18.650 - Fundamentals of Statistics

7. Generalized linear models

Linear model

A Gaussian linear model assumes

$$Y|X = x \sim \mathcal{N}(\mu(x), \sigma^2 I),$$

And1

$$\mathbb{E}(Y|X=x) = \mu(x) = x^{\top}\beta,$$

¹Throughout we drop the boldface notation for vectors

Components of a linear model

The two model components (that we are going to relax) are

- 1. Random component: the response variable Y is continuous and Y|X=x is Gaussian with mean $\mu(x)$.
- 2. Regression function: $\mu(x) = x^{\top} \beta$.

Kyphosis

The Kyphosis data consist of measurements on 81 children following corrective spinal surgery. The binary response variable, Y, indicates the presence or absence of a postoperative deforming.

The three covariates are:

- X⁽¹⁾: Age of the child in month,
- $lacksquare X^{(2)}$: Number of the vertebrae involved in the operation, and
- $ightharpoonup X^{(3)}$: Start of the range of the vertebrae involved.

Write
$$X = (1, X^{(1)}, X^{(2)}, X^{(3)})^{\top} \in \rm I\!R^4$$

Kyphosis

The response variable is binary so there is no choice: Y|X=x is **Bernoulli** with expected value

$$\mu(x) = \mathbb{E}[Y|X=x] \in (0,1)$$

We cannot write

$$\mu(x) = x^{\top} \beta$$

because the right-hand side ranges through ${\rm I\!R}.$

▶ We need an invertible function f such that $f(x^\top \beta) \in (0,1)$

Generalization

A generalized linear model (GLM) generalizes normal linear regression models in the following directions.

1. Random component:

$$Y|X=x\sim$$
 some distribution

(e.g. Bernoulli, exponential, Poisson)

2. Regression function:

$$g(\mu(x)) = x^{\top} \beta$$

where g called **link function** and $\mu(x) = \mathbb{E}(Y|X=x)$ is the regression function.

Predator/Prey

Consider the following model for the number of preys Y that a predator (Hawk) catches per day a predator given a number X of preys (mice) in its hunting territory.

Random component: Y>0 and the variance of capture rate is known to be approximately equal to its expectation so we propose the following model:

$$Y|X=x\sim \mathsf{Poiss}\big(\mu(x)\big)$$

Where $\mu(x) = \mathbb{E}[Y|X = x]$.

Regression function: We assume

$$\mu(x) = \frac{mx}{h+x}, \qquad \text{for some unknown } m, h > 0.$$

where:

- ightharpoonup m is the max expected daily preys the predator can cope with
- ▶ h is the number of preys such that $\mu(h) = m/2$

The regression function m(x) for m=h=10

Example 2: Prey Capture Rate

Obviously $\mu(x)$ is not linear but using **reciprocal link**: g(x)=1/x, the right-hand side can be made linear in the parameters:

$$g(\mu(x)) = \frac{1}{\mu(x)} = \frac{1}{\alpha} + \frac{h}{\alpha} \frac{1}{x} = \beta_0 + \beta_1 \frac{1}{x}.$$

Exponential Family

A family of distribution $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$, $\Theta \subset \mathbb{R}^k$ is said to be a k-parameter exponential family on \mathbb{R}^q , if there exist real valued functions:

- $ightharpoonup \eta_1, \eta_2, \cdots, \eta_k$ and B of θ ,
- ▶ T_1, T_2, \dots, T_k , and h of $y \in \mathbb{R}^q$ such that the density function (pmf or pdf) of \mathbb{P}_θ can be written as

$$f_{\theta}(y) = \exp\left[\sum_{i=1}^{k} \eta_{i}(\theta) T_{i}(y) - B(\theta)\right] h(y)$$

