Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki

PRACA DYPLOMOWA INŻYNIERSKA

Paweł Kaczyński

Możliwości programowalne klocka LEGO EV3.

Opiekun pracy dr inż. Henryk Dobrowolski

Ocena	a:		•			٠.	٠		•		٠	•		٠		•	•	•		•	•	٠
											_			_								
			-			-	-			-												
	Р	00	ф	is	Р	r	ze	w	О	dı	ni	c	Zā	ąc	e	g	С					
Ko	m	isj	i .	E٤	ξZä	ar	ni	n	u	Γ) չ	71	olo	01	n	o'	W	е	g	О		

Specjalność:	Inżynieria Systemó	w Informatycznych
Data rozpoczęc	ia studiów:	2012.10.01
		Podpis studenta
ZAMIN DYPLO zvł egzamin dyn		201
INCUITIN DWOADD	I uwagi ivoillis II	

In formaty ka

Kierunek:

Streszczenie

Celem niniejszej pracy jest przetestowanie programowalnych możliwości LEGO EV3 i jego zastosowań w sterowaniu robotem mobilnym. Zaprojektowana aplikacja jest napisana w języku C++, z wykorzystaniem biblioteki ev3dev. Jej główną zaimplementowaną funkcjonalnością jest automat sterujący zachowaniami robota oraz reagujący na zdarzenia generowane przez bodźce z otoczenia. W pracy opisano również system komunikacji między poszczególnymi agentami za pomocą sieci bezprzewodowej oraz przedstawiono działanie jednostki nadzorującej cały system.

Słowa kluczowe: LEGO Mindstorms EV3, agent mobilny, zachowanie.

Capabilities of programming the LEGO EV3.

The goal of this thesis is to test the capabilities of programming the LEGO EV3 brick and its use in controlling a mobile robot. The designed application is written using C++ language and ev3dev library. The main implemented feature is the state machine that supervises robot's behaviour and reacts to different events. This work also covers details about wireless communication system between agents and describes the central unit which takes care of the whole system.

Keywords: LEGO Mindstorms EV3, mobile agent, behaviour

Spis treści

1	Wst	tęp		5							
	1.1	Motywa	acja	6							
	1.2	Założen	iia	6							
	1.3	Zawarto	ość rozdziałów	7							
2	Opi	s systen	nu	8							
	2.1	Wymag	gania	8							
	2.2	Użyta t	echnologia	9							
		2.2.1	O ev3dev	9							
		2.2.2	Konfiguracja	9							
			Biblioteka	10							
			Możliwości	10							
			Narzędzia	10							
			Konstrukcja robota	11							
3	Buc	lowa ap	likacji	12							
	3.1	Moduły	i klasy	12							
		3.1.1	Komendy	12							
			Akcje	13							
			Zachowania	13							
			Urządzenia	14							
			Robot	14							
		3.1.6	Komunikacja	15							
			Nadzorca	15							
		3.1.8	Moduły dodatkowe	16							
4	Zac	howania	A	18							
	4.1	.1 Budowa zachowań złożonych									
		4.1.1	Tworzenie zachowań	18							
			Sterowanie wykonywanymi akcjami	19							
			Przejścia pomiędzy stanami	19							
	4.2		ywanie zachowania	19							
			Wykonywanie akcji	19							

		4.2.2 Reakcja na zdarzenia	19					
		4.2.3 Zbieranie danych	19					
	4.3	Przykładowe zachowania						
		4.3.1 Zwiedzanie otoczenia						
5	Kor	nunikacja	20					
	5.1	Komunikacja przez sieć	20					
	5.2	Komunikacja wewnątrz jednostki	20					
	5.3	Zdarzenia						
	5.4	Utrata połączenia z nadzorcą	20					
		5.4.1 Jeden agent traci połączenie z nadzorcą						
		5.4.2 Wszyscy agenci tracą połączenie z nadzorcą						
6	Tes	towanie aplikacji	22					
	6.1	Testowanie działania sensorów i motorów	22					
	6.2	Testy zachowań złożonych	22					
	6.3							
7	Pod	odsumowanie						
Bi	bliog	grafia	24					
\mathbf{A}	Zała	ączniki	25					
		Słownik pojęć	26					
		Wykaz rysunków						

Wstęp

Celem niniejszej pracy było zaprojektowanie i implementacja aplikacji kontrolującej zachowanie robotów mobilnych. Jest ona odpowiedzialna za nadzór nad zachowaniami robotów (agentów), sterowanie sensorami i efektorami oraz komunikację z wyższymi warstwami architektury, weryfikującymi poprawność całego systemu. Zachowania robota są opisane za pomocą automatów skończonych. Warstwa komunikacyjna dostarcza interfejs przesyłania specjalnych komunikatów za pomocą protokołu UDP.

