Let p^* be an approximation to a number p (not necessarily its floating point approximation). Then:

• Absolute error: $|p - p^*|$

 $\frac{|p-p^*|}{|p-p^*|}$ (provided $p \neq 0$) • Relative error:

Significant Digits. The number p^* is said to approximate p to tsignificant digits (or figures) if t is the largest nonnegative integer such that

$$\frac{|p-p^*|}{|p|} \le 5 \times 10^{-t}.$$

$$\cos(h) = 1 - \frac{h^2}{2!} + \frac{h^4}{4!} - \frac{h^6}{6!} + \cdots$$

$$\sin(h) = h - \frac{h^3}{3!} + \frac{h^5}{5!} - \frac{h^7}{7!} + \cdots$$

$$\tan(h) = h + \frac{h^3}{3} + \frac{2h^5}{15} + \frac{17h^7}{315} + \cdots$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$e^h = 1 + h + \frac{h^2}{2!} + \frac{h^3}{3!} + \frac{h^4}{4!} + \cdots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

Suppose $\{\beta_n\}_{n\geq 1}$ is a sequence known to converge to 0 and $\{\alpha_n\}_{n>1}$ a sequence that converges to a value $\alpha \in \mathbb{R}$.

If there exists a constant K > 0 such that

$$|\alpha_n - \alpha| \le K|\beta_n|$$
 for large n ,

then we say that $\{\alpha_n\}$ converges to α with rate of convergence $\mathcal{O}(\beta_n)$. This is denoted as:

$$\alpha_n = \alpha + \mathcal{O}(\beta_n).$$

Order of Convergence. Let $\{p_n\}_{n=0}^{\infty}$ be a sequence with $\lim_{n\to\infty} p_n =$ p and $p_n \neq p$ for all n. If there exist positive constants λ and α such that

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda,$$

then we say that $\{p_n\}_{n=0}^{\infty}$ converges to p with order α and constant λ .

- In general, the larger α , the more rapid the convergence.
- The constant λ affects this speed, but generally it is not as important as the order α .

The following statements are equivalent for a matrix $A \in \mathbb{R}^{n \times n}$:

- $det(A) \neq 0$
- The system Ax = 0 has a unique solution x = 0 (i.e., the column vector with all zero entries)
- The system Ax = b has a unique solution for any n-dimensional column vector b
- The matrix A is nonsingular, that is, A^{-1} exists

If GE can be performed on the system Ax = b without row interchanges, then the matrix A can be factored as:

$$A = LU, \Rightarrow L(Ux) = b$$

Let $A \in \mathbb{R}^{n \times n}$. A is said to be strictly diagonally dominant if

$$|a_{ii}| > \sum_{\substack{j=1\\ j \neq i}}^{n} |a_{ij}|$$
 for all $i = 1, \dots, n$,

A strictly diagonally dominant matrix A is nonsingular. Moreover, in this case, GE can be performed on any linear system Ax = b without row or column interchanges, and the computations will be robust to round-off errors.

If $A \in \mathbb{R}^{n \times n}$ is **positive definite**, then:

- A is symmetric, i.e. $A = A^{\top}$.
- $\mathbf{x}^{\top} A \mathbf{x} > 0$ for all nonzero $\mathbf{x} \in \mathbb{R}^n$.
- A is nonsingular.
- $a_{ii} > 0$ for each i = 1, ..., n.
- $\max_{1 \le i, j \le n} |a_{ij}| \le \max_{1 \le i \le n} |a_{ii}|.$ $(a_{ij})^2 < a_{ii}a_{jj}$ for each $i \ne j$.

Cauchy-Schwarz Inequality. For each $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\left|\mathbf{x}^{\top}\mathbf{y}\right| = \left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1/2} = \|\mathbf{x}\|_{2} \|\mathbf{y}\|_{2}.$$

Matrix Norms and Distances. A matrix norm on $\mathbb{R}^{n \times n}$ is a function $\|\cdot\|:\mathbb{R}^{n\times n}\to\mathbb{R}$ such that for any $\mathbf{A},\mathbf{B}\in\mathbb{R}^{n\times n}$ and any $\alpha\in\mathbb{R}$:

- $\|\mathbf{A}\| \geq 0$,
- $\|\mathbf{A}\| = 0$ if and only if $\mathbf{A} = \mathbf{0}$,
- $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|,$
- $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$

(triangle inequality),

$$\bullet \|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$$

$$\bullet \|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \cdot \|\mathbf{B}\|$$

(submultiplicative property).

Spectral radius $\rho(A)$ of a matrix A is defined by

$$\rho(A) = \max |\lambda|,$$

where λ is an eigenvalue of **A**.

