Plotting and Analysis for Neural Database-Oriented Research Applications (PANDORA) Toolbox — User's and Programmer's Manual

Cengiz Günay

Document Revision 813, August 22, 2007

Contents

1	Intr	oduction	15
	1.1	What is the PANDORA Toolbox?	15
	1.2	Why did you make it?	15
	1.3	How is it implemented?	15
	1.4	How can I use it?	15
	1.5	Who is it made for?	15
	1.6	Finding your way around	16
	1.7	Overview of this document	16
2	Inst	allation	16
I	Sof	tware Architecture	17
3	Too	box Components	17
	3.1	D (1 1 1 1 1 1 1 2 C 2 2	
	5.1	Databases hold all the information	19
	3.2		19 21
		Datasets create the databases	-
	3.2	Datasets create the databases	21
	3.2 3.3	Datasets create the databases	21 23
	3.2 3.3 3.4	Datasets create the databases	21 23 24
	3.2 3.3 3.4 3.5	Datasets create the databases Bundling the database and dataset together Wrapper classes hold raw data Profiles hold results of measurements Integrated plotting for easy visualization	21 23 24 26
4	3.2 3.3 3.4 3.5 3.6 3.7	Datasets create the databases Bundling the database and dataset together Wrapper classes hold raw data Profiles hold results of measurements Integrated plotting for easy visualization Miscellaneous classes	21 23 24 26 27
4	3.2 3.3 3.4 3.5 3.6 3.7	Datasets create the databases Bundling the database and dataset together Wrapper classes hold raw data Profiles hold results of measurements Integrated plotting for easy visualization Miscellaneous classes gramming Conventions	21 23 24 26 27 28
4	3.2 3.3 3.4 3.5 3.6 3.7	Datasets create the databases Bundling the database and dataset together Wrapper classes hold raw data Profiles hold results of measurements Integrated plotting for easy visualization Miscellaneous classes Using property structures for passing optional arguments to methods	21 23 24 26 27 28
4	3.2 3.3 3.4 3.5 3.6 3.7 Pro	Datasets create the databases Bundling the database and dataset together Wrapper classes hold raw data Profiles hold results of measurements Integrated plotting for easy visualization Miscellaneous classes Gramming Conventions Using property structures for passing optional arguments to methods Overloaded operators for transparent access to object contents	211 233 244 266 277 288 288

II	Us	ser's Manual	30
5	Reci	pes for Common Tasks	30
	5.1	Loading a database	30
		5.1.1 Creating a dataset for physiology data	30
		5.1.2 Creating a dataset for simulation data	31
	5.2	Finding constrained subsets in a database	32
		5.2.1 Complex Queries	33
	5.3	Sorting the database according to a measure	34
	5.4	Preprocessing a raw (physiology) database	35
		5.4.1 Limiting range of bias currents	35
		5.4.2 Choosing few current levels	36
		5.4.3 Adding new columns calculated from existing measures	36
		5.4.4 Averaging multiple traces of same neuron	36
	5.5	Making a database by merging multiple rows from another database.	38
		5.5.1 Making a one-row-per-neuron DB from multiple CIP-level rows	38
		5.5.2 Making a one-row-per-neuron DB from dual CIP-level rows .	39
6	Visu	alization	43
	6.1	Visualizing traces	43
	6.2	Displaying database contents	44
	6.3	Plotting all measure histograms	45
	6.4	Plotting all parameter histograms	45
	6.5	Plotting database statistics	46
	6.6	Plotting parameter-measure variations	49
	6.7	Insets	49
	6.8	Generating a report comparing two databases	50
	0.0	Constaining a report comparing two databases	
Re	feren	ces	50
A	Fun	ction Reference	51
	A. 1	Class chans_db	51
		A.1.1 Constructor chans_db	51
		A.1.2 Method display	52
		A.1.3 Method get	52
		A.1.4 Method set	52
		A.1.5 Method plotInf	52
		A.1.6 Method plotGateVars	53
		A.1.7 Method plotAllInf	53
		A.1.8 Method plotAllVars	54
	A.2	Class cip_trace	54
		A.2.1 Constructor cip_trace	54
		A.2.2 Method periodPulseIni50ms	55
		A.2.3 Method display	55
		A.2.4 Method periodRecSpontRestPeriod	55
		A.2.5 Method get	56

PANDORA Toolbox: Prog.'s MaDraft v813 on 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

	A.2.6	Method set	56
	A.2.7	Method plotData	56
	A.2.8		56
	A.2.9		57
	A.2.10		57
			58
			58
		±	59
		±	59
		±	60
			60
			60
		±	61
		±	61
		±	62
		5	62
			63
			63
		±	64
			64
			64
			65
			65
			66
			66
	A.2.31	Method periodRecSpont	67
	A.2.32	Method getResults	67
	A.2.33	Method getRecSpontSpike	67
A.3	Class c	<u> </u>	68
	A.3.1	<u> </u>	68
	A.3.2	1 2	68
	A.3.3		69
	A.3.4		69
	A.3.5	Method plotRowSpontSpikeAnal	69
A.4	Class c	<pre>cip_trace_profile</pre>	69
	A.4.1	Constructor cip_trace_profile	69
	A.4.2	Method display	70
	A.4.3	Method get	70
	A.4.4		70
	A.4.5		70
	A.4.6	±	71
A.5			71
	A.5.1	<u> </u>	71
	A.5.2	1 2	72
	A.5.3		72
	A.5.4	Method set	72

	A.5.5 Method cip_trace_profile	. 72
	A.5.6 Method subsref	
	A.5.7 Method paramNames	
	A.5.8 Method getItemParams	
	A.5.9 Method loadItemProfile	
A.6	Class cip_traceset	
	A.6.1 Constructor cip_traceset	
	A.6.2 Method display	
	A.6.3 Method get	
	A.6.4 Method cip_trace_profile	
	A.6.5 Method paramNames	
	A.6.6 Method getItemParams	
	A.6.7 Method loadItemProfile	
A.7	Class cip_traceset_dataset	
	A.7.1 Constructor cip_traceset_dataset	. 77
	A.7.2 Method display	
	A.7.3 Method get	
	A.7.4 Method loadItemProfile	
	A.7.5 Method readDBItems	
A.8	Class cluster_db	
	A.8.1 Constructor cluster_db	
	A.8.2 Method display	
	A.8.3 Method get	
	A.8.4 Method plotHist	
	A.8.5 Method plotQuality	
	A.8.6 Method plot_abstract	
A.9	Class corrcoefs_db	. 81
	A.9.1 Constructor corrcoefs_db	
A.10	Class dataset_db_bundle	
	A.10.1 Constructor dataset_db_bundle	
	A.10.2 Method display	. 82
	A.10.3 Method get	
	A.10.4 Method set	
	A.10.5 Method constrainedMeasuresPreset	
	A.10.6 Method rankingReportTeX	. 83
	A.10.7 Method matchingRow	
	A.10.8 Method reportNeuron	
	A.10.9 Method plotfICurve	. 86
	A.10.10Method subsref	
	A.10.11Method getNeuronRowIndex	
	A.10.12Method subsasgn	
	A.10.13Method ctFromRows	. 88
A.11	Class doc_generate	
	A.11.1 Constructor doc_generate	
	A.11.2 Method display	
	A.11.3 Method get	

A.11.4 Method set
A.11.5 Method subsref 89
A.11.6 Method printTeXFile 89
A.11.7 Method getTeXString 90
A.12 Class doc_multi
A.12.1 Constructor doc_multi
A.12.2 Method get 9
A.12.3 Method set
A.12.4 Method getTeXString 92
A.13 Class doc_plot
A.13.1 Constructor doc_plot 92
A.13.2 Method get
A.13.3 Method set
A.13.4 Method plot
A.13.5 Method getTeXString 94
A.14 Class histogram_db
A.14.1 Constructor histogram_db 94
A.14.2 Method get
A.14.3 Method calcMode 9:
A.14.4 Method plot_abstract 90
A.14.5 Method subsref 90
A.14.6 Method plotPages 90
A.14.7 Method plotRowMatrix 9
A.14.8 Method plotEqSpaced 9
A.15 Class model_ct_bundle 98
A.15.1 Constructor model_ct_bundle9
A.15.2 Method getNeuronLabel 99
A.15.3 Method reportCompareModelToPhysiolNeuron 99
A.15.4 Method plotCompareRanks 100
A.15.5 Method get
A.15.6 Method set
A.15.7 Method getTrialNum
A.15.8 Method collectPhysiolMatches 10
A.15.9 Method plotComparefICurve 102
A.15.10Method getNeuronRowIndex 102
A.15.11Method ctFromRows
A.15.12Method addToDB 104
A.15.13Method reportRankingToPhysiolNeuronsTeXFile 10
A.15.14Method rankMatching 103
A.16 Class model_ranked_to_physiol_bundle 10:
A.16.1 Constructor model_ranked_to_physiol_bundle 10:
A.16.2 Method plotCompareRanks
A.16.3 Method plotfICurve 10
A.16.4 Method comparisonReport 10
A.17 Class params_cip_trace_fileset 100
A.17.1 Constructor params_cip_trace_fileset 100

A.17.2 Method display	109
A.17.3 Method get	109
A.17.4 Method set	109
A.17.5 Method cip_trace_profile	109
A.17.6 Method ctFromRows	109
A.17.7 Method loadItemProfile	110
A.17.8 Method cip_trace	111
A.18 Class params_tests_dataset	111
A.18.1 Constructor params_tests_dataset	111
A.18.2 Method getItem	112
A.18.3 Method display	112
A.18.4 Method get	112
A.18.5 Method set	113
A.18.6 Method params_tests_db	113
A.18.7 Method subsref	113
A.18.8 Method subsasgn	113
A.18.9 Method getItemParams	114
A.18.10Method itemResultsRow	114
A.18.11Method addItem	115
A.18.12Method testNames	115
A.18.13Method readDBItems	116
A.19 Class params_tests_db	116
A.19.1 Constructor params_tests_db	116
A.19.2 Method paramsTestsCoefsHists	117
A.19.3 Method onlyRowsTests	117
A.19.4 Method joinRows	118
A.19.5 Method crossProd	118
A.19.6 Method display	119
A.19.7 Method testsHists	119
A.19.8 Method get	119
A.19.9 Method set	119
A.19.10Method matchingRow	120
A.19.11Method invarParam	120
A.19.12Method paramsHists	121
A.19.13Method makeGenesisParFile	121
A.19.14Method rankVsAllDB	122
A.19.15Method addParams	122
A.19.16Method mergeMultipleCIPsInOne	123
A.19.17Method subsref	124
A.19.18Method paramsParamsCoefs	124
A.19.19Method displayRankingsTeX	125
A.19.20Method getParamRowIndices	125
A.19.21Method plotParamsHists	126
A.19.22Method rankVsDB	126
A.19.23Method delColumns	127
A.19.24Method paramsCoefs	127

A.19.25Method getProfile	128
	129
	129
	130
	130
	131
	132
	132
	133
	133
	133
	134
	134
	134
	135
	135
	136
	136
<u> </u>	136
	137
	137
±	137
	137
A.22.3 Method get	137
	137
	138
	138
±	138
	138
<u> </u>	139
	139
	139
	140
	140
	141
	141
	142
A.23.10 Method ctFromRows	143
	143
	143
1 1 = 1=	
1 2 = 1=	144145
<u> </u>	
	145
	145
	146
A.24.6 Method subsref	146

A.24.7 Method CIPform	146
A.24.8 Method paramNames	147
A.24.9 Method getItemParams 1	147
A.24.10Method itemResultsRow 1	148
A.24.11Method loadItemProfile	148
	149
	149
	149
	150
	151
A.25.4 Method get	151
A.25.5 Method set	151
A.25.6 Method loadItemProfile	151
A.25.7 Method cip_trace 1	152
A.25.8 Method readDBItems	152
	153
	153
	154
	155
A.26.4 Method get	155
	155
	155
	156
A.26.8 Method axis	156
	157
A.26.10Method matrixPlots 1	157
A.26.11Method subsref 1	158
A.26.12Method plot	158
A.26.13Method subsasgn 1	158
A.26.14Method decorate	159
A.27 Class plot_bars	159
A.27.1 Constructor plot_bars	159
A.27.2 Method set	160
A.28 Class plot_errorbar	160
A.28.1 Constructor plot_errorbar 1	160
A.28.2 Method get	161
A.28.3 Method axis	161
	161
	161
A.30 Class plot_inset	162
<u>. </u>	162
	163
A.30.3 Method set	163
A.30.4 Method plot	163
	163
A.31.1 Constructor plot_simple	163

A.31.2 Method get
A.31.3 Method set
A.32 Class plot_stack
A.32.1 Constructor plot_stack
A.32.2 Method display
A.32.3 Method get
A.32.4 Method set
A.32.5 Method superposePlots 166
A.32.6 Method plot 166
A.32.7 Method decorate
A.33 Class plot_superpose
A.33.1 Constructor plot_superpose
A.33.2 Method display
A.33.3 Method get
A.33.4 Method set
A.33.5 Method axis
A.33.6 Method superposePlots 168
A.33.7 Method plot
A.33.8 Method decorate
A.34 Class ranked_db
A.34.1 Constructor ranked_db
A.34.2 Method blockedDistances 171
A.34.3 Method get
A.34.4 Method set
A.34.5 Method plotDistMatrix 172
A.34.6 Method plotCompareDistMatx
A.34.7 Method plotRowErrors 173
A.34.8 Method displayRows 174
A.34.9 Method subsref
A.34.10Method joinOriginal
A.34.11Method renameColumns 175
A.34.12Method getDistMatrix 176
A.35 Class results_profile 176
A.35.1 Constructor results_profile 176
A.35.2 Method display
A.35.3 Method get
A.35.4 Method subsref
A.35.5 Method plot
A.35.6 Method getResults
A.36 Class script_array
A.36.1 Constructor script_array
A.36.2 Method runFirst
A.36.3 Method get
A.36.4 Method set
A.36.5 Method runLast
A 36.6 Method run.Toh

A.36.7 Method subsref	. 181
A.36.8 Method subsasgn	. 181
A.37 Class script_array_for_cluster	
A.37.1 Constructor script_array_for_cluster	. 181
A.37.2 Method runFirst	. 182
A.37.3 Method get	
A.37.4 Method set	. 182
A.38 Class script_factory	
A.38.1 Constructor script_factory	
A.38.2 Method get	
A.39 Class spike_shape	
A.39.1 Constructor spike_shape	
$A.39.2 \ Method \ {\tt calcInitVmSlopeThresholdSupsample}$.	
A.39.3 Method plotCompareMethods	
A.39.4 Method display	
A.39.5 Method calcMaxVm	
A.39.6 Method get	
A.39.7 Method calcInitVmV3hKpTinterp	
A.39.8 Method set	
A.39.9 Method calcInitVmSekerliV2	
A.39.10Method calcMinVm	
A.39.11Method plotTPP	
A.39.12Method calcInitVm	
A.39.13Method calcInitVmSlopeThreshold	
A.39.14Method plotCompareMethodsSimple	
A.39.15Method calcInitVmMaxCurvature	
A.39.16Method calcInitVmV2PPLocal	
A.39.17Method getResults	
A.39.18Method calcWidthFall	
A.39.19Method calcInitVmLtdMaxCurv	. 192
A.39.20Method plotPP	
A.39.21Method plotResults	
A.39.22Method calcInitVmMaxCurvPhasePlane	. 193
A.40 Class spike_shape_profile	
A.40.1 Constructor spike_shape_profile	
A.40.2 Method get	
A.40.3 Method plot_abstract	
A.41 Class spikes	. 195
A.41.1 Constructor spikes	
A.41.2 Method display	
A.41.3 Method SFA	
A.41.4 Method get	
A.41.5 Method periodWhole	
A.41.6 Method set	
A.41.7 Method plotData	
A.41.8 Method plotISIs	. 198

A.45.3 Method ge
A.45.4 Method gt
A.45.5 Method le
A.45.6 Method lt
A.45.7 Method ne
A.45.8 Method onlyRowsTests 22
A.45.9 Method setProp
A.45.10Method isnanrows
A.45.11Method joinRows
A.45.12Method setRows
A.45.13Method plotTestsHistsMatrix
A.45.14Method crossProd
A.45.15Method display
A.45.16Method testsHists
A.45.17Method mtimes
A.45.18Method histogram
A.45.19Method cov
A.45.20Method end
A.45.21Method get
A.45.22Method sortrows
A.45.23Method set
A.45.24Method std
A.45.25Method sum
A.45.26Method kmeansCluster 22
A.45.27Method noNaNRows 22
A.45.28Method statsMeanStd 22
A.45.29Method checkConsistentCols 23
A.45.30Method rows2Struct
A.45.31Method getColNames
A.45.32Method plotrow
A.45.33Method dbsize
A.45.34Method displayRowsTeX
A.45.35Method matchingRow
A.45.36Method invarValues
A.45.37Method meanDuplicateRows 23
A.45.38Method minus
A.45.39Method displayRows
A.45.40Method times
A.45.41Method addLastRow
A.45.42Method diff
A.45.43Method plot_abstract
A.45.44Method addRow
A.45.45Method subsref
A.45.46Method shufflerows
A.45.47Method renameColumns
A 45 48Method mean

	A.45.49Method plot	240
	A.45.50Method subsasgn	241
	A.45.51Method plotXRows	241
	A.45.52Method princomp	241
	A.45.53Method allocateRows	242
	A.45.54Method compareRows	242
	A.45.55Method plotYTests	243
	A.45.56Method plotScatter	244
	A.45.57Method addColumns	244
	A.45.58Method tests2idx	245
	A.45.59Method delColumns	245
		246
	A.45.61Method statsAll	246
		247
		248
		248
		249
		249
		250
		250
		251
		251
	±	252
		253
		253
		254
		254
A.46		255
		255
	±	256
	± ±	256
		257
	±	257
		257
	±	257
	±	258
	A.46.9 Method findFilteredSpikes	258
	A.46.10Method calcAvg	259
	A.46.11Method getDy	259
	A.46.12Method calcMax	260
	A.46.13Method calcMin	260
	A.46.14Method plot_abstract	261
	A.46.15Method subsref	261
	A.46.16Method plot	261
	A.46.17Method getSpike	262
	A 46 18Method within Period	262

A.46.19Method getResults	263
A.46.20Method spike_shape	263
A.46.21Method analyzeSpikesInPeriod	264
A.47 Class trace_profile	264
A.47.1 Constructor trace_profile	264
A.47.2 Method get	265
A.48 Utility functions	265
A.48.1 Function findspikes_old	265
A.48.2 Function makeIdx	265
A.48.3 Function diff2T_h4	266
A.48.4 Function diff2T	266
A.48.5 Function diff3T	267
A.48.6 Function diffT	267
A.48.7 Function readNeuronVecBin	267
A.48.8 Function logLevels	268
A.48.9 Function diff3T_h4	268
A.48.10Function collectspikes	268
A.48.11Function subTextLabel	269
A.48.12Function uniqueValues	269
A.48.13Function calcGraphNormPtsRatio	269
A.48.14Function findspikes	270
A.48.15Function fillederrorbar	271
A.48.16Function findVectorInMatrix	271
A.48.17Function string2File	272
A.48.18Function chanTables2DB	272
A.48.19Function maxima	273
A.48.20Function sortedUniqueValues	273
A.48.21Function TeXtable	273
A.48.22Function cell2TeX	274
A.48.23Function ns_CIPlist	274
A.48.24Function parseGenesisFilename	275
A.48.25Function boxplotp	275
A.48.26Function plotImage	275
A.48.27Function meanSpikeFreq	276
A.48.28Function interpValByIndex	276
A.48.29Function growRange	276
A.48.30Function mergeStructs	277
A.48.31Function properTeXFilename	277
A.48.32Function prefixStruct	278
A.48.33Function properTeXLabel	278
A.48.34Function colormapBlueCrossRed	279
A.48.35Function loadtraces	279
Function Index	279

1 Introduction

1.1 What is the PANDORA Toolbox?

The PANDORA Toolbox is a software package which consists of a collection of MAT-LAB object-oriented classes and script functions for creating, analyzing and visualizing databases based on data from electrophysiological neuron simulations and recordings.

1.2 Why did you make it?

Motivations to create this software were:

- Analyze data generated by brute-force and other parameter search methods.
- Analyze subsets of parameter spaces and special cases.
- Evaluate robustness of model neurons.
- Find functional roles of specific conductances.

1.3 How is it implemented?

A custom database management system (DBMS) is written from scratch in the MAT-LAB language. The toolbox design follows object-oriented programming principles. It uses functions from the statistics and signal processing toolboxes of MATLAB, but they are not strictly necessary. It does not use MATLAB's database (DB) toolbox.

1.4 How can I use it?

The PANDORA Toolbox uses an object-oriented approach to provide maximal flexibility for interactive use on the MATLAB command-line. Objects can be created, modified, analyzed, and visualized interactively in few steps. It is straightforward to save and load binary representations of these objects into files. Scripts can be made to programmatically repeat these procedures. Existing object classes are designed with the prospect of future extension, to accommodate new types of data and analyses.

1.5 Who is it made for?

PANDORA Toolbox is customized for neuroscientific research. However, the concepts of a complex dataset, extraction of multiple observations from each item of the dataset, and analysis of multi-dimensional parameter spaces are universal. In its current form the database and dataset classes can be used for data other than electrophysiologic sources. As this toolbox is designed for flexible extensibility, one can add extensions that deal with different types of data and analyses.

¹At the time of initial design, the author did not have access to the DB toolbox. Future versions may support the DB toolbox.

²This version of the toolbox does not yet have a general graphical user interface (GUI). The author prefers to have a flexible command-line interface than to maintain a limited GUI. However, once commonly used functions can be conveniently placed within a GUI, it will be added to the toolbox.

1.6 Finding your way around

The source code uses MATLAB's documentation system, therefore all methods and classes are documented. To get help about all classes, issue the

>> help djlab

at the MATLAB prompt. This should give you an overview of available classes. Then, to learn about a specific class, ask for the documentation for the constructor method. For instance, for the trace class, issuing

>> help trace

gives you the documentation for the constructor together with an overview for the class. Sometimes, if there are multiple methods with the same name under different classes, you may get the wrong documentation. In that case, you can specify the class from which to take the method by prepending the class name to the method, such as in

>> help trace/spikes

In order to learn all methods available for a class, you can use MATLAB's methods command. For the trace class, do

>> methods(trace)

However, some documentation may be outdated or simply wrong. Please report these to the author via e-mail to cgunay@emory.edu.

1.7 Overview of this document

Next, Section 2 guides the reader through the installation of the package and other dependencies. You can skip this section if you already have a running software environment. Section 3 introduces the essential components of the software and talks about their design decisions. You can also skip this part if you're not interested in the guts of the system and you are in favor of a quick start. The recipes in Section 5 provide a tutorial for some common tasks. It may be easier for some readers to follow these recipes to jump-start using the software. However, it is recommended that you familiarize yourself with the basic organization of the classes before proceeding into more complex tasks. Section 6 takes the tutorial approach to describe common visualization tasks. Finally, Section A points to the list of individual methods provided by the software. These methods are documented in detail using the MATLAB online help system.

2 Installation

Download the latest package file from:

http://userwww.service.emory.edu/~cgunay/pandora.

Unpack the archive anywhere in your system, using

\$ tar xzf pandora-xyz.tar.gz

and follow the instructions in the README file. Basically it involves pointing your MATLAB installation to look at the pandora/ subdirectory for loading the PANDORA files.

This can be achieved either by copying the pandora/directory under the toolbox/directory in your MATLAB installation, or by adding the path to your MATLAB session. While the former is a permanent solution, the latter method requires repeated application for each new session. To avoid repetition, you can have a startup script, startup.m, in the directory that you run MATLAB with the following commands:

```
%--- startup.m for matlab
addpath /my/download/directory/pandora-1.0b/pandora
%--- end startup.m
```

This will be loaded everytime you run MATLAB from this directory. in UN*X systems, this can be improved further by placing the command in the file \$HOME/matlab/startup.m, which is executed no matter from where MATLAB is called, especially if you are running Matlab from different or unknown places each time.

Part I

Software Architecture

3 Toolbox Components

An overview of the toolbox functionality is shown in Figure 1. In the figure, boxes represent objects that can be created with the toolbox. Flow starts from the dataset object on the top left which represents the collection of raw data files. The raw data is loaded using information in the dataset to create intermediate objects that, for instance, contain data traces. These objects define electrophysiological measurements to be entered into the data matrix of the database object on the top right. The database object allows filtering and querying to refine its contents. From the database object, one can always go back to the dataset and find the raw data that results from a query. The arrows going to bottom objects and corresponding plots show the types of possible analyses that can be done on a database object. These analyses are typically for displaying statistical information. The red arrow is a speacial analysis for searching and matching rows between different databases. The match is done by taking a row from a database created with data from real neurons and finding best matching model neurons from a simulation database.

The objects in the figure are instances of classes that define their properties in the object-oriented framework. Each class comes with a hierarchy of of subclasses that specialize to specific functions. Subsequent sections describe each of these class hierarchies that make up the main components of the toolbox.

Figure 1: Schematic overview of the database software.

3.1 Databases hold all the information

The database object is at the center of this toolbox (see Figure 1). It holds a data matrix with rows as observations and columns as attributes. The rows would normally correspond to results from individual data traces, or simply neurons. The columns hold values of separate measurements, statistical data, or parameter values.

A database object can be created from any of the classes in the hierarchy of Figure 2. The top-level database class is tests_db which contains a two-dimensional data matrix of real numbers and some metadata. The metadata consists of column labels (e.g., measure names), a dataset label, and data properties (e.g., time resolution). The subclasses are specialized for different tasks.

If the database object is created using a dataset object, this maintains a connection from the elements of the database (e.g., neurons) to the raw data. This allows raw data associated with database contents to be visualized during analysis. However, a database can be created from any data matrix given in the proper format.

Some specialized subclasses of tests_db are as follows:

- params_tests_db The first num_params columns are reserved for parameters that were changed between different rows. It contains methods that treat these columns specially. Parameters can be simulation parameters, or pharmacological applications to experiments.
- tests_3D_db Contains a three-dimensional data matrix that has additional dimension for pages of information. This is mainly used to look at change in measurements with a parameter using the invarParam method of params_tests_db. Three dimensional databases can be useful for other purposes as well.
- **stats_db** Contains few rows that describe the statistics obtained possibly from another database. It can contain the mean and standard deviation or error, or in some cases, the minimal and maximal values of columns in a database. It contains special plotting functions. There are methods that use the statistics collected by this class.
- ranked_db Contains distances that resulted from a comparison of a database with a criterion. Its rows are ranked and sorted according to this distance value. Each row would point to a row in dex into the original database. Contains methods to generate reports from information about matching neurons.
- **spikes_db** Contains results from individual spike shapes of a trace object. It can be obtained using the trace/analyzeSpikesInPeriod method.
- **histogram_db** Each row corresponds to a histogram bin. Contains plotting methods.
- corrcoefs_db Each row corresponds to a correlation coefficient. Contains plotting methods.
- **cluster db** Each row corresponds to a cluster centroid. Contains plotting methods.

Figure 2: Database class hierarchy.

Figure 3: Dataset class hierarchy.

3.2 Datasets create the databases

The dataset object is responsible for creating the database objects (see Figure 1). It defines where the raw data is stored and what parameters are used to load and analyze it. It knows that raw data has parameters associated which individual raw data traces and how and which measures will be generated. This information is used to automatically generate a database from the dataset. It also allows reaching back the raw data from rows of an analyzed database.

Figure 3 shows the hierarchy for the dataset classes. The top-level dataset class is params_tests_dataset which is an incomplete class. That is, this class defines general utilities that can work for a variety of dataset subclasses, but one cannot make a object from the params_tests_dataset class directly. Instead, one of its subclasses must be chosen and used. Some of these specialized subclasses are as follows:

params_tests_fileset This class assumes each raw data item resides in a file and all of these files are in the same directory. The parameter names and values are obtained from each file name itself. This class is mostly useful for simulation filesets.

- params_cip_trace_fileset This is a subclass of params_tests_fileset,
 therefore it inherits the notion of one file per data item. The files must conform
 to the current-pulse injection experiments and have a starting time and duration
 for the pulses. The pulse magnitude is read from the pAcip parameter. This
 class is mostly useful for simulation filesets.
- **physiol_cip_traceset** This is a subclass of params_tests_dataset. It is designed to load a set of physiology traces from a single file generated by the PCDX stimulation and acquisition software.
- physiol_cip_traceset_fileset This is a subclass of params_tests_dataset.
 It is designed to load traces from multiple PCDX data files. It uses the physiol_cip_traceset class for this purpose.
- cip_traces_dataset, cip_traceset, cip_traceset_dataset These
 are obsolete classes that allow loading physiology traces from older MATLAB
 formatted objects.

Figure 4: Bundle class hierarchy.

3.3 Bundling the database and dataset together

Since dataset and database objects are related and work together for some operations, it is convenient to have another object that bundles them together. There are several analysis routines that start from the database, retrieve raw data traces and other related information from the dataset and create a result. For instance, matching neurons from one database to another requires first comparing the measurements to find match candidates, and then comparing raw traces to visually represent the match quality.

The top-level dataset_db_bundle class in Figure 4 fulfills this purpose by bundling a dataset with the raw database, db, created from it, and with the reduced database, joined_db, that contains a one-row-per-neuron representation. Although being a virtual class that cannot be instantiated, it contains general methods and prototype methods that must be implemented in subclasses. This way, it provides guidelines for defining subclasses. Its two subclasses provide specialize methods for model and physiology databases, respectively.

model_ct_bundle Contains methods to name and visualize neurons in the model database. It has methods to compare real neurons to model neurons to find best matching candidates.

physiol_bundle Contains methods to name and visualize neurons in the physiology database. It contains a new attribute, <code>joined_control_db</code>, that holds only the neurons recorded without any pharmacological treatments.

Figure 5: Data wrapper class hierarchy.

3.4 Wrapper classes hold raw data

Wrapper classes are designed to hold data and provide simple methods that operate on them. They can either hold raw data, or intermediate processed forms of data being byproducts of analysis routines. In the overall schema of Figure 1, the raw traces obtained from the dataset object are kept in data wrapper objects.

Figure 5 shows the hierarchy for the data wrapper classes. The most basic data wrapper class in this toolbox is the trace class, which holds raw voltage or current traces. The spikes object contains the spike times obtained by analyzing a trace object.

A data wrapper class does more than just holding the data. It defines a set of operations in terms of method functions that can work on the data held by the class. As a rule of thumb, if one needs to add some new functionality into the toolbox, it should be added as a method into a class holding the data on which to operate.

Some of the data wrapper classes are as follows:

- **trace** Generic object that holds a vector of data that changes over time. It has a time resolution and y-axis resolution. Contains simple analysis routines such as finding average values within different periods, or finding spikes given a threshold.
- **cip_trace** A subclass of trace class for current-injection recording protocols. It defines an initial spontaneous period, followed by a current-injection period, and final recovery period. It contains period-specific analyses that apply to the experimental protocol.
- **spike_shape** A subclass of trace that holds the shape of a single spike. It contains spike shape measurements.

spikes A generic class to hold the event times for spikes. It contains methods for making measurements based on spike times, such as rate and ISI calculations.

Figure 6: Profile class hierarchy.

3.5 Profiles hold results of measurements

Profile classes are designed to hold results of analysis and measurements on the data wrapper or database objects. The data and results are separated into different classes for added flexibility of saving data and results separately. Yet, the profiles normally keep a copy of the data wrapper object from which they obtained the measurements. The intention is to save the measurement results for possible visualization or later inspection, without having to repeat the analyses.

In Figure 6, the top-level results_profile class contains a simple MATLAB structure variable, results, that holds a set of name-value pairs. These are names of measurements and their corresponding values. Most of the subclasses are simplistic, and they exist only for organizational reasons. Some of them may implement specialized plotting methods that make use of the saved measurements. These subclasses can be briefly described as follows:

- **trace_profile** Holds measurements from a trace object. It contains the trace object and the spikes found in it, and averaged spike_shape object.
- cip_trace_profile Holds measurements from a cip_trace object with a currentinjection period. It contains the original cip_trace object and the spikes
 found in it. In addition, it holds averaged spike_shape objects from the spontaneous and current-injection periods.
- cip_trace_allspikes_profile Extended version of cip_trace_profile. Instead of single averaged spike shapes, it contains spike databases from the spontaneous, current-injection and recovery periods. These databases only retain measurements made from individual spikes, but not their shapes.
- spike_shape_profile Holds measurements made from a spike_shape object.
- params_tests_profile Holds analysis results from a params_tests_db object.

Figure 7: Plot classes hierarchy.

3.6 Integrated plotting for easy visualization

To integrate visualization into each class, common MATLAB plotting features are implemented in the supporting classes seen in Figure 7. These bring an object-oriented approach to plot generation in MATLAB. Plots can be generated as objects, saved, modified and included as subplots in larger plots.

The main plotting classes are plot_abstract, plot_superpose, and plot_stack. The most general plotting template class, and the top-level class in the hierarchy, is plot_abstract, which plots an axis using a single MATLAB command, like plot or bar. Multiple plot_abstract objects that use the same command can be superposed and still act as a single plot_abstract object. If they require different plotting commands (e.g., mixing plot and text labels), a plot_superpose object must be used that is composed of an array of plot_abstract objects. Multiple plot_abstract objects or any of the subclass objects can be composed together in a horizontal or vertical stack using the plot_stack class. Since plot_stack is itself a subclass of plot_abstract, it can be stacked as well. This allows creating virtually any complex structured figure using the three classes. Each of these classes have several properties that control the layout and details of placement and looks.

The rest of the classes in the hierarchy create typical types of plots for convenience:

plot_bars Multi-axis bar plot with extending errorbars using a combination of the bar, errorbar, and text commands.

plot_errorbar Single-axis errorbar plot using the errorbar command.

plot_errorbars Multi-axis errorbar plot using the errorbar command.

plot_simple Simplified single-axis, single command plot.

3.7 Miscellaneous classes

These are miscellaneous classes that do not fit into any of the above categories:

- **period** Defines a period composed of a start and end time for operations on traces, etc.
- **script_array** Defines a looping construct that can be extended. It defines an initialization routine, a job that needs to be repeated, and a finalization routine.
- script_array_for_cluster Subclass of script_array, it can submit the
 array job to run in parallel on a computing cluster that supports the Sun Grid
 Engine (SGE) commands.
- script_factory Factory class to generate an enumerated array of script files to be
 distributed on several machines and run in parallel. It also defines a final function
 to gather results. It is recommended to use script_array_for_cluster
 instead.

4 Programming Conventions

4.1 Using property structures for passing optional arguments to methods

For flexibility in passing optional arguments to methods, this toolbox adopted using property structures. A MATLAB structure, mostly called props, is passed to a method as the last argument:

```
>> props.optionalParam = 1
>> myFunc('hello', props)
```

Each method defines a list of accepted arguments that can be defined as fields in the structure, but should be able to execute without them by substituting defaults. Using a property structure is advantageous over using the varargin keyword for variable number of arguments, because properties allow adding and deleting arguments in methods without causing changes to the contents of the method. Since arguments are addressed by names rather than positional arguments, missing arguments do not affect the other arguments.

Most objects keep a property structure that define custom attributes passed at time of construction. These classes define a setProp method to modify properties after being created.

4.2 Overloaded operators for transparent access to object contents

The simplistic implementation of object-oriented programming features in Matlab impose several strict limitations. MATLAB's powerful and flexible operator overloading feature helps overcome these limitations.

PANDORA Toolbox uses MATLAB operator overloading to facilitate manipulation of local and parent object fields. In MATLAB, object fields can only be accessed from the object's private methods. This means one cannot access the object fields using the dot operator. To give an example, the trace object has a dt field for time resolution. The following command fails:

```
>> mytrace.dt = 1e-4;
??? Object fields can only be accessed within methods.
```

Everytime object contents need to be addressed, a method must be called. The recommended way to do this is by defining separate getter/setter methods for each field of the object. For instance, writing getDt and setDt methods for accessing the dt field. This creates a lot of burden for the programmer not just creating a class, but also maintaining it later. Although this probably was intended for strictness in building object-oriented constructs, it is highly inconvenient for command-line manipulations. Therefore our toolbox objects offer generic get and set methods that can read or write the value of any of its fields:

```
>> mytrace = set(mytrace, 'dt', 1e-4)
>> get(mytrace, 'dt')
ans = 1e-04
```

These methods are almost identical across different classes. In addition to this, defining the special subsref method for objects allow overloading the dot (.), parenthesis (()), and curly brace ({}) operators. Most³ of the objects in the toolbox allows using the dot operator to read or write to fields. Overloading these operators also help with the limitation of accessing parent object fields, a problem not found in other object-oriented languages such as JAVA. For example without any overloading, from the subclass class cip_trace one needs to first address the parent class name, and then dt:

```
>> myciptrace.trace.dt
ans = 1e-4
```

After defining the overloaded operator that call parent methods, one get reach dt directly:

```
>> myciptrace.dt
ans = 1e-4
```

Some classes overload indexing operators to allow accessing special functions. For instance the main database class, tests_db, overloads parenthesized indexing to access cells in the database matrix. Some classes define the special subsasgn method to overload the assignment operations when the object is on the left-hand-side of the operation. This allows the command:

```
>> mytrace.dt = 1e-4;
```

which would otherwise need to be done the following way:

```
>> mytrace = set(mytrace, 'dt', 1e-4);
```

³May not be implemented for all objects.

4.3 Troubleshooting errors

For debugging problems with methods, one can turn on the verbosity of information display during execution with:

```
>> warning on verbose
>> warning on backtrace
```

4.4 Creating a new class

To get the benefit of overloading, the top-level class must have the generic subsref and subsasgn methods. These methods can be copied from any of the other top-level classes. Any subclasses should have the generic get and set methods in place.

Part II

User's Manual

5 Recipes for Common Tasks

5.1 Loading a database

A database can be created directly from a data matrix, or indirectly by loading a dataset. For the latter, first a dataset object must be created that point to the data sources. There are different dataset classes that allow using different data sources. For instance, physiology and simulation data require different operations. In physiology data, one can record information about the treatments and other conditions, whereas in simulations one can keep track of changing parameters.

Once the dataset object is obtained, the database object can be created with

```
>> mydb = params_tests_db(dataset)
```

which initiates the loading of files. This operation is the same no matter what type of dataset or fileset object is used. The following commands reduce the verbosity of output during this long process:

```
>> warning off verbose
>> warning off backtrace
>> warning off calcInitVm:info
```

5.1.1 Creating a dataset for physiology data

Physiology data can be obtained from multiple sources.

