Siddhardhan

Support Vector Machine (SVM) - Kernels

Support Vector Machine Classifier

- > Hyperplane
- > Support Vectors
- Margin
- Linearly separable data

SVM Kernel

SVM Kernel:

Kernel Function generally transforms the training set of data so that a non-linear decision surface can be transformed to a linear equation in a higher number of dimension spaces. It returns the inner product between two points in a standard feature dimension.

SVM in 2 dimensions

SVM in 3 dimensions

SIDDHARDHAN

SVM Kernels

Types of SVM Kernels:

- 1. Linear
- 2. Polynomial
- 3. Radial Basis Function (rbf)
- 4. Sigmoid

SVM Kernels

Feature (x)	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	
-------------	----	----	----	----	----	----	---	---	---	---	---	---	---	--

Class 1

Class 2

SVM Kernels

Feature (x)	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
x ²	36	25	16	9	4	1	0	1	4	9	16	25	36

Types of SVM Kernels

1. Linear Kernel:

$$K(x_1, x_2) = x_1^T x_2$$

3. Radial Basis Function (rbf) Kernel:

$$K(x_1, x_2) = \exp(-\gamma \cdot ||x_1 - x_2||^2)$$

2. Polynomial Kernel:

$$K(x_1, x_2) = (x_1^T x_2 + r)^d$$

4. Sigmoid Kernel:

$$K(x_1, x_2) = tanh(\gamma . x_1^T x_2 + r)$$

Support Vector Machine Classifier

SVM in 2 dimensions

SVM in 3 dimensions