

AS3560

Class-G Stereo Headphone Amplifier

General Description

The AS3560 is a Class-G stereo headphone amplifier optimized for usage within portable devices. The Class-G supply rail adaptation is implemented by an integrated DCDC buck converter that takes its input directly from the battery. The continuous adoption of supply rails is done according to the input signal swing and load conditions. This architecture implements significant power savings compared to traditional Class-AB amplifiers.

An I²C control interface is implemented for a 32-step volume control including a mute function for each channel separately.

The integrated charge pump generates a symmetric negative supply for true ground output signal levels without the need of output coupling capacitors. In addition it helps to lower the overall pop noise of the amplifier.

A supervisory circuit is included for overtemperature and short-circuit protection.

Differential inputs together with output ground sensing guarantees very low noise sensitivity.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of the AS3560 Class-G stereo headphone amplifier, are listed below:

Figure 1: Added Value of Using AS3560

Benefits	Features
Highly optimized system power consumption	 G-Class amplifier with integrated DCDC buck converter 2x30mW, 0.02% THD @ 16Ω 100dB SNR @ 0.9Vrms 1mA quiescent with both channels enabled
Popless startup and mute/unmute	Ultra low DC offset
Full digital system control	I ² C control interface
Direct Li-lon battery operation	Wide supply range 2.3V to 5.5V
No DC blocking capacitors	Charge pump for true ground headphone operation
Highest Noise Immunity	Two fully differential stereo inputs with ground sensing input
PCB area optimized	Package: 0.4mm Pitch WL-CSP (1.615 x 1.615mm)

Applications

The AS3560 applications include:

- Mobile Phones
- Portable Navigation Devices
- Media Devices

Block Diagram

The functional blocks of this device for reference are shown below:

Figure 2: AS3560 Block Diagram

Page 2ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Pin Assignments

The AS3560 pin assignments are described below:

Figure 3: Pin Assignments (Top View)

Pin Descriptions

Figure 4: Pin Description

Pin Name	Pin Number	Description
SW	A1	Buck converter switching node
AVDD	A2	Primary power supply for device
HPL	А3	Left channel headphone amplifier output
INLN	A4	Inverting left input for differential signals; Connect to left input signal through 2.2µF capacitor for single-ended input applications
AGND	B1	Main Ground for headphone amplifiers, DC/DC converter, and charge pump
CPP	B2	Charge pump positive flying cap; connect to 2.2µF flying capacitor
HPVDD	В3	Power supply for headphone amplifier (DC/DC output node)

ams Datasheet Page 3
[v1-07] 2014-Sep-10 Document Feedback

Pin Name	Pin Number	Description
INLP	B4	Non-inverting left input for differential signals; Connect to ground through 2.2µF capacitor for single-ended input applications
CPN	C1	Charge pump negative flying cap; connect to 2.2µF flying capacitor
HPVSS	C2	Charge pump output; connect 2.2µF capacitor to GND
SGND	C3	Ground sense; connect to headphone jack ground
INRP	C4	Non-Inverting right input for differential signals; Connect to right input signal through 2.2μF capacitor for single-ended input applications
SDA	D1	I ² C Data; 1.8V logic compliant
SCL	D2	I ² C Clock; 1.8V logic compliant
HPR	D3	Right channel headphone amplifier output
INRN	D4	Inverting right input for differential signals; Connect to ground through 2.2µF capacitor for single-ended input applications

Page 4ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5:
Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Comments
O y S O:	r dramotor		max	O	
AVDD	Supply voltage	-0.3	7	V	for 1ms peaks
HPVDD	Amplifier supply voltage	-0.3	2.0	V	
SGND		-0.3	0.3	V	
	Differential Input Voltage	HPVSS - 0.3V	HPVSS + 0.3V	V	
SDA	Input voltage at SCL	-0.3	7.0	V	
	Breakdown voltage at amplifier outputs	HPVSS - 0.5	HPVSS + 0.5	V	
	Input current (latchup immunity)		±200	mA	Norm: JEDEC 78
		Continuous Pov	ver Dissipation		
	Continuous power dissipation		TBD	mW	P _T ⁽¹⁾
	Continuous power dissipation derating factor		TBD	mW/°C	P _{DERATE} (2)
		Electrostation	c Discharge		
ESD HBM			±2	kV	Norm: MIL 883 E Method 3015
ESD MM			±100	V	Norm: JEDEC JESD 22-A115-A level A
ESD CDM			±500	V	Norm: JEDEC JESD 22-C101C

