

Agenda

- Objectives
- MAX Device Architecture
- Resource Optimization Techniques
- Conclusion
- Appendix

Agenda

- Objectives
- MAX Device Architecture
- Resource Optimization Techniques
- Conclusion
- Appendix

Objectives

- To take full advantage of the architectures of the MAX3000 and MAX7000 devices by
 - Optimizing macrocell utilization and/or
 - Optimizing routing resource utilization.
- To resolve the macrocell usage issues and routing issues.

Agenda

- Objectives
- MAX Device Architecture
- Resource Optimization Techniques
- Conclusion
- Appendix

MAX Device Architecture

- Logic Array Blocks(LABs) & Macrocells
- Programmable Interconnect Array(PIA)
- I/O Control Blocks
- Dedicated Global Inputs

Macrocell Architecture

- LAB Local Logic Array (Five Programmable Product Terms)
- Product-Term Select Matrix
- Programmable Register

Product-Term Line Usage Example

Implemented in MAX Macrocell

Expander Product Terms

- Additional Product Terms provided by the other macrocells in the same LAB.
- Used to implement more complex logic functions.
- Include
 - Parallel Expanders
 - Sharable Expanders

Parallel Expanders

- Product terms borrowed from the neighboring macrocells.
- Up to 15 parallel expanders can be borrowed from three neighboring macrocells.
- The macrocell with parallel expanders lent cannot implement other logic.

Parallel Expanders Borrowing Rule

- Two groups of 8 macrocells within each LAB (macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders.
- A macrocell borrows parallel expanders from lowernumbered macrocells.
- Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highestnumbered macrocell can only borrow them.

Sharable Expanders

- 16 Product terms feeding back into the logic array from the 16 macrocells in an LAB, one from each macrocell.
- Sharable expanders be shared by any or all macrocells in an LAB.
- The macrocell providing a sharable expander can still implement other logic.

Sharable Expanders in Timing Closure Floorplan

The sharable expander and the macrocell where it is sourced can be used simultaneously.

Sharable Expanders Usage Example

Assume there are only three product terms in each macrocell. Consider the function

$$OUT = A'*C*D+B'*C*D+A*B+B*C'$$

$$= (A'+B')*C*D+(A+C')*B$$

$$= (A*B)'*(C*D) + (A'*C)'*B$$

Example Resource Usage Compare:Parallel Expanders vs. Sharable Expanders

Consider the following Quartus II design implemented in MAX7000AE device.

Parallel Expanders Implementation

Set "Auto Parallel Expanders" as On.

- THEE HACIOCEIIS are used.
- Two are used to provide parallel expanders(PEXPOUT).

Sharable Expanders Implementation

- Only one macrocell is used.
- 12 sharable expanders.

User Control of Selection: Parallel Expanders or Sharable Expanders

- Users can direct Quartus II to use or avoid using parallel expanders by setting the "Auto parallel expanders" option On or off.
- Using or not using sharable expanders cannot be controlled by users, only decided by Quartus II.
- Quartus II can balance the resource and timing performance of the user design by automatically selecting the uses of sharable expanders.

Agenda

- Objectives
- MAX Device Architecture
- Resource Optimization Techniques
- Conclusion
- Appendix

Resource Optimization Techniques

- To optimize resource usage and avoid no-fit issues by
 - Minimizing macrocell usage and/or
 - Minimizing routing resource usage.
- Basic settings to achieve the above two aspects
 - Set "Synthesis Optimization Technique" as "Area"
 - Use dedicated inputs for global control signals
 - Global register control resources can only be accessed through the dedicated input pins.
 - Can save logic array resources and interconnect resources.
 - Remove redundant logic
 - Ignore CARRY/CASCADE/LCELL/GLOBAL/SOFT buffers.
 - Power-Up Don't Care / Remove Duplication Logic / Auto Resource Sharing / State Machine Processing, etc.

Basic Setting Optimization Case: EPM3512 Device

Simple issue description

- The following errors appear during fitting
 - Error: Can't place node "<name>" of type <type>
- Macrocell usage is 349/512

Solution

- A routing issue.
- Changing the pin mapping of a clock signal to GCLK resolves this issue.

Techniques for Optimizing Macrocell Usage

- Basic setting options
- Turn on "Allow XOR Gate Usage"
- Turn off "Auto Parallel Expanders"
- Optimize source codes

Turn on "Allow XOR Gate Usage"

- The usage of the XOR gate in the macrocell is to implement programmable inversion to the logic function.
- The function of XOR gate

source saving by using this An exan o demonstra option.

F = A*B'+A*C'+A*D'+A'*C*Dcan not be implemented with three product term lines while F' = A*B*C*D+A'*D'+A'*C'can.

