# **Extension**

### Accurate, Large Mini-batch SGD

- ➤ Motivation of scaling up deep learning:
  - •Larger datasets and network gives improvement but longer training time.
  - •We want to scale up and train faster.
    - ResNet50 on P100/caffe2:

1GPU/10d-> 8GPUs/29h -> 256GPUs/1h

- Train visual models on internet-scale data
- Other **Motivations**

Generalize to object detection and segmentations

### **Generalization difficulty**

effective batch size = batch size \* # of workers



Figure 2: Training and testing accuracy for SB and LB methods as a function of epochs.

# **Difficulty**

- poor generalization (at the end of training)
- optimization difficulty (at the beginning of training)

too many gpm, - calculated gradient may not be consistant



#### Method

- **Method**: (for Distributed Synchronous SGD)
  - Gradient aggregation
  - Learning rate linear scaling + warmup
  - Some tricks to overcome optimization difficulty

### Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

# **Distributed Synchronous SGD**

$$l(x,w) = \frac{\lambda}{2} ||w||^2 + \varepsilon(x,w)$$

$$\frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x,w) = \lambda w + \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla \mathcal{E}(x,w)$$
grad on local batch i
$$\frac{1}{kn} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x,w_t)$$
grad := grad aggregation
$$\hat{w}_{t+1} = w_t - \hat{\eta} \frac{1}{kn} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x,w_t) \text{ weight := weight + f(grad)}$$

### Large Minibatch SGD

$$L(w) = \frac{1}{|X|} \sum_{x \in X} l(x, w)$$

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$$

### Large Minibatch SGD

### Why are we interested in large minibatch SGD?

- •The larger mini-batches, the higher per-worker workload, the lower the relative communication overhead (or easier to hide communication overhead) and the easier to scale up.
- •We want to use large mini-batches in place of small mini-batches.
- •However, using large mini-batches will sacrifice model accuracy in recent literature or simply won't converge.

### Learning rates for large minibatch

When the minibatch size is multiplied by k, multiply the learning rate by k.

• k iterations: 
$$w_{t+k} = w_t - \eta \frac{1}{n} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x, w_{t+j})$$

• single iteration: 
$$\hat{w}_{t+1} = w_t - \hat{\eta} \frac{1}{kn} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x, w_t)$$

# Learning rate warmup

Constant warmup



Gradual warmup



|                            | k   | n  | kn  | $\eta$ | top-1 error (%)  |
|----------------------------|-----|----|-----|--------|------------------|
| baseline (single server)   | 8   | 32 | 256 | 0.1    | $23.60 \pm 0.12$ |
| no warmup, Figure 2a       | 256 | 32 | 8k  | 3.2    | $24.84 \pm 0.37$ |
| constant warmup, Figure 2b | 256 | 32 | 8k  | 3.2    | $25.88 \pm 0.56$ |
| gradual warmup, Figure 2c  | 256 | 32 | 8k  | 3.2    | $23.74 \pm 0.09$ |

### Momentum correction

$$\begin{cases} u_{t+1} = mu_t + \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t) \\ w_{t+1} = w_t - \eta u_{t+1}. \end{cases}$$

$$\begin{cases} u_{t+1} = mu_t + \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t) \\ w_{t+1} = w_t - \eta u_{t+1}. \end{cases}$$
 Substituting  $v_t$  for  $\eta u_t$  in (9) yields: 
$$\begin{cases} v_{t+1} = mv_t + \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t) \\ w_{t+1} = w_t - v_{t+1}. \end{cases}$$
 be careful with learning rate scale time.

#### Momentum correction

$$\begin{aligned} w_{t+1} &= w_t - \eta_{t+1} u_{t+1} \\ &= w_t - \eta_{t+1} (m u_t) + \frac{1}{n} \sum \nabla l(x, w_t)) \\ &= w_t - \eta_{t+1} (m v_t) + \frac{1}{n} \sum \nabla l(x, w_t)) \\ &= w_t - m \frac{\eta_{t+1}}{\eta_t} v_t - \eta_{t+1} \frac{1}{n} \sum \nabla l(x, w_t) \\ &= w_t - m \frac{\eta_{t+1}}{\eta_t} v_t - \eta_{t+1} \frac{1}{n} \sum_{t \in \mathcal{I}} \nabla l(x, w_t) \end{aligned}$$

So the correct  $v_{t+1}$  should be

$$v_{t+1} = m \frac{\eta_{t+1}}{\eta_t} v_t + \eta_{t+1} \frac{1}{n} \sum \nabla l(x, w_t)$$

21

# **Data shuffling**

### Single-worker data shuffling:



### 4-worker data shuffling:



# Weight decay

( regularization ")

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$$

$$l(x,w) = \frac{\lambda}{2} ||w||^2 + \varepsilon(x,w)$$

only modify this term -> since large minibates are pool worker

$$w_{t+1} = w_t - \eta \lambda w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla \varepsilon(x, w_t)$$

### **Implementations**

### **Gradient Aggregation**

- within a server:
  - if data>256kb, use NCCL
  - else, GPU->host + reduction
- between servers:
  - recursive halving and doubling algorithm
- Non-power-of-two servers:
  - binary blocks algorithm



Intel-based 8 P100 GPUs with NVLink 3.2T NVMe SSDs Mellanox 50G Ethernet

### **Results**

#### Minibatch size vs. error



Figure 1. ImageNet top-1 validation error vs. minibatch size.



Goyal et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 hour