Geometria Plana

A geometria plana estuda figuras espaciais (figuras em três dimensões) no plano (duas dimensões). A geometria plana foi sistematizada por Euclides de Alexandria (o pai da geometria) em um conjunto de conceitos básico chamado de axiomas dentre os quais os mais importantes são o PONTO, a RETA e o PLANO.

O PONTO: "O que não tem partes" é representado por uma posição no espaço. Ele não possui dimensão e é indicado por uma letra maiúscula. Como mostrado na **Figura 1** abaixo.

Figura 1: Representação geométrica de pontos

A RETA: Linha de comprimento infinito, a qual pode ser definida como uma reunião de pontos colineares. Veja os exemplos de retas mostrados na **Figura 2** abaixo.

Figura 2: Representação geométrica de retas.

A Semireta: como a reta é uma linha infinita, define-se semireta como sendo uma reta semi-infinita que começa em um ponto específico chamado origem. Exemplos de semiretas mostradas na **Figura 3** abaixo.

Figura 3: Representação geométrica de semiretas.

Segmento de reta: região da reta delimitada por dois pontos separados por uma distância d como mostrado na **Figura 4** abaixo.

Figura 4: Representação geométrica de segmentos de retas.

O PLANO: o plano é uma superfície definida por dois segmentos de retas concorrentes e não coincidentes ou por três pontos não colineares. A **Figura 5** abaixo mostra representação de dois planos distintos. Os planos são indexados por letras gregas minúsculas.

Figura 5: Representação geométrica de Planos

Relações entre PONTO, RETAS e PLANOS

A relação entre pontos, retas no plano é o ponto de partida para definição e construção elementos que compõem as figuras da geometria plana e espacial. Ângulo Plano: O ângulo plano é a medida da abertura entre dois segmentos de retas com a mesma origem (**Figura 6**). Os ângulos são medidos em graus (°) ou em radianos (*rad*).

Figura 6: Representação geométrica de um ângulo plano definido como $A\hat{O}B = \alpha$.

Classificação dos Ângulos

Existem certos ângulos, chamados de notáveis com base em suas medidas; a saber: O ângulo de **volta inteira** que mede 360°; o **ângulo reto** com medida de 90° e **ângulo raso** ou de **meia-volta** medindo 180°. Em relação ao ângulo reto, os ângulos são classificados como **ângulo agudo** quando medem menos que 90° e **ângulo obtuso** com

medidas maior que 90°. Ademais, os ângulos também podem ser chamados de **ângulos complementares** quando somados medem 90° e os chamados **ângulos suplementares** cuja soma mede 180°. A **Figura 7** abaixo mostra as representações geométricas dos ângulos acima classificados.

Figura 7. Representação geométrica da classificação dos ângulos acima descrita

Figuras da Geometria Plana

Figuras planas são polígonos (Figura 8) formados por segmentos de retas concorrentes de comprimentos específicos que delimitam uma superfície. Em um polígono a superfície delimitada por os segmentos de retas é chamada de ÁREA do polígono e a soma dos comprimentos dos segmentos de retas em um polígono é chamada de PERÍMETRO. As figuras planas podem apresentar desde três lados como os triângulos como também infinitos lados tão curtos como se queira tal como o círculo, como mostrados na Figura 8 abaixo.

Figura 8. Representação geométrica de (a) um polígono, (b) um triângulos e (c) um círculo.

O Triângulo

O triângulo é a figura plana mais simples. Ele é caracterizado por três segmentos de retas (lados ou bases) duas a duas concorrentes entre si gerando três pontos não colineares chamados de vértices ou ângulos. Em relação a cada base ou lado do triângulo pode-se definir uma altura h, a qual é um segmento de reta limitada por um vértice e um ponto no lado oposto (base) através do qual a interseção da altura com a base gera um ângulo de 90° . A **Figura 9** abaixo mostra todos os elementos de um triângulo.

Figura 9: Representação geométrica de um triângulo onde se mostra seus principais elementos.

Pontos notáveis em um triângulo

Em relação aos segmentos de retas internas a um triângulo Há vários pontos notáveis em um triângulo os quais estão relacionados com seus ângulos e lados.

INCENTRO (I): Ponto de encontro das bissetrizes dos ângulos internos. Veja a Figura 10 abaixo.

Figura 10: Representação geométrica dos segmentos de retas bissetrizes as quais dividem os ângulos internos do triângulo acima gerando o chamado INCENTRO (I).

BARICENTRO (G): Ponto de encontro das medianas dos lados do triângulo. O baricentro divide cada mediana na razão 2:1 como na **Figura 11** abaixo.

