Recuperación de Información Multimedia

Índices Métricos

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación Universidad de Chile Juan Manuel Barrios – https://juan.cl/mir/ – 2019

Espacios Métricos

- Definición:
 - \square Universo de objetos válidos: \mathcal{D}
 - \square Función de distancia: $d: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$
 - \square El par (\mathcal{D},d) es un espacio métrico ssi dcumple con las propiedades métricas:
 - Positividad estricta

 $\forall x, y \in \mathbb{X}, \ x \neq y \Rightarrow \delta(x, y) > 0$

Simetría

 $\forall x, y \in \mathbb{X}, \ \delta(x, y) = \delta(y, x)$

Reflexividad

- $\forall x \in \mathbb{X}, \ \delta(x, x) = 0$
- Desigualdad triangular $\forall x, y, z \in \mathbb{X}, \ \delta(x, z) \leq \delta(x, y) + \delta(y, z)$

Espacios Métricos

- Objetos de D son comparados utilizando la función de distancia
- La función d indica el grado de disimilitud entre dos objetos
- Ejemplo de espacio métrico:
 - Strings y distancia de edición
 - □ Vectores y una distancia de Minkowski L_p
 - □ Signatures y distancia EMD

Metric Access Methods

- Se tiene un conjunto de objetos R
- Un Metric Access Method (MAM) es una estructura de datos que permite resolver búsquedas por similitud en R reduciendo el número de veces que se evalúa la función de distancia d
 - Supuesto: la función de distancia es costosa de evaluar

Pivote

- Un pivote p es un objeto de la colección fijo
- Dados dos objetos q y u, si se conocen las distancias d(q,p) y d(p,u) entonces se puede estimar d(q,u)

$$|d(q,p) - d(p,u)| \le d(q,u) \le d(q,p) + d(p,u)$$

M

Conjuntos de Pivotes

- El valor de la cota superior e inferior se acerca más al valor de d cuando se tienen más pivotes
- lacktriangle Para un conjunto de pivotes ${\mathcal P}$:
 - $\square UB_P(q,r)$ es la cota superior de d(q,r):

$$UB_{\mathcal{P}}(q,r) = \min_{p \in \mathcal{P}} \left\{ d(q,p) + d(p,r) \right\}$$

 $\Box LB_P(q,r)$ es la cota inferior de d(q,r):

$$LB_{\mathcal{P}}(q,r) = \max_{p \in \mathcal{P}} \left\{ |d(q,p) - d(p,r)| \right\}$$

Tablas de Pivotes

- AESA (Approximating and Eliminating Search Algorithm, 1986)
 - □ Usar todos los objetos de R como pivote
 - □ Requiere mantener una tabla de distancias entre todos los pares de objetos del dataset
 - Memoria O(n²)
- LAESA (Linear AESA, 1994)
 - Seleccionar subconjunto de elementos de la colección como pivotes
 - □ ¿Cómo resolver una búsqueda eficientemente?
 - □ ¿Cómo seleccionar el conjunto de pivotes?

Creación de Tabla de Pivotes

- Para una colección de n objetos, se seleccionan k pivotes de la colección
- Calcular una tabla de k·n con las distancias de cada objeto con cada pivote

	p_1	 p_k
U ₁	$d(p_1,u_1)$	 $d(p_k, u_1)$
u_n	$d(p_1,u_n)$	 $d(p_k, u_n)$

Consulta por Rango

- Calcular la distancia entre q y cada pivote
- Para cada objeto:
 - □ Calcular su cota inferior
 - Criterio de exclusión: Si la cota inferior es mayor que r el objeto no es relevante (se descarta)
 - Notar que basta un pivote para descartar el objeto, por lo que no es necesario evaluar todos los pivotes
 - Si no pudo ser descartado se evalúa su distancia real y se determina si es relevante o no

```
foreach p_i \in \mathcal{P} do

| evaluar d(p_i, q) y guardar
end
queue \leftarrow \emptyset;
foreach u_i \in \mathcal{R} do

| if LB_{\mathcal{P}}(q, u_i) > r then
| continue;
| else if d(q, u_i) \leq r then
| queue.Add(u_i);
| end
end
Print(queue);
```

