${\sf 3aдa4a\ 1}$ Найти все целочисленные решения уравнения $ax^k-by^k=1$, или доказать, что их нет.

N	а	b	k	N	a	b	k	N	а	b	k
1	3	14	2	9	10	11	2	17	13	10	2
2	13	5	1	10	19	14	1	18	24	13	1
3	13	5	2	11	11	14	2	19	13	14	2
4	16	9	1	12	19	15	1	20	24	17	1
5	5	17	2	13	10	7	2	21	13	16	2
6	17	12	1	14	23	17	1	22	24	19	1
7	6	17	2	15	13	7	2	23	19	7	2
8	17	14	1	16	23	19	1	24	27	16	1
								25	2	13	2

 $\mbox{3адача }2$ Найти в Z_n все решения уравнения $ax^k+b=c$, или доказать, что их нет.

N	a	b	c	n	k	N	a	b	c	n	k
1	9	15	4	19	1	13	8	13	3	17	1
2	1	9	3	19	2	14	1	8	6	16	2
3	8	5	2	19	1	15	9	10	7	16	1
4	1	8	6	19	2	16	1	14	3	16	2
5	5	16	2	18	1	17	13	8	7	16	1
6	1	11	3	18	2	18	1	10	5	15	2
7	13	16	8	18	1	19	11	14	2	15	1
8	1	12	1	18	2	20	1	13	4	15	2
9	6	9	5	17	1	21	3	10	4	14	1
10	1	10	8	17	2	22	1	9	6	14	2
11	7	9	4	17	1	23	9	6	2	14	1
12	1	7	3	17	2	24	1	8	2	14	2
						25	8	7	3	13	1

Задача 3

Доказать, что данное подмножество $H\subset \mathbb{Z}_n$ является группой по умножению. Найти ее порядок. Представить ее в виде произведения циклических групп.

N	Н	n	N	Н	n	N	Н	n
1	A	11	9	C	20	17	A	26
2	B	12	10	A	12	18	A	16
3	B	17	11	B	13	19	A	22
4	A	7	12	B	8	20	A	18
5	C	24	13	C	30	21	A	20
6	A	14	14	C	16	22	A	8
7	A	13	15	A	24	23	A	30
8	A	15	16	A	10	24	A	9
			26	B	16	25	B	15

Подмножество Н:

A: Все обратимые элементы в кольце \mathbb{Z}_n

В: Все решения уравнения $x^4 = 1$ в кольце \mathbb{Z}_n

C: Все решения уравнения $x^2 = 1$ в кольце \mathbb{Z}_n

 ${\sf 3aдa4a}\ 4$ Перечислить возможно большее число неизоморфных групп порядка N_1 и N_2 . Доказать, что перечисленные группы попарно не изоморфны.

N	N_1	N_2	N	N_1	N_2	N	N_1	N_2
1	5	28	9	13	20	17	21	16
2	6	26	10	14	19	18	22	15
3	7	27	11	15	18	19	23	10
4	8	23	12	16	17	20	24	7
5	9	22	13	17	12	21	25	14
6	10	25	14	18	11	22	26	9
7	11	24	15	19	8	23	27	4
8	12	21	16	20	5	24	28	13
						25	29	6

адача 5 Доказать, что отображение φ абелевой группы $G=Z_a\times Z_b$ в себя, задаваемое формулой $\varphi(x)=cx$, является гомоморфизмом. Найти его ядро и образ. Найти факторгруппу $G/Ker \varphi$.

N	а	b	c	N	а	b	c	N	а	b	c
1	4	6	3	9	3	15	5	17	4	14	2
2	5	35	7	10	25	10	5	18	4	10	2
3	9	6	2	11	4	14	14	19	4	14	4
4	2	14	7	12	9	15	15	20	25	10	10
5	2	10	5	13	3	6	2	21	9	15	5
6	25	10	2	14	9	6	3	22	25	10	25
7	4	10	5	15	4	6	2	23	3	15	3
8	4	14	7	16	2	6	3	24	5	35	5
								25	9	15	3

Задача 6

- 1) Пусть $G\subseteq S_n$ подгруппа, порожденная перестановками α и β . Найти |G|. Коммутативна ли она? Какой из известных вам групп она изоморфна?
- 2) Является ли подгруппа группы G, порожденная элементом α , нормальной подгруппой? Если да, найти фактор-группу по ней.
- 3) То же задание для подгруппы, порожденной элементом β .