ams Datasheet Page 5
[v1-07] 2014-Sep-10 Document Feedback

Symbol	Parameter	Min	Max	Unit	Comments				
	Temperature Range and Storage Conditions								
	Junction temperature		+150	°C	Internally limited (overtemperature protection) Auto shutdown at 140°C				
	Storage Temperature Range	-55	+125	°C					
	Package Body Temperature		+260	°C	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices".				
	Humidity non-condensing	5	85	%					
	Moisture Sensitive Level		1		Represents a max. floor life time of unlimited				

Note(s) and/or Footnote(s):

- 1. Depending on actual PCB layout and PCB used
- $2.\ P_{DERATE}\ derating\ factor\ changes\ the\ total\ continuous\ power\ dissipation\ (PT)\ if\ the\ ambient\ temperature\ is\ not\ 70^{\circ}C.$
- 3. Therefore for e.g. TAMB = 85°C calculate P_T at 85°C = P_T P_{DERATE} * (85°C 70°C)

Page 6ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

AVDD=3.6V, T_A = 25°C, Rload = 32 Ω unless otherwise specified.

Figure 6: Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		General Operating Co	nditions			
AVDD	Supply Voltage		2.3		5.5	V
	Rail Voltages HPVDD,		0.8	0.9	1.0	V
	HPVSS (Buck and CP output)		1.15	1.25	1.35	V
	(Buck and CP output)		1.7	1.8	1.9	V
I _{DD}	Quiescent Current	Both channels enabled, no audio signal		1.1	1.5	mA
I _{SD}	Shutdown Current	SW shutdown		1	5	μΑ
		Output: 2 × 100μW @ 3dB Crest Factor		2.0	3.5	mA
I _S	Supply Current	Output: 2 × 500μW @ 3dB Crest Factor		3.1	5.5	mA
		Output: 2 × 1mW @ 3dB Crest Factor		4.0	7.5	mA
T _A	Operating Temperature Range		-30	25	+85	°C
t _{WAKEUP}	Wakeup Time			10	15	ms
		Input Interface	s			1
V _{IL}	Low-level input voltage (SCL, SDA)	AVDD 2.9V to 4.5V			0.6	V
V _{IH}	High-level input voltage (SCL, SDA)	AVDD 2.9V to 4.5V	1.2			V
V _{HYST}	Hysteresis (SCL, SDA)		50	100	200	mV
Z _{IN}	Input Impedance Line	Differential	20			kΩ
∸ IN	Inputs	Single Ended	10			kΩ

ams Datasheet Page 7
[v1-07] 2014-Sep-10 Document Feedback

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		HPA Output				
V	Output Voltage	Rload=16 Ω , THD + N=1%, L + R out of phase	0.7			V _{rms}
V _{OUT}	Output Voltage	Rload=32 Ω , THD + N=1%, L + R in phase	0.9			V _{rms}
	Output DC Offset	Both channels enabled			500	μV
		In HiZ mode < 40KHz		10		kΩ
Z _{OUT}	Output Impedance	In HiZ mode 6MHz		500		Ω
		In HiZ mode 36MHz		75		Ω
	Voltage applied to Output; HPR, HPL	When SWS = 0, HiZ_L = HiZ_R = 1,device in HI-Z mode	-1.8		1.8	V
C _{LOAD}	Capacitive Load	Ext cap, 15Ω series resistor	0.8	5	100	nF
CLOAD		Ext cap, directly connected			100	pF
Z _{OOT,SD}	Output impedance in shutdown	SWS = 1		8		kΩ
	Voltage applied to Output; HPR, HPL	When SWS = 1, device disabled	-0.3		3.6	V
		Audio Paramete	rs			
THD + N	Total Harmonic Distortion + Noise	700mV _{rms} , 1KHz		0.01	0.02	%
PSRR	Power Supply Rejection Ratio	Gain 0dB @ 217Hz		90		dB
SNR	Signal-to-Noise Ratio	900mV _{rms} , 1KHz		104		dB
	Channel Separation	>16Ω (Headset)		60		dB
	Chainlei separation	>10kΩ (Lineout)		80		dB
V _N	Output Noise	Gain 0dB, A-weighted		5.3	9	μV _{rms}
		Other Paramete	rs			
	Thermal Shutdown	Threshold		140		°C
	memai siiutuowii	Hysteresis		20		

