On the set function in \mathbb{R}^n

the ideas of these proofs below are from MA5205 Graduate Analysis I instructed by Dr. Chua Seng Kee at National University of Singapore

Nguyen Ngoc Khanh

October 2023

In \mathbb{R}^n , let u be a set function on \mathbb{R}^n which is a non-negative function on a subcollection of the collection of all subsets of \mathbb{R}^n , i.e. $u: \mathcal{U} \to [0, +\infty], \ \mathcal{U} \subseteq \mathcal{P}(\mathbb{R}^n)$.

We will construct the smallest set of assumptions on u such that the following limit converges for almost every x in a bounded outer measure X, i.e. $|X| < +\infty$

$$Du(x) = \lim_{B \searrow x} \frac{u(B)}{|B|}$$

where $B \setminus x$ denotes the contraction of B into a singleton x, and |B| denotes the Lebesgue measure of B.

Assumption 1 (Closed balls) $\overline{\mathcal{B}_r(x)} \in \mathcal{U}$ for all $x \in \mathbb{R}^n$ and r > 0

Consider a simpler version where B is a closed ball of radius r > 0 centered at x, i.e. $B = \overline{\mathcal{B}_r(x)}$. Define \limsup as follows

- $\overline{D}u(x) = \limsup_{B \searrow x} \frac{u(B)}{|B|} = \lim_{r \to 0^+} \left(\sup_{t \in (0,r)} \frac{u(B_t(x))}{|B_t(x)|} \right)$
- $\underline{D}u(x) = \liminf_{B \searrow x} \frac{u(B)}{|B|} = \lim_{r \to 0^+} \left(\inf_{t \in (0,r)} \frac{u(B_t(x))}{|B_t(x)|}\right)$

The necessary and sufficient condition for the existence of Du(x) is $\overline{D}u(x) = \underline{D}u(x)$. If $\overline{D}u(x) > \underline{D}u(x)$, let $\alpha, \beta \in \mathbb{Q}$ such that $\overline{D}u(x) > \alpha > \beta > \underline{D}u(x) \geq 0$. Then Du(x) exists for almost every $x \in X$ if

$$A_{\alpha\beta} = \{ x \in X : \overline{D}u(x) > \alpha > \beta > \underline{D}u(x) \}$$

has measure zero for all $\alpha, \beta \in \mathbb{Q}$. If $x \in A_{\alpha\beta}$, then given any $\delta > 0$, there exist balls $B^{(\alpha)}, B^{(\beta)}$ centered at x with radius less than δ such that $\frac{u(B^{(\alpha)})}{|B^{(\alpha)}|} > \alpha > \beta > \frac{u(B^{(\beta)})}{|B^{(\beta)}|}$. That is, the collections $\{B^{(\alpha)}\}$ and $\{B^{(\beta)}\}$ each cover $A_{\alpha\beta}$ finely.

Lemma 1 (Vitali Covering Theorem for Lebesgue measure) A collection V of closed balls is said to cover a set E finely if for every $x \in E$ and $\eta > 0$, there is a ball B containing x whose radius is less than η . Suppose E is covered finely by a collection V of balls such that $0 < \mu_e(E) < +\infty^{-1}$. Then, given any $\epsilon > 0$, there is a countable collection M of disjoint balls such that

$$\mu\left(E\setminus\bigcup_{B_k\in M}B_k\right)=0\ \ and\ \sum_{B_k\in M}\mu(B_k)<\mu_e(E)+\epsilon$$

Claim 1 Given any open ball U contains a subset $E \subseteq A_{\alpha\beta}$, the $u(\overline{U}) \ge \alpha |E|_e$

Given any open ball U contains a subset $E \subseteq A_{\alpha\beta}$, since U is open, for each $x \in E$, we can find a subcollection of balls $\{B_U^{(\alpha)}\}\subseteq \{B^{(\alpha)}\}$ that finely covers E and is contained in U. By Vitali Covering Theorem for Lebesgue measure on finite outer measure E with $\{B_U^{(\alpha)}\}$, given any $\eta > 0$, there exists a finite collection of pairwise disjoint balls $\{B_i\}_{i=1}^N$ contained in U such that $\left|E\setminus\bigcup_{i=1}^N B_i\right|_{\mathcal{L}} < \eta/\alpha$ and $u(B_i)>\alpha|B_i|$

Assumption 2 (Additivity) $A, B \in \mathcal{U}$ and $A \cap B = \emptyset \implies A \cup B \in \mathcal{U}$ and $u(A \cup B) = u(A) + u(B)$

Assumption 3 (Subset) $A, B \in \mathcal{U}$ and $A \subseteq B \implies u(A) \le u(B)$

