Was ist eigentlich ... das Kontinuum? Und was ist sein Problem? oder: Was ist eigentlich ... Forcing? Und wie kann man es überwinden?

Gido Scharfenberger-Fabian

4. Juli 2008

Outline

- 1 Das Kontinuumsproblem
- 2 Mengenlehre
- 3 Forcing
- 4 Trotzdem eine Lösung für CH?

Outline

- 1 Das Kontinuumsproblem
- 2 Mengenlehre
- 3 Forcing
- 4 Trotzdem eine Lösung für CH?

Cantors Kontinuumshypothese (1878) — CH

Jede unendliche Menge reeller Zahlen ist entweder abzählbar oder von der Mächtigkeit der Menge aller reeller Zahlen.

Cantors Kontinuumshypothese (1878) — CH

Jede unendliche Menge reeller Zahlen ist entweder abzählbar oder von der Mächtigkeit der Menge aller reeller Zahlen.

$$X \subseteq \mathbb{R} \Rightarrow X$$
 endlich oder $|X| = |\mathbb{N}|$ oder $|X| = |\mathbb{R}|$

Cantors Kontinuumshypothese (1878) — CH

Jede unendliche Menge reeller Zahlen ist entweder abzählbar oder von der Mächtigkeit der Menge aller reeller Zahlen.

$$X \subseteq \mathbb{R} \Rightarrow X$$
 endlich oder $|X| = |\mathbb{N}|$ oder $|X| = |\mathbb{R}|$

Philosophische Frage (für später)

Muss eine Aussage wie CH überhaupt einen Wahrheitswert haben?

Gödel (1937)

Die Kontinuumshypothese wird von ZFC nicht widerlegt.

Gödel (1937)

Die Kontinuumshypothese wird von ZFC nicht widerlegt.

Jedes ZFC-Modell V (d.i. eine Struktur, die alle ZFC-Axiome erfüllt, ein Mengenuniversum) hat ein Submodell L, das auch ZFC und außerdem CH erfüllt.

Gödel (1937)

Die Kontinuumshypothese wird von ZFC nicht widerlegt.

Jedes ZFC-Modell V (d.i. eine Struktur, die alle ZFC-Axiome erfüllt, ein Mengenuniversum) hat ein Submodell L, das auch ZFC und außerdem CH erfüllt.

$$(V, \in) \models \mathsf{ZFC} \Rightarrow \mathsf{ex.} \ L \subseteq V : (L, \in) \models \mathsf{ZFC} + \mathsf{CH}$$

Die Kontinuumshypothese kann aus ZFC nicht bewiesen werden.

Die Kontinuumshypothese kann aus ZFC nicht bewiesen werden.

Grob gesagt: Jedes ZFC-Modell V hat eine (Forcing)-Erweiterung V[G], die auch ZFC-Modell ist und in der CH falsch ist.

Die Kontinuumshypothese kann aus ZFC nicht bewiesen werden.

Grob gesagt: Jedes ZFC-Modell V hat eine (Forcing)-Erweiterung V[G], die auch ZFC-Modell ist und in der CH falsch ist.

$$V \models \mathsf{ZFC} \Rightarrow \mathsf{ex.}\ V[G] \supset V : (V[G], \in) \models \mathsf{ZFC} + \neg \mathsf{CH}$$

Die Kontinuumshypothese kann aus ZFC nicht bewiesen werden.

Grob gesagt: Jedes ZFC-Modell V hat eine (Forcing)-Erweiterung V[G], die auch ZFC-Modell ist und in der CH falsch ist.

$$V \models \mathsf{ZFC} \Rightarrow \mathsf{ex.}\ V[G] \supset V : (V[G], \in) \models \mathsf{ZFC} + \neg \mathsf{CH}$$

Auf die Forcing-Methode wollen wir später etwas genauer eingehen.

