Clase práctica 3

September 25, 2025

- 1. Sean a y n enteros mayores que 1.
 - Si $a^n 1$ es primo $\Rightarrow a = 2$ y n es primo.
 - Si $a^n + 1$ es pimo $\Rightarrow a$ es par y n es una potencia de 2
- 2. Sea $n \in \mathbb{Z}$ n > 4. Demuestra que n | (n-1)! si y solo si n es compuesto.
- 3. Encuentre la descomposición canónica de 20!.
- 4. Demustra que existe un bloque de 2022 enteros consecutivos donde exactamente 15 de ellos son primos.
- 5. Demuestre que si $n \in \mathbf{Z}^+$ entonces $2^{2^n} 1$ tiene al menos n divisores primos distintos.
- 6. Demuestre que si p y $p^2 + 2$ son primos entonces $p^3 + 2$ es primo.
- 7. Sea p_n el n-ésimo primo. Demuestre que $p_n \leq 2^{2^{n-1}}.$
- 8. Demuestre que si n > 2, entonces existe un primo p que satisface n .