Problem: Congruent Triangles – Bài Tập: Tam Giác Bằng Nhau

Nguyễn Quản Bá Hồng*

Ngày 24 tháng 10 năm 2023

Mục lục

1	Congruent Triangles – Bài Tập: Tam Giác Bằng Nhau	1
2	Pythagore Theorem – Định Lý Pythagore	2
3	Quan Hệ Giữa Các Yếu Tố Trong Tam Giác. Bất Đẳng Thức Tam Giác	2
4	Miscellaneous	4
Tà	i liêu	2

1 Congruent Triangles – Bài Tập: Tam Giác Bằng Nhau

- 1 ([HM23], 3.1., p. 26). Cho 2 điểm A, B chạy trên Ox, Oy sao cho OA + OB = m. Chứng minh đường trung trực của đoạn thẳng AB luôn đi qua 1 điểm cố định.
- 2 ([HM23], 3.2., p. 27). Cho $\triangle ABC$ nhọn có điểm M là trung điểm AC. Lấy điểm K thuộc đoạn BM sao cho AK = BC. AK giao BC tại L. Chứng minh LK = BL.
- 3 ([HM23], 3.3., p. 27). Cho $\triangle ABC$ có AB = AC, $\widehat{A} = 40^{\circ}$. Diễm K thuộc cạnh AC sao cho $\widehat{KBC} = 30^{\circ}$. Diễm L nằm trong $\triangle ABC$ sao cho $\widehat{ABL} = 30^{\circ}$, AL là phân giác \widehat{BAC} . Chứng minh AK = AL.
- 4 ([HM23], 3.4., p. 27). Cho $\triangle ABC$ có $\widehat{A}=60^\circ$, 2 điểm E,F thuộc tia BA,CA sao cho BE=CF=BC. I là tâm đường tròn nội tiếp $\triangle ABC$. Chứng minh E,F,I thẳng hàng.
- 5 ([HM23], 3.5., p. 28). Cho $\triangle ABC$ có đường cao AH. Biết $\widehat{ABC}=75^{\circ}$, $AH=\frac{1}{2}BC$. Chứng minh $\triangle ABC$ cân.
- 6 ([HM23], 3.6., p. 28). Cho $\triangle ABC$ có trực tâm H, M là trung điểm BC. Đường thẳng qua H vuông góc HM cắt AB,AC lần lượt ở P,Q. Chứng minh HP=HQ.
- 7 ([HM23], 3.7., p. 29). Cho $\triangle ABC$ với điểm N nằm trong $\triangle ABC$ sao cho $\widehat{ABN} = \widehat{ACN}$. M là trung điểm BC. NH, NK là đường vuông góc hạ từ N xuống AB, AC. Chứng minh $\triangle MHK$ cân.
- 8 ([HM23], 3.8., p. 29). Cho $\triangle ABC$ cân tại A, đường phân giác BE. $F \in BC$ sao cho $\widehat{BEF} = 90^{\circ}$. Chứng minh BF = 2CE.
- 9 ([HM23], 3.9., p. 30). Cho $\triangle ABC$ cân tại A, điểm M nằm trong $\triangle ABC$ sao cho $\widehat{AMB} = \widehat{AMC}$. Chứng minh AM là phân giác \widehat{A} .
- 10 ([HM23], 3.10., p. 30). Cho ΔABC là trung điểm BC. Dựng 2 tam giác vuông cân AEB, AFC bên ngoài ΔABC . Chứng minh ΔMEF vuông cân.
- 11 ([HM23], 3.11., p. 31). Cho ΔABC vuông tại A, M là trung điểm AB, H là hình chiếu vuông góc hạ từ M xuống BC. Điểm K thuộc đoạn AM sao cho AK = BH. Chứng minh ΔCHK cân.
- 12 ([HM23], 3.12., p. 31). Cho $\triangle ABC$ vuông cân tại A. Vẽ $\triangle BCK$ cân tại C sao cho C,K nằm khác phía đối với AB, $\widehat{BCK}=30^{\circ}$. Tính \widehat{BAK} .
- 13 ([HM23], 3.13., p. 32). Cho $\triangle ABC$. Lấy $M \in AC, N \in AB$ sao cho $\widehat{MBC} = 2\alpha = 2\widehat{ABM}, \widehat{BCN} = 2\beta = 2\widehat{ACN}$. P là giao điểm của BM, CN. Biết PM = PN. Chứng minh $\triangle ABC$ vuông hoặc cân.
- 14 ([HM23], 3.14., p. 32). Cho $\triangle ABC$, M là trung điểm BC. Dựng 2 tam giác vuông cân ABE, ACF bên ngoài $\triangle ABC$. Chứng minh $AM \perp EF$.

