(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-244188 (P2003-244188A)

(43)公開日 平成15年8月29日(2003.8.29)

(51) Int.Cl.?

設別記号

FI

テーマコード(多考)

HO4L 12/56

H04L 12/56

A 5K030

審査請求 未請求 請求項の数3

OL (全 7 頁)

(21)出剧番号

特顧2002-44866(P2002-44866)

(22)出顧日

平成14年2月21日(2002.2.21)

(71)出題人 000004226

日本電信電話株式会社

東京都千代田区大手町二丁目3番1号

(72)発明者 松田 宜幸

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

(72)発明者 伏見 光二

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

(74)代理人 100072051

弁理士 杉村 興作

Fターム(参考) 5KO3O GA02 GA15 HA08 LA08 LB02

LD19

(54) 【発明の名称】 トンネル通信方法

(57)【要約】

【課題】 L2TP(レイヤ2トンネリングプロトコル)セッションのマルチリンクプロトコルによるバルク通信の確立に当り、L2TP網を構築する加入者端末装置とLNS(L2TPネットワークサーバ)との間におけるPPP LCPオーセンティケーションシーケンスの実行回数を減らすトンネル通信方法を提供する。

【解決手段】 加入者端末装置と、LAC (L2TP アクセスコンセントレータ) 装置と、L2TPトンネルスイッチ装置と、LNS(L2TP ネットワークサーバ)装置とによって構成されるL2TP網において、L2TPトンネルスイッチ装置が、プロキシ・オーセンティケーション/LCP (リンク制御プロトコル) 機能によってLAC装置から受信したPPP LCPのパラメータ及びPPオーセンティケーションのパラメータを、L2TPトンネルスイッチ装置とLNS装置間のセッション確立プロトコルのシーケンス信号内のAVP (属性値対) によってLNS装置に伝達することにより、LNS装置が加入者端末装置とLNS装置間のL2TPセッションを確立する。

【特許請求の範囲】

【請求項1】 加入者端末装置と、LAC (L2TP Acce ss Concentrator)装置と、L2TP(Layer 2 Tunneli ng Protocol) トンネルスイッチ装置と、LNS (L2TP N etwork Server)装置とによって構成されるL2TP網に おいて、前記L2TPトンネルスイッチ装置が、プロキ シ・オーセンティケーション/LCP (Proxy Authenti cation /Link Control Protocol) 機能によってLAC 装置から送信されてきた加入者端末装置とLAC装置と でネゴシエートされたPPP LCP (Point to Point Protocol Link Control Protocol) のパラメータ及びP PPオーセンティケーションのパラメータを受信し、且 つ受信したこれらのパラメータをL2TPトンネルスイ ッチ装置とLNS装置間のL2TPセッションを確立す るプロトコルシーケンス信号ICCN内のAVP(Attr ibute value Pair)によってLNS装置に伝達し、該L NS装置が、前記L2TPトンネルスイッチから受信し た加入者端末とLAC装置とでネゴシエートされたPP P LCPのパラメータ及びPPPオーセンティケーシ ョンのパラメータによって加入者端末装置とLNS装置 20 間のL2TPセッションを確立することを特徴とするト ンネル通信方法。

【請求項2】 前記PPP LCPのパラメータを、前 記LAC装置が加入者端末装置から最初に受信したPP Pの接続要求信号、加入者端末装置が前記LAC装置に 最後に送信した信号及び前記LAC装置が加入者端末装 置から最後に受信したPPPの接続要求信号とすること を特徴とする請求項1に記載のトンネル通信方法。

【請求項3】 前記PPPオーセンティケーションのパ ラメータを、プロキシ・オーセンティケーションのタイ 30 プ信号、プロキシ・オーセンティケーションの名称信 号、プロキシ・オーセンティケーションのチャレンジ信 号、プロキシ・オーセンティケーションのID信号及びプ ロキシ・オーセンティケーションの応答信号とすること を特徴とする請求項1に記載のトンネル通信方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、L2TP(Layer 2 Tunneling Protocol) 網を構築し、L2TPトンネル の集約を行なう機能を備えたL2TPトンネルスイッチ 40 装置を使用したL2TPセッションのMP(Multilink protocol) によるバルク通信を可能にするトンネル通信 方法、特にPPP LCP (Point to Point Protocol L ink Control Protocol) のパラメータ及びPPPオーセ ンティケーション (Point to PointProtocol Authentic ation) のパラメータの伝達方法に関するものである。 【0002】上述したようなトンネル通信方法を適用す るL2TP網は、図1に示すように、加入者端末装置3 と、LAC (L2TP Access Concentrator) 装置4,5 と、複数のL2TPトンネル7を集約する目的で使用さ 50 ため、PPPの実装によっては3回以上のPPP LC

