DENSO

Barcode Handy Terminal

BHT-700-CE

API Reference Manual

Contents

1.2. Application Development Tool 1 1.2.1 Application Development Tool 1 1.2.2 Software Development Rivironment 2 2.1 Required Hardware (PC to be used for application development) 2 2.2. Required Software 2 2.3 Installation 2 Chapter 3. Output to the LCD Screen. 3 3.1. Screen Fonts. 3 3.2. Screen Rotation 3 3.3.1. Screen Rotation 3 3.3.2. Screen Rotation Control Key 3 3.3. Setting the Screen Rotation Control Key 5 4.1. Outline 5 4.2. Setting the Backlight Function On/Off Key 5 4.3. Setting the Backlight Illumination Time 6 4.4. Setting the Backlight With the Backlight Control Key 7 4.5. Controlling the Backlight with the Backlight Control Key 7 4.6. Controlling the Backlight with the Backlight Control Key 7 4.6. Controlling the Backligh	Chapter 1. Software Requirements for the BHT-700	
1.2.1. Application Development Tool 1 1.2.2. Software Development Environment 1 Chapter 2. Application Development Environment 2 2.1. Required Hardware (PC to be used for application development) 2 2.2. Required Software 2 2.3. Installation 2 Chapter 3. Output to the LCD Screen 3 3.1. Screen Fonts 3 3.2. Screen Rotation 3 3.3. Setting the Screen Rotation Control Key 3 3.3. Setting the Screen Rotation Angle 4 Chapter 4. Backlight Control 5 4.1. Outline 5 4.2. Setting the Backlight Illumination Time 5 4.3. Setting the Backlight Illumination Time 6 4.4. Southolling the Backlight with the Backlight Control Key 7 4.6. Controlling the Backlight with the Backlight Control Key 7 4.7. Key Backlight 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 <		
1.2.2 Software Development Kit 1 Chapter 2. Application Development Environment 2 2.1. Required Hardware (PC to be used for application development) 2 2.2. Required Software 2 2.3. Installation 2 Chapter 3. Output to the LCD Screen 3 3.1. Screen Rotation 3 3.2.1 Setting the Screen Rotation Control Key 3 3.3.1 Setting the Screen Rotation Angle 4 Chapter 4. Backlight Control 5 4.1. Outline 5 4.2. Setting the Backlight Illumination Time. 6 4.3. Setting the Backlight Illumination Time. 6 4.4. Setting the Backlight with the Backlight Control Key 7 4.6. Controlling the Backlight with the Backlight Control Function 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control 10 5.1. Outline. 10 5.2. Setting the Beeper/Vibrator <t< td=""><td></td><td></td></t<>		
Chapter 2. Application Development Environment. 2 2.1. Required Hardware (PC to be used for application development) 2 2.2. Required Software 2 2.3. Installation 2 Chapter 3. Output to the LCD Screen 3 3.1. Screen Fonts 3 3.2. Screen Rotation 3 3.2. Setting the Screen Rotation Control Key 3 3.3. Setting the Screen Rotation Angle 4 4. Chapter 4. Backlight Control 5 4.1. Outline 5 4.2. Setting the Backlight Function On/Off Key 5 4.3. Setting the Backlight with the Backlight Control Key 5 4.4. Setting the Backlight with the Backlight Control Key 7 4.6. Controlling the Backlight with the Backlight Control Key 7 4.6. Controlling the Backlight With the Backlight Control Function 8 4.7. Key Backlight 9 Chapter 5 Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper and Vibrat		
2.1. Required Hardware (PC to be used for application development) 2 2.2. Required Software 2 2.3. Installation 2 Chapter 3. Output to the LCD Screen 3 3.1. Screen Rotation 3 3.2.1. Setting the Screen Rotation Control Key 3 3.3.3. Setting the Screen Rotation Angle 4 Chapter 4. Backlight Control 5 4.1. Outline 5 4.2. Setting the Backlight Illumination Time 6 4.3. Setting the Backlight Illumination Time 6 4.4. Setting the Backlight Illumination Time 6 4.5. Controlling the Backlight With the Backlight Control Key 7 4.6. Controlling the Backlight With the Backlight Control Function 8 4.7. Key Backlight 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 12 5.3. Starting/Stopping the Beeper/Vibrator 12 <		
2.2. Required Software 2 2.3. Installation 2 Chapter 3. Output to the LCD Screen. 3 3.1. Screen Forts. 3 3.2. Screen Rotation 3 3.3. Setting the Screen Rotation Control Key. 3 3.3. Setting the Screen Rotation Angle. 4 Chapter 4. Backlight Control 5 4.1. Outline. 5 4.2. Setting the Backlight Function On/Off Key. 5 4.3. Setting the Backlight Function On/Off Key. 5 4.4. Setting the Backlight Bightness and Power Saving Mode. 6 4.5. Controlling the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight with the Backlight Control Function. 8 4.7. Key Backlight. 10 Chapter 5. Beeper and Vibrator Control. 10 5.1. Outline. 10 5.2. Setting the Beeper/Vibrator. 12 5.3. Starting/Stopping the Beeper/Vibrator. 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns. 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline. 13	Chapter 2. Application Development Environment	2
2.3. Installation 2 Chapter 3. Output to the LCD Screen. 3 3.1. Screen Rolation 3 3.2.1 Screen Rolation Setting the Screen Rotation Control Key. 3 3.3.1 Setting the Screen Rotation Angle. 4 Chapter 4. Backlight Control. 5 4.1. Outline. 5 4.2. Setting the Backlight Function On/Off Key. 5 4.2. Setting the Backlight Illumination Time. 5 4.3. Setting the Backlight Brightness and Power Saving Mode. 6 4.4. Setting the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight With the Backlight Control Key. 7 4.6. Controlling the Backlight With the Backlight Control Function. 8 4.7. Key Backlight. 9 Chapter S. Beeper and Vibrator Control. 10 5.1. Outline. 10 5.2. Setting the Beeper/Vibrator. 11 5.3. Starting/Stopping the Beeper/Vibrator. 12 5.		
Chapter 3. Output to the LCD Screen. 3 3.1. Screen Fonts. 3 3.2. Screen Rotation. 3 3.3. Setting the Screen Rotation Angle. 4 Chapter 4. Backlight Control. 5 4.1. Outline. 5 4.2. Setting the Backlight Function On/Off Key. 5 4.3. Setting the Backlight Fightness and Power Saving Mode. 6 4.4. Setting the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight With the Backlight Control Function. 8 4.7. Key Backlight. 9 Chapter 5. Beeper and Vibrator Control. 10 5.1. Outline. 10 5.2. Setting the Beeper/Vibrator. 11 5.3. Starting/Stopping the Beeper/Vibrator. 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator. 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator. 12 <td></td> <td> 2</td>		2
3.1. Screen Fonts. 3 3.2. Screen Rotation 3 3.3. Setting the Screen Rotation Angle 4 Chapter 4. Backlight Control 5 4.1. Outline. 5 4.2. Setting the Backlight Function On/Off Key. 5 4.3. Setting the Backlight Function On/Off Key. 5 4.3. Setting the Backlight Bightness and Power Saving Mode. 6 4.4. Setting the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight With the Backlight Control Key. 7 4.7. Key Backlight 10 4.7. Key Backlight 10 5.1. Outline. 10 6.2. Setting the Beeper/Vibrator Control 10 5.1. Outline. 10 5.2. Setting the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns. 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline. 13		
3.2.1 Setting the Screen Rotation Control Key	Chapter 3. Output to the LCD Screen	3
3.2.1. Setting the Screen Rotation Control Key 3.3. Setting the Screen Rotation Angle. 4.1. A Chapter 4. Backlight Control. 4.1. Outline. 5. Setting the Backlight Function On/Off Key. 5. Setting the Backlight Illumination Time. 6. Setting the Backlight Brightness and Power Saving Mode. 6. Controlling the Backlight with the Backlight Control Key. 7. Setting the Backlight with the Backlight Control Key. 7. Setting the Backlight with the Backlight Control Key. 7. Setting the Backlight with the Backlight Control Key. 7. Setting the Backlight with the Backlight Control Function. 8. Setting the Backlight with the Backlight Control Function. 8. Setting the Beeper/Vibrator. 9. Chapter 5. Beeper and Vibrator Control. 9. Outline. 9. Setting the Beeper/Vibrator. 10. Starting/Stopping the Beeper/Vibrator. 11. Sa. Starting/Stopping the Beeper/Vibrator. 12. Setting the Beeper Volume Patterns. 12. Chapter 6. Keys and Trigger Switch Control. 13. Setting the Keys and Trigger Switch Control. 13. Setting the Keys and Trigger Switch Control. 13. Shift Key Operation Mode. 15. Assignming a User-Defined Key Code to the Magic Keys. 16. S.1. Assignment Method. 16. Set. Assigning a User-Defined Key Code to the Magic Keys. 16. Set. Assigning a User-Defined Key Code to the Magic Keys. 16. Set. Numeric Entry Mode. 17. Set. Autor Mode. 18. Acquisition of Keypad Type. 20. Acquisition of Keypad Type. 20. Rey Clicks. 21. Outline. 22. Setting the LCD Status Indication. 22. Setting the LCD Status Indication. 22. Setting the Standby Transition Prohibited Events. 23. Suspend. 24. Suspend. 25. Setting the Standby Transition Timeout. 26. Setting the Standby Transition Timeout.	3.1. Screen Fonts	3
3.3. Setting the Screen Rotation Angle 4 Chapter 4. Backlight Control 5 4.1. Outline 5 4.2. Setting the Backlight Function On/Off Key 5 4.3. Setting the Backlight Humination Time 6 4.4. Setting the Backlight Brightness and Power Saving Mode 6 4.5. Controlling the Backlight with the Backlight Control Function 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch Mode 15 6.3. Shiff Key Operation Mode 15 6.4. Magic Key Control <td>3.2. Screen Rotation</td> <td> 3</td>	3.2. Screen Rotation	3
3.3. Setting the Screen Rotation Angle 4 Chapter 4. Backlight Control 5 4.1. Outline 5 4.2. Setting the Backlight Function On/Off Key 5 4.3. Setting the Backlight Humination Time 6 4.4. Setting the Backlight Brightness and Power Saving Mode 6 4.5. Controlling the Backlight with the Backlight Control Function 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch Mode 15 6.3. Shiff Key Operation Mode 15 6.4. Magic Key Control <td></td> <td></td>		
Chapter 4. Backlight Control. 5 4.1. Outline. 5 4.2. Setting the Backlight Function On/Off Key. 5 4.3. Setting the Backlight Function on/Off Key. 6 4.4. Setting the Backlight ghithers and Power Saving Mode. 6 4.5. Controlling the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight With the Backlight Control Function. 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control. 10 5.1. Outline. 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 6.1. Keys and Trigger Switch Control 13 6.2. Setting the Keys and Trigger Switch Control 13 6.3. Aisfit Key Operation Mode 15 6.4. Magic Key Control 15		
4.1. Outline		
4.2. Setting the Backlight Function On/Off Key 5 4.3. Setting the Backlight Illumination Time. 6 4.4. Setting the Backlight With the Backlight Control Key. 7 4.6. Controlling the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight with the Backlight Control Function. 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control. 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shiff Key Operation Mode 15 6.4. Magic Key Control 15 6.5.1. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16	· ·	
4.3. Setting the Backlight Brightness and Power Saving Mode. 6 4.4. Setting the Backlight Brightness and Power Saving Mode. 6 4.5. Controlling the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight with the Backlight Control Function. 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6.1. Numeric Entry Mode 17		
4.4. Setting the Backlight Brightness and Power Saving Mode. 6 4.5. Controlling the Backlight with the Backlight Control Key. 7 4.6. Controlling the Backlight with the Backlight Control Function. 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control. 10 5.1. Outline. 10 5.2. Setting the Beeper/Vibrator. 11 5.3. Starting/Stopping the Beeper/Vibrator. 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator. 12 5.5. Beeper Volume Patterns. 12 Chapter 6. Keys and Trigger Switch Control. 13 6.1. Outline. 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shiff Key Operation Mode. 15 6.4. Magic Key Control. 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt). 16 6.6. Key Inut Modes.		
4.5. Controlling the Backlight with the Backlight Control Fey. 7 4.6. Controlling the Backlight with the Backlight Control Function. 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef Ixt). 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.7. Function Mode <td></td> <td></td>		
4.6. Controlling the Backlight with the Backlight Control Function 8 4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 12 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode <td></td> <td></td>		
4.7. Key Backlight 9 Chapter 5. Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6. Key Input Modes 17 6.6. Numeric Entry Mode 17 6.6. Numeric Entry Mode 17 6.7. Function Mode 20 6.8. Key Clicks		
Chapter 5. Beeper and Vibrator Control 10 5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shiff Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5. Assignment Method 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. <		
5.1. Outline 10 5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 8.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 <td< td=""><td></td><td></td></td<>		
5.2. Setting the Beeper/Vibrator 11 5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21		
5.3. Starting/Stopping the Beeper/Vibrator 12 5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 23 8.2.		
5.4. Priority Orders between Events that Activate the Beeper/Vibrator 12 5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. <t< td=""><td></td><td></td></t<>		
5.5. Beeper Volume Patterns 12 Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 25 <		
Chapter 6. Keys and Trigger Switch Control 13 6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shiff Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8		
6.1. Outline 13 6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2.1 Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3 Setting the Standby Transition Timeout 26 8.3.1 Setting the Standby Transition Timeout 26 8.3.2 Suspend Transition Prohibited Events 26 8.		
6.2. Setting the Keys and Trigger Switch 14 6.3. Shift Key Operation Mode 15 6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2.1 Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.3.3 Suspend 26		
6.3. Shift Key Operation Mode 15 6.4. Magic Key Control. 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 26 <td></td> <td></td>		
6.4. Magic Key Control 15 6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Timeout 25 8.3.3. Setting the Standby Transition Timeout 26 8.3.3. Setting the Auto Power-off Timeout 26 <td>6.2. Setting the Keys and Trigger Switch</td> <td> 14</td>	6.2. Setting the Keys and Trigger Switch	14
6.5. Assigning a User-Defined Key Code to the Magic Keys 16 6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend 26 8.3.3. Setting the Auto Power-off Timeout 26<	6.3. Shift Key Operation Mode	15
6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.3.3. Setting the Standby Transition Timeout 25 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26	6.4. Magic Key Control	15
6.5.1. Assignment Method 16 6.5.2. User-Defined Code Settings File (MKeyDef.txt) 16 6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.3.3. Setting the Standby Transition Timeout 25 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26	6.5. Assigning a User-Defined Key Code to the Magic Keys	16
6.5.2. User-Defined Code Settings File (MKeyDef.txt). 16 6.6. Key Input Modes		
6.6. Key Input Modes 17 6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
6.6.1. Numeric Entry Mode 17 6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1 Switching to the Standby State 25 8.2.2 Standby Transition Prohibited Events 25 8.3.3 Setting the Standby Transition Timeout 26 8.3.1 Setting the Standby Transition Timeout 26 8.3.2 Suspend Transition Prohibited Events 26 8.3.3 Setting the Auto Power-off Timeout 26		
6.6.2. Alphabet Entry Mode 1 (27 key pad) 17 6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3. Suspend 26 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
6.7. Function Mode 20 6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 26 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
6.8. Key Clicks 20 6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
6.9. Acquisition of Keypad Type 20 6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 23 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3. Suspend 26 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
6.10. Auto Repeat Function 21 Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3. Suspend 26 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
Chapter 7. LCD Status Indication 22 7.1. Outline 22 7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
7.1. Outline		
7.2. Setting the LCD Status Indication 23 Chapter 8. Power Management 24 8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3. Suspend 26 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
Chapter 8. Power Management		
8.1. Outline 24 8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3. Suspend 26 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26		
8.2. Standby 25 8.2.1. Switching to the Standby State 25 8.2.2. Standby Transition Prohibited Events 25 8.2.3. Setting the Standby Transition Timeout 25 8.3. Suspend 26 8.3.1. Setting the Standby Transition Timeout 26 8.3.2. Suspend Transition Prohibited Events 26 8.3.3. Setting the Auto Power-off Timeout 26	· · · · · · · · · · · · · · · · · · ·	
8.2.1. Switching to the Standby State258.2.2. Standby Transition Prohibited Events258.2.3. Setting the Standby Transition Timeout258.3. Suspend268.3.1. Setting the Standby Transition Timeout268.3.2. Suspend Transition Prohibited Events268.3.3. Setting the Auto Power-off Timeout26		
8.2.2. Standby Transition Prohibited Events258.2.3. Setting the Standby Transition Timeout258.3. Suspend268.3.1. Setting the Standby Transition Timeout268.3.2. Suspend Transition Prohibited Events268.3.3. Setting the Auto Power-off Timeout26		
8.2.3. Setting the Standby Transition Timeout258.3. Suspend268.3.1. Setting the Standby Transition Timeout268.3.2. Suspend Transition Prohibited Events268.3.3. Setting the Auto Power-off Timeout26		
8.3.Suspend268.3.1. Setting the Standby Transition Timeout268.3.2. Suspend Transition Prohibited Events268.3.3. Setting the Auto Power-off Timeout26		
8.3.1. Setting the Standby Transition Timeout		
8.3.2. Suspend Transition Prohibited Events		
8.3.3. Setting the Auto Power-off Timeout	8.3.1. Setting the Standby Transition Timeout	26
	8.3.2. Suspend Transition Prohibited Events	26
0.0.4. Octaing the Encetive ricid-down rinne of the rower ricy for owntening to the obspecta otate 20	8.3.4. Setting the Effective Held-down Time of the Power Key for Switching to the Suspend State	26
	Chapter 9. Battery State	

	Outline	
9.2.	Battery Voltage Acquisition	
9.3.	Battery Voltage Icon	
9.4.	Battery Voltage Warning	
	D. LED	
	Outline	
	LED Control	
	. Display LED	
10.2.2	2. Charge LED	
Chapter 1	1. Data Communication	. 29
11.1.	Outline	. 29
11.2.	Programming for Data Communication	. 29
11.3.	Assigning Port Number	. 29
11.4.	ActiveSync	. 30
11.4.1	. Establishing an ActiveSync Connection	. 30
11.4.2	2. ActiveSync Auto Connection Setting Method	. 30
Chapter 12	2. Wireless Communication	. 31
12.1.	Outline	. 31
12.1.1		
12.1.2	Configuration of Spread Spectrum System	. 31
12.2.	Programming for Wireless Communication	. 32
12.2.1		
12.2.2		
12.2.3		
Chapter 13		
	Outline	
13.1.1		
13.1.2	5	. 40
13.1.3		
	Programming	
13.2.1		
13.2.2		
13.2.3	,	42
13.2.4		42
13.2.5		<u>.</u>
13.2.6	· · · · · · · · · · · · · · · · · · ·	
	Barcode Reading Using the Virtual COM Port	
13.3.1		
13.3.2		
13.3.3		
Chapter 14		
Chapter 1	· · · · · · · · · · · · · · · · · · ·	
	If a System Parameter Value is DWORD	
	If a System Parameter Value is a Character String	
15.3.	System Parameter Values That Can be Set/Obtained	
15.4.	Device Information Acquisition	
Chapter 16		
16.1.	Barcode API	
16.1.	Backlight API	
16.3.	Battery API	
	LED API	
16.5.	Beeper/Vibrator API	
	Wireless Communication API	
	OS Updating API	
16.7.	Bluetooth API	
	her APIs	
Chapter 17		
17.1.	System Requirements	
	Installation	
	Using OCX	
_	Scanner Control	
17.7.	OUTING OUTING	1-7-

144
145
148
149
149
150
150
151
157
159
160
160
160
161
163
164
164
166
169

Chapter 1. Software Requirements for the BHT-700

1.1. Operating System (OS) on the BHT-700

The OS running on the BHT-700 is Microsoft Windows CE 5.0.

1.2. Application Development Software on the PC

1.2.1. Application Development Tool

The application development tool for the BHT-700 is Microsoft eMbedded Visual C++ 4.0 (Service Pack 4)

1.2.2. Software Development Kit

The BHT-700 Software Development Kit provides the application development environment for Windows CE set up on the BHT-700. It includes the following libraries:

- (1) Help files
- (2) Windows-CE standard header files
- (3) Windows-CE standard library files
- (4) BHT-dedicated header file: BHTLIB.h
 - Includes statements for declaring BHT-dedicated APIs prototypes and macro definition of constants.
- To use the BHT-dedicated APIs, the BHTLIB.h should be included.
- (5) BHT-dedicated library: BHTLIB.lib
- Includes BHT-dedicated barcode reading functions and device driver management functions.
- To use the BHT-dedicated APIs, the BHTLIB.lib should be linked.
- (6) BHT-dedicated OCX files: Scanner700.ocx (for BHT-700B), Scanner700Q.ocx (for BHT-700Q), FileTransfer700.ocx, and FileTransferPC.ocx (for PC)
- Include BHT-dedicated barcode scanning functions and file transfer functions.
- To use the BHT-dedicated OCX, Scanner700.ocx, Scanner700Q.ocx, and FileTransfer700.ocx should be linked.

Chapter 2. Application Development Environment

2.1. Required Hardware (PC to be used for application development)

Item	Specification
OS	Microsoft Windows 2000 Professional with Service Pack 2 or higher, or Microsoft Windows 2000 Server with Service Pack 2 or higher, or Microsoft Windows XP Professional or higher.
PC	With a Pentium-II class processor, 450 MHz or faster
Memory	For Microsoft Windows 2000 Professional or Microsoft Windows XP Professional:
	96 MB or more (128 MB or more recommended)
	For Microsoft Windows 2000 Server :
	192 MB or more (256 MB or more recommended)
HDD	200 MB or more hard disk space
Display	VGA or higher-resolution monitor. A Super VGA (800 x 600 or larger) monitor is recommended.

2.2. Required Software

Application development tool: Microsoft eMbedded Visual C++ 4.0 (SP4)

You can download Microsoft eMbedded Visual C++ 4.0 and Service Pack 4 from the Microsoft Web site: (Microsoft eMbedded Visual C++ 4.0)

http://www.microsoft.com/downloads/details.aspx?FamilyID=1dacdb3d-50d1-41b2-a107-fa75ae960856&DisplayLang=en

(Service Pack 4)

http://www.microsoft.com/downloads/details.aspx?FamilyID=4a4ed1f4-91d3-4dbe-986e-a812984318e5&displaylang=en

APIs available for eMbedded Visual C++ are:

- (1) Win32API
- (2) Microsoft Foundation Class (MFC)
- (3) Dedicated APIs (for device control or data entry from the BHT)

Software development kit: BHT700 XXX SDK.msi

This should be embedded into Microsoft eMbedded Visual C++ 4.0 for use.

2.3. Installation

The Microsoft eMbedded Visual C++ 4.0 and BHT-700 software development kit should be installed to an application development PC in this order. To install the development kit, run the BHT700_XXX.msi in the BHT-700 Software Development Kit CD.

Chapter 3. Output to the LCD Screen

3.1. Screen Fonts

The BHT-700 has the following integrated screen fonts:

- (1) Arial (ttf)
- (2) Courier New (ttf)
- (3) Tahoma (ttf)
- (4) Time New Roman (ttf)
- (5) Wingding (ttf)

If no screen font is specified, Tahoma applies automatically.

3.2. Screen Rotation

The screen can be rotated using either of the following methods.

- (1) By pressing the screen rotation control key.
- (2) By using the system setting function (BHT_SetSysSettingDW).

3.2.1. Setting the Screen Rotation Control Key

The screen rotation control key can be set using the

BHT_SetSysSettingDW (BHT_DISP_ROTATION_KEY,...) function.

Furthermore, the setting can be obtained using the

BHT_GetSysSettingDW (BHT_DISP_ROTATION_KEY,...) function.

The relationship between the settable screen rotation control keys and settings is outlined in the following table.

Screen Rotation Control Key	Set value	Screen Rotation Control Key	Set value
[M1]	0x00000201	[SF]+[M1]	0x00010201
[M2]	0x00000202	[SF]+[M2]	0x00010202
[M3]	0x00000203	[SF]+[M3]	0x00010203

3.3. Setting the Screen Rotation Angle

The settable rotation angles are 0°, 90°, 180°, and 270°. The direction is anti-clockwise. The screen rotation angle can be set and read using the **BHT_SetSysSettingDW** (DWORD dwCtrlCode,DWORD dwSysParam) and **BHT_GetSysSettingDW** (DWORD dwCtrlCode,DWORD *pdwSysParam) functions, respectively.

Parameter	Туре	R/W	Control Code (dwCtrlCode)	Parameter Value (dwSysParam)	Default	Validation Timing
Screen rotation angle	DW	R/W	BHT_DISP _ROTATION	DISP_ROTATION_0 : 0° DISP_ROTATION_90 : 90° DISP_ROTATION_180 : 180° DISP_ROTATION_270 : 270°	DISP_ROTATION_0	Immediately after setting

Chapter 4. Backlight Control

4.1. Outline

The backlight illumination and power saving modes can be controlled using either of the following methods.

- (1) The backlight can be controlled by pressing the backlight control key.
- (2) The backlight can be controlled using the backlight control function (BHT_SetBltStatus).

The following backlight related setting items are also available.

- (1) Backlight control key
- (2) Backlight illumination time
- (3) Backlight brightness
- (4) Backlight power saving mode

Furthermore, the BHT-700 keypad is also equipped with a backlight (hereafter referred to as key backlight) for which the following settings can be made.

- (1) Illumination device (when BHT_SetBltStatus is called)
- (2) Key backlight illumination trigger

4.2. Setting the Backlight Function On/Off Key

You can assign the backlight function on/off key to other keys by the BHT_SetSysSettingDW (BHT_BACKLIGHT_KEY...) function or by assigning the backlight control function to the magic key. The table below lists the relationship between the keys that act as a backlight function on/off key and the set values in the BHT_SetSysSettingDW (BHT_BACKLIGHT_KEY...) function.

If no key is specified as a backlight function on/off key, the combination of the SF key and M3 key works as a backlight function on/off key by default.

Backlight control key	Set value	Backlight control key	Set value
[M1]	0x00000201	[SF]+[M1]	0x00010201
[M2]	0x00000202	[SF]+[M2]	0x00010202
[M3]	0x00000203	[SF]+[M3]	0x00010203

[Ex]

Execute function BHT_SetSysSettingDW (BHT_BACKLIGHT_KEY, 0x00010201) when assigning a simultaneous combination of the [SF] and [M1] keys to the backlight control key.

4.3. Setting the Backlight Illumination Time

The backlight illumination time is set and read using the **BHT_SetSysSettingDW** (DWORD dwCtrlCode,DWORD dwSysParam) and **BHT_GetSysSettingDW** (DWORD dwCtrlCode,DWORD *pdwSysParam) functions.

Parameter	Туре	R/W	Control Code (dwCtrlCode)	Parameter Value (dwSysParam)	Default	Validation Timing
Illumination time when powered by battery (sec.)	DW	R/W	BHT_BACKLIGHT _BATT_TIME	0 - 255 0: Backlight OFF 255: Continuously ON	3	When backlight illumination timer is next reset
Illumination time when placed on CU (sec.)	DW	R/W	BHT_BACKLIGHT _AC_TIME	0 - 255 0: Backlight OFF 255: Continuously ON	60	When backlight illumination timer is next reset

4.4. Setting the Backlight Brightness and Power Saving Mode

The backlight brightness and power saving mode are set and read using the BHT_SetSysSettingDW (DWORD dwCtrlCode,DWORD dwSysParam) and BHT_GetSysSettingDW (DWORD dwCtrlCode,DWORD *pdwSysParam) functions.

Parameter	Туре	R/W	Control Code (dwCtrlCode)	Parameter Value (dwSysParam)	Default	Validation Timing
Backlight brightness	DW	R/W	BHT_BACKLIGHT _BRIGHTNESS	0: OFF 1: Dark 2: Bright (low) 3: Bright (high)	3	When the backlight is next turned ON
Backlight power saving mode	DW	R/W	BHT_BACKLIGHT _POWERSAVE	0: OFF 1: Dim	1	When backlight illumination status is set to power saving mode first after setting

4.5. Controlling the Backlight with the Backlight Control Key

The backlight function can be enabled/disabled by pressing the backlight function control key (Default: Hold down [SF] key and press [M3].).

The illumination time is specified using the BHT_SetSysSettingDW

(BHT_BACKLIGHT_BATT_TIME/BHT_BACKLIGHT_AC_TIME, ...) function. The default value is 3 seconds when powered by the battery, and 60 seconds when placed on the CU. Backlight control is performed as shown in the flow diagram below.

Press the backlight control key. (*1)

(*1)
Default: Hold down [SF] key and press [M3].
Setting is possible using the BHT_SetSysSettingDW (BHT_BACKLIGHT_KEY,...) function.