Let $A \in \mathbb{R}^{n \times n}$. Then,

$$||A||_2 = \sqrt{\rho(A^\top A)}.$$

Furthermore, for any natural norm $\|\cdot\|$, we have

$$\rho(A) \leq ||A||$$
.

Condition Number (ℓ_2 norm). Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. The condition number of A (w.r.t. ℓ_2) is

$$\kappa(A) = \|A\|_2 \|A^{-1}\|_2 = \sqrt{\frac{\lambda_{\max}(A^{\top}A)}{\lambda_{\min}(A^{\top}A)}},$$

where $\lambda_{\max}(A^{\top}A)$ and $\lambda_{\min}(A^{\top}A)$ are the largest and smallest eigenvalues (in absolute value) of $A^{\top}A$.

- Well-conditioned if $\kappa(A) \approx 1$.
- Ill-conditioned if $\kappa(A) \gg 1$.

$$A = D - L - U$$
 for iterative

1. Jacobi:

$$x^{(k+1)} = D^{-1}(L+U)x^{(k)} + D^{-1}b$$

2. Gauss-Seidel:

$$x^{(k+1)} = (D-L)^{-1}Ux^{(k)} + (D-L)^{-1}b$$

3. Successive Over-Relaxation (SOR):

$$x^{(k+1)} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U] x^{(k)} + \omega (D - \omega L)^{-1} b$$

For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ defined by the iteration

$$\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{c}$$

converges to the unique solution of

$$\mathbf{x} = T\mathbf{x} + \mathbf{c}$$

if and only if $\rho(T) < 1$.

Newton's Method.

Given a function $f(x) \in C^2[a, b]$, Newton's method generates a sequence:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \quad n = 1, 2, \dots$$

Convergence: Quadratic if f(p) = 0, $f'(p) \neq 0$, and p_0 is close to the root.

Secant Method (derivative-free):

$$p_n = p_{n-1} - f(p_{n-1}) \cdot \frac{p_{n-1} - p_{n-2}}{f(p_{n-1}) - f(p_{n-2})}$$

Convergence: Superlinear, with order approximately $\alpha = \frac{1+\sqrt{5}}{2} \approx$ 1.618

Modified Newton Method (for root of multiplicity m).

If f(x) has a root of multiplicity m at p, standard Newton converges only linearly.

To restore quadratic convergence:

$$p_n = p_{n-1} - \frac{mf(p_{n-1})}{f'(p_{n-1})},$$
 (if multiplicity m is known)

Alternative: Apply Newton to $\mu(x) = \frac{f(x)}{f'(x)}$. This leads to:

$$p_n = p_{n-1} - \frac{f(p_{n-1})f'(p_{n-1})}{(f'(p_{n-1}))^2 - f(p_{n-1})f''(p_{n-1})}$$

Note: Requires second derivative f''(x); restores quadratic convergence.

Lagrange Interpolation Formula.

Given n+1 distinct data points $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)),$ the unique polynomial $P(x) \in \mathbb{P}_n$ that interpolates the data is:

$$P(x) = \sum_{j=0}^{n} f(x_j) L_j(x)$$

where the Lagrange basis polynomials $L_j(x)$ are defined by:

$$L_j(x) = \prod_{\substack{0 \le k \le n \\ k \ne j}} \frac{x - x_k}{x_j - x_k}$$

Numerical Differentiation (Equally Spaced Nodes, n = 2). If $x_1 = x_0 + h$ and $x_2 = x_0 + 2h$, then:

$$f'(x_0) = \frac{1}{h} \left(-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right) + \frac{h^2}{3} f^{(3)}(\xi(x_0)),$$

$$f'(x_1) = \frac{1}{h} \left(-\frac{1}{2} f(x_1 - h) + \frac{1}{2} f(x_1 + h) \right) - \frac{h^2}{6} f^{(3)}(\xi(x_1)),$$

$$f'(x_2) = \frac{1}{h} \left(\frac{1}{2} f(x_2 - 2h) - 2f(x_2 - h) + \frac{3}{2} f(x_2) \right) + \frac{h^2}{3} f^{(3)}(\xi(x_2)).$$

Divided Differences & Newton Form (compact). Let distinct nodes x_0, \ldots, x_n . Define divided differences recursively

$$f[x_i] = f(x_i), \ f[x_i, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

The Newton interpolant is

$$P_n(x) = \sum_{k=0}^n f[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j),$$

Cubic Spline Interpolation Types. Given data points $(x_0, y_0), \ldots, (x_n, y_n)$, a cubic spline consists of piecewise cubics $S_i(x)$ with continuous first and second derivatives.

- Natural (Free) Spline:
 - $S''(x_0) = 0$ and $S''(x_n) = 0$
- Clamped (Complete) Spline:
 - $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$ (derivatives specified)
- Not-a-Knot Spline:

S''' is continuous at x_1 and x_{n-1} (i.e., $S'''_0(x_1)=S'''_1(x_1),$ $S'''_{n-2}(x_{n-1})=S'''_{n-1}(x_{n-1}))$

Numerical Differentiation via Lagrange Interpolation.