れるL2TPトンネルスイッチ装置2と、インターネッ トが後続するLNS(L2TP Network Server)装置6とに よって構成される。

[0003]

【従来の技術】従来のL2TPトンネルスイッチ装置を 使用したL2TPセッションのMPによるバルク通信で は、図4に示すように、先ず加入者端末装置とLAC装 置との間で、PPPの接続要求信号(LCP Conf Reques t) や、それに対する確認応答信号 (LPC Conf Ack) や、確認要求信号 (LCP Conf Request) 等によるPPP LCPのシーケンス10及びCHAPチャレンジ (Chal lenge Handshake authentication Protocol Challeng e) 信号や、この信号に対する応答信号 (Chap Respons e) 等のPPPオーセンティケーションのシーケンス1 1により加入者端末装置とLAC装置との間でネゴシエ ートされ、次いでLAC装置とL2TPトンネルスイッ チ装置との間で、L2TPトンネルの確立シーケンス1 2及びL2TPセッションの確立シーケンス13によっ て、L2TPトンネル及びL2TPセッションが確立さ れ、次ぎにL2TPトンネルスイッチ装置とLNS装置 との間でも、L2TPトンネルの確立シーケンス12及 びL2TPセッションの確立シーケンス13によってL 2TPトンネル及びL2TPセッションが確立され、最 後に、加入者端末装置とLNS装置との間にて、PPP LCPのシーケンス10及びPPPオーセンティケー ションのシーケンス11によりネゴシエートされて、加 入者端末装置とLNS装置との間との間に1本目のL2 TPセッションが確立され、2本目のL2TPセッショ ンも1本目のシーケンスと同様に行われる。

【0004】上述したように、従来のL2TPトンネル スイッチ装置を使用したL2TPセッションのMPによ るバルク通信では、PPP LCPのパラメータ及びP PPオーセンティケーションのパラメータは、L2TP トンネルスイッチ装置からLNS装置に直接伝達できな いために、その伝達は加入者端末装置とLNS装置間の PPP LCP/オーセンティケーションのシーケンス によって行なわれる。そのために、加入者端末装置はL NS装置とのL2TPセッション確立までにLAC装置 とLNS装置の双方とパラメータネゴシエーションが必 要なため、MPによるパルク通信を実現しようとする場 合、PPP LCP/オーセンティケーションのシーケ ンスを計4回実行する必要がある。

[0005]

【発明が解決しようとする課題】従来の技術では上述し たように、L2TPセッションのMPによるパルク通信 を確立する場合に、PPP LCP/オーセンティケー ションのシーケンスを計4回実行しなければならない が、通常のPPP MP接続でも2回しかPPP LCP /オーセンティケーションのシーケンスは実行されない 3

P/オーセンティケーションのシーケンスに対応できない場合があると云う問題がある。

【0006】本発明の目的は、上述した従来技術の課題を解決するために、L2TPトンネルスイッチ装置がプロキシ・オーセンティケーション(Proxy Authentication)/LCP機能によってLAC装置から受信したPPPLCPのパラメータ及びPPPオーセンティケーションのパラメータを本発明のトンネル通信方式によってLNS装置に伝達することでPPPLCP/オーセンティケーションのシーケンスの実行回数を減らし、PP10Pの実装によらないL2TPトンネルスイッチ装置を使用したL2TPセッションのMPによるバルク通信を可能にすることを目的としている。

[0007]

