REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Contont that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to the services and Contont countries.

			shall be subject to any pena THE ABOVE ORGANIZA		ly with a	0449
1. REPORT	OATE (DD-MM-Y 07/08/2004	YYY) 2. REI	PORT TYPE FINA			3. DATES CQYERED (From - To) 04/01/02 - 03/31/04
PREDICTIV DOCUMEN	TLE: POLYNIC E THEORY T TITLE MET	ASTABLE M	ELS: THE CONTRIB OLECULES IN GRO SIGN WITH THEOR	OUND AND		NTRACT NUMBER F49620-02-1-0146 ANT NUMBER
					5c. PRO	OGRAM ELEMENT NUMBER
6. AUTHOR(S RODNEY J	S) BARTLETT			***	,	DJECT NUMBER
					5f. WO	RK UNIT NUMBER
UNIVERSIT DIVISION O 219 GRINTE	Y OF FLORID F SPONSORE	DA ED RESEARCI	AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER FINAL-1
			ME(S) AND ADDRESS(I	ES)		10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S)
	FION/AVAILABIL FS INTENDED				^	00/007 000
13. SUPPLEMI	ENTARY NOTES			-	- 2	0040907 050
FREQUENC NITROGEN	S FROM FISC IES FOR A PO MOLECULES	LYMERIC NI WHERE COC	TROGEN SPECIES; DREINATE COVALI	; EXPLORED A ENT BONDS T	A VARIET O O ARE	CTURE AND VIBRATIONAL TY OF OXYGEN SUBSTITUTED E INTRODUCED; FINALIZED STUDIES N ITS GROUND AND EXCITED
15. SUBJECT						
16. SECURITY a. REPORT U	CLASSIFICATIO b. ABSTRACT U		17. LIMITATION OF ABSTRACT UU	18. NUMBER OF PAGES 75	Antoinet	te OF RESPONSIBLE PERSON tte Knight PHONE NUMBER (Include area code) 352-392-7545

ACKNOWLEDGMENTS

DARPA--Art Morrish, Don Woodbury

Don Kimble, Doug Ladouceur, Gail Heim

AFOSR--Mike Berman

DARPA FINAL REVIEW June 3, 2004 Arlington, VA

Metastable Molecules in Ground and Excited States: Molecular Design with Theory

RODNEY J. BARTLETT

Quantum Theory Project
Departments of Chemistry and Physics
University of Florida
Gainesville, Florida USA

Work supported by DARPA

Rocket Science: Science: Science of the future?

OUR CHARTER FROM HEDM (1989)...

THAT WILL LEAD TO "REVOLUTIONARY" PROPOSE NEW WAYS TO STORE ENERGY IMPROVEMENTS IN SPECIFIC IMPULSE

CHEMICAL STORAGE

Electronic Metastability

Trapping Electrons in High Energy States (~1-10³eV/g)

Geometric Metastability

Unusual bonding patterns (~10-100kcal/g)

Pure Nitrogen species, and beyond

Proceedings of the High Energy Density Materials Contractors Conference, Feb. 1990, Long Beach, CA, pp 25-28, Lauderdale, W.J., Myers, M.J., Bernholdt, D.E., Stanton, J.F., Bartlett, R.J. in

EXTENDED ABSTRACT:

POLYNITROGEN FUELS: THE ROLE OF THEORY

Rodney J. Bartlett, Stefan Fau, Ken Wilson, Ajith Perera Quantum Theory Project Departments of Chemistry and Physics University of Florida, Gainesville, FL. 32611-8435

in payload. Metastability can occur due to long-lived excited states of a molecule, but no solution to lightweight yet have more energy per mass unit than known bi-propellant species like LOX + H₂; or energy content of potential rocket fuels. The avowed objective of the initial HEDM program was to a molecule like hydrazine, as a mono-propellant. Since the molecules to be proposed are not known metastability' in molecules, meaning states whose energies are far above the norm even for highly explore ways to make potentially revolutionary improvements in thrust to provide significant gains expensive and difficult; only predictive quantum chemical methods makes it possible to assess the energy content and kinetic stability (barrier to dissociation) of such structures, to identify the best trapping such states is apparent. The other alternative is what we termed 'geometric metastability' prospects for success prior to any synthetic effort. Modern quantum chemistry also provides very which means to put atoms together into a molecule in unusual ways, and depend upon the bonds endothermic molecules. A consequence of such an investigation, might be ways to enhance the experimentally, and since synthesis and characterization of candidate systems would be very accurate spectroscopic signatures to identify such energetic molecules when they are formed, formed to store the energy. An additional condition was that the perspective fuels had to be In 1989 we submitted a proposal to the AFOSR on the basic research topic of investigating frequently even in very small quantities.

