Билеты к экзамену по высшей математике за 2 семестр (весна 2022) Лектор: Милованович Е. В.

Made by: Анжелика Василенко M3105

-	$\overline{}$									
- 1	1	т	т	\neg	\mathbf{T}	т	\sim	ТΤ	И	\cap
۰	U	η.	,,	а	к	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	н	1/1	_

1. Биони до мотрини д Опородини о биони вми мотриноми.
1. Блочные матрицы. Операции с блочными матрицами
2. Собственный базис линейного оператора. Построение собственного базиса 3
3. Жорданова клетка. Жорданова нормальная форма матрицы4
4. Построение жорданова базиса линейного оператора5
5. Нахождение многочленов от матриц и функций от матриц6
6. Понятия: дифференциальное уравнение, порядок дифференциального уравнения, общее частное и особое решения, их геометрический смысл
7. Интегральные кривые, изоклины, поле направлений
8. Уравнения первого порядка. Задача Коши, теорема существования и единственности задачи Коши. Уравнения с разделяющимися переменными и однородные
9. Линейные дифференциальные уравнения первого порядка9
10. Уравнения в полных дифференциалах. Уравнение Бернулли
11. Особое решение дифференциального уравнения. Нахождение огибающих и особых точек
12. Уравнения высших порядков, задача Коши, её геометрическое и механическое истолкование, теорема существования и единственности и методы решения дифференциальных уравнений высших порядков11
13. Линейные дифференциальные уравнения высших порядков. Линейный дифференциальный оператор, его свойства. Свойства частных решений линейных однородных уравнений
 Линейно независимые решения линейного однородного уравнения. Определитель Вронского. Необходимое и достаточное условие линейной независимости решений уравнения.
15. Фундаментальная система решений. Структура общего решения линейного однородного уравнения высшего порядка13
16. Методы решений линейных дифференциальных уравнений с переменными коэффициентами13
17. Неоднородные уравнения высшего порядка. Структура общего решения. Метод вариации произвольный постоянных
18. Линейные однородные дифференциальные уравнения высших порядков с постоянными коэффициентами. Характеристическое уравнение, построение фундаментальной системы решений

19. Линейные неоднородные дифференциальные уравнения высших порядков.
Структура общего решения. Линейные неоднородные дифференциальные
уравнения высших порядков с постоянными коэффициентами и специальной
правой частью. Метод неопределённых коэффициентов17
20. Система дифференциальных уравнений первого порядка в нормальной форме. Решение системы. Задача Коши. Теорема существования и единственности решения. Приведение нормальной системы к одному уравнению высшего порядка и обратно
21. Система дифференциальных уравнений первого порядка. Векторно -
матричная запись. Линейные однородные системы с постоянными
коэффициентами. Их интегрирование в случае простых корней
характеристического уравнения
22. Система дифференциальных уравнений первого порядка. Векторно – матричная запись. Линейные однородные системы с постоянными коэффициентами. Их интегрирование в случае кратных вещественных корней характеристического уравнения
23. Система дифференциальных уравнений первого порядка. Векторно -
матричная запись. Линейные однородные системы с постоянными
коэффициентами. Их интегрирование в случае комплексных корней
характеристического уравнения
24. Линейные неоднородные системы первого порядка. Метод вариации произвольных постоянных
25. Линейные неоднородные системы первого порядка. Метод специальной правой части21
1

1. Блочные матрицы. Операции с блочными матрицами

В первом семестре мы познакомились с матрицами, элементами которых являются числа. Пример:

$$\begin{bmatrix} 1 & 3 & 8 & 9 & 34 \\ 12 & 5 & 9 & 34 & 23 \\ 2 & 45 & 4 & 7 & 10 \end{bmatrix}$$

Если в матрице провести несколько вертикальных / горизонтальных линий, то она разобьется на клетки (блоки), например:

Разбить матрицу на блоки можно не одним способом – сколько различных способов расставить «перегородки», столько и блочных матриц можно получить.

Если ввести обозначения

$$A = \begin{bmatrix} 1 & 3 \end{bmatrix}; B = \begin{bmatrix} 8 \end{bmatrix}; C = \begin{bmatrix} 9 & 34 \end{bmatrix}; D = \begin{bmatrix} 12 & 5 \\ 2 & 45 \end{bmatrix}; E = \begin{bmatrix} 9 \\ 4 \end{bmatrix}; F = \begin{bmatrix} 34 & 23 \\ 7 & 10 \end{bmatrix}$$
, то исходную

матрицу можно переписать в виде:

$$\left[egin{matrix} A & B & C \\ D & E & F \end{array} \right]$$
 – это блочная матрица.

Линейные операции (сложение матриц, умножение матрицы на число) над блочными матрицами могут быть сведены к соответствующим операциям над их соответствующими блоками. Важно: при сложении две матрицы должны быть одинаково разбиты на блоки.

Нелинейные операции (умножение матриц) – так же можно провести, как и с обычными матрицами, но нужно, чтобы матрицы были разбиты на блоки так, чтобы каждую пару блоков было возможно перемножить (Мет: две матрицы можно перемножить, если их размерности х*а и а*у, где а – одинаковое число для обеих матриц). Если две исходных матрицы перемножить невозможно, то разбиение на блоки не поможет.

Обратную матрицу к блочной найти тоже можно, но нас про это спрашивать точно не будут (уточнила на консультации)

2. Собственный базис линейного оператора. Построение собственного базиса

Мет: Линейный оператор – это некоторая функция/правило, в соответствии с которым каждому элементу х из этого пространства ставится в соответствие некий элемент у из этого же пространства и обозначают А: x->y или y=Ax, а также выполняются условия линейности:

$$1) A(x + y) = Ax + Ay$$

$$2)A(\alpha x) = \alpha Ax$$

Каждый линейный оператор можно представить в виде матрицы порядка n (где n – размерность пространства) и наоборот.

Матрица оператора A в другом базисе: $B = T^{-1} \cdot A \cdot T$, где T – матрица перехода из одного базиса в другой.

Базисом в n-мерном пространстве является совокупность из любых n линейно независимых (некомпланарных) векторов. **Собственный базис** – это базис,

составленный из собственных векторов оператора. Есть свойство, что собственные векторы, отвечающие различным собственным числам, линейно не зависимы, что здесь и пригодится. Матрица в собственном базисе имеет диагональный вид, и на главной диагонали в ней стоят собственные числа.

Построение собственного базиса

- 1) Находим собственные числа матрицы линейного оператора
- 2) Находим собственные векторы для всех этих чисел
- 3) Говорим, что совокупность всех этих векторов собственный базис. Готово. (Собственный базис можно построить только если все собственные числа различны)

3. Жорданова клетка. Жорданова нормальная форма матрицы.

Алгебраическая кратность собственного числа λ_0 – сколько раз это число встретилось как решение характеристического уравнения. Обозначается обычно m, но иногда и как-то иначе.

Геометрическая кратность собственного числа λ_0 – максимальное количество линейно независимых собственных векторов, соответствующих данному собственному значению. Обозначается обычно s, но иногда и как-то иначе. Важно: для каждого собственного числа $s \leq m$.

