Metalogica: Assignment 2

Mila Hendrikse

November 14, 2017

4 Exercise 4

4.a

To proof Show that $(P \to (\neg Q \lor R))$ is a sentence of L_{PL} .

Proof To be a sentence of L_{PL} a sentence must be well-formed. We use the rules of Definition 2.1.1 to discover whether a sentence is well-formed and thus an element of L_{PL} .

For $(P \to (\neg Q \to R))$ to be a sentence of L_{PL} subsentences P and $\neg Q \lor R$ need to be well-formed too (iii). P is well-formed because it is an atomic sentence (i). $\neg Q \lor R$ is well-formed if both $\neg Q$ and R are well formed (iii). $\neg Q$ is well formed if Q is well-formed (ii). Q is well formed because it is an atomic sentence (i). Q is well formed because it is an atomic sentence (i). Because all the subsentences of $(P \to (\neg Q \lor R))$ are well formed according to Definition 2.1.1, $(P \to (\neg Q \lor R))$ is well-formed and a sentence of L_{PL} . \square

4.b

To proof Show that $(P \vee (Q \vee R \wedge S))$ is not a sentence of L_{PL} . Proof To proof $(P \vee (Q \vee R \wedge S))$ is not a sentence of L_{PL} we must find a subsentence of $(P \vee (Q \vee R \wedge S))$ that is not an element of L_{PL} . Let's assume $(P \vee (Q \vee R \wedge S))$ is well-formed. Than subsentences P and $(Q \vee R \wedge S)$ must be well-formed too. P is well formed because it is an atomic sentence (i). Because $(Q \vee R \wedge S)$ is not well-formed according to either (i), (ii) or (iii) it must be a case of iv: it is not a sentence of L_{PL} . Because we found a subsentence of $(P \vee (Q \vee R \wedge S))$ that is not an element of L_{PL} , $(P \vee (Q \vee R \wedge S))$ is not an element of L_{PL} .

5 Exercise 5

Because $(\varphi \wedge \psi) \to \chi$ of L_{PL} is not a contradiction there must be an interpretation where $(\varphi \wedge \psi) \to \chi$ holds.

Because $(\varphi \wedge \psi) \to \chi$ of L_{PL} is not a tautology there must be an interpretation of $(\varphi \wedge \psi) \to \chi$ that is a counter example, so where the premise is true and the conclusion is false and therefore $(\varphi \wedge \psi) \not\to \chi$. Because of the fact that $(\varphi \wedge \psi) \to \chi$ has an interpretation that holds and because there is an interpretation that is a counterexample χ cannot be a logical consequence of $(\varphi \wedge \psi)$. So $\varphi \wedge \psi \not\models \chi$

6 Exercise 6

6.a

6.b

$E_{\Lambda}(E_{\Delta}D) = E_{\Lambda}(E_{\Delta}D)$
$\frac{E \wedge (E \Rightarrow D)}{E} \wedge E \wedge (E \Rightarrow D) \wedge E$
[C] ¹ Down
(ANB) (CND) CND SE
AAB
$A \rightarrow I^{1}$
$C \rightarrow A$

6.c

7 Exercise 7

7.a

7.b

7.c

5

Van Dalen exercises

5 Exercise 5

5.a

To proof: $\Gamma \vdash \varphi \Rightarrow \Gamma \cup \Delta \vdash \varphi$.

Proof Suppose $\Gamma \vdash \varphi$. Then there exists a derivation D form Γ to conclusion φ . Take the set of all hypothesis on D needed to deduce φ from Γ and call this set H. Then $H \subseteq \Gamma$. Because $\Gamma \subseteq \Gamma \cup \Delta$ this means $H \subseteq \Gamma \cup \Delta$. Because the conclusion of a derivation D stays the same even when premises are added and because the conclusion of D is φ it follows that $\Gamma \cup \Delta \vdash \varphi$. \square

5.b

To proof: $\Gamma \vdash \varphi; \Delta; \varphi \vdash \psi \Rightarrow \Gamma \cup \Delta \vdash \psi$.

Proof Suppose $\Gamma \vdash \varphi$, Δ and $\varphi \vdash \psi$. Then there exist a derivation D from Γ to φ and a derivation D' from φ to ψ . If we concatenate derivations D and D' we have a derivation D'' from Γ to ψ , so $\Gamma \vdash \psi$. Because of the answer in 5.a it follows that $\Gamma \cup \Delta \vdash \psi$.

10

a $I(\Gamma \vdash \varphi \text{ if } \varphi \in \Gamma)$

Because there is a derivation D from Γ to conclusion φ such that there is a finite Δ in Γ such that $\Gamma \vdash \varphi$

b $\Gamma \vdash \varphi$, $\Gamma' \vdash \psi \Rightarrow \Gamma \cup \Gamma' \vdash \varphi \land \psi$

Because there is a derivation D from Γ to conclusion φ and a derivation D' from Γ' to conclusion ψ , there must be a finite Δ in Γ and a finite Δ' in Γ' such that φ and ψ are derived of Δ and Δ' . Because of the \wedge -rule we van put branches Δ and Δ' in parallel and conclude $\Gamma \cup \Gamma' \vdash \varphi \wedge \psi$.

- c $\Gamma \vdash \varphi \land \psi \Rightarrow \Gamma \vdash \varphi$ and $\Gamma \vdash \psi$,
- $\mathrm{d}\ \Gamma \cup \varphi \vdash \psi \Rightarrow \Gamma \vdash \varphi \rightarrow \psi,$

$$\begin{split} & \in \ \Gamma \vdash \varphi, \ \Gamma' \vdash \varphi \to \psi \Rightarrow \Gamma \cup \Gamma' \vdash \psi, \\ & f \ \Gamma \vdash \bot \Rightarrow \Gamma \vdash \varphi, \\ & g \ \Gamma \cup \not \wp \vdash \bot \Rightarrow \Gamma \vdash \varphi. \end{split}$$