Quelques définitions
Calcul des éléments de la suite de Fibonacci
Démonstration de la validité et la terminaison d'une boucle
Tri par sélection
Conclusion

Validité et terminaison d'un algorithme itératif

Alix Munier-Kordon Maryse Pelletier

LIP6 Sorbonne Université Paris

Module 21003 Algorithmique Elémentaire

Outline

- Quelques définitions
- Calcul des éléments de la suite de Fibonacci
- 3 Démonstration de la validité et la terminaison d'une boucle
- 4 Tri par sélection
- Conclusion

Calcul des éléments de la suite de Fibonacci Démonstration de la validité et la terminaison d'une boucle Tri par sélection

Problème et Instance

Definition

Un problème P est identifié par un nom, un ensemble de paramètres, et une description de la solution.

Definition

Une instance / d'un problème P est une valeur possible pour les paramètres du problème.

Problème de Tri

Définition du problème de tri :

Nom: Tri

Paramètres : un entier n et un tableau

 $tab[0 \cdots n-1]$ de *n* entiers.

Solution : Le tableau $tab[0 \cdots n-1]$ trié par ordre

croissant.

Définition d'une instance du problème de tri :

Un entier n=5

Un tableau $tab[0 \cdots 4] = [6, 3, 1, 7, 5].$

Programme

Definition

Un programme est composé de :

- un ensemble fini de variables.
- des opérations élémentaires portant sur les variables (arithmétiques, logiques, affectations),
- des structures de contrôles (if, while, · · · etc) qui permettent de définir un ordre sur les opérations élémentaires.

Un programme est souvent exprimé dans un langage de programmation ou un langage algorithmique.

Algorithme et fonction

Definition

Un algorithme \mathcal{A} qui résoud un problème P est un programme qui vérifie les deux propriétés suivantes :

Terminaison: L'algorithme appliqué à toute instance du problème effectue un nombre fini d'instructions.

Validité : L'algorithme résoud le problème P pour toute

instance (de P).

Definition

Une fonction est un algorithme qui renvoie une valeur.

Trois questions pour l'évaluation d'un algorithme

Soit A un algorithme pour résoudre un problème P.

- Est-ce que l'algorithme A se termine ? Terminaison
- Est-ce que l'algorithme A résoud le problème P ? Validité
- ullet Est-ce que l'algorithme ${\mathcal A}$ est efficace en temps de calcul ? Complexité

Algorithme itératif de calcul de la suite de Fibonacci

Suite de Fibonacci :

```
• F_0 = 0, F_1 = 1;
 \bullet \forall n > 2, F_n = F_{n-1} + F_{n-2}.
def Fibolt (n):
     if (n==0):
          return 0
     x = 0; y = 1; i = 1
     while (i<n):
          Z = X+V; X = V
          y = z; i = i+1
     return y
```

Terminaison de la fonction Fibolt

- Le corps de boucle est composé d'instructions élémentaires;
- La boucle est effectuée n − 1 fois.

Donc Fibolt(n) se termine pour toute valeur $n \in \mathbb{N}$.

Comment varient les variables x et y?

- \bigcirc A l'initialisation, $x_1 = 0$ et $y_1 = 1$.
- $\forall i \in \{2, \dots, n\}, x_i \text{ est la valeur de } x \text{ à la fin du corps de } x \text{ } i \text{ la fin du corps de } x \text{ } i \text{ } i$ boucle pour la valeur i.
- $\forall i \in \{2, \dots, n\}, y_i \text{ est la valeur de } y \text{ à la fin du corps de}$ boucle pour la valeur i.

Pour n=6:

i	l		3	4	5	6
Xi	0	1	1	2	3	5
X _i Y _i	1	1	2	3	5	8

La fonction retourne 8.

Propriétés des suites x_i et y_i

$$\mathcal{P}(i), i \in \{1, \dots, n\}: x_i = F_{i-1} \text{ et } y_i = F_i.$$

Par récurrence faible :

Base Pour
$$i = 1$$
, $x_1 = 0 = F_0$ et $y_1 = 1 = F_1$.
Donc $\mathcal{P}(1)$ est vérifiée.

Iteration Supposons que $\mathcal{P}(k)$ soit vérifiée pour une valeur

$$k \ge 1$$
 fixée. Alors,

$$y_{k+1} = x_k + y_k = F_{k-1} + F_k = F_{k+1}$$
 et

$$x_{k+1}=y_k=F_k.$$

Donc P(k + 1) est vérifiée.

