Formulario

Entrante Uscente

Vettori

- Angolo tra l'asse x e il vettore $ec{v}$ $\theta_x = arcos\left(\frac{x}{|\vec{v}|}\right)$
- $\vec{a} \times \vec{b} = ||\vec{a}|| ||\vec{b}|| \sin(\theta)$
- $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos(\theta)$

\vec{a} 1. $\vec{a} \times \vec{b} = ||\vec{a}|| ||\vec{b}||$ 2. $\vec{a} \cdot \vec{b} = 0$

Cinematica

- Equazioni della cinematica $\circ \ \vec{v}(t) = \vec{v}_0 + \vec{a}t$
 - $\vec{s}(t) = \vec{s}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$
- $\vec{v} = \vec{\omega} \times \vec{r}$
- Velocità angolare $\omega = \frac{d\theta}{dt} = 2\pi f = \frac{2\pi}{T}$ Accelerazione centripeta (radiale)
- $\vec{a}=-\omega^2\vec{r}=\frac{v^2}{r}$
- · Accelerazione centrifuga $\vec{a} = +\omega^2 \vec{r}$
- Forza di attrazione gravitazionale

$$F = -\frac{Gm_1m_2}{r^2} \quad \longleftarrow$$

- Accelerazione gravitazionale $a_{m_2} = -\frac{Gm_1}{2}$
- Moti relativi
 - $\vec{v}_a = \vec{v}_{rel} + \vec{v}_{trasc}$
 - $\vec{a}_a = \vec{a}_{rel} + \vec{a}_{tras}$ $\vec{a}_{rel} = \vec{a}_a - \vec{a}_{trasc} = \vec{a}_0 + \omega^2 \vec{r} - 2 \vec{\omega} \times \vec{v}_{rel}$
- Accelerazione di Coriolis
 - $\vec{a} = -2\vec{\omega} \times \vec{v}_{rel}$
- Accelerazione centripeta radiale (dovuta alla variazione della direzione del vettore velocità)

$$ec{a}_r = -rac{v^2}{r} = -\omega^2 ec{r}$$
 L'accelerazione centrifuga è uguale ma di verso (e segno) opposto.

• Accelerazione tangenziale (dovuta alla variazione del modulo della velocità)

$$\vec{a}_t = \frac{d|\vec{v}|}{dt}$$

- Quantità di moto
 - Impulso della forza $\vec{p} = m\vec{v} \Rightarrow \frac{d\vec{p}}{dt} = \vec{F}_{ext} \Rightarrow \vec{F}dt = d\vec{p} \Rightarrow I = \vec{p}_f - \vec{p}_i = \int_{t_i}^{t_f} \vec{F} \cdot dt$
- Forza di attrito statico (per far sì che l'oggetto scenda) $\vec{F}_{di\ attrito\ statico} = \mu_s N = \mu_s mgcos(\theta) \le mgsin(\theta)$

• $\vec{s}(t) - \vec{s}(o) = \int \vec{v}(t)dt$ Modulo dell'accelerazione centripeta Modulo della velocità nel moto circolare uniforme • $\vec{v}(t) - \vec{v}(o) = \int \vec{a}(t)dt$

Moti

 $|\vec{v}| = \omega |\vec{r}|$

- Moto periodico $a(t) = -\omega^2 x(t) \Longrightarrow x(t) = A\cos(\omega t)$
- Moto armonico

$$m\frac{d^2x}{dt^2} + kx = 0 \Longrightarrow x(t) = A\cos(\omega t + \varphi)$$

• Pulsazione generale di una molla

Ciò che cambia la

(iniziale = subito dell'impulso; finale = subito

dopo l'impulso)

 $\omega^2 = \frac{k}{2}$

Energia

Energia meccanica

$$E = U + K$$

• Energia potenziale

$$U_{A\to B} = \Delta U = -\oint_A^B \vec{F} d\vec{s}$$

- \circ $\;$ Energia potenziale gravitazionale ad altezza h dalla superficie della Terra U=mgh
- o Energia potenziale gravitazionale

$$U = -\frac{Gm_1m_2}{\pi}$$

o Energia potenziale immagazzinata in una molla (pag. 176)

