

GHive: Accelerating Analytical Query Processing in Apache Hive via CPU-GPU Heterogeneous Computing

Presenter: Haotian Liu

Email: dbgroup@sustech.edu.cn

Introduction to Hive

- Support distributed big data analytics on a massive scale
 - Run big data analytical queries with MapReduce paradigm
- Provide a SQL-like interface on top of Hadoop
 - Avoid implementing the details of low-level MapReduce jobs
- Widely used by many organizations
 - Facebook, Google, Huawei, etc.
- Many of our analytical queries are run with Hive.

Query Processing in Apache Hive

- The Map and Reducer jobs defines the specific operator sequences.
- Each job contains several tasks (according to data size), which will be scheduled.

Performance Profiling

We can classify the jobs into two categories: compute-bound and I/O-bound!

Motivation of GHive

- > The Hive is deployed on a shared cluster, where GPUs are not fully utilized
- > GPU has great compute power to accelerate compute-bound tasks.

GPU vs CPU

GPU pros:

- > GPU has immense computational power
- > GPU memory has high bandwidth

GPU cons:

- > GPU memory has small capacity
- > Loading data from main memory is slow

GHive Architecture

Three key designs:

- > Compact data model: *gTable*
- > GPU-based SQL operator library: *Panda*
- > Hardware-aware job placement scheme

Plan Parser

The Plan Parser extracts

- Cardinality information for hardwareaware placement.
- Operator (type, order) information for moving them to GPU.

```
Reducer 2 [SIMPLE_EDGE]
SHUFFLE [RS 17]
 PartitionCols: col0, col1
  Group By Operator [GBY_16]
 (rows=14517574 width=373
Output:["_col0","_col1","_col2"],
aggregations:["sum( col2)"],keys: col7,
col5
   Map Join Operator [MAPJOIN_30]
   (rows=14517574 width=373)
Conds:MERGEJOIN 29. col1=RS 40. col0
(Inner),
  HybridGraceHashJoin:true,
Output:["_col2","_col5","_col7"]
   <-Map 5 [BROADCAST EDGE]
vectorized
   <-Merge Join Operator
[MERGEJOIN 29]
  (rows=13197795 width=373)
Conds:RS 34. col0=RS 37. col0(Inner),
     Output:[" col1"," col2"," col5"]
    <-Map 1 [SIMPLE EDGE] vectorized
    <-Map 4 [SIMPLE EDGE] vectorized
```

(a) Plan text generated by Hive

Output

RS) Parition by col0, col1

(b) C++-based execution plan tree

Moving Jobs from CPU to GPU

Hardware-aware job placement

Moving Jobs from CPU to GPU

- Hardware-aware job placement
- > Data model: gTable.

Moving Jobs from CPU to GPU

- > Hardware-aware job placement
- Data model: gTable.
- GPU operator library: Panda.

A compact data model: gTable

Row ID	Name	Age	Row ID	Name	Age
1	Alen	27	5	Kevin	40
2	null	21	6	Luke	22
3	Bob	null	7	Mike	25
4	Jack	31			

(a) Table T

- > Larger batch for higher data parallelism.
- > Compact design for variable-length values.
- > Direct ByteBuffer to avoid extra copying.

(c) gTable model

(b) VectorizedRowBatch model

GPU-based SQL operator library: *Panda*

>Indexing-based processing model (Late Materialization)

The Generality of Panda: Hash join example

Hardware-aware job placement

CPU-based cost estimation model

$$T_C(J) = \sum_{\forall op_i \in J} f(op_i, n_i)$$

CPU-based cost estimation model

$$T_G(J) = T_{pre}(J) + T_{exec}(J) + T_{post}(J).$$

> The policy to place a job to GPU

$$\frac{T_C(J) - T_G(J)}{T_C(J)} \geqslant \theta$$

Experiment setting

Hardware	Cluster A	Cluster B
CPU	Intel Xeon E5-2640 v4	Intel Xeon Gold 5122
CPU number	2	2
Core number	20	8
CPU memory	64GB	512GB
GPU	NVIDIA Tesla T4	NVIDIA TITAN Xp
GPU memory	16GB	12GB

Evaluation Metrics (Benchmark: Star Schema Benchmark)

- ➤ End-to-end time
- > GPU Utilization: corresp the potential of collocating with other workloads
- ightharpoonup Cost ratio: corresp the operating cost $\mu = \frac{T_{\text{GHive}} \cdot (P_{\text{GHive}}^{CPU} + P_{\text{GHive}}^{GPU})}{T_{\text{Hive}} \cdot P_{\text{Hive}}^{CPU}}$

Experiment result

End-to-end time

GPU utilization

Cost ratio

Cost ratio
$$u = \frac{T_{\text{GHive}} \cdot (P_{\text{GHive}}^{CPU} + P_{\text{GHive}}^{GPU})^{50.8}}{T_{\text{Hive}} \cdot P_{\text{Hive}}^{CPU}}$$
Q1.10

Effect of Scale Factor

Case Study

➤ Operator-level profiling:

Thanks

Presenter: Haotian Liu

Email: dbgroup@sustech.edu.cn

AALBORG University