Normal distribution example

▶ Consider $Y \sim \mathcal{N}(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2)$. The density is

$$f_{\theta}(y) = \exp\left(\frac{\mu}{\sigma^2}y - \frac{1}{2\sigma^2}y^2 - \frac{\mu^2}{2\sigma^2}\right)\frac{1}{\sigma\sqrt{2\pi}},$$

which forms a two-parameter exponential family with

$$\eta_1 = \frac{\mu}{\sigma^2}, \ \eta_2 = -\frac{1}{2\sigma^2}, \ T_1(y) = y, \ T_2(y) = y^2,$$

$$B(\theta) = \frac{\mu^2}{2\sigma^2} + \log(\sigma\sqrt{2\pi}), \ h(y) = 1.$$

When σ^2 is known, it becomes a one-parameter exponential family on ${\rm I\!R}$:

$$\eta = \frac{\mu}{\sigma^2}, \ T(y) = y, \ B(\theta) = \frac{\mu^2}{2\sigma^2}, \ h(y) = \frac{e^{-\frac{y^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}}.$$

Examples of discrete distributions

The following distributions form **discrete** exponential families of distributions with **pmf**

Poisson(
$$\lambda$$
): $\frac{\lambda^y}{y!}e^{-\lambda}$, $y=0,1,\ldots$ exp[5] ha - λ] · $\frac{1}{5!}$

Examples of Continuous distributions

The following distributions form **continuous** exponential families of distributions with **pdf**:

- - ▶ above: *a*: shape parameter, *b*: scale parameter
 - reparametrize: $\mu = ab$: mean parameter

$$\frac{1}{\Gamma(a)} \left(\frac{a}{\mu}\right)^a y^{a-1} e^{-\frac{ay}{\mu}}.$$

- ▶ Inverse Gamma (α, β) : $\frac{\beta^{\alpha}}{\Gamma(\alpha)}y^{-\alpha-1}e^{-\beta/y}$.
- $\qquad \qquad \text{Inverse Gaussian}(\mu,\sigma^2) \colon \sqrt{\frac{\sigma^2}{2\pi y^3}} e^{\frac{-\sigma^2(y-\mu)^2}{2\mu^2 y}}.$

Others: Chi-square, Beta, Binomial, Negative binomial distributions.

One-parameter canonical exponential family

► Canonical exponential family for k = 1, $y \in \mathbb{R}$

$$f_{\theta}(y) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right)$$

for some *known* functions $b(\cdot)$ and $c(\cdot, \cdot)$.

- ▶ If ϕ is known, this is a one-parameter exponential family with θ being the canonical parameter .
- If ϕ is unknown, this may/may not be a two-parameter exponential family.
- ϕ is called **dispersion parameter**.
- ▶ In this class, we always assume that ϕ is *known*.

Normal distribution example

ightharpoonup Consider the following Normal density function with known variance σ^2 ,

$$f_{\theta}(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$
$$= \exp\left\{\frac{y\mu - \frac{1}{2}\mu^2}{\sigma^2} - \frac{1}{2}\left(\frac{y^2}{\sigma^2} + \log(2\pi\sigma^2)\right)\right\},$$

▶ Therefore $\theta = \mu, \ \phi = \sigma^2, \ b(\theta) = \frac{\theta^2}{2}$, and

$$c(y,\phi) = -\frac{1}{2}(\frac{y^2}{\phi} + \log(2\pi\phi)).$$

Other distributions

Table 1: Exponential Family

	Normal	Poisson	Bernoulli
Notation	$\mathcal{N}(\mu, \sigma^2)$	$\mathcal{P}(\mu)$	$\mathcal{B}(p)$
Range of y	$(-\infty,\infty)$	$[0,-\infty)$	$\{0, 1\}$
ϕ	σ^2	1	1
$b(\theta)$	$\frac{\theta^2}{2}$	e^{θ}	$\log(1+e^{\theta})$
$c(y,\phi)$	$-\frac{1}{2}(\frac{y^2}{\phi} + \log(2\pi\phi))$	$-\log y!$	0

Likelihood

Let $\ell(\theta) = \log f_{\theta}(Y)$ denote the log-likelihood function.

