Random Matrix Theory for Modern Machine Learning: New Intuitions, Improved Methods, and Beyond: Part 2

Short Course @ Institut de Mathématiques de Toulouse, France

Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

July, 2nd 2024

Outline

- Four Ways to Characterize Sample Covariance Matrices
 - Traditional analysis of SCM eigenvalues
 - SCM analysis beyond eigenvalues: a modern RMT approach via Deterministic Equivalents for resolvent
 - The Gaussian method alternative approach
- Some More Random Matrix Models
 - Wigner semicircle law
 - Generalized sample covariance matrix
 - Separable covariance model

Definition (Sample Covariance Matrix, SCM)

The SCM $\hat{\mathbf{C}} \in \mathbb{R}^{p \times p}$ of data matrix $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ composed of n independent data samples $\mathbf{x}_i \in \mathbb{R}^p$ of zero mean is given by

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}.$$
 (1)

Definition (Classical versus proportional regimes)

For SCM $\hat{\mathbf{C}} \in \mathbb{R}^{p \times p}$ from n samples of dimension p, we consider the following two regimes.

- **Olympia Classical regime** with $n \gg p$, this includes both asymptotic ($n \to \infty$ with p fixed) and non-asymptotic characterizations ($n \gg p$ for large but finite n).
- **② Proportional regime** with $n \sim p$, this includes both asymptotic $(n, p \to \infty \text{ with } p/n \to c \in (0, \infty)$, also known as thermodynamic limit in the statistical physics literature) and non-asymptotic characterizations $(n \sim p \gg 1 \text{ both large but finite})$.

Figure: Taxonomy of four different ways to characterize the sample covariance matrix $\hat{C} = \frac{1}{n}XX^T$.

Asymptotically deterministic behavior: from random vectors to random matrices

- Key objective: asymptotic and non-asymptotic characterizations of large random matrices in the proportional regime
- e.g., the eigenspectral behaviors of $\hat{\mathbf{C}}$ can be very different in the classical from the proportional regime, not sure whether they establish a close-to-deterministic behavior in the proportional $n \sim p \gg 1$ regime
- we have seen concentration of (linear, Lipschitz, quadratic, and even nonlinear quadratic) scalar observations of large-dimensional random vectors

$$f(\mathbf{x}) \simeq \mathbb{E}[f(\mathbf{x})] + o(1).$$
 (2)

- we expect something similar for matrices:
- (i) similar to vectors, the random matrices themselves do not concentrate (in a spectral norm sense) in the **proportional** $n \sim p \gg 1$ regime, e.g., $\|\hat{\mathbf{C}} \mathbf{C}\|_2 \to 0$ as $n, p \to \infty$ limit with $p/n \to c \in (0, \infty)^1$
- (ii) large-dimensional close-to-deterministic/concentration behavior for its scalar (e.g., eigenspectral) observations $F(\hat{\mathbf{C}})$ holds for scalar matrix functional $F: \mathbb{R}^{p \times p} \to \mathbb{R}$, in the proportional $n \sim p \gg 1$ regime.

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 6 / 57

¹This is sharp contrast to the **classical** $n \gg p \sim 1$ regime, where $\|\hat{\mathbf{C}} - \mathbf{C}\| \simeq 0$ for any matrix norm.

Figure: Eigenvalue distribution of \hat{C} versus Marčenko-Pastur law, p=500, $n=50\,000$.

Asymptotic behavior of SCM in the classical regime via law of large numbers

Theorem (Asymptotic Law of Large Numbers for SCM)

Let p be fixed, and let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random matrix with independent sub-gaussian columns $\mathbf{x}_i \in \mathbb{R}^p$ such that $\mathbb{E}[\mathbf{x}_i] = \mathbf{0}$ and $\mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\mathsf{T}] = \mathbf{I}_p$. Then one has,

$$\|\hat{\mathbf{C}} - \mathbf{I}_p\|_2 \to 0,\tag{3}$$

almost surely, as $n \to \infty$.

As $n \to \infty$ and for fixed p, the resolvent or regularized SCM inverse $\mathbf{Q}(-\gamma) \equiv (\hat{\mathbf{C}} + \gamma \mathbf{I}_p)^{-1}$ is close to $(\mathbf{C} + \gamma \mathbf{I}_p)^{-1}$ with the same regularization $\gamma > 0$,

$$\|\mathbf{Q}(-\gamma) - (\mathbf{C} + \gamma \mathbf{I}_p)^{-1}\|_2 = \|\mathbf{Q}(-\gamma) \cdot (\mathbf{C} - \hat{\mathbf{C}}) \cdot (\mathbf{C} + \gamma \mathbf{I}_p)^{-1}\|_2 \le \gamma^{-2} \|\mathbf{C} - \hat{\mathbf{C}}\|_2, \tag{4}$$

where we used the fact that $\mathbf{A}^{-1} - \mathbf{B}^{-1} = \mathbf{A}^{-1}(\mathbf{B} - \mathbf{A})\mathbf{B}^{-1}$, known as the resolvent identity, for the equality. This conclusion is no longer valid in the proportional $n \sim p \gg 1$ regime.

- LLN is "parameterized" to hold only in the classical limit, not the proportional limit
- ▶ many variants and extensions of the LLN exist, but become vacuous when applied to the **proportional** regime $n, p \to \infty$ and $p/n \to c \in (0, \infty)$, will see an example below

Theorem (Non-asymptotic matrix concentration for SCM, [Ver18, Theorem 4.6.1])

Let $X \in \mathbb{R}^{p \times n}$ be a random matrix with independent sub-gaussian columns $x_i \in \mathbb{R}^p$ such that $\mathbb{E}[x_i] = 0$ and $\mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\mathsf{T}] = \mathbf{I}_n$. Then, one has, with probability at least $1 - 2\exp(-t^2)$, for any $t \ge 0$, that

$$\|\hat{\mathbf{C}} - \mathbf{I}_p\|_2 \le C_1 \max(\delta, \delta^2), \quad \delta = C_2(\sqrt{p/n} + t/\sqrt{n}), \tag{5}$$

for some constants $C_1, C_2 > 0$, independent of n, p.

Proof: combines the Bernstein's concentration inequality with an ϵ -net argument.

- \blacktriangleright we can reproduce the LLN asymptotic result by taking $n \to \infty$ together with the Borel–Cantelli lemma
- Classical regime. Here, $n \gg p$, say that $n \sim p^2$. Then with high probability, that $\|\hat{\mathbf{C}} \mathbf{I}_n\|_2 = O(n^{-1/4})$ and conveys a similar intuition to the asymptotic LLN result
- (ii) **Proportional regime.** Here, n, p are both large and $n \sim p$. Then, with high probability, that $\|\hat{\mathbf{C}} - \mathbf{I}_p\|_2 = O(\sqrt{p/n}) = O(1)$, and qualitatively different LLN with a vacuous 100% relative error, in the **proportional limit** of $n, p \to \infty$ with $p/n \to c \in (0, \infty)$.

RMT4MI. July, 2nd 2024 10 / 57

Theorem (Limiting spectral distribution for SCM: Marčenko-Pastur law, [MP67])

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random matrix with i.i.d. sub-gaussian columns $\mathbf{x}_i \in \mathbb{R}^p$ such that $\mathbb{E}[\mathbf{x}_i] = \mathbf{0}$ and $\mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\mathsf{T}] = \mathbf{I}_p$. Then, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, with probability one, the empirical spectral measure $\mu_{\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}}$ converges weakly to a probability measure μ given explicitly by

$$\mu(dx) = (1 - c^{-1})^{+} \delta_{0}(x) + \frac{1}{2\pi cx} \sqrt{(x - E_{-})^{+} (E_{+} - x)^{+}} dx,$$
(6)

where $E_{\pm} = (1 \pm \sqrt{c})^2$ and $(x)^+ = \max(0, x)$, which is known as the Marčenko-Pastur distribution.

