SERVICE MANUAL

SOLID-STATE AM/FM STEREO TUNER AMPLIFIER

SANSUI 2000A

SANSUI ELECTRIC COMPANY LIMITED

CONTENTS

GENERAL TROUBLESHOOTING CHART 3, 4
CUSTOM MOUNTING 5, 6
DISASSEMBLY PROCEDURE 7
BLOCK DIAGRAM 8
ALIGNMENT
—TEST POINTS 9, 10
—FM ALIGNMENT PROCEDURE 11
—FM MULTIPLEX ALIGNMENT PROCEDURE 12
—AM ALIGNMENT PRCCEDURE 13
—CURRENT ADJUSTMENT
—OUTPUT ADJUSTMENT 14
PRINTED CIRCUIT SHEETS AND PARTS LIST
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
OTHER PARTS AND THEIR POSITION ON CHASSIS
29.30

GENERAL TROUBLESHOOTING CHART

If the amplifier is otherwise operating satisfactorily, the more common causes of trouble may generally be attributed to the following:

- 1. Incorrect connections or loose terminal contacts. Check the speakers, record player, tape recorder, antenna and line cord.
- 2. Improper operation. Before operating any audio com-

ponent, be sure to read the manufacturer's instructions.

- 3. Improper location of audio components. The proper positioning of components, such as speakers and turntable, is vital to stereo.
- 4. Defective audio components.

The following are some other common causes of malfunction and what to do about them:

PROGRAM	SYMPTOM	PROBABLE CAUSE	WHAT TO DO
AM, FM or MPX reception	A. Constant or intermittent noise heard at times or in a certain area	* Discharge or oscillation caused by electrical appliances, such as fluorescent lamp, TV set, D.C. motor, rectifier or oscillator * Natural phenomena, such as atmospherics, statics or thunderbolts * Insufficient antenna input due to ferroconcrete wall or long distance from the station * Wave interference from other electrical appliances	* Attach a noise limiter to the electrical appliance causing the noise, or attach it to the amplifier's power source * Install an outdoor antenna and ground the amplifier to raise the signal-to-noise ratio * Reverse the power cord plugreceptacle connections * If the noise occurs at a certain frequency, attach a wave trap to the ANT. input * Keep the set at a proper distance from other electrical appliances
	B. The needle of the tuning meter does not move sharply	* Receiver is located in a weak signal area	* Place the set to receive maximum signal strength
	C. The zero point of the meter diverges much	* Regional difference in field intensity.	* The unit is not at fault
AM reception	A. Noise heard at a particular time of a day, in a certain area or over part of dial	* Due to the nature of AM broadcasts	* Install the antenna for maximum antenna efficiency. See "ANTENNA" in the operating instructions * In some cases, the noise can be eliminated by grounding the amplifier or reversing the power cord plug-receptacle connections
	B. High-frequency noise	* Adjacent-channel interference or beat interference * TV set too close to audio system	* Although such noise cannot be eliminated by the amplifier, it is advisable to adjust the TREBLE control from midpoint to left and switch on the HIGH FILTER * Keep the TV set at a proper distance from the audio system
FM reception	transmission co	* Poor noise limiter effect or too low S/N ratio due to insufficient antenna input ion is affected considerably by inditions of stations: power and cy. As a result, you may receive the well while receiving another	* Install the antenna (supplied) for maximum signal strength * If this does not prove effective, use an outdoor antenna designed exclusively for FM. When you use a TV antenna for both TV and FM with a splitter, make sure TV reception is not affected * An excessively long antenna may cause noise

PROGRAM	SYMPTOM	PROBABLE CAUSE	WHAT TO DO
FM reception (cont'd)	B. A series of pops is heard	* Ignition noise caused by an automobile engine	* Install the antenna and its lead-in wire in proper distance from the road or raise the antenna input as described above
	C. Tuning noise between stations	* This results from the nature of the FM reception. As the station signal becomes weak, the noise limiter effect is decreased, and the amplification of the limiter, in turn, is enlarged, generating a noise	* Turn the MUTING switch on. It reduces the sensitivity, and therefore it should be used sparingly
FM-MPX reception	A. Noise heard during FM-MPX reception while not heard during FM mono reception	* Weaker signal because the service area of the FM- MPX broadcast is only half that of the FM mono broad- cast	* Install the antenna for maximum antenna input * Switch on the HIGH FILTER and/or turn the TREBLE control from midpoint, left
į	B. Clearness of channel separation is decreased during reception	* Excess heat	* Circulation of air is important to the amplifier. Be sure that air is flowing under the amplifier
	C. The stereo indicator blinks on and off	* Interference	* The indicator is not at fault. Adjust VR_{401}
	D. The stereo indicator blinks on and off even though stereo station is not received	* Interference	* The indicator is not at fault. Adjust VR ₄₀₁
Record playing or tape playback	A. Hum or howling	* Record player placed directly on speaker * Wire other than shielded wire used * Loose terminal contact * Shielded wire too close to line cord, fluorescent lamp or other electrical appliances	 * Place a cushion between the player and the speaker box or place them away from each other * The connecting shielded wire should be as shord as possible * Switch on the LOW FILTER and turn the BASS control from midpoint to left
		* Nearby amateur radio station or TV transmission antenna	* Consult the nearest Radio Regulatory Bureau
	B. Surface noise	* Worn or old record * Worn stylus * Stylus dusty * Improper stylus pressure * Worn playback head	* Switch on the HIGH FILTER and turn the TREBLE control from midpoint to left * Clean or replace the stylus * Replace the playback head.
All stereo programs	BALANCE control is not at midpoint when equal sound comes from left and right channels	* It is important to adjust for equal sound from both channels. It should not always be set to the midpoint	* Set the MONO switch to MONO and then set the BALANCE control to a position where equal sound comes from both channels

CUSTOM MOUNTING

How to install the amplifier in a wooden cabinet

- 1. Make a cabinet window of 432mm or 17" in width and 117mm or $4^{39}/_{64}$ " in height.
- 2. Place two square pieces of wood $(20 \times 20 \times 240 \text{mm or }^{25}/_{32}" \times {}^{25}/_{32}" \times {}^{9^{29}}/_{64}")$ for supporting the amplifier in the bottom board of the cabinet.
- 3. Cut two holes for attachment bolts in the bottom board of the cabinet.
- 4. Remove the four rubber feet and two screws from the amplifier.
- 5. Place the amplifier in position through the cabinet window.
- 6. Make sure the amplifier is in position, then put the washers in butterfly bolts (supplied) and fix the amplifier to the cabinet with butterfly bolts.

 NOTE:

When the amplifier is built into the cabinet, four rubber feet and two screws are not used. Retain them for future use.

DISASSEMBLY PROCEDURE

REMOVING THE FRONT PANEL, BONNET AND BOTTOM PLATE

BLOCK DIAGRAM

ALIGNMENT

TEST POINTS

ALIGNMENT

FM ALIGNMENT PROCEDURE

NOTE: To align, set the signal generator level to minimum.

Turn tuning gang fully.

Center carrier wave.

Set pointer at reference mark.

STEP	ALIGN	GENERATOR	FEED SIGNAL	CONNECT	DIAL SETTING	ADJUST	ADJUST FOR
1.	IF Trans- former	10.7 MHz ±200 kHz	Sweep signal to TP ₁₀₁ via the 10pF ceramic condenser	Oscilloscope to TP ₂₀₁ , 202 and 203 via the 10µF ceramic condenser with probe		Top and bottom sides of T ₂₀₂ , ₂₀₈	Best I.F.T. wave form
2.	Discrimi- nator	10.7 MHz ±200 kHz	Sweep signal to TP ₁₀₁ via the 10pF ceramic condenser	Oscilloscope to 2C		FM. Discriminator transformer T ₂₀₄ top and bottom sides	S curve
3.	O.S.C	90 MHz 400 Hz 100% Modulation	To antenna terminals	Oscilloscope and V.T.V.M. to output load	90 MHz	O.S.C. coil L ₁₀₄	Maximum
4.	O.S.C	106 MHz 400 Hz 100% Modulation	To antenna terminals	Oscilloscope and V.T.V.M. to output load	106 MHz	O.S.C. trimmer TC ₁₀₅	Maximum
5.	Reiterate 3 and 4.			to output load			
6.	High- frequency Amp. Circuit	90 MHz 400 Hz 100% Modulation	To antenna terminals	Oscilloscope and V.T.V.M. to output load	90 MHz	Antenna coil L_{101} , L_{102} and L_{108}	Maximum
7.	High- frequency Amp. Circuit	106 MHz 400 Hz 100% Modulation	To antenna terminals	Oscilloscope and V.T.V.M. to output load	106 MHz	Trimmer TC_{101} , TC_{108} and TC_{104}	Maximum
8.	Reiterate 6 and 7.						

