Akhilesh Moghe

Mobile: +91-8446140906

Linkedin

Senior Engineering Lead

Email: akhileshmoghe@live.com

Blog

An Agile-Result-oriented software engineer focused on the Architecture, Design and implementation of IoT/Edge device/Cloud applications for devices updates & data management. Successfully delivered 2 IoT projects in last 3.5 years with AWS IoT, Azure IoT, Ayla IoT, Mender.io platforms on ARM, x86 & STM32 devices. Overall, 10 years of IT services & Product development experience in IoT, Cloud & Multimedia domains.

<u>Software Development:</u>

Broker Architecture, Client-Server Architecture, Multithreaded-Multiprocessor-distributed Architecture, Agile, Test Driven Development, Design Patterns, REST, Service Oriented Architecture
Technologies Frameworks:

NodeJS, Robot Operating Systems (ROS1 & ROS2)

Cloud Platforms:

AWS, Azure, Ayla IoT Platform, Firebase, PubNub, Mender.io

AWS Cloud Services:

AWS IoT, Greengrass, Robomaker, Lambda, Kinesis, API Gateway, SNS, S3, EC2, EKS Azure Cloud Services:

Azure IoT Hub, IoT Edge, Device Update, Azure Stack Hub, ML Deployment, Storage, Container <u>Programming Languages:</u>

C, C++, C++11, Python, JavaScript, Shell Script

IoT Protocols:

MQTT, D-Bus, DDS, ZeroMQ, AMQP, Serial, MAVLink, TCP-IP, UDP, HTTPS Multimedia Formats:

H264, **VP8 codecs**, **WebM** Packetizer, **WebRTC** Framework

Databases:

MongoDB, MongoDB Realm, InfluxDB, SQLite

Build Tools, Continuous Integration, Continuous Deployment:

Make, CMake, Git, Docker, Kubernetes, Ubuntu Snaps

<u>Soft Skills</u>: Attention to details, Connecting the dots, Analyzing and inferencing, Time Management, Communication, Teamwork, Technical Blogging, Presentation, Effort Estimations

Experience:

- Senior Engineering Lead at Persistent Systems (Oct 2021 Present)
- Engineering Lead at Persistent Systems (Jan 2019 Sept 2021)
- Module Lead at Persistent Systems (Jan 2016 Dec 2018)
- Senior Software Engineer at Persistent Systems (June 2014 Dec 2015)
- Software Engineer at Persistent Systems (July 2011 May 2014)

Education:

- Post Graduate Diploma in Embedded Systems and Design Centre for Development of Advanced Computing (CDAC), Hyderabad
- B.E. in Electronics and Telecommunication Rashtrasant Tukadoji Maharaj Nagpur University

Projects:

1. Edge IoT Framework primarily for Life Sciences Use-cases

- ➤ **Role:** Solutions Architect (3 Months)
- > Accomplishments:
 - Currently evaluating AWS Outpost, AWS EKS, Kubernetes, Containerized deployments, Apache
 Kafka, Pravega, Scalable MQTT brokers deployment to address high volume sensors, highdefinition video data use-cases in 5G Edge Computing scenarios.
 - Worked on common *Edge IoT use-cases*, various possible scenarios considering data flows, data types, data restrictions, privacy, latency, bandwidth consumptions, connectivity restrictions, etc., primarily revolving around Life Sciences projects and devices.
 - Evaluated Open-Source Edge Projects such as *KubeEdge*, *ioFog*, *EdgeX*, *LF-Edge* Umbrella projects against identified use-cases.
 - Evaluated suitability of AWS IoT Greengrass and Azure IoT Edge + other AWS/Azure onpremises services for various Edge computing scenarios, presented pros & cons of both public cloud platforms and created various possible use-cases architecture/design with AWS/Azure as primary components of framework.
 - Architecting a common framework based on open-source Edge projects which can complement the public cloud services in on-premises Edge computing scenarios.

2. NVIDIA Jetson Nano based Healthcare IoT Device as a Guided Pipetting Tip Sensing System

- Role: Systems Engineer (6 Months)
- > Accomplishments:
 - Carried out PoC tasks like *flashing boards* to simulate mass flashing at factory.
 - Multiple PoCs to understand customizing RootFS, Secure Boot, Bootloader Splash Screen.
 - Interfacing Bluetooth module with NVIDIA L4T BSP software for <u>Jetson Nano</u>. All these PoC tasks resulted in a concrete plan to be executed at factory manufacturing.
 - Evaluated, Designed and implemented <u>Firmware update</u> and <u>OS update</u> mechanism based on Mender-Yocto Open-Source project.
 - Designed and implemented device side C++ & Python, RESTful HTTP protocol-based multiprocessor-distributed IoT connectivity application for features like <u>device identity & registration</u>, status, <u>user-device association</u>, <u>certificates management</u>, <u>device shadow</u>.
 - Evaluated different *inter-process communication* tools, *RPC* mechanisms as *ROS1*, *ROS2*, *D-Bus*, *ZMQ* to Architect & Design multiprocessor-distributed application.

