

ASI-J-24016GF-DC-I-D/I

Item	Contents	Unit
LCD Type	FSTN	
Polarizer Type	Reflective/Positive	
Viewing Direction	6:00	
Interface	8 Bit Parallel interface	
Number of Dots/ characters	240 X 160	Dots
Dot size (W×H)	0.26X0.26	mm
Dot Pitch (W×H)	0.275X0.275	mm
Active Area	65.985×43.985	mm
Outline Dimension (W x H x D)	83.8×60.0×6.7	mm
LCD Controller & Driver	ST7586S	
LCD Driving Method	1/160 Duty 1/14 Bias	
Operating Temperature	-10℃~+60℃	
Storage Temperature	-20℃~+70℃	

Record of Revision

Date	Revision No.	Summary

1. Scope

ASI-J -24016GF-DC-I-D/I LCM unit consists of 240x160 characters LCD, and ST7586S which incorporates LCD controller and common/segment driver.

2. Application

Digital equipments which need display, instrumentation, remote control, electronic product.

3. General Information

Item	Contents	Unit
LCD Type	FSTN	
Polarizer Type	Reflective/Positive	
Viewing Direction	6:00	
Interface	8 Bit Parallel interface	
Number of Dots/ characters	240 X 160	Dots
Dot size (W×H)	0.26X0.26	mm
Dot Pitch (W×H)	0.275X0.275	mm
Active Area	65.985×43.985	mm
Outline Dimension (W x H x D)	83.8×60.0×6.7	mm
LCD Controller & Driver	ST7586S	
LCD Driving Method	1/160 Duty 1/14 Bias	
Operating Temperature	-10℃~+60℃	
Storage Temperature	-20℃~+70℃	

4. Outline Drawing

5. Interface signals

Pin No.	Symbol	Function				
1	NC	Not used				
2	NC	Not used				
3	АО	Register select input pin - A0 = "H": DB0 to DB8 or SI are display data - A0 = "L": DB0 to DB8 or SI are control data				
4	WR	Write signal. Low active				
5	DB0					
6	DB1					
7	DB2					
8	DB3	The Object of the street of the				
9	DB4	The 8 bit bi-directional bus				
10	DB5					
11	DB6					
12	DB7					
13	RD	Read signal, low active				
14	RES	Reset input pin. When RST is "L", initialization is executed.				
15	IF2	These pins select interface operation mode.				
		IF2 IF1 MPU interface type				
16	IF1	H L 80 series 8-bit parallel L 68 series 8-bit parallel				
17	XCS	Chip select input pin Data/instruction I/O is enabled only when XCS is "L". When chip select is non-active, DBO to DB8 may be high impedance.				
18	VDD	Power supply for LCD model (VDD=3.0 V)				
19	VSS	Power ground				
20	VDD	Power supply for LCD mode (VDD=3.0 V)				
21~33	NC	Not used				
34	VM	LCD bias supply voltage				
35	V0	Positive LCD driver supply voltages				
36	XV0	Negative LCD driver supply voltages				
37	VG	Bias LCD driver supply voltages				
38	VD1	Connect a capacitor between VD1 and VSS				
39~40	NC	Not used				

6. Absolute maximum Ratings

6.1. Electrical Absolute max. ratings

Parameter	Symbol	MIN	MAX	Unit	Remark
Power Supply Voltage	VDD	-0.3	3.6	V	
LCD driving Voltage	V0-XV0	-0.3	19	V	
Input Voltage VIN		-0.3	VDD+0.3	V	

6.2. Environment Conditions

Item	Symbol	MIN	MAX	Unit	Remark
Operating Temperature	TOPR	-10	60	$^{\circ}$ C	
Storage Temperature	TSTG	-20	70	$^{\circ}$ C	

