Business Analytics Using Computational Statistics

Anonymous functions

temporary function created without a name (similar to a "lambda" in other languages)

Long way of creating an anonymous function:

```
apply(cars_log, 2, function(x) { max(x) - min(x) } )
```

Short way of creating an anonymous function:

```
apply(cars_log, 2, \(x) \{ max(x) - min(x) \} )
```


Do NOT use this new syntax to define named functions

```
range_length <- \(x) {
  max(x) - min(x)
}</pre>
```

```
range_length <- function(x) {
  max(x) - min(x)
}</pre>
```

Forward Moving Scripts

Traditional data processing script

```
cars log <- read.csv("cars log.csv")</pre>
cars log cor <- round(cor(cars log), 2)</pre>
```

We typically assign every line to a variable and use the variable in the next line...

- variable name helps describe what line does
- hard to see actual steps; flow can jump right to left

Native Piping in R!

R now has a **native piping** operator |> that makes is even easier to use

- easy to read
- must pass last step's result to first parameter

sometimes easier to read if code moves forward

pipe operator:

|>(cor('))|> round(', 2)

Result can be sent to later parameters of next function:

grepl("at", c("dogs", "cats", "rats")) # [1] FALSE TRUE TRUE

Result of previous step can be sent to a later parameter

using the underscore (_) symbol,

but only if you name the parameter

Magrittr package for piping

```
library(magrittr)

cars_log_cor <- read.csv("cars_log.csv") %>%
   cor() %>%
   round(2)

c("dogs", "cats", "rats") %>% grepl("at", .)
```

Magrittr package has a **pipe** operator %>% that also makes it easy to describe steps in your process

Magrittr was favored by most data scientists in the past.

I recommend using native pipes now,
but know what else magrittr can do

https://magrittr.tidyverse.org/

PCA Visualized

PCA finds underlying dimensions in your data

install.packages("devtools")
devtools::install_github("soumyaray/compstatslib")
interactive_pca()

Dimension Reduction: Cars Example

One use of PCA is to <u>reduce</u> the dimensionality of data

Correlates:

```
correlates <- with(cars_log, data.frame(log.cylinders., log.displacement., log.horsepower., log.weight.))
cor(correlates) |> round(2)
```

	log.cylinders.	log.displacement.	log.horsepower.	log.weight.
log.cylinders.	1.00	0.95	0.83	0.88
log.displacement.	0.95	1.00	0.87	0.94
log.horsepower.	0.83	0.87	1.00	0.87
log.weight.	0.88	0.94	0.87	1.00

These correlates capture **Heftiness**

Hefty: "large, heavy, and powerful" (opposite of **light**)

Eigenvalues:

```
hefty_eigen <- eigen(cor(correlates))

hefty_eigen$values
  [1] 3.674 0.188 0.104 0.034

sum(hefty_eigen$values)
  [1] 4

hefty_eigen$values / sum(hefty_eigen$values)
  [1] 0.919 0.047 0.026 0.009

PC1 captures 91.9% of original data's variance!
```

Eigenvalues

eigen(cor(correlates))

Variance of each component

Sums to number of original dimensions

Proportion of each eigenvalue/dimensions is variance captured!

Eigenvectors

All have magnitude 1: doesn't tell us the importance of dimensions

hefty_eigen\$vectors |> round(3)

magnitude
$$|\vec{v}| = \sqrt{\sum v_1^2 + v_2^2 + v_3^2 + v_4^2}$$
 apply(hefty_eigen\$vectors, 2,

apply(hetty_eigen\$vectors, 2, FUN = \(x) {sqrt(sum(x^2)) }) [1] 1 1 1 1

Principal Component Analysis of "Heftiness":

hefty pca <- prcomp(correlates, scale. = TRUE)</pre> standardize data for PCA screeplot(hefty pca, type="lines")

Using both the 'eigenvalues > 1' and *screeplot criteria*, only one major dimension seems to exist in these correlates

