SLE₆ on Liouville quantum gravity as a growth-fragmentation process

William Da Silva

GDR Branchement

Based on joint work with Ellen Powell (Durham) and Alex Watson (UCL)

Bertoin, Curien, Kortchemski (2018)

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to \mathbb{X} = growth-fragmentation process

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

X =growth-fragmentation process

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

X =growth-fragmentation process

Bertoin, Curien, Kortchemski (2018)

variant of 3/2-stable Lévy process

Thm (BCK 18)

As $p \to \infty$, collection of perimeters scales to

X =growth-fragmentation process

•
$$\gamma$$
-LQG disc: $\gamma = \sqrt{8/3}$

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆

GOAL: Build X in the continuum

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆

Branch η^z towards point $z \in \mathbb{D}$

GOAL: Build X in the continuum

•
$$\gamma$$
-LQG disc: $\gamma = \sqrt{8/3}$

• space-filling curve η : SLE₆

Branch η^z towards point $z \in \mathbb{D}$

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆
- Branching process: η^z , η^z'

GOAL: Build X in the continuum

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆

Branching process: η^z , η^z'

GOAL: Build X in the continuum

$$\gamma - LQG \ disc: \qquad \gamma = \sqrt{8/3}$$

• space-filling curve η : SLE₆

- γ -LQG disc: $\gamma = \sqrt{8/3}$
- space-filling curve η : SLE₆
- Branching process: η^z , η^z'

GOAL: Build X in the continuum

• space-filling curve η : SLE₆

Branching process: η^z , η^z

 $z \in \mathbb{D}$

- $oldsymbol{D}^z(s)$ c.c. of $\mathbb{D}\setminus \eta^z([0,s])$ containing z
- $X^{z}(s)$ (quantum) boundary length of $D^{z}(s)$

 $z \in \mathbb{D}$

- $oxed{D}^z(s)$ c.c. of $\mathbb{D}\setminus \eta^z([0,s])$ containing z
- $X^{z}(s)$ (quantum) boundary length of $D^{z}(s)$

$$\mathbb{X}(s) := \{X^z(s), z \in \mathbb{D}\}$$

 $z \in \mathbb{D}$

 $D^{z}(s)$ c.c. of $\mathbb{D} \setminus \eta^{z}([0,s])$ containing z

 $X^{z}(s)$ (quantum) boundary length of $D^{z}(s)$

 $\mathbb{X}(s) := \{X^z(s), z \in \mathbb{D}\}$

Thm (DS, Powell, Watson)

= growth-fragmentation process of BCK

variant of 3/2-stable Lévy process

Thm (DS, Powell, Watson)

★ = growth-fragmentation process of BCK

PRIOR ART

• Scaling limit from peeling Boltzmann triangulations
Bertoin, Curien, Kortchemski '18

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations

 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations
 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18
- Brownian disc (metric) → time-change of X
 Le Gall, Riera '20

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations
 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18
- Brownian disc (metric) → time-change of X
 Le Gall, Riera '20
- CLE_{κ} GF on γ -LQG, $\sqrt{8/3} < \gamma < 2$ \longrightarrow \mathbb{X}_{α} , $\alpha = 4/\gamma^2$ Miller, Sheffield, Werner '22

PRIOR ART

- Scaling limit from peeling Boltzmann triangulations
 Bertoin, Curien, Kortchemski '18
- Peeling Boltzmann maps $\longrightarrow \mathbb{X}_{\alpha}$ Bertoin, Budd, Curien, Kortchemski '18
- Brownian disc (metric) → time-change of X
 Le Gall, Riera '20
- CLE_{κ} GF on γ -LQG, $\sqrt{8/3} < \gamma < 2 \longrightarrow \mathbb{X}_{\alpha}$, $\alpha = 4/\gamma^2$ Miller, Sheffield, Werner '22
- CLE₄ GF on critical LQG $\longrightarrow X_1$ Aïdékon, DS '22 Aru, Holden, Powell, Sun '23

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit
$$\gamma$$
-quantum disc

$$L_0 = 0, R_0 = 1$$

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

•
$$L_t = red$$
 quantum length $R_t = blue$ quantum length

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

• $L_t = red$ quantum length $R_t = blue$ quantum length

Duplantier, Miller, Sheffield '21 Ang, Gwynne '21

unit γ -quantum disc

$$L_0 = 0, R_0 = 1$$

• $L_t = red$ quantum length

 R_t = blue quantum length

 $\rho(\gamma)$ -correlated Brownian excursion

Burdzy '85 Shimura '85 Duplantier, Miller, Sheffield '21

CONCLUSION

- **Growth-fragmentation** embedded in LQG/Brownian cone excursions
- New elementary proofs of old LQG results:

Target invariance property of SLE_6 on $\sqrt{8/3}$ -LQG

Law of area of quantum disc conditioned on perimeter

- Explicit description of BM subordinated on backward cone points (Le Gall)
- Questions about pathwise constructions of conditioned ssMPs