Simulação 03 – Ecologia Modelo Presa-Predador

Prof. Marcos Quiles

O que veremos

- Modelo de Malthus
- 2. Equação Logística
- 3. Cadeia Trófica
- 4. Modelo Lotka-Volterra (Presa-Predador)
- 5. Projeto 3
 - Parte I Definição da Rede
 - 2. Parte II Simulação da Rede

Modelo de Malthus

Uma população, se não contida, cresce de forma exponencial

- Thomas Robert Malthus (1766-1834)
- Se a população não possui qualquer forma de restrição relacionada ao seu crescimento, esta crescerá de forma exponencial
- Por exemplo:
 - Alimentos abundantes
 - Ausência de doenças
 - Ausência de competição
 - Território ilimitado

- Seja N(t) o número de indivíduos de uma população no tempo t
- Se a população cresce segundo uma razão geométrica (Malthusiano), logo, após um intervalo de tempo Δt teremos:

$$N(t + \Delta t) = kN(t)$$

No qual k é a razão da série e é dependente de Δt

- A partir de $N(t+\Delta t)=kN(t)$ podemos obter: $N(t+\Delta t)-N(t)=(k-1)N(t)$

- dividindo os dois lados por : Δt

$$\frac{N(t+\Delta t)-N(t)}{\Delta t} = \frac{(k-1)}{\Delta t}N(t)$$

• O que acontece se assumirmos um valor muito pequeno para Δt ?

$$\frac{N(t+\Delta t)-N(t)}{\Delta t} = \frac{(k-1)}{\Delta t}N(t)$$

- O lado esquerdo da equação acima é a derivada de N(t)
- Vamos assumir o seguinte para o lado direito da equação:

$$\frac{(k-1)}{\Delta t} = \alpha$$

Ou seja:

$$\frac{dN(t)}{dt} = \alpha N(t) \text{ temos uma equação diferencial!}$$

- Qual a implicação da lei de Malthus?
- O que aconteceria se essa teoria fosse 100% verdade?

- Qual a implicação da lei de Malthus?
- O que aconteceria se essa teoria fosse 100% verdade?
 - Crescimento exponencial da população
- Vejamos o exemplo:
 - Seja uma população inicial de 100 bactérias Escherichia coli (E. coli)
 - Sabemos que essa bactéria se duplicada a cada (aprox.) 20 minutos
- Resultado: em algumas horas ela ocuparia toda a superfície da terra.

 O crescimento exponencial pode ser observado em apenas algumas situações

Source: United Nations, World Population Prospects, The 1998 Revision; and estimates by the Population Reference Bureau.

- Observe o início do gráfico:
- Crescimento Exponencial
- Contudo, após um certo intervalo de tempo, o crescimento se estabiliza (saturação)

Source: United Nations, World Population Prospects, The 1998 Revision; and estimates by the Population Reference Bureau.

Logo, o modelo Malthusiano:

$$\frac{dN(t)}{dt} = \alpha N(t)$$

- Considera que a população cresce a uma razão α na ausência de fatores limitantes
- Bom, quais seriam esses fatores limitantes?

Fatores Limitantes para o Crescimento

- Espaço e recursos limitados
- Competição por recursos vitais entre indivíduos da mesma população
- Doenças, predação
- Muitos outros

 Logo, nossa equação poderia ser reescrita da seguinte forma:

$$\frac{dN(t)}{dt} = \alpha N(t) - \text{Fatores Limitantes}$$

Equação Logística

 Podemos modificar o Modelo de Malthus para incluir um termo de saturação da seguinte forma:

$$\frac{dN}{dt} = \alpha N - \beta N^2$$

 A equação acima é denominada equação logística e foi proposta por Pierre François Verhulst (1804-1849)

Equação Logística

 Podemos representar o modelo logístico da seguinte forma:

$$\frac{dN}{dt} = \alpha N - \beta N^2 = \alpha N \left(1 - \frac{N}{k} \right)$$

• Onde α representa a taxa de crescimento da população e k representa a capacidade de suporte do ambiente (saturação)