Variances 0

Eigenvectors

hefty pca**\$rotation**

PC1 PC2 PC3 PC4 log.cylinders. -0.4979145 -0.53580374 0.52633608 0.4335503 log.displacement. -0.5122968 -0.25665246 -0.07354139 -0.8162556 log.horsepower. 0.80424467 0.34193949 0.0210980 log.weight. 0.01530917 -0.77500928 0.3812031

3

2

3

The **sign of eigenvectors** is useful in interpretation but it is arbitrary: different ways of estimating eigenvectors can produce positive/negative values

PC1 is negatively associated with all heftiness items Let's call PC1: "lightness"

summary(hefty pca)

Importance of components:

PC1 PC2 PC3 PC4 Standard deviation 1.9168 0.43316 0.32238 0.18489 Proportion of Variance 0.9186 0.04691 0.02598 0.00855 Cumulative Proportion 0.9186 0.96547 0.99145 1.00000

Proportion of variance in data captured by principal components (Same as we calculated on previous page!)

Eigenvalues are variances (square of standard devations)

pca_report <- summary(hefty_pca)</pre> pca report\$sdev^2 |> round(3) [1] 3.674 0.188 0.104 0.034

Raw Data vs. PC Scores

Dimension Reduction

Using only the first PC (four dimensions $\rightarrow 1$ dimension)

Let's exanine the first principal component's relationship to weight...

plot(cars\$weight, pc1, pch=19, col="cornflowerblue")

The first principal component seems to be the opposite of "heftiness"!

If we take the negative of PC1, it seems to match our idea of "heftiness"

Composite Measurement

(combining measurements)

Resolving Multicollinearity using PCA

Recall our full regression with all correlates

log.acceleration. 3.570357 1

model year

factor(origin)

```
full_regr <- lm(</pre>
  log.mpg. ~ log.cylinders. + log.displacement. +
             log.horsepower. + Log.weight. +
             log.acceleration. + model year +
             factor(cars$origin),
  data = as.data.frame(scale(cars log)))
vif(full regr)
                      GVIF Df GVIF^(1/(2*Df))
log.cylinders.
                 10.456738 1
                                     3.233688
log.displacement. 29.625732 1
                                     5.442952
Log.horsepower.
                 12.132057 1
                                     3.483110
Log.weight.
                 17.575117 1
                                     4.192269
```

1.889539

1.141814

1.276702

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.05386	0.02626	-2.051	0.04094	*
log.cylinders.	-0.07281	0.05432	-1.340	0.18094	
log.displacement.	0.03194	0.09144	0.349	0.72707	
log.horsepower.	-0.28755	0.05851	-4.914	1.32e-06	***
log.weight.	-0.49035	0.07043	-6.962	1.46e-11	***
log.acceleration.	-0.09029	0.03174	-2.845	0.00469	**
model_year	0.32759	0.01918	17.078	< 2e-16	***
<pre>factor(cars\$origin)2</pre>	0.14915	0.06152	2.424	0.01580	*
<pre>factor(cars\$origin)3</pre>	0.13885	0.06064	2.290	0.02259	*

We cannot simultaneously model these four correlates because they have high correlations with each other

Regression after dimension reduction (4 correlates \rightarrow PC1)

1.303738 1

2.656795 2

```
hefty regr <- lm(</pre>
  log.mpg. ~ scale(heftiness) +
              log.acceleration. +
              model year + factor(cars$origin),
  data=as.data.frame(scale(cars log)))
vif(hefty_regr)
                       GVIF Df GVIF^(1/(2*Df))
scale(heftiness)
                   2.555047 1
                                      1.598451
log.acceleration.
                   1.549984 1
                                      1.244984
model year
                   1.208794 1
                                      1.099452
factor(cars$origin) 1.845987 2
                                      1.165621
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.01588	0.02563	-0.620	0.536
scale(heftiness)	-0.82113	0.02851	28.805	<2e-16 ***
log.acceleration.	-0.10192	0.02220	-4.590	6e-06 ***
model_year	0.31612	0.01961	16.122	<2e-16 ***
<pre>factor(cars\$origin)2</pre>	0.02431	0.05775	0.421	0.674
<pre>factor(cars\$origin)3</pre>	0.05788	0.05704	1.015	0.311

We have **composited** our correlates into a **single construct**

Note that heftiness-vs-mpg is not linear... how would you fix it?

Dimensionality Analysis: Security Example

Another use of PCA is to understand the dimensions in our data

