# Modeling Continuous Opacities of Vega and a Sun-like Star

Danielle Skinner Astronomy 421

January 2017

## 1 Introduction

The opacity of a star can provide many different insights about the composition and various processes occurring within the stellar atmosphere. By determining how different elements affect light at different temperatures and pressures, one can see just how these elements absorb and attenuate photons coming from within the star. There are essentially four different processes by which photons are attenuated: an electron transitioning from a bound state to a free state (bound-free), an electron transitioning from a free state to a different bound state to a different bound state (bound-bound), and the scattering of electrons and photons due to Rayleigh and Thomson scattering.

The bound-free states occur when a bound electron transitions to a free state with velocity v. This creates a continuous absorption since free electrons can have a continuous range of velocities. The free-free states occur when a free electron transitions to a different free state. This essentially means that there is a change in the free electron's kinetic energy, due to a change in it's acceleration, resulting in radiation which then effects the absorption coefficient of the star. This is also a continuous process, since the electron has a continuous range of velocities, much like the bound-free transition. The bound-bound transitions occur when an electron transitions from one bound state to another bound state. This results in a single line absorption since the transition happens at a discrete energy value.

Scattering processes effect how light interacts with particles and therefore, how the light is attenuated. Rayleigh scattering can be thought of as the oscillation of an electron due to an electromagnetic field. Since light is made of electromagnetic waves, electrons experience an oscillation, and therefore a change in acceleration, in the presence of light. The change in acceleration produces a radiation which is observed as scattered light. Thomson scattering is associated with free electrons and occurs when a photon accelerates a free electron, resulting in radiation. Thomson scattering is independent of wavelength whereas Rayleigh scattering is dependent on wavelength ( $\propto \lambda^{-4}$ ). Both of these scattering processes are important for determining how they effect the stellar atmosphere, although Thomson scattering is significantly smaller than Rayleigh scattering since hydrogen atoms are much more abundant than free electrons.

For this report, only hydrogen (H), the negative hydrogen ion (H-), and a metal will be considered to make up the composition of the star. While helium also makes up a part of the stellar opacity, it will be ignored here for simplification. Also, only the free-free and bound-free transition states (i.e., only the continuous opacities) will be considered when calculating the absorption coefficients of H and H-. On top of that, this model for opacity assumes an atmosphere which is made of a parallel plane geometry, the model is assumed to be in hydrostatic equilibrium, the total flux from the star remains constant, and the source function equals the Planck function. The final assumption allows me to use the Saha equation and state that the distribution of particle velocities if Maxwellian [1].

The ultimate purpose of this project is to calculate the various components of the opacity of a sun-like star and of Vega, an A star. Specifically, the absorption coefficient per neutral hydrogen, the absorption coefficient per ionized hydrogen, and the total scattering coefficient per hydrogen is calculated for a specific wavelength for each star and plotted against a range of temperatures. First, I will present the calculations which represent the absorption coefficients and scattering processes. I will then present the data and results for both the sun-like star and Vega. Finally, the code I wrote to calculate these results will be attached and referenced at the end of the paper.

# 2 Calculations

In order to calculate the relative absorption coefficients, a few parameters and constants need to be defined. They are listed below with the correct units. The equations used for these calculations are from Dimitri Mihalas's book, *Methods in Computational Physics* [1]. I have reproduced them here for ease.

| Abbreviation, Descriptions, and Values of various Constants and Parameters |                                                 |                                    |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|--|--|
| A                                                                          | Ratio of the number of hydrogen to metal atoms  | $10^{4}$                           |  |  |
| В                                                                          | Ratio of the number of helium to hydrogen atoms | 0.1                                |  |  |
| $m_h$                                                                      | Proton mass                                     | $1.67 \times 10^{-24}g$            |  |  |
| $\sigma_t$                                                                 | Thomson cross-section for an electron           | $6.65 \times 10^{-25} cm^2$        |  |  |
| С                                                                          | Speed of light                                  | 29979245800  cm/s                  |  |  |
| h                                                                          | Planck's constant                               | $6.62 \times 10^{-27} erg \cdot s$ |  |  |
| k                                                                          | Boltzmann's constant                            | $1.38 \times 10^{-16} erg/K$       |  |  |
| $\chi$                                                                     | Ionization energy of H                          | $2.195 \times 10^{-11} erg$        |  |  |

Table 1: Variables as defined throughout the upcoming calculations.

## 2.1 Calculating ionization ratios

In order to calculate the absorption coefficients, the fraction of ionized hydrogen and the fraction of ionized metal needs to be determined. They are labelled as X and Y, where X is the fraction of H ionized and Y is the fraction of metal ionized:

$$X = \frac{\frac{n_H^+}{n_H^-}}{1 + \frac{n_H^+}{n_H^o}} \tag{1}$$

$$Y = \frac{\frac{n_m^+}{n_m^+}}{1 + \frac{n_m^+}{n_m^o}} \tag{2}$$

The ratios in the above equations  $(\frac{n_H^+}{n_M^+}, \frac{n_m^+}{n_m^0})$  can be calculated from the corresponding Saha equations. The Saha equations relate the ionization state of a certain element with given temperatures and pressures. Saha equation for neutral hydrogen:

$$log_{10}(n_H^+/n_H^o) = -log_{10} P_e - 13.595 \Theta + 2.5 log_{10} T - 0.4772$$
(3)

Saha equation for neutral state of metal:

$$log_{10}(n_m^+/n_m^o) = -log_{10} P_e - 7.9 \Theta + 2.5 log_{10} T - 0.0971$$
(4)

Where:

$$\Theta = \frac{5040K}{T} \tag{5}$$

## 2.2 Finding the absorption coefficient for neutral hydrogen

To correctly calculate the absorption coefficients for neutral hydrogen, a few quantum-mechanical fudge factors need to be calculated. These are called "Gaunt Factors" and there is one for both the free-free transition and the bound-free transition.  $\lambda$  should be in microns for the following calculations. The Gaunt factor for free-free transitions is defined as:

$$g_{ff}(\lambda,\Theta) = 1.084 + \frac{0.0188}{\Theta} + \left(0.00161 + \frac{0.02661}{\Theta}\right)\lambda - \left(0.0192 - \frac{0.03889}{\Theta} + \frac{0.02833}{\Theta^2} - \frac{0.007828}{\Theta^3} + \frac{0.007304}{\Theta^4}\right)\lambda^2$$
(6)

