Lecture 10 – Non-negative Matrix Factorization & Principal Component Analysis

Dr. Qingquan Sun

School of Computer Science and Engineering Cal State University San Bernardino

NMF & PCA

- Factorization problems
- Eigenvalue and eigenvector
- Numerical computing methods

$$V_{(F \times N)} \approx W_{(F \times K)} \times H_{(K \times N)}$$

$$\mathbf{V}_{(F\times N)} \approx \mathbf{W}_{(F\times K)} \times \mathbf{H}_{(K\times N)}$$

- Properties
 - Part-based
 - Intuitive
 - Interpretable

- Properties
 - Part-based
 - Intuitive
 - Interpretable
- Disadvantages
 - Non-unique
 - No global solution

Samples

Explanation of face image by PCA

Explanation of face image by PCA

Red pixels indicate negative values! How to interpret this?

Explanation of face image by NMF

Cost Function & Updating Rules

Cost function

$$\underset{W,H}{\operatorname{argmin}} \|V - WH\|^{2}, \quad s.t. W \ge 0, H \ge 0$$

$$\underset{W,H}{\operatorname{argmin}} \sum_{i,j} \left(V_{ij} \log \frac{V_{ij}}{(WH)_{ii}} - V_{ij} + (WH)_{ij} \right), \quad s.t. W \ge 0, H \ge 0$$

Cost Function & Updating Rules

Cost function

$$\underset{W,H}{\operatorname{argmin}} \|V - WH\|^2, \quad s.t. W \ge 0, H \ge 0$$

$$\underset{W,H}{\operatorname{argmin}} \sum_{i,j} \left(V_{ij} \log \frac{V_{ij}}{\left(WH \right)_{ij}} - V_{ij} + \left(WH \right)_{ij} \right), \quad s.t. W \ge 0, H \ge 0$$

- Updating rules
 - Multiplicative updating rule
 - Gradient descent updating rule
 - Alternative least square updating rule

Updating Rules

Cost function

$$f(W,H) = \frac{1}{2} \|V - WH\|^2$$
, $s.t. W \ge 0, H \ge 0$

Updating Rules

Cost function

$$f(W,H) = \frac{1}{2} \|V - WH\|^2$$
, $s.t. W \ge 0, H \ge 0$

Gradient

$$\begin{cases}
\nabla f_W = (V - WH) * (-H^T) \\
\nabla f_H = -W^T * (V - WH)
\end{cases}$$

Updating Rules

Cost function

$$f(W,H) = \frac{1}{2} \|V - WH\|^2$$
, $s.t. W \ge 0, H \ge 0$

Gradient

$$\begin{cases} \nabla f_W = (V - WH) * (-H^T) \\ \nabla f_H = -W^T * (V - WH) \end{cases}$$

Solution

$$W_{ia}^* \leftarrow W_{ia} \cdot \frac{\left(VH^T\right)_{ia}}{\left(WHH^T\right)_{ia}}$$

$$H_{aj}^* \leftarrow H_{aj} \cdot \frac{\left(W^TV\right)_{aj}}{\left(W^TWH\right)_{aj}}$$

PCA

$$Y = PX$$

De-correlation y

variables X_1 and X_2 have positive covariance & each has a similar variance.

$$V_1 = 6.67$$
 $V_2 = 6.24$

$$V_2 = 6.24$$

$$C_{1,2} = 3.42$$

each variable is adjusted to a mean of zero (by subtracting the mean from each value)

- PC 1 has the highest possible variance (9.88)
- PC 2 has a variance of 3.03
- PC 1 and PC 2 have zero covariance.

- 1. principal component (PC1)
 The eigenvalue with the largest absolute value will indicate that the data have the largest variance along its eigenvector, the direction along which there is greatest variation
- 2. principal component (PC2)
 the direction with maximum variation left in data,
 orthogonal to the PC1
- 3. eigenvalue of the covariance matrix In general, only few directions manage to capture most of the variability in the data.

Singular Value Decomposition

• Singular value decomposition (SVD) of $m \times n$ matrix \boldsymbol{A} has form

$$A = U \Sigma V^T$$

where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with

$$\sigma_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ \sigma_i \ge 0 & \text{for } i = j \end{cases}$$

Singular Value Decomposition

• Singular value decomposition (SVD) of $m \times n$ matrix \boldsymbol{A} has form

$$A = U\Sigma V^T$$

where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with

$$\sigma_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ \sigma_i \ge 0 & \text{for } i = j \end{cases}$$

- Diagonal entries σ_i , called *singular values* of A, are usually ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$
- Columns u_i of U and v_i of V are called left and right singular vectors

Singular Value Decomposition

$$ullet$$
 SVD of $m{A}=egin{bmatrix}1&2&3\\4&5&6\\7&8&9\\10&11&12\end{bmatrix}$ is given by $m{U}m{\Sigma}m{V}^T=$

$$\begin{bmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .0278 & .664 & -.509 \\ .750 & -.371 & -.542 & .0790 \end{bmatrix} \begin{bmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{bmatrix}$$