Algebraische Topologie 1

Prof. Banagl

5. Januar 2022

1 Mengentheoretische Topologie

1.1 Metrische Räume

Bsp. 1. Euklidische Distanz im \mathbb{R}^n .

Def. 2 (Metrik, metrischer Raum). Eine Menge X mit einer Funktion $d: X \times X \to \mathbb{R}$, welche die Eigenschaften

- 1. Positive Definitheit,
- 2. Symmetrie und die
- 3. Dreiecksungleichung

erfüllt, heißt metrischer Raum mit der Metrik d.

Def. 3 (Stetigkeit). Seien (X, d_X) , (Y, d_Y) metrische Räume. Eine Abbildung $f: (X, d_X) \to (Y, d_Y)$ heißt stetig im Punkt $x \in X$, wenn $\forall \epsilon > 0 \exists \delta > 0$:

$$d_X(x,y) < \delta \implies d_Y(x,y) < \epsilon$$

f heißt stetig, wenn f stetig in jedem Punkt ist.

Def. 4 (Ball). $x \in X$, $\epsilon > 0$. $B_{\epsilon}(x) := \{y \in X : d(x, y) < \epsilon\}$.

Def. 5 (offene Menge). Sei $U \subset X$ eine Teilmenge. U heißt offen in X, wenn $\forall x \in U \exists \epsilon > 0 \colon B_{\epsilon}(x) \subset U$. Eine Teilmenge $C \subset X$ heißt abgeschlossen, wenn das Komplement offen ist.

Lemma 1. $f:(X,d_X)\to (Y,d_Y)$ ist stetig $\Leftrightarrow \forall V\subset Y$ offen ist $f^{-1}(V)$ auch offen in X.

Es genügt daher, über ein System von offenen Mengen in X zu verfügen, um den Begriff Stetigkeit formulieren zu können.

1.2 Topologische Räume

Def. 6 (topologischer Raum). Ein topologischer Raum (X, \mathcal{T}) besteht aus einer Menge X zusammen mit einer Familie \mathcal{T} von Teilmengen von X, sodass:

1. $\emptyset, X \in \mathfrak{T}$

- 2. $U_i \in \mathcal{T}, i \in I \implies \bigcup_{i \in I} U_i \in \mathcal{T}$
- $3. \ U,V \in \mathfrak{T} \implies U \cap V \in \mathfrak{T}.$

Def. 7 (Abgeschlossenheit). Sei (X, \mathfrak{T}) ein topologischer Raum. Dann heißt $C \subset X$ abgeschlossen, wenn $X \setminus C \in \mathfrak{T}$ ist.

Def. 8 (Stetigkeit). Eine Abbildung $f:(X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$ heißt stetig, wenn $\forall V \in \mathfrak{T}_Y \colon f^{-1}(V) \in \mathfrak{T}_X$.

Def. 9 (Homöomorphismus). Eine Bijektion $f: X \to Y$ heißt Homöomorphismus wenn f und f^{-1} stetig sind.

Wenn ein Homö
omorphismus wie oben existiert, schreiben wir $X\cong Y$ und sage
nXist homöomorph zu Y.

Def. 10 (offene/abgeschlossene Abbildung). Eine stetige Abbildung $f: X \to Y$ heißt offen, wenn

$$\forall U \! \underset{\text{offen}}{\subset} X \colon f(U) \! \underset{\text{offen}}{\subset} Y$$

bzw. abgeschlossen, wenn

$$\forall A \subset X : f(A) \subset Y$$
.

Ein Homöomorphismus ist offen und damit eine Bijektion auf den offenen Mengen.

Def. 11 (Basis). Sei X ein topologischer Raum. Eine Menge \mathcal{B} von offenen Teilmengen von X heißt Basis für die Topologie auf X, wenn

$$\forall U \underset{\text{offen}}{\subset} X \colon \exists B_i \in \mathcal{B}, i \in I, U = \bigcup_{i \in I} B_i$$

Bsp. 12. Sei (X,d) ein metrischer Raum. Dann ist $\mathcal{B} = \{B_{1/n}(x) : x \in X, n = 1, 2, \dots\}$ eine Basis für die metrische Topologie auf X.

Def. 13 (Subbasis). Eine Menge \mathcal{S} von offenen Teilmengen von X heißt Subbasis für die Topologie auf X, wenn

$$\mathcal{B} = \left\{ \bigcap_{i}^{\text{endl}} S_i \colon S_i \in \mathcal{S} \right\}$$

eine Basis ist.

1.3 Unterräume

Sei X ein topologischer Raum und $A \subset X$ eine Teilmenge. Wir topologisieren A:

Def. 14.

$$V \subset A$$
 offen $:\Leftrightarrow V = U \cap A$ mit $U \subset X$ offen

Def. 15 (Inneres, Abschluss). Sei X ein topologischer Raum und $A \subset X$ eine Teilmenge. Das Innere von A in X

$$\operatorname{int}(A) \coloneqq A^\circ \coloneqq \bigcup \left\{ U \subset A \colon U \underset{\operatorname{offen}}{\subset} X \right\} \subset A$$

ist offen in X und die größte offene Teilmenge, die in A enthalten ist. Der Abschluss von A in X

$$\operatorname{cl}(A) := \overline{A} := \bigcup \left\{ C \supset A \colon C \underset{\operatorname{abg.}}{\subset} X \right\} \subset A$$

ist abgeschlossen in X und die kleinste abgeschlossene Teilmenge, die A enthält.

Def. 16 (dicht). $A \subset X$ heißt dicht in X wenn $\overline{A} = X$.

1.4 Zusammenhängende Räume

 $\mathbf{Def.}$ 17 (Zusammenhang). Ein topologischer Raum X heißt zusammenhängend, wenn sich X nicht in der Form

$$X = A \cup B, \quad A, B \neq \emptyset, \quad A, B \underset{\text{offen}}{\subset} X, \quad A \cap B = \emptyset$$

schreiben lässt.

Proposition 2. X zusammenhängend \Leftrightarrow Jede stetige, diskretwertige Abbildung auf X ist konstant.

Beweis. \implies Sei $d: X \to D$ stetig. Sei $X \neq \emptyset: x \in X, y \coloneqq d(x) \in D$.

Sei nun $A \coloneqq d^{-1}(\underbrace{\{y\}}_{\text{offen}})$. Dann gilt $A \neq \emptyset$ wegen $x \in A$.

Sei $B := d^{-1}(\underbrace{D \setminus \{y\}}_{\text{offen}})$. Dann gilt $A \cap B = \emptyset$ und $X = A \cup B$.

Sowohl A als auch B sind offen, weil d stetig ist. Ist X nun zusammenhängend folgt $B = \emptyset$, also X = A und damit d konstant.

$$d(x) := \begin{cases} 0 & , x \in A \\ 1 & , x \in B \end{cases}$$

Dann ist d stetig, diskretwertig, aber nicht konstant.

Proposition 3. Ist X zusammenhängend und $f: X \to Y$ stetig, dann ist f(X) zusammenhängend. Beweis. Wir verwenden Proposition 1. Sei $d: f(X) \to D$ eine diskretwertige, stetige Abbildung. Betrachte das folgende kommutative Diagramm mit stetigen Abbildungen

$$\begin{array}{ccc}
f(X) & \xrightarrow{d} & D \\
f \uparrow & & \\
X & & \end{array}$$

Da X zusammenhängend ist, muss $d \circ f$ konstant sein. Also ist bereits d konstant, da $f: X \to f(X)$ surjektiv ist.

Def. 18 (Zusammenhangskomponenten). Seien $x, y \in X$. Die Relation

$$x \sim y : \Leftrightarrow \exists$$
 zusammenhängendes $A \subset X : x, y \in A$

ist eine Äquivalenz
relation auf X, die Äquivalenzklassen heißen Zusammenhangskomponenten.

Def. 19. X heißt wegzusammenhängend, wenn $\forall x, y \in X$:

$$\exists \text{ Weg } \gamma \colon [0,1] \xrightarrow{\text{stetig}} X \colon \gamma(0) = x, \gamma(1) = y.$$

Proposition 4. X wegzusammenhängend $\implies X$ zusammenhängend.

Beweis. Angenommen

$$X = A \cup B, \quad A, B \neq \emptyset, \quad A, B \underset{\text{offen}}{\subset} X, \quad A \cap B = \emptyset$$

Wähle $a \in A, b \in B$. Angenommen, es existiere ein Weg $\gamma \colon [0,1] \to X, \gamma(0) = a, \gamma(1) = b$. Dann folgt

$$[0,1] = \underbrace{\gamma^{-1}(A)}_{\text{offen}} \cup \underbrace{\gamma^{-1}(B)}_{\text{offen}}$$

Außerdem sind $\gamma^{-1}(A)$ und $\gamma^{-1}(B)$ nichtleer und disjunkt. Insbesondere wäre damit [0,1] nicht zusammenhängend, Widerspruch.

Die Umkehrung gilt nicht.

Bsp. 20.

$$S := \left\{ (x, \sin\left(\frac{1}{x}\right) : 0 < x \le 1 \right\} \subset \mathbb{R}^2$$

S ist wegzusammenhängend, also ist S auch zusammenhängend. Also ist auch \overline{S} zusammenhängend, $\overline{S} = S \cup (\{0\} \times [-1,1])$ Aber \overline{S} ist nicht wegzusammenhängend.

Def. 21. Seien $x, y \in X$. Dann ist die Relation

$$x \sim y : \Leftrightarrow \exists \text{ Weg } \gamma \colon [0,1] \to X, \ \gamma(0) = x, \gamma(1) = y.$$

eine Äquivalenz
relation, die Äquivalenzklassen heißen Wegekomponenten von
 ${\cal X}.$

1.5 Kompaktheit

Def. 22. Ein topologischer Raum X heißt kompakt, wenn jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt,

$$X = \bigcup_{\alpha} U_{\alpha} \implies \exists \alpha_1, \dots, \alpha_n \colon X = U_{\alpha_1} \cup \dots \cup U_{\alpha_n}.$$

Proposition 5. Sei $f: X \to Y$ stetig. Ist X kompakt, dann ist auch f(X) kompakt.

Beweis. Sei

$$f(X) \subset \bigcup_{\alpha} V_{\alpha},$$

d.h. $V_{\alpha} \subset Y$ ist eine Überdeckung. Es gilt

$$X = \bigcup_{\alpha} f^{-1}(V_{\alpha})$$

Da X kompakt ist existiert also eine endliche Teilüberdeckung $f^{-1}(V_{\alpha_1}), \ldots, f^{-1}(V_{\alpha_n})$ Insbesondere erhalten wir dann $f(X) \subset V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$.

Proposition 6. Ist X kompakt und $A \subset X$ abgeschlossen, dann ist A kompakt.

Beweis. Sei $A \subset \bigcup_{\alpha} U_{\alpha}$ eine offene Überdeckung von A. Dann ist

$$(X \setminus A) \cup \bigcup_{\alpha} U_{\alpha}$$

eine offene Überdeckung von X. Da X kompakt ist, wählen wir eine endliche Teilüberdeckung

$$X = (X \setminus A) \cup U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}.$$

Dann ist aber $A \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$ und wir haben eine endliche Teilüberdeckung von A gefunden. \square

 $\bf Def.~23$ (Hausdorffraum). Ein topologischer Raum Xheißt Hausdorffraum, wenn

$$\forall x \neq y \in X \exists U, V \subset X$$

mit $x \in U, y \in V$ derart, dass $U \cap V = \emptyset$.

In nicht-hausdorffschen Räumen existieren keine eindeutigen Grenzwerte.

Bsp. 24. Metrische Räume sind Hausdorffsch.

Proposition 7. Sei X ein Hausdorffraum und $A \subset X$, A kompakt. Dann ist A abgeschlossen in X. Beweis. Wir zeigen $X \setminus A$ ist offen. Sei $x \in X \setminus A$. $\forall y \in A$ existieren $U_y, V_Y \subset X$ mit $y \in U_y, x \in V_y$ und $U_y \cap V_y = \emptyset$. Dann gilt

$$A \subset \bigcup_{y \in A} U_y$$
 ist eine offene Überdeckung.

Aus der Kompaktheit von A folgt $A \subset U_{y_1} \cup \cdots \cup U_{y_n}$. $V \coloneqq V_{y_1} \cap \cdots \cap V_{y_n}$ ist offen und es gilt $x \in V, V \subset X \setminus A$.

Proposition 8. Sei $f: X \to Y$ eine stetige Bijektion, X kompakt, Y Hausdorffsch. Dann ist f ein Homöomorphismus.

Beweis. Wir zeigen: f ist eine abgeschlossene Abbildung. Sei $A \subset X$ abgeschlossen. Aufgrund der Kompaktheit von X ist nach Proposition 6 A kompakt. Nach Proposition 5 ist also auch f(A) kompakt. Nach Proposition 7 ist damit $f(A) \subset Y$ abgeschlossen.

Proposition 9. Eine stetige Abbildung $f: X \to \mathbb{R}$ auf einem kompakten Raum X nimmt auf X eine Maximum und ein Minimum an.

Beweis. Nach Proposition 5 ist $f(x) \subset \mathbb{R}$ kompakt. Insbesondere ist f(X) abgeschlossen und beschränkt. Dann ist $M := \sup f(X) \in \mathbb{R}$. Weil f(X) abgeschlossen ist, gilt $M \in f(x)$, insb. $\exists x_M \in X : M = f(x_M)$.

Def. 25 (Durchmesser). Sei (X,d) ein metrischer Raum. Für eine Menge $A \subset X$ heißt

$$\operatorname{diam}(A) := \sup\{d(x,y)|x,y \in A\}$$

Durchmesser von A.

Proposition 10. Wenn X kompakt ist, dann ist $diam(X) < \infty$.

Beweis. Fixiere $x_0 \in X$. Die Funktion $f: X \to \mathbb{R}$ mit $f(x) := f(x, x_0) \in \mathbb{R}$ ist stetig. Nach Proposition 9 nimmt f ihr Maximum M auf X an, also $\operatorname{diam}(X) \leq 2M$.

Lemma 11 (Lebesgue-Lemma). Sei (X,d) ein kompakter metrischer Raum und $X = \bigcup_{\alpha} U_{\alpha}$ eine offene Überdeckung von X. Dann $\exists \delta > 0$ (eine "Lebesgue-Zahl" für $\{U_{\alpha}\}$), sodass $\forall A \subset X$:

$$\operatorname{diam}(A) < \delta \implies \exists \alpha \colon A \subset U_{\alpha}.$$

Beweis. $\forall x \in X \exists B_{2\epsilon(x)}(x)$ und ein Index $\alpha = \alpha(x)$, sodass

$$B_{2\epsilon(x)}(x) \subset U_{\alpha(x)}$$
.

Wir erhalten durch $X = \bigcup_{x \in X} B_{\epsilon(x)}(x)$ eine offene Überdeckung, aus der aufgrund der Kompaktheit von X eine endliche Teilüberdeckung $X = B_{\epsilon(x_1)}(x_1) \cup \cdots \cup B_{\epsilon(x_n)}(x_n)$ ausgewählt werden kann. Sei schließlich $\delta \coloneqq \min\{\epsilon(x_1), \ldots, \epsilon(x_n)\} > 0$.

Sei $A \subset X$ mit diam $(A) < \delta$. Wähle dann $a_0 \in A$. Dann $\exists x_i : a_0 \in B_{\epsilon(x_i)}(x_i)$. Dann ist $\forall a \in A : d(a, a_0) < \delta$. Es folgt

$$d(a, x_i) \le d(a, a_0) + d(a_0, x_i) < \delta + \epsilon(x_i) \le 2\epsilon(x_i)$$

Insbesondere ist also $A \subset B_{2\epsilon(x_i)} \subset U$.

1.6 Lokal kompakte Räume

Def. 26 (lokal kompakt). Ein topologischer Raum heißt lokal kompakt, wenn jeder Punkt eine kompakte Umgebung besitzt.

Eigenschaften des Raums Y

Def. 27 (Ein-Punkt-Kompaktifizierung). Sei X ein lokal kompakter Hausdorffraum. Sei $\infty \notin X$. Betrachte dann $Y := X \cup \{\infty\}$. Wir topologisieren die Menge Y wie folgt. Die offenen Mengen in Y sind:

- 1. $U \subset X$, und
- 2. $Y \setminus K$ mit $K \subset X, K$ kompakt.

Man überprüft mithilfe der Hausdorffeigenschaft, dass dies tatsächlich eine Topologie auf Y ist. $Y = X \cup \{\infty\}$ heißt Ein-Punkt-Kompaktifizierung von X.

Es gilt

- $X \subset Y$,
- \bullet Y Hausdorffsch (da X lokal kompakt ist), und
- Y ist kompakt.
- Ist X nicht kompakt, dann $\overline{X} = Y$

Bsp. 28. $X = \mathbb{R}^1 : \mathbb{R}^1 \cup \{\infty\} = \text{Kreis.}$

Def. 29. Wir definieren $D^n : \cong \{x \in \mathbb{R}^n : ||x|| \le 1\}$ und $S^{n-1} : \cong \{x \in \mathbb{R}^n : ||x|| = 1\}$.

1.7 Parakompaktheit

Def. 30 (lokal endlich). Eine Familie von Teilmengen von X heißt lokal endlich, wenn jeder Punkt $x \in X$ eine offene Umgebung U besitzt, die nur endlich viele Mengen der Familie nichtleer schneidet.

Def. 31. Ein Hausdorffraum X heißt parakompakt, wenn jede offene Überdeckung von X eine lokal endliche Verfeinerung besitzt.

Metrische Räume sind parakompakt, das ist aber sehr schwer zu zeigen. Parakompaktheit impliziert auch Normalität, d.h. zwei abgeschlossene Mengen lassen sich durch offene Umgebungen trennen.

Def. 32 (Träger). Sei $f: X \to \mathbb{R}$ eine stetige Abbildung. Dann ist

$$supp(f) := Cl\{x \in X : f(x) \neq 0\}$$

Def. 33. Sei $U = \{U_{\alpha}\}$ eine offene Überdeckung von X. Eine Partition der Eins bezüglich U besteht aus einer lokal endlichen Verfeinerung $\{V_{\beta}\}$ von U und stetigen Funktionen $\{f_{\beta}\colon X\to [0,1]\}$ sodass:

- $\operatorname{supp}(f_{\beta}) \subset V_{\beta}$, und
- $\forall x \in X : \sum_{\beta} f_{\beta}(x) = 1.$

Proposition 12. Sei X parakompakt und U eine offene Überdeckung von X. Dann besitzt X, U eine Zerlegung der Eins.

1.8 Produkttopologie

Def. 34. Seien X, Y top. Räume. Dann heißt $X \times Y$ kartesisches Produkt von X und Y als Menge. Wir topologisieren $X \times Y$ wie folgt:

$$\mathcal{B} = \{U \times V | U \underset{\text{offen}}{\subset} X, V \underset{\text{offen}}{\subset} Y\}$$

ist eine Subbasis für eine Topologie auf $X \times Y$, die Produkttopologie.