Жорданова клетка порядка k, отвечающая собственному числу λ_0 имеет вид:

$$\begin{bmatrix} \lambda_0 & 1 & 0 \\ 0 & \lambda_0 & 1 \\ 0 & 0 & \lambda_0 \end{bmatrix}$$

k– количество строчек и столбцов в этой матрице соответственно. $(\lambda_0 - \lambda)^k$ – характеристический многочлен матрицы, где k – алгебраическая кратность собственного числа λ_0 .

Жорданов блок, отвечающий собственному значению λ_0 – блочнодиагональная матрица, каждый блок которой представляет собой жорданову клетку:

$$\begin{bmatrix} J_{i1} \left(\lambda_0 \right) & 0 & 0 \\ 0 & J_{i2} \left(\lambda_0 \right) & 0 \\ 0 & 0 & J_{is} \left(\lambda_0 \right) \end{bmatrix}$$

Внутренние матрицы могут быть разной размерности между собой. Пример (m = 3 – размерность матрицы, s = 2 – количество жордановых клеток внутри)

$$egin{bmatrix} \lambda_0 & 1 & 0 \ 0 & \lambda_0 & 0 \ 0 & 0 & \lambda_0 \end{bmatrix}$$
 или $egin{bmatrix} \lambda_0 & 0 & 0 \ 0 & \lambda_0 & 1 \ 0 & 0 & \lambda_0 \end{bmatrix}$

Жорданова нормальная форма матрицы (блочно-диагональная форма матрицы) имеет вид:

4

$A(\lambda_1)$	0	0
0	$A(\lambda_2)$	0
0	0	$A(\lambda_3)$

На диагонали расположены жордановы блоки от соответственно всех собственных чисел этой матрицы. Они могут меняться местами между собой, от этого матрица не перестанет быть жордановой.

Теорема. Для матрицы любого линейного оператора существует базис, состоящий из собственных и присоединенных векторов этого оператора, такой что в нем матрица оператора имеет жорданову форму. Такой базис называют жордановым.

Мет: **присоединенный вектор** х, отвечающий собственному числу λ - это вектор, найденный из выражения $(A - \lambda I)^{m-1}x \neq 0$; $(A - \lambda I)^mx = 0$; число т называют высотой присоединенного вектора. Собственные векторы – это присоединенные векторы высоты 1. Теорема: Последовательно найденные собственные векторы линейно независимы (последовательно = каждый раз увеличивали т на единицу, а собственное число не меняли).

4. Построение жорданова базиса линейного оператора

Учто в целом нужно сделать? Найти базис, состоящий из собственных и присоединенных векторов к матрице оператора и перевести матрицу в этот базис, чтобы получить жорданову нормальную форму.

Алгоритм построения жордановой формы матрицы

Не по той презентации, которую нам скидывали, а по практикам + немного упрощено, в надежде, что нам не дадут матрицу порядком выше 3 для перевода в Жорданов базис. Для ознакомления с алгоритмом для матриц более высокого порядка – добро пожаловать в презентацию «жордан», которую нам скидывали [удачи]

Вариант 1, нужно просто записать жорданову форму матрицы и базис искать не просят

1. Находим собственные числа матрицы

Итак,

- 2. Находим для каждого собственного числа $r = rang (A \lambda E)$.
- 3. Вычисляем для каждого собственного числа s=n-r (n размерность матрицы) это геометрическая кратность, это же число показывает количество жордановых клеток для этого конкретного собственного числа.

Пример: собственные числа матрицы 3-го порядка: $\lambda_{1,2,3}$ =2 (алгебраической кратности 3). Посчитали rang $(A - \lambda E) = 1$; s = 3 - 1 = 2 = > матрица в

жордановой форме имеет вид
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 или $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ соответственно

Вариант 2, нужно построить жорданов базис

- 1. Находим все собственные числа линейного оператора, для каждого найденного собственного числа определяем его алгебраическую кратность.
- 2. Находим для каждого собственного числа собственные векторы. В результате решения системы $Bx = (A \lambda E)x = 0$ может получиться несколько линейно

независимых столбцов, не теряем их, они также пригодятся позже. Находим конкретные собственные вектора (подставив вместо произвольных постоянных какие-то числа). Если собственных векторов получилось меньше, чем n, которые нужны для базиса, то идем дальше.

- 3. Если для какого-то из собственных чисел $n-rang(A-\lambda E)>1$ (число, которое мы посчитали в левой части геометрическая кратность), то для его собственного вектора и линейно независимых столбцов собственного вектора пытаемся найти присоединенный вектор. (решаем систему $(A-\lambda E)x=$ столбец). Если хотя бы в одном случае получается берем в ответ. Если же $n-rang(A-\lambda E)=1$, то тогда базис состоит из собственных векторов (или их столбцов) и больше ничего искать не нужно.
- 4. Если все еще нет п векторов, которые бы составили жорданов базис, то берем какой-то из линейно независимых столбцов, полученных в пункте 2, так, чтобы получилась линейно независимая комбинация
- 5. Составляем базис из подобранных п векторов. Чтобы привести матрицу к жордановой форме, переводим ее в этот базис с помощью матрицы преобразований и обратной матрицы преобразований: $J = T^{-1} \cdot A \cdot T$ Определения, которые использовались в той презентации, поэтому могут оказаться полезными:

Ядро матрицы оператора A – множество всех возможных элементов x, таких что Ax = o

Дефект линейного оператора - размерность ядра.

5. Нахождение многочленов от матриц и функций от матриц

Многочлен от матрицы

Многочлен n-ой степени от x имеет вид:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Многочлен от матрицы можно найти точно также: просто вместо х подставляем матрицу A (все логично: матрицу тоже можно возводить в степень и умножать на какие-то числа)

$$P_n(A) = a_0 + a_1 A + a_2 A^2 + \dots + a_n A^n$$

Как быстро возвести матрицу в степень для получения многочлена от нее? **Способ 1.** Привести матрицу к диагональной форме (Мет: матрица в базисе из собственных векторов имеет диагональный вид, причем на ее диагонали расположены ее собственные числа. Обозначим матрицу перехода в базис из собственных векторов за Т). Тогда

$$A^{n} = T \cdot A' \cdot T^{-1} \cdot T \cdot A' \cdot T^{-1} \cdot T \cdot \dots = T \cdot (A')^{n} \cdot T^{-1} = T \begin{pmatrix} \lambda_{1}^{n} & 0 & 0 \\ 0 & \lambda_{2}^{n} & 0 \\ 0 & 0 & \lambda_{k}^{n} \end{pmatrix}$$

Матрицы, покрашенные в один цвет, при умножении превращаются в единичные матрицы и опускаются.

К сожалению, матрица не всегда приводится к диагональному виду.

Способ 2. Привести матрицу к жордановой форме (В отличие от прошлого метода, этот выполним всегда. Здесь также – Т – матрица перехода в новый – жорданов – базис, а $J(A, \lambda)$ – жорданова форма этой матрицы).

$$(J(A,\lambda))^k = \begin{pmatrix} A_1^n & 0 & 0 \\ 0 & A_2^n & 0 \\ 0 & 0 & A_k^n \end{pmatrix}$$

Возведение жорданова блока в степень: $A^k = T \cdot (J(A, \lambda))^k \cdot T^{-1}$

Функция от матрицы.

