Hierarchical Bayesian modeling

Tom Loredo
Cornell Center for Astrophysics and Planetary Science
http://www.astro.cornell.edu/staff/loredo/bayes/

SAMSI ASTRO WG4 — 15 Sep 2016

1970 baseball averages

Efron & Morris looked at batting averages of baseball players who had N=45 at-bats in May 1970 — 'large' N & includes Roberto Clemente (outlier!)

Red = n/N maximum likelihood estimates of true averages Blue = Remainder of season, $N_{rmdr} \approx 9N$

Cyan = James-Stein estimator: nonlinear, correlated, biased But *better*!

Theorem (independent Gaussian setting): In dimension \gtrsim 3, shrinkage estimators always beat independent MLEs in terms of expected RMS error

"The single most striking result of post-World War II statistical theory"

— Brad Efron

All 18 players are *humans playing baseball*—they are members of a population, not arbitrary, unrelated binomial random number generators!

In the absence of data about player i, we may use the performance of the other players to guide a guess about that player's performance—they provide $indirect\ evidence\ (Efron)$ about player i

But information that is relevant in the absence of data for i remains relevant when we additionally obtain that data; shrinkage estimators account for this

There is "mustering and borrowing of strength" (Tukey) across the population

Hierarchical Bayesian modeling is the most flexible framework for generalizing this lesson; empirical Bayes is an approximate version with a straightforward frequentist interpretation

Agenda

- 1 Basic Bayes recap
- 2 Key idea in a nutshell
- 3 Going deeper

Joint distributions and DAGs
Conditional dependence/indepence
Example: Binomial prediction
Beta-binomial model
Point estimation and shrinkage
Gamma-Poisson model & Stan
Algorithms

Bayesian inference in one slide

Probability as generalized logic

Probability quantifies the strength of arguments

To appraise hypotheses, calculate probabilities for arguments from data and modeling assumptions to each hypothesis Use *all* of probability theory for this

Bayes's theorem

$$p(\mathsf{Hypothesis} \mid \mathsf{Data}) \propto p(\mathsf{Hypothesis}) \times p(\mathsf{Data} \mid \mathsf{Hypothesis})$$

Data *change* the support for a hypothesis \propto ability of hypothesis to *predict* the data

Law of total probability

$$p(\mathsf{Hypothes}\underline{\mathbf{es}} \mid \mathsf{Data}) = \sum p(\mathsf{Hypothes}\underline{\mathbf{is}} \mid \mathsf{Data})$$

The support for a *compound/composite* hypothesis must account for all the ways it could be true

Bayes's theorem

C = context, initial set of premises

Consider $P(H_i, D_{obs} | C)$ using the product rule:

$$P(H_i, D_{obs}|C) = P(H_i|C) P(D_{obs}|H_i, C)$$

= $P(D_{obs}|C) P(H_i|D_{obs}, C)$

Solve for the *posterior probability* (expands the premises!):

$$P(H_i|D_{\text{obs}}, C) = P(H_i|C) \frac{P(D_{\text{obs}}|H_i, C)}{P(D_{\text{obs}}|C)}$$

Theorem holds for any propositions, but for hypotheses & data the factors have names:

$$posterior \propto prior \times likelihood$$
 norm. const. $P(D_{obs}|\mathcal{C}) = prior predictive$

Law of Total Probability (LTP)

Consider exclusive, exhaustive $\{B_i\}$ (\mathcal{C} asserts one of them must be true),

$$\sum_{i} P(A, B_{i}|C) = \sum_{i} P(B_{i}|A, C)P(A|C) = P(A|C)$$
$$= \sum_{i} P(B_{i}|C)P(A|B_{i}, C)$$

If we do not see how to get $P(A|\mathcal{P})$ directly, we can find a set $\{B_i\}$ and use it as a "basis"—extend the conversation:

$$P(A|C) = \sum_{i} P(B_{i}|C)P(A|B_{i},C)$$

If our problem already has B_i in it, we can use LTP to get P(A|C) from the joint probabilities—marginalization:

$$P(A|C) = \sum_{i} P(A, B_i|C)$$

Example: Take $A = D_{obs}$, $B_i = H_i$; then

$$P(D_{\text{obs}}|\mathcal{C}) = \sum_{i} P(D_{\text{obs}}, H_{i}|\mathcal{C})$$
$$= \sum_{i} P(H_{i}|\mathcal{C})P(D_{\text{obs}}|H_{i},\mathcal{C})$$

prior predictive for $D_{\text{obs}} = \text{Average likelihood for } H_i$ (a.k.a. $marginal\ likelihood$)

