Universidade Federal de Santa Catarina Departamento de Informática e Estatística Programa de Pós-Graduação em Ciência da Computação

Isaac Leonardo Santos Sacramento

Texto entregue como requisito para defesa do Exame de Qualificação de Doutorado, contendo revisão bibliográfica, problemática, proposta e resultados prévios.

Orientador: Mauro Roisenberg

Florianópolis

2017

Resumo

O processo de caracterização de reservatórios de hidrocarbonetos consiste na determinação tridimensional e quantitativa da estrutura e das propriedades petrofísicas das rochas da área de interesse.

Palavras chave: Inversão Sísmica; Modelagem de Incerteza; Inversão Geoestatística; Redes Neurais Convolucionais.

Abstract

The characterization process of hydrocarbon reservoirs entails in determining the 3D structure and petrophysical properties of the rocks at the area of interest.

Keywords: Seismic Inversion; Uncertainty Modeling; Geostatistical Inversion; Convolutional Neural Networks.

Sumário

1	Introdução					
	1.1	Problema Inverso	2			
	1.2	Inversão Sísmica	3			
	1.3	Redes Neurais Convolucionais	4			
		1.3.1 Filtros	7			
		1.3.2 Pooling	9			
	1.4	Objetivo	9			
	1.5	Organização do Texto	10			
2	Modelos de Inversão Sísmica					
	2.1	Inversão Sísmica Linear e Não Linear	12			
		2.1.1 Máximo <i>a posteriori</i>	13			
	2.2	Modelagem de Incerteza	15			
		2.2.1 Global Stochastic Inversion	18			
	2.3	Resumo	21			
3	Modelos de super-resolucao					
4	Sup	er-Resolução de Imagens Pós-Inversão	23			
	4.1	Resultados Preliminares	25			
	4.2	Proposta e Plano de Trabalho	28			
$\mathbf{B}^{\mathbf{i}}$	ibliog	grafia	31			

Capítulo 1

Introdução

Um aspecto importante nas ciências físicas é poder inferir sobre parâmetros físicos a partir de dados. Em geral, as leis da física disponibilizam os artefatos necessários para calcular valores de dados, a partir de um modelo. Este procedimento é conhecido como problema direto (forward problem). A modelagem direta, portanto, inicia com um modelo, sobre o qual um experimento ou processo é simulado matematicamente. Se o modelo estiver correto, a resposta obtida deve parecer com dados reais. O processo de inversão faz exatamente o contrário, consiste em utilizar as medidas efetuadas para inferir os valores de parâmetros que caracterizam o sistema (Tarantola, 2005) e muitas vezes se caracteriza por ser não determinístico.

Considere o seguinte exemplo: imagine um exame de eletrocardiograma (ECG). Neste exame, a corrente elétrica responsável pelos batimentos cardíacos pode ser medida através da disposição de eletrodos sobre a superfície do corpo, próximos e distantes do coração. Partindo da suposição de que um coração doente seja examinado, é possível a um médico identificar no ECG os padrões que ratificam a existência de um problema (problema direto). Neste contexto, o objetivo do problema inverso é recuperar a atividade elétrica e fisiológica do coração dado um conjunto de dados de ECG. Como a maioria dos problemas inversos, o problema inverso do exame de ECG recai sobre duas características comuns. Primeiro, a não unicidade de solução, ou seja, o mesmo conjunto de medidas observadas no exame pode resultar de mais de uma configuração do coração doente. Segundo, a natureza mal-posta do problema inverso, isto é, uma pequena mudança arbitrária nos valores observados no ECG pode causar uma mudança grande da solução fonte equivalente.

1.1 Problema Inverso

A teoria de inversão é utilizada em diversas áreas para inferir os valores de parâmetros relacionados com processos importantes a partir dos dados medidos, também chamados de dados experimentais. É possível descrever o problema inverso como o processo de obter informações de um sistema parametrizado, a partir de dados observáveis, das relações teóricas dos observáveis com os parâmetros não observáveis e do conhecimento a priori sobre os dados não observáveis.

Um sistema físico depende do domínio em estudo. Pode ser uma galáxia para um astrofísico, pode ser a Terra para um geofísico ou uma partícula quântica para um físico quântico.

O procedimento científico para o estudo de um sistema físico pode ser dividido em três passos:
a parametrização do sistema, a modelagem direta e a modelagem inversa. A parametrização
do sistema se refere à definição do conjunto mínimo de elementos cujos valores caracterizam
completamente o sistema. A modelagem direta se refere concerne a definição das leis físicas que
permitem realizar previsão de dados observáveis, dados valores dos parâmetros do modelo. A
modelagem inversa, por sua vez, se caracteriza pelo uso de resultados atuais das medições dos
parâmetros físicos observáveis, para inferir os valores atuais dos parâmetros do modelo.

Resolver o problema direto significa prever os valores dos parâmetros observáveis (dados d), que correspondem a um dado modelo (conjunto de parâmetros m). Esta predição pode ser denotada pela Eq. 1.1. Onde F(.) é chamado operador direto.

$$F(m) = d (1.1)$$

No exemplo do eletrocardiograma citado anteriormente, o problema direto pode ser entendido como o cálculo do potencial em algum ponto da superfície da pele, dados valores conhecidos da atividade elétrica do coração. O problema inverso pode ser descrito em uma forma discreta como:

$$m = F^{-1}(d) \tag{1.2}$$

onde, F é p sistema físico investigado e que relaciona os parâmetros do modelo $m = (m_1, m_2, ..., m_n) \subset \mathbb{R}^n$ estimado que pertence a um conjunto de modelos M admissíveis em termos de conhecimento prévio $(a \ priori)$, com os dados observados $d \in \mathbb{R}^s$. Na prática d pode ser uma função no domínio do tempo e/ou espaço, ou pode ser uma coleção de observações discretas. Uma questão relevante é a presença de ruído nas observações.

1.2 Inversão Sísmica

Os métodos geofísicos frequentemente envolvem a solução e avaliação de problemas inversos, pois permitem inferir a distribuição das propriedades físicas na subsuperfície da Terra usando observações da superfície. A inversão sísmica tem um papel fundamental na solução de problemas geofísicos, em especial na caracterização de reservatórios Bosch; Mukerji e Gonzalez (2010) Srivastava e Sen (2009). Do ponto de vista prático, as soluções para o problema de inversão sísmica melhora a exploração e o gerenciamento na indústria petrolífera, pois os dados sísmicos estimados possuem forte correlação com as propriedades petrofísicas (porosidade, densidade, etc) das rochas da subsuperfíciePassos de Figueiredo et al. (2014).

O método de aquisição sísmica de reflexão utiliza pulsos sísmicos de uma fonte artificial controlada e monitora a resposta em função do tempo. Neste sistema, cada região de contato entre dois tipos de rochas diferentes gera reflexão e refração do pulso sísmico, como demonstrado na Figura 1.1. De um ponto de vista bastante elementar, é possível imaginar que a parte refletida da onda se propaga em todas as direções, de modo que os componentes horizontal e vertical podem ser obtidos. O componente horizontal (s-wave), referente à reflexão horizontal da onda, é utilizada no processo de inversão conhecido como inversão elástica. Por outro lado, os componente vertical da onda (p-wave), referente à reflexão vertical do pulso do pulso emitido, é utilizado no processo conhecido como inversão acústica.