bonds known. This may also be viewed less quantitatively as increasing the N-N repulsions, since unlike exceeding that of TNT. N₈ would also be very effective, though its computed barrier is about half that of Feb, 1990, [1]. We reported the I_{sp} of N_4 would exceed LOX + H_2 and that it has a barrier to dissociation CH-, N- carries a lone pair of electrons with it. As the perfect all nitrogen molecule would also 'burn' to suggesting their probable formation under appropriate (not usually easily obtained) conditions. Our first just N₂ there would even be the bonus that it would be innocuous to the atmosphere and would leave no atoms in a tetrahedral configuration, N₈ or the nitrogen analog of cubane, various pentazole species like signature. Hence, in our proposal we suggested fascinating, speculative molecules like N₄ with the four report showing these results is in the Proceedings of the High Energy Density Materials Conference, in In our proposal we focused on low-mass molecules which had the capacity to store very large amounts NaN₅, N₅-N₅, and a wealth of others involving high nitrogen content together with heteroatoms. None were known experimentally, but according to high level, predictive quantum chemical calculations, all particular, purely nitrogen molecules. Replacing CH groups in an organic molecule by nitrogen atoms can significantly increase its endothermicity since the standard state for N is N₂, one of the stronger of energy per mass unit. The prototype for such molecules would be polynitrogen systems, and in could be shown to store large amounts of energy and to have significant barriers to dissociation, N_4 [2]. We made similar studies of pentazole derivatives [3].

been a potential observation of N₄ [4}, using our predictions of the vibrational spectra and IR and Raman Our suggestions were pursued in the AFOSR HEDM program, and then in this DARPA program, with the avowed intent to synthesize some of these pure nitrogen species. In the DARPA program there has can replace the As F₆ [6] group with a light, suitable anion. If it were also composed of only nitrogen, intensities for identification [5]. Also substantial success has been achieved with the synthesis of N₅⁺ AsF₆, however, that molecule is still a long way from a pure nitrogen species or even a fuel, until we we would meet our objective. Through this work we now have the N₅⁺ unit as a potential partner in forming purely nitrogen species.

Some Energetic Considerations in Polynitrogen Chemistry

 $\Delta H_f(Kcal/mol)$

Bond Energy

 ~ 40 ~ 120 **0**40 -N-N-Z

- 'N :: N-

 \sim 28

 $\sim \! 100$

-N=N-

91~

N=N

226

Courtesy of Bill Koppes at NSWC-IH

TEAM MEMBERS

Stefan Fau, Postdoc Ken Wilson, Received Ph. D. Motoi Tobita, Received Ph. D. Rafael Podeszwa, Postdoc, Polymers Ajith Perera, Associate Scientist

ANNUAL FUNDING ~\$70K

SPECIFIC OBJECTIVES

- •Explored the limits of metastability in molecules
- Proposed novel, high energy structures, like N4, N8, N5-, N6O3, and many, many others
- Assessed prospects for their energetics and stability by applying the predictive, state-of-the-art Coupled-Cluster, quantum chemical methods we have introduced.
- like Raman intensities for identification and detection of unknown Developed new methods as required to describe properties, molecules.
- Provided theory support to the experimental effort.
- of possible energetic molecules, by seeing them as dimers, trimers, etc Attempted to bring some order into the generation of vast numbers of common units.

Some Highlights of Our DARPA Work

- Provided the reference theoretical results required in the identification of the transient N_4 Molecule [5].
- Developed new coupled-cluster methods for obtaining accurate Raman intensities, which are crucial to the identification of many polynitrogen species including $N_4[5]$.
- two molecules excited [9]. (It would be better to have a cyclic N_3+N) Showed that it is unlikely to be able to synthesize N₄ without one or
- Demonstrated that an ionic lattice composed of N₅⁺ and N₃⁻ is not likely to exist [7].
- Proposed that the next target for the DARPA program should be to synthesize the pentazole anion, N₅-, the 'inorganic benzene' [8].
- couple-cluster methods, including its energetics, structure, vibrational frequencies, and IR and Raman intensities, and its UV-vis (electronic Predicted the properties of the pentazole anion using our high level excited state) spectrum [5].

- and Raman intensities for all, and for selected molecules, excited and ionized species, their cations and anions. We provide the vibrational frequencies, IR state information. This information is collected into a Compendium that can Performed a large number of high level quantum chemical calculations to survey all stable purely nitrogen species, from N_2 to N_{10} and some larger be downloaded from my web page [11].
- long sought N₆ pseudo-benzene ring to form. We report detailed studies of its which by virtue of its three coordinate covalent bonds to oxygen, permits the Recommended that we seriously consider synthesis of the N₆O₃ molecule,
- activation barrier and properties in a recent paper [12].
- hydrazine, to assess strutures, Heats of Formation, and vibrational frequencies. Made an extensive study of potential molecules that are generalizations of Also considered Li substitution for H. This information is collected into a second Compendium that can be downloaded from my webpage[14].

HIGHLIGHTS FROM FISCAL 7

- nitrogen species. Extensions to two and three diminensions need to be made to suggest some exciting, novel, energetic forms. Also studied polymeric form of Determined the optimum structure and vibrational frequencis for a polymeric studies of polymeric oxygen, and nitrogen oxygen combinations are likely to help to fully characterize potential high pressure forms of nitrogen. Similar CO. Found it to be barely stable[P1]
- balance. We also considered substituting CH- for a N atom in N₅⁺ and N₅⁻ and P • Explored a variety of oxygen substituted nitrogen molecules where coordinate covalent bonds to O are introduced. These structures make it possible to form a perfect six nitrogen atom ring, or to form various N₅O_x alternatives that offer almost the same ionization potential as N_5 - with better stability and oxygen for N[P2].

(Cont)

- for Heats of Formation, finding that for such large molecules that results of various methods, DFT, NDDO, MBPT2, to CC theory • Finalized studies of azacubanes and nitroazacubane. Compared DFT is not very accurate[P3].
- including DEA-STEOM, EOM-CCSDT, MR-AQCC, MR-BWCC, etc. and its highly degenerate valence excited states requires the whole Demonstrated that the demands of its Van der Waals ground state Recommend this molecule as an essential test of any new method •Did a study of the NO dimer in its ground and excited states. set of quantum chemical tools we have developed recently, developed in quantum chemistry[P4].

