Programmable Photonic Circuits (PPC)

Semana 1 - Introdução

Unidade básica de célula (2x2 optical gate)

Fonte: Bogaerts et al, Nature 2020

São necessários dois pontos de controle

Algumas tecnologias de tuning que se destacam são:

- Thermal Phase-shifters
- Eletromechanical systems (MEMS, NEMS) (Couplers e Phase-shifters)
- Cristais líquidos

Forward-Only PPC

São mais simples de analisar e modelar matricialmente porém limitados em aplicações

Forward-Only Rectangular unitary meshes

Recirculating PPC

Possuem uma complexidade maior devido à circulação de potência e a maior dificuldade em realizar um controle por feedback. Porém são mais genéricos e desejáveis para mais aplicações.

Fonte: Pérez, D., Gasulla, I., Crudgington, L. *et al.* Multipurpose silicon photonics signal processor core. *Nat Commun* **8**, 636 (2017).

Fonte: Bogaerts, W., Pérez, D., Capmany, J. et al. Programmable photonic circuits. *Nature* **586**, 207–216 (2020).

PPC Genérico

Fonte: Bogaerts, W., Pérez, D., Capmany, J. *et al.* Programmable photonic circuits. *Nature* **586**, 207–216 (2020).

Fonte: Chen, Xiangfeng et al. "Graph Representations for Programmable Photonic Circuits." *Journal of Lightwave Technology* 38 (2020): 4009-4018.

Proposta de cronograma

Julho	Agosto	Setembro	Outubro	Novembro	Dezembro	
						 Pesquisa bibliográfica e propostas de aplicações
						Estudo sistêmico e matricial das células (Couplers, Phase-shifters)
						Estudo do Forward-Only PPC: Aplicação de circuitos de roteamento
						 Estudo do Recirculating PPC: Aplicação de filtros
						 Estudo do PPC Genérico: Aplicação de modulações OOK, 4-PAM, etc.

Sugestão para trabalhos futuros ou paralelos:

- Análise de interferência em regiões do circuito (Térmica, Crosstalk, etc.)
- Propostas para sistemas de controle de feedback

Programmable Photonic Circuits (PPC)

Semana 3 - Primeira proposta de arquitetura

Modelo de rede neural para CD Compensation

Equivalência de dois BULs em série

Através de dois BULs ligados em série, contanto que $\varphi 1 = \varphi 2$, o modelo é matematicamente idêntico ao de um MZI com controle interno e externo

Controle sucedido

$$egin{bmatrix} a_3 \ a_4 \end{bmatrix} = -je^{j\Delta} egin{bmatrix} e^{j\phi}sen heta & e^{j\phi}cos heta \ cos heta & -sen heta \end{bmatrix} egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

Controle precedido

$$egin{bmatrix} b_3 \ b_4 \end{bmatrix} = -je^{j\Delta} egin{bmatrix} e^{j\phi}sen heta & cos heta \ e^{j\phi}cos heta & -sen heta \end{bmatrix} egin{bmatrix} a_1 \ a_2 \end{bmatrix}$$

Modelo comercializado pela ipronics (Versão reduzida)

- Número de BULs: 53
- Número de portas ópticas: 32
- Número de contatos elétricos (phase-shifters): 106

Exemplo com 2 taps

Programmable Photonic Circuits (PPC)

Semana 4 - Estudo acerca do número de taps

Análise de grandezas determinantes para o número de taps

Número mínimo de Taps

$$N_T = \operatorname{int}\left(\frac{1/B + |L\beta_2\Delta\omega|}{\Delta_t}\right)$$

Em um contexto geral:

 $B \rightarrow \text{Taxa binária (Desejado o máximo possível)}$

 $L \rightarrow \text{Comprimento da Fibra (Desejado o máximo possível)}$

 $\Delta\omega$ \rightarrow Banda de pulso (Desejado o mínimo possível)

 $\beta_2 \to \text{GVD}$ da fibra (Constante)

 $\Delta t \rightarrow$ Múltiplo de delay (Relativo à disponibilidade da topologia)

A grandeza que possui **maior dependência** com a escolha da topologia e configuração do circuito programável é o **delay** Δt **entre os caminhos possíveis**. Sendo assim, o conhecimento dessa grandeza de antemão é determinante para a estimativa do número de taps mínimos do circuito.

Análise do delay Δt

Tomando-se os seguintes parâmetros:

- B = 100 Gbps
- L = 100 km
- $\Delta\omega = 100GHz$ (2-PAM)
- $\beta_2 = -0.021 \, ps^2/m$

Para um delay $\Delta t = 25ps$, $N_T = 8 taps$

Percebe-se a alta correlação do delay com o número de taps, que cresce hiperbolicamente a medida que o valor se torna pequeno

Análise do delay Δt em um PPC

Fonte: Daniel Pérez-López, Erica Sánchez, and José Capmany, "Programmable True Time Delay Lines Using Integrated Waveguide Meshes," J. Lightwave Technol. 36, 4591-4601 (2018)

Análise do delay Δt em um PPC

Caso	Material (ng)	Arquitetura	BUL (µm)	IL (dB/Cell)	∆ <i>t</i> (ps)
A _[1]	SOI (4.18)	MZI	300	0.20	4.18
E _[5]	SOI (4.18)	MZI	811	0.48	11.25

Proposta de novo modelo de rede neural

A motivação para a transição de um modelo paralelo para um modelo em série reside na capacidade de encaixar, topologicamente, mais taps em um circuito hexagonal.