M

Criterio de Exclusión

El criterio de exclusión consiste en descartar todos los objetos u que cumplan:

$$|d(q,p) - d(p,u)| > r$$

 Gráficamente en el plano, usando un pivote se descartan todos los objetos que están fuera de un anillo centrado en p

Ejemplo consulta por rango

Tabla de Pivotes

$d(p_1,u_1)$	d(p ₂ ,u ₁)	d(p ₃ ,u ₁)
$d(p_1,u_2)$	d(p ₂ ,u ₂)	$d(p_3,u_2)$
$d(p_1,u_n)$	$d(p_2,u_n)$	$d(p_3,u_n)$

Criterio de exclusión:

$$LB_P(q,u_i) > r$$

Consulta k-NN

- Similar a una consulta por rango donde r es la distancia al candidato actual
- Calcular la distancia entre q y cada pivote
- Para cada objeto:
 - □ Calcular su cota inferior
 - Si la cota inferior es mayor que el candidato actual el objeto no es relevante (se descarta)
 - Si no pudo ser descartado se evalúa su distancia real y se determina si es mejor que el candidato actual o no

```
foreach p_i \in \mathcal{P} do
    evaluar d(p_i, q) y guardar
end
candidate \leftarrow null;
candidate_dist \leftarrow +\infty;
foreach u_i \in \mathcal{R} do
    if LB_{\mathcal{P}}(q, u_i) \geq \text{candidate\_dist then}
         continue:
    end
    dist \leftarrow d(u_i, q);
    if dist < candidate_dist then
         candidate \leftarrow u_i;
         candidate_dist \leftarrow dist;
    end
end
Print(candidate):
```


Se tiene el siguiente conjunto de 16 descriptores (A-P) de 5 dims

Los descriptores se comparan con distancia L₁

Α	8	2	5	2	0
В	10	3	2	1	3
С	12	4	1	2	1
P1 → D	2	3	0	1	0
Е	6	3	2	1	7
F	9	1	0	4	3
G	7	3	5	3	3
Н	10	0	1	2	3
1	9	1	1	3	1
P2 → J	8	2	9	3	0
K	9	1	1	1	2
L	3	4	1	1	2
М	7	3	6	1	1
P3 → N	9	3	5	3	3
0	3	4	5	1	0
Р	5	2	2	2	1

Tabla de Pivotes

	P1	P2	P3
Α	13	5	6
В	13	15	6
С	14	16	11
D	0	18	17
Е	13	19	12
F	15	15	8
G	15	9	2
Н	16	16	9
Ι	13	11	8
J	18	0	9
K	12	14	9
L	5	19	14
М	12	8	7
Ν	17	9	0
0	7	13	12
Р	8	12	11

Tabla de Pivotes: Matriz de distancias entre cada objeto y cada pivote

A continuación se desea buscar el vecino más cercano de un nuevo descriptor Q...

Α	8	2	5	2	0
В	10	3	2	1	3
С	12	4	1	2	1
D	2	3	0	1	0
Е	6	3	2	1	7
F	9	1	0	4	3
G	7	3	5	3	3
Н	10	0	1	2	3
I	9	1	1	3	1
J	8	2	9	3	0
K	9	1	1	1	2
L M	3	4	1	1	2
M	7	3	6	1	1
N	9	3	5	3	3
Ο	3	4	5	1	0
Р	5	2	2	2	1
Q	7	5	7	2	1
·		<u> </u>		<u> </u>	

Tabla de Pivotes

	P1	P2	P3
Α	13	5	6
В	13	15	6
С	14	16	11
D	0	18	17
Е	13	19	12
F	15	15	8
G	15	9	2
Н	16	16	9
I	13	11	8
J	18	0	9
K	12	14	9
L	5	19	14
М	12	8	7
Ν	17	9	0
Ο	7	13	12
Р	8	12	11
Q	16	8	9

Primero calcular la distancia de Q a todos los pivotes

Para cada elemento *x* se calcula su cota inferior LB:

$$\max_{p \in \mathcal{P}} \left\{ |d(q, p) - d(p, x)| \right\}$$

Por cada pivote restar dos números de la Tabla de Pivotes y escoger la máxima diferencia