FM MULTIPLEX ALIGNMENT PROCEDURE

- 1. Do not attempt to align the Multiplex Circuit unless the following equipments are available:
- a. Multiplex Stereo Generator b. Oscilloscope c. AC. V.T.V.M. d. Audio Oscillator e. FM Signal Generator

STEP	ALIGN	GENERATOR	FEED SIGNAL TO	TEST EQUIPMENT (S)	ADJUST	ADJUST FOR
1.	67 kHz Trap	67 kHz Audio Signal	TP _{4A} or 2C	V.T.V.M. at	L ₄₀₈	Minimum
2.	71 kHz Trap	71 kHz Audio Signal	TP _{4A} or 2C	V.T.V.M. at	L ₄₀₄	Minimum
3.	19 kHz Transformer	FM Signal Gen. Modulated 30% by STEREO Gen. sub-channel	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at 4 _K	T ₄₀₁	Maximum
4.	19 kHz Transformer	FM Signal Gen. Modulated 30% by STEREO Gen. sub-channel	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at 4 _J	T ₄₀₂	Maximum
5.	38 kHz Transformer	FM Signal Gen. Modulated 30% by STEREO Gen. sub-channel	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at 4 _H	T ₄₀₃	Maximum
6.	38 kHz Transformer and Separation VR	FM Signal Gen. Modulated 30% by STEREO Signal Gen, channel-L	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at output load, (channel-R)	T ₄₀₂ or T ₄₀₃ within ½ turn and Separation VR(VR ₆₀₁)	Minimum, (Channel-R)

ALIGNMENT

AM ALIGNMENT PROCEDURE

NOTE: To align, set the signal generator level to minimum.

STEP	ALIGN	GENERATOR	FEED SIGNAL TO	TEST EQUIPMENTS	DIAL SETTING	ADJUST	ADJUST FOR
1.	I.F. Transfor- mer	455 kHz ±30 kHz Sweep-generator	Antenna terminals	Oscilloscope and V.T.V.M. at 3G		Top and bottom sides from the 1st I.F.T. (T ₃₀₃) to the 3rd I.F.T. (₈₀₅)	Best I.F.T. wave form
2.	O.S.C.	AM-generator 535 kHz 400 Hz 30% Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	535 kHz	O.S.C. Coil T ₃₀₂	Maximum
3.	O.S.C.	AM-generator 1600 kHz 400 Hz 30% Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	1600 kHz	O.S.C. Trimmer TC ₃₀₃	Maximum
4.	Reiterate 2 and 3						
5.	RF amp.	AM-generator 600 kHz 400 Hz 30% Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	600 kHz	RF transformer T ₃₀₁	Maximum
6.	Antenna circuit	AM-generator 600 kHz 400 Hz 30% Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	600 kHz	Ferrite bar Antenna T ₃₀₆	Maximum
7.	RF amp.	AM-generator 1400 kHz 400 Hz 30% Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	1400 kHz	RF Trimmer TC ₃₀₂	Maximum
8.	Antenna circuit	AM-generator 1400 kHz 400 Hz 30% Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	1400 kHz	Antenna circuit Trimmer TC ₃₀₁	Maximum
9.	Reiterate 5. 6. 7. 8.						

1. CURRENT ADJUSTMENT

STEP	SETTING OF AMMETER (TESTER)	WAHT TO DO	NOTE
1.		Remove F ₈₀₁ and F ₈₀₂	Use an am-
2.		Set VR ₈₀₂ and VR ₈₀₄ to minimum.	meter having 100 or 50mA range.
3.		Set VR ₇₀₂ and VR ₇₀₆ (VOLUME) to minimum.	
4.		Push the POWER switch ON.	Be sure to switch on lst
5.	100mA range.	Connect the ammeter to F ₈₀₁ as illustrated in Fig. 1.	and then con- nect the am- meter.
6.		Turn VR ₈₀₂ clockwise and adjust current to 15 to 10mA at room temperature of 25°C or less or to 20 to 15mA at 25°C or more.	
7.	100mA range.	Push the POWER switch OFF and attach F ₈₀₁ in place.	
8.		Push the POWER switch ON and connect the ammeter to F ₈₀₂ as illustrated in Fig. 1.	
9.		Turn VR_{804} clockwise and adjust current to 15 to 10mA at 25°C or less or to 20 to 15mA at 25°C or more.	
10.		Attach F ₈₀₂ in place.	

(Fig. 1) QUICK-ACTING FUSE HOLDER

2. OUTPUT ADJUSTMENT

STEP	WHAT TO DO	NOTE
1.	Adjust the volume control to minimum.	
2.	Set an oscillator to 1,000Hz and connect it to the LEFT AUX input.	The oscillator used should have the oscillation frequency of 20 to 20,000Hz and the output voltage of more than 200mV.
3.	Set the SELECTOR switch to AUX.	Set other controls and switches as follows:
		BALANCE to CENTER TAPE MON. to OFF MODE to STEREO TONE to CENTER Others to OFF
4.	Connect a 8- or 16- ohm load resistor hav- ing capacitor of more than 50 watts to the LEFT SPEAKER output.	
5.	Connect an osscillo- scope to the SPEAK- ER terminal.	
6.	Push the POWER switch on and advance the volume little by little. Check the output at the terminal by means of the oscilloscope.	
7.	Adjust VR ₈₀₁ so that the fronts of sine wave are clipped simultaneously	
8.	Adjust the right channel as above. In Step 7, adjust VR ₈₀₃ .	

X: Parts No Y: Parts Name Z: Position of Parts

F-1222 (TONE CONTROL BLOCK)

1-177	Z (TONE CONTROL BLO	
x	Υ	Z
R701	$1k\Omega \pm 10\% \ \frac{1}{4}W$ Carbon Resistor	2C
R 702	$47k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	10
R 703	68kΩ ±10% ¼W Carbon Resistor	1C
R 704	100kΩ ±10% ¼W Carbon Resistor	1 D
R 705	$1k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 D
R 706	$270k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1C
R 707	3.9 k $\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 C
R 708	$8.2k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 C
R709	2.7 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 C
R 710	6.8 k $\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 B
R711	$6.8k\Omega \pm 10\% $	2 B
R712	$10k\Omega \pm 10\%$ ¼W Carbon Resistor	2 B
R713	$10k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	2 A
R714	$22k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	1 A
R715	$150k\Omega \pm 10\%$ 1/4W Carbon Resistor	2 A
R716	$150k\Omega \pm 10\%$ $^{1}4W$ Carbon Resistor	1 B
R717	$390k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R 718	$560\Omega \pm 10\%$ ½W Carbon Resistor	1 A
R719	5.6 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1.4
R720	$100k\Omega \pm 10\% \text{ ¼W Carbon Resistor}$	1 A
R721	$1k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 D
R722	$47k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	2 D
R723	$68k\Omega \pm 10\% \text{ //W}$ Carbon Resistor	2 C
R723	$100k\Omega \pm 10\% \text{ ¼W Carbon Resistor}$	1 D
R725	$1k\Omega \pm 10\% \text{ ¼W Carbon Resistor}$	2 D
R726	$270k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 C
R727	$3.9k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 D
R728	$8.2k\Omega \pm 10\% \%$ Carbon Resistor	1 C
R729	$2.7k\Omega \pm 10\%$ ½W Carbon Resistor	2 C
R730	$6.8k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R 731	$6.8k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R732	$10k\Omega \pm 10\%$ ½W Carbon Resistor	2 A
R733	$10k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	2 A
R734	$22k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R735	150 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 A
R736	150 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 B
R737	390 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 B
R738	$560\Omega \pm 10\%$ ½W Carbon Resistor	1 B
R739	5.6 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 B
R740	$100 \mathrm{k}\Omega \pm 10\%$ ¼W Carbon Resistor	1 A
C701	0.01μ F $\pm 10\%$ 50 WV Mylar Capacitor	2 C
C702	0.22μ F $\pm 10\%$ 50 WV Mylar Capacitor	2 D
C703	220μF 25 WV Electrolytic Capacitor	2 D
C704	33μF 6.3 WV Electrolytic Capacitor	1 C
C705	22 pF ±10% 50 WV Ceramic Capacitor	1 C
C706	33μF 15 WV Electrolytic Capacitor	2 C
C707	$1 \mu F$ 50 WV Electrolytic Capacitor	1 C
C708	$0.015\mu F \pm 10\%$ 50 WV Mylar Capacitor	1 C
C709	$0.0015\mu\text{F} \pm 10\%$ 50 WV Mylar Capacitor	2 B
C710	$0.04\mu\text{F} \pm 10\%$ 50 WV Mylar Capacitor	2 A
C711	$0.04 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 A
C712	10μF 50 WV Electrolytic Capacitor	1 B
C713	$100\mu\text{F} \pm 10\%$ 50 WV Ceramic Capacitor	1 B
C714	47μF 6.3 WV Electrolytic Capacitor	1 A
C715	1μF 50 WV Electrolytic Capacitor	1 A
C716	$0.01 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 D
		