Energia potenziale imm
$$U = \frac{1}{2}k(\Delta x)^2$$

Energia cinetica

$$K = \frac{1}{2}mv^2$$

 $K = \frac{1}{2}mv^2$

direzione opposta

- Forza elastica $F = -K\Delta l = 0$ $K(l l_{riposo})$
- Energia dissipata $E_f = E_i - E_{dissipata}$
- Lavoro di una forza (elementare)

$$dW = \vec{F} d\vec{s}$$

$$0 = Fas$$

$$0 \quad \vec{r} \perp d\vec{s} \Rightarrow L = 0$$

• Lavoro (conta solo la componente della forza nella direzione dello spostamento)
$$\mathbb{R}\ni W=\oint_{A}^{B}\vec{F}d\vec{s}=\int_{r_{a}}^{r_{b}}Fdr\overset{F=cost.}{\Longrightarrow}F\int_{r_{a}}^{r_{b}}dr=F(r_{b}-r_{a})=F\Delta r$$

- Teorema delle forze vive dW = dK
- Teorema dell'energia cinetica (<u>sempre valida</u>) $W = W_c + W_{nc} = \Delta K$
- 👚 Forza conservativa (<u>il lavoro fatto per andare da A a B, dipende solo dalla posizione</u> di quest'ultimi, e non dalla traiettoria, né dal tempo, dalla velocità...)

$$\circ \ \ W = -\Delta U = -(U_{finale} - U_{iniziale}) = U_{iniziale} - U_{finale}$$

Esempi di forze conservative

(indipendente dalla posizione nello spazio)

- · Qualsiasi forza costante
 - o Forza peso o Forza gravitazionale
- Forza parallela ad un asse \boldsymbol{x} e dipende solo dalla coordinata xo Forza elastica
- $L = \int_{r_a}^{r_b} \!\! F dr$ dipende solo da
- Forza elettrostatica

Forze non conservative

 $W_{nc} = E_{finale} - E_{iniziale} = (K_{finale} + U_{finale}) - (K_{iniziale} + U_{iniziale})$

Momento angolare o momento della quantità di moto

$$\mathbb{R}^{3} \ni \vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$$

$$\circ \quad \vec{r} \parallel \vec{p} \Longrightarrow \vec{L} = 0 \Longleftrightarrow \vec{r} \parallel \vec{v} \Longrightarrow \vec{L} = 0$$

Equazioni della dinamica (di equilibrio statico)

$$ightharpoonup \circ \vec{F} = rac{d ec{p}}{dt}$$
 dice se un oggetto si muove

 \bigstar • Momento delle forze esterne $\vec{M} = \vec{r} \times \vec{F} = \frac{d\vec{L}}{dt}$ dice se un oggetto ruota

Teorema: \vec{F} è conservativa se:

$$\circ \frac{\partial}{\partial y} F_x = \frac{\partial}{\partial x} F_y$$

$$\circ \frac{\partial}{\partial z} F_x = \frac{\partial}{\partial x} F_z$$

$$\circ \frac{\partial}{\partial z} F_y = \frac{\partial}{\partial y} F_z$$

$$W = \int_0^{+\infty} P dt$$

Potenza

$$P = \frac{dW}{dt}$$

$$P = \vec{F} \cdot \vec{v}$$

Studio di sistemi compositi (oggetti non puntiformi)

$$r_{cm} = \frac{\sum_{i=1}^{n} \vec{r_i} m_i}{\sum_{i=1}^{n} m_i} = \sum_{i=1}^{n} \frac{\vec{r_i} m_i}{M_{tot}} = \frac{1}{M_{tot}} \int_{volume} \vec{r} dm$$
• Quantità di moto (derivando la precedente e moltiplicando entrambi i membri per M_{tot})

$$\vec{p} = \vec{v}_{cm} M_{tot} = \sum_{i=1}^{n} \vec{p}_i = \sum_{i=1}^{n} m_i \vec{v}_i$$

$$\vec{p} = \vec{v}_{cm} M_{tot} = \sum_{i=1}^{n} \vec{p}_{i} = \sum_{i=1}^{n} m_{i} \vec{v}_{i}$$
 applicata a qualsiasi punto
$$(\textit{derivando la precedente})$$

$$\sum_{i=1}^{n} (\vec{F}_{ext_{i}}) = \frac{d}{dt} \vec{p}_{tot} = \frac{d}{dt} (M_{tot} \vec{v}_{cm}) = M_{tot} \vec{a}_{cm}$$

