Andrew Nystrom, Research Scientist at Contata Solutions John Hughes, Professor of Computer Science at Brown University

Efficient Calculation of Second Degree Polynomial Features on Sparse Matrices

Handling Nonlinearity

- * Work in kernel space, e.g. rbf kernel
 - * Time complexity $O(DN^2)$
- * Nonlinear model, e.g. gradient boosting on stubs
 - * Doesn't scale when over a couple hundred dimensions
- * Add non-linear features

Polynomial Features

- * Products of all combinations of features
 - * $[a, b] \rightarrow [a, b, a^2, ab, b^2]$
- * When input to linear model:
 - * $y = w_0 \cdot a + w_1 \cdot b$
 - * $y = w_0 \cdot a + w_1 \cdot b + w_2 \cdot a^2 + w_3 \cdot ab + w_4 \cdot b^2$
- * All parabolas, hyperbolas, ellipses

Polynomial Features in Regression

Polynomial Features in Classification

Naive Calculation

```
Dense Polynomials (A)
N = \text{row count of } A
D = \text{column count of } A
B = \text{Matrix of size } N \times \frac{D^2 + D}{2}
for row in A
k = 0
for 1 = 0 to D
for j = i to D
B[i, k] = row[i] \cdot row[j]
k = k + 1
```

B[i,k] is zero whenever row[i] or row[j] is zero Many unnecessary products when A is sparse.

Main Idea: Exploiting Sparse Structure

- Sparse matrix formats track nonzero column indices
- Only iterate over these!
- * Given two columns, where does the product belong?
- * Assume we have such a mapping...

Exploiting Sparse Structure (cont.)

```
Sparse Polynomial Features (A)
   PolyMap(a, b) = ?
    N = \text{row count of } A
    D = \text{column count of } A
    B = \text{Compressed Sparse Row Matrix of size } N \times \frac{D^2 + D}{2}
    for row in A
          N_{zc} = \text{nonzero columns of } row
         for i=0 to |N_{zc}|
               for j = i to |N_{zc}|
                     k = \text{PolyMap}(N_{zc}[i], N_{zc}[j])
                     r = index of row
                     B[r,k] = row[N_{zc}[i]] \cdot row[N_{zc}[j]]
```

Find PolyMap function. Maps pairs of column indices onto (D²+D)/2

Finding the Mapping Function

```
\{x_i \cdot x_j : i, j \in \{0, 1, ..., D - 1\} \land i \le j\}
\{(i, j) : i, j \in \{0, 1, ..., D - 1\} \land i \le j\} \rightarrow \{0, 1, ..., \frac{D^2 + D}{2} - 1\}
```

$$\vec{x}$$
 \vec{x}
 x_0
 x_1
 x_2
 x_3
 x_4
 x_5
 x_6
 x_1
 x_5
 x_5
 x_5
 x_6
 x_7
 x_8
 x_8
 x_8
 x_9
 $x_$

polynomial-index
$$(i, j|D) = \frac{2Di - i^2 + 2j - 3i - 2}{2} + i + 1$$

Algorithm Comparison

```
Dense Polynomials(A)
                                                  Sparse Polynomial Features (A)
                                                      PolyMap(a, b) = \frac{2Da - a^2 + 2b - 3a - 2}{2} + a + 1
    N = \text{row count of } A
    D = \text{column count of } A
                                                      N = \text{row count of } A
    B = \text{Matrix of size } N \times \frac{D^2 + D}{2}
                                                      D = \text{column count of } A
    for row in A
                                                      B = \text{Compressed Sparse Row Matrix of size } N \times \frac{D^2 + D}{2}
         k = 0
                                                      for row in A
         for 1 = 0 to D
                                                           N_{zc} = nonzero columns of row
               for j = i to D
                                                           for i = 0 to |N_{zc}|
                     B[i,k] = row[i] \cdot row[j]
                                                                 for j = i to |N_{zc}|
                     k = k + 1
                                                                       k = \text{PolyMap}(N_{zc}[i], N_{zc}[j])
                                                                       r = index of row
                                                                       B[r,k] = row[N_{zc}[i]] \cdot row[N_{zc}[j]]
```

 $O(ND^2)$, $\Theta(ND^2)$

Average complexity decreases quadratically w.r.t. density!

 $O(ND^2)$, $\Theta(Nd^2D^2)$

where d is density

How fast is it?

Real Usage

dataset	instances	features	polynomial features	density	dense space	sparse space	dense time	sparse time
20 Newsgroups	11,314	130,107	8,463,980,778	0.12	scikit-learn: MemoryError	5333 MB	scikit-learn: MemoryError	109 s
Connect Four	67,557	126	8,127	0.11	4191 MB	735 MB	26 s	44 s

Code available on github.com/AWNystrom

