Unit 4. Network Analysis

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Study Abroad. Operations Research

jordi.villa@uvic.cat

9-16/05, 2023

Preliminary

This course is strongly based on the monography on Operations Research by Carter, Price and Rabadi [1], and in material obtained from different sources (quoted when needed through the slides).

Summary

- Introduction
- 2 Definitions
- Maximum flow
- 4 Minimum Cost Network Flow
- 6 References

Introduction: Learning outcomes

- Getting familiar with the use of network analysis in OR
- Understanding network flow in graphs
- Understanding minimum cost network flow problems
- Applying network connectivity to LP problems
- Solving shortest path problems
- Understanding and applying dynamic programming

Introduction: The concept

- Network analysis provides a framework for the study of a special class of linear programming problems that can be modeled as network programs.
- Some of these problems correspond to a physical or geographical network of elements within a system, while others correspond more abstractly to a graphical approach to planning or grouping or arranging the elements of a system.

Introduction: Examples

- Systems of highways, railroads, shipping lanes, or aviation patterns, where some supply of a commodity is transported or distributed to satisfy a demand;
- pipeline systems or utility grids can be viewed as fluid flow or power flow networks;
- computer communication networks represent the flow of information;
- an economic system may represent the flow of wealth;
- routing a vehicle or a commodity between certain specified points in the network;
- assigning jobs to machines, or matching workers with jobs for maximum efficiency;
- project planning and project management, where various activities
 must be scheduled in order to minimize the duration of a project or to
 meet specified completion dates, subject to the availability of
 resources;
- and many, many others.

Summary

- Introduction
- 2 Definitions
- 3 Maximum flow
- 4 Minimum Cost Network Flow
- 6 References

Graphs and networks: definitions

- A graph consists of a set of nodes V (vertices, points, or junctions) and a set of connections called arcs A (edges, links, or branches).
- Each connection is associated with a pair of nodes and is usually drawn as a line joining two points. The graph can be defined as directed or undirected.
- The degree of a node is the number of arcs attached to it. An isolated node is of degree zero.
- In a directed graph, or digraph, the arc is often designated by the ordered pair (A, B). In digraphs, the direction of the flow matters.

Paths

$$A, (A, B), B, (B, C), \underbrace{C, (C, D), D, (D, E), E, (E, C), C}_{cyclic}$$

$$A, (A, B), B, (B, C), \underbrace{C, (C, D), D, (D, E), E, (C, E), C}_{noncyclic}$$

- If all the arcs in a path are forward arcs, the path is called directed chain or simply chain.
- path and chain are synonimous if the graph is undirected.
- In the second example above we saw a cyclic path but not a cyclic chain, as it included the backward arc (C, E).
- A connected graph has at least one path connecting every pair of nodes.
- In a bipartite graph the nodes can be partitioned into two subsets S and T, such that each node is in exactly one of the subsets, and every arc in the graph connects a node in set S with a node in set T.
- Such a graph is **complete bipartite** if each node in *S* is connected to every node in *T*.

Bipartite vs complete bipartite graphs

 A tree is a directed connected graph in which each node has at most on predecessor, and one node (the root node) has none. In an undirected graph, we have a tree if the graph is connected and contains no cycles.

 A network is a directed connected graph that is used to model/represent a system/process. The arcs are typically assigned weights representing cost, value or capacity corresponding to each link.

- Nodes in networks can be designated as sources, sinks or transshipments. A cut set is any set of arcs which, if removed from the network, would disconnet the sources(s) from the sink(s).
- **Flow** can be thought of as the total amount of an entity that originates at the source, makes it through the different nodes and reaches the sink.

Summary

- Introduction
- 2 Definitions
- Maximum flow
- 4 Minimum Cost Network Flow
- 6 References

Maximum flow I

Maximum flow in networks

Determine the maximum possible flow that can be routed through the various network links, from source (s) to sink (t), without violating the capacity constraints.

Important!: the commodity is only generated at the source and consumed at the sink.

Introduction

Maximum flow II

The maximum flow problem can be stated as a LP formulation.

maximize
$$z=f$$

$$\sum_{i=2}^n x_{1i} = f$$

$$\sum_{i=1}^{n-1} x_{in} = f$$
 subject to
$$\sum_{i=1}^n x_{ij} = \sum_{k=1}^n x_{jk}, \quad \text{for} \quad j=2,3,\ldots,n-1$$

$$x_{ij} \leq u_{ij}, \quad \text{for all} \quad i,j=1,2,\ldots,n$$

Maximum flow algorithm

All network problems here can be solved using the Simplex method, but the network structure can help us solving it more efficiently. In the **Ford-Fulkerson labelling algorithm**:

- Use a labelling procedure to look for a flow augmenting path. If none can be found, stop; the current flow is optimal;
- ② Increase the current flow as much as possible in the flow augmenting path, until reaching capacity of some arc. Come back to step 1.