```
sec <- read.csv("security questions.csv")</pre>
sec eigen <- eigen(cor(sec))</pre>
sec eigen$values
  [1] 9.31 1.60 1.15 0.76 0.68 0.61 0.50 0.47 0.45 0.39 0.35 0.30 0.29 0.26 0.23 0.23 0.21 0.20
sec pca <- prcomp(sec, scale. = TRUE)</pre>
sec pca$rotation[, 1:3] |> round(2)
                                                                                           Only 3 components seem important
      PC1
             PC2
                    PC3
                                                                                      Most of these PCs seem to add little to no value
    -0.27
            0.11 0.00
    -0.22
            0.01
                  0.08
    -0.25
            0.03 0.08
    -0.20 -0.51 0.10
                                                                  sec_eigen$values
    -0.23
            0.02 -0.51
    -0.22
           0.08
                  0.19
                                                                                                   Problem 1:
    -0.22
           0.25 0.30
                                                                                 Finding the number of components can be subjective
                                   How can we interpret
    -0.26 -0.03 -0.32
                               the meaning of our components
                                                                     7
    -0.24 0.18 0.19
010 -0.22
           0.08 -0.50
                                  PC1: almost everything?
Q11 -0.25
           0.21 0.16
                                    PC2: Q4, Q12, Q17
Q12 -0.21 -0.50 0.11
                                      PC3: Q5, Q10
013 -0.23 0.05 0.08
014 -0.27 0.08 0.15
015 -0.23 -0.01 -0.31
016 -0.25 0.16 0.17
Q17 -0.20 -0.53 0.10
018 -0.26 0.09 -0.06
                  Authenticate correct website?
                                                                            Problem 2:
                                                                     It is difficult to interpret the
           Q4+Q17: Prevent deniability of transactions
```

Cannot tell: all coefficients are almost the same...

meaning of principle components

10

Comparing Data vs. Noise with PCA

Eigenvalues: decathlon

Let's remember the screeplot of our decathlon data

dec <- read.table("decathlon_data.txt", header=TRUE)
screeplot(dec_pca, ...)</pre>

Let's create "noise" of same size as our decathlon data:

10 variables x 33 subjects

It seems that PCA can pull "meaningful" components (eigenvalue ≥ 1) out of noise!

```
noise <- data.frame(replicate(ncol(dec), rnorm(nrow(dec))))
eigen(cor(noise))$values |> round(2)
[1] 1.80 1.58 1.53 1.31 1.03 0.94 0.63 0.50 0.35 0.33
```

```
noise_pca <- prcomp(noise, scale. = TRUE)
screeplot(noise_pca, ylim=c(0,3.5), ...)
abline(h=1, lty="dotted", col="darkgray", lwd=2)</pre>
```


Eigenvalue ≥ 1 *can be found even in noise!*

Horn's Parallel Analysis

To determine many meaningful principal components, we compare variance extracted from our data versus noise

Find eigenvalues ev_a for your dataset of interest (n cases, p variables)

```
dec_pca <- prcomp(dec, scale. = TRUE)</pre>
```

1. Function to run a PCA on $n \times p$ dataframe of random values

```
sim_noise_ev <- function(n, p) {
  noise <- data.frame(replicate(p, rnorm(n)))
  eigen(cor(noise))$values
}</pre>
```

2. Repeat this k times

```
evalues noise <- replicate(100, sim noise ev(33, 10))
```

3. Average each of the noise eigenvalues ev_q^r over k to produce $\overline{ev_q^r}$

