Heinrich-Heine-Universität Düsseldorf Institut für Informatik Jun.-Prof. Dr. D. Baumeister Universitätsstr. 1, D-40225 Düsseldorf

Gebäude: 25.12, Ebene: O2, Raum: 38

Tel.: +49 211 8111634

E-Mail: d.baumeister@uni-duesseldorf.de

19. August 2021

Vorlesung im Sommersemester 2021

Theoretische Informatik

Hauptklausurtermin: 19. August 2021

BITTE NICHT MIT BLEISTIFT ODER ROTSTIFT SCHREIBEN!
TRAGEN SIE AUF JEDEM BLATT IHREN NAMEN, VORNAMEN
UND IHRE MATRIKELNUMMER SOWIE ZUSÄTZLICH AUF DEM
DECKBLATT STUDIENFACH MIT SEMESTER UND ANZAHL DER
ABGEGEBENEN BLÄTTER EIN, UND UNTERSCHREIBEN SIE
ALS STUDIERENDE DER INFORMATIK, DASS SIE ANGEMELDET SIND!

Name, Vornam	e :									
Studienfach, Se	mester:									
Matrikelnumm	er:									
(Nur für Studie	egebenen Blätter: 7 Aufg erende der Informatik) H lemischen Prüfungsamt f	iermi	t bes	tätige					ıdierendeı	ıportal
Unterschrift										
	Aufgabe	1	2	3	4	5	6	Gesamt		
	erreichbare Punktzahl	20	12	22	16	15	15	100		

Erlaubte Hilfsmittel:

• Vorlesungsmitschriften, Bücher, Übungsblätter.

erreichte Punktzahl

Nicht erlaubte Hilfsmittel:

• Elektronische Geräte aller Art.

Achten Sie darauf, dass Rechenwege und Zwischenschritte vollständig und ersichtlich sind.

Aufgabe 1 (20 Punkte) Kreuzen Sie für jede der folgenden Fragen in jeder Zeile entweder "Ja" oder "Nein" an. /20 Punkte

Bewertung: Bezeichnet #R die Anzahl der richtig angekreuzten Antworten und #K die Anzahl der insgesamt angekreuzten Antworten (d. h. nur solche, bei denen *entweder "Ja" oder "Nein"* angekreuzt wurde – Antworten, bei denen weder "Ja" noch "Nein" oder sowohl "Ja" als auch "Nein" angekreuzt wurde, zählen nicht zu #K), so ergibt sich die folgende Gesamtpunktzahl für diese Aufgabe:

$$\#R + \left| \frac{5 \cdot \#R}{\#K} \right|$$
 Punkte, falls $\#K > 0$, und 0 Punkte, falls $\#K = 0$.

(a)	Welche	der folger	nden Aussagen ist/sind wahr?
	□ Ja	□ Nein	Jede reguläre Sprache ist kontextfrei.
	□ Ja	□ Nein	Jede Sprache über einem endlichen Alphabet ist regulär.
	□ Ja	□ Nein	Die Iteration einer Sprache mit endlich vielen Wörtern ist endlich.
(b)	Welche	der folger	nden Aussagen ist/sind wahr?
	□ Ja	□ Nein	Es gibt eine kontextfreie Sprache, die die Bedingungen des Pumping-Lemmas für kontextfreie Sprachen nicht erfüllt.
	□ Ja	□ Nein	Jede Sprache, die von einem NFA akzeptiert wird, kann auch von einem PDA akzeptiert werden.
	□ Ja	□ Nein	•
(c)	Welche	der folger	nden Aussagen ist/sind wahr?
	□ Ja	□ Nein	Die kontextsensitiven Sprachen sind unter Konkatenation abgeschlossen.
	□ Ja	□ Nein	Die Bänder einer Turingmaschine haben endlich viele Felder.
	□ Ja	□ Nein	Jede Sprache, die von einer Turingmaschine akzeptiert wird, ist kontextsensitiv.
(d)	Welche	der folger	nden Aussagen ist/sind wahr?
	□ Ja	□ Nein	Für jede partielle Funktion $f: A \to B$ gilt $A \neq D_f$.
	□ Ja	□ Nein	Jedes LOOP-Programm ist ein WHILE-Programm.
	□ Ja	□ Nein	Die Ackermannfunktion ist nicht berechenbar.
(e)	Welche	der folger	nden Aussagen ist/sind wahr?
	□ Ja	□ Nein	Jede semi-entscheidbare Menge ist entscheidbar.
	□ Ja	□ Nein	Wenn A entscheidbar ist, dann ist auch \overline{A} entscheidbar.
	□ Ja	□ Nein	Sei A ein NP-vollständiges Problem. Dann gilt $B \leq_m^p A$ für alle $B \in NP$.

