Simple Regression Basics

A Quick Overview

1

Simple Regression Versus Correlation

- Pearson Correlation analysis quantifies the strength of the <u>linear</u> relationship between two continuous variables.
 - However, <u>no distinction</u> is made between dependent (target) versus independent (predictor) variable
- **Simple linear regression** defines (mathematically) the <u>linear</u> <u>relationship</u> between a *continuous* dependent (target) variable and a *continuous* predictor (independent or explanatory) variable.
 - Later you will see that we may use *categorical (nominal)* variables as predictors as well.

Simple Regression Objectives

The objectives of simple linear regression are to:

- Assess the significance of the predictor (independent) variable in explaining the variability or behavior of the response variable
- **Predict** the values of the response (dependent) variable given the values of the predictor (independent or explanatory) variable.

3

Simple Regression Example

- A new credit card marketer wants to predict the number of credit cards owned by a family
- Why would he like to do this?
 - The more number of credit cards a family owns, it may be likely that the family may be open to new credit card offers.
 - Assume the marketer has a prospect file of 1 million names. The file has names/addresses of each family as well as say the family size. What can the database marketer do if he is not willing to send a new credit card offer to everyone of the 1 million names.
 - If he knows the correlation between family size and number of credit cards is +0.25?
 - If he has an equation such as: Number of credit cards = 1.5 + 2 * Family Size

Understanding Simple Regression

- Suppose the marketer did not know about simple regression prediction
- But, he has data on a few customers about how many credit cards they own.
- How would he predict for the **prospect file of 1 million**, how many credit cards are owned by each prospect family?

4

Credit Card Data (Dependent variable is Number of Credit Cards (CC))

Family ID	Num. CC	Baseline Prediction	Error	Square Error
1	4	7	-3	9
2	6	7	-1	1
3	6	7	-1	1
4	7	7	0	0
5	8	7	+1	1
6	7	7	0	0
7	8	7	+1	1
8	10	7	+3	9
Total	56			22

Average no. of CC used = 56/8 = 7

So, if we have no other information, our best prediction for number of CC owned by a family would be 7. How good is the prediction of 7 cards for each household? How do we quantify?

The key question is: can we do better than the baseline prediction, if we have independent variable(s) that can reduce the square error in prediction?

4

Does Family Size Help us with Prediction?

- Assume we have data on family size (X).
- Let's say we come up with a model (shown as prediction equation) using family size. Did it do better than our baseline prediction?
 - Prediction equation, $\hat{Y} = 2.87 + 0.97 * X$

Key Question: How much better? Can we quantify it?

Linear Regression Model

- Regression Model (Equation): $Y_i = \beta_0 + \beta_1 X_i + e_i$
 - Y_i is the 'ith' value for the dependent variable
 - X_i is the 'ith' value for the independent variable
 - β_0 and β_1 are the **intercept** and **slope** of the regression line
 - e_i is the error associated with the equation representing relationship between Y and X

Assume we have data on family size. Let's say we come up with a model (shown as prediction equation) using family size. Did it do better than our baseline prediction?

Key Question: How much better? Can we quantify it?

- SST (Total Deviation) = $\Sigma (y_i \overline{y})^2$: what does it mean?
- SSE (Unexplained) = $\sum (\hat{y}_i y_i)^2$: what does it mean?
- SSR (Explained by regression) = $\sum (\hat{y}_i \hat{y})^2$: what does this mean?
- In this example, SST = 22, SSE = 5.5 and SSR = 16.5
- Coefficient of determination R² = (SSR/SST) = (SST-SSE)/SST = 16.5/22 = 75%
- What does it mean to have $R^2 = 0\%$ or 75% or 100%

Mechanics of Regression

- Regression coefficients are determined by the method of least squares.
- The idea is relatively simple. We want to find values for β_0 and β_1 such that the line $(Y = \beta_0 + \beta_1 x)$ best fits the sample data.
- The 'best fit' is defined as the line for which the sum of squared vertical distances (SSE) of all sample points from that line is minimized
 - Mathematically that means we will differentiate the SSE with respect to X and set that equal to 0 to solve for the regression coefficients (β_0 and β_1)
- We will leave the actual mathematical calculation to be handled by computer programs and focus on understanding

