The characteristic polynomial (\(\lambda \) acronymref | definition | CP \(\rangle \)) is

$$\begin{split} p_B(x) &= \det(B - x \, I_2) \\ &= \left| \begin{array}{cc} 2 - x & -1 \\ -1 & 1 - x \end{array} \right| \\ &= (2 - x)(1 - x) - (1)(-1) \, \left\langle \text{acronymref}|\text{theorem}|\text{DMST} \right\rangle \\ &= \left(x - \frac{3 + 3i}{2} \right) \left(x - \frac{3 - 3i}{2} \right) \end{split}$$

where the factorization can be obtained by finding the roots of $p_B(x) = 0$ with the quadratic equation. By $\langle \text{acronymref} | \text{theorem} | \text{EMRCP} \rangle$ the eigenvalues of B are the complex numbers $\lambda_1 = \frac{3+3i}{2}$ and $\lambda_2 = \frac{3-3i}{2}$.

El polinomio característico (\langle acronymref | definition | CP \rangle \right) es

$$\begin{split} p_B(x) &= \det(B - x \, I_2) \\ &= \left| \begin{array}{cc} 2 - x & -1 \\ -1 & 1 - x \end{array} \right| \\ &= (2 - x)(1 - x) - (1)(-1) \, \left\langle \text{acronymref} | \text{theorem} | \text{DMST} \right\rangle \\ &= \left(x - \frac{3 + 3i}{2} \right) \left(x - \frac{3 - 3i}{2} \right) \end{split}$$

donde la factorización puede ser obtenida encontrando las raices de $p_B(x)=0$ con la ecuación cuadrática. Por $\langle \operatorname{acronymref} | \operatorname{theorem} | \operatorname{EMRCP} \rangle$ los eigenvalores de B son los numeros complejos $\lambda_1 = \frac{3+3i}{2}$ and $\lambda_2 \frac{3-3i}{2}$.

Contributede by Robert Beezer

Contribuido por Robert Beezer

Traducido por Felipe Pinzón