Figura 11: Representação geométrica dos segmentos de retas as quais dividem os lados do triângulo acima gerando o chamado BARICENTRO (G).

ORTOCENTRO (H): Ponto de encontro das alturas internas de um triângulo como mostra a **Figura 12** abaixo.

Figura 12: Representação geométrica dos segmentos de retas (alturas internas de um triângulo) gerando o chamado ORTOCENTRO (H).

Classificação dos Triângulos

Os triângulos podem ser classificados quanto aos lodos e aos ângulos.

Quanto aos Lados: Os triângulos podem ser chamados de **ESCALENOS**: quando possuem todos os lados diferentes entre si; **ISÓSCELES**: quando possui dois lados iguais e **EQUILÁTEROS**: quando possuem todos os lados iguais. A **Figura 13** abaixo mostra as representações geométricas dos três tipos de triângulos quanto as seus lados.

Figura 13: O painel (a) acima mostra a representação geométrica de um triângulo ESCALENO onde a ≠ b≠ c; o painel (b) mostra o chamado triângulo ISÓSCELE caracterizado dois lados de comprimento a ≠ b e o EQUILÁTERO onde todos os lados tem comprimento a.

Quanto aos Ângulos: Os triângulos podem ser chamados de **ACUTÂNGULOS**: Se seus três ângulos internos forem agudos, ou seja, menores que 90°; **OBTUSÂNGULOS**: Se um de seus ângulos internos for obtuso, ou seja, maior que 90° e de **RETÂNGULOS**: se um de seus ângulos internos for reto, ou seja, exatamente igual a 90°. A **Figura 14** abaixo mostra a representação geométrica da classificação dos triângulos quanto aos ângulos.

Figura 14: O painel (a) acima mostra a representação geométrica de um triângulo ACUTÂNGULO onde os ângulos α , β e γ todos menores de 90° ; o painel (b) mostra o chamado triângulo OBTUSÂNGULO onde o ângulo α é maior que 90° e o chamado triângulo RETÂNGULO: onde um de seus ângulos internos é reto, ou seja, mede exatamente 90° .

Métrica dos Triângulos

Apresentam-se abaixo algumas das propriedades mais relevantes relacionadas aos triângulos, principalmente os seus teoremas e demonstrações.

Teorema 1: A soma das medidas dos ângulos internos de um triângulo vale 180°.

Demonstração: Dado um triângulo qualquer como mostrado na **Figura 15** abaixo, traçando uma reta paralela ao segmento de reta definido por os pontos A e B passando por o ponto C; seguidamente, prolongando os segmentos de retas que passam por os pontos A e C, B temos que os ângulos internos que são projetados externamente sobre a reta paralela aos pontos A e B passando por o ponto C, cuja soma é igual a o ângulo raso ou de meia-volta, ou seja, $\alpha+\beta+\gamma=180^{\circ}$. Como se quer provar. Atenção: o mesmo raciocínio pode ser empregado com relação ao ponto C.

Figura 15: Representação geométrica dos ângulos internos como esquema para demonstração do **Teorema 1**.

Teorema 2: A soma dos ângulos externos a um triângulo qualquer, vale 360°.

Demonstração: Seja um triângulo qualquer(**Figura 16** abaixo), prolongando os segmentos de retas que passam por os pontos A, B e C e escrevendo-se os ângulos externos adequadamente como $ε_1$, $ε_2$ e $ε_3$. Esses ângulos são suplementares com os ângulos internos ao triângulo de modo que: (i) $α+ε_1=180^\circ$, (ii) $β+ε_2=180^\circ$ e (iii) $γ+ε_3=180^\circ$. Somando termo a termo as equações (i) (ii) e (iii) e

sabendo-se que $\alpha+\beta+\gamma=180^{\circ}$, conclui-se que $\epsilon_1+\epsilon_2+\epsilon_3=360^{\circ}$. Como se queria provar.

Figura 16: Representação geométrica dos ângulos internos como esquema para demonstração do **Teorema 2**

Relações Trigonométricas Triângulo Retângulo

O triângulo retângulo é o tipo de triângulo mais fundamental da geometria plana e trigonometria. Qualquer triangulo (até mesmo o retângulo) pode ser divido em no mínimo dois triângulos retângulos semelhantes ou congruentes entre si. Em um triângulo retângulo define-se o lado de maior comprimento como sendo a hipotenusa e seus lados subseqüentes como catetos. Em relação a um ângulo interno diferente do ângulo reto, define-se as relações trigonométricas tais como o seno como sendo a razão entre o cateto oposto e a hipotenusa, o cosseno como a razão entre o cateto adjacente e a hipotenusa e tangente como a razão entre o cateto oposto e a hipotenusa. Como mostra a Figura 17 abaixo.