The least squares estimates of β_0 and β_1 are:

$$\begin{array}{rcl} \hat{\beta}_{1} & = & \frac{\sum_{i=1}^{n}(X_{i}-\bar{X})(Y_{i}-\bar{Y})}{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}} \\ \hat{\beta}_{0} & = & \bar{Y}-\hat{\beta}_{1}\bar{X} \end{array}$$

1/

Simple Regression Interpretation

- Regression output provides two sets of statistical tests:
 - Test for overall model (the Analysis of Variance, ANOVA table)
 - Test for each coefficient (the Parameter Estimates table)
- Hypothesis for overall model test:
 - H₀: The regression model does not explain the relationship between the dependent and the independent variable in the population any better than the baseline model.
 - H_1 : H_0 is not true.
 - Decision about H₀ in hypothesis test for overall model is made using p-value based on F-statistic in the ANOVA Table
- Think of what it means if you can not reject this null hypothesis

Simple Regression Interpretation (Contd.)

- Hypothesis for test of coefficients:
 - H_0 : The regression coefficient for $X(\beta_1)$ equals 0 in the population.
 - H_1 : H_0 is not true.
- Decision about H₀ in hypothesis test for coefficients is made based on the p-value based on t-statistic

10

Simple Regression Interpretation (contd.)

- > R-Square (values between 0, 1) in simple regression provides a summary measure of variance (uncertainty) explained in the dependent variable
- > Rules of thumb: 0-10% low, 10-50% moderate, 50% or more high.

Simple Regression

Basic Demonstration using JMP

21

Data Set: Ecommerce

The data is a sample from customers of an ecommerce company. Variables and descriptions are given below:

- Columns (9/0)
- ul. ID
- Spend_thisyr
- 🚄 Age
- Gender
- ♣ HomeOwner
- ▲ HomeValue
- Income
- Spend_lastyr
- Number_of_emails

ID: Customer identification number

Spend_thisyr: Amount spent by customer this year (\$)

Age: Age in years

Gender: M (Male), F (Female) HomeOwner: Owner or Renter HomeValue: Value of home (\$) Income: Annual Income (\$)

Spend_lastyr: Amount spent by customer last year (\$) Number of emails: Number of emails sent to customer

22

11

Questions and JMP Procedure

- Questions:
 - How well does spend lastyr explain spend this yr?
 - How well does spend_lastyr predict spend_this yr?
- JMP> Analyze >Fit Y by X> Spend_thisyr as Y, Response > Spend_lastyr as X, Factor>Run
- Red triangle next to Bivariate Fit...> Fit line

23

Results (contd.)

Hypothesis for overall model test:

- H₀: The regression model **does not explain** the relationship between the dependent and the independent variable in the population **any better than the baseline** model.
- H_1 : H_0 is not true.
- Decision about H₀ in hypothesis test for overall model is made using p-value based on F-statistic in the ANOVA Table

△ Analysis of Variance							
Source	DF	Sum of	Mean Square	F Ratio			
Model	1	51637.67	-	436.5364			
Error	998	118052.89	118.3	Prob > F			
C. Total	999	169690.56		<.0001*			

25

Results (contd.)

- Hypothesis for test of coefficients:
 - H_0 : The regression coefficient for $X\left(\beta_1\right)$ equals 0 in the population.
 - H_1 : H_0 is not true.
- Decision about H₀ in hypothesis test for coefficients is made based on the p-value based on t-statistic

How do we explain estimate for Intercept and Spend_lastyr?

Simple Regression

Prediction and Diagnostics

27

Prediction Using Regression equation

- Regression equation, $Y = \beta_0 + \beta_1 x$
- Once the values of intercept and slope (β₀, β₁) are known, it is simple to calculate predicted value of Y (dependent or target variable) for any given value of X (independent variable).
- Some issues to keep in mind are:
 - Be careful about going beyond the range of X-values observed in the data that ere used to calculate the values of intercept and slope (β_0, β_1) .
 - Rule of thumb: 25% beyond observed range may be OK.
 - However, note that we are working with sample numbers and hence the values of the regression parameters (intercept and slope) will change from sample to sample!
 - Best to use confidence intervals for predictions
 - Software will do the calculations you just ask for it!