Loading data by specifying tracesets in a text file The preferred way to load physiology traces is to first create a text file where each line specifies traces to load from a single data source (e.g., a PCDX file). The format of this text file is explained in the

PANDORA Toolbox: Prog.'s Mahraft v813 on 32007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

help of the physiol_cip_traceset_fileset class. The physiology fileset can be created from the text file with a command such as follows:

This command reads the cell_traces.txt file and records the tracesets to read from each file. The structure passed indicates to use the getProfileAllSpikes method to calculate the measurements on the traces.

The fileset can then be used to generate the database, as shown above, using its params_tests_db method. The fileset object holds within, a separate physiol_cip_traceset object for each line in the text file.

The cip_list optional parameter must be used with caution. To determine actual CIP-levels, the current channel of the trace is analyzed. cip_list entries are used to discretize the noisy current channel. Current levels will coerce to the nearest entry from cip_list. In the above example, all current levels below -200 pA will be assumed to be -200 pA. The default cip_list resides in the physiol_cip_traceset/CIPform method.

Loading data from existing cip_traces objects The now obsolete cip_traces Matlab objects have been used to hold some earlier physiological data. Each object holds a set of traces with varying CIP levels applied to the cell. The following command creates a dataset object from a cell array ct_list of cip_traces objects by choosing only the traces with 100 pA and -100 pA CIP levels

5.1.2 Creating a dataset for simulation data

First a dataset or a fileset must be created. An example to load GENESIS .bin files would be

The explanation of arguments can be obtained by issuing a

PANDORA Toolbox: Prog.'s MaBuraft v813 on32007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
>> help params_cip_trace_fileset
```

in MATLAB. In this example, all GENESIS files were created with the same characteristics: $\mathrm{d}t=10^{-4},\,\mathrm{d}V=10^{-3},\,\mathrm{pulse}$ during samples [20001, 30000]. Optional properties (the last argument) indicates that the first 10000 samples should be discarded and that the data should be prescaled to yield the $\mathrm{d}V$ indicated. Note that, using an absolute path to refer to data files ensures that they can be reached from different directories after the fileset object is saved.

Loading heterogeneous set of simulation files
Sometimes not all data files in a simulation set would have the same length, or CIP start time. The brute-force simulation set is such an example, where the spontaneous trace and different CIP level traces are in different files. I have a special superclass that contains multiple fileset objects to automatically handle this kind of data. It resides not in the general distribution directory, but in my personal directory /djlab/shared/matlab/classes/cengiz. This class is an example of how to create composite fileset objects. An instance of this class can be created with:

which will find all the files in the given directory and put them in separate pre-defined fileset objects according to their <code>_pAcip_</code> suffixes. Parameter range definition and value files are used to read parameter values for each simulation. A single database object can be loaded using the <code>params_tests_db</code> method on the <code>m_filesetall</code> object above. The help on this method explains how to load only certain filesets at a time. This helps to load different filesets in parallel, since databases can be concatanated easily afterwards.

5.2 Finding constrained subsets in a database

Once a database with more-than-sufficient number of measures is available, subsets of this database can be extracted easily for other tasks. New databases can be formed by filtering rows, columns or pages of an existing database. For choosing any of these dimensions, the user can specify an array of indices, or a logical array. For instance,

```
>> db2 = db1(1:10, :);
```

creates a database object db2 by the first ten rows of db1 and all its columns. For three-dimensional databases, a third parameter can be specified, as in

```
>> db2 = db1(1:10, :, [1 3]);
```

which will take only the first and third page from db1.

For measures, columns can also be specified as a single string value, or a cell array of strings, as in

```
>> db2 = db1(1:10, 'pAcip');
```

which chooses only the pAcip column of the first 10 rows of db1 or

PANDORA Toolbox: Prog.'s Mahraft v813 on32007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
>> db2 = db1(1:10, {'pAcip', 'IniSpontSpikeRate'});
```

which chooses two columns. Finally, composite queries can be formed when cell arrays are used for addressing:

```
>> db2 = db1(1:10, {1:10, 'IniSpontSpikeRate', 234});
```

which will select the first ten measures, the spontaneous spike rate, and the measure number 234.

Rows of the database signify neurons or simulation runs. Therefore it is important to find subset of neurons that match a certain criteria. This can be done specifying a list of rows that is the result of a logical operation. A logical operation finds rows that satisfy constraints on a single parameter or measure of a database. For instance,

```
>> rows = db1(:, 'IniSpontSpikeRate') > 10;
```

gives a logical array that contains a true value for all rows in db1 that has spontaneous firing faster than 10 Hz. If this is used as the row specifier in a subset operation, a new database with only these neurons can be obtained by

```
>> db2 = db1 (rows, :);
```

If we want more constrains it is straightforward to use any logical operation such as AND (&), OR (|) and NOT(\sim) on these logical arrays such as

```
>> db2 = db1((rows | rows2) & rows3, :);
```

which says choose all rows from db1 where either the tests rows and rows2 are satisfied and while rows3 is always satisfied. All these operations can be specified in-place such as in

```
>> db2 = db1(db1(:, 'IniSpontSpikeRate') > 10 & db1(:, 'IniSpontSpikeRate') <= 20, :);
```

which will create a database of neurons that spontaneously fire between 10-20 Hz.

5.2.1 Complex Queries

Complex queries can be constructed using results of queries in nested fashion. The following example shows an example of finding all neurons that match any of the neurons in another database and then find the ones that match certain criteria:

```
>> sub_phys_es2 = phys_joined_db(phys_joined_db(:, 'NeuronId') == es2(:, 'NeuronId'), :);
>> displayRows(sub_phys_es2(sub_phys_es2(:, 'Apamin') > 0, 'NeuronId'))
```

Here, the first query returns all rows that match the NeuronIds from the es3 database. The inner term in the second query finds among these neurons the ones for which apamin blocker data is present. The final enclosing block uses these rows to get a subset of the phys_joined_db with only the NeuronId column. This type query has equivalent computational power to using nested SELECT statements in the SQL language.

5.3 Sorting the database according to a measure

First, all rows where the desired measure value is NaN should be eliminated:

```
>> ampDecayTau_nonNaN_db =
    dball(~isnan(dball(:, 'PulseSpikeAmpDecayTau')), :)
```

This finds all rows in dball that the PulseSpikeAmpDecayTau measure is not NaN and creates a new DB object ampDecayTau_nonNaN_db, which includes these rows with all measures from dball. Notice that the newly created DB contains less rows than the original DB. The number of rows in the new DB can be obtained by just typing the name of the DB and pressing enter at the MATLAB prompt.

Then, one can sort the new database using:

This will create DB which is sorted with increasing values of the PulseSpikeAmpDecayTau measure. Displaying the first few rows gives lowest values:

```
>> displayRows(ampDecayTau_sorted_db, 1:3)
ans =
                                      1000] [ 250] [ 250]
0.5000] [ 0.5000] [ 2.5000]
60] [ 15] [ 30]
    'NaF'
    'NaP'
                                 Γ
    'Kv3'
                                [
    'Kv2'
                                            9] [
                                                           3] [
                                                                           31
                                Γ
                                            5] [ 1] [
                             [ 5] [ 1] [ 25]
[ 0.1000] [ 0.0100] [ 0.1000]
[ 8.5000] [ 34] [ 8.5000]
    'Kv4f'
    'KCNQ'
    'SK'
                                      10] [ 0.1000] [
    'CaHVA'
                               [
                                                                         10]
                              [
[
    'HCN'
                                         30] [ 0.3000] [
                                                                          301
                                        100] [ 100]
    'pAcip'
                                                                 ]
                                                                         1001
    'pAcip' [ 100] [ 100] [ 100] 
'IniSpontISICV' [3.9448e-04] [ 0.0051] [ 0.0452] 
'IniSpontPotAvg' [ -64.9161] [-52.6859] [-41.5876] 
'IniSpontSpikeRate' [ 14.0014] [ 18.0018] [ 81.0081] 
'PulseISICV' [ 0.0226] [ 0] [ 0.0366]
               'PulseIni100msISICV'
                                      30] [ 20] [
               [1x22 char] [
                                                                         1001
               [1x25 char] [ 29.4118] [166.6667] [ 96.0512]
    'PulsePotAvg' [ -61.0044] [-32.7775] [-34.1518]
    'PulsePotMin'
                    [ NaN] [ NaN] [ 1.1254] [
                              [ NaN] [ NaN] [ NaN]
    'PulsePotSag'
                                                       NaN]
                                                                 [
    'PulseSFA'
                                                       NaN] [ 1.3571]
    'PulseSpikeAmpDecayDelta' [ 4.2764] [ 9.2041] [ 17.8389] 
'PulseSpikeAmpDecayTau' [ 0.2000] [ 0.2000] [ 0.3000] 
'PulseSpikeRate' [ 28.0028] [ 2.0002] [ 89.0089]
```

Displaying the last few rows gives the highest values:

>> displayRows(ampDecayTau_s	or	ted_db, 1	L3879:	13881)		
ans =						
'NaF'	[250]	[250]]	1000]
'NaP'	[2.5000]	[2.5000]]	2.5000]
'Kv3'	[15]	[15]]	60]
'Kv2'	[3]	[3]]	9]
'Kv4f'	[5]	[5]]	25]
'KCNQ'	[0.1000]	[0.1000]]	0.0100]
'SK'	[8.5000]	[8.5000]	[17]
'CaHVA'	[10]	[10]	[10]
'HCN'	[30]	[3]]	30]
'pAcip'	[-100]	[-100]]	100]
'IniSpontISICV'	[0.0027]	[0.0027]	[9	.1376e-04]
'IniSpontPotAvg'	[-28.5685]	[-28.5687]	1	-67.7567]
'IniSpontSpikeRate'	[69.0069]	[69.0069]	[14.0014]
'PulseISICV'	[0.0046]	[0.0046]	[0.0091]
'PulseIni100msISICV'	[0.0080]	[0.0080]	1	0]
[1x27 char]	[71.1269]	[71.1269]	1	24.4499]
[1x27 char]	[71.1427]	[71.1427]	Ĺ	26.6785]
[1x22 char]	[80]	[80]	[20]
[1x25 char]	[70.6357]	[70.6357]	1	25.4453]
'PulsePotAvg'	[-30.1705]	[-30.1718]	1	-65.2721]
'PulsePotMin'	[NaN]	[NaN]	1	NaN]
'PulsePotSag'	[NaN]	[NaN]	[NaN]
'PulseSFA'	[0.9792]	[0.9792]	1	1.0407]
'PulseSpikeAmpDecayDelta	[-1.2791]	[-1.2868]	1	1.2201]
'PulseSpikeAmpDecayTau'	[999.6000]]	999.6000]	Ĺ	1000]
'PulseSpikeRate'	[72.0072]]	72.0072]	[25.0025]

5.4 Preprocessing a raw (physiology) database by elimination and averaging

Mostly, raw physiology databases are subject to redundancies and unwanted recordings. We usually apply the following steps before we start analyzing a raw physiology database. Similar steps may be employed for simulation databases, too.

5.4.1 Limiting range of bias currents

Recordings with high bias current are undesirable. We commonly filter-out high bias currents with:

which will limit the bias current, i_b , to $-30 \,\mathrm{pA} < i_b < 30 \,\mathrm{pA}$.

5.4.2 Choosing few current levels

To get a profile for a neuron, usually both hyperpolarizing and depolarizing CIP-levels need to be included. Moreover, to capture the spiking frequency vs. current response of the neuron, multiple depolarizing CIP-level information may need to be included.

There are two counterparts to selecting which CIP-levels to include in a DB. First, one can select what CIP-levels are available in the raw data and what discretization levels should be used while loading the database. This is done with the <code>cip_list</code> optional parameter described in Section 5.1.1. GP recordings prior to mid-2005 have current channel data which are too noisy to be quantized to levels of 10 pA. Instead, at least a step size of 20 pA needs to be used. Later recordings have both better recordings, and feature 20 pA steps in the experimental protocol anyway.

Second, after the database is loaded, one can filter-out unwanted CIP-level traces:

This operation can be simplified to take advantage of complex query form:

```
>> phys_dball_limitedcip =
    phys_dball_big(phys_dball_big(:, 'pAcip') == [-100; 0; 50; 100; 200])
```

which will choose rows with current levels matching any of the given values.

5.4.3 Adding new columns calculated from existing measures

Some measures can be deduced from measures collected from raw data. These do not need to be calculated at time of loading the raw data, but rather can be added to the database later. Some measures must be added later because they may be composed of measurements from multiple traces or averages. Here is an example for adding a new measure:

5.4.4 Averaging multiple traces of same neuron with same CIP-level and (pharmacological) parameters

In making a one-row-per-CIP-level database, it is essential to include all available information from the raw database. Especially in physiology datasets, there may be multiple traces of a neuron where the same CIP-level and the same pharmacological conditions were applied. These rows can be averaged to obtain a single row for each CIP-level of a neuron.

Before doing this, the parameters of the raw database should only include parameters that uniquely distinguish neurons. The averaging operation tries to find each distinct set of parameters and then averages all rows that has this combination. For example, the NeuronId and pAcip parameters need to be distinct. However, the pAbias parameter does not need to be distinct for each neuron. The non-unique parameters need to be filtered-out before the averaging process. The following shows all the parameters of a raw physiology database:

```
>> phys_db
params_tests_db, tracesets from .../cip_traces_all_axoclamp.txt
ans =
   num_params: 16
        props: [0x0 struct]
     tests_db: [1x1 tests_db]
Optional properties of params_tests_db:
ans =
0x0 struct array with no fields.
tests_db, tracesets from .../cip_traces_all_axoclamp.txt
1527 rows in database with 182 columns, and 1 pages.
Column names:
          'pulseOn'
    [ 1]
          'pulseOff'
    [ 2]
          'traceEnd'
      3]
    Γ
          'pAcip'
      4]
    'pAbias'
      5]
           'Cadmium'
      6]
      7]
            'PicroTx'
      8]
            'Apamin'
      91
            'Glycine'
    [ 10]
            'KynAcid'
            'TTX'
    [ 11]
    [ 12]
            'XE991'
    [ 13]
            'drug_4AP'
            'EBIO'
    [ 14]
    [ 15]
            'NeuronId'
    [ 16]
            'TracesetIndex'
```

One can choose which parameters need to be distinct for each row by specifying as the second argument in the call to the meanDuplicateRows method, whereas the third argument specifies the measures to be averaged:

```
>> phys_mean_db = meanDuplicateRows(phys_db, [4 6:15], [17:161])
params_tests_db, averaged tracesets from .../cip_traces_all.txt
ans =
    num_params: 13
        props: [0x0 struct]
        tests_db: [1x1 tests_db]
Optional properties of params_tests_db:
ans =
0x0 struct array with no fields.
```

```
tests_db, averaged tracesets from .../cip_traces_all.txt
690 rows in database with 158 columns, and 1 pages.
Column names:
    [ 1]
             'pAcip'
    [ 2]
             'Cadmium'
    [ 3]
             'PicroTx'
    [ 4]
             'Apamin'
             'Glycine'
       51
             'KynAcid'
    Γ
      61
             'TTX'
       7]
    ſ
             'XE991'
       8]
             'drug_4AP'
      9]
    [ 10]
             'EBIO'
    [ 11]
             'NeuronId'
             'NumDuplicates'
    [ 12]
    [ 13]
             'RowIndex'
    [ 14]
             'IniSpontISICV'
```

This command ignores the pulse time information and the bias current, but includes all the pharmacological parameters, in distinguising the unique traces. It also eliminates some measures, such as the ItemIndex, from averaging.

5.5 Making a database by merging multiple rows from another database

A simple example for making a new database out of multiple rows in an existing database is combining multiple traces from the same neuron with different current pulse injection (CIP) levels. The initial database contains a row for each CIP level with redundant information, such as spontaneous period measurements.

5.5.1 Making a one-row-per-neuron DB from multiple CIP-level rows

Measures of same cell obtained with multiple CIP-levels can be merged to make a single row. Note that, different pharmacological conditions applied to one cell must be kept in a different rows. The following command selects measures from each of the $\{-100, 0, 40, 100, 200\}$ CIP levels to be included in the merged database:

This command operates on the previously averaged database, phys_mean_db, where each CIP level only occurs once for each distinct pharmacological setting for each neu-

ron. Note that, we filter-out columns 14 and 15 from the averaged DB while supplying the first argument to mergeMultipleCIPsInOne, which are artifacts of the averaging process and need not be included in the merged database. The second argument is a cell array of pairs of a suffix string and a corresponding list of measures for each of the CIP levels in phys_mean_db, in increasing order. The merged phys_joined_db looks like this:

```
params_tests_db, averaged tracesets from .../cip_traces_all_axoclamp.txt mult CIP
ans =
   num_params: 12
     tests_db: [1x1 tests_db]
tests_db, averaged tracesets from .../cip_traces_all_axoclamp.txt mult CIP
179 rows in database with 258 columns, and 1 pages.
Column names:
    [ 1]
[ 2]
           'Cadmium'
            'PicroTx'
    [ 3]
            'Apamin'
    [ 4] 'Glycine'
    [ 5] 'KynAcid'
    [ 6] 'TTX'
          'XE991'
    [7]
          'drug 4AP'
    [ 8]
          'EBIO'
    [ 9]
            'Gabazine'
    [ 10]
            'NeuronId'
    [ 11]
            'TracesetIndex'
    [ 12]
           'PulseISICV_H100pA'
    [ 13]
            'PulseIni100msISICV_H100pA'
    [ 14]
    [ 15]
            'PulseIni100msRest1SpikeRate_H100pA'
            'PulseIni100msRest2SpikeRate_H100pA'
    [ 16]
    [ 17]
            'PulseIni100msSpikeRate_H100pA'
    [ 18] 'PulseIni100msSpikeRateISI_H100pA'
    [255]
            'PulseSpikeRiseTimeMean_D200pA'
    [256]
            'PulseSpikeRiseTimeMode_D200pA'
    [257]
            'PulseSpikeRiseTimeSTD_D200pA'
    [258]
            'PulseSpontAmpRatio_D200pA'
```

Note how each measure suffix indicate the CIP-level it belongs.

5.5.2 Making a one-row-per-neuron DB from dual CIP-level rows

The following statement uses the params_tests_db/getDualCIPdb method to merge rows of depolarizing and hyperpolarizing CIP-levels:

Here, the cell array variables depol_tests and hyper_tests hold the names of measures to be selected from depolarizing CIP and hyperpolarizing CIP, respectively.

The last two arguments define the suffixes to be applied to distinguish the measures from each CIP. The original DB is

```
>> dball
dball
params_tests_db, sim dataset gpsc0501
ans =
    num_params: 10
        props: [0x0 struct]
      tests_db: [1x1 tests_db]
Optional properties of params_tests_db:
ans =
0x0 struct array with no fields.
tests_db, sim dataset gpsc0501
39366 rows in database with 62 columns, and 1 pages.
Column names:
    [ 1]
           'NaF'
    [2]
           'NaP'
          'Kv3'
    [3]
           'Kv2'
    [ 4]
           ′Kv4f′
    [5]
           'KCNQ'
    [6]
           'SK'
    [7]
    [8]
           'CaHVA'
           'HCN'
    [ 9]
    [10]
           'pAcip'
           'IniSpontISICV'
    [11]
           'IniSpontPotAvg'
    [12]
    [13]
           'IniSpontSpikeRate'
    [14]
           'PulseISICV'
    [15]
           'PulseIni100msISICV'
           'PulseIni100msRest1SpikeRate'
    [16]
            'PulseIni100msRest2SpikeRate'
    [17]
            'PulseIni100msSpikeRate'
    [18]
            'PulseIni100msSpikeRateISI'
    [19]
    [20]
            'PulsePotAvg'
    [21]
            'PulsePotMin'
            'PulsePotSag'
    [22]
    [23]
            'PulseSFA'
            'PulseSpikeAmpDecayDelta'
    [24]
    [25]
            'PulseSpikeAmpDecayTau'
    [26]
            'PulseSpikeRate'
    [27]
            'PulseSpikeRateISI'
    [28]
            'RecIniSpontPotRatio'
            'RecIniSpontRateRatio'
    [29]
    [30]
            'RecSpont1SpikeRate'
    [31]
            'RecSpont2SpikeRate'
            'RecSpontISICV'
    [32]
            'RecSpontPotAvg'
    [33]
    [34]
            'RecSpontSpikeRate'
```

```
[35]
            'SpontAmplitude'
            'SpontBaseWidth'
    [36]
    [37]
            'SpontDAHPMag'
    [38]
            'SpontFallTime'
    [39]
            'SpontHalfVm'
    [40]
            'SpontHalfWidth'
    [41]
            'SpontInitTime'
            'SpontInitVm'
    [42]
            'SpontMaxAHP'
    [43]
            'SpontMinTime'
    [44]
            'SpontMinVm'
    [45]
            'SpontPeakVm'
    [46]
            'SpontRiseTime'
    [47]
    [48]
            'PulseAmplitude'
    [49]
            'PulseBaseWidth'
    [50]
            'PulseDAHPMag'
    [51]
           'PulseFallTime'
    [52]
           'PulseHalfVm'
    [53]
           'PulseHalfWidth'
    [54]
           'PulseInitTime'
           'PulseInitVm'
    [55]
           'PulseMaxAHP'
    [56]
           'PulseMinTime'
    [57]
           'PulseMinVm'
    [58]
            'PulsePeakVm'
    [59]
            'PulseRiseTime'
    [60]
    [61]
            'PulseSpontAmpRatio'
    [62]
            'ItemIndex'
Optional properties of tests_db:
ans =
0x0 struct array with no fields.
           After merging, it becomes
>> sdball
sdball
params_tests_db, sim dataset gpsc0501 dual cip
ans =
    num_params: 9
       props: [0x0 struct]
      tests_db: [1x1 tests_db]
Optional properties of params_tests_db:
0x0 struct array with no fields.
tests_db, sim dataset gpsc0501 dual cip
19683 rows in database with 50 columns, and 1 pages.
Column names:
    [1]
          'NaF'
           'NaP'
    [2]
           'Kv3'
    [3]
           'Kv2'
    [ 4]
```

5 RECIPES FOR COMMON TASKS

```
[5]
            'Kv4f'
    [ 6]
            'KCNO'
    [7]
            'SK'
    [8]
            'CaHVA'
    [ 9]
            'HCN'
    [10]
            'RecIniSpontPotRatioHyp100pA'
    [11]
            'RecIniSpontRateRatioHyp100pA'
            'RecSpont1SpikeRateHyp100pA'
    [12]
            'RecSpont2SpikeRateHyp100pA'
    [13]
            'RecSpontISICVHyp100pA'
    [14]
            'RecSpontPotAvgHyp100pA'
    [15]
            'ItemIndexHyp100pA'
    [16]
            'IniSpontSpikeRate'
    [17]
    [18]
            'PulseIni100msSpikeRate'
            'PulseIni100msSpikeRateISI'
    [19]
    [20]
            'PulseIni100msISICV'
    [21]
            'PulseIni100msRest1SpikeRate'
    [22]
            'PulseIni100msRest2SpikeRate'
    [23]
            'RecSpont1SpikeRate'
    [24]
            'RecSpont2SpikeRate'
    [25]
            'RecIniSpontRateRatio'
            'IniSpontISICV'
    [26]
            'PulseISICV'
    [27]
            'RecSpontISICV'
    [28]
            'PulseSFA'
    [29]
    [30]
            'PulseSpikeAmpDecayTau'
    [31]
            'PulseSpikeAmpDecayDelta'
    [32]
            'IniSpontPotAvg'
    [33]
            'PulsePotAvg'
    [34]
            'RecSpontPotAvg'
    [35]
            'RecIniSpontPotRatio'
    [36]
            'SpontInitVm'
    [37]
            'SpontAmplitude'
    [38]
            'SpontMaxAHP'
            'SpontDAHPMag'
    [39]
            'SpontRiseTime'
    [40]
            'SpontFallTime'
    [41]
            'SpontHalfWidth'
    [42]
    [43]
            'PulseInitVm'
    [44]
            'PulseAmplitude'
    [45]
            'PulseMaxAHP'
    [46]
            'PulseDAHPMag'
    [47]
            'PulseRiseTime'
    [48]
           'PulseFallTime'
    [49]
            'PulseHalfWidth'
    [50]
            'ItemIndex'
Optional properties of tests_db:
0x0 struct array with no fields.
```


Figure 8: Example trace plot.

6 Visualization

By default, MATLAB prints figures in portrait orientation with a 8x6 aspect ratio, ignoring their size on the screen. The command;

>> orient tall

changes that behavior to print a full page in portrait orientation. The command;

>> orient landscape

does the same but rotates the figure to landscape orientation. If you want the printed figure to reflect its current screen size, issue the command;

```
>> set(figurenum, 'PaperPositionMode', 'auto')
```

Figures generated by the plotting system of the PANDORA Toolbox has a special resizing capability. Everytime the figure is resized, it will be drawn from scratch after calculating proper spacing between subplots according to font size. However, in some conditions this may cause other problems, such as crashing MATLAB in figure editing mode or causing loss of manual changes to the figure. To disable the auto-resize function, issue the following command after creating the figure;

```
>> set(figurenum, 'ResizeFcn', ")
```

Finally, to print the figure, consult your Matlab manual or issue a command such as;

```
>> print -depsc2 figurename.eps
```

See below for specific types of figures you can create.

6.1 Visualizing traces

The trace, and its subclasses such as cip_trace, has the plot command overloaded to draw the raw trace in Figure 8:

```
>> a_ct = ctFromRows(mbundle, 9842, 100);
>> plot(a_ct)
```

Note that the plot in the figure has been created with a more precise control:

```
>> plotFigure(plotData(a_ct, ", struct('PaperPosition', [0 0 3 2])))
```

6.2 Displaying database contents

The displayRows method of tests_db can be used to display rows of a database:

```
>> displayRows(sdball, 1:3)
ans =
   'NaF'
                       [
                            2501
                                  [
                                      250] [
                                                   10001
                       [ 2.5000] [ 2.5000] [ 15] [
                                                 2.5000]
   'NaP'
   'Kv3'
                                                  601
                                        3] [
   'Kv2'
                       [
                             31
                                [
                                                      91
                                     5] [
                             5] [
   'Kv4f'
                                                     251
                       Γ
                      [ 0.1000] [ 0.1000] [ 0.0100]
[ 8.5000] [ 8.5000] [ 17]
   'KCNO'
   'SK'
   'CaHVA'
                          10] [ 10] [
                                                    101
   'HCN'
                      [
                             30] [
                                        3] [
                                                    30]
                                                  1001
   'pAcip'
                      [ -100] [
                                      -100] [
   'IniSpontISICV' [ 0.0027] [ 0.0027] [9.1376e-04]
```

Note that, in the output, database rows appear as columns, and database columns appear as rows. See in above Section 5.3 for more example outputs from displayRows.

displayRows returns a cell array of column names justapoxed to a matrix of values. This cell array is intended for display on the screen and for generating reports. The displayRowsTeX method uses output from displayRows to generate a LATeX table that can be printed or converted to PDF:

With this the LATEX code to generate a table with the given caption is saved in a text file called fast_spiking.tex. This file can then be included from a regular LATEX document to generate PDF output. See a LATEX manual on how to do that.

An alternative to displayRows is using the tests_db/rows2Struct method:

Figure 9: Example measure distribution plot.

```
IniSpontSpikeRate: 0
IniSpontSpikeRateISI: 0
PulseISICV: 0.0265
PulseIni100msISICV: 0.0584
PulseIni100msRest1SpikeRate: 40.0089
PulseIni100msRest2SpikeRate: 40.0178
PulseIni100msSpikeRate: 50
PulseIni100msSpikeRateISI: 43.5256
PulsePotAvg: -57.3737
PulsePotMin: NaN
PulsePotSag: NaN
PulseSFA: 1.1698
```

. . .

This method returns the database contents as a structure array. It is more natural for programming interfaces to use the database contents in a structure array than a cell array. The database columns become field names in the the structure. If multiple rows are requested, the displayed output would not contain the values. The desired row can be reached via indexing (e.g., s(1)). For instance, analysis in <code>cip_trace/getProfileAllSpikes</code> method is done using this method for getting statistics from the <code>spikes_db</code> databases.

6.3 Plotting all measure histograms

For plotting all measure histograms in a DB, the following method of tests_db creates the horizontal stack plot in Figure 9:

6.4 Plotting all parameter histograms

For plotting all parameter histograms in a DB, the following method of params_tests_db creates the horizontal stack plot in Figure 10:

```
>> plotFigure(plotParamsHists(sdball));
```


Figure 10: Example parameter distribution plot.

6.5 Plotting database statistics

The stats_db object allows keeping statistical information obtained from a database. Statistics are calculated using one of the tests_db converter methods, such as statsAll, statsMeanStd, etc.:

```
>> my_stats = statsMeanStd(my_db(:, {'IniSpontSpikeRate', 'PulseSpikeRate'}));
```

Then, the statistics can be plotted with diamonds indicating the mean and symmetric errorbars indicating upper and lower extensions (SE or Std):

```
>> plot(my_stats);
```

which is equivalent to:

>> plotFigure(plot_abstract(my_stats));

An alternative plotting form is using filled bars with extending errorbars:

```
>> plotFigure(plot_bars(my_stats));
```

which are both seen in Figure 11 (a) and (b). The plot_bars method is better suited for comparing statistics from multiple stats_dbs coming from different sources. In this case, we take the first 1000 rows from the DB as a subset, and compare it with the statistics from the second 1000 rows:

The combined statistics object can then be fed into plot_bars as seen in Figure 11 (c):

```
>> plotFigure(plot_bars(compared_two_subset_stats));
```


(a) Default visualization for stats_db. (b) Optional plot_bars visualization for stats_db.

(c) Comparing multiple stats_dbs with (d) Plotting parameter-measure plot_bars. variation with plotVar.

Figure 11: Plotting statistics for two selected measures.

Figure 12: Example parameter-measure variation statistics plot.

6.6 Plotting parameter-measure variations

To plot the variation of a measure with a parameter the plotVar method of stats_db can be used to achieve Figure 11 (d):

```
>> plotFigure(plotVar(a_stats_db, 'CaHVA', 'AHP_depth', 'AHP change with change in CaHVA', struct('quiet', 1, 'PaperPosition', [0 0 3 3])))
```

To plot all parameter-measure variations, the plotVarMatrix method of stats_db can be used (see Figure 12). plotVarMatrix requires the a p_stats array of stats_db objects that hold the mean and standard error information (or possibly other statistics) for each of the possible parameter-measure combinations. The p_stats array can be created using the paramsTestsHistsStats method, which in turn requires the p_t3ds array of 3-dimensional databases each of which contain effects of a parameter invariant of other parameters. The p_t3ds array can be created using the params_tests_db/invarParams method. The sequence of commands⁴ is then becomes:

```
>> p_t3ds = invarParams(noNaNRows(sdball))
>> [pt_hists, p_stats] = paramsTestsHistsStats(p_t3ds)
>> ap = plotVarMatrix(p_stats)
>> plotFigure(ap)
```

This will create a matrix plot with as many columns as parameters and as many rows as measures in the sdball object. It may be difficult to read if sdball contains large number of measures. One can divide the measures into two plots with the following sequence of commands

```
>> sdb1 = sdball(:, [1:9, 10:35])
>> sdb2 = sdball(:, [1:9, 36:49])
```

by choosing all parameters in both DBs, but only some measures for each. Then, the plots can be created for each DB by issuing

```
>> p1_t3ds = invarParams(sdb1)
>> p2_t3ds = invarParams(sdb2)
>> [pt1_hists, p1_stats] = paramsTestsHistsStats(p1_t3ds)
>> [pt2_hists, p2_stats] = paramsTestsHistsStats(p2_t3ds)
>> ap1 = plotVarMatrix(p1_stats)
>> plotFigure(ap1)
>> ap2 = plotVarMatrix(p2_stats)
>> plotFigure(ap2)
```

6.7 Insets

See Figure 13 which was created with the following set of commands.

```
>> im_p = plot_abstract({50 * rand(5)}, {}, ", {}, 'image');
>> plotFigure(plot_absolute([im_p, im_p], [0 0 1 1; 0.5 0.5 0.3 0.3]))
```

⁴The noNaNRows function is required to filter out any rows containing NaN values in measurements before running statistic functions. Otherwise, the statistics functions (such as mean and std) will eliminate NaN values within each database column automatically, scrambling the row order and loosing the association with parameters.

Figure 13: Creating insets in figures.

6.8 Generating a report comparing two databases

Most commonly a database of physiology neurons need to be compared to a database of a large body of simulation neurons and find best matches. One may need to see the match quality for a number of best matching candidates for each of the physiology neurons. Assuming multiple plots and tables are required to do a fair job of comparing a neuron to a thousands of simulation neurons, it becomes a difficult job to do this manually. An automatic report generation system has been built into the system for this purpose.

Currently a LaTeX document is created that needs to be included in either a proper LaTeX document, or included in a LayX document. The including document should provide the context in which the included part becomes meaningful. The report contains a set of tables and figures with proper captions. The table of contents, list of figures and list of tables facilities of LaTeX becomes useful to make the automatically generated document eaisly readable.

The report can be created with the command

where the simulation database sdb is searched for best matches to each row of physiology database phys_sdb. The dataset for each is provided for the report to contain raw data associated with best matches. The obtained report contained in tex_string can be saved as a ASCII LATEX file with

```
>> string2File(tex_string, 'myreport.tex');
```

 $^{^5}$ This document is prepared using the LyX document preparation system [Ettrich et al., 2003] which uses the LaTeX $2_{\mathcal{E}}$ typesetting language [Lamport, 1994]. LyX is copyrighted by Matthias Ettrich and covered by the terms of the GNU General Public License (GPL), and LaTeX $2_{\mathcal{E}}$ is copyrighted by D. E. Knuth and the Free Software Foundation, Inc. and is covered by both the TeX copyright and the GNU GPL.

References

Matthias Ettrich et al. LyX. A document preparation system that allows the author to concentrate on content, rather than typesetting., 2003. URL http://www.lyx.org.

Leslie Lamport. *ETeX: A document preparation system.* Addison-Wesley, Reading, Massachusetts, second edition, 1994. ISBN 0-201-52983-1.

Appendices

A Function Reference

See Section 1.6 on how to get online help about the software within MATLAB.

A.1 Class chans_db

A.1.1 Constructor chans_db/chans_db

Summary: A database of channel activation and kinetics.

Usage:

```
a_chans_db = chans_db(data, col_names, orig_db, crit_db, id, props)
```

Description: This is a subclass of tests_db. Channel tables can be imported from Genesis using the utils/chanTables2DB script.

Parameters:

```
data: Database contents.
```

col names: The channel variable names.

channel_info: Structure that holds scalar data elements such as Gbar.

id: An identifying string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

```
tests_db, channel_info, props.
```

```
See also: tests_db (p. 217), chanTables2DB (p. ??)
```

A.1.2 Method chans_db/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.1.3 Method chans_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.1.4 Method chans_db/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.1.5 Method chans_db/plotInf

Summary: Plot the product of minf variables and the gmax of the given channel.

Usage:

```
a_plot = plotInf(a_chans_db, chan_name, gate_subnames)
```

Parameters:

a_chans_db: A chans_db describing channel variables.

chan_name: Name of channel that make up the stem of variable names.

gate subnames: Gate names of the channel.

props: A structure with any optional properties.

(rest passed to plot_abstract.)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

A.1.6 Method chans_db/plotGateVars

Summary: Plot given channel gate variables of the same channel superposed.

Usage:

```
a_plot = plotGateVars(a_chans_db, chan_name, gate_subnames)
```

Parameters:

```
a_chans_db: A chans_db describing channel variables.
```

chan_name: Name of channel that make up the stem of variable names.

gate_subnames: Gate names of the channel.

props: A structure with any optional properties.

usePowers: Use the gate powers, Luke. (rest passed to plot_abstract.)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/07/01

A.1.7 Method chans_db/plotAllInf

Summary: Plots the steady-state (infinity) response of all channels.

Usage:

```
a_plot = plotAllInf(a_chans_db, title_str, props)
```

Parameters:

```
a_chans_db: a chans_db
```

title_str: Plot title.

props: A structure with any optional properties.

(rest passed to matrixPlots.)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

A.1.8 Method chans_db/plotAllVars

Summary: Plot all channel variables by grouping activation and time constant curves per channel.

Usage:

```
a_plot = plotAllVars(a_chans_db, title_str, props)
```

Parameters:

```
a_chans_db: A chans_db describing channel variables.
```

id: String that identify the source of the tables structure.

props: A structure with any optional properties.

(rest passed to plot_abstract.)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/03/05

A.2 Class cip_trace

A.2.1 Constructor cip_trace/cip_trace

Summary: A trace with a current injection pulse (CIP).

Usage:

```
obj = cip_trace(datasrc, dt, dy, pulse_time_start, pulse_time_width, id, props)
```

Parameters:

datasrc: A vector of data points containing the spike shape.

dt: Time resolution [s].

dy: y-axis resolution [ISI (V, A, etc.)]

pulse_time_start, pulse_time_width: Start and width of the pulse
 [dt]

id: Identification string.

props: A structure with any optional properties, such as:

trace_time_start: Samples in the beginning to discard [dt] (see trace for more)

Returns a structure object with the following fields:

trace, pulse_time_start, pulse_time_width, props.

PANDORA Toolbox: Prog.'s MaBuraft v813 on52007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
See also: trace (p. 255), spikes (p. 195), spike_shape (p. 183), period (p. 137)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.2.2 Method cip_trace/periodPulseIni50ms

Summary: Returns the first 50ms of the CIP period of cip_trace, t.

Usage:

```
the_period = periodPulseIni50ms(t)
```

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.3 Method cip_trace/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.2.4 Method cip_trace/periodRecSpontRestPeriod

Usage:

```
the_period = periodRecSpont(t)
```

Parameters:

t: A trace object.

iniPeriod: the time following pulse offset that is ignored. The rest of the time is kept

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>,Tom Sangrey 2006/01/26

A.2.5 Method cip_trace/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.2.6 Method cip_trace/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.2.7 Method cip_trace/plotData

Summary: Plots a trace by calling trace/plotData but also adds optional decorations.

Usage:

```
a_plot = plotData(t, title_str, props)
```

Description: If t is a vector of traces, returns a vector of plot objects.

Parameters:

t: A trace object.

title_str: (Optional) String to append to plot title.

props: A structure with any optional properties.

stimBar: If true, put a bar indicating the CIP duration. (rest passed to trace/plotData)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/17

A.2.8 Method cip_trace/getBurstResults

Summary: Calculate test results related to Burst behavior.

