1) a]
$$5n^{3} + 2n^{2} + 3n = 0 (n^{3})$$

 $f(n) = 5n^{3} + 2n^{2} + 3n$
 $g(n) = n^{3}$
 $f(n) \le c * g(n), \text{ for all } n \ge n.$
 $5n^{3} + 2n^{2} + 3n \le c \cdot n^{3}$
Let $N = 1$
 $n \ge 1$

Solution
$$5n^3 + 2n^2 + 3n \le 5n^5 + 2n^3 + 3n^3 = 10n^5$$

$$C = 10$$

$$C = 10$$

$$C = 5n^3 + 2n^2 + 3n \le 10n^3$$

$$\frac{5n^3 + 2n^2 + 3n \le 10n^3}{5n^3 + 2n^2 + 3n = 0(n^3)}$$

b]
$$\sqrt{7n^2 + 2n - 8} = O(n)$$

 $f(n) = \sqrt{7n^2 + 2n - 8}$
 $g(n) = n$

Czg(n) & f(n) & c,g(n), for all n≥ No

There
$$\sqrt{7n^2} \leq \sqrt{7n^2 + 2n - 8} \leq \frac{7n^2 + 2n - 8}{7n^2 + 2n} \leq \sqrt{7n^2 + 2n^2} \leq \sqrt{9n^2} = 3n$$

$$2n - 8 \geq 0$$

$$2n \geq 8$$

$$n \geq 4$$

c]
$$d(n) = Q(f(n))$$
 $e(n) = O(g(n))$
 $d(n) \leq C \cdot f(n)$
 $e(n) \leq K \cdot g(n)$
 $d(n) = O(f(n)g(n))$

d(n) $\leq C \cdot f(n)$ for all $n \geq n$. $\Rightarrow e(n) \leq K \cdot g(n)$ for all $m \geq m$.

$$d(n)e(n) \leq C \cdot K \cdot f(n) \cdot g(n)$$

for all $n \geq n$, or $n \geq m$.
 $d(n)e(n) = O(f(n)g(n))$

def example (1st):

$$O(i)$$
 $\begin{cases} n = len(1st) \\ total = 0 \end{cases}$
 $for j in range(n)$:

 $O(n)$
 $\begin{cases} for k in range(1+j) \\ O(j) \begin{cases} for k in range(1+j) \\ for k \\$

def example 2 (1st):

$$\theta(1) \begin{cases}
N : (en(1st)) \\
Prefix = 0
\end{cases}$$

$$total = 0$$

$$\theta(n) \begin{cases}
for j \text{ in range(n):} \\
\theta(i) \begin{cases}
Prefix += 1st [j] \\
total += Prefix
\end{cases}$$

$$\theta(i) [return total]$$

def example 3 (n):

$$\theta(1)$$
 $\begin{cases} i=1\\ \text{Sum}=0 \end{cases}$
 $\theta(n^2)$ $\begin{cases} \text{while (i (n+n):}\\ \theta(i) \end{cases}$ $\begin{cases} i \neq 2\\ \text{Sum } i \neq 2 \end{cases}$
 $\theta(i)$ $\begin{cases} \text{return sum} \end{cases}$