Figura 17: Representação geométrica de um triângulo retângulo e a definição de seno,

cossenos e tangente.

Congruência entre triângulos retângulos (critério lado, lado, ângulo reto): Dois triângulos são congruentes se a hipotenusa e um dos catetos forem congruentes com as do outro. Veja a **Figura 18** abaixo.

Figura 18: Representação geométrica de triângulos retângulos congruentes: o triângulo ΔABC é congruente com o triângulo ΔDBC ; o triângulo ΔADC é congruente com o triângulo ΔDCB , etc.

Teorema 3: <u>Teorema de Pitágoras: Para um triangulo retângulos, a hipotenusa ao quadrado é igual a soma dos quadrados dos catetos</u>. Demonstração: Usando o método de semelhança de triângulos; critério: Lado, Lado, Ângulo reto. A **Figura 18** acima mostra um triangulo retângulo de hipotenusa c e catetos a e b. Traçando o segmento de reta entre os pontos C e D temos a altura h a qual separa a hipotenusa c em dois segmentos de lados m e n de tal modo c=n+m. Desse modo tem-se três triângulos retos, a saber: ΔABC , ΔADC e ΔDBC . Tomando o ângulo α como um dos ângulos internos, aplica-se o critério de semelhança de triângulos, a saber: (i) $(c/a)=(n/a) \rightarrow a^2=n\times c$; (ii) $(b/c)=(m/b) \rightarrow b^2=m\times c$. Agora somando as equações (i) e (ii) membro a membro tem-se: $a^2+b^2=(n+m)\times c=c^2$ c.q.m.

Teorema 4: <u>Área de um triângulo retângulo</u>: Área é o espaço interno de qualquer figura geométrica plana. <u>A área de um triangulo qualquer é metade da medida de sua base vezes a medida de sua altura</u>. **Demonstração 1**: Seja um retângulo, quadrilátero de lados a e b quaisquer, como mostrado na Figura 19 abaixo. Observe que na Figura 19

tanto faz definir a ou b como base ou altura. Encontramos sempre a área desse retângulo multiplicando a base pela altura, neste caso $A_R = axb$. Traçando um segmento de reta diagonal e indexando-a como lado c. Temos dois triângulos retângulos semelhantes e iguais, assim a área de cada um deste triângulo é numericamente igual a metade da área do retângulo, ou seja, $A_T=\frac{1}{2}(axb)$. *Demonstração 2*: Traçando um segmento de reta a partir do vértice que forma o ângulos reto em relação a hipotenusa c temos uma única altura interna h, as outras alturas se confundem com os lados remanescentes como mostrado na **Figura 19**. Em relação aos acutângulos α e β temos que para um triângulo retângulos, $\sin(\alpha) = h/b = a/c$ e $h/a = \sin(\beta) = b/c$, assim temos que h = (axb)/c. Tomando a hipotenusa do triangulo como base temos que a área do triangulo é dada por $A_T = \frac{1}{2}(axb)$.

Figura 19: Representação geométrica de um retângulo como a junção de dois triângulos retângulos iguais em (a) e em (b) representação geométrica de um triângulo retângulo e seus elementos.

ATENÇÃO: Qualquer que seja o triângulo, a sua área é dada por metade da BASE vezes ALTURA e como a altura em relação a uma base está diretamente relacionada com os ângulos na base por meio de seus respectivos senos, para uma respectiva base temos dois modos de calcular a área de um triangulo, Assim basta saber o valor de dois lados e o ângulo de qualquer triângulo, para se calcular a área de qualquer triangulo.

Relações Trigonométricas no Circulo ou na Circunferência Trigonométrica

Segundo Euclides de Alexandria, círculo é uma superfície plana contida ou inscrita ou limitada em uma circunferência a qual é definida com base em um ponto chamado origem e uma distância chamada de raio, ou seja, o lugar geométrico no qual todos os pontos estão equidistantes de um ponto central chamado de origem como mostrado na **Figura 20** abaixo.

Figura 20: Representação geométrica de um CÍRCULO ou CIRCUNFERÊNCIA.

