Практическое занятие 1

Teмa: Введение в Python-стек для машинного обучения. Градиентный спуск для одномерных функций.

Продолжительность: 90 минут

Цели занятия

- Научить реализовывать градиентный спуск для одномерных функций.
- Развить понимание сходимости оптимизационных алгоритмов.
- Научить визуализировать результаты и анализировать траекторию поиска минимума.

Структура занятия

- Самостоятельная работа студентов, выполнение заданий (варианты).
- Обсуждение и подведение итогов: анализ решений, выводы.

Базовый код (общий для всех вариантов)

```
import numpy as np
import matplotlib.pyplot as plt
# Определяем функцию и её производную
def f(x):
 return (x-2)^{**}2 + 0.5^{*}np.sin(3^{*}x)
def df(x):
 return 2*(x-2) + 1.5*np.cos(3*x)
# Реализация градиентного спуска
def gradient_descent(x0, eta, iters):
 x = x0
 traj = [x]
 for k in range(iters):
    x = x - eta*df(x)
    traj.append(x)
 return np.array(traj)
# Запуск
x0 = 4.0 # начальное значение
```

```
eta = 0.1 # шаг
iters = 50 # количество итераций
traj = gradient_descent(x0, eta, iters)
# Визуализация
xs = np.linspace(-2, 6, 400)
plt.plot(xs, f(xs))
plt.plot(traj, f(traj), 'o-')
plt.title("Градиентный спуск")
plt.show()
```

Индивидуальные задания (15 вариантов)

Вариант	Функция	Начальная точка	Задание
Вариант 1	$f(x) = (x-3)^2$	x0 = -5	Исследовать влияние шага η = 0.01, 0.1, 0.5.
Вариант 2	$f(x) = \sin(x) + $ $0.1x^2$	x0 = 2	Исследовать сходимость при итерациях 20, 50, 100.
Вариант 3	$f(x) = e^{-x} + (x-1)^2$	x0 = 5	Построить график функции, визуализировать траекторию.
Вариант 4	$f(x) = \ln(1 + x^2)$	x0 = 3	Сходимость для шагов η = 0.05, 0.2.
Вариант 5	$f(x) = (x+2)^2 + \cos(2x)$	x0 = 0	Показать осцилляции при η = 1.
Вариант 6	$f(x) = x^4 - 3x^2 + 2$	x0 = 2	Найти все локальные минимумы/максимумы.
Вариант 7	$f(x) = \cos(x) + $ $0.01x^2$	x0 = 4	Сравнить фиксированный и адаптивный шаг.
Вариант 8	$f(x) = x-1 + 0.1x^2$	x0 = -3	Обсудить недифференцируемую точку, использовать приближенную

			производную.
Вариант 9	$f(x) = (x-5)^2 + \sin(5x)$	x0 = 6	Показать застревание в локальном минимуме при разных шагах.
Вариант 10	$f(x) = x^2 + 10\sin(x)$	x0 = 2	Выявить несколько локальных минимумов, построить траекторию.
Вариант 11	$f(x) = (x-2)^2 * e^{-6}$ 0.5x}	x0 = 1	Эксперимент с начальными точками - 2, 0, 4.
Вариант 12	$f(x) = (x^2-1)^2$	x0 = 0.5	Показать зависимость от выбора начальной точки (х0 = -2, 0.5, 3).
Вариант 13	$f(x) = \ln(1 + e^{x})$	x0 = -5	Сравнить скорость сходимости при η = 0.01 и 0.5.
Вариант 14	$f(x) = sqrt(1+x^2)$	x0 = 4	Объяснить медленную сходимость.
Вариант 15	$f(x) = x^2 + \sin^2(3x)$	x0 = 2	Исследовать поведение при числе итераций до 500.