 $\textbf{Bem 35. } \ \, \textbf{\mathbb{B} ist sogar eine Basis, denn } (U \times V) \cap (U' \times V') = (\underbrace{U \cap U'}_{\text{offen in } X}) \times (\underbrace{V \cap V'}_{\text{offen in } X}) \in \mathbb{B}.$

Dann sind die Faktorprojektionen

$$\begin{array}{c} X \times Y & \stackrel{\pi_1}{\longrightarrow} X \\ \downarrow^{\pi_2} & \\ Y \end{array}$$

mit $\pi_1(x,y) = x$ und $\pi_2(x,y) = y$ stetig:

$$U \subset X \implies \pi^{-1}(U) = U \times Y \in \mathcal{B}.$$

Die Produkttopologie ist die kleinste Topologie auf $X \times Y$, sodass π_1 und π_2 stetig sind, denn: Seien $U \subset X, V \subset Y$ gegeben, dann ist offen

offen in
$$X \times Y$$
 wegen Stetigkeit von π_1
$$\cap \pi_2^{-1}(V) = (U \times Y) \cap (X \times V) = U \times V$$

Proposition 13. Sind X und Y kompakt, so auch $X \times Y$.

Beweis. Doppelter Kompaktheitsschluss für zunächst $x \times Y$ und dann X.

1.9 Quotientenräume

Def. 36. Sei X ein topologischer Raum, Y eine Menge und $f: X \to Y$ eine surjektive Abbildung. Wir topologisieren Y:

$$V \subset Y : \iff f^{-1}(V) \subset X.$$

Bsp. 37. $X := S^1 \times [0,1], Y := (S^1 \times [0,1)) \cup \{p\}$. Betrachte die Abbildung

$$f \colon X \to Y$$

$$f|_{S^1 \times [0,1)} = \mathrm{id}$$

$$f(S^1 \times \{1\}) = \{p\}.$$

Y erhält die Quotiententopologie (sieht aus wie ein Kegel auf der S^1 und ist homöomorph zur D^2 .

Bem 38. Auf X wird eine Äquivalenzrelation \sim erklärt durch

$$x \sim x' : \iff f(x) = f(x') \in Y.$$

Äquivalenzklassen [x]. Die Menge der Äquivalenzklassen X/\sim nennen wir Y. Betrachte die Surjektion

$$X \xrightarrow[\text{Quot.}]{\text{kanon.}} X/\sim = Y$$
$$x \mapsto [x]$$

Wir können also alternativ auch beginnen mit einem top. Raum X zusammen mit einer Äquivalenzrelation \sim auf X und erhalten die Quotiententopologie auf X/\sim mit Hilfe der kanonischen Surjektion $\pi\colon X\to X/\sim$.

Bsp. 39.

$$D^{2} \xrightarrow{i} S^{2}$$

$$\downarrow^{f} \qquad \downarrow^{g}$$

$$D^{2}/\sim -\frac{k}{s} S^{2}/\sim$$

Dabei bezeichne i die Inklusion von D^2 als nördliche Hemisphäre von S^2 und \sim die antipodale Verklebung von Punkten. Außerdem sind f,g und i stetig. Auch k ist stetig: Sei nämlich $V \subset S^2/\sim$ offen. Dann ist aufgrund der Quotiententopologie $g^{-1}(V)$ offen in S^2 , genauso wie $i^{-1}(g^{-1}(V)) = f^{-1}(k^{-1}(V))$. Nach Definition der Quotiententopologie gilt $k^{-1}(V) \subset D^2/\sim k$ ist surjektiv und injektiv und damit eine Bijektion. Ist D^2 kompakt, so auch der Quotientenraum $D^2/\sim S^2/\sim$ ist außerdem hausdorffsch. Insbesondere ist k nach Proposition 8 ein Homöomorphismus. Es gilt $\mathbb{RP}^2 := D^2/\sim S^2/\sim$.

Abbildung 1: Visuaisierung von $\mathbb{R}P^2$

1.10 Spezialfälle der Quotientenkonstruktion

Kollabieren von Unterräumen: Sei X ein topologischer Raum und $A \subset X$ ein Unterraum. Dann bezeichnet X/A den Quotientenraum X/\sim bzgl. der Äquivalenzrelation \sim mit Klassen A und $\{x\}$ für $x\in X\setminus A$.

Bsp. 40.

eine Visualisierung:

Abbildung 2: D^3/S^2 -Visualisierung

Def. 41 (Kegel auf X).

$$cone(X) := \frac{X \times [0, 1]}{X \times \{1\}}$$

Anheften von Räumen mittels Abbildungen: Sei X ein topologischer Raum, $A \subset X$ ein Unterraum, $f \colon A \to Y$ eine stetige Abbildung. Dann ist $X \cup Y := (X \sqcup Y)/(a \sim f(a))$.

Bsp. 42. Sei $f: X \to Y$ stetig und I = [0, 1]. Sei $A = X \times \{1\} \subset X \times I$. Betrachte dann $f: A = X \times \{1\} \xrightarrow{f} Y$.

Def. 43. cyl := $(X \times I) \cup_f Y$ heißt der Abbildungszylinder von f. Idee: Man hat für $t \in [0,1)$ Kopien von X und für t = 1 identifiziert man X mit seinem Bild in Y.

Bem 44.

$$X = X \times \{0\} \xrightarrow{i} \operatorname{cyl}(f) = (X \times I) \underset{f}{\cup} Y$$

für r(x,t)=f(x) und r(y)=y. Dies ist wohldefiniert, denn $(x,t)\sim y$ für $x\in X, t\in [0,1], y\in Y$ genau dann, wenn t=1 und f(x)=y.

Def. 45. Sei $A \subset X$. Eine stetige Abbildung $r: X \to A$ heißt Retraktion, wenn $r|_A = \mathrm{id}_A$. Wir nennen A dann Retrakt von X.

Def. 46. cone $(f) \coloneqq \frac{\operatorname{cyl}(f)}{X \times \{0\}}$ heißt der Abbildungskegel auf $f \colon X \to Y.$

Bsp. 47. $T^2 := S^1 \times S^1$ ist der 2-Torus. Allgemein $T^n := S^1 \times \cdots \times S^1$.

2 Homotopien

Def. 48 (Homotopie). Seien X, Y topologische Räume und $f, g: X \to Y$ stetige Abbildungen. Eine Homotopie zwischen f und g ist eine stetige Abbildung $F: X \times I \to Y$, sodass F(x,0) = f(x) und $F(x,1) = g(x) \forall x \in X$. (alternativ auch $F_t(x) := F(x,t)$, $F_0 = f$, $F_1 = g$) Wir schreiben: $f \simeq g$ für die Äquivalenzrelation "f ist homotop zu g"

Def. 49 (Homotopie
äquivalenz). Eine stetige Abbildung $f\colon X\to Y$ heißt Homotopie
äquivalenz, wenn $\exists g\colon Y\xrightarrow{\text{stetig}} X$, sodass $g\circ f\simeq \operatorname{id}_X, f\circ g\simeq \operatorname{id}_Y.$ g heißt dann Homotopie-
invers zu f. Wir schreiben $X\simeq Y$ für die Äquivalenz
relation "X ist homotopie
äquivalent zu Y".

Def. 50. Ein topologischer Raum X heißt zusammenziehbar, wenn X homotopieäquivalent zu einem Punkt ist, $X \simeq \{x\}$. $X \xrightarrow{f} \{x\} \xrightarrow{g} X$ mit $f \circ g = \mathrm{id}_{\{x\}}$ und $\mathrm{const}_x = g \circ f \simeq \mathrm{id}_X$. Also ist $X \simeq \{x\}$ genau dann, wenn id $_X$ homotop zur konstanten Abbildung const_x .

Bsp. 51. $X = \mathbb{R}^n$. Sei $F : \mathbb{R}^n \times I \to \mathbb{R}^n$ gegeben durch $F(x,t) : t \cdot x$. F ist stetig, F(x,0) = 0 und $F(x,1) = x \forall x \in \mathbb{R}^n$. \mathbb{R}^n ist also zusammenziehbar.

Bsp. 52. Behauptung: $S^{n-1} \simeq \mathbb{R}^n \setminus \{0\}$

Beweis. $S^{n-1} \stackrel{i}{\hookrightarrow} \mathbb{R}^n \xrightarrow[\text{stetig}]{r} \to \mathbb{R}^n$ mit $r(x) = \frac{x}{\|x\|}$. Es gilt $r \circ i = \mathrm{id}_{S^{n-1}}$. Zu zeigen bleibt $i \circ r \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$. Wir betrachten die Homotopie

$$F: (\mathbb{R}^n \setminus \{0\}) \times I \to \mathbb{R}^n \setminus \{0\}$$
$$(x,t) \mapsto tx + (1-t)\frac{x}{\|x\|}$$

Dabei gilt

$$F(x,0) = \frac{x}{\|x\|} = ir(x)$$

$$F(x,1) = id_X$$

Def. 53 (starker Deformationsretrakt). Sei $A \subset X$ ein Unterraum. A ist ein starker Deformationsretrakt von X, wenn eine Homotopie $F: X \times I \to X$ mit $F_0 = \mathrm{id}_X, F_1(X) \subset A, F(a,t) = a \forall t \in I, \forall a \in A$. Gilt diese letzte Bedingung nur für t = 1, so spricht man von einem "gewöhnlichen"Deformationsretrakt.

Bsp. 54. 1. $S^{n-1} \subset \mathbb{R}^n \setminus \{0\}$ ist ein starker Deformationsretrakt.

2. $f: X \to Y$. $Y \subset \text{cyl}(f)$ ist ein starker Deformationsretrakt.

Das zeigt, dass bis auf Homotopieäquivalenz jede stetige Abbildung eine Inklusion ist.

Def. 55. Sei $A \subset X$. Eine Homotopie $F: X \to Y$ ist relativ zu A ("rel A"), wenn $F(a,t) = F(a,0) \forall a \in A \forall t$. Eine Homotopie rel X heißt konstante Homotopie.

Def. 56 (Konkatenation von Homotopien). Gegeben seien $F, G: X \times I \to Y$ mit $F(x, 1) = G(x, 0) \forall x$. Dann ist die Abbildung $F * G: X \times I \to Y$ mit

$$(F * G)(x,t) := \begin{cases} F(x,2t), & t \le \frac{1}{2} \\ G(x,2t-1), & t \ge \frac{1}{2} \end{cases}$$

stetig.

Es bezeichne C konstante Homotopien.

Proposition 14. $F * C \simeq F \operatorname{rel} X \times \partial I$

Beweis.

$$F * C(x,t) = \begin{cases} F(x,2t), & t \le \frac{1}{2} \\ C(x,2t-1) = F(x,1), & t \ge \frac{1}{2} \end{cases}$$

Dann ist

$$H(x,t,s) := \begin{cases} F(x,st + (1-s)2t), & t \le \frac{1}{2} \\ F(x,st + (1-s)), & t \ge \frac{1}{2} \end{cases}$$

eine Homotopie Es gilt

$$H(x, t, 0) = (F * C)(x, t)$$

 $H(x, t, 1) = F(x, t).$

H ist rel $x \times \partial I$:

$$H(x,0,s) \stackrel{t \le \frac{1}{2}}{=} F(x,0)$$

$$H(x,1,s) \stackrel{t \ge \frac{1}{2}}{=} F(x,\underbrace{s + (1-s)}_{=1})$$

Beide Ausdrücke sind unabhängig von s, was zu zeigen war.

Def. 57. Sei $F: X \times I \to Y$ eine Homotopie.

$$F^{-1} \colon X \times I \to Y$$
$$(x,t) \mapsto F(x,1-t)$$

Proposition 15.

$$F * F^{-1} \simeq C \operatorname{rel} X \times \partial I$$

Beweis.

$$(F * F^{-1})(x,t) = \begin{cases} F(x,2t), & t \le \frac{1}{2} \\ \underbrace{F^{-1}(x,2t-1)}_{=F(x,1-(2t-1)=F(x,2-2t)}, & t \ge \frac{1}{2} \end{cases}$$

Außerdem gilt C(x,t) = F(x,0) Wir definieren

$$H(x,t,s) := \begin{cases} F(x,(1-s)2t), & t \le \frac{1}{2} \\ F(x,(1-s)(2-2t)), & t \ge \frac{1}{2} \end{cases}.$$

Dann gilt

$$H(x,t,0) = (F * F^{-1})(x,t)$$

$$H(x,t,1) = F(x,0) = C(x,t).$$

H ist rel $x \times \partial I$:

$$H(x,0,s) \stackrel{t \le \frac{1}{2}}{=} F(x,0)$$

$$H(x,1,s) \stackrel{t \ge \frac{1}{2}}{=} F(x,0)$$

Beide Ausdrücke sind unabhängig von s, was zu zeigen war.

Bem 58. In obigen Propositionen ist der Zusatz "rel $X \times \partial I$ "von zentraler Bedeutung, denn: Sei $G: X \times I \to Y$ eine beliebige Homotopie. Wir betrachten

$$H(x,t,s) = G(x,t \cdot s)$$

$$H(x,t,0) = G(x,0) = C$$

$$H(x,t,1) = G$$

$$\implies G \simeq C.$$

Analog zeigt man

Proposition 16.

$$F * (G * H) \simeq (F * G) * H \operatorname{rel} X \times \partial I$$

Proposition 17. *Ist* $F_1 \simeq F_2 \operatorname{rel} X \times \partial I$ *und* $G_1 \simeq G_2 \operatorname{rel} X \times \partial I$, *so gilt* $F_1 * G_1 \simeq F_2 * G_2 \operatorname{rel} X \times \partial I$.

Wichtiger Spezialfall: X = Punkt.

Idee der algebraischen Topologie <u>Frage:</u> Wie kann man zwei topologische Räume voneinander unterscheiden?

Bsp:

- $\mathbb{R}^1 \neq S^1 : \mathbb{R}^1$ ist im Gegensatz zur S^1 nicht kompakt, Kompaktheit ist aber eine topologische Eigenschaft.
- $\mathbb{R}^1 \ncong \mathbb{R}^2 : \mathbb{R}^1 \setminus \{x_0\}$ ist im Gegensatz zu $\mathbb{R}^2 \setminus \{x_0\}$ nicht wegzusammenhängend.

Idee:

$$X \mapsto G(X)$$

Dabei handelt es sich bei X um einen topologischen Raum und bei G(X) um ein algebraisches Objekt, z.B. Gruppen, Ringe, Moduln, . . . sodass

- 1. $X \cong Y \implies G(X) \cong G(Y)$
- 2. G(X) soll berechenbar sein.

Zu 1.:
$$f(: X \to Y) \mapsto G(f): G(x) \to G(y)$$
, sodass $G(\mathrm{id}_X) = \mathrm{id}_{G(X)}, G(g \circ f) = G(f) \circ G(f)$.

2.1 Homotopiegruppen

Sei X ein topologischer Raum, $A \subset X$ ein Teilraum, man schreibt dies dann auch als Paar (X, A). Wir erinnern uns, dass Homotopie eine Äquivalenzrelation auf der Mengen der stetigen Abbildungen definiert. Seien X, Y topologische Räume, dann definieren wir

$$[X,Y] := \{\text{Homotopieklassen } [f] \text{ stetiger Abbildungen } f: X \to Y \}$$

seien ferner $A \subset X$ und $B \subset Y$ Unterräume. Wir definieren

$$[(X,A),(Y,B)] := \text{Homotopieklassen stetiger Abb. } f:X \to Y \text{mit } f(A) \subset B$$

sodass die Homotopien $F:X \times I \to Y$ erfüllen $F_t(A) \subset B, \ \forall t \in I$

Def. 59 (Punktierter Raum). Sei X ein topologischer Raum, $x_0 \in X$, dann heißt das Paar (X, x_0) ein punktierter Raum. Eine Abbildung $f:(X, x_0) \to (Y, y_0)$ zwischen punktierten Räumen heißt punktiert, falls $f(x_0) = y_0$. Mann nennt dann den ausgezeichneten Punkt x_0 auch Basispunkt. Ferner definieren wir

$$[X,Y]_* := [(X,x_0),(Y,y_0)]$$

dies sind Homotopieklassen punktierter Abbildungen $(X, x_0) \to (Y, y_0)$, sodass die Homotopien die Basispunkte fixieren.

Sei nun (X, x_0) ein punktierter Raum.

Def. 60. Die reduzierte Suspension ist der punktierte Raum

$$SX := \frac{X \times I}{(X \times \partial I) \cup (\{x_0\} \times I)}$$

und der Basispunkt ist gesetzt als $A := (X \times \partial I) \cup (\{x_0\} \times I)$ (die eine Äquivalenzklasse all dieser Punkte).

Wir beobachten nun folgende Gleichheit

$$[SX, Y]_* = [(X \times I, ((X \times \partial I) \cup (\{x_0\} \times I)), (Y, y_0)]$$

denn die stetigen Abbildungen $X \times I \to Y$, die $(X \times \partial I) \cup \{x_0\} \times I$ fixieren, faktorisieren über die reduzierte Suspension und umgekehrt vorverketten wir mit $X \to SX$.

- Seien nun $[f], [g] \in [SX, Y]_*$. Wegen $f(x, 1) = y_0 = g(x, 0)$ ist f * g wohldefiniert und f * g faktorisiert über die reduzierte Suspension und definiert deshalb eine Klasse $[f] \cdot [g] := [f * g] \in [SX, Y]_*$.
- Die Operation · auf $[SX,Y]_*$ ist wohldefiniert, denn $f \simeq f'$ und $g \simeq g'$ (mit Homotopien mit den gewünschten Eigenschaften), so gilt $f * g \simeq f' * g'$.
- \bullet Die Assoziativität von Homotopien liefert uns die Assoziativität von $\cdot.$
- Außerdem sei c_{y_0} die konstante Homotopie, dann gilt

$$[f] \cdot [c_{y_0}] = [f * c_{y_0}] = [f]$$

und analog für $[c_{y_0}] \cdot [f]$.

Wir erhalten also den folgenden Satz

Satz 18. $[SX,Y]_*$ wird durch die Verknüpfung · zu einer Gruppe.

Def. 61. Sei $X = S^{n-1}$ für $n \ge 1$, dann ist $SX = S^n$ und wir definieren

$$\pi_n(Y, y_0) := [SX, Y]_* = [S^n, Y]_*$$

und nennen $\pi_n(Y, y_0)$ die *n*-te *Homotopiegruppe* des punktierten Raumes (Y, y_0) . Man setzt $\pi_0(Y, y_0)$ als die Menge der Wegzusammenhangskomponenten von Y, aber dies ist i.A. keine Gruppe.

Funktorialität

Def. 62. Eine Kategorie \mathcal{C} besteht aus einer Klasse von Objekten ob (\mathcal{C}) und aus Mengen von Morphismen $\mathrm{Hom}_{\mathcal{C}}(X,Y)$ für je zwei Objekte X,Y, s.d. folgendes gilt

(i) Für alle $X, Y, Z \in ob(\mathcal{C})$ haben wir ein assoziatives Verknüpfungsgesetz

$$\circ : \operatorname{Hom}_{\mathfrak{C}}(X,Y) \times \operatorname{Hom}_{\mathfrak{C}}(Y,Z) \to \operatorname{Hom}_{\mathfrak{C}}(X,Z), \quad (f,g) \mapsto g \circ f$$

(ii) Für alle Objekte X in \mathcal{C} gibt es $\mathrm{id}_X \in \mathrm{Hom}_{\mathcal{C}}(X,X)$ mit $f \circ \mathrm{id}_X = f$ und $\mathrm{id}_X \circ g = g$ für alle geeigneten Morphismen f,g.