Aplikacja jest zaprojektowana do uruchamiania na systemach Unixowych, w szczególności na klocku centralnym LEGO, ale także na komputerze osobistym w roli nadzorcy. Warstwa połączeniowa jest punktem wspólnym architektury ARM z inną, używając do komunikacji interfejsu gniazd sieciowych.

1.1 Motywacja

Motywacją do podjęcia powyższego tematu było przetestowanie możliwości programowalnych oraz technicznych robota zbudowanego z klocków LEGO Mindstorms EV3. Aplikacja działająca na urządzeniu była napisana z użyciem biblioteki ev3dev [3] w języku C++.

Możliwość dostępu do sterującego klockiem centralnym systemu Linux zdejmuje ograniczenie używania prostych środowisk graficznych i pozwala osiągnąć dużo więcej małym kosztem. Należało zatem sprawdzić, co najnowsza wersja LEGO Mindstorms ma do zaoferowania, w szczególności:

- Wydajność napisanych aplikacji z użyciem ww. bilbioteki.
- Skuteczność komunikacji z wykorzystaniem bezprzewodowej sieci Wi-Fi.
- Dokładność dostarczanych odczytów z sensorów oraz szybkość i niezawodność reakcji na nietypowe zdarzenia.

1.2 Założenia

Zostały przyjęte następujące założenia:

- Każdy agent jest zdolny do wykonywania pewnych konkretnych zachowań niezależnie od pozostałych agentów.
- Zachowania te sa reprezentowane za pomoca automatu skończonego.
- Dany robot może, ale nie musi być zdolny do wykonania konkretnej czynności. Jest to zależne od podłączonych do niego sensorów i efektorów.
- Każdy robot samodzielnie generuje sposób wykonania danej akcji na podstawie dostępnych urządzeń.
- Zachowania mogą być dynamicznie tworzone z użyciem specjalnej składni.
- Urządzeniem nadzorującym może być inny robot, ale pożądana jest też możliwość kontroli z poziomu zwykłego komputera.
- Agenci komunikują się zarówno z jednostką centralną (nadzorująca) jak i między sobą za pomocą sieci bezprzewodowej.
- Do poprawnej komunikacji wymagana jest jedna, wspólna dla wszystkich jednostek, istniejąca sieć.
- System powinien dostosować się do braków w łączności, umożliwiając komunikację przez pośrednictwo innych agentów.
- Agent może poruszać się tylko po płaskiej powierzchni.

1.3 Zawartość rozdziałów

- 1 Wstęp zawiera cel pracy razem z założeniami i ograniczeniami.
- **2 Opis systemu -** opisuje dokładnie aspekty projektowe i technologiczne oraz zawiera wytyczne dotyczące wykorzystanych narzędzi.
- **3 Budowa aplikacji -** szczegółowo omawia wykorzystane w projekcie klasy, ich wzajemne zależności oraz podział na moduły.
- **4 Zachowania -** zawiera opis budowy oraz działania zachowań złożonych robota wraz z przykładami.
- **5 Komunikacja -** opisuje szczegóły implementacji warstwy połączeniowej, bazującej na interfejsie gniazd sieciowych i protokole UDP.
- **6 Testowanie aplikacji -** zawiera przebieg przykładowych testów i ich rezultaty.
- 7 **Podsumowanie** zawiera wnioski końcowe z przebiegu projektowania aplikacji oraz przeprowadzonych testów.

Opis systemu

Przy projektowaniu systemu, należało uwzględnić cechy charakterystyczne wielu różnych dziedzin. Aplikacja łączy w sobie działanie niskopoziomowych, sprzętowych operacji na sensorach i efektorach, zaprogramowaną logikę wyższego poziomu w języku C++ oraz komunikację sieciową w protokole UDP. Architektura ARM oraz docelowa platforma systemowa dodatkowo wpływają na podejmowane decyzje projektowe oraz implementacyjne. Szczegółowy opis użytych technologii znajduje się poniżej.