Conclusion Comme $\mathcal{P}(1)$ est vérifiée, et que, pour tout $k \in \{1, \dots, n-1\}, \mathcal{P}(k) \Rightarrow \mathcal{P}(k+1)$, on en déduit que $\forall i \in \{1, \dots, n\}, \mathcal{P}(i)$ est vérifiée.

Validité de la fonction Fibolt

Fibolt est valide si, pour tout $n \in \mathbb{N}$, Fibolt(n) retourne F_n .

- Si n = 0, le résultat retourné est bien égal à F_0 .
- Sinon, en sortie de boucle, i = n et donc $y_n = F_n$. La fonction retourne donc bien la valeur F_n .

On en déduit que la fonction Fibolt est valide.

Comment démontrer la terminaison d'une boucle?

- Vérifier que toute exécution du corps de boucle se termine;
- Vérifier que le corps de boucle est exécuté un nombre borné de fois;

Ces deux démonstrations ne se font pas par récurrence!!

Comment démontrer la validité d'une boucle ?

- Déterminer un invariant de boucle si possible à la fin du corps de boucle;
- Démontrer l'invariant de boucle par récurrence sur le nombre d'itérations:
- Studier la sortie de boucle pour conclure à la validité de la boucle.

Notion d'invariant de boucle

Definition

Un invariant d'une boucle est une propriété qui est vérifiée à chaque exécution du corps de cette boucle. Cette propriété est de plus vraie à un endroit précis du corps de boucle et permet de démontrer la validité de la boucle.

Pour la fonction Fibolt, la propriété $\mathcal{P}(i)$, $i \in \{1, \dots, n\}$ est vérifiée à la fin du corps de boucle.

Recherche de l'élément minimum d'un tableau

```
tab[0 \cdots n-1] est un tableau de n entiers;
RechercheMin(tab, d, f) retourne l'indice d'un élément de
tab[d \cdots f] de valeur minimum pour 0 \le d \le f < n.
def RechercheMin(tab, d, f):
     imin=d; i=d+1
     while i<=f:
          if tab[i]<tab[imin]:</pre>
                imin=i
          i = i + 1
     return imin
```

Terminaison de RechercheMin

- Le corps de boucle est composé d'instructions élémentaires;
- La boucle est effectuée f − d fois au plus;

Donc RechercheMin(tab, d, f) se termine pour toute valeur $0 \le d \le f < n$.

Validité de RechercheMin(tab, d, f)

Tri par sélection Conclusion

Soit $imin_{d+1} = d$ et $imin_i$, pour $i \in \{d+2, \cdots, f+1\}$, la valeur de la variable imin à la fin du corps de la boucle.

Theorem

Pour tout
$$i \in \{d+1, \dots, f+1\}$$
, $imin_i \in \{d, \dots, i-1\}$ et $\forall k \in \{d, \dots, i-1\}$, $tab[k] \ge tab[imin_i]$.

Corollary

La fonction RechercheMin(tab, d, f) est valide pour un tableau de n valeurs avec $0 \le d \le f < n$.

RechercheMin est utilisée pour le tri par sélection.

Exemple d'exécution du tri par sélection

Tri par sélection

```
def TriParSelection(tab):
    i = 0; n = len(tab)
    while (i!= n):
        k = RechercheMin(tab, i, n-1)
        if (k!=i):
            z = tab[i]
            tab[i] = tab[k]
            tab[k] = z
        i = i + 1
```

Terminaison du tri par sélection

- Les paramètres des appels à RechercheMin vérifient $0 \le i \le n-1 < n$. Donc, tous ces appels se terminent.
- Les autres instructions du corps de boucle sont élémentaires
- Le corps de boucle est exécuté n − 1 fois.

On en déduit que TriParSelection se termine.

Validité de TriParSelection

 $tab_0 = tab$ à l'initialisation et pour $i \in \{1, \dots, n\}$, soit tab_i le tableau tab obtenu en fin du corps de boucle pour la valeur i.

Theorem

Pour tout $i \in \{0, \dots, n\}$, tab_i contient tous les éléments de tab et tab_i $[0 \cdots i - 1]$ est constitué des i plus petits éléments de tab triés en ordre croissant.

Corollary

TriParSelection(tab) trie les éléments de tab par ordre croissant.

- Validité et terminaison permettent de s'assurer qu'un algorithme est correct pour toutes les valeurs admissibles des paramètres.
- La terminaison d'une boucle simple peut souvent se réduire à majorer le nombre de tours de boucles et s'assurer de la terminaison des instructions du corps de boucle.
- La validité s'obtient en démontrant par récurrence l'invariant de boucle, puis en étudiant la sortie de boucle.