CS3102 Theory of Computation

Turing Machine

Tape Contents
(initially contains
input string
followed by blanks)

Operation: transitions outgoing from each state match on current character on the tape, when transitioning you can overwrite that character and move which cell you're reading

Turing Machines

NFA/DFA:

- Finite number of states,
- read-once input,
- transition using input character and state

PDA:

- Finite number of states,
- read-once input,
- stack (memory)
- Transition using input character, state, and stack
- Can push to the stack on transition

Turing Machine:

- Finite number of states,
- Semi-infinite tape (memory)
- Transition using state, and "current symbol" on tape
- Can overwrite current symbol, move left/right on tape

Configurations

DFA:

- Which state is currently active
- At start: Start state is active

PDA:

- Which state is currently active
- What's in the stack
- At start: start state is active, stack is empty

Turing Machine

- Which state is currently active
- What's on the tape
- Where the read head is on the tape
- At start: start state is active, input is is on the tape (with blanks after), read head is at the first cell

Transition behavior

• DFA:

- Input: State and input symbol
- Result: state

PDA:

- Input: State, input symbol, symbol popped from the stack
- Result: state, symbol pushed to the stack

Turing Machine:

- Input: State, symbol at current location in the tape
- Result: State, symbol writtent to current location in the tape, current location moved 1 to the left/right

Acceptance Condition

DFA

- Input has all been read
- We're in a final/accepting state

PDA

- Input has all been read
- We're in a final/accepting state
- The stack is empty

• TM

We're in the accepting state

Rejection Condition

DFA

- Input has all been read
- We're not in a final/accepting state

PDA

- Input has all been read
- We're not in a final/accepting state
- The stack isn't empty

TM

We're in the rejecting state

Some Turing Machines never accept/reject while(tru

- In this case they run forever
- 3 "reporting" behaviors
 - Accept and halt
 - Reject and halt
 - Run forever (implicit reject)
- This is necessary for computation

```
while(true){
  twiddle(thumbs);
}
```

```
while(x != 1){
  if(x\%2 == 0){
    x = x / 2;
  else{
    x = 3x+1;
Return true;
```

Running forever

• Is it a bad thing?

Programs we want to halt:

Your 2150 Homework

Programs we want to run forever:

Turing Machine Outcomes

- 1. Running TM M on input w eventually leads to A
 - Result: Accept
- 2. Running TM *M* on input *w* eventually leads to *R*
 - Result: Reject
- 3. Running TM M on input w runs forever (never terminates).
 - Result: Reject

Recognizing Vs. Deciding

- Turing-recognizable: A language L is "Turing-recognizable" if there exists a TM M such that for all strings w:
 - If $w \in L$ eventually M enters A (the accept state)
 - If $w \notin L$ either M enters R (the reject state) or M never terminates
 - Intutively: You can write a program that always "yes" to the right answers
- Turing-decidable: A language L is "decidable" if there exists a TM M such that for all strings w:
 - If $w \in L$ eventually M enters A (the accept state)
 - If $w \notin L$ either M enters R (the reject state)
 - Intuitively: You can write a program that always answer correctly (yes or no)

Decidable

A language is decidable iff it is exactly the set of strings accepted by some always-halting TM.

$w \in \Sigma^*$	a	b	aa	ab	ba	bb	aaa	aab	aba	abb	baa	bab	bba	bbb	aaaa	• • •
$M(w) \Longrightarrow$		X		X	X	X		×	X	X	X	X	X	X	\checkmark	• • •
L(M) =	{ a,		aa,				aaa,								aaaa	}

M must always halt on every input.

Recognizable

A language is Turing-recognizable iff it is exactly the set of strings accepted by some Turing machine.

$w \in \Sigma^*$	а	b	aa	ab	ba	bb	aaa	aab	aba	abb	baa	bab	bba	bbb	aaaa	• • •
$M(w) \Longrightarrow$		X		∞	×	∞		∞	∞	X	X	X	∞	X		• • •
L(M) =	{ a,		aa,				aaa,			:	:				aaaa	}

M can run forever on an input, which is implicitly a reject (since it is not an accept).

