BM20A9200 Mathematics A – Exercise set 3

To be done by 25.–29.9.2023

Text in blue or red is not part of the problem or its solution. It's there as extra information to help you learn.

Exercise 1. Let $X = \{4, 5, 6\}$, $Y = \{a, b, c\}$ and $Z = \{l, m, n\}$. Consider the relations R from X to Y and S from Y to Z defined by:

$$R = \{(4, a), (5, b), (5, c), (6, b), (6, c)\},\$$

$$S = \{(a, l), (a, m), (b, l), (b, m), (b, n), (c, m), (c, n)\}.$$

Find the following compositions of relations:

- (a) RS
- (b) RR^{-1}

Exercise 2. Let us denote $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$, that is, \mathbb{R}^+ is the set of all positive real numbers.

- (a) Let us define a binary relation T on \mathbb{R}^+ so that T consists of the pairs (x, x^2) where $x \in \mathbb{R}^+$. What is the inverse relation of T?
- (b) Let us define a binary relation S on \mathbb{R} so that S consists of the pairs (x, x^2) , where $x \in \mathbb{R}$. What is the inverse relation of S?

Exercise 3. Let A and B be sets. Suppose that R and S are relations from A to B, that is, $R, S \subseteq A \times B$. Prove that

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}.$$

Exercise 4. Let P be the proposition "I think" and Q the proposition "I am". The following table shows a few propositions and their meaning in natural language:

 $P\Rightarrow Q$ If I think, then I am. (I think, therefore I am –Decartes) $\neg Q\Rightarrow \neg P$ If I am not, then I don't think. $P\wedge \neg Q$ I think and I am not. $\neg P\Rightarrow \neg Q$ If I don't think, then I am not.

- (a) Write the truth tables for the sentences.
- (b) Which of the propositions are logically equivalent?
- (c) Using P and Q, invent a few new propositions which are equivalent to some of the propositions above, and prove that they are so using a truth table.

Exercise 5. In mathematics, it's often useful to figure out what is the negation of a given proposition. For example if we can't prove some theorem, maybe we can prove its negation. Also, we will need the ability to form the negation of a proposition when studying indirect proof methods later.

(a) Connect each proposition on the left to its negation on the right (and prove why).

$$P_0 \wedge P_1 \qquad P_0 \wedge \neg P_1$$

$$P_0 \vee P_1 \qquad \neg P_0 \wedge \neg P_1$$

$$P_0 \Rightarrow P_1 \qquad \neg P_0 \vee \neg P_1$$

- (b) The following propositions say something about an unknown real number x. Write the negation in each case, but do it in such a way that the negation symbol \neg does not appear there. You can use the symbols \leq , <, \geq , \notin etc.
 - 1. $(x^2 = 1) \land (x > 0)$
 - 2. $(x^2 = 2) \lor (x \in \mathbb{Q})$
 - 3. $(x^2 = 1) \Rightarrow (x > 0)$
 - 4. $(x^2 = 2) \Leftrightarrow (x \in \mathbb{Q})$

Hint: You don't need to try to interpret the propositions to find their negation. Try using (a) as a guide.

Exercise 6. In lectures it was shown that $P \Rightarrow Q$ is logically equivalent to $\neg P \lor Q$. In other words, the operation \Rightarrow can be defined by using \lor and \neg .

- (a) Define \vee using \neg and \Rightarrow .
- (b) Define \land using \neg and \lor .

Prove the correctness of your answer by using truth tables.