Выделим условно четыре периода развития взрыва: период испарения и ионизации вещества –

$$\frac{dN}{dv_0} = N \left[\frac{m}{2\pi kT} \right]^{\frac{3}{2}} v^2 \exp\left(-\frac{mv^2}{2kT} \right)$$
 (2.13)

clear:

Значение постоянной	Размерность	
1,380 6504(24)×10 ⁻²³	Дж·К ⁻¹	
8,617 343(15)×10 ⁻⁵	эВ⋅К ⁻¹	
1,3807×10 ⁻¹⁶	эрг·К ⁻¹	

$$k := 1.3806504 \cdot 10^{-23}$$
:

 9.10938356×10 -31 килограмма

$$m_e := 9.10938356 \cdot 10^{-31} :$$

 1.60217662×10 -19 Кулона

$$q_e \coloneqq 1.60217662 \, \cdot \, 10^{-19}$$
 :

$$c \coloneqq 299792458$$

$$\mu_0 := 4 \cdot \pi \cdot 10^{-7}$$

$$\frac{1}{2500000} \pi$$
 (2)

$$\mathbf{e}_{\boldsymbol{\theta}} \coloneqq \frac{1}{\mathbf{\mu}_{\boldsymbol{\theta}} \cdot \boldsymbol{c}^2}$$

$$\frac{625000}{22468879468420441 \pi} \tag{3}$$

= 64 / /6.02214 * 10 23

$$N_A := 6.02214 \cdot 10^{23}$$

$$6.022140000 \ 10^{23}$$

$$m_{Cu} := \frac{64 \cdot 10^{-3}}{N_A}$$

$$1.062745137 \cdot 10^{-25}$$
 (5)

(6)

$$EI_c := evalf\left(\frac{6000 \cdot 10^{-6} \cdot 300^2}{2} - \frac{6000 \cdot 10^{-6} \cdot 50^2}{2}\right)$$

$$262.5000000$$

$$\sim$$
 270 .

3.4x10-14.

$$dq_{experiment} := \frac{4 \cdot \pi \cdot \varepsilon_0 \cdot \left(-30 \cdot 10^{-3}\right)}{\left(\frac{1}{0.11^2} - \frac{1}{0.15^2}\right)}$$

-8.738047433 10⁻¹⁴ (7)

 $E_c := \frac{3000 \cdot 10^{-6} \cdot 300^2}{2}$

135 (8)

(9)

, 125

 $V_{Cu_sgs} := \pi \cdot 0.01^2 \cdot 0.5$

0.0001570796327

^ 3

 $M_{Cu_sgs} := 8.92 \cdot V_{Cu_sgs}$

0.001401150324 (10)

 $M_{molar\ sgs} := 63.546$

63.546 (11)

 $\mathbf{v}_{Cu} := \frac{M_{Cu_sgs}}{M_{molar\ sgs}}$

0.00002204938665 (12)

 $N_i := \mathbf{v}_{Cu} \cdot N_A$

1.327844933 10¹⁹ (13)

 $N_A \cdot k$

8.314470000 (14)

$$a(t) := \left(1 + 1.607 \cdot 10^{-5} \cdot t + 0.403 \cdot 10^{-8} \cdot t^2\right)$$

$$t \to 1 + \frac{1.607 t}{100000} + \frac{0.403 t^2}{100000000}$$
(15)

with(plots) : plot(a(t), t = 0...625)

$$a(2567)$$
 1.067807331 (16)

http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/svojstva-mediplotnost-teploemkost-teploprovodnost