- ightharpoonup provides a more refined characterization of the eigenspectrum of \hat{C} (than, e.g., matrix concentration):
- (i) **Classical regime.** Here, $n \gg p$ **so that** $c = p/n \to 0$, the Marčenko-Pastur law in Equation (6) shrinks to a Dirac mass, in agreement with $\|\hat{\mathbf{C}} \mathbf{I}_p\|_2 \sim 0$
- (ii) **Proportional regime.** Here, $n \sim p \gg 1$, and by the (true but vacuous) matrix concentration result $\|\hat{\mathbf{C}} = \mathbf{I}_p\|_2 = O(p/n) = O(1)$, and, depending on the dimension ratio c = p/n, the eigenvalues of $\hat{\mathbf{C}}$ can be very different from unity, and takes the form of the Marčenko-Pastur law

Averaged amount of eigenvalues of $\hat{\mathbf{C}}$ lying within the interval $[1 - \delta, 1 + \delta]$, for $\delta \ll 1$, as

$$\mu([1 - \delta, 1 + \delta]) = \int_{1 - \delta}^{1 + \delta} \frac{1}{2\pi cx} \sqrt{\left(x - (1 - \sqrt{c})^2\right)^+ \left((1 + \sqrt{c})^2 - x\right)^+} dx$$
$$= \frac{1}{2\pi c} \int_{-\delta}^{\delta} \left(\sqrt{4c - c^2} + O(\epsilon)\right) d\epsilon = \frac{\sqrt{4c^{-1} - 1}}{\pi} \delta + O(\delta^2).$$

- ▶ for $p \approx 4n$ there is asymptotically no eigenvalue of $\hat{\mathbf{C}}$ close to one!
- ightharpoonup in accordance with the shape of the limiting Marčenko-Pastur law with c=4 above

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024

12 / 57

Figure: **Varying** n **and** c = p/n **for fixed** p. Histogram of the eigenvalues of $\hat{\mathbf{C}}$ versus the limiting Marčenko-Pastur law in Theorem 5, for **X** having standard Gaussian entries with p = 20 and different $n = 1\,000p$, 100p, 100p, from left to right.

Figure: **Varying** n **and** p **for fixed** c = p/n. Histogram of the eigenvalues of $\hat{\mathbf{C}}$ versus the Marčenko-Pastur law, for \mathbf{X} having standard Gaussian entries with n = 100p and different p = 20, 100, 500 from left to right.

A modern RMT approach via deterministic equivalents for resolvent

- we have seen the resolvent-based approach as a unified analysis approach to matrix spectral functionals
- ▶ for example, interested in the spectral behavior of a random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ from n samples, in the proportional $n \sim p \gg 1$ regime, more convenient to work with its resolvent $\mathbf{Q}(z) = (\mathbf{X} z\mathbf{I}_n)^{-1}$
- being a large random matrix, we should **NOT** expect $\mathbf{Q}(z)$ itself converges/concentrates in any useful sense, e.g.,

$$\|\mathbf{Q}(z) - \mathbb{E}[\mathbf{Q}(z)]\|_2 \not\to 0,\tag{7}$$

in spectral norm as $n, p \to \infty$;

▶ nonetheless, scalar observations $F: \mathbb{R}^{p \times p} \to \mathbb{R}$ of **X** and **Q**(z) **DO** converge, and there exists deterministic $\bar{\mathbf{Q}}(z)$ such that

$$F(\mathbf{Q}(z)) - F(\bar{\mathbf{Q}}(z)) \to 0, \tag{8}$$

as $n, p \to \infty$.

- We say such $\bar{\mathbf{Q}}(z)$ is a **Deterministic Equivalent** of the random (resolvent) matrix \mathbf{Q} .
- ightharpoonup P.S., a similar statement holds for F(X) observations of X, but just less convenient to work with for matrix eigenspectral functionals

What is actually happening for Deterministic Equivalent?

- ▶ while the random matrix $\mathbf{Q} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- ▶ scalar observation $F(\mathbf{Q})$ of \mathbf{Q} becomes "more concentrated" as $p \to \infty$;
- ▶ the random $F(\mathbf{Q})$, if concentrates, must concentrated around its expectation $\mathbb{E}[F(\mathbf{Q})]$;
- ▶ as $p \to \infty$, more randomness in $\mathbf{Q} \Rightarrow \text{Var}[F(\mathbf{Q})] \to 0$ sufficiently fast (in p)
- ▶ if the functional $F: \mathbb{R}^{p \times p} \to \mathbb{R}$ is linear, then $\mathbb{E}[F(\mathbf{Q})] = F(\mathbb{E}[\mathbf{Q}])$.
- So, to propose a DE, suffices to evaluate $\mathbb{E}[\mathbf{Q}]$:
- **however**, $\mathbb{E}[\mathbf{Q}]$ may be hardly accessible (due to integration and nonlinear matrix inverse $\mathbf{Q}(z) = (\mathbf{X} z\mathbf{I}_p)^{-1}$)
- ▶ find a **simple** and **more accessible deterministic** $\bar{\mathbf{Q}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{Q}]$ in some sense for p large, e.g., $\|\bar{\mathbf{Q}} \mathbb{E}[\mathbf{Q}]\|_2 \to 0$ as $p \to \infty$; and
- ▶ show variance of $F(\mathbf{Q})$ decay sufficiently fast as $p \to \infty$.

Deterministic Equivalent: definition

Definition (Deterministic Equivalent)

We say that $\bar{\mathbf{Q}} \in \mathbb{R}^{p \times p}$ is an $(\varepsilon_1, \varepsilon_2, \delta)$ -Deterministic Equivalent for the symmetric random matrix $\mathbf{Q} \in \mathbb{R}^{p \times p}$ if, for a deterministic matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ and vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$ of unit norms (spectral and Euclidean, respectively), we have, with probability at least $1 - \delta(p)$ that

$$\left| \frac{1}{p} \operatorname{tr} \mathbf{A} (\mathbf{Q} - \bar{\mathbf{Q}}) \right| \le \varepsilon_1(p), \quad \left| \mathbf{a}^{\mathsf{T}} (\mathbf{Q} - \bar{\mathbf{Q}}) \mathbf{b} \right| \le \varepsilon_2(p), \tag{9}$$

for some non-negative functions $\varepsilon_1(p)$, $\varepsilon_2(p)$ and $\delta(p)$ that decrease to zero as $p \to \infty$. To denote this relation, we use the notation

$$\mathbf{Q} \stackrel{\varepsilon_1, \varepsilon_2, \delta}{\longleftrightarrow} \bar{\mathbf{Q}}, \text{ or simply } \mathbf{Q} \leftrightarrow \bar{\mathbf{Q}}.$$
 (10)

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 17 / 57

An asymptotic Deterministic Equivalent for resolvent

Theorem (An asymptotic Deterministic Equivalent for resolvent, [CL22, Theorem 2.4])

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and denote $\mathbf{Q}(z) = (\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T} - z\mathbf{I}_p)^{-1}$ the resolvent of $\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}$ for $z \in \mathbb{C}$ not an eigenvalue of $\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}$. Then, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, the deterministic matrix $\bar{\mathbf{Q}}(z)$ is a Deterministic Equivalent of the random resolvent matrix $\mathbf{Q}(z)$ with

$$\mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z), \quad \bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_p,$$
 (11)

with m(z) the unique valid Stieltjes transform as solution to

$$czm^{2}(z) - (1 - c - z)m(z) + 1 = 0.$$
(12)

- \blacktriangleright The equation of m(z) is quadratic and has two solutions defined via the complex square root
- only one satisfies the relation $\Im[z] \cdot \Im[m(z)] > 0$ as a "valid" Stieltjes transform
- ▶ this leads to the Marčenko-Pastur law, with "continuous" part $\frac{\sqrt{(E_+-x)^+(x-E_-)^+}}{2c\pi x}$ for $E_\pm=(1\pm\sqrt{c})^2$ and $(x)^+=\max(x,0)$ and discontinuity at zero with weight equal to

$$\mu(\{0\}) = -\lim_{y \downarrow 0} iym(iy) = \frac{c-1}{2c} \pm \text{sign}(c-1)\frac{c-1}{2c}.$$
 (13)

18 / 57

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024

¹Romain Couillet and Zhenyu Liao. *Random Matrix Methods for Machine Learning*. Cambridge University Press, 2022

A non-asymptotic Deterministic Equivalent for resolvent

Theorem (A non-asymptotic Deterministic Equivalent for resolvent)

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random matrix having i.i.d. sub-gaussian entries with zero mean and unit variance, and denote $\mathbf{Q}(z) = (\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T} - z\mathbf{I}_p)^{-1}$ the resolvent of $\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}$ for z < 0. Then, there exists some universal constant $C_1, C_2 > 0$ depending only on the sub-gaussian norm of the entries of \mathbf{X} and |z|, such that for any $\varepsilon \in (0,1)$, if $n \geq (C_1 + \varepsilon)p$, one has

$$\|\mathbb{E}[\mathbf{Q}(z)] - \bar{\mathbf{Q}}(z)\|_{2} \le \frac{C_{2}}{\varepsilon} \cdot n^{-\frac{1}{2}}, \quad \bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_{p}, \tag{14}$$

for m(z) the unique positive solution to the Marčenko-Pastur equation $czm^2(z) - (1-c-z)m(z) + 1 = 0, c = p/n$.

