

Objectifs

- Comprendre la notion et les spécificités du Big Data
- Connaître les technologies de l'écosystème Hadoop
- Connaître le langage python et utiliser les librairies de machine learning
- Savoir utiliser les outils de visualisation des données (Dataviz)

Intelligence artificielle

L'intelligence artificielle (IA) est « l'ensemble des théories et des techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence »

Machine Learning et intelligence artificielle

Artificial Intelligence

Algorithms that mimic the intelligence of humans, able to resolve problems in ways we consider "smart". From the simplest to most complex of the algorithms.

Machine Learning

Algorithms that parse data, learn from it, and then apply what they've learned to make informed decisions. They use human extracted features from data and improve with experience.

Deep Learning

Neural Network algorithms that learn the important features in data by themselves. Able to adapt themselves through repetitive training to uncover hidden patterns and insights.

Intelligence artificielle

L'intelligence artificielle (IA) est « l'ensemble des théories et des techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence »

Exemple de problématique de machine learning

- ☐ Prédire les ventes
- ☐ Identification des objets (image,)
- ☐ Segmenter les utilisateurs d'un site en plusieurs groupes en fonction de leur comportement sur le site, catégoriser un produit
- ☐ Recommandation de produit

Le cycle de travail d'un data science

Récupération des données

- ☐ Les bases de données existantes
- ☐ Les données brutes alternatives (image, son, document, pages web, etc.)
- ☐ Les réseaux sociaux
- ☐ Internet des Objets
- ☐ Création de nouveaux canaux d'acquisition de données

☐ Exemple : Les CAPTCHAs pour la digitalisation automatique de livres

The Norwich line steamboat train, from New-London for Boston, this morning ran off the track seven miles north of New-London.

https://user.oc-static.com/upload/2016/09/17/14741229513738_img-2.png

Nettoyage des données

- ☐Suppression des données aberrantes et incohérentes
- ☐ Agrégation si nécessaire

☐ Les batchs ou job map-reduce, spark

Exploration des données

- ☐ Comprendre les différents comportements
- ☐ Détecter les schémas
- ☐ Tâche destinée au Data Analyst

- ☐ Proposer plusieurs hypothèses sur les causes sous-jacentes à la génération du dataset
- ☐ Proposer plusieurs pistes de modélisation statistique des données, qui vont permettre de résoudre la problématique de départ considérée.
- ☐ Proposer si nécessaire de nouvelles sources de données qui aideraient à mieux comprendre le phénomène.

Modélisation

- ☐ C'est l'étape du machine learning ou apprentissage
- ☐ Application des algorithmes de d'apprentissage
 - ☐ la régression linéaire
 - ☐ K-nn
 - ☐ les Support Vector Machine (SVM)
 - ☐ les réseaux de neurones
 - ☐ les random forests.
 - ☐ Clustering
 - ☐ Collaborive filtering

https://user.oc-static.com/upload/2016/09/17/14741406902223_download-2.png

Evaluation du modèle

- ☐ Le modèle représente t-il avec exactitude le phénomène ?
- ☐ Le modèle résout t-il le problème ?
- ☐ Quelle est la marge d'erreur ?
- ☐ Quelle est la performance du modèle

☐ Le quartet d'Anscombe

 $https://user.oc\text{-}static.com/upload/2016/09/17/14741418471714_640px-Anscombe.svg.png$

Mise en production

- ☐ Déploiement du modèle en production
- ☐ Mise en place des supports de production
- ☐ Infrastrusture big data (Hadoop, AWS, Azure)

- ☐ Apprentissage « supervisé » : supervised learning
- ☐ Données sont annotées ou labélisées
- ☐ Features (x) vs Label (y) ou target
- ☐ But : Prédire y à partir des x
- ☐ Problème : comment labéliser ?

https://user.oc-static.com/upload/2016/10/24/14773158929787_cifar_preview.png

- ☐ Apprentissage « non supervisé » : unsupervised learning
- ☐ Les données ne sont pas annotées
- ☐ L'algorithme determine lui même les similarités dans le dataset

https://markdown.data-ensta.fr/uploads/upload_87ef9ad65f9163ff5a92e1691eb4d1bd.png

☐ le semi-supervised learning : combine supervised et unsupervised

- ☐ le reinforcement learning : qui se base sur un cycle d'expérience / récompense et améliore les performances à chaque itération
 - ☐ Jeu de go, damier, échec