Si LB del objeto es mayor o igual a la distancia del candidato a NN entonces no puede ser relevante y se descarta

Α	8	2	5	2	0
В	10	3	2	1	3
С	12	4	1	2	1
C D E	2	3	0	1	0
Е	6	3	2	1	7
F G	9	1	0	4	3
G	7	3	5	3	3
Н	10	0	1	2	3
I	9	1	1	3	1
J	8	2	9	3	0
K	9	1	1	1	2
L	3	4	1	1	2
М	7	3	6	1	1
Ν	9	3	5	3	3
0	3	4	5	1	0
Р	5	2	2	2	1
Q	7	5	7	2	1

Tabla de Pivotes

P2

P3

P1

13	5	6
13	15	6
14	16	11
0	18	17
13	19	12
15	15	8
15	9	2
16	16	9
13	11	8
18	0	9
12	14	9
5	19	14
12	8	7
17	9	0
7	13	12
8	12	11
16	8	9
	13 14 0 13 15 15 16 13 18 12 5 12 17 7	13 15 14 16 0 18 13 19 15 15 15 9 16 16 13 11 18 0 12 14 5 19 12 8 17 9 7 13 8 12

M

Espacio de pivotes

Espacio k-dimensional, donde cada coordenada es la distancia entre el objeto y cada pivote:

$$v_{\mathcal{P}}(u) = (d(p_1, u) \dots d(p_k, u))^T$$

Notar que: $LB_{\mathcal{P}}(q, u_i) = L_{\max}(v_{\mathcal{P}}(q), v_{\mathcal{P}}(u_i))$

Criterio de exclusión de la búsqueda por rango:

$$L_{\max}(v_{\mathcal{P}}(q), v_{\mathcal{P}}(u_i)) > r$$

 En búsqueda k-NN considerar r como la distancia al k-ésimo candidato

Espacio de pivotes

Convertir espacio métrico al espacio de pivotes

Complejidad Interna y Externa

- Complejidad externa:
 - □ Cómputos de distancia entre q y objetos no descartados
- Complejidad interna:
 - □ Cómputos de distancia entre q y pivotes
 - □ Cómputos de *LB* entre *q* y todos los objetos
- Al aumentar el número de pivotes:
 - □ Disminuye la complejidad externa
 - Aumenta la complejidad interna (linealmente)
- Existe un número óptimo de pivotes
 - □ Comparar performance del óptimo contra no usar índice

Complejidad versus Pivotes

- Al aumentar el número de pivotes:
 - □ Disminuye la complejidad externa (se descartan más objetos)
 - Aumenta la complejidad interna (crece el trabajo realizado para descartar un objeto)

Ver Chavez et al. 2001.

Selección de pivotes

- Dependiendo del dataset, hay objetos que son mejores pivotes que otros
 - □ Mejor pivote → Descarta más distancias → Cotas inferiores lo más altas posible
- Ejemplo: si tenemos datos en un cubo unitario de 20 dimensiones:

Selección de pivotes

- Una baja varianza en el histograma de distancias implica que al restar la distancia entre dos objetos probablemente será cercano a cero
 - □ El punto central es un mal pivote porque todos los objetos están casi a una misma distancia de él
 - □ Puntos en la esquinas obtienen una mayor varianza en las distancias
- Sin embargo, en un espacio métrico genérico no hay geometría!

Dimensión Intrínseca

Concepto de alta dimensión en espacios métricos:

Ver Chavez et al. 2001.