- this is a deterministic characterization of the expected resolvent
- to get DE, it remains to show concentration results for trace and bilinear forms, that are more or less standard

Proof

Let $\mathbf{x}_i \in \mathbb{R}^p$ denote the *i*th column of $\mathbf{X} \in \mathbb{R}^{p \times n}$ (so that \mathbf{x}_i has i.i.d. sub-gaussian entries of zero mean and unit variance), and let $\mathbf{X}_{-i} \in \mathbb{R}^{p \times (n-1)}$ denote the random matrix \mathbf{X} without its *i*th column \mathbf{x}_i . Define similarly

$$\mathbf{Q}_{-i}(z) = \left(\frac{1}{n}\mathbf{X}_{-i}\mathbf{X}_{-i}^{\mathsf{T}} - z\mathbf{I}_p\right)^{-1}$$
 so that

$$\mathbf{Q}(z) = \left(\frac{1}{n}\mathbf{X}_{-i}\mathbf{X}_{-i}^{\mathsf{T}} + \frac{1}{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}} - z\mathbf{I}_{p}\right)^{-1} = \left(\mathbf{Q}_{-i}^{-1}(z) + \frac{1}{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}\right)^{-1}.$$
 (15)

First note that by definition,

$$\bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_p = \left(\frac{1}{1 + cm(z)} - z\right)^{-1}\mathbf{I}_p,\tag{16}$$

for c = p/n, so that for z < 0,

$$\frac{1}{1 + cm(z)} \|\bar{\mathbf{Q}}\|_2 \le 1. \tag{17}$$

Similarly, one has

$$\|\mathbf{Q}(z)\|_{2} \le \frac{1}{|z|}, \quad \|\mathbf{Q}(z)\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}\|_{2} \le 1, \quad \|\mathbf{Q}(z)\frac{1}{\sqrt{n}}\mathbf{X}\|_{2} = \sqrt{\|\mathbf{Q}(z)\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{Q}(z)\|_{2}} \le \frac{1}{\sqrt{|z|}}.$$
 (18)

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 20 / 57

A few useful lemmas

Lemma (Resolvent identity)

For invertible matrices **A** and **B**, we have $\mathbf{A}^{-1} - \mathbf{B}^{-1} = \mathbf{A}^{-1}(\mathbf{B} - \mathbf{A})\mathbf{B}^{-1}$.

Lemma (Woodbury)

For $\mathbf{A} \in \mathbb{R}^{p \times p}$, $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{p \times n}$, such that both \mathbf{A} and $\mathbf{A} + \mathbf{U}\mathbf{V}^\mathsf{T}$ are invertible, we have

$$(\mathbf{A} + \mathbf{U}\mathbf{V}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{I}_n + \mathbf{V}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}^{\mathsf{T}}\mathbf{A}^{-1}.$$

In particular, for n=1, i.e., $\mathbf{U}\mathbf{V}^\mathsf{T} = \mathbf{u}\mathbf{v}^\mathsf{T}$ for $\mathbf{U} = \mathbf{u} \in \mathbb{R}^p$ and $\mathbf{V} = \mathbf{v} \in \mathbb{R}^p$, the above identity specializes to the following Sherman–Morrison formula,

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^\mathsf{T})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^\mathsf{T}\mathbf{A}^{-1}}{1 + \mathbf{v}^\mathsf{T}\mathbf{A}^{-1}\mathbf{u}}, \quad and \ (\mathbf{A} + \mathbf{u}\mathbf{v}^\mathsf{T})^{-1}\mathbf{u} = \frac{\mathbf{A}^{-1}\mathbf{u}}{1 + \mathbf{v}^\mathsf{T}\mathbf{A}^{-1}\mathbf{u}}.$$

And the matrix $\mathbf{A} + \mathbf{u}\mathbf{v}^\mathsf{T} \in \mathbb{R}^{p \times p}$ is invertible if and only if $1 + \mathbf{v}^\mathsf{T}\mathbf{A}^{-1}\mathbf{u} \neq 0$.

A few useful lemmas

Letting $\mathbf{A} = \mathbf{M} - z\mathbf{I}_p$, $z \in \mathbb{C}$, and $\mathbf{v} = \tau \mathbf{u}$ for $\tau \in \mathbb{R}$ in Woodbury identity leads to the following rank-1 perturbation lemma for the resolvent of \mathbf{M} .

Lemma ([SB95, Lemma 2.6])

For $\mathbf{A}, \mathbf{M} \in \mathbb{R}^{p \times p}$ symmetric and nonnegative definite, $\mathbf{u} \in \mathbb{R}^p$, $\tau > 0$ and z < 0,

$$\left|\operatorname{tr} \mathbf{A} (\mathbf{M} + \tau \mathbf{u} \mathbf{u}^{\mathsf{T}} - z \mathbf{I}_p)^{-1} - \operatorname{tr} \mathbf{A} (\mathbf{M} - z \mathbf{I}_p)^{-1} \right| \leq \frac{\|\mathbf{A}\|_2}{|z|}.$$

It follows from the resolvent identity that

$$\begin{split} \mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}] &= \mathbb{E}\left[\mathbf{Q}\left(\frac{\mathbf{I}_p}{1 + cm(z)} - \frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}\right)\right]\bar{\mathbf{Q}} \\ &= \frac{\mathbb{E}[\mathbf{Q}]}{1 + cm(z)}\bar{\mathbf{Q}} - \frac{1}{n}\mathbb{E}[\mathbf{Q}\mathbf{X}\mathbf{X}^\mathsf{T}]\bar{\mathbf{Q}} \\ &= \frac{\mathbb{E}[\mathbf{Q}]}{1 + cm(z)}\bar{\mathbf{Q}} - \sum_{i=1}^n \frac{1}{n}\mathbb{E}[\mathbf{Q}\mathbf{x}_i\mathbf{x}_i^\mathsf{T}]\bar{\mathbf{Q}} \\ &= \frac{\mathbb{E}[\mathbf{Q}]}{1 + cm(z)}\bar{\mathbf{Q}} - \sum_{i=1}^n \mathbb{E}\left[\frac{\mathbf{Q}_{-i}\frac{1}{n}\mathbf{x}_i\mathbf{x}_i^\mathsf{T}}{1 + \frac{1}{n}\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i}\right]\bar{\mathbf{Q}}, \\ &= \frac{\mathbb{E}[\mathbf{Q}]}{1 + cm(z)}\bar{\mathbf{Q}} - \sum_{i=1}^n \frac{\mathbb{E}\left[\mathbf{Q}_{-i}\frac{1}{n}\mathbf{x}_i\mathbf{x}_i^\mathsf{T}\right]\bar{\mathbf{Q}}}{1 + cm(z)} + \sum_{i=1}^n \frac{\mathbb{E}\left[\mathbf{Q}_n^1\mathbf{x}_i\mathbf{x}_i^\mathsf{T}d_i\right]\bar{\mathbf{Q}}}{1 + cm(z)} \\ &= \frac{\mathbb{E}[\mathbf{Q}]}{1 + cm(z)}\bar{\mathbf{Q}} - \sum_{i=1}^n \frac{\mathbb{E}\left[\mathbf{Q}_{-i}\frac{1}{n}\mathbf{x}_i\mathbf{x}_i^\mathsf{T}\right]\bar{\mathbf{Q}}}{1 + cm(z)} + \frac{\mathbb{E}\left[d_i\mathbf{Q}\mathbf{x}_i\mathbf{x}_i^\mathsf{T}\right]\bar{\mathbf{Q}}}{1 + cm(z)}, \end{split}$$

with $d_i = \frac{1}{n} \mathbf{x}_i^\mathsf{T} \mathbf{Q}_{-i} \mathbf{x}_i - cm(z)$, so that $\mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}] = (\mathbb{E}[\mathbf{Q} - \mathbf{Q}_{-i}]) \frac{\bar{\mathbf{Q}}}{1 + cm(z)} + \frac{\mathbb{E}[d_i \mathbf{Q} \mathbf{x}_i \mathbf{x}_i^\mathsf{T}] \bar{\mathbf{Q}}}{1 + cm(z)}$.

$$T_1 = \|\mathbb{E}[\mathbf{Q} - \mathbf{Q}_{-i}]\|_2, \quad T_2 = \|\mathbb{E}\left[d_i \mathbf{Q} \mathbf{x}_i \mathbf{x}_i^\mathsf{T}\right]\|_2, \tag{19}$$

we then have $\|\mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}]\| \leq T_1 + T_2$.