Usage:

```
results = getRateResults(a_cip_trace, a_spikes)
```

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 on 52007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
a_cip_trace: A cip_trace object.a_spikes: A spikes object.
```

Returns:

results: A structure associating test names with result values.

See also: cip_trace (p. 54), spikes (p. 195), spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/30, Tom Sangrey

A.2.9 Method cip_trace/periodIniSpont

Summary: Returns the initial spontaneous activity period of cip_trace, t.

Usage:

```
the_period = periodIniSpont(t)
```

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.10 Method cip_trace/spikes

Summary: Convert cip_trace to spikes object for spike timing calculations.

Usage:

```
obj = spikes(trace, plotit)
```

Description: Creates a spikes object by finding the spikes in the three separate periods, initial spontaneous activity period, CIP period, and final recovery period.

Parameters:

trace: A trace object.

plotit: If non-zero, a plot is generated for showing spikes found (optional).

See also: spikes (p. 195), period (p. 137)

A.2.11 Method cip_trace/getCIPResults

Summary: Calculate test results about CIP protocol.

Usage:

```
results = getCIPResults(a_cip_trace, a_spikes)
```

Parameters:

```
a_cip_trace: A cip_trace object.
```

a_spikes: A spikes object.

Returns:

results: A structure associating test names with result values.

```
See also: cip_trace (p. 54), spikes (p. 195), spike_shape (p. 183)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/30

A.2.12 Method cip_trace/periodRecSpont1

Summary: Returns the first half of the recovery spontaneous activity period of cip_trace, t.

Usage:

```
the_period = periodRecSpont1(t)
```

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

A.2.13 Method cip_trace/periodRecSpont2

Summary: Returns the second half of the recovery spontaneous activity period of cip_trace, t.

Usage:

```
the_period = periodRecSpont2(t)
```

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.14 Method cip_trace/getProfileAllSpikes

Summary: Creates a cip_trace_allspikes_profile object by collecting test results of a cip_trace, analyzing each individual spike.

Usage:

```
profile_obj = getProfileAllSpikes(a_cip_trace)
```

Description: Analyzes the spontaneous (periodIniSpont), pulse (periodPulse) and the recovery (periodRecSpont) periods separately and produces spike shape distribution results. Rate and CIP measurements are added to these.

Parameters:

```
a_cip_trace: A cip_trace object.
```

Returns:

profile_obj: A cip_trace_allspikes_profile object.

See also: cip_trace (p. 54), cip_trace_allspikes_profile (p. 68)

A.2.15 Method cip_trace/periodPulse

Summary: Returns the CIP period of cip_trace, t.

Usage:

the_period = periodPulse(t)

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.16 Method cip_trace/calcRecSpontPotAvg

Summary: Calculates the average potential value of the recovery period of the cip_trace, t.

Usage:

avg_val = calcRecSpontPotAvg(t)

Parameters:

t: A cip_trace object.

Returns:

avg_val: The avg value [dy].

See also: period (p. 137), trace (p. 255), trace/calcAvg (p. 259)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.17 Method cip_trace/periodPulseHalf1

Summary: Returns the first half of the CIP period of cip_trace, t.

Usage:

the_period = periodPulseHalf1(t)

Parameters:

t: A trace object.

PANDORA Toolbox: Prog.'s MaDraft v813 or 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.18 Method cip_trace/periodPulseIni50msRest1

Summary: Returns the first half of the rest after the first 50ms of the CIP period of cip_trace, t.

Usage:

the_period = periodPulseIni50msRest1(t)

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.19 Method cip_trace/periodPulseIni50msRest2

Summary: Returns the second half of the rest after the first 50ms of the CIP period of cip_trace, t.

Usage:

the_period = periodPulseIni50msRest2(t)

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

A.2.20 Method cip_trace/getPulseSpike

Summary: Convert a spike in the CIP period to a spike_shape object.

Usage:

```
obj = getPulseSpike(trace, spikes, spike_num, props)
```

Description: Creates a spike_shape object from desired spike. Calls trace/getSpike method.

Parameters:

trace: A trace object.

spikes: (Optional) A spikes object obtained from trace,

calculated automatically if given as [].

spike_num: The index of spike to extract.

props: A structure with any optional properties passed to getSpike.

Example:

```
Get 2nd pulse spike and plot it:
» plotFigure(plotResults(getPulseSpike(t, [], 2)))
```

See also: spike_shape (p. 183), trace/getSpike (p. 262)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/19

A.2.21 Method cip_trace/getRateResults

Summary: Calculate test results related to spike rate.

Usage:

```
results = getRateResults(a_cip_trace, a_spikes)
```

Parameters:

a_cip_trace: A cip_trace object.

a_spikes: A spikes object.

Returns:

results: A structure associating test names with result values.

See also: cip_trace (p. 54), spikes (p. 195), spike_shape (p. 183)

A.2.22 Method cip_trace/measureNames

Summary: Returns taxonomy of measurements collected by cip_trace.

Usage:

```
measures = measureNames(a_cip_trace)
```

Description: This is a static method, in the sense that it does not need the object passed as argument. Therefore it can be called directly by using the default constructor; e.g., measureNames(cip_trace). The measure names are required for merging columns of a database generated by profiling these objects.

Parameters:

a_cip_trace: A cip_trace object. It can be created by the the default constructor 'cip_trace'.

Returns:

measures: A structure with cell arrays of types of measures, and measure names inside.

See also: getResults(p.??), getProfileAllSpikes(p.??), mergeMultipleCIPsInOne(p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.2.23 Method cip_trace/periodPulseIni100msRest1

Usage:

```
the_period = periodPulseIni50msRest1(t)
```

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

A.2.24 Method cip_trace/periodPulseIni100msRest2

Usage:

```
the_period = periodPulseIni50msRest2(t)
```

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.25 Method cip_trace/periodRecSpontIniPeriod

Usage:

```
the_period = periodRecSpont(t)
```

Parameters:

t: A trace object.

iniPeriod: the time following pulse offset that is kept, the rest of the time is ignored.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>,Tom Sangrey 2006/01/26

A.2.26 Method cip_trace/plot_abstract

Summary: Plots a trace by calling plotData.

Usage:

```
a_plot = plot_abstract(t, title_str, props)
```

Description: If t is a vector of traces, returns a vector of plot objects.

Parameters:

t: A trace object.

PANDORA Toolbox: Prog.'s MaDraft v813 or 62/007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/17

A.2.27 Method cip_trace/subsref

Summary: Defines generic indexing for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.2.28 Method cip_trace/calcPulsePotAvg

Summary: Calculates the average potential value of the CIP period of the cip_trace, t.

Usage:

```
avg_val = calcPulsePotAvg(t)
```

Parameters:

t: A cip_trace object.

Returns:

avg_val: The avg value [dy].

See also: period (p. 137), trace (p. 255), trace/calcAvg (p. 259)

A.2.29 Method cip_trace/calcPulsePotSag

Summary: Calculates the minimal sag and sag amount of the CIP period of the cip_trace, t.

Usage:

```
[min_val, min_idx, sag_val] = calcPulsePotSag(t)
```

Description: The minimal sag is the minimal potential value of the first half of the CIP period. The sag amount is calculated by comparing this to the steady-state value at the end of the CIP period.

Parameters:

t: A cip_trace object.

Returns:

min_val: The min value [dy]. min_idx: The index of the min value [dt]. sag_val: The sag amount [dy].

See also: period (p. 137), trace (p. 255), trace/calcMin (p. 260)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.30 Method cip_trace/periodPulseIni100ms

Summary: Returns the first 100ms of the CIP period of cip_trace, t.

Usage:

```
the_period = periodPulseIni100ms(t)
```

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

A.2.31 Method cip_trace/periodRecSpont

Summary: Returns the recovery spontaneous activity period of cip_trace, t.

Usage:

the_period = periodRecSpont(t)

Parameters:

t: A trace object.

Returns:

the_period: A period object.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.2.32 Method cip_trace/getResults

Summary: Calculate test results given a_spikes object.

Usage:

results = getResults(a_cip_trace, a_spikes)

Parameters:

a_cip_trace: A cip_trace object.

a_spikes: A spikes object.

Returns:

results: A structure associating test names with result values.

See also: cip_trace (p. 54), spikes (p. 195), spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.2.33 Method cip_trace/getRecSpontSpike

Summary: Convert a spike in the CIP period to a spike_shape object.

Usage:

obj = getRecSpontSpike(trace, spikes, spike_num, props)

Description: Creates a spike_shape object from desired spike.

Parameters:

PANDORA Toolbox: Prog.'s MaDraft v813 or62007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

trace: A trace object.

spikes: A spikes object on trace.

spike_num: The index of spike to extract.

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/05/08

A.3 Class cip_trace_allspikes_profile

A.3.1 Constructor cip_trace_allspikes_profile/cip_trace_allspikes_profile

Summary: Creates and collects test results of a cip_trace.

Usage:

```
obj = cip_trace_allspikes_profile(a_cip_trace, a_spikes, a_spont_spike_shape,
results, id, props)
```

Description: This is a subclass of results_profile. It is made to be used from subclass constructors.

Parameters:

```
a_cip_trace: A cip_trace object.
```

a_spikes: A spikes object.

spont_spikes_db, pulse_spikes_db, recov_spikes_db: tests_dbs

with spontaneous, pulse and recovery period spike info.

results_obj: A results_profile object with test results.

id: Identification string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

trace, spikes, spont_spikes_db, pulse_spikes_db, recov_spikes_db, props

See also: cip_trace (p. 54), spikes (p. 195), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/05/04

A.3.2 Method cip_trace_allspikes_profile/display

A.3.3 Method cip_trace_allspikes_profile/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.3.4 Method cip_trace_allspikes_profile/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.3.5 Method cip_trace_allspikes_profile/plotRowSpontSpikeAnal

Summary: Creates a row of plots that show spontaneous spikes, starting from the whole trace, zooming into the individual spike.

Usage:

a_plot = plotRowSpontSpikeAnal(prof, title_str)

Parameters:

prof: A cip_trace_allspikes_profile object.

title_str: (Optional) String to append to plot title.

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), cip_trace (p. 54), spike_shape/plotCompareMethodsSimple (p. 189), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/05/23

A.4 Class cip_trace_profile

A.4.1 Constructor cip_trace_profile/cip_trace_profile

Summary: Creates and collects test results of a cip_trace.

Description: The first usage is fully customizable to be used from subclass constructors. The second usage generates the spikes and spont_spike_shape objects, and collects some generic test results from them.

Parameters:

data_src: The trace column OR the filename.

PANDORA Toolbox: Prog.'s MaBuraft v813 or 62007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

dt: Time resolution [s]

dy: y-axis resolution [ISI (V, A, etc.)]

 $\verb"pulse_time_start", \verb"pulse_time_width": Start" and width of the pulse$

[dt]

id: Identification string.props: See trace object.

Returns a structure object with the following fields:

trace, spikes, spont_spike_shape, results, id, props.

See also: cip_trace (p. 54), spikes (p. 195), spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.4.2 Method cip_trace_profile/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.4.3 Method cip_trace_profile/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.4.4 Method cip_trace_profile/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.4.5 Method cip_trace_profile/subsref

Summary: Defines generic indexing for objects.

A.4.6 Method cip_trace_profile/plot

Summary: Plots a cip_trace_profile object.

Usage:

h = plot(t)

Description: Plots contents of this object.

Parameters:

t: A cip_trace_profile object.

Returns:

h: Plot handle(s).

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/15

A.5 Class cip_traces_dataset

A.5.1 Constructor cip_traces_dataset/cip_traces_dataset

Summary: Dataset of cip_traces objects, each with varying cip magnitudes.

Usage:

obj = cip_traces_dataset(ts, cipmag, id, props)

Description: This is a subclass of params_tests_fileset.

Parameters:

ts: A cell array of cip_traces objects.

cipmag: A single cip magnitude to trace take from objects.

id: An identification string for the whole dataset.

props: A structure with any optional properties passed to cip_trace_profile.

Returns a structure object with the following fields:

params_tests_dataset, cipmag, props (see above).

See also: cip_traces (p.??), params_tests_fileset (p. 132), params_tests_db (p. 116)

A.5.2 Method cip_traces_dataset/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.5.3 Method cip_traces_dataset/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.5.4 Method cip_traces_dataset/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.5.5 Method cip_traces_dataset/cip_trace_profile

Summary: Loads a raw cip_trace_profile given a index to this dataset.

Usage:

a_cip_trace_profile = cip_trace_profile(dataset, index)

Parameters:

dataset: A params_tests_dataset.

index: Index of file in dataset.

Returns:

a_cip_trace_profile: A cip_trace_profile object.

See also: cip_trace_profile (p. 69), params_tests_dataset (p. 111)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.5.6 Method cip_traces_dataset/subsref

Summary: Defines generic indexing for objects.

A.5.7 Method cip_traces_dataset/paramNames

Summary: Returns the only parameter, 'pAcip,' for this fileset.

Usage:

```
param_names = paramNames(fileset)
```

Description: Looks at the filename of the first file to find the parameter names.

Parameters:

```
fileset: A params_tests_fileset.
```

Returns:

params_names: Cell array with ordered parameter names.

```
See also: params_tests_fileset (p. 132), paramNames (p. ??), testNames (p. ??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/06

A.5.8 Method cip_traces_dataset/getItemParams

Usage:

```
params_row = getParams(dataset, index)
```

Parameters:

dataset: A params_tests_dataset.
index: Index of item in dataset.

Returns:

params_row: Parameter values in the same order of paramNames

```
See also: itemResultsRow (p.??), params_tests_dataset (p. 111), paramNames (p.??), testNames (p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/06

A.5.9 Method cip_traces_dataset/loadItemProfile

Summary: Loads a profile object from a raw data item in the dataset.

Usage:

```
a_profile = loadItemProfile(dataset, index)
```

Description: Subclasses should overload this function to load the specific profile object they desire. The profile class should define a getResults method which is used in the itemResultsRow method.

Parameters:

```
dataset: A params_tests_dataset.
index: Index of item in dataset.
```

Returns:

a_profile: A profile object that implements the getResults method.

```
See also: itemResultsRow(p.??), params_tests_dataset(p.111), paramNames (p.??), testNames(p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.6 Class cip_traceset

A.6.1 Constructor cip_traceset/cip_traceset

Summary: A traceset with varying cip magnitudes from a single cip_traces object.

Usage:

```
obj = cip_traceset(ct, cip_mags, dy, props)
```

Description: This is a subclass of params_tests_fileset. This traceset can create a mini-database form a single cip_traces object. The list contains cip_mags. cip_traceset_dataset should be used to load multiple cip_traceset objects.

Parameters:

```
ct: A cip_traces object.
```

cip_mags: An array of cip magnitudes to select from the object.

dy: y-axis resolution, [V] or [A] (default=1e-3).

props: A structure with any optional properties.

offsetPotential: Add this to physiology trace as compensation.

Returns a structure object with the following fields:

```
params_tests_dataset, ct, props (see above).
```

PANDORA Toolbox: Prog.'s MaBuraft v813 on724007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
See also: cip_traces (p.??), params_tests_fileset (p. 132), params_tests_db (p. 116)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/30

A.6.2 Method cip_traceset/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.6.3 Method cip_traceset/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.6.4 Method cip_traceset/cip_trace_profile

Summary: Loads a raw cip_trace_profile given an index in this traceset.

Usage:

```
a_cip_trace_profile = cip_trace_profile(traceset, index)
```

Parameters:

traceset: A cip_traceset.
index: Index of item in traceset.

Returns:

a_cip_trace_profile: A cip_trace_profile object.

See also: cip_trace_profile (p. 69), params_tests_dataset (p. 111)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.6.5 Method cip_traceset/paramNames

Summary: Returns the only parameter, 'pAcip,' for this traceset.

Usage:

```
param_names = paramNames(traceset)
```

Description: Looks at the filename of the first file to find the parameter names.

Parameters:

PANDORA Toolbox: Prog.'s MaDraft v813 on 75007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

traceset: A cip_traceset.

Returns:

params_names: Cell array with ordered parameter names.

See also: params_tests_dataset (p. 111), paramNames (p. ??), testNames (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/06

A.6.6 Method cip_traceset/getItemParams

Usage:

```
params_row = getParams(dataset, index)
```

Parameters:

dataset: A params_tests_dataset.
index: Index of item in dataset.

a_profile: A profile object for the item (optional).

Returns:

params_row: Parameter values in the same order of paramNames

See also: itemResultsRow (p.??), params_tests_dataset (p. 111), paramNames (p.??), testNames (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/06

A.6.7 Method cip_traceset/loadItemProfile

Summary: Loads a profile object from a raw data item in the dataset.

Usage:

```
a_profile = loadItemProfile(dataset, index)
```

Description: Subclasses should overload this function to load the specific profile object they desire. The profile class should define a getResults method which is used in the itemResultsRow method.

Parameters:

dataset: A params_tests_dataset.
index: Index of item in dataset.

PANDORA Toolbox: Prog.'s MaBuraft v813 on 725007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

a_profile: A profile object that implements the getResults method.

See also: itemResultsRow (p.??), params_tests_dataset (p. 111), paramNames (p. ??), testNames (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.7 Class cip_traceset_dataset

A.7.1 Constructor cip_traceset_dataset/cip_traceset_dataset

Summary: Dataset of multiple cip magnitudes from cip_traces objects .

Usage:

```
obj = cip_traceset_dataset(cts, cip_mags, dy, id, props)
```

Description: This is a subclass of params_tests_dataset. Designed to extract a trace for each cip magnitude from the cip_traceset objects contained. Uses cip_traceset objects to extract multiple traces from each cip_traces object.

Parameters:

cts: Array or cell array of cip_traces objects.

cip_mags: An array of cip magnitudes to select from each cip_traces object.

dy: y-axis resolution, [V] or [A] (default = 1e-3).

id: An identification string.

props: A structure with any optional properties passed to cip_traceset.

Returns a structure object with the following fields:

```
params_tests_dataset, cip_mags
```

See also: physiol_cip_traceset (p. 144), params_tests_dataset (p. 111), params_tests_db (p. 116)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/28

A.7.2 Method cip_traceset_dataset/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.7.3 Method cip_traceset_dataset/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.7.4 Method cip_traceset_dataset/loadItemProfile

Summary: Loads a cip_trace_profile object from a raw data file in the fileset.

Usage:

a_profile = loadItemProfile(fileset, neuron_id, trace_index)

Parameters:

fileset: A physiol_cip_traceset object.

neuron_id : tells which item in fileset (corresponds to cells_filename) to use
grab the cell information

trace index: Index of file in traceset.

Returns:

a_profile: A profile object that implements the getResults method.

See also: itemResultsRow (p.??), params_tests_fileset (p. 132), paramNames (p. ??), testNames (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14 and Tom Sangrey

A.7.5 Method cip_traceset_dataset/readDBItems

Summary: Reads all items to generate a params_tests_db object.

Usage:

```
[params, param_names, tests, test_names] = readDBItems(obj)
```

Description: This is a specific method to convert from cip_traceset_dataset to a params_tests_db, or a subclass. Output of this function can be directly fed to the constructor of a params_tests_db or a subclass.

Parameters:

obj: A physiol_cip_traceset_fileset

Returns:

params, param_names, tests, test_names: See params_tests_db.

PANDORA Toolbox: Prog.'s MaBuraft v813 on 72007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
See also: params_tests_db(p. 116), params_tests_fileset(p. 132), itemResultsRow testNames(p. ??), paramNames(p. ??), physiol_cip_traceset_fileset(p. 149)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/28

A.8 Class cluster db

A.8.1 Constructor cluster_db/cluster_db

Summary: A database of cluster centroids generated by a clustering algorithm from a rows of orig_db.

Usage:

```
a_cluster_db = cluster_db(data, col_names, orig_db, cluster_idx, id, props)
```

Description: This is a subclass of tests_db. Use one of the clustering methods in tests_db, such as kmeansCluster, to get an instance of this class.

Parameters:

data: Database contents.

col_names: The column names.

orig_db: DB whose rows are clustered.

cluster_idx: Array of cluster numbers that correspond to each row in orig_db.

id: An identifying string.

props: A structure with any optional properties.

sumDistances: Total distance of elements within each cluster.

distanceMeasure: Measure used to find clusters (Default='correlation')

Returns a structure object with the following fields:

tests_db, orig_db: original DB from which clusters were obtained, cluster_idx: Array associating rows of orig_db to each cluster here. props.

See also: tests_db (p. 217), tests_db/kmeansCluster (p. 228)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/08

A.8.2 Method cluster_db/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.8.3 Method cluster_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.8.4 Method cluster_db/plotHist

Summary: Creates a histogram plot showing the clustering memberships.

Usage:

```
a_plot = plotHist(a_cluster_db, title_str)
```

Parameters:

```
a_cluster_db: A cluster_db object.
```

title_str: (Optional) String to append to plot title.

Returns:

a_plot: A plot_abstract object that can be plotted.

```
See also: plot_abstract (p. 153), plotFigure (p. ??), histogram_db (p. 94), histogram_db/plot_abstract (p. 96)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/08

A.8.5 Method cluster_db/plotQuality

Summary: Creates a plot_abstract of the silhouette plot showing the clustering quality.

Usage:

```
a_plot = plotQuality(a_cluster_db, title_str)
```

Parameters:

```
a_cluster_db: A cluster_db object.
```

title_str: (Optional) String to append to plot title.

Returns:

a_plot: A plot_abstract object that can be plotted.

See also: plot_abstract (p. 153), plotFigure (p. ??), silhouette (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/08

A.8.6 Method cluster_db/plot_abstract

Summary: Creates a vertical plot_stack of silhouette and membership histograms for the clusters.

Usage:

```
a_plot = plot_abstract(a_cluster_db, title_str)
```

Parameters:

```
a_cluster_db: A cluster_db object.
```

title_str: (Optional) String to append to plot title.

Returns:

a_plot: A plot_abstract object that can be plotted.

See also: cluster_db/plotQuality(p.80), cluster_db/plotHist(p.80)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/08

A.9 Class corrcoefs_db

A.9.1 Constructor corrcoefs_db/corrcoefs_db

Summary: A database of correlation coefficients generated from a column of another database.

Usage:

```
a_coef_db = corrcoefs_db(col_name, coefs, coef_names, pages, id, props)
```

Description: This is a subclass of tests_3d_db. Allows generating a plot, etc.

Parameters:

col name: The column with which the others are correlated.

coefs: Matrix where each column has another coefficient.

coef_names: Cell array of column names corresponding to coefficients.

pages: Column vector of page indices pointing to the tests_3d_db.

id: An identifying string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

```
tests_db.
```

```
See also: tests_db (p. 217), plot_simple (p. 163), tests_db/histogram (p. 225)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/06

A.10 Class dataset_db_bundle

A.10.1 Constructor dataset_db_bundle/dataset_db_bundle

Summary: The dataset and the DB created from it bundled together.

Usage:

```
a_bundle = dataset_db_bundle(a_dataset, a_db, a_joined_db, props)
```

Description: This class is made to enable operations that require seamless connection between the high-level DB and the raw data. The raw DB is only required to bridge the gap between the high-level DB and the dataset. Therefore it only needs to contain columns necessary to make this connection. It is not required to include all raw DB columns, which is inefficient.

Parameters:

a_dataset: A params_tests_dataset object or a subclass.

a db: The raw tests db object (or a subclass) created from the dataset.

a_joined_db: The processed DB created from the raw DB.

props: A structure with any optional properties.

Returns a structure object with the following fields:

dataset, db, joined_db, props.

```
See also: tests_db (p. 217), params_tests_dataset (p. 111)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/13

A.10.2 Method dataset_db_bundle/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.10.3 Method dataset_db_bundle/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.10.4 Method dataset_db_bundle/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.10.5 Method dataset_db_bundle/constrainedMeasuresPreset

Summary: Returns a dataset_db_bundle with constrained measures according to chosen preset.

Usage:

[a_bundle test_names] = constrainedMeasuresPreset(a_bundle, preset, props)

Parameters:

a_bundle: A dataset_db_bundle object.

preset: Choose preset measure list (default=1). **props:** A structure with any optional properties.

Returns:

a bundle: Modified bundle.

See also: physiol_bundle/constrainedMeasuresPreset (p. 140)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/13

A.10.6 Method dataset_db_bundle/rankingReportTeX

Summary: Generates a report by comparing a_bundle with the given match criteria, crit_db from crit_bundle.

Usage:

```
tex_string = rankingReportTeX(a_bundle, crit_bundle, crit_db, props)
```

Description: Generates a LaTeX document with: - (optional) Raw traces compared with some best matches at different distances - Values of some top matching a_db rows and match errors in a floating table. - colored-plot of measure errors for some top matches. - Parameter distributions of 50 best matches as a bar graph.

Parameters:

a_bundle: A dataset_db_bundle object that contains the DB to compare rows from.

crit_bundle: A dataset_db_bundle object that contains the criterion dataset.

crit_db: A tests_db object holding the match criterion tests and STDs which can be created with matchingRow.

props: A structure with any optional properties.

caption: Identification of the criterion db (not needed/used?). **num_matches:** Number of best matches to display (default=10).

PANDORA Toolbox: Prog.'s Mahraft v813 on \$2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

rotate: Rotation angle for best matches table (default=90).

Returns:

tex_string: LaTeX document string.

See also: displayRowsTeX (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/13

A.10.7 Method dataset_db_bundle/matchingRow

Summary: Creates a criterion database for matching the tests of a row.

Usage:

```
crit_db = matchingRow(a_bundle, row, props)
```

Description: Copies selected test values from row as the first row into the criterion db. Adds a second row for the STD of each column in the db.

Parameters:

a_bundle: A tests_db object.

row: A row index to match.

props: A structure with any optional properties.

distDB: Take the standard deviation from this db instead.

Returns:

crit_db: A tests_db with two rows for values and STDs.

Example:

See also: rankMatching (p. ??), tests_db (p. 217), tests2cols (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/21

A.10.8 Method dataset_db_bundle/reportNeuron

Summary: Generates a report of neuron at given an_index of a_bundle.

Usage:

```
a_doc_multi = reportNeuron(a_bundle, an_index, props)
```

Description: Generates a report document with preset layouts of annotated plots of the selected neuron. See reportLayout below for presets.

Parameters:

```
a_bundle: a dataset_db_bundle object which contains the neuron an index: The index to pass to ctFromRows method of a bundle.
```

props: A structure with any optional properties.

reportLayout: Allows choosing one of predefined report types (strings):

- 1: Only +/- 100 pA traces in one plot (default). 1a/b: Either one of the +/- 100 pA traces in one plot.
- 2: Only +/- 100 pA traces and spike shapes in one horiz. plot.
- 3: +100 pA raw trace and rate profile stacked vertically.
- **3b:** -100 pA raw trace and rate profile stacked vertically.
- **4:** Horiz stack of +/- 100 pA raw trace with rate profiles underneath.
- 5: 5-piece trace, spike shape, f-I curve, f-t curve quad-plot.

numTraces: Limit number of traces to show in plot (>=1).

traces: List of acceptable traces to load.

traceAxisLimits: If given, use these limits for trace plots.

rateAxisLimits: If given, use these limits for rate plots.

flaxisLimits: If given, use these limits for flcurve plots.

fIstats: Add a fI-stats plot in addition to the curve.

sshapeAxisLimits: If given, use these limits for spike shape plots. **sshapeResults:** If 1, plot measures on the spike shape (default=1).

Returns:

a_doc_multi: A doc_multi object that can be printed as a PS or PDF file.

Example:

A.10.9 Method dataset_db_bundle/plotfICurve

Summary: Generates a f-I curve doc_plot for neuron at given an_index in a_bundle.

Usage:

```
a_plot = plotfICurve(a_bundle, trial_num, props)
```

Parameters:

```
a_bundle: A dataset_db_bundle object.
an_index: An index with which to address the a_bundle.
props: A structure with any optional properties.
    shortCaption: This appears in the figure caption.
    plotMStats: If set, add the a_bundle stats plot.
    captionToStats: Use this as its legend label.
    quiet: if given, no title is produced
```

Returns:

a_plot: A plot_superpose that contains a f-I curve plot.

Example:

```
» a_p = plotfICurve(r, 1);
» plotFigure(a_p, 'The f-I curve of best matching model');

See also: plot_abstract (p. 153), plot_superpose (p. 167)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/16
```

(passed to plot_superpose)

A.10.10 Method dataset_db_bundle/subsref

Summary: Defines indexing for tests_db objects for () and . operations.

Usage:

```
obj = obj(rows, tests) obj = obj.attribute
```

Description: Returns attributes or selects the given test columns and rows and returns in a new tests_db object.

Parameters:

```
obj: A tests_db object.
rows: A logical or index vector of rows. If ':', all rows.
tests: Cell array of test names or column indices. If ':', all tests.
attribute: A tests_db class attribute.
```

PANDORA Toolbox: Prog.'s MaBuraft v813 on 25007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

obj: The new tests_db object.

See also: subsref (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.10.11 Method dataset_db_bundle/getNeuronRowIndex

Summary: Returns the neuron index from bundle.

Usage:

```
a_row_index = getNeuronRowIndex(a_bundle, an_index, props)
```

Description: This is a polymorphic method. Therefor it is not defined for this class, but see subclasses of dataset_db_bundle for its more meaningful implementations.

Parameters:

a_bundle: A dataset_db_bundle subclass object.

an_index: An index number of neuron, or a DB row containing this.

props: A structure with any optional properties.

Returns:

a_row_index: A row index of neuron in a_bundle.joined_db.

Example:

```
» displayRows(mbundle.joined_db(getNeuronRowIndex(mbundle, 98364), :))
```

See also: dataset_db_bundle (p. 82)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/09

A.10.12 Method dataset_db_bundle/subsasgn

Summary: Defines generic index-based assignment for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/06

A.10.13 Method dataset_db_bundle/ctFromRows

Summary: Loads a cip_trace object from a raw data file in the a_bundle.

Usage:

```
a_cip_trace = ctFromRows(a_bundle, a_db, cip_levels, props)
```

Description: This method is not implemented for the generic dataset_db_bundle class. See subclass implementations.

Parameters:

a_bundle: A dataset_db_bundle object.

a_db: A DB created by the dataset in the a_bundle to read the neuron index numbers from.

cip levels: A column vector of CIP-levels to be loaded.

props: A structure with any optional properties.

(passed to a_bundle.dataset/cip_trace)

Returns:

a_cip_trace: One or more cip_trace objects that hold the raw data.

See also: model_ct_bundle/ctFromRows (p. 103), physiol_bundle/ctFromRows (p. 143)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/10/11

A.11 Class doc_generate

A.11.1 Constructor doc_generate/doc_generate

Summary: Generic class to help generate printed or annotated documents with results.

Usage:

```
a_doc = doc_generate(text_string, id, props)
```

Description: This constitutes the base class for other doc_classes. For convenience, this class holds a text_string to be printed when the document is generated with the printTeXFile option.

Parameters:

text_string: Contents of this document.

id: An identifying string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

text, id, props.

See also: doc_plot (p. 92), doc_multi (p. 91)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.11.2 Method doc_generate/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.11.3 Method doc_generate/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.11.4 Method doc_generate/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.11.5 Method doc_generate/subsref

Summary: Defines generic indexing for objects.

A.11.6 Method doc_generate/printTeXFile

Summary: Creates a TeX file with the contents of this document.

Usage:

printTeXFile(a_doc, filename, props)

Description: Calls getTeXString to generate the contents. The filename is adjusted with a call to properFilename to generate an acceptable TeX filename. TeX-specific should only be added at this point or at getTeXString, because before we want the object to be a generic document container.

Parameters:

a_doc: A tests_db object.

PANDORA Toolbox: Prog.'s MaDraft v813 or 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

filename: To write the TeX string.

props: A structure with any optional properties.

Returns:

tex_string: A string that contains TeX commands, which upon writing to a file, can be interpreted by the TeX engine to produce a document.

Example:

```
» a_doc = doc_plot(a_plot, 'Results from cell.', 'Results.', struct, ");
» printTeXFile(a_doc, 'my_doc.tex')
then my_doc.tex can be used by including from a valid LaTeX document.
```

See also: doc_generate (p. 88), doc_plot (p. 92), string2File (p. ??), properFilename (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.11.7 Method doc_generate/getTeXString

Summary: Returns the TeX representation for the document.

Usage:

```
tex_string = getTeXString(a_doc, props)
```

Description: This is an abstract placeholder for this method. It specifies what this method should do in the subclasses that implement it. This method should create all the auxiliary files needed by the document. The generated tex_string should be ready to be visualized.

Parameters:

a_doc: A tests_db object.

props: A structure with any optional properties.

Returns:

tex_string: A string that contains TeX commands, which upon writing to a file, can be interpreted by the TeX engine to produce a document.

Example:

See also: doc_generate (p. 88), doc_plot (p. 92)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.12 Class doc_multi

A.12.1 Constructor doc_multi/doc_multi

Summary: A document that is composed of multiple other doc_generate objects.

Usage:

```
a_doc = doc_multi(docs, id, props)
```

Parameters:

docs: A vector of doc_generate objects.

id: An identifying string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

docs, doc_generate.

Example:

```
» mydoc = doc_multi([doc_plot(a_plot1), doc_plot(a_plot2)], 'Two plots')
» printTeXFile(mydoc, 'two_plots.tex')
```

See also: doc_generate(p. 88), getTeXString(p. ??), doc_generate/printTeXFile(p. 89)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.12.2 Method doc_multi/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.12.3 Method doc_multi/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.12.4 Method doc_multi/getTeXString

Summary: Returns the TeX representation for the document.

Usage:

```
tex_string = getTeXString(a_doc, props)
```

Description: Concatenates TeX representations of doc_generate, or subclass, objects it contains

Parameters:

a_doc: A tests_db object.

props: A structure with any optional properties.

Returns:

tex_string: A string that contains TeX commands, which upon writing to a file, can be interpreted by the TeX engine to produce a document.

Example:

See also: doc_generate (p. 88), doc_plot (p. 92)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.13 Class doc_plot

A.13.1 Constructor doc_plot/doc_plot

Summary: Generates a formatted plot for printing, annotated with captions.

Usage:

```
a_doc = doc_plot(a_plot, caption, plot_filename, float_props, id, props)
```

Description: The generated file may take an extension according to chosen format.

Parameters:

```
a_plot: A plot_abstract ready to be visualized.caption: Long caption to appear under the figure.
```

plot_filename: Filename to be generated from the plot.
float_props: Formatting instructions passed to TeXtable.

id: An identifying string.

PANDORA Toolbox: Prog.'s MaBuraft v813 or 92007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

props: A structure with any optional properties.

orient: Passed to the orient command before printing to figure file.

Returns a structure object with the following fields:

plot, caption, plot_filename, float_props, doc_generate.

Example:

```
» a_doc = doc_plot(plotData(my_cip_trace), 'My CIP trace. Very interesting.',
...
'tracel', struct, 'first doc');
» printTeXFile(a_doc, 'my_doc.tex');
```

See also: doc_generate (p. 88), TeXtable (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.13.2 Method doc_plot/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.13.3 Method doc_plot/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.13.4 Method doc_plot/plot

Summary: Default plot method to preview the contained plot in a new figure.

Usage:

```
figure_handle = plot(a_doc, props)
```

Description: Only generate the contained plot for previewing. Opens a new figure.

Parameters:

a_doc: A doc_plot object.

props: A structure with any optional properties.

Returns:

figure_handle: Handle of newly opened figure.

PANDORA Toolbox: Prog.'s MaBuraft v813 or 92007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Example:

```
» figure_handle = plot(a_doc_plot)
```

See also: plot_abstract/plotFigure (p. 155), doc_generate (p. 88), doc_plot (p. 92)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.13.5 Method doc_plot/getTeXString

Summary: Returns the TeX representation for the plot document.

Usage:

```
tex_string = getTeXString(a_doc, props)
```

Description: Plots, prints EPS files and generates the necessary LaTeX code.

Parameters:

a_doc: A doc_plot object.

props: A structure with any optional properties.

Returns:

tex_string: A string that contains TeX commands, which upon writing to a file, can be interpreted by the TeX engine to produce a document.

Example:

See also: doc_generate (p. 88), doc_plot (p. 92)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.14 Class histogram_db

A.14.1 Constructor histogram_db/histogram_db

Summary: A database of histogram values generated for a column of another database.

Usage:

```
a_hist_db = histogram_db(col_name, bins, hist_results, id, props)
```

Description: This is a subclass of tests_db. Allows generating a histogram plot, etc.

PANDORA Toolbox: Prog.'s MaBuraft v813 or 924007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Parameters:

col_name: The column name of the histogrammed value.

bins: The values for which the histogram values are calculated.

hist_results: A column vector of histogram values.

id: An identifying string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

tests_db, props.

