Tsinghua-Berkeley Shenzhen Institute INFERENCE AND INFORMATION Fall 2017

Problem Set 5

Issued: Tuesday 28th November, 2017

Due: Monday 4th December, 2017

5.1. Assume $p_{y}(y;x)$ is a continuously differentiable function of x. Show that

$$\lim_{\delta \to 0} \frac{D\left(p_{\mathsf{y}}(\cdot; x) \parallel p_{\mathsf{y}}(\cdot; x + \delta)\right)}{\delta^2} = \frac{1}{2} J_{\mathsf{y}}(x),$$

so that for small δ we can make the approximation

$$D\left(p_{\mathsf{y}}(\cdot;x) \parallel p_{\mathsf{y}}(\cdot;x+\delta)\right) \approx \frac{\delta^2}{2} J_{\mathsf{y}}(x),$$

where $J_{y}(x)$ is the Fisher information in y about x:

$$J_{\mathsf{y}}(x) = -\mathbb{E}\left[\frac{\partial^2}{\partial x^2}\log p_{\mathsf{y}}(\mathsf{y};x)\right].$$

5.2. Suppose, for i = 1, 2

$$y_i = x + w_i$$

where x is an unknown but non-zero constant, w_1 and w_2 are statistically independent, zero-mean Gaussian random variables with

$$\operatorname{Var}(\mathsf{w}_1) = 1$$
$$\operatorname{Var}(\mathsf{w}_2) = \begin{cases} 1 & x > 0 \\ 2 & x < 0 \end{cases}.$$

(a) Calculate the Cramér-Rao bound for unbiased estimators of x based on observation of

$$\underline{\mathbf{y}} = \left[\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array} \right].$$

(b) Show that a minimum variance unbiased estimator $\hat{x}_{MVU}(\underline{y})$ does not exist.

Hint: Consider the estimators

$$\hat{x}_1(\underline{y}) = \frac{1}{2}y_1 + \frac{1}{2}y_2,$$

 $\hat{x}_2(\underline{y}) = \frac{2}{3}y_1 + \frac{1}{3}y_2.$

5.3. A random variable y is observed and used to decide between two hypotheses, H_0 and H_1 . Under each of these two hypotheses, y is as follows:

$$H_0: y = s_0 + w$$

 $H_1: y = s_1 + w$

where s_0 and s_1 are known scalars with $s_0 < s_1$, and w is a zero mean normal random variable with known variance σ^2 . Assume symmetric costs (i.e., $C_{00} = C_{11} = 0$, $C_{10} = C_{01} = 1$).

The a priori probabilities $\mathbb{P}(\mathsf{H}=H_0)=1-p$ and $\mathbb{P}(\mathsf{H}=H_1)=p$ are unknown; hence we wish to conduct a minimax test.

- (a) What is the least favorable prior and its corresponding decision rule $\hat{H}_{\mathrm{M}}(y)$?
- (b) Assuming now that the priors 1-p and p are known, what is the expected cost of the minimax decision rule $\hat{H}_{\rm M}(y)$ calculated in part (a), and how does it compare to the expected cost (Bayesian risk) of the optimum Bayes' decision rule $\hat{H}_{\rm B}(y)$? Determine an expression for the expected costs in terms of the unspecified parameters, and then evaluate both costs when $p = (e^2 + 1)^{-1}$, $s_0 = 0$, $s_1 = 2$, and $\sigma^2 = 1$.

 ${\it Hint:}\ {\it Use}\ {\it Q-function}\ ({\it https://en.wikipedia.org/wiki/Q-function})\ {\it to}\ {\it simplify}\ {\it your}\ {\it expressions.}$

5.4. (a) Let $p_{\mathbf{v}}(y;x)$ be a member of the exponential family, i.e.,

$$p_{y}(y;x) = \exp[\lambda(x)t(y) - \alpha(x) + \beta(y)]$$

for some functions $\lambda(\cdot), t(\cdot), \alpha(\cdot)$ and $\beta(\cdot)$. Put z = y + a, where a is a known constant. Is $p_z(z; x)$ in the exponential family, as well?

(b) Let y_1 and y_2 be two independent identically distributed continuous random variables with a distribution $p_y(y;x)$ that is in the canonical (one-parameter) exponential family. That is, $p_y(y;x) = \exp(xy - \alpha(x) + \beta(y))$ for some functions α and β . Put $z = y_1 + y_2$.

Show that $p_{\mathbf{z}}(z;x)$ is also in the canonical exponential family. That is, show that $p_{\mathbf{z}}(z;x) = \exp(xz - \alpha'(x) + \beta'(z))$ for some functions α' and β' . Express α' in terms of α , and β' in terms of β .

This result means that the canonical exponential family possesses a kind of stability characteristic.