Planar Graphs II

Amogh Johri IMT2017003

November 18, 2020

Introduction

- Introduction
- 2 Convex Combinations Preliminaries
- Formulations
- 4 Tutte's Theorem

Section

Introduction

•0000

- 1 Introduction
- 2 Convex Combinations Preliminaries
- S Formulations
- 4 Tutte's Theorem

- Planar Graph: A graph which can be drawn on a plane (R^2) without any of its edges crossing.
- Plane Graph: A graph drawn on a plane without any of its edges crossing.

00000

Figure 1: a. Non-Planar Graph b. Planar Graph c. Plane Graph

Planar Graph Terminology

- Regions or Faces: When we draw a plane graph drawing, the plane gets divided into regions or faces. There are two types of faces:
 - Bounded Faces
 - Unbounded Faces
- Boundary: For each face of a plane graph, the set of vertices and edges that outline it form the boundary of the face.
- Every Planar graph has exactly one unbounded face, which is called the **exterior face**.

00000

Figure 2: Plane Graph - Regions and Boundaries

Section

- Introduction
- 2 Convex Combinations Preliminaries
- Formulations
- 4 Tutte's Theorem

Convex Combination

Suppose we have two points in R^2 , and we denote them as A and B.

- The unique line passing through A and B can be denoted by x = (1 t)A + tB, $t \in R$
- The line segment joining the points A and B are denoted by x = (1 t)A + tB, $t \in [0, 1]$

This can be extended for n points, where we define the convex combination as:

For points $[a_0, a_1, ..., a_{n-1}]$, $x = \sum_{i=0}^n t_i a_i$, where $\sum_{i=0}^n t_i = 1$ and $t_i \ge 0 \ \forall i \in [0, ... n-1]$

Convex Hull

The set of all convex combinations of a point set is the *convex hull* for the point set.

Figure 3: Examples of Convex Hull for different Point Sets

•00000000

- 1 Introduction
- Convex Combinations Preliminaries
- Formulations
- 4 Tutte's Theorem

Edge Skeleton of a Triangulation of a Disk

Let G = (V, E) be such a graph that arises from the edge skeleton of a triangulation of a disk, i.e., suppose K is a triangulation of the disk, then the edge-skeleton consisting of the vertices and edges of K is a planar graph such that each interior face in bounded by three edges and their union is homeomorphic to B^2 .

Figure 4: Edge Skeleton of a Triangulation of a Disk

000000000

Strictly Convex Combination Mapping

 $f: V \longrightarrow \mathbb{R}^2$ is a strictly convex combination if for every interior vertex $u \in V$ there are real numbers $t_{uv} > 0$ with $\sum_{v} t_{uv} = 1$ and $f(u) = \sum_{v} t_{uv} f(v)$, where both sums are over all neighbords v of u.

Observation: Since we are considering straight-line embedding, a strictly convex combination mapping suffices in defining the edge-skeleton for a planar graph.

Inner Product

Introduction

An inner product on a real vector space V is an operation which assigns to each pair of vectors u and v, a unique real number, denoted by $\langle u, v \rangle$, which satisfies the following axioms $\forall u, v \text{ and } w \in V \text{ and } \forall k \in R.$

- $\langle u, v \rangle = \langle v, u \rangle$ [Commutative Law]
- $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ [Distributive Law]
- \bullet < ku, v > = k < u, v >
- \bullet $< u, v > \ge 0$, and $< u, u > = 0 \iff u = 0$.

000000000

Introduction

We define a *linear function h*: $R^2 \longrightarrow R$ defined by $h(x) = \langle x, p \rangle + c$, where $p \in \mathbb{R}^2$ is a non-zero vector, and $c \in R$.

Lemma

$$h(f(u)) = \sum_{v} t_{uv} h(f(v))$$

Proof.

$$h(f(u)) = < \sum_{v} t_{uv} f(v), p > + \sum_{v} t_{uv} c = \sum_{v} t_{uv} h(f(u))$$

- **Boundary Edge:** An edge which is the part of the outer face of the planar graph is a *boundary edge*.
- **Interior Edge:** An edge which is not the part of the outer face of the planar graph is an *interior edge*.
- **Separating Edge**: An interior edge which connects to boundary vertices is a *separating edge*.

Example

Figure 5: Types of Edges

Connectedness

Lemma

Under the assumption of no separating edge, every interior vertex u can be connected to every boundary vertex by an interior path.