Se il C.M. è fermo, $\sum \vec{F}_{ext} = 0$, <u>ovunque</u> esse siano applicate. Ma se $\vec{r} \times \vec{F}_{ext} \neq 0$, allora il corpo ruota.

Analogie

Traslazionale	Rotazionale
\vec{a}	$\vec{\alpha}$
\vec{v}	$\vec{\omega}$
m	I
\vec{F}	$\vec{r}\times\vec{F}$
\vec{p}	\vec{L}_0

Anello ideale

Cilindro/disco

Asta sottile

Alcuni momenti di inerzia

Esempi di analogie

_	
$\vec{F} = m\vec{a}$	$\vec{r} \times \vec{F} = I\vec{\alpha}$
$\vec{p} = m\vec{v}$	$\vec{L}_0 = I\vec{\omega}$
$E_k = \frac{1}{2}mv^2$	$E_k = \frac{1}{2}I\omega^2$

Proiettile $I=mr^2$

l'altezza h non conta

Moti rotazionali

•
$$\vec{p}_{tot} = \vec{p}_{cm} \Longrightarrow \vec{p}_{intorno\ al\ cm} = 0$$

•
$$\vec{L}_{0\,tot} = \vec{L}_{0\,cm} + \vec{L}_{0\,intorno\,al\,cm}$$

• $E_{k_{tot}} = E_{k_{cm}} + E_{k_{intorno\,al\,cm}}$

•
$$E_{k_{tot}} = E_{k_{cm}} + E_{k_{intorno\ al\ cm}}$$

• Coordinate rispetto al centro di massa
$$\vec{r}_i = \vec{r}_{cm} + \vec{r}_i^{\ \prime}$$

Momento di inerzia _

$$I = \sum_{i=1}^n m_i \vec{r_i}'^2 = \int_{volume} r^2 dm$$
• Momento angolare di un oggetto composito

$$\overline{L}_0 = \sum_{i=1}^n m_i {ec r_i}'^2 \overline{\omega} = I \overline{\omega}$$
• Equazioni della dinamica

$$\qquad \qquad \sum \vec{F}_{ext} = M_{tot} \vec{a}_{cm}$$

• Momento di torsione

 $rac{1}{2}$ angle Momento delle forze esterne $\sum \vec{M} = \sum \vec{r} \times \vec{F}_{ext} = I \vec{\alpha}$

• Accelerazione angolare

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt} = \frac{d^2\theta}{dt^2}$$
• Energia cinetica rotazionale

• En. cinetica traslazionale

$$E_k = \frac{1}{2}I\omega^2$$

Urti

• Teorema degli assi paralleli

Rotolamento

• Equazioni del rotolamento

$$\uparrow \circ v = \omega r$$

$$\Rightarrow \alpha = \alpha r \Rightarrow \alpha = \frac{a}{r}$$

•
$$\vec{v}_{assoluta} = \vec{v}_{cm} + \vec{\omega} \times \vec{R}$$

issoluta =
$$\vec{v}_{cm} + \vec{\omega} \times \vec{\kappa}$$

 \circ Con $\vec{v}_{contatto} = 0$ si ha rotolamento **puro**.
 $\vec{v}_{cm} = -\vec{\omega} \times \vec{R}$

• Momento di inerzia di un rotolamento

$$I = mk^2$$

1	
Cilindro	$k = \frac{r}{\sqrt{2}}$
Sfera	$k=\sqrt{2/5}r$
Anello	k = r

Alcuni raggi rotatori

Scivolamento Rotolamento Ogni punto ha \vec{v} uguale II punto di contatto ha $\vec{v}=0$. . Si può approssimare per dt o 0 come una rotazione attorno al punto di contatto

