

EMC Test Data

Client:	WateR8	Job Number:	JD100279				
Model:	R006 (900MHz radio module)	T-Log Number:	T100302				
		Project Manager:	Sheareen Jacobs				
Contact:	Steve Smith	Project Coordinator:	-				
Standard:	FCC 15.247	Class:	N/A				

Maximum Permissible Exposure / SAR Exclusion

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/4/2016 Test Engineer: Mark Hill

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

Device complies with Power Density requirements at 20cm	I Yes
separation:	100

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

FCC MPE Calculation General Use: Antenna: 0dBi

	EUT		Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Power		Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm ²	mW/cm ²
902.6	9.5	8.9	0	0	9.5	8.91	0.002	0.602
915	8.4	6.9	0	0	8.4	6.92	0.001	0.610
927.4	6.8	4.8	0	0	6.8	4.79	0.001	0.618

Note - power values represent the worse case power including manufacturing tolerance