Evolutionary Analog Amplifier Optimization

Marek Bielik

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2. 612 66 Brno - Královo Pole xbieli05@stud.fit.vutbr.cz

Goals

- Demonstrate the capabilities of evolutionary algorithms.
- Implement the concept of Evolution Strategies.
- Incorporate the ngSPICE simulator.
- Develop methods for evaluating the amplifiers.
- Find the best parameters for the optimization.

Analog amplifiers

Analog amplifiers

Amplifiers evaluation

Amplifiers evaluation

Amplifiers evaluation

$$result = (|peak + trough| + 1) \cdot fitness$$

Experiments

$R1 \text{ (k}\Omega)$	$R2~(\mathrm{k}\Omega)$	$Re (\Omega)$	Rg (Ω)	Rc (k Ω)	Ce (µF)	Cin (µF)	Cout (nF)
168	15.1	169	49	4.21	16	274	86

- A demonstration of evolution strategies.
- Contribution to the ngSPICE project:
 - 'Hello Marek,
 Thank you for this patch. It is a good pointer to some places.
 ...,
 we will see where it fits best.
 Thank You.'
 Robert Larice
- A tool for designing analog amplifiers.

Thank you.

Experiments

$$\vec{x} = ((x_1, ..., x_n), \sigma_1, ..., \sigma_n)$$

Experiments

| Experiments

			(μ, λ) -ES			$(\mu + \lambda)$ -ES		
	μ	λ	best match	ideal sin	max. ampl.	best match	ideal sin	max. ampl.
1.	1	1	N/A	N/A	N/A	21.82	99.00	2.90
2.	1	5	20.82	113.75	1.98	13.44	57.91	2.69
3.	1	10	18.84	76.81	1.40	24.70	75.01	2.84
4.	1	15	18.43	128.75	2.26	19.52	34.11	1.02
5.	5	5	49.62	169.02	36.50	9.81	56.61	3.18
6.	5	25	7.28	55.00	3.12	12.12	34.88	2.72
7.	5	50	16.18	64.22	3.21	9.75	43.73	3.57
8.	5	75	3.70	58.82	3.10	4.20	38.84	3.52
9.	10	10	49.41	154.66	26.40	8.94	53.77	3.18
10.	10	50	9.09	60.93	2.68	7.02	45.04	3.58
11.	10	100	6.97	38.02	3.16	4.91	26.06	3.10
12.	10	150	8.06	25.54	3.10	2.52	23.07	3.07
13.	15	15	44.48	165.76	34.99	2.54	47.69	3.18
14.	15	75	4.64	56.18	2.25	4.96	51.74	3.56
15.	15	150	6.63	47.32	3.52	6.36	12.19	1.60
16.	15	225	7.56	31.17	2.65	0.70	19.31	1.08