4.2. ПРЕДИКАТНА ЛОГИКА

1. Същност на предиката

Предикатыт е твърдение (изказване), съдържащо поне една логическа променлива, която е с неизвестна истинност. Предикатът изразява отношение между обектите или техните свойства. Истинността на предиката зависи от текущите стойности на променливите.

Предикатът p от n променливи представлява n-местна предикатна функция, която се записва във вида $p(x_1,x_2,...,x_n)$, където $x_i \in D \mid D$ е дефиниционната област на променливата x_i .

Пример:

по-голямо (X,Y) – тълкува се X > Y. Операторният и предикатният записа са еквивалентни: $X > Y \leftrightarrow > (X,Y)$.

За определяне на D се използват *кванторите*: $\exists x$ – Existence (за съществуване, чете се: съществува поне едно x, за което предикатът p(x) е истинен); $\forall x$ – All (за общност, чете се: за всяко x от D, предикатът p(x) е истинен).

Пример:

$$\exists x p(x) \leftrightarrow \exists x (p(x)) \leftrightarrow (\exists x) (p(x)) \leftrightarrow T;$$
$$\forall x p(x) \leftrightarrow \forall x (p(x)) \leftrightarrow (\forall x) (p(x)) \leftrightarrow T.$$

Квантифицирани (*свързани*) *променливи* са тези променливи, които се намират в областта на действието на кванторите:

Пример:

 $\forall xp(x,y), x$ е свързана променлива; y – свободна променлива; $\forall xp(x,y_1) \leftrightarrow p(x,y_2)$.

2. Език на предикатната логика

Променлива - A_i^n ($i \ge 1, n \ge 0$) за дефиниране на n – аргументна функция – променлива (име на функцията), където i – индекси, по които се отличават променливите; n – броят на аргументите, които се отнасят към променливата A.

Константа a_i^n $(i \ge 1, n \ge 0)$ за дефиниране на n – аргументна функция - константа (име на функцията), където i – индекси, по които се отличават константите; n – броят на аргументите, които се отнасят към константата a.

Пример:
$$A \equiv A^0$$
, $A(X) \equiv A^1$, $A_1(X,Y) \equiv A_1^2$.

Азбука на предикатната логика: $\Sigma = G_1 \cup G_2 \cup G_3 \cup G_4 \cup G_5 \cup G_6$, където

 $G_1 = \left\{ f_i^{\,n} \right\}$ е множеството от n – аргументни функции - константи; $f_i^{\,0} = a_i$ - индивидна константа.

Константна функция означава, че е постоянно името на функцията, а не стойностите на аргументите. Трябва да се подчертае, че n – аргументните константни функции дават като резултат аритметична стойност.

Пример:

$$G_1 = \{a_1, a_2, f_3(...), \sin(x), ...\}.$$

 $G_2 = \left\{ p_i^n \right\}$ - множество от n - местни константни предикати; $p_i^0 = p_i$ - съждителна константа.

Константният предикат се отнася към името на предиката, а не за стойността на аргументите. Трябва да се подчертае, че n — местните константни предикати дават като резултат — логическа стойност. Пример:

$$G_2 = \{p, T, F, p(1,2), \text{бяло}(x), \ldots\}.$$

 $G_3 = \left\{\!F_i^n\right\}$ - множество от n –аргументните функции; $F_i^0 = X_i$ - индивидна променлива. Името на функцията е променлива. Променливите се пишат с главни букви.

Пример:
$$G_3 = \{X_1, X_2, Y, F_2(...), ...\}.$$

 $G_4 = \left\{\!\!\!\! P_i^n \right\}$ - множество от n - местните предикати; P_i^0 - съждителна променлива.

Пример:
$$G_4 = \{P_1, P_2, Q, P_2^2(...)\}.$$

За множествата G_3 , G_4 обектите се делят на функции и предикати, при което аргументите и имената могат да са променливи. Функциите дават винаги аритметична стойност, а предикатите дават винаги логическа стойност.

$$G_5 = \{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$$
 - множеството от логическите съюзи;

$$G_6 = \{ '(',')',',' \}$$
 - множеството от символи.

Предикатното смятане е формален език за символно представяне на логически доказателства в математиката. Изреченията в този език се наричат правилно построени форми ($\Pi\Pi\Phi$).

3. Правила за построяване на правилно построени формули

ППФ се изграждат от три класа изрази:

Tерми (t) — изрази, даващи постоянна или променлива аритметична стойност:

- a) всяка индивидна константа $f_i^{\,0} = a_i$ и всяка индивидна променлива $F_i^{\,0} = X_i$ са терми;
- б) ако $t_1, t_2, ..., t_n$ са терми, то $f_i^n(t_1, t_2, ..., t_n)$ и $F_i^n(t_1, t_2, ..., t_n)$ са терми.

Пример: 3 – 16; X_1 ; Y; t(3,4), 3+4, F(X,3),X* (4-2) са терми, както и всеки аритметичен израз.

Атоми (*атомни форми* (аф)) – изрази, даващи постоянна или променлива логическа стойност:

- a) T и F са атомни форми;
- δ) всички съждителни константи и всички съждителни променливи са атомни форми.

Термите участват в изграждането на атомите.

