BNE and Auction Theory Homework.

- 1. For two agents with values U[0,1] and U[0,2], respectively:
 - (a) show that the first-price auction is not socially optimal in BNE.
 - (b) give an auction with "pay your bid if you win" semantics that is.
- 2. What is the virtual value function for an agent with value U[0,2]?
- 3. What is revenue optimal single-item auction for:
 - (a) two agents with values U[0,2]? n agents?
 - (b) two agents with values U[a,b]?
 - (c) two values U[0,1] and U[0,2], respectively?
- 4. For n agents with values U[0,1] and a *public good*, i.e., where either all or none of the agents can be served,
 - (a) What is the revenue optimal auction?
 - (b) What is the expected revenue of the optimal auction?(use big-oh notation)

http://jasonhartline.com/MDnA/

Bayesian Mechanism Design

Jason D. Hartline Northwestern University

July 28, 2014

Vignettes from Manuscript
Mechanism Design and Approximation

http://jasonhartline.com/MDnA/

Goals for Mechanism Design Theory _____

Mechanism Design: how can a social planner / optimizer achieve objective when participant preferences are private.

Goals for Mechanism Design Theory:

- Descriptive: predict/affirm mechanisms arising in practice.
- Prescriptive: suggest how good mechanisms can be designed.
- Conclusive: pinpoint salient characteristics of good mechanisms.
- Tractable: mechanism outcomes can be computed quickly.

Goals for Mechanism Design Theory _____

Mechanism Design: how can a social planner / optimizer achieve objective when participant preferences are private.

Goals for Mechanism Design Theory:

- Descriptive: predict/affirm mechanisms arising in practice.
- Prescriptive: suggest how good mechanisms can be designed.
- Conclusive: pinpoint salient characteristics of good mechanisms.
- Tractable: mechanism outcomes can be computed quickly.

Informal Thesis: *approximately optimality* is often descriptive, prescriptive, conclusive, and tractable.

Example 1: Gambler's Stopping Game ___

A Gambler's **Stopping Game**:

- sequence of n games,
- ullet prize of game i is distributed from F_i ,
- prior-knowledge of distributions.

On day i, gambler plays game i:

- realizes prize $v_i \sim F_i$,
- chooses to keep prize and stop, or
- discard prize and continue.

Example 1: Gambler's Stopping Game ___

A Gambler's **Stopping Game**:

- sequence of n games,
- \bullet *prize* of game i is distributed from F_i ,
- prior-knowledge of distributions.

On day i, gambler plays game i:

- realizes prize $v_i \sim F_i$,
- chooses to keep prize and stop, or
- discard prize and continue.

Question: How should our gambler play?

Optimal Strategy _____

Optimal Strategy:

- threshold t_i for stopping with ith prize.
- solve with "backwards induction".

Optimal Strategy -

Optimal Strategy:

- threshold t_i for stopping with ith prize.
- solve with "backwards induction".

Discussion:

- Complicated: n different, unrelated thresholds.
- Inconclusive: what are properties of good strategies?
- Non-robust: what if order changes? what if distribution changes?
- Non-general: what do we learn about variants of Stopping Game?

Threshold Strategies and Prophet Inequality -

Threshold Strategy: "fix t, gambler takes first prize $v_i \geq t$ ".

(clearly suboptimal, may not accept prize on last day!)

Threshold Strategies and Prophet Inequality.

Threshold Strategy: "fix t, gambler takes first prize $v_i \geq t$ ".

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that $\Pr[$ "no prize"]=1/2,

 $\mathbf{E}[\text{prize for strategy } t] \geq \mathbf{E}[\max_i v_i] / 2.$ [Samuel-Cahn '84]

Threshold Strategies and Prophet Inequality.

Threshold Strategy: "fix t, gambler takes first prize $v_i \geq t$ ".