The Gaunt Factor for bound-free transitions is defined as:

$$g_{bf}(m,\lambda) = a_m + b_m \lambda + c_m \lambda^2 \tag{7}$$

Where  $a_m, b_m, c_m$  are the coefficients as defined by the following table:

| Bound-Free Coefficients |        |         |         |  |  |
|-------------------------|--------|---------|---------|--|--|
| m                       | $a_m$  | $b_m$   | $c_m$   |  |  |
| 1                       | 0.9916 | 0.09068 | -0.2524 |  |  |
| 2                       | 1.105  | -0.7922 | 0.4536  |  |  |
| 3                       | 1.101  | -0.329  | 0.1152  |  |  |
| 4                       | 0.9736 | 0.      | 0.      |  |  |
| 5                       | 1.03   | 0.      | 0.      |  |  |
| 6                       | 1.097  | 0.      | 0.      |  |  |
| 7                       | 1.098  | 0.      | 0.      |  |  |
| 8                       | 1.     | 0.      | 0.      |  |  |
| 9                       | 1.     | 0.      | 0.      |  |  |
| 10                      | 1.     | 0.      | 0.      |  |  |

Table 2: Bound-Free coefficients for determining the bound-free Gaunt Factor.

The equation for the absorption coefficient per neutral H atom:

$$\alpha_{\lambda,H} = \frac{2.0898 \times 10^{-14} e^{-u_1} \lambda^3}{U_o(\Theta, P_e)} \left( 1 - e^{\frac{-h\nu}{kT}} \right) \times \left\{ \left( \sum_{m}^{m^*} g_{bf}(m, \lambda) \frac{e^{u_m}}{m^3} \right) + \frac{1}{2u_1} [e^{u_{m^*}} - 1 + g_{ff}(\lambda, \Theta)] \right\}$$
(8)

Where  $U_o(\Theta, P_e)$  is the partition function of neutral hydrogen (equal to 2) and  $u_m$  is defined as:

$$u_m = \frac{\left(\chi/kT\right)}{m^2} \tag{9}$$

Where m is the quantum number of the mth state. The conditions for  $m_o$  and  $m^*$  are as follows:

- $m_o$  is the largest integer such that  $u_m \leq h\nu/kT$
- $m^*$  is the value of the highest bound state considered (here, 10 is the highest bound state considered)

For both the sun-like star and Vega,  $m^* = 10$  and  $m_o = 3$ .

To get the mass absorption coefficient per gram, multiply the absorption coefficient per neutral H atom by the following multiplier:

$$k_{\lambda,H} = \alpha_{\lambda,H} \frac{1 - X}{(1 + 4B)m_h} \tag{10}$$

Where X is the fraction of H ionized calculated above (eqn. 1). The log of this value ( $\kappa_{\lambda,H}$ ) is plotted against a range of temperatures in Figure 1 and Figure 2 (colored dark blue) for a certain wavelength value, which I will define below.

#### 2.3 Finding the absorption coefficient for the $H^-$ ion

The equation for the bound-free absorption coefficient:

$$\alpha_{bf}(\lambda,\Theta) = 10^{-26} \times P_e \times 0.4158 \times \Theta^{5/2} \times e^{1.726\Theta} \left(1 - e^{-h\nu/kT}\right) k^*$$
 (11)

Where  $k^*$  is defined as:

$$k^* = 0.00680133 + 0.178708\Lambda + 0.164790\Lambda^2 - 0.024842\Lambda^3 + 5.95244 \times 10^{-4}\Lambda^4$$
(12)

Here,  $\Lambda$  is the wavelength in angstroms. The equation for the free-free absorption coefficient is:

$$\alpha_{ff}(\lambda,\Theta) = 10^{-26} P_e \left[ 0.0053666 - 0.011493 \,\Theta + 0.027029 \,\Theta^2 - (3.2062 - 11.924 \,\Theta + 5.939 \,\Theta^2) \left( \frac{\lambda}{10^6} \right) - (0.40192 - 7.0355 \,\Theta + 0.34592 \,\Theta^2) \left( \frac{\lambda^2}{10^9} \right) \right]$$
(13)

The total absorption coefficient for the  $H^-$  ion is then defined as:

$$\alpha_{\lambda,H^{-}} = \alpha_{bf} + \alpha_{ff} \tag{14}$$

To get the mass absorption coefficient per gram, multiply the absorption coefficient per  $H^-$  ion by the following multiplier:

$$k_{\lambda,H^{-}} = \alpha_{\lambda,H^{-}} \frac{1 - X}{(1 + 4B)m_{h}} \tag{15}$$

Where X is the fraction of H ionized calculated above (eqn. 1). The log of this value  $(\kappa_{\lambda,H^-})$  is plotted against a range of temperatures in Figure 1 and Figure 2 (colored green) for a certain wavelength value, which I will define below.

## 2.4 Finding the Scattering Coefficients

#### 2.4.1 Rayleigh Scattering

The cross section of hydrogen per neutral hydrogen atoms in the ground state can be calculated with the following equation:

$$\sigma_r = 5.799 \times 10^{-13} / \Lambda^4 + 1.422 \times 10^{-6} / \Lambda^6 + 2.784 / \Lambda^8$$
(16)

Here,  $\Lambda$  is in angstroms. To get this in terms of mass absorption coefficient per gram, multiply  $\sigma_r$  by the multiplier in equations 10 and 15. This gives the mass absorption coefficient per gram for Rayleigh scattering:

$$\sigma_R = \sigma_r \frac{1 - X}{(1 + 4B)m_h} \tag{17}$$

#### 2.4.2 Thomson Scattering

The equation for Thomson scattering is as follows:

$$\sigma_T = \sigma_t \frac{(X + Y/A)}{(1 + 4B)m_H} \tag{18}$$

#### 2.4.3 Total Scattering

The total scattering is defined as:

$$\sigma_{total} = \sigma_R + \sigma_T \tag{19}$$

The log of this value  $(log_{10}(\sigma_{total}))$  is then plotted against a range of temperatures in Figure 1 and Figure 2 (colored red) for a certain wavelength value, which I will define below.

## 3 Data and Results

After calculating the values above in the order presented for a single wavelength,  $\kappa_{\lambda,H}$ ,  $\kappa_{\lambda,H^-}$ ,  $log_{10}(\sigma_{total})$ , as well as the total kappa value ( $\kappa_{total} = \kappa_{\lambda,H} + \kappa_{\lambda,H^-}$ ), they are plotted against a range of temperatures for each star.

I used a wavelength of  $\lambda = 5000$  angstroms for both stars. The calculated values are plotted in Figures 1 and 2, respectively. The tables of data for both the sun-like star and Vega are located near the end of the paper, in Table 3 and Table 4 respectively. The code I wrote in order to create these tables is located in Section 5.



