# Sadržaj:

| 1. Postupak razvoja interaktivnog sustava                        | 2  |
|------------------------------------------------------------------|----|
| 1.1. Uloga HCI-a                                                 | 2  |
| 1.2. Razvoj interaktivnog sustava                                | 3  |
| 1.3. Tradicionalni model razvoja                                 | 3  |
| 1.4. Korisniku-usmjeren razvoj interaktivnog sustava             | 4  |
| 1.5. Zvjezdasti model razvoja                                    | 5  |
| 2. Dizajniranje korisničkog sučelja                              | 6  |
| 2.1. Definicija pojmova                                          | 7  |
| 2.2. Principi dizajniranja opće namjene                          | 7  |
| 2.3. Principi dizajniranja dobrog korisničkog sučelja            | 8  |
| 3. Vrednovanje korisničkog sučelja                               | 10 |
| 3.1. Definicija upotrebljivosti                                  | 10 |
| 3.2. Metode vrednovanja upotrebljivosti                          | 12 |
| 3.3. Inženjerstvo upotrebljivosti                                | 13 |
| 4. Inteligentna korisnička sučelja                               | 16 |
| 4.1. Definicija područja i pojmova                               | 16 |
| 4.2. Opis ključnih podpodručja                                   | 18 |
| 4.3. Inteligentna korisnička sučelja (IUI) –zaključci            | 18 |
| 4.4. Prilagodljiva korisnička sučelja (adaptive user interfaces) | 18 |

## 1. Postupak razvoja interaktivnog sustava

#### 1.1. Uloga HCI-a

- poboljšanje kvalitete interakcije ljudi i računala → sustavna primjena znanja o ljudskim ciljevima,mogućnostima i ograničenjima
  - o uključiti znanje o društvenim, organizacijskim i fizičkim aspektima okoline
  - o ostvariti prijelaz od onog što se može (funkcionalnost), prema onom kako se to može učiniti u skladu s korisnikovim potrebama (upotrebljivost) u prirodnoj radnoj okolini
- poboljšanje kvalitete interakcije ljudi i računala → na konkretnoj razini
  - tehnološke karakteristike
  - psihologija i individualne karakteristike korisnika
  - okolina u kojoj će se interaktivni sustav koristiti
  - o odabir najprikladnijih ulaznih naprava za dani zadatak (tastature, miševi, tekst, grafika itd.)
  - o odabir najprikladnijih izlaznih naprava za dani zadatak (video, govor, tekst, grafika itd.)
  - odabir najboljeg stila interakcije (obrasci, prirodni jezik, GUI, multimedijska interakcija, prividna stvarnost itd.)
  - o "psihologija i individualne karakteristike korisnika (ekspertnost, dob)
  - o "okolina u kojoj će se interaktivni sustav koristiti
    - fizički atributi (prostor, svjetlo)
    - društveni aspekti (interakcija između ljudi, podjela zadataka)
    - organizacijski aspekti (hijerarhije, različite radne uloge)
- poboljšanje kvalitete interakcije ljudi i računala → Easonov model → četiri osnovne komponente sustava čovjek-računalo
  - o ljudi/korisnik ≥ 1
  - o rad/zadatak → usko ili široko definirane aktivnosti
  - o okruženje → fizički, organizacijski i društveni aspekti okoline
  - o tehnologija/alat → koji god tehnološki artefakti, uključivo vrste računala ili radnih stanica
  - o korisnik stupa u interakciju s računalom (razina 1) u cilju ostvarivanja posebnog zadatka unutar specifičnog okruženja(razina 2)
  - aktivnosti se odvijaju u širem okruženju



## 1.2. Razvoj interaktivnog sustava

- općeniti zahtjevi na postupak razvoja
  - o razvoj(dizajniranje/oblikovanje, vrednovanje) → tipično iterativni postupak tipa "pokušaja-i-pogrešaka" (eng. trial-and-error)
  - o svaki korak pretpostavlja:
    - analizu (korisničkih) zahtjeva
    - prikupljanje informacija o (polu)proizvodu
    - usporedbu za ustanovljavanje postizanja zadovoljavajućeg rezultata
- reprezentacije za projektiranje → modeli → vještina dizajnera/projektanta
  - o odabir prikladne reprezentacije za trenutnu zadatak
  - o dobro upotrijebiti tu reprezentaciju
- model → reprezentacija nečega, koristi se za specifičnu namjenu;"dobar model"
  - o dovoljno točan → preslikava svojstva modeliranog sustava
  - o dovoljno jednostavan → izbjegava konfuziju
  - o usvaja stil prezentacije primjeren njegovoj namjeni
- razvoj interaktivnog sustava
  - o mnogo tehnika reprezentacije → fokusiranje pažnje na različite aspekte dizajna
- postoje specifičnosti → usporediti s "klasičnim"/"tradicionalnim" modelima programskog inženjerstva, SEa
  - o vodopadni (tradicionalni) model
  - o zvjezdasti (interaktivni) model

#### 1.3. Tradicionalni model razvoja

tradicionalni model razvoja interaktivnog sustava → vodopadni model (waterfall model)



• tradicionalni interaktivnog sustava →pojednostavljeni vodopadni model



- vodopadni model (waterfall model)
  - o rezultat/izlaz iz prethodnog koraka uredno se "kotrlja" u naredni korak
  - o u svakom koraku → mogućnost provjere "napretka" proizvoda
  - o provjera valjanosti, verifikacija, ispitivanje (Validity, Verification and Testing, VVT)→ tri aspekta osiguranja kvalitete proizvoda
  - o izvedba prototipa (eng. prototyping)za sustav ili neke njegove dijelove → naslovljavanje provjere zadovoljavanja korisnikovih zahtjeva u različitim koracima dizajna
  - o prototipovi → tipično za "jednokratnu upotrebu". "The question is not whether to build a pilot system and throw it away. You will do that. The question is whether to plan in advance to build a throwaway."

