### Branch: CSE/IT

# Discrete Mathematics II Set Theory

**DPP-05** 

### [MSQ]

- **1.** A binary relation R on  $N \times N$  is defined as follows:
  - (a, b) R (c, d) if  $a \ge c$  AND  $b \ge d$ , then consider the below prepositions:
  - **P:** R is reflexive.
  - **Q:** R is not symmetric.
  - **S:** The inverse of R is transitive relation.

Then which of the given propositional logic is true?

- (a)  $P \wedge \sim S$
- (b)  $P \wedge Q$
- (c)  $\sim P \vee S$
- (d)  $Q \wedge S$

### [MCO]

- **2.** Consider the below statements:
  - A relation defined on an empty set is not a transitive relation.
  - II. The number of transitive relations on a given set  $\frac{n(n+l)}{n}$

can be calculated using the formula  $2^{-2}$ .

**III.** The complement of a transitive relation need not be transitive.

Then choose the correct options from the following

- (a) I is true but II and III are false.
- (b) I and II both are true, III is false.
- (c) I and II are false, only III is true.
- (d) I and II are false, only II is true.

### [NAT]

- **3.** Consider the below relations:
  - **R<sub>1</sub>:** {(a, b), (b, c), (b, b), (a, c), (c, b)} defined on set  $A = \{a, b, c\}$

**R<sub>2</sub>:** "Is parallel to" defined on set of lines.

The number of above relations that are transitive are?

**Batch: Hinglish** 

### [MCQ]

- 4. Consider below given statements and choose the correct combinations from the following
  - I: The intersection of relation  $R_1$  = "is a biological sibling" on the set of persons and relation  $R_2$  = "is elder to" on the set of persons is also a transitive relation.
  - **II:** The union of two transitive relations is also transitive.
  - (a) I is true, II is false.
  - (b) I is false, II is true.
  - (c) Both I and II are false.
  - (d) Both I and II are true.

### [NAT]

**5.** For the set of 6 elements the number of relations that are only symmetric but not anti-symmetric are \_\_\_\_\_.

### [NAT]

- **6.** The number of given relations that are not transitive are:
  - **I.** "Division of" on the set of integers.
  - II. "Multiple of" on the set of integers
  - **III.** "Greatest common divisor" on the set of integers.

## **Answer Key**

1. (a, b)

2. **(c)** 

3. **(1)**  4.

(a) (2097088)

**6.** (0)



### **Hints and Solutions**

### 1. (a, b)

• Checking reflexive property:

$$(a,b)R(a,b) \Rightarrow a \ge a \text{ AND } b \ge b$$
True True

Which is true, therefore reflexive P is true.

• Checking symmetric property:

$$\begin{array}{ccc} (a_1 \ b_1) R \, (b_2, a_2) \Longrightarrow & a_1 \geq b_2 \ R \ b_1 \geq a_2 \\ (b_2, a_2) R \, (a_1 \ b_1) & (b_2 \geq a_1) \, R \, (a_2 \geq b_1) \end{array}$$

Therefore, not symmetric. Q is true

• Checking transitivity property:

$$(a \ge c) R (b \ge d) AND c \ge e R d \ge f then$$

 $(a \ge c) R (b \ge f)$  but we don't know about this.

Therefore, not transitive. S is false.

**Note:** If a relation is transitive then the inverse of the relation is also transitive.

- (a)  $P \wedge \sim S \cong True \wedge \sim (False) = True$ .
- (b)  $P \wedge Q \cong True \wedge True = True$ .
- (c)  $\sim P \vee S \cong \sim True \vee False = False$ .
- (d)  $Q \wedge S \cong True \wedge False = False$ .

#### 2. (c)

I is false. A relation defined on an empty set is always a transitive relation.

II is false. There exists no fixed formula to determine the number of transitive relation on a set.

III is true. The complement of a transitive relation need not be transitive.

### 3. (1)

 $\mathbf{R_1} = \{(a, b) (b, c) (b, b) (a, c) (c, b)\}$  is not a transitive relation because  $(c, b) \in \mathbf{R_1}$ ,  $(b, c) \in \mathbf{R_1}$  but  $(c, c) \notin \mathbf{R_1}$ . In order  $\mathbf{R_1}$  to be transitive  $(c, c) \in \mathbf{R_1}$ .

 $\mathbf{R}_2$  = 'Is parallel to' defined on a set of lines is a transitive relation. Example if line x is parallel to line y and line y is parallel to line z, then line x is also parallel to line z.

### 4. (a)

In I, relation  $R_1$  is transitive, relation  $R_2$  is transitive and the intersection of two transitive relation  $R_1$  and  $R_2$  is also transitive.

The **II** statement is incorrect because the union of two transitive relations need not be transitive.

### 5. (2097088)

The number of relaiton that are only symmetric but not antisymmetric can be calculated by the formula:

$$2^n \left( 2^{\frac{n^2-n}{2}} - 1 \right)$$

Here n = 6, 
$$2^{6} \left( 2^{\frac{6^2 - 6}{2}} - 1 \right) \Rightarrow 2^{6} \left( 2^{\frac{36 - 6}{2}} - 1 \right)$$

$$\Rightarrow 2^{6} \left( 2^{\frac{30}{2}} - 1 \right) \Rightarrow 2^{6} \left( 2^{15} - 1 \right) \Rightarrow 2097088$$

### **6.** (0)

"Divisor of" on set of integers is a transitive relation "Multiple of" on set of integers is a transitive relation "Greatest common divisor" on the set of integers is a transitive relations.



Any issue with DPP, please report by clicking here: <a href="https://forms.gle/t2SzQVvQcs638c4r5">https://forms.gle/t2SzQVvQcs638c4r5</a>
For more questions, kindly visit the library section: Link for web: <a href="https://smart.link/sdfez8ejd80if">https://smart.link/sdfez8ejd80if</a>