Example:

```
» [hist_results, bins] = hist(my_data);
» a_hist_db = histogram_db('firing_rate', bins, hist_results, 'rate histogram db');
» plot(a_hist_db);

See also: tests_db (p. 217), plot_simple (p. 163), tests_db/histogram (p. 225)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/20

A.14.2 Method histogram_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.14.3 Method histogram_db/calcMode

Summary: Finds the mode of the distribution, that is, the bin with the highest value.

Usage:

```
[mode_val, mode_mag] = calcMode(a_hist_db)
```

Parameters:

a_hist_db: A histogram_db object.

Returns:

mode_val: The center of the bin that has most members. mode_mag: The value of the histogram bin.

See also: histogram_db (p. 94)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/27

A.14.4 Method histogram_db/plot_abstract

Summary: Generates a plottable description of this object.

Usage:

```
a_plot = plot_abstract(a_hist_db, title_str, props)
```

Description: Generates a plot_simple object from this histogram.

Parameters:

a_hist_db: A histogram_db object.

props: Optional properties passed to plot_abstract.

command: Plot command (Optional, default='bar')

logScale: If 1, use logarithmic y-scale.

quiet: If 1, don't include database name on title.

Returns:

a plot: A object of plot abstract or one of its subclasses.

See also: plot_abstract (p. 153), plot_simple (p. 163)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.14.5 Method histogram_db/subsref

Summary: Defines generic indexing for objects.

A.14.6 Method histogram_db/plotPages

Summary: Generates a plot containing subplots from each page of histograms.

Usage:

```
a_plot = plotPages(a_hist_db, command, an_orient)
```

Description: For each page of the histogram, a histogram is placed in a subplot.

Parameters:

```
a_hist_db: A histogram_db object.
```

command: Plot command (Optional, default='bar')

an_orient: Stack orientation. One of 'x', 'y', or 'z'.

Returns:

a_plot: A object of plot_abstract or one of its subclasses.

PANDORA Toolbox: Prog.'s MaBuraft v813 or 92007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: plotPages (p. ??), plot_simple (p. 163)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/04

A.14.7 Method histogram_db/plotRowMatrix

Summary: Generates a subplot matrix of measure columns versus rows of databases.

Usage:

```
a_plot = plotRowMatrix(hist_dbs, title_str, props)
```

Description: Each row in the hist_dbs is assumed to come from a different DB. Columns represent histograms of different measurements. The plot is made such that histograms in each row have the same maximal count, and histograms in each column have the same axis limits.

Parameters:

hist_dbs: A matrix of histogram_db objects.

title_str: Title to go at the top.

props: A structure with any optional properties.

rowLabels: Cell array of y-axis labels for each row. (rest passed to histogram_db/plot_abstract)

Returns:

a_plot: A object of plot_abstract or one of its subclasses.

See also: plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/11/22

A.14.8 Method histogram_db/plotEqSpaced

Summary: Generates a histogram plot where the values are equally spaced on the x-axis. For use with non-linear parameter values.

Usage:

```
a_plot = plotEqSpaced(a_hist_db, command, props)
```

Description: Generates a plot_simple object from this histogram.

Parameters:

```
a_hist_db: A histogram_db object.
command: Plot command (Optional, default='bar')
```

PANDORA Toolbox: Prog.'s Maharaft v813 or 92007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

props: Optional properties passed to plot_abstract.

Returns:

a_plot: A object of plot_abstract or one of its subclasses.

See also: plot_abstract (p. 153), plot_simple (p. 163)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.15 Class model_ct_bundle

A.15.1 Constructor model_ct_bundle/model_ct_bundle

Summary: The model cip_trace dataset and the DB created from it bundled together.

Usage:

```
a_bundle = model_ct_bundle(a_dataset, a_db, a_joined_db, props)
```

Description: This is a subclass of dataset_db_bundle, specialized for model datasets.

Parameters:

- a_dataset: A params_cip_trace_fileset object.
- **a_db:** The raw params_tests_db object created from the dataset. It only needs to have the pAcip, trial, and ItemIndex columns.
- a_joined_db: The one-model-per-line DB created from the raw DB.

props: A structure with any optional properties.

Returns a structure object with the following fields:

dataset_db_bundle.

Example:

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/13

A.15.2 Method model_ct_bundle/getNeuronLabel

Summary: Constructs the neuron label from bundle.

Usage:

```
a_label = getNeuronLabel(a_bundle, trial_num, props)
```

Parameters:

a_bundle: A physiol_cip_traceset_fileset object.trial_num: The trial number of model neuron.props: A structure with any optional properties.

Returns:

a_label: A string label identifying selected neuron in bundle.

See also: dataset_db_bundle (p. 82)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/26

A.15.3 Method model_ct_bundle/reportCompareModelToPhysiolNeuron

Summary: Generates a report by comparing given model neuron to given physiol neuron.

Usage:

a_doc_multi = reportCompareModelToPhysiolNeuron(m_bundle, trial_num, p_bundle, traceset_index, props)

Description: Generates a report document with: - Figure displaying raw traces of the physiol neuron compared with the model neuron - Figure comparing f-I curves of the two neurons. - Figure comparing spont and pulse spike shapes of the two neurons.

Parameters:

m_bundle, p_bundle: dataset_db_bundle objects of the model and physiology neurons.

trial_num: Trial number of desired model neuron in m_bundle.

traceset_index: TracesetIndex of desired neuron in p_bundle.

props: A structure with any optional properties.

horizRow: If defined, create a row-figure with all plots.

numPhysTraces: Number of physiology traces to show in plot (>=1).

Returns:

a_doc_multi: A doc_multi object that can be printed as a PS or PDF file.

PANDORA Toolbox: Prog.'s MaBuraft v813 or 92007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Example:

```
» printTeXFile(reportCompareModelToPhysiolNeuron(mbundle, 2222, pbundle, 34),
'a.tex')
```

See also: doc_multi(p.91), doc_generate(p.88), doc_generate/printTeXFile (p.89)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/24

A.15.4 Method model_ct_bundle/plotCompareRanks

Summary: Generates a plots of given ranks from the ranked_bundle.

Usage:

```
plots = plotCompareRanks(m_bundle, p_bundle, a_ranked_db, ranks, props)
```

Parameters:

m_bundle: A model_ct_bundle object.

p_bundle: A dataset_db_bundle object that originated the criterion.

a_ranked_db: A ranked_db generated from ranking m_bundle.

ranks: Vector of rank indices for which to generate the plots.

props: A structure with any optional properties.

Returns:

plots: A structure that contains the joined_db, and the plot vectors trace_d100_plots and trace_h100_plots.

Example:

```
» plots = plotCompareRanks(r, 1:10);
» plotFigure(plots.trace_d100_plots(1), 'The best matching +100 pA CIP trace');
```

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/16

A.15.5 Method model_ct_bundle/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.15.6 Method model_ct_bundle/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.15.7 Method model_ct_bundle/getTrialNum

Summary: Extracts identifying neuron trial number from DB.

Usage:

trial_num = getTrialNum(a_bundle, a_db|trial_num, props)

Parameters:

a_bundle: A physiol_cip_traceset_fileset object.

a_db: DB rows representing deisred model neuron(s).

trial_num: Trial numbers. If specified, this function does nothing but return them.

props: A structure with any optional properties.

Returns:

trial_num: The trial number(s) identifying selected neuron(s) in bundle.

See also: dataset_db_bundle (p. 82)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/26

A.15.8 Method model_ct_bundle/collectPhysiolMatches

Summary: Compare model DB to given physiol criteria and return some top matches.

Usage:

row_index = collectPhysiolMatches(a_mbundle, a_crit_bundle, props)

Parameters:

a_mbundle: A model_ct_bundle object.

a_crit_bundle: A physiol_bundle object that holds the criterion neuron.

props: A structure with any optional properties.

showTopmost: Number of top matching models to return (default=50)

Returns:

row_index: Row indices of best matching models.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/18

A.15.9 Method model_ct_bundle/plotComparefICurve

Summary: Generates a f-I curve doc_plot comparing m_trial and to_index.

Usage:

```
a_plot = plotComparefICurve(m_bundle, m_trial, to_bundle, to_index, props)
```

Description: Note that this is not a general method. to_bundle should have been able to accept any type of bundle. Most probably this method is redundant and deprecated.

Parameters:

Returns:

a_plot: A plot_superpose that contains a f-I curve plot.

Example:

```
» a_p = plotComparefICurve(r, 1);
» plotFigure(a_p, 'The f-I curve of best matching model');

See also: plot_abstract (p. 153), plot_superpose (p. 167)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/16
```

A.15.10 Method model_ct_bundle/getNeuronRowIndex

Summary: Returns the neuron index from bundle.

Usage:

```
a_row_index = getNeuronRowIndex(a_bundle, trial_num, props)
```

Parameters:

a_bundle: A model_ct_bundle object.

trial_num: The trial number of model neuron, or a DB row containing this.

props: A structure with any optional properties.

Returns:

a_row_index: A row index of neuron in a_bundle.joined_db.

See also: dataset_db_bundle (p. 82)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/09

A.15.11 Method model_ct_bundle/ctFromRows

Summary: Loads a cip_trace object from a raw data file in the a_mbundle.

Usage:

```
a_cip_trace = ctFromRows(a_mbundle, a_db|trials, cip_levels, props)
```

Description: This is an overloaded method.

Parameters:

a_mbundle: A model_ct_bundle object.

a_db: A DB created by the dataset in the a_mbundle to read the trial numbers from.

trials: A column vector with trial numbers.

cip levels: A column vector of CIP-levels to be loaded.

props: A structure with any optional properties. (passed to a_mbundle.dataset/cip_trace)

Returns:

a_cip_trace: One or more cip_trace objects that hold the raw data.

See also: dataset_db_bundle/ctFromRows (p. 88)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/07/13

A.15.12 Method model_ct_bundle/addToDB

Summary: Concatenate to existing DB in the bundle.

Usage:

```
a_mbundle = addToDB(a_mbundle, a_raw_db, props)
```

Description: If joinedDb is not given in props, calls treatSimDB to get the joined_db from this raw DB. Then concats to both db and joined_db in bundle.

Parameters:

```
a_mbundle: A model_ct_bundle object.
```

a_crit_bundle: A physiol_bundle having a crit_db as its joined_db.

props: A structure with any optional properties.

joinedDb: The joined version of a_raw_db.

dataset: If given, this one is used to replace the fileset in the bundle.

Returns:

a_mbundle: a model_ct_bundle object containing the added DB.

Example:

```
» mbundle = addToDB(mbundle, params_tests_db(mfileset, [19684:59956]))
```

See also: params_tests_fileset/addFiles(p. 133), multi_fileset_gpsim_cns2005/addFileDir(p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/06

A.15.13 Method model_ct_bundle/reportRankingToPhysiolNeuronsTeXFile

Summary: Compare model DB to given physiol criterion and create a report.

Usage:

```
tex_filename = reportRankingToPhysiolNeuronsTeXFile(m_bundle, p_bundle,
a_crit_db, props)
```

Description: A LaTeX report is generated following the example in physiol_bundle/matchingRow. The filename contains the neuron name, followed by the traceset index as an identifier of pharmacological applications, as in gpd0421c_s34.

Parameters:

```
m_bundle: A model_ct_bundle object.
p_bundle: A physiol_bundle object.
```

a_crit_db: The criterion neuron chosen with a matchingRow method.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2407-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

props: A structure with any optional properties.

filenameSuffix: Append this identifier to the TeX filename.

(others passed to rankMatching)

Returns:

tex_filename: Name of LaTeX file generated.

See also: tests_db/rankMatching (p. 254), physiol_cip_traceset/cip_trace (p. 149), physiol_bundle/matchingRow (p. 140)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/18

A.15.14 Method model_ct_bundle/rankMatching

Summary: Create a ranked_db from given criterion db.

Usage:

a_ranked_db = rankMatching(a_mbundle, a_crit_db, props)

Parameters:

a_mbundle: A model_ct_bundle object.

a_crit_db: A crit_db created by a matchingRow method.

props: A structure with any optional properties.

(passed to tests_db/rankMatching)

Returns:

a_ranked_db: a ranked_db object containing the rankings.

See also: tests_db/rankMatching (p. 254), ranked_db (p. 170)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/18

A.16 Class model_ranked_to_physiol_bundle

A.16.1 Constructor model_ranked_to_physiol_bundle/model_ranked_to_physiol_bundle

Summary: A DB bundled with its dataset, ranked to a physiology DB bundle.

Usage:

```
r_bundle = model_ranked_to_physiol_bundle(a_dataset, a_db, a_ranked_db,
a_crit_bundle, props)
```

Description: This is a subclass of model_ct_bundle, specialized for model datasets.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2507-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Parameters:

- a_dataset: A params_cip_trace_fileset object.
- **a_db:** The raw params_tests_db object created from the dataset. It only needs to have the pAcip, trial, and ItemIndex columns.
- **a_ranked_db:** The one-model-per-line DB created from the raw DB.
- **a_crit_bundle:** The bundle object associated with crit_db that caused the ranking in a_ranked_db.

props: A structure with any optional properties.

Returns a structure object with the following fields:

```
crit_bundle, model_ct_bundle.
```

```
See also: model_ct_bundle (p. 98), ranked_db (p. 170), params_tests_dataset (p. 111)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/13

A.16.2 Method model_ranked_to_physiol_bundle/plotCompareRanks

Summary: OBSOLETE - Generates a plots of given ranks from the ranked_bundle.

Usage:

```
plots = plotCompareRanks(r_bundle, crit_bundle, crit_db, props)
```

Parameters:

r_bundle: A ranked_bundle object.

ranks: Vector of rank indices for which to generate the plots.

props: A structure with any optional properties.

Returns:

plots: A structure that contains the joined_db, and the plot vectors trace_d100_plots and trace_h100_plots.

Example:

```
» plots = plotCompareRanks(r, 1:10);
» plotFigure(plots.trace_d100_plots(1), 'The best matching +100 pA CIP trace');
```

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/16

A.16.3 Method model_ranked_to_physiol_bundle/plotfICurve

Usage:

```
a_doc = docfICurve(r_bundle, crit_bundle, crit_db, props)
```

Parameters:

r_bundle: A ranked_bundle object.

rank_num: Rank index for which to generate the a_doc.

props: A structure with any optional properties.

Returns:

a_doc: A doc_plot that contains a f-I curve plot and associated captions.

Example:

```
» a_d = docfICurve(r, 1);
» plot(a_d, 'The f-I curve of best matching model');
See also: doc_generate(p. 88), doc_plot(p. 92)
Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/16
```

A.16.4 Method model_ranked_to_physiol_bundle/comparisonReport

Summary: OBSOLETE - Generates a report by comparing r_bundle with the given match criteria, crit_db from crit_bundle.

Usage:

```
a_doc_multi = comparisonReport(r_bundle, crit_bundle, crit_db, props)
```

Description: Generates a LaTeX document with: - (optional) Raw traces compared with some best matches at different distances - Values of some top matching a_db rows and match errors in a floating table. - colored-plot of measure errors for some top matches. - Parameter distributions of 50 best matches as a bar graph.

Parameters:

r_bundle: A dataset_db_bundle object that contains the DB to compare rows from.

crit_bundle: A dataset_db_bundle object that contains the criterion dataset.

crit_db: A tests_db object holding the match criterion tests and STDs which can be created with matchingRow.

props: A structure with any optional properties.

caption: Identification of the criterion db (not needed/used?).

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
num_matches: Number of best matches to display (default=10).
rotate: Rotation angle for best matches table (default=90).
```

Returns:

tex_string: LaTeX document string.

See also: displayRowsTeX (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.17 Class params_cip_trace_fileset

A.17.1 Constructor params_cip_trace_fileset/params_cip_trace_fileset

Summary: Description of a raw dataset consisting of cip_trace files varying with parameter values.

Usage:

```
obj = params_cip_trace_fileset(file_pattern, dt, dy, pulse_time_start,
pulse_time_width, id, props)
```

Description: This is a subclass of params_tests_fileset.

Parameters:

```
file_pattern: File pattern mathing all files to be loaded.
```

dt: Time resolution [s]

dy: y-axis resolution [ISI (V, A, etc.)]

pulse_time_start, pulse_time_width: Start and width of the pulse
 [dt]

id: An identification string

props: A structure with any optional properties.

profile_class_name: Use this profile class (Default: 'cip_trace_profile'). (All other props are passed to cip_trace objects)

Returns a structure object with the following fields:

params_tests_fileset, pulse_time_start, pulse_time_width.

Example:

```
» fileset = params_cip_trace_fileset('/home/abc/data/*.bin', 1e-4, 1e-3, 20001,
10000, 'sim dataset gpsc0501', struct('trace_time_start', 10001, 'type', 'sim',
'scale_y', 1e3))
```

See also: params_tests_fileset (p. 132), params_tests_db (p. 116)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.17.2 Method params_cip_trace_fileset/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.17.3 Method params_cip_trace_fileset/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.17.4 Method params_cip_trace_fileset/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.17.5 Method params_cip_trace_fileset/cip_trace_profile

Summary: Loads a raw cip_trace_profile given a file_index to this fileset.

Usage:

```
a_cip_trace_profile = cip_trace_profile(fileset, file_index)
```

Parameters:

fileset: A params_tests_fileset.
file index: Index of file in fileset.

Returns:

a_cip_trace_profile: A cip_trace_profile object.

See also: cip_trace_profile (p. 69), params_tests_fileset (p. 132)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.17.6 Method params_cip_trace_fileset/ctFromRows

Summary: Loads a cip_trace object from raw data files in the fileset.

Usage:

```
a_cip_trace = ctFromRows(m_fileset, m_dball, a_db|itemIndices, cip_levels, props)
```

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2907-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
m_fileset: A physiol_cip_traceset_fileset object.
```

m_dball: A DB created by this fileset that contains the trial, pAcip, and ItemIndex cols.

a_db: A DB that has one trial for each cip_trace to be loaded.

itemIndices: A column vector with ItemIndex numbers.

cip_levels: A column vector of CIP-levels to be loaded.

props: A structure with any optional properties.

neuronLabel: appropriate unique neuron label generated by the bundle.

(passed to params_cip_trace_fileset/cip_trace)

Returns:

a_cip_trace: One or more cip_trace objects that hold the raw data.

See also: loadItemProfile (p. ??), physiol_cip_traceset/cip_trace (p. 149)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/07/13

A.17.7 Method params_cip_trace_fileset/loadItemProfile

Summary: Loads a cip_trace_profile object from a raw data file in the fileset.

Usage:

```
[params_row, tests_row] = loadItemProfile(fileset, file_index)
```

Parameters:

fileset: A params_tests_fileset.
file_index: Index of file in fileset.

Returns:

a_profile: A profile object that implements the getResults method.

See also: itemResultsRow(p.??), params_tests_fileset(p.132), paramNames (p.??), testNames(p.??)

A.17.8 Method params_cip_trace_fileset/cip_trace

Summary: Loads raw cip_traces for each given file_index in this fileset.

Usage:

```
a_cip_trace = cip_trace(fileset, file_index|a_db, props)
```

Parameters:

fileset: A params_tests_fileset.

file_index: A single or array of indices of files in fileset.

a_db: A DB created by this fileset to read the item indices from.

props: A structure with any optional properties.

neuronLabel: Used for annotation purposes.

Returns:

a_cip_trace: A cip_trace object.

See also: cip_trace (p. 54), params_tests_fileset (p. 132)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.18 Class params_tests_dataset

A.18.1 Constructor params_tests_dataset/params_tests_dataset

Summary: Contains a set of data objects or files of raw data varying with parameter values.

Usage:

```
obj = params_tests_dataset(list, dt, dy, id, props)
```

Description: This is an abstract base class for keeping dataset information separate from the parameters-results database (params_tests_db). The list contents can be filenames or objects (such as cip_traces) from which to get the raw data. The dataset should have all the necessary information to create a db when needed. This is an abstract class, thet it it cannot act on its own. Only fully implemented subclasses can actually hold datasets. See methods below.

Parameters:

list: Array of dataset items (filenames, objects, etc.).

dt: Time resolution [s]

dy: y-axis resolution [integral V, A, etc.]

id: An identification string.

props: A structure with any optional properties.

type: type of file (default = ")

Returns a structure object with the following fields:

```
list, dt, dy, id, props (see above).
```

See also: params_tests_db (p. 116), params_tests_fileset (p. 132), cip_traces_dataset (p. 71)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/02

A.18.2 Method params_tests_dataset/getItem

Summary: Returns the dataset item at given index.

Usage:

item = getItem(dataset, index)

Parameters:

dataset: A params_tests_dataset.
index: Index of item in dataset.

Returns:

item: Object, filename, etc.

See also: itemResultsRow (p.??), params_tests_dataset (p. 111), paramNames (p.??), testNames (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/03

A.18.3 Method params_tests_dataset/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.18.4 Method params_tests_dataset/get

Summary: Defines generic attribute retrieval for objects.

A.18.5 Method params_tests_dataset/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.18.6 Method params_tests_dataset/params_tests_db

Summary: Generates a params_tests_db object from the dataset.

Usage:

db_obj = params_tests_db(obj, items, props)

Description: This is a converter method to convert from params_tests_dataset to params_tests_db. Uses readDBItems to read the files. A customized subclass should provide the correct paramNames, testNames, and itemResultsRow functions. Adds a ItemIndex column to the DB to keep track of raw data files after shuffling.

Parameters:

obj: A params_tests_dataset object.

items: (Optional) List of item indices to use to create the db.

props: Any optional params to pass to params_tests_db.

Returns:

db_obj: A params_tests_db object.

See also: readDBItems (p.??), params_tests_db (p. 116), params_tests_dataset (p. 111), itemResultsRow testNames (p. ??), paramNames (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/09

A.18.7 Method params_tests_dataset/subsref

Summary: Defines generic indexing for objects.

A.18.8 Method params_tests_dataset/subsasgn

Summary: Defines generic index-based assignment for objects.

A.18.9 Method params_tests_dataset/getItemParams

Summary: Get the parameter values of a dataset item.

Usage:

```
params_row = getItemParams(dataset, index, a_profile)
```

Description: This method can retrieve the item parameters by using either the dataset and the index to find the item or simply by using the item profile, a_profile.

Parameters:

dataset: A params_tests_dataset.
index: Index of item in dataset.
a_profile: An item profile.

Returns:

params_row: Parameter values in the same order of paramNames

```
See also: itemResultsRow (p.??), params_tests_dataset (p. 111), paramNames (p.??), testNames (p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/10

A.18.10 Method params_tests_dataset/itemResultsRow

Summary: Processes a raw data file from the dataset and return its parameter and test values.

Usage:

```
[params_row, tests_row] = itemResultsRow(dataset, index)
```

Description: This method is designed to be reused from subclasses as long as the loadItemProfile method is properly overloaded. Adds an Index column to the DB to keep track of raw data items after shuffling.

Parameters:

dataset: A params_tests_dataset.
index: Index of file in dataset.

Returns:

params_row: Parameter values in the same order of paramNames tests_row: Test values in the same order with testNames

```
See also: loadItemProfile (p.??), params_tests_dataset (p. 111), paramNames (p. ??), testNames (p. ??)
```

A.18.11 Method params_tests_dataset/addItem

Summary: Returns the new dataset with the added item.

Usage:

```
dataset = addItem(dataset, item)
```

Description: Note that, this is NOT the way to create a dataset. It is only intended for small additions to an existing dataset. This method is too slow for creating large datasets. The normal method for creating datasets is providing the full list of items to the class constructor.

Parameters:

dataset: A params_tests_dataset.
item: New item to add in dataset.

Returns:

dataset: With the added item.

See also: itemResultsRow(p.??), params_tests_dataset(p.111), paramNames (p.??), testNames(p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/25

A.18.12 Method params_tests_dataset/testNames

Summary: Returns the ordered names of tests for this dataset.

Usage:

```
test_names = testNames(dataset, item)
```

Description: Looks at the results of the first file to find the test names.

Parameters:

dataset: A params_tests_dataset.

Returns:

params_names: Cell array with ordered parameter names. item: (Optional) If given, read names by loading item at this index.

See also: params_tests_dataset (p. 111), paramNames (p. ??), testNames (p. ??)

A.18.13 Method params_tests_dataset/readDBItems

Summary: Reads all items to generate a params_tests_db object.

Usage:

```
[params, param_names, tests, test_names] = readDBItems(obj, items)
```

Description: This is a generic method to convert from params_tests_fileset to a params_tests_db, or a subclass. This method depends on the paramNames, testNames, and item-ResultsRow functions. Outputs of this function can be directly fed to the constructor of a params_tests_db or a subclass.

Parameters:

obj: A params_tests_fileset object.

items: (Optional) List of item indices to use to create the db.

Returns:

params, param_names, tests, test_names: See params_tests_db.

See also: params_tests_db (p. 116), params_tests_fileset (p. 132), itemResultsRow testNames (p. ??), paramNames (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/24

A.19 Class params_tests_db

A.19.1 Constructor params_tests_db/params_tests_db

Summary: A generic database of test results varying with parameter values, organized in a matrix format.

Description: This is a subclass of tests_db. Defines all operations on this structure so that subclasses can use them.

Parameters:

num_params: Number of parameters.

a_tests_db: A tests_db upon which to build the params_tests_db.

props: A structure with any optional properties.

Returns a structure object with the following fields:

tests_db num_params: Number of variable parameters in simulations.

See also: tests_db (p. 217), test_variable_db (N/I) (p. ??)

A.19.2 Method params_tests_db/paramsTestsCoefsHists

Summary: Calculates histograms for all pairs of params and tests coefficients and returns in a cell array.

Usage:

```
pt_coefs_hists = paramsTestsCoefsHists(a_db, p_coefs)
```

Description: Skips the 'ItemIndex' test.

Parameters:

a_db: A tests_db object.

p_coefs: Cell array of tests coefficients for each parameter.

Returns:

```
pt_coefs_hists: A cell array of corrcoefs_dbs for each param in a_db.
```

See also: params_tests_profile (p. 136)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.19.3 Method params_tests_db/onlyRowsTests

Summary: Returns a tests_db that only contains the desired tests and rows (and pages).

Usage:

```
obj = onlyRowsTests(obj, rows, tests, pages)
```

Description: Selects the given dimensions and returns in a new tests_db object.

Parameters:

obj: A tests_db object.

rows: A logical or index vector of rows. If ':', all rows.

tests: Cell array of test names or column indices. If ':', all tests.

pages: (Optional) A logical or index vector of pages. ':' for all pages.

Returns:

obj: The new tests_db object.

See also: subsref (p. ??), tests_db (p. 217)

A.19.4 Method params_tests_db/joinRows

Summary: Joins the rows of the given db with rows of with_db with matching RowIndex values.

Usage:

```
a_db = joinRows(db, tests, with_db, w_tests, index_col_name)
```

Description: Takes the desired columns in with_db with rows having a row index and joins them next to dedired columns from the current db. Assumes each row index only appears once in with_db. The created db preserves the ordering of with_db.

Parameters:

```
db: A param_tests_db object.
```

tests: Test columns to take from db.

with_db: A tests_db object with a RowIndex column.

w_tests: Test columns to take from with_db.

index_col_name: (Optional) Name of row index column (default='RowIndex').

Returns:

```
a_db: A params_tests_db object.
```

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/16

A.19.5 Method params_tests_db/crossProd

Summary: Create a DB by taking the cross product of two database row sets.

Usage:

```
cross_db = crossProd(a_db, b_db)
```

Description: Overloaded function to maintain correct number of parameters after cross product operation. See original in tests_db/crossProd.

Parameters:

```
a_db, b_db: A tests_db object.
```

Returns:

cross_db: The tests_db object with all combinations of rows.

See also: tests_db/crossProd (p. 224)

A.19.6 Method params_tests_db/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.19.7 Method params_tests_db/testsHists

Summary: Calculates histograms for all tests and returns them in a cell array.

Usage:

t_hists = testsHists(a_db, num_bins)

Description: Skips the 'ItemIndex' test.

Parameters:

a_db: One or more tests_db objects in an array.

num_bins: Number of histogram bins (Optional, default=100), or vector of histogram bin centers.

Returns:

t_hists: An array of histograms for each test in a_db.

See also: params_tests_profile (p. 136)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.19.8 Method params_tests_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.19.9 Method params_tests_db/set

Summary: Generic method for setting object attributes.

A.19.10 Method params_tests_db/matchingRow

Summary: Creates a criterion database for matching the tests of a row.

Usage:

```
crit_db = matchingRow(a_db, row, props)
```

Description: Overloaded method for skipping parameter values. STD for param values will be NaNs.

Parameters:

a_db: A tests_db object.

row: A row index to match.

props: A structure with any optional properties.

distDB: Take the standard deviation from this db instead.

Returns:

crit_db: A tests_db with two rows for values and STDs.

```
See also: tests_db/matchingRow(p. 233), rankMatching(p. ??), tests_db (p. 217), tests2cols(p. ??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/13

A.19.11 Method params_tests_db/invarParam

Summary: Generates a 3D database of invariant values of a parameter and all test columns.

Usage:

```
a_3D_db = invarParam(db, param)
```

Description: Finds all combinations when the rest of the parameters are fixed, and saves the variation of the selected parameter and all tests in a new database.

Parameters:

db: A tests_db object.

param: A parameter name/column number

Returns:

```
a_3D_db: A tests_3D_db object of organized values.
```

```
See also: invarValues (p. ??), tests_3D_db (p. 212), corrCoefs (p. ??), tests_3D_db/plotPair (p. ??)
```

A.19.12 Method params_tests_db/paramsHists

Summary: Calculates histograms for all parameters and returns in a cell array.

Usage:

```
p_hists = paramsHists(a_db)
```

Description: Skips the 'ItemIndex' test. Useful for looking at subset databases and find out what parameter values are used most.

Parameters:

```
a_db: A tests_db object.
```

Returns:

p_hists: An array of histograms for each parameter in a_db.

See also: params_tests_profile (p. 136)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/20

A.19.13 Method params_tests_db/makeGenesisParFile

Summary: Creates a Genesis parameter file with all the parameter values in a_db.

Usage:

```
makeGenesisParFile(a_db, filename, props)
```

Description: For each a_db row, print the parameter names in a file formatted for Genesis.

Parameters:

```
a_db: A params_tests_db object.
```

filename: Genesis parameter file to be created.

props: A structure with any optional properties.

trialStart: If given, adds/replaces the trial parameter and counts forward.

Returns:

nothing.

Example:

```
» blocked_rows_db = makeModifiedParamDB(ranked_for_gps0501a_db, 1, [1, 2], 10,
[-100 100]);

» makeGenesisParFile(blocked_rows_db, 'blocked_gps0501-03.par')
```

PANDORA Toolbox: Prog.'s Maturaft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: makeModifiedParamDB (p.??), scanParamAllRows (p.??), scaleParamsOneRow (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/03/13

A.19.14 Method params_tests_db/rankVsAllDB

Summary: Generates ranking DBs by comparing rows of a_db with each row of to_db.

Usage:

```
tex_string = rankVsAllDB(a_db, to_db, a_dataset, to_dataset)
```

Description: Distance is each measure difference divided by the STD in to_db, squared and summed. Returned DB contains only the selected to_tests and the parameters from initial DB.

Parameters:

a_db: A params_tests_db object to compare rows from.

to_db: A tests_db object to compare it with.

a_dataset: Dataset for a_db.

to_dataset: Dataset for crit_db.

Returns:

ranked_dbs: Array of created DBs with original rows and a distance measure, in ascending order. tex_string: A LaTeX string for all tables created.

```
See also: rankVsDB(p.??), matchingRow(p.??), rankMatching(p.??), joinRows(p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/10

A.19.15 Method params_tests_db/addParams

Summary: Inserts new parameter columns to tests db.

Usage:

```
obj = addParams(obj, param_names, param_columns)
```

Description: Adds new columns to the database and returns the new DB. This operation is expensive in the sense that the whole database matrix needs to be enlarged just to add a single new column. The method of allocating a matrix, filling it up, and then providing it to the tests_db constructor is the preferred method of creating tests_db objects. This method may be used for measures obtained by operating on raw measures.

PANDORA Toolbox: Prog.'s Maturaft v813 of 22007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Parameters:

obj: A tests_db object.

param_names: A cell array of param names to be added.
param columns: Data matrix of columns to be added.

Returns:

obj: The tests_db object that includes the new columns.

See also: allocateRows (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/10/11

A.19.16 Method params_tests_db/mergeMultipleCIPsInOne

Summary: Merges multiple rows with different CIP data into one, generating a database of one row per neuron.

Usage:

```
a_db = mergeMultipleCIPsInOne(db, names_tests_cell, index_col_name)
```

Description: It calls invarParam to separate db into pages with different CIP level data. Then uses the names_tests_cell to choose tests from each page to be merged into the final database row. The tests will be suffixed with the field name so that they can be distinguished. RowIndex columns will be automatically included, and one of them can be chosen with index_col_name that has values for all cells. The suffixed for needs to be used to choose index_col_name, such as 'RowIndex_H100pA', assuming 'H100pA' was the field name in names_tests_cell that corresponds to page -100 pA.

Parameters:

db: A params_tests_db object.

names_tests_cell: A cell array alternating suffix names and test column
vectors.

The order of names correspond to each unique CIP level in db, with increasing order.

index_col_name: (Optional) Name of row index column
(default is 'RowIndex' suffixed with the first field name).

Returns:

a_db: A params_tests_db object of organized values.

Example:

```
» control_phys_sdb =
mergeMultipleCIPsInOne(control_phys_db,
struct('_H100pA', [1:10], '_D100pA', [1:10 16:18]),
'RowIndex_H100pA')
```

See also: invarValues (p. ??), tests_3D_db (p. 212), corrCoefs (p. ??), tests_3D_db/plotVarBox (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/13

A.19.17 Method params_tests_db/subsref

Summary: Defines generic indexing for objects.

A.19.18 Method params_tests_db/paramsParamsCoefs

Summary: Calculates a corrcoefs_db for each param from correlations of variant params and invariant param coefs and collects them in a cell array.

Usage:

```
pp_coefs = paramsParamsCoefs(a_db, p_t3ds, p_coefs)
```

Description: Skips the 'ItemIndex' test.

Parameters:

a_db: A tests_db object.

p_t3ds: Cell array of invariant parameter databases.

p_coefs: Cell array of tests coefficients for each parameter.

Returns:

pp_coefs: A cell array of corrcoefs_dbs for each param combination in a_db.

See also: params_tests_profile (p. 136)

A.19.19 Method params_tests_db/displayRankingsTeX

Summary: Generates and displays a ranking DB by comparing rows of a_db with the given match criteria.

Usage:

```
tex_string = displayRankingsTeX(a_db, crit_db, props)
```

Description: Generates a LaTeX document with: - Values of 10 best matching a_db rows in a floating table. - (optional) Raw traces compared with some best matches at different distances - Parameter distributions of 50 best matches as a bar graph.

Parameters:

a_db: A params_tests_db object to compare rows from.

crit_db: A tests_db object holding the match criterion tests and STDs which can be created with matchingRow.

props: A structure with any optional properties.

caption: Identification of the criterion db (not needed/used?).

a_dataset: Dataset for a_db.

a_dball: The non-joined DB for for a_db.

crit_dataset: Dataset for crit_db.

crit_dball: Dataset for crit_db.

num_matches: Number of best matches to display (default=10).
rotate: Rotation angle for best matches table (default=90).

Returns:

tex_string: LaTeX document string.

See also: rankVsDB(p.??), displayRowsTeX(p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/20

A.19.20 Method params tests db/getParamRowIndices

Summary: Returns indices of rows with matching parameter values from rows of this db.

Usage:

```
row_indices = getParamRowIndices(a_db, rows, to_db)
```

Parameters:

a_db: A params_tests_db object.

rows: rows to find indices for.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2507-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

to_db: Where to find the matching rows.

Returns:

row_indices: Array of row indices.

See also: makeModifiedParamDB (p.??), scanParamAllRows (p.??), scaleParamsOneRow (p.??), makeGenesisParFile (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/14

A.19.21 Method params_tests_db/plotParamsHists

Summary: Create a horizontal plot_stack of parameter histograms.

Usage:

```
a_ps = plotParamsHists(a_db, title_str, props)
```

Description: Skips the 'ItemIndex' test.

Parameters:

a_db: A params_tests_db object.

title_str: (Optional) A string to be concatanated to the title.

props: A structure with any optional properties.

quiet: Do not display the DB id on the plot title.

barAxisProps: passed to plotEqSpaced for each bar axis.

Returns:

a_ps: A horizontal plot_stack of plots

See also: plot_stack (p. 164), paramsHists (p. ??), plotEqSpaced (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/07

A.19.22 Method params_tests_db/rankVsDB

Summary: Generates a ranking DB by comparing rows of this db with the given test criteria.

Usage:

```
a_ranked_db = rankVsDB(a_db, crit_db)
```

Description: Distance is each measure difference divided by the STD in to_db, squared and summed. Returned DB contains only the selected tests from crit_db and the parameters from initial a_db.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2607-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Parameters:

a_db: A params_tests_db object to compare rows from.

crit_db: A tests_db object holding the match criterion tests and STDs which can be created with matchingRow.

Returns:

a_ranked_db: The created DB with original rows and a distance measure, in ascending order.

See also: matchingRow (p. ??), rankMatching (p. ??), joinRows (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/20

A.19.23 Method params_tests_db/delColumns

Summary: Deletes columns from tests_db.

Usage:

```
index = delColumns(obj, tests)
```

Description: Overloaded function that maintains correct number of parameters. See original tests_db/delColumns.

Parameters:

obj: A tests_db object.

tests: Numbers or names of tests (see tests2cols)

Returns:

obj: The tests_db object that is missing the columns.

See also: tests_db/delColumns (p. 245)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/10/11

A.19.24 Method params_tests_db/paramsCoefs

Summary: Calculates a corrcoefs_db for each param and collects them in a cell array.

Usage:

```
p_coefs = paramsCoefs(a_db, p_t3ds)
```

Description: Skips the 'ItemIndex' test.

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
a_db: A tests_db object.
```

p_t3ds: Cell array of invariant parameter databases.

Returns:

p coefs: A cell array of corrcoefs dbs for each param in a db.

```
See also: params_tests_profile (p. 136)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.19.25 Method params_tests_db/getProfile

Summary: Create a profile object from a params_tests_db by collecting statistics.

Usage:

```
a_pt_profile = getProfile(a_db, props)
```

Description: Calculates the following results items: idx: Name-index pairs for accessing results arrays. t_hists: Cell array of histograms of each test. p_t3ds: Cell array of invariant relations of each parameter with all tests. pt_hists: Cell array of separate test value histograms for uniques value of each parameter. p_stats: Cell array of test stats for each param. p_coefs: Cell array of correlation coefficients for each parameter with all tests. pt_coefs_hists: Cell matrix of histograms of coefficients from correlations of each parameter with each test. pp_coefs: Cell 3D matrix of mean coefficients from correlations of each parameter with correlation coefficients of each parameter with each test.

Parameters:

```
a_db: A params_tests_db object.
```

props: A structure with any optional properties.

Returns a params_tests_profile object.

```
See also: params_tests_profile (p. 136), results_profile (p. 176), params_tests_db (p. 116), params_tests_fileset (p. 132), tests_db (p. 217), tests_3D_db (p. 212), histogram_db (p. 94), stats_db (p. 206), corrcoefs_db (p. 81)
```

A.19.26 Method params_tests_db/plotVarBoxMatrix

Summary: Create a stack of parameter-test variation plots organized in a matrix.

Usage:

```
a_plot_stack = plotVarBoxMatrix(a_db, p_t3ds)
```

Description: Skips the 'ItemIndex' test.

Parameters:

a_db: A tests_db object.

p_t3ds: Cell array of invariant parameter databases.

Returns:

a_plot_stack: A plot_stack with the plots organized in matrix form

See also: params_tests_profile (p. 136), plotVar (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.19.27 Method params_tests_db/invarParams

Summary: Calculates invariant param dbs for all parameters and returns in an array.

Usage:

```
p_t3ds = invarParams(a_db)
```

Description: Skips the 'ItemIndex' test.

Parameters:

a_db: A tests_db object.

Returns:

p_t3ds: An array of tests_3D_dbs for each param in a_db.

See also: params_tests_profile (p. 136)

A.19.28 Method params_tests_db/getDualCIPdb

Summary: Generates a database by merging selected tests of depolarizing and hyperpolarizing cip results.

Usage:

```
a_db = getDualCIPdb(db, depol_tests, hyper_tests, depol_suffix, hyper_suffix)
```

Description: depol_tests need to have the RowIndex column in it.

Parameters:

db: A params_tests_db object.

Returns:

a_db: A params_tests_db object of organized values.

Example:

```
\mbox{\sc w} control_phys_sdb = getDualCIPdb(control_phys_db, depol_tests, hyper_tests, ", 'Hyp100pA') where depol_tests and hyper_tests are cell arrays of selected tests.
```

```
See also: invarValues (p. ??), tests_3D_db (p. 212), corrCoefs (p. ??), tests_3D_db/plotPair (p. ??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/13

A.19.29 Method params_tests_db/scanParamAllRows

Summary: Scans given parameter range for each row in DB.