Selección de pivotes

- Método de selección 1: escoger pivotes en forma aleatoria
 - □ Definir un número de pivotes y escogerlos al azar
- ¿Se obtendrá el mismo rendimiento al usar cualquier conjunto de pivotes al azar?
- ¿Existirán mejores o peores conjuntos de pivotes?
- ¿Cómo escoger un conjunto de pivotes que logre la mejor performance en búsquedas?
- Notar que durante la creación del índice no se conocen los objetos de consulta
 - Asumir que las consultas tendrán una distribución similar a los datos conocidos

Evaluación de pivotes

- Criterio de evaluación: Un buen conjunto de pivotes P debe calcular una cota inferior lo más cercana a la distancia real
- Sea $\mu_{P\Delta}$ el promedio de la diferencia entre $LB_P(x,y)$ y d(x,y) para todo x, y
- Si se tienen N conjuntos de pivotes, se debe escoger el conjunto que minimiza $\mu_{P\Delta}$

Evaluación de pivotes

- Elegir al azar m pares de puntos (a_i,b_i)
- Estimar $\mu_{P\Lambda}$ para cada conjunto de pivotes P:
 - \square Para cada par (a_i,b_i) calcular $\Delta_i = |LB_P(a_i,b_i)-d(a_i,b_i)|$
 - \square El valor estimado de $\mu_{P\Delta}$ es el promedio de los m valores Δ_i
 - □ Pero el valor de $d(a_i,b_i)$ es el mismo para N los conjuntos de pivotes que se están evaluando!
- Finalmente, el criterio de evaluación consiste en escoger el conjunto P que maximice LB_P(a,b)
- Costo de selección para N conjuntos de k pivotes: Nm2k evaluaciones de la distancia

Selección de pivotes

Idea:

- Dos pivotes muy cercanos entre sí no mejoran mucho el valor de LB
- Se deben evitar pivotes cercanos y preferir los pivotes que están lejos entre sí

Método de selección 2:

 Dado un parámetro de distancia mínima crear una "zona de exclusión" alrededor de cada pivote

Selección de pivotes

- SSS: Sparse Spatial Selection
 - Realizar un recorrido aleatorio de los objetos de la colección y elegir objetos distantes entre sí.
- Parámetro de exclusión Mα:
 - ☐ M: máxima distancia en el espacio
 - \square α : factor (típicamente 0.4)
- Seleccionar con SSS distintos conjuntos reduciendo Mα hasta obtener varios conjuntos con el tamaño deseado y luego quedarse con el mejor

```
\begin{aligned} PIVOTS &\leftarrow \{x_1\} \\ \text{for all } x_i &\in \mathbb{U} \text{ do} \\ \text{if } \forall \ p \in PIVOTS, \ d(x_i, p) \geq M\alpha \text{ then} \\ PIVOTS &\leftarrow PIVOTS \cup \{x_i\} \\ \text{end if} \\ \text{end for} \end{aligned}
```


Optimización de tabla de pivotes

- Se debe notar que el valor de LB finalmente depende de un solo pivote
 - Opción 1: En la tabla de pivotes, se puede ordenar cada fila para probar primero el mejor pivote de cada objeto (el más cercano o más lejano)
 - Opción 2: La tabla de pivotes se puede reducir a una sola columna, dejando sólo el mejor pivote por objeto
 - Reducir el espacio en memoria

Snake Table

- Criterio de selección: Seleccionar pivotes en forma dinámica, según se resuelven consultas
 - Utilizar como pivote el objeto de consulta previo

Búsqueda Aproximada con Pivotes

- Idea: La función LB_P puede ser usada como una estimación rápida de la distancia real
- Parámetro de aproximación T (entre 0 y 1):
 - □ Calcular LB_P para todos los objetos y seleccionar los T% menores valores
 - Calcular la búsqueda por rango o los k-NN solo entre esos los T% objetos seleccionados
 - La distancia real d se evalúa solo para un T% de los objetos y los restantes son descartados
 - Para que sea más rápido que la búsqueda lineal, el tiempo de evaluar LB_P debe ser al menos T veces más rápido que d
 - Requisito: Los objetos u_i con menor $d(q,u_i)$ deben tener un valor bajo de $LB_P(q,u_i)$

М

Búsqueda Aproximada con Pivotes

Distribución del valor de LB_P para los vecinos más cercanos (efectividad):

consultas el objeto que era el NN fue también el de menor LB_P

En este dataset usando 5 pivotes, sólo un 6% de las veces el NN fue también el de menor LB_P y un 80% de las veces estuvo dentro del 10% menor

$$LB_{\mathcal{P}}, |\mathcal{P}| = 1 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 5 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 20 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 80$$

$$LB_{\mathcal{P}}, |\mathcal{P}| = 3 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 10 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 40$$

