

Definition 5.1

- Let X be a random variable with certain probability distribution, $f_X(x)$.
- Let X_1, X_2, \dots, X_n be n independent random variables each having the same distribution as X,
- then (X_1, X_2, \dots, X_n) is called a random sample of size n from a population with distribution $f_X(x)$.
- The joint p.f. (or p.d.f.) of (X_1, X_2, \dots, X_n) is given by $f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \dots f_{X_n}(x_n)$, where $f_X(x)$ is the p.f. (or p.d.f.) of the population.

ST2334 Probability and Statistics

CYIV

Sampling and Sampling Distributions 5-2

- ✓ When doing the sampling, the population could be finite or infinite. We need to consider two scenarios, when we talk about the distribution of the sampled random variables:
 - ★ The population is finite and the sample is drawn without replacement.
 - ★ The population is infinite and the sample is drawn with/without replacement; or the population is finite, but the sample is drawn with replacement.

Read pages 5-3 to 5-20 and the corresponding lecture videos for details.

✓ A more convenient way to describe a sample is given on page 5-21. We say that $(X_1, X_2, ..., X_n)$ is a random sample from a distribution with probability function $f_X(x)$. Here "a random sample" is equivalent to state " $X_1, X_2, ..., X_n$ are independent and identically distributed (i.i.d.)". Also pay attention to the joint pf given in this page of the lecture slide.

5.3.2 Statistic and Sampling Distribution

- A function of a random sample (X_1, X_2, \dots, X_n) is called a **statistic**. (e.g. \bar{X} is a statistic as $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$)
- Hence a statistic is a random variable. It is meaningful to consider the probability distribution of a statistic.
- The probability distribution of a statistic is called a sampling distribution.

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-23

We give some discussion about the the random sample, parameter, and statistic.

- ✓ The goal of drawing a random sample, $(X_1, X_2, ..., X_n)$, is to make inference for some unknown parameters of the population. For simplicity, you can think of the unknown parameter as the expected value (i.e., μ) of a population to start with.
- The population parameter, μ say, is **not observed**; but the values of X_1, X_2, \ldots, X_n are observed as x_1, x_2, \ldots, x_n . So, we hope to establish an "estimation rule" to estimate the unknown μ using the observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$; such a rule $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is called a statistic. In the literature, \bar{X} is also called an "estimator" for μ . \bar{x} is **computed/observed** based on the sample, and is called an estimate. Make sure that you can distinguish among the population mean μ , the sample mean \bar{X} , and the computed sample mean \bar{x} .
- ✓ The statistic is a function of the sample; the fundamental requirement is that it does not depend on the unknown parameters. Any function of the sample can be viewed as a statistic,

for example $g_1(X_1, \ldots, X_n) = 1$, $g_2(X_1, \ldots, X_n) = \min\{X_1, \ldots, X_n\}$, $g_3(X_1, \ldots, X_n) = X_1$, $g_4(X_1, \ldots, X_n) = (X_1 + X_2)/2$ can all be called as a statistic, or an estimator for μ .

- ✓ The statistical performance of the statistic decides which one is better to use in practice. In other words, we would be interested in studying the distribution of a statistic, called "sampling distribution". The sampling distribution is also crucial for the subsequent inference for the corresponding parameter.
- ✓ The sampling distribution for a statistic, e.g., \bar{X} , is not how the sample (X_1, \ldots, X_n) performs; instead, it is the distribution for the corresponding statistic, \bar{X} say. So, constructing the histogram based on the observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$ to have a view of the sampling distribution of \bar{X} makes nonsense. Instead, we should do the following:
 - ★ Get the first sample $\left(X_1^{(1)}, X_2^{(1)}, \dots, X_n^{(1)}\right)$ from the distribution $f_X(x)$, and compute the sample mean $\bar{X}^{(1)}$.
 - ★ Get the second sample $\left(X_1^{(2)}, X_2^{(2)}, \dots, X_n^{(2)}\right)$ from the distribution $f_X(x)$, and compute the sample mean $\bar{X}^{(2)}$.
 - \bigstar Continue with this procedure ...,...
 - ★ Get the Kth sample $\left(X_1^{(K)}, X_2^{(K)}, \dots, X_n^{(K)}\right)$ from the distribution $f_X(x)$, and compute the sample mean $\bar{X}^{(K)}$.
 - \bigstar Draw the histogram of $\bar{X}^{(1)}, \bar{X}^{(2)}, \dots, \bar{X}^{(K)}$ to have a view of the distribution for \bar{X} .

