

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/002380

International filing date: 26 January 2005 (26.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/539,245
Filing date: 26 January 2004 (26.01.2004)

Date of receipt at the International Bureau: 31 March 2005 (31.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

1297276

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

March 17, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/539,245

FILING DATE: January 26, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/02380

Certified by

Under Secretary of Commerce
for Intellectual Property
and Director of the United States
Patent and Trademark Office

16562
012604
U.S. PTOATTORNEY DOCKET NO. 21108.0042U1
Page 1 of 2

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 C.F.R. § 1.53(c).

	Docket Number	21108.0042U1	Type a Plus Sign (+) inside this box	+
--	---------------	--------------	---	---

INVENTOR(s)

LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (City and Either State or Foreign Country)
Yule	David	I.	33 Corral Drive, Penfield, New York 14526 (Citizenship: British)
Wagner, II	Larry		276 Glen Ellyn Way, Rochester, New York 14618 (Citizenship: USA)

TITLE OF INVENTION (500 characters max)

INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR MUTANTS AND USES THEREOF

31355 U.S. PTO
60/539245

CORRESPONDENCE ADDRESS

Customer Number 23859

012604

ENCLOSED APPLICATION PARTS (Check All That Apply)

- | | | |
|---|------------------|------|
| <input checked="" type="checkbox"/> Provisional Application Title Page | Number of Pages | [1] |
| <input checked="" type="checkbox"/> Specification (includes Description, Claims, & Abstract) | Number of Pages | [54] |
| <input checked="" type="checkbox"/> Drawing(s) | Number of Sheets | [16] |
| <input checked="" type="checkbox"/> Authorization to Treat Reply Requesting Extension of Time as Incorporating Petition for Extension of Time | | |
| <input checked="" type="checkbox"/> Other (specify): <u>Sequence Listing (Paper Copy) [122 Pages] and Diskette</u> | | |

012604
16562 US PTO**METHOD PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (Check One)**

- | | |
|---|---|
| <input checked="" type="checkbox"/> Applicant claims small entity status. See 37 CFR § 1.27. | FILING FEE AMOUNT

\$ 80.00 |
| <input checked="" type="checkbox"/> A Credit Card Payment Form PTO-2038 is enclosed to cover the filing fees. | |
| <input type="checkbox"/> A check or money order is enclosed to cover the filing fees. | |
| <input type="checkbox"/> The Commissioner is hereby authorized to charge filing fees and credit Deposit Account Number _____. | |
| <input type="checkbox"/> The Commissioner is hereby authorized to charge any deficiency or credit any overpayment to Deposit Account No. _____. | |

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

- No.
- Yes. The name of the U.S. Government agency and the Government contract number are:
National Institutes of Health, RO1-DK54568; RO1-DE14756 and PO1-DE13539

Respectfully submitted,

Signature Gwendolyn S. Spratt Date January 26, 2004
Typed or Printed Name: Gwendolyn D. Spratt
Registration No. 36,016

CERTIFICATE OF EXPRESS MAILING UNDER 37 C.F.R. § 1.10

I hereby certify that this correspondence and any items indicated as attached or included are being deposited with the United States Postal Service as Express Mail, Label No. EL 992 076 722 US, in an envelope addressed to: MAIL STOP PROVISIONAL PATENT APPLICATION, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on the date shown below.

Michael Laird 1/26/04
Michael Laird Date

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)
YULE et al.) Art Unit: Unassigned
Application No. Unassigned) Examiner: Unassigned
Filing Date: Concurrently) Confirmation No. Unassigned
For: INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR)
MUTANTS AND USES THEREOF)

AUTHORIZATION TO TREAT REPLY REQUIRING EXTENSION OF TIME
AS INCORPORATING PETITION FOR EXTENSION OF TIME

Mail Stop PROVISIONAL PATENT APPLICATION
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

NEEDLE & ROSENBERG, P.C.
Customer Number 23859

Sir:

Pursuant to 37 C.F.R. § 1.136(a)(3), the Commissioner is hereby requested and authorized to treat any concurrent or future reply in the above-identified application, requiring a petition for an extension of time for its timely submission, as incorporating a petition for extension of time for the appropriate length of time.

ATTORNEY DOCKET NO. 21108.0042U1
PATENT

The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. 14-0629.

Respectfully submitted,

NEEDLE & ROSENBERG, P.C.

Gwendolyn D. Spratt
Gwendolyn D. Spratt
Registration No. 36,016

NEEDLE & ROSENBERG, P.C.
Customer No. 23859

CERTIFICATE OF EXPRESS MAILING UNDER 37 C.F.R. § 1.10

I hereby certify that this correspondence and any items indicated as attached or included are being deposited with the United States Postal Service as Express Mail, Label No. EL 992 076 722 US, in an envelope addressed to: Mail Stop PROVISIONAL PATENT APPLICATION, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on the date shown below.

Michael Laird

1/26/04

Date

**Express Mail No. EL 992 076 722 US
Attorney Docket No. 21108.0042U1
UTILITY PATENT - PROVISIONAL FILING**

PROVISIONAL APPLICATION FOR LETTERS PATENT

TO ALL WHOM IT MAY CONCERN:

Be it known that we, David I. Yule and Larry Wagner, II, residing respectively at 33 Corral Drive, Penfield, New York 14526 and 276 Glen Ellyn Way, Rochester, New York 14618 have invented new and useful improvements in

INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR MUTANTS AND USES THEREOF

for which the following is a specification.

INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR MUTANTS AND USES THEREOF

This invention was made with government support under Grants RO1-DK54568; RO1-
5 DE14756 and PO1-DE13539 awarded by the National Institutes of Health. The government
has certain rights in the invention.

I. BACKGROUND OF THE INVENTION

1. Inositol 1,4,5-trisphosphate receptors are ubiquitous ligand-gated ion channels
10 localized to the endoplasmic reticulum which function to couple activation of cell surface
receptors to intracellular Ca^{2+} release [1]. Genes have been identified which encode three
distinct proteins of molecular weight ~ 300 kDa and have been named the type 1,2 and 3
InsP₃R [2-5]. Notably, the type-1 receptor gene is alternatively spliced to yield additional
variants of the receptor, which have specific tissue distribution [6, 7]. The functional
15 channel is a tetramer, consisting of a binding site for InsP₃ in the N-terminus of each subunit
[8, 9], and a single calcium permeable pore, formed from six transmembrane spanning
helices located towards the C-terminus of each subunit [10, 11]. Between these regions is a
~1600 amino acid cytoplasmic loop which is termed the regulatory and coupling domain.

2. This regulation of InsP₃R, together with the complement of InsP₃R types and the
20 sub-cellular localization of the channel, are thought to be the major determinants of the
spatio-temporal characteristics of agonist-evoked Ca^{2+} signals [13, 14]. These particular
characteristics likely contribute to the fidelity and specificity associated with activation of
 Ca^{2+} -dependent effectors. The most important regulator of InsP₃-induced Ca^{2+} release is
 Ca^{2+} itself [12, 15-17], however, numerous factors including adenine nucleotides [18, 19],
25 protein interactions [12, 20] and phosphorylation by various kinases can significantly
influence InsP₃R function [7, 21-31]. In particular, since all InsP₃R subtypes are
phosphorylated by cAMP and cGMP-dependent protein kinases (PKA and PKG) [7, 21-23,
25, 26, 28, 29, 32-41], the InsP₃R may represent an important nexus for cross-talk between
these distinct signaling pathways. Indeed, cyclic nucleotide-dependent kinase-induced
30 phosphorylation of InsP₃R is proposed to be important in such diverse physiological and
pathophysiological processes as synaptic plasticity [23], remodeling following neurotoxic
insult [39], smooth muscle contractility [36, 37] and fluid secretion [29].

II. BRIEF DESCRIPTION OF THE DRAWINGS

3. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.

5 4. Figure 1 shows the phosphorylation of S1755 results in enhanced Ca^{2+} release by $\text{S2}^+ \text{InsP}_3\text{R-1}$. In Figure 1A, DT40 3ko cells shown in the inset were transfected with M3 receptor, HcRed and $\text{S2}^+ \text{InsP}_3\text{R-1}$ as described below. Fura-2 loaded cells were stimulated with 50 nM Carbadol (CCh) to increase $[\text{Ca}^{2+}]_i$. A $[\text{Ca}^{2+}]_i$ increase was only evoked in cells expressing HcRed, and thus presumably M3 receptor and $\text{S2}^+ \text{InsP}_3\text{R-1}$ (compare black trace vs. gray trace from cells indicated in the inset). Treatment with 20 μM forskolin, to raise cAMP levels and activate PKA, resulted in a markedly enhanced CCh-induced $[\text{Ca}^{2+}]_i$ signal. After removal of forskolin a subsequent exposure to CCh resulted in a $[\text{Ca}^{2+}]_i$ increase similar to control. In Figure 1B, a similar experimental paradigm was utilized in DT-40 3ko cells expressing S1589A $\text{S2}^+ \text{InsP}_3\text{R-1}$. Stimulation with CCh following 20 μM forskolin also resulted in a markedly enhanced $[\text{Ca}^{2+}]_i$ increase relative to a control stimulation. Figure 1C shows that in cells expressing S1755A $\text{S2}^+ \text{InsP}_3\text{R-1}$, forskolin treatment did not result in an enhanced signal. Figure 1D shows pooled data from the number of cells indicated for each construct, showing the normalized fold increase in initial $[\text{Ca}^{2+}]_i$ peak over control resulting from forskolin treatment of cells expressing $\text{S2}^+ \text{InsP}_3\text{R-1}$ and serine to alanine mutants. Forskolin treatment resulted in CCh responses in Wild type and S1589A $\text{S2}^+ \text{InsP}_3\text{R-1}$ cells being significantly different from S1755A $\text{S2}^+ \text{InsP}_3\text{R-1}$ expressing cells. Cartoon inset depicts the $\text{S2}^+ \text{InsP}_3\text{R-1}$ regulatory and coupling domain. The black shaded region represents the S2 splice region. The functionally important phosphorylation of S1755 is indicated by a gray circle.

25 5. Figure 2 shows the potentiation of Ca^{2+} release by forskolin after flash photolysis of ci InsP_3PM . DT-40 3ko cells expressing $\text{S2}^+ \text{InsP}_3\text{R-1}$ were loaded with the visible wavelength Ca^{2+} indicator Fluo-4 and the cell permeable caged InsP_3 analog ci $\text{InsP}_3\text{-PM}$ as described below. Figure 2A shows minimal photolysis of InsP_3 was evoked by a brief UV flash, (~0.5 msec indicated by the arrows) resulting in a small increase in $[\text{Ca}^{2+}]_i$. A subsequent, identical flash of UV light 5 min. later fails to evoke a larger increase in $[\text{Ca}^{2+}]_i$, although increasing the duration of the flash to 5 ms evokes a significantly larger increase in $[\text{Ca}^{2+}]_i$ (arrow, “max uncage”). In Figure 2B, an identical protocol was followed except the second minimal uncaging was performed following 5 min. treatment with 10 μM forskolin.

This treatment resulted in a significantly larger increase in $[Ca^{2+}]_i$ when compared to the initial uncaging. Figure 2C shows pooled data comparing normalized fold increase for the first and second uncaging in the presence or absence of forskolin. Treatment with forskolin results in a statistically significant increase in the second response.

5 6. Figure 3 shows both S1589 and S1755 are functionally important PKA phosphorylation sites in $S2^+ InsP_3R-1$. A similar experimental paradigm as described in fig. 1 was utilized to assess the consequences and functionally important phosphorylation sites in $S2^+ InsP_3R-1$. Figure 3A shows treatment of wild type $S2^+ InsP_3R-1$ with forskolin resulted in enhanced CCh stimulated Ca^{2+} release with respect to a control CCh stimulation.
10 Figure 3B shows a similar potentiation was observed with S1589A $S2^+ InsP_3R-1$ expressing cells. Figure 3C shows a similar enhanced $[Ca^{2+}]_i$ signal was observed following forskolin treatment in S1755A $S2^+ InsP_3R-1$ expressing cells. Figure 3D shows that no effect of forskolin treatment was observed in double mutant S1589A/S1755A $S2^+ InsP_3R-1$ expressing cells. Figure 3E shows pooled data for the number of cells indicated for each
15 construct. The filled bars indicate data for the particular construct obtained using the low affinity Ca^{2+} indicator Fura-2FF. Normalized fold increase is only significantly altered in the double mutant. Cartoon inset depicts the functionally important phosphorylation of S1589 and S1755, indicated by gray circles.

