Energetika, okoliš i održivi razvoj

Općenito

- proizvodnja energije
 - osnovni preduvjet trajnog rasta, razvoja i dobrobiti suvremeno ljudskog društva
- energetski problemi
 - oko dvije milijarde ljudi bez priključka el. energije
 - globalno zagrijavanje
 - velika potrošnja energije i zagađenje u urbanim područjima
 - smanjenje zaliha raspoloživih energenata
 - 20% najbogatijih troši 55% energije

Utjecaji energetskih postrojenja na okoliš

- izgaranjem se kemijska energija goriva transformira u unutrašnju kaloričnu energiju
- iznos i sastav emisija ovise o fizikalnim i kemijskim svojstvima goriva
- opasnosti:
 - opterećenje okoliša radioaktivnim zračenjem
 - rizici nesreća
 - toplinsko zagađenje
 - kruti i tekući otpad
 - zauzeće zemljišta
 - estetsko i vizualno zagađenje
- utjecaji na brojna područja:
 - kvaliteta zraka, vode i tla
 - zdravlje ljudi te biljni i životinjski svijet
 - vizualni i estetski aspekti krajolika
 - ostali prirodni resursi
- pregled utjecaja pomoću 3 varijable
 - prostorna komponenta
 - 5-razinski model s razinama:
 - lokalna
 - regionalna
 - fluvijalna
 - kontinentalna
 - globalna
 - vremenska komponenta
 - kratkotrajni utjecaji
 - srednjetrajni utjecaji
 - dugotrajni utjecaji
 - vrsta utjecaja

Povezanost zdravlja i stanja zagađenosti okoliša

- zagađeni okoliš utječe na zdravlje
- svijest javnosti je tek u posljednje vrijeme postala vrlo velika
- gomilaju se znanstveni dokazi o tom utjecaju

- definicija zdravlja stanje kompletnog fizičkog, mentalnog i društvenog blagostanja, a ne odsutnost bolesti, slabosti i nemoći
- glavne zdravstvene posljedice emisija termoelektrana u zrak
 - · iritacije, smetnje i mučnine
 - smanjena funkcionalnost organa
 - kliničke bolesti
 - smrt
- ljudi su izloženi polutantima iz okoliša kroz
 - zrak
 - vodu
 - piće
 - hranu
 - materijala koji su u kontaktu s kožom
- zdravstvene posljedice
 - ovise o:
 - intenzitetu izlaganja
 - vremenu izloženosti
 - kapacitetu organizma da apsorbira polutant
 - svi ovi faktori definiraju primljenu dozu polutanta koja određuje vjerojatnost nastanka posljedica kao i tip i intenzitet narušavanja zdravlja
 - često isti polutant iz više medija
 - povremena izloženost uglavnom ima zanemarive posljedice
 - dugotrajna izloženost može imati vrlo značajne posljedice
 - posljedice izloženosti urbane populacije opasnim koncentracijama polutanata
 - 500 tisuća prerane smrti svake godine
 - 4-5 milijuna dodatnih slučajeva kroničnog bronhitisa godišnje

Utjecaj proizvodnje električne energije na okoliš

- neminovno uzrokuje emisije, odlaganje otpadnih produkata u zrak, vodu i tlo
- povećava kratkotrajne ili dugotrajne utjecaje (ili odmah nakon ispuštanja ili znatno kasnije)
- smanjenje i ograničenja emisije ograničeno je ekonomskim i tehničkim faktorima
 - čak i uz takve mjere postoji rizik
- priroda i veličina rizika ovisi o prirodi i količini upotrebljenog goriva, tehnologiji pretvorbe, nivou kontrolnih tehnologija za emisije i učinkovitosti pretvorbe
- emisije su vezane uz samo gorivo
 - mogu biti primarne (kao plinovi) ili sekundarne (npr. poslije reakcije mogu rezultirati u sekundarnim polutantima)
- glavni utjecaji
 - lokalni
 - zagađenje površinskih i podzemnih voda (kratkotrajni)
 - poremećaji zemljišta i utjecaj na ekosustav (dugotrajni)
 - zagađenje zraka krutim česticama, SOx, NOx, ugljikovodici... (kratkotrajni)
 - regionalni
 - zagađenje luka i oceana gubicima raznih vrsta (srednjetrajni)
 - degradacija šuma, promjena plodnosti oranica (kratko i srednjetrajni)
 - globalni
 - klimatske promjene od CO2 i drugih plinova staklenika (srednje i dugotrajni)

Energija i razvoj društva

- Rio de Janeiro (14.6.1992.) Agenda 21 UN
 - konferencija o okolišu i razvojua
 - većina svjetske energije se proizvodi i iskorištava na načine koji se ne mogu održati
 - svi bi se izvori energije trebali iskorištavati tako da se štiti atmosfera, ljudsko zdravlje i okoliš u cjelini
 - razvojne strategije trebaju imati za cilj zaštitu okoliša i međugeneracijsku pravednost
- postoji i rizik od manjka energije što ugrožava opstanak ljudskog društva
- među najznačajnice utjecaje na okoliš spada i energetika (pridobivanje, transformacija i uporaba energije)
- interakcija energetskog sustava i okoliša nije poznata suočavanje s potpuno novim procesom
- ekonomski rast i društveni razvoj ovise o uporabi energije
- glavna problematika omogućiti razvoj i zadovoljiti rastuće svjetske potrebe za energijom uz istovemenu ublažavanje utjecaja na okoliš i osiguravanje dugoročne kvalitete Zemlje
 - teorije razvoja društva i očuvanja okoliša:
 - ili razvoj ili okoliš (ali ne oboje istovremeno) uz dva pogleda:
 - pesimistični razvoj će konačno dovesti do katastrofe okoliša na svijetu
 - optimističan razvoj će uzrokovati degradaciju, a problem okoliša riješit će se kad razvoj dosegne određeni nivo
 - održivi razvoj okoliš i razvoj se međusobno ovisni i u osnovi se obostranu potpomažu
 - bez zaštite okoliša nema održivog razvoja
 - bez razvoja teško je održanje visoke kvalitete okoliša
 - održivi razvoj je razvoj koji može biti održiv kroz dugi vremenski period izričito uzimajući u obzir razne faktore okoliša na kojima se različiti procesi razvoja temelje

