Fundamentos de Banco de dados

O que é um Banco de Dados?

É um conjunto de dados que podem estar organizados de várias formas

PUC Minas Virtual

	Nº	MATRICULA	ATLETA	PÉ DE CHUTE	GOIS	ASSISTENCIAS	VITORIAS	DERROTAS	EMPATES	PARTIDAS	CART. AMAR.	CART. VERM.	CATEGORIA	CADASTRADO EM
i.	1	22034	bencao	Destro	12	2	0	0	0	0	1	2		16/03/2017
	2	22001	Patric Rocha	Destro	1	1	1	0	0	1	0	0	Sub-20	16/03/2017
	3	22002	Marcos Santos	Destro	2	12	0	0	0	0	0		Sub - 30	16/03/2017
	4	22002	Caio silva	Canhoto	0	0	0	1	0	1	0	0	sub - 30	16/03/2017
	5	22004	Pinga Marcelo	Destro	0	0	1	0	0	1	0	0	Sub-20	16/03/2017
	6	22005	Ualisson luiz	Destro	0	1	1	0	0	1	0	0	Sub - 30	16/03/2017
	7	22006	Romario Novais	Destro	0	0	1	0	0	1	0	0		16/03/2017
	8	22007	Del City	Destro	6	3	1	1	0	2	0	0		16/03/2017
	9	22008	marielson ferramenta cega	Canhoto	8	8	1	5	0	6	1	0		16/03/2017
	10	22009	Andrey Silva	Destro	21	12	3	2	0	5	0	0		16/03/2017
	11	22010	Albert habel	Destro	0	0	1	0	0	1	0	0		16/03/2017
	12	22011	Hugo sempre	Destro	2	0	1	0	0	1	0	0		16/03/2017
	13	22012	Allson Rocha	Destro	3	0	1	1	0	2	0	0		16/03/2017
	14	22013	Adrian Santana	Destro	2	0	3	1	0	4	0	0		16/03/2017
		Partidas	Categoria Histórico Anual Mer	salidade Estati	stica II	Estatistica	R (+)	1 (1)						

Dados em uma planilha organizados em linhas e colunas e agrupados em abas de acordo com o assunto.

Banco de dados relacionais

Empregado

NumEmp	NomeEmp	Salário	Dept
032	J Silva	380	21 •
074	M Reis	400	25
089	C Melo	520	28
092	R Silva	480	25
112	R Pinto	390	21
121	V Simão	905	28
130	J Neves	640	28

Departamento

NumDept	NomeDept	Ramal	
→ 21	Pessoal	142	
25	Financeiro	143	
28	Técnico	144	

Conjuntos de dados que se relacionam dentro da mesma tabela ou entre tabelas diferentes de forma que crie um sentido e que seja possível armazená-los e recuperá-los de maneira eficiente

Tipos de Bancos de Dados

Relacional x Dimensional

- Modelo Relacional
 - Usado para identificar relacionamentos entre tabelas
 - Visa remover a redundância de dados
 - Processamento de Transações On-Line (OLTP)

- Modelo Dimensional
 - Apresenta dados em uma estrutura intuitiva permitindo alta performance de acesso
 - Organiza dados em tabelas de fatos e dimensões
 - Processamento Analítico
 On-Line (OLAP)

OLTP

Oline Transactional Processing

- Dados do negócio
- Transacional
- Operacional
- Volátil
- Base de dados relacional

OLAP

Online Analytical Processing

- Dados sobre o negócio
- Analítico
- Estratégico
- Não volátil
- Base de dados dimensional

Aplicações OLTP

- Contabilidade
- Contas a pagar
- Controle de estoque
- Folha de pagamento
- Exemplo: Quantidade de um produto em estoque

Aplicações OLAP

- Atendem consultas AD HOC
- Fornecem tendências
- Produzem comparações
- Produzem estimativas
- Exemplo: Evolução das vendas nos últimos 3 meses

O Que é um SGBD?

SGBD: Sistemas Gerenciadores de Bancos de Dados

Surgiram na década de 70 e, antes destes, as aplicações usavam sistemas de arquivos do sistema operacional para armazenar suas informações.