¹if $\mu_e(E) = 0$, the result is immediate

Then,

$$u(\overline{U}) \ge u\left(\bigcup_{i=1}^{N} B_{i}\right)$$
 (subset)
$$= \sum_{i=1}^{N} u(B_{i})$$
 (additivity)
$$> \alpha \sum_{i=1}^{N} |B_{i}|$$
 (B_i \in \{B_{U}^{(\alpha)}\} \subseteq \{B^{(\alpha)}\}\})
$$= \alpha \left|\bigcup_{i=1}^{N} B_{i}\right|$$
 (additivity of Lebesgue measure)
$$= \alpha \left|E \cap \bigcup_{i=1}^{N} B_{i}\right|_{e}$$
 (subset of Lebesgue measure)
$$= \alpha \left(|E|_{e} - \left|E \setminus \bigcup_{i=1}^{N} B_{i}\right|_{e}\right)$$
 (Caratheodory condition)
$$= \alpha |E|_{e} - \eta$$
 (Vitali Covering Theorem for Lebesgue measure)

As the inequality is true for all $\eta > 0$, $u(\overline{U}) \ge \alpha |E|_e$

By Vitali Covering Theorem for Lebesgue measure on finite outer measure $A_{\alpha\beta}$ ($|A_{\alpha\beta}|_e \leq |X|_e < +\infty$) with $\{B^{(\beta)}\}$, given any $\epsilon > 0$, there exists a finite collection of pairwise disjoint balls $\{B_i\}_{i=1}^N$ such that $\left|A_{\alpha\beta}\setminus\bigcup_{i=1}^N B_i\right|_e < \epsilon$, $\sum_{i=1}^N |B_i| < |A_{\alpha\beta}|_e + \epsilon$, and $u(B_i) < \beta |B_i|$

Then

$$|A_{\alpha\beta}|_{e} + \epsilon > \sum_{i=1}^{N} |B_{i}| \qquad \qquad \text{(Vitali Covering Theorem for Lebesgue measure)}$$

$$> \frac{1}{\beta} \sum_{i=1}^{N} \mu(B_{i}) \qquad \qquad (B_{i} \in \{B_{U}^{(\beta)}\} \subseteq \{B^{(\beta)}\})$$

$$\geq \frac{\alpha}{\beta} \sum_{i=1}^{N} |B_{i}^{o} \cap A_{\alpha\beta}|_{e} \qquad \qquad \text{(by claim 1 as open ball } B_{i}^{o} \text{ contains } B_{i}^{o} \cap A_{\alpha\beta} \subseteq A_{\alpha\beta})$$

$$\geq \frac{\alpha}{\beta} \left| A_{\alpha\beta} \cap \bigcup_{i=1}^{N} B_{i}^{o} \right|_{e} \qquad \qquad \text{(subadditivity of Lebesgue outer measure)}$$

$$\geq \frac{\alpha}{\beta} \left| A_{\alpha\beta} \cap \bigcup_{i=1}^{N} B_{i} \right|_{e} \qquad \qquad (|A \cap B|_{e} \leq |A \cap B^{o}|_{e} + |A \cap B^{b}|_{e}^{-2})$$

$$\geq \frac{\alpha}{\beta} \left(|A_{\alpha\beta}|_{e} - \left| A_{\alpha\beta} \setminus \bigcup_{i=1}^{N} B_{i} \right|_{e} \right) \qquad \qquad \text{(Caratheodory condition)}$$

$$> \frac{\alpha}{\beta} |A_{\alpha\beta}|_{e} - \frac{\alpha}{\beta} \epsilon \qquad \qquad \text{(Vitali Covering Theorem for Lebesgue measure)}$$

Send ϵ to 0^+ implies $|A_{\alpha\beta}| \geq \frac{\alpha}{\beta} |A_{\alpha\beta}|$. Hence $|A_{\alpha\beta}| = 0$

Theorem 1 Given a set function $u: \mathcal{U} \to [0, +\infty]$ defined for all closed balls $\overline{\mathcal{B}_r(x)}$, r > 0 that is equipped with (1) additivity and (2) subset, Then

$$Du(x) = \lim_{B \searrow x} \frac{u(B)}{|B|}$$

is defined for almost every $x \in X$ where $X \subseteq \mathbb{R}^n$ is any finite outer measure set and $B \setminus x$ denotes the contraction of closed balls $\overline{\mathcal{B}_r(x)}, r > 0$ into a singleton x

Theorem 1 is true for every $X_r = \mathcal{B}_r(0), r \in \mathbb{N}$, then it is also true for \mathbb{R}^n .

Corollary 1 Given a set function $u: \mathcal{U} \to [0, +\infty]$ defined for all closed balls $\overline{\mathcal{B}_r(x)}, r > 0$ that is equipped with (1) additivity and (2) subset, Then

$$Du(x) = \lim_{B \searrow x} \frac{u(B)}{|B|}$$

is defined for almost every $x \in \mathbb{R}^n$ set where $B \searrow x$ denotes the contraction of closed balls $\overline{\mathcal{B}_r(x)}, r > 0$ into a singleton x

Remark 1 Some remarks

- If u is the Lebesgue measure, then Du(x) = 1 everywhere.
- If u is any positive measure on \mathbb{R}^n , Du(x) is defined everywhere.
- If $f: \mathbb{R}^n \to [0, +\infty]$ is Lebesgue measurable, let $u(E) = \int_E f$, then we have the Lebesgue Differentiation Theorem