Esempi di forze non conservative

(dipendenti dalla traiettoria)

- Forza di attrito dinamico
- Forza di attrito viscoso
- Forze vincolari

Equazioni della dinamica

1.
$$\sum \vec{F}_{ext} = \frac{d\vec{p}}{dt} = M_{tot}\vec{a}_{cm}$$

2.
$$\sum \vec{M} = \sum \vec{r} \times \vec{F} = \frac{d\vec{L}}{dt} = I\vec{\alpha}$$

Condizioni d'equilibrio

1.
$$\sum_{i} \vec{F}_{ext} = 0$$

$$2. \quad \sum \vec{r} \times \vec{F} = 0$$

Elettromagnetismo

Forza di Coulomb

For a discontinuous
$$\vec{F}=\pm k \frac{q_1q_2\vec{e}_r}{r^2} \Longrightarrow \Delta U = -\oint\limits_A^B \vec{F} \cdot d\vec{l} \Longrightarrow U = \frac{kq_1q_2}{r}$$
Intensità del campo elettrico nel punto q

• Costante di Coulomb

(dove q è la carica puntiforme inserita per misurare l'intensità, e Q è la carica della fonte)

$$\vec{E} = \frac{\vec{F}}{q} = \frac{kQ\vec{e}_r}{r^2}$$

• Volume della sfera
$$V = \frac{4}{3}\pi r^3$$
• Carica
$$Q = \rho V = \sigma A = \lambda l$$

• Campo elettrico di una distribuzione continua di carica

$$\vec{E} = \int \frac{kdq}{r^2} \vec{e}_r \xrightarrow{dq = \rho dv} \int_{volume} \frac{k\rho dv}{r^2} \vec{e}_r$$

• Flusso attraverso una superficie orientata $d\Phi_E = \vec{E} \cdot \vec{n} \, ds$

Teorema di Gauss (applicabile solo a figure simmetriche)

$$\Phi_E = \frac{Q}{\varepsilon_0} = \oint_{superficie} \vec{E} \cdot \vec{n} \, ds = \int_{volume} \frac{\rho dv}{\varepsilon_0}$$
• Inoltre:
$$\Phi_E = EA$$
se il campo è costante si può portare

normale del campo

fuori dall'integrale, e $\oint_s ds$ è la superficie.

$$V = \frac{U}{q} = \frac{kQ}{r}$$

Alcune superfici di solidi

- Cubo: $A = 6l^2$
- Sfera: $A=4\pi r^2$

• Differenza di potenziale

$$\Delta V_{A\to B} = V_B - V_A = -\oint_A^B \vec{E} \cdot d\vec{l}$$

• Potenziale in A associato ad E generato da distr. carica cont.

$$V_A = \int_{volume} \frac{kdq}{r} \frac{dq = \rho dv}{\int_{volume}} \int_{volume} \frac{k\rho}{r} dv = k \int_{volume} \frac{\rho(x,y,z,t)}{r(x,y,z,t)} dv$$
• Condizioni d'equilibrio elettrostatico

- - $\circ \ \vec{E}_{interno} = 0$
 - Cariche in eccesso solo alla superficie.
 - $\circ \quad E = \frac{\sigma}{\varepsilon_0}$
- Proprietà dei collegamenti serie/parallelo

	Serie	Parallelo
Resistenze		
Condensatori	$\begin{aligned} Q_1 &= Q_2 \\ V_1 &= V_2 \Leftrightarrow C_1 = C_2 \end{aligned}$	$\begin{aligned} Q_1 \neq Q_2 &\Leftrightarrow C_1 \neq C_2 \\ Q_{tot} &= Q_1 + Q_2 \end{aligned}$

- dU = dW = Vdq
- Energia dentro un condensatore a facce piane parallele
- Costante dielettrica dell'aria

