EE QUALIFYING EXAM JANUARY 2010

This is a problem about discrete signals (vectors) of length N.

Let I be a subset of $\{0, 1, ..., N-1\}$ and let I' be the complementary subset. (For example, I could be the set of even numbers in $\{0, 1, ..., N-1\}$ and I' would then be the set of odd numbers.)

Let \mathbb{B}^I be the set of signals whose spectrum is supported on I, i.e.,

$$\underline{\mathbf{f}} \in \mathbb{B}^I \iff \underline{\mathcal{F}}\underline{\mathbf{f}}[m] = 0 \quad \text{if } m \in I'.$$

Here $\underline{\mathcal{F}}$ is the discrete Fourier transform.

• What is the set of signals that are *orthogonal* to \mathbb{B}^{I} , i.e., what is the orthogonal complement to \mathbb{B}^{I} ?

Let h be the signal defined by

$$\underline{\mathcal{F}}\underline{\mathbf{h}}[m] = \begin{cases} 1, & m \in I \\ 0, & m \in I' \end{cases}$$

ullet Show that the orthogonal projection onto \mathbb{B}^I is given by

$$K\underline{\mathbf{f}} = \underline{\mathbf{h}} * \underline{\mathbf{f}}.$$

• What is the orthogonal projection onto the orthogonal complement of \mathbb{B}^{I} ?

Solutions

For the first question, two signals \underline{f} and \underline{g} are orthogonal if their inner product, $\underline{f} \cdot \underline{g}$ is 0. By Parseval's theorem

$$\underline{\mathbf{f}} \cdot \underline{\mathbf{g}} = \frac{1}{N} (\underline{\mathcal{F}} \underline{\mathbf{f}} \cdot \underline{\mathcal{F}} \underline{\mathbf{g}}).$$

If $\underline{\mathbf{f}} \in \mathbb{B}^I$ then

$$\underline{\mathcal{F}}\underline{\mathbf{f}} \cdot \underline{\mathcal{F}}\underline{\mathbf{g}} = \sum_{n=0}^{N-1} \underline{\mathcal{F}}\underline{\mathbf{f}}[n] \overline{\underline{\mathcal{F}}}\underline{\mathbf{g}}[n]$$

$$= \sum_{n \in I} \underline{\mathcal{F}}\underline{\mathbf{f}}[n] \overline{\underline{\mathcal{F}}}\underline{\mathbf{g}}[n]$$