RL: MDP

Policy Iteration

Marius Lindauer

Policy Search (PS)

- One option is searching to compute best policy
- Number of deterministic policies is $|A|^{|S|}$
- Policy iteration is generally more efficient than enumeration

MDP Policy Iteration (PI)

- Set *i* = 0
- Initialize $\pi_0(s)$ randomly for all states s
- While i==0 or $||\pi_i-\pi_{i-1}||_1>0$ (L1-norm, measures if the policy changed for any state)
 - $V^{\pi_i} \leftarrow \mathsf{MDP} \ \mathsf{V}$ function policy evaluation of π
 - ▶ π_{i+1} ← Policy improvement
 - $i \leftarrow i + 1$

Definition: State-Action Value Q

State-action value of a policy

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

 \rightarrow Take action a, then follow the policy π

Policy Improvement

- Compute state-action value of a policy π_i
 - ightharpoonup For s in S and a in A:

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

Policy Improvement

- Compute state-action value of a policy π_i
 - ightharpoonup For s in S and a in A:

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

• Compute new policy π_{i+1} for all $s \in S$

$$\pi_{i+1}(s) \in \operatorname*{arg\,max}_{a \in A} Q^{\pi_i}(s, a). \forall s \in S$$

MDP Policy Iteration (PI)

- Set i = 0
- Initialize $\pi_0(s)$ randomly for all states s
- While i==0 or $||\pi_i-\pi_{i-1}||_1>0$ (L1-norm, measures if the policy changed for any state)
 - ▶ $V^{\pi_i} \leftarrow \mathsf{MDP} \ \mathsf{V}$ function policy evaluation of $\pi \longrightarrow \mathsf{use} \ Q$
 - $\blacktriangleright \pi_{i+1} \leftarrow \text{Policy improvement}$
 - $i \leftarrow i + 1$

Delving Deeper Into Policy Improvement Step

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

$$\max_{a} Q^{\pi}(s, a) \ge R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s') = V^{\pi}(s)$$

$$\pi_{i+1}(s) \in \arg\max_{a \in A} Q^{\pi_{i}}(s, a)$$

- Suppose we take $\pi_{i+1}(s)$ for one action, then follow π_i forever
 - Our expected sum of rewards is at least as good as if we had always followed π_i
- But new proposed policy is to always follow π_{i+1}

Monotonic Improvement in Policy

Definition

$$V^{\pi_2} \ge V^{\pi_1} : V^{\pi_2}(s) \ge V^{\pi_1} . \forall s \in S$$

• Proposition: $V^{\pi_{i+1}} \geq V^{\pi_i}$ with strict inequality if π_i is suboptimal, where π_{i+1} is the new policy we get from policy improvement on π_i

MDP Policy Iteration (PI): Check your Understanding

- Set i=0
- Initialize $\pi_0(s)$ randomly for all states s
- While i=0 or $||\pi_i-\pi_{i-1}||_1>0$ (L1-norm, measures if the policy changed for any state)
 - ▶ $V^{\pi_i} \leftarrow \mathsf{MDP} \ \mathsf{V}$ function policy evaluation of $\pi \longrightarrow \mathsf{use} \ Q$
 - ▶ π_{i+1} ← Policy improvement
 - $i \leftarrow i + 1$
- If policy doesn't change, can it ever change?
- Is there a maximum of iterations of policy iteration?

