

Multi-source Domain Adaptation for Semantic Segmentation

Huihua Yang

02/05/2020

Contents

Multi-source Domain Adaptation for Semantic Segmentation:

- •1. Introduction
- •2. Problem setup
- •3. Network description
- •4. Experiment and results
- •5. Conclusion

1. Introduction

- 1. Semantic segmentation is Widely used in many applications
- **2.** Limitations on several semantic segmentation methods: data needed are expensive and time-consuming to obtain
- 3. Domain shift or dataset bias

Domain adaptation (DA) or knowledge transfer techniques: mitigate the gap between different domains but do not consider a more practical scenario

unsupervised domain adaptation (UDA): single source multi-source DA (MDA) :only focus on feature-level alignment

The author's method: MDA methods, feature level and pixel-level.

2. Problem setup

M sources domains: S_1 , S_2 , ..., S_M :

labeled;

 $X_i = \{x_i^j\}_{j=1}^{N_i}$: The observed data from S_i ; $Y_i = \{y_i^j\}_{j=1}^{N_i}$: The corresponding labels data drawn from source distribution $P_i(x, y)$, N_i is the number of samples in S_i ;

One target domain T:

unlabeled;

 $X_T = \{x_T^j\}_{j=1}^{N_T}$: the target data drawn from the target distribution $P_T(x, y)$ without label observation, N_T is the number of target samples

Two assumption:

- 1. homogeneity: The data from different domains are observed in the same image space but with different distributions;
- (2) closed set: All the domains share the same space of classes.

Dynamic Adversarial Image Generation (DAIG): keep semantic information, close to target domain.

Adversarial Domain Aggregation (ADA): More aggregated unified domain

Feature-aligned Semantic Segmentation (FSS): domain invariant in feature-level.

Figure 1: The framework of the proposed Multi-source Adversarial Domain Aggregation Network (MADAN). The colored solid arrows represent generators, while the black solid arrows indicate the segmentation network F. The dashed arrows correspond to different losses.

Dynamic Adversarial Image Generation (DAIG): keep semantic information, close to target domain.

GAN:

Generator $G_{S_i \to T}$: generate adapted images that fool D_T from target T; **Discriminator** D_T : trained simultaneously with each $G_{S_i \to T}$ to classify real target images X_T from adapted images $G_{S_i \to T}$.

$$\mathcal{L}_{GAN}^{S_i \to T}(G_{S_i \to T}, D_T, X_i, X_T) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log D_T(G_{S_i \to T}(\mathbf{x}_i)) + \mathbb{E}_{\mathbf{x}_T \sim X_T} \log[1 - D_T(\mathbf{x}_T)]. \tag{1}$$

GAN:

Generator $G_{T \rightarrow S_i}$: Inverse mapping of $G_{S_i \rightarrow T}$;

Discriminator D_i : classify X_i from $G_{T \to S_i}$.

$$\mathcal{L}_{GAN}^{T \to S_i}(G_{T \to S_i}, D_i, X_T, X_i) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log[1 - D_i(\mathbf{x}_i)] + \mathbb{E}_{\mathbf{x}_t \sim X_T} \log D_i(G_{T \to S_i}(\mathbf{x}_t)). \tag{2}$$

Dynamic Adversarial Image Generation (DAIG): keep semantic information, close to target domain.

The cycle-consistency loss:

$$\mathcal{L}_{cyc}^{S_i \leftrightarrow T}(G_{S_i \to T}, G_{T \to S_i}, X_i, X_T) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \parallel G_{T \to S_i}(G_{S_i \to T}(\mathbf{x}_i)) - \mathbf{x}_i \parallel_1 + \mathbb{E}_{\mathbf{x}_T \sim X_T} \parallel G_{S_i \to T}(G_{T \to S_i}(\mathbf{x}_t)) - \mathbf{x}_t \parallel_1.$$
(3)

Dynamic semantic consistency (DSC) loss

$$\mathcal{L}_{sem}^{S_i}(G_{S_i \to T}, X_i, F_i, F_A) = \mathbb{E}_{\mathbf{x}_i \sim X_i} KL(F_A(G_{S_i \to T}(\mathbf{x}_i)) || F_i(\mathbf{x}_i)), \tag{4}$$

where $KL(\cdot||\cdot)$ is the KL divergence between two distributions.

