Administration réseau Routage et passerelle

A. Guermouche

- 1. Introduction
- 2. Routage dans IP
 - Principes de base
 - Manipulation des tables de routage
- 3. Mise en place d'un réseau
 - comment connecter des machines entre elles?
 - Routage avec Linux
- 4. Réseaux privé

1. Introduction

- 2. Routage dans IF
 - Principes de base
 - Manipulation des tables de routage
- Mise en place d'un réseau
 - comment connecter des machines entre elles?
 - Routage avec Linux
- 4. Réseaux privé

Sous-réseaux

Définition:

★ Un sous-réseau est un sous-ensemble d'un réseau de classe Intérêts :

- ⋆ diviser un réseau de grande taille en plusieurs réseaux physiques connectés par des routeurs (locaux ou distants)
- possibilité de faire coexister des technologies de réseaux différentes
- diminution de la congestion du réseau par redirection du trafic et réduction des diffusions

Comment?

⋆ ID sous-réseau en séparant les bits d'ID d'hôtes en plusieurs sections

Linux: Positionner/Modifier une adresse IP

La manipulation des adresses IP se fait à l'aide de l'utilitaire *ifconfig*.

Syntaxe:

ifconfig interface @IP netmask masque ...

Exemples:

- ★ ifconfig eth0 (consulter la configuration de l'interface eth0)
- * ifconfig eth0 192.168.0.1 netmask 255.255.255.0 (configurer l'interface eth0)
- * ifconfig eth0 down (Suppression de la configuration de l'interface eth0)

- 1. Introduction
- 2. Routage dans IP
 - Principes de base
 - Manipulation des tables de routage
- Mise en place d'un réseau
 - comment connecter des machines entre elles?
 - Routage avec Linux
- 4. Réseaux privé

Problématique du routage

Objectif: Acheminer des datagrammes IP d'une machine source A vers une machine destination B.

Problématique : Comment atteindre la machine B en connaissant son adresse IP?

→ Nécessité d'identifier toutes les machines intermédiaires.

Routage IP: principe de base

Définition:

- ★ Processus de choix des chemins par lesquels les paquets sont transmis à la machine destinataire
- * Processus basé sur une table de routage *IP routing table* contenant les informations relatives aux différentes destination possibles et à la façon de les atteindre
- ★ Exemple : netstat -r (sous UNIX)

Principe de base :

- L'émetteur ne connaît pas la route complète mais l'adresse du prochain site IP qui le rapprochera de la destination (prochain saut)
- * Simplicité des tables de routage
- Changements dynamiques possibles (en cas de pannes par exemple)

Routage IP: algorithme de base (1/2)

- ★ Extraire du datagramme l'adresse IP de destination (IPDest)
- ⋆ Calculer l'adresse du réseau de destination (IPRes)
- Si cette adresse IPRes correspond à l'adresse réseau du réseau local :
 - IPdest est directement accessible sur le réseau élémentaire commun
 - ► La couche IP locale tente la translation adresse logique *IPdest* en une adresse physique à travers la table maintenue en cache
 - ► Si le réseau est de type Ethernet (Tokenring, ...), le protocole ARP est utilisé pour construire les éventuelles entrées manquantes dans la table et émettra le datagramme
 - Si le réseau est d'un autre type (Transpac, ...), les adresses physiques destinataires X21 auront dû être configurées à la main au préalable

Routage IP: algorithme de base (2/2)

- ★ Sinon (ce n'est pas une adresse accessible, il faut alors consulter la table de routage IP locale)
 - Si IPres est dans la table alors :
 - Router le datagramme selon les indications de la table (vers un autre nœud du réseau local, avec résolution adresse IP → adresse physique, ou vers un autre coupleur connecté à un réseau externe)
 - Sinon IPres n'est pas dans la table alors
 - Prendre la route par défaut indiquée dans la table
 - Router le datagramme selon les indications de l'entrée par défaut de la table (vers un autre nœud du réseau local, avec résolution adresse IP → adresse physique, ou vers un autre coupleur connecté à un réseau externe)

Tables de routage IP dans Linux

La consultation/modification de la table de routage peut être faite avec la commande route.

Exemple:

Cette table de routage montre que :

- Notre hôte peut dialoguer directement avec les machines faisant partie du réseau 147.210.20.0/24
- * La route par défaut le fait passer par la passerelle vlan2.labri.fr

Tables de routage IP dans Linux

La consultation/modification de la table de routage peut être faite avec la commande route.

Exemple:

route add default gw @passerelle (ajouter une route par défaut)

route add -host @hôte gw @passerelle dev iface (ajouter une route utilisant l'interface réseau iface vers un hôte particulier)

route add -net @réseau netmask *masque* dev *iface* gw @passerelle (ajouter une route utilisant l'interface *iface* vers un réseau particulier)

Pour les suppressions de route, il suffit de remplacer l'opération add par del.

