Résolution numérique d'équations non linéaires

De nombreux problèmes issus notamment de la physique conduisent à la résolution d'équations non linéaires,

$$f(x) = 0, f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$$

1 Méthode des approximations successives

À partir d'une équation f(x) = 0 $(f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ de classe \mathcal{C}^1), on peut se ramener à un problème de point fixe :

$$x = \Phi(x) \tag{1}$$

avec $\Phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ de classe \mathcal{C}^1 . On peut poser par exemple :

$$\Phi(x) = x - Bf(x)$$

avec $B \in M_n(\mathbb{R})$ inversible.

Pour résoudre (1), on se donne une condition initiale $x_0 \in \mathbb{R}^n$ (la plus proche possible d'une solution de (1)) et on considère la méthode itérative :

$$x_{k+1} = \Phi(x_k) \tag{2}$$

Nous allons étudier la convergence de ce type de méthodes itératives.

Définition 1 Soit a un point fixe de Φ ($\Phi(a) = a$).

i) a est stable au sens de Lyapunov si

$$\forall \varepsilon > 0, \exists \eta / \|x_0 - a\| < \eta \implies \|x_k - a\| < \varepsilon \qquad \forall k \ge 0$$

- ii) a est instable s'il n'est pas stable au sens de Lyapunov.
- iii) a est asymptotiquement stable s'il est stable au sens de Lyapunov et

$$\exists r \mid ||x_0 - a|| < r \implies x_k \xrightarrow{k \to +\infty} a$$

Lorsque a est asymptotiquement stable, la méthode (2) permet de calculer numériquement a à partir d'une condition initiale x_0 "suffisamment proche" de a.

Theoreme 1 Soit Ω un ouvert de \mathbb{R}^n et $\Phi: \Omega \longrightarrow \mathbb{R}^n$ de classe \mathcal{C}^1 . Soit $a \in \Omega$ un point fixe de Φ , i.e. $\Phi(a) = a$. Alors:

- a) Si $\rho\Big(D\Phi(a)\Big)<1$ alors a est asymptotiquement stable.
- b) Si $\rho(D\Phi(a)) > 1$ alors a est instable.

Rappel 1 $D\Phi(a) \in M_n(\mathbb{R})$ est définie par :

$$D\Phi(a) = \left(\frac{\partial \Phi_i}{\partial x_j}(a)\right)_{1 \leq i, j \leq n} \quad \begin{cases} \text{diff\'erentielle de Φ au point a,} \\ \text{matrice Jacobienne de Φ au point a} \end{cases}$$

Preuve 1 (du a)) Notons $x_k = a + e_k$.

$$\begin{cases} x_{k+1} = \Phi(x_k) & \Longrightarrow & e_{k+1} = \Phi(a + e_k) - \Phi(a) \\ a = \Phi(a) & \end{cases}$$

On utilise un développement de Taylor à l'ordre 1 :

$$\Phi(a + e_k) = \Phi(a) + D\Phi(a)e_k + ||e_k|| \varepsilon(e_k)$$

avec $\|\varepsilon(e_k)\| \to 0$ quand $e_k \to 0$.

Donc $e_{k+1} = D\Phi(a)e_k + o(||e_k||).$

Si $\rho(D\Phi(a)) < 1$, il exsite une norme matricielle induite pour laquelle $||D\Phi(a)|| < 1$.

Donc $\exists \eta > 0$ et $\alpha < 1$ tels que si $||e_k|| < \eta$:

$$||e_{k+1}|| \le \alpha ||e_k||$$

Donc si $||e_0|| < \eta$, $||e_k|| \le \alpha^k ||e_0|| \xrightarrow{k \to +\infty} 0$

Remarque 1 - Ce résultat donne la convergence <u>locale</u> de la méthode : convergence de (x_k) vers un point fixe a de Φ si $\rho(D\Phi(a)) < 1$ et $||x_0 - a||$ assez petit.

- La solution de (1) n'est pas forcément unique.
- a) $\implies ||x_{k+1} a|| \le \alpha ||x_k a||$ avec $\alpha < 1$, et plus $\rho(D\Phi(a))$ est petit, plus α est petit. On dit que la convergence est (au moins) <u>linéaire</u>.
- Sous l'effet des termes non linéaires, dans certains cas la méthode numérique (2) peut être localement convergente avec $\rho(D\Phi(a)) = 1$. Exemple : $x_{k+1} = x_k x_k^3$, point fixe 0 asymptotiquement stable.

