DOCUMENT AND EACH AND EVERY

HEREBY

HEREIN

PAGE

R- 246

Vought-Sikorsky Aircraft, Div., United Aircraft Corp., Stratford, Conn.

Att., Mr. Chas. J. McCarthy

VOUGHT-SIKORSKY AIRCRAFT LIDRABY

Source of Acquisition CASI Acquired

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE CONFIDENTIAL REPORT 246

PRELIMINARY INVESTIGATION OF THE EFFECT OF COMPRESSIBILITY

ON THE MAXIMUM LIFT COEFFICIENT

By John Stack, Henry A. Fedziuk, and Harold E. Cleary

Langley Memorial Aeronautical Laboratory
Langley Field, Va.

CLASSIFIED DOCUMENT

This document contains classified information affecting the National Defense of the United States within the meaning of the Espionage Act,

Unclassified - Notice remarked 4/17/09

ed only to persons in the military and naval Services of the United States, appropriate civilian officers and employees of the Federal Government who have a legitimate interest therein, and to United States citizens of known loyalty and discretion who of necessity must be informed thereof.

February 1943

VOUGHT-SIKORSKY AIRCRAFT LIBRABY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE CONFIDENTIAL REPORT

PRELIMINARY INVESTIGATION OF THE EFFECT OF COMPRESSIBILITY

ON THE MAXIMUM LIFT COEFFICIENT

By John Stack, Henry A. Fedziuk, and Harold E. Cleary

SUMMARY

Preliminary data are presented on the variation of the maximum lift coefficient with Mach number. The data were obtained from tests in the 8-foot high-speed tunnel of three NACA 16-series airfoils of 1-foot chord. Measurements consisted primarily of pressure-distribution measurements in order to illustrate the nature of the phenomena.

It was found that the maximum lift coefficient of airfoils is markedly affected by compressibility even at Mach numbers as low as 0.2. At high Mach numbers pronounced increase of the maximum lift coefficient was found. The magnitude of the effects of compressibility on the maximum lift coefficient and the low speeds at which these effects first appear indicate clearly that consideration of the take-off thrust for propellers will give results seriously in error if these considerations are based on the usual low-speed maximum-lift-coefficient data generally used.

INTRODUCTION

The relative merits of different airfoil sections suitable for propellers are frequently evaluated by consideration of their critical speeds at low lift coefficient and their values of maximum lift coefficient as determined from low-speed tests. The basis of such a consideration is the assumption often made that because the speed is low in the take-off condition the compressibility effects may be ignored. Actually, compressibility effects may be of vital importance in the take-off condition because the propeller sections are operating at high lift coefficients for which the induced velocities are high and, consequently,

att mannasa ing padat da da sahijatan ar-

the critical speeds are very low. Because thrust available for take-off is generally determined by the magnitude of the maximum lift coefficient, it is therefore important to know the variation of the maximum lift coefficient with Mach number.

It has been shown in reference I and elsewhere that very large changes in the characteristics of an airfoil occur as the free-stream speed is increased to fairly large values. It has also been shown that the speed at which detrimental changes in the airfoil characteristics occur is a function of the lift coefficient and decreases with increase in lift coefficient. Calculation of critical speeds in the region of the maximum lift coefficient gives very low values. For ordinary airfeils, critical speeds of the order of 150 miles per hour at sea level are obtained. This low critical speed is, of course, a consequence of the very high local velocities over the leading edge portion of an airfoil at high angles of attack. Although shock may not form at the calculated value of the critical speed because of the critical form of the pressure-distribution diagram, separation is known to occur. Because the maximum lift phenomenon is essentially a separation phenomenon, large changes in the maximum lift coefficient might be expected. Detrimental effects have been found for an NACA OOL2 airfoil at a Mach number as low as 0.2 (reference 2).

Take-off operation of propellers generally leads to tip Mach numbers as high as 0.9. Hence, even the inboard sections may show important compressibility effects on the maximum lift coefficient. Therefore, the whole take-off performance may be affected. With such operating conditions, a comparison of sections based on low-speed data is completely invalid.