2.1 Wymagania

- Użyte oprogramowanie działa na klocku centralnym LEGO Mindstorms EV3.
- Wybrana do projektu biblioteka umożliwia pracę na urządzeniach podłączanych do klocka centralnego przy użyciu języka wyższego poziomu.
- Aplikacja umożliwia konstrukcję zachowań złożonych w postaci automatu skończonego.
- Zachowania robota są parametryzowane.
- Robot powinien reagować na generowane zdarzenia w jak najkrótszym czasie.
- Robot poprawnie reaguje na odłączenie, bądź zaburzenie pracy któregokolwiek z podłączonych urządzeń.
- Oprogramowanie monitoruje poziom baterii i reaguje na zmiany jego poziomu.
- Oprogramowanie umożliwia komunikację z innymi robotami za pomocą sieci bezprzewodowej.
- Komunikacja jest szybka i odporna na błędy oraz gubienie pakietów.

- Kod aplikacji jest czytelny oraz utrzymuje niezmienną konwencję nazewnictwa.
- Kod aplikacji, w szczególności pliki nagłówkowe, jest dobrze udokumentowany.

2.2 Użyta technologia

Istnieje wiele dostępnych środowisk dedykowanych LEGO Mindstorms EV3, z których każde ma trochę inne zastosowanie. Najbardziej dogodnym rozwiązaniem okazał się projekt ev3dev.

2.2.1 O ev3dev

Projekt ev3dev to dopasowana do potrzeb klocka LEGO dystrybucja Linuxa (Debian Jessie), która jest wgrywana na kartę SD i uruchamiana obok istniejącego systemu. Zawsze istnieje możliwość przywrócenia domyślnego stanu klocka przez wyjęcie karty z systemem. Platforma stworzona w ramach ev3dev zawiera wiele sterowników, nie tylko do akcesoriów zestawu EV3, ale także poprzednich dystrybucji LEGO Mindstorms oraz komponentów wytwarzanych przez osoby trzecie. Możliwe jest programowanie klocka w języku C/C++, ale ev3dev obsługuje też wiele innych języków. To wszystko daje dużą swobodę samego programowania, jak i sposobu tworzenia programu i komunikacji z urządzeniem. Kompilacja aplikacji może odbywać się bezpośrednio na urządzeniu lub na komputerze z wbudowanym kompilatorem na procesory typu ARM. Komunikacja z klockiem centralnym realizowalna jest na trzy sposoby: Za pomocą Wi-Fi, Bluetooth lub przy użyciu kabla USB.

2.2.2 Konfiguracja

Konfiguracja nowego systemu odbyła się w kilku krokach:

- 1. Na kartę microSDHC wgrany został specjalne spreparowany obraz systemu, pobrany ze strony głównej projektu ev3dev.
- 2. Przy użyciu połączenia SSH przez kabel USB, system został skonfigurowany i pobrane zostały wszystkie wymagane pakiety.
- 3. Dalsza komunikacja odbywała się bezprzewodowo z użyciem urządzenia NET- GEAR WNA1100, podłączonego do portu USB klocka centralnego.
- 4. Aplikacja była kompilowana na laptopie z systemem Ubuntu i synchronizowana zdalnie z robotem.

2.2.3 Biblioteka

W ramach projektu ev3dev dostępne są dwa pliki źródłowe napisane w języku C++. Dostarczają one wymagany interfejs do sterowania klockiem centralnym i podłączonymi do niego urządzeniami.

Wersja użytej biblioteki: 0.9.2-pre, rev 3.

Wprowadzone zmiany

Biblioteka nie była kompatybilna ze wszystkimi urządzeniami dostarczonymi przez LEGO, dlatego wymagane było:

- Dopisanie rozpoznawalnych nazw sterowników dla sensorów.
- Zaimplementowanie własnej obsługi diod LED przedniego panelu, w szczególności funkcji migania.

2.2.4 Możliwości

Użyte środowisko Linux orax język programowania C++ dostarczają praktycznie pełnię możliwości programistycznych, a w szczególności:

- Użycie biblioteki stl i zgodność ze standardem C++11.
- Watki.
- Polimorfizm.
- Komunikację przez protokół UDP z wykorzystaniem gniazd.

