AD-A065 936

IOWA UNIV IOWA CITY DIV OF MATERIALS ENGINEERING
FAIL-SAFE OPTIMAL DESIGN OF STRUCTURES WITH SUBSTRUCTURING, (U)
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

UNCLASSIFIED

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

DAAK11-77-C-0023
NL

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN, A K GOVIL, J S ARORA

IOWA CITY DIV OF MATERIALS ENGINEERING
F/6 1/3
AUG 78 D T NGUYEN
F/6 1/3
AUG 78 D T N

A0 65936

DOC FILE COPY

Report No. 45

FAIL-SAFE OPTIMAL DESIGN OF STRUCTURES WITH SUBSTRUCTURING

by

D. T. Nguyen, A. K. Govil, J. S. Arora and E. J. Haug

Division of Materials Engineering
College of Engineering
The University of Iowa
Iowa City, Iowa 52242

August 1978
Interim Report for Period May 1977—August 1978

Prepared for
U.S. Army Ballistic Research Laboratory
DRDAR-BLB

Aberdeen Proving Ground, MD 2160

D D C
PROPRINTE
MAR 80 1979

""
PUBLIFIED

""

Assert & park street

79 03

490

LEVEL

Report No. 45

(14) TR-45

FAIL-SAFE OPTIMAL DESIGN OF STRUCTURES WITH SUBSTRUCTURING.

bу

(15) DAAK 11-77-2-0023 (

D. T. Nguyen, A. K. Govil, J. S. Arora and E. J. Haug Division of Materials Engineering College of Engineering
The University of Iowa Iowa City, IA. 52242

Interim Report for Period May 1977 - August 1978

9) Interim technical rept.
Prepared for May 44- Aug 48s

U. S. Army Ballistic Research Laboratory DRDAR-BLB Aberdeen Proving Ground, MD 21005

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

409 250

The same of the sa	NON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
I. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED Interim Technical Report
		May 197 to August 1978
		6. PERFORMING ORG. REPORT NUMBER 45
- AUTHOR(*)		8. CONTRACT OR GRANT HUMBER(*)
D. T. Nguyen, A. K. Govil, J. S	· Arora and	DAAK11 - 77 - C - 0023
E. J. Haug PERFORMING ORGANIZATION NAME AND ADD	DRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
		AREA & WORK UNIT HUMBERS
Division of Materials Engineeri College of Engineering		
The University of Iowa. Iowa Ci	ty. 1a. 32/42	12. REPORT DATE
U.S. Army Ballistics Research		August 1978
ATTN: DRDAR-BLB Aberdeen Proving Ground, MD 21	005	18. NUMBER OF PAGES 185
I. MONITORING AGENCY NAME & ADDRESSIL		16. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION/DOWNGRADING
	19 19 19 19 19 19 19 19 19 19 19 19 19 1	
	_	
. DISTRIBUTION STATEMENT (of the abetract or	ntered in Blook 20, il dillerent fro	om Report)
DISTRIBUTION STATEMENT (of the abstract of	ntered in Blook 20, if different tro	om Report)
	ntered in Blook 20, if different fro	om Report)
	ntered in Blook 20, if different tra	om Report)
	ntered in Blook 20, if different tro	om Report)
SUPPLEMENTARY NOTES		
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde il necess	ery and identify by block number,	
SUPPLEMENTARY NOTES	ery and identify by block number,	
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde il necess Optimal Design; Fail-Safe; Dam	ery and identify by block number,	
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde il necesso Optimal Design; Fail-Safe; Dam Helicopter Tail-Boom	nage Conditions; Struc	etures; Substructuring;
SUPPLEMENTARY NOTES Optimal Design; Fail-Safe; Dam Helicopter Tail-Boom ABSTRACT (Continue on reverse elde il necession for the problem is developed ased on the state space gradient everal cases of an open and closer are obtained and analyzed. (Continue on reverse elde il necession for the problem is developed ased on the state space gradient everal cases of an open and closer are obtained and analyzed. (Continue on reverse elde il necession for the problem is developed ased on the state space gradient everal cases of an open and closer are obtained and analyzed. (Continue on reverse elde il necession for the problem is developed ased on the state space gradient everal cases of an open and closer are obtained and analyzed. (Continue on reverse elde il necession in the problem is developed as the state space gradient everal cases of an open and closer are obtained and analyzed. (Continue on reverse elde il necession in the problem is developed as the problem is devel	ange Conditions; Structure and identify by block number, iral design is defined with substructuring projection method is sed tail-boom structuring.	tures; Substructuring; d. An optimal design formula- An optimal design algorithm derived: Optimal designs formula- tes for the Army Cobra helicop

DD 1344 73 1473

EDITION OF 1 NOV 65 IS ORICLETE S/N 0102-014-6501 |

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (LAM Date Entered)

TABLE OF CONTENTS

			Page
LIST OF TA	BLES		3
LIST OF FI	GURES		4
CHAPTER			
1.	INTRO	DUCTION	5
	1.1. 1.2. 1.3.	Purpose and Scope of Study Review of Literature Notation	5 6 6
2.	FAIL-	SAFE OPTIMAL DESIGN WITH SUBSTRUCTURING	7
	2.1. 2.2. 2.3.	Structural Analysis by Substructuring State-Space Definition of a Fail-Safe Optimal Design	7 7
	2.4.	Problem with Substructuring (FSODPS) Design Sensitivity Analysis of the FSODPS Optimal Design Algorithm for the FSODPS	13 15 22
3.	DISCU	SSION OF THE METHOD AND COMPUTATIONAL CONSIDERATION	26
	3.1. 3.2. 3.3.	Selection of Critical Constraints	26 26
		Structural Analysis	27
4.	APPLI DESIG	CATION OF THE ALGORITHM FOR THE FAIL-SAFE STRUCTURAL N	28
	4.2.	Design Formulation Computer Program Example Problems	28 32 36
		4.3.1. Helicopter Tail-Boom Open Truss 4.3.2. Closed Helicopter Tail-Boom	37 44
5.	DISCU	SSION, CONCLUSIONS AND RECOMMENDATIONS	52
REFERENCES			54
APPENDIX A		L SAFE DESIGN OF AN OPEN TRUSS HELICOPTER TAIL-BOOM HOUT SUBSTRUCTURING	56
APPENDIX B	: FIN	ITE ELEMENTS EMPLOYED	75
	B.1 B.2 B.3 B.4 B.5	. Truss Element . Isotropic Constant Strain Triangular (CST) Element . Symmetric Shear Panel (SSP) Element	76 77 79 83 87
APPENDIX C	: USE	R'S MANUAL OF COMPUTER PROGRAMS SOS4 AND DIMCO	88
	C.1	. Introduction	89 90

			Page
		C.2.1. Problem Set-up C.2.2. Input Data C.2.3. Output	91 92 104
	C.3.	Computation of Dimensions of Various Ma User's Manual for the Computer Program	
APPENDIX D:	LISTI	NG OF PROGRAMS SOS4 AND DIMCO	109
		Listing of the Program SOS4 Listing of the Program DIMCO	110 171
LIST OF SYME	OLS		183

They was the state of the state

LIST OF TABLES

Table		Page
2.1.	COMPARISON OF CALCULATIONS WITH AND WITHOUT SUBSTRUCTURING	17
4.1.	MEMBER CONNECTIVITY FOR OPEN TRUSS HELICOPTER TAIL-BOOM	39
4.2.	FINAL DESIGN OF OPEN TRUSS HELICOPTER TAIL-BOOM WITH SUBSTRUCTURING	40
4.3.	CRITICAL CONSTRAINTS AT OPTIMUM (OPEN TRUSS TAIL-BOOM)	42
4.4.	COMPARITON OF RESULTS OBTAINED WITH AND WITHOUT SUBSTRUCTURING FOR OPEN TRUSS HELICOPTER TAIL-BOOM	43
4.5.	CST ELEMENT CONNECTIVITY FOR A CLOSED TAIL-BOOM HELICOPTER	45
4.6.	FINAL DESIGN FOR CLOSED HELICOPTER TAIL-BOOM WITH SUBSTRUCTURING	47
4.7.	CRITICAL CONSTRAINTS AT OPTIMUM (CLOSED TAIL-BOOM)	44
4.8.	NATURAL FREQUENCY AT OPTIMUM	50
4.9.	COMPARISON OF OPTIMUM RESULTS OBTAINED WITH SUBSTRUCTURING FOR OPEN AND CLOSED TAIL-BOOM STRUCTURE	51
A.1.	MEMBER LOCATIONS FOR OPEN TRUSS HELICOPTER TAIL-BOOM	61
A.2.	DESIGN DATAS FOR OPEN TRUSS HELICOPTER TAIL-BOOM	62
A.3.	DAMAGED CONDITION DIFINITIONS AND FREQUENCY LIMITS	64
A.4.	OPTIMUM DESIGN FOR CASE I TO V OF OPEN TAIL-BOOM STRUCTURE (WITHOUT SUBSTRUCTURING)	66
A.5.	OPTIMUM DESIGN FOR CASE VI OF OPEN TAIL-BOOM WITHOUT SUBSTRUCTURING	69
A.6.	OPTIMUM DESIGN FOR CASE VII OF OPEN TAIL-BOOM WITHOUT SUBSTRUCTURING	70
A.7.	CRITICAL CONSTRAINTS AT OPTIMUM (7 CASES OF OPEN TAIL-BOOM)	71
A.8.	STRUCTURAL FREQUENCY AT OPTIMUM (7 CASES OF OPEN TAIL-BOOM)	72

LIST OF FIGURES

Figur	re	Page
2.1.	Arrangement of Members for Open Truss Tail-Boom	16
	Flow Diagram for the Computer Program SOS4	33
4.2.	Nodal Numbering Systems	38
A.1.	Geometry of Helicopter Tail-Boom	58
A.2.	Arrangement of Members for Open Truss Tail-Boom	59
A.3.	Member Numbering for the First Pannel	60
A.4.	Cost Function Histories for Several Design Cases of the Helicopter Tail-Boom Truss (Without Substructuring)	73
B.1.	A General Truss Element	78
в.2.	Isotropic Constant Strain Triangular (CST) Element	80
в.3.	Symmetric Shear Panel, or Symmetric Pure Shear Panel	84
c.1.	Bandwidth Parameters for Stiffness Matrix of the \mathbf{r}^{th} Substructure	98

CHAPTER 1

INTRODUCTION

1.1. Purpose and Scope of Study

This report presents a systematic design approach that accounts for projected structural damage that may be inflicted during the life of a structure. This is called "fail-safe structural design."

<u>Definition 1.1. Fail-Safe Structure</u>: A structure is called fail-safe or damage tolerant if it continues to perform its basic functions even after sustaining a specified level of damage.

<u>Definition 1.2. Damage Condition</u>: A damage condition for a structure is defined as complete or partial removal of selected members or parts of the structure. Some joints of the structure may be removed as a result of the damage. A structure that has sustained the specified damage is called a damaged structure.

<u>Definition 1.3.</u> Optimal Fail-Safe Structure: A fail-safe or damage tolerant structure is called optimal if its design minimizes a cost function and satisfies constraints that must hold for the undamaged structure and for projected damage conditions.

A basic assumption in the method is that the structure remains geometrically stable after the specified damage to its members or joints. In other words the structure does not fail catastrophically in a mechanism-type motion after damage occurs. The structure is thus assumed to have enough redundancy in its construction.

One of the contributions of this report is in the development of a design sensitivity analysis method for fail-safe design with substructuring. Once design sensitivity information is known the designer can either use it in an optimal design procedure or he may use it to aid his intuition in adjusting design parameters to meet his objectives. Incorporation of substructuring in the fail-safe optimal design procedure is of critical importance since it makes the design sensitivity analysis and the structural analysis efficient. This allows the designer to consider a large number of damage conditions that may occur in large practical structures, without excessive computing effort. The main reason for this high efficiency is that when damage occurs to certain parts of the structure, the structural stiffness and mass matrices are modified only for those portions of the structure. This represents a small change in structural analysis with substructuring, whereas

without substructuring, the stiffness and mass matrices for the complete structure will be changed, making the structural analysis computationally expensive.

The optimal design algorithm for fail-safe structural design using the substructuring concept is first presented. The method is then applied to aircraft structures, such as a truss representation of the helicopter tail boom that was previously optimized by a similar method without substructuring. Optimum designs without substructuring that are obtained by using the computer code of Ref. 1 are given in Appendix A. Results obtained with the substructuring formulation are then compared with the previous results.

The optimal design algorithm takes into account the following considerations:

- (a) Multiple loading conditions
- (b) Various type of finite elements: truss, constant strain triangle, and symmetric shear panel
- (c) Several elements of the structure may be assigned same design value and if required, can be kept fixed throughout or for a few iterations of the optimization process
- (d) Damage that may occur to some elements and/or nodes of the structure.

1.2. Review of Literature

The concept of fail-safe optimal design of structures is relatively new. In Ref. 2 (Chapter 11), a comprehensive review of literature relative to fail-safe design of structures was conducted. No significant literature was found related to optimal design of fail-safe structures.

The concept of substructuring in optimal design of structures was recently presented by Govil, Arora and Haug [3]. It was shown that the idea of partitioning a large structure into a number of smaller substructures is profitable, since the total computational effort is reduced with incorporation of substructuring into the optimization algorithm.

The purpose of this report is to integrate concepts of fail-safe design and substructuring in order to develop and demonstrate an efficient approach to optimal design of fail-safe structures.

1.3. Notation

A standard matrix and vector notation is used throughout the report. All symbols are presumed to be matrices or vectors, unless stated otherwise. A superscript T is used to denote transpose of a matrix or vector.

CHAPTER 2

FAIL-SAFE OPTIMAL DESIGN WITH SUBSTRUCTURING

2.1. Introduction

In this chapter, the fail-safe optimal design problem with substructuring (FSODPS) is formulated. Constraints are imposed on member stresses, nodal displacements, and natural frequency under all loading and damage conditions. Constraints that are independent of load and damage conditions are also imposed. Design sensitivity analysis is developed and an algorithm is presented in a convenient step-by-step format.

The concepts of fail-safe design and substructuring in optimal structural design are presented in Refs. 2 and 3. Details of structural analysis with substructuring are presented in Ref. 4. However, structural analysis equations are required throughout the development of the algorithm, so they are summarized here.

2.2. Structural Analysis by Substructuring

2.2.1. Static Analysis

The equilibrium equation (state equation) in terms of displacements, for a given damaged condition α , is given as [4]:

$$K^{(\alpha)}(b) z^{(\alpha)} = S^{(\alpha)}(b)$$
 (2.2-1)

where

 $K^{(\alpha)}(b) = NxN$ structural stiffness matrix

 $S^{(\alpha)}(b)$ = vector of N effective nodal loads on the structure

 $z^{(\alpha)}$ = state variable vector of N nodal displacements

 α = a superscript used to represent a damaged condition; for convenience $\alpha \text{=}0$ represents the undamaged structure.

N = number of degrees of freedom of the structure

b = a vector of D design variables, such as cross-sectional areas, moments of inertia, thickness and widths.

Using the substructuring concept, state equation 2.2-1 is written as:

$$\begin{bmatrix} K_{BB}^{(\alpha)} & K_{BI}^{(\alpha)} \\ K_{IB}^{(\alpha)} & K_{II}^{(\alpha)} \end{bmatrix} \begin{bmatrix} z_{B}^{(\alpha)} \\ z_{I}^{(\alpha)} \end{bmatrix} = \begin{bmatrix} S_{B}^{(\alpha)} \\ S_{I}^{(\alpha)} \end{bmatrix}$$
(2.2-1)

where

B, I = subscripts referring to boundary and interior quantities for all substructures

 $z_B^{(\alpha)} \in \mathbb{R}^n$ = a vector of boundary displacements for the entire structure

n = boundary degrees of freedom for the entire structure

 $z_{I}^{(\alpha)} \epsilon R^{m}$ = a vector of interior displacements for the entire structure

m = interior degrees of freedom for the entire struc-

$$K_{BB}^{(\alpha)}, K_{BI}^{(\alpha)}$$

$$K_{IB}^{(\alpha)}, K_{II}^{(\alpha)}$$
= submatrices of $K^{(\alpha)}$ (b)

 $S_B^{(\alpha)}$ = a vector of externally applied loads associated with the boundary degrees of freedom

 $S_{I}^{(\alpha)}$ = a vector of externally applied loads associated with the interior degrees of freedom

Submatrices such ad $K_{BB}^{(\alpha)}$, $K_{BI}^{(\alpha)}$, $S_{B}^{(\alpha)}$, have compatible dimensions and will be understood to be functions of the design variable vector b.

The interior displacements $\mathbf{z}_{I}^{(\alpha)}$ are first eliminated from Equation 2.2-2 and the following reduced equation is obtained

$$K_{\rm B}^{(\alpha)} z_{\rm B}^{(\alpha)} = F_{\rm B}^{(\alpha)}$$
 (2.2-3)

where

$$K_{\mathbf{B}}^{(\alpha)} = K_{\mathbf{B}\mathbf{B}}^{(\alpha)} + K_{\mathbf{B}\mathbf{I}}^{(\alpha)} Q^{(\alpha)}$$
 (2.2-4)

$$F_B^{(\alpha)} = S_B^{(\alpha)} + Q^{(\alpha)} S_I^{(\alpha)}$$
 (2.2-5)

$$Q^{(\alpha)} = -\left[K_{II}^{(\alpha)}\right]^{-1} K_{IB}^{(\alpha)} \qquad (2.2-6)$$

Here, $K_B^{(\alpha)}$ is a boundary stiffness matrix for the entire structure and $F_B^{(\alpha)}$ R^D is the vector of effective boundary forces. Efficient numerical procedures are used to decompose $K_{II}^{(\alpha)}$ and then to solve for $Q^{(\alpha)}$ (mxn) in Equation 2.2-6. The boundary stiffness $K_B^{(\alpha)}$ and the effective boundary force vector $F_B^{(\alpha)}$

are synthesized by considering contributions from all substructures. For this purpose, the equilibrium equation for a substructure, which is considered as an isolated free-body, is also expressed in the partitioned form

$$\begin{bmatrix} K_{BB}^{(r,\alpha)} & K^{(r,\alpha)} \\ K_{IB}^{(r,\alpha)} & K_{II}^{(r,\alpha)} \end{bmatrix} \begin{bmatrix} z^{(r,\alpha)} \\ z_{I}^{(r,\alpha)} \end{bmatrix} = \begin{bmatrix} S_{B}^{(r,\alpha)} \\ S_{I}^{(r,\alpha)} \end{bmatrix}$$
(2.2-7)

where the superscript r refers to the r^{th} substructure and subscripts B and I refer to boundary and interior quantities. The vector $S_B^{(r,\alpha)}$ represents loads that are applied at the boundary nodes and reaction forces due to adjoining substructures. Let N(r) and m(r) represent the number of boundary and interior coordinates of the r^{th} substructure, respectively. It may be noted that

$$m = \sum_{r=1}^{L} m(r)$$

where L is the total number of substructures. Dimensions of various matrices are: $K_{BB}^{(r,\alpha)}$ is (n(r)xn(r)), $K_{IB}^{(r,\alpha)}$ is (m(r)xn(r)), $K_{BI}^{(r,\alpha)}$ is (n(r)xm(r))

 $z_B^{(r,\alpha)}$ and $S_B^{(r,\alpha)} \in \mathbb{R}^{n(r)}$, and $z_I^{(r,\alpha)}$ and $S_I^{(r,\alpha)} \in \mathbb{R}^{m(r)}$. From the second line of Equation 2.2-7,

$$z_{I}^{(r,\alpha)} = \left[K_{II}^{(r,\alpha)}\right]^{-1} \left[S_{I}^{(r,\alpha)} - K_{IB}^{(r,\alpha)} z_{B}^{(r,\alpha)}\right] \qquad (2.2-8)$$

Substituting Equation 2.2-8 into the first line of Equation 2.2-7, one obtains:

$$K_{B}^{(r,\alpha)} z_{B}^{(r,\alpha)} = F_{B}^{(r,\alpha)}$$
 (2.2-9)

where

$$K_{B}^{(r,\alpha)} = K_{BB}^{(r,\alpha)} + K_{BI}^{(r,\alpha)} Q^{(r,\alpha)}$$
 (2.2-10)

$$F_B^{(r,\alpha)} = S_B^{(r,\alpha)} + Q^{(r,\alpha)} S_I^{(r,\alpha)}$$
 (2.2-11)

$$Q^{(r,\alpha)} = -\left[K_{II}^{(r,\alpha)}\right]^{-1} \quad K_{IB}^{(r,\alpha)} \tag{2.2-12}$$

The $(n(r) \times n(r))$ boundary stiffness matrix $K_B^{(r,\alpha)}$ and the $(n(r) \times 1)$ effective boundary force vector $F_B^{(r,\alpha)}$ for each substructure are computed from Equations 2.2-10 and 2.2-11, respectively. Finally, K_B and F_B are assembled according to the equations

$$K_{B}^{(\alpha)} = \sum_{r=1}^{L} {}_{\beta}(r)^{T} {}_{K_{B}^{(r,\alpha)}}{}_{\beta}(r)$$
 (2.2-13)

$$F_B^{(\alpha)} = S_B^{(\alpha)} + \sum_{r=1}^{L} \beta^{(r)} Q^{(r,\alpha)} S_I^{(r,\alpha)}$$
 (2.2-14)

where $\beta^{(r)}$ is a Boolean transformation matrix of dimension (n(r) x n).

Using the reduced equilibrium equation of Equation 2.2-3, the boundary displacements $z_B^{(\alpha)}$ are computed by a suitable numerical procedure. Interior displacements are then computed for each substructure, using Equation 2.2-8. Lastly, member-end forces for the r^{th} substructure are computed from

$$p^{(r,\alpha)} = K^{(r,\alpha)} z^{(r,\alpha)}$$
(2.2-15)

where $p^{(r,\alpha)}$ is a vector of member forces, $K^{(r,\alpha)}$ is a stiffness matrix and $z^{(r,\alpha)}$ is a vector of nodal displacements for the r^{th} substructure.

Multiple loading conditions for the structure are treated routinely by taking $S^{(\alpha)}(b)$ and $z^{(\alpha)}$ in Equation 2.2-1 as matrices whose j^{th} columns represent quantities associated with the j^{th} loading condition.

2.2.2 Frequency Analysis

The natural frequency of a structure is computed by solving the general eigenvalue proglem

$$K^{(\alpha)}(b)y^{(\alpha)} = \zeta^{(\alpha)}M^{(\alpha)}(b)y^{(\alpha)}$$
(2.2-16)

where

$$M^{(\alpha)}(b) = (NxN)$$
 structural mass matrix
 $y^{(\alpha)} = \text{an eigenvector}$
 $\zeta^{(\alpha)} = \text{an eigenvalue}$

A number of techniques, such as Subspace Iteration [5], Householder's method [6], a method based on Sturm sequence properties described by Gupta [7], Wilkinson [8], and others [9,10] are available in the literature for solution of the general eigen-problem defined in Equation 2.2-16. However, these techniques require computation and decomposition of stiffness and mass matri-

ces for the entire structure, which is not desirable since it defeats the purpose of substructuring.

There are many component mode substitution techniques available in the literature that may be used. For a complete survey of such techniques, the reader is referred to Reference 11. These techniques take advantage of substructuring. However, they are not suitable for integration into an optimum design algorithm, because they are not efficient.

A technique, based on minimization of the Rayleigh Quotient

$$R^{(\alpha)}(y^{(\alpha)}) = \frac{y^{(\alpha)} K^{(\alpha)} y^{(\alpha)}}{y^{(\alpha)} M^{(\alpha)} y^{(\alpha)}}$$
(2.2-17)

has been discussed and used successfully by researchers such as Fox and Kapoor [12], Wilkinson [8], and Bradbury and Fletcher [13]. This method does not require storage of the matrices K and M for the entire structure, because all calculations can proceed elementwise to obtain a solution of Equation 2.2-17. However, there is one difficulty with this procedure of computing eigenvalues. Convergence to an eigenvalue and the corresponding eigenvector can be quite slow if a good initial estimate of the eigenvector is not known. Some methods of selecting initial eigenvectors have been suggested [12,13], but no general procedure exists to alleviate this problem. Therefore this method is also not suitable for general applications.

The Subspace Iteration technique [5] generally converges to an eigensolution in only a few iterations. The method converges quite rapidly eventhough a poor estimate of eigenvectors is used. This technique, however, also requires calculation and storage of matrices K and M for the entire structure [5]. Therefore, the method in its present form is not suitable for integration into the optimal design algorithm with substructuring. However the method can be modified for incorporation into the substructuring algorithm. This new approach has the following desirable features:

- (i) It converges rapidly even when a good initial estimate of eigenvectors is not known
- (ii) It does not require calculation and storage of matrices K and M for the entire structure
- (iii) It does not require decomposition of K.

The method of Subspace Iteration can be used to solve any desired number of eigenvalues of the Equation 2.2-16. The Subspace Iteration algorithm is first summarized without partitioning the structure into a number of substructures. Then modifications to the algorithm are presented that account for partitioning of the structure into a number of smaller substructures.

Consider the general eigenvalue problem

$$K \Phi = M \Phi \Omega \tag{2.2-18}$$

where K and M are the stiffness and the mass matrices for the structure, ϕ is an $(N \times p)$ matrix of eigenvectors, p is the desired number of eigenvalues, and Ω is a(p x p) diagonal matrix of eigenvalues. The <u>Subspace Iteration</u> algorithm for computing p eigenvalues of Equation 2.2-18 is as follows:

Step 1. Start with ($N \times q$) matrix $X^{(0)}$ as an estimate of q eigenvectors; $q = \min \{2p, p+8, N\}$.

Step 2. Compute $Y^{(0)} = MX^{(0)}$, and solve for $\overline{X}^{(1)}$ from

$$\overline{KX}^{(1)} = Y^{(0)}$$
 (2.2-19)

Step 3. Compute $\overline{Y}^{(1)} = M\overline{X}^{(1)}$. Calculate the following $(q \times q)$ matrices

$$\overline{K} = \overline{X}^{(1)} Y^{(0)}, \quad \overline{M} = \overline{X}^{(1)} Y^{(1)}$$
 (2.2-20)

Step 4. Solve for all eigenvalues and eigenvectors of the reduced eigenvalue problem

$$\overline{K} \overline{\Phi} = \overline{M} \overline{\Phi} \overline{\Omega}$$
 (2.2-21)

where $\overline{\phi}$ is a (q x q) matrix of reduced eigenvectors and $\overline{\Omega}$ is a (q x q) diagonal matrix of eigenvalues. Note that the generalized Jacobi iteration or the determinant search method [5] may be used to solve the eigenvalue problem of Equation 2.2-21.

Step 5. Compute
$$X^{(1)} = \overline{X}^{(1)} \overline{\phi}$$
, $Y^{(1)} = \overline{Y}^{(1)} \overline{\phi}$ (2.2-22)

Step 6. Check for convergence of eigenvalues. If all eigenvalue changes are within a specified tolerance, then stop the iterative process. Otherwise return to Step 1 with $X^{(0)} = X^{(1)}$ and $Y^{(0)} = Y^{(1)}$. After convergence, the first p columns of $X^{(1)}$ are required eigenvectors and the first p eigenvalues in $\overline{\Omega}$ are the corresponding eigenvalues of the original system.

In order to use the Subspace Iteration method with substructuring, one needs to modify only Step 2 of the preceding algorithm. If one can use the substructuring procedure to solve for $\overline{X}^{(1)}$ from Equation 2.2-19, then he has a method for efficiently solving the structural eigenvalue problem by par-

titioning the structure into a number of smaller substructures. Comparing Equations 2.2-1 and 2.2-19, one observes that the two equations are similar, so the substructuring approach used to solve Equation 2.2-1 can also be used to solve Equation 2.2-19. Accordingly, matrices $\mathbf{X}^{(1)}$ and $\mathbf{Y}^{(0)}$ in Equation 2.2-19 are partitioned into boundary and interior parts as

$$x^{(1)} = \begin{bmatrix} x_B^{(1)} \\ x_I^{(1)} \end{bmatrix}, y^{(0)} = \begin{bmatrix} y_B^{(0)} \\ y_I^{(0)} \end{bmatrix} (2.2-23)$$

Following the same approach as for static structural analysis, one solves for $\mathbf{X}_{B}^{(1)}$ from the equation

$$K_B X_B^{(1)} = Y_B^{(0)} + Q^T Y_I^{(0)}$$
 (2.2-24)

where matrices K_B and Q are defined in Equations 2.2-4 and 2.2-6, respectively. The interior displacements $X_{\rm I}^{(1)}$ are computed, as before, substructure-wise. For the rth substructure

$$\overline{X}_{I}^{r(1)} = \left[K_{II}^{(r)}\right]^{-1} \left[Y_{I}^{r(0)} + Q^{(r)}\overline{X}_{B}^{r(1)}\right]$$
 (2.2-25)

where matrices $K_{II}^{(r)}$ and $Q^{(r)}$ are defined earlier in this section. Note that the superscript α is omitted from Equations 2.2-23 to 2.2-25. This is done for notational convenience. The modified Subspace Iteration algorithm is used to calculate natural frequencies of the undamaged and all damaged structures.

2.3. State Space Definition of Fail-Safe Optimal Design Problem with Substructuring (FSODPS)

A general FSODPS in the state space setting may be defined as follows: Find a design variable vector b that, under both complete and damaged states, minimizes a cost function

$$J = J (b, z_B^{(\alpha)}, z_I^{(\alpha)}, \zeta^{(\alpha)})$$
 (2.3-1)

satisfies the partitioned equilibrium equitions (state equations) in terms of displacements

$$K_{\mathbf{B}}^{(\alpha)} z_{\mathbf{B}}^{(\alpha)} = F_{\mathbf{B}}^{(\alpha)}$$
 (2.3-2)

$$K_{II}^{(\alpha)} z_{I}^{(\alpha)} = S_{I}^{(\alpha)} - K_{IB}^{(\alpha)} z_{B}^{(\alpha)}$$
 (2.3-3)

the eigenvalue problem

$$K^{(\alpha)} y^{(\alpha)} = \zeta^{(\alpha)} M^{(\alpha)} y^{(\alpha)}$$
(2.3-4)

and satisfies the constraints

$$\phi^{s(\alpha)}$$
 (b, $z_{R}^{(\alpha)}$, $z_{T}^{(\alpha)}$) ≤ 0 (2.3-5)

$$\phi^{\mathbf{d}}(\mathbf{b}) \leq 0 \qquad (2.3-6)$$

$$\phi^{\mathbf{e}(\alpha)}(\zeta^{(\alpha)}) \leq 0 \qquad (2.3-7)$$

$$\phi^{\mathbf{e}(\alpha)}(\zeta^{(\alpha)}) \leq 0 \tag{2.3-7}$$

for $\alpha = 0, 1, 2, ..., \overline{d}$. Here $F_B^{(\alpha)}$ and $K_B^{(\alpha)}$ are defined in Equations 2.2-5 and 2.2-4, respectively, and d is the total number of damage conditions

The cost function of Equation 2.3-1 is quite general and may represent weight of the structure, displacements of critical points, certain critical member forces, or perhaps natural frequency of the undamaged or damaged structure. The cost function depends only on design variables if it represents weight of the structure. The vector inequality 2.3-5 represents constraints that depend upon state and design variables. These are the member stress and the nodal displacement constraints. It is noted here that some constraints represented in Equation 2.3-5 will not depend explicitly on all the parameters b, $z_B^{(\alpha)}$, and $z_I^{(\alpha)}$. For example, the displacement constraint at boundary nodes depends only on $z_B^{(\alpha)}$ and at interior nodes it depends only on $z_I^{(\alpha)}$. For members connected to boundary and interior nodes, stress constraints will depend on all the parameters b, $z_{R}^{(\alpha)}$, and $z_{I}^{(\alpha)}$. Advantages of these special forms of various constraint functions will be realized in all calculations [3,14].

The inequality 2.3-6 represents constraints that depend only on design variables. These include either explicit bounds on design variables or relationship between them. The inequality 2.3-8 represents a constraint on the lowest eigenvalue ($\zeta \ge \zeta_0$; ζ_0 = allowable lowest eigenvalue) which may be related to the fundamental frequency of the structure (frequency $f = \sqrt{\xi}/2\pi$ Hertz). In the present work, constraints on only the lowest eigenvalue are considered, but constraints on higher eigenvalues can also be included [2]. The lowest eigenvalue of Equation 2.3-4 may also be related to the buckling load for the structure [4] and Equation 2.3-7 will represent a constraint on the buckling load for the structure.

The FSODPS is now formulated in terms of state and design variables. This formulation of the optimal design problem is superior to purely design space formulation since it permits one to take advantage of the form of structural equations to carry out the design sensitivity analysis very efficiently [15, 16].

In order to show the advantage of the substructuring formulation over a similar formulation without substructuring, consider the Helicopter Tail Boom structure of Appendix A (shown in Figure 2.1). With the present formulation, the structure is divided into three substructures (r=1,2,3) by partitioning it at nodes 9-12 and 17-20 as shown in Figure 2.1. Suppose that the damage occurs in members belonging to Substructure 2. Table 2.1 shows a comparison of major calculations with and without substructuring formulations. With the substructuring formulation one always works with smaller matrices. Also, substructures that have no damaged members do not require calculation of $K_{\tau\tau}^{(r,\alpha)}$ and $Q^{(r,\alpha)}$. Thus the substructuring formulation of the fail-safe optimal structural design problem should be more efficient than a formulation without substructuring.

2.4. Design Sensitivity Analysis of the FSODPS

The philosophy of the optimization method is to start with the best engineering estimate of the design variable vector b and to improve it until an optimum is reached. Thus, one must determine the effect of a design change on the cost and constraint functions before a design improvement &b can be calculated. This is known as deisgn sensitivity analysis. In this section, first the design sensitivity analysis of a general function is considered. Then the analysis is specialized to the FSODPS of Section 2.3.

2.4.1 General Approach Let ψ (b, $z_R^{(\alpha)}$, $z_T^{(\alpha)}$, $\zeta^{(\alpha)}$) be a general function that may represent the cost function or any constraint function for the α th damage condition ($\alpha = 0$ represents the undamaged structure). When the design is changed by a small amount δb , the displacements $z_B^{(\alpha)}$ and $z_I^{(\alpha)}$ and the eigenvalue $\zeta^{(\alpha)}$ will also change by small amounts $\delta z_B^{(\alpha)}$, $\delta z_I^{(\alpha)}$, and $\delta \zeta^{(\alpha)}$ due to the well posed nature of the structural analysis problem. Let δζ represent a first order change in the function ψ . Taking b, $z_B^{(\alpha)}$, $z_I^{(\alpha)}$, and $\zeta^{(\alpha)}$ as independent variables, $\delta\psi$ is given as

$$\delta \psi = \frac{\partial \psi}{\partial b} \delta b + \frac{\partial \psi}{\partial z_{B}^{(\alpha)}} \delta z_{B}^{(\alpha)} + \frac{\partial \psi}{\partial z_{I}^{(\alpha)}} \delta z_{I}^{(\alpha)} + \frac{\partial \psi}{\partial \zeta_{\alpha}^{(\alpha)}} \partial \zeta_{\alpha}^{(\alpha)}$$
(2.4-1)

FRONT VIEW

LOADS AT SECTION A

The second of th

LOADS AT SECTION IB

Figure 2.1. Arrangement of Members for Open Truss Tail-Boom

TABLE 2.1. COMPARISON OF CALCULATIONS WITH AND WITHOUT SUBSTRUCTURING

Without substructuring

With substructuring

For undamaged structure

Generate and decompose K (72,21)

Generate and decompose $K_{B}^{(0)}(36,12)$, $K_{II}^{(1,0)}$, $K_{II}^{(2,0)}$, $K_{II}^{(3,0)}$: each of dimension (12,12). Generate from Equation 2.2-12 $Q^{(1,0)}$, $Q^{(2,0)}$, $Q^{(3,0)}$: each of dimension (12,24)

For each damaged condition

Generate and decompose K (72,21)

Generate and decompose $K_B^{(\alpha)}$ (36,12), $K_{II}^{(2,\alpha)}$ (12,12) Calculate $Q^{(2,\alpha)}$ (12,24)

where the derivatives

$$\frac{\partial \psi}{\partial b}$$
, $\frac{\partial \psi}{\partial z_{B}^{(\alpha)}}$, $\frac{\partial \psi}{\partial z_{C}^{(\alpha)}}$, $\frac{\partial \psi}{\partial \zeta^{(\alpha)}}$

are computed at the previously known values of b, $z_B^{(\alpha)}$, $z_I^{(\alpha)}$ and $\zeta^{(\alpha)}$. The problem is now to express

$$\frac{\partial \psi}{\partial z_{B}^{(\alpha)}}$$
 $\partial z_{B}^{(\alpha)}$, $\frac{\partial \psi}{\partial z_{I}^{(\alpha)}}$ $\partial z_{I}^{(\alpha)}$, $\frac{\partial \psi}{\delta \zeta^{(\alpha)}}$ $\delta \zeta^{(\alpha)}$

in terms of $\delta \, b$, so that $\delta \, \psi$ in Equation 2.4-1 is expressed as

$$\frac{\partial \psi(b, z_B^{(\alpha)}(b), z_I^{(\alpha)}(b), \zeta^{(\alpha)}(b))}{\partial b}$$
 δb

First consider the term

$$\frac{\partial \psi}{\partial z_{\mathbf{I}}^{(\alpha)}} \delta z_{\mathbf{I}}^{(\alpha)}.$$

In order to obtain this expression in terms of δb , define the following identity by premultiplying Equation 2.3-3 by the transpose of an adjoint variable vector $\lambda_{\tau}^{(\alpha)}$ (m x n):

$$\begin{bmatrix} \lambda_{\mathbf{I}}^{(\alpha)} \end{bmatrix}^{\mathbf{T}} \quad \mathbf{K}_{\mathbf{I}\mathbf{I}}^{(\alpha)} \quad \mathbf{z}_{\mathbf{I}}^{(\alpha)} = \begin{bmatrix} \lambda_{\mathbf{I}}^{(\alpha)} \end{bmatrix}^{\mathbf{T}} \quad \begin{bmatrix} \mathbf{S}_{\mathbf{I}}^{(\alpha)} - \mathbf{K}_{\mathbf{I}\mathbf{B}}^{(\alpha)} & \mathbf{z}_{\mathbf{B}}^{(\alpha)} \end{bmatrix}$$
(2.4-2)

Taking the first variation of this identy in b, $z_B^{(\alpha)}$, and $z_I^{(\alpha)}$, one rearranges to obtain

$$\begin{bmatrix} K_{II}^{(\alpha)} & \lambda_{1}^{(\alpha)} \end{bmatrix}^{T} \begin{bmatrix} \delta \mathbf{z}_{I}^{(\alpha)} & = & \lambda_{I}^{(\alpha)} \end{bmatrix}^{T} \begin{bmatrix} C_{2}^{(\alpha)} & \delta \mathbf{b} - K_{IB}^{(\alpha)} & \delta \mathbf{z}_{B}^{(\alpha)} \end{bmatrix}$$
(2.4-3)

where symmetry of $K_{II}^{(\alpha)}$ has been used and the matrix $C_2^{(\alpha)}$ is given as

$$C_{2}^{(\alpha)} = \frac{\partial S_{I}^{(\alpha)}}{\partial b} - \frac{\partial}{\partial b} \left[K_{IB}^{(\alpha)} z_{B}^{(\alpha)} \right] - \frac{\partial}{\partial b} \left[K_{II}^{(\alpha)} z_{I}^{(\alpha)} \right] \qquad (2.4-4)$$

If one now selects $\lambda_{I}^{(\alpha)}$ to satisfy the adjoint equation

$$K_{II}^{(\alpha)} \lambda_{I}^{(\alpha)} = \frac{\partial \psi^{T}}{\partial z_{I}^{(\alpha)}}$$
 (2.4-5)

then Equations 2.4-3 and 2.4-5 yield

$$\frac{\partial \psi}{\partial z_{I}^{(\alpha)}} \delta z_{I}^{(\alpha)} = \left[\lambda_{I}^{(\alpha)}\right]^{T} \left[C_{2}^{(\alpha)} \delta b - K_{IB}^{(\alpha)} \delta z_{B}^{(\alpha)}\right] \qquad (2.4-6)$$

Equation 2.4-6 may be substituted into Equation 2.4-1 to obtain

$$\delta \psi = \left[\frac{\partial \psi}{\partial \mathbf{b}} + \lambda_{\mathbf{I}}^{(\alpha)^{\mathrm{T}}} \mathbf{c}_{2}^{(\alpha)} \right] \delta \mathbf{b} + \left[\frac{\partial \psi}{\partial \mathbf{z}_{\mathbf{B}}^{(\alpha)}} - \lambda_{\mathbf{I}}^{(\alpha)^{\mathrm{T}}} \mathbf{K}_{\mathbf{IB}}^{(\alpha)} \right] \partial \mathbf{z}_{\mathbf{B}}^{(\alpha)} + \frac{\partial \psi}{\partial \zeta^{(\alpha)}} \delta \zeta^{(\alpha)}$$

$$(2.4-7)$$

To obtain an expression for the second term of Equation 2.4-7 in terms of δb , define an identity by introducing another adjoint variable vector $\lambda_B^{(\alpha)}$ in Equation 2.3-2 as follows:

$$\begin{bmatrix} \lambda_{B}^{(\alpha)} \end{bmatrix}^{T} \quad K_{B}^{(\alpha)} \quad z_{B}^{(\alpha)} = \begin{bmatrix} \lambda_{B}^{(\alpha)} \end{bmatrix}^{T} \quad F_{B}^{(\alpha)}$$
(2.4-8)

Taking the first variation of this identity in b and $z_B^{(\alpha)}$, one obtains

$$\begin{bmatrix} K_{B}^{(\alpha)} & \lambda_{B}^{(\alpha)} \end{bmatrix}^{T} \delta z_{B}^{(\alpha)} = \begin{bmatrix} \lambda_{B}^{(\alpha)} \end{bmatrix}^{T} \begin{bmatrix} \frac{\partial F_{B}^{(\alpha)}}{\partial b} - \frac{\partial}{\partial b} \{K_{B}^{(\alpha)} z_{B}^{(\alpha)}\} \end{bmatrix} \delta b^{(2.4-9)}$$

It can be shown [3] that the identity 2.4-9 may be written as

$$\begin{bmatrix} K_{B}^{(\alpha)} & \lambda_{B}^{(\alpha)} \end{bmatrix}^{T} \delta z_{B}^{(\alpha)} = \begin{bmatrix} \lambda_{B}^{(\alpha)} \end{bmatrix}^{T} C^{(\alpha)} \delta b$$
 (2.4-10)

where

$$c^{(\alpha)} = c_1^{(\alpha)} + Q^{(\alpha)}^T c_2^{(\alpha)}$$
 (2.4-11)

$$C_{1}^{(\alpha)} = \frac{\partial S_{B}^{(\alpha)}}{\partial b} - \frac{\partial}{\partial b} \left[K_{BB}^{(\alpha)} z_{B}^{(\alpha)} \right] - \frac{\partial}{\partial b} \left[K_{BI}^{(\alpha)} z_{I}^{(\alpha)} \right] \qquad (2.4-12)$$

and Q^(α) is defined in Equation 2.2-6. Now, select $\lambda_B^{(\alpha)}$ to be solution of the adjoint equation

$$K_{B}^{(\alpha)} \lambda_{B}^{(\alpha)} = \frac{\partial \psi^{T}}{\partial z_{B}^{(\alpha)}} - K_{BI}^{(\alpha)} \lambda_{I}^{(\alpha)}$$
(2.4-13)

Then Equations 2.4-10 and 2.4-13 yield

$$\left[\frac{\partial \psi}{\partial z_{B}^{(\alpha)}} - \lambda_{I}^{(\alpha)^{T}} K_{IB}^{(\alpha)}\right] \delta z_{B}^{(\alpha)} = \lambda_{B}^{(\alpha)^{T}} C^{(\alpha)} \delta b \qquad (2.4-14)$$

where $K_{BI}^{(\alpha)} = K_{IB}^{(\alpha)}$ has been used. Equation 2.4-14 is now substituted into Equation 2.4-7 to obtain

$$\delta \psi = \left[\frac{\partial \psi}{\partial \mathbf{b}} + \lambda_{\mathbf{I}}^{(\alpha)} \right]^{\mathbf{T}} C_{\mathbf{2}}^{(\alpha)} + \lambda_{\mathbf{B}}^{(\alpha)} C^{(\alpha)} \int \delta \mathbf{b} + \frac{\partial \psi}{\partial \zeta^{(\alpha)}} \partial \zeta^{(\alpha)} (2.4-15)$$

Now one must treat the expression

$$\frac{\partial \psi}{\partial \zeta^{(\alpha)}} \delta \zeta^{(\alpha)}$$
.

The design sensitivity analysis of the eigenvalue $\zeta^{(\alpha)}$ has been considered by many researchers [8]. Therefore, this development is only summarized. From the first order expansion of Equation 2.3-4 and using the fact that $K^{(\alpha)}$ and $M^{(\alpha)}$ are symmetric, one obtains the following expression for $\delta \zeta^{(\alpha)}$:

$$\delta \zeta^{(\alpha)} = \frac{y^{(\alpha)}^{T} \frac{\partial}{\partial b} \left[K^{(\alpha)} y^{(\alpha)} - \zeta^{(\alpha)} M^{(\alpha)} y^{(\alpha)} \right] \delta b}{y^{(\alpha)} M^{(\alpha)} y^{(\alpha)}} . \qquad (2.4-16)$$

Substituting this expression for $\delta \zeta^{(\alpha)}$ in Equation 2.4-15, one obtains

$$\delta \psi = G^{(\alpha)}^{T} \delta b \tag{2.4-17}$$

where

$$G^{(\alpha)} = \frac{\partial \psi^{T}}{\partial b} + C_{2}^{(\alpha)} \lambda_{T}^{(\alpha)} + C^{(\alpha)} \lambda_{R}^{(\alpha)} + \Lambda^{e(\alpha)}$$
 (2.4-18)

and

$$\Lambda^{\mathbf{e}(\alpha)} = \frac{\frac{\partial}{\partial \mathbf{b}} \left[K^{(\alpha)} \mathbf{y}^{(\alpha)} - \zeta^{(\alpha)} \mathbf{M}^{(\alpha)} \mathbf{y}^{(\alpha)} \right]^{\mathbf{T}} \mathbf{y}^{(\alpha)} \frac{\partial \psi}{\partial \zeta^{(\alpha)}}}{\mathbf{y}^{(\alpha)} \mathbf{M}^{(\alpha)} \mathbf{y}^{(\alpha)}}$$
(2.4-19)

Equation 2.4-17 is the desired relationship between the design change and the change in a member force, a nodal displacement, the cost function, and/or an eigenvalue. The vector $G^{(\alpha)}$ is the required design sensitivity vector.

2.4.2. Design Sensitivity Matrices for the FSODPS

In the fail-safe optimal design problem, design sensitivity vectors of active constraints are calculated for one damage condition at a time. Once the design sensitivity analysis of all active constraints under all damage conditions has been completed, then first variations of constraint Equations 2.3-5 to 2.3-7 are expressed as

$$\delta \tilde{\phi}^{S} = \Lambda^{S} \delta b \tag{2.4-20}$$

$$\delta \tilde{\phi}^{S} = \Lambda^{d} \delta b ; \qquad \Lambda^{d} = \frac{\partial \tilde{\phi}^{d}}{\partial b} \qquad (2.4-21)$$

$$\delta \tilde{\phi}^{\mathbf{e}} = \Lambda^{\mathbf{e}^{\mathrm{T}}} \delta \mathbf{b} \tag{2.4-22}$$

where a '~' over a constraint function represents inclusion of only active or violated constraints. Matrices Λ^S and Λ^d have D rows. The number of columns in each depends upon the total number of violations in s and d types of constraints for all damage conditions. Each column represents a design sensitivity vector. Similarly, the matrix Λ^E stores sensitivity vectors obtained from Equation 2.4-19 for violated frequency constraints for all damage conditions.