For the first term T_1 , it follows from Sherman–Morrison that

$$0 \leq \mathbb{E}[\mathbf{Q}_{-i} - \mathbf{Q}] = \mathbb{E}\left[\frac{\mathbf{Q}_{-i} \frac{1}{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \mathbf{Q}_{-i}}{1 + \frac{1}{n} \mathbf{x}_i^\mathsf{T} \mathbf{Q}_{-i} \mathbf{x}_i}\right] \leq \frac{1}{n} \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \mathbf{Q}_{-i}] = \frac{1}{n} \mathbb{E}\left[\mathbf{Q}_{-i}^2\right]$$
(20)

so

$$T_1 = \|\mathbb{E}[\mathbf{Q} - \mathbf{Q}_{-i}]\|_2 = O(n^{-1}). \tag{21}$$

For T_2 ,

$$T_{2} = \left\| \mathbb{E} \left[d_{i} \mathbf{Q} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}} \right] \right\|_{2}$$

$$= \sup_{\|\mathbf{u}\|=1, \|\mathbf{v}\|=1} \mathbb{E} \left[d_{i} \mathbf{u}^{\mathsf{T}} \mathbf{Q} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{v} \right]$$

$$\leq \sqrt{\mathbb{E}[d_{i}^{2}]} \cdot \sup_{\|\mathbf{u}\|=1, \|\mathbf{v}\|=1} \sqrt{\mathbb{E}[(\mathbf{u}^{\mathsf{T}} \mathbf{Q} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{v})^{2}]}$$

$$\leq \sqrt{\mathbb{E}[d_{i}^{2}]} \cdot \sup_{T_{2,1}} \sqrt{\mathbb{E}[(\mathbf{u}^{\mathsf{T}} \mathbf{Q} \mathbf{x}_{i})^{4}]} \cdot \sup_{\|\mathbf{v}\|=1} \sqrt{\mathbb{E}[(\mathbf{x}_{i}^{\mathsf{T}} \mathbf{v})^{4}]}.$$

For the term $T_{2,2}$. Note that

$$\mathbb{E}[(\mathbf{u}^\mathsf{T}\mathbf{Q}\mathbf{x}_i)^4] = \mathbb{E}\left[\frac{(\mathbf{u}^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i)^4}{(1+\frac{1}{2}\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i)^4}\right] \leq \mathbb{E}[(\mathbf{u}^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i)^4] = \mathbb{E}[(\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{u}\mathbf{u}^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i)^2],$$

with

$$\|\mathbf{Q}_{-i}\mathbf{u}\mathbf{u}^{\mathsf{T}}\mathbf{Q}_{-i}\|_{2} = \mathbf{u}^{\mathsf{T}}\mathbf{Q}_{-i}^{2}\mathbf{u} \le |z|^{-2},$$
 (22)

25 / 57

for $\|\mathbf{u}\| = 1$.

By Hanson–Wright inequality, there exists C, C' > 0 such that

$$\mathbb{E}[(\mathbf{u}^{\mathsf{T}}\mathbf{Q}\mathbf{x}_{i})^{4}] \leq \mathbb{E}_{\mathbf{Q}_{-i}} \left[\int_{0}^{\infty} 2t \cdot \mathbb{P}\left(\mathbf{x}_{i}^{\mathsf{T}}\mathbf{Q}_{-i}\mathbf{u}\mathbf{u}^{\mathsf{T}}\mathbf{Q}_{-i}\mathbf{x}_{i} \geq t\right) dt \right]$$

$$\leq 2C' \cdot \mathbb{E}_{\mathbf{Q}_{-i}} \left[\int_{0}^{\infty} t \exp\left(-Ct/(\mathbf{u}^{\mathsf{T}}\mathbf{Q}_{-i}^{2}\mathbf{u})\right) dt \right]$$

$$= 2C' \mathbb{E}\left[\frac{(\mathbf{u}^{\mathsf{T}}\mathbf{Q}_{-i}^{2}\mathbf{u})^{2}}{C^{2}} \right] \leq (Cz^{2})^{-2},$$

where we first consider the expectation with respect to \mathbf{x}_i and then that with respect to \mathbf{Q}_{-i} . This allows us to conclude that $T_{2,2} = O(1)$, and analogously that $T_{2,3} = O(1)$. We thus have

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\|_{2} \le T_{1} + T_{2} \le T_{1} + T_{2,1} \cdot T_{2,2} \cdot T_{2,3} \le C_{1}n^{-1} + C_{2}\sqrt{\mathbb{E}[d_{i}^{2}]},\tag{23}$$

for some universal constants C_1 , C_2 and $d_i \equiv \mathbf{x}_i^\mathsf{T} \mathbf{Q}_{-i} \mathbf{x}_i / n - cm(z)$.

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024

Now, note that

$$\begin{split} d_i^2 &= \left(\frac{1}{n}\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i - cm(z)\right)^2 \\ &= \left(\frac{1}{n}\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i - \frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}] + \frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}] - cm(z)\right)^2 \\ &\leq 2\left(\frac{1}{n}\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i - \frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}]\right)^2 + 2\left(\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}] - cm(z)\right)^2 \\ &= 2\left(\frac{1}{n}\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i - \frac{1}{n}\operatorname{tr}\mathbf{Q}_{-i} + \frac{1}{n}\operatorname{tr}\mathbf{Q}_{-i} - \frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}]\right)^2 + 2\left(\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}] - cm(z)\right)^2, \end{split}$$

so that

$$\frac{1}{2}\mathbb{E}[d_i^2] \leq \underbrace{\mathbb{E}\left(\frac{1}{n}\mathbf{x}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{x}_i - \frac{1}{n}\operatorname{tr}\mathbf{Q}_{-i}\right)^2}_{\mathbf{P}} + \underbrace{\mathbb{E}\left(\frac{1}{n}\operatorname{tr}\mathbf{Q}_{-i} - \frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}]\right)^2}_{\mathbf{P}} + \left(\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}] - cm(z)\right)^2.$$

- ▶ $D_1 \le Cn^{-2}$ by the same line of arguments as the term $T_{2,2}$
- \triangleright D_2 that characterizes the concentration property of the resolvent trace tr \mathbf{Q}_{-i} , bound using a martingale difference argument via the Burkholder inequality.

Z. Liao (EIC, HUST) RMT4MI. July, 2nd 2024

Lemma

Under the notations and settings above, we have

$$\mathbb{E}\left[\left(\frac{1}{n}\operatorname{tr}\mathbf{A}(\mathbf{Q} - \mathbb{E}\mathbf{Q})\right)^{2}\right] \leq Cn^{-1} \text{ and } \mathbb{E}\left[\left(\frac{1}{n}\operatorname{tr}\mathbf{A}(\mathbf{Q} - \mathbb{E}\mathbf{Q})\right)^{4}\right] \leq Cn^{-2},\tag{24}$$

for any $\mathbf{A} \in \mathbb{R}^{p \times p}$ of unit norm and some constant C > 0, and thus in particular for $\mathbf{A} = \mathbf{I}_p$.

Thus,

$$\mathbb{E}[d_i^2] \le 2(D_1 + D_2) + 2\left(\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}] - cm(z)\right)^2 \le Cn^{-1} + 2\left(\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}_{-i}] - cm(z)\right)^2,\tag{25}$$

for some universal constant C > 0. Putting together and by the trace rank-one update result,

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\|_2 \le C_1 n^{-\frac{1}{2}} + C_2 \left| \frac{1}{n} \operatorname{tr} \mathbb{E}[\mathbf{Q}] - cm(z) \right|.$$
 (26)

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 27 / 57

We "close the loop" by noting that by definition $\frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}} = \frac{p}{n} m(z) = c m(z)$, so that

$$\left|\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}] - cm(z)\right| \leq \frac{p}{n}\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\|_{2} \leq \frac{p}{n}\left(C_{1}n^{-\frac{1}{2}} + C_{2}\left|\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}] - cm(z)\right|\right),\tag{27}$$

and therefore for any $\epsilon > 0$ and $n > (C_2 + \epsilon)p$, one has

$$\left|\frac{1}{n}\operatorname{tr}\mathbb{E}[\mathbf{Q}] - cm(z)\right| \le \frac{C_1}{\varepsilon} \cdot n^{-\frac{1}{2}},\tag{28}$$

and thus

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\|_2 \le \frac{C}{\varepsilon} \cdot n^{-\frac{1}{2}},\tag{29}$$

for some universal constant C > 0. This concludes the proof.