K = 1

Capacità di un condensatore con dielettrico

 $C_{con\ dielettrico} = C \cdot K$

- Carica che attraversa la superficie ds nel tempo dt $Q_{tot}(dt) = n \cdot Volume \cdot q = n \cdot vds \cdot q$
- Densità di corrente

$$\vec{J} = qn\vec{v}$$
$$J = \frac{I}{s}$$

• Flusso di corrente attraverso la superficie ds

 $\vec{J} \perp \vec{n} \Rightarrow Flusso = 0$ Legge di Ohm

V = RI

- Legge di Joule (potenza in un conduttore) $P = VI = RI^2$
- Forza magnetica $(\vec{F} \perp \vec{v})$

 $\vec{F} = q\vec{v} \times \vec{B} = i\vec{l} \times \vec{B}$

Forza di Lorentz

 $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B} = q\vec{E} + i\vec{l} \times \vec{B}$ Con \vec{B} costante, non si crea $\vec{E} \Rightarrow \vec{E} = 0$

- Momento di un dipolo magnetico $\mu = i(\pi a^2)$
- Legge di Biot-Savart

$$\begin{split} d\vec{B} &= \frac{\mu_0}{4\pi}i \cdot \frac{d\vec{l} \times \vec{e_r}}{r^2} = \frac{\mu_0}{4\pi}i \cdot \frac{d\vec{l} \times \vec{r}}{r^3} \\ \bullet \quad \text{Legge di Ampère (sulla <u>circuitazione del perimetro</u>)} \end{split}$$

$$\oint_{\substack{linea\\chiuse}} \vec{B} \cdot d\vec{l} = \mu_0 i$$

Variazione del campo elettrico di alcune figure simmetriche

		E dentro	E fuori	Legenda
	Punto		$\pm \frac{kq}{r^2} \propto \frac{1}{r^2}$	q è la carica del punto. r è la distanza dove si effettua la misura.
	Sfera fisso	$\frac{kQr}{R^3} = \frac{\rho}{3\varepsilon_0} r \alpha r$	$\frac{kQ}{R^2}~\alpha~\frac{1}{r^2}$	r: raggio interno, dove si effettua la misura. R: raggio esterno, della sfera.
	Cilindro	$\frac{r\lambda}{2\varepsilon_0} \alpha r$	$\frac{\lambda}{2\pi R\varepsilon_0} \propto \frac{1}{r}$	r: raggio interno, dove si effettua la misura. R: raggio esterno, dove si effettua la misura.
	Linea		$\frac{\lambda}{2\pi R\varepsilon_0} \; \alpha \; \frac{1}{r}$	R: raggio esterno, dove si effettua la misura.
	Piano		$\frac{\sigma}{2\varepsilon_0}$ α 1	
()	Anello (infinitesimo) (sull'asse di simmetria uscente)	$x \ll r$ $2\pi\sigma K \alpha 1$	$\frac{x \gg r}{kQx} \frac{1}{\sqrt{(a^2 + x^2)^3}} \alpha \frac{1}{x^2}$	x: distanza dal centro dell'anello. Vicino all'asse, tutti i contributi si annullano. - Distante dall'asse di simmetria, l'anello è come una carica puntiforme: $E_y=E_z=0$.
	Dipolo elettrico		$E \approx k \frac{p}{x^3}$	A grande distanza.
				Come se le cariche fossero unite

• Momento di un dipolo elettrico $p = (2q) \cdot a$

Proprietà dei vari tipi di condensatori

Energia per unità di volume
in un condensatore a facce
piane parallele

 $C = 4\pi \varepsilon_0 r$

ale and a left and a l			
	Campo elettrico	Potenziale	Capacità
A lastre piane indefinite parallele	$E = \frac{\sigma}{\varepsilon_0}$	$V = Ed = \frac{\sigma}{\varepsilon_0} \cdot d$	$C = \frac{A\varepsilon_0}{d}$
Cilindrico	$E = \frac{\lambda}{2\pi R \varepsilon_0}$	$V_{rR} = V_R - V_r = -\frac{\lambda}{2\pi\varepsilon_0} \cdot \ln(\left \frac{R}{r}\right)$	$C = \frac{A\varepsilon_0}{d} = \frac{2\pi\varepsilon_0 h}{\ln(\left \frac{R}{r}\right)}$
Sferico	$E = \frac{kQ}{R^2}$	$V_{rR} = V_R - V_r = KQ\left(\frac{1}{R} - \frac{1}{r}\right)$	$C = \frac{4\pi\varepsilon_0}{\frac{1}{R} \cdot \frac{1}{r}} = \frac{4\pi\varepsilon_0 Rr}{r - R}$