3. STM32 MCU based Portable COVID-19 Diagnostic device kit

- Role: Firmware Developer (4 Months)
- > Accomplishments:
 - Designed and Implemented <u>STM32F407</u> based MCU firmware to achieve USB communication with Android app using Virtual COM Port, Flash memory read/write and PWM generation.
 - Created a dummy <u>test application in Python</u> to automate the testing of STM32 firmware.
 - Received "Bravo Award" For the delivering the project in 3 months.
 - Client Received \$2 Million funding to continue development based on our Project

4. OTA Firmware Updates for a STM32 MCUs and full OS Updates for x86 carrier boards

- Role: IoT Developer (14 Months)
- Accomplishments:

- Designed and implemented custom bootloader with Dual bank strategy for <u>STM32F407 MCU</u> to achieve robust <u>Firmware update</u> requirements. **MAVLink** communication protocol and Signature & checksum verification were few of the other key features implemented.
- Designed & developed C++ & Python based multithreaded multiprocessor-distributed application to achieve OTA firmware update for multiple STM32 MCUs. AWS IoT Jobs, Device Shadow, Secure communication and UART based serial communication were key features.
- PoC for full OS image and Application update using Mender.io Open-Sorce project. Full OS OTA updates with Mender server hosted on EC2. Also, same kind of updates with USB and over LAN were also achieved with local Python server.
- Evaluated and finalized Ayla IoT platform for early market release without full fledge cloud development. <u>Device provisioning</u>, <u>status</u>, <u>firmware updates</u> to multiple devices, sensor <u>data streaming</u> were key features achieved in <u>4 months duration</u>.
- Designed and implemented a NodeJS module for <u>Data Synchronization</u> between device and cloud using MongoDB Realm and MongoDB Atlas cloud databases. Understanding of new platform and successful delivery was achieved in 3 months.

5. Drone-based Asset Inspection with AWS IoT Greengrass & AWS Robomaker Services

- **Role:** Robotics, IoT Developer (8 Months)
- > Accomplishments:
 - Demos were successfully showcased at CERAWeek 2019 and AWS re:MARS 2019 events
 - Drone simulation around oil-rig running in background in AWS official Tech Talk
 - Understanding of the new to be launched or recently launched AWS Services like Robomaker, Greengrass, AWS IoT and their use-cases for Robotics projects were achieved in <u>3 months</u> with demonstratable applications as an outcome.
 - Robotics framework ROS based distributed application had <u>Machine Learning</u> features like <u>Rust and leakage detection models</u> that were deployed with AWS IoT Greengrass to multiple devices as NVIDIA Jetson TX2 (<u>drone</u>), <u>mobile robots</u> and <u>x86 machines</u>. AWS IoT device shadow updates and IoT Jobs for firmware update were also used.
 - AWS Lambda functions were deployed to AWS IoT Greengrass to run ML inference.
 - Robotics application was able to <u>capture and upload</u> the <u>thermal</u> and normal <u>camera videos</u> to AWS S3 buckets, which were consumed by AWS Sagemaker for Machine Learning training.
 - NodeJS, JavaScript based Web Application running on AWS EC2 was developed to control Robots with commands, to trigger firmware updates, and to initiate ML training in Sagemaker.
 - Camera Live video streams were transmitted to AWS Kinesis Video Streams and the same were rendered on Web Application in HLS format.

6. WebMeeting (Screen Sharing Application) for MAC and Windows

- > Role: Backend Developer (26 Months)
- > Accomplishments:
 - Received "You Made a Difference Award" for the extensive work done in the initial phase of the project, which helped the team to scale up and gain Client's Confidence.
 - Understood the Chromium Open-Source Project relevant modules, build systems which can be reused to create a cross-platform (Windows & MAC) Screen Sharing application which used VP8 video codec and WebM packetizer. Demonstrated the key functionality of screen sharing in 3 months.
 - Evaluated and AWS S3, Dropbox, Google Drive for <u>file sharing</u> capabilities, but Client did not pursue another cloud platform and file share was implemented with Firebase & PubNub.

- Designed and developed HTTP transport module for <u>screen sharing data</u> + <u>Chats</u> + <u>File sharing</u> modules with Firebase & PubNub cloud platforms.
- Later, it was developed into a full-fledged product with multiple browsers supports + Chat, file share, recording capabilities. The <u>core screen sharing product</u> is still in production.
- PoC application was developed for *Image & Text Detection* in screen share data using an open-source library.

7. Porting WebRTC based GChat Application on Linux & Android Platforms

- ➤ **Role**: Backend Software Developer (20 Months)
- > Accomplishments:
 - The product was successfully showcased in CES2012-13 by the customers.
- Responsibilities:
 - Set Top Box, *TI BeagleBone, Panda ARM board bring* up with Linux/Android OS images.
 - Building & Porting WebRTC code for different Linux, Android Set top boxes.
 - Dealing with all kinds of compile and run-time errors on every platform.
 - Modifying WebRTC GYP build structure for integrating platform specific <u>Codec and Camera Libraries</u>.
 - Integrating **H264 Decoder-Renderer** APIs with WebRTC code.
 - Integrating/Testing Quanta and Maxim Camera modules in the applications.
 - Debugged **H264** Decoder, **YUV-RGB Render** modules for Linux, Android platforms.
 - Thorough Unit Testing & Bug Fixing.

8. Robotics Device Management Effort Estimation & Proposal Creation based on Azure Cloud

- > Role: Developer (2 Months)
- > Responsibilities:
 - Understand the Product Requirements
 - Understand various **Azure IoT** & other Cloud services and mapping them to Product Requirements.
 - Create an Overview ROS & Azure Cloud based Architecture using Docker Container.
 - Create *Docker Containerized ROS Demo applications* running on x86 Linux machine <u>accessing connected peripheral devices</u>, <u>file system</u>.
 - Create *complexity sheet* with various modular tasks to arrive at an *effort estimation*.
 - Coordinate with other Product teams involved.