Computability

• Generally: Computable = Decideable

An Undecidable Problem/Language

- Acceptance Problem
- Given a Turing Machine description M (e.g. a program, states+transitions, etc.) and a string w, does M accept the input w?
- $A_{TM}(M, w) = \{\langle M, w \rangle | M(w) \text{ accepts} \}$

Acceptance problem is undecidable

- Assume toward reaching a contradiction that M_{acc} is a Decider for A_{TM} .
- Consider a new Turing Machine M' which receives as input a turing machine description M.
- If $\langle M, M \rangle \in A_{TM}$ then M' will reject, else M' accepts

Pseudocode for M'

```
public static boolean mPrime(String m){
    return !accept(m,m);
}
```

What does mPrime(source(mPrime)) return?

Acceptance problem is undecidable

- Assume toward reaching a contradiction that M_{acc} is a Decider for A_{TM} .
- Consider a new Turing Machine M' which receives as input a turing machine description M.
- If $\langle M, M \rangle \in A_{TM}$ then M' will reject, else M' accepts
- Consider M'(M')
 - If it accepts, then by definition M'(M') will reject
 - If it rejects, then by definition M'(M') with accept
 - Contradiction!
- Conclusion: M_{acc} cannot exist

Theorem: the acceptance problem (A_{TM}) is not decidable Proof: Assume some decider M_{acc} solves A_{TM} always stops with the correct answer for any M and w

Use M_{acc} , construct a TM M':

M'(M') accepts $\to M'(M')$ does not accept M'(M') does not accept $\to M'(M')$ accepts

 $\rightarrow M_{acc}$ cannot exist! (at least as an algorithm / program / TM)

20

Contradiction!

Proof by Reduction

Shows how two different problems relate to each other

Reduction Proofs

The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Impossibility by Reduction

- 1. X isn't possible (e.g., X = some way to open the door)
- 2. Assume Y is possible(Y = some way to light a fire)

3. Show how to use *Y* to perform *X*.

4. X isn't possible, but Y could be used to perform X conclusion: Y must not be possible either

Proof of Impossibility by Reduction

1. X does not exist.

(e.g., $X = \text{some TM that decides } A_{TM}$)

2. Assume *Y* exists.

(Y = some TM that decides B)

3. Show how to use *Y* to perform *X*.

4. *X* doesn't exist, but *Y* could be used to make *X* conclusion: *Y* must not exist either

Converse?

Does this mean B is equally as hard as A? A = B

No!

Solving *Y* is only one way to solve *X* There may be an easier way

Common Reduction Traps

- Be careful: the direction matters a great deal
 - Using a solver for B to solve A shows A is not harder than B
- The transformation must use only things you cqn What Otherwise it may be that B exists, but some other step do mean?
 - doesn't!

What "Can Do" Means

- Tools used in a reduction are limited by what you are proving
- Undecidability:
 - You are proving something about all TMs:
 - The transformation "can do" things a terminating TM "can do"

Spoiler alert!

- Complexity:
 - You are proving something about time required:
 - The time it takes to do the transformation is limited
- Combinatorics:
 - You are proving something about the number of things
 - The transformation must be bijective

Spoiler Alert!

SNAPE KILLS TRINITY WITH ROSEBUD!

The Halting Language

 $A_{TM} = \{ < M, w > | M \text{ is a TM description and } M \text{ accepts input } w \}$ All machine description, input pairs in which the machine accepts that input

 $HALT_{TM} = \{ < M, w > \mid M \text{ is a TM description and } M \text{ halts on input } w \}$ All machine description, input pairs in which the machine halts on that input

Every < M, w > which halts at all belongs to $HALT_{TM}$ < M, w > belongs to A_{TM} if it both halts and accepts

$HALT_{TM}$ is Undecidable

- $HALT_{TM} = \{ < M, w > | M \text{ is a TM description and } M \text{ halts on input } w \}$
 - All machine description input pairs in which the machine halts on input
- To show $HALT_{TM}$ is undecidable show A_{TM} isn't harder than $HALT_{TM}$
- Want to use a solver for $\underline{HALT_{TM}}$ to build a solver for $\underline{A_{TM}}$
- A_{TM} reduces to $HALT_{TM}$

- Assume $\frac{\text{Deciding} A_{TM}}{\text{HALT}_{TM}}$ is decidable. with HALT_{TM}

- Then some TM R can decide $HALT_{TM}$.
- We can use R to build a machine D that decides A_{TM} :
 - Call R on < M, w >
 - If R rejects, it means M doesn't halt:
 - If R accepts, it means M halts:
 - Call M on w, respond equivalently

Any TM that decides $HALT_{TM}$ could be used to build a TM that decides A_{TM} (which is impossible) thus no TM exists that can decide *HALT_{TM}*