Figura 1.1: Método de sísmica de reflexão (FishSAFE, 2014)

O pulso de onda emitido durante a aquisição possui um formato próprio, uma identidade, e é

conhecido como wavelet. É possível imaginar, então, que a resposta obtida é composta em parte por esta identidade e, em parte, pela característica da região de contato entre duas camadas de rochas diferentes, na qual ocorreceu a reflexão, acrescentada de um ruído aleatório. Esta característica é chamada de coeficiente de refletividade. O dado sísmico utilizado na inversão acústica é uma aproximação da resposta da camada terrestre convolucionada com a wavelet de aquisição cujo ângulo de incidência é de 90° e o valor de refletividade entre as camadas da subsuperfície com reflexão também de 90°, definida pela equação 1.3. Por este motivo, este modelo é chamado convolucional.

$$r(t) = \frac{z(t+\delta t) - z(t)}{z(t+\delta t) + z(t)}$$

$$(1.3)$$

Na equação 1.3, z(t) é a impedância acústica no tempo t definida por $z(t) = \rho(t)v(t)$, onde $\rho(t)$ é a densidade da rocha e v(t) a velocidade de propagação da onda acústica. Com os coeficientes de reflexão e a discretização da medida de tempo, é possível modelar o dado sísmico d(t) aplicando a convolução \otimes da $wavelet\ s$ com os coeficientes de refletividade r:

$$d(t) = s(\tau) \otimes \sum_{j} j - 1Nr(t - t_j)\delta(t - t_j) + e_d(t)$$
(1.4)

onde N é o número total de camadas, $e_d(t)$ representa o ruído aleatório em função do tempo e cada d_{xy} é chamado de traço sísmico. Um conjunto de traços sísmicos também é chamado de uma imagem, seção ou cubo, no caso de um levantamento 3D. A wavelet ideal seria um pulso tipo delta contendo todas as frequências, entretanto, na prática as wavelets são pulsos de banda limitada entre 6Hz e 65Hz, o que limita a frequência da sísmica e sua resolução (Sen, 2006, p. 11). Como consequência, as imagens resultantes do processo de inversão também terão o seu espectro de frequência limitado. A Figura 1.2 ilustra uma wavelet típica extraída de dados reais.

1.3 Redes Neurais Convolucionais

Nesta seção serão apresentados os principais conceitos relacionados às redes neurais convolucionais e sua estrutura e as principais aplicações deste modelo de aprendizagem de máquina. Um ponto não abordado nesta seção é como escolher a arquitetura de uma rede convolucional.

As Redes Neurais Convolucionais (CNN), também chamadas de redes convolucionais, são um tipo de rede neural especializada em processamento de dados que possuem uma topologia

Figura 1.2: Wavelet extraída de dados reais

conhecida e em forma de grade. Exemplos deste tipo de dado são as séries temporais, que podem ser vistas como uma grade em uma dimensão (1D) com amostras em intervalos de tempo regulares, e dados de imagem, que podem ser pensados como uma grade 2D de *pixels*. Entretanto, as redes convolucionais não são restritas apenas ao processamento visual, elas têm sido empregadas com sucesso em reconhecimento de voz e processamento de linguagem natural. Este modelo de rede é chamada convolucional, pois emprega a operação de convolução no lugar de multiplicação de matrizes em pelo menos uma de suas camadas.

A estrutura mais importante de uma CNN é a camada convolucional. Esta é organizada de modo a fazer com que os neurônios da primeira camada convolucional sejam conectados a um pequeno grupo de *pixels* da camada de entrada (figura 1.3) e não a todos os pixels, como ocorre em uma rede neural tradicional. Cada neurônio da camada seguinte se conecta apenas a neurônios contidos em pequena região da camada anterior e assim sucessivamente, esta região que define o grupo de neurônios conectados ao neurônio da próxima camada é chamada campo perceptivo. Esta arquitetura permite o aprendizado de características de baixo nível da primeira camada e de características de mais alto nível nas camadas seguintes.

A operação de convolução costuma ser denotada com um asterisco (Eq. 1.5). Na Equação. 1.5, x refere-se ao conjunto de imagens de entrada, uma sequência multidimensional de dados, e w é denominado kernel ou filtros, uma sequência multidimensional de parâmetros a serem otimizados pelo algoritmo de aprendizagem.

$$s(t) = (x * w)(t) \tag{1.5}$$

A convolução se sustenta sobre três pilares: interações esparsas, compartilhamentos de pa-

Figura 1.3: Camadas de uma CNN com campos receptivos retangulares.

râmetros e representações equivalentes. As redes neurais tradicionais utilizam a multiplicação de matriz por uma matriz de parâmetros para descrever a interação entre cada unidade de entrada e cada unidade de saída. Deste modo, toda unidade de saída interage com toda unidade de entrada. As redes convolucionais, por outro lado, tipicamente possui interações esparsas, também chamadas de conectividade esparsa ou pesos esparsos. Para isto, é necessários que os filtros sejam menores que a entrada. De um ponto de vista prático, no processamento de uma imagem, a imagem de entrada pode ter milhares de pixels, entretanto, é possível detectar apenas pequenas regiões de características importantes com filtros que compreendam apenas algumas dezenas ou centenas de pixels na imagem. Por exemplo, é possível identificar características de uma face humana na identificação de pessoas, ou estruturas com significado geológico em um estudo geofísico. Como consequência, menos parâmetros são armazenados e há um ganho na eficiência estatística do modelo. As figuras 1.4a e 1.4b ilustram os modelos citados anteriormente. É possível notar que o número de elementos que afetam o elemento de saída em destaque (s_3) é definido pela convolução com filtro de largura 3 (figura 1.4b), por outro lado, quando formado por multiplicação matricial (figura 1.4a), s_3 é afetado por todos os elementos da entrada.

O compartilhamento de parâmetros, também chamado de pesos amarrados em uma rede convolucional, se refere ao uso do mesmo parâmetro para mais de uma função no modelo. Nas redes neurais tradicionais, cada elemento da matriz de pesos é usado apenas uma vez quando a saída da camada é calculada, pois é multiplicado por apenas um elemento da entrada. No

(a) Conectividade tradicional.

(b) Conectividade esparsa.

compartilhamento de pesos, o valor do peso aplicado a uma entrada está relacionado ao valor de um peso aplicado em algum outro local. Na rede convolucional, cada elemento do filtro é usado em toda posição da entrada, de modo que, ao invés de aprender um conjunto separado de parâmetros para toda localização da imagem, apenas um conjunto é aprendido.

1.3.1 Filtros

Os pesos dos neurônios em uma camada convolucional podem ser representados como uma pequena imagem do tamanho do campo receptor. Estes filtros (pesos) são os elementos convolvidas com a imagem de entrada para obter o resultado da camada convolucional. A figura 1.5 ilustra dois conjuntos de pesos possíveis. O primeiro é um quadrado preto (pixel de valor 0) contendo uma coluna central branca (pixels com valor 1). Analogamente, o segundo filtro é um quadrado preto contendo uma linha central branca. É possível notar na imagem da esquerda que as linhas verticais brancas se tornaram mais evidentes enquanto o restante se tornou mais borrado. De modo análogo, na imagem da direita, a convolução com o filtro horizontal evidenciou as linhas brancas horizontais, enquanto que o restante ficou borrado. Assim, ao convolver uma entrada com o mesmo conjunto de filtros da camada convolucional, se obtém o mapa de características (feature map).