Parameter Estimation

Problem statement

C = Model M with parameters θ (+ any add'l info)

 $H_i = {
m statements~about~} heta;~{
m e.g.}~~`` heta \in [2.5, 3.5],"~{
m or}~`` heta > 0"$

Probability for any such statement can be found using a probability density function (PDF) for θ :

$$P(\theta \in [\theta, \theta + d\theta] | \cdots) = f(\theta)d\theta$$

= $p(\theta| \cdots)d\theta$

Posterior probability density

$$p(\theta|D,M) = \frac{p(\theta|M) \mathcal{L}(\theta)}{\int d\theta \ p(\theta|M) \mathcal{L}(\theta)}$$

Summaries of posterior

- "Best fit" values:
 - ▶ *Mode*, $\hat{\theta}$, maximizes $p(\theta|D, M)$
 - ▶ Posterior mean, $\langle \theta \rangle = \int d\theta \, \theta \, p(\theta|D,M)$
- Uncertainties:
 - ► Credible region Δ of probability C: $C = P(\theta \in \Delta | D, M) = \int_{\Delta} d\theta \ p(\theta | D, M)$ Highest Posterior Density (HPD) region has $p(\theta | D, M)$ higher inside than outside
 - ▶ Posterior standard deviation, variance, covariances
- Marginal distributions
 - ▶ Interesting parameters ϕ , nuisance parameters η
 - ► Marginal dist'n for ϕ : $p(\phi|D, M) = \int d\eta \, p(\phi, \eta|D, M)$

Many Roles for Marginalization

Eliminate nuisance parameters

$$p(\phi|D,M) = \int d\eta \ p(\phi,\eta|D,M)$$

Propagate uncertainty

Model has parameters θ ; what can we infer about $F = f(\theta)$?

$$p(F|D, M) = \int d\theta \ p(F, \theta|D, M) = \int d\theta \ p(\theta|D, M) \ p(F|\theta, M)$$

$$= \int d\theta \ p(\theta|D, M) \ \delta[F - f(\theta)] \qquad \text{[single-valued case]}$$

Prediction

Given a model with parameters θ and present data D, predict future data D' (e.g., for *experimental design*):

$$p(D'|D,M) = \int d\theta \ p(D',\theta|D,M) = \int d\theta \ p(\theta|D,M) \ p(D'|\theta,M)$$

Model comparison

Marginal likelihood for model M_i :

$$Z_i \equiv p(D|M_i) = \int d\theta_i \ p(\theta_i|M) \mathcal{L}_i(\theta_i)$$

Bayes factor $B_{ij} \equiv Z_i/Z_j$ Can write $Z_i = \mathcal{L}_i(\hat{\theta}_i) \cdot \Omega_i$ with Ockham factor $\Omega_i \approx \delta \theta/\Delta \theta = \text{(posterior volume)/(prior volume)}$

Hierarchical modeling, aka...

- Graphical models Hierarchical and other structures
- Multilevel models In regression, linear model settings)
- Bayesian networks (Bayes nets) In AI/ML settings

Agenda

- 1 Basic Bayes recap
- 2 Key idea in a nutshell
- 3 Going deeper
 Joint distributions and DAGs
 Conditional dependence/indepence
 Example: Binomial prediction
 Beta-binomial model
 Point estimation and shrinkage
 Gamma-Poisson model & Stan

Motivation: Measurement error in surveys

BATSE GRB peak flux estimates

- Selection effects (truncation, censoring) obvious (usually)
 Typically treated by "correcting" data
 Most sophisticated: product-limit estimators
- "Scatter" effects (measurement error, etc.) insidious Typically ignored (average out???)

Accounting For Measurement Error

Suppose $f(x|\theta)$ is a distribution for an observable, x (scalar or vector, $\vec{x} = (x, y, ...)$); and θ is unknown

From N precisely measured samples, $\{x_i\}$, we can infer θ from

$$\mathcal{L}(\theta) \equiv p(\{x_i\}|\theta) = \prod_i f(x_i|\theta)$$
$$p(\theta|\{x_i\}) \propto p(\theta)\mathcal{L}(\theta) = p(\theta, \{x_i\})$$

But what if the x data are *noisy*, $D_i = \{x_i + \epsilon_i\}$?

