STATES OR IMPILS
$$A(2_{10})$$
 BI

 $x^{2}-14x+33=0$ o.E

MI

STATES OR IMPULS $B(1_{10})$ AI

 $L \times 3 \times 12$ GR 18 BI

 $\int_{0}^{11} -x^{2} + 14x - 33 \, dx$

MI LIMITE

MI 152 FEBRE

 $-\frac{1}{3}x^{3} + 7x^{2} - 33x$

MAI

 72 AI c.a.o

 $1172^{11} + 18^{11}$ OR 90 AI AI

$$\begin{array}{cccc} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & \\$$

b)
$$1-10x+40x^2-80x^3+80x^4-32x^5$$
 Al 44 9

20
$$\alpha$$
 + 160 α ³ + 64 α ⁵ = 64 χ MI
16 α ⁴ + 44 α ² - 11 = 0 MAI
FACTORIZES OR USES QUADRATIC GRULLA MI
 α ² = $\frac{1}{4}$ (Guple Extrad) MI
 α = α = α Caso AI

4. Use of
$$\log_2 4 = \frac{1}{\log_4 x}$$

$$y^2 - y - 2 = 0 \text{ or similar MI}$$

$$y'' = \frac{1}{2} \quad MAI$$

$$x = \frac{1}{4} \quad AI$$

5. a)
$$\frac{3\alpha+2}{2\alpha+4} = \frac{\alpha^2-11}{3\alpha+2}$$
 BI
 $(3\alpha+2)^2 = (2\alpha+4)(\alpha^2-11)$ MI
SIMPURE WEREOTLY TO THE MUSICHE GRAN AI

b) SUBSTITUTES x = 6 & OBTAINS O MI $(x-6)(2x^2+7x+8)$ MI

ATTHMPT DECRIMINAM MI

OBTAMUS & STATTY NODATIVE (-15) & CONCUMPES A

$$\frac{16(1.25^8-1)}{1.25-1}$$
 MI STEWEVER At AU CORRECT A.W. e. 7317 AI

$$\frac{SIN\theta = 0}{OR} = \frac{OR}{SIN\theta = 0}, \quad SIN\theta = -\frac{1}{2}, \quad SIN\theta = -1$$

$$\frac{OR}{SIN\theta = 0} = \frac{OR}{SIN\theta = 0}, \quad SIN\theta = -\frac{1}{2}, \quad SIN\theta = -1$$

$$\frac{OR}{SIN\theta = 0} = \frac{OR}{SIN\theta = 0}, \quad SIN\theta = -\frac{1}{2}, \quad SIN\theta = -1$$

C)
$$\left(\frac{1}{2}\right)^{x} = 3 \times 2^{x}$$
 or $\frac{1}{2^{x}} = 3 \times 2^{x}$ M
 $\frac{1}{3} = 2^{2x}$ or $\frac{1}{9} = 2^{x}$ MAI
 $\frac{1}{3^{1}} = 2^{2}$ or $2^{2} = \frac{13}{3}$ or $y = 3 \times \frac{1}{9}$ MAI
 $y = \sqrt{3}$ At Adap

AUTENMINE
$$\left(\frac{1}{2}\right)^2 = 3\times 2^{3} \quad \text{or} \quad \frac{1}{2^{3}} = 3\times 2^{3} \quad \text{M}_{1}$$
Uses use solutionly MAI
$$\text{Shows } x = -\frac{\log 3}{\log 4} \quad \text{or} \quad 2 \approx -0.79248...\text{MAI}$$

$$y = \sqrt{3} \quad \text{AI c.a.o}$$

8.
$$\pi r^2 h = 16\pi$$
 or $r^2 h = 16$ BI

 $2\pi r^2 + 2\pi r h$ MI MI

SUBS $h = \frac{16}{12}$ or SIMILAR MI

OBTAINS $A = 2\pi r^2 + \frac{32\pi}{r}$ o. E AI

ATTEMPTS DIFFRENTIATION OF "THERE" A MI H.

9.
$$\frac{1}{2} \times 12^{2} \times \frac{211}{3} = 4817$$
 MI AI

ABE = $\frac{1}{7} - \frac{211}{3} = \frac{11}{3}$ BI

Sm $\frac{11}{3} = \frac{1}{12}$ MI

"" = $6\sqrt{3}$ AI

USF OF PYTHAEORAS F. g $\frac{2}{7} + \frac{6\sqrt{3}}{9} = 12^{2}$ MI

 $\frac{1}{2} \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{6} \times \frac{1}{3} = 12^{2}$ MI

 $\frac{1}{2} \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{6} \times \frac{1}{3} = 12^{2}$ MI

(OREFORY ARLINES $3(7\pi - 6\sqrt{3})$ AI