Système d'exploitation (Operating System)

I.Introduction

1. <u>Définition</u>

Système d'exploitation :

ensemble de programmes pour :

- Faciliter l'utilisation de l'ordinateur (ergonomie)
- Mettre à la disposition d'un groupe d'utilisateurs les ressources :
 - gestion et conservation de l'information.
 - gestion de l'ensemble des ressources pour l'execution d'un programme.
 - gestion et partage de l'ensemble des ressources (matériels, informations, programmes) entre usages.

Système informatique:

- Logiciel d'application.
- Logiciel de base.
 - outils et services.
 - système d'exploitation.
- Machine physique.

2. Exemples d'OS

- a) Ordinateur individuel
 - pas de partage des ressources entre utilisateurs.
 - gestion des fichiers (création, conservation, ...).
 - réalisation des E/S (imprimante,...) +multimédia.
 - interprétation du langage de commande.
 - ⇒ MS.DOS
- b) Commande de procédés industriels (applications en « temps réel »)

ex : conduite d'un réacteur chimique.

fabrication d'un produit C par synthèse de deux produits A et B dans un réacteur à l'aide d'un ordinateur.

Fonction : Réguler la réaction avec l'ordinateur.

- ⇒ Régulation des paramètres (temps, pression, concentration des produits)
 - en fonction des signaux de mesure.
 - en agissant sur le débit des vannes.
- ⇒ Enregistrement des résultats de mesure périodiquement.
- ⇒ Sécurité si les paramètres dépassent un limite critique : arrêt d'urgence.
- Action sur les organes externes.
- Prise en compte du temps réel (physique).
- Réaction aux évènements exterieurs.
- Gestion d'informations.

c) Systèmes à transaction

<u>Ex :</u>

- Réservation de places de train, d'avion, etc...
- Gestion de comptes bancaires.
- Consultation de centre de documentation.
- Gestion d'informations partagées (grosses bases de données)
- Execution d'opérations prédéfinies simultanées.
- Gestion des points d'accès (terminaux).
- d) Systèmes en temps partagé (Time Sharing)

<u>But</u>: Fournir des services à un ensemble d'usagers. Chacun d'eux va bénéficier de services équivalents à ceux d'une machine individuelle avec en plus la possibilité de communiquer et de bénéficier des service liés à l'existence d'une communauté.

- Définition de la machine virtuelle offerte à chaque usager.
- Partage des ressources physiques communes.
- · Communications.

3. Evolution historique des systèmes

- a) « porte ouverte » et traitement par lots (une personne seulement)
 - 2^{ème} Guerre mondiale : création du premier Ordinateur.
 - 1950 : Création du premier « OS » (« moniteurs d'enchainement »). Plusieurs personnes se succèdent sur la machine. Il devient donc nécessaire d'automatiser le passage d'un programme à l'autre.
 - ⇒ augmentation du rendement.
 - 1960 : « traitement par lots » (Batch Processing Systems)
 - ⇒ deux ordinateurs :
 - 1. Gestion des E/S : lecture des cartes, écriture sur bande magnétique.
 - 2. Lecture de bande magnétique et éxécution du programme.
 - ⇒ augmentation du rendement mais baisse de l'interactivité.
- b) Multiprogrammation et temps partagé (1960-70)

Evolution technologique

- Processeurs autonomes spécialisés (unités d'échanges : E/S).
- Partage de la mémoire centrale entre plusieurs travaux.
 - ⇒ Multiprogrammation.
 - ⇒ Possibilités d'E/S simultanées à l'execution d'un programme.
- Horloge interne.
 - ⇒ Rend l'interactivité aux utilisateurs.
- c) Réseaux, Systèmes répartis, machine individuelles (1970-1980)
 - Apparition des microprocesseurs.
 - ⇒ augmentation des performances.
 - ⇒ diminution de la taille et du coût.
 - ⇒ développement de processeurs spécialisés.
 - Développement des techniques de transmission de données.
 - ⇒ intégration des fonctions de communication (téléinformatique).

