Задачи для подготовки к контрольной. Сдавать ни одну задачу не нужно.

Задача 0.1.

Пусть A — множество всех подмножеств натуральных чисел, а B — множество бесконечных последовательностей из 0 и 1. Для примера: $\{5,6,178\} \in A,0101010101010101.... \in B$. Сравните мощность множеств A и B.

Задача 0.2.

Монетка подкидывается бесконечное количество раз: X_n равно 1, если при n-ом подбрасывании выпадает орел и 0, если решка. Определим кучу σ -алгебр: $\mathcal{F}_n := \sigma(X_1, X_2, ..., X_n)$, $\mathcal{H}_n := \sigma(X_n, X_{n+1}, X_{n+2}, ...)$.

Приведите по два нетривиальных (т.е. Ω и \emptyset не называть) примера такого события A, что:

- $A \in \mathcal{F}_{2010}$
- $A \notin \mathcal{F}_{2010}$
- A лежит в каждой \mathcal{H}_n

В какие из упомянутых σ -алгебр входят события:

- $X_{37} > 0$
- $X_{37} > X_{2010}$
- $X_{37} > X_{2010} > X_{12}$

Упростите выражения: $\mathcal{F}_{11} \cap \mathcal{F}_{25}$, $\mathcal{F}_{11} \cup \mathcal{F}_{25}$, $\mathcal{H}_{11} \cap \mathcal{H}_{25}$, $\mathcal{H}_{11} \cup \mathcal{H}_{25}$

Задача 0.3.

Может ли в σ -алгебре быть ровно 2010 элементов?

Задача 0.4.

Пусть X - равномерная на [0;1] случайная величина. Пусть \mathcal{H}_1 — минимальная σ -алгебра, содержащая все события вида X=t, а \mathcal{H}_2 — минимальная σ -алгебра, содержащая все события вида X< t. Сравните σ -алгебры \mathcal{H}_1 и \mathcal{H}_2 .

Задача 0.5.

Правильная монетка подбрасывается бесконечное количество раз. Вася наблюдает за результатами подбрасываний до тех пор, пока не выпадет 3 орла подряд. Пусть T - случайный момент времени, когда Вася прекратил наблюдения, и \mathcal{F}_T — σ -алгебра событий различимых Васей. Приведите пример двух нетривиальных (т.е. не Ω и не \emptyset) событий входящих в \mathcal{F}_T .

Задача 0.6.

Правильный кубик подбрасывается один раз. X - число очков, выпавшее на кубике. Y - индикатор того, выпала ли четная грань. Z - индикатор того, выпало ли число больше 2-х.

Найдите закон распределения (проще говоря, заполните табличку) для случайных величин E(XY|XZ), E(Z|X), E(X|Z)

Табличка для заполнения:

Ω	w_1	w_2	w_3	w_4	w_5	w_6
E(XY XZ)						
E(Z X)						
E(X Z)						

Задача 0.7.

Пусть совместное распределение X и Y задано таблицей:

	X = -1	X = 1
Y = -1	1/8	4/8
Y=2	2/8	1/8

- а) Найдите E(X|Y), представьте ответ в виде E(X|Y) = a + bY.
- б) Убедитесь, что E(E(X|Y)) = E(X)
- в) Найдите E(XY|Y) и представьте ответ в виде f(Y) Задача 0.8.

Find conditional expectation E(X|Y) intuitively (without formal proof)

$$Z \sim U[0;1], A = \{Z > 0.5\}, X = 2Z^2, Y = 2Z - 1_A.$$
Задача 0.9 .

Маша собрала n грибов в лесу наугад. Рыжики попадаются с вероятностью r, лисички - с вероятностью l, где r+l<1. Пусть R - количество собранных рыжиков, L - лисичек. Найдите:

- 1. E(R|L)
- 2. P(E(R|L) = 0)

Задача 0.10.

Случайные величины X и Y независимы и одинаково распределены. Найдите $E(X|X+Y),\ E(X-Y|X+Y),\ E(X^2-Y^2|X+Y)$