O exemplo anterior apresenta a convolução de uma imagem com dois filtros possíveis, em uma representação 2D. Entretanto, em situações reais a camada convolucional possui muitos mapas de características, resultando em uma representação em 3D como ilustrado na figura 1.6. O mapa de características de uma camada convolucional é o resultado da convolução de uma das imagens de entrada com os diversos filtros específicos desta camada, os quais são iniciados, na maior parte dos casos, aleatoriamente. Na figura estão ilustrados os mapas para a convolução com apenas uma imagem, de modo que é possível imaginar que à medida que o número de imagens aumenta, a estrutura ilustrada se replica horizontalmente.

Figura 1.5: Aplicação de dois filtros diferentes para obter mapas de características.

Figura 1.6: Camadas convolucionais com múltiplos mapas de características e imagens com três canais.

1.3.2 Pooling

Uma camada em uma rede convolucional consiste de três estágios. No primeiro estágio, a camada realiza diversas convoluções para produzir um conjunto de ativações lineares. O segundo estágio é chamado etapa de detecção, na qual cada ativação é submetida a uma função não-linear. A terceira etapa é chamada de *pooling*, responsável por modificar a saída para o resumo estatístico das saídas em uma determinada vizinhança. A operação de *pooling* permite tornar invariante pequenas translações no conjunto de entrada, ou seja, ainda que haja pequenas translações na entrada, os valores da maioria das saídas após a o *pooling* permanecem iguais. A figura 1.7 ilustra o funcionamento da função de *pooling*.

Figura 1.7: Operação de *pooling* com região de tamanho 3. Nesta operação é selecionado o máximo valor de ativação da etapa de detecção.

A operação de *pooling* permite lidar com entradas de tamanho variável. Classificar imagens de tamanhos diferentes, por exemplo, pode ser realizado variando o tamanho entre as regiões de pooling de modo que a camada de de classificação sempre receba o mesmo número de sumários estatísticos independente do tamanho da imagem.

1.4 Objetivo

O objetivo do presente trabalho consiste em propor um modelo fluxo de trabalho para integração de um modelo para obter imagens de inversão sísmica em hiper-resolução. Resultados prévios indicam que o modelo baseado em redes neurais convolucionais é capaz de agregar informações de alta frequência às inversões acústicas.

Outro objetivo deste trabalho é desenvolver um modelo baseado em redes neurais convolucionais que permita a realização de simulação geoestatística multiponto. Esta etapa de trabalho será desenvolvida em cooperação com o Departamento de Ciências Geológicas, Universidade Stanford, sob orientação do Prof. Dor. Jef Karel Caers.

1.5 Organização do Texto

Este documento está organizado da seguinte forma. Após esta breve introdução, o Capítulo 2 apresenta o estado da arte em modelos de inversão sísmica. O Capítulo 2 apresenta o estado da arte em geração de imagens em super-resolução a partir de imagens de baixa resolução. O Capítulo trata dos métodos de simulação geoestatística multiponto. O Capítulo 4 trata da proposta do projeto e resultados preliminares referente ao modelo de super-resolução treinado e aplicado às imagens de impedância pós-inversão. Após o retorno ao Brasil, estão planejados mais 8 meses de trabalho para finalizar a escrita da tese e defesa.

Capítulo 2

Modelos de Inversão Sísmica

Numa configuração de experimentos físicos se tem o espaço dos parâmetros do modelo e o espaço das medidas. No contexto da sísmica de reflexão, os dados sísmicos d são representados no espaço das medidas e a propriedade de impedância acústica m das rochas é representada no espaço do modelo.

A princípio parece descomplicada a utilização de equações físicas que descrevem o sistema de forma inversa, fazendo o mapeamento do espaço das medidas ao espaço do modelo. No entanto, esses métodos de inversão direta sofrem de instabilidades devido à ruído e características do problema (Sen, 2006, p. 50). Outra opção é utilizar tentativa e erro para ajustar os parâmetros até conseguir uma resposta semelhante aos dados experimentais. Formalmente isto é automatizado utilizando métodos de otimização. Para tanto, é preciso definir uma função de custo, ou função objetivo, que mede o ajuste dos dados produzidos pelos parâmetros do modelo (dado sintético) ao dado medido.

O objetivo da inversão, no entanto, vai além de encontrar os parâmetros que melhor se ajustam aos dados. Quando os dados são ruidosos, o modelo direto não é exato e não existem dados suficientes, a inversão tem solução não única, ou seja, vários modelos ajustam aos dados de forma equivalente. Consequentemente é importante modelar a incerteza envolvida no processo, indicando qual a variabilidade dos modelos que se ajustam bem aos dados.

A relação entre o modelo e os dados (modelo direto) é dada por:

$$d = G(m_v) + e (2.1)$$

onde $G(\cdot)$ é uma função não linear, e assume-se que um ruído e está presente. Em teoria o ruído é uma interferência aleatória que não se tem controle, na prática se considera ruído tudo que

não é explicado pela função G, e.g. imprecisões no modelo físico e problemas com filtragem e processamento dos dados.

2.1 Inversão Sísmica Linear e Não Linear

O modelo mais utilizado para aproximar a função G, no caso da inversão sísmica, é o modelo convolucional. No caso discreto a convolução é dada pelo produto acumulado de cada amostra do vetor de refletividades por todas as amostras da wavelet. Portanto pode ser representado por uma operação matricial:

$$\mathbf{d} = \mathbf{Gr} \tag{2.2}$$

onde G é uma matriz convolucional construída utilizando uma wavelet e \mathbf{r} o vetor das refletividades definido por:

$$r(t) = \frac{z(t+\delta t) - z(t)}{z(t+\delta t) + z(t)}$$

$$(2.3)$$

o que torna não linear a relação entre impedância \mathbf{z} e o dado sísmico. Uma aproximação válida quando valores de refletividades não ultrapassam 0.3 é:

$$r(t) = \frac{1}{2}\Delta \ln(z(t)) \tag{2.4}$$

Utilizando estas aproximações para o modelo direto, a alternativa mais objetiva é incorporar as aproximações na matriz G e invertê-la para obter $\ln(z)$, por fim aplicar o exponencial para obter z. Neste caso temos os seguintes problemas: existência; unicidade; estabilidade; e robustez (Sen, 2006, p. 56-57). Utilizando a formulação de mínimos quadrados também é possível resolver sistemas sobredeterminados, solucionando problemas com a melhor estimativa possível no sentido de minimizar o erro quadrático (norma L_2). Apesar de ser uma solução mais geral, ainda é utilizado somente um critério de ajuste aos dados, o que não possibilita a inserção de conhecimento a priori. É possível regularizar o método de mínimos quadrados, mas ainda não se tem muita liberdade para inserir conhecimentos a priori e de outras fontes (Clapp; Clapp e Biondi, 2005).

Quando não é possível o uso da aproximação da Equação 2.4, o problema deve ser abordado utilizando métodos de otimização não linear. Com isso os erros devido às aproximações do modelo *forward* diminuem, mas a otimização se torna mais custosa. Como a relação entre os

dados e os parâmetros é não linear, a função objetivo a ser minimizada irá possuir mínimos locais, tornando necessário o uso de métodos de otimização global. Esta prática está bem documentada na literatura de inversão, como o uso de *simulated annealing* (Ma, 2002), de algoritmos genéticos (Mallick, 1995) e enxame de partículas (Zhe e Hanming, 2013).

