

Data analysis on PM_{2.5} exposure factors with environmental and survey data

Presenter: Dr. Ming-Chien Mark Tsou
Research Center for Environmental Changes
Academia Sinica

Outline

Part 1:
PM data
processing

Part 2:
Timeactivity
diary (TAD)
data
processing

Part 3:

Multiple
linear
regression
for exposure
factors

Objectives

- To evaluate important factors of personal PM_{2.5} exposure during athome period
 - Outdoor PM2.5 concentration
 - Household exposure sources
 - Ventilations

Part 1: PM data processing

PM data processing

- From Line 1 to 63
- The same procedures as the PM data processing for GAMM
- To export the PM data for each subject

1. To get the data time directly from AS-LUNG data for creating the 5-min intervals

```
65
             # To calculate 5-min average PM data for exposure factor (based on ASLUNG time)
             library('lubridate')
66
             date_1<-c(ymd(as.character(ASLUNGt$date)))</pre>
67
68
             time<-substr(ASLUNGt$time,1,5)
             date_2<-paste(date_1,time)</pre>
69
70
             mm<-c(as.numeric(substr(date_2,16,16)))
71
             mm5 < -c()
72 -
             for (l in 1:length(mm)) {
73 -
                 if(mm[1]<5){
                     mm5[]]<-"0~4"
74
75 -
                 }else{
                      mm5[1]<-"5~9"
76
77 -
78 -
79
             date_3 <- paste0(substr(date_2,1,15),mm5)</pre>
             date_4<-as.data.frame(table(date_3))</pre>
80
```

^	date_3	Freq	\$
1	2018-10-08 00:00~4		20
2	2018-10-08 00:05~9		20
3	2018-10-08 00:10~4		20
4	2018-10-08 00:15~9		20
5	2018-10-08 00:20~4		20
6	2018-10-08 00:25~9		20
7	2018-10-08 00:30~4		20
8	2018-10-08 00:35~9		20
9	2018-10-08 00:40~4		20
10	2018-10-08 00:45~9		20
11	2018-10-08 00:50~4		20
12	2018 10 08 00.550		20

There are 20 data between 00:00 to 04:59

2. To calculate the 5-min average PM data

```
81
            ALFinal<-data.frame()
82 -
            for(j in 1:dim(date_4)[1]){
83
                ALFinal[j,1] < -date_4[j,1]
84
                ALFinal[j,2]<-substr(bb[k],10,14)
85
                ALFinal[j,3]<-mean(as.numeric(ASLUNGt[which(date_3==date_4[j,1]),1]),na.rm = TRUE) # 0=ho
86
                ALFinal[j,4]<-mean(as.numeric(ASLUNGt[which(date_3==date_4[j,1]),2]),na.rm = TRUE) # 1=ou
                ALFinal[j,5]<-mean(as.numeric(ASLUNGt[which(date_3==date_4[j,1]),6]),na.rm = TRUE)
87
88
                ALFinal[j,6]<-mean(as.numeric(ASLUNGt[which(date_3==date_4[j,1]),7]),na.rm = TRUE)
89
                ALFinal[j,7]<-mean(as.numeric(ASLUNGt[which(date_3==date_4[j,1]),9]),na.rm = TRUE)
90
                ALFinal[j,8]<-mean(as.numeric(ASLUNGt[which(date_3==date_4[j,1]),10]),na.rm = TRUE)
                ALFinal[j,9] \leftarrow mean(as.numeric(ASLUNGt[which(date_3==date_4[j,1]),8]),na.rm = TRUE)
91
                ALFinal[j,10]<-date_4[j,2]
92
93 -
            colnames(ALFinal)<-c("Date","S_no","Season","AL_Type","TEM","HUM","PM1","PM2.5","CO2","Freq")
94
```

To create a variable for the number of data in this 5-min interval.