Na década de 80 a tecnologia de SGBD relacional passou a dominar o mercado e permanece assim deste então

Vantagens do SGBD

- Armazenamento persistente dos dados
- Existência de múltiplas interfaces para os usuários
- Controle de redundância dos dados
- Manutenção de restrições de integridade
- Controle de acesso (segurança)
- Acesso multiusuário (controle de concorrência e recuperação de falhas)

Alguns exemplos de SGBD's

www.firebirdsql.org/

www.postgresql.org/

www.sybase.com.br/

PUC Minas Virtual

Conceitos de Bancos de Dados

Definição de Termos

- <u>Tabela</u>: onde são armazenados todos os dados estruturados em linhas e colunas
- Cada <u>coluna/atributo/campo</u> é um tipo de informação sobre o assunto da tabela
- Cada <u>linha/registro</u> é uma ocorrência de dados do assunto da tabela

Exemplo – Tabela

Empregado

NumEmp	NomeEmp	Salário	Dept
032	J Silva	380	21
074	M Reis	400	25
089	C Melo	520	28
092	R Silva	480	25
112	R Pinto	390	21
121	V Simão	905	28
130	J Neves	640	28

Tabela com os dados dos empregados

Colunas com tipos de informação sobre os empregados

Cada linha com os dados de um empregado específico

Definição de termos

• Primary Key (PK) ou chave primária: um ou mais campos que identificam uma linha de forma única

 Foreign Key (FK) ou chave estrangeira: um ou mais campos que fazem referência a campos de outra tabela

 Relacionamento: termo usado para as ligações entre as tabelas

Exemplo – Tabela x Relacionamento

Empregado

NumEmp	NomeEmp	Salário	Dept
032	J Silva	380	21 -
074	M Reis	400	25
089	C Melo	520	28
092	R Silva	480	25
112	R Pinto	390	21
121	V Simão	905	28
130	J Neves	640	28

PK

Departamento

NumDept	NomeDept	Ramal
→ 21	Pessoal	142
25	Financeiro	143
28	Técnico	144

Definição de termos

- <u>Modelos de dados</u> é um conjunto de conceitos que podem ser usados para descrever a estrutura de um banco de dados
- Categorias:
 - Modelos de dados de alto nível ou conceituais
 - Modelos de dados representacionais ou de implementação ou <u>lógicos</u>
 - Modelos de dados de baixo nível ou <u>físicos</u>

Projeto Conceitual

Modelo de alto nível ou conceitual

Modelo lógico ou representacional

Projeto Físico

Modelo físico

Definição de termos

- Query: é um comando requisitando algo do banco de dados
- SQL (Structure Query Languagem): é o conjunto de termos utilizados para realizar as requisições ao banco, divido em 3 partes
 - DDL (Data Definition Language) criar e modificar a estrutura do banco
 - DML (Data Manipulation Language) Incluir, alterar e consultar dados do banco
 - DCL (Data Control Language) definições de segurança do banco

Tipos de dados

Campo sem valor

- Campo vazio é referenciado pelo termo NULL
- NULL é diferente de número 0 ou da string vazia ' '

Cod_aluno	Nom_aluno	Nota	Observação
1	João	10	NULL
2	José	NULL	Não compareceu
3	Antônio	0	

Tipo de Dados: Numérico

Tipo	Descrição	Tamanho (bytes)
bit	Número Inteiro que pode ser 0, 1 ou NULL	3 1/1/7
tinyint	Permite números inteiros de 0 a 255	1 byte
smallint	Permite números inteiros entre -32.768 e 32.767	2 bytes
int	Permite números inteiros entre -2.147.483.648 e 2.147.483.647	4 bytes
bigint	Permite números inteiros entre -9.223.372.036.854.775.808 e 9.223.372.036.854.775.807	8 bytes

PUC Minas Virtual

Tipo de Dados: Numérico

Tipo	Descrição	Tamanho (bytes)
decimal(p,s) ou numeric(p,s)	Precisão de número flutuante e número de escala de -10^38 +1 a 10^38 -1. O parâmetro p e s indicam respectivamente o número máximo de dígitos à esquerda e à direita do ponto decimal. p deve ser um valor de 1 a 38. O padrão é 18. s deve ser um valor de 0 a p . O valor padrão é 0.	5-17 bytes
real	Precisão de número flutuante de -3,40E + 38 a 3,40E + 38	4 bytes
float(n)	Precisão de número flutuante de -1.79E + 308 a 1.79E + 308.0 parâmetro n indica se o campo deve conter 4 ou 8 bytes.	4 ou 8 bytes
money	Tipo de "Moeda" de -922.337.203.685.477,5808 a 922.337.203.685.477,5807	8 bytes

PUC Minas Virtual

Tipo de Dados: Texto

Tipo	Descrição	Tamanho Máximo	Tamanho (bytes)
char(n)	Tamanho fixo, completado com espaços em branco	8.000 caracteres	Tamanho Definido
varchar(n)	Tamanho variável com limite	8.000 caracteres	2 bytes + número de caracteres
varchar(max)	Tamanho variável com limite	1.073.741.824 caracte	2 bytes + res número de caracteres
text	Tamanho variável	2GB de dados (texto)	4 bytes + número de caracteres