Пример:
$$T, F, A, B > (6,4), 5 > 2, X \ge (Y+6)$$
, синьо (небе), $P(x)$

 $\Pi\Pi\Phi$ - (логически изрази, изградени от аф, при което резултатът е винаги логическа стойност):

- а) всяка аф е ППФ;
- δ) ако A и B са ПП Φ , то

$$\overline{A}$$
, $(A \cup B)$, $(A \cap B)$, $(A \to B)$, $(A \leftrightarrow B)$ ca $\Pi\Pi\Phi$;

в) ако X е променлива (съждителна или индивидна) и A е ПП Φ , то $(\forall x)A(x)$ и $(\exists x)A(x)$ са ПП Φ .

ΠΠΦ:
$$\forall P \{P(a) \land (\forall x) | [\overline{x = a} \land P(f(x))] \rightarrow P(x)] \rightarrow (\forall x) P(x) \}$$

се чете: за всеки (едноместен) предикат Р върху D (дефиниционна област), ако P(a) е вярно, и за всяко $x \in N$, ако $x \neq a$ и P(f(x)) са верни, то P(x) е вярно, то за всяко $x \in N$ - P(x) е вярно.

Класът от описаните $\Pi\Pi\Phi$ се нарича предикатно смятане от втори ред (с равенства) със следните подкласове с допустимо множество от символи за константи и променливи:

- Съждително смятане:
- а) съждителни константи p_i^0 .
- Съждително смятане с квантори:
- а) съждителни константи p_i^0 ;
- б) съждителни променливи P_i^0 .

- Аритметично смятане с равенство:
- а) индивидни константи a_i ;
- б) индивидни променливи X_i .
- Предикатно смятане от І ред с равенство:
- а) константи f_i^n , $f_i^0 = a_i$ за n аргументни функции ($n \ge 0$);
- б) константи p_i^n , $p_i^0 = p_i$ за n местни предикати $n \ge 0$;
- в) индивидни променливи X_i .

Пример: Анализ на структурата на следните ППФ

4. Изчисления с предикати

Изчисление с предикати е изчисление на правилно построени формули. Добавят се допълнително правила за кванторите:

- въвеждане на
$$\forall$$
: $\frac{\Gamma \Rightarrow A(x)}{\Gamma \Rightarrow \forall x A(x)}$;

- елиминиране на
$$\forall$$
: $\frac{\Gamma \Rightarrow \forall x A(x)}{\Gamma \Rightarrow A(t)}$,

t е свободно за x в A(x); с премахване на квантора x се замества с t, където t не трябва да бъде свързана променлива.

б) Правила за ∃

- въвеждане на
$$\exists$$
: $\frac{\Gamma \Rightarrow A(t)}{\Gamma \Rightarrow \exists x A(x)}$,

където t е свободна за x в A(x); A(t) е резултатът от заместването на всички свободни участия на x в A(x) с t [например, от $\Gamma \Rightarrow p(a,a)$) се извежда като частен случай $\Gamma \Rightarrow \exists x p(x,a)$ или $\Gamma \Rightarrow \exists x p(a,x)$ или $\Gamma \Rightarrow x p \exists (x,x)$];

- елиминиране на
$$\exists$$
: $\frac{(\Gamma \Rightarrow \exists x A(x)) \land (\Gamma, A(b) \Rightarrow C)}{\Gamma \Rightarrow C}$,

където b е индивидна константа, която не участва в никой член на Γ , в $\exists x A(x)$ или в C. В резултат на елиминирането, всяка свързана променлива се заменя с индивидна константа, която не участва в Γ , A и C.

Пример: Да се изведе ППФ: $\exists x \forall y A(x, y) \rightarrow \forall y \exists x A(x, y)$.

Прилага се правилото за извод на секвенцията:

$$\exists x \; \exists \forall y \; A(x, y) \Rightarrow \exists x \; A(x, y),$$

което изисква да се приложи правилото за елиминиране на \exists . В съответствие с правилото за елиминиране на квантора \exists : $\frac{(\Gamma \Rightarrow \exists x A(x)) \wedge (\Gamma, A(b) \Rightarrow C)}{\Gamma \Rightarrow C}$, се правят следните означения:

$$\Gamma = \{\exists x \forall y \ A(x,y)\}; \ \exists x \ A(x) = \exists x \ A(x,y),$$

$$A(b) = \forall y \, A(b, y);$$

$$C = \exists x A(x, y):$$

- 1. Γ , $\exists x \ \forall y \ A(x,y) \Rightarrow \exists x \ \forall y \ A(x,y)$ аксиома за предпоставките;
- 2. Γ , $\forall y \, A(b, y) \Rightarrow \forall y \, A(b, y)$ аксиома за предпоставките;
- 3. Γ , $\forall y A(b, y) \Rightarrow A(b, t)$ елиминиране на квантора \forall ;
- 4. Γ , $\forall y A(b, y) \Rightarrow \exists x A(x, t)$ въвеждане на квантора \exists ;
- 5. $\Gamma \Rightarrow \exists x \, A(x, t)$ елиминиране на предпоставка;
- 6. $\Gamma \Rightarrow \forall y \exists x A(x, y)$ въвеждане на квантора \forall ;
- 7. $\Rightarrow \exists x \ \forall y \ A(x,y) \rightarrow \forall y \ \exists x \ A(x,y)$ въвеждане на импликация \rightarrow .