- (*2) The backlight illumination time is set using the BHT_SetSysSettingDW (BHT_BACKLIGHT_BATT_TIME/BHT_BACKLIGHT_AC_TIME,...) function. Power saving mode is enabled if no key other than the backlight control key is pressed, or if the touch panel is not tapped within this time. This time is measured from the point all keys are released or the touch panel is last pressed.
- (*3)
 If key-press has not been set for the key backlight illumination trigger, the key backlight will not illuminate even if a key is pressed. If, however, the key backlight is already illuminated beforehand, it will not turn OFF by pressing a key.
- (*4) If touch panel tap has not been set for the key backlight illumination trigger, the key backlight will not illuminate even if the touch panel is tapped. If, however, the key backlight is already illuminated beforehand, it will not turn OFF by tapping the touch panel.
- (*5)
 Cold booting is performed from the status at (1) above.
 However, cold booting is performed from the status at (1) when the registry is saved with the status at (1) or (2), and is performed from the status at (3) when the registry is saved with the status at (3).
- (*6) When performing warm booting or when resuming from the suspend status, the process is performed from (1) if the status prior to warm boot/suspend is (1) or (2), and is performed from (3) if the status prior to warm boot/suspend is (3).

4.6. Controlling the Backlight with the Backlight Control Function

The backlight function can be controlled using the BHT_SetBltStatus function.

The BHT_SetBltStatus (BHT_BL_ENABLE_ON) function is used to enable the backlight function and turn the backlight ON.

The backlight power saving mode is enabled if no keys are pressed, or the touch panel tapped from the point the backlight is turned ON using the BHT_SetBltStatus (BHT_BL_ENABLE_ON) function until the time set using the BHT_SetSysSettingDW

(BHT_BACKLIGHT_BATT_TIME/BHT_BACKLIGHT_AC_TIME,...) function (Default: 3 seconds when powered by battery, 60 seconds when placed on CU) elapses, or if the **BHT_SetBltStatus** (BHT_BL_ENABLE_OFF) function is executed. (The backlight function remains ON at this time.) If the **BHT_SetBltStatus** (BHT_BL_DISABLE) function is executed, the backlight function is disabled, and the backlight power saving mode is enabled.

Backlight control is performed as shown in the flow diagram below.

- (*1)
 Default: Hold down [SF] key and press [M3].
 Setting is possible using the BHT_SetSysSettingDW (BHT_BACKLIGHT_KEY,...) function.
- (*2) The backlight illumination time is set using the BHT_SetSysSettingDW (BHT_BACKLIGHT_BATT_TIME/BHT_BACKLIGHT_AC_TIME,...) function. Power saving mode is enabled if no key other than the backlight control key is pressed, or if the touch panel is not tapped within this time. This time is measured from the point all keys are released or the touch panel is last pressed.
- (*3) If key-press has not been set for the key backlight illumination trigger, the key backlight will not illuminate even if a key is pressed. If, however, the key backlight is already illuminated beforehand, it will not turn OFF by pressing a key.
- (*4) If screen tap has not been set for the key backlight illumination trigger, the key backlight will not illuminate even if the screen is tapped. If, however, the key backlight is already illuminated beforehand, it will not turn OFF by tapping the screen.

The backlight specified with the BHT_SetSysSettingDW (BHT_BACKLIGHT_DEVICE,...) function illuminates.

(*6) Cold booting is performed from the status at (1) above.

However, cold booting is performed from the status at (1) when the registry is saved with the status at (1) or (2), and is performed from the status at (3) when the registry is saved with the status at (3).

(*7) When performing warm booting or when resuming from the suspend status, the process is performed from (1) if the status prior to warm boot/suspend is (1) or (2), and is performed from (3) if the status prior to warm boot/suspend is (3).

4.7. Key Backlight

The following settings can be made for the key backlight.

Parameter	type	R/W	Control code (dwCtrlCode)	Parameter value (dwSysParam)	Default	Validating timing
Device illuminated when BHT_SetBltStatus called	DW	R/W	BHT_BACKLIGHT _DEVICE	One of the following combinations: 0: None LIGHTING_LCD(=1) : LCD LIGHTING_KEY(=2) : KEY LIGHTING_LCD LIGHTING_KEY(=3) : Both	1	Immediately after setting, when BHT_SetBltStatus next called
Key backlight illumination trigger	DW	R/W	BHT_BACKLIGHT_ _KEY_FACTOR	0 : Always OFF BHT_BLT_KEY _FACTOR_KEY : Illuminate only when keys pressed BHT_BLT_KEY _FACTOR_KEYTAP : Illuminate when keys pressed or tapped	1	Immediately after setting, first tap or key press when "BHT_BLT_KEY _FACTOR_KEY" or "BHT_BLT_KEY_FACTOR_KEYTAP"

Chapter 5. Beeper and Vibrator Control

5.1. Outline

The beeper and vibrator are controlled by:

- (1) the beeper/vibrator setting functions
 - (that allow you to choose beeper and/or vibrator and set the beeper volume. Refer to Section 5.2.)
- (2) the beeper/vibrator start/stop functions (that allow you to set the beeping or vibration interval, the number of repetitions, and frequency. Refer to Section 5.3.)

5.2. Setting the Beeper/Vibrator

 $\label{eq:continuous_problem} The~BHT_SetSysSettingDW~(DWORD~dwCtrlCode,~DWORD~dwSysParam)$

and BHT_GetSysSettingDW (DWORD dwCtrlCode, DWORD *pdwSysParam) functions write or read the

beeper/vibrator parameters as specified below.

Parameter name	Туре	R/W	Control code (dwCtrlCode)	Parameter value (dwSysParam)	Default	Validating timing
Rumble device	DW	R/W	BHT_BEEP_VIB _SELECT	BEEP_SELECT : Beeper VIB_SELECT : Vibrator BEEP_SELECT VIB_SELECT : Beeper and vibrator	BEEP_SELECT	First sound after setting
Beeper volume (*1)	DW	R/W	BHT_BEEP_VIB _VOLUME	0: OFF 1 (Lowest) to 5 (Highest)	5	First sound after setting
Key clicks (*2)	DW	R/W	BHT_BEEP_VIB _KEY	0: OFF 1 (Soft) 2 (Loud)	2	First sound after setting
Screen taps	DW	R/W	BHT_BEEP_VIB _TAP	0: OFF 1 (Soft) 2 (Loud)	2	First sound after setting
Trigger switch clicks (*3)	DW	R/W	BHT_BEEP_VIB _TRGKEY	CLICK_SOUND_OFF: Prohibit CLICK_SOUND_ON: Permit	CLICK_SOUND_OFF	First sound after setting

- (*1) This setting is effective only when the value 0, 1, or 2 is specified to the frequency in the beeper start/stop functions (BHT_StartBeep or BHT_StartBeeperOnly).
- (*2) This excludes the pressing of magic keys assigned to the trigger switch and the [SCAN] key when the "trigger switch click sound" is OFF.
- (*3) This is effective only when pressing magic keys assigned to the trigger switch and the [SCAN] key.

The rumble device specification above takes effect when the beeper/vibrator is driven:

- (1) by the BHT_StartBeen function.
- (2) due to low battery warning, in conjunction with the "Battery voltage has lowered." or "Charge the Battery!" message.
- (3) upon completion of barcode reading.

The MessageBox, MessageBeep and PlaySound Windows CE standard APIs and Windows CE standard warning and notification sounds are enabled by the audio function, and therefore there is no influence on settings made with the above functions.

The sound pattern of the key clicks, screen taps, and trigger switch clicks is as follows:

ON-duration: 10 ms Frequency: 1396 Hz Volume : Loud, Soft

5.3. Starting/Stopping the Beeper/Vibrator

The beeper/vibrator is activated or deactivated by the following functions:

Function	Used to:
BHT_StartBeep	Activate the selected device (beeper or vibrator).
BHT_StartBeeperOnly	Activate the beeper.
BHT_StartVibratorOnly	Activate the vibrator.

The functions listed above start the beeper/vibrator control and immediately pass control to the subsequent statement or function. The actual device operation is carried out in background processing.

Specifying the frequency with value 0, 1, or 2 sounds the beeper with the frequency listed below. If any other value is specified, the beeper sounds at the maximum volume.

Parameter value	Frequency (Hz)
0	698
1	1396
2	2793

If the suspend or critical power states are turned OFF while the beeper is sounding or the vibrator is vibrating, the BHT resumes with both the beeper and vibrator stopped when the unit is next resumed.

5.4. Priority Orders between Events that Activate the Beeper/Vibrator

There are priority orders between events that activate the beeper/vibrator as listed below.

Priority	Event that activate the beeper/vibrator
Higher	System error
1	Completion of barcode reading
	Setting in applications
Lower	Key clicks or screen taps

When the beeper or vibrator is being driven by any event, the lower priority event (if happens) activates no beeper or vibrator but the same or higher priority event (if happens) overrides the currently operating beeper or vibrator and newly activates the beeper or vibrator.

5.5. Beeper Volume Patterns

The beeper is activated according to the beeper volume as listed below.

Beeper volume	Volume
1 (lowest)	Soft
2	Soit
3	Mid
4	IVIIU
5 (highest)	Loud

Chapter 6. Keys and Trigger Switch Control

6.1. Outline

In addition to the processing for depressed or released keys and trigger switch, the BHT OS controls the following functions assigned to them.

- (1) Specifying the shift key operation mode
- (2) Assigning functions to the magic keys (M1 to M3)
- (3) Supporting the alphabet entry mode (in addition to the numeric entry mode)
- (4) Function mode
- (5) Key click sound
- (6) Keyboard type acquisition

Furthermore, both the 27-key pad and 42-key pad keyboard types are supported.

6.2. Setting the Keys and Trigger Switch

The BHT_SetSysSettingDW (DWORD dwCtrlCode, DWORD dwSysParam) and BHT_GetSysSettingDW (DWORD dwCtrlCode, DWORD *pdwSysParam) functions write or read the keys and trigger switch parameters.

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing
Shift key operation mode	DW	R/W	BHT_KEY _SHIFT_MODE	KEY_NON_LOCK : Non-lock mode KEY_ONE_TIME : Onetime lock mode	KEY_NON_LOCK	Immediately after setting
Assignment to M1 key	DW	R/W	BHT_KEY _M1_MODE	MAGIC_FUNC_NONE : Ignore the depressed key	MAGIC_FUNC_TAB	Immediately after setting
Assignment to M2 key	DW	R/W	BHT_KEY _M2_MODE	MAGIC_FUNC_ENTER : Treat as ENT key	MAGIC_FUNC _NONE	Immediately after setting
Assignment to M3 key	DW	R/W	BHT_KEY _M3_MODE	MAGIC_FUNC_TRG : Treat as trigger switch MAGIC_FUNC_SHIFT : Treat as SF key MAGIC_FUNC_ALT : Treat as ALT key MAGIC_FUNC_CTRL : Treat as CTRL key MAGIC_FUNC_BLT : Treat as backlight function on/off key MAGIC_FUNC_TAB : Treat as TAB key MAGIC_FUNC_CLEAR : Treat as CLEAR key MAGIC_FUNC_USERDEF : User-defined code (*1)	MAGIC_FUNC _TRG	Immediately after setting
Entry mode	DW	R/W	BHT_KEY _INPUT_METHOD	INPUT_METHOD _NUMERIC : Numeric entry mode INPUT_METHOD _ALPHABET : Alphabet entry mode 1 INPUT_METHOD _ALPHABET 2 : Alphabet entry mode 2 (*2)	27-key type: INPUT_METHOD _NUMERIC 42-key type: INPUT_METHOD _ALPHABET	Immediately after setting
Enable/disable alphabet entry switching key	DW	R/W	BHT_DISABLE _KEYMODE _CHANGE_KEY	ENABLE_KEY _TOCHANGE _ALPHABET : Enable alphabet entry DISABLE_KEY _TOCHANGE_ALPHABET : Disable alphabet entry	ENABLE_KEY _TOCHANGE _ALPHABET	Immediately after setting
Function mode	DW	R/W	BHT_KEY _FUNCTION	KEY_FUNCTION_ON : Function mode KEY_FUNCTION_OFF : Non-function mode	KEY_FUNCTION _OFF	Immediately after setting

^(*1) User-defined codes can only be acquired. (*2) Alphabet entry mode 2 is only available with the 27-key pad.

6.3. Shift Key Operation Mode

The shift key operation mode works as follows:

Shift key operation mode	Description
Non-lock mode	- The keypad is shifted when the Shift key is held down.
Onetime lock mode	- The shift status is cleared immediately after releasing a key when in the shift status from the time the key is pressed until it is released while the shift key is held down and after it is released.

6.4. Magic Key Control

The table below lists the virtual key codes and character codes when magic keys (M1 to M3) are pressed.

Parameter value	Virtual key code		Character code		
Farameter value	Constant		Value	When not shifted	Shifted
MAGIC_FUNC_NONE	[M1] key	VK_M1	C1	-	-
	[M2] key	VK_M2	C2	-	-
	[M3] key	VK_M3	C3	1	-
MAGIC_FUNC_ENTER	VK_RETURN	١	0D	0D(CR)	0D(CR)
MAGIC_FUNC_TRG	(*1)			-	-
MAGIC_FUNC_SHIFT	VK_SHIFT		10	1	-
MAGIC_FUNC_CTRL	VK_CONTROL		11	1	-
MAGIC_FUNC_ALT	VK_MENU		12	1	-
MAGIC_FUNC_BLT	(*1)			-	-
MAGIC_FUNC_TAB	VK_TAB		09	09 (tab)	09 (tab)
MAGIC_FUNC_LASER	(*1)			-	-
MAGIC_FUNC_CLEAR	VK_CLEAR		0C	-	-
MAGIC_FUNC_USERDEF	(*	2)			

- (*1) Returns the same virtual key code as when "MAGIC_FUNC_NONE" is assigned.
- (*2) Notified virtual key codes are user-defined codes. In such a case, functions assigned to keys such as the following cannot be executed.
 - Changing the entry mode by pressing the [AL] key to which the function has been assigned.
 - Backing up the registry by pressing the [SF] key to which the function has been assigned and the [Power] key.
 - Switching between backlight enable and backlight disable by assigning the function to [SF] + [M3].

6.5. Assigning a User-Defined Key Code to the Magic Keys

Apart from the previously mentioned functions, optional keys can be applied to the magic keys following the method below.

With this function it is possible to assign keys to the magic keys that do not exist in the BHT-700, or to execute the equivalent of a multi-key function by pressing a magic key once.

6.5.1. Assignment Method

The steps for setting user-defined key codes for the magic keys are as follows:

- (1) Save a user-defined code settings file with the filename "MKeyDef.txt" in the FLASH folder of the BHT.
- (2) Choose the key you wish to set from the key definition menu in the BhtShell (for further details refer to the "BHT-700BB/700BWB/700BWBG-CE User's Manual" or "BHT-700QWBG-CE User's Manual"). Backup files can be created with a backup registry.

6.5.2. User-Defined Code Settings File (MKeyDef.txt)

(1) File name

"MKeyDef.txt" (fixed)

(2) Format

<Character string inside the combo box>,<Defined code number>,<Defined code 1>,...,<Defined code 4>

Item	Display Method	Setting Content
Character string inside the	Character string	A character string containing up to
combo box		64 characters. Extra characters will
		be ignored.
Defined code number	decimal number	A user-defined code specified as a
		number between 1 and 4.
Defined code 1 through 4	hexadecimal	The virtual key code you wish to
	number	assign.

[Ex] Setting a user-defined key code of "Alt + X" and "Alt + Y" to be added to the combo box list.

ALT+X, 2, 0x12, 0x58 ALT+Y, 2, 0x12, 0x59

- (*) If there is a mistake in the format of a line in the MKeyDef.txt file, that line will be ignored and removed from the BhtShell key definition menu.
- (*) Even if the MKeyDef.txt file is deleted, key code settings will be retained (the BhtShell will display "None"). When a different function is designated in the BhtShell, the previous key code settings will be replaced.

6.6. Key Input Modes

The BHT-700 key pad has the following three key entry modes.

(1) Numeric entry mode

This mode allows you to type in numeric data with the numeric keys.

(2) Alphabet entry mode 1

In the 27-key pad, use the numeric keys to type in alphabet letters in the same way as he/she uses a cellular phone.

In the 42-key pad, use the alphabet keys to type in alphabet letters directly.

(3) Alphabet entry mode 2 (27-key pad only)

This entry mode is for alphabet entry at programs running on the computer when using terminal services such as a remote desktop connection.

Similarly to aphabet entry mode 1, alphabet letters are entered using the numeric keys.

6.6.1. Numeric Entry Mode

The numeric entry mode starts by:

- (1) calling the BHT_SetSysSettingDW (BHT_KEY_INPUT_METHOD, INPUT_METHOD_NUMERIC) function.
- (2) pressing the [AL] key when in alphabet entry mode 2 (27-key pad). (*1), or pressing the [NUM] key when in alphabet entry mode 1 (42-key pad). (*1)
 - (*1) Effective only when the key entry mode transition key is not disabled.

Pressing keys in this mode returns virtual key codes and character codes specified in Appendix A.

6.6.2. Alphabet Entry Mode 1 (27 key pad)

The alphabet entry mode 1 starts by:

- (1) calling the **BHT_SetSysSettingDW** (BHT_KEY_INPUT_METHOD, INPUT_METHOD_ALPHABET) function.
- (2) pressing the AL key(*2) in the numeric entry mode.

The alphabet entry mode 1 terminates by:

- (1) switching to any other entry mode with the BHT_SetSysSettingDW function.
- (2) pressing the AL key(*2) in the numeric entry mode.
 - (*2) The key takes effect only when it is not disabled by the BHT_DISABLE_KEYMODE-CHANGE KEY.

In the 27-key pad alphabet entry mode 1, alphabet characters can be entered using an alphabet character similar to that used on a cellular phones.

(1) When changing to alphabet entry mode 1, an unestablished character display window similar to that shown below displays.

The unestablished character display window has the following features.

- This window can be moved by using the stylus.
- The focus is not transferred to the unestablished character display window.
- The unestablished character display window always displays in the foreground.

Furthermore, the following icon displays in the task bar when in alphabet entry mode 1.

(2) If keys [0] to [9] or the [.] key is pressed, the pressed key becomes an unestablished character and displays in the unestablished character display window. The character then reverts to a character code when any of these keys becomes established.

Press any of the following keys below to establish unestablished characters.

- Keys [0] to [9] or [.] that differ from the key pressed at the unestablished character
- [ENT] key
- "MAGIC_FUNC_ENTER" assigned to the magic keys
- Keys [F1] to [F12]
- (3) Keys used for alphabet entry 1

The table below lists keys whose operations are different from those in the numeric entry mode.

Use this key	To do this
0 to 9 and period (.) keys	Enter alphabets. For alphabets assigned to these keys, refer to "Appendix A. Keyboard Arrangement, Virtual Key Codes and Character Codes" – "A.1.3. Character Codes in Alphabet Entry Mode."
ENT key	Establish an unestablished key if any. If there is no unestablished key, the same character code as in the numeric entry mode is returned.
BS key	Clear an unestablished key if any. If there is no unestablished key, the same character code as in the numeric entry mode is returned.
F1 to F12 Key	Establish an unestablished key if any. If there is no unestablished key, the same character code as in the numeric entry mode is returned.
Magic key	Establish an unestablished key if any when the MAGIC_FUNC_ENTER is assigned to these keys. If there is no unestablished key, the same character code as in the numeric entry mode is returned.
AL key	Clears unestablished keys if any exist and switches to numeric entry mode.

6.6.3. Alphabet Entry Mode 1 (42-Key Pad)

Alphabet entry mode 1 starts by:

- (1) calling the **BHT_SetSysSettingDW** (BHT_KEY_INPUT_METHOD, INPUT_METHOD_ALPHABET) function.
- (2) pressing the [NUM] key when in numeric entry mode. (*2)

Alphabet entry mode 1 terminates by:

- (1) switching to any other entry mode with the **BHT_SetSysSettingDW**(BHT_KEY_INPUT_METHOD, INPUT_METHOD_XXXXXX) function.
- (2) pressing the [NUM] key. (*2)
 - (*2) Effective only when the key entry mode transition key is not disabled.

When keys are pressed in this mode, virtual key codes and character codes are returned in accordance with "Appendix A. Keyboard Arrangement, Virtual Key Codes and Character Codes" - "A.2.2. Virtual Key Codes and Character Codes".

6.6.4. Alphabet Entry Mode 2 (27-key pad only)

Alphabet entry mode 2 starts by:

- (1) calling the **BHT_SetSysSettingDW** (BHT_KEY_INPUT_METHOD, INPUT_METHOD_ALPHABET2) function.
- (2) pressing the [AL] key when in alphabet entry mode 1. (*1)

Alphabet entry mode 2 terminates by:

- (1) switching to any other entry mode with the **BHT_SetSysSettingDW** (BHT_KEY_INPUT_METHOD, INPUT_METHOD XXXXXX) function.
- (2) pressing the [AL] key. (*1)(*1) Effective only when the key entry mode transition key is not disabled.

Similarly to alphabet entry mode 1, alphabet letters can also be entered in alphabet entry mode 2 using the same method used when entering alphabet letters with a cellular phone.

(1) The following icon below displays in the task bar when starting alphabet entry mode 2. The unestablished character display window does not display.

- (2) If keys [0] to [9] or the [.] key is pressed, characters assigned to those keys display at the current cursor position. By pressing the same key(s) again, assigned characters display sequentially. Press a different key to establish the entered character(s).
- (3) Keys used in alphabet entry mode 2

The table below lists keys whose operations are different from those in the numeric entry mode.

Use this key	To do this
[0] to [9] and period (.) keys	Used to enter alphabet letters. For details of alphabet letters assigned to these keys, refer to "Appendix A. Keyboard Arrangement, Virtual Key Codes and Character Codes" – "A.1.3. Character Codes in Alphabet Entry Mode."
[AL] key	Switches to numeric entry mode.

6.7. Function Mode

Use either of the methods below to enable function mode.

- (1) Call up the BHT_SetSysSettingDW (BHT_KEY_FUNCTION,KEY_FUNCTION_ON) function.
- (2) Press the [FN] key when in function mode.

Use either of the methods below to disable function mode and return to non-function mode.

- (1) Call up the BHT_SetSysSettingDW (BHT_KEY_FUNCTION,KEY_FUNCTION_OFF) function.
- (2) Press the [FN] key when in function mode.

Non-function mode is enabled as the default when the unit is booted up.

The following icon displays in the task bar when in function mode.

If a key is pressed when in function mode, a virtual key code or character code is returned as outlined in "Appendix A. Keyboard Arrangement, Virtual Key Codes, and Character Codes".

6.8. Key Clicks

When the keys are pressed, the BHT clicks as specified below. Note that pressing the power key does not click.

Parameter name	Туре	R/W	Control code (dwCtrlCode)	Parameter value (dwSysParam)	Default	Validating timing
Key click volume	DW	R/W	BHT_BEEP_VIB _KEY	0: OFF 1: Soft 2: Loud	2	first key press after setting
Trigger switch clicks	DW	R/W	BHT_BEEP_VIB _TRGKEY	CLICK_SOUND _OFF: Prohibit CLICK_SOUND _ON: Allow	CLICK_SOUND_OFF	first trigger key press after setting

6.9. Acquisition of Keypad Type

The $BHT_GetSysSettingDW$ (DWORD dwCtrlCode,DWORD *pdwSysParam) function reads the keypad type.

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing
Keypad type	DW	R	BHT_KEYBOARD_TYPE	KEYBOARD_TYPE1 : 27-key pad KEYBOARD_TYPE2 : 42-key	-	-

6.10. Auto Repeat Function

The keys used to perform auto repeat are listed in the following table. Whether auto repeat function for each key is enabled or disabled is listed in the following table.

Key	27-key pad	42-key pad
[0] to [9] key and	- In Numeric entry mode : ●	•
Period ([.]) key	- In Alphabet entry mode :-	
[A] to [Z] key	-	•
[BS] key	•	•
[C] key	•	•
[◄][▶][▲][▼] key	•	•
[F1] to [F12] key	•	•
[SF] key	-	-
[FN] key	-	-
[ENT] key	-	-
[TAB] key	•	•
[AL] key	-	N/A
[NUM] key	N/A	-
[ESC] key	-	-
[SCAN] key	-	-
Magic keys	- No key assignment : -	- No key assignment : -
	- [ENT]key : -	- [ENT] key : -
	- Trigger key : -	- Trigger key : -
	- Shift key : -	- Shift key : -
	- Backlight control key :-	- Backlight contorol key :-
	- [TAB] key : ●	- [TAB] key : ●
	- [CTRL] key : -	- [CTRL] key : -
	- [ALT] key : -	- [ALT] key : -
	- [CLEAR] key : -	- [CLEAR] key : -
	- User-defined code : -	- User-defined code : -
Power key	-	-

 $[\]mbox{\ensuremath{^{*}}} \bullet$: Auto repeat performed , - : Auto repeat not performed

Chapter 7. LCD Status Indication

7.1. Outline

The status of the BHT is displayed on the LCD as specified below.

	Description	loon
Status	Description Displays the better weltage in five levels	Icon
Battery voltage level	Displays the battery voltage in five levels.	(III
Software keyboard	Shows whether the software keyboard is	A : The software keyboard is
display state	displayed or hidden. Tapping this icon toggles the	displayed.
	software keyboard on and off.	: The software keyboard is hidden.
Keypad shift state	Displays the icon when the keypad is shifted.	SF
Function state	Displays the icon when in function mode.	F
Alphabet input state	Displays the ALP window when the alphabet	N D
(27-key pad only)	input function is activated. An unestablished	ALP
	character appears in this ALP window.	
	Displays the icon when the alphabet input	ALp
	function is activated.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Numeric entry status (42-key pad only)	Displays when in numeric entry mode.	N
Standby state	Displays this icon when the CPU comes to be on	zzz
	standby.	2-
Synchronization state	Displays the open state of the wireless device	The wireless device is open.
	and the radio field intensity.	₹ T
		The wireless device is open and
		the wireless link is established
		with an access point.
		: Radio field intensity
		(Low)
		: Radio field intensity
		(Medium)
		: Radio field intensity (High)
ActiveSync	Displays this icon when the BHT is	>
	communicating with the PC via Microsoft ActiveSync (not using LAN).	
Desktop display	Switches the screen between the application	
	execution display and desktop display. Tapping	
	this icon when an application program is running switches the screen to the desktop display.	
	Tapping it again returns to the application	
	execution display.	
Pluotooth nover status	Displays the Plustooth payer status	_
Bluetooth power status	Displays the Bluetooth power status. No icons display if the unit is not equipped with a	🕴 : Power ON
	Bluetooth device.	: Power OFF
1		1 OWO1 O1 1

7.2. Setting the LCD Status Indication

The BHT_SetSysSettingDW (DWORD dwCtrlCode, DWORD dwSysParam) and BHT_GetSysSettingDW (DWORD dwCtrlCode, DWORD *pdwSysParam) functions write or read the LCD status indication as specified below.

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing
Battery voltage level icon	DW	R/W	BHT_ICON _BATTERY	0: Hide 1: Display	1	Immediately after setting
Software keyboard icon	DW	R/W	BHT_ICON _SIP	0: Hide 1: Display	1	Immediately after setting
Keypad shift icon	DW	R/W	BHT_ICON _SHIFTKEY	0: Hide 1: Display	1	Immediately after setting
Alphabet input icon(27-key pad only)	DW	R/W	BHT_ICON _IN_ALPHA	0: Hide 1: Display	1	Immediately after setting
Synchronization state icon	DW	R/W	BHT_ICON _RADIO_INTENSE	0: Hide 1: Display	1	Immediately after setting
Standby state icon	DW	R/W	BHT_ICON _STANDBY	0: Hide 1: Display	0	Immediately after setting
Function state icon	DW	R/W	BHT_ICON_FUNC	0: Hide 1: Display	1	Immediately after setting
Numeric entry status (42-key pad only)	DW	R/W	BHT_ICON_NUMERIC	0: Hide 1: Display	1	Immediately after setting
Bluetooth power status	DW	R/W	BHT_ICON _BLUETOOTH	0: Hide 1: Display	0	Immediately after setting

Chapter 8. Power Management

8.1. Outline

The power management functions switch the system powering state.

The following four system power states exist.

- (1) Power ON
- (2) Standby
- (3) Suspned (*1)
- (4) Critical OFF (*2)

(*1) Suspend
The BHT will be suspended when the power is turned off with the power key or auto power off feature.

(*2) Critical OFF
The BHT will become critical off when the power is turned off due to battery voltage drop or battery cover unlocked.

<u>Not</u>es

- No processing is performed when the BHT is on standby.
- When the SD memory card is used, disable the standby function before accessing the card.

