EXHIBIT J

UROGYNECOLOGY

Sling surgery for stress urinary incontinence in women: a systematic review and metaanalysis

Megan O. Schimpf, MD; David D. Rahn, MD; Thomas L. Wheeler, MD, MSPH; Minita Patel, MD, MS; Amanda B. White, MD; Francisco J. Orejuela, MD; Sherif A. El-Nashar, MBBCh, MS; Rebecca U. Margulies, MD; Jonathan L. Gleason, MD; Sarit O. Aschkenazi, MD; Mamta M. Mamik, MD; Renée M. Ward, MD; Ethan M. Balk, MD, MPH; Vivian W. Sung, MD, MPH; for the Society of Gynecologic Surgeons Systematic Review Group

OBJECTIVE: Understanding the long-term comparative effectiveness of competing surgical repairs is essential as failures after primary interventions for stress urinary incontinence (SUI) may result in a third of women requiring repeat surgery.

STUDY DESIGN: We conducted a systematic review including Englishlanguage randomized controlled trials from 1990 through April 2013 with a minimum 12 months of follow-up comparing a sling procedure for SUI to another sling or Burch urethropexy. When at least 3 randomized controlled trials compared the same surgeries for the same outcome, we performed random effects model metaanalyses to estimate pooled odds ratios (ORs).

RESULTS: For midurethral slings (MUS) vs Burch, metaanalysis of objective cure showed no significant difference (OR, 1.18; 95% confidence interval [CI], 0.73-1.89). Therefore, we suggest either intervention; the decision should balance potential adverse events (AEs) and concomitant surgeries. For women considering pubovaginal sling vs Burch, the evidence favored slings for both subjective and objective cure. We recommend pubovaginal sling to maximize cure outcomes. For pubovaginal slings vs MUS, metaanalysis of subjective cure favored MUS (OR, 0.40; 95% Cl,

0.18-0.85). Therefore, we recommend MUS. For obturator slings vs retropubic MUS, metaanalyses for both objective (OR, 1.16; 95% Cl. 0.93—1.45) and subjective cure (OR, 1.17; 95% Cl, 0.91—1.51) favored retropubic slings but were not significant. Metaanalysis of satisfaction outcomes favored obturator slings but was not significant (OR, 0.77; 95% Cl, 0.52—1.13). AEs were variable between slings: metaanalysis showed overactive bladder symptoms were more common following retropubic slings (OR, 1.413; 95% Cl, 1.01-1.98, P = .046). We recommend either retropubic or obturator slings for cure outcomes; the decision should balance AEs. For minislings vs full-length MUS, metaanalyses of objective (OR, 4.16; 95% Cl, 2.15—8.05) and subjective (OR, 2.65; 95% Cl, 1.36—5.17) cure both significantly favored full-length slings. Therefore, we recommend a full-length MUS.

CONCLUSION: Surgical procedures for SUI differ for success rates and complications, and both should be incorporated into surgical decisionmaking. Low- to high-quality evidence permitted mostly level-1 recommendations when guidelines were possible.

Key words: Burch urethropexy, midurethral sling, pubovaginal sling, stress urinary incontinence, single-incision sling

Cite this article as: Schimpf MO, Rahn DD, Wheeler TL, et al. Sling surgery for stress urinary incontinence in women: a systematic review and metaanalysis. Am J Obstet Gynecol 2014;211:71.e1-27.

From the Division of Gynecology and Urogynecology, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI (Dr Schimpf); Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX (Dr Rahn); Department of Obstetrics and Gynecology, University of South Carolina School of Medicine Greenville, Greenville, SC (Dr Wheeler); Department of Obstetrics and Gynecology, Kaiser Permanente, Roseville, CA (Dr Patel); Department of Obstetrics and Gynecology, University of Texas Southwestern at Seton Healthcare Family, Austin, TX (Dr White); Department of Obstetrics and Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, TX (Dr Orejuela); Division of Gynecologic Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN (Dr El-Nashar); Division of Urogynecology, Department of Obstetrics and Gynecology, Kaiser Permanente, Oakland, CA (Dr Margulies); Division of Urogynecology, Department of Obstetrics and Gynecology, Carilion Clinic, Roanoke, VA (Dr Gleason); Department of Urogynecology, ProHealth Care, Women's Center, Medical College of Wisconsin, Waukesha, WI (Dr Aschkenazi); Icahn School of Medicine at Mount Sinai, Department of Obstetrics and Gynecology, New York, NY (Dr Mamik); Vanderbilt University Medical Center, Department of Obstetrics and Gynecology, Nashville, TN (Dr Ward); Tufts Medical Center, Institute for Clinical Research and Health Policy Studies, Boston, MA (Dr Balk); and Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Women and Infants Hospital of Rhode Island and Warren Alpert Medical School of Brown University, Providence, RI (Dr Sung).

Received Aug. 26, 2013; revised Nov. 22, 2013; accepted Jan. 21, 2014.

The Society of Gynecologic Surgeons provided funding for assistance by methods experts in systematic review and for logistic support.

The authors report no conflict of interest.

Presented at the 39th Annual Scientific Meeting of the Society of Gynecologic Surgeons, Charleston, SC, April 8-10, 2013.

Reprints: Megan O. Schimpf, MD, Obstetrics and Gynecology, Female Pelvic Medicine and Reconstructive Surgery, University of Michigan, L4000 Women's, 1500 E. Medical Center Dr., Ann Arbor, MI 48109. mschimpf@umich.edu.

0002-9378/\$36.00 • @ 2014 Mosby, Inc. All rights reserved. • http://dx.doi.org/10.1016/j.ajog.2014.01.030

*These studies were potentially eligible to be included for adverse event (AE) analyses; †Several studies had 3 arms and provided data for multiple comparisons; [‡]For noncomparative studies, the following minimum sample size criteria were used: minisling obturator, n >120; minisling retropubic, n ≥100; obturator midurethral sling (MUS), n ≥1000; pubovaginal fascial, n ≥300; pubovaginal synthetic, n \geq 120; retropubic MUS, n \geq 1000; §Several studies reported on \geq 2 slings; *Only from randomized controlled trials (RCTs).

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

rress urinary incontinence (SUI), or the involuntary loss of urine with activity such as coughing, laughing, and sneezing, is present in 15-80% of women. Options for treating SUI include physical therapy, pessaries, urethral bulking injections, and surgery. Surgery traditionally consisted of Burch urethropexy or pubovaginal sling. Since 1996, when Ulmsten et al² published the initial paper about retropubic tensionfree vaginal tape (TVT), the use of synthetic midurethral slings (MUS) has grown to become the most common surgery performed for SUI in women.3 This type of surgery has evolved to also include options of obturator passage and smaller, single-incision synthetic slings (eg, "minislings").

The decision of which SUI procedure to perform can include suture-only, native tissue, mesh, laparoscopic, open incisions, small incisions, or single-incision surgery. Many studies have compared these options. The primary aim of our work was to utilize systematic review and metaanalysis methodology to compare objective and subjective cure rates in adult women with SUI between these different surgeries. The secondary outcomes were to compare surgical methods by qualityof-life measures, sexual function, and perioperative and adverse event (AE) data.

MATERIALS AND METHODS

The Society of Gynecologic Surgeons Systematic Review Group includes members with clinical and surgical expertise on female SUI and in the conduct of systematic reviews and guideline development. This project was considered exempt from institutional review board approval.

Data sources and searches

We searched MEDLINE and Cochrane Central Register for Controlled Trials from Jan. 1, 1990 through April 12, 2013 (Figure 1). We excluded older studies because the TVT was not available in the United States prior to this. Search terms included "urinary incontinence," "urgency," "sling," "obturator," "retropubic," "pubovaginal," "vaginal tape," "urologic surgical procedures" (instrumentation or adverse effects), and related terms. The search was limited to comparative studies, cohort studies, and systematic reviews. The search was further limited to human and English-language studies. Meeting abstracts were excluded. Any review articles obtained in this search were excluded after reference lists were reviewed and articles not originally in the search were obtained. Study authors were not contacted.

Twelve reviewers independently double-screened the abstracts using the computerized screening program Abstrackr (Tufts Medical Center, Boston, MA).4 To establish relevance and consensus among reviewers, all 12 screened and achieved consensus on an initial batch of 300 abstracts. Potentially relevant full-text articles were also independently double-screened by 12 reviewers.

Study selection

For the principal evaluation of outcomes, we included peer-reviewed randomized controlled trials (RCTs) with at least 12 months of follow-up (Table 1). Trials were excluded from outcomes analysis for poor randomization schemes, such as alternate assignment of patients or assignment based on day of the week or birth date. We included RCTs that compared ≥ 2 sling procedures or a sling procedure to Burch urethropexy performed in adult women for SUI. Studies that compared Burch urethropexy to any other surgery were excluded. Bulking injections were excluded because they are not similar enough to sling surgeries regarding cure, perioperative data, or AEs. When a study included 3 arms, it was analyzed as multiple 2-arm comparisons. For the evaluation of AEs we

Study	Study quality ^r	Intervention	Comparator	n, intervention	n, comparator	Follow-up duration	OC	SC	Po	ΑE	QoL	S
MUS vs Burch												_
Bai et al, ⁹ 2005 ^a	В	Retropubic MUS (TVT)	Burch	31	33	12 mo	X			X		
Bandarian et al, ¹⁰ 2011	С	Obturator MUS (TOT, unspecified)	Burch	31	31	25 mo mean		Χ	Χ	Χ		
Foote et al, ¹¹ 2006	С	Retropubic MUS (SPARC)	Laparoscopic Burch	49	48	24 mo	Χ	Χ	Χ	Χ		
Liapis et al, ¹² 2002	С	Retropubic MUS (TVT)	Burch	36	35	24 mo	Χ	Χ	Χ	Χ		
Paraiso et al, 13 2004 b	В	Retropubic MUS (TVT)	Laparoscopic Burch	36	36	21 mo	Χ	Χ	Χ	Χ	Χ	
Persson et al, ¹⁴ 2002	В	Retropubic MUS (TVT)	Laparoscopic Burch	38	33	12 mo	Χ	Χ	Χ	Χ	***************************************	
Sivaslioglu et al, ¹⁵ 2007	A	Obturator MUS (Safyre T)	Burch	49	51	24 mo	Χ	Χ	Χ	Χ		
Téllez Martínez-Fornés et al, ¹⁶ 2009	В	Retropubic MUS (TVT)	Burch	24	25	36 mo	Χ	Χ	Χ	Χ	Χ	
Wang and Chen, 17 2003	В	Retropubic MUS (TVT)	Burch	49	49	22 mo	Χ	Χ	Χ	Χ		
Ward et al, 18 2002 ^c	В	Retropubic MUS (TVT)	Burch	169	175	5 y	Χ		Χ	Χ	Χ	χ
PVS vs Burch											***************************************	
Albo et al, 19 2007 (SISTEr Trial) d	A	PVS (autologous fascia)	Burch	326	329	24 mo	Χ	Χ	Χ	Χ	Χ	
Bai et al, ⁹ 2005 ^a	В	PVS (autologous fascia)	Burch	28	33	12 mo	Χ			Χ		
Culligan et al, ²⁰ 2003 ^e	В	PVS (Gore-Tex)	Burch	17	19	73 mo	Χ		Χ	Χ		
Enzelsberger et al, ²¹ 1996	С	PVS (dura mater)	Burch	36	36	36 mo	Χ		Χ	Χ		
PVS vs MUS											***************************************	
Amaro et al, ²² 2009	С	PVS (autologous fascia)	Retropubic MUS (TVT)	21	20	44 mo		Χ	Χ	Χ	Χ	
Bai et al, ⁹ 2005 ^a	В	PVS (autologous fascia)	Retropubic MUS (TVT)	28	31	12 mo	Χ			Χ		
Guerrero et al, ²³ 2010 ^f	В	PVS (autologous fascia)	Retropubic MUS (TVT)	79	50	12 mo		Χ	Χ	Χ	Χ	
Sharifiaghdas and Mortazavi, ²⁴ 2008	В	PVS (autologous fascia)	Retropubic MUS (TVT)	52	48	40 mo	Χ	Χ	Χ	Х	Χ	
Tcherniakovsky et al, ²⁵ 2009	С	PVS (autologous fascia)	Obturator MUS (Safyre T)	20	21	12 mo	Χ		Χ	Χ		
Retropubic vs obturator MUS		***************************************				***************************************						***************************************
Aniuliene, ²⁶ 2009	С	TVT	TVT-0	114	150	12 mo	•••••••••••••••••••••••••••••••••••••••	Χ	Χ	Χ		
Araco et al, ²⁷ 2008	В	TVT	TVT-0	108	100	12 mo	Χ		Χ	Χ	Х	
Ballester et al, ²⁸ 2012 ^g	В	Retropubic ISTOP	Transobturator ISTOP	42	46	48 mo	Χ	Χ	Χ	Χ	Χ	