Outra forma de inversão presente na literatura é a elástica (Azevedo et al., 2013; Buland e Omre, 2003 a). Nesse tipo de inversão os dados sísmicos estão em um nível diferente de processamento onde os traços sísmicos são empilhados em intervalos de ângulos de incidência. Com isso é possível inverter para Vp (velocidade primária/compressional), Vs (velocidade secundária/cisalhante) e ρ (densidade), ao invés de somente impedância acústica. A Equação 2.5 modela a relação da refletividade c_{pp} com Vp (α), Vs (β) e ρ para cada ângulo disponível.

$$c_{pp}(\theta) = a_{\alpha}(\theta) \frac{\Delta \alpha}{\bar{\alpha}} + a_{\beta}(\theta) \frac{\Delta \beta}{\bar{\beta}} + a_{\rho}(\theta) \frac{\Delta \rho}{\bar{\rho}}$$
 (2.5)

onde:

$$a_{\alpha}(\theta) = \frac{1}{2}(1 + \tan^2 \theta), \tag{2.6}$$

$$a_{\beta}(\theta) = -4\frac{\bar{\beta}^2}{\bar{\alpha}^2}\sin^2\theta,\tag{2.7}$$

$$a_{\rho}(\theta) = \frac{1}{2} \left(1 - 4 \frac{\bar{\beta}^2}{\bar{\alpha}^2} \sin^2 \theta \right). \tag{2.8}$$

Adicionalmente $\bar{\alpha}$, $\bar{\beta}$ e $\bar{\rho}$ são as respectivas médias sobre a interface; $\Delta\alpha$, $\Delta\beta$ e $\Delta\rho$ são os contrastes e θ o ângulo médio de reflexão. Essas propriedades são importantes, pois a velocidade secundária é indicador de hidrocarbonetos por não se propagar em meio líquido, desta forma áreas com presença destes compostos se destacam numa imagem de Vs, podendo indicar interfaces rocha/óleo e água/óleo. As metodologias para resolução do problema são semelhantes, mas neste caso aumentando a dimensão dos dados e números de parâmetros a serem estimados (Buland e Omre, 2003 a).

2.1.1 Máximo a posteriori

A inversão por Máximo a posteriori (MAP) (Buland e Omre, 2003 a; Figueiredo et al., 2014) é realizada para cada traço individualmente. Baseado no modelo convolucional e assumindo que o ruído presente nos dados é Gaussiano, o vetor das sísmicas experimentais d, é modelado pela distribuição de probabilidade:

$$p(\mathbf{d}|\boldsymbol{\mu_d}, \boldsymbol{\Sigma_d}) = N(\boldsymbol{\mu_d}, \boldsymbol{\Sigma_d}), \tag{2.9}$$

onde $\mu_d = Gm$ é o vetor com a sísmica sintética e Σ_d é a matriz de covariância do ruído da sísmica, a qual é definida conforme a confiabilidade que o especialista tem no dado sísmico ou seu nível de ruído. Geralmente se utiliza uma matriz diagonal com mesma variância para todos os elementos.

Para o vetor modelo m com o logaritmo natural da impedância acústica, considerou-se também uma distribuição normal:

$$p(\boldsymbol{m}|\boldsymbol{\mu}_{\boldsymbol{m}}, \boldsymbol{\Sigma}_{\boldsymbol{m}}) = N(\boldsymbol{\mu}_{\boldsymbol{m}}, \boldsymbol{\Sigma}_{\boldsymbol{m}}), \tag{2.10}$$

no qual μ_m é um vetor contendo a baixa frequência do logaritmo natural da impedância. Este dado é outra informação adicional que é fornecida pelo especialista via análise de velocidades ou interpolando dados de poços por Krigagem. Os componentes da matriz de covariância Σ_m foram definidos conforme (Figueiredo et al., 2014):

$$\boldsymbol{\nu}_{t,t'} = \sigma_m^2 exp\left(-\frac{(t-t')^2}{L^2}\right),$$
(2.11)

que define a correlação entre as componentes de m no tempo t e t', na qual σ_m^2 é a variância da impedância acústica calculada nos dados de poços sem a baixa frequência, e L é a distância de correlação vertical a ser imposta ao resultado.

Neste arcabouço a média e variância posterior para cada traço podem ser calculadas analiticamente via (Figueiredo et al., 2014):

$$\boldsymbol{\mu}_{m|} = \boldsymbol{\mu}_{m} + \boldsymbol{\Sigma}_{m} \boldsymbol{G}^{T} (\boldsymbol{G} \boldsymbol{\Sigma}_{m} \boldsymbol{G}^{T} + \boldsymbol{\Sigma}_{d})^{-1} (\boldsymbol{d}_{o} - \boldsymbol{G} \boldsymbol{\mu}_{m}), \qquad (2.12)$$

$$\Sigma_{m|} = \Sigma_{m} - \Sigma_{m} G^{T} (G \Sigma_{m} G^{T} + \Sigma_{d})^{-1} G \Sigma_{m}.$$
(2.13)

onde o cálculo da matriz inversa acima pode ser aproveitado para vários traços de uma região de interesse em certos casos, ou seja, quando as matrizes de covariância possam ser assumidas iguais para todos os traços da sísmica da região. Desta forma alteram-se a sísmica \mathbf{d}_0 e a baixa frequência $\boldsymbol{\mu}_m$ obtendo-se a média posterior para o traço desejado.

Utilizando esta metodologia a solução é representada por uma distribuição posterior Gaussiana com expressões explícitas para o valor esperado e para a covariância. Não são necessárias iterações para ajuste do modelo, tornando o método eficiente e útil em casos de uso reais, pos-

sibilitando o especialista alterar parâmetros e avaliar o resultado em tempo real numa pequena área. Satisfeito com a parametrização, o método é aplicado a todo o campo. A matriz de covariância posterior indica a incerteza presente no resultado, não é necessário definir a tolerância de ajuste aos dados explicitamente, mas é preciso definir a matriz de covariância a priori do resultado esperado, ou seja, é preciso ter conhecimento, mesmo que de forma grosseira, das correlações espaciais e variâncias que se espera do resultado. Ao final, a covariância posterior é calculada.

Uma desvantagem destacada na literatura é a dificuldade em inserir modelos de continuidade mais abrangentes, pois é necessário incluir as covariâncias entre traços vizinhos, aumentando as matrizes de covariância e a matriz a ser invertida. Inserindo as correlações horizontais também inviabiliza aproveitar o cálculo da matriz inversa, pois desta forma o resultado da inversão precisa ser calculado para todos os pontos a serem invertidos ao mesmo tempo. Atualmente é inserida somente covariância entre amostras no mesmo traço, ou seja, somente na direção vertical.

2.2 Modelagem de Incerteza

Novas propostas surgiram recentemente para tentar encontrar modelos $\mathbf{m}_f \in \mathbf{M} \subset \mathbf{R}^N$, onde \mathbf{M} é o conjunto de modelos admissíveis que atendem o conhecimento *a priori* e são consistentes com o domínio do problema (Tompkins et al., 2011). Para o problema da incerteza, o objetivo é encontrar o conjunto de modelos pertencentes a \mathbf{M} que se ajustam aos dados observados com uma certa tolerância (tol):

$$||G(\mathbf{m}) - \mathbf{d}||_p \le tol \tag{2.14}$$

onde $||\cdot||_p$ é uma norma L_p de erro escolhida. Na prática esse parâmetro cria um vale plano na função de erro (Fernández Martínez; Fernández Muñiz e Tompkins, 2012), como ilustrado em uma dimensão na Figura 2.1.