(Здесь то, как я это поняла эту тему. Не могу гарантировать правильность рассуждений)

Мы научились вычислять многочлены от матрицы, а еще мы из первого семестра матанализа помним, что большинство функций может быть довольно точно представлено в виде следующего многочлена (формула Тейлора):

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

Для упрощения (?) убираем бесконечно малую в конце формулы.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Эту же формулу можно переписать и для матриц: ведь от них тоже можно находить многочлены!

$$f(A) = \sum_{k=0}^{n} \frac{f^{(k)}(A_0)}{k!} (A - A_0)^k$$

Пример: матричная экспонента (за стартовое значение берем ноль, то есть, по сути, используем формулу Маклорена, а «е» в нулевой степени всегда равно 1):

$$e^x = 1 + \frac{(e^x)'(0)}{1!}(x-0)^1 + \frac{(e^x)''(0)}{2!}(x-0)^2 + \dots = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Смело переписываем этот многочлен для матрицы А:

$$e^A = E + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

Матрица A, выраженная через жорданову форму, имеет вид $A = T \cdot J(A) \cdot T^{-1}$

$$e^{A} = E + \frac{T \cdot J(A) \cdot T^{-1}}{1!} + \frac{T \cdot J(A)^{2} \cdot T^{-1}}{2!} + \frac{T \cdot J(A)^{3} \cdot T^{-1}}{3!} + \cdots$$

Вынесем Т как общий множитель спереди и T^{-1} – сзади:

$$e^{A} = T\left(E + \frac{J(A)}{1!} + \frac{J(A)^{2}}{2!} + \frac{J(A)^{3}}{3!} + \cdots\right) \cdot T^{-1}$$

Заметим, что $e^A = E + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots = > e^{J(A)} = E + \frac{J(A)}{1!} + \frac{J(A)^2}{2!} + \frac{J(A)^3}{3!} + \dots,$ поэтому можем записать, что

$$e^A = T \cdot e^{J(A)} \cdot T^{-1}$$

6. Понятия: дифференциальное уравнение, порядок дифференциального уравнения, общее частное и особое решения, их геометрический смысл.

Дифференциальное уравнение - это уравнение, связывающее независимую переменную x, функцию y(x)и ее производные: $F(x, y, y', y'', ..., y^{(n)}) = 0$ Порядок дифференциального уравнения - порядок старшей входящей в уравнение производной

Общее решение – это функция $y = \varphi(x, c_1, c_2 \dots c_n)$ зависящая от x и n произвольных постоянных, и при этом:

- 1) при любых допустимых с получаем решение;
- 2) при любых допустимых начальных условиях с находятся однозначно.

Частное решение – это любая функция, при подстановке которой в исходное уравнение выражение обращается в верное равенство ИЛИ функция, полученная путем подстановки конкретных постоянных в общее решение (оба определения верны).

Особое решение – это решение уравнения, в каждой точке которого нарушается условие теоремы Пикара (существование и единственность решения задачи Коши)

Интегральная кривая - график функции решения

Геометрический смысл общего решения. $y = \varphi(x)$ - решение ДУ, оно связывает значение функции $y = \varphi(x)$ в точке, тангенс угла наклона касательной к графику и абсциссу данной точки

Геометрический смысл частного решения – интегральная кривая, проходящая через заданную точку (x_0, y_0)

Геометрический смысл особого решения – огибающие интегральные кривые (кривые, которые касаются всех интегральных кривых). Также: если через какую-то точку проходит несколько интегральных кривых, то это особая точка.

7. Интегральные кривые, изоклины, поле направлений

Интегральная кривая - график функции решения

Изоклина – геометрическое место точек [проще говоря, множество точек, образующих кривую линию], в которых касательные к искомым интегральным кривым имеют одно и то же направление.

Поле направлений – это как векторная функция: каждой точке плоскости соответствует какой-нибудь вектор. В данном случае не важно его значение – нас интересует только его направление – это направление касательной к интегральной кривой, проходящей через эту точку.

Решение ДУ методом изоклин

Тангенс угла наклона касательной к графику = значение производной функции в этой точке.

- 1. Пусть нам дано уравнение, тогда постараемся выразить у' из него так, чтобы оно зависело только от х. Скорее всего уравнение и так будет дано в виде y' = f(x), так как мы разбирали только такие примеры, поэтому этот шаг опциональный.
- 2. Составляем табличку, как при построении графиков в седьмом классе: берем разные значения х и находим значение функции у' от них. Желательно подбирать такие х, чтобы у'(х) был каким-нибудь известным вам тангенсом.
- 3. Третья строка таблицы: под каждым значением $y'(x) = tg\alpha$ записываем, какому углу α этот тангенс соответствует (в градусах)
- 4. Рисуем координатную плоскость. Отмечаем на Ox все точки, от которых искали значения y'(x).

- 5. По вертикали над каждым таким х рисуем маааааленькие участки прямых, наклоненных к Ох под углом α из нижней строки соответствующего столбца таблички. По вертикали их можно нарисовать много, например, на расстоянии клеточки друг от друга в самый раз.
- 6. Соединяем эти точки-отрезки касательных плавными линиями так, чтобы нарисованные раньше отрезки оказались действительно касательными к линиям, которыми мы рисуем сейчас.
- 7. Семейство прямых, которое мы только что нарисовали, является общим решением уравнения.
- 8. Уравнения первого порядка. Задача Коши, теорема существования и единственности задачи Коши. Уравнения с разделяющимися переменными и однородные

Дифференциальное уравнение первого порядка – это уравнение, связывающее независимую переменную x, функцию y(x)и ее первую производную. Записывается F(x,y,y')=0 или y'=f(x,y) **Задача Коши**: найти решение, удовлетворяющее начальному условию $y(x_0)=y_0$

Теорема Пикара (теорема существования и единственности задачи Коши) для ДУ 1 порядка.

Если y'=f(x,y)в окрестности точки (x_0,y_0) непрерывна и имеет непрерывную частную производную по у $\left(\frac{\partial f(x,y)}{\partial y}\right)$, то в окрестности этой точки существует решение задачи Коши $y(x_0)=y_0$ и оно единственное.

Уравнения с разделяющимися переменными

Имеют вид $\frac{dy}{dx} = P(x)Q(y)$

Решение уравнений с разделяющимися переменными. Переносим все, что с у, в одну сторону, а всего что с x – в другую, после чего от обеих частей берется интеграл.

Однородные уравнения

Имеют вид P(x,y)dx=Q(x,y)dy, где P(x,y) и Q(x,y) – однородные функции, то есть $P(tx,ty)=t^nP(x,y)$ и $Q(tx,ty)=t^nQ(x,y)$

Сводятся к уравнению вида $y' = f\left(\frac{y}{x}\right)$

Решение однородных уравнений. Подстановка $u = \frac{y}{r}$

9. Линейные дифференциальные уравнения первого порядка

Линейные дифференциальные уравнения

Имеют вид $y' + y \cdot p(x) = q(x)$ - Уравнение линейное относительно у Линейное уравнение называется однородным, если правая часть равна о и неоднородным в любом другом случае.

