Рекуррентная формула для вычисления корня k-ой степени из числа C

Пусть $\{x_n\}$ — последовательность приближённых значений корня k-ой степени из числа C $(k \in N, C \ge 0)$, причём $\{x_n\}$ имеет предел:

$$\lim_{n\to\infty} x_n = \sqrt[k]{C}$$

Другими словами $x_0, x_1, x_2, ...$ – всё более и более точные (хотя и приближённые) значения числа $\sqrt[k]{C}$. Зная способ вычисления членов последовательности $\{x_n\}$ мы будем знать способ вычисления приближённого значения числа $\sqrt[k]{C}$.

Последовательность $\{x_n\}$ может быть задана рекуррентной формулой:

$$x_{n+1} = \frac{1}{k} \left((k-1)x_n + \frac{C}{x_n^{k-1}} \right) \tag{1}$$

Как получается эта формула, можно показать двумя способами.

І-й способ

Пусть нам известно приближённое значение $\sqrt[k]{C}$ и пусть оно равно x_n : $x_n \approx \sqrt[k]{C}$ и пусть мы хотим получить более точное значение $\sqrt[k]{C}$, нежели x_n . Приближённое равенство $x_n \approx \sqrt[k]{C}$ можно сделать точным:

$$x_n + a = \sqrt[k]{C} \tag{2}$$

Точное значение a мы вычислить не можем, так как мы не знаем точного значения $\sqrt[k]{C}$, но если мы сможем определить приближённое значение числа a (обозначим его как a^*), то x_{n+1} можно будет представить в виде

$$x_{n+1} = x_n + a^* \tag{3}$$

Возведём обе части равенства (2) в степень n:

$$(x_n + a)^k = C$$

По формуле бинома Ньютона:

$$C = x_n^k + k \cdot x_n^{k-1} \cdot a + \frac{k(k-1)}{2!} \cdot x_n^{k-2} \cdot a^2 + \dots + a^k$$
 (4)

Будем считать, что по абсолютной величине число a достаточно мало, следовательно, для определения приближённого значения a всеми слагаемыми, содержащими a в степени выше первой в выражении (4) можно пренебречь. Тогда

$$C \approx x_n^k + k \cdot x_n^{n-1} \cdot a$$

Число a^* можно выбрать так, чтобы

$$C = x_n^k + k \cdot x_n^{n-1} \cdot a^*$$

Отсюда:

$$a^* = \frac{C - x_n^k}{k \cdot x_n^{k-1}} \tag{5}$$

Подставляем (5) в (3) и после преобразования получаем формулу (1):

$$x_{n+1} = x_n + \frac{C - x_n^k}{k \cdot x_n^{k-1}} = \frac{k \cdot x_n^k + C - x_n^k}{k \cdot x_n^{k-1}} = \frac{1}{k} \cdot \frac{(k-1)x_n^k + C}{x^{k-1}} = \frac{1}{k} \cdot \left((k-1)x_n + \frac{C}{x^{k-1}} \right)$$

ІІ-й способ

Рассмотрим функцию $y(x)=x^k-C$ ($k\in N,C\geq 0$). Она при x>0 имеет значение, равное нулю в точке $x=\sqrt[k]{C}$. Вычислив приближённое значение x, при котором функция y(x) обращается в ноль, можно тем самым вычислить приближённое значение $\sqrt[k]{C}$.

Отметим, что

$$y'(x) = (x^{k} - C)' = k \cdot x^{k-1}$$

Приближённое значение $\sqrt[k]{C}$ можно вычислять с помощью метода касательных. Если x_n приближённое значение корня функции y(x), то более точное значение x_{n+1} можно вычислить с помощью указанного метода, получив при этом формулу (1):

$$x_{n+1} = x_n + \frac{y(x_n)}{y'(x_n)} = x_n - \frac{x_n^k - C}{k \cdot x_n^{k-1}} = \frac{1}{k} \cdot \left((k-1)x_n + \frac{C}{x_n^{k-1}} \right)$$