8.2. Standby

8.2.1. Switching to the Standby State

The BHT switches from the power ON state to the standby state when any of the following conditions arises:

- (1) When the standby transition timeout occurs after a standby transition prohibited event (listed below) is completed.
- (2) When waiting for the event specified by the **BHT_WaitStandbyEvent** function with the standby transition prohibited event completed.
- (3) When the standby transition prohibited event is completed while waiting for the event specified by the **BHT_WaitStandbyEvent** function to occur.

8.2.2. Standby Transition Prohibited Events

The following items are standby transition prohibited events.

- Key being pressed
- Touch panel being tapped
- Screen being refreshed
- Beeper/vibrator in operation
- Key click sound/touch panel tap sound in operation
- Backlight being ON (excludes those times when continuously ON)
- Reading barcodes
- IrDA interface port opened
- Connector interface port opened
- USB interface opened
- Wireless device opened
- During USB-LAN communication
- Flash memory being erased or written
- RTC being accessed
- Indicator LED being ON
- System message being displayed
- Bluetooth device power being ON
- Explorer displayed
- Standby transition time set to "0"

8.2.3. Setting the Standby Transition Timeout

The BHT_SetSysSettingDW (DWORD dwCtrlCode, DWORD dwSysParam) and BHT_GetSysSettingDW (DWORD dwCtrlCode, DWORD *pdwSysParam) functions write or read the standby transition timeout as specified below.

Parameter name	Туре	R/W	Control code	Parameter value	Defaults	Validating timing
Standby transition timeout (in units of 100 msec)	DW	R/W	BHT_PM_STBYTIME	0: Disable 1 - 255	10 (1 sec)	Immediately after setting

8.3. Suspend

8.3.1. Setting the Standby Transition Timeout

The BHT switches to the suspend state when any of the following conditions arises:

- (1) When the power is on, the power key is held down for the effective held-down time (for switching to the suspend state) or more.
- (2) An auto power-off timeout occurs after one of the suspend transition prohibited events (listed below) is completed.
- (3) When the power OFF function is called.

8.3.2. Suspend Transition Prohibited Events

The following items are suspend transition prohibited events.

- Key press (other than power key) authentication
- Touch panel tap authentication
- When ActiveSync connection established (IrDA and USB)
- When auto power OFF time is set to "0"
- When the following registry value is set to "0" with a wireless connection established [HKEY_LOCAL_MACHINE\Comm\CXPort]

"NoldleTimerReset"=dword: 0

Furthermore, the auto power OFF time is reset upon the occurrence of the following events.

- When a serial communication event occurs (IrDA and USB)
- When the SystemIdleTimerReset() function is executed
- When an event with event object name "PowerManager, ActivityTimer, or UserActivity" is set

8.3.3. Setting the Auto Power-off Timeout

The BHT_SetSysSettingDW (DWORD dwCtrlCode, DWORD dwSysParam) and BHT_GetSysSettingDW (DWORD dwCtrlCode, DWORD *pdwSysParam) functions write or read the auto power-off timeout as specified below.

Parameter name	Туре	R/W	Control code	Parameter value	Defaults	Validating timing
Auto power-off timeout (sec.) (When battery-driven)	DW	R/W	BHT_PM _BATTPOWEROFF	0: Disable 1 - 0xFFFFFFF	180 (3 min.)	Immediately after setting
Auto power-off timeout (sec.) (When placed on the CU)	DW	R/W	BHT_PM _EXTPOWEROFF	0: Disable 1 - 0xFFFFFFF	0	Immediately after setting

8.3.4. Setting the Effective Held-down Time of the Power Key for Switching to the Suspend State

The BHT_SetSysSettingDW (DWORD dwCtrlCode, DWORD dwSysParam) and BHT_GetSysSettingDW (DWORD dwCtrlCode, DWORD *pdwSysParam) functions write or read the effective held-down time of the power key for switching to the suspend state as specified below.

Parameter name	Туре	R/W	Control code	Parameter value	Defaults	Validating timing
Effective held-down time of the power key for switching to the suspend state (in units of 100 msec)	DW	R/W	BHT_PWRDOWN_KEY _WAIT_TIME	1 - 255	5	Immediately after setting

Saving the Registry

If the BHT is switched to the suspend state by pressing the power key with the SF (*1) key held down, the Registry will be saved into the flash memory.

(*1) Here, this means only the key marked "SF." The Registry will not be saved even if you press the power key while holding down the magic key to which the SF key function is assigned.

Chapter 9. Battery State

9.1. Outline

The battery status can be ascertained using the following methods.

- (1) Battery status acquisition
- (2) Battery voltage icon
- (3) Low battery voltage warning message display

9.2. Battery Voltage Acquisition

The BHT_GetPowerStatus function can be used to ascertain whether the BHT is on the CU, and acquires the battery level, battery voltage, and battery type.

9.3. Battery Voltage Icon

The battery voltage status is indicated with the icons below if the battery voltage status display is authorized.

Batte	ery voltage level	Battey Voltage
Level	Voltage	Icon
High	3.9 V or higher	(III
Medium	3.7 V or higher and less than 3.9 V	Ī
Low	3.6 V or higher and less than 3.7 V	
Warning	3.5V or higher and less than 3.6 V	

9.4. Battery Voltage Warning

If the output voltage of the battery cartridge drops below the specified lower limit, the BHT displays the Level-1 message "Battery voltage has lowered." on the LCD and beeps three times. After that, it will resume the previous regular operation.

If the battery output voltage drops further, the BHT displays the Level-2 message "Charge the battery!," beeps five times, and then turns itself off automatically.

Chapter 10. LED

10.1. Outline

The BHT-700 has two LEDs. The display LED can be controlled from the application.

LED	Color	ON/OFF control from applications
Indicator LED	Red and blue	Possible
Charger LED	Red and green	Impossible

10.2. LED Control

10.2.1. Display LED

(1) Control method

The red and blue display LEDs can be turned ON and OFF using the BHT_SetNLedStatus, BHT_SetNLedOn, and BHT_SetNLedOff functions.

Furthermore, the LED ON/OFF status can be acquired using the BHT_GetNLedStatus and BHT_GetNLedStatusEx functions

(2) Limited items

- LEDs cannot be controlled when a barcode device file is open. LEDs can be controlled, however, if LEDs are set not to illuminate when a barcode device file is open.
- If the function mentioned at (1) above is used to turn ON an LED from the application, the LED remains ON even after exiting the application used to turn ON the LED. Use the function mentioned at (1) to turn OFF the LED.

10.2.2. Charge LED

The charge LED cannot be turned ON or OFF from the application.

Chapter 11. Data Communication

11.1. Outline

In wired communication between the BHT and host computer, the following interfaces are available:

- (1) IrDA interface
- (2) Connector interface
- (3) USB client interface
- (4) USB host interface

11.2. Programming for Data Communication

(1) IrDA interface

The IrDA interface is assigned to port 4.

Communications parameter	Effective setting	Default
Transmission speed (bps)	115200, 57600, 38400, 19200, 9600	115200

Parameters other than the transmission speed are fixed (Parity = None, Character length = 8 bits, Stop bit length = 1 bit), since the physical layer of the IrDA interface complies with the IrDA-SIR 1.2.

(2) Connector interface

The Connector interface is assigned to port 1.

RTS and CTS signal lines are not supported.

Communications parameter	Effective setting	Default
Transmission speed (bps)	115200,57600,38400,19200,9600, 4800,2400,1200,600,300	115200
Parity	None, even, or odd	None
Character length	7 or 8 bits	8
Stop bit length	1 or 2 bits	1

(3) USB client interface

The USB clinet interface is used for ActiveSync connection.

(4) USB host interface

The USB host interface is used for connection with network via CU-714 and Ethernet cable. When BHT-700 is set on CU-714, new connection named "AX-887721" is created in Control Panel.

11.3. Assigning Port Number

From COM1 to COM8 are used by system program. Assign 9 or 0 to COM port number of communication made newly.

11.4. ActiveSync

11.4.1. Establishing an ActiveSync Connection

An ActiveSync connection can be established with either of the following procedures.

- (1) Manual connection via the [BhtShell] [2:Communication] menu
- (2) Auotmatic connection by placing the BHT on CU-733 connected to the computer by USB

Communication I/F	Manual Connection	Automatic Connection
USB	•	•
IrDA	•	-
Wireless	•	-
USB-LAN (*1)	•	-

^(*1) CU-714 is necessary for USB-LAN communication.

11.4.2. ActiveSync Auto Connection Setting Method

The ActiveSync auto connection function is set and read using the BHT_SetSysSettingDW (DWORD dwCtrlCode,DWORD dwSysParam) and BHT_GetSysSettingDW (DWORD dwCtrlCode,DWORD *pdwSysParam) functions.

Parameter	Туре	R/W	Control Code	Parameter Value	Default	Validation Timing
ActiveSync auto connection	DW	R/W	BHT_ACTSYNC _AUTOCNCT	ACTSYNC _AUTOCNCT_DISABLE : Prohibited ACTSYNC _AUTOCNCT_USB : USB only permitted	ACTSYNC _AUTOCNCT _USB	Immediately after setting

Chapter 12. Wireless Communication

12.1. Outline

12.1.1. Spread Spectrum Communications Method

Data communication is performed using TCP/IP protocol via a wireless module. Refer to item 13.2 for details on communication program creation.

12.1.2. Configuration of Spread Spectrum System

The BHT communicates with the host computer via an access point in wireless communication.

For details, refer to the "BHT-700BB/700BWB/700BWBG-CE User's Manual" or "BHT-700QWBG-CE User's Manual."

The table below shows the communications status transition as the state of the spread spectrum communications device built in the BHT-700.

Communications acrice ball in the Diff 70	·
Spread spectrum communications device	Communication
Open (power on)	Impossible
Checking synchronization with access point	Impossible
Synchronization complete	Possible
Roaming	Impossible if the BHT is not synchronized with an access point Possible if synchronization with an access point is kept
End of roaming	Possible
Close (power off)	Impossible

If always being opened, the spread spectrum communications device will consume much power. When the device is not in use, therefore, close it as soon as possible.

However, it will take several seconds to open the spread spectrum communications device and synchronize it with the access point for making communications ready. Frequent opening and closing of the device will require much time, resulting in slow response. Take into account the application purposes of user programs when programming.

When the spread spectrum communications device is synchronized with the access point, the BHT will display a synchronization icon on the LCD as shown below.

12.2. Programming for Wireless Communication

To connect to the wireless communications pathway, specify the following system settings in System Menu or in a user program:

- POWER
- RADIO MODE
- ESSID (Extended Service Set ID)
- ENCRYPTION
- AUTHENTICATION
- EAP TYPE
- KEY(WEP KEY, PRE SHARED KEY)

For the procedure in System Menu, refer to the "BHT-700BB/700BWB/700BWBG-CE User's Manual" or "BHT-700QWBG-CE User's Manual."

If no system settings are made in a user program, those made in System Menu will apply.

The following procedure is used to perform system settings in the user program.

Step 1: Select the profile to be edited.

Call the following function to edit an existing profile.

BHT_RF_IoControl (RF UPDATE PROFILE, NULL, 0, NULL, 0, NULL);

Call the following function to edit or create a new profile.

BHT_RF_IoControl (RF_SET_PROFILE, ...);

Please refer to section "13.2.1 Wireless Communication Parameters" for details of the setting method. Use ESSID and Infrastructure mode to specify the profile.

If no profile corresponding to the specified ESSID and Infrastructure mode combination exists, a new profile will be created.

Step 2: Change parameter 1, parameter 2,, parameter N for the profile selected at Step 1.

Please refer to section "13.2.1 Wireless Communication Parameters".

Step 3: Update the set parameters to the driver.

```
BHT_RF_IoControl (RF_COMMIT_PROFILE, NULL, 0, NULL, 0, NULL);
```

Use the highest priority profile from among those created to attempt a connection. If connection fails, attempt to connect automatically using the highest priority profiles sequentially.

The profile with the highest priority will be the one created last.

Up to a maximum of 16 profiles can be created.

12.2.1. Wireless Communication Parameters

Settable Parameters

The BHT can be used with the following security configurations by setting ZeroConfig.

- PEAP (802.1x)
- EAP-TLS (802.1x)
- PEAP (WPA)
- EAP-TLS (WPA)
- PSK (WPA)
- PEAP (WPA2)
- EAP-TLS (WPA2)
- PSK (WPA2)

Details of the parameters used with the above security configurations are outlined in the table below.

	Security					
Parameter	None	PEAP (802.1x)	EAP-TLS (802.1x)	PEAP (WPA)	EAP-TLS (WPA)	PSK (WPA)
Authentication	OPEN	OPEN	OPEN	WPA	WPA	WPA-PSK
Encryption	Disable WEP (static)	WEP (auto distribution)	WEP (auto distribution)	TKIP	TKIP	TKIP
802.1x	Disable	PEAP	EAP-TLS	PEAP	EAP-TLS	Disable
ESSID	•	•	•	•	•	•
Profile Priority	•	•	•	•	•	•
Pre Shared Key	-	-	-	-	-	•
WEP Key	•	-	-	-	-	-

	Security			
Parameter	PEAP	EAP-TLS	PSK	
	(WPA2)	(WPA2)	(WPA2)	
Authentication	WPA2	WPA2	WPA2-PSK	
Encryption	AES	AES	AES	
802.1x	PEAP	EAP-TLS	Disable	
ESSID	•	•	•	
Profile Priority	•	•	•	
Pre Shared Key	ı	-	•	
WEP Key	ı	-	-	

^{(•:} Setting valid, -: Setting invalid)

POWER

Set the power mode for the wireless module built in the BHT. The following two power modes are available. The default is P_PWRSAVE_PSP.

The set value is validated when the wireless LAN device is opened first after setting.

Power mode	Power consuming state
P_PWRSAVE_CAM	Consumes much power (no power saving effect)
P_PWRSAVE_PSP	Consumes less power (much power saving effect). The BHT may take more time to establish the wireless link or send response messages.

[Ex.] Set the power mode to "Cosumes much power"

DWORD dwVal = P_PWRSAVE_CAM;

BHT_RF_SetParamInt (P_INT_POWERSAVE, &dwVal, sizeof(dwVal));

RADIO MODE

The standard for the wireles LAN being used can be set. The following 3 patterns are available, with the default set to 802.11b.

The set value is validated when the wireless LAN device is opened first after setting.

Radio mode	State
P_RADIOMODE_11A	Operates on wireless LAN standard 802.11a.
P_RADIOMODE_11B	Operates on wireless LAN standard 802.11b.
P_RADIOMODE_11B P_RADIOMODE_11G	Operates on wireless LAN standard 802.11b and 802.11g.

[Ex.] To set the radio mode to "802.11b/g":

DWORD dwVal = P_RADIOMODE_11B | P_RADIOMODE_11G;

BHT_RF_SetParamInt (P_INT_RADIOMODE, &dwVal, sizeof(dwVal));

ESSID

Specify an ID that identifies the wireless network as a character string. The ESSID of the BHT should be the same as the SSID of the access point. If the ESSID is not set correctly, no communication is possible.

[Ex.] Set the "BHT700" to the ESSID (The infrastructure mode is assumed to be an "Infrastructure.") ST_RF_PROFILE_KEY stKey;

wcscpy(&stKey.szESSID[0], TEXT("BHT700"));

// ESSID

stKey.dwInfraMode = INFRA INFRASTRUCTURE;

// Infrastructure

BHT_RF_IoControl (RF_SET_PROFILE, (LPVOID)&stKey, sizeof(stKey), NULL, 0, NULL);

ENCRYPTION

This is the encryption method setting. A selection can be made from Prohibited, WEP, TKIP and AES.

AUTHENTICATION

This is the authentication method setting. A selection can be made from Open, Shared, WPA, WPA-PSK, WPA2, and WPA2-PSK.

EAP TYPE

This is the EAP type setting. A selection can be made from Prohibited, PEAP, and TLS.

KEY (WEP KEY, PRE SHARED KEY)

The encryption key (WEP KEY or PRESHARE KEY) can be set.

[Ex.] Setting to enable WEP. Set the WEP KEY to "01234567890123456789ABCDEF" (128 bit).

DWORD dwVal = P AUTH OPEN;

BHT_RF_SetParamInt (P INT AUTHENTICATE, &dwVal, sizeof(dwVal));

DWORD dwVal = P_ENCRYPT_WEP;

BHT_RF_SetParamInt (P_INT_ENCRYPTION, &dwVal, sizeof(dwVal));

DWORD dwVal = P_8021X_DISABLE;

BHT_RF_SetParamInt (P_INT_8021X, &dwVal, sizeof(dwVal));

BHT_RF_SetParamStr (P_STR_WEPKEY1,

TEXT("01234567890123456789ABCDEF"),26);

Parameter List

Parameter	Туре	R/W	Parameter value		Default
Power mode	DW	R/W	P_PWRSAVE_CAM P_PWRSAVE_PSP	: High power consumption : Low power consumption	P_PWRSAVE_PSP
Radio mode	DW	R/W	P_RADIOMODE_11A P_RADIOMODE_11B P_RADIOMODE_11B P_RADIOMODE_11G	: 802.11a : 802.11b	P_RADIOMODE_11B
Authentication method	DW	R/W	P_AUTH_OPEN P_AUTH_SHARED P_AUTH_WPA P_AUTH_WPAPSK P_AUTH_WPA2 P_AUTH_WPA2PSK	: Open : Shared : WPA : WPA PSK : WPA2 : WPA2 PSK	P_AUTH_OPEN
Encryption	DW	R/W	P_ENCRYPT_DISABLE P_ENCRYPT_WEP P_ENCRYPT_TKIP P_ENCRYPT_AES	: Prohibited : WEP : TKIP : AES	P_ENCRYPT_DISABLE
802.1x Encryption (EAP type)	DW	R/W	P_8021X_DISABLE P_8021X_PEAP P_8021X_TLS	: Prohibited : PEAP : TLS	P_8021X_DISABLE
Profile priority	DW	R/W	1 (high) to 16 (low)		1
Index Key	DW	R/W	1 to 4		1
WEP Key 1	wcs	W	26-character hexadecimal notation character string (128 bit) 10-character hexadecimal notation character string (40 bit) TEXT("")		TEXT("")
Pre Shared Key	wcs	W	8 to 63-character ASCII character string 64-character hexadecimal notation character string TEXT(""		TEXT("")
Version	WCS	R	-		-
MAC address	WCS	R			TEXT("00.00.00.00.00.00")

Note that if you use BHT_RF_GetParamInt function for getting a value, the value preset by the BHT_RF_SetParamInt function will be obtained.

12.2.2. Opening and Closing the Wireless Communications Device

Use the BHT_RF_Open and BHT_RF_OpenEx functions to start up the wireless communication device and permit wireless communication.

Use the BHT_RF_Close and BHT_RF_CloseEx functions to stop the wireless communication device and prohibit wireless communication.

Use the BHT_RF_OpenEx (DWORD dwOpt) and BHT_RF_CloseEx (DWORD dwOpt) functions to perform wireless communication in the following communication formats.

Settable Value	Details
COMM_NORMAL	Wireless communication open
COMM_CONTINUOUS	Wireless communication continuously open

The following diagram illustrates the wireless communication device status transmission.

- **1** BHT_RF_Open() (*1)
- **2** BHT_RF_Close() (*2)
- **3** BHT_RF_OpenEx(COMM_CONTINUOUS)
- 4 BHT_RF_CloseEx(COMM_CONTINUOUS)
- (*1) Includes BHT_RF_OpenEx(COMM NORMAL)
- (*1) Includes BHT_RF_OpenEx(COMM_NORMAL)

12.2.3. Checking Synchronization with the Access Point

When performing data communication with a wireless communication device, use the **BHT_RF_Synchronize** function to check whether synchronization with the access point has been obtained.

The following is a list of possible reasons why it may not be possible to obtain synchronization with the access point.

- (1) The wireless communication device is currently open.
 - Several seconds are required to obtain synchronization with the access point after opening the wireless communication device.
 - Furthermore, when using DHCP, there are times when several tens of seconds are required to obtain the IP after connecting to the network.
- (2) When the wireless device is moved from the current access point to the next access point during roaming
- (3) When the wireless device is moved outside the radio-wave area covered by the access point.
- (4) When the wireless device is moved to a location where an obstruction prevents wireless communication with the access point.

Chapter 13. Barcode Reading

13.1. Outline

13.1.1. Enable Reading

BHT-700B

The BHT_EnableBar function enables the barcode device to read barcodes. In this function, you may specify the following barcode types available in the BHT. The BHT can handle one of them or their combination.

Available Barcode Type	Default Setting
Universal product codes EAN-13 (*1) (JAN-13 (*1)) EAN-8 (JAN-8) UPC-A (*1), UPC-E	No national flag specified.
Interleaved 2of5 (ITF)	No length of read data specified. No check digit.
Standard 2of5 (STF)	No length of read data specified. No check digit. Short format of the start/stop characters supported.
Codabar (NW-7)	No length of read data specified. No check digit. No start/stop character.
Code 39	No length of read data specified. No check digit.
Code 93	No length of read data specified.
Code 128 (EAN-128) (*2)	No length of read data specified.
Interleaved 2of5 (ITF)	No length of read data specified. No check digit.
RSS	Nothing specified.

^(*1) Reading wide bars

EAN-13 and UPC-A barcodes may be wider than the readable area of the barcode reading window. Such wider bars can be read by long-distance scanning. Pull the barcode reading window away from the barcode so that the entire barcode comes into the illumination range.

(*2) Specifying Code 128 makes it possible to read not only Code 128 but also EAN-128.

BHT-700Q

The BHT_EnableBar function enables the barcode device to read barcodes. In this function, you may specify the following barcode types available in the BHT. The BHT can handle one of them or their combination.

Available Barcode Type	Default Setting
2D codes	
QR code	Not specified: Model 1, Model 2, Micro QR code, code version No split code scanning
PDF417	PDF417, MicroPDF417
MaxiCode	Nothing specified
Data Matrix	Square Data Matrix, Rectangular Data Matrix Not specified: code no.
EAN·UCC Composite	Nothing specified

1D codes	
EAN-13 (*1) (JAN-13(*1))	No country flag specified
EAN-8 (JAN-8)	No length of read data specified
UPC-A *1, UPC-E	No check digit
	No length of read data specified
Interleaved 2of5 (ITF)	No check digit
	No start/stop character
	No length of read data specified
CODABAR (NW-7)	No check digit
	No start/stop character
CODE-39	No length of read data specified
CODE-39	No check digit
CODE-93	No length of read data specified
CODE-128 (EAN-128)(*2)	No length of read data specified
RSS	Nothing specified

(*1) Reading wide bars

EAN-13 and UPC-A barcodes may be wider than the readable area of the barcode reading window. Such wider bars can be read by long-distance scanning. Pull the barcode reading window away from the barcode so that the entire barcode comes into the illumination range.

(*2) Specifying Code 128 makes it possible to read not only Code 128 but also EAN-128.

13.1.2. Specify Options in the BHT_EnableBar Function

You may also specify several options as listed below for each of the barcode types in the **BHT_EnableBar** function.

BHT-700B

Barcode type	Options
Universal product code	Initial (country flag)
	add-on code
Interleaved 2of5 (ITF)	Length of read data
	Check digit
CODABAR (NW-7)	Length of read data
	Start/stop character
	Check digit
Code 39	Length of read data
	Check digit
Code 93	Length of read data
Code 128	Length of read data
Standard 2of5(STF)	Length of read data
, ,	Start/stop character
	Check digit
MSI	1-digit check digit
	2-digit check digit
RSS	Nothing specified.

BHT-700Q

Barcode type	Options
2D codes	
QR	Model Code version Split code scanning
PDF417	Code
MaxiCode	Nothing specified
Data Matrix	Code Code no.
EAN-UCC Composite	Nothing specified
1D codes	
Universal product code	Initial (country flag) add-on code
Interleaved 2of5 (ITF)	Length of read data Check digit
CODABAR (NW-7)	Length of read data Start/stop character Check digit
Code 39	Length of read data Check digit
Code 93	Length of read data
Code 128	Length of read data
RSS	Nothing specified

13.1.3. Barcode Buffer

The barcode buffer stores the inputted barcode data.

BHT-700B

The barcode buffer will be occupied by one operator entry job and can contain up to 99 characters.

BHT-700Q

The barcode buffer will be occupied by one operator entry job and can contain up to 99 bytes in barcode or 8,192 bytes in 2D code (1 kanji character equals 2 bytes).

You can check whether the barcode buffer stores code data, by using the BHT_GetBarNum function. To read barcode data stored in the barcode buffer, use the BHT_ReadBar/BHT_ReadBarEx function.

13.2. Programming

13.2.1. Code Mark

The BHT_GetBarType function allows you to check the code mark (denoting the code type) and the length of the inputted barcode data.

13.2.2. Multiple Code Reading

You may activate the multiple code reading feature which reads more than one code type while automatically identifying them. To do it, you should designate desired code types in the read code parameter of the **BHT_EnableBar** function.

13.2.3. Read Mode of the Trigger Switch

The trigger switch function is assigned to the [SCAN] key and the magic key M3 by default. You may assign the trigger switch function to other keys by using the BHT_SysSettingDW function. You may select the read mode of the trigger switch by using the BHT_EnableBar function as listed below.

Read Mode	BHT_EnableBar Function
Auto-off Mode	BHT_EnableBar (TEXT ("F
Momentary Switching Mode	BHT_EnableBar (TEXT ("M
Alternate Switching Mode	BHT_EnableBar (TEXT ("A
Continuous Reading Mode	BHT_EnableBar (TEXT ("C

To check whether the trigger switch is pressed or not, use the BHT WaitEvent function as shown below.

```
BHT_WaitEvent (1, BHT_EVT_MASK_TRGDOWN, 0, &dwSignaledEvent);
if ( (dwSignaledEvent & BHT_EVT_MASK_TRGDOWN) != 0 ) {
    printf("Trigger switch pressed ");
}
```

13.2.4. Generating a Check Digit of Barcode Data

Specifying a check digit in the BHT_EnableBar function makes the Interpreter automatically check barcodes. If necessary, you may use the BHT_GetBarChkdgt function for generating a check digit of barcode data.

13.2.5. Controlling the Indicator LED and Beeper/Vibrator as a Confirmation of Successful Reading By using the **BHT_EnableBar** function, you can control:

- whether the indicator LED should light in blue or not (Default: Light in blue)
- whether the beeper should beep or not (Default: No beep)

when a barcode is read successfully. For detailed specifications, refer to the description for the **BHT EnableBar** function.

It is also possible to operate the vibrator as a confirmation of successful reading instead, by using the $BHT_SetSysSettingDW$ (BHT_BEEP_VIB_SELECT, VIB_SELECT) function.

(1) Controlling the indicator LED

If you have activated the indicator LED (blue) in the BHT_EnableBar function, an application cannot control the LED.

If you have deactivated the indicator LED (blue) in the **BHT_EnableBar** function, an application can control the LED even when the barcode device file is opened.

This way, you can control the indicator LED, enabling that:

- a user program can check the value of a scanned barcode and turn on the indicator LED in blue when the barcode has been read successfully.
- a user program can turn on the indicator LED in red the moment the barcode has been read.

(2) Controlling the beeper and vibrator

If you have activated the beeper in the **BHT_EnableBar** function, the BHT will beep when it reads a barcode successfully.

You may select beeping only, vibrating only, or beeping & vibrating by setting on the system menu (BhtShell.exe) or by setting the output port in the BHT_SetSysSettingDW(BHT_BEEP_VIB_SELECT,...).

This feature is used to sound the beeper or operate the vibrator the moment the BHT reads a barcode successfully.

13.2.6. Reading Split QR Codes (Only for BHT-700Q)

The QR Code symbology can split data into a maximum of 16 blocks and encodes each of them into a split code image. When those split code images are scanned, the splitter system restores them into the oritinal data string in any of the following three modes--edit mode, batch edit mode, and non-edit mode. These modes can be specified by **BHT_EnableBar** as follows:

Split code scanning mode	BHT_EnableBar function
Edit mode	BHT_EnableBar(, TEXT("Q : E"))
Batch edit mode	BHT_EnableBar(, TEXT("Q : B"))
Non-edit mode	BHT_EnableBar(, TEXT("Q : C"))

In edit mode, after completion of reading all split code images, the splitter system stores the read data into the code buffer. In batch edit mode, when all split code images that fall within the scanning range are read, the splitter system stores the read data into the code buffer. In non-edit mode, each time a single split code image is read, the splitter system stores the read data into the code buffer.

The code type which is acquired by the **BHT_GetBarType** function and the **BHT_GetBarInfo** function is "Q" in edit mode and batch edit mode or "S" in non-edit mode.

NOTE: In the Point Scan mode, scanning split codes in batch edit mode is disabled. (For details about the Point Scan mode, refer to the "BHT-700BB/700BWB/700BWBG-CE User's Manual" or "BHT-700QWBG-CE User's Manual").