- ☐ Régression
 - ☐ Recherche t-on un nombre ?
 - □ Valeur continue

- ☐ Classification
 - ☐ Recherche t-on une catégorie ?
 - ☐ Valeur discrète

Source: https://user.oc-static.com/upload/2016/09/18/14742103795655_ml.png

Segmentation des datasets

- ☐ Training set:
 - □ sous-ensemble destiné à l'apprentissage d'un modèle.
 - ☐ Exemple : Proportion 80% du dataset

- ☐ Validation set/ Test set
 - ☐ sous-ensemble destiné à l'évaluation du modèle.
 - ☐ Exemple : Proportion 20% du dataset

☐ N'effectuez jamais l'apprentissage sur des données d'évaluation

- ☐ Librairie python machine learning
- ☐ Des outils simples et efficaces pour l'analyse prédictive des données
- ☐ Accessible à tous et réutilisable dans divers contextes
- ☐ Construit sur NumPy, SciPy et matplotlib
- ☐ Open source

https://scikit-learn.org/stable/user_guide.html

User Guide

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Model selection and evaluation
- 4. Inspection
- 5. Visualizations
- 6 Dataset transformations
- 7. Dataset loading utilities
- 8. Computing with scikit-learn
- 9. Model persistence
- 10. Common pitfalls and recommended practices

- ☐ Fonctionnement
 - ☐ Etape 1 : Sélectionner un estimateur et configurer les hyperparamètres (Créer une instance du modèle)
 - ☐ Etape 2 : Entrainer le modèle (méthode fit)
 - ☐ Etape 3 : Evaluer le modèle (méthode score)
 - ☐ Etape 4 : Utiliser le modèle (méthode predict)

```
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
X = np.array([1, 4 , 5 , 6, 10, 50, 30, 15, 20, 45]).reshape(-1,1)
y = np.array([1, 2 , 3 , 7, 12, 30, 25, 10, 10, 25])
plt.scatter(X,y)
```

```
# Instance du modèle
model = LinearRegression()
# Entrainer le modèle
model.fit(X, y)
# Evaluer le modèle
model.score(X,y)
# Utiliser le modèle
model.predict([[36]])
```


☐ Apprentissage supervisé

- ☐ Apprentissage « supervisé » : supervised learning
- ☐ Données sont annotées ou labélisées
- ☐ Features (x) vs Label (y) ou target
- ☐ But : Prédire y à partir des x
- ☐ Problème : comment labéliser ?

Régression linéaire

```
from sklearn.linear model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
                                                                        # Instance du modèle
X = np.array([1, 4, 5, 6, 10, 50, 30, 15, 20, 45]).reshape(-1,1)
y = np.array([1, 2, 3, 7, 12, 30, 25, 10, 10, 25])
                                                                        model = LinearRegression()
                                                                        # Entrainer le modèle
plt.scatter(X,y)
                                                                        model.fit(X, y)
<matplotlib.collections.PathCollection at 0x7fb3e05e9990>
                                                                        # Evaluer le modèle
 30
                                                                        model.score(X,y)
 25
                                                                        # Utiliser le modèle
 20
                                                                        model.predict([[36]])
15
 10
 5 -
          10
                 20
                               40
                                      50
```

☐ Régression linéaire

```
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
X = np.array([1, 4, 5, 6, 10, 50, 30, 15, 20, 45]).reshape(-1,1)
y = np.array([1, 2, 3, 7, 12, 30, 25, 10, 10, 25])

plt.scatter(X,y)
```



```
model = LinearRegression()
model.fit(X, y)
model.score(X,y)
y_predict = model.predict(X)

plt.scatter(X,y, c='b')
plt.plot(X, y_predict, c='g')
```


- Classification
- ☐ Exemple : entrainer un modèle sur les données du Titanic pour déterminer si une personne pourra survivre ou non

- Classification
- ☐ Exemple : entraîner un modèle sur les données du Titanic pour déterminer si une personne pourra survivre ou non
- Nous allons entraîner le modèle uniquement sur les colonnes age, sex, pclass et survived