REFERENCES / PUBLICATIONS

- 1. Lauderdale, W.J., Myers, M.J., Bernholdt, D.E., Stanton, J.F., Bartlett, R.J. in Proceedings of the High Energy Density Materials Contractors Conference, Feb. 1990, Long Beach, CA, pp 25-28, AFOSR.
 - 2. Lauderdale, W.J., Stanton, J.F. & Bartlett, R.J., J. Chem. Phys., 1992, 96, 1173-8
- 3. Ferris, K.F. & Bartlett, R.J., J. Am. Chem. Soc., 1992, 114, 8302-3.
- 4. Perera, S.A. & Bartlett, R.J., Chem. Phys. Lett., 1999, 314, 381.
- 7. Fau, S. & Bartlett, R.J. J. Phys. Chem. A., 2001, 105, 4096-4106.
- 8. Bartlett, R.J., "Exploding the Mysteries of Nitrogen," Chemistry and Industry, 2000, 4, 140-143.
- 9. Korkin, A.A., Balkova, A., Bartlett, R.J., Boyd, R.J. & Schleyer, P.v.R., J. Phys. Chem., 1996, 100, 5702-14.
- 10. Bartlett, R. J., Fau, S., Tobita, M., Wilson, K., Perera, S. A., "Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics," 2002, http://www.qtp.ufl.edu/~bartlett/downloads/polynitrogen.pdf
 - 11. Fau, S., Wilson, K., & Bartlett, R. J. J. Phys. Chem., 2002, 106, 4639-44.
- 12. Wilson, K.J., Perera, S.A., Watts, J.D.& Bartlett, R.J., J. Phys. Chem. 2001, A105, 7693-99.
 - 13. Tobita, M. & Bartlett, R. J., J. Phys. Chem. A., 2001, 105, 4107-4113.
- 14, R. J. Bartlett, M. Tobita, "Predicted Structures and Spectroscopi Charateristics of Hydrazine, their derivatives, and Lithium Subsittued Hydrazines. "2003, http://www.qtp.ufl.edu/~bartlett/downloads/hyrazine.pdf.
 - 16. Korkin, A.A. & Bartlett, R.J., J. Am. Chem. Soc., 1996, 118, 12244-5.
- P1. R. Podeszwa, R. & R. J. Bartlett, "Prospects for a polymer of carbon monoxide," Int. J. Quantum Chemistry,
- coupled cluster methods: Geometry, harmonic frequencies, and excitation energies of (NO) 2, J. Chem. Phys, 119, P2. M. Tobita, S.A. Perera, M. Nooijen and R.J. Bartlett, "A critical comparison of single- and multi-reference 10713-10723 (2003)
- P3. S. Fau, R.J. Bartlett, "Changing the Properties of N5+ and N5- by Substitution" Advances in Energetic Materials, (P.Politzer editor), 2004.
- P4. K. Wilson, A. Perera, J. S. Stanton, S. Beck & R. J. Bartlett, "Azacubanes and Nitroazacubanes", J. Phys. Chem., submitted.

SPECIFIC PRODUCTS PRODUCED

Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics

Rodney J. Bartlett

Stefan Fau Motos Tobita Ken Wilson Ajtih Perera Quantum Theory Project P.O. Box 118435
University of Florida Geinesville. FL 33511-8455
(352)-392-6974
burtlen @qqp uff.edu

This week is suggested by AFOSR-DARPA (F49620-98-1-0477)

To the professional

Predicted Structures and Spectroscopic Characteristics of Hydrazine, Lithium-substituted Hydrazine and Their Higher Derivatives

Rodney J. Bartlett

Coworker: Mr. Motoi Tobita Quantum Theory Project
P.O. Box 118435
University of Florida
Gainesville, FL 32611-8435
(352)-392-6974
bartlett@qp.ufl.edu

This work is supported by AFOSR-DARPA (F49620-98-1-0477)

ACES II

UNIQUE QUANTUM CHEMICAL METHODS

- CCD, CCSD, and CCSD(T) [and QCISD, QCISD(T)] analytical gradients for open-and closed-shell systems, using RHF, UHF and ROHF references
- Full CCSDT for open and closed shells
- CCSDTQ and CCSDTQP for closed shells
- CCSDT(Qf) and CCSD(TQf)
- RHF, UHF MBPT(4) analytical gradients
- ROHF-MBPT(2), MBPT(3) and MBPT(4) energies, and gradients
- CC/MBPT analytical gradients using general contractions (atomic natural orbitals).
- Quasi-restricted Hartree Fock (QRHF-CC) methods and associated analytical gradients
- Analytical first-order property evaluation at the CC/MBPT levels using the "Relaxed Density"
- Ab Initio DFT

- EE-EOM-CCSD methods for excited states
- EA-EOM-CCSD for electron attachment
- Any order TDHF for frequency dependent hyperpolarizabilities
- Analytical EOM-CC NMR spin-spin coupling constants andother second-order properties
- Multiplicity monitoring for UHF based correlated calculation
- IP-EOM-CCSD for ionization process
- TD-CCSD open-shell singlets and analytical gradients
- EE-EOM-CCSD(T), EE-EOM-CCSDT-3, and EE-EOM-CCSDT
- STEOM CC for excited states
- IP-EOM-CCSDT for ionization processes.
- UHF and ROHF analytical MBPT(2) hessians

OF-THE ART IN ENERGETIC ADVANCES IN THE STATE-MATERIALS RESEARCH

HEDM EFFORT, HAS CHANGED THE WAY THIS PROGRAM, AND THE AFOSR WE THINK ABOUT MAKING NEW ENERGETIC MATERIALS. IT HAS GREATLY BROADENED PERSPECTIVE!

