РГПУ им. А.И. Герцена

«Интерференция

	К работе допущены		
	Работа выполнена		
	Отчёт сдан		
Отчет по лаборат	горной работе Ј	№ 3	
Интерференция с	вета. Опыт Юн	нга.»	
		P	аботу выполнил <u>:</u>
	<u>Войтенко</u>	о Игор	ь Александрович
	Факу	льтет _	ИВТ
	Груп	па	2ИВТ(1)/1

Санкт-Петербург

1. Цель работы: Ознакомиться с процессом сложения когерентных электромагнитных вол и его моделированием. Экспериментально исследовать закономерности взаимодействия световых вол от двух источников.

2. Основные результаты:

Бригада №4 – Зеленый

d, мм	2,20	2,30	2,40	2,50	2,60	2,70	2,80	2,90	3,00	
1/d, MM ⁻¹	0,45	0,43	0,42	0,40	0,38	0,37	0,36	0,34	0,33	
$L_1 = 3,90 \text{ m} = 3900 \text{ mm}$										
Xmax,	1,00	0,95	0,90	0,88	0,84	0,81	0,78	0,76	0,73	
$L_2 = 4{,}00 \text{ m} = 4000 \text{ mm}$										
Xmax,	1,02	0,98	0,93	0,89	0,86	0,82	0,80	0,77	0,75	
$L_3 = 4{,}10 \text{ m} = 4100 \text{ mm}$										
Xmax, MM	1,04	1,00	0,95	0,92	0,89	0,85	0,82	0,79	0,77	

График зависимостей

$$\lambda_1 = \frac{\Delta X max}{L1*\Delta(\frac{1}{d})} = \frac{1,00-0,73}{3900*(0,45-0,33)} = 0,00057692 \text{ MM} = 576,92 \text{ HM}$$

$$\lambda_2 = \frac{\Delta X max}{L2*\Delta(\frac{1}{d})} = \frac{1,02-0,75}{4000*(0,45-0,33)} = 0,0005765 \text{ MM} = 576,50 \text{ HM}$$

$$\lambda_3 = \frac{\Delta X max}{L3*\Delta(\frac{1}{d})} = \frac{1,04-0,77}{4100*(0,45-0,33)} = 0,00054878 \text{ MM} = 548,78 \text{ HM}$$

3. Вывод: Входе выполнения лабораторной работы был построен график экспериментальных зависимостей смещения первого максимума от обратного расстояния между щелями. Также при помощи модели опыта был сделан вывод о том, что частота следования интерференционных полос увеличивается прямопропорционально расстоянию между щелями, в то время как ширина дифракционной картины остаётся неизменной и зависит только от ширины щелей. Ширина дифракционной картины зависит от расстояния между экраном и линии с источниками (1 и 2).

Из построенного графика следует, что зависимость прямопропорциональна, то есть при увеличении обратного расстояния возрастает смещение первого максимума.

Были вычислены длины волн по формуле $\tilde{\chi} = \frac{\Delta X max}{L*\Delta(\frac{1}{d})}$:

$$\lambda_1 = \frac{\Delta X max}{L1*\Delta(\frac{1}{d})} = \frac{1,00-0,73}{3900*(0,45-0,33)} = 0,00057692 \text{ MM} = 576,92 \text{ HM}$$

$$\lambda_2 = \frac{\Delta X max}{L2*\Delta(\frac{1}{d})} = \frac{1,02-0,75}{4000*(0,45-0,33)} = 0,0005765 \text{ MM} = 576,50 \text{ HM}$$

$$\lambda_3 = \frac{\Delta X max}{L3*\Delta(\frac{1}{d})} = \frac{1,04-0,77}{4100*(0,45-0,33)} = 0,00054878 \text{ MM} = 548,78 \text{ HM}$$

Из вычислений следует то, что полученные значения соответствуют диапазону длины зеленого света.