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that $\Pr[$ "no prize"]=1/2,

$$\mathbf{E}[\text{prize for strategy } t] \geq \mathbf{E}[\max_i v_i] / 2.$$
[Samuel-Cahn '84]

Discussion:

- *Simple:* one number *t*.
- Conclusive: trade-off "stopping early" with "never stopping".
- Robust: change order? change distribution above or below t?
- General: same solution works for similar games: invariant of "tie-breaking rule"

Prophet Inequality Proof _____

- 0. Notation:

 - $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}[\max]$:

2. Lower Bound on **E**[prize]:

Prophet Inequality Proof ____

- 0. Notation:

 - $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

2. Lower Bound on **E**[prize]:

Prophet Inequality Proof _

- 0. Notation:
 - $\bullet \ q_i = \Pr[v_i < t].$
 - $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

Prophet Inequality Proof _

0. Notation:

- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\text{prize}] \ge (1-x)t +$$

Prophet Inequality Proof ___

0. Notation:

- $\bullet \ q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\mathrm{prize}] \geq (1-x)t + \sum\nolimits_i \mathbf{E}\big[(v_i - t)^+ \ | \ \mathrm{other} \ v_j < t\big] \ \mathbf{Pr}[\mathrm{other} \ v_j < t]$$

Prophet Inequality Proof _

0. Notation:

- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\mathrm{prize}] \geq (1-x)t + \sum\nolimits_i \mathbf{E}\big[(v_i-t)^+ \mid \mathrm{other}\, v_j < t\big] \overbrace{\Pr[\mathrm{other}\, v_j < t]}$$

3. Choose x = 1/2 to prove theorem.

 $\prod_{j\neq i} q_j$

Prophet Inequality Proof _

0. Notation:

- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\mathrm{prize}] \geq (1-x)t + \sum\nolimits_i \mathbf{E}\big[(v_i-t)^+ \mid \mathrm{other}\, v_j < t\big] \overbrace{\Pr[\mathrm{other}\, v_j < t]}$$

3. Choose x = 1/2 to prove theorem.

 $x \leq \prod_{j \neq i} q_j$

Prophet Inequality Proof.

0. Notation:

- \bullet $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}|\max|$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E** prize:

Prophet Inequality Proof

0. Notation:

- \bullet $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\mathbf{E}|\max|$:

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E** prize:

2. Lower Bound on E[prize]:
$$x \leq \prod_{j \neq i} q_j$$

$$\mathbf{E}[\text{prize}] \geq (1-x)t + \sum_{i} \mathbf{E}[(v_i-t)^+ \mid \text{other } v_j < t] \mathbf{Pr}[\text{other } v_j < t]$$

$$\geq (1-x)t + x \sum_{i} \mathbf{E}[(v_i-t)^+ \mid \text{other } v_j < t]$$

$$= (1-x)t + x \sum_{i} \mathbf{E}[(v_i-t)^+].$$

What is the point of a 2-approximation?

Constant approximations identify details of model. [cf. Wilson '87]

- Constant approximations identify details of model. [cf. Wilson '87]
 Example: is X a detail?
 - yes, if constant approx without X
 - no, otherwise.

- Constant approximations identify details of model. [cf. Wilson '87]
 Example: is X a detail? competition?
 - yes, if constant approx without X
 - no, otherwise.

- Constant approximations identify details of model. [cf. Wilson '87]
 Example: is X a detail? competition? transfers?
 - yes, if constant approx without X
 - no, otherwise.

- Constant approximations identify details of model. [cf. Wilson '87]
 Example: is X a detail? competition? transfers?
 - yes, if constant approx without X
 - no, otherwise.
- gives relevant intuition for practice

- Constant approximations identify details of model. [cf. Wilson '87]
 Example: is X a detail? competition? transfers?
 - yes, if constant approx without X
 - no, otherwise.
- gives relevant intuition for practice
- gives simple, robust solutions.

- Constant approximations identify details of model. [cf. Wilson '87]
 Example: is X a detail? competition? transfers?
 - yes, if constant approx without X
 - no, otherwise.
- gives relevant intuition for practice
- gives simple, robust solutions.
- Exact optimization is often impossible.
 (information theoretically, computationally, analytically)

Picasso ___

[Picasso's Bull 1945–1946 (one month)]

Questions?

Overview ___

Part I: Optimal Mechanism Design

- single-item auction.
- objectives: social welfare vs. seller profit.
- characterization of Bayes-Nash equilibrium.
- consequences: solving, uniqueness, and optimizing over BNE.