13.3. Barcode Reading Using the Virtual COM Port

13.3.1. Outline

Barcode reading using the virtual COM port is supported on the BHT-700 series.

For greater convenience, this function is available for use in conjunction with kbifCE. For more information on kbifCE, see the kbifCE user's guide (available for download on the DENSOWAVE QBNet website).

Using this function it is possible to obtain reading data as if it were being received through a COM port. For applications, it is equivalent to a reader being connected to the communication port (COMx). Using COM, barcode reading data can be used by multiple applications.

13.3.2. Programming

Port number 5 is allocated to the virtual COM port used for barcode reading.

Barcode reading mode and the types of barcodes that are allowed to be read are designated by the kbifCE.

A comparison of the functions of Win32 API when using a general COM port and a virtual COM port for barcode use is as follows:

Win32 API	General COM	Virtual COM used for reading
CreateFile	Open COM port	←
CloseHandle	Close COM port	←
ReadFile	Read received data	Read data
GetCommMask	Obtain type of wait event	←
SetCommMask	Set type of wait event	Treat completed reading event as receiving event.Non-reading events invalid.(*1)
GetCommTimeouts	Obtain timeout value	←
SetCommTimeouts	Set timeout value	← Non-receiver side timeouts invalid.(*1)
WaitCommEvent	Wait for event	← Non-receiving events invalid.

^(*1) An error will not occur.

The following functions are not supported. If operation is attempted, no function will be executed.

List of functions not yet supported						
WriteFile	GetCommModemStatus	SetCommBreak				
ClearCommBreak	GetCommProperties	SetCommState				
ClearCommError	GetCommState	SetupComm				
EscapeCommFunction	PurgeComm	TransmitComm				

13.3.3. How to Use

Start up kbifCE and set the destination for the virtual COM port (for further details see the kbifCE user's guide).

Chapter 14. Updating OS

The OS can be updated (version update) using the following method when running Windows CE.

- (1) Copy the OS image file to an arbitrary folder.
- (2) Execute the BHT_SystemModify function.

For the 1st argument, specify the absolute path to the folder in which the OS image file was stored, and for the 2nd argument, specify whether to turn OFF the power or perform a cold boot after updating the OS.

(For example) Update OS image file named "_B7BWDW0.SY3" stored in "\temp\" folder and perform a cold boot after updating OS

DWORD dwRtn;

dwRtn = BHT SystemModify(TEXT(\\Temp\\ B7BWDW0.SY3), SYSMDFY REBOOT);

(3) Following display is shown during updating OS.

(4) After the OS has been successfully updated, the BHT-700 power will either be turned OFF or will cold boot depending on the setting made for the 2nd argument.

Chapter 15. System Functions

System functions are used when setting or acquiring system values or when acquiring device information.

Function	Used to:
BHT_SetSysSettingDW	Write system parameter values (DWORD).
BHT_GetSysSettingDW	Read system parameter values (DWORD).
BHT_SetSysSettingWCS	Write system parameter values (character string).
BHT_GetSysSettingWCS	Read system parameter values (character string).
BHT_GetDeviceInfo	Device information acquisition

15.1. If a System Parameter Value is DWORD

BHT_SetSysSettingDW

Description

Write system parameter values.

Syntax

DWORD BHT_SetSysSettingDW (
DWORD dwCtrlCode ,
DWORD dwSysParam)

Parameters

dwCtrlCode [in] Control code

dwSysParam [in] Parameter value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Invalid parameter
ERROR_GEN_FAILURE	Not supported

BHT_GetSysSettingDW

Description

Read system parameter values.

Syntax

DWORD BHT_GetSysSettingDW (
DWORD dwCtrlCode ,
DWORD* pdwSysParam)

Parameters

dwCtrlCode [in] Control code

pdwSysParam

[out] Address for storing the parameter value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_GEN_FAILURE	Not supported
ERROR_INVALID_PARAMETER	No storage address specified

15.2. If a System Parameter Value is a Character String

BHT_SetSysSettingWCS

Description

Write system parameter values.

Syntax

```
DWORD BHT_SetSysSettingWCS (
DWORD dwCtrlCode,
TCHAR* pwchSysParam,
DWORD dwLen)
```

Parameters

dwCtrlCode
[in] Control code

pwchSysParam

[in] Heading address of the storage buffer for a string written

dwLen

[in] String length

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Invalid parameter
ERROR_GEN_FAILURE	Not supported

BHT_GetSysSettingWCS

Description

Read system parameter values.

Syntax

DWORD BHT_GetSysSettingWCS (

DWORD dwCtrlCode,

TCHAR* pwchSysParam,

DWORD dwLen,

DWORD* pdwLenReturned)

Parameters

dwCtrlCode

[in] Control code

pwchSysParam

[out] Heading address of the storage buffer for a string read

dwLen

[in] String length

pdwLenReturned

[out] Length of the string read out

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_GEN_FAILURE	Not supported
ERROR_INVALID_PARAMETER	No storage address specified

15.3. System Parameter Values That Can be Set/Obtained

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing
		-	System inform	nation related		<u> </u>
System version (4 characters)	WCS	R	BHT_SYS_OS _VERSION	-	-	-
Total RAM size (bytes)(*1)	DW	R	BHT_SYS _RAMSIZE	-	-	-
Total ROM size (bytes) (*1)	DW	R	BHT_SYS _ROMSIZE	-	-	-
Model name (8 characters)	WCS	R	BHT_SYS _MACHINE_NAME	-	-	-
Product number (16 characters)	WCS	R	BHT_SYS _MACHINE_NUMBER	-	-	-
Serial number (6 characters)	WCS	R/W	BHT_SYS _SERIAL_NUMBER	6-digit number	Lower 6 characters in the code printed on the back of the BHT	Immediately after setting
			Power manage	ement related		
Waiting time to switch to standby mode (in units of 100 ms)	DW	R/W	BHT_PM_STBYTIME	0: Disable 1 to 255	10 (1 sec)	Immediately after setting
Waiting time to auto power OFF when powered by battery (sec.)	DW	R/W	BHT_PM _BATTPOWEROFF	0: Disable 1 to 0xFFFFFFF	180 (3 min)	Immediately after setting
Waiting time to auto power OFF when placed on CU (sec.)	DW	R/W	BHT_PM _EXTPOWEROFF	0: Disable 1 to 0xFFFFFFF	0	Immediately after setting
CPU clock (*2)	DW	R/W	BHT_PM _CPU_CLOCK	CPU_CLK_NORMAL : Regular speed CPU_CLK_FAST : High speed	CPU_CLK_NORMAL	When warm- booting after setting
Auto Power OFF permitted when wireless connection open	DW	R/W	BHT_PM_SUSPEND _RF	SUSPEND_DISABLE : Suspend prohibeted SUSPEND_ENABLE : Suspend permitted	SUSPEND_ENABLE	Immediately after setting
			Beeper and vil	prator related		
Rumble device	DW	R/W	BHT_BEEP_VIB _SELECT	BEEP_SELECT : Beeper VIB_SELECT : Vibrator (BEEP_SELECT VIB_SELECT) : Beeper and vibrator	BEEP_SELECT	first sound after setting
Beeper volume	DW	R/W	BHT_BEEP_VIB _VOLUME	0:OFF 1 (lowest) to 5 (highest)	5	first sound after setting
Key click volume	DW	R/W	BHT_BEEP_VIB_KEY	0: OFF 1: Soft 2: Loud	2	first sound after setting
Screen tap volume	DW	R/W	BHT_BEEP_VIB_TAP	0: OFF 1: Soft 2: Loud	2	first sound after setting
Trigger switch clicks(*3)	DW	R/W	BHT_BEEP_VIB _TRGKEY	CLICK_SOUND_OFF : Prohibit CLICK_SOUND_ON : Allow	CLICK_SOUND_OFF	first sound after setting

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing		
	Backlight related							
Backlight ON-duration (sec.) (When battery- driven)	DW	R/W	BHT_BACKLIGHT _BATT_TIME	0 - 255 0: Backlight OFF 255: Backlight continuously ON	3	When backlight illumination timer is next reset		
Backlight ON-duration (sec.) (When placed on the CU)	DW	R/W	BHT_BACKLIGHT _AC_TIME	0 - 255 0: Backlight OFF 255: Backlight continuously ON	60	When backlight illumination timer is next reset		
Control key	DW	R/W	BHT_BACKLIGHT _KEY	Key number	0x10203 ([SF]+[M3])	Immediately after setting		
Backlight brightness level	DW	R/W	BHT_BACKLIGHT _BRIGHTNESS	0: OFF 1: Dark – 3: Bright	3	When the backlight is next turned ON		
Backlight power saving mode	DW	R/W	BHT_BACKLIGHT _POWERSAVE	0: OFF 1: Dim	1	When backlight illumination status is set to power saving mode first after setting		
Illumination device selection when backlight illumination specified from API	DW	R/W	BHT_BACKLIGHT _DEVICE	0: None LIGHTING_LCD :LCD LIGHTING_KEY :KEY LIGHTING_LCD LIGHTING_KEY : Both LCD and key	LIGHTING_LCD	Immediately after setting, when BHT_SetBltStatu s next called		
Key backlight illumination trigger	DW	R/W	BHT_BACKLIGHT _FACTOR	0: Always OFF BHT_BLT_KEY_FACTOR_ KEY : Key-press BHT_BLT_KEY_FACTOR_ KEYTAP : Both key-press and tap	BHT_BLT_KEY_ FACTOR_KEY	Immediately after setting, first tap or key press when "BHT_BLT_KEY _FACTOR_KEY" or "BHT_BLT_KEY _FACTOR_KEY TAP"		
			Barcode rea	iding related				
Re-read prevention enabled time (in units of 100 ms)	DW	R/W	BHT_BAR_CRTIME	0 to 255 (*4)	10	Immediately after setting		
Black-and-white inverted label reading function	DW	R/W	BHT_BAR_INVERT	BHT-700B 0: Prohibit 1: Allow (automatic) BHT-700Q 0: Disable 1. Enable (black-and-white inversion only) 2: Allow (automatic)	0	Immediately after setting		
Decode level	DW	R/W	BHT_BAR_DCD _LEVEL	1 to 9	4	When the barcode device is opened first after setting		
Min. number of digits to be read for ITF	DW	R/W	BHT_BAR_MINDGT _ITF	2 to 20	4	When the barcode device is opened first after setting		
Min. number of digits to be read for STF (*5)	DW	R/W	BHT_BAR_MINDGT _STF	1 to 20	3	When the barcode device is opened first after setting		
Min. number of digits to be read for Codabar (CODABAR)	DW	R/W	BHT_BAR_MINDGT _NW7	3 to 20	4	When the barcode device is opened first after setting		

Scanning range marker (*6)	DW	R/W	BHT_BAR_MARKER	MARKER_NORMAL : Normal mode MARKER_AHEAD : Maker ahead MARKER_DISABLE : Fixed to OFF	MARKER _NORMAL	Immediately after setting
----------------------------	----	-----	----------------	--	-------------------	---------------------------

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing
Front-back inverted reading (*6)	DW	R/W	BHT_BAR_REVERSE	0: Disable 1: Enable	0	Immediately after setting
Scan mode (*6)	DW	R/W	BHT_BAR_SCAN _MODE	SCAN_MODE_NORMAL : Normal mode SCAN_MODE_POINT : Point scan mode SCAN_MODE_1D :Barcode reader mode	SCAN_MODE_ NORMAL	When the barcode device is opened first after setting
Option data (*6)	DW	R/W	BHT_BAR_OPTION _DATA	0: There is option data. 1: No option data	0	Immediately after setting
Ilumination mode (*6)	DW	R/W	BHT_BAR_LIGHT_MO DE	0:AUTO 1: Always ON 2: Always OFF	1	Immediately after setting
			Keyboar			
Shift key mode	DW	R/W	BHT_KEY_SHIFT _MODE	KEY_NON_LOCK : Non-lock KEY_ONE_TIME : Onetime lock	KEY_NON _LOCK	Immediately after setting
Assignment to M1 key	DW	R/W	BHT_KEY _M1_MODE	MAGIC_FUNC_NONE : Ignore the depressed key MAGIC_FUNC_ENTER : Treat as ENT key MAGIC_FUNC_TRG : Treat as trigger switch MAGIC_FUNC_SHIFT	MAGIC_FUNC _TAB	Immediately after setting
Assignment to M2 key	DW	R/W	BHT_KEY _M2_MODE	: Treat as SF key MAGIC_FUNC_ALT : Treat as ALT key MAGIC_FUNC_CTRL : Treat as CTRL key MAGIC_FUNC_BLT : Treat as bacjlight function on/off key	MAGIC_FUNC _NONE	Immediately after setting
Assignment to M3 key	DW	R/W	BHT_KEY _M3_MODE	MAGIC_FUNC_TAB : Treat as TAB key MAGIC_FUNC_CLEAR : Treat as CLEAR key MAGIC_FUNC_USERDEF : User-defined code	MAGIC_FUNC _TRG	Immediately after setting
Key entry mode	DW	R/W	BHT_KEY _INPUT_METHOD	INPUT_METHOD _NUMERIC : Numeric entry mode INPUT_METHOD _ALPHABET2 : Alphabet entry mode 2	27-key type: INPUT_METHO D_NUMERIC 42-key type: INPUT_METHO D_ALPHABET	Immediately after setting
Enable/disable alphabet entry switching key	DW	R/W	BHT_DISABLE _KEYMODE _CHANGE_KEY	ENABLE_KEY _TOCHANGE _ALPHABET : Enable DISABLE_KEY _TOCHANGE _ALPHABET : Disable	ENABLE_KEY _TOCHANGE _ALPHABET	Immediately after setting
Function mode	DW	R/W	BHT_KEY _FUNCTION	KEY_FUNCTION_ON : Function mode KEY_FUNCTION_OFF : Non-function mode	KEY _FUNCTION _OFF	Immediately after setting
Effective held-down time of power key for suspending (in units of 100 ms)	DW	R/W	BHT_PWRDOWN _KEY_WAIT_TIME	1 - 255	5	Immediately after setting
Keypad type	DW	R	BHT_KEYBOARD _TYPE	KEYBOARD_TYPE1 : 27-key pad KEYBOARD_TYPE2 / KEYBOARD_TYPE2P : 42-key pad	-	-

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing
Status indicator related						
Battery voltage level icon	DW	R/W	BHT_ICON _BATTERY	0: Hide 1: Display	1	Immediately after setting
Software keyboard icon	DW	R/W	BHT_ICON_SIP	0: Hide 1: Display	1	Immediately after setting
Keypad shift icon	DW	R/W	BHT_ICON _SHIFTKEY	0: Hide 1: Display	1	The icon appears when the keypad is shifted first after this parameter is set to "1." (If the keypad has been shifted, the icon appears immediately.) It disappears when the shift is released first after this parameter is set to "0."
Alphabet input icon (27-key type only)	DW	R/W	BHT_ICON _IN_ALPHA	0: Hide 1: Display	1	The icon appears when the alphabet input function is activated first after this parameter is set to "1." It disappears when the alphabet input function is deactivated first after this parameter is set to "0."
Wireless communication state icon	DW	R/W	BHT_ICON _RADIO_INTEN SE	0: Hide 1: Display	1	The icon appears when the wireless device is opened first after this parameter is set to "1." (If the wireless device has been opened, the icon appears immediately.) It disappears immediately after this parameter is set to "0."
Standby state icon	DW	R/W	BHT_ICON _STANDBY	0: Hide 1: Display	0	The icon appears when the CPU comes to be on standby first after this parameter is set to "1." It disappears immediately after this parameter is set to "0."
Function mode state icon	DW	R/W	BHT_ICON_FU NC	0: Hide 1: Display	1	The icon appears when the function mode is activated first after this parameter is set to "1." It disappears when the function mode is deactivated first after this parameter is set to "0."
Numeric entry mode icon (42-key type only)	DW	R/W	BHT_ICON_NU MERIC	0: Hide 1: Display	1	The icon appears when the numeric entry mode is activated first after this parameter is set to "1." It disappears when the numeric entry mode is deactivated first after this parameter is set to "0."
Bluetooth power status	DW	R/W	BHT_ICON _BLUETOOTH	0: Hide 1: Display	0	Immediately after setting
			Com	munication related		
ActiveSync automatic connection	DW	R/W	BHT_ACTSYNC _AUTOCNCT	ACTSYNC_AUTOCNCT _DISABLE : Prohibited ACTSYNC_AUTOCNCT _USB : Only USB allowed	ACTSYNC _AUTOCNCT _USB	After setting, when the USB cable or RS232C cable is first inserted, or when the CU421 is installed.

Parameter name	Туре	R/W	Control code	Parameter value	Default	Validating timing
Display related						
Screen rotation	DW	R/W	BHT_DISP _ROTATION	DISP_ROTATION_0 : 0° DISP_ROTATION_90 : 90° DISP_ROTATION_180 : 180° DISP_ROTATION_270 : 270°	DISP _ROTATION_0	Immediately after setting
Screen rotation control key	DW	R/W	BHT_DISP _ROTATION_KEY	Key no.	None	Immediately after setting
			Touch s	screen related		
Touch screen disabling	DW	R/W	BHT_TOUCH _DEVICE	TOUCH_ENABLE : Enable TOUCH_DISABLE : Disable	TOUCH_ENABLE	Immediately after setting
			Bluete	ooth related		
Bluetooth device initial power status	DW	R/W	BHT_BT_INITIAL_ POWER_STATUS	BHT_BT_POWER_OFF : Power OFF BHT_BT_POWER_ON : Power ON	BHT_BT _POWER_OFF	Immediately after setting
Audio related						
Voice output from receiver	DW	R/W	BHT_AUDIO_OUT _RCV	BHT_AUDIO_OUT_RCV _DISABLE : Disable BHT_AUDIO_OUT_RCV _ENABLE : Enable	BHT_AUDIO_OUT_ RCV_DISABLE	Immediately after setting

- (*1) The RAM or ROM size obtained indicates the capacity of the memory mounted on the BHT. To obtain the size of the memory area allowed for the user to use, use GetDiskFreeSpaceEx.
- (*2) If the CPU clock is set to high speed, the processing speed becomes higher but the power consumption Increases.
- (*3) This parameter controls the on/off of the click sound of the magic key which the trigger switch is assigned to. If it is set to ON, pressing the magic key clicks at the volume specified by the "Key clock volume."
- (*4) If this parameter is set to "0," the BHT no longer reads the same barcode in succession.
- (*5) Only for BHT-700B
- (*6) Only for BHT-700Q

15.4. Device Information Acquisition

BHT_GetDeviceInfo

Description

Acquires the mounted device information.

Syntax

DWORD BHT_GetDeviceInfo(
DWORD dwDevice,
DWORD* pdwDevInfo,
LPVOID pvExtInfo)

Parameters

dwDevice
[in] Type of the device for which information is being acquired
pdwDevInfo
[out] Device information storage location
pdwDevInfo
[out] Extension information storage location

Error Code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error

Device Type	dwDevice	*pdwDevInfo	
Read device	BHT_DEV_SCANNER	Either of the following	:
		SCANNER_1DIM	:1D
		SCANNER_2DIM	:2D
Communication device	BHT_DEV_COM	The following combina	itions:
		COMDEV_SERIAL	:RS-232C
		COMDEV_INFRARED	:Infrared Port
		COMDEV_USB	:USB
		COMDEV_RF	:Wireless
		COMDEV_BLUETOO	TH
			:Bluetooth
		COMDEV_GPRS	:GPRS
ActiveSync device	BHT_DEV_ACTSYNC	The following combina	itions:
		ACTSYNC_SERIAL	
		ACTSYNC_INFRARE	D
			:Infrared Port
		ACTSYNC_USB	
		ACTSYNC_RF	:Wireless

Chapter 16. Device Control Functions

The device control functions listed below control the devices (barcode reading device, backlight, battery, indicator LED, etc.) dedicated to the BHT.

Function	Used to:
BHT_EnableBar	Open the barcode device file to enable barcode reading. This function specifies the read mode and readable barcode types.
BHT_DisableBar	Close the barcode device file to disable barcode reading.
BHT_ReadBar	Read out data read from the barcode buffer.
BHT_ReadBarEx	Read out data from the barcode buffer and encodes it into the specified data format.
BHT_GetBarType	Read the barcode type and the number of digits of a barcode read most recently.
BHT_GetBarNum	Read the number of digits of the barcode remaining in the barcode buffer.
BHT_GetBarInfo	Read the information on the code read most recently.
BHT_GetBarChkDgt	Calculate a check digit (CD) of the barcode data according to the calculation method specified by dwCDType.
BHT_BAR_SetDecodeOptions	Sets the editing function setting value for the decoded result.
BHT_BAR_GetDecodeOptions	Acquires the editing function setting value for the decoded result.
BHT_SetBltStatus	Control the backlight.
BHT_GetBltStatus	Read the backlight status.
BHT_GetPowerStatus	Read information about the battery loaded in the BHT body.
BHT_GetPowerStatus2nd	Read information about the battery loaded in the grip.
BHT_GetNLedStatus	Read the status of the indicator LED.
BHT_SetNLedStatus	Control the indicator LED.
BHT_GetNLedStatusEx	Read the status of the indicator LED and synchronization LED.
BHT_SetNLedOn	Turn on the indicator LED and/or synchronization LED.
BHT_SetNLedOff	Turn off the indicator LED and/or synchronization LED.
BHT_StartBeep	Drive the beeper/vibrator.
BHT_StartBeeperOnly	Drive the beeper.
BHT_StartVibrationOnly	Drive the vibrator.

Function	Used to:
BHT_RF_Open	Open the wireless LAN device and enable wireless communication.
BHT_RF_OpenEx	Set the communication format, open the wireless LAN device and enable wireless communication.
BHT_RF_Close	Close the wireless LAN device and disable wireless communication.
BHT_RF_CloseEx	Close the wireless LAN device for the set format and disable wireless communication.
BHT_RF_Synchronize	Get the association status.
BHT_RF_GetParamInt	Read integer from the wireless communications parameter.
BHT_RF_SetParamInt	Write integer to the wireless communications parameter.
BHT_RF_GetParamStr	Read string from the wireless communications parameter.
BHT_RF_SetParamStr	Write string to the wireless communications parameter.
BHT_RF_GetInfoInt	Read integer from the communications parameter.
BHT_RF_GetInfoStr	Read string to the communications parameter.
BHT_RF_IoControl	Perform operation for the profile and certificate etc.
BHT_RF_GetSiteSurvey	Get quality of the communications link.
BHT_SystemModify	Update the BHT OS.
BHT_WaitEvent	Make the system wait until the specified event or timeout occurs.
BHT_WaitStandbyEvent	Make the system wait until the specified event occurs.
BHT_ShutdownSystem	Turn off the BHT and boot it according to the specified mode.
BHT_RegStore	Turn off the BHT and boot it according to the specified mode.

16.1. Barcode API

BHT_EnableBar

Description

Open the barcode device file to enable barcode reading.

This function specifies the read mode and readable barcode types. Up to eight barcode types can be specified.

Syntax

```
DWORD BHT_EnableBar (
TCHAR* pwchRdMode ,
TCHAR* pwchCdParam )
```

Parameters

pwchRdMode

[in] Heading address of the storage buffer for a character string specifying the read mode, beeper/vibrator on/off, and LED on/off

pwchCdParam

[in] Heading address of the storage buffer for a character string specifying barcode types to be read

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_TOO_MANY_OPEN_FILES	Barcode device file already opened.
ERROR_INVALID_PARAMETER	Parameter error. More than 24 barcode types are specified.

Comment:

Up to 24 barcode types can be specified.

BHT-700Q:

The maximum code version for QR Code, the maximum code number for Data Matrix, and the maximum number of digits for barcodes are limited by the readable range.

■ Readmode

The BHT supports four read modes--the momentary switching mode, the auto-off mode, the alternate switching mode, and the continuous reading mode, which can be selected by specifying M, F, A, and C to readmode, respectively.

□ Momentary switching mode (M)

Only when you hold down the trigger switch, the illumination LED lights and the BHT can read a barcode.

Until the entered barcode data is read out from the barcode buffer, pressing the trigger switch cannot turn on the illumination LED so that the BHT cannot read the next barcode.

[Ex]

BHT_EnableBar (TEXT ("M"), TEXT ("A, I:4-99, M:1-99, N:3-99, L:1-99, K:1-99, H:1-99"))

□ Auto-off mode (F)

If you press the trigger switch, the illumination LED comes on. When you release the switch or when the BHT completes barcode reading, then the illumination LED will go off. Holding down the trigger switch lights the illumination LED for a maximum of 5 seconds.

While the illumination LED is on, the BHT can read a barcode until a barcode is read successfully or the barcode devices file becomes closed.

If the illumination LED goes off after 5 seconds from when you press the trigger switch, it is necessary to press the trigger switch again for reading a barcode.

Once a barcode is read successfully, pressing the trigger switch cannot turn on the illumination LED and the BHT cannot read the next barcode as long as the entered barcode data is not read out from the barcode buffer.

[Ex]

BHT_EnableBar (TEXT ("F"), TEXT ("A, I:4-99, M:1-99, N:3-99, L:1-99, K:1-99, H:1-99"))

□ Alternate switching mode (A)

If you press the trigger switch, the illumination LED comes on. Even if you release the switch, the illumination LED remains on until the barcode device file becomes closed or you press that switch again. While the illumination LED is on, the BHT can read a barcode.

Pressing the trigger switch toggles the illumination LED on and off.

Once a barcode is read successfully, pressing the trigger switch turns on the illumination LED but the BHT cannot read the next barcode as long as the entered barcode data is not read out from the barcode buffer.

[Ex]

BHT EnableBar (TEXT("A"), TEXT("A,I:4-99,M:1-99,N:3-99,L:1-99,K:1-99,H:1-99"))

□ Continuous reading mode (C)

If this mode is specified, the BHT turns on the illumination LED and keeps it on until the barcode device file becomes closed, irrespective of the trigger switch.

While the illumination LED is on, the BHT can read a barcode.

Once a barcode is read successfully, the BHT cannot read the next barcode as long as the entered barcode data is not read out from the barcode buffer.

[Ex]

BHT EnableBar (TEXT("C"), TEXT("A,I:4-99,M:1-99,N:3-99,L:1-99,K:1-99,H:1-99"))

In the momentary switching mode, alternate switching mode, or continuous reading mode, after you read a low-quality barcode which needs more than one second to be read, keeping applying the barcode reading window to that barcode may re-read the same barcode in succession at intervals of one second or more.

Beepercontrol and LEDcontrol

This function can control the beeper and the indicator LED to activate or deactivate each of them when a barcode is read successfully. This function may also control the vibrator with beepercontrol.

- You should describe parameters of readmode, beepercontrol, and LEDcontrol without any space inbetween.
- You should describe readmode, beepercontrol, and LEDcontrol in this sequence.
- Specifying B to beepercontrol allows you to select beeping only, vibrating only, or beeping & vibrating according to the setting made on the BEEP/VIBRATOR menu in System Menu or the setting made with the system function.
- Specifying L to LEDcontrol will not turn on the indicator LED.

```
[Ex] To sound the beeper (or operate the vibrator) when a barcode is read successfully: BHT_EnableBar (TEXT("FB"), TEXT("A,I:4-99,M:1-99,N:3-99, L:1-99,K:1-99,H:1-99"))
```

```
[Ex] To deactivate the indicator LED when a barcode is read successfully: BHT_EnableBar (TEXT ("FL"), TEXT ("A, I:4-99, M:1-99, N:3-99, L:1-99, K:1-99, H:1-99"))
```

■ Readcode

BHT-700B

The BHT supports the universal product codes, Interleaved 2of5 (ITF), Standard 2of5 (STF), Codabar (NW-7), Code 39, Code 93, and Code 128, MSI, and RSS. The BHT can read also EAN-128 if Code 128 is specified.

Universal product codes (A)

Syntax

A [:[code][1st character [2nd character]][supplemental]]

where code is A, B, or C specifying the following:

code	Barcode type
Α	EAN-13 (JAN-13), UPC-A
В	EAN-8 (JAN-8)
С	UPC-E

If code is omitted, the default is all of the universal product codes.

1stchara and 2ndchara are flag characters representing a country code and should be numerals from 0 to 9. If a question mark (?) is specified to 1stchara or 2ndchara, it acts as a wild card.

"supplemental" refers to the reading of an add-on code. Specifying an S for add-on enables the BHT to read also barcodes with an add-on code.

[Ex] To enable the BHT to scan EAN-13 with 1stchara "4," 2ndchara "9" and add-on code BHT_EnableBar(TEXT("FL"), TEXT("A:49S"))

[Ex] To enable the BHT to scan EAN-13 and EAN-8 only **BHT_EnableBar**(TEXT("FL"), TEXT("A:A,A:B"))

□ Interleaved 2 of 5 (ITF) (I)

Syntax

I[:[mini.no.digits[-max.no.digits]][CD]]

where

mini.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. They should be a numeral from 2 to 99 and satisfy the following conditions:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, then the default reading range is from the minimum number of digits specified in the system menu (BhtShell.exe) up to 99 digits. If only max.no.digits is omitted, the BHT can only read the number of digits specified by mini.no.digits.

