1.数据集

名称	来源	数据内容	标注特点	备注
CUB200-2011	加利福尼亚理工学	含 200 种不同	人工标注数据,每张	最经典最常
	院	类别,共 11,788	图像包含 15 个局	用
		张鸟类图像数据	部区域位置,312个	
			二值属性,1个标注	
			框,以及语义分割图	
	# r/	A	像.	
Stanford	斯坦福大学	含 120 种不同	只提供标注框,这	标注信息少
Dogs		种类别,共	一个人工标注数据.	
		20,580 张狗的		
0 ()	4. 净上兴	图像数据	口担供注义八割园	102 种米口位
Oxford Flowers	牛津大学	两种数据库,分别含 17 种类别	只提供语义分割图	102 种类别的 数据库比较
Flowers		和 102 种类别	像,不包含其他额外标注信息.	数据库比较 常用,但图像
		的花,每个类别	小任百志。	数量较少
		包含 40 到 258		数重权之
		张图像数据,总		
		共有 8,189 张图		
		像		
Cars	Ernesto Ramos	含 196 类不同	只提供标注框信息.	
	and David	品牌不同年份不		
	Donoho	同车型的车辆图		
		像数据,一共有		
		16,185 张图像		
FGVC-Aircraft	Johns Hopkins	含 102 类不同	只提供标注框信息.	
	CLSP Summer	的飞机照片,每		
	Workshop 2012	一类别含有 100		
		张不同的照片,		
		共		
		有 10,200 张图		
		片		

综合考虑数据集的应用频率和包含的图像数量,并且根据方法是否需要标注信息,我比较倾向 CUB200-2011 或者 Stanford Dogs 数据集

2.方法

根据《基于深度卷积特征的细粒度图像分类研究综述》 罗建豪 吴建鑫综述中提到的方法,根据对比我挑选了几种算法:

基础的方法是 SIFT+BoW+SVM、POOF+SVM、Fisher+SVM 这种吗?比较新颖的方法:

(综述中提到)

Pose Normalized CNN(Alex-Net+Fine-Tune+SVM)需要有标注框信息和局部区域信息并且需要训练和测试,准确率达到 85.4%

Spatial Transformer Net(Inception+Flip)不需要标注信息的训练和测试,准确率可以 达到 84.1%

(2016年的)

Part-Stacked CNN (ALEXNET Conv+ReLU+Pool)训练用 BBox+Parts,对 BBox 进行测试,准确率达到 76.6%

Picking Deep Filter(PD+FC+SWFV-CNN)不需要标注信息的训练和测试,VGG-VD 和VGG-M 在 CUB200 数据及测试准确率分别达到 84.54%和 80.23%。

所以先从这几种方法中选择可行性高吗?

3.判断准则

部分检测

识别性能

本地化准确性 localization accuracy

分类精度 classification accuracy

推理效率 inference efficiency

模型解释 model interpretation.

基线改进 Improvement Over Baseline

强先验或弱先验 Strong prior or weak prior

mAP

宏平均准确率

宏平均召回率

宏平均 F1 值

不知道是否准确