Mots qui commutent

Soient u et v deux mots. Montrer que les deux conditions suivantes sont équivalentes :

- 1. uv = vu.
- 2. Il existe un mot w et des entiers $k, p \in \mathbb{N}$ tels que $u = w^k$ et $v = w^p$.

Solution : Par récurrence forte sur n = |u| + |v|.

Cas de base : |u| + |v| = 0. Si $u = v = \varepsilon$, alors $u = w^1$ et $v = w^1$ pour $w = \varepsilon$, n = p = 1.

Cas inductif : Soit $n \in \mathbb{N}^*$. Supposons que la propriété est vraie pour des mots u, v tels que |u| + |v| < n.

Soient u et v tels que uv = vu et |u| + |v| < n.

Si |u| = |v| alors les |u| premières lettres dans l'égalité uv = vu donne u = v et $u = w^1 = v$ avec w = u.

Supposons $|u| \leq |v|$ (l'autre cas étant symétrique). Comme uv = vu, u est préfixe de v: il existe un mot $v' \neq \varepsilon$ tel que v = uv'. On a alors $u^2v' = uv'u$. En particulier, uv' = v'u. Comme |u| + |v'| < |u| + |v|, il existe un mot w et des entiers $k, p \ge 1$ tels que $u = w^k$ et $v' = w^p$, par hypothèse de récurrence. On a alors $u = w^k$ et $v = uv' = w^{k+p}$, ce qui conclut la preuve.

Règles sur les expressions régulières \mathbf{II}

Pour chacune des propositions suivantes sur des expressions régulières quelconques, donner une preuve ou un contre-exemple :

1.
$$(e^*)^* \equiv e^*$$

2.
$$(e_1|e_2)^* \equiv e_1^*|e_2^*|$$

3.
$$(e_1e_2)^* \equiv e_1^*e_2^*$$

3.
$$(e_1e_2)^* \equiv e_1^*e_2^*$$

4. $(e_1|e_2)^* \equiv (e_1^*e_2^*)^*$

Solution:

1. Vrai. Voir cours.

2. Faux car $ab \in (a|b)^*$ mais $ab \notin a^* + b^*$.

3. Faux car $abab \in (ab)^*$ mais $abab \notin a^*b^*$.

4. Vrai. Voir cours.

IIIExemples de langages réguliers

- 1. Écrire une expression régulière dont le langage est l'ensemble des mots sur $\{a,b,c\}$ contenant exactement un a et un b (et un nombre quelconque de c).
- 2. Écrire une expression régulière dont le langage est l'ensemble des mots sur $\{a,b,c\}$ ne contenant pas de a consécutifs (aa ne doit pas apparaître).
- 3. Écrire une expression régulière dont le langage est l'ensemble des mots sur $\{a,b,c\}$ contenant exactement deux a et tels que tout c est précédé d'un b.
- 4. Si $x \in \mathbb{R}$, on note L(x) l'ensemble des préfixes des chiffres de x après la virgule. Par exemple, $L(\pi) = \{\varepsilon, 1, 14, 141, 1415...\}$. En sachant que $\frac{1}{6} = 0.1666...$ et $\frac{1}{7} = 0.142857142857...$, montrer que $L(\frac{1}{6})$ et $L(\frac{1}{7})$ sont réguliers.
- 5. Montrer plus généralement que L(x) est régulier si $x \in \mathbb{Q}$ (on montrera plus tard que c'est en fait une équivalence).

Solution:

- 1. En distinguant le cas où a est avant b et le cas où b est avant a: $c^*ac^*bc^*|c^*bc^*ac^*$.
- 2. On peut donner $(a(b|c)|b|c)^*(a|\varepsilon)$ (un a doit être suivi d'un b ou d'un c).
- 3. Soit $e = (b|bc)^*$ (décrivant tous les mots sur $\{b,c\}$ dont chaque c est précédé d'un b). Alors eaeae est une expression régulière qui convient.
- 4. $\varepsilon | 16^*$ est une expression régulière de langage $L(\frac{1}{6})$. $(142857)^*(\varepsilon|1|14|142|1428|14285|142857)$ est une expression régulière de langage $L(\frac{1}{2})$.
- 5. Si $x \in \mathbb{Q}$, on peut écrire ses chiffres sous la forme $x = x_1, x_2ppp...$ Soit Pref(m) l'ensemble des préfixes d'un mot m, qui est un ensemble fini si m est fini (|Pref(m)| = |m| + 1). Alors $L(x) = Pref(x_2)|x_2p^*Pref(p)$ (un élément de L(x) est soit un préfixe de x_2 soit contient x_2 suivi d'un certain nombre

de p, suivi d'une partie de p).