

PES University, Bengaluru

(Established under Karnataka Act 16 of 2013)

END SEMESTER ASSESSMENT (ESA) - DEC 2023

UE19EC302 - Digital VLSI Design

Total Marks: 100.0

1.a. Draw the VLSI design flow in three domains (Y-chart representation) and also the simplified VLSI Design Flow. (10.0 Marks)

1.b. Draw the CMOS inverter circuit diagram with voltage transfer characteristics curve and mention the operating conditions for the load and the driver in all five regions. (10.0 Marks)

2.a. Briefly explain the various steps involved in n-well CMOS fabrication process with the help of cross- sectional schematic. (10.0 Marks)

about:blank 1/4

2.b. Draw the circuit diagram, monochrome stick diagram an layout for the two input CMOS NAND gate.	d mask (10.0 Marks)
3.a. Calculate the inverter pair delay for the following with a circuit diagram. i) NMOS	
ii) CMOS	(10.0 Marks)
3.b. Define Scaling of MOS Circuits and mention the different	scaling
models. Obtain the scaling factors (for all the models) for the following device parameters	_
i) Saturation current, Idss ii) Current Density, J	(10.0 Marks)

about:blank 2/4

4.a. Dynamic CMOS logic circuits cannot be cascaded . Justify statement	(10.0 Marks)
4.b. Implement the following function using CMOS Transmiss i) XOR gate ii) 4:1 MUX	sion gate? (10.0 Marks)
5.a. With a neat diagram, explain Resistive load SRAM Cell.	(10.0 Marks)

about:blank 3/4

,
5.b. Explain in detail time borrowing in latch based sequencing systems. (10.0 Marks)

about:blank 4/4