【課題を解決するための手段】上記目的を達成するため に本発明は、加入者端末装置と、LAC装置と、L2T Pトンネルスイッチ装置と、LNS装置とによって構成 されるL2TP網において、前記L2TPトンネルスイ ッチ装置が、プロキシ・オーセンティケーション/LC P機能によってLAC装置から送信されてきた加入者端 20 末装置とLAC装置とでネゴシエートされたPPP L CPのパラメータ及びPPPオーセンティケーションの パラメータを受信し、且つ受信したこれらのパラメータ をL2TPトンネルスイッチ装置とLNS装置間のL2 TPセッションを確立するプロトコルシーケンス信号! CCN内のAVP (Attribute value Pair) によってL NS装置に伝達し、該LNS装置が、前記L2TPトン ネルスイッチから受信した加入者端末とLAC装置とで ネゴシエートされたPPP LCPのパラメータ及びP PPオーセンティケーションのパラメータによって加入 30 者端末装置とLNS装置間のL2TPセッションを確立 することを特徴とするトンネル通信方法にある。

【0008】L2TPトンネルスイッチに実装する本発明によるトンネル通信方式によれば、LNS装置が加入者端末装置とPPP LCP/オーセンティケーションのシーケンスを実行することなくL2TPセッションを確立することができる。また、本発明によるトンネル通信方式により伝達されるPPP LCPのパラメータ及びPPPオーセンティケーションのパラメータは従来のプロキシ・オーセンティケーション/LCPと同様に、L2TPトンネルスイッチ装置とLNS装置とのL2TPセッションを確立する際のプロトコルシーケンス信号であるICCN内のAVP (Attribute value Pair)によって伝達されるため、LNS装置に特別な実装が不要になる。

[0009]

【発明の実施の形態】以下発明の実施の形態に基づいて 本発明を詳細に説明する。

【0010】本実施の形態では、図1のようにL2TP を利用したVPN(Virtual Private Network)網とし てのL2TP網1を構築し、L2TPトンネルスイッチ 装置2は複数のL2TPトンネル7を集約する目的で使 用し、加入者端末装置3とLNS装置6との間でPPP セッションの終端を行ない、LAC装置4とLNS装置 6とでL2TPトンネルの終端を行なうようにする。

【0011】図2は本発明によるトンネル通信方法を説明する図であって、ここに、図1のものと同じものには同じ参照番号を付して示してあり、また、14は加入者装置3とLAC装置4間のPPP LCP/オーセンティケーションのシーケンス、15はプロキシ・オーセンティケーション/LCP機能、16はLAC装置4とL2TPトンネルスイッチ装置2間のL2TPセッション8、9(図1参照)の確立、17はPPP LCPのパラメータ及びPPP オーセンティケーションのパラメータの伝達をそれぞれ示している。

【0012】この図2に示すように、L2TPトンネルスイッチ装置2に実装する本発明のトンネル通信方式では、プロキシ・オーセンティケーション/LCP機能15によってLAC装置4から受信したPPP LCPのパラメータである(1)最初に受信したLCPの接続要求信号(Initial Received LCP CONFREQ),(2)最後に送信したLCPの接続要求信号(Last Sent LCP CONFREQ)と(3)最後に受信したLCPの接続要求信号(Last Received LCP CONFREQ)及びPPPオーセンティケーションのパラメータである(4)プロキシ・オーセンティケーションのパラメータである(4)プロキシ・オーセンティケーションのタイプ信号(Proxy Authen Type),

(5) プロキシ・オーセンティケーションの名称信号 (Proxy Authen Name), (6) プロキシ・オーセンティケーションのチャレンジ信号 (Proxy Authen Challeng e), (7) プロキシ・オーセンティケーションのID信号 (Proxy Authen ID)と (8) プロキシ・オーセンティケーションの応答信号 (Proxy Authen Response) 等をL2TPトンネルスイッチ装置2とLNS装置6とのL2TPセッションを確立する際のプロトコルシーケンス信号であるICCN内のAVPによってLNS装置6に伝達する。

【0013】本発明によれば、加入者端末装置3とLA C装置4間のPPP LCP/オーセンティケーションのシーケンスで行なわれたPPP LCPのパラメータ 40 及びPPPオーセンティケーションのパラメータが、L A C装置4からL2TPトンネルスイッチ装置2からLNS装置6へと伝達されるために、加入者端末装置3とL2TPトンネルスイッチ装置2及びLNS装置6間でPPP LC P/オーセンティケーションのシーケンスが必要でなくなる。よって、L2TPセッションが1つ確立されるまでに必要なPPP LCP/オーセンティケーションのシーケンスが1回となり、L2TPセッションのMPによるバルク通信の際にも同シーケンスは2回で済むこと 50 になる。