7. Figure 4 shows the phosphorylation of S1755 by PKG results in enhanced Ca^{2+} release by $S2^+ InsP_3R-1$. A similar experimental paradigm utilized for experiments presented in fig. 1 was performed to assess the effects and site(s) of phosphorylation by PKG on $S2^+ InsP_3R-1$. Figure 4A shows treatment with 10 μM 8-Br cGMP to specifically activate PKG results in a marked potentiation of CCh-evoked Ca^{2+} release when compared to control CCh stimulation in the absence of PKG activation. Figure 4B shows a similar potentiation of Ca^{2+} release following PKG activation was observed in cells expressing S1589A $S2^+ InsP_3R-1$. Figure 4C shows that PKG activation does not enhance Ca^{2+} release by S1755A $S2^+ InsP_3R-1$. Figure 4D shows that PKG does not inhibit CCh-induced Ca^{2+} release by S1755A $S2^+ InsP_3R-1$. Figure 4E shows pooled data for the number of cells indicated for each construct. Normalized fold increase by S1755A $S2^+ InsP_3R-1$ was
25 significantly different from both wild-type and S1589A $S2^+ InsP_3R-1$. Cartoon inset depicts the functionally important phosphorylation of S1755, indicated by a gray circle.
30

8. Figure 5 shows that treatment with PKI inhibits forskolin but not 8-Br cGMP-induced potentiation. Cells expressing $S2^+ InsP_3R-1$ were treated for 30 mins with myr-PKI(14-22) prior to assessing the effects of activating PKA or PKG. Figure 5A shows that

PKI treatment completely abolishes the forskolin-induced enhancement of Ca^{2+} release. Figure 5B shows that PKI does not affect the 8-Br cGMP-induced enhancement of Ca^{2+} release. Figure 5C shows the results of pooled data.

9. Figure 6 shows PKG activation is without effect on Ca^{2+} release by S2⁻ InsP₃R-1. A similar experimental paradigm used in experiments depicted in fig. 1 was utilized to assess the effects of PKG phosphorylation of S2⁻ InsP₃R-1. Figure 6A shows that PKG activation has no effect on CCh-evoked Ca^{2+} release by wild-type S2⁻ InsP₃R-1. Figure 6B shows that similarly no effect was observed in S1589A S2⁻ InsP₃R-1 expressing cells. Figure 6C shows that no effect was observed in S1755A S2⁻ InsP₃R-1 expressing cells. Figure 6D shows pooled data for the number of cells indicated for each construct. Cartoon depicts absence of phosphorylation by PKG.

10. Figure 7 shows in Figure 7A that ATP treatment of fura-2 loaded mouse parotid acinar cells, in the presence of Ia³⁺ to block Ca^{2+} entry (isolating P2Y receptors) results in an increase in $[\text{Ca}^{2+}]_i$. The $[\text{Ca}^{2+}]_i$ is markedly enhanced by incubation with forskolin.

15. Figure 7B shows that CCh treatment of human parotid acinar cells results in an increase in $[\text{Ca}^{2+}]_i$ which is potentiated by forskolin treatment. Representative traces from >4 experiments and >3 preparations of tissue.

11. Figure 8A depicts representative traces showing that mutation of both functional phosphorylation sites in the short form of InsP₃R-1 to glutamate residues results in a receptor which is apparently more sensitive to InsP₃ as revealed by increased sensitivity to CCh. Figure 8B shows the pooled data illustrating that the S1589E/S1755E mutant InsP₃R-1 is approximately 7.5 fold more sensitive than the wild type S2- InsP₃R-1 and approximately 35 fold more sensitive than the S1589A/S1755A nonphosphorylatable S2- InsP₃R-1

25. Figure 9 shows single channel records from an isolated Cos-7 cell nucleus patched on several occasions. K⁺ is the charge carrier, holding potential was +20 mV. Channel activity is observed only when InsP₃ is present in the pipette. Note in the final trace several channels appear to be present. Representative of 7 experiments.

13. Figure 10 shows a cartoon depicting the proposed structure of the InsP₃R.

30. Figure 11 depicts the regulatory and coupling domain of the InsP₃R-1; showing the phosphorylation sites at S1589 and S1755. In addition the location of the S2 splice site is shown.

15. Figure 12A shows that single mutation of S1589E in S2+ InsP₃R has little effect on the potentiation of Ca^{2+} signaling seen upon phosphorylation of the receptor, confirming in

the S2+ variant of the receptor that this site is not functional. Figure 12B/C show that stimulation of cells expressing the S1755E phosphomimetic mutation are apparently more sensitive to stimulation, and in addition no further enhancement of Ca²⁺ signaling is observed following PKA activation, confirming S1755 as the functionally important site.

5 16. Figure 13A/B shows that if either S1589 or S1755 is mutated to glutamate individually that no further potentiation by PKA stimulation is observed. Indicating that phosphorylation of individual sites is not functionally additive.

17. Figure 14 shows that InsP₃R-III can be phosphorylated in a PKA dependent fashion.

18. Figure 15A shows stimulation of DT40 cells expressing chicken InsP₃ R-III results 10 in Ca²⁺ oscillations. Figure 15B shows that activation of PKA during these oscillations results in an inhibition of the Ca²⁺ signal, consistent with an effect on the InsP₃R-III.

19. Figure 16 shows that stimulation of DT-40 3ko transfected with rat InsP₃R-III results in Ca²⁺ signals which are inhibited by stimulating PKA.

III. DETAILED DESCRIPTION

15 20. The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the Examples included therein and to the Figures and their previous and following description.

21. Before the present compounds, compositions, articles, devices, and/or methods are disclosed and described, it is to be understood that this invention is not limited to specific 20 synthetic methods, specific recombinant biotechnology methods unless otherwise specified, or to particular reagents unless otherwise specified, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.

Definitions

25 22. In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:

23. As used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a pharmaceutical carrier" includes mixtures of two or more such 30 carriers, and the like.

24. Ranges may be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be

understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about" 5 that particular value in addition to the value itself. For example, if the value "10" is disclosed, then "about 10" is also disclosed. It is also understood that when a value is disclosed that "less than or equal to" the value, "greater than or equal to the value" and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value "10" is disclosed the "less than or equal to 10" as 10 well as "greater than or equal to 10" is also disclosed.

25. "Treatment" or "treating" means to administer a composition to a subject with an undesired condition or at risk for the condition. The condition can be any pathogenic disease, autoimmune disease, cancer or inflammatory condition. The effect of the administration of the composition to the subject can have the effect of but is not limited to 15 reducing the symptoms of the condition, a reduction in the severity of the condition, or the complete ablation of the condition.

26. By "effective amount" is meant a therapeutic amount needed to achieve the desired result or results, e.g., increasing or decreasing Ca^{2+} release, enhancing or blunting physiological functions, altering the qualitative or quantitative nature of the proteins 20 expressed by cell or tissues, and eliminating or reducing disease causing molecules and/or symptoms.

27. "Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.

25. By "subject" is meant an individual. Preferably, the subject is a mammal such as a primate, and, more preferably, a human. The term "subject" can include domesticated animals, such as cats, dogs, etc., livestock (e.g., cattle, horses, pigs, sheep, goats, etc.), and laboratory animals (e.g., mouse, rabbit, rat, guinea pig, etc.).

29. By "InsP₃R" is meant an inositol 1,4,5-triphosphate receptor. Such receptors are 30 generally the major route of intracellular calcium release in eukaryotic cells and are pivotal for stimulation of calcium dependent effectors. Modulation of calcium release through these receptors has important consequences in a development and in a variety of normal and pathological cellular conditions. There are three major types of InsP₃R: InsP₃R-1, InsP₃R-2, and InsP₃R-3. InsP₃R-1 has two major splice variants: the S2⁻ and the S2⁺. The S2⁻ splice

variant of InsP₃R-1 is the short splice variant in which 40 amino acids are excised. Specifically, residues 1693 to 1732 of the full length variant (ie. S2⁻ or the long splice variant) are excised. The S2⁻ variant is located predominantly in peripheral tissues whereas the S2⁺ variant is present predominantly in the CNS.

- 5 30. By "homology" is meant the degree of relatedness shared between two or more nucleic acids, peptides, polypeptides or proteins as determined by their sequence structure or function.
- 10 31. It is understood that as discussed herein the use of the terms homology and identity mean the same thing as similarity. Thus, for example, if the use of the word homology is used between two non-natural sequences it is understood that this is not necessarily indicating an evolutionary relationship between these two sequences, but rather is looking at the similarity or relatedness between their nucleic acid sequences. Many of the methods for determining homology between two evolutionarily related molecules are routinely applied to any two or more nucleic acids or proteins for the purpose of measuring sequence similarity regardless of whether they are evolutionarily related or not.
- 15 32. In general, it is understood that one way to define any known variants and derivatives or those that might arise, of the disclosed genes and proteins herein, is through defining the variants and derivatives in terms of homology to specific known sequences. This identity of particular sequences disclosed herein is also discussed elsewhere herein. In 20 general, variants of genes and proteins herein disclosed typically have at least, about 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent homology to the stated sequence or the native sequence. Those of skill in the art readily understand how to determine the homology of two proteins or nucleic acids, such as genes. For example, the homology can be calculated after aligning the two 25 sequences so that the homology is at its highest level.
- 30 33. Another way of calculating homology can be performed by published algorithms. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math. 2: 482 (1981), by the homology alignment algorithm of Needleman and Wunsch, J. MoL Biol. 48: 443 (1970), by the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by inspection.

34. The same types of homology can be obtained for nucleic acids by for example the algorithms disclosed in Zuker, M. *Science* 244:48-52, 1989, Jaeger et al. *Proc. Natl. Acad. Sci. USA* 86:7706-7710, 1989, Jaeger et al. *Methods Enzymol.* 183:281-306, 1989 which are herein incorporated by reference for at least material related to nucleic acid alignment. It is
5 understood that any of the methods typically can be used and that in certain instances the results of these various methods may differ, but the skilled artisan understands if identity is found with at least one of these methods, the sequences would be said to have the stated identity, and be disclosed herein.

35. For example, as used herein, a sequence recited as having a particular percent
10 homology to another sequence refers to sequences that have the recited homology as calculated by any one or more of the calculation methods described above. For example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using the Zuker calculation method even if the first sequence does not have 80 percent homology to the
15 second sequence as calculated by any of the other calculation methods. As another example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using both the Zuker calculation method and the Pearson and Lipman calculation method even if the first sequence does not have 80 percent homology to the second sequence as calculated
20 by the Smith and Waterman calculation method, the Needleman and Wunsch calculation method, the Jaeger calculation methods, or any of the other calculation methods. As yet another example, a first sequence has 80 percent homology, as defined herein, to a second sequence if the first sequence is calculated to have 80 percent homology to the second sequence using each of calculation methods (although, in practice, the different calculation
25 methods will often result in different calculated homology percentages).

Mutants

36. The present invention provides mutant receptor proteins of two general categories: phosphomimetic mutant InsP₃ receptors and nonphosphorylatable mutant InsP₃. By
30 “phosphomimetic” is meant a receptor that has an increased Ca²⁺ release function as compared to the wild-type InsP₃R as a result of amino substitution to mimic phosphorylation. Preferably, the phosphomimetic mutant has a Ca²⁺ release function that is 3, 4, 5, 6, 7, 8, 9, 10 (or any amount in between) times that of the corresponding wild-type receptor. Preferably, the phosphomimetic mutant has a Ca²⁺ release function that is 10, 20,

30, 40 (or any amount in between) times that of the corresponding nonphosphorylatable mutant. By “nonphosphorylatable” mutant is meant a “null” mutant that is not phosphorylated under conditions that cause phosphorylation in the wild-type. The mutants can be derived from InsP₃R-1, either the S2⁻ or the S2⁺ variant; InsP₃R-2; or InsP₃R-3.

5 37. By increased or enhanced Ca²⁺ release function is meant an increase release of calcium following a stimulus that activates the InsP₃R. Such stimuli include, for example, carbachol, an analog of acetylcholine, acting at muscarinic M3 receptors or alternatively, any agonist acting at any one of over one hundred plasma membrane receptors for neurotransmitters, hormones and growth factors coupled to the formation of InsP₃. In
10 addition enhanced Ca²⁺ release can occur following direct activation of InsP₃R with InsP₃ or its analogs.

15 38. The phosphomimetic mutants are derived by substitution of a serine in a phosphorylation site with a negatively charged amino acid residue. “By substitution of a serine in a phosphorylation site with a different amino acid residue” is meant that serine is removed and the different amino acid residue replaces it. By “a negatively charged amino acid residue” is meant that when incorporated into the protein it provides a net negative charge at the phosphorylation site. Thus, the substitution with the negatively charged amino acid residue neutralizes the positive charge at the site (provided at least by the typical arginine residue at the phosphorylation site). The phosphorylation site can be the strong
20 PKA recognition motif of RXXS (SEQ ID NO:21), in which X represents any amino acid.. The serine residue can be replaced with either aspartate or glutamate. Thus the invention provides a InsP₃R mutant comprising at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site of a wild-type InsP₃R, wherein the mutant has an enhanced Ca²⁺ release function as compared to the wild-type InsP₃R.
25 Preferably the mutant’s Ca²⁺ release function is at least 5 times greater than the Ca²⁺ release function of the wild-type InsP₃R. Preferably the mutant’s Ca²⁺ release function is at least 10 times greater than the Ca²⁺ release function of the wild-type InsP₃R.