Page 8
Document Feedback

Detailed Operating Characteristics

 T_A = 25°C, AVDD (VDD) = 3.6V, GAIN = 0dB, C_{HPVDD} = 10μF, C_{HPVSS} = 2.2μF, C_{INPUT} = C_{FLYING} = 2.2μF. RL = 32 Ω unless otherwise specified.

Figure 7: THD + N versus Output Power for AVDD = 2.5V,RL = 32Ω

Figure 8: THD + N versus Output Power for AVDD = 2.5V,RL = 16Ω

ams Datasheet Page 9
[v1-07] 2014-Sep-10 Document Feedback

Figure 9: THD + N versus Output Power for AVDD = 3.6V,RL = 32Ω

Figure 10: THD+ N versus Output Power for AVDD = 3.6V,RL = 16Ω

Page 10ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Figure 11: THD + N versus Output Power for AVDD = 5.5V,RL = 32Ω

Figure 12: THD + N versus Output Power for AVDD = 5.5V, RL = 16Ω

ams Datasheet Page 11
[v1-07] 2014-Sep-10 Document Feedback

Figure 13: THD + N versus Frequency for AVDD = 2.5V, RL = 32Ω

Figure 14: THD + N versus Frequency for AVDD = 2.5V, RL = 16Ω

Page 12ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Figure 15: THD + N versus Frequency for AVDD = 3.6V,RL = 32Ω

Figure 16: THD + N versus Frequency for AVDD = 3.6V,RL = 16Ω

ams DatasheetPage 13[v1-07] 2014-Sep-10Document Feedback

Figure 17: THD + N versus Output Power for AVDD = 5.5V,RL = 32Ω

Figure 18: THD + N versus Output Power for AVDD = 5.5V,RL = 16Ω

Page 14ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Figure 19: Supply Current versus POUT for AVDD = 2.5V (Pout is the Output Power per Channel)

Figure 20: Total Power Consumption versus POUT for AVDD = 2.5V (Pout is the Output Power per Channel)

ams Datasheet Page 15
[v1-07] 2014-Sep-10 Document Feedback

Figure 21: Supply Current vs. POUT for AVDD = 3.6V (Pout is the Output Power per Channel)

Figure 22:
Total Power Consumption vs. POUT for AVDD = 3.6V
(Pout is the Output Power per Channel)

Page 16ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Figure 23: Supply Current vs. POUT for AVDD = 5.5V (Pout is the Output Power per Channel)

Figure 24: Total Power Consumption vs. POUT for AVDD = 5.5V (Pout is the Output Power per Channel)

ams Datasheet Page 17
[v1-07] 2014-Sep-10 Document Feedback

Figure 25:
Quiescent Current Consumption vs. AVDD

Figure 26: PSRR vs. Frequency (200mVpp Supply Ripple)

Page 18ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Figure 27: Crosstalk vs. Frequency (700mVrms, RL = 32Ω)

Figure 28: Startup Pop Noise for AVDD = 3.6V and RL=16 Ω

ams Datasheet Page 19
[v1-07] 2014-Sep-10 Document Feedback

Figure 29: Startup Pop Noise for AVDD = 3.6V and RL=32 Ω

Page 20
Document Feedback [v1-07] 2014-Sep-10

Detailed Description

I²C Control Interface

An I²C slave interface is implemented for read/write access of the internal registers. SCL is the corresponding clock input pin and SDA the data input pin.

