MNIST Image Classification

Dhayanidhi Gunasekaran

University at Buffalo dhayanid@buffalo.edu

Abstract

To implement machine learning for the task of classification.

1 Project Statement

To implement the MNIST image classification problem using various classification models such as Logistic regression, Neural Network, SVM and Random Forest classifier. Also, to implement the ensemble of all the classifiers and to combine the results of individual classifiers. Finally, to test the trained model with USPS Dataset.

2 Solution

2.1 Data Preparation

The given set of MNIST images are processed to training, validation and testing dataset. Each image is of shape 28 * 28 which is then processed to form a single dataset containing 784 features. The training dataset contains 50,000 images while the validation dataset and testing dataset contains 10,000 images.

The model is trained using training dataset while the hyperparameter tuning is done with validation dataset. Finally, the model accuracy is calculated using testing dataset.

2.2 Logistic Regression

The problem of MNIST image classification is solved by Multinomial Logistic regression in which the logistic regression model classifies the input images in to more than three categories. Since there are ten different numerical digits this is 10 class Logistic regression where the output ranges from 0-9.

Logistic regression is similar to linear regression in which the model is trained and the output is generated with the only difference that the output is probabilistic to classify the input to output categories.

The following is the representation of Logistic regression using input features, Weight and output. The input feature phi can be denoted as

$$\boldsymbol{\phi} = [\phi_1, ..., \phi_M]^T$$

The activation can be found by using the following formula

$$a_k = \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{\phi} + b_k$$

where w is the weight and b is the bias.

The obtained activation is then converted to the range of 0 -1 using Softmax activation function.

$$Y = Softmax(a)$$

where the Softmax function is represented as

$$p(C_k \mid \mathbf{\phi}) = y_k(\mathbf{\phi}) = \frac{\exp(a_k)}{\sum_{j} \exp(a_j)}$$

2.2.1 One hot vector representation

One hot encoding transforms categorical features to a format that works better with classification and regression algorithms. In the given problem, there are 10 output categories for the integer values from 0-9.

For example, integer 3 can be represented as follows.

$$3 = [0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]$$

2.2.2 Gradient Descent solution

The loss can be computed using the following formula,

$$E(\boldsymbol{w}_{1},...,\boldsymbol{w}_{10}) = -\ln p(T \mid \boldsymbol{w}_{1},...,\boldsymbol{w}_{10}) = -\sum_{n=1}^{N} \sum_{k=1}^{10} t_{nk} \ln y_{nk}$$

Since we use one hot encoding to represent the target, the values which representing the particular digit gets contributed the loss value while the remaining values in the matrix produces zero value.

The gradient of the error function can be found as

$$\nabla_{\mathbf{w}_{j}} E(\mathbf{w}_{1}, ..., \mathbf{w}_{K}) = \sum_{n=1}^{N} (y_{nj} - t_{nj}) \phi(\mathbf{x}_{n})$$

The computed gradient is subtracted to the weight and the process is repeated until the model converges.

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \eta \nabla E_n$$

2.2.3 Evaluations

The loss graph is plotted as follows.

Figure 1: Loss graph

Figure 2: Iterations vs Accuracy

The hyperparameters used for training the model is listed below.

Hyperparameter	Value
Learning Rate	0.1
No. of iterations	500
Regularization factor	0.1
Accuracy MNIST	87%
Accuracy USPS	33%

Table 1: Hyperparameters

2.2.3.1 Confusion Matrix

A confusion matrix is a table that is often used to describe the performance of a classification model (or "classifier") on a set of test data for which the true values are known.

