Linear Time Invariant Systems

Linear Functions

 Function: something that takes in an input number x and produces an output number y

$$x \longrightarrow f(x) \longrightarrow y$$

A linear function has the form y = ax

Properties of Linear Functions

Homogeneity:

• Additivity:

Output of Linear Functions

- If you know
 - a function is linear, and
 - the output for <u>any</u> nonzero input
 then, you can compute the output for any other input using homogeneity and <u>additivity</u>

Example: Suppose a linear function has output y = 4 for input x = 2.

- Use additivity to determine the output if x = 4Since x = 2 + 2, y = 4 + 4 = 8

- Use homogeneity to determine the output if x = 6 Since x = 3 · 2, y = 3 · 4 = 12

Systems

System: something that takes in input waveform x(n) and produces an output waveform y(n).

Linear Systems

- A linear system is a system that satisfies the same two properties as a linear function.
- Homogeneity:

$$x(n) \longrightarrow system \longrightarrow y(n) \implies cx(n) \longrightarrow system \longrightarrow cy(n)$$

Additivity

$$x_1(n) \longrightarrow system \longrightarrow y_1(n)$$
 $x_1(n) + x_2(n) \longrightarrow system \longrightarrow y_1(n) + y_2(n)$
 $x_2(n) \longrightarrow system \longrightarrow y_2(n)$

Homogeneity

If you scale (multiply) the input by c, the output scales by c.

Additivity

 The output to the sum of two inputs is the sum of the outputs to each input applied individually.

Linear Systems

- A linear system is a system that satisfies the same two properties as a linear function.
- Homogeneity:

$$x(n) \longrightarrow system \longrightarrow y(n) \implies cx(n) \longrightarrow system \longrightarrow cy(n)$$

Additivity

$$x_1(n) \longrightarrow system \longrightarrow y_1(n)$$
 $x_1(n) + x_2(n) \longrightarrow system \longrightarrow y_1(n) + y_2(n)$
 $x_2(n) \longrightarrow system \longrightarrow y_2(n)$

Time Invariance

 A system is time invariant if when you delay the input by d, the output is the same, just delayed by d.

Linear Time Invariant (LTI) Systems

LTI system: A system that is both linear and time invariant

Output of Linear Functions

- If you know
 - a function is linear, and
 - the output for <u>any</u> nonzero input
 then, you can compute the output for any other input using homogeneity and <u>additivity</u>

Example: Suppose a linear function has output y = 4 for input x = 2.

- Use additivity to determine the output if x = 4Since x = 2 + 2, y = 4 + 4 = 8

- Use homogeneity to determine the output if x = 6Since $x = 3 \cdot 2$,

Step Response

- If a system is LTI, then you can find the output just by knowing the output to almost any non-zero input function.
- We choose the unit step function as the input.
- step response s(n): the output to the unit step input

Computing the Output of an LTI System

