Agenda

- 1. Einführung und Übersicht
- 2. Lineare Optimierung
- 3. Graphentheorie
- 4. Ganzzahlige Optimierung
- 5. Dynamische Optimierung

Agenda

3. Graphentheorie

- 3.1 Einführung
- 3.2 Kruskal-Algorithmus
- 3.4 Yen-Algorithmus

- 239 -

Königsberger Brückenproblem (Euler, 1736)

Königsberger Brückenproblem (Euler, 1736)

Königsberger Brückenproblem (Euler, 1736)

Definition

Die Graphentheorie ist ein Teilgebiet der Mathematik, das die Eigenschaften von Graphen und ihre Beziehungen zueinander untersucht.

Definition

Ein Graph g(V,E) ist eine Menge von Punkten V (Ecken/Knoten, vertex/node), die eventuell durch Kanten E (edge) miteinander verbunden sind, wobei es nicht auf die Form ankommt.

Definitionen

Ungerichtete Kante (undirected edge)

Gerichtete Kante (directed edge)

Parallele Kanten

(wenn gerichtet: in die gleiche Richtung)

Schlinge (loop)

Endlicher Graph, schlichter Graph, Multigraph

Definition

Ein Graph, dessen Mengen der Knoten und Kanten endlich ist, heißt endlicher Graph.

Definition

Ein Graph ohne parallele Kanten und ohne Schlinge wird als schlichter Graph bezeichnet.

Definition

Ein Graph mit parallelen Kanten wird als Multigraph bezeichnet.

Definition

Ein schlichter, gerichteter Graph mit endlicher Knotenmenge heißt Digraph.

Vollständiger schlichter Graph

Definition

Ein ungerichteter schlichter Graph heißt vollständiger schlichter Graph, wenn für jedes Knotenpaar i, j eine Kante von i nach j existiert.

Vollständiger Digraph

Definition

Ein Digraph heißt **vollständiger Digraph**, wenn für jedes Knotenpaar *i*, *j* ein Pfeil von *i* nach *j* und ein Pfeil von *j* nach *i* vorhanden ist.

Kette und Kreis

Definition

Eine Kette ist die Folge von ungerichteten oder gerichteten Kanten, wobei der Richtungssinn keine Rolle spielt. Eine geschlossene Kette heißt Kreis.

Definition

Ein Weg ist die Folge von gerichteten Kanten, jeweils vom Pfeilende zur Pfeilspitze. Ein geschlossener Weg heißt Zyklus.

Zusammenhängender Graph

Definition

Ein Graph heißt zusammenhängender Graph, wenn jedes Knotenpaar durch mindestens eine Kette verbunden ist.

Gewichteter Graph

Definition

Ein Graph g(V, E, w) wird als **gewichteter Graph** bezeichnet, wenn alle seine Kanten E mit Werten w(e) versehen sind. Die Summe aller Pfeilbewertungen eines Weges wird auch als Länge des Weges bezeichnet.

Definition

Ein ungerichteter Baum ist ein zusammenhängender, kreisfreier, ungerichteter Graph. Ein gerichteter Baum ist ein gerichteter, kreisfreier Graph mit genau einem Ausgangsknoten.

Definition

In einem gerichteten Graphen heißt ein Knoten *j* Nachfolger eines Knoten *i*, wenn ein Weg vom Knoten *i* zum Knoten *j* existiert. Umgekehrt ist *i* ein Vorgänger von *j*. Vorgänger und Nachfolger werden auch als Nachbarn bezeichnet. In ungerichteten Graphen spricht man nur von Nachbarn. Sollten Knoten *j* und *i* nur durch eine Kante verbunden sein, spricht man von unmittelbaren Nachbarn.

- 252 -

- ► Ein Knoten ohne Vorgänger heißt Quelle (source)
- ► Ein Knoten ohne Nachfolger heißt Senke (sink)

在一个有向图中,如果存在从节点 i 到节点 j 的路径,则节点 j 被称为节点 i 的后继。反之,节点 i 是节点 j 的前驱。前驱和后继也被称为邻居。在无向图中,只谈论邻居。如果节点 j 和节点 i 仅由一条边连接,则称它们是直接相邻的。

- ▶沒有前驱的节点称为源(source)
- ▶沒有后继的节点称为汇(sink)

Adjazenzmatrix

Definition

Die Adjazenzmatrix $A(g) = a_{ij}$ drückt aus, welche Knoten i und j im Graph g verbunden sind. [n x n]-Matrix mit binären Elementen (0:1):

- ▶ 1 wenn e(i,j) existiert
- ▶ 0 in allen anderen Fällen

Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch. adjazent = benachbart

Inzidenzmatrix

Definition

Die Inzidenzmatrix $H(g) = h_{ij}$ drückt aus, welche Kanten e_j mit Knoten i im Graph g verbunden sind. [n x m]-Matrix mit folgenden Elementen:

- ▶ 1 wenn *i* der Startpunkt von *e_i* ist
- ▶ -1 wenn i der Endpunkt von e_i ist (nur in gerichteten Graphen)
- ▶ 0 in allen anderen Fällen (wenn *i* weder Start- noch Endpunkt von *e_i* ist).

inzident ≈ verbunden

Agenda

3. Graphentheorie

- 3.2 Kruskal-Algorithmus
- 3.4 Yen-Algorithmus

Spannbäume

Definition

Gegeben sei ein ungerichteter Graph g mit Kantengewichten g(V,E,w). Ein Spannbaum von (V,E,w) ist ein Subgraph (V',E') von (V,E) für den gilt:

 \triangleright V' = V, d. h. der Subgraph umfasst alle Knoten von q.