Access is done in 7-bit addressing mode, addresses for read and write are defined by

C0h = 11000000b ... write C1h = 11000001b ... read

Figure 30: I²C Block Diagram

Figure 31: I²C Timing Definition

ams Datasheet Page 21
[v1-07] 2014-Sep-10 Document Feedback

Figure 32: I²C Timing Parameters

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{SP}	Spike Insensitivity		50	100		ns
T _{HI}	High Clock Time	400KHz clock speed	330			ns
T _{LO}	Low Clock Time	400KHZ Clock Speed	660			ns
T _{SU}		SDA has to change T _{setup} before rising edge of SCLK	30			ns
T _{HD}		No hold time needed for SDA relative to rising edge of CSCL	-40			ns
T _{HD;STA}	Within start condition, after low going SDA, SCL has to stay constant for the specified hold time					ns
T _{SU;SUO}	After high going edge of SCL, SI specified setup time before STO	100			ns	
T _{SU;STA}	applied	i or repeated start condition is	100			ns

Page 22ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Register Definition

Register Overview

Figure 33: Register Overview

Register	Description
Enable Register (1h)	General control register to switch ON/OFF the device and enable the headphone amplifier stages.
Volume Register (2h)	Allows the use to configure the output volume of the headphone amplifier from -59dB up to +4dB.
HiZ Register (3h)	Configures the headphone amplifier for a high impedance output for power optimization.
Info Register (4h)	This register contains general information like IC version number and supplier information.

Detailed Register Descriptions

Figure 34: Enable Register (1h)

Bit	Bit Name	Default	Access	Bit Description
Bit 7	HP_EN_L	0	RW	0 Disable Headphone Left;1 Enable Headphone Left Channel
Bit 6	HP_EN_R	0	RW	0 Disable Headphone Right; 1 Enable Headphone Right Channel
Bit 5	-	-	-	-
Bit 4	-	-	-	-
Bit 3	-	-	-	-
Bit 2	-	-	-	-
Bit 1	Thermal	0	S_RC	0 Normal Operation; 1 Thermal Shutdown
Bit 0	SWS	1	RW	0 Normal Operation; 1 Software Shutdown

ams Datasheet Page 23
[v1-07] 2014-Sep-10 Document Feedback

Figure 35: Volume Register (2h)

Bit	Bit Name	Default	Access	Bit Description
Bit 7	Mute_L	1	RW	0 Unmuted Left Channel; 1 Mute Left Channel
Bit 6	Mute_R	1	RW	0 Unmuted Right Channel; 1 Mute Right Channel
Bit[5:1]	Vol[4:0]	0	RW	0d55 dB; 16d11 dB; 1d52 dB; 17d10 dB; 2d49 dB; 18d9 dB; 3d46 dB; 19d8 dB; 4d42 dB; 20d7 dB; 5d39 dB; 21d6 dB; 6d35 dB; 22d5 dB; 7d31 dB; 23d4 dB; 8d27 dB; 24d3 dB; 9d25 dB; 25d2 dB; 10d23 dB; 26d1 dB; 11d21 dB; 27d 0 dB; 12d19 dB; 28d 1 dB; 13d17 dB; 29d 2 dB; 14d15 dB; 30d 3 dB; 15d13 dB; 31d 4 dB
Bit 0	-	-	-	-

Figure 36: HiZ Register (3h)

Bit	Bit Name	Default	Access	Bit Description
Bit 7	-	-	-	-
Bit 6	-	-	-	-
Bit 5	-	-	-	-
Bit 4	-	-	-	-
Bit 3	-	-	-	-
Bit 2	-	-	-	-
Bit 1	HiZ_L	0	RW	0 Normal Operation; 1 High Impedance on HPH_Output Left
Bit 0	HiZ_R	0	RW	0 Normal Operation; 1 High Impedance on HPH_Output Right

Page 24ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Figure 37: Info Register (4h)

Bit	Bit Name	Default	Access	Bit Description
Bit 7	Supplier Rit [1:0]	RO	1	11b Default Supplier ID;
Bit 6	Supplier bit [1.0]		1	else unused
Bit 5	-	-	-	-
Bit 4	-	-	-	-
Bit 3			0	
Bit 2		RO	0	0 First Version; else unused
Bit 1			0	
Bit 0			0	

ams DatasheetPage 25[v1-07] 2014-Sep-10Document Feedback

Application Information

Figure 38: AS3560 Application Board

Page 26ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

GND Connections

The SGND pin is an input reference and must be connected to the headphone ground connector pin. This ensures no turn-on pop and minimizes output offset voltage. Do not connect more than $\pm 0.3V$ to SGND. AGND is a power ground. Connect supply decoupling capacitors for AVDD, HPVDD, and HPVSS to AGND.