2.2.5 Narzędzia

Projekt aplikacji był rozwijany z wykorzystaniem narzędzie NetBeans. Mimo iż sama aplikacja może być skompilowana z poziomu konsoli i narzędzia Makefile, NetBeans dostarcza także wygodne narzędzia debugujące oraz przyspiesza pisanie kodu.

Konfiguracje aplikacji

Zostały zdefiniowane dwie domyślne konfiguracje:

• D_ARM: konfiguracja przeznaczona na urządzenia z procesorami typu ARM. Domyślnie przeznaczona do uruchamiania na robocie mobilnym.

Kompilator: arm-linux-gnueabi-g++

```
Flagi kompilacji: -D_GLIBCXX_USE_NANOSLEEP -pthread -static-libstdc++ -std=c++11 -DAGENT
```

• D_DESKTOP: konfiguracja kompilowana z myślą o tradycyjnych komputerach osobistych. Domyślnie przeznaczona do uruchomienia w trybie nadzorcy systemu, komunikującego się zdalnie z robotami.

```
Kompilator: g++

Flagi kompilacji: -D_GLIBCXX_USE_NANOSLEEP -pthread
-static-libstdc++ -std=c++11
```

Obie konfiguracje posiadają dodatkowo wersję z przedrostkiem R_, które oznaczają wersję Release zamiast wersji Debug.

Inne użyte narzędzia to przede wszystkim aplikacja Doxygen służąca generowaniu dokumentacji kodu programu, system kontroli wersji Git do zarządzania całym projektem oraz oprogramowanie LaTeX, za pomocą którego wygenerowany został ten dokument.

2.2.6 Konstrukcja robota

W celu przetestowania zaimplementowanych funkcjonalności, wyposażono robota w następujące elementy:

- Dwa duże motory do poruszania się po płaskiej powierzchni.
- Ultradźwiękowy sensor odległości ustawiony przodem do kierunku poruszania się.
- Przedni zderzak oraz sensor dotyku do wykrywania zderzeń.
- Sensor koloru do wykrywania zmian w odcieniu powierzchni.

Budowa aplikacji

3.1 Moduły i klasy

W celu uzyskania przejrzystości aplikacji, wydzielone zostały moduły¹, które opisują pewien fragment funkcjonalności programu. Moduły niższych warstw mogą być wykorzystywane przez moduły warstw wyższych lub być tylko zestawem dodatkowych narzędzi. Kolejne punkty opisują w czym dany moduł się specjalizuje i jakie klasy wchodzą w jego skład. Szczegółowe dane na temat klas oraz ich metod i pól znajdują się w dokumentacji kodu w katalogu doc.

3.1.1 Komendy

Klasy komend są tak naprawdę nakładką na istniejące mechanizmy biblioteki ev3dev, operujące bezpośrednio na sprzęcie. Oprócz właściwej komendy, będącej poleceniem dla efektora bądź sensora, dana klasa zawiera referencje do obiektu, na którym ma zostać wykonana oraz jej parametry, o ile takowe posiada. Nazewnictwo klas dokładnie odwzorowuje nazwy komend przekazywanej urządzeniom. W obrębie konkretnych komend, definiowane są także stałe opisujące charakter przekazywanych argumentów oraz ich limity.

Komendy zostały podzielone na dwie podgrupy:

Komendy motorów: Klasa bazowa - CommandMotor. Zawierają referencje do klasy Motor oraz opcjonalnie przechowują także przekazywane parametry. Np przykład: CommandMotorStop, CommandMotorRunForever.

Komendy sensorów: Klasa bazowa - CommandSensor. Zawierają referencje do klasy Sensor. Definiują obsługiwane tryby danego sensora. Komendy te nie służą do pobierania wartości, lecz tylko do zmiany ich ustawień. Pobieranie wartości używane jest przy pomocy specjalnej klasy Devices.

Przykładowa komenda: CommandSensorSetMode.

 $^{^{1}\}mathrm{W}$ kontekście tej pracy modut oznacza pewną grupę skojarzonych ze sobą klas.

Klasa bazowa dla wszystkich komend jest Command.