- d) Stations de travail, réseaux locaux (1980-1990)
 - Apparition des voies de communication à très haut débit (au niveau local).
 - remplacement du temps partagé : tout le monde à une machine réelle mais le matériel onéreux est mis en commun (imprimantes lasers, gros disques durs, etc...).
 - Interconnexion d'OS différents (UNIX, WinNT, Apple, MS-DOS, etc...) grâce à un OS
 « réseau » : système d'exploitation du serveur qui gère la communication entre utilisateurs
 et l'accès à des services communs (impression).
 - Stations de travail (SUN, HP, etc...) : confort de travail.
 - ⇒ grand écran Bitmap.

 - ⇒ multiprocessus : temps partagé.
 - ⇒ multiconnexion (plusieurs machines) : transfert de fichiers.
- e) Multimédia, serveurs de réseaux intégrés (1990-2000)
 - Diversification des organes d'E/S.
 - ⇒ son: hauts-parleurs, micro, etc...
 - ⇒ image : CDROM.
 - Integration de fonction logicielles concernant le réseaux dans le système d'exploitation de la machine (ex : WinNT mais pas UNIX).
 - ⇒ plus grande facilité de gestion du réseau et de réalisation d'une architecture réseau.

f) Multitraîtement (1995)

- Apparition (démocratisation, les CRAY sont plus vieux) des ordinateurs multiprocesseurs
 - ⇒ possibilité d'éxécuter une même application sur les différents processeurs simultanément.

Peu d'OS exploitent bien les possibilités offertes par ces systèmes.

II. Notions générales sur les différentes fonctions d'un OS

1. Partage des ressources physiques

- pour des raisons économiques de rendement.
 - ⇒ essai d'utilisation optimale de toutes les ressources d'une installation (ensemble de machines diverses).
 - ⇒ ordre de priorité d'optimisation.
 - 1) rendement de l'Unité Centrale (UC).
 - 2) mémoire centrale.
 - 3) unités d'échange.

ex : programme de sortie (impression)

- si le tampon de sortie en mémoire centrale n'est pas plein : temps d'accès en mémoire centrale (très rapide).
- si le tampon est plein : vider le tampon sur le disque (assez lent) = 50ms ⇔ 100000 instructions (version pessimiste).
- le système d'exploitation
 - gère plusieurs files d'attente :
 - la file des travaux en attente d'execution (rangés dans la zone entrée du disque).
 - ❖ la file des informations à sortir (une file par périphérique).
 - gère le partage simultané :
 - * mémoire centrale (programme, tampon, système).
 - unité centrale (contrôleur, programme utilisateur).

2. Gestion de l'information

- types d'objets traîtés par un système :
 - objets que traite un utilisateur : fichiers, variables, structures, arbres, etc...
 - objets plus orientés système : fichier de programme, segments de mémoire centrale, pages en mémoire centrale, zones d'E/S sur le disque, utilisateurs, groupes, processus, unités périphériques.
- gestion des objets concerne :
 - la représentation des objets : processus, file des processus.
 - La liaison des objets : mise en correspondance des identificateurs donnés par l'utilisateur et l'adresse dans le système.
- protection
 - pourquoi : coexistence de différents utilisateurs.
 - contre les erreurs.
 - contre les malveillances.

Un système sécurisé doit protéger :

- les fichiers, la mémoire, ... de chaque utilisateur.
- les données, les fichiers, les mémoires de l'OS contre les programmes utilisateur.

Il doit aussi surveiller les tentatives de contournement de la sécurité.

- ⇒ 7 niveaux de sécurité :
 - 1) Service d'ouverture de session sécurisé => demande d'identité et d'un mot de passe.
 - 2) Contrôle d'accès discétionnaire :
 - chaque propriétaire de ressources détermine qui peut accéder et qu'il peut faire avec (les ressources !).
 - ex: UNIX (RWE=Read/Write/Execute; UGO=User/Group/Other)

Windows NT (ACL=Access Control List; ACE=idem+rubriques)

- 3) Audit:
- ⇒ détection et enregistrement des évènements importants concernant la sécurité :
 - tentative d'accès à des ressources systèmes.
 - tentative de suppression des ressources systèmes.
- 4) Protection de la mémoire (des informations qu'elle contient) :
- Réinitialisation de la mémoire centrale avant son utilisation par un nouvel utilisateur.
- 5) Contrôle d'accès par niveau d'habilitation :
 - ⇒ Différents niveaux de sécurité : Usuel, Secret, Top Secret.