Remark: extension to z = 0

- we assume above z < 0 so that the bound on the *random resolvent* $\|\mathbf{Q}_{\hat{\mathbf{C}}}(z)\|_2 \le 1/|z|$
- ▶ this, however, does not exploit the information in the *random sample covariance matrix* $\hat{\mathbf{C}} = \frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T} \in \mathbb{R}^{p \times n}$ on, e.g., how it concentrates around its population counterpart $\mathbf{C} = \mathbb{E}[\hat{\mathbf{C}}]$
- ▶ to extend the results in Theorem 8 to, say, an inverse SCM of the type $\mathbf{Q}(z=0) = (\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}$ with z=0, one first needs to ensure the inverse is properly defined for sub-gaussian \mathbf{X} and for a specific choice of p, n
- ightharpoonup can be obtained by considering the concentration of the sample covariance $\frac{1}{n}XX^T$ around its expectation.
- ▶ it follows from Theorem 4 that there exists universal constant C > 0 such that for $n \ge C(p + \ln(1/\delta))$, one has, with probability at least 1δ , $\delta \in (0, 1/2]$ that

$$\left\| \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}} - \mathbf{I}_p \right\|_2 \le \frac{\mathbf{I}_p}{2},\tag{30}$$

- and therefore $\|\mathbf{Q}(z)\|_2 \le \frac{1}{1/2-z} \le 2$ for any $z \le 0$
- ▶ allows for a control of the spectral norm $\|\mathbf{Q}(z)\| \le 2$ that is independent of $z \le 0$ and holds with probability at least 1δ
- do everything else **conditioned on this high-probability event**, to get a bound on the conditional expectation $\mathbb{E}[\mathbf{Q} \mid \mathcal{E}]$

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 29 / 57

In the "easy" classical regime, with $n \gg p$ (and thus $p/n \to c = 0$), one has that $\hat{\mathbf{C}} \equiv \frac{1}{n} \mathbf{X} \mathbf{X}^\mathsf{T} \to \mathbb{E}[\hat{\mathbf{C}}] = \mathbf{I}_p$ as $n \to \infty$, so that

$$(\hat{\mathbf{C}} - z\mathbf{I}_p)^{-1} \simeq (\mathbb{E}[\hat{\mathbf{C}}] - z\mathbf{I}_p)^{-1} = (1 - z)^{-1}\mathbf{I}_p = \bar{\mathbf{Q}}(z).$$
(31)

(ii) In the "harder" and more general **proportional regime**, for $n \sim p$ with $p/n \to c \in (0, \infty)$, one has instead

$$\bar{\mathbf{Q}}(z) \simeq \mathbb{E}[\mathbf{Q}(z)] \equiv \mathbb{E}[(\hat{\mathbf{C}} - z\mathbf{I}_p)^{-1}] \not\simeq (\mathbb{E}[\hat{\mathbf{C}}] - z\mathbf{I}_p)^{-1}.$$
(32)

In this case, a Deterministic Equivalent $\mathbf{Q}(z)$ can be very different from the inverse expectation $(\mathbb{E}[\hat{\mathbf{C}}] - z\mathbf{I}_n)^{-1}$.

this is not surprising, consider the scalar case where $\mathbb{E}[1/x] \neq 1/\mathbb{E}[x]$ in general, unless $x \simeq C$ for some constant C

RMT4MI. July, 2nd 2024 30 / 57

Remark: Deterministic Equivalents for Gaussian inverse SCM

- consider the sample covariance matrix $\hat{\mathbf{C}} = \frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}$ for $\mathbf{X} = \mathbf{C}^{\frac{1}{2}}\mathbf{Z}$ and positive definite $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. standard Gaussian entries
- ▶ the inverse $\hat{\mathbf{C}}^{-1}$ is known to follow the inverse-Wishart distribution [MKB79] with p degrees of freedom and scale matrix \mathbf{C}^{-1} , such that

$$\mathbb{E}[\hat{\mathbf{C}}^{-1}] = \frac{n}{n-p-1}\mathbf{C}^{-1} \tag{33}$$

for $n \ge p + 2$.

▶ On the other hand, it follows from our non-asymptotic result above by taking z = 0that

$$\mathbb{E}[\mathbf{Q}(z)] \leftrightarrow \bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_p = \frac{n}{n-p}\mathbf{I}_p \tag{34}$$

31 / 57

with $m(z) = \frac{1}{1-c} = \frac{n}{n-p}$.

▶ Deterministic Equivalents **are not unique**: we could replace the "-1" in denominator by any constant $C' \ll n, p$ to propose another (equally correct) Deterministic Equivalent.

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024

²Kanti Mardia, J. Kent, and J. Bibby. *Multivariate Analysis*. 1st ed. Probability and Mathematical Statistics. Academic Press, Dec. 1979

Some thoughts on the "leave-one-out" proof

- ▶ in essence: propose $\bar{\mathbf{Q}}(z) \simeq \mathbb{E}[\mathbf{Q}(z)]$ (in spectral norm sense), but simple to evaluate (via a quadratic equation)
- ▶ leave-one-out analysis of large-scale system: $\mathbf{Q}(z) \simeq \mathbf{Q}_{-i}(z)$ for n, p large.
- ▶ low complexity analysis of large random system: joint behavior of p eigenvalues $\stackrel{\text{RMT}}{\rightarrow}$ a single deterministic (quadratic) equation
- ▶ **Side Remark**: another (as well) systematic and convenient RMT proof approach: **Gaussian method**, as the combination of
- (1) Stein's lemma (Gaussian integration by parts)
- (2) Nash–Poincaré inequality (a bound on the variance of smooth scalar observation of multivariate Gaussian random vector)
- (3) interpolation from Gaussian to non-Gaussian, see [CL22, Section 2.2.2] for details.

Theorem (Stein's Lemma)

Let $x \sim \mathcal{N}(0,1)$ and $f: \mathbb{R} \to \mathbb{R}$ a continuously differentiable function having at most polynomial growth and such that $\mathbb{E}[f'(x)] < \infty$. Then,

$$\mathbb{E}[xf(x)] = \mathbb{E}[f'(x)]. \tag{35}$$

In particular, for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ with $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $f : \mathbb{R}^p \to \mathbb{R}$ a continuously differentiable function with derivatives having at most polynomial growth with respect to p,

$$\mathbb{E}[[\mathbf{x}]_{i}f(\mathbf{x})] = \sum_{j=1}^{p} [\mathbf{C}]_{ij} \mathbb{E}\left[\frac{\partial f(\mathbf{x})}{\partial [\mathbf{x}]_{j}}\right],\tag{36}$$

where $\partial/\partial[\mathbf{x}]_i$ indicates differentiation with respect to the *i*-th entry of \mathbf{x} ; or, in vector form $\mathbb{E}[\mathbf{x}f(\mathbf{x})] = \mathbf{C}\mathbb{E}[\nabla f(\mathbf{x})]$, with $\nabla f(\mathbf{x})$ the gradient of $f(\mathbf{x})$ with respect to \mathbf{x} .

Proof of MP law with Gaussian method

First observe that $\mathbf{Q} = \frac{1}{z} \frac{1}{n} \mathbf{X} \mathbf{X}^\mathsf{T} \mathbf{Q} - \frac{1}{z} \mathbf{I}_p$, so that $\mathbb{E}[\mathbf{Q}_{ij}] = \frac{1}{zn} \sum_{k=1}^n \mathbb{E}[\mathbf{X}_{ik}[\mathbf{X}^\mathsf{T}\mathbf{Q}]_{kj}] - \frac{1}{z} \delta_{ij}$, in which $\mathbb{E}[\mathbf{X}_{ik}[\mathbf{X}^\mathsf{T}\mathbf{Q}]_{kj}] = \mathbb{E}[xf(x)]$ for $x = \mathbf{X}_{ik}$ and $f(x) = [\mathbf{X}^\mathsf{T}\mathbf{Q}]_{kj}$. Therefore, from Stein's lemma and the fact that $\partial \mathbf{Q} = -\frac{1}{n} \mathbf{Q} \partial (\mathbf{X} \mathbf{X}^\mathsf{T}) \mathbf{Q}_{,2}$

$$\mathbb{E}[\mathbf{X}_{ik}[\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{kj}] = \mathbb{E}\left[\frac{\partial[\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{kj}}{\partial\mathbf{X}_{ik}}\right] = \mathbb{E}[\mathbf{E}_{ik}^{\mathsf{T}}\mathbf{Q}]_{kj} - \mathbb{E}\left[\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{Q}(\mathbf{E}_{ik}\mathbf{X}^{\mathsf{T}} + \mathbf{X}\mathbf{E}_{ik}^{\mathsf{T}})\mathbf{Q}\right]_{kj}$$
$$= \mathbb{E}[\mathbf{Q}_{ij}] - \mathbb{E}\left[\frac{1}{n}[\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{ki}[\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{kj}\right] - \mathbb{E}\left[\frac{1}{n}[\mathbf{X}^{\mathsf{T}}\mathbf{Q}\mathbf{X}]_{kk}\mathbf{Q}_{ij}\right]$$

for \mathbf{E}_{ij} the indicator matrix with entry $[\mathbf{E}_{ij}]_{lm} = \delta_{il}\delta_{jm}$, so that, summing over k,

$$\frac{1}{z}\frac{1}{n}\sum_{k=1}^{n}\mathbb{E}[\mathbf{X}_{ik}[\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{kj}] = \frac{1}{z}\mathbb{E}[\mathbf{Q}_{ij}] - \frac{1}{z}\frac{1}{n^2}\mathbb{E}[\mathbf{Q}_{ij}\operatorname{tr}(\mathbf{Q}\mathbf{X}\mathbf{X}^{\mathsf{T}})] - \frac{1}{z}\frac{1}{n^2}\mathbb{E}[\mathbf{Q}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{ij}.$$

Z. Liao (EIC, HUST) July, 2nd 2024

35 / 57

²This is the matrix version of $d(1/x) = -dx/x^2$.