71.e4 American Journal of Obstetrics & Gynecology JULY 2014

RESEARCH Urogynecology

	Study	I	0	n,	n,	Follow-up	00	00	D-	45	0-1	
udy	quality	Intervention	Comparator	intervention	comparator	duration	00	SC	Po	AE	QoL	- ;
Barber et al, ²⁹ 2008 ^h	A	TVT	Monarc	88	82	18 mo	X	Χ	Χ	Χ	X	
Deffieux et al, ³⁰ 2010	Α	TVT	TVT-0	75	74	24 mo	X	X	X	X	X	
EI-Hefnawy et al, ³¹ 2010	С	TVT	Obturator MUS (unspecified)	19	21	20 mo	Χ	Χ	X	X		
Freeman et al, ³² 2011	Α	TVT	Monarc	93	100	12 mo		Χ	Χ	Χ	Χ	
Karateke et al, ³³ 2009	Α	TVT	TVT-0	83	84	14 mo	Χ	Χ	Χ	Χ	Χ	
Krofta et al, ³⁴ 2010	Α	TVT	TVT-0	149	151	12 mo	Χ	Χ	Χ	Χ	Χ	
Liapis et al, ³⁵ 2006	С	TVT	TVT-0	46	43	12 mo	Х	Χ	Χ	Χ		_
Richter et al, 1 2010 (TOMUS Trial) 1	Α	TVT	Obturator MUS (TVT-O or Monarc)	298	299	24 mo	Χ	Χ	Χ	Χ	Х	
Rinne et al, ³⁶ 2008 ^j	Α	TVT	TVT-0	136	131	36 mo	Χ	Χ	Χ	Χ	Χ	-
Ross et al, ³⁷ 2009	В	Retropubic MUS (Advantage)	Obturator MUS (Obtryx)	105	94	12 mo	Χ	Χ	Χ	Χ	Χ	•••
Scheiner et al, ³⁸ 2012 ^k	В	TVT	Monarc	80	40	12 mo	X	Χ	Χ	Χ	Χ	•••
Scheiner et al, ³⁸ 2012 ^k	В	TVT	TVT-0	80	40	12 mo	Χ	Χ	Χ	Χ	Χ	•••
Schierlitz et al, ³⁹ 2008 ¹	В	TVT	Monarc	82	82	36 mo	Χ	Χ	Χ	Χ		
Teo et al, ⁴⁰ 2011	В	TVT	TVT-0	66	61	12 mo	Χ	Χ	Χ	Χ	Χ	
Wang F et al, ⁴¹ 2010	Α	TVT	Obturator MUS (out-to-in)	70	70	12 mo	Х	Х	Χ	Х	Х	-
Wang W et al, ⁴² 2009	В	TVT	TVT-0	160	155	36 mo	Χ		Χ	Χ		
Wang YJ et al, ⁴³ 2011 ^m	В	TVT	TVT-0	32	36	12 mo	Χ		Χ	Χ		•••
Zullo et al, ⁴⁴ 2007 ⁿ	В	TVT	TVT-0	35	37	5 y	Χ	Χ	Χ	Χ	Χ	_
tropubic MUS vs retropubic MUS		······································	***************************************						***************************************	***************************************	***************************************	**
Andonian et al, ⁴⁵ 2005	В	SPARC	TVT	41	43	12 mo	X	Χ	Χ	Χ		
Tseng et al,46 2005	В	SPARC	TVT	31	31	24 mo	Χ		Χ	Χ		•••
turator MUS vs obturator MUS			***************************************	······································	***************************************					***************************************	***************************************	
Abdel-Fattah et al, ⁴⁷ 2010 (E-TOT Trial) ⁰	В	ARIS TOT (out-to-in)	TVT-0 (in-to-out)	171	170	12 mo	X	Χ		Х	Х	
Scheiner et al, ³⁸ 2012 ^k	В	Monarc	TVT-0	40	40	12 mo	X	Χ	Χ	Χ	Χ	•••

Urogynecology

TABLE 1 Randomized controlled trials included in systematic review (continued)

Study	Study quality ^r	Intervention	Comparator	n, intervention	n, comparator	Follow-up duration	00	SC	Ро	AE	QoL	SF
Minisling vs any other sling					_							
Andrada Hamer et al, ⁴⁸ 2013	В	TVT-Secur H	TVT	64	69	12 mo	Χ	Χ	Χ	Χ		
Barber et al, ⁴⁹ 2012	A	TVT-Secur U	TVT	136	127	12 mo	Χ	Χ	Χ	Χ	Χ	Χ
Hinoul et al, ⁵⁰ 2011	А	TVT-Secur H	TVT-0	97	98	12 mo	Χ	Χ	Χ	Χ	Χ	***************************************
Hota et al, ⁵¹ 2012	А	TVT-0	TVT-Secur	44	42	12 mo	Χ	Χ	Χ	Χ	Χ	
Kim et al, ⁵² 2010	В	TVT-Secur U	TVT-Secur H	53	62	12 mo	Χ	Χ	Χ	Χ	Χ	Χ
Lee et al, ⁵³ 2010	А	TVT-Secur U	TVT-Secur H	165	165	12 mo	Χ	Χ	Χ	Χ	Χ	Χ
Masata et al, ⁵⁴ 2012 ^p	А	TVT-Secur U	TVT-0	65	68	24 mo	Χ	Х	Χ	Χ	Χ	
Masata et al, ⁵⁴ 2012 ^p	А	TVT-Secur H	TVT-0	64	68	24 mo	Χ	Χ	Χ	Χ	Χ	***************************************
Masata et al, ⁵⁴ 2012 ^p	А	TVT-Secur U	TVT-Secur H	65	64	24 mo	Χ	Χ	Χ	Χ	Χ	
Oliveira et al, ⁵⁵ 2011 ^q	С	TVT-Secur H	TVT-0	30	30	12 mo	Χ		Χ	Χ		
Oliveira et al, ⁵⁵ 2011 ^q	С	MiniArc	TVT-0	30	30	12 mo	Χ	***************************************	Χ	Χ	***************************************	***************************************
Oliveira et al, ⁵⁵ 2011 ^q	С	TVT-Secur H	MiniArc	30	30	12 mo	Χ		Χ	Χ		
Tommaselli et al, ⁵⁶ 2010	В	TVT-Secur H	TVT-0	42	42	12 mo	Χ		Χ	Χ	Χ	
Wang YJ et al, ⁴³ 2011 ^m	В	TVT-Secur	TVT	34	32	12 mo	Χ		Χ	Χ		
Wang YJ et al, ⁴³ 2011 ^m	В	TVT-Secur	TVT-0	34	36	12 mo	Χ		Χ	Χ		***************************************

Advantage; Boston Scientific Corp., Natick, MA; Gore-Tex; Gore Medical, Flagstaff, AZ; ISTOP, CL Medical, Winchester, MA; MiniArc; AMS, Minnetonka, MN; Monarc; AMS; Obtryx; Boston Scientific Corp.; Safyre; Promedon, Cordoba, Argentina; SPARC; AMS; TVT-O; Ethicon Gynecare, Cincinnati, OH; TVT-Secur, Ethicon Gynecare.

AE, adverse event; MUS, midurethral sling; OC, objective cure; Po, perioperative outcomes; PVS, pubovaginal sling; QoL, Life-of-life outcomes; SC, subjective cure; SF, sexual function outcomes; TOMUS, Trial of Midurethral Slings; TVT, tension-free vaginal tape; TVT-O, tension-free vaginal tape obturator.

a 3-Arm trial comparing PVS (autologous fascia) vs TVT vs Burch; b Jelovsek et al 90 2008; c Ward et al 90 2004 and Ward et al 12008; d Tennstedt et al 92005, Tennstedt et al 92008, Chai et al 92008, Kraus et al 92001, Brubaker et al 92011, Brubaker et al 92011, Brubaker et al 92011, Brubaker et al 92011, Trial also included PVS (Pelvichol) arm (n = 72) that was not included as Pelvichol is off market; a Daraï et al 92007 and David-Montefiore et al 92006; h Barber et al 92008, I Albo 91 2008, Brubaker et al 92011, Zyczynski et al 92012, Albo 91 2012, Albo 91 2012, Albo 91 2012, Brubaker et al 92012, Brubaker et al 92012, Albo 91 2012, Brubaker et al 92012, Albo 91 2012, Brubaker et al 92012, Albo 91 2012, Brubaker et al 92012, Brubaker e Laurikainen et al⁷⁴ 2007 and Palva et al⁷⁵ 2010; k 3-Arm trial comparing Monarc vs TVT vs TVT-0; Schierlitz et al⁷⁶ 2012 and De Souza et al⁷⁷ 2012; m 3-Arm trial comparing TVT-Secur vs TVT vs TVT-0; n Angioli et al⁷⁸ 2010; o Abdel-Fattan et al⁷⁹ 2010 and Abdel-Fattah et al⁸⁰ 2012; ^p 3-Arm trial comparing TVT-Secur H vs TVT-Secur H vs TVT-Secur H vs TVT-O; ^q 3-Arm trial comparing TVT-O vs TVT-Secur H vs MiniArc; ^r A (good), B (fair), C (poor).

Outcome category of interest	Specific outcomes collected
Objective cure	Cough stress test
	Pad testing
	Urodynamic stress incontinence
	Voiding diary data
Subjective cure	Sandvik Incontinence Severity Index
	International Consultation on Incontinence Questionnaire (ICIQ)
	Patient Global Impression of Improvement (PGI-I)
	Pelvic Floor Distress Inventory (PFDI)
	Urinary Distress Inventory (UDI)
	Bristol female lower urinary tract symptom (BFLUTS)
	Measures such as "better" or "satisfied"
	"Would recommend to a friend"
	Met expectations
Perioperative outcomes	Estimated blood loss, time to return to normal activity work, operative time, hospital time, length of stay, length of use of catheter, pain
Quality of life or satisfaction	Kings Health Questionnaire (KHQ)
	Measures of activities of daily living
	Urinary Incontinence Quality-of-life Scale (I-QOL)
	Bristol female lower urinary tract symptom (BFLUTS)
	Pelvic Floor Impact Questionnaire/Incontinence Impac Questionnaire (PFIQ/IIQ)
	International Consultation on Incontinence Questionnaire (ICIQ)
	CONTILIFE (Quality-of-life Assessment Questionnaire Concerning Urinary Incontinence)
Sexual function	Bristol female lower urinary tract symptom (BFLUTS)
	Pelvic Organ Prolapse/Incontinence Sexual Questionnaire, IUGA-Revised (PISQ-IR)
	CONTILIFE (Quality-of-life Assessment Questionnaire Concerning Urinary Incontinence)
	Dyspareunia
	"Return to normal sex life"
Adverse events	Table 3

also included trials excluded from RCT analysis, nonrandomized comparative studies, and cohort (pre-post) studies of any follow-up duration. Because of the volume of these studies, sample size limitations were placed to restrict the

number of studies to only those with the most patients and therefore highest potential for identifying a complication (Figure 1). Studies included for AEs had to evaluate at least 1 sling type, and information about any other comparator

surgery was not collected. Sling types of interest included MUS (retropubic, obturator), pubovaginal slings at the bladder neck (biologic, synthetic, or autologous), and minislings. All studies had to report results for cohorts (or study arms) of women who all received the same sling type (or Burch urethropexy); studies that combined women who received different sling types in their analyses were excluded. Studies that examined various aspects of surgical technique, anesthesia, or surgeon training were excluded if the same type of sling was used in each arm. Data were excluded if the surgical product used was not available in the United States as of April 2013.

Outcomes of interest from RCTs fell into 6 categories: objective cure, subjective cure, perioperative outcomes, quality of life or satisfaction, sexual function, and AEs (Table 2). Studies with nonrandomized designs were included only for AEs. Information on cost was not collected.

Data extraction and quality assessment

Data were extracted by 1 of 12 reviewers using a standard data extraction form and confirmed by another; discrepancies were resolved by consensus. We extracted data on study characteristics, participant characteristics, funding source, details on the interventions, length of follow-up, outcomes of interest measured, and how these outcomes were assessed. After data extraction, the lead reviewer and methodologist categorized all outcomes extracted from the RCTs into the 6 outcome categories listed above. Two reviewers also categorized all AEs into 22 categories as listed in Table 3. The underlying data, together with additional extracted information, are accessible online at http://srdr.ahrq. gov/ in the project Sling surgery for stress urinary incontinence in women: Society of Gynecologic Surgeons 2013.

