

WEBINAR AGENDA

Topics:

- Intro to Jetson & Deep RL
- PyTorch DQN & OpenAl Gym
- C++ Deep RL Agent Library API
- 3D Robotic Simulation with Gazebo
- Continuous Control A3C/A3G/PPO
- Online Transfer Learning

AI REDEFINES ROBOTICS

Delivery

Consumer

Healthcare

Agriculture

OVIDIA

Retail

Logistics

Manufacturing

Inspection

AI AT THE EDGE

BANDWIDTH

1 billion cameras WW (2020) 10's of petabytes per day

LATENCY

Safety-critical services Realtime decisions

PRIVACY

Confidentiality
Private cloud or on-premise storage

CONNECTIVITY

50% of populated world < 8mbps Bulk of uninhabited world no 3G+

IIVIDIA

GPU

CPU

Memory

Storage

Wireless

Camera

Power

Video Encode

Video Decode

Peripherals

Operating Temp

Operating Life

Mechanical

JETSON TX1

256-core Maxwell @ 996 MHz

64-bit guad-core ARM A57 CPU

4GB 64 bit LPDDR4 @ 25.6 GB/s

16GB eMMC

802.11 2x2 ac WLAN | BT4.0 Ready

4Kp30 | (2x) 1080p60

4Kp60 | (4x) 1080p60

12 lanes MIPI CSI-2 | 1.5Gbps per lane

USB3, GigE, PCIe, SATA, HDMI, GPIO, I2C, SPI, UART

6.5W - 15W

5 years | MTBF: 1.711.180 Hours @ 35°C

-25°C to 80°C

DVIDIA

JETSON TX2

8GB 128-bit LPDDR4 @ 58.2 GB/s

802.11 2x2 ac WLAN | BT4.1 Readv

7.5W (Max-Q) | 15W (Max-P)

5 years | MTBF: 1,747,520 Hours @ 35°C

50mm x 87mm, 400-pin backwards-compatible Board to Board Connector

256-core Pascal @ 1134 MHz

64-bit Denver 2 and guad-core A57 CPU

32GB eMMC

4Kp60 | (3x) 4Kp30 | (8x) 1080p60

(2x) 4Kp60 | (4x) 4Kp30 | (7x) 1080p60

12 lanes MIPI CSI-2 | 2.5Gbps per lane

USB3, GigE, PCIe, SATA, HDMI, GPIO, I2C, SPI, UART, dual CAN bus

DVIDIA

JETSON TX2i

8GB 128-bit LPDDR4 (ECC) @ 51.9 GB/s

Wireless not on-module

10W (Max-Q) | 20W (Max-P)

-40°C to 85°C

10 years | MTBF: 2,505,155 Hours @ 45°C

JETSON XAVIER

Computer for Autonomous Machines

Al Server Performance in 30W • 15W • 10W 512 Volta CUDA Cores • 2x NVDLA 8 core CPU • 16GB 256-bit LPDDR4x 30 DL TOPS

JETSON XAVIER 20X PERFORMANCE IN 2 YEARS

22x DL TOPS

MOST COMPREHENSIVE HIGH PERFORMANCE I/O SUBSYSTEM

PCIE

5 16GT/s gen4 controllers 1 x8, 1x4, 1x2, 2x1 3x Root port + Endpoint 2x Root port

USB

3x USB3.1 (10 GT/s) ports 4x USB2.0 ports

ETHERNET

1x Ethernet-AVB over RGMII PTP, WoL

DISPLAY

3x DP/HDMI/eDP 4K @ 60 Hz DP HBR3 HDMI 2.0

CAMERA

16 MIPI CSI-2 lanes 40 Gbps in DPHY 1.2 Mode 109 Gbps in CPHY 1.1 Mode

OTHER I/Os

I2C I2S UFS CAN SPI SD UART GPIO

JETSON XAVIER DEVELOPER KIT

2x USB-C+DP, HDMI, USB3+eSATA, 8x CSI x2 M.2 key E, M.2 key M, micro-SD, 40-pin GPIO \$1299 (US), early access August 2018