Part II: Approximation in Mechanism Design

- single-item auctions.
- multi-dimensional auctions.
- prior-independent auctions.
- computationally tractable mechanisms.

Overview -

Part I: Optimal Mechanism Design (Chapters 2 & 3)

- single-item auction.
- objectives: social welfare vs. seller profit.
- characterization of Bayes-Nash equilibrium.
- consequences: solving, uniqueness, and optimizing over BNE.

Part II: Approximation in Mechanism Design

- single-item auctions. (Chapter 4)
- multi-dimensional auctions. (Chapter 7)
- prior-independent auctions. (Chapters 5 & 6)
- computationally tractable mechanisms. (Chapter 8)

Part IIa: Approximation for single-dimensional Bayesian mechanism design

(where agent preferences are given by a private value for service, zero for no service; preferences are drawn from a distribution)

Example 2: Single-item auction _____

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- n buyers, and
- ullet a dist. ${f F}=F_1 imes\cdots imes F_n$ from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Example 2: Single-item auction _____

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- n buyers, and
- ullet a dist. ${f F}=F_1 imes\cdots imes F_n$ from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Question: What is optimal auction?

Optimal Auction Design [Myerson '81] _____

1. Thm: BNE \Leftrightarrow allocation rule is monotone.

- 1. Thm: BNE \Leftrightarrow allocation rule is monotone.
- 2. **Def:** revenue curve: $R_i(q) = q \cdot F_i^{-1}(1-q)$.

1. **Thm:** BNE ⇔ allocation rule is monotone.

3. **Def:** *virtual value*:
$$\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$$

1. **Thm:** BNE ⇔ allocation rule is monotone.

- 3. **Def:** *virtual value*: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def:** revenue curve: $R_i(q) = q \cdot F_i^{-1}(1-q)$.

- 3. **Def:** *virtual value*: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def:** revenue curve: $R_i(q) = q \cdot F_i^{-1}(1-q)$.

- 3. **Def:** *virtual value*: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")
- 6. **Def:** F_i is *regular* iff revenue curve concave iff virtual values monotone.

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def:** revenue curve: $R_i(q) = q \cdot F_i^{-1}(1-q)$.

- 3. **Def:** *virtual value*: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")
- 6. **Def:** F_i is regular iff revenue curve concave iff virtual values monotone.
- 7. **Thm:** for regular dists, optimal auction sells to bidder with highest positive virtual value.

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def**: *revenue curve*: $R_i(q) = q \cdot F_i^{-1}(1-q)$.

- 3. **Def:** *virtual value*: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")
- 6. **Def**: F_i is *regular* iff revenue curve concave iff virtual values monotone.
- 7. **Thm:** for regular dists, optimal auction sells to bidder with highest positive virtual value.
- 8. **Cor**: for iid, regular dists, optimal auction is second-price with reserve price $\varphi^{-1}(0)$.

Optimal Auctions _____

Optimal Auctions:

- *iid, regular distributions*: second-price with monopoly reserve price.
- *general*: sell to bidder with highest positive virtual value.

Optimal Auctions _____

Optimal Auctions:

- *iid, regular distributions*: second-price with monopoly reserve price.
- general: sell to bidder with highest positive virtual value.

Discussion:

- iid, regular case: seems very special.
- general case: optimal auction rarely used. (too complicated?)

Approximation with reserve prices _____

Question: when is reserve pricing a good approximation?

Approximation with reserve prices _

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = *constant virtual price* with

Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

Approximation with reserve prices -

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = *constant virtual price* with

Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

Proof: apply prophet inequality (tie-breaking by " v_i ") to virtual values.

Approximation with reserve prices -

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = *constant virtual price* with

Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

Proof: apply prophet inequality (tie-breaking by " v_i ") to virtual values.

prophet inequality	second-price with reserves
prizes	virtual values
threshold t	virtual price
E [max prize]	E [optimal revenue]
$\mathbf{E}[prize\;for\;t]$	E [second-price revenue]

Approximation with reserve prices -

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = *constant virtual price* with Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

Proof: apply prophet inequality (tie-breaking by " v_i ") to virtual values.

prophet inequality	second-price with reserves
prizes	virtual values
threshold t	virtual price
E [max prize]	$\mathbf{E}[optimal\;revenue]$
$\mathbf{E}[prize\;for\;t]$	E [second-price revenue]

Discussion:

- ◆ constant virtual price ⇒ bidder-specific reserves.
- simple: reserve prices natural, practical, and easy to find.
- robust: posted pricing with arbitrary tie-breaking works fine, collusion fine, etc.