The mean ${\rm I\!E}(Y)$ and the variance ${\rm var}(Y)$ can be derived from the following identities

First identity

$$\mathbb{E}(\frac{\partial \ell}{\partial \theta}) = 0$$

Second identity

$$\mathbb{E}(\frac{\partial^2 \ell}{\partial \theta^2}) + \mathbb{E}(\frac{\partial \ell}{\partial \theta})^2 = 0.$$

Expected value

Note that

$$\ell(\theta) = \frac{Y\theta - b(\theta)}{\phi} + c(Y; \phi),$$

Therefore

$$\frac{\partial \ell}{\partial \theta} = \frac{Y - b'(\theta)}{\phi}$$

It yields

$$0 = \mathbb{E}(\frac{\partial \ell}{\partial \theta}) = \frac{\mathbb{E}(Y) - b'(\theta)}{\phi},$$

which leads to

$$\mathbb{E}(Y) = b'(\theta).$$

Variance

On the other hand we have we have

$$\frac{\partial^2 \ell}{\partial \theta^2} + \left(\frac{\partial \ell}{\partial \theta}\right)^2 = -\frac{b''(\theta)}{\phi} + \left(\frac{Y - b'(\theta)}{\phi}\right)^2$$

and from the previous result,

$$\frac{Y - b'(\theta)}{\phi} = \frac{Y - \mathbb{E}(Y)}{\phi}$$

Together, with the second identity, this yields

$$0 = -\frac{b''(\theta)}{\phi} + \frac{\mathsf{var}(Y)}{\phi^2},$$

which leads to

$$var(Y) = b''(\theta)\phi.$$

Example: Poisson distribution

Example: Consider a Poisson likelihood,

$$f(y) = \frac{\mu^y}{y!} e^{-\mu} = \exp(y \log \mu - \mu - \log(y!))$$

Thus,

$$\theta = \log \mu$$
, $b(\theta) = \mu$, $\phi = 1$, $c(y, \phi) = -\log(y!)$,

So

$$\mu = e^{\theta}, \quad b(\theta) = e^{\theta}, \quad b''(\theta) = e^{\theta}$$

Link function

- β is the parameter of interest, and needs to appear somehow in the likelihood function to use maximum likelihood.
- A link function g relates the linear predictor $X^{\top}\beta$ to the mean parameter μ ,

$$X^{\top}\beta = g(\mu).$$

g is required to be monotone increasing and differentiable

$$\mu = g^{-1}(X^{\top}\beta).$$

Examples of link functions

- ▶ For LM, $g(\cdot) = identity$.
- ▶ Poisson data. Suppose $Y|X \sim \text{Poisson}(\mu(X))$.
 - $\mu(X) > 0$;

 - In general, a link function for the count data should map $(0,+\infty)$ to ${\rm I\!R}.$
 - The log link is a natural one.
- Bernoulli/Binomial data.
 - $0 < \mu < 1$;
 - g should map (0,1) to ${\rm I\!R}$:
 - ▶ 3 choices:
 - 1. logit: $\log\left(\frac{\mu(X)}{1-\mu(X)}\right) = X^{\top}\beta;$
 - 2. probit: $\Phi^{-1}(\mu(X)) = X^{\top}\beta$ where $\Phi(\cdot)$ is the normal cdf;
 - ▶ The logit link is the natural choice.