Usage:

```
a_params_db = scanParamAllRows(a_db, param, min_val, max_val, num_levels, props)
```

Description: Produces rows by replacing the desired parameter value, in all rows of DB, with num_levels values between the given boundaries, min_val and max_val. This results in a DB with num_levels times more rows than the original DB. Then, makeGenesisParFile can be used to generate a parameter file from this DB to drive new simulations.

Parameters:

```
    a_db: A params_tests_db object whose first row is subject to modifications.
    param: The parameter to be varied (see tests2cols for param description).
    min_val, max_val: The low and high boundaries for the parameter value.
    num levels: Number of levels to produce, including the boundaries.
```

props: A structure with any optional properties.

renameTrial: If given, the 'trial' column is renamed to this name.

levelFunc: Use this function to get the parameter range with
feval(levelFunc, min_val, max_val, num_levels). Example: 'logLevels'

Returns:

a_params_db: A db only with params.

Example:

```
Sets NaF to given range with 100 levels:
» naf_rows_db = scanParamAllRows(a_db(desired_rows, :), 'NaF', 0, 1000, 100);
```

See also: makeGenesisParFile (p.??), scaleParamsOneRow (p.??), ranked_db/blockedDistances (p. 171), getParamRowIndices (p. ??), logLevels (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/16

A.19.30 Method params_tests_db/scaleParamsOneRow

Summary: Scales chosen parameters in a row by multiplying with levels to create a new parameter db with as many rows as values in levels.

Usage:

```
a_params_db = scaleParamsOneRow(a_db, params, levels)
```

Description: Produces rows by multiplying desired params, in the first row of DB, with each value in levels. Then, makeGenesisParFile can be used to generate a parameter file from this DB to drive new simulations.

Parameters:

a_db: A params_tests_db object whose first row is subject to modifications.

params: Parameters to be varied (see tests2cols for param description).

levels: Column vector of parameter value multipliers (1=unity).

Returns:

a_params_db: A db only with params.

Example:

```
Blocks NaF from 0» naf_rows_db = scanOneParam(a_db(desired_row, :), 'NaF',
0:0.1:1);
```

```
See also: ranked_db/blockedDistances (p. 171), getParamRowIndices (p. ??), makeGenesisParFile (p. ??)
```

A.20 Class params_tests_fileset

A.20.1 Constructor params_tests_fileset/params_tests_fileset

Summary: Description of a set of data files of raw data varying with parameter values. **Usage:**

```
obj = params_tests_fileset(file_pattern, dt, dy, id, props)
```

Description: This is a subclass of params_tests_dataset. This class is used to generate params_tests_db objects and keep a connection to the raw data files. This class only keeps names of files and loads raw data files whenever it's requested. A database object can easily be generated using the convertion methods. Most methods defined here can be used as-is, however some should be overloaded in subclasses. The specific methods are loadItemProfile.

Parameters:

file_pattern: File pattern, or cell array of patterns, matching all files to be loaded.

dt: Time resolution [s]

dy: y-axis resolution [ISI (V, A, etc.)]

id: An identification string

props: A structure with any optional properties.

num_params: Number of parameters that appear in filenames.

param_trial_name: Use this name on the filename as the 'trial' parameter.

param_row_filename: If given, the 'trial' parameter will be used to address rows from this file and acquire parameters.

param_desc_filename: Contains the parameter range descriptions
 one per

each row. The parameter names are acquired from this file.

param_names: Cell array of parameter names corresponding to the param_row_filename columns can be specified as an alternative to specifying param_desc_filename. These names are not for the parameters present in the data filename.

profile_method_name: It can be one of the profile-creating methods
 in this

class. E.g., 'trace_profile', 'srp_trace_profile', etc. (See parent classes and cip_trace object for more props)

Returns a structure object with the following fields:

params_tests_dataset, path: The pathname to files.

See also: params_tests_db (p. 116), tests_db (p. 217), test_variable_db (N/I) (p. $\ref{prop:loop}$)

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/09

A.20.2 Method params_tests_fileset/addFiles

Summary: Adds to existing list of files in set.

Usage:

[a_fileset, index_list] = addFiles(a_fileset, file_pattern, props)

Parameters:

a_fileset: A params_tests_fileset object.

file_pattern: File pattern, or cell array of patterns, matching additional files.

props: A structure with any optional properties.

param_row_filename: Update parameters from here. The 'trial' parameter is used to address rows from this file and acquire parameters.

Returns:

a_fileset: The augmented fileset object. index_list: The vector of index numbers of the new files added. Can be used to selectively load the new files into a DB using params_test_db.

See also: params_tests_fileset(p. 132), params_tests_dataset/params_test_db. (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/01

A.20.3 Method params_tests_fileset/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.20.4 Method params_tests_fileset/get

Summary: Defines generic attribute retrieval for objects.

A.20.5 Method params_tests_fileset/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.20.6 Method params_tests_fileset/trace

Summary: Loads a raw trace given a file_index to this fileset.

Usage:

```
a_trace = trace(fileset, file_index)
```

Parameters:

fileset: A params_tests_fileset.
file index: Index of file in fileset.

Returns:

a_trace: A trace object.

See also: trace (p. 255), params_tests_fileset (p. 132)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.20.7 Method params_tests_fileset/paramNames

Summary: Returns the ordered names of parameters for this fileset.

Usage:

```
param_names = paramNames(fileset, item)
```

Description: Looks at the filename of the first file to find the parameter names.

Parameters:

fileset: A params_tests_fileset.

item: (Optional) If given, read param names by loading item at this index.

Returns:

params_names: Cell array with ordered parameter names.

See also: params_tests_fileset (p. 132), paramNames (p. ??), testNames (p. ??)

A.20.8 Method params_tests_fileset/getItemParams

Summary: Get the parameter values of a dataset item.

Usage:

```
params_row = getItemParams(dataset, index)
```

Parameters:

dataset: A params_tests_dataset.
index: Index of item in dataset.

Returns:

params_row: Parameter values in the same order of paramNames

See also: itemResultsRow (p.??), params_tests_dataset (p. 111), paramNames (p.??), testNames (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/03

A.20.9 Method params_tests_fileset/trace_profile

Summary: Loads a raw trace_profile given a file_index to this fileset.

Usage:

```
a_trace_profile = trace_profile(fileset, file_index)
```

Parameters:

fileset: A params_tests_fileset.
file_index: Index of file in fileset.

Returns:

a_trace_profile: A trace_profile object.

See also: trace_profile (p. 264), params_tests_fileset (p. 132)

A.20.10 Method params_tests_fileset/loadItemProfile

Summary: Loads a profile object from a raw data file in the fileset.

Usage:

```
a_profile = loadItemProfile(fileset, file_index)
```

Description: Subclasses should overload this function to load the specific profile object they desire. The profile class should define a getResults method which is used in the itemResultsRow method.

Parameters:

fileset: A params_tests_fileset.
file_index: Index of file in fileset.

Returns:

a_profile: A profile object that implements the getResults method.

See also: itemResultsRow(p.??), params_tests_fileset(p.132), paramNames(p.??), testNames(p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.21 Class params_tests_profile

A.21.1 Constructor params_tests_profile/params_tests_profile

Summary: Holds the results profile from a params_tests_db.

Usage:

```
a_pt_profile = params_tests_profile(results, a_db, props)
```

Parameters:

a_db: A params_tests_db object.

results: A structure containing test results.

props: A structure with any optional properties.

Returns a structure object with the following fields:

results_profile: Contains results of tests. db: The params_tests_db. props.

See also: results_profile(p. 176), params_tests_db/params_tests_profile(p. ??)

A.21.2 Method params_tests_profile/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.22 Class period

A.22.1 Constructor period/period

Summary: Start and end times of a period in terms of the dt of the trace to which belongs.

Usage:

```
obj = period(start_time, end_time)
```

Parameters:

(see below for the rest)

Returns a structure object with the following fields:

start_time, end_time: Inclusive period [dt].

See also: trace (p. 255), spikes (p. 195), spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.22.2 Method period/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.22.3 Method period/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.22.4 Method period/set

Summary: Generic method for setting object attributes.

A.22.5 Method period/subsref

Summary: Defines generic indexing for objects.

A.22.6 Method period/SpikeTimesinPeriod

Usage:

SpkTimes=Interval(times, period)

Parameters:

times: an array of spike times.

period: A period object

Returns:

the_period: The cropped set of spike times that fall within a period.

See also: period (p. 137), cip_trace (p. 54), trace (p. 255), spikes (p. 195)

Author: Tom Sangrey, 2006/01/26

A.23 Class physiol_bundle

A.23.1 Constructor physiol_bundle/physiol_bundle

Summary: The physiology dataset and the DB created from it bundled together.

Usage:

```
a_bundle = physiol_bundle(a_dataset, a_db, a_joined_db, props)
```

Description: This is a subclass of dataset_db_bundle, specialized for physiology datasets.

Parameters:

- a_dataset: A physiol_cip_traceset_fileset object.
- a_db: The raw params_tests_db object created from the dataset.
 It only needs to have the pAcip, pAbias, TracesetIndex, and ItemIndex columns.
- **a_joined_db:** The one-treatment-per-line DB created from the raw DB.

props: A structure with any optional properties.

Returns a structure object with the following fields:

dataset_db_bundle, joined_control_db: DB of control neurons (no pharmacological applications).

PANDORA Toolbox: Prog.'s MaDraft v813 of 2807-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: dataset_db_bundle(p.82), tests_db(p.217), params_tests_dataset (p.111)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/13

A.23.2 Method physiol_bundle/getNeuronLabel

Summary: Constructs the neuron label from dataset.

Usage:

a_label = getNeuronLabel(a_bundle, traceset_index, props)

Parameters:

a_bundle: A physiol_cip_traceset_fileset object. **traceset_index:** The traceset index of neuron. **props:** A structure with any optional properties.

Returns:

a_label: A string label identifying selected neuron in bundle.

See also: dataset_db_bundle (p. 82)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/05

A.23.3 Method physiol_bundle/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.23.4 Method physiol_bundle/set

Summary: Generic method for setting object attributes.

A.23.5 Method physiol_bundle/constrainedMeasuresPreset

Summary: Returns a physiol_bundle with constrained measures according to chosen preset.

Usage:

```
[a_pbundle test_names] = constrainedMeasuresPreset(a_pbundle, preset, props)
```

Parameters:

```
a_pbundle: A physiol_cip_traceset_fileset object.
preset: Choose preset measure list (default=1).
props: A structure with any optional properties.
```

Returns:

a_pbundle: One or more cip_trace object that holds the raw data.

```
See also: loadItemProfile (p. ??), physiol_cip_traceset/cip_trace (p. 149)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/19

A.23.6 Method physiol_bundle/matchingRow

Summary: Creates a criterion database for matching the neuron at traceset index.

Usage:

```
a_crit_db = matchingRow(p_bundle, traceset_index, props)
```

Description: Copies selected test values from row as the first row into the criterion db. Adds a second row for the STD of each column in the db.

Parameters:

```
p_bundle: A physiol_bundle object.
traceset_index: A TracesetIndex of the neuron and treatments to match.
props: A structure with any optional properties.
```

Returns:

a_crit_db: A tests_db with two rows for values and STDs.

Example:

PANDORA Toolbox: Prog.'s MaBuraft v813 of 4007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
See also: rankMatching (p. ??), tests_db/matchingRow (p. 233)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/21
       A.23.7 Method physiol_bundle/plotfICurveStats
       Summary: Generates a f-I curve mean-std plot of physiology DB.
       Usage:
a_plot = plotfICurveStats(p_bundle, title_str, props)
       Parameters:
            p_bundle: A physiol_bundle object.
            title_str: (Optional) String to append to plot title.
            props: A structure with any optional properties.
                 quiet: if given, no title is produced
                     (passed to plot_superpose)
       Returns:
            a_plot: An f-I curve plot.
       Example:
» plotFigure(plotfICurveStats(pbundle));
       See also: dataset_db_bundle/plotfICurve(p. 86), plot_abstract(p. 153),
            plot_superpose (p. 167)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/16
       A.23.8 Method physiol_bundle/getNeuronRowIndex
       Summary: Returns the neuron index from bundle.
       Usage:
a_row_index = getNeuronRowIndex(a_bundle, traceset_index, props)
       Parameters:
            a_bundle: A physiol_bundle object.
            traceset_index: The TracesetIndex number of neuron, or a DB row con-
                 taining this.
            props: A structure with any optional properties.
```

Returns:

a_row_index: A row index of neuron in a_bundle.joined_db.

See also: dataset_db_bundle/getNeuronRowIndex (p. 87)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/09

A.23.9 Method physiol_bundle/bestMatchAllNeurons

Summary: Finds the best match among given database for each physiology neuron.

Usage:

```
all_ranks_db = bestMatchAllNeurons(p_bundle, joined_db, props)
```

Description: Returns a database of best matching entries from joined_db for each entry in p_bundle.joined_control_db.

Parameters:

```
p_bundle: A physiol_bundle object.
```

joined_db: A database with neuron representations to rank against neurons.

props: A structure with any optional properties. (passed to rankMatching)

Returns:

all_ranks_db: DB of best matching from joined_db. Each row corresponds to p_bundle.joined_control_db rows.

Example:

```
» all_ranks_db = ...
bestMatchAllNeurons(constrainedMeasuresPreset(pbundle2, 6),
mbundle_maxcond.joined_db)
» plotXRows(all_ranks_db, 'Distance', 'maxcond DB distance per neuron',
'maxcond', ...
struct('LineStyle', '-', 'quiet', 1, 'PaperPosition', [0 0 4 3]))
```

See also: tests_db/rankMatching(p. 254), tests_db/matchingRow(p. 233)

A.23.10 Method physiol_bundle/ctFromRows

Summary: Loads a cip_trace object from a raw data file in the a_pbundle.

Usage:

```
a_cip_trace = ctFromRows(a_pbundle, a_db|traceset_idx, cip_levels, props)
```

Parameters:

```
a_pbundle: A physiol_cip_traceset_fileset object.
```

a_db: A DB created by this fileset to read the traceset indices from.

traceset_idx: A column vector with traceset indices.

cip_levels: A column vector of CIP-levels to be loaded.

props: A structure with any optional properties.

traces: column vector of trace indices to load.

showParamsList: Cell array of params or treatments to include in the id field.

Returns:

a cip trace: One or more cip trace object that holds the raw data.

See also: loadItemProfile (p. ??), physiol_cip_traceset/cip_trace (p. 149)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/07/13

A.23.11 Method physiol_bundle/matchingControlNeuron

Summary: Creates a criterion database for matching the neuron at traceset_index.

Usage:

```
a_crit_bundle = matchingControlNeuron(a_bundle, neuron_id, props)
```

Description: Copies selected test values from row as the first row into the criterion db. Adds a second row for the STD of each column in the db.

Parameters:

a_bundle: A physiol_bundle object.

neuron_id: A NeuronId of the neuron to match.

props: A structure with any optional properties.

Returns:

a_crit_bundle: A tests_db with two rows for values and STDs.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 4207-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Example:

```
Matches gpd0421c from cip_traces_all_axoclamp.txt:
    a_crit_bundle = matchingControlNeuron(pbundle, 33)
    (see example in matchingRow)
```

See also: rankMatching (p. ??), tests_db (p. 217), tests2cols (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/21

A.24 Class physiol_cip_traceset

A.24.1 Constructor physiol_cip_traceset/physiol_cip_traceset

Summary: Dataset of cip traces from same PCDX file.

Usage:

obj = physiol_cip_traceset(trace_str, data_src, chaninfo, dt, dy, treatments, id,
props);

Description: This is a subclass of params_tests_dataset. Each trace varies in bias, pulse times and cip magnitude.

Parameters:

trace_str: Trace list in the format for loadtraces or just a Matlab vector.

data_src: Absolute path of PCDX data source.

chaninfo: 4-element array containing vchan, ichan, vgain, igain

vchan, ichan: Current and voltage channels.

vgain, igain: External gain factors for voltage channel and current channel (vgain does NOT include the 10X amplification from the Axoclamp, so vgain = 1 would mean no additional amplification beyond the 10X.)

dt: Time resolution [s].

dy: Y-axis resolution [V] or [A].

treatments: Structure containing the names and concentrations of compounds.

id: Neuron name.

props: A structure with any optional properties.

nsHDF5: If 1, source is a NeuroSAGE HDF5 file.

profile_class_name: Use this profile class (Default: 'cip_trace_profile').

cip_list: Vector of cip levels to which the current trace will be matched.

(All other props are passed to cip_trace objects)

Returns a structure object with the following fields:

params_tests_dataset, data_src, ichan, vchan, vgain, igain, treatments, id.

```
See also: cip_traces (p.??), params_tests_dataset (p.111), params_tests_db (p.116)
```

Author: Cengiz Gunay <cgunay@emory.edu> and Thomas Sangrey, 2005/01/17

A.24.2 Method physiol_cip_traceset/setProp

Summary: Generic method for setting optional object properties.

Usage:

```
obj = setProp(obj, prop1, val1, prop2, val2, ...)
```

Description: Modifies or adds property values. As many property name-value pairs can be specified.

Parameters:

obj: Any object that has a props field.

attr: Property nameval: Property value.

Returns:

obj: The new object with the updated properties.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/22

A.24.3 Method physiol_cip_traceset/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.24.4 Method physiol_cip_traceset/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.24.5 Method physiol_cip_traceset/cip_trace_profile

Summary: Loads a cip_trace_profile object from a raw data file in the traceset.

Usage:

```
a_profile = cip_trace_profile(traceset, trace_index)
```

Parameters:

traceset: A physiol_cip_traceset object.
trace_index: Index of file in traceset.

Returns:

a_profile: A profile object that implements the getResults method.

```
See also: itemResultsRow (p.??), params_tests_fileset (p. 132), paramNames (p.??), testNames (p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu> and Thomas Sangrey, 2005/01/18

A.24.6 Method physiol_cip_traceset/subsref

Summary: Defines generic indexing for objects.

A.24.7 Method physiol_cip_traceset/CIPform

Summary: Extracts current bias and pulse information from the current channel.

Usage:

```
[ciptype, on, off, finish, bias, pulse] = ns_CIPform(traceset,trace_index)
```

Parameters:

traceset: A physiol_cip_traceset object.
trace_index: Index of item in traceset

See also: cip_traces (p.??), params_tests_dataset (p.111), params_tests_db (p.116)

Author: Thomas Sangrey, 2005

A.24.8 Method physiol_cip_traceset/paramNames

Summary: Returns the parameter names for this traceset.

Usage:

```
param_names = paramNames(traceset)
```

Description: Looks at the filename of the first file to find the parameter names.

Parameters:

```
traceset: A params_tests_dataset.
```

Returns:

param_names: Cell array with ordered parameter names.

```
See also: params_tests_dataset (p. 111), paramNames (p. ??), testNames (p. ??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/06

A.24.9 Method physiol_cip_traceset/getItemParams

Summary: Get the parameter values of a dataset item.

Usage:

```
params_row = getItemParams(dataset, index, a_profile)
```

Parameters:

```
dataset: A params_tests_dataset.
index: Index of item in dataset.
a_profile: cip_trace_profile object
```

Returns:

params_row: Parameter values in the same order of paramNames

```
See also: itemResultsRow (p.??), params_tests_dataset (p. 111), paramNames (p.??), testNames (p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/06

A.24.10 Method physiol_cip_traceset/itemResultsRow

Summary: Processes a raw data file from the dataset and return its parameter and test values.

Usage:

```
[params_row, tests_row] = itemResultsRow(dataset, index)
```

Description: This method is designed to be reused from subclasses as long as the loadItemProfile method is properly overloaded. Adds an Index column to the DB to keep track of raw data items after shuffling.

Parameters:

dataset: A params_tests_dataset.
index: Index of file in dataset.

Returns:

params_row: Parameter values in the same order of paramNames tests_row: Test values in the same order with testNames

See also: loadItemProfile (p.??), params_tests_dataset (p. 111), paramNames (p. ??), testNames (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/10

A.24.11 Method physiol_cip_traceset/loadItemProfile

Summary: Loads a cip_trace_profile object from a raw data file in the traceset.

Usage:

```
a_profile = loadItemProfile(traceset, trace_index)
```

Parameters:

traceset: A physiol_cip_traceset object.
trace_index: Index of file in traceset.

Returns:

a_profile: A profile object that implements the getResults method.

See also: itemResultsRow (p.??), params_tests_fileset (p. 132), paramNames (p.??), testNames (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.24.12 Method physiol_cip_traceset/cip_trace

Summary: Loads a cip_trace object from a raw data file in the traceset.

Usage:

```
a_cip_trace = cip_trace(traceset, trace_index, props)
```

Parameters:

traceset: A physiol_cip_traceset object.
trace_index: Index of file in traceset.

props: A structure with any optional properties.

showParamsList: Cell array of params to add to id field. **showName:** Show the name of the cell in the id field (default=1).

TracesetIndex: Indicates in the id field.

Returns:

a_cip_trace: A cip_trace object that holds the raw data.

```
See also: itemResultsRow(p.??), params_tests_fileset(p.132), paramNames (p.??), testNames(p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/07/13

A.25 Class physiol cip traceset fileset

A.25.1 Constructor physiol_cip_traceset_fileset/physiol_cip_traceset_fileset

Summary: Physiological fileset of traceset objects (concatenated).

Usage:

```
obj = physiol_cip_traceset_fileset(traceset_items, dt, dy, props)
```

Description: This is a subclass of params_tests_dataset. It contains a set of physiol_cip_traceset items that are tied to physical data sources. Each traceset can load a set of traces for an experimental recording. Most flexible usage is obtained when the input traceset_items is given as a cell array of physiol_cip_traceset objects. These objects can each link to PCDX or NeuroSAGE HDF5 files independent of each other. A regular Matlab script can be used to create such a cell array. If a function is defined to return such an array, it can be passed as traceset_items. Alternatively, the cell array can be constructed from an ASCII file as described below, such as for deprecated PCDX data files.

Parameters:

traceset_items: It can be a function handle, cell array or filename

string. Function should return a cell array of physiol_cip_traceset items. Finally this cell array can be provided directly. If it is an ASCII filename, then it should contain the following tab-delimited items: 1. Neuron ID (name to associate with the neuron). If left blank, use the filename with the 'all' extension removed. 2. The absolute path of the data file 3. The trace numbers to load, space-delimited (e.g. 1-21 24 26 27) 4. Vchan: voltage channel number 5. Ichan: current channel number 6. Vgain: external gain on voltage channel IN ADDITION to the 10X that automatically comes from the Axoclamp 2B. 7. Igain: external gain on current channel. 8. Pairs of condition names and molar concentrations in any order e.g.: TTX 1e-8 apamin 2e-7 picrotoxin 1e-4

Returns a structure object with the following fields:

neuron_idx: A structure that points from neuron names to NeuronId numbers. params_tests_dataset

```
See also: physiol_cip_traceset (p. 144), params_tests_dataset (p. 111), params_tests_db (p. 116)
```

Author: Cengiz Gunay <cgunay@emory.edu> and Thomas Sangrey, 2005/01/17

A.25.2 Method physiol_cip_traceset_fileset/setProp

Summary: Generic method for setting optional object properties.

Usage:

```
obj = setProp(obj, prop1, val1, prop2, val2, ...)
```

Description: Modifies or adds property values. As many property name-value pairs can be specified.

Parameters:

obj: Any object that has a props field.

attr: Property nameval: Property value.

Returns:

obj: The new object with the updated properties.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/22

A.25.3 Method physiol_cip_traceset_fileset/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.25.4 Method physiol_cip_traceset_fileset/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.25.5 Method physiol_cip_traceset_fileset/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.25.6 Method physiol_cip_traceset_fileset/loadItemProfile

Summary: Loads a cip_trace_profile object from a raw data file in the fileset.

Usage:

a_profile = loadItemProfile(fileset, traceset_index, trace_index)

Parameters:

fileset: A physiol_cip_traceset object.

traceset_index : Index of traceset item in this fileset (corresponds
to row in cells_filename) to use grab the cell information.

trace index: Index of item in the traceset.

Returns:

a_profile: A profile object that implements the getResults method.

See also: itemResultsRow(p.??), params_tests_fileset(p.132), paramNames(p.??), testNames(p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14 and Tom Sangrey

A.25.7 Method physiol_cip_traceset_fileset/cip_trace

Summary: Loads a cip_trace object from a raw data file in the fileset.

Parameters:

fileset: A physiol_cip_traceset_fileset object.

traceset_index: Index of traceset item in this fileset (corresponds

to row in cells_filename) to find the cell information.

trace_index: Index of item in the traceset.

a_db: A DB created by this fileset to read the traceset and item indices from.

props: A structure with any optional properties, passed to physiol_cip_traceset/cip_trace.

Returns:

a_cip_trace: One or more cip_trace object that holds the raw data.

See also: loadItemProfile (p. ??), physiol_cip_traceset/cip_trace (p. 149)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/07/13

A.25.8 Method physiol_cip_traceset_fileset/readDBItems

Summary: Reads all items to generate a params_tests_db object.

Usage:

```
[params, param_names, tests, test_names] = readDBItems(obj, items)
```

Description: This is a specific method to convert from physiol_cip_traceset_fileset to a params_tests_db, or a subclass. Outputs of this function can be directly fed to the constructor of a params_tests_db or a subclass.

Parameters:

obj: A physiol_cip_traceset_fileset

items: (Optional) List of item indices to use to create the db.

Returns:

```
params, param_names, tests, test_names: See params_tests_db.
```

See also: params_tests_db(p. 116), params_tests_fileset(p. 132), itemResultsRow(p. ??)

A.26 Class plot_abstract

A.26.1 Constructor plot_abstract/plot_abstract

Summary: Abstract description of a single plot.

Usage:

```
obj = plot_abstract(data, axis_labels, title, legend, command, props)
```

Description: Base class that holds the necessary data to draw a plot. This data can then be used to generate different plots. Subclasses define specific plots with additional data. Subclasses should conform to the standard that the series of commands found in plotFigure should produce a valid figure.

Parameters:

```
data: A cell array of data arrays (x, y, z, etc.) that can be fed to plot commands.
```

axis_labels: Cell array of axis label strings.

title: Plot description string.

legend: Cell array of descriptions for each item plotted.

command: Plotting command to use (Optional, default='plot')

props: A structure with any optional properties.

axisLimits: Sets axis limits of non-NaN values in vector.

tightLimits: If 1, issues an "axis tight" command (default=0)

border: Relative size of border spacing around axis, between 0 - 1. (default=0)

If a scalar, equal border on all sides, give a four-element vector [left bottom right top] to define borders for each side.

fontSize: Set the fontsize.

grid: Display dashed grid in background.

noXLabel: No X-axis label. **noYLabel:** No Y-axis label.

noTitle: No title.

rotateXLabel: Rotates the X-axis label for smaller width. rotateYLabel: Rotates the Y-axis label for smaller width.

numXTicks: Number of ticks on X-axis.

formatXTickLabels: The sprintf format string for tick labels.

XTick, YTick: Point locations for axis ticks.

XTickLabel, YTickLabel: Axis tick labels.

ColorOrder: Set the ColorOrder of the axis.

LineStyleOrder: Set the LineStyleOrder of the axis.

legendLocation: Passed to legend(..., 'location', legendLocation).

legendOrientation: Passed to legend(..., 'orientation', legendLocation)

noLegends: If exists, no legends are displayed.

axisProps: Passed to set properties of the axis drawn. **plotProps:** Passed to set properties of the plot drawn.

figureProps: Passed to set properties of the figure drawn.

PaperPosition: Sets the figure property for printing at this size.

resizeControl: If 0, drawing after resize is disabled and prints at screen

size, if 1 (default), redraws figure after each resize event and prints at PaperPosition size.

Returns a structure object with the following fields:

data, axis_labels, title, legend, command, props

See also: plot_abstract/plot(p. 158), plot_abstract/plotFigure(p. 155)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.26.2 Method plot_abstract/setProp

Summary: Generic method for setting optional object properties.

Usage:

```
obj = setProp(obj, prop1, val1, prop2, val2, ...)
```

Description: Modifies or adds property values. As many property name-value pairs can be specified.

Parameters:

obj: Any object that has a props field.

attr: Property nameval: Property value.

Returns:

obj: The new object with the updated properties.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/22

A.26.3 Method plot_abstract/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.26.4 Method plot_abstract/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.26.5 Method plot_abstract/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.26.6 Method plot_abstract/plotFigure

Summary: Draws this plot alone in a new figure window.

Usage:

handle = plotFigure(a_plot)

Parameters:

a_plot: A plot_abstract object, or a subclass object.
title_str: (Optional) String to append to plot title.

Returns:

handle: Handle of new figure.

See also: plot_abstract(p. 153), plot_abstract/plot(p. 158), plot_abstract/decorate (p. 159)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.26.7 Method plot_abstract/openAxis

Summary: Calculates the extents for the axis of this plot and opens it.

Usage:

```
[axis_handle, layout_axis] = openAxis(a_plot, layout_axis)
```

Parameters:

a_plot: A plot_abstract object, or a subclass object.

layout_axis: The axis position to layout this plot (Optional).

If NaN, doesn't open a new axis.

Returns:

handles: Handles of graphical objects drawn.

See also: plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.26.8 Method plot_abstract/axis

Summary: Returns the estimated axis ranges of this plot according to its data.

Usage:

```
ranges = axis(a_plot)
```

Parameters:

a_plot: A plot_abstract object, or a subclass object.

Returns:

ranges: The ranges as a vector in the same way 'axis' would return.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/13

A.26.9 Method plot_abstract/superposePlots

Summary: Superpose multiple plots with common command onto a single axis.

Usage:

```
a_plot = superposePlots(plots, axis_labels, title_str, command, props)
```

Description: The plot decoration will be taken from the last plot in the list, with the exception of legend labels.

Parameters:

```
plots: Array of plot_abstract or subclass objects.
```

axis_labels: Cell array of axis label strings (optional, taken from plots).

title_str: Plot description string (optional, taken from plots).

command: Plotting command to use (optional, taken from plots)

props: A structure with any optional properties.

noLegends: If exists, no legends are created.

Returns:

```
a_plot: A plot_abstract object.
```

```
See also: plot_abstract (p. 153), plot_abstract/plot (p. 158), plot_abstract/plotFigure (p. 155)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/23

A.26.10 Method plot_abstract/matrixPlots

Summary: Superpose multiple plots with common command onto a single axis.

Usage:

```
a_plot = matrixPlots(plots, axis_labels, title_str, props)
```

Parameters:

```
plots: Array of plot_abstract or subclass objects.
```

axis_labels: Cell array of axis label strings (optional, taken from plots).

title_str: Plot description string (optional, taken from plots).

props: A structure with any optional properties passed to the Y stack_plot.

titlesPos: if specified, passed to the X stack_plots.
rotateYLabel: if specified, passed to the X stack_plots.
axisLimits: if specified, passed to the X stack_plots.
goldratio: try to make the figure in this aspect ratio.

width, height: if specified, make the figure have this many plots in corresponding dimension.

Returns:

a_plot: A plot_abstract object.

See also: plot_abstract(p. 153), plot_abstract/plot(p. 158), plot_abstract/plotFigure (p. 155)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/07

A.26.11 Method plot_abstract/subsref

Summary: Defines generic indexing for objects.

A.26.12 Method plot_abstract/plot

Summary: Draws this plot in the current axis.

Usage:

handles = plot(a_plot, layout_axis)

Parameters:

a_plot: A plot_abstract object, or a subclass object.

layout_axis: The axis position to layout this plot (Optional).

If NaN, doesn't open a new axis.

Returns:

handles: Handles of graphical objects drawn.

See also: plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.26.13 Method plot_abstract/subsasgn

Summary: Defines generic index-based assignment for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/06

A.26.14 Method plot_abstract/decorate

Summary: Places decorations (titles, labels, ticks, etc.) on the plot.

Usage:

```
handles = decorate(a_plot)
```

Parameters:

a_plot: A plot_abstract object, or a subclass object.

Returns:

handles: Handles of graphical objects drawn.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.27 Class plot_bars

A.27.1 Constructor plot_bars/plot_bars

Summary: Bar plot with error lines in individual axes for each variable.

Usage:

```
a_plot = plot_bars(mid_vals, lo_vals, hi_vals, n_vals, x_labels, y_labels, ...
title, axis_limits, props)
```

Description: Subclass of plot_stack. The plot_abstract/plot command can be used to plot this data. Rows of *_vals will create grouped bars, columns will create new axes.

Parameters:

```
mid_vals: Middle points of error bars.
```

lo_vals: Low points of error bars.

hi_vals: High points of error bars.

n_vals: Number of samples used for the statistic (Optional).

x_labels, y_labels: Axis labels for each bar group. Must match with data columns.

title: Plot description.

axis_limits: If given, all plots contained will have these axis limits.

props: A structure with any optional properties.

dispErrorbars: If 1, display errorbars for lo_vals and hi_vals deviation from mid_vals (default=1).

PANDORA Toolbox: Prog.'s MaBuraft v813 oil **29**07-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

dispNvals: If 1, display n_vals on top of each bar.

groupValues: Array of within-group numeric labels, instead of just a sequence of numbers.

truncateDecDigits: Truncate labels to this many decimal digits.
barAxisProps: props passed to plot_abstract objects with bar commands

Returns a structure object with the following fields:

plot_abstract

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.27.2 Method plot_bars/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.28 Class plot_errorbar

A.28.1 Constructor plot_errorbar/plot_errorbar

Summary: Generic errorbar plot.

Usage:

a_plot = plot_errorbar(x_vals, mid_vals, lo_vals, hi_vals, line_spec,
axis_labels, title, legend, props)

Description: Subclass of plot_abstract. The plot_abstract/plot command can be used to plot this data. Needed to create this as a separate class to have the axis ranges method to measure the errorbars.

Parameters:

x_vals: X coordinates of errorbars.

mid_vals: Middle points of error bars.

lo vals: Low points of error bars.

hi_vals: High points of error bars.

line_spec: Plot line spec to be passed to errorbar

axis_labels: Cell array for X, Y axis labels.

title: Plot description.

legend: For multiple errorbar plots (matrix form), description of each plot. **props:** A structure with any optional properties to be passed to plot_abstract.

Returns a structure object with the following fields:

```
plot_abstract.
```

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.28.2 Method plot_errorbar/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.28.3 Method plot_errorbar/axis

Summary: Returns the estimated axis ranges of this plot according to its data.

Usage:

```
ranges = axis(a_plot)
```

Parameters:

a_plot: A plot_abstract object, or a subclass object.

Returns:

ranges: The ranges as a vector in the same way 'axis' would return.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/13

A.29 Class plot_errorbars

A.29.1 Constructor plot_errorbars/plot_errorbars

Summary: Special plot for plotting distributions of variables in separate axes.

Usage:

```
a_plot = plot_errorbars(labels, mid_vals, lo_vals, hi_vals, labels, title,
axis_limits, props)
```

Description: Subclass of plot_stack. The plot_abstract/plot command can be used to plot this data.

Parameters:

labels: Labels of parameters to appear at bottom of each errorbar.

mid_vals: Middle points of error bars.lo vals: Low points of error bars.

hi_vals: High points of error bars.

title: Plot description.

axis_limits: If given, all plots contained will have these axis limits.

props: A structure with any optional properties.

Returns a structure object with the following fields:

plot_abstract, labels.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.30 Class plot_inset

A.30.1 Constructor plot_inset/plot_inset

Summary: Superpose multiple plots with individual axis at arbitrary locations.

Usage:

```
a_plot = plot_inset(plots, axis_locations, title_str, props)
```

Description: Subclass of plot_abstract. Contains other plot_abstract objects or subclasses thereof to be layout in arbitaray format. Allows overlapping and therefore good for insets and special plots.

Parameters:

plots: Cell array of plot_abstract or subclass objects.

axis_locations: Matrix of four-element vectors for each given plot.

title_str: Title to go on top of the stack

props: A structure with any optional properties.

Returns a structure object with the following fields:

plot_abstract, plots, axis_locations.

See also: plot_abstract (p. 153), plot_abstract/plotFigure (p. 155)

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/06/05

A.30.2 Method plot_inset/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.30.3 Method plot_inset/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.30.4 Method plot_inset/plot

Summary: Superposes contained plots in their own axes.

Usage:

handles = plot(a_plot, layout_axis)

Parameters:

a_plot: A plot_superpose object.

layout_axis: The axis position to layout this plot (Optional).

Returns:

handles: Handles of graphical objects drawn.

See also: plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/06/08

A.31 Class plot_simple

A.31.1 Constructor plot_simple/plot_simple

Summary: Abstract description of a single plot.

Usage:

a_plot = plot_simple(data_x, data_y, title, label_x, label_y, legend, command,
props)

Description: Subclass of plot_abstract. The plot_abstract/plot command can be used to plot this data.

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 of 6007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

data_x: X-axis values for the plot.

data_y: Y-axis values for the plot.

title: Plot description.

label_x: X-axis label string.

label_y: Y-axis label string.

legend: Short description of data points.

command: Plotting command to use (Optional, default='plot')

props: A structure with any optional properties.

Returns a structure object with the following fields:

plot_abstract.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.31.2 Method plot_simple/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.31.3 Method plot_simple/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.32 Class plot_stack

A.32.1 Constructor plot_stack/plot_stack

Summary: A horizontal or vertical stack of plots.

Usage:

```
a_plot = plot_stack(plots, axis_limits, orientation, title_str, props)
```

Description: Subclass of plot_abstract. Contains other plot_abstract objects or subclasses thereof to be layout in stack format.

Parameters:

plots: Cell array of plot_abstract or subclass objects.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 6407-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

axis_limits: If given, all plots contained will have these axis limits.
orientation: Stack orientation 'x' for horizontal, 'y' for vertical, etc.

title_str: Title to go on top of the stack

props: A structure with any optional properties.

yLabelsPos: 'left' means only put y-axis label to leftmost plot.
yTicksPos: 'left' means only put y-axis ticks to leftmost plot.
xLabelsPos: 'bottom' means only put x-axis label to lowest plot.
xTicksPos: 'bottom' means only put x-axis ticks to lowest plot.

titlesPos: 'top' means only put title to top plot.

relaxedLimits: Add 10

relativeSizes: An array specifying relative size of each plot with one value

(Example: relativeSizes=[1 2] makes second plot twice wider than first.)

Returns a structure object with the following fields:

plot_abstract, plots, axis_limits, orient.

See also: plot_abstract (p. 153), plot_abstract/plotFigure (p. 155)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/04

A.32.2 Method plot_stack/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.32.3 Method plot_stack/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.32.4 Method plot_stack/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.32.5 Method plot_stack/superposePlots

Summary: Superpose multiple plot_stack objects that contain exact same contents.

Usage:

```
a_plot = superposePlots(plots, axis_labels, title_str, command, props)
```

Description: The plot decoration will be taken from the last plot in the list, with the exception of legend labels.

Parameters:

plots: Array of plot_stack objects.

axis_labels: Cell array of axis label strings (optional, taken from plots).

title_str: Plot description string (optional, taken from plots).

command: Plotting command to use (optional, taken from plots)

props: A structure with any optional properties.

noLegends: If exists, no legends are created.

Returns:

```
a_plot: A plot_stack object.
```

See also: plot_abstract(p. 153), plot_abstract/plot(p. 158), plot_abstract/plotFigure (p. 155)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/14

A.32.6 Method plot_stack/plot

Summary: Draws this plot in the current axis or at the position in layout_axis.

Usage:

```
handles = plot(a_plot, layout_axis)
```

Parameters:

```
a_plot: A plot_abstract object, or a subclass object.
```

layout_axis: The axis position to layout this plot (Optional).

Returns:

handles: Handles of graphical objects drawn.

See also: plot_stack (p. 164), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/04

A.32.7 Method plot_stack/decorate

Summary: No additional decorations for stacked plots.

Usage:

```
a_histogram_db = decorate(a_plot)
```

Parameters:

a_plot: A plot_abstract object, or a subclass object.

Returns:

handles: Handles of graphical objects drawn.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/04

A.33 Class plot_superpose

A.33.1 Constructor plot_superpose/plot_superpose

Summary: Multiple plot_abstract objects superposed on the same axis.

Usage:

```
obj = plot_superpose(plots, axis_labels, title_str, props)
```

Description: Subclass of plot_abstract. Contains multiple plot_abstract objects to be plotted on the same axis. This is different than the plot_abstract/superpose, where only using the same plot command is allowed. Here, each plot_abstract can have its own special plotting command. Subclasses of plot_abstract is also allowed here. The decorations comes from this object and not children plots. This behavior is different than plot_stack, where each plot has its own decorations. If you want each plot to have its own axis (e.g. an inset, or plot with multiple axis labels) then you should use plot inset.

Parameters:

plots: Cell array of plot_abstract or subclass objects.

axis_labels: Cell array of axis label strings.

title_str: Plot description string.

props: A structure with any optional properties (passed to plot_abstract).

Returns a structure object with the following fields:

plot_abstract, plots

See also: plot_abstract/superpose (p.??), plot_superpose/plot (p. 169)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/22

A.33.2 Method plot_superpose/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.33.3 Method plot_superpose/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.33.4 Method plot_superpose/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.33.5 Method plot_superpose/axis

Summary: Returns the maximal axis ranges according to superposed subplots.

Usage:

ranges = axis(a_plot)

Parameters:

a_plot: A plot_abstract object, or a subclass object.

Returns:

ranges: The ranges as a vector in the same way 'axis' would return.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/22

A.33.6 Method plot_superpose/superposePlots

Summary: Superpose multiple plot_superpose objects by merging them into one.

Usage:

```
a_plot = superposePlots(plots, axis_labels, title_str, command, props)
```

Parameters:

plots: Array of plot_superpose objects.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 6807-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
axis_labels: Cell array of axis label strings (optional, taken from plots).
             title_str: Plot description string (optional, taken from plots).
             command: Plotting command to use (optional, taken from plots)
             props: A structure with any optional properties.
                  noLegends: If exists, no legends are created.
       Returns:
             a_plot: A plot_superpose object.
       See also: plot_abstract/superposePlots (p. 157), plot_stack/superposePlots
             (p. 166)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/14
       A.33.7 Method plot_superpose/plot
       Summary: Draws this plot in the current axis.
       Usage:
handles = plot(a_plot, layout_axis)
       Parameters:
             a_plot: A plot_superpose object.
             layout_axis: The axis position to layout this plot (Optional).
       Returns:
             handles: Handles of graphical objects drawn.
       See also: plot_abstract (p. 153)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/08
       A.33.8 Method plot_superpose/decorate
       Summary: Places decorations using the first plot of the superposed plots.
       Usage:
handles = decorate(a_plot)
```

Parameters:

a_plot: A plot_abstract object, or a subclass object.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 6907-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

handles: Handles of graphical objects drawn.

