Классификация текстов

Квантитативный анализ текста

Кирилл Александрович Маслинский 21.03.2022 / 05

НИУ ВШЭ Санкт-Петербург

Задача классификации текстов

Задача классификации текстов

Задача:

- Заранее известен список классов
- Необходимо автоматически отнести каждый документ к одному из классов

Векторное представление документов

Terms

Docs	вовочк	дет	класс	урок	учител	учи
1	0.5000000	0.0000000	0	0.2500000	0	0.
2	0.6666667	0.0000000	0	0.0000000	0	0.
3	0.2000000	0.2000000	0	0.0000000	0	0.
4	0.5000000	0.1666667	0	0.1666667	0	0.
5	0.7500000	0.0000000	0	0.0000000	0	0.
6	0.5000000	0.0000000	0	0.0000000	0	0.

Классификация векторов

Области применения классификации в NLP

- Документ целиком:
 - Определение языка текста
 - Определение тематики текста (из набора известных тем)
 - Sentiment classification (определение положительных/отрицательных отзывов)
 - Определение автора текста (из списка кандидатов)
- Отдельный токен (слово):
 - Разделение текста на предложения (классификация точек)
 - · Определение части речи (part-of-speech tagging)
 - Снятие омонимии (выбор значения слова)
 - Извлечение именованных сущностей (Named entity recognition)
 - · Извлечение отношений (Relations extraction)

Задача машинного обучения

Задача: научиться предсказывать трудно формализуемые, но важные для человека свойства объекта (текста).

target Определить набор интересующих нас меток features Представить объект в виде набора свойств model На основании статистики распределения свойств в текстах построить модель, предсказывающую метки новых объектов (которых модель еще не видела).

PROFIT!

Задача машинного обучения

Задача: научиться предсказывать трудно формализуемые, но важные для человека свойства объекта (текста).

target Определить набор интересующих нас меток features Представить объект в виде набора свойств model На основании статистики распределения свойств в текстах построить модель, предсказывающую метки новых объектов (которых модель еще не видела).

· PROFIT!

Классификация новых объектов

Разновидности машинного обучения

supervised Обучение с учителем.

Модель учится предсказывать, опираясь на образцы меток, поставленных человеком.

unsupervised Обучение без учителя.

Модель учится предсказывать на основании общих предположений о распределении свойств в текстах, без подготовленных человеком размеченных образцов.

semi-supervised Обучение с использованием внешних знаний.

Модель опирается на **небольшое** количество размеченных человеком образцов и активное использование знаний о предметной области:

Терминология

Обучающая выборка / training set Набор объектов с выставленными человеком «правильными» метками, на основании которых строится («обучается») модель.

Тестовая выборка / test set Набор объектов с выставленными человеком «правильными» метками, с помощью которых можно проверить, совпадают ли предложенные моделью метки с правильными.

Наивный Байес

Правило Байеса

$$P(A \cup B) =$$

$$P(B)P(A|B) = P(A)P(B|A)$$

Правило Байеса

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{1}$$

$$posterior = \frac{likelihood \cdot prior}{evidence}$$
 (2)

- \cdot $P(\mathsf{MEHEДЖЕР}|\mathsf{ЗАСТЕНЧИВЫЙ}) = ?$
- $\cdot P($ библиотекарь| ЗАСТЕНЧИВЫЙ)=?

- $P(MEHEДЖЕР) = \frac{10MЛH}{80MЛH} = 0.125$
- $P(\text{БИБЛИОТЕКАРЬ}) = \frac{0.5\text{млн}}{80\text{млн}} = 0.00625$

Задача классификации образов

Задача:

- Заранее известен список классов
- Необходимо автоматически отнести каждый объект к одному из классов
- Каждый объект представлен в виде набора признаков (features)

Правило Байеса применительно к классификации

$$P(|abel||features|) = \frac{P(features||abel|)P(|abel|)}{P(features)}$$
(3)

NAIVE BAYES CLASSIFIER

• Задача: Имея набор свойств (E) выбрать наиболее вероятную гипотезу (класс, H). Знаменатель P(E) — константа и не влияет на результат классификации.

 $P(label|features) \propto P(features|label)P(label)$

Maximum a posteriory estimation

Упрощающее предположение

• Вычислить likelihood:

• Bayes assumption: Все свойства независимы друг от друга.

$$= \prod_{f \in \text{features}} P(f|\text{label})$$

Prior(Green)
$$\propto \frac{f(\text{Green})}{\text{total}} = \frac{40}{60}$$

Prior(Red) $\propto c \frac{f(\text{Red})}{\text{total}} = \frac{20}{60}$

۰

Likelihood(X|Green)
$$\propto \frac{f(Green near X)}{f(Green)} = \frac{1}{40}$$

.

