

Discrete Distributions in the Tardos Scheme, Revisited

Thijs Laarhoven, Benne de Weger

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

EiPSI Seminar, Eindhoven, The Netherlands (May 7, 2013)

Outline

Introduction

The Tardos Scheme

Distributions in the Tardos Scheme

Discrete Distributions in the Tardos Scheme

Discrete Distributions in the Tardos Scheme, Revisited

Problem: Illegal redistribution

User	C	эру	rigl	nte	d c	ont	ent	t									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Chris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

Problem: Illegal redistribution

User	C	ору	rig	hte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Chris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Сору	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

User	C	эру	/rig	hte	d c	ont	en	t (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Chris	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

TU/e

User	C	ору	/rig	hte	d c	ont	ent	t (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Chris	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	C	эру	rigl	hte	d c	ont	ent	t (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Chris	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	C	эру	rigl	hte	d c	ont	ent	(f	ing	erp	rint	ted))				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Chris	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

Problem: Collusion attacks

User	C	эру	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Chris	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

Problem: Collusion attacks

User	C	ору	/rig	hte	d c	ont	ent	t (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Chris	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Problem: Collusion attacks

User	C	ору	/rig	hte	d c	ont	ent	t (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Chris	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Solution: Collusion-resistant schemes

User	C	эру	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Chris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

Solution: Collusion-resistant schemes

User	C	эру	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Chris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

1. An algorithm to construct collusion-resistant codes

Solution: Collusion-resistant schemes

User	C	эру	rig	hte	d c	ont	en	t (f	ing	erp	rint	ted))				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Chris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

The Tardos scheme: Overview

1. An algorithm to construct collusion-resistant codes

2. An algorithm to trace pirate copies to colluders

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes

 1a. For each segment i, generate $p_i \sim F$.
- 2. An algorithm to trace pirate copies to colluders

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 1, \\ -\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 0, \\ -\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 1, \\ +\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 0. \end{cases}$$

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 1, \\ -\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 0, \\ -\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 1, \\ +\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 0. \end{cases}$$

2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

TU/e

The Tardos scheme: Codewords

p _i	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	 <i>p</i> ₁₂₀₀
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$	 X _{1,1200}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1200}$
Chris	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1200}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$		$X_{4,5}$	 $X_{4,1200}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1200}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1200}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1200}$
Henry	$X_{8,1}$	X _{8,2}	X _{8,3}	X _{8,4}	$X_{8,5}$	 X _{8,1200}
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	 <i>У</i> 1200

The Tardos scheme: Codewords

1a. For each segment *i*, generate $p_i \sim F$.

p _i	p_1	p_2	<i>p</i> ₃	p_4	p_5	 p_{1200}
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$	 X _{1,1200}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1200}$
Chris	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1200}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1200}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1200}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1200}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1200}$
Henry	X _{8,1}	X _{8,2}	X _{8,3}	X _{8,4}	$X_{8,5}$	 X _{8,1200}
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	 <i>Y</i> 1200

The Tardos scheme: Codewords

1a. For each segment *i*, generate $p_i \sim F$.

		,	0	' '		
p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$	 X _{1,1200}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1200}$
Chris	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1200}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1200}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1200}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1200}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1200}$
Henry	$X_{8,1}$	$X_{8,2}$	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$	 X _{8,1200}
Сору	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>y</i> 1200

The Tardos scheme: Codewords

1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .

p_i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	$X_{1,1}$	$X_{1,2}$	X _{1,3}	X _{1,4}	$X_{1,5}$	 X _{1,1200}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1200}$
Chris	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1200}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1200}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1200}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1200}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1200}$
Henry	$X_{8,1}$	X _{8,2}	X _{8,3}	$X_{8,4}$	$X_{8,5}$	 X _{8,1200}
Сору	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>y</i> 1200

The Tardos scheme: Codewords

1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Chris	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	0	0	0	1	1	 0
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>y</i> 1200

The Tardos scheme: Coalition

Pirates get their versions, ...

p _i		٠	-	-		
Antonino						 •
Boris						
Chris	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	0	0	0	1	1	 0
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	 <i>Y</i> 1200

The Tardos scheme: Coalition

Pirates get their versions, compare them ...

p _i			-			
Antonino						
Boris						
Chris	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	0	0	0	1	1	 0
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	 <i>Y</i> 1200

The Tardos scheme: Coalition

Pirates get their versions, compare them and make a copy.

p _i			•	•	•	 •
Antonino						
Boris						
Chris	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	0	0	0	1	1	 0
Сору	0	0	0	1	1	 0

TU/e

The Tardos scheme: Scores

The copy is distributed and detected by the tracer.