The matrix Λ^{S} can be easily obtained by following the approach of the previous section:

$$\Lambda^{s(\alpha)} = \frac{\partial \tilde{\phi}^{s(\alpha)}}{\partial h} + C_2^{(\alpha)} \lambda_1^{s(\alpha)} + C^{(\alpha)} \lambda_B^{s(\alpha)}$$
 (2.4-23)

$$\alpha = 0, 1, \ldots \overline{d}$$

Matrices $\lambda_I^{s(\alpha)}$ and $\lambda_B^{s(\alpha)}$ are solutions of the following adjoint equations:

$$\kappa_{\text{II}}^{(\alpha)} \quad \lambda_{\text{I}}^{\text{s}(\alpha)} = \frac{\partial \tilde{\phi}^{\text{s}(\alpha)}^{\text{T}}}{\partial z_{\text{I}}^{(\alpha)}}$$
(2.4-24)

$$K_{B}^{(\alpha)} \lambda_{B}^{s(\alpha)} = \frac{\partial \tilde{\phi} s(\alpha)^{T}}{\partial z_{I}^{(\alpha)}} + Q^{(\alpha)} \frac{\partial \tilde{\phi} s(\alpha)^{T}}{\partial z_{I}^{(\alpha)}}$$
(2.4-25)

$$\alpha = 0, 1, \ldots \overline{d}$$

Similarly a first order change in the cost function is expressed as

$$\delta J = \Lambda^{J} \delta b \tag{2.4-26}$$

where $\Lambda^{\rm J}$ is the design sensitivity vector for the cost function of Equation 2.3-1. This sensitivity vector is obtained from Equation 2.4-18 as

$$\Lambda^{J} = \frac{\partial J^{T}}{\partial h} + C_{2}^{(\alpha)} \lambda_{T}^{J(\alpha)} + C^{(\alpha)} \lambda_{R}^{J(\alpha)} + \Lambda^{J(\alpha)}$$
 (2.4-27)

Here, the vector $\Lambda^{J(\alpha)}$ is obtained from Equation 2.4-19 by replacing $\frac{\partial \psi}{\partial \zeta}(\alpha)$

by $\frac{\partial J}{\partial \zeta^{(\alpha)}}$. Adjoint vectors $\lambda_{I}^{J(\alpha)}$ and $\lambda_{B}^{J(\alpha)}$ are solutions of

$$K_{II}^{(\alpha)} \lambda_{I}^{J(\alpha)} = \frac{\partial J^{T}}{\partial z_{I}^{(\alpha)}}$$
 (2.4-28)

$$K_{B}^{(\alpha)} \lambda_{B}^{J(\alpha)} = \frac{\partial J^{T}}{\partial z_{B}^{(\alpha)}} + Q^{(\alpha)} \frac{\partial J}{\partial z_{I}^{(\alpha)}}$$
(2.4-29)

If the cost function represents weight of the structure, then J is a function of b only and Λ^J is simply given as $\frac{\partial J^T}{\partial b}$. If the cost function depends on other variables such as z_B , z_I , and ζ for the α^{th} damage condition (for example one may want to maximize the lowest natural frequency or minimize displacement at some point of the structure), then the sensitivity vector is given by Equation 2.4-27.

2.5. Optimal Design Algorithm for the FSODPS

Restrictions are now placed on the linearized constraint functions. is required that the design change δb be computed in such a manner that it corrects, or at least improves, all violated constraints. These requirements on Equations 2.4-20 to 2.4-22 can be stated as the following inequalities:

$$\Lambda^{\mathbf{S}} \delta \mathbf{b} \leq \Delta \tilde{\phi}^{\mathbf{S}} \tag{2.5-1}$$

$$\Lambda^{\mathbf{d}^{\mathrm{T}}} \delta \mathbf{b} \leq \Delta \tilde{\phi}^{\mathbf{d}} \tag{2.5-2}$$

$$\Lambda^{e^{T}} \delta b < \Delta \tilde{\phi}^{e}$$
 (2.5-3)

where $\Delta \tilde{\phi}^s$, $\Delta \tilde{\phi}^d$, $\Delta \tilde{\phi}^e$ are desired corrections in constraint violations. If a constraint $\phi_i < 0$ is ε - active (that is, $\phi_i \geq -\varepsilon$), then $\Delta \tilde{\phi}_i = -\phi_i$.

Constraints of Equations 2.5-1 to 2.5-3 have similar forms, so they can be written in a compact form as

$$\Lambda^{\mathrm{T}} \delta \mathbf{b} \leq \Delta \tilde{\phi} \tag{2.5-4}$$

where

$$\Lambda = \begin{bmatrix} \Lambda^{S} & \Lambda^{\mathbf{d}} & \Lambda^{\mathbf{e}} \end{bmatrix} \\
\Lambda \tilde{\phi} = \begin{bmatrix} \Lambda^{\tilde{S}} & \Lambda^{\tilde{G}} & \Lambda^{\tilde{G}} \end{bmatrix}^{T} \\
\Lambda \tilde{\phi} = \begin{bmatrix} \Lambda^{\tilde{S}} & \Lambda^{\tilde{G}} & \Lambda^{\tilde{G}} \end{bmatrix}^{T} \\
\Lambda \tilde{\phi} = \begin{bmatrix} \Lambda^{\tilde{S}} & \Lambda^{\tilde{G}} & \Lambda^{\tilde{G}} \end{bmatrix}^{T} \\
\Lambda \tilde{\phi} = \begin{bmatrix} \Lambda^{\tilde{G}} & \Lambda^{\tilde{G}} & \Lambda^{\tilde{G}} & \Lambda^{\tilde{G}} \end{bmatrix}^{T}$$
(2.5-6)

$$\Delta \tilde{\phi} = \left[\Delta \tilde{\phi}^{\mathbf{S}^{1}} \Delta \tilde{\phi}^{\mathbf{d}^{1}} \Delta \tilde{\phi}^{\mathbf{e}^{1}} \right]^{1}$$
 (2.5-6)

The reduced problem of computing an optimum design change δb can now be stated as follows: Find δb to minimize the cost function of Equations 2.4-26 subject to the constraint of Equation 2.5-4 and a step size constraint

$$\delta b^{T} W \delta b < \varepsilon^{2}$$
 (2.5-7)

where W is a positive definite weighting matrix and ξ is a small number. The matrix W (usually diagonal) is used to assign weights to the various components of δb and is often essential when components of b represent different physical quantities of different orders of magnitude.

The reduced FSODPS defined in the preceding is exactly the problem defined in References 14 and 17. An application of Kuhn-Tucker conditions of nonlinear programming gives the following solution [14,17]:

$$\delta b = -n\delta b^{1} + \delta b^{2} \tag{2.5-8}$$

$$\delta b^{1} = W^{-1} [\Lambda^{J} + \Lambda \mu^{1}]$$
 (2.5-9)

$$\delta b^2 = -W^{-1} \Lambda \mu^2 \tag{2.5-10}$$

$$H[\mu^{1};\mu^{2}] = [(-\Lambda^{T} W^{-1} \Lambda^{J}); -\Delta\tilde{\phi}]$$
 (2.5-11)

$$H = \Lambda^{T} W^{-1} \Lambda$$
 (2.5-12)

$$\mu = \mu^{1} + (1/\eta) \mu^{2} \tag{2.5-13}$$

where $\eta > 0$ is a step size to be chosen by the designer and $\mu \ge 0$ is a Lagrange multiplier vector. The method of step size selection is the same as used in References 1-3, 14, 17.

The method can now be described by the following step-by-step algorithm: $\frac{\text{Step 1.}}{d}, \text{ and the } j^{\text{th}} \text{ design point } b^{(j)} \text{ and under } \alpha^{\text{th}} \text{ damaged condition (if } \alpha > \overline{d}, \text{ go to Step 11), generate matrices } K_{II}^{(r,\alpha)} \text{ and } K_{IB}^{(r,\alpha)} \text{ for each substructure.}$ Note superscript r denotes rth substructure. Decompose each $K_{II}^{(r,\alpha)}$ and calculate the matrix $Q^{(r,\alpha)}$ from Equation 2.2-12. Store decomposed part of the matrix $K_{II}^{(r,\alpha)}$ and the matrix $Q^{(r,\alpha)}$ for later calculations. Calculate the boundary stiffness matrix $R_{B}^{(r)}$ and the effective boundary load vector $R_{B}^{(r)}$ from Equations 2.2-13 and 2.2-14, respectively. Decompose the matrix $R_{B}^{(r)}$ and store it for later use.

Step 2. Calculate boundary displacements $z_B^{(r)}$ from Equation 2.3-2 and interior displacements $z_I^{(r,\alpha)}$ for each substructure from Equation 2.2-8.

Step 3. Calculate the lowest eigenvalue and the corresponding eigenvector from Equation 2.2-16.

Step 4. Compute adjoint vectors

$$\lambda_{\rm I}^{\rm J(\alpha)}, \quad \lambda_{\rm B}^{\rm J(\alpha)}$$

from Equations 2.4-28 to 2.4-29, respectively. Assemble the matrix Λ^{J} of Equation 2.4-27.

Step 5. Check the frequency constraint of Equation 2.3-7. If it is violated, then compute $\Lambda^{e(\alpha)}$ of Equation 2.4-19 and put $\Delta \tilde{\phi}^e = -\tilde{\phi}^e_i$.

Step 6. Check constraints of Equations 2.3-5 and form the vector $\tilde{\phi}^{s(\alpha)}$. Calculate the sensitivity information

$$\frac{\partial \tilde{\phi}^{s}(\alpha)}{\partial b}$$
, $\frac{\partial \tilde{\phi}^{s}(\alpha)}{\partial z_{B}}$, $\frac{\partial \tilde{\phi}^{s}(\alpha)}{\partial z_{I}}$

Also, calculate $\Delta \tilde{\phi}^{s(\alpha)}$.

Step 7. Calculate $\lambda_{\rm I}^{\rm s(r,\alpha)}$ for each substructure from Equation 2.4-24. Note $K_{\rm II}^{\rm (r,\alpha)}$ and

$$\frac{\partial \tilde{\phi}^{s(\alpha)}}{\partial z_{I}^{(r,\alpha)}}$$

are completely uncoupled [3]. Also, calculate the matrix $\lambda_B^{s(\alpha)}$ from Equation 2.4-25.

Step 8. Calculate the matrices $C_1^{(\alpha)}$ and $C_2^{(\alpha)}$ from Equations 2.4-12 and 2.4-14, respectively. Also, calculate the matrix $C_2^{(\alpha)}$ from Equation 2.4-11.

Step 9. Assemble the matrix Λ^{S} of Equation 2.4-23.

Step 10. If $\alpha \ge \overline{d}$, go to Step 11, otherwise go to Step 1.

Step 11. Check constraints of Equation 2.3-7 and form a vector $\tilde{\phi}^{\mathbf{d}}$. Compute the matrix $\Lambda^{\mathbf{d}}$ of Equation 2.4-21. Also, compute $\Delta \tilde{\phi}^{\mathbf{d}}$.

Step 12. Finally, assemble the matrix Λ and $\Delta \tilde{\phi}$ of Equations 2.5-5 and 2.5-6, respectively.

Step 13. Compute μ^1 and μ^2 from Equation 2.5-11. Choose a step size η and compute the Lagrange multiplier vector μ from Equation 2.5-13.

Step 14. Check the sign of each component of μ . If any component of μ is negative, remove corresponding rows from Λ^T and $\Delta\tilde{\phi}$ and return to Step 13.

Step 15. Compute δb^1 , δb^2 , and δb from Equations 2.5-9, 2.5-10 and 2.5-8, respectively. Let

$$b^{(j+1)} = b^{(j)} + \delta b$$
, $y^{(j+1)} = y^{(j)}$.

Step 16. If all constraints are satisfied and

$$||\delta b^{1}|| = [\delta b^{1^{T}} w \delta b^{1}]^{1/2}$$

is sufficiently small [17], terminate the process. Otherwise, return to Step 1 with $b^{(j+1)}$ as the best available design, and set α = 0.

CHAPTER 3

DISCUSSION OF THE METHOD AND COMPUTATIONAL CONSIDERATIONS

3.1. Introduction

The method for fail-safe optimal structural design with substructuring of Chapter 2 is quite general since no assumption is made regarding the type of finite elements to be employed. However the algorithm presented in Section 2.5 requires considerable computation for even moderate size structures. It is noted that computational techniques such as design variable linking, the \(\varepsilon\)-active constraint concept and normalization of constraints with respect to their limit values are easily incorporated in the present algorithm [1,3,14]. Further, all computational considerations in structural analysis, design sensitivity analysis and Lagrange multiplier calculations used in optimal design of structures with substructuring [3,18,19] are also incorporated in the algorithm for the FSODPS. Finally, for step size determination, convergence criterion, and computational checks, the reader is referred to References 2 and 3. In this chapter, only those computational aspects of the method that are different from those presented in References 1 to 3 are discussed.

3.2. Selection of Critical Constraints

The FSODPS is characterized by requiring a set of design variables to satisfy a constraint set whose dimension is much larger (due to damage and multiple loading conditions) than the dimension of the design variable vector. If all active constraints come into the computation, it is not only computationally expensive but the accuracy of the result may be jeopardized. Thus a rational method of selecting independent critical constraints is essential. In the present work, the idea of "worst violated constraint" [3,14] is used in order to eliminate redundent constraints. The ith constraint is

$$\phi_{i} \leq 0$$

where ϕ_i is defined as

(i) for the ith stress constraint

$$\phi_{\mathbf{i}}^{(\alpha)} = \max_{\alpha, \mathbf{j}, \mathbf{k}} \left\{ \phi_{\mathbf{i}\mathbf{j}\mathbf{k}}^{\mathbf{s}(\alpha)}(\mathbf{b}, \mathbf{z}_{\mathbf{B}}^{(\alpha)}, \mathbf{z}_{\mathbf{I}}^{(\alpha)}) \right\}$$

(ii) for displacement constraint of the ith degree of freedom and α^{th} damage condition

$$\phi_{i}^{(\alpha)} = \max_{k} \left\{ \phi_{ik}^{s(\alpha)} \left(z_{B}^{(\alpha)}, z_{I}^{(\alpha)} \right) \right\}$$

Here

$$\alpha = 0, 1, 2, ..., \overline{d}$$
 $j = 1, 2, ..., NMG$
 $k = 1, 2, ..., NLC$

NMG = number of members in the group

NLC = number of loading conditions.

Thus, for stress constraints only the worst violation over all members of a group, over all loading conditions, and over all damage conditions, is imposed. Similarly, for any damage condition the worst violated displacement constraint at a node over all loading conditions is imposed. The natural frequency constraint is imposed for all damage conditions.

In this procedure, the number of violated constraints to be corrected at any design iteration is reduced considerably. The procedure avoids calculation of design derivatives of unnecessary constraints. The Lagrange multiplier calculations of these constraints are also avoided. Thus, efficiency of the algorithm is enhanced.

3.3. Some Additional Computational Condiderations in Structural Analysis

In static analysis of structures, the response variables to be determined under each damage conditon (α) are boundary displacements $z_B^{(\alpha)}$, interior displacements for each substructure $z_I^{(r,\alpha)}$, and element stresses. Computation of these response quantities requires generation of the boundary stiffness matrix $K_B^{(\alpha)}$, interior stiffness matrices $K_I^{(r,\alpha)}$, and matrices $Q^{(r,\alpha)}$. It is noted that in case no damage occurs in some substructures under a damage condition, then for those substructures computation of the matrices $K_{II}^{(r,\alpha)}$ and $Q^{(r,\alpha)}$ is not required. This increases efficiency of the algorithm, since as generation and decomposition of $K_{II}^{(r,\alpha)}$ and computation of $Q^{(r,\alpha)}$ are not required. The remaining computations proceed as discussed in References 3, 18 and 19.

CHAPTER 4

APPLICATION OF THE ALGORITHM FOR FAIL-SAFE STRUCTURAL DESIGN

4.1 Design Formulation

In this chapter, the general method for fail-safe optimal structural design developed in Chapters 2 and 3 is specialized to structures that can be modeled by TRUSS, Constant Strain Triangular (CST), and/or Symmetric Shear Panel (SSP)/Symmetric Pure Shear Panel (SPSP) finite elements. Stiffness and mass matrices for these elements are given in Appendix B. For the class of structures considered herein, the geometric configuration and the material for the structure are assumed to be specified. Loading conditions and probable damage conditions for the structure are also specified.

An optimal design problem for this class of structures is defined as follows: find the cross-sectional area of TRUSS elements and the thickness of the CST and SSP/SPSP elements so that total weight of the structure is minimized and the state equations and constraints on stress, buckling, displacement, natural frequency, and member size are satisfied for all loading and damage conditions.

Since weight of the structure is to be minimized, the cost function of Equation 2.3=1 is a linear function of the design variables, given as

$$J(b) = \sum_{r=1}^{L} \sum_{k=1}^{TP(r)} \sum_{i=1}^{NG(k)} \sum_{j=1}^{NM(i)} \rho_{i} \ell_{ij} b_{i}$$
 (4.1-1)

where:

ρ; = material density of members in the ith group,

b = cross-sectional area or thickness of members in the ith group,

\$\ell_{ii}\$ = length or surface area of the jth member in the ith group,

TR(r) = number of element types in the r^{th} substructure,

NG(r) = number of groups in the r^{th} substructure,

NM(i) = number of members in the i^{th} group.

Since the cost function depends only on design variables, the vector Λ^J of Equation 2.4-27 is simply $\frac{\partial J^T}{\partial h}$.

In the following presentation, the superscript α designating a damage condition is omitted in all equations. These equations apply to a typical damage condition. In this formulation, CST/SSP/SPSP elements are required to satisfy a design criterion based on the Von Mises equivalent stress. For a complete development of the Von Mises equivalent stress criterion, the reader is referred to Ref. 20. According to this criterion, an equivalent stress (σ^C) for a structural element in a general state of stress is given as

$$\sigma^{c} = \left[\frac{1}{2} \{ (\sigma_{11} - \sigma_{22})^{2} + (\sigma_{22} - \sigma_{33})^{2} + (\sigma_{33} - \sigma_{11})^{2} + 6(\sigma_{12}^{2} + \sigma_{23}^{2} + \sigma_{31}^{2}) \} \right]^{1/2}$$

$$(4.1-2)$$

where σ_{ij} (i,j = 1,2,3) are stress components at the point of interest (x_1,x_2,x_3) in the domain Ω of the element. For CST or SSP/SPSP elements, Equation 4.1-2 reduces to

$$\sigma^{c} = (\sigma_{11}^{2} + \sigma_{22}^{2} - \sigma_{11} \sigma_{22} + 3\sigma_{12}^{2})^{1/2}$$
(4.1-3)

Next, the stress or buckling constraint of Section 3.2 for a typical member is written as

$$\phi_{\mathbf{i}}^{\mathbf{S}} = \begin{bmatrix} \frac{\sigma_{\mathbf{i}}^{\mathbf{C}}}{\mathbf{a}} & -1.0 \le 0 \end{bmatrix}$$
 (4.1-4)

where $\sigma_{\bf i}^{\bf c}$ is the direct stress for TRUSS elements, or the maximum Von Mises stress calculated from Equation 4.1-3. In order to simultaneously implement stress and buckling constraints for truss members, the allowable stress $\sigma^{\bf a}$ is chosen as follows:

- (i) for members in tension, $\sigma^a = \sigma^{a+}$, where σ^{a+} is an allowable tensile stress for the member
- (ii) for members in compression, $\sigma^a = \min(\sigma^{a-}, \sigma^b)$, where $\sigma^{a-} > 0$ and $\sigma^b > 0$ are allowable compressive and critical buckling stresses for the member, respectively.

The stresses σ^{a+} and σ^{a-} are specified by the designer, whereas σ^b depends on the Euler buckling load and is given as

$$\sigma_{i}^{b} = \frac{\pi^{2} E I_{i}}{\ell_{i}^{2} b_{i}}$$

$$(4.1-5)$$

where E, ℓ_i , b_i , and I_i are modulus of elasticity, length, cross-sectional area, and moment of inertia of the i^{th} member, respectively. In the present work, it is assumed that the moment of inertia of a truss member can be expressed as

$$I_{\mathbf{i}} = \bar{\alpha}_{\mathbf{i}} b_{\mathbf{i}}^2 \tag{4.1-6}$$

where $\bar{\alpha}_i$ is a positive constant that depends only on the cross-sectional geometry of the member. This constant is specified by the designer. Thus, Equation 4.1-5 is rewritten as

$$\sigma_{\mathbf{i}}^{\mathbf{b}} = \bar{\theta}_{\mathbf{i}} \, \mathbf{b}_{\mathbf{i}} \tag{4.1-7}$$

where

$$\bar{\theta}_{i} = \frac{\pi^{2} E \bar{\alpha}_{i}}{\ell_{i}^{2}} \tag{4.1-8}$$

If the constraint of Equation 4.2-4 is violated, then

$$\Delta \tilde{\phi}^{S} = -\left[\left| \frac{\sigma^{c}}{\sigma^{a}} \right| - 1.0 \right]$$
 (4.1-9)

The displacement constraint of Section 3.2 for a typical degree of freedom is expressed as

$$\phi_{\mathbf{j}}^{\mathbf{S}} \equiv \left| \frac{\mathbf{z}_{\mathbf{j}}}{\mathbf{z}_{\mathbf{j}}^{\mathbf{a}}} \right| - 1.0 \le 0 \tag{4.1-10}$$

where z_j and z_j^a are the calculated and allowable displacements, respectively. If this constraint is violated for a displacement component, then

$$\Delta \tilde{\phi}_{j}^{s} = -\left[\left| \frac{z_{j}}{z_{j}^{a}} \right| - 1.0 \right] \tag{4.1-11}$$

It is noted here that constraint checks on stress, buckling, and displacement proceed substructurewise. The sensitivity analysis proceeds as explained in Chapter 2 and the matrix Λ^{S} is assembled at this stage.

The constraint of Equation 2.5-3 is imposed only on the lowest eigenvalue of the structure ($\zeta = (2\pi f)^2$). Using the method presented in Section 2.2.2 the lowest eigenvalue ζ and the associated eigenvector y are obtained. Thus, the eigenvalue constraint is written as

$$\phi^{\mathbf{e}}(\zeta) \equiv 1.0 - \zeta/\zeta_0 \le 0$$
 (4.1-12)

where ζ_0 is related to a resonant frequency of the structure. If this constraint is violated, then

$$\Delta \tilde{\phi}^e = -(1.0 - \zeta/\zeta_0)$$
 and $\frac{\partial \tilde{\phi}^e}{\partial \zeta} = -\frac{1}{\zeta_0}$ (4.1-13)

Finally, the design variable constraint $\phi^d(b)$ of Equation 2.5-2 is considered. For a typical design variable it is expressed as

$$b_{i}^{L} \leq b_{i} \leq b_{i}^{U} \tag{4.1.14}$$

where b_i^L and b_i^U are the lower and upper bounds on the ith design variable, respectively. The inequality of Equation 4.1-14 may be split into two parts as follows:

(i) Lower bound design variable constraint

$$\phi_{\mathbf{i}}^{\mathbf{d}}(\mathbf{b}) \equiv 1.0 - \frac{\mathbf{b}_{\mathbf{i}}}{\mathbf{b}_{\mathbf{i}}^{\mathbf{L}}} \leq 0$$
 (4.1-15)

and

(ii) Upper bound design variable constraint

$$\phi_{i}^{d}(b) = \frac{b_{i}}{b_{i}^{U}} - 1.0 \le 0$$
 (4.1-16)

If a constraint of Equation 4.1-15 is violated, then

$$\Delta \tilde{\phi}_{\mathbf{i}}^{\mathbf{d}} = -\left(1.0 - \frac{\mathbf{b}_{\mathbf{i}}}{\mathbf{b}_{\mathbf{i}}^{\mathbf{L}}}\right) \tag{4.1-17}$$

and

$$\frac{\partial \tilde{\phi}_{\mathbf{i}}^{\mathbf{d}}}{\partial \mathbf{b}} = \left[0, \dots, 0, -\frac{1}{\mathbf{b}_{\mathbf{i}}^{\mathbf{L}}}, 0, \dots, 0 \right]$$
 (4.1-18)

The upper bound design variable constraint is treated in a similar way.

4.2 Computer Program

A computer program based on the formulation of Section 4.1 and the algorithm of Chapter 2, has been developed in FORTRAN IV. The program is called SOS4 (Structural Optimization by Substructures 4). A general flow diagram for the program is given in Figure 4.1.

Computational aspects of multiple loading conditions, design variable linking, the worst constraint violation concept, the ϵ -active constraint concept, and normalization of constraints have been incorporated in the program [3,4,18,19]. For frequency analysis of the structure (calculation of lowest natural frequency), estimates of two eigenvectors are needed. These eigenvector estimates are either supplied by the designer or are generated internally by the computer program at the start of the iterative design process. In all subsequent frequency analyses, eigenvectors from the previous frequency analysis are taken as the starting eigenvectors.

In order to obtain a reasonable starting design for the algorithm, a stress-ratio design is made in the computer code. In this concept, member areas for TRUSS elements and member thicknesses for CST and/or SSP/SPSP elements are computed from the condition that stress in each member be at its limiting value. It is noted here that this does not necessarily yield an optimum design even under only stress constraints for indeterminate structures, but it gives a good starting point for the optimal design algorithm. A parameter IFS is defined in the computer program for controlling the number of stress-ratio design cycles.

Also, provision is made in the computer program for assigning a predetermined value to any design variable at the start of the iterative process.

Figure 4.1. Flow Diagram for the Computer Program SOS4

Figure 4.1. (cont.) Flow Diagram for the Computer Program SOS4.

Figure 4.1. (cont.) Flow Diagram for the Computer Program SOS4.

Thus, the number of design variables can be less than the number of groups for the structure. This is a valuable feature in the program, since it allows a designer to fix some members of the structure. Stress constraints, however, are imposed on all members of the structure, irrespective of whether the design variable associated with the member is fixed or free.

The step size η is calculated in the program based on a desired reduction in the cost function when all constraints are satisfied [3,14]. Thus, if \bar{r} is a desired cost function reduction ratio, then the step size is given as

$$\eta = \overline{r}J/\left(\Lambda^{J^{T}}\Lambda^{J}\right) \tag{4.2-1}$$

The weighting coefficients W_i are calculated, as in Ref. 3, as

$$W_{i} = \frac{\partial J}{\partial b_{i}} \overline{w}_{i} \tag{4.2-2}$$

where $\overline{\mathbf{w}}_i$ is a weighting multiplier. It is noted here that selection of the parameters $\overline{\mathbf{r}}$ and $\overline{\mathbf{w}}_i$ is still an art. A certain amount of expreience is necessary to choose effective values for these parameters. Well chosen values of these parameters are necessary for rapid convergence of the algorithm. In many example problems $\overline{\mathbf{r}}$ has been chosen as 0.05 to 0.10. The multiplier $\overline{\mathbf{w}}_i$ has been chosen as unity for the CST and SSP/SPSP elements and for TRUSS elements it has been chosen between 1 and 20.

4.3 Example Problems

The formulation of Section 4.1 is now used to design a tail-boom structure for the U.S. Army Cobra helicopter. Geometry of the tail-boom structure and the loads transmitted to it are shown in Figure A.1. Fail-safe design for several cases of the tail-boom modeled as an open truss structure are given in Appendix A. Those designs were obtained using the computer code of Ref. 1 which is based on an optimal design formulation without substructuring. In this section the following two design problems are solved using the substructuring formulation and the computer program SOS4:

Design Problem 1: Open truss helicopter tail boom

Design Problem 2: Closed helicopter tail boom

In subsequent subsections these problems are discussed in detail. Results obtained for the first example are compared to results given in Appendix A. Finally, results for the tail-boom obtained with and without substructuring are compared.

4.3.1 Open Truss Helicopter Tail-Boom

A complete description of the structure, such as member arrangement, global coordinate axes, loading data, definition of 6 damage conditions and other design data are given in Appendix A. In the present formulation, the tail-boom structure (Fig. 2.1) is divided into 3 substructures by partitioning it at nodes 9-12 and 17-20. Node numbers 25-28 are also treated as boundary nodes. Figure 4.2 shows nodal numbering and the local (or substructural) numbering systems. Substructure 1 has 4 boundary nodes (1-4), 8 interior nodes (5-12) and 36 truss elements. Substructures 2 and 3 each have 8 boundary nodes (1-8), 4 interior nodes (9-12), and 36 truss elements. Note that boundary nodes 1-4 of the first substructure and 1-8 of the second and third substructures correspond to boundary nodes 9-12, 5-12, and 1-8 in the overall numbering system, respectively. Member connectivity is given in Table 4.1. Design variable linking is used, as shown in Table 4.2.

In this example, a starting design of 1.0 in 2 . for all members of the structure is used. Optimum designs for two cases are obtained using the computer program SOS4. These are Cases I and V of Appendix A. For Case I, no damage is considered and for Case V, six damage conditions are imposed. The final designs, cost function, number of active constraints, $||\delta b^1||$ at optimum, maximum $||\delta b^1||$, and average CPU time per iteration are given in Table 4.2. Critical constraints at the optimum are given in Table 4.3.

Comparision of Results Obtained with and without Substructuring: A comparison of optimum results obtained with and without substructuring formulations is given in Table 4.4. Optimum weights using the two formulations are the same. However, the CPU time per design iteration using the substructuring approach is increased by a factor of 1.4 for Case I and 1.6 for Case V. An analysis of

(a) An Overall Numbering System for Boundary Nodes

(b) Numbering System for Boundary and Interior Nodes for Each Substructure Note: For clarity diagonal members are not shown.

Figure 4.2. Nodal Numbering Systems

TABLE 4.1. MEMBER CONNECTIVITY FOR OPEN TRUSS HELICOPTER TAIL-BOOM

Member Number	Node i	Node j	Member Number	Node i	Node j	Member	Node i	Node
						Number	Node 1	
1	7	3	37	11	3	73	11	3
2	5	1	38	9	1	74	9	1
3	6	2	39	10	2	75	10	2
4	8	4	40	12	4	76	12	4
5	7	1	41	11	1	77	11	1
6	5	3	42	9	3	78	9	3
7	5	2	43	9	2	79	9	2
8	6	1	44	10	1	80	10	1
9	6	4	45	10	4	81	10	4
10	8	2	46	12	2	82	12	2
11	7	4	47	11	4	83	11	4
12	8	3	48	12	3	84	12	3
13	3	1 .	49	3	1	85	3	1
14	1	2	50	1	2	86	1	2
15	2	4	51	2	4	87	2	4
16	4	3	52	4	3	88.	4	3
17	3	2	53	3	2	89	3	2
18	4	1	54	4	1	90	4	1
19	11	7	55	7	11	91	7	11
20	9	5	56	5	9	92	5	9
21	10	6	57	6	10	93	6	10
22	12	8	58	8	12	94	8	12
23	11	5	59	7	9	95	7	9
24	9	7	60	5	11	96	5	11
25	9	6	61	5	10	97	5	10
26	10	5	62	6	9	98	6	9
27	10	8	63	6	12	99	6	12
28	12	6	64	8	10	100	8	10
29	11	8	65	7	12	101	7	12
30	12	7	66	8	11	102	8	11
31	7	5	67	11	9	103	11	9
32	5	6	68	9	10	104	9	10
33	6	8	69	10	12	105	10	12
34	8	7	70	12	11	106	12	11
35	7	6	71	11	10	107	11	10
36	8	5	72	12	9	108	12	9

TABLE 4.2. FINAL DESIGN FOR OPEN TRUSS HELICOPTER TAIL-BOOM WITH SUBSTRUCTURING

Design Variable Number	Member Number	CASE I Area, in ² .	$\frac{\text{CASE V}}{\text{Area, in}^2}.$
1	2,3	1.1825	2.2751
2	1,4	1.1804	2.1222
3	5,6,9,10	0.1705	0.3817
4	7,8,11,12	0.1874	0.4137
5	13,15	0.0415	0.0448
6	14,16	0.1572	0.1511
7	17,18	0.0415	0.1242
8	20.21	1.2931	3.0785
9	19,22	1.2936	2.8335
10	23,24,27,28	0.1359	0.2549
11	25,26,29,30	0.1707	0.2196
12	31,33	0.0415	0.1027
13	32,34	0.1266	0.1693
14	35,36	0.0415	0.3946
15	38,39	0.8076	0.9388
16	37,40	0.8076	0.9824
17	41,42,45,46	0.2440	0.3910
18	43,44,47,48	0.2763	0.1445
19	49,51	0.0415	0.0876
20	50,52	0.1864	0.1135
21	53,54	0.0415	0.1881
22	56,57	0.9938	1.2978
23	55,58	0.9922	1.2641
24	59,60,63,64	0.2141	0.3242
25	61,62,65,66	0.2581	0.2897
26	67,69	0.0415	0.0910

TABLE 4.2 Cont'd

Design Variable	Member	CASE I	CASE V	
Number	Number	Area, in ² .	Area, in ²	
27	68,70	0.1835	0.0922	
28	71,72	0.0415	0.0836	
29	74,75	0.2322	0.2673	
30	73,76,	0.2326	0.1231	
31	77,78,81,82	0.3413	0.1938	
32	79,80,83,84	0.3508	0.3262	
33	85,87	0.0458	0.2115	
34	86,88	0.1023	0.0814	
35	89,90	0.2062	0.1806	
36	92,93	0.5787	0.5571	
37	91,94	0.5787	0.6898	
38	95,96,99,100	0.2764	0.2872	
39	97,98,101,102	0.3036	0.3108	
40	103,105	0.0415	0.0442	
41	104,106	0.2031	0.1508	
42	107,108	0.0415	0.1155	
Weight in 1bs.	ALCS	106.0	161.55	
verage CPU/iter. n sec. (IBM 370-158)	0 6810 0 6810	5.65	43.50	
lo. of Active Const opt.	str.	12	9	
$ \delta b^1 $ at opt.	ar area	4.37	6.9	
6b ¹ _{max}	9922 - 17	53.92	53.8	

TABLE 4.3. CRITICAL CONSTRAINTS AT OPTIMUM (OPEN TRUSS TAIL-BOOM)

CASE I: Without damage

- Displacement in the \mathbf{x}_2 direction at nodes 1 and 3 of the 3rd substructure
- Lower limit on design variable numbers 5,7,12,14,19,21,
 26,28,40 and 42
- · Max. violation is 0.001% at optimum

CASE V: With 6 damaged conditions

- · Frequency constraint under damage conditions 2 and 6
- Displacement in the x_2 direction at node 1 of the 3rd substructure under damage conditions 2,3,4 and 5
- Displacement in the \mathbf{x}_2 direction at node 3 of the 3rd substructure under damage conditions 2,3, and 5
- · Max. violation is 0.09% at optimum

TABLE 4.4. COMPARISON OF RESULTS OBTAINED WITH AND WITHOUT SUBSTRUCTURING FOR OPEN TRUSS HELICOPTER TAIL-BOOM

		CASE I	. CASE V		
	Optimum Weight	CPU Time per design iteration	Optimum Weight	CPU Time per design iteration	Computer Core Requirements
Without Substructuring	105.6	4.0	161.1	26.7	280 K
With Substructuring	106.0	5.65	161.7	43.5	276 К

computer programs SOS4 and that of Ref. 1 showed that there is some difference in the frequency analysis portion of the two programs. In the computer program of Ref. 1, the mass matrix for the structure is calculated and stored for use in Steps 2 and 3 of the Subspace Iteration method of Section 2.2.2. ever, in the SOS4 computer program the mass matrix for the structure is not Multiplication of the mass matrix with eigenvectors in Steps 2 and 3 of the Subspace Iteration method of Section 2.2.2 is carried out elementwise. Thus, if the Subspace Iteration method takes approximately 5 cycles to converge to the eigenvalue solution for a structure, then the mass matrix is computed 10 times in the program SOS4, as compared to only once in the program of Ref. 1. When six damage conditions are imposed, the mass matrix is calculated 70 times in the program SOS4, as compared to only 7 times in the program of Ref. 1, in each design iteration. Therefore, the frequency analysis portion of the program of Ref. 1 is more efficient as compared to that in the program SOS4. However, for the two approaches, there is a trade-off between computational time and computer storage.

In order to confirm the preceding contention, the two computer programs were executed without the frequency analysis for a case of the open truss helicopter tail-boom with six damage conditions imposed. The program SOS4 took 13.0 sec. per design iteration, whereas the program of Ref. 1 took 14.2 sec. per design iteration. Thus, the program based on the substructuring formulation is more efficient as compared to a program without substructuring formulation.

4.3.2 Closed Helicopter Tail-Boom

In this example, the same helicopter tail-boom structure as discussed in Section 4.3.1, is considered. The tail-boom is modeled as a closed structure that is obtained by using a skin cover on the 108 member truss of Figure 2.1. Design case for the structure is the same as given in Appendix A, except for the skin material. The skin is an aluminum alloy sheet (7075-T6 clad aluminum) that is modeled by 48 CST elements. The element connectivity for the CST elements is defined in Table 4.5. Material properties for the skin are: Young's Modulus = 10,400 ksi, yield stress = 67 ksi, working stress = 40.2 ksi, and the material weight density = 0.098 lbs/in³.

TABLE 4.5. CST ELEMENT CONNECTIVITY FOR CLOSED HELICOPTER TAIL-BOOM

Member Number	Node i	Node j	Node k
1	7	9	11
2	7 7	9	11 5
3	5	3	7
1 2 3 4 5 6	5 6 6 2 2 6 6 2 2 12	3 3 12 12	1
5	6	12	10 幕
6	6	12	
7	2	8	6 1
7 8	2	8	4 77
9	6	9	10 1
10	6	9	9 5 0 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
11	2	5	6 g
11 12	2	5	1 5
13	12	7	11
14	12	7	8
15	8	8 9 9 5 5 7 7	7
16	8	3	4
17	5	11	7
18	5 9 9	11	9
19	9	3	11
20	9	3	1
21	10	3 8 8 2 2 5	6 12 %
22	10 12 12	8	12 #
23	12	2	4 9
24	12	2	4 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
25	10 10	2	6 0
26	10	5	9 1
27	2 2	9	10 5
28	2		1 Ins
29	8	11	12
30 31	0	11	12
31	12	3 3	11
32	12	3	4
33	5 5 9	11	7 5 11
34	5	11 3	5
35	9	3	11
36	9	3	1 6 12 2 #
37	10	8	6
38	10	8	12 g
39	10 12 12	2	2 #
40	12	2	10 9
41	10 10 2 2 8 8 12 12	3 8 8 2 2 5 5 9	Substructure 0
42	10	5	9 5
43	2	9	10 1 7 Substru
44	2	9	1 8
45	8	11	7 78
/1 h	×	11	12
46 47		11 3 3	11 4

The structure is divided into three substructures for the computer program SOS4. Data for the three substructures are the same as discussed in Section 4.3.1, except that skin elements must be included in all substructures. The starting design for the structure is taken as 0.10 in². for the truss elements and 0.04 in. for the CST elements. Lower and upper bounds for the CST elements are 0.02 in. and 0.05 in., respectively. The lower bound for truss elements is the same as in the previous example.

Optimum solutions for Cases I and V of Appendix A are again obtained using the program SOS4. Results are given in Table 4.6. Considerable design variable linking is used in this example, as indicated in Table 4.6. Critical constraints at the optimum for this example problem are given in Table 4.7. Fundamental frequencies of the closed and open tail-boom structures are given in Table 4.8.

Comparison of Optimum Results for Open and Closed Tail-Boom Structures:

Table 4.9 presents a comparison of optimum results for the open and closed tail-boom structures. For both Cases I and V, the optimum weight for the closed tail-boom is less than half that for the open tail-boom. Thus, one can conclude that the closed tail-boom is considerably more efficient in carrying loads.

Computational effort for the closed tail-boom is greater than that for the open tail-boom, since the closed tail-boom has more members and design variables than the open tail-boom.

TABLE 4.6. FINAL DESIGN FOR CLOSED HELICOPTER TAIL-BOOM WITH SUBSTRUCTURING

Design Variable Number	Member Number	(without	SE I	CASE V (with 6 damage	
Number .	Number	At 10th Iter.	At 30th Iter		
1	2,3	0.0554	0.0415	0.0847	
2	1,4	0.0542	0.0415	0.1498	
3	5,6,9,10	0.0415	0.0415	0.0415	
4	7,8,11,12	0.0438	0.0415	0.1138	
5	13,15	0.0415	0.0415	0.0415	
6	14,16	0.0415	0.0415	0.0415	
7	17,18	0.0645	0.0415	0.0418	
8	20,21	0.0631	0.0415	0.1885 .	
9	19,22	0.0415	0.0415	0.3267	
10	23,24,27,28	0.0415	0.0415	0.2522	
11	25,26,29,30	0.0415	0.0415	0.0526	
12	31,33	0.0415	0.0415	0.0415	
13	32,34	0.0415	0.0415	0.0415	
14	35,36	0.0415	0.0415	0.2405	
15	38,39	0.0415	0.0415	0.0415	
16 .	37,40	0.0415	0.0415	0.0415	
17	41,42,45,46	0.0415	0.0415	0.0415	
18	43,44,47,48	0.0486	0.0415	0.0415	
19	49,51	0.0415	0.0415	0.0415	
20	50,52	0.0415	0.0415	0.0415	
21	53,54	0.0415	0.0415	0.0415	
22	56,57	0.0415	0.0415	0.0415	
23	55,58	0.0415	0.0415	0.0482	
24	59,60,63,64	0.0415	0.0415	0.0415	
25	61,62,65,66	0.0515	0.0415	0.0415	
26	67,69	0.0415	0.0415	0.0415	

TABLE 4.6 Cont'd

Design Variable Number	Member	(without	SE I	CASE V (with 6 damage
Number	Number	At 10th Iter.	At 30th Iter.	conditions)
27	68,70	0.0415	0.0415	0.0415
28	71,72	0.0415	0.0415	0.0624
29	74,75	0.0415	0.0415	0.0415
30	73,76	0.0415	0.0415	0.0415
31	77,78,81,82	0.0419	0.0415	0.0415
32	79,80,83,84	0.0553	0.0415	0.0429
33	85,87	0.0415	0.0415	0.0415
34	86,88	0.0415	0.0415	0.0415
35	89,90	0.0816	0.0814	0.1941
36	92,93	0.0415	0.0415	0.0437
37	91,94	0.0415	0.0415	0.0640
38	95,96,99,100	0.0415	0.0415	0.1822
39	97,98,101,102	0.0534	0.0415	0.1229
40	103,105	0.0415	0.0415	0.0415
41	104,106	0.0415	0.0415	0.0415
42	107,108	0.0415	0.0415	0.0820
43 (CST)	1-4	0.0385	0.04555	0.0374
44 (CST)	5-8	0.0313	0.02325	0.05
45 (CST)	9-16	0.02	0.02	0.0425
46 (CST)	17-20	0.0414	0.04709	0.05
47 (CST)	21-24	0.0285	0.02	0.05
48 (CST)	25-32	0.02	0.02	0.0420
49 (CST)	33-36	0.0434	0.04550	0.05
50 (CST)	37-40	0.02	0.02	0.0399
51 (CST)	41-48	0.02	0.02	0.0373
Weight in 1bs.	etedios esserva	45.82	44.53	77.81
Average CPU/iter sec. on IBM 370-		7.66	7.66	52.00
# of active cons at optimum		34	48	35
\delta b^1 opt.		158.8	77.63	253.8
8b1 max		321.9	321.9	434.3

TABLE 4.7. CRITICAL CONSTRAINTS AT OPTIMUM (CLOSED TAIL-BOOM)

CASE I: Without damage

(i) Results obtained after 10 design iterations (1 stress-ratio design cycle initially)

Lower bound on design variable numbers: 3, 5, 6, 7, 10-17, 19-21, 23, 24, 26-30, 33, 34, 36-38, 40-42, and 50, 51

- (ii) Results obtained after 30 design iterations (1 stressratio design cycle initially)
 - Displacement of nodes 1 and 3 in the \mathbf{x}_2 direction of the 3^{rd} substructure
 - Lower bound on design variable numbers: 1-34, 36-42,
 50, 51
 - · Max. violation is 0.31%

<u>CASE V</u>: With 6 damage conditions (results are obtained after 38 design iterations with no stress-ratio design initially)

- * Displacement of nodes 1 and 3 in the \mathbf{x}_2 direction of the 3^{rd} substructure under damage conditions 2, 4, and 6
- Truss member #98, group 39 in substructure 3 under damage condition 5
- Lower bound on design variable numbers: 3, 5, 6,
 12, 13, 15-22, 24-27, 40, 41, 29-31, 33-34
- · Upper bound on design variable numbers: 44, 46, 47 and 49
- · Max. violation is 1.04% (in displacement constraints)

TABLE 4.8. NATURAL FREQUENCY AT OPTIMUM (RESONANT FREQUENCY = 29 HZ.)

		Natural Frequencies (in Hz.)
	CASE I: Without damage	33.51
(Open tail-boom)	CASE V: With 6 damage conditions	43.91, 30.69, 28.999, 44,39, 46,93, 44.07, 28.999
	CASE I: Without damage	53.28
(Closed tail-boom)	CASE V: With 6 damage conditions	56.01, 36.68, 36.44, 60.64, 62.39, 60.84, 34.55

TABLE 4.9. COMPARISON OF OPTIMUM RESULTS OBTAINED WITH SUBSTRUCTURING FOR OPEN AND CLOSED TAIL-BOOM STRUCTURES

	CA	SE I	CASE V		
	Optimum Weight, 1bs.	CPU Time per Design Iter.	Optimum Weight, lbs.	CPU Time per Design Iter.	
Open Tail-Boom	106.0	5.65	161.7	43.5	
Closed Tail-Boom	44.5	7.66	77.8	52.0	

CHAPTER 5

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

A general method for optimal design of fail-safe structures with substructuring is presented. The method integrates the state space design sensitivity analysis for fail-safe structural design into the gradient projection method of design optimization. A step-by-step algorithm for optimal design of fail-safe structures is stated. Computational aspects of the method with substructuring are discussed.

A modified Subspace Iteration method for computing natural frequencies of a structure by substructuring is also developed and integrated into the optimal design algorithm. The method is quite readily programmed and integrated into the optimization algorithm with substructuring. An analysis of the method indicates that there is a trade-off between computational time and computer core requirements, depending on whether the mass matrix for the structure is computed only once for Subspace Iteration or computed in every Subspace Iteration.

Comparing results for the open and closed tail-boom structures, one concludes that the closed structure is considerably lighter in weight to support a given set of loads. Thus, if two tail-booms are constructed - one open and the other closed - that weight roughly the same, the closed tail-boom can be designed so that it is able to withstand more damage than the open tail-boom. However, there is a trade-off between the open and the closed tail-boom structures. The trade-off is in vulnerability of the two structures to blast. Whereas the closed tail-boom is more efficient in load carrying and sustaining damage, it is more vulnerable to damage by projectile fragments and charge detonations inside the tail-boom structure. Also, the closed tail-boom has more exposed surface area that is vulnerable to damage. In comparison, the open tail-boom is less succeptable to damage because it has smaller exposed surface area. Also projectile or blast fragments may simply pass through the structure with any damage. These trade-offs should be more thouroughly analyzed before a decision is made to go ahead with either an open or a closed tail-boom.

There are several areas of research that need to be investigated to fully utilize potential of the optimal design method developed for fail-safe structures. These areas are briefly outlined here:

- (1) Potential use of fiber-reinforced composite materials in fail-safe design of aircraft, helicopter, and other structures should be evaluated. Trade-offs between structural weight, damage sustainance, ease of construction, and construction costs should be analyzed.
- (2) Definition of damage to a structure needs to be refined. In the present work, damage to parts of the structure is specified for the designer before he sizes the structural elements. However, prediction of a damage condition should take member sizes into consideration.
- (3) The finite elements modeling of the structure needs to be refined. The finite element library for the computer program should be expanded to include elements such as the beam, the plate, and the quadrilateral membrane element. The disign sensitivity analysis method with these elements should be developed.
- (4) The effect of body forces should be incorporated into the computer program. Also the effect of temperature variations on structural performance should be included in the computer program. Note that the general optimal design formulation and the algorithm already account for these effects.
- (5) An algorithm for optimal design of fail-safe structures that use commercially available sections should be developed. This will reduce fabrication costs.
- (6) A formulation and an optimization algorithm for fail-safe design of structure, subjected to transient dynamic loads should be developed.
- (7) Work should continue in development of innovations for improving efficiency of the basic optimal design algorithm for fail-safe structures. Improvements in treatment of fail-safe constraints, step size selection techniques, and selection of weighting parameters are some of the areas that need further refinement.

LIST OF REFERENCES

- Sun, P.F., Arora, J.S. and Govil, A.K., <u>User's Manual for a Computer Program for Fail-Safe Design of Trusses</u>, <u>Technical Report No. 26</u>, <u>Materials Division</u>, <u>College of Engineering</u>, <u>The University of Iowa</u>, <u>Iowa City</u>, <u>Ia.</u>, <u>Feb. 1977</u>.
- Haug, E.J. and Arora, J.S., <u>Engineering Design Handbook</u>: <u>Computer Aided Design of Mechanical Systems Volume II</u>, <u>AMCP 706-193</u>, U.S. Army Materiel Command, Washington, D.C., July 1977.
- Govil, A.K., Arora, J.S. and Haug, E.J., <u>Substructuring Methods for Design Sensitivity Analysis and Structural Optimization</u>, <u>Technical Report No. 34</u>, <u>Materials Division</u>, <u>College of Engineering</u>, <u>The University of Iowa</u>, <u>Iowa City</u>, <u>Ia.</u>, <u>August 1977</u>.
- 4. Przemieniecki, J.S., Theory of Matrix Structural Analysis, McGraw-Hill Book Co., Inc., New York, 1968.
- 5. Bathe, K.J., and Wilson, E.L., "Solution Methods for Eigenvalue Problems in Structural Mechanics," International Journal for Numerical Methods in Engineering, Vol. 6, No. 2, 1973, pp. 213-226.
- Householder, A.S., <u>Principles of Numerical Analysis</u>, McGraw-Hill Book Co., New York, 1953.
- 7. Gupta, K.K., "Free Vibrations of Single-Branch Structural Systems," Journal of the Institute of Mathematics and Its Applications, Vol. 5, No. 3, 1969, pp. 351-362.
- 8. Wilkinson, J.H., The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965.
- 9. Peters, G., and Wilkinson, J.H., "Eigenvalues of Ax = λ Bx with Band Symmetric A and B." Computer Journal, Vol. 12, 1969, pp. 398-404.
- 10. Ostrowski, A.M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960.
- Arora, J.S., "Survey of Structural Reanalysis Techniques," Journal of the Structural Division, Proc. ASCE, Vol. 102, No. ST4, April 1976, pp. 783-802.
- 12. Fox, R.L., and Kapoor, M.P., "A Minimization Method for the Solution of the Eigenproblem Arising in Structural Dynamics," presented at the Air Force Second Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, October, 15-17, 1968.
- 13. Bradbury, W.W., and Fletcher, R., "New Iterative Methods for Solution of the Eigenproblem," Numerishce Mathematik 9, 1966, pp. 259-267.
- 14. Arora, J.S., and Haug, E.J., Jr., "Efficient Optimal Design of Structures by Generalized Steepest Descent Programming," International Journal for Numerical Methods in Engineering, Vol. 10, No. 4, 1976, pp. 747-766, and Vol. 10, No. 6, 1976, pp. 1420-1426.
- 15. Haug, E.J. and Arora, J.S., "Design Sensitivity Analysis of Elastic Mechanical Systems," Computer Methods in Applied Mechanics and Engineering, to appear, 1978.