Critères d'arrêt :

a) On se donne une tolérance absolue tol (on pourrait aussi travailler en relatif)

$$||x_k - x_{k-1}|| < tol$$

Cela indique également que $\|\Phi(x_{k-1} - x_{k-1})\| < tol$, c'est-à-dire que x_{k-1} est "presque" solution de $\Phi(x) = x$.

b) Lorsque Φ est une contraction sur un sous-ensemble fermé E de de \mathbb{R}^n , on sait que Φ admet un unique point fixe a dans E. Si $\alpha \in]0,1[$ désigne le facteur de contraction de Φ on montre que si $x_{k-1} \in E$ alors $||x_k - a|| \leq \frac{\alpha}{1-\alpha} ||x_k - x_{k-1}||$.

Fixer le critère d'arrêt $||x_k - x_{k-1}|| < tol \times (\frac{1}{\alpha} - 1)$ et $x_{k-1} \in E$ garantit que $||x_k - a|| < tol$.

c) Un critère intéressant peut être obtenu lorsque :

$$\frac{\|x_k - x_{k-1}\|}{\|x_{k-1} - x_{k-2}\|} \xrightarrow{k \to +\infty} \lambda \in]0,1[$$

Cette propriété est vérifiée avec $\lambda = \rho(D\Phi(a))$ et pour presque toute condition initiale $x_0 \approx 0$ si λ ou $-\lambda$ est une valeur propre réelle simple de $D\Phi(a)$, avec toutes les autres valeurs propres de module $< \lambda$.

(alors $x_k = a + V.(\pm \lambda)^k + o(\lambda^k)$, V vecteur propre associé à $\pm \lambda$)

Alors pour k assez grand et $p \ge k$

$$||x_k - x_p|| \le ||x_k - x_{k+1}|| + ||x_{k+1} - x_{k+2}|| + \dots + ||x_{p-1} - x_p||$$

$$\implies ||x_k - a|| \le \sum_{j \ge k} ||x_j - x_{j+1}|| \qquad \text{(on fait tendre } p \text{ vers } +\infty)$$

On fait maintenant l'approximation :

$$\sum_{j\geq k} \|x_j - x_{j+1}\| \simeq \|x_k - x_{k+1}\| \times \sum_{j\geq 0} \lambda^j \simeq \frac{\lambda}{1-\lambda} \|x_k - x_{k-1}\|$$

$$\simeq \frac{\|x_k - x_{k-1}\|}{\|x_{k-1} - x_{k-2}\|} \times \frac{1}{1 - \frac{\|x_k - x_{k-1}\|}{\|x_{k-1} - x_{k-2}\|}} \|x_k - x_{k-1}\|$$

$$= \frac{\|x_k - x_{k-1}\|^2}{\|x_{k-1} - x_{k-2}\| - \|x_k - x_{k-1}\|}$$

On en déduit le critère d'arrêt :

$$\begin{cases}
\frac{\|x_{k} - x_{k-1}\|^{2}}{\|x_{k-1} - x_{k-2}\| - \|x_{k} - x_{k-1}\|} < tol \\
\|x_{k} - x_{k-1}\| < \|x_{k-1} - x_{k-2}\|
\end{cases}$$
(c)

Le théorème de convergence de la méthode des approximations successives suppose que $\rho(D\Phi(a)) < 1$. Un choix tel que $\Phi(x) = x - Bf(x)$ ($B \in M_n(\mathbb{R})$ inversible) ne garantit pas que cette hypothèse soit respectée, et que le rayon spectral soit petit (condition pour que la convergence soit rapide).

Nous allons définir un choix astucieux de fonction Φ à partir de f, pour lequel $D\Phi(a)=0$. Il s'agit de la méthode de Newton.

2 Méthode de Newton

Soit $f:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ de classe \mathcal{C}^2 . On veut calculer numériquement une solution de l'équation :

$$f(x) = 0 (3)$$

Le principe de la méthode de Newton est le suivant. Si $x_0 \in \mathbb{R}^n$ est une approximation de la solution x recherchée, on linéarise f autour de x_0 :

$$f(x) \simeq f(x_0) + Df(x_0)(x - x_0)$$

On calcule alors la solution x_1 de :

$$f(x_0) + Df(x_0)(x_1 - x_0) = 0$$

Si $Df(x_0)$ est inversible, on obtient :

$$x_1 = x_0 - Df(x_0)^{-1}f(x_0)$$

Puis on prend x_1 comme nouvelle approximation de la solution et on recommence l'opération. Cela définit la méthode itérative :

$$x_{k+1} = x_k - Df(x_k)^{-1} f(x_k) = \Phi(x_k)$$
 (4)

Remarque 2 Numériquement on ne calcule pas $Df(x_k)^{-1}$ mais on résout à chaque étape le système linéaire donnant x_{k+1} :

$$Df(x_k)(x_{k+1} - x_k) = -f(x_k)$$

Interprétation géométrique en dimension 1 :

Nous sommes dans le cadre de la méthode des approximations successives : on cherche une solution de $\Phi(x) = x$ avec $\Phi(x) = x - Df(x)^{-1}f(x)$. La méthode itérative (4) s'écrit $x_{k+1} = \Phi(x_k)$.

