Examen

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont indépendants. Seules les reponses soigneusement justifiées seront prises en compte.]

Exercice 1. Soit $(Z_n)_{n\geqslant 1}$ une suite iid telle que $\mathbb{P}(Z_1=k)=p\,(1-p)^{k-1}$ pour $k\geqslant 1$. Soit $X_n=\max{(X_0,Z_1,...,Z_n)}$ avec X_0 une v.a. indépendante des $(Z_n)_{n\geqslant 1}$. Determiner si $(X_n)_{n\geqslant 0}$ est une chaîne de Markov sur \mathbb{N} et dans le cas donner sa matrice de transition.

Exercice 2. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov homogène sur l'espace d'états dénombrable \mathcal{M} et de matrice de transition $P \colon \mathcal{M} \times \mathcal{M} \to [0, 1]$. Montrer que les processus suivantes sont des chaînes de Markov homogènes et préciser leurs matrices de transition (en fonction de P):

- a) $W_n = X_{n+3}, n \ge 0$;
- b) $Y_n = X_{3n}, \ n \ge 0$;
- c) $Q_n = (X_n, X_{n+1}), n \ge 0$ (remarquons que $(Q_n)_{n \ge 0}$ est un processus sur l'espace d'états $\mathcal{M}^2 = \mathcal{M} \times \mathcal{M}$).

Exercice 3. Soit $(X_n)_{n\geq 0}$ la chaîne de Markov sur $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}$ de matrice de transition

$$P = \left(\begin{array}{cccccc} 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 0 & 0.5 & 0.5 \end{array}\right)$$

- a) Déterminer les classes de communication et classifier les états en transients ou récurrents.
- b) La chaîne est-elle irréductible?
- c) Soit $T_x = \inf \{n > 0 : X_n = x\}$. Calculer $\mathbb{P}(T_1 = n | X_0 = 5)$ et $\mathbb{P}(T_6 = n | X_0 = 5)$ pour tout $n \ge 1$.
- d) Calculer $\mathbb{P}(T_4 < T_5 | X_0 = 3)$.
- e) Déterminer les probabilités invariantes de la chaîne.
- f) Soit $u(x) = \mathbb{E}_x[T_5]$ pour tout $x \in \mathcal{M}$. Déterminer et résoudre l'équation linéaire satisfaite par la fonction u.

Exercice 4. Soit $(X_n)_{n\geqslant 1}$ une suite iid telle que $\mathbb{P}(X_n=\pm 1)=1/3$ et $\mathbb{P}(X_n=0)=1/3$. Soit $S_n=X_1+\cdots+X_n$. Soit $(\mathcal{F}_n)_{n\geqslant 0}$ la filtration engendrée par $(S_n)_{n\geqslant 0}$.

a) Determiner la fonction $f: \mathbb{N} \to \mathbb{R}$ de sorte que $M_n = S_n^2 + f(n)$ soit une martingale par rapport à $(\mathcal{F}_n)_{n \geq 0}$.

- b) Soit $T_x = \inf\{n \ge 1: |S_n| \ge x\}$. Dans la suite on admettra que $\mathbb{E}(T_x) < +\infty$. Montrer que $\mathbb{E}[M_{T_x}] = \mathbb{E}[M_0] = 0$.
- c) Calculer $\mathbb{E}[T_x]$.
- d) Soit $R = \inf \{n \ge 1 : S_n \le -100\}$ et $Y_n = S_{n \wedge R}$. Montrer que la suite $(Y_n)_{n \ge 0}$ converge presque sûrement et determiner sa limite.
- e) Montrer que $\mathbb{E}[R] = +\infty$.

Exercice 5. Soit $(X_n)_{n\geqslant 0}$ une suite de v.a. iid telle qu'il existe R>0 tel que $\mathbb{E}[e^{RX_1}]=1$. Soit $S_n=X_1+\cdots+X_n$.

- a) Montrer que le processus $(M_n)_{n\geqslant 0}$ donné par $M_n=e^{RS_n}$ pour $n\geqslant 1$ et $M_0=1$ est une martingale par rapport à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$ donnée par $\mathcal{F}_n=\mathcal{F}_n^X=\sigma(X_1,...,X_n)$ avec $\mathcal{F}_0=\{\varnothing,\Omega\}.$
- b) Montrer que $T = \inf\{n \ge 0 : S_n \ge \ell\}$ est un temps d'arrêt pour $(\mathcal{F}_n)_{n \ge 0}$.
- c) Utiliser le processus arrêté $(M_{n\wedge T})_{n\geqslant 0}$ pour montrer que, pour tout $\ell\geqslant 0$ on a

$$\mathbb{P}\Big(\max_{k\geqslant 0} S_k \geqslant \ell\Big) \leqslant e^{-R\ell}.$$