PSALTer results panel $S = \begin{cases} S = \\ \iiint (\frac{1}{6} (2t_{1} \mathcal{A}^{\alpha_{i}} \mathcal{A}^{\beta_{i}} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} - 4t_{1} \mathcal{A}^{\beta_{i}}_{\alpha} \partial_{\beta} \mathcal{A}^{\beta_{i}} - 24r_{3} \partial_{\beta} \mathcal{A}^{\beta_{i}}_{\alpha} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 4t_{1} \mathcal{A}^{\beta_{i}}_{\alpha} \partial_{\beta} \mathcal{A}^{\beta_{i}}_{\alpha} - 2t_{1} \partial_{i} f^{\theta_{i}} \partial_{i} f^{\alpha_{i}} - 2t_{1} \partial_{i} f^{\theta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}}_{\alpha} - 2t_{1} \partial_{i} f^{\theta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}}_{\alpha} - 2t_{1} \partial_{i} f^{\alpha_{i}} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\alpha$

 $2t. \frac{\partial_{\theta}f_{,\alpha}}{1} \frac{\partial^{\theta}f^{\alpha \prime} - t.}{2} \frac{\partial_{\theta}f_{,\alpha}}{1} \frac{\partial^{\theta}f^{\alpha \prime} + 2\left(t. + t.\right)}{1} \frac{\mathcal{A}_{\alpha \prime \theta}}{2} \left(\mathcal{A}^{\alpha \prime \theta} + 2 \frac{\partial^{\theta}f^{\alpha \prime}}{1} \right) + 2 \frac{\mathcal{A}_{\alpha \theta \prime}}{1} \frac{\left(\left(t. - 2t.\right)}{1} \frac{\mathcal{A}^{\alpha \prime \theta}}{2} + 2 \left(2t. - t.\right) \frac{\partial^{\theta}f^{\alpha \prime}}{1} \right) \right) \left[t, \, x, \, y, \, z\right] dz \, dy \, dx \, dt \\ \frac{\partial^{\theta}f_{,\alpha}}{1} \frac{\partial^{\theta}f^{\alpha \prime}}{2} + 2 \left(2t. - t.\right) \frac{\partial^{\theta}f^{\alpha \prime}}{1} + 2 \left(2t. - t.\right) \frac{\partial^{\theta}f^{\alpha \prime}}{2} + 2 \left(2t.$

Wave operator

	$^{0^+}\mathcal{F}^{\parallel}$	$0.^+f^{\parallel}$	$0.^+f^{\perp}$	0⁻ℋ∥										
$^{0,^{+}}\mathcal{A}^{\parallel}$ †	$6k^2r$.	0	0	0										
0,+ f †	0	0	0	0										
$0.^+f^{\perp}$ †	0	0	0	0										
^{0⁻} Æ [∥] †	0	0	0	$k^2 r_{\cdot \cdot} + t_{\cdot \cdot}$	${\overset{1}{\cdot}}^{+}\mathcal{F}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{F}\!\!/^{\perp}_{\alpha\beta}$	$1.^+f^{\parallel}_{\alpha\beta}$	${}^1\mathcal{H}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}_{\ lpha}^{\perp}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{2}f^{\perp}_{\alpha}$			
				$^{1.^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{1}{6}(t_1 + 4t_2)$	$-\frac{t2t.}{3\sqrt{2}}$	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0			
					- '-	$\frac{t.+t.}{\frac{1}{3}}$			0	0	0			
				$\overset{1}{\cdot}f^{\parallel} \stackrel{\alpha\beta}{\dagger}$	$\frac{i k (t2 t.)}{\frac{1}{3} \sqrt{2}}$	$-\frac{1}{3} \bar{i} k (t_1 + t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0			
				$^{1}\mathcal{H}^{\parallel}\dagger^{lpha}$	0	0	0	$\frac{t}{6}$	$\frac{\frac{t}{1}}{3\sqrt{2}}$	0	$\frac{i kt}{3}$			
				$^{1}\mathcal{H}^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	$\frac{t}{3}$	0	$\frac{1}{3}i\sqrt{2}kt.$			
				$^{1}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ikt$	$-\frac{1}{3} i \sqrt{2} kt_1$	0	$\frac{2 k^2 t}{3}$	^{2,+} ℋ [∥] ℴℷ	$_{3} \stackrel{2^{+}}{\cdot} f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											2 . $^{+}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	_	$-\frac{i k t}{\sqrt{2}}$	0
											$^{2^{+}}f^{\parallel}\uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$	0
											$^{2}\mathcal{A}^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	$\frac{t}{2}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
0.+ r == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha}$	1
$2 i k 1 \sigma^{\parallel^{\alpha}} + 1 \tau^{\perp^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+2\left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\ \beta}^{\ \chi}-\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\ \beta}\right)==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
$1 r^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\frac{1}{ \alpha ^{\alpha}} = \frac{1}{ \alpha ^{\alpha}}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\ \beta}{}^{\chi} + \partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\ \beta} == 0$	3
$i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k ^{2^{+}} \sigma^{\parallel^{\alpha\beta}} + 2^{+} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\gamma\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\gamma}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\gamma}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\gamma}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\gamma}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\gamma}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\gamma}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\gamma}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\gamma}\partial_{\chi}\partial^{\gamma}\tau(\Delta+\mathcal{K})^{\alpha\gamma}+3\partial_{\delta}\partial^{\gamma}\partial_{\chi}\partial^{\gamma$	5
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta\alpha\epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) == 0$	
Total expected gauge g	generators:	19

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot 2}} > 0$
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

 $r_{2} < 0 \&\& t_{2} > 0$