 F_i : A segmentation model pretrained on (X_i, Y_i) ;

 $\boldsymbol{F_A}$: The task segmentation model trained on the adapted domain

Adversarial Domain Aggregation (ADA):

More aggregated unified domain

The sub-domain aggregation discriminator (SAD)

$$\mathcal{L}_{SAD}^{S_i}(G_{S_1 \to T}, \dots G_{S_i \to T}, \dots, G_{S_M \to T}, D_A^i) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log D_A^i(G_{S_i \to T}(\mathbf{x}_i)) + \frac{1}{M-1} \sum_{j \neq i} \mathbb{E}_{\mathbf{x}_j \sim X_j} \log[1 - D_A^i(G_{S_j \to T}(\mathbf{x}_j))].$$
(5)

The cross-domain cycle discriminator (CCD)

$$\mathcal{L}_{CCD}^{S_i}(G_{T \to S_1}, \dots G_{T \to S_{i-1}}, G_{T \to S_{i+1}}, \dots, G_{T \to S_M}, G_{S_i \to T}, D_i) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log D_i(\mathbf{x}_i) + \frac{1}{M-1} \sum_{j \neq i} \mathbb{E}_{\mathbf{x}_j \sim X_j} \log[1 - D_i(G_{T \to S_i}((G_{S_j \to T}(\mathbf{x}_j)))].$$

$$(6)$$

Feature-aligned Semantic Segmentation (FSS): domain invariant in feature-level.

The cross-entropy loss:

$$\mathcal{L}_{task}(F, X', Y) = -\mathbb{E}_{(\mathbf{x}', \mathbf{y}) \sim (X', Y)} \sum_{l=1}^{L} \sum_{h=1}^{H} \sum_{w=1}^{W} \mathbb{1}_{[l = \mathbf{y}_{h, w}]} \log(\sigma(F_{l, h, w}(\mathbf{x}'))), \qquad (7)$$
where L is the number of classes, H, W are the height and width of the adapted images, σ is the softmax function, $\mathbb{1}$ is an indicator function, and $F_{l, h, w}(\mathbf{x}')$ is the value of $F(\mathbf{x}')$ at index (l, h, w) .
$$Y = \bigcup_{i=1}^{M} Y_i.$$

The feature-level GAN loss

$$\mathcal{L}_{feat}(F_f, D_{F_f}, X', X_T) = \mathbb{E}_{\mathbf{x}' \sim X'} \log D_{F_f}(F_f(\mathbf{x}')) + \mathbb{E}_{\mathbf{x}_T \sim X_T} \log[1 - D_{F_f}(F_f(\mathbf{x}_T))], \quad (8)$$

where $F_f(\cdot)$ is the output of the last convolution layer (i.e. a feature map) of the encoder in F.

Dynamic Adversarial Image Generation (DAIG): keep semantic information, close to target domain.

Adversarial Domain Aggregation (ADA): More aggregated unified domain

Feature-aligned Semantic Segmentation (FSS): domain invariant in feature-level.

$$\mathcal{L}_{MADAN}(G_{S_{1}\to T}\cdots G_{S_{M}\to T},G_{T\to S_{1}}\cdots G_{T\to S_{M}},D_{1}\cdots D_{M},D_{A}^{1}\cdots D_{A}^{M},D_{F_{f}},F)$$

$$=\sum_{i}\left[\mathcal{L}_{GAN}^{S_{i}\to T}(G_{S_{i}\to T},D_{T},X_{i},X_{T})+\mathcal{L}_{GAN}^{T\to S_{i}}(G_{T\to S_{i}},D_{i},X_{T},X_{i})\right.$$

$$+\mathcal{L}_{cyc}^{S_{i}\leftrightarrow T}(G_{S_{i}\to T},G_{T\to S_{i}},X_{i},X_{T})+\mathcal{L}_{sem}^{S_{i}}(G_{S_{i}\to T},X_{i},F_{i},F)$$

