Yoel Kim

Research

Vision. My long-term research vision is to make formal verification practical, enabling error-free software.

Goal. To this end, I address the *scalability* challenge in formal verification by designing abstraction techniques that *automatically* construct software models that are *efficiently verifiable*.

Interests. Currently, I am interested in *data-assisted abstractions*, which leverage dynamic information such as input/output examples, execution traces, and system logs to guide and optimize the abstraction process.

Education

Ph.D. in Computer Science and Engineering, Kyungpook National University

Mar 2023 - present.

o Advisor: Yunja Choi

M.S. in Computer Science and Engineering, Kyungpook National University

Mar 2021 - Feb 2023

o Advisor: Yunja Choi

o Thesis: An automated stub generation approach using program synthesis for software verification

B.S. in Computer Science and Engineering, Kyungpook National University

Mar 2017 - Feb 2021

o GPA: 3.95/4.3

Publications

- 1. Yoel Kim and Yunja Choi. PBE-Based Selective Abstraction and Refinement for Efficient Property Falsification of Embedded Software. FSE 2024: ACM International Conference on the Foundations of Software Engineering. Jul 2024. Top Conference in SE Community
- 2. Yoel Kim and Yunja Choi. An Approach of Incremental Constraint Extraction Based on I/O Examples for Automatic Stub Generation. KCSE 2023: Korea Conference on Software Engineering. Feb 2023. Best Short Paper Award
- 3. Yoel Kim and Yunja Choi. A Case Study to Improve the Efficiency of Model Checking in Embedded Software Using Program Synthesis. KSC 2021: Korea Software Congress. Dec 2021.
- 4. Yoel Kim and Yunja Choi. A Case Study on the Performance of Program Synthesis in Embedded Software Domain. KCSE 2021: Korea Conference on Software Engineering. Feb 2021.

Talks

- 1. PBE-Based Selective Abstraction and Refinement for Efficient Property Falsification of Embedded Software. Invited talk at KCC 2025. *Jeju, Korea. Jul 4, 2025*.
- 2. PBE-Based Selective Abstraction and Refinement for Efficient Property Falsification of Embedded Software. Invited talk at KCSE 2025. *Pyeongchang, Korea. Jan 22, 2025.*
- 3. PBE-Based Selective Abstraction and Refinement for Efficient Property Falsification of Embedded Software. Research paper presentation at FSE 2024. Porto de Galinhas, Ipojuca, Pernambuco, Brazil. Jul 17, 2024.

Experiences

Teaching Assistant (at Kyungpook National University):

- o ITEC0414: Software Testing Theory (Spring 2022, 2023, 2024).
- o COMP0224: Software Design (Fall 2021, 2022).
- o COMP0216: Data Structure Applications (Spring 2021).

Programming Languages and Tools:

 $\circ\,$ Java: Developed tools PBEAR and A Learner.

- $\circ\,$ C: Used as the target language for formal verification experiments.
- $\circ\,$ C++: Utilized LLVM and Clang libraries for analyzing and transforming C programs.
- o Python: Modified tools such as EuSolver (PBE solver) and Trace2Model (model learner).