Ângulos na Circunferência Trigonométrica

A circunferência trigonométrica é uma circunferência especial cujo raio vale a unidade, como mostrado na **Figura 21** abaixo. Define-se **ÂNGULO CENTRAL** o ângulo cujo vértice coincide com o centro da circunferência e **ÂNGULO INSCRITO** se o seu vértice coincide com um dos pontos da circunferência como são mostrados na **Figura 21** abaixo.

Figura 21: (a) representação de uma circunferência trigonométrica; (b) representação de um ângulo central e (c) representação de uma ângulo inscrito.

Teorema 5: Relação entre ângulos inscrito e central. A medida de um ângulo inscrito é metade da medida do arco correspondente a ele, ou seja, metade da medida do ângulo central. Demonstração. Com base na Figura 22 abaixo, temos que em (a): (i) $\alpha_1 = 2 \beta_1$ e (ii) $\alpha_2 = 2 \beta_2$, somando (i) e (ii) membro a membro, temos $\alpha = \alpha_1 + \alpha_2 = 2(\beta_1 + \beta_2) = 2 \beta$, ou seja $\beta = \alpha/2$. Conseqüências: (i) Dois ou mais ângulos inscritos em uma circunferência são congruentes; (ii) Todo ângulo inscrito em uma semicircunferência é reto.

Figura 22: (a) representação em uma circunferência das relações entre os ângulos centrais e inscritos; (b) representação de ângulos centrais congruentes e (c)

representação de um ângulo inscrito em uma semicircunferência, ou seja, um ângulo reto.

Teorema 6: **Teorema Fundamental da Trigonometria**: Seja uma circunferência trigonometria na qual define-se um ângulos α , representada na Figura 23 Gerando um triângulo retângulo de hipotenusa de lado igual a unidade e catetos iguais sen α e $\cos \alpha$, tem-se 1 = $(\sin \alpha)^2 + (\cos \alpha)^2$.

Figura 23: Representação geométrica de uma circunferência trigonométrica em (a) mostrando as relações trigonométricas seno e cosseno e (b) Teorema Fundamental da Trigonometria.

Teorema 7: Teorema dos senos: Para um triângulo qualquer inscrito em uma circunferência de raio R e de ângulos de internos α , β e γ opostos aos lado a, b e c respectivamente. a relação:a/sen(α) = b/sen(β) = c/sen (γ =2R é válida. Demonstração: Seja um triângulo qualquer de ângulos internos α,β e γ opostos respectivamente aos lados a, b e c e inscrito em uma circunferência de raio R como mostras na Figura 24 abaixo. Traçando segmentos de retas apropriados passando por a diagonal da circunferência tem-se triângulos retângulos inscritos e congruentes entre si quanto ao ângulo reto e a hipotenusa (2R) na circunferência. Assim tem-se na Figura 23 (a), (b) e (c) respectivamente: 2R= $sen\alpha=a/2R$, senβ=b/2R sen_γ=c/2R, seja ou $a/sen\alpha=b/sen\beta=c/sen\gamma$ como postula o teorema dos senos.

Figura 24: Representações de um ângulo inscrito em uma semicircunferência, ou seja, um ângulo reto.

Teorema 8: <u>Teorema dos cossenos: Para um triângulo qualquer de ângulos de internos α , β e γ opostos aos lado a, b e c respectivamente. Tem-se as relações como válida:</u>

- (i) $a^2 = b^2 + c^2 2cb \times cos \alpha$
- (ii) $b^2 = a^2 + c^2 2caxcos\beta$
- (iii) $c^2 = a^2 + b^2 2ab \times cos \gamma$

Demonstração: Aplicando o teorema de Pitágoras nos triângulos retângulos em relação às alturas h_2 e h_3 mostrados na **Figura 25**, tem-se por meio do teorema de Pitágoras no triângulo retângulo de lados b, m e h_3 , a relação matemática: $b^2 = m^2 + (h_3)^2$, onde h_3 =a*senα e m = (c - a*cosβ). Usando o teorema fundamental da trigonometria, a relação (i) acima é demonstrada. De modo análogo demonstram-se as outras relações.

Figura 25: Representação geométrica de um triângulo qualquer e sua relação com os triângulos retângulos formados com base nas alturas h₂ e h₃ para demonstração do teorema dos cossenos.

Soma e Subtração de Arcos em uma Circunferência Trigonométrica

As relações trigonométricas de seno, cosseno e tangente de soma e subtração de arcos, obtêm-se com base nas relações individuais de seno e cosseno de ângulos como mostrado **na Figura 26** (b) abaixo, nos teoremas de dos cossenos e Pitágoras e na relação demonstrada na distância entre dois pontos em (a).

