4. Groups and Symmetries

4.1 Cycles in Symmetric Groups

Symmetric groups (permutation groups) S_n consists of all bijections.

One way to express an element $\sigma \in S_n$ is to list the image of each number 1,2,...,n via σ as follows: $\sigma(1),...,\sigma(n)$

 $(a_1,...,a_k)$ and $(b_1,...,b_k)$ are disjoint if $a_1,...,a_k,b_1,...,b_k$ are all distinct.

Prop. Disjoint cycles commute.

Prop. Every $\sigma \in S_n$ can be written as a product of disjoint cycles in a unique way, up to reordering the cycles.

Pf. define an equivalence relation on $\{1,...,n\}$ by $i \sim j$ if $\exists m \in \mathbb{Z}, j = \sigma^m(i)$.

$$\sigma = ((a_1, \sigma(a_1), ..., \sigma^{m_1-1}(a_1)), ..., (a_k, \sigma(a_k), ..., \sigma^{m_k-1}(a_k)))$$

Write $\sigma \in S_n$ as a product of disjoint cycles, and we list the lengths of the cycles in an increasing order: $1 \le n_1 \le \ldots \le n_r$ so that $n_1 + \ldots + n_r = n$. We define the cycle type of σ to be (n_1, \ldots, n_r) , or $n_1 + \ldots + n_r$.

Example: $\sigma = (123)(45) \in S_7$, cycle type is (1, 1, 2, 3).

Lemma.
$$\sigma \in S_n$$
. $\sigma(a_1,...,a_k)\sigma^{-1} = (\sigma(a_1),...,\sigma(a_k))$.

Prop. Two elements in S_n are conjugate to each other \iff they have the same cycle type.

Example:
$$\sigma = (12)(345) \in S_7$$
, $\sigma' = (34)(167) \in S_7$

Let
$$au(1)=3, au(2)=4, au(3)=1, au(4)=6, au(5)=7, au(6)=2, au(7)=5,$$
 so $au=(13)(246)(57).$

4.2 Signature Functions and Alternating Groups

Every $\sigma \in S_n$ can be written as a product of 2-cycles:

$$(a_1,...,a_k)=(a_1a_k)(a_1a_{k-1})\dots(a_1a_2).$$

Now define a homomorphism $T: S_n \to GL_n(\mathbb{R})$ by sending the permutation $\sigma \in S_n$ to the $n \times n$ matrix whose j-th column is the unit vector $e_{\sigma(j)}$.

Example:
$$\sigma=(123)$$
. $T(\sigma)=[e_{\sigma(1)}e_{\sigma(2)}e_{\sigma(3)}]=[e_2e_3e_1]=\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}$

The signature function of S_n is defined to be

$$sgn: S_n \xrightarrow{T} GL_n(\mathbb{R}) \xrightarrow{\det} \{\pm 1\}$$

It is a surjective homomorphism.

If $sgn(\sigma)=+1$, we call it an even permutation.

If $sgn(\sigma) = -1$, we call it an odd permutation.

Prop. If $\sigma=(a_ia_j)$ is a 2-cycle, then $sgn(\sigma)=-1$.

If
$$\sigma = (a_1...a_k)$$
 is a k -cycle, then $sgn(\sigma) = (-1)^{k-1}$.

Example:
$$\sigma=(135)(24)(789)\in S_{10}$$
, $sgn(\sigma)=(-1)^{3-1}(-1)^{2-1}(-1)^{3-1}=-1$.

The normal subgroup of S_n defined by $A_n = \ker(sgn) = \{\sigma \in S_n | sgn(\sigma) = +1\}$ is called the alternating subgroup of n elements. It consists of all the even permutations in S_n .