We have

$$\frac{1}{z}\frac{1}{n}\sum_{k=1}^{n}\mathbb{E}[\mathbf{X}_{ik}[\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{kj}] = \frac{1}{z}\mathbb{E}[\mathbf{Q}_{ij}] - \frac{1}{z}\frac{1}{n^2}\mathbb{E}[\mathbf{Q}_{ij}\operatorname{tr}(\mathbf{Q}\mathbf{X}\mathbf{X}^{\mathsf{T}})] - \frac{1}{z}\frac{1}{n^2}\mathbb{E}[\mathbf{Q}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{Q}]_{ij}.$$

The term in the second line has vanishing operator norm (of order $O(n^{-1})$) as $n, p \to \infty$. Also, $tr(\mathbf{Q}\mathbf{X}\mathbf{X}^\mathsf{T}) = np + zn\,tr\,\mathbf{Q}$. As a result, matrix-wise, we obtain

$$\mathbb{E}[\mathbf{Q}] + \frac{1}{z}\mathbf{I}_p = \mathbb{E}[\mathbf{X}_{\cdot k}[\mathbf{X}^\mathsf{T}\mathbf{Q}]_{k\cdot}] = \frac{1}{z}\mathbb{E}[\mathbf{Q}] - \frac{1}{z}\frac{1}{n}\mathbb{E}[\mathbf{Q}(p+z\operatorname{tr}\mathbf{Q})] + o_{\|\cdot\|}(1),$$

where $\mathbf{X}_{\cdot k}$ and $\mathbf{X}_{k\cdot}$ is the k-th column and row of \mathbf{X} , respectively. As the random $\frac{1}{p}$ tr $\mathbf{Q} \to m(z)$ as $n, p \to \infty$, "take it out of the expectation" in the limit and

$$\mathbb{E}[\mathbf{Q}](1-p/n-z-p/n\cdot zm(z))=\mathbf{I}_p+o_{\|\cdot\|}(1),$$

which, taking the trace to identify m(z), concludes the proof.

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 36 / 57

Nash-Poincaré inequality and Interpolation trick

Theorem (Nash–Poincaré inequality)

For $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ with $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $f \colon \mathbb{R}^p \to \mathbb{R}$ continuously differentiable with derivatives having at most polynomial growth with respect to p,

$$\operatorname{Var}[f(\mathbf{x})] \leq \sum_{i=1}^{p} [\mathbf{C}]_{ij} \mathbb{E} \left[\frac{\partial f(\mathbf{x})}{\partial [\mathbf{x}]_{i}} \frac{\partial f(\mathbf{x})}{\partial [\mathbf{x}]_{j}} \right] = \mathbb{E} \left[(\nabla f(\mathbf{x}))^{\mathsf{T}} \mathbf{C} \nabla f(\mathbf{x}) \right],$$

where we denote $\nabla f(\mathbf{x})$ the gradient of $f(\mathbf{x})$ with respect to \mathbf{x} .

Theorem (Interpolation trick)

Z. Liao (EIC. HUST)

For $x \in \mathbb{R}$ a random variable with zero mean and unit variance, $y \sim \mathcal{N}(0,1)$, and f a (k+2)-times differentiable function with bounded derivatives,

$$\mathbb{E}[f(x)] - \mathbb{E}[f(y)] = \sum_{\ell=2}^{k} \frac{\kappa_{\ell+1}}{2\ell!} \int_{0}^{1} \mathbb{E}[f^{(\ell+1)}x(t)]t^{(\ell-1)/2}dt + \epsilon_{k},$$

where κ_{ℓ} is the ℓ^{th} cumulant of x, $x(t) = \sqrt{t}x + (1 - \sqrt{t})y$, and $|\epsilon_k| \le C_k \mathbb{E}[|x|^{k+2}] \cdot \sup_t |f^{(k+2)}(t)|$ for some constant C_k only dependent on k.

RMT4MI.

July, 2nd 2024

Take-away of this section

- ▶ *p*-by-*p* sample covariance matrix $\hat{\mathbf{C}}$ from *n* samples have different behavior in the **classical** $(n \gg p)$ versus **proportional** $(n \sim p)$ regime
- ▶ four ways to characterize SCM, asymptotic and non-asymptotic fashion
- "old school" results: LLN and matrix concentration in the classical regime, and asymptotic Marčenko-Pastur law on SCM eigenvalues in the proportional regime
- modern approach of deterministic equivalent for SCM resolvent, both asymptotic and non-asymptotic
- proof via "leave-one-out" and self-consistent equation
- alternative proof via Gaussian method

Wigner semicircle law

Theorem (Wigner semicircle law)

Let $\mathbf{X} \in \mathbb{R}^{n \times n}$ be symmetric and such that the $\mathbf{X}_{ij} \in \mathbb{R}$, $j \geq i$, are independent zero mean and unit variance random variables. Then, for $\mathbf{Q}(z) = (\mathbf{X}/\sqrt{n} - z\mathbf{I}_n)^{-1}$, as $n \to \infty$,

$$\mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z), \quad \bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_n,$$
 (37)

with m(z) the unique ST solution to

$$m^{2}(z) + zm(z) + 1 = 0. (38)$$

The function m(z) is the Stieltjes transform of the probability measure

$$\mu(dx) = \frac{1}{2\pi} \sqrt{(4-x^2)^+} \, dx,\tag{39}$$

known as the Wigner semicircle law.

Figure: Histogram of the eigenvalues of \mathbf{X}/\sqrt{n} versus Wigner semicircle law, for standard Gaussian \mathbf{X} and $n=1\,000$.

Proof of semicircle law: leave one out heuristic

- Note: instead of working with symmetric $X \in \mathbb{R}^{n \times n}$ having independent entries only up to symmetry, we work instead with asymmetric $Y \in \mathbb{R}^{n \times n}$ having fully independent entries
- we have precisely $\mathbf{X} \stackrel{L}{=} \frac{1}{\sqrt{2}} (\mathbf{Y} + \mathbf{Y}^{\mathsf{T}}) \operatorname{diag}(\mathbf{Y})$ for $\mathbf{Y} \in \mathbb{R}^{n \times n}$ having independent entries with zero mean and unit variance
- ▶ asymptotically, only evaluate $\frac{1}{\sqrt{2}}(\mathbf{Y} + \mathbf{Y}^\mathsf{T})$ since $\|\operatorname{diag}(\mathbf{Y})/\sqrt{n}\|_2 \to 0$ as $n \to \infty$

Let $\mathbf{Q} = ((\mathbf{Y} + \mathbf{Y}^{\mathsf{T}}) / \sqrt{2n} - z\mathbf{I}_n)^{-1}$ be the resolvent, we have

$$\mathbf{Q} = \left(\frac{1}{\sqrt{2n}} \sum_{i=1}^{n} (\mathbf{y}_i \mathbf{e}_i^\mathsf{T} + \mathbf{e}_i \mathbf{y}_i^\mathsf{T}) - z \mathbf{I}_n\right)^{-1} = \left(\mathbf{Q}_{-i} + \mathbf{U}_i \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{U}_i^\mathsf{T} - z \mathbf{I}_n\right)^{-1}$$

with $\mathbf{U}_I = \begin{bmatrix} \frac{1}{\sqrt{n}} \mathbf{y}_i & \frac{1}{\sqrt{2}} \mathbf{e}_i \end{bmatrix} \in \mathbb{R}^{n \times 2}$, $\mathbf{e}_i \in \mathbb{R}^n$ the canonical vector $[\mathbf{e}_i]_j = \delta_{i=j}$, and $\mathbf{Q}_{-i} = (\frac{1}{\sqrt{2n}} \sum_{j \neq i}^n (\mathbf{y}_j \mathbf{e}_j^\mathsf{T} + \mathbf{e}_j \mathbf{y}_j^\mathsf{T}) - z \mathbf{I}_n)^{-1}$ independent of \mathbf{y}_i , so that

$$\mathbf{Q}\mathbf{U}_{i} = \mathbf{Q}_{-i}\mathbf{U}_{i} \left(\mathbf{I}_{2} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{U}_{i}^{\mathsf{T}} \mathbf{Q}_{-i} \mathbf{U}_{i} \right)^{-1} \simeq \mathbf{Q}_{-i}\mathbf{U}_{i} \begin{bmatrix} 1 & \frac{1}{2} [\bar{\mathbf{Q}}]_{ii} \\ \frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}} & 1 \end{bmatrix}^{-1}. \tag{40}$$