30 39. The invention provides a phosphomimetic InsP₃R-1 mutant, which has enhanced Ca²⁺ release function as compared to the wild-type InsP₃R-1. More specifically, the mutant comprises at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site, wherein the phosphorylation site is selected from residue 1589 or 1755 of a wild-type InsP₃R sequence. As used throughout, the amino acid residues are numbered according to the rat sequences for the full length InsP₃R. Thus, one of skill in the art, can readily align the sequence for human (ATCC Acc. No. NM_002222), mouse (ATCC Acc.

No. NM_010585), or any other species and replace the comparable serine residue with the desired amino acid.

40. Examples of InsP₃R-1 phosphomimetic mutants include those wherein the substitution of serine for the negatively charged amino acid (including either glutamate or aspartate) is at residue 1589. Thus the mutant can comprise the amino acid sequence of SEQ ID NO:1, which corresponds to the short splice variant S1589E; SEQ ID NO:2, which corresponds to the long splice variant for S1589E; SEQ ID NO:3, which corresponds to S1589D in the short splice variant; SEQ ID NO:4, which corresponds to the long splice variant of S1589D.

10 41. The invention also provides the amino acids of SEQ ID NO:1,2,3,or 4 having one or more conservative amino acid substitutions, wherein the Ca²⁺ release function is maintained. Also provided are mutants comprising amino acid sequences having at least 80, 85, 90, 95, 96, 97, 98, 99 % (or any amount in between these values) homology to the amino acid sequence of SEQ ID NO:1,2,3,or 4 wherein the Ca²⁺ release function is maintained. Also provided are the comparable S1589E and S1589D mutants for various species.

15 42. Examples of InsP₃R-1 phosphomimetic mutants include those wherein the substitution of serine for the negatively charged amino acid (including either glutamate or aspartate) is at residue 1755. Thus the mutant can comprise the amino acid sequence of SEQ ID NO:5; which corresponds to the short variant of S1755E; SEQ ID NO:6, which corresponds to the long splice variant of S1755E; SEQ ID NO:7, which corresponds to the short variant of S1755D; and SEQ ID NO:8, which corresponds to the long splice variant of S1755D.

20 43. The invention also provides the amino acids of SEQ ID NO: 5, 6, 7, and 8 having one or more conservative amino acid substitutions, wherein the Ca²⁺ release function is maintained. Also provided are mutants comprising amino acid sequences having at least 80, 85, 90, 95, 96, 97, 98, 99 % (or any amount in between these values) homology to the amino acid sequence of SEQ ID NO:5,6,7, or 8, wherein the Ca²⁺ release function is maintained. Also provided are the comparable S1755E and S1755D mutants for various species.

25 44. The invention also provides a InsP₃R-1 mutant, wherein the substitutions of serine for the negatively charged amino acid is at residues 1589 and 1755. Either glutamate or aspartate is substituted for the two serines, in any combination. Thus, the invention provides a mutant, wherein glutamate is substituted for serine at residues 1589 and 1755;

including for example a mutant comprising the amino acid sequence of SEQ ID NO:9, which corresponds to the S1589E/S1755E mutant of the short splice variant, or SEQ ID NO:10, which corresponds to the S1589E/S1755E mutant of the long splice variant. The invention also provides a mutant, wherein aspartate is substituted for serine at residues 1589 and 1755, including for example a mutant comprising SEQ ID NO:11, which corresponds to S1589D/S1755D of the short splice variant; SEQ ID NO:12, which corresponds to S1589D/S1755D of the long splice variant.

45. The invention also provides the amino acids of SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12 having one or more conservative amino acid substitutions, wherein the Ca^{2+} release function is maintained. Also provided are mutants comprising amino acid sequences having at least 80, 85, 90, 95, 96, 97, 98, 99 % (or any amount in between these values) homology to the amino acid sequence of SEQ ID NO:9, 10, 11, or 12, wherein the Ca^{2+} release function is maintained. Also provided are the comparable S1589E/S1755E and S1589D/S1755D mutants for various species.

15 46. The invention further provides double mutants, wherein aspartate is substituted for serine at residue 1589 and glutamate is substituted for serine at residue 1755. For example, the invention provides a mutant comprising the amino acid sequence of SEQ ID NO:13, which corresponds to S1589D/S1755E short splice variant; and SEQ ID NO:14, which corresponds to a S1589D/S1755E mutation in the long splice variant. The invention also 20 provides a mutant, wherein glutamate is substituted for serine at residue 1589 and aspartate is substituted for serine at residue 1755; including, for example, a mutant comprising the amino acid of SEQ ID NO:15, which corresponds to a S1589E/S1755D mutant of the short splice variant; and a mutant comprising the amino acid of SEQ ID NO:16, which corresponds to a S1589E/S1755D mutation in the long splice variant.

25 47. The invention also provides the amino acids of SEQ ID NO: 13, 14, 15, 16, having one or more conservative amino acid substitutions, wherein the Ca^{2+} release function is maintained. Also provided are mutants comprising amino acid sequences having at least 80, 85, 90, 95, 96, 97, 98, 99 % (or any amount in between these values) homology to the amino acid sequence of SEQ ID NO:13, 14, 15, or 16, wherein the Ca^{2+} release function is 30 maintained. Also provided are the comparable S1589D/S1755E and S1589E/S1755D mutants for various species.

48. Similar to those outlined above for the $\text{InsP}_3\text{R}-1$ mutant, the invention provides phosphomimetic $\text{InsP}_3\text{R}-2$ mutants. More specifically, the mutant comprises at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site,

wherein the phosphorylation site is selected from residues 766, 1772, 1856, 1772, 1856, 2058, or 2227. For example, the sequence of SEQ ID NO:19 can be modified to form S766E, S766D, S1772D, S1772E, S1856E, S1856D, S2058E, S2058D, S2227E, S2227D. Furthermore, any combination of these serine substations can be made to form mutants with 5 two, three, four, or five different substitutions. As for the InsP₃R-1 mutants, the invention further provides substitution InsP₃R-1 mutants wherein the amino acid sequence modified from the wild type sequence, provided herein as SEQ ID NO:19, has one or more conservative amino acids, wherein the Ca²⁺ release function is maintained. Also provided are mutants comprising amino acid sequences having at least 80, 85, 90, 95, 96, 97, 98, 99 10 % (or any amount in between these values) homology to the amino acid sequence modified from the wild type sequence (provided herein as SEQ ID NO:19), wherein the Ca²⁺ release function is maintained. Also provided are the comparable InsP₃R-2 mutants for various species designed by aligning the InsP₃R-2 of the species with the rat species an substituting the corresponding amino acid sequence.

15 49. Similar to those outlined above for the InsP₃R-1 mutant, the invention provides phosphomimetic InsP₃R-3 mutants. More specifically, the mutant comprises at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site, wherein the phosphorylation site is selected from residues 934, 1640, 1834, 2009, 2041, or 2189. For example, the sequence of SEQ ID NO:20 can be modified to form S934E, 20 S934D, S1640D, S1640E, S1834E, S1834D, S2009E, S2009D, S2041E, S2041D, S2189E, or S2189D. Furthermore, any combination of these serine substations can be made to form mutants with two, three, four, five, or six different substitutions. As for the InsP₃R-1 mutants, the invention further provides substitution InsP₃R-1 mutants wherein the amino acid sequence modified from the wild type sequence, provided herein as SEQ ID NO:20, 25 has one or more conservative amino acids, wherein the Ca²⁺ release function is maintained. Also provided are mutants comprising amino acid sequences having at least 80, 85, 90, 95, 96, 97, 98, 99 % (or any amount in between these values) homology to the amino acid sequence modified from the wild type sequence (provided herein as SEQ ID NO:20), wherein the Ca²⁺ release function is maintained. Also provided are the comparable InsP₃R-2 30 mutants for various species designed by aligning the InsP₃R-2 of the species with the rat species and substituting the corresponding amino acid sequence.

50. The invention also provides mutants that are nonphosphorylatable. Specifically, the invention provides an InsP₃R mutant comprising at least one substitution of serine for an amino acid with an aliphatic side chain at a phosphorylation site of a wild-type InsP₃R,

wherein the mutant is nonphosphorylatable. Preferably, the amino acid with the aliphatic side chain is alanine. The mutant can be a modified InsP₃R-1 (either the long or short splice variant), InsP₃R-2, or InsP₃R-3. Thus, the sequence of SEQ ID NO:17 can be modified at residues 1589 and 1775 to form a null mutant, SEQ ID NO:18 can be modified at S1755 to 5 form a null mutant. Similarly, nonphosphorylatable mutants of InsP₃R-2 can be formed by substituting alanine for any one or more of the residues 766, 1772, 1856, 2058, 2227 of a wild-type InsP₃R-2 sequence or any combination thereof. Nonphosphorylatable mutants of InsP₃R-3 can be formed by substituting alanine for any one or more of the residues 934, 10 1640, 1834, 2009, 2041, 2189 of a wild-type InsP₃R-3 sequence or any combination thereof. Similar mutants in various species can be derived by aligning the sequence with the rat sequence provided herein and making the null-inducing substitutions provided herein in the corresponding serine residue.

51. As discussed herein there are numerous variants of the InsP₃R protein that are known and herein contemplated. In addition, to the known functional InsP₃R strain 15 variants, there are derivatives and fragments of the InsP₃R proteins that also function in the disclosed methods and compositions. Protein variants and derivatives are well understood to those of skill in the art and can involve amino acid sequence modifications. For example, amino acid sequence modifications typically fall into one or more of three classes: substitutional, insertional or deletional variants. Insertions include amino and/or carboxyl 20 terminal fusions as well as intrasequence insertions of single or multiple amino acid residues. Insertions ordinarily will be smaller insertions than those of amino or carboxyl terminal fusions, for example, on the order of one to four residues. Immunogenic fusion protein derivatives, such as those described in the examples, are made by fusing a polypeptide sufficiently large to confer immunogenicity to the target sequence by cross-linking *in vitro* or by recombinant cell culture transformed with DNA encoding the fusion. 25 Deletions are characterized by the removal of one or more amino acid residues from the protein sequence. Typically, no more than about from 2 to 6 residues are deleted at any one site within the protein molecule. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the protein, thereby producing DNA 30 encoding the variant, and thereafter expressing the DNA in recombinant cell culture. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example M13 primer mutagenesis and PCR mutagenesis. Amino acid substitutions are typically of single residues, but can occur at a number of different locations at once; insertions usually will be on the order of about from 1

to 10 amino acid residues; and deletions will range about from 1 to 30 residues. Deletions or insertions preferably are made in adjacent pairs, i.e. a deletion of 2 residues or insertion of 2 residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final construct. The mutations must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. Substitutional variants are those in which at least one residue has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 1 and are referred to as conservative substitutions.

TABLE 1:Amino Acid Substitutions
Original Residue Exemplary Conservative Substitutions, others are known in the art.

Ala; Ser
Arg;Lys; Gln
Asn; Gln; His
Asp; Glu
Cys; Ser
Gln; Asn, Lys
Glu; Asp
Gly; Pro
His; Asn; Gln
Ile; Leu; Val
Leu; Ile; Val
Lys; Arg; Gln;
Met; Leu; Ile
Phe; Met; Leu; Tyr
Ser; Thr
Thr; Ser
Trp; Tyr
Tyr; Trp; Phe
Val; Ile; Leu

10

52. Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those in Table 1, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example as a sheet or helical conformation, (b) 15 the charge or hydrophobicity of the molecule at the target site or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the protein properties will be those in which (a) a hydrophilic residue, e.g. seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue 20 having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by)

an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine, in this case, (e) by increasing the number of sites for sulfation and/or glycosylation.

53. For example, the replacement of one amino acid residue with another that is biologically and/or chemically similar is known to those skilled in the art as a conservative substitution. For example, a conservative substitution would be replacing one hydrophobic residue for another, or one polar residue for another. The substitutions include combinations such as, for example, Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. Such conservatively substituted variations of each explicitly disclosed sequence are included within the mosaic polypeptides provided herein.

54. Substitutional or deletional mutagenesis can be employed to insert sites for N-glycosylation (Asn-X-Thr/Ser) or O-glycosylation (Ser or Thr). Deletions of cysteine or other labile residues also may be desirable. Deletions or substitutions of potential proteolysis sites, e.g. Arg, is accomplished for example by deleting one of the basic residues or substituting one by glutaminyl or histidyl residues.

55. Certain post-translational derivatizations are the result of the action of recombinant host cells on the expressed polypeptide. Glutaminyl and asparaginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and asparyl residues.

Alternatively, these residues are deamidated under mildly acidic conditions. Other post-translational modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the o-amino groups of lysine, arginine, and histidine side chains (T.E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco pp 79-86 [1983]), acetylation of the N-terminal amine and, in some instances, amidation of the C-terminal carboxyl.