Analyse de la route

traceroute. montre le chemin vers des machines distantes en indiquant chaque 'hop' (saut) que fait un paquet sur la route vers la destination.

Exemple:

```
traceroute to vivaldi.emi.u-bordeaux.fr (147.210.13.225), 30 hops max, 40 byte packets
```

```
1 vlan2.labri.fr (147.210.20.254)
5.579 ms 1.697 ms 6.420 ms
2 b3a1.labri.fr (147.210.9.254)
1.840 ms 4.924 ms 2.615 ms
3 labri-reaumur.u-bordeaux.fr
(147.210.246.190) 4.527 ms 5.561
ms 2.050 ms
4 vivaldi.emi.u-bordeaux1.fr
(147.210.13.225) 8.491 ms 2.448
ms
```

pathchar, pchar, bing, ... Outils de mesure de bande passante.

- 1. Introduction
- 2. Routage dans IP
 - Principes de base
 - Manipulation des tables de routage
- 3. Mise en place d'un réseau
 - comment connecter des machines entre elles?
 - Routage avec Linux
- 4. Réseaux privé

Comment connecter des machines entre elles?

- Concentrateur (*hub*) * Partage de bande passante entre les hôtes raccordés.
- Commutateur (*switch*) * Pas d'interférences entre connexions simultanées.

Routeur

- Pas d'interférences entre des connexions simultanées.
- ⋆ Possibilité de communication entre 2 réseaux logiques différents.

Exemple:

	Type de A		
	Hub	Switch	Routeur
Débit (C→D) lorsque	50 Mb/s	100 Mb/s	100 Mb/s
(B→E)			
Comm. entre B et C si	impossible	impossible	possible
B et C sont dans deux réseaux différents			

Différences entre routeurs et passerelle

Passerelle. Élément faisant relais entre deux réseaux physiques utilisant des technologies différentes.

Routeur. Élément reliant deux réseaux différents (et les faisant communiquer).

Différences entre routeurs et passerelle

Passerelle. Élément faisant relais entre deux réseaux physiques utilisant des technologies différentes.

Routeur. Élément reliant deux réseaux différents (et les faisant communiquer).

→ La différence est difficile à mettre en évidence de nos jours.

Différences entre routeurs et passerelle

Passerelle. Élément faisant relais entre deux réseaux physiques utilisant des technologies différentes.

Routeur. Élément reliant deux réseaux différents (et les faisant communiquer).

- → La différence est difficile à mettre en évidence de nos jours.
- → Matériels ayant "généralement" plusieurs cartes réseau.

Linux et routage

- * Support pour le routage disponible dans le noyau Linux.
- Nécessité d'activer la fonctionnalité de "relais" dans le noyau.
 Deux méthodes peuvent être utilisée :
 - ► Modifier "à chaud" le paramètre qui contrôle la fonctionnalité : echo 1 > /proc/sys/net/ipv4/ip forward
 - Configuration automatique à chaque démarrage : Ajout de net.ipv4.ip_forward=1 au fichier /etc/sysctl.conf
- ightarrow La machine en question fera alors office de relais entre ses différentes interfaces réseau.

Exercice

Étant données 4 machines, A,B,C et D.

Nous voulons connecter ces machines de telles sortes que A, B et C soient sur 3 sous-réseaux différents. D, quant à elle jouera le rôle de routeur.

Remarque:

Nous disposons d'un *switch* à au moins 4 ports. Nous considérerons les cas où D a 1 et 3 cartes réseau.

- Déterminer les tables de routages pour les machines A, B, C et D. Montrer la séquence des commandes à lancer pour positionner les tables de routage à la bonne valeur.
- 2. Donner l'ensemble des étapes à effectuer au niveau de la machine D pour la configurer en routeur.

- 1. Introduction
- 2. Routage dans IP
 - Principes de base
 - Manipulation des tables de routage
- Mise en place d'un réseau
 - comment connecter des machines entre elles?
 - Routage avec Linux
- 4. Réseaux privé

Pourquoi avoir des adresses privées?

- ⋆ Gérer la pénurie d'adresses au sein d'un réseau
- Masquer l'intérieur du réseau par rapport à l'extérieur (le réseau peut être vu comme une seule et même machine)
- * Améliorer la sécurité pour le réseau interne
- * Assouplir la gestion des adresses du réseau interne
- * Faciliter la modification de l'architecture du réseau interne
- \rightarrow Mécanisme de translation d'adresses (NAT Network Address Translation)

Deux types de NAT:

statique. association entre *n* adresses publiques et *n* adresses privées.

dynamique. association entre 1 adresse publique et *n* adresses privées.