___ Anonymous Reserves ____

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Anonymous Reserves _____

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with *anonymous* reserve price is 4-approximation. [Hartline, Roughgarden '09]

Anonymous Reserves _____

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with *anonymous* reserve price is 4-approximation. [Hartline, Roughgarden '09]

Proof: more complicated extension of prophet inequalities.

Anonymous Reserves ____

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with *anonymous* reserve price is 4-approximation. [Hartline, Roughgarden '09]

Proof: more complicated extension of prophet inequalities.

Discussion:

- ullet theorem is not tight, actual bound is in [2,4].
- justifies wide prevalence.

____ Extensions ____

Beyond single-item auctions: general feasibility constraints.

Extensions _____

Beyond single-item auctions: *general feasibility constraints*.

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10; Yan '11]

Extensions ____

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10; Yan '11]

Proof technique:

- optimal mechanism is a virtual surplus maximizer.
- reserve-price mechanisms are virtual surplus approximators.

Extensions —

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10; Yan '11]

Proof technique:

- optimal mechanism is a virtual surplus maximizer.
- reserve-price mechanisms are virtual surplus approximators.

Basic Open Question: to what extent do simple mechanisms approximate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.

Questions?

Part IIb: Approximation for multi-dimensional Bayesian mechanism design

(where agent preferences are given by values for each available service, zero for no service; preferences drawn from distribution)

Example 3: unit-demand pricing _

Problem: Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- *n* items for sale.
- ullet a dist. ${f F}=F_1 imes\cdots imes F_n$ from which the consumer's values for each item are drawn.

Goal: seller optimal *item-pricing* for \mathbf{F} .

Example 3: unit-demand pricing _

Problem: Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- *n* items for sale.
- ullet a dist. ${f F}=F_1 imes\cdots imes F_n$ from which the consumer's values for each item are drawn.

Goal: seller optimal *item-pricing* for \mathbf{F} .

Question: What is optimal pricing?

Optimal Pricing _____

Optimal Pricing: consider distribution, feasibility constraints, incentive constraints, and solve!

Optimal Pricing _____

Optimal Pricing: consider distribution, feasibility constraints, incentive constraints, and solve!

Discussion:

- little conceptual insight and
- not generally tractable.

____ Analogy ____

Challenge: approximate optimal but we do not understand it?

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. **F** from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. **F** from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Note: Same informational structure.

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. **F** from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Note: Same informational structure.

Thm: for any indep. distributions, MD-PRICING \leq SD-AUCTION.

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. F from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Note: Same informational structure.

Thm: for any indep. distributions, MD-PRICING \leq SD-AUCTION.

Thm: a constant virtual price for MD-PRICING is 2-approx.

[Chawla, Hartline, Malec, Sivan'10]

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. F from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. **F** from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Note: Same informational structure.

Thm: for any indep. distributions, MD-PRICING \leq SD-AUCTION.

Thm: a constant virtual price for MD-PRICING is 2-approx.

Proof: prophet inequality (tie-break by " $-p_i$ ") Chawla, Hartline, Malec, Sivan'10]

Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Multi-item Auctions ___

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Multi-item Auctions ___

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Approach:

1. Analogy: "single-dimensional analog"

(replace unit-demand agent with many single-dimensional agents)

Multi-item Auctions —

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Approach:

- Analogy: "single-dimensional analog"
 (replace unit-demand agent with many single-dimensional agents)
- Upper bound: SD-AUCTION ≥ MD-PRICING (competition increases revenue)

Multi-item Auctions —

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Approach:

- Analogy: "single-dimensional analog"
 (replace unit-demand agent with many single-dimensional agents)
- Upper bound: SD-AUCTION ≥ MD-PRICING (competition increases revenue)
- Reduction: MD-PRICING ≥ SD-PRICING (pricings don't use competition)