OUTLINE

- Why Theoretical Design of Energetic Molecules?
- The Pentazole Anion, an example where predictions were verified by experiment.
- Variations on a theme, using N-O bonds.
- A. with CH replacing N.
- B. with P replacing N.
- Generalizations of Hydrazine
- •Azacubanes and their nitro derivatives.

Rational Quantum Chemical Design

Role of Theory

•Relative Energetics

·Molecular Structure

ullet $\mathbf{H}_{\mathbf{f}}$ and $\mathbf{H}_{\mathbf{f},\mathbf{x}\mathbf{n}}$

•Activation Barriers (巡E‡)

•Potential for Excited State Decomposition Paths

Spectroscopic Detection

·Vibrational Frequencies

•Infrared Intensities

·Raman Intensities

Ultraviolet-Visible Spectra

•NMR and ESR Spectra

Photoelectron Spectra

Potential Synthetic Routes and Excited State Paths

A quote...

ideas and new approaches to the computation of lattice gauge theory...and a rich source of new computational area that is fifty years ahead of "Ab initio quantum chemistry is an emerging many femion systems."

Ken Wilson,

Ab initio quantum chemistry: A source of ideas for lattice gauge theorists, Nuclear Physics B - Proceedings Supplements, Volume pgs. 82-92 September 1990 (1989). ——University of Florida: Quantum Theory Project

And more from Ken Wilson

"There are roughly 106 classified chemical compounds at properties to compute and/or measure: binding energies, spectacular opportunity for the future lies in compounds electron density, atomic structure, spectra (vibrational, rotational, and electronic), reaction rates, electron and the present time. Each individual molecule has many not yet synthesized or classified...92⁽¹⁰²³⁾ ...These molecular scattering cross sections. However, the unexplored forms of matter contain innumerable surprises...

——University of Florida: Quantum Theory Project

Dissociation of N₅⁻: Energy differences in kcal/mol

N₅ D_{5h} ¹A₁ (CCSD(T)/aug-cc-pVTZ) Structure

Vibrational frequencies

Depolarization		
tic		
zai		
717	tic	0.000 5.000
al	a	The second secon
0	\mathbf{R}	
g S		A CONTRACTOR OF THE CONTRACTOR
\sum_{i}		
		A STATE OF THE STA
U	ty	Administration of the control of the
Raman	\mathbf{Si}	\circ \circ \circ \circ
m	m	A THE PROPERTY OF THE PROPERTY
Sa	ıte	T
	If	
	Y	
	sit	
\mathbb{R}	ns	
	Intensit	
	Im	
1		
uency		$\sim \sim \sim \sim$
ue		
n		4.5.2.5
þą		
Ţ		
$\mathfrak{m}.$		
M		
УĪ		
S		
		A CONTRACTOR OF THE PROPERTY O
		- 0 0 4 V

N₅- D_{5h} ¹A₁ (EOM-CCSD/PBS//B3LYP/aug-cc-pVDZ) Vertical Excitation Energies by EE-STEOM

	Mult.	Symmetry	Excitation energy C	Osc. Strength
			(eV)	
	Singlet	E'.,		0
	Singlet	E2,		0
	Singlet	· <u>n</u>		
	Singlet	臣,		0.156
	Singlet	E2.*	7.02 miles	0
	Singlet	A_2 "		0.081
	Singlet	Á,"	7.48	0
	Singlet	· L		0
	Triplet	Ē,		0
E. 7. 19	Triplet	, П		
E. 1. 6.10 E. 1. 6.87 E. 1. 7.19	Triplet	$\dot{\mathbb{D}}_2$		0
五 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8	Triplet	A2",		0
E. 7.19	Triplet	E_2 ,		0
五 万 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Triplet	À		0
F2. 7.19	Triplet	\mathbf{E}_1 .		0
	Triplet	г. П		0
	Triplet	A.	p savonoji Savonoji Savonoji Savonoji Savonoji	0

Vertical Electron Detachment Energies (Ionization Potentials) of N₅ by IP-EOM

	65 (3 m) 60 (3) (4 m) 4 m) 6 m) 6 m) 6 m) 6 m) 6 m) 6 m)
IP (eV)	5.58 5.65 6.14 9.98 10.58
e)	2 6 6 7
)	
\circ	0 0 0 1
	Control Marie Control
	4844
\sim	
tr	
Symmetry	$\begin{array}{l} E_1?\\ E_2?\\ E_2.\\ A_1;\\ A_2? \end{array}$
u	[, _, '~, _, '.']
Ħ	田原田女子
ΙL	
\mathbf{x}	
S	
	* * * * * *
į,	
1	
Mult.	
\geq	
	Doublet Doublet Doublet Doublet

Vertical Electron Affinities by of N5 by EA-EOM

EA(eV)	5.36 5.95 6.53 7.72 7.84
Symmetry	$egin{array}{c} A_{2}^{\prime\prime}, & & & \\ E_{2}^{\prime\prime}, & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ $
Mult.	Doublet Doublet Doublet Doublet Doublet

Simulated Photoelectron Spectrum

set and IP-EOMCC calculations (order is reversed in SCF). The third state lies Two lowest vertical transitions at 5.57 (E11) and 5.64 (E111) eV in PBS basis at 6.15 eV and has E2' symmetry.