Т, К	d, г/см³	ср, Дж/(кг·К)	a 10 ⁶ , M ² /c	λ, B ^T /(M·K)		р 10*, Ом-м	$\frac{L}{L_0} = \frac{\lambda}{\lambda_e^L}$	$\frac{C_P}{C_V}$
50	_	_	_	1250	_	0,0518	-	1,001
100	- 1	=		482		0,348		1,005
200	_		130	413		1,048	100	1,01
300	8,933	385,0	117	401,9	401	1,725	0,945	1,02
400	8,870	397,7	111	391,5	393	2,402	0,961	1,04
500	8,628	408,0	107	385,4	386	3,090	0,976	1,05
600	8,779	416.9	103	376,9	379	3,792	0,976	1,06
700	8,728	425,1	99,7	369,7	373	4,514	0,976	1,08
800	8,656	432,9	96,3	360,8	366	5,262	0,973	1,09
900	8,622	441,7	93,3	355,3	359	6,041	0,979	1,11
1000	8,567	451,4	90,3	349,2	352	6,858	0,979	1,13
1100	8,509	464,3	85,5	337,6	346	7,717	0,972	1,15
1200	8,451	480,8	80,6	327,5	339	8,626	0,970	1,18
1300	8,394	506.5	75,8	322,1	332	9,592	0,972	1,20
1357,6 _s	8,361*	525,2*	72,3*	317*		10,171	0,972*	
1357,67	8,00*	513,9*	41,2*	175*		21,01	1,08*	
1400	7,98	513,9	42,7	175		21,43	1,08	-
1600	7,96	513,9	15,2	184	_	23,42	1,1	-

* Данные нуждаются в уточнении.

Thermalinfouru

 $tab1_T := [300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1357.6]:$

 $tab1_Cp := [385.0, 397.7, 408.0, 416.9, 425.1, 432.9, 441.7, 451.4, 464.3, 480.8, 506.6, 525.2]:$

/(*)

 $tab1_Cp \cdot M_{molar_sgs} \cdot 0.001$

[24.4652100, 25.2722442, 25.9267680, 26.4923274, 27.0134046, 27.5090634, 28.0682682, 28.6846644, 29.5044078, 30.5529168, 32.1924036, 33.3743592]

plot(tab1 T, tab1 Cp)

 $\textit{with}(\textit{CurveFitting}): c_p(T) := \textit{Spline}(\textit{tab1_T}, \textit{tab1_Cp}, \textit{T}, \textit{degree} = \textit{3}): c_p(T)$

 $345.242064496472 + 0.132526451678426 \ T + 1.11022302462516 \ 10^{-18} \ (T - 300)^2 - 5.52645167842621 \ 10^{-18} \ (T - 400)^2 + 3.63225839213082 \ 10^{-18} \ (T - 400)^2 + 3.63225839213082 \ 10^{-18} \ (T - 400)^2 + 9.97418109902893 \ 10^{-18} \ (T - 500)^2 + 9.97418109902893 \ 10^{-18} \ (T - 500)^2 + 9.97418109902893 \ 10^{-18} \ (T - 600)^2 - 6.21930831742398 \ 10^{-18} \ (T - 600)^2 - 6.21930831742398 \ 10^{-18} \ (T - 600)^2 - 6.21930831742398 \ 10^{-18} \ (T - 100)^2 + 4.49030521706672 \ 10^{-18} \ 10^{-18} \ (T - 100)^2 + 4.49030521706672 \ 10^{-18} \ 10$

$$Q_{nagrev_do_T_pl} := int(c_p(T), T = 300..1357.6)$$

$$4.660242040 \ 10^5$$
/ (19)

$$c_p(1357)$$
 525.001217859185 (20)

$$c_{p_exptrapotation} := c_p(1357) \cdot M_{molar_sgs} \cdot 10^{-3}$$

$$33.3617273900798$$
(21)

$$Q_{nagrev_do_T_pl} \cdot M_{Cu_sgs} \cdot 0.001$$
 (22)

<i>T</i> , °K	γ, 10 ³ κε/м ⁸	^с p, кдж/(кг·град)	λ, вт/(м·град)	р, 10 ^{—8} ом·м	α, 10 ^{—6} 1/град
83	9,00	0,259	480	_	
293	8,93	0,381	395	1,68	16,70
373	8,90	0,399	392	2,34	17,10
573	8,84	0,422	37 3	3,89	17,98
873	8,70	0,456	344	5,76	19,52
1173	8,62	0,482	321	9,42	21,34
1356	8,51	0,533		9,89	22,31
1473	8,32			3,515	