 $\{x_i\}$ are now uncertain (latent/hidden/incidental) parameters

We should somehow incorporate $\ell_i(x_i) = p(D_i|x_i)$

The joint PDF for everything is

$$p(\theta, \{x_i\}, \{D_i\}) = p(\theta) p(\{x_i\}|\theta) p(\{D_i\}|\{x_i\})$$

=
$$p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)$$

The conditional (posterior) PDF for the unknowns is

$$p(\theta, \{x_i\} | \{D_i\}) = \frac{p(\theta, \{x_i\}, \{D_i\})}{p(\{D_i\})} \propto p(\theta, \{x_i\}, \{D_i\})$$

$$p(\theta, \{x_i\}|\{D_i\}) \propto p(\theta, \{x_i\}, \{D_i\})$$

$$= p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)$$

Marginalize over $\{x_i\}$ to summarize inferences for θ

Marginalize over θ to summarize inferences for $\{x_i\}$

Key point: Maximizing over x_i (i.e., just using best-fit \hat{x}_i) and integrating over x_i can give very different results!

To estimate x_1 :

$$p(x_1|\{x_2,\ldots\}) = \int d\theta \ p(\theta) f(x_1|\theta) \ell_1(x_1) \times \prod_{i=2}^N \int dx_i \ f(x_i|\theta) \ell_i(x_i)$$

$$= \ell_1(x_1) \int d\theta \ p(\theta) f(x_1|\theta) \mathcal{L}_{m,\tilde{1}}(\theta)$$

$$\approx \ell_1(x_1) f(x_1|\hat{\theta}_{\tilde{1}})$$

with $\hat{ heta}_{\check{1}}$ determined by the remaining data

 $f(x_1|\hat{\theta}_1)$ behaves like a "prior" that shifts the x_1 estimate away from the peak of $\ell_1(x_1)$; each member's prior depends on all of the rest of the data \to shrinkage

[For astronomers: This generalizes the corrections derived by Eddington, Malmquist and Lutz-Kelker (sans selection effects)]

Agenda

- 1 Basic Bayes recap
- 2 Key idea in a nutshell
- **3** Going deeper

Joint distributions and DAGs Conditional dependence/indepence Example: Binomial prediction Beta-binomial model Point estimation and shrinkage Gamma-Poisson model & Stan Algorithms

Joint and conditional distributions

Bayesian inference is largely about the interplay between *joint* and *conditional* distributions for related quantities

Ex: Bayes's theorem relating hypotheses and data (||C|):

$$P(H_i|D) = \frac{P(H_i)P(D|H_i)}{P(D)} = \frac{P(H_i,D)}{P(D)} = \frac{\text{joint for everything}}{\text{marginal for knowns}}$$

The usual form identifies an available factorization of the joint

Express this via a directed acyclic graph (DAG):

Joint distribution structure as a graph

- Graph = nodes/vertices connected by edges/links
- Circular/square nodes/vertices = a priori uncertain quantities (gray/square = becomes known as data)
- Directed edges specify conditional dependence
- Absence of an edge indicates conditional independence
 → the most important edges are the missing ones

$$P(H_i, D) = P(H_i) \times P(D|H_i)$$

p(x, y, z)

Cycles not allowed

Conditional independence

Suppose for the problem at hand z is independent of of x when y is known:

$$p(z|x,y) = p(z|y)$$

"z is conditionally independent of x, given y"

Absence of an edge indicates conditional *in*dependence

Missing edges indicate simplification in structure

— the most important edges are the missing ones

Conditional vs. complete independence

"z is conditionally independent of x, given y" \neq "z is independent of x"

(Complete) independence between z and x ("z $\perp \!\!\! \perp$ x") would imply:

$$p(z|x) = p(z)$$
 (i.e., not a function of x)

Conditional independence given y (" $z \perp \!\!\! \perp x \mid y$ ") is weaker:

$$p(z|x) = \int dy \ p(z, y|x)$$

$$= \int dy \ p(y|x)p(z|x, y)$$

$$= \int dy \ p(y|x)p(z|y) \text{ since } z \perp \!\!\! \perp x \mid y$$

Although x drops out of the last factor, x dependence remains in p(y|x)

x does provide information about z, but it only does so through the information it provides about x (which directly influences z)

Bayes's theorem with IID samples

For model with parameters θ predicting data $D = \{x_i\}$ that are IID given θ :

$$p(\theta, D) = p(\theta)p(\{x_i\}|\theta) = p(\theta)\prod_{i=1}^{N}p(x_i|\theta)$$

To find the posterior for the unknowns (θ) , divide the joint by the marginal for the knowns $(\{x_i\})$:

$$p(\theta|\{x_i\}) = \frac{p(\theta) \prod_{i=1}^{N} p(x_i|\theta)}{p(\{x_i\})} \quad \text{with} \quad p(\{x_i\}) = \int d\theta \, p(\theta) \prod_{i=1}^{N} p(x_i|\theta)$$