Sampling Distribution of Sample Mean

Theorem 5.1

- For random samples of size n taken from an <u>infinite</u> <u>population</u> or from a <u>finite population with</u> <u>replacement</u> having population mean μ and population standard deviation σ .
- the **sampling distribution of the sample mean** \bar{X} has its mean and variance given by

$$\mu_{\bar{X}} = \mu_X$$
 and $\sigma_{\bar{X}}^2 = \frac{\sigma_X^2}{n}$.

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-31

Deriving $\mu_{\bar{X}} = \mu_X$ is easy. Deriving $\sigma_{\bar{X}}^2 = \frac{\sigma_X^2}{n}$ relies on the formula $V(X_1 \pm X_2 \pm \ldots \pm X_n) = V(X_1) + V(X_2) + \ldots + V(X_n)$ if X_1, \ldots, X_n are independent. The condition " X_1, X_2, \ldots, X_n are i.i.d. random variables" play an important role in this development.

Law of Large Number (LLN)

Let X_1, X_2, \dots, X_n be a random sample of size n from a population having any distribution with mean μ and **finite** population variance σ^2 . Then for any $\epsilon \in \mathbb{R}$,

$$P(|\bar{X} - \mu| > \epsilon) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-33

Law of large numbers and central limit theorem are fundamental theorems in statistics. That given on this slide is called the weak law of large numbers. " $P(|\bar{X} - \mu| > \epsilon) \to 0$ as $n \to \infty$ " gives the definition of one type of statistical convergence: "convergence in probability". By convention, it is stated as " $\bar{X} \to \mu$ in probability, as $n \to \infty$."

With Chebyshev's inequality, this theorem can be easily proved. Note that ϵ is an arbitrary, but fixed constant, we have

$$0 \le P(|\bar{X} - \mu| > \epsilon) \le \frac{V(\bar{X})}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \quad \text{as } n \to \infty.$$

Practically, Chebyshev's inequality can also give an upper bound of this probability. See pages 5-35 & 36 of the lecture slides for an example:

Law of Large Number (LLN) (Continued)

Example

Let X_1, \dots, X_n be a random sample from U(0,1).

Then E(X) = 1/2 and V(X) = 1/12

Take $n = 3(10^6)$ and $\epsilon = 0.001$.

Let \bar{X}_n be the sample mean from a sample of size $3(10)^6$.

Hence,
$$E(\bar{X}) = \frac{1}{2}$$
 and $V(\bar{X}) = \frac{1/12}{3(10^6)}$

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-35

Law of Large Number (LLN) (Continued)

Example (Continued)

Consider $\Pr(|\bar{X}_n - 0.5| > 0.001)$.

Find
$$k$$
 such that $k\sqrt{V(\bar{X})} = 0.001$ or $k = 0.001(6(10^3)) = 6$
 $\Pr(|\bar{X}_n - 0.5| > 0.001) = \Pr(|\bar{X}_n - 0.5| > 6\sqrt{V(\bar{X})})$

By Chebyshev's Inequality,

$$\Pr(|\bar{X}_n - 0.5| > 6\sqrt{V(\bar{X})}) \le \frac{1}{6^2} = 0.02778$$

ST2334 Probability and Statistics

CYM

5.4 Central Limit Theorem and its applications Central Limit Theorem

- Let X_1, X_2, \dots, X_n be a random sample of size n from a population having any distribution with mean μ and finite population variance σ^2 .
- The sampling distribution of the sample mean \bar{X} is approximately normal with mean μ and variance σ^2/n if n is sufficiently large.
- Hence

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$
 follows approximately $N(0, 1)$

ST2334 Probability and Statistics

CYIV

Sampling and Sampling Distributions 5-37

Central limit theorem only gives the approximate distribution for \bar{X} , not the exact distribution. More rigorously, central limit theorem says, for any $z \in \mathbb{R}$,

$$\lim_{n \to \infty} P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z\right) = \Phi(z),$$

where $\Phi(z)$ is the cdf for the standard normal distribution.

So, practically, when n is large, the distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ is similar to that of a standard normal random variable.

Theorem 5.2

- If X_i , $i=1,2,\cdots,n$ are $N(\mu,\sigma^2)$, then \bar{X} is $N(\mu,\frac{\sigma^2}{n})$ regardless of the sample size n.
- Similarly, if X_i , $i=1,2,\cdots,n$ are approximately $N(\mu,\sigma^2)$, then \bar{X} is approximately $N(\mu,\frac{\sigma^2}{n})$ regardless of the sample size n.

