Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления» «Программное обеспечение ЭВМ и информационные технологии»		
КАФЕДРА			
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»		

ОТЧЕТ по лабораторной работе №1

Название:	Гистограмма и эмпирическая функция распределения			
Дисциплина:	Математическая	статистика		
Студент	<u>ИУ7-66Б</u> Группа	Подпись, дата	А.Д. Ковель И.О.Фамилия	
Преподаватель		Подпись, дата	Т. В. Андреева И. О. Фамилия	

1 Содержание

Цель работы: построение гистограммы и эмпирической функции распределения.

- Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ:
 - 1. вычисление максимального значения M_{max} и минимального значения M_{min} ;
 - 2. размаха R выборки;
 - 3. вычисление оценок $\hat{\mu}$ и S^2 математического ожидания МХ и дисперсии DX;
 - 4. группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - 5. построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - 6. построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теория

Пусть $\vec{x} = (x_1, \dots, x_n)$ — реализация случайной выборки из генеральной совокупности X. n — объем выборки.

- 1. Максимальное значение выборки: $M_{max} = \max(x_1, x_2, \dots, x_n),$
- 2. Минимальное значение выборки: $M_{min} = \min(x_1, x_2, \dots, x_n),$
- 3. Размах выборки: $R = M_{max} M_{min}$,
- 4. Оценка математического ожидания: $\hat{\mu}(\vec{X}) = \frac{1}{n} \sum_{i=1}^{n} x_i$,
- 5. Оценка дисперсии: $S^2(\vec{X}) = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$.

Расположим значиения x_1, x_2, \dots, x_n в порядке неубывания.

$$x_{(1)}, x_{(2)}, \dots, x_{(n)}$$
 (2.1)

 $x_{(i)}$ — это элемент вариационного ряда.

 $\mathit{Интервальный статистический ряд } -$ это ряд $J = [x_{(i)}, x_{(n)}]$, который разбивают на m промежутков, ширина которых определяется согласно 2.2:

$$\Delta = \frac{|J|}{m} = \frac{R}{m},\tag{2.2}$$

$$J_{i} = \left[x_{(1)} + (i-1) \Delta; \ x_{(i)} + i\Delta \right), \ i = \overline{1, m-1},$$

$$J_{m} = \left[x_{(1)} + (m-1\Delta), \ x_{(n)} \right).$$
(2.3)

 $Эмпирической плотностью распределения соответствующей выборке <math>\vec{x}$ называется функция 2.4:

$$f_n(x) = \begin{cases} \frac{n_i}{n \cdot \Delta} &, x \in J_i, \\ 0 &, \text{иначе.} \end{cases}$$
 (2.4)

где n_i — количество значений выборки в J, интервале интервального ряда. Δ — длина интервала.

Гистограмма — график эмпрической функции плотности распределения.

 $n(t, \vec{x})$ — число компонент вектора \vec{x} , которые меньше чем t. Эмпирической функцией распределения, построенной по выборке \vec{x} называется функция $F_n: \mathbb{R} \to \mathbb{R}$, определенная правилом 2.5.

$$F_n(t) = \frac{n(t, \vec{x})}{n} \tag{2.5}$$

3 Результаты

```
(a) (M_max) = -2.450000 (M_min) = -7.260000 (6) R = 4.810000 (6) R = 4.810000 (7) (8) Оценка математического ожидания (mu) = -4.757917 (7) Оценка дисперсии (s_2) = 0.811501 (7) Группировка значений выборки в m = [log_2 n] + 2 интервала: [-7.260000 : -6.658750) - 3 вхожд. [-6.658750 : -6.057500) - 4 вхожд. [-6.057500 : -5.456250) - 20 вхожд. [-5.456250 : -4.855000) - 29 вхожд. [-4.855000 : -4.253750) - 30 вхожд. [-4.253750 : -3.652500) - 21 вхожд. [-3.652500 : -3.051250) - 10 вхожд. [-3.051250 : -2.450000] - 3 вхожд.
```

Рисунок 3.1 – Результат работы программы

Рисунок 3.2 – Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины

Рисунок 3.3 – График эмпирической функции распределения и функции распределения нормальной случайной величины