## 1.4. Korisniku-usmjeren razvoj interaktivnog sustava

- usporedba modela za SE i za HCI
  - o modeli za SE→ prvenstveno za razvoj velikih programskih sustava s fokusom na funkcionalnost sustava
  - o modeli za HCI→ korisniku-usmjeren (user-centered)razvoj; prepoznaje se važnost čestog vrednovanja:
    - neformalnim reprezentacijama
    - prototipovima temeljenim na računalu
- razvoj interaktivnog sustava → razlike u pristupu → odmak od klasičnog vodopadnog modela
  - o korisniku-usmjereni model → korisnici mogu utjecati na razvoj sustava
  - o integrira znanje i ekspertizu različitih disciplina koje sudjeluju u HCIu
  - o izrazito iterativan → testiranjem/vrednovanjem se može ustanoviti poklapanje sustava s korisničkim zahtjevima
- principi korisniku-usmjerenog projektiranja
  - o u procesu projektiranja rano se fokusirati na korisnike i njihove zadatke, uključujući upute za korisnike i pomoć te osiguravajući da su korisničke, kognitivne, društvene i stajališne (Attitudinal) karakteristike shvaćene i prihvaćene
  - o mjeriti reakcije korištenjem priručnika, sučelja i drugih simulacija sustava

- o projektirati iterativno, jer razvojni tim ne može razviti sustav iz prvih nekoliko pokušaja(bez obzira koliko je dobar)
- o svi faktori upotrebljivosti moraju zajedno "evoluirati", te biti odgovornost jedne nadzorne grupe
- metode za korisniku-usmjereno projektiranje → središnji aspekt
  - uključiti korisnika u cijeli proces razvoja i to ne samo radi komentiranja ideja projektanata/ razvojnog tima
  - o prisno uključiti korisnike u sve aspekte, uključivo način na koji će implementacija novog sustava utjecati na njihova radna mjesta

## 1.5. Zvjezdasti model razvoja

razvoj interaktivnog sustava → iterativnost postupka → zvjezdasti model (star life cycle)



- zvjezdasti model razvoja
  - ističe se ideja izrade prototipa i vrednovanja
  - o vrednovanje je centralno/središnje → svi aspekti razvoja sustava podložni su stalnom vrednovanju korisnika i eksperata
  - pristup razvoju sustava "alternirajućim valovima"
    - tradicionalni modeli → analitička metoda (pristup "odozgo naniže")
    - zvjezdasti model → analitički pristup komplementiran sintetičkom metodom (pristup "odozdo naviše")
  - o središnje mjesto vrednovanje (evaluation) → relevantno u svim koracima ciklusa života (usp. vodopadni model)
  - o različiti koraci ciklusa života + potrebe razvoja različitih vrsta proizvoda → različite tehnike vrednovanja
  - podržava različite metode razvoja
    - odozgo naniže i odozdo naviše
    - "iznutra prema van" (eng. inside-out) i "izvana prema unutra" (eng. outside-in)

- zvjezdasti model razvoja Ostale aktivnost
  - o analiza korisnika, rada, zadataka i okoline → ljudski aspekti analize zahtjeva
  - o tehnička analiza → upariti korisničke zahtjeve s tehnologijom
  - o specifikacija zahtjeva
  - o dizajniranje i predstavljanje dizajna, uključivo kodiranje
  - izrada prototipa i korištenje drugih alata i tehnika za podršku razvoju
  - o kodiranje ili implementacija
- zvjezdasti model razvoja svojstva
  - o bolje modeliranje stvarnog postupka razvoja interaktivnog sustava
    - može započeti u bilo kojem koraku
    - može nastaviti bilo kojim drugim korakom
    - zahtjevi, dizajn i proizvod evoluiraju → postupno postaju "inkremetalno bolje" definirani
  - o naglašena razlika konceptualnog (~ što? se zahtijeva) i fizičkog ("formalnog") (~ kako? to postići) dizajna
- usporedba zvjezdastog i vodopadnog modela → slične aktivnosti



## 2. Dizajniranje korisničkog sučelja

Interakcija čovjeka i računala, HCI - disciplina koja se bavi dizajniranjem, vrednovanjem i implementiranjem interaktivnih računalnih sustava namijenjenih čovjeku.



