CS 218 Design and Analysis of Algorithms

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Module 2: Flow networks, Max-flow, Min-cut and applications

Ford-Fulkerson Algorithm

What all do we need to argue about this algorithm?

```
For each e \in E, set f(e) \leftarrow 0

Compute G_f

while There is an s to t path \pi in G_f do

f' \leftarrow \operatorname{Aug}(\pi, f)

f \leftarrow f'

Compute G_f

end while

Output f
```

Termination: Why does the algorithm terminate?

Time analysis: What is the running time of the algorithm?

Correctness: Why does it output the maximum flow?

Ford-Fulkerson Algorithm

What all do we need to argue about this algorithm?

```
For each e \in E, set f(e) \leftarrow 0

Compute G_f

while There is an s to t path \pi in G_f do

f' \leftarrow \operatorname{Aug}(\pi, f)

f \leftarrow f'

Compute G_f

end while

Output f
```

Termination: Why does the algorithm terminate?

Time analysis: What is the running time of the algorithm?

Correctness: Why does it output the maximum flow?

Other issues worth discussing.

Is it important to choose the right s to t paths? Or would any path be okay?

What is the relationship between Max-Flow and Min-Cut that we have been talking about all along?

Can the capacities be non-integral?

Recall that we have assumed that the capacities are integers.

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{\max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{\max}$.

The above three will suffice to prove the termination of the algorithm.

Lemma

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{max}$.

Lemma

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{max}$.

Proof.

Before the algorithm starts, the capacities are integral and flows are 0. Say it is true after j-th iteration.

As residual capacities are integral, the value of θ is also integral.

Thus the next flow f' is also integral.

Lemma

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{max}$.

Lemma

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{max}$.

Proof.

The first edge of π must be an edge out of s in G_f . It must be a forward edge.

Its flow increases by $\theta(\pi, f)$. Flow on no other edge out of s changes. Hence $|f'| = |f| + \theta(\pi, f)$.

Lemma

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{max}$.

Lemma

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{max}$.

Proof.

If all the edges out of s are saturated by flow f then $f = C_{max}$.

No flow can exceed this value anyway.

Hence C_{max} is an upper bound on the maximum flow.

Lemma

At every intermediate stage in the algorithm, the flow values and the residual capacities stay integral.

If f is a flow and π is an s to t path in G_f , then $|f'| = |f| + \theta(\pi, f)$.

Let $C_{max} = \sum_{v \in V, (s,v) \in E} c(s,v)$. Then maximum flow $\leq C_{max}$.

Termination assuming the Lemma.

The flow only increases in each iteration of the algorithm.

It increases by at least 1 every time.

It cannot increase beyond C_{max} .

Ford-Fulkerson Algorithm

What all do we need to argue about this algorithm?

```
For each e \in E, set f(e) \leftarrow 0

Compute G_f

while There is an s to t path \pi in G_f do

f' \leftarrow \operatorname{Aug}(\pi, f)

f \leftarrow f'

Compute G_f

end while

Output f
```

✓ Termination: Why does the algorithm terminate?

Time analysis: What is the running time of the algorithm?

Correctness: Why does it output the maximum flow?

Other issues worth discussing.

Is it important to choose the right s to t paths? Or would any path be okay?

What is the relationship between Max-Flow and Min-Cut that we have been talking about all along?

Can the capacities be non-integral?

Time analysis of Ford Fulkerson Algorithm

Lemma

The running time of the algorithm is bounded by $O(C_{max} \cdot |E|)$.

The while loop runs for at most C_{max} iterations.

In each loop, to maintain residual graph we need O(m) time.

Finding an s to t path π in this graph will need O(m+n) times.

Augmenting takes time O(n). (As n-1 vertices along π .)

Ford-Fulkerson Algorithm

What all do we need to argue about this algorithm?

```
For each e \in E, set f(e) \leftarrow 0

Compute G_f

while There is an s to t path \pi in G_f do

f' \leftarrow \operatorname{Aug}(\pi, f)

f \leftarrow f'

Compute G_f

end while

Output f
```

- Termination: Why does the algorithm terminate?
- ✓ Time analysis: What is the running time of the algorithm?

Correctness: Why does it output the maximum flow?

Other issues worth discussing.

Is it important to choose the right s to t paths? Or would any path be okay?

What is the relationship between Max-Flow and Min-Cut that we have been talking about all along?

Can the capacities be non-integral?

Notation.

Let f be the flow returned by Ford-Fulkerson algorithm.

Let $A \leftarrow \{v \in V \mid \text{ there is a path to } v \text{ from } s \text{ in } G_{\mathfrak{f}}\}.$

Let $B \leftarrow V \setminus A$.

Note that

A, B partition V.

 $s \in A$. Also $t \in B$. Why?

When the algorithm terminates, no path from s to t in $G_{\tilde{f}}$. Therefore (A,B) is a cut.

To show optimality, we need to show two things about f.

It saturates every edge from A to B.

It avoids every edge from B to A.

Lemma

Let f be any flow in the flow network G. Let (S,T) be any (s,t)-Cut in G. Then $|f| \le cap(S,T)$. Moreover, |f| = cap(S,T) if and only if f saturates every edge from S to T and avoids every edge from T to S.

Notation.

Let \mathfrak{f} be the flow returned by Ford-Fulkerson algorithm.

Let
$$A \leftarrow \{v \in V \mid \text{ there is a path to } v \text{ from } s \text{ in } G_{\mathfrak{f}}\}.$$

Let $B \leftarrow V \setminus A$.

Note that

A, B partition V.

 $s \in A$. Also $t \in B$. Why?