54

- 16. Arora, J.S. and Haug, E.J., Methods of Design Sensitivity Analysis in Structural Optimization, Technical Report No. 40, Materials Division, College of Engineering, The University of Iowa, Iowa City, Ia., May 1978.
- 17. Haug, E.J., Jr., Pan, K.C. and Streeter, T.D., "A Computational Method for Optimal Structural Design: I Piecewise Uniform Structures," International Journal for Numerical Methods in Engineering, Vol. 5, 1972, pp. 171-184.
- 18. Arora, J.S. and Govil, A.K., "An Efficient Method for Optimal Structural Design by Substructuring," International Journal of Computers and Structures, Vol. 7, No. 4, 1977, pp. 507-515.
- 19. Arora, J.S. and Govil, A.K., "Design Sensitivity Analysis with Substructuring," Journal of Engineering Mechanics Division, Proceedings of the ASCE, Vol. 103, No. EM4, August 1977, pp. 537-548.
- 20. Ugural, A.C. and Fenster, S.K., Advanced Strength and Applied Elasticity, American Elsevier Publishing Co., Inc., New York, 1975.

APPENDIX A

to

Report Number 45

FAIL-SAFE DESIGN OF AN OPEN TRUSS
HELICOPTER TAIL-BOOM WITHOUT SUBSTRUCTURING

The purpose of this appendix is to present optimal designs for several cases of an open truss helicopter tail-boom without substructuring. The structure is the tail-boom for a U. S. Army Cobra helicopter.

The basic configuration and end sections of the tail-boom are shown in Figure A.1. The maximum in-flight loads to be supported by the tail-boom structure are also shown in Figure A.1. The structure that is currently in use consists of longitudinal members, cross members, and a skin cover to obtain an enclosed tail-boom. This type of structure is vulnerable to blasts that occur inside or near the skin. In order to reduce vulnerability of the structure to such damage, an open truss type structure is considered. Accordingly, the structure shown in Figure A.1 is modeled as a 108 member truss with 28 joints and 72 degrees of freedom. The geometry of the idealized structure and the design loads are given in Figure A.2. The element numbering system for a typical panel is shown in Figure A.3. The member definitions for the truss are given in Table A.1.

The problem is to minimize the total weight of the structure and at the same time to ensure that member stress, nodal displacement, member buckling, and natural frequency constraints are satisfied under projected loading and damage conditions. The design parameters to be calculated are the cross-sectional areas of the members. A lower bound constraint is also imposed on cross-sectional area.

The members of the truss are taken to be tubular sections. Assuming the sections to be thin, the moment of inertia and cross-sectional area are given as $I = \pi R^3 t$ and $A = 2\pi R t$, where R is the mean radius and t is the thickness of the tube. In calculating the Euler buckling load, the moment of inertia is assumed to be given as $I = \overline{\alpha}A^2$. Therefore, $\overline{\alpha} = I/A^2$ is given as $R/4\pi t$. If R/t is conservatively selected as 12 to 14, then $\overline{\alpha} \simeq 1.0$. This value of $\overline{\alpha}$ is used in calculations.

Design data for the structure are given in Table A.2. The working stress for each member is assumed to be approximately 60 percent (\pm 25 ksi) of the yield stress (42 ksi) for the material used. This working stress corresponds to a safety factor of roughly 1.68. Displacement limit of \pm 0.5 in. at the nodal points are based on approximately $1/3^{\circ}$ mis-alighment at the center of the tail-boom. The lower limit on member cross-sectional area is taken as 0.0415

Figure A.1. Geometry of Helicopter Tail Boom

Figure A.2. Arrangement of Members for Open Truss Tail-Boom

Following grouping of members with members of a group required to have same cross-sectional areas is used to maintain some symmetry in the structure

Group No.	Member Numbers
1	2,3
2	1,4
3	
4	5,6,9,10 7,8,11,12
. 5	13,15
6	14,16
7	17,18

Figure A.3. Member Numbering for the First Panel

TABLE A.1

MEMBER LOCATIONS FOR OPEN TRUSS HELICOPTER TAIL BOOM

		End Me Nodes	Member	Member End Nodes		Member	End Nodes	
1	3	7	37	11	15	73	19	23
1 2 3 4 5 6 7 8	1	5	38	9	13	74	17	21
3	2	6	39	10	14	75	18	22
4	4	8	40	12	16	76	20	24
5	3	5	41	11	13	77	19	21
6	1 '	7	42	9	15	78	17	23
7	1	6	43	9	14	79	17	22
8	2	. 5	44	10	13	80	18	21
9	2	. 5 8	45	10	16	81	18	24
10	3 1 2 4 3 1 1 2 2	6	46	12	14	82	20	22
11	3	8	47	11	16	83	19	24
12	4	7	48	12	15	84	20	23
13	7	5	49	15	13	85	23	21
14	7 5	7 5 6	50	13	14	86	21	22
15	6	8	51	14	16	87	22	24
16	8	7	52	16	15	88	24	23
17	7	6	53	15	14	89	23	22
18	8 7 8 7 5 6 8 7 5 5 6	5	54	16	13	90	24	21
19	7	11	55	15	19	91	23	27
20	5	9	56	13	17	92	21	25
21	6	10	57	14	18	93	22	26
22	8	12	58	16	20	94	24	28
23	7	9	59	15	17	95	23	25
24	5	11	60	13	19	96	21	27
25	5	10	61	13	18	97	21	26
26	6	9	62	14	17	98	22	25
27	6	12	63	14	20	99	22	28
28	8	10	64	16	18	100	24	26
29	7	12	65	15	20	101	23	28
30	8	11	66	16	19	102	24	27
31	11	9	67	19	17	103	27	25
32	9	10	68	17	18	104	25	26
33	10	12	69	18	20	105	26	28
34	12	11	70	20	19	106	28	27
35	11	10	71	19	18	107	27	26
36	12	9	72	20	17	108	28	25

TABLE A.2

DESIGN DATA FOR OPEN TRUSS HELICOPTER TAIL BOOM

A: Data Common to complete as well as damaged structures

Material 2024-T3 Aluminum Alloy $= 10.5 \times 10^3 \text{ ks}$ Modulus of Elasticity - ± 25.0 ksi Stress limits - 0.1 lb/in.3 Material density : $I = \overline{\alpha}A^2$; $\overline{\alpha} = 1.0$ Moment of inertia Displacement limits = ± 0.50 in. 0.0415 in.² Lower limit on cross-Sectional area Upper limit on cross-None Sectional area

B: Loading Data

Number of loading conditions = one

Loading for complete structure :

Node Number	Load Component (kips) in direction					
Node Number	x ₁	x ₂	х ₃			
13	0.0	0.0	-0.140			
14	0.0	0.0	-0.140			
15	0.0	0.0	-0.140			
16	0.0	0.0	-0.140			
25	1.4903	1.6918	0.0			
26	1.4903	-1.3658	0.0			
27	-1.4903	1.6918	0.0			
28	-1.4903	-1.3658	0.0			

Lower bound on natural frequency for complete structure = 29 Hz

in. which corresponds to a tube with 0.50 in. outside diameter and 0.028 in. wall thickness. There is no upper limit on cross-sectional area. There is only one loading condition for the structure, which is given in Table A.2. There are six projected damage conditions for the structure, given in Table A.3. For each damage condition a joint of the structure and all members connected to the joint are removed. Thus each damaged structure has different stiffness and mass matrices and state variables. Note, however, that each damaged structure is geometrically stable.

In order to maintain symmetry and to facilitate fabrication of the structure, 108 members of the structure are divided into a total of 42 groups and each group is assigned a design variable. Therefore each panel of the structure (shown in Figure A.3) has seven design variables. Also, it is interesting to study the effect on structural weight obtained by imposing varying degrees of performance requirements for the damaged structures. Thus optimum solutions for the following five cases are obtained.

- Case I: Complete structure with no damage.
- Case II: Complete structure with damage conditions 1 to 6 imposed and the structural load and natural frequency requirements for damaged structures reduced to two-thirds of the normal conditions.
- Case III: Same as Case II except load and natural frequency requirements for damaged structures are 80% of the normal conditions.
- <u>Case IV:</u> Same as Case II except load and natural frequency requirements for damaged structures are 90% of the normal conditions.
- Case V: Complete and damaged structures required to perform for full set of normal conditions.

Optimum designs for the open truss helicopter tail-boom for Cases I to V are given in Table A.4. These designs were obtained by starting the iterative process with 1.0 m² as cross-sectional area for all members of the tail-boom. Comparing the results for Cases I and II, one concludes that when performance requirements for projected damaged structures (defined in Table A.3) are reduced to two-thirds of the normal conditions there is essentially no penalty on the weight of the structure. However, there is some redistribution

TABLE A.3. DAMAGE CONDITION DEFINITIONS AND FREQUENCY LIMITS

Damage Condition	Member(s) Damaged	Node(s) Damaged	% Reduction in Area	
1	21,25,28,32,33, 35,39,44,45	10	100	
2	1,6,12,13,16, 17,19,23,29	7	100	
3	58,63,65,69,70, 72,76,82,84	20	100	
4	73,78,84,85,88, 89,91,95,101	23	100	
5	56,59,62,67,68, 72,74,78,79	17	100	
6	3,7,10,14,15, 17,21,26,27	6	100	

of the material, as may be seen from optimal solutions for Cases I and II given in Table A.4. If the final design for Case I given in Table A.4 is taken as the starting design for Case II, there are large constraint violations. This indicates that the structure constucted from the solution of Case I would fail catastrophically if any of the damage conditions defined in Table A.3 occured, even after the load and the natural frequency requirements were reduced to two-thirds of the normal conditions. On the other hand, if a tail-boom is constructed from the final areas for Case II, the structure is able to safely support two-thirds of the load carrying requirement, even after any of the specified damage occurs.

Final designs for Cases III, IV, and V are also given in Table A.4. They indicate that there is a substantial penalty on the weight of the structure as the load carrying and natural frequency requirements for the damaged structures are increased.

Due to ease in fabrication, it is desirable to use as few standard sections as possible. For the design of Cases I to V, 42 design variables (that is 42 types of sections) are used. This number is perhaps too large. Therefore tail-boom design for two additional cases VI and VII is also obtained. These cases are as follows:

- Case VI: The number of design variables is reduced to 12, with 2 design variables for each bay. For the first bay of Figure A.3, members 1-4, 13-16 have same cross-sectional areas and members 5-12, 17 and 18 have same cross-sectional areas. The tail-boom is designed with six damage conditions of Table A.3 imposed, and complete and damaged structures are required to perform for full set of normal conditions.
- Case VII: The number of design variables is reduced to 4 with 2 design variables for first three bays and 2 design variables for the last three bays. For the first three bays, all longerons, vertical and cross members have the same cross-sectional areas and all diagonals have same cross-sectional areas. A similar grouping is done for the last three bays. The tail-boom is designed with six damage conditions of Table A.3 imposed, and complete and damaged structures are required to perform for full set of normal conditions.

 $\mbox{TABLE A.4.}$ OPTIMUM DESIGNS FOR CASES I TO V OF THE TAIL-BOOM STRUCTURE

Design	Member	Final Cross-Sectional Areas (in. 2)					
Variable	Numbers	Case I	Case II	Case III	Case IV	Case V	
1	2,3	1.3750	1.415	1.6930	2.2810	3.0250	
2	1,4	1.3710	1.424	1.6440	2.1220	2.7880	
3	5,6,9,10	0.1375	0.1391	0.2094	0.2427	0.2684	
4	7,8,11,12	0.1395	0.1544	0.1464	0.1589	0.2266	
5	13,15	0.0415	0.0415	0.0415	0.0726	0.0998	
6	14,16	0.0821	0.0809	0.1374	0.1700	0.1589	
7	17,18	0.0415	0.0415	0.1777	0.3187	0.3168	
8	20,21	1.2420	1.2610	1.3870	1.7060	2.2440	
9	19,22	1.2390	1.2600	1.2400	1.5770	2.0930	
10	23,24,27,28	0.1741	0.1593	0.1751	0.2161	0.3964	
11	25,26,29,30	0.1649	0.1864	0.3504	0.3981	0.4220	
12	31,33	0.0415	0.0415	0.0479	0.0415	0.0477	
13	32,34	0.1002	0.1034	0.1948	0.1972	0.1522	
14	35,36	0.0415	0.0498	0.0909	0.1035	0.1231	
15	38,39	1.0290	1.022	1.0550	1.1060	1.3060	
16	37,40	1.0280	1.0070	1.0040	1.070	1.2700	
17	41,42,45,46	0.2110	0.1990	0.2301	0.2585	0.3404	
18	43,44,47,48	0.2295	0.2513	0.2464	0.2738	0.2894	
19	49,51	0.0415	0.0415	0.0498	0.0818	0.0928	
20	50,52	0.1371	0.1315	0.1228	0.0962	0.0899	
21	53,54	0.0415	0.0415	0.0451	0.0773	0.0897	
22	56,57	0.8221	0.8218	0.8237	0.8759	0.9313	
23	55,58	0.8226	0.8020	0.8179	0.9044	0.9761	
24	59,60,63,64	0.2365	0.2316	0.3045	0.3733	0.4043	
25	61,62,65,66	0.2587	0.2425	0.1891	0.1508	0.1583	
26	67,69	0.0415	0.0415	0.0415	0.0753	0.0902	
27	68,70	0.1575	0.1372	0.1715	0.1230	0.1078	
28	71,72	0.0415	0.0503	0.1283	0.1745	0.1714	

The optimal designs for the last two cases are also obtained using the same computer code [1] and by starting from uniform cross-sectional areas of 1.0 in. 2 for all members. The final areas for Case VI are given in Table A.5 and for the Case VII, they are given in Table A.6. As expected, there is a substantial penalty in weight of the structure, as compared to the weight obtained in Case V. This indicates that the designer has to decide whether the weight of the structure or its fabrication cost is critical, because as the number of design variables is reduced the optimum weight of the structure increases.

The constraints that are critical at the optimum for all cases are given in Table A.7. For all cases, all active constraints are satisfied to within 0.10% of their allowable values. The natural frequencies of the complete and damaged structures at the optimum solution are given in Table A.8. The cost function histories for all cases are given in Figure A.4. In most cases, an optimum design or a design very close to the optimum was obtained in 20-30 iterations.

The rate of convergence to the optimum is highly dependent on proper selection of the step size parameter η . In order to see how critical the step size parameter is, several step sizes for Case II of the helicopter tail-boom were tried and it was possible to obtain convergence to the optimum in 20 iterations, as compared to 32 iterations shown in Figure A.4. The step size in all calculations was selected based on the idea of specifying a desired reduction in the cost function [2] . Change in the cost function is given by the linearized formula

$$\delta \psi_0 = \Lambda^{\mathbf{J}^{\mathbf{T}}} \delta \mathbf{b} \tag{A.1}$$

Now substituting for $\delta\psi_0=-\overline{r}\psi_0$ (where \overline{r} is a specified reduction ratio and ψ_0 is the current value of the cost function) and for $\delta b=-\eta \delta b^1$ from Equation 2.5-8 (where δb^2 is assumed to zero; that is all constraints are assumed to be satisfied) into Equation 2.4-26, one obtains

$$\eta = \overline{r\psi_0}/\Lambda^{J} \delta b^1 \tag{A.2}$$

This formala is used in calculating the step size at the start of the iterations. The step size parameter is monitored and sometimes adjusted as the iterations progress.

TABLE A.4. (cont.)

Design	Member	Final Cross-Sectional Areas (in. ²)					
Variable	Numbers	Case I	Case II	Case III	Case IV	Case V	
29	74,75	0.5806	0.5846	0.4995	0.5390	0.5515	
30	73,76	0.5830	0.5689	0.5626	0.6633	0.666	
31	77,78,81,82	0.2675	0.2626	0.2331	0.2651	0.293	
32	79,80,83,84	0.2883	0.2695	0.3453	0.3273	0.311	
33	85,87	0.0415	0.0415	0.0449	0.0416	0.058	
34	86,88	0.1934	0.1676	0.2132	0.1705	0.157	
35	89,90	0.0415	0.0415	0.0544	0.1069	0.122	
36	92,93	0.2299	0. 2244	0.2274	0.2682	0.274	
37	91,94	0.2090	0.2250	0.2021	0.1372	0.118	
38	95,96,99,100	0.3295	0.3188	0.2905	0.2134	0.185	
39	97,98,101,102	0.3428	0.3248	0.3318	0.3382	0.332	
40	103,105	0.0564	0.0415	0.0757	0.0921	0.108	
41	104,106	0.1036	0.0875	0.0999	0.0947	0.092	
42	107,108	0.1987	0.1929	0.1905	0.1899	0.182	
Weight in pounds		105.6	105.8	116.8	134.8	161.1	
Average CPU/Iter. in sec. on IBM 370-158(G)		4.0	24.0	26.4	26.7	26.7	
Number of Active Constraints at Opt.		12	14	11	14	10	
δb ¹ at opt.		2.8	0.70	3.78	3.72	3.49	
$ \delta b^1 $ max.		53.8	53.8	53.8	53.8	53.8	

TABLE A.5.

OPTIMAL DESIGN FOR CASE VI OF HELICOPTER TAIL-BOOM

Design Variable	Member Numbers	Final Areas (in ²			
1	1-4, 13-16	2.9370			
2	5-12, 17, 18	0.5698			
3	19-22, 31-34	2.0430			
4	23-30, 35-36	0.8459			
5	37-40, 49-52	1.0760			
6	41-48, 53, 54	0.4047			
7	55-58, 67-70	0.7033			
8	59-66, 71, 72	0.3615 0.4470 0.3294 0.1554			
9	73-76, 85-88				
10	77-84, 89,90				
11	91-94, 103-106				
12	95-102, 107-108	0.2511			
Optimum Weight in pounds		241.57			
Average CPU/cycle in sec. on IBM 370-158 (G)		26.8			
Number of Active Constraints at Opt.		5			
8b ¹ a	t Opt.	6.1			
\delta b^1 max.		89.7			

TABLE A.6.

OPTIMAL DESIGN FOR CASE VII OF HELICOPTER TAIL-BOOM

Design Variable	Member Numbers	Final Areas (in. ²)		
1	1-4, 13-16, 19-22, 31-34, 37-40, 49-52	3.2960		
2	5-12, 17, 18, 23-30, 35, 36 41-48, 53, 54	0.8895		
3	55-58, 67-70, 73-76, 85-88, 91-94, 103-106	0.4283		
4	59-66, 71, 72, 77-84, 89, 90 95-102, 107, 108	0.2796		
Optimum Weight in pounds		346.25		
Average CPU/cycle in sec. on IBM 370-158 (G)		18.0		
Number of Ac	ctive Constraints at opt.	3		
$ \delta b^{1} $ at opt.		0.035		
$ \delta b^{1} $ max		155.1		

TABLE A.7. CRITICAL CONSTRAINTS AT OPTIMUM

Case I

Displacement in the x_2 direction at nodes 25 and 27, and lower limit on design variable numbers 5, 7, 12, 14, 19, 21, 26, 28, 33, and 35.

Case II

Same as in Case I, except design variables 14 and 28 are not at their lower bounds and 40 is at its lower bound, and buckling constraint for members 18, 36, 71 are tight under damage conditions 6, 1, and 5, respectively.

Case III

Displacement in the x_2 direction at node 25 under damage conditions 1, 2, 4, 5 and 6, displacement in the x_2 direction at node 27 under damage conditions 1, 2, 5 and 6, and lower bound on design variables 5 and 26.

Case IV

Displacement in the x_2 direction at node 25 under damage conditions 1, 2, 3, 4 and 5, displacement in the x_2 direction at node 27 under damage conditions, 1, 2, 3, and 5, frequency constraints under damage conditions 2 and 6, buckling constraint for member 66 under damage condition 3, and lower bound on design variables 12 and 33.

Case V

Displacement in the x_2 direction at node 25 under damage conditions 2, 3, 4 and 5, displacement in the x_2 direction at node 27 under damage conditions 2, 3 and 5; frequency constraints under damage conditions 2 and 6; buckling constraint for member 66 under damage condition 3.

Case VI

Displacement in the x_2 direction at nodes 25 and 27 under damage conditions 4 and 5, and frequency under damage condition 2.

Case VII

Displacement in the x_2 direction at nodes 25 and 27 under damage condition 5 and frequency constraint under damage condition 2.

TABLE A.8. STRUCTURAL FREQUENCY AT OPTIMUM

Damaged Condition	Frequency at Optimum (Hz)							
	Case I	Case II	Case III	Case IV	Case V	Case VI	Case VII	
0*	34.34	34.90	36.75	39.80	44.12	42.52	43.19	
1	-	24.83	26.00	27.44	30.85	31.79	35.08	
2	-	22.06	23.82	26.10	29.00	29.00	29.00	
3	-	35.61	37.58	40.81	44.70	43.56	41.55	
4	-	37.62	39.64	42.81	47.21	45.81	45.77	
5	-	35.52	37.38	40.53	44.40	43.46	41.36	
6	-	22.42	23.85	26.10	29.00	29.41	29.42	

^{*} Complete Structure

Figure A.4. Cost Function Histories for Several Design Cases of the Helicopter Tail-Boom Truss

It should be noted that in the first few design iterations for all cases of the tail-boom design, there were a large number of violations (50 to 100) and the maximum amount of violations was of the order of 1500%. The fail-safe optimal structural design algorithm corrected these constraints violations without difficulty.

APPENDIX B

to

Report Number 45

FINITE ELEMENTS EMPLOYED

The computer program for fail-safe structural optimazation with substructuring (FSOS) employs truss, constant strain triangular (CST), the symmetric shear panel (SSP) and symmetric pure shear panel (SPSP) finite elements. For convenience the stiffness and mass matrices for these elements are given in this appendix.

B.1. Notation and General Expressions

a = length of SSP or SPSP element

b = height of SSP or SPSP element

E = modulus of elasticity

 ρ = material mass density

 ℓ_1 , m_1 , n_1 = direction cosines of the local x_1 axis in the global coordinate system

 $\tilde{\mathbf{u}}, \tilde{\mathbf{v}}, \tilde{\mathbf{w}}$ = displacements in local coordinate system

 $x_1, x_2, x_3 = global coordinate system$

 $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3 = local$ coordinate system

 $\epsilon_{11}, \epsilon_{22}, \epsilon_{12}$ = strain components in local coordinate system

 $\sigma_{11}, \sigma_{22}, \sigma_{12}$ = stress components in local coordinate system

t = thickness of SSP or SPSP element

 Θ = aspect ratio of SSP or SPSP element ($\Theta = \frac{a}{b}$)

 \tilde{r} = vector of nodal displacement in local coordinate system

B = strain-displacement relation matrix

C,C = stress-displacement relation matrices in datum and local coordinate systems, respectively

D = stress-strain relation matrix

 k, \tilde{k} = element stiffness matrices in datum and local coordinate systems, respectively

R = rotation matrix from local to global coordinate system

 β = local to global coordinate transformation matrix for stiffness and mass matrices

N = shape function that depends on $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3$

V = volume of the finite element

A general expression for the element stiffness matrix in the local coordinate system is given as [4]:

$$k = \int_{V} B^{T} DB dV$$
 (B.1-1)

The element stiffness matrix relative to a global coordinate system can be obtained using β and \tilde{k} matrices as follows [4].

$$k = \beta^{T} \tilde{k} \beta \tag{B.1-2}$$

A general expression for the element mass matrix in the local coordinate system is given as [4]:

$$\tilde{m} = \int_{V} N^{T} N dV$$
 (B.1-3)

The mass matrix m̃ relative to a global coordinate system can be obtained according to the following prescription [4]:

$$m = \beta^{T} \tilde{m} \beta \tag{B.1-4}$$

B.2. Truss Element

Truss is a one dimensional element that has constant strain throughout its length. Figure B.1 shows a general truss element in its local and global coordinate systems. Using the constant strain condition, shape functio for the truss element is given as [4]:

$$N = \begin{bmatrix} (1-\xi) & 0 & 0 & \xi & 0 & 0 \\ 0 & (1-\xi) & 0 & 0 & \xi & 0 \\ 0 & 0 & (1-\xi) & 0 & 0 & \xi \end{bmatrix}$$
 (B.2-1)

where $\xi = x_1/L$. Using Equation B.1-1, the stiffness matrix for the truss element is given as:

Using Equation B.1-3, mass matrix for the truss element is given as:

$$\tilde{m} = \frac{\rho AL}{6} \begin{bmatrix} 2I_3 & I_3 \\ I_3 & 2I_3 \end{bmatrix}$$
 (B.2-3)

where I_3 is a 3x3 identity matrix. It is shown in Ref. 4 that the mass matrix m for the truss element is invariant under any rotation of the coordinate system, so $m = \tilde{m}$ for the truss element.

It can be easily shown that the stiffness matrix for the truss element relative to a global coordinate system can be expressed as:

$$k = \left[\frac{AE}{L}\right] \beta^{T} \beta \tag{B.2-4}$$

Figure B.1. A General Truss Element

where the row vector β is given as:

$$\beta = \begin{bmatrix} \ell_1 & m_1 & n_1 & -\ell_1 & -m_1 & -n_1 \end{bmatrix}$$
 (B.2-5)

B.3. Isotropic Constant Strain Triangular (CST) Element

This element resists only in-plane stresses, σ_{11} , σ_{22} , and σ_{12} . These stresses and the corresponding strains are assumed to be constant throughout the finite element. A constant strain triangular element with its local and global coordinate systems is shown in Figure B.2. The displacement field for the CST element that satisfies the conditions of constant strain is given as:

$$\tilde{\mathbf{u}} = c_1 \tilde{\mathbf{x}}_1 + c_2 \tilde{\mathbf{x}}_2 + c_3
\tilde{\mathbf{v}} = c_4 \tilde{\mathbf{x}}_1 + c_5 \tilde{\mathbf{x}}_2 + c_6$$
(B.3-1)

Using the following displacement boundary conditions in Equation B.3-1, the constants $c_1, c_2, \ldots c_6$ can be easily solved:

$$\tilde{\mathbf{u}}(\tilde{\mathbf{x}}_{1}^{1}, \tilde{\mathbf{x}}_{2}^{1}) = \tilde{\mathbf{r}}_{1}, \qquad \tilde{\mathbf{v}}(\tilde{\mathbf{x}}_{1}^{1}, \tilde{\mathbf{x}}_{2}^{1}) = \tilde{\mathbf{r}}_{2}$$

$$\tilde{\mathbf{u}}(\tilde{\mathbf{x}}_{1}^{2}, \tilde{\mathbf{x}}_{2}^{2}) = \tilde{\mathbf{r}}_{3}, \qquad \tilde{\mathbf{v}}(\tilde{\mathbf{x}}_{1}^{2}, \tilde{\mathbf{x}}_{2}^{2}) = \tilde{\mathbf{r}}_{4}$$

$$\tilde{\mathbf{u}}(\tilde{\mathbf{x}}_{1}^{3}, \tilde{\mathbf{x}}_{3}^{3}) = \tilde{\mathbf{r}}_{5}, \qquad \tilde{\mathbf{v}}(\tilde{\mathbf{x}}_{1}^{3}, \tilde{\mathbf{x}}_{2}^{3}) = \tilde{\mathbf{r}}_{6}$$
(B.3-2)

Here the superscript on \tilde{x}_1 and \tilde{x}_2 refers to the nodal point of the finite element (refer to Figure B.2). Substituting $c_1, c_2, \ldots c_6$, calculated from boundary conditions B.3-2, one obtains \tilde{u} and \tilde{v} in terms of $\tilde{r}_1, \tilde{r}_2, \ldots \tilde{r}_6$ as follows.

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \end{bmatrix} = \frac{1}{bh} \begin{bmatrix} (s-b)\tilde{x}_1 - h(\tilde{x}_2 - b) & 0 \\ 0 & (s-b)\tilde{x}_1 - h(\tilde{x}_2 - b) \\ -s(\tilde{x}_1 - h) + h(\tilde{x}_2 - s) & 0 \\ 0 & -s(\tilde{x}_1 - h) + h(\tilde{x}_2 - h) \\ b\tilde{x}_1 & 0 & b\tilde{x}_1 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{bmatrix}$$
(B.3-4)

From Equation B.3-3, the shape function N can be identified for the isotropic CST element.

The strains for the isotropic CST element are given as:

$$\varepsilon = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{bmatrix} = \begin{bmatrix} u, 1 \\ v, 2 \\ u, 2 + v, 1 \end{bmatrix} \equiv B\tilde{r}$$
 (B. 3-4)

Figure B.2. Isotropic Constant Strain Triangular (CST) Element

Substituting Equation B.3-3 into Equation B.3-4, one can identify the matrix B as:

$$B = \frac{1}{bh} \begin{bmatrix} (s-b) & 0 & -s & 0 & b & 0 \\ 0 & -h & 0 & h & 0 & 0 \\ h & (s-b) & h & -s & 0 & b \end{bmatrix}$$
 (B.3-5)

Stresses in the element are related to strains through the generalized Hooke's law:

where
$$\sigma = \begin{bmatrix} \sigma & \sigma_{22} & \sigma_{12} \end{bmatrix}^T$$
 and D is given as

$$D = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1 - v)/2 \end{bmatrix}$$
 (B.3-7)

Therefore substituting for ε from Equation B.3-4 into Equation B.3-6, one can obtain stresses in terms of nodal displacements $\tilde{r}_1, \tilde{r}_2, \dots \tilde{r}_6$.

The stiffness matrix for the isotropic CST element in the local coordinate system can be obtained by substituting for B and D from Equations B.3-5 and B.5-7, respectively, into Equation B.1-1. Integrating over the volume of the element in Equation B.1-1, the element stiffness matrix is given as:

$$k = k^{n} + k^{s} \tag{B.3-8}$$

where \boldsymbol{k}^{n} is the stiffness matrix relative to normal stresses that is given as:

$$\tilde{k}^{n} = \frac{Et}{2bh(1 - v^{2})} \begin{bmatrix} (b-s)^{2} & & & & \\ v(b-s)h & h^{2} & & & \\ (b-s)s & vhs & s^{2} & & \\ -vh(b-s) & -h^{2} & -vhs & h^{2} & \\ -(b-s)b & -vhb & -sb & vhb & b^{2} & \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} (B.3-9)$$

and $\tilde{\textbf{k}}^{\textbf{S}}$ is the stiffness matrix relative to shear stress that is given as:

$$\tilde{k}^{S} = \frac{Et}{4bh(1+v)} \begin{bmatrix} h^{2} & & & & \\ (b-s)h & (b-s)^{2} & & \\ -h^{2} & -(b-s)h & h^{2} & & \\ hs & (b-s)s & -hs & s^{2} & \\ 0 & 0 & 0 & 0 & 0 \\ -hb & -(b-s)b & hb & -sb & 0 & b^{2} \end{bmatrix} (B.3-10)$$

The mass matrix for the isotropic CST element in the local coordinate system is obtained by substituting for N from Equation B.3-3 into Equation B.1-3. Carrying out the indicated integration, one obtains:

$$\tilde{m} = \begin{bmatrix} m^* & 0 & 0 \\ 0 & m^* & 0 \\ 0 & 0 & m^* \end{bmatrix}$$
 (B.3-11)

where m* is given as:

$$m^* = \frac{\rho At}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 (B.3-12)

In order to assemble stiffness and mass matrices for the entire structure, one needs to transform the element stiffness and mass matrices relative to a global coordinate system. It can be shown [4] that under any rotation of the coordinate system, the element mass matrix is invariant, that is $m=\tilde{m}$. In order to transform the element stiffness matrix relative to a global coordinate system, one needs to define a matrix β for the CST element and then use Equation B.1-2 to obtain k. The matrix β is given as:

$$\beta = \begin{bmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{bmatrix}$$
 (B.3-13)

where matrix R is given as:

$$R = \begin{bmatrix} \ell_1 & m_1 & n_1 \\ \ell_2 & m_2 & n_2 \end{bmatrix}$$
 (B.3-13)

where ℓ_1 , m_1 , n_1 and ℓ_2 , m_2 , n_2 are direction cosines of the x_1 axis (that is, the line 4-1) and the x_2 axis (that is, the line 1-2) relative to a global coordinate system x_1 , x_2 and x_3 . These direction cosines are given as:

B.4. Symmetric Shear Panel Element (SSP)

In deriving the stiffness matrix for SSP elements (Figure B.3), the basic assumptions made are: 1) isotropic material, 2) uniform thickness,
3) rectangular configuration; if not rectangular, an equivalent rectangular plate of the same area is considered, 4) symmetric with respect to the middle surface, 5) plane stress state, 6) the stress distribution is assumed as follows:

$$\begin{array}{l}
\sigma_{11}(\tilde{x}_{1}, \tilde{x}_{2}) = \alpha_{1}\tilde{x}_{2} + \alpha_{2} \\
\sigma_{22}(\tilde{x}_{1}, \tilde{x}_{2}) = 0.0 \\
\sigma_{12}(\tilde{x}_{1}, \tilde{x}_{2}) = \alpha_{3}
\end{array}$$
(B.4-1)

where $\alpha_1, \alpha_2, \alpha_3$ are constants, and 7) the displacement boundary conditions are:

$$\tilde{u}(0,b/2) = \tilde{r}_1$$
 $\tilde{u}(a,b/2) = \tilde{r}_3$
 $\tilde{v}(0,b/2) = \tilde{r}_2$
 $\tilde{v}(a,b/2) = \tilde{r}_4$

$$\tilde{u}(\tilde{x}_1,0) = 0.0$$
(B.4-2)

and

The local to global coordinate transformation for nodal displacements is expressed as:

$$\tilde{\mathbf{r}} = \beta \mathbf{r} \tag{B.4-3}$$

where

$$\beta = \begin{bmatrix} \ell_1 & m_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \ell_1 & m_1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (B.4-4)

$$\mathbf{r} = \left\{ \tilde{\mathbf{r}}_{1} \quad \tilde{\mathbf{r}}_{2} \quad \tilde{\mathbf{r}}_{3} \quad \tilde{\mathbf{r}}_{4} \right\}^{\mathrm{T}} \tag{B.4-5}$$

and

$$r = \{r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \quad r_6\}^T$$
 (B.4-6)

Figure B.3. Symmetric Shear Panel, or Symmetric Pure Shear Panel

From the assumed stress state, the strain-displacement and the boundary conditions, the displacement state can be obtained as:

$$\begin{pmatrix}
\tilde{\mathbf{u}}(\tilde{\mathbf{x}}_{1}, \tilde{\mathbf{x}}_{2}) \\
\tilde{\mathbf{v}}(\tilde{\mathbf{x}}_{1}, \tilde{\mathbf{x}}_{2})
\end{pmatrix} = \begin{pmatrix}
A_{11} & 0 & A_{13} & 0 \\
A_{21} & A_{22} & A_{23} & A_{24}
\end{pmatrix} \begin{pmatrix}
\tilde{\mathbf{r}}_{1} \\
\tilde{\mathbf{r}}_{2} \\
\tilde{\mathbf{r}}_{3} \\
\tilde{\mathbf{r}}_{4}
\end{pmatrix} (B.4-7)$$

where

$$A_{11} = \frac{2}{b} \left(1 - \frac{\tilde{x}_1}{a} \right) \tilde{x}_2, \quad A_{13} = \frac{2\tilde{x}_1 \tilde{x}_2}{ab}$$

$$A_{21} = -\frac{\tilde{x}_1}{b} + \frac{\tilde{x}_1^2 + v\tilde{x}_2^2}{ab} - \frac{vb}{4a}, \quad A_{22} = 1 - \frac{\tilde{x}_1}{a}$$

$$A_{23} = -A_{21}, \quad A_{24} = \frac{\tilde{x}_1}{a}$$
(B.4-8)

From Equation B.4-7 the shape function for the SSP element can be readily identified. The strain displacement relations are obtained using Equation B.3-4 as:

$$\varepsilon = B\tilde{r}$$
 (B.4-9)

where

$$\varepsilon = \left\{ \varepsilon_{11} \ \varepsilon_{22} \ \varepsilon_{12} \right\}^{\mathrm{T}} \tag{B.4.10}$$

and

$$\beta = \begin{bmatrix} -\frac{2\tilde{x}_2}{ab} & 0 & \frac{2\tilde{x}_2}{ab} & 0\\ \frac{2\nu\tilde{x}_2}{ab} & 0 & -\frac{2\nu\tilde{x}_2}{ab} & 0\\ \frac{1}{b} & -\frac{1}{a} & \frac{1}{b} & \frac{1}{a} \end{bmatrix}$$
 (B.4-11)

The stress-strain relation for plane stress is given by the generalized Hooke's law of Equation B.3-6. The matrix D is given in Equation B.3-7. Substituting in Equation B.3-6 the values of strains in terms of displacements, one obtains the stress-displacement relation as:

$$\sigma = \tilde{Cr} \tag{B.4-12}$$

where

$$\tilde{C} = E \begin{bmatrix} -\frac{2\tilde{x}_2}{ab} & 0 & \frac{2\tilde{x}_2}{ab} & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2(1+\nu)b} & \frac{-1}{2(1+\nu)a} & \frac{1}{2(1+\nu)b} & \frac{1}{2(1+\nu)a} \end{bmatrix}$$
(B.4-13)

In the global coordinate system, the stress-displacement relation is:

$$\sigma = Cr \tag{B.4-14}$$

where

$$C = \tilde{C}\beta \tag{B.4-15}$$

The element stiffness matrix in the local coordinate system is:

$$k = \int_{\mathbf{V}} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} d\mathbf{V} = \mathbf{t} \int_{\mathbf{S}} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} d\mathbf{s}$$
 (B.4-16)

Thus, one obtains:

$$\tilde{k} = \frac{Et}{12(1+\nu)} \begin{bmatrix} \frac{2(1+\nu)}{\Theta} + 3 & -3 & -\frac{2(1+\nu)}{\Theta} + 3 & 3 \\ -3 & \frac{3}{\Theta} & -3 & -\frac{3}{\Theta} \\ -\frac{2(1+\nu)}{\Theta} + 3\Theta & -3 & \frac{2(1+\nu)}{\Theta} + 3\Theta & 3 \\ 3 & -\frac{3}{\Theta} & 3 & \frac{3}{\Theta} \end{bmatrix} (B.4-17)$$

Finally, the Von Mises equivalent stress $\sigma^{\,c}$ for this element is given as:

$$\sigma^{c} = (\sigma_{11}^{2} + 3\sigma_{12}^{2})^{\frac{1}{2}}$$
 (B.4-18)

For calculating the maximum value of σ^c from Equation B.4-18 the following expressions for σ_{11} and σ_{12} are used (from Equation B.4-12):

$$\sigma_{11} = \frac{E}{a} \left(\tilde{r}_3 - \tilde{r}_1 \right) \tag{B.4-19}$$

and

$$\sigma_{12} = \frac{E}{2(1+v)} \left\{ \frac{1}{a} \left(\tilde{r}_4 - \tilde{r}_2 \right) + \frac{1}{b} \left(\tilde{r}_3 + \tilde{r}_1 \right) \right\}$$
 (B.4-20)

The element mass matrix in the local coordinate system is obtained by substituting for N from Equation B.4-7 into Equation B.1-3. The elements of the symmetric (4x4) mass matrix are:

$$\begin{split} \tilde{\mathbf{m}}_{11} &= \frac{\rho b^2 t}{6} \left[\frac{\Theta}{3} + \frac{\nu \Theta}{6} + \frac{\Theta^3}{10} + \frac{\nu^2}{10\Theta} \right] \\ \tilde{\mathbf{m}}_{12} &= \frac{-\rho b^2 t}{24} \left[\Theta^2 + \nu \right] = \tilde{\mathbf{m}}_{14} \\ \tilde{\mathbf{m}}_{13} &= \frac{\rho b^2 t}{6} \left[\frac{\Theta}{6} - \frac{\nu \Theta}{6} - \frac{\Theta^3}{10} - \frac{\nu^2}{10\Theta} \right] \\ \tilde{\mathbf{m}}_{22} &= \frac{\rho b^2 \Theta t}{6} , \ \tilde{\mathbf{m}}_{23} = -\tilde{\mathbf{m}}_{12} , \ \tilde{\mathbf{m}}_{24} = \tilde{\mathbf{m}}_{22}/2 \\ \tilde{\mathbf{m}}_{33} &= \tilde{\mathbf{m}}_{11} , \ \tilde{\mathbf{m}}_{34} = -\tilde{\mathbf{m}}_{14} , \ \tilde{\mathbf{m}}_{44} = \tilde{\mathbf{m}}_{22} \end{split}$$

$$(B.4-21)$$

B.5. Symmetric Pure Shear Panel (SPSP)

The element stiffness matrix for this pure shear element (Figure B.3) is also obtained by following the previous procedure and by assuming the stress state to be as follows: $\sigma_{11} = 0$, $\sigma_{22} = 0$, $\sigma_{12} = \alpha_1$, where α_1 is a constant. The element stiffness matrix is then given as:

$$\tilde{k} = \frac{Et}{4(1+\nu)} \begin{bmatrix} \Theta & -1 & \Theta & 1 \\ -1 & \frac{1}{\Theta} & -1 & -\frac{1}{\Theta} \\ \Theta & -1 & \Theta & 1 \\ 1 & -\frac{1}{\Theta} & 1 & \frac{1}{\Theta} \end{bmatrix}$$
(B.5-1)

The stress state is

$$\sigma = \tilde{Cr}$$
 (B.5-2)

$$\tilde{C} = \frac{E}{2(1+\nu)} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{b} & -\frac{1}{a} & \frac{1}{b} & \frac{1}{a} \end{bmatrix}$$
 (B.5-3)

APPENDIX C

to

Report Number 45

USER'S MANUAL FOR COMPUTER PROGRAMS SOS4 AND DIMCO

C.1 Introduction

In this appendix, use of the computer program SOS4, (Structural Optimization by Substructures) for optimal design of structural and mechanical systems that can be idealized using Truss, CST and SSP elements, is described. The program is based on the algorithm and the logical sequence of computations of Chapters II, III and IV. It is developed in FORTRAN IV using the IBM 360-65 (370-158) computer at the University of Iowa. The program can be used for optimal design of structures with or without fail-safe constraints.

The program SOS4 has eighteen subroutines, namely VARI, ELESTF, STIFFM, RECALL, DECUPP, SOLDUP, MEVEC, DEFREQ, ZBZIEF, CONST, ABSMAX, GENC, DELBE, DESVV, SDD, SOLVEL, SUBSP and JACOBI. The subroutine VARI generates various variables for a substructure as shown in the statement COMMON/V2/ (see Appendix D). The subroutine ELESTF generates element stiffness matrix, element mass matrix and element stress matrix (required for the computation of bar forces in truss elements and stress components for CST and SSP/SPSP elements) for unit value of design variables. These quantities are stored in a vector form for subsequent use in design iterations. The subroutine STIFFM generates matrices $K_n^{(\alpha)}$ for the entire structure and $K_{II}^{(r,\alpha)}$ for each substructure. It used subroutine RECALL for generating element mass and stiffness matrices in the global coordinate system. It then uses subroutine DECUPP for decomposing upper band of matrices $K_{TT}^{(r,\alpha)}$ (in case elements connecting interior nodes of the rth substructure are damaged) and $K_B^{(\alpha)}$. The matrix $Q^{(r,\alpha)}$ is also computed in the subroutine STIFFM. The decomposed matrices $K_B^{(\alpha)}$ and $K_{II}^{(r,\alpha)}$ overwrite the original matrices.

The subroutine MEVEC is used to compute product of the structural mass matrix and the matrix of eigenvectors. Note that these calculations proceed elementwise. The subroutine DEFREQ computes sensitivity vector for a violated frequency constraint under all damage conditions. The subroutine ZBZIEF computes boundary displacements, interior displacements and element forces/stresses under all loading conditions. The subroutine CONST checks for the maximum stress under all loading conditions and previous damage conditions

for elements linked to a design variable. It also computes sensitivity vectors for violated stress constraints. The subroutine ABSMAX computes maximum nodal displacements under all loading conditions for a damaged structure. The maximum displacements are checked against their limit values and sensitivity vectors for violated constraints are computed. The subroutine GENC computes the matrix $\mathbf{C}^{(\alpha)}$ of Equation 2.4-11.

The next three subroutines DELBE, DESVV, and SDD are used in computation of changes in design variables. Lagrange multipliers are computed and their signs are checked. Constraints corresponding to negative multipliers are taken out of the violated constraint set. The subroutine DESVV computes changes in design variables when only the design variable constraints are violated. The subroutine SOLVEL is based on the Gaussian elimination procedure and is used to compute the Lagrange multiplier vector μ . The last two subroutines SUBSP and JACOBI are used to compute the lowest eigenvalue and the corresponding eigenvector for each damage condition. These subroutines are based on the Subspace Iteration method coupled with the substructuring technique, as explained in Section 2.2.

A number of vectors and matrices are used in the main program as well as in the subroutines. In order to save computer storage, COMMON statements are used (see Appendix D). For each structure, dimensions of various matrices depend on the number of members, number of substructures, number of degrees of freedom, etc. Computation for dimensions of these matrices is explained later in this appendix. Once this information has been supplied, the computer program DIMCO (Dimension Computer; listed in Appendix D) can be used to generate and punch dimension cards for the main program and all its subroutines.

C.2. Data Organization

This section describes a procedure for setting up the problem and the input/output data organization for the computer program SOS4.

C.2.1. Problem Set-up

Setting up the problem is fairly simple. The complete structure, irrespective of the number of damage conditions, is divided into a number of substructures such that each substructure interacts with a minimum number of other substructures. A set of global axes for the structure is selected which is also used for each substructure. The numbering of nodes is done in two steps:

- (i) Boundary nodes of each substructure are numbered first and then the interior nodes. The node numbers for each substructure begin with 1.
- (ii) All the boundary nodes are also numbered in an overall system.

This numbering system simplifies many of the logical statements in the program. Hereafter, numbering of boundary nodes will imply numbering in the overall system.

C.2.2. Input Data

The input information required for the program is divided into four subsections:

- (i) Input data common to all substrucrures
- (ii) Input data for individual substructures
- (iii) Input data for damaged structures
- (iv) Other input data.

Variables of the program are defined and explained according to the READ statements appearing in the program (Appendix D). All the input information is supplied on regular computer cards.

C.2.2.1. Data Common to All Substructures:

 NUNIT, NN, NSU, NDAM, NLC, NV, NCC, BNC, NBW, NPH, NSD, ISPSP - FOR-MAT (1615).

NUNIT = Code number for type of unit used; NUNIT = 0 for U.S. - British Units, and NUNIT = 1 for SI units.

NN = Code number for type of structure; NN = 2 for a 2D structure, and NN = 3 for a 3D structure.

NSU = Number of substructures.

NDAM = Number of damage conditions.

NLC = Number of loading conditions.

NV = Number of design variables.

NCC = Number of degrees of freedom.

BNC = Number of boundary degrees of freedom.

NBW = Upper bandwidth of boundary stiffness (K_B) matrix including the diagonal.

NPH = Expected size of the violated constraint set, that is, maximum number of constraints that may be violated in any design cycle.

NSD = Total number of expected stress, displacement and frequency constraint violations. Only NSD number of constraint violations can be corrected at any design cycle.

ISPSP = Code number for SPSP/SSP elements. If ISPSP = 0, the program
SOS4 considers SSP elements, otherwise (ISPSP.NE.0) SPSP elements.

2. IFS, IDV, IFR, IBUK, IDIS, IBDIS, IPS, IPD, IPC, JUSTW, IAUTO - FOR-MAT (1615)

IFS* = Number of iterations for which stress-ratio design is initially required.

IDV* = Code number for the frequency constraint.

IFR = If this variable is assigned a value of 1 and frequency constraint is to be imposed, then the program will correct only the frequency constraint in the first cycle.

IBUK* = Code number for buckling constraints.

IDIS* = Code number for interior displacement constraints.

IBDIS* = Code number for boundary displacement constraints.

IPS* = Code number for printing force or stress matrix at each iteration. When IPS = 1 force matrix will be printed, and when
IPS = 2, the stress matrix will be printed.

IPD* = Code number for printing displacement matrix after each iteration.

IPC = Code number for printing stress and displacement constraint
 violations under each damaged condition.

JUSTW = Either 0 or 1:

If IDV = 0 and JUSTW = 0, then the program skips frequency analysis and design sensitivity analysis of the frequency constraint.

If IDV = 0 and JUSTW = 1, then the program calculates and prints the eigensolution. However the frequency constraint is not imposed.

If IDV = 1, then the program solves the eigenvalue problem and imposes the frequency constraint regardless (independent) of the input value for JUSTW.