$$+\mathcal{L}_{SAD}^{S_{i}}(G_{S_{1}\to T},\ldots G_{S_{i}\to T},\ldots,G_{S_{M}\to T},D_{A}^{i})$$

$$+\mathcal{L}_{CCD}^{S_{i}}(G_{T\to S_{1}},\ldots G_{T\to S_{i-1}},G_{T\to S_{i+1}},\ldots,G_{T\to S_{M}},G_{S_{i}\to T},D_{i})\right]$$

$$+\mathcal{L}_{task}(F,X',Y)+\mathcal{L}_{feat}(F_{f},D_{F_{f}},X',X_{T}).$$

$$(9)$$

The training process corresponds to solving for a target model F according to the optimization:

$$F^* = \arg\min_{F} \min_{D} \max_{G} \mathcal{L}_{MADAN}(G, D, F), \tag{10}$$

4. Experiments & Results: The Visualization results

Figure 2: Qualitative semantic segmentation result from GTA and SYNTHIA to Cityscapes. From left to right are: (a) original image, (b) ground truth annotation, (c) source only from GTA, (d) CycleGANs on GTA and SYNTHIA, (e) +CCD+DSC, (f) +SAD+DSC, (g) +CCD+SAD+DSC, and (h) +CCD+SAD+DSC+Feat (MADAN).

4. Experiments & Results : Visualization

Figure 3: Visualization of image translation. From left to right are: (a) original source image, (b) CycleGAN, (c) CycleGAN+DSC, (d) CycleGAN+CCD+DSC, (e) CycleGAN+SAD+DSC, (f) CycleGAN+CCD+SAD+DSC, and (g) target Cityscapes image. The top two rows and bottom rows are $GTA \rightarrow Cityscapes$ and $SYNTHIA \rightarrow Cityscapes$, respectively.

4. Experiments & Results: Comparison with State-of-the-art

Table 2: Comparison with the state-of-the-art DA methods for semantic segmentation from GTA and SYNTHIA to Cityscapes. The best class-wise IoU and mIoU trained on the source domains are emphasized in bold (similar below).

The source-only method obtains the worst performance.