Equação Logistica

Quais os pontos de equilíbrio da equação abaixo?

$$\frac{dN}{dt} = \alpha N \left(1 - \frac{N}{k} \right)$$

Equação Logística

Quais os pontos de equilíbrio da equação abaixo?

$$\frac{dN}{dt} = \alpha N \left(1 - \frac{N}{k} \right)$$

- N=0 e
- N=k
- Sendo o primeiro instável e o segundo estável (atrator)

Equação Logística + Interações

- O modelo apresentado até o momento, considera apenas a população de uma única espécie
- Contudo, muitas espécies podem conviver num mesmo ambiente formando uma rede de interações
- Por exemplo:
 - Animais competindo por alimentos
 - Espécies que se alimentam de outras
 - Doenças (parasitas)
 - Etc...
- Essas redes podem se tornar bastante complexas

Tipos de Interação entre Espécies

- Predação: uma espécie A prejudica (consome) uma espécie B. Por outro lado a espécie B é benéfica à espécie A. Definimos A como o predador e B como a presa
- Competição: um prejudica o outro
- Mutualismo / Simbiose : um ajuda o outro
- As interações entre espécies estão entre os principais fatores envolvidos na modulação das populações

Interação entre Espécies

Equação Presa-Predador

- Seja
 - P(t) a população de predadores e
 - V(t) a população de presas (vítimas)
- O modelo Lotka-Volterra é descrito pelas equações:

$$\frac{dP}{dt} = P(\alpha V - \beta)$$

$$\frac{dV}{dt} = V(\lambda - \varphi P)$$

Bom, o que acontece com as presas na ausência de predadores?

$$\frac{dP}{dt} = P(\alpha V - \beta)$$

$$\frac{dV}{dt} = V(\lambda - \varphi P)$$

Como podemos resolver tal problema?

Simulação a ser realizada

Modelagem de uma Rede Trófica

O Que Devemos Considerar

- Recursos (por exemplo a vegetação)
- Herbívoros (consumidores da vegetação e presas dos carnívoros)
- Carnívoros (predadores)

Projeto 03

Definir uma rede trófica considerando (Parte I):

- A rede deve contar 5 ou mais espécies
- Pelo menos um recurso natural (cuidado, a vegetação não cresce indefinidamente...)
- Rede em três ou mais níveis (produtor + herbívoro + carnívoro)
- Modelar cada interação, assumindo que um dado predador pode, por exemplo, consumir uma presa e não outra ou mesmo as duas com ponderações distintas. Pode haver canibalismo, etc.

2) Modelagem Computacional (Parte II)

- Após definição da rede, definir as equações e os parâmetros (serão muitos)
- Resolver as equações numericamente utilizando o método de Euler

Projeto 03

3) Simulação (Parte II)

- Estudar o comportamento assintótico do modelo a partir de uma condição inicial adotada (várias simulações)
 - A configuração dos parâmetros não é algo simples, anote todos os valores simulados e os respectivos resultados obtidos

Considerar Perturbações

 fenômenos naturais, como por exemplo: redução/crescimento repentino da vegetação (fenômeno da seca e/ou excesso de chuvas); doença em uma dada espécie (redução/extinção de uma dada espécie), sazonalidade, etc...

Projeto 03

4) Confecção do relatório

 Relatar todas as simulações realizadas bem como os respectivos gráficos gerados

5) Apresentação dos resultados

 Cada grupo fará uma apresentação de 10 minutos descrevendo os principais resultados obtidos

Exemplo Modelagem (Rede + EDOs)

$$rac{dA}{dt} = A(p_1-p_2B-p_3C)$$

$$rac{dB}{dt}=B(-p_4+p_5A-p_6C)$$

$$rac{dC}{dt} = C(-p_7 + p_8A + p_9B)$$

$$rac{dA}{dt} = A(p1 - rac{p1A}{K} - p2B - p3C)$$

Exemplo Modelagem (Rede + Matriz Adjacência)

	Α	В	С	D
Α				
В				
С				
D				

