·	Ch.6 - Recurrence Equations
<i>§1.</i>	Problems leading to recurrence equations
Def.	A recurrence equation (or recurrence relation)
	is any equation that can be used to specify an
	infinite sequence (Xn) new by expressing Xn
	in terms of xn-1, xn-2,, x, xo, and n.
Have grap as a first production of the second secon	
Ex.1	Let Xn = Xn-1 + 3 for n >1. Then
	$X_{l} = X_{0} + 3 = X_{0} + 3(1)$
	$X_2 = X_1 + 3 = (X_0 + 3(1)) + 3 = X_0 + 3(2)$
	$X_3 = X_2 + 3 = (X_0 + 3(2)) + 3 = X_0 + 3(3)$
	It is not difficult to see that in general
	$X_n = X_0 + 3(n) = X_0 + 3n$
	In order to uniquely define (Xn)new, we
	need to specify Xo. If we set Xo=2, then
	we get $x_n = 2 + 3n$. " $x_b = 2$ " is called
	an initial condition. Thus we can say
	that the recurrence equation
	$X_n = X_{n-1} + 3$ for $n \ge 1$ & $X_0 = 2$ has the unique solution $X_n = 2 + 3n$.
	has the unique solution Xn = 2+3n.
,	
Def.	A recurrence equation of order k is one
	of the form
t for annual (shill to work poor by) - p to manage of the poor to be the poor to	
-	$x_n = g(n, x_{n-1}, x_{n-2},, x_{n-k}).$ where g is a function of k+1 variables.
	In order to get a unique solution for a recurrence equation of order k, we need initial conditions which specify the values of xo, x,, xx-1.
r y f allein - wer after brief op op in a same a manga any a same pampay no pampay .	equation of order k, we need initial conditions
The state of the s	which specify the values of xo, x,, xx-1.
'	

Ex. 2/0) Xn = 2xn-1 + 3n for n>1 is of order 1 (b) Xn = Xn-1 + 2Xn-2 for n≥2 is of order 2 (c) $X_n = X_{n-1} + 0. X_{n-2} + n. X_{n-3}$ for $n \ge 3$ is of order 3 (d) Xn = Xn-1 + Xn-2 + ... + X1 + X0 is of unbounded order. Note: Although the recurrence equation $x_n = x_{n-1} + \cdots + x_o$ looks pretty "wild" it can be "tamed" by putting "In = Xn+Xn-1+-..+Xo Then we have $\frac{1}{2} y_n = \frac{1}{2} (x_{n-1} + \cdots + x_o) + (x_{n-1} + \cdots + x_o)$ $= y_{n-1} + y_{n-1} = zy_{n-1}$ So In = 21n-1 and this is of order 1 However, not all recurrence equations of unbounded order can be "tamed" Many counting problems in Combinatorics lead to recurrence equations in which the answer is Xn. We can easily calculate the value of xn for any given value of n by using the recurrence equations. But this will not tells how fast In grows - for that we need to express xn explicitly in terms of n. (Fibonacci Rabbit Problem) Ex.3 A newly born pair of rabbits of opposite sex is placed in a large enclosure in the middle of Janwary 2014. After a female rabbit is two monthsold it gives birth to one pair of rabbits of opposite sex in the middle of all future months. How many pairs of rabbits (of opposite sex) will there be (a) on Det 3 1st, 2014 (b) n months after Jan. 1 st, 2014? Sol. Let $x_n = the number of pairs of rabbits (of opposite sex) n months after Jan 1st, 2014.