A justificativa para o uso desse nível de tolerância é evitar o ajuste dos dados ao ruído. No caso do erro atingir o mínimo, o modelo está tentando explicar o ruído presente nos dados medidos. Apesar da Figura 2.1 ser uma simplificação, consegue-se perceber que ao adicionar a tolerância um conjunto de modelos passa a ser aceitável. Sem a tolerância um só modelo seria eleito como melhor e não teríamos a estimativa da incerteza, apesar de se ajustar melhor aos dados. Este parâmetro é definido empiricamente e deve refletir a incerteza e o ruído presente

Figura 2.1: Efeito da tolerância na função de erro

nos dados.

Na técnica MAP, citada anteriormente na Seção 2.1.1, além de retornar a matriz de covariância indicando a incerteza presente no resultado, não é necessário definir a tolerância explicitamente, mas é preciso definir a matriz de covariância a priori do resultado esperado, ou seja,
é preciso ter conhecimento, mesmo que de forma grosseira, das correlações espaciais e variâncias que se espera do resultado. Ao final, a covariância posterior é calculada e o conhecimento
a priori é atualizado com os dados. Uma desvantagem importante é a dificuldade em inserir
modelos de continuidade mais abrangentes, pois para tanto é necessário incluir as covariâncias
entre os pontos a serem estimados. Atualmente é inserida somente covariância entre amostras
no mesmo traço, ou seja, somente na direção vertical. Inserir covariância em outras direções
aumenta o número de elementos da matriz de covariância de forma quadrática, tornando o
processo custoso.

Utilizando uma abordagem estocástica Bayesiana, Figueiredo et al. (2013) leva em consideração a incerteza na wavelet gerando amostras das distribuições posteriores da impedância acústica e da wavelet. O problema continua linearizado e com suposição Gaussiana, mas é preciso utilizar um esquema de amostragem baseado em simulação Markov-chain Monte Carlo (MCMC) via algoritmo de Gibbs, pois não é possível obter as distribuições posteriores analiticamente. Com realizações da distribuição posterior, é possível calcular as estatísticas de interesse e modelar a incerteza envolvida. A desvantagem é o alto custo computacional para gerar amostras dessas distribuições, principalmente com o aumento da dimensão do problema. Um estudo recente utiliza MCMC para realizar amostragem da propriedades de porosidade e permeabilidade das rochas (Zunino et al., 2014). Estas propriedades são geralmente estimadas em uma etapa posterior à estimativa de propriedades primárias, como a impedância. Portanto o método gera interesse ao realizar inversão de forma mais avançada no fluxo de trabalho, além de

gerar estimativas da incerteza. Apesar de sofrer com o alto custo computacional da amostragem o autor relata bons resultados.

A estimativa de wavelets também é objeto de estudo na literatura. O problema consiste em determinar o pulso sísmico que gerou o sinal medido, utilizando os dados de poços como referência. Wavelets podem ser consideradas o elo entre os dados sísmicos e as propriedades de rocha. Como podem haver erros de conversão da escala de profundidade dos poços para a escala de tempo dos dados sísmicos, é necessário avaliar a incerteza na estimativa da wavelet. Por isso, um esquema de amostragem semelhante, baseado em MCMC, foi utilizado em Buland e Omre (2003 b).

Esforços na área de inteligência computacional foram inicialmente empregados utilizando métodos que possuem componentes estocásticas, mas foram desenvolvidos originalmente para explotação, ou seja, encontrar rapidamente o mínimo global da função objetivo (Sen e Stoffa, 1995). Otimização por enxame de partículas é um exemplo. O método foi modificado para permanecer em sua fase de exploração, favorecendo soluções que ficam abaixo de certa tolerância. Realizando, portanto, o que é chamado de *importance sampling* (Martínez et al., 2010). Os autores dessa metodologia defendem que a função de erro é um bom *proxy* para a distribuição posterior.

Trabalhos anteriores tentaram sem êxito utilizar várias execuções de algoritmos genéticos (GA) para estimar a incerteza (Sen e Stoffa, 1995, p. 152). A hipótese de trabalho era a que ao executar o algoritmo várias vezes, seriam encontrados vários mínimos locais que representariam a incerteza. Mas como demonstrado em Fernández Martínez; Fernández Muñiz e Tompkins (2012), a topografia da função de erro em inversão sísmica possui grandes vales alongados de mínimo global. Com isso os métodos devem ser modificados para capturar essa característica e portanto, a simples execução múltipla não gera boa estimativa da incerteza.

O trabalho de Tompkins et al. (2011) trata de inversão de dados eletromagnéticos, outro tipo de metodologia utilizada na indústria para imageamento de subsuperfície. Neste problema o modelo direto é mais complexo e não linear. Apesar de não utilizar dados sísmicos, a metodologia proposta tem objetivos pertinentes a inversão sísmica. A hipótese é que não é necessário amostrar exaustivamente a distribuição posterior para modelar a incerteza, e sim utilizar amostras representativas. A proposta utiliza redução dimensional com análise de componentes principais (PCA) sobre a matriz de covariância. Esta matriz, por sua vez, é calculada a partir de um conjunto de soluções ou aproximada utilizando informação do gradiente da função objetivo após a execução de um método de inversão não linear. Restrições a priori são mapeadas para o espaço

reduzido e a técnica de Smolyak (1963) é utilizada para amostrar de forma determinística e hierárquica este espaço. Retornando ao espaço original, é utilizado um critério de rejeição para eliminar soluções acima de certa tolerância. Os passos de amostragem e rejeição são repetidos, refinando o grid de Smolyak, até que haja convergência de estatísticas das amostras aceitas.

Ao reduzir a dimensão do problema se perde resolução espacial das amostras a serem geradas, pois serão considerados somente parte dos primeiros autovetores, ordenados de forma decrescente em relação aos seus autovalores, da matriz de covariância. Ou seja, menores variabilidades são desconsideradas (Jolliffe, 2002, p. 3). Essa perda é justificada por serem desprezíveis em certos casos e pela diminuição do custo computacional ao trabalhar no espaço reduzido. Além do custo de computar os autovetores e autovalores, são adicionados os custos de computar o grid de Smolyak e do mapeamento de restrições do espaço original ao espaço reduzido. Esses custos extras se tornam proibitivos quando a dimensão do problema cresce e não é mais possível reduzir a dimensão à centenas de variáveis. Com isso alternativas surgiram para tentar expandir o limite do tamanho do problema, em detrimento da resolução das amostras utilizando decomposição em valores singulares (Tompkins et al., 2011) e utilizando outro esquema de amostragem determinística (Tompkins, 2012). Apesar dos avanços não se sabe se é possível aplicar a metodologia aos problemas de larga escala (> 10⁵ variáveis) (Tompkins; Fernández Martínez e Fernández Muñiz, 2013).

A metodologia de Scheidt e Caers (2009) também utiliza redução dimensional, mas baseada em multi-dimensional scaling (MDS). Técnica que visa preservar distâncias do espaço original no espaço reduzido. Característica que possibilita o uso de diferentes métricas para modelar distâncias entre modelos. Análise de agrupamento de dados (cluster analysis) é utilizada para definir modelos equivalentes no espaço reduzido, selecionando somente poucos modelos para simulação de fluxo de petróleo. Esse fluxo de trabalho é possível pois os autores modelam a incerteza já com o objetivo de verificar sua influência na simulação de fluxo. Essa metodologia permite realizar análise de sensibilidade e integrar outras fontes de incerteza ao processo de inversão, como diferentes wavelets ou parâmetros de continuidade espacial. Desta forma, é possível verificar os pontos que mais influenciam na incerteza do modelo final visualizando os modelos em um espaço reduzido e selecionando representativos via agrupamento de dados (Caers, 2011, p. 188).

