Proponta 1

Pregunta 1

Suponga que $u: \mathbb{R}^L_+ \to \mathbb{R}$ representa a preferencias localmente no saciadas. Demuestre que la función de utilidad indirecta $v(p, \omega)$ es cuasiconvexa.

Sea v la f. au utiliand indirecta. Suponga p, \bar{p}, w $y \bar{w}$ tales eye $v(p, w) > v(\bar{p}, \bar{w})$.

Ello implica que $u(x(p,w)) > u(x(\bar{p},\bar{w}))$. Ello implica que $x(\bar{p},\bar{w}) . Por lo tanto, <math>x(p,\bar{w})$ no esta en lo, recta presupuestaria a precios p y renta w. Como z es l.n.s. z cumple la ley de Walres, por lo que $x(p,w) \cdot p = w$. Luego

 $\lambda \propto (\rho, \omega) + (1-\tilde{\eta}) \times (\tilde{\rho}, \tilde{\omega}) \in \mathcal{B}(\rho, \omega), \quad \forall \lambda \in [0, L].$

(on ello, $u(3x(p,w)+(1-3)x(\bar{p},\bar{w})) \leq v(p,w) = ma_{\bar{x}} \left\{v(p,w), v(\bar{p},\bar{w})\right\}$.

Pregunta 2

Suponga una economía con dos bienes $(x_1 \ y \ x_2)$, los que tienen precios $p = (p_1, p_2)$. Un agente posee renta igual a ω y sus preferencias \succeq pueden ser representadas por una función de utilidad CES dada por

$$u(x_1,x_2) = \left[\alpha_1 x_1^{\theta} + \alpha_2 x_2^{\theta}\right]^{1/\theta},$$

donde α_1 , α_2 y θ son escalares positivos.

- a) Muestre que las preferencias son localmente no saciadas y, por lo tanto, el agente gastará todo su ingreso.
- b) Resuelva el problema de maximización de utilidad del agente. Caracterice la demanda marshalliana y la función de utilidad indirecta.
- c) Muestre que la demanda marshalliana es homogénea de grado cero.
- d) Muestre que la función de utilidad indirecta es homogénea de grado cero.
- e) Muestre que $v(p, \omega)$ es estrictamente creciente en ω .

$$\alpha) \frac{\partial U}{\partial x_{1}} = \frac{1}{\theta} (\alpha_{1}x_{1}^{\theta} + \alpha_{1}x_{2}^{\theta})^{\frac{1-\theta}{\theta}} \cdot \theta \alpha_{1}x_{1}^{\theta-1} > 0$$

$$\frac{\partial U}{\partial x_{1}} = (\alpha_{1}x_{1}^{\theta} + \lambda_{2}x_{2}^{\theta})^{\frac{1-\theta}{\theta}} \alpha_{2}x_{2}^{\theta-1} > 0$$

$$3' \quad x_{1} = x_{2} = 0, \quad U(0,0) = 0. \quad \text{Luepo, no how maximos locales.} \Rightarrow l.n.s.$$

$$Dado \text{ ope } \approx \text{ son } l.n.s., \text{ se cumplina la ley de Wolnes.}$$

$$b) \quad \text{máx } \left[d_{1}x_{1}^{\theta} + \alpha_{2}x_{2}^{\theta} \right]^{\frac{1}{\theta}}$$

max
$$\left[\frac{1}{2} \right]_{1}^{1} + \frac{1}{2} \left[\frac{1}{2} \right]_{2}^{1}$$

s.a. $\rho_{1} x_{1} + \rho_{2} x_{2} = R$

$$\mathcal{L} = \left[\frac{1}{2} \cdot \chi_{1}^{p} + \alpha_{2} \chi_{2}^{p} \right]^{\frac{1}{p}} + \lambda \left[\frac{1}{p} - \rho_{1} \chi_{1} - \rho_{2} \chi_{2} \right]$$

$$\frac{\partial \mathcal{L}}{\partial x_{1}} = \frac{1}{p} \left[\frac{1}{2} \alpha_{1} \chi_{1}^{p} + \alpha_{2} \chi_{2}^{p} \right]^{\frac{1-p}{p}} \cdot \rho \cdot \alpha_{1} \chi_{1}^{p-1} - \lambda \rho_{1} = 0$$

$$\frac{\partial \mathcal{L}}{\partial x_{2}} = \frac{1}{p} \left[\frac{1}{2} \alpha_{1} \chi_{1}^{p} + \alpha_{2} \chi_{2}^{p} \right]^{\frac{1-p}{p}} \cdot \rho \cdot \alpha_{2} \chi_{2}^{p-1} - \lambda \rho_{2} = 0$$