By the First Isomorphism Theorem, $S_n/A_n\cong \{\pm 1\}$. In particular, $rac{|S_n|}{|A_n|}=2$, $|A_n|=rac{S_n}{2}=rac{n!}{2}$

- $A_1 = S_1 = \{id\}$
- ullet When $n\geq 2$, $|A_n|=rac{S_n}{2}=rac{n!}{2}$.

$$A_2=\{id\}$$

- $A_3 = \{id, (123), (132)\}$
- $A_4=\{id,(12)(34),(13)(24),(14)(23),(123),(132)\}$ A normal group of A_4 : $\{id,(12)(34),(13)(24),(14)(23)\}\cong K_4$

A group G is simple if it has no proper normal subgroups, i,e., its only normal subgroups are $\{1\}$ and G.

• A_n is simple for $n \geq 5$

4.3 Isometry on Euclidean Spaces

The dot product of two vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ is $<\vec{u}, \vec{v}> = \vec{u}^T \vec{v}$.

The length of $\vec{v} \in \mathbb{R}^n$ is $|\vec{v}| = <\vec{v}, \vec{v}>$.

The distance of two vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ is the length $|\vec{u} - \vec{v}|$.

An isometry of \mathbb{R}^n is a distance preserving map $f:\mathbb{R}^n o\mathbb{R}^n$, i.e., for any $\vec{u},\vec{v}\in\mathbb{R}^n$, $|f(\vec{u})-f(\vec{v})|=|\vec{u}-\vec{v}|$.

Lemma. If f,g are isometries on \mathbb{R}^n , then $f\circ g$ is also an isometry on \mathbb{R}^n .

Each $\vec{a} \in \mathbb{R}^n$ induces a translation map: $t_{\vec{a}} : \mathbb{R}^n \to \mathbb{R}^n$, $\vec{u} \mapsto \vec{u} + \vec{a}$.

This is an isometry since $\vec{u}, \vec{v} \in \mathbb{R}^n$: $|t_{\vec{a}}(\vec{u}) - t_{\vec{a}}(\vec{v})| = |(\vec{u} + \vec{a}) - (\vec{v} + \vec{a})| = |\vec{u} - \vec{v}|$.

 $T:\mathbb{R}^n o \mathbb{R}^n$ is a linear operator if:

- 1. $\forall ec{u}, ec{v} \in \mathbb{R}^n$, $T(ec{u} + ec{v}) = T(ec{u}) + T(ec{v})$
- 2. $\forall c \in \mathbb{R}, \vec{u} \in \mathbb{R}^n, T(c\vec{u}) = cT(\vec{u})$

 $T:\mathbb{R}^n o\mathbb{R}^n$ is an orthogonal linear operator if it is a linear operator s.t. $orall ec{u},ec{v}\in\mathbb{R}^n$, $< T(ec{u}),T(ec{v})>=<ec{u},ec{v}>$.

A $n \times n$ invertible matrix A is orthogonal if $A^{-1} = A^T$. The set of all $n \times n$ orthogonal matrices forms a subgroup of $GL_n(\mathbb{R})$, called the orthogonal linear group $O_n(\mathbb{R})$.

Thm. $T:\mathbb{R}^n \to \mathbb{R}^n$ is a linear operator, and $A \in O_n(\mathbb{R})$ is its matirx. Then T is an orthogonal linear operator $\iff A$ is an orthogonal matrix.

Thm. The following conditions of a map $f:\mathbb{R}^n o\mathbb{R}^n$ are equivalent:

- 1. f is an isometry that fixes $\vec{0}$.
- 2. f preserves the dot product.
- 3. f is an orthogonal linear operator.

4. Fix a standard basis $(e_1,...,e_n)$ for \mathbb{R}^n , then $f(ec{v})=Aec{v}$ for some $A\in O_n(\mathbb{R})$.

Cor. Every isometry $f: \mathbb{R}^n \to \mathbb{R}^n$ can be decomposed into $f = t_{\vec{a}} \cdot \phi$, where $t_{\vec{a}}$ is the translation along $\vec{a} = f(\vec{a})$, ϕ is an orthogonal linear operator.

Lemma.
$$\phi \cdot t_{ec{a}} = t_{\phi(ec{a})} \cdot \phi$$

Cor. The set of all isometries on \mathbb{R}^n with composition of functions form a group M_n , called the group of isometry on \mathbb{R}^n .

