Projet Science de données One Shot Learning

Présenté par :

Ghita Benjelloun Chen Dang Joachim Dublineau Encadré par:

Benjamin Negrevergne

Sommaire

- ☐ Cifar10 Entraînement sur 10 classes
- ☐ Cifar10 Entraînement sur 6 classes
- Mnist Entraînement sur 5 classes

☐ Cifar10 - Sur 10 classes

Structure des données:

Structure du ConvNet:

images 32*32*3

10 Classes: Airplanes, Auto, Bird, Cat ...

Layer (type)	Output	Shape	Param #
conv2d_51 (Conv2D)	(None,	32, 32, 100)	2800
activation_71 (Activation)	(None,	32, 32, 100)	0
conv2d_52 (Conv2D)	(None,	32, 32, 100)	90100
activation_72 (Activation)	(None,	32, 32, 100)	0
max_pooling2d_21 (MaxPooling	(None,	16, 16, 100)	0
dropout_41 (Dropout)	(None,	16, 16, 100)	0
conv2d_53 (Conv2D)	(None,	16, 16, 200)	180200
activation_73 (Activation)	(None,	16, 16, 200)	0
conv2d_54 (Conv2D)	(None,	16, 16, 200)	360200
activation_74 (Activation)	(None,	16, 16, 200)	0
conv2d_55 (Conv2D)	(None,	16, 16, 400)	720400
activation_75 (Activation)	(None,	16, 16, 400)	0
max_pooling2d_22 (MaxPooling	(None,	8, 8, 400)	0
dropout_42 (Dropout)	(None,	8, 8, 400)	0
flatten_11 (Flatten)	(None,	25600)	0
dropout_43 (Dropout)	(None,	25600)	0
dense_21 (Dense)	(None,	600)	15360600
activation_76 (Activation)	(None,	600)	0
dropout_44 (Dropout)	(None,	600)	0
dense_22 (Dense)	(None,	6)	3606
activation_77 (Activation)	(None,	6)	0.
Total params: 16,717,906			

☐ Cifar10 - Entrainement

Sur les données du test :

Hyperparamètres:

Learning_rate = 0.0001

Batch_size = 32

weight_penalty = 0.0001

optimizer = Adam

Loss = 'categorical_crossentropy'

Cifar10 - Entrainement - Data Augmentation

Hyperparamètres Data Augmentation:

rotation = 2 width shift = 0.15 height shift = 0.15 shear = 0.1 zoom = 0.1

Sur les données du test :

Loss = 0.67 Accuracy = 87%

Utilisation du réseau pour le One-Shot Learning

- Notre réseau Convolutif obtient de bonnes performances sur les 10 classes.
- On va alors l'entraîner sur 6 classes, récupérer l'avant dernière couche qui représentera les informations de l'image.
- Voir si cette représentation permet de bien distinguer les 4 classes suivantes par la méthode du plus proche voisin.

Cifar10 - Entrainement sur 6 classes

Paramètres:

Learning rate = 0.0001Batch size = 32weight penalty = 0.0001 optimizer = Adam Loss = 'categorical crossentropy'

Data Augmentation

Performance on test: [0.5297104382514953, 0.89]

Cifar10 - Basic One Shot Learning

On prend 4 représentants: 1 par classes et on récupère leur vecteur de représentation dans notre réseau.

Vecteur de représentation

☐ Cifar10 - Basic One Shot Learning - Résultats

Visualisation par réduction de dimension (PCA, t-SNE)

PCA

t-SNE

La représentation apprise par le ConvNet est assez pertinente

☐ Cifar10 - Basic One Shot Learning - Résultats

Class n° 6 accuracy: 0.6269527896995707 Class n° 7 accuracy: 0.5944921316165951 Class n° 8 accuracy: 0.5984692417739628 Class n° 9 accuracy: 0.5969241773962805

Matrice de Confusion (prédiction, référence):

[[47843 24311 7719 4457] [13920 37164 6112 3810] [6050 6021 38962 23359] [2087 2404 17107 38274]]

	Rappel	Précision
Class 6	0.68	0.57
Class 7	0.53	0.61
Class 8	0.56	0.52
Class 9	0.55	0.64

- Beaucoup de confusions entre 6 et 7 (grenouilles et chevaux)
- Beaucoup de confusions entre 9 et 10 (bateaux et camions)

☐ MNIST - Embeddings avec un réseau dense

CNN

dense 1 (Dense)

Total params: 43,872 Trainable params: 43,872 Non-trainable params: 0

(None, 2)

☐ MNIST - Embeddings avec un réseau siamois

(None,		28,	1)
(None,	28		
	20,	28,	1)
(None,	2)		
(None,	1)		
		====:	===
		(None, 1)	

Non-trainable params: 0

 $L(a,b,g) = y_{ab} \cdot \frac{1}{2} \cdot d_g(a,b)^2 + (1-y_{ab}) \cdot \frac{1}{2} \cdot \max(0, m - d_g(a,b))^2$

Layer (type)	Output	Shape
conv2d_3 (Conv2D)	(None,	28, 28, 32)
max_pooling2d_3 (MaxPooling2	(None,	14, 14, 32)
dropout_3 (Dropout)	(None,	14, 14, 32)
conv2d_4 (Conv2D)	(None,	14, 14, 64)
max_pooling2d_4 (MaxPooling2	(None,	7, 7, 64)
dropout_4 (Dropout)	(None,	7, 7, 64)
flatten_2 (Flatten)	(None,	3136)
dense_2 (Dense)	(None,	2)
Total params: 39,426		

Trainable params: 39,426

Non-trainable params: 0

MNIST - Embeddings avec un réseau siamois

Entraînement sur 5 classes

Embeddings 2D de 0 à 4

Training and validation loss

Training and validation accuracy

☐ MNIST - Embeddings avec un réseau siamois

Visualisation 3D

Embeddings de 0 à 4

Embeddings de 5 à 9

- confusions entre 4 et 9
- confusions entre 1 et 7

Loss et accuracy sur le test set

Conclusions