See also: plot_abstract (p. 153), plot_abstract/plot (p. 158)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/11

A.34 Class ranked db

A.34.1 Constructor ranked_db/ranked_db

Summary: A database of distance values generated by ranking rows of orig_db with the criterion in crit_db.

Usage:

```
a_ranked_db = ranked_db(data, col_names, orig_db, crit_db, id, props)
```

Description: This is a subclass of tests_db. It should contain a Distance column. A more general ranked db class may be needed later. Use the rankMatching method to get an instance of this class.

Parameters:

data: Database contents.

col_names: The column names.

orig_db: DB whose rows are ranked.

crit_db: The criterion DB used for generating the ranking scores.

id: An identifying string.

props: A structure with any optional properties.

tolerateNaNs: If 0, rows with any NaN values are skipped (default=1).

Returns a structure object with the following fields:

```
tests_db, orig_db, crit_db, props.
```

See also: tests_db(p.217), tests_db/rankMatching(p.254), tests_db/matchingRow(p.233)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/21

A.34.2 Method ranked_db/blockedDistances

Summary: Creates a db of distances to blocked versions of top ranks.

Usage:

[a_db, ranked_dbs] = blockedDistances(a_ranked_db, rows, blocked_db, blocked_param_indices, block_levels, crit_db)

Parameters:

a_ranked_db: A ranked_db object.

rows: Use the given row rankings.

blocked_db: db with blocked versions of original ranks.

blocked_param_indices: Indices of parameters to be blocked.

block_levels: Number of parameter levels for blocking.

crit_db: Calculate distance from this criterion.

Returns:

a_db: A tests_db object with the matrix of distances. ranked_dbs: A cell array of ranked dbs for each row.

Example:

```
» dist_matx_db = blockedDistances(rankMatching(super_db,
matchingRow(rsuper_phys_db, 20)), 1:5, super_blocker_db, [1 2], 10,
matchingRow(rsuper_phys_db, 21))
```

See also: makeModifiedParamDB (p. ??), getParamRowIndices (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/14

A.34.3 Method ranked_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.34.4 Method ranked_db/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.34.5 Method ranked_db/plotDistMatrix

Summary: Create a color-coded matrix plot of with total errors from the ranked DB.

Usage:

```
a_plot = plotDistMatrix(db, rows, col_size, col_name, num_col_labels, row_name,
num_row_labels, title_str, props)
```

Description: The col_size parameter is used to find the number of rows that make up the x-dimension of the color matrix plot.

Parameters:

```
db: A ranked_db object.
```

rows: Indices of rows in db after joining (and sorting).

col_size: Number of rows to take from DB to form the columns of matrix plot.

col_name, **row_name**: DB column to use for the figure column and row, respectively.

num_col_labels, num_row_labels: Number of labels to put on each
axis.

title_str: If non-empty, replaces generic title with db name.

props: A structure with any optional properties.

sortBy: If specified, db is sorted after being joined with original using this column.

colorbar: Put a colorbar on the figure. (also passed to plot_abstract)

Returns:

a_plot: A plot_abstract object.

Example:

```
» plotFigure(plotDistMatrix(scored_blocked_sk_gps0503b_control_db, ':', 10, 'SK',
10, 'trial', 10, 'gps0503b (control), preset 6 - top 50 matches',
struct('sortBy', 'trial', 'colorbar', 1, 'PaperPosition', [0 0 5 3])));

Sec also perployed als (n 170) plot shot past (n 152) mat DistMatrix (n 22)
```

See also: ranked_db(p.170), plot_abstract(p.153), getDistMatrix(p.??), plotCompareDistMatx(p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/12

A.34.6 Method ranked_db/plotCompareDistMatx

Summary: Compare differences and correlations of distance matrices from two ranked DBs.

Usage:

```
a_plot = plotCompareDistMatx(db, rows, col_size, col_name, num_col_labels,
row_name, num_row_labels, title_str, props)
```

Description: Produces three plots: (1) distance difference matrix, (2) 2D cross-correlogram, and (3) repeated 1D cross-correlogram for each row.

Parameters:

db, **w_db**: The ranked_db objects to be compared.

rows: Indices of rows in db after joining (and sorting) for both DBs.

col_size: Number of rows to take from DB to form the columns of matrix plot.

col_name, **row_name**: DB column to use fot the figure column and row, respectively.

num_col_labels, num_row_labels: Number of labels to put on each
axis.

title_str: If non-empty, replaces generic title with db name.

props: A structure with any optional properties.

sortBy: If specified, db is sorted after being joined with original using this column.

colorbar: Put a colorbar on the figure. (also passed to plot_abstract)

Returns:

a_plot: A plot_abstract object.

See also: tests_db (p. 217), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/12

A.34.7 Method ranked_db/plotRowErrors

Summary: Create plot of rankings with errors associated with each measure color-coded.

Usage:

```
a_plot = plotRowErrors(a_ranked_db, rows, props)
```

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
a_ranked_db: A ranked_db object.
             rows: Indices of rows in a_ranked_db.
             title_str: (Optional) String to append to plot title.
             props: A structure with any optional properties.
                  sortMeasures: If specified, measure order is determined with increas-
                      overall distance.
                  RowName: Label to show on X-axis (default='Ranks')
                  rowSteps: Steps to jump in labeling rows on the x-axis.
                  superposeDistances: Superpose a white-colored distance line plot.
                      (rest passed to plot_abstract)
       Returns:
             a_plot: A plot_abstract object.
       See also: ranked_db (p. 170), tests_db/rankMatching (p. 254), plot_abstract
             (p. 153), plotImage (p. ??)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/12
       A.34.8 Method ranked_db/displayRows
       Summary: Displays rows of rankings together with errors associated with each mea-
             sure.
       Usage:
s = displayRows(db, rows)
       Parameters:
             db: A tests_db object.
             rows: Indices of rows in db.
       Returns:
             s: A structure of column name and value pairs.
       See also: tests_db (p. 217)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/15
       A.34.9 Method ranked db/subsref
       Summary: Defines generic indexing for objects.
```

A.34.10 Method ranked_db/joinOriginal

Summary: Joins the distance values to the original db rows with matching row indices.

Usage:

```
a_db = joinOriginal(a_ranked_db, rows)
```

Description: Takes the parameter columns from orig_db and all tests from crit_db.

Parameters:

```
a_ranked_db: A ranked_db object.
rows: Join only the given rows.
```

Returns:

a_db: A params_tests_db object (same type as a_ranked_db.orig_db) containing the desired rows in ascending order of distance.

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/21

A.34.11 Method ranked db/renameColumns

Summary: Rename an existing column or columns.

Usage:

```
a_db = renameColumns(a_db, test_names, new_names)
```

Description: This method is an overloaded method for ranked_db that keeps consistent the column names of the ranked, criterion and original DBs. The other DBs are not renamed for the Distance and RowIndex columns.

Parameters:

```
a_db: A ranked_db object.
test_names: A cell array of existing test names.
```

new_names: New names to replace existing ones.

Returns:

a_db: The ranked_db object that includes the new columns.

See also: tests_db/renameColumns (p. 239)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/07

A.34.12 Method ranked_db/getDistMatrix

Summary: Create a matrix of total errors from the ranked DB.

Usage:

```
distmatx = getDistMatrix(db, rows, col_size, props)
```

Description: The col_size parameter is used to find the number of rows that make up the x-dimension of the matrix.

Parameters:

db: A tests_db object.

rows: Indices of rows in db after joining (and sorting).

col_size: Number of rows to take from DB to form the columns of matrix plot.

props: A structure with any optional properties.

sortBy: If specified, db is sorted after being joined with original using this column.

Returns:

a_plot: A plot_abstract object.

See also: tests_db (p. 217), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/12

A.35 Class results_profile

A.35.1 Constructor results_profile/results_profile

Summary: Creates and collects result profiles for data objects.

Usage:

```
obj = results_profile(results, id, props)
```

Description: This is the base class for all profile classes.

Parameters:

results: A structure containing test results.

id: Identification string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

results, id, props.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2607-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: trace_profile (p. 264), cip_trace_profile (p. 69)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.35.2 Method results_profile/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.35.3 Method results_profile/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.35.4 Method results_profile/subsref

Summary: Defines generic indexing for objects.

A.35.5 Method results_profile/plot

Summary: Generic method to plot a tests_db or a subclass. Requires a plot_abstract method to be defined for this object.

Usage:

```
h = plot(a_tests_db, title_str)
```

Parameters:

a_tests_db: A histogram_db object.

title_str: (Optional) String to append to plot title.

Returns:

h: The figure handle created.

See also: plot_abstract (p. 153), plotFigure (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/06

A.35.6 Method results_profile/getResults

Summary: Return the results profile structure.

Usage:

```
results = getResults(p)
```

Parameters:

p: A result_profile object.

Returns:

results: A structure associating test names to values.

See also: results_profile (p. 176)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.36 Class script_array

A.36.1 Constructor script_array/script_array

Summary: Generic class that provides the scripts for a repetitive array job.

Usage:

```
obj = script_array(num_runs, id, props)
```

Description: This is the base class for all script_array classes. Runs the runJob method as num_runs many times.

Parameters:

num_runs: The number of times the runJob script should be evoked.

id: Identification string.

props: A structure with any optional properties.

runJobFunc: A function name or handle to be used instead of default runJob.

Returns a structure object with the following fields:

num_runs, id, props.

Example:

```
» func1 = inline('x^2')
» runFirst(script_array(10, 'squares numbers up to 10'), struct('runJobFunc',
func1))
ans = [ 1] [ 4] [ 9] [ 16] [ 25] [ 36] [ 49] [ 64] [ 81] [100]
```

See also: runFirst (p.??), runLast (p.??), runJob (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/01

A.36.2 Method script_array/runFirst

Summary: Method to be called at beginning of script_array jobs.

Usage:

```
job_results = runFirst(a_script_array)
```

Description: This method initiates the script_array jobs. It loops and calls runJob and finally calls runLast.

Parameters:

```
a_script_array: A script_array object.
```

Returns:

job_results: A cell array of results collected from each item of the vector jobs.

Example:

```
	imes runFirst(script_array(10, 'this one does nothing for 10 times'));
```

See also: runLast (p. ??), runJob (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/01

A.36.3 Method script_array/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.36.4 Method script_array/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/06

A.36.5 Method script_array/runLast

Summary: Method to be called last after the script_array jobs.

Usage:

```
job_results = runLast(a_script_array, job_results)
```

Description: This method is provided as a placeholder and does nothing. It can filterout the results returned from the jobs run. Normally it is invoked internally by the runFirst method, after running and collecting results from the vector jobs with the runJob method.

Parameters:

```
a_script_array: A script_array object.
job results: The index within the vector job.
```

Returns:

job_results: Any output produced by the job.

Example:

```
Call it directly:
» runLast(script_array(10, 'this one does nothing for 10 times'), );

See also: runJob(p.??), runFirst(p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/01
```

A.36.6 Method script_array/runJob

Summary: Method to be called for each of the script_array jobs.

Usage:

```
job_result = runJob(a_script_array, vector_index)
```

Description: This method is provided as a placeholder and does nothing. If the run_job_func property is defined, it will call that function.

Parameters:

```
a_script_array: A script_array object.
vector_index: The index within the vector job.
```

Returns:

job_result: Any output produced by the job.

Example:

```
See real example in script_array. Call the 5th job:
» runJob(script_array(10, 'this one does nothing for 10 times'), 5);
See also: runLast(p.??), runFirst(p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/01

A.36.7 Method script_array/subsref

Summary: Defines generic indexing for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.36.8 Method script_array/subsasgn

Summary: Defines generic index-based assignment for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/06

A.37 Class script_array_for_cluster

A.37.1 Constructor script_array_for_cluster/script_array_for_cluster

Summary: Generic class defining a repetitive vector job to be run on a Sun Grid Engine (SGE) computing cluster.

Usage:

a_script_cluster = script_array_for_cluster(num_runs, sge_wrapper_script, id,
props)

Description: This is a subclass of the script_array class. The runFirst method spawns num_runs copies of the runJob method in parallel on the cluster, followed by the invocation of the runLast method.

Parameters:

num_runs: The number of times the runJob script should be evoked.

sge_wrapper_script: A script that can be submitted with qsub and can execute arbitrary

Matlab commands on the cluster nodes. It can have qsub options prepended to it such as '-p -100 -q all.q <abs_path_to>/sge_matlab.sh'.

id: Identification string.

props: A structure with any optional properties.

notifyByMail: An SGE notification email is sent to this address after lastJob.

(others passed to script_array)

Returns a structure object with the following fields:

num_runs, id, props.

See also: runFirst (p. ??), runLast (p. ??), runJob (p. ??), script_array (p. 178)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/02

A.37.2 Method script_array_for_cluster/runFirst

Summary: Method to be called at beginning of script_array_for_cluster jobs.

Usage:

```
job_results = runFirst(a_script_cluster)
```

Description: This method initiates the script_array_for_cluster jobs. It submits an SGE vector job for running each runJob and finally runLast. There is no way of collecting outputs from individual runJob calls.

Parameters:

```
a_script_cluster: A script_array_for_cluster object.
```

Returns:

job_results: A cell array of results collected from each item of the vector jobs.

Example:

```
» runFirst(script_array_for_cluster(10, 'this one does nothing for 10 times'));
```

See also: script_array_for_cluster (p. 181)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/01

A.37.3 Method script_array_for_cluster/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.37.4 Method script_array_for_cluster/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/06

A.38 Class script_factory

A.38.1 Constructor script_factory/script_factory

Summary: Generic class to automatically create a set of scripts.

Usage:

obj = script_factory(num_scripts, out_name, id, props)

Description: This is the base class for all script_factory classes.

Parameters:

num_scripts: Number of scripts to create.

out_name: The file name for the output scripts. A 'filename corresponds to the script number.

id: Identification string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

num_scripts, out_name, id, props.

See also: script_factory/writeScripts (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/11/28

A.38.2 Method script_factory/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.39 Class spike_shape

A.39.1 Constructor spike_shape/spike_shape

Summary: An action potential shape trace.

Usage:

obj = spike_shape(data, dt, dy, id)

Parameters:

data: A vector of data points containing the spike shape.

dt: Time resolution [s].

dy: y-axis resolution [ISI (V, A, etc.)]

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

id: Identification string.

props: A structure with any optional properties.

baseline: Resting potential. **threshold:** Spike threshold.

init_Vm_method: Method to obtain spike initiation voltage.

1- maximum acceleration point 2- threshold crossing of acceleration (needs threshold) 3- threshold crossing of slope (needs threshold) 4-maximum acceleration in phase space (optionally specify maximal threshold as init_threshold) 5- point of maximum curvature, when slope is between init_lo_thr and init_hi_thr 6- local maximum of second derivative in the phase space nearest slope crossing init_threshold 7- threshold crossing of interpolated slope (needs threshold) 8- maximum curvature in phase-plane 9- Combined curvature and inflection method in time-domain.

init_threshold: Spike initiation threshold (deriv or accel).
 (see above methods and implementation in calcInitVm)
init_lo_thr, init_hi_thr: Low and high thresholds for slope.

Returns a structure object with the following fields:

trace, props.

See also: trace/spike_shape (p. 263), trace/analyzeSpikesInPeriod (p. 264), trace (p. 255), spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.39.2 Method spike_shape/calcInitVmSlopeThresholdSupsample

Summary: Estimates the AP threshold as the first slope threshold crossing by first supersampling the data using cubic spline interpolation.

Usage:

[init_idx, a_plot] = calcInitVmSlopeThresholdSupsample(s, max_idx, min_idx, thr,
plotit)

Parameters:

(optional).

```
s: A spike_shape object.
max_idx: The index of the maximal point of the spike_shape [dt].
min_idx: The index of the minimal point of the spike_shape [dt].
thr: Threshold for time derivative of voltage.
plotit: If non-zero, plot a graph annotating the test results
```

PANDORA Toolbox: Prog.'s Maturaft v813 of 2407-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

init_idx: AP threshold index in the spike_shape [dt]. a_plot: plot_abstract, if requested.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/03/23

A.39.3 Method spike_shape/plotCompareMethods

Summary: Creates a multi-plot comparing different action potential threshold finding methods.

Usage:

```
a_plot = plotCompareMethods(s, title_str)
```

Parameters:

s: A spike_shape object.

title_str: Title suffix (optional).

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: spike_shape (p. 183), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/19

A.39.4 Method spike_shape/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.39.5 Method spike_shape/calcMaxVm

Summary: Calculates the maximal value of the spike_shape, s.

Usage:

```
[max_val, max_idx] = calcMaxVm(s)
```

Parameters:

s: A spike_shape object.

Returns:

max_val: The max value. max_idx: Its index in the spike_shape [dt].

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2507-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: period (p. 137), spike_shape (p. 183), trace/calcMax (p. 260)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/02

A.39.6 Method spike_shape/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.39.7 Method spike_shape/calcInitVmV3hKpTinterp

Summary: Calculates candidates for action potential threshold using the first three time-domain derivatives.

Usage:

[init_idx, a_plot] = calcInitVmV3hKpTinterp(s, max_idx, min_idx, lo_thr, hi_thr,
plotit)

Description: First uses interpolation to increase time points. Calculates h, the second derivative of phase-plane ($d^2 v'/dv^2$), in terms of time-domain derivatives. Also calculates $Kp = V''[1 + (V')^2]^{-(3/2)}$, the curvature. The maxima of these functions are used as candidates for AP thresholds.

Parameters:

s: A spike_shape object.

max_idx: The index of the maximal point of the spike_shape [dt].

min_idx: The index of the minimal point of the spike_shape [dt].

lo_thr, hi_thr: Lower and higher thresholds for time derivative of voltage.

plotit: If non-zero, plot a graph annotating the test results (optional).

Returns:

init_idx: Indices of threshold candidates in the spike_shape [dt]. a_plot: plot_abstract, if requested.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/18

A.39.8 Method spike_shape/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.39.9 Method spike_shape/calcInitVmSekerliV2

Summary: Calculates the action potential threshold using the maximum second derivative of the phase space of voltage-time slope versus voltage.

Usage:

```
[init_idx, a_plot] = calcInitVmSekerliV2(s, max_idx, min_idx, plotit)
```

Parameters:

```
s: A spike_shape object.
```

max_idx: The index of the maximal point of the spike_shape [dt].

min_idx: The index of the minimal point of the spike_shape [dt].

plotit: If non-zero, plot a graph annotating the test results (optional).

Returns:

init_idx: Its index in the spike_shape [dt]. a_plot: plot_abstract, if requested.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/18

A.39.10 Method spike_shape/calcMinVm

Summary: Calculates the minimal value of the spike_shape, s.

Usage:

```
[min_val, min_idx, max_min_time] = calcMinVm(s, max_idx)
```

Parameters:

s: A spike_shape object.

max_idx: The index of the maximal point of the spike_shape [dt].

Returns:

min_val: The min value [dy]. min_idx: Its index in the spike_shape [dt]. max_min_time: Time from max to min [dt].

See also: period (p. 137), spike_shape (p. 183), trace/calcMin (p. 260)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/02

A.39.11 Method spike_shape/plotTPP

Summary: Plots the dV/dt vs. V phase-plane representation of the spike shape.

Usage:

```
a_plot = plotTPP(s)
```

Description: Uses the Taylor series estimation for finding the derivative dV/dt.

Parameters:

s: A spike_shape object.

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: spike_shape (p. 183), plot_abstract (p. 153), diffT (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/16

A.39.12 Method spike_shape/calcInitVm

Summary: Calculates spike threshold related measures of the spike_shape, s.

Usage:

[init_val, init_idx, rise_time, amplitude, peak_mag, peak_idx, max_dlo, a_plot] =
calcInitVm(s, max_idx, min_idx)

Parameters:

s: A spike_shape object.

max_idx: The index of the maximal point of the spike_shape [dt].

min_idx: The index of the minimal point of the spike_shape [dt].

plotit: If non-zero, plot a graph annotating the test results (optional).

Returns:

init_val: The potential value [dy]. init_idx: Its index in the spike_shape [dt]. rise_time: Time from initiation to maximum [dt]. amplitude: Magnitude from initiation to max [dy]. peak_mag: Peak value [dy]. peak_idx: Extrapolated spike peak index [dt]. max_d1o: Maximal value of first voltage derivative [dy]. a_plot: plot_abstract, if requested.

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/02

A.39.13 Method spike_shape/calcInitVmSlopeThreshold

Summary: Calculates the AP threshold using the slope threhold crossing.

Usage:

```
[init_idx, a_plot] = calcInitVmSlopeThreshold(s, max_idx, min_idx, thr, plotit)
```

Parameters:

```
s: A spike_shape object.
```

max_idx: The index of the maximal point of the spike_shape [dt].

min_idx: The index of the minimal point of the spike_shape [dt].

thr: Threshold for time derivative of voltage.

plotit: If non-zero, plot a graph annotating the test results (optional).

Returns:

init_idx: AP threshold index in the spike_shape [dt]. a_plot: plot_abstract, if requested.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/24

A.39.14 Method spike_shape/plotCompareMethodsSimple

Summary: Creates a multi-plot comparing different action potential threshold finding methods.

Usage:

```
a_plot = plotCompareMethodsSimple(s, title_str)
```

Parameters:

```
s: A spike_shape object.
```

title_str: Title suffix (optional).

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: spike_shape (p. 183), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/19

A.39.15 Method spike_shape/calcInitVmMaxCurvature

Summary: Calculates the action potential threshold using the maximum of the curvature equation.

Usage:

```
[init_idx, a_plot] = calcInitVmMaxCurvature(s, max_idx, min_idx, plotit)
```

Description: Point of maximum curvature: $Kp = V''[1 + (V')^2]^{-3/2}$ Taken from Sekerli, Del Negro, Lee and Butera. IEEE Trans. Biomed. Eng., 51(9): 1665-71, 2004.

Parameters:

```
s: A spike_shape object.
max_idx: The index of the maximal point of the spike_shape [dt].
min_idx: The index of the minimal point of the spike_shape [dt].
plotit: If non-zero, plot a graph annotating the test results (optional).
```

Returns:

init_idx: AP threshold index in the spike_shape [dt]. a_plot: plot_abstract, if requested.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/19

A.39.16 Method spike_shape/calcInitVmV2PPLocal

Summary: Calculates the action potential threshold by finding the local second derivative maximum in voltage-time slope versus voltage phase plane, nearest a slope threshold crossing.

Usage:

```
[init_idx, a_plot] = calcInitVmV2PPLocal(s, max_idx, min_idx, lo_thr, plotit)
```

Parameters:

```
s: A spike_shape object.
max_idx: The index of the maximal point of the spike_shape [dt].
min_idx: The index of the minimal point of the spike_shape [dt].
lo_thr: Lower threshold for time voltage slope.
plotit: If non-zero, plot a graph annotating the test results (optional).
```

PANDORA Toolbox: Prog.'s Maturaft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

init_idx: Its index in the spike_shape [dt]. a_plot: plot_abstract, if requested.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/18

A.39.17 Method spike_shape/getResults

Summary: Runs all tests defined by this class and return them in a structure.

Usage:

```
[results, a_plot] = getResults(s, plotit)
```

Parameters:

s: A spike_shape object.

plotit: If non-zero, plot a graph annotating the test results (optional).

Returns:

results: A structure associating test names to values in ms and mV. a_plot: plot_abstract, if requested.

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/02

A.39.18 Method spike_shape/calcWidthFall

Summary: Calculates the spike width and fall information of the spike_shape, s.

Usage:

```
[base_width, half_width, half_Vm, fall_time, min_idx, min_val, max_ahp,
ahp_decay_constant, dahp_mag, dahp_idx] = ... calcWidthFall(s, max_idx, max_val,
init_idx, init_val)
```

Description: max_* can be the peak_* from calcInitVm.

Parameters:

```
s: A spike_shape object.
```

max_idx: The index of the maximal point [dt].

max_val: The value of the maximal point [dy].

init_idx: The index of spike initiation point [dt].

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

init_val: The value of spike initiation point [dy].

Returns:

base_width: Width of spike at base [dt] half_width: Width of spike at half_Vm [dt] half_Vm: Half height of spike [dy] fall_time: Time from peak to initialization level [dt]. min_idx: The index of the minimal point of the spike_shape [dt]. max_ahp: Magnitude from initiation to minimum [dy]. ahp_decay_constant: Approximation to refractory decay after maxAHP [dt]. dahp_mag: Magnitude of the double AHP peak dahp_mag: Index of the double AHP peak

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/02

A.39.19 Method spike_shape/calcInitVmLtdMaxCurv

Summary: Calculates the action potential threshold using the maximum of the curvature equation only in the limited range given with two voltage slope thresholds.

Usage:

[init_idx, a_plot] = calcInitVmLtdMaxCurv(s, max_idx, min_idx, lo_thr, hi_thr,
plotit)

Description: Point of maximum curvature: $Kp = V''[1 + (V')^2]^{-3/2}$ Taken from Sekerli, Del Negro, Lee and Butera. IEEE Trans. Biomed. Eng., 51(9): 1665-71, 2004.

Parameters:

s: A spike_shape object.

max_idx: The index of the maximal point of the spike_shape [dt].

min_idx: The index of the minimal point of the spike_shape [dt].

lo_thr, hi_thr: Lower and higher thresholds for time derivative of voltage.

plotit: If non-zero, plot a graph annotating the test results (optional).

Returns:

init_idx: AP threshold index in the spike_shape [dt]. a_plot: plot_abstract, if requested.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/19

A.39.20 Method spike_shape/plotPP

Summary: Plots the dV/dt vs. V phase-plane representation of the spike shape.

Usage:

```
a_plot = plotPP(s)
```

Parameters:

s: A spike_shape object.

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: spike_shape (p. 183), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/16

A.39.21 Method spike_shape/plotResults

Summary: Plots the spike shape annotated with result characteristics.

Usage:

```
a_plot = plotResults(s, title_str, props)
```

Parameters:

s: A spike_shape object.

Returns:

a_plot: A plot_abstract object that can be visualized. title_str: (Optional) String to append to plot title. props: A structure with any optional properties, passed to trace/plotData.

See also: spike_shape (p. 183), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/17

A.39.22 Method spike_shape/calcInitVmMaxCurvPhasePlane

Summary: Calculates the voltage at the maximum curvature in the phase plane as action potential threshold.

Usage:

```
[init_idx, max_dlo, a_plot, fail_cond] = calcInitVmMaxCurvPhasePlane(s, max_idx, min_idx, plotit)
```

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Description: First take the phase-plane v'-v from the beginning to max(v'). Then regulate intervals by interpolation. Point of maximum curvature: Kp = V"[1 + (V')^2]^(-3/2) Taken from Sekerli, Del Negro, Lee and Butera. IEEE Trans. Biomed. Eng., 51(9): 1665-71, 2004.

Parameters:

```
s: A spike_shape object.
max_idx: The index of the maximal point of the spike_shape [dt].
min_idx: The index of the minimal point of the spike_shape [dt].
plotit: If non-zero, plot a graph annotating the test results (optional).
```

Returns:

init_idx: AP threshold index in the spike_shape [dt]. max_d1o: Maximal value of first voltage derivative [dy]. a_plot: plot_abstract, if requested. fail_cond: True if this algorithm fails to be trustable.

See also: calcInitVm (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/12

A.40 Class spike_shape_profile

A.40.1 Constructor spike_shape_profile/spike_shape_profile

Summary: Holds the results profile from a spike_shape object.

Usage:

```
a_ss_profile = spike_shape_profile(results, a_spike_shape, props)
```

Parameters:

```
results: A structure containing test results.

a_spike_shape: A spike_shape object.

props: A structure with any optional properties.
```

Returns a structure object with the following fields:

results_profile: Contains results of tests. spike_shape: The spike_shape object from which results were obtained. props.

See also: results_profile (p. 176)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/17

A.40.2 Method spike_shape_profile/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.40.3 Method spike_shape_profile/plot_abstract

Summary: Plots the spike shape with measurements marked in red.

Usage:

```
a_plot = plot_abstract(s, props)
```

Parameters:

s: A spike_shape object.

props: A structure with any optional properties.

absolute_peak_time: Shift the peak to this point on the plot.

no_plot_spike: Do not plot the spike shape first.

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: spike_shape (p. 183), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/17

A.41 Class spikes

A.41.1 Constructor spikes/spikes

Summary: Spike times from a trace.

Usage:

```
obj = spikes(times, num_samples, dt, id)
```

Parameters:

times: The spike times [dt].

num_samples: Number of samples in the original trace.

dt: Time resolution [s].

id: Identification string.

Returns a structure object with the following fields:

times, num_samples, dt, id.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2507-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: trace/spikes (p. 258), trace (p. 255), spike_shape (p. 183), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.41.2 Method spikes/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.41.3 Method spikes/SFA

Summary: Calculates the spike frequency accommodation (SFA) of the inter-spike-intervals (ISI).

Usage:

```
sfa = SFA(s, a\_period)
```

Description: SFA is the ration of the last ISI to the first ISI in the period.

Parameters:

s: A spikes object.

a_period: The period where spikes were found (optional)

Returns:

sfa: Spike frequency accommodation.

See also: spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.41.4 Method spikes/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.41.5 Method spikes/periodWhole

Summary: Returns the boundaries of the whole period of spikes, s.

Usage:

```
whole_period = periodWhole(s)
```

Parameters:

s: A spikes object.

See also: period (p. 137), spikes (p. 195)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.41.6 Method spikes/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.41.7 Method spikes/plotData

Summary: Plots a spikes object.

Usage:

```
a_plot = plotData(s, title_str)
```

Description: If s is a vector of spikes objects, returns a vector of plot objects.

Parameters:

s: A spikes object.

Returns:

a_plot: A plot_abstract object that can be visualized. title_str: (Optional) String to append to plot title.

See also: trace (p. 255), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/10/21

A.41.8 Method spikes/plotISIs

Summary: Plots a spikes object.

Usage:

```
a_plot = plotISIs(s, title_str)
```

Description: If s is a vector of spikes objects, returns a vector of plot objects.

Parameters:

s: A spikes object.

Returns:

a_plot: A plot_abstract object that can be visualized. title_str: (Optional) String to append to plot title.

See also: trace (p. 255), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/10/21

A.41.9 Method spikes/spikeRateISI

Summary: Calculates the firing rate of the spikes found in the given period with an averaged inter-spike-interval approach.

Usage:

```
freq = spikeRateISI(s, trace_index, times, period)
```

Parameters:

s: A spikes object.

period: The period where spikes were found (optional)

Returns:

freq: Firing rate [Hz]

See also: trace (p. 255), spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/03/09

A.41.10 Method spikes/plotFreqVsTime

Summary: Plots a frequency-time graph from the spikes object.

Usage:

```
a_plot = plotFreqVsTime(s, title_str, props)
```

Description: If s is a vector of spikes objects, returns a vector of plot objects.

Parameters:

s: A spikes object.

title_str: (Optional) String to append to plot title.

props: A structure with any optional properties.

type: If 'simple' plots 1/is for each spike time,

'manhattan' uses flat lines of 1/isi height between spike times (de-

fault). (others passed to plot_abstract)

Returns:

a_plot: A plot_abstract object that can be visualized. title_str: (Optional) String to append to plot title.

See also: trace (p. 255), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/05

A.41.11 Method spikes/addSpikes

Usage:

```
s = addSpike(s, times)
```

Parameters:

s: A spikes object.

times: Times of spikes to add

Returns:

s: The updated object.

See also: spikes (p. 195)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/16

A.41.12 Method spikes/subsref

Summary: Defines generic indexing for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.41.13 Method spikes/spikeAmpSlope

Summary: Calculates the time constant and steady-state value of the spike amplitude for slow inactivating decays.

Usage:

```
[a_tau, da_inf] = spikeAmpSlope(a_spikes, a_trace, a_period)
```

Parameters:

a_spikes: A spikes object.

a_trace: A trace object.

a_period: The desired period (optional)

Returns:

a_tau: Approximate amplitude decay constant. da_inf: Delta change in final spike peak value from initial.

See also: period (p. 137), spikes (p. 195), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/15

A.41.14 Method spikes/intoPeriod

Summary: Shifts the spikes times to be within the given period.

Usage:

```
obj = intoPeriod(s, a_period)
```

Description: Assuming this spikes object's length fits into the given period, it shifts all times to start from the beginning of the given period. This may be used to reconstruct the original spikes object from subperiods that were cut out previously, using the withinPeriod method.

Parameters:

s: A spikes object.

a_period: The desired period

```
Returns:
```

obj: A spikes object

See also: spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/31

A.41.15 Method spikes/plot

Summary: Plots spikes.

Usage:

h = plot(t)

Parameters:

t: A spikes object.

title_str: (Optional) String to append to plot title.

Returns:

h: Handle to figure object.

See also: spikes (p. 195), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.41.16 Method spikes/withinPeriod

Summary: Returns a spikes object valid only within the given period, subtracts the offset.

Usage:

```
obj = withinPeriod(s, a_period)
```

Parameters:

s: A spikes object.

a_period: The desired period

Returns:

obj: A spikes object

See also: spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/31

A.41.17 Method spikes/ISICV

Summary: Calculates the coefficient of variation (CV) of the inter-spike-intervals (ISI).

Usage:

```
cv = ISICV(s, a_period)
```

Parameters:

s: A spikes object.

a_period: The period where spikes were found (optional)

Returns:

cv: Coefficient of variation.

See also: spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.41.18 Method spikes/getResults

Summary: Runs all tests defined by this class and return them in a structure.

Usage:

```
results = getResults(s)
```

Parameters:

s: A spikes object.

Returns:

results: A structure associating test names to values in ms and mV (or mA).

See also: spikes (p. 195)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.41.19 Method spikes/vertcat

Summary: Vertical concatanation [a_spikes;with_spikes;...] operator.

Usage:

```
a_spikes = vertcat(a_spikes, with_spikes, ...)
```

Description: Concatanates spike times of with_spikes with that of a_spikes. Overrides the built-in vertcat function that is called when [a_spikes;with_spikes] is executed.

