

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Радиотехнический» Кафедра ИУ5 «Системы обработки информации и управления»

Отчет по Лаб.1 «Парадигмы и конструкции языков программирования»

Выполнил: студент группы РТ5-31Б Иванченко Д.А.

> Проверил: Гапанюк Ю. Е

Задание

Разработать программу для решения биквадратного уравнения.

- 1. Программа должна быть разработана в виде консольного приложения на языке Python.
- 2. Программа осуществляет ввод с клавиатуры коэффициентов A, B, C, вычисляет дискриминант и ДЕЙСТВИТЕЛЬНЫЕ корни уравнения (в зависимости от дискриминанта).
- 3. Коэффициенты A, B, C могут быть заданы в виде параметров командной строки (вариант задания параметров приведен в конце файла с примером кода). Если они не заданы, то вводятся с клавиатуры в соответствии с пунктом 2. Описание работы с параметрами командной строки.
- 4. Если коэффициент A, B, C введен или задан в командной строке некорректно, то необходимо проигнорировать некорректное значение и вводить коэффициент повторно пока коэффициент не будет введен корректно. Корректно заданный коэффициент это коэффициент, значение которого может быть без ошибок преобразовано в действительное число.
- 5. Дополнительное задание 1 (*). Разработайте две программы на языке Python одну с применением процедурной парадигмы, а другую с применением объектно-ориентированной парадигмы.
- 6. Дополнительное задание 2 (*). Разработайте две программы одну на языке Python, а другую на любом другом языке программирования (кроме C++).

Текст программы

Файл lab1.py

```
import math
def my input(a):
   print(a)
   while True:
       k = input()
       try:
           return float(k)
        except ValueError:
            print('Ошибка. Введите число')
def root(a, b, c):
   D = b ** 2 - 4 * a * c
    if (D == 0):
       x1 = (-b) / (2 * a)
       print(x1, x2)
    elif (D > 0):
        x1 = (-b + math.sqrt(D)) / (2 * a)
       x2 = (-b - math.sqrt(D)) / (2 * a)
       print(x1)
        print('Нет действительных корней')
```

```
# Если сценарий запущен из командной строки
if __name__ == "__main__":
    a = my_input('Введите коэффициент A: ')
    b = my_input('Введите коэффициент В: ')
    c = my_input('Введите коэффициент С: ')
    root(a, b, c)
  Файл lab1_oop.py
import math
class Coef:
    def my input(x, str):
        while True:
            print("Введите коэффициент " + str + ": ")
            x = input()
            try:
                return float(x)
            except:
                print("Ошибка. Введите число")
    def __init__(self):
        self.a = self.my input('A')
        self.b = self.my input('B')
        self.c = self.my input('C')
class Roots(Coef):
    def get roots(self):
        D = (self.b) ** 2 - 4 * (self.a) * (self.c)
        self.x1 = ''
        self.x2 = ''
        if (D > 0):
            self.x1 = (-self.b - math.sqrt(D)) / (2 * self.a)
            self.x2 = (-self.b + math.sqrt(D)) / (2 * self.a)
        elif (D == 0):
            self.x1 = self.b / (-2 * self.a)
        else:
            print('Нет действительных корней')
        print(self.x1, self.x2)
if __name__ == "__main__":
    a = (Roots())
```

a.get roots()

Вывод

Для процедурного решения:

```
Введите коэффициент А:

1
Введите коэффициент В:

1
Введите коэффициент С:

1
Нет действительных корней
```

```
Введите коэффициент A:

1

Введите коэффициент B:

3

Введите коэффициент C:

2

-1.0
```

Для объектно-ориентированного решения:

```
Введите коэффициент А:
1
Введите коэффициент В:
5
Введите коэффициент С:
-3
-5.541381265149109 0.5413812651491097
```