

C L A I M S

1. A heterostructure bipolar transistor
2 characterized in that constituent devices of a compound
3 semiconductor forming a base layer contain at least Ga,
4 As, and Sb, and constituent devices of a compound
5 semiconductor forming an emitter layer contain at least
6 In, Al, and P.

2. A heterostructure bipolar transistor
2 according to claim 1, characterized by comprising:
3 a substrate made of InP;
4 a collector layer formed on said substrate and
5 made of a compound semiconductor containing indium and
6 phosphorus;
7 said base layer formed on said collector layer
8 and made of a p-type compound semiconductor containing
9 gallium, arsenic, and antimony; and
10 said emitter layer formed on said base layer
11 and made of an n-type compound semiconductor containing
12 indium, aluminum, and phosphorus,
13 wherein a composition ratio of indium to
14 aluminum in said emitter layer is in a range within
15 which a potential energy, in a conduction band edge on a
16 side of said base layer, of said emitter layer is not
17 less than that in a conduction band edge of said base
18 layer.

3. A heterostructure bipolar transistor
2 according to claim 1, characterized in that at least one

3 GaAs_(x)Sb_(1-x) layer is used in said base layer, at least
4 one In_(1-y)Al_(y)P layer is used in said emitter layer, and
5 x and y represent mixed crystal compositions and fall
6 within ranges of 0 < x < 1 and 0 < y < 1, respectively..

4. A heterostructure bipolar transistor
2 according to claim 3, characterized in that the range of
3 the composition x is 0.2 ≤ x ≤ 0.8, and the range of the
4 composition y is 0 < y ≤ 0.5.

5. A heterostructure bipolar transistor
2 according to claim 4, characterized in that a
3 relationship between x and y is 0.49x + 1.554y ≥ 0.25.

6. A heterostructure bipolar transistor
2 according to claim 5, characterized in that the ranges
3 of the compositions x and y are 0.45 ≤ x ≤ 0.55 and 0 <
4 y ≤ 0.25, respectively, and the relationship between x
5 and y is 0.49x + 1.554y ≥ 0.36.

7. A heterostructure bipolar transistor
2 according to claim 1, characterized in that the
3 composition ratio of Al in said emitter layer decreases
4 away from said base layer.

8. A heterostructure bipolar transistor
2 according to claim 1, characterized in that the
3 composition ratio of As in said base layer decreases
4 away from said emitter layer.

9. A heterostructure bipolar transistor
2 according to claim 1, characterized in that said
3 collector layer is made of a compound semiconductor

4 containing indium, aluminum, and phosphorus.

10. A heterostructure bipolar transistor
2 according to claim 9, characterized in that
3 said base layer is made of $\text{GaAs}_{(x)}\text{Sb}_{(1-x)}$,
4 said collector layer is made of $\text{In}_{(1-z)}\text{Al}_{(z)}\text{P}$,
5 and

6 x and z represent mixed crystal compositions
7 and fall within ranges of $0 < x < 1$ and $0 < z < 1$,
8 respectively.

11. A heterostructure bipolar transistor
2 according to claim 10, characterized in that
3 the range of the composition y is $0 < y \leq$
4 0.18, and
5 the relationship between x and y is $0.49x +$
6 $1.554z \leq 0.36$.

12. A heterostructure bipolar transistor
2 according to claim 9, characterized in that the
3 composition ratio of Al in said collector layer
4 decreases away from said base layer.

13. A heterostructure bipolar transistor
2 according to claim 1, characterized in that
3 layers including said base layer and emitter
4 layer forming the heterostructure bipolar transistor are
5 formed by metal organic chemical vapor deposition, and
6 carbon is doped as a dopant to said base
7 layer.

14. A heterostructure bipolar transistor

2 according to claim 13, characterized in that said base
3 layer is formed at a growth temperature of not less than
4 480°C.