- Classification
- Exemple : entraîner un modèle sur les données du Titanic pour déterminer si une personne pourra survivre ou non
- Nous allons entraîner le modèle uniquement sur les colonnes age, sex, pclass et survived
- **☐** Normaliser les données

```
# Normaliser les données
titanic_data = titanic_data.dropna(axis='index')
# Tout convertir en valeur numérique
titanic_data['sex'].replace(['female','male'], [0,1], inplace=True)
titanic_data
```

	age	pclass	sex	survived	1
0	22.0	3	1	0	
1	38.0	1	0	1	
2	26.0	3	0	1	
3	35.0	1	0	1	
4	35.0	3	1	0	

- ☐ Classification
- Exemple : entraîner un modèle sur les données du Titanic pour déterminer si une personne pourra survivre ou non
- Nous allons entraîner le modèle uniquement sur les colonnes age, sex, pclass et survived
- Normaliser les données
- ☐ Entrainer et évaluer le modèle KNeighborsClassifier

```
from sklearn.neighbors import KNeighborsClassifier
X= titanic data[['age','pclass', 'sex']]
y= titanic data['survived']
titanic model = KNeighborsClassifier()
titanic model.fit(X.values,y)
score = titanic model.score(X.values,y)
# Préfire la survie d'une personne en classe 2 ayant 23
X to predict = np.array([[23,2,1]])
print(X to predict)
predict = titanic model.predict(X to predict)
print("Le score du modèle est {}".format(score))
print(predict)
```

[23 2 1]]
Le score du modèle est 0.8305322128851541
[0]

☐ Apprentissage non supervisé

- ☐ Apprentissage « non supervisé » : unsupervised learning
- ☐ Les données ne sont pas annotées
- ☐ L'algorithme determine lui même les similarités dans le dataset

☐ K-means clustering

regrouper les données "similaires" en groupes (ou clusters)

Demonstration of the standard algorithm

1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).

2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

3. The centroid of each of the k clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

https://en.wikipedia.org/wiki/K-means_clustering

- ☐ K-means clustering
 - regrouper les données "similaires" en groupes (ou clusters)

```
plt.scatter(X[:,0], X[:,1])
kmeans = KMeans(n_clusters=4, random_state=0)
kmeans.fit(X)

plt.scatter(X[:,0], X[:,1])
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1], c="g")
```

<matplotlib.collections.PathCollection at 0x7fdcadb42d90>

- ☐ Isolation Forest
 - Détection d'anomalie

```
from sklearn.cluster import KMeans
from sklearn.datasets import make blobs
# Generate sample data
X, y = make blobs(n samples= 100, centers= 1,
                  cluster std=0.80, random state=0 )
X[-1, :] = np.array([10, 20])
plt.scatter(X[:,0],X[:,1])
<matplotlib.collections.PathCollection at 0x7feba44b5910>
 20.0
17.5
15.0
12.5
 10.0
 7.5
  5.0
 2.5
```

- ☐ Isolation Forest
 - Détection d'anomalie
 - Contamination : la proportion de valeurs aberrantes dans l'ensemble de données. Utilisé lors de l'ajustement pour définir le seuil sur les scores des échantillons.

```
from sklearn.ensemble import IsolationForest
model isolation = IsolationForest(contamination=0.01)
model isolation.fit(X)
predict = model isolation.predict(X)
plt.scatter(X[:,0],X[:,1], c=predict)
<matplotlib.collections.PathCollection at 0x7feba3fb90d0>
20.0
17.5
15.0
12.5
10.0
 7.5
 5.0
 2.5
```

Selection des données de training et de test

N'effectuez jamais l'apprentissage sur des données d'évaluation

```
# Sur les données du titanic nous allons séparer #le Training Set et Test Set

from sklearn.model_selection import train_test_split

# Default size train_size=0.8 test_size=0.2

X_train, X_test, y_train, y_test = train_test_split(X,y)

print("Taille training set {}".format(X_train.shape))

print("Taille test set {}".format(X_test.shape))
```

Taille training set (535, 3)

Taille test set (179, 3)

☐ Selection des données de training et de test

```
titanic_model.fit(X_train, y_train)

print("Score training set {}".format(titanic_model.score(X_train, y_train)))
print("Score test set {}".format(titanic_model.score(X_test, y_test)))
```

Score training set 0.8317757009345794 Score test set 0.7821229050279329

- ☐ Selection des données de training et de test
- ☐ Que remarquez-vous?

```
titanic_model = KNeighborsClassifier(n_neighbors=2)
titanic_model.fit(X_train, y_train)

print("Score training set {}".format(titanic_model.score(X_train, y_train)))
print("Score test set {}".format(titanic_model.score(X_test, y_test)))
```