N	n	α	β	N	n	α	β
1	8	(1326)(4578)	(1427)(3865)	13	6	(132)	(645)
2	7	(134)	(567)	14	5	(25)(34)	(12)(35)
3	5	(12345)	(25)(34)	15	6	(162)(345)	(62)(34)
4	9	(12345)	(67)	16	6	(123456)	(14)(25)(36)
5	5	(12345)	(14253)	17	8	(1234)(57)	(68)
6	6	(1234)(56)	(13)	18	7	(64125)	(65)(24)(37)
7	8	(123)(456)	(78)	19	8	(12345678)	(14)(58)(23)(67)
8	5	(12345)	(13524)	20	9	(12345)	(67)(89)
9	6	(1243)	(14)(56)	21	5	(453)	(45)(12)
10	5	(15)	(53)(24)	22	6	(1234)	(13)(24)(65)
11	9	(4753)(2196)	(4259)(7631)	23	6	(12356)	(32)(15)
12	7	(1234)(567)	(1432)	24	8	(14)(7865)	(5687)
26	6	(123)(56)	(23)(56)	25	9	(123)(456)	(798)

Задача 7 Пусть G множество матриц $A \in GL(n,\mathbb{Z}_p)$, удовлетворяющих указанным условиям. Доказать, что G является группой относительно операции умножения матриц. Найти |G|. Коммутативна ли она? Какой из известных Вам групп она изоморфна?

N	n	р	Условие на матрицы А
11	11	۲	
1	2	3	Верхнетреугольные матрицы $A\in SL(2,\mathbb{Z}_3)$, т.е. $=\left(egin{array}{cc} a & b \ 0 & c \end{array} ight)$, удовлетворяющие
			условию det(A)=1.
2	2	5	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_5)$ вида $= \begin{pmatrix} \pm 1 & a \\ 0 & 1 \end{pmatrix}$.
3	2	3	Матрицы $A \in GL(2,\mathbb{Z}_3)$ вида $= \left(egin{array}{cc} a & b \ -b & a \end{array} ight).$
4	2	3	$O(2,\mathbb{Z}_3)$ — ортогональные матрицы $A\in GL(2,\mathbb{Z}_3)$, т.е. $^t=$.
5	2	3	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_3)$, т.е. $= \left(egin{array}{cc} a & b \ 0 & c \end{array} ight)$.
6	2	7	Матрицы $A \in GL(2,\mathbb{Z}_7)$ вида $= \left(egin{array}{cc} a & 0 \ 0 & a \end{array} ight)$ или $= \left(egin{array}{cc} 0 & b \ b & 0 \end{array} ight).$
7	3	2	Верхнетреугольные матрицы $A\in GL(3,\mathbb{Z}_2)$, т.е. $=\begin{pmatrix}a&b&c\\0&d&e\\0&0&f\end{pmatrix}$.
8	2	5	Матрицы $A\in SL(2,\mathbb{Z}_5)$ вида $=\left(egin{array}{cc} a & 0 \ 0 & b \end{array} ight)$ или $=\left(egin{array}{cc} 0 & c \ d & 0 \end{array} ight)$, т.е. $ab=1$ и $cd=-1$.
9	3	3	Верхнетреугольные матрицы $A\in GL(3,\mathbb{Z}_3)$ вида $= \left(egin{array}{ccc} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{array}\right).$
10	2	5	Матрицы $A\in GL(2,\mathbb{Z}_5)$ вида $=\begin{pmatrix}a&b\\-b&a\end{pmatrix}$, удовлетворяющие условию $\det(A)=\pm 1.$
11	2	7	Матрицы $A\in SL(2,\mathbb{Z}_7)$ вида $=igg(egin{array}{ccc} a&b\\b&a \end{array}igg)$, т.е удовлетворяющие условию $\det(\mathbf{A})$ =1.
12	3	2	$O(3,\mathbb{Z}_2)$ — ортогональные матрицы $A\in GL(3,\mathbb{Z}_2)$, т.е. $^t=$.
13	2	5	$O(2,\mathbb{Z}_5)$ — ортогональные матрицы $A\in GL(2,\mathbb{Z}_5)$, т.е. $^t=$.
14	2	5	Матрицы $A \in GL(2,\mathbb{Z}_5)$ вида $= \left(egin{array}{cc} a & 0 \ 0 & a \end{array} ight)$ или $= \left(egin{array}{cc} 0 & b \ b & 0 \end{array} ight).$
15	2	11	Матрицы $A \in SL(2,\mathbb{Z}_{11})$ вида $= \left(egin{array}{cc} a & b \ -b & a \end{array} ight)$, т.е удовлетворяющие условию
			$\det(A)=1.$
16	2	11	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_{11})$ вида $= \left(egin{array}{cc} \pm 1 & a \ 0 & 1 \end{array} \right).$
17	2	3	Матрицы $A\in GL(2,\mathbb{Z}_3)$ вида $=\left(egin{array}{cc} a & 0 \ 0 & b \end{array} ight)$ или $=\left(egin{array}{cc} 0 & c \ d & 0 \end{array} ight)$ т.е. $ab=1$ и $cd=1$.

