Classification Model

How does it work?

Penguin: 0.01

Difference measurement (Loss)

 $\nabla_{\theta}L$ Penguin: 1.0

Backward path (Gradient Back-propagation)

Forward path

Input layer

1st Hidden layer 1st Activation layer Lth Hidden layer Output layer

Densely connected (fully connected)

Backward path

 $W_{0, 0} = W_{0, 0} - \rho \frac{\partial L}{\partial W_{0, 0}}$

Cross-entropy loss

k=0

Convolution*

H: Height W: Width

OC: Output Channel IC: Input Channel KH: Kernel Height KW: Kernel Width

Convolutional neural network

32 pixels

BN: Batch Normalization CONV: CONVolution

FC: Fully Connected layer
ReLU: Rectified Linear Unit
SM: SoftMax activation layer

Practice

MNIST database

Training set: 60,000 images and labels

Test set: 10,000 images and labels

The MNIST database (Modified National Institute of Standards and Technology database) is a large database of handwritten digits that is commonly used for training various image processing systems.

Generative Model

Various generative models

- Hidden Markov Model (HMM)
- Restricted Boltzmann Machine (RBM)
- Variational Auto-Encoder (VAE)
- Recurrent Neural Network (RNN)
- Generative Adversarial Network (GAN)

GAN

What is GAN?

How does GAN work?

Generator

E.g. image generation model

How does GAN work?

Practice

CIFAR10

Credit. Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.

The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. There are 50,000 training images and 10,000 test images.