Turn off "Auto Parallel Expanders"

When "Auto Parallel Expanders" is on,

- Quartus II tends to use more parallel expanders instead of more sharable expanders.
- the amount of the macrocells required usually increases.

Optimize source codes

- The most frequently used method to reduce the macrocell usage.
- Some Tips
 - Use D Flipflops instead of Latches;
 - Use asynchronous control signals instead of synchronous ones;
- It is case by case.

Techniques for Optimizing Routing Usage

Routing issues usually occur on some routing areas in PIA or in LAB.

Techniques

- Basic setting options
- Turn on "Auto Logic Cell Insertion"
- Turn off "Auto Parallel Expanders"
- Reduce fan-in per macrocell
- Optimize source codes

Turn on "Auto Logic Cell Insertion"

- Inserting logic cells in some complex module reduces fan-in and shared expanders used per macrocell, increasing routability.
- To demonstrate this option, consider the function

Logic Cell Insertion Example

- Turn on "Ignore LCELL Buffers".
 - Two macrocells used;
 - 12 fan-ins per macrocell.

Logic Cell Insertion Example(Cont.)

- Turn off "Ignore LCELL Buffers".
 - Three macrocells used;
 - 4.67 fan-ins per macrocell.

Turn off "Auto Parallel Expanders"

When "Auto Parallel Expanders" is on,

- the fitting flexibility for each macrocell will be decreased.
 - The location of macrocells in an LAB is limited to borrow parallel expanders.
 - Chains of parallel expanders tend to be created to implement complex logic.

Reduce fan-in per macrocell

- Generally set the "Maximum Fan-in Per Macrocell" option to 40% - 60%.
 - Quartus II distributes the inputs of a single macrocell to multiple macrocells.
 - Distributing the inputs of macrocells across LABs reduces routing congestion for LABs with high fan-in.

Routing Optimization Case: EPM3256 Device

Simple issue description

- The following errors appear during fitting
 - Error: Can't route source node "<name>" of type max mcell to the OE port of destination node "<name>" of type max io
 - Error: Can't route source node "<name>" of type max mcell to destination node "<name>" of type max mcell
 - Error: Can't place node "<name>" of type max_mcell
- Macrocell usage is 238/256

Solution

- Typical error messages indicating that not enough routing resources in PIA and LABs for the design.
- The "Area" Synthesis Optimization option, Auto Parallel Expanders to off and Maximum Fan-in Per Macrocell to 50% can resolve this routing issue.

Optimize source codes

Some Typical methods

- Use asynchronous control signals instead of synchronous ones;
- Manually insert logic cells.
 - break down the complex logic with high fan-in.
 - separate complex logic from its high fan-out.
- Also case by case.
- Generally, if routing issue occurs while macrocell utilization is low, the Quartus II routing optimization options are enough to fix it. No need to modify source codes.

Agenda

- Objectives
- MAX Device Architecture
- Resource Optimization Techniques
- Conclusion
- Appendix

Conclusion(1): Routing Resource

- The routing resource issues are easy to fix if the macrocell usage in the design is low.
- Use the following settings
 - Basic setting options
 - Turn on "Auto Logic Cell Insertion" (default)
 - Turn off "Auto Parallel Expanders"
 - set the "Maximum Fan-in Per Macrocell" option to 40% 60%.

Conclusion(2): Macrocell

- Macrocell usage issues are more difficult to fix than routing ones.
- Use the following settings
 - Basic setting options
 - Turn on "Allow XOR Gate Usage"
 - Turn off "Auto Parallel Expanders"
- In many cases designers have to optimize source codes.
- Some setting options may have adverse effects to the macrocell usage due to the improper coding style.

Agenda

- Objectives
- MAX Device Architecture
- Resource Optimization Techniques
- Conclusion
- Appendix

Appendix: Referred Document

- For the architecture of MAX3000A Devices, please refer to MAX 3000A Programmable Logic Device Family Data Sheet, at http://www.altera.com/literature/ds/m3000a.pdf.
- For the recommended design guidelines, please refer to Section II. Design Guidelines of Quartus II Handbook Volume 1: Design & Synthesis, at

http://www.altera.com/literature/hb/qts/qts_qii5v1_02.pdf.

- For the resource optimization techniques for macrocell-based CPLD devices, please refer to
 - Resource Utilization Optimization Techniques (Macrocell- Based CPLDs) at Chapter 8. Area & Timing Optimization of Quartus II Version Handbook Volume 2: Design Implementation & Optimization, at

http://www.altera.com/literature/hb/gts/gts_gii52005.pdf.

In Quartus II, click Tools menu -> Advisors -> Resource Optimization Advisor.