^{*}Independent Researcher, Ben Tre City, Vietnam

- 15 ([HM23], 3.15., p. 33). Cho $\triangle ABC$ có đường cao AH, M, N là chân đường vuông góc hạ từ H xuống AB, AC. Biết MB = NC. Chứng minh $\triangle ABC$ cân.
- 16 ([HM23], 3.16., p. 33). Cho \widehat{xOy} . A, B chạy trên Ox, Oy sao cho OA OB = m. Chứng minh trung trực AB đi qua 1 điểm cố đinh.
- 17 ([HM23], 3.17., p. 33). Cho $\triangle ABC$ vuông tại A, đường cao AH. E thuộc tia AH, K thuộc tia đối của tia HA sao cho AE = HK. Kể đường thẳng qua E song song BC cắt AC tại F. Chứng minh $\widehat{BKF} = 90^{\circ}$.
- **18** ([HM23], 3.18., p. 33). Cho ΔABC có đường phân giác AA'. Lấy 2 điểm M, N nằm trong ΔABC sao cho AA' là trung trực của MN. Lấy C', B' là 2 điểm đối xứng với M qua AB, AC. Chứng minh AN là trung trực của B'C'.
- 19 ([HM23], 3.19., p. 33). Cho ΔABC vuông tại A, đường cao AH. I, J là tâm đường tròn nội tiếp ΔABH, ΔACH. IJ cắt AB, AC lần lượt ở E, F. Chứng minh A là tâm đường tròn ngoại tiếp ΔEFH.
- **20** ([HM23], 3.20., p. 34). Cho $\triangle ABC$, dựng $\triangle ABZ$, $\triangle ACY$ đều bên ngoài $\triangle ABC$. Vẽ $\triangle BCX$ cân tại X bên ngoài $\triangle ABC$ sao cho $\widehat{BXC}=120^{\circ}$. Chứng minh $AX \perp YZ$.
- 21 ([HM23], 3.21., p. 34). Cho $\triangle ABC$, I là tâm đường tròn nội tiếp. BE, CF là 2 đường phân giác trong. Biết IE = IF. Chứng minh $\widehat{BAC} = 60^{\circ}$ hoặc $\triangle ABC$ cân.
- **22** ([HM23], 3.22., p. 34). Cho $\triangle ABC$, I là tâm đường tròn nội tiếp. AD, BE, CF là 3 đường phân giác. Biết ID = IE = IF. Chứng minh $\triangle ABC$ đều.
- **23** ([HM23], 3.23., p. 34). Cho $\triangle ABC$, $\widehat{A}=60^{\circ}$. Dường phân giác BE, CF. Chứng minh BF+CE=BC.
- **24** ([HM23], 3.24., p. 34). Cho $\triangle ABC$, đường phân giác AD. Lấy E, F thuộc cạnh AB, AC sao cho $\triangle BDE$ cân tại $B, \triangle CDF$ cân tại C. Chứng minh $EF \parallel BC$.
- **25** ([HM23], 3.25., p. 34). Cho $\triangle ABC$, $\widehat{ABC} = 70^{\circ}$, $\widehat{ACB} = 50^{\circ}$. Lấy điểm D nằm khác phía A đối với BC sao cho $\widehat{CBD} = 40^{\circ}$, $\widehat{BCD} = 20^{\circ}$. Chứng minh $AD \perp BC$.
- 26 ([HM23], 3.26., p. 34). Cho $\triangle ABC$. Kẻ đường cao BE, CF. X, Y, Z lần lượt là trung điểm EF, BF, CE. K là giao điểm của đường thẳng qua Y vuông góc BX, đường thẳng qua Z vuông góc CX. Chứng minh K thuộc trung trực BC.
- 27 ([HM23], 3.27., p. 34). Cho $\triangle ABC$, 3 đường cao AD, BE, CF cắt nhau tại H. X,Y,Z,T là chân đường vuông góc hạ từ D xuống AB, BE, CF, AC. Chứng minh X,Y,Z,T thẳng hàng.