## 2.1. Definicija pojmova

- pitanja → kako na prikladan način razmatrati znanje o tehnološkim mogućnostima i o potrebama samih korisnika, te kako potom znanje sintetizirati u odgovarajući dobar, upotrebljiv dizajn → koji postupak koristiti, te kako to napraviti na što učinkovitiji način
- odgovori
  - o principi, pravila
  - o smjernice, kontrolne liste
  - o metodologije
- principi (principles) → predstavljaju široko primjenjive izjave "visoke razine" npr. "upoznaj korisnika" ili
   "održavaj konzistentnost i jasnoću"
- pravila (rules) → predstavljaju izjave "niske razine", izjave koje ni prilikom interpretiranja ne dopuštaju nikakvo "uljepšavanje" npr. "u Hrvatskoj polja za datum moraju biti u formi DD-MM-GG" ili "osiguraj naredbu RESET"
- smjernice (guidelines) -isto kao i kontrolne liste (checklists) → pomažu prilikom osiguravanja "okvira" koji dizajnere vode prema prikladnim dobrim odlukama
  - o najbolje smjernice za dizajniranje korisničkih su stvarno smjernice u pravom smislu te riječi → široko primjenjivi principi visoke razine
  - o smjernice osiguravaju isključivo vođenje, ali nikako ne predstavljaju recept za dizajniranje upotrebljivih sučelja, pažljiva primjena

## 2.2. Principi dizajniranja opće namjene

- neki principi su toliko općeniti da svoju primjenu nalaze kod procesa dizajniranja u bilo kojem području →
   razmatranje probleme dizajniranja svakodnevnih stvari.
- korisniku-usmjeren dizajn sustava/korisničkog sučelja (user-centered system design, UCSD ili user-centered user interface design, UCUID) → osigurati ne samo ispravnu korisnikovu procjenu njezine/njegove sljedeće akcije, već i korisnikovo razumijevanje i shvaćanje njezinih posljedica.
- dobar, korisniku-usmjeren dizajn,s naglašenom visokom upotrebljivosti i razumljivosti, mora u bilo kojem trenutku:
  - o osigurati jasno i jednostavno određivanje mogućih aktivnosti
  - o učiniti stvari vidljivima, što ujedno uključuje moguće alternativne aktivnosti i njihove rezultate
  - učiniti jednostavnim vrednovanje trenutnog stanja sustava
  - slijediti prirodno preslikavanje između namjera i potrebnih aktivnosti; između aktivnosti i njezine
     posljedice, te između informacije koja je vidljiva i interpretacije stanja sustava
- Sedam principa za transformiranje teških zadataka u jednostavnije (7 principles for transforming difficult tasks into simple ones) → olakšavaju dizajneru udovoljavanje navedenim zahtjevima
  - 1. koristiti kako realno znanje (Knowledge in the world), tako i ono iz glave
  - 2. pojednostaviti strukturu zadataka

- 3. učiniti stvari vidljivima → premostiti bezdan izvođenja (gulf of execution) i bezdan vrednovanja (gulf of evaluation)
- 4. omogućiti ispravna preslikavanja; osigurati ispravno korisnikovo interpretiranje odnosa između:
  - (i) namjera i mogućih akcija,
  - (ii) akcija i njihovog djelovanja na sam sustav,
  - (iii) trenutnog stanja sustava i onoga što se vidi, čuje ili osjeti i
  - (iv) zapaženog stanja sustava i ciljeva, te namjera korisnika
- 5. iskoristiti snagu ograničenja, kako prirodnih tako i umjetnih
- 6. dizajnirati i za mogućnost pogreške
- 7. kada ništa drugo "ne pali", standardizirati

## 2.3. Principi dizajniranja dobrog korisničkog sučelja

- Neki od skupova principa dizajniranja dobrog UI-a:
  - o principi dizajniranja interaktivnih grafičkih sustava
  - o osam zlatnih pravila dizajna sučelja
  - dizajn uspješne procjene
  - o četiri principa dizajniranja sustava
  - o heuristika upotrebljivosti
- osam zlatnih pravila dizajna sučelja:
  - 1. težiti konzistentnosti
  - 2. omogućiti čestim korisnicima korištenje prečica
  - 3. ponuditi informativnu povratnu vezu
  - 4. dizajnirati dijaloge koji dopuštaju 'zatvaranje'
  - 5. ponuditi prevenciju pogrešaka i jednostavno baratanje pogreškama
  - 6. dozvoliti jednostavno poništavanje akcija
  - 7. podržati internu mogućnost kontrole
  - 8. reducirati opterećenje kratkotrajne memorije
- heuristika upotrebljivosti:
  - 1. jednostavni i prirodni dijalog
  - 2. govoriti jezik korisnika
  - 3. minimizirati opterećenje memorije korisnika
  - 4. konzistentnost
  - 5. povratna veza
  - 6. jasno označeni izlazi
  - 7. prečice
  - 8. dobre poruke pogrešaka
  - 9. sprječavanje pogrešaka
  - 10. pomoć i dokumentacija