Figura 26. Em (a) tem-se a representação da distância entre dois pontos aplicando-se o teorema de Pitágoras; (b) mostra-se as relações trigonométricas de senos e cossenos de um ângulo qualquer e m (c) mostra-se a relação entre um triângulo reto e um triângulo isóscele para as demonstrações de soma e subtração de arcos.

(i) $\cos(\alpha - \beta) = ?$ A Figura 26 (c) mostra os ângulos α e β em uma circunferência trigonométrica. No triângulo retângulo \triangle ABC a hipotenusa é dada por a distância entre os ponto A e B (d_{AB}) e os catetos são ($sen\alpha - sen\beta$) e ($cos\beta - cos\alpha$) com base nestas relações aplica-se o teorema de Pitágoras para obter (i): $(d_{AB})^2 = (cos\beta - cos\alpha)^2 + (sen\alpha - sen\beta)^2 = 2 - 2 + cos\alpha \cos\beta - sen\alpha sen\beta$. Já o \triangle AOB, um triângulo isósceles de lados 1 e d_{AB} , aplica-se o teorema dos cossenos, a saber: (ii) $2 - 2 + cos(\alpha - \beta)$. Assim igualando as equações (i) = (ii), tem-se $\cos(\alpha - \beta) = \cos\alpha \cos\beta + sen\alpha sen\beta$.

(ii) $\cos(\alpha + \beta) = ?$ Neste caso se escreve: $\cos(\alpha + \beta) = \cos[\alpha - (-\beta)]$, sabendo-se que $\cos(-\phi) = \cos(\phi)$ e $\sin(-\phi) = -\sin(\phi)$, onde ϕ é um ângulos qualquer. Assim sendo, tem-se: $\cos(\alpha + \beta) = \cos[\alpha - (-\beta)] = \cos\alpha\cos\beta + \sin\alpha\sin(-\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$. Portanto: $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$.

(iii) $\underline{sen(\alpha - \beta)} = ?$ Aqui se aplica as seguintes relações mostradas na **Figura 26** (b): $\underline{sen\phi} = \cos(90^{\circ} - \phi)$, $\cos\phi = \underline{sen(90^{\circ} - \phi)}$, $\underline{sen(-\phi)} = -\underline{sen\phi} = \cos(-\phi) = \cos\phi$; sabendo que $\underline{sen(90^{\circ})} = 1$ e $\cos(90^{\circ}) = 0$. Deste modo tem-se: $\underline{sen(\alpha - \beta)} = \cos[90^{\circ} - (\alpha - \beta)] = \cos[(90^{\circ} - \alpha) + \beta] = \underline{sen\alpha}\cos\beta - \cos\alpha\underline{sen\beta}$. Portanto, $\underline{sen(\alpha - \beta)} = \underline{sen\alpha}\cos\beta - \cos\alpha\underline{sen\beta}$.

(iv) $\underline{sen(\alpha + \beta)} = ?$ Seguindo o que já foi mostrado acima se tem que $\underline{sen(\alpha + \beta)} = \underline{sen}[\alpha - (-\beta)] = \underline{sen}(\alpha \cos(-\beta)) - \cos(\alpha \sin(-\beta)) = \underline{sen}(\alpha \cos(\beta)) + \cos(\alpha \sin(\beta)) = \underline{sen}(\alpha \cos(\beta)) + \cos(\alpha \cos(\beta)) = \underline{sen}(\alpha \cos(\beta)) + \cos(\alpha \cos(\beta)) = \underline{sen}(\alpha \cos(\beta)) + \cos(\alpha \cos(\beta)) = \underline{sen}(\alpha \cos(\beta)) = \underline{se$

Resumindo o que foi mostrado acima temos?

 $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta.$

 $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$.

 $\underline{\operatorname{sen}(\alpha - \beta)} = \underline{\operatorname{sen}\alpha \cos \beta - \cos \alpha \operatorname{sen}\beta}.$

 $sen(\alpha + \beta) = sen\alpha cos \beta + cos\alpha sen\beta$.

Considerações Finais

O objetivo deste manuscrito é mostrar resumidamente a relação entre a trigonometria e a geometria plana com base nos elementos de Euclides de Alexandria. O que se resumiu neste manuscrito foi baseado na literatura a respeito do assunto descrita nos livros textos voltados para o ensino médio padrão vigente. Todas as relações matemática aqui mostras serão usadas direta ou indiretamente no ensino superior e deve ser de conhecimento de todos. Como não é possível decorar tudo, este manuscrito deve servir como notas de consulta para os desafios futuros.

Obrigado.