A4: Graphen

Patrick Bucher

29.05.2017

Inhaltsverzeichnis

1 Begriffe und Eigenschaften	2
a)	2
b)	2
c)	2
d)	2
e)	2
f)	4
g)	4
2 Besetzung eines Graphen	4
a)	4
b)	4
c)	6
d)	6
e)	6
3 Eisenbahnnetz	6
a)	6
b)	6
c)	6
d)	6
e)	7
f)	7
4 Adjazenzmatrix	7
a) Implementierung (vereinfacht)	7
b) Testfall	7
5 Adjazenzlisten	7
6 Breitensuche	7

7 Tiefensuche 7

8 Algorithmus von Dijkstra 7

9 Optional: Eisenbaznnetz II 8

1 Begriffe und Eigenschaften

a)

Siehe Abbildung 1.

Abbildung 1: gerichteter Graph ohne Zyklen

b)

Siehe Abbildung 2.

c)

Siehe Abbildung 3.

d)

|E| = |V| - 1

e)

Siehe Abbildung 4.

Abbildung 2: ungerichteter, nicht zusammenhängender Graph

Abbildung 3: Baum mit Gewichten

Abbildung 4: gerichteter Graph mit zwei Zyklen

f)

Siehe Abbildung 5.

Abbildung 5: Graph mit aufspannendem Baum (rot)

g)

Siehe Abbildung 6.

Abbildung 6: Pfad der Länge 4 (von A nach E)

2 Besetzung eines Graphen

a)

Siehe Abbildung 7 (dünn besetzter Graph) und Abbildung 8 (dicht besetzter Graph).

b)

Beim dünn besetzten Graph gilt $|E| < |V|^2$, beim dicht besetzten Graph $|E| \sim |V|^2$.

Abbildung 7: dünn besetzter Graph

Abbildung 8: dicht besetzter Graph

c)

In meinem "dünnen" Beispiel sind es 7 Knoten und 6 Kanten. Im "dichten" Beispiel sind es 7 Knoten und 21 Kanten. $|V|^2$ wäre hier also zu gross, obwohl jeder Knoten mit jedem verbunden ist.

d)

Bei einem ungerichteten Graph ist es die Summe von (|E|-1)+(|E|-2)+...+1; bei einem gerichteten Graph doppelt so viel.

Im Minimum sind es 0 Kanten.

e)

Für dicht besetzte Graphen ist eine Adjazenzmatrix sinnvoll, da diese symmetrisch ist und man gut die Hälfte des Speicherplatzes einsparen kann.

Bei dünn besetzten Graphen sind Adjazenzlisten sinnvoll.

3 Eisenbahnnetz

a)

ungerichtet

b)

gewichtet

c)

enthält Zyklen

d)

zusammenhängend

13 Knoten, 14 Kanten
f)
Der Graph ist eher dünn besetzt.
4 Adjazenzmatrix
a) Implementierung (vereinfacht)
Github
b) Testfall
Github
5 Adjazenzlisten
TODO
6 Breitensuche
TODO
7 Tiefensuche
TODO
8 Algorithmus von Dijkstra

e)

TODO

9 Optional: Eisenbaznnetz II

TODO