```
evalues_mean <- apply(evalues_noise, 1, mean)  \{ > \overline{ev_q}^r \ retain \ the \ PC \\ \le \overline{ev_q}^r \ do \ not \ retain
```

Compare eigenvalues ev_q to averaged eigenvalues of noise \overline{ev}_q^r :

```
screeplot(dec_pca, type="lines")
lines(evalues_mean, type="b")
abline(h=1, lty="dotted")
```


Parallel analysis gives us an objective sense of whether our principal components have value

Use parallel analysis in conjunction with other criteria (ev > 1; screeplot)

Interpreting Principal Components: Decathlon Example

Examining the results of PCA

dec_pca <- prcomp(dec, scale. = TRUE)</pre>

dec_pca\$rotation

```
PC1
             PC2
                   PC3
                         PC4
                               PC5
                                    PC6
                                          PC7
                                                PC8
                                                         PC10
      -0.42 0.15 -0.27
                        0.09 -0.44 0.03 0.25 -0.66
li
       0.39 -0.15 -0.17 0.24
                             0.37 -0.09 0.75 -0.14 -0.05 -0.06
                  0.10 0.11 -0.01 0.23 -0.11 -0.07 -0.42 -0.65
SD
hj
       0.21 0.03 -0.85 -0.39
                             0.00 0.07 -0.14
      -0.36 0.35 -0.19 -0.08
                             0.15 -0.33 0.14
                                               0.15 -0.65
X400m
      -0.43 0.07 -0.13 0.38 -0.09 0.21 0.27 0.64
X110h
dis
       0.18 0.50 0.05 -0.03 0.02 0.61 0.14 -0.01
                  0.14 -0.14 -0.72 -0.35 0.27
                                               0.28
                                                          0.07
       0.18 0.37 -0.19 0.60 0.10 -0.44 -0.34 -0.06
jav
                                                    0.31 0.13
X1500m -0.17 0.42 0.22 -0.49 0.34 -0.30 0.19 -0.01 0.46 -0.24
```

eigenvectors are the "weights" of our composite PC scores!

regression coefficients between PC score and items (but they are still hard to interpret)

Component Scores

scores <- dec_pca\$x</pre>

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
[1,]	1.73	1.23	-2.79	-0.29	0.16	1.74	0.27	0.09	0.25	-0.18
[2,]	2.79	-0.10	0.84	0.13	0.06	0.10	0.04	-0.02	0.33	-0.10
[3,]	1.88	-0.14	0.04	0.97	-0.91	-0.22	0.44	-0.23	0.28	0.29
						-0.79				

Confirming orthogonality of components

cor(scores) |> round(2)

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
PC1	1	0	0	0	0	0	0	0	0	0
PC2	0	1	0	0	0	0	0	0	0	0
PC3	0	0	1	0	0	0	0	0	0	0
PC4	0	0	0	1	0	0	0	0	0	0
PC5	0	0	0	0	1	0	0	0	0	0
PC6	0	0	0	0	0	1	0	0	0	0
PC7	0	0	0	0	0	0	1	0	0	0
PC8	0	0	0	0	0	0	0	1	0	0
PC9	0	0	0	0	0	0	0	0	1	0
PC10	0	0	0	0	0	0	0	0	0	1

 $PC_i = w_{i1} \cdot X100m + w_{i2} \cdot lj + w_{i3} \cdot sp + w_{i4} \cdot hj + w_{i5} \cdot X400m + w_{i6} \cdot X110h + w_{i7} \cdot dis + w_{i8} \cdot pv + w_{i9} \cdot jav + w_{i10} \cdot X1500m$ The **scores** of each principal component is a **weighted sum** of our original dimensions