Then <math>x_0 = 0$ and $x_1 = 1$. Also $x_n = no. of pairs after n-1 months$ + no. of pairs born in the middle of the n-th month= \times_{n-1} + \times_{n-2}

because only the females present after n-2 months

would be mature enough to produce a pair in the middle of the n-th month. Thus $X_n = X_{n-1} + X_{n-2}$ for $n \ge 2$ & $X_0 = D$, $X_1 = 1$. $\frac{1}{1} = \frac{1}{2} = \frac{1}$ $X_4 = X_3 + X_2 = 2+1 = 3$, $X_5 = X_4 + X_3 = 3+2 = 5$ $X_7 = X_6 + X_5 = 8 + 5 = 13$ $X_6 = X_5 + X_4 = 5 + 3 = 8,$ $X g = X_8 + X_7 = 21 + 13 = 34$ $X_8 = X_7 + X_6 = 13 + 8 = 21$ $X_{10} = X_{9} + X_{8} = 34+21=55$ So on Oct. 31st, 2014, there will be 55 pairs. We will later find an explicit formula for Xn. 0 1 2 9 3 29 5 26 8 219 55 $\frac{136}{136}$ $\frac{136}{136}$ Ex. 4 (Tower of Brahma Problem). We have n disks of decreasing sizes that are stacked as shown on peg #1. What is the least number of moves needed to transfer the n disks from peg #1 to peg #2, if we must always store the disks on one of the three pegs & it we cannot place a larger disk on a smaller one?

Prop. 2 Let (an) & (bn) be solutions of the linear recurrence equation L(E)(xn) = 0. Then (a) (an+bn) is also a solution of LE (Xn)=0 and (b) (Aan) is also a solution of L(E)(Xn)=0 for any arbitrary constant AEC. Proof: Suppose (an) & (bn) are solutions of L(E)(Xn) = 0. Then L(E)(an) = 0 & L(E)(bn) = 0. Since L(E) is a linear operator 2(E) (an+bn) = L(E)(an) + $\mathcal{L}(b_n) = 0 + 0 = 0$. So $(a_n + b_n)$ is a solution of &(E)(Xn) = 0. Also &(E)(Aan) = A &(E)(an)= A(0) = 0, So (Aan) is a solution of $\mathcal{L}(E)(X_n) = 0$ Ex.3 Find the solution of the recurrence equation $X_{n+1}-3X_n=0$ for $n\geq 0$ with $X_0=4$. Sol. Suppose we have a solution of the form $x_n = \alpha^n$. Then $x_{n+1} = \alpha^{n+1}$. So $x_{n+1} - 3x_n = 0$ becomes $\alpha^{n+1} - 3\alpha^n = 0$ for $n \ge 0$. $\alpha^{n}(\alpha-3)=0 \quad \text{for } n \ge 0$ Since $\alpha^0 \neq 0$, it follows that $\alpha - 3 = 0$. So x=3. Hence $x_n=3^n$. Let us check it. We have $X_{n+1} - 3X_n = 3^{n+1} - 3.3^n = 0$, for all n>0. Also Xo = 30 = 1 + 4, So we have not satisfied the initial conditions. But this is easily remedied because $x_n = A.3^n$ is a solution for each AEC, by Prop. 2. So $4 = A \cdot 3^{\circ} = A \Rightarrow A = 4$, i. $X_n = 4 \cdot 3^n$ is the solution.

Note: The equation $x_{n+1} - 3x_n = 0$ can be written in the form (E-3I) $x_n = 0$. And from $\mathcal{E}_{x,3}$ we know that $x_n = A_*(3)^n$ gives us all the possible solutions. So $x_p = A.3^n$ is called the general solution of $(E-3I)x_n = 0$ and it is understood that no initial conditions are imposed Ex.3 Find the solution of the recurrence equation $X_{n+2} + X_{n+1} - 6X_n = 0 \quad \text{for } n \ge 0 \quad \text{with } X_0 = 7 & X_1 = -6,$ Sol. The equation can be writen as $(E^2 + E - 6I)(X_n) = 0$ So $(E+3I)(E-2I)(X_n) = 0 & (E+2I)(E+3I)(X_n) = 0.$ $(E+2I)(X_n) = 0 \quad or \quad (E+3I)(X_n) = 0$ i. $X_n = A.(2)^n$ or $X_n = B.(-3)^n$. So by Prop.2 the general solution of the equation is $X_n = A.(2)^n + B.(-3)^n, \text{ where } A \& B \text{ are arb.}$ $7 = X_0 = A.(2)^0 + B(-3)^0 \implies A + B = 7$ $-6 = X_1 = A.(2)^1 + B(-3)^1 \qquad 2A - 3B = -6$ B = 7 - A, So 2A - 3(7 - A) = -65A = -6+21 = 15 ⇒ A=3, So B=7-A=4. $X_n = A \cdot (2)^n + B \cdot (-3)^n = 3 \cdot (2)^n + 4 \cdot (-3)^n$ Note Let $\mathcal{L}(E)(x_n) = 0$ be a linear constant coeff.