Figure 1: The log of the various kappa components of a sun-like star vs. temperature. This is calculated for a wavelength of  $\lambda = 5000$  angstroms. The components seen here are neutral hydrogen in mass absorption coefficient per gram (dark blue), the H- ion in mass absorption coefficient per gram (green), the neutral hydrogen and the H- ion added together (light blue), and finally the log of the total scattering (red).



Figure 2: The log of the various kappa components of Vega vs. temperature. This is calculated for a wavelength of  $\lambda=5000$  angstroms. The components seen here are neutral hydrogen in mass absorption coefficient per gram (dark blue), the H- ion in mass absorption coefficient per gram (green), the neutral hydrogen and the H- ion added together (light blue), and finally the log of the total scattering (red).

# 4 Conclusion

The plots above represent the continuous opacities of a sun-like star and Vega, an A star. The lower the  $\kappa$  value, the more "translucent" the stellar atmosphere is. Looking at Figures 1 and 2, the  $\kappa$  values for neutral hydrogen and ionized hydrogen begin to fall below zero right around 6000 K and 10000 K, respectively. This makes sense considering the effective temperature of the sun is about 5,700 K and the effective temperature of Vega is about 10,000 K. At these temperatures, the spectrum of the sun and Vega peak, indicating that the most light can be seen in these regions of the electromagnetic spectrum. One would expect that if the spectrum of a star peaks at a certain wavelength, then the absorption coefficients should be relatively low.

While my data for the sun-like star appears to be correct, compared to the actual data that Professor Larson provided, the neutral hydrogen values appear to be off by an average of 1.58  $log_{10}(\frac{\alpha}{g})$ , while the values for the hydrogen ion and sigma total are almost exact. The reason for this is unknown. It must be something to do with my code, although I have looked over it many times and cannot find the culprit.

This project has shown that I have successfully (for the most part) calculated the absorption coefficients for neutral hydrogen, ionized hydrogen, and the total scattering coefficient for both Vega and a sun-like star. The graphs I produced provide information about how opaque a star is at different temperature values in terms of the absorption coefficient per gram.

| Results of the Opacity components of a Sun-Like Star |                 |                |                |                            |
|------------------------------------------------------|-----------------|----------------|----------------|----------------------------|
| Temp [K]                                             | $log_{10}(P_e)$ | $log_{10}(H)$  | $log_{10}(H-)$ | $log_{10}(\sigma_{total})$ |
| 4852.0                                               | -0.9857         | -3.39203616384 | -2.55679820878 | -3.32099137095             |
| 4852.18                                              | -0.9482         | -3.39150709977 | -2.51936608103 | -3.32186126848             |
| 4852.2                                               | -0.9127         | -3.3914472258  | -2.48387253067 | -3.32263494872             |
| 4852.23                                              | -0.8787         | -3.39135818574 | -2.44988297504 | -3.32332400827             |
| 4852.26                                              | -0.846          | -3.39126926727 | -2.4171935398  | -3.32394316758             |
| 4852.3                                               | -0.8144         | -3.39115114006 | -2.38560805507 | -3.32450355606             |
| 4852.34                                              | -0.7837         | -3.39103309899 | -2.35492265435 | -3.32501551667             |
| 4852.38                                              | -0.7537         | -3.39091513044 | -2.32493732405 | -3.32548724517             |
| 4852.43                                              | -0.7244         | -3.39076791834 | -2.29565590678 | -3.32592233495             |
| 4852.48                                              | -0.6956         | -3.39062076249 | -2.26687454246 | -3.32632762541             |
| 4852.55                                              | -0.6673         | -3.39041504251 | -2.23860092508 | -3.32670512927             |
| 4852.62                                              | -0.6395         | -3.3902093725  | -2.21082735119 | -3.32705824053             |
| 4852.7                                               | -0.612          | -3.38997443918 | -2.18335766265 | -3.32739126842             |
| 4852.78                                              | -0.5848         | -3.38973954743 | -2.15618800724 | -3.32770635428             |
| 4852.88                                              | -0.558          | -3.38944608822 | -2.12942608157 | -3.32800336741             |
| 4853.0                                               | -0.5314         | -3.38909406314 | -2.10287187929 | -3.32828611103             |
| 4853.12                                              | -0.505          | -3.38874208053 | -2.07651770047 | -3.3285564806              |
| 4853.26                                              | -0.4788         | -3.38833153975 | -2.05037124008 | -3.32881505254             |
| 4853.42                                              | -0.4529         | -3.38786245034 | -2.02453249657 | -3.32906199821             |
| 4853.59                                              | -0.4271         | -3.38736411516 | -1.99879761688 | -3.32930055918             |
| 4853.79                                              | -0.4014         | -3.38677795293 | -1.97317429463 | -3.32953109142             |
| 4854.01                                              | -0.376          | -3.3861332764  | -1.9478586811  | -3.32975292803             |
| 4854.26                                              | -0.3506         | -3.38540080986 | -1.92255461769 | -3.32996932368             |
| 4854.54                                              | -0.3254         | -3.38458058133 | -1.89746210278 | -3.33017926993             |
| 4854.85                                              | -0.3002         | -3.38367261841 | -1.87238113073 | -3.33038518368             |
| 4855.2                                               | -0.2752         | -3.38264767953 | -1.8475155453  | -3.33058580993             |
| 4855.6                                               | -0.2503         | -3.38147654231 | -1.82276918567 | -3.33078241075             |
| 4856.04                                              | -0.2255         | -3.38018854415 | -1.79813819921 | -3.33097578841             |
| 4856.54                                              | -0.2008         | -3.37872522796 | -1.7736302684  | -3.33116607332             |
| 4857.09                                              | -0.1762         | -3.37711595467 | -1.74924153856 | -3.3313539892              |
| 4857.72                                              | -0.1516         | -3.37527308487 | -1.72488352893 | -3.33154021914             |
| 4858.42                                              | -0.1271         | -3.37322603785 | -1.70065238029 | -3.33172461158             |