$$\frac{\alpha_{1}^{\prime} \chi_{1}^{p-1}}{\alpha_{1}^{\prime} \chi_{2}^{p-1}} = \frac{\rho_{1}}{\rho_{2}}$$

$$\left(\frac{\chi_{1}^{\prime} \chi_{2}^{p-1}}{\chi_{2}} \right)^{\frac{1}{p-1}} \cdot \frac{\alpha_{2}^{\prime}}{\alpha_{1}}$$

$$\chi_{1} = \left[\frac{\rho_{1} \alpha_{2}}{\rho_{2} \alpha_{1}} \right]^{\frac{1}{p-1}} \chi_{2}$$

$$\frac{\partial \mathcal{L}}{\partial x} = p_1 x_1 + p_2 x_2 - R$$

$$\lambda_{2}^{+} = \frac{R}{P_{1} \Sigma^{+} P_{2}} = \frac{R}{P_{1} \left[\frac{P_{1} \alpha_{2}}{P_{2} \alpha_{1}}\right]^{\frac{1}{p-1}} + P_{2}}$$

$$x_1^+ = \frac{P}{P_1 \Omega + P_2} \cdot \Omega$$

$$2_{1}^{*} = \frac{R}{P_{1} + \frac{P^{2}}{\Gamma 2}} = \frac{R}{P_{1} + P_{2} \left[\frac{\rho_{1} \alpha_{2}}{\rho_{2} \alpha_{1}}\right]^{\frac{1}{\Gamma \rho}}}$$

$$v(p,R) = \left[\frac{R}{\varphi_1 \left[\frac{p_1 \alpha_2}{p_2 \alpha_1} \right]^{\frac{1}{p-1}} + P^2} \right]^{\frac{1}{p}} + \alpha_2 \left(\frac{R}{p_1 + p_2 \left[\frac{p_1 \alpha_2}{p_2 \alpha_1} \right]^{\frac{1}{p-p}}} \right)^{\frac{1}{p}} \right]^{\frac{1}{p}}$$

c)
$$x_1(\lambda \rho_1 \lambda w) = \frac{\lambda R}{\lambda \rho_1 + \lambda P_2 \left[\frac{\lambda \rho_1 \omega_2}{\lambda \rho_2 \omega_1}\right]^{\frac{1}{1-\rho}}} = \frac{R}{\rho_1 + \rho_2 \left(\frac{\rho_1 \omega_2}{\rho_2 \omega_1}\right)^{\frac{1}{1-\rho}}} = x_1(\rho, w)$$

$$\chi_{2}(\lambda \rho, \lambda w) = \frac{\lambda R}{\lambda P_{1} \frac{1}{\omega^{2}} \frac{1}{\rho^{-1}} + \rho_{2} \cdot \lambda} = \frac{R}{\rho_{1} \left(\frac{\rho_{1} \omega_{2}}{\rho_{2} \omega_{1}}\right)^{\frac{1}{\rho}-1} + \rho_{2}} = \chi_{2}(\rho_{1} w).$$

Luego, x(p, w) es nomogéner de provois cero.

d)
$$v(xp_1xw) = u(x(xp_1xw)) = u(x(p_1w)) = v(p_1w)$$

e)
$$v(p,p) = \frac{1}{\left[\alpha_1\left(\frac{p_1\alpha_2}{p_1}\right)^{\frac{1}{p-1}} + p_2\right]} + \alpha_2\left(\frac{1}{p_1 + p_2\left[\frac{p_1\alpha_2}{p_2\alpha_1}\right]^{\frac{1}{p-p}}}\right)^{p}\right]^{\frac{1}{p}}}$$

Pregunta 3

Suponga que u(x) es una función de utilidad representa preferencias localmente no saciadas, siendo u estrictamente cuasicóncava. Muestre que si u(x) es homogénea de grado uno, entonces la demanda marshalliana $x(p,\omega)$ y la función de utilidad indirecta $v(p,\omega)$ son homogéneas de grado uno en ω .

Si u(x) es homogénico de prado 1 enton ces Au(x) = u(Ax) $\forall A > 0$.

Notar que $\lambda p \cdot x(p,w) \leq \lambda w$. Sea \bar{x} una canosta ted que $p \cdot \bar{x} \leq \lambda w$. Luego, $p \cdot (\lambda^{-1}\bar{x}) \leq w$. Ello implica que $u(\lambda^{-1}\bar{x}) \leq u(x(p,w))$. Por la homogeneidad \bar{x} tiene que $u(\bar{x}) \leq \lambda u(x(p,w)) = u(\lambda x(p,w))$. Dado que \bar{x} es una canosta cualquiera en $B(p,\lambda w)$ y $u(\lambda x(p,w)) \geq u(\bar{x})$, siendo $\lambda x(p,w)$ factible or precios p y renta λw , $\lambda x(p,w) = x(p,\lambda w)$. \rightarrow demondo \rightarrow homogénea au prado uno \rightarrow homogénea \rightarrow homogé

Pregunta 4

Sea \succeq una relación de preferencias definida en \mathbb{R}^3_+ . Suponga que \succeq puede ser representada por la siguiente función de utilidad

$$u(x, y, z) = -(x - y - z)^2$$
.

