ENCODER 8TO3 DATAFLOW Modelling

AIM:

To implement Encoder 8 To 3 in Dataflow Modelling using verilog and validating their functionality using their functional tables **SOFTWARE REQUIRED:** Quartus prime

THEORY

Encoder 8 To 3

The 8 to 3 line Encoder is also known as Octal to Binary Encoder. In 8 to 3 line encoder, there is a total of eight inputs, i.e., D0, D1, D2, D3, D4, D5, D6, and D7 and three outputs, i.e., A0, A1, and A2. In 8-input lines, one input-line is set to true at a time to get the respective binary code in the output side. Below are the block diagram and the truth table of the 8 to 3 line encoder.

Figure 01 Block Diagram of Encoder 8 * 3 **Truth Table**

inputs								outputs		
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A ₂	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

The logical expression of the term A0, A1, and A2 are as follows:

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Logical circuit of the above expressions is given below:

Figure 02 Encoder 8 * 3

Procedure

- 1. Type the program in Quartus software.
- 2. Compile and run the program.
- 3. Generate the RTL schematic and save the logic diagram.
- 4. Create nodes for inputs and outputs to generate the timing diagram.
- 5. For different input combinations generate the timing diagram.

PROGRAM

/* Program for Encoder 8 To 3 in Dataflow Modelling and verify its truth table in quartus using Verilog programming. */

Developed by: AKASH M RegisterNumber:24900103

RTL LOGIC FOR Encoder 8 To 3 in Dataflow Modelling

TIMING DIGRAMS FOR Encoder 8 To 3 in Dataflow Modelling

RESULTS

Thus the Encoder 8 to 3 is designed and the truthtable is verified.