Održivi razvoj

- pojam se koristi od 1987. godine poslije publikacije "Naša zajednička budućnost"
 - opis održivog razvoja premijerke Norveške "zadovoljavanje sadašnjih potreba bez ugrožavanja mogućnosti budućih generacija da zadovolje svoje vlastite potrebe"
- ideja održivog razvoja dobila zamah kroz UN konferenciju 1992. godine (Agenda 21)
- "ekonomski rast i razvoj se mora događati i održavati tijekom vremena s ograničenjima obzirom na ekologiju u najširem smislu - to znači da su zaštita okoliša i ekonomski razvoj prije komplementarni nego antagonistički procesi"
- održivotst sposobnost društva, ekosustava ili bilo kojeg sustava da nastavi funkcionirati u neograničenoj budućnosti bez forsiranja iskorištenja ključnih resursa
- napori za održivi razvoj dugoročni, integrirani i sustavni pristup razvoju i
 postizanje zdravog društva zajedničkom brigom o gospodarstvu, okolišu i socijalnim
 pitanjima
- razvoj uključuje promjenu, napredak, mogućnost poboljšanja
 - održivost dodaje ideju trajnosti
 - promjena ne smije biti samo ekonomski vidljiva već i ekološki i društveno uspješna

- inicijative za održivi razvoj moraju uključivati:
 - integralni plan za zaštitu okoliša, socijalnu i ekonomsku kvalitetu života
 - uključivanje i sudjelovanje svih ugroženih strana
- najjednostavnija definicija održivo društvo je ono koje se održava kroz generacije
- održivost je balansiranje tri elementa trokuta okoliš, gospodarstvo i društvo
- mjerljivost
 - uz ekonomsko zdravlje društva treba mjeriti i njegovu ekološku i socijalnu kvalitetu
 - prvenstvena funkcija indikatora održivog razvoja je vrednovanje, procjena i stanje tri dimenzije socio-ekološkog sustava - društvo, gospodarstvo i okoliš
 - procjena interakcija među tim komponentama mora dominirati nad jednodimenzionalnim znanjem
- usklađenost energetskog sustava s održivim razvojem (6 kriterija):
 - usklađenost s okolišem
 - međugeneracijska usklađenost
 - usklađenost potrošnje
 - društveno-politička usklađenost
 - geopolitička usklađenost
 - ekonomska usklađenost

Održivi razvoj i energetika

- glavne komponente
 - raspoloživost, dostupnost, prihvatljiva cijena
 - energetska sigurnost
 - energetska učinkovitost
 - okolišna prihvatljivost
 - rizici
- nema tehnologije koja nije rizična ili otpada koji ne utječe na okoliš
 - zbog toga je bolje usporediti karakteristike raznih tehnologija ili energetskih usluga nego o njima govoriti izolirano
- nafta
 - svjetski najvažniji izvor energije
 - najviše na Srednjem istoku
 - 29.10.2007. srušen jedan od najstarijih svjetskih rekorda (iz siječnja 1981.)
 - barel nafte 93,53 USD
 - 2. siječanj 2008. barel nafte više od 100 USD
 - prosječno u 2008. 97,26 USD povećanje od 34%
 - na sredini godine maksimum 144 USD
 - na kraju 2008. ispod 40 USD po barelu
 - potrošnja
 - svjetska potrošnja pala za 0,6% tijekom 2008 i to prvi put od 1993.
 i najveći pad od 1982. godine
- ugljen
 - drugi u potrošnji primarne energije
 - nalazišta ugljena ravnomjernije raspoređena za razliku od zaliha tekućih goriva
 - najveće zalihe Rusija, SAD, Kina, Australija, Južna Afrika, Njemačka, Poljska, Češka i Velika Britanija
 - zastupljenost u podmirenju današnjih potreba za energijom manja od zastupljenosti tekućih i plinovitih goriva uzetih zajedno
 - u Kini 43% svjetske potrošnje (poraslo za 6,8%)
 - potrošnja

- najveći porast potrošnje u svijetu (od svih goriva) 3,1% što je usporenje rasta ispod desetogodišnjeg prosjeka
- potrošnja u Kini čini 43% svjetskog udjela (povećanje od 6,8%)
 - na Kinu otpada 85% svjetskog rasta
- u SAD-u pad potrošnje
- ostatak svijeta rast od 0,6%
- prirodni plin
 - najviše na Srednjem istoku i u Euraziji
 - potrošnja
 - svjetska potrošnja porasla za 2,5% tijekom 2008. što je manje od desetogodišnjeg prosjeka
 - najveći rast u Kini (15,8%)
 - i EU pad zbog visokih cijena i tople zime
 - proizvodnja porasla za 3,8%
 - isto toliko i međunarodna trgovina
- hidroenergija
 - globalna proizvodnja porasla za 2,8% Kina predstavlja sav svjetski rast i to porastom za 20,3% zbog velikog povećanja kapaciteta i vrlo dobre hidrologije
- nuklearna energija
 - u 2008. proizvodnja smanjenje za 0,7% (već drugu godinu za redom)
- obnovljivi izvori
 - unatoč visokom rastu još uvijek predstavljaju samo mali dio ukupne svjetske energetske sile
 - geotermalna, vjetar i sunčeva energija zajedno predstavljaju oko 1,5% globalne proizvodnje
 - sunce
 - kapaciteti sunčeve energije se udvostručuju svake dvije godine od 1998. godine, a u 2008. su povećani za 69%
 - ukupni kapaciteti narasli za 5,5 GW i dostigli 13,4 GW
 - u 2008. koncentrirani u Španjolskoj i Njemačkoj (zbog velikih vladinih potpora)
 - vjetar
 - važan u Danskoj (20% proizvodnje), Španjolskoj (10,7%), Njemačkoj (7%) i SAD (1%)
 - kapaciteti rasli za 30% u 2008.
 - prosječni rast u 10 godina oko 28%
 - u 2008. najviše novih kapaciteta u SAD i Kini
 - SAD najveći kapacitet (20,7% svjetskog udjela)
 - Njemačka 19,6% svjetskog udjela kapaciteta
 - Europa ostala najveće tržište u smislu kapaciteta 54% svjetskog kapaciteta u 2008.
 - najvažniji faktor brzog rasta vladine potpore
 - veliki izazov za operatere prijenosnog sustava zbog nepredvidivosti (faktor iskorištenja 25%) - velik zahtjevi na pomoćne usluge sustava
 - geotarmalna energija
 - važna u El Salvadoru (25% proizvodnje), Filipinima, Keniji i Islandu (oko 20% proizvodnje)
 - veliki faktor opterećenja 90% (sunce 20%, vjetar 25%)
 - u 2008. najsporije rasla (4,2%)
 - najveći kapaciteti u SAD 28,6% svjetskog udjela
 - etanol
 - globalna produkcija u 2008. porasla 31%