Outline

- 2 Mengenlehre
- 4 Trotzdem eine Lösung für CH?

$$0 = \emptyset$$

$$\begin{array}{l} 0=\varnothing \\ 1=\{0\}=\{\varnothing\} \end{array}$$

$$0 = \emptyset$$

 $1 = \{0\} = \{\emptyset\}$
 $2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$
...

$$0 = \emptyset
1 = \{0\} = \{\emptyset\}
2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}
...
n + 1 = n \cup \{n\} = \{0, ..., n\}$$

$$0 = \emptyset
1 = \{0\} = \{\emptyset\}
2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}
...
n + 1 = n \cup \{n\} = \{0, ..., n\}$$

$$\omega:=\mathbb{N}$$
 (erster *Limes*)

Mengenlehre

$$0 = \emptyset
1 = \{0\} = \{\emptyset\}
2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}
...
n + 1 = n \cup \{n\} = \{0, ..., n\}
...$$

$$\omega := \mathbb{N}$$
 (erster *Limes*) $\omega + 1 = \omega \cup \{\omega\} = \{0, 1, \dots, \omega\}$

Mengenlehre

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$$
...
$$n + 1 = n \cup \{n\} = \{0, ..., n\}$$

$$\begin{array}{l} \omega := \mathbb{N} \text{ (erster } \textit{Limes)} \\ \omega + 1 = \omega \cup \{\omega\} = \{0, 1, \dots, \omega\} \\ \omega + 2 = (\omega + 1) \cup \{\omega + 1\} \\ \dots \end{array}$$

. . .

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$$
...
$$n + 1 = n \cup \{n\} = \{0, ..., n\}$$
...

$$\omega := \mathbb{N}$$
 (erster *Limes*) $\omega + 1 = \omega \cup \{\omega\} = \{0, 1, \dots, \omega\}$ $\omega + 2 = (\omega + 1) \cup \{\omega + 1\}$...

$$\alpha + 1 = \alpha \cup \{\alpha\} = \{0, 1, \dots, \alpha\}$$

. . .

Transfinite Iterationen – Ordinalzahlen

$$0 = \emptyset
1 = \{0\} = \{\emptyset\}
2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}
...
n + 1 = n \cup \{n\} = \{0, ..., n\}
...$$

■ Nachfolger $\alpha = \gamma + 1$

$$\omega := \mathbb{N} \text{ (erster Limes)}$$

$$\omega + 1 = \omega \cup \{\omega\} = \{0, 1, \dots, \omega\}$$

$$\omega + 2 = (\omega + 1) \cup \{\omega + 1\}$$

$$\dots$$

$$\alpha + 1 = \alpha \cup \{\alpha\} = \{0, 1, \dots, \alpha\}$$

$$\begin{array}{ll} 0=\varnothing & \omega:=\mathbb{N} \text{ (erster $Limes$)}\\ 1=\{0\}=\{\varnothing\} & \omega+1=\omega\cup\{\omega\}=\{0,1,\ldots,\omega\}\\ 2=\{0,1\}=\{\varnothing,\{\varnothing\}\} & \omega+2=(\omega+1)\cup\{\omega+1\}\\ \ldots\\ n+1=n\cup\{n\}=\{0,\ldots,n\} & \alpha+1=\alpha\cup\{\alpha\}=\{0,1,\ldots,\alpha\}\\ \ldots & \ldots \end{array}$$

- Nachfolger $\alpha = \gamma + 1$
- Limes $0 \neq \alpha \neq \gamma + 1$ f.a. $\gamma < \alpha$.

$$\begin{array}{ll} 0=\varnothing & \omega:=\mathbb{N} \text{ (erster $Limes$)}\\ 1=\{0\}=\{\varnothing\} & \omega+1=\omega\cup\{\omega\}=\{0,1,\ldots,\omega\}\\ 2=\{0,1\}=\{\varnothing,\{\varnothing\}\} & \omega+2=(\omega+1)\cup\{\omega+1\}\\ \ldots\\ n+1=n\cup\{n\}=\{0,\ldots,n\} & \alpha+1=\alpha\cup\{\alpha\}=\{0,1,\ldots,\alpha\}\\ \ldots & \ldots \end{array}$$

- Nachfolger $\alpha = \gamma + 1$
- Limes $0 \neq \alpha \neq \gamma + 1$ f.a. $\gamma < \alpha$.

$$\begin{array}{ll} 0=\varnothing & \omega:=\mathbb{N} \text{ (erster Limes)} \\ 1=\{0\}=\{\varnothing\} & \omega+1=\omega\cup\{\omega\}=\{0,1,\ldots,\omega\} \\ 2=\{0,1\}=\{\varnothing,\{\varnothing\}\} & \omega+2=(\omega+1)\cup\{\omega+1\} \\ \ldots & \alpha+1=n\cup\{n\}=\{0,\ldots,n\} \\ \end{array}$$

- Nachfolger $\alpha = \gamma + 1$
- Limes $0 \neq \alpha \neq \gamma + 1$ f.a. $\gamma < \alpha$.

