Nemlineáris, egyismeretlenes egyenletek megoldása

Drig Dávid Martinák Mátyás

Miskolci Egyetem

2022. november 17.

Tartalomjegyzék

- Bevezetés
- Intervallumfelező eljárás
- Példa intervallumfelező eljárásra
- Newton-módszer és érintő módszer
- Newton-módszer
- o Fixpont iteráció, fokozatos közelítések módszere
- Példa fixpont iterációra

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a,b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak.

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a,b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak.

Példa: $ln(x) = sin(x) \rightarrow ln(x) - sin(x) = 0$

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a, b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak

Példa: $ln(x) = sin(x) \rightarrow ln(x) - sin(x) = 0$

Módszerek:

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a, b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak

Példa: $ln(x) = sin(x) \rightarrow ln(x) - sin(x) = 0$

Módszerek:

Intervallumfelező eljárás

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a, b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak

Példa: $ln(x) = sin(x) \rightarrow ln(x) - sin(x) = 0$

Módszerek:

- Intervallumfelező eljárás
- Newton-módszer

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a, b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak

Példa: $ln(x) = sin(x) \rightarrow ln(x) - sin(x) = 0$

Módszerek:

- Intervallumfelező eljárás
- Newton-módszer
- Fixpontiteráió

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a, b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak

Példa: $ln(x) = sin(x) \rightarrow ln(x) - sin(x) = 0$

Módszerek:

- Intervallumfelező eljárás
- Newton-módszer
- Fixpontiteráió
 - Kontrakció

2022 november 17.

Definíció

Legyen $f: \mathbb{R} \to \mathbb{R}$ egyváltozós, folytonos függvény. Az f(x) = 0 egyenlet pontos x^* megoldását keressük az [a,b] intervallumon. Ehhez az x^* -hoz konvergáló x_k sorozatot kell megkonstruálni melyre különböző módszerek vannak.

Példa: $ln(x) = sin(x) \rightarrow ln(x) - sin(x) = 0$

Módszerek:

- Intervallumfelező eljárás
- Newton-módszer
- Fixpontiteráió
 - Kontrakció
 - Kontrakció eldöntésre

Feltétel: Legyen f folytonos az [a, b] intervallumon, és legyenek f(a) és f(b) különböző előjelűek $\rightarrow f(a) \cdot f(b) < 0$.

Feltétel: Legyen f folytonos az [a, b] intervallumon, és legyenek f(a) és f(b) különböző előjelűek $\to f(a) \cdot f(b) < 0$.

Kiindulás: Legyen $[a_1,b_1]=[a,b]$, valamint $x_1=\frac{a+b}{2}$. Ha $f(a)\cdot f(x_1)<0$, akkor az $[a,x_1]$ intervallumon folytatjuk a keresést, különben $f(x_1)\cdot f(b)<0$, és ekkor az $[x_1,b]$ intervallumon folytatjuk a keresést. Egy egymásba skatulyázott intervallumsorozatot kapunk, melyek ráhúzódnak az egyenlet [a,b] intervallumbeli x^* gyökére $[a,b]=[a_1,b_1]\supset [a_2,b_2]\supset\cdots$.

Feltétel: Legyen f folytonos az [a, b] intervallumon, és legyenek f(a) és f(b) különböző előjelűek $\rightarrow f(a) \cdot f(b) < 0$.

Kiindulás: Legyen $[a_1, b_1] = [a, b]$, valamint $x_1 = \frac{a+b}{2}$. Ha $f(a) \cdot f(x_1) < 0$, akkor az $[a, x_1]$ intervallumon folytatjuk a keresést, különben $f(x_1) \cdot f(b) < 0$, és ekkor az $[x_1, b]$ intervallumon folytatjuk a keresést. Egy egymásba skatulyázott intervallumsorozatot kapunk, melyek ráhúzódnak az egyenlet [a, b] intervallumbeli x^* gyökére $[a, b] = [a_1, b_1] \supset [a_2, b_2] \supset \cdots$

Iteráció: Tegyük fel, hogy x_k adott. Legyen

$$[a_{k+1},b_{k+1}] = egin{cases} [a_k,x_k], & \mathsf{ha}\ f(a_k)\cdot f(x_k) < 0, \ [x_k,b_k] & \mathsf{ha}\ f(x_k)\cdot f(b_k) < 0. \end{cases}$$

Feltétel: Legyen f folytonos az [a, b] intervallumon, és legyenek f(a) és f(b) különböző előjelűek $\rightarrow f(a) \cdot f(b) < 0$.