- porast najviše zbog SAD gdje je produkcija porasla za 41% i čini pola svjetske proizvodnje
- u Brazilu proizvodnja porasla za 20%
- proizvodnja u SAD i Brazilu 90% svjetske proizvodnje
- ostalo 30% porasta u Kanadi i Francuskoj
- općenito
 - svjetska potrošnja primarne energije porasla za 1,4% u 2008.
 - najveći porast ponovno u Azijskoj tihooceanskoj regiji 87% ukupnog rasta
 - najveći porast u Kini tri četvrtine ukupnog rasta
 - ipak, već petu godinu za redom se taj rast smanjuje
 - ∘ rast se usporio od 2001. za sva goriva i u svim regijama
 - potrošnja u 2008. (od najviše do najmanje)
 - nafta
 - ugljen
 - prirodni plin
 - nuklearna energija
 - hidroenergija

Tehnologije za proizvodnju električne energije u budućnosti

- tehnologije se neprekidno usavršavaju veća učinkovitost i sve manji utjecaj na okoliš
- u budućnosti će se još dosta vremena zadržati i sadašnje tehnologije
 - izgaranje ugljene prašine i tekućih goriva (termoelektrane)
 - hidroelektrane
 - sadašnja generacija lakovodnih nuklearnih reaktora
- tehnologije za proizvodnju električne energije u prvoj polovici 21. stoljeća vjerojatno će pripadati jednoj od sljedećih grupa postrojenja:
 - postrojenja s poboljšanjim korištenjem fosilnih goriva
 - elektrane s naprednim tehnologijama u korištenju ugljena
 - elektrane s kombiniranim plinsko parnim ciklusom
 - proizvodnja električne energije u gorivnim ćelijama
 - novi obnovljivi izvori energije
 - vjetar, sunce ili biomase
 - poboljšane nuklearne tehnologije
 - unaprijeđeni lakovodni reaktori
 - visokotemperaturni reaktori
 - brzi oplodni reaktori

Investicije u energetski sektor

- ukupne investicije preko 10 trilijuna USD
 - to je oko 56% ukupnih investicija u energetski sektor i gotovo tri puta više nego investicije u elektroenergetski sektor u posljednjih 30 godina
 - više od 5 trilijuna USD će ići u prijenosne i distribucijske mreže
- zaštita okoliša
 - regulativa iz područja zaštite okoliša koja zahtjeva smanjenje emisije polutanata postaje sve stroža
 - zakonodavstvo će sve više obuhvaćati i emisije stakleničkih plinova

- to dovodi do povećanja rizika za investitori zbog povećanja investicija
- zemlje u razvoju
 - sveukupno će trebati investicije reda veličine 5 trilijuna USD
 - za većinu zemalja investicije moraju biti puno veće od dosadašnjih kako bi se dostigli ciljevi socio-ekonomskog rasta i razvoja, ali za to nema garancije
 - velika nesigurnost o uspješnosti mobilizacije ove investicije, posebice za Indiju i Afriku
 - uz dosadašnju politiku 1,4 milijarde ljudi neće imati el.en. do 2030.
 - dodatne investicije za 100% pokrivenost 665 milijarde USD
 - očekuju se veliki doprinosi od programa za ublažavanje siromaštva
- u Europi
 - do 2030. godine treba uložiti 2 tisuće milijardi EUR
 - velik rast potražnje za energijom
- 4 strateška izazova u budućnosti
 - sigurnost dobave energije
 - investicije u energetsku infrastrukturu
 - briga o štetama u okolišu zbog korištenja energije
 - značajna nedostupnost moderne energije za veliki dio svjetske populacije

Zemljina atmosfera i ozon

- ukupni globalni okoliš 4 glavna područja:
 - plinovita atmosfera
 - tekuća hidrosfera
 - kruta litosfera
 - živuća biosfera

Atmosfera

- plinoviti omotač koji obavija zemlju
- oblik sličan obliku Zemlje
- meteorologija proučava sastav i strukturu atmosfere, njeno fizičko stanje, postanak i značenje i razvoj fizičkih meteoroloških pojava koje se javljaju u atmosferi
- stanje atmosfere skup njezinih fizičkih osobina koje određuju meteorološki elementi
- osnovni meteorološki elementi
 - temperatura traka i gornjih slojeva Zemlje
 - atmosferski tlak
 - vietar
 - gustoća i vlažnost zraka
 - isparavanje
 - oblaci i oborine...
- meteorološko vrijeme fizičko stanje atmosfere nad nekim mjestom
- klina prosječno stanje atmosfere nad određenim mjestom u određenom vremenskom razdoblju (30 godina)
- snabdijeva nas zrakom koji udišemo
- regulira globalnu temperaturu
- filtrira opasni dio sunčevog zračenja
- kemijski sastav se mijenja zbog:
 - prirodnih uzroka
 - djelovanja ljudi (antropogeni utjecaji)

- globalno zagrijavanje
- uništavanje ozona
- povijest
 - prije 5 milijardi godina formiranje Zemlje
 - 500 milijuna godina se sastojala od para i plinova izbačenih tokom rasplinjavanja unutrašnjosti planeta
 - prije 4 milijarde godine formirala se hidrosfera kondenziranjem vodene pare stvarajući oceane vode
 - najvažnija karakteristika odsutnost slobodnog kisika (nije zabilježen prije 3 milijarde godina)
- danas
 - stabilna mješavina nekoliko stotina vrsta plinova različitog porijekla
 - skoro jednoličan udio plinova osim vodene pare do oko 80 km iznad Zemlje
 - N2 (78%), O2 (21%) i Ar (0,93%) čine 99,9% plinova
 - taj sastav ostaje gotovo nepromijenjen do gornje granice troposfere
 - povećava se broj dokaza da se mijenja udio plinova u tragovima bitnih za okoliš i zbog prirodnih i ljudskih faktora
- mjere za koncentraciju plinova u atmosferi
 - volumni sadržaj (m^3 plina po 1 m^3 smjese)
 - maseni sadržaj (kg plina po 1 m^3 smjese)