7. Electrical Specifications

7.1 Electrical characteristics

VSS=0V, Ta=25℃

ltem	Symbol	MIN	ТҮР	MAX	Unit	Remark	
Logic Supply Voltage	VDD	2.7	3.0	3.3	V		
		17.9	18.1	18.3		-10℃	
LCM Driver Voltage	VOP Note1		17.3	17.5	17.7	V	25℃
		15.7	15.9	16.1		60℃	
	Low VIL	0.7VDD		VDD	V		
Input Signal Voltage	High VIH	VSS		0.3VDD	V		
Supply current	IDD	-	1.6	-	mA	VDD=3V;VOP=17.5V; Pattern= Full display	
		-	2.8	5.0	IIIA	VDD=3V;VOP=17.5V; Pattern= Horizontal line Note2	

Note: 1 The VOP test point is V0- XV0 2 The Maximum current display

7.2.Block Diagram

8. Command/AC Timing

8.1 Timing Characteristics

System Bus Timing for 8080 MCU Interface

ltem	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time	A0	tAW8		0	_	
Address hold time	Au	tAH8		0	_	
System cycle time (WRITE)		tCYC8		240	_	
WR L pulse width (WRITE)	WR	tCCLW		100	_	
WR H pulse width (WRITE)		tCCHW		100	_	
System cycle time (READ)		tCYC8		500	_	ne
/RD L pulse width (READ)	RD	tCCLR		220		ns
/RD H pulse width (READ)		tCCHR		220		
WRITE Data setup time		tDS8		20	_	
WRITE Data hold time	D[7:0]	tDH8		20	_	
READ access time	D[7.0]	tACC8	CL = 30 pF	_	100	
READ Output disable time		tOH8	CL = 30 pF	10	110	

Note:

- The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≤ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≤ (tCYC8 – tCCLR – tCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDD1 as the reference.
- 3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.

System Bus Timing for 6800 MCU Interface

ltem	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time	^0	tAW6		0	_	
Address hold time	A0	tAH6		0	_	1
System cycle time (WRITE)		tCYC6		240	_	
Enable L pulse width (WRITE)	7	tEWLW		100	_]
Enable H pulse width (WRITE)] _E	tEWHW		100	_]
System cycle time (READ)] -	tCYC6		500		ns
Enable L pulse width (READ)		tEWLR		220	_	115
Enable H pulse width (READ)	7	tEWHR		220		
Write data setup time		tDS6		20	_	
Write data hold time	DIZ-01	tDH6		20	_	1
Read data access time	D[7:0]	tACC6	CL = 16 pF	_	100	
Read data output disable time	7	tOH6	CL = 16 pF	10	110	

Note:

- The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≤ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≤ (tCYC6 – tEWLR – tEWHR) are specified.
- 2. All timing is specified using 20% and 80% of VDD1 as the reference.
- 3. tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

ltem	Symbol	Condition	Min.	Max.	Unit
Reset time	tR		120		ms
Reset "L" pulse width	tRW		10	_	us

9. Optical Specification

Ta=25°C

Item		Symbol	Condition	Min	Тур.	Max.	Unit	Remark
Contrast F	Ratio	CR	θ=0°	1	6.9	1		Note1 Note2
Response Time	Rise	tr	25 ℃	-	150	225	ms	Note1
Response Time	Fall	tf	200	-	370	555	ms	Note3
	Warran America				40	-		
Viow And			CR≧2	-	40	-	Degree	Note 4
View Angles		ΘL	UN=2	-	40	-	Degree	Note 4
		θR		-	40	-		

Note 1: Definition of optical measurement system.

Temperature = $25^{\circ}C(\pm 3^{\circ}C)$

LED back-light: ON, Environment brightness < 150 lx

Note 2: Contrast ratio is defined as follow:

$Contrast\ Ratio = \frac{Surface\ Luminance\ with\ all\ whitepixels}{Surface\ Luminance\ with\ all\ black\ pixels}$

Note 3: Response time is defined as follow:

Response time is the time required for the display to transition from black to white (Rise Time, Tr) and from white to black(Decay Time, Tf).