Diagnosing Regression Model Performance

- Once a regression model is run, we get the regression equation $(Y = \beta_0 + \beta_1 X)$.
- Then, this equation is used to predict Y for each observation by pluggingin the X-value for each observation.
- The difference between the <u>actual Y-values</u> and the <u>predicted Y-values</u> is called the residual (or, error)
 - The residual is calculated for each observation.
- These residuals are the primary tools for diagnosing regression model performance.

20

More on Residuals

- Large residual for an observation means that the model is not predicting well for that observation
 - That could be a cause for concern and perhaps need more exploration
- But, how do we know what is large?
 - Use standardized (studentized) residuals
 - If these are more than 3, then there may be cause for concern?
 - Why?

What to Do with Really Large Residuals

- The observation with a large residual may be an outlier
- We need to try to figure out why the model is not working for this observation
 - If I have access to data, I will go back and first check if there was any error in data entry
 - If there was no error, I need to think hard if this observation should be retained for the analysis (is there something peculiar about this observation)?
 - At the very least, I will rerun the regression by deleting the most severe outlier and compare results between the two regressions (with and without outliers)
 - If the results are similar then perhaps we have less to worry about.

3

Simple Regression Demo

Prediction and Diagnostics using JMP

32

Prediction

- Regression Model: Spend_thisyr = 3.6895388 +1.0134793*Spend_lastyr
- Suppose I want to predict how much customer A will spend this year, if I know A spent \$10 last year
- Predicted Spend thisyr for A = 3.6895388 + 1.0134793*10 = 13.82
- What if I want to predict how much customer B will spend this year, if I know B spent \$11 last year
- Predicted Spend_thisyr for B = 3.6895388 +1.0134793*11 = 14.83
- Difference between B and A is =14.83 13.82 = 1.01 or, coefficient of Spend lastyr (within rounding error)!
- JMP: Red triangle next to Linear Fit > Save Predicted > Save Residuals

Confidence Intervals

- You will get two confidence intervals!
- JMP: Red triangle next to Linear Fit > Individual Confidence Limit Formula
 - For customer A, who spent \$10 last year, this is the confidence interval for prediction of Spend_thisyr
- JMP: Red triangle next to Linear Fit > Mean Confidence Limit Formula
 - This is the confidence interval for prediction of **mean** of Spend_thisyr for *all those* who spent \$10 last year
- Question for you to ponder: Which of the above two confidence intervals will be wider?

How About Making Predictions on Data Where You Don't Know the Target (Dependent) variable?

- We can do it two different ways:
 - By adding the new data to the current table and identifying those new data as not to be used in modeling but to be predicted
 - By running codes (scripts) on an external data set
- Data set: Ecommerce_with_unknownY (with a new Flag variable)

Making Predictions on New Data

- Open the new data in JMP
- JMP > JMP > Analyze > Fit Y by X > Spend_thisyr as Y, Response > Spend_lastyr as X, Factor > Select Flag and move it to Freq > OK
- Red triangle next to Bivariate Fit...> Fit line
- JMP: Red triangle next to Linear Fit > Save Predicted > Save Residuals
- JMP: Red triangle next to Linear Fit > Mean Confidence Limit Formula
- JMP: Red triangle next to Linear Fit > Individual Confidence Limit Formula

36

Identifying Large Residuals

- JMP: Red triangle next to Linear Fit > Save Studentized residuals
- JMP: Analyze > Distribution > Studentized Residuals as Y, Columns > OK
- What should we do at this point?

37

Pearson Correlation Coefficient and Simple Regression R-Square

- Run Pearson correlation between Spend_lastyr and Spend_thisyr
 - Correlation is 0.5516
- Regression R-square is 0.3043