56. It is understood that one way to define the variants and derivatives of the disclosed proteins herein is through defining the variants and derivatives in terms of homology/identity to specific known sequences. For example, SEQ ID NO: 1 sets forth a particular sequence of the “short form” (S2⁻) of InsP₃R-1 (short form S1589E) and SEQ ID NO: 2 sets forth a particular sequence of the “long form” (S2⁺) of InsP₃R-1 protein (long form S1589E). Specifically disclosed are variants of these and other proteins herein disclosed which have at least, 70% or 75% or 80% or 85% or 90% or 95% homology to the stated sequence. Those of skill in the art readily understand how to determine the homology of two proteins.

57. It is understood that the description of conservative mutations and homology can be combined together in any combination, such as embodiments that have at least 70% homology to a particular sequence wherein the variants are conservative mutations.

58. As this specification discusses various proteins and protein sequences it is understood that the nucleic acids that can encode those protein sequences are also disclosed. This would include all degenerate sequences related to a specific protein sequence, i.e. all nucleic acids having a sequence that encodes one particular protein sequence as well as all nucleic acids, including degenerate nucleic acids, encoding the disclosed variants and derivatives of the protein sequences. Thus, while each particular nucleic acid sequence may 10 not be written out herein, it is understood that each and every sequence is in fact disclosed and described herein through the disclosed protein sequence. For example, one of the many nucleic acid sequences that can encode the protein sequence set forth in SEQ ID NO: 18 is set forth in SEQ ID NO: 22. In addition, for example, a disclosed conservative derivative of SEQ ID NO: 1 is shown in SEQ ID NO: 3, where the isoleucine (E) at position 1589 is changed to a valine (D). It is understood that for this mutation all of the nucleic acid 15 sequences that encode this particular derivative of the short form S1589E are also disclosed. It is also understood that while no amino acid sequence indicates what particular DNA sequence encodes that protein within an organism, where particular variants of a disclosed protein are disclosed herein, the known nucleic acid sequence that encodes that protein is 20 also known and herein disclosed and described.

59. Also provided are fragments of the proteins described below, wherein the fragments maintain the Ca^{2+} enhancing or reducing function of full length protein. Preferably the fragment will have at least 50% of the enhancing function of the full length correlate or at least a 50% reduction of the Ca^{2+} reducing function.

25
Nucleic Acids, Vectors and Expression Systems

60. The invention further provides nucleic acids that encode the mutants described herein. Examples of nucleic acids that encode the $\text{InsP}_3\text{R}-1$ wild type receptors can be found at <http://www.ncbi.nlm.nih.gov/HomoloGene/homol.cgi?HID=30927>, including for 30 example rat (ATCC Acc. No. xm_342732); mouse (ATCC Acc. No. nm_010585); human (ATCC Acc. No. nm_002222). Examples of nucleic acids that encode the $\text{InsP}_3\text{R}-2$ wild-type receptors can also be found at the <http://www.ncbi.nlm.nih.gov> site and include, for example, rat (ATCC Acc. No. NM_031046), human (ATCC Acc. No. NM_002223).

Examples of nucleic acids that encode the $\text{InsP}_3\text{R}-3$ wild-type receptors can also be found at

the <http://www.ncbi.nlm.nih.gov> site and include, for example, rat (ATCC Acc. No. NM_013138), human (ATCC Acc. No. NM_002224), and mouse (ATCC Acc. No. NM_080553).

61. One of skill in the art could modify these nucleic acid sequences to make the
5 substitutions described herein. For example, the codon for the selected serine is replaced by a codon for glutamate, aspartate, or alanine. Further provided are nucleic acids that comprise a sequence that hybridizes under highly stringent conditions to the various rat, mouse, and human mutants encoding nucleic acids with the selected serine(s) substituted with glutamate, aspartate, or alanine. Preferably these hybridizing nucleic acids do not hybridize to the wild-type encoding nucleic acids.

10
62. The term hybridization typically means a sequence driven interaction between at least two nucleic acid molecules, such as a primer or a probe and a gene. Sequence driven interaction means an interaction that occurs between two nucleotides or nucleotide analogs or nucleotide derivatives in a nucleotide specific manner. For example, G interacting with C or A interacting with T are sequence driven interactions. Typically sequence driven interactions occur on the Watson-Crick face or Hoogsteen face of the nucleotide. The hybridization of two nucleic acids is affected by a number of conditions and parameters known to those of skill in the art. For example, the salt concentrations, pH, and temperature of the reaction all affect whether two nucleic acid molecules will hybridize.

15
20
63. Parameters for selective hybridization between two nucleic acid molecules are well known to those of skill in the art. For example, in some embodiments selective hybridization conditions can be defined as stringent or highly stringent hybridization conditions. For example, stringency of hybridization is controlled by both temperature and salt concentration of either or both of the hybridization and washing steps. For example, the conditions of hybridization to achieve selective hybridization may involve hybridization in high ionic strength solution (6X SSC or 6X SSPE) at a temperature that is about 12-25°C below the T_m (the melting temperature at which half of the molecules dissociate from their hybridization partners) followed by washing at a combination of temperature and salt concentration chosen so that the washing temperature is about 5°C to 20°C below the T_m.

25
30
The temperature and salt conditions are readily determined empirically in preliminary experiments in which samples of reference DNA immobilized on filters are hybridized to a labeled nucleic acid of interest and then washed under conditions of different stringencies. Hybridization temperatures are typically higher for DNA-RNA and RNA-RNA hybridizations. The conditions can be used as described above to achieve stringency, or as

is known in the art. (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989; Kunkel et al. Methods Enzymol. 1987:154:367, 1987 which is herein incorporated by reference for material at least related to hybridization of nucleic acids). A preferable stringent
5 hybridization condition for a DNA:DNA hybridization can be at about 68°C (in aqueous solution) in 6X SSC or 6X SSPE followed by washing at 68°C. Stringency of hybridization and washing, if desired, can be reduced accordingly as the degree of complementarity desired is decreased, and further, depending upon the G-C or A-T richness of any area wherein variability is searched for. Likewise, stringency of hybridization and washing, if
10 desired, can be increased accordingly as homology desired is increased, and further, depending upon the G-C or A-T richness of any area wherein high homology is desired, all as known in the art.

64. Another way to define selective hybridization is by looking at the amount (percentage) of one of the nucleic acids bound to the other nucleic acid. For example, in
15 some embodiments selective hybridization conditions would be when at least about, 60, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 percent of the limiting nucleic acid is bound to the non-limiting nucleic acid. Typically, the non-limiting primer is in for example, 10 or 100 or 1000 fold excess. This type of assay can be performed at under conditions where both the limiting
20 and non-limiting primer are for example, 10 fold or 100 fold or 1000 fold below their k_d , or where only one of the nucleic acid molecules is 10 fold or 100 fold or 1000 fold or where one or both nucleic acid molecules are above their k_d .

65. Another way to define selective hybridization is by looking at the percentage of primer that gets enzymatically manipulated under conditions where hybridization is
25 required to promote the desired enzymatic manipulation. For example, in some embodiments selective hybridization conditions would be when at least about, 60, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 percent of the primer is enzymatically manipulated under conditions which promote the enzymatic manipulation, for example if the enzymatic manipulation is
30 DNA extension, then selective hybridization conditions would be when at least about 60, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 percent of the primer molecules are extended. Preferred conditions also include those suggested by the manufacturer or indicated in the art as being appropriate for the enzyme performing the manipulation.

66. Just as with homology, it is understood that there are a variety of methods herein disclosed for determining the level of hybridization between two nucleic acid molecules. It is understood that these methods and conditions may provide different percentages of hybridization between two nucleic acid molecules, but unless otherwise indicated meeting the parameters of any of the methods would be sufficient. For example if 80% hybridization was required and as long as hybridization occurs within the required parameters in any one of these methods it is considered disclosed herein.

5
67. It is understood that those of skill in the art understand that if a composition or method meets any one of these criteria for determining hybridization either collectively or 10 singly it is a composition or method that is disclosed herein.

68. Also provided are fragments of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nucleotides (or any number in between) of the nucleic acids provided herein, wherein the fragment encodes a serine substitution described herein.

69. The invention also provides an expression vector comprising a nucleic acid of the 15 invention wherein the nucleic acid is operably linked to an expression control sequence.

70. The nucleic acids that are delivered to cells typically contain expression controlling systems. For example, the inserted genes in viral and retroviral systems usually contain promoters, and/or enhancers to help control the expression of the desired gene product. A promoter is generally a sequence or sequences of DNA that function when in a 20 relatively fixed location in regard to the transcription start site. A promoter contains core elements required for basic interaction of RNA polymerase and transcription factors, and may contain upstream elements and response elements.

71. There are a number of compositions and methods which can be used to deliver nucleic acids to cells, either *in vitro* or *in vivo*. These methods and compositions can largely 25 be broken down into two classes: viral based delivery systems and non-viral based delivery systems. For example, the nucleic acids can be delivered through a number of direct delivery systems such as, electroporation, lipofection, calcium phosphate precipitation, plasmids, viral vectors, viral nucleic acids, phage nucleic acids, phages, cosmids, or via transfer of genetic material in cells or carriers such as cationic liposomes. Appropriate 30 means for transfection, including viral vectors, chemical transfectants, or physico-mechanical methods such as electroporation and direct diffusion of DNA, are described by, for example, Wolff, J. A., et al., *Science*, 247, 1465-1468, (1990); and Wolff, J. A. *Nature*, 352, 815-818, (1991). Such methods are well known in the art and readily adaptable for use with the compositions and methods described herein. In certain cases, the methods will be

modified to specifically function with large DNA molecules. Further, these methods can be used to target certain diseases and cell populations by using the targeting characteristics of the carrier.

72. Transfer vectors can be any nucleotide construction used to deliver genes into cells (e.g., a plasmid), or as part of a general strategy to deliver genes, e.g., as part of recombinant retrovirus or adenovirus (Ram et al. Cancer Res. 53:83-88, (1993)).

5 73. As used herein, plasmid or viral vectors are agents that transport the disclosed nucleic acids, such as SEQ ID NO: 22 into the cell without degradation and include a promoter yielding expression of the gene in the cells into which it is delivered. Viral vectors are, for example, Adenovirus, Adeno-associated virus, Herpes virus, Vaccinia virus, Polio virus, AIDS virus, neuronal trophic virus, Sindbis and other RNA viruses, including these viruses with the HIV backbone. Also preferred are any viral families which share the properties of these viruses which make them suitable for use as vectors. Retroviruses include Murine Maloney Leukemia virus, MMLV, and retroviruses that express the desirable properties of MMLV as a vector. Retroviral vectors are able to carry a larger genetic payload, i.e., a transgene or marker gene, than other viral vectors, and for this reason are a commonly used vector. However, they are not as useful in non-proliferating cells.

10 Adenovirus vectors are relatively stable and easy to work with, have high titers, and can be delivered in aerosol formulation, and can transfect non-dividing cells. Pox viral vectors are large and have several sites for inserting genes, they are thermostable and can be stored at room temperature. A preferred embodiment is a viral vector which has been engineered so as to suppress the immune response of the host organism, elicited by the viral antigens.

15 Preferred vectors of this type will carry coding regions for Interleukin 8 or 10.

74. Viral vectors can have higher transaction (ability to introduce genes) abilities than 25 chemical or physical methods to introduce genes into cells. Typically, viral vectors contain, nonstructural early genes, structural late genes, an RNA polymerase III transcript, inverted terminal repeats necessary for replication and encapsidation, and promoters to control the transcription and replication of the viral genome. When engineered as vectors, viruses typically have one or more of the early genes removed and a gene or gene/promotor cassette 30 is inserted into the viral genome in place of the removed viral DNA. Constructs of this type can carry up to about 8 kb of foreign genetic material. The necessary functions of the removed early genes are typically supplied by cell lines which have been engineered to express the gene products of the early genes in trans.

75. A retrovirus is an animal virus belonging to the virus family of Retroviridae, including any types, subfamilies, genus, or tropisms. Retroviral vectors, in general, are described by Verma, I.M., Retroviral vectors for gene transfer. In Microbiology-1985, American Society for Microbiology, pp. 229-232, Washington, (1985), which is incorporated by reference herein. Examples of methods for using retroviral vectors for gene therapy are described in U.S. Patent Nos. 4,868,116 and 4,980,286; PCT applications WO 90/02806 and WO 89/07136; and Mulligan, (Science 260:926-932 (1993)); the teachings of which are incorporated herein by reference.

5 76. A retrovirus is essentially a package which has packed into it nucleic acid cargo.

10 The nucleic acid cargo carries with it a packaging signal, which ensures that the replicated daughter molecules will be efficiently packaged within the package coat. In addition to the packaging signal, there are a number of molecules which are needed in cis, for the replication, and packaging of the replicated virus. Typically a retroviral genome, contains the gag, pol, and env genes which are involved in the making of the protein coat. It is the gag, pol, and
15 env genes which are typically replaced by the foreign DNA that it is to be transferred to the target cell. Retrovirus vectors typically contain a packaging signal for incorporation into the package coat, a sequence which signals the start of the gag transcription unit, elements necessary for reverse transcription, including a primer binding site to bind the tRNA primer of reverse transcription, terminal repeat sequences that guide the switch of RNA strands
20 during DNA synthesis, a purine rich sequence 5' to the 3' LTR that serve as the priming site for the synthesis of the second strand of DNA synthesis, and specific sequences near the ends of the LTRs that enable the insertion of the DNA state of the retrovirus to insert into the host genome. The removal of the gag, pol, and env genes allows for about 8 kb of foreign sequence to be inserted into the viral genome, become reverse transcribed, and upon
25 replication be packaged into a new retroviral particle. This amount of nucleic acid is sufficient for the delivery of a one to many genes depending on the size of each transcript. It is preferable to include either positive or negative selectable markers along with other genes in the insert.