Some data on the variation of maximum lift coefficient with Mach number are already available in references 1 and 3 and these data indicate that high values of maximum lift coefficient may be obtained in some instances. These data, however, are rather limited and no clear indication of the phenomena is indicated. The Reynolds number for these data is lower than the operating Reynolds number for propeller blade sections and this factor is important because propeller sections ordinarily operate in a critical Reynolds number range. A further limitation is due to tunnel-wall effects because of the relatively large size of model to tunnel, the ratio of the airfoil chord to the diameter of the tunnel being approximately 0,18.

Because of the importance of the effect of compressibility on the maximum lift coefficient and the incomplete data available, a detailed investigation of the phenomena has been planned by the NACA. The general investigation will include tests of several airfoils covering representative thickness and camber ranges. A part of the investigation has been completed and a part of the data so far obtained is reported herein.

The tests were conducted in the NACA 8-foot high-speed tunnel on models of 1-foot chord in order to obtain higher Reynolds number and reduced wall effects. The tests consisted, principally, of pressure-distribution measurements at one station at the center of the airfoil model, which spanned the tunnel. The results are essentially two-dimensional. Particular emphasis was placed on pressure-distribution tests rather than on force tests because the type of phenomena that occur is more clearly illustrated. The Mach number range extended from 0.12 to 0.53.

APPARATUS AND METHODS

The NACA 8-foot high-speed tunnel in which the tests were carried out is a single-return, circular-section, closed-throat tunnel. The airspeed is continuously controllable from about 75 to 550 miles per hour. The turbulence of the air stream as indicated by transition measurements on airfoils is unusually low but somewhat higher than in free air.

Three models having NACA 16-209, 16-509, and 16-515 airfoil sections of 1-foot chord were investigated. Thirty pressure orifices distributed along the chord were located at essentially the spanwise station at the center of the air stream. The crifice locations and airfoil shapes are shown in figure 1. The airfoil ordinates were calculated by the methods described in reference 4 and are given in table I.

The model, when mounted in the tunnel, completely spanned the jet (fig. 2). Except for auxiliary streamline wire bracing, required because of structural considerations, the standard 8-foot high-speed tunnel model mounting and setup were employed. Tests at low and medium speeds with and without the braces indicated that interference of the

auxiliary supports on the flow at the measurement station was negligible.

Measurements consisted, principally, of the chordwise pressure distribution at the midspan region. The surface orifices in the airfoil were connected to a multiple—tube manameter located cutside the test section. The pressure tubing connecting the orifices was of small diameter and was located within the wing. Simultaneous recording of the pressures at all orifices in the wing was made by photographing the multiple—tube manameter.

The Mach number range extended from 0:12 to 0.53. The Reynolds number range of the tests and the variation of the Reynolds number with the Mach number are shown in figure 3. There is also included in figure 3 a curve showing the relation between the Reynolds number and the Mach number for unpublished tests of an NACA O012 airfoil made in the 19-foot pressure tunnel, data for which are included in this report for purpose of comparison.

RESULTS

The maximum lift coefficient $\mathbf{c}_{\mathbf{L}_{\max}}$ was determined as the highest value obtained in the positive angle-ofattack range. The angle of attack at which maximum lift occurred yaried with the Mach number M. The maximum lift for the 16-209 airfoil was found to occur at angles of attack between 8° and 10° with no consistent trend with Mach number. For the 16-509 airfoil, the maximum lift occurred at 10° at low Mach number and decreased with increase of Mach number to 8° at a Mach number of 0.53. For the 16-515 airfoil, the angle of attack for maximum lift was 150 for Mach numbers up to 0.25 and decreased to 120 at a Mach number of 0.53. The values of the maximum lift coefficient as presented in this report are approximate values, having been determined as the product of the integrated normalforce coefficient and the cosine of the angle of attack. The drag component has not been included. Neglect of the drag component generally involves small effects and does not influence the character of the variation of the maximum lift coefficient with Mach number to any great degree.

The variation of the maximum lift coefficient with Mach number is given in figure 4. Pressure-distribution diagrams for angles of attack in the maximum-lift-coefficient range are given in figures 5 to 8. In these figures, the pressure

coefficient P is defined as $\Delta p/q$ where Δp is the difference between local static pressure and free-stream static pressure and q is the dynamic pressure of the free stream. For the higher speeds, only partial pressure distributions are shown. Outside of the regions shown, the results are the same as for the lower speed.