CD is a check digit. Specifying a C to CD makes the Interpreter check barcodes with MOD-10. The check digit is included in the number of digits.

[Ex] To enable the BHT to scan ITF with min.no.digits 6, max.no.digits 10, and MOD-10 **BHT_EnableBar**(TEXT("FL"), TEXT("I:6-10C"))

[Ex] To enable the BHT to scan ITF with min.no.digits 6 and max.no.digits 10 or with min.no.digits 20 and max.no.digits 40

BHT_EnableBar(TEXT("FL"),TEXT("I:6-10,I:20-40"))

□ CODABAR (NW-7) (N)

Syntax

N[:[mini.no.digits[-max.no.digits]][startstop][CD]]

Where

mini.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. They should be a numeral from 3 to 99 and satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, then the default reading range is from the minimum number of digits specified in the system menu (BhtShell.exe) up to 99 digits. If only max.no.digits is omitted, the BHT can only read the number of digits specified by mini.no.digits.

start and stop are the start and stop characters, respectively. Each of them should be an A, B, C, or D. If a question mark (?) is specified, it acts as a wild card. The start and stop characters are included in the number of digits. The A through D will be stored in the barcode buffer as a through d.

CD is a check digit. Specifying a C to CD makes the Interpreter check barcodes with MOD-16. The check digit is included in the number of digits.

[Ex] To enable the BHT to scan NW-7 with min.no.digits 8, start character A and stop character A, and MOD-16

BHT_EnableBar(TEXT("FL"), TEXT("N:8AAC"))

[Ex] To enable the BHT to scan NW-7 with min.no.digits 6 and max.no.digits 10 or with min.no.digits 20 and max.no.digits 40

BHT EnableBar(TEXT("FL"),TEXT("N:6-10,N:20-40"))

□ CODE-39 (M)

Syntax

M[:[mini.no.digits[-max.no.digits]][CD]]

Where

mini.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. They should be a numeral from 1 to 99, excluding start/stop characters. They should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, then the default reading range is 1 to 99 digits. If only max.no.digits is omitted, the BHT can only read the number of digits specified by mini.no.digits.

CD is a check digit. Specifying a C to CD makes the Interpreter check barcodes with MOD-43. The check digit is included in the number of digits.

[Ex] To enable the BHT to scan Code 39 with min.no.digits 8, max.no.digits 12, and MOD-43 BHT_EnableBar(TEXT("FL"), TEXT("M:8-12C"))

[Ex] To enable the BHT to scan Code 39 with min.no.digits 6 and max.no.digits 10 or with min.no.digits 20 and max.no.digits 40

BHT_EnableBar(TEXT("FL"),TEXT("M:6-10,M:20-40"))

□ CODE-93 (L)

Syntax

L[:[mini.no.digits[-max.no.digits]]]

Where

mini.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. They should be a numeral from 1 to 99, excluding start/stop characters and check digits. They should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, then the default reading range is 1 to 99 digits. If only max.no.digits is omitted, the BHT can only read the number of digits specified by mini.no.digits.

[Ex] To enable the BHT to scan Code 93 with min.no.digits 6 and max.no.digits 12 **BHT_EnableBar**(TEXT("FL"), TEXT("L:6-12"))

[Ex] To enable the BHT to scan Code 93 with min.no.digits 6 and max.no.digits 10 or with min.no.digits 20 and max.no.digits 40

BHT_EnableBar(TEXT("FL"),TEXT("L:6-10,L:20-40"))

NOTE: Neither start/stop characters nor check digits will be transferred to the barcode buffer.

□ CODE-128 (K)

Syntax

K[:[mini.no.digits[-max.no.digits]]]

Where

mini.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. They should be a numeral from 1 to 99, excluding start/stop characters and check digit. They should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, then the default reading range is 1 to 99 digits. If only max.no.digits is omitted, the BHT can only read the number of digits specified by mini.no.digits.

[Ex] To enable the BHT to scan Code 128 with min.no.digits 6 and max.no.digits 12 BHT_EnableBar(TEXT("FL"), TEXT("K:6-12"))

[Ex] To enable the BHT to scan Code 128 with min.no.digits 6 and max.no.digits 10 or with min.no.digits 20 and max.no.digits 40 BHT_EnableBar(TEXT("FL"),TEXT("K:6-10,K:20-40"))

NOTE: Neither start/stop characters nor check digits will be transferred to the barcode buffer.

Handling special characters

If the BHT reads any barcode consisting of special characters only (such as FNC, CODEA, CODEB, CODEC and SHIFT characters), it will not transfer the data to the barcode buffer. The beeper sounds only if it is enabled.

Details about FNC characters

(1) FNC1

The BHT will not transfer an FNC1 character placed at the first or second character position immediately following the start character, to the barcode buffer. FNC1 characters in any other positions will be converted to GS characters (1Dh) and then transferred to the barcode buffer like normal data.

If an FNC1 immediately follows the start character, the barcode will be recognized as EAN-128 and marked with W instead of K.

(2) FNC2

If the BHT reads a barcode containing an FNC2 character(s), it will not buffer such data but transfer it excluding the FNC2 character(s).

(3) FNC3

If the BHT reads a barcode containing an FNC3 character(s), it will regard the data as invalid and transfer no data to the barcode buffer, while it may drive the indicator LED and beeper (vibrator) if activated this **BHT EnableBar** function.

(4) FNC4

An FNC4 converts data encoded by the code set A or B into a set of extended ASCII-encoded data (128 added to each official ASCII code value).

1 A single FN4 character converts only the subsequent data character into the extended ASCII-encoded data.

A pair of FNC4 characters placed in successive positions converts all of the subsequent data characters preceding the next pair of FNC4 characters or the stop character, into the extended ASCII-encoded data. If a single FNC4 character is inserted in those data characters, however, it does not convert the subsequent data character only.

An FNC4 character does not convert any of GS characters converted by an FNC1 character, into the extended ASCII-encoded data.

□ Standard 2 of 5 (STF) (H)

Syntax

H[:[mini.no.digits[-max.no.digits]][CD][startstop]]

Where

mini.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. They should be a numeral from 1 to 99, excluding start/stop characters. They should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, then the default reading range is from the minimum number of digits specified in the system menu (BhtShell.exe) up to 99 digits. If only max.no.digits is omitted, only the number of digits specified by mini.no.digits can be read.

CD is a check digit. Specifying a C to CD makes the Interpreter check barcodes with MOD-10. The check digit is included in the number of digits.

startstop specifies the normal or short format of the start/stop characters. Specify N for the normal format; specify S for the short format. If startstop is omitted, start/stop characters can be read in either format.

[Ex] To enable the BHT to scan STF with min.no.digits 6 and max.no.digits 12 BHT_EnableBar(TEXT("FL"), TEXT("H:6-12"))

[Ex] To enable the BHT to scan STF with min.no.digits 6 and max.no.digits 10 or with min.no.digits 20 and max.no.digits 40

BHT_EnableBar(TEXT("FL"),TEXT("H:6-10,H:20-40"))

□ MSI (P)

Syntax

P[:[mini.no.digits[-max.no.digits]][CD]]

Where

mini.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. They should be a numeral from 1 to 99, excluding start/stop characters. They should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, then the default reading range is 1 to 99 digits. If only max.no.digits is omitted, the BHT can only read the number of digits specified by mini.no.digits.

CD is a check digit. Specifying a C1 or C2 to CD makes the Interpreter check barcodes with a single-digit or two-digit CD, respectively. If no CD is specified, the Interpreter checks barcodes with a single-digit CD. The check digit is included in the number of digits.

[Ex] To enable the BHT to scan MSI with min.no.digits 6, max.no.digits 12, and a single CD check **BHT_EnableBar**(TEXT("FL"), TEXT("P:6-12C1"))

[Ex] To enable the BHT to scan MSI with min.no.digits 6, max.no.digits 10 and a single CD check or with min.no.digits 20, max.no.digits 40 and a two-digit CD check

BHT_EnableBar(TEXT("FL"),TEXT("P:6-10,P:20-40C2"))

□ RSS (R)

Syntax

R

RSS-14, RSS-14 Stacked, RSS Limited, RSS Expanded, and RSS Expanded Stacked codes can be read.

BHT-700Q

The readable barcodes include, among 2D codes, QR code, PDF417, MaxiCode, Data Matrix, and EAN·UCC composite, and, among barcodes, universal product code, interleaved 2of5 (ITF), Codabar (NW-7), Code 39, Code 93, Code 128, and RSS. Further, the BHT-700Q can read EAN-128 with Code 128 (read specified). (For details of readable codes, refer to the Instruction Manual.)

□ QR Codes (Q)

Syntax

Q [: [symbol type[min. code version [-max. code version]]][split code scanning mode] [;symbol type[min code version[-max code version]]] [;symbol type[min code version[-max code version]]]]

For symbol type, the following values are available:

Symbol type	Readable code
S	Micro QR
M	QR model 1
L	QR model 2

If you omit the symbol type, you can read Micro QR, QR model 1, and QR model 2.

The minimum and maximum code versions refer to those of QR code that can be read. The table below shows the possible ranges by symbol type.

Allowable range of code version	Symbol type
1 – 4	S
1 – 22	M
1 – 40	L

The minimum and maximum code versions must satisfy the following relationship:

Minimum code version ≤ Maximum code version

If you omit both the minimum and maximum code versions, you can read QR codes of a full range (up to the maximum allowable) of code versions for each symbol type. If you omit only the maximum code version, you can read only the QR code of the minimum code version you specify.

In split code scanning mode, you can read QR code symbols that are split into a maximum of 16 segments (sub-codes). You can specify any of the edit mode, batch edit mode, and non-edit mode as shown below.

Split code scanning mode	
Е	Enable in edit mode
В	Enable in batch edit mode
С	Enable in non-edit mode

If you specify "E," "B," and "C," the latest specification takes effect.

If you do not specify the split code scanning mode, the BHT cannot read split QR code symbols.

[Ex] To enable the BHT to read split codes: **BHT_EnableBar** (TEXT ("FB"), TEXT ("Q:M5-14E;L1-40;S1-4"))

In scanning a split code in edit mode, the maximum data length is 8,192 bytes. Data exceeding 8,192 bytes causes a read error to be recognized and the beeper to sound for 500 ms. The read data will be destroyed.

When a split code is read in non-edit mode, the read data is stored into the barcode buffer in the following format:

Sub-code no	No. of sub-codes	Parity	Read data	
Sub-code no., No. of sub-codes: 1 byte (hex.) (0 – F)				
Parity: 2 bytes (hex.) (00 – FF)				

The sub-code number, number of sub-codes, and parity are converted into hexadecimal characters.

The sub-code number is expressed in hexadecimal notation; for example, 0 (30h) for the first, and F (46h) for the 16th. Likewise, the number of sub-codes is expressed in hexadecimal notation; for example, 1 (31h) for the splitting into 2 segments, and F (46h) for the splitting into 16 segments.

The parity is provided for sum checking of the read data. It also serves as the delimiter between a group of split codes from another group.

In split code scanning, the beeper sounds as follows: Upon reading the first split code of a QR code, it beeps twice, signaling the start of the split code scanning mode. Thereafter, the beeper sounds once each time a split code is read, except the last one, which causes the beeper to sound three times, signaling the end of the split code scanning mode.

All split codes belonging to a QR code must be read, no matter what sequence it may be. Once read, a split code cannot be read again until all the other split codes belonging to the other QR code have been read.

In any of the following events, the split code scanning will be terminated, even if the scanning of all split codes of the QR code is not complete. If scanning is terminated in this manner in edit mode, all the data that has been read up to that point will be destroyed.

A non-splti code has been read:

In this case, the data that has been read will be stored into the barcode buffer.

• A split code belonging to another QR code has been read:

The BHT initiates the reading of the new sequence of split code scanning.

- The barcode reading window has been put away from the barcode for more than 3 seconds in the momemntary switch mode, alternate switch mode, or continuous read mode; or more than 5 seconds has elapsed since a split code was read.
- The illuminating LED has been turned OFF by a trigger switch, i.e., in the momentary switch mode or auto-off mode, the trigger switch has been released, or in the alternate switch mode, the trigger switch has been pressed again.

□ PDF417(Y)

Syntax

Y [:[symbol type]]

For symbol type, you can specify one of the values shown below.

Symbol type	Applicable code
S	MicroPDF417
M	PDF417

If you do not specify the symbol type, both MicroPDF417 and PDF417 can be read.

□ MaxiCode(X)

Syntax

Χ

□ MaxiCode(Z)

Syntax

Z [:[symbol type [min code no.[-max code no.]]] [;symbol type [min code no.[-max code no.]]]]

For symbol type, you can specify one of the values shown below.

_		topoony one or are remained enterior
	Symbol type	Applicable code
	S	Square Data Matrix
	R	Rectangular Data Matrix

"min code no." and "max code no." are the minimum and maximum DataMatrix code numbers that can be read, respectively. The table below shows the allowable range of code numbers by symbol type.

Allowable range of code number	Symbol type
1 to 24	S
1 to 6	R

If you do not specify the symbol type, both Square Data Matrix and Rectangular Data Matrix can be read.

"min code no." and "max code no." must satisfy the following relationship:

min code no. ≤ max code no.

If you omit both the minimum and maximum code numbers, you can read DataMatrix codes of a full range (up to the maximum allowable) of code numbers for each symbol type. If you omit only the maximum code number, you can read only the DataMatrix code of the minimum code number you specify. The table below shows the correspondence between the code number and the number of cells.

S (Square Data Matrix)

Code No	ROWxCOL						
1	10x10	7	22x22	13	44x44	19	88x88
2	12x12	8	24x24	14	48x48	20	96x96
3	14x14	9	26x26	15	52x52	21	104x104
4	16x16	10	32x32	16	64x64	22	120x120
5	18x18	11	36x36	17	72x72	23	132x132
6	20x20	12	40x40	18	80x80	24	144x144

R (Rectangular Data Matrix)

Code No	ROWxCOL	Code No	ROWxCOL
1	8x18	4	12x36
2	8x32	5	16x36
3	12x26	6	16x48

□ EAN·UCC Composite(V)

Syntax

٧

□ Universal product code (A)

Syntax

A [:[code][1st character [2nd character]] [supplemental]]

Specify one of the codes listed below.

Code	Barcode type
Α	EAN-13 (JAN-13), UPC-A
В	EAN-8 (JAN-8)
С	UPC-E

If you do not specify any of the codes, all of the above-listed codes can be read.

The first and second characters are the first characters representing the country flag and must be a numeral (0 through 9) each. A question mark (?) serves as a wild card.

"supplemental" refers to the reading of an add-on code. Specifying "S" as "supplemental" enables the BHT to read add-on codes.

To specify multi-line code reading, first specify "&" and then specify this syntax as many times as the number of rows to be read. The code cannot be omitted. For multi-line code reading, refer to the section on multi-line code reading.

[Ex] Reading 3 rows of a universal product code:

BHT_EnableBar (TEXT ("FB"), TEXT ("&,A:A,A:B,A:C"))

□ Interleaved 2of5 (ITF) (I)

Syntax

I [:[min no. digits [-max no. digits]][CD][;[1st character [2nd character]]]]

"min no. digits" and "max no. digits" are the minimum and maximum numbers of digits of the barcode. You can specify any pair of numbers between 2 and 99 (inclusive) that satisfy the following relationship:

min no. digits ≤ max no. digits

If you omit both the minimum and maximum numbers of digits, the BHT can read barcodes whose lengths are between the minimum number of digits specified in system mode and 99 (inclusive). If you omit only the maximum number of digits, the BHT can read only barcodes of the length specified by "min no. digits."

"CD" represents the check digit. If you specify "C," the barcode will be checked according to MOD-10. The check digit(s) is (are) included in the number of digits.

To specify multi-line code reading, first specify "&" and then specify this syntax as many times as the number of rows to be read. In this syntax, ";" and the portion after it are valid only in the case of multi-line code reading. Specify a numeral (0-9) in the first and second characters. For multi-line code reading, refer to the section on multi-line code reading.

[Ex] Reading two rows of an ITF code: **BHT_EnableBar** (TEXT ("FB"), TEXT ("&,I:;12,I:;23"))

□ Codabar (NW-7) (N)

Syntax

N [:[min no. digits [- max no. digits]][startstop] [CD]]

"min no. digits" and "max no. digits" are the minimum and maximum numbers of digits of the barcode. You can specify any pair of numbers between 3 and 99 (inclusive) that satisfy the following relationship:

min no. digits ≤ max no. digits

If you omit both the minimum and maximum numbers of digits, the BHT can read barcodes whose lengths are between the minimum number of digits specified in system mode and 99 (inclusive). If you omit only the maximum number of digits, the BHT can read only barcodes of the length specified by "min no. digits."

"startstop" means the start character and the stop character. Specify A, B, C, or D. A question mark (?) serves as a wild card. The start and stop characters are included in the number of digits. "A" through "D" are stored in the barcode buffer as "a" through "d."

"CD" represents the check digit. If you specify "C," the barcode will be checked according to MOD-16. The check digit(s) is (are) included in the number of digits.

To specify multi-line code reading, first specify "&" and then specify this syntax as many times as the number of rows to be read. For multi-line code reading, refer to the section on multi-line code reading.

[Ex] Reading 3 rows of a Codabar: BHT_EnableBar (TEXT ("FB"), TEXT ("&,N:8,N:6,N:4"))

□ Code 39 (M)

Syntax

M [:[min no. digits [-max no. digits]][CD][;[1st character [2nd character]]]]

"min no. digits" and "max no. digits" are the minimum and maximum numbers of digits of the barcode. The start character and the stop character are not included in the number of digits here. You can specify any pair of numbers between 1 and 99 (inclusive) that satisfy the following relationship:

min no. digits ≤ max no. digits

If you omit both the minimum and maximum numbers of digits, the BHT can read barcodes whose lengths are between 1 and 99 (inclusive). If you omit only the maximum number of digits, the BHT can read only barcodes of the length specified by "min no. digits."

"CD" represents the check digit. If you specify "C," the barcode will be checked according to MOD-43. The check digit(s) is (are) included in the number of digits.

To specify multi-line code reading, first specify "&" and then specify this syntax as many times as the number of rows to be read. In this syntax, ";" and the portion after it are valid only in the case of multi-line code reading. Specify a numeral (0 - 9) in the first and second characters. For multi-line code reading, refer to the section on multi-line code reading.

[Ex] Reading 2 rows of a Code 39: BHT_EnableBar (TEXT ("FB"), TEXT ("&,M:;12,M:;23"))

□ CODE-93 (L)

Syntax

L [: [min.no.digits [-max.no.digits]][;1st digit [-2nd digit]]]]

Where

min.no.digits and max.no.digits are the minimum and maximum numbers of digits for barcodes to be read by the BHT, respectively. These should be numerals from 1 to 99, excluding start/stop characters and check digits, and should satisfy the following condition:

min no. digits ≤ max no. digits

If both the min.no.digits and max.no.digits are omitted, then the default reading range is 1 to 99 digits. If only the max.no.digits is omitted, the BHT can only read the number of digits specified by min.no.digits.

[Ex.]To enable the BHT to scan Code 93 with min.no.digits 6 and max.no.digits 12:

```
BHT_EnableBar (TEXT ("FL"), TEXT ("L:6-12"))
```

[Ex.]To enable the BHT to scan Code 93 with min.no.digits 6 and max.no.digits 10, or min.no.digits 20 and max.no.digits 40:

```
BHT_EnableBar (TEXT ("FL"), TEXT ("L:6-10, L:20-40" ))
```

NOTE: Neither start/stop characters nor check digits will be transferred to the barcode buffer.

To specify multi-line code reading, specify "&" followed by the above syntax as many times as the number of rows to be read. In the above syntax, information following ";" is valid only for multi-line code reading. Specify 0 to 9 for the 1st and 2nd digits. (Refer to the section on multi-line code reading for further details of specifying multi-line code reading.)

```
[Ex.] To read 2 rows of Code 93:

BHT_EnableBar (TEXT ("FB"), TEXT ("&, L:;12, L:;23"))
```

□ Code 128 (K)

Syntax

K [:[min no. digits [-max no. digits]][;[1st character [2nd character]]]]

"min no. digits" and "max no. digits" are the minimum and maximum numbers of digits of the barcode. The start character and the stop character are not included in the number of digits here. You can specify any pair of numbers between 1 and 99 (inclusive) that satisfy the following relationship:

min no. digits ≤ max no. digits

If you omit both the minimum and maximum numbers of digits, the BHT can read barcodes whose lengths are between 1 and 99 (inclusive). If you omit only the maximum number of digits, the BHT can read only barcodes of the length specified by "min no. digits."

The start character, the stop character, and the check digit are not stored into the barcode buffer.

To specify multi-line code reading, first specify "&" and then specify this syntax as many times as the number of rows to be read. In this syntax, ";" and the portion after it are valid only in the case of multi-line code reading. Specify a numeral (0-9) in the first and second characters. For multi-line code reading, refer to the section on multi-line code reading.

[Ex] Reading 2 rows of a Code 128: BHT_EnableBar (TEXT ("FB"), TEXT ("&,K:;12,K:;23"))

Positions of special characters

When a code consisting only of special characters (FNC, CODEA, CODEB, CODEC, and SHIFT characters) or a code containing FNC3 has been read, the read data is not stored into the barcode buffer. When beeper sounding is enabled, the beeper sounds.

Handling of FNC characters

(1) FNC1

The FNC1 character located 1 or 2 places after the start character will not be stored into the barcode buffer. An FNC1 character located elsewhere will be converted into a GS character (1Dh) and stored into the barcode buffer.

A code in which an FNC character immediately follows the start character is EAN-128, in which case the code mark is "W" instead of "K."

(2) FNC2

For a barcode containing an FNC2 character, the data will not be temporarily stored. Instead, the data code excluding the FNC2 character will be stored into the barcode buffer.

(3) FNC3

If a barcode contains an FNC3 character, the read data will be regarded as invalid and will not be stored into the barcode buffer. When the indicator LED and the vibrator are enabled by the **BHT EnableBar** function, the indicator LED and the vibrator will be turned ON.

(4) FNC4

The FNC4 character converts data encoded by code set A or B into the extended ASCII format (normal ASCII + 128). One FNC4 character converts one data character immediately following it into the extended ASCII format.

A pair of contiguous FNC4 characters converts into the extended ASCII format all the data characters following it before another pair of contiguous FNC4 characters or a stop character. An exception is when a stand-alone FNC4 character exists in this string of characters, in which case one data character immediately following it will not be converted.

Also, the GS character created from an FNC1 character will not be converted into the extended ASCII format.

■ Multi-line code reading

To specify Multi-line code reading, specify "&" followed by the codes to be read. Up to three rows can be specified.

Syntax

```
"&, (code in 1st row), (code in 2nd row)[, (code in 3rd row)]"
```

The codes supported in multi-line code reading are the universal product code, interleaved 2of5 (ITF), Codabar (NW-7), Code 39, and Code 128 (all among barcodes).

(1) Multi-line code reading is independent of single-row code reading.

```
[Ex] Reading universal product code EAN-8 and EAN-13 (2 rows): BHT_EnableBar (TEXT ("FB"), TEXT ("&,A:B,A:A"))
```

```
[Ex] Reading 1 row of universal product code EAN-8 and 2 rows of Code 39: BHT_EnableBar (TEXT ("FB"), TEXT ("A:B,&,M,M"))
```

(2) You can specify a 2D code and a multi-line code simultaneously.

```
[Ex] Reading a QR code and 3 rows of code 39:
BHT_EnableBar (TEXT ("FB"), TEXT ("Q,&,M,M,M"))
```

(3) In Multi-line code reading, you can specify the reading sequence using the first two characters (start/stop in the case of Codabar).

[Ex] Reading 3 rows of ITF (with character specification) in the following sequence: code beginning with "12," code with CD beginning with "21" of 6 – 10 digits in length, and code beginning with "23" of 12 digits in length

```
BHT EnableBar (TEXT ("FB"), TEXT ("&,1::12,1:6-10C;21,1:12;23"))
```

You can also specify a single character.

[Ex] Reading a universal product code EAN and ITF (with character specification) in the following sequence: EAN beginning with "49" and ITF beginning with "2" of 6 – 10 digits in length.

BHT EnableBar (TEXT ("FB"), TEXT ("&,A:A49,I:6-10;2"))

(4) Data will be output in the specified sequence.

```
[Ex] Data is to be output in the sequence of EAN-8 beginning with "12" - EAN-8 beginning with "21." BHT_EnableBar (TEXT ("FB"), TEXT ("&,A:B12,A:B21"))
```

Note, however, that if you specify the same character and the same number of digits, then the output sequence is unpredictable.

[Ex] Reading 2 rows of ITF, both beginning with "49" and having a length of 6 digits: **BHT_EnableBar** (TEXT ("FB"), TEXT ("&,I:6;49,I:6;49"))
In this example, it is unpredictable, for example, which will be output first, ITF"495678" or ITF "498765."

(5) If the same code (with the same code type and the same data code) appears more than once in a multi-line code, the BHT cannot read it.

[Ex] A code consisting of EAN-13: "4912345678904" in the first row, EAN-13; "1200000000003" in the second row, and EAN-13 "4912345678904" in the third row cannot be read with the following instruction:

BHT_EnableBar (TEXT ("FB"), TEXT ("&,A:A49,A:A12,A:A49"))

(6) If you specify the same code type, the same number of digits, and the same conditions for single-row reading and multi-line code reading, the BHT cannot read the single-row code.

[Ex] If you have a single-row EAN-13 code "'4901234567894'" and a two-row EAN-13 code consisting of "'4909876543214'" in the first row and "1200000000003" in the second row, you cannot read them using the following instruction:

BHT_EnableBar (TEXT ("FB"), TEXT ("A:A49,&,A:A49,A:A12"))

- (7) In multi-line code reading, an ITF code less than 4 digits in length cannot be read unless you specify the number of digits.
- (8) You cannot specify multiple-row code reading for add-on codes in the universal product code.
- (9) You cannot specify multiple-row code reading for the RSS code.
- (10) When you have selected the point scan mode, you cannot specify multiple-row code reading.[

□ RSS (R)

Syntax

R

$BHT_DisableBar$

Description:

Close the barcode device file to disable barcode reading.

Syntax:
DWORD BHT_DisableBar (void)

Parameters

None

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR INVALID HANDLE	Barcode device file not opened

BHT_ReadBar

Description

Read out data read from the barcode buffer.

If the string length longer than that of the read barcode is specified to dwBarLen, the remaining area following the read barcode will be filled with NULL codes.

If barcode reading is not enabled, an error (ERROR_INVALID_HANDLE) will result.

Syntax:

```
DWORD BHT_ReadBar (
TCHAR* pwchBuffer,
DWORD dwBarLen,
DWORD* pdwActualBarLen)
```

Parameters

pwchBuffer

[out] Heading address of the storage buffer storing the read data

dwBarLen

[in] Maximum length of data to be read

pdwActualBarLen
[out] Length of data read

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_HANDLE	Barcode device file not opened.
ERROR_INVALID_PARAMETER	No storage address specified.

BHT_ReadBarEx

Description

Read out data from the barcode buffer and encodes it into the specified data format.

If the length of the read data is shorter than the specified maximum data length (dwBarLen), the excess part will be filled with 0s.

If barcode reading is disabled, an error (ERROR_INVALID_HANDLE) will be caused.

Syntax:

```
DWORD BHT_ReadBarEx (
DWORD dwDataType,
LPVOID lpBuffer,
DWORD dwBarLen,
DWORD* pdwActualBarLen)
```

Parameters

dwDataType
[in] Encoding format

READ_CODE_BINARY : binary data (no encoding)

READ_CODE_UNICODE : unicode data

lpBuffer

[in] Starting address of the read data in the storage buffer

dwBarLen

[in] Maximum read data length (maximum length of data to be read out)

pdwActualBarLen

[out] Length of data read

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_HANDLE	Barcode device file not opened.
ERROR INVALID PARAMETER	The specified encoding is wrong.
ERROR_INVALID_PARAMETER	No storage address specified.

BHT_GetBarType

Description

BHT-700B

Read the barcode type and the number of digits of a barcode read most recently. If no barcode has been read after the BHT was turned on, the function gets "0."

BHT-700Q

Read the barcode type and the number of digits of a barcode read most recently.

If no barcode has been read after the BHT was turned on, the function gets "0."

When a multiple-row code has been read, this fact is communicated to the caller and the total number of digits in the multiple-row code is returned.

To get the information for a specific row, call BHT_GetBarInfo.

When an EAN-UCC composite code has been read, this fact is communicated to the caller and the total number of digits in the EAN-UCC composite code is returned. To get the information for a specific row, call **BHT GetBarInfo**.