Решение линейных уравнений.

Метод 1. Метод Бернулли. Подстановка у = uv

Метод 2. Метод Лагранжа. Решить соответствующее однородное уравнение, а затем найти произвольную постоянную как функцию неизвестной, подставив решение однородного уравнения в исходное.

Структура общего решения линейного уравнения:

Общее решение неоднородного уравнения = общее решение однородного + частное решение неоднородного.

10. Уравнения в полных дифференциалах. Уравнение Бернулли

Уравнения в полных дифференциалах

Имеют вид
$$P(x,y)dx+Q(x,y)dy=0$$
, где $\frac{\partial U(x,y)}{\partial x}=P(x,y), \frac{\partial U(x,y)}{\partial y}=Q(x,y),$

U называют полным интегралом уравнения. Проверка уравнения на принадлежность данному типу: должно выполняться равенство $\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x}$

Решение уравнений в полных дифференциалах:

Вычисляем U как интеграл от P, а затем находим C как функцию от у (из того, что производная u по у равна Q(x,y)).

Уравнения Бернулли

Имеют вид $y' + y \cdot p(x) = y^n \cdot q(x)$

Решение уравнений Бернулли

Метод 1. Метод Бернулли.

Аналогично методу Бернулли для линейных уравнений. Подстановка у = uv.

Метод 2. Метод Замены переменной и приведения к линейному уравнению.

Делим все на
$$y^n$$
 и вводим замену $z = \frac{y}{y^n} = y^{1-n}; \frac{y'}{y^n} = \frac{z'}{1-n}$

11. Особое решение дифференциального уравнения. Нахождение огибающих и особых точек

Особое решение – это решение уравнения, в каждой точке которого нарушается условие теоремы Пикара (существование и единственность решения задачи Коши)

Огибающие интегральные кривые – кривые, которые в каждой точке касаются интегральной кривой (на картиночке – огибающая интегральная кривая – зеленая, а интегральные кривые - черные)

Способы нахождения особого решения

Способ 1 - из общего решения.

$$\begin{cases}
\Phi(x, y, c) = 0 \\
\Phi'_{C} = 0
\end{cases}$$

Доказательство.

Общее решение имеет вид: $\Phi(x,y,c)=0$. Особое решение будем искать в таком же виде, считая С функцией у и х.

$$\Phi' x = 0$$

$$\Phi_x' + \Phi_y' \cdot y_x' + \Phi_c' \cdot c_x' + \Phi_y' \cdot c_y' \cdot y_x' = 0$$

Так как $\Phi(x,y,c)$ – общее решение, то $\Phi_x' + \Phi_y' \cdot y_x' = 0$

Остается:

$$\Phi_c' \cdot c_x' + \Phi_y' \cdot c_y' \cdot y_x' = 0$$

 $\Phi_c' \cdot (c_x' + c_y' \cdot y_x') = 0$ правая часть не равна нулю, так как с – функция, а не константа

Получаем второе условие: $\Phi_{\mathbb{C}}'=0$

Способ 2 - из дифференциального уравнения.

$$\begin{cases}
F(x, y, y') = 0 \\
F'_{y'} = 0
\end{cases}$$

Находим из второго у' и подставляем в первое (без доказательства)

12. Уравнения высших порядков, задача Коши, её геометрическое и механическое истолкование, теорема существования и единственности и методы решения дифференциальных уравнений высших порядков.

Дифференциальное уравнение n-го порядка – это уравнение, связывающее независимую переменную x, функцию y(x)и ее n первых производных. Записывается $F(x, y, y' ... y^{(n)}) = 0$ или $y^{(n)} = f(x, y' ... y^{(n-1)})$

Задача Коши для дифференциального уравнения n-го порядка:

$$\begin{cases} y^{(n)} = f(x, y' \dots y^{(n-1)}) \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

Геометрический смысл. уравнение устанавливает связь между координатами точки, интегральной кривой в этой точке, углом наклона касательной в этой точке и кривизной. Для задачи Коши – найти такую интегральную кривую в пространстве, которая проходит через заданную точку.

Физический смысл – (пример от автора) уравнение, связывающее ускорение, скорость и координату точки со временем.

Теорема существования и единственности решения задачи Коши для уравнения n-го порядка.

 $f(x,y'...y^{(n-1)})$ непрерывна и имеет непрерывные частные производные $\frac{\partial f}{\partial y}; \frac{\partial f}{\partial y'}; \frac{\partial f}{\partial y''}...\frac{\partial f}{\partial y^{(n-1)}}$, то в окрестностях точки $\left(x_0,y_0,y_0'...y_0^{(n-1)}\right)$ существует решение задачи Коши и оно единственное.

Методы решения дифференциальных уравнений высших порядков.

Метод 1. Метод понижения порядка.

Применяется, если:

- 1)
уравнение не содержит неизвестной функции и некоторое количество ее первых производных. Замена:
 y'=p,y''=p'
- 2)
уравнение не содержит х. Замена: y'=z, $y''=z'\cdot z$ (т. к. $y''=z_x'=z_y'\cdot y_x'$)

Метод 2 - для линейных уравнений (просто общее описание).

- 1)Найти общее решение соответствующего однородного уравнения
- 2)Найти частное решение неоднородного уравнения (методом Лагранжа или методом специальной правой части)

13. Линейные дифференциальные уравнения высших порядков. Линейный дифференциальный оператор, его свойства. Свойства частных решений линейных однородных уравнений.

Линейные дифференциальные уравнения высших порядков имеют вид: $y^{(n)} + a_1(x)y^{(n-1)} + a_3(x)y^{(n-2)} + \cdots + a_n(x)y = q(x)$

Если правая часть равна нулю, то уравнение однородное, если не равна – то, соответственно, неоднородное.

Линейный дифференциальный оператор имеет вид:

$$L_n = \frac{d^{(n)}}{dx^{(n)}} + a_1(x)\frac{d^{(n-1)}}{dx^{(n-1)}} + a_2(x)\frac{d^{(n-2)}}{dx^{(n-2)}} + \dots + a_n(x)\frac{d}{dx}$$

(Nota: если этой штукой «подействовать» на функцию у, то мы получим исходное уравнение)

Иногда для краткости записывают, что $L_n(y) = q(x)$ – в правую часть соответственно подставляют правую часть исходного уравнения.

Свойства линейного дифференциального оператора

- прямо как у всего линейного!
- 1) $\hat{L}_n(y_1 + y_2 + \dots + y_k) = L_n(y_1) + L_n(y_2) + \dots + L_n(y_k)$
- $2) L_n(cy) = cL_n(y)$

Свойства частных решений линейных однородных уравнений

- 1) Если y_1 и y_2 частные решения $L_n(y) = 0$, то и их сумма тоже решение. Доказательство:
 - Известно, что $L_n(y_1)=0$ и $L_n(y_2)=0$. Тогда по свойству линейного оператора $L_n(y_1+y_2)=L_n(y_1)+L_n(y_1)=0$, ч. т. д.
- 2) Если y_1 частное решение $L_n(y)=0$, то и cy_1 тоже решение.

