Muhammad-Mahdi Amirpour

in linkedin.com/in/muhammadmahdi-amirpour **J** 09927178533 — ■ muhammadmahdiamirpour@gmail.com github.com/MuhammadMahdiAmirpour

()

Summary

A Computer Engineering undergraduate with practical experience in data science and machine learning. Familiar with Python, C/C++, Go, and Docker, and well-grounded in algorithms, data structures, and linear algebra. Served as a teaching assistant in formal languages and signals and systems, and contributed to research on anomaly detection architecture. Motivated to refine technical expertise through hands-on projects and collaborative learning.

Skills

• Languages: Python, C/C++, Go, Java, Assembly

• OS: Linux (LPIC1)

• Database: MySQL, Oracle, PostgreSQL

• Virtualization: Docker, VMware

• Frameworks: Numpy, Pandas, Matplotlib, River, Pytorch

• Theory: Algorithm, Data Structures, Linear Algebra, Operating Systems, Signals and Systems

Experience

KNTU March 2024 - Present

Research Assistant

• Assistant Professor: Dr. B. Pishgoo

· Designed system architecture for anomaly detection

KNTU March 2024 - February 2025

Teaching Assistant

· Assistant Professor: Dr. H. Khasteh

· Grading quizzes

Answering students questions

• Designed questions for Exercise Sessions

• Holding Exercise Sessions

KNTU

Teaching Assistant

Assistant Professor: Dr. M. Mordian

• Designed homework questions

· Grading quizzes

Answering students questions

Designed questions for Exercise Sessions

Holding Exercise Sessions

Designed the final project of the Signals and Systems Course

Education

Khajeh Nasir Toosi University of Technology Bachelor of Science in Computer Engineering GPA: (3.5/4) = 17.21/20

Sept 2021 - Present

March 2024 - February 2025

NLP/Vision/ML Project

- **Objective:** Analyze a dataset of book summaries using Python, combining techniques from Natural Language Processing (NLP), Computer Vision, and Machine Learning (ML).
- Key Steps:
 - Data Preprocessing:
 - * Cleaned missing values and standardized text data for analysis.
 - * Explored summary lengths and identified common themes in the dataset.
 - NLP Component:
 - * Summarized book descriptions into shorter, concise versions.
 - * Processed text using basic tokenization and stop-word removal techniques.
 - Computer Vision Component:
 - * Converted condensed text summaries into simple visual representations.
 - * Experimented with basic methods to generate images from text.
 - Machine Learning Component:
 - * Built a simple model to classify book genres based on their summaries.
 - * Evaluated the model using standard metrics like accuracy and F1-score.
- **Outcome:** Created a small-scale project that demonstrates the integration of NLP, Computer Vision, and ML techniques. The project provides condensed summaries, simple visualizations, and basic genre classification.

Spectral Clustering Project (Linear Algebra Course)

- **Objective:** Implement spectral clustering algorithms to perform unsupervised learning on datasets, leveraging linear algebra concepts such as eigenvalues and eigenvectors.
- Key Steps:
 - Algorithm Implementation:
 - * Implemented Radial Basis Function (RBF) Clustering, K-Means, and K-Nearest Neighbors (K-NN) Clustering using NumPy for matrix operations.
 - * Constructed similarity matrices and computed Laplacian matrices to perform spectral decomposition.
 - Dataset Analysis:
 - * Worked with the MNIST dataset to classify handwritten digits using spectral clustering techniques.
 - * Visualized clustering results to evaluate algorithm performance and identify patterns in the data.
 - Optimization:
 - * Optimized computational efficiency by vectorizing operations and reducing redundant calculations.
 - * Compared clustering results with traditional methods (e.g., K-Means) to assess the advantages of spectral clustering.
- Outcome: Developed a robust implementation of spectral clustering algorithms, demonstrating strong understanding of both theoretical concepts and practical applications in machine learning and linear algebra.

Dockerized Full Stack Hotel Booking App

- Overview: Developed a full-stack hotel booking application using modern web technologies, containerized with Docker for scalability and portability.
- Features:
 - User authentication and role-based access control using Spring Security.
 - RESTful APIs built with Spring Boot for backend services.
 - Frontend developed using React JS for a responsive and dynamic user interface.
 - Database management with JPA Hibernate for seamless integration with relational databases.
- Outcome: A fully functional, containerized hotel booking system that demonstrates proficiency in full-stack development and DevOps practices.

• Overview: Designed and implemented a distributed file system using Golang, with Docker for containerization to ensure modularity and scalability.

· Key Features:

- Distributed storage architecture allowing multiple nodes to store and retrieve files.
- Fault tolerance through replication and redundancy mechanisms.
- Efficient file chunking and metadata management for improved performance.
- Outcome: A robust, scalable file system capable of handling large-scale distributed storage requirements.

Chat App Go

• Overview: Built a real-time chat application using Go for the backend and JavaScript for the frontend, enabling seamless communication between users.

· Key Features:

- WebSocket-based communication for real-time messaging.
- User authentication and session management for secure access.
- Scalable architecture supporting multiple concurrent users.
- Outcome: A lightweight, efficient chat application demonstrating expertise in real-time communication systems.

Go-Back-N and CRC Simulation Implemented with Socket Programming

• Overview: Simulated the Go-Back-N protocol and Cyclic Redundancy Check (CRC) error detection mechanism using Django (Python) for backend logic and JavaScript for frontend visualization.

• Key Features:

- Backend implemented in Django to handle core functionality, including reliable data transmission, error detection, retransmission, and sliding window protocol management.
- Frontend developed in JavaScript to provide interactive visualizations of packet flow, error correction, and protocol behavior.
- Real-time simulation of packet transmission and error handling to demonstrate protocol efficiency.
- Outcome: A hands-on demonstration of networking protocols and error detection techniques, showcasing proficiency in backend development and frontend visualization.

Death Arena Game

• Overview: Developed a simple command-line interface (CLI) game in Java, where players engage in automated combat against AI-controlled opponents.

• Key Features:

- Automated gameplay with AI-driven opponent behavior.
- Turn-based combat mechanics with random events and outcomes.
- Simple scoring system to track player progress.
- Outcome: A lightweight CLI game that demonstrates foundational programming skills and object-oriented design principles.

Video Merger

• Overview: Created a tool to merge two video files into a single output file, leveraging low-level programming in C and Assembly.

• Key Features:

- Support for various video formats and resolutions.
- Optimized performance using Assembly for critical operations.
- Integration with CMake and Makefile for streamlined builds.
- Outcome: A high-performance video merging utility demonstrating proficiency in systems programming.