Let $x_0, x_1, \ldots, x_n \in [a, b]$ and suppose $f \in C^{n+1}[a, b]$. Then the Lagrange interpolation formula gives:

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

for some $\xi(x) \in [a, b]$, where $L_k(x)$ are the Lagrange basis polynomials. Differentiating and evaluating at $x = x_i$, we obtain:

$$f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{\substack{0 \le k \le n \\ k \ne j}} (x_j - x_k)$$

This is an (n + 1)-point formula for estimating $f'(x_j)$ from values $f(x_0), \ldots, f(x_n)$.

Gaussian Quadrature (5-point Rule).

Gaussian quadrature approximates

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

where x_i are the roots of the *n*th Legendre polynomial $P_n(x)$, and w_i are weights.

Change of Interval: To apply over interval [a, b], transform:

$$\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{a+b}{2}\right) dt$$

where the nodes x_i are the n distinct zeros of the Legendre polynomial $P_n(x)$ (orthogonal on [-1,1] with weight 1), and the weights are

$$w_i = \frac{2}{(1-x_i^2)[P'_n(x_i)]^2}.$$

Legendre polynomials (Bonnet's recursion).

$$P_0(x) = 1, \qquad P_1(x) = x,$$

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x) \quad (n \ge 1).$$

Useful derivative identity (for weights):

$$P'_n(x) = \frac{n}{1 - x^2} \left(P_{n-1}(x) - x P_n(x) \right).$$

Degree of Precision (Exactness). A quadrature rule

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} w_{i} f(x_{i})$$

is said to have degree of precision m if it integrates exactly every polynomial p(x) with deg $p \leq m$, but fails for some polynomial of degree m+1.

For Gaussian quadrature with n nodes, the degree of precision is 2n-1.

Lipschitz Condition. A function f(t, y) satisfies a Lipschitz condition in y if there exists L > 0 such that

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$
 for all $y_1, y_2 \in \mathbb{R}$, $a \le t \le b$.

Then we say f is Lipschitz in y. Or, sufficient condition $\left|\frac{\partial f}{\partial y}(t,y)\right| \leq L$ **Existence and Uniqueness Theorem.** Let $D = \{(t,y) \in \mathbb{R}^2 : a \leq t \leq b, -\infty < y < \infty\}$. Suppose f(t,y) is continuous on D, and Lipschitz in y. Then the initial value problem:

$$y'(t) = f(t, y), \quad y(a) = \alpha, \quad a \le t \le b,$$

has a unique solution y(t) on [a, b].

Well-posedness: The same conditions (continuity and Lipschitz) imply the IVP is *well posed*: small changes in inputs (e.g. initial value or f(t,y)) lead to small changes in solution y(t).

Euler's Method (for IVPs).

Consider the initial value problem (IVP):

$$y'(t) = f(t, y), \quad y(a) = \alpha, \quad a \le t \le b.$$

Let h > 0 be the *step size*, assumed constant for simplicity:

$$h = \frac{b-a}{N}, \quad t_j = a + jh, \quad j = 0, 1, \dots, N.$$

We seek approximations $y_i \approx y(t_i)$ via:

$$y_{i+1} = y_i + h f(t_i, y_i), \quad i = 0, 1, \dots, N-1.$$

Remarks:

- Local truncation error: $\mathcal{O}(h^2)$
- Global truncation error: $\mathcal{O}(h)$ (first-order method)
- Variable step sizes h_j may also be used when needed.

Runge-Kutta Methods (for IVPs).

Consider the IVP

$$y'(t) = f(t, y), \quad y(a) = \alpha, \quad a \le t \le b$$

with step size $h = \frac{b-a}{N}$, $t_i = a + ih$.

General explicit two-stage RK method:

$$k_1 = h f(t_i, y_i),$$

 $k_2 = h f(t_i + \alpha h, y_i + \beta k_1),$
 $y_{i+1} = y_i + a k_1 + b k_2.$

Choose a, b, α, β to maximize local order.

Two common $\mathcal{O}(h^2)$ choices:

• Midpoint method: $a=0, b=1, \alpha=\beta=\frac{1}{2}$

$$k_1 = h f(t_i, y_i), \quad k_2 = h f\left(t_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right), \quad y_{i+1} = y_i + k_2.$$

• Modified Euler: $a = b = \frac{1}{2}, \ \alpha = \beta = 1$

$$k_1 = h f(t_i, y_i), \quad k_2 = h f(t_i + h, y_i + k_1), \quad y_{i+1} = y_i + \frac{k_1 + k_2}{2}.$$