A un utilisateur, on associe un niveau.

Un utilisateur d'un niveau donné ne peut pas autoriser quelqu'un de niveau inférieur à accéder à ses informations.

6) & 7) Moins on en dit, mieux ça vaut... ☺

3. Coopération des processus

Processeur : organe capable d'éxécuter des actions (en informatique : des instructions).

Processus : tâche, éxécution par un processeur d'un programme.

Etats: actif (s'il dispose de toutes les ressource).

Bloqué (quand il manque une ressource nécessaire).

Plusieurs activités peuvent se dérouler simultanément

⇒ nécessité de coopération de plusieurs processus.

Exécution simultanée de :

- Processus symbiont par l'UC.
 - Processus E/S par l'UE.

Interaction entre ces processus:

- Le processus d'E/S ne doit pas pouvoir accéder à une zone sur disque que le processus symbiont remplit.
- Lorsqu'un tampon de sortie est plein, le processus symbiont doit réveiller le processus E/S s'il est inactif.
- Lorsqu'un nouveau programme est introduit dans la file d'entrée, le processus E/S doit réveiller le processus symbiont s'il est inactif.
 - ⇒ Conflit d'accès à une ressource : espace disque non partegeable.

 Problème d'éxécution mutuelle résolu grâce aux sémaphores d'exclusion mutuelle (cf cours de réseaux).
 - ⇒ Action directe : mise en attente ou réveil (synchronisation : sémaphores privés)

III. Classification des OS en fonction du mode d'écoulement des travaux

1. Monoprogrammation

A un instant donné, un seul programme utilisateur en cours d'éxécution en Mémoire Centrale (MC). *Overhead : Temps d'éxécution des fonctions systèmes.*

Avantage: simplicité.

⇒ Overhead faible.

Inconvénient : perte de temps de l'UC pendant les E/S.

UC active: utilisateur 30%

Système 10 %

UC attente: 60 %

2. Multiprogrammation

Origine : Année 1965

Nécessite un système de gestion des interruptions et une MC très grande.

2.1 plusieurs programmes utilisateurs peuvent être en cours d'éxécution (donc en MC) à un instant donné.

Le but étant d'utiliser l'UC pendant les E/S des programmes utilisateurs.

On retire l'UC à un programme utilisateur quand :

- fin normale (d'éxécution).
- fin anormale.
- demande d'E/S.

Avantages: Rentabilise l'installation (le matériel informatique).

Diminue le temps d'éxécution et le temps de réponse global.

Inconvénients : Augmentation du temps de réponse d'un travail donné.

Augmentation de la compléxité de l'OS ainsi que de l'overhead.

UC active: utilisateur 60%

Système 30 %

UC attente: 10 %

- 2.2 système de gestion des IT (intérruptions).
 - Nécessaire à la mise en oeuvre de la multiprogrammation, du temps partagé, du multitâche, du multi-thread...

-- <u>-</u>-

- > Signal imprévu du processus en cours.
- > Provoque en général un arrêt autoritaire.
- le système de gestion des IT permet :
 - d'associer une priorité aux différentes IT.
 - D'interrompre à n'importe quel instant un processus.
 - D'obliger l'UC à éxécuter alors une procédure avec changement de contexte.
 - > De sauvegarder les informations relatives au processus interrompu dans un vecteur d'état (?).

3. Temps partagé

Origine: Année 1968.

Nécessite:

- un système de gestion de IT + une horloge pour le partage de temps.
- Une grande capacité de mémoire secondaire pour le SWAP.

Exemples: TSS (Time Sharing Système d'IBM), CP/CMS (avec une notion de mémoire paginée), Multics (Ancêtre d'UNIX = « machine à gaz »), UNIX, Windows NT, ...

LEXIQUE:

E/S: Entrée/Sortie.

IT : Interruptions.

MC : Mémoire Centrale.

OS: Operating System = Système d'exploitation (SE).

Overhead : Temps d'éxécution des fonctions systèmes.

SE: Système d'exploitation (OS).

SWAP : zone de mémoire temporaire sur disque dur.

UC: Unité Centrale (processeur principal).