X	Y	Z
C717	0.22µF ±10% 50 WV Mylar Capacitor	2 D
C718	33µF 6.3 WV Electrolytic Capacitor	2 C
2719	22 pF ±10% 50 WV Ceramic Capocitor	1 C
720	33µF 15 WV Electrolytic Capacitor	2 C
721	1μF 50 WV Electrolytic Copacitor	2 C
722	$0.015\mu\text{F} \pm 10\%$ 50 WV Mylar Capacitor	1 C
723	$0.0015\mu\text{F} \pm 10\%$ 50 WV Mylar Capacitor	2 B
724	$0.04 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 A
C725	$0.04 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 A
C726	10μF 50 WV Electrolytic Capacitor	2 B
727	100 pF ±10% 50 WV Ceramic Capacitor	1 B
728	47μF 6.3 WV Electrolytic Capacitor	2 B
729	1μF 50 WV Electrolytic Capacitor	1 A
/R701)	2 D
/ R 705	$\left.\right\}$ 250k Ω M, N Balance Control (101040)	2 D
/R702	(10100)	2 C
/ R 706	$\left.\right\}$ 250k Ω B Volume Control (101020)	2 C
/R 703)	2 B
/R 707	$\left.\right\}$ 100k Ω B Bass Control (102004)	2 B
/R704	(100001)	2 A
/R708	$\left. \left. \right \right\}$ 100k Ω B Treble Control (102004)	2 A
R701	2SC458 LG(C) (030531)	1 D
R 702	2SC458 LG(B) (030531)	10
R 703	2SC458 LG(C) (030531)	1 A
R704	2SC458 LG(C) (030531)	10
R 705	2SC458 LG(B) (030531)	1 C
R706	2SC458 LG(C) (030531)	1 B

X: Parts No Y: Parts Name Z: Position of Parts

F-1253 (EQUALIZER AMP. BLOCK)

X	Y	Z
R601	$1k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R602	$680k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R602	$4.7k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R604	$100k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R605	$1.8k\Omega \pm 10\%$ ½W Carbon Resistor	1 B
R606	$470\Omega \pm 10\%$ ½W Carbon Resistor	1 B
R607	$390k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	t B
R608	$6.8k\Omega \pm 10\%$ ½W Carbon Resistor	TA
R609	$220\Omega \pm 10\%$ ½W Carbon Resistor	1 A
R610	$680\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor	1 A
R611	$12k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R612	$100\Omega \pm 10\%$ ¼W Carbon Resistor	1 A
R615	$25k\Omega \pm 10\%$ ½W Carbon Resistor	T A
R616	$390k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R617	$3.9k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R618	$1k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R619	$680k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R620	$4.7k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
R621	100kΩ ±10% ¼W Carbon Resistor	2 B
R622	$1.8k\Omega \pm 10\%$ ¼W Carbon Resistor	2 B
R623	470Ω ±10% ¼W Carbon Resistor	2 B
R624	390kΩ ±10% ¼W Carbon Resistor	2 B
R625	$6.8k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
R626	220Ω ±10% ¼W Carbon Resistor	2 A
R627	680Ω ±10% ¼W Carbon Resistor	2 A
R628	12kΩ ±10% ¼W Carbon Resistor	2 A
R629	100Ω ±10% ¼W Carbon Resistor	2 A
R632	25kΩ ±10% ¼W Carbon Resistor	2 A
R633	390 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 A
R634	$3.9 \mathrm{k}\Omega \pm 10\%$ $\frac{1}{4} \mathrm{W}$ Carbon Resistor	2 A
R644	$100\Omega~\pm10\%~rac{1}{4}$ W Carbon Resistor	2 B
C601	1.5 μ F 15 WV Tantalume Capacitor	1 B
C602	150 pF ±10% 25 WV Ceramic Capacitor	1 B
C603	33µF 6.3 WV Electrolytic Capacitor	1 B
C604	33µF 6.3 WV Electrolytic Capacitor	1 B
C605	150 pF ±10% 25 WV Ceramic Capacitor	1 B
C606	47μF. 6.3 WV Electrolytic Capacitor	1 B
C607	10μF 25 WV Electrolytic Capacitor	1 A
C609	$0.01 \mu F \pm 10\%$ 50 WV Mylar Capacitor	1 A
C610	$0.03 \mu F \pm 10\%$ 50 WV Mylar Capacitor	1 A
C611	1.5μF 15 WV Tantalume Capacitor	2 B
C612	150 pF ±10% 25 WV Ceramic Capacitor	2 B
C613	33μF 6.3 WV Electrolytic Capacitor	2 B
C614	33μF 6.3 WV Electrolytic Capacitor	2 B
C615	150 pF ±10% 25 WV Ceramic Capacitor	2 B
C616	47μF 6.3 WV Electrolytic Capacitor	2 B
C617	10μF 25 WV Electrolytic Capacitor	2 B
C619	$0.01 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 A
C620	$0.03 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 A
VR601	$3k\Omega B$ Separation Adjustor (103066)	1B,2E
TR601	2SC871 F (103054)	1 B
TR602	2SC871 F (030547-2)	1 B
1 K 602		
TR603	2SC871 F (030547-2) 2SC871 F (030547-2)	2 B

X: Parts No Y: Parts Name Z: Position of Parts

F-1197 (RECTIFIER BLOCK)

X	Y ,		Z
Rooi	12kΩ ±10	% ½W Solid Resistor	
R002	ł .	% ½W Solid Resistor	
R003	560Ω ±10	% 3 W Wire Wound Resistor	
C001	200μF	75 WV Electrolytic Capacitor	
C002	5 <i>μ</i> F	75 WV Electrolytic Capacitor	
D001	SA-3Z	(031042)	
D002	SA-3Z	(031042)	
D003	10D-1	(031035)	
D004	10D-1	(031035)	
TR001	2SC627	(0305581-3)	

F-1195 (RIPPLE FILTER BLOCK)

X .		Υ	Z
R004	68Ω ±10%	3 W Wire Wound Resistor	
R005	180Ω ±10%	3 W Wire Wound Resistor	
R006	3.9kΩ ±10%	1/4W Carbon Resistor	
R007	1.5kΩ ±10%	1/4W Carbon Resistor	
C005	220 <i>μ</i> F	25 WV Electrolytic Capacitor	
C006	330 <i>μ</i> F	16 WV Electrolytic Capacitor	
C007	330 <i>μ</i> F	10 WV Electrolytic Capacitor	
D005	10D-2	(031034-1)	
D006	10D-2	(031034-1)	
D007	10D-1	(031034)	
ZD001	ZB-1-25 Zener	Diode (031071)	
ZD002	ZB-1-14 Zener	Diode (031069-1)	
TR002	2SC971	(030553-1	
TR003	2SD205	(030813)	

F-1224 (NOISE CANCELER AND MUTING BLOCK)

х	Y
R433	3.3MΩ ±10% ½W Solid Resistor
C430	330pF ±10% 50 WV Mica Capacitor
S6, S7	(113013-1)

F-1223 <HIGH-LOW FILTER BLOCK>

X	Y	Z
R741	1MΩ ±10% ¼W Carbon Resistor	
R742	IMΩ ±10% ¼W Carbon Resistor	
R743	1MΩ ±10% ¼W Carbon Resistor	
R744	$1M\Omega \pm 10\% \ \frac{1}{4}$ W Carbon Resistor	
S8, S9	(113007)	

F-1220 AM METER BLOCK

X		Y	
R322	68kΩ ±10	% ¼W Carbon R	esistor
323		% ¼W Carbon R	
R324		% ¼W Carbon R	
R325		% ¼W Carbon R	
C332	0.01μF	50 WV Ceram	ic Capacitor
C333	0.001μF	50 WV Ceram	
C334	0.01μF	50 WV Ceram	•
C335	1μF	50 WV Electrol	ytic Capacitor
/R302	50kΩB AM	Meter Adjustor	(103049)
D306	IN60		(031033)
D307	IN60		(031033)
R305	2SC460(B)	((030535~1)