3.1.2 Akcje

Akcje są kolejnym stopniem abstrakcji definiowania zachowań robota. Klasy akcji przechowują przede wszystkim sekwencje komend, które mają zostać wykonane. Ponadto, z powodu natychmiastowego charakteru wykonywania wszystkich zgromadzonych komend, akcja może mieć zdefiniowany warunek jej zakończenia. Przyjmuje ona postać funkcji anonimowej, w której następuje zwrócenie wartości prawda lub fałsz na podstawie dowolnie sprecyzowanych instrukcji. Pozwala to wyższej warstwie sterującej sprawdzić, czy kolejna akcja może zostać wykonana. Dodatkowo, akcje mogą deklarować dopuszczalne zdarzenia, które przerywają jej działanie lub zmieniają jej parametry.

Wszystkie dostępne klasy akcji są zdefiniowane w aplikacji i nie istnieje możliwość zwiększenia zbioru o nowe bądź dynamicznego generowania nowych, własnych klas. Ta decyzja implementacyjna jest podyktowana specyfiką konkretnych modeli robotów, różniących się budową oraz podłączonymi akcesoriami, a co za tym idzie, odmiennym sposobem implementacji tych samych czynności.

Klasy opisujące konkretne akcje, np. ActionDriveDistance, dziedziczą po klasie Action. Wspólnymi elementami każdej z nich są: typ, warunek końcowy, sekwencja komend oraz metody wykonawcze. Różnią się natomiast dodatkowymi parametrami, takimi jak prędkość czy kąt obrotu. Ponadto, istnieje możliwość wygodnego zapętlenia jednej lub wielu akcji dowolną liczbę razy za pomocą specjalnej klasy - ActionRepeat. Konstruktor tej klasy przyjmuje liczbę powtórzeń oraz listę akcji, które zostaną wykonane w podanej kolejności.

3.1.3 Zachowania

Definiowanie zachowań jest dużo trudniejsze niż akcji czy komend, gdyż bazują one na schemacie automatu skończonego. Oprócz konkretnych akcji, na jakich dane zachowanie ma się opierać, należy zdefiniować przejścia pomiędzy stanami (akcjami) w toku poprawnego wykonania oraz specjalne warunki zmiany stanu w reakcji na zaistniałe zdarzenia (np. napotkana przeszkoda lub utrata połączenia).

Podobnie jak w przypadku akcji i komend, każde zachowanie zdefiniowane jest w osobnej klasie (np. BehaviourExplore), które dziedziczy po wspólnej klasie Behaviour. Każde z nich zawiera typ, strukturę stanów automatu złożonych z akcji i przejść oraz funkcje wykonawcze. Ponadto zachowania pochodne zawierają własne parametry, np. maksymalny dystans do przejechania. Więcej szczegółów w rozdziale 4. Zachowania.

3.1.4 Urządzenia

Biblioteka ev3dev dostarcza wygodnego interfejsu do zarządzania urządzeniami przez wygenerowanie drzew klas dla sensorów i efektorów. W ramach tej aplikacji, na każdy typ urządzenia została nałożona specjalna klasa pośrednicząca, w środku której dopiero znajduje się referencja do właściwego obiektu. Są to klasy Motor oraz Sensor, które po odpowiedniej identyfikacji zostają zmapowane do par porturządzenie.

Całością nadzoruje klasa **Devices** napisana zgodnie ze wzorcem projektowym Singleton. Ograniczone są w ten sposób nadmierne kopie obiektów i potencjalnie niejednoznaczne odwołania. Ponadto klasy urządzeń są potrzebne w wielu różnych miejscach aplikacji, a wzorzec ten umożliwia taki dostęp za pomocą statycznego wydobycia instancji.

Moduł urządzeń jest także odpowiedzialny za detekcję zdarzeń. Wyższe warstwy mogą zgłaszać zdarzenia, na które klasa Devices ma nasłuchiwać. Jeśli dane zdarzenie wystąpi, wysyłane jest do odpowiedniej kolejki dla wyższych warstw do przetworzenia. Zgłaszane mogą być również zdarzenie niezależne, np. niski poziom baterii lub odłączenie urządzenia.

