Asymptotic Notations

Mayank Kharbanda(17), Megha Sundriyal(18)

August 17, 2018

1 Small-O(o)

f(n) = o(g(n)) means for all c > 0 there exists some $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

Example 1.1 $f(n) = n^2$ is $O(n^2)$ and $\theta(n^2)$. Is $f(n) = o(n^2)$?

Sol: No, f(n) is not $o(n^2)$.

Proving by contradiction method.

Claim: Suppose if possible, $f(n) = o(n^2)$ for all, c > 0 there exists some $n_0 > 0$ such that $0 \le f(n) < cn^2 \ \forall \ n \ge n_0$.

Proof: $f(n) < cn^2$ which implies $n^2 < cn^2$ whenever c > 1. But we said that this should be true $\forall c > 0$. So, let us check for some 0 < c < 1.

Let
$$c = \frac{1}{2}$$

We get,

$$=> n^2 < \frac{1}{2}n^2$$

but this is not true for any n. Thus, we can say that $f(n) \neq o(n^2)$.

Example 1.2 f(n) = n. $f(n) = O(n^2)$ and $f(n) \neq \theta(n^2)$. Is $f(n) = o(n^2)$?

Sol: By definition, we know that

$$f(n) = o(n^2),$$

if \exists some $n_0 > 0$, $\forall c > 0$

such that,

$$0 \le f(n) < cn^2, \, \forall \, n \ge n_0.$$

Let c>0, be any arbitrary constant. Then, for $f(n)=o(n^2)$ we must have

$$=>$$
 $f(n) < cn^2$

$$=>$$
 $n < cn^2$

$$=>$$
 $\frac{1}{c} < n$

For every
$$c$$
,

$$nc = \frac{1}{c}$$

Thus we can say,

$$=> \qquad n < cn^2 \ \forall \ n > \frac{1}{c}$$

Hence,

$$f(n) = o(n^2).$$

Remark: If a function f(n) is O(g(n)) but not $\theta(g(n))$, then f(n) is o(g(n)).

Function 1	Function 2	Big O	Big theta	Small O
f(n)	g(n)	O	θ	o
\overline{n}	n + 100	Т	Т	F
2^n	3^n	Т	F	Γ
$n \log n^2$ $2^{\log n}$	$n \log n^4$	Т	T	F
$2^{\log n}$	n	Γ	T	F
$2^{\log \sqrt{n}}$	$2^{\log n}$	T	F	Γ

Theorem 2.1: If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, then f(x) = O(g(x)) and also f(x) = o(g(x)).

Theorem 2.2: If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = c$, for some constant c, then f(x) = O(g(x)) and also $f(x) = \theta(g(x))$.

Example 2.1: $f(n) = \log n$, g(n) = n. Is f(n) = O(g(n)) and f(n) = o(g(n))?

Sol: By using limits, finding

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$
,

i.e.

$$=>$$
 $\lim_{n\to\infty}\frac{\log n}{n}$

$$=> \lim_{n\to\infty} \frac{\frac{1}{n}}{1} = 0$$

(using L'Hôpital's rule)

So, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, Hence f(n) = O(g(n)) and also f(n) = o(g(n)).

Example 2.2: $f(n) = \log^5 n$, $g(n) = \sqrt{n}$. Is f(n) = o(g(n))?

Sol: By using limits, finding

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$
,

i.e.

$$=>$$
 $\lim_{n\to\infty}\frac{\log^5 n}{\sqrt{n}}$

$$=> \lim_{n\to\infty} \frac{5.\log^4 n.\frac{1}{n}}{\frac{1}{2\sqrt{n}}}$$
 (using L'Hôpital's

(using L'Hôpital's rule)

$$=> \lim_{n\to\infty} \frac{5.\log^4 n}{\frac{1}{2}.\sqrt{n}}$$

$$=> \lim_{n\to\infty} \frac{5.4.\log^3 n.\frac{1}{n}}{\frac{1}{2}.\frac{1}{2\sqrt{n}}}$$
 (using L'Hôpital's rule)

$$=> \lim_{n\to\infty} \frac{5.4 \cdot \log^3 n}{(\frac{1}{2})^2 \cdot \sqrt{n}}$$

•••

• • •

$$=>$$

$$\lim_{n\to\infty} \frac{5!}{(\frac{1}{2})^5 \cdot \frac{1}{\sqrt{n}}}$$

So,
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, Hence, $f(n) = o(g(n))$.

Home Work

- **3.1** Prove that, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ implies, f(n) = o(g(n)).
- **3.2** Prove that, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, c is a constant, implies $f(n) = \theta(g(n))$.
- **3.3** Assume that $\log n = o(n)$ and prove that, $\log^M n = o(n^{\epsilon})$, however large M is and however small the value of ϵ is, $\epsilon > 0$.