Detect Cancer in Gigapixel Pathology Images

ADL Course Project

Jing Qian (jq2282) May 19, 2019

I. INTRODUCTION

How do we detect the tumor?

Use **CNN**

High accuracy!

Time saving!!

Helpful tool for physicians!

Data Source: CAMELYON 16 challenge | Method Reference: Google group

II. DATA EXPLORATION

Varied Slides!

II. IMAGE PROCESSING

	Train	Inference		
Slide No.	078, 084, 091	016, 101, 110		
Patch extraction	Random (200/slide)	Sliding window		
Remove background	Yes	No		
Cut edge	Yes	Yes		

- Extract 299*299 patches from slides.
- Label tumor by center 128*128 (lev3) region (different from paper)
- Balanced training set.

III. MODEL SELECTION

	Inception V3	Train Acc	Val Acc	Speed
Pretrain (Imagenet)	Yes	95%	93%	Quick
Pretrain (Random Ini)	Yes	83%	80%	Quick
+Fine Tuning	Yes	81%	NA	Medium
Self-Defined CNN	No	50%	NA	Slow
Multi-Scale (+lev4)	Yes	87%	89%	Medium

Single-scaled models use the same training set from <u>level 3</u> (downsampled by 8).

Illustration of Multi Scale

Heatmap + sample image (slide 101)

Heatmap + sample image slide 110 (left), slide 023 (right)

Single Scale Model

Multi-Scale Model

Heatmap of slide 110 Single Scale vs. Multi-Scale

1.ROC Curve: TPR vs. FPR

False Positive Rate = FP/(FP+TN)

True Positive Rate = TP/(TP+FN)

2.Precision vs. Recall Curve:

Precision = TP/(TP+FP)

Recall = TP/(TP+FN) = TPR

Better for Unbalanced data!

Pic. from Wiki

1.ROC Curve

Left: Single scale

> Right: Multi-scale

AUC Score = 0.87

AUC Score = 0.74

2. Precision vs. Recall Curve

Better differentiation ability!

Left: Single scale

> Right: Multi-scale

F1 Score = 0.81

F1 Score = 0.61

V. DISCUSSION

- Pretrained Inception V3 with single high resolution scale had best performance of all models.
- 2. Small training data got reasonable prediction accuracy.
- 3. Unbalanced data may be one main reason for prediction error and precision-recall curve (or F1 score) is a good evaluation metric.
- 4. Future work to improve the performance:
- Use more training data.
- Do more experiments to find optimal model and parameters.
- Advanced method to extract tissue regions in training.