As seen vibronic coupling and complicated JT distortions shift the origin of the neak by about 0.8 eV! Marcel Nooiien. Princeton A word about 'adiabatic' transitions...

ORIGIN OF THE BAND IN THIS SPECTRUM, I.E. THE ADIABATIC TRANSITION, IS NOT THE SAME VALUE AS THE HEAT OF REACTION, NOTE THE VALUE FOR THE

$$h \mathbb{N}_5 + N_5 - \rightarrow [N_5] + e \rightarrow N_2 + N_3 + e \Delta H$$

Despite the fact that $[N_5]$ is not a minimum on the energy surface the structure is changed from the original anion due to vibronic effects, and the spectra samples that.

EXPERIMENTS

Ostmark reported observing the pentazole anion in mass spec

Vij, Christe, et al mass spect

Ostmark, et al further observation

Butler in solution, identified by NMR

Super nitrogen structures

Allotropes of carbon are a girl's best friend. Or so they say. New research indicates that allotropes of nitrogen may be a scientist's best friend. A collaborative team of scientists from Galway University, ireland, and Rutgers University in Camden, New Jersey, US, has isolated the pentazole anion – a five-membered nitrogen ring and one of nitrogen's rare allotropes – for the first time in solution (Chem. Commun., 2003, 8, 1016).

The Irish scientists' search for pentazole was prompted by a discovery in the early 1990s of a new

nitrogen oxide, N₄O, which formed a stable solid at -110°C. Team leader Dick Butler, and his colleague at Galway University, Anthony Fox, predicted that replacing the oxygen atom in N₄O with a nitrogen atom attached to an aryl group would result in an aryl diazoazide species (Ar-N=N-N₃) - a suspected intermediate in aryl pentazole formation.

The Galway group then set about isolating pentazole from aryl pentazoles. The problem the researchers faced was how to cleave the strong aryl-nitrogen bond – a

hetero-bond that is notoriously difficult to break – without breaking up the fragile pentazole ring. Butler's clue came from a reported quinone synthesis that used ceric ammonium nitrate (H₈CeN₈O₁₈) to cleave an aryl-oxygen bond. Using this method, the team successfully isolated pentazole from N-p-methoxyphenyl pentazole.

Luke Burke, Butler's co-worker from Rutgers, identified Zn²⁺ as the most suitable cation to hold the highly acidic N₅ ion in solution. He also determined the theoretical ¹⁵N NMR shift for the molecule, allowing the scientists to confirm that their molecule was the long sought-after pentazole.

CHEMISTRY IN BRITAIN, MAY, 2003

Pentazole derivatives... HN_5

 N_5 --- N_5

■ 1st IP Calc. ■ 1st IP Exp.*

* S. Cradock, R. H. Findlay and M. H. Palmer, Terrahedron 25 2173 (1973)

■ 2nd IP Exp.*

■ 2nd IP Calc.

* S. Cradock, R. H. Findlay and M. H. Palmer, Terrahedron 25 2173 (1973)

■ 3rd Calc. ■ 3rd Exp. *

* S. Cradock, R. H. Findlay and M. H. Palmer, Tetrahedron 25 2173 (1973)

* S. Cradock, R. H. Findlay and M. H. Palmer, Tetrahedron 25 2173 (1973)

Organization of Energetic Molecules

SOME ENERGETIC UNITS OF INTEREST

NH, NH, NNO O₂N -CN O₂N-NC O₂N-CC-H OCN-CC-H OCN-CC-H

O₂N-CC-NO₂

dimers, trimers, etc. of pure and mixed Form monomers, units.

FURTHER DESIGN VIA QUANTUM CHEMISTRY...

Consider the role of the N-O bond in alleviating some of the instability of pure nitrogen systems;

Or replace N by CH;

Or substitute P for N.

Heats of Formation (298.15 K, 1 bar) with different basis sets

CCSD(T)-fc/X//CCSD(T)-fc/6-31G* using the reaction a $N_2 + b O_2 + c e^- \rightarrow N_x O_y/N_x O_y^-$

	6-31G*	cc-pVDZ	cc-pVTZ	cc-pVDZ cc-pVTZ CBS2(XZ)	exp.
N_3	69.3	72.4	57.0	3	48.5±2.3
N_2O	24.8	23.7	21.1	0	19.61
.ON	21.7	20.4	21.5	7.77	21.58
RMS dev.	12.4	14.0	5.0	~	

CBS2: A two-point extrapolation derived from the three-point extrapolation given by Peterson, Woon & Dunning.

$$A_X = A_{\infty} + Be^{-(X-1)} \Big[+ Ce^{-(X-1)^2} \Big]$$

The two-point formula for X=D,T is:

$$A_{\infty} = A_D + \frac{e^{-1}}{e^{-1} - e^{-2}} (A_T - A_D) = A_D + 1.5820 (A_T - A_D)$$

