MTE481 - DESIGN CONSTRAINTS PIPE DESCALING ROBOT FOR PIPES Ø100-150MM

Angad, Annie, Francisco, Larry, Waris

BACKGROUND: Current Pipe Descaling Methods

Pigging

Chemical Cleaning

Water Jetting

BACKGROUND: Literature Review

- Pipeline robotics is a growing market 6.59%
 Compound Annual Growth Rate (CAGR) [10]
- Water jetting high energy and water cost (10k-40k psi pumps, 1,500-3,000 L/hr) [2]
- Pigging is unusable for 40-60% of pipes [1]
- Downtime costs of \$20k-\$100k/hr [10]
- For smaller diameter pipes, most solutions involve inspection, not descaling
- Current robots have difficulty navigating 90-degree bends

Report Attribute/Metric	Details
Market Size 2024	9.53 (USD Billion)
Market Size 2025	10.15 (USD Billion)
Market Size 2034	18.46 (USD Billion)
Compound Annual Growth Rate (CAGR)	6.59% (2025 - 2034)

Source: Market Research Future

Source: Cognitive Market Research

BACKGROUND: Why hasn't this been done?

- Large robotics solutions exist for large diameter pipes
- Smaller diameter pipes (100-150mm) presents packaging constraints for electronics and mechanical components
- Sharp bends/T-junctions pose a mechanical challenge
- Hard to get enough mechanical leverage from a smaller robot to descale
- High initial R&D costs
- Some solutions show feasibility of biologically inspired designs

Source: General Electric

BACKGROUND: Challenges and Potential Shortcomings

Robot sizing

- Size constraints may make it difficult to descale as chassis may not generate enough force.
- Smaller motors/actuators are at risk of overheating especially during heavy descaling loads.

Pipe constraints

- Difference in pipe material and contents may affect robot performance (e.g. friction). Varying temperature and pressure in pipe may be an issue.
- Mobility through curved and 90° bends while cleaning will be difficult.
- Pipe damage and erosion is possible.

Safety

- Robot must be cleaned after use to de-risk cross-contamination with other pipes.
- Use of high-pressure water must be monitored.

BACKGROUND: Work Breakdown

Mechanical: Material selection, robot chassis, locomotion, and physical descaling mechanism.

Electrical: Motor/actuator control, sensor setup, power delivery, and waterproof wiring setup.

Software: Firmware for control, navigation code, data log setup, user interface with video streaming.

NEEDS ANALYSIS

Needs Statement:

Industrial and building systems require a safe, cost-effective and reliable method to remove mineral scale build-up from Ø100-150mm pipes, where existing solutions such as chemical cleaning, pigging, and jetting are either hazardous, resource intensive or ineffective at hard deposits.

Problem Definition:

Design a low-cost robotic system that can navigate Ø100-150mm pipe, mechanically remove scale and improve flow performance while being able to adapt to varying pipe sizes and geometries.

DESIGN SPECS: Criteria

Criteria	Reason		
Size	Size of robot must be small enough to fit comfortably in ø90mm pipes		
Mass	Light weight robot allows for easy transport		
Speed	Move as efficient as a water jetting machine		
Cost	Relatively lost cost solution		
Complexity	Minimal number of parts and simple mechanism		
Waterproofing	Work in damp/water splashing conditions		
Mobility	Ability to move smoothly within pipes, including bends and junctions		
Durability	Resistance to abrasion, chemicals, moisture		
Precision	Ability to clean without damaging pipe walls		

DESIGN SPECS: Constraints (needs)

Criteria	Constraint			
Size/Operation	 The system must fit within Ø100mm inner pipe diameter The system must operate reliably in wet conditions 			
Cleaning Performance	 The system must mechanically remove >50% of simulated mineral scale The system must complete one cleaning cycle without permanent pipe damage 			
Safety & Reliability	The system must be retrievable via tether in the event of power loss or failure			
Monitoring & Feedback	The system must transmit live video			

DESIGN SPECS: Objectives (targets)