18	2	7	Матрицы $A \in SL(2,\mathbb{Z}_7)$ вида $= \left(egin{array}{cc} a & b \ -b & a \end{array} ight)$, т.е удовлетворяющие условию
			$\det(A)=1.$
19	2	3	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_3)$ вида $= \left(egin{array}{cc} a & b \ 0 & 1 \end{array} ight)$.
20	2	7	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_7)$ вида $= \left(egin{array}{cc} \pm 1 & a \ 0 & 1 \end{array} ight)$
21	2	11	$egin{array}{cccccccccccccccccccccccccccccccccccc$
			$\det(A)=1.$
22	4	2	Верхнетреугольные матрицы $A \in GL(4,\mathbb{Z}_2)$ вида $= \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
23	2	7	Матрицы $A\in SL(2,\mathbb{Z}_7)$ вида $=\begin{pmatrix}a&b\\2b&a\end{pmatrix}$, т.е удовлетворяющие условию $\det(\mathbf{A})$ =1.
24	2	7	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_7)$ вида $= \left(egin{array}{cc} \pm 1 & a \ 0 & 1 \end{array} \right)$
25	2	5	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_5)$ вида $= \left(egin{array}{cc} \pm 1 & a \ 0 & 1 \end{array} ight).$
26	2	5	Матрицы $A\in SL(2,\mathbb{Z}_5)$ вида $=egin{pmatrix} a & b \ 2b & a \end{pmatrix}$, т.е удовлетворяющие условию
			$\det(A)=1.$

Задача 8

- 1) Какой цикленный тип могут иметь элементы порядка k в S_n ? Какие из них четные, а какие нечетные? Выпишите по одной подстановке каждого типа и найдите количество подстановок каждого типа.
- 2) Для одной из выписанных подстановок α найти множество подстановок β , перестеновочных с α (т.е. $\alpha\beta=\beta\alpha$). Доказать, что это группа, найти ее порядок и определить, какой из известных групп она изоморфна.

N	n	k	N	n	k	N	n	k
1	18	7	9	8	6	17	19	7
2	8	4	10	17	7	18	11	8
3	12	8	11	6	6	19	6	4
4	7	3	12	6	3	20	13	5
5	9	10	13	10	5	21	10	8
6	11	5	14	13	8	22	15	7
7	7	6	15	7	4	23	5	2
8	9	4	16	8	3	24	10	10
			26	10	12	25	9	12