

examensegundaconv2019-.pdf

Anónimo

Química

1º Grado en Bioquímica y Ciencias Biomédicas

Facultad de Ciencias Biológicas Universitat de València

Estamos de
Aniversario

De la universidad al mercado laboral:
especialízate con los posgrados

de EOI y marca la diferencia.

¡UNA HORA UN TRIDENT MÁS Y YA LO TIENES!

VNIVERSITAT () Facultat de Química

33119-Química Bioquímica y Ciencias Biomédicas (Facultad de Ciencias Biológicas) Examen final (2ª convocatoria) 19-06-2019 (15:30 pm) aula: Al-1

Nombre:

Apellidos:

Instrucciones

Escribe tu nombre en todas las hojas que entregues. Muestra claramente el resultado para cada apartado. Debes consultar los datos necesarios en los anexos. Tiempo estimado: 150-180 minutos

P1	P2	P3	P4	P5	total	CALIFIC.
10	22	15	20	15	82	

Datos y constantes: R = 8,314 J·mol⁻¹·K⁻¹; R = 0,082 atm·L·K⁻¹·mol⁻¹;

 $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$; $F = 96485 \text{ C·mol}^{-1}$; 1 atm = 760 mmHg.

El estudiante debe traer al examen las tablas de valores utilizadas durante el curso.

- **P 1.- (10 puntos)** El NCl₃ es un líquido explosivo que, en el pasado, provocó accidentes a científicos notables como Michael Faraday.
 - a) Dibuje la estructura de Lewis de esta molécula. (3 puntos)
 - b) Indique su geometría molecular y haga una previsión sobre el valor de los ángulos de enlace Cl-N-Cl. (3 puntos)
 - c) ¿Qué molécula será mas polar, el NCl₃ o el NH₃? Razone la respuesta teniendo en cuenta que la electronegatividad varía del siguiente modo: EN (Cl) > (N) > (H). **(4 puntos)**
- **P 2.- (22 puntos)** El **tetrahidrocannabinol (THC)**, también conocido como delta-9-tetrahidrocannabinol (Δ^9 -THC), es el principal constituyente psicoactivo del cannabis. Es una sustancia poco soluble en agua, pero se disuelve fácilmente en muchos disolventes orgánicos como lípidos y alcoholes.
- HH3C O(1) C(2) CH
- a) Argumente en base a las interacciones intermoleculares la solubilidad en agua y en alcoholes de esta sustancia. (4 puntos)
- b) Indique la hibridación del C(1), O(1) y C(2). (6 puntos)
- c) Haga una previsión del valor del ángulo de enlace C-O(1)-C. (2 puntos)
- d) Describa los enlaces C=C en términos de los orbitales implicados en la formación de dicho enlace. (5 puntos)
- e) Indique, razonadamente, si el anillo homonuclear con una insaturación, será plano o no. (5 puntos)

WUOLAH

P 3.- (20 puntos) Tris es el nombre abreviado del compuesto orgánico conocido como tris(hidroximetil)aminometano, de fórmula (HOCH₂)₃CNH₂. El intervalo útil de tamponamiento del Tris coincide con el pH fisiológico de la mayoría de los seres vivos.

- a) Calcule el pH de una disolución que ha sido preparada disolviendo 10,0 g de tris junto con 10,0 g de hidrocloruro de tris en 250 mL de agua. **(10 puntos)**
- b) b) ¿Cuál será el nuevo pH tras la adición de 10,5 mL de una disolución de NaOH 0,5 M? (10 puntos)

Datos: MM_r(TRIS)=121,1; MM_r (HTRIS⁺Cl⁻)=157.6

P 4.- (20 puntos) La siguiente reacción puede ser considerada como un proceso enzimático que sigue el mecanismo de Michaelis-Menten.

$$2H_2O_2 \xrightarrow{\text{catalasa}} 2H_2O + O_2$$

- a) Calcule la relación entre la constante de Michaelis y la concentración de substrato, cuando la velocidad inicial es el 80% de la velocidad máxima. (10 puntos)
- b) Calcule, a partir de los datos suministrados, los valores de la constante de Michaelis y de la velocidad máxima. (puede hacerlo gráfica o numéricamente). **(10 puntos)**

v, (nmol·L ⁻¹ ·min ⁻¹)
15,00
56,25
60,00
74,90
75,00

P 5.- (15 puntos) En el músculo, la creatina-P es una reserva de energía:

El ATP producido queda disponible para la contracción muscular. En las condiciones de equilibrio (músculo en reposo), las concentraciones de ATP, ADP, creatina-P y creatina son: 4 mM, 0,013 mM, 25 mM y 13 mM, respectivamente.

Sabiendo que $\Delta G^{Q'}$ para la hidrólisis del ATP es -31,4 kJ·mol⁻¹, calcule:

- a) K'eq de esta reacción en el músculo. (5 puntos)
- b) ΔGº' de la reacción. (5 puntos)
- c) ΔGº' de la reacción de hidrólisis siguiente: (5 puntos)

Creatina-P +
$$H_2O \rightleftharpoons$$
 Creatina + P_i .

WUOLAH

Free Multi-color Graph Paper from http://incompetech.com/graphpaper/multicolor

33119 Química I. BCM

