Problem Set 1

I am Loading the Diabetes dataset from sklearn and Split it into training (80%) and testing (20%) parts.

For the first question I split the data with a different way that, thaught in the class. But for the rest, I used the same technique.

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear model
from sklearn.metrics import mean squared error, r2 score
import pandas as pd
# import seaborn
import seaborn as sns
%matplotlib inline
# Load the diabetes dataset
diabetes X, diabetes y = datasets.load diabetes(return X y=True)
# Split the data into training/testing sets
diabetes X train = diabetes X[:int(-.2*diabetes X.shape[0])]
print((diabetes X train.shape))
diabetes X test = diabetes X[int(-.2*diabetes X.shape[0]):]
print(len(diabetes X test))
# # Split the targets into training/testing sets
diabetes y train = diabetes y[:int(-.2*diabetes X.shape[0])]
diabetes y test = diabetes y[int(-.2*diabetes X.shape[0]):]
print((diabetes_y_train.shape))
print((diabetes_y_test.shape))
    (354, 10)
Г⇒
     88
     (354,)
     (88)
```

Using DataFrame for the data. And showing the result for example for X_test.

```
diabetes_X_train = pd.DataFrame(diabetes_X_train, columns = ['A','B','C','D','E','F','G','H',
diabetes_X_test = pd.DataFrame(diabetes_X_test, columns = ['A','B','C','D','E','F','G','H','I

diabetes_y_train = pd.DataFrame(diabetes_y_train, columns = ['label'])
diabetes_y_test = pd.DataFrame(diabetes_y_test, columns = ['label'])
diabetes_X_test
```

	Α	В	С	D	E	F	G	Н	
0	-0.023677	0.050680	0.045529	0.021872	0.109883	0.088873	0.000779	0.034309	С
1	-0.074533	0.050680	-0.009439	0.014987	-0.037344	-0.021669	-0.013948	-0.002592	- C
2	-0.005515	0.050680	-0.033151	-0.015999	0.008063	0.016222	0.015505	-0.002592	- C
3	-0.060003	0.050680	0.049840	0.018429	-0.016704	-0.030124	-0.017629	-0.002592	С
4	-0.020045	-0.044642	-0.084886	-0.026328	-0.035968	-0.034194	0.041277	-0.051671	- C
83	0.041708	0.050680	0.019662	0.059744	-0.005697	-0.002566	-0.028674	-0.002592	C
84	-0.005515	0.050680	-0.015906	-0.067642	0.049341	0.079165	-0.028674	0.034309	-(
85	0.041708	0.050680	-0.015906	0.017282	-0.037344	-0.013840	-0.024993	-0.011080	- C
86	-0.045472	-0.044642	0.039062	0.001215	0.016318	0.015283	-0.028674	0.026560	С
87	-0.045472	-0.044642	-0.073030	-0.081414	0.083740	0.027809	0.173816	-0.039493	- C

00 raws v 10 salumns

Add column of ones

Now add a column of ones to X for easier matrix manipulation of our hypothesis and cost function later on.

```
diabetes X test["Intercept"] = 1
diabetes_X_train["Intercept"] = 1
np.set printoptions(formatter={'float kind':'{:f}'.format})
cross tab = np.matmul(np.matrix.transpose(diabetes X train.values), diabetes X train.values)
cross tab
     array([[0.831145, 0.142308, 0.159918, 0.257529, 0.225069, 0.188774,
             -0.034304, 0.157329, 0.207618, 0.232650, 0.260063],
            [0.142308, 0.800452, 0.061975, 0.173611, -0.000857, 0.096661,
             -0.309510, 0.258148, 0.079271, 0.183943, -0.075050],
            [0.159918, 0.061975, 0.757806, 0.307323, 0.222875, 0.237738,
             -0.291233, 0.357209, 0.352310, 0.308502, -0.267624],
            [0.257529, 0.173611, 0.307323, 0.796524, 0.213421, 0.167943,
             -0.126681, 0.211341, 0.303888, 0.311877, 0.062917],
            [0.225069, -0.000857, 0.222875, 0.213421, 0.794976, 0.707667,
             0.044769, 0.433351, 0.409985, 0.276294, 0.077527],
            [0.188774, 0.096661, 0.237738, 0.167943, 0.707667, 0.791005,
             -0.173801, 0.536587, 0.255903, 0.247785, 0.095267],
            [-0.034304, -0.309510, -0.291233, -0.126681, 0.044769, -0.173801,
             0.835434, -0.624283, -0.306339, -0.233202, 0.156045],
            [0.157329, 0.258148, 0.357209, 0.211341, 0.433351, 0.536587,
             -0.624283, 0.841694, 0.497741, 0.366450, 0.014093],
            [0.207618, 0.079271, 0.352310, 0.303888, 0.409985, 0.255903,
             -0.306339, 0.497741, 0.780338, 0.388566, -0.066984],
            [0.232650, 0.183943, 0.308502, 0.311877, 0.276294, 0.247785,
```

-0.233202, 0.366450, 0.388566, 0.788533, -0.228247],

Now I want to calculate through the direct mode.