Kiindulás: Legyen $[a_1, b_1] = [a, b]$, valamint $x_1 = \frac{a+b}{2}$. Ha $f(a) \cdot f(x_1) < 0$, akkor az $[a, x_1]$ intervallumon folytatjuk a keresést, különben $f(x_1) \cdot f(b) < 0$, és ekkor az $[x_1, b]$ intervallumon folytatjuk a keresést. Egy egymásba skatulyázott intervallumsorozatot kapunk, melyek ráhúzódnak az egyenlet [a, b] intervallumbeli x^* gyökére $[a, b] = [a_1, b_1] \supset [a_2, b_2] \supset \cdots$

Iteráció: Tegyük fel, hogy x_k adott. Legven

$$[a_{k+1},b_{k+1}] = egin{cases} [a_k,x_k], & \mbox{ha } f(a_k)\cdot f(x_k) < 0, \ [x_k,b_k] & \mbox{ha } f(x_k)\cdot f(b_k) < 0. \end{cases}$$

Az x^* megoldás (k+1)-ik közelítése

$$x_{k+1} = \frac{a_{k+1} + b_{k+1}}{2}.$$

Feltétel: Legyen f folytonos az [a,b] intervallumon, és legyenek f(a) és f(b) különböző előjelűek $\to f(a) \cdot f(b) < 0$.

Kiindulás: Legyen $[a_1,b_1]=[a,b]$, valamint $x_1=\frac{a+b}{2}$. Ha $f(a)\cdot f(x_1)<0$, akkor az $[a,x_1]$ intervallumon folytatjuk a keresést, különben $f(x_1)\cdot f(b)<0$, és ekkor az $[x_1,b]$ intervallumon folytatjuk a keresést. Egy egymásba skatulyázott intervallumsorozatot kapunk, melyek ráhúzódnak az egyenlet [a,b] intervallumbeli x^* gyökére $[a,b]=[a_1,b_1]\supset [a_2,b_2]\supset\cdots$.

Iteráció: Tegyük fel, hogy x_k adott. Legyen

$$[a_{k+1},b_{k+1}] = egin{cases} [a_k,x_k], & \mbox{ha } f(a_k)\cdot f(x_k) < 0, \ [x_k,b_k] & \mbox{ha } f(x_k)\cdot f(b_k) < 0. \end{cases}$$

Az x^* megoldás (k+1)-ik közelítése

$$x_{k+1} = \frac{a_{k+1} + b_{k+1}}{2}.$$

Hiba: Az x_{k+1} tag hibája $|x^* - x_{k+1}| \leq \frac{b-a}{2^k} < \epsilon$.

Közelítse az $f(x) = x^3 + x^2 + 10x - 20$ egyenlet gyökét az [1-2] intervallumon!

Közelítse az $f(x) = x^3 + x^2 + 10x - 20$ egyenlet gyökét az [1-2] intervallumon! **Megoldás:**

Közelítse az $f(x) = x^3 + x^2 + 10x - 20$ egyenlet győkét az [1-2] intervallumon! **Megoldás:**

Ellenőrizzük a feltételeket:

Közelítse az $f(x) = x^3 + x^2 + 10x - 20$ egyenlet gyökét az [1-2] intervallumon! **Megoldás:**

Ellenőrizzük a feltételeket:

f folytonos

Közelítse az $f(x)=x^3+x^2+10x-20$ egyenlet gyökét az [1-2] intervallumon!

Megoldás:

Ellenőrizzük a feltételeket:

- f folytonos
- f(1) < 0 és f(2) > 0

Közelítse az $f(x) = x^3 + x^2 + 10x - 20$ egyenlet gyökét az [1-2] intervallumon!