Confusion matrix for MNIST Logistic regression

[[949	0	2	2	0	2	16	1	8	0]
[0	1100	4	3	1	1	4	0	22	0]
[15	25	845	26	18	0	28	22	45	8]
Γ	5	4	21	891	1	24	8	17	25	141

[3	10	5	0	861	0	16	2	10	75]
[28	17	3	91	21	628	31	11	45	17]
[20	5	13	2	13	17	883	0	5	0]
[4	42	24	1	13	0	4	887	9	44]
[11	28	13	39	12	18	17	15	801	20]
[15	14	10	13	51	9	2	27	9	859]]

Confusion matrix for USPS Logistic regression

[[711	5	397	48	330	39	73	37	91	269]
[288	307	155	267	286	33	45	285	320	14]
[288	44	1116	123	75	39	108	100	89	17]
[168	4	140	1158	46	173	48	76	119	68]
[127	105	37	46	1098	86	25	120	247	109]
[251	26	220	244	57	834	149	83	96	40]
[539	17	366	97	119	92	648	26	65	31]
[218	262	342	373	72	68	44	283	301	37]
[286	46	180	210	184	386	140	39	442	87]
[109	238	170	409	195	55	18	361	319	126]]

2.3 Neural Network

Neural network is the network of artificial neurons or nodes connected together mathematically to solve machine learning problems. There are number of architectures in neural networks such as perceptron, Convolutional neural network, Recurrent neural network, Long short term memory and so on.

Dense neural network is regular neural network in which each neuron receives input from all the neurons in previous layer thus called as dense neural network. The layer has a weight, bias b and activation of previous layer.

In our implementation of neural network, we have used two activation functions such as Sigmoid and Softmax Activation function. It is a two hidden layer neural network of classes 64 and 10 respectively.

2.3.1 Evaluations

The evaluation metrics for the neural network by tuning the hyperparameters are as follows.

Hyperparameter	Value
Number of epochs	10
Batch size	128
No. of layers	2
Accuracy MNIST	92%
Accuracy USPS	30%

Table 2: Hyperparameters for Neural network

Figure 3: Batch size vs Accuracy

Confusion matrix for MNIST

[[951	0	3	2	2	6	11	1	4	0]
[0	1103	3	4	0	0	4	1	18	2]
[9	1	932	17	11	6	10	15	29	2]
[3	0	23	922	0	26	1	11	16	8]
[1	4	4	0	895	1	11	1	3	62]
[11	2	4	47	7	776	11	5	20	9]
[16	3	7	1	12	13	900	1	5	0]
[3	10	22	7	6	0	0	943	5	32]
[12	3	6	22	8	23	10	12	871	7]
[14	0	2	12	22	10	1	19	8	921]]

Confusion Matrix for USPS

[[765	0	523	44	81	199	7	45	30	306]
[187	66	1040	295	4	138	1	250	11	8]
[131	0	1633	59	9	136	0	14	12	5]
[130	0	392	1091	0	349	1	27	5	5]
[158	23	318	82	554	317	1	227	145	175]
[169	4	384	121	4	1267	3	30	12	6]
[377	0	1140	23	36	303	91	12	5	13]
[230	23	1017	374	4	109	0	212	13	18]
[292	4	492	168	24	857	10	28	89	36]
[61	53	427	474	27	225	0	429	173	131]]

2.4 Support Vector Machines

Support vector machines are the supervised learning model with associated learning algorithms that analyze data used for classification and regression. The idea behind SVM is constructing the hyperplane which is used to classify the data. There are many hyperplanes that might classify the data. The best hyperplane is the one that represents the largest separation or margin between the classes. So the hyperplane is chosen based on the distance from the nearest data point on either side is maximum. There are types of SVM, of which Radial Basis Function (rbf) is the one that is implemented in this classification.

2.4.1 Evaluations

The evaluation metrics for the Support vector machine by tuning the hyperparameters are as follows.