2.2.1 Global Stochastic Inversion

Soares (2001) propõe o uso de Simulação Sequencial Direta (SSD) utilizando dados de poços

e seus variogramas para realizar amostragem sequencial da distribuição de probabilidades da impedância baseada na média e variância da Krigagem. O autor avança no sentido de amostrar da distribuição global sem precisar fazer transformações para variáveis Gaussianas. Inversão sísmica utilizando SSD, chamada de Global Stochastic Inversion (GSI), é proposta em Soares; Diet e Guerreiro (2007), onde a ideia de combinação presente em algoritmos genéticos é utilizada. Regiões locais de simulações estocásticas são combinadas afim de encontrar uma amostra global que maximize a correlação da sísmica sintética com a medida. Como o método utiliza SSD, a continuidade espacial é modelada em qualquer direção definida pelos variogramas.

Pode ser utilizado qualquer tipo de Krigagem para a SSD, incluindo a co-Krigagem que utiliza uma variável secundária Z_1 . Esta variável representa um atributo ou outra propriedade que possui correlação com a variável primária Z_2 a ser simulada, por exemplo, o resultado de um método determinístico. A SSD utilizando co-Krigagem é denominada co-SSD. A estimativa de co-Krigagem simples para a variável primária Z_2 é dada por (Soares, 2001):

$$[Z_2(x_u)^*]_{CKS} = \sum_{\alpha=1}^{N} \lambda_{\alpha} z_2(x_{\alpha}) + \lambda_{\beta} z_1(x_u)^*$$
(2.15)

onde x_u são as coordenadas dos pontos onde se quer estimar e x_a são as coordenadas dos pontos onde possuem dados amostrados ou que já foram simulados, λ são os pesos calculados pela Krigagem (Goovaerts, 1997, p. 169). Para calcular os pesos da co-Krigagem é necessário definir uma correlação da variável primária com a secundária, informação retirada dos dados de poço ou informada por um especialista e que pode ser global, todos os pontos de Z_1 tem a mesma correlação com Z_2 , ou local onde cada ponto possui sua correlação entre as variáveis primária e secundária. A variância da co-Krigagem simples é dada por:

$$\sigma_{CKS}^2(x_u) = Var\{Z_2(x_u)^* - Z_2(x_u)\}$$
(2.16)

A variância e média da Krigagem são então utilizadas para amostrar a distribuição global F_{Z_2} via transformação local Gaussiana como demonstrado na Figura 2.2.

Com esta transformação o autor demonstra que é possível amostrar a distribuição global utilizando amostras de Gaussianas equivalentes a $G(y(x_u)^*, \sigma_{SK}^2(x_u))$, ou seja, centrada nas médias e com as variâncias locais da Krigagem. Esta abordagem se diferencia da Sequential Gaussian Simulation (SGS) por não realizar a transformação da distribuição global para uma variável Gaussiana, o que pode acarretar problemas em certos casos (Soares, 2001).

O processo de inversão GSI inicia-se sem imagem secundária, efetuando uma SSD somente

Figura 2.2: Amostragem global via transformação local feita pela SSD (Soares, 2001)

utilizando os variogramas e dados de poço. As melhores regiões dos dados simulados são selecionadas baseado na correlação da sísmica sintética com a original. Uma imagem auxiliar é então criada com essas melhores regiões e utilizada como variável secundária na próxima iteração. Os passos da inversão GSI estão resumidos a seguir:

- 1. Gerar um conjunto de inicial de imagens de impedância acústica utilizando SSD
- 2. Calcular a sísmica sintética efetuando a convolução das refletividades, calculadas a partir das impedâncias, com uma wavelet conhecida
- 3. Avaliar o casamento das sísmicas sintéticas com a real utilizando correlação local
- 4. Ordenar as impedâncias por melhor casamento de sua sísmica sintética e selecionar delas os melhores traços de impedância. Com os melhores traços, compor uma imagem auxiliar para o próximo passo
- 5. Gerar um novo conjunto de imagens utilizando co-SSD e retornar ao passo 2 até que um critério de convergência seja atingido

Uma limitação dos métodos geoestatísticos é a necessidade de transformar o espaço físico para um espaço deposicional, ou seja, levar em consideração que ao longo do tempo a estrutura em que foram depositados os sedimentos foi deformada por falhas e dobramentos. No espaço físico são modelados os processos de propagação de ondas e fluxo, por exemplo. No espaço deposicional são modeladas as propriedades das rochas. Para contornar essa limitação é feita uma transformação onde são utilizados dados chamados de horizontes, criados pelo especialista para acompanhar as deformações sofridas pelas camadas utilizando uma superfície interpretada na sísmica. Desta forma assume-se que quando as camadas de sedimentos foram depositadas

elas eram planas e os dados são transformados horizontalizando as superfícies (Caers, 2011, p. 140). O processo é ilustrado na Figura 2.3. A transformação deve ser aplicada aos dados de poços e à variável secundária antes de modelar os variogramas e efetuar a SSD, e revertida para visualizar os resultados e calcular a sísmica sintética (Equações 2.3 e 2.2). Esta transformação também é chamada de conversão para grade estratigráfica.

Figura 2.3: Processo de horizontalização (Caers, 2011, p. 143)

2.3 Resumo

Neste capítulo foi revisado o estado da arte em inversão sísmica acústica com modelagem de incerteza. Pontos críticos dos métodos foram considerados e identificados para pesquisa futura. O próximo capítulo irá definir a proposta de pesquisa, apresentar o plano de trabalho e concluir com as perspectivas de contribuição.

Capítulo 3

Modelos de super-resolucao

Capítulo 4

Super-Resolução de Imagens Pós-Inversão

Este trabalho propõe desenvolver um novo modelo para inversão sísmica acústica e elástica com modelagem de incerteza. No capítulo anterior foi apresentado um método que trata o problema utilizando amostragem da distribuição posterior via simulação sequencial direta (Soares; Diet e Guerreiro, 2007). Outro método apresentado utiliza o cálculo do máximo *a posteriori* (MAP) para determinar o resultado mais provável (Buland e Omre, 2003 a).

A presente proposta tem como objetivo aumentar a eficiência do método GSI (Soares; Diet e Guerreiro, 2007) afim de evitar amostrar soluções que não estejam dentro da distribuição posterior. Neste caso o termo distribuição posterior é utilizado para denotar o conjunto de soluções que é consistente com os conhecimentos *a priori* e com os dados sísmicos. Para melhorar a eficiência do método, mantendo sua capacidade de modelagem da continuidade espacial direcional, serão utilizadas resultados de Buland e Omre (2003 a) para guiar a amostragem via imagem secundária.

Antes de efetuar a SSD, os dados de poços e resultado do MAP são submetidos à um filtro passa alta com frequência de corte de 8Hz. Desta forma a simulação é efetuada somente para as frequências onde a sísmica tem amplitude significativa, assumindo o mesmo modelo para as baixas frequências (<8Hz) que foi utilizado para o cálculo do MAP. Após a simulação, o modelo de baixa frequência é adicionado aos resultados para cálculo das sísmicas sintéticas e correlações.