77. Since the replication machinery and packaging proteins in most retroviral vectors have been removed (gag, pol, and env), the vectors are typically generated by placing them into a packaging cell line. A packaging cell line is a cell line which has been transfected or transformed with a retrovirus that contains the replication and packaging machinery, but lacks any packaging signal. When the vector carrying the DNA of choice is transfected into these cell lines, the vector containing the gene of interest is replicated and packaged into

new retroviral particles, by the machinery provided in *cis* by the helper cell. The genomes for the machinery are not packaged because they lack the necessary signals.

78. The construction of replication-defective adenoviruses has been described (Berkner et al., *J. Virology* 61:1213-1220 (1987); Massie et al., *Mol. Cell. Biol.* 6:2872-2883

5 (1986); Haj-Ahmad et al., *J. Virology* 57:267-274 (1986); Davidson et al., *J. Virology*

61:1226-1239 (1987); Zhang, *BioTechniques* 15:868-872 (1993)). The benefit of the use of these viruses as vectors is that they are limited in the extent to which they can spread to other cell types, since they can replicate within an initial infected cell, but are unable to form new infectious viral particles. Recombinant adenoviruses have been shown to achieve

10 high efficiency gene transfer after direct, *in vivo* delivery to airway epithelium, hepatocytes, vascular endothelium, CNS parenchyma and a number of other tissue sites (Morsy, *J. Clin. Invest.* 92:1580-1586 (1993); Kirshenbaum, *J. Clin. Invest.* 92:381-387 (1993); Roessler,

15 *J. Clin. Invest.* 92:1085-1092 (1993); Moullier, *Nature Genetics* 4:154-159 (1993); La Salle, *Science* 259:988-990 (1993); Gomez-Foix, *J. Biol. Chem.* 267:25129-25134 (1992);

Rich, *Human Gene Therapy* 4:461-476 (1993); Zabner, *Nature Genetics* 6:75-83 (1994);

Guzman, *Circulation Research* 73:1201-1207 (1993); Bout, *Human Gene Therapy* 5:3-10 (1994); Zabner, *Cell* 75:207-216 (1993); Caillaud, *Eur. J. Neuroscience* 5:1287-1291 (1993); and Ragot, *J. Gen. Virology* 74:501-507 (1993)). Recombinant adenoviruses

achieve gene transduction by binding to specific cell surface receptors, after which the virus

20 is internalized by receptor-mediated endocytosis, in the same manner as wild type or replication-defective adenovirus (Chardonnet and Dales, *Virology* 40:462-477 (1970); Brown and Burlingham, *J. Virology* 12:386-396 (1973); Svensson and Persson, *J. Virology* 55:442-449 (1985); Seth, et al., *J. Virol.* 51:650-655 (1984); Seth, et al., *Mol. Cell. Biol.*

4:1528-1533 (1984); Varga et al., *J. Virology* 65:6061-6070 (1991); Wickham et al., *Cell* 73:309-319 (1993)).

79. A viral vector can be one based on an adenovirus which has had the E1 gene removed and these viroids are generated in a cell line such as the human 293 cell line. In another preferred embodiment both the E1 and E3 genes are removed from the adenovirus genome.

80. Another type of viral vector is based on an adeno-associated virus (AAV). This

defective parvovirus is a preferred vector because it can infect many cell types and is

nonpathogenic to humans. AAV type vectors can transport about 4 to 5 kb and wild type

AAV is known to stably insert into chromosome 19. Vectors which contain this site

specific integration property are preferred. An especially preferred embodiment of this type

of vector is the P4.1 C vector produced by Avigen, San Francisco, CA, which can contain the herpes simplex virus thymidine kinase gene, HSV-tk, and/or a marker gene, such as the gene encoding the green fluorescent protein, GFP.

81. In another type of AAV virus, the AAV contains a pair of inverted terminal repeats

5 (ITRs) which flank at least one cassette containing a promoter which directs cell-specific expression operably linked to a heterologous gene. Heterologous in this context refers to any nucleotide sequence or gene which is not native to the AAV or B19 parvovirus.

82. Typically the AAV and B19 coding regions have been deleted, resulting in a safe,

noncytotoxic vector. The AAV ITRs, or modifications thereof, confer infectivity and site-
10 specific integration, but not cytotoxicity, and the promoter directs cell-specific expression.
United States Patent No. 6,261,834 is herein incorporated by reference for material related
to the AAV vector.

83. The vectors of the present invention thus provide DNA molecules which are capable
of integration into a mammalian chromosome without substantial toxicity.

15 84. The inserted genes in viral and retroviral usually contain promoters, and/or
enhancers to help control the expression of the desired gene product. A promoter is
generally a sequence or sequences of DNA that function when in a relatively fixed location
in regard to the transcription start site. A promoter contains core elements required for
basic interaction of RNA polymerase and transcription factors, and may contain upstream
20 elements and response elements.

85. Molecular genetic experiments with large human herpesviruses have provided a
means whereby large heterologous DNA fragments can be cloned, propagated and
established in cells permissive for infection with herpesviruses (Sun et al., *Nature Genetics*
8: 33-41, 1994; Cotter and Robertson, *Curr Opin Mol Ther* 5: 633-644, 1999). These large

25 DNA viruses (herpes simplex virus (HSV) and Epstein-Barr virus (EBV), have the potential
to deliver fragments of human heterologous DNA > 150 kb to specific cells. EBV
recombinants can maintain large pieces of DNA in the infected B-cells as episomal DNA.
Individual clones carried human genomic inserts up to 330 kb appeared genetically stable
The maintenance of these episomes requires a specific EBV nuclear protein, EBNA1,
30 constitutively expressed during infection with EBV. Additionally, these vectors can be used
for transfection, where large amounts of protein can be generated transiently *in vitro*.
Herpesvirus amplicon systems are also being used to package pieces of DNA > 220 kb and
to infect cells that can stably maintain DNA as episomes.

86. Other useful systems include, for example, replicating and host-restricted non-replicating vaccinia virus vectors.

87. The disclosed compositions can be delivered to the target cells in a variety of ways. For example, the compositions can be delivered through use of a gene gun, electroporation, or through lipofection, or through calcium phosphate precipitation. The delivery mechanism chosen will depend in part on the type of cell targeted and whether the delivery is occurring for example *in vivo* or *in vitro*.

88. Thus, the compositions can comprise, in addition to the disclosed vectors for example, lipids such as liposomes (cationic liposomes (e.g., DOTMA, DOPE, DC-cholesterol) or anionic liposomes). Liposomes can further comprise proteins to facilitate targeting a particular cell, if desired. Administration of a composition comprising a compound and a cationic liposome can be administered to the blood afferent to a target organ or inhaled into the respiratory tract to target cells of the respiratory tract. Regarding liposomes, see, e.g., Brigham et al. *Am. J. Resp. Cell. Mol. Biol.* 1:95-100 (1989); Felgner et al. *Proc. Natl. Acad. Sci USA* 84:7413-7417 (1987); U.S. Pat. No. 4,897,355. Furthermore, the compound can be administered as a component of a microcapsule that can be targeted to specific cell types, such as macrophages, or where the diffusion of the compound or delivery of the compound from the microcapsule is designed for a specific rate or dosage.

89. In the methods described above which include the administration and uptake of exogenous DNA into the cells of a subject (i.e., gene transduction or transfection), delivery of the compositions to cells can be via a variety of mechanisms. As one example, delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO-BRL, Inc., Gaithersburg, MD), SUPERFECT (Qiagen, Inc. Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, WI), as well as other liposomes developed according to procedures standard in the art. In addition, the nucleic acid or vector of this invention can be delivered *in vivo* by electroporation, the technology for which is available from Genetronics, Inc. (San Diego, CA) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Tucson, AZ).

90. The materials may be in solution, suspension (for example, incorporated into microparticles, liposomes, or cells). These may be targeted to a particular cell type via antibodies, receptors, or receptor ligands. The following references are examples of the use of this technology to target specific proteins to tumor tissue (Senter, et al., *Bioconjugate Chem.*, 2:447-451, (1991); Bagshawe, K.D., *Br. J. Cancer*, 60:275-281, (1989); Bagshawe,

et al., *Br. J. Cancer*, 58:700-703, (1988); Senter, et al., *Bioconjugate Chem.*, 4:3-9, (1993); Battelli, et al., *Cancer Immunol. Immunother.*, 35:421-425, (1992); Pietersz and McKenzie, *Immunol. Reviews*, 129:57-80, (1992); and Roffler, et al., *Biochem. Pharmacol.*, 42:2062-2065, (1991)). These techniques can be used for a variety of other specific cell types. Vehicles such as "stealth" and other antibody conjugated liposomes (including lipid mediated drug targeting to colonic carcinoma), receptor mediated targeting of DNA through cell specific ligands, lymphocyte directed tumor targeting, and highly specific therapeutic retroviral targeting of murine glioma cells *in vivo*. The following references are examples of the use of this technology to target specific proteins to tumor tissue (Hughes et al., 10 *Cancer Research*, 49:6214-6220, (1989); and Litzinger and Huang, *Biochimica et Biophysica Acta*, 1104:179-187, (1992)). In general, receptors are involved in pathways of endocytosis, either constitutive or ligand induced. These receptors cluster in clathrin-coated pits, enter the cell via clathrin-coated vesicles, pass through an acidified endosome in which the receptors are sorted, and then either recycle to the cell surface, become stored 15 intracellularly, or are degraded in lysosomes. The internalization pathways serve a variety of functions, such as nutrient uptake, removal of activated proteins, clearance of macromolecules, opportunistic entry of viruses and toxins, dissociation and degradation of ligand, and receptor-level regulation. Many receptors follow more than one intracellular pathway, depending on the cell type, receptor concentration, type of ligand, ligand valency, 20 and ligand concentration. Molecular and cellular mechanisms of receptor-mediated endocytosis has been reviewed (Brown and Greene, *DNA and Cell Biology* 10:6, 399-409 (1991)).

91. Nucleic acids that are delivered to cells which are to be integrated into the host cell genome, typically contain integration sequences. These sequences are often viral related 25 sequences, particularly when viral based systems are used. These viral intergration systems can also be incorporated into nucleic acids which are to be delivered using a non-nucleic acid based system of deliver, such as a liposome, so that the nucleic acid contained in the delivery system can be come integrated into the host genome.

92. Other general techniques for integration into the host genome include, for example, 30 systems designed to promote homologous recombination with the host genome. These systems typically rely on sequence flanking the nucleic acid to be expressed that has enough homology with a target sequence within the host cell genome that recombination between the vector nucleic acid and the target nucleic acid takes place, causing the delivered nucleic

acid to be integrated into the host genome. These systems and the methods necessary to promote homologous recombination are known to those of skill in the art.

93. As described above, the compositions can be administered in a pharmaceutically acceptable carrier and can be delivered to the subject's cells *in vivo* and/or *ex vivo* by a variety of mechanisms well known in the art (e.g., uptake of naked DNA, liposome fusion, intramuscular injection of DNA via a gene gun, endocytosis and the like).

94. If *ex vivo* methods are employed, cells or tissues can be removed and maintained outside the body according to standard protocols well known in the art. The compositions can be introduced into the cells via any gene transfer mechanism, such as, for example, calcium phosphate mediated gene delivery, electroporation, microinjection or proteoliposomes. The transduced cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or homotopically transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.

95. The invention also provides a cell comprising a vector described herein. Preferably the cultured cell, in the absence of the vector does not express InsP₃Rs. Optionally, the cell is a cultured cell. An example of such a cell is the DT-40 3ko cell. Optionally, the cell further comprises a nucleic acid that encodes an acetylcholine receptor (including for example an M3 receptor). Optionally various labels can be used to identify the cells that are successfully transfected or transformed.

96. Preferred promoters controlling transcription from vectors in mammalian host cells may be obtained from various sources, for example, the genomes of viruses such as: polyoma, Simian Virus 40 (SV40), adenovirus, retroviruses, hepatitis-B virus and most preferably cytomegalovirus, or from heterologous mammalian promoters, e.g. beta actin promoter. The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment which also contains the SV40 viral origin of replication (Fiers et al., *Nature*, 273: 113 (1978)). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a *Hind*III E restriction fragment (Greenway, P.J. et al., *Gene* 18: 355-360 (1982)). Of course, promoters from the host cell or related species also are useful herein.