【0014】次に、加入者端末装置3からの接続要求開始から1本目のL2TPセッションが確立され、2本目のL2TPセッションが確立されて、マルチリンクプロトコル(MP)によるバルク通信が行なわれるまでのステップについて図3を参照して説明する。

【0015】図3に示すように、**①**加入者端末装置3か 5PPPの接続要求信号 (LCP ConfRequest) が送信され、それに応じて加入者端末装置3とLAC装置4間で PPP LCP/オーセンティケーションのシーケンス 10,11が実行されて、PPP LCPのパラメータ 及びPPPオーセンティケーションのパラメータのネゴ シエートが行なわれる。

【0016】加入者端末装置3とLAC装置4間でパラメータのネゴシエートが完了したら、②LAC装置4は 約をL2TPトンネルスイッチ装置2との間でL2TPトンネルの確立及びL2TPセッションを確立するためのシーケンス12、13を実行する。③このときLAC装置 4のプロキシ・オーセンティケーション/LCP機能によりシーケンス信号のICCN内のAVPによって加入 リン者端末装置3とLAC装置4との間でネゴシエートされ 20 る。たPPP LCPのパラメータ及びPPPオーセンティケーションのパラメータがL2TPトンネルスイッチ装置2に伝達される。 5/2

【0017】前記②によってLAC装置4とL2TPトンネルスイッチ装置2との間でL2TPセッションが確立した後、②L2TPトンネルスイッチ装置2はLNS装置6との間でもL2TPトンネルの確立及びL2TPセッションの確立シーケンス12,13を実行し、⑤その際、シーケンス信号のICCN内のAVPによってLAC装置4から受信した加入者端末装置3とLAC装置304との間でネゴシエートされたPPP LCPのパラメータ及びPPPオーセンティケーションのパラメータをLNS装置6に伝達する。

【0018】以上によって加入者端末装置3とLNS装置6との間で1本目のL2TPセッションが確立する。ここまでに行なわれたPPP LCP/オーセンティケーションのシーケンスは1回である。2本目のL2TPセッションも同様にして行なわれ、その確立後、1本目とMPによりL2TPセッションのリンクが束ねられる。

[0019]

【発明の効果】以上に詳述したように、本発明によれば

LAC装置からL2TPトンネルスイッチ装置に伝達されたPPP LCPのパラメータ及びPPPオーセンティケーションのパラメータはそのままLNS装置に伝達されるため、L2TPセッションが確立するまでPPP LCP/オーセンティケーションのシーケンスは1回実行されれば良く、そのためにL2TPセッションのMPによるバルク通信においても必要なPPP LCP/オーセンティケーションのシーケンスは2回となり、PPPの実装によらずL2TPトンネルスイッチ装置を使10 用したL2TPセッションのMPによるバルク通信が可能となる。

【図面の簡単な説明】

【図1】 L2TP網を構築し、L2TPトンネルの集 約を行なう機能を備えるL2TPトンネルスイッチ装置 を説明する図である。

【図2】 トンネル通信方式を説明する図である。

【図3】 トンネル通信方式を実装したL2TPトンネルスイッチ装置を使用したL2TPセッションのマルチリンクプロトコルによるバルク通信を説明する図である

【図4】 従来のL2TPトンネルスイッチ装置を使用 したL2TPセッションのマルチリンクプロトコルによ るバルク通信を説明する図である。

【符号の説明】

- 1 L2TP網
- 2 L2TPトンネルスイッチ装置
- 3 加入者端末装置
- 4, 5 LAC装置
- 6 LNS装置
- 7 L2TPトンネル
 - 8, 9 L2TPセッション
 - 10 PPP LCPのシーケンス
 - 11 PPPオーセンティケーションのシーケンス
 - 12 L2TPトンネル確立シーケンス
 - 13 L2TP セッション確立シーケンス
 - 14 PPP LCP/オーセンティケーションのシーケンス
 - 15 プロキシ・オーセンティケーション/LCP機能
 - 16 L2TPセッションの確立
- 40 17 PPP LCPのパラメータ及びPPPオーセン ティケーションのパラメータの伝達

6

(5)

特開2003-244188

(図1)

【図2】

[図3]

【図4】

