四、测量结果与结果分析

维恩位移定律

维恩位移定律理论公式

$$\lambda_{\max} \cdot T = A$$

可以改写为:

$$\lambda_{ ext{max}} = A \cdot rac{1}{T}$$

即 λ_{\max} 与 1/T 成正比。

实验数据

	寄存器1	寄存器2	寄存器3	寄存器4	寄存器5
$\lambda_{ m max}({ m nm})$	966	1020	1034	1086	1274
T(K)	2940	2860	2770	2720	2400
$A(\mathrm{mm}\cdot\mathrm{K})$	2.840	2.917	2.864	2.954	3.058
$ar{A}(\mathrm{mm}\cdot\mathrm{K})$			2.927		

线性拟合

线性拟合所得斜率为:

$$\bar{A} = 2.937 \text{ mm} \cdot \text{K}$$

与所给 $A=2.896~\mathrm{mm\cdot K}$ 的相对误差为: 1.4%

可见实验数据与理论公式符合得很好。

普朗克辐射定律

普朗克辐射定律理论公式

$$E_{\lambda}(T) = rac{C_1}{\lambda^5 \left[\exp\left(rac{C_2}{\lambda T}
ight) - 1
ight]}$$

实验数据

T = 2940 K:

波长 $\lambda(\mathrm{nm})$	838	1000	1150	1394	1696	2142
理论 $E_{\lambda}(T)(\mathrm{W/mm^3})$	2248.9	2466.6	2377.4	1981.8	1449.5	877.0
实测 $E_{\lambda}(T)(\mathrm{W/mm^3})$	2241.2	2452.5	2370.9	1967.7	1438.5	871.7
相对误差 (%)	0.34	0.57	0.27	0.71	0.76	0.60

T = 2860 K:

波长 $\lambda(\mathrm{nm})$	866	1026	1198	1394	1576	2206
理论 $E_{\lambda}(T)(\mathrm{W/mm^3})$	1918.4	2101.2	2015.5	1757.2	1482.3	752.0
实测 $E_{\lambda}(T)(\mathrm{W/mm^3})$	1883.3	2072.8	1977.0	1708.1	1444.6	728.9
相对误差 (%)	1.35	1.91	2.79	2.54	3.07	

$T=2770~\mathrm{K}$:

波长 $\lambda(\mathrm{nm})$	858	974	1142	1460	1698	2000
理论 $E_{\lambda}(T)(\mathrm{W/mm^3})$	1699.6	1882.3	1897.9	1549	1232.4	894.9
实测 $E_{\lambda}(T)(\mathrm{W/mm^3})$	1498.4	1685.3	1710	1392.3	1109.9	791.3
相对误差 (%)	11.83	10.46	9.90	10.12	9.94	11.58

$T=2720~\mathrm{K}$:

波长 $\lambda(\mathrm{nm})$	856	1050	1250	1542	1820	2204
理论 $E_{\lambda}(T)(\mathrm{W/mm^3})$	743.0	977.5	1023.8	899.4	723.1	507.9
实测 $E_{\lambda}(T)(\mathrm{W/mm^3})$	611.5	914.2	1020.3	933.2	721.3	503.2
相对误差 (%)	17.70	6.47	0.34	3.76	0.25	0.93

T = 2400 K:

波长 $\lambda(\mathrm{nm})$	830	1078	1274	1500	1802	2134
理论 $E_{\lambda}(T)(\mathrm{W/mm^3})$	696.1	994.5	1019.7	924.1	734.5	542.7
实测 $E_{\lambda}(T)(\mathrm{W/mm^3})$	334.3	564.2	612.3	564.2	450.8	317.9
相对误差 (%)	51.97	43.27	39.95	38.94	38.62	41.42

结果分析

黑体辐射的理论描述基于普朗克定律,预测:光谱分布随温度升高而向短波方向移动;同一波长下,辐射强度随温度升高显著增加。

从五组数据(分别对应 $T=2400~{\rm K}$ 至 $2940~{\rm K}$)来看:理论值随温度递增趋势明显;实测值基本随理论变化同步,即在相同波长下,温度越高,实测辐射强度也越大;

实验验证了黑体辐射与温度相关的物理规律,符合理论预期。

从温度来看,温度越高,相对误差越小,低温段 ($T=2400~{
m K}$) 的相对误差较大。这说明高温段实验更接近理想黑体模型。

斯特藩-玻尔兹曼定律

斯特藩-玻尔兹曼定律理论公式

$$E_T = \delta T^4, \quad \delta = 5.670 imes 10^{-14} \ \mathrm{W/\left(mm^2 K^4
ight)}$$

实验数据

	寄存器2	寄存器3	寄存器4	寄存器5
T(K)	2860	2770	2720	2400
$E_T({ m W/mm^2})$	3.7862	3.2876	2.8792	1.8609
$T^4({ m K}^4)$	$6.6906 imes 10^{13}$	$5.8873 imes 10^{13}$	$5.4736 imes 10^{13}$	$3.3178 imes 10^{13}$
$\delta\left(\mathrm{W}/\left(\mathrm{mm}^2\mathrm{K}^4 ight) ight)$	$5.6591 imes 10^{-14}$	$5.5842 imes 10^{-14}$	$5.2601 imes 10^{-14}$	$5.6090 imes 10^{-14}$
$ar{\delta}\left(\mathrm{W}/\left(\mathrm{mm}^2\mathrm{K}^4 ight) ight)$		$5.5281 imes 10^{-14}$		

线性拟合

绝对黑体的理论谱线

结果分析

实验数据基本符合 $E_T \propto T^4$ 的关系;

拟合平均值 $\bar{\delta} \approx 5.53 \times 10^{-14}$,非常接近理论值,验证了斯特藩–玻尔兹曼定律在该温度范围内的适用性。

实验误差可能来源于温度测量不准、辐射不完全吸收、仪器校准误差等。

五、归一化原因

实验中验证斯特藩-玻尔兹曼定律时为什么要对曲线进行归一化?

实际测量的辐射功率 E_T 不仅与温度有关,还可能受到其他因素影响,使得测量值和实际值相差一个比例系数。归一化可以有效去除比例系数的影响。

六、实验收获

实验过程中测量的是辐射功率与温度的关系,从数据出发、推导出黑体辐射规律,有助于真正理解辐射 能量如何随温度快速增长;

结合普朗克公式、维恩位移定律等知识,可以将热辐射的微观机制(量子辐射)与宏观规律联系起来;

熟悉如何通过线性拟合方法分析 E_T 与 T^4 的关系、 λ_{\max} 与 1/T 的关系;

掌握数据归一化处理与结果可视化。