Доказательство:

- Известно, что $L_n(y_1)=0$. Тогда по свойству линейного оператора $L_2(cy_1)=cL_2(y_1)=c\cdot 0=0$, ч. т. д.
- 3) Если y_1 и y_2 частные решения $L_n(y)=0$, то и $\mathrm{c}_2y_1+\mathrm{c}_2y_2$ тоже решение. Доказательство:
 - Аналогично.
- 4) Необходимым и достаточным условием линейной независимости частных решений является равенство нулю их определителя Вронского (это свойство подробнее расписано в следующем билете)
- 14. Линейно независимые решения линейного однородного уравнения. Определитель Вронского. Необходимое и достаточное условие линейной независимости решений уравнения.

Линейно независимые решения линейного однородного уравнения – решения y_1 и y_2 – линейная комбинация которых равна нулю тогда и только тогда, когда все коэффициенты c_i равны нулю.

Определитель Вронского (пример для второго порядка) имеет вид:

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 \cdot y_2' - y_2 \cdot y_1'$$

Необходимое и достаточное условие линейной независимости решений уравнения – их определитель Вронского не равен нулю. Соответственно, если равен – то функции линейно зависимы.

Доказательство.

Достаточность (Дано: y_1 и y_2 линейно зависимы)

$$c_1y_1+c_2y_2=0$$
; $\exists c_1\neq 0$: $y_1=-\frac{c_2y_2}{c_1}$. Обозначим $-\frac{c_2}{c_1}=$ С , тогда $y_1=$ Су $_2$.

Считаем определитель Вронского: $y_1 \cdot y_2' - y_2 \cdot y_1' = Cy_2 \cdot y_2' - y_2 \cdot Cy_2' = 0$ ч. т. д. Необходимость (Дано: Вронскиан равен нулю)

Итак, $y_1 \cdot y_2' - y_2 \cdot y_1' = 0$. Разделим все на $(y_1)^2$ (не равно нулю, иначе бы решения были бы очевидно линейно зависимы и без Вронскиана)

$$\frac{y_1 \cdot y_2' - y_2 \cdot y_1'}{(y_1)^2} = 0$$

Получили, что $\left(\frac{y_2}{y_1}\right)'=0$, что значит, что $\frac{y_2}{y_1}=C$ (const) => $y_2=Cy_1$ ч. т. д.

15. Фундаментальная система решений. Структура общего решения линейного однородного уравнения высшего порядка.

Фундаментальная система решений линейного уравнения n-го порядка — это любая совокупность из n линейно независимых частных решений этого уравнения.

Общее решение линейного **однородного** уравнения высшего порядка – это линейная комбинация функций, входящих в состав фундаментальной системы решений.

Общее решение линейного **неоднородного** уравнения высшего порядка имеет вид $y_{\text{но}} = y_{\text{оо}} + y_{\text{частн}}$, где $y_{\text{но}}$ – общее решение неоднородного (исходного) ЛНДУ, $y_{\text{оо}}$ – общее решение соответствующего однородного ЛНДУ, $y_{\text{частн}}$ – частное решение неоднородного (исходного) ЛНДУ

Примерно во время этой темы мы на лекции разбирали теорему Остроградского-Лиувилли, но она почему-то вовсе не упоминается в вопросах к экзамену.

Свойства общего решения линейного однородного уравнения.

- 1) Содержит п произвольных постоянных (п порядок уравнения)
- 2) Удовлетворяет исходному уравнению
- 3) Удовлетворяет любым начальным условиям в области, где выполняются условия теоремы существования и единственности решения задачи Коши

16. Методы решений линейных дифференциальных уравнений с переменными коэффициентами.

Методов много:

- 1) Подстановки. Если в уравнении нет у и ее первых n производных, то замена y'=p, y''=p'. Если в уравнении нет x, то замена y'=z, $y''=z'\cdot z$
- 2) Метод Лагранжа (о нем в другом билете)
- 3) Угадать хотя бы одно частное решение y_1 , и найти остальные по следствию из теоремы Остроградского-Лиувилля, например

$$y_2 = y_1 \cdot c \int \frac{e^{-\int_{x_0}^x a_1 dx}}{y_1^2} dx$$

Если имеется в виду необязательно уравнение высшего порядка, то еще есть метод Бернулли.

17. Неоднородные уравнения высшего порядка. Структура общего решения. Метод вариации произвольный постоянных

Неоднородные уравнения высшего порядка – уравнения, правая часть которых (q(x)) не равна нулю.

Общее решение линейного однородного уравнения высшего порядка – это линейная комбинация функций, входящих в состав фундаментальной системы решений.

Общее решение линейного неоднородного уравнения высшего порядка имеет вид $y_{\rm HO} = y_{\rm oo} + y_{\rm частн}$, где $y_{\rm HO}$ – общее решение неоднородного (исходного) ЛНДУ, $y_{\rm oo}$ – общее решение соответствующего однородного ЛНДУ, $y_{\rm частн}$ – частное решение неоднородного (исходного) ЛНДУ

Свойства общего решения линейного неоднородного уравнения.

- 1) $L_n(y_{OH}) = L_n(y_{HACTH}) = q(x)$
- 2) y_{oH} Содержит и произвольных постоянных (п порядок уравнения)
- 3) $y_{o ext{H}}$ Удовлетворяет любым начальным условиям в области, где выполняются условия теоремы существования и единственности решения задачи Коши
- 4) Если $q(x)=q_1(x)+q_2(x)+q_3(x)+\cdots+q_m(x)$, то и решение $y_{\text{частн}}$ можно искать в виде $y_{\text{1_{частн}}}+y_{\text{2_{частн}}}+\cdots+y_{m_{\text{частн}}}$ (Принцип суперпозиции)

Метод Лагранжа, он же **Метод вариации произвольный постоянных** используется для нахождения частного решения неоднородного ЛНДУ, когда известно ФСР соответствующего однородного ЛДУ.

Рассмотрим, как и почему этот метод работает на примере уравнения 2-го порядка.

