AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 09/530,807

REMARKS

Claims 45, 46, 47, 48, 51, 52 and 57 are amended to delete non-elected subject matter based upon the discussion below. Claim 53 is canceled. No new matter is presented.

Accordingly, upon entry of the Amendment, claims 45-52 and 54-57 will be all of the claims pending in the application.

I. Restriction Requirement

The Examiner maintained the restriction requirement on the basis that although the claims are directed to methods of treatment the Examiner must perform a structure search for compounds of similar structure and use. Further, the Examiner states that the compounds defined in the claims have a heteroaryl ring wherein X is O or S and Y is optionally substituted C_2 - C_3 alkylene as a common structural element, but the variables embrace a large number of compounds. The Examiner also states that the claims do not recite that R^1 and R^2 are linked to form the C_5 - C_7 cycloalkyl group and therefore one would assume that the CHR 1 R 2 group is different from the C_5 - C_7 cycloalkyl.

The Examiner identified the following generic concept for examination along with the elected embodiment: compounds drawn to formula II wherein W is a C₆ cycloalkyl substituted by hydroxyl and optionally consisting of additional substituents; Z is imino; X is O; and Y is an optionally substituted C₂ alkylene. The Examiner states that the remaining subject matter of claims 45-57 is withdrawn from further consideration as constituting patentably distinct inventions.

U.S. Application No.: 09/530,807

Applicants respectfully traverse the restriction requirement for the reasons of record, which are incorporated herein. First, Applicants respectfully submit that the generic concept developed by the Examiner does not encompass the compounds elected by Applicants in the Response to Restriction Requirement filed on April 7, 2003. In the Response Applicants elected compounds drawn to formula (II) wherein:

W is optionally substituted C_5 - C_7 cycloalkyl; CHR 1 R 2 , where R 1 and R 2 are independently selected from hydrogen, optionally substituted C_1 - C_6 alkyl, optionally substituted C_3 - C_7 cycloalkyl an optionally substituted aryl;

Z is imino;

X is O; and

Y is optionally substituted C_2 - C_3 alkylene.

Applicants further identified the following compounds identified in Table 2 on page 37 of the specification as examples of compounds falling within the scope of the elected invention:

Rilmenidine (W is CHR¹R², where R¹ and R² are independently cyclopropyl)

BAY-A6781 (W is CHR 1 R 2 , where R 1 and R 2 are linked to form a C₅-C₇ cycloalkyl)

(+)-S8349 (W is CHR^1R^2 , where R^1 is CF_3 and R^2 is cyclopropyl)

(-)-S8350 (W is CHR^1R^2 , where R^1 is CF_3 and R^2 is cyclopropyl)

O501 (W is CHR^1R^2 , where R^1 and R^2 are linked to form a C_5 - C_7 cycloalkyl)

O503 (W is CHR^1R^2 , where R^1 and R^2 are independently optionally substituted C_3 - C_7 cycloalkyl)

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 09/530,807

(S)-(+)-O504 (W is CHR 1 R 2 , where R 1 and R 2 are independently hydrogen, optionally substituted C $_1$ -C $_6$ alkyl, optionally substituted C $_3$ -C $_7$ cycloalkyl or optionally substituted aryl); and

(R)-(-)O504 (W is CHR 1 R 2 , where R 1 and R 2 are independently hydrogen, optionally substituted C_1 - C_6 alkyl, optionally substituted C_3 - C_7 cycloalkyl or optionally substituted aryl)

However, the Examiner has defined the generic concept for examination as compounds drawn to formula (II) wherein W is C_6 cycloalkyl optionally substituted by hydroxyl and optionally consisting of additional substituents; Z is imino; X is O and Y is optionally substituted C_2 alkylene, which does not encompass the elected compounds. None of the elected compounds includes a W moiety in the form of a hydroxyl substituted C_6 cycloalkyl group as shown above. Further, none of the compounds specifically exemplified in the specification bears such a group. Even further, Applicants submit that original claim 1 recites an optionally substituted C_5 - C_7 cycloalkyl and that by improperly choosing a C_6 cycloalkyl instead of a C_5 - C_7 cycloalkyl, the Examiner's grouping is unduly restrictive of the claimed invention.