Note 4: Viewing angle range is defined as follow:

Viewing angle is measured at the center point of the LCD.

10. Environmental / Reliability Tests

No	Test Item	Condition	Judgment criteria
1	High Temp Operation	Ts=+60℃, 120hrs	Per table in below
2	Low Temp Operation	Ta=-10℃, 120hrs	Per table in below
3	High Temp Storage	Ta=+70℃, 120hrs	Per table in below
4	Low Temp Storage	Ta=-20℃, 120hrs	Per table in below
5	High Temp & High Humidity Storage	Ta=+40℃, 90% RH 120 hours	Per table in below (polarizer discoloration is excluded)
6	Thermal Shock (Non-operation)	-20°C 30 min~+70°C 30 min, Change time:5min, 10 Cycles	Per table in below
7	ESD (Operation)	C=150pF, R=330Ω , 5points/panel Air:±8KV, 5times; Contact:±4KV, 5 times;	Per table in below
8	Vibration (Non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z.	Per table in below
9	Shock (Non-operation)	60G 6ms, ±X,±Y,±Z 3times, for each direction	Per table in below
10	Package Drop Test	Height:80 cm, 1 corner, 3 edges, 6 surfaces	Per table in below

INSPECTION	CRITERION(after test)
Appearance	No Crack on the FPC, on the LCD Panel
Alignment of LCD Panel	No Bubbles in the LCD Panel No other Defects of Alignment in Active area
Electrical current	Within device specifications
Function / Display	No Broken Circuit, No Short Circuit or No Black line No Other Defects of Display

11. Precautions for Use of LCD Modules

11.1 Safety

The liquid crystal in the LCD is poisonous. Do not put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water.

11.2 Handling

- A. The LCD and touch panel is made of plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- B. Do not handle the product by holding the flexible pattern portion in order to assure the reliability
- C. Transparency is an important factor for the touch panel. Please wear clear finger sacks, gloves and mask to protect the touch panel from finger print or stain and also hold the portion outside the view area when handling the touch panel.
- D. Provide a space so that the panel does not come into contact with other components.
- E. To protect the product from external force, put a covering lens (acrylic board or similar board) and keep an appropriate gap between them.
- F. Transparent electrodes may be disconnected if the panel is used under environmental conditions where dew condensation occurs.
- G. Property of semiconductor devices may be affected when they are exposed to light, possibly resulting in IC malfunctions.
- H. To prevent such IC malfunctions, your design and mounting layout shall be done in the way that the IC is not exposed to light in actual use.

11.3 Static Electricity

- A. Ground soldering iron tips, tools and testers when they are in operation.
- B. Ground your body when handling the products.
- C. Power on the LCD module before applying the voltage to the input terminals.
- D. Do not apply voltage which exceeds the absolute maximum rating.
- E. Store the products in an anti-electrostatic bag or container.

11.4Storage

- A. Store the products in a dark place at $+25^{\circ}\text{C} \pm 10^{\circ}\text{C}$ with low humidity (40% RH to 60% RH). Don't expose to sunlight or fluorescent light.
- B. Storage in a clean environment, free from dust, active gas, and solvent.

11.5 Cleaning

- A. Do not wipe the touch panel with dry cloth, as it may cause scratch.
- B. Wipe off the stain on the product by using soft cloth moistened with ethanol. Do not allow ethanol to get in between the upper film and the bottom glass. It may cause peeling issue or defective operation. Do not use any organic solvent or detergent other than ethanol.

11.6 Cautions for installing and assembling

Bezel edge must be positioned in the area between the Active area and View area. The bezel may press the touch screen and cause activation if the edge touches the active area. A gap of approximately 0.5mm is needed between the bezel and the top electrode. It may cause unexpected activation if the gap is too narrow. There is a tolerance of 0.2 to 0.3mm for the outside dimensions of the touch panel and tail. A gap must be made to absorb the tolerance in the case and connector.