Multi-item Auctions –

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Approach:

- Analogy: "single-dimensional analog"
 (replace unit-demand agent with many single-dimensional agents)
- Upper bound: SD-AUCTION ≥ MD-PRICING (competition increases revenue)
- Reduction: MD-PRICING ≥ SD-PRICING (pricings don't use competition)
- 4. *Instantiation:* SD-PRICING $\geq \frac{1}{\beta}$ SD-AUCTION (virtual surplus approximation)

Sequential Posted Pricing Discussion —

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Sequential Posted Pricing Discussion _

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Discussion:

- robust to agent ordering, collusion, etc.
- conclusive:
 - competition not important for approximation.
 - unit-demand incentives similar to single-dimensional incentives.
- practical: posted pricings widely prevalent. (e.g., eBay)

Sequential Posted Pricing Discussion _

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Discussion:

- robust to agent ordering, collusion, etc.
- conclusive:
 - competition not important for approximation.
 - unit-demand incentives similar to single-dimensional incentives.
- practical: posted pricings widely prevalent. (e.g., eBay)

Open Question: identify upper bounds beyond unit-demand settings:

- analytically tractable and
- approximable.

Questions?

The trouble with priors:

• where does prior come from?

- where does prior come from?
- is prior accurate?

The trouble with priors ———

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.
- what if one mechanism must be used in many scenarios?

The trouble with priors:

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.
- what if one mechanism must be used in many scenarios?

Question: can we design good auctions without knowledge of prior-distribution?

Optimal Prior-independent Mechs _____

Optimal Prior-indep. Mech: (a.k.a., non-parametric implementation)

- 1. agents report value and prior,
- 2. shoot agents if disagree, otherwise
- 3. run optimal mechanism for reported prior.

Discussion:

- complex, agents must report high-dimensional object.
- non-robust, e.g., if agents make mistakes.
- *inconclusive*, begs the question.

Resource augmentation _____

First Approach: "resource" augmentation.

Resource augmentation _____

First Approach: "resource" augmentation.

Thm: for iid, regular, single-item, the second-price auction on n+1 bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96]

Resource augmentation ___

First Approach: "resource" augmentation.

Thm: for iid, regular, single-item, the second-price auction on n+1 bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96]

Discussion: [Dhangwatnotai, Roughgarden, Yan '10]

- "recruit one more bidder" is prior-independent strategy.
- "bicriteria" approximation result.
- conclusive: competition more important than optimization.

Resource augmentation __

First Approach: "resource" augmentation.

Thm: for iid, regular, single-item, the second-price auction on n+1 bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96]

Discussion: [Dhangwatnotai, Roughgarden, Yan '10]

- "recruit one more bidder" is prior-independent strategy.
- "bicriteria" approximation result.
- conclusive: competition more important than optimization.
- non-general: e.g., for k-unit auctions, need k additional bidders.

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

• each bidder in second-price views other bid as "random reserve".

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in second-price views other bid as "random reserve".
- \bullet second-price revenue = $2\times$ random reserve revenue.

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in second-price views other bid as "random reserve".
- \bullet second-price revenue = $2\times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in second-price views other bid as "random reserve".
- ullet second-price revenue =2 imes random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in second-price views other bid as "random reserve".
- ullet second-price revenue =2 imes random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in second-price views other bid as "random reserve".
- ullet second-price revenue =2 imes random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in second-price views other bid as "random reserve".
- ullet second-price revenue =2 imes random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$

Special Case: for regular distribution, the second-price revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in second-price views other bid as "random reserve".
- \bullet second-price revenue = $2\times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

Recall: revenue curve

$$R(q) = q \cdot F^{-1}(1 - q)$$

ullet So second-price on two bidders \geq optimal revenue on one bidder.

Example 4: digital goods _____

Question: how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

Example 4: digital goods _____

Question: how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution, post the monopoly price $\varphi^{-1}(0)$. [Myerson '81]

Example 4: digital goods _____

Question: how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution, post the monopoly price $\varphi^{-1}(0)$. [Myerson '81]

Discussion:

- optimal,
- simple, but
- not prior-independent

Approximation via Single Sample _____

Single-Sample Auction: (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price v_i .
- 3. reject i.