3.1.5 Robot

Jest to najbardziej rozbudowana klasa, ponieważ agreguje w sobie działanie wielu modułów. Zarządza zarówno urządzeniami podłączonymi do klocka centralnego, steruje zachowaniem robota oraz przetwarza przesłane komunikaty oraz zdarzenia. Główna metoda klasy run jest uruchamiana w głównym wątku aplikacji i w pętli przetwarza wszystkie dane. Jest bezpośrednio zsynchronizowana z wątkiem komunikacyjnym za pomocą dwóch kolejek wiadomości - nadawczej i odbiorczej. Wyróżnienie dwóch niezależnych ścieżek wykonania umożliwia lepsze zarządzanie zasobami sprzętowymi oraz pozwala robotowi na samodzielne działanie, niezależnie od przesyłanych pakietów.

Robot może być fizycznie zbudowany na wiele różnych sposobów. Dlatego wymagane jest, żeby zdefiniowane były konkretne klasy implementujące szczegóły danego modelu. W związku z powyższym, klasa bazowa Robot jest klasą abstrakcyjną, a każdemu wariantowi konstrukcji odpowiada osobna klasa podrzędna. W celu ujednolicenia interfejsu, każdy model deklaruje listę obsługiwanych akcji oraz wymaganych do tego podłączonych urządzeń. W ten sposób można łatwo sprawdzić, czy dane zachowanie jest obsługiwane i jakich pomiarów robot może dostarczyć. Klasy konkretnych modeli, bazując na zdefiniowanych funkcjach wirtualnych, definiują swoje wersje w sposób adekwatny do domniemanego efektu końcowego wymaganych akcji.

Każdy instancja robota posiada również maszynę stanów oraz zdefiniowane warunki przejść pomiędzy nimi. Każdy stan przetwarza tylko konkretne komunikaty i zdarzenia. Rezultatem ich przetworzenia może być wysłanie specjalnej wiadomości

zwrotnej lub zmiana stanu na inny. To ostanie wiąże się jeszcze ze zmianą koloru oraz częstotliwości migania diod LED umieszczonych na przednim panelu klocka centralnego. Możliwe stany zostały przestawione na schemacie

3.1.6 Komunikacja

Komunikacja pomiędzy różnymi partiami całego systemu odbywa się na dwóch poziomach:

Zdarzenia

Poszczególne moduły robota, takie jak akcje czy klasa urządzeń, mogą generować zdarzenia. Kolejka zdarzeń, posiada wiele punktów wejścia, ale tylko jedno wyjście - klasę Robot. Wszystkie klasy zdarzeń dziedziczą po klasie Event. Zgłaszane do kolejki obiekty mogą dotyczyć zarówno zmian wartości sensorów, niespodziewanych zmian w przebiegu zachowania lub wyjątków rzuconych przez aplikację.

Protokół UDP

Komunikacja pomiędzy robotami odbywa się przy użyciu sieci bezprzewodowej oraz protokołu UDP. Każdy wysłany pakiet to zakodowany do postaci znakowej obiekt klasy Message. Każdy z nich zawiera pięć elementów: identyfikator wiadomości, nadawcy i odbiorcy, typ oraz listę opcjonalnych parametrów. Separatorem parametrów jest dwukropek. Podstawą ustalenia szczegółów wiadomości jest jej identyfikator oraz typ. Pierwszy komponent zapewnia synchronizację pakietów oraz eliminację duplikatów, a drugi steruje zmianami stanów agenta oraz jego zachowań. Więcej szczegółów w rozdziale 5. Komunikacja.

3.1.7 Nadzorca

Do poprawnej i kontrolowanej pracy całego systemu potrzebny jest jego nadzorca. Ten wyspecjalizowany moduł zarządza pozostałymi agentami, będąc punktem wspólnym komunikacji wszystkich jednostek. Pozwala mu to na rozdzielanie zachowań dla poszczególnych robotów, synchronizację komunikacji oraz zbieranie danych. Nadzorcą może być zarówno robot LEGO jak i dowolny komputer osobisy, co w tym drugim przypadku umożliwia wykorzystanie większej mocy obliczeniowej.

