2 Цифровые интерфейсы UART и SPI

Интерфейсы

- Последовательные (SPI, I2C, I2S, U(S)ART, USB и пр.)
- Параллельные (LPT)

(Reference: microcontrollerpicavr.blogspot.in)

1. U(S)ART-интерфейс

U(S)ART

Universal (synchronous and) asynchronous receiver-transmitter - Универсальный (синхронный и) асинхронный приёмопередатчик

Передача данных

LSB - least significant bit (наименее значащий бит)

MSB - most significant bit (наиболее значащий бит)

Формат передачи данных little-endian

Передача 00101101

Even parity (чётность) Odd parity (нечётность)

RS-232

 $\pm 5 B$ $\pm 10 B$ $\pm 12 B$

 $\pm 15 B$

7

Выборка

Частота тактового сигнала в 8, 16 или 32 раза выше битовой скорости (оверсэмплинг, oversampling)

Скорость передачи данных

- 300, 600, 1200, 2400, <u>4800</u>, <u>9600</u>, 19200, <u>38400</u>, <u>57600</u>,
 <u>115200</u>, 230400, 460800, 921600 бод (бит/с)
- baudrate, bitrate

$$v_{bit} = \frac{d}{1 + d + s + p} \cdot v_{UART}$$

S - битовая скорость (бод)

f - внутренняя частота процессора (Гц)

https://www.rotr.info/electronics/mcu/arm usart.htm

Выводы U(S)ART

Вывод	Направление	Назначение
RX	Вход	Вход данных (приём)
TX	Выход	Вывод данных (передача)
nRTS (request to send)	Выход	Готовность передатчика
nCTS (clear to send)	Вход	Готовность приёмника
SCLK	Выход	Тактирование
GND		Земля

Подключение (асинхронное)

Подключение (синхронное)

Параметры UART

- Скорость передачи данных (9600 бод)
- Количество передаваемых бит (от 5 до 9)
- Наличие и тип бита чётности
 - o N (none)- нет
 - о **E** (even parity) бит чётности
 - O (odd parity) бит нечётности
 - о M (marked parity bit) отмеченный, всегда равен 1
 - S (space parity bit) пропуск, всегда равен 0
- Количество стоп-бит (1, 1,5 или 2 бита определяет длительность)
 - 9600/8-N-1 скорость 9600 бод, 8 бит передаётся без бита чётности, 1 стоп-бит.
 - э 19200/5-Е-2 скорость 19200 бод, 5 бит передаётся с битом чётности, 2 стоп-бита.

Характеристики

Универсальный интерфейс

Передача по оптоволокну, витой паре, инфракрасному излучению

Множество разновидностей (RS-232, RS-485, IrDA, SMART-карты (SIM, спутниковое телевидение, банковские карты))

Дуплекс, полудуплекс, симплекс

2. SPI-интерфейс

SPI-интерфейс (Serial Peripheral Interface)

SPI-интерфейс

Виды подключений

Независимое

Каскадное (кольцевое)

Режимы работы SPI (CPOL_CPHA)

Режим	CPOL	СРНА	Полярность тактового сигнала в режиме ожидания	Выборка данных	
0	0	0	Низкий уровень (передний фронт - нарастающий, задний - спадающий)	Данные отбираются по переднему фронту, а устанавливаются по заднему	
1	0	1	Низкий уровень (передний фронт - нарастающий, задний - спадающий)	Данные отбираются по заднему фронту, а устанавливаются по переднему	
2	1	0	Высокий уровень (передний фронт - спадающий, задний - нарастающий)	Данные отбираются по переднему фронту, а устанавливаются по заднему	
3	1	1	Высокий уровень (передний фронт - спадающий, задний - нарастающий)	Данные отбираются по заднему фронту, а устанавливаются по переднему	

Режимы

Осциллограммы

Передача 0х64

Дуплексная передача данных

Структурные схемы SPI

Master

Slave

Структурная схема SPI

Скорость передачи данных

Микроконтроллер	Производитель	Макс. частота СРU, МГц	Время выполнения команды	Макс. битовая частота SPI, МГц
M68HC11	Motorola	2	≥1 мкс	1
M68HC12	Motorola	8	≥125 нс	2
ADuC70xx	Analog Devices	41,78	≥ 24 нс	3,482
ATMmega64	Atmel	8-12	1–3 такта	F _{CPU} /2
PIC18Fxxx	MicroChip	10	≥100 нс	2,5

Применение

- ЦАП/АЦП
- Потенциометры
- Датчики
- Различная память
- ЖК-индикаторы
- Таймеры реального времени (RTC, real time clock)

Особенности SPI

- Простая схемная реализация
- О Полный дуплекс
- Высокая скорость передачи данных
- Отсутствует контроль в линии (нет управления потоком данных)
- О Отсутствие обнаружения ошибок
- О Невысокая дальность передачи данных