Def. 63. Seien \mathcal{C}, \mathcal{D} Kategorien. Ein Funktor F ist eine Zuordnungsvorschrift

$$\operatorname{ob}(\mathfrak{C}) \to \operatorname{ob}(\mathfrak{D}), \qquad \qquad X \mapsto F(X)$$

 $\operatorname{Hom}_{\mathfrak{C}}(X,Y) \to \operatorname{Hom}_{\mathfrak{D}}(FX,FY), \qquad \qquad f \mapsto F(f), \ \forall X,Y \in \operatorname{ob}(\mathfrak{C})$

mit $F(\mathrm{id}_X) = \mathrm{id}_{FX}$ für alle Objekte X in C und F(fg) = F(f)F(g) für alle möglichen Morphismen f, g.

Gegeben eine punktierte Abbildung punktierter Räume $\phi:(Y,y_0)\to(Z,z_0)$, so induziert ϕ eine Abbildung

$$\phi_*: [SX, Y]_* \to [SX, Z]_*, \quad [f] \mapsto [\phi \circ f]$$

und man überzeugt sich leicht, dass ϕ_* wohldefiniert ist. Außerdem ist ϕ_* ein Gruppenhomomorphismus, denn:

$$\phi_*(f) \cdot \phi_*(g) = [\phi \circ f] \cdot [\phi \circ g] = [(\phi \circ f) * (\phi \circ g)] = [\phi \circ (f * g)] = \phi_*([f][g])$$

Haben wir ein kommutatives Diagramm

$$(Y, y_0) \xrightarrow{\phi} (Z, z_0)$$

$$\downarrow^{\psi \circ \phi} \qquad \downarrow^{\psi}$$

$$(V, v_0)$$

so gilt

$$\psi_*(\phi_*([f])) = \psi_*([\phi \circ f]) = [\psi \circ (\phi \circ f))] = [(\psi \circ \phi) \circ f] = (\psi \circ \phi)_*([f])$$

und auch $(id_Y)_* = id_{[SX,Y]_*}$. Sei PtTopSpaces die Kategorie punktierter topologischer Räume und Grp die Kategorie der Gruppen, so erhalten wir einen kovarianten Funktor

$$\begin{split} [SX,-]_*: \mathsf{PtTopSpaces} &\to \mathsf{Grp} \\ (Y,y_0) &\mapsto [SX,Y]_* \\ [(Y,y_0) \xrightarrow{\phi} (Z,z_0)] &\mapsto \phi_* \end{split}$$

dieser ist homotopieinvariant, das heißt: seien $\phi, \psi: (Y, y_0) \to (Z, z_0)$ mit $\phi \simeq \psi$, dann gilt $\psi_* = \phi_*$.

Def. 64. Für n=1 heißt $\pi_1(X,x_0)=[(S^1,*),(X,x_0)]_*$ die Fundamentalgruppe von (X,x_0) . Ist $\pi_1(X,x_0)=0$, so heißt (X,x_0) einfach zusammenhängend.

Frage: Ist die Fundamentalgruppe abhängig vom Basispunkt?

Proposition 19 (Unabhängigkeit von π_1 für wegzusammenhängende Räume). Sei X ein topologischer Raum, $x_0, x_1 \in X$ und sei $p : [0,1] \to X$ ein Weg von x_1 nach x_0 . Dann haben wir einen Isomorphismus (von Gruppen)

$$h_p: \pi_1(X, x_0) \to \pi_1(X, x_1), \quad [\gamma] \mapsto [p * \gamma * p^{-1}]$$

Beweis. Man überlegt sich direkt, dass h_p wohldefiniert ist. Außerdem gilt

$$h_p([\gamma])h_p([\gamma']) = [p*\gamma*p^{-1}*p*\gamma'*p^{-1}] = [p*\gamma*\gamma'*p^{-1}] = h_p([\gamma][\gamma'])$$

offenbar ist $h_{p^{-1}}$ der inverse Gruppenhomomorphismus, was die Aussage zeigt.

Satz 20. Seien $(X, x_0), (Y, y_0)$ punktierte Räume. Dann ist

$$\pi_1(X, x_0) \times \pi_1(Y, y_0) \xrightarrow{i_{x_*} \times i_{y_*}} \pi_1(X \times Y, (x_0, y_0))$$
$$([f], [g]) \mapsto i_{X_*}[f] \cdot i_{Y_*}[g]$$

ein Gruppenisomorphismus.

$$\begin{array}{c} X \xrightarrow{i_X} X \times Y \xleftarrow{i_Y} Y \\ \downarrow^{\operatorname{id}_X} & \pi_X \end{array} \downarrow^{\operatorname{id}_Y} Y$$

Beweis. 1) Surjektivität: Sei $f: (S^1, *) \to (X \times Y, (x_0, y_0))$ eine Schleife in $X \times Y$.

Dann ist $f_x \times f_y : \underbrace{S^1 \times S^1}_{=T^2} \to X \times Y$. Wir betrachten folgende Darstellung eines Torus als Rechteck mit verklebten Kanten, wobei wir die eine Kante durch $\alpha(t) = (t,0)$ und die andere durch $\beta(t) = (t,0)$

(t,0) parametrisieren und die Diagonale durch $\delta(t)=(t,t)$. Es gilt dann $\alpha*\beta\simeq\delta$ rel Basispunkt. Insgesamt erhalten wir

$$\begin{split} [f] &= [(f_X \times f_Y) \circ \delta] \\ &= [(f_X \times f_Y) \circ (\alpha * \beta)] \\ &= [(f_X \times f_Y) \circ \alpha] * ((f_X \times f_Y) \circ \beta)] \\ &= [(i_X \circ f_X) * (i_Y \circ f_Y)] \\ &= i_{X*} [f_X] \cdot i_{Y*} [f_Y] \end{split}$$

2) Injektivität:

$$(\pi_{X*} \times \pi_{Y*})(i_{X*}[f] \cdot i_{Y*}[g]) = (\pi_{X*} \times \pi_{Y*})[(i_X f) * (i_Y g)]$$

$$= (\pi_{X*}[i_X f * i_Y g], \pi_{Y*}[i_X f * i_Y g])$$

$$= ([f * c_{X_0}], [c_{Y_0} * g])$$

$$= ([f], [g])$$

Bsp. 65. $\pi_1(T^2) \stackrel{\sim}{=} \pi_1(S^1) \times \pi_1(S^1) \stackrel{\sim}{=} \mathbb{Z} \times \mathbb{Z}$.

3 Überlagerungstheorie

Räume im Kontext der Überlagerungstheorie seien Hausdorffsch, wegzusammenhängend und lokal wegzusammenhängend (d.h. jeder Punkt besitzt eine Umgebungsbasis bestehend aus wegzusammenhängenden Umgebungen).

Def. 66. Eine Überlagerungsprojektion ist eine stetige Abbildung $p: X \to Y$, sodass $\forall y \in Y$ eine wegzusammenhängende offene Umgebung U existiert mit folgender Eigenschaften existiert: $p^{-1}(U)$ ist eine nichtleere disjunkte Vereinigung $p^{-1}(U) = \bigsqcup_{\alpha} U_{\alpha}$ von offenen Mengen $U_{\alpha} \subset X$, sodass $\forall \alpha \colon p|_{U_{\alpha}} \colon U_{\alpha} \xrightarrow{\sim} U$ ein Homöomorphismus ist. In diesem Fall nennen wir U eine gleichmäßig überlagerte Menge. Die U_{α} nennen wir U eine Blätter über U. U heißt U berlagerung.

Die Kardinalität einer Faser von p über $y \in Y \mid p^{-1}(y) \mid$ ist lokalkonstant. Ist Y wegzusammenhängend, so ist die Kardinalität der Fasern sogar konstant und heißt der <u>Grad</u> von p, $\deg(p) \coloneqq |p^{-1}(y)|$. Ist Y kompakt, so gilt $\deg p < \infty \Leftrightarrow X$ kompakt. Die Faser besitzt die diskrete Topologie, sei nämlich $x \in p^{-1}(y)$. Dann gilt

$$\{x\} = \underbrace{U_{\alpha}}_{\text{offen}} \cap p^{-1}(y) \implies \{x\}_{\text{offen}} c^{-1}(y).$$

Bsp. 67. 1. $p: \mathbb{R} \to S^1 = \{z \in \mathbb{C}: |z| = 1\} \text{ mit } p(1) := e^{2\pi i t} \text{ ist eine Überlagerung.}$

- 2. $p \colon S^1 \to S^1, z \mapsto z^n$ für $n=1,2,\ldots$ ist eine Überlagerung vom Grad deg p=n.
- 3. $S \xrightarrow[\text{Quot}]{p} S/\sim = \mathbb{R}P^2$ ist eine Überlagerung vom Grad 2, wobei \sim die Identifikation antipodaler Punkte bezeichne.
- 4. Sei nun $T^2 = \mathbb{R}^2/\sim$, wobei $(x,y) \sim (x',y') \Leftrightarrow x-x', y-y' \in \mathbb{Z}$. Dann ist $\mathbb{R}^2 \xrightarrow[\text{Quot}]{p}]{\mathbb{R}^2/\sim} = T^2$ eine Überlagerung.

3.1 Hochhebungsproblem

Frage: Existiert eine "Hochhebung" f von f bezüglich q, sodass folgendes Diagramm kommutiert

$$\exists \tilde{f} \text{ stetig?} \xrightarrow{\nearrow} X \downarrow_{q},$$

$$W \xrightarrow{f} Y$$

d.h. $q \circ \tilde{f} = f$? Antwort: Nein

Bsp. 68.

$$\begin{array}{c} \mathbb{R} \\ \emptyset \tilde{f} \text{ stetig} \end{array} \qquad \begin{array}{c} \mathbb{R} \\ \downarrow p(t) = e^{2\pi i t} \\ S^1 \xrightarrow{f = \mathrm{id}} S^1 \end{array}$$

Lemma 21. Sei W ein topologischer Raum und $\{U_{\alpha}\}$ eine offene Überdeckung von $W \times I$, I = [0, 1]. Sei $w \in W$ ein Punkt. Dann existiert eine offene Umgebung $N \subset W$ von w und eine ganze Zahl n > 0, sodass $\forall i = 0, \ldots, n-1$ ein α existiert mit $N \times \left[\frac{i}{n}, \frac{i+1}{n}\right] \subset U_{\alpha}$.

Beweis. 1. Wähle eine offene Überdeckung von $\{w\} \times I$ der Form $\{N_1 \times V_1, \dots, N_k \times V_k\}$, die $\{U_\alpha\}$ verfeinert (I kompakt).

2. Aus dem Lebesgue-Lemma folgt die Existenz eines n>0 mit der benötigten Eigenschaft $\left[\frac{i}{n},\frac{i+1}{n}\right]\subset V_j$ für ein geeignetes j.

3. Setze $N := N_1 \cap \dots N_k$.

Proposition 22 (Hochhebung von Wegen). Sei $p: X \to Y$ eine Überlagerungsprojektion und $f: I \to Y$ ein Weg. Sei weiter $y_0 = f(0)$ und $x_0 \in p^{-1}(y_0)$. Dann existiert eine eindeutige Hochhebung $\tilde{f}: I \to X$ bezüglich p, sodass $\tilde{f}(0) = x_0$.

Beweis. Aus dem Lebesgue-Lemma folgt die Existenz einer ganzen Zahl n > 0, sodass

$$\forall i \colon f\left[\frac{i}{n}, \frac{i+1}{n}\right] \subset U,$$

wobei U eine gleichmäßig überlagerte Menge sei. Wir schließen per Induktion:

Es gilt $\tilde{f}(0) \coloneqq x_0$. Sei dann die Hochhebung $\tilde{f}|_{[0,\frac{i}{n}]}$ schon konstruiert. Wir setzen \tilde{f} fort auf $\left[\frac{i}{n}\frac{i}{n+1}\right]$: Es existiert genau ein Blatt V von $p^{-1}(U)$ mit $\tilde{f}\left(\frac{i}{n}\right) \in V$. Nun ist $p|V:V \to U$ ein Homöomorphismus. Wir wählen dann $\tilde{f}|_{\left[\frac{i}{n},\frac{i+1}{n}\right]} \coloneqq (p|_V)^{-1} \circ f|_{\left[\frac{i}{n},\frac{i+1}{n}\right]}$.

Proposition 23 (Hochhebung von Homotopien). Sei $p: X \to Y$ eine Überlagerung, $F: W \times I \to Y$ eine Homotopie und $\tilde{F}_0: W \times \{0\} \to X$ eine Hochhebung von $F_0: W \times \{0\} \to Y$ bzgl. p: Dann

existiert eine eindeutige Fortsetzung von \tilde{F}_0 zu einer Hochhebung $\tilde{F} \colon W \times I \to X$ von F bzgl. p.

$$W \times \{0\} \xrightarrow{\tilde{F}_0} X$$

$$\downarrow p$$

$$W \times I \xrightarrow{F} Y$$

Beweis. Sei $w \in W$. Wir kennen bereits $\tilde{F}_0|_{\{w\} \times \{0\}} \in X$. Nach dem Hochhebungssatz für Wege existiert eine eindeutige Hochhebung $\tilde{F}|_{\{w\} \times I}$ von F mit $\tilde{F}|_{\{w\} \times \{0\}} \in X = \tilde{F}_0(w)$. Setze also

$$\tilde{F}(w,t) := \tilde{F}|_{\{w\} \times \{0\}}(t).$$

Verwende Lemma 21 und wähle N wegzusammenhängend. Dann gilt

$$\tilde{F}|_{N \times \left[\frac{i}{n}, \frac{i+1}{n}\right]} \subset V$$

für ein Blatt V und wir folgern

$$\tilde{F}|_{N \times \left[\frac{i}{n}, \frac{i+1}{n}\right]} = (p|V)^{-1} \circ F|_A$$

Wir schließen induktiv: Sei $\tilde{F}|_{N \times \left[0, \frac{i}{n}\right]}$ stetig und $V \subset X$ das Blatt über U mit $\tilde{F}\left(w, \frac{i}{n}\right) \in V$. Dann ist $\tilde{F}\left(N \times \left\{\frac{i}{n}\right\}\right)$ wegzusammenhängend $\subset V$. Außerdem ist $\tilde{F}\left(\{v\} \times \left[\frac{i}{n}, \frac{i+1}{n}\right]\right)$ wegzusammenhängend $\subset V$. Also ist $\tilde{F}\left(N \times \left[\frac{i}{n}, \frac{i+1}{n}\right]\right) \subset V$. Es gilt dann

$$\tilde{F}|_{N\times\left[\frac{i}{n},\frac{i+1}{n}\right]}=\left(p|_{V}\right)^{-1}\circ F|_{N\times\left[\frac{i}{n},\frac{i+1}{n}\right]}$$

und damit als Komposition stetiger Abbildungen stetig.

Bem 69. Spezialfall: W = I. Dann

$$F \colon I \times I \to Y$$
 ts

Sei nun F eine Homotopie rel ∂I :

$$F(0,s) = y_0 \forall s \in I$$

$$F(1,s) = y_1 \forall s \in I$$

Wir betrachten $\tilde{F}(1,I)$ für eine Hochhebung \tilde{F} von F bzgl. p. Nun ist $\tilde{F}(\{1\} \times I)$ wegzusammenhängend und wegen $p \circ \tilde{F}(\{1\} \times I) = F(\{1\} \times I = \{y_1\} \text{ folgt } \tilde{F}(\{1\} \times I) \subset p^{-1}(\{y_1\})$. Die Faser von $\{y_1\}$ ist aber ausgestattet mit der diskreten Topologie, also existiert aufgrund des Wegzusammenhangs ein $x_1 \in p^{-1}(\{y_1\})$ mit der Eigenschaft $\tilde{F}(\{1\} \times I) \subset \{x_1\}$, insbesondere ist also \tilde{F} wieder rel ∂I .

Korollar 24. Ist $f: (I, \partial I) \to (Y, y_0)$ eine Schleife $\simeq \operatorname{const}_{y_0}$, dann ist die Hochhebung von f wieder eine Schleife $\simeq \operatorname{const}_{x_0}$.

Bem 70. Die Hochhebung einer Schleife ist im Allgemeinen keine Schleife! Betrachte die Hochhebung der Schleife $e^{2\pi it}$ über dem Einheitskreis nach \mathbb{R} .

Lemma 25. Sei $p: (X, x_0) \to (Y, y_0)$ eine Überlagerung. Dann ist der Gruppenhomomorphismus

$$p_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

ein Monomorphismus.

Beweis. Sei $[g] \in \pi_1(X, x_0)$ ein Element mit $\underbrace{p_*[g]}_{=p \circ g} = 1$. Wir definieren $f := p \circ g$, f ist also eine

Schleife $\simeq \operatorname{const}_{y_0}$. Nach dem eben bewiesenen Korollar erhalten wir, dass \tilde{f} eine Schleife $\simeq \operatorname{const}_{x_0}$ rel ∂I sein muss. Aufgrund der Eindeutigkeit nach der Wahl des Basispunkts gilt $\tilde{f} = g$, d.h. $[g] = 1 \in \pi_1(X, x_0)$.

Satz 26. $\pi_1(S^1) \cong (\mathbb{Z}, +)$.