Za kontrolę systemu odpowiada klasa Master. Podobnie jak klasa Robot, zawiera ona dwie kolejki do wymiany wiadomości z pracującym równolegle wątkiem komunikacji. Oprócz tego, przechowuje ona informacje o wszystkich agentach w specjalnej klasie Agent, która odpowiada konkretnemu fizycznemu robotowi, ale jest pozbawiona wszystkich komponentów sterujących zachowaniami. Jej głównymi atrybutami są identyfikator urządzenia oraz identyfikator wiadomości. Pierwszy z

nich przydzielany jest agentowi, gdy ten po raz pierwszy nawiążę połączenie z nadzorcą. Drugi z kolei wykorzystywany jest do synchronizacji przesyłanych pakietów w celu dobierania par zapytanie-odpowiedź oraz pomaga usunąć nadmiarowe duplikaty.

Największym problemem przed jakim mogą stanąć nawet wszystkie roboty jednocześnie, to utrata połączenia z nadzorcą. Szczegóły takiego zdarzenia opisane są w rozdziale 5. Komunikacja.

3.1.8 Moduły dodatkowe

Główne klasy aplikacji są wspierane przez dodatkowe, mniej znaczące moduły. Do takich należą:

Kontrola diod LED

Klasa LedControl powstała z konieczności, ponieważ dostarczony interfejs poprawnie obsługiwał tylko jedną z czterech dostępnych diod. Dostarczono zatem metod, które pozwalają sterować jasnością konkretnych diod, wybierać kolor oraz zlecać miganie z odpowiednim interwałem. Klasa ta jest głównie wykorzystywana do wizualnej identyfikacji stanu, w jakim obecnie znajduje się robot.

Logowanie

Zarówno w procesie tworzenia aplikacji, jak i w późniejszym jej użytkowaniu, informacje o przebiegu wykonania są niezbędne. Klasa Logger pozwala zdefiniować poziom obsługiwanych komunikatów, od bardzo rozwlekłego (verbose) do zawężonego tylko do błędów (error). Ponadto, można wyznaczyć domyślny strumień wyjściowych danych, taki jak standardowe wyjście bądź zapis do pliku. W przypadku zapisywania wiadomości na dysk, dane są gromadzone w paczce i zrzucane na nośnik co pewien interwał, w celu ograniczenia ilości operacji dyskowych.

Obsługa sygnałów

Aplikacja musi obsługiwać dostarczane do niej sygnały i poprawnie na nie reagować. Przy starcie programu, tworzony jest obiekt klasy SignalHandler, który odwołując się obiektów sterujących, wysyła żądanie zatrzymania po otrzymaniu konkretnych sygnałów.

Kolejki i bufory

Zarówno komunikacja wewnętrzna jak i zewnętrzna, korzysta z specjalnych klas do przesyłania oraz przechowywania danych. W przypadku wiadomości, wątek

główny i komunikacyjny korzystają z synchronizowanych obiektów klasy szablonowej Queue, która implementuje dobrze znaną kolejkę wraz z obsługą współbieżności. Klasa EventQueue, stworzona w oparciu o wzorzez Singleton, implementuje kolejkę obiektów typu Event. Ostatnią kolekcją danych jest klasa szablonowa CircularBuffer, implementująca bufor cykliczny z nałożonym limitem obiektów w nim przechowywanych. Wykorzystywana głównie w wątku komunikacyjnych do eliminacji nadmiarowych pakietów.

Przepływ danych został przedstawiony na Rysunku

Inne

Do innych, mniej znaczących elementów należy plik Utils, zawierający statyczne definicje powszechnie wykorzystywanych metod, stałych i uproszczonych nazw typów danych, a także klasa ColorUtils wspomagająca kolorowanie wiadomości logowanych na ekran.

Zachowania

Zachowania definiują najwyższy stopień abstrakcji sterowania agentem. Oprócz właściwych akcji, które wykonują, mogą mieć zdefiniowane również zdarzenia, które wymuszają niestandardowy przebieg wykonania. Ponadto, zlecają również śledzenie konkretnych wartości na podłączonych urządzeniach.

4.1 Budowa zachowań złożonych

Każde zachowanie składa się z kilku elementów:

- Listę akcji, z których każda stanowi de facto osobny stan.
- Listę możliwych przejść między stanami wraz z warunkami.
- Zdarzenia, na które zachowanie będzie reagowało w określony sposób.