Hyperparameter	Value
Kernel	Radial Basis Function(rbf)
C range	2
Gamma range	0.05
Accuracy MNIST	98%
Accuracy USPS	26%

Table 3: Hyperparameters for SVM

Confusion matrix for MNIST

[[982	0	5	0	0	0	1	0	1	2]
[0	1056	1	2	0	0	2	1	2	0]
[1	0	980	0	0	1	0	3	5	0]
[0	0	3	1007	0	6	0	1	11	2]
[0	5	0	0	969	0	0	1	2	6]
[2	0	3	10	2	887	4	1	5	1]
[2	0	0	0	1	1	963	0	0	0]
[0	6	5	0	1	0	0	1071	0	7]
[1	0	4	4	0	3	1	0	995	1]
[2	3	2	7	8	3	0	5	6	925]]

Confusion matrix for USPS

[[226	0	1564	2	26	35	2	0	79	66]
[78	257	713	172	262	77	12	337	88	4]
[8	0	1944	6	2	20	1	6	11	1]
[4	0	1193	725	0	41	0	0	37	0]
[6	0	1045	18	522	96	0	56	252	5]
[15	0	1305	16	1	626	0	0	37	0]
[78	0	1534	2	10	61	290	0	22	3]
[17	6	1435	129	6	134	0	220	52	1]
[7	0	1387	14	4	221	0	0	367	0]
[1	0	1508	79	26	29	0	39	267	51]]

2.5 Random Forest Classification

Random forest is the supervised learning algorithm where it builds an ensemble of decision trees most of the time trained by bagging method. Random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction. Decision tree is a model in which an item is observed and the target value about an item is predicted. In Classification model, the target variables get a discrete set of values.

2.5.1 Evaluations

The evaluation metrics for the Random forest classification by tuning the hyperparameters are as follows.

Hyperparameter	Value
No of estimators	10
Accuracy MNIST	94%
Accuracy USPS	31%

Table 4: Hyperparameters for Random Forest classifier

Confusion Matrix for MNIST dataset

[[978	0	1	2	1	0	2	0	5	2]
[0	1049	7	4	0	1	1	1	0	1]
[4	1	954	4	3	1	2	12	6	3]
[3	1	11	971	1	17	0	3	18	5]
[2	3	4	3	931	3	6	2	6	23]
[9	0	5	44	3	828	11	1	9	5]
[3	2	2	0	5	6	945	0	3	1]
[2	9	13	3	6	1	1	1045	1	9]
[3	8	12	21	3	18	4	6	922	12]
[5	0	2	13	21	12	4	12	7	885]]

Confusion Matrix for USPS dataset

[[730	36	282	80	322	172	91	123	22	142]
[111	582	208	145	140	60	64	652	26	12]
[195	146	1038	133	62	147	60	163	22	33]
[109	70	278	973	67	315	20	98	19	51]
[77	207	163	88	793	156	53	311	59	93]
[271	74	221	233	59	927	50	122	21	22]
[431	103	355	115	131	235	506	83	17	24]
[70	372	526	192	56	205	39	487	14	39]
[181	120	317	315	96	616	78	96	136	45]
[87	299	369	305	215	135	39	388	55	108]]

3 Questions to be answered

3.1 No Free lunch Theorem

No free lunch theorem states that there is no optimization technique which is the best for the generic and all special cases. We have trained our model using MNIST dataset and got the accuracy of nearly 95 percent which shows that the model trained is a best technique for the MNIST dataset. However, the same model does poor classification with USPS dataset which is also the same image classification problem which gives the accuracy of 30 percent.

This proves the No Free lunch theorem by which the logistic regression is best technique which works well for all the generic cases.

3.2 Confusion Matrix and best classifier

The confusion matrix for the all the classifier is mentioned in the previous section. Based on the metrics provided, Support vector Machine classifies the images with highest accuracy of 98%.

3.3 Ensemble Techniques

Ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. In this implementation we combine all the 4 classifiers such as Logistic, Neural Network, SVM and Random Forest together to produce a single classification model.

Majority voting

It is type of voting classification, in which the results of the individual data of all the classifiers are considered and the one with more than 50% matching is considered to be the result. For example is a particular image is to be classified into particular category say 5, then more than half, which is minimum 2 classifier should predict that particular image as 5.

The combined accuracy of the ensemble model is 96% which is less than the SVM's Accuracy of 98%.

Figure 4: Classifiers vs Accuracy

References

- [1] https://matplotlib.org/api/api_overview.html
- [2] https://keras.io
- [3] https://scikit-learn.org/stable/modules/ensemble.html