 \blacktriangleright (V',E') ist ein Baum, und damit

 \triangleright (V',E') ist zusammenhängend.

牛成树

定义

给定一个带有边权重的无向图 q(V, E, w)。一个(V, E, w)的生成树是(V, E)的一个子

图. 满足以下条件:

V' = V, 即子图包含 a 的所有节点,

[☑] (V', E') 是一棵树,因此

□ (// F) 是连通的

Definition

Das Gewicht I(V',E') eines Spannbaumes ist die Summe aller seiner Kantengewichte: $I(V',E') = \sum_{e \in E'} w(e)$

生成树的权重 I(V', E') 是其所有边权重的总和: $I(V', E') = \Sigma$

Definition

Ein minimaler Spannbaum hat minimales Gewicht unter allen möglichen Spannbäumen.

定义

最小生成树是所有可能的生成树中具有最小权重的生成树。

Minimale Spannbäume und der Kruskal-Algorithmus

Anwendungsbeispiele:

- ► Linienplanung für den öffentlichen Personenverkehr
- ► Kostengünstigstes Anschlusskabel für Internet

Spannbäume – Beispiel

Gewicht: 12

Gewicht: 11

Joseph B. Kruskal

Leben:

- ▶ *29.01.1928 (New York City) †19.09.2010 Princeton
- ▶ US-amerikanischer Mathematiker und Statistiker
- ► Studium an der Universität von Chicago und Princeton Universität
- ▶ 1954: Promotion an der Princeton Universität, New Jersey
- arbeitete als Assistenzprofessor an der "University of Michigan" sowie für das Unternehmen "Bell Laboratories"

Hauptwerk:

► Satz über die Ordnungseigenschaft einer unendlichen Folge endlicher Bäume (1960)

Wirkung:

Bedingungen

- ► Graph muss
 - ▷ endlich,

 - ▷ schlingenfrei,

 - □ und gewichtet sein.

Variablen

▶ Liste T ausgewählter Kanten e(i,j)

Anfangszustand

- $ightharpoonup T = \emptyset$
- ▶ Eine Liste Q mit allen der Länge nach aufsteigend sortierten Kanten

Minimaler Spannbaum, Gewicht: 9

Sei g(V, E, w) ein Graph mit n Knoten. Für Teilmengen $S \subseteq V$ von Knoten bezeichne E(S) die Menge der Kanten, deren (beide) Endpunkte in S liegen. Daher gilt: Die Lösung des folgenden Optimierungsproblems beschreibt einen minimalen Spannbaum für g(V, E, w) mit $w(i,j) \in \mathbb{R}$ als Parameter für die Kantengewichte.

$$\min z = \sum_{(i,j) \in E} w(i,j) \cdot x_{i,j}$$
 $\mathrm{s.t.} \quad \sum_{(i,j) \in E} x(i,j) = n-1$
 $\sum_{j:(s,j) \in E(S)} x(i,j) \leq |S|-1$ für jede Teilmenge $S \subset V$ von Knoten.

张图片上描述了最小生成树问题作为一个优化问题的数学表述。具体地、它定义 $x(i,j) \leq 1$ für $(i,j) \in E$
, $w(i,j)$ 表示连接节点:和)的边的权量,优化问题简在找到图图的一个生成树。 $x(i,j) \geq 0$

个优化问题可以使用以下的线性规划模型来表述

标函数:

得树的总边权重最小。

$$egin{aligned} & ext{in} \, z = \sum_{(i,j) \in E} w(i,j) \cdot x_{ij} \ & ext{Binary} \ & ext{$$

是所有边权重和边是否在生成树中的乘积之和,我们希望最小化这个总和。

1.
$$\sum_{(i,j)\in E}x_{ij}=n-1$$
 这个约束确保生成树中恰好有 $n-1$ 条边,这是连接 n 个节点的树所必须的边的数量。
2. $\sum_{(i,j)\in E(S)}x_{ij}\leq |S|-1$ 对于所有 $S\subset V$ 的节点子集。

这组约束防止在生成树中出现循环。对于图中的任何节点子集。连接这些节点的边

- 的数量必须少干该子集中节点的数量。 3. $x_{ij} < 1$ 对于所有 $(i, j) \in E_s$
- 这表示一条边要么在生成树中(取值1),要么不在(取值0)。

$$-4$$
. $x_{ij} \geq 0$ 对于所有 $(i,j) \in E$ 。
 -6ξ 这是一个典型的非负约束,确保每条边的指示变量 x_{ij} 不会取负数。

Team Operations Research Technische Universität Berlin – Workgroup for Infrastructure Policy (WIP)

$$L^* = \begin{pmatrix} x_{ab} \\ x_{ac} \\ x_{ad} \\ x_{bc} \\ x_{bd} \\ x_{cd} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$z^* = 6$$

$$L^* = \begin{pmatrix} x_{ab} \\ x_{ac} \\ x_{ad} \\ x_{bc} \\ x_{bd} \\ x_{cd} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$z^* = 6$$