Syntax

DWORD BHT_GetBarType (
DWORD* pdwBarMark ,
DWORD* pdwBarlen)

Parameters

pdwBarMark

[out] Address for storing the barcode type

pdwBarlen

[out] Address for storing the barcode length

The pdwBarMark contains one of the following letters representing code types:

Barcode type	pdwBarMark
(No code read)	0
EAN-13 (JAN-13), UPC-A	'A'
EAN-8 (JAN-8)	'B'
UPC-E	Ċ
ITF	'l'
STF (Only for BHT-700B)	'H'
CODABAR (NW-7)	'N'
CODE-39	'M'
CODE-93	'L'
CODE-128	'K'
EAN-128	'W'
MSI (Only for BHT-700B)	'P'
RSS	'R'
QR code (Only for BHT-700Q)	'Q'
Split QR code (in non-edit mode) (Only for BHT-700Q)	'S'
PDF417 (Only for BHT-700Q)	'Y'
Maxi Code (Only for BHT-700Q)	'X'
Data Matrix (Only for BHT-700Q)	'Z'
Multi-line code (Only for BHT-700Q)	'&'
Composite (Only for BHT-700Q)	'V'

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Storage address not specified.

BHT_GetBarInfo

Description

BHT-700B

Read the information on the code read most recently, including the code type and the number of digits in the code.

If no barcode has been read after the BHT was turned on, the function gets "0" for both the code type and the number of digits.

BHT-700Q

Read the information on the code read most recently, including the code type and the number of digits in the code.

If no barcode has been read after the BHT was turned on, the function gets "0" for both the code type and the number of digits.

When a multi-line code has been read, the information on all the rows is obtained in an array format. Also, the number of rows in the code is obtained.

When an RSS·EAN Composite code has been read, the information on all the codes constituting the composite code is obtained in an array format. Also, the number of codes in the composite code is obtained.

Syntax

```
DWORD BHT_GetBarInfo (
ST_CODE_INFO* pstInfo ,
DWORD* pdwCodeNum)
```

Parameters

pstInfo

[out] Destination address into which the code information is to be stored

```
pdwCodeNum
[in] No. of codes to be obtained
```

[out] Destination address into which the number of codes is to be stored. This is set to "1" when a code other than a multiple-row code or an EAN-UCC composite code has been read.

Shown below is the format of the structure containing code information. For the relationship between dwType and code type, refer to BHT GetBarType.

```
struct ST_CODE_INFO {
    DWORD dwType; // code type
    DWORD dwLen; // no. of digits
);
```

Return value

turn value	
Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR INVALID PARAMETER	Storage address not specified.

If you specify NULL in pstCodeInfo, the number of elements of ST_CODE_INFO necessary to store the read code will be stored into pdwCodeNum.

An error occurs if a value greater than MAX_NUM_CODE_1D_SCANNER (when using the BHT-700B) or MAX_NUM_CODE_2D_SCANNER (when using the BHT-700Q) is specified for pdwCodeNum.

BHT_GetBarNum

Description

Read the number of digits of the barcode remaining in the barcode buffer. If barcode reading is not enabled, an error (ERROR_INVALID_HANDLE) will result.

Syntax

```
DWORD BHT_GetBarNum (
DWORD* pdwCodeNum)
```

Parameters

pdwCodeNum

[out] Address for storing the barcode length

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_HANDLE	Barcode device file not opened
ERROR_INVALID_PARAMETER	Storage address not specified

$BHT_GetBarChkDgt$

Description

Calculate a check digit (CD) of the barcode data according to the calculation method specified by dwCDType.

Syntax

```
DWORD BHT_GetBarChkDgt (
TCHAR* pwchBarbuf ,
DWORD dwCDType ,
DWORD* pdwChkdgt )
```

Parameters

pwchBarbuf

[in] Heading address of barcode data storage buffer

dwCDType

[in] Check digit type

Barcode type and the corresponding calculation method

Barcode Type	dwCDType	Calculation Method
EAN(JAN), UPC	'A'	MOD10 (Modulo arithmetic-10)
ITF	"	MOD10 (Modulo arithmetic-10)
STF (only for BHT-700B)	'H'	MOD10 (Modulo arithmetic-10)
CODABAR (NW-7)	'N'	MOD16 (Modulo arithmetic-16)
CODE-39	'M'	MOD43 (Modulo arithmetic-43)
MSI (only for BHT-700B)	'P'	MOD10 (Modulo arithmetic-10)

pdwChkdgt

(out) Address for storing the check digit calculated

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Invalid check digit type. Invalid barcode data. Storage address not specified.

Comment:

If barcode data contains a character(s) out of the specification of the barcode type specified by dwCDType, then this function sets "0" and returns an error code. However, if only the CD position character in barcode data is out of the specification, this function calculates the correct CD and returns it as one-character string.

[Ex 1] BHT_GetBarChkDgt(TEXT("494AB4458"), 'A', &dwChkDgt);

"A" and "B" are out of the specification of EAN or UPC, so dwChkDgt is "0" and the function returns an error code.

[Ex 2] BHT_GetBarChkDgt(TEXT("4940045X"), 'A', &dwChkDgt);

"X" is out of the specification but it is a CD position character, so this function calculates the correct CD and dwChkDgt is "8."

[Ex 3] BHT_GetBarChkDgt(TEXT("a0ef3-a"), 'N', &dwChkDgt);

"e" and "f" are out of the specification of Codabar (NW-7), so dwChkDgt is "0" and the function returns an error code.

[Ex 4] BHT_GetBarChkDgt(TEXT("a123Qa"), 'N', &dwChkDgt)

"Q" is out of the specification but it is a CD position character, so this function calculates the correct CD and dwChkDgt is "-."

When dwCDType is A (EAN or UPC), this function identifies the EAN or UPC depending upon the data length (number of digits) as listed below. If the data length is a value other than 13, 8, and 7, this function gets "0" and returns an error code.

Data length of barcode data	Barcode type
13	EAN-13 (JAN-13), UPC-A
8	EAN-8 (JAN-8)
7	UPC-E

To check whether the CD is correct: Pass a CD-suffixed barcode data to the **BHT_GetBarChkDgt** function as shown below. If the returned value is equal to the CD, the CD data is suitable for the barcode data.

```
[Ex]
```

```
BHT_GetBarChkDgt(TEXT("49400458"), 'A', &dwChkDgt);
if ( dwChkDgt == '8' ) {
    printf("CD OK");
}
```

To add a CD to barcode data: Pass barcode data followed by a dummy character to the **BHT_GetBarChkDgt** function as shown below. The returned value will become the CD to be replaced with the dummy character.

[Ex]

```
wcscpy(wchBarData, TEXT("4940045"));
wcscpy(wchBarData1, wchBarData);
wcscat(wchBarData1, TEXT("0"));
BHT_GetBarChkDgt(wchBarData1, 'A', &dwChkDgt);
wprintf(TEXT("CD = %s%c"), wchBarData, dwChkDgt);
```

Result

> CD = 49400458

When dwCDType is I (ITF), the length of barcode data must be an even number of two or more digits. If not, this function gets "0" and returns an error code.

To check whether the CD is correct: Pass a CD-suffixed barcode data to the **BHT_GetBarChkDgt** function as shown below. If the returned value is equal to the CD, the CD data is suitable for the barcode data.

```
[Ex]
BHT_GetBarChkDgt(TEXT("123457"), 'I', &dwChkDgt);
if ( dwChkDgt == '7' ) {
    printf("CD OK");
}
```

To add a CD to barcode data: Pass barcode data followed by a dummy character to the **BHT_GetBarChkDgt** function as shown below. The returned value will become the CD to be replaced with the dummy character.

```
[Ex]
wcscpy(wchBarData, TEXT("12345"));
wcscpy(wchBarData1, wchBarData);
wcscat(wchBarData1, TEXT("0"));
BHT_GetBarChkDgt(wchBarData1, 'I', &dwChkDgt);
wprintf(TEXT("%s%c"), wchBarData, dwChkDgt);
Result
```

> CD = 123457

When dwCDType is H (STF), the length of barcode data must be two or more digits. If not, this function gets "0" and returns an error code.

To check whether the CD is correct: Pass a CD-suffixed barcode data to the **BHT_GetBarChkDgt** function as shown below. If the returned value is equal to the CD, the CD data is suitable for the barcode data.

```
[Ex]
BHT_GetBarChkDgt(TEXT("12345678905"), 'H', &dwChkDgt);
if ( dwChkDgt == '5' ) {
```

To add a CD to barcode data: Pass barcode data followed by a dummy character to the **BHT_GetBarChkDgt** function as shown below. The returned value will become the CD to be replaced with the dummy character.

```
[Ex]
wcsc
```

}

```
wcscpy(wchBarData, TEXT("1234567890"));
wcscpy(wchBarData1, wchBarData);
wcscat(wchBarData1, TEXT("5"));
BHT_GetBarChkDgt(wchBarData1, 'H', &dwChkDgt);
wprintf(TEXT("%s%c"), wchBarData, dwChkDgt);
```

Result

> CD = 12345678905

printf("CD OK");

When dwCDType is N (Codabar), the length of barcode data must be three digits or more including start and stop characters. If not, this function gets "0" and returns an error code.

To check whether the CD is correct: Pass a CD-suffixed barcode data to the **BHT_GetBarChkDgt** function as shown below. If the returned value is equal to the CD, the CD data is suitable for the barcode data.

```
[Ex]
BHT_GetBarChkDgt(TEXT("a0123-a"), 'M', &dwChkDgt);
if ( dwChkDgt == '-' ) {
    printf("CD OK");
}
```

> CD = a0123-a

To add a CD to barcode data: Pass barcode data followed by a dummy character to the **BHT_GetBarChkDgt** function as shown below. The returned value will become the CD to be replaced with the dummy character.

```
[Ex]
wcscpy(wchBarData, TEXT("a0123a"));
len = wcslen(wchBarData);
wcsncpy(wchTmp1BarData, wchBarData, len - 1);
wcscpy(wchTmp2BarData, wchTmp1BarData);
wcscat(wchTmp2BarData, TEXT("0"));
wcscat(wchTmp2BarData, &(wchBarData[len - 1]));
BHT_GetBarChkDgt(wchTmp2BarData) 'M', &dwChkDgt);
wprintf(TEXT("%s%c%s"), wchTmp1BarData, dwChkDgt, &wchTmp2BarData[len-1]));
Result
```

When dwCDType is M (Code 39), the length of barcode data must be two or more digits except for start and stop characters. If not, this function gets "0" and returns an error code.

To check whether the CD is correct: Pass a CD-suffixed barcode data to the **BHT_GetBarChkDgt** function as shown below. If the returned value is equal to the CD, the CD data is suitable for the barcode data.

```
[Ex]
BHT_GetBarChkDgt(TEXT("CODE39W"), 'M', &dwChkDgt);
if ( dwChkDgt == 'W' ) {
    printf("CD OK");
```

To add a CD to barcode data: Pass barcode data followed by a dummy character to the **BHT_GetBarChkDgt** function as shown below. The returned value will become the CD to be replaced with the dummy character.

```
[Ex]
wcscpy(wchBarData, TEXT("CODE39"));
wcscpy(wchBarData1, wchBarData);
wcscat(wchBarData1, TEXT("0"));
BHT_GetBarChkDgt(wchBarData1, 'M', &dwChkDgt);
wprintf(TEXT("%s%c"), wchBarData, dwChkDgt);
```

Result

}

> CD = CODE39W

When dwCDType is P (MSI), the length of barcode data must be two or more digits. If not, this function gets "0" and returns an error code. To calculate a two-digit CD, call this function twice.

To check whether the CD is correct: Pass a CD-suffixed barcode data to the **BHT_GetBarChkDgt** function as shown below. If the returned value is equal to the CD, the CD data is suitable for the barcode data.

```
[Ex]
BHT_GetBarChkDgt(TEXT("123456782"), 'P', &dwChkDgt);
if (dwChkDgt == '2' ) {
    printf("CD OK");
}
```

To add a CD to barcode data: Pass barcode data followed by a dummy character to the **BHT_GetBarChkDgt** function as shown below. The returned value will become the CD to be replaced with the dummy character.

```
[Ex]
wcscpy(wchBarData, TEXT("12345678"));
wcscpy(wchBarData1, wchBarData);
wcscat(wchBarData1, TEXT("0"));
BHT_GetBarChkDgt(wchBarData1, 'P', &dwChkDgt);
wprintf(TEXT("%s%c"), wchBarData, dwChkDgt);
```

Result

> CD = 123456782

BHT_BAR_SetDecodeOptions

Description

Sets the editing function setting value for the decoded result. This is supported only by the BHT-700B.

Syntax

```
DWORD BHT_BAR_SetDecodeOptions (
EN_DCD_OPTIONS_CODE_TYPE enCodeType,
LPVOID pOptions,
DWORD dwLen)
```

Parameters

enCodeType
[in] Code type to be edited

pOptions

[out] Editing function setting value. The addresses for the structure are listed below.

Code type	EnCodeType	pOptions
UPC-E	EnOptionsUPCE	ST_DCD_UPCE_OPTIONS
UPC-A	EnOptionsUPCA	ST_DCD_UPCA_OPTIONS
EAN-8	enOptionsEAN8	ST_DCD_EAN8_OPTIONS

dwLen

[in] pOptions size (bytes). Sets the value calculated at Sizeof.

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	The storage address has not been set. Invalid size specified.

Construction

The member construction for **EN_DCD_OPTIONS_CODE_TYPE** used to specify the code type is as follows.

```
typedef enum _EN_DCD_OPTIONS_CODE_TYPE {
   enOptionsUPCE,
   enOptionsUPCA,
   enOptionsEAN8,
} EN_DCD_OPTIONS_CODE_TYPE;
```

The member construction for **ST_DCD_UPCE_OPTIONS**, **ST_DCD_UPCA_OPTIONS**, and **ST_DCD_EAN8_OPTIONS** is shown below.

```
typedef struct _ST_DCD_UPCE_OPTIONS {

BOOL bConvertToUPCA;

BOOL bReportNumsys;

BOOL bReportChk;

} ST_DCD_UPCE_OPTIONS, *PST_DCD_UPCE_OPTIONS;
```

Member name	Default	Details
bConvertToUPCA	FALSE	Used to convert (TRUE) or not convert (FALSE) to UPC-A.
bReportNumsys	FALSE	Used to add (TRUE) or not add (FALSE) a "0" at the beginning.
bReportChk	TRUE	Used to add (TRUE) or not add (FALSE) a C/D.

```
typedef struct _ST_DCD_UPCA_OPTIONS {
   BOOL bReportChk;
} ST_DCD_UPCA_OPTIONS, *PST_DCD_UPCA_OPTIONS;
```

Member name	Default	Details
bReportNumsys	TRUE	Used to add (TRUE) or not add (FALSE) a "0" at
		the beginning.
bReportChk	TRUE	Used to add (TRUE) or not add (FALSE) a C/D.

```
typedef struct _ST_DCD_EAN8_OPTIONS {
   BOOL bConvertToEAN13;
} ST_DCD_EAN8_OPTIONS, *PST_DCD_EAN8_OPTIONS;
```

Member name	Default	Details
bConvertToEAN13	FALSE	Used to convert (TRUE) or not convert (FALSE)
		to EAN-13.

Notes

Authorize reading of the code type prior to conversion when authorizing code reading with **BHT_EnableBar**.

The value acquired with BHT_ReadBar, BHT_GetBarType, BHT_GetBarNum, and BHT_GetBarInfo will be the value after conversion.

The set value will only be valid within the application in which it is set. Settings are not updated to other applications.

(Ex.) The following settings are used in order to convert UPC-E codes to UPC-A codes.

ST_DCD_UPCE_OPTIONS stOptions;

DWORD dwLen = sizeof(stOptions);

 $\boldsymbol{BHT_EnableBar}(\mathsf{TEXT}(\mathsf{"FB"}),\,\mathsf{TEXT}(\mathsf{"A:C"});$

.....

/* Acquires current setting */

BHT_BAR_GetDecodeOptions(enOptionsUPCE, (LPVOID)&stOptions, &dwLen);

/* Authorizes conversion to UPC-A */

stOptions.bConvertToUPCA = TRUE;

BHT_BAR_SetDecodeOptions(enOptionsUPCE, (LPVOID)&stOptions, dwLen);

BHT_BAR_GetDecodeOptions

Description

Sets the editing function setting value for the decoded result. This is supported only by the BHT-700B.

Syntax

```
DWORD BHT_BAR_GetDecodeOptions (
EN_DCD_OPTIONS_CODE_TYPE enCodeType,
TCHAR * pwchSysParam,
LPVOID pOptions,
DWORD* pdwLen)
```

Parameters

enCodeType
[in] Code type to be edited

pOptions

[out] Editing function setting value. The addresses for the structure are listed below.

Code type	enCodeType	pOptions
UPC-E	enOptionsUPCE	ST_DCD_UPCE_OPTIONS
UPC-A	enOptionsUPCA	ST_DCD_UPCA_OPTIONS
EAN-8	enOptionsEAN8	ST_DCD_EAN8_OPTIONS

pdwLen

[in] pOptions size (bytes). Sets the value calculated at sizeof.

[out] Size of valid data stored in pOptions (bytes).

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	The storage address has not been set. Invalid size specified.

Construction

The member construction for **EN_DCD_OPTIONS_CODE_TYPE** used to specify the code type is as follows.

```
typedef enum _EN_DCD_OPTIONS_CODE_TYPE {
    enOptionsUPCE,
    enOptionsUPCA,
    enOptionsEAN8,
} EN_DCD_OPTIONS_CODE_TYPE;
```

The member construction for **ST_DCD_UPCE_OPTIONS**, **ST_DCD_UPCA_OPTIONS**, and **ST_DCD_EAN8_OPTIONS** is shown below.

```
typedef struct _ST_DCD_UPCE_OPTIONS {

BOOL bConvertToUPCA;

BOOL bReportNumsys;

BOOL bReportChk;

ST DCD UPCE OPTIONS, *PST DCD UPCE OPTIONS;
```

Member name	Default	Details
bConvertToUPCA	FALSE	Used to convert (TRUE) or not convert (FALSE) to UPC-A.
bReportNumsys	FALSE	Used to add (TRUE) or not add (FALSE) a "0" at the beginning.
bReportChk	TRUE	Used to add (TRUE) or not add (FALSE) a C/D.

```
typedef struct _ST_DCD_UPCA_OPTIONS {
   BOOL bReportNumsys;
   BOOL bReportChk;
} ST_DCD_UPCA_OPTIONS,
*PST_DCD_UPCA_OPTIONS;
```

Member name	Default	Details
bReportNumsys	TRUE	Used to add (TRUE) or not add (FALSE) a "0" at the beginning.
bReportChk	TRUE	Used to add (TRUE) or not add (FALSE) a C/D.

```
typedef struct _ST_DCD_EAN8_OPTIONS {
   BOOL bConvertToEAN13;
} ST_DCD_EAN8_OPTIONS,
*PST_DCD_EAN8_OPTIONS;
```

Member name	Default	Details
bConvertToEAN13	FALSE	Used to convert (TRUE) or not convert (FALSE)
		to EAN-13.

Notes

The acquired value will be the value set at that application.

16.2. Backlight API

BHT_SetBltStatus

Description

Control the backlight.

Syntax

DWORD BHT_SetBltStatus (
DWORD dwStatus)

Parameters

dwStatus

[in] Backlight status

dwStatus	Specification
BHT_BL_ENABLE_ON(*1)	Turn on the backlight.
BHT_BL_ENABLE_OFF	Turn off the backlight.
BHT BL DISABLE	Disable the backlight.

^(*1) The backlight specified with the BHT_SetSysSettingDW (BHT_BACKLIGHT_DEVICE,...) function illuminates.

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error.

BHT_GetBltStatus

Description

Read the backlight status.

Syntax DWORD BHT_GetBltStatus (DWORD* pdwStatus)

Parameters

pdwStatus

[out] Current backlight status

pdwStatus	Specification
BHT_BL_ENABLE_ON	Backlight ON
BHT_BL_ENABLE_OFF	Backlight OFF
BHT_BL_DISABLE	Backlight enabled

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Storage address not specified.

16.3. Battery API

BHT_GetPowerStatus

Description

Read information about the battery loaded in the BHT body.

Syntax

DWORD BHT_GetPowerStatus (

WORD* pwCuOnLine, WORD* pwBatteryFlag, WORD* pwBatteryVoltage,

WORD* pwBatteryChemistry)

Parameters

pwCuOnLine

[out] Read the BHT state on/off the CU

pwCuOnLine	Specification
AC_LINE_ONLINE	Placed on the CU
AC_LINE_OFFLINE	Not placed on the CU

pwBatteryFlag

[out] Read battery voltage level

pwBatteryFlag	Specification
BHT_BATTERY_FLAG_HIGH	High level (3.9 V ≤ Voltage)
BHT_BATTERY_FLAG_MID	Medium level (3.7 V ≤ Voltage < 3.9 V)
BHT_BATTERY_FLAG_LOW	Low level (3.6 V ≤ Voltage < 3.7 V)
BHT_BATTERY_FLAG_WARNING	Warning level (Voltage < 3.6 V)
BHT_BATTERY_FLAG_CRITICAL	Critical level (Voltage < 3.5 V)
BHT_BATTERY_FLAG_NO_BATTERY	No battery loaded

pwBatteryVoltage

[out] Battery output voltage (mV)

pwBatteryChemistry

[out] Battery type

pwBatteryChemistry	Specification
BATTERY_CHEMISTRY_LION	Lithium ion battery
BATTERY CHEMISTRY UNKNOWN	Unknown

Return value

otalli talao		
	Error code	Meaning
	ERROR_SUCCESS	Successful completion
	ERROR INVALID PARAMETER	Storage address not specified.

Comments

"BHT_BATTERY_FLAG_NO_BATTERY" for the battery level are never actually acquired.

BHT_GetPowerStatus2nd

Description

Read information about the battery loaded in the grip.

Syntax

DWORD BHT_GetPowerStatus2nd (

WORD* pwCuOnLine, WORD* pwBatteryFlag, WORD* pwBatteryVoltage, WORD* pwBatteryChemistry)

Parameters

pwCuOnLine

[out] Read the BHT state on/off the CU

pwCuOnLine	Specification
AC_LINE_ONLINE	Placed on the CU
AC_LINE_OFFLINE	Not placed on the CU

pwBatteryFlag

[out] Read battery voltage level

pwBatteryFlag	Specification
BHT_BATTERY_FLAG_NO_BATTERY	No battery loaded or no grip connected

pwBatteryVoltage[out] Battery output voltage (mV)"0" is always returned.

pwBatteryChemistry
[out] Battery type

pwBatteryChemistry	Specification
BATTERY_CHEMISTRY_UNKNOWN	Unknown

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Storage address not specified.

Comments

With the BHT-700, the battery is not stored in the grip, and therefore the following information is returned if this function is called.

- Battery voltage level : BHT_BATTERY_FLAG_NO_BATTERY (No battery loaded)

- Battery output voltage : 0 mV

- Battery type : BATTERY_CHEMISTRY_UNKNOWN (Unknown)

16.4. LED API

BHT_GetNLedStatus

Description

Read the status of the indicator LED (red/blue).

Syntax

DWORD BHT_GetNLedStatus (
DWORD* pdwlnfo)

Parameters

pdwInfo

[out] Address for storing the LED status

pdwInfo	Specification
LED_OFF	Both red and blue LEDs OFF
RED_LED_ON	Red LED ON
GREEN_LED_ON	Blue LED ON
RED_LED_ON GREEN_LED_ON	Both red and blue LEDs ON

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR INVALID PARAMETER	Storage address not specified.

BHT_SetNLedStatus

Description

Control the indicator LED (red/blue).

Syntax

DWORD BHT_SetNLedStatus (
DWORD dwStatus)

Parameters

dwStatus

[in] Controls the LED ON/OFF

dwStatus	Specification
LED_OFF	Turn off both red and blue LEDs
RED_LED_ON	Turn on red LED only
GREEN_LED_ON	Turn on blue LED only
RED_LED_ON GREEN_LED_ON	Turn on both red and blue LEDs

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error.

Notes:

- When the barcode device file is opened by the **BHT_EnableBar** function, the indicator LED cannot be controlled. Note that if the LED has been specified to be kept off by the **BHT_EnableBar**, the LED can be controlled.
- If the LED is turned on by this function in a user program, it will be kept on until this function turns off the LED even if the user program is terminated.

BHT_GetNLedStatusEx

Description

Read the status of the indicator LED and synchronization LED.

Syntax

DWORD BHT_GetNLedStatusEx (
DWORD dwLedDevice ,
DWORD* pdwStatus)

Parameters

dwLedDevice
[in] LED device

dwLedDevice	Specification
LED_BAR	Indicator LED

pdwStatus

[out] Address for storing the LED status

pdwStatus	Specification
	If dwLedDevice = LED_BAR
RED_LED_ON	Red LED ON (Blue LED OFF)
GREEN_LED_ON	Blue LED ON (Red LED OFF)
RED_LED_ON GREEN_LED_ON	Both red and blue LEDs ON

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error.
	Storage address not specified.

BHT_SetNLedOn

Description

Turn on the indicator LED and/or synchronization LED.

Syntax

```
DWORD BHT_SetNLedOn (
DWORD dwLedDevice ,
DWORD dwLedNum)
```

Parameters

dwLedDevice [in] LED device

dwLedDevice	Specification
LED_BAR	Indicator LED

dwLedNum

[in] LEDs to be turned on

dwLedNum	Specification
awLeanam	If dwLedDevice = LED_BAR
RED_LED	Red LED
GREEN_LED	Blue LED
RED_LED GREEN_LED	Red and blue LEDs

Return value

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR INVALID PARAMETER	Parameter error.	

Notes:

- When the barcode device file is opened by the **BHT_EnableBar** function, the indicator LED cannot be controlled. Note that if the LED has been specified to be kept off by the **BHT_EnableBar**, the LED can be controlled.
- If the LED is turned on by this function in a user program, it will be kept on until this function turns off the LED even if the user program is terminated.

BHT_SetNLedOff

Description

Turn off the indicator LED and/or synchronization LED.

Syntax

DWORD BHT_SetNLedOff (
DWORD dwLedDevice ,
DWORD dwLedNum)

Parameters

dwLedDevice [in] LED device

dwLedDevice	Specification	
LED_BAR	Indicator LED	

dwLedNum

[in] LEDs to be turned off

dwLedNum	Specification
awLeanum	If dwLedDevice = LED_BAR
RED_LED	Red LED
GREEN_LED	Blue LED
RED_LED GREEN_LED	Red and blue LEDs

Return value

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR INVALID PARAMETER	Parameter error.	

Notes:

 When the barcode device file is opened by the BHT_EnableBar function, the indicator LED cannot be controlled. Note that if the LED has been specified to be kept off by the BHT_DisableBar, the LED can be controlled.

16.5. Beeper/Vibrator API

BHT_StartBeep

Description

Drive the beeper or vibrator.

Syntax

```
DWORD BHT_StartBeep (
DWORD dwOnTime ,
DWORD dwOffTime ,
WORD wRepCnt ,
WORD wFreq )
```

Parameters

dwOnTime

[in] ON-duration (in units of 100 ms), Entry range: 0 to 255

dwOffTime

[in] OFF-duration (in units of 100 ms), Entry range: 0 to 255

wRepCnt

[in] Number of repetitions, Entry range: 0 to 255

wFreq

[in] Frequency (Hz), Entry range: 0 to 32767

Specification of 0, 1 or 2 to wFeq produces the special beeper effects as listed below.

wFreq	Tone	Frequency (Hz)
0	Low-pitched	698
1	Medium-pitched	1396
2	High-pitched	2793

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR INVALID PARAMETER	Parameter error.	

Comment:

- The system functions allow the beeper volume to be changed. (Refer to Section 5.2. and 5.3.)
- Specification of any of 3 through 667 to wFreq deactivates the beeper or vibrator.
- Specification of zero to dwOnTime deactivates the beeper or vibrator.
- Specification of a value except zero to dwOnTime and wRepCnt and specification of zero to dwOffTime keep the beeper sounding.
- For your reference, the relationship between the frequencies and the musical scale is listed below.

	Scale 1	Scale 2	Scale 3	Scale 4
do (C)	-	1046	2093	4186
do# (C#)	-	1108	2217	
re (D)	-	1174	2349	
re# (D#)	-	1244	2489	
mi (E)	-	1318	2637	
fa (F)	698	1396	2793	
fa# (F#)	739	1479	2959	
sol (G)	783	1567	3135	
sol# (G#)	830	1760	3520	
la (A)	880	1760	3520	
la (A#)	932	1864	3729	
si (B)	987	1975	3951	

BHT_StartBeeperOnly

Description

Drive the beeper.

