

KAMK • University of Applied Sciences

Digitaalisen signaalinkäsittelyn perusteet

Signaalien ominaisuuksia ja muunnoksia

> Taneli Rantaharju 044 7101 253 taneli.rantaharju@kamk.fi Työhuone TA13H115

• Jatkuva-aikainen signaali on parillinen, mikäli kaikilla t:n arvoilla on voimassa

$$x(t) = x(-t)$$

- Parillista signaalia sanotaan myös symmetriseksi.
- Vastaavasti signaali on pariton, mikäli

$$x(-t) = -x(t)$$

Paritonta signaalia sanotaan myös antisymmetriseksi

Kuva. a) Parillisia signaaleja. Lähteet: http://mathworld.wolfram.com/OddFunction.html

Signaalien ominaisuuksia ja muunnoksia Parittomia signaaleja

Ehto x(-t) = -x(t) toteutuu

Kuva. b) Parittomia signaaleja. Lähteet: http://mathworld.wolfram.com/OddFunction.html

- Signaali $x(t) = A\cos(\omega t)$ on parillinen signaali, ja signaali $x(t) = A\sin(\omega t)$ on pariton.
- Yleisen sinisignaalin $x(t) = A\sin(\omega t + \theta)$ parillisuuteen voidaan vaikuttaa vaihekulman θ valinnalla. Vastaavalla tavalla voidaan määritellä myös parillinen ja pariton diskreettiaikainen signaali.

Funktioiden parillisuuden ja parittomuuden tarkastelua

Onko funktio $f(x)=x^3$ parillinen tai pariton?

Funktioiden parillisuuden ja parittomuuden tarkastelua

Onko funktio $f(x)=x^3 + 1$ parillinen tai pariton?

Funktioiden parillisuuden ja parittomuuden tarkastelua

Onko kuvan signaali parillinen tai pariton?

Parillisten ja parittomien funktioiden ominaisuuksia

Function type	Sum	Difference	Product	Quotient
Both even	Even	Even	Even	Even
Both odd	Odd	Odd	Even	Even
Even and odd	Neither	Neither	Odd	Odd

Lähde: http://slideplayer.com/slide/4598501/

Introduction to Signals & Systems By: Dr. AJAY KUMAR Associate Prof. ECE BCET Gurdaspur.

Signaalien skaalaaminen: kutistaminen ja levittäminen aikatasossa

Example: Given x(t) and we are to find y(t) = x(2t).

Lähde: http://slideplayer.com/slide/4598501/

Introduction to Signals & Systems By: Dr. AJAY KUMAR Associate Prof. ECE BCET Gurdaspur.

Signaalien skaalaaminen: kutistaminen ja levittäminen aikatasossa

• Given
$$y(t)$$
,
- find $w(t) = y(3t)$
and $v(t) = y(t/3)$.

Lähde: http://slideplayer.com/slide/4598501/

Signaalien skaalaaminen: kutistaminen ja levittäminen aikatasossa (sinisignaali)

Tarkastellaan sinisignaalia x(t)=sin(t)

- Alkuperäinen signaali x(t)=sin(t), vasemmanpuoleisin kuva
- Signaali y(t)=sin(2*t), keskellä oleva kuva
 - ✓ Signaalin taajuus kasvaa eli argumentin kertominen tekijällä, joka on suurempi kuin 1, kasvattaa signaalin taajuutta
- Signaali g(t)=sin(0.5*t), oikeanpuoleisin kuva
 - ✓ Signaalin taajuus kasvaa eli argumentin kertominen 1:stä pienemmällä tekijällä alentaa signaalin taajuutta

- Signaalia voidaan siirtää vaakasuorassa oikealle (viivästää) vähentämällä argumentista t siirron suuruuden osoittava vakio τ
- Vastaavasti siirto vasemmalle (aikaistus) tapahtuu lisäämällä argumenttiin vakio τ

- Sinisignaalin $x(t) = sin(\omega t)$ viivästäminen ja aikaistaminen
- Matemaattisesti viivästäminen vasta operaatiota $x(t) \to x(t-\tau)$, kun taas aikaistaminen vastaa operaatiota $x(t) \to x(t+\tau)$,

• Signaali voidaan peilata pystyakselin suhteen vaihtamalla argumentin t tilalle -t

- Signaalin peilaaminen ja siirtäminen voidaan yhdistää
- Asiaa on havainnollistettu kuvassa muodostamalla funktio f (T-t), missä T = 3 ja -3.

- Yhdistetty operaatio voidaan ajatella tapahtuvan siten, että suoritetaan ensin peilaus ja sitten siirtäminen tai päinvastoin.
- Kuvassa operaatio on suoritettu muodostamalla ensin peilaus eli funktion f(t) muuttuja t on korvattu -t:llä
- Vaadittu operaatio f(T-t) saadaan muodostamalla f[-(t-T)] = f(T-t), mikä tarkoittaa sitä, että argumentti t on korvattu (t-T):llä peilatussa funktiossa, eli sitä siirretään T:n verran oikealle
- Kuvan d)-kohdassa T = -3, eli negatiivinen T:n etumerkki aiheuttaa siirron vasemmalle.

- Signaalia voidaan kutistaa vaakasuorassa suunnassa kertomalla argumentti t vakiolla, joka on suurempi kuin yksi
- Vastaavasti kerroin, joka on pienempi kuin yksi levittää signaalia vaakasuorassa suunnassa

• Kiteytys signaalioperaatioista

Some Useful Signal Operations

• Time shifting $g(t-\tau)$ (shift right or delay)

$$g(t+\tau)$$
 (shift left or advance)

Time scaling

```
g(at), |a| > 1 is compression g(at), |a| < 1 is expansion g(\frac{t}{a}), |a| > 1 is expansion g(\frac{t}{a}), |a| < 1 is expansion g(\frac{t}{a}), |a| < 1 is compression
```

Toisin sanoen

- Alkuperäinen signaali on x(t)
- Siirretty signaali on x(t-T)
- Jos T>0, signaali viivästyy eli siirtyy oikealle
- Jos T<0, signaali aikaistuu eli siirtyy vasemmalle

Yksikköympyrä

Kiertosuunta vastapäivään = positiivinen kulma

Kiertosuunta myötäpäivään = negatiivinen kulma

 $cos(\theta)=x$ $sin(\theta)=y$

 $\cos^2(\theta) + \sin^2(\theta) = 1$, missä θ on kulma

Toinen kirjoitusmuoto yo. yhtälölle on $(\cos \theta)^2 + (\sin \theta)^2 = 1$

Lähde: https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Unit_circle_angles_color.svg/1024px-Unit_circle_angles_color.svg.png

Sini ja kosini, jaksollisuus

- Sini- ja kosinimuotoisten signaalien interaktiivinen esitys http://www.intmath.com/trigonometric-graphs/1-graphs-sinecosine-amplitude.php
- Jaksolliset signaalit https://learn.digilentinc.com/Documents/130

KAMK • University of Applied Sciences

www.kamk.fi