With respect to the Examiner's position that the claims do not recite that R^1 and R^2 are linked to form the C_5 - C_7 cycloalkyl group, Applicants respectfully submit that the specification provides support for compounds where R^1 and R^2 are linked to form a C_5 to C_7 cycloalkyl group, e.g., formulae III, IV and V, which are subgroups of formula II as previously pointed out in the Response filed on April 3, 2003. Thus, Applicants have amended the claims herein to recite "W is -CHR¹R² where R^1 and R^2 are independently selected from hydrogen, optionally substituted

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 09/530,807

 $C_1\text{-}C_6$ alkyl, optionally substituted $C_3\text{-}C_7$ cycloalkyl and optionally substituted aryl or R^1 and R^2 are linked to form an optionally substituted C_5 - C_7 cycloalkyl.

Further, Applicants' respectfully submit that the most important compounds identified as Applicants' elected compounds are compounds of formula II, VI and VII, as represented by (+)-S8349, (-)-S8350 O503, (S)-(+)-O504 and (R)-(-)O504 in Table 2 on page 37 of the specification in which W is CHR¹R². Thus, Applicants respectfully request reconsideration of the generic concept of the elected compounds to include Applicants' elected compounds wherein W is at least CHR¹R², where R¹ and R² are as defined or where R¹ and R² are linked to form an optionally substituted C_5 - C_7 cycloalkyl in the presently amended claims.

II. **Response to Claim Objections**

Claims 45-57 are further objected to for containing non-elected subject matter and the Examiner suggests that Applicants limit the claims to the generic concept identified in the Office Action.

Applicants respectfully submit that the claims are amended herein to delete the nonelected subject matter in view of the traversal of the restriction requirement and definition of the generic concept identified by the Examiner set forth above. Applicants respectfully request expansion of the generic concept to include the elected compounds as defined in the presently amended claims and withdrawal of the objection to the claims.

15

AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q59123

U.S. Application No.: 09/530,807

III. Response to Claim Rejections under 35 U.S.C. § 112, 1st Paragraph

Claims 45-57 are rejected under 35 U.S.C. § 112, 1st paragraph, as allegedly containing subject matter that is not enabled by the present specification for the reasons of record. In response to the arguments previously presented, the Examiner has indicated that the prior art does not indicate which diseases the instant compounds are useful in treating.

Applicants respectfully traverse the rejection. Applicants refer the Examiner to the following prior art references that support the treatments recited in the present claims. Copies of the references will be submitted as a supplement to this Amendment.

W as defined in Formula II, Z=NH, Y=CH₂CH₃, and X=O

- 1. U.S. Pat. No. 3,598,833 (Hiltmann et al, 1971). This patent describes aminooxazolines where W is an optionally substituted cycloalkyl. It states that it is known in the art that 2-aminooxazolines have local anesthetic properties, sedative properties and vasoconstrictory effects and have been known for use in deswelling the mucous membrane. They are also said to exhibit a strong blood pressure depressant effect and an inhibitory effect on the secretion of gastric acid.
- 2. U.S. Pat. No. 3,988,464 (Malen et al, 1976). This patent describes aminooxazolines, where W is CHR¹R² where R¹ and R² are hydrogen or alkyl or cyclopropyl and R³ is substituted cyclopropyl. The following pharmacological properties are disclosed: cardiovascular actions, CNS depression leading to hypnosis, analgesia and/or antipsychotic effects and a principal use as an antihypertensive.

AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q59123

U.S. Application No.: 09/530,807

3. U.S. Pat. No. 4,102,890 (Malen et al, 1978). This patent describes 2-aminooxazolines, where W is CHR¹R²R³ and R¹, R² and R³ are hydrogen, lower alkyl or cyclopropyl. The compounds are cardiovascular agents, which depress the central nervous system with effects including hypnosis, analgesia and neuromodulation. They are also antihypertensive.