Definition 1 (Absolute Continuous Set Function) A set function $u: \mathcal{U} \to [0, +\infty]$ is defined to be absolute continuous if given any $\epsilon > 0$, there exists a $\delta > 0$ such that if $E \in \mathcal{U}$, $|E| < \delta$, then $u(E) < \epsilon$

Lemma 2 (Theorem 7.28) If $u: \mathcal{U} \to [0, +\infty]$ is an absolute continuous set function, $E \in \mathcal{U}$ with $|E| < +\infty$ and $\lim_{B \searrow x} \frac{u(B)}{|B|} = 0$ for every $x \in E$, then u(E) = 0

 $u: \mathcal{U} \to [0, +\infty]$ is absolute continous, that is, given any $\epsilon > 0$, there exists a $\delta > 0$ such that $E \in \mathcal{U}, |E| < \delta$ then $u(E) < \epsilon$

For each $x \in E$, $\lim_{B\searrow x} \frac{u(B)}{|B|} = 0$, that is, given any $\epsilon > 0$, then there exists a $\delta > 0$ such that for all ball B with radius less than δ , i.e. $r(B) < \delta$, then $u(B) < \epsilon |B|$. Fix $\epsilon > 0$, there is a collection of balls $\{B^{(\epsilon)}\}$ that finely covers E and $u(B) < \epsilon |B|$ for all $B \in \{B^{(\epsilon)}\}$. By Vitali Covering Theorem for Lebesgue measure on finite measure E with $\{B^{(\epsilon)}\}$, given any $\epsilon, \delta > 0$, there exists a finite collection of pairwise disjoint balls $\{B_i\}_{i=1}^N$ such that $|E \setminus \bigcup_{i=1}^N B_i| < \delta$ and $\sum_{i=1}^N |B_i| < |E| + \epsilon$. Hence,

$$u(E) = u\left(E \setminus \bigcup_{i=1}^{N} B_i\right) + u\left(E \cap \bigcup_{i=1}^{N} B_i\right) \qquad \qquad \text{(additivity, suppose } E \setminus \bigcup_{i=1}^{N} B_i, E \cap \bigcup_{i=1}^{N} B_i \in \mathcal{U} \text{)}$$

$$\leq \epsilon + u\left(E \cap \bigcup_{i=1}^{N} B_i\right) \qquad \qquad \text{(Vitali Covering Theorem for Lebesgue measure, absolute continuous)}$$

$$\leq \epsilon + u\left(\bigcup_{i=1}^{N} B_i\right) \qquad \qquad \text{(subset)}$$

$$= \epsilon + \sum_{i=1}^{N} u(B_i) \qquad \qquad \text{(additivity)}$$

$$\leq \epsilon + \epsilon \sum_{i=1}^{N} |B_i| \qquad \qquad \text{(Bi } \in \{B^{(\epsilon)}\})$$

$$\leq \epsilon + \epsilon (|E| + \epsilon) \qquad \qquad \text{(Vitali Covering Theorem for Lebesgue measure)}$$

As $|E| < +\infty$, send ϵ to 0^+ implies u(E) = 0

Remark 2 Put u([a,b]) = |f(b) - f(a)|, $\lim_{B\searrow x} \frac{u(B)}{|B|} = 0$ implies f being singular, recover **Theorem 7.28**

Corollary 2 If $u: \mathcal{U} \to [0, +\infty]$ is an absolute continuous set function, $E \in \mathcal{U}$ with $|E| < +\infty$ and $\lim_{B \searrow x} \frac{u(B)}{|B|} = 0$ for almost every $x \in E$, then u(E) = 0

Let $F \subseteq E$ with |F| = 0 and $\lim_{B \searrow x} \frac{u(B)}{|B|} = 0$ in $E \backslash F$. $u(E) = u(E \backslash F) + u(F) = u(F)$. By absolute continuity of u(E) = u(F) = 0

Theorem 2 (Theorem 7.29) If $u: \mathcal{U} \to [0, +\infty]$ is an absolute continuous set function. Given $E \in \mathcal{U}$ with $|E|_e < +\infty$, given necessary conditions (additivity, subset) then $u'(x) = \lim_{B \searrow x} \frac{u(B)}{|B|}$ is defined almost every $x \in E$. Furthermore,

$$u(E) = \int_E u'$$

for all $E \in \mathcal{U} \cap \mathcal{M}(\mathbb{R}^n)$.

u' is defined almost every x in a finite outer measure E is immediate from theorem 1. For the second part, let $v(E) = u(E) - \int_E u'$ for all $E \in \mathcal{U} \cap \mathcal{M}(\mathbb{R}^n)$, then

$$\lim_{B\searrow x}\frac{v(E)}{|E|}=\lim_{B\searrow x}\frac{u(E)-\int_E u'}{|E|}=\lim_{B\searrow x}\frac{u(E)}{|E|}-\lim_{B\searrow x}\frac{\int_E u'}{|E|}=0 \text{ for almost every } x\in E$$

By corollary 2, v(E) = 0 almost every where.

Remark 3 Put u([a,b]) = |f(b) - f(a)|, $f' = u' = \lim_{B \searrow x} \frac{u(B)}{|B|}$, recover Theorem 7.29