Megoldás:

Ellenőrizzük a feltételeket:

- f folytonos
- f(1) < 0 és f(2) > 0

k	a _k —	b_k +	x_k	$f(x_k)$ előjele
1	1	2	1.5	+
2	1	1.5	1.25	_
3	1.25	1.5	1.375	+
4	1.25	1.375	1.3125	_
5	1.3125	1.375	1.34375	

Közelítse az $f(x) = x^3 + x^2 + 10x - 20$ egyenlet gyökét az [1-2] intervallumon!

Megoldás:

Ellenőrizzük a feltételeket:

- f folytonos
- f(1) < 0 és f(2) > 0

k	a_k —	b_k +	x_k	$f(x_k)$ előjele
1	1	2	1.5	+
2	1	1.5	1.25	_
3	1.25	1.5	1.375	+
4	1.25	1.375	1.3125	_
5	1.3125	1.375	1.34375	

Hány lépés szükséges a 0.01-es pontossághoz?

Közelítse az $f(x) = x^3 + x^2 + 10x - 20$ egyenlet gyökét az [1-2] intervallumon!

Megoldás:

Ellenőrizzük a feltételeket:

- f folytonos
- f(1) < 0 és f(2) > 0

k	a_k —	b_k +	x_k	$f(x_k)$ előjele
1	1	2	1.5	+
2	1	1.5	1.25	_
3	1.25	1.5	1.375	+
4	1.25	1.375	1.3125	_
5	1.3125	1.375	1.34375	

Hány lépés szükséges a 0.01-es pontossághoz?

$$\frac{b-a}{2^k} = \frac{2-1}{2^k} < 0.01 \rightarrow 2^k > 100 \rightarrow k = 7$$

Érintő módszer

Érintő módszer

Érintő módszer

Az f(x) = 0 egyenlet x^* megoldáshoz közelítő sorozat elemeit az $(x_k, f(x_k))$ ponthoz tartozó érintő zérushelye határozza meg. Az $(x_k, f(x_k))$ pontbeli érintő egyenlete

$$y - f(x_k) = f'(x_k)(x - x_k)$$

Az érintő zérushelyét az y = 0 helyettesítéssel kapjuk

$$-f(x_k) = f'(x_k)(x - x_k) \to x = -\frac{f(x_k) + x_k f'(x_k)}{f'(x_k)}$$

Az érintő zérushelyét az v=0 helyettesítéssel kapjuk

$$-f(x_k) = f'(x_k)(x - x_k) \to x = -\frac{f(x_k) + x_k f'(x_k)}{f'(x_k)}$$

Így az x^* megoldásai közelítő sorozat következő eleme

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Tétel (Newton-módszer konvergenciája)

Tegyük fel, hogy teljesülnek az alábbiak

Tétel (Newton-módszer konvergenciája)

Tegyük fel, hogy teljesülnek az alábbiak

• Az f(x) = 0 egyenletnek van megoldása [a, b]-on, azaz f(a)f(b) < 0.

Tétel (Newton-módszer konvergenciája)

Tegyük fel, hogy teljesülnek az alábbiak

- Az f(x) = 0 egyenletnek van megoldása [a, b]-on, azaz f(a)f(b) < 0.
- **②** Az f kétszer folytonosan differenciálható az [a,b]-on: $f\in\mathcal{C}^2[a,b]$.

Tétel (Newton-módszer konvergenciája)

Tegyük fel, hogy teljesülnek az alábbiak

- Az f(x) = 0 egyenletnek van megoldása [a, b]-on, azaz f(a)f(b) < 0.
- ② Az f kétszer folytonosan differenciálható az [a,b]-on: $f \in \mathcal{C}^2[a,b]$.
- **4** Az f' és f'' állandó előjelű az [a, b]-on, azaz $f'(x) \neq 0, f''(x) \neq 0$ ha $x \in [a, b]$.

Newton-módszer konvergenciája

Tétel (Newton-módszer konvergenciája)

Tegyük fel, hogy teljesülnek az alábbiak

- Az f(x) = 0 egyenletnek van megoldása [a, b]-on, azaz f(a)f(b) < 0.
- **②** Az f kétszer folytonosan differenciálható az [a,b]-on: $f\in\mathcal{C}^2[a,b]$.
- **3** Az f' és f'' állandó előjelű az [a, b]-on, azaz $f'(x) \neq 0, f''(x) \neq 0$ ha $x \in [a, b]$.
- **Solution Kezdőpont választása**: $x_0 \in [a, b]$, valamint $f(x_0)$ és $f''(x_0)$ előjele azonos, azaz $x_0 = a$ vagy $x_0 = b$.