1357.6 K 8.00*/3 -

1400 7,98 /3 1600 K 7.96 / 3

2 8 4 0

https://www.sciencedirect.com/science/article/abs/pii/S0009261408015790

The predictions of the critical point parameters for Al, Cu and W found from the correspondence between the critical point and unit compressibility line (Zeno line) positions

,

https://www.sciencedirect.com/science/article/abs/pii/S0009261408015790

Chemical Physics Letters 467 (2009) 318–322. The predictions of the critical point parameters for Al, Cu and W found from the correspondence between the critical point and unit compressibility line (Zeno line) positions. E.M. Apfelbaum *, V.S. Vorob'ev. Joint Institute for High Temperatures of Russian Academy of Science, Izhorskaya 13, Stroenie 2, 125412 Moscow, Russia

,

7093 1.95 This work

7620 1.4 Scaling [27] A.A. Likalter, Phys. Rev. B 53 (1996) 4386.

8390 2.4 Extrapolation [28] V.E. Fortov, A.N. Dremin, A.A. Leont'ev, Teplofizila vysokih temperatur 13

(1975) 984 (in Russian).

$$T_i := 7093$$

 $\rho_{crit} := 1.95$

$$V_{Cu_sgs_crit} := \frac{M_{Cu_sgs}}{\rho_{crit}}$$

^ 3

$$R_{i} := 0.01 \cdot evalf\left(\left(\frac{3}{4 \cdot \pi} \cdot V_{Cu_sgs_{crit}}\right)^{\frac{1}{3}}\right)$$

$$0.0005556318983$$
(26)

()
$$745,0 (7,72) / ()$$

(. .) $8,92 / ^3$
 $1356,55 K (1083,4°)$ 1083
 $2567°$ 2877
 $13,01 / 3.11 / * 4.184 / = 13,$
 01224 $72,8 / * 4.184 / = 304,$
 5952 $24,44[2] / (K·)$ $-5,848 - 4,968 / *$

$$Q_{pl} := 13.01224 \cdot 10^3 \cdot v_{Cu}$$

$$0.2869119109$$
(27)

$$Q_{isp} := 304.6 \cdot 10^3 \cdot v_{Cu}$$

$$6.716243174$$
(28)

$$Q_{nagrev} := (7093 - 300) \cdot c_{p_exptrapotation} \cdot v_{Cu}$$

$$4.99696902105744$$
(29)

$$v = \frac{1}{T} = \sqrt{\frac{4\pi n_{\epsilon}e^{2}}{3m_{\epsilon}}}$$

$$n_{\epsilon} = \frac{3m_{\epsilon}}{4\pi e^2 T^2}$$

$$n_e := \frac{3 \cdot m_e}{4 \cdot \pi \cdot q_e^2 \cdot (1.2 \cdot 10^{-3})^2}$$

 $5.883247344 \ 10^{12}$ ^-3

$$Q_{ionization} := 745 \cdot 10^3 \cdot v_{Cu}$$

$$16.42679305$$
(31)

$$V_{Cu_latm} := \frac{v_{Cu} \cdot N_A \cdot k \cdot T_i}{10^5}$$

^ 3

$$V_{Cu_450atm} := \frac{\mathbf{v}_{Cu} \cdot N_A \cdot k \cdot T_i}{450 \cdot 10^5}$$

$$V_{Cu_{crit}} := \frac{M_{Cu_sgs}}{\rho_{crit}} \cdot 10^{-6}$$

$$A := \int_{V_{Cu_{crit}}}^{V_{Cu_latm}} \frac{\mathbf{v}_{Cu} \cdot N_A \cdot k \cdot T_i}{V} \ \mathrm{d}V$$

$$\int_{V_{Cu}}^{V_{Cu}_1atm} \frac{\mathbf{v}_{Cu} \cdot N_A \cdot k \cdot T_i}{V} \, dV$$

,

$$\Delta E := E_c - Q_{pl} - Q_{isp} - Q_{nagrev} - Q_{ionization} - A$$

$$93.8250637789426$$
(37)

$$\Delta t := \Delta E \cdot \frac{500 \cdot 10^{-6}}{E_c}$$

$$\Delta T \coloneqq \frac{\Delta E}{c_{p_exptrapotation} \cdot v_{Cu}}$$

$$1.27548050741264 \cdot 10^{5}$$
 (39)