3. To exclude the time with insufficient data (half of default number of data)

```
# To exclude the 5-min intervals which contained less than half of expected number of data
 95
 96 -
             if(substr(aa1[p],9,9)=="0"){
                                                                                  The default number of data
 97
                  ALFinal2 <- ALFinal[which(ALFinal$Freq>=3),]
                                                                                  in each 5-min interval
 98 -
             }else{
 99
                  ALFinal2 <- ALFinal[which(ALFinal$Freq>=10),]
                                                                   AS-LUNG-O
                                                                                            1x5=5
100 -
                                                                   AS-LUNG-I
                                                                                           4x5 = 20
```

ALFinal2 <- data.frame(subset(ALFinal2,select=c(Date,S_no,Season,AL_Type,TEM,HUM,PM1,PM2.5,CO2)))
outputname<-paste0("PM_",substr(bb[k],10,14),"_",Season[i]+1,"_",substr(aa1[p],9,9),"_5 min_ASLUNG_Time.csv")
write.csv(ALFinal2,outputname,row.names=FALSE,na="")

4. To export the dataset for 5-min average data for each subject

PM_LA010_1_I_5 min_ASLUNG_Time
PM_LA014_1_P_5 min_ASLUNG_Time
PM_LA001_1_O_5 min_ASLUNG_Time
PM_LA021_1_O_5 min_ASLUNG_Time
PM_LA010_1_O_5 min_ASLUNG_Time
PM_LA010_1_O_5 min_ASLUNG_Time

AS-LUNG-P

2020/10/5

HiASAP-2020 AI

8

4x5=20

5-min average PM data combination for all subjects

- From Line 108 to 159
- The same procedures as the PM data processing for GAMM from Line 133 to 184
- To export the final dataset for PM data for exposure factors evaluation

1	Date	Year	Month	Day	Hour	Minute	Minute_3(S_no	Season	AL_Type	TEM	HUM	PM1	PM2.5	CO2
2	2018/10/8 13:11	2018	10	8	13	11	1 LA001	0	3	26.305	78.895	2.95625	3.3784	449.95
3	2018/10/8 13:16	2018	10	8	13	16	1 LA001	0	3	26.71	78.17	2.9818	3.4876	448.05
4	2018/10/8 13:21	2018	10	8	13	21	1 LA001	0	3	27.01	77.315	3.1351	3.6332	440.65
5	2018/10/8 13:26	2018	10	8	13	26	1 LA001	0	3	27.165	76.05	3.1862	3.6332	428.65
6	2018/10/8 13:31	2018	10	8	13	31	2 LA001	0	3	27.38	75.31	3.31395	3.797	426.5
7	2010/10/0 12.26	2010	10	0	12	26	2 T A 001	0	2	27 40000	75 70000	2 520000	2.070	507 2770

Part 2: Time-activity diary (TAD) data processing

TAD raw data

Locations Ventilations Sources Activities K В Μ Ν 0 Q R C D Ε G 1 S no Day Minute_3(Place1 Place2 Ventilation Ventilation Activity 1 Activity 2 AP1 AP3 Year Month Date WD Hour AP2 Sensor 2 LA001 2018 13 3 LA001 2018 10 13 4 LA001 2018 10 14 5 LA001 2018 10 14 6 LA001 2018 10 15 7 LA001 2018 10 15 8 LA001 2018 10 16 9 LA001 3 2018 10 16 10 LA001 2018 10 17 0 11 LA001 2018 10 12 LA001 2018 10 18 0 13 LA001 2018 10 18 14 LA001 2018 19 10 15 LA001 2018 10 19 16 16 LA001 20 2018 10 17 LA001 2018 20 10 10 18 LA001 2018 10 21 9 0 0 2010

TAD data processing

```
##TAD data processing
AD <- read.csv(paste0(way,"/TAD_Raw.csv"))

1. To read the TAD data
```

- From Line 42 to 117
- To create variables by grouping different locations, ventilations, activities or sources
- For example:

2. To create variables for the following analysis

Variables for TAD data

You can create variables according your requirements

Location (microe	environments)	Ventilation	Activities		Sources		
Home	Indoor environments	Window open	Sleeping	Taking bath	Vehicle exhaust	Open burning	
Indoor environments	(including transportation)	Window closed	Commuting	Sedentary activities	Cooking	Factories	
Outdoor environments	Outdoor environments	AC-on	Working	Doing housework	ETS	Garbage	
Transportation (indoor)	(including transportation)		Cooking	Other	Cleaning/dust	Other	
Transportation (outdoor)			Worshipping		Burning of incense	Burning of incense/joss-	
Transportation (all)					Burning of mosquito coil	paper	
					Aromatic products		
3030/10/5			Eating HIASAD 2020	ΔΙ	Burning of joss-paper	12	

3. To merge all variables created in Step 2

TADr <- data.frame(subset(TAD,select=c(S_no,Year,Month,Day,Date,WD,Hour,Minute_30)),Loc_Home,Loc_In,Loc_Out,Loc_Trans_In,Loc_Trans_Out,Loc_Trans_

4. To group the sources with less frequency (cleaning/dust, burning of mosquito coil, aromatic products, open burning, factories, garbage and other) into "Other" group.

5. To create a variable for the time with more than one source

6. To create a variable for the time with no recorded source

7. To create a dummy variable for ventilations

```
148 Vent_D3_1<-c()
149 - for(i in 1:dim(TADr)[1]){
         if(TADr$Vent_AC[i]==0 & TADr$Vent_Closed[i]==1 & Vent_Opened[i]==0) {
150 -
151
             Vent_D3_1[i]<-1
        }else{
152 -
             Vent_D3_1[i]<-0</pre>
153
154 -
155 - }
156
157 Vent_D3_2<-c()
158 - for(i in 1:dim(TADr)[1]){
         if(TADr$Vent_AC[i]==1 & TADr$Vent_Closed[i]==0 & Vent_Opened[i]==0) {
159 -
160
             Vent_D3_2[i]<-1
161 -
         }else{
162
             Vent_D3_2[i]<-0
163 -
164 - }
165
```

	Vent_D3_1	Vent_D3_2
AC-on	0	1
Window closed	1	0
Window open (reference group)	O HIASAP-2020 AL	0

7. To create a "Season" variable

```
166
167 *
168 *
169
170 *
171
172 *
173 *
174
Season <- c()
for(i in 1:dim(TADr)[1]){
    if(TADr$Year[i]==2018){
        Season[i]<-0
    }else{
        Season[i]<-1
    }
}
174
```

175

176 177

8. To combine variables created with TAD data

```
TADr <- data.frame(TADr,S_Other2,S_Multiple,S_None,Vent_D3_1,Vent_D3_2)
```

write.csv(TADr,file="2020_Training_Course_TAD.csv",row.names=FALSE)

9. To export the final TAD dataset

1	S_no	Year	Month	Day	Date	WD	Hour	Minute_30	Loc_Hom	Loc_In	Loc_Out	Loc_Trans	Loc_Tran Loc_T
2	LA001	2018	10	8	1	1	13	1	1	1	0	0	0
3	LA001	2018	10	8	1	1	13	2	1	1	0	0	0
4	LA001	2018	10	8	1	1	14	1	0	1	0	0	0
С	T A 001 2020/	2010	10	0	1	1	1 1 HiASAP-2020	Al a	^	1	0	0	17

Part 3: Multiple linear regression for exposure factors

→ You can modify by yourself

2020/10/5 HiASAP-2020 AI 19

4. To create variables for personal PM data

```
# To create variables of outdoor, indoor and personal data of ASLUNG
PM <- read.csv(paste0(location, "HiASAP/PM/output/PM_5 min_ASLUNG_Time_All.csv"))
ALP <- PM[which(PM$AL_Type==3),]
colnames(ALP)[names(ALP) == c("TEM", "HUM", "PM1", "PM2.5", "CO2")]<-c("ALP_TEM", "ALP_HUM", "ALP_PM1", "ALP_PM2.5", "ALP_CO2")
ALP_2 <- ALP[,c(1:9,11:15)]</pre>
```