- 4. **DE 2,951,247 (Malen et al, 1979).** This describes aminooxazolines, where W is CHR(CF₂)nCF₃ and R is lower alkyl or cycloalkyl. The compounds are described as being hypotensive with weak central nervous system depressant action. They are said to be suitable as antihypertensives without sedation, drowsiness or analgesia.
- 5. U.S. 4,267,345 (Malen, et al, 1981). This patent describes aminooxazolines, where W is CHR¹R²R³, wherein R¹ is (CF₂)nCF₃, R² is aryl 2-furyl, 2-thienyl an R³ is hydrogen, methyl, ethyl or cyclopropyl. They are described as useful for treatment of hypertension.
- 6. U.S. Pat. No. 4,378,366 (Malen et al, 1983). This patent describes aminooxazolines, where W is CHR¹R² and R¹ is (CF₂)nCF₃. They are described as having antihypertensive pharmacological activity with a low degree of sedative activity.
- 7. **U.S. Pat. No. 5,034,406 (Gluchowski, 1991).** This patent describes aminooxazolines, where W is a substituted cycloalkyl of 5-7 carbons, preferably 6. The pharmacological properties include: local anesthetic, sedative, vasoconstriction, deswelling of mucous membranes, hypotensive and suppression of gastric secretion.

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 09/530,807

The Examiner has also suggested that the testing protocol used in the specification has not been shown to be predictive of the alleged utilities, and the art pertaining to the diseases referred to in claims 45 to 57 remain highly unpredictable.

Applicants respectfully traverse this statement. Applicants have generated a body of experimental data and published data which supports the method of treatment claims. Table I attached hereto provides affinities for the $Ox(I_3)$ receptor, the significance of which is discussed in Amendment filed on October 1, 2002.

Further, Applicants have looked at a number of the compounds in accepted experimental models of neuroprotection and have documented their ability to protect cultured neuronal cells from damage when exposed to staurosporine (3), a protein kinase inhibitor (See attached Table 2). In addition, Maiese et al (1) have demonstrated that imidazoline compounds are able to reduce the damage resulting from experimental stroke, whereas SKF86466, which is selective for the alpha2 receptor, was ineffective.

It has also been shown in other studies that the occlusion of the cerebral arteries and transient occlusion of the cerebral arteries (4-Vessel Occlusion model), which causes damage to specific neurons in the hippocampus, is associated with an increase in the number of $Ox(I_3)$ receptors on surviving neurons. This specific form of vascular damage (stroke) is something in patients after cardiac bypass surgery and is associated with memory loss. They have also seen an upregulation of these receptors in neurons in the frontal cortex and hippocampus in aged rats and in human studies of Parkinson's disease in the brain areas known to be damaged by the disease (See attached Table 3). These results provide further evidence that the Ox receptor is protective

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 09/530,807

against neuronal damage and provides strong support for the use of Ox(I₃) receptor compounds in the management of stroke, Parkinson's disease and memory loss. The references are listed on the attached Appendix.

It is widely recognized that compounds that act on imidazoline receptors can lower blood pressure (4-6). This is also apparent from the patent literature and the ability of the present compounds to lower blood pressure in experimental animals has been demonstrated by the present application.

In view of the above, Applicants respectfully submit that in view of the nature of the invention, state of the prior art and level of skill in the art, and the predictability in the art, the claimed invention is sufficiently enabled by the specification and the examples therein such that one of ordinary skill in the art would be able to practice the entire scope of the claimed invention without undue experimentation.

Accordingly, Applicants respectfully request withdrawal of the rejection.

IV. Conclusion

In view of the above, reconsideration and allowance of this application are now believed to be in order, and such actions are hereby solicited. If any points remain in issue which the Examiner feels may be best resolved through a personal or telephone interview, the Examiner is kindly requested to contact the undersigned at the telephone number listed below.

19

AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q59123

U.S. Application No.: 09/530,807

The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to Deposit Account No. 19-4880. Please also credit any overpayments to said Deposit Account.