Reproducing Data from Components

Weights (transposed)

dec_pca <- prcomp(dec, scale. = TRUE)</pre>

Our data has been decomposed into scores and weights

weights	<-	dec_	_pca\$rotation

	X100m	1j	sp	hj	X400m	X110h	dis	pν	jav	X1500m
PC1	-0.42	0.39	0.27	0.21	-0.36	-0.43	0.18	0.38	0.18	-0.17
PC2	0.15	-0.15	0.48	0.03	0.35	0.07	0.50	0.15	0.37	0.42
PC3	-0.27	-0.17	0.10	-0.85	-0.19	-0.13	0.05	0.14	-0.19	0.22
PC10	-0.11	-0.06	-0.65	-0.12	0.34	-0.26	0.53	0.07	0.13	-0.24

Scores

scores <- dec_pca\$x</pre>

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	
[1,]	1.73	1.23	-2.79	-0.29	0.16	1.74	0.27	0.09	0.25	-0.18	
[2,]	2.79	-0.10	0.84	0.13	0.06	0.10	0.04	-0.02	0.33	-0.10	
[3,]	1.88	-0.14	0.04	0.97	-0.91	-0.22	0.44	-0.23	0.28	0.29	
						-0.79					

Original Data (scaled)

dec_scaled <- scale(dec)</pre>

	X100m	lj	sp	hj	X400m	X110h	dis	pv	jav	X1500m	
[1,]	0.22	0.97	1.13	3.06	-0.35	0.16	1.86	-0.12	0.34	-0.52	
[2,]	-1.34	1.04	0.75	-0.14	-1.46	-1.16	0.54	1.08	0.42	-0.22	
[3,]	-0.07	1.01	0.17	-0.14	-0.92	-0.47	0.35	1.38	0.86	-0.94	
	1 5/									-0.44	
LJJ, _	T. J+	0.19	-2.70	-0.77	T. 54	۷. ۷ ۱	-2.13	-1.91	-0.02	-0.44	

Computing Scores From Weights

$$PC_i = w_{i1} \cdot X100m + w_{i2} \cdot lj + w_{i3} \cdot sp + w_{i4} \cdot hj + w_{i5} \cdot X400m + w_{i6} \cdot X110h + w_{i7} \cdot dis + w_{i8} \cdot pv + w_{i9} \cdot jav + w_{i10} \cdot X1500m$$

as.matrix(dec_scaled) %*% weights

Scores

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	
[1,]	1.73	1.23	-2.79	-0.29	0.16	1.74	0.27	0.09	0.25	-0.18	
[2,]	2.79	-0.10	0.84	0.13	0.06	0.10	0.04	-0.02	0.33	-0.10	
[3,]	1.88	-0.14	0.04	0.97	-0.91	-0.22	0.44	-0.23	0.28	0.29	
						-0.79					

Reproducing Data from PCs

scores %*% t(weights)

$$S \times W^T = D$$

Reproduced Data (scaled)

X100m	lj	sp	hj	X400m	X110h	dis	pv	jav	X1500m
[1,] 0.22	0.97	1.13	3.06	-0.35	0.16	1.86	-0.12	0.34	-0.52
[2,] -1.34	1.04	0.75	-0.14	-1.46	-1.16	0.54	1.08	0.42	-0.22
[3,] -0.07	1.01	0.17	-0.14	-0.92	-0.47	0.35	1.38	0.86	-0.94
[33,] 1.54	0.19	-2.78	-0.77	1.34	2.27	-2.15	-1.91	-0.82	-0.44

The full 10 PCs hold the same information as our 10 original items of data

Let's make a function to reproduce our original data given the number of PCs to retain

```
reproduce_data <- function(original_data, k_pc) {
  pca_results <- prcomp(original_data, scale=TRUE)
  scores = pca_results$x[,1:k_pc]
  weights = pca_results$rotation[,1:k_pc]
  scores %*% t(weights)
}</pre>
S X
WT = D
```

Reproducing Data From All PC dimensions

We can fully recreate our data using all 10 principal components


```
reproduce10 <- reproduce_data(dec_scaled, 10)
residuals10 = as.data.frame(dec_scaled - reproduce10)

plot(1:nrow(dec), residuals10$X100m, ylim = c(-5, 5))
abline(h = 0, col = "lightgray")</pre>
```

Reproducing Data After Dimension Reduction

By reducing dimensions (choosing fewer PCs), we must give up some precision of each measurement item


