Formelsammlung für Alles

Matthias Springstein

1. Februar 2013

Inhaltsverzeichnis

1	Bina	re Rechenoperation
	1.1	Zahlensystem
	1.2	Addition
		1.2.1 Zwei Operanden
		1.2.2 Mehrere Operanden
		1.2.3 Überlauf
		1.2.4 Überlaufserkennung
		1.2.5 Umwandlung Tenärcode

1 Binäre Rechenoperation

1.1 Zahlensystem

Dualsystem

Zahlenwert:
$$\sum_{l=-m}^{n-1} z_l \cdot 2^l$$

Basis: 2 $z \in (1;0)$

Format: $2^{n-1} \dots 2^0, 2^{-1} \dots 2^{-m}$

Trenärsystem

Basis: 2
$$z \in (1;0;-1)$$

Oktalsystem

Basis: 8
$$z \in (0;1;2;3;4;5;6;7)$$

Hexadezimalsystem

Basis: 16
$$z \in (0;1;2;3...d;e;f)$$

Dezimalsystem

Basis: 10 $z \in (0;1;2;3...8;9)$

Stellenberechnung

$$n \ge \operatorname{ceil}\left(\frac{\lg(k+1)}{\lg(2)}\right)$$

$$[k] = 1$$
: Zahlenwert

$$m \ge \operatorname{ceil}\left(\frac{l}{\lg(2)}\right)$$

[l]=1: Anzahl Nachkommastellen in Dezimalsystem

[n] = 1: Anzahl Vorkommanstellen in Dualsystem [m] = 1: Anzahl Nachkommastellen in Dualsystem

Wertebereich und Quantisierungsfehler(Dualsystem)

Wertebereich =
$$0...2^n - 2^{-m}$$

Quantisierungsfehler = $\pm \frac{1}{2}$ LSB = $\pm 2^{-m-1}$

[n] = 1: Anzahl Vorkommanstellen in Dualsystem [m] = 1: Anzahl Nachkommastellen in Dualsystem

Quantisierungsstuffen =
$$2^{-m}$$

Umwandlung Negativer Dualzahlen

$$n = \operatorname{ceil}\left(1 + \frac{\lg(|\operatorname{Wert}|)}{\lg(2)}\right)$$

$\Delta = 2^{n-1} - |Wert|$

Umwadlung von Δ bis MSB Stelle -1, danach setzten der richtigen MSB-Stelle.

1.2 Addition

1.2.1 Zwei Operanden

Halbaddierer

$$s_i = a_i \nsim b_i$$
$$c_{i+1} = a_i \cdot b_i$$

 $[s_i] = 1$: Summe der Stelle i $[c_{i+1}] = 1$: Übertrag der Stelle i+1

$$s_i = a_i \nsim b_i \nsim c_i$$

 $[s_i] = 1$: Summe der Stelle i $[c_{i+1}] = 1$: Übertrag der Stelle i+1 $[c_i] = 1$: Übertrag der Stelle i

$$c_{i+1} = a_i \cdot b_i + (a_i \nsim b_i) \cdot c_i$$

Carry-Look-Ahead

$$s_i = a_i \nsim b_i \nsim c_i$$

 $[s_i] = 1$: Summe der Stelle i

$$p_{i+1} = a_i \nsim b_i$$

 $[p_{i+1}]=1$: Propagate Übertrag an der Stelle i

$$g_{i+1} = a_i \cdot b_i$$

$$[g_{i+1}] = 1$$
: Generate Übertrag kompensation

$$c_{i+1} = p_{i+1} \cdot c_i + g_{i+1}$$

1.2.2 Mehrere Operanden

 $\label{lem:continuous} \textbf{Ripple-Carry: Jede Stuffe addiert jeweils ein Operand hinzu.}$

Baumaddierer: Die einzelnen Operaden werden Baumförmig addiert.

Ripple-Save: Nur der letzte Addierer ist Sequenziel aufgebaut. Daher der Übertrag des Vorgängers wird beim nächsten Aufaddiert.

1.2.3 Überlauf

Positive Operanden

[s] = 1: Summe

[n] = 1: Anzahl Vorkommanstellen in Dualsystem

Negative Operanden

[s] = 1: Entstehender Summen Wert [p] = 1: Operanden Anzahl

Vermeidung

[r] = 1: Zusätzliche Summenstellen [p] = 1: Operanden Anzahl

1.2.4 Überlaufserkennung

Vergleich MSB Stellen

Vergleich des Carry

Erweiterung der MSB Stelle

Sättigung

 $[s_{MSB}] = 1$: Behandlung der höchsten Stelle $[s_{LSB}] = 1$: Behandlung der restlichen Stellen

1.2.5 Umwandlung Tenärcode

h_i	b_{i+1}	b_i	c_i	h_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	-1	1
1	0	0	1	0
1	0	1	0	1
1	1	0	-1	1
1	1	1	0	1

$$s = (a+b) \bmod 2^n$$

$$s = \left(a + b + 2^n \operatorname{ceil}\left(\frac{p-1}{2}\right) + 2^{n-1}\right) \operatorname{mod} 2^n - 2^{n-1}$$

$$r = \operatorname{ceil}\left(\frac{\lg\left(p\right)}{\lg(2)}\right)$$

$$a_{MSB} \neq b_{MSB}$$
 \Rightarrow Kein Überlauf möglich $a_{MSB} = b_{MSB} = s_{MSB}$ \Rightarrow Kein Überlauf möglich $a_{MSB} = b_{MSB} = 0$ & $s_{MSB} = 1$ \Rightarrow Positiver Überlauf $a_{MSB} = b_{MSB} = 1$ & $s_{MSB} = 0$ \Rightarrow Negativer Überlauf $MIN = a_{MSB}$ $OVF = \overline{a}_{MSB} s_{MSB} \left(\overline{b}_{MSB} \nsim s_{MSB} \right) + a_{MSB} \overline{s}_{MSB} \left(b_{MSB} \nsim s_{MSB} \right)$

$$s_{MSB} = s_{MSB+1}$$
 \Rightarrow Kein Überlauf möglich $s_{MSB} = 1$ & $s_{MSB+1} = 0$ \Rightarrow Positiver Überlauf $s_{MSB} = 0$ & $s_{MSB+1} = 1$ \Rightarrow Negativer Überlauf

$$s'_{MSB} = s_{MSB} \overline{OVF} + OVFMIN$$

$$s'_{LSB} = s_{LSB} \overline{OVF} + OVF\overline{MIN}$$

 $OVF = c_{I;MSB} \nsim c_{O;MSB}$

 $MIN = s_{MSB}$ $OVF = s_{MSB} \nsim s_{MSB+1}$