Respectfully submitted,

Registration No. 40,641

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

washington office 23373 customer number

Date: December 12, 2003

APPENDIX

- 1. K. Maise, et al., "Reduction in Focal Cerebral Ischemia by Agents acting at Imidazole Receptors", J. Cereb. Blood Flow Metab. 12:53-63, 1992.
- 2. Craven, J. A. and Conway, E.L., Effects of Alpha2-adrenoreceptor Antagonsits and Imidazole2-receptor Ligands on Neuronal Damage In global Ischaemia in the Rat", Clin. Exp. Pharmacol. Phjysiol., 24:204-7, 1997.
- 3. Ryu, B.R., et al., "Attenuation of Cortical Neuronal Apoptosis by Gangliosides", J.Pharm. Exp. Ther., 280(2): 811-816, 1999.
- 4. Bousquet P., "Imidazoline Receptors: From Basic Concept to Recent Developments", J. Cardiovasc. Pharmacol. 26 (Suppl.2) S1-S6, 1995.
- 5. Bousquet, P. and Feldman, J., "Central Cardiovascular Effects of Adrenergic Drugs, Difference Between Catecholamines and Imidazolines", J.Pharmacol. Exp. Ther. 230:232-236, 1984.
- 6. Bousquet, P. et al., "Imidazoline Receptors and Cardiovascular Regulation: A Statement", NY ACAD Sci., 763:526-530, 1995.

Table 1

13 - Oxazoline Receptor Affinities (high and low affinity sites)

		Timmics (nigh and 10 w ammily 5	Mean f Binding	
			affinity af	ow finity
Compound	R1	R2	site * si	
O503	cyclohexyl	cyclohexyi	117	2900
O542	cyclohexyl	phenyl	28	4700
O519	cyclopropyl	phenyl	13	675
O535R	ethyl	phenyl	9	1013
O535S	ethyl	phenyl	15	3500
O535RS	ethyl	phenyl	6	800
O537	hydrogen	3,4-dimethoxyphenylmethyl	24	4200
O523	hydrogen	3,4-methylenedioxyphenoxymethy	1 2	517
O521	hydrogen	3,4-methylenedioxyphenylmethyl	13	1142
O508	hydrogen	4-hydroxyphenylmethyl	50	7160
O511	hydrogen	4-methoxyphenoxymethyl	31	1303
O528	hydrogen	phenylethyl	18	587
0544	isobutyl	phenyl	29	5150
O540	methyl	2-hydroxyphenyl	116	7667
O507	methyl	3,methoxy,4-ethoxyphenylmethyl		884
O520	methyl	3-methoxy,4-benzyloxyphenyl	5	278
O530	methyl	3-methoxy,4-hydroxyphenyl		1313
O536S	methyl	3-methoxyphenyl	51	3075
O533	methyl	4-(4-nitrobenzyloxy)phenyl	128	
O514	methyl	4-benzyloxyphenyl	40	
O514S	methyl	4-benzyloxyphenyl	. 6	188
O514R	methyl	4-benzyloxyphenyl	79	
O509	methyl	4-benzyloxyphenylmethyl	117	
N515	methyl	4-hydroxyphenyl	90	2950
O516	methyl	4-hydroxyphenylmethyl	86	3861
O504R	methyl	cyclohexyl	32	907
O504S	methyl	cyclohexyl	20	722
O505R	methyl	phenyl	24	572
O505S	methyl	phenyl	36	2860
O502	phenyl	phenyl	66	7850
O543	propyl	methyl	25	6233
O545	sec butyl	phenyl	30	3333

Table 1: Affinities for the Ox (I3) receptor measured in rat brain with ³H-rilmenidine. R1 and R2 are the CHR1R2 substituents referred to in formula II

^{*} where only one affinity value is given, the binding is consistent with a single affinity site.

Table 2

Neuroprotective actions of Ox(I3) compounds on cultured foetal rat cells.