Useful website:

http://onlinestatbook.com/stat_sim/index.html

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-39

Note that this theorem has nothing to do with the central limit theorem. With the normality assumption, the distribution of \bar{X} is exactly normal.

Compare this result with the central limit theorem; pay attention to the different conditions.

Some discussion on the chi-square distribution, t distribution and F distribution. **Note that** all these distributions are founded on the standard normal distribution.

 \checkmark Let Z_1, Z_2, \ldots, Z_n be i.i.d. N(0,1) random variables, then $Y = Z_1^2 + Z_2^2 + \ldots + Z_n^2$ follows the $\chi^2(n)$ distribution. This can serve as the definition of the chi-square distribution.

This definition is helpful for us to understand/derive the properties of the chi-square distribution given on page 5-61 of the lecture slides:

Some properties of Chi-square distributions

- 1. If $Y \sim \chi^2(n)$, then E(Y) = n and V(Y) = 2n.
- 2. For large n, $\chi^2(n)$ approx $\sim N(n, 2n)$.
- 3. If Y_1, Y_2, \dots, Y_k are <u>independent</u> chi-square random variables with n_1, n_2, \dots, n_k degrees of freedom respectively, then $Y_1 + Y_2 + \dots + Y_k$ has a chi-square distribution with $n_1 + n_2 + \dots + n_k$ degrees of freedom. That is,

$$\sum_{i=1}^k Y_i \sim \chi^2(\sum_{i=1}^k n_i)$$

ST2334 Probability and Statistics

CYM

- ★ For property 1, since $Z_i \sim N(0,1)$, $E(Z_i^2) = V(Z_i) + (E(Z_i))^2 = 1$. Therefore $E(Y) = nE(Z_i^2) = n$. $V(Y) = nV(Z_i^2)$. The evaluation of $V(Z_i^2)$ is omitted.
- ★ Property 2 is the outcome of the expression $Y = Z_1^2 + Z_2^2 + \ldots + Z_n^2$, property 1, and the central limit theorem.

★ For property 3, we can write

$$Y_1 = Z_{1,1}^2 + Z_{1,2}^2 + \dots + Z_{1,n_1}^2$$

$$Y_2 = Z_{2,1}^2 + Z_{2,2}^2 + \dots + Z_{2,n_2}^2$$

$$\dots \qquad \dots$$

$$Y_k = Z_{k,1}^2 + Z_{k,2}^2 + \dots + Z_{k,n_2}^2$$

where all the $Z_{i,j}$ are i.i.d. N(0,1) random variables. Therefore $Y_1 + Y_2 + \ldots + Y_k$ is the summation of the square of $n_1 + n_2 + \ldots + n_k$ i.i.d. N(0,1) random variables, which follows the $\chi^2(n_1 + n_2 + \ldots + n_k)$ distribution.

Note that this definition immediately verifies Theorem 5.5. given on page 5-62 of the lecture slides:

Theorem 5.5

- 1. If $X \sim N(0, 1)$, then $X^2 \sim \chi^2(1)$.
- 2. Let $X \sim N(\mu, \sigma^2)$, then $[(X \mu)/\sigma]^2 \sim \chi^2(1)$.
- 3. Let X_1, X_2, \dots, X_n be a random sample from a normal population with mean μ , and variance σ^2 . Define

$$Y = \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2}$$

Then $Y \sim \chi^2(n)$

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-62

 \checkmark The t distribution defined on page 5-69 is also based on the standard normal distribution (and its resulted chi-square distribution):

5.8 The *t*-distribution

Definition 5.4

- Suppose $Z \sim N(0, 1)$ and $U \sim \chi^2(n)$.
- If Z and U are independent, and let

$$T = \frac{Z}{\sqrt{U/n}}$$

then the random variable *T* follows the *t*-distribution with *n* degrees of freedom. That is,

$$\frac{Z}{\sqrt{U/n}} \sim t(n)$$

ST2334 Probability and Statistics

Sampling and Sampling Distributions 5-69

Besides the distribution of Z and U, please also take note that Z in the numerator and U in the denominator need to be independent.

This expression can also help us understand why the t distribution approaches the standard normal distribution when its degrees of freedom n approaches infinity: its denominator

$$\frac{U}{n} = \frac{Z_1^2 + Z_2^2 + \ldots + Z_n^2}{n} \to E(Z_i^2) = 1,$$

based on Law of Large Numbers.