```
reproduce2 <- reproduce_data(dec, 2)
residuals2 = as.data.frame(scale(dec) - reproduce2)
plot(1:nrow(dec), residuals2$X100m, ylim=c(-5, 5))

plot(1:nrow(dec), residuals10$X100m, ylim = c(-5, 5))
abline(h = 0, col = "lightgray")</pre>
```

No residuals in reproducing original data

Residuals emerge in reproducing original data

Measurement Models

How we conceptualize our construct will influence how we statistically represent it

The **errors** capture items' unique sources of variance

17

Using Components to Estimate a Factor Model

 PC_i

X110h

unique

library(psych)

dec principal <- principal(dec, nfactor=10, rotate="none", scores=TRUE)</pre>

Standardized loadings (pattern matrix) based upon correlation matrix

	PC1	PC2	PC3	PC4	PC5	PC6	PC/	PC8	PC9	PC10	
X100m	-0.77	0.24	0.26	0.08	0.33	-0.02	0.17	-0.37	0.06	0.03	
lj	0.73	-0.25	0.16	0.23	-0.28	0.07	0.49	-0.08	-0.02	0.02	
sp	0.50	0.78	-0.10	0.10	0.01	-0.16	-0.07	-0.04	-0.22	0.21	
hj	0.39	0.05	0.83	-0.36	0.00	-0.05	-0.09	0.09	0.05	0.04	
X400m	-0.66	0.57	0.18	-0.08	-0.11	0.23	0.09	0.08	-0.34	-0.11	
X110h	-0.80	0.11	0.12	0.36	0.07	-0.15	0.18	0.35	0.11	0.08	
dis	0.33	0.81	-0.04	-0.02	-0.01	-0.43	0.09	-0.01	0.09	-0.17	
pv	0.71	0.24	-0.13	-0.13	0.53	0.24	0.18	0.15	0.01	-0.02	
jav	0.33	0.60	0.19	0.56	-0.07	0.31	-0.22	-0.03	0.16	-0.04	
X1500m	-0.31	0.68	-0.22	-0.46	-0.25	0.21	0.12	0.00	0.24	0.08	

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
SS loadings 3.42 2.61 0.94 0.88 0.56 0.49 0.43 0.31 0.27 0.10
Proportion Var 0.34 0.26 0.09 0.09 0.06 0.05 0.04 0.03 0.03 0.01
Cumulative Var 0.34 0.60 0.70 0.78 0.84 0.89 0.93 0.96 0.99 1.00

 λ : "loadings" – correlation of PC and item (lambda)

principal() – *Performs PCA, reports factor loadings* **nfactor** – *number of components to extract*

loadings – Scaled eigenvectors: these have meaning! $Loadings = eigenvector \times \sqrt{eigenvalue}$

$$L = \vec{v} \cdot s$$
 $\vec{v} = eigenvector$
 $s = standard\ deviation$
(square root of eigenvalue)

SS loadings — sum-of-square loadings is eigenvalue sum(dec_principal\$loadings[,"PC1"]^2)
[1] 3.42

Proportion Var – variance explained by each PC Cumulative Var – total variance explained by all PCs

jav

unique

pv

unique

Interpreting PC-item Loading

Simple regression coefficients

Correlations (correlation of PC1 and X100m is -0.77)

 $X100m = \lambda_1 \cdot PC + \varepsilon$ $lj = \lambda_2 \cdot PC + \varepsilon$ $sp = \lambda_3 \cdot PC + \varepsilon$

$$X1500m = \lambda_{10} \cdot PC + \varepsilon$$

Loadings, which include magnitude and direction are easier to interpret than **eigenvectors**

dis

unique

 λ > 0.70 is considered a good loading, more than half of item variance explained by PC