Caratteristiche dei principali componenti elettrici

	P P -		
	Resistenza	Condensatore	Induttanza
Formula	$R = \frac{\rho l}{s} = \frac{l}{\sigma s}$ $\rho: resistività$ $\sigma: conducibilità$	$C = \frac{Q}{V}$	$L = \frac{\Phi_B}{i} = \frac{\varepsilon}{\frac{di}{dt}}$
Tensione		$V = \frac{Q}{C} = \frac{\int i(t) dt}{C}$	$V = L \frac{di(t)}{dt}$
Energia immagazzinata	$U_R = \int_{t_1}^{t_2} R \cdot (I(t))^2 dt$	$U_C = W = \frac{Q^2}{2C} = \frac{1}{2}CV^2$	$U_L = \frac{1}{2}Li^2$

Variazione del campo magnetico di alcune figure simmetriche

	B dentro	B fuori	Legenda		
Cilindro / filo (per il filo, B solo fuori)	$\frac{\mu_0 ir}{2\pi R^2} \alpha \frac{1}{\alpha}$	$\frac{\mu_0 i}{2\pi r}$ $\alpha \frac{1}{r}$ FILO	r: raggio interno/esterno, dove si effettua la misura. R: raggio del cilindro conduttore		
Spira (infinitesima) (sull'asse di simmetria uscente)	$\frac{\mu_0 i}{2a}$	$\frac{\mu_0 i a^2}{2(a^2 + x^2)^{3/2}}$	a: raggio della spira. x: distanza dal centro di simmetria.		
Dipolo magnetico		$B \approx \frac{\mu_0}{2\pi} \cdot \frac{\mu}{x^3}$	A grande distanza. Come se la spira diventasse un punto nel quale non circola corrente.		
Toroide	$\frac{\mu_0 Ni}{2\pi a} \ (al\ centro\ del\ conduttore)$	0	N: n° di spire. i: contributi di correntie di ogni spira. I = Ni: corrente totale.		
Solenoide	$\frac{\mu_0 I}{I} = \frac{\mu_0 N i}{I} = \mu_0 \ ni$	0	$n = \frac{N}{L} n^{\circ} di$ spire per unità di lunghezza 1: corrente totale.		

• Densità di corrente
$$\rho = \frac{i}{4rea} = \frac{i}{Volume}$$

$$\Phi_B = \oint_{superficie} \vec{B} \cdot \vec{n} \, ds$$

• Con campo magnetico costante:

$$\Phi_B = BA$$
• Legge di Faraday
$$f.e.m. = \varepsilon = -\frac{d}{dt} \Phi_{\substack{B \text{ superficie} \\ concatenata}}$$
• Corrente

 $I = \frac{V}{R} = \frac{\varepsilon}{R}$ • Forza di attrito elettro-magnetico $(v) = ilB = \frac{B^2 l^2}{R} \cdot v$

Coefficiente di autoinduzione

• Costante di tempo $\tau = RC = \frac{L}{R}$

$$W = U = \int_{0}^{+\infty} Pdt$$

Solenoide

• Induttanza di un solenoide ($S=S_{uperficie}$ come in figura sopra)

Densità di energia in un solenoide $\frac{U_L}{Volume} = \frac{1}{2} \cdot \frac{B^2}{\mu_0}$

· Flusso magnetico all'interno di un solenoide $\Phi_B = N \cdot (B(t) \cdot A_{rea})$

Principi della dinamica o leggi di Newton

1.
$$\sum F_{ext} = 0 \Rightarrow a = 0$$

Un corpo mantiene il proprio stato di quiete o di moto rettilineo uniforme, finché una forza non agisce su di esso.

$$2. \sum \mathbf{F} = \mathbf{ma} = \frac{dp}{dt}$$

L'accelerazione di un corpo è direttamente proporzionale e nella stessa direzione della forza netta agente su di esso, è invece inversamente proporzionale alla sua massa.

