Solver: Ng Jing Nee

1)

a)

- i) True
- ii) False
- iii) True
- iv) False
- v) True
- b) Max (h1, h2) is better.

Let C^* be the true cost to goal. Assuming g1 == g2,

 $f1 \ge f2$ if $h1 \ge h2$

 \therefore f1 is closer to C* than f2, and the set of nodes where f1 < C* is ≤ the set of nodes where f2 < C*

In the 3 choices given, only max (h1, h2) gives the highest value of h.

c)

Q1		

	Q2	
Q1		

	Q2		
Q1			
		Q3	

		Q2		
				Q4
(Q1			
			Q3	

Candidate values: Q1 – 3, Q2 – 1, Q3 – 4, Q4 – 2

2)

- a) Final Path: SDG [Expansion does not change the parent of the nodes in the frontier] Expansion List: S, A, B, D, C, G
- b) Final Path: SACG Expansion List: S, A, C, G

c) Final Path: SDCG

Node to be expanded	Frontier
	S (0)
S	B (1), A (2), D (4)
В	A (2), D (4)
A	D (4), C (6)
D	C (5), G (9)
С	G (7)
G	

d) Final Path: SDG

Expansion List: S (5), D (2), G (0)

e) Final Path: SDCG

Node to be expanded	Frontier
	S (0 + 5 = 5)
S	A (2 + 3 = 5), B (1 + 4 = 5), D (4 + 2 = 6)
Α	B (5), D (6), C (6 + 1 = 7)

В	D (6), C (7)
D	C (5 + 1 = 6), G (9 + 0 = 9)
С	G (7 + 0 = 7)
G	

3)

a)

i)	P =	$\Rightarrow Q \Leftrightarrow$	$\Rightarrow \neg Q$	$\Rightarrow \neg P$
----	-----	---------------------------------	----------------------	----------------------

Р	q	$P\Rightarrow Q$	$\neg Q \Rightarrow \neg P$	$P\Rightarrow Q\Leftrightarrow \neg Q\Rightarrow \neg P$
F	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	Т
Т	Т	T	Т	Т

: Hence, the equivalence holds.

ii)
$$\neg (P \Leftrightarrow Q) \Leftrightarrow (P \Leftrightarrow \neg Q)$$

LHS:

$$\neg (P \Leftrightarrow Q) \qquad \equiv \neg \big((P \Rightarrow Q) \land (Q \Rightarrow P) \big)$$
$$\equiv \big(\neg (\neg P \lor Q) \big) \lor \big(\neg (\neg Q \lor P) \big)$$
$$\equiv (P \land \neg Q) \lor (Q \land \neg P)$$

RHS:

$$(P \Leftrightarrow \neg Q) \qquad \equiv (P \Rightarrow \neg Q) \land (\neg Q \Rightarrow P)$$

$$\equiv (\neg P \lor \neg Q) \land (Q \lor P)$$

$$\equiv ((\neg P \lor \neg Q) \land Q) \lor ((\neg P \lor \neg Q) \land P)$$

$$\equiv ((\neg P \land Q) \lor (\neg Q \land Q)) \lor ((\neg P \land P) \lor (\neg Q \land P))$$

$$\equiv (\neg P \land Q) \lor (\neg Q \land P)$$

$$\equiv (P \land \neg Q) \lor (Q \land \neg P)$$

Since LHS \equiv RHS, LHS \Rightarrow RHS and RHS \Rightarrow LHS holds.

$$\therefore \neg (P \Leftrightarrow Q) \Leftrightarrow (P \Leftrightarrow \neg Q)$$

b)
$$P \vee Q$$
 (1)

$$P \Rightarrow R$$
 (2)

$$Q \Rightarrow S$$
 (3)

Assume
$$\neg (S \lor R)$$
 (4)

From (4),
$$\neg (S \lor R) \vDash \neg S \land \neg R$$
 (5)

From (5),
$$\neg S \land \neg R \vDash \neg R$$
 (6)

From (2),
$$P \Rightarrow R \vDash \neg P \lor R$$
 (7)

From (6) + (7),
$$\neg P \lor R$$
, $\neg R \vDash \neg P$ (8)

From (1) + (8),
$$P \lor Q$$
, $\neg P \vDash Q$ (9)

From (3),
$$Q \Rightarrow S \vDash \neg Q \lor S$$
 (10)

From (9) + (10),
$$\neg Q \lor S, Q \vDash S$$
 (11)

From (5),
$$\neg S \land \neg R \vDash \neg S$$
 (12)

From (11) + (12), contradiction

$$:KB \models S \lor R$$

c)

	i)		nent "A works hard", B be the statement "D i (1) (2) (3)	be the statement "B is ha s happy".	ppy", C be the statement
	ii)	From (5), $\neg(\neg A \lor \neg A $	a, assuming $\neg (\neg A \lor \neg \neg D) \equiv A \land D$ A $A \neg C, D \vDash \neg C$ $ \vDash \neg B \lor \neg A$	(6) (7) (8) (9) (10)	
a)	∃ <i>x</i> '	∀y,x ≠ y,singapor	$re(x) \Rightarrow \neg singapore$	(y)	
	∃x($\big(P(x)\Rightarrow Q(x)\big)$	$\equiv (\exists x \neg P(x)) \lor (\exists x \\ \equiv \neg \neg (\exists x \neg P(x)) \lor \\ \equiv \neg (\forall x P(x)) \lor (\exists x \\ \equiv \forall x P(x) \Rightarrow \exists x \ Q(x) $	$ \left(\exists x \ Q(x)\right) \\ Q(x)\right) $	
c)	i) ii)	$\exists x, InNTU(x) \Rightarrow T$ $Talent(John) \land \neg InNTU(John) \Rightarrow U$ $From (1), \forall x, \neg InN$ $From (2), \exists x, \neg InN$ $From (4), \neg InNTU$ $Assume \neg InNTU(John)$ $From (3), Talent(John)$ $From (6) + (10), x = InNTU(John)$ $From (9) + (11), correspond to the second to the$	Postgrad(John) Indergrad(John) ITU(x) ∨ Undergrad ITU(x) ∨ Talent(x) (John) ∨ Undergrad Iohn). NTU(John) ∨ Undergrad ohn) ∧ ¬Postgrad(J	(x) ∨ Postgrad(x) (John) grad(John), ¬Undergra ohn) ⊨ Talent(John) n) ∨ Talent(John),Talen	(9) (10)

4)

--End of Answers--