On =
$$\{x \mid (x, \in) \text{ ist lin.Ordnung und } y \in x \rightarrow y \subset x\}$$

$$V_0 = \emptyset$$

Mengenlehre

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

Iteration von Potenzmenge und Vereinigung:

 λ Limes-Ordinalzahl

Iteration von Potenzmenge und Vereinigung:

 λ Limes-Ordinalzahl

$$V = \bigcup_{\alpha \in \mathrm{On}} V_{\alpha}$$

Das mengentheoretische Universum V

Iteration von Potenzmenge und Vereinigung:

$$V = \bigcup_{\alpha \in \mathrm{On}} V_{\alpha}$$

$$V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$$

$$V_{\alpha+1} = \mathfrak{P}(V_{\alpha})$$

$$V_0 = \emptyset$$

$$|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$$

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

Bekannt: Kardinalitätsbegriff

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

Bekannt: Kardinalitätsbegriff

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

Kardinalzahlen: $|X| = \min \{ \alpha \in \mathsf{On} \mid \mathsf{ex.} \ f : X \leftrightarrow \alpha \} \in \mathsf{On}.$

 $\aleph_0 = \omega = \{\alpha \in \mathsf{On} \mid \alpha \text{ endlich } \}$

Bekannt: Kardinalitätsbegriff

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

- $\aleph_0 = \omega = \{\alpha \in \mathsf{On} \mid \alpha \text{ endlich } \}$
- $\aleph_1 = \omega_1 = \{\alpha \in \mathsf{On} \mid |\alpha| < \aleph_0\}$

Bekannt: Kardinalitätsbegriff

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

Bekannt: Kardinalitätsbegriff

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

Bekannt: Kardinalitätsbegriff

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

- $\aleph_{\beta+1} = \{ \alpha \in \mathsf{On} \mid |\alpha| \leq \aleph_{\beta} \}$

CH:
$$2^{\aleph_0} = \aleph_1$$

Bekannt: Kardinalitätsbegriff

- $|X| = |Y| : \iff \text{ex. } f : X \to Y \text{ bijektiv}$
- Schröder-Bernstein: $X \hookrightarrow Y$ und $Y \hookrightarrow X \Rightarrow |X| = |Y|$

- $ightharpoonup
 angle_0 = \omega = \{ \alpha \in \mathsf{On} \mid \alpha \; \mathsf{endlich} \; \}$
- $\aleph_1 = \omega_1 = \{ \alpha \in \mathsf{On} \mid |\alpha| \le \aleph_0 \}$

CH:
$$2^{\aleph_0} = \aleph_1$$
 , denn $2^{\aleph_0} = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$.

Outline

- 1 Das Kontinuumsproblem
- 2 Mengenlehre
- 3 Forcing
- 4 Trotzdem eine Lösung für CH?

Zu $V \models \mathsf{ZFC}$ soll ein neues Objekt G adjungiert werden, z.B.

Zu $V \models \mathsf{ZFC}$ soll ein neues Objekt G adjungiert werden, z.B.

• eine große Menge G reeller Zahlen ($|G| > \aleph_1$)

Zu $V \models \mathsf{ZFC}$ soll ein neues Objekt G adjungiert werden, z.B.

- lacksquare eine große Menge G reeller Zahlen $(|G|>\aleph_1)$
- oder eine Surjektion $G: \aleph_1 \to \mathbb{R}$.

Zu $V \models \mathsf{ZFC}$ soll ein neues Objekt G adjungiert werden, z.B.

- lacksquare eine große Menge G reeller Zahlen $(|G|>\aleph_1)$
- oder eine Surjektion $G: \aleph_1 \to \mathbb{R}$.

Zu $V \models \mathsf{ZFC}$ soll ein neues Objekt G adjungiert werden, z.B.

- lacksquare eine große Menge G reeller Zahlen $(|G|>\aleph_1)$
- oder eine Surjektion $G: \aleph_1 \to \mathbb{R}$.

Neues ZFC-Modell $V[G] \supset V \cup \{G\}$.

Zu $V \models ZFC$ soll ein neues Objekt G adjungiert werden, z.B.

- eine große Menge G reeller Zahlen $(|G| > \aleph_1)$
- oder eine Surjektion $G: \aleph_1 \to \mathbb{R}$.

Neues ZFC-Modell $V[G] \supset V \cup \{G\}$.

Die Eigenschaften von V[G] sind von V aus kontrollierbar.

■ In V wird eine Halbordnung (\mathbb{P} , <) von Approximationen an das gewünschte Objekt definiert.

