Chapter 4.4: Chapter 4 Review Pre-Calculus 11 - Review

Created by Yi-Chen Lin

June 16, 2025

Overview: Chapter 4 Review

Key Concepts

- Simplifying radicals and fractional exponents
- Multiplying, dividing, and rationalizing radicals
- Solving radical equations and checking for extraneous roots
- FOIL and expanding expressions with radicals

Summary of Key Concepts

Summary

•
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

- Rationalize denominators by multiplying by the radical or conjugate
- To solve $\sqrt{ax+b}=c$, isolate, square both sides, solve, and check
- Always check for extraneous roots in radical equations
- FOIL: $(a + \sqrt{b})(a \sqrt{b}) = a^2 b$

Review Practice Problems

Practice Problems

1 Simplify: $\sqrt{50} + 2\sqrt{8} - \sqrt{18}$

2 Multiply: $3\sqrt{2} \times 4\sqrt{3}$

3 Divide: $\frac{6\sqrt{27}}{2\sqrt{3}}$

4 Rationalize: $\frac{5}{\sqrt{2}}$

1 Solve: $\sqrt{2x+3} = 5$

2 Solve: $\sqrt{x-1} + 2 = 7$

3 Expand: $(x + \sqrt{5})(x - \sqrt{5})$

1 Identify extraneous roots: $\sqrt{x+4} = x-2$

Review Practice Solutions (1/2)

②
$$3\sqrt{2} \times 4\sqrt{3} = 12\sqrt{6}$$

$$\frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$$

Review Practice Solutions (2/2)

1 Solve
$$\sqrt{2x+3} = 5$$

$$\sqrt{2x+3} = 5$$
$$2x+3 = 25$$
$$2x = 22$$
$$x = 11$$

2 Solve
$$\sqrt{x-1} + 2 = 7$$

$$\sqrt{x-1} = 5$$
$$x-1 = 25$$
$$x = 26$$

3 Expand
$$(x + \sqrt{5})(x - \sqrt{5}) = x^2 - 5$$

Review Practice Solutions: Checking Extraneous Roots

Solution: $\sqrt{x+4}$

Solving:

$$\sqrt{x+4} = x - 2$$

$$x+4 = (x-2)^{2}$$

$$x+4 = x^{2} - 4x + 4$$

$$0 = x^{2} - 5x$$

$$x(x-5) = 0$$

$$x = 0 \text{ or } x = 5$$

Checking:

For
$$x = 0$$
:

$$\sqrt{0+4} = 2$$
$$0-2 = -2$$

$$2 \neq -2$$
 (not valid)

For
$$x = 5$$
:

$$\sqrt{5+4}=3$$

$$5 - 2 = 3$$

$$3 = 3$$
 (valid)

Conclusion: Only x = 5 is a valid solution.

More Review Practice Problems

More Practice Problems

- **1** Simplify: $2\sqrt{18} 3\sqrt{8} + \sqrt{32}$
- ② Multiply: $5\sqrt{7} \times 2\sqrt{14}$
- 3 Divide: $\frac{8\sqrt{45}}{4\sqrt{5}}$
- 4 Rationalize: $\frac{3}{2\sqrt{3}}$
- **5** Solve: $\sqrt{3x-2} = 4$
- **o** Solve: $\sqrt{5x+1}+1=6$
- ② Expand: $(2+\sqrt{3})(2-\sqrt{3})$
- 1 Identify extraneous roots: $\sqrt{2x+5} = x-1$
- Word Problem: The area of a square is 50 cm². What is the length of one side in simplest radical form?
- Onceptual: Explain why $\sqrt{x^2} = |x|$ for all real x.

More Review Practice Solutions (1/5)

1.
$$2\sqrt{18} - 3\sqrt{8} + \sqrt{32}$$

$$= 2 \times 3\sqrt{2} - 3 \times 2\sqrt{2} + 4\sqrt{2}$$
$$= 6\sqrt{2} - 6\sqrt{2} + 4\sqrt{2}$$
$$= 4\sqrt{2}$$

2.
$$5\sqrt{7} \times 2\sqrt{14}$$

$$= 10\sqrt{98}$$
$$= 10 \times 7\sqrt{2}$$
$$= 70\sqrt{2}$$

More Review Practice Solutions (2/5)

Solutions

3. $\frac{8\sqrt{45}}{4\sqrt{5}}$

$$= \frac{8 \times 3\sqrt{5}}{4\sqrt{5}}$$
$$= \frac{24\sqrt{5}}{4\sqrt{5}}$$
$$= 6$$

4. $\frac{3}{2\sqrt{3}}$

$$= \frac{3}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{3\sqrt{3}}{2\times 3}$$
$$= \frac{\sqrt{3}}{3}$$

More Review Practice Solutions (3/5)

5. Solve
$$\sqrt{3x-2} = 4$$

$$\sqrt{3x - 2} = 4$$
$$3x - 2 = 16$$
$$3x = 18$$
$$x = 6$$

6. Solve
$$\sqrt{5x+1}+1=6$$

$$\sqrt{5x+1} = 5$$

$$5x+1 = 25$$

$$5x = 24$$

$$x = \frac{24}{5}$$

More Review Practice Solutions (4/5)

7. Expand
$$(2+\sqrt{3})(2-\sqrt{3})$$

$$= 4 - 2\sqrt{3} + 2\sqrt{3} - 3$$

$$= 4 - 3$$

$$= 1$$

More Review Practice Solutions (Checking Extraneous Roots)

Solution: $\sqrt{2x+5}$

Solving:

$$\sqrt{2x+5} = x - 1$$

$$2x+5 = (x-1)^2$$

$$2x+5 = x^2 - 2x + 1$$

$$0 = x^2 - 4x - 4$$

$$x^2 - 4x - 4 = 0$$

Quadratic formula:

$$x = \frac{4 \pm \sqrt{16 + 16}}{2}$$

$$x = \frac{4 \pm \sqrt{32}}{2}$$

$$x = \frac{4 \pm 4\sqrt{2}}{2}$$

Checking:

For
$$x = 2 + 2\sqrt{2}$$
:

$$x - 1 = (2 + 2\sqrt{2}) - 1 = 1 + 2\sqrt{2}$$

$$(1 + 2\sqrt{2})^2 = 1 + 4\sqrt{2} + 8 = 9 + 4\sqrt{2}$$
So $\sqrt{9 + 4\sqrt{2}} = 1 + 2\sqrt{2}$ (valid)

For
$$x = 2 - 2\sqrt{2}$$
:

$$x-1=(2-2\sqrt{2})-1=1-2\sqrt{2}$$
 $(1-2\sqrt{2})^2=1-4\sqrt{2}+8=9-4\sqrt{2}$ So $\sqrt{9-4\sqrt{2}}=1-2\sqrt{2}$ (valid)

Conclusion: Both $x = 2 + 2\sqrt{2}$ and $x = 2 - 2\sqrt{2}$ are valid solutions (no extraneous roots).

More Review Practice Solutions (5/5)

Solutions

9. Word Problem: The area of a square is 50 cm². What is the length of one side in simplest radical form?

$$s^2 = 50$$
$$s = \sqrt{50} = 5\sqrt{2} \text{ cm}$$

10. Conceptual: Explain why $\sqrt{x^2} = |x|$ for all real x.

The square root of x^2 is always non-negative, so $\sqrt{x^2}$ gives the absolute value of x.