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 43 / 57

Let us "guess" the result $\mathbf{Q}(z) = (\mathbf{F} - z\mathbf{I}_n)^{-1}$ for some $\mathbf{F} \in \mathbb{R}^{n \times n}$ to be determined:

$$\begin{split} \mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}] &= \mathbb{E}\left[\mathbf{Q}\left(\mathbf{F} - \sum_{i=1}^{n} \mathbf{U}_{i} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{U}_{i}^{\mathsf{T}} \right)\right] \bar{\mathbf{Q}} \\ &= \mathbb{E}[\mathbf{Q}] \mathbf{F} \bar{\mathbf{Q}} - \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{Q} \mathbf{U}_{i} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{U}_{i}^{\mathsf{T}} \right] \bar{\mathbf{Q}} \\ &\simeq \mathbb{E}[\mathbf{Q}] \mathbf{F} \bar{\mathbf{Q}} - \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{Q}_{-i} \mathbf{U}_{i} \begin{bmatrix} 1 & \frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}} & \frac{1}{2} [\bar{\mathbf{Q}}]_{ii} \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{U}_{i}^{\mathsf{T}} \right] \bar{\mathbf{Q}} \\ &\simeq \mathbb{E}[\mathbf{Q}] \mathbf{F} \bar{\mathbf{Q}} - \mathbb{E}[\mathbf{Q}] \sum_{i=1}^{n} \frac{1}{1 - \frac{1}{2} [\bar{\mathbf{Q}}]_{ii} \frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}}} \mathbb{E}\left[\mathbf{U}_{i} \begin{bmatrix} -\frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}} & 1 \\ 1 & -\frac{1}{2} [\bar{\mathbf{Q}}]_{ii} \end{bmatrix} \mathbf{U}_{i}^{\mathsf{T}} \right] \bar{\mathbf{Q}} \\ &= \mathbb{E}[\mathbf{Q}] \mathbf{F} \bar{\mathbf{Q}} + \mathbb{E}[\mathbf{Q}] \sum_{i=1}^{n} \frac{1}{1 - \frac{1}{2} [\bar{\mathbf{Q}}]_{ii} \frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}}} \mathbb{E}\left[\frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}} \cdot \frac{1}{n} \mathbf{I}_{n} + \frac{1}{4} [\bar{\mathbf{Q}}]_{ii} \mathbf{e}_{i} \mathbf{e}_{i}^{\mathsf{T}} \right] \bar{\mathbf{Q}}. \end{split}$$

This is $m^2(z) + zm(z) + 1 = 0$. PROBELM HERE!

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 44 / 57

Similar to the proof of the Marčenko-Pastur law, for $\mathbf{Q} = (\mathbf{X}/\sqrt{n} - z\mathbf{I}_n)^{-1}$,

$$\frac{1}{\sqrt{n}}\mathbb{E}[\mathbf{X}\mathbf{Q}] = \mathbf{I}_n + z\mathbb{E}[\mathbf{Q}],\tag{41}$$

so that by integration by parts and the fact that $\partial \mathbf{Q} = -\frac{1}{\sqrt{n}}\mathbf{Q}(\partial \mathbf{X})\mathbf{Q}$,

$$\begin{split} \mathbb{E}[\mathbf{Q}_{ij}] &= \frac{1}{z} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \mathbb{E}[\mathbf{X}_{ik} \mathbf{Q}_{kj}] - \frac{1}{z} \delta_{ij} = \frac{1}{z} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \mathbb{E}\left[\frac{\partial \mathbf{Q}_{kj}}{\partial \mathbf{X}_{ik}}\right] - \frac{1}{z} \delta_{ij} \\ &= -\frac{1}{z} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[\mathbf{Q}_{ki} \mathbf{Q}_{kj} + \mathbf{Q}_{kk} \mathbf{Q}_{ij}] - \frac{1}{z} \delta_{ij} = -\frac{1}{z} \frac{1}{n} \mathbb{E}\left[[\mathbf{Q}^{2}]_{ij} + \mathbf{Q}_{ij} \cdot \operatorname{tr} \mathbf{Q}\right] - \frac{1}{z} \delta_{ij}. \end{split}$$

Z. Liao (EIC, HUST) July, 2nd 2024 45 / 57

So in matrix form

$$\mathbb{E}[\mathbf{Q}] = -\frac{1}{z} \frac{1}{n} \mathbb{E}[\mathbf{Q}^2] - \frac{1}{z} \mathbb{E}[\mathbf{Q}] \cdot \frac{1}{n} \operatorname{tr} \mathbb{E}[\mathbf{Q}] - \frac{1}{z} \mathbf{I}_n + o_{\|\cdot\|}(1), \tag{42}$$

where we used the fact that $\frac{1}{n}$ tr $\mathbb{Q} - \frac{1}{n}$ tr $\mathbb{E}\mathbb{Q} \to 0$ as $n \to \infty$ and thus be asymptotically "taken out of the expectation."

First RHS matrix has asymptotically vanishing operator norm as $n, p \rightarrow \infty$,

$$\mathbb{E}[\mathbf{Q}] = -\frac{1}{z} \left(1 + \frac{1}{z} \frac{1}{n} \operatorname{tr} \mathbb{E}[\mathbf{Q}] \right)^{-1} \mathbf{I}_n + o_{\|\cdot\|}(1)$$

which, after taking the trace and using $\frac{1}{n}$ tr $\mathbb{E}[\mathbf{Q}(z)] - m(z) \to 0$, gives the limiting formula

$$m^2(z) + zm(z) + 1 = 0.$$

Generalized sample covariance matrix

Theorem (General sample covariance matrix)

Let $\mathbf{X} = \mathbf{C}^{\frac{1}{2}}\mathbf{Z} \in \mathbb{R}^{p \times n}$ with nonnegative definite $\mathbf{C} \in \mathbb{R}^{p \times p}$, $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having independent zero mean and unit variance entries. Then, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for $\mathbf{Q}(z) = (\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}} - z\mathbf{I}_p)^{-1}$ and $\tilde{\mathbf{Q}}(z) = (\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X} - z\mathbf{I}_n)^{-1}$,

$$\mathbf{Q}(z) \leftrightarrow \mathbf{\tilde{Q}}(z) = -\frac{1}{z} \left(\mathbf{I}_p + \tilde{m}_p(z) \mathbf{C} \right)^{-1}, \quad \mathbf{\tilde{Q}}(z) \leftrightarrow \mathbf{\tilde{\tilde{Q}}}(z) = \tilde{m}_p(z) \mathbf{I}_n,$$

with $\tilde{m}_p(z)$ unique solution to $\tilde{m}_p(z) = \left(-z + \frac{1}{n}\operatorname{tr}\mathbf{C}\left(\mathbf{I}_p + \tilde{m}_p(z)\mathbf{C}\right)^{-1}\right)^{-1}$. Moreover, if the empirical spectral measure of \mathbf{C} converges $\mu_{\mathbf{C}} \to \nu$ as $p \to \infty$, then $\mu_{\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}} \to \mu$, $\mu_{\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X}} \to \tilde{\mu}$ where μ , $\tilde{\mu}$ admitting Stieltjes transforms m(z) and $\tilde{m}(z)$ such that

$$m(z) = \frac{1}{c}\tilde{m}(z) + \frac{1-c}{cz}, \quad \tilde{m}(z) = \left(-z + c\int \frac{t\nu(dt)}{1 + \tilde{m}(z)t}\right)^{-1}.$$
 (43)

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 48 / 57

A few remarks on the generalized MP law

- ▶ different from the explicit MP law, the generalized MP is in general implicit
- we have explicitness in essence due to with $C = I_p$, the implicit equation boils down to a quadratic equation that has explicit solution
- if C has discrete eigenvalues, e.g., $\mu_C = \frac{1}{3}(\delta_1 + \delta_3 + \delta_5)$, then becomes a (possibly higher-order) polynomial equation, which may admit explicit solution (up to fourth order) using radicals
- ▶ the uniqueness of (Stieltjes transform) solution is ensured within a certain region on the complex plane, there may exist solutions $\tilde{m}(z)$ with negative imaginary parts
- **numerical evaluation of** $\tilde{m}(z)$: note that the equation

$$\tilde{m}_p(z) = \left(-z + \frac{1}{n}\operatorname{tr}\mathbf{C}\left(\mathbf{I}_p + \tilde{m}_p(z)\mathbf{C}\right)^{-1}\right)^{-1}$$
(44)

naturally defines a fixed-point equation.

```
clear i % make sure i stands for the imaginary unit
v = 1e-5;
zs = edges_mu+y*1i;
mu = zeros(length(zs),1);
tilde m=0:
for j=1:length(zs)
    z = zs(j);
    tilde_m_tmp=-1;
    while abs(tilde_m-tilde_m_tmp)>1e-6
        tilde_m_tmp=tilde_m;
        tilde_m = \frac{1}{(-z + 1/n*sum(eigs_C./(1+tilde_m*eigs_C)))};
    end
    m = tilde_m/c+(1-c)/(c*z):
    mu(j)=imag(m)/pi;
end
```


Figure: Histogram of the eigenvalues of $\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}$, $\mathbf{X} = \mathbf{C}^{\frac{1}{2}}\mathbf{Z} \in \mathbb{R}^{p \times n}$, $[\mathbf{Z}]_{ij} \sim \mathcal{N}(0,1)$, $n = 3\,000$; for p = 300 and \mathbf{C} having spectral measure $\mu_{\mathbf{C}} = \frac{1}{3}(\delta_1 + \delta_3 + \delta_7)$ (top) and $\mu_{\mathbf{C}} = \frac{1}{3}(\delta_1 + \delta_3 + \delta_5)$ (bottle).