External Elements

- 1 × 3.3µH Coil (SW-HPVDD)
- + $7 \times 2.2 \mu F \pm 10\%$ X5R (AVDD, CPP-CPN, HPVSS, INRP, INRN, INLP, INLN)
- $1 \times 10 \mu F \pm 10\% X5R (HPVDD)$

Software Shutdown

Set software shutdown by writing a logic 1 in Enable Register (1h), bit 0 (SWS bit). Software shutdown places the device in the lowest power state. See "Operating Conditions" on page 7 for values. Engaging software shutdown turns OFF the buck regulator and charge pump and disables the amplifier outputs. Write a logic 0 to the SWS bit to reactivate the device.

Note(s): When the device is in SWS mode all registers will maintain their values. The HP_EN_L and HP_EN_R bits can be reset because a full word must be used when writing just one bit to the register.

Note that I²C read and write access is still possible in shutdown mode.

ams Datasheet Page 27
[v1-07] 2014-Sep-10 Document Feedback

Package Drawings and Markings

Figure 39: WL-CSP (1.615 × 1.615mm) Marking

Figure 40: Packaging Code XXXX)

The device is available in a WL-CSP (1.615x1.615mm) package.

Page 28ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Figure 41: WL-CSP (1.615 × 1.615mm) Package

Note(s) and/or Footnote(s):

- 1. ccc Coplanarity
- 2. All dimension are in μm

ams DatasheetPage 29[v1-07] 2014-Sep-10Document Feedback

Ordering & Contact Information

Figure 42: Ordering Information

Ordering Code	Description	Delivery Form	Package
AS3560-DWLT	AS3560 Class-G Stereo Headphone Amplifier	Tape & Reel	WL-CSP 16
AS3560-DWLT-500	AS3560 Class-G Stereo Headphone Amplifier	Tape & Reel	WL-CSP 16

Note(s) and/or Footnote(s):

1. All products are RoHS Compliant and ams Green.

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at:

www.ams.com/Technical-Support

Provide feedback about this document at:

www.ams.com/Document-Feedback

For further information and requests, e-mail us at:

ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

Page 30ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

ams Datasheet Page 31
[v1-07] 2014-Sep-10 Document Feedback

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Page 32

Document Feedback

[v1-07] 2014-Sep-10

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Page 33 ams Datasheet Document Feedback

Revision Information

Changes from 1-06 (2014-Aug-26) to current revision 1-07 (2014-Sep-10)	Page ⁽¹⁾
Updated Key Benefits and Features section	1
Updated Figure 2	2
Updated Figure 3	3

Note(s) and/or Footnote(s):

 $1. \ Page\ numbers\ for\ the\ previous\ version\ may\ differ\ from\ page\ numbers\ in\ the\ current\ revision.$

Page 34ams DatasheetDocument Feedback[v1-07] 2014-Sep-10

Content Guide

- 1 General Description
- 1 Key Benefits & Features
- 2 Applications
- 2 Block Diagram
- 3 Pin Assignments
- 3 Pin Descriptions
- 5 Absolute Maximum Ratings
- **7 Electrical Characteristics**
- 9 Detailed Operating Characteristics
- 21 Detailed Description
- 21 I²C Control Interface
- 23 Register Definition
- 23 Register Overview
- 23 Detailed Register Descriptions
- **26 Application Information**
- 27 GND Connections
- 27 External Elements
- 27 Software Shutdown
- 28 Package Drawings and Markings
- 30 Ordering & Contact Information
- 31 RoHS Compliant & ams Green Statement
- 32 Copyrights & Disclaimer
- 33 Document Status
- 34 Revision Information

ams Datasheet Page 35
[v1-07] 2014-Sep-10 Document Feedback