Questões

1. Para um sistema massa-mola sem amortecimento, a frequência natural é dada por:

a.
$$\omega_n = \sqrt{M/k}$$
*b. $\omega_n = \sqrt{k/M}$

b.
$$\omega_n = \dot{k}/M$$

c.
$$\omega_n = 2\pi \sqrt{k/M}$$

d.
$$\omega_n = (1/2\pi)\sqrt{k/M}$$

- 2. Em estruturas de concreto, um valor típico da razão de amortecimento equivalente (ζ) para vibrações pequenas é:
- a. 0-1%
- b. 10-15%
- c. 15-25% *d. 2-5%
- d. 30-40%
- 3. O período natural de vibração de um SDOF é:

a.
$$T_n = \omega_n/2\pi$$

a.
$$T_n=\omega_n/2\pi$$
 b. $T_n=2\pi\cdot\omega_n$ *c. $T_n=2\pi/\omega_n$

c.
$$T_n = \sqrt{k/M}$$

d.
$$T_n = \sqrt{M/k}$$

- 4. Assinale a alternativa correta sobre o efeito do aumento de massa M em um SDOF, mantendo k constante:
- a. Aumenta ωn e diminui Tn. *b. Diminui ωn e aumenta Tn.
- b. Não altera ωn nem Tn.
- c. Aumenta ωn e não altera Tn.
- d. Diminui Tn e não altera ωn.
- 5. Em vibração livre amortecida (ζ<1), o movimento é caracterizado por:
- a. Crescimento exponencial da amplitude com o tempo.
- b. Retorno crítico sem oscilações. *c. Oscilações com amplitude decrescente no tempo.
- c. Ausência total de oscilação.
- d. Frequência igual a zero.
- 6. O fator de amplificação do deslocamento em regime permanente, para força senoidal, cresce significativamente quando: *a. $r = \omega/\omega_n \approx 1$ e ζ é pequeno.
- b. $r \ll 1$ e ζ é grande.
- c. $r \gg 1$ e $\dot{\zeta}$ é grande.
- d. r = 0 e $\zeta = 0$.
- e. r = 2 e $\zeta = 0.5$.

- 7. Em ressonância com amortecimento pequeno, a amplitude relativa ao deslocamento estático é aproximadamente:
- a. $1/\zeta$
- b. $1/4\zeta^2$ *c. $1/2\zeta$
- c. 2ζ
- d. ζ
- 8. No problema de base excitada, a equação de movimento para o deslocamento relativo u_r é:
- a. $M\ddot{u}_r+c\dot{u}_r+k\cdot u_r=p_0\cdot\sin\omega t$ *b. $M\ddot{u}_r+c\dot{u}_r+k\cdot u_r=-M\ddot{y}(t)$
- b. $M\ddot{u}_r = k \cdot u_r + c \cdot \dot{u}_r$
- c. $k \cdot \dot{u_r} = M \ddot{y}(t)$ d. $M \ddot{u_r} + k \cdot u_r = 0$
- 9. Para isolação vibratória efetiva em um SDOF sob base excitada, usualmente busca-se operar em:
- b. $r \approx 1 *c. r > \sqrt{2}$
- c. r = 0
- d. Qualquer r, desde que $\zeta = 0$.
- 10. O ângulo de fase φ entre força e deslocamento em excitação harmônica satisfaz:
- a. $\tan \varphi = (1-r^2)/(2\zeta r)$ *b. $\tan \varphi = (2\zeta r)/(1-r^2)$
- b. $\tan \varphi = r$
- c. $\tan \varphi = 2\pi r$
- d. $\tan \varphi = \zeta$
- 11. O problema de autovalores da análise modal clássica (sem amortecimento) é:
- a. $(\mathbf{M} \omega \mathbf{K})\varphi = \mathbf{0}$
- b. $(\mathbf{K} + \omega \mathbf{M})\varphi = \mathbf{0} *c. (\mathbf{K} \omega^2 \mathbf{M})\varphi = \mathbf{0}$
- c. $(\mathbf{KM} \omega \mathbf{I})\varphi = \mathbf{0}$
- d. $(\mathbf{M} \omega^2 \mathbf{I})\varphi = \mathbf{0}$
- 12. Em análise modal, "fator de participação" de um modo representa:
- a. A massa total da estrutura. *b. O quanto a excitação efetivamente projeta-se naquele modo.
- b. A rigidez equivalente do sistema completo.
- c. O amortecimento equivalente do sistema.
- d. O número de graus de liberdade ativamente excitados.
- 13. Sobre ortogonalidade modal em estruturas lineares sem

amortecimento proporcional: *a. Modos diferentes são ortogonais em relação a M e K.