F-1254 〈ACCESSORIES BLOCK〉

X	Y	Z
R747	27kΩ ±10% ¼W Carbon Resistor	1 B
R748	27kΩ ±10% ¼W Carbon Resistor	1 B
R749	100kΩ ±10% ¼W Carbon Resistor	1 A
R750	100kΩ ±10% ¼W Carbon Resistor	1 A
C735	$0.02 \mu extsf{F} \pm 10\%$ 50 WV Mylar Capacitor	1 B
C736	150 pF ± 10% 50 WV Mica Capacitor	1 B
C737	$0.02\mu F \pm 10\%$ 50 WV Mylar Capacitor	1 B
C738	150 pF ±10% 50 WV Mica Capacitor	1 B
C739	0.47μF ±20% 25 WV Al. Solid Capacitor	1 A
C740 S _{2,3,4,5}	0.47μF ±20% 25 WV Al. Solid Capacitor (113014)	1 A

X: Parts No Y: Parts Name Z: Position of Parts

F-1190 〈MULTIPLEX BLOCK〉

		7
X	Y	z
R 401	1kΩ ±10% ¼W Carbon Resistor	1 C
R402	100k Ω \pm 10% ${}^1\!\!4$ W Carbon Resistor	1 C
R403	$100 \mathrm{k}\Omega~\pm 10\%~rac{1}{4} \mathrm{W}$ Carbon Resistor	1 C
R404	22kΩ ±10% ¼W Carbon Resistor	1 C
R405	680Ω ±10% ¼W Carbon Resistor	1 C
R406	$100\Omega~\pm10\%~rac{1}{4}$ W Carbon Resistor	2 C
R407	47kΩ ±10% ¼W Carbon Resistor	2 C
R408	$22k\Omega \pm 10\%$ $^{1}4$ W Carbon Resistor	1 C
R409	2.2kΩ ±10% ¼W Carbon Resistor	1 C
R410	$1 k\Omega \pm 10\% \ \frac{1}{4} W$ Carbon Resistor	1 B
R411	10kΩ ±10% ¼W Carbon Resistor	1 B
R412	10kΩ ±10% ¼W Carbon Resistor	1 B
R413	100kΩ ±10% ¼W Carbon Resistor	1 B
R414	18kΩ ±10% ¼W Carbon Resistor	1 B
R415	5.6kΩ ±10% ¼W Carbon Resistor	2 A
R416	470Ω ±10% ¼W Carbon Resistor	1 B
R417	2.2kΩ ±10% ¼W Carbon Resistor	1 B
R418	10kΩ ±10% ¼W Carbon Resistor	2 C
R419	1.2MΩ ±10% ¼W Solid Resistor	2 C
R420	4.7kΩ ±10% ¼W Carbon Resistor	2 C
R421	3.3kΩ ±10% ¼W Carbon Resistor	2 B
R422	47Ω ±10% ¼W Carbon Resistor	2 B
R423	1.8kΩ ±10% ¼W Carbon Resistor	2 B
R424	6.8kΩ ±10% ¼W Carbon Resistor	2 B
R425	22kΩ ±10% ¼W Carbon Resistor	1 A
R426	22kΩ ±10% ¼W Carbon Resistor	ī A
R427	22kΩ ±10% ¼W Carbon Resistor	2 A
R428	22kΩ ±10% ¼W Carbon Resistor	2 A
R429	100kΩ ±10% ¼W Carbon Resistor	1 A
R430	220kΩ ±10% ¼W Carbon Resistor	1 A
R431	100k Ω \pm 10% ${}^1\!\!4$ W Carbon Resistor	2 A
R432	220k Ω \pm 10% ${}^1\!\!4$ W Carbon Resistor	2 A
C401	100 pF ±10% 50 WV Ceramic Capacitor	1 C
C402	1μF 50 WV Electrolytic Capacitor	10
C403	33μF 6.3 WV Electrolytic Capacitor	1 C
C404.	5000 pF ±10% 50 WV Styrol Capacitor	1 C
C405	10μF 25 WV Electrolytic Capacitor	10
C406	47μF 25 WV Electrolytic Capacitor	2 B
C407	$0.02\mu\text{F} \pm 10\%$ 50 WV Mylar Capcitor	1 B
C408	1μF 50 WV Electrolytic Capacitor	1 B
C409	6800 pF ±10% 50 WV Styrol Capacitor	1 B
C410	0.02 µF ±10% 50 WV Mylar Capatron	1 B
C411	1700 pF ±10% 50 WV Styrol Capacitor	2 A
C412	1500 pF ±10% 50 WV Styrol Capacitor	2 D
C413	220 pF ±10% 50 WV Styrol Capacitor	2 C
C414	330 pF ±10% 50 WV Ceramic Capacitor	2 C
C415	330 pF ±10% 50 WV Ceramic Capacitor	2 C
C416	50 pF ±10% 50 WV Ceramic Capacitor	2 B
C417	10μF 25 WV Electrolytic Capacitor	1 B
C418	0.02μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	2 B
C419	0.02μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	2 B
C420	3.3 µF 25 WV Electrolytic Capacitor	2 B
C421	10 μF 10 WV Electrolytic Capacitor	2 A
C422	220 pF ±10% 50 WV Ceramic Capacitor	1 A
C423	220 pF ±10% 50 WV Ceramic Capacitor	2 A
C424	560 pF ±10% 50 WV Styrol Capacitor	1 A

х		Y			Z
C425	1000 pF ± 10%	50 WV	Styrol	Capacitor	1 A
C426	0.03µF ±10%	50 WV	Mylar	Capacitor	1 A
C427	560 pF ± 10%	50 WV	Styrol	Capacitor	2 A
C428	1000 pF ± 10%	50 WV	Styrol	Capacitor	2 A
C429	$0.03\mu F \pm 10\%$	50 WV	Mylar	Capacitor	2 A
CR401	FP-38A			(80008)	1 A
CR402	FP-38A			(80008)	2 A
T401	19kHz			(424028)	10
T402	19kHz			(424029)	1 B
T403	38kHz			(424029)	1 A
L401	4.7MH			(490003)	10
402	4.7MH			(490003)	2C
403	68kHz			(424026)	2 C
-404	71kHz			(424027)	2 C
D401	IN34A			(031040)	1 B
D402	IN34A			(031040)	1 B
D403	IN34A♥			(031040-1)	1 A
D404	IN34A®			(031040-1)	1 A
) 405	IN34A®			(031040-1)	2 A
D406	IN34A♥			(031040-1)	2 A
D407	IN34A			(031040)	2 B
D 408	IN34A			(031040)	2 B
Γ R 401	2SC458LG(B)			(030531-1)	10
TR402	2SC536V, E			(0305244)	1 B
TR403	2SC536V, E			(0305244)	2 B
TR404	2SC536V, E			(0305244)	2C
R405	2SA564			(030008-1)	2 B
TR406	2SC536V, E			(0305244)	2 B

X: Parts No Y: Parts Name Z: Position of Parts

F-10381 (AM IF BLOCK)