recurrence equation of order k. Then we must have $\mathcal{L}(E) = E^k + c_i E^{k-i} + \dots + c_i E^i + c_o I \text{ where each } c_i \in C,$

Theorem 3: Let L(E)(Xn) = 0 be a lin. constant coeff. recurrence eq. If $\chi(E) = (E-\alpha, I)(E-\alpha_2 I) - \cdots (E-\alpha_k I)$ and &, ..., & are all distinct, then the general solution of L(E)(Xn) = 0 is given by $X_n = A_1 \cdot (\alpha_1)^n + A_2(\alpha_2)^n + \dots + A_k \cdot (\alpha_k)^n$ where the A, -. , Ax are arbitrary constants. Ex.5 Find the solution of the recurrence equation $X_{n+2} - X_{n+1} - X_n = 0$ with $X_0 = 0$ & $X_1 = 1$. Sol. We have $(E^2 - E - I)(x_n) = 0$. So $E = [-(-1) \pm \sqrt{1-4(-1)}]/2 = (1 \pm \sqrt{5})/2$ $X_{n} = A \cdot \left(\frac{1+\sqrt{5}}{2}\right)^{n} + B \cdot \left(\frac{1-\sqrt{5}}{2}\right)^{n} \cdot S_{0}$ $X_0 = 0 = A + B \implies B = -A$. $x_1 = 1 = A(1+\sqrt{5}) + B(1-\sqrt{5})$ $\frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \frac{1}{\sqrt{5}} \cdot \left(\frac{1 - \sqrt{5}}{2} \right)^{n}$ and now we have the solution to Fibonacci Rabbit Problem Ex6 Find the solution of Xn+2-2Xn+1+2Xn=0 with X0=0&x1=2 Sol. We have (E2-ZE+ZI)(Xn)=0. .. E= 1±0. So $X_n = A, (1-i)^n + B(1+i)^n$ is the general solution. $X_0 = 0 = A + B$, $X_1 = 2 = A(1-i) + B(1+i)$. 1. B = -A. So $2 = -2iA \Rightarrow A = i$, i. B = -i, So $X_n = i(1-i)^n - i(i+1)^n$