- skup osnovnih svojstava, ključnih pravila primjenjivih kod procesa dizajniranja upotrebljivih sučelja:
  - o korisniku-usmjeren dizajn→ upoznavanje budućih korisnika i zadataka koje će obavljati
  - o dizajniranje sudjelovanjem → suradnja budućih korisnika i dizajnera/razvojnog tima
  - o eksperimentalni dizajn→ formalna, empirijska istraživanjima koja obuhvaćaju mjerenja izvršavanja, te subjektivnih reakcija korisnika
  - o iterativni dizajn→ učestalo ponavljanje ciklusa -dizajniranje, vrednovanje, te redizajniranje
- Metodologije dizajna dobrog korisničkog sučelja:
  - o formalne procedure koje izvođene u slijedu vode proces učinkovitog dizajniranja → pomažu prilikom strukturiranja procesa dizajniranja → ipak u potpunosti ne zadovoljavaju jer zahtijevaju prilagođavanje specifičnim situacijama
  - o daju savjete, ali nikada točan recept, niti traženu sigurnost → način njihove primjene nije uvijek očigledan
  - o odgovor na navedene probleme → pokušaj razvoja i na proces dizajniranja primjene 'teorije'interakcije čovjeka i računala → modeli ponašanja čovjeka u interakciji s računalom
- Modeli dizajna dobrog korisničkog sučelja
  - o sedam stupnjeva aktivnosti (Seven Stages of Action) → teorija iznosi postojanje sedam stupnjeva korisnikovih aktivnosti prilikom izvršavanja određenog zadatka:
    - 1. oblikovanje cilja
    - 2. oblikovanje namjere
    - 3. specificiranje akcije
    - 4. izvršavanje akcije
    - 5. opažanje stanja sustava
    - 6. interpretiranje stanja sustava
    - 7. vrednovanje posljedica/rezultata u terminima postavljenog cilja



- o teorija sedam stupnjeva (Seven Stages Theory) → kontrolna lista s pitanjima namijenjenim rješavanju problema dizajna; koliko jednostavno može korisnik:
  - 1. odrediti funkcije sustava?
  - 2. kazati koje su aktivnosti na raspolaganju?
  - 3. odrediti preslikavanje između namjere i fizičke aktivnosti?
  - 4. izvršiti aktivnost?
  - 5. kazati u kojem je stanju sustav?
  - 6. odrediti preslikavanje između stanja sustava i interpretacije?
  - 7. kazati da li je sustav u željenom stanju?

## 3. Vrednovanje korisničkog sučelja

## 3.1. Definicija upotrebljivosti

- "korisniku prijateljsko, naklonjeno" (user friendly) sučelje → popularna krilatica prodavača računalne opreme
  - o stroj ne treba biti "prijateljski", dovoljno je da ne smeta pri obavljanju posla
  - u stvarnosti različiti korisnici imaju različite potrebe-"prijateljski" za neke korisnike može značiti"dosadno" za druge
  - o "korisniku prijateljsko, naklonjeno" sučelje → upotrebljivo sučelje
- ne postoji jedinstvena definicija ili suvisla jednostavna mjera upotrebljivosti
- ovisi o:
  - o korisnicima i zadacima koje oni izvršavaju
  - namjeni sustava
  - o okruženju u kojem se koristi
- koncept upotrebljivosti → način realiziranja računalnih sustava lakših i jednostavnijih za učenje i korištenje
- upotrebljivost → osnovni koncept interakcije čovjeka i računala → predstavlja mjeru lakoće korištenja ili
  učenja određenog sustava, njegove sigurnosti, djelotvornosti i učinkovitosti, kao i subjektivnog korisnikovog
  stava vezanog za promatrani sustav
- upotrebljivost → kvaliteta korištenja unutar određenog konteksta
- operativna definicija upotrebljivosti → "...sposobnost izražena u čovjekovim funkcijskim terminima
  jednostavnog korištenja –do specificirane subjektivne razine –i djelotvornog korištenja –do specificirane
  objektivne razine (čovjekovog) izvođenja –vezana za specificiranu skupinu korisnika, a sve u cilju
  ispunjavanja specificiranog skupa zadataka unutar određenog specificiranog okruženja."
- pristup oblikovanjem opća svojstava korisničkih sučelja, neovisna o specifičnostima pojedinih računalnih sustava
- pristup mjerenjem kvantitativno mjerenje interakcije između čovjeka i računala, važno kod dizajniranja
   računalnih sustava

- Definicija upotrebljivosti → pristup oblikovanjem
  - o skupovi principa dizajniranja upotrebljivih sustava:
    - A. Principles for the design of interactive graphics systems
    - B. Eight golden rules of interface design
    - C. Usability heuristics
    - D. Design for successful guessing
    - E. Four principles of system design
    - F. Seven principles for transforming difficult tasks into simple ones
    - G. Design principles

| SKUP PRINCIPA:                 | A   | В | C | D  | E | F   | G |
|--------------------------------|-----|---|---|----|---|-----|---|
| konzistentnost                 | 3.0 | • |   |    | * |     | * |
| prikladnost prikaza            |     | • | • | •  | • | •   | • |
| baratanje pogreškama           |     | • |   | .• | * |     | * |
| smanjenje opterećenja memorije | •   |   | • |    |   |     |   |
| podudaranje zadatka            |     |   |   | :• |   |     | * |
| osiguravanje prečica           |     | • | • |    |   |     | • |
| osiguravanje povratne veze     |     |   |   |    | • |     |   |
| pomoć                          |     | 8 | • |    | • | . S |   |

- Definicija upotrebljivosti → pristup mjerenjem prema:
  - o "upotrebljivost" → uži pojam od "prihvatljivosti" sustava
  - o prihvatljivost (eng. acceptability) → da li je sustav dovoljno dobar da zadovoljisve (!?) potrebe i zahtjeve korisnika:
    - društvena prihvatljivost
    - praktična prihvatljivost