JETSON XAVIER DEVELOPER KIT

2x USB-C+DP, HDMI, USB3+eSATA, 8x CSI x2 M.2 key E, M.2 key M, micro-SD, 40-pin GPIO \$1299 (US), early access August 2018

NVIDIA ISAAC ROBOTICS PLATFORM

https://developer.nvidia.com/isaac-sdk

ISAAC WORKFLOW

POWERING THE DEEP LEARNING ECOSYSTEM

NVIDIA accelerates every major framework

SPEECH & AUDIO NATURAL LANGUAGE PROCESSING **COMPUTER VISION OBJECT DETECTION** IMAGE CLASSIFICATION **VOICE RECOGNITION** LANGUAGE TRANSLATION RECOMMENDATION ENGINES IM .. GENET **DEEP LEARNING FRAMEWORKS Ö** Caffe2 Caffe Microsoft

DIGITS

DL4J

Deeplearning4i

Chainer

SENTIMENT ANALYSIS

GETTING STARTED

JETSON COMMUNITY

TWO DAYS TO A DEMO

Get Started with Deep Learning

Train using DIGITS and cloud/PC Deploy to the field with Jetson

All the steps required to follow to train your own models, including the datasets.

Image Recognition, Object Detection and Segmentation

SPECTRUM of LEARNING

REINFORCEMENT LEARNING

How's it work?

- A reinforcement learning agent includes:
 - state (environment)
 - actions (policy)
 - reward (feedback)
- A value function predicts the future reward of performing actions in the current state
 - Given the recent state, action with the maximum estimated future reward is chosen for execution
- For complex state spaces, deep neural networks are used as value approximators
 - Numerical solver (gradient descent) optimizes the network in-situ based on reward feedback

TWO DAYS TO A DEMO

Deep Reinforcement Learning

OpenAl Gym

Test environments and games for research and verification

RL Algorithms Do you want to continue [Y/n]? y Get:1 http://archive.ubuntu.com/ubuntu/ lucid/universe python-keybinde [12.2k8] Get:2 http://archive.ubuntu.com/ubuntu/ lucid/universe terminator 0.93 [199k8] Get:2 http://archive.ubuntu.com/ubuntu/ lucid/universe terminator 0.93 [199k8] Fetched 202k8 in 5s (37.2k8/s) Selecting previously deselected package python-keybinder. (Reading detabase ... 129972 files and directories currently installed ubpacking python-keybinder (from ... /python-keybinder_0.4-1380.deb uppacking terminator (from ... /python-keybinder_0.4-1380.deb Processing triggers for desktop-file-utils ... Processing triggers for get for desktop-file-utils ... Processing triggers for man-db ... Processing triggers for man-db ... Processing triggers for holor-icon-theme ... Processing triggers for holor-icon-theme ... Processing triggers for holor-icon-theme ... Processing triggers for brolor-icon-theme ... Processing triggers for brolor-icon-theme ... Setting up python-keybinder (0.0.4-1) ... Setting up terminator (0.93-0buntu) ... update-alternatives: using /usr/bin/terminator to provide /usr/bin/x-tulator /x-terminal-emulator in auto mode.

DQN, DDPG, A3C, Actor Critic PyTorch and TensorFlow

Observation from Vision Pixels-to-Actions

Adapt network to real robot Online learning in the field

DEEP REINFORCEMENT LEARNING STACK

Simulation		Robot		Validation	
C++ Deep RL Agent Library					
DQN	LSTM		A3G		Gym
PyTorch					
cuDNN					
CUDA, Linux					
Jetson					

WHY PYTORCH?

