第2章 线性规划

2.6 灵敏度分析

改变价值向量c

设已得到标准型 LP 的最优单纯形表:

	XB	XN	RHS		
z	0	$c_B{}^{\mathrm{T}}B^{-1}N-c_N{}^{\mathrm{T}}$	$c_B^{\mathrm{T}}B^{-1}b$		
x_B	I	$B^{-1}N$	$B^{-1}b$		

当价值向量 c 改变为 c'时,在单纯形表里影响的只是检验数和目标函数值,其它没有改变。

因而只需要计算新的检验数向量 $\xi'_N = c'_B^{\mathrm{T}} B^{-1} N - c'_N^{\mathrm{T}}$ 和目标函数值 $c'^{\mathrm{T}} \widetilde{x} = c'_B^{\mathrm{T}} B^{-1} b$ 。

如果检验数向量 ≤ 0 ,则原最优解 x 依然是最优解。 否则 x 是基可行解,以此为基础继续进行迭代就可以求出 新问题的最优解。

仅改变一个价值系数 c_k 到 c'_k

分两种情况讨论:

- *x_k*是基变量;
- x_k 是非基变量。

x_k 是非基变量

非基变量 x_k 的价值系数由 c_k 变为 c_k' 。因为 c_k 是 c_N 中的一个分量,此时只有 ζ_k 发生变化。新的检验数 $\zeta_k' = c_B^{\mathrm{T}} (B^{-1}N)_{(\cdot k)} - c_k' = c_B^{\mathrm{T}} (B^{-1}N)_{(\cdot k)} - c_k + c_k - c_k' = \zeta_k + c_k - c_k'$ 。

$$\boldsymbol{\xi}_{N}' = \boldsymbol{c}_{B}'^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N} - \boldsymbol{c}_{N}'^{\mathrm{T}}$$

x_k 是基变量

基变量 x_k 的价值系数由 c_k 变为 c'_k 。假设基变量 x_k 对应表中第 l 行(即,LP 中第 l 个约束)。由于 c_k 是 c_B 中的分量,此时 ζ_N^{T} 和目标函数值 z_0 发生变化。新的 ζ_N^{T} 为:

$$\zeta_{N}^{'T} = c_{B}^{'T}B^{-1}N - c_{N}^{T}
= c_{B}^{T}B^{-1}N + (c_{B}^{'T} - c_{B}^{T})B^{-1}N - c_{N}^{T}
= c_{B}^{T}B^{-1}N - c_{N}^{T} + (0, \dots, 0, c_{k}^{'} - c_{k}, 0, \dots, 0)B^{-1}N
= \zeta_{N}^{T} + (c_{k}^{'} - c_{k})(B^{-1}N)_{(l\cdot)}$$

新的目标函数值为: $z'_0 = c'_B^T B^{-1} b = c_B^T B^{-1} b + (c'_k - c_k) (B^{-1} b)_l$.

x_k 是基变量

以上两个运算可通过如下操作完成:将单纯形表的第 l 行乘以 $c'_k - c_k$,加到第 0 行上,(由于 x_k 在基中,这个操作会使得 $\zeta'_k = c'_k - c_k$,而 ζ'_k 应为 0。故应再令 ζ'_k 为 0)。

例2.6.1(1)

min
$$5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$
 $x_i \ge 0 \ \forall i$ (例 2.4.1 的 LP)

(1) 变量 x2 的价值系数由 0 变为 1。

解:该 LP 的最优单纯形表如下:

	<i>X</i> 1	χ_2	<i>X</i> 3	<i>X</i> 4	X 5	
z	0	-1/2	0	-11/4	-9/4	31/4
<i>x</i> ₃	0	-1/2	1	-1/4	1/4	1/4
<i>x</i> ₁	1	2	0	1/2	-3/2	1/2

例2.6.1(1)

由于 x₂ 是非基变量,故只需要计算

$$\zeta_2' = \zeta_2 + c_2 - c_2' = -\frac{1}{2} + 0 - 1 = -\frac{3}{2}$$
。新的单纯形表为:

由于检验数向量 ≤ 0 ,当前解 $x^{T} = (1/2, 0, 1/4, 0, 0)$ 仍是新问题的最优解。

例2.6.1 (2)

(2) 变量 x₃ 的系数由 21 变为 5。

解:由于 x_3 为基变量,将最优单纯形表 x_3 对应的第 1 行乘以 5-21,加到第 0 行上,再令 5/3 为 0。得到新的单纯形表如下:

	x_1	x_2	x_3	x_4	x_5	
z	0	15/2	0	5/4	-25/4	15/4
x_3	0	-1/2	1	-1/4	1/4	1/4
x_1	1	2	0	1/2	2/2	1/2

由于检验数 15/2 > 0,需要继续进行迭代以求得新问题的最优解。

改变右端向量b

设标准型 LP 的最优单纯形表为:

设右端向量由 b 变为 b'。由最优单纯形表知,只需要

修改表格的最右端一列: $\overline{b}' = B^{-1}b'$, $z'_0 = c_B^{\mathrm{T}}\overline{b}'$ 。

若只改变一个右端项 b_s 为 b'_s ,则 $\overline{b'}$ 的计算可化简为:

$$\overline{b}' = B^{-1}b' = B^{-1}b + B^{-1}(b'-b) = \overline{b} + (b'_s - b_s)B^{-1}_{(\cdot s)}$$

改变右端向量b

如果 $\bar{b}' \geq 0$,则原最优解还是可行解;并且,检验数向量没有发生变化,仍然 ≤ 0 ,因此原最优解仍是最优解。

否则当前解是新问题的一个基本解(但不可行),且单纯形表上蕴含着对偶问题的一个可行解(因为检验数向量≤0)。因此可利用对偶单纯形算法继续求解新问题。

例2.6.2

min
$$5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$
 $x_i \ge 0 \ \forall i$ (例 2.4.1 的 LP)

右端向量由
$$b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
变成 $b' = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ 。

解:该 LP 的最优单纯形表如下:

	x_1	x_2	x_3	x_4	χ_5	
z	0	-1/2	0	-11/4	-9/4	31/4
x_3	0	-1/2	1	-1/4	1/4	1/4
x_1	1	2	0	-1/4 1/2	-3/2	1/2

例2.6.2

由于 x_3 和 x_1 为基变量,所以基阵为 $B = \begin{pmatrix} A_3 & A_1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ 。

$$B^{-1} = \begin{pmatrix} 1/4 & -1/4 \\ -1/2 & 3/2 \end{pmatrix}$$
。所以

$$\overline{b}' = B^{-1}b' = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{4} \\ \frac{5}{2} \end{pmatrix},$$

$$z'_0 = c_B^{\mathrm{T}} B^{-1} b' = (21 \quad 5) \begin{pmatrix} -\frac{3}{4} \\ \frac{5}{2} \end{pmatrix} = -\frac{13}{4}$$

例2.6.2

得到新问题的单纯形表为:

_	x_1	x_2	x_3	x_4	x_5	
Z	0	-1/2	0	-11/4	-9/4	-13/4
x_3	0	-1/2	1	-1/4 1/2	1/4	-3/4
x_1	1	2	0	1/2	-3/2	5/2

由于右端向量不 ≥ 0 ,因此下面可用对偶单纯形算法继续求得新问题的最优解。

