Output **UHF Low-IMU** and Reaction **GPS** Beacon Beacon Star rate Receiver Wheels Camera Laser Crosslink **Tracker Orbit Determination, Pointing State Estimation & Attitude Commanding Attitude Determination & Control**

Hardware

Software

Fine Pointing Approach

Fine Pointing Optical Layout

PAT System Modeling & Verification

Acquisition

Initialization State:

Altitudes: 500 km

• Range: 580 km

Allocated delay: 180 sec

Satellite Orbit Propagator: J2

• Data source GPS receiver

Reference Model: High Precision Orbit Propagator

High order gravity model

Atmospheric drag model

Solar radiation pressure model

Error Source	Single Axis Uncertainty (arcsec)
Acquisition Error	728
Opto-Mechanical Allocation	400
RMS Total Error	831
Beacon Allocation	954
Margin	13%
Beacon Divergence	2700 arcsec (0.75 deg)

Acquisition Error

Coarse to Fine Pointing

- Coarse pointing simulation dynamics is sampled for input.
- 99th Percentile of CPS simulation:
 97.9 arcsec (half-angle)
- Pre-FPS Time Shown: 60 sec
- FPS 99% Settling Time: **62 msec**

Fine Pointing

- Simulation time period shown: approx. 60 sec following settling.
- Simulation gives 99% pointing estimate of **0.538 arcsec** (halfangle)

Hardware Testing

Hardware-in-the-loop setup (v1.0) using COTS hardware gives 99% pointing estimate of **2.382 arcsec** (half-angle) [5].

Pointing Summary

Laser Divergences:

- Lasercom crosslink divergence angle: 14.6 arcsec (7.3 arcsec HWHM)
- Beacon crosslink divergence angle: 0.75 degrees

PAT Analysis & Test Results:

- Coarse Pointing & Tracking Capability (Simulation): 97.8 arcsec (half-angle)
- Fine Pointing Capability (Simulation): 0.538 arcsec (half-angle)
- Fine Pointing Capability (Hardware): 2.382 arcsec (half-angle)
- Improvement over Coarse Pointing: 41 to 181 times
- Significant margin (67% to 93%) for opto-mechanical errors

Questions

References

[1] Darren Rowen et. all. Ocsd-a / aerocube-7a status update. http://mstl.atl.calpoly.edu/bklofas/Presentations/DevelopersWorkshop2016/, April 2016. Accessed: 2018-2-7.

[2] Christopher Schmidt, Martin Brechtelsbauer, Fabian Rein, and Christian Fuchs. OSIRIS Payload for DLR's BiROS Satellite. In International Conference on Space Optical Systems and Applications, January 2014.

[3] Don M. Boroson, Joseph J. Scozzafava, Daniel V. Murphy, Bryan S. Robinson, and M.I.T. Lincoln. The Lunar Laser Communications Demonstration (LLCD). In Third IEEE International Conference on Space Mission Challenges for Information Technology, SMC-IT 2009., pages 23–28. IEEE, 2009.

[4] M. Guelman *et al.*, "Acquisition and pointing control for inter-satellite laser communications," *IEEE Trans. Aerosp. Electron. Syst.*, vol. 40, no. 4, pp. 1239–1248, Oct. 2004.

[5] Yoon, H., "Pointing System Performance Analysis for Optical Inter-satellite Communication on CubeSats," *Ph.D Thesis*, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113743

Backup

Link Budgets

Inter-satellite Crosslink Budget		
Range (km)	855.00	
PPM Order	16.00	
Transmit Power (dBW)	-6.99	
Full Width Half Maximum (arcsec)	14.6	
Transmitter Gain (dBi)	95.02	
Transmitter Loss (dB)	-1.74	
Receiver Gain (dBi)	92.16	
Receiver Loss (dB)	-1.75	
Path Loss (dB)	-257.54	
Atmospheric Loss (dB)	0.00	
Pointing Loss (dB)	-3.00	
Photons Per Bit	768.70	
Power Received (dBW)	-83.36	
Power Required (dBW)		
Margin	2.98	

Link Range (km)	10	100	500	850	1000	1500
Beacon Optical Power (dBW)	-3.01	-3.01	-3.01	-3.01	-3.01	-3.01
Beacon Wavelength (m)	9.76E-07	9.76E-07	9.76E-07	9.76E-07	9.76E-07	9.76E-07
Pointing Loss (dB)	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50
Half Power Beamwidth (rad)	0.01	0.01	0.01	0.01	0.01	0.01
FSO Path Loss (dB)	-216.17	-242.20	-256.17	-260.78	-262.20	-265.72
Tx Optics Loss (dB)	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40
Rx Optics Loss (dB)	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10
Receiver Aperture Diameter (mm)	20.00	20.00	20.00	20.00	20.00	20.00
Sensor Responsivity (A/W)	0.62	0.62	0.62	0.62	0.62	0.62
SNR (dB)	36.67	26.63	18.91	15.64	14.51	11.49

CPS Simulation Results

CPS Simulation Results

FPS Simulation Results

FPS Simulation Results

Simulation Results

Error Source	Simulation (v1)	Convergence Estimate (v2)	Hardware (v1)
Fine Pointing Control	0.54	1.46	2.38
Opto-Mechanical Allocation	4.00	4.00	4.00
Total RMS	4.04	4.26	4.66
Total Pointing Allocation	5.18	5.18	5.18
Margin	22%	18%	10%

Hardware Testing

Optical Modeling

Zemax® Optical Raytracing

CLICK Instrument Overview

Optical

Technical Summary*		
Application	Compact lasercom transceiver suitable for small-satellite constellations and swarms	
Communications	20 Mbps, Full-Duplex, PPM, 1537 / 1565 nm, 14.6" divergence, 200 mW	
Crosslink Ranges	10 km - 855 km (extended)	
Downlink	LEO to 30 cm Ground Station	
Size, Weight, and Power	Volume <2U, Mass <2 kg, Peak power <40W	
Beacon	976 nm, 0.75° divergence, 500 mW 10° FOV 5 Mpx CMOS Camera	

Optical Ground Station Equipment

Tracking Assembly (Coarse Stage)

Telescope Celestron CPC1100

- Ø11" (28 cm)
- f/10
- 0.6 deg FOV

Star tracker iNova PLB-Mx2

- f = 35 mm lens
- 7.8×5.9 deg FOV

Receiver Assembly (Fine Stage)

Fast steering mirror Optics in Motion 1"

- Voice-coil actuated
- >850 Hz bandwidth

Tracking detector Sensors Unlimited SWIR 320CSX

- 320×256 pixels
- 12.5 micron pitch
- 60 Hz full-frame rate

Receiver Voxtel RDC1-NJAF APD

- 300 MHz
- 200 microns

K. Reising