Exercise 4.1 Let $f:(X,T_X)\to (Y,T_Y)$ be a function. Prove that if $f(cl(A))\subset cl(f(A))$ for every set A then f is continuous (for the opposite implication, see one of the proofs in Lecture 7).

Exercise 4.2 Let (X, T) be a Hausdorff (i.e., T_2) topological space and let $(X \times X, T_{X \times X})$ be the Cartesian product of X and X, with the product topology. Prove that the following set (called "the diagonal"):

$$D = \{(x, x) : x \in X\}$$

is closed in $(X \times X, T_{X \times X})$.

Exercise 4.3 A topological space (X,T) is compact if every open cover of X has a finite subcover. Let (X,T_X) and (Y,T_Y) be compact topological spaces. Prove (directly, i.e., without using equivalent definitions of compact spaces) that every open cover of their Cartesian product $X \times Y$, considered with the product topology, has a finite subcover.

Exercise 4.4 Prove Theorem 7.13 (using the Lemma below it).

Exercise 4.5 Let (X, ρ_X) and (Y, ρ_Y) be metric spaces, let (X, ρ_X) be a second-countable space and let $f: X \xrightarrow{\text{onto}} Y$ be a continuous function. Prove that (Y, ρ_Y) is a second-countable space.

Exercise 4.5 Let (X, ρ_X) and (Y, ρ_Y) be metric spaces, let (X, ρ_X) be a second-countable space and let $f: X \xrightarrow{\mathrm{onto}} Y$ be a continuous function. Prove that (Y, ρ_Y) is a second-countable space.

=> (T, PI) separable.

By Theorem 7.8: $g: (x, y_{g}) \xrightarrow{\text{out}} (x, y_{g}$