机器学习第二次作业

董浩宇 502023150001

1. 实现方案

1.1 DataLoader

为了更加方便的实现训练数据的读取,分割以及特征缩放,在本次作业中设计了dataLoader类,使用此类对数据集进行处理。

本次作业中使用到了所有算法都使用DataLoader类来载入、分割、缩放数据。本次作业默认使用标准化特征缩放,十折分割验证。

1.2 softmax回归

softmax多元回归模型公式可以表示为:

$$P(y=k|x; heta) = rac{e^{ heta_k^Tx}}{\sum_{j=1}^K e^{ heta_j^Tx}} = \sigma_k(x, heta), k=1,2,\ldots,K$$

预测分类 \hat{y}^* 为:

$$rg\max_k p_k(y|x^*,\hat{ heta}), k=1,2,\ldots,K$$

也就是说,假设现在的数据集中标签种类数为K,即创建K个线性回归模型,将数据集特征输入线性回归模型,得到K个结果,那个标签的结果大,就认为当前特征对应此标签。softmax的作用是扩大K个线性回归模型输出结果的差距。

在代码实现中:数据集共有11个特征·加上一个偏置项·线性回归的输入共有12维。因为酒分为0~9十个等级·故需要建立10个线性回归模型·这里为了方便运算·我直接创建了一个12输入·10输出的线性回归模型:

$$\hat{y} = x\theta$$

N为训练集中data数量,其中 \hat{y} 为N*10维向量,表示特征属于各个标签的预测概率, θ 为12*10维矩阵,x为N*12维向量,表示数据集里的特征。使用这样的写法,只需要一次矩阵运算,就可以通过线性回归直接算出来训练集中所有data对于十个标签的概率。

对于模型的训练,使用梯度下降法,梯度的计算方法为:

$$rac{\partial J(heta)}{\partial heta_l} = -\sum_{i=1}^N [x_i 1 y_i = l - \sigma_l(x_i, heta)]$$

如果直接使用上面的公式,需要用到循环,然而python的循环很慢,使用循环的话是不现实的。为了解决这个问题,我这里使用了one-hot编码,编码方式为:

特征\品质	0	1	2	3	4	5	6	7	8	9
х0	1	0	0	0	0	0	0	0	0	0

特征\品质	0	1	2	3	4	5	6	7	8	9
x1	0	1	0	0	0	0	0	0	0	0
x2	0	0	1	0	0	0	0	0	0	0
х3	0	0	0	1	0	0	0	0	0	0
x4	0	0	0	0	1	0	0	0	0	0
x5	0	0	0	0	0	1	0	0	0	0
х6	0	0	0	0	0	0	1	0	0	0
x7	0	0	0	0	0	0	0	1	0	0
x8	0	0	0	0	0	0	0	0	1	0
x9	0	0	0	0	0	0	0	0	0	1

这样的话data的标签y也是一个10维的向量,也就是说,可以直接通过 $\hat{y}-y$ 来一下子计算出十个模型的loss,也可以通过

$$rac{\partial J(heta)}{\partial heta} = X^T(X heta - Y)$$

的公式直接计算出十个回归模型的梯度。(上面式子中,Y为N10的矩阵, $X\theta$ 也就是 \hat{y} ,也是N10的矩阵。)

使用这样的方法实现的代码速度巨快无比·10000次梯度下降只需要几秒钟·而且只需要在上一次作业的基础上改一下参数矩阵就可以了。

1.3 决策树

1.3.1 决策树的实现

在python中使用嵌套列表的方式去实现树形结构。在作业的代码中,使用一个node class来表示树中的节点,每一个节点可以指向另外两个节点,从而生成二叉决策树。在node中保存一些信息,用来表示此节点的类型(leaf root inner),保存此节点决策使用的特征以及特征的划分方式。

```
class node():
    def __init__(self,inputs...):
        infomations...

l_n = None(代表子节点1)
    r_n = None(代表子节点2)
    self.next = [l_n,r_n]
```

因为node可以指向其他node,可以使用递归的方式进行生成以及遍历。 遍历生成的伪代码如下:

```
def generate_tree(inputs)

if 停止递归:
```

将此node设置为leaf型 return

L_node = node(分给子节点的数据以及特征,inner型)
now_node.子节点1 = generate_tree(L_node)