Beweis. Sei $[f] \in \pi_1(S^1, 1)$ ein Element,

$$f: (I, \partial I) \to (S^1, 1).$$

Sei $\tilde{f}: I \to \mathbb{R}$ die Hochhebung von f mit $\tilde{f}(0) = 0$ bzgl.

$$p: R^1 \to S^1, p(t) = e^{2\pi i t}.$$

Es gilt deg $\coloneqq \tilde{f}(1) \in p^{-1}(1) = \mathbb{Z} \subset \mathbb{R}$. Aufgrund von Korollar 24 folgt:

$$[f'] = [f] \in \pi_1(S^1) \implies \tilde{f}'(1) = \tilde{f}(1).$$

Wir erhalten also eine wohldefinierte Abbildung

$$\deg: \pi_1(S^1,1) \to \mathbb{Z}$$

Um zu zeigen, dass deg ein Gruppenhomomorphismus ist, wählen wir zwei Homotopieklassen $[f], [g] \in \pi_1(S^1)$. Sei dann $n := \tilde{f}(1)$ und $m := \tilde{g}(1)$. Setze $\tilde{g}'(t) := \tilde{g}(t) + n$. Dann ist $\tilde{f} * \tilde{g}' = (f * g)$ eine Hochhebung von f * g und es gilt

$$\deg(f*g) = (\tilde{f}*\tilde{g})(1) = (\tilde{f}*\tilde{g}')(1) = \tilde{g}'(1) = \tilde{g}(1) + n = m + n = \deg(g) + \deg(n).$$

Um zu zeigen, dass deg surjektiv ist, wählen wir ein $n \in \mathbb{Z}$. Betrachte den Weg $g(t) = n \cdot t$. Dann ist $f := p \circ g$ eine Schleife bei $1 \in S^1$ mit

$$\deg(f) = \tilde{f}(1) = \tilde{pg}(1) = g(1) = n.$$

Ist $\deg(f) = 0 \in \mathbb{Z}$. Also ist $0 = \tilde{f}(1) = \tilde{f}(0)$, insbesondere ist auch \tilde{f} eine Schleife in \mathbb{R} bei 0. Da \mathbb{R} zusammenziehbar ist (homotopieäquivalent zu einem Punkt) folgt $\pi_1(\mathbb{R}, 0) = \pi_1(\text{Pkt}) = 1$ (triviale Gruppe) und

$$[\tilde{f}] = 1 \in \pi_1(\mathbb{R}) = 1 \implies [f] = p_*[\tilde{f}] = p_*(1) = 1.$$

Satz 27 (Allgemeiner Hochhebungssatz für Überlagerungen). Sei

$$p: (X, x_0) \to (Y, y_0)$$

eine Überlagerung und $f:(W,w_0)\to (Y,y_0)$ stetig.

$$(X, x_0)$$

$$\downarrow^{\tilde{f}?} \qquad \downarrow^{p}$$

$$(W, w_0) \xrightarrow{f} (Y, y_0)$$

Dann erhalten wir die Abbildungen

$$f_*: \pi_1(W, w_0) \to \pi_1(Y, y_0),$$

 $p_*: \pi_1(X, x_0) \to \pi_1(Y, y_0).$

f hat genau dann eine Hochhebung \tilde{f} , wenn im $f_* \subset \operatorname{im} p_*$ auf π_1 .

Beweis.

" \Leftarrow , Sei $w \in W$. Verbinde w_0 mit w durch einen Weg λ in W. Dann ist $f\lambda$ ein Weg von y_0 nach f(w). Sei $\mu = \tilde{f}\lambda$ die eindeutige Hochhebung von $f\lambda$ mit $\mu(0) = x_0$. Wir definieren num $\tilde{f}(w) := \mu(1)$. \tilde{f} ist wohldefiniert. Sei λ' ein zweiter Weg von w_0 nach w. Definiere $\eta := (\lambda')^{-1}$. Dann ist $\lambda * \eta$ eine Schleife bei w_0 . und

$$(f\lambda)*(f\lambda')=f\circ(\lambda*\eta)=f_*[\lambda*\eta]\in\operatorname{im} p_*$$

ist eine Schleife bei y_0 , deren Urbild in X eine Schleife bei x_0 ist. Sei dabei ν der Teil der Schleife, die von $\mu(1)$ nach x_0 läuft, d.h. für $\mu' = \nu^{-1} \implies \mu'(1) = \mu(1)$. $\tilde{f}: W \to X$ ist stetig. Sei U eine wegzusammenhängende, gleichmäßig überlagerte, offene Umgebung von f(w). Sei V eine wegzusammenhängende Umgebung von $w \in W$ mit $f(V) \subset U$.

gebung von f(w). Sei V eine wegzusammenhängende Umgebung von $w \in W$ mit $f(V) \subset U$. Verbinde w mit $w' \in W$ durch einen Weg σ , der ganz in V liegt. Dann ist $f\sigma$ ein Weg in U. Sei B jenes Blatt in X über U, das $\mu(1)$ enthält. Dann ist $p|_B$ ein Homöomorphismus, insbesondere ist $(p|_B)^{-1}$ stetig und wir erhalten insgesamt die Stetigkeit von \tilde{f} .

" \Longrightarrow " Angenommen, $f\colon W\to Y$ besitzt eine Hochhebung $\tilde{f}\colon W\to X$. Dann kommutiert das Diagramm

d.h. $f_* = p_* \tilde{f}_*$. Daraus folgt

$$\operatorname{im} f_* \subset \operatorname{im} p_*$$
.

Korollar 28. Sei W einfach zusammenhängend und $p: X \to Y$ eine Überlagerung. Dann existiert zu jeder Abbildung $f: W \to Y$ eine Hochhebung \tilde{f} . Diese ist eindeutig bestimmt durch $\tilde{f}(w_0) = x_0$.

Beweis.
$$\pi_1(W, w) = 1 \implies 1 = f_*\pi_1(W, w) \subset p_*\pi_1(X, x_0)$$
.

Bsp. 71. $\pi_n(S^1) = 0 \forall n = 2, 3, \dots$

$$S^n \xrightarrow{\exists \tilde{f}} \mathbb{R}^1$$

$$\downarrow^p$$

$$S^1$$

Daher faktorisiert f über den zusammenziehbaren Raum \mathbb{R}^1 und ist damit nullhomotop.

Bem 72. Ist f eine Überlagerung, dann auch \tilde{f} .

Korollar 29. Seien $p_1: W_1 \to Y$ und $p_2: W_2 \to Y$ Überlagerungen mit W_1, W_2 einfach zusammenhängend und $p_1(w_1) = y = p_2(w_2)$. Dann existiert ein eindeutig bestimmter Homöomorphismus $g: W_1 \xrightarrow{\sim} W_2$ mit $p_2g = p_1$ und $g(w_1) = w_2$.

Beweis.

$$W_{1} \xrightarrow{\exists g} X \downarrow p_{2}$$

$$W_{1} \xrightarrow{p_{1}} Y$$

Aus Korollar 28 folgt die Existenz einer eindeutigen Hochhebung $g\colon W_1\to W_2$ mit $g(w_1)=w_2$. Durch vertauschen von W_1 und W_2 erhalten wir die Existenz einer eindeutigen Hochhebung $k\colon W_2\to W_1$ mit $k(w_2)=w_1$. Betrachten wir nun dieselbe Situation mit W_1 und W_1 , so folgt die Eindeutigkeit der Hochhebung $l\colon W_1\to W_1$ mit $l(w_1)=w_1$. Nun gilt aber $k\circ g(w_1)=w_1$ und $\mathrm{id}_{W_1}(w_1)=w_1$. Wegen der Eindeutigkeit folgt $l=k\circ g=\mathrm{id}_{W_1}$. Dann ist g ein Homöomorphismus mit $g^{-1}=k$. \square

Bsp. 73.

Def. 74. Sei $p: X \to Y$ eine Überlagerung. Ein Homö
omorphismus $D: X \xrightarrow{\sim} X$ heißt Decktransformation, wenn

$$X \xrightarrow{p} X$$

$$Y$$

kommutiert. Es bezeichne Aut(p) die Menge aller Decktransformationen von p.

Wie man in einem Diagramm leicht sieht, gilt für $D, D' \in \operatorname{Aut}(p)$ dann auch $p \circ D' \circ D = p$. Insbesondere ist $(\operatorname{Aut}(p), \circ)$ eine Gruppe.

Bsp. 75. $p: \mathbb{R} \to S^1, p(t) = e^{2\pi i t}$. Dann definieren wir für $k \in \mathbb{Z}$: $D_k(t) := t + k$. Dann gilt

Es folgt $\{D_k | k \in \mathbb{Z}\} \subset \operatorname{Aut}(p)$.

3.2 Gruppen und Gruppenwirkungen

Sei G eine Gruppe. Dann bezeichnen wir mit H < G eine Untergruppe. Für die Äquivalenzrelation $a \sim b \Leftrightarrow ab^{-1} \in H \Leftrightarrow a \in Hb$ bezeichnen wir die Rechtsnebenklasse zu b mit $[b] = H \cdot b$. Die Menge aller Rechtsnebenklassen bezeichnen wir mit G/H. G/H ist im Allgemeinen noch keine Gruppe, aber

Def. 76. H heißt normal in G, wenn $gHg^{-1} = H \forall g \in G$. Wir schreiben $H \triangleleft G$. Ist $H \triangleleft G$, dann ist G/H eine Gruppe.

$$N(H) := \{ g \in G | gHg^{-1} = H \}$$

heißt der "Normalisator von H in G". Es gilt

$$H \triangleleft N(H) < G$$
.

Weiter bezeichnen wir [G: H] = #G/H als den "Index von H in G".

Sei X eine Menge und G eine Gruppe.

Def. 77. Eine Wirkung von G auf X ist eine Abbildung

$$G \times X \to X$$

 $(g, x) \mapsto g \cdot x \quad (gx)$

sodass

$$h \cdot (g \cdot x) = (hg) \cdot x \qquad \forall g, h \in G, x \in X$$

und

$$1 \cdot x = x$$
.

In diesem Fall sprechen wir von einer "Linkswirkung", analog "Rechtswirkung".

Sei $g \in G$. Dann erhalten wir eine Abbildung $g \colon X \xrightarrow{\sim} X$ mit inverser Abbildung g^{-1} . Betrachte $\operatorname{Aut}(X) := \{X \xrightarrow{\phi} X | \phi \text{ bijektiv}\}$. Dann bildet $(\operatorname{Aut}(X), \circ)$ eine Gruppe. Eine Wirkung $G \curvearrowright X$ korrespondiert zu einem Gruppenhomomorphismus $G \to \operatorname{Aut}(X)$. Ist X sogar ein topologischer Raum, dann setzen wir

$$\operatorname{Aut}(X) = \{X \xrightarrow{\phi} X | \phi \text{ Hom\"oomorphismus.} \}$$

Bsp. 78. (1) Die symmetrische Gruppe \mathfrak{S}_n wirkt auf $\{1,\ldots,n\}$.

(2) Ist X eine Gruppe und G < X, dann wirkt G auf X durch Linkstranslationen.

$$g \cdot x = gx \in X$$

- (3) $X = \mathbb{R}^n, G = \mathrm{GL}_n(\mathbb{R})$. $\mathrm{GL}_n(\mathbb{R})$ wirkt auf \mathbb{R}^n durch Matrixmultiplikation.
- (4) $\mathbb{H}=\{a+ib+jc+kd|a,b,c,d\in\mathbb{R}\}$ mit der bekannten Multiplikation für Quaternionen und Norm $\overline{v}\cdot v$. Dann gilt

$$S^3 = \{ v \in \mathbb{H} | \overline{v}v = 1 \}.$$

Betrachte die Quaternionische Gruppe der Ordnung 8

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$$

 Q_8 wirkt auf S^3 durch quaternionische Multiplikation.

Sei $G \times X \to X$ eine Wirkung von G auf X.

Def. 79. Sei $x \in X$.

1. Dann nennen wir

$$G \cdot x := \{g \cdot x | g \in G\} \subset X$$

den "Orbit" von x.

2. Weiter bezeichnen wir

$$G_x := \{g \in G | g \cdot x = x\} < G$$

als "Isotropiegruppe"(Standgruppe, Stabilisator)

- 3. Die Menge der Orbits X/G ist ein topologischer Raum mit Quotiententopologie, wenn X eine Topologie trägt. "Orbitraum".
- 4. Die Wirkung heißt
 - transitiv: $\Leftrightarrow \exists$ genau ein Orbit, nämlich X.
 - effektiv: $\Leftrightarrow G \to \operatorname{Aut}(X)$ ist ein Monomorphismus.
 - $\underline{\text{frei:}} \Leftrightarrow G_x = 1 \forall x.$
 - x ist ein Fixpunkt der Wirkung g.d.w $G_x = G$.

Bsp. 80. Betrachten wir den Orbitraum S^3/Q_8 . Wir werden zeigen, dass der Orbitraum wieder eine dreidimensionale Mannigfaltigkeit mit Fundamentalgruppe Q_8 ist.

3.3 Zurück zu Überlagerungen

Sei $p: X \to Y$ eine Überlagerung. Wir untersuchen die Wirkung von $\pi_1(Y, y_0)$ auf der Faser $F := p^{-1}(y_0)$ mit

$$x \in F$$
, $[f] \in \pi_1(Y, y_0)$:

Sei \tilde{f} die Hochhebung von f mit $\tilde{f}(0) = x$. Dann ist $\tilde{f}(1) \in F$. Wir setzen $x \cdot [f] \coloneqq \tilde{f}(1) \in F$. Dies definiert eine Rechtswirkung $F \times \pi_1(Y, y_0) \to F$.

Beweis. Betrachte $(x \cdot [f]) \cdot [g]$. Die Konkatenation $\tilde{f} * \tilde{g}$ ist eine Hochhebung von f * g bei x. Dann gilt

$$(x \cdot [f]) \cdot [g] = x \cdot [f * g] = x \cdot ([f][g]).$$

Außerdem gilt $x \cdot 1 = x \cdot [\text{const}_{x_0}] = x$.

Diese Wirkung ist transitiv.

Beweis. Verbinde $x, x' \in F$ durch einen Weg \tilde{f} in X. Dann ist $f := p \circ \tilde{f}$ eine Schleife, also insbesondere $[f] \in \pi_1(Y, y_0)$. Dann gilt $x \cdot [f] = x'$.

Satz 30.

$$\phi \colon \frac{\pi_1(Y, y_0)}{p_* \pi_1(X, x_0)} \xrightarrow{\sim} p^{-1}(y_0)$$

ist eine Bijektion.

Beweis. Sei $G = \pi_1(Y, y_0), F = p^{-1}(y_0), \alpha \in G, \alpha = [f]$. Betrachte die Isotropiegruppen

$$G_{x_0} = \{ \alpha \in G | x_0 \cdot \alpha = x_0 \}$$

Dann gilt

$$\tilde{f}(1) = x_0 = \tilde{f}(0),$$

also ist \tilde{f} eine Schleife bei x_0 . Es folgt

$$G_{x_0} = \operatorname{im}(p_* \colon \pi_1(X, x_0) \to \pi_1(Y, y_0)).$$

Die Abbildung

$$\phi \colon G/G_{x_0} \to F$$

$$G_{x_0} \alpha \mapsto x_0 \cdot \alpha = x_0 \cdot G_{x_0} \cdot \alpha$$

ist wohldefiniert. Weiter ist ϕ surjektiv, da G transitiv auf F wirkt. Außerdem ist ϕ injektiv, sei nämlich

$$x_0 \cdot \alpha = x_0 \cdot \beta$$
$$x_0 \cdot (\alpha \beta^{-1}) = x_0$$
$$\alpha \beta^{-1} \in G_{x_0}$$
$$G_{x_0} \alpha = G_{x_0} \beta$$

Korollar 31. $\deg(p) = [\pi_1(Y, y_0) : p_*\pi_1(X, x_0)].$

Bsp. 81. Betrachte $\mathbb{R}P^n := S^n/x \sim -x$ Die Überlagerung

$$p: S^n \to \mathbb{R}P^n$$

ist eine Überlagerung vom Grad 2. Mit Korollar 31 folgt

$$2 = \deg(p) = [\pi_1(\mathbb{R}P^n) \colon p_* \underbrace{\pi_1(S^n)}_{=1}] = |\pi_1(\mathbb{R}P^n)|.$$

Wir erhalten $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}/2\mathbb{Z}$.

 $\operatorname{Aut}(p)$ wirkt von links auf F. Sei nämlich $x \in F$. Dann folgt wegen $p \circ D = p \implies D(x) \in F$. Diese Wirkung ist frei, gibt es nämlich ein x mit D(x) = x dann ist $D = \operatorname{id}_X$. Die Wirkung ist im Allgemeinen $\operatorname{\underline{nicht}}$ transitiv!

Sei nun $D \in Aut(p), \alpha \in \pi_1(Y, y_0) = G$.

Lemma 32. Dann gilt $(Dx) \cdot \alpha = D(x \cdot \alpha)$.

Beweis. Es gilt $\alpha = [f]$. Sei \tilde{f} eine Hochhebung von f mit Anfangspunkt x. Dann ist $D \circ \tilde{f}$ eine Hochhebung von f mit Anfangspunkt Dx. Also folgt $(Dx) \cdot \alpha = D(x \cdot \alpha)$.

Satz 33. Seien $x_0, x \in F$. Dann sind die folgenden Aussagen äquivalent

- 1. $\exists ! D \in \operatorname{Aut}(p) : D(x_0) = x$.
- 2. $\exists \alpha \in N(p_*\pi_1(X, x_0)) : x_0 \cdot \alpha = x \ (N \ Normalisator)$
- 3. $p_*\pi_1(X,x_0) = p_*\pi_1(X,x)$

Beweis.

- (1) \iff (3): Nach dem allgemeinen Hochhebungssatz existiert ein eindeutiges $D: X \to X$ mit $D(x_0) = x$. Es folgt $p_*\pi_1(X,x_0) \subset p_*\pi_1(X,x)$. Analog existiert auch ein $D': X \to X$ mit $D(x) = x_0$, sodass $p_*\pi_1(X,x) \subset p_*\pi_1(X,x_0)$. Falls D,D' existieren, dann gilt $(D \circ D')(x_0) = x_0$, also folgt $D' \circ D = \operatorname{id}_X$ und analog $D \circ D' = \operatorname{id}_X$, also ist D ein Homöomorphismus mit Umkehrabbildung D'.
- $(2) \implies (3)$ Es gilt

$$G_{x_0 \cdot \alpha} = \{ \beta \in G | (x_0 \alpha) \beta = x_0 \alpha \}$$

$$= \{ \beta | x_0 (\alpha \beta \alpha^{-1} = x_0 \}$$

$$= \{ \beta \in G | \alpha \beta \alpha^{-1} \in G_{x_0} \}$$

$$= \alpha^{-1} G_{x_0} \alpha$$

Sei also $\alpha \in N(p_*\pi_1(X,x_0)) = N(G_{x_0})$ mit $x_0\alpha = x$. Dann folgt

$$p_*\pi_1(X,x) = G_x = G_{x_0 \cdot \alpha} = \alpha^{-1}G_{x_0}\alpha = G_{x_0} = p_*\pi_1(X,x_0).$$

 $(3) \implies (2)$ Es gelte

$$(G_{x_0} =) p_* \pi_1(X, x_0) = p_* \pi_1(X, x) (= G_x).$$

Die Transitivität der Wirkung $F \curvearrowright G$ impliziert die Existenz eines $\alpha \in \pi_1(Y, y_0) = G$ mit $x_0 \cdot \alpha = x$. Dann ist $G_{x_0} = G_x = G_{x_0 \cdot \alpha} = \alpha^{-1} G_{x_0} \alpha$. Insbesondere folgt $\alpha \in N(G_{x_0})$.

Korollar 34. $p_*\pi_1(X,x_0) \triangleleft \pi_1(Y,y_0) \implies \operatorname{Aut}(p)$ wirkt transitiv auf $F = p^{-1}(y_0)$. $(N(G_{x_0}) = G)$.

Def. 82. Eine Überlagerung $p: X \to Y$ heißt <u>regulär</u> (manchmal auch "normal"), wenn $\operatorname{Aut}(p)$ transitiv auf $p^{-1}(y_0)$ wirkt.

