1. Para cada uno de las siguientes afirmaciones determine si es verdadera o falsa.

- √ a)

 E ({1, 3, 4, 6, 12}, |) es un subreticulo de (D₁₂, |).
- (b) E Si L es un reticulado distributivo entonces para todo $a, b \in L$ se satisface $a \leq b$ o $b \leq a$.
- f(c) E Si L es un reticulado complementado es distributivo.
- \sqrt{d} \boxed{V} \mathbf{D}_{21} es un álgebra de Boole.
- \checkmark e) $\boxed{\forall} \{p_0 \rightarrow p_1, p_1 \rightarrow p_2, p_2 \rightarrow p_3, p_3 \rightarrow \neg p_0\}$ es consistente.
- / f) \mathbb{E} Si Γ y Δ son consistentes maximales entonces $\Gamma \cup \Delta$ consistente maximal.
- $(k h) \bigvee \{p_2 \lor p_1, p_2 \rightarrow p_1\} \vDash p_2.$
- (L) Esi L es un lenguaje regular entonces $\{\alpha:\alpha\notin L\}$ es regular.
- \sqrt{j} En el alfabeto $\{a,b\}$, el lenguaje de las palabras que empiezan con "a" y terminan con "bb" es regular.
- √ k) El lenguaje {a¹bba¹ : i ∈ N} es regular.
- × 1) I El conjunto de las palabras capicúas de seis letras es un lenguaje regular.
- 2. Justifique los items 1a, 1e y 1j.
- 3. a) Determine si el siguiente reticulado es distributivo, mediante la construcción de la función dada en el Teorema de Birkhoff para reticulados distributivos finitos. Justifique su respuesta.

(b) Sea L un reticulado. Pruebe que, para todo $x, y, z \in L$ se satisface

$$x\vee (y\wedge z)\leq (x\vee y)\wedge (x\vee z)$$

- a) Dé una derivación que pruebe ⊢ (φ → ψ) ↔ (¬φ ∨ ψ).
 - b) Sea $\Gamma \subseteq PROP$. Mediante transformación de derivaciones pruebe que si $\Gamma \vdash \varphi \lor \psi$ y $\Delta \vdash \neg \psi$ entonces $\Gamma \cup \Delta \vdash \varphi$.
- 5. Considere los siguientes autómatas con alfabeto $\Sigma = \{a, b\}$.

a) Para el AFN- ε M_1 dé un AFD con el mismo lenguaje aceptado, por medio de los algoritmos

b) Para el AFN M_2 dé una expresión regular para su lenguaje aceptado por medio del Teorema