Ex.7 Find the solution of $x_{n+2} - 6x_{n+1} + 9x_n = 0$ with $x_0 = -1$ and $x_1 = 9$. Sol. We have (E2-6E+9I)(xn) = 0, So (E-3I) (E-3I) Xn = 0. ... $x_n = A.(3)^n$ is a solution for each $A \in \mathbb{C}$. Now if we try to impose the initial conditions we get $-1 = X_0 = A_1(3)^0 \Rightarrow A = -1$ $9 = X_1 = A_1(3)^1 \Rightarrow 3A = 9 \Rightarrow A = 3.$ Thus we have a contradiction. So we need another solution. Let $Y_n = (E-3I)x_n$. Then Since (E-3I) (E-3I)(Xn) = 0, we get (E-3I) / = 0. Thus $y_n = B.3^n$. So $(E-3I) \times_n = B \cdot 3^n$ $X_{n+1} - 3X_n = B \cdot 3^n$ $S_6 = 3(x_n - 3x_{n-1}) = 3.8.3^{n-1} = 8.3^n$ $3(X_{n-1}-3X_{n-2})=3^2B_13^{n-2}=B_13^n$ $3^{n}(X_{1}-3X_{0})=3^{n}.B.3^{n}=B.3^{m}$ $X_n = X_0.3^n + C.n.3^n$. Thus we now have the general solution. X=-1 & X,=9> $9 = (-1), 3' + C.1.3' \Rightarrow 3C - 3 = 9 \Rightarrow C = 4$ $X_n = (C_n + X_0), 3^n = (4n - 1), 3^n$ Therem 4: The general solution of $(E-\alpha I)^m(x_n) = 0$ is given by $x_n = (A_0 + nA_1 + n^2A_2 + ... + n^{m-1}A_{m-1}).(x)^n$ where $A_0, A_1, ..., A_{m-1}$ are arbitrary constants.

```
§3. Non-homogeneous constant-coefficients linear rec. eq.
Theorem 5: The general solution of the non-homogeneous.

Inear rec. eq. of order k, L(E)(Xn) = q(n) is given by
      where \chi_n^c is the general solution of the homog.
eq. \chi(E) (Xn) = 0, & \chi_n^c is a particular solution
       of L(E)(Xn) = g(b).
Proof First of all Z(E) (Xn + Xn) = Z(E)(Xn) + Z(E)(Xn)
       = 0 + q(n) = q(n). So x_n + x_n is always
       a solution of L(E)(Xn) = q(n). Since Xn will
       have k linearly independent solutions, the
       Solution Xn+Xn will have & arbitrary constants
       and we will always be able to satisfy
       the k independent initial conditions xo=qo,-xxx=qui
Ex.1 Find the general solution of the equation X_{n+1} - 3 X_n = 4.5
Sol. We have (E-3I)(x_n)=4.(5)^n. So
            (E-51)(E-31)(x_n) = (E-51)4(5)^n
      = 4.5^{n+1} - 4.5.5^{n} = 0
So X_n = A.(3)^n + B.(5)^n. But X_{n+1} - 3X_n = 4.5^n
      So (A.3"+ B.5"+) - 3. (A.3"+ B.5") = 4.5"
       (3A-3A).3^n+(5B-3B).5^n=4.5^n
         (28.5^{\circ} = 4.5^{\circ}) \Rightarrow 28=4 \Rightarrow 8=2.
       Hence the general solution is x_n = A \cdot B^n + 2 \cdot (5)^n.
```

Notice $X_n^c = A(3)^n & X_n^r = 2.(5)^n$.

```
Ex. Z Find the general solution of the equation (3)

\times_{n+1} - 3\times_n = 5n.(2)^n
Sol. We have (E-3I)(X_n) = n.z^n. So
    (E-2I)^{2}(E-3I)(X_{n}) = (E-2)^{2}(5n.2^{n})
     = (E^{2} + 4I)(5n.2^{n})
= 5(n+2).2^{n+2} - 4.5(n+1).2^{n+1} + 4.5.n.2^{n}
     = (20n + 40 - 40n - 40 + 20:n) \cdot 2^n = 0.
     (, (E-2I)^2(E-3I)(X_n) = 0
     A_{1} = A_{1}(3)^{n} + (Bn+C)_{1}(2)^{n}
     But xn+1-3xn = 5n. 2n. So
     [A.3^{n+1}+(B(n+1)+C).2^{n+1}]-3[A.3^n+(Bn+C).2^n]=5n.2^n
    (2B-3B)n + [2B+2C-3C] = 5n
       2B-C=0 \Rightarrow C=2B=-10
     X_n = A \cdot 3^n + (8n+C) \cdot 2^n
= A \cdot 3^n - (5n+10) \cdot 2^n.
Ex.3 Find the general solution of the equation x_{n+1} - 2x_n = 6.2^n
      We have (E-2I) Xn = 6.2". So
       (E-2I)(E-2I)(x_n) = (E-2I)(6.2^n)
    (E-2I)^2 \times n = 0 (X_n = (A+Bn). 2^n
```

