Voice Quality and Laryngeal Complexity in Santiago Laxopa Zapotec

Mykel Loren Brinkerhoff

University of California, Santa Cruz

6 June 2025

Outline

- Introduction
 - Overview of my dissertation
 - What is Voice Quality?
 - Santiago Laxopa Zapotec
- Previous research
 - Measuring Voice Quality
 - Modeling Voice Quality
 - Laryngeal Complexity
- My Results
 - Data and Methods
 - Acoustic Landscape
 - Random Forests
 - Laryngeal Complexity in SLZ
- Summary and conclusions

Research Overview

• What my research is about:

Research Questions

Questions:

- How is acoustic space for phonation in a single language structured?
- Which measures are important for capturing phonation contrasts?
- How do these measures help explain SLZ's laryngeal complexity?

Research Questions

Answers:

- Yes; we find a three-dimensional space.
- Dimensions in Santiago Laxopa Zapotec are correlated with:
 - First/third dimension = glottal-airflow continuum.
 - 2 Second dimension = nonmodal-to-modal continuum.

What is Voice Quality?

- Describes how the vocal folds vibrate.
- Used for both paralinguistic (e.g., Laver 1968, Podesva 2016) and phonological contrasts (e.g., Esposito & Khan 2020).

Santiago Laxopa Zapotec

- Santiago Laxopa Zapotec (SLZ; Dille'xhunh Laxup) is a Sierra Norte variety of Zapotec.
- Spoken by c. 1,000 speakers in Santiago Laxopa and in diaspora.

Phonation in SLZ

- SLZ has a four-way phonation contrast:
 - Modal ([a])
 - Breathy ([a])
 - Checked ($[\widehat{a?}]$ or $[\widehat{aa}]$)
 - Rearticulated ([$\widehat{a?a}$], [\widehat{aaa}], or [\widehat{a}])
- SLZ's phonation contrasts are used in both the phonology and the morphology.

Tone in SLZ

Interaction of Tone and Phonation in SLZ

Measuring voice quality

- Long been established that phonation has correlates in the acoustic signal (e.g., Fischer-Jørgensen 1968, Klatt & Klatt 1990).
- Gordon & Ladefoged (2001) list several types of measures types that can be used:
 - Periodicity
 - Energy
 - Spectral tilt
 - Pitch
 - Duration
- Linguists have used combinations of these measures to model phonation (e.g., Blankenship 2002, Brunelle & Kirby 2016, Esposito 2012).

New measures of voice quality

Too many measures

Modeling voice quality

• Early models proposed that voice quality is one dimensional and represents glottal airflow (Ladefoged 1971, Ladefoged & Maddieson 1996).

Voice quality's multidimensionality

- More recent work has shown that voice quality is not one-dimensional, but minimally five-dimensional (e.g., Garellek et al. 2016, Kreiman et al. 2021).
 - Especially in the case of individual speaker differences.
- Garellek et al. (2013) has argued that dimensionality might not be as complex for capturing phonation contrasts.

Keating et al. (2023)

- Explored phonation's cross-linguistic acoustic space.
- Found a two-dimensional space for phonation across 11 languages.
 - First dimension = nonmodal-to-modal continuum.
 - Second dimension = glottal-airflow continuum.
- Found that languages with more contrasts used more of the acoustic space than languages with fewer contrasts.
- Found correlations between dimensions and acoustic measures.
 - 1 First dimension = periodicity and energy.
 - Second dimension = spectral tilt and periodicity.

Keating et al. (2023)

What is Laryngeal Complexity

- Laryngeal complexity is the number of phonation contrasts in a language.
- More phonation contrasts means more complex laryngeal system.
- Laryngeal complexity can be measured by the number of phonation contrasts in a language.
- Laryngeal complexity can be measured by the dimensionality of the acoustic space.

Phonation's phasing

Implicational hierarchy of patterns

Previous research on laryngeal complexity

Data

- Data comes from fieldwork on Santiago Laxopa Zapotec (SLZ) from Summer 2023.
- Production data was collected from 10 speakers (5 male/5 female).