Proof.

- Begin expanding outwards from u, one edge at a time (BFS). Stop when we reach the first boundary vertex. Assume that this vertex is w and its neighboring boundary vertices are w_0 and w_1 .
- Since none of the edges separate, the neighbors of w form a unique interior path connecting w_0 to w_1 . Hence, there is an interior path from u to w_0

00000000

Lemma

Introduction

Let K be a triangulation of B^2 without separating edges and $f: V \longrightarrow R$ be a convex combination function. If $f(u) \ge f(w)$ for an interior vertex u and every boundary vertex w then f(u) = f(v)for every vertex $v \in V$.

Proof.

- Suppose u is an interior vertex which maximizes f (i.e., $f(u) > f(v) \ \forall \ v \in V.$
- Since f is a convex combination function, all the neighbors of u have the same function value.

Section

- 1 Introduction
- Convex Combinations Preliminaries
- 6 Formulations
- 4 Tutte's Theorem

Introduction

Theorem

If $f: V \longrightarrow \mathbb{R}^2$ is a convex combination mapping that maps the boundary vertices to a strictly convex polygon then drawing the straight edges between the images of the vertices is a straight-line embedding of the edge-skeleton of K.

Interior Vertices Lemma

Lemma

All interior vertices u of V map to the interior of the strictly convex polygon whose corners are the images of the boundary vertices.

Proof.

- We choose our linear function such that it contains one of the boundary edge, and h(f(w)) > 0 for all boundary vertices other than the endpoints of that edge.
- Now, h(f(u)) > 0, otherwise the minimum principle would imply that value for all the boundary vertices is also 0.

Implications of Interior Vertices Lemma

- All interior vertices lie in the interior of the polygon.
- Each triangle incident to a boundary edge is non-degenerate (i.e., the three vertices of that triangle are non-collinear).

Positionality of Interior Vertices

Lemma

Let yuv and zuv be the two triangles sharing the interior edge uv in K, then the points f(y) and f(z) lie on the opposite side of $h^{-1}(0)$ which passes through f(u) and f(v).

Formulations

Proof.

- Assume h(f(y)) > 0, and find a strictly rising path connecting y to the boundary.
- Find two strictly falling paths connecting u and v to the boundary, respectively.
- Now, we can get a piece of triangulation as defined by u, v, and the paths from them to the boundary.

Figure 6: Positionality of Interior Vertices

Triangles have Disjoint Interiors

Lemma

Introduction

No two edges intersect except for at a single point (vertex).

Proof.

Introduction

 Assume x is a point lying in the common interior of two edges (uv and u'v').

Formulations

- Choose a half-line which emanates from x and avoids the images of all the vertices. This half-line shall then intersect exactly one of yu, yv, zu or zv.
- By construction we get a sequence half-lines starting from uv and u'v', and ending at a boundary edge.
- While tracing back in the sequence, we pass from one edge to an unambiguously defined preceding edge, i.e., uv = u'v'.

Input: Edge skeleton of a triangulation of a disk, where no edge separates.

Output: Straight line embedding for the input planar graph.

- Step 1 Re-index the vertices of the graph such that u₁ to u_k are ordered along the boundary of the outer face, and u_{k+1} to u_n are the interior vertices of the graph.
- Step 2 $f(u_i) = (\cos(2i\pi/k), \sin(2i\pi/k)), \forall i \in [1, ..., k]$
- Hence, the vertices u_1 to u_k form the boundary of a strictly convex polygon, as required.

- Step 3 We express the image of each interior vertex as a strictly convex combination of its neighbors as, $f(u_j) = (d_j)^{-1} \sum f(v)$, where d_j is the degree of the vertex u_j , and $j \in [k+1,...n]$.
- Hence, we get a system of (n-k) linear equations in (n-k) variables, which can be solved to obtain the embedding.

Figure 7: Planar Graph (Input)

Figure 8: Straight Line Embedding for the Planar Graph(Output)

- [1] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction.
- [2] Sarada Herke
 Graph Theory: 57. Planar Graphs and Graph Theory: 58. Euler's
 Formula for Plane Graphs.
 (https://www.youtube.com/watch?v=wnYtITkWAYA,
 https://www.youtube.com/watch?v=5ywif1Zpeo4t=4s)
- [3] Gilbert Strang. Introduction to Linear Algebra.