Struktura atmosfere

- u prvih 40km više od 99% ukupne mase atmosfere
- slojevi
 - troposfera (0-11 km) temperatura pada s visinom
 - između tropopauza
 - stratosfera (11-40 km) temperatura se ne mijenja
 - između stratopauza
 - mezosfera (40-80 km) temperatura pada s visinom
 - između mezopauza
 - termosfera (80-300 km) temperatura raste s visinom
 - egzosfera (300- km)
- troposfera
 - ∘ 0-11 km
 - temperatura i sadržaj vodene pare padaju brzo s visinom
 - sadrži 99% vodene pare u atmosferi
 - koncentracija se mijenja s geografskom širinom (najveća iznad tropskih područja - oko 3%, a pada prema polovima)
 - gornji dio u granicama 8-18 km (visina se mijenja tokom sezona najveća ljeti)
 - visina je različita
 - ekvator 18-20 km
 - umjerene širine 11-14 km
 - polovi samo 8-19km
 - oko 90% atmosferske mase
 - temperatura pada s visinom prosječno 6°C po kilometru
 - iznad pola -45°C na gornjoj granici
 - iznad ekvatora -80°C
 - debljina tropopauze između nekoliko stotina metara do dva kilometra
 - temperatura se ne mijenja ili raste u tropopauzi s visinom
 - sve vremenske pojave se događaju u troposferu (ime znači "područje miješanja")

stratosfera

- temperatura ostaje realtivno konstantna do 25 km i tada se povećava postepeno do 200-220 K na gornjoj granici
- ozon ima glavnu ulogu reguliranja temperaturnog režima stratosfere pošto je koncentracija vodene pare vrlo mala
 - temperatura raste s koncentracijom ozona
 - sunčeva energija se pretvara u kinetičku kada molekule ozona apsorbiraju UV zračenje - zagrijavanje stratosfere
- sloj ozona između 20-30 km
 - približno 90% ozona je u stratosferi
 - apsorbira glavni dio sunčevog UV zračenja valne družine 290-320 nm (koja je opasna za život)
 - najviše nastajanja i uništavanja ozona događa se u stratosferi iznad ekvatora

mezosfera

- padanje temperature koja dostiže 190-180 K na visini od 80 km
- koncentracija ozona i vodene pare neznatna
- s udaljavanjem od Zemlje kemijski sastav zraka postaje jako ovisan o visini i atmosfera postaje bojatija s lakim plinovima
- na vrlo velikim visinama plinovi počinju u slojevimu zbog gravitacijske separacije

termosfera

- ∘ 80-300 km
- temperatura općenito raste s visinom do 1000K
 - zbog intenzivne apsorpcije sunčevog zračenja ograničenim količinama preostalih molekula kisika

egzosfera

- sloj najudaljeniji od zemlje
- relativno nedefiniran
- prelazna zona između atmosfere i međuplanetarnog prostora

Sunčevo zračenje

- 3 vrste zračenja
 - ultraljubičasto (UV)
 - UV-C
 - UV-B
 - UV-A
 - vidljivo
 - infracrveno (IR)
- ultraljubičasto (UV) zračenje
 - ima vrlo važnu ulogu u mnogim procesima u biosferi
 - ima nekoliko korisnih učinaka, ali može biti i vrlo štetno ukoliko pređe "sigurnu" razinu
 - ako je iznos dovoljno visok, sposobnost samozaštite jedinke nije dovoljna i ona može biti znatno oštećena
 - zbog toga je uveden UV indeks koji treba upozoriti ljude o stupnju štetnosti UV zračenja
 - što je veći, veća je i opasnost od štetnog djelovanja UV zračenja
 - prognozira se za sutrašnji dan
 - određuje se pomoću kompjutorskih modela

- umnožak reakcije kože na UV tračenje i energetskog spektra UV zračenja se integrira i tako se dobiva biološki djelotvorno zračenje
- djelotvorna UV doza se osrednji za promatrani vremenski interval i pomnoži s faktorom 40 kako bi se dobila brojčana vrijednost koja predstavlja UV indeks
- mijenja se tokom dana i godine
 - ljeti najopasnije
 - od 12 do 14 sati vrlo visoka opasnost
 - sat prije i poslije visoka opasnost
 - 9-10 i 16-17 umjerena opasnost
 - rano ujutro i kasno poslijepodne gotovo nema opasnosti
- općenito viši ako putujemo na jug, a niži ako idemo na sjever
- vrijednosti
 - 1 i 2 niska opasnost
 - 8, 9 i 10 vrlo visoka opasnost
 - djeca mogu dobiti opekline za manje od 10 minuta
 - 11 i više ekstremna opasnost
 - djeca mogu dobiti opekline za manje od 5 minuta
- stratosferski kisik i ozon apsorbiraju 97-99% UV zraka s valnom dužinom 150-300nm
 - UV-C je potpuno apsorbirano u gornjoj atmosferi na molekulama kisika i ozona
 - većinski dio UV-B je apsorbiran na molekulama ozona
 - na površinu Zemlje dolazi velik iznos UV-A i mali iznos UV-B zračenja
- UV-B zračenje je biološki vrlo štetno
 - pošto je ozon glavni apsorber UV-B zračenja, intenzitet UV-B zračenja zavisi o ukupnom iznosu ozona u atmosferi i debljini ozonskog sloja
- na UV zračenje najviše utječe visina Sunca kut između horizonta i smjera prema Suncu
 - zato je UV zračenje najjače u tropskom podrušju, ljeti, u vrijeme podneva
 - na velikoj geografskoj širini polarnih područja sune je uvijek nisko na nebu pa je više UV-B zračenja apsorbirano - srednje izlaganje UV-B zrakama je preko 1000 puta manje nego na ekvatoru
 - također utječe i pokrivenost oblacima te blizina industrijske zone
 industrijski procesi poizvode ozon
- učinci UV zračenja na zdravlje
 - DNA apsorbira UV-B lomljene veza u DNA što može dovesto do raka kože
 - 1% smanjenje u sloju ozona uzrokovat će oko 2% povećanja UV-B zračenja što će dovesto do 4% povećanja karcinoma
 - također su moguća oštećenja oka, oslabljenje imunološkog sustava te melanom
 - kod životinja se također javlja rak kože, ali i utjecaj na rane stadije razvitka mnogih vrsta (mutacija)
 - kod gotovo svih predstavnika biljnog svijeta, od najsitnije planktona do najvećeg stabla, pretjerana izloženost UV-B zrakama može usporiti proces rasta
 - oštećenja morskog života rizik na morski plankton koji gusto naseljava 2 gornja metra oceana