97. Enhancer generally refers to a sequence of DNA that functions at no fixed distance from the transcription start site and can be either 5' (Laimins, L. et al., *Proc. Natl. Acad. Sci.* 78: 993 (1981)) or 3' (Lusky, M.L., et al., *Mol. Cell Bio.* 3: 1108 (1983)) to the transcription unit. Furthermore, enhancers can be within an intron (Banerji, J.L. et al., *Cell*

33: 729 (1983)) as well as within the coding sequence itself (Osborne, T.F., et al., *Mol. Cell Bio.* 4: 1293 (1984)). They are usually between 10 and 300 bp in length, and they function in cis. Enhancers function to increase transcription from nearby promoters. Enhancers also often contain response elements that mediate the regulation of transcription. Promoters can
5 also contain response elements that mediate the regulation of transcription. Enhancers often determine the regulation of expression of a gene. While many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, -fetoprotein and insulin), typically one will use an enhancer from a eukaryotic cell virus for general expression. Preferred examples are the SV40 enhancer on the late side of the replication origin (bp
10 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

98. The promotor and/or enhancer may be specifically activated either by light or specific chemical events which trigger their function. Systems can be regulated by reagents such as tetracycline and dexamethasone. There are also ways to enhance viral vector gene
15 expression by exposure to irradiation, such as gamma irradiation, or alkylating chemotherapy drugs.

99. In certain embodiments the promoter and/or enhancer region can act as a constitutive promoter and/or enhancer to maximize expression of the region of the transcription unit to be transcribed. In certain constructs the promoter and/or enhancer
20 region be active in all eukaryotic cell types, even if it is only expressed in a particular type of cell at a particular time. A preferred promoter of this type is the CMV promoter (650 bases). Other preferred promoters are SV40 promoters, cytomegalovirus (full length promoter), and retroviral vector LTF.

100. It has been shown that all specific regulatory elements can be cloned and used to
25 construct expression vectors that are selectively expressed in specific cell types such as melanoma cells. The glial fibrillary acetic protein (GFAP) promoter has been used to selectively express genes in cells of glial origin.

101. Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human or nucleated cells) may also contain sequences necessary for the termination of
30 transcription which may affect mRNA expression. These regions are transcribed as polyadenylated segments in the untranslated portion of the mRNA encoding tissue factor protein. The 3' untranslated regions also include transcription termination sites. It is preferred that the transcription unit also contain a polyadenylation region. One benefit of this region is that it increases the likelihood that the transcribed unit will be processed and

transported like mRNA. The identification and use of polyadenylation signals in expression constructs is well established. It is preferred that homologous polyadenylation signals be used in the transgene constructs. In certain transcription units, the polyadenylation region is derived from the SV40 early polyadenylation signal and consists of about 400 bases. It is also preferred that the transcribed units contain other standard sequences alone or in combination with the above sequences improve expression from, or stability of, the construct.

102. The viral vectors can include nucleic acid sequence encoding a marker product.

This marker product is used to determine if the gene has been delivered to the cell and once delivered is being expressed. Preferred marker genes are the *E. Coli lacZ* gene, which encodes β-galactosidase, and green fluorescent protein.

103. In some embodiments the marker may be a selectable marker. Examples of suitable selectable markers for mammalian cells are dihydrofolate reductase (DHFR), thymidine kinase, neomycin, neomycin analog G418, hydromycin, and puromycin. When such selectable markers are successfully transferred into a mammalian host cell, the transformed mammalian host cell can survive if placed under selective pressure. There are two widely used distinct categories of selective regimes. The first category is based on a cell's metabolism and the use of a mutant cell line which lacks the ability to grow independent of a supplemented media. Two examples are: CHO DHFR- cells and mouse LTK- cells.

20 These cells lack the ability to grow without the addition of such nutrients as thymidine or hypoxanthine. Because these cells lack certain genes necessary for a complete nucleotide synthesis pathway, they cannot survive unless the missing nucleotides are provided in a supplemented media. An alternative to supplementing the media is to introduce an intact DHFR or TK gene into cells lacking the respective genes, thus altering their growth requirements. Individual cells which were not transformed with the DHFR or TK gene will not be capable of survival in non-supplemented media.

104. The second category is dominant selection which refers to a selection scheme used in any cell type and does not require the use of a mutant cell line. These schemes typically use a drug to arrest growth of a host cell. Those cells which have a novel gene would

30 express a protein conveying drug resistance and would survive the selection. Examples of such dominant selection use the drugs neomycin, (Southern P. and Berg, P., *J. Molec. Appl. Genet.* 1: 327 (1982)), mycophenolic acid, (Mulligan, R.C. and Berg, P. *Science* 209: 1422 (1980)) or hygromycin, (Sugden, B. et al., *Mol. Cell. Biol.* 5: 410-413 (1985)). The three examples employ bacterial genes under eukaryotic control to convey resistance to the

appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid) or hygromycin, respectively. Others include the neomycin analog G418 and puramycin.

105. The invention further provides methods of using the mutants, nucleic acids, and cells of the invention in various methods of making the mutant receptors, methods of screening
5 for agents that modulate the InsP₃Rs, and methods of treatment.

106. The expression systems described herein can be used to make mutant InsP₃Rs. Thus, the invention provides making mutant InsP₃R-1, InsP₃R-2, InsP₃R-3 or fragments thereof described herein by culturing a cell that expresses the selected mutant or fragments under conditions that allow expression and by isolating the expressed mutant or fragment
10 thereof.

107. The invention further provides a method of screening for an agent that preferentially modulates Ca²⁺ release by phosphorylated InsP₃R, comprising contacting a cell of the invention with the agent to be screened, under conditions that allow Ca²⁺ release; measuring Ca²⁺ release; and comparing the amount of Ca²⁺ release with a control cell. The control cell
15 can comprise an unphosphorylated InsP₃R that is not contacted with the agent to be screened. Conditions that allow calcium release include for example carbachol, acting at muscaric M3 receptors or alternatively, an agonist acting at any one of over one hundred plasma membrane receptors for neurotransmitters, hormones and growth factors coupled to the formation of InsP₃. In addition, enhanced Ca²⁺ release can occur following direct
20 activation of InsP₃R with InsP₃ or its analogs. An increase or decrease in Ca²⁺ release as compared to a control cell indicates an agent that preferentially modulates unphosphorylated InsP₃R. By "modulation" is meant any physiologic effect that increases or decreases InsP₃R stimulated calcium release. Preferably the unphosphorylated InsP₃R is a nonphosphorylatable mutant InsP₃R described herein.

25 108. The invention also provides a method of expressing a mutant InsP₃R in a cell *in vivo*, comprising providing an expression vector described herein; introducing the vector into a cell *in vivo*; maintaining the cell under conditions that permit expression of the mutant InsP₃R by the cell.

109. Also provided herein are methods of treating a subject with reduced Ca²⁺ release,
30 comprising introducing into the subject an expression vector that encodes a phosphomimetic mutant of the invention, under conditions that an amount of the mutant receptor is expressed in an effective amount to enhance Ca²⁺ release. Examples of such diseases include, xerostomia, cystic fibrosis, or a large class of diseases which result from the decreased secretion of hormones, these include but are not limited to, decreased thyroid stimulating

hormone (TSH) secretion from the pituitary or insulin secretion from the pancreas. The former deficiency results in dwarfism and cretinism, the latter diabetes.

110. Optionally the expression vector can be targeted. For example, to treat a subject with a condition like xerostomia, the vector could be targeted to the oral mucosal cells.

5 111. The invention also provides a method of treating a subject with cystic fibrosis, comprising introducing into the subject the expression vector of that expresses a phosphomimetic mutant receptor under conditions that an amount of the mutant receptor is expressed in an effective amount to alleviate the symptoms of cystic fibrosis.

10 **EXAMPLES**

Example 1: Phosphorylation of Type-1 Inositol 1,4,5-Trisphosphate Receptors by Cyclic Nucleotide-dependent Protein Kinases

112. Inositol 1,4,5-trisphosphate receptors (InsP₃R) constitute the major route of intracellular calcium release in eukaryotic cells and as such are pivotal for stimulation of Ca²⁺ dependent effectors important for numerous physiological processes. Modulation of this release has important consequences for defining the particular spatio-temporal characteristics of Ca²⁺ signals. In this study, regulation of Ca²⁺ release by phosphorylation of type-1 InsP₃R (InsP₃R-1) by cAMP (PKA) and cGMP (PKG) dependent protein kinases was investigated in the two major splice variants of InsP₃R-1. InsP₃R-1 were expressed in

20 DT-40 cells devoid of endogenous InsP₃R. In cells expressing the neuronal, S2⁺ splice variant of the InsP₃R-1, Ca²⁺ release was markedly enhanced when either PKA or PKG was activated. The sites of phosphorylation were investigated by mutation of serine residues present in two canonical phosphorylation sites present in the protein. Potentiated Ca²⁺ release was abolished when serine 1755 was mutated to alanine (S1755A) but was

25 unaffected by a similar mutation of serine 1589 (S1589A). These data demonstrate that S1755 is the functionally important residue for phosphoregulation by PKA and PKG in the neuronal variant of the InsP₃R-1. Activation of PKA also resulted in potentiated Ca²⁺ release in cells expressing the non-neuronal, S2⁻ splice variant of the InsP₃R-1. However, the PKA-induced potentiation was still evident in S1589A or S1755A InsP₃R-1 mutants.

30 The effect was abolished in the double (S1589A/S1755A) mutant, indicating both sites are phosphorylated and contribute to the functional effect. Activation of PKG had no effect on Ca²⁺ release in cells expressing the S2⁻ variant of InsP₃R-1. Collectively these data indicated that phosphoregulation of InsP₃R-1 had dramatic effects on Ca²⁺ release and

defined the molecular sites phosphorylated in the major variants expressed in neuronal and peripheral tissues.

113. Most studies of PKA-dependent phosphorylation have been performed on the S2⁺ neuronal type-I InsP₃R, the so called “long-form” of the receptor. In this variant of the

5 InsP₃R-1, serine residues at S1589 and S1755 are phosphorylated by PKA [7, 34, 35], with S1755 being more heavily phosphorylated [34]. In contrast, little consensus exists as to the effect of PKG; *in situ* experiments in cerebellar slices reported S1589 to be preferentially phosphorylated by PKG [35], while other studies suggest that purified InsP₃R-1 protein from the cerebellum was phosphorylated preferentially on S1755 [36].

10 114. Alternative splicing of the type-1 receptor gene results in the S2⁻ variant of the type-1 InsP₃R where 40 amino acids (amino acids 1693 to 1732) are excised between the two phosphorylation sites [6, 7]. This protein is predominantly expressed in peripheral tissues and interestingly has been reported to be exclusively phosphorylated on S1589 by PKA [7], but on S1755 by PKG [36]. Studies of the functional effects of phosphorylation of the

15 peripheral form have suggested that in contrast to the neuronal form of the receptor, phosphorylation of the “short form” of the InsP₃R-1 results in attenuated Ca²⁺ release [21, 22]. Thus, prior to this invention, the possibility existed that differences in both the sites of phosphorylation and therefore the functional effects of phosphorylation were defined by the particular splice variants expressed in particular tissues.

20 115. In this study the sites of phosphorylation by PKA and PKG, functionally important for regulation of Ca²⁺ release in the two major splice variants of the InsP₃R-1, were investigated. By expression of mutant InsP₃R-1 in InsP₃R *null* DT-40 cells [42, 43], the studies revealed that phosphorylation of S1755 by PKA or PKG resulted in markedly enhanced Ca²⁺ release for S2⁺ InsP₃R-1. Notably, in S2⁻ InsP₃R expressing cells PKG

25 activation did not markedly alter Ca²⁺ release while PKA phosphorylation of both S1755 and S1589 result in enhanced Ca²⁺ release. Thus, the expression of particular InsP₃R splice variants defined the functional consequences of phosphoregulation by cyclic nucleotide-dependent kinases.

30 **Materials:**

116. The acetoxymethyl esters of Fura-2, and Fluo-4 were purchased from Molecular Probes (Eugene, Or.). Fura-2FF was purchased from Tefabs (Austin, TX). Cell permeable cyclic nucleotides and forskolin were purchased from Biomol, (Plymouth Meeting, PA). All other chemicals were purchased from Sigma Chemical Company (St. Louis, MO). The

DT-40 cells lacking InsP₃R (DT-40 3ko) were kindly provided by Dr Kurosaki, (Kansai Medical University, Japan) and were maintained as previously described [42-44].

