Southeast Air Quality Analysis

Southeastern Data Users Group

- Purpose of this presentation is to inform you about the formation of a data users group for the Region 4 states and to seek individuals who might be interested in joining.
 - Discuss the "openair" package in R and show some of the analysis tools available.
 - South Carolina and EPA have developed code using the R statistical programming package to help analyze ambient air data.
- Vision for the group:
 - to promote and grow the data analysis capabilities of Southeastern US air quality data through sharing and collaboration between air quality agency staff (and other stakeholders when appropriate).
 - Who would benefit –anyone who does/has done air quality data analysis and is interested in learning more; planning staff or staff responsible for developing nonattainment boundaries, or writing State Implementation Plans; meteorological staff that might be interested in combining weather and ambient data, etc.

Data Analysis Process and Available Tools

SOUTHEAST AIR QUALITY ANALYSIS

General data analysis process

final write up and/or graphics

cleaning data,
exploratory analysis,
specific analysis
techniques, error
checking, tweaking
graphics to look
better

Working with data in spreadsheets: issues to be aware of

- Data integrity Easy to accidentally modify your data; difficult to identify these changes
- Lack of flexibility To reshape or reanalyze your data can be time consuming or very time consuming
- Lack of transparency can be hard to determine assumptions and data dependencies

Working with data using programming language

Working with data using programming language

- Typically best for working with 10,000 millions+ of data records and doing more complex analysis on large data
- Flexible
 - the most options for different analyses
 - can be reused on other analyses
 - can be built in pieces that are useful for other
- Transparent
 - Can comment and show assumptions and methods in the code
 - Can easily share an analysis
- Repeatability
 - Can do the same thing on different data

R – open source statistical package

- Large user base -> well developed libraries for almost any statistical technique.
- Generate presentation quality graphics.
- Better than Python for quick interactive data analysis.
- Python is better for developing reusable code that will be improved and reused for automating processes.

openair package

- Package was developed by Dr. David Carslaw with King's College London. (He is very responsive to questions and bug reports).
- Constant updates to the code.
- User's manual is extensive (currently 287 pages long) and has a good tutorial on how to use R.
- The purpose of openair is to make available a consistent set of tools for analyzing and understanding air pollution data in a free, opensource environment.

Example plots created inside of the R statistical software package

SOUTHEAST AIR QUALITY ANALYSIS

Calendar Plots

- Can give a quick overview of the AQI values for the criteria pollutants.
- Episodes can quickly be identified.
- Graph can be modified to provide individual monitor or statewide maximum concentration values.

Trend graphs

- Design values for each criteria pollutant.
- Graph can be customized to display one or more monitoring sites.

Wind Rose

Frequency of counts by wind direction (%)

- Traditional windrose.
 Can substitute wind speed for pollutant concentration to create a pollution rose.
- Wind/Pollution roses can be conditioned to show winds by year, month, day of week, daytime/nighttime.

Example of wind rose by day of week

Trends in pollutant concentration by wind direction

- This graphic shows the trends in pollutant concentration by wind direction.
- Can also calculate a percent or unit change in concentrations for that wind direction. Also has an indicator if the trend is statistically significant.

Concentration "polar" plots

- This plot is a type of pollution rose that combines wind direction, wind speed and pollutant concentration.
- Polar plots can be conditioned to show concentrations by year, month, day of week, daytime/nighttime.

Percent of Standard

- This graphic normalizes the design value (by year) based on the NAAQS.
 - (DV/NAAQS)*100
- The dashed vertical lines represent ±15% of the standard.
- This graphic is used in the network assessment to help us determine the value of a site (a site within the vertical dashed lines is more valuable than one outside the lines).

Trajectory Analysis

- Openair has a trajectory analysis function which can grid the backtrajectories.
- User can condition the data to look at trajectories on days in which ozone concentrations exceeded a certain threshold.

Questions and contact information?

SOUTHEAST AIR QUALITY ANALYSIS

How to join

- If there are you or other staff in your state are interested in joining or learning more please have them contact me, Ryan Brown, Daniel Garver or Darren Palmer.
- Will try to schedule the first call in May.
- A github account (https://github.com/southeast-air-data)
 has been established to help share and update code.
- This group is not just for R users. Anyone who has developed tools for analyzing ambient air data in any software package (including Excel) are welcome to join. We want this group to be a resource for all to regardless of coding skill.

Contacts

- Tommy Flynn
 - flynntj@dhec.sc.gov (803) 898-3251
- Ryan Brown
 - Brown.Ryan@epa.gov (404) 562-9147
- Daniel Garver
 - Garver.Daniel@epa.gov (404) 562-9839
- Darren Palmer
 - Palmer.Darren@epa.gov (404) 562-9052