Pattern Recognition Classification Project

BY

HARIKANTH GHANTA CHARAN LELLABOYENA

Contents

- 1. Naïve Bayes
- 2. Decision Tree
- 3. Datasets
- 4. Results

Naive – Bayes Classification

- •It is a classification technique based on <u>Bayes' Theorem</u> with an assumption of independence among features.
- •In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.
- •Naive Bayes model is easy to build and particularly useful for very large data sets. Along with simplicity.

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Decision Tree

- •Decision tree builds classification or regression models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets.
- •The final result is a tree with **decision nodes** and **leaf nodes**.
- •We used Gini index method in building the decision tree.
- •Gini index is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset.
- •We split the dataset at a particular value where we get minimum gini index.

Datasets

- 1. Generated dataset with few overlaps
- 2. Generated dataset with more overlaps
- 3. Census dataset
 - 1. Predict whether income exceeds \$50K/yr based on census data.
 - 2. Mixed Data Set with both categorical and continuous data
 - 3. Features: 14
- 4. Sonar(Mine vs Rocks) dataset
 - 1. The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.
 - Continuous Data
 - 3. Features: 60

1. Generated dataset(low convergence)

	Accuracy(min)	Accuracy(max)
Naïve-Bayes	93.345	95.15
Decision tree	92.6	94.3

2. Generated dataset(high convergence)

	Accuracy(min)	Accuracy(max)
Naïve-Bayes	75.92	79.24
Decision tree	59.85	60.05

Principle Component Analysis

- Principle Component Analysis: A statistical technique used to examine the interrelations among a set of variables in order to identify the underlying structure of those variables. Also called factor analysis.
- Regression determines a line of best fit to a data set, factor analysis determines several orthogonal lines of best fit to the data set.
- These two properties can be regarded as weaknesses as well as strengths.
 - Since the technique is non-parametric, no prior knowledge can be incorporated.
 - PCA data reduction often incurs a loss of information.

3. Census dataset

Results For CensusData

Classifier	Before PCA	PCA(5 components)
Naïve-Bayes	81.69	80.07
Decision tree	77.984	80.19

4. Sonar dataset

Sonar Data after PCA

Results for Sonar Data

Classifier	Before PCA(60 features)	PCA(10 components)	PCA(25 components)	PCA(40 components)
Naïve-Bayes	76.811	81.159	84.057	79.71
Decision tree	69.230	65.38	68.26	63.461

Thank You