Satz 35. Sei $p: X \to Y$ eine Überlagerung, $x_0 \in X, y_0 \in Y, p(x_0) = y_0$. Dann ist

$$\theta \colon \frac{N(p_*\pi_1(X, x_0))}{p_*\pi_1(X, x_0)} \to \operatorname{Aut}(p)$$

ein Gruppenisomorphismus.

Beweis. Betrachte $\theta \colon N(G_{x_0}) \to \operatorname{Aut}(p)$. Sei $\alpha \in N(G_{x_0})$. Nach Satz 33 folgt

$$\exists ! D_{\alpha} \in \operatorname{Aut}(p), \text{ mit } D_{\alpha}(x_0) = x_0 \cdot \alpha.$$

Setze dann $\theta(\alpha) := D_{\alpha} \in Aut(p)$.

• θ ist ein Gruppenhomomorphismus: Seien $\alpha, \beta \in N(G_{x_0})$. Dann gilt

$$D_{\beta\alpha}(x_0) = x_0 \cdot (\beta\alpha) = (x_0\beta) \cdot \alpha = D_{\beta}(x_0) \cdot \alpha \stackrel{32}{=} D_{\beta}(x_0 \cdot \alpha) = D_{\beta}D_{\alpha}(x_0).$$

Wir erhalten $\theta(\beta\alpha) = D_{\beta\alpha} = D_{\beta} \circ D_{\alpha} = \theta(\beta)\theta(\alpha)$, d.h. θ ist ein Homöomorphismus.

- θ ist surjektiv. Gegeben $D \in \operatorname{Aut}(p)$. Aus Satz 33 folgt $\exists \alpha \in N(G_{x_0}) \colon D_{\alpha}(x_0) = x_0 \cdot \alpha = D(x_0)$.
- Für $\ker \theta$ gilt: Sei $\theta(\alpha) = \operatorname{id}_X$. Es folgt $x_0 \cdot \alpha = D_{\alpha}(x_0) = x_0 \implies \alpha \in G_{x_0} \implies \ker \theta = G_{x_0}$.

Korollar 36. Ist p regulär, dann ist bereits

$$\frac{\pi_1(Y, y_0)}{p_*\pi_1(X, x_0)} \to \operatorname{Aut}(p)$$

ein Gruppenisomorphismus.

Korollar 37. Ist X einfach zusammenhängend, so gilt

$$\pi_1(Y, y_0) = \operatorname{Aut}(p).$$

Bsp. 83.

$$p: \mathbb{R}^1 \to S^1, p(t) = e^{2\pi i t}.$$

Dann gilt

$$\operatorname{Aut}(p) = \pi_1(S^1) = \mathbb{Z} = \{D_k | k \in \mathbb{Z}\}.$$

Bsp. 84.

$$p: S^n \to \mathbb{R}P^n, n \ge 2.$$

 $\{\mathrm{id}_{S^n},\mathrm{Involution}\ x\mapsto -x\}=\mathrm{Aut}(p)=\pi_1(\mathbb{R}P^n)=\mathbb{Z}/2\mathbb{Z}.$

3.4 Wann ist die Orbitprojektion einer Gruppenwirkung eine Überlagerung?

Sei G eine diskrete Gruppe und $G \times X \to X$ eine Wirkung. Dann haben wir die Projektion auf den Orbitraum

$$p: X \to X/G$$
,

den wir mit der Quotiententopologie ausstatten. Dann ist p offen. Sei dazu $U \subset X$. Es gilt dann offen

$$p^{-1}(p(U)) = \bigcup_{u \in U} Gu = \bigcup_{g \in G} gU$$

gU ist offen, da $g: X \to X$ ein Homö
omorphismus ist. Also ist p(U) offen in X/G.

Def. 85. Eine Gruppenwirkung $G \times X \to X$ heißt <u>eigentlich unstetig</u> (properly discontinuous), wenn jeder Punkt $x \in X$ eine offene Umgebung $U \subset X$ besitzt, sodass $\forall g \in G$:

$$U \cap gU \neq \emptyset \implies g = 1$$

Sei $p: X \to Y$ eien Überlagerung. Dann wirkt $G = \operatorname{Aut}(p)$ eigentlich unstetig auf X. Sei nämlich $x \in X$ und $V \subset Y$ eine offene, wegzusammenhängende Umgebung von p(x), die gleichmäßig überlagert wird. Sei U jenes Blatt über V, das x enthält.

$$D \in \operatorname{Aut}(p) \implies \underbrace{D(U)}_{\text{wegzshgd}} \subset U'$$

für ein weiteres Blatt U' über V. Ist $D \neq 1$, so sind U und U' bereits verschiedene Blätter, d.h. $U \cap U' = \emptyset \implies U \cap D(U) = \emptyset$. Sei $p \colon X \to Y$ eine reguläre Überlagerung \implies Aut(p) transitiv auf Fasern $p^{-1}(y)$.

$$X \downarrow p \\ X/\operatorname{Aut}(p) \xrightarrow{\exists !f} Y$$

mit einem Homöomorphismus f.

Satz 38. Wirkt eine Gruppe G eigentlich unstetig auf X, dann ist $p: X \to X/G$ eine reguläre Überlagerung und $\operatorname{Aut}(p) = G$.

Beweis. 1. p ist eine Überlagerung.

Sei $y \in X/G, x \in p^{-1}(y)$. Sei $U \subset X$ eine offene, wegzusammenhängende Umgebung von x, sodass $\forall g \in G$:

$$U \cap gU \neq \emptyset \implies g = 1.$$

Es gilt $y \in V := p(U) \subset X/G$ (da p eine offene Abbildung ist). Dann ist $p^{-1}(V) = \bigsqcup_g gU$ eine disjunkte Vereinigung der Blätter gU über V. Die Einschränkung

$$p|_{gU} \colon gU \to V$$

ist stetig, offen und bijektiv, also ein Homöomorphismus.

2. $G = \operatorname{Aut}(p)$.

Es gilt stets p(x) = p(gx) da der G-Orbit von x sich durch Translation mit g nicht ändert, d.h. $G \subset \operatorname{Aut}(p)$. Sei andererseits $D \in \operatorname{Aut}(p)$ eine Decktransformation und $x \in X$. Dann ist $D(x) \in p^{-1}(p(x)) = G \cdot x$, also existiert ein $g \in G$ mit $g \cdot x = D(x)$. Sowohl $(x \mapsto g \cdot x)$ als auch D sind Decktransformationen und damit durch den Wert auf einem Punkt eindeutig werden, gilt Gleichheit und wir erhalten $\operatorname{Aut}(p) \subset G$.

3. p ist regulär.

G wirkt transitiv auf seinen Orbits, die G-Orbits sind aber gerade die Fasern von p. Nach Schritt 2 folgt, dass die Aut(p)-Orbits den Fasern von p entsprechen, insbesondere ist also p regulär.

Korollar 39. Ist X einfach zusammenhängend und $G \cap X$ eigentlich unstetig, dann gilt

$$\pi_1(X/G) \stackrel{\sim}{=} G.$$

Beweis. $\pi_1(X/G) = \operatorname{Aut}(p) = G$.

Bsp. 86. $Q_8 \curvearrowright S^3 \subset \mathbb{H}$ und $Q_8 = \{\pm 1, \pm i, \pm j, \pm j\}$. S^3 ist einfach zusammenhängend, Q_8 wirkt eigentlich unstetig. Insbesondere folgt $\pi_1(S^3/Q_8) = Q_8$.

Def. 87. Ist $p: X \to Y$ eine Überlagerung mit X einfach zusammenhängend, dann nennen wir p eine (die) universelle Überlagerung von Y.

Def. 88. Seien $p: X \to Y$, $p': X' \to Y$ Überlagerungen von Y. Eine Äquivalenz von Überlagerungen ist ein Homöomorphismus $f: X \to X'$, sodass $p = p' \circ f$.

Wir haben bereits gesehen, dass universelle Überlagerungen eines gegebenen Basisraums Y bis auf Äquivalenz von Überlagerungen eindeutig sind. Notation: \tilde{Y} .

Bsp. 89. 1.
$$Y = S^1 : \widetilde{S}^1 = \mathbb{R}^1 \xrightarrow{p} S^1$$

2.
$$Y = \mathbb{R}P^n, n \ge 2$$
: $\widetilde{\mathbb{R}P^n} = S^n$

3.
$$Y = T^2 : \widetilde{T^2} = \mathbb{R}^2$$
.

4.
$$Y = S^3/Q_8 : \widetilde{S^3/Q_8} = S^3$$

3.5 Existenz von universellen Überlagerungen

Def. 90. Ein Raum X heißt lokal einfach zusammenhängend, wenn jedes $x \in X$ eine offene, wegzusammenhängende Umgebung $x \in U \subset X$ besitzt, sodass $\operatorname{im}(\pi_1(U, u) \to \pi_1(X, u))$ trivial ist.

Satz 40. Jeder lokal einfach zusammenhängende Raum Y besitzt eine universelle Überlagerung.

Beweis. Sei $y_0 \in Y$ ein Basispunkt.

$$\{\omega \colon I \to Y | \omega(0) = y_0\} / \sim$$

wobei $\omega_0 \sim \omega_1$: $\Leftrightarrow w_0 \simeq w_1 \text{ rel } \partial I$, d.h. insbesondere $\omega_0(1) = \omega_1(1)$.

• Daher ist die Abbildung

$$p \colon \tilde{Y} \to Y[\omega] \mapsto \omega(1)$$

wohldefiniert.

• Um eine Topologie auf \tilde{Y} zu konstruieren betrachten wir alle $U \subset Y$, sodass U wegzusammenhängend und lokal einfach zusammenhängend ist. Dann ist durch die Mengen

$$U_{[\omega]} \coloneqq \big\{ [\omega * \gamma] \big| \gamma \text{ Weg in } U \big\}_{\text{offen}} \tilde{Y},$$

mit $[\omega] \in \tilde{Y}, \omega(1) \in U$ eine Topologie auf \tilde{Y} gegeben.

• p ist eine Überlagerung: Die Blätter über U sind $U_{[\omega]}$ mit $\omega(1) \in U$. Angenommen $U_{[\omega_1]} \cap U_{[\omega_2]} \neq \emptyset$. Dann $\exists \gamma_1, \gamma_2$ in U mit $(\omega_1 * \gamma_1)(1) = (\omega_2 * \gamma_2)(1)$ und $\omega_1 * \gamma_1 \simeq \omega_2 * \gamma_2$ rel ∂I . Sei nun $[\omega_1 * \gamma] \in U_{[\omega_1]}$ ein beliebiges Element Betrachte

$$\omega_2 * \underbrace{\gamma_2 * \gamma_1^{-1} * \gamma}_{\text{liegt ganz in } U} \underset{\text{rel} \partial I}{\simeq} (\omega_1 * \gamma_1) * \gamma_1^{-1} * \gamma \underset{\text{rel} \partial I}{\simeq} \omega_1 * \gamma.$$

Daher ist

$$[\omega_1 * \gamma] = [\omega_2 * \underbrace{(\gamma_2 * \gamma_1^{-1} * \gamma)}_{\subset U}] \in U_{[\omega_2]}.$$

- $p|: U_{[\omega]} \to U$ ist ein Homöomorphismus, da U lokal einfach zusammenhängend ist (alle Schleifen in U lassen sich zusammenziehen).
- \tilde{Y} ist einfach zusammenhängend: Sei α eine Schleife in \tilde{Y} . Betrachte $\alpha|_{[0,t]}$ und reparametrisiere auf [0,1]. Das liefert eine Homotpie von α zur konstanten Schleife in \tilde{Y} . Jedes Element von α ist ein Weg vom Basispunkt zu einem Punkt auf der Schleife in Y. Dann lässt sich α entlang dieser Wege zum Basispunkt y_0 zusammenziehen

Satz 41 (Klassifikation von Überlagerungen). Sei Y lokal einfach zusammenhängend. Dann gilt: Für jede Untergruppe $H < \pi_1(Y)$ existiert eine bis auf Äquivalenz eindeutige Überlagerung $p: X \to Y$, sodass $H = p_*\pi_1(X) < \pi_1 Y$.

Beweis. Y besitzt eine universelle Überlagerung \tilde{Y} . $H < \pi_1 Y$. Es gilt nun $\pi_1 Y \stackrel{\sim}{=} \operatorname{Aut}(\tilde{p}) \curvearrowright \tilde{Y}$.

mit $p: H\tilde{y} \mapsto \tilde{p}(\tilde{y})$. Es folgt $p_*\pi_1(Y/H) = H < \pi_1(Y)$.

4 Der Satz von Seifert-van-Kampen

Def. 91 (Freies Produkt von Gruppen). Seien G_1, G_2 Gruppen, $G_1 \cap G_2 = \emptyset$. $G_1 * G_2 :=$ reduzierte Wörter der Form $g_1h_1g_2h_2 \cdot \cdots \cdot g_nh_n$, wobei $g_i \neq 1 \in G, h_i \neq 1 \in G_2 \forall i$. Gruppenoperation ist Konkatenation zweier Wörter und anschließende Reduktion. Das neutrale ELement in $G_1 * G_2$ ist das leere Wort. Dann existieren kanonische Monomorphismen

Das freie Produkt ist charakterisiert durch folgende universelle Eigenschaft: Gegeben zwei Homomorphismen

$$\psi_1\colon G_1\to H, \psi_2\colon G_2\to H$$

für eine Gruppe H, so existiert ein eindeutig bestimmter Homomorphismus

$$\psi \colon G_1 \ast G_2 \to H$$
,

sodass das Diagramm

$$G_1 \xrightarrow{g \mapsto g} G_1 * G_2 \xleftarrow{g \mapsto g} G_2$$

$$\downarrow^{\Psi_1} \qquad \downarrow^{\exists ! \Psi} \qquad \qquad \downarrow^{\Psi_2}$$

$$H$$

kommutiert. Der Homomorphismus Ψ ist notwendigerweise gegeben durch $\Psi(g_1h_1g_2\dots) = \Psi_1(g_1)\Psi_2(h_1)\Psi_1(g_2)\dots$

- **Bsp. 92.** 1. $G_1 * G_2 = \mathbb{Z}/2 * \mathbb{Z}/2 = \{\text{leeres Wort}, a, b, ab, ba, aba, bab, ...} \}$ für $a \in G_1, a^2 = 1$ und $b \in G_2, b^2 = 1$. $\mathbb{Z}/2 * \mathbb{Z}/2$ ist weder abelsch noch endlich, obwohl beides für $\mathbb{Z}/2$ der Fall ist.
 - 2. $F_m := \mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$ freie Gruppe auf m Erzeugern. Für eine Menge von Erzeugern S bezeichnen wir die erzeugte freie Gruppe mit F(S).

Def. 93 (amalgamiertes freies Produkt). Gegeben seien Gruppen G_1, G_2 und A zusammen mit Gruppenhomomorphismen

Sei N die normale Untergruppe von $G_1 * G_2$ erzeugt von Wörtern der Form $\phi_1(a)\phi_2(a)^{-1} \forall a \in A$. Dann ist

$$G_1 *_A G_2 = G_1 * G_2/N$$

das über A amalgamierte freie Produkt von G_1 und G_2 . In $G_1*_A G_2$ gilt $\phi_1(a)=\phi_2(a)$. Es existieren kanonische Abbildungen

$$G_1 \xrightarrow{g \mapsto g} G_1 * G_2 \xleftarrow{g \mapsto g} G_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_1 * G_2/N$$

Das amalgamierte freie Produkt erfüllt die universelle Eigenschaft: Gegeben zwei Homomorphismen $\Psi_1 \colon G_1 \to H, \Psi_2 \colon G_2 \to H$, sodass

kommutiert. Dann existiert ein eindeutig bestimmter Homomorphismus $\Psi: G_1 *_A *G_2 \to H$, sodass

Satz 42 (Seifert-van Kampen). Seien U, V offen, $X = U \cup V$ mit $U, V, U \cap V$ wegzusammenhängend, $U \cap V \neq \emptyset$. Wir haben folgendes Diagramm

Wir wählen $x_0 \in U \cap V$ als Basispunkt. Das liefert uns

Dann erhalten wir

$$\pi_1(U \cap V, x_0) \xrightarrow{i_{U*}} \pi_1(U, x_0) \xrightarrow{j_{U*}} \pi_1(V) \xrightarrow{\exists ! \Psi} \pi_1(X, x_0)$$

$$\uparrow_{V*} \qquad \uparrow \qquad \uparrow_{V*} \qquad \uparrow \qquad \downarrow_{V*} \qquad \uparrow_{V*} \qquad \downarrow_{V*} \qquad \uparrow_{V*} \qquad \downarrow_{V*} \qquad \downarrow_{V*$$

Dann ist Ψ ein Isomorphismus von Gruppen

Beweis. 1. Ψ ist surjektiv. Sei $\alpha=[f]\in\pi_1(X,x_0)$ eine Schleife in X. Aus dem Lemma von Lebesgue folgt die Existenz eines $n\in\mathbb{N}$ mit der Eigenschaft, dass $f\left[\frac{i}{n},\frac{i+1}{n}\right]$ ganz in U oder ganz in V liegt. Sei $f\left(\frac{i}{n}\right)$ ein Punkt mit

$$f\left[\frac{i-1}{n},\frac{i}{n}\right]\subset U \text{ und } f\left[\frac{i}{n},\frac{i+1}{n}\right]\subset V$$

oder

$$f\left[\frac{i-1}{n},\frac{i}{n}\right]\subset V \text{ und } f\left[\frac{i}{n},\frac{i+1}{n}\right]\subset U.$$

Sei γ ein Weg in $U \cap V$, der x_0 und $f\left(\frac{i}{n}\right)$ verbindet. Dann lässt sich α schreiben als

$$\alpha = [f_{\leq \frac{i}{n}}][f_{\geq \frac{i}{n}}]$$

mit $f_{\leq \frac{i}{n}} = \gamma^{-1} * f\left[\frac{0}{n}, \frac{i}{n}\right]$ und $f_{\geq \frac{i}{n}} = f\left[\frac{i}{n}, \frac{n}{n}\right] * \gamma$. Mit dieser Vorgehensweise erhält man durch ggf. weiteres Aufspalten ein reduziertes Wort aus Wegen entweder in $\pi_1(U)$ oder in $\pi_1(V)$.

2. Ψ ist injektiv. Sei $w \in \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$ mit $\Psi(w) = 1 \in \pi_1(X)$. Dann gilt OE $w = [f_1]_U[g_1]_V[f_2]_U \dots$, wobei die Indizes bedeuten sollen, dass $f_i\pi\pi_1(U)$ und $g_i \in \pi_1(V)$. Dann existiert eine Homotopie $F: I \times I \to X$ mit

$$F(s,0) = f_1 * g_1 * f_2 * \dots * g_m * (s)$$

$$F(s,1) = x_0, F(0,t)$$

$$= x_0 = F(1,t) \forall t, s$$

. Aus dem Lemma von Lebesgue folgt die Existenz eines $0 < n \in \mathbb{N}$, sodass jedes Quadrat der Seitenlänge $\frac{1}{n}$ ganz in U oder ganz in V abgebildet wird (OE n ein Vielfaches von m.) Wir können annehmen, dass F alle Gitterpunkte $\left(\frac{i}{n}, \frac{j}{n}\right)$ auf x_0 abbildet. (durch geschickte Wahl einer Homotopie $F' \simeq F$)In $\pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$ erhalten wir (siehe Skizze)

$$[f]_U[g]_V[g']_V = ([k]_U[m]_U)[m]_V^{-1}[l]_V[l']_V$$

Amalgamierung über $\pi_1(U \cap V)$

$$= [k]_{U}(\underbrace{[m]_{V}[m]_{V}^{-1}[l]_{V}[l']_{V}}_{\in \pi_{1}(V)})$$
$$= [k]_{U}[l]_{V}[l']_{V}.$$

Nach endlich vielen Schritten haben wir das Wort $[f_1]_U[g_1]_V[f_2]_U...$ in das leere Wort überführt.