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Chris	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	0	0	0	1	1	 0
Сору	0	0	0	1	1	 0

The Tardos scheme: Scores

2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Chris	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	0	0	0	1	1	 0
Сору	0	0	0	1	1	 0

The Tardos scheme: Scores

2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1
Chris	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5
Henry	+0.5	+0.2	+2.7	+0.5	+0.1	 +0.5
Сору	0	0	0	1	1	 0

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

p _i	0.20	0.05	0.88	0.79	0.98	 0.18	S_j
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	0
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	0
Chris	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	0
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	0
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Henry	+0.5	+0.2	+2.7	+0.5	+0.1	 +0.5	0
Сору	0	0	0	1	1	 0	

 $Coalition = \{Chris, Eve, Henry\}$

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

p_i	0.20	0.05	0.88	0.79	0.98	 0.18	S_j
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	-19
Chris	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	-42
Henry	+0.5	+0.2	+2.7	+0.5	+0.1	 +0.5	+269
Сору	0	0	0	1	1	 0	

 $Coalition = \{Chris, Eve, Henry\}$

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

					<u> </u>		
p _i	0.20	0.05	0.88	0.79	0.98	 0.18	S_j
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	-19
Chris	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	-42
Henry	+0.5	+0.2	+2.7	+0.5	+0.1	 +0.5	+269
Сору	0	0	0	1	1	 0	

Coalition = $\{Chris, Eve, Henry\}$ Accused = $\{Chris, Eve, Henry\}$

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 1, \\ -\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 0, \\ -\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 1, \\ +\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 0. \end{cases}$$

2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 1, \\ -\sqrt{(1-p_i)/p_i}, & \text{if } X_{ji} = 1, y_i = 0, \\ -\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 1, \\ +\sqrt{p_i/(1-p_i)}, & \text{if } X_{ji} = 0, y_i = 0. \end{cases}$$

2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

How to choose F?

How to choose F

Continuous distributions

• Discrete distributions

How to choose F

- Continuous distributions
 - Arcsine distributions with cutoffs

Discrete distributions

How to choose F

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality

Discrete distributions

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
- Discrete distributions

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures
 - Maximizes the expected coalition score

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures
 - Maximizes the expected coalition score
 - Number of segments needed:
 - ▶ Small c: About $4c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: About $5.35c^2 \ln(n/\varepsilon_1)$

- Continuous distributions
 - Arcsine distributions with cutoffs
 - ► Allows proof via Markov's inequality
 - ► Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures
 - Maximizes the expected coalition score
 - Number of segments needed:
 - ▶ Small c: About $4c^2 \ln(n/\varepsilon_1)$
 - Large c: About $5.35c^2 \ln(n/\varepsilon_1)$
 - ► Converges to?

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - ▶ Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures
 - Maximizes the expected coalition score
 - Number of segments needed:
 - ▶ Small c: About $4c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: About $5.35c^2 \ln(n/\varepsilon_1)$
 - ► Converges to?

- Continuous distributions
 - Arcsine distributions with cutoffs
 - Allows proof via Markov's inequality
 - ▶ Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures
 - Maximizes the expected coalition score
 - Number of segments needed:
 - ▶ Small c: About $4c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: About $5.35c^2 \ln(n/\varepsilon_1)$
 - Converges to?

Discrete distributions

Discrete distributions

- Continuous distributions
 - Arcsine distribution with cutoffs
 - Allows proof via Markov's inequality
 - ▶ Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures
 - Maximizes the expected coalition score
 - Number of segments needed:
 - ▶ Small c: About $4c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: About $5.35c^2 \ln(n/\varepsilon_1)$
 - Converges to?

- Continuous distributions
 - Arcsine distribution with cutoffs
 - Allows proof via Markov's inequality
 - ▶ Number of segments needed:
 - ▶ Small c: About $10c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: Converges to $4.93c^2 \ln(n/\varepsilon_1)$
 - Converges to arcsine distribution
- Discrete distributions
 - Based on Gauss-Legendre quadratures
 - Maximizes the expected coalition score
 - Number of segments needed:
 - ▶ Small c: About $4c^2 \ln(n/\varepsilon_1)$
 - ▶ Large c: About $5.35c^2 \ln(n/\varepsilon_1)$
 - ► Converges to arcsine distribution!

Theorem: Discrete distributions converge to arcsine distribution

• Proof: See our paper (bit technical)

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal
- Corollary: Code length $4.93c^2 \ln(n/\varepsilon_1)$ is asympt. optimal

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal
- Corollary: Code length $4.93c^2 \ln(n/\varepsilon_1)$ is asympt. optimal
- Discrete and continuous distributions are not that different

Theorem: Discrete distributions converge to arcsine distribution

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal
- Corollary: Code length $4.93c^2 \ln(n/\varepsilon_1)$ is asympt. optimal
- Discrete and continuous distributions are not that different

Theorem: Discrete distributions converge to arcsine distribution

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal
- Corollary: Code length $4.93c^2 \ln(n/\varepsilon_1)$ is asympt. optimal
- Discrete and continuous distributions are not that different

Construction: A practical alternative to the optimal distributions

• Approximations of the optimal distributions

Theorem: Discrete distributions converge to arcsine distribution

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal
- Corollary: Code length $4.93c^2 \ln(n/\varepsilon_1)$ is asympt. optimal
- Discrete and continuous distributions are not that different

- Approximations of the optimal distributions
- Simpler bias generation, calculations

Theorem: Discrete distributions converge to arcsine distribution

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal
- Corollary: Code length $4.93c^2 \ln(n/\varepsilon_1)$ is asympt. optimal
- Discrete and continuous distributions are not that different

- Approximations of the optimal distributions
- Simpler bias generation, calculations
- Same asymptotic behavior

Theorem: Discrete distributions converge to arcsine distribution

- Proof: See our paper (bit technical)
- Corollary: Arcsine distribution is asymptotically optimal
- Corollary: Code length $4.93c^2\ln(n/arepsilon_1)$ is asympt. optimal
- Discrete and continuous distributions are not that different

- Approximations of the optimal distributions
- Simpler bias generation, calculations
- Same asymptotic behavior
- Heuristics: Comparable performance

Questions?