```
\Theta = (X^T X)^{-1} (X^T Y)
XT X = np.matmul(XT, X)
XT X
     array([[354.000000, 0.260063, -0.075050, -0.267624, 0.062917, 0.077527,
             0.095267, 0.156045, 0.014093, -0.066984, -0.228247],
            [0.260063, 0.831145, 0.142308, 0.159918, 0.257529, 0.225069,
             0.188774, -0.034304, 0.157329, 0.207618, 0.232650],
            [-0.075050, 0.142308, 0.800452, 0.061975, 0.173611, -0.000857,
             0.096661, -0.309510, 0.258148, 0.079271, 0.183943],
            [-0.267624, 0.159918, 0.061975, 0.757806, 0.307323, 0.222875,
             0.237738, -0.291233, 0.357209, 0.352310, 0.308502],
            [0.062917, 0.257529, 0.173611, 0.307323, 0.796524, 0.213421,
             0.167943, -0.126681, 0.211341, 0.303888, 0.311877],
            [0.077527, 0.225069, -0.000857, 0.222875, 0.213421, 0.794976,
             0.707667, 0.044769, 0.433351, 0.409985, 0.276294],
            [0.095267, 0.188774, 0.096661, 0.237738, 0.167943, 0.707667,
             0.791005, -0.173801, 0.536587, 0.255903, 0.247785],
            [0.156045, -0.034304, -0.309510, -0.291233, -0.126681, 0.044769,
             -0.173801, 0.835434, -0.624283, -0.306339, -0.233202],
            [0.014093, 0.157329, 0.258148, 0.357209, 0.211341, 0.433351,
             0.536587, -0.624283, 0.841694, 0.497741, 0.366450],
            [-0.066984, 0.207618, 0.079271, 0.352310, 0.303888, 0.409985,
             0.255903, -0.306339, 0.497741, 0.780338, 0.388566],
            [-0.228247, 0.232650, 0.183943, 0.308502, 0.311877, 0.276294,
             0.247785, -0.233202, 0.366450, 0.388566, 0.788533]
XT = np.matrix.transpose(X)
XT_X_inv = np.linalg.inv(XT_X)
XT X inv
     array([[0.002830, -0.001089, 0.000465, 0.001458, -0.000845, 0.010475,
             -0.007880, -0.005826, -0.003642, -0.003331, 0.001212],
            [-0.001089, 1.461256, -0.208485, -0.053855, -0.262176, 0.313990,
             -0.478855, -0.319551, 0.052926, -0.319057, -0.179472],
```