Teoricamente, para se realizar essa transição é necessário considerar alguns pontos:

- Ao invés de um spliting de potência 1:N, seriam necessários N-1 splittings 1:2. Isso implica que para resultar no mesmo efeito (saídas homogêneas), as proporções de splittings devem ser diferentes para cada estágio de splitting.
- A presença de diversos estágios de splitting no caminho percorrido de um sinal poderá implicar em **efeitos adicionais** (como mudança de fase), que poderiam ser compensados pelos phase-shifters a posteriori. Caso contrário isso resultará necessariamente em uma nova representação do sinal final y(t)

Proposta de topologia: Saídas em várias direções

Referências

- 1. Horikawa T, Shimura D, Mogami T. Low-loss silicon wire waveguides for optical integrated circuits. MRS Communications. 2016;6(1):9-15. doi:10.1557/mrc.2015.84
- 2. Chris G. H. Roeloffzen, Leimeng Zhuang, Caterina Taddei, Arne Leinse, René G. Heideman, Paulus W. L. van Dijk, Ruud M. Oldenbeuving, David A. I. Marpaung, Maurizio Burla, and Klaus -J. Boller, "Silicon nitride microwave photonic circuits," Opt. Express 21, 22937-22961 (2013)
- 3. Z. Sheng et al., "A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology," in IEEE Photonics Journal, vol. 4, no. 6, pp. 2272-2277, Dec. 2012, doi: 10.1109/JPHOT.2012.2230320.
- G. W. Cong, K. Suzuki, S. H. Kim, K. Tanizawa, S. Namiki, and H. Kawashima, "Demonstration of a 3-dB directional coupler with enhanced robustness to gap variations for silicon wire waveguides," Opt. Express 22, 2051-2059 (2014)
- 5. Pérez-López, D., Gutierrez, A., Sánchez, D. et al. General-purpose programmable photonic processor for advanced radiofrequency applications. Nat Commun 15, 1563 (2024). https://doi.org/10.1038/s41467-024-45888-7

Programmable Photonic Circuits (PPC)

Semana 5 - Estudo acerca das topologias de rede neural

Comparação entre modelos de NN (Neural Network)

É realizado uma comparação entre os dois modelos com base nos seguintes pontos:

- Footprint efetiva
- Equação característica
- Quantidade e configuração de splitters
- Perdas (ditada pela quantidade de células)

Modelo paralelo

Comparação entre modelos de NN: Número de Splitters

Em relação ao número de splitters **na entrada** da topologia, é necessário observar pela aplicação. Em um circuito fotônico programável, desconsiderando a utilização de um HPB (*High Performance Block*), como as divisões são feitas a partir de um MZI em modo coupler, deve limitar-se somente a utilizar conjuntos de **splitters 1:2**.

Dessa forma, é interessante representar um splitter 1:N como um conjunto de splitters 1:2, quantificando N-1 splitters de entrada no total

Splitter 1:8 representado por 7 splitters 1:2

Comparação entre modelos de NN: Número de Splitters

	ΔL (BULs)								
K	0	2	4	6	8	10	12	14	
K1	0.500	0.523	0.454	0.431	0.409	0.387	0.365	0.344	
K2	0.500	0.470	0.274	0.247	0.221	0.196	0.174	0.153	
K3	0.500	0.697	0.186	0.158	0.132	0.110	0.091	0.074	
K4	0.667	0.783	0.134	0.107	0.084	0.065	0.050	0.038	
K5	0.333	0.835	0.100	0.075	0.055	0.039	0.028	0.019	
K6	0.600	0.869	0.077	0.054	0.037	0.024	0.016	0.010	
K7	0.375	0.814	0.060	0.039	0.025	0.015	0.009	0.005	

Para IL = 0.20dB/cell

No modelo em série, cada splitter possui sua própria constante de acoplamento, necessárias assimpara dividir igualmente a potência em cada ramo, o que implica em diferenças nas defasagens dos phase-shifters θ_1 e θ_2 . No total, N-1 splitters 1:2 são necessários.

$$a_1$$
 a_2
 θ_1
 b_2

$$\theta = \frac{\theta_1 - \theta_2}{2}$$

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = -je^{j\Delta} \begin{bmatrix} sen\theta & cos\theta \\ cos\theta & -sen\theta \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

Comparação entre modelos NN: Equação característica e splitters

Em um caso sem perdas, a diferença é dada pelo **atraso nos splitters**. No modelo paralelo, quando N é uma potência de 2 (2,4,8,16,...) o atraso ϕ_S é igual para cada ramo.

