第3章 电阻电路的一般分析

3.2 网孔电流法和回路电流法

3.3 节点电压法

■ 第1步: 选定各支路电流参考方向,各节点KCL方程如下:

节点
$$1: I_1$$
 $-I_3 + I_4$ = 0
节点 $2: -I_1 - I_2$ $+I_5$ = 0
节点 $3: I_2 + I_3$ $-I_6 = 0$
节点 $4: -I_4 - I_5 + I_6 = 0$

$$1: I_{1} - I_{3} + I_{4} = 0$$

$$2:-I_1-I_2 + I_5 = 0$$

3:
$$I_2 + I_3 - I_6 = 0$$

$$-I_4 - I_5 + I_6 = 0$$

- ▲ 可见: 上述四个节点的KCL方程不是相互独立的
- → 若选图中所示电路中的节点4为参考节点,则节点
 1、2、3为独立节点,其对应的KCL方程必将独立,

1:
$$I_1 - I_3 + I_4 = 0$$

$$2:-I_{1}-I_{2} + I_{5} = 0$$

$$3: I_2 + I_3 -I_6 = 0$$

■ 第2步: 对 (n-1) 个独立节点列KCL方程

■ 第3步: 对b-(n-1)个独立回路列关于支路电流的KVL方程

■ 第4步: 求解

例:用支路电流法求电路中各支路电流。

■ 网孔电流法

+ 网孔电流:是假想沿着电路中网孔边界流动的电流,如图中所示闭合虚线电流 I_{m1} 、 I_{m2} 、 I_{m3}

基本步骤

第1步: 指定网孔电流的参考方向,并以此作为列写 KVL方程的回路绕行方向

第2步:根据KVL列写关于网孔电流的电路方程

$$\begin{cases} R_{1}I_{m1} + R_{5}(I_{m1} - I_{m2}) + U_{s4} + R_{4}(I_{m1} - I_{m3}) - U_{s1} = 0 \\ R_{2}I_{m2} + U_{s2} + R_{6}(I_{m2} - I_{m3}) + R_{5}(I_{m2} - I_{m1}) = 0 \\ R_{4}(I_{m3} - I_{m1}) - U_{s4} + R_{6}(I_{m3} - I_{m2}) - U_{s3} + R_{3}I_{m3} = 0 \end{cases}$$

$$\begin{cases} R_{1}I_{m1} + R_{5}(I_{m1} - I_{m2}) + U_{s4} + R_{4}(I_{m1} - I_{m3}) - U_{s1} = 0 \\ R_{2}I_{m2} + U_{s2} + R_{6}(I_{m2} - I_{m3}) + R_{5}(I_{m2} - I_{m1}) = 0 \\ R_{4}(I_{m3} - I_{m1}) - U_{s4} + R_{6}(I_{m3} - I_{m2}) - U_{s3} + R_{3}I_{m3} = 0 \end{cases}$$

$$\begin{cases} (R_1 + R_4 + R_5)I_{m1} - R_5I_{m2} - R_4I_{m3} = U_{s1} - U_{s4} \\ -R_5I_{m1} + (R_2 + R_5 + R_6)I_{m2} - R_6I_{m3} = -U_{s2} \\ -R_4I_{m1} - R_6I_{m2} + (R_3 + R_4 + R_6)I_{m3} = U_{s3} + U_{s4} \end{cases}$$

R_{kk}——第k个网孔的自电阻,值恒正

 R_{ki} —k网孔和j网孔公共支路上的互电阻(可正可负)

U_{Skk}——k网孔内所有电压源电位升的代数和

网孔电流列向量

网孔电阻矩阵

网乳电压源列 向量

$$\begin{bmatrix} R_{1} + R_{4} + R_{5} & -R_{5} & -R_{4} \\ -R_{5} & R_{2} + R_{5} + R_{6} & -R_{6} \\ -R_{4} & -R_{6} & R_{3} + R_{4} + R_{6} \end{bmatrix} \begin{bmatrix} I_{m1} \\ I_{m2} \end{bmatrix} = \begin{bmatrix} U_{s1} - U_{s4} \\ -U_{s2} \end{bmatrix}$$

思考: 若Im2改成逆时针方向, 电路方程需要改变吗?

▲ 第1步: 选取各网孔电流绕行方向

▲ 第2步: 利用直接观察法形成方程

▲ 第3步: 求解

电路中含电流源的网孔法

▲ 第1类情况: 含实际电流源: 作一次等效变换

- ▲ 第2类情况: 含理想电流源支路
 - 理想电流源位于边沿支路

- + a: 选取网孔电流绕行方向,其中含理想电流源支路的 网孔电流为已知量: $I_{m2} = -I_{s}$
- ↓ b: 对不含有电流源支路的网孔根据直接观察法列方程:

₩ c: 求解

- lacktriangle a: 选取网孔电流绕行方向,虚设电流源电压U
- ↓ b: 根据直接观察法列方程:
- ↓ c: 添加约束方程:
- **↓ d:** 求解

- ▲ a: 选取网孔电流绕行方向
- ▲ b: 先将受控源作独立电源处理,利用直接观察法列方程:

- ↓ c: 再将控制量用未知量表示:
- ↓ d: 整理求解:

例:用网乳分析法求

电流I和电压U。

例:求受控电压源发出的功率

电桥平衡只是相对于 无源电路而言.

