Assignment 5

Q5, 7, 8

TA : 李旺陽

tnst92002@gmail.com

• It is simple with Venn diagram

• It is simple with Venn diagram

• It is simple with Venn diagram

• Here give a way to map R / R+

R+

-4 -3 -2 -1 0 1 2 3 4 R

• Here give a way to map R / R+

If x = 0, map to 0 If x > 0, map to x + [x] (floor sign)

C III IN

• Here give a way to map R / R+

If x = 0, map to 0 If x > 0, map to x + [x] (floor sign) If x < 0, map to -x-[x] (floor sign)

If x = 0, map to 0

If x > 0, map to x + [x] (floor sign) If x < 0, map to -x-[x] (floor sign)

If x = 0, map to 0 If [x] is even, map to x - [x]/2If [x] is odd, map to -x+[x+1]/2

x in \mathbb{R} map to \mathbb{R} + by $f(x) = e^x$

For any $x \neq y$, $f(x) \neq f(y)$ For any $x \in \mathbb{R}$ +, exist $k = \ln x \in \mathbb{R}$ let f(k) = xSo \mathbb{R} + is one-one onto \mathbb{R} by f e^x 的圖表

◆ Peter show that is uncountable by diagonalization technique

$$X = \{x \mid x \in (0, 1) \text{ and } x \text{ has } k \text{ decimal places and } k \in N \}$$

However, each number in X is a rational number; for instance, 0.33215 = 33215/100000. Thus, $X \subseteq \mathbb{Q}$ (where \mathbb{Q} is countable), which implies X must be countable. So, what's wrong with Peter's proof?

 $X = \{ x \mid x \in (0, 1) \text{ and } x \text{ has } k \text{ decimal places and } k \in \mathbb{N} \}$

We prove this by contradiction. Assume to the contrary that there is a one-to-one correspondence between items in X and items in \mathbb{N} . Then, we can list the items in X one by one, say x_1, x_2, x_3, \ldots Now, consider the number x such that its digit in the first decimal place is different from x_1 , its digit in the second decimal place is different from x_2 , and in general, its digit in the jth decimal place is different from x_j for all j. Then, x is not listed by the correspondence, and a contradiction occurs as desired.

★ x found by Peter is not in set X

$$X = \{ x \mid x \in (0, 1) \text{ and } x \text{ has } k \text{ decimal places and } k \in N \}$$

x found by Peter is **not** in set X

- If x in X, let x is k-digit number.
- Consider x_{k+1} , and let k+1 digit in x_{k+1} is 0
 - k+1 digit in x is the inverse of x_{k+1} .
 - But x is k-digit number, k+1 digit in x must be 0.
- So such x not exists.

Assignment 5 Q10,Q11,Q13

馮翔荏

Email:karta97670@gmail.com

10. (*) Consider all the five-element subsets of $\{1, 2, 3, ..., n\}$. It is known that one quarter of these subsets contain the element 7. What is the value of n?

of the five-element subsets : C_5^n # of the five-element subsets contain the element 7: C_4^{n-1}

$$\Rightarrow C_5^n = 4 * C_4^{n-1}$$

$$\Rightarrow n^*(n-1)^*(n-2)^*(n-3)^*(n-4)/5! = 4^*(n-1)^*(n-2)^*(n-3)^*(n-4)/4!$$

$$\Rightarrow n = 20$$

- 11. (*) Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} .
 - (a) f(x) = -3x + 4
 - (b) $f(x) = 3x^2 + 4$
 - (c) f(x) = (x+1)/(x+2)

$$F(x) = -3x+4$$
, from R to R

Proof injection:

Let x, y \in R and F(x) = F(y)

$$\Rightarrow$$
-3x + 4 = -3y + 4

$$\Rightarrow$$
 x = y

$$\Rightarrow$$
We know that \forall x , y \in R (domain) , if $F(x) = F(y)$ then x = y

 \Rightarrow F is an injection

Q11(a) cont.

$$F(x) = -3x+4$$
, from R to R

Proof surjection:

let $y \in R$

$$\Rightarrow$$
We can find $x = -\frac{y-4}{3} \in R$ such that $F(x) = y$

 \Rightarrow We know that \forall y \in R(codomain) ,there is a x \in R(domain) such that F(x) = y