Criteria	Objectives	Unit of Measurement	Notes
Pipe diameter compatibility	≤ø90	mm	
Water sealed electronic enclosure	IP54	-	Solids (5): Dust protection Liquids (4): splashing water
Navigation of bends	90	Degrees	
T-Junction entry	≥80% success	%Trials	Ability to enter branch on demand
Scale removal effectiveness	≥50	%	Removal of CaCO3/rust deposits
Traction/adhesion force	≥5	N	Maintain grip while engaged
Movement speed	≥0.1	m/s	Continuous travel without stalling
Mass	<20	kg	Lightweight for retrieval and mobility
Live video transmission	480p, 10fps	pixels, fps	Assists in operator navigation of pipe system

PROJECT TIMELINE

Next Steps

- Generate 4+ concept variation
 - Descaling mechanisms
 - Spinning wire brush/abrasive scrubber
 - Low-flow pressurized water jet
 - Razor scraper/chain knocker
 - T-junction/bend navigation mechanisms
 - Differential/tank tread drive
 - Articulated 4-bar crawler
 - Spring-loaded/pneumatic expansion

Next Steps

- Research appropriate cleaning rate x cm/min
- Research how to simulate scale build up in pipes
- Research any grants available

References

- [1] A. Brown, "Common problems associated with traditional pigging methods," Aubin Group, Jun. 25, 2021. [Online].
- Available: https://www.aubingroup.com/common-problems-pigging
- [2] "Top 6 Industrial Pipeline Cleaning Methods For Effective Cleaning," Petersen Products Co., Aug. 30, 2024. [Online].
- Available: https://www.petersenproducts.com/industrial-pipeline-cleaning-methods
- [3] "What is Pipe Descaling and How Much Does it Cost?" *Pipe Restoration Solutions*, 2023. [Online]. Available: https://piperestorationsolutions.com/pipedescaling
- [4] "The Importance of Pipe Descaling," Drain Terrier Plumbing, 2022. [Online]. Available: https://drainterrierplumbing.com/importance-of-pipe-descaling
- [5] "Clearing the Path: Small-Diameter Pipeline Cleaning Benefits," *Pipeliner Pros*, 2023. [Online]. Available: https://pipelinerpros.com/small-diameter-pipeline-cleaning
- [6] "Pipeline Maintenance Safety," eSafetyFirst, Oct. 28, 2020. [Online]. Available: https://esafetyfirst.com/articles/pipeline-maintenance-safety
- [7] M. Wilson, "Worms and cockroaches inspired this robot that can unclog any pipe," Fast Company, Mar. 11, 2022. [Online].
- Available: https://www.fastcompany.com/90729069/pipeworm-soft-robot-ge
- [8] Q. Liu, L. Chen, Z. Huang, S. Li, and W. Li, "Development of a pipeline-cleaning robot for heat-exchanger tubes," *Electronics*, vol. 14, no. 3, p. 541, Jan. 2025, doi: 10.3390/electronics14030541.
- [9] "Customer Testimonial: Dry Ice Robotic Cleaning," JettyRobot, 2023. [Online]. Available: https://jettyrobot.com
- [10] "Pipeline Robotics Market Report," Market Research Future, 2023. [Online]. Available: https://www.marketresearchfuture.com/reports/pipeline-robotics-market
- [11] M. A. Md. Zin, M. H. A. Jalil, A. A. H. Shafie, N. N. A. Malek, and S. F. Toha, "Design of a magnetic wheel pipeline inspection robot," in *Proc. IEEE Int. Conf. Mechatronics (ICM)*, Kuala Lumpur, Malaysia, 2012, pp. 718–723. doi: 10.1109/ICMECH.2012.6178870.
- [12] Y. Kusunose, K. Suzumori, T. Kanda, and Y. Takata, "Development of an inchworm mobile robot for small-diameter pipelines," *IEEE/ASME Transactions on Mechatronics*, vol. 5, no. 6, pp. 587–594, Dec. 2000, doi: 10.1109/3516.891046.

QUESTIONS?

