Detection of Fake Spammer and Genuine Accounts on Instagram

Ellen Dong / Mark Du / Winci Liang / Laurie Ye

Table of contents

O1 Introduction & O2 Model

Data Overview Development

03 Model Results **04** Discussion

01

Introduction & Data

Problem and Goal

Problem: As artificial intelligence and technology continue to advance, the growth of social media platforms like Instagram has brought an increasing concern regarding the prevalence of fake and spam accounts.

- Distort engagement metrics
- Spread misinformation
- Degrade the overall user experience

Goal: Aim to develop a robust machine learning model to classify Instagram accounts as either authentic or spam based on various account features.

Outcome: Enhance the reliability of online interactions, preserve the integrity of social media analytics, and mitigating the negative consequence of false online behavior. Foster a safe online community for users.

Dataset

Dataset: Instagram Fake Spammer and Genuine Accounts

- Download from Kaggle
- Data Collected using a crawler from March 2019
- Contains 12 variables, 696 observations

Data preprocessing: handle missing values and using dummies to encode categorical feature

```
Independent Variable Description
Profile Pic
                           Indicates whether the user has a profile picture (1 = \text{Yes}, 0 = \text{No})
Nums/Length Username
                          Ratio of the number of numerical characters in the username to its length
Fullname Words
                          Full name represented in word tokens
Nums/Length Fullname
                          Ratio of the number of numerical characters in the full name to its length
Name == Username
                          Indicates whether the username and full name are the same (1 = Yes, 0 = No)
Description Length
                          Length of the bio in characters
External URL
                          Indicates whether the account has an external URL (1 = Yes, 0 = No)
Private
                          Indicates whether the account is private (1 = Yes, 0 = No)
#Posts
                          Total number of posts made by the account
#Followers
                          Number of followers the account has
#Follows
                          Number of accounts the user follows
Dependent Variable
                          Class indicating whether the account is genuine (0) or spam (1)
```

1) handle missing values

```
train.fillna(0. inplace=True)
 test.fillna(0. inplace=True)
 # 2) feature engineering: use dummies to encode categorical features
 train = pd.get dummies(train, drop first=True)
 test = pd.qet dummies(test, drop first=True)
 train.info()
<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 576 entries, 0 to 575
 Data columns (total 12 columns):
     Column
                            Non-Null Count
     profile pic
                            576 non-null
     nums/length username 576 non-null
                                            float64
     fullname words
                            576 non-null
                                            int64
     nums/length fullname 576 non-null
                                            float64
     name==username
                            576 non-null
                                            int64
     description length
                            576 non-null
                                            int64
     external URL
                            576 non-null
                                            int64
     private
                                            int64
                            576 non-null
                                            int64
     #posts
                                            int64
     #followers
                            576 non-null
     #follows
                            576 non-null
                                            int64
                            576 non-null
 dtypes: float64(2), int64(10)
 memory usage: 54.1 KB
```

Heatmap: No high correlated features

Plot: Top three covariates with "fake"

- Profile pic (negative corr)
- Nums/Length username (positive corr)
- Description Length (negative corr)

[7]	train.describe()												
₹		profile pic	nums/length username	fullname words	nums/length fullname	name==username	description length	external URL	private	#posts	#followers	#follows	fake
	count	576.000000	576.000000	576.000000	576.000000	576.000000	576.000000	576.000000	576.000000	576.000000	5.760000e+02	576.000000	576.000000
	mean	0.701389	0.163837	1.460069	0.036094	0.034722	22.623264	0.116319	0.381944	107.489583	8.530724e+04	508.381944	0.500000
	std	0.458047	0.214096	1.052601	0.125121	0.183234	37.702987	0.320886	0.486285	402.034431	9.101485e+05	917.981239	0.500435
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000e+00	0.000000	0.000000
	25%	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	3.900000e+01	57.500000	0.000000
	50%	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	9.000000	1.505000e+02	229.500000	0.500000
	75%	1.000000	0.310000	2.000000	0.000000	0.000000	34.000000	0.000000	1.000000	81.500000	7.160000e+02	589.500000	1.000000
	max	1.000000	0.920000	12.000000	1.000000	1.000000	150.000000	1.000000	1.000000	7389.000000	1.533854e+07	7500.000000	1.000000

- About 70% of accounts have a profile pic
- Fake accounts are more likely to have usernames with a higher proportion of numbers
- The average proportion of numbers in usernames is about 0.163, but the max can goes to 0.920
- Fake accounts are more likely to have shorter description
- 50% of them have no description

02

Model Development

Model Development Diagram

Cleaned Data

Model Complexity

Logistic Regression Decision Tree

Random Forest Gradient Boosting

XGBoost

Support Vector Machine (SVM)

Sequential Neural Network

Evaluation & Conclusion on Best-Performing Model

Evaluation Metrics

Our data:

- 50% fake and 50% not fake Instagram accounts and with not excessively large size, providing a balanced scenario.