5. To create variables for indoor PM data

```
18 ALI <- PM[which(PM$AL_Type==2),]
19 colnames(ALI)[names(ALI) == c("TEM","HUM","PM1","PM2.5","CO2")]<-c("ALI_TEM","ALI_HUM","ALI_PM1","ALI_PM2.5","ALI_CO2")
20 ALI_2 <- ALI[,c(2:6,8,11:15)]
```

6. To create variables for out PM data

```
ALO <- PM[which(PM$AL_Type==1),]
colnames(ALO)[names(ALO) == c("TEM","HUM","PM1","PM2.5","CO2")]<-c("ALO_TEM","ALO_HUM","ALO_PM1","ALO_PM2.5","ALO_CO2")
ALO_2 <- ALO[,c(2:6,8,11:15)]
```

7. To merge (1) personal PM, (2) indoor PM, (3) outdoor PM, (4) TAD and (5) meteorological data for multiple linear regression

```
# To combine data
                                                            (2) Indoor PM data
                            (1) Personal PM data
   PMall <- data.frame()
   PMall <- merge(ALP_2,ALI_2, by=c("Year","Month","Day","Month","Hour","Minute","S_no"))
   PMall <- merge(PMall,ALO_2, by=c("Year","Month","Day","Month","Hour","Minute","S_no"))
                            (3) Outdoor PM data
30
                                                                                        (4) TAD data
   PMall_2 <- data.frame()
   TAD <- read.csv(paste0(location, "HiASAP/Questionnaire_TAD/output/2020_Training_Course_TAD.csv"))
    PMall_2 <- merge(PMall,TAD, by=c("Year","Month","Day","Month","Hour","Minute_30","S_no"))
34
   Meteor <- read.csv(paste0(location, "HiASAP/Meteor/Meteor_Hourly_All.csv"))</pre>
                                                                                  (5) Meteorological data
   Meteor \leftarrow Meteor[,c(1:4,14)]
    PMfinal <- merge(PMall_2, Meteor, by=c("Year", "Month", "Day", "Month", "Hour"))
38
   write.csv(PMfinal,file=paste0(outputname,".csv"),row.names=FALSE)
```

8. To select data at no-raining, awake and at-home period

```
# To select no-raining, awake and at-home period
PMfinal_A_NR_Home <- PMfinal[which(PMfinal$Precp==0 & PMfinal$Act_Sleep==0 & PMfinal$Loc_Home==1),]

# To determine a final regression model by the stepwise regression method
# To remain the variables which you are interested
aa <- PMfinal_A_NR_Home[,c(9,13,23,50,51,52,62,63,66,67)]</pre>
```

- 9. To select variables you want to add to the model
- In this case, we select outdoor PM_{2.5} concentration, source of vehicle exhaust, source of cooking, source of ETS, source of burning incense/josspaper, other sources and dummy variable of ventilation to the models

Stepwise regression method

- Forward stepwise selection
- Backward stepwise selection
- Both forward and backward selection

Stepwise regression method

Forward stepwise selection example with 5 variables:

Backward stepwise selection example with 5 variables:

Figure source: https://quantifyinghealth.com/stepwise-selection/

Multiple linear regression with stepwise regression method

10. To use the stepwise regression method to select the most important variables

```
# To use the stepwise regression method to identify and select the most useful explanatory variables from a list of # several plausible independent variables

Final_Model <- step(lm(ALP_PM2.5~., data=aa), direction="both")

summary(Final_Model)
```

 Here "ALP_PM2.5~." means all variates except personal PM_{2.5} concentration are added to the model

