The Normal Approximation of the Binomial Distribution

Joyce Tipping

Wednesday, November 19, 2008

Why?

When *n* gets large, the binomial probabilities become difficult to calculate.

Very Quick Review

Random Variable: A function that assigns a probability to each possible outcome.

Very Quick Review

Random Variable: A function that assigns a probability to each possible outcome.

Expected Value: The long-run expected outcome of a random variable.

Very Quick Review

Random Variable: A function that assigns a probability to each possible outcome.

Expected Value: The long-run expected outcome of a random variable.

Variance: A measurement of the spread of a random variable.

The Bernoulli

A Bernoulli experiment has the following properties:

- 1. One trial
- 2. Two outcomes: Success or Failure
- 3. Known probability of success

The Binomial

A binomial experiment has the following properties:

- 1. n trials, where n is known
- 2. The trials are independent
- 3. Each trial has two outcomes: Success or Failure
- 4. Probability of success is known and fixed

The Binomial

A binomial experiment can be thought of as a sum of independent Bernoulli trials.

The Central Limit Theorem

Let X_1, \ldots, X_n be a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$. Then,

$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

approaches the standard normal, $Z \sim N(0, 1)$ as $n \to \infty$.

The Central Limit Theorem

$$= \frac{\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\frac{1}{n} \sum_{i=1}^{n} X_i - \mu}$$
$$= \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n} \sigma}$$

The Central Limit Theorem

Let X_1, \ldots, X_n be a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$. Then,

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n} \ \sigma}$$

approaches the standard normal, $Z \sim N(0, 1)$, as $n \to \infty$.

The Approximation

Let
$$X_i \sim Ber(p)$$
.
 $\mu_X = p$
 $\sigma_X^2 = pq \longrightarrow \sigma_X = \sqrt{pq}$

The Approximation

Let
$$X_i \sim Ber(p)$$
.
 $\mu_X = p$
 $\sigma_X^2 = pq \longrightarrow \sigma_X = \sqrt{pq}$

Then, we have $\sum_{i=1}^{n} X_i \sim bin(n, p)$.

Therefore, by the CLT, bin(n, p) is approximately normal with

$$\mu = \mathbf{n} \cdot \mu_{\mathbf{X}} = \mathbf{n}\mathbf{p}$$
$$\sigma = \sqrt{\mathbf{n}} \cdot \sigma_{\mathbf{X}} = \sqrt{\mathbf{n}\mathbf{p}\mathbf{q}}$$

whenever *n* is large.

Example

When It Works

The normal approximation works well when the binomial is symmetric:

- 1. p is close to 0.5 OR
- 2. n is very large

Coming Up Soon ...

When p is not close to 0.5 and n is not large, the binomial is skewed.

In this case, the skew-normal is a better approximation.