Machine Learning for Kawasaki Disease Diagnosis

April 30th, 2018

Problem Definition

Exploratory Data Analysis

Feature Distributions

Orange: Kawasaki Disease

Blue: Febrile Control

Principal Component Analysis (PCA)

Yellow: Kawasaki Disease Purple: Febrile Control

Classification Models

Models Evaluated

- K-Nearest Neighbors
- 2. Logistic Regression
- 3. Support Vector Machine
- 4. Random Forest
- 5. XGBoost
- 6. Deep Neural Network (Multilayer Perceptron)

Evaluation Methodology

- 5-Fold Cross Validation
- Metrics:
 - True Positives, True Negatives
 - False Positives, **False Negatives**
 - Precision, Recall
 - F-Beta Score

K-Nearest Neighbors (K-NN)

	Pred KD	Pred FC
Actual KD	97.73%	2.27%
Actual FC	36.49%	63.51%

Random Forest

	Pred KD	Pred FC
Actual KD	97.48%	2.52%
Actual FC	27.01%	72.99%

Logistic Regression

	Pred KD	Pred FC
Actual KD	96.85%	3.15%
Actual FC	18.01%	81.99%

Support Vector Machine (SVM)

	Pred KD	Pred FC
Actual KD	96.35%	3.65%
Actual FC	15.17%	84.83%

Gradient Boosted Trees (XGBoost)

	Pred KD	Pred FC
Actual KD	97.5%	2.5%
Actual FC	25.1%	74.9%

Deep Neural Network

	Pred KD	Pred FC
Actual KD	96.2%	3.8%
Actual FC	19.9%	80.1%

Tunable Model Selection (F-Beta)

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

Results Summary

Next Steps

- 1. Ensemble Methods
- 2. Data Augmentation
- 3. Model Interpretation
- 4. Deployable Diagnosis Application

Thank You!