We assessed the methodological quality of each RCT using predefined criteria from a 3-category system modified from the Agency for Healthcare Research and Quality.⁵ Studies were graded as good (A), fair (B), or poor (C)

Sling category	Studies	om randomized controlle Summary estimate of incidence (95% CI)	Events	Total n	Range of AE proportion across studies
Estimated blood loss >200 mL					
Obturator	4	0.22% (0.03—1.59%)	1	448	0.00-1.79%
Minisling	3	1.1% (0.5—1.9%)	10	888	0.00-3.68%
Retropubic	4	1.5% (1.0—2.1%)	33	2071	0.21-4.76%
Transfusion		······································			
Burch	3	0.00% (0.00-7.73%)	0	105	0.00-0.00%
Obturator	6	0.17% (0.02—1.22%)	1	584	0.00-0.40%
Retropubic	13	0.40% (0.28-0.55%)	31	8105	0.00-4.00%
Minisling	5	0.51% (0.23-1.14%)	6	1177	0.00-0.74%
Pubovaginal	5	1.9% (0.9—3.2%)	10	515	0.00-5.17%
Hematoma			***************************************	***************************************	
Obturator	18	0.59% (0.35-0.89%)	17	2995	0.00-2.41%
Retropubic	25	0.88% (0.74—1.0%)	184	15,950	0.00-16.13%
Minisling	2	0.85% (0.21-3.44%)	2	236	0.74-1.00%
Burch	4	1.4% (0.6-2.6%)	8	542	0.00-5.71%
Pubovaginal	5	2.2% (1.2-3.4%)	14	677	0.00-5.17%
Dyspareunia					
Retropubic	2	0.00% (0.01—1.64%)	0	488	0.00-0.00%
Obturator	6	0.16% (0.02—1.14%)	1	624	0.00-0.40%
Minisling	11	0.74% (0.40—1.2%)	19	1809	0.00—6.49%
Pubovaginal	5	0.99% (0.39—1.9%)	8	696	0.00-2.63%
Return to operating room for erosion					
Burch	2	0.28% (0.04-2.03%)	1	352	0.00-0.30%
Minisling	3	1.4% (0.5—2.8%)	5	399	0.53-2.86%
Pubovaginal	5	1.6% (0.8—2.7%)	16	640	0.00—12.50%
Retropubic	12	1.9% (1.0—3.0%)	13	703	0.00-6.45%
Obturator	7	2.7% (1.5—4.3%)	14	518	0.00-8.24%
Exposure					
Burch	4	0.00% (0.02-6.22%)	0	130	0.00-0.00%
Retropubic	29	1.4% (1.1—1.7%)	84	5684	0.00—12.90%
Minisling	19	2.0% (1.5—2.6%)	61	2408	0.00—19.05%
Obturator	31	2.2% (1.7—2.7%)	66	3253	0.00—10.00%
Pubovaginal	10	5.4% (4.0-7.0%)	48	851	0.00—15.52%
Wound infection					
Minisling	3	0.31% (0.05—0.80%)	2	852	0.00—1.04%
Obturator	14	0.74% (0.43-1.1%)	14	2348	0.00—2.11%

Sling category	Studies	Summary estimate of incidence (95% CI)	Events	Total n	Range of AE proportio across studies
Retropubic	13	0.75% (0.54-0.98%)	43	5781	0.00-13.04%
Pubovaginal	3	2.6% (0.8-5.4%)	4	174	0.85-5.56%
Burch	5	7.0% (4.3—10%)	17	269	3.13-9.68%
Urinary tract infection					
Minisling	13	3.6% (2.8-4.6%)	72	1762	0.74-18.33%
Pubovaginal	4	4.2% (2.5-6.3%)	21	420	1.84—18.75%
Obturator	21	4.3% (3.4-5.2%)	88	1826	0.00-16.79%
Burch	7	5.9% (4.2-7.9%)	55	648	0.00-31.51%
Retropubic	21	11.0% (9.7—11%)	718	6286	0.00-23.33%
Bowel injury					
Obturator	5	0.00% (0.00—1.96%)	0	410	0.00-0.00%
Retropubic	7	0.34% (0.09—1.36%)	2	594	0.00-1.57%
Minisling	1	0.74% (0.10-5.30%)	1	136	0.74-0.74%
Burch	1	3.13% (0.44-23.63%)	1	32	3.13-3.13%
Nerve injury				***************************************	***************************************
Minisling	1	0.00% (0.02—5.95%)	0	136	0.00-0.00%
Retropubic	4	0.06% (0.01-0.43%)	1	1642	0.00-0.07%
Obturator	3	0.61% (0.09—4.36%)	1	165	0.00—1.72%
Ureteral injury					
Retropubic	1	0.00% (0.00—9.25%)	0	88	0.00-0.00%
Pubovaginal	4	0.18% (0.03—1.26%)	1	567	0.00-1.28%
Burch	1	0.61% (0.15—2.46%)	2	329	0.61-0.61%
Obturator	1	1.22% (0.17—8.87%)	1	82	1.22—1.22%
Vascular injury					
Obturator	2	0.00% (0.00—6.75%)	0	120	0.00-0.00%
Retropubic	4	0.08% (0.04—0.18%)	6	7149	0.00-0.09%
Overactive bladder/urgency					
Burch	3	4.3% (2.5–6.5%)	17	387	2.86-21.74%
Obturator	8	5.3% (4.2–6.5%)	106	1485	0.00-34.53%
Minisling	11	5.4% (4.4-6.5%)	103	1769	2.22-21.00%
Retropubic	15	6.9% (6.0—7.7%)	374	3486	0.76-45.00%
Pubovaginal	5	8.6% (6.5—11%)	55	558	3.37—38.10%
Retention lasting <6 wk postoperatively				-	
Minisling	13	2.1% (1.5–2.8%)	36	1778	0.00-5.88%
Obturator	17	2.3% (1.8–3.0%)	70	2629	0.00—10.00%
Retropubic	18	3.1% (2.7–3.5%)	248	7127	0.00-21.74%

Sling category	Studies	Summary estimate of incidence (95% CI)	Events	Total n	Range of AE proportion across studies
Pubovaginal	10	12% (10.2—14%)	158	1053	3.03-81.97%
Burch	5	17% (13—21%)	55	288	0.00-32.88%
Retention lasting >6 wk postoperatively					
Obturator	6	2.4% (1.4—3.6%)	70	2629	0.00-10.00%
Retropubic	9	2.7% (2.1—3.4%)	248	7127	0.00-21.74%
Minisling	2	3.3% (1.6-5.7%)	36	1778	0.00-5.88%
Pubovaginal	6	7.5% (5.4—10%)	158	1053	3.03-81.97%
Burch	4	7.6% (4.7—11%)	55	288	0.00-32.88%
Return to operating room for urinary retention					
Burch	4	0.00% (0.00—1.54%)	0	522	0.00-0.00%
Obturator	22	1.1% (0.7—1.5%)	23	2342	0.00-6.67%
Retropubic	21	1.2% (0.9—1.7%)	48	3103	0.00-24.00%
Minisling	12	1.9% (1.2—2.9%)	16	970	0.00-5.00%
Pubovaginal	15	3.0% (2.3—3.9%)	57	1667	0.00-7.69%
Groin pain					
Pubovaginal	2	0.34% (0.09—1.36%)	2	591	0.00-0.61%
Minisling	12	0.62% (0.30—1.1%)	14	1619	0.00-5.26%
Burch	2	1.10% (0.42—2.98%)	4	364	0.00-11.43%
Retropubic	12	1.5% (1.0—2.1%)	29	1811	0.00-5.56%
Obturator	17	6.5% (5.3—7.7%)	128	1594	0.00-36.67%
Leg pain				***************************************	
Retropubic	4	0.62% (0.16—2.51%)	2	322	0.00-1.69%
Minisling	4	1.6% (0.5—3.2%)	4	337	0.00-2.63%
Obturator	7	16% (13—19%)	112	649	3.66-60.87%
Bladder perforation					
Obturator	32	0.70% (0.46—0.98%)	22	4000	0.00-4.76%
Minisling	6	0.85% (0.40—1.5%)	12	1138	0.00-4.41%
Pubovaginal	14	2.3% (1.5—3.3%)	23	1069	0.00-5.56%
Burch	10	2.8% (1.7—4.1%)	19	753	0.00-6.25%
Retropubic	41	3.6% (3.3—3.9%)	420	11,390	0.00-24.39%
Urethral perforation					
Burch	1	0.00% (0.00—34.04%)	0	25	0.00-0.00%
Obturator	7	0.20% (0.05—0.80%)	2	1013	0.00-1.72%
Retropubic	8	0.41% (0.19—0.72%)	17	2211	0.00-5.37%
Minisling	1	2.70% (0.38—20.26%)	1	37	2.70-2.70%

Sling category	Studies	Summary estimate of incidence (95% CI)	Events	Total n	Range of AE proportion across studies
/aginal perforation				-	
Pubovaginal	1	0.00% (0.00—2.46%)	0	326	0.00-0.00%
Burch	2	0.21% (0.03—1.50%)	1	475	0.00-0.30%
Retropubic	12	0.73% (0.40—1.2%)	19	1892	0.00—15.00%
Minisling	10	1.3% (0.8—1.9%)	20	1538	0.00—4.84%
Obturator	20	2.8% (2.2—3.5%)	82	2498	0.00—10.87%
Deep vein thrombosis					
Obturator	2	0.00% (0.00—12.03%)	0	68	0.00-0.00%
Retropubic	3	0.06% (0.01-0.43%)	1	1660	0.00-0.07%
Pubovaginal	4	0.35% (0.09—1.42%)	2	567	0.00—1.28%
Burch	3	0.58% (0.11—1.4%)	4	506	0.00-3.23%

quality based on the likelihood of biases and completeness of reporting. Grades for different outcomes could vary within the same study.

Data synthesis and analysis

We were able to identify comparisons for MUS vs Burch, pubovaginal slings vs Burch, pubovaginal slings vs MUS, retropubic MUS vs obturator MUS, retropubic MUS vs retropubic MUS (based on route of passage), obturator MUS vs obturator MUS (based on route of passage), and minisling vs other sling. When at least 3 RCTs compared the same surgeries for the same outcomes and provided adequate data for metaanalysis (including for AEs), we performed random effects model metaanalyses to estimate pooled odds ratios (ORs). We included data from the time point closest to 12 months' follow-up that were reported. For objective cure, studies used cough stress test, pad test, or both methods. Across studies, we treated the different methods as equivalent (ie, we included both methods in the metaanalyses), but when a single study reported both methods, we preferentially chose stress test over pad test or a combined outcome (both pad and stress tests). When at least 3 studies (pre-post,

nonrandomized comparative, or RCT) reported the same AE for the same sling type, we performed random effects model metaanalyses of the arcsine transformed proportion of women with the outcome.6 The arcsine transformed proportion was used to minimize bias due to the nonnormal distribution when proportions are close to 0. However, when the total number of events was < 3 or metaanalysis gave an implausible summary estimate, the exact proportion and confidence interval (CI) were calculated for the total number of events and women at risk. These absolute rates of AEs are compared qualitatively between procedures, and all data are presented in Table 3.

For each comparison of different sling types (or vs Burch), we generated an evidence profile by grading the quality of evidence for each outcome according to the Grades for Recommendation, Assessment, Development, and Evaluation system. The process considered the methodological quality, consistency of results across studies, directness of the evidence, and imprecision or sparseness of evidence to determine an overall quality of evidence. Four quality rating categories were possible: high (A), moderate (B), low (C), and very

low/insufficient (D).⁸ Evidence profiles for the reviewed studies are in the Appendix.

We developed clinical practice guideline statements incorporating the balance between benefits and harms of the compared interventions when the data were sufficient to support these statements. Each guideline statement was assigned an overall level of strength of the recommendation (1 = strong, 2 = weak)based on the quality of the supporting evidence and the size of the net benefit. The strength of a recommendation indicates the extent to which one can be confident that adherence to the recommendation will do more good than harm. The wording and its implications for patients, physicians, and policymakers are detailed in Table 4.

We presented our findings at the 39th Annual Scientific Meeting of the Society of Gynecologic Surgeons in April 2013 in Charleston, SC. A link to the guidelines and manuscript was then e-mailed to the entire membership for review and vetting in August 2013 prior to submission for publication.