3. $F_{1\to 2} = F_{2\to 1}$

Per ogni forza che un corpo A esercita su di un altro corpo B, ne esiste istantaneamente un'altra uguale in modulo e direzione, ma opposta in verso, causata dal corpo B che agisce sul corpo A.

Principi di conservazione

	Analitico			Riassuntivo	Visivo
Quantità di moto $(\vec{p}=m\vec{v})$	dt in	finitesimo	Δt finito	$\vec{p} = cost. \Longrightarrow \vec{F}_{ext} = 0$	Il vettore $\vec{p}=m\vec{v}$ deve rimanere costante in modulo e in direzione: l'andamento di \vec{p} deve essere rettilineo ed uniforme. Può conservarsi su alcuni assi: Può conservarsi su se le forze esterne agiscono solo su y, come la forza peso mg o reazioni vincolari al piano.
			$1.\vec{F}_{ext} = 0 \Rightarrow \Delta \vec{p} = 0$ $2.\vec{F}_{ext} \neq 0 \Rightarrow \Delta \vec{p} \neq 0$ (almeno una componente diversa da zero)	$(\sum \tilde{F}_{ext} = \frac{d\tilde{p}}{dt})$	
	Corpi liberi Corpi vincolati Urti			 p non si conserva in presenza di un vincolo. La molla non è in grado di creare 	
	$ec{p}$ si conserva	$ec{p}$ può non conserva	7.5		$\vec{F}_{impulsiva}$.
Energia meccanica (E = U + K)	CI SONO TOTZE HON CONSERVATIVE CHE HON TANNO TAVOTO - V - VA 1 43 - 0		$E = cost. \Rightarrow W_{ext} = 0$ $(W = \Delta K = -\Delta U)$	Negli urti anelastici non si conserva, in quanto durante l'urto avviene una deformazione che trasforma l'energia meccanica in altre forme di energia. In quelli elastici si conserva. Non si conserva in presenza di attrito.	
	Elastici	Anelastici	Urti		(esempio delle palline di pongo: se l'urto è
	E_k si conserv	a E_k non si conserv	ra		abbastanza forte, le due palline si uniscono, la massa cambia e di conseguenza cambia l'energia cinetica $\frac{1}{2}mv^2 = \frac{1}{2}m_1v^2 + \frac{1}{4}m_2v^2$)
Momento angolare $(\vec{L} = \vec{r} \times \vec{p})$	$egin{align*} \bullet \ \vec{F} &= 0 \ (non\ ci\ sono\ forze) \ \bullet \ \vec{r} &= 0\ (\vec{F}\ \dot{e}\ applicata\ al\ polo) \ \bullet \ \vec{r}\ \parallel \ \vec{F} \ \end{array}$		$\vec{L} = cost. \Rightarrow \vec{M} = 0$ $(\sum \vec{M} = \sum \vec{r} \times \vec{F} = \frac{d\vec{l}}{dt}$	Si conserva non appena si sceglie il polo nel punto nel quale vengono esercitate forze non nulle. Si conserva nel moto circolare uniforme, perché $\vec{r} \parallel \vec{F}_{ext} = \vec{F}_{centripeta}$.	