There is also included in figure 4 the variation of the maximum lift with Mach number for an NACA 0012 airfoil as found from tests in the NACA 19-foot pressure tunnel. These data, which were taken from reference 2, were from force tests of a wing having an aspect ratio of 6 and the tip effects are therefore included; whereas the data obtained in the present investigation are essentially two-dimensional. Other unpublished data indicate the effect of the tips may slightly increase the critical Mach number. It is not believed likely, however, that the character of the variation of maximum lift with Mach number will be seriously altered by the tip effect.

DISCUSSION

Of the factors affecting variation of the maximum lift coefficient, the effects of Reynolds number are generally understood except when an increase of Reynolds number is accompanied by an increase of Mach number. With increase of Mach number, compressibility effects become pronounced and, in general, lead to separation phonomena with consequent decrease in the value of the maximum lift coefficient. As has previously been shown, compressibility effects on the maximum lift coefficient may predominate even at a Mach number as low as 0.2 (reference 2). For data obtained in this investigation both the Reynolds number and the Mach number vary. At very low speeds the Reynolds number effects predominate but at higher speeds the compressibility effects predominate. camber and the thickness ratio, particularly as the nose shape may be affected, can also have a large effect on the maximum lift coefficient and its variation with either Reynolds number or Mach number.

The variation of the maximum lift coefficient plotted against the Mach number is shown in figure 4 for the three airfoil sections, NACA 16-209, 16-509, and 16-515. The character of the variation of the maximum lift coefficient is indicated to be a function of the camber and the thick-

ness ratio. For the NACA 16-209 airfoil the maximum lift coefficient is essentially constant. This result is in accord with previous results which have demonstrated that thin airfoils, because they generally have small leadingedge radii, have essentially fixed separation points. An increase of camber markedly alters both the value of the maximum lift coefficient and the variation with Mach number, as is shown by the results for the NACA 16-509 airfoil. For this airfoil the maximum lift coefficient increases until a Mach number of approximately 0.25 is obtained. Between Mach numbers of 0.25 and 0.40 the maximum lift coefficient is essentially constant but increases markedly as the Mach number exceeds 0.40. An increase of thickness increases to a very great extent the magnitude of the general effects observed for the thinner 16-509 airfoil as is indicated by the data for the 16-515 airfoil.

The increase in the maximum lift coefficient observed at low speeds is similar to the Reynolds number effect commonly observed for airfoils of medium thickness. An increase of the Mach number, however, leads to larger adverse pressure gradients back of the peak pressure points and, hence, to the tendency toward earlier separation. With continued increase in Mach number, the separation tendency becomes greater until finally any favorable effect due to increase in Reynolds number is so counteracted that there is either no increase or, as in the case of the NACA 16-515 airfoil, a fairly large decrease in the maximum lift coefficient. The fundamental mechanism of these phenomena is not clearly understood and considerable further investigation is necessary.

The large increase in the maximum lift coefficient at high Mach numbers is due to rearward movement of the peak negative pressure, as is illustrated by the data in figures 5, 6, and 7. At a Mach number of 0.40 the shape of the pressure distribution diagram is typical for the maximum lift coefficient region at low speeds where a high negative pressure peak occurs slightly aft the leading edge. increase of speed compression shock occurs, which reduces the pressure peak at the nose, and with further increase in speed the shock moves rearward giving rise to more extensive regions of high negative pressure. The loss of lift resulting from the decrease of the local peak that occurs at the nose at low speed is then offset by the more extensive low-pressure region. The effects of compressibility are similar to those found at lower lift coefficients in regard to the formation and rearward movement of shock and the location of the peak negative pressure (reference 5).

The failure of the NACA 16-209 airfoil to show this increase in maximum lift coefficient cannot be interpreted to mean that a different phenomenon occurs. An examination of the pressure-distribution data presented in figure 8 for this airfoil shows that the maximum negative pressure coefficient is slightly less than -2.0. The critical Mach number corresponding to this pressure coefficient is slightly above the highest Mach number reached in these tests and, hence, the shock phenomenon leading to the increase of the maximum lift coefficient is not encountered. At higher speeds where shock phenomenon would be encountered; the maximum lift coefficient for this airfoil should be expected to show the sharp rise. The need for further investigation of thin low—cambered airfoils is indicated.