Examples of link functions for Bernoulli response

in blue:

$$g_1(x) = f_1^{-1}(x) = \log\left(\frac{x}{1-x}\right) \text{ (logit link)}$$

▶ in red: $g_2(x) = f_2^{-1}(x) = \Phi^{-1}(x)$ (probit link)

Examples of link functions for Bernoulli response

- $in blue: f_1(x) = \frac{e^x}{1 + e^x}$
- ▶ in red: $f_2(x) = \Phi(x)$ (Gaussian CDF)

Canonical Link

The function g that links the mean μ to the canonical parameter θ is called **Canonical Link**:

$$g(\mu) = \theta = X^{\mathsf{T}} \beta$$

▶ Since $\mu = b'(\theta)$, the canonical link is given by

$$g(b'(\theta)) = \theta < = > g(\mu) = (b')^{-1}(\mu)$$
. $f = (b')^{-1}(\mu)$

If $\phi > 0$, the canonical link function is **strictly increasing**. Why? $g / \Leftrightarrow g^+ / \Leftrightarrow b' / \Leftrightarrow b'' > 0 \Leftrightarrow b'' > 0$

Example: the Bernoulli distribution

We can check that

$$b(\theta) = \log(1 + e^{\theta})$$

Hence we solve

$$b'(\theta) = \frac{\exp(\theta)}{1 + \exp(\theta)} = \mu \qquad \Leftrightarrow \qquad \theta = \log\left(\frac{\mu}{1 - \mu}\right)$$

The canonical link for the Bernoulli distribution is the logit link.

Other examples

	$b(\theta)$	$g(\mu)$
Normal	$\theta^2/2$	μ
Poisson	$\exp(\theta)$	$\log \mu$
Bernoulli	$\log(1+e^{\theta})$	$\log \frac{\mu}{1-\mu}$
Gamma	$-\log(-\theta)$	$-\frac{1}{\mu}$

Model and notation

Let $(X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \ldots, n$ be independent random pairs such that the conditional distribution of Y_i given $X_i = x_i$ has density in the canonical exponential family:

$$f_{\theta_i}(y_i) = \exp\left\{\frac{y_i\theta_i - b(\theta_i)}{\phi} + c(y_i, \phi)\right\}.$$

- $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top}, \ \mathbb{X} = (X_1, \dots, X_n)^{\top}$
- ▶ Here the mean $\mu_i = \mathbb{E}[Y_i|X_i]$ is related to the canonical parameter θ_i via

$$\mu_i = b'(\theta_i)$$

▶ and μ_i depends linearly on the covariates through a link function g:

$$g(\mu_i) = X_i^{\top} \beta$$
.

Back to β

▶ Given a link function g, note the following relationship between β and θ :

$$\theta_{i} = (b')^{-1}(\mu_{i})$$

$$= (b')^{-1}(g^{-1}(X_{i}^{\top}\beta)) \equiv h(X_{i}^{\top}\beta),$$

where h is defined as

$$h = (b')^{-1} \circ g^{-1} = (g \circ b')^{-1}.$$

▶ Remark: if *g* is the **canonical** link function, *h* is **identity**.

Log-likelihood

► The log-likelihood is given by

$$\ell_n(\mathbf{Y}, \mathbb{X}, \beta) = \sum_i \frac{Y_i \theta_i - b(\theta_i)}{\phi}$$

$$= \sum_i \frac{Y_i h(X_i^{\top} \beta) - b(h(X_i^{\top} \beta))}{\phi} + \mathbf{C}$$

up to a constant term.

Note that when we use the canonical link function, we obtain the simpler expression

$$\ell_n(\mathbf{Y}, \mathbb{X}, \beta) = \sum_i \frac{Y_i X_i^\top \beta - b(X_i^\top \beta)}{\phi} + \mathbf{C}$$

Strict concavity

- The log-likelihood $\ell(\theta)$ is **strictly concave** using the canonical function when $\phi > 0$. Why?
- As a consequence the maximum likelihood estimator is unique.
- On the other hand, if another parameterization is used, the likelihood function may not be strictly concave leading to several local maxima.

Concluding remarks

- Maximum likelihood for Bernoulli Y and the logit link is called logistic regression
- In general, there is no closed form for the MLE and we have to use optimization algorithms
- ► The asymptotic normality of the MLE also applies to GLMs.