- 9.9 1) La fonction $f(x) = \ln(x+3)$ n'est définie que si x+3>0, c'est-à-dire x>-3. Par conséquent $D_f=[-3\,;+\infty[$.
 - 2) Pour que la fonction $f(x) = \ln(4x-5)$ soit définie, il faut que 4x-5 > 0, à savoir 4x > 5 ou encore $x > \frac{5}{4}$. On en déduit $D_f = \frac{5}{4}$; $+\infty$ [.
 - 3) Les fonctions $x\mapsto x^2$ et $y\mapsto e^y$ admettent $\mathbb R$ pour ensemble de définition. C'est pourquoi $D_f=\mathbb R$.
 - 4) Si la fonction $y \mapsto e^y$ est définie sur tout \mathbb{R} , la fonction $x \mapsto \frac{1}{x}$ n'est en revanche pas définie si x = 0. On conclut donc que $D_f = \mathbb{R} \{0\}$.
 - 5) La fonction $f(x) = \ln(x^2 x)$ n'est définie que si $x^2 x = x(x 1) > 0$.

Cette étude du signe montre que $D_f =]-\infty; 0[\cup]1; +\infty[$.

6) Pour que la fonction $f(x) = \ln(4 - x^2)$ soit définie, il faut que $4 - x^2 = (2 + x)(2 - x) > 0$.

À partir de cette étude du signe, on tire que $D_f =]-2$; 2 [.

7) La fonction $y \mapsto e^y$ admet \mathbb{R} pour ensemble de définition, mais la fonction $x \mapsto \sqrt{x^2 + x}$ n'est définie que si $x^2 + x = x(x+1) \ge 0$.

L'étude du signe conduit à $D_f =]-\infty; -1] \cup [0; +\infty[$.

8) La fonction $f(x) = \ln\left(\frac{x^2}{1-x}\right)$ est définie si $\frac{x^2}{1-x} > 0$ et si $1-x \neq 0$.

Il apparaı̂t donc que $D_f =]-\infty ; 0 [\cup] 0 ; 1 [$.

9) La fonction $f(x) = \ln\left(\sqrt{\frac{x-1}{x+1}}\right)$ est définie si $\frac{x-1}{x+1} > 0$ et si $x+1 \neq 0$. En effet $\sqrt{y} > 0$ pour tout y > 0.

Cette étude du signe délivre $D_f =]-\infty ; -1 [\, \cup \,]\, 1 ; +\infty [\, .$

10) La fonction $f(x) = \ln(\ln(x))$ est définie si $\begin{cases} x > 0 \\ \ln(x) > 0 \end{cases} \iff \begin{cases} x > 0 \\ x > 1 \end{cases}$. On conclut dès lors que $D_f =]1; +\infty[$.