Ejercicio 2

Consigna

- (a) Enuncie el principio de inducción primitiva para el conjunto P definido inductivamente por las siguientes cláusulas:
- 1. $0 \in P$
- 2. Si $n \in P$ entonces $n + 2 \in P$
- (b) Pruebe utilizando este principio, que para todo $n \in P$, existe $m \in \mathbb{N}$ tal que n = m + m

Resolución (parte a)

Enunciemos el PIP para el conjunto P:

Sea S una propiedad sobre el conjunto P, si:

- 1. S(0)
- 2. Si S(n) entonces S(n+2)

Entonces la propiedad S se cumple para todos los elementos de P

Resolución (parte b)

Llamemos S a la propiedad que queremos probar:

$$S: \forall n \in P$$
, existe $m \in \mathbb{N}$ tal que $n = m + m$

CASO BASE S(0): Se cumple y m=0

PASO INDUCTIVO Suponemos que S(n) se cumple, queremos probar que se cumple también S(n+2).

Cómo S(n) se cumple, puedo decir que $n=m_1+m_1$ con $m_1\in\mathbb{N}$. Con este razonamiento, podemos decir que: $n+2=m_1+m_1+2=(m_1+1)+(m_1+1)$ De esto derivamos que para n+2 el valor de m es: $m=m_1+1$

Esto concluye la prueba.