R301 $1 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 A R302 $100\Omega \pm 10\%$ ¼W Carbon Resistor 2 A R303 $3.9 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 A R304 $33 k\Omega \pm 10\%$ ¼W Carbon Resistor 2 B R305 $100\Omega \pm 10\%$ ¼W Carbon Resistor 2 B R306 $56 k\Omega \pm 10\%$ ¼W Carbon Resistor 2 C R307 $22\Omega \pm 10\%$ ¼W Carbon Resistor 1 B R308 $22\Omega \pm 10\%$ ¼W Carbon Resistor 1 C R309 $1 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 C R310 $100\Omega \pm 10\%$ ¼W Carbon Resistor 2 C C R311 $10k\Omega \pm 10\%$ ¼W Carbon Resistor 1 C R311 $10k\Omega \pm 10\%$ ¼W Carbon Resistor 2 C C R312 $22\Omega \pm 10\%$ ¼W Carbon Resistor 2 C D R313 $100\Omega \pm 10\%$ ¼W Carbon Resistor 1 C R314 $6.8 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 C R315 $4.000\Omega \pm 10\%$ ¼W Carbon Resistor 1 C R316 $8.2 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 C R316 $8.2 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R319 $120k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R319 $120k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R319 $120k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R320 $1 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R321 $4.7 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R320 $1 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R321 $4.7 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R320 $1 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R321 $4.7 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R321 $4.7 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R321 $4.7 k\Omega \pm 10\%$ ¼W Carbon Resistor 1 D R320 $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 2 A C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 1 A C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 1 A C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 1 A C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 1 D $0.04 \mu F \pm 00\%$ 25 WV Mica Capacitor 1 B C $0.04 \mu F \pm 00\%$ 25 WV Mica Capacitor 1 B C $0.04 \mu F \pm 00\%$ 25 WV Mica Capacitor 2 B $0.04 \mu F \pm 00\%$ 25 WV Mica Capacitor 2 B $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 2 B $0.02 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 2 C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 2 C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 2 C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 2 C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 2 C $0.04 \mu F \pm 00\%$ 25 WV Ceramic Capacitor 1 C $0.02 \mu F \pm 00\%$ 25 WV Mica Capacitor 1 C $0.02 \mu F \pm 00\%$ 25 WV Mica Capacitor 1 C $0.02 \mu F \pm 00\%$ 2	x	Y Y	Z
R302 $100\Omega \pm 10\% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		•	
R303 3.9 kΩ ± 10% ¼W Carbon Resistor 1 A R304 33 kΩ ± 10% ¼W Carbon Resistor 2 B R305 100 Ω ± 10% ¼W Carbon Resistor 2 C R307 22 Ω ± 10% ¼W Carbon Resistor 2 C R307 22 Ω ± 10% ¼W Carbon Resistor 2 C R308 22 Ω ± 10% ¼W Carbon Resistor 2 C R309 1 kΩ ± 10% ¼W Carbon Resistor 2 C R311 10 kΩ ± 10% ¼W Carbon Resistor 2 C R312 22 Ω ± 10% ¼W Carbon Resistor 2 C R312 22 Ω ± 10% ¼W Carbon Resistor 2 C R313 100 Ω ± 10% ¼W Carbon Resistor 1 C R314 6.8 kΩ ± 10% ¼W Carbon Resistor 1 C R315 4.7 kΩ ± 10% ¼W Carbon Resistor 1 C R316 8.2 kΩ ± 10% ¼W Carbon Resistor 1 D R318 1 kΩ ± 10% ¼W Carbon Resistor 1 D R319 120 kΩ ± 10% ¼W Carbon Resistor 1 D R319 120 kΩ ± 10% ¼W Carbon Resistor 1 D R319 120 kΩ ± 10% ¼W Carbon Resistor 1 D R319 120 kΩ ± 10% ¼W Carbon Resistor 1 D R319 120 kΩ ± 10% ¼W Carbon Resistor 1 D R319 120 kΩ ± 10% ¼W Carbon Resistor 1 D R319 120 kΩ ± 10% ¼W Carbon Resistor 1 D 1	R 301	1kΩ ±10% ¼W Carbon Resistor	1 A
R304 $33 k \Omega \pm 10\% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$. 1.5	
R305 $100\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R306 $56k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R307 $22\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R308 $22\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R309 $1k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R311 $10k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R312 $22\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R312 $22\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R313 $100\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $2C$ R314 $6.8k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1C$ R315 $470\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1C$ R316 $8.2k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1C$ R317 $100\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1C$ R318 $1k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R319 $120k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R319 $120k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R310 $1k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R310 $1k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R323 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R324 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R325 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R326 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R327 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R329 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R320 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R321 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor $1D$ R322 $4.7k\Omega \pm$	i		
R306 $56k\Omega \pm 10\% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1		
R307		. 1.7.	
R308			
R309		,	
R311		, · ·	
R312		1. 5.	
R313 $100\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R314 $6.8 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R315 $470\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R316 $8.2 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R316 $8.2 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R318 $1 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R319 $120 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R319 $120 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R320 $1 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R321 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R322 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R323 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R324 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R325 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R326 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R327 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R329 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R329 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R329 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R329 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R329 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R329 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor R329 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic Capacitor R320 $4.7 k\Omega \pm 10\% \frac{1}{4}$ W Electrolytic		. 11	
R314 $6.8 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 C$ R315 $470\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 C$ R316 $8.2 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R318 $1 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R319 $120 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R320 $1 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R322 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R323 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R324 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R325 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R326 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R327 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R326 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R327 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R327 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R327 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R327 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R328 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R329 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R329 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R329 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R320 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R320 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R320 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R320 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R320 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R320 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor $1 D$ R321 $4.7 k\Omega \pm 10\% 1$		7 -	
R315 R316 R316 $8.2 k\Omega \pm 10\% \ $, · ·	
R316 R318 R319 $1 k\Omega \pm 10\% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
R318 R319 R319 R320 R320 R320 R321 R321 R321 R321 R321 R321 R321 R321	_		
R319		, -	
R321 4.7kΩ $\pm 10\%$ ½W Carbon Resistor 1 D C301 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 2 A C302 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 A C303 100μF 6.3 WV Electrolytic Capacitor 1 A C304 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 A C305 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 2 A C306 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 A C307 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 2 B C308 0.01μF $\pm 10\%$ 50 WV Mylar Capacitor 1 B C309 430 pF $\pm 5\%$ 50 WV Mica Capacitor 2 B C310 100μF 16 WV Electrolytic Capacitor 2 B C311 500 pF $\pm 5\%$ 50 WV Mica Capacitor 2 B C312 500 pF $\pm 5\%$ 50 WV Mica Capacitor 2 C C314 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 2 C C314 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 2 C C316 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 2 C C316 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 C C317 47μF 6.3 WV Electrolytic Capacitor 1 C C318 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 C C319 500 pF $\pm 5\%$ 50 WV Mica Capacitor 1 C C319 500 pF $\pm 5\%$ 50 WV Mica Capacitor 1 C C320 500 pF $\pm 5\%$ 50 WV Mica Capacitor 1 C C321 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 C C322 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 C C323 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 C C324 220μF 16 WV Electrolytic Capacitor 1 C C325 500 pF $\pm 5\%$ 50 WV Mica Capacitor 2 C C326 500 pF $\pm 5\%$ 50 WV Mica Capacitor 1 C C327 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 C C328 0.02μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 D C329 0.1μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 D C329 0.1μF $^{+80}_{-20\%}$ 25 WV Mylar Capacitor 1 D C329 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 D C329 0.04μF $^{+80}_{-20\%}$ 25 WV Mylar Capacitor 1 D C329 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 D C320 0.04μF $^{+80}_{-20\%}$ 25 WV Ceramic Capacitor 1 D	R 319	1. 1.	1 D