2 Pythagore Theorem – Định Lý Pythagore

- **28** ([HM23], 4.1., p. 40). Cho $\triangle ABC$ vuông tại A, phân giác BD, kể $DE \perp BC$, $E \in BC$. F là giao điểm của AB, DE. Chứng minh: (a) BD là trung trực AE. (b) $\triangle ACF$ cân. (c) AD < CD. (d) $AE \parallel CF$.
- 29 ([HM23], 4.2., p. 40). Cho ΔABC vuông tại A, phân giác BD. Trên tia BC lấy điểm E sao cho AB = BE. (a) Chứng minh BE⊥DE. (b) Chứng minh BD là đường trung trực của AE. (c) Kể AH⊥BC. So sánh CE, EH.
- 30 ([HM23], 4.3., p. 41). Cho $\triangle ABC$ vuông tại A, AB=8 cm, AC=6 cm. (a) Tính BC. (b) Trên cạnh AC lấy điểm E sao cho AE=2 cm, trên tia đối của tia AB lấy điểm D sao cho AB=AD. Chứng minh $\triangle BEC=\triangle DEC$. (c) Chứng minh DE đi qua trung điểm BC.
- 31 ([HM23], 4.4., p. 41). Cho $\triangle ABC$ vuông tại A, $\widehat{B}=60^{\circ}$. Vẽ $AH \perp BC$, $H \in BC$. (a) So sánh AB, AC; BH, CH. (b) Lấy điểm D thuộc tia đối của tia HA sao cho AH=DH. Chứng minh $\triangle ACH=\triangle DCH$. (c) Tính \widehat{BDC} .
- 32 ([HM23], 4.5., p. 41). Cho $\triangle ABC$ vuông tại A, đường cao AH, trên đó lấy điểm D. Tren tia đối của tia HA lấy E sao cho AD = EH. Dường vuông góc với AH tại D cắt AC tại F. Chứng minh $BE \bot EF$.
- **33** ([HM23], 4.6., p. 41). Từ 1 điểm O tùy ý trong $\triangle ABC$, kẻ OA_1, OB_1, OC_1 lần lượt vuông góc với 3 cạnh BC, CA, AB. Chứng minh: $AB_1^2 + BC_1^2 + CA_1^2 = AC_1^2 + BA_1^2 + CB_1^2$.
- **34** ([HM23], 4.7., p. 41). Cho $\triangle ABC$ cân tại A, $\widehat{A}=30^{\circ}$, BC=2 cm. Trên cạnh AC lấy điểm D sao cho $\widehat{CBD}=60^{\circ}$. Chứng minh $AD=\sqrt{2}$.

3 Quan Hệ Giữa Các Yếu Tố Trong Tam Giác. Bất Đẳng Thức Tam Giác

4 Miscellaneous

Tài liệu

[HM23] Trần Quang Hùng and Đào Thị Hoa Mai. *Tuyển Chọn Các Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 7 Hình Học.* Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2023, p. 114.