Heats of Formation at CCSD(T)-fc/CBS2(cc-pVDZ,cc-pVTZ)//CCSD(T)-fc/6-31G*

8.69

Possible Dissociation Reactions and Relative Enthalpies (CBS2)

Energies: Extrapolation of CCSD(T)-fc/cc-pVDZ and cc-pVTZ single points Accuracy for NO, N3, and N3- better than 0.5 kcal/mol Geometries, Frequencies: CCSD(T)-fc/6-31G*

Vertical Ionization Potentials and Electron Affinities from EOM-CCSD/PBS

exp.									4.3	4.73±0.06
EOM-CCSD	5.4	3.9	3.9	3.8	3.8	4.3	4.1	dariga a Amija		4.5
	Ns.	N_5O^-	$1,3-N_5O_2^-$	$1,2-N_5O_2^{-}$	$1,2,4-N_5O_3^{-}$	$1,2,3-N_5O_3^{-}$	$N_5O_4^{-}$	N505	CH ₃ NH ₃ ⁺	$\mathrm{NH_4}^+$

N₅⁺ Derivatives with One or Two Phosphorus Atoms

Geometries and frequencies of all derivatives at CCSD(T)-fc/6-31G*

Electron affinities (in eV) by EA-EOM-CCSD/PBS single point calculations

lectron affinities (in eV) by EA-EOM-CCSD/PBS single point calculations

$$N_5^+$$
 6.1

 $1-N_4P^+$ 6.4

 $3-N_4P^+$ 6.4

 $3-N_4P^+$ 6.2

 $1,2-N_3P_2^+$ 7.7

 $1,3-N_3P_2^+$ 7.6

 $1,4-N_3P_2^+$ 7.8

 $1,5-N_3P_2^+$ 7.8

 $1,5-N_3P_2^+$ 7.8

 $1,5-N_3P_2^+$ 7.8

 $1,5-N_3P_2^+$ 7.7

 $1,5-N_3P_2^+$ 7.8

 $1,5-N_3P_2^+$ 7.8

 $1,5-N_3P_2^+$ 7.7

 $1,5-N_3P_2^+$ 7.7

 $1,5-N_3P_2^+$ 7.8

 $1,5-N_3P_2^+$ 7.7

 $1,5-N_3P_2^-$ 7.7

 $1,5-N_3P_2$

 $2,3-N_3P_2^+$

7,4-N3P2+

EXTENSIONS OF HYDRAZINE

Investigation of HEDM molecules.

Propellants which are currently in use.

 N_2H_4 , Hydrazine (1,) C_{2h} , 1A_g , H=15.7 kcal/mol, L_p =185.7 sec.

2	Sym	Approximately and the second	TR Intensity	Randan () Selected Aby	Depolarization Ratio
Н	Au	-25.8	110.3	0.0	0.65
7	Ag	945.9	0.0	13.7	0.29
m	Bu	1034.4	160.8	0.0	0.61
727	Au	1104.7	 	0.0	0.61
ഹ	7	1214.5	0.0	4.0	0.06
vo	Bd	1475.7	0.0	3.1	0.75
-	Bu	1609.5	37.3	0.0	0.41
a	P.G	1671.4	0.0	6.1	49.0
0	Ag	3428.7	0.0	254.8	0.10
10	Bu	3446.2	9	0.0	0.51
11	Bg	3499.6	0.0	104.3	0.75
13	ng.	3518.3	2,2	0.0	0.70

^{2.} Dissociation into 2NH2.

CN, H., Monomethylhydrazine (MMH)
C, 13, H=15.70 kcal/mol. I,=154.7 sec

Ŀ	.3	263.8	0.2	8 0	* 9.0
(1	٠,	343.0	, 44 , 70	. 6	rr o
~	æ	4.23.4	u)	W.	0.25
**	×	4.084	29.3	w. 11	0.00
w	d	911.2	25 10	n. o	99.0
**	æ	980.3	w).	w	0.27
r-	d	1124.8	1.3	1.6	97.0
*	ď	1138.2	ø.	m, ri	00
•	ĸ	1215.2	4.	».c	0.20
22	æ	1304.7	7.9	N, A	99.0
77	×	1423.0	c.	7.0	0.15
4	et	1454.8	77.00	0.0	97.0
2	×	1470.2	o. m	1.0	F.o
7.4	×	1506.3	r; m	~	0.73
15	æ	1659.5	13.0	N,	6.63
**	**	2936.0	0.00	170.7	0.11
ä	×	3056.7	37.4	116.1	0.23
*	4	3103.1	ed. Fri	63.9	20.0
÷	ĸ	3378.6	18.0	156.0	0.11
å	*	3515.6	ø, ri	136.4	97.0
7	ĸ	3532.3	0.0	m : 60	0,75

