Sei

$$2\text{ERPOTENZ} = \left\{ \langle M \rangle \middle| \begin{array}{c} M \text{ akzeptiert genau dann, wenn} \\ \text{die Eingabe die Form } 10^i, i \geq 0, \text{ hat.} \end{array} \right\}$$

Zeigen Sie, dass 2ERPOTENZ nicht entscheidbar ist.

Mit $\overline{H} = \{\langle M \rangle x \mid M$ hält nicht bei Eingabe $x\}$ ist das Komplement des Halteproblems gemeint.

Wir zeigen ein f, sodass

$$w \in \overline{H} \iff f(w) \in 2\text{ERPOTENZ}$$

Wir definieren:

$$f(w) = \begin{cases} \langle M_{reject} \rangle & \text{wenn } w \text{ nicht der Form } \langle M \rangle x \\ \langle M^{(x)} \rangle & \text{wenn } w \text{ der Form } \langle M \rangle x \end{cases}$$

Wobei $M^{(x)}$ wie folgt bei Eingabe von y vorgeht:

- 1. Form-Check: Wenn y nicht der Form 10^i mit $i \ge 0$ ist, dann lehne ab.
- 2. Nun: $y = 10^i$ mit $i \ge 0$. Simuliere M mit x als Eingabe für i Schritte.
- 3. Wenn M nach i Schritten hält, dann lehne ab, ansonsten akzeptiere.

f ist eine berechenbare Funktion.

Nun, angenommen $w \in \overline{H}$

$$w\in\overline{H}\implies w=\langle M\rangle x$$
 und M hält nicht bei Eingabe x
$$\implies f(w)=\langle M^{(x)}\rangle$$

Und $M^{(x)}$ akzeptiert genau dann, wenn x die Form 10^i mit $i \ge 0$ hat und M bei Eingabe von x nicht für i Schritte hält.

Eli Kogan-Wang Page 1

Da $\langle M \rangle x \in \overline{H}$ genau dann, wenn M nicht bei Eingabe von x hält, wird $M^{(x)}$ für alle Eingaben der Form 10^i mit $i \geq 0$ akzeptieren.

Damit ist $f(w) \in 2$ ERPOTENZ.

Damit $w \in \overline{H} \implies f(w) \in 2$ ERPOTENZ.

Nun angenommen $w \notin \overline{H}$

Damit ist entweder w nicht der Form $\langle M \rangle x \implies M^{(x)}$ lehnt ab $\implies f(w) \in 2$ ERPOTENZ

Oder $w = \langle M \rangle x$ und M hält bei Eingabe von x.

Damit gibt es ein i sodass M bei Eingabe von x nach i Schritten hält. Damit akzeptiert $M^{(x)}$ das Wort 10^i nicht.

Damit ist $f(w) \notin 2$ ERPOTENZ.

Wir haben gezeigt, dass $w \in \overline{H} \iff f(w) \in 2$ erPotenz. Und damit $\overline{H} \leq 2$ erPotenz.

Damit ist 2erPotenz nicht entscheidbar.

Eli Kogan-Wang Page 2