4.1 Präsentation von Gruppen durch Erzeuger und Relationen

Def. 94. Sei S die Menge der Erzeuger und R die Menge von Wörtern in $S^{\pm 1}$. Sei N die von R in der freien Gruppe F(S) erzeugte normale Untergruppe. $\langle S|R\rangle \coloneqq \frac{F(S)}{N}$. Wir nennen R die "Relationen".

Bsp. 95. • $\mathbb{Z} = \langle g | \emptyset \rangle$.

- $\mathbb{Z}/2 = \langle a | a^2 \rangle$, d.h. $a^2 = 1$.
- $\mathbb{Z}/2 * \mathbb{Z}/2 = \langle a, b | a^2, b^2 \rangle$.

Sei nun $\pi_1(U) = \langle S_U | R_U \rangle, \pi_1(V) = \langle S_V | R_V \rangle$ und $\pi_1(U \cap V) = \langle S_{\cap} | R_{\cap} \rangle$. Dann ist

$$\pi_1(X) = \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V) = \langle S_U \cup S_V | R_U \cap R_V \cap R,$$

wobei

$$R = \{i_{U*}(a)i_{V*}(a)^{-1} | a \in S_{\cap}\}$$

- **Bsp. 96.** 1. $X = S^2$. Wähle sich überschneidende "Halbkugeln", d.h. $U \simeq D^2 \simeq *$, analog ist auch V zusammenziehbar. Also ist $\pi_1(S^2) = \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V) = 1 *_{\pi_1(U \cap V)} 1 = 1$.
 - 2. $X=S^1$. Analoges Vorgehen wie bei 1. scheitert daran, dass $U\cap V$ dann nicht wezusammenhängend ist.
 - 3. $X = S^1 \vee S^1$. Wähle für U und V jeweils einen der Kreise vereinigt mit einer kleinen offenen Teilmenge des jeweils anderen Kreises (sieht aus wie ein α . Dann ist $\pi_1(U) = \pi_1(S) \simeq \mathbb{Z} = \langle a | \emptyset \rangle$ und analog $\pi_1(V) = \pi_1(S) \simeq \mathbb{Z} = \langle b | \emptyset \rangle$ Der Durchschnitt ist dann ein offenes Kreuz um den Basispunkt, also zusammenziehbar und es folgt $\pi_1(U \cap V) = 1$. Nach dem Satz von Seifert-van-Kampen folgt $\pi_1(S^1 \vee S^1 = \langle a | \emptyset \rangle *_{\pi_1(U \cap V)=1} \langle b | \emptyset \rangle = \langle a, b | \emptyset \rangle = F_2$, die freie Gruppe auf zwei Erzeugern.
 - 4. $X = T^2$. Wir hatten schon gesehen $\pi_1(T^2) = \pi_1(S^1 \times S^1) = \pi_1(S^1) \times \pi_1(S^1) = \mathbb{Z} \oplus \mathbb{Z}$.

Nun wählen wir einen Ansatz über den Satz von Seifert-van-Kampen. Dazu stellen wir den Torus als ein Rechteck mit verklebten Kanten dar, wählen U als Kreisscheibe vom Radius R im Rechteck und V als Komplement einer Kreisscheibe vom Radius r < R. Dann ist offensichtlich $\pi_1(U) = 1$. Durch eine Deformationsretraktion erhält man $V \simeq Q$ für Q den Rand eines Rechtecks, wo die gegenüberliegenden Seiten verklebt werden. Dann ist $Q \simeq S^1 \vee S^1$ und mit Beispiel 3 folgt $\pi_1(V) \simeq \pi_1(S^1 \vee S^1) = \langle a, b | \emptyset \rangle$. Für den Durchschnitt gilt $U \cap V \simeq S^1$, also $\pi_1(U \cap V) = \pi_1(S^1) = \langle g | \emptyset \rangle$. Wir müssen nun die Homomorphismen $i_{U*} \colon \pi_1(U \cap V) \to \pi_1(U)$ und $i_{V*} \colon \pi_1(U \cap V) \to \pi_1(V)$ bestimmen. Es gilt $i_{U*}(g) = 1 \in \pi_1(U) = 1$ und $i_{V*}(g) = aba^{-1}b^{-1}$. Nun folgt mit dem Satz von Seifert-van-Kampen

$$\pi_1(T^2) = \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$$

$$= 1 *_{\langle g | \emptyset \rangle} \langle a, b | \emptyset \rangle$$

$$= \langle a, b | i_{U*}(g) = i_{V*}(g) \rangle$$

$$= \langle a, b | aba^{-1}b^{-1} = 1 \rangle$$

$$= \mathbb{Z} \oplus \mathbb{Z}$$

5. Sei $X=K^2$ die Klein'sche Flasche. Mit derselben Vorgehensweise erhalten wir $\pi_1(U)=1$, $\pi_1(V)=\langle a,b|\emptyset\rangle (=\langle a,b\rangle$ und $\pi_1(U\cap V)=\langle g\rangle$. Diesmal gilt aber $i_{V*}(g)=aba^{-1}b$. Nach Seifert-van-Kampen folgt

$$\begin{split} \pi_1(K^2) &= \pi_1(U) *_{\pi_1(U \cap V} \pi_1(V) \\ &= 1 *_{\langle g \rangle} \langle a, b \rangle \\ &= \langle a, b | aba^{-1}b \rangle \end{split}$$

Aus der Gruppentheorie: Sei G eine Gruppe. Dann bezeichnet man mit [G,G] die Untergruppe von G, die von allen Elementen der Form $[a,b] := aba^{-1}b^{-1}$ (den Kommutatoren) erzeugt wird. [G,G] ist normal in G und $G^{ab} := G/[G,G]$ heißt die Abelisierung von G. Es gilt $\langle a,b|aba^{-1}b\rangle^{abelsch} \simeq \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$

Sei $G = \langle g_1, g_2, \dots, | r_1, r_2 \rangle$ eine Gruppe. Betrachte $X_0 := S_1 \vee S^1 \vee S^1 \vee \dots$ Mit Seifert-van-Kampen folgt induktiv $\pi_1(X_0) = \langle g_1, g_2, \dots \rangle = F_k$. Wir bauen nun die Relation r_1 ein:

$$r_1 = g_{j_1}^{\pm 1} \dots g_{j_l}^{\pm 1}.$$

Sei ∂D^2 der Randkreis von D^2 . Wir konstruieren eine stetige Abbildung

$$\varphi_1 \colon \partial D^2 \to X_0,$$

indem wir ∂D^2 in l Segmente unterteilen, wobei wir die Segmentgrenzen auf den Basispunkt 0 schicken und die Segmente entsprechend der Relation r_1 auf einzelne Kreise abbilden. Betrachte dann

$$X_1 := (X_0 \sqcup D^2)/(\forall x \in \partial D^2 \colon x \sim \varphi_1(x))$$

Mit dem Satz von Seifert-van-Kampen folgt $\pi_1(X_1) = \langle g_1, \dots, g_k | r_1 \rangle$.

5 Homologie

Sei X ein topologischer Raum und $k = 0, 1, 2, \ldots$ Dann ist anschaulich betrachtet

$$H_k(X) = \frac{k \mathrm{dim} \ \mathrm{Fl\"{a}chen} \ \mathrm{in} \ X \ \mathrm{ohne} \ \mathrm{Rand}}{\mathrm{R\"{a}nder} \ \mathrm{von} \ (k+1)\mathrm{-dim} \ \mathrm{Fl\"{a}chen} \ \mathrm{in} \ X}.$$

Diese Ideen stammen aus der Theorie der Riemann'schen Flächen.

Homologie ist ein zweistufiger Prozess, man modelliert zunächst in einem geometrischen Prozess aus einem Raum X die zugehörigen k-dimensionalen Flächen mit Randoperatoren ∂_k . In einem zweiten, rein algebraischen Schritt, berechnet man dann die Homologiegruppen $H_k(X) = \frac{\ker \partial_k}{\operatorname{im} \partial_{k+1}}$. Wir werden 3 Modelle betrachten:

- 1. Für einen allgemeinen topologischer Raum X kann man singuläre k-Ketten in X mit dem singulären Randoperator ∂_k untersuchen. Im zweiten Schritt berechnen wir dann die singuläre Homologie $H_k^{\text{sing}}(X)$.
- 2. Für einen simplizialen Komplex X kann man simpliziale k-Ketten in X mit dem entsprechenden simplizialen Randoperator ∂_k betrachten, wobei man im zweiten Schritt die simpliziale Homologie von X erhält.
- 3. Für einen zellulären Komplex (CW-Komplex) X kann man zelluläre k-Ketten in X mit dem entsprechenden zellulären Randoperator ∂_k betrachten, wobei man im zweiten Schritt die zelluläre Homologie von X erhält.

Es gibt noch weitere Homologien, aber die drei genannten sind die wichtigsten.

5.1 Singuläre Homologie

Wir betrachten $\mathbb{R}^{\infty} = \bigcup_{n=1}^{\infty} \mathbb{R}^n$ mit der Standardbasis e_0, e_1, \dots Sei $p \in \mathbb{N}_0$.

Def. 97 (Standard *p*-Simplex).

$$\Delta^p := \left\{ \sum_{i=0}^p \lambda_i e_i \middle| \sum_{i=0}^p \lambda_i = 1, 0 \le \lambda_i \le 1 \right\}$$

Sei $v_0, \ldots, v_p \in \mathbb{R}^{\infty}$. Dann ist durch

$$[v_0, \dots, v_p] \colon \Delta^p \to \mathbb{R}^\infty$$

$$\sum_{i=1}^p \lambda_i e_i \mapsto \sum_{i=1}^p \lambda_i v_i$$

eine Abbildung gegeben. Im Fall $[v_0,\ldots,v_{p-1}]=[e_0,\ldots,\hat{e}_i,\ldots,e_p]$ erhalten wir eine Abbildung

$$F_i := [e_0, \dots, \hat{e}_i, \dots, e_p] : \Delta^{p-1} \to \Delta^p$$

und nennen sie die *i*-te Seitenfläche von Δ^p .

Def. 98 (singulärer *p*-Simplex). Sei X ein topologischer Raum. Ein singulärer p-Simplex in X ist eine stetige Abbildung $\sigma \colon \Delta^p \to X$.

Def. 99.

 $C_p(X) \coloneqq C_p^{\mathrm{sing}}(X) \coloneqq$ freie abelsche Gruppe erzeugt von den sing. p-Simplizes in X.

Elemente in $C_p(X)$ haben die Form

$$\sum_{\sigma}^{\text{endl}} n_{\sigma} \sigma \qquad (n_{\sigma} \in \mathbb{Z})$$

und heißen singuläre p-Ketten in X.

Sei σ ein singulärer p-Simplex in X. Dann betrachten wir die Abbildung

$$\partial_p(\sigma) := \sum_{i=1} (-1)^i \sigma \circ F_i,$$

die das folgende Diagramm kommutativ macht

$$\begin{array}{c} \Delta^p \xrightarrow{\sigma} X \\ F_i \uparrow \xrightarrow{\sigma \circ F_i} X \\ \Delta^{p-1} \end{array}$$

eine Setzen wir ∂_p lineear auf ganz $C_p(X)$ fort, d.h.

$$\partial_p \left(\sum_{\sigma} n_{\sigma} \sigma \right) := \sum_{\sigma} n_{\sigma} \partial_p(\sigma).$$

Wir erhalten so eine lineare Abbildung

$$\partial_p \colon C_p(X) \to C_{p-1}(X) \qquad \forall p.$$

Für $p \in \mathbb{Z}, p < 0$ setzen wir $C_p(X) \coloneqq 0$. Das Vorzeichen $(-1)^i$ stellt die Kommutativität dieses Diagramms sicher

$$C_{p+1}(X) \xrightarrow{\partial_{p+1}} C_p(X)$$

$$\downarrow 0 \qquad \qquad \downarrow \partial_p \qquad ,$$

$$C_{p-1}(X)$$

d.h. im $\partial_{p+1} \subset \ker \partial_p \subset C_p(X)$, wobei wir die p-dimensionalen Ränder in X (boundaries) mit $B_p(X) \coloneqq \operatorname{im} \partial_{p+1}$ bezeichnen und die p-Zykel in X durch $Z_p(X) \coloneqq \ker \partial_p$ gegeben seien.

Def. 100 (p-te singuläre Homologiegruppe). Die p-te singuläre Homologiegruppe von X ist

$$H_p^{\mathrm{sing}}(X) \coloneqq \frac{Z_p(X)}{B_p(X)} = \frac{\ker \partial_p}{\operatorname{im} \partial_{p+1}}$$

Bsp. 101. Sei *X* ein Punkt, $X = \{x_0\}$.

$$\vdots$$

$$\downarrow \partial_4$$

$$C_3(x_0) = \mathbb{Z} = \langle \sigma_3 \colon \Delta^3 \to x_0 \rangle$$

$$\downarrow \partial_3 \colon \sigma_3 \mapsto \sigma_2 - \sigma_2 + \sigma_2 - \sigma_2 = 0$$

$$C_2(x_0) = \mathbb{Z} = \langle \sigma_2 \colon \Delta^2 \to x_0 \rangle$$

$$\downarrow \partial_2 \colon \sigma_2 \mapsto \sigma_2 F_0 - \sigma_2 F_1 + \sigma_2 F_2 = \sigma_1 - \sigma_1 + \sigma_1 = \sigma_1$$

$$C_1(x_0) = \mathbb{Z} = \langle \sigma_1 \colon \Delta^1 \to x_0 \rangle$$

$$\downarrow \partial_1 \colon \sigma_1 \mapsto \sigma_1 F_0 - \sigma_1 F_1 = \sigma_0 - \sigma_0 = 0$$

$$C_0(x_0) = \mathbb{Z} = \langle \sigma_0 \colon \Delta^0 \to x_0 \rangle$$

$$\downarrow \partial_0 = 0$$

$$0$$

$$\downarrow$$

$$\vdots$$

Es folgt $H_0(X) = \frac{\ker \partial_0}{\operatorname{im} \partial_1} = \frac{\mathbb{Z}}{0} = \mathbb{Z}$, $H_1(X) = \frac{\ker \partial_1}{\operatorname{im} \partial_2} = 0$ und allgemein folgt $H_p(X) = 0 \forall p > 0$.

Ein beliebiges Element aus $C_0(X)$ lässt sich schreiben in der Form $\sum_{x \in X}^{\text{endl.}} n_x \cdot x \in C_0(X) = Z_0(X)$.

$$\epsilon C_0(X) \to \mathbb{Z}$$
endl.
$$\sum_{x \in X} n_x \cdot x \mapsto \sum_{x \in X} n_x$$

Sei τ ein 1-Simplex in X. Dann ist $\epsilon(\partial_1(T)) = \epsilon(\tau F_0 - \tau F_1) = 1 - 1 = 0$, d.h. im $\partial_1 \subset \ker \epsilon$. Also erzeugt ϵ einen Homomorphismus,

$$\epsilon_* \colon H_0(X) \to \mathbb{Z},$$

die man auch Augmentationsabbildung nennt.

Proposition 43. Ist X wegzusammenhängend, dann ist ϵ_* : $H_0(X) \stackrel{\sim}{=} \mathbb{Z}$ ein Isomorphismus.

Beweis. Die Surjektivität von ϵ_* ist klar. Um die Injetivität zu beweisen, fixieren wir einen Basispunkt $x_0 \in X$. Für jeden Punkt $x \in X$ wählen wir einen Weg λ_x in X, der x_0 mit x verbindet. Sei $c = \sum n_x x \in C_0(x)$ ein Element mit $\epsilon_*(c) = 0$, d.h. $\sum n_x = 0 \in \mathbb{Z}$. Dann gilt

$$c - \partial_1 \underbrace{\sum_{\in C_1(X)} n_x \lambda x}_{\in C_1(X)} = c - \sum_{i} n_x \partial_1(\lambda_x)$$

$$= \sum_{i} n_x \cdot x - \sum_{i} n_x (x - x_0)$$

$$= \sum_{i} n_x x - \sum_{i} n_x x + \sum_{i} n_x x_0$$

$$= \left(\sum_{i} n_x\right) x_0$$

$$= 0$$

Äquivalenzklassen von Zykeln kennzeichnen wir im Allgemeinen oft durch eckige Klammern. Wir erhalten also

 $[c] = \left[\partial_1 \left(\sum n_x \lambda_x\right)\right] = 0 \in H_0(X).$

Korollar 44. Für beliebiges X ist $H_0(X)$ die freie abelsche Gruppe erzeugt von den Wegekomponenten von X.

5.1.1 Induzierte Abbildungen

Sei $f\colon X\to Y$ stetig. Sei $\sigma\colon \Delta^p\to X$ ein singulärer p-Simplex in X. Betrachte das kommutative Diagramm

$$\Delta^p \xrightarrow{\sigma} X \\
\downarrow^{\sigma \circ f} \downarrow_f . \\
Y$$

Definiere dann

$$f_{\#}(\sigma) := f \circ \sigma \in C_p(Y).$$

Durch lineare Fortsetzung erhalten wir die auf Ketten definierte Abbildung

$$f_{\#}\left(\sum_{\sigma}n_{\sigma}\sigma\right) \coloneqq \sum_{\sigma}n_{\sigma}f_{\#}(\sigma),$$

d.h. $f_{\#}: C_p(X) \to C_p(Y)$. ist ein Homomorphismus.