All adaptation methods perform better

MADAN achieves the highest mIoU score

Standards	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegettion	sky	person	rider	car	snq	m-bike	bicycle	MoU
	GTA	54.1	19.6	47.4	3.3	5.2	3.3	0.5	3.0	69.2	43.0	31.3	0.1	59.3	8.3	0.2	0.0	21.7
Source-only	SYNTHIA	3.9	14.5	45.0	0.7	0.0	14.6	0.7	2.6	68.2	68.4	31.5	4.6	31.5	7.4	0.3	1.4	18.5
	GTA+SYNTHIA	44.0	19.0	60.1	11.1	13.7	10.1	5.0	4.7	74.7	65.3	40.8	2.3	43.0	15.9	1.3	1.4	25.8
GTA-only DA	FCN Wld 47	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	64.6	44.1	4.2	70.4	7.3	3.5	0.0	27.1
	CDA 48	74.8	22.0	71.7	6.0	11.9	8.4	16.3	11.1	75.7	66.5	38.0	9.3	55.2	18.9	16.8	14.6	28.9
	ROAD [50]	85.4	31.2	78.6	27.9	22.2	21.9	23.7	11.4	80.7	68.9	48.5	14.1	78.0	23.8	8.3	0.0	39.0
	AdaptSeg [71]	87.3	29.8	78.6	21.1	18.2	22.5	21.5	11.0	79.7	71.3	46.8	6.5	80.1	26.9	10.6	0.3	38.3
	CyCADA 32	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	60.7	50.5	9.0	76.9	28.2	4.5	0.0	38.7
	DCAN [55]	82.3	26.7	77.4	23.7	20.5	20.4	30.3	15.9	80.9	69.5	52.6	11.1	79.6	21.2	17.0	6.7	39.8
	FCN Wld 47	11.5	19.6	30.8	4.4	0.0	20.3	0.1	11.7	42.3	68.7	51.2	3.8	54.0	3.2	0.2	0.6	20.2
	CDA 48	65.2	26.1	74.9	0.1	0.5	10.7	3.7	3.0	76.1	70.6	47.1	8.2	43.2	20.7	0.7	13.1	29.0
SYNTHIA-only DA	ROAD [50]	77.7	30.0	77.5	9.6	0.3	25.8	10.3	15.6	77.6	79.8	44.5	16.6	67.8	14.5	7.0	23.8	36.2
35	CyCADA 32	66.2	29.6	65.3	0.5	0.2	15.1	4.5	6.9	67.1	68.2	42.8	14.1	51.2	12.6	2.4	20.7	29.2
	DCAN 55	79.9	30.4	70.8	1.6	0.6	22.3	6.7	23.0	76.9	73.9	41.9	16.7	61.7	11.5	10.3	38.6	35.4
Source-combined DA	CyCADA 32	82.8	35.8	78.2	17.5	15.1	10.8	6.1	19.4	78.6	77.2	44.5	15.3	74.9	17.0	10.3	12.9	37.3
Marking TOA	MDAN 69	64.2	19.7	63.8	13.1	19.4	5.5	5.2	6.8	71.6	61.1	42.0	12.0	62.7	2.9	12.3	8.1	29.4
Multi-source DA	MADAN (Ours)	86.2	37.7	79.1	20.1	17.8	15.5	14.5	21.4	78.5	73.4	49.7	16.8	77.8	28.3	17.7	27.5	41.4
Oracle-Train on Tgt	FCN [5]	96.4	74.5	87.1	35.3	37.8	36.4	46.9	60.1	89.0	89.8	65.6	35.9	76.9	64.1	40.5	65.1	62.6

Table 3: Comparison with the state-of-the-art DA methods for semantic segmentation from GTA and SYNTHIA to BDDS. The best class-wise IoU and mIoU are emphasized in bold.

Standards	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegettion	sky	person	rider	car	pns	m-bike	bicycle	Molm
Source-only	GTA	50.2	18.0	55.1	3.1	7.8	7.0	0.0	3.5	61.0	50.4	19.2	0.0	58.1	3.2	19.8	0.0	22.3
	SYNTHIA	7.0	6.0	50.5	0.0	0.0	15.1	0.2	2.4	60.3	85.6	16.5	0.5	36.7	3.3	0.0	3.5	17.1
	GTA+SYNTHIA	54.5	19.6	64.0	3.2	3.6	5.2	0.0	0.0	61.3	82.2	13.9	0.0	55.5	16.7	13.4	0.0	24.6
GTA-only DA	CyCADA 32	77.9	26.8	68.8	13.0	19.7	13.5	18.2	22.3	64.2	84.2	39.0	22.6	72.0	11.5	15.9	2.0	35.7
SYNTHIA-only DA	CyCADA 32	55	13.8	45.2	0.1	0.0	13.2	0.5	10.6	63.3	67.4	22.0	6.9	52.5	10.5	10.4	13.3	24.0
Source-combined DA	CyCADA 32	61.5	27.6	72.1	6.5	2.8	15.7	10.8	18.1	78.3	73.8	44.9	16.3	41.5	21.1	21.8	25.9	33.7
M. I.: D.	MDAN 691	35.9	15.8	56.9	5.8	16.3	9.5	8.6	6.2	59.1	80.1	24.5	9.9	53.8	11.8	2.9	1.6	25.0
Multi-source DA	MADAN (Ours)	60.2	29.5	66.6	16.9	10.0	16.6	10.9	16.4	78.8	75.1	47.5	17.3	48.0	24.0	13.2	17.3	36.3
Oracle-Train on Tgt	FCN [5]	91.7	54.7	79.5	25.9	42.0	23.6	30.9	34.6	81.2	91.6	49.6	23.5	85.4	64.2	28.4	41.1	53.0

4. Experiments & Results : Ablation Study

For all simulation to real adaptations, DSC achieves better results.