MDS analysis

- Multidimensional scaling (MDS; Kruskal & Wish 1978) was used to reduce the dimensionality of the data.
- Acoustic measures used to define the acoustic space, following Keating et al. (2023).
- Speaker x phonation combinations were used for the points in the MDS space.

Number of Dimensions

• Scan the QR code to see the three-dimensional space.

NMDS Plot with Duration added (Dimension 1 x Dimension 2)

Phonation a modal a breathy a checked a rearticulated

NMDS Plot with Duration added (Dimension 1 x Dimension 3)

Phonation a modal a breathy a checked a rearticulated

NMDS Plot with Duration added (Dimension 2 x Dimension 3)

Phonation a modal a breathy a checked a rearticulated

Summary of Dimensions

- Dimension 1 (D1) gives a rough continuum from breathy to creaky.
- Dimension 2 (D2) gives a rough continuum from modal to nonmodal.
- Dimension 3 (D3) gives a rough continuum from breathy to creaky.

Correlation to Acoustic Measures

- D1 correlated with spectral tilt measures:
 - $H1*-A1* (r^2 = -0.83)$
 - H1*-A2* $(r^2 = -0.86)$
 - H1*-A3* $(r^2 = -0.81)$
- D2 correlated with periodicity and energy:
 - HNR<500 Hz ($r^2 = -0.79$)
 - HNR<1500 Hz $(r^2 = -0.80)$
 - Energy $(r^2 = -0.79)$
- D3 correlated with spectral tilt:
 - residual H1* ($r^2 = -0.72$)
 - $H2*-H4* (r^2 = -0.69)$
 - H2* $(r^2 = -0.68)$

Summary of Acoustic Landscape

- SLZ's phonation occupies a three-dimensional space.
- Dimensions are correlated with glottal-airflow continuum (D1/D3) and nonmodal-to-modal continuum (D2).
- Dimensions are similar to those found in Keating et al. (2023).

What is Random Forest?

Results of Random Forest

Variable Importance

Summary of Random Forest

Generalized Additive Models (GAMs)

- Used to explore the relationship between phonation and the acoustic measures.
- Used to explore the relationship between phonation and the MDS dimensions.
- Used to explore the relationship between phonation and the random forest dimensions.

Measuring Laryngeal Complexity

- Laryngeal complexity is measured by the number of phonation contrasts in a language.
- SLZ has four phonation contrasts.
- The more phonation contrasts a language has, the more complex its laryngeal system is.

Summary of Laryngeal Complexity

- SLZ has four phonation contrasts.
- SLZ's phonation occupies a three-dimensional space.
- Dimensions are correlated with glottal-airflow continuum (D1/D3) and nonmodal-to-modal continuum (D2).
- Dimensions are similar to those found in Keating et al. (2023).

Summary of Results

- SLZ's phonation occupies a three-dimensional space.
- Dimensions are correlated with glottal-airflow continuum (D1/D3) and nonmodal-to-modal continuum (D2).
 - Collaborated with acoustic measure correlations.
- Dimensions are similar to those found in Keating et al.

Summary

- Acoustic space can be reduced to two dimensions.
- More dimensions add more information about these two dimensions.

Summary

- Dimensionality reduction also occurs in a single language.
- Dimensions correspond to glottal-airflow and nonmodal-to-modal continua within a language and cross-linguistically.
- If additional dimensions are added, they only add additional information about these two dimension.
- Outlook
 - What are the perceptual cues that speakers use to distinguish between phonation types?
 - How do these dimensions relate to the phonology?

Duxhklhenhu' lhe' (Thank you)

Brinkerhoff (UC Santa Cruz)

Voice Quality in SLZ

2025-06-06

Acknowledgements

- Thank you to the speakers in Santiago Laxopa for sharing their time and language expertise.
- Thank you to Grant McGuire, Jaye Padgett, Marc Garellek, Ryan Bennett, Jack Duff, Maya Wax Cavallaro, and many others for their help and discussions during all stages of this project.