- In V wird eine Halbordnung (\mathbb{P} , <) von Approximationen an das gewünschte Objekt definiert.
- Die Elemente $p \in \mathbb{P}$ heißen Forcing-Bedingungen

- In V wird eine Halbordnung (\mathbb{P} , <) von Approximationen an das gewünschte Objekt definiert.
- lacksquare Die Elemente $p\in\mathbb{P}$ heißen Forcing-Bedingungen
- ho < q heißt "p erweitert q", p hat mehr Information.

- In V wird eine Halbordnung (\mathbb{P} , <) von Approximationen an das gewünschte Objekt definiert.
- Die Elemente $p \in \mathbb{P}$ heißen Forcing-Bedingungen
- ightharpoonup p < q heißt "p erweitert q", p hat mehr Information.
- $ightharpoonup p, q \ kompatibel, \ falls \ ex. \ r \leq p, q$

■ Außerhalb von V wird dann eine *generische* Teilmenge G von \mathbb{P} gefunden.

- Außerhalb von V wird dann eine generische Teilmenge G von \mathbb{P} gefunden.
- G generisch : \iff G schneidet jede in $\mathbb P$ dichte Teilmenge $D \in V$ + Verträglichkeitsbedingungen.

- Außerhalb von V wird dann eine generische Teilmenge G von \mathbb{P} gefunden.
- G generisch : \iff G schneidet jede in $\mathbb P$ dichte Teilmenge $D \in V$ + Verträglichkeitsbedingungen.
- Topologie von \mathbb{P} wird von $U_p = \{q \in \mathbb{P} \mid q < p\}, p \in \mathbb{P}$ erzeugt.

- Außerhalb von V wird dann eine generische Teilmenge G von \mathbb{P} gefunden.
- G generisch : \iff G schneidet jede in $\mathbb P$ dichte Teilmenge $D \in V$ + Verträglichkeitsbedingungen.
- Topologie von \mathbb{P} wird von $U_p = \{q \in \mathbb{P} \mid q < p\}, p \in \mathbb{P}$ erzeugt.
- Existenz von G: Nimm z.B. an, dass V abzählbar ist.

■ Namen $\dot{x} \in V$ für die Elemente von V[G]: $\dot{x} = \{(p, \dot{y}), (q, \dot{z}), \ldots\}$

- Namen $\dot{x} \in V$ für die Elemente von V[G]: $\dot{x} = \{(p, \dot{y}), (q, \dot{z}), \ldots\}$
- Jede Auswahl von G weist jedem \mathbb{P} -Namen \dot{x} einen Wert (eine Menge) zu: $\dot{x}^G = \{\dot{y}^G \mid (\exists p \in G)(p, \dot{y}) \in \dot{x}\}.$

- Namen $\dot{x} \in V$ für die Elemente von V[G]: $\dot{x} = \{(p, \dot{y}), (q, \dot{z}), \ldots\}$
- Jede Auswahl von G weist jedem \mathbb{P} -Namen \dot{x} einen Wert (eine Menge) zu: $\dot{x}^G = \{\dot{y}^G \mid (\exists p \in G)(p, \dot{y}) \in \dot{x}\}.$
- $V[G] = \{\dot{x}_G : \dot{x} \in V^{\mathbb{P}}\}$ (ZFC-Modell).

- Namen $\dot{x} \in V$ für die Elemente von V[G]: $\dot{x} = \{(p, \dot{y}), (q, \dot{z}), \ldots\}$
- Jede Auswahl von G weist jedem \mathbb{P} -Namen \dot{x} einen Wert (eine Menge) zu: $\dot{x}^G = \{\dot{y}^G \mid (\exists p \in G)(p, \dot{y}) \in \dot{x}\}.$
- $V[G] = \{\dot{x}_G : \dot{x} \in V^{\mathbb{P}}\}$ (ZFC-Modell).
- Beispiele:

- Namen $\dot{x} \in V$ für die Elemente von V[G]: $\dot{x} = \{(p, \dot{y}), (q, \dot{z}), \ldots\}$
- Jede Auswahl von G weist jedem \mathbb{P} -Namen \dot{x} einen Wert (eine Menge) zu: $\dot{x}^G = \{\dot{y}^G \mid (\exists p \in G)(p, \dot{y}) \in \dot{x}\}.$
- $V[G] = \{\dot{x}_G : \dot{x} \in V^{\mathbb{P}}\}$ (ZFC-Modell).
- Beispiele:
 - $\check{x} := \{(p, y) \mid p \in \mathbb{P}, y \in x\}$, kanonischer Name für $x \in V \subseteq V[G]$.

