Recurrence Relations

Example 1

We have a sequence of numbers $u_1, u_2, u_3, ...$

 u_1 =3 and u_{n+1} =4 u_n +1 This is a recurrence relation. If you know a number in this sequence then the recurrence relation will tell you how to calculate the next number in this sequence.

Now
$$u_1=3$$

put
$$n=1$$
 into $u_{n+1}=4u_n+1$ and we get $u_2=4u_1+1=(4\times 3)+1=13$
put $n=2$ into $u_{n+1}=4u_n+1$ and we get $u_3=4u_2+1=(4\times 13)+1=53$
put $n=3$ into $u_{n+1}=4u_n+1$ and we get $u_4=4u_3+1=(4\times 53)+1=213$
etc

Example 2

We can define factorials using a recurrence relation:

1!=1
$$(n+1)!=(n+1)n!$$

Now 1!=1
put $n=1$ into $(n+1)!=(n+1)n!$ and we get $2!=(2)1!=2\times 1=2$
put $n=2$ into $(n+1)!=(n+1)n!$ and we get $3!=(3)2!=3\times 2=6$
put $n=3$ into $(n+1)!=(n+1)n!$ and we get $4!=(4)3!=4\times 6=24$
etc

Many problems give rise to recurrence relations as will will see in the next few sections.

Exercise

Write down the first 5 terms of the sequence

$$u_1 = 2$$
 and $u_2 = 3$ $u_{n+2} = u_n \times u_{n+1}$

Solution

$$u_1=2$$

 $u_2=3$
 $u_3=u_1\times u_2=2\times 3=6$
 $u_4=u_2\times u_3=3\times 6=18$
 $u_5=u_3\times u_4=6\times 18=108$