Binomial counts

 $\bullet \bullet \bullet$ n_1 heads in N flips

 n_2 heads in N flips

Suppose we know n_1 and want to predict n_2

Predicting binomial counts — known α

Success probability
$$\alpha \to p(n|\alpha) = \frac{N!}{n!(N-n)!} \alpha^n (1-\alpha)^{N-n} \qquad || N$$

Consider two successive runs of N=20 trials, *known* $\alpha=0.5$

$$p(n_2|n_1,\alpha)=p(n_2|\alpha)$$
 || N

 n_1 and n_2 are conditionally independent

DAG for binomial prediction — known α

$$p(\alpha, n_1, n_2) = p(\alpha)p(n_1|\alpha)p(n_2|\alpha)$$

$$p(n_2|\alpha, n_1) = \frac{p(\alpha, n_1, n_2)}{p(\alpha, n_1)}$$

$$= \frac{p(\alpha)p(n_1|\alpha)p(n_2|\alpha)}{p(\alpha)p(n_1|\alpha)\sum_{n_2}p(n_2|\alpha)}$$

$$= p(n_2|\alpha)$$

Knowing α lets you predict each n_i , independently

Predicting binomial counts — uncertain α

Consider the same setting, but with α uncertain

Outcomes are *physically* independent, but n_1 tells us about $\alpha \rightarrow$ outcomes are *marginally dependent* (see Lec 12 for calculation):

$$p(n_2|n_1,N) = \int d\alpha \ p(\alpha,n_2|n_1,N) = \int d\alpha \ p(\alpha|n_1,N) \ p(n_2|\alpha,N)$$

Prior: $\alpha = 0.5 \pm 0.1$

DAG for binomial prediction

$$p(\alpha, n_1, n_2) = p(\alpha)p(n_1|\alpha)p(n_2|\alpha)$$

From joint to conditionals:

$$p(\alpha|n_1,n_2) = \frac{p(\alpha,n_1,n_2)}{p(n_1,n_2)} = \frac{p(\alpha)p(n_1|\alpha)p(n_2|\alpha)}{\int d\alpha \ p(\alpha)p(n_1|\alpha)p(n_2|\alpha)}$$

$$p(n_2|n_1) = \frac{\int d\alpha \, p(\alpha, n_1, n_2)}{p(n_1)}$$

Observing n_1 lets you learn about α Knowledge of α affects predictions for $n_2 \to$ dependence on n_1

A population of coins/flippers

Each flipper+coin flips different number of times

- What do we learn about the *population* of coins—the distribution of α s?
- How does population membership effect inference for a single coin's α ?

Terminology: θ are hyperparameters, $\pi(\theta)$ is the hyperprior

A simple multilevel model: beta-binomial

Goals:

- Learn a population-level "prior" by pooling data
- Account for population membership in member inferences

Qualitative

 $p(\theta,\{\alpha_i\},\{n_i\}) = \pi(\theta) \prod p(\alpha_i|\theta) \; p(n_i|\alpha_i)$

Population parameters

Success probabilities

Data

Quantitative

$$\theta = (a, b) \text{ or } (\mu, \sigma)$$

$$\pi(\theta) = \text{Flat}(\mu, \sigma)$$

$$p(\alpha_i|\theta) = \text{Beta}(\alpha_i|\theta)$$

$$p(n_i|\alpha_i) = \binom{N_i}{n_i} \alpha_i^{n_i} (1 - \alpha_i)^{N_i - n_i}$$

Generating the population & data

Likelihood function for one member's α

Learning the population distribution

Lower level estimates

Two approaches

• Hierarchical Bayes (HB): Calculate marginals

$$p(\alpha_j|\{n_i\}) \propto \int d heta \, \pi(heta) \prod_{i \neq j} \int dlpha_i \, p(lpha_i| heta) \, p(n_i|lpha_i)$$

• **Empirical Bayes (EB):** Plug in an optimum $\hat{\theta}$ and estimate $\{\alpha_i\}$ View as approximation to HB, or a frequentist procedure that estimates a prior from the data

Lower level estimates

Bayesian outlook

- Marginal posteriors are narrower than likelihoods
- Point estimates tend to be closer to true values than MLEs (averaged across the population)
- Joint distribution for $\{\alpha_i\}$ is dependent

Frequentist outlook

- Point estimates are biased
- Reduced variance \rightarrow estimates are closer to truth on average (lower MSE in repeated sampling)
- Bias for one member estimate depends on data for all other members

Lingo

- Estimates *shrink* toward prior/population mean
- Estimates "muster and borrow strength" across population (Tukey's phrase); increases accuracy and precision of estimates
- Efron* describes shrinkage as a consequence of accounting for indirect evidence

^{*}Bradley Efron (2010): "The Future of Indirect Evidence"

Beware of point estimates!