Exercise 1

Find the maximum flow in this network using the Ford-Fulkerson labelling algorithm:

- In any network, there is always a bottleneck that in some sense impedes the flow through the network.
- The total capacity of the bottleneck is an upper bound on the total flow in the network.
- Cut sets are, by definition, essential in order for there to be a flow from source to sink, since removal of the cut set links would render the sink unreachable from the source.
- The capacities on the links in any cut set potentially limit the total flow.
- The minimum cut (i.e., the cut set with minimum total capacity) is in fact the bottleneck that precisely determines the maximum possible flow in the network (Max-Flow Min-Cut Theorem): the capacity of the cut is precisely equal to the current flow and this flow is optimal. In other words, a saturated cut defines the maximum flow.

Multiple sinks and sources

We can generate a supersource or a supersink node with unlimited capacity and repeat the process of optimization as above:[1]

Summary

- Introduction
- 2 Definitions
- Maximum flow
- Minimum Cost Network Flow
- 6 References

Transportation problem

- Useful when there are costs associated with the flow, given a link capacity.
- Let us assume that every node is a source (supply) and a sink (demand). Imagine a distributor with several warehouses and a group of costumers. Serving each customer from a given warehouse has an associated cost.
- For m supply nodes, each providing s_i suplly, and n demand nodes, each demanding d_j . Assuming that the total demand eaquals the total supply: $\sum_{i=1}^m s_i = \sum_{j=1}^n d_j$ we aim at satisfying the demand using the available supply minimizing cost routes.

minimize
$$z=\sum_{i=1}^m\sum_{j=1}^nc_{ij}x_{ij}$$

$$\sum_{j=1}^nx_{ij}=s_i\quad\text{ for }\quad i=1,\ldots,m$$
 subject to
$$\sum_{i=1}^mx_{ij}=d_j\quad\text{ for }\quad j=1,\ldots,n$$

$$x_{ij}\geq 0\quad\text{ for all }\quad i,j$$

Exercise 2

Find the minimum cost in this trasportation problem:

Sources		Sinks (Customers)								
(Warehouses)	1		2	3		4		5	Supply	
	2	8	7	16		2		30		
1	_			1 —					20	
	1	8	8	14		4		20		
2				1			1		20	
	1	0	12	13		5		28		
3									25	
Demand	12	14		12	18		9		65	

NOTE: The Simplex method says that we should first find any basic feasible solution and then look for a simple pivot to improve the solution. repeat until the optimal solution is found.

Optimizing

- Finding initial solution.
 - Northwest corner rule
 - Minimum cost method
 - Minimum "row" cost method
 - Vogel's method
- Transportation simplex

Transportation simplex

Once we have any feasible solution, we aim at finding the optimal one. Consider:

Minimum Row Cost Final Solution

Sources		Sinks (Customers)									
(Warehouses)	1		2		3		4		5		Supply
		28		7		16		2		30	
1			2		1		18		1		20
		18		8		14		4		20	
2	8		12		1		1		1		20
		10		12		13		5		28	
3	4		1		12		Ī		9		25
Demand	12		14		12		18		9		65

Transportation simplex

We can reduce the total cost by reducing the individual costs in every row i by u_i and in every column j by v_j :

$$c'_{ij} = c_{ij} - u_i - v_j$$

Check that, now:

- $\bullet \sum_{i} \sum_{i} x_{ij} c'_{ij} = 0$
- Check how some costs are now negative in non-basic cells.
- If we increase the number of units in those non-basic cells from 0 to some value, reducing at the same time the number of units in the basic cells, we can reduce the overall cost $\sum_i \sum_j x_{ij} c_{ij}$

Transportation simplex

In practice:

- We find first an initial feasible solution as explained above
- ② Calculate the u_i and v_j , taking into account that $c_{ij} = u_i + v_j$, for all basic variables (used squares in the table). We start by assigning $u_1 = 0$.
- **3** We calculate the *improvement index* by $I_{ij} = c_{ij} u_i v_j$ for all non-used squares in the table.
- **1** If all I_{ij} are positive, the solution is already optimal and we are done.
- **1** If some $I_{ij} < 0$, then build a loop with such value in the corner and alternative \pm signs in all vertex.
- **①** Use the above \pm to increase the number of units in the position that had $I_{ij} < 0$
- We return to step 2.

Summary

- Introduction
- 2 Definitions
- Maximum flow
- 4 Minimum Cost Network Flow
- References

References

[3]

- [1] Michael W. Carter, Camille C. Price, and Ghaith Rabadi. Operations Research, 2nd Edition. CRC Press.
 - David Harel, with Yishai Feldman. Algorithmics: the spirit of computing, 3rd Edition. Addison-Wesley.
 - Ronald L. Rardin. Optimization in Operations Research, 2nd Edition. Pearson.
- 4] J. Hefferon. Linear algebra (4th Ed).

- [5] K.F. Riley, M.P. Hobson, S.J. Bence. Mathematical Methods for Physics and Engineering (2nd Ed). McGraw Hill.
- [6] J. Nocedal, S. J. Wright. Numerical Optimization (2nd Ed). Springer.
- [7] Kenneth J. Beers. Numerical methods for chemical engineering: applications in Matlab. Cambridge University Press.
- [8] D. Barber. Bayesian reasoning and machine learning. Cambridge University Press.