Оно имеет вид $y'' + a_1(x)y' + a_2(x)y = q(x)$

У нас уже есть ФСР, общее решение имеет вид: $y_{00} = c_1 y_1 + c_2 y_2$

Частное решение будем искать в виде: $y_{\text{частн}} = c_1(x)y_1 + c_2(x)y_2$

Так как неизвестных у нас две - $c_1(x)$ и $c_2(x)$, добавим еще какое-нибудь условие Пусть $c_1'(x)y_1+c_2'(x)y_2=0$ (могли добавить любое, но это – оптимальное) Тогда:

$$\begin{aligned} y_{\text{\tiny HACTH}}' &= c_1'(x)y_1 + c_1(x)y_1' + c_2'(x)y_2 + c_2(x)y_2' = c_1(x)y_1' + c_2(x)y_2' \\ y_{\text{\tiny HACTH}}'' &= (c_1(x)y_1' + c_2(x)y_2')' = c_1'(x)y_1' + c_1(x)y_1'' + c_2'(x)y_2' + c_2(x)y_2'' \end{aligned}$$

Подставляем все эти прекрасные вещи в исходное уравнение

$$y'' + a_1(x)y' + a_2(x)y = q(x)$$

$$c'_1(x)y'_1 + c_1(x)y''_1 + c'_2(x)y'_2 + c_2(x)y''_2 + a_1(x)(c_1(x)y'_1 + c_2(x)y'_2) + a_2(x)(c_1(x)y_1 + c_2(x)y_2) = q(x)$$

Перегруппируем слагаемые:

$$c_1(y_1'' + a_1(x)y_1' + a_2(x)y_1) + c_2(y_2'' + a_1(x)y_2' + a_2(x)y_2) + c_1'(x)y_1' + c_2'(x)y_2' = q(x)$$

Так как y_1 и y_2 – ФСР соответствующего исходному уравнению однородного уравнения, то скобки равны нулю, а значит, остается:

$$c_1'(x)y_1' + c_2'(x)y_2' = q(x)$$

В совокупности с введенным ограничением получаем систему из двух уравнений с двумя неизвестными c_1 и c_2 :

$$\begin{cases} c'_1(x)y_1 + c'_2(x)y_2 = 0 \\ c'_1(x)y'_1 + c'_2(x)y'_2 = q(x) \end{cases}$$

Будем решать систему методом Крамера.

Находим определитель этой системы = Вронскиан (не равен нулю, так как ФСР линейно независимо).

$$\Delta = W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0$$

Ну и дальше находим c_1 и c_2 по стандартному алгоритму решения системы методом Крамера.

$$\Delta c_1 = \begin{vmatrix} 0 & y_2 \\ q(x) & y_2' \end{vmatrix} = -y_2 q(x) \quad c_1' = -\frac{y_2 q(x)}{W} = C_1(x) = -\int \frac{y_2 q(x)}{W} dx$$

$$\Delta c_2 = \begin{vmatrix} y_1 & 0 \\ y_1' & q(x) \end{vmatrix} = y_1 q(x) \quad c_2' = \frac{y_1 q(x)}{W} = > C_2(x) = \int \frac{y_1 q(x)}{W} dx$$

Итак,

$$y_{\text{частн}} = c_1(x)y_1 + c_2(x)y_2$$

Это был вывод формул, а теперь кратко: алгоритм решения уравнения методом Лагранжа:

- 1) Найти ФСР соответствующей однородной системы, а соответственно и общее решение. В общем случае выглядит примерно так: $y_{00} = c_1 y_1 + c_2 y_2$
- 2) Пишем: «частное решение будем искать в виде $y_{\text{частн}} = c_1(x)y_1 + c_2(x)y_2$ »
- 3) Находим вронскиан системы по формуле $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$
- 4) Вычисляем C_1 и C_2 по формулам $C_1(x) = -\int \frac{y_2q(x)}{W} dx; C_2(x) = \int \frac{y_1q(x)}{W} dx$
- 5) Записываем итоговый результат: $y_{\text{но}} = y_{oo} + y_{\text{частн}} = c_1 y_1 + c_2 y_2 + c_1(x) y_1 + c_2(x) y_2$, выделенные зеленым «с» произвольные константы из общего решения, их не трогаем, а выделенные оранжевым заменяем на функции, найденные в четвертом шаге. Функции $y_1 y_2$ это конкретные функции ФСР, их и записываем.

18. Линейные однородные дифференциальные уравнения высших порядков с постоянными коэффициентами. Характеристическое уравнение, построение фундаментальной системы решений.

Линейные однородные дифференциальные уравнения высших порядков с постоянными коэффициентами – уравнения вида $y^{(n)}+a_1y^{(n-1)}+\cdots+a_ny=0$, где a_1,a_2 и т. д. – некоторые константные числа.

Характеристическое уравнение

В исходном уравнении каждую производную у і-той степени заменяем на k возведенную в і-тую степень

Откуда это взялось, вывод:

Однородное уравнение имеет вид:

$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} \dots + a_n y = 0$$

Хотим найти его Φ CP, состоящую из n линейно независимых частных решений этой системы.

Предположим, что частное решение имеет вид $y = e^{kx}$

Подставим это решение в исходное уравнение, зная, что $y' = (e^{kx})' = ke^{kx}$; $y'' = (ke^{kx})' = k^2e^{kx}$ и т.д.

$$k^n e^{kx} + k^{n-1} e^{kx} \cdot a_1 + k^{n-2} e^{kx} \cdot a_2 + \dots + e^{kx} \cdot a_n = 0$$

Вынесем экспоненту, как общий множитель:

$$e^{kx}(k^n + k^{n-1} \cdot a_1 + k^{n-2} \cdot a_2 + \dots + a_n) = 0$$

Сократим на нее, ведь она строго больше нуля

$$k^n + k^{n-1} \cdot a_1 + k^{n-2} \cdot a_2 + \dots + a_n = 0$$

Вот оно, характеристическое уравнение, решив которое мы найдем такие k, что при их подстановке в частное решение, которое мы, как мы предположили есть в виде $y=e^{kx}$, мы получим действительно то самое искомое частное решение однородного уравнения.

Построение фундаментальной системы решений для однородно линейного уравнения. Находим п линейно независимых частных решений этого уравнения и записываем их через запятую. Это и будет ФСР.

Построение ФСР с помощью характеристического уравнения.

Находим все корни k характеристического уравнения (n штук, соответственно). Далее нам нужно найти n линейно независимых функций – по одному на каждый найденный k. Рассмотрим различные варианты, какими могут оказаться k.

- 1) $k_i \in R$ и (как корень уравнения) имеет алгебраическую кратность 1 (встречается только 1 раз). Тогда соответствующее ему $y_i = e^{kx}$
- 2) Некоторое количество k (m штук), начиная с $k_i \in R$ равны. Тогда первое из m частных решений, порождаемых данными k $y_i = e^{kx}$, а последующие решения рассчитываются по формуле из следствия из теоремы Остроградского-Лиувилля, например:

$$y_2=y_1\cdot \mathrm{c}\int rac{e^{-\int_{x_0}^x a_1 dx}}{y_1^2} dx$$
. Первая функция за $y_i=e^{kx}$ получается $y_{i+1}=xe^{kx}$, вторая $-y_{i+2}=x^2e^{kx}$, и т. д.

3) Два числа k - комплексные сопряженные, это пара вместе имеет алгебраическую кратность 1. Так как числа два, то и частных решения нужно найти два.

Так как формально эти k разные, то частные решения имеют вид $y_i = e^{(a+bi)x}$; $y_{i+1} = e^{(a-bi)x}$. Их линейная комбинация: $c_1 e^{(a+bi)x} + c_2 e^{(a-bi)x}$.