-0; implies that the user wants to supply the matrix of eigenvectors to be used in Subspace Iteration.

IAUTO = 1; implies that the matrix of eigenvectors will be automatically generated in the computer program at the start of the Subspace Iteration.

(*): If value assigned to this code is 0, then the corresponding command will be ignored. For example, if IBUK = 0, then buckling constraints will be ignored.

3. ILIM, ITRS, LNSV, LCON, (ITY(I) = 1,3), IWMM - FORMAT (1615)

ILIM = Limit on the number of iterations or design cycles. The
 program stops if convergence is not obtained within this
 specified limit on number of iterations.

ITRS = Number of times the step size is to be changed. A provision is made in the program SOS4 to change the step size to any desired fraction of the original value if the variation of the cost function remains within the specified limit for a specified number of design cycles. This is done to obtain a finer convergence of the algorithm.

LNSV = Number of times the variation in the cost function should remain within the specified limit before the step size can be changed to any fraction of the original value.

IOWA UNIV IOWA CITY DIV OF MATERIALS ENGINEERING F/GFAIL-SAFE OPTIMAL DESIGN OF STRUCTURES WITH SUBSTRUCTURING. (U) AUG 78 D T NGUYEN, A K GOVIL, J S ARORA DAAK11-77-C-002 TR-45 AD-A065 936 DAAK11-77-C-0023 UNCLASSIFIED NL 2 of 2 AD A065936 END DATE FILMED 5 -79

F/6 1/3

ITY(1) = 4 if plane (6 if space) truss elements are present; otherwise 0.

ITY(2) = 9 if CST elements are present; otherwise 0.

ITY(3) = 6 if SSP elements are present; otherwise 0.

IWMM = {0, generates weighting matrix (see Chapter 4)
1, sets weighting matrix equal to identity matrix.

- 4. DF, RIT, RIN, RL, EP, STP1, STP2 FORMAT (8F10.4).
 - DF = Requested reduction in the cost function for calculating the step size. This reduction factor is used in the regular computational algorithm and may be changed after some design cycles based on the criteria described above. For a five percent reduction in cost function, DF is assigned a value of 0.05. This variable may also be assigned 0 value, and in that case the program will correct only the violated constraints. The objective function will not be reduced.
 - RIT = Requested reduction in cost function for calculating the step size whenever all constraints are satisfied and ILIM > 0. This variable is used for a finer convergence near the optimum. If the regular step size is to be used then RIT = DF.
 - RIN = Requested reduction in the cost function for calculating a step size if all constraints are satisfied initially (RIN > 0). A larger step size may be taken if all the constraints are satisfied initially in order to speed up the convergence. For example, RIN = 0.25, if a 25 percent reduction in cost function is desired initially.
 - RL = Specified variation in the cost function for reducing step size, that is, if the variation in cost function should remain within one percent for two design cycles before the step size may be changed, then RL = 0.01 and LNSV = 2.
 - EP = A small number for checking ε -active constraints. A value of 0.02 to 0.0001 (2% to 0.01%) has been used in many calculations.
 - STP1 = A positive multiplier for changing DF and RIT (see LNSV in card no. 3).

- STP2 = A positive multiplier for changing RL (see LNSV in card no. 3).
- 5. (FACC(I), I = 1,3), RF, CONL, FORMAT (8F10.3).

FACC(3): for SSP/SPSP elements

- FACC(I)*= Multiplier associated with weighting matrix (refer to Ch. 4). FACC(1): for truss elements FACC(2): for CST elements
- RF = Resonant frequency for the truss in cycles per second (Hertz).
 When IDV > 0, RF cannot be zero.
- CONL = Maximum constraint violations to be corrected. This paramate, is always negative. If any constraint violation is smaller than this amount, only this amount will be corrected. For example, CONL = -1.0 implies $\Delta \phi$ = -1.0 for any $\Delta \tilde{\phi}$ < -1.0. Generally, a large value is used for this parameter; a value of -100 is recommended.
- 6. ERR1, ERR2, ERR3, ERR4, ERR5 FORMAT(5E16.7)
 - ERR1 = Error criteria used for checking convergence of eigenvalues
 in the Subspace Iteration method. A value of 0.100E-05
 for ERR1 has been used quite often in computation.
 - ERR2 = Tolerance in design variables in percent at the optimum. At each design cycle, the percent change in each component of the design variable vector is checked and if each component is within ERR2, then the design variable vector is assumed to have converged. The value assigned to ERR2 is 0.100E-02 if a convergence of 0.1 percent is sought.
 - ERR3 = Constraint violation telerance in percent at the optimum
 point. The value assigned to ERR3 is 0.100E-2 if, at the
 optimum point, each violation of a constraint is to be within
 0.1 percent.
 - ERR4 = Tolerance in the cost function in percent at the optimum.

 The value assigned to ERR4 is 0.100E-02 if, at the optimum point, the cost function variation is to be within 0.1 percent. If all the convergence criteria, that is, ERR2, ERR3, and ERR4 are satisfied then the convergence to the optimum is assumed and the design process is stopped.

^{*} to be selected by the designer

- ERR5 = Error criterion used in checking zero elements in Gaussian
 elimination procedure. A value of 0.100E-05 has been used
 in the present computations.
- 7. (DLIB(I), I = 1, BNC) FORMAT (8F10.3)

 The boundary displacements limits for the structure in inches (metres) are supplied in this statement. The total number of cards for this step depends upon the value of BNC because each card contains only eight numbers. These displacement limits are punched in a definite order determined by the order of numbering the boundary joints of the structure. For example, if joint number 1 has all three degrees of freedom then it will have displacement numbers 1, 2, and 3; if joint 2 has two degrees of freedom then displacement numbers 4 and 5 will be for these two degrees of freedom, and so on.
- 8-10. This set of input data cared contains information about the loaded boundary nodes only. The boundary load matrix of dimension (BNC x NLC), is initialized first and then for each loading condition, following information is READ according to the specified format.
 - First card contains NLJ, the number of loaded boundary nodes;FORMAT (1615).
 - 9. The next set of cards contains node numbers of loaded joints in the overall boundary node numbering syste The number of cards depends on NLJ as each card contains only sixteen numbers; FOR-MAT (1615).
 - 10. The last set of information, punched on separate cards, contains the node number and loads in kips (Newton) applied along permissible degrees of freedon; FORMAT (I5, 3F10.2).
- 11-12. This set of cards provides information about design variable linking of members across the substructure boundaries.

 - 12. LINLG(I,1), LINLG(I,2); I = 1, LINK; FORMAT (1615).

 LINLG(I,1) = Type of element

 LINLG(I,2) = Design variable group to which the element is linked.

^{*} If LINK = 0, skip #12.

- C.2.2.2. Data for Individual Substructures: In this section of the program input data for each substructure is READ separately in a proper sequence. The total number of such sets of data is equal to NSU. The following input information is given for the rth substructure:
 - 13. NJ(r), NBJ(r), NCB(r), NIC(r), NBW1(r), NBW2(r), NBW3(r) FORMAT (1615).

NJ(r)= Total number of nodes.

= Number of boundary nodes. NBJ(r)

NCB(r)* = Number of boundary degrees of freedom.

NIC(r)* = Number of interior degrees of freedom

NBW1(r)* = Upper bandwidth of the matrix K^(r) including the diagonal.

NBW2(r)* = Upper bandwidth of the matrix $K_{BB}^{(r)}$ including the diagonal.

NBW3(r)* = Upper bandwidth of the matrix $K_{II}^{(r)}$ including the diagonal.

- * These parameters for the stiffness matrix are explained in Figure C.1.
- 14. NZ(I,K); I = 1,NB FORMAT (1615); NB = NBJ(r).

This set of data cards contains information about interconnection between boundary nodes in the overall and the substructural numbering systems. The number of boundary nodes for the rth substructure is NBJ(r), and they are numbered in an ascending order starting from 1. In the overall boundary numbering system, these NBJ(r) nodes will correspond to some boundary nodes in the overall system. For example, if rth substructure has 5 boundary nodes, then they will be numbered 1, 2, 3, 4 and 5 in the substructural or local boundary node numbering system. In the overall system, let these nodes correspond to nodes 10, 11, 12, 13 and 14. Then for this data set, the number 10, 11, 12, 13 and 14 will be punched according to above format.

15. J, X(J,r), Y(J,r), Z(J,r), (ND(I), I = 1, NN) - FORMAT (I5, 3F10.3,3I5).

= Nodal number

- X(J,r) = $\begin{cases} X, Y, Z \text{ (or } x_1, x_2, x_3) \text{ coordinates of the } J^{th} \text{ node in } \\ \text{the global Cartesian coordinate system} \end{cases}$
- Units: inches (metres).

The remaining integers are the code numbers for this node. Each node has its degrees of freedom, that is, displacements in coordinate directions x,, i = 1 to NN. If displacement along a particular coordinate axis is allowed then that code number is assigned a value of 1,

Figure C.1. Bandwidth Parameters for Stiffness Matrix of the rth Substructure

otherwise it is zero. For example, the code number 1, 1, and 0 for a particular node specify that the displacement in the x_3 -direction of this node is zero. The total number of cards for this step is NJ(r) and they must be placed in an ascending order. Note: Skip data card numbers 16 to 19 if NIC(K) = 0.

- 16. DLIM(I,r): I = 1,NIC(r) FORMAT (8F10.3) This set of input data, which contains information about interior displacement limits, is supplied in the same way as boundary displacements of Subsection C.2.2.1(7). The total number of cards depends upon the value of NIC(r).
- 17-19. The next data to be supplied is the interior load matrix. This information is to be punched in exactly the same way as boundary load matrix of Subsection C.2.2.1 (8-10). The dimension of r^{th} interior load matrix is (NIC(r) x NLC x r). Note: Skip data cards 18 to 19 if NLJ = 0.

Data for Individual Finite Elements: In this section of the program input for individual finite elements is READ separately in a proper sequence (for rth substructure the sequence is: truss elements, CST elements, and SSP/SPSP elements). If any type of element is not present, then the data set 20-23 is not to be supplied. The following input is given for the rth substructure and pth type of element (cummulative). For each type of elements (truss, CST, SSP/SPSP) data set 20-23 should be supplied.

- 20. NM(p), NG(p), NW(p), MEB(p), MEF(p) FORMAT (1615).
 - NM(p) = Number of elements.
 - NG(p) = Number of groups. The elements of a substructure may be linked together due to practical and/or economic considerations. Grouping is limited only to finite elements that are of the same type.
 - NW(p) = Number of design variables (NW(r) ≤ NG(r)). If cross-sectional area of each member of rth substructure is to be considered as a design variable, then NM(r) = NG(r) = NW(r). If NW(r) < NG(r), then only the first NW(r) groups are considered as design variables.</p>
 - MEB(p) = Number of the first element.
 - MEF(p) = Number of the last element.

21. J, L, (MN(N+M, p), M = 1, L) - FORMAT (1615) (Initially N = 0 and later N = N + L.).

This set of cards contains information about grouping of elements. Information about each group starts on a new card. The number of cards for this step is NG(p) and are placed in an ascending order of group number.

J = Group number.

L = Number of elements in the Jth group.

(MN(N+M, p), M = 1, L) = element numbers of the Jth group.

22. BL(J,p), BU(J,p), ALP(J,p), SL(J,p), SU(I,p), RO(J), XNUU(J,p), E(J,p) - FORMAT (8F10.3).

This set of input data cards contains information about upper and lower bound and material properties for the elements of a group. The number of cards for this step is equal to NG(p) and they must also be placed in an ascending order of group numbers. Each card contains the following information about the elements of a group (say J^{th}).

- BL(J,p)* = Lower limit on the design variable. It should be noted that this must be a non-zero positive number.
- BU(J,p)* = Upper limit on the design variable.
- ALP(J,p) = Constant $\overline{\alpha}_i$ for each truss element of the group. This is needed for computing the moment of inertia of an element, $I_i = \overline{\alpha}_i$ b. For CST and SSP elements, any value may be used.
- SL(J,p) = Compressive stress limit in kips per square inch (Newton/m²); punched as a positive number.
- SU(J,p) = Tensile stress limit in kips per square inch (Newton/m²); punched as a positive number.
- RO(J) = Specific weight of the material in pounds per cubic inch (Newton/m²).
- XNUU(J,p) = Poisson's ratio of the material.
- E(J,p) = Modulus of elasticity of the material in kips per square inch (Newton/m²).

*For truss elements: $inch^2$ (metre²); for CST and SSP elements: inch (metre).

23. M8, JP, JQ, JR, MPC(M8,p) - FORMAT (1615).

This set of input data cards contains information about the element connectivity. The number of cards for this step is equal to NM(p) and they must also be placed in an ascending order of elements. Each card contains the following information about the element:

M8 = Element number.

JP
JQ = {
Element end nodes. For truss and SSP/SPSP elements,
skip JR.

The last information on this card defines the type of element connection according to the following code:

 $M(M8,p) = \begin{cases} -1, & \text{implies element connected to boundary nodes only.} \\ 0, & \text{implies element connected to both boundary and interior nodes.} \end{cases}$

+1, implies element connected to interior nodes only. C.2.2.3. Input Data For Damaged Structures: In this section of the program,

input data for each damage condition is READ separately in a proper sequence (skip this section if NDAM \approx 0). The total number of such sets of data is equal to NDAM. The following input information is given for the Ith damage condition.

24. RRF(I), RDLIM(I), RSL(I), RSU(I), RLOAD(I) - FORMAT (8F10.3).
This set of cards contains values of multipliers to be used in defining the frequency limit, displacement limits, stress limits and applied load for the Ith damage condition. Each card contains the following information for the Ith damage condition:

RRF(I) = Multiplier for lower bound on natural frequency.

RDLIM(I) = Multiplier for admissible displacements.

RSL(I) = Multiplier for lower limit on stress (compressive stress).

RSU(I) = Multiplier for upper limit on stress (tensile stress).

RLOAD(I) = Multiplier for applied loads.

For example, RRF(2) = 0.75 implies that the resonant natural frequency under damage condition number 2 is three-fourths that of the undamaged structure.

The next four input data sets (25-28) for Ith damage condition are READ in the following order:

DO α r = 1, NSU

- 25. READ KIIDAM(r,I) FORMAT (1615)

 D ϕ α p = 1, 3 (TRUSS, CST, SSP/SPSP)

 IF (ITY(p).EQ.0) GO TO α (see #3)
- 26. READ N FORMAT (1615). IF (N.EQ.0) GO TO α .
- 27. READ NDM(J), J=1, N
- 28. READ REDUC(J), J = 1, N α CONTINUE

Here input data set number 25 contains damage code for the matrix $K_{II}^{(r)}$ as follows:

In data set number 26, N is the number of elements damaged in the $I^{\rm th}$ damage condition. Note: Skip data set number 27 and number 28 if N = 0. Data set number 27 contains identification numbers for damaged elements. The number of cards depends upon the value of N, since each card contains at the most 16 values (FORMAT (1615)).

NDM(J) = the Jth damaged member in the Ith damage condition. For example, in damaged condition number 1 if there are 6 damaged members: 1, 4, 6, 71, 75 and 76, then:

NDM(1) = 1 NDM(2) = 4 : NDM(6) = 76

These 6 numbers can be punched on one data card (FORMAT (1615)).

In data set number 28, a reduction ratio for each damaged member is given to define the extent of damage. The number of cards depends upon the value of N since each card contains at the most 8 values (FORMAT (8F10.3)). A total loss of the member is denoted by specifying 1.0 to its reduction ratio. In the above example, if percentage of damage to members, 1, 4, 6, 71, 75 and 76 are 10%, 40%, 60%, 90%, 100% and 20%, respectively, then:

REDUC(1) = 0.100 REDUC(2) = 0.400 : REDUC(6) = 0.200 These numbers can be punched on one data card (FORMAT (8F10.3)).

C.2.2.4. Other Input Data:

29. Skip this set of data if IDV = 0 and JUSTW = 0, or if IAUTO = 1. Otherwise, supply the matrix of eigenvectors according to the Format 5E16.7; XEIG(J,I) where J = 1,2...NCC

and
$$I = 1, 2$$
.

Note that in the Subspace Iteration, two eigenvectors are needed to accurately calculate the lowest eigenvalue. The input matrix of eigenvectors XEIG(J,I) need to be in the following form:

XEiG(J,I) =	BNC	1 2 : BNC	Total number of boundary DOF for the complete structure.
	NIC(1)	BNC+1 : : : : : : : : : : : : : : : : : : :	Total number of interior DOF for substructure 1.
	NIC(2)	BNC+NIC(1)+1 : : : BNC+NIC(1)+NIC(2)	Total number of inter- ior DOF for substruc- ture 2.
	NIC(r th)	BNC+NIC(1)+NIC(2)+1 : : : NCC	NCC is the total number of DOF for the complete structure.

The last two input data sets (#30 and #31) are READ in the following order:

DO α r = 1, NSU

DO $\alpha p = 1, 3$

IF (ITY(p).EQ.0) GO TO α (see #3)

- 30. READ B(I,p), I=1, NG(p) FORMAT (8F10.3)
- 31. READ IGRT (I,P), I=1, NG(p) FORMAT (1615)
 α CONTINUE

Input data set number 30 contains starting valued of design variables (cross-sectional area in $inch^2$ (metre²) for truss elements, and thickness in inches (metres) for CST and SSP/SPSP elements) and must be placed in the ascending order of group numbers.

Input data set number 31 defines status of the design variable (DV) grouping.

C.2.3. Output

Two types of outputs are received from the computer program; printed output and punched output on computer cards. In the printed output, all of the input data is first printed out for verification purposes. At each design cycle, value of the cost function, values of the design variables, type and number of constraint violations, and the member force matrix are printed out. Also, Lagrange Multipliers, changes in design variables and the cost function history are printed out.

The punched output, consisting of three sets of data cards, corresponds to the data required in set numbers, 29, 30 and 31, respectively. If IDV = 0, then the first data set, consisting of eigenvectors of last design cycle, is not punched. The last two data sets, consisting of design variables of last iteration and their status (linked, fixed or free) are punched out for subsequent computer runs, if necessary.

C.3. Computation of Dimensions of Various Matrices

The dimensions of various matrices and vectors depend upon the size of the structure considered. Various variables like BNC, NLC, NCI(K), etc. as defined in Section C.2, determine sizes of various matrices. For easy computation of dimensions, the dimension statements used in the program (Appendix D) are explained here in terms of these variables.

DIMENSION PB(BNC,NLC), ALP(NGU,KKU), DBIN(ILIM,2), OO(NV), FACC(3), FB(ILIM), BETA(2*SN), CL(3), NZ(NBJL,NSU), LINLG(LINK,2), NJL(NLJ, NVV(3), NEGV(NDAM+1)

COMMON/V2/ NIC(NSU), NW(KKU), NG(KKU), NBW1(NSU), NBW2(NSU, NBW3(NSU), NM(KKU), NBJ(NSU), NCB(NSU), NEW(NSU), IQS(NSU), MEB(KKU), MEF(KKU)

COMMON/P1/ B1(9,9), B2(9,9), B3(9,9), ESF(9,9), NA(MAX(NM,9)), NI1(9), NJ1(9), NJ2(9)

```
COMMON/P2/
              XNUU(NGU, KKU), ELL(M8, K21), BU(NGU, KKU), STRESS(NTE*3+NCE*27+
              NSE*12), TCSM(NTE+NCE+NSE*21), TRCSSP(NTE*6+NCE*45+NSE*21),
              XCOST(3), ICSS(M8, K21), ISAC(M8, K21), INDC(M8, K21), IGRT(NGU,
              KKU), IGRE(M8, K21), NNDC(NTE*6+NCE*9+NSE*6), LLN(3), ITY(3),
              ICSSM(M8, K21)
COMMON/P3/
              EVEC(NCC, NDAM+1), RRF(NDAM+1), RDLIM(NDAM+1), RSL(NDAM+1), RSU
               (NDAM+1), RLOAD(NDAM+1), REDUC(K22), NDOF(NDAM+1), NDM(K22),
              NBDAM(KKU, NDAM), KIIDAM(NSU, NDAM+1)
COMMON/P4/
              INF(NSD,8), NGV(NGU, KKU), INO(NSD), NDISP(NCC)
COMMON/P5/
              YK(NCC), YM(NCC), SK(NCC), SM(NCC), EY(NCC), SG(NCC)
              BL(NGU, KKU), DLIB(BNC)
COMMON/R1/
COMMON/R2/
              PI(NCIL, NLC, NSU), RR(M8, K21), E(NGU, KKU), MN(M8, KKU), MON(NGU,
              KKU), MN(M8,KKU), NOM(NGU,KKU)
COMMON/R4/
              IIL(NSD, NSU), KLC(NSD), IOK(NSU), NO(NLC)
              B(NGU, KKU), SL(NGU, KKU), SU(NGU, KKU), DPB(K1, K2), DLIM(NCIL, NSU),
COMMON/R5/
              SS(NV)
COMMON/A1/
              Q(NCIL, NCBL, NSU), ZI(NCIL, NLC, NSU), C(BNC, NBW), SB(BNC, NLC)
              BR(M8, K21), TRSF(NTE, NLC), CSTF(NCE, NLC, 4), SSPF(NSE, NLC, 3),
COMMON/A3/
              Z(NV, NSU), SZE(NPH), MP(M8, K21), ND(K3)
COMMON/A4/
              X(maxo(NJ(r),NTE),NSU), DLP(NPH), DLPH(NPH, T(K4), WM(NV, RO(NV)
              D(K5,K6), DS(K5,K7), A2(BNC,K9), DKI(NCI,NU3), KIIUBW(NSU)
COMMON/A5/
              DPZ(K10,K9), ZZ(K11,K12), BE(K11,K12), W(K11), H(K26), VV(K13),
COMMON/A6/
              Y(M8, NSU), NZC(NCBL, NSU)
COMMON/A7/
              DPX(NGG, NSD)
              XEIG(NCC,2), YXEIG(NCC,2), WS(2), DM(1,1), IET(NDAM+1)
COMMON/C1/
              QQK(2,2), QQM(2,2), QA(2,2)
COMMON/C3/
              ETC(NV*IPDAM), TEI(IPDAM), TE(IPDAM)
COMMON/C4/
where
              max {NBJ(r)}
NBJL
NCIL
             max {NIC(r)}
            = \max \{NCB(r)\}
NCBL
NU3
                 NBW3(r)
NGU
           = maximum number of groups for any type of finite element in a sub-
```

structure

KKU	= NSU*K21		
NLJ	= number of loaded nodes.		
м8	= maximum of truss, CST or SSP/SPSP elements in the structure.		
	= max(NTE, NCE, NSE)		
NTE	= number of truss elements		
NCE	number of CST elements		
NSE	= number of SSP/SPSP elements		
NM	= NTE+NCE+NSE		
NGG	$= \sum_{k=1}^{NSU} NG(k)$		
IPDAM	= NDAM+1		
PN	= 2*SN , SN = 2*NN		
K1	= $max(NV,NCIL)$, $K2 = max(NSD,NU3)$		
	NSU		
к3	= max NPH, SN* $\sum_{i=1}^{\infty} NJ(i)$		
K4	= max NPH, NM		
К5	= $max(NCIL,BNC, K6 = max(NU3,NBW)$		
К7	= $max(NSD, NCBL + NLC)$, K9 = $max(NSD, NCBL)$		
K10	= max(NSD, NCIL), K11 = max(NPH, NV)		
K12	= $max(NLC,3)$ K13 = $max(NPH,NM)$		
K21	= number of finite elements used		
K22	= total number of damaged members under all damage conditions		
K26	= max(NV,M8)		

After dimensions of various matrices have been determined, the computer core requirements can easily be specified. For IBM 360/65, the compilation step in double precision, requires a computer core of 184K, regardless of dimensions of various matrices.

C.4. User's Manual for the Computer Program DIMCO

As noted earlier, the computer program SOS4 has eighteen subroutines.

Each subroutine has several COMMON statements. These statements are dependent on a structural design problem. It is cumbersome and time consuming to punch these cards for each structural design problem. Therefore, a computer program DIMCO (Dimension Computer) has been developed to calculate dimensions of various

matrices and to generate COMMON statements for all subroutines of SOS4. For each structural design problem, the program DIMCO can be used to generate dimension cards for the program SOS4 and each of its subroutines.

The program DIMCO requires only a few simple input data cards (in integer FORMAT) as described below:

Card #1 (FORMAT 1615)

= $\begin{cases} 2, & \text{for 2 dimensional structure} \\ 3, & \text{for 3 dimensional structure} \end{cases}$ NN

= number of substructures NSU

= number of damage conditions NDAM

NLC = number of loading conditions

NV = number of design variables

NCC = total number of degrees of freedom (DOF)

BNC = total number of boundary DOF

= upper banwidth of the matrix K_R (Effective boundary stiffness ma NBW trix)

NPH = maximum number of constraint violations allowed at any design itera-

= maximum number of stress, displacement and natural frequency con-NSD straint violations to be corrected at any design iteration

= number of different type of elements for the structure ITE

= number of boundary loaded joints for the undamaged structure NBLJ

NDMT = total number of damaged members

> 0, when there is no design variable linking with previous substructures
> 1, when there is (are) design variable(s) linking to previous sub-

ILIM = maximum number of design iterations allowed

Card #2 (FORMAT 1615)

LINK

= 1 if truss elements exist; 0 otherwise ITY(1)

= 1 if CST elements exist; 0 otherwise ITY(2)

= 1 if SSP/SPSP elements exist; 0 otherwise

Data Set #3 (also refer to Figure C.1 of Appendix C)

Information about the Kth substructure where K=1,2...,NSU (FORMAT (1) 1615)

NJ(K) = number of joints for the Kth substructure

NBJ(K) = number of boundary joints for the Kth substructure

NCB(K) = number of boundary DOF for the Kth substructure

NIC(K) = number of interior DOF of boundary joints for the Kth substructure

 $\mbox{NBW1(K)}$ = upper bandwidth of the entire stiffness matrix for the $\mbox{K}^{\mbox{th}}$ substructure

NBW2(K) = upper bandwidth of the matrix K_{BB} for the K^{th} substructure

NBW3(K) = upper bandwidth of the matrix K_{TT} for the Kth substructure

NILJ(K) = number of interior loaded joints for the Kth substructure

(ii) Information about the J^{th} type of elements in the K^{th} substructure where J=1,2,3 (FORMAT 1615). Omit this data set if ITY(J)=0.

NM(KK) = number of J^{th} type of elements for the K^{th} substructure

NG(KK) = number of groups for the J^{th} type of elements and the K^{th} substructure

NW(KK) = number of design variables for the J^{th} type of elements and the K^{th} substructure

MEB(KK) = beginning member number of the J^{th} type of elements for the K^{th} sub-

MEF(KK) = final member number of the J^{th} type of elements for the K^{th} substructure

For an open truss helicopter tail boom with 3 substructures and 1 element type (truss), K=3 and ITE=1. Therefore a total of only 8 input cards (1+1+6) are required. In general, a total of p cards are required for the computer program DIMCO where p = 2 + (NSU) * (1 + ITE).

APPENDIX D

to

Report Number 45

LISTING OF PROGRAMS SOS4 AND DIMCO

D.1. Listing of the Program SOS4

```
/FSSDS JDD (-----, 30, 30, 2001), 'D1 NTDUC', TIME=25
                                                                           JOB 603
             PLEASE INTERPRETE MY DUTPUT PUNCHED CARDS
* MESSAGEL
/ EXEC FORTCLG, REGION=450K, TIME=25
/FORT.SYSIN DD #
     IMPLICIT REAL*8 (A-H, U-Z)
     INTEGER SIZE, BNC, SY
     DIMENSION PB( 36, 1), ALP( 14, 6), DBIN( 20, 2), OC( 51), FACC( 3), FB(
    1 20), BETA(12), CL( 3), NZ( 8, 3), LINL3( 1, 2), NJL( 4), NVV( 3), NEGV(
    2 71
     COMMON STEP, BNC, SV, NBW, SIZE, NLC, NSU
     COMMON/V1/N1,NC1,NWK,NGK,MA,NUL,NUZ,NU3,ML,NB,NJK,NC,N11,ISQ,IQ1
     COMMON/V2/NIC(3),Nw(6),NS(6),NBWI(3),NBW2(3),NBW3(3),NM(6),
    INBJ( 3), NJ( 3), NCE( 3), NEW( 3), IQS( 3), MEB( 6), MEF( 6)
     CDMMON/P1/B1( 9, 9),82( 9, 9),B3( 9, 9),ESF( 9, 9),VA( 156),NI1( 9
    1), NJ1( )), NJ2( 9)
     COMMOT/P2/XYUU( 14, 6),ELL(108, 2),EU( 14, 6),STRESS(1620),TCSM(
    1 156), TRCSSP(2808), XCOST( 3), ICSS( 108, 2), ISAC( 108, 2), INDC( 108
    2, 2), 13RT( 14, 6), 16RE( 108, 2), NNDC( 1080), LLN( 3), ITY( 3), ICSSM(
    3 108, 21
     COMMON/P3/EVEC( 1, 1).RRF( 7).RDL[M( 7).RSL( 7).RSU( 7).RLOAD( 7)
    1, REDUCT 901, NDOFT /1, NOME 901, NBDAME 6, 61, KIIDAME 3, 71
     COMMON/P4/INF( 50, 8),NGV( 14, 6), [NO( 50), NDISP( 72)
     COMMON/P5/YK( 1),YM( 1),SK( 1),SM( 1),EY( 1),SG(
     COMMON/R1/BL( 14, 6), DLI3( 36)
     COMMON/R2/PI(12, 1, 3),RR( 108, 2),E( 14, 6),MN( 108, 6),NOM( 14,
    1 61
     COMMON/R4/IIL( 50, 3), KLC( 50), IOK( 3), NO( 1)
     COMMON/R5/B( 14, 6),SL( 14, 6),SU( 14, 6),DPB( 51, 50),DL[M(12, 3)
    1,551 511
     COMMON/AL/W(12, 24, 3),Z[(12, 1, 3),C( 36, 24),ZB( 36, 1)
     COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
    12( 51, 3),DZE( 60),MP( 108, 2),ND( 216)
     COMMON/A4/X( 108, 3), DLP( 60), DLPH( 60), T( 156), WM( 51), RO( 51)
     COMMON/A5/D( 36, 24),DS( 36, 50),A2( 36, 50),DKI(12,36),KIIUBW( 3)
     COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
    1 156), Y( 108, 3), N/C( 24, 3)
     COMMON/A7/DPX( 62, 50)
     COMMON/C1/XEIG( 72, 2), YXEIG( 72, 2), WS( 2), DM( 1, 1), IET( 7)
    $/C3/ QQK( 2, 2),QQM( 2, 2),QA( 2, 2)
     COMMOV/C4/ETC( 357), TEI( 7), TE( 7)
                - 'FSSON' FAIL-SAFE STRUCTURAL OPTIMIZATION WITH
                           SUBSTRUCTURING
    PROGRAMMER - ASHUK K. GOVIL
     DIVISION OF MATERIALS ENGINEERING,
    UNIVERSITY OF IGWA, IOWA CITY, IOWA 52240
    AUGUST, 1977
   # FAIL-SAFE OPTIMAL DESIGN OF FINITE DIMENSIONAL MECHANICAL SYSTEMS*
```