| 4859.2  | -0.1027         | -3.37094576201  | -1.67655191728   | -3.33190738497 |
|---------|-----------------|-----------------|------------------|----------------|
| 4860.08 | -0.1021         | -3.36837404721  | -1.65258979972   | -3.33208853005 |
| 4861.07 | -0.0541         | -3.36548200438  | -1.62866983676   | -3.33226902576 |
| 4862.17 | -0.0298         | -3.36227002551  | -1.60479199177   | -3.33244920533 |
| 4863.41 | -0.0056         | -3.35865101403  | -1.58106773529   | -3.33262794498 |
| 4864.8  | 0.0185          | -3.3545964334   | -1.55750084459   | -3.33280528732 |
| 4866.36 | 0.0427          | -3.35004874763  | -1.53389891658   | -3.33298276665 |
| 4868.11 | 0.0668          | -3.34495066705  | -1.51046952736   | -3.33315846105 |
| 4870.07 | 0.0908          | -3.33924518789  | -1.48722022572   | -3.33333208525 |
| 4872.26 | 0.0300          | -3.33287563922  | -1.46395852899   | -3.333505115   |
| 4874.72 | 0.1143          | -3.32572765201  | -1.440799569     | -3.33367593284 |
| 4877.47 | 0.1631          | -3.31774557589  | -1.41775076985   | -3.33384414358 |
| 4880.56 | 0.1873          | -3.30878738427  | -1.39473095931   | -3.3340096431  |
| 4884.01 | 0.2115          | -3.29879894336  | -1.37184742197   | -3.33417100619 |
| 4887.88 | 0.2358          | -3.28761133281  | -1.34902261179   | -3.33432783334 |
| 4892.2  | 0.2602          | -3.27514378442  | -1.32626741513   | -3.33447934801 |
| 4897.04 | 0.2847          | -3.26120168844  | -1.30360780107   | -3.33462387658 |
| 4902.46 | 0.3094          | -3.24562157755  | -1.28096571981   | -3.33476091932 |
| 4908.51 | 0.3342          | -3.22827120216  | -1.25845909643   | -3.33488810141 |
| 4915.28 | 0.3542 $0.3593$ | -3.20890671117  | -1.23592073032   | -3.33500525677 |
| 4922.84 | 0.3846          | -3.18734560207  | -1.21347547029   | -3.33510948227 |
| 4931.28 | 0.4102          | -3.16335296089  | -1.19105528759   | -3.33519951546 |
| 4940.7  | 0.4361          | -3.13667140153  | -1.16869536852   | -3.3352727787  |
| 4951.2  | 0.4624          | -3.10705065723  | -1.14633023723   | -3.33532777581 |
| 4962.91 | 0.4892          | -3.07416454853  | -1.12390484897   | -3.3353623512  |
| 4975.95 | 0.4052          | -3.03772574537  | -1.10155942017   | -3.33537231693 |
| 4990.46 | 0.5441          | -2.99740340066  | -1.07924045672   | -3.33535525734 |
| 5006.59 | 0.5724          | -2.95285395932  | -1.05689676164   | -3.33530852898 |
| 5024.5  | 0.6014          | -2.90372402192  | -1.03447916333   | -3.33522922699 |
| 5044.37 | 0.6311          | -2.8496264263   | -1.01204385702   | -3.33511272968 |
| 5066.4  | 0.6616          | -2.79014496347  | -0.98955195505   | -3.33495490453 |
| 5090.77 | 0.6929          | -2.72494625356  | -0.967054572748  | -3.33475055525 |
| 5117.7  | 0.7251          | -2.65362212951  | -0.94451421254   | -3.33449408805 |
| 5147.43 | 0.7584          | -2.57575055179  | -0.921796825678  | -3.33417958038 |
| 5180.18 | 0.7928          | -2.49100534981  | -0.898957082831  | -3.3337975328  |
| 5216.2  | 0.8284          | -2.39902984228  | -0.875955707302  | -3.3333362497  |
| 5255.75 | 0.8655          | -2.29949569939  | -0.852551704971  | -3.33278222104 |
| 5299.09 | 0.9043          | -2.19213318184  | -0.82859837585   | -3.33211478136 |
| 5346.48 | 0.945           | -2.07673458166  | -0.803942930697  | -3.3313045084  |
| 5398.2  | 0.9881          | -1.95310973627  | -0.77813279154   | -3.3303132233  |
| 5454.51 | 1.034           | -1.82118581992  | -0.750801748744  | -3.32908524392 |
| 5515.68 | 1.0834          | -1.68093607387  | -0.721279854448  | -3.32754733889 |
| 5581.98 | 1.1369          | -1.53240511169  | -0.688989855182  | -3.32559663039 |
| 5653.66 | 1.1954          | -1.37575182612  | -0.653040858466  | -3.32310379729 |
| 5730.97 | 1.2594          | -1.21120037563  | -0.612935048473  | -3.31989021244 |
| 5814.15 | 1.3296          | -1.03905793728  | -0.567964802325  | -3.31573665937 |
| 5903.42 | 1.4063          | -0.859727920419 | -0.517810303193  | -3.31035928642 |
| 5998.98 | 1.4896          | -0.673699198556 | -0.462340494744  | -3.30340444827 |
| 6101.03 | 1.5795          | -0.481497296785 | -0.401519790348  | -3.29444413816 |
| 6209.76 | 1.6755          | -0.283696329204 | -0.335805922878  | -3.28293245596 |
| 6325.32 | 1.7771          | -0.080961161501 | -0.265642763986  | -3.26823243748 |
| 6447.86 | 1.8835          | 0.126038116812  | -0.19177288323   | -3.24956944074 |
| 6577.52 | 1.9942          | 0.336616555772  | -0.114635571595  | -3.22612867965 |
| 6714.42 | 2.1084          | 0.55006781071   | -0.0349656183878 | -3.19700341369 |
|         |                 | T.              | •                | . '            |

| 6858.68 | 2.2253 | 0.765704890034 | 0.0465004008596 | -3.16127286405 |
|---------|--------|----------------|-----------------|----------------|
| 7010.39 | 2.3444 | 0.982822631265 | 0.129330622532  | -3.11820394017 |
| 7169.66 | 2.4649 | 1.20077681327  | 0.212784072424  | -3.06713187539 |
| 7336.58 | 2.5863 | 1.41892969105  | 0.296419795482  | -3.00776956078 |
| 7511.23 | 2.7083 | 1.63666990921  | 0.379993278538  | -2.94028705187 |
| 7693.7  | 2.8302 | 1.85343766948  | 0.462849500519  | -2.86495728111 |
| 7884.09 | 2.9517 | 2.06872274707  | 0.54472345485   | -2.78253909669 |
| 8082.48 | 3.0724 | 2.28202789481  | 0.625243883336  | -2.69394369439 |
| 8288.96 | 3.1921 | 2.49290316125  | 0.704226328331  | -2.60031747765 |
| 8503.65 | 3.3105 | 2.70095762634  | 0.781366143188  | -2.50271257072 |
| 8726.63 | 3.4273 | 2.90578583677  | 0.856349951071  | -2.40214443323 |
| 8958.02 | 3.5422 | 3.10704005935  | 0.928836354646  | -2.29947852977 |
| 9197.96 | 3.6551 | 3.30440258427  | 0.998659927544  | -2.19561873231 |
| 9446.55 | 3.7657 | 3.49752454708  | 1.06543211821   | -2.09120813474 |
| 9703.94 | 3.8738 | 3.68609522698  | 1.12882311569   | -1.9868330894  |
| 9971.29 | 3.9791 | 3.87044224952  | 1.18816900878   | -1.88216709352 |

