

ALGEBRA Chapter 23

Inecuaciones de Segundo Grado Session 1

CALCULEMOS

ALDO, BETO Y CARLOS DISCUTEN SOBRE LA SOLUCIÓN AL SIGUIENTE EJERCICIO:

"calcular la cantidad de valores enteros de x que verifican lo siguiente $x^2 < 4$ "

- ➤ Aldo dice que son todos los enteros menores a 2, por lo tanto son infinitos valores
- > Beto dice que solo hay 2 enteros que cumplen
- ➤ Carlos dice que en total hay 3 enteros que verifican la desigualdad

¿Quién resolvió correctamente el ejercicio?

Rpta: Carlos

INECUACIÓN DE SEGUNDO GRADO

Forma general

$$P(x) = ax^{2} + bx + c$$

$$Siendo: a \neq 0$$

$$\geq$$

Resolución de una inecuación de segundo grado

- > Se halla los "puntos críticos" resolviendo P(x)=0.
- > Se ubica los P. C. en una recta numérica y se establece los intervalos.
- Se coloca los signos en cada intervalo de manera alternada (+,-,+)
- De acuerdo al signo de desigualdad se establece el conjunto solución.

	P.C. Abiertos	P.C. Cerrados	Intervalo
P(x)	<	\leq	I
P(x)	>	<u>></u>	+

Ejemplo1: Resolver $x^2 + 2x - 15 \le 0$

©

Resolución:

$$x^{2} + 2x - 15 \leq 0$$

$$x - 5$$

$$x - 3$$

$$(x + 5) \quad (x - 3) \leq 0$$

Puntos
$$\begin{cases} x+5 = 0 & \implies x = -5 \\ x-3 = 0 & \implies x = 3 \end{cases}$$

Resolución:

Ejemplo2: Resolver $x^2 + 2x - 8 > 0$

Puntos
$$\begin{cases} x + 4 = 0 & \implies x = -4 \\ x - 2 = 0 & \implies x = 2 \end{cases}$$

PROBLEMA

Resuelva:
$$x^2 + 5x - 6 \ge 0$$

$$x^{2} + 5x - 6 \ge 0$$

$$x \longrightarrow 6$$

$$x \longrightarrow -1$$

$$(x+6) (x-1) \ge 0$$

Puntos
$$\begin{cases} x + 6 = 0 & \Rightarrow x = -6 \\ x - 1 = 0 & \Rightarrow x = 1 \end{cases}$$

$$C.S = \langle -\infty; -6 \rangle \cup [1; +\infty \rangle$$

HELICO | PRACTICE PROBLEMA 2

Halle la variación de x en:

$$x^2-2x-3\leq 0$$

$$(x+1) (x-3) \leq 0$$

P.C
$$\begin{cases} x + 1 = 0 & \Rightarrow x = -1 \\ x - 3 = 0 & \Rightarrow x = 3 \end{cases}$$

$$C.S = [-1; 3]$$

HELICO | PRACTICE PROBLEMA 3

Determine el conjunto solución de x(x-7) > 18

$$C.S = \langle -\infty; -2 \rangle \cup \langle 9; +\infty \rangle$$

PROBLEMA 4

Resuelva:

$$2x(x-1)<12$$

$$2x(x-1) < 12$$

$$2x^{2} - 2x < 12$$

$$2x^{2} - 2x - 12 < 0$$

$$x^{2} - x - 6 < 0$$

$$x - 3$$

$$(x+2)(x-3) < 0$$

P.C
$$\begin{cases} x + 2 = 0 & \Rightarrow x = -2 \\ x - 3 = 0 & \Rightarrow x = 3 \end{cases}$$

$$C.S = \langle -2; 3 \rangle$$

PROBLEMA 5 Determine el conjunto solución de

$$3x(x-2)-x\leq 20$$

$$3x^2 - 6x - x \le 20$$

$$3x^2 - 7x - 20 \le 0$$
 $3x = 5$

$$x \longrightarrow -4$$

$$(3x+5)(x-4) \le 0$$

P.C
$$\begin{cases} 3x + 5 = 0 & \Rightarrow x = -\frac{5}{3} \\ x - 4 = 0 & \Rightarrow x = 4 \end{cases}$$

PROBLEMA 6 Calcule el conjunto solución de

$$5x(x-1)+2x\geq 2$$

$$C.S = \left(-\infty; -\frac{2}{5}\right] \cup [1; +\infty)$$

PROBLEMA 7 Resuelva $x^2 \ge 2x$

$$x^{2} \ge 2x$$

$$x^{2} - 2x \ge 0$$

$$x(x-2) \ge 0$$

P.C
$$\begin{cases} x = 0 \\ x - 2 = 0 \end{cases} \Rightarrow x = 2$$

$$C.S = \langle -\infty; \mathbf{0}] \cup [\mathbf{2}; +\infty \rangle$$

PROBLEMA 8

Del gráfico, que representa una balanza

Determine el mayor valor entero de x. Sabiendo que representa el número de frutas que come al día Manuel, ¿cuántas frutas son?

Resolución:

 $-\infty$

$$(x+1)^{2} < 25$$

$$x^{2} + 2x + 1 - 25 < 0$$

$$x^{2} + 2x - 24 < 0$$

$$x - 6$$

$$x - 4$$

$$(x+6) (x-4) < 0$$

$$+ - 6$$

$$- 4$$

Mayor valor entero de "x": 3