Esempi

Tipi di energia

Utility

Formule degli angoli che differiscono di un angolo retto

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

$$\operatorname{sen}\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$$

Formule degli angoli complementari (la loro somma è un angolo retto)

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

$$\operatorname{sen}\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$

Formule degli angoli associati del terzo quadrante

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$\operatorname{sen}(\pi + \alpha) = -\operatorname{sen}\alpha$$

$$\tan(\pi + \alpha) = \tan \alpha$$

Formule degli angoli associati del secondo quadrante

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$\operatorname{sen}(\pi - \alpha) = \operatorname{sen}\alpha$$

$$\tan(\pi - \alpha) = -\tan\alpha$$

Formule degli angoli opposti

$$\cos(-\alpha) = \cos \alpha$$

$$\operatorname{sen}(-\alpha) = -\operatorname{sen}\alpha$$

$$\tan(-\alpha) = -\tan\alpha$$

Tan
$$\theta = \frac{\text{Opposite}}{\text{Adjacent}}$$

Multipli e sottomultipli

а	atto
f	femto
p	pico
n	nano
μ	micro
m	milli
k	kilo
M	mega
G	giga
T	tera
P	peta
E	еха
	f p n μ m K M G T

Unità di misura

\vec{p}	Quantità di moto	$kg \cdot m \cdot s^{-1}$
F	Forza	$N = kg \cdot m \cdot s^{-2}$
W	Lavoro	$J = N \cdot m = kg \cdot m^2 \cdot s^{-2} = V \cdot C$
Е	Energia	$J eV = 1,60217646 \cdot 10^{-19} J kWh = 3,6 \cdot 10^{6} J$
\vec{L}	Momento angolare	$kg \cdot m^2 \cdot s^{-1}$
\overrightarrow{M}	Momento delle forze esterne	$N \cdot m \neq J$
P	Potenza	$W = J \cdot s^{-1} = kg \cdot m^2 \cdot s^{-3} = V \cdot A$ = $\Omega \cdot A^2$
I	Momento di inerzia	$kg \cdot m^2$
ω	Velocità angolare	$s^{-1} = Hz [rad \cdot s^{-1} = rad \cdot Hz]$
α	Accelerazione angolare	$s^{-2} = Hz^2 \left[rad \cdot s^{-2} = rad \cdot Hz^2 \right]$
Q,q	Carica elettrica	$C = s \cdot A$
λ	Densità lineare	$kg \cdot m^{-1} = C \cdot m^{-1}$
σ	Densità superficiale	$C \cdot m^{-2}$
ρ	Densità volumica	$C \cdot m^{-3}$
Ε	Campo elettrico	$N \cdot C^{-1} = V \cdot m^{-1}$
Φ_E	Flusso del campo elettrico	$N \cdot m^2 \cdot C^{-1}$
$V, \Delta V$	Potenziale elettrico, $f.e.m.$, tensione elettrica	$V = J \cdot C^{-1} = m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$
I	Corrente	$A = C \cdot s^{-1} = V \cdot \Omega^{-1} = W \cdot V^{-1}$
R	Resistenza	$\Omega = V \cdot A^{-1} = m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
С	Capacità	$F = C \cdot V^{-1} = s^4 \cdot A^2 \cdot m^{-2} \cdot kg^{-1}$
L	Induttanza	$H = V \cdot s \cdot A^{-1} = m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$
В	Campo magnetico	$T = V \cdot s \cdot m^{-2} = kg \cdot s^{-2} \cdot A^{-1}$
Φ_B	Flusso del campo magnetico	$Wb = V \cdot s = m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$
Ī	Densità di corrente	$A \cdot m^{-2}$
p	Momento di dipolo magnetico	$A \cdot m^2 = J \cdot T^{-1}$
μ_0	Permeabilità magnetica del vuoto	$H \cdot m^{-1} = T \cdot m \cdot A^{-1}$
ε_0	Costante dielettrica del vuoto	$C^2 \cdot N^{-1} \cdot m^{-2}$
k	Costante di Coulomb	$N \cdot m^2 \cdot C^{-2}$

Valori di alcune costanti

$$\begin{array}{l} \mu_0 = 4\pi \cdot 10^{-7} \, \text{H/m, circa pari a} \, \mu_0 = 1,25663706144... \cdot 10^{-6} \, \text{H/m.} \\ \varepsilon_0 = 8,85418781762 \cdot 10^{-12} \, \, \text{F/m} \end{array}$$

$$k = \frac{1}{4\pi\varepsilon_0} = 8.987~551~787~368~176~4 \cdot 10^9 \mathrm{N~m^2~C}^{-2}$$