

	Training and test pair: $\langle \mathbf{x}_i, \mathbf{y}_i \rangle = \langle \text{history feature list, future relationship label} \rangle$												
		A-P-A-P-A	A-P-V-P-A	A-P-T-P-A	A—P→P—A	A-P-A							
	<mike, ann=""></mike,>	4	5	100	3	Yes = 1							
	<mike, jim=""></mike,>	0	1	20	2	No = 0							
	Logistic Regression Model												
	Model the p	ne probability for each relationship as											
$p_i = \frac{e^{\mathbf{x}_i\beta}}{e^{\mathbf{x}_i\beta}+1}$ $ \qquad \beta \text{ is the coefficients for each feature (including a constant 1)} $ $ \qquad \text{MLE (Maximum Likelihood Estimation)} $ $ \qquad \text{Maximize the likelihood of observing all the relationships in the training data } $ $ \qquad L = \prod_i p_i^{y_i} (1-p_i)^{(1-y_i)} $													
							Ne study four measures that defines a relationship R encoded by a meta path						
							□ Path Count: Number of path instances between authors following <i>R</i>						
									$PC_R(a_i, a_i)$	$i_j)$			
								Normalized Path Count: Normalize path count following R by the "degree					
								of authors	$NPC_R(a_i,$	$(a_j) = \frac{PC_R(a)}{PC_R}$	$(a_i, a_j) + PC_{R-1}(a_j)$ $(a_i, \cdot) + PC_R(\cdot, a_j)$	$\frac{(a_i)}{(a_i)}$	

□ Random Walk: Consider one way random walk following R

 $RW_R(a_i, a_j) = \frac{PC_R(a_i, a_j)}{PC_R(a_i, \cdot)}$

Symmetric Random Walk: Consider random walk in both directions

 $SRW_R(a_i, a_j) = RW_R(a_i, a_j) + RW_{R-1}(a_j, a_i)$

Recommendation Models

 $= \sum_{i=1}^{L} \theta_q \cdot \hat{U}_i^{(q)} \hat{V}_j^{(q)T} \qquad (1)$

 $\sum_{k=1}^{L} \underbrace{sim(C_k, u_i)}_{q=1} \sum_{q=1}^{L} \theta_q^{\{k\}} \cdot \hat{U}_i^{(q)} \hat{V}_j^{(q)T} \tag{2}$

 $\ln \sigma(\hat{r}(u_i, e_a) - \hat{r}(u_i, e_b)) + \frac{\lambda}{2} \|\Theta\|_2^2$ (3)

rrectly ranked item pair

 $r^{(k)}(q, p) + f_{P}^{(k)}(p)$

relative citation score (how likely q will cite p) within each group

paper relative authority

(candidate paper)

membership (to learn)

Learning Personalized Recommendation Model

How likely a query manuscript \boldsymbol{q} will cite a candidate paper \boldsymbol{p} (suppose \boldsymbol{K} interest groups):

It is desirable to suggest papers that have *high* relative citation scores across *multiple* related interest groups of the query manuscript

objects of type-X

 $s(q,p) = \sum_{k=1}^n \theta_q^{(k)} \cdot \left\{ r^{(k)}(q,p) + \overline{f_{\mathcal{P}}^{(k)}(p)} \right\}$ Paper relative authority: A paper may have quite different visibility/authority

□ Propagation of simple, commonly accepted constraints in Time-Constrained Probabilistic Factor Graph (TPFG)
□ "Advisor has more publications and longer history than advisee at the time of advising'
□ "Once an advisee becomes advisor, s/he will not become advisee again"

among different groups, even it is overall highly cited

meta path-based relevance score (I-th feature)

□ Learn each query's group membership: scalability & generalizability
□ Leverage the group memberships of related attribute objects to approximate

sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$.

Observation 1: Different meta-paths may have different importance

Observation 2: Different users may require different models

Personalized Recommendation Model

Global Recommendation Model

Bayesian personalized ranking (Rendle UAI'09)

· Objective function

query's group membership

objects (X =

paper relative relevance

(query-candidate paper)

Informational OLAP

Coauthorship trend over time

 In the DBLP network, study the collaboration patterns among researchers

start time ≈ the year they start to

end time ≈ the year Kulczinski measure dropped significantly

 Dimensions come from informational attributes attached at the whole snapshot level, so-called Info-Dims

☐ I-OLAP Characteristics:

collaborate

- Overlay multiple pieces of information
- No change on the objects whose interactions are being examined
- In the underlying snapshots, each node is a researcher
- ☐ In the summarized view, each node is still a

Topological OLAP

- Dimensions come from the node/edge attributes inside individual networks, so-called *Topo-Dims*
- So-called *Topo-Dims* T-OLAP Characteristics
- □ Zoom in/Zoom out
- Network topology changed: "generalized" nodes and "generalized" edges
- In the underlying network, each node is a researcher
- In the summarized view, each node becomes an institute that comprises multiple researchers

The DISTINCT Methodology

- Measure similarity between references
- ☐ Link-based similarity: Linkages between references
- References to the same object are more likely to be connected (Using random walk probability)
- Neighborhood similarity
- $\hfill \square$ Neighbor tuples of each reference can indicate similarity between their contexts
- □ Self-boosting: Training using the "same" bulky data set
- Reference-based clustering
- ☐ Group references according to their similarities
- Build a training set automatically
- ☐ Select distinct names, e.g., Johannes Gehrke
- The collaboration behavior within the same community share some similarity
- ☐ Training parameters using a typical and large set of "unambiguous" examples
- Use SVM to learn a model for combining different join paths
- Each join path is used as two attributes (with link-based similarity and neighborhood similarity)
- The model is a weighted sum of all attributes
- ☐ Single-link (highest similarity between points in two clusters) ?
- ☐ No, because references to different objects can be connected.
- □ Complete-link (minimum similarity between them)?
- No, because references to the same object may be weakly connected.
- ☐ Average-link (average similarity between points in two clusters)?
- A better measure
- Refinement: Average neighborhood similarity and collective random walk probability