

Radiometric Calibration by Transform Invariant Low-rank Structure

Joon-Young Lee¹ Boxin Shi² Yasuyuki Matsushita³ In-So Kweon¹ Katsushi Ikeuchi²

¹ Robotics and Computer Vision Lab, KAIST, Korea ² The University of Tokyo, Japan ³ Microsoft Research Asia, China

Radiometric Calibration

Radiometric calibration aims at recovering the *inverse response function*.

Transform Invariant Low-rank Structure

- Radiometric calibration problem as low-rank recovery problem
- > An irradiance matrix has a low-rank structure

Calibration Algorithm

- ➤ Rank minimization → Nuclear norm (sum of the singular values) minimization
- > Response function changes not only the rank, but also the nuclear norm

- We minimize the condition numbers (a ratio of singular values)
- Main factors causing rank variations
- Nonlinearity of response function
- Low-frequency nature: monotonic and smooth characteristics of response functions
- Only 2nd condition number has large value
- Image noise
- High-frequency nature: zero mean Gaussian random noise
- All the condition numbers are evenly affected

condition number		κ_2	κ_3	κ_4	κ_5
	RF 1	0.0000	0.0000	0.0000	0.0000
without noise	RF 2	0.0289	0.0034	0.0010	0.0005
	RF 3	0.1163	0.0177	0.0025	0.0001
	RF 4	0.0029	0.0000	0.0000	0.0000
with noise $(\sigma = 0.005)$	RF 1	0.0079	0.0077	0.0075	0.0072
	RF 2	0.0293	0.0059	0.0050	0.0048
	RF 3	0.1120	0.0175	0.0054	0.0046
	RF 4	0.0094	0.0087	0.0085	0.0081

Cost function

$$\hat{g} = \underset{g}{\operatorname{argmin}} \kappa_2(A) + \lambda \sum_{t} H\left(-\frac{\partial g(t)}{\partial D}\right) \quad \text{s.t.} \quad A = g \circ B$$

g: inverse response function, **D**: observation matrix H(x)=1 if $x\geq 0$, otherwise H(x)=0

Experiments

- Simulation of multiple exposure input
- 201 response functions in DoRF
- 4 radiance distributions
- Gaussian noise with σ (=0, 0.005, 0.010, 0.020, 0.030)

Real-world experiment

Conclusions

- We introduce radiometric calibration algorithm that use low-rank structure of irradiance matrix
- Radiometric calibration is formulated as rank minimization and solved by the condition number minimization
- Our method can avoid over-fitting
- Our method can be applied to various kind of radiometric calibration problems