The increase in the value of the maximum lift coefficient of approximately 0.25 with increase of airfoil design lift coefficient (camber) as shown by the data for the 16-209 and 16-509 airfoils in figure 4 is noteworthy. This effect is important, practically, in relation to the take-off problem for propellers. The blade sections may be designed with slightly higher camber than would be dictated by the design high-speed lift coefficient to obtain improvement in take-off. This improvement can be effected without encountering any serious compressibility loss at high speeds because this class of airfoil has a range of lift coefficients about the design value for which the critical Mach number is sensibly constant. Thus, through the use of slight overcamber, a higher blade-section maximum lift coefficient can be obtained with the consequent improvement in the thrust for the take-off condition without materially affecting the high-speed operation.

Comparison of data for an NACA 0012 airfoil taken from unpublished tests made in the 19-foot pressure tunnel shows the same general variation of lift coefficient as do the NACA 16-515 and the 16-509 airfoils in the low and intermediate speed range. The Reynolds number effect is counteracted by the compressibility effects at a Mach number of approximately 0.20. The higher values of maximum lift coefficient in the low-speed range are due probably to the higher Reynolds number (fig. 3) at which the tests of this airfoil were made. The large variation encountered may indicate more critical compressibility effects for this type of airfoil section.

SUMMARY OF RESULTS

- 1. The maximum lift coefficient of airfoils is affected by compressibility to a marked degree at Mech numbers as low as 0.2.
- 2. At high Mach numbers pronounced increases in maximum lift coefficient occur.
- 3. The low speed for which compressibility effects on the maximum lift coefficient may be encountered indicates that the maximum thrust available for take-off may be markedly affected. Selection of sections suitable for propellers must, therefore, be made with due consideration of the effect of compressibility on the maximum lift coefficient.
- 4. It is indicated that, for manginal take-off thrust, some improvement may be effected without serious loss at high speed by use of design camber slightly higher than would be dictated by high-speed considerations alone.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va.

REFERENCES

- 1. Stack, John, and von Doenhoff, Albert E.: Tests of 16 Related Airfoils at High Speeds. Rep. No. 492, NACA, 1934.
- 2. Stack, John: Compressibility Effects in Aeronautical Engineering. NACA A.C.R., Aug. 1941.
- 3. Stack, John: The N.A.C.A. High-Speed Wind Tunnel and Tests of Six Propeller Sections. Rep. No. 463, NACA, 1933.
- 4. Stack, John: Tests of Airfoils Designed to Delay the Compressibility Burble. NACA A.C.R., June 1939.
- 5. Stack, John, Lindsey, W. F., and Littell, Robert E.: The Compressibility Burble and the Effect of Compressibility on Pressures and Forces Acting on an Airfoil. Rep. No. 646, NACA, 1938.

TABLE I
AIRFOIL ORDINATES

NACA 16-209				
UPPER SURFACE		LOWER SURFACE		
х	У	х у		
(percent)	(percent)	(percent)	(percent)	
0.256	0.512	0.344	-0.448	
.545	•733	•655	615	
1.183	1.074	1.317	860	
2.421	1.538	2.579	-1.166	
4.912	2.196	5.088	-1.564	
7.409	2.696	7.591	-1.848	
9.909	3.109	10.091	-2.075	
14.914	3,772	15.086	-2.426	
19.923	4.293	20.077	-2.701	
24.933	4.708	25.067	-2.918	
29.945	5.035	30.055	-3.091	
34.958	5.285	35.042	-3.225	
39.972	5.461	40.028	-3.319	
44.986	5.568	45.014	-3.378	
50.000	5.603	50.000	-3.397	
55.014	5.566	54.986	-3.376	
60.028	5.447	59.972	-3,305	
65.041	5.237	64.959	-3.177	
70.053	4.924	69.974	-2.980	
75.063	4.497	74.937	-2.707	
80.069	3.943	79.931	-2.351	
85.071	3.253	84.929	-1.909	
90.066	2.404	89.934	-1.370	
92.061	2.017	91.939	-1.129	
94.054	1.598	93.946	876	
95.050	1.375	94.950	743	
96.049	1.145	95.956	611	
98.031	.651	97.969	339	
100.000	.089	99.989	089	

Slope	of	rac	liu	9		
throu	igh	end	of	chord	1 =	0.124
L.E.	rad	ius	= (0.396	per	cent