When the algorithm terminates, no path from s to t in $G_{\mathfrak{f}}.$

Therefore (A, B) is a cut.

Notation.

Let \mathfrak{f} be the flow returned by Ford-Fulkerson algorithm.

Let
$$A \leftarrow \{v \in V \mid \text{ there is a path to } v \text{ from } s \text{ in } G_{\mathfrak{f}}\}.$$

Note that

Let $B \leftarrow V \setminus A$.

A, B partition V.

 $s \in A$. Also $t \in B$. Why?

When the algorithm terminates, no path from s to t in $G_{\bar{1}}$. Therefore (A, B) is a cut.

To show optimality, we need to show two things about f.

It saturates every edge from A to B.

It avoids every edge from B to A.

Notation.

Let \mathfrak{f} be the flow returned by Ford-Fulkerson algorithm.

Let $A \leftarrow \{v \in V \mid \text{ there is a path to } v \text{ from } s \text{ in } G_{\mathfrak{f}}\}.$

Let $B \leftarrow V \setminus A$.

Note that

A, B partition V.

 $s \in A$. Also $t \in B$. Why?

When the algorithm terminates, no path from s to t in G_{f} .

Therefore (A, B) is a cut.

To show optimality, we need to show two things about f.

It saturates every edge from A to B.

It avoids every edge from B to A.

Lemma

Let f be any flow in the flow network G. Let (S,T) be any (s,t)-Cut in G. Then $|f| \le cap(S,T)$. Moreover, |f| = cap(S,T) if and only if f saturates every edge from S to T and avoids every edge from T to S.

Notation.

Let \mathfrak{f} be the flow returned by Ford-Fulkerson algorithm.

Let $A \leftarrow \{v \in V \mid \text{ there is a path to } v \text{ from } s \text{ in } G_{\mathfrak{f}}\}.$

Let $B \leftarrow V \setminus A$.

Note that (A, B) is a cut.

To show optimality, we need to show two things about f.

It saturates every edge from A to B.

It avoids every edge from B to A.

Lemma

Let f be any flow in the flow network G. Let (S,T) be any (s,t)-Cut in G. Then $|f| \le cap(S,T)$. Moreover, |f| = cap(S,T) if and only if f saturates every edge from S to T and avoids every edge from T to S.

Lemma

Let \mathfrak{f},A,B be as defined on the previous slide. Then \mathfrak{f} saturates every edge from A to B.

Proof.

Suppose there is an edge $(u, v) \in E$ such that $u \in A$ and $v \in B$.

Suppose f(u, v) < c(u, v).

Then (u, v) will be a forward edge in $G_{\mathfrak{f}}$.

But then $v \in A$ as per the construction of A. This is a contradiction.

Notation.

Let \mathfrak{f} be the flow returned by Ford-Fulkerson algorithm.

$$\text{Let } A \leftarrow \big\{ v \in V \mid \text{ there is a path to } v \text{ from } s \text{ in } G_{\mathfrak{f}} \big\}.$$

Let
$$B \leftarrow V \setminus A$$
.

Note that (A, B) is a cut.

To show optimality, we need to show two things about f.

 \checkmark It saturates every edge from A to B.

It avoids every edge from B to A.

Lemma

Let f be any flow in the flow network G. Let (S,T) be any (s,t)-Cut in G. Then $|f| \le cap(S,T)$. Moreover, |f| = cap(S,T) if and only if f saturates every edge from S to T and avoids every edge from T to S.

Lemma

Let \mathfrak{f}, A, B be as defined on the previous slide. Then \mathfrak{f} avoids every edge from B to A.

Proof.

Suppose there is an edge $(u, v) \in E$ such that $u \in B$ and $v \in A$.

Suppose f(u, v) > 0.

Then (v, u) will be a backward edge in $G_{\mathfrak{f}}$.

But then $u \in A$ as per the construction of A. This is a contradiction.

Notation.

Let \mathfrak{f} be the flow returned by Ford-Fulkerson algorithm.

Let $A \leftarrow \{v \in V \mid \text{ there is a path to } v \text{ from } s \text{ in } G_{\mathfrak{f}}\}.$

Let $B \leftarrow V \setminus A$.

Note that (A, B) is a cut.

To show optimality, we need to show two things about \mathfrak{f} .

- \checkmark It saturates every edge from A to B.
- \checkmark It avoids every edge from B to A.

Lemma

Let f be any flow in the flow network G. Let (S,T) be any (s,t)-Cut in G. Then $|f| \le cap(S,T)$. Moreover, |f| = cap(S,T) if and only if f saturates every edge from S to T and avoids every edge from T to S.

Why is f the maximum flow?

The algorithm terminates when there is no s to t path left in G_{f} .

This and all our analysis show that (A, B) cut has the same capacity as $|\mathfrak{f}|$.

As a result, $|\mathfrak{f}|$ is the maximum possible flow in G and $\operatorname{cap}(A,B)$ is the minimum capacity cut in G.

Ford-Fulkerson Algorithm

What all do we need to argue about this algorithm?

```
For each e \in E, set f(e) \leftarrow 0

Compute G_f

while There is an s to t path \pi in G_f do

f' \leftarrow \operatorname{Aug}(\pi, f)

f \leftarrow f'

Compute G_f

end while
```

- Termination: Why does the algorithm terminate?
- ✓ Time analysis: What is the running time of the algorithm?
- Correctness: Why does it output the maximum flow?

Other issues worth discussing.

Output f

Is it important to choose the right s to t paths? Or would any path be okay?

What is the relationship between Max-Flow and Min-Cut that we have been talking about all along?

Can the capacities be non-integral?

Which s to t path?

Consider the following example.

