Homework 5 for "Convex Optimization" Part. 4

1500010611 汪袆非

We consider the l1-regularized problem

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1} \tag{1}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\mu > 0$ are given. We denote $f(x) = \frac{1}{2} ||Ax - b||_2^2 + \mu ||x||_1$, $g(x) = \frac{1}{2} ||Ax - b||_2^2$, $h(x) = ||x||_1$.

1 Adagrad

We consider to fix the step size to be s and apply continuation strategy. We have three parameters α , M_1 , M_2 for continuation strategy. We have one parameter δ for Adagrad. We set $\mu_0 = \max\{\mu, \alpha \|A^Tb\|_{\infty}\}$ and set i = 0. We then set $r_0 = 0$. For each μ_i , because f(x) is not smooth, we consider to take the subgradient of $f_i(x) = g(x) + \mu_i h(x)$ to optimize. We denote the subgradient by $p_i(x) = A^T(Ax - b) + \text{sign}(x)$. We update x_{k+1} in the following way:

$$\begin{cases} g_k = p_i(x_k) \\ r_{k+1} = r_k + g_k \odot g_k \\ x_{k+1} = x_k - \frac{s}{\sqrt{r_{k+1}} + \delta} \odot g_k \end{cases}$$
 (Adagrad-upd)

If $\mu_i > \mu$, after M_1 iterations, we update $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}$ and i = i + 1. We then reset $x_0 = x_k, r_0 = r_k$ and k = 0.

If $\mu_i = \mu$, after M_2 iterations, we stop our algorithm. The algorithm of Adagrad is given below. In practice, we take s = 1, $\alpha = 0.1$, $M_1 = 280$, $M_2 = 280$, $\delta = 10^{-8}$.

Algorithm 1 Adagrad with continuation strategy

```
Input: t, continuation parameter \alpha, M_1, M_2.
 1: Calculate \mu_0 = \max\{\alpha || A^T b||_{\infty}, \mu\}. Let i = 0, r^0 = 0, k = 0.
 2: while \mu_i > \mu do
       while k < M_1 do
          Update (x_{k+1}, r_{k+1}) by (Adagrad-upd), k = k + 1
 4:
       end while
 5:
       \mu_{i+1} = \max\{\mu, \alpha \mu_i\}, i = i + 1
 6:
       Set x_0 = x_k, r_0 = r_k, k = 0.
 8: end while
 9: while k < M_2 do
       Update (x_{k+1}, r_{k+1}) by (Adagrad-upd), k = k + 1
11: end while
12: return x_k
```

2 Adam

We consider to fix the step size to be s and apply continuation strategy. We have three parameters α , M_1 , M_2 for continuation strategy. We have three parameters ρ_1 , ρ_2 , δ for Adam. We set $\mu_0 = \max\{\mu, \alpha || A^T b||_{\infty}\}$ and set i = 0. We then set $r_0 = 0$, $u_0 = 0$. For each μ_i , because f(x) is not smooth, we consider to take the subgradient $p_i(x)$ to optimize. We update x_{k+1} in the following way:

$$\begin{cases} g_k = p_i(x_k) \\ r_{k+1} = \rho_1 r_k + (1 - \rho_1) g_k \\ u_{k+1} = \rho_2 u_k + (1 - \rho_2) g_k \odot g_k \\ x_{k+1} = x_k - \frac{s\sqrt{1 - \rho_2^k}}{1 - \rho_1^k} \frac{r_{k+1}}{\sqrt{u_{k+1}} + \delta} \end{cases}$$
 (Adam-upd)

Note the operations are applied element-wise.

If $\mu_i > \mu$, after M_1 iterations, we update $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}$ and i = i + 1. We then reset $x_0 = x_k$, $r_0 = r_k$, $u_0 = u_k$ and k = 0.

If $\mu_i = \mu$, after M_2 iterations, we stop our algorithm. The algorithm of Adam is given below.

In practice, we take s = 0.1, $\alpha = 0.5$, $M_1 = 50$, $M_2 = 300$, $\rho_1 = 0.9$, $\rho_2 = 0.999$, $\delta = 10^{-8}$.

Algorithm 2 Adam with continuation strategy

```
Input: t, continuation parameter \alpha, M_1, M_2.
 1: Calculate \mu_0 = \max\{\alpha || A^T b||_{\infty}, \mu\}. Let i = 0, r^0 = 0, u_0 = 0, k = 0.
 2: while \mu_i > \mu do
       while k < M_1 do
 3:
          Update (x_{k+1}, r_{k+1}, u_{k+1}) by (Adam-upd), k = k + 1
 4:
       end while
 5:
       \mu_{i+1} = \max\{\mu, \alpha \mu_i\}, i = i + 1
 6:
       Set x_0 = x_k, r_0 = r_k, u_0 = u, k = 0.
 8: end while
 9: while k < M_2 do
       Update (x_{k+1}, r_{k+1}, u_{k+1}) by (Adam-upd), k = k + 1
11: end while
12: return x_k
```

3 RMSProp

We consider to apply continuation strategy. We have three parameters α , M_1 , M_2 for continuation strategy. We have two parameters ρ , δ for RMSProp. We also have two parameters s, β for step size. Here we choose to gradually decay step size. We set $\mu_0 = \max\{\mu, \alpha || A^T b||_{\infty}\}$ and set i = 0. We then set $r_0 = 0$, $s_0 = s$. For each μ_i , because f(x) is not smooth, we consider to take the subgradient $p_i(x)$ to optimize. We update x_{k+1} in the following way:

$$\begin{cases} g_k = p_i(x_k) \\ r_{k+1} = \rho r_k + (1 - \rho)g_k \odot g_k \\ x_{k+1} = x_k - \frac{s_i}{\sqrt{r_{k+1}} + \delta} \odot g_k \end{cases}$$
 (RMSProp-upd)

Note the operations are applied element-wise.