C301 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 A C302 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 A C303 $100\mu F$ 6.3 WV Electrolytic Capacitor 1 A C304 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 A C305 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 A C306 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 A C307 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 B C308 $0.01\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 B C309 $430 \text{pF} \pm 5\%$ 50 WV Mica Capacitor 2 B C310 $100 \mu F$ 16 WV Electrolytic Capacitor 2 B C311 $500 \text{pF} \pm 5\%$ 50 WV Mica Capacitor 2 B C312 $500 \text{pF} \pm 5\%$ 50 WV Mica Capacitor 2 C313 $4.7\mu F$ 16 WV Electrolytic Capacitor 2 C314 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C315 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C316 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C317 $47\mu F$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C318 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C319 $500 \text{pF} \pm 5\%$ 50 WV Mica Capacitor 1 C C320 $500 \text{pF} \pm 5\%$ 50 WV Mica Capacitor 1 C C321 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C322 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C324 $220\mu F$ 16 WV Electrolytic Capacitor 2 C C324 $220\mu F$ 16 WV Electrolytic Capacitor 2 C C324 $220\mu F$ 16 WV Electrolytic Capacitor 2 D C325 $500 \text{pF} \pm 5\%$ 50 WV Mica Capacitor 2 D C326 $500 \text{pF} \pm 5\%$ 50 WV Mica Capacitor 1 D C327 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D C329 $0.02\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.02\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.04\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.04\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C330 $0.04\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C330 $0.04\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C330 $0.04\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D	R320	IkΩ ±10% ¼W Carbon Resistor	1 B
C302 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 A C303 $100 \mu F$ 6.3 WV Electrolytic Capacitor 1 A C304 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 A C305 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 A C306 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 A C307 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 B C308 $0.01 \mu F \pm 10\%$ 50 WV Mylar Capacitor 1 B C309 430 pF ± 5 % 50 WV Mica Capacitor 2 B C310 $100 \mu F$ 16 WV Electrolytic Capacitor 2 B C311 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B C312 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C313 $4.7 \mu F$ 16 WV Electrolytic Capacitor 2 C314 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 C C315 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 C C316 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 B C317 $47 \mu F$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C319 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C319 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C320 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C320 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C321 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C322 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C324 $220 \mu F$ 16 WV Electrolytic Capacitor 2 C C C326 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C327 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C328 $0.02 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C327 $0.02 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Mylar Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Mylar Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Mylar Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D	R321	4.7k Ω \pm 10% $\frac{1}{4}$ W Carbon Resistor	1 D
C302 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 A C303 $100 \mu F$ 6.3 WV Electrolytic Capacitor 1 A C304 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 A C305 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 A C306 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 A C307 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 B C308 $0.01 \mu F \pm 10\%$ 50 WV Mylar Capacitor 1 B C309 430 pF ± 5 % 50 WV Mica Capacitor 2 B C310 $100 \mu F$ 16 WV Electrolytic Capacitor 2 B C311 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B C312 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C313 $4.7 \mu F$ 16 WV Electrolytic Capacitor 2 C314 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 C C315 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 2 C C316 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 B C317 $47 \mu F$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C319 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C319 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C320 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C320 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C321 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C322 $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C324 $220 \mu F$ 16 WV Electrolytic Capacitor 2 C C C326 $500 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C327 $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 C C328 $0.02 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 C C327 $0.02 \mu F \pm 5\%$ 50 WV Mica Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Mylar Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Mylar Capacitor 1 D $0.02 \mu F + \frac{80}{20}\%$ 25 WV Mylar Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D $0.04 \mu F + \frac{80}{20}\%$ 25 WV Ceramic Capacitor 1 D			
C303 $100 \mu F$ 6.3 WV Electrolytic Capacitor 1 A $0.02 \mu F$ $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor 2 A $0.04 \mu F$ $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor 2 A $0.04 \mu F$ $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor 1 A $0.04 \mu F$ $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor 1 A $0.02 \mu F$ $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor 2 B $0.01 \mu F$ $\pm 10\%$ 50 WV Mylar Capacitor 1 B $0.00 \mu F$ 16 WV Electrolytic Capacitor 2 B $0.01 \mu F$ 16 WV Electrolytic Capacitor 2 B $0.01 \mu F$ 16 WV Electrolytic Capacitor 2 B $0.01 \mu F$ 16 WV Electrolytic Capacitor 2 B $0.01 \mu F$ $0.02 \mu F$ $0.$	C 301		1 A
C304 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 A $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 A $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 A $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 B $0.01\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 B $0.02\mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01\mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01\mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01\mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01\mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01\mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01\mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C C C C C C C C C C C C C C C C	C302		2 A
C305 $0.04 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 A $0.04 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 A $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 B $0.01 \mu F \pm 10\%$ 50 WV Mylar Capacitor 1 B $0.00 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 10\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 C C C C C C C C C C C C C C C C C C	C 303		1 A
C306 $0.04 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 B $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 B $0.01 \mu F \pm 10\%$ 50 WV Mylar Capacitor 1 B $0.00 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.01 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 B $0.02 \mu F \pm 5\%$ 50 WV Mica Capacitor 2 A $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C $0.04 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C $0.04 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Mylar Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Mylar Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Mylar Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Mylar Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3 D $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 3	C304		1 A
C307 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 B C308 $0.01\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 B C309 $430 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 2 B C310 $100\mu F$ 16 WV Electrolytic Capacitor 2 B C311 $500 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 2 B C312 $500 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 2 A C313 $4.7\mu F$ 16 WV Electrolytic Capacitor 2 C C314 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C315 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C316 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 B C317 $47\mu F$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C319 $500 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 2 C C319 $500 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 1 C C320 $500 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 1 C C322 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C C324 $220\mu F$ 16 WV Electrolytic Capacitor 2 C C C324 $220\mu F$ 16 WV Electrolytic Capacitor 2 D C325 $500 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 2 D C326 $500 \text{pf} \pm 5\%$ 50 WV Mica Capacitor 1 D C327 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D C328 $0.02\mu F \pm 0\%$ 50 WV Mica Capacitor 1 D C329 $0.02\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.02\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.04\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.04\mu F \pm 20\%$ 25 WV Ceramic Capacitor 1 D C320 $0.04\mu F \pm 20\%$ 50 WV Mylar Capacitor 1 D C320 $0.04\mu F \pm 20\%$ 50 WV Mylar Capacitor 1 D C320 $0.04\mu F \pm 20\%$ 50 WV Mylar Capacitor 1 D	C 305	0.04μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	2 A
C308	C 306	0.04μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	1 A