Accuracy

Provides a straightforward measure of how well the model performs overall

Precision

Minimizes false positives (i.e., misclassifying a genuine account as fake) to avoid unnecessary costs

ROC-AUC

Presents the model's ability to distinguish between the two classes across various decision thresholds

Regression-Based Model Tuning

Tree-Based Model Tuning

Random Forest Baseline: Default setting Tree Pruning: Grid search CV with 5-fold Randomized search CV Compete results and select the best-performing model within Random Forest models

Boosting Model Tuning

Advanced Non-Linear Model Training

03

Model Results

Model Development Diagram

Model Complexity

Regression-based

Tree-based

Boosting-based

Advanced Non-Linear

Best-Performing Model

LR with default setting

Random Forest with Grid Search CV

XGBoost with Random Search CV Sequential Neural Network

Best Results Overview

Models	Accuracy	Precision	ROC-AUC		
Logistic Regression	0.92	0.89	0.97		
Random Forest	0.925	0.93	0.99		
XGBoost	0.94	0.92	0.98		
Sequential Neural Network	0.89	0.91	0.96		

Model 1: Random Forest Model

More Evaluation Methods

Confusion Matrix

Bootstrapping

The false positives and false negatives are reasonably low, but there is room for further optimization depending on the specific needs of the application (e.g., reducing false positives if misclassifying genuine accounts as fake is costly).

Performing well with an accuracy of around 91-92%, and this performance is stable as evidenced by the narrow range of the accuracy distribution.

The low standard deviation (1.36%) suggests that the model is not overfitting to specific data samples, but rather generalizes well across different subsets of the data.

Random Forest Model

Feature Importance

- #followers and #posts are the most important features in determining whether an Instagram account is fake or not
- The model relies heavily on typical patterns found in genuine accounts (like more followers, posts, and detailed usernames) and less on attributes that might be misleading in fake accounts (such as having an external URL).
- Understanding these feature importances can help in improving the model's focus on critical features and potentially guide strategies to detect fake accounts more effectively.

Model 2: Deep Learning Model

Neural Network: Sequential neural network designed for binary classification.

Methods:

- Fine-turning: Adam Optimizer
- Early Stopping
- Measure Performance: binary cross-entropy
- Training: batch size: 50, epochs: 64
- Prediction and Evaluation: Predict on new data and access accuracy

Deep Learning Model

Neural Network: Sequential neural network designed for binary classification.

Conclusion:

- The model performs well, with high accuracy (~90%) and low loss, both in training and validation sets.
- Minimal overfitting is observed, as evidenced by small gap between training and validation accuracy/loss.
- **Early improvement**: The model shows quick learning in the first few epochs, and then the performance stabilizes, which is a good sign of convergence.

04

Discussion

Key Insights

Random Forest:

- Balanced accuracy, precision, and interpretability.
- Highlights key distinguishing features like follower count and username characteristics.

Sequential Neural Network:

- Captures deeper, non-linear relationships.
- Potential for better performance with larger datasets.

Performance Comparison:

- Models align with or slightly outperform existing approaches in spam detection (85–95% accuracy).
- Feature engineering (e.g., profile picture presence, username traits) significantly contributed to model success.

Limitations

Feature Availability

Dataset features may not fully capture nuanced spam behaviors.

Inferential

Small dataset (696 samples) limits generalizability.

Conclusion

Summary:

- Developed a machine learning pipeline for classifying Instagram accounts.
- Random Forest was the best performer due to accuracy and interpretability.
- Key features like follower count and username characteristics are critical.

Contributions:

- Provides a scalable framework for spam detection.
- Enhances the reliability of social media analytics.

Future Directions:

- Incorporate additional behavioral features (e.g., interaction patterns).
- Test models on larger datasets to validate scalability and robustness.
- Optimize deep learning models for complex, high-dimensional data.

Thank You!