4.1.1 Tworzenie zachowań

Stworzenie zachowania może odbyć się na dwa sposoby. Pierwszym z nich jest skorzystanie z zachowania już zdefiniowanego w bibliotece. W tym przypadku zbierane są ustalone wcześniej, odpowiednio ukonkretnione akcje razem z warunkami przejść. Drugim wariantem jest stworzenie własnego zachowania. Jeśli taki typ zostanie wykryty, do agenta należy dostarczyć dodatkowe dane opisujące użyte akcje, przejścia i zdarzenia.

- 4.1.2 Sterowanie wykonywanymi akcjami
- 4.1.3 Przejścia pomiędzy stanami
- 4.2 Wykonywanie zachowania
- 4.2.1 Wykonywanie akcji
- 4.2.2 Reakcja na zdarzenia
- 4.2.3 Zbieranie danych
- 4.3 Przykładowe zachowania
- 4.3.1 Zwiedzanie otoczenia

Komunikacja

- 5.1 Komunikacja przez sieć
- 5.2 Komunikacja wewnątrz jednostki
- 5.3 Zdarzenia
- 5.4 Utrata połączenia z nadzorcą

Zdarzenie to może zajść w dwóch wariantach:

5.4.1 Jeden agent traci połączenie z nadzorcą

Robot przechodzi do stanu PANIC i przez adres rozgłoszeniowy informuje pozostałych agentów o utraconym połączeniu. Jeden z nich może odpowiedzieć pozytywnie, wysyłając potwierdzenie posiadania komunikacji z nadzorcą. Wtedy następuje synchronizacja dwóch agentów i ustalenie przekierowania wiadomości przez robota pośredniego (Rysunek ...). Jeżeli po pewnym czasie, nikt nie odpowie pozytywnie oraz nie zacznie się głosowanie opisane w punkcie poniżej, robot kończy swoje działanie.

5.4.2 Wszyscy agenci tracą połączenie z nadzorcą

Wszystkie roboty utraciły połączenie i żaden nie otrzymał odpowiedzi na zapytanie o przekierowanie. W takim przypadku odbywa się głosowanie. Każdy agent wysyła na adres rozgłoszeniowy swój osobisty wynik¹. Po pewnym czasie, kiedy wszystkie roboty znają już swoje wyniki, ten z najniższym rezultatem mianuje

¹Wynik agenta zależy m. in. od ilości przesłanych danych, poprawności wykonanych akcji czy czasu aktywności.

siebie nadzorcą. W przypadku tych samych wyników, o wyborze decyduje czynnik losowy. Wybierany zostaje najsłabszy rezultat, ponieważ warto pozwolić dobremu agentowi na kontynuację działań.

Problem jaki może napotkać grupa robotów, to jednoczesny wybór dwóch nadzorców. Ograniczenie użycia jednej wspólnej sieci nie eliminuje problemu gubienia pakietów, a przez to potencjalnej sytuacji, w której mamy wiele niezależnych głosowań, bądź głosowania są niepełne. W tym celu, oprócz wysłania przez danego agenta swoich danych, wysyła on dodatkowo liczbę oznaczającą ilość otrzymanych rekordów. W ten sposób agent A może dowiedzieć się od agenta B, że nie dostał informacji od innego agenta, np. C, kiedy połączenie między A i C jest niemożliwe. Ponadto, własny wynik jest ponownie rozsyłany za każdym zwiększeniem ilości informacji o pozostałych agentach. Jednostki nie posiadające kompletu informacji nie biorą udziału w finalnym głosowaniu, ponieważ mogą podjąć złą decyzję, a ponadto utrudniona komunikacja jest dla nich dodatkowo niekorzystna. Cały schemat działania opisuje Rysunek

Testowanie aplikacji

- 6.1 Testowanie działania sensorów i motorów
- 6.2 Testy zachowań złożonych
- 6.3 Testowanie komunikacji

Podsumowanie

Bibliografia

Publikacje

- [1] TEST 1. "Multidimensional monitoring of computer systems". W: Proc. of IEEE Symp. and Workshops on Ubiquitous, Autonomic and Trusted Computing (2009), s. 68–74.
- [2] TEST 2. The NAS Kernel Benchmark Program. URL: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850024482.pdf.

Źródła internetowe

[3] Strona domowa ev3dev. URL: http://www.ev3dev.org/.

Dodatek A Załączniki

A.1 Słownik pojęć

A.2 Wykaz rysunków