λ²: "variance explained" proportion of item variance explained by factor

X1500m

unique

Rotation: Change in Perspective

Axis Rotation: Wine Example

We can rotate PCs relative to original dimensions (not data) to increase interpretabilty

RC1

Price

Wine	characteristics
1 11110	CHILL MCTCL 1011C0

		For	For				
	Hedonic	meat	$\operatorname{dessert}$	Price	Sugar	Alcohol	Acidity
Wine 1	14	7	8	7	7	13	7
Wine 2	10	7	6	4	3	14	7
Wine 3	8	5	5	10	5	12	5
Wine 4	2	4	7	16	7	11	3
Wine 5	6	2	4	13	3	10	3

Principal components transform original dimensions to maximize variance explained

We can **rotate** the principal components so original dimensions are closer to axes

Rotated components rotate principal components to maximize interpretation of loadings

RC2

Hedonic

For meat

For dessert

Acidity

no rotation PC2 RC2 PC2 Hedonic PC1 PC1 Acidity • Alcohol For meat For meat **Price** RC1 For dessert For dessert Sugar

varimax rotation

Original dimensions loadings

Sugar

plotted on rotated components

Original dimensions loadings plotted on principal components

PCA: No Rotation

dec_pca2_orig <- principal(dec, nfactor=2, rotate="none", scores=TRUE)</pre>

Structure Matrix (Unrotated Loadings)

PC1 PC2 X100m -0.77 0.24 lj 0.73 -0.25 0.50 0.78 sp hj 0.39 0.05 X400m -0.66 0.57 X110h -0.80 0.11 0.33 0.81 dis 0.71 0.24 pν 0.60 0.33 jav X1500m -0.31 0.68

Loadings are clearer than eigenvectors, but several sports are still hard to distinguish

Dimension Comparisons

Original 10 dimensional data

100m 11.25 10.87 11.18	lj 7.43 7.45 7.44	sp 15.48 14.97 14.2	hj 2.27 1.97 1.97	48.9 47.71 48.29	110h 15.13 14.46 14.81	49.28 44.36 43.66	pv 4.7 5.1 5.2	61.32 61.76 64.16	1500m 269 273 263.2	
10.62	7.38	15.02	2.03	49.06	14.72	44.8	4.9	64.04	285.1	
11.47 11.57	6.43 7.19	12.33 10.27	1.94 1.91	50.3 50.71	15 16.2	38.72 34.36	4 4.1	57.26 54.94	293.7 270	

Reduced 2 dimensional scores

dec_pca2_oriq\$scores

		PC1	PC2
	[1,]	0.93731950	0.76272582
>	[2,]	1.50755550	-0.06236234
	[3,]	1.01642865	-0.08479291
	[4,]	1.25112810	0.49216869
	-	<u>-</u>	-
	-	-	-
	-	-	-
	[32,]	-1.84912989	-0.11539163
	Г33. Т	-2.23052370	-1.48413203

cor(dec_pca2_orig\$scores)

PC1 PC2 PC1 1 0 PC2 0 1

Principal components are orthogonal 21

PCA: Varimax Rotation

dec_pca_rot <- principal(dec, nfactor=2, rotate="varimax", scores=TRUE)</pre>

Pattern Matrix (Rotated Loadings)

After rotation, most sports have distinct loadings on rotated components

It is now clearer that pv, hj, and X1500m are unusual sports compared to the others

plot(dec_pca_orig\$loadings)
text(dec_pca_orig\$loadings, pos=2,
 labels=rownames(dec_pca_orig\$loadings))
abline(h=0, v=0)

Original 10 dimensional data

11.47

11.57

6.43

7.19

12.33

10.27

1.94

1.91

50.3

50.71

100m	lj	sp	hj	400m	110h	dis	pv	jav	1500m	
