

Emergent Linear Separability of Unseen Data Points in Last-Layer Feature Space

Taehun Cha and Donghun Lee
Department of Mathematics, Korea University

Contributions

- Empirically verify the emergent linear separability between seen and unseen data points
- Theoretically show the relationship between "unseen-ness" and the separating hyperplane
- Based on these findings, we propose and evaluate the novel geometric uncertainty

Observation:
Linear
Separability

- Last-layer features of seen and unseen data points from a normally trained neural network are linearly separable
- This tendency strengthens as NN gets wider

Latent Space

Notations

- P_{id} , P_{ood} : Probability distributions over R^d
- $E = \{e_1, \dots, e_N\}$: A set of the last-layer encodings of training dataset, $e_i \in \mathbb{R}^d$

Original Space

• $l_E(x) = \frac{1}{\|w\|}$, where $\langle w, \phi(x) \rangle - b \ge +1$ and $\langle w, e \rangle - b < -1$, $\forall e \in E$ if such w exists (In other words, w and b represent a separating hyperplane between x and E)

Theorem

- If $\langle w, \phi(x) \rangle < b$, P_{id} almost surely, and $P_{ood}[\langle w, \phi(x') \rangle > \ge b] > \epsilon$ for some $\epsilon > 0$, (In other words, there exists a (at least partial) domain mismatch between P_{id} and P_{ood})
- Then, $UB(l_E(x)) < UB(l_E(x'))$ for $x \sim P_{id}$, $x' \sim P_{ood}$ and UB: upper bound
- As this characteristic is desirable for uncertainty quantification, we define $l_E(x)$ as the Geometric Uncertainty
- Intuitively, $\frac{1}{\|w\|}$ represents the distance between and the hyperplane and the closest data points
- This theorem is supported by the classical statistical learning theory-like proposition

Proposition

- Let $D = \{(x_i, y_i)\}_{i=1}^N$ with $y_i = -1, \forall i = 1, ..., N-1$ and $y_N = +1$
- Assume $x_i \sim P[x|y=-1]$, i. i. d. and $x_N \sim P[x|y=+1]$ with $x_i \in \mathbb{R}^d$ and $||x_i|| \leq B$
- Assume the linear classifier $\langle x_i, w \rangle b < -1, \forall i = 1, ..., N-1$ and $\langle x_N, w \rangle + b \ge +1$
- Then for zero-one loss $L(x, y; w, b) = 1_{\{sgn[\langle x, w \rangle b] \neq y\}}$, with probability 1δ ,

 $E[L(x, y; w, b)] < C_1||w|| + C_0$, where C_0, C_1 : constants

(Usually, this form of theory is used to bound the error term, but we reversely use it to bound ||w||)

Geometric Uncertainty

Theory:

 OOD Detection in image classification using (Wide-) ResNet (AUROC)

	IU	CIFARIU		CIFARIUU		imagenet	
	Target	Near	Far	Near	Far	Near	Far
	MDS	89.89	94.80	81.63	83.84	74.16	93.06
	KNN	92.09	94.01	82.55	82.36	75.68	93.22
•	Ours	91.77	94.20	83.01	82.46	78.47	91.54

Experiments

Sine function regression with unseen domains

0	Ensemble	0 1 2 3 4 5 6 MDS	0 1 2 3 4 5 6 KNN	GEO	
-1.5 -2.0		-1.5	-1.5	-1.5	
-1.0		-1.0	-1.0	-1.0	
-0.5		-0.5	-0.5	-0.5	
0.0		0.0	0.0	0.0	
0.5		0.5	0.5	0.5	
1.0		1.0	1.0		Unseen)
1.5		1.5	1.5	pred GT (S	seen)
2.0		2.0	2.0	2.0	I: a±