Compound	Concentration of drugs found to be neuroprotective against staurosporine injury. (µM)		
O528	0.05-1		
O504(s)	0.05-1		
O535(R)	0.05-1		
O535(RS)	0.05-1		

Cortical neurons from foetal rats are dissected and dispersed in culture medium, then placed in 96 well culture plates. After 24 hours in serum-containing medium, they are grown in a serum free medium and used for experiments on days 8-11.

Neuronal damage (apoptosis) can be induced by exposure of the cells to staurosporine (100 nM), a protein kinase inhibitor, for 48 hours, in the presence of the test drugs. Damage is assessed by the number of surviving cells able to oxidise MTT to a coloured formazan product. The four compounds tested are able to protect against such damage at concentrations, which are comparable with their high and low affinities for the Ox-I3 receptor.

MTT Reduction Assay (1)

Viable cells retain the ability to reduce MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to formazan, which has a strong absorbance at 570nm. After injury, 0.5 mg/ml of MTT is added to control and treated wells, and these are then incubated at 37°C for 2 hours. At the end of this period the cells are lysed and formazan solubilised by the addition of an equal volume of 20% sodium dodecyl sulfate (SDS) in 50% dimethylformamide (DMF). The concentration of formazan is then estimated by UV absorbance at 570 nm.

(1) Abe, K. & Matsuki, N. (2000). Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-dipthenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. *Neuroscience Research*, 38,325-29.

	<u> </u>			
2	Neuronal Cells/mm² 95 ±22 117 ±26	71 ±5 88 ±13	51 43 ±20	53
Substantia Nigra Specific Rinding	1	4069 ±845 2142 ±367	4749 ±2401 3148 ±831 3409 ±158	2408 ±882
; palliďus Neuronal	Cells/mm² 60 ±1 69 ±12	06 ±12 46 ±8	26 ±3 41 ±5 40 ±7	28 ±7
Internal Globus pallidus Specific Binding Neurona	4 dpm/mm 5992 ±3274 11192 ±4940 16997 +5300	13337 ±4895	13991 ±4543 9313 ±3917	15802 ±4408
Neuronal	425 ±10 319 ±64 413 ±76	400 ±62	278 ±67 383 ±41	0.03
Caudate Nucleus Specific Binding dom/mm²	7879 ±4697 16172 ±8023 18673 ±7672	12859 ±3114 10074 ±3356	14670 ±6681 9999 ±4443 18807 ±4904	4.0
Neuronal Cells/mm²	495 364 486	304	460 558 326	0.47
Frontal Cortex Specific Blnding dpm/mm²	1084 ±302 1184 ±78 1664 ±349 1363 +80	862 ±399	308 ±192 1565 ±104 1440 ±177	0.31
Source	33 33 38	PD141	PD143 PD145	¶.

and age-matched normal subjects (C prefix). Fresh frozen tissue from the regions of Frontal cortex, caudate nucleus, internal globus pallidus and Table 3: Comparison of specific receptor binding of ¹²⁵I-0515 (I3-Ox receptor ligand) in brains from Parkinson's disease patients (PD prefix) substantia nigra, were cut into 20 µm sections. Adjacent sections were used for measurement of radioligand binding and measurement of cell density. Radioligand binding was quantitated by computer-aided densitometry of autoradiographic film exposed to the radiolabelled sections and expressed as dpm/mm² after calibration with known radioactive standards. Cell bodies were visualised with cresyl violet staining and counted by computer with appropriate settings for the minimum cell size and staining density. The relevant areas for study in each section were evaluated

between normal controls and Parkinson's disease patients in either receptor density or cell counts. The remaining three regions are all known to The neuronal cell bodies in frontal cortex, which are not normally affected by Parkinson's disease, shows no significant difference be affected by Parkinson's disease and all show significantly lower cell numbers in Parkinson's disease (P <0.05).In contrast, the receptor density in each of these three regions as measured by specific binding is not significantly different between Parkinson's disease patients and normal controls, despite the smaller number of neuronal cell bodies in Parkinson's disease. This result is consistent with an upregulation of the