M

Búsqueda Aproximada con Pivotes

Reducción de los tiempos de búsqueda:

Cuando *d* es muy rápida de calcular (ej: L₁) el valor de *T* no puede ser muy alto si no la búsqueda aproximada se vuelve más lenta que el scan lineal

Cuando d es pesada de calcular (ej: EMD o una multimétrica) se puede probar con más valores de T y seguir siendo más rápido que el scan lineal

$$LB_{\mathcal{P}}, |\mathcal{P}| = 1 \qquad \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 5 \qquad \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 20 \qquad \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 80$$

$$- - \triangle - LB_{\mathcal{P}}, |\mathcal{P}| = 3 \qquad - - \triangle - LB_{\mathcal{P}}, |\mathcal{P}| = 40$$

M

Indices Métricos vs Multidimensional

Búsqueda Exacta:

Para búsqueda exacta, los índices métricos usualmente son más rápidos que la búsqueda lineal, en cambio los índices multidimensionales usualmente son más lentos que búsqueda lineal

Indices Métricos vs Multidimensional

Búsqueda Aproximada:

Para búsqueda aproximada, los índices multidimensionales logran un mucho mejor balance de efectividad vs tiempo de búsqueda

ESPACIOS MULTIMÉTRICOS

Combinación de distancias

- Sean $\delta_1, \dots \delta_m$ diferentes métricas para un mismo universo de objetos
 - □ Se puede definir una nueva función de distancia como la combinación lineal de las *m* métricas, es decir, sumando cada distancia multiplicada por un peso w_i:

$$\Delta(q, o) = \sum_{i=1}^{m} w_i \cdot \frac{\delta_i(q, o)}{normFactor_i}$$

Combinación de distancias

 Combinando más distancias (i.e. usando más descriptores) usualmente se mejora la calidad de la respuesta

Combinación de distancias

- Al combinar funciones de distancia se construye una nueva función que (usualmente) logra mejor efectividad
- Pesos estáticos: función con pesos fijos
 - □ La distancia combinada también es métrica
 - □ Índices pueden indexar la distancia combinada
- Pesos dinámicos: función puede cambiar sus pesos dependiendo del objeto de consulta
 - Usualmente logra mejor efectividad que pesos fijos
 - □ La distancia combinada no es métrica
 - □ Se deben indexar las distancias por separado

Normalización

 Normalizar por la distancia máxima o por una distancia de probabilidad α

Pesos estáticos

Cálculo automático de pesos estáticos:

Pesos dinámicos

Entropy Impurity

I. Perform k-NN in training dataset

Three objects belong to the blue class and two objects belong to the red class.

II. Entropy impurity

 P_{ω_i} : fraction of objects that belong to model class i

$$entropy(\delta_i) = -\sum_{i=1}^{|\#classes|} \begin{cases} P_{\omega_i} \cdot \log_2(P_{\omega_i}) & \text{if } P_{\omega_i} > 0 \\ 0 & \text{otherwise} \end{cases}$$

The entropy impurity of metric δ_i is equal to 0 if all objects belong to the same class, and has a maximum value (log(k)) if each object belongs to a different class.

Bibliografía

Similarity Search: The Metric Space Approach. Zezula et al. 2006.

□ Capítulo 1, Secciones 1-4.

Papers

- Chávez, Navarro, Marroquín, and Baeza-Yates.
 Searching in metric spaces. ACM Computing Surveys, 2001.
- Pedreira and Brisaboa. Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces. In SOFSEM, 2007.
- Bustos, Keim, Saupe, Schreck, and Vranic. Automatic selection and combination of descriptors for effective 3D similarity search. In ISMSE, 2004.
- Barrios, Bustos, and Skopal. Analyzing and dynamically indexing the query set. Information Systems, 2014.
- Barrios and Bustos. Competitive content-based video copy detection using global descriptors. Multimedia Tools and Applications, 2013.

Librerías

- Metric Space Library
 - http://www.sisap.org/metricspaceslibrary.html
- MetricKnn: Fast Similarity Search using the Metric Space Approach
 - □ https://juan.cl/metricknn org/