

CSCE 590-1: From Data to Decisions with Open Data: A Practical Introduction to Al

Lecture 5: Supervised Machine Learning

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 28^{TH} JAN 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 6

- Introduction Segment
 - Recap of Lecture 6
- Main Segment
 - Terminology, objective and setup
 - Metrics to measure performance
 - Linear methods
- Quiz 1
- Concluding Segment
 - About Next Lecture Lecture 7
 - Ask me anything

Introduction Segment

Recap of Lecture 5

- We looked at how to improve the quality of data
- Data preparation: handling missing values
- Importance of annotation and methods
 - Glossary
 - Taxonomy, Is-a relationship
 - Ontology

Main Segment

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification, clustering, dimensionality reduction, anomaly detection, neural methods
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Nomenclature

Types of Attributes/ Columns

 Numeric: has number as value in computational sense; all mathematical functions are valid.

• Example: SQ FT

• Categorical: has distinct values

Nominal: each value is incomparable with other

• Example: OWN_OCCUPIED, ST_NAME

• Ordinal: the values can be ordered

• Example: ST_NUM, NUM_BEDS

• Comment:

• Q: what type is a binary variable?

• A: depends on the semantics – nominal (gender), ordinal (number basements).

1	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
2	100001000	104	PUTNAM	Υ	3	1	1000
3	100002000	197	LEXINGTON	N	3	1.5	
	100003000		LEXINGTON	N	n/a	1	850
	100004000	201	BERKELEY	12	1	NaN	700
		203	BERKELEY	Υ	3	2	1600
	100006000	207	BERKELEY	Υ	NA	1	800
	100007000	NA	WASHINGTON		2	HURLEY	950
	100008000	213	TREMONT	Υ	1	1	
)	100009000	215	TREMONT	Υ	na	2	1800

Why is Type of Variable Important

- Handling of missing values
- Distance between
 - Values
 - Data items
- Used for measuring accuracy, error
- Guiding the learning process
 - Selection of algorithms

Concepts

- Input data: data available
 - Training data: used for training a learning algorithm and get a model
 - [Optional] Validation data: used to tune parameters
 - Test data: used to test a learning model

Classification problem

- Separating data into classes (also called labels, categorical types)
- One of the attributes is the class label we are trying to learn
- Class label is the supervision

Clustering problem

- · We are trying to learn grouping of data
- There is no attribute indicating membership in the groups (hence, unsupervised)

Prediction problem

• Learning value of a continuous variable

Reference: https://machinelearningmastery.com/difference-test-validation-datasets/
https://www2.seas.gwu.edu/~bell/csci243/lectures/classification.pdf

Sample Learning Task

- COVID-19 data
- Notebook: https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l6-l7-supervised-ml/Supervised-Regression.ipynb

Methods for Classification

Distance Based

Source: https://www2.seas.gwu.edu/~bell/csci243/lectures/classification.pdf

Metric Types

- Effectiveness: what the <u>user</u> of a system sees, primarily cares about
- Efficiency: what the <u>executor</u> in a system sees, primarily cares about

Efficiency Metrics

Example: Predicting COVID cases

- •Effectiveness: what the <u>user</u> of a system sees, primarily cares about
 - How accurate (high) is the prediction?
 - How low is the error?
- Efficiency: what the executor in a system sees, primarily cares about
 - How low is the error?
 - How fast was prediction made?
 - How stable is the prediction to change in data?

Example: Detecting Spam in Email

- •Effectiveness: what the <u>user</u> of a system sees, primarily cares about
 - How many spams identified?
 - How many spams missed?
- Efficiency: what the executor in a system sees, primarily cares about
 - How fast were spams detected?
 - How much memory was used per million emails processed?

Comparing Classification Methods

- Predictive accuracy
- · Interpretability: providing insight
- · Robustness: handling noisy data
- Speed
- Scalability: large volume of data

Source: Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber

Linear Regression

Notebook: https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l6-l7-supervised-ml/Supervised-Regression.ipynb

Metrics: Accuracy, Precision, Recall

	Predicted class				
		Class = Yes	Class = No		
Actual Class	Class = Yes	True Positive	False Negative		
	Class = No	False Positive	True Negative		

Accuracy = (TP+TN)/ (TP+FP+FN+TN)

Reference and Demo

- Data: UCI Datasets https://archive.ics.uci.edu/ml/datasets.php
- Tools:
 - Weka https://www.cs.waikato.ac.nz/ml/weka/

References

- •Blogs: https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
- Google: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
- Insead:
 - Description: <u>https://inseaddataanalytics.github.io/INSEADAnalytics/CourseSessions/Sessions67/ClassificationAnalysisReading.html</u>
 - Data analytics for Business: https://inseaddataanalytics.github.io/INSEADAnalytics/

Lecture 6: Concluding Comments

- We looked at
 - Supervised learning task
 - Concepts related to data characteristics and quality
 - Evaluation approach
- Also investigate regression method

Quiz 1: About Open Data

Concluding Segment

About Next Lecture – Lecture 7

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification, clustering, dimensionality reduction, anomaly detection, neural methods
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Lecture 7: Analysis

- Review Quiz 1
- Structured Data: Supervised Methods
 - Decision trees/ random forest
 - The variety of methods
 - Choosing a method that works
- Reading material:
 - "Which ML to Use" with title: Data-driven advice for applying machine learning to bioinformatics problems
 - "10 tips with title": Ten quick tips for machine learning in computational biology