Production of Mutations:

117. The S2⁺ InsP₃R-1 in the expression plasmid pIRES-GFP (Clontech; Palo Alto, CA) was digested with the restriction endonuclease Sal I. The overhang created by digestion was blunted using T4 polymerase. An EcoR I linker was then ligated onto the blunted ends of the construct. The entire receptor DNA was excised from the plasmid using EcoR I and ligated into the plasmid MXT-1. The region containing the S2⁻ splice variant and potential PKA phosphorylation sites was excised from its backbone in pCDNA 3.1+ (Invitrogen; Carlsbad, CA) by Rsr II and Kas I and ligated into the InsP₃R construct in MXT-1. The potential PKA sites, S1589 and S1755, were mutated, individually in both splice variants and together in the S2⁻ splice variant, to alanines using sequential PCR mutagenesis. The outer oligos used for the mutagenesis reaction flanked the restriction sites Rsr II and Kas I. Following mutation, the resulting fragments were cut with Rsr II and Kas I and inserted into the IP₃R-1 backbone at the corresponding sites. The mutations and lack of spurious misincorporations were confirmed by Big Dye fluorescent sequencing. Mutated receptor DNAs were excised from MXT-1 using EcoR I and ligated into the mammalian expression vector pGW (British Biotechnology; Oxford, UK). Orientation was confirmed using restriction enzyme digestion.

20 ***Transfection of DT-40 cells:***

118. DT-40 cells lacking all three InsP₃ receptor subtypes DT-40 3kowere transfected using electroporation, 350 V and 950 µF. 2 x 10⁷ cells were co-transfected with 25 µg of the InsP₃R cDNA, 25 µg of the muscarinic type 3 (M3) receptor, and 4 µg of the red fluorescent protein plasmid pHcRed1-N1. Cells were incubated with DNA in 500 µl of Optimem media on ice for 10 minutes. The cell / DNA mixture was electroporated, incubated on ice for 30 minutes, brought up to 5 ml with Optimem and placed in a 5 % CO₂ incubator at 39 °C for 5 hours. The cells were then centrifuged and resuspended in 12 ml of complete RPMI media. Transfection efficiency was typically ~20%. Experiments were performed within 32 hours of transfection.

30 ***Digital Imaging of [Ca⁺²]_i:***

119. Transfected DT-40 3ko cells were washed once in a HEPES-buffered physiological saline solution (HEPES-PSS) containing (in mM) 5.5 glucose, 137 NaCl, 0.56 MgCl₂, 4.7 KCl, 1 Na₂HPO₄, 10 HEPES (pH 7.4), 1.2 CaCl₂ and 1% w/v Bovine Serum Albumin. Cells

were then resuspended in BSA HEPES-PSS with 1 μ M Fura-2 (AM), placed on a 15 mm glass coverslip in a low volume perfusion chamber (Warner Instruments) and allowed to adhere for 30 minutes at room temperature. Cells were perfused continually for 10 minutes with HEPES-PSS before experimentation to allow Fura-2 de-esterification. A field of cells 5 for each experiment was chosen that contained a wide range of transfection efficiency based upon the intensity of red fluorescence emitted when excited at 560 nm. $[Ca^{2+}]_i$ imaging was performed essentially as previously described [28, 29, 41] using an inverted epifluorescence Nikon microscope with a 40X oil immersion objective lens (numerical aperture, 1.3). Cells were excited alternately with light at 340 and 380 nm (\pm 10 nm bandpass filters, Chroma) 10 using a monochromometer (TILL Photonics). Fluorescence images were captured and digitized with a digital camera driven by TILL Photonics software. Images were captured every 2 seconds with an exposure of 35 ms and no binning. 340 / 380 ratio images were calculated online and stored immediately to hard disk. Only data from cells exhibiting an increase in ratio units of less than 0.2 upon stimulation were used for further analysis.

15 ***Flash Photolysis:***

120. Transfected cells were simultaneously loaded by incubation with the visible wavelength indicator Fluo-4 and a cell permeable form of caged-inositol trisphosphate (ciIP₃/PM) for 30 min. Ci-IP₃/PM is a homologue of cm-IP₃/PM [45] The 2- and 3-hydroxyls of the inositol ring were protected by an isopropylidene group in ci-IP₃/PM, and 20 were protected by a methoxymethylene group in cm-IP₃/PM. Like cm-IP₃/PM, ci-IP₃/PM diffuses across cell membranes and induces internal calcium release upon photo-uncaging. A further period of approximately 30 min was allowed for de-esterification of both dye and cage. Cells were illuminated at 488 ± 10 nm and fluorescence collected through a 525 ± 25 nm band pass filter and captured using the Till Photonics imaging suite. These traces are 25 displayed as % $\Delta F/F_0$, where F is the recorded fluorescence and F_0 is the mean of the initial 10 sequential frames. Photolytic release was performed as previously described [28, 29, 41] using a pulsed Xenon arc lamp (Till Photonics). A high intensity (0.5-5 msec duration; 80 J) discharge of UV light (360 ± 7.5 nm) was reflected onto the plane of focus using a DM400 dichroic mirror and Nikon X 40 oil immersion objective, 1.3 NA.

30 ***Statistical Analysis:***

121. The effects of treatment were determined by normalizing the peak change in fluorescence ratio by stimulation following forskolin or 8-Br cGMP exposure to that of stimulation in control HEPES-PSS. Thus, pooled data represents a normalized fold increase

over control for the treated trial. Two tailed heteroscedastic t-tests with P values < 0.05 were considered to have statistical significance.

PKA phosphorylation of S1755 in S2⁺ InsP₃R-1 resulted in enhanced Ca²⁺ release:

5 122. Experiments were performed in DT-40 3ko cells transfected with S2⁺ InsP₃R-1. Since there are no reports of G α q coupled receptors expressed in DT-40 cells, initial experiments were performed eliciting [Ca²⁺]_i changes by stimulating the endogenous B cell receptor with α -IgM antibody. This resulted in somewhat irregular Ca²⁺ oscillations, which were not reversible when the antibody was removed making paired analysis of any effects
10 of raising cyclic nucleotides difficult to interpret. Thus, in all further experiments, DT-40 3ko cells were co-transfected with the M3 receptor, and HcRed to facilitate identification of transfected cells (inset fig. 1). Stimulation of M3 receptors with the muscarinic agonist carbachol (CCh), provided a convenient means of stimulating [Ca²⁺]_i changes, presumably through G α q-induced activation of phospholipase C and production of InsP₃. Stimulation
15 with a low concentration of CCh (25-50 nM) resulted in an increase in [Ca²⁺]_i, which returned to baseline when the agonist was removed. Following 10 min incubation with 20 μ M forskolin to maximally raise cAMP, the initial peak in [Ca²⁺]_i elicited by identical CCh treatment was markedly potentiated (fig 1A and pooled data in fig 1D). After washout of
20 forskolin a subsequent stimulation resulted in a [Ca²⁺]_i change comparable to the initial exposure. The potentiation was most marked when threshold elevations in [Ca²⁺]_i were evoked by the initial exposure to CCh and therefore only cells in which the initial CCh
25 treatment evoked a Δ 340/380 ratio of < 0.2 ratio units were included for analysis. These data showed that phosphorylation of the S2⁺ InsP₃R resulted in enhanced Ca²⁺ release by increasing the sensitivity of the receptor to InsP₃. [Ca²⁺]_i changes were never evoked by CCh treatment in cells transfected with only M3 cDNA in the absence of InsP₃R or likewise
InsP₃R with no M3 cDNA. Similarly, cells exhibiting no HcRed fluorescence seldom responded to CCh treatment (black trace, fig 1A).

123. To ascertain whether one or both of the serine residues S1589 or S1755 is important for phosphoregulation of the S2⁺ variant of the InsP₃R-1 following PKA activation,
30 individual point mutations were constructed where these serine residues were mutated to alanine (S1589A and S1755A). A similar potentiation of the initial peak of the CCh-induced [Ca²⁺]_i elevation was observed following forskolin treatment in cells expressing S1589A S2⁺ InsP₃R (fig 1B and 1D), however mutation of S1755A resulted in the complete

abrogation of any potentiation upon forskolin treatment (fig 1C and 1D). These data clearly support the assertion that phosphorylation of S1755 is the important event underlying enhanced Ca^{2+} release through the neuronal InsP₃R-1 following PKA activation. It follows therefore, that phosphorylation of S1589 after 20 μM forskolin treatment (which could

5 reasonably be expected to result in the maximal generation of cAMP) was either not occurring to a significant extent, or perhaps more likely, was functionally not important in modulating Ca^{2+} release.

124. Since the only difference between the experiment in fig 1A and 1C is a conservative point mutation in the InsP₃R-1, it was assumed that the effects observed on the peak Ca^{2+}

10 signal following forskolin treatment were predominately the results of alteration of Ca^{2+}

release. To rule out the possibility that phosphorylation by PKA of other signaling

molecules caused the effect, experiments were performed utilizing cIP₃/PM, a cell

permeable form of caged InsP₃ [45] to more directly induce Ca^{2+} release in cells transfected with wild-type S2⁺ InsP₃R-1. Using a brief flash of UV light (~ 0.5 ms, indicated by the

15 arrow in fig 2) small elevations in $[\text{Ca}^{2+}]_i$ could be evoked. Subsequent exposure to UV

light never produced an increase larger than that initially evoked, however longer flashes of

UV light (5 msec) could evoke larger peak increases (fig 2A; max uncage, indicated by the large arrow-head). No effect of UV light was observed in cells either not loaded with cage,

or alternatively not expressing InsP₃R. In contrast, when cells were incubated with 10 μM

20 forskolin for 5 min prior to a second identical exposure to UV light a marked increase in the initial Ca^{2+} peak was evoked (fig 2B and pooled data fig 2C). This potentiation of InsP₃-

induced release was of similar magnitude to that seen for CCh-treated cells exposed to forskolin and supports the notion that the predominant effect of forskolin treatment is to regulate Ca^{2+} release through phosphorylation of InsP₃R.

25 ***PKA-induced phosphorylation of S1589 and S1755 were functionally important in the S2⁺ InsP₃R-1:***

125. The S2⁺ variant of the InsP₃R-1 is predominantly expressed in peripheral tissues and in fetal brain during neuronal development [6, 7]. The S2⁺ InsP₃R-1 has been reported to be phosphorylated by PKA in a number of tissues, including platelets, vas deferens, smooth

30 muscle and hepatocytes [7, 30, 46]. In contrast to the neuronal form of the InsP₃R-1,

studies performed with S2⁺ InsP₃R-1 purified from vas deferens and smooth muscle have

demonstrated that the receptor is almost exclusively phosphorylated on S1589 [7]. Reports

have also suggested a different functional outcome as a result of PKA activation, since the

majority of studies, for example in megakaryocytes have suggested that phosphorylation results in inhibition of Ca^{2+} release [22]. An important caveat relevant to the interpretation of this functional data, is that in contrast to $\text{InsP}_3\text{R-1}$ in cerebellum (>99% $\text{S}2^+$ $\text{InsP}_3\text{R-1}$), in peripheral tissues multiple InsP_3R types are invariably expressed to varying degrees [47].

5 Thus, unequivocally attributing an effect to an individual homotetrameric receptor was problematic prior to the invention.

126. Similar experimental paradigms were employed to assess the effect of PKA-induced phosphorylation on a homogeneous population of $\text{S}2^-$ $\text{InsP}_3\text{R-1}$. In DT-40 3ko cells expressing wild-type $\text{S}2^-$ $\text{InsP}_3\text{R-1}$, incubation with 20 μM forskolin for 10 min resulted in a 10 marked potentiation of the initial CCh-induced Ca^{2+} peak (fig 3A, pooled data fig 3E) in a similar fashion to that demonstrated for the $\text{S}2^+$ $\text{InsP}_3\text{R-1}$. In contrast to the $\text{S}2^+$ variant of the $\text{InsP}_3\text{R-1}$, neither single mutation in amino acids corresponding to S1589 or S1755 in $\text{S}2^+$ $\text{InsP}_3\text{R-1}$ resulted in loss of this enhanced Ca^{2+} signal (fig 3C/3D and 3E). These data indicated that both serine residues can be phosphorylated in this form of the receptor and 15 furthermore was consistent with the observation that the peripheral $\text{InsP}_3\text{R-1}$ is more readily phosphorylated by PKA than the neuronal form [7]. However, no potentiation was observed in cells transfected with a double mutant where both serines were mutated to alanine (S1589A/S1755A $\text{S}2^-$ $\text{InsP}_3\text{R-1}$), confirming that no additional functionally important phosphorylation sites are present in the $\text{S}2^-$ $\text{InsP}_3\text{R-1}$ (fig 3D and 3E).

20 127. The degree of potentiation appeared similar when comparing wild-type to either S1589A or S1755A $\text{S}2^-$ $\text{InsP}_3\text{R-1}$; expression of each construct revealed a ~3 fold increase in CCh-induced Ca^{2+} release in the presence of forskolin. These data indicated, that if the assumption is made that phosphorylation of each particular site occurred independently, that phosphorylation of individual sites appeared not to result in an additive effect on Ca^{2+} 25 release. A potential exists, however, that the dye used in these experiments (Fura-2; kd ~150 nM) is saturated with Ca^{2+} upon CCh exposure in the presence of forskolin, thereby masking any additive effect of phosphorylating both sites. For this reason, similar experiments were performed using the lower affinity Ca^{2+} indicator Fura-2-FF (kd ~ 10 μM). While the degree of potentiation was somewhat greater in cells expressing wild-type 30 $\text{S}2^-$ $\text{InsP}_3\text{R-1}$ (~4.5 fold) there was no significant difference in the extent of enhancement when comparing wild-type to S1589A and S1755A expressing cells (Fig 3E; filled bars). These data indicate that while it is possible that Fura-2 measurements may indeed underestimate the degree of PKA-induced enhancement of Ca^{2+} release resulting from PKA

phosphorylation, our data suggests that phosphorylation of individual sites appears not to be functionally additive.