C₂, ¹A', H_f=20.16 kcal/mol, L_p=153.5 sec

·)				Parish of the second of the se	Special Con
н	A "	154.5	35.0	0.2	,
~	, A	260.5	8.8	0.0	0.75
m	, A	277.9	1.0	6.0	0.72
₩.	, 4	412.7	4.4	1.6	0.34
S	: A	430.4	.e. ⊟	£,3	0.75
9	ব	441.5	18.1	6.1	0.23
<u>_</u>	<u>,</u>	918.6	15.0	•	0.37
∞	4	983.6	20.2	w,	0.35
01	: 4	1035.4	9.11	w H	0.75
10	ž	1092.5	0.1	φ. 0	0.75
11	A.	1100.5	6.04	w L.	0.16
12	#. **	1127.5	10.9	10.01	0.75
13	Ä	1183.8	3,1	4.00	0.32
14	A	1247.3	0.2	7.7	0.66
15	# 4	1389.9	æ.	0.0	0.75
16	ī.	1408.2	۲, ن د	2.1	0.75
17	4	1435.2	w. rr.	2.6	0.62
18	: 4	1451.6	ŭ,	5.6	0.75
	, A	1462.3	6,3	ø.0	0.72
		1471.5	€ ¶ •••	5,2	0.75
	A	1485.3	14.0	3.5	0.75
	٦.	1632,8	35.7	w w	0.75
23	: A	2947.8	50.7	24.1	0.75
	A	2956.4	103.7	291.6	0.06
	A	3066.2	35.6	52.7	0.75
26	A	3068.6	31.8	143.9	0.21
27	A.	3113.5	4.5	20.2	
28	4	3118.7	39.3	106.0	0.66
58	4	3422.3	2.0	149.6	
30	'A"	3502.4	0.1	66.6	0.75

^{7.} Dissectation into NH2 + C5NH6.

NsHs., Cyclepentazane Ct., ¹A, H=103.16 kcal/mol, I_{sp}=310.6 sec.

																								-
	0.75	0.03	0.34	0.75	0.00	0.74	0,23	0.0	0.75	0.67	0.75	0.41	0.75	0.0	0,75	0.08	0.75	0.75	0.71	0.75	0.14	0.40	0.75	*
	1.0	~	4.6	64	۲.	1.0	4.0	7,00	7.0	1.0	3.0	o, n	v. 0	15.4	0.0	4.8	9.4	9.1	7.0	20.8	296.5	57.0	n,	•
	2.3	7.0	0.7	12.1	28.1	71.7	54.8	13.9	16.6	15.5	27.0	9.86	61.5	26.7	ø,	o,	4.4	o w	0.1	0.5	r. 0	0.5	ø. 0	*
	155.7	459.4	707.8	778.7	833.2	861.4	867.5	890.7	921.5	1035.8	1038.7	1079.8	1213.4	1259.5	1368.4	1426.0	1463.4	1528.5	1532.2	3410.9	3441.5	3457.8	3482.3	* 60*0
	×	st.	ri,	nţ	ei,	n;	ĸ	ri;	ĸÇ	ri;	n;	es,	er;	ĸ	*\$	n;	**	ĸ	ĸÇ	st;	ď	ĸţ	ĸ	*1
3	٦	74	m	*	LO.	φ	r×	٥	0,	91	Ħ	ä	2	*	1.5	16	7.7	18	13	70	77	Cd Cd	33	,

24 A 3490.4 6.0 24.9

N. Open ring at D.
4. Open ring at B.
5. Distocistion into NH + N.H. (two bonds breaking at D and E).
6. Open ring at B or C.
7. Open ring at B or E.
8. Open ring at A or C.
8. Open ring at A or C.
9. Dissociation into N.H.3 + N.H., (two bonds breaking at A and C).
9. Dissociation into N.H.3 + N.H., (two bonds breaking at A and C).

N₆H₆, Paradiaminocyclotetrazane C₁, ¹A, H∈135.86 kcal/mol, I₃=325.4 sec.

N₆H₆, Aminocyclopentazane C₁, ¹A, H=121.65 kcal/mol, I₃=307.9 sec.

Lithium substituted hydrazine derivatives: N_xLi_y molecules.

C_{26.} ¹A, H=79.83 kcal/mol, L₂=317.03 sec.

Initial geometry for geometry optimization was hydrazine type structure.

Papolardzation Raito	0.41	0.46	0.75	0.00	0.45	0.75	0.73	5.0 5.0	27.0	40.0	0.62	0.0
	0.0	0.0	0.0	973.4	196.0	149.2	58.0	0.0	143.9	0,0	0,0	325.9
	0.0	40.7	40.8	0.0	0.0	0.0	0.0	299.0	0.0	214.8	214.9	0.0
	219.1	375.3	376.0	472.8	484.5	485.3	486.3	514.5	597.6	727.6	728.0	735.1
	žu	2	2	20	Ba	29	D.	8	Bđ	70	200	0%
<u>C</u>	Н	4	m	43 4	w	ø	£	00	O,	9	Ħ	CH

^{2.}Li-Li-Li ring opening.

^{3.}Li-Li-Li-Li ring opening.
7. Li ring rupture (two bonds breaking).
10. Li-N bond breaking (two bonds breaking).
11.Li-N bond breaking (four bonds breaking).
12. Dissociation into 2.Li - No.Li.

Conclusions.

- 1. Currently used propellants have calculated Isp less than 200 sec, and the lowest dissociation mode vibrational frequency at more than 800 cm-1.
- 2. Hydrazine derivatives, especially ring compounds, have Isp about 300 to 360 sec, thus compounds must involve two bond breaking for dissociation into two fragments, the activation barrier is expected to be higher than linear molecules of similar kind. frequency is at the similar range as the currently used molecules. Also, as ring have potential as HEDM molecules. The lowest dissociation mode vibrational
- 3. Lithium substitution on hydrogen position further increases Isp without lowering of the lowest dissociation frequency. For example, Isp=440 sec for N3Li3.

