Algebra liniowa i geometria – macierze i wyznaczniki

Elżbieta Puźniakowska-Gałuch

e-mail: Elzbieta.Puzniakowska-Galuch@pja.edu.pl

Macierze rzeczywiste i zespolone

Definicja

Prostokątną tablicę liczb (\mathbb{R} , \mathbb{C}) o n wierszach i m kolumnach nazywamy macierzą (rzeczywistą lub zespoloną) wymiaru n × m:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nm} \end{bmatrix}$$

Oznaczamy $A = [a_{ij}]_{i=1,\dots,n,j=1,\dots m}$.

Rodzaje macierzy

- macierz zerowa,
- macierz kwadratowa,
- 🗿 macierz trójkątna dolna/górna,
- 🗿 macierz diagonalna (przekątniowa),
- macierz jednostkowa,
- macierz blokowa.

Działania na macierzach

Niech $A, B \in M_{n \times m}, C \in M_{m \times k}, A = [a_{ij}]_{i=1,\dots,n,j=1,\dots,m},$ $B = [b_{ij}]_{i=1,\dots,n,j=1,\dots,m}, C = [b_{ij}]_{i=1,\dots,m,j=1,\dots,k}.$ Wówczas możemy wykonać następujące działania:

dodawanie/odejmowanie:

$$A \pm B = [a_{ij} \pm b_{ij}]_{i=1,\ldots,n,j=1,\ldots,m}$$

2 mnożenie przez liczbę α :

$$\alpha A = [\alpha a_{ij}]_{i=1,\ldots,n,j=1,\ldots,m}$$

mnożenie macierzy:

$$B \cdot C = \left[\sum_{l=1}^{m} b_{il} c_{lj} \right]_{i=1,\ldots,n,j=1,\ldots,k}$$

Obliczyć:

•

$$(1-i)\begin{bmatrix} i & 0 & 3+2i & 1 \\ -1 & 2i & 1+i & 3 \end{bmatrix}$$

•

$$\begin{bmatrix} 1 & 0 \\ 2 & 3 \\ 4 & 5 \\ 6 & 7 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & -2 & -3 & 0 \\ 3 & -4 & -5 & 0 & -6 \end{bmatrix}$$

Dane są macierze

$$A = \begin{bmatrix} 1 & 0 & 1 & 6 & 1 \\ 0 & 3 & 2 & 4 & 1 \\ 2 & 7 & 1 & 2 & 2 \\ 1 & 5 & 0 & 2 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 4 & 3 \\ 10 & 9 & 11 \\ 5 & 4 & 4 \\ 7 & 6 & 8 \\ 2 & 3 & 2 \end{bmatrix}.$$

gdzie a_{ik} , $i=1,\ldots,4$, $k=1,\ldots,5$ z macierzy A oznaczają ilość sztuk towaru T_k , który chce kupić klient K_i , zaś elementy b_{kj} , $k=1,\ldots,5$, j=1,2,3, z macierzy B oznaczają cenę towaru T_k w sklepie S_j . W jaki sposób za pomocą tych macierzy otrzymać informację o:

- 2 kwocie, jaką zapłacilby w sumie wszyscy klienci w sklepie S₃,
- sklepie, w którym klient K₄ zapłaciłby najwięcej a w którym zapłaciłby najmniej?

Niech L(x, y) = (ax + by, cx + dy), $a, b, c, d \in \mathbb{R}$ będzie przekształceniem punktu $(x, y) \in \mathbb{R}^2$ z płaszczyzny. Macierz przekształcenia L będziemy oznaczali $P_L = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

- Składanie przekształceń jest równoważne z mnożeniem macierzy (uzasadnienie, że $P_{L\circ K}=P_LP_K$).
- Jak wygląda macierz symetrii względem osi Ox?
- 3 Jak wygląda macierz obrotu o kąt $\frac{\pi}{6}$?
- Jak wygląda macierz złożenia przekształceń symetrii względem osi Ox oraz obrotu o kąt $\frac{\pi}{6}$?

Własności działań na macierzach

Twierdzenie

Niech A, B, $C \in M_{n \times m}$ oraz α , β liczby (\mathbb{R} lub \mathbb{C}). Wówczas:

Twierdzenie

Niech $A \in M_{n \times m}$, $B, C \in M_{m \times k}$ oraz α liczba (\mathbb{R} lub \mathbb{C}). Wówczas:

1
$$A(B+C) = AB + AC, (A+B)C = AC + BC,$$

$$A = I_n A = AI_m.$$

Wyznaczniki - definicja

Definicja

Niech $A \in M_{n \times n}$. Funkcję det: $M_{n \times n} \to \mathbb{R}$ (lub \mathbb{C}) spełniajcą

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

gdzie $A_{1j} \in M_{(n-1)\times(n-1)}$ powstaje przez usunięcie pierwszego wiersza i j-tej kolumny z macierzy A nazywamy wyznacznikiem macierzy A. Alternatywne oznaczenie to |A|.

