ResumenFF

Cinemática

MRUA

velocidad en función del tiempo: $v=v_0+at$ posición en función del tiempo: $\Delta x=x_0+v_0t+\frac{1}{2}at^2$ velocidad en función de la posición: $v^2-v_0^2=2a\Delta x$

2D, 3D, ND

Combina los anteriores usando vectores

MCUA

angulo en función de la posición: $\theta = \theta_0 + \omega t + \frac{1}{2}\alpha t^2$ aceleración centripeta: $a_c = \frac{v^2}{r} = \omega^2 r$ aceleración tangencial $a_t = \alpha r$ velocidad tangencial: $v_t = \omega r$

Dinámica

Segunda ley de Newton: $\overrightarrow{F_net} = m\overrightarrow{a} = \sum \overrightarrow{F}$ Tercera ley de Newton: $\overrightarrow{F}_{AB} = -\overrightarrow{F}_{BA}$ Fuerza gravitatoria: $\overrightarrow{F_g} = m\overrightarrow{g}$ Fuerza Muelle: $\overrightarrow{F_x} = k\Delta x$ fricción estática: $f_s = \beta \mu_s N$ fricción dinámica: $f_d = \mu_d N$

Momento de inercia

momento de inercia:
$$I = \int r^2 dm$$
 torque: $\tau = Fr \sin(\theta)$

Trabajo y energias

Trabajo: $W = \int \overrightarrow{F} \cdot d\overrightarrow{x} = \int F \cos(\theta) dx$ Energia cinetica de traslación $E_{ct} = \frac{1}{2} m v^2$ Energia cinetica de rotación $E_{cr} = \frac{1}{2} I \omega^2$ Energia cinetica: $E_c = E_{ct} + E_{cr}$ Potencia: $P = \frac{dW}{dt} = \overrightarrow{F} \cdot \overrightarrow{v} = \tau \omega$ Energia potencial gravitatoria: $U_g = mgh$ Energia potencial elastica: $U_m = \frac{1}{2} kx^2$ Energia mecanica $E_m = E_c + U$ $\Delta E_m = W_{\text{fuerzas no conservativas}}$