Table 3: Results from my continuous opacity model for a sun-like star. Temperature in Kelvin, the log of the electron pressure in  $dynes/cm^2$ , the log of the neutral hydrogen absorption coefficient per gram, the log of the H- ion absorption coefficient per gram, and the log of the total scattering per gram for H.

| Results of the Opacity components of Vega |                 |                  |                |                            |  |
|-------------------------------------------|-----------------|------------------|----------------|----------------------------|--|
| Temp [K]                                  | $log_{10}(P_e)$ | $log_{10}(H)$    | $log_{10}(H-)$ | $log_{10}(\sigma_{total})$ |  |
| 6176.7                                    | -1.606775884    | -1.0912273429    | -3.73144650306 | -1.15337289374             |  |
| 6203.1                                    | -1.478992748    | -1.02625210672   | -3.59347717625 | -1.21141801056             |  |
| 6223.7                                    | -1.345438445    | -0.971023890757  | -3.44713730844 | -1.28574217396             |  |
| 6253.7                                    | -1.207048292    | -0.904421044865  | -3.30347477321 | -1.35197116782             |  |
| 6289.0                                    | -1.066057397    | -0.83196276254   | -3.16147319689 | -1.41404660798             |  |
| 6331.3                                    | -0.924818145    | -0.751022340873  | -3.02390400069 | -1.46680434848             |  |
| 6379.5                                    | -0.785156152    | -0.663179382792  | -2.89150111305 | -1.51022798148             |  |
| 6433.3                                    | -0.648590248    | -0.568966051212  | -2.76526169494 | -1.54344515789             |  |
| 6491.4                                    | -0.515985037    | -0.470450812558  | -2.64517368872 | -1.56789255723             |  |
| 6552.8                                    | -0.387534036    | -0.369225658571  | -2.53078891251 | -1.58513540752             |  |
| 6616.0                                    | -0.263603498    | -0.267588375656  | -2.42175455721 | -1.59732436957             |  |
| 6679.9                                    | -0.143815073    | -0.167099613168  | -2.31715795431 | -1.60654151921             |  |
| 6744.1                                    | -0.027889772    | -0.0682733220266 | -2.21652002945 | -1.61362933683             |  |
| 6807.8                                    | 0.084576278     | 0.0278797549995  | -2.11909346097 | -1.62009581111             |  |
| 6870.5                                    | 0.19368103      | 0.120792307649   | -2.02460009619 | -1.62666437147             |  |
| 6931.7                                    | 0.300160537     | 0.20998768759    | -1.9320858621  | -1.63459188846             |  |
| 6991.2                                    | 0.404149249     | 0.295357772832   | -1.84136967722 | -1.64413741785             |  |
| 7049.0                                    | 0.50609896      | 0.377076967124   | -1.75200383095 | -1.65556381799             |  |
| 7105.8                                    | 0.606058749     | 0.456152296928   | -1.66421494181 | -1.66782420868             |  |
| 7162.0                                    | 0.704150517     | 0.533171093401   | -1.57802879014 | -1.68040109261             |  |
| 7218.1                                    | 0.800373355     | 0.608803470302   | -1.49362364036 | -1.69256482851             |  |
| 7274.4                                    | 0.894758994     | 0.683447173485   | -1.41106424805 | -1.70391544215             |  |
| 7331.5                                    | 0.98708503      | 0.75781794555    | -1.33077422377 | -1.71345490363             |  |
| 7389.8                                    | 1.077367905     | 0.832373475938   | -1.25284686101 | -1.72070161793             |  |
| 7448.9                                    | 1.165541077     | 0.906616129391   | -1.17721311741 | -1.72613624537             |  |
| 7508.1                                    | 1.25163822      | 0.979741500675   | -1.10361638616 | -1.73067448146             |  |

| 7566.9  | 1.335858911 | 1.05122643452 | -1.03169660862    | -1.73508871735  |
|---------|-------------|---------------|-------------------|-----------------|
| 7625.8  | 1.418632687 | 1.12169381956 | -0.961152172381   | -1.7391214469   |
| 7683.5  | 1.499824496 | 1.18974587662 | -0.891751741894   | -1.7441764878   |
| 7741.6  | 1.57989787  | 1.25720044596 | -0.82347812428    | -1.7487176072   |
| 7798.8  | 1.658964843 | 1.32269797581 | -0.755844573815   | -1.7543499007   |
| 7855.6  | 1.737113094 | 1.38682339909 | -0.688911241432   | -1.76051985128  |
| 7911.9  | 1.814513952 | 1.44952028106 | -0.622477361757   | -1.76745980736  |
| 7967.6  | 1.891258617 | 1.51073080201 | -0.556428886145   | -1.7753247702   |
| 8022.6  | 1.967501175 | 1.57040370327 | -0.490587085288   | -1.78432371209  |
| 8077.7  | 2.043362278 | 1.62937702852 | -0.425046336025   | -1.7936534599   |
| 8132.7  | 2.118925753 | 1.68747060918 | -0.359669483674   | -1.80359454335  |
| 8188.6  | 2.193958978 | 1.74565284487 | -0.294960796732   | -1.81285387766  |
| 8244.4  | 2.268811904 | 1.8029722162  | -0.230294902304   | -1.82282081944  |
| 8301.9  | 2.343408594 | 1.86113308828 | -0.16620119174    | -1.8315445051   |
| 8362.6  | 2.417471693 | 1.92146426288 | -0.103321953291   | -1.83728983512  |
| 8427.8  | 2.490800952 | 1.9850345363  | -0.042152975799   | -1.83867890684  |
| 8501.4  | 2.562887381 | 2.05514167923 | 0.0158741189438   | -1.8315600926   |
| 8583.0  | 2.633367445 | 2.13102253214 | 0.0705162207241   | -1.81637690433  |
| 8674.6  | 2.70182693  | 2.21394278998 | 0.120881025399    | -1.79125189095  |
| 8780.0  | 2.767971721 | 2.3064222513  | 0.165737082271    | -1.75297062573  |
| 8900.5  | 2.831357785 | 2.40845211933 | 0.204204933074    | -1.70091130819  |
| 9038.7  | 2.891760401 | 2.52068091114 | 0.235176211394    | -1.63386317903  |
| 9198.7  | 2.948852906 | 2.64417934077 | 0.256778935613    | -1.54993193302  |
| 9385.5  | 3.002597981 | 2.77947624837 | 0.266671044123    | -1.44796459708  |
| 9605.1  | 3.053078443 | 2.92588929058 | 0.261356227927    | -1.32807625224  |
| 9858.3  | 3.101059355 | 3.07733966532 | 0.238169667073    | -1.19710007056  |
| 10153.7 | 3.147367108 | 3.22959195944 | 0.190210519645    | -1.05936452082  |
| 10494.3 | 3.193402903 | 3.37262773016 | 0.111231287189    | -0.926267116778 |
| 10887.7 | 3.241297387 | 3.49764746512 | -0.00586589465361 | -0.808333893611 |
| 11340.3 | 3.293362555 | 3.59776984236 | -0.16399524357    | -0.714585590576 |
| 11862.5 | 3.353531559 | 3.67363713606 | -0.358447324943   | -0.647845618011 |
| 12456.6 | 3.424718337 | 3.7313253413  | -0.574056405439   | -0.605372785521 |
| 13138.2 | 3.509605705 | 3.780048697   | -0.799824232395   | -0.579894668995 |
| 13903.0 | 3.609807769 | 3.82838041938 | -1.01539486164    | -0.565607327573 |
| 14763.7 | 3.723537762 | 3.87916347029 | -1.21857482855    | -0.557559910837 |
| 15701.6 | 3.847634344 | 3.93408897283 | -1.3974302657     | -0.553133257419 |
| 16731.4 | 3.976991545 | 3.98927618051 | -1.56269768187    | -0.550556484798 |
| 17847.4 | 4.107888025 | 4.04282700526 | -1.71470168577    | -0.549032161805 |
| 19064.7 | 4.236033147 | 4.09044982035 | -1.86372396355    | -0.548083633648 |
| 20384.7 | 4.361916619 | 4.13337330964 | -2.00564394301    | -0.54749212351  |
| 21829.7 | 4.490520309 | 4.17597059247 | -2.13344105171    | -0.547120587245 |
| 23387.8 | 4.619302076 | 4.21713625238 | -2.24581489587    | -0.546884508681 |
| 25080.2 | 4.744292983 | 4.25236607329 | -2.3530814893     | -0.546725194672 |
| 26903.2 | 4.866228247 | 4.28321740145 | -2.45047976461    | -0.546617931695 |
| 28880.3 | 4.985067033 | 4.30909213655 | -2.54012938691    | -0.546543372764 |
| 31003.8 | 5.100370545 | 4.33049870019 | -2.61956211733    | -0.546491378275 |
|         |             |               |                   |                 |

