MATH3411 INFORMATION, CODES & CIPHERS

Test 1 2017 S2 SOLUTIONS

Version A

Multiple choice: b, b, c, c, a, e, e, c, c, b

- 1. **(b)**:
- 2. (b): Calculate the Hamming distance between the $\binom{4}{2} = 6$ pairs of codewords: 2,2,3,3,3,4. The smallest of these is 2.
- 3. (c): There are $2^2 = 4$ codewords, there being 2 information bits.
- 4. (c): The codeword is 10101; it has weight 3.
- 5. (a): The two rows of this matrix form a basis for C (they are codewords, linearly independent, and there are k=2 of them).
- 6. (e): Assignment Project Exam Help
- 7. (d): Rule out cases: (a) $100 = \mathbf{c}_1 \mathbf{c}_4 = \mathbf{c}_3$; (b) $11 = \mathbf{c}_2 = \mathbf{c}_4 \mathbf{c}_4$; (c) $10011 = \mathbf{c}_1 \mathbf{c}_4 = \mathbf{c}_4 \mathbf{c}_4$
- $\mathbf{c}_3\mathbf{c}_2$; (d) 111111 = $\mathbf{c}_2\mathbf{c}_2\mathbf{c}_2 = \mathbf{c}_4\mathbf{c}_4$. 8. (c): The Kraft-McMilan number $K = \sum_{2^{\ell_i}} \mathbf{c}_i$ must be at most 1 for UD codes. Testing values of $\ell = 1, 2, 3, \dots$ gives us that $\ell = 3$ is the minimum length that satisfies this. You can also draw a decision tree hat powcoder 9. (c): The codewords are 0, 100, 101, 102, 116; that last one is c_5 .
- 10. (b): $s_2s_3s_3s_1s_1$. Start with Huff_E and recognise the codeword $\mathbf{c}_2 = 00$; therefore, next use Huff_E and so on.
- 11. (a) The Kraft-McMillan number is

$$K = \frac{2}{3} + \frac{3}{3^2} + \frac{1}{3^3} = \frac{28}{27} > 1$$

so there is no UD-code.

(b) Using [and drawing the steps of] the Huffman algorithm, we find that $s_1s_1 \mapsto 0$, $s_1s_2 \mapsto 11, s_2s_1 \mapsto 100, s_2s_2 \mapsto 101.$

1

The average length per original source symbol is

$$\frac{1}{2}\left(\frac{5}{25} + \frac{9}{25} + 1\right) = \frac{39}{50}$$
 by Knuth's Lemma.

Version B

Multiple choice: c, d, e, d, d, d, e, b, e, e

1. (c): The error lies in the 3rd row and 5th column of the block

1	0	1	0	1	0	1	0
1	0	0	1	0	1	1	0
1	1	0	0	1	1	0	1
0	0	1	1	1	0	1	0
1	1	0	0	0	0	1	1

- 2. **(d)**: 1, 2, or 3 errors, and $\binom{12}{3} = 220$.
- 3. **(e)**:
- 4. (d): $3^3 = 27$ linear combinations of the rows and thus that many codewords.
- 5. (d): 1 st row + twice 2 nd row + 3 rd row = 1112001
- 6. (d): Assignmente hat O = C the (sxall sphere calling Theorem asserts that $|C| \sum_{i=0}^{n} \binom{n}{i} \leq 2^n$, which here implies that $2^k (1+7) \leq 2^7$, or in other words, $2^{k+3} \leq 2^7$. The largest value of k which satisfies this inequality is k=4, and indeed, the contemposis (100) words $2^{k+3} \leq 2^7$.
- 7. (e): Trial and error. None of the four words are suitable: $101 = c_1c_3 = c_2c_1$.
- 8. (b): The Kraft Modella where K at $\sum_{\ell=0}^{\ell}$ or $\ell=1,2,3,\ldots$ gives us that $\ell=3$ is the minimum length that satisfies this. You could also draw a decision tree.
- 9. **(e)**:
- 10. (e): Ternary, one dummy symbol, divide by 2.
- 11. (a) p = Mp
 - (b) Draw Huffman algorithm decision tree. $L = \frac{7}{5}$
 - (c) 01101100