Theoreme 2 Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ de classe C^2 au voisinage de $a \in \mathbb{R}^n$, avec f(a) = 0. On suppose que Df(a) est inversible. Alors la fonction Φ de l'itération (4) est C^1 au voisinage de a, et a est asymptotiquement stable. De plus, il existe $\eta > 0$ et $\alpha > 0$ tels que $si \|x_0 - a\| < \eta$ alors:

$$||x_{k+1} - a|| \le \alpha ||x_k - a||^2 \quad \forall k \ge 0$$

Remarque 3 On dit qu'ela convergence de la méthode de Newton est en moyenne <u>quadratique</u>. On obtient par récurrence :

$$||x_k - a|| \le \frac{1}{\alpha} (\alpha ||x_0 - a||^{2^k})$$

Par exemple, si $\alpha = 1$ et $||x_0 - a|| = 10^{-1}$, $||x_4 - a|| \le 10^{-16}$.

Preuve 2 La fonction $x \mapsto \operatorname{Det} Df(x)$ est continue sur \mathbb{R}^n , et $\operatorname{Det} Df(a) \neq 0$, donc $\exists r > 0 \ / \ \|x - a\| < r \implies \operatorname{Det} Df(x) \neq 0$, c'est-à-dire que Df(x) est inversible. La fonction Φ définie par $\Phi(x) = x - Df(x)^{-1}f(x)$ est donc \mathcal{C}^1 au voisinage de x = a. On peut donc appliquer le théorème 1.

Calculons $D\Phi(a)$.

$$f(a+h) = Df(a)h + \mathcal{O}(\|h\|^2) \quad \text{amène} :$$

$$\Phi(a+h) = a+h - Df(a+h)^{-1} \Big(Df(a)h + \mathcal{O}(\|h\|^2) \Big)$$

$$= a+h - \Big(Df(a)\mathcal{O}(\|h\| \Big) \Big(Df(a)h + \mathcal{O}(\|h\|^2) \Big)$$

$$= a+h - \Big(I + \mathcal{O}(\|h\|)^{-1} \Big) Df(a)^{-1} \Big(Df(a)h + \mathcal{O}(\|h\|^2) \Big)$$

$$= a+h - \Big(I + \mathcal{O}(\|h\| \Big) \Big(h + \mathcal{O}(\|h\|^2) \Big)$$

$$\Phi(a+h) = \Phi(a) + \mathcal{O}(\|h\|^2)$$

Donc:

 $D\Phi(a) = 0 \implies a$ est un point fixe de Φ asymptotiquement stable

Avec
$$x_k = a + e_k$$
 on obtient $e_{k+1} = \Phi(a + e_k) - \Phi(a) = \mathcal{O}(\|e_k\|^2)$

Remarque 4 - Lorsque la forme analytique de Df(x) est inconnue, on approche $\frac{\partial f_i}{\partial x_j}$ par $\frac{f_i(x_1, \dots, x_{j-1}, x_{j+\delta}, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_n)}{\delta} \text{ avec } \delta \approx 0.$

- Comme précédemment, le théorème 2 donne la convergence <u>locale</u> de la méthode de Newton, i.e. pour une condition suffisamment proche d'un point fixe a.

- Avantage de Newton : convergence très rapide (quadratique).
- Inconvénient de Newton : coût très élevé à chaque étape, car il faut calculer à chaque fois $A_k = Df(x_k)$ et résoudre un système linéaire $A_k(x_{k+1} x_k) = -f(x_k)$ (coût en $\mathcal{O}(n^3)$, cf méthode de Gauss).
- ⇒ plusieurs modifications de la méthode ont été proposées. Nous verrons par exemple en TD la méthode de Broyden très employée.

Voici une autre modification (plus simple mais efficace) de Newton :

$$\begin{cases} x_{k+1} = \Phi(x_k) & \Phi(x_k) = x_k - A^{-1} f(x_k) \\ x_0 \in \mathbb{R}^n & A = D f(x_0) \end{cases}$$

On calcule une seule fois la factorisation LU de la matrice A, et on l'utilise à chaque étape pour résoudre $A(x_{k+1} - x_k) = -f(x_k)$ (coût $\mathcal{O}(n^2)$ pour $k \ge 2$).

L'inconvénient est bien sûr qu'on perd la convergence quadratique pour une convergence uniquement linéaire. En effet, si f(a)=0, $D\Phi(a)=I-A^{-1}Df(a)\approx 0$ si $x_0\approx a,$ mais $\rho\Big(D\Phi(a)\Big)\neq 0$ en général.

Ce schéma se généralise en remplaçant A par $Df(x_k)$ toutes les "quelques itérations".