Parameters:

```
a_spikes, with_spikes, ...: Spikes objects.
```

Returns:

a_spikes: A tests_spikes that contains times of all given spikes objects.

```
See also: vertcat (p. ??), spikes (p. 195)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/16

A.41.20 Method spikes/spikeRate

Summary: Calculates the average firing rate [Hz] of the given spike train.

Usage:

```
freq = spikeRate(s, a_period)
```

Parameters:

s: A spikes object.

a_period: The period where spikes were found (optional)

Returns:

```
freq: Firing rate [Hz]
```

See also: spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/03/09

A.41.21 Method spikes/withinPeriodWOffset

Summary: Returns a spikes object valid only within the given period, keeps the offset.

Usage:

```
obj = withinPeriodWOffset(s, a_period)
```

Parameters:

s: A spikes object.

a_period: The desired period

Returns:

```
obj: A spikes object
```

See also: spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/05/09

A.41.22 Method spikes/getISIs

Summary: Calculates the firing rate of the spikes found in the given period with an averaged inter-spike-interval approach.

Usage:

```
isi = getISIs(s, period)
```

Parameters:

s: A spikes object.

period: The period where spikes were found (optional)

Returns:

isi: Inter-spike-interval vector [dt]

See also: trace (p. 255), spikes (p. 195), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/03/09

A.42 Class spikes_db

A.42.1 Constructor spikes_db/spikes_db

Summary: A database of spike shape results obtained from a period in a trace.

Usage:

```
a_spikes_db = spikes_db(data, col_names, a_trace, a_period, id, props)
```

Description: This is a subclass of tests_db. Use trace/analyzeSpikesInPeriod to get an instance of this class.

Parameters:

data: Database contents.

col names: The column names.

a_trace: The trace where the spikes were found.

a_period: The period inside a_trace where spikes were found.

id: An identifying string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

```
tests_db, trace, period, props.
```

See also: tests_db (p. 217), trace (p. 255), period (p. 137), trace/analyzeSpikesInPeriod (p. 264)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/17

A.42.2 Method spikes_db/plot_abstract

Summary: Visualizes the spikes_db by marking spike shapes measurements on the trace plot.

Usage:

```
a_pm = plot_abstract(a_db, title_str, props)
```

Parameters:

a_db: A spikes_db object.

title_str: (Optional) A string to be concatanated to the title.

props: A structure with any optional properties passed to trace/plotData.

Returns:

a_pm: A trace plot.

PANDORA Toolbox: Prog.'s MaBuraft v813 o2 2507-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
See also: plot_abstract/plot_abstract (p. 153), tests_db/plot_abstract (p. 237), plotFigure (p. ??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/17

A.43 Class stats_db

A.43.1 Constructor stats_db/stats_db

Summary: A database of rows corresponding to statistical distribution properties of tests. Multiple pages can be used to indicate another dimension.

Usage:

```
a_stats_db = stats_db(test_results, col_names, row_names, page_names, id, props)
```

Description: This is a subclass of tests_3D_db. Allows generating a plot, etc.

Parameters:

```
test_results: The 3-d array of rows, columns, and pages.
```

col_names: Test names in this db.

row_names: Statistical test names for each row.

page names: Meaning of each separate page of data

(e.g., a different invariant parameter).

id: An identifying string.

props: A structure with any optional properties.

axis_limits: Limits in the form of [xmin xmax ymin ymax] for errorbar axes.

yTicksPos: 'left' means only put y-axis ticks to leftmost plot. xTicksPos: 'bottom' means only put x-axis ticks to lowest plot.

Returns a structure object with the following fields:

```
tests_3D_db.
```

```
See also: tests_3D_db (p. 212), plot_abstract (p. 153)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.43.2 Method stats_db/onlyRowsTests

Summary: Returns a tests_db that only contains the desired tests and rows (and pages).

Usage:

```
obj = onlyRowsTests(obj, rows, tests, pages)
```

Description: Selects the given dimensions and returns in a new tests_db object.

Parameters:

obj: A tests_db object.

rows: A logical or index vector of rows. If ':', all rows.

tests: Cell array of test names or column indices. If ':', all tests.

pages: (Optional) A logical or index vector of pages. ':' for all pages.

Returns:

obj: The new tests_db object.

See also: subsref (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.43.3 Method stats_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.43.4 Method stats_db/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.43.5 Method stats_db/plotVar

Summary: Generates a plot of the variation between two tests.

Usage:

```
a_plot = plotVar(a_stats_db, test1, test2, props)
```

Description: Creates a plot description where the mean values are used for solid lines and the std values of test2 is indicated with errorbars. It is assumed that each page of the stats_db contains a value to be matched.

PANDORA Toolbox: Prog.'s Maturaft v813 of 200707-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Parameters:

```
a_stats_db: A stats_db object.
test1: Test column for the x-axis, only mean values are used.
test2: Test column for the y-axis, std values are indicated with errorbars.
props: Optional properties.
plotType: 1, only errorbars (default); 2, errorbars extending from bars.
```

Returns:

a_plot: A plot_abstract object or one of its subclasses.

See also: plotVar (p. ??), plot_simple (p. 163)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/13

(rest passed to plot_abstract)

A.43.6 Method stats_db/plotColorVar

Summary: Create a color-plot of parameter-test variations in a matrix.

Usage:

```
a_plot = plotColorVar(p_stats, props)
```

Description: Skips the 'ItemIndex' test.

Parameters:

Returns:

```
a_plot: A plot_abstract with the color plot
```

```
See also: paramsTestsHistsStats(p.??), params_tests_profile(p. 136), plotVar.(p.??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.43.7 Method stats_db/plotVarMatrix

Summary: Create a stack of parameter-test variation plots organized in a matrix.

Usage:

```
a_plot_stack = plotVarMatrix(p_stats, props)
```

Description: Skips the 'ItemIndex' test.

Parameters:

p_stats: Array of invariant parameter databases obtained from calling tests_3D_db/paramsTestsHistsStats.

props: A structure with any optional properties, passed to plot_stack.

plotMethod: 'plotVar' uses stats_db/plotVar (default)
 'plot_bars' uses stats_db/plot_bars

rotateYLabel: Rotate row labels this much (default=60).

Returns:

a_plot_stack: A plot_stack with the plots organized in matrix form

See also: paramsTestsHistsStats (p.??), params_tests_profile (p. 136), plotVar. (p.??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.43.8 Method stats_db/plot_abstract

Summary: Generates an error bar graph for each db columns. Looks for 'min', 'max', and 'STD' labels in the row_idx for drawing the errorbars.

Usage:

```
a_plot = plot_abstract(a_stats_db, title_str, props)
```

Description: Generates a plot_simple object from this histogram.

Parameters:

a_stats_db: A histogram_db object.
title_str: A title string on the plot

props: A structure with any optional properties.

Returns:

a_plot: A object of plot_abstract or one of its subclasses.

See also: plot_abstract (p. 153), plot_simple (p. 163)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.43.9 Method stats_db/subsref

Summary: Defines generic indexing for objects.

A.43.10 Method stats_db/compareStats

Summary: Merges multiple stats_dbs into pages of a single stats_db for comparison.

Usage:

```
a_mult_stats_db = compareStats(a_stats_db)
```

Description: Generates a plot_simple object from this histogram.

Parameters:

```
a_stats_db: A histogram_db object.
```

command: Plot command (Optional, default='bar')

Returns:

a_mult_stats_db: A object of compareStats or one of its subclasses.

See also: plot_abstract (p. 153), plot_simple (p. 163)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.43.11 Method stats_db/plotYTests

Summary: Create an errorbar plot of database stats measures against given X-axis values.

Usage:

```
a_p = plotYTests(a_stats_db, x_vals, tests, axis_labels, title_str, short_title,
command, props)
```

Parameters:

```
a_stats_db: A params_tests_db object.
```

x_vals: A vector of X-axis values.

tests: A vector or cell array of columns to correspond to each value from x_{vals} .

title_str: (Optional) A string to be concatanated to the title.

short_title: (Optional) Few words that may appear in legends of multiplot.

command: (Optional) Command to do the plotting with (default: 'plot')

props: A structure with any optional properties.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

LineStyle: Plot line style to use. (default: 'd-') **quiet:** If 1, don't include database name on title.

Returns:

a_p: A plot_abstract.

Example:

```
» a_p = plotYTests(a_stats_db, [0 40 100 200], ...
'IniSpontSpikeRateISI_0pA', 'PulseIni100msSpikeRateISI_D40pA', ...
'PulseIni100msSpikeRateISI_D100pA', 'PulseIni100msSpikeRateISI_D200pA', ...
'current pulse [pA]', 'firing rate [Hz]', ', f-I curves', 'neuron 1');
» plotFigure(a_p);
```

See also: plotFigure (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/23

A.43.12 Method stats_db/plot_bars

Summary: Creates a bar graph with errorbars for each db column.

Usage:

```
a_plot = plot_bars(a_stats_db, title_str, props)
```

Description: Looks for 'min', 'max', and 'STD' labels in the row_idx for drawing the errorbars. Each page of the DB will produce grouped bars.

Parameters:

```
a_stats_db: A stats_db object.
title_str: The plot title.
```

props: A structure with any optional properties, passed to plot_bars/plot_bars.

pageVariable: The column used for denoting page values.

Returns:

a_plot: A object of plot_bars or one of its subclasses.

See also: plot_abstract (p. 153), plot_bars/plot_bars (p. 159)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.44 Class tests_3D_db

A.44.1 Constructor tests_3D_db/tests_3D_db

Summary: A database multiple pages with rows of test columns. Each page may represent aspects of the data that are different, but not defined in this object.

Usage:

```
a_3D_db = tests_3D_db(data, col_names, row_names, page_names, id, props)
```

Description: This is a subclass of tests_db. Usually it contains a RowIndex column that points to an original db from which this data originated. The row indices can be used to reach the values associated with different pages of information contained in this object.

Parameters:

data: The 3-d vector of rows, columns, and pages.

col_names: Colun names of the database.

id: An identifying string.

props: A structure with any optional properties.

invarName: Name of the invariant parameter for this db.

Returns a structure object with the following fields:

tests_db, page_idx.

See also: tests_db (p. 217), tests_db/invarValues (p. 233)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/30

A.44.2 Method tests_3D_db/joinPages

Summary: Joins the rows of the given db to the with_db rows matching with the PageIndex column.

Usage:

```
a_db = joinPages(db, tests, with_db, w_tests)
```

Description: Replicates the desired columns in the with_db with rows having a page index and joins them next to desired columns from the current 3D_db. Flattens the resulting 3D_db to become a 2D db. Assumes each page index only appears once in with_db.

Parameters:

db: A tests_3D_db object.

with_db: A tests_db object with a PageIndex column.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

a_db: A tests_db object.

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/15

A.44.3 Method tests_3D_db/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.44.4 Method tests_3D_db/diff2D

Summary: Creates a tests_db by taking the derivative of the given test.

Usage:

```
a_tests_db = diff2D(a_db, test, props)
```

Description: Applies the diff function to the chosen test, and collapses the middle dimension of the 3D DB to create a 2D DB.

Parameters:

a_db: A tests_3D_db object.

test: Test column.

props: Optional properties.

Returns:

a_tests_db: A tests_db that holds the requested differences of parameter values.

See also: boxplot (p. ??), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/05/22

A.44.5 Method tests_3D_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.44.6 Method tests_3D_db/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.44.7 Method tests_3D_db/plotParamPairImage

Summary: Generates an image plot of variation of a test with two parameters in the first page.

Usage:

```
a_plot = plotParamPairImage(a_db, test, title_str, props)
```

Description: It is assumed that the 3D DB is created by invariant combinations of two parameters, which are the first two columns. Each page of the db must contain a same parameter values. This is the default character of tests_3D_db created by params_tests_db/invarParam. Parameter values will be enumerated and then an image plot is created.

Parameters:

```
a_db: A tests_3D_db object.
```

test: Test column to take the measure value.

title_str: (Optional) String to append to plot title.

props: Optional properties to be passed to plot_abstract.

truncateDecDigits: Truncate labels to this many decimal digits.

labelSteps: Skip this many labels between ticks to reduce to total

number.

maxValue: Maximal value to normalize colors and to annotate the colorbar.

Returns:

a_plot: A plot_abstract object or one of its subclasses.

Example:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/10

A.44.8 Method tests_3D_db/histograms

Usage:

```
a_histogram_db = histogram(db, col, num_bins)
```

Description: If one wants to get histograms of test values for each single value of the selected invariant parameter, then swapRowsPages should be done first on db.

Parameters:

db: A tests_3D_db object.

col: Column to find the histogram.

num_bins: Number of histogram bins (Optional, default=100)

Returns:

a_histogram_db: A histogram_db object containing the histogram.

See also: histogram_db (p. 94), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/04

A.44.9 Method tests_3D_db/swapRowsPages

Summary: Swaps the row dimension with the page dimension of the tests_3D_db.

Usage:

```
a_3D_db = swapRowsPages(db)
```

Description: Assuming that this is a invariant parameter and tests relations db, this function swaps the pages with rows. Each resulting page correspond to a single value of the chosen parameter, with each row contianing a test result with different combinations of the rest of the parameters.

Parameters:

db: A tests_db object.

Returns:

a_3D_db: A tests_3D_db object.

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/04

A.44.10 Method tests_3D_db/paramsTestsHistsStats

Summary: Calculates histograms and statistics for DB.

Usage:

```
[pt_hists, p_stats] = paramsTestsHistsStats(p_t3ds, props)
```

Description: Calculates histograms and statistics for all combinations of tests and params and returns them in a cell array. Skips the 'ItemIndex' test.

Parameters:

p_t3ds: Array of invariant parameter databases obtained by calling the params_tests_db/invarParams method.

props: Optional properties.

statsMethod: method to call to get a stats_db (default='statsMeanSE') **useDiff:** If 1, takes the derivative with diff on the 3D DBs (default=0).

Returns:

pt_hists: An array of 3D histograms for each pair of param and test. p_stats: An array of stats_dbs for each param.

See also: invarParams (p. ??), params_tests_profile (p. 136)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.44.11 Method tests_3D_db/mergePages

Summary: Merges tests from separate pages into a 2D params_tests_db.

Usage:

```
a_db = mergePages(db, page_tests, page_suffixes)
```

Description: Keeps uniqueness by adding suffixes to test names. If you're using invarParams, do swapRowsPages, then join with original db to get the parameter values.

Parameters:

db: A tests_3D_db object.

page_tests: Cell array of list of tests to take from each page.

page_suffixes: Cell array of suffixes to append to tests from each page.

Returns:

a_db: A tests_db object.

See also: tests_db (p. 217), tests_3D_db (p. 212)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/13

A.44.12 Method tests_3D_db/plotVarBox

Summary: Generates a boxplot of the variation between two tests.

Usage:

```
a_plot = plotVarBox(a_db, test1, test2, notch, sym, vert, whis, props)
```

Description: It is assumed that each page of the db contains a different parameter value.

Parameters:

```
a_db: A tests_3D_db object.
```

test1: Test column for the x-axis, only mean values are used.

test2: Test column for the y-axis, used for boxplot.

notch, sym, vert, whis: See boxplot, defaults = (1, '+', 1, 1.5).

props: Optional properties to be passed to plot_abstract.

Returns:

a_plot: A plot_abstract object or one of its subclasses.

See also: boxplot (p. ??), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/10

A.45 Class tests_db

A.45.1 Constructor tests_db/tests_db

Summary: A generic database of test results organized in a matrix format.

Usage:

```
obj = tests_db(test_results, col_names, row_names, id, props)
```

Description: Defines all operations on this structure so that subclasses can use them.

Parameters:

```
test_results: A matrix that contains columns associated with tests and rows for separate observations.
```

col_names: Cell array of column names of test_results.

row_names: Cell array of row names of test_results.

id: An identifying string.

props: A structure with any optional properties.

Returns a structure object with the following fields:

data: The data matrix. row_idx, col_idx: Structure associating row/column names to indices. id, props.

```
See also: params_tests_db (p. 116), params_db (p. \ref{p. ??}), test_variable_db (N/I) (p. \ref{p. ??})
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/01

A.45.2 Method tests_db/eq

Summary: Equality (==) operator. Returns logical indices of db rows that match with given row.

Usage:

```
rows = eq(db, row)
```

Parameters:

db: A tests_db object.

row: Row array to be compared with db rows.

Returns:

rows: A logical or index vector to be used in indexing db objects.

See also: eq (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.45.3 Method tests_db/ge

Summary: Greater or equal to (>=) operator. Returns logical indices of db rows that are greater than or equal to given row.

Usage:

```
rows = ge(db, row)
```

Parameters:

db: A tests_db object.

row: Row array to be compared with db rows.

Returns:

rows: A logical or index vector to be used in indexing db objects.

See also: ge (p. ??), tests_db (p. 217)

A.45.4 Method tests_db/gt

Summary: Greater than (>) operator. Returns logical indices of db rows that are greater than given row.

Usage:

```
rows = gt(db, row)
```

Parameters:

db: A tests_db object.

row: Row array to be compared with db rows.

Returns:

rows: A logical or index vector to be used in indexing db objects.

See also: gt (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.45.5 Method tests_db/le

Summary: Less or equal (<=) operator. Returns logical indices of db rows that are less than or equal to given row.

Usage:

```
rows = le(db, row)
```

Parameters:

db: A tests_db object.

row: Row array to be compared with db rows.

Returns:

rows: A logical or index vector to be used in indexing db objects.

See also: le (p. ??), tests_db (p. 217)

A.45.6 Method tests_db/lt

Summary: Less than (<) operator. Returns logical indices of db rows that are less than given row.

Usage:

```
rows = lt(db, row)
```

Parameters:

db: A tests_db object.

row: Row array to be compared with db rows.

Returns:

rows: A logical or index vector to be used in indexing db objects.

See also: lt (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.45.7 Method tests_db/ne

Summary: Returns logical indices of db rows that doesn't match with given row.

Usage:

```
rows = ne(db, row)
```

Parameters:

db: A tests_db object.

row: Row array to be compared with db rows.

Returns:

rows: A logical or index vector to be used in indexing db objects.

See also: ne (p. ??), tests_db (p. 217)

A.45.8 Method tests_db/onlyRowsTests

Summary: Returns a tests_db that only contains the desired tests and rows (and pages).

Usage:

```
obj = onlyRowsTests(obj, rows, tests, pages)
```

Description: Selects the given dimensions and returns in a new tests_db object.

Parameters:

obj: A tests_db object.

rows: A logical or index vector of rows. If ':', all rows.

tests: Cell array of test names or column indices. If ':', all tests.

pages: (Optional) A logical or index vector of pages. ':' for all pages.

Returns:

obj: The new tests_db object.

See also: subsref (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.45.9 Method tests_db/setProp

Summary: Generic method for setting optional object properties.

Usage:

```
obj = setProp(obj, prop1, val1, prop2, val2, ...)
```

Description: Modifies or adds property values. As many property name-value pairs can be specified.

Parameters:

obj: Any object that has a props field.

attr: Property name **val:** Property value.

Returns:

obj: The new object with the updated properties.

See also:

A.45.10 Method tests_db/isnanrows

Summary: Finds rows with any NaN values. Returns logical indices of db rows.

Usage:

```
rows = isnanrows(db)
```

Description: Some operations need that no NaN values exist in the matrix. This method can be used to find and then remove NaN-contaminated rows from DB. Note that sometimes no rows can be found, and some columns should be discarded before this operation.

Parameters:

db: A tests_db object.

Returns:

rows: A logical vector to be used in indexing db objects or passed through other logical operators.

See also: isnan (p.??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/08

A.45.11 Method tests_db/joinRows

Summary: Joins the rows of the given db with rows of with_db with matching RowIndex values.

Usage:

```
a_db = joinRows(db, tests, with_db, w_tests, index_col_name)
```

Description: Takes the desired columns in with_db with rows having a row index and joins them next to desired columns from the current db. Assumes each row index only appears once in with_db. The created db preserves the ordering of with_db.

Parameters:

db: A param_tests_db object.

tests: Test columns to take from db.

with_db: A tests_db object with a RowIndex column.

w_tests: Test columns to take from with_db.

index_col_name: (Optional) Name of row index column (default='RowIndex').

Returns:

a_db: A tests_db object.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/16

A.45.12 Method tests_db/setRows

Summary: Sets the rows of observations in tests_db.

Usage:

index = setRows(obj, rows)

Description: Sets a new set of observations to the database and returns the new DB.

Parameters:

obj: A tests_db object.

rows: A matrix that contains rows for the DB.

Returns:

obj: The tests_db object with the new rows.

See also: allocateRows (p. ??), addRow (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/08

A.45.13 Method tests_db/plotTestsHistsMatrix

Summary: Create a matrix plot of test histograms.

Usage:

a_pm = plotTestsHistsMatrix(a_db, title_str, props)

Description: Skips the 'ItemIndex' test.

Parameters:

a_db: A params_tests_db object.

title_str: (Optional) A string to be concatanated to the title.

props: A structure with any optional properties, passed to plot_abstract.

orient: Orientation of the plot_stack. 'x', 'y', or 'matrix' (default).

histBins: Number of histogram bins. **quiet:** Don't put the DB id on the title.

axisLimits: Only x-ranges are used from this expression.

Returns:

a_pm: A plot_stack with the plots organized in matrix form

See also: params_tests_profile (p. 136), plotVar (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/17

A.45.14 Method tests_db/crossProd

Summary: Create a DB by taking the cross product of two database row sets.

Usage:

```
cross_db = crossProd(a_db, b_db)
```

Description: This is not a vector cross product operation. Each row of the two DBs are matched and added as a new row to a DB. The end is a DB with all combinations of rows from both DBs. The final DB contains columns of both DBs.

Parameters:

```
a_db, b_db: A tests_db object.
```

Returns:

cross_db: The tests_db object with all combinations of rows.

See also: allocateRows (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/10/11

A.45.15 Method tests_db/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.45.16 Method tests_db/testsHists

Summary: Calculates histograms for all tests.

Usage:

```
t_hists = testsHists(a_db, num_bins)
```

Parameters:

```
a_db: A tests_db object.
```

num_bins: Number of histogram bins (Optional, default=100), or vector of histogram bin centers.

PANDORA Toolbox: Prog.'s MaBuraft v813 o22407-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

t_hists: An array of histograms for each test in a_db.

See also: params_tests_profile (p. 136)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/27

A.45.17 Method tests_db/mtimes

Summary: Multiplies the DB with a scalar.

Usage:

```
a_db = mtimes(left_obj, right_obj)
```

Parameters:

left_obj, right_obj: Operands of the multiplication. One must be of type tests_db.

Returns:

a_db: The resulting tests_db.

See also: tests_db/times (p. 236), mtimes (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/24

A.45.18 Method tests_db/histogram

Summary: Generates a histogram_db object with rows corresponding to histogram entries.

Usage:

```
a_histogram_db = histogram(db, col, num_bins)
```

Parameters:

db: A tests_db object.

col: Column to find the histogram.

num_bins: Number of histogram bins (Optional, default=100), or vector of histogram bin centers.

Returns:

a_histogram_db: A histogram_db object containing the histogram.

Example:

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2507-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
» a_hist_db = histogram(my_db, 'spike_width');
» plot(a_hist_db);
       See also: histogram_db (p. 94), tests_db (p. 217)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17
       A.45.19 Method tests_db/cov
       Summary: Generates a database of the covariance of given DB.
       Usage:
a_cov_db = cov(db, props)
       Parameters:
             db: A tests_db object.
             props: A structure with any optional properties.
                 keepOrigDB: Keep db as origDB in the props.
                      (others passed to tests_db)
       Returns:
             a_cov_db: A tests_db which contains the covariance matrix.
       See also: cov (p. ??)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2007/05/25
       A.45.20 Method tests_db/end
       Summary: Overloaded primitive matlab function, returns maximal dimension size.
       Usage:
s = end(db, index, total)
       Parameters:
             db: A tests_db object.
       Returns:
             s: The size.
       See also: size (p. ??), tests_db (p. 217)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/06
```

A.45.21 Method tests_db/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.45.22 Method tests_db/sortrows

Summary: Returns a sorted_db according to given columns.

Usage:

```
[sorted_db, idx] = sortrows(db, cols)
```

Description: For multi-page dbs, sorts only the first page and applies the ordering to all other pages (which is WRONG!)

Parameters:

db: A tests_db object.

cols: Columns to use for sorting.

Returns:

sorted_db: The sorted tests_db. idx: The row index permutation vector, such that sorted_db = db(idx, :).

See also: sortrows (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/11

A.45.23 Method tests_db/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.45.24 Method tests_db/std

Summary: Returns the std of the data matrix of a_db. Ignores NaN values.

Usage:

```
[a_db, n] = std(a_db, sflag, dim)
```

Description: Does a recursive operation over dimensions in order to remove NaN values. This takes considerable amount of time compared with a straightforward std operation.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Parameters:

a_db: A tests_db object.dim: Work down dimension.

Returns:

a_db: The DB with std values. n: (Optional) Numbers of non-NaN rows included in calculating each column.

See also: std (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/06

A.45.25 Method tests_db/sum

Summary: Creates a tests_db by summing all rows.

Usage:

```
a_db = sum(a_db, props)
```

Description: Applies the sum function to whole DB. The resulting DB will have one row.

Parameters:

a_db: A tests_db object.props: Optional properties.

Returns:

a_db: The resulting tests_db.

See also: sum (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/24

A.45.26 Method tests_db/kmeansCluster

Summary: Generates a database of cluster centers obtained from a k-means cluster analysis with the command kmeans.

Usage:

```
a_cluster_db = kmeansCluster(db, num_clusters, props)
```

Parameters:

db: A tests_db object.

PANDORA Toolbox: Prog.'s MaDraft v813 o22807-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

num_clusters: Number of clusters to form.
props: A structure with any optional properties.

DistanceMeasure: Choose one appropriate for kmeans.

Returns:

a_cluster_db: A tests_db where each row is a cluster center. a_hist_db: histogram_db showing cluster membership from original db. idx: Cluster indices of each row or original db. sum_distances: Quality of clustering indicated by total distance from centroid for each cluster.

See also: tests_db (p. 217), histogram_db (p. 94)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/06

A.45.27 Method tests_db/noNaNRows

Summary: Returns a DB by removing rows containing any NaN or Inf.

Usage:

```
a_db = noNaNRows(a_db)
```

Parameters:

```
a_db: A tests_db object.
```

Returns:

a_db: DB with missing rows.

See also: tests_db/isnanrows (p. 222)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/09/21

A.45.28 Method tests_db/statsMeanStd

Summary: Generates a stats_db object with two rows corresponding to the mean and std of the tests' distributions.

Usage:

```
a_stats_db = statsMeanStd(db, tests, props)
```

Parameters:

db: A tests_db object.

tests: A selection of tests (see onlyRowsTests).

props: A structure with any optional properties for stats_db.

PANDORA Toolbox: Prog.'s MaBuraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Returns:

```
a_stats_db: A stats_db object.
```

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.45.29 Method tests_db/checkConsistentCols

Summary: Check if two DBs have exactly the same columns.

Usage:

[col_names, with_col_names] = checkConsistentCols(db, with_db)

Parameters:

db: A tests_db object.

with_db: A tests_db object whose column names are checked for consistency.

props: A structure with any optional properties.

useCommon: Tolerate mismatching column names and only return the common columns.

Returns:

col_names, with_col_names: list of column names of each DB.

See also: vertcat (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/01/18

A.45.30 Method tests_db/rows2Struct

Summary: Convert given rows of database to a structure array.

Usage:

```
s = rows2Struct(db, rows, pages)
```

Parameters:

db: A tests_db object.

rows: Indices of rows in db.

pages: Pages of db.

Returns:

s: A structure of column name and value pairs.

See also: tests_db (p. 217)

A.45.31 Method tests_db/getColNames

Summary: Gets column names.

Usage:

```
col_names = getColNames(db, tests)
```

Description: Performs a light operation without touching the data matrix.

Parameters:

db: A tests_db object.

tests: Columns for which to get names (Optional, default = ':')

Returns:

col_names: A cell array of strings.

See also: getColNames (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/24

A.45.32 Method tests_db/plotrow

Summary: Creates a plot_abstract describing the desired db row.

Usage:

```
a_plot = plotrow(a_tests_db, row)
```

Parameters:

a_tests_db: A tests_db object.

row: Row number to visualize.

props: A structure with any optional properties.

putLabels: Put special column name labels.

Returns:

a_plot: A plot_abstract object that can be plotted.

See also: plot_abstract (p. 153), plotFigure (p. ??)

A.45.33 Method tests_db/dbsize

Summary: Returns the size of the data matrix of db.

Usage:

```
s = dbsize(db)
```

Parameters:

db: A tests_db object.

Returns:

s: The size values.

See also: size (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/06

A.45.34 Method tests_db/displayRowsTeX

Summary: Generates a LaTeX table that lists rows of this DB.

Usage:

```
tex_string = displayRowsTeX(a_db, caption, props)
```

Description: By default table is rotated 90 degrees and scaled to 90

Parameters:

a_db: A tests_db object.

caption: Table caption.

props: A structure with any optional properties, passed to TeXtable.

Returns:

tex_string: LaTeX string for table float.

Example:

```
» string2File(displayRowsTeX(a_db(1:10, 4:7), 'some values',
struct('rotate', 0)), 'table.tex')
```

See also: displayRows (p. ??), TeXtable (p. ??), cell2TeX (p. ??)

A.45.35 Method tests_db/matchingRow

Summary: Creates a criterion database for matching the tests of a row.

Usage:

```
crit_db = matchingRow(db, row, props)
```

Description: Copies selected test values from row as the first row into the criterion db. Adds a second row for the STD of each column in the db. Calculates the covariance for using the Mahalonobis distance in the ranking.

Parameters:

db: A tests_db object.

row: A row index to match.

props: A structure with any optional properties.

distDB: Take the standard deviation and covariance of this db instead.

Returns:

crit_db: A tests_db with two rows for values and STDs.

Example:

```
» crit_db = matchingRow(phys_control_compare_db,
find(phys_control_compare_db(:, 'TracesetIndex') == 61))
```

See also: rankMatching (p. ??), tests_db (p. 217), tests2cols (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/08

A.45.36 Method tests_db/invarValues

Summary: Generates a 3D database of invariant values of given columns.

Usage:

```
a_tests_3D_db = invarValues(db, cols, main_cols)
```

Description: The invariant values of a column are its values when all other column values are fixed. The invariant values of desired columns forms a matrix of rows. This function finds all combinations of the rest of the columns and returns the invariant value matrices for each such combination in a page of a three-dimensional vector; i.e. a tests_3D_db. Each matrix page will contain an additional column for the original row index for the invariant values. This index can be used to find the test columns that were omitted. Note: the trial column will be ignored for finding invariant values.

Parameters:

```
db: A tests_db object.
```

cols: Vector of column numbers to find invariant values.

main_cols: Vector of columns that need to be unique in each page
 (Optional; used only if database is not symmetric, to ignore missing values
 of main_cols)

Returns:

```
a_tests_3D_db: A tests_3D_db object of organized values.
```

```
See also: tests_3D_db(p. 212), tests_3D_db/corrCoefs(p. ??), tests_3D_db/plotPair(p. ??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/30

A.45.37 Method tests_db/meanDuplicateRows

Summary: Row-reduces a db by finding sets of rows with same main_cols values, and replacing each set with a single row containing main_cols and the mean of rest_cols.

Usage:

```
a_tests_db = meanDuplicateRows(db, main_cols, rest_cols)
```

Description: The database is sorted for the values of the columns of interest (main_cols) and all rows with duplicate values of these columns are identified. The rest of the columns (rest_cols) are averaged and reduced to a single row, and attached to the nominal values of main_cols. Two additional parameter columns will be added to the database created. The NumDuplicates column is the the number of duplicates used in the mean operation, and RowIndex is the row number points to the first of a set of duplicate values.

Parameters:

db: A tests_db object.

main_cols: Vector of columns in which to find duplicates.

rest_cols: Vector of columns to be averaged for duplicate main_cols.

Returns:

a_tests_db: The db object of with the means on page 1 and standard deviations on page 2.

See also: tests_db/mean (p. 240), tests_db/std (p. 227), sortedUniqueValues (p. ??)

A.45.38 Method tests_db/minus

Summary: Subtracts two DBs or a scalar from one.

Usage:

```
a_db = minus(left_obj, right_obj)
```

Description: If DBs have mismatching columns only the common columns will be kept. In any case, the resulting DB columns will be sorted in the order of the left-hand-side DB.

Parameters:

```
left_obj, right_obj: Operands of the subtraction. One must be of type
  tests_db
  and the other can be a scalar.
```

Returns:

a_db: The resulting tests_db.

See also: minus (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/24

A.45.39 Method tests_db/displayRows

Summary: Displays rows of data with associated column labels.

Usage:

```
s = displayRows(db, rows, pages)
```

Parameters:

db: A tests db object.

rows: Indices of rows in db.

pages: Pages of db.

Returns:

s: A cell array of trasposed database contents, prefixed with column names on each row. Meant to be displayed on the screen.

See also: tests_db (p. 217)

A.45.40 Method tests_db/times

Summary: Multiplies the DB with a scalar.

Usage:

```
a_db = times(left_obj, right_obj)
```

Parameters:

left_obj, right_obj: Operands of the multiplication. One must be of type tests_db.

Returns:

a_db: The resulting tests_db.

See also: times (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/24

A.45.41 Method tests_db/addLastRow

Summary: Inserts a row of observations at the end of tests_db.

Usage:

```
index = addLastRow(obj, row)
```

Description: Adds a new set of observations to the database and returns its row index. This operation is expensive because the whole database matrix needs to be duplicated and resized in order to add a single new row. The method of allocating a matrix, filling it up, and then providing it to the tests_db constructor is the preferred method of creating tests_db objects.

Parameters:

```
obj: A tests_db object.
```

row: A row vector that contains values for each DB column.

Returns:

obj: The tests_db object that includes the new row.

See also: allocateRows (p. ??), addRow (p. ??), tests_db (p. 217)

A.45.42 Method tests_db/diff

Summary: Creates a tests_db by taking the derivative of all tests.

Usage:

```
a_db = diff(a_db, props)
```

Description: Applies the diff function to whole DB. The resulting DB will have one less row.

Parameters:

```
a_db: A tests_db object.props: Optional properties.
```

Returns:

a_db: The resulting tests_db.

See also: diff (p. ??), tests_3D_db/getDiff2DDB (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/05/24

A.45.43 Method tests_db/plot_abstract

Summary: Default visualization for a database.

Usage:

```
a_pm = plot_abstract(a_db, title_str)
```

Description: Calls plotTestsHistsMatrix. Subclasses should override this method to provide their own visualization.

Parameters:

```
a_db: A params_tests_db object.
```

title_str: (Optional) A string to be concatanated to the title.

props: A structure with any optional properties.

Returns:

a_pm: A plot_stack with the plots organized in matrix form

Example:

```
> plot(my_db, ': first impression') will call this function and send the generated plot to the plotFigure function.
```

```
See also: plot_abstract/plot_abstract (p. 153), plotTestsHistsMatrix (p. ??), plotFigure (p. ??)
```

A.45.44 Method tests_db/addRow

Summary: Inserts a row of observations to tests_db at the given row index.

Usage:

```
index = addRow(obj, row, index)
```

Description: Adds a new set of observations to the database and returns the new DB. This operation is expensive in the sense that the whole database matrix needs to be copied to be passed to this function just to add a single new row. The method of allocating a matrix, filling it up, and then providing it to the tests_db constructor is the preferred method of creating tests db objects.

Parameters:

obj: A tests_db object.

row: A row vector that contains values for each DB column.

index: The row index.

Returns:

obj: The tests_db object that includes the new row.

See also: addLastRow (p. ??), allocateRows (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/08

A.45.45 Method tests_db/subsref

Summary: Defines indexing for tests_db objects for () and . operations.

Usage:

```
obj = obj(rows, tests) obj = obj.attribute
```

Description: Returns attributes or selects the given test columns and rows and returns in a new tests_db object.

Parameters:

```
obj: A tests_db object.
```

rows: A logical or index vector of rows. If ':', all rows.

tests: Cell array of test names or column indices. If ':', all tests.

attribute: A tests_db class attribute.

Returns:

obj: The new tests_db object.

See also: subsref (p. ??), tests_db (p. 217)

A.45.46 Method tests_db/shufflerows

Summary: Returns a db with rows of given test columns are shuffled.

Usage:

```
s = shufflerows(db, tests, grouped)
```

Description: Can be used for shuffle prediction. Basically, shuffle rows of tests and rerun high order analyses.

Parameters:

```
db: A tests_db object.tests: Tests to shuffle.grouped: If 1 then shuffle tests all together, if 0 shuffle each test separately.
```

Returns:

```
a_db: The shuffled db.

See also: tests_db (p. 217)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/10

A.45.47 Method tests_db/renameColumns

Summary: Rename an existing column or columns.

Usage:

```
a_db = renameColumns(a_db, test_names, new_names)
```

Description: This is a cheap operation than modifies meta-data kept in object.

Parameters:

```
a_db: A tests_db object.
```

test_names: A cell array of existing test names. new_names: New names to replace existing ones.

Returns:

a_db: The tests_db object that includes the new columns.

Example:

```
» new_db = renameColumns(a_db, 'PulseIni100msSpikeRateISI_D40pA', 'Firing_rate');
» new_db = renameColumns(a_db, 'a', 'b', 'c', 'd');

See also: allocateRows(p.??), tests_db(p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/09/30
```

A.45.48 Method tests_db/mean

Summary: Returns the mean of the data matrix of a_db. Ignores NaN values.

Usage:

```
[a_db, n] = mean(a_db, dim)
```

Description: Does a recursive operation over dimensions in order to remove NaN values. This takes more time, compared with a straightforward mean operation.

Parameters:

a_db: A tests_db object.dim: Work down dimension.

Returns:

a_db: The DB with one row of mean values. n: (Optional) Numbers of non-NaN rows included in calculating each column.

See also: mean (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/06

A.45.49 Method tests_db/plot

Summary: Generic method to plot a tests_db or a subclass. Requires a plot_abstract method to be defined for this object.

Usage:

```
h = plot(a_tests_db, title_str, props)
```

Parameters:

a_tests_db: A histogram_db object.

title_str: (Optional) String to append to plot title.

props: A structure with any optional properties, passed to plot_abstract.

Returns:

h: The figure handle created.

See also: plot_abstract (p. 153), plotFigure (p. ??)

A.45.50 Method tests_db/subsasgn

Summary: Defines generic index-based assignment for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/06

A.45.51 Method tests_db/plotXRows

Summary: Create a scatter plot with a test versus the row numbers on the X-axis.

Usage:

```
a_p = plotXRows(a_db, test_y, title_str, short_title, props)
```

Parameters:

a_db: A params_tests_db object.

test_y: Y variable.

title_str: (Optional) A string to be concatanated to the title.

short_title: (Optional) Few words that may appear in legends of multiplot.

props: A structure with any optional properties passed to plotScatter.

RowName: Label to show on X-axis (default='RowNumber')

Returns:

a_p: A plot_abstract.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/01/16

A.45.52 Method tests_db/princomp

Summary: Generates a database of the principal components of given DB.

Usage:

```
a_pca_db = princomp(db, props)
```

Parameters:

db: A tests_db object.

props: A structure with any optional properties.

normalized: If specified zscore is used before princomp.

Returns:

a_pca_db: A tests_db where each row is a principal component.

See also: princomp (p. ??), zscore (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/09/21

A.45.53 Method tests db/allocateRows

Summary: Preallocates a NaN-filled num_rows rows in tests_db.

Usage:

```
obj = allocateRows(obj, num_rows)
```

Description: Allocates the desired number of rows to speed up filling up the data matrix using assignRowsTests. Using addRow after this operation is still expensive. The method of allocating a matrix, filling it up, and then providing it to the tests_db constructor is the preferred method of creating tests_db objects.

Parameters:

```
obj: A tests_db object.
```

num_rows: The predicted number of observations for this tests_db.

Returns:

```
obj: The new tests_db object.
```

```
See also: assignRowsTests (p. ??), addRow (p. ??), setRows (p. ??), tests_db (p. 217)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/08

A.45.54 Method tests_db/compareRows

Summary: Returns comparison results of db and the given row in a column vector.