Comparação entre modelos NN: Equação característica e splitters

No modelo em série, para cada ramo, há um atraso ϕ_{Si} associado. Devido à inerência do atraso causado pelos componentes do MZI (representado por Δ). Se considerarmos cada MZI com o mesmo Δ tem-se:

$$\phi_{Si} = i \cdot \Delta \qquad \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = -je^{j\Delta} \begin{bmatrix} sen\theta & cos\theta \\ cos\theta & -sen\theta \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

Para compensar isso sugere-se inserir algum nível DC nos pesos de cada ramo da rede neural, de forma que em cada ramo, com todos os pesos ϕ_i de fase nulos, o atraso final seja o mesmo. Ou seja:

$$\phi_{i_{new}} = \phi_i + \phi_{i_{DC}} = \phi_i + (N - i) \cdot \Delta$$

De forma que, por fim, para o modelo em série:

$$y(t) = \sum_{i=1}^{N} x[t - (i-1)\Delta t] \cdot a_i e^{j\phi_i} \cdot e^{j(N \cdot \Delta)}$$

Programmable Photonic Circuits (PPC)

Semana 6 - Simulação com PCC Cell ideal

Modelo PPC Cell ideal

Simulação: PPC Cell ideal - Ganho

$$\begin{cases} b_1 = -ja_1 \cdot e^{j(\frac{\theta_1 + \theta_2}{2} + \Delta_{\text{wg}})} \cdot sen(\frac{\theta_1 - \theta_2}{2}) \\ b_2 = -ja_2 \cdot e^{j(\frac{\theta_1 + \theta_2}{2} + \Delta_{\text{wg}})} \cdot cos(\frac{\theta_1 - \theta_2}{2}) \end{cases}$$

Simulação: PPC Cell ideal - Fase

$$\begin{cases} b_1 = -ja_1 \cdot e^{j(\frac{\theta_1 + \theta_2}{2} + \Delta_{\text{wg}})} \cdot sen(\frac{\theta_1 - \theta_2}{2}) \\ b_2 = -ja_2 \cdot e^{j(\frac{\theta_1 + \theta_2}{2} + \Delta_{\text{wg}})} \cdot cos(\frac{\theta_1 - \theta_2}{2}) \end{cases}$$

Simulação: Splitter 1x4 usando 3 PPC Cells ideais

Simulação: Splitter 1x4 usando 3 PPC Cells ideais

Por fim, é analisado a **defasagem para cada caminho**. A diferença da port 2 geral em π radianos é hipotetizado ser um erro de referência do INTERCONNECT. Se for o caso, é prudente dizer que a defasagem em cada caminho é a mesma (como analisado anteriormente para NN Paralelo).

$$y(t) = \sum_{i=1}^{N} x[t - (i-1)\Delta t] \cdot a_i e^{j\phi_i} \cdot e^{j\phi_S}$$

Programmable Photonic Circuits (PPC)

Semana 7 - Simulação com PCC Cell (TOPS IMEC)

Modelo PPC Cell com TOPS do IMEC

O modelo do phase-shifter escolhido é o **SWGCTE_WGNPLUS_450_600_200K**, que opera na banda C

Modelo PPC Cell com TOPS do IMEC

Simulação: Splitter 1x4 usando 3 PPC Cells TOPS IMEC

Para replicar um splitter 1x4 utilizando TOPS de 100um do pdk do IMEC, no melhor dos casos é necessário aplicar **15.25 V** em cada porta elétrica.

Em algumas aplicações, um limite convencional para o *drive voltage* é de **5V**, um valor abaixo do utilizado, inviabilizando o uso do phaseshifter do IMEC como modelo.

Programmable Photonic Circuits (PPC)

Semana 8 - Simulação com PCC Cell (Ebeam heater)

Modelo Waveguide heater do EBeam

- Insertion Loss = 5dB/cm
- Ganho invariante na frequência

Modelo Waveguide heater do EBeam

Por limitação do modelo, a tensão máxima permitida pelo heater é aproximadamente 1.235 V.

Modelo PPC Cell com heater do EBeam

Modelo PPC Cell com heater do EBeam

Tensão CROSS = 0 V Tensão COUPLING ≈ 0.420 V Tensão BAR ≈ 0.595 V

Simulação: Splitter 1x4 usando 3 PPC Cells com heater EBeam

Simulação: Splitter 1x4 usando 3 PPC Cells com heater EBeam

A razão pela qual existe uma diferença de ganho entre as portas se remete ao nível de imprecisão imposta na tensão do heater. A depender do ruído de tensão inerente à fonte, o mesmo pode ocasionar um desbalanceamento entre as portas, principalmente quando se considera mais splitters em série.

Cálculo de potência dos heaters: estimativa inicial

Apesar de não estar atualizado, acerca do material M1, é dito:

- Molibdênio (Mo) 250nm de expessura
- Sheet resistance: 21 ohm/sq.
- Alinhado ao guia de silício

Cálculo da resistência do heater:

Com
$$W = 0.5 \mu m$$
:

$$R = R_{\rm s} \frac{L}{W} = 21 \frac{811 * 10^{-6}}{0.5 * 10^{-6}}$$

$$= 34.062 ohms$$