Tipo de Dados: Data e hora

Tipo	Descrição	Tamanho (bytes)
date	Armazena apenas uma data. De 1 de janeiro de 0001 a 31 de dezembro de 9999	3 bytes
time	Armazena um tempo apenas para uma precisão de 100 nanosegundos	3-5 bytes
datetime	De 1 de janeiro de 1753 a 31 de dezembro de 9999 com uma precisão de 3,33 milisegundos	8 bytes
datetime2	De 1º de janeiro de 0001 a 31 de dezembro de 9999 com precisão de 100 nanossegundos	6-8 bytes
smalldatetime	De 1 de janeiro de 1900 a 6 de junho de 2079 com precisão de 1 minuto	4 bytes

PUC Minas Virtual

Tipo de Dados: Outros

Tipo	Descrição	Tamanho (bytes)
binary(n)	Tamanho fixo (binário)	8.000 bytes
varbinary	Tamanho variável (binário)	8.000 bytes
varbinary(max)	Tamanho variável (binário)	2GB
image	Tamanho variável (binário)	2GB
uniqueidentifier	Armazena um identificador globalmente exclusivo (GUID)	

PUC Minas Virtual

Linguagem SQL

Linguagem SQL

- SQL significa "Structured Query Language", ou
 "Linguagem de Consulta Estruturada", em português
- É um recurso para enviar comandos ao BD e extrair subconjuntos de informações

Objetivo: Selecionar algumas colunas de uma ou mais tabelas

Formado básico do comando SELECT:

SELECT <lista de atributos>

FROM <lista de tabelas>

Exemplo 1:

Selecionar todas as colunas da tabela projeto

Comando:

SELECT *
FROM projeto

	cod_projeto	nom_projeto	nom_local	cod_depto
1	1	Migração para SQL 2005	BH	1
2	2	Nova arquitetura .NET	BH	1
3	3	Instalação do novo servidor	SP	1
4	4	Desenvolver novo produto	RJ	2
5	5	Abertura de novas lojas	BH	2
6	6	Realizar concorrência	RJ	3
7	7	Implantar sistema de compras	SP	3
8	8	Criar plano de cargos e salários	MG	4
9	9	Montar plano de capacitação	MG	4
10	10	Criar regras para PDV	SP	4

Exemplo 2:

Selecionar colunas nome e local da tabela projeto

Comando:

SELECT nom_projeto, nom_local FROM projeto

	nom_projeto	nom_local
1	Migração para SQL 2005	ВН
2	Nova arquitetura .NET	BH
3	Instalação do novo servidor	SP
4	Desenvolver novo produto	RJ
5	Abertura de novas lojas	BH
6	Realizar concomência	RJ
7	Implantar sistema de compras	SP
8	Criar plano de cargos e salários	MG
9	Montar plano de capacitação	MG
10	Criar regras para PDV	SP

Objetivo: Selecionar alguns itens de acordo com lista de condições

```
Formato básico do comando SELECT
```

SELECT <lista de atributos>

FROM <lista de tabelas>

WHERE <condições>

Exemplo 2:

Selecionar nome e local da tabela projeto onde local = BH

Comando:

	nom_projeto	nom_local
1	Migração para SQL 2005	BH
2	Nova arquitetura .NET	BH
3	Abertura de novas lojas	BH

Texto sempre entre aspas simples

SELECT nom_projeto, nom_local

FROM projeto

WHERE nom_local = 'BH'

Tabela de origem dos dados

	cod_projeto	nom_projeto	nom_local	cod_depto
1	1	Migração para SQL 2005	BH	1
2	2	Nova arquitetura .NET	BH	1
3	3	Instalação do novo servidor	SP	1
4	4	Desenvolver novo produto	RJ	2
5	5	Abertura de novas lojas	BH	2
6	6	Realizar concorrência	RJ	3
7	7	Implantar sistema de compras	SP	3
8	8	Criar plano de cargos e salários	MG	4
9	9	Montar plano de capacitação	MG	4
10	10	Criar regras para PDV	SP	4

SELECT nom_projeto, nom_local

10

10

FROM projeto
WHERE nom_local = 'BH'

Criar regras para PDV

4

SP

SELECT nom_projeto, nom_local FROM projeto

WHERE nom_local = 'BH'

SELECT nom_projeto, nom_local
FROM projeto
WHERE nom_local = 'BH'

Resultado ---

	nom_projeto	nom_local
1	Migração para SQL 2005	BH
2	Nova arquitetura .NET	BH
3	Abertura de novas lojas	BH

Múltiplas condições

Operadores

Exemplos:

```
SELECT nom_projeto,
nom_local,
cod_depto
FROM projeto
```

WHERE	nom_	local	=	'BH'
AND cod	der	nto <>	. 1	

	nom_projeto	nom_local	cod_depto
1	Abertura de novas lojas	BH	2