But $x_{n+1}-2x_n=6.2^n$, So

```
[A + B(n+1)] \cdot 2^{n+1} - 2[A+Bn] \cdot 2^n = 6 \cdot 2^n
      || (2A + 2Bn + 2B - 2A - 2Bn) || (2^n = 6.2^n)
(2B) 2'' = 6.2'' \Rightarrow 2B = 6 \Rightarrow B = 3
    |(x, x_n = (A + Bn), 2^n = (A + 3n), (2)^n| is the gen. sol.
        From these examples we can easily see why the following theorems will be true.
Theorem 5: If g(n) = (b_0 + b_1 n + \dots + b_r n^r) \cdot (\alpha)^n and \alpha
15 not a root of the auxiliary equation
        \mathcal{L}(E) = 0, then the recurrence equation \mathcal{L}(E)(X_n) = q(n)
has a particular solution of the minimal form
                   X_n' = (B_0 + B_1 n + \dots + B_r n^r)(\alpha)''
Theorem 6: If q(n) = (bo + b, n + ... + b, n').(x)" and x

1s a root of multiplicity m of the auxiliary
      equation L(E) = 0, then the recurrence eq.
           \mathcal{L}(E)(X_n) = g(n)
       has a particular solution of the minimal form
                   X_n' = (B_0 + B_1 n + \cdots + B_r, n'), n''', (\alpha)''
Ex.4 Find the complimentary solution xn of each of
         the following recurrence equation and als give the
        minimal form of a particular solution of each equation.
   (a) (E-3I)^2(E+I)(8n) = 6n^2
  (b) (E^2+9I)(E+2I)^2(X_n) = 5.n.(-2)^n

(c) (E'+I)^2(E-I)^3(X_n) = 8n

(d) (E^2+4I)^2(E-2I)^3 = 10.n.2^n
```

(a) The auxiliary equation is (E-3)(E+1)=0. So E = 3 (twice) or E=-1. Hence $X_n^c = (A_1 + h A_2) \cdot (3)^n + A_3 \cdot (-1)^n$ The (a)" associated with the RHS 6n2 is (1)" and since 6n2 is a polynomial of degree 2 and 1 is not a root of the auxiliary equation, the minimal form of a particular solution is $X_n = (B_0 + n.B_1 + n^2B_2).(1)^n = B_0 + nB_1 + n^2B_2.$ (b) The auxiliary equation is (E2+9) (E+2) = 0. So $(E+3i)(E-3i)(E+2)^2=0$. Hence E = -3i, 3i, or -2 (twice). $A_{1} = A_{1} \cdot (-3i)^{n} + A_{2} \cdot (3i)^{n} + (A_{3} + n, A_{4}) \cdot (-2)^{n}$ Since 5n is a polynomial of degree 1 and -2 is a root of multiplicity 2 of the auxiliary equation the minimal form of x_n^p is $x_n^p = (B_0 + nB_1) \cdot n^2 \cdot (-2)^n$ (c) The auxiliary equation is $(E+1)^2(E-1)^2=0$. SU E = -1 (twice) or 1 (three times). $= (A_1 + n A_2) \cdot (-1)^n + (A_3 + n A_4 + n^2 A_5)$ Since 8n is a polynomial of degree 1 and 1 is a root of multiplicity 3 of the auxiliary equation, the minimal form of x_n^p is $x_n^p = (B_0 + nB_1) \cdot n^3 \cdot (1)^n = (B_0 + nB_1) \cdot n^3$ (d) The auxiliary equation is $(E^2+4)(E-2)^3$. So $[(E-2i)(E+2i)]^2(E-2)^3 = 0$. $(E-2i)^2(E+2i)^2(E-2)^3 = 0$.