SUBJECTED TO STATIC LOADING

```
CONSTRAINTS ON - DIRECT STRESS/VON MISES EQUIVALENT STRESS, NODAL*
                       DISPLACEMENT, FREQUENCY, AND BOUNDS ON DESIGN
C
                       VARIABLES
C
    * SUBSTRUCTURE FORMULATION IS USED
   * STIFFNESS MATRIX METHOD IS USED TO ANALYZE THE STRUCTURE
    * VARIOUS MEMBER OF THE STRUCUCTURE MAY BE GROUPED TOGATHER
    * FINITE ELEMENT LIBRARY INCLUDES TRUSS, CST, AND SSP/SPSP ELEMENTS*
    * ALL CALCULATIONS ARE IN DOUBLE PRECISION
    * UPDATED (JUNE 1979) YGUYEN THAI DUC
   * UNDER SUPERVISION OF PROF. J. S. ARORA
    * OPTION OF USING SUBSPACE ITERATION TO SOLVE EIGEN PROBLEM
    * VIOLATIONS IN FREQ. & DISPL. OF EACH DAMAGED CONDITION ARE
C
    * INCLUDED IN THE VIOLATED CONSTRAINT SET
    ************
      FORMATS-READ STATEMENTS
   4 FORMAT(8F10.6)
    5 FORMAT(8F10.3)
   8 FORMAT(5E16.7)
   9 FORMAT(15, 3F10.4,615)
   10 FORMAT(1615)
   11 FURMAT( 7F10.4, F10.2)
      FORMAT-WRITE STATEMENTS
   12 FORMAT(3x, 'SOME ER OR IN KC')
   19 FORMAT(////30x, ** DEPENDENT STIFFNESS MATRIX ** N=*,15,*, K=*,1
     *2,', IDC=', [2]
   24 FORMATI'1', DATA COMMON TO ALL SUBSTRUCTURES ')
   25 FORMAT(//IX, 'SN STRUCTURE NUMBER = ', I4/IX, 'NSU NO. OF SUBSTRUCTU
     IRES = ', 14/1X, 'BNC OVERALL BOUND. DEGREES OF FREEDOM = ', 14/1X, 'NBW
     2 OVERALL BOUND. UPPER BAND WIDTH = 1,14/1x, NLC NO. OF LOADING C
     30 NDITIONS = 1,14/1x, NPH TOTAL NO. OF EXPECTED CONSTR. VIOLATIONS
     4=*,14/1x,*NSD NO. OF STRESS & DISPL. CONSTR. VIOLATIONS =*,14)
                   'IBUK = 0 WILL NOT CONSIDER BUCKLING CONSTR = ", 15/1X,
   26 FORMATI/IX.
     1 'IDIS=0 WILL NOT CONSIDER DISPL CONSTR = . . I5/1X, 'IDV=0 WILL NO
     21 CONSIDER FREQ. CONSTR = 1, 15/1x, IPD.EQ.O WILL NOT PRINT DISPL
     3MATRIX AT EACH CYCLE=',15/1X,'IPS=0 WILL NOT PRINT FORCE AND DISPL
     4 MATRIX AT EACH CYCLE=",15,"
                                         1/1X, 1FS=40 OF TIMES STRESS
             DESIGN IS REQUIRED =', 15/1x, 'ITE = NUMBER OF ELEMENT
     *RATIO
     6TYPE = 1, 151
   27 FORMAT(//IX, !ILIM=! IMIT ON DESIGN CYCLES = 1, I5/1X, 'IPM=SURSP MET
     1HOD ITEN LIMIT =", 15/1X, "ITES=NO OF TIMES STEP SIZE REDUCED =",
     2 15/1x, 'LNSV=NO UF TIMES VARIATION IN COST FUN. REMAIN WITHIN SPE
     3CIFIED LIMITS = 1, 15)
                                                      'DF IS REQ CHANGE
   28 FORMATI//IX.
     IIN COST FUN = . . E15.5/1X, PRIT IS REQ CHANGE IN COST FUN WHEN ALL
     2CONSTRS ARE SATISFIED AND ILIM.GT.1 = ', E15.5/1X, 'RIN IS REQ CHAN
     3GE IN COST FUN WHEN ALL CONSTR SATISFIED INITIALLY = .. E15.5/1X,
     4'RL = SPECIFIED VARIATION IN COST FUN FOR REDUCING STEP SIZE = 1, E15.
     55/1X, 'EP IS EPCILON FOR CONSTRAINT CHECKS = ', E15.5)
   29 FORMATI//IX, 'ERROR CRITERION-'/IX, 'ERRI EC FOR CONVERGENCE OF EVE
     IC. = ', E15.5/1X, 'ERRY EC FOR TOLERANCE IN DELTA BI NORM AT OPT. = "
     2,E15.5/1x, 'ERR3 EJ FUR TOLERANCE IN CONSTRS. AT OPT. =',E15.5/1X,
     3'ERR4 EC FOR TOLERANCE IN CUST FUNCTION AT OPT. = '.E15.5/1X,'ERR5
       EC FOR CHECKING ZERO ELEMENTS IN GAUSS. ELIMN. = , E15.5)
   30 FORMAT( .O., * *** DATA FOR INDIVIDUAL SUBSTRUCTURES K=1,12)
   31 FORMAT(/' ', 2X, '*** SKIP DATA 28 THRU 31 AS NDAM=0')
   32 FCRMAT(/' '. 13,' (REDUC([8),[8=LS,LE)')
   33 FORMAT(/'0', 2X, ' INVERSE OF WEIGHTING MATRIX. NORMALIZED WITH MAX.
     * ELEMENT. ..)
     FORMAT(//' *** DAMAGED CONDITION (0. [=",12," ***")
```

```
35 FORMAT(/'1', ' STRESS AND DISPLACEMENT VIOLATIONS'/' SIZE MEM/NC K
  * III GR LDC IV LO BUC
                                  1.0-XL 1/)
36 FORMATI 14, 16, 714, F12.5)
                                       =', [16.7/8X, ' 'IATURAL FREQUENCY='
37 FORMAT(1X,13,4X, 'ELGENVALUE
  *,E16.7/8X,'EIGENVELTOR'/(4(15,E12.4)))
39 FORMAT( * ****FREQULTICY IS NOT VIOLATED *****)
40 FORMAT( * *** FINAL RESPONSES ****)
45 FORMAT( /1X, 'STEP SIZE = ', E15.7, [5]
46 FURMAT(213,2X,E13.3,815/(20X,815))
47 FORMATI//IX, 'SUBSTRUTURE NO. ',215)
48 FORMATI/IX, 'VALUE OF COST FUNTION =',E16.7,' TRUSS=',E16.7,' CST='
                                                      . VALUES OF DESIGN
  *, E16.7, ' SSP=', E16.7//1X,
  IVARIABLES'/ 1X, 'GR. NO.', 4X, 'AREA', 11X, 'MEMBER NUMBERS')
49 FORMAT( 11, "ITERATION NO = ",414)
50 FORMATI//IX, 'COST FUNCTION HISTORY'/(4(15,E12.4)))
51 FORMAT( '1'////30X, '** INPUT DATA ERROR ***)
52 FORMAT(/1X,15,' FULLY STRESSED DESIGN DESIRED INITIALLY, NO. OF
 1TIMES = . , [4]
54 FORMAT( 14,2X, BL VIOLATED, DV=1,13,2E15.5)
55 FORMAT( 14,2X,'BU VIOLATED, DV=1,13,2E15.5)
56 FORMATI/IX, TOTAL NO OF CONSTRAINTS VIOLATED = 1,13)
58 FORMATI /IX, 'NO VIOLATION AT THIS ITERATION')
59 FORMATI /1x, 'NO COMSTRAINT VIOLATED INITIALLY NO OF TIMES=", 15)
60 FORMAT( ' ', '*** SKIP DATA 17 THRU 20 AS NCI=0 FOR K= ', [2]
61 FORMAT(///* IDC=", 12, ", K=", 12, ", III=", 12, ", ITY(III)=", 12, " SKI
  *P DATA 21 THRU 23 IF ITY(III)=0.")
62 FORMAT(/' ', 13,"
                      TUNIT, NN, NSU, NDAM, NLC, NV, NCC, BNC, NBW, NPH, NSD, IS
  *PSP11
   FORMAT(/ ',13,' IIS,IDV,IFR,IBUK,IDIS,IBDIS,IPS,IPD,IPC')
64 FORMATI/ ' . 13."
                                            LCON, ICONT, (ITY(I), I=1, ITE)
                      ILIM.ITRS.LNSV.
  1, IWMM')
65 FORMAT(/' ', 13,"
                          DF, RIT, RIN, RL, EP, STP1, STP2'1
66 FORMAT(/ ", 13,"
                       (FACC(I), I=1, ITE), RF, CONL*)
   FORMATI/ 1, 13,1
                        RRF(I), RDLIM(I), RSL(I), RSU(I), RLOAD(I)')
                       CRR1, ERR2, ERR3, ERR4, ERR5, FACTOR'I
68 FORMAT(/' ', 13,'
69 FORMATI/' '. 13."
                       (DLIB(I), I=1, BNC)))
70 FORMAT(/ ', 313, '
                       ILJ - (NJL(I), I=1, NLJ) - J, (PB(N,L), N=1, NN) ---
  * FOR ALL NLC. 1
71 FORMAT(11x, 'ZZ([,1) [S',15x, 'ZZ([,2) [S'/6x, 'TRANLA"BDA*DELTAB1',5
  1x, 'TRANL AMBDA * DELTAC2 '/14x, '=0',19x, '=DELPHI')
72 FORMAT(14,2X,E16.7,7X,E16.7)
73 FORMAT( /1x, '(CHANGE IN COST FUNCTION =', E15.5//1x, 'DB(1)*DB(1)
  1=1,E15.51
74 FORMAT(/1X, 'T(2) 15 TRANDELTAB1*DELTAB2=', E16.7//1X, 'T(3) IS TRANL
  1J*DELTAB1=',E16.7)
75 FORMAT(/1X, 'DELTA EL NORM HISTORY'/(4(15,E12.4)))
76 FORMAT(/1X, 'DEL TA Sa NORM HISTORY'/(4(15,E12.4)))
77 FORMATI /1x, 'NUMBER OF TIMES COST VARIATION'/1X, 'REMAINS WITHIN SP
  LECIFIED LIMITS= . (5)
78 FORMAT(//1x, NO OF TIMES STEP SIZE REDUCED= 1,13/1x, NEW STEP SIZE
  1=',E15.7/1X, 'REQ CHANGE IN COST FUNCTION DF=',E15.7)
79 FORMAT( '1', 'CONVERGENCE CRITERIA HAS BEEN SATISFIED')
81 FORMAT(3X, NV
                    DEL TABL
                                   DEL TAB2
82 FORMAT( 15, 3E14.5)
83 FORMAT(/' ', 13,'
                       LINK')
84 FORMAT(/' ', 13,"
                       LINLG(1,1), LINLG(1,2) - SKIP IF LINK=0.)
85 FORMATI/' ', 13,"
                       NJ(K), NBJ(K), NCB(K), NIC(K), NBW1(K), NBW2(K), NBW3
  *(K) 1)
36 FORMAT(/' ', 13."
                       (NZ(I,K),I=1,NB)')
87 FORMAT(/' ', 13."
                       JN, X(J,K), Y(J,K), Z(J,K), (ND(I), I=1,NN) - FOR AL
  *L NJK . )
```

```
88 FORMAT(/' ', 13,'
                           (DLIM(I,K), I=1,NC[)')
   89 FORMAT(/' ',313,"
                           NLJ - (NJL(I), I=1, NLJ) - J, (PI(N,L,K), N=1,NN) -
     +-- FOR ALL NLC. SKIP 19 AND 20 IF NLJ=0.1
   90 FORMAT(/' ', [3,'
                           NM(KK), NG(KK), NW(KK), MEB(KK), MEF(KK))
   91 FORMAT(/' ', 13,'
                           (B(I,KK), I=1,NGK)))
   92 FURMAT(/' ', 13,'
                            (IGRT(I,KK),I=1,NGK)))
   93 FORMAT(/ ', 13,
                           J_{\bullet}L_{\bullet}(MN(N+M,KK),M=1,L)
   94 FORMATI/ ", 13,"
                            EVEC FOR')
                           CL(I,KK),BU(I,KK),ALP(I,KK),SL(I,KK),SU(I,KK),R
   95 FORMAT(/',', 13,"
     *3(1), XNUU(1, KK), E(1, KK)')
   96 FORMAT(/ ', 13,'
                           M8, JP, JQ, JR')
                           K=',12,', KIIDAM(K,1)=',12)
      FORMAT(/' ', 13,'
   98 FORMAT(/' ', 13,'
                           V - SKIP DATA 30 AND 31 IF N=0')
   99 FORMAT(/' ', 13,'
                           (NDM(18), 18=LS, LE)')
C
C .... A-DATA COMMON TO ALL SUBSTRUCTURES.
                                            THIS PAGE IS BEST QUALITY PRACTICABLE
C
      PIS=(3.1415927)**2
                                             FROM OOPY FURNISHED TO DDG
      CCC=1.0
      IPM=0
      ICHEK = 0
      GG=386400.0
      WRITE(6,24)
      NUMBER = 1
      WRITE(6,62) NUMBER
      NUMBER = N: UMBER +1
      ITE=3
10001 READ(5,10) NUNIT, NY, NSU, NDAM, NLC, NV, NCC, BNC, NBW, NPH, NSD, ISPSP
      WRITE(6,10) NUNIT, NN, NSU, NDAM, NLC, NV, NCC, BNC, NBW, NPH, NSD, ISPSP
      IF(NUNIT.EQ.1) GG=1.0
      SV=2*VV
      VV1 = VV-1
      WRITE(6,63) NUMBER
      NUMBER = NUMBER +1
10002 READ(5,10,ERR=777) IFS,IDV,IFR,IBUK,IDIS,IBDIS,IPS,IPD,IPC,JUSTW,
     CTUAIS
                      IFS, IDV, IFR, IBUK, IDIS, IBDIS, IPS, IPD, IPC, JUSTW,
      ARITE(6, 10)
     2 LAUTO
      WRITE(6,64) NUMBER
      NUMBER = NUMBER+1
10003 READ(5, 10, ERR=777) ILIM, ITRS, LNSV,
                                                 LCON, ICONT,
     *(ITY(1), [=1, IT]), [WMM
      WRITE(6,10)
                           ILIM, ITRS, LNSV,
                                                 LCON, ICONT,
     *(ITY(I), [=1, [TE), [WMM
      WRITE(6,65) NUMBER
      NUMBER = NUMBER + 1
10004 READ(5.11.ERR=777)
                              DF, RIT, RIN, RL, EP, STP1, STP2
      WRITE(6; 11)
                       DF, RIT, RIN, RL, EP, STP1, STP2
      WRITE(6,66) NUMBER
      NUMBER = NUMBER + 1
C
      FACC(I) WILL BE USED LATER TO GENERATE WEIGHTING MATRIX W
C
10005 READ(5, 11) (FACC(1), 1=1, (TE), RF, CONL
      WRITE(6,11) (FACC(1),1=1,1TE),RF,CONL
      WRITE(6,68) NUMBER
      NUMBER = NUMBER+1
10006 READ(5, 8, ERR = 777) LRR1, ERR2, ERR3, ERR4, ERR5
                         LRR1, ERR2, ERR3, ERR4, ERR5
      WRITE(6.8)
      WRITE(6,69) NUMBER
      NUMBER = NUMBER+1
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDQ
```

```
10007 READ(5, 5.ERR=777) (DLIB(1), I=1, BNC)
      WRITE(6,11)
                           (DLIB(I), I=1, BNC)
      DO 105 1=1,BNC
  105 DL IB(1)=1.DO/DL IB(1)
      L=9
      1=10
      WRITE(6,70) NUMBER, L, I
      NUMBER = NUMBER+3
      BOUNDARY LOAD, HOWEVER SHOULD CONSIDER JUST "ACTIVE" DOF ONLY
      D0111 L=1, VLC
      D0109 [=1,BNC
  109 PB(I,L)=0.D0
10008 READ(5, 10, ERR=777) WLJ
      WRITE(6, 10)
                           1LJ
      IF(NLJ.EQ.0) GO TO 111
10009 READ(5, 10, ERR=777)
                               (VJL(1), 1=1, iLJ)
                               (NJL(1), I=1, NLJ)
      WRITE(6, 10)
      DD110 I=1,NLJ
      LE=NN#NJL(I)
      LS=LE-NN1
.0010 READ(5,9,ERR=777) J,(PB(N,L),N=LS,LE)
                         J, (PB(N,L), N=LS,LE)
  110 WRITE(6,9)
  111 CONTINUE
      WRITE(6,83) NUMBER
      NUMBER = NUMBER+1
0011 READ(5, 10, ERR=777)LINK
      WRITE(6,10) LINK
      WRITE(6,84) NUMBER
      NUMBER = NUMBER+1
      IF(LINK.EQ.0) GO TO 131
      DO 130 I=1,LINK
 0012 READ(5,10,ERR=777) LINLG(1,1),LINLG(1,2)
  130 ARITE(6, 10)
                          LINLG(I,1),LINLG(I,2)
  131 LIN=C
      DO 132 I=1, ITE
  132 VVV(1)=0
.... B-DATA FOR INDIVIDUAL SUBSTRUCTURES
      MM = 0
      LQ=0
      KK=U
      18=0
      19=0
      J8=0
      0=8P
      BEGIN FUR BIG LOOP 7777
      DU 7777 K=1, NSU
      KIIDAM(K, L)=1
      WRITE(6,30) K
      NUMBER=13
      WRITE(6,85) NUMBER
      NUMBER = NUMBER + 1
0013 READ(5,10) NJ(K),N8J(K),NCB(K),NIC(K),NBW1(K),NBW2(K),NBW3(K)
      WRITE(6, 10) NJ(K), NBJ(K), NCB(K), NIC(K), NBW1(K), NBW2(K), NBW3(K)
      CALL VARICK)
```

```
WRITE(6,86) NUMBER
       NUMBER = NUMBER+1
C
       TO CONVERT BOUNDARY NODES, FROM LOCAL TO OVER ALL NUMBERING SYSTEM
C
C
10014 READ(5, 10, ERR=777) (NZ(I,K), I=L,NB)
      WRITE(6,10)
                            (NZ(I,K),I=1,NB)
       WRITE(6,87) NUMBER
       NUMBER = NUMBER + 1
       DO 140 J=1.NJK
      LE=NN*J
      LS=LE-NN1
10015 READ(5,9,ERR=777) J'1,X(J,K),Y(J,K),Z(J,K),(ND(I),I=IS,LE)
  140 WRITE(6,9)
                          JN, X(J, K), Y(J, K), Z(J, K), (ND(I), I=LS, LE)
       IF(NCI.EQ.0) 30 TO 156
       WRITE(6,88) NUMBER
       NUMBER = NUMBER + 1
10016 READ(5,11,ERR=777) (DL[M(I,K),[=1,NCI)
                                                  THIS PACE IS BEST QUALITY PRACTICABLE
FROM CODY FIRM TOURS ON TOUR
       WRITE(6,11)
                           (DLIM(I,K),I=1,NCI)
       DO 141 I=1.NCI
  141 DLIM(I,K)=1.DO/DLIM(I,K)
                                                  FROM COPY FURNISHED TO DOC
      L=18
       1=19
       WRITE(6,83) NUMBER, L, I
       NUMBER = NUMBER + 3
       DO 155 L=1.NLC
      D0150 I=1,NCI
  150 PI(I,L,K)=0.D0
10017 READ(5, 10, ERR=777) NLJ
       WRITE(6,10)
                           NLJ
       IF(NLJ.EQ.0) GO TO 155
C
C
       INTERIOR LOAD, I DOF WILL BE SUBTRACTED BY NCB(K) TO SAVE MEMORY
C
10018 READ(5,10,ERR=777)
                                (VJL(I), I=I, NLJ)
       WRITE(6, 10)
                                (NJL(I), I=I, NLJ)
       DD 154 I=1,NLJ
       LE=NN*NJL([)-N1
       LS=LE-NN1
10019 READ(5, 9, ERR = 777) J, (PI(N, L, K), N=LS, LE)
  154 WRITE(6,9)
                          J, (PI(Y,L,K),N=LS,LE)
  155 CONTINUE
       30 TO 157
  156 WRITE(6,60) K
C
CC
       TO GENERATE B OGFIN OVER ALL SYSTEM.
       HOWEVER SHOULD CONSIDER JUST "ACTIVE"B DOF CNLY
  157 DJ 160 [=1,NB
      L=NZ(1,K)
       L1=NN*(L-1)
       [1=NN*(1-1)
      DO 160 J=1.NN
      L1=L1+1
       11=11+1
       YZC(11,K)=L1
 160
      CONTINUE
C
       CUMULATIVE RESTRAINT LIST
C
       AJJ=NJK*NN
```

```
1=0
      D0161 J=1,NJJ
      I=ND(J)+I
  161 VD(J)=ND(J)*[
      IF(1.EQ.NC) GO TO 162
      WRITE(6, 12)
      GO TO 222
 ... DATA FOR INDIVIDUAL FINITE ELEMENTS.
  162 DG 7777 III=1,1TE
      NUMBER = 20
      IDC = 0
      WRITE(6,61) IDC,K,III,ITY(III)
      IF(ITY(IIII).EQ. 0) 10 TO 7777
      KK=KK+1
      WRITE(6,90) NUMBER
      NUMBER = NUMBER+1
10020 READ(5,10,ERR=777) NM(KK),NG(KK),NW(KK),MEB(KK),MEF(KK)
                           NM(KK), NG(KK), NW(KK), MEB(KK), MEF(KK)
      WRITE(6, 10)
      NGK = NG(KK)
      4A=0
      0 = V
      WRITE(6,93) NUMBER
      NUMBER = NUMBER+1
      UD180 [=1,NGK
10021 READ(5,10,ERR=777) J.L. (MN(N+M,KK), M=1,L)
      ARITE(6, 10)
                           J, L, (MN(N+M, KK), M=1, L)
      DO 179 LL=1,L
      MA=MA+1
      M=MN(MA,KK)
  179 IGRE(M, [[[]=[
      V=N+L
  180 NOM(1,KK)=L
      M6=MEB(KK)
      M7=MEF(KK)
      WRITE(6, 95) NUMBER
      YUMBER = YUMBER +1
      00 181 [=1,NGK
10022 READ(5, 11, ERR=777)
                                    BL(I,KK),BU(I,KK),ALP(I,KK),SL(I,KK),
     1SU(1,KK),RO(1),
                         X YUU([,KK),E(I,KK)
                                   BL(I,KK),BU(I,KK),ALP(I,KK),SL(I,KK),
      WRITE(6, 11)
     ISU(I,KK),RO(I),
                          XNUU(I,KK),E(I,KK)
      SL(1,KK)=1.0D0/SL(1,KK)
  181 SU(1,KK) =- 1.0D0/SU(1,KK)
      WRITE(6,96) NUMBER
      NUMBER=NUMBER+1
10023 CALL ELESTF(M5, 111, 18, K, K, M6, M7, 19, 1SPSP, NN, J8, M8, IDV, GG)
      DO 193 I=M6,M7
      IGR = IGRE(1, III)
  193 RR(I, III)=RO(IGR)*ELL(I, III)
      IF( IBUK . EQ. O. OR . III . GT . 1) GO TU 7771
      DO 194 I=1,NGK
      BUC = ALP(I,KK) *[(I,KK)*PIS
  194 E(I, KK)=1.DO/BUC
 7777 CONTINUE
C
      END OF DIG LOOP 7777
C
```

```
KIIDAM(K, IDC).EQ.O - NOT DAMAGED.
C
C
                                  DAMAGED.
      KIIDAM(K.IDC).NE.O -
                                         THIS PACE IS BEST QUALITY PRACTICATES
      IPDAM=NDAM+1
      RRF(1)=1.0
                                          TROM ODEY PURMISHED TO DOC
      RDL IM(1)=1.0
      RSL(1)=1.0
      RSU(1)=1.0
      RLDAD(1)=1.0
      VEGV(1)=0
      VDDF(1)=NCC
      LS=1
      LE=0
      IDC = O
      IF(NDAM.EQ.O) SO TO 201
C
C
      INPUT DAMAGED DISCRIPTION
C
      DO 200 IDC = 1 . ND AM
      WRITE(6, 34) IDC
      I = IDC + 1
      VEGV(1)=0
      NUMBER = 24
      WRITE(6,67) NUMBER
10024 READ(5,11,ERR=777) RRF([),RDLIM([),RSL([),RSU([),RLCAD([)
                          RRF(I), RDLIM(I), RSL(I), RSU(I), RLUAD(I)
      WRITE(6, 11)
      KK =0
      DO 200 K=1.NSU
      NUMBER = 25
10025 READ(5,10) KIIDAM(K,I)
      WRITE(6,97)NUMBER,K,KIIDAM(K,I)
      DO 200 III=1,IFE
      NUMBER=26
      IF(ITY([[]).EQ.0) 33 TO 200
      KK=KK+1
      WRITE(6,98) NUMBER
      NUMBER = NUMBER + 1
10026 READ(5,10,ERR=777)
      WRITE(6,10)
      VBDAM(KK, IDC)=N
      VEGV([)=NEGV([)+N
      IF(N.EQ.0) GO TO 200
      LE=LE+V
      WRITE(6,99) NUMBER
      NUMBER=NUMBER+1
10027 READ(5,10,ERR=777) (NDM(18),18=LS,LL)
      WRITE(6, 10)
                          (NDM(18), 18=LS, LE)
      WRITE(6, 32) NUMBER
10028 READ(5,5,ERR=777) (REDUC(18),18=LS,LE)
                         (REDUC(18),18=LS,LE)
      WRITE(6,5)
      LS=LS+V
  200 CONTINUE
      GD TO 202
  201 WRITE(6, 31)
                           JUSTW.EQ. 01GD TO 204
 202
      IF(IDV.EQ.O .AND.
      IF(IAUTO.EQ.OIGO TO 964
C
      AUTOMATIC GENERATION OF INPUT EIGEN VECTOR (FOR SUB. SUBSP OPTION)
C
C
      KU=0
      DO 865 ITWO=1.2
```

```
DO 866 J=1,NCC
      KU≈KU+1
      IF(KU.EQ.ITWO)XEIG(J,ITW3)=1.DO
      IF(KU.NE.ITWO)XEIG(J,ITWJ)=0.DO
 866
      CONTINUE
      KU=0
 365
      CONTINUE
      GO TO 204
      OR USER HAS TO SUPPLY INPUT EVIFOR SUB. SUBSP OPTION)
      NUMBER = 29029
      WRITE(6,94)NUMBER
      DD 803 ITWO=1,2
29029 READ(5, 8, ERR = 777) (XCIG(J, ITWO), J=1, NCC)
803
      WRITE(6,8)
                        (XEIG(J, ITWO), J=1, NCC)
 204
      KK=0
      DO 210 K=1,NSU
      DO 210 [[[=1,ITE
      IF(ITY([[[].E0.0] 30 TO 210
      KK=KK+1
      NGK = NG(KK)
      NUMPER = 30
      WRITE(6,91) NUMBER
10030 READ(5, 4,ERR=777)
                            (B(I,KK), I=1,NGK)
      NUMBER = NUMBER+1
      WRITE(6, 4)
                            (B(I,KK), [=1,NGK)
      WRITE(6,92) NUMBER
10031 READ(5, 10, ERR=777)
                            (IGRT([,KK), [=1,NGK)
                            (IGRT(I,KK), I=1,NGK)
      WRITE(6,10)
      2 SMALL LOOPS 207 & 208 TO GENERATE DV = FOR COMPLETE STRUCTURE
      STORED IN IGRT(-,-), ALSO IGRE(-,-)CONTAINS GROUPE =
      IN SUBSTRUCTURE K, ELEMENT TYPE III
      DO 207 I=1,NGK
      IF(16311 1,KK)) 206,207,205
  1+(111) VVV=(111) VVV COS
      IGRT( I,KK)=NVV(III)
      GO TO 207
  206 LIN=LIN+1
      LLL=LINLG(LIN,1)
      VGR=LINLG(LIN,2)
      IGRT( 1, KK) = IGRT(NGR, LLL)
  207 CONTINUE
  210 CONTINUE
      VA(1)=NVV(1)
      VA(2)=NVV(1)+NVV(2)
      KK=0
      DO 208 K=1.NSU
      D3 208 III=1, ITE
      IF(ITY(III).EQ.O)GI TO 208
      KK=KK+1
      IF(111.EQ.1)GO TO 208
      NGK=NG(KK)
      DO 209 I=1,NGK
      IF( | GR | ( | 1.KK | 1.EQ . 0) CD TO 209
      IGRT([,KK)=[GRT([,KK)+NA([]]-1)
209
      CONTINUE
208
      CONTINUE
```

```
BEGIN TO GENERALE WEIGHTING MATRIX
C
       DD 211 [=1,NV
                                            THIS PAGE IS BEST QUALITY PRACTICABLE
  211 AM(1)=0.000
       KK = 0
                                             FROM COPY FURNISHED TO DDC
       DO 220 K=1.NSU
       DO 220 111=1,1TE
       IF(ITY(III).E0.0) 50 TO 220
       KK=KK+1
       M6=MEB(KK)
       M7=MEF(KK)
       DO 219 I=M6,M7
C
       IF(III.EQ.1) \times (I,1) = H(I)
       MV=IGRT(IGRE(I, III), KK)
       IF(MV.EQ.0) GO TO 219
       DO(MV) = FACC(III)
       WM(MV) = WM(MV) + RR(I, [II])
  219 CONTINUE
  220 CONTINUE
       DD 221 I=1,NV
       AXL = 00(1)
       (1)MW=(1)00
       WM(1)=WM(1)*AXL
 221
       XX=WM(1)
       DD 230 I=2,NV
       IF(XX.GE.WM(1)) 30 10 230
       XX=WM([)
  230 CONTINUE
       DD 231 I=1.NV
  231 WM(I)=XX/WM(I)
C
       AM(I) STORES INVERSE OF WEIGHTING MATRIX. NORMALIZED WITH MAX ELE.
C ....
C
       WRITE(6, 33)
       WRITE(6,10) (NVV(I), I=1, ITE)
       WRITE(6,8) (WM(1) = 1,NV)
IF(IWMM.EQ.O) GO TO 233
       DO 232 I=1,NV
  232 WM(I)=1.0D0
  233 SUML =0.0
       WRITE(6,8) (WM(1),1=1,NV)
       00 234 I=1.NV
 234
       SUML = SUML + OO(1) *WM(1) *OO(1)
       ARITE(6, 24)
       ARITE(6,25) SN, NSU, BNC, NBW, NLC, NPH, NSD
       WRITE(6,26) IBUK, IDIS, IDV, IPD, IPS, IFS, ITE
       WRITE(6,27) ILIM, IPM, ITRS, LNSV
       WRITE(6, 28)DF, RIT, RIN, RL, EP
       WRITE(6,29) ERR1, ERR2, ERR3, ERR4, ERR5
C
C
       INITIALIZE COUNTERS
C
       VTL = 0
       ITRY=0
       ITR = 0
       ICV=0
       VSV=0
  998 CONTINUE
C
C
       COST FUNCTION & STEP SIZE
C
```

```
DO 240 I=1, ITE
240 XCOST(1)=0.0
    K = 0
    DO 242 KK=1, NSU
    DO 242 III=1, ITE
    IF(ITY(III).E0.0) 30 TO 242
    K=K+1
    M6=MEB(K)
    M7=MEF(K)
    DO 241 J=M6,M7
    I=IGRE(J, III)
241 xCOST([[]])=xCOST([[])+B([,K)*RR(J,[]])
242 CONTINUE
    COST=0.0
    DO 245 I=1, ITE
245 COST=COST+XCOST(1)*CCC
    STEP=(COST*DF)/(CCC*SUML)
    STEP=STEP*STP2
999 CONTINUE
    VTL=NTL+1
    FB(NTL)=COST
    DBIN(NTL,1)=0.0DO
    DBIN(NTL,2)=0.000
    PRINTING COST FN. HISTORY
    WRITE(6,49) NTL
    WRITE(6,45) STEP
     WRITE(6,48) COST, (XCOST(1), I=1,3)
     IF(NTL.GT.ILIM) GO FO 22220
     PRINTING CURRENT AREAS
1007 K=0
     DO 246 I=1, NCC
246 NDISP(1)=0
     DO 248 KK=1,NSU
     DO 248 III=1, ITE
     IF(ITY(III).EQ.0) 10 TO 248
     K = K + 1
     WRITE(6,47) KK, III
     MA=0
     V=NG(K)
     DO 247 I=1.N
     VGV(1,K)=0
     J=NOM(I,K)
     WRITE(6,46) I, [GRT([,K),3([,K),(MN(MA+L,K),L=1,J)
247 MA=MA+J
248 CONTINUE
     DO 7008 NEVIO=1, [PDAM
     TEI(NFVIO)=0.00
'008 TE(NFVIO)=0.00
     SIZE=0
     LX=0
     INCR =0
     VORES=0
     11X8=0
     13X8=0
     14×8=0
     00 256 I=1,NV
256 55(1)=0.0
```

```
C
C
      BEGIN OF BIG LOOP 77788 FREW ANAL & CHECK IF FREW IS(ARE) VIOLATED
C
      DO 77788 IDC=1, IPD:M
      LDC=IDC-1
      WRITE(6, 34)LDC
      DO 259 I=1,BNC
      DO 258 J=1.NBW
        C([,J)=0.DC
  258
      DO 259 L=1,NLC
  259 ZB(I,L)=PB([,L)*RLGAD(IDC)
      IF(IDV.EQ.O .AND. JUSTW.EQ.OJGO TO 2550
                                                  THIS PAGE IS BEST QUALITY FRACTICARY
      XRF=RF*RRF(IDC)
      XRFF=(6.2831854*XRF)**2
      1012=0
                                                   FROM COPY PURSITSHED TO DOC
      CALL STIFFM(N,K,IDC,IIX8,E883,IG12)
      GO TO 892
 883
      WRITE(6, 19)N,K, IDC
      SO TO 222
 882
      DO 832 [=1,BNC
      DO 832 J=1,NBW
 832
      D(I,J)=C(I,J)
      V=0
      K=0
      CALL DECUPPIN, NBW, BNC, &884)
      GD TO 885
 884
      WRITE(6,19)N.K
      GO TO 222
      CONTINUE
 385
      DO 850 1=1.BNC
      DO 850 J=1.NBW
 850
      (L,1)(J=(L,1))
      CALL SUBSPINCC, NBW, LCON, ERR1, IDC, 13×8)
      FREQ=WS(1)
      XL=DSQRT(FREQ)/6.2831853
      WRITE(6, 37)NCC, FREU, XL, (1, XEIG(1,1), [=1, NCC)
      IF(IDV.CQ.O .AVD. JUSTW. VE. O)GO TO 2550
      YYM=1.0-(FREQ/XRFF)+EP
      IF(ICHEK.EQ.1)30 TO 2550
      IF(YYM.LT.0.0)GO TU 254
      LX=LX+1
      TEI(LX)=(FREQ-XRFF)/XRFF
      TE(LX)=DABS(XRF-XL)/XRF
      KK=D
      DO 251 K=1.NSU
      DO 251 III=1.3
      IF(ITY(III).EQ.0) 30 TO 251
      KK=KK+1
      M6=MEH(KK)
      M7=MEF(KK)
      DO 252 14=M6,M7
  252 BE(14.111)=PR(14.111)
  251 CONTINUE
      IF( ICHEK . EQ. 1)GO T 2550
C
C
      TO FIND TRIPLE PRODUCT Y*M*Y, USE LATER IN SUB. DEFREQ
C
      CALL MEVEC(NY, NCC, IDC, 14x8,1)
      FDEN=0.DO
      DO 879 I=1.NCC
      FDEN=FDEN+XEIG(I,1)*YXEIG(I,1)
 879
                                          121
```

```
CALL DEFREQ(FREQ, XRFF, NN, FDEN, NCC)
     DO 253 [=1.NV
     ETC(I+INCR) =-H(I)
253
     INCR = INCR+NV
     IF((IFR.GT.0).AND.(ITRN.EQ.0)) GO TO 332
     GO TO 2551
 254 NORES=1
     WRITE(6,39)
2550 I4X8=14X8+NEGV( IDC)
551 CONTINUE
                               TO FIND DISPLIEL. FORCE
     BEGIN OF BIG LOOP---88
     CONSTRAINT CHECK ON STRESS, DISPL, CONSTRUCT CAP LAMDA MATRIX
     =DERIVATIVE OF VIOLATED CONSTRAINTS
     IF(IDV.EQ.O .AND. JUSTW.EQ.OIGO TO 820
     3D TO 821
     CALL STIFFM(N,K,IDC,IIX8,&260,0)
820
     GO TO 270
 260 WRITE(6, 19) N.K. IDJ
     CO TO 222
 270 DU 302 I=1.BNC
     00 302 J=1,NBW
 302 D(I,J)= C(I,J)
     V=0
     K = 0
     CALL DECUPP(N.NBW,BYC, &303)
     GD TO 304
 303 WRITE(6,19) N.K
     30 TO 222
 304 CONTINUE
     GO TO 837
     CONTINUE
821
     DC 903 I=1.BNC
     DO 903 J=1, NBW
903
     D(1,'J)=C(1,J)
237
     CALL ZBZIEF(IDC, I'.PSP, IPS, IPD)
     IF(ICHEK . EQ . 1150 T 77788
     DO 310 I=1, NLC
 310 VU(1)=0
     CALL CONST(IDC, IBUK, IDIS, IBDIS, NSD, EP, MV, IBU, IV, IPC, NTL, IFS, ISPSP,
    ( MAGIV I
     IFI NIL.GT.IFS) GO TO 311
     WRITE(0,52)
                    NTL, IFS
     ITRV=ITRN+1
     GO TC 998
311
     IF(IV-EQ-01GO TO 77788
     DO 331 I=1,BNC
     DO 330 J=1, NBW
 330 D(1, J)=C(1, J)
     00 331 J=1, IV
 331 DS(1,J)=A2(1,J)
     CALL SOLDUP(IV, NBW, BNC)
     WRITE(6,311) ((DS(1,J),I=1,BNC),J=1,IV)
     LXX=1
```

```
CALL GENCINSD, NV, LXX, IBU, IBUK, IV, IDL)
                                              THIS PAGE IS BEST QUALITY PRACTICABLE
      IF(SIZE.GT.(NSO-NDAM-1))30 TO 77789
77788 CONTINUE
                                              FROM COPY FURNISHED TO DDC
C
      END OF BIG LOOP 77788
C
77789 CONTINUE
      IF(ICHEK.EQ.1) GO TO 222
      IFILX.EQ.O .AND. SIZE.EQ.OIGO TO 332
      IFISIZE.EQ.O .AND. LX.NE.OJGO TO 33318
      WRITE(6, 35)
      DO 318 I=1.SIZE .
      #RITE(6, 36) [, (INF(1, J), J=1, 8), DLPH(1)
      CONTINUE
33317 DO 319 I=1, SIZE
      DD 319 J=1,NV
  31) DPB(J, I)=DPX(J, I)
      IFILX.EQ.O .AND. SIZE.NE.OJGO TO 332
C
C
      ADD COLUMNS OF FRED. VIOLATIONS IN CAP LAMDA MATRIX
C
      ALSO ADD AMOUNT OF FREQ VIOL IN DELPHI, THEN UPDATED SIZE
C
33318 INCR =-NV
      DO 320 I=1,LX
      DLPH(SIZE+I)=TEI(I)
      DLP(SIZE+I)=TE(I)
      INCR = INCR+NV
      DO 320 J=1,NV
      DPB(J,SIZE+I)=ETC(J+INCR)
 320
      SIZE=SIZE+LX
C .... CHECK FOR DESIGN VARIABLE CONSTRAINTS
  332 IJ=SIZE
      VDC=0
      K = 0
      DO 334 [=1,NV
      Z(1,1)=0.0
  334 VV(1)=0.0
      DD343 KK=1,NSU
      DO 343 III=1,ITE
      IF(ITY(III).EQ.0) 30 TO 343
      WRITE(6,47) KK, [1]
      K=K+1
      LL=0
      NGK=NG(K)
      DD 342 I=1,NGK
      L=NOM(I,K)
      MA=IGRT(I,K)
      IF(MA.EQ.O) GO TO 341
      IF(SS(MA).EQ.1.0.0R.VV(MA).EQ.1.0) GO TO 339
      VV(MA)=1.0
      IF(BL(1,K).LE.O.) GO TO 335
      YYM=1.0
      ZN=BL(I,K)
      XL = B ( I , K ) / ZN
      GD TO 336
  335 YYM=0.
      ZN=1.0
      XL = B([,K)
  336 CONTINUE
```

```
IF((YYM+EP).LT.XL) GO TO 337
      SIZE=SIZE+1
      IF(SIZE.LE.NPH)GO TO 3380
      SIZE=SIZE-1
      CO TO 338
 3380 NDC=NDC+1
      DLPH(SIZE)=XL-YYM
      DLP(SIZE) = - DLPH(SIZE)
      WRITE(6,54) SIZE, MA, XL
      DZE(NOC) =- 1. DO/ZN
      CO TO 338
  337 CONTINUE
      ZN=EU([,K)
      XL = B(1,K)/ZN
      IF((XL+EP).LT.1.0) 30 TO 339
      SIZE=SIZE+1
      IFISIZE.LE.NPHIGD TO 3381
      SIZE=SIZE-1
      GD TO 338
 3381 'IDC=NDC+1
      DLPH(SIZE)=1.DO-XL
      DLP(SIZE)=-DLPH(SIZE)
      WRITE(6,55) SIZE, MA, XL
      DZE(NDC)=1.D0/ZN
  338 H(NDC)=MA
  339 CONTINUE
      DO 340 J=1.L
      LL=LL+1
      M=MN(LL,K)
  340 Z(MA, 1) = Z(MA, 1) +RR(M, III)
      GO TO 342
  341 LL=LL+L
  342 CONTINUE
  343 CONTINUE
      IF(SIZE.EQ.O) GO TO 347
      WRITE(6,56) SIZE
C.... COMPUTE DELTA B VECTOR
C .... DPB IS CAP LAMBDA HATRIX (NV.NSD)
      IF(IJ.EQ.0) GO TO 345
      DO 344 J=1,NV
      RO(J)=DSQRT(WM(J)) .
      DO 344 I=1.1J
  344 DPB(J, I)=DPB(J, [)*RO(J)
  345 CONTINUE
C
      CALL DELBE( IJ, NDC, W, &347)
      IF(IJ.EQ.0) GO TO 351
      DO 346 J=1,NV
      XX=1.000/R0(J)
      DO 346 [=1, [J
  346 DPB(J, [)=DPB(J, [)*XX
      50 10 351
  347 CONTINUE
      NO VIOLATION OF CO.STRAINTS
      IF(ITRN.EQ.0) GC TO 348
      WRITE(6,58)
      XL=RIT
      DF=XL
      STEP=(CDST*XL)/(CCC*SUML)
      STEP=STEP*STP2
      GO TO 349
```

```
348 XL=RIN
      NO INITIAL VIOLATIO'.
                                      THIS PAGE IS BEST QUALITY PRACTICABLE
      ICV=ICV+1
                    ICV
      WRITE(6,59)
                                      FROM COPY FURNISHED TO DDC
  349 YYM=(COST*XL)/(CCC*SUML)
      YYM=YYM*STP2
      WRITE(6,45) YYM
      DO 350 I=1,NV
      BE(I,1) = -Z(I,1) * WM(I)
      BE(1,2)=0.
  350 W(1)=YYM*BE(1,1)
  351 CONTINUE
C .... COMPUTATIONAL CHECKS.
      IF(IJ.EQ.0) GO TO 354
      WRITE(6, 71)
      DO353 I=1, IJ
      22(1,1)=0.0
      22(1,2)=0.0
      DC352 J=1.NV
      ZZ(I,1)=ZZ(I,1)+DPP(J,I)*BE(J,1)
  352 ZZ(1,2)=ZZ(1,2)+DPE(J,1)*BE(J,2)
  353 WRITE(6,72) 1,22(1,1),22(1,2)
  354 DO 355 I=1,5
  355 T([]=0.0D0
      D3356 I=1.NV
      FF=1.000/WM(I)
      T(1)=T(1)+BE(1,1)*BE(1,1)*FF
      T(2)=T(2)+BE(1,1)*BE(1,2)*FF
      T(4)=T(4)+BE(1,2)*BE(1,2)*FF
  356 T(3)=T(3)+Z(1,1)* CE(1,1)
      DBIN(NTL, 1) = DSQRT(1(1))
      DRIVINIL. 2) = DSQRT(T(4))
C .... COMPUTE NEW B
      IFISIZE.EQ.OIGO TO 358
      DO 357 I=1, W
 357
      W(I)=STEP*BE(I,1)+PE(1,2)
  358 SUM=0.0
      DO 359 I=1.ITE
  359 XCOST(1)=0.0
      DO 360 I=1,NV
  360 VV(1)=0.0
      LIN=0
      K=C
      DO 364 KK=1, NSU
      DO 364 III=1, ITE
      IF(ITY(III).EQ.0) 30 TO 364
      K=K+1
      V=0
      VGK=NG(K)
      DG 363 [=1,NGK
      L=IGRT(I,K)
      IF(L.EQ.0) GO TO 362
      IF(VV(L).EQ.1.0) GO TO 361
      SUM = SUM + W(L) *W(L)
      B(I,K)=B(I,K)+W(L)
      IF(B(I,K).LT.BL(I,K)) B(I,K)=BL(I,K)
      IF(B(1,K).GT.BU(1,K))B(1,K)=BU(1,K)
      VV(L)=1.0
      GO TO 362
  361 LIN=LIN+1
      LLL=LINLG(LIN,1)
```

```
VGR=LINLG(LIN,2)
      B(I,K)=B(NGR,LLL)
  362 NJJ=NOM(1,K)
      DO 363 J=1.NJJ
      V=V+1
      M=MN(N,K)
  363 XCOST(111)=XCOST(111)+B(1,K)*RR(M,111)
 364 CONTINUE
      CCIO. 0= JUAN
      DO 365 I=1, ITE
 365 VALUE=VALUE+XCDST(1)*CCC
      XL=(COST-VALUE)/COST
                    XL . SUM
      WRITE(6, 73)
      XL=DABS(XL)
      WRITE(6, 81)
      DG 366 [=1,NV
 366 ARITE(0,82)
                   [,BE(i,1),BE(I,2),W(I)
                    T(2),T(3)
      WRITE(6, 74)
      WRITE(6, 75)
                     (I,DBIN(I,1),[=1,NTL)
      WRITE(6, 76)
                     (I,DSIN(I,2),I=1,NTL)
      WRITE(6,501 (I,FB(11,I=1,NTL)
      IF(ITR.EQ.ITRS) GO TO 369
      IF(XL.GT.RL) GD TO 368
      VSV=NSV+1
      WRITE(6,77)
                    VSV
      IF(NSV-1 NSV) 369, 367, 367
  367 ITR= ITR+1
      DF=STP1+DF
      RIT=STP1*RIT
      RL=0.5*RL
      STEP=(COST*DF)/(CCC*SUML)
      STEP=STEP*STP2
      WRITE(6, 78) ITK, STEP, DF
  368 VSV=0
  309 CONTINUE
      IF((SIZE.EQ.O).AND.([TRN.EQ.O]) GO TO 998
      IF(SIZE.EQ.0) 3C TO 371
      DO 370 I=1.SI/E
      IF(DLP(1).GT.ERR3) GO TO 371
  370 CONTINUE
      IF(DBIN(NTL, 1).LT.ERR2) 30 TO 372
  371 COST = VALUE
      ITRV=ITRN+1
      30 TU 999
  3/2 WRITE(6,79)
      WRITE(6,48) VALUE, (XCOST(I), I=1,3)
      ICHEK=1
      WRITE(6, 40)
      SO TO 7007
22220 K=0
      IF(IDV.EQ.O .AND. JUSTW.EQ.O)CO TO 379
      00 378 1=1.2
 378 WRITE(7,8)(XEIG(J,1),J=1,NCC)
 379 DO 381 KK=1,NSU
      DO 381 III=1.ITE
      IF(ITY(III).EQ.0) 30 TO 381
      MA=0
      K=K+1
      VSK=NG(K)
      WRITE(6,47) KK, 111
      00 380 I=1.NGK
```

```
J=NOM(I,K)
      WRITE(6,46) [, [GRT(1,K),B(1,K),(MN(MA+L,K),L=1,J)
  380 MA=MA+J
      ARITE(7, 4) (B(1,K), I=1, NGK)
      WRITE(7,10) (IGRT(1,K),I=1,NGK)
                                          THIS PAGE IS BEST QUALITY PRACTICABLE
  381 CONTINUE
      GO TO 222
                                          FROM COPY FURNISHED TO DDC
  777 WRITE(6,51)
  222 CONTINUE
      CALL EXIT
      STOP
      END
      SUBROUTINE VARI(K)
                                                                         SUB
      COMMON/V1/N1,NCI,NWK,NGK,MA,NU1,NU2,NU3,M1,NB,NJK,NC,N11,ISQ,IQ1
      CDMMO1/V2/NIC( 3).NW( 6).NG( 6).NBW1( 3).NBW2( 3).NBW3( 3).NM( 6).
     INDJ( 3),NJ( 3),NCB( 3),NEW( 3),IQS( 3),MEB( 6),MEF( 6)
C ***********************
      THIS SUBROUTINE GENERATES VARIOUS VARIABLES FOR KTH SUBSTRUCTURE *
<del>_</del> ***************************
      VCI=NIC(K)
      VI=NCB(K)
      VU1=NBW1(K)
      NU2=NBW2(K)
      NU3=NBW3(K)
      VB=VBJ(K)
      NJK=NJ(K)
      VC=NCI+N1
      MA=0
      RETURN
      END
      SUBROUTINE ELESTF(Mi, III, 18, K, KK, M6, M7, I9, ISPSP, NN, J8, M8, IDV, GG) SUB 2
      IMPLICIT REAL *8 (A-11, 0-Z)
      INTEGER SIZE, BNC, ST
      COMMON STEP, BYC, SN, NBW, SIZE, NLC, NSU
      COMMON/P1/B1( 9, 9),B2( 9, 9),B3( 9, 9),ESF( 9, 9),NA( 156),NI1( 9
     1),NJ1( 9),NJ2( 9)
      COMMON/P2/XNUU( 14, 6),ELL(108, 2),BU( 14, 6),STRESS(1620),TCSM(
     1 156), TRCSSP(2808), XCOST( 3), ICSS( 108, 2), [SAC( 108, 2), [NDC( 108
     2, 2), [GRT( 14, 6), [GRE( 108, 2), NNDC( 1080), LLN( 3), [TY( 3), [CSSM(
     3 108, 21
      COMMON/R2/PI(12, 1, 3),RR( 108, 2),E( 14, 6),MN( 108, 6),NOM( 14,
     1 61
      COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
     12( 51, 3), DZE( 60), MP( 108, 2), ND( 216)
      CDMMON/A4/X( 108, 3),DLP( 60),DLPH( 60),T( 156),WM( 51),RO( 51)
      COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
     1 156), Y( 108, 3), NZC( 24, 3)
   10 FORMAT(1615)
   35 FORMATI'O',
                   EL NO JP
                               JQ
                                     JR
                                         MP',8X,'L/SA',9X,'L1',12X,'M1'
     1,12x,'N1',12x,'L2',12x,'M2',12x,'N2'/' ')
   36 FORMAT(1X,515,7E15.4)
      WRITE(6, 35)
      DO 700 M=M6.M7
      READ(5.10)
                         MM.JP.JU.JR.MP(M.III)
      XL = X(JQ,K) - X(JP,K)
      YM=Y(JQ,K)-Y(JP,K)
      ZN=Z(JQ,K)-Z(JP,K)
      IF(111.GT.1) GO TO 500
      1D=3
C.... TRUSS ELEMENT STIFF. MATRIX.
      ELL(M, 1)=DSQRT(XL*XL+YM*YM+ZN*ZN)
```

```
EL=1./ELL(M, III)
    CL=XL*EL
    CM=YM*EL
    CN=ZN+EL
    WRITE(6,36) M, JP, JU, JR, MP(M, III), ELL(M, 1), CL, CM, CN
    CON=E(IGRE(M,1),KK) *EL
    ESF(1,1)=CL
    ESF(1,2)=CM
    ESF(1,3)=CN
    C1(1,1)=CL*CL
    B1(2,2)=CM*CM
    B1(3,3)=CN*CN
    B1(1,2)=CL*CM
    81(1,31=CL*CN
    81(2,3)=CM*CY
    IF( IDV . EQ . 01 GO TO 600
    CONM = RO(IGRE(M, III)) * ELL(M, III) / (6.0 * GG)
    82(1,1)=1.0
    IDM=1
    GO TU 599
500 IF(III.GT.2) GD TO 515
    10=9
    CST ELEMENT STIFF. MATRIX.
    BX=DSQRT(XL*XL+YM*YM+ZN*ZN)
    ESF(2,1) = XL/PX
    ESF(2,2) = YM/RX
    ESF(2,3) = ZN/BX
    XL = X(JR,K) - X(JP,K)
    YM=Y(JR,K)-Y(JP,K)
    ZN=Z(JR,K)-Z(JP,K)
    SX=XL*ESF(2,1)+YM*ESF(2,2)+ZN*ESF(2,3)
    XL=XL-SX*ESF(2,1)
    YM=YM-SX*ESF(2,2)
    ZN=ZN-SX*ESF(2,3)
    HX=DSQRT(XL*XL+YM*YM+ZN*ZN)
    ESF(1,1)=XL/HX
    ESF(1,2)=YM/HX
    ESF(1,3)=ZN/HX
    ELL(M, 2)=0.5*3X*HX
    WRITE(6,36) M,JP,J0,JR,MP(M,III),ELL(M,2),((ESF(J,L),L=1,3),J=1,2)
    XNU=XNUU(IGRE(M, 2),KK)
    ETA=(1.0-XNU)*0.5
    CON=E(IGRE(M,2),KK)/((1.3-XNU*XNU)*2.0*BX*HX)
    PMS=EX-SX
    HH=HX+HX
    SZ=SX*SX
    BB=BX*BX
    BMSS=BMS*BMS
    SBMS=SX+BMS
    HBMS = HX * BMS
    BBMS = BX * BMS
    B1(1,1)=BMSS+ HH*ETA
    B1(1,2)=(XNU+ETA)*HBMS
    E1(1,3) = SBMS-HH+ETA
    B1(1,4)=-HBMS*XNU+HX*SX*ETA
    P1(1,5) =- BBMS
    B1(1,6)=-HX*BX*ETA
    B1(2,2) = HH+BMS S*ETA
    11(2,3) = XNU*SX*HX-: 1BMS*ETA
    B1(2,4) = - HH+ SB4 S*E FA
    B1(2,5)=-8x*HX*XNU
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
      B1(2,6) =-BBMS*ETA
      B1(3,3) = SZ+HH*ETA
                                        FROM COPY FURNISHED TO DDC
      B1(3,4)=-(XNU+ETA)+HX*SX
      B1(3,5)=-SX*BX
      B1(3,6) = HX*BX*ETA
      B1(4,4) = HH+SZ*ETA
      B1(4,5)= HX*BX*XNU
      B1(4,6)=-SX*BX*ET4
      B1(5,5) = BB
      B1(5,6)= 0.0
      B1(6,6) = BB*ETA
      UD 501 J=1,6
      DO 501 L=J,6
  501 B1(L,J)=B1(J,L)
      00 502 J=1,6
      DO 502 L=1,9
  502 B2(J,L)=0.0
      JJ=0
      DO 504 LS=1,5,2
      LE=LS+1
      DO 504 J=1.3
      JJ=JJ+1
      DO 504 L=1.6
  504 B2(L,JJ)=B2(L,JJ)+ B1(L,LS)* ESF(1,J)+ B1(L,LE)* ESF(2,J)
      DO 503 J=1.9
      DO 503 L=J,9
 503 B1(J,L)=0.0
      JJ=0
      D3 506 LS=1,5,2
      LE=LS+1
      00 506 J=1,3
      JJ=JJ+1
      DO 506 L=JJ,9
  506 B1(JJ,L)=B1(JJ,L)+B2(LS,L)* ESF(1,J)+B2(LE,L)* ESF(2,J)
      IF(IDV.EQ.O) GO TO 600
      CONM=RD(IGRE(M, III)) * ELL(M, III) / (12.0 * GG)
      R2(1,1)=1.0
      IDM=1
      SO TO 599
C .... SSP ELEMENT STIFF. MATRIX.
 515 ID=6
      SSPB=DABS(Z(JP,K)+Z(JQ,K))
      SSPA=DSQRT(XL*XL+YM*YM)
      ESF(1,1)=XL/SSPA
      ESF(1,2)=YM/SSPA
      ELL(M. 31=0.5*SSPA*SSPB
      WRITE(6,36) M,JP,JO,JR,MP(M,III),ELL(M,3),ESF(1,1),ESF(1,2)
      XNU=XNUU(IGRE(M, 3),KK)
      THETA=SSPA/SSPB
      CON=E(IGRE( M,3),KK)/(12.0*(1.0+XNU))
      DCM=ESF(1,2)
      DCL = ESF (1,1)
      DCLL = DCL * DCL
      DCLM=DCL*DCM
      DCMM=DCM+DCM
      Z1=2.0*(1.0+XNU)/THE TA
      IF(ISPSP.NE.O)Z1=0.0
      22=3.0*THETA
      511=21+22
      513=-21+22
      522=3.0/THETA
```

```
FROM COPY FURNISHED TO DDO
    B1(1,1)= S11*DCLL
    B1(1,2)= S11*DCLM
    B1(1,3)=-3.0*DCL
    B1(1,4)= S13*DCLL
    B1(1,5)= S13*DCLM
    P1(1,6) = 3.0*DCL
    B1(2,2)= S11*DCMM
    H1(2,3)=-3.0*DCM
    B1(2,4)= S13*DCLM
    B1(2,5)= S13*DCMM
    B1(2,6)= 3.0*DCM
    B1(3,3)= S22
    B1(3,4)=-3.0*DCL
    B1(3,5)=-3.0*DCM
    B1(3,6)=-S22
    B1(4,4)= S11*DCLL
    B1(4,5)= S11*DCLM
    P1(4,6)= 3.0*DCL
    B1(5,5)= S11*DCMM
    81(5,6)= 3.0*DCM
    B1(6,6) = $22
    IF(IDV.EQ.0) GO TO 600
    CONM=RO(IGRE(M, III))*SSPB*SSPB/(6.0*GG)
    XM11=THETA/3.0+XNU*THETA/6.0+(THETA**3)/10.0+0.1*XNU*XNU/THETA
    XM12=-0.25*(THE TA*THETA+XNU)
    XM13=THE TA/6.0-XNU# THE TA/6.0-(THETA**3)/10.0-0.1*XNU*XNU/THETA
    XM22=THETA
    P.2(1,1) = DCLL * XM11
    62(1,4)=DCLL*XM13
    £2(4,4)=B2(1,1)
    82(1,2) = DCLM * XM 11
    82(1,5) = DCLM * XM13
    B2(2,4)=DCLM*XM13
    B2(4,5) = DCLM*XM11
    B2(1,3)=DCL * XM12
    82(1,6)=DCL*XM12
    B2(3,4)=-DCL*XM12
    B2(4,6) =-DCL *XM12
    B2(2,2)=+DCMM*XM11
    B2(2,5)=DCMM*XM13
    B2(5,5)=+DCMM*XM11 .
    B2(2,3)=+DCM*XM12
    B2(2,6)=+DCM*XM12
    B2(3,5)=-DCM*XM12
    C2(5,6) = -DCM * XM12
    B2(3,3)=+XM22
    B2(3,6)=XM22*0.5
    B2(6,6)=+XM22
    IDM=6
599 ICSSM(M, III)=M8
    DO 616 J=1, IDM
    00 616 L=1,J
    48=M8+1
616 TCSM(M8)=CONM*B2(L,J)
600 ICSS( M, III)=18
    DO 516 J=1, ID
    DO 516 L=1,J
    1481=81
516 TRCSSP(18)=CON+B1(L,J)
    L=NN*(JP-1)
```

[=NN+(JQ-1)

```
THIS PAGE IS BEST QUALITY PRACTICABLE
```

```
V=NV*(JR-1)
                                    FROM COPY FURNISHED TO DDC
      DO 517 J=1,NN
      VA(J)=ND(L+J)
      (L+I) DN=(NN+L)AV
      IF(III.EQ.2) NA(J+ SN)=NO(N+J)
 517 CONTINUE
      ISAC( M, III) = 19
      IF(III.EQ.1) ID=6
      DO 519 J=1, ID
      19=19+1
      NNDC(19)=NA(J)
 519
      CONTINUE
      IF(111.GT.1) GU TO 800
      DO 400 I=1,3
      DD 400 J=1,1
 400 B1(I,J)=B1(J,I)
      00 801 1=1.3
      H(I)=0.0
      DD 801 J=1,3
  801 H([)=H([)+ESF(1,J)*81(J,[)
      INDC (M. [ [ ] ] = J8
      LLN(III)=NN
      NN,1=L SOB CO
      J8=J8+1
  802 STRESS(J8)=H(J)*COH
      GO TO 700
  800 IF(III.GT.2) GD TD 716
      LN=3
      LLN(III)=LN
C.... STRESS MATRIX FOR CST ELEMENTS.
      CON=CCY#2.0
      B1(1.1) = -BMS
      P1(1,2)=-HX*XNU
      B1(1,3)=-SX
      81(1,4)=-81(1,2)
      B1(1,5) = BX
      E1(1,6) = 0.0
      B1(2,1) =- BMS * XYU
      B1(2,2)=-HX
      B1(2,3) =- SX*XVU
      81(2,4) = HX
      31(2,5) = BX*XNU
      B1(2,6) = 0.0
      61(3,1) =-HX*ETA
      01(3,2) =-BMS*ETA
      31(3,3)= HX*ETA
      81(3,4)=-SX#ETA
      8113,51= 0.0
      B1(3,6) = BX*ETA
      00 713 1=1,3
      00 713 J=1.9
  713 82(1,11=0.0
      JJ=0
      DO 708 LS=1,5,2
      LE=LS+1
      DO 708 J=1,3
      11=11+1
      DO 708 1=1.3
  708 82([,JJ]=82([,JJ]+81([,LS]* ESF([,J]+B1([,LE]* ESF(2,J]
      30 TO 805
      STRESS MATRIX FOR SSP ELEMENTS.
```

Carry of redwind the ball of the service of the ser

```
716 ET3=0.5/(1.0+XNU)
     CON=E(IGRE(M, III), KK)
     ET3=ET3*CON
     AX = 1 . 0 / SSPA
     P.X=1.0/55PB
     IF(ISPSP.EQ.1) GO TO 731
     82(1,1) = -DCL *AX*CUN
     82(1,2) = -DCM*AX*CO.
     02(1,3)= 0.0
     B2(1,4)=-B2(1,1)
     B2(1,5)=-B2(1,2)
     P2(1,6) = 0.0
     1=2
731 IF(ISPSP.NE.O)J=1
     12(J,1) = DCL *ET3 *BX
     82(J,2)= DCM*ET 3*BX
     82(J, 3) = -ET3*AX
     B2(J,4) = B2(J,1)
     E2(J,5) = B2(J,2)
     B2(J,6) = -B2(J,3)
     1 V= J
     LLN(III)=J
     CON=1.C
 805 INDC(M. III)=J8
     LE=ITY(III)
     DO 336 I=1.LN
     DO 336 J=1.LE
     1+8L=3L
 336 STRESS(J8)=B2(1,J)*CON
 700 CONTINUE
     RETURY
     END
     SUBRUUTINE STIFFM(A,K,NDC,18,*,101)
     IMPLICIT REAL *8 (A-H, 0-Z)
     INTEGER SIZE, BYC, ST
     COMMON STEP, BNC, SN, NBW, SIZE, NLC, NSU
     COMMON/VI/N1,NCI,NWK,NGK,MA,NUI,NU2,NU3,MI,NB,NJK,NC,NI1,ISQ,IQI
     COMMON/V2/NIC( 3), Nw( 6), NG( 6), NBWL( 3), NBW2( 3), NBW3( 3), NM( 6),
    148J( 3), NJ( 3), NCB( 3), NEW( 3), IQS( 3), MEB( 6), MEF( 6)
     COMMON/P1/B1( 9, 9),B2( 9, 9),B3( 9, 9),ESF( 9, 9),NA( 156),NI1( 9
    1),NJ1( 9),NJ2( 9)
     COMMON/P2/XNUU( 14, 6), ELL(108, 2), BU( 14, 6), STRESS(1620), TCSM(
    1 156), TRCSSP(2809), XCOST( 3), TCSS( 108, 2), TSAC( 108, 2), TNDC( 108
    2, 2), [GRT( 14, 6), [GRE( 108, 2), NNDC( 1080), LLN( 3), ITY( 3), [CSSM(
     COMMON/P3/EVEC( 1, 1),R3F( 7),RDL[M( 7),RSL( 7),RSU( 7),RLOAD( 7)
    1, REDUCT 901, NDOF( 71, NDM( 90), NBDAM( 6, 6), KIIDAM( 3, 7)
     COMMON/R2/PI(12, 1, 3),RR( 108, 2),E( 14, 6),MN( 103, 6),NOM( 14,
     COMMON/R4/IIL( 50, 3), KLC( 50), IOK( 3), NO( 1)
     COMMO'1/R5/B( 14, 6), SL( 14, 6), SU( 14, 6), DPB( 51, 50), DL[M(12, 3)
    1,551 511
     COMMON/A1/Q(12, 24, 3),Z[(12, 1, 3),C( 36, 24),ZB( 36, 1)
     COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
    12( 51, 3),DZE( 60),MP( 108, 2),ND( 216)
     COMMON/A5/D( 36, 24),DS( 36, 50),A2( 36, 50),DK[(12,36),K[[UBW( 3)
     COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
    1 156), Y( 108, 3), NZC( 24, 3)
     COMMON/C1/XEIG( 72, 2), YXEIG( 72, 2), WS( 2), DM( 1, 1), IETA( 7)
    $/C3/ QUK( 2, 21, QQM( 2, 21, QA( 2, 2)
```

```
DESCRIPTION OF VARIABLES
C*
C*
           U
                - STORES (E(I)*B(I))/L(I) ( NO. OF MENBERS )
C*
           DKI
                   STORES KII IN BANDED DECOMPOSED FORM.
                   STORES KBI IN FULL
C*
           DPZ
C*
                   STORES KB
                               FOR WHOLE STR IN BANDED FORM
           C.
C **
                **********
      0=01
      KK=0
      IDC=NDC-1
      INDEX=101
      DD 999 K=1,NSU
C
                                     THIS PAGE IS BEST QUALITY PRACTICABLE
      CALL VARI(K)
                                     FROM COPY FURNISHED TO DDC
      IOK(K)=0
      DJ 12 I=1.N1
      DO 12 J=1,N1
   12 A2(I,J)=0.D0
      IF(NCI.EQ.0) GO TO 15
      DO 14 I=1,NCI
      0=(1)AV
      DO 11 L=1.NLC
   11 BE(I,L)=PI(I,L,K)*RLOAD(NDC)
      DO 13 J=1.NU3
   13 D([, J)=0.D0
      DO 14 J=1,N1
      DPZ(1,J)=0.DO
   14 DS(1,J)=0.DO
   15 DC 29 III=1,3
      IF(ITY(III).EQ.0) 30 TO 29
      KK=KK+1
      M6=MEB(KK)
      M7=MEF(KK)
      DO 16 14=M6,M7
   16 VD(14)=0
      IF(IDC.EQ.0) GO TO 18
      NDO=NBDAM(KK, IDC)
      IF(NDO.EQ.0) GU TO 18
      DO 17 14=1, NDC
      18=18+1
      81=((81)MDN)DV
 17
      CONTINUE
   18 DO 28 14=M6,M7
      21=1.0
      IF(ND(14).NE.0)GO TO 202
      XX=B(IGRE([4, [[]), KK)*Z1
      BR([4, [[]]=XX
      SO TO 203
202
     71=1.00-REDUC(ND(14))
      XX=B(IGRE(14, 111), KK) *Z1
      BR(14, 111)=XX
203
     IF(XX.EQ.0.01GD TO 28
      CALL RECALL(III, LE, LS, LF, INDEX, 14, XX)
      IF(NCI.EQ.0) GO TO 25
      DO 24 J=LS, LE
      IJ=NNDC(LF+J)
      IF(IJ.EQ.0) GO TO 24
      IF(IJ.GT.N1) GD TO 21
      DO 20 L=LS,LE
      IL=NNDC(LF+L)
      IF(IL.EQ.0) GO TO 20
```

```
IF(IL.GT.NI.GR.IL.LT.IJ) GO TO 20
    IK=IL-IJ+1
    IF(IK.GT.NU2) GO TU 20
    A2(IJ, IL)=A2(IJ, IL)+ESF(J,L)
 20 CONTINUE
    60 TO 24
 21 IJ=IJ-N1
    DO 23 L=LS.LE
    IL=NNDC(LF+L)
    IF(IL.EQ.0) 50 TO 23
    IF(IL.GT.N1) GD TO 22
    DS(IJ,IL)= DS(IJ,IL)- ESF(J,L)
    DPZ(IJ, IL)=-DS(IJ, IL)
    GO TO 23
 22 IF(KIIDAM(K, NOC).EQ.O) 30 TO 23
    IL=IL-N1
    IF(IL.LT.IJ) GO TO 23
    IK=[L-[J+]
    IF(IK.ST.NU3) SO TO 23
    D(IJ,IK) = D(IJ,IK) + ESF(J,L)
 23 CONTINUE
 24 CONTINUE
    SD TD 28
 25 DO 27 J=LS, LE
    IJ=NNDC(LF+J)
    IF(IJ.EQ.0) GO TO 27
    DO 26 L=LS, LE
    [L=NNDC(LF+L)
    IF(IL.EQ. O.OR.IL.LT.IJ) GO TO 26
    [K=[L-[J+]
    IF(IK.GT.NU2) GO T. 26
    A2(IJ,IL)=A2(IJ,IL)+ESF(J,L)
 26 CONTINUE
 21 CONTINUE
 3UVITHCS 35
 2) CONTINUE
    IF(NCI.EQ.0) SO TO 126
    IF(NDC.GT.1) GO TU 35
    V=0
    CALL DECUPP(N,NU3, NGI, &444)
        CONTAINS DECOMPOSED KII.
    WRITE(6, 31) ((D(1,J),J=1,NU3),I=1,NCI)
 31 FORMAT(3X,6E15.5)
    GO TO 33
444 RETURY 1
 33 KIIUBW(K)=IQ
    00 34 J=1,NU3
    10=10+1
    DO 34 1=1.NC1
    DPB(1,12)= D(1,J)
 34 DKI(1,1Q)= D(1,J)
    50 TO 42
 35 IFIKIIDAMIK, NDC ).EQ.O) GO TO 39
    DO 36 1=1. NCI
    IF(D(1,1).NE.0.0) JO TO 36
    VA( 1 )=1
    0(1,1)=1.0
 36 CONTINUE
    4=0
```