 \Rightarrow F is a surjection

⇒F is injective and surjective , F is a bijection

$$\mathbf{F}(\mathbf{x}) = 3x^2 + 4$$
, from R to R

Proof F is not injection:

Let
$$x = 1$$
, $y = -1$

$$\Rightarrow$$
F(x) = 3*1²+4 = 3*(-1²)+4 = F(y)

$$\Rightarrow$$
We know that $\exists x, y \in R$ (domain) $x != y$ such that $F(x) = F(y)$

 \Rightarrow F is not an injection

 \Rightarrow F is not a bijection

$$\mathbf{F}(\mathbf{x}) = (\mathbf{x}+1)/(\mathbf{x}+2)$$
, from R to R

Obviously , we can find that there is no $y \in R$ (codomain) such that

$$F(-2) = y$$

$$\Rightarrow$$
F is not a function.

 \Rightarrow F can not be a bijection.

13. (*) Define $g: \mathbb{Z} \to \mathbb{Z}$, where $g(n) = \lfloor n/2 \rfloor$. Is g a surjection? Is g a bijection?

$$g(n) = \lfloor n/2 \rfloor$$
, from Z to Z

Proof surjection:

Let $y \in Z$ (codomain)

 \Rightarrow We can find x = 2y such that g(x) = y

 \Rightarrow F is a surjection

Q13 cont.

$$g(n) = \lfloor n/2 \rfloor$$
, from Z to Z

Proof F is not injection:

Let
$$x = 1, y = 0$$

$$\Rightarrow$$
g(x) =[1/2] = 0 = g(y)

HW5 Q15 16 20

TA: 林毓淇
gigisport123@gmail.com

\bullet Transitive property: what if $\exists y \ x \mathcal{R} y$ for some x?

15. (*) What is wrong with the following argument that attempts to show that if R is a relation on a set S that is both symmetric and transitive, then R is also reflexive?

"Since xRy implies yRx by the symmetric property, xRy and yRx imply xRx by the transitive property, thus, xRx is true for each x in S, and so R is reflexive."

HW5 - Q15

A binary relation R on A is said to be symmetric if $(a,b) \in R$ implies $(b,a) \in R$

A binary relation R on A is said to be transitive if $(a, b), (b, c) \in R$ implies $(a, c) \in R$

A binary relation R on A is said to be reflexive if $(a, a) \in R$ for every $a \in A$

15. (*) What is wrong with the following argument that attempts to show that if R is a relation on a set S that is both symmetric and transitive, then R is also reflexive?

"Since xRy implies yRx by the symmetric property, xRy and yRx imply xRx by the transitive property, thus, xRx is true for each x in S, and so R is reflexive."

- Consider some relation on a set $S = \{a, b, c\}$:
- It's symmetric $b\mathcal{R}c \to c\mathcal{R}b$, $c\mathcal{R}b \to b\mathcal{R}c$
- It's transitive $(b\mathcal{R}c \wedge c\mathcal{R}b) \rightarrow b\mathcal{R}b$ $(c\mathcal{R}b \wedge b\mathcal{R}c) \rightarrow c\mathcal{R}c$

• However, it's not reflexive.

A binary relation R on A is said to be symmetric if $(a, b) \in R$ implies $(b, a) \in R$

A binary relation R on A is said to be transitive if $(a, b), (b, c) \in R$ implies $(a, c) \in R$

A binary relation R on A is said to be reflexive if $(a, a) \in R$ for every $a \in A$

HW5 - Q16

16. (*)

- (a) Find the reflexive closure of R as represented by the following directed graph.
- (b) Find the transitive closure of R as represented by the following directed graph.

HW5 – Q16 (a)

A binary relation R on A is said to be reflexive if $(a, a) \in R$ for every $a \in A$

• Find the reflexive closure – **note** that it also contains the original graph.

HW5 – Q16 (a)

A binary relation R on A is said to be transitive if $(a, b), (b, c) \in R$ implies $(a, c) \in R$

• Find the transitive closure – **note** that it also contains the original graph.