Table 4: Comparison between the proposed dynamic semantic consistency (DSC) loss in MADAN and the original SC loss in [32] on Cityscapes. The better mIoU for each pair is emphasized in bold.

Source	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegettion	sky	person	rider	car	snq	m-bike	bicycle	MoIm
	CycleGAN+SC	85.6	30.7	74.7	14.4	13.0	17.6	13.7	5.8	74.6	69.9	38.2	3.5	72.3	5.0	3.6	0.0	32.7
CTA	CycleGAN+DSC	76.6	26.0	76.3	17.3	18.8	13.6	13.2	17.9	78.8	63.9	47.4	14.8	72.2	24.1	19.8	10.8	38.1
GTA	CyCADA w/ SC	85.2	37.2	76.5	21.8	15.0	23.8	21.5	22.9	80.5	60.7	50.5	9.0	76.9	28.2	9.8	0.0	38.7
	CyCADA w/ DSC	84.1	27.3	78.3	21.6	18.0	13.8	14.1	16.7	78.1	66.9	47.8	15.4	78.7	23.4	22.3	14.4	40.0
	CycleGAN+SC	64.0	29.4	61.7	0.3	0.1	15.3	3.4	5.0	63.4	68.4	39.4	11.5	46.6	10.4	2.0	16.4	27.3
CVNITHA	CycleGAN + DSC	68.4	29.0	65.2	0.6	0.0	15.0	0.1	4.0	75.1	70.6	45.0	11.0	54.9	18.2	3.9	26.7	30.5
SYNTHIA	CyCADA w/ SC	66.2	29.6	65.3	0.5	0.2	15.1	4.5	6.9	67.1	68.2	42.8	14.1	51.2	12.6	2.4	20.7	29.2
	CyCADA w/ DSC	69.8	27.2	68.5	5.8	0.0	11.6	0.0	2.8	75.7	58.3	44.3	10.5	68.1	22.1	11.8	32.7	31.8

Table 5: Comparison between the proposed dynamic semantic consistency (DSC) loss in MADAN and the original SC loss in [32] on BDDS. The better mIoU for each pair is emphasized in bold.

Source	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegettion	sky	person	rider	car	snq	m-bike	bicycle	MoIm
	CycleGAN+SC	62.1	20.9	59.2	6.0	23.5	12.8	9.2	22.4	65.9	78.4	34.7	11.4	64.4	14.2	10.9	1.9	31.1
GTA	CycleGAN+DSC	74.4	23.7	65.0	8.6	17.2	10.7	14.2	19.7	59.0	82.8	36.3	19.6	69.7	4.3	17.6	4.2	32.9
	CyCADA w/ SC	68.8	23.7	67.0	7.5	16.2	9.4	11.3	22.2	60.5	82.1	36.1	20.6	63.2	15.2	16.6	3.4	32.0
	CyCADA w/ DSC	70.5	32.4	68.2	10.5	17.3	18.4	16.6	21.8	65.6	82.2	38.1	16.1	73.3	20.8	12.6	3.7	35.5
	CycleGAN+SC	50.6	13.6	50.5	0.2	0.0	7.9	0.0	0.0	63.8	58.3	21.6	7.8	50.2	1.8	2.2	19.9	21.8
SYNTHIA	CycleGAN + DSC	57.3	13.4	56.1	2.7	14.1	9.8	7.7	17.1	65.5	53.1	11.4	1.4	51.4	13.9	3.9	8.7	22.5
SINIMA	CyCADA w/ SC	49.5	11.1	46.6	0.7	0.0	10.0	0.4	7.0	61.0	74.6	17.5	7.2	50.9	5.8	13.1	4.3	23.4
	CyCADA w/ DSC	55	13.8	45.2	0.1	0.0	13.2	0.5	10.6	63.3	67.4	22.0	6.9	52.5	10.5	10.4	13.3	24.0

4. Experiments & Results : Ablation Study

Both domain aggregation methods can obtain better performance while SAD outperforms CCD

Add DSC loss could further improve the mIoU score;

Feature-level alignments also contribute to the adaptation task

Adding each one of them does not introduce performance degradation.