Cor. Let T_n be the set of translations on \mathbb{R}^n , O_n be the set of orthogonal linear operators on \mathbb{R}^n . Then O_n is a subgroup of M_n and T_n is a normal subgroup of M_n .

4.4 Isometry on the Plane

Lemma. The determinant of an orthogonal matrix is 1 or -1.

The kernel of
$$O_n(\mathbb{R})$$
: $SO_n(\mathbb{R}) = \{A \in O_n(\mathbb{R}) | \det(A) = 1\}$

When n=2, by orthogonal $\
otag \ a=d$, b=-c, by det=1 $\
otag \ ad-bc=1$ $\
otag \ a^2+c^2=1$

$$SO_2(\mathbb{R}) = egin{bmatrix} \cos(heta) & -\sin(heta) \ \sin(heta) & \cos(heta) \end{bmatrix}$$
 for some $heta \in \mathbb{R}$.

For any vector
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} R\cos(\alpha) \\ R\sin(\alpha) \end{bmatrix}$$
,

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} R\cos(\alpha) \\ R\sin(\alpha) \end{bmatrix} = \begin{bmatrix} R\cos(\alpha+\theta) \\ R\sin(\alpha+\theta) \end{bmatrix} - \text{rotation of angle } \theta \text{ around origin}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix}$$
— reflection with respect to x-axis

Thm. Let f be an isometry of the plane, then $f=t_{ec a}\cdot
ho_{ heta}$ or $f=t_{ec a}\cdot
ho_{ heta}\cdot r$,

where rotation
$$ho_{ heta} = egin{bmatrix} \cos(heta) & -\sin(heta) \\ \sin(heta) & \cos(heta) \end{bmatrix}$$
 , reflection $r = egin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Thm. Every isometry of the plane has one of the following forms:

- 1. Translation along $ec{a} \in \mathbb{R}^2 t_{ec{a}}$
- 2. Rotation through a nonzero angle about a point $t_{\vec{a}} \rho_{\theta}$
- 3. Reflection along a line $l t_{\vec{a}}
 ho_{ heta} r$ with $\vec{a} \perp l$
- 4. Glide Reflection: reflection along a line l, followed by a translation along a nonzero vector parallel to l $t_{\vec{a}}\rho_{\theta}r=t_{\vec{a_1}}(t_{\vec{a_2}}\rho_{\theta}r)$ with $\vec{a}_1\parallel l$, $\vec{a}_2\perp l$

The first two are orientation preserving and the last two are orientation reversing.

 $t_{\vec{p}}\rho_{\theta}t_{-\vec{p}}$ is the rotation about \vec{p} of angle θ .

 $ho_{ heta}r$ is the reflection along the line l through origin with angle $rac{ heta}{2}$ to x-axis.

Lemma. The following identities hold:

$$ullet t_{ec a} + t_{ec b} = t_{ec a + ec b}$$

•
$$ho_lpha \cdot
ho_eta =
ho_{lpha + eta}$$
 , $ho_ heta^{-1} =
ho_{- heta}$

$$ullet r^{-1}=r ext{ and } r^2=id$$

•
$$ho_{ heta}t_{ec{a}}=t_{
ho_{ heta}(ec{a})}
ho_{ heta}$$

$$ullet rt_{ec a}=t_{r(ec a)}r$$

$$ullet$$
 $r
ho_{ heta}=
ho_{- heta}r$ and $ho_{- heta}=r
ho_{ heta}r=r
ho_{ heta}r^{-1}$

4.5 Dihedral Groups

The dihedral group is the finite subgroup of O_2 defined by

$$D_n=\{
ho_{ heta}^ir^j\in O_2|0\leq i\leq n-1, 0\leq j\leq 1\}$$
 , where $heta=rac{2\pi}{n}$

Properties:
$$|D_n|=2n$$
, $|
ho|=n$, $|r|=2$

 $< \rho >$ is a subgroup of index 2 in D_n , so it's a normal subgroup.

