Modes of Convergence

Counterexample

$$\bigcirc f_n = \frac{1}{n} \gamma_{(0,1)}$$

$$(2) \quad f_n = \chi_{(n_1 n + 1)}$$

$$(4) \quad f_{N} = \chi^{h} \quad \infty \quad [0,1]$$

(5)
$$f_1 = \chi_{[0,1]}$$
, $f_2 = \chi_{[0,\frac{1}{2}]}$, $f_3 = \chi_{[\frac{1}{2},1]}$, $f_4 = \chi_{[0,\frac{1}{4}]}$, typewriter sequence.

Page 1

Lemma if $f_n \to f$ unif, and $\mu(X) < \infty$, $f_n \to f$ in L'.

Pf let E > 0. $\int |f_n - f_n| < E \mu(X)$ for a large.

Thm (Egoroff) if $f_n \to f$ a.e. and $\mu(X) < \infty$, $f_n \to f$ a.u. $(N = \{f_n \to f\})$ Pf We may assume $f_n \to f$ menywhere by replacing $X \to X \setminus N$, $\mu(N) = 0$. $\forall K \in \mathbb{N}$, note that $E_{n,K} := \bigcup_{j=n}^{\infty} \{|f_n - f| \ge \frac{1}{k}\}$ \Rightarrow as $n \to \infty$.

As μ is odd from above $(\mu(X) < \infty)$, $\forall k \in \mathbb{N}$, $\mu(E_{n,k}) \to 0$ as $n \to \infty$.

Let E > 0. For all $k \in \mathbb{N}$, choose $n_k \in \mathbb{N}$ s.t. $\mu(E_{n,k}) < \frac{\mathcal{E}}{2^k}$ $\forall n > n_k$. Set $E := \bigcup_{k=1}^{\infty} E_{n_k,k}$. $\mu(E) \in \mathbb{Z}$ $\mu(E_{n_k,k}) \in \mathbb{Z}$ $\frac{\mathcal{E}}{2^k} = \mathcal{E}$

and $\forall n \ge n_k$, $\chi \notin E \Rightarrow \chi \notin E_{n_k, K} \Rightarrow |f(x) - f_n(x)| < \frac{1}{K}$, so $f_n \to f$ uniformly on E^c .

 \Box

Det A seq. (fn) is called Cauchy in measure

if $\forall \varepsilon>0$, $\mathcal{U}(|f_n-f_m|^2,\varepsilon) \longrightarrow 0$ as $m,n \longrightarrow \infty$.

Question define $f_{\epsilon}(f,g) := \mu(|f-g| \ge \epsilon)$.

What's up with that?

Theorem If (f_n) is cauchy in measure, $\exists!$ (up to μ -a.e.) M-mble f_n f s.t. $f_n \longrightarrow f$ in measure.

moreover, \exists subseq $f_{n_k} \longrightarrow f$ a.e.

Remark if $f_n \to f$ in measure, f is Cauchy in measure. Let $\epsilon, \delta > 0$. Pick $N \in \mathbb{N}$ large so $\mu(|f - f_n| > \epsilon') < \delta' \quad \forall n > N$. $|f_n - f_m| \leq |f_n - f| + |f_m - f|$

So $||f_n - f_m|| \ge \varepsilon$ $= \{|f_n - f| + |f_m - f| \ge \varepsilon \} \longrightarrow 0$ in measure. \square

pf of theorem

Stepl: 7 subseq (gk) of (fu) s.l.

$$M(|g_k-g_{k+1}| \ge 2^{-k}) < 2^{-k}$$

Pf $\forall k \in |N|, \quad \mu(|f_n - f_m| \ge 2^{-k}) \longrightarrow 0, \quad \text{so pick } k \text{ inductively}$ so $n_{k+1} > n_k$ and $m_1 n_1 \ge n_k \longrightarrow \mu(|f_m - f_n| \ge 2^{-k}) < 2^{-k}$.

Step2: (g_K) is pointwise cauchy off a u-null set N. If for $K \in \mathbb{N}$, let $E_K = \{ |g_K - g_{K+1}| \ge 2^{-k} \}$.

Set
$$N_{\ell} = \bigcup_{k=1}^{\infty} E_{n}$$
. Then

$$\mathcal{M}(N_{\ell}) \leq \sum_{k=1}^{\infty} \mu(E_{n}) \leq \sum_{k=1}^{\infty} 2^{-t} = 2^{t-2}$$

Set $N = \bigcap_{k=1}^{\infty} N_{\ell} = \lim_{n \to \infty} p E_{k}$. $\mu(N) = 0$.

If $\chi \notin N$, then $\chi \notin N_{\ell}$ for some ℓ , so $\forall i \geq j \geq \ell$,

$$|g_{i}(x) - g_{j}(x)| \leq \sum_{k=1}^{j-1} |g_{k}(x) - g_{k}(x)| \leq \sum_{k=1}^{j-1} 2^{-t} \leq 2^{t-1}$$
.

Step 3: define $f(x) = \begin{cases} 0 & x \in N \\ \lim_{k \to \infty} g_{k}(x) & x \notin N \end{cases}$. Then f is meaningly and $g_{k} \to f$ a.e.

If each g_{k} is male, as is $g_{k}|_{N^{c}}$ is meaningly.

By $(E_{k} \circ reis_{k})$, $f|_{N^{c}} = \lim_{k \to \infty} g_{k}|_{N^{c}}$ is meaningly.

Step 4: $g_{k} \to f$ in measure.

Of $\forall \chi \notin N_{\ell}$ and $k \geq \ell$,

Pf
$$\forall x \notin \mathbb{N}_{\ell}$$
 and $K \geqslant \ell$,

 $|g_{\kappa}(x) - f(x)| = \lim_{j \to \infty} |g_{\kappa}(x) - g_{j}(x)| \leq 2^{j-\kappa}$.

Ut $\epsilon > 0$. Pick $\ell \in \mathbb{N}$ s.(. $0 < \frac{1}{2^{\ell}} < \epsilon$.

Then $\forall K \geqslant \ell$,

 $\ell(g_{\kappa} - f) \geqslant \epsilon$) $\leq \ell(g_{\kappa} - f) \geqslant \frac{1}{2^{k}} > 0$.

Step 5: fr - of in measure.

Step 6: f is the unique (up to m-a.e.) mble for sit. fn - f in measure.

If
$$g$$
 is another such f_n ,
$$\begin{cases}
|f-g| > \varepsilon \end{cases} \leq \begin{cases}
|f-f_n| > \frac{\varepsilon}{2} \end{cases} \cup \begin{cases}
|g-f_n| > \frac{\varepsilon}{2} \end{cases}$$

 $\Rightarrow \mu(|f-g| > \varepsilon) = 0 \quad \forall \varepsilon > 0.$