Proposition 45. $f_{\#}$ ist eine sogenannte Kettenabbildung, d.h. das Diagramm

$$C_{p}(X) \xrightarrow{f_{\#}} C_{p}(Y)$$

$$\downarrow \partial_{p} \qquad \qquad \downarrow \partial_{p}$$

$$C_{p-1}(X) \xrightarrow{f_{\#}} C_{p-1}(Y)$$

 $kommutiert \ \forall p.$

Beweis. Sei $\sigma \in C_pX$ ein singulärer p-Simplex in X. Dann gilt

$$f_{\#}(\partial \sigma) = f_{\#}\left(\sum_{i=0}^{p} (-1)^{i} (\sigma F_{i})\right)$$

$$= \sum_{i} (-1)^{i} f_{\#}(\sigma F_{i})$$

$$= \sum_{i} (-1)^{i} f \circ (\sigma \circ F_{i})$$

$$= \sum_{i} (-1)^{i} (f \circ \sigma) \circ F_{i}$$

$$= \partial (f \sigma)$$

$$= \partial f_{\#}(\sigma)$$

Insbesondere induziert f eine Abbildung

$$f_* := H_p(f) \colon H_p(X) \to H_p(Y)$$

 $[c] \mapsto [f_\#(c)]$

 f_* ist wohldefiniert. Sei nämlich c ein Zykel, dann ist auch $f_\#c$ ein Zykel, denn laut Proposition gilt

$$\partial(f_{\#}(c)) = f_{\#}(\partial c) = f_{\#}(0) = 0.$$

Wenn $c' = c + \partial d, d \in C_{p+1}(X)$, dann gilt

$$f_{\#}(c') = f_{\#}(c) + f_{\#}(\partial d) = \partial (f_{\#}d)$$

Wir erhalten $[f_{\#}(c')] = [f_{\#}(c)].$

Proposition 46. Es gilt für stetige Abbildungen $f: X \to Y, g: Y \to Z$ und die Komposition $f \circ g: X \to Z$

$$(g \circ f)_* = g_* \circ f_* \colon H_*(X) \to H_*(Z)$$

sowie $(id_X)_* = id_{H_*(X)}$ (wobei wir * für ein beliebiges p schreiben.

Beweis. "sehr einfach einzusehen".

Insgesamt ist H_* demnach ein Funktor von der Kategorie der topologischen Räume und stetigen Abbildungen in die Kategorie der abelschen Gruppen mit Gruppenhomomorphismen.

6 Homologische Algebra

Def. 102 (graduierte Gruppe). Eine $(\mathbb{Z}-)$ graduierte Gruppe C_* ist eine Familie $\{C_p\}_{p\in\mathbb{Z}}$ von abelschen Gruppen $C_p, p \in \mathbb{Z}$.

Def. 103 (Kettenkomplex). Ein Kettenkomplex (abelscher Gruppen) ist ein Paar (C_*, ∂_*) , wobei C_* eine graduierte abelsche Gruppe ist und $\partial_* = \{\partial_p\}_{p \in \mathbb{Z}}$,

$$\partial_p \colon C_p \to C_{p-1}$$
 ein Homomorphismus,

sodass $\partial_p \circ \partial_{p+1} = 0 \forall p$.

Def. 104. Sei (C_*, ∂_*) ein Kettenkomplex.

$$H_p(C_*, \partial_*) := \frac{\ker \partial_p}{\operatorname{im} \partial_{n+1}} (p \in \mathbb{Z}) \qquad (p \in \mathbb{Z}).$$

Def. 105. Seien C_*, D_* zwei Kettenkomplexe. Eine Kettenabbildung $f: C_* \to D_*$ ist eine Familie $\{f_p\}_{p\in\mathbb{Z}}$ von Homomorphismen $f_p: C_p \to D_p$, sodass

$$C_{p} \xrightarrow{f_{p}} D_{p}$$

$$\downarrow \partial_{p} \qquad \qquad \downarrow \partial_{p}$$

$$C_{p-1} \xrightarrow{f_{p-1}} D_{p-1}$$

kommutiert.

Analog zum rein topologischen Fall erhalten wir, dass eine Kettenabbildung $f\colon C_*\to D_*$ Homomorphismen

$$f_* \colon H_p(C_*) \to H_p(D_*) \qquad \forall p$$

 $[c] \mapsto [f_p(c)]$

induziert.

Def. 106 (Exakte Sequenz). Seien A,B,C abelsche Gruppen und $f\colon A\to B,g\colon B\to C$ Homomorphismen. Dann heißt die Sequenz

$$A \xrightarrow{f} B \xrightarrow{g} C$$

exakt, wenn $\ker g = \operatorname{im} f$.

Bsp. 107 (Kurze exakte Sequenz). Die Sequenz

$$0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0.$$

ist genau dann exakt, wenn i ein Monomorphismus und j ein Epimorphismus ist, z.B.

$$0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0.$$

Def. 108. Eine Sequenz

$$A_* \xrightarrow{f} B_* \xrightarrow{g} C_*$$

von Kettenabbildungen, heißt exakt, wenn die Sequenzen

$$A_p \xrightarrow{f_p} B_p \xrightarrow{g_p} C_p$$

exakt ist für jedes $p \in \mathbb{Z}$.

Proposition 47. Sei $0 \to A_* \xrightarrow{i} B_* \xrightarrow{j} C_* \to 0$ eine kurze exakte Sequenz von Kettenkomplexen. Dann induzieren i, j eine lange exakte Sequenz der Form

$$\cdots \xrightarrow{j_*} H_{p+1}(C_*) \xrightarrow{\partial_*} H_p(A_*) \xrightarrow{i_*} H_p(B_*) \xrightarrow{j_*} H_p(C_*) \xrightarrow{\partial_*} H_{p-1}(A_*) \xrightarrow{i_*} \dots,$$

wobei wir ∂_* als Verbindungshomomorphismus bezeichnen.

Beweis. Betrachte das kommutative Diagramm

$$0 \longrightarrow A_{p+1} \xrightarrow{i_{p+1}} B_{p+1} \xrightarrow{j_{p+1}} C_{p+1} \longrightarrow 0$$

$$\downarrow \partial_{p+1} \qquad \downarrow \partial_{p+1} \qquad \downarrow \partial_{p+1}$$

$$0 \longrightarrow A_{p} \xrightarrow{i_{p}} B_{p} \xrightarrow{j_{p}} C_{p} \longrightarrow 0$$

$$\downarrow \partial_{p} \qquad \downarrow \partial_{p} \qquad \downarrow \partial_{p}$$

$$0 \longrightarrow A_{p-1} \xrightarrow{i_{p-1}} B_{p-1} \xrightarrow{j_{p-1}} C_{p-1} \longrightarrow 0$$

$$\downarrow \partial_{p-1} \qquad \downarrow \partial_{p-1} \qquad \downarrow \partial_{p-1}$$

$$0 \longrightarrow A_{p-2} \xrightarrow{i_{p-2}} B_{p-2} \xrightarrow{j_{p-2}} C_{p-2} \longrightarrow 0$$

mit exakten Zeilen.

Wir konstruieren zunächst den Verbindungshomomorphismus ∂_* . Sei c_p ein p-Zykel in C_* . Aufgrund der Surjektivität von j_p existiert ein $b_p \in B_p$: $j_p(b_p) = c_p$. Setze $b_{p-1} \coloneqq \partial_p(b_p) \in B_{p-1}$. Dann folgt wegen der Kommutativität $j_{p-1}(b_{p-1}) = \partial_p(c_p) = 0$, da c_p ein Zykel war. Also gilt $b_{p-1} \in \ker j_{p-1} = \operatorname{im} i_{p-1}$, da die dritte Zeile des Diagramms exakt ist, d.g. $\exists a_{p-1} \in A_{p-1} \colon i_{p-1}(a_{p-1}) = b_{p-1}$. Wir setzen nun $\partial_*([c_p]) = [a_{p-1}]$.

- Warum ist a_{p-1} ein Zykel in A_* ? Es gilt $i_{p-2}(\partial_{p-1}(a_{p-1})) = \partial_{p-1}(b_{p-1}) = \partial_{p-1}\partial_p(b_p) = 0$. Da nun aber i_{p-2} injektiv ist, folgt aus $i_{p-2}(\partial_{p-1}(a_{p-1})) = 0$ sofort auch $\partial_{p-1}(a_{p-1}) = 0$, d.h. a_{p-1} ist ein Zykel.
- Warum hängt $[a_{p-1}]$ nicht von der Wahl von b_p ab? Sei $b'_p \in B$ ein Element mit $j_p(b'_p) = c_p = j_p(b_p)$. Dann ist $j_p(b'_p b_p) = 0$, d.h. $b'_p b_p \in \ker j_p = \operatorname{im} i_p$ (Exaktheit). Also $\exists a_p \in A_p : i_p(a_p)b'_p b_p$. Es gilt $\partial_p(b'_p b_p) = b'_{p-1} b_{p-1} = i_{p-1}(a'_{p-1} a_{p-1})$ und $\partial_p(b'_p b_p) = \partial_p i_p(a_p) = i_{p-1}\partial_p a_p$. Da i_{p-1} injektiv ist, folgt daraus $a'_{p-1} a_{p-1} = \partial_p a_p$ und somit ist $[a'_{p-1}] = [a_{p-1}] \in H_{p-1}(A_*)$.
- Warum ist $[a_{p-1}]$ unabhängig von der Wahl des Repräsentanten c_p ? Sei $c_p' = c_p + \partial_{p+1} c_{p+1}$. Da j_{p+1} surjektiv ist, existiert ein Urbild b_{p+1} : $j_{p+1}(b_{p+1} = c_{p+1})$. Setze $b_p' := b_p + \partial b_{p+1}$. Wegen

$$j_p(b_p') = j_p(b_p) + j_p(\partial b_{p+1}) = c_p + \partial (j_{p+1}(b_{p+1})) = c_p + \partial c_{p+1} = c_p'$$

ist b_p' ein Urbild von c_p' . Weiter gilt $b_{p-1}' = \partial b_p' = \partial b_p + \partial^2 b_{p+1} = \partial b_p = b_{p-1}$.

- Warum ist der Verbindungshomomorphismus $\partial_* \colon H_p(C_*) \to H_{p-1}(A_*)$ ist ein Gruppenhomomorphismus? Übung.
- Warum ist die "lange exakte Sequenz" exakt? Übung.

Bsp. 109. Sei X ein topologischer Raum und $A \subset X$ ein Unterraum. Dann erhalten wir eine Kettenabbildung

$$C_*(A) \stackrel{i_\#}{\hookrightarrow} C_*(X)$$

Definiere die relative Kettengruppe des Paares (X, A),

$$C_p(X, A) := C_p(X)/C_p(A).$$

 $C_*(A)$ wird zum Kettenkomplex durch die von ∂_* auf $C_*(X)$ induzierten Randabbildungen $\partial_p \colon C_p(X,A) \to C_{p-1}(X,A)$. Definiere die relative Homologie

$$H_p(X,A) := H_p(C_*(X,A)).$$

6.1 Relative Homologie

Sei X ein topologischer Raum, $A \subset X$ ein Unterraum. Dann induziert $A \stackrel{i}{\hookrightarrow} X$ eine Abbildung $C_p(A) \stackrel{i\#}{\hookrightarrow} C_p(X)$. Wir defineren $C_p(X,A) := \frac{C_p(X)}{C_p(A)}$.

Bem 110. $C_p(X, A)$ ist frei abelsch, eine Basis ist gegeben durch alle singulären Simplizes $\sigma \colon \Sigma^p \to X$ mit $\sigma(\Delta^p) \not\subset A$.

Die Abbildung $\partial_p \colon C_p(X) \to C_{p-1}(X)$ induziert $\partial_p \colon C_p(X,A) \to C_{p-1}(X,A)$. Folglich ist $(C_*(X,A), \partial_*)$ ein Kettenkomplex. Wir nennen $H_p(X,A) := H_p(C_*(X,A), \partial_*)$ die <u>relative</u> Homologie des Paares (X,A). Die Folge

$$0 \to C_*(A) \xrightarrow{i_\#} C_*(X) \xrightarrow{\text{Quot.}} C_*(X, A) \to 0$$

ist exakt. Aus der Zick-Zack-Proposition erhalten wir eine lange exakte Sequenz

$$\cdot \xrightarrow{\partial_*} H_p(A) \xrightarrow{i_*} H_p(X,A) \xrightarrow{\partial_*} H_{p-1}(A) \xrightarrow{i_*} \cdots$$

Koeffizienten in H_* sind Tensorprodukte abelscher Gruppen.

Def. 111. Seien G, H abelsche Gruppen. Dann ist das Tensorprodukt von G und H gegeben durch

$$G\otimes H \coloneqq \frac{\text{freie abelsche Gruppe erzeugt von } G\times H}{\langle (g,h)+(g',h')-(g+g',h),(g,h)+(g,h')-(g,h+h')\rangle \forall g,g'\in G, \forall h,h'\in H,h'$$

Für $(g,h) \in G \times H$ heißt $(g \otimes h) \coloneqq [(g,h)]$ elementarer Tensor. Ein allgemeines Element von $G \otimes H$ ist von der Form

$$\sum_{i=1}^{n} k_i(g_i \otimes h_i), \qquad k_i \in \mathbb{Z}$$

Es gilt $(g+g') \otimes h = g \otimes h + g' \otimes h, g \otimes (h+h') = g \otimes h + g \otimes h'.$

Seien $f\colon G\to G', g\colon H\to H'$ Homomorphismen. Dann erhalten wir einen Homomorphismus

$$f \otimes g \colon G \otimes H \to G' \otimes H'$$

 $a \otimes b \mapsto f(a) \otimes g(b)$

Bem 112. Warnung: Sind $G \subset G'$, $H \subset H'$ Untergruppen, dann ist $G \otimes H$ im Allgemeinen keine Untergruppe von $G' \otimes H'$.

Proposition 48. Ist die Folge (*)

$$A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$$

exakt, dann ist auch (**)

$$A \otimes G \xrightarrow{\phi \otimes \mathrm{id}_G} B \otimes G \xrightarrow{\psi \otimes \mathrm{id}_G} C \otimes G \to 0$$

exakt. Ist ϕ injektiv so, dass (*) spaltet, dann ist auch $\phi \otimes id_G$ injektiv und spaltet.

Bem 113. Sei

$$0A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$$

exakt. Man sagt, dass die Folge spaltet, wenn ein $p \colon B \to A$ existiert, sodass $p \circ \phi = \mathrm{id}_A$ oder ein s existiert, sodass $\psi \circ s = \mathrm{id}_C$. Dann erhalten wir einen Isomorphismus $B \cong A \oplus C$ so, dass $A \to A \oplus C$ durch die kanonische Inklusion und $A \oplus C \to C$ durch die kanonische Projektion gegeben ist.

Bsp. 114. Die Folge

$$0 \to \mathbb{Z} \xrightarrow{p} \mathbb{Z} \to \mathbb{Z}/p \to 0$$

spaltet nicht.

Beweis. Ist nämlich $p: B \to A$ eine Spaltung $(p \circ \phi = \mathrm{id}_A)$, dann ist $p \otimes \mathrm{id}$ eine Spaltung für (**), da

$$(p \otimes id)$$

Sei $A \subset X$ ein Unterraum. Die Folge

$$0 \to C_n(A) \to C_n(X) \to C_n(X,A) \to 0$$

ist exakt. $C_p(X,A)$ ist frei abelsch. Daher existiert eine Spaltung $s\colon C_p(X,A)\to C_p(X)$. s erhält man, in dem man für jedes Basiselement der freien abelschen Gruppe $C_p(X,A)$ ein Urbild in $C_p(X)$ wählt und linear fortsetzt. Aus der letzten Proposition folgt, dass $0\to C_p(A)\otimes G\to C_p(X)\otimes G\to C_p(X,A)\otimes G\to 0$ exakt sein muss. Aufgrund der Zick-Zack-Proposition erhalten wir eine lange exakte Sequenz

$$\cdot \xrightarrow{\partial_*} H_p(A;G) \to H_p(X;G) \to H_p(X,A;G) \xrightarrow{\partial_*} H_{p-1}(A;G) \to \cdots$$

wobei $H_p(X, A; G) := H_p(C_*(X, A) \otimes G)$. Es gilt

$$\left(\bigoplus_{\alpha} A_{\alpha}\right) \otimes G \stackrel{\sim}{=} \bigoplus_{\alpha} (A_{\alpha} \otimes G).$$

Insbesondere folgt für eine freie Gruppe A mit Erzeugern α

$$A\otimes G\stackrel{\simeq}{=}\bigoplus_{\alpha}G$$

Sei

$$0 \to G' \to G \to G'' \to 0$$

eine exakte Sequenz. Da $C_p(X)$ frei abelsch ist, folgt die Exaktheit von

$$0 \to C_p(X) \otimes G' \to C_p(X) \otimes G \to C_p(X) \otimes G'' \to 0.$$

Aus der Zick-Zack-Proposition erhalten wir eine lange exakte Sequenz

$$\cdots \xrightarrow{\partial_*} H_n(X;G') \to H_n(X;G) \to H_n(X;G'') \xrightarrow{\partial_*} H_{n-1}(X;G) \to \cdots$$

wobei der Verbindungshomomorphismus ∂_* oft als "Bocksteinhomomorphismus"bezeichnet wird.

Bsp. 115.

$$0 \to \mathbb{Z} \xrightarrow{p} \mathbb{Z} \to \mathbb{Z}/p \to 0$$

Dann ist

$$H_i(X) = H_i(X; \mathbb{Z}) \xrightarrow{(\cdot p)_*} H_i(X) \to H_i(X; \mathbb{Z}/p) \xrightarrow{\partial_*} H_{i-1}(X; \mathbb{Z}).$$

exakt.

Bem 116. Ist F ein Körper, dann können wir $H_*(X; F)$ auch als F-Vektorraum auffassen. Wichtige Beispiele sind \mathbb{Z}/p für p prim, \mathbb{Q}, \mathbb{R} oder \mathbb{C} .

Def. 117 (Reduzierte Homologie). Die eindeutige stetige Abbildung $X \to Pkt$. induziert

$$f_* \colon H_p(X) \to H_p(\operatorname{Pkt.}).$$

Wir definieren die reduzierte Homologie als

$$\tilde{H}_n(X) := \ker(f_*)$$

Für p > 0 erhalten wir $\tilde{H}_p(X) = H_p(X)$.

Def. 118 (azyklisch). Der topologische Raum X heißt azyklisch, wenn $\tilde{H}_*(X) = 0$

6.2 Eilenberg-Steenrod-Axiome für Homologie

Def. 119 (Homologietheorie). Eine Homologietheorie auf der Kategorie der Paare (X, A) topologischer Räume (mit endlich vielen Wegekomponenten) und Morphismen $(X, A) \xrightarrow{\text{stetig}} (Y, B)$ ist ein kovarianter Funktor H_* in die Kategorie der \mathbb{Z} -graduierten abelschen Gruppen

$$(X,A) \mapsto \{H_p(X,A)\}_{p \in \mathbb{Z}}$$
$$f \colon (X,A) \to (Y,B) \mapsto f_* \coloneqq H_p(f) \colon H_p(X,A) \to H_p(Y,B)$$

zusammen mit natürlichen Transformationen

$$\partial_* : H_*(X, A) \to H_{*-1}(A) := H_{*-1}(A, \emptyset),$$

sodass gilt

- 1. Homotopieinvarianz: $f \simeq g \implies f_* = g_*$.
- 2. Lange exakte Sequenz eines Paares (X, A):

$$\cdots H_p(A) \xrightarrow{i_*} H_p(X) \xrightarrow{j_*} H_p(X,A) \xrightarrow{\partial_*} H_{p-1}(A) \rightarrow \cdots$$

für $i: (A, \emptyset) \hookrightarrow (X, \emptyset)$ und $j: (X, \emptyset) \hookrightarrow (X, A)$.