Aufgabe 2 (12 Punkte) Reguläre Sprachen

/12 Punkte

Betrachten Sie die folgende Anwendung des Pumping-Lemmas für reguläre Sprachen für

$$L=\{bz\mid z\in\Sigma^*, |z|_a=2\cdot|z|_b\} \ \operatorname{mit} \Sigma=\{a,b\},$$

wobei $|z|_c$ mit $c \in \Sigma$ die Anzahl der Vorkommen des Zeichens c in z angibt. Vervollständigen Sie die Lücken im folgenden Lückentext so, dass ein Beweis entsteht, welcher zeigt, dass L nicht regulär ist.

Wir nehmen für einen Widerspruch an, dass L regulär sei. Nach dem Pumping-Lemm Sprachen gibt es dann eine Zahl $n \geq 1$, so dass für alle $x \in L$ mit $ x \geq n$, eine Zerleg existiert mit	_
$(1) uv \le n,$	
$ v \ge 1,$	
(3) für alle $i \ge 0$ gilt $uv^i w \in L$.	
Für den Widerspruch zeigen wir, dass ein $x \in L$ mit $ x \ge n$ existiert, so dass für all $x = uvw$ mit (1) und (2) nicht (3) gilt.	e Zerlegungen
Wähle $x = b \ a \qquad b \qquad \in L$.	
Es gilt $ x =$ $\geq n$.	
Durch (1) und (2) können wir zwischen zwei Fällen unterscheiden.	
Fall 1: $v = ba^q$ mit $\leq q \leq $.	
Dann gilt, dass $u = \boxed{}$.	
Für $i=$ gilt,	
Fall 2: $v = a^q$ mit $\leq q \leq $.	
Für $i=$ gilt,	
Dies ist ein Widerspruch zur Annahme, dass L regulär ist. Somit ist L nicht regulär.	

Name: <u>Matrikelnummer</u>: 6

Aufgabe 3 (22 Punkte) Äquivalenzklassen und Minimalautomaten

/22 Punkte

(a) Gegeben seien die folgenden Sprachen L_1, L_2 und L_3 . Geben Sie jeweils alle paarweise verschiedenen Myhill-Nerode Äquivalenzklassen explizit in der Form [Repräsentant] an. Hierbei müssen Sie nicht begründen, dass die von Ihnen angegeben Äquivalenzklassen tatsächlich paarweise verschieden sind.

i)
$$L_1 = \{0^n \mid n \text{ ist ungerade}\} \subseteq \{0\}^*$$

ii)
$$L_2 = \{0^n \mid n \text{ ist ungerade}\} \subseteq \{0, 1\}^*$$

iii)
$$L_3 = \{000, 111\} \subseteq \{0, 1\}^*$$

(b) Gegeben sei der folgende Zustandsgraph des DFA $M = (\Sigma, Z, \delta, z_0, F)$ mit $\Sigma = \{0, 1\}$:

- i) Geben Sie Z, F und δ explizit an.
- ii) Bestimmen Sie mit Mitteln aus der Vorlesung unter Angabe der Tabelle mit Markierungen einen zu M äquivalenten Minimalautomaten M' und geben Sie M' in einer geeigneten Form an.
- iii) Geben Sie die Sprache L(M) formal an.

Aufgabe 4 (16 Punkte) Kontextfreie Sprachen

/16 Punkte

- a) Geben Sie einen PDA M an mit $L(M)=\{a^nb^m\mid n,m\geq 0 \land (n=3m\vee 3n=m)\}\subseteq \{a,b\}^*.$
- b) Gibt es auch einen DPDA M' mit L(M') = L(M)? Wenn ja, geben Sie M' an. Wenn nein, begründen Sie intuitiv, warum ein solcher M' nicht existieren kann.
- c) Die folgende Tabelle wurde durch Anwendung des CYK-Algorithmus auf eine Grammatik G, deren Startsymbol S ist, erzeugt. Die Tabelle zeigt, dass w = abbba in L(G) liegt.

