Photo Album

by Ahmed Ibrahim

- The Hough Transform is a technique which is used to isolate curves of a given shape in an image.
- Any curve defined in parametric form may be found using the Hough Transform.
- Curves such as lines, circles and ellipses are very easy to find.
- In industry most manufactured parts have such boundaries, so these curves may serve the purpose.
- This transform technique is relatively unaffected by noise.

Line Detection

Equation of straight line given in parametric form is:

$$x \cos \phi + y \sin \phi = \underline{r}$$

Where 'r' is the length of a normal to the line from the origin and 'φ' is the angle this normal makes with the X-axis

Line Detection

• If we have a point (x_i, y_i) on this line, then:

$$x_i \cos \phi + y_i \sin \phi = r$$

- $x_i \cos \phi + y_i \sin \phi = r$ A line will have some constant value of 'r' and ' ϕ '.
- Suppose, however, that we do not know which line we are considering, but we do know the coordinates of the point(s) on the line.
- Now we can consider 'r' and ' ϕ ' as variables and point (x_i, y_i) as constants.

Line Detection

In this case the equation

$$x_i \cos \phi + y_i \sin \phi = r$$

- Defines the values of 'r' and 'φ' such that the line passes through the point (x_i,y_i).
- If we plot the values of 'r' and 'φ' for this given point then we will get a sinusoidal curve in (r-φ) space.

Line Detection

 All points which are collinear to this point will correspond to one common pair of 'r' and 'φ' values.

Line Detection

 All points which are collinear to this point will correspond to one common pair of 'r' and 'φ' values.

- Since now we have two variables 'r' and 'φ' we need to discretize them.
- Φ is ranging from '0' to '180' and if we use a resolution of 1 deg. then
 we will have 180 discrete values of Φ.
- For 'r' maximum distance from the origin may be a limit, which effectively will be the pixel location that is farthest from the origin, i.e. sqrt(m²+n²).

- Since now we have two variables 'r' and 'φ' we need to discretize them.
- Φ is ranging from '0' to '180' and if we use a resolution of 1 deg. then we will have 180 discrete values of Φ.
- For 'r' maximum distance from the origin may be a limit, which effectively will be the pixel location that is farthest from the origin, i.e. sqrt(m²+n²).
- Our representation of (r-φ) space is now simply a 2-dimensional array of size, let 300x180, each element corresponding to a pair of 'r' and 'φ'.

Line Detection

 This is called an accumulator since we are going to accumulate evidence of curves given by particular boundary points (x,y) in the image plane.

Hough Transform

S

Hough Transform

S

Hough Transform

S

Circle Detection

Parametric equation of a circle is given as

$$(x-a)^2 + (y-b)^2 = r^2$$

Circle Detection