- Natively runs and builds smoothly/efficiently on Jetson
- Low-overhead tensor ops in C++/CUDA backends
- Portable to ARM64 architecture and others
- First-class CUDA + cuDNN integration
- Full cuDNN layers (inc. RNN/LSTM)

- Tensor allocation API from C/C++
- Version 0.3/0.4 relatively stable
- Lots of RL code on GitHub (area of active research)

RL AGENT LIBRARY API

- Low-overhead interoperability layer between Python/C++
- Zero-Copy tensor transport Python

 C++, supports CUDA
- Modular event-driven agent model
 - Defines Python stub functions to be called from C++
 - Extensible for new agents implemented in Python scripts
- Able to run & synchronize multiple agents in parallel
- Shared API between virtual & physical robot
 - Plus C++ samples for agent debugging/verification
 - Common codebase reduces porting to platforms
 - Supports Jetson (ARM64) & Linux x86_64 (dGPU)

rlAgent • virtual NextAction() • virtual NextReward() • virtual LoadCheckpoint() • virtual SaveCheckpoint() Python Interpreter

dqnAgent

- NextAction()
- NextReward()
- LoadCheckpoint()
- SaveCheckpoint()

DQN.py

a3cAgent

- NextAction()
- NextReward()
- LoadCheckpoint()
- SaveCheckpoint()

A3C.py

LSTM ACCELERATION

- cuDNN GPU-accelerated RNNs/LSTM
- Forms internal working memory cells
- Partially-observable inputs/environments
- Launch a 2D grid of RNN cells
- PyTorch layer integration
- Supports:
 - Uni/Bidirectional RNNs
 - Non-uniform length minibatches
 - Dropout between layers

REWARD SHAPING

- Receive large reward on episode success/failure [-100 100]
- Intermediary & Micro-rewards
 - Trail of breadcrumbs game of hot & cold
 - Distance ∆ to goal (i.e. getting closer or farther away)
 - Clipped to [-1 +1]
- Cap episode max length to slightly more than the minimum time to complete task
 - Otherwise agent may "park" itself or hover to collect extra intermediary reward
 - If agent exceeds the max episode timeout, count it as a loss and reset
 - In some scenarios, the agent should run as long as possible (e.g. CartPole, obstacle avoidance)
- Recent research applies sparse rewards (Hindsight Experience Replay)

RL MOTION CONTROL

- Discrete action/delta mappings
 - Each action adjusts (increases or decreases) a DoF by a set amount
 - Num actions = DoF * 2 (or DoF * 2 + 1 if you want a NULL idle action)
 - Agents are limited by DoF, increases training and difficulty converging
- 1st order adjust joint positions or motor PWMs
 - Only able to move one DoF at a time (can lead to jerkiness)
- 2nd order adjust joint velocities
 - Allows all DoF to operate simultaneously
 - Smoother but slower to react than 1st order
- 3rd order adjust joint accelerations
 - Similar benefits/drawbacks to 2nd order, slower to learn

TRANSFER LEARNING

- Adapt learning between similar tasks/environments
- Transition from virtual to physical robot
 - Save model at end of simulation

```
agent->SaveCheckpoint("my_agent.model");
```

Load model at robot start-up

```
agent->LoadCheckpoint("my agent.model");
```

- Some degree of model fine-tuning required based on:
 - Fidelity of simulation
 - Sensor calibration
 - Break-in period
 - Dynamic environment

ONLINE LEARNING

- In-situ training & exploration
 - Realtime interaction with environment and feedback loop needed for agent's convergence, can't just store or record experiences for later
- Self-reinforcing rewards
 - Using higher-end sensors to train simpler sensors (e.g. LIDAR vs. camera)
 - Pre-trained supervisor network (image recognition, object detection)
- Episodic automation
 - "Endless" roaming or self-resetting

WHAT'S NEXT?

- Recent research in Policy Gradient & Actor Critic
 - PPO, ACKTR, A2C/A3C, DDPG/D4PG
- Sparse Rewards Hindsight Experience Replay
- Multitasking / Hierarchical Subtasks
- Genetic Pruning
- Imitation Learning
 - Supervised seeding of RL models
- NVIDIA Isaac https://developer.nvidia.com/isaac-sdk
- Jetson Xavier https://developer.nvidia.com/jetson-xavier

Thank you!

Developer Portal

developer.nvidia.com/embedded

Download JetPack developer.nvidia.com/jetpack

2 Days To a Demo

github.com/dusty-nv

Jetson Forums

devtalk.nvidia.com

Visit the Wiki

eLinux.org/Jetson

EDU Discount

bit.ly/2veKN1X