O método proposto necessita dos seguintes dados de entrada: impedância acústica medida nos poços na escala da sísmica, wavelet, modelo de baixa frequência para impedância acústica (<8Hz), matriz de covariância da sísmica, distância de correlação vertical L (Equação 2.11),

modelo de horizontes e variogramas verticais e horizontais modelados nos dados filtrados (> 8Hz) para simulação sequencial. Resumindo, os principais passos são:

- 1. Preparar dados de entrada e modelar variogramas
- 2. Inversão pelo método MAP utilizando as matrizes de covariância da sísmica e do modelo, wavelet e modelo de baixa (Equação 2.12).
- 3. Filtragem dos dados de poços e resultado do MAP com filtro passa alta (>8Hz)
- 4. Horizontalização dos dados de poços e resultado do MAP filtrados utilizando o modelo de horizontes fornecido
- 5. SSD utilizando dados filtrados e horizontalizados com resultado do MAP como imagem secundária
- 6. Reverter horizontalização das amostras simuladas pelo SSD
- 7. Adicionar o modelo de baixa frequência às amostras simuladas, calcular refletividades e sísmica sintética. Avaliar os resultados via correlações
- O fluxo do método é ilustrado na Figura 4.1:

Figura 4.1: Fluxograma do método de inversão e simulação

Utilizando esta metodologia é possível gerar várias realizações da inversão para impedância à um custo menor do que apresentado em (Soares; Diet e Guerreiro, 2007), pois não é mais necessário selecionar melhores amostras e efetuar iterações para realizar a inversão, dado que o resultado do MAP já fornece uma estimativa próxima à média desejada.

4.1 Resultados Preliminares

Experimentos realizados com o método para cálculo do MAP obtiveram resultados e tempo de execução comparáveis com métodos implementados na indústria (Figueiredo et al., 2014). Apesar de resultar somente nas médias e variâncias, a parametrização e regularização utilizada na metodologia pode ajudar a restringir a amostragem, de forma a inserir informações da posterior e tornar a amostragem do SSD mais eficiente.

Como a inversão GSI é fundamentada na Simulação Sequencial Direta, os resultados da primeira iteração da GSI são iguais aos resultados de uma SSD utilizando os mesmos parâmetros e dados de entrada. Desta forma é possível verificar a melhora na correlação da sísmica sintética com a sísmica original quando se utiliza o resultado do MAP como imagem secundária para SSD. Este experimento foi realizado e na primeira iteração do GSI a correlação das sísmicas sintética e original foi 0.45 para a média de impedância, com a SSD utilizando o resultado do MAP como imagem secundária foi obtida uma correlação de 0.97 para a média, foram utilizadas populações de 35 amostras para cada método. Mesmo quando são executadas as iterações da GSI, a máxima correlação da média encontrada é 0.9, tomando no mínimo 10 iterações para atingir este nível de qualidade.

Foram utilizados dados fornecidos pela PETROBRAS de um campo real para efetuar os testes. Os dados consistem de 4 poços que se encontram na posição dos traços 17, 210, 409 e 698, modelo de baixa frequência interpolado dos poços, horizontes e uma wavelet extraída por um especialista da empresa. O parâmetro de distância de correlação da inversão por MAP foi utilizado L=1.4, a variância da sísmica foi estipulada como 0.4 multiplicado pela variância média dos traços. Para a SSD foi utilizado um modelo de variograma horizontal omnidirecional esférico com alcance de 32 traços, ou aproximadamente 800 metros. Para o variograma vertical foi utilizando o mesmo modelo com o alcance de 2 índices de tempo, correspondente a 8ms.

O resultado da inversão MAP é demonstrado na Figura 4.2. A média das realizações amostradas pelo método proposto está na Figura 4.4. Comparando com a Figura 4.3, a qual demonstra a média das realizações da primeira iteração da GSI, verifica-se que utilizar o resultado do MAP como imagem secundária traz a informação da sísmica nos pontos entre dos poços. Comparando a média da GSI após 10 iterações, na Figura 4.5, observa-se a semelhança dos resultados sem a necessidade de realizar as iterações. O método proposto demorou 52s para executar contra 487s para realizar as 10 iterações da GSI.

A metodologia descrita na literatura para a GSI não aplica a filtragem dos dados para

Figura 4.2: Resultado MAP utilizado como imagem secundária

Figura 4.3: Média das amostras da primeira iteração da GSI

Figura 4.4: Média das amostras da SSD utilizando MAP como imagem secundária

Figura 4.5: Média das amostras após 10 iterações da GSI

Figura 4.6: Comparação dos dados de poços filtrados

amostrar somente os resíduos, ou alta frequência. Utilizar o modelo de baixa frequência como informação a priori foi identificado como uma regularização importante para agilizar a inversão e amostragem. Principalmente para a SSD, filtrar os dados resulta em uma distribuição global com menor variância, pois assumindo um modelo de baixa frequência são definidas médias locais e as amostras são geradas em torno desta média, respeitando a distribuição do poço filtrado. Sem a filtragem, a informação da média local não é utilizada, amostrando-se toda a distribuição original do poço em todos os pontos da região de interesse. A Figura 4.6 mostra a comparação dos histogramas dos dados filtrados e não filtrados. Portanto, utilizar o modelo de baixa frequência insere um viés no resultado e diminui a incerteza dada pela variância, mas a incerteza referente a escolha do modelo de baixa precisa ser levada em consideração.

4.2 Proposta e Plano de Trabalho

A proposta para o restante do projeto é implementar a inversão elástica, que utiliza sísmica pré empilhada para obter as velocidades primária e secundária e densidade na linha de Azevedo et al. (2013) dentro da nova metodologia proposta. Os resultados obtidos serão comparados com os resultados da GSI em termos de variância e qualidade do resultado baseado na metodologia de Coléou (2012), amplamente utilizada para avaliação dos resultados da inversão sísmica na indústria.

A metodologia de Scheidt e Caers (2009) será integrada na proposta para possibilitar a análise da incerteza envolvida com os parâmetros e dados de entrada definidos pelo especialista,

como o modelo de baixa, wavelets e horizontes, pois a essas incertezas geológicas são apontadas como maiores influências na incerteza do resultado da inversão (Caers, 2011, p. 133). Para tanto, será proposto um esquema de amostragem com Monte Carlo para selecionar os dados de entrada aleatoriamente a cada amostragem do resultado da inversão. Após obter várias amostras com combinações diferentes de dados de entrada, uma análise baseada em Multi-Dimensional Scaling será aplicada para avaliar a sensibilidade ao variar cada parâmetro de entrada na incerteza final do resultado da inversão. Será utilizada como métrica as medidas de Quality-Anomaly (Coléou, 2012).

O caráter de originalidade do trabalho é garantido pelas contribuições para a área de inversão com modelagem de incerteza. A primeira contribuição diminui o tempo de execução por eliminar a necessidade de um método iterativo para realizar a inversão geoestatística, ao mesmo tempo modelando a continuidade lateral. A segunda contribuição será modelar as incertezas presentes nos dados de entrada (wavelets, horizontes, modelos de baixa, variogramas, etc...) após a integração da metodologia de Scheidt e Caers (2009).

A Figura 4.7 mostra o cronograma mensal das atividades a serem desenvolvidas durante o período de 12 meses do estágio de doutorado sanduíche a ser realizado no Centro de Recursos Naturais e Ambiente (CERENA) do Instituto Superior Técnico (IST) ligado a Universidade de Lisboa sob orientação do Dr. Amilcar Soares. Também estão planejados os meses após o retorno para finalização da tese e defesa.