Another view of this result is given on page 5-72 of the lecture slide:

Properties of a t-distribution (Continued)

2. It can be shown that the p.d.f. of *t*-distribution with n d.f. is approaching to the p.d.f. of standard normal distribution when $n \to \infty$.

That is

$$\lim_{n \to \infty} f_T(t) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2},$$

as $n \to \infty$.

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-72

 \checkmark F distribution is defined as the ratio of two independent chi-square distributions; note that it has two degrees of freedoms, one is from the numerator and the other is from the denominator.

The F-distribution

Definition 5.5

- Let U and V be independent random variables having $\chi^2(n_1)$ and $\chi^2(n_2)$, respectively,
- then the distribution of the random variable,

$$F = \frac{U/n_1}{V/n_2},$$

is called a F distribution with (n_1, n_2) degrees of freedom.

ST2334 Probability and Statistics

CYM

This definition immediately leads to Theorem 5.7 given on page 5-84 of the lecture slides:

Theorem 5.7

- If $F \sim F(n, m)$, then $1/F \sim F(m, n)$.
- This theorem follows immediately from the definition of *F*-distribution.
- Values of the *F*-distribution can be found in the statistical tables.
- The table gives the values of $F(n_1, n_2; \alpha)$ such that $Pr(F > F(n_1, n_2; \alpha)) = \alpha$.

Adobe Acrobat Document

ST2334 Probability and Statistics

CYM

Sampling and Sampling Distributions 5-84

which further leads to Theorem 5.8 given on page 5-86:

Theorem 5.8

$$F(n_1, n_2; 1 - \alpha) = 1/F(n_2, n_1; \alpha).$$

For example,

• F(10,5;0.95) = 1/F(5,10;0.05) = 1/3.33 = 0.30which means Pr(F > 0.30) = 0.95, where $F \sim F(10,5)$.

ST2334 Probability and Statistics

CYM

Here is a derivation: Let $F \sim F(n_1, n_2)$, then $1/F \sim F(n_2, n_1)$ based on Theorem 5.7. Based on the definition of $F(n_1, n_2, 1 - \alpha)$,

$$Pr(F > F(n_1, n_2, 1 - \alpha)) = 1 - \alpha,$$

which leads to

$$Pr(F < F(n_1, n_2, 1 - \alpha)) = 1 - Pr(F > F(n_1, n_2, 1 - \alpha)) = \alpha.$$

That is

$$Pr(1/F < 1/F(n_1, n_2, 1 - \alpha)) = \alpha,$$

which together with the fact $1/F \sim F(n_2, n_1)$ implies

$$1/F(n_1, n_2, 1 - \alpha) = F(n_2, n_1, \alpha).$$

 \checkmark Checking the definition of the t and F distributions, we can find one connection between them: if $Y \sim t(n)$, then $Y^2 \sim F(1,n)$.

We give a brief summary of the sampling distribution of some statistic established on the random sample $X_1, X_2, ..., X_n$. Recall that the observations in a random sample are all independent. Take notes of the conditions for the corresponding results to be correct.

- ✓ If $X_1, X_2, ..., X_n$ are $N(\mu, \sigma^2)$, $(\bar{X} \mu)/(\sigma/\sqrt{n})$ follows N(0, 1) regardless of the sample size n; see page 5-39. If $X_1, X_2, ..., X_n$ have mean μ and finite variance σ^2 , and n is sufficiently large, then $(\bar{X} \mu)/(\sigma/\sqrt{n})$ approximately follows the N(0, 1) distribution; see page 5-37.
- \checkmark If X_1, X_2, \ldots, X_n are $N(\mu, \sigma^2)$, then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

where S^2 is the sample variance of the random sample; see pages 5-67 & 68.

 \checkmark If X_1, X_2, \ldots, X_n are $N(\mu, \sigma^2)$, then

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1);$$

see pages 5-76 & 77.

 \checkmark Let $X_{1,1}, X_{1,2}, \ldots, X_{1,n_1}$ be $N(\mu_1, \sigma_1^2)$ and let $X_{2,1}, X_{2,2}, \ldots, X_{2,n_2}$ be $N(\mu_2, \sigma_2^2)$. Denote by S_1^2 and S_2^2 be the sample variances of $X_{1,1}, X_{1,2}, \ldots, X_{1,n_1}$ and $X_{2,1}, X_{2,2}, \ldots, X_{2,n_2}$ respectively. Then we have

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1);$$

see page 5-82 & 83.