.465 .810 .735 514 1.084 1.223 1.416 685 2.305 1.805 2.695 876 4.781 2.659 5.219 -1.079 7.274 3.323 7.726 -1.209 9.774 3.876 10.226 -1.299 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.503 24.833 6.048 25.167 -1.572 29.863 6.491 30.137 -1.633 34.895 6.829 35.105 -1.676 39.929 7.067 40.071 -1.712 44.964 7.211 45.036 -1.732 50.000 7.258 50.000 -1.742 55.036 7.209 54.964 -1.632 70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.520 75.157 5.838 74.843 -1.536 80.173 5.133 79.827 -1.153 90.164 <	NACA 16-509					
(percent) (percent) (percent) (percent) 0.192 0.550 0.408 -0.396 .465 .810 .735 516 1.084 1.223 1.416 687 2.305 1.805 2.695 876 4.781 2.659 5.219 -1.079 7.274 3.323 7.726 -1.20 9.774 3.876 10.226 -1.29 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.50 24.833 6.048 25.167 -1.572 29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.673 39.929 7.067 40.071 -1.73 40.071 45.036 -1.73 50.000 7.258 50.000 -1.74 50.036 7.209 54.964 -1.73 65.104 6.781 64.896 -1.63 75.157 <td colspan="2">UPPER SURFACE</td> <td colspan="2">LOWER SURFACE</td>	UPPER SURFACE		LOWER SURFACE			
0.192 0.550 0.408 -0.39 .465 .810 .735 51 1.084 1.223 1.416 68 2.305 1.805 2.695 87 4.781 2.659 5.219 -1.07 7.274 3.323 7.726 -1.20 9.774 3.876 10.226 -1.29 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.50 24.833 6.048 25.167 -1.57 29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.67 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.71 44.964 7.214 45.036 -1.73 50.000 7.258 50.000 -1.74 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.52 75.157 </th <th></th> <th></th> <th></th> <th></th>						
.465 .810 .735 514 1.084 1.223 1.416 68 2.305 1.805 2.695 87 4.781 2.659 5.219 -1.079 7.274 3.323 7.726 -1.20 9.774 3.876 10.226 -1.29 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.50 24.833 6.048 25.167 -1.57 29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.67 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.63 70.133 6.380 69.867 -1.52 75.157 5.838 74.843 -1.52 75.157 5.838 74.843 -1.52 90.164 3.173 89.836 89 92.152 2.677	(percent)	(percent)	(percent)	(percent)		
1.084 1.223 1.416 68° 2.305 1.805 2.695 87° 4.781 2.659 5.219 -1.07° 7.274 3.323 7.726 -1.20° 9.774 3.876 10.226 -1.29° 14.787 4.775 15.213 -1.41° 19.807 5.483 20.193 -1.50° 24.833 6.048 25.167 -1.57° 29.863 6.491 30.137 -1.67° 39.929 7.067 40.071 -1.67° 44.964 7.211 45.036 -1.71° 44.964 7.211 45.036 -1.71° 50.000 7.258 50.000 -1.74° 55.036 7.209 54.964 -1.73° 65.104 6.781 64.896 -1.63° 75.157 5.838 74.843 -1.52° 75.157 5.838 74.843 -1.15° 85.178 4.257 84.822 -3.83°	0.192	0.550	0.408	-0.390		
2.305 1.805 2.695 875 4.781 2.659 5.219 -1.075 7.274 3.323 7.726 -1.205 9.774 3.876 10.226 -1.295 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.507 24.833 6.048 25.167 -1.572 29.863 6.491 30.137 -1.637 34.895 6.829 35.105 -1.673 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89	•465	.810	.735	514		
4.781 2.659 5.219 -1.079 7.274 3.323 7.726 -1.203 9.774 3.876 10.226 -1.29 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.503 24.833 6.048 25.167 -1.573 29.863 6.491 30.137 -1.633 39.929 7.067 40.071 -1.673 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89 90.164 3.173 89.836 -38	1.084	1.223	1.416	687		
7.274 3.323 7.726 -1.20 9.774 3.876 10.226 -1.29 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.50 24.833 6.048 25.167 -1.57 29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.67 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89 90.164 3.173 89.836 -38 92.152 2.677 91.848 -45 94.135 2.133 93.865 -32 95.123 1.843 <td>2.305</td> <td>1.805</td> <td>2.695</td> <td>875</td>	2.305	1.805	2.695	875		
9.774 3.876 10.226 -1.29 14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.50 24.833 6.048 25.167 -1.57 29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.67 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89 90.164 3.173 89.836 -38 92.152 2.677 91.848 -45 94.135 2.133 93.865 -32 95.123 1.843 94.877 -26	4.781	2,659	5.219	-1.079		
14.787 4.775 15.213 -1.41 19.807 5.483 20.193 -1.503 24.833 6.048 25.167 -1.573 29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.673 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 75.157 5.838 74.843 -1.52 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89 90.164 3.173 89.836 58 92.152 2.677 91.848 45 94.135 2.133 93.865 32 95.123 1.843 94.877 263	7.274	3.323	7.726	-1.203		
