Student Name:

Reg. No. 2019EF-383

EE110 Circuit Analysis and Design Fall 2022, Session 2021 (3rd Semester) Mid Exam

All the related parts of a question must be solved together.

Time Allowed: 60 Minutes Total Marks: 30

,	onderstand:	of question is part of exam			
	of mining of	Quartian :-			
		Anezrioli 12	part of exam.		

	A	In a series <i>RLC</i> circuit the zero-input voltage across the I- μ F capacitor is $v_c(t) = 10e^{-1000t}sin2000t V \qquad t \ge 0$		1
	^	Analyze the response and find the circuit characteristic equation	1	
	В	Find R and L	3	2
	C	Find $i_L(t)$ for $t \ge 0$	4	103
	D	Find the initial values of the state variables	2	1
Q.2			1	1
		The circuit in Figure below is operating in the sinusoidal steady state with $i_s(t) = 100 \cos(1000t - 45^\circ) mA$		
	٨	$i_{S}(t) \bigoplus_{l \in \mathcal{I}} f = \begin{cases} 500 \Omega \\ 0.5 \text{ H } \end{cases} $		
	В	Analyze the circuit and transform it into phasor domain	2	
	C	Solve for the phasor voltage V	3	
	D	Solve for the phasor current through each element	3	12
0.1	-	Find the waveforms corresponding to the phasors found in (b) and (c)		CLO2
Q.3	A	The two sources in Figure below have the same frequency. Analyze the circuit and use superposition to find the phasor current I.	10	
		$\frac{1_{X}}{75}\Omega \qquad \frac{10\Omega}{10\Omega}$ $0.1 \leq 90^{\circ} \qquad \frac{1}{20245^{\circ}}V$		