C

C

```
THIS PAGE IS BEST QUALITY PRACTICABLE
      CALL DECUPPIN, NU3, NCI, 8444)
                                           FROM COPY FURNISHED TO DDC
      IQ=KIIUBW(K)
      DO 37 J=1, NU3
      10=10+1
      DO 37 I=1,NCI
   37 DPB(1,10)= D(1,J)
      GC TO 42
   39 IQ=KIIUBW(K)
      DD 40 J=1,NU3
      10=10+1
      DO 40 1=1.NCI
      D(1, J) = DKI(1, IQ)
   40 DPB(I, IQ)=DKI(I, IQ)
   42 00 43 L=1.NLC
      J=L+NI
      DO 43 I=1.NCI
      41=1.0
      IF(NA(I).EQ.1) Z1=0.0
      DS(I,J)=BE(I,L)*21
   43 PE(I,L)=DS(I,J)
C
      CALL SOLDUP(J, NU3, NCI)
C.... DS CONTAINS Q=-KII++-1+KIB AND KII++-1+PI+RLOAD
      DO 49 I=1.NCI
      DO 48 L=1.V1
   48 Q(I,L,K)=DS(I,L)
      DO 49 L=1, NLC
      J=L+N1
   49 ZI(I,L,K)=DS(I,J)
C
      WRITE(6,39) K, ((Q(I,J,K), [=1,NCI), J=1,N1)
  39 FORMAT(//3x,[2, MATRIX Q'/(3x,4E15.5))
C.... GENERATION OF KB FOR WHOLE STRUCTURE IN BANDED FORM .
      MC I = NU 1 - N1 - 1
      DO 124 I=1.N1
      MCI=MCI+1
      IF(MCI.GT.NCI) MCI="CI
      DO 124 J=I.N1
      DO 124 L=1,MCI
  124 \ A2(I,J) = A2(I,J) + DPZ(L,I) * Q(L,J,K)
C.... GENERATION OF RB EFFECTIVE BOUND FORCE VECTOR IN MATRIX ZB.
      DO 125 [=1.N1
      LI=NZC( I,K)
      DO 125 L=1, NLC
      D3 125 J=1. NC1
  125 ZB(L1,L)=ZB(L1,L)+U(J,I,K)*BE(J,L)
  126 DO 127 I=1,N1
      LI=NZC(I,K)
      DO 127 J=1,N1
      L2=NZC(J,K)
      IF(L2.LT.L1) GO FO 127
      L3=L2-L1+1
      IF(L 3.GT.NBW) GO TO 127
      C(L1,L3)=C(L1,L3)+A2(I,J)
  127 CONTINUE
  99) CONTINUE
      WRITE(6, 1004) ((C(1, J), J=1, NRW), I=1, BNC)
      IF(IDC.EQ.O) RETURY
      DO 129 [=1,8NC
      IF(C(1,11.NE.0.0) GO TO 129
      C(1,1)=1.0
      DU 128 J=1.NLC
                                      135
```

```
128 ZB(I, J) = 0.0
 129 CONTINUE
     RETURN
     END
     SUBROUTINE RECALL(III, LE, LS, LF, INDEX, MI, XX)
                                                                             SUB 4
     IMPLICIT REAL *8 (A-H, D-Z)
     INTEGER SIZE, BYC, SY
     COMMON STEP. BNC . SN. NBW . SI ZE . NLC . NSU
     COMMON/P1/B1( 9, 9),B2( 9, 9),B3( 9, 9),ESF( 9, 9),VA( 156),NI1( 9
    1),NJ1( 9),NJ2( 9)
     COMMON/P2/XNUU( 14, 6), ELL(108, 2), GU( 14, 6), STRESS(1620), TCSM(
    1 156),TRCSSP(2808),XCUST( 3),ICSS( 108, 2),ISAC( 108, 2),INDC( 108
    2, 2), IGRT( 14, 6), IGRF( 108, 2), NNDC( 1080), LLN( 3), ITY( 3), ICSSM(
    3 108. 21
     COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
    12( 51, 3),DZE( 60),MP( 108, 2),ND( 216)
     1/1=21/5
     LE=ITY(III)
     IF(III.EQ.1) LE=3
     LS=1
     LF=ICSS(MI, III)
     IF(INDEX.EQ. 2)GU TU 702
     DO 701 J=LS, LE
     CJ 701 I=1, J
     LF=LF+1
     ESF(I,J)=TRCSSP(LF)*XX
 701 ESF(J, I) = ESF(I, J)
     IF(III.GT.1) GU TO 702
     DD 401 JO=1,3
     00 401 10=1.3
     ESF(J0, I0+3) = -ESF(J0, I0)
 401 ESF(J0+3, 10+3)=ESF(J0,10)
     DO 402 [=1,6
     DO 402 J=1.1
 402 ESF(1, J) = ESF(J, I)
 702 IF(INDEX.EQ.O) GO TO 170
     IF(III.GT.1) GG TD 150
     Y1=TCSM(ICSSM(Y[, I[[]+1)*XX
     Y2=Y1+Y1
     DD 60 I=1, SN
     DO 60 J=1, SN
     A=0.0
     IF(I.EQ.J) A=Y2
     1x=1-J
     IF((IX+NN)*(IX-NN).EQ.O) A=Y1
  60 B1(1, J)=A
     GC TO 170
 150 [F(III.GT.2) GD TO 160
     Y1=TCSM(ICSSM(MI, III)+1)*XX
     Y2=Y1+Y1
     DD 59 I=1,9
     DO 59 J=1,9
59
     B1(1,J)=0.0
     DU 61 1=1,3
     DO 61 J=1,3
     A=Y1
     IF(I.EQ.J)A=Y2
61
     B1(1,J)=A
     L 1 = 3
     LJX=3
```

136

00 63 11=1,2

```
THIS PAGE IS BEST QUALITY PRACTICABLE
     DC 62 I=1.3
                                 FROM COPY FURNISHED TO DDC
     L [=L [+1
      LJ=LJX
     DO 62 J=1,3
     LJ=LJ+1
   62 B1(LI,LJ)=B1(I,J)
     L 1 = 6
   63 LJX=6
     SO TO 170
  160 L=ICSSM(MI, III)
     DO 65 J=1,6
     00 65 I=1,J
     L=L+1
      B1(I, J) = TCSM(L) *XX
   65 B1(J, [)=B1(I, J)
  170 LE=ITY(III)
     LS=1
     LF=ISAC(MI, III)
     RETURN
      END
      SUBROUTINE DECUPP(M, IU, N, *)
                                                                      SUB 5
      IMPLICIT REAL *8 (A-H, U-Z)
      COMMON/A5/D( 36, 24),US( 36, 50),A2( 36, 50),DKI(12,36),KIIUBW( 3)
C*
      DECOMPOSE A SYMMETRIC MATRIX
C*
      UPPER BANDED MATRIX IS ASSUMED
C*
     UPPER DECOMPOSED MATRIX IS STORED IN THE DRIGINAL POSITION
C#
     DRIGINAL MATRIX IS DESTROYED
C*
      V=BAC
            IU=BUBW
C *********************
   13 FORMATI'1', 30X, 'SINGULAR MATRIX', 18)
     DO 60 I=1.N
     1P=V-1+1
     1 = 1 - 1
     IF(IU.LT.IP) IP=IU
     00 60 J=1, IP
      SUM=D(I,J)
      IF(I.EQ.1) GO TU 40
      19=1U-J
      IF(L.LT.1Q) 10=L
      IF(10.EQ.0) GO TO 40
     DO 30 K=1,10
     4Z=1-K
   30 SUM=SUM-D(MZ,K+1)*U(MZ,K+J)
   40 IF(J.NE.1) GO TO 50
      IF(SUM.LE.O.) GO TO 100
     TEMP = DSORT(SUM)
     TEMP=1.0/TEMP
     D(I, J)=TEMP
     GO TO 60
   50 D(I, J) = SUM * TEMP
   60 CONTINUE
     30 TO 91
  100 CONTINUE
     I = M
     WRITE(6,13) 1
     RETURN 1
  91 RETURY
     END
     SUBROUTINE SOLDUP (ML, IU, N)
                                                                     SUB 6
      IMPLICIT REAL *8 (A-H, 0-Z)
```

```
COMMON/A5/D( 36, 24), DS( 36, 50), A2( 36, 50), DKI(12, 36), KIIUBW( 3)
      SOLUTION OF SIMULTANEOUS EQUATIONS BY DECOMPOSING THE MATRIX
C*
      UPPER TRIANGULAR DANDED MATRIX IS ASSUMED
0*
      SOLVE BY FORWARD AND BACKWARD SUBSTITUTIONS
C*
      DS IS THE RHS MATRIX
CA
      DS CONTAINS THE SOLUTION AT THE END
C #
C #
      DS IS NOT SAVED
C+
      FORWARD SUBSTITUTION
                 IU=BURW
C*
      Y=BYC
   60 FORMAT(2X, BOUNDARY DISPLACEMENTS IN OVERALL SYSTEM*/(3X,4E15.5))
      DO 20 1=1. NL
   20 DS(1,1)=DS(1,1)*D(1,1)
      DO 10 I=2.N
      J=1-1U+1
      IF((I+1).LE.[U) J=1
      11=1-1
      DO 25 II=1, NL
      DO 15 K=J, IJ
      LS=1-K+1
   15 DS(1,11)=DS(1,11)-U(K,LS)*DS(K,11)
   25 DS(I, II) = DS(I, II) * D(I, I)
   10 CONTINUE
C .... BACKWARD SUBSTITUTION
      DO 30 I=1.NL
   30 DS(N, I) = DS(N, I) *D(N, I)
      L=N-1
      00 90 II=1,L
      1 = N - 11
      JI=I-1
      J=J [+ I U
      IF(J.GT.N) J=N
      [J=[+1
      DU 85 M=1,NL
      DO 95 K=IJ.J
   95 DS(I,M)=DS(I,M)-D(I,K-JI)*DS(K,M)
   85 DS(I,M)=DS(I,M)*D(I,1)
   90 CONTINUE
      WRITE(6,60) ((DS(I,J),I=1,N),J=1,NL)
      RETURY
      E.1D
      SUBROUTINE MEVECINN, NCC, LDC, 18, 1A)
      IMPLICIT REAL+8 (A-H,O-Z)
      INTEGER SIZE, BYC. SY
      COMMON STEP, BNC, SN, NBW, SIZE, NLC, NSU
      COMMON/VI/N1,NCI,NWK,NGK,MA,NU1,NU2,NU3,M1,NB,NJK,NC,N11,ISQ,IQ1
      COMMON/V2/NIC( 3),NW( 6),NG( 6),NBW1( 3),NBW2( 3),NBW3( 3),NM( 6),
     14BJ( 3), NJ( 3), NCB( 3), NEW( 3), IQS( 3), MEB( 6), MEF( 6)
      COMMON/P1/81( 9, 9),82( 9, 9),83( 9, 9),ESF( 9, 9),NA( 156),NII( 9
     1),NJ1( 9),NJ2( 9)
      COMMON/P2/XNUU( 14, 6), ELL(103, 2), BU( 14, 6), STRESS(1620), TCSM(
     1 156),TRCSSP(2808),XCOST( 3),ICSS( 108, 2),ISAC( 108, 2),INDC( 108
     2, 2), IGRT( 14, 6), IGRE( 108, 2), NNUC( 1080), LLN( 3), ITY( 3), ICSSM(
     3 108, 21
      COMMON/P3/EVEC( 1, 1), RRF( 7), RDLIM( 7), RSL( 7), RSU( 7), RLCAD( 7)
     1, REDUCT 901, NDUFT 7), NDM( 90), NBDAM( 6, 6), KIIDAM( 3, 7)
      COMMON/P5/YK( 1),YM( 1),SK( 1),SM( 1),EY( 1),SG( 1)
      COMMON/R5/B( 14, 6),SL( 14, 6),SU( 14, 6),DPB( 51, 50),DLTM(12, 3)
     1,55( 51)
      COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
```

```
12( 51, 3).DZE( 60).MP( 108, 2).ND( 216)
COMMON/A6/DPZ( 50, 30).ZZ( 72, 3).BE( 108, 3).W( 72).H( 108).VV(
     1 1561, Y( 108, 31, N2C( 24, 3)
      COMMON/C1/XEIG( 72, 2), YXEIG( 72, 2), WS( 2), DM( 1, 1), IET( 7)
      IDC=LDC-1
      VCX = BVC
      KK=0
      1012=2
       INDEX=1012
      DO 113 I=1, NCC
      DO 113 JJ=1, 14
 113 YXEIG(1, JJ)=0.00
                                              THIS PAGE IS BEST QUALITY PRACTICABLE
      DO 108 K=1, NSU
                                              FROM COPY FURNISHED TO DDC
C
       CALL VARICK)
      DO 80004 III=1.3
       IF(11Y(111).EQ.0130 TO 80004
      KK=KK+1
      M6=MEB(KK)
      M7=MEF(KK)
      DO 16 14=M6,M7
   16 VD(14)=0
      IF(IDC.EQ.0) 30 TO 18
      NDO=NBDAM(KK, IUC)
       IF(NDO.EQ.0) 30 TO 18
      DO 17 14=1,NDO
      18=18+1
   17 VD(NDM(18))=18
   18 DO 107 [4=M6,M7
      11=1.0
      IF(ND(14).NE.O) Z1=1.0-REDUC(ND(14))
      XX=B(IGRE(14, [[]), KK) * 21
       CR(14, [1])=XX
       IF(XX.EQ.0.0) GO TO 107
C
      CALL RECALL(III, LE, LS, LF, INDEX, 14, XX)
      UD 106 I=LS, LE
      IJ=NNDC(LF+I)
       IF(IJ.EQ.0) GO TO 106
      IF(IJ.LE.NI) 15=NZC(IJ,K)
       IF(IJ.GT.N1) [5=NCX+IJ-N1
      00 105 J=LS.LE
      IL=NNDC(LF+J)
      IF(IL.E0.0) GO TO 105
       IF(IL.LE.NI) I6=NZ.(IL,K)
      IF(IL.GT.N1) I6=NCX+IL-N1
      DO 109 JJ=1, IA
     YXEIG(15,JJ)=YXEIG(15,JJ)+B1(1,J)*XEIG(16,JJ)
 109
  105 CONTINUE
  106 CONTINUE
  107 CONTINUE
80004 CONTINUE
      VCX=NCX+NC1
 301
      CONTINUE
      RETURY
      END
      SUBROUTINE DEFREO(FREO, RFF, NN, FDEN, NCC)
      IMPLICIT REAL #8 (A-H, 0-Z)
      INTEGER SIZE, BNC, SY
      COMMON STEP, BNC, SN, NBW, SIZE, VLC, NSU
      COMMON/V1/N1, NC I, NWK, NGK, MA, NUI, NUZ, NU3, M1, NB+NJK, NC+N11+ [SQ+[Q1
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDQ

```
COMMON/V2/NIC( 3), YM( 6), NG( 6), NBWI( 3), NBW2( 3), NBW3( 3), NM( 6),
     1 NBJ( 3), NJ( 3), NCB( 3), NEW( 3), IQS( 3), MEB( 6), MEF( 6)
      COMMON/P1/B1( 9, 9),B2( 9, 9),B3( 9, 9),ESF( 9, 9),NA( 156),NI1( 9
     11,NJ1( 9),NJ2( 9)
      COMMON/P2/XNUU( 14, 6),ELL(108, 2),EU( 14, 6),STRESS(1620),TCSM(
     1 156), TRCSSP(2808), ACOST( 3), ICSS( 108, 2), ISAC( 108, 2), INDC( 108
     2, 2), IGRT( 14, 6), IGRE( 108, 2), NNDC( 1080), LLN( 3), ITY( 3), ICSSM(
     3 108, 21
      COMMON/P5/YK( 1),YM( 1),SK( 1),SM( 1),EY( 1),SG( 1)
      COMMON/R2/PI(12, 1, 3), RR( 108, 2), E( 14, 6), MN( 108, 6), NOM( 14,
      COMMON/A6/UPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
     1 1561, Y( 108, 3), N/C( 24, 3)
      COMMON/C1/XEIG( 72, 2), YXEIG( 72, 2), WS( 2), DM( 1, 1), IET( 7)
   *********
      GENERATES SENSITIVITY VECTOR H( NV ) FOR FREQUENCY CONSTRAINT
C#
          FREQ - NATURE FREQUENCY OF THE STRUCTURE
C*
C*
              - FREQUENCY LIMIT
C *
          SK
              - EIGEN VECTOR
                                  (NCC)
              - STORES D( K*Y - F*M*Y )/D B(1)
C#
LD=0
      INDEX=1
      NCX = BNL
      SUM=FDEN*RFF
      DO 106 K=1,NSU
C
      CALL VARI(K)
      DD 80004 III=1,3
      IF(ITY(III).EO.0)GD TO 80004
      MA=0
      LD=LD+1
      VGK=VG(LD)
      DO 100 KK=1.NGK
      NJJ=NOM(KK,LD)
      MV= IGRT (KK, LD)
      IF(MV.EQ.O) GO TO 170
      DO 102 J=1,NCC
  102 A(J)=0.00
      DO 80 IM=1,NJJ
      MA = MA + 1
      MI=MN(MA, LD)
      XX=BE(MI,III)
      IF(XX.EQ.0.0) 30 TO 80
      XX=1.0
C
      CALL RECALL(III, LE, LS, LF, INDEX, MI, XX)
      DO 70 1=LS,LE
      IJ=NNDC(LF+I)
      IF(IJ.EQ.0) GO TO 70
      IF(IJ.LE.N1) [4=N20(IJ,K)
      IF(IJ.GT.N1) 14=NCX+IJ-N1
      DO 60 J=LS,LE
      IL=NNDC(LF+J)
      IF(IL.EQ.0) GO TO 60
      IF(IL.LE.NI) IS=NZJ(IL,K)
      IF(IL.GT.N1) IS=NCX+IL-N1
      W([4]=W([4]+(ESF([,J)-FREQ*B1([,J))*XE[G([5,1)
   60 CONTINUE
   7C CONTINUE
   80 CONTINUE
```

```
H(MV) = 0.00
                                               THIS PAGE IS BEST QUALITY PRACTICABLE
       DO 90 J=1.NCC
                                               FROM COPY FURNISHED TO DDC
         H(MV) = H(MV) + W(J) * XE[G(J,1)
         H(MV) = H(MV)/SUM
       SD TO 100
   170 MA=MA+NJJ
   100 CONTINUE
 80004 CONTINUE
        VCX=NCX+NCI
  106
       CONTINUE
       RETURN
       END
        SUBROUTINE ZBZIEF(IDC, ISPSP, IPS, IPD)
        IMPLICIT REAL *8 (A-H+U-Z)
        INTEGER SIZE, BNC, ST
       COMMON STEP, BNC, SN, NBW, SI ZE, NLC, NSU
       COMMON/VI/NI,NCI,NWK, NGK, MA, NUI, NU2, NU3, MI, NB, NJK, NC, NI1, ISO, IQI
       COMMON/V2/NIC( 3), 14( 6), NG( 6), NBW1( 3), NBW2( 3), NBW3( 3), NM( 6),
       148J( 3), NJ( 3), NCB( 3), NEW( 3), IQS( 3), MEB( 6), MEF( 6)
       COMMON/P1/B1( 9, 91,B2( 9, 91,B3( 9, 9),ESF( 9, 9),NA( 156),NI1( 9
       11.NJ1( 9).NJ2( 9)
       COMMON/P2/XNUU( 14, 6),ELL(108, 2),8U( 14, 6),STRESS(1620),TCSM(
      1 156), TRCSSP(2808), XCOST( 3), ICSS( 108, 2), ISAC( 108, 2), INDC( 108
      2, 2), IGRT( 14, 6), IGRE( 108, 2), NNDC( 1080), LLN( 3), ITY( 3), ICSSM(
       3 108, 21
       COMMON/P3/EVEC( 1, 1).RRF( 7).RDLIM( 7).RSL( 7).RSU( 7).RLOAD( 7)
       1, REDUC( 90), NDOF( 7), NDM( 90), NBDAM( 6, 6), KIIDAM( 3, 7)
       COMMON/R2/PI(12, 1, 3),RR( 108, 2),L( 14, 6),MN( 109, 6),NOM( 14,
       COMMON/A1/Q(12, 24, 3),ZI(12, 1, 3),C( 36, 24),ZB( 36, 1)
       COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
       121 51, 31,DZE1 601,MP1 108, 21,ND1 216)
       COMMON/A4/X( 108, 3),DLP( 60),DLPH( 60),T( 156),WM( 51),RO( 51)
        CDMMON/A5/D( 36, 24),DS( 36, 50),A2( 36, 50),DKI(12,36),KI[UBW( 3)
       COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
       1 156), Y( 108, 3), NZC( 24, 3)
        THIS SUBROUTINE COMPUTES NODAL DISPLACEMENTS
. C*
        AND MEMBER FORCES/VON MISES EQUIVALENT STRESS.
    35 FORMAT(45x, FORCE MATRIX FOR TRUSS ELEMENTS / 45x, ELEMENT FORCE (
      * + IS COMP. 1 1)
    36 FORMAT(45x, STRESS MATRIX FOR
                                         CST ELEMENTS'/45X, 'ELEMENT SIGMA-X
      *, SIGMA-Y, TAU-XY, VON MISES STRESS')
    37 FORMAT(45X, STRESS MATRIX FOR SHEAR ELEMENTS 1/45X, ELEMENT TAU-XY,
      * VON MISES STRESS'
    38 FURMAT(45x, STRESS MATRIX FOR
                                         SSP ELEMENTS'/45X, 'ELEMENT SIGMA-X
      *, TAU-XY, VON MISES STRESS')
    39 FCRMAT(45X, 15, 4E15.5)
    40 FORMAT(45x, LOADING CONDITION= 1,15)
    42 FORMAT(3X, 15, 4X, 6EL5.5)
    43 FORMAT( *0 *, * ***NODAL DISPLACEMENTS FOR K= *, 12/ IST ZB THEN ZI
      *FOR ALL NLC.')
    58 FORMAT(/ * *, * ***FORCE/VON MISES STRESS FOR K=*, 12, *, III=*, 12, *,
      *ITY([[[]=',[2,', LDC=',[2]
       LDC=IDC-1
       DO 303 I=1,BNC
       DC 302 L=1,NLC
   302 DS(I+L)=ZB(I+L)
       DO 303 J=1,NBW
   303 C([, J)=D([, J)
        CALL SOLDUP(NLC, NBW, BNC)
       DC 305 J=1.NLC
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDQ

```
DO 305 1=1.BNC
 305 ZB(I,J)=DS(I,J)
     LL=0
     DO 777 K=1.NSU
     CALL VARICK)
    DO 316 J=1.N1
    LI=NZC(J,K)
     DO 316 L=1.NLC
 316 ZZ(J,L)=ZB(L1,L)
     IF(NCI.EQ.0) GO TO 321
    DO 319 L=1.NLC
    DO 318 J=1,N1
    DO 318 I=1.NCI
 318 ZI(I,L,K)=ZI(I,L,K)+Q(I,J,K)*ZZ(J,L)
    DO 319 [=1, NC]
31) ZZ([+V1,L)=Z[([,L,K)
     IF(IPD.ZQ.O)GD TO 357
     WRITE (6,431K
    DO 320 I=1.NC
320 WRITE (6,42)I,(ZZ(1,J),J=1.NLC)
    IF(IPD.EQ.O)GO TO 357
321
    WRITE(6,43)K
    DO 358 J=1,N1
358
    ARITE(6,42)J,(ZZ(J,JJ),JJ=1,NLC)
357
    DD 777 [[[=1,3
    WRITE (6,58)K, 111, 1TY(111), LDC
    IF(ITY(III).EQ.0) :0 TO 777
    C=AP
    LE=ITY(III)
    LN=LLN(III)
    VX=LN+1
    LL=LL+1
    M6=MEB(LL)
    M7=MEF(LL)
    IF(III.GT.1) SO TO 326
    DO 325 [4=M6,M7
    DU 325 L=1, NLC
325 TRSF(14,L)=0.0
    GO TO 330
326 IF(III.GT.2) GC TO 328
    DJ 327 14=M6,M7
    D7 327 L=1,NLC
    DO 327 J=1,NX
327 CSTF([4,L,J)=0.0
    GO TO 330
328 DU 329 14=M6,M7
    DJ 329 L=1,NLC
    DO 329 J=1,NX
329 SSPF([4,L,J)=0.0
330 DO 666 I4=M6,M7
    BX=BR(14,111)
    IF(BX.EQ.0.0) GC TO 666
    LF=1SAC(14, [1])
    IF(III.GT.1) GO TO 334
    L=INDC(14, III)
    00 331 J=1,LN
    L=L+1
    VV(J) =- STRESS(L)
331 VV(J+3)=-VV(J)
    DO 333 J=1,LE
    1J=NNDC(LF+J)
```

111

```
IF(IJ.EQ.0) GO TO 333
     XE=VV(J)*BX
                                             THIS PAGE IS BEST QUALITY PRACTICABLE
     DO 332 L=1, NLC
                                            FROM COPY FURNISHED TO DDC
 332 TRSF(14,L)=TRSF(14,L)+22(1J,L)*XB
 333 CONTINUE
     GO TO 666
 334 L=INDC(14,111)
     DO 335 I=1,LN
     DJ 335 J=1.LE
     L=L+1
 335 B2(1,J)=STRESS(L)
     DO 340 L=1,NLC
     DO 336 I=1.LN
     T(1)=0.0
     DU 336 J=1,LE
     IL = NNDC (LF+J)
     IF(IL.EQ.0) GO TO 336
     T(I)=T(I)+B2(I,J)+ZZ(IL,L)
 336 CONTINUE
     IF(III.EQ.3) GO TO 338
     VON=DSQRT(T(1)*T(1)+T(2)+T(2)-T(1)*T(2)+3.0*T(3)*T(3))
     DO 337 I=1,LN
 337 CSTF(14,L,1)=T(1)
     CSTF(14, L, LN+1) = VON
     GO TO 340
338
    IF(1SPSP.EQ.0130 TT 3338
     VON=DABS(T(1))
     GO TO 3339
3338 VAN=DSQRT(T(1)*T(1)+3.0*T(2)*T(2))
3339 DO 339 I=1,LN
33) SSPF(14, L, I)=T(I)
     SSPF(14, L, LN+1) = VOY
340 CONTINUE
666 CONTINUE
     IF(IPS.EQ.0) GO TO 777
     IF(III.GT.1) GO TO 350
     WRITE (6,35)
     DO 349 L=1,NLC
     WRITE (6,40)L
     DO 349 M=M6,M7
349 WRITE (6,39)M, TRSF(M,L)
     GD TO 777
350 IF(III.GT.2) GO TO 352
     WRITE (6, 36)
     DD 351 L=1.NLC
     WRITE 16,401L
     DO 351 M=M6, M7
351 WRITE (6,39) M, (CSTF(M,L,1), I=1,NX)
     30 TO 777
352 IF(ISPSP.EQ.0) GO TO 353
     WRITE (6,37)
     GO TO 354
353 WRITE (6,38)
354 DO 355 L=1,NLC
     WRITE 16,401L
     DU 355 M=M6,M7
355 WRITE (6,39) M, (SSPF(M,L,1),1=1,NX)
777 CONTINUE
     RETURN
     END
     SUBROUTINE CONST(IDC, IBUK, IDIS, IBDIS, NSD, EP, MV, IBU, FV, IPC, NTL, IFS, SUB 11
```

```
11SPSP, NDAM)
    IMPLICIT REAL *8 (A-11, 0-Z)
    INTEGER SIZE, BNC, SV
    COMMON STEP, BNC, SN, NBW, SI ZE, NLC, NSU
    COMMON/VI/NI,NCI,NWK,NGK,MA,NUI,NUZ,NU3,MI,NB,NJK,NC,NII,ISQ,IQI
    COMMON/V2/NIC( 3), Tk( 6), NG( 6), NBW1( 3), NBW2( 3), NEW3( 3), NM( 6),
   1 NBJ( 3), NJ( 3), NCB( 3), NEW( 3), [QS( 3), MEB( 6), MEF( 6)
    COMMON/P1/B1( 9, 9),B2( 9, 9),B3( 9, 9),ESF( 9, 9),NA( 156),NII( 9
   11,NJ1( 9),NJ2( 9)
    COMMON/P2/XNUU( 14, 6), ELL(108, 2), BU( 14, 6), STRESS(1620), TCSM(
   1 156), TRCSSP(2808), XCOST( 3), ICSS( 108, 2), ISAC( 108, 2), INDC( 108
   2, 2), IGRT( 14, 6), IGRE( 108, 2), NNDC( 1080), LLN( 3), ITY( 3), ICSSM(
   3 108, 21
    COMMON/P3/EVEC( 1, 1), RRF( 7), RDLIM( 7), RSL( 7), RSU( 7), RLOAD( 7)
   1, REDUC( 90), NDDF( 7), NDM( 90), NBDAM( 6, 6), KIIDAM( 3, 7)
    COMMON/P4/INF( 50, 8), NGV( 14, 6), IND( 50), NDISP( 72)
    COMMON/R1/BL( 14, 6), DLIB( 36)
    COMMON/R2/PI(12, 1, 3),RR( 108, 2),E( 14, 6),MN( 108, 6),NOM( 14,
    CUMMON/R4/IIL( 50, 3), KLC( 50), IOK( 3), NO( 1)
    COMMON/R5/8( 14, 6), SL( 14, 6), SU( 14, 6), DPB( 51, 50), DLIM(12, 3)
   1.55( 51)
    COMMON/A1/Q(12, 24, 3),ZI(12, 1, 3),C( 36, 24),ZB( 36, 1)
    COMMON/A3/BR( 106, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
   17( 51, 3), DZE( 60), MP( 108, 2), ND( 216)
    COMMON/A4/X( 108, 3),DLP( 60),DLPH( 60),T( 156),WM( 51),RO( 51)
    COMMON/A5/D( 36, 24),DS( 36, 50),A2( 36, 50),DKI(12,36),KIIUBW( 3)
    COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
   1 1561, Y( 108, 31, NZC( 24, 3)
 80 FORMAT(//'0', CONSTRAINT VIOLATIONS FOR IDC=', 15)
    IV=0
    LDC=IDC-1
    11 =0
    IF(IPC.EQ.0) GO TO 199
    WRITE (6,80) LDC
199 DO 200 I=1.NSD
    VA(1)=0
    DO 200 J=1,BNC
200 A2(J, 1)=0.0
    INN=0
    IF(IBDIS.EQ.O) GD TG 84
    DO 168 [=1,BNC
    DZE(1)=DLIB(1)
    DO 168 L=1.NLC
168 ZZ(I.L)=ZB(I.L)
    X = - 1
    16=0
    NNN = BYC
    CALL ABSMAX(K, NNN, INN, 16, NSD, IV, LDC, IPC, EP, NDAM)
    IF(SIZE.LT.(NSD-NDAM-1))30 TO 84
    WRITE(6,53) SIZE, NSD, NTL
    RETURN
 84 INN=BYC
    DO 999 K=1, NSU
    CALL VARI(K)
    16=0
    IF(NCI.EQ.O) GU TO 202
    DO 201 J=1,NSD
    DO 201 1=1.NC1
201 DS(1.J)=0.0
202 DU 888 III=1,3
```

```
IF(ITY(III).EQ. 0) 30 TO 888
                                       THIS PAGE IS BEST QUALITY PRACTICABLE
    IF(IPC.EQ.0) GO TO 203
    WRITE(6,58) K,111
                                       FROM COPY FURNISHED TO DDC
203 MA=0
    LL=LL+1
    NGK=NG(LL)
    LE=ITY(III)
    LN=LLN(III)
    VX=LN+1
    DO 777 KK=1.NGK
    YJJ=NOM(KK.LL)
    T(8)=SL(KK,LL)/RSL(IDC)
    IF(III.EQ.1) T(9)=SU(KK,LL)/RSU(IDC)
    DO 444 N=1,NJJ
    MA=MA+1
    M=MN(MA, LL)
    VD(M)=0
    R=BR(M, III)
    IF(3.EQ.0.0) GO TO 444
    K=1.0/K
    DD 333 L=1,NLC
    IF(III.GT.1) GD TD 207
    T(4)=TRSF(M,L)#R
    IF(T(4).LT.O.) GO TO 205
    IF(IBUK.EQ.0) GO TO 206
    BUC=E(KK,LL)/(ELL(M,1)**2)
    T(2)=BUC*R
    IF(T(2).LE.T(5)) GO TO 206
    T(5)=T(2)
    VD(M)=1
    GO TU 206
205 T(5)=T(9)
206 T(6)=T(4)*T(5)
    GO TO 208
207 IF(III.EQ.2) VON=CSTF(M.L.NX)
    IF(III.EQ.3) VON=SSPF(M,L,NX)
    1F(VON.EQ.O.DO)GD FO 444
    T(5)=0.5*T(8)/VON
    T(6)=VUN+T(8)
208 IF(N.GT.1.OR.L.GT.1) 30 TO 209
    YM=T(5)
    XL=T(6)
    1 J = M
    LC=L
    GO TO 333
209 IF(XL.GE.T(6)) GO 13 333
    YM=T(5)
    XL=T(6)
    IJ=M
    LC=L
333 CONTINUE
444 CONTINUE
    IFINTL.GT.IFS) GO TU 210
    IFIIGRTIKK.LLI.EO.01 GO TO 777
    BNEW=XL *B(KK,LL)
    IF(BNEW.LT.BL(KK,LL)) BNEW=BL(KK,LL)
    IF(BNEW.GT.BU(KK,LL)) BNEW=BU(KK,LL)
    B(KK, LL ) = BNEW
    30 TO 777
210 IF((XL+EP).LT.1.) 30 TO 777
```

```
IF(NGV(KK,LL).NE.O) GO TO 211
     SIZE = SIZE+1
     IFISIZE.GT.(NSD-NDAM-1))30 TO 214
     NGV(KK,LL)=STZE
     GO TO 212
     PQX=1.0-DLPH(NGV(KK,LL))
211
     IF(XL.LE.PQX)GO TO 777
 212 DLPH(NGV(KK,LL))=1.-XL
     DLP(NGV(KK,LL)) = DABS(DLPH(NGV(KK,LL)))
     KLC(NGV(KK,LL))=LC
     I V = I V + 1
     O=(VI)AV
     IND(IV)=NGV(KK, LL)
     IGR = IGRT(KK, LL)
     IBUC = 0
     IF(IGR.EQ.0) GO TO 213
     SS(1GR)=1.0
     IF(ND(IJ).E0.0) GU TO 213
     BUC = E(KK, LL)/(ELL((J, 1) **2)
     T(2)=BUC/BR(IJ, III)
     IF(T(2).LE.T(8)) GO TO 213
     IBUC=1
             BE([V.1)=-XL/BR([J.[[])
             NA(IV)=IGR
 213 [NF(NGV(KK,LL), 1)=[J
     INF(NGV(KK,LL),2)=K
     INF(NGV(KK,LL),3)=III
     INF(NGV(KK,LL),4)=IGRT(KK,LL)
     INF(NGV(KK,LL),5)=LDC
     INF(NGV(KK,LL),6)=[V
     INF(NGV(KK,LL),7)=LC
     INF(NGV(KK,LL),8)=1BUC
     10(LC)=1
     IF(MP(IJ, III).EQ.-1) GO TO 710
     16=16+1
     IIL(16,K)=[V
 710 LF=[SAC(IJ, []])
     L=INDC(IJ, III)
     IF(III.GT.1) GO TO 332
     DO 331 J=1,LN
     L=L+1
     VV(J) =- STRESS(L)
 331 VV(J+3) = -VV(J)
     GC TO 336
 332 DO 334 I=1.LN
     00 334 J=1,LE
     L=L+1
 334 B3(1, J) = STRESS(L)
     IF(III.EQ.3) GC TO 335
     x1=2.0*CSTF(IJ,LC,1)-CSTF(IJ,LC,2)
     x2=2.0*CSTF(IJ,LC,2)-CSTF(IJ,LC,1)
     X3=6.0*CSTF(IJ,LC,3)
     30 TO 336
 335 X1=2.0*SSPF(IJ,LC,1)
     X2=6.0*SSPF(1J, LC,2)
 336 DO 714 J=1,LE
     LJ=NNDC(LF+J)
     IF(LJ.E0.0) GO TO 714
     IF( | | | | - EQ. 1 ) R = YM * VV ( J )
     IF(III.EQ.2) K=YM*(X1*B3(1,J)+X2*B3(2,J)+X3*B3(3,J))
     IF(III.EQ.3) R=YM*(X1*B3(L,J)+X2*B3(2,J))
```

```
IF(III.EQ. 3. AND . ISPSP.NE. 0) R = YM*(X1*B3(1, J))
     IF(LJ.GT.NI) GD TO /11
     LI=NZC(LJ,K)
     A2(L1,IV)=A2(L1,IV)+R
                                                THIS PAGE IS BEST QUALITY PRACTICABLE
     GO TO 714
 711 IR=LJ-N1
                                                FROM COPY FURNISHED TO DDC
     DS(IR, 16)=DS(IR, 16)+R
     00 712 I=1,N1
     L1=NZC( I,K)
712 A2(L1, [V) = A2(L1, [V) + R \neq Q([R, [, K)
 714 CONTINUE
     IF(IPC.EQ.0) GO TO 777
     ISIZ=YGV(KK, LL)
     ARITE(6,57)[SIZ, [V, [6, [], MP([], []]), LC, XL, DLPH([SIZ)
 777 CONTINUE
 888 CONTINUE
     IFINTL.LE. IFSIGO TJ 999
     30 10 557
 214 SIZE=SIZE-1
     WRITE(6,53)
                  SIZE, NSD, NTL
     30 TO 600
 557 IF( IDIS.EQ.O.DR.NCI.EQ.O) GO TO 600
     DO 125 1=1,NCI
     DZE(I)=DLIM(I,K)
     DO 125 J=1,NLC
 125 ZZ([,J)=ZI([,J,K)
     NNN=NCI
     CALL ABSMAX(K, NNN, INN, 16, NSD, IV, LDC, IPC, EP, NDAM)
 60C IDK(K)=16
     IF(16.EQ.01 GO TO 998
     IU=KIIUBW(K)
     DO 85 J=1, NU3
     IU= IU+1
     DO 85 1=1.NC1
  85 D([, J)=DPB([, [U]
     CALL SOLDUP(16, NU3, NCI)
     DO 87 J=1,16
     17=11L(J,K)
     DD 87 I=1,NCI
  87 DPZ(1,17)=DS(1,J)
     WRITE(6, 311) ((DS(I, J), I=1, NCI), J=1, I6)
  53 FORMAT(/1X, SIZE = 1, 14, INCREASES NSD = 1, 14//1X, CORRECT ONLY
    ITHESE CONSTRAINTS AT THIS CYCLE . 14)
57
     FORMAT(2X, 614, 2E15.5)
58
     FORMATI' STRESS VIOLATIONS', 215/3X, 'SIZE IV 16
                                                                MX
                                                                    10
                                                                          XL .
 998 IF(SIZE.EQ. HSD) RETURN
 999 CONTINUE
     RETURY
     FYD
     SUBROUTINE ABSMAX(K, NN, INN, 16, NSD, IV, LDC, IPC, EP, NDAM)
     IMPLICIT REAL *8 (A-H+0-Z)
     INTEGER SIZE, BYC, SA
     COMMON STEP, BNC, SN, NBW, SIZE, NLC, NSU
     COMMON/VI/N1,NCI,NWK,NGK,MA,NUI,NU2,NU3,MI,NB,NJK,NC,NI1,ISQ,IQI
     COMMON/P4/INF( 50, 3),NGV( 14, 6),INO( 50),NDISP( 72)
     COMMON/R4/IIL( 50, 3), KLC( 50), IOK( 3), NO( 1)
     COMMON/A1/Q(12, 24, 3),Z[(12, 1, 3),C( 36, 24),ZB( 36, 1)
     COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
    12( 51, 3),DZE( 60),MP( 108, 2),ND( 216)
     COMMON/A4/X( 108, 3),DLP( 60),DLPH( 60),T( 156),WM( 51),RO( 51)
```