Newton-módszer konvergenciája

Tétel (Newton-módszer konvergenciája)

Tegyük fel, hogy teljesülnek az alábbiak

- **1** Az f(x) = 0 egyenletnek van megoldása [a, b]-on, azaz f(a)f(b) < 0.
- ② Az f kétszer folytonosan differenciálható az [a, b]-on: $f \in C^2[a, b]$.
- \bullet Az f' és f'' állandó előjelű az [a, b]-on, azaz $f'(x) \neq 0$, $f''(x) \neq 0$ ha $x \in [a, b]$.
- Kezdőpont választása: $x_0 \in [a, b]$, valamint $f(x_0)$ és $f''(x_0)$ előjele azonos, azaz $x_0 = a$ vagy $x_0 = b$.

Ha 1-4 feltételek teljesülnek, akkor az x_0 pontból indított $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ sorozat az f(x) = 0egyenlet **egyetlen** [a, b] beli x^* megoldásához konvergál, és érvényes az alábbi hibabecslés

$$|x_{k+1}-x^*| \leq \frac{M}{2m}(x_{k+1}-x_k)^2$$

ahol $M = \max_{a} \langle x \langle b | f'(x) |$.

Fixpont iteráció l

Fokozatos közelítések módszere

Az f(x) = 0 egyenlet helyett kifejezzük x - et, és x = g(x) iterációs alakban vizsgáljuk az egyenletet.

Tétel

Tegyük fel, hogy g(x) folytonos az [a, b]-on és értékei [a, b] között vannak: $a \le g(x) \le b$, ha $x \in [a, b]$. Ekkor az x = g(x) egyenletnek van legalább egy megoldása [a, b]-on.

Definíció

Legyen g(x) folytonos [a,b]-on. Azt mondjuk, hogy g **kontrakció**(összehúzás) az [a,b]-on, ha $\exists \ 0 \le q \le 1$ szám, melyre

$$|g(x_1) - g(x_2)| \le q|x_1 - x_2|, \quad \forall x_1, x_2 \in [a, b].$$

Jelentés: A pontok képei egymáshoz közelebb vannak, mint maguk a pontok.

Fixpont iteráció II

Fokozatos közelítések módszere

Tétel

Tegyül fel, hogy g(x) folytonos az [a,b]-on és értékei [a,b] között vannak: $a \le g(x) \le b$, ha $x \in [a,b]$, valamint g(x) kontrakció [a,b]-on $(0 \le q \le 1$ kontrakciós tényezővel. Ekkor $\forall x_0 \in [a,b]$ esetén)

$$x_k = g(x_{k-1}), \qquad k = 1, 2, \cdots$$

sorozat az x = g(x) egyenlet [a, b]-beli x^* megoldásához konvergál.

Hibabecslés

$$|x_k - x^*| \le \frac{q}{1-q} |x_k - x_{k-1}|.$$

Fixpont iteráció III

Fokozatos közelítések módszere

Tétel (A kontrakió eldöntésére)

Tegyük fel, hogy g egyszerre folytonosan differenciálható az [a, b]-on. Ha

$$q = |g'(x)| < 1, \qquad x \in [a, b],$$

akkor g kontrakció [a, b]-on, q kontrakciós tényezővel.

2022 november 17.

Fixpont iteráció IV

Fokozatos közelítések módszere

ábra: Fixpont iterációs módszer a térben

Fixpont iterációval közelítsük az $f(x) = x^2 - x - 2 = 0$ egyenlet megoldását a $[0, \infty]$ -on!

Fixpont iterációval közelítsük az $f(x) = x^2 - x - 2 = 0$ egyenlet megoldását a $[0, \infty]$ -on! 1.lépés Fejezzük ki x-et!