Table 6: Ablation study on different components in MADAN on Cityscapes. Baseline denotes using piexl-level alignment with cycle-consistency, +SAD denotes using the sub-domain aggregation discriminator, +CCD denotes using the cross-domain cycle discriminator, +DSC denotes using the dynamic semantic consistency loss, and +Feat denotes using feature-level alignment.

Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegettion	sky	person	rider	car	snq	m-bike	bicycle	MoU
Baseline	74.9	27.6	67.5	9.1	10.0	12.8	1.4	13.6	63.0	47.1	41.7	13.5	60.8	22.4	6.0	8.1	30.0
+SAD	79.7	33.2	75.9	11.8	3.6	15.9	8.6	15.0	74.7	78.9	44.2	17.1	68.2	24.9	16.7	14.0	36.4
+CCD	82.1	36.3	69.8	9.5	4.9	11.8	12.5	15.3	61.3	54.1	49.7	10.0	70.7	9.7	19.7	12.4	33.1
+SAD+CCD	82.7	35.3	76.5	15.4	19.4	14.1	7.2	13.9	75.3	74.2	50.9	19.0	66.5	26.6	16.3	6.7	37.5
+SAD+DSC	83.1	36.6	78.0	23.3	12.6	11.8	3.5	11.3	75.5	74.8	42.2	17.9	72.2	27.2	13.8	10.0	37.1
+CCD+DSC	86.8	36.9	78.6	16.2	8.1	17.7	8.9	13.7	75.0	74.8	42.2	18.2	74.6	22.5	22.9	12.7	38.1
+SAD+CCD+DSC	84.2	35.1	78.7	17.1	18.7	15.4	15.7	24.1	77.9	72.0	49.2	17.1	75.2	24.1	18.9	19.2	40.2
+SAD+CCD+DSC+Feat	86.2	37.7	79.1	20.1	17.8	15.5	14.5	21.4	78.5	73.4	49.7	16.8	77.8	28.3	17.7	27.5	41.4

Table 7: Ablation study on different components in MADAN on BDDS.

Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegettion	sky	person	rider	car	snq	m-bike	bicycle	MIoU
Baseline	31.3	17.4	55.4	2.6	12.9	12.4	6.5	18.0	63.2	79.9	21.2	5.6	44.1	14.2	6.1	11.7	24.6
+SAD	58.9	18.7	61.8	6.4	10.7	17.1	20.3	17.0	67.3	83.7	21.1	6.7	66.6	22.7	4.5	14.9	31.2
+CCD	52.7	13.6	63.0	6.6	11.2	17.8	21.5	18.9	67.4	84.0	9.2	2.2	63.0	21.6	2.0	14.0	29.3
+SAD+CCD	61.6	20.2	61.7	7.2	12.1	18.5	19.8	16.7	64.2	83.2	25.9	7.3	66.8	22.2	5.3	14.9	31.8
+SAD+DSC	60.2	29.5	66.6	16.9	10.0	16.6	10.9	16.4	78.8	75.1	47.5	17.3	48.0	24.0	13.2	17.3	34.3
+CCD+DSC	61.5	27.6	72.1	6.5	12.8	15.7	10.8	18.1	78.3	73.8	44.9	16.3	41.5	21.1	21.8	15.9	33.7
+SAD+CCD+DSC	64.6	38.0	75.8	17.8	13.0	9.8	5.9	4.6	74.8	76.9	41.8	24.0	69.0	20.4	23.7	11.3	35.3
+SAD+CCD+DSC+Feat	69.1	36.3	77.9	21.5	17.4	13.8	4.1	16.2	76.5	76.2	42.2	16.4	56.3	22.4	24.5	13.5	36.3

5. Conclusion

Their contribution:

- Might be the first work on multi-source structured domain adaptation
- Besides feature-level alignment, pixel-level alignment is further considered
- Conduct extensive experiments from synthetic data to real data

Further direction:

- Investigate multi-modal DA to better boost the adaptation performance
- Improve the computational efficiency of MADAN with techniques such as neural architecture search

why not change the world?®