

Definition

- Deep learning means using a neural network with several layers of nodes between inputs and outputs
- The series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.
- Shallow vs Deep
 - Representation of functions of inputs
 - Compact representation: a function can be compactly represented by a deep architecture, it might need a very large architecture to be represented by an insufficient deep one. (Bengio, 2009)

Breakthroughs

- Problem of multiple-layer neural network
 - Hard to train with too many parameters
 - SGD highly relies on "good" initial weights
 - · Large initial weights: pool local minima
 - · Small initial weights: gradients are tiny
 - Unsupervised learning?
- Breakthroughs
 - Deep Belief Network (DBN)
 Hinton, G.E, Osindero, S., and Teh, Y.W. (2006).
 A fast learning algorithm for deep belief nets.
 - Autoencoders

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007) Greedy Layer-Wise Training of Deep Networks.

Intuitive Idea

- What did Hinton and Bengio do?
 - Model a two-layer network at a time
 - Pretraining procedure for initial weights
 - Global fine tuning stage
 - Backpropagation

Autoencoder

What?

- Deterministic artificial neural network
- Learn a compressed distributed representation (encoding) for a set of data
- Dimension reduction

How?

- Feed-forward pass to compute activation at all hidden layers Encode: y = s(Wx + b) where s is sigmoid or hyperbolic tangent
- Measure the deviation of output from the input (MSE) Decode: z = s(W'y + b') with $W' = W^T$ Reconstruction error: $L(xz) = ||x z||^2$ or $L(xz) = -\sum_{k=1}^{d} [x_k \log z_k + (1 x_k) \log(1 z_k)]$
- Backpropagate the error through the net for weights updating

Stacked Autoencoder

Some issues

- Pretraining
 - Unsupervised initialization in a greedy layer-wise fashion will put the parameters in a region of parameters space from which a good local optimum can be achieved by local descent
- Fine tune
 - Supervised learning: Classification
 - Unsupervised learning: Dimension reduction
- Denoising
 - Robust feature extraction and avoid simple copy
 - Input corruption

- What?
 - Stochastic artificial neural network
 - Learn a probability distribution over a set of inputs
 - Dimension reduction and classification
- Energy-Based Models (EBM)

-
$$p(x) = \frac{e^{-E(x)}}{z}$$
 where $Z = \sum_{x} e^{-E(x)}$

Hidden Units

$$P(x) = \sum_{h} P(x,h) = \sum_{h} \frac{e^{-E(x)}}{Z}$$

Set free energy $F(x) = -\log \sum_h e^{-E(x)}$, we have $P(x) = \frac{e^{-E(x)}}{Z}$

- Gradient
$$-\frac{\partial \log p(x)}{\partial \theta} = \frac{\partial F(x)}{\partial \theta} - \sum_{\tilde{x}} p(\tilde{x}) \frac{\partial F(\tilde{x})}{\partial \theta}$$

- log-linear Markov Random Field (MRF)
 - Energy function is linear in its free parameters

$$E(v,h) = -b'v - c'h - h'Wv$$

$$F(v) = -b'v - \sum_{i} \log \sum_{h_i} e^{h_i(c_i + W_i v)}$$

No visible-visible and hidden-hidden connections

$$p(h|v) = \prod_{i} p(h_i|v)$$

$$p(v|h) = \prod_{j} p(v_j|h)$$

• Binary Units: v_i and $h_i \in \{0,1\}$

$$F(v) = -b'v - \sum_{i} \log(1 + e^{(c_i + W_i v)})$$

$$P(h_i = 1|v) = sigm(c_i + W_i v)$$

$$P(v_j = 1|h) = sigm(b_j + W_j' h)$$

Updates

$$-\frac{\partial \log p(v)}{\partial W_{ij}} = E_v [p(h_i|v) \cdot v_j] - v_j^{(i)} \cdot sigm(W_i \cdot v^{(i)} + c_j)$$

$$-\frac{\partial \log p(v)}{\partial c_i} = E_v [p(h_i|v)] - sigm(W_i \cdot v^{(i)})$$

$$-\frac{\partial \log p(v)}{\partial b_j} = E_v [p(v_j|h)] - v_j^{(i)}$$

Gibbs sampling

$$h^{(n+1)} \sim sigm(W'v^{(n)} + c)$$
$$v^{(n+1)} \sim sigm(Wh^{(n+1)} + b)$$

Deep Belief Networks

Stacked RBM

$$P(x, h^1, ..., h^l) = \left(\prod_{k=0}^{l-2} P(h^k | h^{k+1})\right) P(h^{l-1}, h^l)$$

where $x = h^0$, $P(h^{k-1}|h^k)$ is a conditional distribution for visible unites conditioned on the hidden units of the RBM at level k, and $P(h^{l-1},h^l)$ is the visible-hidden joint distribution in the top-level RBM.

Example

- Data description
 - MNIST database of handwritten digits
 - 28x28=784 pixels for each image
 - Training set 60,000 images and tesing set 10,000 images
- Python
 - Deep learning library (Bengio): Theano
 - dA, sda, rbm, DBN (http://deeplearning.net/tutorial/)

Results(More nodes)

Autoencoder

RBM

Results(More layers)

Autoencoder

RBM

Results(Classification)

- RBM performs better on classification than autoencoder
- Test error decreases as layers and nodes size increase

- Reducing the dimensionality of data with Neural networks. (Hinton and Salakhutdinov, 2006)
- A fast learning algorithm for deep belief nets. (Hinton, Osindero and Teh, 2006)
- Learning deep architectures for Al. (Bengio, 2009)