. . .

```
CDMMON/A5/D( 36, 24),DS( 36, 50),A2( 36, 50),DKI(12,36),KITUBW( 3)
      COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
     1 156), Y( 108, 3), NZC( 24, 3)
( ***
      THIS SUBROUTINE -
C.*
         (1) CALCULATES MAX DISPL UNDER ALL NLC,
( x:
         (2) CHECKS DISPL CONSTRAINTS AND COMPUTE SENSITIVITY
C *
C. *
              INFORMATION.
C * * * * *
   53 FORMAT(/1X, 'SIZE = 1, 14, ' INCREASES NSD = 1, 14//1X, CORRECT ONLY
     ITHESE CONSTRAINTS AT THIS CYCLE . 141
 314 FURMAF(2X, 514, 2E15.5)
 315 FORMATIBY, DISPL. VIOLATIONS, 12/3X, SIZE IV 16
                                                                          XL.)
      WRITE(6, 315) K
      DO 162 I=1.NN
      INV=INV+1
      DU 161 L=1, NLC
      T(4)=7.2(1,L)
      T(5) = DZE(I)
      IF(T(4).LT.O.) T(5) =-T(5)
      T(6)=T(4)*T(5)
      IF(L.GT.1) GO TO 258
      YM=T(5)
      XL = T(6)
      LC=L
      CO TO 161
  258 [F(XL.GE.T(6)) GO TO 161
      YM=T(5)
      XL = T(6)
      LC=L
  161 CONTINUE
      IF((XL+EP).LT.1.) JO TO 162
      SIZE=SIZE+1
      IFISIZE.GT.(NSD-NDAM-1))30 TO 259
      NDISP(INN)=SIZE
  212 DLPH(NDISP(INN))=1.0-XL
       DLP(NDISP(INN))=DAES(DLPH(NDISP(INN)))
       KLC(NDISP(INN))=LC
       IV= IV+1
       140(1V)=ND1SP(1NN)
       INF(NDISP(INN), 1)=[ .
       INF(NDISP(INN), 2)=K
      INF(NDISP(INN), 3)=0
       INF(NDISP(INN), 4)="
       INF(NDISP(INN), 5)=LOC
       INF(NDISP(INN), 6)=1V
       INF(NDISP(INN), 7)=LC
       INF(NDISP(INN), 8)=0
      ISIZ = ND I SP(INN)
       VOILCI=1
       IF(K.EQ.-1) GO TO 96
       16=16+1
      IIL(16,K)=IV
                                                    THIS PAGE IS BEST QUALITY PRACTICABLE
      00 158 J=1,N1
                                                    FROM COPY FURNISHED TO DDQ
      LI=NZC( J,K)
     A2(L1, [V]=A2(L1, [V)+YM*Q(1, J,K)
 158
      DS(1,16)=YM
      SO TO 97
      A2(1, [V]=YM
   97 IF( IPC . NE . 0) WR ITE( 6 . 314) ISIZ, IV . 16 . I . LC . XL
  162 CONTINUE
                                      1-13
```

```
RETURN
  259 SIZE=SIZE-1
      WRITE(6,53) SIZE, NSD, NTL
      RETURN
      FVD
      SUBROUTINE GENCINSD, NV, LX, IBU, IBUK, IV, IDC)
                                                                         SUB 13
      IMPLICIT REAL+8 (A-H, 0-Z)
      INTEGER SIZE, BNC, SV
      COMMON STEP, BNC, SN, NBW, SIZE, NLC, NSU
      CDMMON/VI/NI,NCI,NWK,NGK,MA,NUI,NU2,NU3,MI,NB,NJK,NC,NII,ISQ,IQI
      COMMON/V2/NIC( 3), IW( 6), NG( 6), NBW1( 3), NBW2( 3), NBW3( 3), NM( 6),
     148J( 3), NJ( 3), NCB( 3), NEW( 3), IQS( 3), MEB( 6), MEF( 6)
      COMMON/P1/B1( 9, 9),B2( 9, 9),B3( 9, 9),ESF( 9, 9), "A( 156),NI1( 9
     1), NJ1( 9), NJ2( 9)
      COMMON/P2/XNUU( 14, 6).ELL(108, 2).EU( 14, 6).STRESS(1620).TCSM(
     1 156), TRCSSP(2808), XCOST( 3), ICSS( 108, 2), ISAC( 108, 2), INDC( 108
     2, 2), IGRT( 14, 6), IGRE( 108, 2), NNDC( 1080), LLN( 3), ITY( 3), ICSSM(
      COMMON/P4/INF( 50, 8), NGV( 14, 6), INC( 50), NDISP( 72)
      COMMON/R2/PI(12, 1, 3),RR( 108, 2),E( 14, 6),MN( 108, 6),NOM( 14,
      COMMON/R4/IIL( 50, 3), KLC( 50), IOK( 3), NO( 1)
      CDMMON/R5/B( 14, 6), SL( 14, 6), SU( 14, 6), DPB( 51, 50), DLIM(12, 3)
     1.551 511
      COMMON/A1/Q(12, 24, 3), ZI(12, 1, 3), C( 36, 24), ZB( 36, 1)
      CCMMON/A 3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
     12( 51, 3),DZE( 60),MP( 108, 2),ND( 216)
      COMMON/A4/X( 108, 3), DLP( 60), DLPH( 60), T( 156), WM( 51), RO( 51)
      COMMUNIAS/D( 36, 24),DS( 36, 50),A2( 36, 50),DKI(12,36),KIIUBW( 3)
      COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
     1 156), Y( 108, 3), NZC( 24, 3)
      COMMON/A7/DPX( 62, 50)
THIS SUBROUTINE - COMPUTES CAP LAMBDA.
C*
C *****************
      C=X3GV1
      IVV = IV + LX - 1
      IF( IDC . GT . 1) GD TO 77
      DO 75 I=LX, SIZE
      DD 75 J=1.NV
   75 DPX(J. 1)=0.DO
      30 TO 76
 77
      DC 78 II=1, IV
      [11]OV1=1
      DO 78 J=1,NV
   78 DPX(J, I)=0.0
      DJ 79 II=1, IV
      [11]OVI=1
      IGR = NA( II)
      IF(IGR.EQ.0) 30 TO 79
      DPX(IGR, I)=BE(II, I)
   79 CONTINUE
                                                THIS PAGE IS BEST QUALITY PRACTICARY
      LD=U
      DO 71 K=1, NSU
      CALL VARICK)
                                                 THE S PACE IS DEST QUALIFY FOR
      DO 71 III=1.3
      IF(ITY(III).EQ.O) 30 TO 71
      O=AP
      LU=LD+1
      VGK=NG(LD)
      IF(NCI.EQ.0) GO TO 210
                                     1-1
```

```
03 777 KK=1.NGK
    NJJ=NDM(KK,LD)
    MV=IGRT(KK,LD)
    IF(MV.EQ.0) GO TO 170
    DO 73 LC=1.NLC
    IF(NO(LC).EQ.0) GO TO 73
    DC 74 I=1,N1
 74 BE( I.LC)=0.D0
 73 CONTINUE
    UG 666 [M=1,NJJ
    103=0
    JP=0
    MA=MA+1
    MI=MN(MA,LD)
    MX=MP(MI, III)
    XX=BR(MI, III)
    IF(XX.EQ.0.0) 30 TO 666
    XX=1.0
    CALL RECALL(III, LE, LS, LF, INDEX, MI, XX)
    DO 707 I=LS, LE
    II=NNDC(LF+I)
    IF(11.EQ.0) GO TO 707
    IF(II.GT.N1) GO .TO 704
    183=183+1
     VA(183)=11
    JB3=0
    DO 703 J=LS.LE
    IJ=NNDC(LF+J)
    IF(IJ.EQ.0) GO TO 703
    IF(IJ.GT.N1) GD TO 703
    JB3=JR3+1
    B3(1B3, JB3) = ESF([,J]
703 CONTINUE
    SO TO 707
704 11=11-11
    JP=JP+1
    VII(JP)=[[
    JT=0
    JU=0
    DU 706 J=LS, LE
    IJ=NNDC(LF+J)
    IF(1J.EQ.0) GO TO 706
    IF(IJ.GT.N1) GO TO 705
    JT=JT+1
    VJ2(JT)=IJ
    B2(JP, JT)=ESF(1,J)
    GO TO 706
705 IJ=IJ-NI
    JU=JU+1
    111(JU)=IJ
    B1(JP, JU)=ESF(I,J)
706 CONTINUE
707 CONTINUE
    DO 124 LC=1.NLC
    IF(NO(LC).EQ.O) GO TO 124
    IF(183.EQ.0) GO TO 80
    DD 123 J=1,183
    JI=VA(J)
    LI=NZC(JI,K)
    00 123 1=1,183
```

```
J2=NA(I)
  123 BE(J2,LC)=BE(J2,LC)-B3(I,J)*ZB(L1,LC)
   80 IF(MX.EQ.-1) GD TO 124
      DO 518 J=1, JP
  518 2(J,LC)=0.D0
      IF(JT.EQ.0) GO TO 511
      DO 118 J=1,JP
      JI=NII(J)
      DO 118 L=1,JT
      J2=NJ2(L)
      LI=NZC(J2,K)
  118 Z(J,LC)=Z(J,LC)-B2(J,L)*ZB(L1,LC)
      DC 122 [=1,JT
      J2=NJ7(1)
      DO 122 J=1,JP
      J1=N11(J)
  122 BE(J2,LC)=BE(J2,LC)-B2(J,I)*Z[(J1,LC,K)
  511 00 116 J=1, JP
      DO 116 L=1,JU
      J2=VJI(L)
  116 Z(J,LC)=Z(J,LC)-B1(J,L)*ZI(J2,LC,K)
      DO 125 I=1,N1
      DO 125 J=1,JP
      J1=N11(J)
  125 BE( I,LC)=BE( I,LC)+Q(J1,I,K)*Z(J,LC)
  124 CONTINUE
      16=10K(K)
      IF(16.EQ.O.DR.MX.EQ.-1) 30 TO 666
      DU 514 I=1,16
      IZZ=IIL(I,K)
      IZ=INO(IZZ)
      LC=KLC(IZ)
      DO 514 J=1, JP
      J1=N11(J)
  514 DPX(MV, [Z)=DPX(MV, [7)+Z(J, LC) + DPZ(J1, [ZZ)
  666 CONTINUE
      DO 117 II=1, IV
      (11)0/I=I
      LC=KLC(1)
      DO 117 J=1,N1
      LI=NZC(J.K)
  117 DPX(MV, I) = DPX(MV, I) + BE(J, LC) *DS(L1, II)
      GD TO 777
  170 MA=MA+NJJ
  777 CONTINUE
      SO TO 71
C
      WHEN NCI IS ZERO.
  210 DD 889 KK=1,NGK
      VJJ=NOM(KK,LD)
      MV=IGRT(KK, LD)
      IF(MV.EQ.0) GC TO 720
      DD 888 [M=1,NJJ
                                                   THIS PAGE IS BEST QUALITY PRACTICABLE
      L = 0
      MA=MA+1
      MI=MN(MA, LD)
                                                    FROM OCEN FRANCISHED TO DOO
      XX=BR(MI, III)
      IF(XX.EQ.0.0) 30 TO 888
      XX=1.0
      CALL RECALL(III, LE, LS, LF, INDEX, MI, XX)
      DO 714 1=LS, LE
      II=NNDC(LF+I)
                                       151
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
      IF(II.EQ.0) GO TO 714
                                                    FROM COPY FURNISHED TO DDC
      L=L+1
      VALL)=11
      4=0
      DO 712 J=LS, LE
      IJ=NNDC(LF+J)
      IF(1J.EQ.0) GO TO /12
      M = M + 1
      BI(L,M)=ESF(I,J)
  712 CONTINUE
  714 CONTINUE
      00 200 LC=1.NLC
      IF(NO(LC).EQ.O) GO TO 200
      00 156 1=1.L
      PE(1,LC)=0.00
      DO 156 J=1.L
      12=VA(J)
      LZ=NZC(JZ,K)
  156 RE(I,LC)=BE(I,LC)-B1(I,J)#2B(L2,LC)
  200 CONTINUE
      DO 158 II=1, IV
      (11)0V1=1
      LC=KLC(1)
      DO 158 J=1.L
      12=NA(J)
      L2= VZC(J2.K)
  158 OPX(MV, I) = DPX(MV, I)+ BE(J, LC) *DS(L2, II)
  888 CONTINUE
      GO TO 889
  LLV+AP=AP CST
  889 CONTINUE
   71 CUNTINUE
      DO 1000 J=LX,517E
      WRITE(6, 1001) J
C1000 WRITE(6, 10) (DPX(1,J),[=1,NV)
6 10 FORMATIBX, CAP LAMEDA*TRANSPOSE / (3X, 10E12.4))
C1001 FORMAT(3X, 'STZE = ', 13)
      RETURY
      END
      SUBROUTINE DELRE(IJ, NDC, NV, *)
                                                                            SUB 14
      IMPLICIT REAL *8 (A-H, 0-Z)
      INTEGER SIZE, BYC, SY
      COMMON STEP, BNC, SN, NBW, SIZE, NLC, NSU
      COMMON/R5/B( 14, 6),SL( 14, 6),SU( 14, 6),DPB( 51, 50),DLIM(12, 3)
     1.55( 511
      COMMON/A3/HR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
     12( 51, 3),DZE( 60), MP( 108, 2), ND( 216)
      COMMON/A4/X( 108, 3),DLP( 60),DLPH( 60),T( 156),WM( 51),RO( 51)
      COMMON/A6/DPZ( 50, 30),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
     1 1561, Y( 108, 3), NAC ( 24, 3)
      THIS SUBROUTINE COMPUTES DELTA B VECTOR, I.C. CHANGES IN DESIGN
C#
      VARIABLES. LAGRAGE MULTIPLIERS ARE COMPUTED AND THEIR SIGNS
C#
                     CONSTRAINTS CORRESPONDING TO NEGATIVE MULTIPLIERS
      ARE CHECKED.
C#
      ARE TAKEN OUT OF THE VIOLATED CONSTRAINT SET
C#
2.4
      1.1
              NO. OF STRESS & DISPLACEMENT VIOLATIONS
               NO. OF DESIGN VARIABLE CONSTRAINT VIOLATIONS
C#
      VDC
                TOTAL NO. OF CONSTRIANT VIOLATIONS
(#
      SIZE
               DELTA B VECTOR ON RETURN
. *
******
```

26 FORMATI /1X, PREQUETTED CHANGES IN CONSTRAINTS DEL PHI // (4(15, E12.4

The state of the s

```
40 FORMATI /1x, LAGRANGE MULTIPLIERS / (4(15, E12.4)))
       IF(11 .GT. 0 ) GO TO 448
       CALL DESVV(IJ, NDC, VV)
       RETURN
  448 YM=STEP
      IF(YM.GT.O.) GO TO 466
      YM=1.
      DO 467 I=1,NV
  467 Z([,1)=0.00
C.... COMPUTE RIGHT HANDSIDE SIDE OF THE LAGRANGE MULTIPLIER EQUATIONS
  466 DJ 468 I=1,NV
  468 T([]=Z([,1)*RO([)
      DO 225 I=1,1J
      ZZ(I,2) = -DLPH(I)
      22(1,1)=0.
      DO 225 J=1,NV
  225 ZZ(1,1)=ZZ(1,1)-DPB(J,1)*T(J)
      IF(IJ.EQ.SIZE) GO TO 159
      DO 420 [=1, NDC
      K=H( I )
      J=[J+[
      ZZ(J,2) = -DLPH(J)
  420 ZZ(J,1)=-DZE(I)*Z(K,1)*WM(K)
  159 CONTINUE
      WRITE(6,26) (1,DLPH(1),1=1,SIZE)
C.... COMPUTE (CAP LAMDA TRANSPOSE )*(CAP LAMBDA ),(SIZE, SIZE)
      DO 166 I=1,IJ
      DO 166 J=[.[J
      DPZ(1,J)=0.
      DO 161 K=1,NV
  161 DPZ(1,J)=DPZ(1,J)+DPB(K,I)*DPB(K,J)
  166 DPZ(J, I) = DPZ(I, J)
C .... COMPUTE LAGRANCE MULTIPLIERS
      IF(IJ.EQ.SIZE) GO TO 421
      CALL SDD(IJ, NDC, YM, NV, &205, &159)
       RETURN
  421 CONTINUE
      CALL SOLVEL(SIZE, ER 35)
      D3 424 [=1, SIZE
  424 T(1)=BE(1,1)+BE(1,2)/YM
      WRITE(6,40) (1,T(1),1=1,SIZE)
      CHECK SIGN OF LAGRANGE MULTIPLIERS
       J=0
      UD 235 I=1.SIZE
      IF(T(1).LE.O.) GO TU 235
      V=14+1
      1=(N)QV
  235 CONTINUE
      IFIN.EQ.SIZE) GO TO 250
      SIZE=V
      [ J= N
       IF(N.EQ.O) RETURY 1
      DO 240 1=1,517E
      IF(1.E0.ND(11) GO FO 240
      DLPH(I) = DLPH(ND(I))
                                             THIS PAGE IS BEST QUALITY PRACTICABLE
      DLP( [ )=DLP( ND( [ ) )
      ZZ(I,I) = ZZ(ND(I),I)
                                             FROM COPY FURNISHED TO DOG
      77(1,2)=22(ND(1),2)
      DO 241 J=1, NV
  241 UPB(J, 1) = DPB(J, VD(1))
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
                                                 FROM COPY FURNISHED TO DDC
  240 CONTINUE
      GO TO 159
  250 CONTINUE
      UD 910 [=1, SIZE
      ZZ([,1)=PE([,1)
  910 ZZ([,2)=BE([,2)
     DO 206 I=1.NV
      BE([,1)=-2([,1)*RC([)
      BE(1,2)=0.
      DO 912 J=1,SIZE
      BE(1,1)=BE(1,1)-DPR(1,J)*ZZ(J,1)
  912 BE(1,2)=BE(1,2)-DP!(1,J)*ZZ(J,2)
      BE(1,1)=BE(1,1)*RG(1)
  206 BE(1,2)=BE(1,2)*RO(1)
       RETURN
  205 RETURN 1
      END
                                                                        SUB 15
       SUBROUTINE DESVV(IJ, NDC, NV)
      IMPLICIT REAL *8 (A-H, 0-Z)
      INTEGER SIZE, BIC, SI
      COMMON STEP, BNC, SN, NBW, STZE, NLC, NSU
      COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
     12( 51, 3), DZE( 60), MP( 108, 2), ND( 216)
      COMMON/A4/X( 108, 3),DLP( 60),DLPH( 60),T( 156),WM( 51),RO( 51)
      COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
     1 1561, 41 108, 11, 47:1 24, 31
C#
      THIS SUBROUTINE CO'PUTES DELTA B VECTOR WHEN ONLY DESIGN VARIABLE*
      CONSTRAINTS ARE VICLATED
C*
DO 449 1=1,NV
      RE(1,1)=0.
      BE(1,2)=0.
  441 40(1)=1
      DO 446 1=1, NDC
      K=H(I)
      VD(K)=G
      w(K)=DLPH(IJ+I)/DZE(I)
      BE(K, 2) = W(K)
  446 CONTINUE
      D7 451 1=1,NV
      IF(ND(1).EQ.0) GO TO 451
      W(1)=-STEP+Z(1,1)
      BE(1.1)=-2(1.1)
  451 CONTINUE
      RETURN
      END
      SUBROUTINE SDD(IJ, NOC, YM, NV, *, *)
                                                                        SUB 16
      IMPLICIT REAL *8 (A-H, O-Z)
      INTEGER SIZE, BNC, SY
      COMMON STEP, BNC, SN, YBW, SIZE, NLC, NSU
      COMMO 1/R5/B( 14, 6),SL( 14, 6),SU( 14, 6),DPB( 51, 50),DLIM(12, 3)
     1,55( 51)
      COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
     12( 51, 3), DZE( 60), MP( 108, 2), ND( 216)
      COMMOY/A4/X( 108, 3),DLP( 60),DLPH( 60),T( 156),WM( 51),RO( 51)
      COMMON/A5/D( 36, 24),DS( 36, 50),A2( 36, 50),DKT(12,36),KTTUBW( 3)
      COMMON/A6/DPZ( 50, 50),ZZ( 72, 3),BC( 108, 3),W( 72),H( 108),VV(
```

1 156), Y(108, 3), NAC(24, 3)

```
MENT & DESIGN VARIABLE CONSTRAINTS ARE VIOLATED
   40 FORMATI /IX, LAGRATGE MULTIPLIERS / (4(15, E12.4)))
      DO 422 J=1, NDC
      K=H(J)
        Z(J, Z)=1.000/(D/L(J) + WM(K) + DZE(J))
      DD 422 I=1,1J
      DS(J, I) = DZE(J) *DPB(K, I) *RD(K)
      DO 423 1=1, IJ
      DO 423 J=I,IJ
      DO 447 K=1, NOC
  447 DPZ(1,J)=DPZ(1,J)- PS(K,1)* DS(K,J)*Z(K,2)
  423 DPZ(J, I)=DPZ(I, J)
      DO 200 1=1, SIZE
      VV(I)=ZZ(I,1)
  200 W(1)=ZZ(1.2)
      DO 425 I=1.IJ
      DO 425 J=1.NDC
      ZZ(I,1)=ZZ(I,1)-DS(J,I)*ZZ(IJ+J,1)*Z(J,2)
  425 ZZ(1,2)=ZZ(1,2)- DS(J,1)*ZZ(IJ+J,2)*Z(J,2)
      CALL SOLVEL(IJ, ERR5)
      DU 431 I=1.NDC
      K= [+ []
      3E(K,1)=VV(K)
      BE(K, 2) = W(K)
      DC 460 J=1.1J
      BE(K,1)=BE(K,1)- DS(1,J)*BE(J,1)
  460 BF(K,2)=BE(K,2)- DS(1,J)*BE(J,2)
      BE(K, 1) = PE(K, 1) * 2(1, 2)
  431 BE(K,2)=BE(K,2)*Z(1,2)
      DO 201 1=1,512E
  201 T([)=BE([,1)+BE([,2]/YM
      WRITE(6,40) (1,T(1),1=1,SIZE)
C .... CHECK SIGN OF LAGRATIGE MULTIPLIERS
      1=0
      DO 432 I=1, IJ
C
      IF(T(1).LE.O.) GO TO 432
      V=V+1
      1 = ( V ) GV
  432 CONTINUE
      IF(N.GT.O) GO TO 445
                                            THIS PACE IS BEST QUALITY PRACTICALIA
      CALL DESVV([J. VDC, VV)
       RETURN
  445 JI=1J
                                             THIS PAGE IS BEST QUALITY FRACT
      IF(N.EQ. IJ) SO TO 433
      [J=V
      DO 434 I=1,IJ
      IF(1.E0.ND(1)) GD TO 434
      DO 435 J=1.NV
  435 DPB(J. [] = DPB(J. ND([])
  434 CONTINUE
  433 DO 436 I=1, NDC
      K=J1+1
      IF(T(K).LT.O.) GC TO 436
      V=N+1
      VD(N)=K
  436 CONTINUE
      IF(N.EQ.SIZE) GO TO 437
      SIZE=1
       IFIN.EQ. O) RETURNI
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
      VDC=N-IJ
                                                     FROM COPY FURNISHED TO DDC
      00 438 1=1.5120
      DLPH(I)=DLPH(ND(I))
      DLP(1)=DLP(ND(1))
      ZZ([,1)=VV(ND([))
      Z7([,2)=W(ND([))
  438 CONTINUE
       IF(NDC.EQ.M.OR.NDC.EQ.O) RETURN 2
      UJ 439 1=1.NDC
      J=ND([+1])-J1
      H(I)=H(J)
  439 DZE(I)=DZE(J)
      RETURN 2
  437 CONTINUE
      DO 440 1=1,51ZE
      ZZ([,1)=BE([,1)
      ZZ(I,2)=BE(I,2)
  440 CONTINUE
      DO 450 I=1,NV
      BE([, 1)=0.
  450 PE(1,2)=0.
      00 441 I=1,NDC
      K=H( I.).
      L=1J+1
      BE(K,1)=DZE([)*ZZ(L,1)* WM(K)
  441 BF(K,2)=-DZE([)*ZZ(L,2)*WM(K)
      00 442 I=1,NV
      SM1 = 0. OUC
      SM2=0.000
      DO 443 J=1, IJ
      SM1=SM1+DPB([,J)*Z7(J,1)
  443 SM2=SM2-DPB(I,J)*ZZ(J,2)
      BE(I,I) = -BE(I,I) - (SM1+Z(I,I)*RO(I))*RO(I)
  442 BE(1,2)=BE(1,2)+SM2*RO(1)
       RETURN
      END
                                                                             SUB 17
      SUBROUTINE SOLVEL (HF, ER)
      IMPLICIT REAL*8 (A-H, 0-Z)
      COMMON/A3/BR( 108, 2), TRSF( 108, 1), CSTF(48, 1, 4), SSPF( 1, 1, 3),
     12( 51, 3),DZE( 60),MP( 108, 2),ND( 216)
      COMMON/A6/DPZ( 50, >0),ZZ( 72, 3),BE( 108, 3),W( 72),H( 108),VV(
     1 156), Y( 108, 3), NZC( 24, 3)
C*
      GAUSSIAN ELLIMINATION PROCESS
C#
      TOTAL PIVOTING IS USED
C*
      DPZ IS THE SQUARE MATRIXILHS OF EQ. )
C#
      MATRIX ZZ IS THE RHS D6 5QUIT -N2
0#
      LL IS SAVED
C#.
      FINAL SOLUTION IS IN MATRIX BE
      ER=0.000001
      4=2
      IF(NF.ST.1) GO TO 75
      IF(DPZ(1,1).EQ.O.) GO TO 76
      A=1./DPZ(1,1)
      DO 77 J=1,M
   77 BE(1,J)=ZZ(1,J)*A
      30 10 999
   76 MRITE(6,41) NF
```

M=NDC

00 78 J=1.M

156

```
78 BE(1,J)=0.
                                    THIS PAGE IS BEST QUALITY PRACTICABLE
      SO TO 999
                                    FROM COPY FURNISHED TO DDC
   75 VMP=NF-1
      DO 10 1=1,NF
      1=(1)QV
      DO 10 J=1,M
   10 BE(I,J)=22(I,J)
      DC 400 K=1, NMP
C**** SEARCH FOR THE PIVET ELEMENT
      18=0
      13=0
      A=0.
      DO 20 1=K.NF
      DO 20 J=K,NF
      IF(DABS(DPZ(I,J))-4) 20,20,31
   31 A=DARS(DPZ([,J))
      1=81
      J13=J
   20 CONTINUE
      IF(A-ER) 40,40,42
   40 WRITE(6,41) K, IB, Ja
   41 FORMAT(1X, 'WHOOPS DEPENDENT EQUATIONS', 314)
      DO 43 1=K,NF
      DO 44 J=K,NF
      DPZ(1,J)=0.
      IF(I.EQ.J) DPZ(I,J)=1.0
   44 CONTINUE
      03 43 J=1,M
   43 BE(1,J)=0.
      008 OT CC
C**** INTERCHANGE ROWS AID COLUMNS
   42 IF(IB-K) 51,51,50
   50 DO 60 J=K, NF
      A=DPZ(K, J)
      DPZ(K, J)=DPZ(IB, J)
   60 DPZ ( 18, J ) = A
      DO 63 J=1.M
      A= BE(K, J)
       BE(K, J) = BE(IB, J)
   63 BE(18, J)=A
   51 IF(JB-K) 62,67,61
   61 00 70 I=1.NF
      A=DPZ(I,K)
      DPZ(I,K)=DPZ(I,JB)
   70 DPZ( 1. JB )=A
C#### KEEP TRACK OF COLUMNS
      J=ND(K)
      ND(K)=ND(JB)
      L=181)0V
   62 A=DPZ(K,K)
C*** DIVIDE THE PIVOT ROW BY THE PIVOT ELEMENT
      03 80 J=K,NF
   80 DPZ(K, J) = DPZ(K, J)/A
      DO 81 J=1,M
   81 BE(K, J) = BE(K, J)/A
C**** PERFORM ELLIMINATION
      DU 82 I=KP, NF
      A=DPZ(I,K)
      DO 83 J=1,M
   83 BE(1.J) = BE(1.J)-A*BE(K.J)
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
      DD 82 J=K,NF
                                                    FROM COPY FURNISHED TO DDC
      DPZ(1,J)=DPZ(1,J)-A*DPZ(<,J)
   82 CONTINUE
  400 CONTINUE
  800 CONTINUE
      IF(DABS(DPZ(NF, NF)).CT.ER) GO TO 50.
      DPZ(NF,NF)=1.
      DO 501 J=1.M
  901 BE(NF, J) =0.9
  500 CONTINUE
      DO 90 J=1,M
   90 BE(NF, J) = BE(NF, J)/DPZ(NF, NF)
      00 91 L=1.M
      DO 100 KK=1.NMP
      K=NF-KK
      KP=K+1
      00 100 J=KP, NF
  100 BE(K,L) = BE(K,L)-JPZ(K,J)*BE(J,L)
   21 CONTINUE
C**** REARRANGE THE SOLUTION MATRIX
      00 111 I=1,NF
      00 111 J=1,M
  111 DPZ([,J)=BE([,J)
      DO 110 I=1.NF
      DC 110 J=1.M
  110 CE(VD(1), J)=DPZ(1, J)
  999 RETURY
      CND
      SUBROUTINE SUBSP(N, MK, ITMAX, ERR, IDC, IIX8)
      IMPLICIT REAL #8 (A-H, C-Z)
      INTEGER SIZE . BAC . SI
      COMMON STEP, BNC , SN, NEW, SIZE , NLC , NSU
      COMMON/V1/N1,NCI,NWK.NGK.MA.NU1,NU2,NU3,M1.NB.NJK.NC,N11,ISQ.IQ1
      COMMON/V2/NIC( 3), 144 ( 6), NG( 6), NBWL( 3), NBW2( 3), NBW3( 3), NM( 6),
     1481( 3), NJ( 3), NCB( 3), NEW( 3), 1QS( 3), MEB( 6), MEF( 6)
      CUMMON/RS/B( 14, 6),SL( 14, 6),SU( 14, 6),DPB( 51, 50),DLIM(12, 3)
     1.55( 51)
       :DMMON/A1/G(12, 24, 3),ZI(12, 1, 3),C( 36, 24),ZB( 36, 1)
      COMMON/A5/XCL1 36, 141, AMAS21 36, 561, XM1 36, 501, UKI12, 361, KITUB
     14( 3)
      COMMON/A6/DPZ( 50, 30),ZZ( 72, 3),BE( 108, 3),F( 72),H( 108),VV(
     1 156), A( 108, 3), West 24, 3)
      COMMON/C1/X( 72, 2),Y( 72, 2),W( 2),DM( 1, 1),IETA( 7)
     $/C3/ QUK( 2, 21, QOM( 2, 21, Q( 2, 2)
      MM=MK
      IP=1
      WL=1.0 25
      ITER=0
      JEND=0
      RELERY=0.05
      IQ=41NO(IP*2, IP+8, 1)
      SO TO 30
    5 ITER=[TER+1
    SOLVING X-BAR
C
C
Ü
      COMPUTE THE EFFECTIVE BOUNDARY EIGEN VECTOR
      DJ 121 I=1,8NC
      DO 121 J=1,10
      AMAS2([, J]=0.00
 121
```

1:

VCX = BNC

```
DO 101 K=1, NSU
                                       THIS PAGE IS BEST QUALITY PRACTICABLE
       CALL VARIIK)
                                    FROM COPY FURNISHED TO DDC
       IF(NCI.EQ.0)60 TO 101
       00 102 I=1,N1
      LI=NZC(I,K)
       DO 102 L=1,10
       01Y1=0.D0
       DO 202 J=1,NCI
       16=NCX+J
       QTY1=QTY1+G(J,1,K)*Y([6,L)
 202
       AMAS2(L1,L)=AMAS2(L1,L)+QTY[
 102
       CONTINUE
       VCX=NCX+NCI
      CONTINUE
 101
       DO 122 I=1,BNC
      DJ 122 J=1,10
      AMAS2(1, J)=AMAS2(1, J)+Y(1, J)
 122
       IF(NCI.EQ.0)50 TO 124
      DO 123 I=1, BNC
      DO 123 J=1.NBW
 123
      XCL(I,J)=C(I,J)
C
C
 124
      CONTINUE
       CALL SOLDUP(IQ, NBW, BNC)
      00 111 I=1,BNC
      DO 111 L=1.10
      X(I,L)=AMAS2(I,L)
 111
C
CCC
       VCX = BVC
      DO 108 K=1.NSU
      CALL VARIIK)
       1F(VCI.EQ.0)50 TO 108
      IQQ=KIIUBW(K)
      UO 103 J=1, NU3
      100=100+1
      DO 103 I=1,NCI
      IF(IDC.GT.11GO TO 104
      XCL(1,J)=DKI(1,10Q)
      GO TO 103
 104
      XCL(1, J) = DPB(1, 10Q)
 103
      CONTINUE
      UO 105 I=1,NCI
      16=VCX+1
      DO 105 L =1,1Q
      AMAS2(1,L)=Y([6,L)
 105
      CALL SOLDUP(10, NU3, NCI)
C
      DO 113 [=1,NC]
      DJ 114 LL=1,1Q
      DO 107 L=1, VI
      LI=NZC(L,K)
      QXB = G(I,L,K) * X(LI,LL)
C
      AMAS2(1, LL) = AMA S2(1, LL) + QXB
C
109
      CONTINUE
114
      CONTINUE
```

```
113 CONTINUE
C
C
C
      DO 116 [=1,NC1
      16=VCX+I
      DO 116 L=1,1Q
      X(16,L) = AMAS2(1,L)
 116
      CONTINUE
      VCX=NCX+NCI
 108 CONTINUE
    PROJECTED STIFFNESS MATRIX QQK
      DO 21 1=1,1Q
      DC 21 J=1,10
      S=0.000
      DO 22 K=1.N
   22 S=S+X(K,1)*Y(K,J)
      QCK(1, J)=S
   21 QQK(J, 1)=S
    INTERMEDIATE VECTORS Y FOR ITER=O. AND Y-BAR FOR ITER O
 10
       NN=SV/2
      18=11X8
      CALL MEVEC(NN, 1, IDC, 18,2)
      IF(ITEX) 5,5,40
    PROJECTED MASS MATRIX
   40 DO 41 [=1,10
      DO 41 J=1,10
      5=0.0 00
      00 42 K=1.N
   42 S=S+X(K, I)*Y(K, J)
      2=(L.1)MQQ
   41 00M(J. 1)=S
      IF(RELERR.GT.O.1) RELERR=0.1
      THRESH=0.1*RELERR
    SUBSPACE EIGENVALUES W AND EIGENMATRIA Q
   DO CALL JACOBILIQ, ITMAX, THRESH)
    SORTING EIGENVALUES IN INCREASING ORDER
      IF(MOD(ITER-1,11))60,80,60
    RELATIVE ERROR CHECK
   60 WLT=W(IP)
      RELERK = DABS(1.- WL/WET)
      IF(ITER.GT.ITMAX) SO TO 65
      IF(RELERR-ERR) 65,65,70
    GETTING FIGENVECTORS IN ORIGINAL SPACE
C
   65 [END=1
      DO 66 I=1,N
      DO 66 J=1,10
   66 Y(I,J)=X(I,J)
   TRANSFORMING INTERMEDIATE VECTORS
   70 DO 71 I=1.4
      DO 71 J=1,10
      S=0.0 00
      DO 72 K=1,10
   72 S=S+Y(I,K)*Q(K,J)
   71 X(1,J)=S
      IF(IEND) 75,75,80
   75 DO 73 I=1.N
      DO 73 J=1,1Q
   7.5 Y(I,J)=X(I,J)
      WL = WLT
      30 10 5
```

```
SORTING ROUTINE
                                            THIS PAGE IS BEST QUALITY PRACTICABLE
  1-01=MQ1 C8
                                            FROM COPY FURNISHED TO DDC
     DO 81 II=1,1Q4
     (11)W=KIMW
     ININ=II
     111=11+1
     00 82 1=111,10
     IF(WMIN.LT.W(I)) 50 TO 82
     (I)W=VIMW
     IMIN=I
  82 CONTINUE
     IF(IMIN.EQ. 11) GO 10 81
     S=W(11)
     W(II)=W(IMIN)
     WIMIN)=S
     00 83 J=1.N
     S=X(J, [])
     (N]MI_{\bullet}L)x=(II_{\bullet}L)x
     X(J, IMIN)=S
  83 CONTINUE
  81 CONTINUE
     IF(IEND) 60,60,90
   NORMAL IZING EIGENVECTORS
  90 DO 91 J=1.10
     S=0.0 00
     DC 92 I=1.N
  92 S=S+X(1,J)*X(1,J)
     S=1.D 00/DSORT(S)
     DO 93 I=1,N
  2*(L,1)x=(L,1)x EF
  91 CONTINUE
   PRINT OUT FOR INFORMATIONS
     WRITE(6,6000) ITER, RELERT, (W(I), I=1, IQ)
6000 FORMAT(/' ITER=',15,5X,'RELERR=',E13.5/' EIGENVALUES',(5E15.6))
     81=8×11
     RETURI
     END
     SUBROUTINE JACOBICH, ITMAX, THRESH)
     IMPLICIT REAL *8 (A-H, 0-Z)
     COMMON/A5/XCL( 36, 24), AMAS2( 36, 50), ZM( 36, 50), DKI(12, 36), KIIUB
    1w( 3)
     CDMMON/C1/2( 72, 2), V( 72, 2), W( 2), DM( 1, 1), IETA( 7)
    $/C3/ XK( 2, 2), XM( 2, 2), P( 2, 2)
   SOLVE XK * P = XM * P * DIAG(W) FOR ALL EIGEMVALUES AND VECTORS
     00 1 1=1.N
     Dr: 2 J=1.V
   2 P(1, J)=0.
   1 P(1,1)=1.
     VM1=N-1
     (SMAL =)
     ITER = 0
100 CFMX=0.
     1MV . 1 = 1 01 CG
     XM[=XM(I,I)
     XK [ = XK [ 1 . 1 )
     IP1=1+1
     DO 10 J= IP1.N
     (L,L)MX=LMX
     XKJ=XK(J,J)
     (L.I)MX=LIMX
     XK[J=XK([,J)
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

```
CFM=XMIJ*XMIJ/XMI/XMJ
      CFK=XK[J*XKIJ/XKI/(KJ
      CF=DMAX1(CFM,CFK)
      IFICEMX .LT.CF) CFMX=CF
      IFICF.LT.O.1*THRESH) GO TO 10
      BKI=XKI * XMIJ-XMI * XKIJ
      BKJ=XKJ*XM[J-XMJ*XK[J
      BK2=(XKI*XMJ-XKJ*X11)*0.5
      SX=BK2*BK2+BKI*BKJ
      IF(SX.LT.O.) SX = 0.
      X=BK2+DSIGN(DSQRT(SX),BK2)
      SAM = - HK I /X
      ALP=RKJ/X
      DO 20 L=1, V
      TK=XK(L, 1)
      TM=XM(L, 1)
      TP=P(L, I)
      XK(L,L) = TK + XK(L,J) * GAM
      XK(L,J) = TK * ALP + XK(L,J)
      XM(L,I) = TM + XM(L,J) * GAM
      XM(L,J) = TM \neq ALP + XM(L,J)
       P(L, I) = TP+ P(L, J) *GAM
       P(L,J)=[P#ALP+ P(L,J)
   JULITHCO 95
      00 21 L=1.1
      TK=XK(1,L)
      TM=XM(I,L)
      XK(I,L) = TK + SAM * XK(J,L)
      XK(J,L)=XK(J,L)+ALP*TK
      XM(1,1)-[M+GAM*XM(J,L)
      XM(J,L)=XM(J,L)+ALP*TM
   ST CONTINUE
      ISMAI - ISMAL + 1
   10 COULTION
      148:11:8:11
      IFICIMA.LT. THRESH) DO TO 44
      IFILITIA .LT . ITMAX) 30 TO 100
   44 1.1 30 1. = 1.N
      W(L) = XY (L,L)/XM(L,L)
      XMJ-DABS(XM(L,L))
      T=1./DSORT(XMJ)
      00 30 M=1.N
      P(M, L) = P(M, L) * T
   30 CONTINUS
      RETURT
      E'VD
                             Example: Closed Tail-Boom with 6 Damage Conditions
//30.5YSIN DD #
                                                             .0
                                                                   0
                                51
                                     72
                                           36
                                                       60
                0
                                1
                                       0
                                            0
                                                  1
                                                        1
          0
                    10
                                       9
                                            0
                                                  0
                                      1.0000
                                                              1.0000
                                                                         1.0000
    0.0000
               0.0020
                                                  0.0010
                           0.2500
    1.0000
                1.0000
                                     29.0000
                                                 -1.0000
                           1.0000
                                                                            0.1000000E-05
   0.1000000L-05
                     9.1000000E-03
                                        0.1000000E-03
                                                          0.1000000E-03
                                                                                     0.5
                                                                         0.5
                                                              0.5
    0.5
               0.5
                           2.5
                                       0.5
                                                  0.5
               1.5
                                       0.5
                                                                                     0.5
                           . . 5
                                                  0.5
                                                              0.5
                                                                         0.5
    3.5
                           .5
                                                                         0.5
                                                                                     0.5
    0.5
               0.5
                                       0.5
                                                  0.5
                                                              0.5
                           ..5
                                                                                     0.5
    9.5
               0.5
                                       0.5
                                                  0.5
                                                              0.5
                                                                         0.5
               0.5
                                       0.5
    0.5
    4
          1.4903
                      1.6918
                                 0.0
```

.

the same of the same of the same

```
THIS PAGE IS BEST QUALITY PRACTICABLE
                -1.3658
      1.4903
                            0.0
                                       FROM COPY FURNISHED TO DDC
                1.6918
     -1.4903
 3
                -1.3658
     -1.4903
 4
0
12
                12
                    21
                           12 12
          12
 3
     10 11
                12
                 -9.401
                            9.855
 1
      66.500
      66.500
                 -9.231
                            -9.855
 2
                                      1
                                            1
                            9.855
 3
      66.500
                 9.401
                                       1
      66.500
                 9.239
                            -9.855
                                       1
                                            1
      33.500
                -10.666
                           11.105
                                             1
 5
      33.500
                -10.485
                           -11.105
                                       1
                                            1
 7
      33.500
                 10.666
                           11.105
                                       1
                                             1
      33.500
                 10.485
                           -11.105
                                             1
 8
                -11.950
                           12.375
 9
       0.000
                -11.750
10
       0.000
                           -12.375
11
       0.000
                11.950
                           12.375
                 11.750
       0.000
                           -12.375
12
                     0.5
                                0.5
0.5
           0.5
                                            0.5
                                                       0.5
                                                                  0.5
                      0.5
                                 0.5
0.5
           0.5
U
                     36
                 1
36
     14
           14
1
      2
           2
                 3
      2
                 4
 2
           1
 3
      4
            5
                 6
                      )
                           10
            7
                 8
                     11
                           12
 4
      4
                15
      2
 5
          13
      2
          14
                16
6
7
          17
                18
8
                21
3
          19
                22
                     27
          23
                24
                           28
10
      4
          25
                     27
11
                26
                           30
          31
                33
12
13
          32
                34
14
      2
          35
                36
                      1.0000
                                25.0000
0.0415
          100.0000
                                           25.0000
                                                       0.1000
                                                                  0.3000
                                                                           10500.00
                                25.0000
                      1.0000
                                           25.0000
                                                                  0.3000
0.0415
         100.0000
                                                       0.1000
                                                                           10500.00
0.0415
         100.0000
                      1.0000
                                25.0000
                                           25.0000
                                                                  0.3000
                                                                           10500.00
                                                       0.1000
0.3415
         100.0000
                      1.0000
                                25.0000
                                           25.0000
                                                                  0.3000
                                                       0.1000
                                                                           10500.00
         100.0000
                      1.0000 * 25.0000
0.0415
                                           25.0000
                                                                  0.3000
                                                       0.1000
                                                                           10500.00
                                                       0.1000
                                                                           10500.00
 0.0415
         100.0000
                      1.0000
                                25.0000
                                           25.0000
                                                                  0.3000
 0.0415
                                25.0000
         100.0000
                      1.0000
                                           25.0000
                                                       0.1000
                                                                  0.3000
                                                                           10500.00
                                25.0000
                                                                  0.3000
                                           25.0000
 0.0415
         100.0000
                      1.0000
                                                       0.1000
                                                                           10500.00
                                25.0000
0.0415
         100.0000
                      1.0000
                                           25.0000
                                                       0.1000
                                                                  0.3000
                                                                           10500.00
         100.0000
                                                                  0.3000
                      1.0000
                                25.0000
                                           25:0000
0.0415
                                                       0.1000
                                                                           10500.00
0.0415
         100.0000
                      1.0000
                                25.0000
                                           25.0000
                                                       0.1000
                                                                  0.3000
                                                                           10500.00
0.0415
          100.0000
                      1.0000
                                25.0000
                                           25.0000
                                                       0.1000
                                                                  0.3000
                                                                           10500.00
0.0415
          100.0000
                      1.0000
                                25.0000
                                           25.0000
                                                       0.1000
                                                                  0.3000
                                                                           10500.00
         100.0000
0.0415
                      1.0000
                                25.0000
                                                                  0.3000
                                                                           10500.00
                                           25.0000
                                                       0.1000
     7
          3
                0
                      0
1
 2
      5
                 0
      6
           2
4
      8
            4
5
      7
                 0
      5
                 0
6
           3
            2
3
           1
9
      6
           4
                 0
           2
                      0
10
      8
                 0
11
                 0
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
                                                       FROM COPY FURNISHED TO DDC
12
                    0
13
       3
                    0
                         -1
                    0
14
                         -1
                    0
15
       2
                         -1
16
              3
                   0
                        -1
17
       3
              2
                         -1
18
       4
              1
                    2
              7
19
      11
                    0
                         +1
              5
20
       9
                   0
                         +1
21
      10
                   0
              6
                         +1
22
      12
              8
                   0
                         +1
23
      11
                   0
                         +1
              7
                   0
24
       9
25
       9
                   0
                         +1
                   0
26
      10
              5
                         +1
27
             8
                   0
      10
                         + 1
35
                   0
      12
                         +1
             6
27
      11
              8
                   0
                         +1
              7
30
      12
                   0
                         +1
                   0
31
       7
              5
                         +1
32
       5
                   0
                         +1
              6
33
              8
                   0
                         +1
       6
34
       8
              7
                         +1
35
       7
              6
                   0
                         +1
36
       8
                         +1
16
       3
                         1.
       4
                          1
                                4
15
              1
       4
              5
                          7
                                8
16
                   6
              9
11
       8
                  10
                         11
                               12
                                     13
                                          14
                                                  15
                                                       16
                                     40.2000
                                                  40.2000
                                                                0.0980
                                                                            0.3000
 0.0200
             0.0500
                          1.0000
                                                                                      10400.00
             0.0500
                                                                            0.3000
                                                                                      10400.00
 0.0200
                          1.0000
                                     40.2000
                                                  40.2000
                                                                0.0980
             0.0500
                                                                0.0980
                                                                            0.3000
 0.0200
                          1.0000
                                     40.2000
                                                  40.2000
                                                                                      10400.00
       7
                  11
 1
       7
              7
                   5
                    7
 4
       5
              3
 5
       6
            12
                  10
 6
            12
                   8
       6
                          1
 7
       2
             8
                    5
 8
       2
              8
       6
              7
                  10
              9
10
                   5
       6
       2
11
                   6
12
       2
      12
              7
13
                  11
14
      12
15
       8
              3
                    7
16
       8
              3
       8
12
            24
                  12
                         31
                               12
                                   12
             7
 5
       6
                   8
                         1
                               10
                                   11
                                            12
 1
      127.500
                                 7.543
                   -7.063
                                            1
                   -6.937
      127.500
                                -7.543
                                             1
      127.500
                     7.063
                                 7.543
                                             1
      127.500
                     6.931
                                -7.543
       66.500
                   -9.401
                                 9.855
       66.500
                   -9.239
                                -9.855
 6,
       66.500
                     9.401
                                 9.855
 8
       66.500
                     9.239
                                -9.855
       99.500
                   -8.130
                                 8.604
10
       99.500
                   -7.994
                                -8.604
                                                         1
       99.500
                     8 . 136
                                 8.604
                                                         1
```

16-1

```
99.500
                   7.294
                             -3.604
                                               2.5
0.5
            0.5
                       . . 5
                                  0.5
                                                          0.5
                                                                      0.5
                                                                                 0.5
            0.5
0.5
                        .5
                                   0.5
4
 9
     10
           11
                 12
7
      0.0
                  0.0
                            -0.140
                            -0.140
10
      0.0
                  0.0
                            -0.140
11
      0.0
                  0.0
                            -0.140
12
      0.0
                  0.0
     14
36
                 37
                      71
                                            THIS PAGE IS BEST QUALITY PRACTICABLE
           14
18
      2
           38
                 39
                                            FROM COPY FURNISHED TO DDC
19
      2
           37
                 40
20
           41
                 42
                       45
                            46
                      47
                            48
21
           43
                 44
           49
                 51
22
      2
           50
                 52
23
                 54
24
      2
           5 3
25
      2
           56
                 57
26
      2
           55
                 58
           59
                 60
                      63
                            64
27
           61
                 62
28
                      60
                            66
                 69
27
           67
30
           68
                 70
      2
           71
                 72
31
0.0415
          100.0000
                       1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
0.0415
          100.0000
                       1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                              10500.00
          100.0000
                       1.0000
                                  25.0000
0.3415
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
0.3415
          100.0000
                       1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
          :00.0000
                                  25.0000
                                             25.0000
                        1.0000
                                                          0.1000
0.0415
                                                                      0.3000
                                                                               10500.00
0.0415
          100.0000
                        1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
0.0415
          100.0000
                        1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                      0.3000
                                                                               10500.00
 C.0415
          100.0000
                        1.0000
                                  25.0000
                                             25.0700
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
 0.0415
          100.0000
                        1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
                                  25.0000
          100.0000
                        1.0000
                                             25.0000
0.0415
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
 0.0415
          100.0000
                        1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
0.0415
          100.0000
                        1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
 0.0415
          100.0000
                        1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                     0.3000
                                                                               10500.00
          100.0000
                        1.0000
                                  25.0000
                                             25.0000
                                                          0.1000
                                                                      0.3000
                                                                               10500.00
 0.0415
            3
37
     11
                0
      9
38
            1
39
     10
            2
40
     12
41
     11
            3
42
      9
43
      9
            2
     10
44
45
     10
46
     12
47
     11
48
     12
41
                  0
      3
                      - 1
50
      1
                  0
                      -1
                  0
51
      2
52
      4
            3
53
      3
                  ()
                      -1
                      -1
54
      4
      7
55
           11
56
      5
57
      6
           10
51
      3
           12
5)
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
                                                            FROM COPY FURNISHED TO DDQ
60
             11
61
             10
              q
01
       6
03
       6
             12
64
       8
             10
65
             12
60
       8
             11
67
      11
              9
50
             10
       9
                    U
                         + 1
69
      10
             12
                    0
                         +1
10
      12
             11
                    0
                         +1
71
      11
             10
                    0
                         +1
72
      12
              9
                    0
                         +1
16
       3
              3
                   17
                         32
       4
                               20
32
            17
                   18
                         11
33
       4
            21
                   22
                         23
                               24
                   26
                               28
14
       8
            25
                                           30
                                                  31
                                                        32
                                                  40.2000
                                                                0.0780
 0.0200
              0.0500
                          1.0000
                                      40.2000
                                                                             0.3000
                                                  40.2000
                                                                0.0980
                                                                             0.3000
 0.0200
              0.0500
                          1.0000
                                      40.2000
                                                                                       10400.00
 0.0200
              0.0500
                          1.0000
                                     40.2000
                                                  40.2000
                                                                0.0980
                                                                             0.3000
                                                                                       10400.00
17
       5
            11
                    7
       5
18
            11
                    9
1)
              3
       1
                   11
2:
       9
              3
                    ì
21
      10
              8
                    6
22
      10
              8
                   12
23
      12
              2
                   4
                   10
24
      12
              2
      10
20
                   6
21.
      10
                    9
              9
27
       2
                   10
28
       2
              9
                    1
29
       8
                    7
             11
10
       8
             11
                   12
31
      12
             3
                   11
32
      12
              3
                  0 4
                                     12.
             24
                   12
12
       3
                         33
                               12
             3
                                      7
 ı
       2
                          7
                                6
      173.500
                    -5.300
                                  5.800
                                                          1
 1
      173.500
                    -5.20
                                -5.800
                                                          1
      173.500
                     5.301
                                  3.800
      173.500
                     5.200
                                -5.800
                    -7.063
      127.500
                                  7.543
      127.500
                    -6.931
                                -7.543
                     7.061
                                 7.543
      127.500
      127.500
                     6.931
                                -7.543
      151.500
                    -6.14.
                                  6.634
10
      151.500
                    -6.031
                                 -6.634
      151.500
                     6.143
11
                                  5.634
                                                   1
                                                          1
12
      151.500
                     6.031
                                -6.634
                                                   1
 0.5
                                                   0.5
                                                                0.5
                                                                            0.5
             0.5
                                      0.5
                                                                                         0.5
                          . . 5
 0.5
                                      0.5
             0.5
36
      14
            14
                   73
                        108
       2
35
            14
                   75
3:
       2
            73
                   76
37
            77
                   78
                         81
                               82
38
            79
                   68
                         8.5
                               84
39
            85
                   87
40
       2
            86
                   88
                   90
            89
41
```

```
92
                   93
                                            THIS PAGE IS BEST QUALITY PRACTICABLE
 43
        2
             91
                   94
                                            FROM COPY FURNISHED TO DDC
                  96
             95
                            100
 44
                        93
 45
        4
             97
                   38
                       101
                            102
 46
        2
            103
                 105
 47
        2
            104
                 106
 48
        2
            107
                 108
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
                                                                                  10500.00
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
                                                                                  10500.00
                          1.0000
                                    25.0000
                                                                                  10500.00
  0.0415
            100.0000
                                                25.0000
                                                                         0.3000
                                                             0.1000
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
                                                                                  10500.00
                                                             0.1000
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                                         0.3000
                                                                                  10500.00
            100.0000
  0.0415
                          1.0000
                                    25.0000
                                                                         0.3000
                                                25.0000
                                                             0.1700
                                                                                  10500.00
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
                                                                                  10500.00
  U.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
                                                                                  10500.00
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
  0.0415
            100.0000
                                                                                  10500.00
                                    25.0000
                          1.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
  0.0415
            100.0000
                                                                                  10500.00
                                                                         0.3000
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                                  10500.00
            100.0000
                                    25.0000
                                                25.0000
  0.0415
                          1.0000
                                                             0.1000
                                                                         0.3000
                                                                                   10500.00
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
                                                                                   10500.00
  0.0415
            100.0000
                          1.0000
                                    25.0000
                                                25.0000
                                                             0.1000
                                                                         0.3000
                                                                                  10500.00
 73
       11
              3
 74
        9
              1
       10
 75
              2
 76
       12
 77
              1
       11
 78
       7
 79
        9
              2
 80
       10
              1
 81
              4
       10
 82
       12
              2
 83
       11
 84
              3
       12
 85
        3
              1
                    0
                        -1
 86
        1
              2
                    0
                        -1
 87
        2
              4
                    0
                        -1
 88
              3
                    0
        4
                        - 1
 83
        3
              2
                    0
                         -1
 20
        4
              1
                        -1
        7
 91
             11
 92
        5
              q
             10
 93
        6
             12
 34
        8
        7
 35
              9
        5
 96
             11
 97
        5
             10
 98
              9
        6
             12
 97
        6
        8
100
             10
101
        7
             12
102
        8
             11
103
              9
                    0
       11
                        + 1
104
        9
             10
                    9
                        +1
105
       10
             12
                    0
                        +1
106
                    0
       12
             11
                         +1
101
       11
             10
                    0
                         +1
108
              4
       12
                    0
                        +1
              3
 16
        3
                   33
                         48
 49
        4
             33
                   34
                         35
                              36
 50
             37
                   38
                        31
                              40
                   47
                        45
                              44
                                          46
```