На этом можно было бы остановиться, но это как-то некрасиво, поэтому перепишем, используя формулу Эйлера $(e^{i\alpha} = cos\alpha + isin\alpha)$

$$e^{(a+bi)x} = e^{ax} \cdot e^{ib} = e^{ax} \cdot (cosbx + isinbx) = e^{ax} \cdot cosbx + e^{ax} \cdot isinbx$$

$$e^{(a-bi)x} = e^{ax} \cdot e^{-ibx} = e^{ax} \cdot (\cos(-bx) + i\sin(-bx)) =$$

$$= e^{ax} \cdot \cos(-bx) + e^{ax} \cdot i\sin(-bx) = e^{ax} \cdot \cos bx - e^{ax} \cdot i\sin bx$$

Итак, линейная комбинация

$$c_1 e^{(a+bi)x} + c_2 e^{(a-bi)x} = c_1 (e^{ax} \cdot cosbx + e^{ax} \cdot isinbx) + c_2 (e^{ax} \cdot cosbx - e^{ax} \cdot isinbx)$$

Перегруппируем:

 $e^{ax} \cdot cosbx \ (c_1+c_2) + \ e^{ax} \cdot isinbx(c_1-c_2)$ Обозначим $c_1+c_2=C$, $c_1-c_2=C^*$

Тогда линейная комбинация принимает вид $C \cdot e^{ax} \cdot cosbx + C^* \cdot e^{ax} \cdot isinbx$ и соответственно частные решения это $y_i = e^{ax} \cdot cosbx$; $y_{i+1} = isinbx$

- 4) Если нам встретились несколько пар сопряженных комплексных чисел (а они нам не встретятся, так как мы не решаем уравнения 4+ порядка, которые для этого нужны), то решения выводятся как во втором пункте. (В результате каждая пара так же домножается на х столько раз, сколько и повторов).
- 19. Линейные неоднородные дифференциальные уравнения высших порядков. Структура общего решения. Линейные неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами и специальной правой частью. Метод неопределённых коэффициентов

Линейные неоднородные дифференциальные уравнения высших порядков – уравнения вида $y^{(n)}+a_1(n)y^{(n-1)}+\cdots+a_n(n)y=q(x)$

Если коэффициенты a_1, a_2 и т. д. – числа, то это уравнение с постоянными коэффициентами.

Общее решение линейного неоднородного уравнения высшего порядка имеет вид $y_{\text{но}} = y_{\text{oo}} + y_{\text{частн}}$, где $y_{\text{но}}$ – общее решение неоднородного (исходного) ЛНДУ, y_{oo} – общее решение соответствующего однородного ЛНДУ, $y_{\text{частн}}$ – частное решение неоднородного (исходного) ЛНДУ

Специальная правая часть – функция q(x) имеет вид $e^{\alpha x}(P_n(x)cos\beta x+Q_l(x)sin\beta x)$

Метод неопределённых коэффициентов

Это один из методов решения ЛНДУ высших порядков с постоянными коэффициентами и специальной правой частью (Второй метод – метод Лагранжа – тоже подходит, но о нем – в другом билете). Перед началом нужно составить ФСР соответствующего однородного уравнения, а затем с помощью метода неопределенных коэффициентов находится частное решение.

- 2. Составить контрольное число $\sigma = \alpha + \beta i$
- 3. Выяснить, является ли σ корнем характеристического уравнения. Если да, то s= алгебраическая кратность этого корня, иначе s= 0.
- 4. Выписать частное решение в виде $x^s e^{\alpha x} (\overline{P_m(x)} cos \beta x + \overline{Q_m(x)} sin \beta x)$, где новые многочлены степени m, c теми самыми неизвестными коэффициентами, в честь которых назван метод (m минимум из n, l. Пример: если m = 1, то $\overline{P_m(x)} = Ax + B$, $\overline{Q_m(x)} = Cx + D$).
- 5. Находим неизвестные коэффициенты. Для этого находим п производных от частного решения и подставляем это все в исходное уравнение. Оттуда находим неизвестные.

20. Система дифференциальных уравнений первого порядка в нормальной форме. Решение системы. Задача Коши. Теорема существования и единственности решения. Приведение нормальной системы к одному уравнению высшего порядка и обратно.

Система дифференциальных уравнений первого порядка в нормальной форме

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2 \dots y_n) \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2 \dots y_n) \\ \dots \\ \frac{dy_n}{dx} = f_n(x, y_1, y_2 \dots y_n) \end{cases}$$

 $y_1, y_2, y_3 \dots y_n$ – неизвестные функции

Решение системы

$$\begin{cases} y_1 = y_1(x, c_1, c_2 \dots c_n) \\ y_2 = y_2(x, c_1, c_2 \dots c_n) \\ \dots \\ y_n = y_n(x, c_1, c_2 \dots c_n) \end{cases}$$

Задача Коши

Это совокупность системы уравнений и еще п условий:

$$\begin{cases} y_1(x_0) = y_{01} \\ y_2(x_0) = y_{02} \\ \dots \\ y_3(x_0) = y_{03} \end{cases}$$

Теорема о существовании и единственности решения задачи Коши

Если функции $f_1, f_2, f_3 \dots f_n$ в окрестности некоторой точки $(x_0, y_{01}, y_{02} \dots y_{0n})$ непрерывны и имеют непрерывные частные производные по $y_1, y_2 \dots y_n$ (т. е. $\frac{df_1}{dx}, \frac{df_2}{dx} \dots \frac{df_n}{dx}$)

Приведение нормальной системы к одному уравнению высшего порядка и обратно

Берем производную от первого уравнения системы:

$$\frac{d^2y_1}{dx^2} = \frac{df_1}{dx} + \frac{df_1}{dy_1} \cdot \frac{dy_1}{dx} + \frac{df_1}{dy_2} \cdot \frac{dy_2}{dx} + \dots + \frac{df_1}{dy_3} \cdot \frac{dy_3}{dx}$$

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2 \dots y_n); \ \frac{dy_2}{dx} = f_2(x, y_1, y_2 \dots y_n); \dots => \frac{d^2y_1}{dx^2} = F_2(x, y_1, y_2 \dots y_n) - \text{просто}$$
 ввели новое обозначение для появившейся функции

Аналогично доходим до n-ой производной, каждый раз берем производные от последнего результата.

$$\begin{cases} \frac{dy_1}{dx} = F_1(x, y_1, y_2 \dots y_n) \\ \frac{d^2y_1}{dx^2} = F_2(x, y_1, y_2 \dots y_n) \\ \dots \\ \frac{d^ny_1}{dx^n} = F_n(x, y_1, y_2 \dots y_n) \end{cases}$$

Теперь выражаем из этих уравнений все функции $y_1, y_2 \dots y_n$ через производные y_1 (из первого выражаем y_2 , подставляем во второе; из второго выражаем y_3 и

т. д.), подставляем все полученные $y_1, y_2 \dots y_n$ в самое последнее уравнение и получаем ДУ n-го порядка относительно y_1 .