C309 $430 \text{pF} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C310 $100 \mu \text{F}$ 16 WV Electrolytic Capacitor} C311 $500 \text{pF} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C312 $500 \text{pF} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C313 $4.7 \mu \text{F}$ 16 WV Electrolytic Capacitor} C314 $0.02 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C315 $0.02 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C316 $0.04 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C317 $47 \mu \text{F}$ 6.3 WV Electrolytic Capacitor} C318 $0.02 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C319 $500 \text{pF} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C320 $500 \text{pF} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C321 $0.04 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C322 $0.04 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C323 $0.02 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C324 $220 \mu \text{F} \frac{16}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C325 $500 \text{pF} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C326 $500 \text{pF} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C327 $0.02 \mu \text{F} \frac{+80}{-20} \% 25 \text{WV} \text{Ceramic Capacitor}$ C328 $0.02 \mu \text{F} \pm 5 \% 50 \text{WV} \text{Mica Capacitor}$ C329 $0.02 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C329 $0.1 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C329 $0.04 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C320 $0.04 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C320 $0.04 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C321 $0.02 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C322 $0.02 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C323 $0.04 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C324 $0.04 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C325 $0.04 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C326 $0.02 \mu \text{F} \pm 10 \% 50 \text{WV} \text{Mylar Capacitor}$ C327	C 307	0.02μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	2 B
C310 $100 \mu F$ 16 WV Electrolytic Capacitor 2 B C311 $500 pF \pm 5 \%$ 50 WV Mica Capacitor 2 A C312 $500 pF \pm 5 \%$ 50 WV Mica Capacitor 2 A C313 $4.7 \mu F$ 16 WV Electrolytic Capacitor 2 C C314 $0.02 \mu F \begin{array}{c} +80 \\ -20 \\ \end{array}$ 25 WV Ceramic Capacitor 2 C C C314 $0.02 \mu F \begin{array}{c} +80 \\ -20 \\ \end{array}$ 25 WV Ceramic Capacitor 2 C C C316 $0.04 \mu F \begin{array}{c} +80 \\ -20 \\ \end{array}$ 25 WV Ceramic Capacitor 3 C C C316 $0.04 \mu F \begin{array}{c} +80 \\ -20 \\ \end{array}$ 25 WV Ceramic Capacitor 4 C C C C C C C C C C C C C C C C C C	C 308	1	1 B
C311 $500 \mathrm{pF} \pm 5 \% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 2 B C312 $500 \mathrm{pF} \pm 5 \% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 2 A C313 $4.7 \mu \mathrm{F}$ 16 WV Electrolytic Capacitor 2 C C C314 $0.02 \mu \mathrm{F} \frac{+80}{-20} \%$ 25 WV Ceramic Capacitor 2 B C315 $0.02 \mu \mathrm{F} \frac{+80}{-20} \%$ 25 WV Ceramic Capacitor 2 C C C316 $0.04 \mu \mathrm{F} \frac{+80}{-20} \%$ 25 WV Ceramic Capacitor 1 B C317 $47 \mu \mathrm{F}$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02 \mu \mathrm{F} \frac{+80}{-20} \%$ 25 WV Ceramic Capacitor 2 C C C319 $500 \mathrm{pF} \pm 5 \% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 1 C C320 $500 \mathrm{pF} \pm 5 \% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 1 C C322 $0.04 \mu \mathrm{F} \frac{+80}{-20} \%$ 25 WV Ceramic Capacitor 1 C C323 $0.02 \mu \mathrm{F} \frac{+80}{-20} \%$ 25 WV Ceramic Capacitor 2 C C C324 $220 \mu \mathrm{F}$ 16 WV Electrolytic Capacitor 2 C C C325 $500 \mathrm{pF} \pm 5 \% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 2 D C326 $500 \mathrm{pF} \pm 5 \% 50 \mathrm{WV} $		1	
C312 $500 \mathrm{pF} \pm 5\% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor} 2\mathrm{A} \mathrm{C313} \mathrm{A.7} \mu \mathrm{F} \mathrm{16} \mathrm{WV} \mathrm{Electrolytic} \mathrm{Capacitor} \mathrm{2C} \mathrm{C314} \mathrm{0.02} \mu \mathrm{F} _{-20}^{+80} \mathrm{25} \mathrm{WV} \mathrm{Ceramic} \mathrm{Capacitor} \mathrm{2B} \mathrm{C315} \mathrm{0.02} \mu \mathrm{F} _{-20}^{+80} \mathrm{25} \mathrm{WV} \mathrm{Ceramic} \mathrm{Capacitor} \mathrm{C316} \mathrm{0.04} \mu \mathrm{F} _{-20}^{+80} \mathrm{25} \mathrm{WV} \mathrm{Ceramic} \mathrm{Capacitor} \mathrm{C317} \mathrm{C318} \mathrm{C317} \mathrm{C318} \mathrm{C319} \mathrm{C319} \mathrm{C319} \mathrm{C319} \mathrm{C319} \mathrm{C319} \mathrm{C319} \mathrm{C319} \mathrm{C319} \mathrm{C310} \mathrm{C319} \mathrm{C310} \mathrm{C310} $		'	
C313 4.7 μF 16 WV Electrolytic Capacitor 2 C C 314 $0.02 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 B C315 $0.02 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C C316 $0.04 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 B C317 $47 μF$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C C319 $500 μF \pm 5\%$ 50 WV Mica Capacitor 1 C C320 $500 μF \pm 5\%$ 50 WV Mica Capacitor 1 C C322 $0.04 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C C324 $220 μF$ 16 WV Electrolytic Capacitor 2 C C C325 $500 μF \pm 5\%$ 50 WV Mica Capacitor 2 D C326 $500 μF \pm 5\%$ 50 WV Mica Capacitor 1 D C327 $0.02 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D C328 $0.02 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D C329 $0.02 μF \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.1 μF \pm 10\%$ 50 WV Mylar Capacitor 1 D C330 $0.04 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D C330 $0.04 μF + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D		l ' - 1	
C314 $0.02\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 2 B $0.02\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 2 C C315 $0.04\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 1 B C317 $47\mu F$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 2 C C319 $500 \mathrm{pF} \pm 5\% 50$ WV Mica Capacitor 1 C C320 $500 \mathrm{pF} \pm 5\% 50$ WV Mica Capacitor 1 C C322 $0.04\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 1 C C323 $0.02\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 1 C C324 $220 \mu F$ 16 WV Electrolytic Capacitor 2 C C324 $220 \mu F$ 16 WV Electrolytic Capacitor 2 D C325 $500 \mathrm{pF} \pm 5\% 50$ WV Mica Capacitor 2 D C326 $500 \mathrm{pF} \pm 5\% 50$ WV Mica Capacitor 1 D C327 $0.02\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 1 D C327 $0.02\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 1 D C328 $0.02\mu F \pm 10\% 50$ WV Mylar Capacitor 1 D C329 $0.1\mu F \pm 10\% 50$ WV Mylar Capacitor 1 D C330 $0.04\mu F \stackrel{+80}{-20\%} 25$ WV Ceramic Capacitor 1 D		' '	
C315 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C316 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 B C317 $47\mu F$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C319 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 1 C C320 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 1 C C322 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C324 $220\mu F$ 16 WV Electrolytic Capacitor 2 D C325 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 2 D C326 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 2 D C326 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 1 D C327 $0.02\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D C328 $0.02\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.1\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C330 $0.1\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C330 $0.04\mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
C317 $47 \mu F$ 6.3 WV Electrolytic Capacitor 1 C C318 $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C319 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 1 C C320 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 1 C C322 $0.04 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C323 $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 2 C C324 $220 \mu F$ 16 WV Electrolytic Capacitor 2 D C325 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 2 D C326 $500 \mathrm{pF} \pm 5 \%$ 50 WV Mica Capacitor 1 D C327 $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C328 $0.02 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D C329 $0.12 \mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C329 $0.12 \mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C330 $0.04 \mu F + \frac{80}{-20}\%$ 25 WV Ceramic Capacitor 1 D			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 318	0.02μ F $^{+\infty}_{-20}\%$ 25 WV Ceramic Capacitor	2 C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2 C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 320	500 pF ± 5 % 50 WV Mica Capacitor	1 C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C322	0.04μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	1 C
C325 $500 \mathrm{pF} \pm 5\% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 2 D C326 $500 \mathrm{pF} \pm 5\% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 1 D C327 $0.02 \mu\mathrm{F} \pm 5\% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 1 C C328 $0.02 \mu\mathrm{F} \pm 10\% 50 \mathrm{WV} \mathrm{Mylar} \mathrm{Capacitor}$ 1 D C329 $0.1 \mu\mathrm{F} \pm 10\% 50 \mathrm{WV} \mathrm{Mylar} \mathrm{Capacitor}$ 1 D C330 $0.04 \mu\mathrm{F} \pm 80\% 25 \mathrm{WV} \mathrm{Ceramic} \mathrm{Capacitor}$ 1 D	C 323	0.02μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	2 C
C326 $500 \mathrm{pF} \pm 5 \% 50 \mathrm{WV} \mathrm{Mica} \mathrm{Capacitor}$ 1 D $0.02 \mu \mathrm{F} \frac{+80}{-20} \% 25 \mathrm{WV} \mathrm{Ceramic} \mathrm{Capacitor}$ 1 C $0.02 \mu \mathrm{F} \pm 10 \% 50 \mathrm{WV} \mathrm{Mylar} \mathrm{Capacitor}$ 1 D $0.1 \mu \mathrm{F} \pm 10 \% 50 \mathrm{WV} \mathrm{Mylar} \mathrm{Capacitor}$ 1 D $0.04 \mu \mathrm{F} \frac{+80}{-20} \% 25 \mathrm{WV} \mathrm{Ceramic} \mathrm{Capacitor}$ 1 D			2 D
C ₃₂₇ $0.02\mu F + \frac{+80}{-20}\%$ 25 WV Ceramic Capacitor 1 C C ₃₂₈ $0.02\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C ₃₂₉ $0.1\mu F \pm 10\%$ 50 WV Mylar Capacitor 1 D C ₃₃₀ $0.04\mu F + \frac{+80}{-20}\%$ 25 WV Ceramic Capacitor 1 D	C 325		2 D
C ₃₂₈ 0.02 μ F ±10% 50 WV Mylar Capacitor 1 D C ₃₂₉ 0.1 μ F ±10% 50 WV Mylar Capacitor 1 D C ₃₃₀ 0.04 μ F $^{+80}_{-20}$ % 25 WV Ceramic Capacitor 1 D	C 326	1	1 D
C ₃₂₈ 0.02 μ F ±10% 50 WV Mylar Capacitor 1 D C ₃₂₉ 0.1 μ F ±10% 50 WV Mylar Capacitor 1 D C ₃₃₀ 0.04 μ F $^{+80}_{-20}$ % 25 WV Ceramic Capacitor 1 D	C 327	0.02μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor	10
C ₃₃₀ 0.04 μ F $^{+80}_{-20}\%$ 25 WV Ceramic Capacitor 1 D	C328		1 D
	_		1 D
	C 330	$0.04\mu\text{F} + \frac{80}{20}\%$ 25 WV Ceramic Capacitor	1 D
- (_		
T301 AM RF (421005) 1 A , 2 A	T301	AM RF (421005)	1A,2A