 $ho^i r =
ho_{i heta} r$, it's the reflection along l, l passing through origin with angle $rac{i heta}{2}$

Geometrically, D_n is the group of symmetries for a regular n-gon. Q: rotation by $Q=\frac{27}{n}$

We see each element of D_n permutes vertices of a polygon, and we can regard D_n as a subgroup of S_n

In particular, when n=3, $|D_3|=2\times 3=6$, $|S_3|=6$, $D_3\cong S_3$.

4.6 Group Actions

G is a group. X is a nonempty set. A group action of G on X is a function:

$$G \times X o X$$

$$(g,x)\mapsto g.x$$

satisfying:

1.
$$1.x = x$$
 for any $x \in X$

2.
$$g_1.(g_2.x) = (g_1g_2).x$$
 for any $g_1, g_2 \in G, x \in X$

Example: $G=S_n$ acts on $X=\{1,...,n\}$ in a natural way: $\sigma\in S_n$ acts on $i\in X$ by $\sigma.i=\sigma(i)$

1.
$$id.i = id(i) = i$$

2.
$$\sigma_1.(\sigma_2.i)=\sigma_1(\sigma_2(i))=(\sigma_1\cdot\sigma_2)(i)=(\sigma_1\cdot\sigma_2).(i)$$

Example: Any group G act on itself by left multiplication: $\forall g \in G, x \in G, g.x = gx$.

1.
$$1.x = x$$

2.
$$g_1.(g_2.x) = g_1(g_2x) = (g_2g_2)x = (g_1g_2).x$$

Prop. If G acts on X, then for any fixed $g \in G$

$$au_g:X o X$$

$$au_{q}(x)=g.x$$

is a bijection.

Pf. To verify au_q is bijective, we can verify $au_{q^{-1}}:X o X$ is the inverse function of au_q .

$$au_g \cdot au_{g^{-1}}(x) = g.(g^{-1}.x) = (gg^{-1}).x = 1.x = x$$

$$au_{g^{-1}} \cdot au_g(x) = g^{-1}.(g.x) = (g^{-1}g).x = 1.x = x$$

Example: If we want to define the action by right multiplication, we need $g.x = xg^{-1}$

•
$$1.x = x1 = x$$

•
$$(g_1g_2).x = x(g_1g_2)^{-1} = (xg_2)^{-1}g_1^{-1} = g_1.(g_2.x)$$

Example: G can act on itself by conjugation $g.x = gxg^{-1}$.

Example: The isometry group M_n acts on \mathbb{R}_n by evaluation.

Example: $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication.

If G acts on X, and $x \in X$. The orbit of x is defined to be

$$O(x) = \{ y \in X | g.x = y \text{ for some } g \in G \}$$

Lemma. The relation on X defined by $x \sim y$ if y = g.x for some $g \in G$ is an equivalence relation, and each orbit is an equivalence class.

Pf. 1. $\forall x \in X, x \sim x$ since 1.x = x

2.
$$x\sim y
ightarrow y=g.x
ightarrow g^{-1}.y=g^{-1}.(g.x)=(g^{-1}g).x=1.x=x
ightarrow y\sim x$$

3.
$$x\sim y, y\sim z \rightarrow y=g_1.x, z=g_2.y \rightarrow z=g_2.(g_1.x)=(g_1g_2).x \rightarrow x\sim z$$

Cor. The orbits form a partition of X.

Example: G acts on itself. For any $x \in G$, x = g.1 for g = x, so $x \in O(1)$, so there's only one orbit.

Example: $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication. There are two orbits: $\mathbb{R}^n \setminus \{0\}$ and $\{0\}$.

An action of G on X is transitive if there's only one orbit.

Prop. An action is transitive $\iff \forall x,y \in X, \exists g \in G, y = g.x.$

G acts on X. Define the stabilizer of $x \in X$ to be $G_x = \{g \in G : g.x = x\}$.

Prop. The stabilizer G_x is a subgroup of G.