Population and member estimates

Competing data analysis goals

"Shrunken" member estimates provide improved & reliable estimate for population member properties

But they are *under-dispersed* in comparison to the true values \rightarrow not optimal for estimating *population* properties*

No point estimates of member properties are good for all tasks!

We should view population data tables/catalogs as providing descriptions of member likelihood functions, not "estimates with errors"

*Louis (1984); Eddington noted this in 1940!

Measurement error perspective

If the data provided *precise* $\{\alpha_i\}$ values (coin measurements, flip physics), we could easily model them as points drawn from a (beta) population PDF with params θ :

 $D = \{\alpha_i\}$

$$egin{aligned}
ho(D| heta) &= \prod_i
ho(lpha_i| heta) \ &= \prod_i \mathrm{Beta}(lpha_i| heta) \end{aligned}$$

(A binomial point process)

Here the finite number of flips provide *noisy measurements of each* α_i , described by the member likelihood functions $\ell_i(\alpha_i)$;

$$D = \{n_i\}$$
 $p(D|\theta) = \prod_i \int d\alpha_i \ p(D, \{\alpha_i\}|\theta)$
 $= \prod_i \int d\alpha_i \ p(\alpha_i|\theta) \ p(n_i|\theta)$
 $= \prod_i \int d\alpha_i \ \operatorname{Beta}(\alpha_i|\theta) \ \operatorname{Binom}(n_i|\theta)$

This is a prototype for *measurement error problems*

Another conjugate MLM: Gamma-Poisson

Goal: Learn a rate dist'n from count data (E.g., learn a star or galaxy brightness dist'n from photon counts)

Source

Observed data

Qualitative

Quantitative

$$\theta = (\alpha, s)$$
 or (μ, σ)

$$\pi(\theta) = \text{Flat}(\mu, \sigma)$$

$$p(F_i|\theta) = \operatorname{Gamma}(F_i|\theta)$$

$$p(n_i|F_i) = \operatorname{Pois}(n_i|\epsilon_iF_i)$$

Gamma-Poisson population and member estimates

Simulations: N=60 sources from gamma with $\langle F \rangle = 100$ and $\sigma_F=30$; exposures spanning dynamic range of $\times 16$

Algorithms

Consider the posterior PDF for θ and $\{\alpha_i\}$ in the beta-binomial MLM:

$$p(\theta, \{\alpha_i\} | \{n_i\}) \propto \pi(\theta) \prod_{i=1}^{N_{\text{mem}}} \text{Beta}(\alpha_i | \theta) \text{ Binom}(n_i | \alpha_i)$$

For each member, the $\operatorname{Beta} \times \operatorname{Binom}$ factor is ∞ a beta distribution for α_i ; but as a function of θ (e.g., (a, b) or (μ, σ)) it is not simple

The full posterior has a product of $N_{\rm mem}$ such factors specifying its θ dependences \Rightarrow even for a conjugate model for the lower levels, the overall model is typically analytically intractable

Two approaches exploit *conditional independence of lower-level* parameters

Member marginalization

- Analytically or numerically integrate over {x_i} → explore the reduced-dimension marginal for θ via MCMC
 → {θ_i} ~ p(θ|D)
- If x_i are of interest, sample them from their conditionals, conditioned on θ_i :
 - ▶ Pick a θ from $\{\theta_i\}$
 - ▶ Draw $\{x_i\}$ by *independent* sampling from their conditionals (give θ)
 - Iterate

GPUs can accelerate this for application to large datasets

Only useful for low-dimensional latent parameters x_i

Metropolis-within-Gibbs algorithm

Block the full parameter space:

- Block of m population parameters, θ
- N blocks of lower level (latent) parameters, x_i

Get posterior samples by iterating back and forth between:

- m-D Metropolis-Hastings sampling of θ from $p(\theta|\{x_i\}, D)$ This requires a problem-specific proposal distribution
- *N* independent samples of x_i from the conditional $p(x_i|\theta, D_i)$

This can often exploit conjugate structure

E.g., Beta-binomial: $\alpha_i \sim \text{Beta}(\alpha_i | \theta) \text{ Binom}(n_i | \alpha_i)$, which is just a Beta for α_i

MWG explicitly displays the feedback between population and member inference