

Light as a Ruler:

The Accuracy of Delta Scuti Variables as a Distance Metric

Kieran Gilmore, Barron Montgomery, Sagada Peñano

Department of Physics, Stanford University

Abstract:

We estimated the distance to Delta Scuti variable star SZ LYN using a period-luminosity relation and commented on the accuracy of this method by comparing our results to archival parallax data.

Outline:

- . Introduction to Variable Stars
- . Methods
- . Analysis
- . Conclusion

RS Puppis, one of the brightest known Cepheid variable stars in the Milky Way galaxy (Hubble Space Telescope)

What are Pulsating Variable Stars?

Pulsating Variable Stars

- Stars that fluctuate periodically in temperature and size due to K-mechanism
 - o P-modes: pressure causing the star to inflate
 - o G-modes: gravity causing the star to collapse and restart the cycle
- Subclasses of Variable Stars
 - Cepheid Variables
 - o RR Lyrae Variables
 - \circ Beta Cephei (β Cep), SPB stars, gamma Doradus (γ Dor), delta Scuti (δ Scuti)

Kappa Mechanism

Delta Scuti Stars

- Spectral range A2 to F0
- corresponding to temperatures of 7000–9300K

• Mass ranges between 0.5–20 ${
m M}_{\odot}$

Delta Scuti Stars

- Spectral range A2 to F0
- corresponding to temperatures of 7000-9300K

• Mass ranges between $0.5-20 \, \mathrm{M}_{\odot}$

What makes them special for measuring distances?

Why Delta Scuti Variables?

- Shorter periods (15min to 5hr) make for more straightforward observations
- Class of pulsating variable stars commonly found in Milky Way – we chose SZ Lyncis
- Measuring the period of a delta scuti variable accurately will allow us to estimate its luminosity using a Period-Luminosity relationship (PLR)

Source: AAVSO

Period-Luminosity Relationships

- Direct proportionality law discovered by Henrietta Leavitt in 1908 for type I Cepheids
- Delta Scuti Variables also follow strict Period-Luminosity relationships
- *RR Lyrae Variables do not follow a strict period-luminosity relationship at visual wavelengths, although they do in the infrared band
- More luminous variables pulse slower

Object	$\log P$	$M_{ m v}$	$(M_{\rm v})$ old	[Fe/H]
RV Ari	-1.031	1.79	1.83	0
BP Peg	-0.96	1.42	1.42	-0.02
AI Vel	-0.952	1.44	1.51	-0.15
SZ Lyn	-0.919	1.32	1.35	-0.13
AD C Mi	-0.91	1.29	1.3	0.1
DY Her	-0.828	1.12	1.15	0
V567 Oph	-0.825	0.94	0.93	-0.15
VZ Cnc	-0.749	0.96	0.88	0.15
BS Aqr	-0.704	0.74	0.62	0.2
VX Hya	-0.651	0.6	0.52	0.05
RY Lep	-0.647	0.56	0.47	-0.05
DE Lac	-0.596	0.43	0.38	0.18
V1719Cyg	-0.573	0.33	0.15	0.3

SZ Lyncis - HD 67390 - HIP 39960

- High amplitude Delta Scuti star -9.06 to 9.72 V, $\Delta m = 0.64$
- Period of 0.12 days, or 2.89 hours (AAVSO)
- High altitude—good for observing the entire period before setting
- Spectral type A9

Method for Estimating Distance

- 1. Measure the star's period
- Use a period-luminosity relationship to estimate the absolute magnitude
- 3. Use observed data to calculate apparent magnitude
- 4. Use distance modulus to compute distance

$$D = 10^{0.2(M_{av} - M_v + 5)}$$

Observation

- One three hour observing session at Stanford Student Observatory.
- R band yielded highest photon count.
- Took images at 20 second exposure each, 20 seconds apart.
- Refocused intermittently and moved dome in middle - break in curves.

Stanford Student Observatory, Linda Cicero

Photometry

Air mass and Refocusing Corrections

Zero-Point Correction

Instrumental Magnitude

Apparent Magnitude [R-Band]

Error Propagation

Extracting Period using Fourier Analysis

We fit data points to curve of form:

$$M(t) = a_0 + \sum_{n=1}^{17} a_n cos(nwt) + b_n sin(nwt)$$

Using SciPy, we extract the parameters:

$$argmax_n(a_n, b_n) = 13$$

$$w = 4.018255$$

Thus, our primary period is

$$P = \frac{2\pi}{13 * 4.018255} = 0.1202816 days = 2.886757 hours$$

Distance Calculations with PLR

$$M_v = a + b * log(P)$$

$$a = -1.31 \pm 0.1, b = -2.89 \pm 0.13$$

$$M_v = 1.348 \pm 0.0745$$

Parameters for delta scuti variables

$$D = 10^{0.2(M_{av} - M_v + 5)}$$

Average of apparent light curve

$$D = 412.571 \pm 1.704 pc$$

Conclusions

- We report a 412.571 ± 1.704 pc distance with the period-luminosity relation
- Parallax data from GAIA 2020 survey reports a 1.9104 [0.1127] mas angle, corresponding to 523.451 ± 30.8799pc
- Curiously, GAIA 2018 data reports a 400.9462 ± 11.2048pc
- A 21.1% error in our accuracy from 2020, 2.91% from 2018
- AAVSO lists period as 2.892hr, we report 2.886hr (0.2% error)
- As expected, parallax methods are highly accurate for "nearby" stars, but less so for measuring distances to other galaxies
- Luminous Cepheids are far more useful for distance measurements in these cases, as discussed before

References

- 1. Photoelectric observations of SZ Lyncis (Soliman et al. 1986)
- 2. Estimating Distance from Parallaxes (Bailer-Jones et al. 2018)
- 3. Pulsational mode identification from multi-colour photometry (Handler 2008)
- 4. An Overview of Stellar Pulsation Theory (Saio 1993)
- 5. Asteroseismology of SZ Lyn using very high time resolution photometry in BVR bands (Adassuriya et al. 2018)
- 6. Light curve analysis of variable stars using Fourier decomposition and principal component analysis (S. Deb and H. P. Singh)
- 7. Delta Scuti and RR Lyrae Stars in Galaxies and Globular Clusters (D. H. McNamara 2011)

Acknowledgements

Of course, a very special thank you to our teaching team for assisting and teaching us throughout the entire 5-hour observation session, being available throughout the whole quarter for questions and guidance, and working with us to fully flesh out our science. Thank you!

Questions?