Approximation via Single Sample ____

Single-Sample Auction: (for digital goods)

- 1. pick random agent i as sample. [Dhangwatnotai, Roughgarden, Yan '10]
- 2. offer all other agents price v_i .
- 3. reject i.

Thm: for iid, regular distributions, single sample auction on (n+1)-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan '10]

Approximation via Single Sample ____

Single-Sample Auction: (for digital goods)

- 1. pick random agent i as sample. [Dhangwatnotai, Roughgarden, Yan '10]
- 2. offer all other agents price v_i .
- 3. reject i.

Thm: for iid, regular distributions, single sample auction on (n+1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan '10]

Proof: from geometric argument.

Approximation via Single Sample -

Single-Sample Auction: (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price v_i .
- 3. reject i.

Thm: for iid, regular distributions, single sample auction on (n+1)-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan '10]

Proof: from geometric argument.

rioni geometric arç

Discussion:

- prior-independent.
- conclusive,
 - learn distribution from reports, not cross-reporting.
 - don't need precise distribution, only need single sample for approximation. (more samples can improve approximation/robustness.)
- generic, applies to general settings.

Extensions ___

Recent Extensions:

- non-identical distributions. [Dhangwatnotai, Roughgarden, Yan '10]
- position auctions, matroids, downward-closed environments.
 [Hartline, Yan '11; Ha, Hartline '11]
- multi-item auctions (multi-dimensional preferences).
 [Devanur, Hartline, Karlin, Nguyen '11; Roughgarden, Talgam-Cohen, Yan '12]

Extensions ___

Recent Extensions:

- non-identical distributions. [Dhangwatnotai, Roughgarden, Yan '10]
- position auctions, matroids, downward-closed environments.
 [Hartline, Yan '11; Ha, Hartline '11]
- multi-item auctions (multi-dimensional preferences).
 [Devanur, Hartline, Karlin, Nguyen '11; Roughgarden, Talgam-Cohen, Yan '12]

Open Question: non-downward-closed environments?

Extensions ___

Recent Extensions:

- non-identical distributions. [Dhangwatnotai, Roughgarden, Yan '10]
- position auctions, matroids, downward-closed environments.
 [Hartline, Yan '11; Ha, Hartline '11]
- multi-item auctions (multi-dimensional preferences).
 [Devanur, Hartline, Karlin, Nguyen '11; Roughgarden, Talgam-Cohen, Yan '12]

Open Question: non-downward-closed environments?

Questions?

Example 5: single-minded combinatorial auction .

Problem: Single-minded combinatorial auction

- n agents,
- *m* items for sale.
- Agent i wants only bundle $S_i \subset \{1, \dots, m\}$.
- Agent *i*'s value v_i drawn from F_i .

Goal: auction to maximize social surplus (a.k.a., welfare).

Example 5: single-minded combinatorial auction -

Problem: Single-minded combinatorial auction

- n agents,
- *m* items for sale.
- Agent i wants only bundle $S_i \subset \{1, \ldots, m\}$.
- Agent *i*'s value v_i drawn from F_i .

Goal: auction to maximize social surplus (a.k.a., welfare).

Question: What is optimal mechanism?

Optimal Combinatorial Auction _____

Optimal Combinatorial Auction: Vickrey-Clarke-Groves (VCG):

- 1. allocate to maximize reported surplus,
- 2. charge each agent their "critical value".

Optimal Combinatorial Auction ____

Optimal Combinatorial Auction: Vickrey-Clarke-Groves (VCG):

- 1. allocate to maximize reported surplus,
- 2. charge each agent their "critical value".

Discussion:

- distribution is irrelevant (for welfare maximization).
- Step 1 is NP-hard weighted set packing problem.
- Cannot replace Step 1 with approximation algorithm.

Question: Can we convert any algorithm into a mechanism without reducing its social welfare?

Question: Can we convert any algorithm into a mechanism without reducing its social welfare?

Recall: BNE \Leftrightarrow allocation rule $x_i(v_i)$ is monotone in v_i .