19.807 5.483 20.193 -1.503 24.833 6.048 25.167 -1.573 29.863 6.491 30.137 -1.633 34.895 6.829 35.105 -1.673 39.929 7.067 40.071 -1.713 44.964 7.211 45.036 -1.733 50.000 7.258 50.000 -1.743 60.071 7.053 59.929 -1.693 65.104 6.781 64.896 -1.633 70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.520 80.173 5.133 79.827 -1.153 85.178 4.257 84.822 -893 90.164 3.173 89.836 583 92.152 2.677 91.848 457 94.135 2.133 93.865 329 95.123 1.843 94.877 263	9.774	3.876	10.226	-1.292		
24.833 6.048 25.167 -1.572 29.863 6.491 30.137 -1.633 34.895 6.829 35.105 -1.672 39.929 7.067 40.071 -1.712 44.964 7.211 45.036 -1.733 50.000 7.258 50.000 -1.742 55.036 7.209 54.964 -1.733 60.071 7.053 59.929 -1.693 65.104 6.781 64.896 -1.633 70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.520 80.173 5.133 79.827 -1.153 95.178 4.257 84.822 -893 90.164 3.173 89.836 583 92.152 2.677 91.848 457 94.135 2.133 93.865 329 95.123 1.843 94.877 263	14.787	4.775	15.213	-1.411		
29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.67 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.52 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 95.178 4.257 84.822 89 90.164 3.173 89.836 58 92.152 2.677 91.848 45 94.135 2.133 93.865 32 95.123 1.843 94.877 263	19.807	5.483	20.193	-1.503		
29.863 6.491 30.137 -1.63 34.895 6.829 35.105 -1.67 39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.52 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 95.178 4.257 84.822 89 90.164 3.173 89.836 58 92.152 2.677 91.848 45 94.135 2.133 93.865 32 95.123 1.843 94.877 263	24.833	6.048	25.167	-1.572		
39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89 90.164 3.173 89.836 589 92.152 2.677 91.848 45 94.135 2.133 93.865 329 95.123 1.843 94.877 263	29.863	6.491	30.137	-1.631		
39.929 7.067 40.071 -1.71 44.964 7.211 45.036 -1.73 50.000 7.258 50.000 -1.74 55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89 90.164 3.173 89.836 589 92.152 2.677 91.848 45 94.135 2.133 93.865 329 95.123 1.843 94.877 263	34.895	6.829	35.105	-1.679		
50.000 7.258 50.000 -1.742 55.036 7.209 54.964 -1.733 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.362 80.173 5.133 79.827 -1.153 85.178 4.257 84.822 -893 90.164 3.173 89.836 583 92.152 2.677 91.848 457 94.135 2.133 93.865 323 95.123 1.843 94.877 263	39.929	7.067	40.071	-1.711		
55.036 7.209 54.964 -1.73 60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.52 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 -89 90.164 3.173 89.836 58 92.152 2.677 91.848 45 94.135 2.133 93.865 32 95.123 1.843 94.877 263	44.964	7.211	45.036	-1.735		
60.071 7.053 59.929 -1.69 65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.52 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 89 90.164 3.173 89.836 58 92.152 2.677 91.848 45 94.135 2.133 93.865 32 95.123 1.843 94.877 263	50.000	7.258	50.000	-1.742		
65.104 6.781 64.896 -1.63 70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.36 80.173 5.133 79.827 -1.15 85.178 4.257 84.822 893 90.164 3.173 89.836 583 92.152 2.677 91.848 457 94.135 2.133 93.865 329 95.123 1.843 94.877 263	55.036	7.209	54.964	-1.733		
70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.362 80.173 5.133 79.827 -1.153 85.178 4.257 84.822 893 90.164 3.173 89.836 583 92.152 2.677 91.848 457 94.135 2.133 93.865 323 95.123 1.843 94.877 263	60.071	7.053	59.929	-1.697		
70.133 6.380 69.867 -1.520 75.157 5.838 74.843 -1.362 80.173 5.133 79.827 -1.153 85.178 4.257 84.822 893 90.164 3.173 89.836 583 92.152 2.677 91.848 457 94.135 2.133 93.865 323 95.123 1.843 94.877 263	65.104	6.781	64.896	-1.631		
80.173 5.133 79.827 -1.15 85.178 4.257 84.822 893 90.164 3.173 89.836 589 92.152 2.677 91.848 457 94.135 2.133 93.865 329 95.123 1.843 94.877 263	70.133	6.380	69.867	-1.520		
85.178 4.257 84.822 893 90.164 3.173 89.836 589 92.152 2.677 91.848 457 94.135 2.133 93.865 329 95.123 1.843 94.877 263	75.157	5.838	74.843	-1.362		
90.164 3.173 89.836 589 92.152 2.677 91.848 457 94.135 2.133 93.865 329 95.123 1.843 94.877 263	80.173	5.133	79.827	-1.153		
92.152 2.677 91.848457 94.135 2.133 93.865329 95.123 1.843 94.877263	85.178	4.257	84.822	893		
94.135 2.133 93.865329 95.123 1.843 94.877263	90.164	3.173	89.836	589		
95.123 1.843 94.877263	92.152	2.677	91.848	457		
	94.135	2.133	93.865	329		
96-110 1-540 95-890 204	95.123	1.843	94.877	263		
	96.110	1.540	95.890	204		
98.076 .880 97.924100	98.076	.880	97.924	100		
100.000 .000 100.000 .000	100.000	.000	100.000	•000		