Results of stepwise regression method

```
Step: AIC=16313.59
Step: AIC=16315.58
ALP_PM2.5 ~ Season + ALO_PM2.5 + S_Exhaust + S_Cooking + S_Incense_JPaper + ALP_PM2.5 ~ Season + ALO_PM2.5 + S_Cooking + S_Incense_JPaper +
   S_0ther2 + Vent_D3_1 + Vent_D3_2
                                                                      S_Other2 + Vent_D3_1 + Vent_D3_2
                Df Sum of Sq
                               RSS
                                                                                      Df Sum of Sq
                                                                                                        RSS
- S_Exhaust
                        2.1 1467950 16314

    S_Cooking

                                                                                              72.7 1468022 16312
- S_Cooking
                      72.8 1468020 16314
                                                                  Vent_D3_2
                                                                                             651.0 1468601 16313
                                           (1) Model 1
                                                                                                                      Model 2
- Vent_D3_2
                      651.8 1468599 16315
                                                                                                    1467950 16314
                                                                  <none>
<none>
                            1467948 16316
                                           (Full model)
                                                                   - S_Other2
                                                                                            1972.2 1469922 16315
- S_Other2
                     1967.8 1469915 16317
                                                                  + S_Exhaust
                                                                                               2.1 1467948 16316
- S_Incense_JPaper 1
                     3697.4 1471645 16320
                                                                                            3705.2 1471655 16318
                                                                  - S_Incense_JPaper
- Season
                     5321.9 1473269 16323
                                                                  - Season
                                                                                           5486.5 1473436 16321
- Vent_D3_1
                    6632.8 1474580 16325
                                                                  Vent_D3_1
                                                                                            6653.0 1474603 16323
- ALO_PM2.5
                    27556.5 1495504 16361
                                                                  - ALO_PM2.5
                                                                                           27614.4 1495564 16359
                                                                   Step: AIC=16310.85
                                                                                          smallest
Step: AIC=16311.71
                                                                   ALP_PM2.5 ~ Season + ALO_PM2.5 + S_Incense_JPaper + S_Other2 +
ALP_PM2.5 ~ Season + ALO_PM2.5 + S_Incense_JPaper + S_Other2 +
                                                                       Vent_D3_1
  Vent_D3_1 + Vent_D3_2
                                                                                      Df Sum of Sq
                                                                                                       RSS
                                                                                                             AIC
                   Df Sum of Sq
                                     RSS
                                                                                                   1468675 16311
                                                                   <none>
- Vent_D3_2
                           652.2 1468675 16311
                                                                   + Vent_D3_2
                                                                                             652.2 1468022 16312
                                 1468022 16312
<none>
                                                                   - S_Other2
                                                                                            1966.8 1470641 16312
- S_Other2
                         1954.7 1469977 16313
                                                 ③ Model 3
                                                                                                                      Model 4
                                                                   + S_Cooking
                                                                                           73.9 1468601 16313
+ S_Cooking
                         72.7 1467950 16314
                                                                   + S_Exhaust
                                                                                               1.4 1468673 16313
+ S_Exhaust
                             2.1 1468020 16314
                        3649.8 1471672 16316 Final model
                                                                   - S_Incense_JPaper 1
                                                                                            3023.0 1471698 16314
- S_Incense_JPaper
                                                                                            5732.4 1474407 16319
                                                                   - Season
                         5527.4 1473550 16319
- Season
                                                                   - Vent_D3_1
                                                                                            6915.9 1475591 16321
- Vent_D3_1_020/10/5
                         6964.9 1474987 16322
                                                            HiASAP-2020AALO_PM2.5
                                                                                                                         26
                                                                                           27282.4 1495957 16356
- ALO_PM2.5
                         27811.8 1495834 16358
```