Acknowledgements

This work is supported by funding from:

- The National Science Foundation under Grant No. 2019804
- The Humanities Institute at UC Santa Cruz
- The Jacobs Research Funds

References I

- Blankenship, Barbara. 2002. The timing of nonmodal phonation in vowels. *Journal of Phonetics* 30(2). 163–191. https://doi.org/10.1006/jpho.2001.0155.
- Brunelle, Marc & James Kirby. 2016. Tone and Phonation in Southeast Asian Languages. *Language and Linguistics Compass* 10(4). 191–207. https://doi.org/10.1111/lnc3.12182.
- Esposito, Christina M. 2012. An acoustic and electroglottographic study of White Hmong tone and phonation. *Journal of Phonetics* 40(3). 466–476. https://doi.org/10.1016/j.wocn.2012.02.007.
- Esposito, Christina M. & Sameer ud Dowla Khan. 2020. The cross-linguistic patterns of phonation types. *Language and Linguistics Compass* 14(12). https://doi.org/10.1111/lnc3.12392.

References II

- Fischer-Jørgensen, Eli. 1968. Phonetic Analysis of Breathy (Murmured) Vowels in Gujarati. Annual Report of the Institute of Phonetics University of Copenhagen 2. 35–85. https://doi.org/10.7146/aripuc.v2i.130674.
- Garellek, Marc, Patricia Keating, Christina M. Esposito & Jody Kreiman. 2013. Voice quality and tone identification in White Hmong. *The Journal of the Acoustical Society of America* 133(2). 1078–1089. https://doi.org/10.1121/1.4773259.
- Garellek, Marc, Robin Samlan, Bruce R. Gerratt & Jody Kreiman. 2016. Modeling the voice source in terms of spectral slopes. *The Journal of the Acoustical Society of America* 139(3). 1404–1410. https://doi.org/10.1121/1.4944474.
- Gordon, Matthew & Peter Ladefoged. 2001. Phonation types: a cross-linguistic overview. *Journal of Phonetics* 29(4). 383–406. https://doi.org/10.1006/jpho.2001.0147.

References III

- Keating, Patricia, Jianjing Kuang, Marc Garellek, Christina M. Esposito & Sameer ud Dowla Khan. 2023. A cross-language acoustic space for vocalic phonation distinctions. *Language* 99(2). 351–389. https://doi.org/10.1353/lan.2023.a900090.
- Klatt, Dennis H. & Laura C. Klatt. 1990. Analysis, synthesis, and perception of voice quality variations among female and male talkers. *The Journal of the Acoustical Society of America* 87(2). 820–857. https://doi.org/10.1121/1.398894.
- Kreiman, Jody, Yoonjeong Lee, Marc Garellek, Robin Samlan & Bruce R. Gerratt. 2021. Validating a psychoacoustic model of voice quality. *The Journal of the Acoustical Society of America* 149(1). 457–465. https://doi.org/10.1121/10.0003331.
- Kruskal, Joseph & Myron Wish. 1978. *Multidimensional Scaling*. SAGE Publications, Inc. https://doi.org/10.4135/9781412985130.

References IV

- Ladefoged, Peter. 1971. *Preliminaries to linguistic phonetics*. Chicago: University of Chicago.
- Ladefoged, Peter & Ian Maddieson. 1996. *The sounds of the world's languages*. (Phonological Theory). Oxford, OX, UK; Cambridge, Mass., USA: Blackwell Publishers. 425 pp.
- Laver, John D. M. 1968. Voice Quality and Indexical Information. *British Journal of Disorders of Communication* 3(1). 43–54. https://doi.org/10.3109/13682826809011440.
- Podesva, Robert J. 2016. Stance as a Window into the Language-Race Connection: Evidence from African American and White Speakers in Washington, DC. In H. Samy Alim, John R. Rickford & Arnetha F. Ball (eds.), *Raciolinguistics: How Language Shapes Our Ideas About Race*, 203–219. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190625696.003.0012.