RESULTS

The MEDLINE search identified 2849 abstracts, of which we retrieved 881

TABLE 4

Society for Gynecologic Surgeons Systematic Review Group sling surgery for stress urinary incontinence in women, clinical practice guidelines

Midurethral sling vs Burch (open or laparoscopic)

For women considering midurethral slings or Burch procedures for treatment of SUI, we suggest either intervention for objective and subjective cure and that decision be based on: (1) which adverse events are of greatest concern to patient; and (2) any other planned concomitant surgeries (vaginal vs abdominal route). (1A)

- Midurethral slings may result in lower rates of perioperative adverse events such as blood loss, postoperative pain, operating room time, hospital stay, bowel injury, wound infection, and hematomas. (1C)
- Burch procedures may result in lower rates of return to operating room for retention, erosion, overactive bladder symptoms, and groin pain, (1C)

Pubovaginal sling vs Burch

For women considering pubovaginal slings or Burch procedures for treatment of SUI, we recommend pubovaginal slings to maximize cure

- Burch procedure results in lower rates of erosion, overactive bladder symptoms, and retention requiring reoperation. (1C)
- Pubovaginal slings result in lower rates of wound infection, bladder/vaginal perforation, and bowel injury. (1C)

Pubovaginal sling (biologic and synthetic) vs midurethral sling (only TVT was studied)

For women considering pubovaginal or midurethral sling for treatment of SUI, we recommend midurethral sling for better subjective cure outcomes.

- Midurethral slings may result in lower rates of perioperative outcomes such as operating room time, blood loss, and hospital stay. (2D)
- Pubovaginal slings may result in lower rates of adverse events such as urinary tract infection and vaginal perforation. (2D)

Retropubic vs obturator midurethral slings

For women considering retropubic or transobturator midurethral sling, we recommend either intervention for objective and subjective cure and that decision be based on which adverse events are of greatest concern to patient. (1A)

- Retropubic slings result in lower rates of sling erosion, need to return to operating room for treatment of sling erosion, groin/leg pain, and vaginal perforation. (1D)
- Transobturator midurethral slings result in shorter operative time, fewer bladder/urethral perforations, less perioperative pain, fewer urinary tract infections, and less overactive bladder symptoms. (1D)

Obturator vs obturator or retropubic vs retropubic midurethral slings

There is insufficient evidence to provide recommendation for choosing among specific obturator or retropubic slings.

Minisling (TVT-Secur U/H position and MiniArc studied) vs other sling (TVT and TVT-0 studied)

For women considering minislings (specifically TVT-Secur in H or U configuration) compared to traditional midurethral slings for treatment of SUI, we recommend traditional midurethral sling to maximize cure rates. (1A)

- Route of traditional midurethral sling that would be performed is important consideration in regard to adverse events compared with minislings. For example, minislings have similar rates of postoperative overactive bladder symptoms compared with obturator slings, but lower rates compared with retropubic slings. Exposure of sling postoperatively is similar between obturator slings and minislings, but retropubic slings have lower rates than both other types. (1D)
- Dyspareunia is more common with minisling than either retropubic or obturator sling, but absolute rates are low for all types of slings. (1D)

MiniArc; AMS, Minnetonka, MN; TVT-0; Ethicon Gynecare, Cincinnati, OH; TVT-Secur; Ethicon Gynecare.

SUI, stress urinary incontinence; TVT, tension-free vaginal tape; TVT-0, tension-free vaginal tape obturator.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

full-text papers that were further assessed in detail (Figure 1). This process resulted in 127 papers detailing RCTs (Table 1), from which there were 49 unique, eligible trials. There were also 704 additional papers reflecting other study designs, which were considered for AE data (Table 3). After limiting the non-RCT papers to those with the largest number of patients, we included 39 of those studies in addition to collecting AE information from RCTs (Table 3).

We categorized the trials into 6 comparisons, which are discussed in detail below and in Table 1.

MUS vs Burch urethropexy

There were 10 RCTs for this comparison with overall moderate quality of evidence (Supplementary Table 1). 9-18 Two studies examined obturator MUS, 10,15 while the remaining analyzed a retropubic sling vs Burch urethropexy, which was performed via laparotomy except in 3 studies that analyzed laparoscopic

Burch surgery. 11,13,14 There were no studies comparing minislings to Burch urethropexy.

The evidence reviewed did not support a difference between the 2 surgeries with regard to objective cure, subjective cure, quality-of-life, or sexual function outcomes. While 8 studies provided data about cure outcomes, there were fewer studies evaluating quality of life^{13,16,18} and sexual function. 18

Metaanalysis of objective cure did not show a significant difference for sling

FIGURE 2 Metaanalysis for objective cure: MUS vs Burch urethropexy

Forest plot subdivided by objective cure test. Gray boxes reflect weight of each comparison in metaanalyses. All MUS used in trials were retropublic. See "Materials and Methods" for quality assessment scheme. Stress test chosen preferentially over pad test.

C/, confidence interval; F', percentage of total variation across studies that is due to heterogeneity rather than chance; lap, laparoscopic; MUS, midurethral slings; OR, odds ratio; Phet, \(\chi^2\) Pvalue for statistical heterogeneity; *TVT*, tension-free vaginal tape.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

compared to Burch (OR, 1.18; 95% CI, 0.73-1.89) (Figure 2). The 6 RCTs that met inclusion for this outcome analyzed TVT vs Burch, which was performed open or laparoscopically.

For subjective cure, the metaanalysis included retropubic slings (all TVT) and obturator slings (unspecified obturator sling or Safyre T; Promedon, Cordoba, Argentina) (Figure 3). The pooled OR for all analyses showed no significant difference but favored slings compared Burch (OR, 1.12; 95% CI, 0.79-1.60). Similar results were seen for metaanalyses of retropubic and obturator slings compared individually to the Burch procedure (Figure 3).

Metaanalysis for the satisfaction outcome was not possible due to a limited number of studies. Analysis of perioperative and AE data for the absolute rates of complications per type of surgery showed that MUS may result in lower rates of perioperative AEs such as

postoperative pain, operating room time, hospital stay, bowel injury, wound infection, and hematomas (Appendix and Table 3). Burch procedures may result in lower rates of longer-term AEs such as return to the operating room for retention or erosion, overactive bladder (OAB) symptoms, and groin pain (Table 3). Metaanalysis of AE outcomes that were similar across studies showed no significant difference among these procedures for postoperative OAB symptoms, return to the operating room for erosion, and return to the operating room for retention. Interpretation of these rates is also dependent on the route of the MUS (obturator vs retropubic) that would be chosen, although more studies were available using retropubic slings for this comparison, weighting our analysis.

In summary, for women considering MUS or Burch procedures for treatment of SUI, we suggest either intervention

for objective and subjective cure, with the decision based on AEs and other planned concomitant surgeries (vaginal vs abdominal route) (Table 4).

Pubovaginal slings vs Burch urethropexy

There were 4 RCTs for this comparison with an overall high quality of evidence (Supplementary Table 2). 9,19-21 The pubovaginal slings in these studies were composed of autologous fascia, Gore-Tex (Gore Medical, Flagstaff, AZ), or human dura mater. 9,19-21 The data for this grouping included the SISTEr trial, a high-quality, multicenter network trial with 655 subjects investigating autologous pubovaginal slings compared to Burch surgery (Table 1).¹⁹ No studies reported sexual function data and only 1 reported quality-of-life outcomes.¹⁹ The evidence favored sling procedures compared to Burch for subjective and objective cure outcomes.

^{*}Studies included in overall metaanalysis.

FIGURE 3
Metaanalysis for subjective cure: slings vs Burch urethropexy

Forest plots subdivided by slings being compared with Burch urethropexy. *Gray boxes* reflect weight of each comparison in metaanalyses. See "Materials and Methods" for quality assessment scheme.

CI, confidence interval; f', percentage of total variation across studies that is due to heterogeneity rather than chance; lap, laparoscopic; OR, odds ratio; P_{Het} , χ^2 P value for statistical heterogeneity; PVS, pubovaginal sling; TOT, transobturator sling; TVT, tension-free vaginal tape.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

There was an inadequate number of studies to support a metaanalysis of objective cure. Subjective cure outcome metaanalysis favored pubovaginal sling compared to Burch (OR, 1.65; 95% CI, 1.13–2.43) (Figure 3).

Metaanalysis for the satisfaction outcome was not possible due to a limited number of studies. Looking at absolute rates of AEs per procedure, a Burch procedure results in lower rates of OAB symptoms, transfusion, hematomas, and return to the operating room for retention or erosion. Pubovaginal slings result in lower rates of wound infection, groin pain, urinary tract infection, and bladder/vaginal perforation. Metaanalysis of AE information showed no significant difference between the 2 surgeries for postoperative OAB symptoms and return to the operating room for erosion. There

was a greater risk of return to the operating room for retention with the pubovaginal sling in the 2 studies that could be combined for this question (OR, 14.9; 95% CI, 1.35–165.15; P = .028).

In summary, for women considering pubovaginal slings or Burch procedures for treatment of SUI, we recommend pubovaginal slings to maximize cure outcomes (Table 4).

Pubovaginal slings vs MUS

There were 5 RCTs for this grouping and the evidence was overall of low quality (Supplementary Table 3). 9,22-25 The only MUS included in these studies was a retropubic TVT sling. There are no RCTs comparing pubovaginal slings to obturator MUS or minislings. No studies reported sexual function data. Review of the available data did not support a

difference between procedures for either cure outcome.

Metaanalysis of data for subjective cure outcomes favors placement of MUS compared to pubovaginal slings (OR, 0.40; 95% CI, 0.18–0.85) (Figure 4). There were inadequate studies to support a metaanalysis for objective cure. Metaanalysis for the satisfaction outcome was also not possible due to a limited number of studies.

Comparing absolute complication rates for the surgeries in general, MUS resulted in lower rates of operating room time, blood loss, transfusion, wound infection, retention, OAB symptoms, and hospital stay (Appendix and Table 3). Interpretation of these rates is also dependent on the route of MUS (obturator vs retropubic) that would be chosen. Pubovaginal slings result in

Gray boxes reflect weight of each comparison in metaanalyses. All MUS used in trials were retropubic. See "Materials and Methods" for quality assessment scheme.

Cl, confidence interval; f', percentage of total variation across studies that is due to heterogeneity rather than chance; MUS, midurethral slings; OR, odds ratio; P_{Heb} , χ^2 P value for statistical heterogeneity; PVS, pubovaginal sling; TVT, tension-free vaginal tape.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

lower rates of urinary tract infection and vaginal perforation than either route of MUS (Table 3). Metaanalysis of AE information showed no significant difference between these surgeries for postoperative OAB symptoms, return to the operating room for retention, or return to the operating room for erosion.

Driven by the metaanalysis information, for women considering a pubovaginal sling or MUS for treatment of SUI, we recommend MUS for better subjective cure (Table 4).

Retropubic MUS vs obturator MUS

This comparison had the most studies with 21 RCTs with large numbers of patients enrolled (Supplementary Table 4). 1,26-44 The quality of evidence was high, including Trial of Midurethral Slings (TOMUS), a high-quality multicenter network trial with 597 participants. 1 The evidence did not show a difference for objective or subjective cure outcomes between the 2 slings. Quality-of-life and sexual function outcomes were also similar between the 2 procedures.

Metaanalysis of objective cure data favored retropubic slings but was not significant (OR, 1.18; 95% CI, 0.95–1.47) (Figure 5). The retropubic sling studied was a TVT in all studies in the metaanalysis.

Similarly, for subjective cure, metaanalysis favored retropubic slings (OR, 1.17; 95% CI, 0.91–1.51) but was not significant (Figure 6). Again, the retropubic sling for included studies was always a TVT while the obturator slings included a variety of slings and routes of passages.

Four studies were included in a metaanalysis of satisfaction outcomes (Figure 7), which favored obturator slings but was not significant (OR, 0.77; 95% CI, 0.52–1.13).

AE and perioperative outcome data were highly variable by each outcome and did not provide a consistent direction when examined by absolute rates of complications for each surgery (Appendix and Table 3). Retropubic slings result in lower absolute rates of sling erosion, need to return to the operating room for treatment of sling erosion, nerve injury, ureteral injury, groin/leg pain, and vaginal perforation. Obturator MUS result in shorter operative time, lower blood loss, fewer bladder/urethral perforations, less perioperative pain, fewer urinary tract infections, and less OAB symptoms. Metaanalysis showed that postoperative OAB symptoms were more common in patients following retropubic slings (OR, 1.41; 95% CI, 1.01-1.98, P = .046).There was no difference between slings on

metaanalysis of return for operating room for erosion or for retention. There were too few studies that examined subpopulations of stress-incontinent patients (eg, those with intrinsic sphincter deficiency or prior surgical failures) to allow metaanalysis.