Ozon

- otkriven 1839. godine (Christian F. Schonbein)
- svjetlo plave boje
- relativno nestabilna molekula
- nastaje iz molekule kisika djelovanjem UV zračenja s atomom kisika
 - može nastati prolaskom električnog izboja kroz plinoviti kisik
 - tehnički se dobiva propuštanjem kisika ili zraka kroz električno izbijanje u ionizatoru
- jedinstven miris
- u industriji se upotrebljava kao stredstvo za izbjeljivanje, kao antiseptik i oksidans
- ozonski sloj
 - proteže se od 15-50 km, ali je najgušći između 20 i 25 km
 - sav ozon bi na morskoj razini tvorio sloj debeo samo 3 mm
 - uloga ozona je dvojaka
 - u troposferi predstavlja problem
 - u stratosferi je neophodan za održavanje zdravlja i života na Zemlji
 - jedan od glavnih problema današnjice je povećanje ozona u troposferi i smanjenje u stratosferi
 - mjeri se u jedinici Dobson (DU)
 - prosječni nivo ozona je 300 DU
- za njegovu izgradnju, razgradnju i smještaj bitna je ravnoteža
 - dođe li do poremećaja ozon nestaje, a to se najčešće događa dovedemo li iz donjih slojeva u stratosferu freone
- troposferski ozon
 - količina ozona u troposferi se u posljednih 50 godina udvostručila
 - dolazi u neposredan dodir sa živim organizmima
 - nadražuje dišne organe i oči, a veće količine izazivaju krvarenje iz nosa i glavobolju
- stratosferski ozon
 - upija najveći dio štetnog ultraljubičastog tračenja
 - upijajući UV zrake, ozon predstavlja izvor topline u stratosferi
 - zaštitnički ozon
 - neophodan za život na Zemlji
- nastanak ozona
 - zračenje sunca razbija molekule normalnog kisika otpuštajući na taj način slobodne atome
 - neki od njih se vežu s drugim molekulama kisika i na taj način nastaje ozon
 - čak 90% ozona u atmosferi nastaje na opisani način
 - iz tog razloga se i prostor ozona iznad Zemlje naziva ozonski omotač iako u njemu ima vrlo malo ozona
- uništavanje ozona
 - molekula ozona izložena UV zračenju može se vratiti u O2 i O (Chapmannova reakcija)
 - katalitički proces (nestabilni ozon rado daje svoj treći atom kisika slobodnim radikalima) - puno češće
 - antropogeno uništavanje proizvedene tvari dosežu ozonski nivo atmosfere
 - Cl (iz CFC) i brom (iz halogena) najviše
 - CFC u troposferi ostaje više od 40 godina
 - klor se u više navrata spaja s kisikom i uništava ozon 1 atom klora može prevesti 100 tisuća molekula ozona u kisik
- tvari koje oštećuju ozonski omotač

- klor, fluor, brom, ugljik i vodik
- freoni sintetički spojevi široke primjene sastavljeni od ugljika, klora i fluora
 - aeorosli (potisni plin)
 - sredstva za pjenjenje
 - pjena za termoizolaciju
 - proizvodnja plastičnih masa
 - sredstva za čišćenje i odmašćivanje
 - hladnjaci, ledenice, rashladni sustavi
 - klima uređaju
- haloni (u uređajima za gašenje požara)
- ugljik tetraklorid, metil bromid, triklor etan, nezasićeni klorofluorougljikovodici i nezasićeni bromougljikovodici
- bez sustavne kontrole bi stanje ozona moglo biti i do deset puta gora za pedeset godina
 - dvostruka veće UV-B zračenje na sjevernoj hemisferi i četverostruko na južnoj
 - rak kože, katarakti očiju i ostala oboljenja zahvatila bi milijune
- kontrola ozona
 - ozon se oštećuje u prosjeku 4-5% po desetljeću
 - najjača oštećenja zovu se "ozonska rupa", a vidljiva su nad Antarktikom svako antarktičko proljeće
 - nivo ozona je pao na 33% vrijednosti prije 1975. (manje od 220 DU ozona)
 - u posljednje vrijeme se javlja i iznad Arktika
 - u listopadu 2000. bila je veća nego ikad (kao trostruka površina SAD-a)
 - znanost još ne zna način neutraliziranja CFC-a
 - ozonski omotač se oštećuje i zbog prirodnih pojava (vulkani i promjenjive aktivnosti Sunca)
 - dogovor vlada da se do kraja prošlog stoljeća upola smanji upotreba CFC-a, međutim, on je predugo aktivan u atmosferi
 - stanje nad Europom
 - ozonski sloj atmosfere nad Europom tanji je čak 30%
 - periodična stanjivanja nisu ništa novo, ali su se počela događati češće nego prethodnih godina
 - omotač se motri pomoću GOME-a

Međunarodni dogovori za zaštitu ozonskog omotača

- 1973. Mario Molina i Sherwood Rowland prvi otkrivaju da CFC može imati veliku ulogu u uništavanju ozona
 - od tada su se države diljem svijeta složile i stvaraju međunarodne propise u nadi da će zašititi ozonski omotač
 - znanstvenici kroz Ujedinjene narode potaknuli inicijativu za sprečavanje daljnjih oštećenja
- Bečka konvencija o zaštiti ozonskog omotača 1985.
 - prvi korak zaštite
 - pristupila 21 država Europe
 - nakon nje znanstvenici dugotrajnim istraživanjem utvrđuju koje ljudske aktivnosti dovode do oštećenja ozonskog omotača
- Montrealska konvencija 1987. godina
 - 22 zemlje svijeta potpisale protokol

- danas taj protokol broji 184 zemalja članica (122 zemlje obuhvaćene člankom 5 koji nalaže nisku potrošnju freona i halona)
- razvijene zemlje prestale s potrošnjom freona i halona, ali one čine samo 20% svjetske potrošnje - u ostalih 80% je ključ spašavanja ozonskog omotača
- Londonski amandmani na protokol 1990.
 - odredili da proizvodnja CFC i CCl4 prestane do 2000. godine
 - 1992. u Copenhagenu odgođeno za 2006. godinu
- 1997. izmjena protokola o tvarima koje oštećuju ozonski omotač
 - 1999. prihvaćena izmjena u Pekingu

Republika Hrvatska i zaštita ozonskog omotača

- Hrvatska od 8. listopada 1991. godine članica Bečke konvencije i Montrealskog protokola
- obje dopune (1990. i 1992.) i izmjenu (1997.) potvrdio Sabor
- za provedbu protokola u Hrvatskoj zaduženo Ministarstvo zaštite okoliša, prostornog uređenja i graditeljstva
- 1996. godine izrađen Nacionalni program za potpuno ukidanje tvari koje oštećuju ozonski omotač u suradnji s jednom od četiri provedbene agencije protokola
 - programom je utvrđena potrošnja tvari koje oštećuju ozonski omotač te su predložene mjere i projekti ukidanja potrošnje tvari koje oštećuju ozonski omotač u Republici Hrvatskoj
 - utvrđno kako Hrvatska ima preduvjete za provedbu ubrzanog ukidanja potrošnje tvari koje oštećuju ozonski omotač (uz odgovarajuću stručnu i financijsku pomoć provedbenih agencija protokola)
- U Hrvatskoj se ne proizvode tvari koje oštećuju ozonski omotač pa se potrošnja tih stvari računa kao razlika uvoza i izvoza
 - Hrvatska spada u zemlje iz članka 5 (niska potrošnja freona i halona)