S				
	A, S			
D	A, D	D		
D	C,D	C, D	S, C	
A	B, C	B, C	B, C	A
a	b	b	b	a

Für welche echten Teilwörter von abbba kann man aus der CYK-Tabelle direkt ablesen, dass sie ebenfalls in L(G) enthalten sind?

Aufgabe 5 (15 Punkte) Turingmaschinen

/15 Punkte

Sei $M=(\{a,b,c\},\{a,b,c,\$,\Box\},\{z_0,z_1,z_2,z_3,z_4,z_e\},\delta,z_0,\Box,\{z_e\})$ eine Turingmaschine mit folgender Überführungsfunktion:

δ	z_0	z_1	z_2	z_3	z_4
a	$(z_1,\$,R)$	$(z_2, \$, R)$	(z_2, a, R)		(z_4, a, L)
b	$(z_1,\$,R)$	$(z_2, \$, R)$	(z_2, b, R)		(z_4,b,L)
c			(z_2, c, R)	(z_4,\square,L)	(z_4, c, L)
\$	$(z_0,\$,R)$				$(z_4,\$,L)$
	(z_e, \square, N)		(z_3,\square,L)		(z_0, \square, R)

a) Geben Sie die Konfigurationenfolgen von M bei Eingabe von

i)
$$w_1 = abc$$

ii)
$$w_2 = ac$$

an.

b) Geben Sie eine möglichst präzise mathematische Beschreibung für die Sprache L(M) an.

c) Betrachten Sie nun die Turingmaschine $M'=(\{a,b,c\},\{a,b,c,\$,\Box\},\{z_0,z_1,z_2,z_4,z_e\},\delta',z_0,\Box,\{z_e\}),$ mit δ' wie folgt:

 δ' wurde gegenüber δ lediglich in z_2 geändert (und z_3 ist weggefallen):

δ'	z_0	z_1	z_2	z_4
a	$(z_1,\$,R)$	$(z_2, \$, R)$	(z_2, a, R)	(z_4, a, L)
b	$(z_1,\$,R)$	$(z_2, \$, R)$	(z_2, b, R)	(z_4,b,L)
c			$(z_4,\$,L)$	(z_4, c, L)
\$	$(z_0,\$,R)$		$(z_2, \$, R)$	$(z_4,\$,L)$
	(z_e, \square, N)			(z_0,\square,R)

i) Beschreiben Sie kurz, wie sich die Funktionsweise von M' von der von M unterscheidet.

ii) Geben Sie ein Wort w an, das $L(M) \neq L(M')$ zeigt. Hierbei brauchen Sie die Konfigurationenfolgen nicht angeben, die $w \in L$ bzw. $w \notin L$ zeigen. Es reicht aus, wenn Sie sich diese zur Beantwortung der Aufgabe überlegen.

Aufgabe 6 (15 Punkte) Entscheidbarkeit

/15 Punkte

Sei Σ ein Alphabet. Betrachten Sie die folgende Variante des modifizierten Postschen Korrespondenzproblems.

$$\mathsf{MPCP}'_\Sigma = \left\{ ((x_1, y_1), \dots, (x_k, y_k)) \, \middle| \, \begin{array}{l} k \in \mathbb{N} \text{ und } x_i, y_i \in \Sigma^+ \text{ für } 1 \leq i \leq k \\ \text{und es gibt } i_1, \dots, i_n \in \{1, \dots, k\} \\ \text{so dass } x_k x_{i_2} \cdots x_{i_n} = y_k y_{i_2} \cdots y_{i_n} \end{array} \right\}$$

Sei MPCP' = $\bigcup_{\Sigma \text{ ist ein Alphabet}} MPCP'_{\Sigma}$.

- (a) Beschreiben Sie informell den Unterschied zwischen MPCP und MPCP'.
- (b) Sei ((1,0),(000,0),(0,011)) eine Probleminstanz von MPCP' über dem Alphabet $\{0,1\}$. Ist (3,1,1,2) eine Lösung von MPCP' für die Probleminstanz? Begründen Sie Ihre Antwort.
- (c) Zeigen Sie, dass MPCP' unentscheidbar ist, indem Sie von MPCP $_{\Sigma}$ auf MPCP' $_{\Sigma}$ reduzieren und die Korrektheit Ihrer Reduktion beweisen.