Table 4: Results from my continuous opacity model for Vega. Temperature in Kelvin, the log of the electron pressure in  $dynes/cm^2$ , the log of the neutral hydrogen absorption coefficient per gram, the log of the H- ion absorption coefficient per gram, and the log of the total scattering per gram for H.

# 5 Python Opacity Model

```
1 import numpy as np
 2 import matplotlib.pyplot as plt
 3 import astropy.units as u
 4 from tabulate import tabulate
 6 #Definining a function to make units easier:
 7 def SI(1, units):
             SI_{-}I = (l * units).decompose()
             return SI_I. value
10
##DEFINING CONSTANTS
12 #Constants:
_{13} T_test = 5730.97 #Kelvin
P_{test} = 1.2594 \ \#log(P)
T_test_vega = 6744.1
P_{test\_vega} = -0.027889772
_{17} B = 0.1 #ratio of the #He/#H
18 A = 10**4 \# ratio of \#H/\# metal
sigma_t = 6.655*10**(-25) \#cm^2 - thompson
_{20} m.h = 1.6726219*10**(-24) #grams — mass of ionized hydrogen, eg. a proton
_{\rm 21} c = SI(29979245800, u.cm/u.s) #cm / s — speed of light
h = 6.62606896*10**(-27) \#ergs * s -- Planck's constant
23 k = 1.38065*10**(-16)~\#ergs / Kelvin — Boltzmann constant
<sup>24</sup> Chi = 2.195*10**(-11) #ergs — ionization energy of hydrogen
26 #Constants for the sun-like star:
_{27} L = SI(5000, u.AA) \#angstroms
l = ((L*u.m).to(u.micron)).value #microns
v = c/(L) \# s^-1 — frequency associated with L
31 #Constants for Vega:
32 L_vega = SI(7000, u.AA) #angstroms — I will consider this wavelength for Vega
l_vega = ((L_vega*u.m).to(u.micron)).value
v_vega = c/(L_vega)
36 ##READING INPUT DATA
37 #input data - sun-like star:
{\tt check\_ans = np.genfromtxt('opacities.dat', \ dtype='f8', \ names = ['temp', \ 'log\_P', \ 'logH', \ 'l
            logHminus', 'logsigma'])
setemp_pelog_dat = np.genfromtxt('temp_pelog.dat', dtype='f8', names = ['temp','log_P'])
40 temp = check_ans['temp']
41 pe_log = check_ans['log_P']
43 #ANSWERS for sun-like star opacities
44 check_H = check_ans['logH']
45 check_Hminus = check_ans['logHminus']
46 check_sigma = check_ans['logsigma']
47
48 #input data - vega:
49 opacities_vega = np.genfromtxt('vega-atmos-grid.dat', dtype='f8', names = ['temp', 'P'])
50 temp_vega = opacities_vega['temp']
p_vega = opacities_vega['P']
52
53 ##BEGINNING CALCULATIONS
54 #Defining theta:
55 def Theta(T):
             theta = 5040./T
56
             return theta
57
59 #Defining the Saha equation for hydrogen. Returns the ratio of n/n:
    def Saha_H(T, P):
            Saha\_H\_ans = (5.0/2.0)*np.log10(T) - 13.595*(Theta(T)) - P - 0.4772
61
             return 10**Saha_H_ans
62
64 #Defining the Saha equation for metals. Returns the ratio of n/n:
```

```
65 def Saha-metals (T, P):
                Saha_metals_ans = (5.0/2.0)*np.log10(T) - 7.9*(Theta(T)) - P - 0.0971
 66
                return 10**Saha_metals_ans
 67
 69 #Defining X = fraction of H ionized:
      def X(H_ratio):
 70
               X_{ans} = H_{ratio} / (1 + H_{ratio})
 71
                return X_ans
 72
 74 #Defining Y = faction of metal ionized:
 75
      def Y(m_ratio):
                Y_{ans} = m_{ratio} / (1 + m_{ratio})
 76
                return Y_ans
 77
 79 #Sun - H/m_ratio for X and Y:
      H_ratio = Saha_H(temp, pe_log)
      m_ratio = Saha_metals(temp, pe_log)
 81
 82
 83 #Vega - H/m_ratio for X and Y:
 84 H_ratio_vega = Saha_H(temp_vega, p_vega)
      m_ratio_vega = Saha_metals(temp_vega, p_vega)
 87 #Defining Gaunt free-free factor:
      def Gaunt_ff(T, 1):
                Gaunt_{fl_ans} = 1.084 + 0.0188/Theta(T) + (0.00161 + (0.02661/Theta(T)))*l - (0.0192 - 1.008) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161 + 0.0161) + (0.0161
 89
                (0.03889/\text{Theta}(T)) + (0.02833/((\text{Theta}(T))**2)) - (0.007828/((\text{Theta}(T))**3)) +
                (0.0007304/((Theta(T))**4)))*(1**2)
                return Gaunt_ff_ans
 90
 91
 92 #Defining coefficients for a, b, c for the Gaunt bound-free factor:
  \overset{''}{m} = \begin{bmatrix} 1 & , & 2 & , & 3 & , & 4 & , & 5 & , & 6 & , & 7 & , & 8 & , & 9 & , & 10 \end{bmatrix} 
 \overset{''}{a_{-}m} = \begin{bmatrix} 0.9916 & , & 1.105 & , & 1.101 & , & 0.9736 & , & 1.03 & , & 1.097 & , & 1.098 & , & 1. & , & 1. \end{bmatrix} 
 b_{-m} = \begin{bmatrix} 0.09068, & -0.7922, & -0.329, & 0., & 0., & 0., & 0., & 0., & 0. \end{bmatrix}
 96 c_m = \begin{bmatrix} -0.2524, & 0.4536, & 0.1152, & 0., & 0., & 0., & 0., & 0. \end{bmatrix}
 97
      #Defining Gaunt bound-free factor:
 98
      def Gaunt_bf(l,m):
 99
