

AO4728L

N-Channel Enhancement Mode Field Effect Transistor **SRFFT** TM

General Description

SRFETTM AO4728L uses advanced trench technology with a monolithically integrated Schottky diode to provide excellent R_{DS(ON)}, and low gate charge. This device is ideally suited for use as a low side switch in CPU core power conversion.

- RoHS Compliant
- Halogen Free

Features

 $V_{DS}(V) = 30V$

 $I_{D} = 20A$

 $(V_{GS} = 10V)$

 $R_{DS(ON)} < 4.3 m\Omega$

 $(V_{GS} = 10V)$

 $R_{DS(ON)}$ < $6m\Omega$

 $(V_{GS} = 4.5V)$

100% UIS Tested! 100% R_g Tested!

SRFET[™]
Soft Recovery MOSFET:
Integrated Schottky Diode

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	30	V			
Gate-Source Voltage		V_{GS}	±20	V			
Continuous Drain Current	T _C =25°C		20				
	T _C =70°C	'D	17	A			
Pulsed Drain Current C		I _{DM}	146				
Avalanche Current ^C		I _{AR}	40	A			
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	80	mJ			
Power Dissipation ^B	T _C =25°C	В	3.1	W			
	T _C =70°C	P _D	2	VV			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ hetaJA}$	31	40	°C/W			
Maximum Junction-to-Ambient AD	Steady-State	N _θ JA	59	75	°C/W			
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

BV _{DSS} C I _{DSS} Z I _{GSS} C	ARAMETERS Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current Gate-Body leakage current	I _D =250μA, V _{GS} =0V V _{DS} =30V, V _{GS} =0V		30			V
I _{DSS} Z	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V		30			V
I _{GSS}							v
I _{GSS}						0.1	mA
	Gate-Body leakage current		T _J =125°C			20	IIIA
V		V_{DS} =0V, V_{GS} = ±20V				0.1	μΑ
V GS(th)	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.2	1.8	2.2	V
$I_{D(ON)}$	On state drain current	V _{GS} =10V, V _{DS} =5V		146			Α
	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =20A			3.6	4.3	mΩ
$R_{DS(ON)}$ S			T_J =125°C		5.5	6.6	11122
		V_{GS} =4.5V, I_D =18A			4.8	6	mΩ
g _{FS} F	Forward Transconductance	V_{DS} =5V, I_D =20A			87		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.4	0.7	V
I _S	Maximum Body-Diode Continuous Current					6	Α
DYNAMIC F	PARAMETERS						
C _{iss} II	nput Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		2975	3719	4463	pF
Coss	Output Capacitance			485	693	900	pF
C _{rss} F	Reverse Transfer Capacitance			204	340	476	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.28	0.56	0.84	Ω
SWITCHING	G PARAMETERS						
$Q_g(10V)$ T	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A		48	60	72	nC
$Q_g(4.5V)$ T	Total Gate Charge			20	25	30	nC
Q_{gs}	Gate Source Charge			12	15	18	nC
Q_{gd}	Gate Drain Charge			6	10	14	nC
t _{D(on)} T	Turn-On DelayTime				9.2		ns
t _r T	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω , R_{GEN} =3 Ω			10.7		ns
t _{D(off)} T	Turn-Off DelayTime				40		ns
t _f T	Turn-Off Fall Time				12.5		ns
t _{rr} E	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs	3	10	13	16	ns
Q _{rr} E	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	3	21	26.5	32	nC

A. The value of $R_{0,JA}$ is measured with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

Rev0: Nov-08

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{I(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T.=25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1 ln FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{\text{J(MAX)}}$ =150°C. The SOA curve provides a single pulse rating.

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 6: Body-Diode Characteristics (Note E)

Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

Figure 12: Normalized Maximum Transient Thermal Impedance (Note F)

Figure 13: Diode Reverse Leakage Current vs. **Junction Temperature**

0.7

Temperature

Figure 15: Diode Reverse Recovery Charge and **Peak Current vs. Conduction Current**

Figure 16: Diode Reverse Recovery Time and Softness Factor vs. Conduction Current

Figure 17: Diode Reverse Recovery Charge and Peak Current vs. di/dt

Figure 18: Diode Reverse Recovery Time and Softness Factor vs. di/dt

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