## 3.2. Metode vrednovanja upotrebljivosti

- dvije osnovne kategorije metoda vrednovanja (pristupi):
  - o metode koje uključuju eksperte iz područja upotrebljivosti (bez uključivanja korisnika)
  - o metode koje uključuju ispitne korisnike
- najčešće korištene metode vrednovanja:
  - o heurističko vrednovanje sa smjernicama upotrebljivosti
  - o spoznajno prošetavanje
  - o ispitivanje upotrebljivosti
  - upitnici i intervjui
  - o inženjerstvo upotrebljivosti
- metode koje uključuju eksperte iz područja upotrebljivosti, bez uključivanja ispitnih korisnika
  - o heurističko vrednovanje sa smjernicama upotrebljivosti (heuristic evaluation with usability guidelines)
    - rad nekolicine stručnjaka iz područja upotrebljivosti procjenjivanjem udovoljavanju malom skupu vrlo općenito formuliranih smjernica dizajniranja, tzv. Heuristike → npr. Deset heuristika dizajna (Ten Design Heuristics)
    - primjena smjernica u specifičnom kontekstu isključivo određena iskustvom i intuicijom samih evaluatora
  - deset heuristika dizajna (Ten Design Heuristics)
    - osigurati jednostavni i prirodni dijalog
    - govoriti jezik korisnika
    - minimizirati opterećenje memorije korisnika
    - biti konzistentan
    - osigurati povratnu vezu
    - osigurati jasno označene izlaze
    - osigurati prečice
    - osigurati dobre poruke pogrešaka
    - spriječiti pogreške
    - osigurati sustav pomoći i dokumentacije
  - spoznajno prošetavanje (cognitive walkthrough)
    - nadzorna metoda koja uključuje dizajnere sučelja ili stručnjake za pitanja upotrebljivosti bez sudjelovanja ispitnih korisnika
    - prilikom prošetavanja sučeljem sustava odabire se skup reprezentativnih zadataka kroz koji se prolazi korak po korak
    - nakon svake pojedine akcije, stručnjaci popunjavaju formulare koji od njih zahtijevaju specificiranje korisnikovih ciljeva, zadataka i pod-zadataka, znanje, vidljivo stanje sučelja, i sl.
- metode koje uključuju ispitne korisnike

- o ispitivanje/testiranje korisnika (user testing) → dobivanje podataka promatranjem stvarnih korisnika prilikom njihovog stvarnog rada sa sustavom
- o uključuje:
  - razmišljanje na glas (thinking aloud)→ ispitni korisnici za vrijeme izvršavanja stvarnih zadatka kontinuirano razmišljaju na glas
  - uzajamno učenje (co-discovery learning)
- upitnici (questionnaires) i intervjui (interviews)
  - predstavljaju indirektne metode vrednovanja, budući se ne bave "direktno" samim sučeljem, već "posrednim" korisnikovim subjektivnim mišljenjem o njemu
  - direktne metode u slučaju mjerenja subjektivnog zadovoljstva
  - slične metode, budući obje uključuju postavljanje skupa pitanja, te zapisivanje korisnikovih odgovora
- inženjerstvo upotrebljivosti (usability engineering)
  - skup tehnika kojima se osigurava formalno ispitivanje korisnika
  - razvojni timovi ili stručnjaci iz područja sučelja postavljaju eksplicitne, kvantitativne ciljeve
     izvršavanja poznate pod nazivom metrika
  - vrednovanjem se dolazi do informacije o tome da li sustav udovoljava specificiranim kriterijima → npr. iskusni telefonski operateri moraju za vrijeme prosječnog rada u trajanju od dvije minute napraviti u prosjeku manje od 2% neispravljenih pogrešaka

#### 3.3. Inženjerstvo upotrebljivosti

- upotrebljivost nije jednodimenzionalno svojstvo računalnog sustava
- sustavni pristup apstraktnom konceptu "upotrebljivosti" → definirati ga putem preciznijih i mjerljivijih komponenti
- komponente upotrebljivosti (tradicionalno pet atributa)
  - o lakoća učenja (learnability)
  - o lakoća korištenja /efikasnost/ (efficiency)
  - lakoća pamćenja /pamtivost/ (memorability)
  - mali broj pogrešaka (errors)
  - subjektivna ugoda/zadovoljstvo (satisfaction)
- mjerenje upotrebljivosti (tipično)
  - o izvjesni broj ispitnih korisnika (test users)
    - odabrani tako da budu što reprezentativniji za namjeravani skup korisnika
    - koriste sustav s ciljem obavljanja prethodno specificiranog skupa zadataka u odnosu na koje se mogu mjeriti različiti atributi upotrebljivosti
  - o značajno → upotrebljivost se mjeri u odnosu na izvjesne korisnike i izvjesne zadatke
  - o cjelokupna upotrebljivost sustava: → na temelju skupa mjera upotrebljivosti
    - srednja vrijednost svakog od mjerenih atributi