                Gaunt_bf_ans = a_m[m-1] + b_m[m-1]*1 + c_m[m-1]*(1**2)
100
                return Gaunt_bf_ans
      #Defining u, used in the absorption coefficient equation:
103
       def u(T, m):
104
                u_ans = (Chi/(k*T))/np.power(m, 2)
                return u_ans
106
107
      #Finding m_o and m_star - for the sun-like star and Vega.
108
      test_m = (h * v) / (k*T_test)
109
       for i in m:
110
                if test_m <= u(T_test,i):
                         continue
112
                if test_m >= u(T_test, i):
                        m\_0 \, = \, i
114
                        break
m_{star} = m[9]
#Defining a new array of m's
new_m = np.arange(m_0, m_{star} + 1, 1)
120
#Doing the summation over new m's for the sun-like star
      summ = []
122
      for i in new_m:
123
                factor = Gaunt_bf(1, i) * (np.exp(u(temp, i))/(i**3))
               summ.append(factor)
125
126 summ = np.array(summ)
_{127} \text{ summ} = \text{np.sum}(\text{summ})
128
#Doing the summation over new m's for Vega
summ_vega = []
```

```
for i in new_m:
131
                 factor\_vega = Gaunt\_bf(l, i) * (np.exp(u(temp\_vega, i))/(i**3))
                 summ_vega.append(factor_vega)
133
       summ_vega = np.array(summ_vega)
134
       summ_vega = np.sum(summ_vega)
135
136
       #Atomic hydrogen absorption coefficient per neutral hydrogren: alpha_lambda
137
       def neutral_H(summ,T,l,v,m_star):
138
                 one = ((2.0898*10**(-14.))*(1**3)*np.exp(-1.*u(T,1)))*(1./2.)
                 two \, = \, 1. \, - \, np.\exp(-(h{*}v)/(k{*}T))
140
                 three = (1./(2*u(T,1))) * (np.exp(u(T,m_star))) - 1. + Gaunt_ff(T,l)
141
                 answer = one * two * (summ + three)
142
                 return answer
143
144
       #mass absorption coefficient per gram - for the sun-like star
145
        multiplier = (1.-X(H_ratio))/((1.+(4.*B))*m_h)
146
       kappa_atomic = np.log10(neutral_H(summ, temp, l, v, m_star)*multiplier)
147
148
       #mass absorption coefficient per gram - for Vega
       multiplier\_vega = (1.-X(H\_ratio\_vega))/((1.+(4.*B))*m_h)
       kappa_atomic_vega = np.log10(neutral_H(summ_vega, temp_vega, l, v, m_star)*multiplier_vega)
#Defining k^* for a wavelength of 5000 Angstroms
       k_{\text{star}} = 0.00680133 + 0.178708*(5.) + 0.164790*(5.**2) - 0.024842*(5.**3) + (5.**4)
                 *5.95244*10**(-4)
       #Bound-free absorption coefficient
156
       def absorp_bf(P,T,v,k_star):
                 absorp_bf_ans = (10.**(-26)) * (10.**P) * 0.4158*((Theta(T))**(5./2.)) * np.exp(1.726*(Theta(T))) * (1.726*(Theta(T))) * (1.726*(Thet
158
                 Theta(T))) * (1-np.\exp((-h*v)/(k*T))) * k_star
                 return absorp_bf_ans
#Free-free absorption coefficient
       def absorp_ff(P,T,1):
                 absorp\_ff\_ans = (10.**(-26)) * (10.**P) * (0.0053666 - 0.011493*(Theta(T)) + 0.027029*((-2.01493*(Theta(T)) + 0.00190*((-2.01493*(Theta(T)) + 0.00190*((-2.01493*(Th
                 Theta(T)) **(2)) - (3.2062 - 11.924*(Theta(T)) + 5.939*((Theta(T)) **(2)))*(1/(10**6)) -
                 (0.40192 - 7.0355*(Theta(T)) + 0.34592*((Theta(T))**(2)))*((1**2)/(10**9)))
                 return absorp_ff_ans
#ionized hydrogen absorption coefficient for the sun-like star
       absorp_H_neg = absorp_bf(pe_log, temp, v, k_star) + absorp_ff(pe_log, temp, l)
       kappa_ion = np.log10(absorp_H_neg*multiplier)
       kappa_total = kappa_atomic + kappa_ion
168
4100 #ionized hydrogen absorption coefficient for Vega
       absorp_H_neg_vega = absorp_bf(p_vega, temp_vega, v, k_star) + absorp_ff(p_vega, temp_vega, l
       kappa_ion_vega = np.log10(absorp_H_neg_vega*multiplier_vega)
172
       kappa_total_vega = kappa_atomic_vega + kappa_ion_vega
174
       #Calculating rayleigh scattering cross section, l is in angstroms
175
176
       def cross_section_r(l):
                 sigma_rans = (5.799*10**(-13))/(1**4) + 1.422*10**(-6)/(1**6) + 2.784/(1**8)
177
178
                 return sigma_r_ans
       #Rayleigh scattering for the sun-like star
       sigma_R_ang = cross_section_r (5000)*multiplier
181
182
183
       #Rayleigh scattering for Vega
       sigma_R_ang_vega = cross_section_r (5000) * multiplier_vega
184
       #Calculating Thompson scattering for the sun-like star
186
       sigma_T = sigma_t * ((X(H_ratio) + Y(m_ratio)/A)/((1.+4.*B)*m_h))
187
188
       #Calculating total scattering for the sun-like star
189
       sigma_total = sigma_R_ang + sigma_T
191
492 #Calculating Thompson scattering for Vega