```
[0.000465, -0.208485, 1.626795, 0.262824, -0.300050, 0.211181,
             -0.057438, 0.406755, -0.336723, 0.279871, -0.219074],
            [0.001458, -0.053855, 0.262824, 2.041989, -0.460931, 1.139085,
             -1.162852, 0.016235, -0.073180, -0.784282, -0.270025],
            [-0.000845, -0.262176, -0.300050, -0.460931, 1.799079, -0.546602,
             0.272957, 0.228012, 0.426018, -0.229631, -0.295771],
            [0.010475, 0.313990, 0.211181, 1.139085, -0.546602, 75.543011,
             -59.480977, -33.771744, -10.433314, -27.267103, 0.150532],
            [-0.007880, -0.478855, -0.057438, -1.162852, 0.272957, -59.480977,
             50.376152, 24.381456, 3.932913, 22.421990, -0.155066],
            [-0.005826, -0.319551, 0.406755, 0.016235, 0.228012, -33.771744,
             24.381456, 19.504282, 9.549627, 11.356589, -0.192973],
            [-0.003642, 0.052926, -0.336723, -0.073180, 0.426018, -10.433314,
             3.932913, 9.549627, 10.558928, 1.276978, -0.370138],
            [-0.003331, -0.319057, 0.279871, -0.784282, -0.229631, -27.267103,
             22.421990, 11.356589, 1.276978, 12.668577, -0.543656],
            [0.001212, -0.179472, -0.219074, -0.270025, -0.295771, 0.150532,
             -0.155066, -0.192973, -0.370138, -0.543656, 1.974032]])
XT y = np.matmul(XT, y)
XT_y
     array([[53581.000000],
            [268.755930],
            [9.783420],
            [684.525956],
            [549.189316],
            [302.778582],
            [262.373044],
            [-480.551509],
            [583.020195],
            [705.915304],
            [467.168531]])
```

As we see from the formula, we want to calculate the θ function.

```
import statsmodels.api as sm
regressor = sm.OLS(y, X).fit()
print(regressor.summary())
```

OLS Regression Results

Dep. Varia	able:		У			R-squared:						
Model:		OLS			Adj. R-squared:							
Method:	Lea	Least Squares			F-statistic:							
Date:	Sat, 2	at, 22 Oct 2022			<pre>Prob (F-statistic):</pre>							
Time:			16:57	7:36	Log-L	ikelihood:		-1910.4				
No. Observ			354	AIC:			3843.					
Df Residuals:				343	BIC:			3885.				
Df Model:				10								
Covariance	e Type:		nonrob	oust								
=======												
	СО	ef st	d err		t	P> t	[0.025	0.975]				
const	 151.85	95	 2.886	52	625	0.000	146.184	157.535				
x1	-3.74		5.575		.057							
x2	-247.76		9.190		.581	0.000	-383.852					
x3	520.39		7.518		.713	0.000	367.925	672.867				
x4	298.51		2.762	4		0.000		441.628				
x5	-637.83		1.492		.353		-1565.219	289.540				
x6	342.21		5.025		.889	0.375		1099.527				
x7	35.40		9.575		.148	0.883		506.627				
x8	168.08		5.273		.954	0.341						
x9	678.60		3.082		.515	0.000	298.829	1058.375				
x10	87.56		5.217		.149	0.251	-62.348	237.477				
	=======	======					=======					
Omnibus:						in-Watson:		1.998				
Prob(Omni					ue-Bera (JB):	1.436						
Skew:				.038	Prob(• •		0.488				
Kurtosis:			2.	.697	Cond.	NO.		230.				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi

y_bar_square = np.square(cross_tab[:1, -1:])

```
SSR = np.sum(np.multiply(thetas, XT_y)) - (y_bar_square / n)
SSR
     array([[9151108.332670]])
r_square = SSR / SST
r_square
     array([[25856.532100]])
# predict using coefficients
yhat = Xt.dot(thetas)
yhat
            [108.938506],
            [138.307753],
            [110.872973],
            [95.737802],
            [159.503009],
            [75.560608],
            [254.527133],
            [57.215126],
            [99.570307],
            [101.808954],
            [261.249383],
            [168.813523],
            [64.200434],
            [183.107140],
            [169.903161],
            [187.008544],
            [184.805878],
            [90.376296],
            [148.745925],
            [251.588736],
            [198.127711],
            [279.870444],
            [51.412531],
            [175.317737],
            [201.501720],
            [170.209760],
            [155.296086],
            [152.875063],
            [232.747954],
            [122.876688],
            [163.183031],
```

[172.878832], [225.283822], [152.366554], [99.613128], [84.108354], [142.051055],

```
[ 507 500 . 601],
[195.331731],
[150.020750],
[171.088852],
[113.075900],
[161.346473],
[130.976803],
[257.196880],
[100.364386],
[116.383785],
[121.479385],
[219.426698],
[61.972948],
[132.733000],
[120.518188],
[54.183853],
[190.315965],
[102.825689],
[121.907933],
[209.997799],
[53.806932]])
```