Acknowledgements

This work was supported by the DARPA-AFOSR under grant number F49620-98-1-

AZACUBANES

HEATS OF FORMATION FOR LARGE AZA SUBSTITUTED CUBANES, AND THEIR -NO2 DERIVATIVES

VARIOUS LEVELS OF THEORY HAVE BEEN APPLIED: AND SEMI-EMPIRIRICAL THEORY, AM1 AND PM3. CCSD(T), MBPT(2), DFT-BLYP, DFT-B3LYP

WE ALSO REPORT RESULTS FOR -NO2 SUBSTITUTED FORMS, RANGING FROM OCTANITROCUBANE TO TETRANITROTETRAAZACUBANE.

GIVEN BY MBPT(2) AND CCSD. USING ISODESMIC REACTIONS THE MOST RELIABLE RESULTS RELATIVE TO CCSD(T) ARE SHOWS SOME IMPROVEMENT.

THOUGH THEY ARE IMPROVED WITH ISODESMIC REACTIONS. THE DFT METHODS, BLYP AND B3LYP ARE NOT RELIABLE

ARE THE LEAST RELIABLE EVEN FAILING TO GET THE TRENDS. THOUGH VERY CHEAP, THE SEMI-EMPIRICAL METHODS

Polymeric Nitrogen

So Hirata and Rodney J. Bartlett Quantum Theory Project, University of Florida, Gainesville, FL 32611-8435, USA

Table I. Optimized geometry of polymeric nitrogen.

Theory	E / hartree	ΔE / kJ mol ⁻¹	r(N=N) / Å	r(N-N) / Å	@NNN) / degree
HF/STO-3G	-107.423046	203.8	1.2772	1.4924	105.09
HF/6-31G	-108.744147	325.2	1.2186	1.4159	109.63
HF/6-31G(d)	-108.823186	317.1	1.2104	1.3985	107.94
HF/6-311G(d)	-108.849632	323.0	1.2058	1.3971	108.10
B3LYP/STO-3G	-107.951812	136.4	1.3411	1.5734	101.41
B3LYP/6-31G	-109.320803	257.5	1.2504	1.5176	106.26
B3LYP/6-31G(d)	-109.379129	243.7	1.2491	1.4324	106.05
B3LYP/6-311G(d)	-109.407887	255.1	1.2413	1.4333	106.38

Table II. Normal frequencies of polymeric nitrogen.

Theory	N=N stretch / cm ⁻¹	N-N stretch / cm ⁻¹
HF/STO 3G	1833	1334
NF/6-31G	1840	1264
HF/6-31G(d)	1902	1309
B3LYP/STO-3G	1453	922
B3LYP/6-31G	1468	785
B3LYP/6-31G(d)	1570	948
B3LYP/6-311G(d)	1566	942

Remember Ken Wilson's Quote

"There are roughly 106 classified chemical compounds at properties to compute and/or measure: binding energies, compounds not yet synthesized or classified...92(10²³) electron density, atomic structure, spectra (vibrational, rotational, and electronic), reaction rates, electron and the present time. Each individual molecule has many molecular scattering cross sections. However, the spectacular opportunity for the future lies in ... These unexplored forms of matter contain innumerable surprises..."

University of Florida: Quantum Theory Project

TECHNOLOGY TRANSITION/ MATURATION?

Rational Design of Energetic Materials Involves the Following:

- Analyze an astronomic number of possibilities
- Generate all combinations of energetic units on a computer.
- Apply a battery of theoretical tools to obtain
- a. Structural and energy/mass determination
- b. Decomposition barriers/ estimate of weakest link in molecule.
- c. Density and solid state characteristics.
- d. Electrostatic potential maps.
- Assess synthetic prospects.
- Archive.

Organization of Energetic Molecules

SOME ENERGETIC UNITS OF INTEREST

NH, NH, NNO O₂N -CN O₂N-NC O₂N-CC-H OCN-CC-H

O₂N-CC-NO₂

dimers, trimers, etc. of pure and mixed Form monomers, units.

THE RATIONAL DESIGN OF ENERGETIC MATERIALS

- •The overwhelming number of energetic molecules that could be hypothesized, some array of molecules into a workable framework for assessment and targeted synthesis. known, but vastly more unknown; requires a new approach that can organize the
- •Because of the excessive number of possible structures, the only viable way to accomplish this objective is a computer-aided strategy.
- •Elements in the procedure would include the unambiguous generation of possible molecular structures using a combinatorial schema based upon energetic units, or maybe synthons.
- including conformations and isomers; the heats of formation and reaction, and the •This would be followed by the rapid evaluation of the prospects for a particular structure by using a battery of quantum chemical tools to specify the structures, energy density.

- •Once the transition is made to the condensed phase, we need to predict the densities and crystalline stability...
- •Other characterization tools would include electrostatic potential maps, bond orders, atomic charges, etc. Molecular sensitivity could be assessed to the degree that that can be discerned from electronic structure.
- •Subsequent characterization for synthetic prospects would be added, by developing a series of criteria suggested by synthetic chemists.
- •A final screening should include appropriateness for different applications like explosives, rocket fuels, or gun propellants.
- •Genetic algorithms should enable a search of the data-base of screened possibilities to further identify an optimum subset of properties subject to a wide range of
- chemical tools as appropriate; and to offer input to further modeling as illustrated by for the computer accessibility of all structures and their critical characteristics that, •Underlying all the above is the necessity of a convenient archiving procedure on command, can be readily further characterized with higher level quantum a program like, CHEETAH, eg.