In summary, for women considering a retropubic or transobturator MUS, we recommend either intervention for objective and subjective cure; the decision should be based on surgeon expertise accounting for AEs (Table 4).

Retropubic MUS vs retropubic MUS

There was a limited number (2) of RCTs for this question, and moderate-quality evidence (Table 1) (Supplementary Table 5). 45,46 These studies each compared top-down passage (SPARC; AMS, Minnetonka, MN) to bottom-up passage (TVT). The evidence does not support a difference in outcomes between the retropubic slings studied. No studies reported quality-of-life or sexual function data

Because we collected AE data by sling type (eg, retropubic vs obturator slings), we could not segregate complications by route of passage.

There were inadequate data to support any metaanalyses. The evidence was also not robust enough to merit a clinical practice guideline.

FIGURE 5 Metaanalysis for objective cure: retropubic (retro) vs obturator midurethral slings

Forest plot subdivided by objective cure test. Gray boxes reflect weight of each comparison in metaanalyses. See "Materials and Methods" for quality assessment scheme. Stress test chosen preferentially over pad test.

CI, confidence interval; \(\int \), percentage of total variation across studies that is due to heterogeneity rather than chance; \(OR \), odds ratio; \(P_{Het.} \) \(\frac{\chi^2}{2} \) Pvalue for statistical heterogeneity; \(TOT \), transobturator sling; TVT, tension-free vaginal tape; TVT-O, tension-free vaginal tape-obturator; UDS, urodynamic study.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

Obturator MUS vs obturator MUS

There have been 2 RCTs investigating this question, which provided low-quality evidence (Table 1) (Supplementary Table 6).39,47 The evidence does not support a difference in outcomes between the routes of obturator slings studied.

Because we collected AE data by sling type (eg, retropubic vs obturator slings), we could not segregate complications by route of passage.

There were inadequate data to support any metaanalyses. The evidence was also not robust enough to merit a clinical practice guideline.

Minislings vs any other slings

There were 15 RCTs providing data for this question, which represented 3-arm or 2-arm studies by original design (Table 1) (Supplementary Table 7). 43,48-56 The comparator arm of traditional fulllength MUS was either an obturator or retropubic sling; no studies compared Burch urethropexy or pubovaginal slings to minislings. The majority of studies in

this category used a TVT-Secur (Ethicon Gynecare, Cincinnati, OH) placed in either the "U" (similar to retropubic slings) or "H" (similar to obturator slings) configuration. While this product is no longer available in the United States, it was retained for this analysis because we thought that there was significant interest among physicians regarding this clinical question. By excluding studies with TVT-Secur (Ethicon Gynecare) from the analysis, a review and guideline on this question would not have been possible.

^{*}Studies included in overall metaanalysis.

FIGURE 6
Metaanalysis for subjective cure: retropubic vs obturator midurethral slings

Gray boxes reflect weight of each comparison in metaanalyses. See "Materials and Methods" for quality assessment scheme.

CI, confidence interval; P, percentage of total variation across studies that is due to heterogeneity rather than chance; QR, odds ratio; P_{Heb} χ^2 P value for statistical heterogeneity; TOT, transobturator sling; TVT, tension-free vaginal tape; TVT-Q, tension-free vaginal tape-obturator.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

Review of the evidence showed that both objective and subjective cure outcomes were improved with use of a fulllength sling compared to a minisling.

Metaanalysis of objective cure outcomes significantly favored traditional full-length MUS, all of which happened to be an obturator sling (TVT-obturator), compared to minislings (OR, 4.16; 95% CI, 2.15—8.05) (Figure 8).

Results were similar for the metaanalysis of subjective cure outcomes (Figure 9). There were data included for both obturator and retropubic traditional MUS. Traditional MUS were found to be superior to minislings (OR, 2.65; 95% CI, 1.36—5.17).

Metaanalysis for the satisfaction outcome was not possible due to a limited number of studies.

With respect to a comparison of AEs, the route (retropubic vs obturator) of the traditional full-length MUS is an important consideration (Table 3). For example, minislings have similar rates of postoperative OAB symptoms (5.4%) compared with obturator slings (5.3%), but somewhat lower rates than retropubic slings (6.9%). Exposure of the sling postoperatively is similar with either obturator slings (2.2%) or minislings (2.0%), but retropubic slings have somewhat lower rates than either (1.4%). Dyspareunia is rare with any type of sling, but is somewhat more common with a minisling (0.99%) than either a retropubic (<0.001%) or obturator (0.16%) sling. Minislings have the highest rate of urethral perforation (2.7% vs <1% for either retropubic or obturator), but the lowest rate of groin pain (0.62%) when compared to either route of MUS (1.5% for retropubic, 6.5% for obturator). Metaanalyses of the AE data failed to show a significant difference for OAB symptoms after surgery or return to the operating room for retention.

In summary, for women considering minislings or traditional full-length MUS,

we recommend traditional full-length MUS to maximize cure rates (Table 4).

COMMENT

Surgical treatment of SUI has been well studied. MUS have become more common than pubovaginal sling procedures and Burch urethropexy for correction of SUI. In this systematic review we reviewed studies comparing MUS (retropubic, obturator, and minisling), pubovaginal slings, and Burch urethropexy for treatment of SUI in women. A large number of studies were available for review. In general, both the quality of study design and the inclusion of patient-centered outcomes have improved over time. We found low- to high-quality evidence permitting metaanalyses and development of clinical practice guidelines.

The best-studied comparison is for retropubic compared to obturator MUS, which included 21 separate studies. There appears to be little need to study

FIGURE 7 Metaanalysis for satisfaction: retropubic vs obturator midurethral slings

Gray boxes reflect weight of each comparison in metaanalyses. See "Materials and Methods" for quality assessment scheme.

CI, confidence interval; P, percentage of total variation across studies that is due to heterogeneity rather than chance; OR, odds ratio; P_{Heb} χ^2 P value for statistical heterogeneity; TOT, transobturator sling; TVT, tension-free vaginal tape; TVT-O, tension-free vaginal tape-obturator.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

this further for straightforward SUI unless surgical products change significantly. We found few reliable data for subpopulations; patients who have urethral sphincter weakness or a history of surgical failure, for example, are often analyzed together with primary surgical candidates with normal urethral function. Definitions of these conditions were highly variable, which meant we were not able to perform reliable analyses of these data. As these are challenging populations to treat clinically, they should be better studied in future work. There is 1 trial that exclusively enrolled women with intrinsic sphincter deficiency, defined either by maximum urethral closure pressure of <20 cm H₂O or leak point pressures of <60 cm H₂O.^{39,76,77} While urodynamic stress incontinence 6 months postoperatively was more common in patients undergoing an obturator sling, objective cure rates based on pad test at 6 months, perioperative information, overall definition of "success," and sexual function data showed no difference between slings.^{39,76,77} For subjective cure rates, the obturator sling was favored only on analysis of Incontinence Impact Questionnaire-7 total score data at 3 years' follow-up, with other markers and

time periods for subjective cure measures not different between groups. 39,76,77 Rate of reoperation for SUI at 3 years of follow-up favored the retropubic sling in this population (18.3% of women in obturator sling group vs 1.2% of the women in the retropubic sling group on intention-to-treat analysis, P < .001) with a significantly shorter time to reoperation in the obturator group as well. 39,76,77

Comparing MUS vs Burch urethropexy, there is moderate-quality evidence that either procedure provides equivalent subjective and objective cure rates. The benefits of a minimally invasive approach may be offset by the inclusion of concomitant procedures. For example, if other intraabdominal procedures are planned, this may mitigate the perioperative differences and AEs associated with Burch surgery compared to a MUS.

Only one study compared different types of pubovaginal slings to each other based on the type of sling material, and therefore we could not draw any conclusions on this question.⁵⁷

We eliminated studies with <12 months' follow-up because of the robust body of literature on this topic (Table 1 presents length of follow-up for each study). Still, it is worthy to note that

this is short-term from the perspective of a patient who desires lifelong cure. While challenging from an investigator standpoint, more studies with extended follow-up are needed.

One challenge in creation of clinical practice guidelines came when the importance of the various outcomes was weighed against each other. For example, should objective cure be more important overall than postsurgical sexual function? Many studies used composite success outcomes in an attempt to address this issue. The weight of these factors may also differ for surgeons and patients, and even between patients. For this reason, the clinical practice guideline statements provide detail to guide physician-patient counseling, which remains of paramount importance when planning surgery. Counseling also should address the impact of other concomitant procedures, such as hysterectomy and pelvic organ prolapse repair, in the decision-making process among the options for incontinence treatment.

Despite being the newest product on the market, the minislings had a large number of studies that met our inclusion criteria. Considering the interest in these slings, we thought it was merited to include TVT-Secur (Ethicon Gynecare)

FIGURE 8
Metaanalysis for objective cure: traditional midurethral sling (MUS) vs minisling

Gray boxes reflect weight of each comparison in metaanalyses. All MUS used in trials were retropubic. See "Materials and Methods" for quality assessment scheme.

CI, confidence interval; P', percentage of total variation across studies that is due to heterogeneity rather than chance; MUS, midurethral slings; OR, odds ratio; P_{Heb} χ^2 P value for statistical heterogeneity; TVT, tension-free vaginal tape; TVT-O, tension-free vaginal tape-obturator.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

in our analysis although it has now been removed from the market. It should be noted that this is the most widely studied minisling, and the results of those studies and thus our review may not be generalizable to newer products. Further RCTs on these newer products are needed.

When choosing between surgical procedures, any surgeon must weigh the presumed benefits with the potential risks and AEs of these procedures. Balancing those against a specific patient's goals and desires is an important consideration for a diagnosis such as SUI in which treatment is elective based on degree of bother and quality-of-life impact. Additionally, surgeons should evaluate their own personal success and complication rates with the procedures and products they use, as these may differ from published rates. Whenever possible, physicians should counsel patients about the balance of both success rates and AEs for the various procedures discussed in this review. For example, some patients may tolerate some mild SUI to avoid any risk of obstructive OAB symptoms, while other patients would accept a high risk of needing to self-catheterize to avoid any SUI.

The strengths of this review include the large numbers of randomized clinical trials reviewed to provide data for the metaanalyses and clinical practice guidelines. Most of the randomized trials achieved their stated power and some studies reported long-term follow-up extending up to 5 years. Given the breadth of these data, we thought we could limit our review to studies with data at 12 months or longer, since patients and surgeons place higher value on long-term success rather than shorterterm rates. Our strict inclusion criteria, including the length of follow-up and the exclusion of meeting abstracts not submitted to the peer-review process, makes the included outcome data strong. There were also a large number of comparative cohort studies and observational studies to provide data on AEs. We were able to limit our collection to those studies with often >1000 patients to collect the most common problems rather than basing conclusions on rare, unusual events from smaller studies or case reports.

There are limitations to the study. Reporting of subpopulations of high interest to surgeons, including intrinsic sphincter deficiency and recurrent SUI, were variable and often not separated out from other patients in analyses, so we cannot draw conclusions about those populations. There was also high variability in reporting of numbers and types of complications in trials, making analyses of AE outcomes challenging. While many surgeons and patients are interested in information about postoperative symptoms such as urgency and de novo urgency, these symptoms were inconsistently reported, thus limiting their analysis. Additionally, data concerning need for retreatment were sparse and inconsistent, limiting our ability to draw any conclusions on this important question. Complications were assessed at different time intervals among different trials, and sometimes later trials reporting secondary analyses did not update longer-term AEs. The vast

^{*}Studies included in overall metaanalysis.

FIGURE 9
Metaanalysis for subjective cure: traditional midurethral sling vs minisling

Forest plot subdivided by slings being compared with minisling. *Gray boxes* reflect weight of each comparison in metaanalyses. See "Materials and Methods" for quality assessment scheme.

CI, confidence interval; P, percentage of total variation across studies that is due to heterogeneity rather than chance; OR, odds ratio; P_{Helt} , χ^2 P value for statistical heterogeneity; TVT, tension-free vaginal tape; TVT-O, tension-free vaginal tape-obturator.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

majority did not use a standard classification for complications such as the classification system of Dindo et al.⁵⁸ The length of follow-up for outcomes in most RCTs was up to 5 years but there was attrition as length of follow-up increased, which reduced the numbers of patients analyzed to determine longterm success rates for the slings or Burch urethropexy. Retropubic MUS, specifically TVT, is the best-studied procedure. There were few studies comparing different types of retropubic slings, obturator slings, or pubovaginal slings within those classifications, limiting our ability to comment on the best product/material.