R_node = node(分给子节点的数据以及特征,inner型)
now node.子节点2 = generate tree(R node)

return now_node

使用这样的递归方法·只需要按照PPT上的停止递归条件·以及数据分割条件·就可以很方便地生成各种各样的二叉决策树。

决策树的遍历很简单,只需要按照不同节点的条件进行递归即可,直到递归到leaf节点为止。

1.3.2 C4.5决策树

特征分割

由于在本次作业的任务中,所有的特征都是连续特征,故对于每个特征,都需要找到能够使其分割的信息增益比最大的分割点。这里采用的分割方式为:给定样本集D和连续特征a,假定a在D上出现了n个不同的取值,将这些值从小到大排列 a^1,a^2,\ldots,a^n ,基于划分点t 可将 D 分为子集 D_t^- 和 D_t^+ ,其中 D_t^- 包含哪些包含在属性a上取值不大于t的样本, D_t^+ 包含哪些包含在属性a上取值大于t的样本,因此对于连续属性a,我们考虑N-1个元素候选划分点集合:

$$T_a=rac{a^i+a^{i+1}}{2}|1\leq i\leq n-1$$

在这样的划分点集合中,把每个划分点都尝试一遍,找到能够最大化特征a在训练集D上特征增益的划分点,作为此特征的划分点。 其中信息增益比的计算方式为:

$$g_R(D,A) = rac{g(D,A)}{H_A(D)}$$

递归停止条件 按照PPT上的 $if\ then$ 规则进行

- 1. **if** \mathcal{D} 属于同类别 \mathcal{C}_k **then** node 标为 \mathcal{C}_k 类叶节点, 返回 T
- 2. if $A = \phi$ then 将 node 标为叶节点,类别为 D 中最多的类,返回 T
- 3. 选择最优特征 $A^* = arg \max_{A \in A} g_R(\mathcal{D}, A)$ s.t. $g(\mathcal{D}, A) > \alpha$
- 4. if $g_R(\mathcal{D}, A^*) < \varepsilon$ then 将 node 标为叶节点,类别为 \mathcal{D} 中最多的类,返回 T
- 5. 依 $A^* = a_l$ 将 D 分割为若干子集 D_l
 - if $\mathcal{D}_l = \phi$ then 分支节点标为叶节点,类别为 \mathcal{D}_l 父辈中最多的类,返回 T
 - else
 以 T(D_l, A-A*) 为分支节点, 递归得到子树 T_l

1.3.3 CART决策树

CART的特征分割方法与C4.5完全相同,只不过判断分割点优劣的方式从信息增益比改为了基尼指数。其中基尼指数的计算方式为:

$$Gini_{index}(D,A) = \sum_{i=1}^n p(x \in D_i) Gini(D_i)$$

同时按照PPT上的 $if\ then$ 规则进行决策树的生成。

- 1. 计算 A 对 D 基尼指数,对 A 中的每个特征 A_m 的每个取值 a_l ,根据样本点对 $A_m=a_l$ 的输出为"是"或"否",将 D 分 割成 D_1 、 D_2 两个子集,计算 $A_m=a_l$ 时的基尼指数
- 2. A_m 取值数超过两种时,需要进行双化
- 3. 在 A 的所有特征 A_m 及其所有取值 a_l 中,最优切分点:

$$a_* = arg \min_{a_l \in A_m \in \mathcal{A}} Gini_{index}(\mathcal{D}, a_l)$$

4. 生成两个子结点并重复以上步骤,直到满足停止条件

这里选用的停止条件,是决策树中的节点中,剩余的训练样本个数小于K,也就是说只要某个节点的样本数量小于K,即设置此节点为叶子节点,K是可以设置的超参数。

2. 实验结果

2.1 softmax回归

十折交叉验证	0	1	2	3	4	5	6	7	8	9
预测成功率(无正则化)	0.48	0.42	0.42	0.42	0.48	0.44	0.38	0.45	0.41	0.38
——————————————— 预测成功率(有正则化)	0.48	0.40	0.41	0.41	0.47	0.43	0.35	0.46	0.40	0.37

十折平均预测成功率为: 0.43(无正则化)

十折平均预测成功率为: 0.42(有正则化)

完整的训练过程为下图,其中不同的颜色代表着不同的分割方式。可以看出各种分割方式在训练过程中的正确率提升效果相似,最后训练收敛。

从图像可以看出,随着训练步数的提高,模型的预测准确率也在稳步提高。

添加正则项与不添加正则项训练过程对比:

从这里的图像以及之前的数据来看,加上正则项之后对于模型的判断正确率并没有太大的影响,可以说基本上是一模一样。这里我认识其实是合理的,因为这个是分类问题,输出的绝对大小其实并不会影响分类的结果,因为他就是取输出最大的那个标签,所以模型参数整体变小其实对模型的表现没有影响。

为了验证我的猜想,我也看了看正则化与非正则化输出的参数,发现正则化后的参数绝对值都有变小,说明正则化是起到作用的,只不过是不影响分类结果。(由于参数实在太多,这里不方便展示,可以在代码中查看。)

2.2 C4.5决策树

十折交叉验证	0	1	2	3	4	5	6	7	8	9
预测成功率	0.43	0.39	0.42	0.46	0.40	0.40	0.48	0.45	0.48	0.57

十折平均预测成功率为: 0.45

2.3 CART决策树

十折交叉验证	0	1	2	3	4	5	6	7	8	9
—————— 预测成功率	0.46	0.48	0.44	0.54	0.48	0.48	0.48	0.51	0.50	0.50

十折平均预测成功率为: 0.49

2.4 不同算法对比

 算法	softmax(无正则)	C4.5	CART
十折预测成功率	0.43	0.45	0.49
 运算时间(s)	16.0	4.6	3.5

从对比中可以看出决策树类算法更加适合本次作业中的分类任务,决策树不仅预测成功率高,而且运算时间要小很多很多。对于C4.5和CART决策树的计算时间,可以看出这两种决策树的训练时间处于相似的量级,但是

C4.5用时要稍微多一点点,因为C4.5中需要用到信息增益比,而CART中用到的是基尼系数,基尼系数的计算量要比信息增益比小,所以CART算的也更快。

3. 影响酒质量的因素

softmax参数可视化为:

特征\品质	0	1	2	3	4	5	6	7	8	9
0	-0.0011364	-0.0011364	-0.0011364	0.0022686	0.0131689	0.0005462	-0.0187530	0.0090649	-0.0029284	0.0000421
1	0.0059580	0.0059580	0.0059580	0.0089772	0.0429742	0.0506185	-0.0938836	-0.0309711	-0.0019777	0.0063884
2	0.0012698	0.0012698	0.0012698	0.0011334	-0.0044796	-0.0062553	0.0055220	-0.0056709	0.0032410	0.0027001
3	0.0002022	0.0002022	0.0002022	-0.0000032	-0.0026836	-0.0115332	0.0051364	0.0056783	0.0025489	0.0002500
4	0.0025616	0.0025616	0.0025616	0.0030593	0.0042762	0.0082154	-0.0027593	-0.0217770	-0.0009441	0.0022448
5	0.0000336	0.0000336	0.0000336	0.0003429	-0.0012082	-0.0011488	0.0004736	0.0008323	0.0005633	0.0000440
6	-0.0000160	-0.0000160	-0.0000160	0.0000480	-0.0003365	0.0004460	-0.0001320	0.0000098	0.0000314	-0.0000186
7	0.0000264	0.0000264	0.0000264	0.0000642	0.0002455	0.0025332	-0.0003791	-0.0017966	-0.0007366	-0.0000098
8	0.0016260	0.0016260	0.0016260	0.0013598	0.0005407	-0.0226857	-0.0114500	0.0171056	0.0067004	0.0035512
9	0.0010970	0.0010970	0.0010970	0.0008710	-0.0035176	-0.0274498	0.0030505	0.0223085	0.0008109	0.0006354
10	-0.0002635	-0.0002635	-0.0002635	0.0000857	-0.0064924	-0.0595904	0.0275326	0.0286745	0.0104513	0.0001293

这个图看每一行,如果左右颜色差距大,说明品质对于这个特征反应较为明显。

softmax参数可视化可以看出,对葡萄酒质量影响大的因素为:10,1,3,4

C4.5决策树的前几层节点可视化为:

对葡萄酒质量影响大的因素为:10,4,5

CART决策树的前几层节点可视化为:

对葡萄酒质量影响大的因素为:10,4,1

综合三个模型,对于葡萄酒质量影响最大的因素为:

index	feature	特征
10	alcohol	酒精度
4	chlorides	氯含量
1	volatile acidity	