,

$$T_e := \Delta T + T_i$$

$$1.34641050741264 \cdot 10^5 \tag{40}$$

$$\frac{T_e}{1.16045221 \cdot 10^4}$$

1 / 3

 $dNdv_0(m, v, T) := 4 \cdot \pi \cdot N_i \cdot \left(\frac{m}{2 \cdot \pi \cdot k \cdot T}\right)^{\frac{3}{2}} \cdot v^2 \cdot \exp\left(-\frac{m \cdot v^2}{2 \cdot k \cdot T}\right):$

$$dNdv2_{0}(m, v2, T) := 4 \cdot \pi \cdot N_{i} \cdot \left(\frac{m}{2 \cdot \pi \cdot k \cdot T}\right)^{\frac{3}{2}} \cdot v2 \cdot \exp\left(-\frac{m \cdot v2}{2 \cdot k \cdot T}\right)$$

$$(m, v2, T) \rightarrow \pi N_{i} \sqrt{2} \left(\frac{m}{\pi k T}\right)^{3/2} v2 e^{-\frac{1}{2} \frac{v2 m}{k T}}$$

$$(42)$$

$$\frac{1}{N_i} \int_0^\infty dN dv_0 (m_e, v, T_e) \, dv$$

$$\frac{1}{N_i} \int_0^\infty dN dv_0 (m_{Cu}, v, T_e) \, dv$$

$$V_{Cu_sgs_{crit}} \cdot 10^{-6}$$
 7.185386277 10^{-10} (45)

$$\int_{0}^{R_{i}} 4 \cdot \pi \cdot r^{2} dr$$

$$7.185386273 \ 10^{-10}$$
(46)

$$n_i \coloneqq \frac{N_i}{\prod\limits_{0}^{R_i} 4 \cdot \pi \cdot r^2 \, \mathrm{d}r}$$

:

$$v_T(m, T) := \sqrt{\frac{2 \cdot k \cdot T}{m}}$$

$$(m, T) \to \sqrt{\frac{2 k T}{m}}$$
(48)

$$v_T(m_e, T_i)$$

$$4.636895888 \ 10^5$$

$$v_T(m_e, T_e)$$
(49)

 $2.02023137241212 \cdot 10^6 \tag{50}$

$$v_T(m_{Cu}, T_i)$$
 1357.554508 (51)

$$v_T(m_{Cu}, T_e)$$
 5914.67712890453 (52)

: $\alpha := 0.00025$:

$$v_{0r}(r_0, R_i, m, T) := \alpha \cdot \frac{r_0}{R_i} \cdot v_T(m, T)$$

$$(r_0, R_i, m, T) \rightarrow \frac{\alpha r_0 v_T(m, T)}{R_i}$$
 (53)

 $v_{0r}(r_0, R_i, m, T)$

$$2.364338738 \ 10^{-12} \, r_0 \, \sqrt{\frac{T}{m}} \tag{54}$$

 r_0

$$a_{0r}(r_0, R_i, m, T) := \frac{\Delta T}{\Delta t} \cdot \alpha \cdot \frac{r_0}{R_i} \cdot \frac{\mathrm{d}}{\mathrm{d} T} v_T(m, T)$$

$$(r_0, R_i, m, T) \rightarrow \frac{\Delta T \alpha r_0 \left(\frac{\partial}{\partial T} v_T(m, T)\right)}{\Delta t R_i}$$
 (55)

 $a_{0r}(r0, R_i, m, T)$

$$\frac{0.000433908765869441 \ r0}{\sqrt{\frac{T}{m}} \ m}$$
 (56)

$$r(t, r_0, R_i, m, T) := r_0 + v_{0r}(r_0, R_i, m, T) \cdot t + \frac{a_{0r}(r_0, R_i, m, T) \cdot t^2}{2}$$

$$(t, r_0, R_i, m, T) \rightarrow r_0 + v_{0r}(r_0, R_i, m, T) t + \frac{1}{2} a_{0r}(r_0, R_i, m, T) t^2$$
(57)