In summary, this review supports the use of MUS for treatment of SUI compared to pubovaginal slings. The decision for retropubic vs obturator approaches to MUS may be based on the risks associated with each approach as no difference in effectiveness was found. The pubovaginal sling procedure is more effective than Burch urethropexy although, again, differences in surgical

risks may guide the decision to utilize one approach over the other. Traditional MUS are significantly superior to minislings for cure outcomes. Overall, the evidence supporting use of MUS and pubovaginal slings is of high quality. These clinical practice guidelines provide an effective tool to assist in patient counseling and decision-making for the various surgical approaches to management of SUI.

REFERENCES

- **1.** Richter HE, Albo ME, Zyczynski HM, et al. Retropubic versus transobturator midurethral slings for stress incontinence. N Engl J Med 2010;362:2066-76.
- **2.** Ulmsten U, Henriksson L, Johnson P, Varhos G. An ambulatory surgical procedure under local anesthesia for treatment of female urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 1996;7:81-6.
- **3.** Albo ME, Litman HJ, Richter HE, et al. Treatment success of retropubic and trans-obturator midurethral slings at 24 months. J Urol 2012;188:2281-7.
- **4.** Wallace BC, Small K, Brodley C, Lau J, Trikalinos TA. Deploying an interactive

- machine learning system in an evidence-based practice center. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, Miami, Florida, 28–30 January. New York: Assoc Computing Machinery; 2012:819-24.
- **5.** Owens DK, Lohr KN, Atkins D, et al. AHRQ series paper 5: grading the strength of a body of evidence when comparing medical interventions. J Clin Epidemiol 2010;63: 513-23.
- **6.** Trikalinos TA, Hoaglin DC, Schmid CH. Empirical and simulation-based comparison of univariate and multivariate meta-analysis for binary outcomes. Methods research report. (Prepared by the Tufts evidence-based practice center under contract no. 290-2007-10055-I.) AHRQ publication no. 13-EHC066-EF. Rockville, MD: Agency for Healthcare Research and Quality; March 2013.
- **7.** Clopper C, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934;26:404-13.
- **8.** Atkins D, Eccles M, Flottorp S, et al. GRADE Working Group. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches; the GRADE working group. BMC Health Serv Res 2004;4:38.
- **9.** Bai SW, Sohn WH, Chung DL, Park JH, Kim SK. Comparison of the efficacy of Burch colposuspension, pubovaginal sling, and

- tension-free vaginal tape for stress urinary incontinence. Int J Gynaecol Obstet 2005;91: 246-51.
- 10. Bandarian M, Ghanbari Z, Asgari A. Comparison of transobturator tape (TOT) vs Burch method in treatment of stress urinary incontinence. J Obstet Gynaecol 2011;31:518-20.
- 11. Foote AJ, Maughan V, Carne C. Laparoscopic colposuspension versus vaginal suburethral slingplasty: a randomized prospective trial. Aust N Z J Obstet Gynaecol 2006;46: 517-20.
- 12. Liapis A, Bakas P, Creatsas G. Burch colposuspension and tension-free vaginal tape in the management of stress urinary incontinence in women. Eur Urol 2002;41:469-73.
- 13. Paraiso MFR, Walters MD, Karram MM, Barber MD. Laparoscopic Burch colposuspension versus tension-free vaginal tape: a randomized trial. Obstet Gynecol 2004;104:
- 14. Persson J, Teleman P, Etén-Bergquist C, Wølner-Hanssen P. Cost-analyzes based on a prospective, randomized study comparing laparoscopic colposuspension with a tensionfree vaginal tape procedure. Acta Obstet Gynecol Scand 2002;81:1066-73.
- 15. Sivaslioglu AA, Caliskan E, Dolen I, Haberal A. A randomized comparison of transobturator tape and Burch colposuspension in the treatment of female stress urinary incontinence. Int Urogynecol J 2007;18:1015-9.
- **16.** Tellez Martinez-Fornes M, Fernández Pérez C, Fouz López C, Fernández Lucas C, Borrego Hernando J. A three year follow-up of a prospective open randomized trial to compare tension-free vaginal tape with Burch colposuspension for treatment of female stress urinary incontinence. Actas Urol Esp 2009;33:1088-96.
- 17. Wang AC, Chen MC. Comparison of tension-free vaginal taping versus modified Burch colposuspension on urethral obstruction: a randomized controlled trial. Neurourol Urodvn 2003;22:185-90.
- 18. Ward K, Hilton P; United Kingdom and Ireland Tension-free Vaginal Tape Trial Group. Prospective multicenter randomized trial of tension-free vaginal tape and colposuspension as primary treatment for stress incontinence. BMJ 2002:325:67.
- 19. Albo ME, Richter HE, Brubaker L, et al. Burch colposuspension versus fascial sling to reduce urinary stress incontinence. N Engl J Med 2007;356:2143-55.
- 20. Culligan PJ, Goldberg RP, Sand PK. A randomized controlled trial comparing a modified Burch procedure and a suburethral sling: long-term follow-up. Int Urogynecol J Pelvic Floor Dysfunct 2003;14:229-33.
- 21. Enzelsberger H, Helmer H, Schatten C. Comparison of Burch and Ivodura sling procedures for repair of unsuccessful incontinence surgery. Obstet Gynecol 1996;88:251-6.
- 22. Amaro JL, Yamamoto H, Kawano PR, Barros G, Gameiro MO, Agostinho AD. Clinical and quality-of-life outcomes after autologous fascial sling and tension-free vaginal tape: a

- prospective randomized trial. Int Braz J Urol 2009;35:60-7.
- 23. Guerrero KL, Emery SJ, Wareham K, Ismail S, Watkins A, Lucas MG. A randomized controlled trial comparing TVT, Pelvicol, and autologous fascial slings for the treatment of stress urinary incontinence in women. BJOG 2010;117:1493-503.
- 24. Sharifiaghdas F, Mortazavi N. Tension-free vaginal tape and autologous rectus fascia pubovaginal sling for the treatment of urinary stress incontinence: a medium-term follow-up. Med Princ Pract 2008:17:209-14.
- **25.** Tcherniakovsky M. Fernandes CE. Bezerra CA, Del Roy CA, Wrocławski ER. Comparative results of two techniques to treat stress urinary incontinence: synthetic transobturator and aponeurotic slings. Int Urogynecol J Pelvic Floor Dysfunct 2009;20:961-6.
- 26. Aniuliene R. Tension-free vaginal tape versus tension-free vaginal tape obturator (inside-outside) in the surgical treatment of female stress urinary incontinence. Medicina (Kaunas) 2009:45:639-43.
- 27. Araco F, Gravante G, Sorge R, et al. TVT-O vs TVT: a randomized trial in patients with different degrees of urinary stress incontinence. Int Urogynecol J Pelvic Floor Dysfunct 2008;19:
- 28. Ballester M, Bui C, Frobert J, et al. Fouryear functional results of the suburethral sling procedure for stress urinary incontinence: a French prospective randomized multicenter study comparing the retropubic and transobturator routes. World J Urol 2012:30: 117-22.
- 29. Barber MD, Kleeman S, Karram MM, et al. Transobturator tape compared with tension-free vaginal tape for the treatment of stress urinary incontinence: a randomized controlled trial. Obstet Gynecol 2008;111:611-21.
- **30.** Deffieux X, Daher N, Mansoor A, Debodinance P. Muhlstein J. Fernandez H. Transobturator TVT-O versus retropubic TVT: results of a multicenter randomized controlled trial at 24 months follow-up. Int Urogynecol J 2010;21:1337-45.
- 31. El-Hefnawy AS, Wadie BS, El Mekresh M, Nabeeh A. Bazeed MA. TOT for treatment of stress urinary incontinence: how should we assess its equivalence with TVT? Int Urogynecol J 2010;21:947-53.
- 32. Freeman R, Holmes D, Hillard T, et al. What patients think: patient-reported outcomes of retropubic versus transobturator mid-urethral slings for urodynamic stress incontinence—a multicenter randomized controlled trial. Int Urogynecol J 2011;22:279-86.
- 33. Karateke A, Haliloglu B, Cam C, Sakalli M. Comparison of TVT and TVT-O in patients with stress urinary incontinence: short-term cure rates and factors influencing the outcome: a prospective randomized study. Aust N Z J Obstet Gynaecol 2009;49:99-105.
- 34. Krofta L, Feyereisl J, Otcenásek M, Velebil P, Kasíková E, Krcmár M. TVT and TVT-O for surgical treatment of primary stress urinary

- incontinence: prospective randomized trial. Int Urogynecol J 2010;21:141-8.
- 35. Liapis A, Bakas P, Giner M, Creatsas G. Tension-free vaginal tape versus tension-free vaginal tape obturator in women with stress urinary incontinence. Gynecol Obstet Invest 2006:62:160-4.
- 36. Rinne K, Laurikainen E, Kivelä A, et al. A randomized trial comparing TVT with TVT-O: 12-month results. Int Urogynecol J Pelvic Floor Dysfunct 2008;19:1049-54.
- 37. Ross S, Robert M, Swaby C, et al. Transobturator tape compared with tension-free vaginal tape for stress incontinence: a randomized controlled trial. Obstet Gynecol 2009;114: 1287-94.
- 38. Scheiner DA, Betschart C, Wiederkehr S, Seifert B, Fink D, Perucchini D. Twelve months effect on voiding function of retropubic compared with outside-in and inside-out transobturator midurethral slings. Int Urogynecol J 2012:23:197-206.
- 39. Schierlitz L, Dwyer PL, Rosamilia A, et al. Effectiveness of tension-free vaginal tape compared with transobturator tape in women with stress urinary incontinence and intrinsic sphincter deficiency: a randomized controlled trial. Obstet Gynecol 2008:112:1253-61.
- 40. Teo R, Moran P, Mayne C, Tincello D. Randomized trial of tension-free vaginal tape and tension-free vaginal tape-obturator for urodynamic stress incontinence in women. J Urol 2011;185:1350-5.
- 41. Wang F, Song Y, Huang H. Prospective randomized trial of TVT and TOT as primary treatment for female stress urinary incontinence with or without pelvic organ prolapse in Southeast China. Arch Gynecol Obstet 2010;281:
- 42. Wang W, Zhu L, Lang J. Transobturator tape procedure versus tension-free vaginal tape for treatment of stress urinary incontinence. Int J Gvnaecol Obstet 2009:104:113-6.
- 43. Wang YJ, Li FP, Wang Q, Yang S, Cai XG, Chen YH. Comparison of three mid-urethral tension-free tapes (TVT, TVT-O, and TVT-Secur) in the treatment of female stress urinary incontinence: 1-year follow-up. Int Urogynecol J 2011:22:1369-74.
- 44. Zullo MA. Plotti F. Calcagno M. et al. Oneyear follow-up of tension-free vaginal tape (TVT) and trans-obturator suburethral tape from inside to outside (TVT-O) for surgical treatment of female stress urinary incontinence: a prospective randomized trial. Eur Urol 2007:51:1376-84.
- 45. Andonian S, Chen T, St-Denis B, Corcos J. Randomized clinical trial comparing suprapubic arch sling (SPARC) and tension-free vaginal tape (TVT): one-year results. Eur Urol 2005;47: 537-41.
- 46. Tseng LH, Wang AC, Lin YH, Li SJ, Ko YJ. Randomized comparison of the suprapubic arc sling procedure vs tension-free vaginal taping for stress incontinent women. Int Urogynecol J Pelvic Floor Dysfunct 2005;16:230-5.
- 47. Abdel-Fattah M, Ramsay I, Pringle S, et al. Randomized prospective single-blinded study