- ispitati da li je ta vrijednost bolja od nekog prethodno specificiranog minimuma
- o primjer: → mogući kriterij za subjektivno zadovoljstvo
  - na skali 1-5 srednja vrijednost barem 4
  - barem 50% korisnika ocijenio sustav najvećom ocjenom –5
  - ne više od 5% korisnika ocijenio sustav najmanjom ocjenom −1
- Lakoća učenja (learnability) → osnovni atribut upotrebljivosti
  - o mjerenje lakoće učenja → najlakše mjerivi atribut
    - ispitni korisnici (osobe koje nisu nikad prije koristili sustav, predstavnici namjeravanih korisnika sustava)
    - mjeri se vrijeme dostizanja specificirane razine vještine korištenja sustava → korisnici "naučili" sustav, sposobni ( uspješno završiti izvjesni zadatak, završiti skup zadataka u nekom minimalnom vremenu)
- Lakoća korištenja (efficiency) → stacionarna razina performansi ekspertnog korisnika
  - o mjerenje efikasnosti za ekspertne korisnike(treba ih imati)
    - neformalna definicija: sami korisnici to tvrde, koriste sustav već neko izvjesno vrijeme (npr. godinu dana)
    - formalna definicija: broj sati provedenih koristeći sustav (npr. novi sustavi), zahtjev na ispitne korisnike: koristiti sustav izvjesni broj sati prijemjerenja efikasnosti
- lakoća pamćenja (memorability)
  - o povremeni korisnici (casual user) → treća velika skupina korisnika
    - sustav koriste s prekidima, a ne često kao eksperti
    - sustav su već koristili, samo se trebaju podsjetiti kako ga koristiti
  - o lako učenje → u velikoj mjeri lako pamtivo sučelje
  - mjerenje pamtivosti sučelja
    - mjerenje vremena obavljanja tipičnih ispitnih zadataka → standardno ispitivanje povremenih korisnika
    - ispitivanje pamćenja (eng. memory test) nakon završetka izvođenja ispitnih zadataka→ korisnici trebaju:
      - objasniti efekte raznih komandi
      - imenovati komandu (ili nacrtati ikonu) koja izvršava neku akciju
      - ocjena pamtivosti sučelja → broj ispravnih korisnikovih odgovora
- utjecaj pogrešaka (errors)
  - o želja → korisnici čine što manje pogrešaka pri korištenju sustava
    - tipična definicija pogreške → bilo koja akcija koja ne postiže željeni cilj
    - mjerenje iznosa pogrešaka sustava
      - brojanje takvih akcija izvršenih prilikom obavljanja nekog specificiranog zadatka
      - mjerenje → dio eksperimenta za mjerenje nekog drugog atributa upotrebljivosti

- o utjecaj različitih pogrešaka → visoko promjenjiv
  - pogreške koje korisnik trenutno ispravlja:
    - nema drugih efekata osim usporavanja rada korisnika
    - ne broje se posebno: → efekt uključen u efikasnost korištenja
  - pogreške koje su po prirodi katastrofičnije:
    - korisnik ih nije otkrio: pogrešni rezultat posla
    - mogu uništiti korisnikov rad: oporavak je težak! → brojati ih odvojeno od manjih pogrešaka; uložiti poseban napor da se smanji njihova učestalost
- subjektivno zadovoljstvo (subjective satisfaction) → "koliko je ugodno koristiti sustav?"
  - o pojam subjektivnog zadovoljstva kao atributa upotrebljivosti bitno različit od općenitog stava javnosti prema računalima
  - ustanovljavanje subjektivnog zadovoljstva
    - psihofiziološke mjere: → mjerenje razine stresa i udobnosti korisnika: npr. širenje zjenica, puls, krvni tlak, razina adrenalina u krvi (- uvjeti provođenja eksperimenata prilično složeni, uvjeti provođenja mogu utjecati na eksperiment!)
    - subjektivne preferencije korisnika radi vrednovanja prirode ugode nekog sučelja → uobičajeni način mjerenja subjektivnog zadovoljstva korisnika (pitati korisnika za njegovo subjektivno mišljenje, usrednjivanje odgovora više korisnika→ objektivna mjera ugode (pleasentness) korištenja sustava, tipično kratkim upitnicima)
  - o mjerenje subjektivnog zadovoljstva kratkim upitnicima (short questionnaires) → ispitivanje korisnika nakon korištenja sustava (debriefing session)
    - već instalirani sustav → korisnici ispunjavaju upitnike bez posebne ispitne procedure
    - potpuno novi sustav → korisnici iskazuju subjektivno mišljenju tek nakon korištenja sustava, za neki stvarni zadatak
  - upitnici za vrednovanje subjektivnog zadovoljstva:
    - tipično vrlo kratki, premda postoje i duže verzije
    - tipično korisnici trebaju ocijeniti sustavna skali 1-5 ili 1-7 → neparni broj mogućnosti (normalno se koristi Likertova skala i Semantička diferencijska skala)
    - Likertova skala (Likert scale) → upitnikom se postuliraju neke tvrdnje, korisnici trebaju ocijeniti svoj stupanj slaganja s njima npr. na skali (rating scale) 1-5:
      - 1: jako se ne slaže (Strongly disagree)
      - 2: djelomično se ne slaže
      - 3: ne slaže se niti se slaže
      - 4: djelomično se slaže
      - 5: jako se slaže(Strongly agree)