Fixpont iterációval közelítsük az $f(x)=x^2-x-2=0$ egyenlet megoldását a $[0,\infty]$ -on! 1.lépés Fejezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

Fixpont iterációval közelítsük az $f(x)=x^2-x-2=0$ egyenlet megoldását a $[0,\infty]$ -on! 1.lépés Fejezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

2. lépés Ellenőrizzük a feltételeket, melyik g függvény teljesíti? Először g_2 :

Fixpont iterációval közelítsük az $f(x) = x^2 - x - 2 = 0$ egyenlet megoldását a $[0, \infty]$ -on! 1.lépés Feiezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

- 2.lépés Ellenőrizzük a feltételeket, melyik g függvény teljesíti? Először g₂:
 - $g_2(x) = \sqrt{x+2}$ folytonos a $[0, \infty]$ -on.

Fixpont iterációval közelítsük az $f(x) = x^2 - x - 2 = 0$ egyenlet megoldását a $[0, \infty]$ -on! 1.lépés Feiezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

- 2 lépés Ellenőrizzük a feltételeket, melyik g függvény teljesíti? Először g₂:
 - $g_2(x) = \sqrt{x+2}$ folytonos a $[0, \infty]$ -on.
 - $g_2(x) \in [0, \infty]$

Fixpont iterációval közelítsük az $f(x)=x^2-x-2=0$ egyenlet megoldását a $[0,\infty]$ -on! 1.lépés Fejezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

2. lépés Ellenőrizzük a feltételeket, melyik g függvény teljesíti? Először g_2 :

- $g_2(x) = \sqrt{x+2}$ folytonos a $[0,\infty]$ -on.
- $g_2(x) \in [0, \infty]$
- $g_2'(x) = \frac{1}{2\sqrt{x+2}} < 1, hax > 0$

Fixpont iterációval közelítsük az $f(x) = x^2 - x - 2 = 0$ egyenlet megoldását a $[0, \infty]$ -on! 1.lépés Feiezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

2 lépés Ellenőrizzük a feltételeket, melyik g függvény teljesíti? Először g₂:

- $g_2(x) = \sqrt{x+2}$ folytonos a $[0, \infty]$ -on.
- $g_2(x) \in [0, \infty]$
- $g_2'(x) = \frac{1}{2\sqrt{x+2}} < 1, \text{ ha} x > 0$
- $\max_x > 0|g_2'(x)| = \frac{1}{2\sqrt{2}} < 1$, azaz $g_2(x)$ kontrakció $[0, \infty]$ -on.

Fixpont iterációval közelítsük az $f(x) = x^2 - x - 2 = 0$ egyenlet megoldását a $[0, \infty]$ -on! 1.lépés Feiezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

- 2 lépés Ellenőrizzük a feltételeket, melyik g függvény teljesíti? Először g₂:
 - $g_2(x) = \sqrt{x+2}$ folytonos a $[0, \infty]$ -on.
 - $g_2(x) \in [0, \infty]$
 - $g_2'(x) = \frac{1}{2\sqrt{x+2}} < 1, \text{ ha} x > 0$
 - $\max_{x} > 0|g_2'(x)| = \frac{1}{2\sqrt{2}} < 1$, $\operatorname{azaz} g_2(x)$ kontrakció $[0, \infty]$ -on.
- 3. lépés Iteráció

Fixpont iterációval közelítsük az $f(x) = x^2 - x - 2 = 0$ egyenlet megoldását a $[0, \infty]$ -on! 1.lépés Feiezzük ki x-et!

$$x = x^2 - 2 = g_1(x)$$
 vagy $x = \sqrt{x+2} = g_2(x)$ $(x > 0)$

2 lépés Ellenőrizzük a feltételeket, melyik g függvény teljesíti? Először g₂:

- $g_2(x) = \sqrt{x+2}$ folytonos a $[0, \infty]$ -on.
- $g_2(x) \in [0, \infty]$
- $g_2'(x) = \frac{1}{2\sqrt{x+3}} < 1, \text{ ha} x > 0$
- $\max_x > 0|g_2'(x)| = \frac{1}{2\sqrt{2}} < 1$, azaz $g_2(x)$ kontrakció $[0, \infty]$ -on.
- 3. lépés Iteráció

$$x_0 = 7 \text{ tetsz \"oleges}$$
 $x_2 = g_2(x_1) = \sqrt{3+2} = 2.236$ (1)

$$x_1 = g_2(x_0) = \sqrt{7+2} = 3$$
 $x_3 = g_2(x_2) = \sqrt{2.236+2} = 2.058$ (2)

Köszönjük szépen a figyelmet!