Score training set 0.8448598130841122 Score test set 0.7430167597765364

- ☐ Selection des données de training et de test
 - ☐ Cherchons le nombre de voisin optimal qui rend le modèle optimal
 - ☐ Problème : le test set est aussi fixe. Les réglages sont liés corrélés à la répartition
 - ☐ Solution : en plus du train set, test set, il faut une validation set

```
titanic_model = KNeighborsClassifier(n_neighbors=2)
titanic_model.fit(X_train, y_train)

print("Score training set {}".format(titanic_model.score(X_train, y_train)))
print("Score test set {}".format(titanic_model.score(X_test, y_test)))

Score training set 0.8448598130841122
```

titanic_model = KNeighborsClassifier(n_neighbors=3)
titanic_model.fit(X_train, y_train)

print("Score training set {}".format(titanic_model.score(X_train, y_train)))
print("Score test set {}".format(titanic_model.score(X_test, y_test)))

Score training set 0.8654205607476636 Score test set 0.7597765363128491

Score test set 0.7430167597765364

```
titanic_model = KNeighborsClassifier(n_neighbors=4)
titanic_model.fit(X_train, y_train)

print("Score training set {}".format(titanic_model.score(X_train, y_train)))
print("Score test set {}".format(titanic_model.score(X_test, y_test)))

Score training set 0.822429906542056
```

Score training set 0.8224299065420 Score test set 0.7150837988826816

https://scikit-learn.org/stable/modules/cross_validation/html

☐ Cross validation test

```
# Cross validation test
from sklearn.model selection import cross val score
print("Training avec des validation set")
for i in range(1,5):
   print(cross val score(KNeighborsClassifier(n neighbors=i), X train, y train, cv=6))
# Choisir le modèle avec la bonne moyenne
print("Movenne Training avec des validation set")
for i in range(1,5):
   print(cross val score(KNeighborsClassifier(n neighbors=i), X train, y train, cv=6).mean())
Training avec des validation set
[0.76666667 0.68539326 0.6741573 0.75280899 0.62921348 0.78651685]
[0.73333333 0.70786517 0.69662921 0.7752809 0.6741573 0.76404494]
 [0.75555556 0.76404494 0.6741573 0.83146067 0.69662921 0.75280899]
 [0.74444444 0.78651685 0.69662921 0.80898876 0.70786517 0.79775281]
Movenne Training avec des validation set
0.7157927590511859
0.7252184769038701
0.7457761131918436
0.7570328755722014
```

☐ Cross validation test

- ☐ Seul le parameter neighbors a été modifié.
- Pour évaluer un ensemble de paramètre
 - ☐ GridSearchCV

[<matplotlib.lines.Line2D at 0x7fb3d5547dd0>]

☐ Learn curbe (Courbe d'apprentissage)

☐ Quelle quantité de données optimales pour un meilleur apprentissage

Product Comparison

https://upload.wikimedia.org/wikipedia/commons/thumb/7/77/Alanf777_Lcd_fig09.png/405px-Alanf777_Lcd_fig09.png

- ☐ Preprocessing
- ☐ But : transformer toutes les valeurs non numériques en valeurs numériques

- □ LabelEncoder
- ☐ OrdinalEncoder
- ☐ OneHotEncoder

```
from sklearn.preprocessing import LabelEncoder
# Analyse des données du football
# Partie du corps ayant marqué le but
X = np.array(["Pied","Tete","Poitrine","Pied"])
encoder = LabelEncoder()
# Analyser les dataset
encoder.fit(X)
# Appliquer la transformation
encoder.transform(X)
```

```
# Analyser et transformer encoder.fit transform(X)
```

array([0, 2, 1, 0])

 $\Gamma \rightarrow \operatorname{array}([0, 2, 1, 0])$

- ☐ Preprocessing
- ☐ But : transformer toutes les valeurs non numériques en valeurs numériques

- □ LabelEncoder
- ☐ OrdinalEncoder
- ☐ OneHotEncoder

```
array([[0., 2.],
[2., 1.],
[1., 3.],
[0., 0.]])
```


- ☐ Preprocessing
- ☐ But : transformer toutes les valeurs non numériques en valeurs numériques
- ☐ LabelEncoder
- ☐ OrdinalEncoder
- □ OneHotEncoder
 - Eviter de mettre les valeurs numériques sans réel sens arithmétique
 - ☐ Matrice creuse (sparse matrix)
 - ☐ Compressed Sparse Row (Csr)