- Namen $\dot{x} \in V$ für die Elemente von V[G]: $\dot{x} = \{(p, \dot{y}), (q, \dot{z}), \ldots\}$
- Jede Auswahl von G weist jedem \mathbb{P} -Namen \dot{x} einen Wert (eine Menge) zu: $\dot{x}^G = \{\dot{y}^G \mid (\exists p \in G)(p, \dot{y}) \in \dot{x}\}.$
- $V[G] = \{\dot{x}_G : \dot{x} \in V^{\mathbb{P}}\}\ (\mathsf{ZFC}\text{-Modell}).$
- Beispiele:
 - $\check{x} := \{(p, y) \mid p \in \mathbb{P}, y \in x\}$, kanonischer Name für $x \in V \subset V[G]$.
 - $m{G}:=\{(p,reve{p})\mid p\in\mathbb{P}\}$, kanonischer Name für $G\in V[G]$.

Forcing für ¬CH

Wir wollen eine injektive Abbildung $f: \aleph_2 \to \mathbb{R}$ adjungieren.

Forcing für ¬CH

Wir wollen eine injektive Abbildung $f: \aleph_2 \to \mathbb{R}$ adjungieren.

Approximation durch endliche partielle Funktionen:

Forcing für ¬CH

Wir wollen eine injektive Abbildung $f: \aleph_2 \to \mathbb{R}$ adjungieren.

Approximation durch endliche partielle Funktionen:

$$\mathbb{P} := \{p : \mathsf{dom}(p) \to \{0,1\} \mid \mathsf{dom}(p) \subset \aleph_2 \times \omega, \, \mathsf{dom}(p) \; \mathsf{endlich} \}$$

Wir wollen eine injektive Abbildung $f: \aleph_2 \to \mathbb{R}$ adjungieren.

Approximation durch endliche partielle Funktionen:

$$\mathbb{P} := \{p : \mathsf{dom}(p) \to \{0,1\} \mid \mathsf{dom}(p) \subset \aleph_2 \times \omega, \, \mathsf{dom}(p) \; \mathsf{endlich} \}$$

$$p < q$$
 : $\iff p \supset q$.

Wir wollen eine injektive Abbildung $f: \aleph_2 \to \mathbb{R}$ adjungieren.

Approximation durch endliche partielle Funktionen:

$$\mathbb{P} := \{p : \mathsf{dom}(p) \to \{0,1\} \mid \mathsf{dom}(p) \subset \aleph_2 \times \omega, \, \mathsf{dom}(p) \; \mathsf{endlich} \}$$

$$p < q$$
 : $\iff p \supset q$.

Ist $G \subset \mathbb{P}$ generisch, so "ist" $f = \bigcup G$ eine Injektion $f : \aleph_2 \to [0,1]$.

Wir wollen eine injektive Abbildung $f: \aleph_2 \to \mathbb{R}$ adjungieren.

Approximation durch endliche partielle Funktionen:

$$\mathbb{P} := \{p : \mathsf{dom}(p) \to \{0,1\} \mid \mathsf{dom}(p) \subset \aleph_2 \times \omega, \, \mathsf{dom}(p) \; \mathsf{endlich} \}$$

$$p < q : \iff p \supset q$$
.

Ist $G \subset \mathbb{P}$ generisch, so "ist" $f = \bigcup G$ eine Injektion $f : \aleph_2 \to [0,1]$.

Problematisch: \aleph_2 könnte kollabieren, also in V[G] nicht mehr die dritte unendliche Kardinalzahl sein.

Wir wollen eine injektive Abbildung $f: \aleph_2 \to \mathbb{R}$ adjungieren.

Approximation durch endliche partielle Funktionen:

$$\mathbb{P} := \{p : \mathsf{dom}(p) \to \{0,1\} \mid \mathsf{dom}(p) \subset \aleph_2 \times \omega, \, \mathsf{dom}(p) \; \mathsf{endlich} \}$$

$$p < q : \iff p \supset q$$
.

Ist $G \subset \mathbb{P}$ generisch, so "ist" $f = \bigcup G$ eine Injektion $f : \aleph_2 \to [0,1]$.

Problematisch: \aleph_2 könnte kollabieren, also in V[G] nicht mehr die dritte unendliche Kardinalzahl sein.