Slope of radius through end of chord = 0.312 L.E. radius = 0.396 percent

NACA 16-515					
UPPER SURFACE		LOWER SURFACE			
ж	y .	ж	y		
(percent)	(percent)	(percent)	(percent)		
0.120	0.861	0.480	-0.701		
. 375	1.253	.825	957		
. 973	1.859	1.527	-1.323		
2.174	2.699	2.826	-1.769		
4.635	3.907	5.365	-2.327		
7.123	4.831	7.877	-2.711		
9.624	5.598	10.376	-3.014		
14.644	6.838	15.356	-3.474		
19.679	7.811	20.321	-3.831		
24.722	8.588	25.278	-4.112		
29.772	9.197	30.228	-4.337		
34.825	9.664	35.175	-4.514		
39.882	9.995	40.118	-4.639		
44.941	10.193	45.059	-4.717		
50.000	10.258	50.000	-4.742		
55.059	10.189	54.941	-4.713		
60.118	9.969	59.882	-4.613		
65.173	9.584	64.827	-4.434		
70.222	9.014	69.778	-4.154		
75.262	8.237	74.738	-3.761		
80.289	7.230	79.711	-3.250		
85.296	5.973	84.704	-2.609		
90.274	4.428	89.726	-1.844		
92.254	3.720	91,746	-1.500		
94.224	2.952	93.776	-1.148		
95.206	2.546	94.794	966		
96.184	2.121	95.816	785		
98.127	1.208	97.873	428		
100.044	•045	99.956	045		

Slope of radius through end of chord = 0.312 L.E. radius = 1.10 percent

Figure 1.- Airfoils tested. Orifice locations the same for all airfoils.

Figure 2. - Diagramatic sketch of wing mounted in 8-foot high-speed tunnel.

Figure 3.- Variation of Reynolds number with Mach number.

Figure 5.- Variation in pressure distribution over the forward 50 percent of the upper surface with Mach number for the NACA 16-515 at an angle of attack of 11 degrees.

Figure 6.- Variation in pressure distribution over forward 50 percent of the upper surface with Mach number for the NACA 16-515 at an angle of attack of 12 degrees.

Figure 7.-Variation in pressure distribution over the forward 50 percent of the upper surface with Mach number for the NACA 16-509 at an angle of attack of 7 degrees.

Figure 8.Variation in pressure distribution over the forward 50 percent of the upper surface with Mach number for the NACA 16-209 at an angle of attack of 8 degrees.