- Let $A = \{0,1,2,3,4\}$ and $B = \{1,3,5,7,9\}$.
- If the relation $P: aPb \Leftrightarrow a \equiv b \pmod{4}$

mod 4 remainder	Α	В
0	0, 4	
1	1	1, 5, 9
2	2	
3	3	3, 7

- Then, $P = \{(1,1), (1,5), (1,9), (3,3), (3,7)\}$
- Note that for a relation aPb, $a \in A$ and $b \in B$.

- Let $A = \{0,1,2,3,4\}$ and $B = \{1,3,5,7,9\}$.
- If the relation $P: aPb \Leftrightarrow 2 \ divides \ (a+b)$

	Α	В
odd	1, 3	1, 3, 5, 7, 9
even	0, 2, 4	

• Then, $P = \{(1,1), (1,3), (1,5), (1,7), (1,9), (3,1), (3,3), (3,5), (3,7), (3,9)\}$

HW5 – Q20 (c)

- Let $A = \{0,1,2,3,4\}$ and $B = \{1,3,5,7,9\}$.
- If the relation $P: aPb \Leftrightarrow a = b \text{ or } a 1 = b$
- Then, $P = \{(1,1), (2,1), (3,3), (4,3)\}$

Homework 6

Question 6,7

洪嘉陽

Contact: qasdz000[at]gapp.nthu.edu.tw

- Definition: Two graphs G and H are **isomorphic** if there is a one-to-one correspondence f between the vertices of G and the vertices of H, such that u, v are adjacent in G if and only if f(u), f(v) are adjacent in H.
- \blacksquare Suppose that G and H are **isomorphic** simple graphs.
- Show that their complementary graphs \bar{G} and \bar{H} are also isomorphic.

Q6 solution

- ightharpoonup u and v are adjacent in \bar{G}
- \Rightarrow u and v are not adjacent in G (By definition of complementary graph)
- \Rightarrow f(u) and f(v) are not adjacent in H (By definition of isomorphic)
- \Rightarrow f(u) and f(v) are adjacent in \overline{H} (By definition of complementary graph)

Determine whether the following two graphs are isomorphic.

Q7 solution

- ightharpoonup Take complementary to two graph, say $ar{G}$ and $ar{H}$
- Since \bar{G} has two connected components, and \bar{H} has only one connected component.
- lacktriangle $ar{G}$ and $ar{H}$ are not isomorphic.
- \blacksquare By Q6, G and H are not isomorphic.

Assignment 6

Q8/Q9

TA:李易霖

Email: leo870718@gmail.com

(*) An undirected graph is called *connected* if there is a path between every pair of distinct vertices of the graph, and a *connected component* of graph G is a maximal connected subgraph of G. For example, in the following graph, there are 3 connected components H_1 , H_2 , and H_3 .

Suppose that a planar graph has k connected components, e edges, and v vertices. Also suppose that the plane is divided into r regions by a planar representation of the graph. Find a formula for r in terms of e, v, and k.

Suppose k connected component is $H_1 \sim H_k$, each component H_i have v_i vertices, e_i edges and r_i regions.

Solution 1

Obviously, each connected component satisfy Euler's planer formula. If we sum these k equation, we will count infinite region k times. So we count infinite region after summation.

$$H_1:v_1 + (r_1 - 1) = e_1 + 1$$

 $H_2:v_2 + (r_2 - 1) = e_2 + 1$

•••

$$H_k: v_k + (r_k - 1) = e_k + 1$$

Sum all equation : G: v + (r - 1) = e + k, $(\sum_{i=1}^{k} (r_i - 1) = r - 1)$

Add infinite region : G: r = e - v + k + 1

Solution 2

We can "connect" these k component by adding k-1 edges, so it will construct a connected graph G', and edges e'=e+(k-1), vertices v'=v, regions r'=r.

G' satisfy Euler's planer formula: v' + r' = e' + 2, so we have the equation of G.

$$G: v + r = e + (k - 1) + 2 = e + k + 1.$$

$$G: r = e - v + k + 1.$$

(*) Determine whether the following graphs is homeomorphic to $K_{3,3}$. (The definition of "homeomorphic" will be discussed on Dec 30, 2020.)

8 edges

 $k_{3,3}$, 9 edges

(b)