Pf. 1.
$$\forall g_1,g_2 \in G_x$$
, $g_1.x=x$, $g_2.x=x$, $(g_1g_2).x=g_1.(g_2.x)=g_1.x=x$ $\Rightarrow g_1g_2 \in G_x$

2.
$$1.x=x \rightarrow 1 \in G_x$$

3.
$$\forall g \in G, g.x = x, g^{-1}.x = g^{-1}.(g.x) = (gg^{-1}).x = 1.x = x \rightarrow g^{-1} \in G_x$$

Example: G acts on itself by left multiplication, then for any $x\in G$, $G_x=\{g\in G,|g.x=x\}=\{g\in G|gx=x\}=\{1\}$

Example: G acts on itself by conjugation, then for any $x\in G$, $G_x=\{g\in G,|g.x=x\}=\{g\in G|gxg^{-1}=x\}=\{g\in G|gx=xg\}=N(G)$ — normalizer or centralizer of x

Prop. G acts on $X, g_1, g_2 \in G, x \in X$. Then $g_1.x = g_2.x \iff g_1G_x = g_2G_x$.

$$\text{Pf. } g_1.x = g_2.x \iff g_2^{-1}.(g_1.x) = g_2^{-1}.(g_2.x) \iff (g_2^{-1}g_1).x = x \iff g_2^{-1}g_1 \in G_x \iff g_1G_x = g_2G_x$$

4.7 Applications of Group Actions

Counting Formula, or Orbit-Stabilizer Theorem. G is a finite group acting on a set X. For each $x \in X$, let G_x be the stabilizer of x and G(x) be the orbit of x. Then:

$$|G| = |O(x)| \cdot |G_x|$$

i.e.
$$|O(x)| = |G:G_x|$$

Recall:
$$O(x)=\{y\in X|g.x=y \text{ for some } g\in G\}$$
 , $G_x=\{g\in G:g.x=x\}$

Pf. Define
$$f:G/G_x \to O(x)$$
 by $f(gG_x)=g.x$.

By Prop,
$$f(g_1G_x)=f(g_2G_x)\iff g_1G_x=g_2G_x$$
, so f is well-defined and injective.

By definition of orbit, f is surjective.

So
$$f$$
 is a bijection. By Lagrange Theorem, $\frac{|G|}{|G_x|}=|G/G_x|=|O(x)|$.

Example: D_n acts on V = the set of vertices of a regular n-gon. The action is transitive, since any v can be obtained from a fixed v_0 by a rotation ρ^k for some k. So for any $v \in V$, O(v) = V, $G_v = \frac{|D_n|}{|V|} = \frac{2n}{n} = 2$, and the two elements are identity and reflection along the line passing through v and the centre of the n-gon.

Prop. G is a finite group. H, K are subgroups of G. Then

$$|HK| = \frac{|H| \times |K|}{|H \cap K|}$$

Pf. H imes K acts on G by $(h,k).g = hgk^{-1}$.

$$O(1) = \{(h,k).1 \in G | (h,k) \in H \times K\} = \{hk^{-1} \in G | h \in H, k \in K\} = \{hk \in G | h \in H, k \in K\} = HK.$$

$$G_1 = \{(h,k) \in G imes K | (h,k).1 = hk^{-1} = 1\} = \{(h,k) \in H imes K | h = k\} = \{(g,g) | g \in H \cap K\},$$
 so $|G_1| = |H \cap K|.$

By Counting Formula,
$$|HK| = |O_1| = \frac{|H imes K|}{|G_1|} = \frac{|H| imes |K|}{|H \cap K|}$$
.

Thm. G is a group. X is a set. There's a one-to-one correspondence between G-actions on X and homomorphisms $G \to \operatorname{Per}(X)$, where $\operatorname{Per}(X)$ is the group of all bijections on X.