X	Y		Z
T302	AM OSC	(422007)	1B,2
T303	AM IFT 455kHz	(423019)	18,2
T304	AM IFT 455kHz	(423019)	1C,2
T305	AM IFT 455kHz	(423018)	1D,2
TR301	2SC460©	(030535-1)	2 A
TR302	2\$C460®	(030535)	2 B
TR303	2SC460®	(030535)	1 C
TR304	2SC460©	(030535-1)	1 C
D301	IN60	(031033)	2 A
D302	IN60	(031033)	2 A
D303	IN60	(031033)	2 B
D304	IN60	(031033)	1 D

X: Parts No Y: Parts Name Z: Position of Parts

F-1180 〈DRIVER AMP. BROCK〉

X	Y	Z
R801	2.2kΩ ±10% ¼W Carbon Resistor	1 A
R802	150 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 A
R803	$560k\Omega \pm 10\% $	1 A
R804	$220\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor	1 A
R805	$3.3k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R806	$3.3k\Omega \pm 10\% \text{ //W}$ Carbon Resistor	1 A
R807	$10k\Omega \pm 10\% $	1 A
R808	$47k\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 A
R809	$56k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R 810	$1.8k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R 811	$3.9k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R812	$39\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 B
R813	$3.3k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R814	$1.5k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
R815	$220\Omega \pm 10\%$ ½W Carbon Resistor	2 A
R816	$100\Omega \pm 10\% \frac{1}{4}\text{W}$ Carbon Resistor	2 B
R817	$4.7\Omega \pm 10\%$ ½W Carbon Resistor	2 A
R818	$100\Omega \pm 10\% \frac{1}{4}$ W Carbon Resistor	2 A
R819	$10\Omega \pm 10\%$ ½W Solid Resistor	2 A
R820	8.2k Ω ±10% ½W Carbon Resistor	1 A
R821	$2.2k\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 C
R822	$150k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	1 C
R823	$560k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	10
R824	$220\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 C
R825	$3.3k\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 C
R826	$3.3k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 C
R827	$10k\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 C
R828	$47k\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	1 C
R829	$56k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 C
R830	$1.8k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	1 B
R831	$3.9k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R832	$39\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R833	$3.3k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R834	$1.5k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 C
R835	$220\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 C
R836	$100\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 B
R837	$4.7\Omega \pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	2 C
R838	$100\Omega \pm 10\%$ ½W Carbon Resistor	2 C
R839	$10\Omega \pm 10\%$ ½W Solid Resistor	2 C
R840	8.2k Ω ±10% $\frac{1}{4}$ W Carbon Resistor	10
11040	0.2kg 2.10/0 /4/1 Galban national	
C 801	$0.02 \mu F \pm 10\%$ 50 WV Mylar Capacitor	1 A
C802	100μF 25 WV Electrolytic Capacitor	1 A
C 803	220μF 10 WV Electrolytic Capacitor	1 A
C804	1μF 50 WV Electrolytic Capacitor	1 A
C 805	33μF 50 WV Electrolytic Capacitor	1 B
C 806	100μF 10 WV Electrolytic Capacitor	2 A
€807	10μF 50 WV Electrolytic Capacitor	1 B
C808	$0.047 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 A
C 809	47 pF ±10% 50 WV Ceramic Capacitor	1 A
C 811	$0.22 \mu F \pm 10\%$ 50 WV Mylar Capacitor	1 C
C812	100μF 25 WV Electrolytic Capacitor	1 C
C 813	220μF 10 WV Electrolytic Capacitor	1 C
C 814	1μF 50 WV Electrolytic Capacitor	1 C
C815	33 µF 50 WV Electrolytic Capacitor	1 B
C816	100μF 10 WV Electrolytic Capacitor	2 C
	1	

X .	Y	Z
C817	10μF 50 WV Electrolytic Capacitor	1 B
C818	$0.047 \mu F \pm 10\%$ 50 WV Mylar Capacitor	2 C
C 819	47 pF ±10% 50 WV Ceramic Capacitor	1 C
C823	47 pF ±10% 50 WV Ceramic Capacitor	2 A
C824	47 pF ±10% 50 WV Ceramic Capacitor	2 C
C825	330 pF ±10% 50 WV Ceramic Capacitor	2 B
C826	330 pF \pm 10% 50 WV Ceramic Capacitor	2 B
VR 801	200kΩB AC Balance Adjustor (103015)	1A,1E
VR802	1kΩB DC Bias Adjustor (103051)	2A,2E
VR803	200kΩB AC Balance Adjustor (103015)	18,10
VR804	1kΩB DC Bias Adjustor (103051)	2B,20
TR801	2SC458LG (C) (030531-1)	1 A
TR802	2SC627 (1), (2) (030558-1-2)	2 A
TR803	25C281 (B) (0305121-2)	2A,2E
TR804	2SC708A (0305480-2)	2 B
TR805	2SA537A (0300120-2)	2 A
TR806	2SC458LG (C) (030531-1)	1 C
TR807	2SC627 (1), (2) (030558-1-2)	2 C
TR808	2SC281 (B) (0305121-2)	2B,20
TR809	2SC708 A (0305480-2)	2 B
TR810	2SA537 A (0300120-2)	2 C

OTHER PARTS AND THEIR POSITION ON CHASSIS

X: Parts No Y: Parts Name

X	Y
R008	1.2k Ω \pm 10% $1/2$ W Solid Resistor
R009	$150\Omega \pm 10\% \%$ Carbon Resistor
R 010	$10\Omega \pm 10\%$ ½W Carbon Resistor
R 011	18Ω ±10% ¼W. Carbon Resistor
R120	$56\Omega \pm 10\% $
R121	$680\Omega \pm 10\%$ ½W Carbon Resistor
R635	68kΩ ±10% ¼W Carbon Resistor
R636	180kΩ ±10% ¼W Carbon Resistor
R637	100kΩ ±10% ¼W Carbon Resistor
R638	22kΩ ±10% ¼W Carbon Resistor
R639	15kΩ ±10% ¼W Carbon Resistor
R640	100kΩ ±10% ¼W Carbon Resistor
R641	220k Ω \pm 10% ${}^1\!\!4$ W Carbon Resistor
R642	100kΩ ±10% ¼W Carbon Resistor
R643	$220 \mathrm{k}\Omega \pm 10\%$ $\frac{1}{4} \mathrm{W}$ Carbon Resistor
R645	68kΩ ±10% ¼W Carbon Resistor
R646	180kΩ ±10% ¼W Carbon Resistor
R647	100kΩ ±10% ¼W Carbon Resistor
R648	15kΩ ±10% ¼W Carbon Resistor
R841 R842	$0.5\Omega~\pm 10\%~2$ W Wire Wound Resistor $0.5\Omega~\pm 10\%~2$ W Wire Wound Resistor
R843	$0.512 \pm 10\%$ 2 W Wire Wound Resistor 330 Ω $\pm 10\%$ 1/2 W Solid Resistor
R844	$0.5\Omega \pm 10\%$ 2 W Wire Wound Resistor
R845	$0.5\Omega \pm 10\%$ 2 W Wire Would Resistor
R846	$330\Omega \pm 10\%$ ½W Solid Resistor
R847	$560\Omega \pm 10\%$ 1 W Metal Film Resistor
R848	$560\Omega \pm 10\%$ 1 W Metal Film Resistor
C003	2200µF 80 WV Electrolytic Capacitor
C004	1000μF 50 WV Electrolytic Capacitor
C008	0.033μF 600 WV Oil Capacitor
C009	0.0047μF 600 WV Oil Capacitor
C011	0.04μF 50 WV Ceramic Capacitor
C012	0.04μF 50 WV Ceramic Capacitor
C013	0.01 μF 400 WV Oil Capacitor
C014	0.01 μF 400 WV Oil Capacitor
C622	100 pF \pm 10% 50 WV Ceramic Capacitor 100 pF \pm 10% 50 WV Ceramic Capacitor
C623	100pf ±10% 50 WV Ceramic Capacitor
C624 C625	100pF ±10% 50 WV Ceramic Capacitor
C821	2200 μF 75 WV Electrolytic Capacitor
C822	2200 µF 75 WV Electrolytic Capacitor
∨R204	$1M\Omega B$ Muting Adjustor (100508)
S001	UEH 12CD00 (113016)
S1(a~i)	Y-4-9-6 (110412)
S10	Y-1-4-4 (110118)
Sii	SL-13-8-10H6-2-2 (111004)
	(11.00.)
J 001	Headphones Jack (243007)
J 002	DIN Connector (243004)
TR407	2SB324 (030311)
TR811~814	2SB324 (030311) 2SD202 (030820-1)
CO001,2	AC Outlet (245001)
PU001	Multi Connector (242002)
PU002	Voltage Selector (241017)

X			
M 001	200μ A Tuning Meter		(090020)
T001	400-5338 Power Trans.		(400051)
PL001 PL002 PL008	7V 0.2A PHONO 1, 2 AUX Indicator		(040015)
PL003 PL004 PL005 PL006 PL007 PL011	6.3V 0.25A Dial Scale Lamp		(040008)
PL009	25V 0.09A Protector Indicator		(040007)
PLOID	6V 0.1A Stereo Indicator		(040016)
PL012	5V 0.06A Dial Pointer		(040010-1)
VC301∼303	AM 3-Gang Variable Capacitor		(120002)
T306	9G-013		(420027)
T102	300Ω -75 Ω Balance		(429002-1)
Foo1	Power Fuse	(3A)	(043004)
F801	Quick Acting Fuse	(2.5A)	(043011-1)
F802	Quick Acting Fuse	(2.5A)	(043011-1)

All rights reserve specifications subject to change without notice.