Efekt globalnog zagrijavanja

Sunčeva energija

- najveći dio toplinske energije u Zemljinoj atmosferi od elektromagentskog zračenja Sunca
 - to zračenje čine fotoni s veoma širokim spektrom energija
 - taj spektar se ne razlikuje bitno od spektra crnog tijela na temperaturi od oko 5800K
- spektar Sunčevog zračenja: UV (10%), vidljivi (45%) i IR (45%) dio
- bilanca energije Sunčevog zračenja:
 - 30% se reflektira u svemir (albedo Zemlje je oko 0,3)
 - 25% se apsorbira u atmosferi (3% ozon, 5% oblaci i 17% vodena para)
 - ostalih 45% apsorbira se na površini Zemlje
- Sunčeva energija nije vremenski konstantna ovisi o relativnom položaju osi rotacije i putanje Zemlje
 - položaj osi rotacije mijenja zračenje s vremenom perioda od oko 26000 god
 - precesija Zemljine putanje period promjene 19-24 tisuće godina
 - ekcentričnost elipse Zemljine putanje 100 tisuća godina

- stvarne promjene temperaturnih prilika rezultat su kombiniranog utjecaja zračenja Sunčeve energije i pojava vezanih uz apsorpciju zračenja Zemlje u atmosferi
- još jedna periodička pojava isčeznuće biljnih i životinjskih vrsta svakih oko 26 milijuna godina
- kod razmatranja ovih kolebanja u idućim milenijima treba očekivati postupno smanjivanje emitirane energije Sunca
 - dovelo bi do povećanja mase ledenog pokrivača na polovima i smanjenja prosječne temperature atmosfere

Zagrijavanje Zemlje

- valna dužina glavnine emitiranih toplinskih zraka raste s padom temperature tijela
- temperatura površine Zemlje je puno niža od temperature površine Sunca spektar zračenja Zemlje u visokom području (infracrveno zračenje)
- to zračenje se apsorbira u atmosferi koja je učinkovit apsorber infracrvenog zračenja
- preko 90% tako apsorbiranog zračenja se reflektira na površinu Zemlje i doprinosi njenom zagrijavanju
- plinovi koji to omogućuju se zovu "staklenički plinovi" jer je djelovanje slično staklima u staklenicama
- ne apsorbiraju svi plinovi jednako
 - CO2 je referenca relativnog potencijala zagrijavanja iako apsorbira bitno manje nego drugi plinovi - on je referenca zato što je njegova količina u odnosu na druge najveća
- relativni potencijal zagrijavanja apsorpcijska moć plina i rezidentno vrijeme u atmosferi
- plinovi koji doprinose zagrijavanju zemlje s preko 90%: CO2 (60%), CH4, N20, C2F6, C3F5HCL2 i CH2FCF3
- vrlo mali dio energije proizvodi i sama Zemlja (unutarnja energija)
 - radioaktivni raspad teških izotopa
 - kristalizacija stijena
 - pretvorba energije gravitacije u toplinsku
 - sve to je manje of tisućinke toplinskog toka Sunčevog zračenja
 - zanemariv iznos, ali bitni utjecaj na Zemljinu koru (pomaci kontinenata, uzdizanje planinskih lanaca, zemljotresi)
- totalna bilanca CO2
 - ciklus vegetacije (110 milijardi tona CO2 godišnje) i ciklus oceana (55 milijardi tona CO2 godišnje)
 - fotosinteza (apsorpcija CO2) i razgradnja organskih tvari (emisija CO2)
 - uravnoteženi procesi
 - ljudska aktivnost (uništavanje šumskih površina i izgaranje ugljika) dovodi do povećanja CO2 u atmosferi
 - 6,5 8,5 milijardi tona CO2 godišnje viška polovina se apsorbira u prirodnim procesima, a polovina povećava koncentraciju CO2 u atmosferi

Omogućavanje života na površini

• jedan od temeljnih uvjeta za formiranje atmosfere i životnih uvjeta je da temperatura na površini planeta mora omogućiti održanje vode u tekućem stanju

- bez toga nema apsorpcije ugljičnog dioksida u vodi kao ni uvjeta za nastanak organizama i procesa fotosinteze
- zračenje planeta u svemir određeno je formulom
 - (1-alfa)*Esun/4 = sigma*f*T^4
 - Esun sunčeva konstanta
 - alfa albedo (odnos reflektirane i ozračene sunčeve energije)
 - f faktor atmosferske transmisije za infracrveno zračenje
 - T- apsolutna temperatura na površini planeta
 - sigma Stefan-Boltzmannova konstanta
 - lijeva strana dobivena energija od Sunca
 - desna strana emitirana energija od površine planeta
 - računanjem se dobije da je na Zemlji prosječna temperatura -18°C
 - zbog stakleničkih plinova, ta se vrijednost povećava na 15°C (za 33°C)
- Venera
 - efekt staklenika je toliko jak da ne dozvoljava sniženje temperature ispod vrijednosti kod koje voda kondenzira - nema života
 - ∘ CO2 > 98%
- Mars
- rijetka atmosfera ne osigurava potreban efekt staklenika kako bi se voda odmrznula i dovela do vodenih para u atmosferi
- Zemlja
 - ispunjeni temperaturni uvjeti za razvitak atmosfere pogodne za očuvanje životnih uvjeta
 - djelovanje efekta staklenika je od suštinskog značenja za održavanje podnošljivih klimatskih uvjeta na površini planeta
 - bez toga bi temperatura bila niža čak 33°C
 - prirodni staklenički plinovi CO2, CH4, N2O, O3 i H2O
 - antropogeni staklenički plinovi CO2, CH4, N2O, HFC, PFC i SF6
 - glavni izvori:
 - izgaranje fosilnih goriva
 - industrijski procesi
 - odlaganje otpada
 - sječa šuma
 - poljoprivredna proizvodnja
 - stočarstvo
 - stopa rasta promjene temperature je već od bilo koje u proteklih 10000 godina
 - koncentracija CO2 se naročito povećala početkom industrijske ere
 - metan (CH4)
 - osim CO2, znatan doprinos metana
 - prirodni kemijski procesi ga stvaraju, pretežito razgradnja organskih tvari
 - močvare, rižina polja, termiti, stočne farme, rudnici ugljena...
 - drastično povećanje koncentracije metana u atmosferi u 20. stoljeću u odnosu na ranija razdoblja
 - CFC