- Preprocessing
- ☐ Transformers : Transformez les features en adaptant chaque fonctionnalité à une plage donnée. Exemple : [0-1]
- ☐ MinMaxScaler (inefficace face valeurs aberrantes)
- ☐ StandardScaler (inefficace face valeur aberrantes)
- ☐ RobustScaler

- ☐ Classification
- Exemple: entrainer un modèle sur les données du Titanic pour déterminer si une personne pourra survivre ou non
- Nous allons entrainer le modèle uniquement sur les colonnes age, sex, pclass et survived
- Normaliser les données
- ☐ Entrainer et évaluer le modèle KNeighborsClassifier

```
from sklearn.neighbors import KNeighborsClassifier
X= titanic_data[['age','pclass', 'sex']]
y= titanic_data['survived']
titanic model = KNeighborsClassifier()
titanic_model.fit(X.values,y)
score = titanic model.score(X.values,y)
# Préfire la survie d'une personne en classe 2 ayant 23
X_{to\_predict} = np.array([[23,2,1]])
print(X to predict)
predict = titanic model.predict(X to predict)
print("Le score du modèle est {}".format(score))
print(predict)
```

☐ Comment choisir le bon modèle

Les réseaux de neurones artificiels

☐ Inspiré des réseaux de neurones humains

http://ressources.unisciel.fr/DAEU-biologie/P2/res/chap4_im05.png

Métaphore biologique

☐ Fonctionnement du cerveau Transmission de l'information et apprentissage

☐ Un perceptron !!!!

- Les neurones reçoivent des signaux (impulsions électriques) par les dendrites et envoient l'information par les axones.
- ☐ Les contacts entre deux neurones (entre axone et dendrite) se font par l'intermédiaire des synapses.

Neurone biologique	Neurone artificiel
Axones	Signal de sortie
Dendrites	Signal d'entrée
Synapses	Poids de la connexion

- ☐ Frank Rosenblatt en 1956
- ☐ Algorithme d'apprentissage supervisé de classifieurs binaires
- ☐ Inconvénient : linéarité

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

Un perceptron à n entrées (x_1,\ldots,x_n) et à une seule sortie o est défini par la donnée de n poids (ou coefficients synaptiques) (w_1,\ldots,w_n) et un biais (ou seuil) θ par 2 :

$$o = f(z) = egin{cases} 1 & ext{si} & \sum_{i=1}^n w_i x_i > heta \ 0 & ext{sinon} \end{cases}$$

- ☐ La règle de Hebb
- ☐ Correction du modèle (loi de Widrow-Hoff)
- ☐ Inconvénient : linéarité

$$W_i' = W_i + \alpha (Y_t - Y) X_i$$

 W_i' = le poids i corrigé

 Y_t = sortie attendue

Y = sortie observée

 α = le taux d'apprentissage

 X_i = l'entrée du poids i pour la sortie attendue Y_t

 W_i = le poids i actuel

- ☐ La règle de Hebb
- ☐ Correction du modèle (loi de Widrow-Hoff)
- ☐ Inconvénient : linéarité

$$W_i' = W_i + \alpha (Y_t - Y) X_i$$

 W_i' = le poids i corrigé

 Y_t = sortie attendue

Y = sortie observée

 α = le taux d'apprentissage

 X_i = l'entrée du poids i pour la sortie attendue Y_t

 W_i = le poids i actuel

- ☐ Exemple : reconstruction d'image
- \square Reconnaitre les chiffres 0, 1, 2

http://master-ivi.univ-lille1.fr/fichiers/Cours/rdf-semaine-8-neurones.pdf

Les réseaux de neurones : deep learning

☐ Réseau multi-couche

 $https://cdn.futura-sciences.com/buildsv6/images/mediumoriginal/d/c/d/dcdc8d74ca_125717_deep-learning.jpg$

Les réseaux de neurones : deep learning

- ☐ La rétropropagation du gradient (backpropagation)
- ☐ Généraliser la règle de Widrow-Hoff – Rétropropagation

Propagation (en arrière) des corrections dans les couches intermédiaires

Les réseaux de neurones : deep learning

- ☐ Inception v3 sur Cloud TPU
- ☐ modèle de reconnaissance d'images
- Atteint une justesse remarquable Input: 299x299x3, Output:8x8x2048

https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png

TP: Python

Merci