- 48. Andrada Hamer M, Larsson PG, Teleman P, Bergqvist CE, Persson J. One-vear results of a prospective randomized, evaluator-blinded, multicenter study comparing TVT and TVT Secur. Int Urogynecol J 2013;24:223-9.
- 49. Barber MD, Weidner AC, Sokol Al, et al. Single-incision mini-sling compared with tensionfree vaginal tape for the treatment of stress urinary incontinence: a randomized controlled trial. Obstet Gynecol 2012;119:328-37.
- 50. Hinoul P, Vervest HA, den Boon J. A randomized, controlled trial comparing an innovative single incision sling with an established transobturator sling to treat female stress urinary incontinence. J Urol 2011;185:1356-62.
- 51. Hota LS, Hanaway K, Hacker MR, et al. TVT-Secur (Hammock) versus TVT-obturator: a randomized trial of suburethral sling operative procedures. Female Pelvic Med Reconstr Sura 2012;18:41-5.
- 52. Kim JJ, Lee YS, Lee KS. Randomized comparative study of the U- and H-type approaches of the TVT-Secur procedure for the treatment of female stress urinary incontinence: one-year follow-up. Korean J Urol 2010;51:
- **53.** Lee KS, Lee YS, Seo JT, et al. A prospective multicenter randomized comparative study between the U- and H-type methods of the TVT SECUR procedure for the treatment of female stress urinary incontinence: 1-year follow-up. Eur Urol 2010;57:973-9.
- 54. Masata J, Svabik K, Zvara K, et al. Randomized trial of a comparison of the efficacy of TVT-O and single-incision tape TVT SECUR systems in the treatment of stress urinary incontinent women-2-vear follow-up. Int Uroavnecol J 2012:23:1403-12.
- 55. Oliveira R, Botelho F, Silva P, et al. Exploratory study assessing efficacy and complications of TVT-O, TVT-Secur, and Mini-Arc: results at 12-month follow-up. Eur Urol 2011;59:940-4.
- 56. Tommaselli GA, Di Carlo C, Gargano V, Formisano C, Scala M, Nappi C. Efficacy and safety of TVT-O and TVT-Secur in the treatment of female stress urinary incontinence: 1-year follow-up. Int Urogynecol J 2010;21:1211-7.
- 57. Barbalias G, Liatsikos E, Barbalias D. Use of slings made of indigenous and allogenic material (Goretex) in type III urinary incontinence and comparison between them. Eur Urol 1997:31: 394-400.
- 58. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240: 205-13.
- 59. Jelovsek JE. Barber MD. Karram MM. Walters MD. Paraiso MF. Randomized trial of laparoscopic Burch colposuspension versus tension-free vaginal tape: long-term follow-up. BJOG 2008:115:219-25.

- 60. Ward KL, Hilton P; UK and Ireland TVT Trial Group. A prospective multicenter randomized trial of tension-free vaginal tape and colposuspension for primary urodynamic stress incontinence: two-year follow-up. Am J Obstet Gynecol 2004;190:324-31.
- 61. Ward KL. Hilton PUK and Ireland TVT Trial Group. Tension-free vaginal tape versus colposuspension for primary urodynamic stress incontinence: 5-year follow up. BJOG 2008;115: 226-33
- 62. Tennstedt S. Urinary Incontinence Treatment Network. Design of the stress incontinence surgical treatment efficacy trial (SISTEr). Urology 2005:66:1213-7.
- 63. Tennstedt SL, Litman HJ, Zimmern P, et al. Urinary Incontinence Treatment Network. Quality of life after surgery for stress incontinence. Int Urogynecol J Pelvic Floor Dysfunct 2008;19: 1631-8
- 64. Chai TC, Albo ME, Richter HE, et al. Complications in women undergoing Burch colposuspension versus autologous rectus fascial sling for stress urinary incontinence. J Urol 2009:181:2192-7.
- 65. Kraus SR, Lemack GE, Richter HE, et al. Changes in urodynamic measures two years after Burch colposuspension or autologous sling surgery. Urology 2011;78:1263-8.
- 66. Brubaker L, Richter HE, Norton PA, et al. 5-vear continence rates, satisfaction and adverse events of Burch urethropexy and fascial sling surgery for urinary incontinence. J Urol 2012;187:1324-30.
- 67. Sand PK, Winkler H, Blackhurst DW, Culligan PJ. A prospective randomized study comparing modified Burch retropubic urethropexy and suburethral sling for treatment of genuine stress incontinence with lowpressure urethra. Am J Obstet Gynecol 2000;182:30-4.
- 68. Daraï E. Frobert J. Grisard-Anaf M. et al. Functional results after the suburethral sling procedure for urinary stress incontinence: a prospective randomized multicenter study comparing the retropubic and transobturator routes. Eur Urol 2007;51:795-801.
- 69. David-Montefiore E, Frobert J, Grisard-Anaf M, et al. Peri-operative complications and pain after the suburethral sling procedure for urinary stress incontinence: a French prospective randomized multicenter study comparing the retropubic and transobturator routes. Eur Urol 2006;49:133-8.
- 70. Barber MD, Kleeman S, Karram MM, et al. Risk factors associated with failure 1 year after retropubic or transobturator midurethral slings. Am J Obstet Gynecol 2008;199:666.e1-7.
- 71. Albo ME. The trial of mid-urethral slings (TOMUS): design and methodology. J Appl Res 2008;8:1-13.
- 72. Brubaker L, Norton PA, Albo ME, et al. Adverse events over two years after retropubic or transobturator midurethral sling surgery: findings from the trial of mid-urethral slings (TOMUS) study. Am J Obstet Gynecol 2011:205:498.e1-6.

- 73. Zyczynski HM, Rickey L, Dyer KY. Sexual activity and function in women more than 2 years after midurethral sling placement. Am J Obstet Gynecol 2012;207:421.e1-6.
- 74. Laurikainen E, Valpas A, Kivelä A, et al. Retropubic compared with transobturator tape placement in treatment of urinary incontinence: a randomized controlled trial. Obstet Gynecol 2007;109:4-11.
- 75. Palva K, Rinne K, Aukee P, et al. A randomized trial comparing tension-free vaginal tape with tension-free vaginal tapeobturator: 36-month results. Int Urogynecol J 2010:21:1049-55.
- 76. Schierlitz L, Dwyer PL, Rosamilia A. Threeyear follow-up of tension-free vaginal tape compared with transobturator tape in women with stress urinary incontinence and intrinsic sphincter deficiency. Obstet Gynecol 2012;119: 321-7
- 77. De Souza A, Dwyer PL, Rosamilia A, et al. Sexual function following retropubic TVT and transobturator Monarc sling in women with intrinsic sphincter deficiency: a multicenter prospective study. Int Urogynecol J 2012;23:153-8.
- 78. Angioli R, Plotti F, Muzii L, Montera R, Panici PB, Zullo MA. Tension-free vaginal tape versus transobturator suburethral tape: five-vear follow-up results of a prospective, randomized trial. Eur Urol 2010;58:671-7.
- 79. Abdel-Fattah M, Ramsay I, Pringle S, Hardwick C, Ali H. Evaluation of transobturator tapes (E-TOT) study: randomized prospective single-blinded study comparing inside-out vs outside-in transobturator tapes in management of urodynamic stress incontinence; short term outcomes. Eur J Obstet Gynecol Reprod Biol 2010:149:106-11.
- 80. Abdel-Fattah M, Mostafa A, Familusi A, Ramsay I, N'dow J. Prospective randomized controlled trial of transobturator tapes in management of urodynamic stress incontinence in women: 3-vear outcomes from the evaluation of transobturator tapes study. Eur Urol 2012;62:
- 81. Barry C, Lim YN, Muller R, et al. A multicenter, randomized clinical control trial comparing the retropubic (RP) approach versus the transobturator approach (TO) for tensionfree, suburethral sling treatment of urodynamic stress incontinence: the TORP study. Int Urogynecol J Pelvic Floor Dysfunct 2008;19:171-8.
- 82. Basu M, Duckett J. A randomized trial of a retropubic tension-free vaginal tape versus a mini-sling for stress incontinence. BJOG 2010:117:730-5.
- 83. Bernasconi F, Napolitano V, Natale F, Leone V, Lijoi D, Cervigni M. TVT SECUR system: final results of a prospective, observational, multicentric study. Int Urogynecol J 2012;23: 93-8.
- 84. But I, Faganelj M. Complications and shortterm results of two different transobturator techniques for surgical treatment of women with urinary incontinence: a randomized study. Int Urogynecol J Pelvic Floor Dysfunct 2008;19: 857-61.

- 85. Campeau L, Tu LM, Lemieux MC, et al. A multicenter, prospective, randomized clinical trial comparing tension-free vaginal tape surgery and no treatment for the management of stress urinary incontinence in elderly women. Neurourol Urodyn 2007;26:990-4.
- **86.** Carev JM. Leach GE. Transvaginal surgery in the octogenarian using cadaveric fascia for pelvic prolapse and stress incontinence: minimal one-year results compared to younger patients. Urology 2004;63:665-70.
- 87. Cholhan HJ, Lotze PM. Urodynamic changes after tension-free sling procedures: Mycromesh-Plus vs TVT sling. Int Urogynecol J Pelvic Floor Dysfunct 2008;19:217-25.
- 88. De Ridder D, Berkers J, Deprest J, et al. Single incision mini-sling versus a transobturator sling: a comparative study on MiniArc and Monarc slings. Int Urogynecol J 2010;21:773-8. 89. Dyrkorn OA, Kulseng-Hanssen S, Sandvik L. TVT compared with TVT-O and TOT: results from the Norwegian national inconti-

nence registry. Int Urogynecol J 2010;21:

1321-6.

- 90. Frederick RW, Carey JM, Leach GE. Osseous complications after transvaginal bone anchor fixation in female pelvic reconstructive surgery: report from single largest prospective series and literature review. Urology 2004;64:
- 91. Haverkorn RM, Williams BJ, Kubricht WS III, Gomelsky A. Is obesity a risk factor for failure and complications after surgery for incontinence and prolapse in women? J Urol 2011;185: 987-92.
- 92. Kennelly MJ, Moore R, Nguyen JN, Lukban J, Siegel S. Miniarc single-incision sling for treatment of stress urinary incontinence: 2-year clinical outcomes. Int Urogynecol J 2012;23:1285-91.
- 93. Kennelly MJ, Moore R, Nguyen JN, Lukban JC, Siegel S. Prospective evaluation of a single incision sling for stress urinary incontinence. J Urol 2010;184:604-9.
- 94. Kölle D, Tamussino K, Hanzal E, et al. Bleeding complications with the tension-free vaginal tape operation. Am J Obstet Gynecol 2005:193:2045-9.
- 95. Kuo HC. Long-term surgical results of pubovaginal sling procedure using polypropylene mesh in the treatment of stress urinary incontinence. Urol Int 2005;74:147-52.

- 96. Kuuva N, Nilsson CG. A nationwide analysis of complications associated with the tensionfree vaginal tape (TVT) procedure. Acta Obstet Gynecol Scand 2002;81:72-7.
- 97. Lee JK, Dwyer PL, Rosamilia A, Lim YN, Polyakov A, Stav K. Persistence of urgency and urge urinary incontinence in women with mixed urinary symptoms after midurethral slings: a multivariate analysis. BJOG 2011;118: 798-805.
- 98. Meschia M, Barbacini P, Baccichet R, et al. Short-term outcomes with the Ajust system: a new single incision sling for the treatment of stress urinary incontinence. Int Urogynecol J 2011;22:177-82.
- 99. Neuman M. Perioperative complications and early follow-up with 100 TVT-Secur procedures. J Minim Invasive Gynecol 2008;15:480-4.
- 100. Neuman M, Sosnovski V, Kais M, Ophir E, Bornstein J. Transobturator vs single-incision suburethral mini-slings for treatment of female stress urinary incontinence: early postoperative pain and 3-year follow-up. J Minim Invasive Gynecol 2011:18:769-73.
- 101. Norris JP, Breslin DS, Staskin DR. Use of synthetic material in sling surgery: a minimally invasive approach. J Endourol 1996;10: 227-30.
- 102. Oliveira R, Botelho F, Silva P, et al. Singleincision sling system as primary treatment of female stress urinary incontinence: prospective 12 months data from a single institution. BJU Int 2011;108:1616-21.
- 103. Oliveira R, Silva A, Pinto R, et al. Short-term assessment of a tension-free vaginal tape for treating female stress urinary incontinence. BJU Int 2009;104:225-8.
- 104. Pickens RB, Klein FA, Mobley JD III, White WM. Single incision mid-urethral sling for treatment of female stress urinary incontinence. Urology 2011;77:321-4.
- 105. Presthus JB, Van Drie D, Graham C. MiniArc single-incision sling in the office setting. J Minim Invasive Gynecol 2012;19:331-8.
- 106. Pushkar DY, Godunov BN, Gvozdev M, Kasyan GR. Complications of mid-urethral slings for treatment of stress urinary incontinence. Int J Gynaecol Obstet 2011;113:54-7.
- 107. Rapp DE, Nazemi TM, Kobashi KC, Govier FE. Transvaginal bone-anchored sling for the treatment of female stress urinary incontinence: effect of Valsalva leak point pressure and