Smanjenje emisija CO2

- mogućnosti
 - poboljšanje energetske efikasnosti

- prelazak na niskougljična goriva
- prelazak na bezugljična goriva
 - nuklearna energija i obnovljivi izvori
- mogućnost "zarobljavanja CO2" (iskorištavanjem ili skladištenjem)
 - problem: potrebna dodatna količina energija koja smanjuje efikasnost proizvodnje za 10%
 - iskorištavanje CO2
 - u kemijskoj industriji
 - za unapređenje vađenja sirove nafte
 - · za rast biljaka ili algi
 - skladištenje CO2
 - u oceane
 - tri koncepta
 - disperzija iz cijevi
 - disperzija iz brodova
 - stvaranje jezera CO2 u dubini
 - u duboke slane rezervoare
 - u iskorištene bušotine nafte i plina
 - kao krutina na zemljištu

Klimatske promjene

- staklenički plinovi omogućuju život
- narušavanje odnosa u kemijskom sastavu zraka narušava i ravnotežu klimatskog sustava s klimatski mjerljivim posljedicama
- klima Zemlje se stalno mijenja (astronomski, fizikalni i kemijski čimbenici)
 - u posljednjih sto godina ljudske su se aktivnosti toliko intenzivirale da imaju izravan utjecaj na klimu
- kod viših temperatura je veće stvaranje sekundarnih polutanata još veće opterećenje na urbana područja
- klima se mijenjala u prošlosti
 - jako spore klimatske promjene
 - ledeno doba prosječno 5°C manja temperatura
- i ranije je bilo toplijih i hladnijih razdoblja
 - međutim, opažanja potvrđuju da se klima mijenja izvan prirodnih okvira samo je teško precizno odrediti udjel ljudskih aktivnosti u klimatskim promjenama
- utjecaj na:
 - zdravlje ljudi
 - smrt (toplinski udari)
 - infektivne bolesti (utjecaj na prenosnike bolesti)
 - bolesti dišnih puteva (kvaliteta zraka)
 - izvore vode
 - promjene u snabdijevanju i kvalitete vodom
 - povećana konkurencija za vodom
 - češća pojava poplava
 - prinos žetve
 - promjena geografske distribucije žitarica
 - smanjenje prinosa žitarica
 - potreba za navodnjavanjem
 - šume
 - promjena u sastavu šuma
 - geografska promjena veličine šuma

- zdravlje šuma i produktivnost proizvodnje
- povećanje rizika od požara tokom ljeta
- priobalna područja
 - u SAD nivo mora porastao za 25-30 cm u posljednjem stoljeću
 - erozija pješčanih plaža
 - poplavljanje obalne zemlje
- biljne i životinjske vrste i prirodna područja
 - pomak ekoloških zona
 - gubitak staništa i vrsta
- · klima u Hrvatskoj
- umjereno topla kišna klima
- najviša planinska područja snježno-šumska klima
- u unutrašnjosti najtopliji mjesec prosječno 22°C
- srednja godišnja temperatura priobalnog područja 12-17°C
- ravničarsko područje srednja godišnja 10-12°C
- između 600 i 3500 mm oborina godišnje
 - najmanje otoci, najviše vrhovi planina
- najsunčaniji dijelovi Hrvatske vanjski otoci srednjeg Jadrana
- prognoziranje atmosferskih promjena i štete
 - prognozu i posljedicama moguće temeljiti samo na veoma kompleksnim matematičkim modelima
 - mora se voditi računa i o fizikalnim povratnim vezama na cijeli proces
 - šteta u okolišu nastaje zbog promjene klimatskih uvjeta pod djelovanjem stakleničkih plinova
 - širenje pustinjskih područja na jugu i poplave na sjeveru
 - povišenje razine mora
 - štete nisu jednoliko raspoređene po područjima svijeta
 - općenito vrijedi da će štete biti izraženije kod zemalja koje su više vezane uz poljoprivredu, kod zemalja i područja uz morsku obala, zemalja koje već sada imaju toplu i suhu klimu i onih koje teže prilagođavaju svoje gospodarstvo i način života izmijenjenim klimatskim uvjetima
 - u većoj su to mjeri zemlje u razvoju
- ublažavanje štete prilagođavanje gospodarstva novonastalim uvjetima
- za razliku od SO2 i NOx, CO2 je nemoguće odstraniti iz dimnih plinova termoelektrana ili ga razgraditi na sastavne elemente
 - upravo je proces oksidacije ugljika proces koji oslobađa energiju pa bi razgradnja utrošila istu tu energiju
 - jedino se može skladištiti CO2 u npr. oceanima što je ekonomski i ekološki problematično
 - zato treba smanjiti emisiju CO2 zamjenom fosilnih goriva drugim energentima
 - troškovi stabilizacije CO2 iznosili bi 1-1,5% svjetskog društvenog proizvoda (a neke procjene idu i do 6%)

Međunarodni odgovor na promjenu klime

- prvo priznanje o ozbiljnosti problema na prvoj Svjetskoj konferenciji o klimi 1979.
 - deklaracija koja poziva svjetske vlade da predvide i spriječe moguće ljudski izazvane promjene klime koje mogu biti suprotne dobrobiti čovječanstva
 - utvrđen plan za osnivanje Svjetskog klimatskog programa
- krajem 80-ih i početkom 90-ih mnogo međuvladinih konferencija o klimatskim promjenama
 - najznačajnije u Villachu, Torontu, Ottawi, Tati...