Likelihood(X|Red)
$$\propto \frac{f(\text{Red near X})}{f(\text{Red})} = \frac{3}{20}$$

Posterior(Green|X)
$$\propto$$
 Likelihood(X|Green) \times Prior(Green) = $\frac{4}{6} \times \frac{1}{40} = \frac{4}{6} \times$

Posterior(Red|X)
$$\propto$$
 Likelihood(X|Red) \times Prior(Red) $=\frac{2}{6} \times \frac{3}{20} = \frac{1}{20}$

ЭКСПЕРИМЕНТ

Эксперимент на людях

Наивный Байес — генеративный классификатор:

- СТРОИТ МОДЕЛЬ КАЖДОГО КЛАССА
- ОПРЕДЕЛЯЕТ ВЕРОЯТНОСТЬ, ЧТО

 НАБЛЮДАЕМЫЕ ДАННЫЕ **СГЕНЕРИРОВАНЫ**ПО МОДЕЛИ ДАННОГО КЛАССА

Наивный Байес: преимущества и недостатки

Преимущества:

- Годится для большого числа атрибутов, малой обучающей выборки
- На удивление хорошо работает в очень многих задачах
- Вычислительно эффективен (быстро учится и классифицирует)

Недостатки:

• Проблема нулевых значений (атрибут не встречается в обучающей выборке) — требует сглаживания

Аддитивное сглаживание

ПРОКЛЯТИЕ РАЗМЕРНОСТИ

SPARSE DATA PROBLEM

Terms

Docs	выгребать	выгребной	выгружать	выгрузка	выгрыза
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	۵	

ПРОКЛЯТИЕ РАЗМЕРНОСТИ

A document-term matrix (1530 documents, 13322 terms

Non-/sparse entries: 68859/20313801

Sparsity: 100% Maximal term length: 66

Weighting : term frequency (tf)

HUGHES PHENOMENON

20/20

ПРОКЛЯТИЕ РАЗМЕРНОСТИ НА КОШКАХ

ПРОКЛЯТИЕ РАЗМЕРНОСТИ НА КОШКАХ

ПРОКЛЯТИЕ РАЗМЕРНОСТИ НА КОШКАХ

ПРОКЛЯТИЕ РАЗМЕРНОСТИ НА КОШКАХ

ПЕРЕОБУЧЕНИЕ

ПЕРЕОБУЧЕНИЕ

Снижение размерности

Снижение размерности

- Матрица терминов-документов очень большая и редкая
- Близкие по смыслу слова не обязательно встречаются в одних и тех же документах:
 - синонимия
 - полисемия
 - шум
- Нужно сократить размерность матрицы (сделать меньше столбцов).

Снижение размерности

- Матрица терминов-документов очень большая и редкая
- Близкие по смыслу слова не обязательно встречаются в одних и тех же документах:
 - синонимия
 - полисемия
 - шум
- Нужно сократить размерность матрицы (сделать меньше столбцов).

Простейший способ уменьшить число столбцов — просто удалить лишние слова:

- Статический список: без более бы был была были было быть в вам вас весь во вот все всего всех вы где да даже для ...
- Динамический список:
 - · Слишком частотные (N самых частотных)
 - Слишком редкие (порог: не менее чем в F документов)
 - Слишком короткие (меньше М букв)

Оценка качества классификации

ACCURACY

$$Accuracy = \frac{P}{N} \tag{4}$$

Р количество документов, где классификатор принял правильное решение

N размер обучающей выборки

ТАБЛИЦА СОПРЯЖЕННОСТИ

Таблица верных и неверных решений по документам данного класса:

Категория і		Экспертная оценка	
		Положительная	Отрицательная
0	Положительная	TP	FP
Оценка системы	СА СИСТЕМЫ Отрицательная	FN	TN

ТР правильно отнесла к классу

TN правильно не включила в класс

FP ошибочно отнесла к классу

FN ошибочно не включила в класс

Точность и полнота

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$
(6)

$$Recall = \frac{IP}{TP + FN} \tag{6}$$

Матрица неточностей

F-MEPA

$$F_{\alpha} = \frac{(1+\alpha)PR}{\alpha P + R} \tag{7}$$

$$F_1 = \frac{2PR}{P+R} \tag{8}$$

KAPPA

$$\kappa = \frac{P_{\text{observed}} - P_{\text{expected}}}{1 - P_{\text{expected}}} \quad (9)$$

	КОТЫ	собаки	
КОТЫ	20	5	25
собаки	10	15	25
	30	20	

KAPPA

$$\kappa = \frac{P_{\mathrm{observed}} - P_{\mathrm{expected}}}{1 - P_{\mathrm{expected}}}$$
 (9) $\frac{\mathrm{KOTЫ}}{\mathrm{Co6aKM}} = \frac{\mathrm{Co6aKM}}{\mathrm{Co6aKM}} = \frac{\mathrm{KOT}}{\mathrm{Something}} = \frac{\mathrm{Something}}{\mathrm{Something}} = \frac{\mathrm{KOT}}{\mathrm{Something}} = \frac{\mathrm{KOT}}{\mathrm{Something$

$$P_{\text{observed}} = (20 + 15)/50 = 0.7$$
 (10)

$$P_{\text{expected}} = ((25*30)/50 + (25*20)/50))/50 = (15+10)/50 = 0.5$$
(11)

$$\kappa = \frac{0.7 - 0.5}{1 - 0.5} = 0.4 \tag{12}$$