- semantička diferencijska skala (semantical differential scale)
  - nabrajanje po dva oprečna pojma uzduž neke dimenzije
  - od korisnika se traži da smjeste sustav uz najprikladniju ocjenu za tu dimenziju
- konačna ocjena subjektivnog zadovoljstva:
  - srednja vrijednost ocjena individualnih odgovora (kompenzirati eventualno korišteni
     "obrnuti polaritet" slaganje s pitanjem daje negativnu ocjenu sustava )
  - naprednije metode ~ sociologija i psihometrija: → teorija skala ocjene (rating scale theory)
- osiguranje pravilne interpretacije pitanja kod korisnika → skale podvrći pokusnom ispitivanju (pilot testing)
- (maksimirati brzinu odgovaranja-upitnik mora biti kratak)

## 4. Inteligentna korisnička sučelja

## 4.1. Definicija područja i pojmova

- transparentnost korisničkih sučelja → upotrebljiva sučelja
- dodatno voditi računa o → individualnim potrebama krajnjeg korisnika (zahtjevima, vještinama i očekivanjima), a sve to kroz različite stupnjeve inteligentnog ponašanja
- osnovni problemi → udovoljavanje kontradiktornim zahtjevima
- (različitih korisnika, sustava, zadataka i okruženja)
- inteligentna korisnička sučelja → složeno, multidisciplinarno područje istraživanja računalne tehnologije koje se bavi temama vezanim uz primjenu umjetne inteligencije i tehnika temeljenih na znanju u raznim aspektima HCI-a
- posreduje između korisnika i računalnog sustava u cilju premoštavanje jaza između čovjekove potrebe za informacijama i sposobnosti stroja da joj udovolji
- inteligentno sučelje vs. inteligentni sustav sa sučeljem
  - o razlikovati:
    - sustav s inteligentnim sučeljem prilikom rada s korisnikom koristi inteligentne tehnike →
       model korisnika, znanje o funkcionalnosti sustava, pomoć korisniku
    - inteligentni sustav sa sučeljem može generirati informaciju koja je 'inteligentna', ali sučelje samo po sebi ne krasi nikakva inteligencija



- primjena IUI koncepta u raznolokim područjima istraživanja:
  - o prilagodljiva korisnička sučelja
  - o sustavi s mogućnošću korisnikove prilagodbe (customization)
  - predviđajuća (predictive) sučelja
  - o inteligentni tutorski sustavi
  - o sustavi inteligentne pomoći
  - o interakcija temeljena na agentima
  - alati za generiranje inteligentnih sučelja
  - o inteligentni više medijski sustavi i sl.
- razvoj IUI u različitim područjima primjene:
  - o arhitektura
  - o poslovanje
  - o financije
  - o (inteligentno) poučavanje
  - filtriranje informacija
  - vizualizacija i sl.
- inteligentna korisnička sučelja → osnovni smjer razvoja današnjih istraživanja unutar HCI
- područje IUI-a → pitanja koja nisu ograničena i definirana samim
- područjem primjene
  - o kako interakciju učiniti jasnijom i učinkovitijom?
  - o kako sučelje može osigurati bolju podršku kako korisnikovim zadacima, tako i njegovim ciljevima?
  - kako informaciju što djelotvornije prikazati?
  - kako olakšati dizajn i implementaciju upotrebljivog i učinkovitog sučelja?
- niz razloga uvjetuje intenzivna istraživanja unutar područja IUI-a:
  - o korisnička sučelja svakim danom postaju sve složenija
  - o korisnička sučelja su previše kruta, nefleksibilna i statična → 'one size fits all'
  - o korisnička sučelja se ne mijenjaju u skladu s potrebama krajnjih korisnika
  - o korisnička sučelja međusobno ne surađuju jedna s drugima
- vrste inteligentnih tehnika (u cilju udovoljavanja razlozima):
  - prilagođavanje korisnicima prilagođavanje interakcije (korisnicima, okruženjima)
  - modeliranje korisnika –tehnike koje sustavu omogućavaju održavanje znanja o korisniku
  - o tehnologije prirodnog jezika interpretiranje ili generiranje izražavanja u prirodnom jeziku, pismeno ili usmeno
  - modeliranje dijaloga tehnike koje omogućavaju dijalog u prirodnom jeziku, kao i kombinaciju s ostalim sredstvima interakcije (više-načinski dijalog)
  - o generiranje objašnjenja tehnike koje omogućavaju objašnjavanje rezultata

- Što u biti čini korisničko sučelje inteligentnim?
  - o inteligentne tehnike koje upošljavaju sustavi s IUI osiguravaju neke osnovne karakteristike:
    - sučelje se može prilagoditi potrebama različitih korisnika
    - sučelje je u mogućnosti naučiti nove koncepte i tehnike
    - sučelje može predvidjeti potrebe korisnika
    - sučelje može preuzeti inicijativu, te korisniku davati određene prijedloge
    - sučelje može osigurati objašnjenja svojih aktivnosti
  - o ovakvim svojstvima IUI:
    - osiguravaju prirodniju interakciju između čovjeka i stroja
    - imitiraju komunikaciju između ljudi
    - predstavljaju rješenje ostvarivanja upotrebljivih i učinkovitih korisničkih sučelja
  - o IUI osiguravaju jedini način udovoljavanja određenim ciljevima upotrebljivosti (npr. udovoljavanje promjenjivim korisnikovim zahtjevima)