(d) So E = zi (twice), -zi (twice), or 2 (thrice). 1. Xn = (A,+nA2)(21)"+ (A3+nA4)(-21)"+ (A5+nA6+n2A7)2". Since 10n is a polynomial of degree 1 and 2 is a root of multiplicity 3 of the auxiliary equation, the minimal form of X_n^p is $X_n^p = (B_0 + nB_1) \cdot n^3 \cdot (2)^n$. Ex5 (The Tower of Brahma again) Find the solution of the recurrence equation $x_n = 2x_{n-1} + 1$ for $n \ge 1$ with the initial condition $x_0 = 0$. Sol- Replacing n by n+1 we get $X_{n+1} = ZX_n + 1$ for $n \ge 0$, So $X_{n+1} - ZX_n = 1$. $(E-ZI)X_n = 1$. $X_{n}^{c} = A_{n}(2)^{n}$. $T_{n} \times X_{n}^{c} = B_{n}$. Then $X_{n+1}^{c} = B_{n}$. So Xn+1-2Xn = 1 becomes B-2B=1. 1, -B=1 So B=-1. Thus the general solution is $x_n = A.(a^n - 1)$ Since $X_0 = 0$, it follows that $0 = X_0 = A \cdot (2)^0 - 1 = A - 1$ $A-1=0 \implies A=1$ $X_n = A \cdot 2^n - 1 = 2^n - 1$ Ex.6 (The Plane partition problem again). Find the solution of the recurrence equation $x_n = x_{n-1} + n$ for $n \ge 1$ with the initial condition $x_0 = 1$. Sol. Replacing n by n+1, we get $X_{n+1} = X_n + n+1$ for $n \ge 0$. So $X_{n+1} - X_n = n+1$, .', $(E-I)X_n = n+1$.

```
1. Xn = A. Since 1 is a root of multiplicity
                 1 of the auxiliary equation, we should try
                                 \chi_n^p = (B + Cn) \cdot n \cdot (1)^n = Bn + Cn^2
                   x_{n+1}^{p} = B(n+1) + C(n+1)^{2}. So x_{n+1} - x_{n} = n+1
                  becomes B(n+1) + C(n+1)^2 - Bn - Cn^2 = n+1
                   ... (C-C)n^2 + (2C+B-B)n + (B+C) = n+1
                    1.2C = 17 \Rightarrow C = 1/2
                          B+C=1 \Rightarrow B=1-C=1-1/2=1/2.
                    '. X_n^p = Bn + Cn^2 = \frac{1}{2}n + \frac{1}{2}n^2. So
                                    X_n = X_{n^0}^c + X_n^p = A + \frac{1}{2}n + \frac{1}{2}n^2
                 But xo=1: So 1 = A+ 2(0)+2(0)2 => A=1
                    '. \chi_n = 1 + \frac{1}{2}n + \frac{1}{2}n^2 = \frac{1}{2}(n^2 + n + 2)
            The method we used to solve the constant coefficient
            linear recurrence eg. is called the E-methd. Un-
              fortunately, the E-method cannot easily handle variable coefficients or complicated RHS such as 2nd.
Ex.7 Find the solution of Xn-n. Xn-1=3(n!) with X0=2
                  Let Y_n = X_n/(n!). Then X_n = (n!).Y_n & Y_0 = X_0 = 2
                  S_0 (n!) / n - n. (n-1)! / n-1 = 3(n!) Thus
                     (\frac{y_n - y_{n-1}}{n!}) n! = 3(n!) (\frac{y_n - y_{n-1}}{n!}) = 3
                  So Y' = A.(1)"=" Also try Yn = Bn. Then
                   \frac{y_{n}^{p} - y_{n-1}^{p}}{1 - y_{n-1}^{p}} = 3 becomes Bn - B(n-1) = 3
                    \frac{1}{1}, B = 3 \frac{1}{1}, \frac{1}{1} \frac{1}
       \gamma_0=2, we get 2=\gamma_0=A+3(6) \Rightarrow A=2.
                  y_n = 2 + 3n. Hence x_n = (n!)y_n = (2 + 3n)(n!).
```