```
40.2000 40.2000
                                          0.0380
                                                     0.3000 10400.00
         0.0500
                  1.0000
0.0200
                                            0.0780
                          40.2000 40.2000
                                                     0.3000 10400.00
         0.0500
                  1.0000
0.0200
                                            0.0980
                                   40.2000
                                                     0.3000 10400.00
                          40.2000
0.0200
         0.0500
                  1.0000
            7
         11
             9.
14
        11
    9
         3
            11
35
            ı
    9
         3
16
    10
         8
31
             6
38
    10
             12
37
    12
             4
            10
40
    12
                                       THIS PAGE IS BEST QUALITY PRACTICABLE
   10
41
             6
                                      FROM COPY FURNISHED TO DDQ
42
   10
   2
    2
         9
            1
45
        11
  8
             1
   8
46
        11
           12
47
  12
         3
           11
48
  12
         3
                  1.0
                           1.0
                                   1.0000
1.0000
         1.0
3 7
        10 14
                 15 17
                                             1.0
1.0
         1.0
                  1.0
                           1.0
                                   1.0
        11 12
          1.000
 1.000
                   1.000
                            1.000
5
57 62
        63
 1.0
         1.0
                   1.0
21 25
         1.000
 1.000
0
1.0000
         1.0
                 1.0
                          1.0 1.0000
1
                           1 5 11
19 24
        30 31
                 3+ 35
                                    1.0
                                                      1.0
                                                               1.0
 1.0
         1.0
                  1.0
 1.0
1 2
                 14 15
         3 13
1.000
          1.000
                  1.000
                            1.000
                                    1.000
                                             1.000
0
0
                           1.0
1.0000
         1.0
                  1.0
                                    1.0000
()
7
1
        47 51
                 52 54
1.0 1.0 1.0
                                     1.0
                                             1.0
```

.0

```
23 32
 1.000 1.000
 1
94 100 102
                 1.0
       1.0
 1.0
      45 46
1.000
1.0
37 38
                1.000 1.000
1.0 1.0
 1.000
                              1.0000
               1.0
 1.0000
 9
91 96 102 103 106 107 73 77 83
1.0 1.0 1.0 1.0
                                       1.0 1.0 1.0
 1.0
        35 45
               46 47
   34
                       1.000
        1.000
               1.000
                      1.0
                               1.000
 1.000
                                        1.000
               1.0
        1.0
                               1.0000
 1.0000
       44 49 50 54
 38 41
 1.0
        1.0
               1.0
                       1.0
                               1.0
                                        1.0
 2
20
   28
        1.000
 1.000
 1
 3
92 96
 1.0
        1.0
        41 42
33 34
               1.000 1.000
 1.000
        1.300
               1.0
                               1.0000
        1.0
                       1.0
 1.0000
 1
        28 32
               31 35
                        3 8
        1.0
                                1.0
                                        1.0
                                               1.0
 1.0
                1.0
                       1.0
                                                       1.0
 1.0
 6
5. 6
               1 11
        1.000
                1.000
                       1.000
                                1.000
                                       1.000
 1.000
 0
 0
0.086110 0.139120 0.041500 0.108700 0.041500 0.041500 0.041500 0.167490
              0.067314
                      0.041500 0.041500 0.221420
0.296770 0.235440
1 1
        1 1
              1 1
                       1 1
                              1 1 1 1
0.039328 0.050000 0.040024
                        139
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

```
0.041500
 0.043365
           0.046153
                             0.041500 0.041500
                                                0.041500
                                                         0.041500 0.049120
  0.057969
           0.041500
                    0.041500
                             0.041500 0.041500
                                                0.060580
   1
            1
                              . 1 . 1
 0.050000
           0.050000
                    0.037808
   1 1
            1
           0.041500
 0.041500
                    0.041500
                             0.053185
                                       0.041500
                                               0.041500
                                                         0.189440 0.054885
                    0.122810
 0.073566
           0.182260
                             0.041500 0.041500 0.085213
                    1 1 1 0. 35357
   1 1
            1 1
                             1 1
                                       1 1
                                                1 1
                                                          1 1
 0.050000
           0.041122
   1 1
             1
1 *
11
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FARMISHED TO DDQ

D.2. Listing of the Program DIMCO

```
//FSSOS JOB (-----, 30, 30, 2001), 'D1 NTDUC', TIME=25
                                                                               JOB 49
                PLEASE INTERPRETE MY OUTPUT PUNCHED CARDS
/*MESSAGEL
// EXEC FORTCLG, REGION=150K, TIME=25
//FORT.SYSIN DD *
      INTEGER BNC, SN, CONS1, CONS2, CONS3, CONS4, CONS5, CONS9, CONS8, PN, SNN
      DIMENSION NJ(10), NBJ(10), NCB(10), NIC(10), NBW1(10), NBW2(10), NBW3(10
     1),NILJ(10)
      DIMENSION NM(50), NG(50), NW(50), MEB(50), MEF(50)
      DIMENSION ITY(3)
C
C
      INPUT SOME CONTROL INFORMATION FOR ALL SUBSTRUCTURES
C
      READ(5,32)NN,NSU,NDAM,NLC,NV,NCC,BNC,NBW,NPH,NSD,ITE,NBLJ,NDMT
     ILINK, ILIM
      READ(5, 32) [TY(1), [TY(2), [TY(3)
C
C
      CONTROL INFORMATIONS FOR EACH SUBSTRUCTURE
C
      IET=3
      KK=0
      DO 30 K=1, NSU
      READ(5,32)NJ(K),NBJ(K),NCB(K),NIC(K),NBW1(K),NBW2(K),NBW3(K),NILJ(
     2K)
 32
      FORMAT (1615)
      DO 31 J=1, [ET
      IF(ITY(J).EQ.01GO TO 31
      KK=KK+1
      READ(5, 32)NM(KK), NG(KK), NW(KK), MEB(KK), MEF(KK)
 31
      CONT INUE
 30
      CONTINUE
      INITIALIZED SOME VARIABLES
C
C
      NGU=-999
      KK=0
      CONSI=1
      CONS2=2
      CONS3=3
      CONS 4= 4
      CONS5=5
      CONS9=9
      CONS8=8
C
      CALCULATION OF ALL SUBSCRIPTS USED IN DIMENSION STATEMENTS
      DO 1 I=1.NSU
      00 1 J=1, IET
       IF(ITY(J).EQ.01GO TO 1
      KK=KK+1
                                                THIS PAGE IS BEST QUALITY PRACTICARLE
       IFING(KK).GT.NGUJNGU=NG(KK)
      CONTINUE
 1
                                         171
                                                FROM COPY PURMISHED TO DOG
```

STREET WAS ASSOCIATED BY BUILDING THE TOTAL TOTA

```
KKU=NSU*ITE
     NBJL = -999
     NCIL=-999
     NCBL = - 999
     NLJ=NBLJ
     NU3=0
     NU33=0
     NGG=0
     NTE=0
     NCE = 0
     NSE=0
     M8 = -999
     K3DUP=0
     NJKK=0
     NCII=0
     KK=0
     DO 2 1=1, NSU
     IF(NBJ(I).GT.NBJL)NBJL=NBJ(I)
     IF (NIC(I).GT.NCIL)NCIL=NIC(I)
     IF (NCB(1).GT.NCBL)NCBL=NCB(1)
     IF(NILJ (I).GT.NLJ)NLJ=NILJ(I)
     NU3=NU3+NBW3(I)
     IF(NBw3(I).GT.NU33)NU33=NBw3(I)
     DO 1000 J=1, IET
     IF(ITY(J).EQ.0)G0 TO 1000
     KK=KK+1
     NGG=NGG+NG(I)
     GO TO(10C1,1002,1003),J
1001 NTE=NTE+NM(KK)
     IF (NTE.GT.M8)M8=NTE
     GO TO 1000
1002 NCE=NCE+NM(KK)
     IF (NCE.GT.M8)M8=NCE
     GO TO 1000
1003 NSE=NSE+NM(KK)
     IF(NSE.GT.M8)M8=NSE
1000 CONTINUE
     K3DUP=K3DUP+NJ(I)
     NJKK=NJKK+NJ(I)
     IF (NIC(I).GT.NCII)NCII=NIC(I)
     CONTINUE
2
     NMT=NTE+NCE+NSE
     K3EX=NTE
     IF (NCE.GT.K3EX)K3EX=NCE
     IF(NSE.GT.K3EX)K3EX=NSE
     SN= 2*NN
     1108=2*SN
     PN= 2*SN
     K1=NCIL
     IF(NV.GT.K1)K1=NV
     K2=NU3
     IF(NSD.GT.K2)K2=NSD
     K3DUP=K3DUP*SN
     K3=K3DUP
     IF(NPH.GT.K3)K3=NPH
     IF(K3EX.GT.K3)K3=K3EX
     K4=NMT
     IF(NPH.GT.K4)K4=NPH
     K5=BNC
     IF(NCIL.GT.K5)K5=NCIL
     K6=NBW
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDQ

```
K66=NBW
       IF(NU33.GT.K66 )K66=NU33
       K7=NCBL+NLC
       IF(NSD.GT.K7)K7=NSD
      K9=NCBL
       IF(NSD.GT.K9)K9=NSD
      K10=NCIL
       IF(NSD.GT.K10)K10=NSD
      K11=NV
       IF (NPH.GT.K11)K11=NPH
       IF(NCC.GT.K11)K11=NCC
      LEN=-999
       1101=0
      DO 11 KA=1, NSU
       00 11 I=1, ITE
       1101=1101+1
       IF(MEF(I101).GT.LEN)LEN=MEF(I101)
 11
      CONTINUE
      K118=LEN
      IF(K11.GT.K118)K118=K11
      K12 = 3
       IF(NLC.GT.K12) K12=NLC
      K13=NMT
       IF(NPH.GT.K13)K13=NPH
      K20=NMT
       IF (NCC . GT . K20) K20=NCC
      IF(NSD.GT.K20) K20=NSD
      K21=ITE
      K22=NDMT
      K26=M8
      IF(NV.GT.K26)K26=NV
      1102=3*NTE+27*NCE+12*NSE
       1103=NTE+NCE+21*NSE
       1104=6*NTE+45*NCE+21*NSE
       1105=6*NTE+9*NCE+6*NSE
       1106=NTE
       IF(NJKK.GT.1106)1106=NJKK
       1107=NC 11
      NUS=NSU
       IF(CONS2.GT.NUS)NUS=CONS2
       IPDAM=NDAM+1
       IETC=NV#1PDAM
C
       TO AVOID SUBSCRIPT EQUAL ZERO
C
       1100=NDAM
       IF( NDAM . EQ . 0) | 100 = NDAM+1
       IF(LINK.EQ.O)LINK=1
       IF(NCII.EQ.O)NCII=1
       IF(K22.EQ.0)K22=1
       IF(NCIL.EQ.O)NCIL=1
      IF(NU3.EQ.0)NU3=1
      SNN=SN
      IF(IPDAM.GT.SNN)SNN=[PDAM
      IF(NTE.EQ.O)NTF=1
       IFINCE.EQ.OINCE=1
       IF(NSE.EQ.O)NSE=1
C
      BEGIN TO PUNCH ALL DIMENSION STATEMENTS ON CARDS
                                        175
```

IF(NU3.GT.K6)K6=NU3

```
WRITE(6,86)
WRITE(6,81)
WRITE(6,82)
WRITE(6,40)BNC, NLC, NGU, KKU, ILIM, CONS2, NV, IET
WRITE(6,41)CONS1,[L[M, [108,[ET,NBJL,NSU,L]NK,CONS2,NLJ,[ET
WRITE(6,42)CONS2,IPDAM
WRITE(6,83)
WRITE(6,84)
WRITE(6,43)NSU,KKU,KKU,NSU,NSU,NSU,KKU
WRITE(6,44)CONS1,NSU,NSU,NSU,NSU,NSU,KKU,KKU
WRITE(6,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(6,46)CONS1,CONS9,CONS9
WRITE(6,47) NGU, KKU, M8, K21, NGU, KKU, 1102
hRITE(6,48)CONS1, [103, [104, [ET, M8, K21, M8, K 21, M8
WRITE(6,49)CONS2,K21,NGU,KKU,M8,K21,I105,IET,IET
WRITE(6,50)CONS3,M8,K21
WRITE(6,51)CONS1,CUNS1, [PDAM, IPDAM, IPDAM, IPDAM, IPDAM
WRITE(6,52)CONS1, K22, IPDAM, K22, KKU, I100, NSU, IPDAM
WRITE(6,53)NSD,CONS8,NGU,KKU,NSD,NCC
WRITE(6,54)CONS1,CONS1,CONS1,CONS1,CONS1,CONS1
WRITE(6,55)NGU,KKU,BNC
WRITE(6,56)NCIL,NLC,NSU,M8,K21,NGU,KKU,M8,KKU,NGU
WRITE(6,57)CONS1,KKU
WRITE(6,58)NSD,NSU,NSD,NSU,NLC
WRITE(6,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIL, NSU
 WRITE(6,60) CONSI,NV
WRITE(6,61)NCIL, NCBL, NSU, NCIL, NLC, NSU, BNC, NBW, BNC, NLC
WRITE(6,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(6,63)CONS1,NV,NUS,NPH,M8,K21,K3
WRITE(6,64)1106, NSU, NPH, NPH, K4, NV, NV
WRITE16,65)K5, K66, K5, K7, BNC, K9, NCII, NU3, NSU
WRITE(6,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(6,67)CONS1,K13,M8,NSU,NCHL,NSU
WRITE (6,68) NGG, NSD
WRITE(6,69) NCC, CONS2, NCC, CONS2, CONS2, CONS1, CONS1, SNN
WRITE(6,70) CONS2,CONS2,CONS2,CONS2,CONS2
WRITE(6,171) [ETC, IPDAM, IPDAM
WRITE(6,85)
WRITE(7,86)
WRITE(7,81)
WRITE(7,82)
WRITE (7,40) BNC, NLC, NGU, KKU, IL IM, CONS2, NV, IET
WRITE(7,41)CONS1,ILIM,I108,IET,NBJL,NSU,LINK,CONS2,NLJ,IET
WRITE(7,42)CONS2, IPDAM
WRITE(7,83)
WRITE(7,84)
WRITE(7,43)NSU,KKU,KKU,NSU,NSU,NSU,KKU
WRITE(7,44)CONSI, NSU, NSU, NSU, NSU, NSU, NSU, KKU, KKU
WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(7,46)CONS1,CONS9,CONS9
WRITE(7,47)NGU,KKU, M8,K21,NGU,KKU, 1102
WRITE(7,48)CONS1,1103,1104,1ET, M8,K21,M8,K21,M8
WRITE(7,49)CONS2,K21,NGU,KKU,M8,K21,I105,IET,IET
WRITE(7,50)CONS3, M8, K21
WRITE(7,51)CONS1,CONS1,IPDAM, IPDAM,IPDAM,IPDAM, IPDAM
WRITE(7,52)CONS1, K22, IPDAM, K22, KKU, I100, NSU, IPDAM
WRITE(7,53)NSD,CONS8,NGU,KKU, NSD, NCC
WRITE(7,54)CONS1,CONS1,CONS1,CONS1,CONS1,CONS1,CONS1HIS PAGE IS BEST QUALITY PRACTICABLE
WRITE(7,55)NGU,KKU, BNC
                                  177
                                                 FROM COPY FARMISHED TO DDO
```

```
WRITE(7,56)NCIL, NLC, NSU, M8, K21, NGU, KKU, M8, KKU, NGU
WRITE(7,57)CONS1,KKU
WRITE(7,58)NSD,NSU, NSD,NSU,NLC
WRITE(7,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIL, NSU
WRITE(7,60) CONSI,NV
WRITE(7,61)NCIL, NCBL, NSU, NCIL, NLC, NSU, BNC, NBW, BNC, NLC
WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(7,63)CONS1,NV,NUS,NPH,M8,K21,K3
WRITE(7,64)1106, NSU, NPH, NPH, K4, NV, NV
WRITE(7,65)K5, K66, K5, K7, BNC, K9, NCII, NU3, NSU
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
WRITE(7,68)NGG,NSD
WRITE(7,69)NCC, CONS2, NCC, CONS2, CONS2, CONS1, CONS1, SNN
 WRITE(7,70) CONS2, CONS2, CONS2, CONS2, CONS2, CONS2
WRITE(7,171) IETC, IPDAM, IPDAM
WRITE(7,851
 WRITE(7,87)
WRITE(7,84)
WRITE(7,43)NSU,KKU,KKU,NSU,NSL,NSU,KKU
WRITE(7,44)CONSI, NSU, NSU, NSU, NSU, NSU, KKU, KKU
WRITE(7,85)
WRITE(7,88)
WRITE(7,81)
WRITE(7,82)
WRITE(7,83)
WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
 WRITE(7,46)CONS1,CONS9,CONS9
WRITE(7,47)NGU,KKU, M8, K21, NGU, KKU, I102
 WRITE(7,48)CONS1, 1103, 1104, LET, M8, K21, M8, K21, M8
WRITE(7,491CONS2,K21,NGU,KKU, M8,K21, [105, [ET, [ET
WRITE(7,50)CONS3,M8,K21
WRITE(7,56)NCIL, NLC, NSU, M8, K21, NGU, KKU, M8, KKU, NGU
WRITE(7,571CONS1,KKU
WRITE(7,62)MB, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
 WRITE(7,63)CONS1,NV,NUS,NPH,M8,K21,K3
WRITE(7,64)[106,NSU,NPH,NPH,K4,NV,NV
 WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,671CONS1,K13,M8,NSU,NCBL,NSU
 WRITE(7,85)
WRITE(7,89)
WRITE(7,81)
 WRITE(7,82)
WRITE(7,83)
WRITE(7,84)
WRITE(7,431NSU,KKU,KKU,NSU,NSU,NSU,KKU
 WRITE(7,44)CONS1,NSU,NSU,NSU,NSU,NSU,KKU,KKU
 wRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(7,46)CONS1,CONS9,CONS9
WRITE(7,47)NGU,KKU, M8,K21,NGU,KKU, I102
WRITE(7,48)CONS1, [103, [104, [ET, M8, K21, M8, K21, M8
WRITE(7,49)CONS2,K21,NGU,KKU,M8,K21,I105,IET,IET
WRITE(7,50)CONS3,M8,K21
WRITE(7,511CONS1,CONS1,IPDAM,IPDAM,IPDAM,IPDAM,IPDAM
wRITE(7,52)CONS1,K22,IPDAM,K22,KKU,I100,NSU,IPDAM
WRITE(7,56)NCIL,NLC,NSU,M8,K21,NGU,KKU,M8,KKU,NGU
WRITE(7,571CONSL,KKU
WRITE(7,58)NSD, NSU, NSD, NSU, NLC
WRITE(7,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIE, NSU
                                  1+15
```

```
WRITE(7,60) CONSI,NV
 WRITE(7,61)NCIL, NCBL, NSU, NCIL, NLC, NSU, BNC, NBW, BNC, NLC
 WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
 WRITE(7,63)CONS1,NV, NUS,NPH, M8, K21,K3
 WRITE(7,65)K5,K66,K5,K7,BNC,K9,NCII,NU3,NSU
 WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
 WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
 WRITE(7,71)NCC,CONS2,NCC,CONS2,CONS2,CONS1,CONS1,SNN
 WRITE(7,70) CONS2, CONS2, CONS2, CONS2, CONS2, CONS2
 WRITE(7,85)
 WRITE(7,90)
 WRITE(7,81)
 WRITE(7,82)
 WRITE(7,83)
 WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
 WRITE(7,46)CONS1,CONS9,CONS9
 WRITE(7,47)NGU,KKU,M8,K21,NGU,KKU, [102
 WRITE(7,48)CONS1, I103, I104, IET, M8, K21, M8, K21, M8
 WRITE(7,491CONS2,K21,NGU,KKU,M8,K21,I105,IET,IET
 WRITE(7,50)CONS3,M8,K21
 WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
 WRITE(7,63)CONS1,NV,NUS,NPH,M8,K21,K3
 WRITE(7,85)
 WRITE(7,91)
 WRITE(7,81)
 WRITE(7,651K5, K66, K5, K7, BNC, K9, NCII, NU3, NSU
 WRITE(7,85)
 WRITE(7,92)
 WRITE(7,81)
 WRITE(7,65)K5, K66, K5, K7, BNC, K9, NCII, NU3, NSU
 WRITE(7,851
 WRITE(7,94)
 WRITE(7,81)
 WRITE(7,82)
 WRITE(7,83)
 WRITE(7,84)
 WRITE(7,43)NSU,KKU,KKU,NSU,NSU,NSU,KKU
 WRITE(7,44)CONS1,NSU,NSU,NSU,NSU,NSU,KKU,KKU
 WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(7,46)CONS1,CONS9,CONS9
WRITE(7,47)NGU, KKU, M8, K21, NGU, KKU, I102
 WRITE(7,48)CONS1,[103,[104,[ET,M8,K21,M8,K21,M8
 WRITE(7,49)CONS2,K21,NGU,KKU,M8,K21,1105,IET,IET
WRITE(7,50)CONS3,M8,K21
WRITE(7,51)CONS1,CONS1, [PDAM, IPDAM, IPDAM, IPDAM, IPDAM
WRITE(7,521CONS1,K22,IPDAM,K22,KKU,I100,NSU,IPDAM
WRITE(7,54)CONS1,CONS1,CONS1,CONS1,CONS1,CONS1
w#ITEI7,59INGU,KKU,NGU,KKU,NGU,KKU,K1,K2,NCIL,NSU
WRITE! 7,601 CONSE, NV
## ITE (7,62) MB, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WELTER 7,631CONSI, NV, NUS, NPH, M8, K21, K3
WRITER T. 66 JK 10 .K 9.K 11.K12.K118.K12.K11.K26
SETTELT, 671CONSI, KI3, MB, NSU, NCBL, NSU
BELTER T. & SINCE . CONS2. NCC. CONS2. CONS2. CONS1. CONS1. SNN
ARRESTA 7.851
```

VERSEL 1 - 051

ASSESSED FLORIDA

```
WRITE(7,84)
WRITE(7,43)NSU,KKU,KKU,NSU,NSU,NSU,KKU
WRITE(7,44)CONS1,NSU,NSU,NSU,NSU,NSU,KKU,KKU
WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(7,46)CONS1,CONS9,CONS9
WRITE(7,47)NGU, KKU, M8, K21, NGU, KKU, I102
WRITE(7,48)CONS1,1103,1104,1ET,M8,K21,M8,K21,M8
WRITE(7,49)CONS2,K21,NGU,KKU,M8,K21,I105,IET,IET
WRITE(7,50)CONS3, M8, K21
WRITE(7,54)CONS1,CONS1,CONS1,CONS1,CONS1,CONS1
 WRITE(7,56)NCIL, NLC, NSU, M8, K21, NGU, KKU, M8, KKU, NGU
 WRITE(7,57)CONS1,KKU
 WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
WRITE(7,69)NCC,CONS2,NCC,CONS2,CONS2,CONS1,CONS1,SNN
 WRITE(7,85)
WRITE(7,96)
 WRITE(7,81)
 WRITE(7,82)
 WRITE(7,83)
 WRITE(7,84)
WRITE(7,43)NSU, KKU, KKU, NSU, NSL, NSU, KKU
WRITE(7,44)CONS1, NSU, NSU, NSU, NSU, NSU, KKU, KKU
WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(7,46)CONS1,CONS9,CONS9
 WRITE(7,47) NGU, KKU, M8, K21, NGU, KKU, I102
 WRITE(7,48)CONS1,[103,[104,[ET,M8,K21,M8,K21,M8
WRITE(7,49)CONS2,K21,NGU,KKU,M8,K21,I105,IET,IET
WRITE(7,50)CONS3,M8,K21
WRITE(7,51)CONS1, CONS1, IPDAM, IPDAM, IPDAM, IPDAM, IPDAM
WRITE(7,52)CONS1,K22,IPDAM,K22,KKU,I100,NSU,IPDAM
WRITE(7,56)NCIL, NLC, NSU, M8, K21, NGU, KKU, M8, KKU, NGU
WRITE(7,57)CONS1,KKU
WRITE(7,61)NCIL, NCBL, NSU, NCIL, NLC, NSU, BNC, NBW, BNC, NLC
 WRITE(7,62) M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
 WRITE(7,63)CONS1,NV,NUS,NPH,M8,K21,K3
 WRITE(7,64)1106, NSU, NPH, NPH, K4, NV, NV
 WRITE(7,65)K5,K66,K5,K7,BNC,K9,NCII,NU3,NSU
 WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
 WRITE(7,85)
 WRITE(7,97)
WRITE(7,81)
WRITE(7,82)
WRITE(7,83)
WRITE(7,84)
 WRITE(7,43)NSU,KKU,KKU,NSU,NSU,NSU,KKU
WRITE(7,44)CONS1, NSU, NSU, NSU, NSU, NSU, KKU, KKU, KKU
WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(7,46)CONS1,CONS9,CONS9
WRITE(7,47)NGU,KKU, M8, K21, NGU,KKU, 1102
WRITE(7,48)CONS1, 1103, 1104, [ET, M8, K21, M8, K21, M8
WRITE(7,49)CONS2,K21,NGU,KKU,M8,K21,[105,IET,[ET
WRITE(7,50)CONS3,M8,K21
WRITE(7,51)CONS1,CONS1,IPDAM, IPDAM, IPDAM, IPDAM, IPDAM
WRITE(7,52)CONS1,K22,IPDAM,K22,KKU, [100,NSU, [PDAM
WRITE(7,53)NSD,CONS8,NGU,KKU,NSD,NCC
WRITE(7,55)NGU,KKU, BNC
```

```
WRITE(7,56)NCIL, NLC, NSU, M8, K21, NGU, KKU, M8, KKU, NGU
WRITE(7,57)CONS1,KKU
WRITE(7,58)NSD,NSU, NSD,NSU, NLC
WRITE(7,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIL, NSU
WRITE(7,60) CONSI,NV
WRITE(7,61)NCIL, NCBL, NSU, NCIL, NLC, NSU, BNC, NBW, BNC, NLC
WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(7,63)CONS1,NV,NUS,NPH,M8,K21,K3
WRITE(7,64)1106, NSU, NPH, NPH, K4, NV, NV
WRITE(7,65)K5, K66,K5,K7,BNC,K9,NCII,NU3,NSU
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
WRITE(7,85)
WRITE(7,98)
WRITE(7,81)
WRITE(7,82)
WRITE(7,83)
WRITE(7,84)
WRITE(7,53)NSD,CONS8,NGU,KKU,NSD,NCC
WRITE(7,58)NSD, NSU, NSD, NSU, NLC
WRITE(7,61)NCIL, NCBL, NSU, NCIL, NLC, NSU, BNC, NBW, BNC, NLC
WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(7,63)CONS1, NV, NUS, NPH, M8, K21, K3
WRITE(7,64)[106,NSU,NPH,NPH,K4,NV,NV
WR[TE(7,65)K5, K66, K5, K7, BNC, K9, NCII, NU3, NSU
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONSI,KI3,M8,NSU,NCBL,NSU
WRITE(7,85)
WRITE(7,99)
WRITE(7,81)
WRITE(7,82)
WRITE(7,83)
WRITE(7,84)
WRITE(7,43)NSU,KKU,KKU,NSU,NSU,NSU,KKU
WRITE(7,44)CONS1, NSU, NSU, NSU, NSU, NSU, KKU, KKU
WRITE(7,45)CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,CONS9,K20,CON
159
WRITE(7,46)CONS1,CONS9,CONS9
WRITE(7,47)NGU, KKU, M8, K21, NGU, KKU, I102
WRITE(7,48)CONS1, [103, [104, [ET, M8, K21, M8, K21, M8
WRITE(7,49)CONS2, K21, NGU, KKU, M8, K21, I105, LET, IET
WRITE(7,50)CONS3,M8,K21
WRITE(7,53)NSD,CONS8,NGU,KKU,NSD,NCC
WRITE(7,56)NCIL, NLC, NSU, M8, K21, NGU, KKU, M8, KKU, NGU
WRITE(7,57)CONS1,KKU
WRITE(7,58) NSD, NSU, NSD, NSU, NLC
WRITE(7,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIL, NSU
WRITE(7,60) CONSI,NV
WRITE(7,61)NCIL, NCBL, NSU, NCIL, NLC, NSU, BNC, NBW, BNC, NLC
WRITE(7,62)M8,K21,NTE,NLC,NCE,NLC,CONS4,NSE,NLC,CONS3
WRITE(7,63)CONS1, NV, NUS, NPH, M8, K21, K3
WRITE(7,64) I106, NSU, NPH, NPH, K4, NV, NV
WRITE(7,65)K5,K66,K5,K7,BNC,K9,NCII,NU3,NSU
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
                                            THIS PAGE IS BEST QUALITY PRACTICABLE
WRITE(7,68)NGG,NSD
WRITE(7,85)
                                            FROM COPY FURNISHED TO DDQ
WRITE(7,300)
WRITE(7,81)
WRITE(7,82)
```

WRITE(7,83)

```
WRITE(7,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIL, NSU
WRITE(7,60) CONSI,NV
WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(7,63)CONS1,NV, NUS, NPH, M8, K21, K3
WRITE(7,64)1106, NSU, NPH, NPH, K4, NV, NV
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
WRITE(7,85)
WRITE(7,301)
WRITE(7,81)
WRITE(7,82)
WRITE(7,83)
WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(7,63)CONS1,NV, NUS, NPH, M8, K21, K3
WRITE(7,64)1106, NSU, NPH, NPH, K4, NV, NV
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,671CONS1,K13,M8,NSU,NCBL,NSU
WRITE(7,85)
WRITE(7,302)
WRITE(7,81)
WRITE(7,82)
WRITE(7,83)
WRITE(7,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIL, NSU
WRITE(7,60) CONSI,NV
WRITE(7,62)MB, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(7,63)CONS1, NV, NUS, NPH, M8, K21, K3
WRITE(7,64) 1106, NSU, NPH, NPH, K4, NV, NV
WRITE(7,65)K5,K66,K5,K7,BNC,K9,NCII,NU3,NSU
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
hRITE(7,85)
WRITE(7,303)
WRITE(7,81)
WRITE(7,62)M8, K21, NTE, NLC, NCE, NLC, CONS4, NSE, NLC, CONS3
WRITE(7,63)CONS1,NV,NUS,NPH,M8,K21,K3
WRITE(7,66)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,67)CONS1,K13,M8,NSU,NCBL,NSU
WRITE(7,85)
WRITE(7,304)
WRITE(7,81)
WRITE(7,82)
WRITE(7,83)
WRITE(7,84)
WRITE(7,43)NSU,KKU,KKU,NSU,NSU,NSU,KKU
WRITE(7,44)CONS1,NSU,NSU,NSU,NSU,KKU,KKU
WRITE(7,59)NGU, KKU, NGU, KKU, NGU, KKU, K1, K2, NCIL, NSU
WRITE(7,60)CONSI,NV
WRITE(7,611)NCIL,NCBL,NSU,NCIL,NLC,NSU,BNC,NBW,BNC,NLC
WRITE(7,72)K5, K66, K5, K7, BNC, K9, NCII, NU3
WRITE(7,73)CONS1,NSU
WPITE(7,666)K10,K9,K11,K12,K118,K12,K11,K26
WRITE(7,677)CONS1,K13,M8,NSU,NCBL,NSU
WRITE(7,74)NCC,CONS2,NCC,CONS2,CONS2,CONS1,CONS1,SNN
WRITE(7,75)CONS2,CONS2,CONS2,CONS2,CONS2,CONS2
WRITE(7,85)
WRITE(7,306)
WRITE(7,81)
WRITE(7,76)K5,K66,K5,K7,BNC,K9,NCII,NU3
WRITE(7,77)CONSI,NSU
WRITE(7,78)NCC,CONS2,NCC,CONS2,CONS2,CONS1,CONS1,SNN
WRITE(7,791CONS2,CONS2,CONS2,CONS2,CONS2,CONS2
```

1=4

WRITE(7,85)

FORMAT PUNCHING STATEMENTS

FORMAT(6X, 'IMPLICIT REAL*8 (A-H, 0-Z)') 81 FORMAT (6x, 'INTEGER SIZE, BNC, SN') 82 FORMAT (6x, 'DIMENSION PB(',13,',',12,'),ALP(',13,',',12,'),DBIN(',1 40 13, ', ', 12, '), 00(', 13, '), FACC(', 12, '), FB(') FORMAT(5X, 11, 13, 1), BETA(1, 12, 1), CL(1, 12, 1), NZ(1, 13, 1, 1, 12, 1), LINLG 41 1(', 12,',', 12,'), NJL(', 12,'), NVV(', 12,'), NEGV(') FORMAT (5x, 11, 12, 1)) 42 FORMAT (6x, 'COMMON STEP, BNC, SN, NBW, SIZE, NLC, NSU') 83 FORMAT(6X, COMMON/V1/N1, NCI, NWK, NGK, MA, NUI, NU2, NU3, MI, NB, NJK, NC, NI 84 21,150,101'1 FDRMAI(6X, COMMON/V2/NIC(', 12,'), Nw(', 12,'), NG(', 12,'), NBW1(', 12,' 43 11,NBW2(',I2,'),NBW3(',I2,'),NM(',I2,'),') FORMAT (5x, 11, "NBJ(", 12,"), NJ(", 12,"), NCB(", 12,"), NEW(", 12,"), [QS(" 44 1,12,'), MEB(',12,'), MEF(',12,')') 45 FORMAT(6X, 'COMMON/P1/B1(', I2, ', ', I2, '), B2(', I2, ', ', I2, '), B3(', I2, ' 1, 1, 12, 1), ESF(1, 12, 1, 1, 12, 1), NA(1, 14, 1), NI1(1, 12) FORMAT(5x, 11, 1), NJ1(1, 12, 1), NJ2(1, 12, 1)) 46 47 FORMAT(6X, 'COMMON/P2/XNUU(', [3, ', ', 12, '), ELL(', [3, ', ', 12, '), BU(', [13,',', 12,'), STRESS(', 14,'), TC SM(') FORMAT(5X, 11, 14, 1), TRCSSP(1, 14, 1), XCOST(1, 12, 1), ICSS(1, 14, 1, 12, 1 48 1), ISAC(', I4,',', I2,'), INDC(', I4) FORMAT(5x, 11, 1, 1, 12, 1), IGRT(1, 13, 1, 12, 1), IGRE(1, 14, 1, 12, 1), NND 49 1C(', 15, '), LLN(', 12, '), ITY(', 12, '), ICSSM(') 50 FORMAT(5x, 11, 14, ', ', 12, ')') FORMAT(6X, 'COMMON/P3/EVEC(', I3, ', ', I2, '), RRF(', I2, '), RDLIM(', I2, ') 51 1,RSL(', [2,'),RSU(', [2,'),RLOAD(', [2,')') 52 FORMAT(5X, I1, ', REDUC(', I3, '), NDOF(', I2, '), NDM(', I3, '), NBDAM(', I2, ' 1,',12,'),KIIDAM(',12,',',12,')') FORMAT(6X, 'COMMON/P4/INF(', I3, ', ', [2, '), NGV(', I3, ', ', ', [2, '), INO(', I 53 13, 1, NOISP(1, 13, 11) 54 FORMAT(6X, 'COMMON/P5/YK(', 13, '), YM(', 13, '), SK(', 13, '), SM(', 13, '), E 1Y(',13,'),SG(',13,')') 55 FORMAT(6X, 'COMMON/R1/BL(', 13, ', ', 12, '), DLIB(', 13, ')') FORMAT(6x, 'COMMON/R2/PI(',12,',',12,',',12,'), RR(',14,',',12,'), E(56 1',[3,',',[2,'],MN(',[4,',',[2,'],NOM(',[3,',') 57 FORMAT(5x, 11, 12, ')') FORMAT(6X, 'COMMON/R4/| [L(',[3,',',[2,'),KLC(',[3,'),IOK(',[2,'),NO 58 1(', [2, ')') 59 FORMAT(6X, 'COMMON/R5/B(', I3, ', ', I2, '), SL(', I3, ', ', I2, '), SU(', I3, ', 1',12,'),DPB(',13,',',13,'),DLIM(',12,',',12,')') 60 FORMAT(5x, 11, ', SS(', 13, ')') FORMAT(6X, 'COMMON/A1/Q(', 12, ', ', 13, ', ', 12, '), ZI(', 12, ', ', 12, ', ', 12 61 1,'),C(',[3,',',[3,'],Z8(',[3,',',[2,']') FORMAT(6X, COMMON/A1/G(',12,',',13,',',12,'),ZI(',12,',',12,',',12 611 1,'),C(',13,',',13,'),ZB(',13,',',12,')') FORMAT(6x, COMMON/A3/BR(4,14,4,4,12,4), TRSF(4,14,4,4,12,4), CSTF(4, 62 112,',',12,',',12,'),SSPF(',12,',',12,',',12,'),') FORMAT(5x,11,'Z(',13,',',12,'),DZE(',13,'),MP(',14,',',12,'),ND(', 63 115. 1111 FORMAT(6X, 'COMMON/A4/X(',14,',',12,'),DLP(',13,'),DLPH(',13,'),T(' 64 1,14,'), WM(',13,'), RO(',13,')') 65 FORMAT(6X, 'COMMON/A5/D(', 13, ', ', 13, '), DS(', 13, ', ', 13, '), A2(', 13, ', 1',13,'),DK[(',12,',',12,'),KI [UBW(',12,')') 66 FORMAT(6X, 'COMMON/A6/DPZ(', I3,',', I3,'), ZZ(', I3,',', I2,'), BE(', I4, 1",",12,"),W(",13,"),H(",14,"),VV(") FORMAT(6X, 'COMMON/A6/DPZ(', 13,', ', 13,'), ZZ(', 13,', ', 12, '), BE(', 14, 666

```
67
     FORMAT (5x, 11, 14, '), Y(', 14, ', ', 12, '), NZC(', 13, ', ', 12, ')')
     FORMAT(5x, 11, 14, '), A(', 14, ', ', 12, '), NZC(', 13, ', ', 12, ')')
577
     FORMAT(6X, 'COMMON/A7/DPX(', 13,',', 13,')')
68
69
     FORMAT(6X, 'COMMON/C1/XEIG(', 13,',',12,'), YXEIG(', 13,',',12,'), WS('
    1, 12, '), DM(', 13, ', ', 13, '), LET(', 12, ')')
70
     FORMAT(5X, '$/C3/ QQK(', 12, ', ', 12, '), QQM(', 12, ', ', 12, '), QA(', 12, ', '
    1,12,111
71
     FORMAT(6x, 'COMMON/C1/XEIG(', [3, ', ', 12, '), YXEIG(', [3, ', ', 12, '), WS('
    1,12,1),DM(1,13,1,1,13,1),IETA(1,12,1)1)
     FORMAT(6X, 'COMMON/A5/XCL(', 13,',', 13,'), AMAS2(', 13,',', 13,'), XM(',
72
    113, ', ', 13, '), DKI(', 12, ', ', 12, '), KI IUB')
     FORMAT(5x, 11, 'w(', 12, ')')
73
     FORMAT(6x, 'COMMON/C1/x(',13,',',12,'),Y(',13,',',12,'),W(',12,'),D
74
    1M(',13,',',13,'), IETA(',12,')')
75
     FORMAT(5X, '$/C3/ QQK(', I2,',', I2,'), QQM(', I2,',', I2,'), Q(', I2,',',
    112, 111)
     FORMAT(6x, 'COMMON/A5/XCL(', 13,',', 13,'), AMAS2(', 13,',', 13,'), ZM(',
76
    113, ', ', 13, '), DKI (', 12, ', ', 12, '), KI IUB')
77
     FORMAT (5x, 11, " W(", 12, ")")
     FORMAT(6x, 'COMMON/C1/Z(', 13, ', ', 12, '), Y(', 13, ', ', 12, '), W(', 12, '), D
78
    1M(',13,',',13,'), IETA(',12,')')
79
     FDRMAT(5X, 18/C3/ XK(1, [2,1,1, [2,1]), XM(1, [2,1,1,1]), P(1, [2,1,1,1])
    1, ") ")
171
    FORMAT (6x, 'COMMON/C4/ETC(', [4, '), TE[(', [2, '), TE(', [2, ']'))
85
     FORMAT( 6X, *******
     FORMAT ( 6X, 1$$$$$
86
                             MAIN')
     FORMAT (6X, '$$$$$
87
                             VARI 1)
     FORMAT(6X, * $$$ $$
88
                             ELESTF'1
     FORMAT (6X, 1 $$$$$
89
                             STIFFM')
90
     FORMAT (6X, $55 $5
                             RECALL')
91
     FORMAT (6X, 1$$$$$
                             DECUPP')
92
     FORMAT (6x, '$$$$$
                             SOLDUP' )
94
     FORMAT(6X, $$$$$
                             MKYS 1
95
     FORMAT (6X, 1 $$$ $$
                             DEFREQ! 1
96
     FORMAT(6X, * $$$$$
                             ZBZ [EF')
                             CONST')
97
     FORMAT (6X, 1$$$$$
     FORMAT (6X, '$$$$$
98
                             ABSMAX 1
99
     FORMAT ( 6X, * $$$$$
                             GENC')
     FORMAT (6X, 1 $$$$$
300
                             DELBE')
     FORMAT(6x, '$$$$$
301
                             DESVV')
     FORMAT (6X, '$$$$$
                             SDD 1
302
                             SOL VEL 1
     FORMAT (6X, '$$$$$
303
304
     FORMAT (6X, 1$$$$$
                             SUBSP')
     FORMAT (6x, '$$$ $$
                             JACOBI')
306
      IDIM=BNC*NLC+NGU*KKU+ILIM*CDNS2+NV+IET+ILIM+I108+IET+NBJL*NSU+LINK
    1*CONS2+NLJ+IET+IPDAM
     IV2=9*NSU+5*KKU
      IP1=4*81+3*9+K20
      IP2=3*NGU*KKU+M8*K21+I102+I103+I104+IET+5*M8*K21+I105+2*IET
      IP3=1+6*IPDAM+2*K22+KKU*I100+NSU*IPDAM
      IP4=NSD*8+NGU*KKU+NSD+NCC
     IP5=6
      [R1=NGU*KKU+BNC
      IR2=NCIL*NLC*NSU+M8*K21*1+2*NGU*KKU+M8*KKU
      IR4=NSD*NSU+NSD+NSU+NLC
      IR5=3*NGU*KKU+K1*K2+NCIL*NSU+NV
      IA1=NCIL*NCBL*NSU+NCIL*NLC*NSU+BNC*NBW+BNC*NLC
      IA3=2*M8*K21+NTE*NLC*1+4*NCE*NLC+NSE*NLC*3+NV*NUS+NPH+K3
      IA4= I106*NSU+2*NPH+K4+2*NV
      IA5=K5*K66+K5*K7+BNC*K9+NCII*NU3+NSU
      IA6=K10*K9+K11*K12+K118*K12+K11+K26+K13+M8*NSU+NCBL*NSU
```

```
IA7=NGG*NSD
IC1=2*NCC*2+3+SNN
IC3=12
IC4=IETC+2*IPDAM
MEMO=IDIM+IV2+IP1+IP2+IP3+IP4+IP5+IR1+IR2+IR4+IR5+IA1+IA3+IA4+IA5+
1IA6+IA7+IC1+IC3 +IC4
WRITE(6,33)MEMO

33 FORMAT(6x,'TOTAL MEMORIES USEC = ',16)
WRITE(6,200)
200 FORMAT(10x,'SUCESSFUL RUN')
STOP
END
//GD.SYSIN DD
```

LIST OF SYMBOLS

В	a subscript used to indicate quantities assiciated with boun-
	dary coordinates
Ъ	a vector of design variables
b^{L}	lower bound on b
P	upper bound on b
c(a)	a matrix defined in Equation 2.4-11
$c_1^{(\alpha)}$	a matrix defined in Equation 2.4-12
$c_2^{(\alpha)}$	a matrix defined in Equation 2.4-4
D	total number of design variables
d	superscript for design variabel constraint
d	total number of damage condition
e	superscript for eigenvalue constraint
FB	a vector of effective boundary forces for the entire structure
f	natural frequency (Hz)
G(a)	a matrix defined in Equation 2.4-18
Н	a matrix defined in Equation 2.5-12
I	a subscript used to indicate quantities associated with inter-
	ior coordinate
I _i	moment of inertia of the i th member
J	cost function defined by Equation 2.3-12
К(b)	stiffness matrix for the entire structure; (N x N)
КВ	boundary stiffness matrix for the entire structure; (n x n)
KBB, KBI	submatrices of K(b)
K _{IB} , K _{II}	submatrices of K(b)
L	total number of substructures
lij	length or surface area of the jth member in the ith group
l _i	equivalent length of the i th member
м(ь)	mass matrix for the entire structure; (N x N)
m	total number of interior degrees of freedom
m(r)	number of interior degrees of freedom for the rth substructure
N	total number of degrees of freedom

n	total number of boundary degrees of freedom
n(r)	number of boundary degrees of freedom for the $r^{\mbox{th}}$ substructure
p ^(r)	a vector of member forces for the rth substructure
r	superscript for rth substructure
r	cost function reduction ratio, needed in calculating the step
	size
S(b)	a vector of externally applied loads
SB	a subvector of S associated with the boundary degrees of free-
	dom
SI	a subvector of S associated with the interior degrees of free-
	dom
s	superscript for superscript for stress and displacement con-
	straints
W	weighting matrix
Wi	coefficient of weighting matrix associated with ith design
	variable
$\overline{\mathtt{w}}_{\mathtt{i}}$	multiplier associated with W
x ₁ ,x ₂ , x ₃	cartesian coordinates
y (α)	eigenvector associated with Equation 2.2-16
z(a)	a vector of nodal displacements for the entire structure
za	a vector of allowable nodal displacements for the entire
	structure
$z_{\rm B}^{(\alpha)}$	a vector of boundary displacements for the entire structure
$z_{I}^{(\alpha)}$	a vector of interior displacements for the entire structure
δЪ	a vector of small changes of design variable b
δz(α)	a vector of small changes in the vector $\mathbf{z}_{\mathbf{I}}$
δ z _B (α)	a vector of small changes in the vector $\mathbf{z}_{\mathbf{B}}$
δb^1 , δb^2	defined in Equations 2.5-9 and 2.5-10
α	a superscript used to denote a damage condition
$\overline{\alpha}_{\mathbf{i}}$	positive constant used to calculate the moment of inertia
β(r)	a Boolean transformation matrix for the rth substructure
σa	an allowable stress

$\sigma^{\mathbf{c}}$	calculated stress
$\rho_{\mathbf{i}}$	material density of members of the i th group
μ	Lagrange multiplier vector
μ^1 , μ^2	components of µ
η	step size used in Equation 2.5-8
ζ	eigenvalues associated with Equation 2.2-16
$\phi^{s(\alpha)}, \phi^{d}$	vector constraint functions used in Equation 2.5-6
φ ^e	scalar frequency constraint function used in Equation 2.5-6
λ_{I} , λ_{B}	adjoint matrices obtained from Equation 2.4-28
$\lambda_{I}^{J(\alpha)}, \lambda_{B}^{J(\alpha)}$ $\lambda_{B}^{s(\alpha)}, \lambda_{I}^{s(\alpha)}$	adjoint matrices obtained from Equations 2.4-28, 2.4-29,
$\lambda_{B}^{s(\alpha)}, \lambda_{I}^{s(\alpha)}$	2.4-24 and 2.4-25
$\begin{pmatrix} \Lambda^{J}, & \Lambda^{S(\alpha)} \\ \Lambda^{d}, & \Lambda^{e(\alpha)} \end{pmatrix}$	matrices whose columns represent sensitivity vectors defined
$\Lambda^{\mathbf{d}}, \Lambda^{\mathbf{e}(\alpha)}$	in Equations 2.4-27, 2.4-33, 2.4-21 and 2.4-19.
ABBREVIATIONS	
CST	constant strain triangular elements
NLC	number ofloading conditions
FSODPS	fail-safe design problem with substructuring
SSP	symmetric shear panel
SPSP	symmetric pure shear panel

number of element types in the rth substructure

structural optimization with substructures

degrees of freedom

Dimension Computer

TP(r)

SOS

DOF

DIMCO