Pf. Given a group action of G on X, we have proved that for any $g \in G$, $\tau_g : X \to X$, $x \mapsto g.x$ is a bijection, so $\tau_g \in \operatorname{Per}(X)$. We define $F : G \to \operatorname{Per}(X)$, $g \mapsto \tau_g$. Since $F(g_1g_2) = \tau_{g_1g_2} = \tau_{g_1} \cdot \tau_{g_2} = F(g_1) \cdot F(g_2)$, F is a homomorphism.

Conversely, given a homomorphism $\phi: G \to \operatorname{Per}(X)$, we can define a G-action on X by $g.x = \phi(g)(x)$. It is a group action.

G can act on itself by conjugation: $g.x = gxg^{-1}$. $|O(x)| = 1 \iff x \in Z(G)$

Each orbit in this action is called a conjugacy class, denoted by C_x , so the above can be written as $C_x=\{x\}\iff x\in Z(G)$

$$C_x = \{x\} \iff orall g \in G, g.x = x \iff orall g \in G, gxg^{-1} = x \iff orall g \in G, gx = xg$$

The stabilizer of x, denoted by N(x), is called the normalizer or centralizer of x, $N(x)=\{g\in G|gxg^{-1}=x\}=\{g\in G|gx=xg\}.$

Remark. More generally, for a subset S of a group G

Normalizer of
$$S$$
: $N(S) = \{g \in G | gSg^{-1} = S\}$

Centralizer of
$$S$$
: $N(x) = \{g \in G | \forall s \in S, gsg^{-1} = s\}$

By the counting formula, $|C_x|=\frac{|G|}{|N(x)|}$ if $|G|<\infty$. Also because the conjugacy classes form a partition of G, |G|= sum of the cardinality of its conjugacy classes.

So we have:

Class Equation. G is a finite group, then

$$|G| = |Z(G)| + \sum_{x \in S} |C_x| = |Z(G)| + \sum_{x \in S} \frac{|G|}{|N(x)|}$$

where S is a set of representations of conjugacy classes (orbits) with at least two elements.

Cor.
$$1 \times 2 \times 3 = 1 + 2 + 3$$
.

Pf. Let
$$G=S_3$$
. Then $|S_3|=1\times 2\times 3=|Z(G)|+\sum_{x\in S}|C_x|=1+2+3$ since $|C_{(123)}|=|\{(123),(132)\}|=2,$ $|C_{(12)}|=|\{(12),(13),(23)\}|=3.$

Prop. If p is a prime number, then every group of order p^2 is abelian.

Cauchy's Theorem. If G is a finite group, and p is a prime number that divides |G|, then G has an element of order p.

Pf. Let $C_p = \langle a \rangle$, the cyclic group of order G. C_p acts on

$$Y=\{(g_1,...,g_p)\in G imes... imes G|g_1...g_p=1\}$$
 by

$$a.(g_1,...,g_p)=(g_2,...,g_p,g_1).$$

 $|Y|=|G|^{p-1}$ since the last coordinate is determined by the first n-1 coordinates.

$$G_{(g_1,\ldots,g_p)}=G\iff g_1=\ldots=g_p=g$$
 with $g^p=1.$

Assume the only fixed point under this action is (1,...,1), then since the size of each orbit divides $|C_p|=p$,

$$np = |G|^{p-1} = |Y| = 1 + \sum | ext{other orbits}| = 1 + mp$$
 $ightarrow$ contradiction

so there are some fixed point (g,...,g) other than (1,...,1) and $g^p=1$. Then |g|=p.

Fixed Point Theorem. G is a group acting on a set X. $|G|=p^k$ where p is a prime and k>0. If $p\nmid |X|$, then there exists a fixed point $x\in X$ under this action, i.e. g.x=x for any $g\in G$.

Pf. x is a fixed point $\iff O(x) = \{x\} \iff G_x = G$.

By Counting Formula, for any orbit O(y), |O(y)| divides $|G|=p^k$, so $|O(y)|=p^m, 0\leq m\leq k$. Suppose the action has no fixed point, then $|O(y)|=p^m, 1\leq m\leq k$.

 $|X| = \sum |\mathrm{orbits}|$, LHS not divisible by p by assumption, RHS divisible by p o contradiction.