 $r(t, r_0, R_i, m, T)$

$$r_0 + 2.364338738 \ 10^{-12} r_0 \sqrt{\frac{T}{m}} \ t + \frac{0.000216954382934720 \ r_0 \ t^2}{\sqrt{\frac{T}{m}} \ m}$$
 (58)

$$v_{r}(t, r_{0}, R_{i}, m, T) := v_{0r}(r_{0}, R_{i}, m, T) + a_{0r}(r_{0}, R_{i}, m, T) \cdot t$$

$$(t, r_{0}, R_{i}, m, T) \rightarrow v_{0r}(r_{0}, R_{i}, m, T) + a_{0r}(r_{0}, R_{i}, m, T) t$$
(59)

$$v_r(t, r_0, R_i, m, T)$$

$$2.364338738 \ 10^{-12} r_0 \sqrt{\frac{T}{m}} + \frac{0.000433908765869441 \ r_0 t}{\sqrt{\frac{T}{m}} \ m}$$
 (60)

$$tzap(t, r_{0}, R_{0}, R_{i}, m, T, \theta) := solve(c^{2}(t - t_{zap})^{2} = R_{0}^{2} - 2 \cdot R_{0} \cdot r(t_{zap}, r_{0}, R_{i}, m, T) \cdot \cos(\theta) + r(t_{zap}, r_{0}, R_{i}, m, T)^{2}, t_{zap})$$

$$(t, r_{0}, R_{0}, R_{i}, m, T, \theta) \rightarrow solve(c^{2}(t - t_{zap})^{2} = R_{0}^{2} - 2 R_{0} r(t_{zap}, r_{0}, R_{i}, m, T) \cos(\theta) + r(t_{zap}, r_{0}, R_{i}, m, T)^{2}, t_{zap})$$

$$(61)$$

$$tzap(t, r_0, R_0, R_i, m, T, \theta)$$

$$RootOf \bigg(11767301068646311563558980460819600 \, r_0^2 \, \underline{Z}^4 \bigg)$$
 (62)

$$+\,256476825975722641599103320\;T{r_0^{\,2}}\,_Z^{\!3}$$

$$-1397524417001858161 T^2 r_0^2$$

$$R_{zap}(t_{zap}, r_0, R_0, R_i, m, T, \theta) := \sqrt{R_0^2 - 2 \cdot R_0 \cdot r(t_{zap}, r_0, R_i, m, T) \cdot \cos(\theta) + r(t_{zap}, r_0, R_i, m, T)^2}$$

$$(t_{zap}, r_0, R_0, R_i, m, T, \theta) \rightarrow \sqrt{R_0^2 - 2 R_0 r(t_{zap}, r_0, R_i, m, T) \cos(\theta) + r(t_{zap}, r_0, R_i, m, T)^2}$$

$$(63)$$

 $R_{zap}(t_{zap}, r_0, R_0, R_i, m, T, \theta)$

$$\left(R_0^2 - 2R_0 \left(r_0 + 2.364338738 \cdot 10^{-12} r_0 \sqrt{\frac{T}{m}} t_{zap} + \frac{0.000216954382934720 r_0 t_{zap}^{-2}}{\sqrt{\frac{T}{m}} m}\right) \cos(\theta) + \left(r_0 + 2.364338738 \cdot 10^{-12} r_0 \sqrt{\frac{T}{m}} t_{zap} + \frac{0.000216954382934720 r_0 t_{zap}^{-2}}{\sqrt{\frac{T}{m}} m}\right)^2\right)^{1/2}$$

 $R_{zap}(tzap(t, r_0, R_0, R_i, m, T, \theta), r_0, R_0, R_i, m, T, \theta)$:

,

$$K_{zap}(t_{zap}, r_{0}, R_{0}, R_{i}, m, T, \theta) := R_{zap}(t_{zap}, r_{0}, R_{0}, R_{i}, m, T, \theta) - \frac{v_{r}(t_{zap}, r_{0}, R_{i}, m, T)}{c} \cdot (R_{0} \cdot \cos(\theta) - r(t_{zap}, r_{0}, R_{i}, m, T, \theta)) - \frac{v_{r}(t_{zap}, r_{0}, R_{i}, m, T)}{c} \cdot (R_{0} \cdot \cos(\theta) - r(t_{zap}, r_{0}, R_{i}, m, T, \theta)) - \frac{v_{r}(t_{zap}, r_{0}, R_{i}, m, T, \theta) - r(t_{zap}, r_{0}, R_{i}, m, T, \theta)}{c}$$

$$(65)$$

$$K_{zap}(t_{zap}, r_0, R_0, R_i, m, T, \theta)$$

$$\left(R_0^2 - 2R_0 \left(r_0 + 2.364338738 \cdot 10^{-12} r_0 \sqrt{\frac{T}{m}} t_{zap} + \frac{0.000216954382934720 r_0 t_{zap}^{2}}{\sqrt{\frac{T}{m}} m}\right) \cos(\theta) \right) + \left(r_0 + 2.364338738 \cdot 10^{-12} r_0 \sqrt{\frac{T}{m}} t_{zap} + \frac{0.000216954382934720 r_0 t_{zap}^{2}}{\sqrt{\frac{T}{m}} m}\right)^2\right)^{1/2} - \frac{1}{299792458} \left(2.364338738 \cdot 10^{-12} r_0 \sqrt{\frac{T}{m}}\right) + \frac{0.000216954382934720 r_0 t_{zap}^{2}}{\sqrt{\frac{T}{m}} m}\right)^{1/2}$$

$$\begin{split} & + \frac{0.000433908765869441 \ r_0 \ t_{zap}}{\sqrt{\frac{T}{m}} \ m} \\ & - \frac{0.000216954382934720 \ r_0 \ t_{zap}^{-2}}{\sqrt{\frac{T}{m}} \ m} \end{split} \right) \left(R_0 \cos(\theta) - r_0 - 2.364338738 \ 10^{-12} \ r_0 \sqrt{\frac{T}{m}} \ t_{zap} \right) \end{split}$$

 $K_{zap}\big(tzap\big(t,r_0,R_0,R_i,m,T,\theta\big),r_0,R_0,R_i,m,T,\theta\big)$:

$$r$$
 , R_0 r R_0 (67)

$$\rho(q, N_i, R_i) := q \cdot \frac{N_i}{\prod_{i=1}^{R} 4 \cdot \pi \cdot r^2 dr}$$

$$(q, N_i, R_i) \to \frac{q N_i}{\prod_{i=1}^{R} 4 \pi r^2 dr}$$
(68)

$$\phi\left(\sigma_{r_{0}},\,t,\,r_{0},\,R_{0},\,m,\,T\right):=\int_{0}^{\pi}\frac{2\cdot\pi\cdot\,r\big(t,\,r_{0},\,R_{i},\,m,\,T\big)^{\,2}\cdot\sin\big(\theta\big)\cdot\sigma_{r_{0}}}{K_{zap}\big(tzap\big(t,\,r_{0},\,R_{0},\,R_{i},\,m,\,T,\,\theta\big),\,r_{0},\,R_{0},\,R_{i},\,m,\,T,\,\theta\big)}\,\,\mathrm{d}\theta:$$

$$\phi_{R_0}(t, R_0, m, T, q, N_i, R_i) := \int_0^{R_i} \phi(\rho(q, N_i, R_i), t, r_0, R_0, m, T) dr_0$$

$$(t, R_0, m, T, q, N_i, R_i) \to \int_0^{R_i} \phi(\rho(q, N_i, R_i), t, r_0, R_0, m, T) dr_0$$
(69)

$$A_{R_{\theta}} := \int_{0}^{\pi} \frac{2 \cdot \pi \cdot \ r \left(t, r_{0}, R_{i}, m, T\right)^{2} \cdot \sin \left(\theta\right) \cdot \sigma \left(r_{0}\right) \cdot \left(v_{r} \left(t_{zap}, r_{0}, R_{i}, m, T\right) \cdot \cos \left(\theta\right)\right)}{K_{zap} \left(tzap \left(t, r_{0}, R_{0}, R_{i}, m, T, \theta\right), r_{0}, R_{0}, R_{i}, m, T, \theta\right)} \ \mathrm{d}\theta:$$