Atividade		Duração	Mês
			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Reuniões de início do projeto	1	1	
Análise de ferramentas existentes	1	2	
Implementação		6	
Testes		6	
Escrita de artigos	7	9	
Escrita da tese	15	6	

Figura 4.7: Cronograma mensal do projeto a partir de jul/2014

Dentre os periódicos que apresentam trabalhos relacionados com esta área, se destacam os seguintes com suas classificações no Qualis para Ciências da Computação:

- IEEE Trans. on Geoscience and Remote Sensing
- ISSN: 0196-2892 IEEE Qualis A1
- Journal of Computational Physics

• ISSN: 0021-9991 - Elsevier - Qualis A1

• Computers & Geosciences

• ISSN: 0098-3004 - Elsevier - Qualis A2

• Computational Geosciences

• ISSN: 1420-0597 - Springer - Qualis B1

• Geophysics

• ISSN: 0016-8033 - Society of Exploration Geophysicists - Qualis A2 Interdisciplinar

• Mathematical Geosciences

• ISSN: 1874-8961 - Springer - Qualis A2 Interdisciplinar

A colaboração com o grupo de pesquisas do Prof. Amilcar Soares é justificada pois o autor é a uma das principais referências na literatura sobre Simulação Sequencial Direta e inversão Geoestatística (Azevedo et al., 2013; Soares; Diet e Guerreiro, 2007; Soares, 2001). A pesquisa nos dois primeiros anos do projeto de Doutorado foi feita sob orientação do Prof. Mauro Roisenberg, coautor de referências relevantes para inversão Bayesiana (Figueiredo et al., 2013, 2014). Desta forma, espera-se cumprir a proposta de integração sob orientação de especialistas em ambos os métodos. A proposta também faz parte de um Termo de Cooperação Petrobras/UFSC/FEESC.

Bibliografia

- Azevedo, L.; Nunes, R.; Soares, A. e Neto, G. (2013), Stochastic seismic AVO inversion, 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, EAGE, Londres, Reino Unido.
- Bosch, M.; Mukerji, T. e Gonzalez, E. F. (2010), Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review, Geophysics **75**(5), 75A165–75A176.
- Buland, A. e Omre, H. (2003 a), Bayesian linearized avo inversion, Geophysics 68(1), 185–198.
- Buland, A. e Omre, H. (2003 b), Bayesian wavelet estimation from seismic and well data, Geophysics **68**(6), 2000–2009.
- Caers, J. (2011), Modeling Uncertainty in the Earth Sciences, Wiley.
- Clapp, M. L.; Clapp, R. G. e Biondi, B. L. (2005), Regularized least-squares inversion for 3-D subsalt imaging, SEG Annual Meeting, Society of Exploration Geophysicists, Houston, Texas, pp. 1814–1817.
- Coléou, T. (2012), Use of quality and anomaly indicators in the QC of seismic inversion, 74th EAGE Conference and Exhibition Workshops, EAGE, Copenhague, Dinamarca.
- Fernández Martínez, J. L.; Fernández Muñiz, M. Z. e Tompkins, M. J. (2012), On the topography of the cost functional in linear and nonlinear inverse problems, Geophysics **77**(1), W1–W15.
- Figueiredo, L. P.; Santos, M.; Roisenberg, M. e Neto, G. (2013), Stochastic Bayesian algorithm to a jointly acoustic inversion and wavelet estimation, Society of Exploration Geophysicists, chapter 635, pp. 3273–3277.

- Figueiredo, L. P.; Santos, M.; Roisenberg, M.; Neto, G. e Figueiredo, W. (2014), Bayesian framework to wavelet estimation and linearized acoustic inversion, Geoscience and Remote Sensing Letters, IEEE **PP**(99), 1–5.
- FishSAFE (2014), Seismic surveys, http://fishsafe.eu/en/offshore-structures/seismic-surveys.aspx.
- Goovaerts, P. (1997), Geostatistics for Natural Resources Evaluation, Applied geostatistics series, Oxford University Press.
- Jolliffe, I. T. (2002), Principal component analysis, Springer, New York.
- Ma, X. (2002), Simultaneous inversion of prestack seismic data for rock properties using simulated annealing, GEOPHYSICS **67**(6), 1877–1885.
- Mallick, S. (1995), Model-based inversion of amplitude-variations-with-offset data using a genetic algorithm, Geophysics **60**(4), 939–954.
- Martínez, J. L. F.; Gonzalo, E. G.; Muñiz, Z. F.; Mariethoz, G. e Mukerji, T. (2010), Posterior sampling using particle swarm optimizers and model reduction techniques, Int. J. Appl. Evol. Comput. 1(3), 27–48.
- Passos de Figueiredo, L.; Santos, M.; Roisenberg, M.; Schwedersky Neto, G. e Figueiredo, W. (2014), Bayesian framework to wavelet estimation and linearized acoustic inversion, Geoscience and Remote Sensing Letters, IEEE **11**(12), 2130–2134.
- Scheidt, C. e Caers, J. (2009), Representing spatial uncertainty using distances and kernels, Mathematical Geosciences **41**(4), 397–419.
- Sen, M. K. (2006), Seismic Inversion, Society of Petroleum Engineers, Richardson, TX, USA.
- Sen, M. K. e Stoffa, P. L. (1995), Global Optimization Methods in Geophysical Inversion, Vol. 4 of Advances in Exploration Geophysics, Elsevier.
- Smolyak, S. (1963), Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Mathematics, Doklady 4, 240–243.
- Soares, A. (2001), Direct sequential simulation and cosimulation, Mathematical Geology **33**(8), 911–926.

- Soares, A.; Diet, J. e Guerreiro, L. (2007), Stochastic inversion with a global perturbation method, Petroleum Geostatistics 2007, EAGE.
- Srivastava, R. P. e Sen, M. K. (2009), Fractal-based stochastic inversion of poststack seismic data using very fast simulated annealing, Journal of Geophysics and Engineering 6(4), 412.
- Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics.
- Tompkins, M. J. (2012), Efficient estimation of nonlinear posterior model covariances using maximally sparse cubature rules, Geophysics 77(5), ID1–ID8.
- Tompkins, M. J.; Fernández Martínez, J. L.; Alumbaugh, D. L. e Mukerji, T. (2011), Scalable uncertainty estimation for nonlinear inverse problems using parameter reduction, constraint mapping, and geometric sampling: Marine controlled-source electromagnetic examples, Geophysics **76**(4), F263–F281.
- Tompkins, M. J.; Fernández Martínez, J. L. e Fernández Muñiz, Z. (2013), Comparison of sparse-grid geometric and random sampling methods in nonlinear inverse solution uncertainty estimation, Geophysical Prospecting **61**(1), 28–41.
- Zhe, Y. e Hanming, G. (2013), Non-linear prestack seismic inversion with global optimization using an edge-preserving smoothing filter, Geophysical Prospecting **61**(4), 747–760.
- Zunino, A.; Lange, K.; Melnikova, Y.; Hansen, T. e Mosegaard, K. (2014), Reservoir modeling combining geostatistics with markov chain monte carlo inversion, E. Pardo-Igúzquiza; C. Guardiola-Albert; J. Heredia; L. Moreno-Merino; J. J. Durán e J. A. Vargas-Guzmán, (Eds.), Mathematics of Planet Earth, Lecture Notes in Earth System Sciences, Springer Berlin Heidelberg, pp. 683–687.