Prueba técnica Gestor SR – Desarrollador .NET

Descripción detallada de la solución:

La solución propuesta consiste en desarrollar una aplicación móvil y una página web para gestionar las rutas de transporte de los empleados de la compañía, <u>cumpliendo</u> con los requisitos mencionados. La aplicación se autenticará a través del directorio activo de la compañía para garantizar que solo los empleados tengan acceso.

Diagrama de la arquitectura:

La arquitectura estará basada en la nube de Azure, utilizando servicios gestionados para garantizar escalabilidad, disponibilidad y seguridad.

Frontend: Tanto la aplicación móvil como la página web se desarrollarán utilizando un marco de trabajo de desarrollo multiplataforma como React Native o MAUI para la versión móvil y ASP.NET (con Razor Pages o MVC), React, Angular o Vue para la web, garantizando una interfaz de usuario consistente y basada en el manual de marca de la compañía.

Aunque mencioné varias opciones en el párrafo anterior recomiendo tener muy en cuenta:

ASP.NET Y MAUI (Por hacer parte del ecosistema .NET para la parte del Frontend).

Angular (Por su robustez, aunque haga parte del ecosistema .NET)

Backend: Se utilizará Azure Functions para implementar microservicios sin servidor que manejen las diversas funcionalidades del sistema, como el registro de rutas, cancelación, visualización de rutas y suscripción. Estos servicios estarán escritos en Node.js o C# según las preferencias y habilidades del equipo.

Base de Datos: Se utilizará Azure SQL Database para almacenar la información de las rutas y los usuarios. El modelo entidad-relación incluirá tablas para usuarios, rutas, suscripciones y notificaciones.

Modelo Entidad Relación: Se usará el siguiente modelo entidad relación.

Tabla	Atributos	Restricciones
Usuario	UserID (PK), Nombre,	UserID como clave primaria
	CorreoElectronico, Celular	
Ruta	RutaID (PK), Fecha, TipoVehiculo,	RutaID como clave primaria, UserID
	HoraSalida, CuposDisponibles,	como clave foránea referenciando a
	Origen, Destino, Estado (activo o	Usuario
	cancelado), UserID (FK)	

SuscripcionRuta	SuscripcionID (PK), RutaID (FK),	SuscripcionID como clave primaria,
	UserID (FK)	RutaID como clave foránea
		referenciando a Ruta, UserID como
		clave foránea referenciando a
		Usuario

Autenticación y Autorización: Azure Active Directory (AAD) se utilizará para autenticar y autorizar a los usuarios. Se implementará OAuth 2.0 para garantizar un flujo seguro de autenticación.

Notificaciones: Azure Notification Hubs se utilizará para enviar notificaciones push a los usuarios móviles y correos electrónicos para las notificaciones por correo.

Almacenamiento: Azure Blob Storage se usará para almacenar imágenes y otros archivos relacionados con las rutas.

Metodología de desarrollo:

Se utilizará un enfoque ágil, manejando Scrum como marco de trabajo. Los sprints se planificarán para iteraciones cortas y entregas incrementales, lo cual nos permite adaptarnos fácilmente a los cambios y mejorar continuamente a lo largo del tiempo.

Buenas prácticas metodológicas:

Continuous Integration/Continuous Deployment (CI/CD): Se implementará para garantizar la entrega continua y la detección temprana de problemas.

Pruebas automatizadas: Su uso sería para garantizar la calidad del software.

Infraestructura y plataformas necesarias:

Para simplificar la gestión y optimizar el despliegue, se propone un único entorno en Azure para desarrollo, pruebas y producción. Utilizando Azure DevOps o herramientas equivalentes, este entorno unificado empleará servicios administrados y contenedores para facilitar el desarrollo, las pruebas y la implementación directa en producción. El enfoque CI/CD permitirá una entrega continua, validando la aplicación en un entorno realista antes de su despliegue final. Se

recomienda ejecución de pruebas exhaustivas en el entorno de desarrollo y pruebas, junto con medidas de respaldo para la base de datos de producción.

Posibles riesgos y mitigación:

La siguiente tabla muestra los posibles riesgos y la estrategia de mitigación propuesta.

Riesgo	Mitigación
Problemas de integración debido a la	Mitigación: Realizar pruebas de integración continuas y
complejidad de la arquitectura.	utilizar entornos de desarrollo y prueba adecuados.
Cambios en los requisitos durante el	Mantener una comunicación constante con los
desarrollo.	stakeholders y adoptar un enfoque ágil para adaptarse a
	cambios.
Escalabilidad insuficiente para 500	Utilizar servicios escalables de Azure y realizar pruebas
usuarios diarios.	de carga para identificar cuellos de botella.

Otros elementos de prevención:

Se recomienda:

Implementar un sistema de registro y monitoreo de errores utilizando Azure Application Insights.

Establecer políticas de seguridad y cumplimiento para proteger la información confidencial de los empleados.