ADARLAB AI Training Course

Lec5 Homework Report

110511118 陳孟頡

Part I. Answer the following questions about GRU structure

- GRU's strength and weakness compared to LSTM.
 - Strength:
 - 1. 參數量少:

GRU 將 input gate 以及 forget gate 合併,因此架構較簡單,參數量較少。

2. 計算效率高:

因架構簡單及參數量較少,使 GRU 有較好的計算效率。

3. 模型收斂快:

根據提供的參考資料《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling》,再大部分的 dataset 中 GRU 的 learning curve 收斂速度較 LSTM 快,

■ Weakness:

1. 萃取長距離資料相關性能力差:

因 GRU 將 LSTM 對記憶體資料存取進行簡化,因此模型 所能學習的資料相關性變少,使長距離的資料相關性提取能力 降低。

2. 適應能力低:

因架構較簡易,因此在複雜的 dataset 中可能無法完全學習特徵相關性,導致表現較差。

Can we say GRU is an improvement over LSTM? Give your detailed reasoning.

Answer:

我認為 GRU 不能稱作 LSTM 的進化版,如同參考資料 《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling》所提及,兩者的表現會因 dataset 不同而有差異,表現上各 有好壞,無法分辨孰優孰劣,因此在使用上應視不同應用採用不同架 構。

Part II. How are recurrent neural networks different from other deep learning networks?

RNN(recurrent neural network)與一般 DNN(deep neural network)不同之 處,可分為時域、架構上以及訓練上三點:

1. 時域差異:

一般 DNN 針對單一時間點的輸入、輸出,屬於有限脈衝響應 (finite impulse response),只能處理特定資料量。RNN 為了保留前後文意,會考慮時間域上所有資料,在理論上屬於無限脈衝響應(infinite impulse response)。

2. 架構差異:

RNN 為了處理時間域上所有資料,需要記憶空間來存放時間點以前的 hidden layer 資料。DNN 則沒有額外記憶體。

3. 訓練差異:

DNN 為非循環架構,一般使用 backpropagation 進行參數更新。 RNN 有反饋迴路,訓練模型時使用將時域展開的 BPTT(backpropagation through time),將同一參數不同時間點的 gradient 進行疊加。

此外,由於 RNN 的 error surface 變化大,因此在訓練時容易產生 gradient explosion 問題,訓練時需使用 gradient clipping 防止此現象發生。

Part III. What are the limitations of recurrent neural networks?

RNN 主要的限制有以下幾點:

1. 梯度消失、梯度爆炸:

RNN 訓練進行 BPTT 時會將梯度迭代乘積,因此梯度可能以指數函數下降(造成梯度消失),或是指數函數上升(造成梯度爆炸),導致學習速率(learning rate)調整十分困難,增加 RNN 訓練難度。

2. 長距離資料相關性萃取能力差:

隨著時間增加,較早輸入 RNN 的資料影響能力會逐漸下降,導致 RNN 只擁有短期記憶,對長距離資料相關性的萃取能力差。

3. 運算效率差:

RNN 每時間點輸出會受到前一個時間點資料的影響,因此無法進行平行運算加速訓練及推論速度,計算效率差。

4. 記憶空間要求高:

若要保留較長距離資料的影響,則 RNN 所需記憶空間會隨之增加。記憶空間增加不只提高硬體開銷,更會增加資料處理複雜度。

Part IV. Introduction of a subtask of NLP

Subtask:

文字自動摘要(text summarization)

• Goal:

將一段文字或文章縮減為精簡版本,且保留原文章重點及重要資訊。

Dataset

GigaWord, DUC, CNN/Daily Mail

• Metric Calculation

ROUGE 由 metrics 以及 software package 組成,用以評斷摘要的文字以及參考摘要的差異。常見的 ROUGE 有以下幾種:

1. ROUGE-N: 計算人工標註以及自動生成字串間的 recall

ROUGE-N $= \frac{\sum_{S \in \{ReferenceSummaries\}} \sum_{gram_n \in S} Count_{match}(gram_n)}{\sum_{S \in \{ReferenceSummaries\}} \sum_{gram_n \in S} Count(gram_n)}$ (1)

2. ROUGE-L: 計算兩者間最常的共同單字順序(LCS, longest common subsequence),即擁有共同子序列(subsequence)

$$R_{lcs} = \frac{LCS(X,Y)}{m}$$

$$P_{lcs} = \frac{LCS(X,Y)}{n}$$

$$F_{lcs} = \frac{(1+\beta^2)R_{lcs}P_{lcs}}{R_{lcs} + \beta^2 P_{lcs}}$$

其中,X 人工標註摘要(reference),長度為m;Y 為自動摘要,長度為n; β 為P 和 R 的相對重要性。

3. ROUGE-W: 加權版 ROUGE-L, 著重於連續的子序列

$$X:$$
 [ABCDEFG]
 $Y_1:$ [ABCDHIK]
 $Y_2:$ [AHBKCID]

其中 X 人工標註摘要,; Y1, Y2 為自動摘要。

4. ROUGE-S: 做法似 2-grams,但可跳著進行比對

$$R_{skip2} = \frac{SKIP2(X,Y)}{C(m,2)}$$

$$P_{skip2} = \frac{SKIP2(X,Y)}{C(n,2)}$$

$$F_{skip2} = \frac{(1+\beta^2)R_{skip2}P_{skip2}}{R_{skip2} + \beta^2 P_{skip2}}$$

SKIP2(X, Y)為(skip-bigrams)的數量。

Application

- 文件管理:能夠快速總結冗長文章、報告或研究論文,幫助我們快速掌握重點並做出對應作為。
- 客戶服務:用以提供客戶互動、電子郵件或聊天日誌的摘要,以縮短回應時間並提高服務品質。
- 3. 學習工具: 統整教科書、講義甚至是網路內容,讓學生學習和複習更加容易。
- 4. 語音助理: 結合語音助理,以方便有效率的方式向使用者提供新聞、文章或文件的快速摘要。