例: 求受控电压源发出的功率

- + 适用于含多个理想电流源支路的电路.
- ▲ 回路电流是在一个回路中连续流动的假想电流.
- + 一个具有b条支路和n个节点的电路,其独立回路数为(b-n+1).
- ↓ 以回路电流作为电路独立变量进行电路分析的方法 称为回路电流法.

a: 适当选取回路, 使独立电流源支路只有一个回路 电流流过:

a: 适当选取回路, 使独立电流源支路只有一个回路 电流流过:

▲ 例: 列写网孔电流方程

▲ 例: 列写回路电流方程

■节点电压

↓ 任意选择电路中某一节点作为参考节点,其余节点与 此参考节点间的电压分别称为对应的节点电压,节点 电压的参考极性均以参考节点为负极性端,以所对应 节点为正极性端.

- 第1步: 适当选取参考点(选择联接支路数最多的节点)
- 第2步: 根据KCL列出关于节点电压的电路方程:

节点1:
$$G_1(U_{n1} - U_{n2}) + G_5(U_{n1} - U_{n3}) - I_s = 0$$

节点2:
$$G_1(U_{n2} - U_{n1}) + G_2U_{n2} + G_3(U_{n2} - U_{n3}) = 0$$

节点3:
$$G_3(U_{n3} - U_{n2}) + G_4U_{n3} + G_5(U_{n3} - U_{n1}) = 0$$

$$G_1(U_{n1} - U_{n2}) + G_5(U_{n1} - U_{n3}) - I_s = 0$$

$$G_1(U_{n2} - U_{n1}) + G_2U_{n2} + G_3(U_{n2} - U_{n3}) = 0$$

$$G_3(U_{n3} - U_{n2}) + G_4U_{n3} + G_5(U_{n3} - U_{n1}) = 0$$

$$(G_1 + G_5)U_{n1} - G_1U_{n2} - G_5U_{n3} = I_s$$

$$-G_1U_{n1} + (G_1 + G_2 + G_3)U_{n2} - G_3U_{n3} = 0$$

$$-G_5U_{n1} - G_3U_{n2} + (G_3 + G_4 + G_5)U_{n3} = 0$$

$$\begin{bmatrix} G_{1} + G_{5} & -G_{1} & -G_{5} & | U_{n1} | | I_{s} | \\ -G_{1} & G_{1} + G_{2} + G_{3} & -G_{3} & | U_{n2} | = 0 \end{bmatrix}$$

$$\begin{bmatrix} G_{1} + G_{5} & -G_{3} & G_{3} + G_{4} + G_{5} \end{bmatrix} \begin{bmatrix} U_{n1} | I_{s} | \\ U_{n2} | = 0 \end{bmatrix}$$

 G_{ki} ——k节点和j节点公共支路上的互电导(一律为负)

 I_{Skk} ——流入节点k的所有电流源电流的代数和(流入取正)

节点电压列 向量

节点电压列 向量

节点电导矩阵

$$\begin{bmatrix} G_{1} + G_{5} & -G_{1} & -G_{5} & | U_{n1} | | I_{s} | \\ -G_{1} & G_{1} + G_{2} + G_{3} & -G_{3} & | U_{n2} | = 0 \end{bmatrix}$$

$$\begin{bmatrix} U_{n1} & | I_{s} | \\ -G_{3} & | U_{n2} | = 0 \end{bmatrix}$$

$$\begin{bmatrix} U_{n1} & | I_{s} | \\ -G_{3} & | U_{n2} | = 0 \end{bmatrix}$$

$$\begin{bmatrix} U_{n1} & | I_{s} | \\ U_{n2} & | I_{s} | \\ 0 & | I_{s} | \end{bmatrix}$$

问:如果G₂支路有两个电导串在一起,那么 下面方程中的参数该怎么修改?

▲ 第1步: 适当选取参考点.

▲ 第2步: 利用直接观察法形成方程.

▲ 第3步: 联立求解.

电路中含电压源的节点法

+ 第1类情况:含实际电压源:作一次等效变换.

原电路等效为:

▲ 第2类情况: 含理想电压源支路

- + a: 选取电压源的一端作参考点: $U_{n1}=U_{s}$
- ♣ b: 对不含有电压源支路的节点利用直接观察法列方程

▲ 第2类情况: 含理想电压源支路

▲ b: 对不含有电压源支路的节点利用直接观察法列方程

★ c: 求解

含多条不具有公共端点的理想电压源支路

- lack a: 适当选取其中一个电压源的端点作参考点:令 $U_{\rm n4}=0$,则 $U_{\rm n1}=U_{\rm s1}$
- ↓ b: 虚设电压源电流为 I, 利用直接观察法形成方程:

♣ c:添加约束方程:

■ 含受控源时的节点法

- ▲ a: 选取参考节点
- → b:先将受控源作独立电源处理,利用直接观察法列方程
- ▲ c: 再将控制量用未知量表示:
- ₩ d: 整理:

■ 含电流源串联电阻时的节点法

$$U_{n} = \frac{\frac{U_{S1}}{R_{1}} + \frac{U_{S2}}{R_{2}} - \frac{U_{S5}}{R_{5}}}{(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{4}} + \frac{1}{R_{5}})}$$

-般形式

$$U_n = \frac{\sum I_S}{\sum G}$$

弥尔

定

例2:用节点电压法 水各节点电压。 30