- b. Modos diferentes não são ortogonais em relação a M.
- c. Modos diferentes não são ortogonais em relação a K.
- d. Apenas o primeiro modo é ortogonal aos demais.
- e. Ortogonalidade não se aplica a sistemas estruturais.
- 14. Em combinação de respostas por espectro sísmico, SRSS é mais indicado quando: *a. As frequências naturais estão bem separadas (pouca correlação modal).
- b. As frequências são muito próximas e o amortecimento é elevado.
- c. O sistema tem amortecimento nulo.
- d. Há forte não linearidade.
- e. O carregamento é puramente estático.
- 15. A massa modal efetiva acumulada é usada para:
- a. Calcular diretamente momentos fletores nas barras.
- b. Determinar a rigidez equivalente da base. *c. Decidir quantos modos incluir até representar parcela suficiente da resposta.
- c. Corrigir a matriz de amortecimento proporcional.
- d. Avaliar exclusivamente torção em lajes.
- 16. A transmissibilidade T em base excitada tipicamente é menor que 1 quando:
- a. r < 1 e $\zeta = 0$.
- b. $r \approx 1$ e ζ alto. *c. $r > \sqrt{2}$ e ζ em faixa adequada.
- c. Sempre, independente de $r \in \zeta$.
- d. Apenas se $\zeta = 1$ (amortecimento crítico).
- 17. O desprendimento de vórtices em cilindros pode excitar pilares esbeltos com frequência aproximada:
- $\begin{array}{l} \text{a. } f_s = D/(S_t \cdot U) \\ \text{b. } f_s = U/D^2 *\text{c. } f_s = S_t \cdot U/D \\ \text{c. } f_s = S_t/(U \cdot D) \\ \text{d. } f_s = U \cdot D \end{array}$

- 18. Um Tuned Mass Damper (TMD) é empregado principalmente para:
 - a. Aumentar a rigidez lateral da estrutura.
- b. Reduzir a massa total do edifício. *c. Aumentar o amortecimento efetivo e reduzir picos de resposta próximas à ressonân-
- c. Eliminar completamente a vibração.
- d. Tornar a estrutura insensível a todos os ventos.

- 19. Em projeto, aumentar ζ geralmente:
 - a. Aumenta a amplitude de pico em ressonância.
- b. Não altera fases nem amplitudes.
- c. Diminui as frequências naturais. *d. Reduz picos de resposta e melhora conforto.
- d. Garante T<1 para qualquer r.
- 20. Para pisos e passarelas, além de resistência, é essencial avaliar:
 - a. Apenas deslocamentos estáticos máximos.
- b. Somente esforços de tração.
- c. Exclusivamente modos torsionais. *d. Critérios de conforto (aceleração pico/RMS) em faixas de frequência relevantes.
- d. Apenas flambagem por compressão.

Feedbacks

1. $\omega_n = \sqrt{k/M}$. Resulta da solução livre do SDOF sem amortecimento.

2. Em concreto usual, $\zeta\approx 2\text{--}5\%$ para pequenas vibrações, considerando dissipações estruturais.

3. O período natural é o inverso da frequência circular natural: $T_n = 2\pi/\omega_n$.

- 4. Aumentar $\stackrel{``}{M}$ reduz ω_n e eleva T_n (mais inércia, vibração mais lenta).
- 5. Com $\zeta < 1$, o sistema oscila com envelope decrescente (decay exponencial).
- 6. Perto de r=1, com pouco amortecimento, o fator de amplificação cresce acentuadamente (ressonância).
- 7. Em r=1, FA $\approx 1/(2\zeta)$ para deslocamento relativo ao estático.
- 8. Para base excitada, a entrada é aceleração da base: termo $-M\cdot\ddot{y}(t)$ na equação de $u_r.$
- 9. Em $r>\sqrt{2}$ o regime é de isolação vibratória (T<1, menor transmissão).
- 10. A relação de fase padrão: $\tan\varphi=(2\zeta r)/(1-r^2)$, derivada da resposta harmônica.
- 11. A forma generalizada sem amortecimento proporcional é $({\bf K}-\omega^2{\bf M})\varphi={\bf 0}$.
- 12. O fator de participação mede o "quanto" a força efetiva excita um modo.
- 13. Em sistemas lineares clássicos, modos distintos são ortogonais em ${\bf M}$ e ${\bf K}$.
- 14. SRSS supõe pouca correlação modal, válido para frequências bem separadas.

- 15. Usada como critério de truncamento: incluir modos até massa modal efetiva suficiente.
- 16. Em $r>\sqrt{2}$, T<1; ζ adequado melhora a isolação sem piorar
- a região de acoplamento. 17. Para cilindros, $f_s \approx S_t \cdot U/D$; evitar coincidência com f_n reduz vibração transversal.
- 18. TMD sintoniza e dissipa energia, elevando amortecimento efetivo próximo à ressonância.
- 19. Mais amortecimento reduz picos de deslocamento/aceleração e melhora conforto.
- 20. Vibrações de serviço pedem avaliação de aceleração (pico/RMS) e frequências de atividade.