Design Hierarchy And VLSI Design Flow

Dr Noor Mahammad Sk

Evolution of CAD Tools

- Digital circuit design evolved over last three decades
- SSI Small Scale Integration (Tens of transistors)
- MSI Medium Scale Integration (Hundreds of transistors)
- LSI Large Scale Integration (Thousands of Transistors) - demanded automation of design process – CAD started evolving.

Evolution of CAD Tools

- VLSI Very Large Scale Integration Tens of Thousands of Transistors – CAD Tools are inevitable
- VLSI chip design forced
 - Automation of process
 - Automation of Simulation based verification replacing breadboard techniques – HDL development
 - Modular and Hierarchical techniques of design a natural object orientation approach

CAD Terminologies

- HDL Hardware Description Language
 - Describing a circuit to the computer
 - A programming language by all means
 - Concurrency constructs to simulate circuit behavior
 - Verilog and VHDL
 - Simulation for verification and Synthesis
 - Synthesizable constructs RTL

CAD Terminologies

- RTL Register Transfer Level
 - Specifying how the data flows between registers and how the design processes data
 - Registers store intermediate results
 - Logic between any two registers in a data flow determines the speed of the circuit
- Synthesis Converting RTL to a set of gates and wires connecting them – Ambit of Cadence, Design Compiler of Synopsys, *Precision* of Mentor, Blast Fusion from Magma are some of the commercially available synthesis tools.

Design Flow

- The process of converting an "idea" to a "chip" is called the VLSI Design Process.
- VLSI Design Process involves a sequence of steps –Flow.
- Tools that enable the design process are called CAD (Computer Aided Design) tools for VLSI.

Abstraction Hierarchy

- Designers use different abstraction domains for VLSI design.
- Structural Domain
 - Set of primitive components.
 - Primitive components are interconnected to form larger components.
- Behavioral Domain
 - Components are defined by their input/output response.
 - The components can themselves be implemented in many ways.

Abstraction Levels

Silicon Level

Circuit Level

Gate Level

Register Level

Chip Level

Typical Design Track

Design Representation

- Done in many ways
- Pictures
- Text
- Is picture worth a thousand words?

Design Representation Using Pictures

As a Timing Diagram

As a Circuit

And in Verilog

```
module detector (Xin, clk, R, I, Zout);
input Xin, clk, R, I;
output Zout;
reg Y1, Y0;
  initial
  begin
         Y1 = 1'b0; Y0 = 1'b0;
  end
  always@(posedge clk or negedge R) begin
          if (R== 1'b0) begin
                    Y1 = 1'b0; Y0 = 1'b0;
          end
          else begin
                    Y1 = Xin: Y0 = I:
          end
  end
assign Zout = Y0 & ((!Y1 & !Xin) | (Y1 & Xin));
endmodule
```


HDL

- HDL stands for Hardware Description Language
- Definition: A high level programming language used to model hardware.
- Hardware Description Languages
 - have special hardware related constructs.
 - currently model digital systems, and in future can model analog systems also.
 - can be used to build models for simulation, synthesis and test.
 - have been extended to the system design level.

Why Use HDLs

- Allows textual representation of a design.
- High level language similar to C,C++.
- Can be used for Modeling at the
 - Gate Level
 - Register Level
 - Chip Level
- Can be used for many applications at the
 - Systems Level
 - Circuit Level
 - Switch Level
- Design decomposition is simple with HDLs and hence can manage complexity
- Early validation of designs.

Need for Design Tools

- Current systems are very complex.
- Design abstraction and decomposition is done to manage complexity.
- Tools automate the process of converting your design from one abstraction level to another.
- Design Automation Tools improve productivity.
- Different tools are required in different steps.

Classification of CAD Tools

Editors

 Allows specification of the design either textually or graphically.

Simulators

Models the response of a system to input stimuli.

Analyzers

 Used at different levels to check for correctness and compliance to rules.

Synthesis

• Transformation of representation between different abstraction levels.

Flow and Tools

CAD Tools -1 Design entry

- Graphical
 - Silicon Level To create layouts
 - e.g. Magic
- Other Levels
 - e.g. ViewLogic, Protel
- Text
 - Natural language specification at system level.
 - Hardware Description Languages at Chip, Register and Gate levels.
 - e.g. VHDL, Verilog
- Circuit Level
 - e.g. SPICE

Graphical Editors

- Silicon Level editors are called Layout editors.
 - Draw rectangles describing metal, poly, diffusion etc
 - Library components are also at the same level.
 - Usually has online Design Rule Checking (DRC).
- Graphical Editors at other levels are usually called Schematic editors.
 - Used to create block diagrams and schematics.
 - The process is usually called Schematic Capture.

Schematic Editors

- Can create and display graphical components called "tokens"
- Can "interconnect" these tokens.
- Advantage :
 - Gives a structural representation called "netlist" describing the components used and their interconnections.
 - Also provides a simulation model to find the system's response for different stimuli.

Example of Schematic Entry

Text based Design Entry

- Choose a specific HDL.
- Use text editors to describe the design.
 - e.g. vi, emacs, notepad etc.
 - Some tools have built-in editors
- Enter your design conforming to the language lexicon, syntax and semantics.
- Check for errors.
- "Compile" to get a simulation model.

What makes HDLs Different?

- Hardware systems are concurrent in nature.
- Hardware systems may be distributed in nature.
 - Many components
 - Different rates for processing data, different clocks.
- Hardware systems are timed.
 - All hardware components have inherent delays and hence managing timing is crucial.
- Traditional software design techniques are insufficient.

CAD Tools -2 Simulators

- Defn.: A program that models response of a system to the input stimuli.
- Simulation is widely used to establish design correctness.
- Types
 - Deterministic
 - Stochastic

CAD Tools -3 Synthesis Tools

- Synthesis Definition: Transformation of a representation in one hierarchical level to another.
- Different names in different levels :
 - Algorithmic Synthesis Abstract behavioral to register level or gate level specification
 - Logic Synthesis RTL specification to gates
 - Physical Synthesis Structural specification as gates to layout.

Synthesis at different Levels

Synthesis Transformations

