BFS - Dijkstra - Bellman Ford

MATERIAL DE APOYO

- 1. Cheatsheet C (notion resumen)
- 2. Ejercicios de práctica C
- 3. Cápsulas de semestres pasados

Dónde encuentro esto? Links en ReadMe carpeta "Ayudantías" del repo

El camino más corto

Definimos el camino más corto entre dos nodos como la menor suma de las aristas que los conectan

El camino más corto

Por ejemplo, el camino más corto entre B y F

¿Cómo podemos encontrar este camino más corto?

Antes de ver cómo encontramos el camino más corto, debemos entender como funciona BFS:

- Es un algoritmo de **búsqueda en amplitud**
- Partiendo de un nodo del grafo, recorremos primero los nodos que están a una arista de distancia, luego a dos aristas de distancia, y así hasta llegar al último nodo
- Marcamos los nodos que ya visitamos con el fin de no revisar infinitamente
- Para esto usamos una cola FIFO, cada vez que encontramos un nodo nuevo lo agregamos al final de la cola y para revisar nuevos sacamos el primer nodo

Partimos seleccionando un nodo (por ejemplo G)

$$Q = \{G\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

$$Q = \{B, H, E, C\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

$$Q = \{H, E, C\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

$$Q = \{E, C\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

$$Q = \{C, D\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

$$Q = \{D, F\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

$$Q = \{F, A\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

$$Q = \{A\}$$

Si un nodo es gris o negro, no lo volvemos a agregar

Cada vez que agregamos un nodo a la cola lo marcamos de gris, cada vez que sacamos un nodo lo marcamos de negro

$$Q = \{\}$$

Una vez que la cola está vacía termina el algoritmo

¿Cómo podemos mejorar BFS para encontrar la ruta más corta?

- Cambiamos la cola por una cola de prioridad, que ordene las aristas según peso de menor a mayor, de tal forma que siempre revisemos primero posibles caminos más cortos
- Iniciamos todos los nodos con distancia infinita a nuestro nodo inicial, de tal forma que cada vez que lo visitamos revisamos si encontramos una distancia menor

Partimos desde el nodo G, similar a BFS marcamos los nodos con los mismos códigos de color

$$PQ = \{(G, 0)\}$$

Para calcular las distancias, sumamos el peso de la arista con la distancia que lleva acumulada el nodo

$$PQ = \{(B, 1), (H, 3), (C, 7), (E, 9)\}$$

Para este caso tenemos que la distancia de G a H pasando por B es mayor que la que teníamos

$$PQ = \{(H, 3), (C, 7), (E, 9)\}$$

Para este caso tenemos que la distancia de G a E pasando por H es menor que la que teníamos

$$PQ = \{(E, 6), (C, 7)\}$$

I3 2022-2 P4

(b) [2 ptos.] El diámetro de un árbol no dirigido conexo T se define como el largo del camino más largo en T. Suponga que existe un único camino de largo máximo en T con extremos u y v. Si x es un nodo cualquiera, se puede demostrar que el nodo más lejano a x es u o v. Usando este resultado, proponga un algoritmo que determine el diámetro de un árbol T.

I3 2022-2 P4

(b) [2 ptos.] El diámetro de un árbol no dirigido conexo T se define como el largo del camino más largo en T. Suponga que existe un único camino de largo máximo en T con extremos u y v. Si x es un nodo cualquiera, se puede demostrar que el nodo más lejano a x es u o v. Usando este resultado, proponga un algoritmo que determine el diámetro de un árbol T.

La propiedad descrita permite plantear el siguiente algoritmo

```
Diameter(V, E):

x \leftarrow \text{cualquier nodo de } V

d \leftarrow \text{BFS}(x)

u \leftarrow \text{nodo que tiene máximo } d[\cdot]

d \leftarrow \text{BFS}(u)

D \leftarrow \text{máx}\{d[v] \mid v \in V\}

return D
```

donde se usa una versión modificada de BFS para que retorne el arreglo con distancias desde la fuente, así como el nodo asociado a cada distancia.

A diferencia de los dos otros algoritmos vistos, Bellman-Ford permite resolver el problema de encontrar los caminos más cortos pero para grafos que permiten tener aristas con pesos negativos.

- Este algoritmo funciona con grafos dirigidos y aristas con pesos
- Detecta ciclos negativos

Notemos que ahora tenemos grafos dirigidos

I3 2023-2

La red de fibra óptica terrestre y submarina que conecta nuestros computadores puede verse como una grafo no dirigido. En este contexto, se pueden utilizar los protocolos OSPF y RIP para determinar las rutas a utilizar. Considere el siguiente fragmento de la red, donde se indican las latencias como costos en aristas.

I3 2023-2

(c) [2 ptos.] Considere que se quiere privilegiar el uso de las aristas (LU,CP) y (SJ,PR) cambiando su peso por -30 y -25 respectivamente. Determine si con este cambio es posible usar el algoritmo de Bellman-Ford para determinar la ruta más barata de Santiago a Lurín. Justifique su respuesta.

I3 2023-2

(c) [2 ptos.] Considere que se quiere privilegiar el uso de las aristas (LU,CP) y (SJ,PR) cambiando su peso por -30 y -25 respectivamente. Determine si con este cambio es posible usar el algoritmo de Bellman-Ford para determinar la ruta más barata de Santiago a Lurín. Justifique su respuesta.

Solución.

Al modificar las aristas indicadas, existe un ciclo de costo negativo dado por

LU, CP, SC, FO, PR, SJ, LU

que es alcanzable desde PIT. Luego, el algoritmo de Bellman-Ford no se puede utilizar para obtener un camino de costo mínimo desde PIT hasta LU.

Puntajes.

- 1.0 por indicar la existencia de ciclo de costo negativo.
- 1.0 por indicar que no se puede usar Bellman-Ford debido a ello.