Wyznaczniki dla n = 2 i n = 3

Przykład

Obliczyć wyznaczniki:

1

$$\left|\begin{array}{c|c} a & b \\ c & d \end{array}\right| \left|\begin{array}{c|c} 3 & -1 \\ -4 & 5 \end{array}\right|$$

2

Interpretacja geometryczna (równoległobok, równoległościan).

Obliczyć pole równoległoboku rozpiętego na wektorach $\vec{u}=(-1,3)$ oraz $\vec{v}=(2,5)$. Jakie jest pole trójkąta rozpiętego na tych wektorach?

Przykład

Obliczyć pole trójkąta o wierzchołkach A = (1, -1), B = (3, 4), C = (-2, 5).

Przykład

Obliczyć objętość równoległościanu rozpiętego na wektorach $\vec{u}=(-1,3,4), \ \vec{v}=(2,5,0)$ oraz $\vec{w}=(3,0,2)$. Jaka jest objętość czworościanu rozpiętego na tych wektorach?

Przykład

Obliczyć objętość czworościanu o wierzchołkach A = (1, -1, 3), B = (0, 3, 4), C = (-2, 0, 5), D = (4, 1, 0)?

Rozwinięcie Laplace'a

Twierdzenie (Rozwinięcie względem i-tego wiersza)

Niech $A \in M_{n \times n}$. Wyznacznik macierzy A obliczamy w następujący sposób:

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$$

gdzie $A_{ij} \in M_{(n-1)\times(n-1)}$ powstaje przez usunięcie i-tego wiersza i j-tej kolumny z macierzy A.

Twierdzenie (Rozwinięcie względem j-tej kolumny)

Niech $A \in M_{n \times n}$. Wyznacznik macierzy A obliczamy w następujący sposób:

$$\det A = \sum_{i=1}^n (-1)^{i+j} a_{ij} \det A_{ij}$$

gdzie $A_{ij} \in M_{(n-1)\times(n-1)}$ powstaje przez usunięcie i-tego wiersza i j-tej kolumny z macierzy A.

Obliczyć na dwa sposoby

Przykład

Obliczyć wyznacznik macierzy diagonalnej i trójkątnej.

Własności wyznaczników

Niech $A \in M_{n \times n}$, $c \neq 0$. Niech k_j oznacza j-tą kolumnę macierzy A. Wówczas:

- \bigcirc det[k_1 0 k_n] = 0

- \bigcirc det $A = \det A^T$

Analogicznie dla wierszy.

Obliczyć

z wykorzystaniem operacji elementarnych na wierszach/kolumnach:

Przykład

Wkorzystując własności wyznaczników zapisać część rzeczywistą wyznacznika

$$\begin{vmatrix}
5+i & 7-7i & 2 \\
2-2i & 9-5i & 3 \\
1-8i & 3+2i & 4
\end{vmatrix}$$

w postaci sumy wyznaczników o elementach rzeczywistych.

Twierdzenie (Cauchy'ego)

Niech A, $B \in M_{n \times n}$. *Wówczas* det(AB) = det A det B.

Przykład

Obliczyć wyznacznik macierzy X spełniającej równanie

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -3 \\ 0 & 2 & 0 \end{bmatrix} \cdot X \cdot \begin{bmatrix} 1 & 0 & 1 \\ 2 & -2 & 0 \\ 3 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 7 & 36 \\ 5 & 12 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

Definicja

Niech $A \in M_{n \times n}$. Macierzą odwrotną do macierzy A nazywamy macierz $A^{-1} \in M_{n \times n}$ spełniającą

$$AA^{-1} = A^{-1}A = I_n$$

Twierdzenie

Niech $A \in M_{n \times n}$. Jeżeli det $A \neq 0$, to macierz A^{-1} istnieje.

Przykład

Czy macierz

$$\left[\begin{array}{ccccc}
0 & 2 & 3 & 0 \\
4 & -1 & 6 & 1 \\
1 & -3 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]$$

jest odwracalna?

Metody znajdowania macierzy odwrotnej

Niech $A \in M_{n \times n}$, det $A \neq 0$. Wówczas macierz odwrotną możemy policzyć za pomocą metody:

macierzy dopełnień algebraicznych

$$A^{-1} = \frac{1}{\det A} (A_d)^T$$

gdzie
$$A_d = [(-1)^{i+j} \det A_{ij}]_{i,j=1,...,n}$$

przekształceń elementarnych (algorytm Gaussa)

$$[A | I] \sim [I | A^{-1}]$$

Obiczyć macierze odwrotne (dwoma metodami)

$$\left[\begin{array}{cccc}
3 & 2 \\
4 & 1
\end{array}\right], \quad \left[\begin{array}{cccc}
3 + 2i & 2 \\
4 & 3 - 2i
\end{array}\right], \quad \left[\begin{array}{cccc}
2 & 3 & 4 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]$$

Rozwiązać równanie macierzowe:

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \cdot X \cdot \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 2 & 2 \end{bmatrix}$$