Further comments on generalized SCM

- we know a lot more for the generalized SCM model: precise characterization of the support of its (limiting) eigenspectrum
- ▶ applications in **statistical inference**: given $\hat{\mathbf{C}} = \frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}$ SCM of the population covariance \mathbf{C} , infer eigenspectral functions of \mathbf{C} using that of $\hat{\mathbf{C}}$ and wisely-chosen contour integration, etc.

Example: estimation of population eigenvalues of large multiplicity

Consider the following SCM inference,

$$u_{\mathbf{C}} = \frac{1}{p} \sum_{i=1}^{K} p_i \delta_{\ell_i} \rightarrow \sum_{i=1}^{K} c_i \delta_{\ell_i}$$

for $\ell_1 > ... > \ell_K > 0$, K fixed/small with respect to n, p, and $p_i/p \to c_i > 0$ as $p \to \infty$, i.e., each eigenvalue has a large multiplicity of order O(p).

- ▶ **native** estimator: $\hat{\ell}_a = \frac{1}{p_a} \sum_{i=p_1+...+p_a+1}^{p_1+...+p_a} \lambda_i$
- ▶ **RMT-improved** estimator: $\hat{\ell}_a = \frac{n}{p_a} \sum_{i=p_1+...+p_a=1+1}^{p_1+...+p_a} (\lambda_i \eta_i)$, with λ_i eigenvalues of $\hat{\mathbf{C}}$ and η_i eigenvalues of $\hat{\mathbf{C}}$ and $\hat{\eta}_i$ eigenvalues of $\hat{\mathbf{C}}$ and $\hat{\mathbf{C}}$ eigenvalues of $\hat{\mathbf{C}}$ eigenvalues of $\hat{\mathbf{C}}$ and $\hat{\mathbf{C}}$ eigenvalues of $\hat{\mathbf{C}}$ eigenvalues of $\hat{\mathbf{C}}$ eigenvalues eigenvalues of $\hat{\mathbf{C}}$ eigenvalues ei

July, 2nd 2024

52 / 57

▶ see [CL22, Sections 2.3 and 2.4] for detailed derivations and discussions

Z. Lian (FIC. HUST)

RMT4ML

Figure: Eigenvalue estimation errors with naive and RMT-improved approach, as a function of $\Delta\lambda$, for $\ell_1=1$, $\ell_2=1+\Delta\lambda$, p=256 and n=1024. Results averaged over 30 runs.

- ightharpoonup data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ arise from a time series, each data vector is weighted by a coefficient
- SCM can be generalized to the so-called **bi-correlated** (or **separable covariance**) model

$$\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}} = \frac{1}{n}\mathbf{C}^{\frac{1}{2}}\mathbf{Z}\tilde{\mathbf{C}}\mathbf{Z}^{\mathsf{T}}\mathbf{C}^{\frac{1}{2}} \tag{45}$$

for $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $\tilde{\mathbf{C}} \in \mathbb{R}^{n \times n}$ two nonnegative definite matrices and $[\mathbf{Z}]_{ij}$ i.i.d. random variables with zero mean and unit variance.

▶ in particular, for **Z** Gaussian and $\tilde{\mathbf{C}}^{\frac{1}{2}}$ Toeplitz (i.e., such that $[\tilde{\mathbf{C}}^{\frac{1}{2}}]_{ij} = \alpha_{|i-j|}$ for some sequence $\alpha_0, \ldots, \alpha_{n-1}$), the columns of $\mathbf{Z}\tilde{\mathbf{C}}^{\frac{1}{2}}$ model a first order auto-regressive process

Theorem (Bi-correlated model, separable covariance model, [PS09])

Let $\mathbf{Z} \in \mathbb{R}^{p \times n}$ be a random matrix with i.i.d. zero mean, unit variance and light tail entries, and $\mathbf{C} \in \mathbb{R}^{p \times p}$, $\tilde{\mathbf{C}} \in \mathbb{R}^{n \times n}$ be symmetric nonnegative definite matrices with bounded operator norm. Then, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, letting $\mathbf{Q}(z) = (\frac{1}{n}\mathbf{C}^{\frac{1}{2}}\mathbf{Z}\tilde{\mathbf{C}}\mathbf{Z}^{\mathsf{T}}\mathbf{C}^{\frac{1}{2}} - z\mathbf{I}_{v})^{-1}$ and $\tilde{\mathbf{Q}}(z) = (\frac{1}{n}\tilde{\mathbf{C}}^{\frac{1}{2}}\mathbf{Z}^{\mathsf{T}}\mathbf{C}\mathbf{Z}^{\frac{1}{2}} - z\mathbf{I}_{n})^{-1}$, we have

$$\mathbf{Q}(z) \leftrightarrow \mathbf{\bar{Q}}(z) = -\frac{1}{z} \left(\mathbf{I}_p + \tilde{\delta}_p(z) \mathbf{C} \right)^{-1}, \quad \mathbf{\tilde{Q}}(z) \leftrightarrow \mathbf{\bar{\bar{Q}}}(z) = -\frac{1}{z} \left(\mathbf{I}_n + \delta_p(z) \mathbf{\tilde{C}} \right)^{-1}$$

with $(z, \delta_p(z)), (z, \tilde{\delta}_p(z)) \in \mathcal{Z}(\mathbb{C} \setminus \mathbb{R}^+)$ unique solutions to

$$\delta_p(z) = rac{1}{n}\operatorname{tr}\mathbf{C}ar{\mathbf{Q}}(z), \quad ilde{\delta}_p(z) = rac{1}{n}\operatorname{tr}ar{\mathbf{C}}ar{ar{\mathbf{Q}}}(z).$$

In particular, if $\mu_{\mathbf{C}} \to \nu$ and $\mu_{\tilde{\mathbf{C}}} \to \tilde{\nu}$, then $\mu_{\frac{1}{n}\mathbf{C}^{\frac{1}{2}}\mathbf{Z}\tilde{\mathbf{C}}\mathbf{Z}^{\mathsf{T}}\mathbf{C}^{\frac{1}{2}}} \xrightarrow{a.s.} \mu$, $\mu_{\frac{1}{n}\tilde{\mathbf{C}}^{\frac{1}{2}}\mathbf{Z}^{\mathsf{T}}\mathbf{C}\mathbf{Z}\tilde{\mathbf{C}}^{\frac{1}{2}}} \xrightarrow{a.s.} \tilde{\mu}$, where μ , $\tilde{\mu}$ are defined by their Stieltjes transforms m(z) and $\tilde{m}(z)$ given by

$$m(z) = -\frac{1}{z} \int \frac{\nu(dt)}{1 + \tilde{\delta}(z)t}, \quad \tilde{m}(z) = -\frac{1}{z} \int \frac{\tilde{\nu}(dt)}{1 + \delta(z)t}, \quad \delta(z) = -\frac{c}{z} \int \frac{t\nu(dt)}{1 + \tilde{\delta}(z)t}, \quad \tilde{\delta}(z) = -\frac{1}{z} \int \frac{t\tilde{\nu}(dt)}{1 + \delta(z)t}$$

Z. Liao (EIC, HUST) RMT4ML July, 2nd 2024 56/57

⁵Debashis Paul and Jack W. Silverstein. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix". In: *Journal of Multivariate Analysis* 100.1 (2009), pp. 37–57

Take-away messages of this section

Asymptotic Deterministic Equivalent for resolvent results for

- ▶ symmetric $X/\sqrt{n} \in \mathbb{R}^{n \times n}$: **Wigner semicircle law**, quadratic equation (again)
- **generalized SCM model** $\frac{1}{n}C^{\frac{1}{2}}ZZ^{T}C^{\frac{1}{2}}$: one self-consistent but integral equation
- ▶ application to **inference** of SCM eigenspectral functionals
- **bi-correlated model/separable covariance model** $\frac{1}{n}\mathbf{C}^{\frac{1}{2}}\mathbf{Z}\tilde{\mathbf{C}}\mathbf{Z}^{\mathsf{T}}\mathbf{C}^{\frac{1}{2}}$: two coupled self-consistent integral equations

Thank you! Q & A?