Lösung: kombinatorische Analyse von $\mathbb{P}!$

Generisches Objekt: Bijektion $f: \aleph_1 \leftrightarrow \mathbb{R}$

Generisches Objekt: Bijektion $f: \aleph_1 \leftrightarrow \mathbb{R}$

Approximation durch abzählbare partielle Bijektionen

Generisches Objekt: Bijektion $f: \aleph_1 \leftrightarrow \mathbb{R}$

Approximation durch abzählbare partielle Bijektionen

$$\mathbb{Q} = \{p : \mathsf{dom}(p) \to \mathbb{R} \mid \mathsf{dom}(p) \subset \aleph_1, \, |\, \mathsf{dom}(p)| = \aleph_0, \, p \; \mathsf{bijektiv}\}$$

Generisches Objekt: Bijektion $f: \aleph_1 \leftrightarrow \mathbb{R}$

Approximation durch abzählbare partielle Bijektionen

$$\mathbb{Q} = \{p: \mathsf{dom}(p) \to \mathbb{R} \mid \mathsf{dom}(p) \subset \aleph_1, \, |\, \mathsf{dom}(p)| = \aleph_0, \, p \; \mathsf{bijektiv}\}$$

und wieder:
$$p < q$$
 : $\iff p \supset q$.

Generisches Objekt: Bijektion $f: \aleph_1 \leftrightarrow \mathbb{R}$

Approximation durch abzählbare partielle Bijektionen

$$\mathbb{Q} = \{p : \mathsf{dom}(p) \to \mathbb{R} \mid \mathsf{dom}(p) \subset \aleph_1, \, |\, \mathsf{dom}(p)| = \aleph_0, \, p \; \mathsf{bijektiv}\}$$

und wieder:
$$p < q$$
 : $\iff p \supset q$.

Und wieder ist $f := \bigcup G : \aleph_1 \to \mathbb{R}$ die gesuchte Abbildung.

Generisches Objekt: Bijektion $f: \aleph_1 \leftrightarrow \mathbb{R}$

Approximation durch abzählbare partielle Bijektionen

$$\mathbb{Q} = \{p : \mathsf{dom}(p) \to \mathbb{R} \mid \mathsf{dom}(p) \subset \aleph_1, \, |\, \mathsf{dom}(p)| = \aleph_0, \, p \; \mathsf{bijektiv}\}$$

und wieder:
$$p < q$$
 : $\iff p \supset q$.

Und wieder ist $f:=\bigcup G:\aleph_1\to\mathbb{R}$ die gesuchte Abbildung.

Problem: Gibt es in V[G] neue reelle Zahlen?

Outline

- 1 Das Kontinuumsproblem
- 2 Mengenlehre
- 3 Forcing
- 4 Trotzdem eine Lösung für CH?

$$H_{\kappa} := \{ ext{ Mengen von erblicher Mächtigkeit} < \kappa \}$$

$$H_{\kappa}:=\{$$
 Mengen von erblicher Mächtigkeit $<\kappa\}$

$$\mathrm{CH} \Leftrightarrow \quad \mathcal{P}(\mathbb{N}) \in \mathcal{H}_{\aleph_2}$$

$$H_{\kappa} := \{$$
 Mengen von erblicher Mächtigkeit $< \kappa \}$

$$CH \Leftrightarrow \mathcal{P}(\mathbb{N}) \in \mathcal{H}_{\aleph_2}$$

$$CH \Leftrightarrow H_{\aleph_2} \vDash (\exists X)(\forall x \subseteq \mathbb{N})x \in X$$

$$H_{\kappa} := \{$$
 Mengen von erblicher Mächtigkeit $< \kappa \}$

$$CH \Leftrightarrow \mathcal{P}(\mathbb{N}) \in \mathcal{H}_{\aleph_2}$$

$$CH \Leftrightarrow H_{\aleph_2} \vDash (\exists X)(\forall x \subseteq \mathbb{N})x \in X$$

Das Axiom (*) macht die Eigenschaften von H_{\aleph_2} in Ω -Logik immungegen Forcing

$$H_{\kappa} := \{$$
 Mengen von erblicher Mächtigkeit $< \kappa \}$

$$CH \Leftrightarrow \mathcal{P}(\mathbb{N}) \in \mathcal{H}_{\aleph_2}$$

$$CH \Leftrightarrow H_{\aleph_2} \vDash (\exists X)(\forall x \subseteq \mathbb{N})x \in X$$

Das Axiom (*) macht die Eigenschaften von H_{\aleph_2} in Ω -Logik immun gegen Forcing und impliziert ¬CH.