## 4.2. Opis ključnih podpodručja

- vrste inteligentnih korisničkih sučelja:
  - o prilagodljiva sučelja → pokušavaju identificirati uzorke ponašanja, predvidjeti ciljeve korisnika
  - o informativna sučelja → filtriraju velike količine informacija u skladu s korisnikovih potreba
  - o generička sučelja → generiraju vrijednosti podataka olakšavajući time korisnikovu potrebu za njihovom identifikacijom i specifikacijom
  - o sučelja temeljena na agentima → autonomna programska podrška koja omogućava (ili sugerira)
     izvođenje određenih zadataka umjesto korisnika

## 4.3. Inteligentna korisnička sučelja (IUI) -zaključci

- efikasna implementacija i primjena IUI-a zasigurno osigurava:
  - o efikasniju interakciju → brže izvršavanje zadataka uz manje uloženog 'rada'
  - o efektivniju interakciju → 'doing the right thing at the right time',
  - o krojenje sadržaja i stila interakcije kontekstu korisnika, zadatka i dijaloga
  - o prirodniju interakciju → održavanje govorne, pisane, kao i interakcije pokretom,
  - isto kao prilikom komunikacije između ljudi

#### 4.4. Prilagodljiva korisnička sučelja (adaptive user interfaces)

- razvijaju se u cilju osiguravanja visoke upotrebljivosti
- oblikovana tako da 'kroje'interaktivno ponašanje sustava s obzirom na individualne potrebe korisnika i promjenjive uvjete unutar okruženja primjene
- korisničko sučelje naziva se inteligentnim u ovisnosti o njegovom stupnju prilagođavanja korisnikovim potrebama
- BITNO: automatsko prilagođavanje sustava tokom vremena promjenjivim korisnikovim potrebama i karakteristikama → dinamička modifikacija sučelja

- prilagodljiva korisnička sučelja se javljaju ranih '80tih
- razna područja primjene:
  - o inteligentna pomoć
  - o inteligentno podučavanje
  - filtriranje informacija
  - o inteligentni agenti
  - o računalom podržani suradnički rad
- razine prilagođavanja temeljene na složenosti prikaza koje podržava sustav i na efikasnosti prilikom njihovog korištenja
- jednostavni prilagodljivi sustavi → koriste čvrst mehanizam pobuda i odgovora
- samo-regulirajući sustavi → prate efekte prilagodljivosti u narednim interakcijama, te je ujedno vrednuju metodom pokušaja i pogrešaka
- samo-posredni sustavi → prate efekte prilagodljivosti na modelu interakcije, stoga se moguća prilagođavanja prvo mogu isprobati u teoriji, a zatim se ´prebaciti u praksu
- samo-modificirajući sustavi → u mogućnosti su mijenjati prikaze i time donositi zaključke o interakciji
- HCI → postupci korisnički-usmjerenog razvojnog procesa unutar modela ciklusa života razvoja sučelja, diferenciraju se sljedeći stupnjevi prilagođavanja:
  - o inicijativa odluka subjekta (sustav ili korisnik) o potrebi prilagodbe
  - prijedlog alternative prilagođavanja
  - o odluka odabir jedne alternative
  - o izvedba izvršavanje odabrane alternative
- s općeg stanovišta razlikuju se dvije osnovne kategorije prilagođavanja:
- prilagođavanje komunikacije: korisnik izvršava iste zadatke, ali se prilagođava način njezine/njegove komunikacije s računalom (stil interakcije)
- prilagođavanje funkcionalnosti:korisniku daje mogućnost korištenja novih ili složenijih funkcija u ovisnosti o stjecanju novih znanja o sustavu
- ugrađivanje inteligencije u sučelje sustava obavezno treba realizirati u sklopu okvira kojeg tvore postupci razvoja sučelja
- mnogo (skupova) principa i smjernica namijenjenih generiranju dobrog dizajna, neznatno onih namijenjenih ugradnji prikladne prilagodljivosti:
  - 1. prilagođavanje sustava izvršiti na onim mjestima gdje se korisnici mogu najmanje prilagoditi
  - 2. prilagođavati svojstva koja imaju najveći utjecaj na interakciju
  - 3. prilagođavanje usmjeriti potrebama povremenih korisnika, kao i onih s eventualnim poteškoćama
- umjesto apstraktnih modela sustava s prilagodljivim sučeljem prikazivana arhitektura određenih prototipova

- opća arhitektura prilagodljivog sustava sastavljena iz tri modela:
  - o model korisnika
  - o model sustava
  - o model interakcije



- opća arhitektura prilagodljivog sustava (overall architecture for an adaptive system):
  - o model sustava → opisuje karakteristike sustava koje se mogu mijenjati, odnosno njegove prilagodljive aspekte
  - o model korisnik → opisuje korisnika s kojim sustav može biti u interakciji, prikazuje/sadrži korisnikove individualne karakteristike
  - o model interakcije → uključuje mehanizme zaključivanja, prilagođavanja i vrednovanja, tzv.
    interakcijska baza znanja, te time opisuje stvarna prilagođavanja sustava; → dodatno uključuje i
    zapis interakcije tzv. zapis dijaloga