- a) Dado precios $p \gg 0$ y renta M > 0, ¿qué puede decir acerca de la existencia y unicidad de la demanda Marshalliana?
- b) ¿Se cumple la Ley de Walras?
- a) B(p,w) es compacto y u(·) es continua Teorema que Weierstrass nos oseguna que x(p,w) existe

No es viva
$$\rightarrow$$
 ejemplos $\rightarrow (z, 1, 1)$

$$\rightarrow (1, \frac{1}{2}, \frac{1}{2})$$

$$- (\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$$

b) No necesariamente -> > no & l.n.s.

 \rightarrow 51 tenemos renta M & posible consumir (0,0,0) con la que no se consume nada de la renta.

Pregunta 5 (Solemne 2022)

Considere una economía de solamente dos bienes: x y el bien compuesto y cuyo precio es $p_y = 1$. Supongamos que una persona tiene preferencias \succeq racionales, continuas y localmente no saciadas.

- a) El precio del bien x es $p_x = 1$ por cada unidad hasta un nivel de consumo \hat{x} (se tiene que $\hat{x} < 2\omega$). Todo lo que se consume más allá de \hat{x} , se paga a precio $p_x' = 2$ (solo el exceso se paga a p_x'). Demuestre la siguiente afirmación o dé un contraejemplo (puede ser un contraejemplo gráfico): "Si \geq es estrictamente convexa, la demanda marshalliana es siempre un único punto."
- b) El precio del bien x es $p_x = 1$ por cada unidad si el consumo es menor a \hat{x} (se tiene que $\hat{x} < 2\omega$). Si el consumo supera \hat{x} , todo lo consumido se paga a precio $p_x = 2$. Demuestre la siguiente afirmación o dé un contraejemplo (puede ser un contraejemplo gráfico): "Si \succeq es estrictamente convexa, la demanda marshalliana es siempre un único punto."

El conjunto presupuertario es connexo.

Los preferencias linis. asequiron la ley de Wolros.

 $S: \succeq G$ Stric. convers, $U(\cdot)$ & Stricts member was inconcave.

Suponpa que existen dos alemandos monshallianos $\chi(p_iw)$ n $\bar{\chi}(p_iw)$ tales que $\chi \neq \bar{\chi}$.

Dado que $B(p_iw)$ es convexo, $\chi_{\chi+(1-\bar{\chi})}\chi \in B(p_iw)$.

Por la cuasiconcavidad estricta, $\mu(\chi_{\chi+(1-\bar{\chi})}) > \min(\mu(\chi), \mu(\bar{\chi}))$, por lo que χ n $\bar{\chi}$ no maximizan $\mu(\cdot)$ auntro de $B(p_iw)$.

Contradicción.

aspin) es única.

- el conjunto presupuestario no es convexo no compocto.

→ la aemonola morshalliana no nelesoriamente existe.

Pregunta 6 (Solemne 2021)

Considere un consumidor que tiene preferencias \succsim racionales y continuas y busca maximizar sus preferencias. La siguiente figura muestra su conjunto presupuestario.

Figura 1: Conjunto presupuestario.

- a) Para la siguiente afirmación dé una demostración o un contra-ejemplo: "Si ≿ es localmente no saciada, el/la consumidor/a consumirá toda su riqueza."
- b) Para la siguiente afirmación dé una demostración o un contra-ejemplo: "Si ≿ es convexa, la demanda del consumidor es un conjunto convexo."
- a) Suponpa que \tilde{x} \approx l.n.s. pero que $p \cdot x(p, w) < \omega$. David que \tilde{x} es l.n.s. existe $\tilde{x} \in B(p, w)$ tal que $\tilde{x} \times x(p, w)$. Luego, x(p, w) no prede resolver PMax U. Contradicción.

b) Suponpa
$$u(x_1,x_1) = \alpha x_1 + \beta z$$

$$dx_1 + \beta x_2 \geq \alpha y_1 + \beta y_2$$

$$\lambda dx_1 + \lambda \beta x_2 + (1-\lambda)\alpha y_1 + (1-\lambda)\beta y_2$$

$$\lambda(\alpha x_1 + \beta x_2) + (1-\lambda)(\alpha y_1 + \beta y_2) \geq \alpha y_1 + \beta y_2$$

Luego, ul x1, x1) es cuasi cón cara.

Luepo, existe el coso perticular oconou

Luepo, la demanda no nelesoriamente es un conjunto convexo.