```
print('MSE:',mean_squared_error(yhat,yt))
# R2 score = 1 - (MSE / (variance of data))
print('R2 score:',r2_score(yhat,yt))
```

MSE: 2910.206933266525

R2 score: 0.07446875020469845

```
plt.scatter(yt,yhat)
plt.xlabel('y_test')
plt.ylabel('Predicted y')
```

Text(0, 0.5, 'Predicted y')

import sklearn sklearn.metrics.r2_score(yt,yhat)

0.5502492259658616

Gradient Descent

Now, I am solving linear regression problem by minimizing the cost:

```
C = \frac{1}{N} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2
The gradient is: \nabla C = -\frac{2}{N} \mathbf{X}^T \left( \mathbf{y} - \mathbf{X} \mathbf{w} \right)
import numpy as np
class LinearRegression:
  def init (self,learning rate=0.0001, n iter=500, fit intercept=True):
    self.learning_rate = learning_rate
    self.n_iter = n_iter
    self.fit intercept = fit intercept
    self.weights = []
  def fit(self,X,y):
    if self.fit_intercept:
      column of ones = np.ones((X.shape[0],1))
      X = np.append(column_of_ones,X,axis=1)
    n_samples, n_features = X.shape
    self.weights = np.zeros( (n features,1), dtype=np.float32 )
    # Gradient descent
    for i in range(self.n iter):
      y pred = np.matmul(X, self.weights)
      grad w = -(2/n \text{ samples}) * np.matmul( X.T, (y-y pred) )
      self.weights -= self.learning rate * grad w
  def predict(self,X):
    if self.fit intercept:
      column of ones = np.ones((X.shape[0],1))
      X = np.append(column_of_ones,X,axis=1)
    return np.matmul(X, self.weights)
from sklearn import linear model
from sklearn.metrics import mean_squared_error, r2_score
```

```
lr skmodel = linear model.LinearRegression()
lr_skmodel.fit(X,y)
print('Coefficients:',lr_skmodel.coef_)
y pred = lr skmodel.predict(Xt) # compare y test
print('MSE:',mean squared error(y pred,yt))
# R2 score = 1 - (MSE / (variance of data))
print('R2 score:',r2_score(y_pred,yt))
plt.scatter(yt,y_pred)
plt.xlabel('y_test')
plt.ylabel('Predicted y')
     Coefficients: [[0.000000 -3.742844 -247.762264 520.395997 298.512841 -637.839376
       342.218503 35.404933 168.083838 678.601534 87.564379]]
     MSE: 2910.2069332665283
     R2 score: 0.0744687502046969
     Text(0, 0.5, 'Predicted y')
        250
        200
      Predicted y
        150
        100
         50
                            150
                                    200
                                           250
                                                   300
                     100
                                y_test
import sklearn
sklearn.metrics.r2_score(yt,yhat)
     0.5502492259658616
import numpy as np
class LinearRegression:
  def __init__(self,learning_rate=0.0001, n_iter=500, fit_intercept=True):
    self.learning rate = learning rate
    self.n iter = n iter
    self.fit_intercept = fit_intercept
    self.weights = []
```

```
def fit(self,X,y):
    if self.fit_intercept:
      column of ones = np.ones((X.shape[0],1))
      X = np.append(column_of_ones,X,axis=1)
    n samples, n features = X.shape
    self.weights = np.zeros( (n features,1), dtype=np.float32 )
    # Gradient descent
    for i in range(self.n iter):
      y pred = np.matmul(X, self.weights)
      grad w = -(2/n \text{ samples}) * np.matmul( X.T, (y-y pred) )
      self.weights -= self.learning_rate * grad_w
  def predict(self,X):
    if self.fit_intercept:
      column_of_ones = np.ones((X.shape[0],1))
      X = np.append(column of ones, X, axis=1)
    return np.matmul(X, self.weights)
lrmodel = LinearRegression(learning rate=0.0005,n iter=100000,fit intercept=True)
lrmodel.fit(X,y)
print(lrmodel.weights)
     [[75.765945]
      [75.765945]
      [37.187241]
      [-12.957762]
      [154.003891]
      [110.085091]
      [41.531887]
      [29.075857]
      [-98.409035]
      [103.784019]
      [145.793289]
      [93.424103]]
y_pred1 = lrmodel.predict(Xt)
plt.scatter(yt,y_pred1)
```