Syntax

```
DWORD BHT_StartBeeperOnly (
DWORD dwOnTime,
DWORD dwOffTime,
WORD wRepCnt,
WORD wFreq)
```

Parameters

dwOnTime

[in] ON-duration (in units of 100 ms), Entry range: 0 to 255

dwOffTime

[in] OFF-duration (in units of 100 ms), Entry range: 0 to 255

wRepCnt

[in] Number of repetitions, Entry range: 0 to 255

wFreq

[in] Frequency (Hz), Entry range: 0 to 32767

Specification of 0, 1 or 2 to wFeq produces the special beeper effects as listed below.

wFreq	Tone	Frequency (Hz)	
0	Low-pitched	698	
1	Medium-pitched	1396	
2	High-pitched	2793	

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error.

Comment:

- The system functions allow the beeper volume to be changed. (Refer to Section 5.2. and 5.3.)
- Specification of any of 3 through 667 to wFreq deactivates the beeper or vibrator.
- Specification of zero to dwOnTime deactivates the beeper or vibrator.
- Specification of a value except zero to dwOnTime and wRepCnt and specification of zero to dwOffTime keep the beeper sounding.
- For your reference, the relationship between the frequencies and the musical scale is listed below.

	Scale 1	Scale 2	Scale 3	Scale 4
do (C)	-	1046	2093	4186
do# (C#)	-	1108	2217	
re (D)	-	1174	2349	
re# (D#)	-	1244	2489	
mi (E)	-	1318	2637	
fa (F)	698	1396	2793	
fa# (F#)	739	1479	2959	
sol (G)	783	1567	3135	
sol# (G#)	830	1760	3520	
la (A)	880	1760	3520	
la (A#)	932	1864	3729	
si (B)	987	1975	3951	

BHT_StartVibrationOnly

Description

Drive the vibrator.

Syntax

```
DWORD BHT_StartVibrationOnly (
DWORD dwOnTime,
DWORD dwOffTime,
WORD wRepCnt)
```

Parameters

dwOnTime

[in] ON-duration (in units of 100 ms), Entry range: 0 to 255

dwOffTime

[in] OFF-duration (in units of 100 ms), Entry range: 0 to 255

wRepCnt

[in] Number of repetitions, Entry range: 0 to 255

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR INVALID PARAMETER	Parameter error.

16.6. Wireless Communication API

BHT_RF_Open

Description

Open the wireless LAN device and enable wireless communication.

Syntax

DWORD BHT_RF_Open (void)

Parameters

None

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_DEV_NOT_EXIST	No NIC device found.
ERROR_SHARING_VIOLATION	Bluetooth device is opened.

Remarks

Wireless LAN and Bluetooth device cannot be opened at the same time. If wireless LAN device tries to be opened while Bluetooth device is opened, an error (ERROR_SHARING_VIOLATION) is returned.

BHT_RF_OpenEx

Description

Sets the communication format, opens the wireless LAN device and enables wireless communication.

Syntax

```
DWORD BHT_RF_OpenEx (
DWORD dwOpt)
```

Parameters

dwOpt

[in] Communication format

dwOpt	Specification
COMM_NORMAL	Wireless communication open
COMM_CONTINUOUS	Wireless communication continuously open

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_DEV_NOT_EXIST	No NIC device found.
ERROR_INVALID_PARAMETER	Parameter error
ERROR_SHARING_VIOLATION	Bluetooth device is opened.

Remarks

Wireless LAN and Bluetooth device cannot be opened at the same time. If wireless LAN device tries to be opened while Bluetooth device is opened, an error (ERROR_SHARING_VIOLATION) is returned.

BHT_RF_Close

Description

Close the wireless LAN device and disable wireless communication.

Syntax
DWORD BHT_RF_Close (void)

Parameters

None

Error code	Meaning
ERROR_SUCCESS	Successful completion

BHT_RF_CloseEx

Description

Closes the wireless LAN device for the set format and disables wireless communication.

Syntax

```
DWORD BHT_RF_CloseEx (
DWORD dwOpt)
```

Parameters

dwOpt

[in] Communication format

dwOpt	Specification
COMM_NORMAL	Wireless communication open
COMM_CONTINUOUS	Wireless communication continuously open

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error

BHT_RF_IoControl

Description

Sends a control command to the driver and performs an operation corresponding to that command.

Syntax

DWORD BHT_RF_IoControl (
DWORD Oid ,
LPVOID lpInBuf ,
DWORD nInBufSize ,
LPVOID lpOutBuf ,
DWORD nOutBufSize ,
LPVOID lpBytesReturned)

Parameters

Oid

[in] Control command ID

Oid	Specification
RF_UPDATE_PROFILE	Updates the profile settings for the BHT wireless registry. (*1)
RF_COMMIT_PROFILE	Updates the changed parameter value to the driver. (*2)
RF_SET_PROFILE	Selects the profile to be edited.
RF_REMOVE_PROFILE	Deletes the profile.
RF_GET_PROFILE_COUNT	Acquires the number of completed profiles.
RF_GET_PROFILE_KEY	Acquires the profile key.

- (*1) Copies values set at the ZeroConfig GUI to the BHT wireless registry referenced by the wireless driver.
- (*2) Updates values set at this API to ZeroConfig.

lplnBuf

[in] Header address for buffer in which input data is stored

nInBufSize

[in] Size of buffer in which input data is stored (Bytes)

IpOutBut

[out] Header address for buffer in which output data is stored

nOutBufSize

[out] Size of buffer in which output data is stored (Bytes)

IpBytesReturned

[out] Size of actually acquired output data (Bytes)

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR INVALID PARAMETER	Parameter error
ERROR_INVALID_PARAMETER	Storage header address unset
ERROR_NOT_READY	Can not access ZeroConfig service
ERROR_NOT_ENOUGH_MEMORY	The number of profiles has exceeded the maximum (16).
ERROR_NOT_FOUND	The relevant profile cannot be found.
ERROR_FILE_NOT_FOUND	The relevant file cannot be found.

The details set for each argument differ for each command.

Oid	lpInBuf	nInBufSize	lpOutBuf	nOutBufSize
RF_UPDATE_PROFILE	_	_	-	_
RF_COMMIT_PROFILE	_	_	_	_
RF_SET_PROFILE	ST_RF _PROFILE_KEY (*3)	ST_RF_PROFILE _KEY size	-	-
RF_REMOVE_PROFILE	ST_RF _PROFILE_KEY	ST_RF_PROFILE _KEY size	I	-
RF_GET_PROFILE_COUNT	-	-	Profile count storage variable	sizeof(DWORD)
RF_GET_PROFILE_KEY	Profile index to be acquired	sizeof(DWORD)	ST_RF _PROFILE_KEY	ST_RF_PROFILE _KEY size

^(*3) Use ESSID and Infrastructure mode to specify the profile. Create a new profile if no profile can be found corresponding to the specified ESSID and Infrastructure mode.

The ST_RF_PROFILE_KEY configuration is as follows.

Construction

Members

szESSID SSID specified character string dwInfraMode Infrastructure mode

dwInfraMode	Specification
INFRA_INFRASTRUCTURE	Infrastructure

BHT_RF_Synchronize

Description

Get the association status.

Syntax

```
DWORD BHT_RF_Synchronize (
long ITimeout ,
long* plSync )
```

Parameters

ITimeout

[in] Timeout (in units of 100 ms)

ITimeout	Specification
> 0	Confirm the synchronization status until timeout
0	Check the synchronization status immediately and return the result
-1	Try to synchronize with the access point until synchronized

plSync

[out] Address for storing the synchronization result

plSync	Specification
0	Successfully synchronized
-1	Synchronization incomplete (timed out)

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_DEV_NOT_EXIST	No NIC device found.
ERROR_NOT_READY	Device not ready.
ERROR INVALID PARAMETER	Parameter error
ERROR_INVALID_PARAIVIETER	Storage address not specified.

BHT_RF_GetParamInt

Description

Read integer from the wireless communications parameter.

Syntax

DWORD BHT_RF_GetParamInt (
DWORD dwParam,
DWORD* pdwData,
DWORD* pdwLen)

Parameters

dwParam

[in] Parameter number

dwParam	Specification
P_INT_POWERSAVE	Power mode dwData = P_PWRSAVE_CAM = P_PWRSAVE_PSP
P_INT_RADIOMODE	Radio mode dwData = P_RADIOMODE_11A = P_RADIOMODE_11B = P_RADIOMODE_11B P_RADIOMODE_11G
P_INT_AUTHENTICATE	Authentication method dwData = P_AUTH_OPEN = P_AUTH_SHARED = P_AUTH_WPA = P_AUTH_WPAPSK = P_AUTH_WPA2 = P_AUTH_WPA2PSK
P_INT_ENCRYPTION	Encryption dwData = P_ENCRYPT_DISABLE = P_ENCRYPT_WEP = P_ENCRYPT_TKIP = P_ENCRYPT_AES
P_INT_8021X	802.1x authentication (EAP type) dwData = P_8021X_DISABLE = P_8021X_PEAP = P_8021X_TLS
P_INT_PRIORITY	Profile priority dwData = 1 (high) to 16 (low)
P_INT_INDEXKEY	Index key dwData = 1 to 4

pdwData

[out] Address for storing data obtained

pdwLen

[out] Address for storing the length of data obtained

If the function succeeds in getting data, the length of data obtained is always 4.

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error Address for storing data obtained not specified.
ERROR_NOT_SUPPORTED	Not supported

BHT_RF_SetParamInt

Description

Write integer to the wireless communications parameter.

Syntax

DWORD BHT_RF_SetParamInt (
DWORD dwParam,
const DWORD* pdwData,
DWORD dwLen)

Parameters

dwParam

[in] Parameter number

dwParam	Specification
P_INT_POWERSAVE	Power mode dwData = P_PWRSAVE_CAM = P_PWRSAVE_PSP
P_INT_RADIOMODE	Radio mode dwData = P_RADIOMODE_11A = P_RADIOMODE_11B = P_RADIOMODE_11B P_RADIOMODE_11G
P_INT_AUTHENTICATE	Authentication method dwData = P_AUTH_OPEN = P_AUTH_SHARED = P_AUTH_WPA = P_AUTH_WPAPSK = P_AUTH_WPA2 = P_AUTH_WPA2PSK
P_INT_ENCRYPTION	Encryption dwData = P_ENCRYPT_DISABLE = P_ENCRYPT_WEP = P_ENCRYPT_TKIP = P_ENCRYPT_AES
P_INT_8021X	802.1x authentication (EAP type) dwData = P_8021X_DISABLE = P_8021X_PEAP = P_8021X_TLS
P_INT_PRIORITY	Profile priority dwData = 1 (high) to 16 (low)
P_INT_INDEXKEY	Index key dwData = 1 to 4

pdwData

[in] Destination address where the set data is to be stored

dwLen

[in] Length of data

The data length is always 4.

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error Address for storing data obtained not specified.
ERROR_NOT_SUPPORTED	Not supported

BHT_RF_GetParamStr

Description

Read string from the wireless communications parameter.

Syntax

```
DWORD BHT_RF_GetParamStr (
DWORD dwParam,
TCHAR* pwchData,
DWORD* pdwLen)
```

Parameters

dwParam

[in] Parameter number

dwParam	Specification
P_STR_VERSION	Driver version
P_STR_FW_VERSION	Firmware version
P_STR_MACADDRESS	MAC address

pwchData

[out] Heading address of the storage buffer for data obtained

pdwLen

[out] Length of data obtained

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR INVALID PARAMETER	Parameter error
	Storage address not specified.
ERROR_NOT_SUPPORTED	Not supported

$BHT_RF_SetParamStr$

Description

Write character string to the wireless communications parameter.

Syntax

```
DWORD BHT_RF_SetParamStr (
DWORD dwParam,
TCHAR* pwchData,
DWORD dwLen)
```

Parameters

dwParam

[in] Parameter number

dwParam	Specification
P_STR_WEPKEY1	WEP Key 1
P_STR_PRESHAREDKEY	Pre Shared Key

pwchData

[in] Heading address of the storage buffer for data specified

dwLen

[in] Length of data specified

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error
ERROR NOT SUPPORTED	Not supported.

BHT_RF_GetInfoInt

Description

Read integer from the communications parameter.

Syntax

```
DWORD BHT_RF_GetInfoInt (
DWORD dwType ,
DWORD* pdwInfo )
```

Parameters

dwType

[in] Type of information to be read out

dwType	Specification
P_RATE_INFO	Current communication speeds: No link \rightarrow P_RATE_NOT_LINK 1Mbps \rightarrow P_RATE_1MBPS 2Mbps \rightarrow P_RATE_2MBPS 5.5Mbps \rightarrow P_RATE_5_5MBPS 11Mbps \rightarrow P_RATE_11MBPS Above 11Mbps \rightarrow P_RATE_OVER11MBPS
P_RATE_INFO2	Current communication speeds (Units: 100bps): [Ex.] 5.5Mbps \rightarrow 55,000 11Mbps \rightarrow 110,000 54Mbps \rightarrow 540,000
P_CHANNEL_INFO	Frequency channel currently used

pdwInfo

[out] Address for storing info read

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_DEV_NOT_EXIST	No NIC device found.
ERROR_NOT_READY	Device not ready.
ERROR INVALID PARAMETER	Parameter error
LINON_INVALID_PARAMETER	Storage address not specified.

BHT_RF_GetInfoStr

Description

Read string from the communications parameter.

Syntax

```
DWORD BHT_RF_GetInfoStr (
DWORD dwType ,
TCHAR* pwchlnfo )
```

Parameters

dwType

[in] Type of information to be read out

dwType	Specification
P_APMAC_INFO	MAC address of AP being linked

pwchlnfo

[out] Heading address of the storage buffer for info read

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_DEV_NOT_EXIST	No NIC device found.
ERROR_NOT_READY	Device not ready.
ERROR_INVALID_PARAMETER	Parameter error Storage address not specified.

BHT_RF_GetSiteSurvey

Description

Get the quality of the communications link.

Syntax

DWORD BHT_RF_GetSiteSurvey (

DWORD* pdwStrength,
DWORD* pdwBeacon,
DWORD* pdwLink)

Parameters

pdwStrength

[out] Current signal strength, 0 to 100 (%)

pdwBeacon

[out] The same value as pdwStrength, 0 to 100 (%)

pdwLink

[out] Current link quality

pdwLink	Specification
LQ_UNSYNC	Not associated
LQ_POOR	Poor communications link (less than 26%)
LQ_FAIR	Fair communications link (26% or more and less than 42%)
LQ_GOOD	Good communications link (42% or more and less than 74%)
LQ_EXCELLENT	Excellent communications link (74% or more for send and receive)

Error code	Meaning
ERROR_SUCCESS	Successful completion
No NIC device found.	No NIC device found.
ERROR_NOT_READY	Device not ready.
ERROR_INVALID_PARAMETER	Parameter error Storage address not specified.

16.7. OS Updating API

BHT_SystemModify

Description

Update the BHT OS.

Syntax

DWORD BHT_SystemModify (

DWORD dwCtrlCode,

TCHAR * pwchSysParam,

DWORD dwLen,

DWORD * pdwLenReturned)

Parameters

pwszFileName

[in] Pointer filename that points a NULL-appended character string containing the OS reconfiguration filename

dwMode

[in] Reboot mode after turning the power off

dwMode	Specification	
SYSMDFY_POWEROFF	Turn the power off. (Cold-boot the BHT at the next power on)	
SYSMDFY_REBOOT	Perform a cold boot.	

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR_FILE_NOT_FOUND	Specified file or device not found. (OS reconfiguration file not found.)	
ERROR_INVALID_PARAMETER	Parameter error.	
ERROR_BAD_FORMAT	The OS update file is incorrect.	

16.8. Bluetooth API

BHT_BT_PowerOn

Description

Turns ON the Bluetooth device power supply and enables Bluetooth.

Syntax

DWORD BHT_BT_PowerOn (void)

Parameters

None

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_DEV_NOT_EXIST	The unit is not equipped with a Bluetooth device.
ERROR_SHARING_VIOLATION	Wireless LAN device is opened.

Remarks

Wireless LAN and Bluetooth device cannot be opened at the same time. If Bluetooth device tries to be opened while wireless LAN device is opened, an error (ERROR_SHARING_VIOLATION) is returned.

BHT_BT_PowerOff

Description

Turns OFF the Bluetooth device power supply and disables Bluetooth.

Syntax

DWORD BHT_BT_PowerOff (void)

Parameters

None

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR_DEV_NOT_EXIST	The unit is not equipped with a Bluetooth device.	

BHT_BT_GetPowerStatus

Description

Acquires the Bluetooth device power status.

Syntax

```
DWORD BHT_BT_GetPowerStatus (
DWORD *pdwStatus )
```

Parameters

pdwStatus

[in] Device status storage location address

The following values are returned for the device status.

pdwStatus	Specification
BHT_BT_POWER_ON	The Bluetooth device power is ON.
BHT_BT_POWER_OFF	The Bluetooth device power is OFF.

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_DEV_NOT_EXIST	The unit is not equipped with a Bluetooth device.
ERROR_INVALID_PARAMETER	Storage location address unset

16.9. Other APIs

BHT_WaitEvent

Description

Make the system wait until the specified event or timeout occurs.

Syntax

DWORD BHT_WaitEvent (
DWORD dwEvtNum,
DWORD dwEvtMask,
DWORD dwTimeOut,
DWORD* pdwSignalEvent)

Parameters

dwEvtNum

[in] Number of events to wait

dwEvtMask

[in] Waiting event mask

dwEvtMask	Specification
EVT_MASK_KEYDOWN	Key depressed
EVT_MASK_TRGDOWN	Trigger switch depressed
EVT_MASK_TCHUP	Stylus released
EVT_MASK_DECODE	Decoding completed
EVT_MASK_RECEIVE EVT_MASK_RECEIVE_IRDA	Data reception (IrDA interface)
EVT_MASK_RECEIVE_RS232C	Data reception(Serial interface)
EVT_MASK_RECEIVE_USB	Data reception(USB interface)

NOTE: ORing these events enables the BHT to wait for the two or more events.

dwTimeOut

[in] Timeout period (ms)

pdwSignalEvent

[out] Address for storing an event mask that occurred

pdwSignalEvent	Specification
EVT_MASK_KEYDOWN	Key depression
EVT_MASK_TRGDOWN	Trigger switch depression
EVT_MASK_TCHUP	Stylus release
EVT_MASK_DECODE	Decoding complete
EVT_MASK_RECEIVE	Data reception(IrDA interface)
EVT_MASK_RECEIVE_IRDA	Data reception(IIDA Interiace)
EVT_MASK_RECEIVE_RS232C	Data reception(Serial interface)
EVT_MASK_RECEIVE_USB	Data reception(USB interface)
EVT_MASK_TIMEOUT	Timeout

NOTE: To make the system wait for occurrence of any event infinitely, specify INFINITE in dwTimeOut.

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_INVALID_PARAMETER	Parameter error. Storage address not specified

Comment:

The following five types of events can be specified:

- Depression of any key
- Depression of the trigger switch
- Stylus release
- Decoding completion
- Data reception (in IrDA interface, Serial interface, USB interface)

Specifying two or more events concurrently using this function allows the system to wait for occurrence of any of these events. To wait for other events in addition to events listed above, add desired events using macros with the event names defined by the BHTLIB.h library.

[Ex] Wait for occurrence of entry by any key depression or decoding completion for 10 seconds

BHT_WaitEvent (2, EVT_MASK_KEYDOWN | EVT_MASK_DECODE, 10 * 1000, &dwSignalEvent);

BHT_WaitStandbyEvent

Description

Make the system wait until the specified event occurs.

Syntax

BHT_WaitStandbyEvent (
DWORD dwEvtNum,
DWORD dwEvtMask,
DWORD* pdwSignalEvent)

Parameters

dwEvtNum

[in] Number of events to wait

dwEvtMask

[in] Events to wait

dwEvtMask	Specification	
EVT_MASK_KEYDOWN	Key depression	
EVT_MASK_TRGDOWN	Trigger switch depression	
EVT_MASK_TCHUP	Stylus release	
EVT_MASK_DECODE	Decoding complete	
EVT_MASK_RECEIVE EVT_MASK_RECEIVE_IRDA	Data reception(IrDA interface)	
EVT_MASK_RECEIVE_RS232C	Data reception(Serial interface)	
EVT_MASK_RECEIVE_USB	Data reception(USB interface)	

pdwSignalEvent

[out] Address for storing events that occurred

pdwSignalEvent	Specification	
EVT_MASK_KEYDOWN	Key depression	
EVT_MASK_TRGDOWN	Trigger switch depression	
EVT_MASK_TCHUP	Stylus release	
EVT_MASK_DECODE	Decoding complete	
EVT_MASK_RECEIVE EVT_MASK_RECEIVE_IRDA	Data reception(IrDA interface)	
EVT_MASK_RECEIVE_RS232C	Data reception(Serial interface)	
EVT_MASK_RECEIVE_USB	Data reception(USB interface)	

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR INVALID PARAMETER	Parameter error.	
ERROR_INVALID_PARAIMETER	Storage address not specified	

Comment:

The following five types of events can be specified:

- Depression of any key
- Depression of the trigger switch
- Stylus release
- Decoding completion
- Data reception (in IrDA interface, Serial interface, USB interface)

Unlike **BHT_WaitEvent**, this function lets the CPU enter the standby mode when making the system wait, reducing power consumption. Note that execution of any other active thread will be suspended during execution of this function.

$BHT_ShutdownSystem$

Description

Turn off the BHT and boot the BHT according to the mode specified by the parameter.

Syntax

DWORD BHT_ShutdownSystem (DWORD dwMode)

Parameters

dwMode

[in] Power-off mode

dwMode	Specifications
BHT_PWR_WARM	Turn off and warm-boot the BHT. No power-off action is required. The contents in the RAM can be retained.
BHT_PWR_SUSPEND	Transfer control to the suspended mode. Pressing the power key starts the BHT. The contents in the RAM will be retained as long as the sub-battery is charged.
BHT_PWR_COLD_REGINIT	Turn off and cold-boot the BHT. Pressing the power key starts the BHT. The contents in the RAM will be lost and the system registry will be initialized.
BHT_PWR_COLD_REGREMAIN	Turn off and cold-boot the BHT. Pressing the power key starts the BHT. The contents of the system registry will be saved into the non-volatile memory in powering-off sequence and restored at the cold boot.
BHT_PWR_SYSMODIFY	A cold boot is performed automatically after turning OFF the power. With the BHT-700, this is the same as BHT_PWR_COLD .
BHT_PWR_COLD	A cold boot is performed automatically after turning OFF the power. If the registry has been saved, the BHT is booted based on the values for that registry, however, if it has not been saved, the BHT is booted based on the values for the default registry value.

Return value

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR_INVALID_PARAMETER	Parameter error.	

Comment:

Any of the following five modes can be specified:

- Warm boot*
- Suspend
- Cold boot* with Registry initialization (The Registry backup will also be lost.)
- Cold boot* without Registry initialization
- Cold boot*

*Contents of the memory after warm-/cold-booting the BHT

	After warm booting	After cold booting
Files in the FLASH folder	Retained	Retained
Files in the RAM	Retained	Erased
Contents of the Registry	Retained	Erased (Note)
Data being edited	Erased	Erased

(Note) If the Registry has been backed up, the backup will apply.

BHT_RegStore

Description

Save the registry.

Syntax
DWORD BHT_RegStore (void)

Parameters

None

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_WRITE_FAULT	Failed to save registry.

Chapter 17. Programming Using OCX (OLE Customer Control)

The BHT-700 Software Development Kit (BHT-700 SKD) provides ActiveX Control that can be used for programming applications for barcode reading and file transfer.

This chapter gives information for using the ActiveX control.

17.1. System Requirements

- (1) BHT-700 Software Development Kit
- (2) Control files .ocx for the desktop
 - Scanner700.ocx: For barcode reading (for BHT-700B)
 - Scanner700Q.ocx: For barcode reading (for BHT-700Q)
 - FileTransfer700.ocx: For file transmission
 - FileTransferPC.ocx: For file transmission(for PC)

17.2. Installation

- (1) Copy the .ocx files in the BHT-700 Software Development Kit CD onto the appropriate folder of your PC.
- (2) Open the DOS command prompt and change the directory to the folder including the .ocx files.
- (3) Run the following two commands on the command line (>):
 - > regsvr32 Scanner700.ocx
 - > regsvr32 Scanner700Q.ocx
 - > regsvr32 FileTransfer700.ocx
 - > regsvr32 FileTrrnaferPC.ocx

17.3. Using OCX

In Microsoft Foundation Class (MFC)

- (1) Open an existing project or create a new project in eMbedded Visual C++.
- (2) Insert the newly installed ActiveX control into eMbedded Visual C++. (This step is required only when the ActiveX control is first used after installation.)
- (3) -1 Point and right-click the active window or dialog, then choose "Insert ActiveX Control" command on the dropdown menu.

(2)-2 Click Add Control and choose the newly installed OCX by clicking Open.

(2)-3 Click **OK**, and the control is pasted as shown below.

- (3) Add the control to the project.
- (3)-1 Click Project-Add to Project-Components and Controls on the menu bar as shown below.

(3)-2 Select the installed .OCX file.

- (3)-3 Click **Insert**, and the message "Do you insert component?" pops up. Click **OK**, and specify an appropriate class name, header filename and implement filename.
- (3)-4 If **OK** is clicked, an icon of the added control will be added to the dialog as shown below (red-circled).

(4) Following ClassWizard, assign a member variable to the inserted control.

17.4. Scanner Control

17.4.1. Properties

Name and type eVC++		R/W	Value	Default value	Description	
GetPortOpen SetPortOpen	BOOL	R/W	TRUE or FALSE	FALSE	Enable/disable flag for barcode reading TRUE: Enable FALSE: Disable	
GetReadMode SetReadMode	CString	R/W	(*1)	"FB"	Character string for specifying the read mode (*1), (*2)	
GetReadType SetReadType	CString	R/W	(*1)	BHT700B "A,I:4-99,M:1-99, N:3-99,L:1-99, K:1-99,H:3-99,P:1-99" BHT700Q " Q:E,A,I:4-99,L:1-99,M:1- 99,N:3-99,K:1-99,Y,X,Z,R,V "	Character string for specifying the enable read code (*1), (*2)	
GetBufferData SetBufferData	CString	R	-	mn	Data stored in the barcode buffer (*1)	
GetBufferCount SetBufferCount	long	R	-	0	Number of digits stored in the barcode buffer (*1)	
GetBufferType SetBufferType	long	R	-	0	Barcode type stored in the barcode buffer (*1)	
GetLastCount SetLastCount (*5)	long	R	-	0	Number of digits in the barcode read last	
GetLastType SetLastType (*5)	long	R	-	0	Barcode type read last	
GetLastCodeNum(*6)	long	R	-	0	No. of barcodes read last (*7)	
GetErrorStatus SetErrorStatus	long	R/W	(*3)	ERROR_SUCCESS	Error code that occurred last (*4)	
GetWaitStby SetWaitStby	BOOL	R/W	TRUE or FALSE	FALSE	Whether or not the control transfers to the standby mode before decoding completes TRUE: Transfer FALSE: Not transfer	

^(*1) Refer to BHT_EnableBar function.

^(*2) Even if a value out of the range is specified, no error occurs. If TRUE is set to the portOpen property with the value being out of the range, an error occurs.

^(*3) For details about error codes, refer to Section 17.4.4 Error Codes."

^(*4) A new error code overwrites the old one whenever an error occurs. The ERROR_SUCCESS does not overwrite.

^(*5) only for Scanner700.ocx

^(*6) only for Scanner700Q.ocx

^{(*7) &}quot;1" when a code other than a multi-line code or a composite code has been read.

17.4.2. Methods

GetChkDigit

Description

Calculate a check digit (CD) of the barcode data according to the specified calculation method. (Refer to the BHT_GetBarChkDgt function.)

Syntax

```
long GetChkDigit (
TCHAR* BarData ,
short ChkDgtType )
```

Parameters

BarData

[in] Character string of the barcode

ChkDgtType

[in] Check digit type

(For details, refer to the BHT_GetBarChkDgt function.)

Return value

Value of the check digit calculated

GetLastCount

Description

Supported only on BHT-700Q

Read the number of digits in the specified row of the code that was read most recently.

Syntax

```
long GetLastCount (
long CodeNo)
```

Parameters

CodeNo

[in] Row number for which you wish to get the number of digits (starting with "0" for the first row).

Return value

No. of digits in the row specified in CodeNo

If [the row number specified in CodeNo + 1] is larger than the number of rows actually read, "0" will be returned.

GetLastType

Description

Supported only on BHT-700Q

Read the code type in the specified row of the code that was read most recently.

Syntax

long GetLastType(
long CodeNo)

Parameters

CodeNo

[in] Row number for which you wish to get the code type (starting with "0" for the first row).