- prior pelvic surgery on outcomes. Int Urogynecol J Pelvic Floor Dysfunct 2008;19:1211-5.
- 108. Rodrigues FR, Maroccolo Filho R, Maroccolo RR, Paiva LC, Diaz FA, Ribeiro EC. Pubovaginal sling with a low-cost polypropylene mesh. Int Braz J Urol 2007;33:690-4.
- 109. Simsiman AJ. Powell CR. Stratford RR. Menefee SA. Suburethral sling materials: best outcome with autologous tissue. Am J Obstet Gynecol 2005;193:2112-6.
- 110. Staskin DR, Choe JM, Breslin DS. The Gore-Tex sling procedure for female sphincteric incontinence: indications, technique, and results. World J Urol 1997:15:295-9.
- 111. Tincello DG, Botha T, Grier D, et al. The TVT worldwide observational registry for longterm data: safety and efficacy of suburethral sling insertion approaches for stress urinary incontinence in women. J Urol 2011;186:2310-5.
- 112. Paparella R, Marturano M, Pelino L. Prospective randomized trial comparing synthetic vs biological out-in transobturator tape: a mean 3-year follow-up study. Int Urogynecol J 2010:21:1327-36.
- 113. Basok EK, Yildirim A, Atsu N, Basaran A, Tokuc R. Cadaveric fascia lata versus intravaginal slingplasty for the pubovaginal sling: surgical outcome, overall success and patient satisfaction rates. Urol Int 2008;80:46-51.
- 114. Porena M, Costantini E, Frea B, et al. Tension-free vaginal tape versus transobturator tape as surgery for stress urinary incontinence: results of a multicenter randomized trial. Eur Urol 2007;52:1481-90.
- 115. Howden NS, Zyczynski HM, Moalli PA, Sagan ER, Meyn LA, Weber AM. Comparison of autologous rectus fascia and cadaveric fascia in pubovaginal sling continence outcomes. Am J Obstet Gynecol 2006;194: 1444-9
- 116. Meschia M, Pifarotti P, Spennacchio M, Buonaguidi A, Gattei U, Somigliana E. A randomized comparison of tension-free vaginal tape and endopelvic fascia plication in women with genital prolapse and occult stress urinary incontinence. Am J Obstet Gynecol 2004;190:609-13.
- 117. Tamussino KF, Hanzal E, Kölle D, Ralph G, Riss PA; Austrian Urogynecology Working Group. Tension-free vaginal tape operation: results of the Austrian registry. Obstet Gynecol 2001;98:732-6.

APPENDIX

SUPPLEMENTARY TABLE 1

Evidence profile for midurethral sling vs Burch

							Summary	of findings	
Outcome	No. studies	Total n	Methodological quality	Consistency	Directness	Other considerations	Evidence strength	Effect	Outcome importance
Objective cure	9	994	1A (0), 4B (-1), 2B (-2), 2C (-2)	0	0	0	Moderate	No difference	Critical
Subjective cure	8	712	1A (-1), 2B (-1), 2B (-2), 3C (-2)	0	0	0	Moderate	No difference	Critical
Perioperative outcomes	9	964	1A (0), 4B (-1), 1B (-2), 3C (-2)	0	0	0	High	Favors midurethral	Variable
Quality of life	3	465	3B (-1)	0	0	0	Moderate	No difference	Critical
Sexual functioning	1	344	1B (-1)	NA	0	-1	Low	No difference	High
Total	10 separate studies								

Quality of overall evidence: moderate. Balance of benefits and harms: comparing midurethral slings (retropubic or obturator routes) to Burch (open or laparoscopic), there were no differences in objective or subjective cure, quality of life and sexual function outcomes. Metaanalyses for subjective and objective cure also showed no significant differences. There were not enough studies to perform a metaanalysis of subjective cure outcomes. Perioperative outcomes favored midurethral slings but long-term adverse event outcomes were less common with the Burch procedure. Metaanalysis of the adverse event outcomes where possible did not show a difference.

NA, not applicable.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

SUPPLEMENTARY TABLE 2

Evidence profile for PV sling vs Burch

							Summary	of findings	
Outcome	No. studies	Total n	Methodological quality	Consistency	Directness	Other considerations	Evidence strength	Effect	Outcome importance
Objective cure	4	855	1A (0), 1B (-2), 1B (-1), 1C (-2)	0	0	0	High	Favors sling	Critical
Subjective cure	2	747	1A (0)	NA	0	0	High	Favors sling	Critical
Perioperative outcomes	3	819	1A (0), 1B (-1), 1C (-2)	0	0	0	High	Favors Burch	Variable
Quality of life	1	655	1A (0)	NA	0	0	High	No difference	Critical
Sexual functioning	0	0	NA	NA	NA	NA	NA	NA	High
Total	4 separate studies								

Quality of overall evidence: high. Balance of benefits and harms: comparing PVS using fascia or synthetic material to Burch (open or laparoscopic) for SUI treatment, objective and subjective cure outcomes favor PVS. There was no difference seen for quality of life outcomes and no data regarding sexual functioning. Short-term (perioperative) and long-term adverse event outcomes favor Burch although some adverse events are less common with sling procedures.

NA, not applicable; PVS, pubovaginal slings; SUI, stress urinary incontinence.

SUPPLEMENTARY TABLE 3

Evidence profile for pubovaginal sling vs midurethral sling

							Summary	of findings	
Outcome	No. studies	Total n	Methodological quality	Consistency	Directness	Other considerations	Evidence strength	Effect	Outcome importance
Objective cure	3	233	1B (-1), 1B (-2), 1C(-2)	0	0	0	Low	No difference	Critical
Subjective cure	4	305	2B (-2), 1C (-2)	0	0	0	Very low	No difference	Critical
Perioperative outcomes	4	383	2B (-1), 2C (-2)	-1	0	0	Low	Favors midurethral	Variable
Quality of life	3	342	2B (-1), 1C (-2)	0	0	0	Low	No difference	Critical
Sexual functioning	0	0	NA	NA	NA	NA	NA	NA	High
Total	5 separate studies								

Quality of overall evidence: low. Balance of benefits and harms: comparing PVS (fascia or synthetic material) to synthetic midurethral slings (only retropubic passage was studied), objective and subjective cure outcomes as well as quality of life and sexual function outcomes showed no differences. There were not enough studies available to perform a metaanalysis for objective cure outcomes, but a metaanalysis for subjective cure significantly favored midurethral slings. Both short-term (perioperative) and long-term adverse event data in general favored midurethral slings although metaanalysis did not show a difference for selected adverse-event outcomes.

NA, not applicable; PVS, pubovaginal slings.

www.AJOG.org

Urogynecology

RESEARCH

Critical

High

Evidence profile for retropubic vs obturator sling **Summary of findings** Other **Evidence** Outcome Outcome No. studies Total n **Methodological quality** Consistency Directness considerations strength Effect importance 0 0 Objective cure 19 3354 7A (0), 6B (-1), 4B (-2), 0 High No difference Critical 2C (-2) 6A (0), 2A (-1), 4B (-1), Subjective cure 18 3186 0 0 0 Hiah No difference Critical 2B (-2), 2C (-2) Perioperative 21 3811 8A (0), 10B (-1), 3C (-2) 0 0 High Most outcomes show no difference but Variable wide range. For OR time. 10 studies outcomes show a difference and 8 favor obturator>retropubic. One study demonstrated that obturator sling patients were in hospital less time. For pain, 3 studies show a difference, 1 favoring retropubic and 2 favoring

Quality of overall evidence: high. Balance of benefits and harms: comparing retropubic to obturator midurethral slings, there was no difference seen for objective cure, subjective cure, quality of life or sexual functioning outcomes. Metaanalysis favored retropubic slings for objective and subjective cure, although neither was significant. Metaanalysis for satisfaction favored obturator slings, but again was not significant. Adverse event data was variable across outcomes. Metaanalysis showed postoperative overactive bladder symptoms were more common with retropubic slings, but rates of retention and return to OR for erosion were similar.

0

0

0

0

obturator.

No difference

No difference

High

High

OR, operating room.

Quality of life

Total

Sexual functioning 10

SUPPLEMENTARY TABLE 4

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

2837

2004

15

21 separate studies

8A (0), 7B (-1)

4A (0), 1A (-1),

4B (-2), 1B (-1)

0

0

SUPPLEMENTARY TABLE 5

Evidence profile for retropubic vs retropubic sling

							Summary of findings			
Outcome	No. studies	Total n	Methodological quality	Consistency	Directness	Other considerations	Evidence strength	Effect	Outcome importance	
Objective cure	2	146	2B (-1)	0	0	0	Moderate	No difference	Critical	
Subjective cure	1	84	1B (-1)	NA	0	-1	Low	No difference	Critical	
Perioperative outcomes	2	146	2B (-1)	0	0	0	Moderate	No difference	Moderate	
Quality of life	0	0	NA	NA	NA	NA	NA	NA	Critical	
Sexual functioning	0	0	NA	NA	NA	NA	NA	NA	High	
Total	2 separate studies	146								

Quality of overall evidence: low. Balance of benefits and harms: comparing TVT (retropubic bottom-up) to SPARC (AMS, Minnetonka, MN) (retropubic top-down) in a population undergoing both prolapse repairs and anti-incontinence procedures, it is uncertain whether TVT is preferable to SPARC. There were few studies to analyze. Similar objective cure, perioperative event, and long-term adverse event rates (moderate quality evidence) and subjective cure rates (low quality evidence) are observed for TVT and SPARC. Data are insufficient to compare differences in postoperative QoL or sexual function. Adverse events could not be compared.

NA, not applicable; QoL, quality of life; TVT, tension-free vaginal tape.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

SUPPLEMENTARY TABLE 6

Evidence profile for obturator vs obturator sling

Outcome							Summary of findings		
	No. studies	Total n	Methodological quality	Consistency	Directness	Other considerations	Evidence strength	Effect	Outcome importance
Objective cure	2	421	2B (-1)	NA	0	-1	Low	No difference	Critical
Subjective cure	2	421	1B (-1) 1B (-2)	NA	0	-1	Low	No difference	Critical
Perioperative outcomes	1	80	1B (-1)	NA	0	-1	NA	NA	Variable
Quality of life	2	421	2B (-1)	NA	0	-1	Low	No difference	Critical
Sexual functioning	2	421	1B (-1) 1B (-2)	NA	0	-1	Low	No difference	High
Total	2 studies								

Quality of overall evidence: low. Balance of benefits and harms: in 2 studies comparing routes of obturator sling passage (in-to-out vs out-to-in) for SUI, it is uncertain which route is preferable. Similar objective cure, subjective cure, quality of life and sexual functioning results were seen with low-quality evidence. Data are insufficient to compare short- or long-term adverse events.

NA, not applicable; SUI, stress urinary incontinence.

Urogynecology RESEARCH

SUPPLEMENTARY TABLE 7

Evidence profile for minisling vs other

Outcome							Summary of findings			
	No. studies	Total n	Methodological quality	Consistency	Directness	Other considerations	Evidence strength	Effect	Outcome importance	
Objective cure	15	1916	7A (0), 1B (-1), 4B (-2), 3C (-2)	-1	0	0	High	Favors other sling over minisling	Critical	
Subjective cure	9	1516	3A (0), 4A (-1), 1B (-1), 1B (-2)	-1	0	0	High	Favors other sling over minisling	Critical	
Perioperative outcomes	15	1916	7A (0), 5B (-1), 3C (-2)	-1	0	0	Moderate	For EBL, no difference in most studies. For catheter time favors TVT-0 or no difference. For pain, favors minisling. Hospital time not different. OR time results mixed.	Variable	
Quality of life	9	1467	7A (0), 2B (-1)	0	0	0	Moderate	No difference	Critical	
Sexual functioning	3	708	1A (0), 2B (-1)	0	0	sparse	Moderate	No difference	High	
Total	15 arms									

Quality of overall evidence: high. Balance of benefits and harms: Comparing traditional MUS (TVT or TVT-0) to the minislings (TVT-Secur U or H position, MiniArc), both objective and subjective cure outcomes strongly favored the traditional MUS, including on metaanalyses of both types of cure outcomes. No difference was seen for quality of life or sexual functioning outcomes. Adverse event outcomes were mixed and may depend on which MUS passage would be chosen as an alternative; metaanalysis of adverse-event data showed no difference. MiniArc; AMS, Minnetonka, MN; TVT-Secure; Ethicon Gynecare, Cincinnati, OH.

EBL, estimated blood loss; MUS, midurethral slings; TVT, tension-free vaginal tape; TVT-0, tension-free vaginal tape obturator.