11.25	7.43	15.48	2.27	48.9	15.13	49.28	4.7	61.32	269	
10.87	7.45	14.97	1.97	47.71	14.46	44.36	5.1	61.76	273	
11.18	7.44	14.2	1.97	48.29	14.81	43.66	5.2	64.16	263.2	
10.62	7.38	15.02	2.03	49.06	14.72	44.8	4.9	64.04	285.1	
										\neg

15

16.2

38.72

34.36

57.26

54.94

4.1

293.7

270

Reduced 2 dimensional scores

	RC1	RC2
[1,]	-0.5741143	1.0633491
[2,]	-1.4166777	0.5192659
[3,]	-0.9715142	0.3106077
[4,]	-0.9675701	0.9334664
	-	-

dec_pca2_rot\$scores

[32,] 1.6642351 -0.8141978 [33,] 1.4928380 -2.2247064

cor(dec_pca2_rot\$scores)

Rotated components are also orthogonal!

principal(dec, nfactor=2, rotate="none", scores=TRUE)

Principal Components Analysis

Call: principal(r = dec, nfactors = 2, rotate = "none", scores = TRUE) Standar<u>dized</u> loadings (pattern matrix) based upon corrélation matrix

	PC1	PC2	h2	u2 com
X100m	-0.77	0.24	0.65	0.35 1.2
lj	0.73	-0.25	0.59	0.41 1.2
sp	0.50	0.78	0.86	0.14 1.7
hj	0.39	0.05	0.16	0.84 1.0
X400m	-0.66	0.57	0.76	0.24 2.0
X110h	-0.80	0.11	0.65	0.35 1.0
dis	0.33	0.81	0.77	0.23 1.3
pν	0.71	0.24	0.56	0.44 1.2
jav	0.33	0.60	0.47	0.53 1.6
X1500m	-0.31	0.68	0.56	0.44 1.4
	$\overline{}$			

OUIII	-0.11	0.27 0.03 0.33 1.2
	0.73	-0.25 0.59 0.41 1.2
	0.50	0.78 0.86 0.14 1.7
	0.39	0.05 0.16 0.84 1.0
20m	-0.66	0.57 0.76 0.24 2.0
10h	-0.80	0.11 0.65 0.35 1.0
S	0.33	0.81 0.77 0.23 1.3
	0.71	0.24 0.56 0.44 1.2
V	0.33	0.60 0.47 0.53 1.6
500m	-0.31	0.68 0.56 0.44 1.4
'		'

			PC2
SS loadings	5	3.42	
Proportion		0.34	0.26
Cumulative	Var	0.34	0.60
Proportion	Explained	0.57	0.43
Cumulative	Proportion	0.57	1.00

"Communality"

variance of X100m explained by both principal components

$$h^2 = RC1^2 + RC2^2$$

"Uniqueness"

Unexplained variance of X100m $u^2 = 1 - Communality$

Sum-squared loadings: Eigenvalues

principal(dec, nfactor=2, rotate="varimax", scores=TRUE)

Principal Components Analysis

Call: principal(r = dec, nfactors = 2, rotate = "varimax", scores = TRUE) Standardized loadings (pattern matrix) based upon correlation matrix

Jeanaan	ULZCU	LOUGLI	195 (1	Juccelli ille
	RC1	RC2	h2	u2 com
X100m	0.80	-0.07	0.65	0.35 1.0
lj	-0.77	0.05	0.59	0.41 1.0
sp	-0.16	0.91	0.86	0.14 1.1
hj	-0.35	0.19	0.16	0.84 1.6
X400m	0.83	0.27	0.76	0.24 1.2
X110h	0.78	-0.20	0.65	0.35 1.1
dis	0.01	0.88	0.77	0.23 1.0
pv	-0.56	0.49	0.56	0.44 2.0
jav	-0.08	0.68	0.47	0.53 1.0
X1500m	0.55	0.51	0.56	0.44 2.0

		RC1	RC2
SS loadings	5	3.30	2.73
Proportion	Var	0.33	0.27
Cumulative	Var	0.33	0.60
Proportion	Explained	0.55	0.45
Cumulative	Proportion	0.55	1.00

Rotated components ARE NOT principal Components!

Loadings are different Variances explained are different Scores are different

But communality of measurement items are the same Components remain orthogonal

24