ANÁLISIS FUNCIONAL, GRADO EN MATEMÁTICAS

Tercer curso, 9/02/2016. Examen para matrícula de honor

- 1. (a) Sea X un espacio normado, X^{\sharp} el dual algebraico y $L \in X^{\sharp}$. Demuéstrese que $L \in X^{*}$ (dual topológico) si y solamente si el núcleo de L es cerrado.
 - (b) Si X es un espacio normado, $L \in X^{\sharp}$ (L no idénticamente cero) y $\alpha \in \mathbf{R}$, se define el hiperplano $H(L,\alpha)$ como

$$H(L,\alpha) = \{x \in X : L(x) = \alpha\}$$

Demuéstrese que cualquier hiperplano en X es o cerrado o denso.

2. Sea $\{\lambda_n, n \in \mathbf{N}\}$ una sucesión de números reales tal que $\lambda_n \in (0,1], \forall n \in \mathbf{N}$. Trivialmente,

$$\langle x, y \rangle := \sum_{n=1}^{\infty} \lambda_n x_n y_n, \ \forall \ x = \{x_n\} \in l_2, \forall \ y = \{y_n\} \in l_2$$
 (1)

define un producto escalar en l_2 . Demuéstrese que si la serie $\sum_{n=1}^{\infty} \lambda_n$ es convergente, entonces l_2 , con la norma derivada del producto escalar (1), no es completo.

3. Se
a $X=(C[0,1],\|\cdot\|_0)$ y $a(\cdot)\in C[0,1]$ una función dada. El operador

$$T:X\to X,\ (Tf)(t)=a(t)f(t),\ \forall\ f\in X,\ \forall\ t\in[0,1]$$

es trivialmente lineal y continuo. Demuéstrese que T es compacto si y solamente si la función $a(\cdot)$ es idénticamente cero.