Después, por la fórmula (4) se tiene,

$$y_2 = \frac{\operatorname{sen} x}{\sqrt{x}} \int \frac{e^{-\int dx/x}}{\left(\frac{\operatorname{sen} x}{\sqrt{x}}\right)^2} dx$$

$$= \frac{\operatorname{sen} x}{\sqrt{x}} \int \operatorname{csc}^2 x \, dx$$

$$= \frac{\operatorname{sen} x}{\sqrt{x}} \left(-\cot x\right) = -\frac{\cos x}{\sqrt{x}}.$$

Puesto que la ecuación diferencial es homogénea, se puede descartar el signo negativo y tomar a y_2 = $(\cos x)/\sqrt{x}$ como la segunda solución.

> Observe que en el Ejemplo 3 $y_1(x)$ y $y_2(x)$ son soluciones linealmente on no los independientes de la ecuación diferencial dada en el intervalo más grande (0, ∞).

> > Observación Se ha deducido e ilustrado cómo usar (4) debido a que esta fórmula se verá nuevamente en la siguiente sección y en la Secc. 6.1. Usamos (4) simplemente para ahorrar tiempo en la obtención del resultado deseado. El profesor de la materia indicará cuándo se debe memorizar (4) y cuándo se deberán saber los principios básicos de reducción de orden.

EJERCICIOS 4.2 Las respuestas a los problemas de número impar comienzan en la página 587

En los Problemas 1-30 encuentre una segunda solución para cada ecuación diferencial. Use la reducción de orden o la fórmula (4) como se indicó. Suponga un intervalo apropiado de validez.

$$0 = (5n + 3) \cdot (5n + 5) \cdot (5n +$$

2.
$$y'' - y' = 0$$
; $y_1 = 1$

3.
$$v'' - 4v' + 4v = 0$$
; $v_1 = e^{2x}$

1.
$$y'' + 5y' = 0$$
; $y_1 = 1$
2. $y'' - y' = 0$; $y_1 = 1$
3. $y''' - 4y' + 4y = 0$; $y_1 = e^{2x}$
4. $y'' + 2y' + y = 0$; $y_1 = xe^{-x}$
4. $y'' + 2y' + y = 0$; $y_1 = xe^{-x}$

5.
$$y'' + 16y = 0$$
; $y_1 = \cos 4x$

7.
$$y'' - y = 0$$
; $y_1 = \cos x$

$$8. y'' - 25y = 0; \quad y_1 = e^{5x}$$

7.
$$y'' - y = 0$$
; $y_1 = \cosh x$
8. $y'' - 25y = 0$; $y_1 = e^{5x}$
9. $9y''_1 - 12y' + 4y = 0$; $y_1''_1 = e^{2x/3}$
10. $6y''_1 + y'_1 - y_2 = 0$; $y_1 = e^{x/3}$

10.
$$6y'' + y' - y = 0; \quad y_1 = e^{x/3}$$

11.
$$x^2y'' - 7xy' + 16y = 0$$
; $y_1 = x^4$

12.
$$x^2y'' + 2xy' - 6y = 0$$
; $y_1 = x^2$

13.
$$xy''' + y'' = 0$$
; $y_1 = \ln x$

13.
$$xy'' + y' = 0$$
, $y_1 - \ln x$
14. $4x^2y'' + y = 0$; $y_1 = x^{1/2} \ln x$

14.
$$4x^2y^2 + y = 0$$
, $y_1 - x$
15. $(1 - 2x - x^2)y'' + 2(1 + x)y' - 2y = 0$; $y_1 = x + 1$

15.
$$(1-2x-x)^{y}$$

16. $(1-2x-x)^{y}$
16. $(1-2x-x)^{y}$
17. $(1-2x-x)^{y}$
18. $(1-2x-x)^{y}$
19. $(1-2x-x)^{y}$
19.

Substitute of a section of a section
$$x^2y'' - xy' + 2y = 0$$
; $y_1 = x \operatorname{sen}(\ln x) = x \operatorname{substitute}(\ln x) = x^2 \operatorname{cos}(\ln x)$

17.
$$x^2y - xy + 2y$$

18. $x^2y'' - 3xy' + 5y = 0$; $y_1 = x^2 \cos(\ln x)$

19.
$$(1+2x)y'' + 4xy' - 4y = 0$$
; $y_1 = e^{-2x}$

20.
$$(1+x)y'' + xy' - y = 0$$
; $y_1 = x$

21.
$$x^2y'' - xy' + y = 0$$
; $y_1 = x$ **22.** $x^2y'' - 20y = 0$; $y_1 = x^{-4}$

23.
$$x^2y'' - 5xy' + 9y = 0$$
; $y_1 = x^3 \ln x$

24.
$$x^2y'' + xy' + y = 0$$
; $y_1 = \cos(\ln x)$

25.
$$x^2y'' - 4xy' + 6y = 0$$
; $y_1 = x^2 + x^3$

26.
$$x^2y'' - 7xy' - 20y = 0$$
; $y_1 = x^{10}$

27.
$$(3x + 1)y'' - (9x + 6)y' + 9y = 0;$$
 $y_1 = e^{3x}$

28.
$$xy'' - (x+1)y' + y = 0$$
; $y_1 = e^x$

29.
$$y'' - 3(\tan x)y' = 0$$
; $y_1 = 1$ **30.** $xy'' - (2 + x)y' = 0$; $y_1 = 1$

En los Problemas 31-34 utilice el método de reducción de orden para encontrar una solución de la ecuación no homogénea dada. La función asociada $y_1(x)$ es una solución de la ecuación homogénea asociada. Determine una segunda solución de esta ecuación y una solución particular de la ecuación no homogénea.

31.
$$y'' - 4y = 2$$
; $y_1 = e^{-2x}$

32.
$$y'' + y' = 1$$
; $y_1 = 1$

33.
$$y'' - 3y' + 2y = 5e^{3x}$$
; $y_1 = e^x$

34.
$$y'' - 4y' + 3y = x$$
; $y_1 = e^x$

35. Verifique por sustitución directa que la fórmula (4) satisface la ecuación (2).

4.3 ECUACIONES LINEALES HOMOGÉNEAS CON COEFICIENTES CONSTANTES

Se ha visto que la ecuación lineal de primer orden dy/dx + ay = 0, donde a es una constante, tiene la solución exponencial $y = c_1 e^{-ax}$ en $(-\infty, \infty)$. Por consiguiente, es natural tratar de determinar si existen soluciones exponenciales en $(-\infty, \infty)$ para ecuaciones de orden superior como

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0,$$
 (1)

en donde las a_i , i = 0, 1, ..., n, son constantes. Lo sorprendente es que todas las soluciones de (1) son funciones exponenciales o se construyen a partir de funciones exponenciales. Se empezará considerando el caso particular de la ecuación de segundo orden

$$ay'' + by' + cy = 0.$$
 (2)

Ecuación auxiliar

Si se prueba una solución de la forma $y = e^{mx}$, entonces $y' = me^{mx}$ y $y'' = m^2 e^{mx} de$ tal manera que la ecuación (2) se convierte en

$$am^2e^{mx} + bme^{mx} + ce^{mx} = 0$$
 o $e^{mx}(am^2 + bm + c) = 0$.

Debido a que e^{mx} nunca se anula para valores reales de x, es evidente que la única manera de que esta función exponencial pueda satisfacer la ecuación diferencial es seleccionando m de tal manera que sea una raíz de la ecuación cuadrática

$$am^2 + bm + c = 0.$$
 (3)