Return value

Code type in the row specified in CodeNo

If [the row number specified in CodeNo + 1] is larger than the number of rows actually read, "0" will be returned.

17.4.3. Event Callback Function

DecodeDone

Description

This function is called when decoding is successfully completed. It reads out the bufferData property to get data decoded.

Syntax

void OnDecodeDone (void)

Parameters

None

Return value

None

17.4.4. Error Codes

If an error occurs during access to properties or during calling to methods, the error code will be stored into the errorStatus variable.

Error Code Table

Propertie or Method	Name	Content	
	ERROR_TOO_MANY_OPEN_FILES	Barcode reading enabled (when flag is TRUE).	
portOpen	ERROR_INVALID_PARAMETER	readMode or readType out of the range (when flag is TRUE)	
	ERROR_INVALID_HANDLE	Barcode reading disabled (when flag is FALSE)	
BufferData	ERROR_INVALID_HANDLE	Barcode reading disabled	
GetChkDigit	ERROR_INVALID_PARAMETER	Check digit type out of the range or invalid barcode data	

17.4.5. Coding Sample

```
/* Initialize main dialog */
BOOL CBarOCXDlg::OnInitDialog()
  CDialog::OnInitDialog();
  /* Enable barcode reading */
  m_ScanCtrl.SetPortOpen(TRUE);
  return TRUE;
/* Initialize main dialog */
void CBarOCXDlg::OnDestroy()
  /* Disable barcode reading */
  m_ScanCtrl.SetPortOpen(FALSE);
  CDialog::OnDestroy();
}
/* Callback for decoding completion */
void CBarOCXDlg::OnDecodeDoneScannerctrl()
  CString BarData; /* Read data */
  /* Read data from buffer */
  BarData = m_ScanCtrl.GetBufferData();
  /* Display */
```

17.5. File Transfer Control

17.5.1. Properties

Name		R/W	Value	Default	Content
eVC++		FX/VV	value	value	Content
GetPort SetPort	short	R/W	COM1 COM4	COM4	COM port
GetBaud SetBaud	long	R/W	CBR_300 (*1) CBR_600 (*1) CBR_1200 (*1) CBR_2400 (*1) CBR_4800 (*1) CBR_9600 CBR_19200 CBR_38400 CBR_57600 CBR_115200	CBR_115200	Transmission rate
GetParity SetParity	short	R/W	NOPARITY ODDPARITY (*1) EVENPARITY (*1)	NOPARITY Parity	
GetStopBit SetStopBit	short	R/W	ONESTOPBIT TWOSTOPBITS (*1)	ONESTOPBIT	Stop bit
GetPath SetPath	CString LPCTSTR	R/W	Absolute path starting with \ sign	"\"	Folder to store send files Folder to store receive files
GetTransferring EventInterval SetTransferring EventInterval	long	R/W	0 to 2147483647	0	Transferring Event interval during transmission (in units of 100 ms) 0 for no event
GetLinkTimeout SetLinkTimeout	long	R/W	0 to 65535	30 (30sec.)	Time required from commencement of transmission to timeout (in seconds) No timeout occurs when set to 0.
GetRetransmissionInterval SetRetransmissionInterval	long	R/W	1 to 65535	30 (30sec.)	Retransmission interval (in units of 100 ms)
GetTransmissionTimeout SetTransmissionTimeout	long	R/W	1 to 65535	30 (30sec.)	Time required for transmission timeout (in seconds)

(*1) Only for COM1

17.5.2. Methods

Function	Description	
AddFile	Add a file to be transmitted.	
ClearFile	Clear a file added by AddFile.	
GetFile	Acquires the file name of the file to be transmitted or received.	
GetFileCount	At the transmission side, returns the number of transmitted files, and at the receipt side, returns the number of received files, including the file currently being received.	
GetTransferredCount	Returns the number of files for which transmission or receipt is complete.	
Send	Transmit a file specified by AddFile.	
Receive	Receive a file.	
Abort	Abort the current file transmission process.	
GetState	Get the current file transmission status.	
GetError	Return the error information about the transaction processed last.	

AddFile

Description

Add a file to be transmitted. Specify the filename excluding its pathname. The length of the filename is within 90 characters.

Syntax

long AddFile (LPCTSTR *FileName*)

Parameters

FileName

[in] Filename excluding pathname

Return value

Error code	Meaning	
ERROR_SUCCESS	Successful completion	
ERROR_INVALID_PARAMETER	NULL set to the parameter. Filename length is 0.	
ERROR_FILENAME_EXCED_RANGE	Filename too long	

ClearFile

Description

Clears a file added by AddFile.

Syntax

void ClearFile (void)

Parameters

None

Return value

None

GetFile

Description

Acquires the file name of the file to be transmitted or received.

The maximum value given by the "Index" parameter is the number of files acquired with **GetFileCount**.

Syntax

CString GetFile (long Index)

Parameter

Index

[in] Index (1 or greater)

Return Value

File name of the specified Index (character string with length 0 when the Index lies outside the range).

GetFileCount

Description

At the transmission side, returns the number of transmitted files, and at the receipt side, returns the number of received files, including the file currently being received.

Syntax

short GetFileCount (void)

Parameters

None

Return value

Transmission side:

Number of transmitted files (number of files added with AddFile)

Receipt side:

Number of received files (number of received files + file currently being transmitted)

Comment:

This value is cleared when Receive or ClearFile is called.

${\bf GetTransferredCount}$

Description

Returns the number of files for which transmission or receipt is complete.

Syntax

void GetTransferredCount (void)

Parameter

None

Return Values

Transmission side:

Number of files for which transmission is complete

Receipt side:

Number of files for which receipt is complete

Comment:

This value is cleared when Receive or ClearFile is called.

Send

Description

Transmit a file specified by AddFile.

Syntax

Long Send (void)

Parameters

None

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_ACCESS_DENIED	Access to COM port denied (e.g., occupied by other tasks)
ERROR_FILE_NOT_FOUND	Specified file or device not found
ERROR_NO_MORE_FILES	No send file found (No file added by AddFile.)
ERROR_BAD_PATHNAME	Path too long (Path + filename > 260 characters)

Receive

Description

Receive a file.

Syntax

long Receive (void)

Parameters

None

Return value

Error code	Meaning
ERROR_SUCCESS	Successful completion
ERROR_ACCESS_DENIED	Access to COM port denied (e.g., occupied by other tasks)
ERROR_FILE_NOT_FOUND	Specified file or device not found

Abort

Description

Abort the current file transmission process. After aborting, the *Done* event will occur.

Syntax

Void Abort (void)

Parameters

None

Return value

None

GetState

Description

Get the current file transmission status.

Syntax

short GetState (void)

Parameters

None

Return value

Error code	Meaning
TRANSFER_READY	On standby
TRANSFER_SEND	Transmitting
TRANSFER RECEIVE	Receiving

GetError

Description

Return the error information for the transaction processed last.

Syntax

long GetError (void)

Parameters

None

Return value

Code of an error that occurred during processing of methods.

17.5.3. Event Callback Functions

Function	Description
Done	This function is called when the transmission ends as specified.
Transferring	Get the information about a file being transmitted.

Done

Description

This function is called when the transmission ends as specified.

Syntax

```
void OnDone (
long Result)
```

Parameters

Result

[out] End code listed in the table below

Result	Meaning
RROR_SUCCESS	Succeeded.
ERROR_TIMEOUT	Timeout.
ERROR_OPERATION_ABORTED	Process is aborted.
ERROR_OPEN_FAILED	Failed to open a file.
ERROR_INVALID_DATA	Invalid data received.
ERROR_DISK_FULL	Sufficient storage area not reserved.
ERROR_BAD_PATHNAME	Path too long (Path + filename > 260 characters)

Return value

None

Transferring

Description

Get the information about a file being transmitted.

Syntax

```
void OnTransferring (
LPCTSTR FileName,
long Total,
long Transferred)
```

Parameters

FileName [out] Name of file being transmitted

Total [out] Size of file being transmitted

Transferred [out] Size of file already transmitted

Return value

None

17.5.4. Coding Sample

```
void CSerialTransferDlg::DoDataExchange(CDataExchange* pDX)
  CDialog::DoDataExchange(pDX);
  //{{AFX_DATA_MAP(CSerialTransferDlg)
  DDX_Control(pDX, IDC_FILETRANSFERCTRL1, m_clFileTransfer);
  //}}AFX_DATA_MAP
}
BEGIN EVENTSINK MAP(CSerialTransferDlg, CDialog)
  //{{AFX EVENTSINK MAP(CSerialTransferDlg)
  ON_EVENT(CSerialTransferDlg, IDC_FILETRANSFERCTRL1, 1 /* Done */, OnDoneFiletransferctrl, VTS_I4)
  ON EVENT(CSerialTransferDlg, IDC FILETRANSFERCTRL1, 2 /* Transferring */,
OnTransferringFiletransferctrl, VTS BSTR VTS I4 VTS I4)
  //}}AFX EVENTSINK MAP
END EVENTSINK MAP()
/* Start download */
void CSerialTransferDlg::OnDownload()
  m\_clFileTransfer.SetPath(TEXT("\My Documents"));
                                                                     // Set a filepath for the work file
  m_clFileTransfer.SetTransferringEventInterval(10);
                                                                     // File transmission event (1s)
  m clFileTransfer.Receive();
                                                                     // Start transmission
/* Start upload */
void CSerialTransferDlg::OnUpload()
  m clFileTransfer.SetPath(TEXT("\My Documents"));
                                                                     // Set a filepath for the work file
  m clFileTransfer.AddFiles(TEXT("File1.dat"));
                                                                     // Transmission file 1
  m_clFileTransfer.AddFiles(TEXT("File2.dat"));
                                                                     // Transmission file 2
  m_clFileTransfer.AddFiles(TEXT("File3.dat"));
                                                                     // Transmission file 3
  m clFileTransfer.SetTransferringEventInterval(10);
                                                                     // File transmission event (1s)
  m clFileTransfer.Send();
                                                                     // Start transmission
}
/* Abort */
void CSerialTransferDlg::OnAbort()
{
  m_clFileTransfer.Abort();
                                                                     // Abort
}
/* Send/receive complete */
void CSerialTransferDlg::OnDoneFiletransferctrl(long Result)
  clMsg.Format(TEXT("Done:%d"), Result);
  AfxMessgeBox(clMsg, MB_ICONINFORMATION);
}
/* Display the info about file being transmitted */
void CSerialTransferDlg::OnTransferringFiletransferctrl(LPCTSTR FileName, long Total,
long Transferred)
{
  if(0 < Total)
     TCHAR szProgress[MAX_PATH];
     wsprintf(szProgress, TEXT("%s %d%%"), FileName, (int)(Transferred*100/Total));
     SetWindowText(szProgress);
                                                                     // Display on the title bar
  }
}
```

Appendix A. Keyboard Arrangement, Virtual Key Codes and Character Codes

A.1. 27-key pad

A.1.1. Keyborard Arrangement

(1) Numeric entry mode

(2) Alphabet entry mode

TAB M1 SCAN SCAN **M2 M3 SCAN** F4 **ESC** BS SF **GHI JKL** WXYZ **ENT** PQRS FN TUV SP

(3) Function mode

A.1.2. Virtual Key Codes and Character Codes Numeric entry mode

	Normal status			Status with [SF] pressed		
Key	Virtual key	code	Character			Character
	Constant	Value	code	Constant	Value	code
[F1]	VK_F1	70	-	←	←	←
[F2]	VK_F2	71	-		←	←
[F3]	VK_F3	72	-		←	←
[F4]	VK_F4	73	-	←	←	←
[▲]	VK_UP	26	=	←	←	←
[▼]	VK_DOWN	28	=	←	←	←
[◀]	VK_LEFT	25	-	←	←	←
[▶]	VK_RIGHT	27	-	←	←	←
[9]	VK_9	39	39(9)	←	←	28(()
[8]	VK_8	38	38(8)	←	←	2A(*)
[7]	VK_7	37	37(7)	←	←	26(&)
[6]	VK_6	36	36(6)	←	←	5E(^)
[5]	VK_5	35	35(5)	←	←	25(%)
[4]	VK_4	34	34(4)	←	←	24(\$)
[3]	VK_3	33	33(3)	←	←	23(#)
[2]	VK_2	32	32(2)	←	←	40(@)
[1]	VK_1	31	31(1)	←	←	21(!)
[0]	VK_0	30	30(0)	←	←	29())
[.]	VK_PERIOD	BE	2E(.)	←	←	3E(>)
[SP]	VK_SPACE	20	20()	←	←	←
[ESC]	VK_ESCAPE	1B	1B	←	←	←
[SF]	VK_SHIFT	10	-	←	←	←
[FN]	VK_FUNC	D2	-	←	←	←
[AL]	VK_ALP	D0	-	←	←	←
[BS]	VK_BACK	08	08		←	←
[ENT]	VK_RETURN	0D	=	←	←	←
[SCAN]	VK_SCAN	D1	=	←	←	←
[TAB]	VK_TAB	09	09	←	←	←
[M1]	VK_M1(*1)	C1(*1)	-(*1)	←	←	←
[M2]	VK_M2(*1)	C2(*1)	-(*1)	←	←	←
[M3]	VK_M3(*1)	C3(*1)	-(*1)	←	←	←

^(*1) Virtual key codes and character codes will differ based on the key settings. For details, refer to section "6.4 Magic Key Control"

Function mode

Vov	Virtual I	Virtual key code		
Key	Constant	Value	- Character code	
[F1]	VK_F5	74	-	
[F2]	VK_F6	75	-	
[F3]	VK_F7	76	-	
[F4]	VK_F8	77	-	
[▲]	VK_F9	78	-	
[▼]	VK_F11	7A	-	
[◀]	VK_F10	79	-	
[▶]	VK_F12	7B	-	
[9]	-	DB	5B ([]	
[8]	-	DE	27 (′)	
[7]	-	DC	5C (¥)	
[6]	-	CO	60 (`)	
[5]	-	BD	2D (-)	
[4]	-	BF	2F (/)	
[3]	-	BB	3D (=)	
[2]	-	BA	3B (;)	
[1]	VK_SPACE	20	20(SPACE)	
[0]	-	DD	5D())	
[.]	-	BC	2C (,)	
[SP]	VK_SPACE	20	20(SPACE)	
[ESC]	VK_ESCAPE	1B	1B	
[SF]	VK_CAPITAL	14	-	
[FN]	VK_FUNC	D2	-	
[AL]	VK_ALP	D0	-	
[BS]	VK_BACK	08	08	
[ENT]	VK_RETURN	D0	-	
[SCAN]	VK_SCAN	D1	-	
[TAB]	VK_SEND	D3	-	
[M1]	VK_M1(*1)	C1(*1)	-(*1)	
[M2]	VK_M2(*1)	C2(*1)	-(*1)	
[M3]	VK_M3(*1)	C3(*1)	-(*1)	

^(*1) Virtual key codes and character codes will differ based on the key settings. For details, refer to section "6.4 Magic Key Control"

A.1.3. Character Codes in Alphabet Entry Mode

In the alphabetic entry mode, the 0 to 9 and period (.) keys are used to enter alphabets. The table below lists the relationship between keys to be pressed, the number of depressions, and character codes.

Depre- ssion Key	1st	2nd	3rd	4 th	5 th	6 th	7 th	8th	9th
[0]	1 1	'/'	(blank)	(*1)					
[1]	1.1	1*1	(*1)						
[2]	'A'	'B'	,C,	'a'	'b'	'c'	(*1)		
[3]	'D'	'E'	'F'	'd	'e	'f'	(*1)		
[4]	'G'	Ή'	Т	'g	'h	'i'	(*1)		
[5]	'J'	'K'	'L'	'j	'k	"	(*1)		
[6]	'M'	'N'	'0'	'm'	'n'	'0'	(*1)		
[7]	'P'	'Q'	'R'	'S'	'p'	'q'	'r'	'S'	(*1)
[8]	'T'	'U'	'V'	't'	'u'	'V'	(*1)		
[9]	'W'	'X'	'Υ'	'Z'	'W'	'X'	'y'	'Z'	(*1)
[.]	'-'	'%'	'\$'	(*1)					

^{(*1):} Returns to the 1st letter.

Character code and virtual key code are notified at establishing character code.

A.2. 42-key pad

A.2.1. Keyborard Arrangement

(1) Alphabet entry mode

Status with [SF] pressed

(2) Numeric entry mode

TAB

SCAN

M2

M3

F2

F1

F4

F3

F4

SCAN

M3

F2

F1

F4

F3

FN

NUM

BS

SP

ESC

ENT

Status with [SF] pressed

(3) Function mode

A.2.2. Virtual Key Codes and Character Codes Alphabet entry mode

		ormal status		Status with [SF] pres		
Key	Virtual key code		Character	Virtual key code		Character
	Constant	Value	code	Constant	Value	code
[F1]	VK_F1	70	-	←	←	←
[F2]	VK_F2	71	-	←	←	←
[F3]	VK_F3	72	-	←-	←-	←
[F4]	VK_F4	73	-	←	←	←
[▲]	VK_UP	26	-	←	←	←
[▼]	VK_DOWN	28	-	←	←	←
[◀]	VK_LEFT	25	-	←	←	←
[▶]	VK_RIGHT	27	-	←	←	←
[A]	VK_A	41	41(A)	←	←	Α
[B]	VK_B	42	42(B)	←	←	В
[C]	VK_C	43	43(C)	←	←	С
[D]	VK_D	44	44(D)	←	←	D
[E]	VK_E	45	45(E)	←	←	E
[F]	VK_F	46	46(F)	←	←	F
[G]	VK_G	47	47(G)	←	←	G
[H]	VK_H	48	48(H)	←	←	Н
[1]	VK_I	49	49(I)	←	←	I
[J]	VK_J	4A	4A(J)	←	←	J
[K]	VK_K	4B	4B(K)	←	←	K
[L]	VK_L	4C	4C(L)	←	←	L
[M]	VK_M	4D	4D(M)	←	←	M
[N]	VK_N	4E	4E(N)	←	←	N
[0]	VK_O	4F	4F(O)	←	←	0
[P]	VK_P	50	50(P)	←	←	Р
[Q]	VK_Q	51	51(Q)	←	←	Q
[R]	VK_R	52	52(R)	←	←	R
[S]	VK_S	53	53(S)	←	←	S
[T]	VK_T	54	54(T)	←	←	Т
[U]	VK_U	55	55(U)	←	←	U
[V]	VK_V	56	56(V)	←	←	V
[W]	VK_W	57	57(W)	←	←	W
[X]	VK_X	58	58(X)	←	←	Х
[Y]	VK_Y	59	59(Y)	←	←	Y
[Z]	VK_Z	5A	5A(Z)	←	←	Z
[SF]	VK_SHIFT	10	-	←	←	<u>-</u>
[FN]	VK_FUNC	D2	-	<u>`</u>	· ←	· ←
[NUM]	VK_NUM	D4	_	`	<u>`</u>	· ←
[BS]	VK_BACK	08	08	<u>`</u>	· ←	· ←
[SP]	VK_SPACE	20	20	`	<u>`</u>	· ←
[ESC]	VK_ESCAPE	1B	1B		<u>←</u>	←
[ENTER]	VK_RETURN	OD	OD OD		<u>←</u>	
[TAB]	VK_RETORN VK_TAB	09	09	<u>←</u>	<u>←</u>	←
[SCAN]		D1	-			
	VK_SCAN VK_M1	C1(*1)	(+4)	<u>←</u>	←	←
[M1] [M2]			-(^1) -(*1)	<u>←</u>	←	←
[M2]	VK_M2	C2(*1)		<u>←</u>	←	←
[M3]	VK_M3	C3(*1)	-(*1)	←	←	←

^(*1) Virtual key codes and character codes will differ based on the key settings. For details, refer to section "6.4 Magic Key Control"

Numeric entry mode

	Normal status			Status with [SF] pressed		
Key	Virtual key code		Character code	Virtual key code		Character code
[F1]	VK_F1	70	-	←	←	←
[F2]	VK_F2	71	=	←	←	←
[F3]	VK_F3	72	-	←	←	←-
[F4]	VK_F4	73	_	←	←	←
[1]	VK_UP	26	_	←	←	←
[▼]	VK_DOWN	28	-	· ←	· ←	· ·
	VK_LEFT	25				
[4]			-	←	←	←
[>]	VK_RIGHT	27	-	<u></u>	←	←
[A]	-	-	-	←	←	←
[B]	-	-	-	←	←	←
[C]	VK_1	31	1	←	←	21(!)
[D]	VK_2	32	2	←	←	40(@)
[E]	VK_3	33	3	←	←	23(#)
[F]	-	-	-	←	←	←
[G]	-	-	-	←	←	←
[H]	VK_HYPHEN	BD	- ,	←	←	5F(_)
[1]	VK_BACKQUOTE	C0		←	←	7E(~)
[J]	VK_4	34	4	←	←	24(\$)
[K] [L]	VK_5 VK_6	35 36	5 6	<u> </u>	←	25(%) 5E(^)
[M]	VK_BACKSLASH	DC	¥	←	← ←	5E(^) 7C()
[N]	VK_APOSTROPHE	DE	+		←	22(")
[0]	VK_LBRACKET	DB	ſ		· ←	7B({)
[P]	VK_RBRACKET	DD]	←	←	7D(})
[Q]	VK_7	37	7	←	←	26(&)
[R]	VK_8	38	8	←	←	2A(*)
[S]	VK_9	39	9	←	←	28 (()
[T]	VK_EQUAL	BB	=	←	←	2B(+)
[U]	VK_SLASH	BF	/	←	←	3F(?)
[V]	VK_SEMICOLON	BA	;	←	←	3A(:)
[W]	VK_COMMA	ВС	,	←	←	3C(<)
[X]	VK_PERIOD	BE		←	←	3E(>)
[Y]	VK_0	30	0	←	←	29())
[Z]	-	-	-	←	←	←
[SF]	VK_SHIFT	10	-	←	←	←
[FN]	VK_FUNC	D2	-	←	←	←
[NUM]	VK_NUM	D4	-	←	←	←-
[BS]	VK_BACK	08	08	←	←	←
[SP]	VK_SPACE	20	20	←	←	←
[ESC]	VK_ESCAPE	1B	1B	←	←	←
[ENTER]	VK_RETURN	0d	0d	←	←	←
[TAB]	VK_TAB	09	09	←	←	←
[SCAN]	VK_SCAN	D1	-	←	←	←
[M1]	VK_M1(*1)	C1(*1)	-(*1)	←	←	←
[M2]	VK_M2(*1)	C2(*1)	-(*1)	←	←	←
[M3]	VK_M3(*1)	C3(*1)	-(*1)	←	←	←

^(*1) Virtual key codes and character codes will differ based on the key settings. For details, refer to section "6.4 Magic Key Control"

Function mode

	Normal status					
Key	Virtual key code		Character code			
[F1]	VK_F5	74	-			
[F2]	VK_F6	75	_			
[F3]	 VK_F7	76	-			
[F4]	VK_F8	77	_			
[1]	VK_F9	26	_			
[▼]	VK_F10	28	_			
[◀]	VK_F11	25	_			
[>]	VK_F12	27	_			
[A]	-	_	_			
[B]	-	-	-			
[C]						
[D]	-	=	-			
	-	-	-			
[E]	-	-	-			
[F]	-	-	-			
[G]	-	-	-			
[H]	-	-	-			
[1]	-	-	-			
[J]	-	-	-			
[K]	-	-	-			
[L]	-	-	-			
[M]	-	-	-			
[N]	-	-	-			
[0]	-	-	-			
[P]	-	-	-			
[Q]	-	-	-			
[R]	-	-	-			
[S]	-	-	-			
[T]	-	-	-			
[U]	-	-	-			
[V]	-	-	-			
[W]	-	_	-			
[X]	-	-	-			
[Y]	-	-	-			
[Z]	-	-	_			
[SF]	VK_CAPITAL	14	-			
[FN]	VK_6/11 TINE	D2	_			
[NUM]	VK_NUM	D4	-			
[BS]	VK_BACK	08	08			
[SP]	VK_SPACE	20	20			
[ESC]	VK_ESCAPE	1B	1B			
[ENTER]	VK_RETURN	0d	0d			
[TAB]	VK_TAB	09	09			
[SCAN]	VK_SCAN	D1	-			
[M1]	VK_M1(*1)	C1(*1)	-(*1)			
[M2]	VK_M2(*1)	C2(*1)	-(*1)			
[M3]	VK_M3(*1)	C3(*1)	-(*1)			

^(*1) Virtual key codes and character codes will differ based on the key settings. For details, refer to section "6.4 Magic Key Control"

Appendix B. Differences between Older Unit

The following table lists differences between the BHT-700 and the BHT-400.

Туре	Item	BHT-700	BHT-400
System information	ROM capacity	128MB	64MB
Screen display	Rotation function	Possible	Not possible
Backlight	Key backlight	Equipped	Not equipped
	Key backlight illumination trigger	Key press Touch panel tap	No key backlight
	Backlight control function assigned to [Fx](x:1-4) key or [SF] + [Fx] keys.	Not possible	Possible
	Backlight control function assigned to [SCAN] key or [SF] + [SCAN] keys.	Not possible	Possible
Sound	Audio output	Earphone jack, receiver	None
	Audio input	Microphone	None
	Laser key click sound	No receiver key	Click sound ON/OFF possible.
	Half-press key click sound	No half-press key	Volume change possible.
	MessageBox, MessageBeep, PlaySound voice output destination	Earphone jack Receiver	Beeper
	VoIP	Supported	Not supported
Keyboard	No. of keys	27-key, 42-key	30-key, 50-key
	Magic keys	M1, M2, M3	M1, M2, M3, M4, M5
	Laser key	Not supported	Magic key assignment possible.
	Functions assignable to [SCAN] key	Trigger (fixed)	Same as magic keys
	Default alphabet case	Lower case	Upper case Default : Switching possible with CAPS mode.
	[F5] to [F12] independent entry	[F1] to [F4] key or arrow key press in Function mode	[F1] to [F4] key or arrow key press in Function mode by full function assignment
	Terminal service support	Standard U.S. version keypad	BHT original keypad Switching possible with keyboard emulation function.
	Handle attachment	Not supported	Support possible
Icons	Numeric entry icon	Display/hide switching possible.	Not supported
	SIP icon	BHT original	Windows CE standard + BHT original Default: Windows CE standard only
Power management	Auto power OFF when wireless communication open	Changed with BHT_SetSysSettingDW (BHT_PM_SUSPEND_RF,).	Changed with BHT_SetSysSettingDW (BHT_PM_SUSPEND_SLOT0,)
LED	Red LED	Independent charge LED and indicator LED	OR connection for charge LED and indicator LED

Туре	Item	BHT-700	BHT-400
Data communication	Default baud rate	115200 bps	9600 bps
	RS-232C	Tx, Rx	Tx, Rx, RTS, CTS
	I/F usable with Active Sync	USB, IrDA	USB, IrDA, RS-232C
	Automatic connection	Placement in cradle connected to computer by USB (Default : Allow)	Connection of cable connecting BHT with computer (Default : Prohibit)
	USB-LAN communication	Supported	Not supported
Wireless	Wireless system	Selection from 802.11a, 802.11b, 802.11b/g (Default: 802.11b)	802.11b/g
	WPA2	Supported	Not supported
Barcode reading (1D)	RSS	Reading possible	Reading possible (Not possible in models for the domestic Japanese market.)
	Marker mode	Not equipped with marker	Selection from Normal, Ahead or No illumination
Code reading (2D)	CODE-93	Reading possible	Reading not possible (BHT-202Q)
	Illumination mode	Selection from Auto, Always ON, or Always OFF	Not supported
OS update	Procedure	Calling the BHT_SysModify function after saving the OS file to a suitable location	Calling the BHT_ShutdownSystem function and ensuring an area to store the OS file, and then calling the BHT_SysModify function after saving the OS file to the secured area.
	Update file back-up location	Arbitrary	Sysmodify folder, CF slot
Equipped device	BHT_GetDeviceInfo	Barcode, COM, ActiveSync compatible device acquisition	Not supported
Touch panel	Attachment status acquisition	Not possible	Possible
ScannerXXXQ.ocx	ReadType property default value	Q:E, A, I:4-99, L:1-99, M:1-99, N:3-99, K:1-99, Y, X, Z, R, V	Q:E, A, I:4-99, M:1-99, N:3-99, K:1-99, Y, X, Z, R, V (BHT-202Q)
FileTransfeXXX.ocx	Default baud rate	115200 bps	9600 bps

BHT-700-CE API Reference Manual

First Edition, October 2007 DENSO WAVE INCORPORATED

The purpose of this manual is to provide accurate information in the development of application programs for the BHT-700. Please feel free to send your comments regarding any errors or omissions you may have found, or any suggestions you may have for generally improving the manual.

In no event will DENSO WAVE be liable for any direct or indirect damages resulting from the application of the information in this manual.