_{193} sigma_T_vega = sigma_t * ((X(H_ratio_vega) + Y(m_ratio_vega)/A)/((1.+4.*B)*m_h))
```

```
194
45 #Calculating total scattering for Vega
sigma_total_vega = sigma_R_ang_vega + sigma_T_vega
198 #print 'Official ANSWERS'
199 #print tabulate(check_ans, headers = ['Temp [K]', 'Log10(P-e)', 'Log10(H)', 'Log10(H-)', '
              Total Scatter '])
200 #print 'My values'
#print tabulate (my_ans, headers = ['Temp [K]', 'Log10(P_e)', 'Log10(H)', 'Log10(H-)', 'Total
                Scatter '1)
202
203 #Writing my values to files to read in and for Sharelatex
f = open('my_answers.dat', 'w')
f_vega = open('my_answers_vega.dat', 'w')
206 write_kappa_atomic = kappa_atomic
      write_kappa_ion = kappa_ion
write_sigma_total = np.log10(sigma_total)
209
210 write_kappa_atomic_vega = kappa_atomic_vega
write_kappa_ion_vega = kappa_ion_vega
      write_sigma_total_vega = np.log10(sigma_total_vega)
213
      for i in range(len(check_ans['temp'])):
214
              f. write(str(check\_ans['temp'][i]) + ' ' + str(check\_ans['log\_P'][i]) + ' ' + str(write\_kappa\_atomic[i]) + ' ' + str(write\_kappa\_ion[i]) + ' ' + str(write\_sigma\_total[i])
215
               + '\n')
216 f.close()
217
for i in range(len(opacities_vega['temp'])):
              f_vega.write(str(opacities_vega['temp'][i]) + ' ' + str(opacities_vega['P'][i]) + ' ' + str(write_kappa_atomic_vega[i]) + ' ' + str(write_kappa_ion_vega[i]) + ' ' + str(
219
              write_sigma_total_vega[i]) + ',' \n')
      f_vega.close()
221
222
      #For Sharelatex
223
latex = open('latex.dat', 'w')
      for i in range(len(check_ans['temp'])):
              227
      latex.close()
228
latex_vega = open('latex_vega.dat', 'w')
for i in range(len(opacities_vega['temp'])):
    latex_vega.write(str(opacities_vega['temp'][i]) + '& ' + str(opacities_vega['P'][i]) +
    '& ' + str(write_kappa_atomic_vega[i]) + '& ' + str(write_kappa_ion_vega[i]) + ' & ' + write_kappa_ion_vega[i]) + ' & ' + write_ka
                str(write_sigma_total_vega[i]) + '\\\ \n')
232 latex_vega.close()
234 #Reading my answers in to print
my_ans = np.genfromtxt('my_answers.dat', dtype='f8', names = ['temp', 'log_P', 'logH', '
              logHminus', 'logsigma'])
236
237 #Plotting opacity values for a sun-like star
plt.plot(temp, kappa_atomic, color = 'blue', label = 'Neutral hydrogen')
plt.plot(temp, kappa_ion, color = 'green', label = 'H- Ions')
plt.plot(temp, kappa_total, color = 'cyan', label = 'Total')
plt.plot(temp, np.log10(sigma_total), color = 'red', label = 'Scattering')
plt.xlim(np.min(temp), np.max(temp))
243 plt.ylim(-6, 2)
244 plt.legend(loc=4, prop={'size':10})
plt.xlabel('Temperature [K]')
plt.ylabel(r'\\kappa \,\, [log_{10}(\frac{\alpha}{g})]$')
plt.title('Opacity Components for a Sun-like Star
plt.savefig('Sun_opacity.png')
249 plt.show()
250
```

```
251 #Plotting opacity values for Vega
plt.plot(temp_vega, kappa_atomic_vega, color = 'blue', label = 'Neutral hydrogen')
plt.plot(temp_vega, kappa_ion_vega, color = 'green', label = 'H- Ions')
plt.plot(temp_vega, kappa_total_vega, color = 'cyan', label = 'Total')
plt.plot(temp_vega, np.log10(sigma_total_vega), color = 'red', label = 'Scattering')
plt.xlim(np.min(temp_vega), np.max(temp_vega))
257 plt.ylim(-4, 6)
258 plt.legend(loc=4, prop={'size':10})
plt.xlabel('Temperature [K]')
plt.ylabel(r'\\kappa \,\, [log_{10}(\frac{\langle \alpha\beta \}\{g\})}$')
plt.title('Opacity Components for Vega')
plt.savefig('Vega_opacity.png')
263
264 #Plotting official results
plt.plot(temp, check_H, color = 'blue', label = 'Neutral hydrogen')
plt.plot(temp, check_Hminus, color = 'green', label = 'H- Ions')
plt.plot(temp, check_H + check_Hminus, color = 'cyan', label = 'Total')
plt.plot(temp, check_sigma, color = 'red', label = 'Scattering')
269 plt.xlim(np.min(temp), 10000)
270 plt. ylim (-6, 6)
plt.legend(loc=4, prop={'size':10})
plt.xlabel('Temp (K)')
plt.ylabel(r'$Kappa $')
plt.title('Opacity Components for a Sun-like Star -- ANSWER')
275 delta_H = kappa_atomic - check_H
276 delta_Hion = kappa_ion - check_Hminus
277 delta_sigma = np.log10(sigma_total) - check_sigma
279 #Check average change in H values, they are off by about this much
print 'Your neutral H values are off by ', np.sum(delta_H)/len(delta_H)
print 'Your H- values are off by ', np.sum(delta_Hion)/len(delta_Hion)
print 'Your sigma values are off by ', np.sum(delta_sigma)/len(delta_sigma)
```

# References

[1] Dimitri Mihalas. The Calculation of Model Stellar Atmospheres. Methods in Computational Physics, Vol. 7, 1967.