Можно и наоборот:

$$y = y_{1} y' = y_{2} ... y^{n-1} = y_{n} \begin{cases} \frac{dy_{1}}{dx} = y_{2} \\ \frac{dy_{2}}{dx} = y_{3} \\ ... \\ \frac{dy_{n}}{dx} = y_{n+1} \end{cases}$$

21. Система дифференциальных уравнений первого порядка. Векторно матричная запись. Линейные однородные системы с постоянными коэффициентами. Их интегрирование в случае простых корней характеристического уравнения.

$$\begin{cases} x'_{1}(t) = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ x'_{2}(t) = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \\ \dots \\ x'_{n}(t) = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} \end{cases}$$

Векторно матричная форма записи.

Введем обозначения:

$$X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \dots \\ x_n(t) \end{bmatrix}; \ X'^{(t)} = \begin{bmatrix} x'_1(t) \\ x'_2(t) \\ \dots \\ x'_n(t) \end{bmatrix}; \ A = \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{12} & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

Тогда систему можно записать в виде: X' = AX

Для того, чтобы решить систему, нужно найти n ее линейно независимых частных решений и составить их линейную комбинацию. Будем далее искать эти частные решения в виде $\overline{X}_i = e^{\lambda_i t} \cdot \Gamma_i$

Характеристическое уравнение $|A - \lambda E| = 0$

Подставим наше частное решение $\overline{X}_i = e^{\lambda_i t} \cdot \Gamma_i$ в систему X' = AX:

$$\lambda_i \cdot e^{\lambda_i t} \cdot \Gamma_i = A \cdot e^{\lambda_i t} \cdot \Gamma_i$$
 Немного преобразуем. $\lambda_i \cdot \Gamma_i = A \cdot \Gamma_i$

$$A \cdot \Gamma_i - \lambda_i \cdot E \cdot \Gamma_i = 0$$

$$(A - \lambda_i \cdot E)\Gamma_i = 0$$

Видим, что в данном случае Γ_i – собственный вектор матрицы А «Интегрирование в случае простых корней» в заголовке значит просто нахождение корней (уточнила на консультации)

22. Система дифференциальных уравнений первого порядка. Векторно матричная запись. Линейные однородные системы с постоянными коэффициентами. Их интегрирование в случае кратных вещественных корней характеристического уравнения.

Начало совпадает с 21 билетом.

Для того, чтобы решить систему, нужно найти n ее линейно независимых частных решений и составить их линейную комбинацию. Будем далее искать эти частные решения в виде $\overline{X}_i = e^{\lambda_i t} \cdot \Gamma_i$

Характеристическое уравнение $|A - \lambda E| = 0$

Пусть собственное число λ_i имеет алгебраическую кратность в и геометрическую кратность m (количество линейно независимых собственных векторов, порожденных этим числом).

Если m = s, то просто берем все эти s решений в Φ CP, если s < m, то частное решение ищем в виде

$$X_{\text{\tiny YACT}} = e^{\lambda_k t} (B + Ct + Dt^2 + \dots + \Gamma_i t^{s-m})$$

Здесь Γ – собственный вектор, а остальные – присоединенные к чему-то. Для того, чтобы определить векторы на месте остальных букв подставляем $X_{\text{част}}$ в исходное уравнение, и в лучших традициях метода неопределенных коэффициентов приравниваем выражения около t в равных степенях по разные стороны знака «равно».

Может получиться, например, такое:
$$\begin{cases} (A-\lambda E)B=C=>B-\text{присоед. к C}\\ (A-\lambda E)C=2D=>C-\text{присоед. к }2D\\ (A-\lambda E)D=0=>D-\text{собственный} \end{cases}$$

Найдем эти векторы, подставим в шаблон частного решения выше (его при необходимости можно разбить на отдельные столбцы) – готово.

23. Система дифференциальных уравнений первого порядка. Векторно – матричная запись. Линейные однородные системы с постоянными коэффициентами. Их интегрирование в случае комплексных корней характеристического уравнения.

Начало совпадает с 21 билетом.

Для того, чтобы решить систему, нужно найти n ее линейно независимых частных решений и составить их линейную комбинацию. Будем далее искать эти частные решения в виде $\overline{X}_l = e^{\lambda_l t} \cdot \Gamma_l$

Характеристическое уравнение $|A - \lambda E| = 0$

Пусть собственное число $\lambda_i=\alpha+i\beta$, тогда $\overline{x}_l=e^{\lambda_l t}\cdot\Gamma_l$, в этом решении можно выделить

$$\overline{x}_i = e^{(\alpha + i\beta)t} \cdot \Gamma_i = e^{\alpha} \cdot e^{ibt} \cdot \Gamma_i = e^{\alpha} \cdot (\cos bt + i\sin bt) \cdot \Gamma_i$$
 Таким образом, ФСР: $e^{\alpha} \cdot \cos bt \cdot \Gamma_i$; $e^{\alpha} \cdot i\sin bt \cdot \Gamma_i$;

Второе сопряженное комплексное число даст такой же результат.

24. Линейные неоднородные системы первого порядка. Метод вариации произвольных постоянных

Линейные неоднородные системы первого порядка. Неоднородные = правая часть не у всех уравнений системы равна нулю. Правые части – функции х. **Метод вариации произвольных постоянных**, или метод Лагранжа, позволяет найти частное решение неоднородной системы, зная ФСР для соответствующей неоднородной системы. Суть метода:

1) Решаем соответствующую однородную систему – находим ее ФСР.

2) Записываем $C_1'\Gamma_1 e^{\lambda_1 t} + C_2'\Gamma_2 e^{\lambda_2 t} = \begin{bmatrix} q_1(x) \\ q_2(x) \end{bmatrix}$ (подставляем функции из ФСР, в общем).

Из этой системы выражаем C_1' и C_2' , и находим сами функции интегрированием. 3) Частное решение записывается в виде $C_1\Gamma_1e^{\lambda_1t}+C_2\Gamma_2e^{\lambda_2t}$

25. Линейные неоднородные системы первого порядка. Метод специальной правой части.

Начало совпадает с 24 билетом.

Метод специальной правой части. Позволяет найти частное решение системы. Суть метода:

- 1) Проверить, что все правые части имеют вид «специальной правой части» и найти коэффициенты по ее шаблону (для каждого уравнения находятся отдельно). Если где-то правая часть равна нулю, то ничего для нее не ищем, соответственно.
- 2) Для каждой из рассмотренных ненулевых правых частей частное решение будем искать отдельно.

Итак, вот что нужно сделать для каждой ненулевой правой части

- Выписать частное решение для нее в виде $e^{\alpha t}(P_n(t)\sin\beta t + Q_k(t)\cos\beta t)$, подставляя коэффициенты из соответствующей правой части. Внимание: сколько неизвестных функций, столько и решений выписывается. При этом многочлены составляются из разных букв - их все нужно будет найти.
- Выписать вспомогательную систему: в ней все правые части, кроме рассматриваемой, должны быть равны нулю.
- Подставляем частные решения, полученные выше, во вспомогательную систему и выражаем буквы, которые стоят на месте неопределенных коэффициентов многочленов.

В итоге мы получим столько частных решений, сколько неоднородностей (специальных правых частей) было в правой части системы. Частное решение для всей системы в целом записывается как просто сумма полученных «частичных» частных решений.