Question: Can we convert any algorithm into a mechanism without reducing its social welfare?

Recall: BNE \Leftrightarrow allocation rule $x_i(v_i)$ is monotone in v_i .

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$ may not be monotone.

Question: Can we convert any algorithm into a mechanism without reducing its social welfare?

Recall: BNE \Leftrightarrow allocation rule $x_i(v_i)$ is monotone in v_i .

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$ may not be monotone.

Approach:

• Run $\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n))$.

Question: Can we convert any algorithm into a mechanism without reducing its social welfare?

Recall: BNE \Leftrightarrow allocation rule $x_i(v_i)$ is monotone in v_i .

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$ may not be monotone.

Approach:

- Run $\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n))$.
- σ_i calculated from max weight matching on i's type space.

Question: Can we convert any algorithm into a mechanism without reducing its social welfare?

Recall: BNE \Leftrightarrow allocation rule $x_i(v_i)$ is monotone in v_i .

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$ may not be monotone.

Approach:

- Run $\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n))$.
- σ_i calculated from max weight matching on i's type space.
 - stationary with respect to F_i .
 - $x_i(\sigma_i(v_i))$ monotone.
 - welfare preserved.

___ Example: σ_i ____

Example:

$F_i(v_i)$	v_i	$x_i(v_i)$
.25	1	0.1
.25	4	0.5
.25	5	0.4
.25	10	1.0

____ Example: σ_i ____

Example:

$F_i(v_i)$	v_i	$x_i(v_i)$	$\sigma_i(v_i)$
.25	1	0.1	1
.25	4	0.5	5
.25	5	0.4	4
.25	10	1.0	10

Example: σ_i

Example:

$F_i(v_i)$	v_i	$x_i(v_i)$	$\sigma_i(v_i)$	$x_i(\sigma_i(v_i))$
.25	1	0.1	1	0.1
.25	4	0.5	5	0.4
.25	5	0.4	4	0.5
.25	10	1.0	10	1.0

Example: σ_i

Example:

$F_i(v_i)$	v_i	$x_i(v_i)$	$\sigma_i(v_i)$	$x_i(\sigma_i(v_i))$
.25	1	0.1	1	0.1
.25	4	0.5	5	0.4
.25	5	0.4	4	0.5
.25	10	1.0	10	1.0

Note:

- σ_i is from max weight matching between v_i and $x_i(v_i)$.
- ullet σ_i is stationary.
- ullet σ_i (weakly) improves welfare.

BNE reduction discussion _

Thm: Any algorithm can be converted into a mechanism with no loss in expected welfare. Runtime is polynomial in size of agent's type space. [Hartline, Lucier '10; Hartline, Kleinberg, Malekian '11; Bei, Huang '11]

Discussion:

- applies to all algorithms not just worst-case approximations.
- BNE incentive constraints are solved independently.
- works with multi-dimensional preferences too.

____ Extensions ____

Extension:

• impossibility for dominant strategy reduction.

[Chawla, Immorlica, Lucier '12]

Extensions ____

Extension:

impossibility for dominant strategy reduction.

[Chawla, Immorlica, Lucier '12]

Open Questions:

- non-brute-force in type-space? e.g., for product distributions?
- other objectives, e.g., makespan? [Chawla, Immorlica, Lucier '12]

Extensions

Extension:

impossibility for dominant strategy reduction.

[Chawla, Immorlica, Lucier '12]

Open Questions:

- non-brute-force in type-space? e.g., for product distributions?
- other objectives, e.g., makespan? [Chawla, Immorlica, Lucier '12]

Questions?

Part II Conclusions

Conclusions:

- approximation pinpoints salient characteristics of good mechanisms.
- reserve-price-based auctions are approximately optimal.
- posted-pricings are approximately optimal.
- good mechanisms can be designed without prior information.
- good algorithms can be converted into good mechanisms.

Part II Conclusions

Conclusions:

- approximation pinpoints salient characteristics of good mechanisms.
- reserve-price-based auctions are approximately optimal.
- posted-pricings are approximately optimal.
- good mechanisms can be designed without prior information.
- good algorithms can be converted into good mechanisms.

Questions?