Relational Schema Diagram

Functional Dependencies and proof of BCNF.

WishList (ID ,Name) Key:{ID,Name} FD: No FDs . Because both attributes make composite key. Hence the BCNF is formally satisfied since there are no FDs. User(ID,Fname,Lname,DOB,Gender,Nationality,Language,Email,Contact No, Signup date, Credit Card No) Key: ID FD:

ID → Signup date

ID → Credit Card No

Here, ID is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is

ID. Hence this relation is in BCNF.

3. Guest(Guest ID, Type)

Key: Guest_ID

FD:

Guest_ID → Type

Here, Guest_ID is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is Guest_ID. Hence this relation is in BCNF.

4. Host (Host ID, Earning)

Key:Host_ID

FD:

Host_ID → Earning

Here, Host_ID is the primary key, and for every FD X → Y that holds on a relation, X is key, where X is

Host_ID. Hence this relation is in BCNF.

5. Avails(Listing ID, Guest ID, To, From, No of people)

Key:{Listing_ID, Guest_ID}

FD:

{Listing ID,Guest ID} \rightarrow To

{Listing ID,Guest ID} → From

{Listing_ID,Guest_ID} → No of people

Here, {Listing_ID,Guest_ID} is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is {Listing_ID,Guest_ID}. Hence this relation is in BCNF.

6.Guest Reviews (<u>Listing_ID</u>, Guest_ID, Comments, Rating)

Key: {Listing_ID,Guest_ID}

FD:

{Listing_ID,Guest_ID} → Comments

{Listing_ID,Guest_ID} → Rating

Here, {Listing_ID,Guest_ID} is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is {Listing_ID,Guest_ID}. Hence this relation is in BCNF.

7. Host Reviews (Listing ID, Guest ID, Comments, Rating)

Key: {Listing ID,Guest ID}

FD:

{Listing_ID,Guest_ID} → Comments

{Listing_ID,Guest_ID} → Rating

Here, {Listing_ID,Guest_ID} is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is {Listing_ID,Guest_ID}. Hence this relation is in BCNF.

We decomposed review table into guest and host review to differentiate between host reviewing guests and guests reviewing host.

Also Host_ID is removed, as Host_ID is implicitly found out from Listing_ID .

Also the occurrence of FD

```
Listing_ID → Host_ID
```

results in the relation not being BCNF. Decomposition algorithm hints towards the creation of listing table which is already there.

8. Home(<u>Listing_ID</u>, Address, Description, Cost, Cancellation_Policy, Available, Host_ID, To, From, Location_ID, Bedroom, Bathroom, Min_Stay, Max_Stay, Type, Maximum_Guests)

Key: Listing_ID

FD:

Listing_ID → Address

Listing_ID → Description

Listing_ID → Cost

Listing_ID → Cancellation_Policy

Listing_ID → Available

Listing_ID → Host_ID

Listing_ID → To

Listing_ID → From

Listing_ID → Location_ID

Listing_ID → Bedroom

Listing_ID → Bathroom

Listing_ID → Min_Stay

Listing_ID → Max_Stay

Listing_ID → Maximum_Guest

Listing_ID → Type

Here, Listing_ID is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is Listing_ID. Hence this relation is in BCNF.

9. Experience (<u>Listing_ID</u>, Address, Description, Cost, Cancellation_Policy, Available, Host_ID, To, From, Location_ID, Duration, Category, Group_Size, Language_Offered)

Key: Listing_ID

FD:

```
Listing_ID → Address

Listing_ID → Description

Listing_ID → Cost

Listing_ID → Cancellation_Policy

Listing_ID → Available

Listing_ID → Host_ID

Listing_ID → To

Listing_ID → From

Listing_ID → Location_ID

Listing_ID → Duration

Listing_ID → Category

Listing_ID → Group_Size
```

Listing_ID → Language_Offered

Here, Listing_ID is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is Listing_ID. Hence this relation is in BCNF.

10. Guidebook (Guidebook_ID, Description, Listing_ID)

Key: Guidebook_ID

FD:

 ${\sf Guidebook_ID} \to {\sf Description}$

Guidebook_ID → Listing_ID

Here, Guidebook_ID is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is Guidebook_ID. Hence this relation is in BCNF.

11. Amenities Provided (Listing_ID, Amenity_Name)

Key: {Listing_ID, Amenity_Name)

FD: No FDs . Because both attributes make composite key. Hence the BCNF is

formally satisfied since there are no FDs.

12. Amenities (Amenity_Name)

Key: Amenity_Name

FD: No FDs . Because there is a single attribute which is the key. Hence the BCNF is formally satisfied since there are no FDs.

13. Place/Contains(Guidebook_ID,Location_ID,Place_Name)

Key: {Guidebook_ID,Location_ID,Place_Name}

FD: No FDs . Because the combination of all the attributes is the key. Hence the BCNF is formally satisfied since there are no FDs.

14.Location (Location_ID, City, State, Country)

Key:Location_ID

FD:

Location_ID → City

Location_ID → State

Location_ID → Country

Here, Location_ID is the primary key, and for every FD $X \rightarrow Y$ that holds on a relation, X is key, where X is Location_ID. Hence this relation is in BCNF.