3. Ausschneidung: Ist $U \subset X$ ein Unterraum mit $\overline{U} \subset \operatorname{int}(A)$, dann induziert die Inklusion

$$(X \setminus U, A \setminus U) \stackrel{i}{\hookrightarrow} (X, A)$$

einen Isomorphismus

$$H_p(X \setminus U, A \setminus U) \xrightarrow{\sim} H_p(X, A) \qquad \forall p$$

4. Dimensionsaxiom:

$$H_p(\text{Pkt.}) = \begin{cases} \mathbb{Z} &, p = 0\\ 0 & \text{sonst.} \end{cases}$$

Bsp. 120. $(S^n, D^n_+), (D^n, S^{n-1} = \partial D^n).$

1.
$$H_i(S^0, D_+^0) \underset{\text{Ausschneidung}}{\overset{\sim}{=}} H_i(\text{Pkt}) \underset{\text{Dim.ax.}}{\overset{\sim}{=}} \begin{cases} \mathbb{Z} , i = 0 \\ 0, i \neq 0. \end{cases}$$

2. Es gilt

$$0 \stackrel{\sim}{=} H_i(D^0_+) \to \tilde{H}_i(S^0) \stackrel{\sim}{\to} H_i(S^0, D^0_+) \stackrel{\partial_*}{\to} H_{i-1}(D^0_+) \stackrel{\simeq}{=} 0.$$

Folglich gilt
$$\tilde{H}_i(S^0) = \begin{cases} \mathbb{Z} &, i = 0 \\ 0 & i \neq 0. \end{cases}$$

3. Wir erhalten

$$0 \underset{\text{Htp-inv.}}{\cong} \tilde{H}_i(D^1) \to H_i(D^1, S^0) \xrightarrow{\partial_*} \tilde{H}_{i-1}(S^0) \to H_{i-1}(D^1) \underset{\text{Htp-inv.}}{\cong} 0$$

Folglich ist
$$H_i(D^1, S^0) = \begin{cases} \mathbb{Z}, & i = 1\\ 0, & i \neq 1. \end{cases}$$

4.

$$H_i(S^1, D^1_+) \stackrel{\simeq}{\underset{\text{Ausschneidung}}{=}} H_i(S^1 \setminus U, D^1_+ \setminus U) \stackrel{\simeq}{\underset{\text{Htp-inv.}}{=}} H_i(D^1_-, S^0)$$

Insgesamt folgern wir $\tilde{H}_i(S^n) = \begin{cases} \mathbb{Z}, & i = n \\ 0, & i \neq n \end{cases}$

Def. 121. Sei $f: S^n \to S^n$ stetig, dann induziert f eine Abbildung auf der Homologie $f_*: \tilde{H}_n(S^n) = \mathbb{Z} \to \tilde{H}_n(S^n) = \mathbb{Z}$, dann heißt $f_*(1) =: \deg(f)$ der Abbildungsgrad von f.

Bem 122. Haben wir $S^n \xrightarrow{f} S^n \xrightarrow{g} S^n$ stetige Abbildungen, dann ist $\deg(g \circ f) = \deg(g) \deg(f)$, weil $g_*(f_*(1)) = g_*(1 \cdot f_*(1)) = f_*(1)g_*(1)$. Außedem gilt $f \simeq g \Rightarrow \deg(f) = \deg(g)$.

Bsp. 123. Sei $S^n \subset \mathbb{R}^{n+1}$, betrachte $f: S^n \to S^n$, $(x_0, \dots, x_n) \mapsto (-x_0, \dots, x_n)$. Zunächst sei n=0. Dann betrachte

$$f_*: \tilde{H}_0(S^0) \to \tilde{H}_0(S^0) = \ker(H_0(S^0) \to H_0(Pkt.)).$$

Wir identifizieren $H_0(S^0) \cong \mathbb{Z} \oplus \mathbb{Z}$ via $\phi: H_0(S^0) \to \mathbb{Z} \oplus \mathbb{Z}$, $n(-1,0) + m(1,0) \mapsto (n,m)$ und $H_0(\operatorname{Pkt.}) \cong \mathbb{Z}$ sagen wir via $\kappa: H_0(\operatorname{Pkt.}) \to \mathbb{Z}$. Sei $g: H_0(S^0) \to H_0(\operatorname{Pkt.})$ die kan. Abbildung. Wir erhalten das kommutative Diagramm

$$\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\phi \circ f_* \circ \phi^{-1}} \mathbb{Z} \oplus \mathbb{Z}$$

$$\downarrow^{\phi^{-1}} \qquad \qquad \downarrow^{\phi^{-1}}$$

$$H_0(S^0) \xrightarrow{f_*} H_0(S^0)$$

$$\downarrow^g \qquad \qquad \downarrow^g$$

$$\mathbb{Z} \xleftarrow{\kappa} H_0(\operatorname{Pkt.}) = H_0(\operatorname{Pkt.}) \xrightarrow{\kappa} \mathbb{Z}$$

Insbesondere ist $(\phi \circ f_* \circ \phi^{-1})(a,b) = (\phi \circ f_*)(a(-1,0) + b(1,0)) = \phi(a(1,0) + b(-1,0)) = (b,a)$. Außerdem ist $\ker(g) \cong \ker(\kappa \circ g \circ \phi^{-1}) = \{(a,-a) \mid a \in \mathbb{Z}\}$. Auf der reduzierten Homologie induziert f_* die Abbildung

$$\tilde{H}_0(S^0) \cong \{(a, -a) \mid a \in \mathbb{Z}\} \to \{(a, -a) \mid a \in \mathbb{Z}\}, \quad (a, -a) \mapsto (-a, a) = -(a, -a).$$

Daher $\deg(f) = -1$. Sei n > 0 und es gelte $\deg(f) = -1$ für alle k < n. Wir wollen zeigen: $\deg(f) = -1$ im Grad n. Sei $D^n_+ = \{(x_0, \dots, x_n) \in S^n \colon x_n \ge 0\}$, analog D^n_- . Wenn n > 0 gilt $f(D^n_+) = D^n_+$ und $f(D^n_-) = D^n_-$. Daher haben wir ein kommutatives Diagramm

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\cong} H_{n}(S^{n}, D_{+}^{n}) \xleftarrow{\cong} H_{n}(D_{-}^{n}, S^{n-1}) \xrightarrow{\cong} H_{n-1}(S^{n-1})$$

$$\downarrow f_{*} \qquad \qquad \downarrow f_{*} \qquad \qquad \downarrow f_{*}$$

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\cong} H_{n}(S^{n}, D_{+}^{n}) \xleftarrow{\cong} H_{n}(D_{-}^{n}, S^{n-1}) \xrightarrow{\cong} H_{n-1}(S^{n-1})$$

Wobei die horizontalen Isomorphismen aus der Berechnung der Homologiegruppen der S^n kommen. Daher unterscheidet sich der Abbildungsgrad von f im Grad n um den von f im Grad n-1 nur um gerade Potenzen von (-1) und daher ist auch $\deg(f) = -1$ im Grad n.

Daraus erhalten wir das folgende

Korollar 49. Es gilt deg(antipod.Abb.) = $(-1)^{n+1}$, indem wir die antipodale Abbildung als Komposition von Abbildungen wie im obigen Beispiel interpretieren.

Korollar 50. Insbesondere ist für n gerade die antipodale Abbildung nicht homotop zur Identität.

6.3 Zellkomplexe

Ziel ist es, Homologiegruppen mit weniger Aufwand zu berechnen. Dafür benutzen wir sogenannte CW-Komplexe¹. Intuitiv soll die k-te Homologiegruppe ein Maß für die Anzahl der k-dimensionalen Löcher sein. Die Idee ist einen Raum X so in Teile (\rightarrow Zellen) zu zerlegen, dass jeder Teil der Zerlegung keine Löcher hat, die Homologiegruppen ergeben sich dann daraus, wie diese Teile zusammengebaut werden.

6.3.1 Endliche CW-Komplexe

Sei $X^0=e^0_1\cup\ldots\cup e^0_{n_0}$ eine endliche Menge von Punkten e^0_i ausgestattet mit der diskreten Topologie. Wir schreiben e^n für alles, was zu D^n homöomorph ist. Wir setzen

$$X^{1} = \frac{X^{0} \cup e_{1}^{1} \cup \ldots \cup e_{n_{1}}^{1}}{\forall j \forall x \in \partial e_{j}^{1} : x \sim f_{j}(x)}$$

wobei wir für jedes j eine stetige Abbildung $f_j:\partial e^1_j\to X^0$ haben. Diesen Prozess setzen wir induktiv fort.

Def. 124. Eine *endliche CW-Struktur* auf einem top. Raum X ist eine Filtrierung von X als

$$X = X^n \supset X^{n-1} \supset \dots \supset X^1 \supset X^0,$$

wobei X^0 eine endl. Menge von Punkten mit der diskreten Toplogie ist und

$$X^k = X^{k-1} \underset{f_1}{\cup} e_1^k \underset{f_2}{\cup} \dots \underset{f_{m_k}}{\cup} e_{m_k}^k$$

für alle k.

6.4 Zelluläre Homologie

Sei der Raum X ausgestattet mit einer CW-Struktur, d.h.

$$X = X^n \supset X^{n-1} \supset \cdots \supset X^1 \supset X^0$$

wobei X^k das k-Gerüst oder k-Skelett sei. Dabei ist

$$X^k = X^{k-1} \underset{f_1}{\cup} e_1^k \underset{f_2}{\cup} \dots \underset{f_{m_k}}{\cup} e_{m_k}^k$$

Die Abbildung $f_i \colon \partial e_i^k = S_i^{k-1} \xrightarrow{\text{stetig}} X^{k-1}$ heißt anheftende Abbildung. Zellen in X haben "charakteristische" Abbildungen

$$\chi \colon e_i^k \to X^k$$
.

mit der Eigenschaft, dass $\chi|_{\text{int }e_i^k}$ ein Homö
omorphismus auf $\chi(\text{int }e_i^k)$ darstellt und $\chi|_{\partial e_i^k}=f_i$ die anheftende Abbildung liefert.

¹CW = closure finite, weak topology

6.4.1 Zelluläre Ketten

Sei X ein CW-Komplex.

Def. 125 (k-te zelluläre Kettengruppe von X).

$$C_k^{\mathrm{zell}}(X) \coloneqq \text{freie abelsche Gruppe erzeugt von den } k\text{-Zellen } e^k \text{ von } X. = \left\{ \sum_i^{\text{endl}} n_i e_i^k | n_i \in \mathbb{Z} \right\}$$

Für eine abelsche Gruppe G setzen wir

$$C_k^{\mathrm{zell}}(X;G) \coloneqq \left\{ \sum_i^{\mathrm{endl}} n_i e_i^k | n_i \in G \right\}$$

Bsp. 126. $X = S^1 = e^0 \cup e^1$. $C_1^{\text{zell}}(S^1) = \mathbb{Z}e^1$. $C_0^{\text{zell}}(S^1) = \mathbb{Z}e^0$.

Bsp. 127. $X = T^2 = e^0 \cup e^1_a \cup e^1_b \cup_f e^2$ mit $f = e^1_a e^1_b (e^1_a)^{-1} (e^1_b)^{-1}$. Wir erhalten

$$C_2^{\text{zell}}(T^2) = \mathbb{Z}e^2$$

$$\downarrow \partial_2$$

$$C_1^{\text{zell}}(T^2) = \mathbb{Z}e_a^1 \oplus \mathbb{Z}e_b^1$$

$$\downarrow \partial_1$$

$$C_0^{\text{zell}}(T^2) = \mathbb{Z}e^0$$

Es gilt $\partial_1(e^1_a) = e^0 - e^0 = 0$, analog für e^1_b . und $\partial_2 e^2 = e^1_a + e^1_b - e^1_a - e^1_b = 0$. Mit $H_k^{\mathrm{zell}}(X) := H_k(C_*^{\mathrm{zell}}(X), \partial_*)$ erhalten wir $H_k^{\mathrm{zell}}(T^2) = \frac{\ker \partial_k^{\mathrm{zell}}}{\operatorname{im} \partial_{k=1}^{\mathrm{zell}}} = \frac{C_k^{\mathrm{zell}}(T^2)}{0} = C_k^{\mathrm{zell}}(T^2)$. Es folgt

$$H_2(T^2) \stackrel{\sim}{=} \mathbb{Z}, \qquad H_1(T^2) \stackrel{\sim}{=} \mathbb{Z} \oplus \mathbb{Z}, \qquad H_0(T^2) \stackrel{\sim}{=} \mathbb{Z}$$

 $\partial_k \colon C_k^{\mathrm{zell}}(X) \to C_{k-1}^{\mathrm{zell}}(X).$

 $\mathbf{Def.~128}$ (zelluläre Randoperatoren). Sei X ein CW-Komplex. Wir definieren

$$X^{k} = X^{k-1} \cup_{f_{1}} e_{1}^{k} \cup \cdots \cup_{f_{m_{k}}} e_{m_{k}}^{k}$$

$$S_{i}^{k-1} = \partial e_{i}^{k} \xrightarrow{f_{i}} X^{k-1}$$

$$\xrightarrow{\text{Quot}} \frac{X^{k-1}}{X^{k-2}}$$

$$= \bigvee_{l} S_{l}^{k-1}$$

$$\xrightarrow{\text{Quot}} \bigvee_{l \neq j} S_{k}^{k-1}$$

$$= S_{i}^{k-1}$$

Die Komposition hat den Abbildungsgrad $a_{ij} \in \mathbb{Z}$, wir erhalten also eine Matrix

$$\partial_k := (a_{ij})_{m_k \times m_{k-1}},$$

die wir als zellulären Randoperator bezeichnen.

Bsp. 129. Sei X die Kleinsche Flasche K^2 . $K^2 = e^0 \cup e_a^1 \cup e_b^1 \cup_f e^2$, $f = aba^{-1}b$.

$$C_2^{\text{zell}}(K^2) = \mathbb{Z}e^2$$

$$\downarrow \partial_2 = (0 \quad 2)$$

$$C_1^{\text{zell}}(K^2) = \mathbb{Z}e_a^1 \oplus \mathbb{Z}e_b^1$$

$$\downarrow \partial_1$$

$$C_0^{\text{zell}}(K^2) = \mathbb{Z}e^0$$

Das 1-Gerüst von K^2 ist gleich dem 1-Gerüst des Torus. Daher sind auch die Randoperatoren gleich. Wir betrachten den Randoperator ∂_2 , es gilt

$$\partial(e_2) = e_a^1 + e_b^1 - e_a^1 + e_b^1 = 2e_b^1$$

Daher ergibt sich

$$H_2(K^2) = \frac{\ker \partial_2}{\operatorname{im} \partial_3} = \frac{0}{0} = 0, \qquad H_1(K^2) = \frac{\ker \partial_1}{\operatorname{im} \partial_2} = \frac{\mathbb{Z}e_a^1 \oplus \mathbb{Z}e_b^1}{0 \oplus 2\mathbb{Z}e_b^1} \stackrel{\sim}{=} \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} = \pi_1(K^2)^{\operatorname{ab}}, H_0(K^2) = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

Andere Koeffizienten $G = \mathbb{R}$.

$$H_1(K^2; \mathbb{R}) \stackrel{\text{def}}{=} H_1(C_*^{\text{zell}}(K^2; \mathbb{R}), \partial_*) = \frac{\mathbb{R}e_a^1 \oplus \mathbb{R}e_b^1}{0 \oplus \mathbb{R}e_b^1} \stackrel{\sim}{=} \mathbb{R}e_a^1.$$

Die weiteren Homologiegruppen sind $H_2(K^2; \mathbb{R}) = 0$ und $H_0(K^2; \mathbb{R}) = \mathbb{R}$.

Wählen wir nun $G = \mathbb{Z}/2$ als Koeffizienten:

In $\mathbb{Z}/2\mathbb{Z}$ ist 2=0, d.h. $\partial_2=(0 \quad 0)$ und daher

$$H_0(K^2; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}, \qquad H_1(K^2; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \qquad H_2(K^2; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}.$$

6.5 Induzierte Homomorphismen in der zellulären Homologietheorie

Seien X, Y CW-Komplexe.

Def. 130. Eine stetige Abbildung $f: X \to Y$ heißt zellulär, wenn

$$f(X^k) \subset Y^k \quad \forall k.$$

Sei $f\colon X\to Y$ zellulär. Dann induziert f eine Kettenabbildung $f_\#\colon C_k^{\rm zell}(X)\to C_k^{\rm zell}(Y)$ wie folgt:

$$f: (X^k, X^{k-1}) \to (Y^k, Y^{k-1}), \qquad \overline{f}: X^k/X^{k-1} \to Y^k/Y^{k-1}.$$

 $X^k = X^{k-1} \cup e_1^k \cup \cdots \cup e_{m_k}^k$. Sei $\chi_i \colon e_i^k \to X^k$ die charakteristische Abbildung der *i*-ten *k*-Zelle von X.

$$\begin{array}{ccc} e_i^k & \xrightarrow{\chi_i} & X^k \\ \uparrow & & \uparrow \\ S_i^{k-1} = \partial e_i^k & \xrightarrow{\mathrm{anheft.}} & X^{k-1} \end{array}$$

Insbesondere folgt $S_i^k=\frac{e_i^k}{\partial e_i^k}\xrightarrow{\overline{X_i}}\frac{X^k}{X^{k-1}}$ Dann erhalten wir durch

$$S_i^k \xrightarrow{\overline{X_i}} \frac{X^k}{X^{k-1}} \xrightarrow{\overline{f}} \frac{Y^k}{Y^{k-1}} = \bigvee_l S_l^k \to \frac{\bigvee_l S_l^k}{\bigvee_{l \neq j} S_l^k}$$

eine Abbildung $f_{ij} \colon S_i^k \to S_l^k$.

$$f_{\#}(e_i^k) \coloneqq \sum_j \deg(f_{ij}) \underbrace{e_j^k}_{k-\text{Zellen in } Y}$$

 $f_{\#}$ induziert einen Homomorphismus auf der zellulären Homologie:

$$f_*: H_k^{\mathrm{zell}}(X) \to H_k^{\mathrm{zell}}(Y).$$

Satz 51. Seien X, Y CW-Komplexe. Eine stetige Abbildung $f: X \to Y$ ist homotop zu einer zellulären Abbildung $X \to Y$.

Beweis. (Beweisskizze)

- 1. Betrachte $f: D^n \to Y$ mit $f(\partial D^n) \subset Y^{n-1}$. Dann ist f homotop zu einer $g: D^n \to Y(\text{rel}\partial D^n)$ mit $g(D^n) \subset Y^n$. (schwierig!)
- 2. Wie 1., aber ersetze D^n durch D^n/\sim für \sim eine Äquivalenzrelation auf dem Rand.
- 3. Eine Abbildung $D^n \times 0 \cup \partial D^n \times I \to Y$ kann fortgesetzt werden zu einer Abbildung $D^n \times I \to Y$ mit $\overline{f}(D^n \times 1) \subset Y^n$.
- 4. Wie 3., ersetze D^n durch D^n/\sim für \sim eine Äquivalenzrelation auf dem Rand.
- 5. Induktion beginnend mit den 0-Zellen.