Usage:

```
idx = compareRows(db, row)
```

Description: If the row argument has multiple rows, the comparison is done separately for each of its rows and the results are the logical AND of those. Note that, it uses summation of distance for magnitude comparison. That is, all columns have the same weight. If the db contains many columns and one row, then the columns are compared instead of rows.

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 o24207-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
db: A tests_db object.
```

row: Row array, matrix or database to be compared with db rows.

Returns:

idx: A inverted logical column vector of comparison results. (false if db == row, true otherwise)

```
See also: eq (p. ??), tests_db (p. 217)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.45.55 Method tests_db/plotYTests

Summary: Create a plot given database measures against given X-axis values, for each row.

Usage:

```
a_p = plotYTests(a_db, x_vals, tests, axis_labels, title_str, short_title,
command, props)
```

Parameters:

```
a_db: A params_tests_db object.
```

x_vals: A vector of X-axis values.

tests: A vector or cell array of columns to correspond to each value from x vals.

title_str: (Optional) A string to be concatanated to the title.

short_title: (Optional) Few words that may appear in legends of multiplot.

command: (Optional) Command to do the plotting with (default: 'plot')

props: A structure with any optional properties.

LineStyle: Plot line style to use. (default: 'd-')

ShowErrorbars: If 1, errorbars are added to each point.

StatsDB: If given, use this stats_db for the errorbar (default=statsMeanStd(a_db)).

quiet: If 1, don't include database name on title.

Returns:

a_p: A plot_abstract.

Example:

```
» a_p = plotYTests(a_db_row, [0 40 100 200], ...
'IniSpontSpikeRateISI_0pA', 'PulseIni100msSpikeRateISI_D40pA', ...
'PulseIni100msSpikeRateISI_D100pA', 'PulseIni100msSpikeRateISI_D200pA', ...
'current pulse [pA]', 'firing rate [Hz]', ', f-I curves', 'neuron 1');
"> plotFigure(a_p);
```

PANDORA Toolbox: Prog.'s MaBuraft v813 o2 4207-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: plotFigure (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/23

A.45.56 Method tests_db/plotScatter

Summary: Create a scatter plot of the given two tests.

Usage:

```
a_p = plotScatter(a_db, test1, test2, title_str, short_title, props)
```

Parameters:

a_db: A params_tests_db object.

test1, test2: X & Y variables.

title_str: (Optional) A string to be concatanated to the title.

short_title: (Optional) Few words that may appear in legends of multiplot.

props: A structure with any optional properties.

LineStyle: Plot line style to use. (default: 'x') **Regress:** Calculate and plot a linear regression. **quiet:** If 1, don't include database name on title.

Returns:

a_p: A plot_abstract.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/09/29

A.45.57 Method tests_db/addColumns

Summary: Inserts new columns to tests_db.

Description: Adds new test columns to the database and returns the new DB. Usage 2 concatanates two DBs columnwise. This operation is expensive in the sense that the whole database matrix needs to be enlarged just to add a single new column. The method of allocating a matrix, filling it up, and then providing it to the tests_db constructor is the preferred method of creating tests_db objects. This method may be used for measures obtained by operating on raw measures.

Parameters:

obj, b_obj: A tests_db object.

test_names: A cell array of test names to be added.

PANDORA Toolbox: Prog.'s MaBuraft v813 o2/2407-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

test_columns: Data matrix of columns to be added.

Returns:

obj: The tests_db object that includes the new columns.

See also: allocateRows (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/09/30

A.45.58 Method tests db/tests2idx

Summary: Find dimension indices from a test names/numbers specification.

Usage:

```
idx = tests2idx(db, dim_name, tests)
```

Parameters:

db: A tests_db object.

dim_name: String indicating 'row', 'col', or 'page'

tests: Either a single or array of column numbers, or a single test name or a cell array of test names. If ':', all tests.

Returns:

idx: Array of column indices.

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.45.59 Method tests_db/delColumns

Summary: Deletes columns from tests_db.

Usage:

```
obj = delColumns(obj, tests)
```

Description: Deletes test columns from the database and returns the new DB. This operation is expensive in the sense that the whole database matrix needs to be copied just to delete a single column. The method of allocating a matrix, filling it up, and then providing it to the tests_db constructor is the preferred method of creating tests_db objects. This method may be used for measures obtained by operating on raw measures.

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 o2 4507-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
obj: A tests_db object.
```

tests: Numbers or names of tests (see tests2cols)

Returns:

obj: The tests_db object that is missing the columns.

See also: allocateRows (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/10/06

A.45.60 Method tests db/factoran

Summary: Generates a database of factor loadings obtained from the factor analysis of db with factoran. Each row corresponds to a rotated factor and columns represent observed variables.

Usage:

```
a_factors_db = factoran(db, num_factors, props)
```

Description: Uses the promax method to rotate common factors.

Parameters:

db: A tests_db object.

num factors: Number of common factors to look for.

props: A structure with any optional properties.

Returns:

a_factors_db: A corrcoefs_db of the coefficients and page indices.

See also: tests_db (p. 217), corrcoefs_db (p. 81)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/08

A.45.61 Method tests db/statsAll

Summary: Makes a stats_db with rows of mean, STD, SE, and CV of the tests' distributions in db.

Usage:

```
a_stats_db = statsAll(db, tests, props)
```

Parameters:

db: A tests_db object.

PANDORA Toolbox: Prog.'s MaBuraft v813 o24607-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

tests: A selection of tests (see onlyRowsTests).

props: A structure with any optional properties for stats_db.

Returns:

```
a_stats_db: A stats_db object.
```

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/24

A.45.62 Method tests db/enumerateColumns

Summary: Replaces each value with an integer pointing to the index of enumerated unique values in a column.

Usage:

```
a_db = enumerateColumns(a_db, tests, props)
```

Description: Finds unique values of each column, and replaces the original values with the enumerated indices of these unique values. Useful for normalizing all parameter values in a hypercube.

Parameters:

```
a_db: A tests_db object.
```

tests: Array of tests to be enumerated.

props: Optional properties.

truncateDecDigits: Use only up to this many decimal digits after the point

when checking for uniqueness.

Returns:

a db: The modified DB.

Example:

```
» enumerated_db = enumerateColumns(a_db(:, 1:9));
```

See also: uniqueValues (p. ??)

A.45.63 Method tests_db/tests2cols

Summary: Find column numbers from a test names/numbers specification.

Usage:

```
cols = tests2cols(db, tests)
```

Parameters:

db: A tests_db object.

tests: Either a single or array of column numbers, or a single test name or a cell array of test names. If ':', all tests.

Returns:

cols: Array of column indices.

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.45.64 Method tests_db/plotrows

Summary: Creates a plot_stack describing the db rows.

Usage:

```
a_plot = plotrows(a_tests_db, axis_limits, orientation, props)
```

Parameters:

```
a_tests_db: A tests_db object.
```

axis_limits: If given, all plots contained will have these axis limits.

orientation: Stack orientation 'x' for horizontal, 'y' for vertical, etc.

props: A structure with any optional properties passed to plot_stack.

Returns:

a_plot: A plot_stack object that can be plotted.

See also: plot_abstract (p. 153), plotFigure (p. ??)

A.45.65 Method tests_db/statsMeanSE

Summary: Generates a stats_db object with two rows corresponding to the mean and standard error (SE) of the tests' distributions.

Usage:

```
a_stats_db = statsMeanSE(db, tests, props)
```

Parameters:

db: A tests_db object.

tests: A selection of tests (see onlyRowsTests).

props: A structure with any optional properties for stats_db.

Returns:

```
a_stats_db: A stats_db object.
```

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.45.66 Method tests_db/plot_bars

Summary: Creates a bar graph comparing all DB rows in groups, with a separate axis for each column.

Usage:

```
a_plot = plot_bars(a_tests_db, title_str, props)
```

Parameters:

```
a_tests_db: A tests_db object.
```

title_str: (Optional) The plot title.

props: A structure with any optional properties.

Returns:

a_plot: A object of plot_bars or one of its subclasses.

See also: plot_abstract (p. 153), plot_simple (p. 163)

A.45.67 Method tests_db/corrCoefs

Summary: Generates a database of correlation coefficients by comparing col1 with other cols in the database. If db has multiple pages, then each page in db produces a row of coefficients and matching PageIndex.

Usage:

```
a_coefs_db = corrCoefs(db, col1, cols, props)
```

Description: Assuming the db was created with invarValues, this function finds the invariant correlation coefficients between its columns. The invariant correlation coefficients are the correlation of one column value with another column value when some other column values are fixed. Since there are many occurences of the invariant coefficients, a histogram can then be created and returned from the created db. The other columns that are fixed are not in this db object, but can be reached using the row indices in the original db. The page number is saved in the created db, so that it can be used to find the page from which the coefficient came. Then row indices of the page points to original constant column values.

Parameters:

db: A tests_db object.

col1: Column to compare.

cols: Columns to be compared with col1.

props: A structure with any optional properties.

skipCoefs: If coefficients of less confidence than should be skipped.

Returns:

a_coefs_db: A corrcoefs_db of the coefficients and page indices.

See also: tests_db (p. 217), corrcoefs_db (p. 81)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/30

A.45.68 Method tests_db/transpose

Summary: Transposes data matrix and swaps row and columns metadata as well.

Usage:

```
a_db = transpose(a_db)
```

Parameters:

a db: A tests db.

Returns:

a_db: The transposed tests_db.

See also: transpose (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/02/07

A.45.69 Method tests_db/vertcat

Summary: Vertical concatanation [db;with_db;...] operator.

Usage:

```
a_db = vertcat(db, with_db, ...)
```

Description: Concatanates rows of with_db to rows of db. Overrides the built-in vert-cat function that is called when [db;with_db] is executed. If the first argument is a array of DBs, then this functionality is not needed; built-in vertcat is called.

Parameters:

db: A tests_db object.

with_db: A tests_db object whose rows are concatanated to db.

Returns:

a_db: A tests_db that contains rows of db and with_db.

See also: vertcat (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/01/25

A.45.70 Method tests_db/assignRowsTests

Summary: Assign the values to the tests and rows (and pages) of the tests_db.

Usage:

```
obj = assignRowsTests(obj, val, rows, tests, pages)
```

Description: Selects the given dimensions and returns in a new tests_db object.

Parameters:

obj: A tests_db object.

val: DB object or data matrix to be assigned to the addressed indices.

rows: A logical or index vector of rows. If ':', all rows.

tests: Cell array of test names or column indices. If ':', all tests.

PANDORA Toolbox: Prog.'s MaBuraft v813 o2 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
pages: (Optional) A logical or index vector of pages. ':' for all pages.
```

Returns:

obj: The new tests_db object.

See also: subsref (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/02/08

A.45.71 Method tests_db/plotCovar

Summary: Generates an image plot of the covariance-type values in a_db.

Usage:

```
a_plot = plotCovar(a_db, title_str, props)
```

Parameters:

a_db: A tests_db object that resulted from a function like cov.

title_str: (Optional) String to append to plot title.

props: Optional properties to be passed to plot_abstract.

inverse: If 1, take inverse of the data matrix.

crosscoef: If 1, normalize matrix elements as crosscoef would a cov

matrix.

logScale: If 1, take logarithm of values before plotting.

Returns:

a_plot: A plot_abstract object or one of its subclasses.

Example:

```
» plotFigure(plotCovar(cov(get(constrainedMeasuresPreset(pbundle2, 6),
'joined_control_db'))));
```

```
See also: tests_db/cov(p. 226), plotImage(p. ??), tests_db/matchingRow. (p. ??)
```

A.45.72 Method tests_db/isinf

Summary: Returns logical row indices of Inf-valued columns.

Usage:

```
rows = isinf(db, col)
```

Parameters:

db: A tests_db object.

col: Column to check (Optional, default = 1)

Returns:

rows: A logical column vector of rows.

See also: isinf (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/08/16

A.45.73 Method tests_db/isnan

Summary: Returns logical row indices of NaN-valued columns.

Usage:

```
rows = isnan(db, col)
```

Parameters:

db: A tests_db object.

col: Column to check (Optional, default = 1)

Returns:

rows: A logical column vector of rows.

See also: isnan (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/06

A.45.74 Method tests_db/rankMatching

Summary: Create a ranking db of row distances of db to given criterion db.

Usage:

```
a_ranked_db = rankMatching(db, crit_db, props)
```

Description: crit_db can be created with the matchingRow method. TestWeights modify the importance of each measure.

Parameters:

db: A tests db to rank.

crit_db: A tests_db object holding the match criterion tests and stds.

props: A structure with any optional properties.

limitSTD: limit any measure to this many STDs max.

tolerateNaNs: If 0, rows with any NaN values are skipped, if 1, NaN values are given a fixed 3xSTD penalty (default=1).

testWeights: Structure array associating tests and multiplicative weights.

restoreWeights: Reverse the testWeights application after calculating distances.

topRows: If given, only return this many of the top rows.

useMahal: Use the Mahalonobis distance from the covariance matrix in crit_db.

Returns:

a_ranked_db: A ranked_db object.

See also: matchingRow (p. ??), tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/08

A.45.75 Method tests_db/statsBounds

Summary: Generates a stats_db object with three rows corresponding to the mean, min, and max of the tests' distributions.

Usage:

```
a_stats_db = statsBounds(a_db, tests, props)
```

Description: A page is generated for each page of data in db.

Parameters:

a_db: A tests_db object.

tests: A selection of tests (see onlyRowsTests).

PANDORA Toolbox: Prog.'s MaBuraft v813 o25407-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

props: A structure with any optional properties for stats_db.

Returns:

a_stats_db: A stats_db object.

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/07

A.46 Class trace

A.46.1 Constructor trace/trace

Summary: A generic trace from a cell. It can be voltage, current, etc.

Usage:

```
obj = trace(data_src, dt, dy, id, props)
```

Description: Traces for specific experimental or simulation protocols can extend this class for adding new parameters. This object is designed to recognize most data file formats. See the data_src parameter below.

Parameters:

data_src: Trace data as a column vector OR name of a data file generated by

Genesis (.bin, .gbin, .genflac), PCDX (.all), or Matlab (.mat).

dt: Time resolution [s]

dy: y-axis resolution [ISI (V, A, etc.)]

id: Identification string

props: A structure with any optional properties.

scale_y: Y-axis scale to be applied to loaded data.

offset_y: Y-axis offset to be added to loaded and scaled data.

trace_time_start: Samples in the beginning to discard [dt]

baseline: Resting potential.

channel: Channel to read from file Genesis, PCDX, or Neuron file.

file_type: Specify file type instead of guessing from extension:

'genesis': Raw binary files created with Genesis disk_out method. 'genesis_flac': Compressed Genesis binary files. 'neuron': Binary files created with Neuron's Vector.vwrite method. 'pcdx': .ALL data acquisition files from PCDX program. 'matlab': Matlab .MAT binary files with matrix data.

traces: Traces to read from PCDX file.

```
spike_finder: Method of finding spikes
    (1 for findFilteredSpikes, 2 for findspikes).
init_Vm_method: Method of finding spike thresholds
    (see spike_shape/spike_shape).
init_threshold: Spike initiation threshold (deriv or accel).
    (see above methods and implementation in calcInitVm)
init_lo_thr, init_hi_thr: Low and high thresholds for slope.
threshold: Spike threshold.
quiet: If 1, reduces the amount of textual description in plots, etc.
```

Returns a structure object with the following fields:

```
data: The trace column matrix. dt, dy, id, props (see above)
```

```
See also: spikes (p. 195), spike_shape (p. 183), cip_trace (p. 54), period (p. 137)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.46.2 Method trace/setProp

Summary: Generic method for setting optional object properties.

Usage:

```
obj = setProp(obj, prop1, val1, prop2, val2, ...)
```

Description: Modifies or adds property values. As many property name-value pairs can be specified.

Parameters:

obj: Any object that has a props field.

attr: Property nameval: Property value.

Returns:

obj: The new object with the updated properties.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/22

A.46.3 Method trace/display

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.46.4 Method trace/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.46.5 Method trace/periodWhole

Summary: Returns the boundaries of the whole period of trace, t.

Usage:

whole_period = periodWhole(t)

Parameters:

t: A trace object.

See also: period (p. 137), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.46.6 Method trace/set

Summary: Generic method for setting object attributes.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/08

A.46.7 Method trace/plotData

Summary: Plots a trace.

Usage:

```
a_plot = plotData(t, title_str, props)
```

Description: If t is a vector of traces, returns a vector of plot objects.

Parameters:

t: A trace object.

title_str: (Optional) String to append to plot title.

props: A structure with any optional properties.

timeScale: 's' for seconds, or 'ms' for milliseconds.
 (rest passed to plot_abstract.)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/17

A.46.8 Method trace/spikes

Summary: Convert trace to spikes object for spike timing calculations.

Usage:

```
obj = spikes(trace, a_period, plotit, minamp)
```

Description: Creates a spikes object.

Parameters:

trace: A trace object.

a_period: A period object denoting the part of trace of interest (optional, if empty vector, taken as wholePeriod).

plotit: If non-zero, a plot is generated for showing spikes found (optional).

minamp: minimum amplitude that must be reached if using findFilteredSpikes.

-> adjust as needed to discriminate spikes from EPSPs. (optional)

See also: spikes (p. 195)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.46.9 Method trace/findFilteredSpikes

Summary: Runs a frequency filter over the data and then finds all peaks using find-spikes.

Usage:

```
[times, peaks, n] = findFilteredSpikes(t, a_period, plotit, minamp)
```

Description: Runs a 50-300 Hz band-pass filter over the data and then calls findspikes. The filter both removes low-frequency offset changes, such as cip period effects, and high-frequency noise that is detected as local peaks by findspikes. The spikes found are post-processed to make sure the rise and fall times are consistent. Note: The filter employed only works with data sampled at 10kHz.

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 o2 5007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

```
t: Trace object
             a_period: Period of interest.
             plotit: Plots the spikes found if 1.
                  minamp (optional): minimum amplitude above baseline that must be reached.
                  -> adjust as necessary to discriminate spikes from EPSPs.
             Returns:
             times: The times of spikes [dt].
             peaks: The peaks corresponding to the times of spikes.
             n: The number of spikes.
       See also: findspikes (p. ??), period (p. 137)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2004/03/08
       A.46.10 Method trace/calcAvg
       Summary: Calculates the average value of the given period of the trace, t.
       Usage:
avg_val = calcAvg(t, period)
       Parameters:
             t: A trace object.
             period: A period object (optional).
       See also: period (p. 137), trace (p. 255)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30
       A.46.11 Method trace/getDy
       Summary: Returns dy.
       Usage:
dy = getDy(t)
       Parameters:
             t: A trace object.
       Returns:
             dy: The dy value.
       See also: trace (p. 255)
       Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/31
```

A.46.12 Method trace/calcMax

Summary: Calculates the maximal value of the given period of the trace, t.

Usage:

```
[max_val, max_idx] = calcMax(t, period)
```

Parameters:

t: A trace object.

period: A period object (optional).

Returns:

max_val: The max value. max_idx: Its index in the trace.

See also: period (p. 137), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.46.13 Method trace/calcMin

Summary: Calculates the minimal value of the given period of the trace, t.

Usage:

```
[min_val, min_idx] = calcMin(t, a_period)
```

Parameters:

t: A trace object.

a_period: A period object (optional).

Returns:

min_val: The min value. min_idx: Its index in the trace.

See also: period (p. 137), trace (p. 255)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/07/30

A.46.14 Method trace/plot_abstract

Summary: Plots a trace by calling plotData.

Usage:

```
a_plot = plot_abstract(t, title_str, props)
```

Description: If t is a vector of traces, returns a vector of plot objects.

Parameters:

t: A trace object.

title_str: (Optional) String to append to plot title.

props: A structure with any optional properties.

timeScale: 's' for seconds, or 'ms' for milliseconds.
 (rest passed to plot_abstract.)

Returns:

a_plot: A plot_abstract object that can be visualized.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/17

A.46.15 Method trace/subsref

Summary: Defines generic indexing for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.46.16 Method trace/plot

Summary: Plots a trace.

Usage:

h = plot(t)

Parameters:

t: A trace object.

title_str: (Optional) String to append to plot title.

props: A structure with any optional properties, passed to plot_abstract.

Returns:

h: Handle to figure object.

PANDORA Toolbox: Prog.'s MaBuraft v813 o2@007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: trace (p. 255), plot_abstract (p. 153)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.46.17 Method trace/getSpike

Summary: Convert a spike in the trace to a spike_shape object.

Usage:

```
obj = getSpike(trace, spikes, spike_num, props)
```

Description: Creates a spike_shape object from desired spike. It is more efficient if you already have the spikes object.

Parameters:

trace: A trace object.

spikes: (Optional) A spikes object obtained from trace,

calculated automatically if given as [].

spike_num: The index of spike to extract.

props: A structure with any optional properties.

spike_id: A prefix string added to the spike_shape object's id.

Example:

```
This will create an annotated plot of the third spike in my_trace: 
» plotFigure(plotResults(getSpike(my_trace, [], 3)))
```

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/19

A.46.18 Method trace/withinPeriod

Summary: Returns a trace object valid only within the given period.

Usage:

```
obj = withinPeriod(t, a_period)
```

Parameters:

t: A trace object.

a_period: The desired period

Returns:

obj: A trace object

PANDORA Toolbox: Prog.'s MaBuraft v813 o26207-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

See also: trace (p. 255), period (p. 137)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/25

A.46.19 Method trace/getResults

Summary: Runs all tests defined by this class and return them in a structure.

Usage:

results = getResults(t)

Parameters:

t: A trace object.

Returns:

results: A structure associating test names to values in ms and mV (or mA).

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.46.20 Method trace/spike_shape

Summary: Convert averaged spikes in the trace to a spike_shape object.

Usage:

obj = spike_shape(trace, spikes, props)

Description: Creates a spike_shape object.

Parameters:

trace: A trace object.

spikes: A spikes object on trace.

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/04

A.46.21 Method trace/analyzeSpikesInPeriod

Summary: Returns results and a db of spikes by collecting test results of a cip_trace, analyzing each individual spike.

Usage:

[results period_spikes a_spikes_db spikes_stats_db spikes_hists_dbs] =
analyzeSpikesInPeriod(a_cip_trace, a_spikes, period, prefix_str)

Parameters:

```
a_cip_trace: A cip_trace object.a_spikes: A spikes object from the a_cip_trace object.period: A period of object of a_cip_trace object of interest.prefix_str: Prefix string to be added to spike shape results.
```

Returns:

results: Results structure names prefixed with prefix_str. period_spikes: Corrected spikes object for this period. a_spikes_db: A mini spikes database of results from each spike in period. spikes_stats_db: Statistics from the mini spikes database. spikes_hists_dbs: Cell array of histograms from the mini spikes database.

```
See also: cip_trace (p. 54), spikes (p. 195), period (p. 137), spike_shape (p. 183), getProfileAllSpikes (p. ??)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/05/04

A.47 Class trace_profile

A.47.1 Constructor trace_profile/trace_profile

Summary: Creates and collects test results of a trace.

Description: The first usage is fully customizable to be used from subclass constructors. The second usage generates the spikes and spike_shape objects, and collects some generic test results from them. This usage is only provided as an example and is not used practically.

Parameters:

```
data_src: The trace column OR the .MAT filename.dt: Time resolution [s]dy: y-axis resolution [ISI (V, A, etc.)]props: See trace object.
```

Returns a structure object with the following fields:

trace, spikes, spike_shape, results, id, props.

See also: trace (p. 255), spikes (p. 195), spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.47.2 Method trace_profile/get

Summary: Defines generic attribute retrieval for objects.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/14

A.48 Utility functions

A.48.1 Function functions/findspikes_old

Author: <adelgado@biology.emory.edu>, 2003-03-31

A.48.2 Function functions/makeIdx

Summary: Prepare the idx structure from names.

Usage:

idx = makeIdx(names)

Description: Helper function.

Parameters:

names: Cell array of names for a db dimension.

Returns:

idx: Structure associating names to array indices.

See also: tests_db (p. 217)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/17

A.48.3 Function functions/diff2T_h4

Summary: Estimate of second derivative using Taylor expansion (derived with same method as diffT).

Usage:

 $deriv2 = diff2T_h4(x, dy)$

Description:
$$d^2 x x(k-2) - x(k-1) - x(k+1) + x(k+2) =$$

Parameters:

x: A vector of x = f(y).

dy: The resolution of the discrete points in the vector.

Returns:

deriv2: Estimate of the derivative.

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/15

A.48.4 Function functions/diff2T

Summary: Estimate of second derivative using Taylor expansion.

Usage:

deriv2 = diff2T(x, dy)

Parameters:

x: A vector of x = f(y).

dy: The resolution of the discrete points in the vector.

Returns:

deriv2: Estimate of the derivative.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/15

A.48.5 Function functions/diff3T

Summary: Estimate of third derivative using Taylor expansion.

Usage:

$$deriv3 = diff3T(x, dy)$$

Parameters:

x: A vector of x = f(y).

dy: The resolution of the discrete points in the vector.

Returns:

deriv3: Estimate of the derivative.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/15

A.48.6 Function functions/diffT

Summary: Estimate of first derivative using Taylor expansion.

Usage:

$$deriv = diffT(x, dy)$$

Parameters:

x: A vector.

dy: The resolution of the discrete points in the vector.

Returns:

deriv: Estimate of the first derivative.

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/11/15

A.48.7 Function functions/readNeuronVecBin

Author: Konstantin Miller <miller@cs.tu-berlin.de>, Aug 09, 2005.

A.48.8 Function functions/logLevels

Summary: Returns a logarithmic-scaled series between min_val and max_val with num_levels elements.

Usage:

levels = logLevels(min_val, max_val, num_levels)

Parameters:

min_val, max_val: The low and high boundaries for the output value.
num_levels: Number of elements to produce, including the boundaries.

Returns:

levels: A column vector of logarithmic series between min_val and max_val.

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/18

A.48.9 Function functions/diff3T_h4

Summary: Estimate of third derivative using Taylor expansion (derived with same method as diffT and diff2T_h4).

Usage:

 $deriv2 = diff3T_h4(x, dy)$

Description:
$$d^3 x - x(k-2) + 2 * x(k-1) - 2 * x(k+1) + x(k+2) =$$

Parameters:

x: A vector of x = f(y).

dy: The resolution of the discrete points in the vector.

Returns:

deriv2: Estimate of the derivative.

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/18

A.48.10 Function functions/collectspikes

Author: <adelgado@biology.emory.edu>

A.48.11 Function functions/subTextLabel

Summary: Draws a text label on a plot.

Usage:

handle = subTextLabel(x, y, text_str, props)

Parameters:

x, **y**: 2D coordinates.

text_str: String to be drawn on plot.

props: A structure with any optional properties.

Units: position units for the coordinates (see Units in axes properties).

Returns:

handle: Text object handle.

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/11

A.48.12 Function functions/uniqueValues

Summary: Find unique rows in a matrix (or column vector). Version which makes use of sort and diff.

Usage:

[rows, idx] = uniqueValues(data)

Description: Parameters: data: A matrix or column vector Returns: rows: A matrix or column vector of unique rows. idx: Indices of the unique rows in the original data matrix.

See also: sortedUniqueValues (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/24

A.48.13 Function functions/calcGraphNormPtsRatio

Summary: Return the ratios of normalized to point units for dimensions of axis.

Usage:

```
[ratio_x, ratio_y] = calcGraphNormPtsRatio(grfx_handle)
```

Description: Used for findind character sizes given the size of an axis. Normally if the plot is resized, the characters may take up too much space or may not fit anymore unless the spacing is corrected.

PANDORA Toolbox: Prog.'s MaBuraft v813 o26907-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

Parameters:

grfx_handle: A graphics handle to an existing axis or figure.

Returns:

ratio_x, ratio_y: Normalized to points ratio for axis width and height, respectively.

Example:

```
To find the normalized distance for a 10pt character:  >  dx = 10 *  calcGraphNormPtsRatio(my_figure_handle);
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/03/05

A.48.14 Function functions/findspikes

Summary: Performs spike discrimination on single tips exceeding or within a threshold and/or time window range.

Usage:

```
spikeTime = findspikes(traces, fs, threshold) [spikeTime spikePeak n] =
findspikes(traces, fs, threshold [,direction] [,win_range] [,'plot'])
```

Parameters:

traces: Multiple traces of signal. each trace in a column

fs: Sampling frequency, in KHz

threshold: Either a scalar, or [thres1 thres2] to define a range

direction: Optional.

A positive number to find positive-going spikes, and vice versa. The default value is +1 when threshold is a scalar, is sign(thres2-thres1) when threshold is a vector.

win_range: Optional.

[win_min win_max] to define a time window range of the width at threshold. in ms. 'plot': Optional. Plot the result. Not to plot by default.

spikeTime: Returns a cell array, each cell is a vector of spike times in each trial

spikePeak: Returns the peak values of each spikes.

n: the total number of spikes

A.48.15 Function functions/fillederrorbar

Summary: Plots an errorbar with the middle points filled with the pen color.

Usage:

handles = fillederrorbar(...)

Parameters:

(see errorbar)

Returns:

handles: Handles to graphics objects.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/13

A.48.16 Function functions/findVectorInMatrix

Summary: Finds rows of data that match row.

Usage:

idx = findVectorInMatrix(data, row)

Description: Matlab's eq (==) command unfortunately doesn't allow this directly.

Parameters:

data: A matrix or column vector.

row: A row vector.

Returns:

idx: Indices of matching rows in the original data matrix.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/09/1

A.48.17 Function functions/string2File

Summary: Writes string verbatim into a file.

Usage:

```
string2File(string, filename, props)
```

Parameters:

string: To be written into file.
filename: The file to be created.

props: A structure with any optional properties.

Returns:

See also: cell2TeX (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/10

A.48.18 Function functions/chanTables2DB

Summary: Creates a DB with channel tables exported from Genesis.

Usage:

```
a_chans_db = chanTables2DB(tables, id, props)
```

Parameters:

tables: Structures returned from the dump files generated by dump_chans.g.

id: String that identify the source of the tables structure.

props: A structure with any optional properties.

(rest passed to tests_db.)

Returns:

a_chans_db: A tests_db object containing channel tables.

See also: trace (p. 255), trace/plot (p. 261), plot_abstract (p. 153), GP/common/dump_chans.g (Genesis) (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2007/03/07

A.48.19 Function functions/maxima

Summary: Find all local maxima.

Usage:

```
x_ix = maxima(x)
```

Description: Finds derivative sign-flipping points where the second derivative is less than zero.

Parameters:

x: A vector.

Returns:

x_idx: Indices of maxima.

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/04/18

A.48.20 Function functions/sortedUniqueValues

Summary: Find unique rows in an already sorted matrix (or column vector). Uses the derivation method.

Usage:

```
[rows, idx] = sortedUniqueValues(data)
```

Description: Parameters: data: A ascending row-sorted matrix or column vector. Returns: rows: A matrix or column vector of unique rows. idx: Indices of the unique rows in the original data matrix.

See also: uniqueValues (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/27

A.48.21 Function functions/TeXtable

Summary: Creates the LaTeX string for a floating table containing given contents.

Usage:

```
tex_string = TeXtable(contents, caption, props)
```

Parameters:

contents: Table contents in LaTeX.

caption: Table caption.

PANDORA Toolbox: Prog.'s MaDraft v813 of 2007-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

props: A structure with any optional properties.

rotate: Degrees to rotate.
width: Resize to this width.
height: Resize to this height
center: Align to center.

shortCaption: Short version of caption to appear at list of tables.

floatType: LaTeX float to use (default='table').

Returns:

tex_string: LaTeX string for table float.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/13

A.48.22 Function functions/cell2TeX

Summary: Creates LaTeX string of a formatted table with the cell array's contents.

Usage:

```
tex_string = cell2TeX(a_cell, props)
```

Parameters:

a_cell: A cell matrix to be tabularized.

props: A structure with any optional properties.

hasTitleRow: The first row contains titles.
hasTitleCol: The first column contains titles.

Returns:

tex_string: LaTeX formatted table string.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/09

A.48.23 Function functions/ns_CIPlist

Author: Dawid Kurzyniec

A.48.24 Function functions/parseGenesisFilename

Summary: Parses the GENESIS filename to get names and values of simulation parameters. Usage: names_vals = parseGenesisFilename(filename)

Description: Parameters: filename: GENESIS filename (no need to exist)

Returns:

names_vals: A two-column cell array with names and values.

See also: cip_profile (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/03/10

A.48.25 Function functions/boxplotp

Description: BOXPLOTP(X,NOTCH,SYM,VERT,WHIS,PROPS) produces a box and whisker plot for each column of X. The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Outliers are data with values beyond the ends of the whiskers.

A.48.26 Function functions/plotImage

Summary: Function that plots a color matrix on current figure.

Usage:

```
h = plotImage(image_data, colormap_func, num_colors, props)
```

Parameters:

image_data: 2D matrix with image data.

colormap_func: Function name or handle to colormap (e.g., 'jet').

num_colors: Parameter to be passed to the colormap_func.

props: A structure with any optional properties.

colorbar: If defined, show colorbar on plot.

truncateDecDigits: Truncate labels to this many decimal digits. **maxValue:** Maximal value at num_colors to annotate the colorbar.

Returns:

colors: RGB color matrix to be passed to colormap function.

See also: colormap (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/05

A.48.27 Function functions/meanSpikeFreq

Summary: Returns the mean firing frequency in Hz according to mean \ inter-spike-interval of the given spike train and the time resolution dt.

Usage:

```
meanFreq = meanSpikeFreq( spike_train, dt, period )
```

Description: Parameters: spike_train: Spike times returned by findspikes dt: Time step size [s] period: Duration of the total time period [dt]

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/03/08

A.48.28 Function functions/interpValByIndex

Summary: Finds the interpolated value by using the real valued index from the data vector.

Usage:

```
val = interpValByIndex(idx, data)
```

Description: Parameters: idx: A real-valued index. data: A data vector.

Returns:

val: the value taken from the nearest integer indices of data and interpolated.

Example:

```
» a= [1 2 3];
» interpValByIndex(1.5, a)
ans =
1.5000
```

See also: spike_shape (p. 183)

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/08/02

A.48.29 Function functions/growRange

Summary: Returns the maximal range from rows of axis limits.

Usage:

```
range = growRange(ranges)
```

Parameters:

PANDORA Toolbox: Prog.'s MaBuraft v813 o2 2607-08-09 15:41:27 -0400 (Thu, 09 Aug 2007)

ranges: A matrix where each row is return val of axis func.

Returns:

range: The maximal range obtained that includes all given axes.

See also:

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/10/13

A.48.30 Function functions/mergeStructs

Summary: Merges all the structures given as arguments and makes a single structure.

Usage:

```
results = mergeStructs( struct1 [, struct2, ...] )
```

Description: The fields will in earlier arguments will have priority. So, while merging two structs, if there are duplicate fields, the fields in the first will be preserved.

Parameters:

struct(n): A structure.

Returns:

results: The merged structure.

Example:

```
mergeStructs( struct('hello', 1), struct('bye', 2) );
=> struct('hello', 1, 'bye', 2)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/13

A.48.31 Function functions/properTeXFilename

Summary: Replaces characters in string to make it a valid filename for inclusion in TeX documents.

Usage:

```
filename = properTeXFilename( filename )
```

Description: It will replace characters like space, '/', '.', etc.

Parameters:

filename: An input filename string (without extension!).

Returns:

filename: The corrected proper filename.

Example:

```
» fname = properTeXFilename('hello world/1')
ans = 'hello_world+1'
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2005/12/20

A.48.32 Function functions/prefixStruct

Summary: Adds the given prefix to each of the field names in the structure.

Usage:

```
new_struct = prefixStruct(a_struct, prefix_str)
```

Parameters:

a_struct: A structure.

prefix_str: A string to be prefixed to each field name.

Returns:

new_struct: The new structure.

Example:

```
prefixStruct( struct('bye', 1), 'hello');
=> struct('hellobye', 1)
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2004/12/22

A.48.33 Function functions/properTeXLabel

Summary: Replaces characters in string or cell array of strings to make it valid in TeX documents.

Usage:

```
a_label = properTeXLabel( a_label )
```

Description: It will replace characters like space, '/', '.', etc.

Parameters:

a_label: A label string.

Returns:

a_label: The corrected proper a_label.

Example:

```
» a_label = properTeXLabel('this_day')
ans = 'this\_day'
```

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/01/17

A.48.34 Function functions/colormapBlueCrossRed

Summary: Blue to red crossing colormap, with a black-colored zero-crossing.

Usage:

```
colors = colormapBlueCrossRed(num_half_colors)
```

Description: Colormap contains (2 * num_half_colors + 1) colors, where (num_half_colors + 1) is the zero crossing.

Parameters:

num_half_colors: Number of colors to generate on one of the red or blue scales.

props: A structure with any optional properties.

Returns:

colors: RGB color matrix to be passed to colormap function.

See also: colormap (p. ??)

Author: Cengiz Gunay <cgunay@emory.edu>, 2006/06/05

A.48.35 Function functions/loadtraces

Parameters:

file: PCDX file.

tracelist: A string of trace description, such as '1-10'.

channel: Channel to read from.

quiet: (Optional) If 1, produce on print outs.

Author: <adelgado@biology.emory.edu>