Results of final model

11. To run the final model for personal $PM_{2.5}$ exposure factors evaluation

```
# In order to explain the set of dummy variables of trinary variable (window open, window closed and AC-on),
# we add the dummy variable of "Vent_D3_2" into the final model
Final_Model_2 <- lm(ALP_PM2.5 ~ ALO_PM2.5+S_Incense_JPaper+S_Other2+Vent_D3_1+Vent_D3_2+Season, data = aa)
summary(Final_Model_2)
                            Call:
                            lm(formula = ALP PM2.5 ~ ALO PM2.5 + S Incense JPaper + S Other2 +
                                Vent_D3_1 + Vent_D3_2 + Season, data = aa)
                            Residuals:
                               Min
                                       10 Median
                                                               SE (standard error)
                            -55.32 -9.41 -6.92 -0.77 415.84
                            Coefficients: β (coefficients)
                                                                           p value
                                              Estimate Std. Error
                                                                 t value Pr(>|t|)
                            (Intercept)
                                              12.45380
                                                          1.05795
                                                         0.05037
                            ALO PM2.5
                                              0.35080
                                                                   6.964 4.18e-12 ***
                                                         3.73313
                            S_Incense_JPaper
                                              9.41805
                                                                          0.01170 *
                                                                  -1.846
                            S Other2
                                              -4.12492
                                                         2.23419
                                                                          0.06497
                                                                  -3.485
                            Vent D3 1
                                              -6.78389
                                                         1.94656
                                                                          0.00050 ***
                            Vent D3 2
                                             -11.19743
                                                                  -1.066
                                                        10.49940
                                                                          0.28631
                                               3.05936
                                                         0.98541
                                                                          0.00193 **
                            Season
                                                                            0.05 '.'
                            Signif. codes: 0
                                                     0.001
                                                                  0.01
                            Residual standard error: 23.95 on 2560 degrees of freedom
```

Multiple R-squared: 0.033889AP-202Adjusted R-squared: 0.03162

F-statistic: 14.97 on 6 and 2560 DF, p-value: < 2.2e-16

Partial R² estimation

12. To install (for the first time to use) and load the R packages for partial R² estimation

```
# To determine the partial R2 of each independent variable
     # install.packages("rsq") (only for first time to use)
 59
     library("rsq")
 60
 61
 62
     Partial_R2 <- rsq.partial(Final_Model_2)</pre>
                                                            13. To calculate the partial R<sup>2</sup> of each
                                                             independent variable in the model
[11 "Partial R2"
Sadius tment
[1] FALSE
$variable
[1] "ALO PM2.5"
                      "S Incense JPaper" "S Other2"
                                                           "Vent_D3_1"
                                                                             "Vent_D3_2"
                                                                                               "Season"
$partial.rsq
[1] 0.0185928613 0.0024800368 0.0013297616 0.0047219976 0.0004440941 0.0037510554
```

Results export

```
# To print out final model results to txt file
sink("Exposure_Factor_Results.txt") # redirect console output to a file
print("Stepwise")
print(step(lm(ALP_PM2.5~.,data=aa),direction="both"))
print("Final model")
print(summary(Final_Model_2))
print("Partial R2")
print(Partial_R2)
sink() # return output to the terminal
```

Results of personal PM_{2.5} exposure factors evaluation

	Personal PM _{2.5} exposure (μg/m³)								
Variables	Coefficient	95% CI	Partial R ²	<i>p</i> -value					
Outdoor PM2.5 concentration (μg/m³)	0.351	0.252, .450	0.0186	<0.001					
Burning of incense/joss-paper	9.42	2.10, 16.7	0.0025	0.012					
Other exposure sources	-4.12	-8.50, 0.254	0.0013	0.065					
Window-closed	-6.78	-10.6, -2.97	0.0047	<0.001					
AC-on	-11.2	-31.8, 9.38	0.0004	0.286					
Season	3.06	1.13, 4.99	0.0038	0.002					

• Burning of incense/joss-paper had on average the highest 5-min $PM_{2.5}$ increments (9.42 µg/m³) to personal exposure.

Thank you for your attention