- Međuvladin panel o promjeni klime (IPCC) objavio svoje prvo izvješće 1990.
 - panelu je dan mandat da procijeni stanje postojećeg znanja o klimatskom sustavu i klimatskim promjenama
 - izvješće je potvrdilo znanstvene dokaze o promjeni klime
 - snažan efekt na kreatore politike kao i opću javnost
- druga Svjetska konferencija o klimi 1990.
 - pozvala na okvirni sporazum o klimatskim promjenama
 - završna deklaracija, usvojena nakon teških pregovora, nije precizirala nijedan međunarodni cili za smanjenje emisija
 - ipak, podržala je brojne principe koji su kasnije uključeni u Konvenciju o promjeni klime
 - govore o klimatskim promjenama kao "zajedničkoj brizi čovječanstva", bažnoj pravednosti, održivom razvoju i principima prevencije
- okvirnu konvenciju UN-a o promjeni klime iz 1992. potpisalo 154 zemalja u Rio de Janeiru
 - Agenda 21 (vidi poglavlje Energija i razvoj društva)
 - treba dostavljati nacionalna izvješća o provođenju odredbi Konvencije
 - Hrvatska dostavila 2001. prvi izvještaj te drugo, treći i četvrti 2007.
 - sljedeći se dostavlja 2010.
 - stupila na snagu 21. ožujka 1994.
 - 90 dana nakon ratifikacije 50. države
 - Konferencija stranaka postalo najviše tijelo Konvencije
 - od tada 186 zemalja ratificiralo Konvenciju Hrvatska 1996. godine
 - temeljni cilj Konvencije postignuti stabilizaciju koncentracija stakleničkih plinova u atmosferi na razinu koja će spriječiti opasno antropogeno djelovanje na klimatski sistem, a to treba ostvariti u vremenskom okviru dovoljnom da se ekosustav prirodno prilagodi na klimatske promjene
 - prema Konvenciji zemlje potpisnice Priloga I, uglavnom sve razvijene zemlje i zemlje u tranziciji (među njima i Hrvatska), moraju zadržati emisije stakleničkih plinovana razini iz 1990. godine
- konferencija stranaka (COP-1) prvi sastanak imala u Berlinu 28.3. do 7.4. 1995.
 - 117 zemalja stranaka i 53 zemlje promatrača
 - složili se da su obveze razvijenih zemalja sadržane u Konvenciji nedostatne i organizirali razgovore o dodatnim obvezama nazvane Berlinski mandat
 - preispitali prvi krug nacionalnih izvješća te dovršili većinu institucionalnih i financijskih instrumenata da podrže akciju definiranu Konvencijama
- druga konferencija (COP-2) 1996.
- IPCC usvojio svoje drugo izvešće u prosincu 1995.

Kyoto protokol

- treća konferencija (COP-3) dovela do Kyoto protokola
 - prihvaćen Kyoto protokol industrijalizirane zemlje imaju pravno vezanu obvezu smanjiti ukupnu emisiju stakleničkih plinova za najmanje 5% usporedbi s razinom iz 1990. u razdoblju od 2008. do 2012.
 - protokol otvoren za potpis i počinje primjena 90 dana nakon što ga ratificira 55 stranaka Konvencije čija je emisija najmanje 55% emisije CO2 zemalja Aneksa I protokola
 - do tada se nastavlja provođenje obveze prema Konvenciji o promjeni klime i priprema za primjenu Kyoto protokola
- četvrta konferencija (COP-4) u Buenos Airesu 1998.

- razmatranje provedbe Konvencije i početak istraživanja buduće provedbe Kyoto protokola
- sedma konferencija (COP-7)
 - prihvaćeni dokumenti za provođenje Kyoto protokola
- osma konferencija (COP-8) u Bonnu 2002.
 - Kyoto ratificiralo 76 država s 35,8 posto emisija
- 55% emisije (za Kyoto protokol) postignuto 28.10.2004. kad je protokol potpisala i Rusija pa je zvanično stupio na snagu 16.2.2005.
- primjeri poboljšanja koji vode smanjenju emisija:
 - korištenje turbina "kombiniranog ciklus"
 - ugradnja efikasnijih osvjetljenja
 - poboljšanje izolacijskih sustava u zgradama
 - uvođenje obnovljivih izvora energije
 - nuklearna energija
- Hrvatska
 - protokol potpisan početkom 1999., ali nije ratificiran
 - od Hrvatske se također očekuje smanjenje emisije za 5% u odnosu na baznu godinu
 - problem zbog toga što je polazna emisija mala
 - posebnost jer je Hrvatska do 1991. godine 22% potreba za el. energijom namirivala iz drugih republika bivše Jugoslavije
 - u 1990. godini CO2 iznosio 24.5 Mt/god
 - potrebno smanjiti na 22.2 Mt/god
 - emisija CO2 uglavnom posljedica izgaranja goriva (90%) trebat će veća učinkovitost na strani potrošnje energije, posebno toplinske
 - u području proizvodnje električne energije neće se moći postići znatno smanjenje - proizvodnja čini tek 18% ukupne emisije CO2
 - emisija metana od 1990. neprekidno pada kao i emisija iz antropogenih izvora
 - najveći izvori su: priroda, poljoprivreda te obrada i odlaganje otpada
 - dušikov oksid ima udjel 11% zbog svog velikog stakleničkog potencijala
 - uglavnom iz poljoprivrede s obradivih površina i površina pod stalnim usjevima (51%) te iz prirode (25%)
 - klimatski scenarij porast temperature 2-2,8°C duž obale te 2,4-3,2°C u nizinskom dijelu Hrvatske
 - godišnje oborine mogle bi porasti 4-10% na obali i u gorskom području te 8-10% u nizinskim krajevima i Istri
 - na COP-12 Hrvatskoj dopušteno dodatnih 3,5 Mt/god zbog specifičnih okolnosti
 - ratifikacija Kyoto protokola na 25. sjednici Sabora 27.4.2007.
 - bilanca
 - sektor energetike u 2004. 74,9% CO2
 - poljoprivreda 12,1%, industrijski procesi 10,8%, gospodarenje otpadom 2,2%
 - 2000.-2004. rast emisija po stopi 3,7%
 - cilj je zadržavanje porasta tako da u razdoblju do 2008. do 2012. emisija bude bar 5% niža od bazne godine
- Kyoto protokolom definirana tri fleksibilna mehanizma
 - mehanizam zajedničkih projekata članica Priloga I
 - mehanizam klimatski "čistih" razvojnih projekata
 - međunarodno trgovanje emisijama
- post-Kyoto
 - 4. izvješće Međuvladinog panela o promjeni klime
 - do 2020. godine:

- zadržavanje rasta globalne temperature na 2°C
- razvijene države
- države priloga I
- države u razvoju

• EU

- smanjenje emisije stakleničkih plinova za 20% (trenutno 8% po Kyotu)
- povećanje obnovljivih izvora do 20%
- minimalno 10% biogoriva u prometu
- povećanje energetske učinkovitosti 20%
- Hrvatska
 - dugoročno zadržavanje emisije na razini ispod emisije u baznoj godini
 - obnovljivi izvori energije i energetske učinkovitosti
 - do 2020. godine stabilizirati emisije ispod emisije bazne godine
 - postupno smanjenje emisija
 - mjere za snažnija smanjenja emisija:
 - ekstenzivna primjena mjera u šumarstvu sadnjom novih šuma
 - primjena odlaganja CO2
 - nuklearna energija
 - mehanizmi Kyotskog protokola