```
plt.xlabel('y_test')
plt.ylabel('Predicted y')
```

Text(0, 0.5, 'Predicted y')


```
print('MSE:',mean_squared_error(y_pred1,yt))
# R2 score = 1 - (MSE / (variance of data))
print('R2 score:',r2_score(y_pred1,yt))
     MSE: 4322.297674447385
     R2 score: -5.461138132061364
import sklearn
sklearn.metrics.r2_score(yt,y_pred1)
     0.3320211348315707
import matplotlib.pyplot as plt
def linear_regression(x, y, m_current=0, b_current=0, epochs=10000, learning_rate=0.0001):
   cost list = []
   N = float(len(y))
   for i in range(epochs):
       y_current = (m_current * x) + b_current
        cost = sum([data**2 for data in (y-y_current)]) / N
        cost list.append(cost)
       m_{gradient} = -(2/N) * sum(x * (y - y_{current}))
        b_gradient = -(2/N) * sum(y - y_current)
       m_current = m_current - (learning_rate * m_gradient)
        b_current = b_current - (learning_rate * b_gradient)
   return m_current, b_current, cost, cost_list
```

repeat = 10000

m_current, b_current, cost, cost_list = linear_regression(X,y)

```
lrate = 0.01
theta = np.zeros((10+1))
def computeCost(X, y, theta):
 m = len(y) # number of training examples
 diff = np.matmul(X, theta)-y
 J = 1 / (2 * m) * np.matmul(diff, diff)
 return J
def gradientDescent(X, y, theta, alpha, num_iters):
 # Initialize some useful values
 m = len(y) # number of training examples
 J history = []
 # repeat until convergance
 for i in range(num iters):
   hc = np.matmul(X, theta) - y
   theta -= alpha / m . dot(np.matmul(X.transpose(), hc))
   # Save the cost J in every iteration
   J_history.append(computeCost(X, y, theta))
 return theta, J history
costs=[]
for cost in cost_list:
 costs.append(cost.mean())
plt.plot(np.arange(10000), costs, '-b', LineWidth=2)
plt.xlabel('Number of iterations')
plt.ylabel('Cost')
plt.show()
```


Question 2

I am downloading sklearn.datasets.fetch_openml(name="house_prices") dataset and Split it into training (80%) and testing (20%) parts.

After that I used sklearn.linear_model module to get solution and plot the model prediction and actual values on test set and use sklearn.metrics.r2_score to calculate performance.

```
from sklearn.datasets import fetch openml
housing = fetch openml(name="house prices")
# to do splitting
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
from sklearn import linear_model
from sklearn.metrics import mean squared error, r2 score
lr_skmodel = linear_model.LinearRegression()
lr_skmodel.fit(X_train,y_train)
print('Coefficients:',lr skmodel.coef )
y pred = lr skmodel.predict(X test) # compare y test
print('MSE:',mean squared error(y pred,y test))
# R2 score = 1 - (MSE / (variance of data))
print('R2 score:',r2_score(y_pred,y_test))
plt.scatter(y_test,y_pred)
plt.xlabel('y_test')
plt.ylabel('Predicted y')
     Coefficients: [[0.000000 48.677257 -241.924793 522.394429 316.228880 -724.119525
       460.770283 7.366032 63.694368 737.943529 104.806340]]
     MSE: 2595.7884990183557
     R2 score: 0.027869589143429963
     Text(0, 0.5, 'Predicted y')
        250
        200
     redicted y
       150
        100
         50
                      100
                               150
                                        200
                                                250
```

y test

import sklearn
sklearn.metrics.r2_score(y_test,y_pred)

0.38192037963462633

End of the Problem Set 1

Hessam Kaveh

22.10.2022

Colab paid products - Cancel contracts here

✓ 0s completed at 8:32 PM

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.