

Research Question

Do the debated topics on Twitter by German politicians differ from the topics debated in the German parliament?

Data Collection

- Data from 24.10.2017 to 26.10.2021 (19th legislative period)
- Plenary Protocols of German Parliament (Open Data Portal)
 - Used available parser
- Tweets of German MPs (from <u>Lasser et al., 2022</u>)

Related Work

- Parliament data with topic modelling
 - a. LDA: Curran et al. (2018)
 - b. BERTopic: Contreras et al. (2022)
- 2. Twitter data
 - a. Twitter-LDA: Zhao et al. (2011)
 - b. BERTopic: Grootendorst (2022), Lasser et al. (2023)
- 3. Topic comparison
 - a. Climate Change: Schaefer at al. (2023)

BERTopic

Optional Fine-tune Representations Fine-tuning Weighting scheme c-TF-IDF **Tokenizer CountVectorizer HDBSCAN** Clustering **UMAP Dimensionality Reduction SBERT Embeddings**

Data Preprocessing

- Little preprocessing because LLM-embeddings deal well with stop words etc
- Some cleaning (mainly Twitter)
 - @handle → "user"
 - o removing hashtags, RT, hyperlinks,
 - Filtering tweets with less than 3 words (IF Strydom, J Grobler (2023))
- Min length of speeches: 2 500 chars

Hyperparameter Tuning

- Training a model for each corpus independently
- Starting point is the default configuration
- Trying out different parameters, comparing coherence of topics
 - human evaluation
 - Tune parameters relative to document length / corpus size

Parliament

- 132 topics
- 9 889 classified (52%)

- 80_euro_währungszone_währungsunion_wachstumspakts
- 81_militäreinsatz_militarisierte_mediterranen_mittelmeerraum
- 82_bildungspolitischen_berufsschulen_berufsausbildung_akademikern
- 83_beitragszahlerinnen_ostdeutschland_altersversorgung_beitragszahler
- 84_aufklärungsdrohnen_drohnenkriegsführung_drohnenpiloten_kampfflugzeuge
- 85_transgeschlechtliche_transsexuellengesetzes_transsexuellengesetz_transgenderfrau

Twitter

- 98 topics
- 288 373 classified (58%)
- 65_gentechnikfreiheit_gentechnikrecht_biotech_gentechnik
- 66_lesenswert_lesenswerter_lesen_leseförderung
- 67_clubkultur_clubsterbenstoppen_clubbetreibende_clubsterben
- 68_organspendebereitschaft_organspendezahlen_organspendeausweis_organlebendspende
- $69_tierschutz_tierschutz_tierhaltungskennzeichnung_tierzahlen$
- 70_ernährungsstrategie_nahrungsergänzungsmitteln_esseneinfachmachen_ernährungssystem

Super Topics for analysing content

Using the ministries from the respective government and splitting their responsibilities into *Super Topics* (e.g. "Bundesministerium für Justiz und Verbraucherschutz" → Super Topics *Justice* and *Consumer Protection*)

- Economics
- Energy
- Finance
- Interior and Community
- Foreign Affairs
- Justice
- Labour and Social Affairs
- Defence
- Food
- Agriculture

- Family Affairs, Senior Citizens, Women and Youth
- Health
- Digital Infrastructure
- Transport
- Environment, Nature Conservation and Nuclear Safety
- Consumer Protection
- Education and Research
- Economic Cooperation and Development
- Building
- Other

Super Topics for analysing content

Using the ministries from the respective government and splitting their responsibilities into *Super Topics* (e.g. "Bundesministerium für Justiz und Verbraucherschutz" → Super Topics *Justice* and *Consumer Protection*)

- 44% of parliament speeches assigned to Super Topics
- 25% of Tweets assigned to Super Topics

Matching Topics between Parliament and Twitter

- Cosine similarity between embeddings of topic representations
- Identify closest 3 candidates for matches
- Individually assign best match (majority vote)
- Interrater reliability: Fleiss' κ = 0.76
- 31% Parliament speeches matched
- 22% of Tweets matched

Results

- Matched topics from parliament and Twitter
- Correlate numbers of documents in these topics
- Compute rank correlations:
 - \circ Spearman's ϱ = .54, p < .001
 - \circ Kendall's τ = .38, p < .001

Results (2)

• Q = .54, p < .001

 $\tau = .38,$ p < .001

Results (3)

- Same procedure applied to the data on a super topic level
- Spearman's $\varrho = .74$, p < .001
- Kendall's τ = .62, p < .001

Parliament

Twitter

- 1. Covid (5.7%)
- 2. Immigration (4.3%)
- 3. Budget and Finance (3.5%)

- 1. Climate (4.7%)
- 2. Tax politics (3.6%)
- 3. Covid (3%)

Research Question

Do the debated topics on Twitter by German politicians differ from the topics debated in the German parliament?

- significant, moderate to strong correlation
- but: for some topics clear deviations

Limitations

- Corpora are vastly different
 - language
 - length of documents
 - number of documents
- Topic modelling leaves almost 50% of documents unclassified
 - and even more for Super Topics
 - and some topics do not seem coherent (especially for Tweets)

['fischereipolitik', 'maritime', 'maritimen', 'fischereibetriebe', 'überwasserschiffbau', 'unterwasserschiffbau', 'schiffbauindustrie', 'schiffbau', 'fischereiaufsicht', 'schiffsbesetzungsverordnung']

Limitations

- Corpora are vastly different
- Topic modelling leaves almost 50% of documents unclassified
- Matching handwavy, although controlled for interpersonal difference
- Assignment of topics to super topics unclear at times
 - Super topics overlap heavily (e.g. Agriculture and Environment, Nature Conservation)
 - Some topics not covered by super topic (media, journalism)

Future Research

- Does the discrepancy in Environment Topic hold now, while the Green Party is in Government?
- Fuzzy Matching of Topics to Super Topics (Overlapping Clusters)
- Temporal relation between Topics in Parliament and Topics on Twitter