If $\mu_i > \mu$, after M_1 iterations, we update $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}$, step size $s_{i+1} = \beta s_i$ and i = i+1. We then reset $x_0 = x_k$, $r_0 = r_k$, $u_0 = u_k$ and k = 0.

If $\mu_i = \mu$, after M_2 iterations, we stop our algorithm. The algorithm of RMSProp is given below.

In practice, we take s = 0.04, $\beta = 0.14$, $\alpha = 0.1$, $M_1 = 280$, $M_2 = 280$, $\rho = 0.9$.

4 Momentum

We consider to apply continuation strategy. We have three parameters α , M_1 , M_2 for continuation strategy. We have two parameters ρ , δ for Momentum. We also have two parameters s, β

Algorithm 3 RMSProp with continuation strategy

```
Input: t, continuation parameter \alpha, M_1, M_2.
 1: Calculate \mu_0 = \max\{\alpha || A^T b||_{\infty}, \mu\}. Let i = 0, r^0 = 0, k = 0.
 2: while \mu_i > \mu do
       while k < M_1 do
 3:
          Update (x_{k+1}, r_{k+1}) by (RMSProp-upd), k = k + 1
 4:
       end while
 5:
       \mu_{i+1} = \max\{\mu, \alpha \mu_i\}, s_{i+1} = \beta s_i, i = i+1
 6:
       Set x_0 = x_k, r_0 = r_k, k = 0.
 8: end while
 9: while k < M_2 do
       Update (x_{k+1}, r_{k+1}) by (RMSProp-upd), k = k + 1
11: end while
12: return x_k
```

for step size. Here we choose to gradually decay step size. We set $\mu_0 = \max\{\mu, \alpha \| A^T b\|_{\infty}\}$ and set i = 0. We then set $r_0 = 0$, $s_0 = s$. For each μ_i , because f(x) is not smooth, we consider to take the subgradient $p_i(x)$ to optimize. We update x_{k+1} in the following way:

$$\begin{cases} g_k = p_i(x_k) \\ r_{k+1} = \rho r_k + g_k \\ x_{k+1} = x_k - s_i r_k \end{cases}$$
 (Momentum-upd)

If $\mu_i > \mu$, after M_1 iterations, we update $\mu_{i+1} = \max\{\mu, \alpha \mu_i\}$, step size $s_{i+1} = \beta s_i$ and i = i+1. We then reset $x_0 = x_k$, $r_0 = r_k$, $u_0 = u_k$ and k = 0.

If $\mu_i = \mu$, after M_2 iterations, we stop our algorithm. The algorithm of Momentum is given below.

In practice, we take $s = 5 \times 10^{-4}$, $\beta = 0.9$, $\alpha = 0.5$, $M_1 = 50$, $M_2 = 300$, $\rho = 0.9$.

5 Numerical result

The whole test program is named $Test_hw05_02.m$. This time we run all algorithms mentioned before with same A and b. Suppose the value of objective function from cvx mosek is f_c , the value from proposed method is f_p , then the value of *objval to cvx mosek* is $\frac{f_p-f_c}{f_c}$. The numerical result is given in the following tables:

Algorithm 4 Momentum with continuation strategy

```
Input: t, continuation parameter \alpha, M_1, M_2.
 1: Calculate \mu_0 = \max\{\alpha || A^T b||_{\infty}, \mu\}. Let i = 0, r^0 = 0, k = 0.
 2: while \mu_i > \mu do
       while k < M_1 do
 3:
          Update (x_{k+1}, r_{k+1}) by (Momentum-upd), k = k + 1
 4:
 5:
 6:
       \mu_{i+1} = \max\{\mu, \alpha \mu_i\}, s_{i+1} = \beta s_i, i = i+1
       Set x_0 = x_k, r_0 = r_k, k = 0.
 7:
 8: end while
9: while k < M_2 do
       Update (x_{k+1}, r_{k+1}) by (Momentum-upd), k = k + 1
11: end while
12: return x_k
```

Table 1 Random seed is 2. The cpu time of cvx mosek is 1.08

Method	cpu time	objval to cvx mosek	error to cvx mosek
Adagrad	0.97	-2.98×10^{-7}	2.67×10^{-6}
Adam	0.68	-8.30×10^{-7}	2.76×10^{-6}
RMSProp	0.97	-4.05×10^{-7}	2.63×10^{-6}
Momentum	0.61	-1.10×10^{-6}	2.92×10^{-6}

Table 2 Random seed is 7. The cpu time of cvx mosek is 1.06

Method	cpu time	objval to cvx mosek	error to cvx mosek
Adagrad	0.99	-1.85×10^{-6}	2.75×10^{-6}
Adam	0.64	-2.33×10^{-6}	2.87×10^{-6}
RMSProp	0.96	-1.65×10^{-6}	2.72×10^{-6}
Momentum	0.56	-2.45×10^{-6}	2.92×10^{-6}

Table 3 Random seed is 9. The cpu time of cvx mosek is 1.02

Method	cpu time	objval to cvx mosek	error to cvx mosek
Adagrad	0.94	-6.78×10^{-7}	2.19×10^{-6}
Adam	0.70	-1.15×10^{-6}	2.29×10^{-6}
RMSProp	0.94	-4.88×10^{-7}	2.11×10^{-6}
Momentum	0.56	-1.37×10^{-6}	2.35×10^{-6}