128. To assess if the phosphorylation of a particular site was favored in S2⁻ InsP₃R-1, the minimal concentration of forskolin sufficient to enhance CCh-induced Ca²⁺ release in wild-type vs. S1589A and S1755A mutants was compared. In cells transfected with wild-type S2⁻ InsP₃R-1, 100 nM, 500 nM or 1 μM forskolin failed to enhance the subsequent CCh-induced Ca²⁺ release (3 experiments, >5 cells for each condition). Incubation with 5 μM forskolin resulted in a 1.26 ± 0.21 fold potentiation of Ca²⁺ release (n=6). At this threshold concentration of forskolin a similar degree of potentiation was observed in both S1589A (1.36 ± 25 fold; n=8) and S1755A (1.37 ± 0.26 fold; n=7) S2⁻ InsP₃R-1. Thus, functionally, it appears that a particular site is not obviously subject to preferential phosphoregulation by PKA.

129. These data demonstrated that, in contrast to the S2⁺ variant, both S1589 and S1755 are functionally important phosphorylation substrates in the S2⁻ InsP₃R. This indicates that excision of the 40 amino acids in the S2⁻ form of the InsP₃R-1 either alters the structure of the receptor allowing access to the kinase or perhaps allows the interaction with an accessory protein necessary to confer this effect. The only known structural difference between the splice variants is the insertion of an adenine nucleotide binding site in the S2⁻ InsP₃R-1.

20 ***Phosphorylation of S2⁺ InsP₃R-1 by PKG:***

130. Similar experiments were performed to assess the effects on Ca²⁺ release of phosphorylating InsP₃R-1 with PKG. Cells transfected with S2⁺ InsP₃R-1 together with M3 receptor and HcRed were stimulated with low, threshold concentrations of CCh (25-50 nM) followed by a 10 min treatment with 10 μM 8-Br cGMP, a specific activator of PKG [48].

25 Subsequent re-stimulation with an identical concentration of CCh revealed a marked potentiation of the [Ca²⁺]_i change. In a similar fashion to PKA activation, this was manifested as an increase in the CCh-induced initial peak (fig 4A and pooled data fig 4E). Moreover, these data are again consistent with phosphorylation increasing the sensitivity of the InsP₃R to InsP₃, since sub-threshold increases in [Ca²⁺]_i were readily potentiated to substantial increases in [Ca²⁺]_i (fig 4A 4B and 4E).

30

131. Next, the effect of phosphorylation of S1589 and S1755 in S2⁺ InsP₃R-1 mutants was assessed. In cells transfected with S1589A a similar potentiation by 8-Br cGMP was observed (fig 4B and 4E) while no enhanced [Ca²⁺]_i signal was observed in cells transfected

with S1755A (fig 4C and 4E), strongly indicating that phosphorylation of S1755 by PKG is the important event underlying this potentiation of Ca^{2+} signaling. Although PKG and PKA consensus motifs are similar (RRXS) these data are consistent with reports that S1755 is phosphorylated by PKG and furthermore that phosphorylation by PKG is enhanced by the

5 presence of an aromatic amino acid, 4 amino acids downstream from the phosphorylatable serine as is the case for S1755 in $\text{InsP}_3\text{R-1}$ [49]. Indeed the substantial degree of potentiation may reflect the favorable nature of this site for phosphorylation by PKG.

Although phosphorylation of S1755 appears to be responsible for the potentiated signal, our data thus far does not exclude the possibility that the response of wild-type $\text{S}2^+\text{ InsP}_3\text{R-1}$ is 10 a result of a net phosphorylation of both serines by PKG, with phosphorylation of S1589 actually resulting in inhibited release. Thus, the effect of PKG activation on larger $[\text{Ca}^{2+}]_i$ responses to CCh stimulation was tested in cells transfected with S1589A $\text{InsP}_3\text{R-1}$. Using this paradigm no effect of 10 μM 8-Br cGMP was observed (fig 4D), confirming that either S1589 is not phosphorylated or has no functional consequence in $\text{S}2^+\text{ InsP}_3\text{R-1}$.

15 132. Although the most likely consequence of 8-Br cGMP treatment was to activate PKG, it was possible that this compound led to cAMP accumulation and activation of PKA indirectly by inhibiting cAMP phosphodiesterase [50]. Additionally, a somewhat less likely scenario was that 8-Br cGMP bound to and activated PKA directly. Experiments were therefore performed to confirm that the potentiation of Ca^{2+} signaling observed with 8-Br 20 cGMP treatment was not the result of PKA activation. Cells transfected with $\text{S}2^+\text{ InsP}_3\text{R-1}$ were preincubated for 30 minutes with the cell-permeable PKA inhibitor, myristoylated PKI. This treatment completely abolished any potentiation of the CCh-induced $[\text{Ca}^{2+}]_i$ elevation after forskolin treatment (fig 5A and pooled data fig 5C). In contrast, similar treatment with PKI did not alter the potentiation induced by 8-Br cGMP treatment (fig 25 5B/C); this treatment still resulted in a ~20 fold potentiation of the CCh-stimulated $[\text{Ca}^{2+}]_i$ signal (compare fig 4A and fig 5B). These data clearly indicate that treatment with forskolin and 8-Br cGMP resulted in the selective activation of PKA or PKG respectively.

Phosphorylation of $\text{S}2^+\text{ InsP}_3\text{R-1}$ by PKG:

133. PKA or PKG phosphorylation of the $\text{S}2^+\text{ InsP}_3\text{R-1}$ in megakaryocytes and smooth 30 muscle cells has been suggested to inhibit Ca^{2+} release [21, 36, 37]. This observation is difficult to reconcile with the data presented herein for phosphorylation of $\text{S}2^+\text{ InsP}_3\text{R-1}$ by PKA, since phosphorylation of either S1589 or S1755 resulted in potentiated release. Nevertheless, similar experiments were performed to elucidate the effect of PKG

phosphorylation of S2⁻ InsP₃R-1. Interestingly, no effect of 10 μM 8-Br cGMP treatment was observed in cells transfected with either wild-type (fig 6A and pooled data fig 6D), S1589A S2⁻ InsP₃R-1 (fig 6B and 6D) or S1755A S2⁻ InsP₃R-1 (fig 6C and 6D). However, in the same batches of cells transfected with wild-type S2⁻ InsP₃R-1, treatment with 5 forskolin resulted in the expected ~4 fold increase in the initial peak (n=5 cells). These data also reinforced the contention that 8-Br cGMP specifically activates PKG without altering PKA activity; the logic being that if, this was not the case, activation of PKA by 8-Br cGMP in S2⁻ InsP₃R-1 expressing cells would be expected to result in data similar to PKA activation shown in Fig 3.

10 134. The data demonstrated that PKA phosphorylation of either S1589 or S1755 resulted in enhanced Ca²⁺ release in the S2⁻ variant of the receptor (fig 3 A/B/C). Thus, PKG is simply not capable of *directly* phosphorylating this receptor. These data, although somewhat surprising, do not rule out the possibility that phosphorylation of an accessory protein termed IRAG [51, 52] may have an effect.

15 135. In conclusion, using mutational analysis in a *null* InsP₃R background this study has elucidated the serine residues in InsP₃R-1 functionally important for modulating Ca²⁺ release by cyclic nucleotide dependent protein kinases. An important finding of this study was that, although phosphorylation of either S1589 or S1755 can result in markedly enhanced Ca²⁺ release, the particular splice variant of InsP₃R-1 expressed dictated which 20 sites were susceptible to phosphorylation. Potentiation of Ca²⁺ release through InsP₃R-1 phosphorylation thus provided a powerful means of enhancing and amplifying Ca²⁺ signaling events when multiple signaling pathways are activated. Additionally, the evidence indicated that PKG appears not to directly regulate S2⁻ InsP₃R-1. Therefore, this splice variation defined which kinase is capable of phosphorylating the receptor at these sites and 25 thus the specificity of functional response.

Example 2: Acute Regulation of Secretion: Cross-Talk Between Signaling Molecules and Their Effectors

Effects on InsP₃-induced Ca²⁺ release

30 136. Phosphorylation of inositol 1,4,5 trisphosphate receptors (InsP₃R) is a major point of synergism between the Ca²⁺ and cAMP signaling systems [29]. Phosphorylation of InsP₃R in parotid acinar cells results in markedly enhanced Ca²⁺ release, an effect attributed to type-II InsP₃R [29]. The functionally important phosphorylation sites have recently been defined in the type-I receptor [57]. The experiments examine the potential for

“phosphomimetic” mutants of InsP₃R-1 to enhance Ca²⁺ signaling and the mechanism responsible for this augmentation of Ca²⁺ release in both the InsP₃R-I and InsP₃R-II. These constructs can be utilized in models of impaired fluid secretion to assess their ability to augment fluid secretion.

5 *Fluid secretion in salivary acinar cells*

137. Appropriate control of salivary secretion is required for effective speech, mastication and general oral health [62-64]. Disruption of normal secretion is thus a significant health problem for affected individuals. The inability to produce an adequate salivary fluid secretion results in a variety of conditions that together comprise a major health problem for
10 a significant proportion of the population [62, 63].

138. Fluid secretion in the salivary glands relies on the secondary active transepithelial transport of Cl⁻ [61, 65-68]. Briefly, Cl⁻ ions enter the cell across the basolateral membrane, in part via Cl⁻/HCO₃⁻ exchange but primarily by an electrically neutral Na⁺-K⁺-2Cl⁻ cotransport process [69-72]. The accumulated K⁺ ions recycle to the serosal side via basolateral K⁺ channels, whilst the accumulated Cl⁻ exit to the mucosal side via apical Cl⁻ channels. The resultant transepithelial movement of Cl⁻ generates an electrical potential gradient (lumen negative) sufficient to drive Na⁺ into the lumen via a paracellular pathway. The net result is the secretion of Na⁺ and Cl⁻, with water following osmotically [61, 65, 68]. The principal means of regulation of this fluid secretion involves stimulation via
15 parasympathetic nerves supplying the glands [73]. It is generally acknowledged that the main component of this system involves neurally released acetylcholine (ACh) acting at muscarinic receptors on the acinar cells [74-76]. Activation of these receptors produces a rise in [Ca²⁺]_i as a result of an increased turnover of membrane phosphoinositides and the generation of inositol 1,4,5-trisphosphate (InsP₃) [77]. The elevated [Ca²⁺]_i in turn acts at
20 membrane ion channels, specifically increasing basolateral K⁺ conductance and an apical Cl⁻ conductance [61, 65, 67, 68]. It is the increases in these conductance pathways that lead to the initiation of the secretion of ions and accompanying fluid. The rise in [Ca²⁺]_i also apparently has important additional effects including the stimulation of the activity of the basolateral Na⁺-K⁺-2Cl⁻ cotransport increasing the entry of Cl⁻ ions into the cell [78].
25

30 *Ca²⁺ signaling in parotid acinar cells*

139. Many studies have investigated the characteristics of [Ca²⁺]_i signals in parotid acinar cells [79]. In common with other electrically non-excitatory cells, cytosolic Ca²⁺ signals comprise both the release of Ca²⁺ from intracellular stores and the activation of pathways mediating the entry of Ca²⁺ from the extracellular space. It should be noted that while the

release of intracellular Ca^{2+} is capable of initiating fluid secretion in the salivary glands, the ability to produce a sustained secretion is known to be entirely dependent on the influx of Ca^{2+} from the extracellular medium [58-60]. Consequently, a thorough understanding of the processes leading to activation and modulation of both Ca^{2+} release and Ca^{2+} influx is
5 fundamentally important for understanding fluid secretion.

140. The pathways involved in Ca^{2+} release are relatively well defined; the binding of secretagogues such as ACh, substance P, noradrenaline and ATP (acting at P2Y receptors) to plasma membrane receptors, couples to the heterotrimeric G protein $\text{G}\alpha\text{q}/11$, resulting in activation of $\text{PLC}\beta$ and the subsequent formation of InsP_3 . All three isoforms of InsP_3R are expressed to varying degrees in rodent parotid tissue, with ~80% comprising the type-II ($\text{InsP}_3\text{R-II}$) or type-III isoform ($\text{InsP}_3\text{R-III}$) and with $\text{InsP}_3\text{R-II}$ constituting the absolute majority [80, 81]. Binding of InsP_3 to these receptors located in the endoplasmic reticulum results in explosive Ca^{2+} release into the cell cytoplasm. The vast majority of InsP_3R are expressed in the extreme apical pole of the cells and this localization reasonably explains
10 why Ca^{2+} release is initiated in this region [82, 53]. Physiologically, the initial increase in $[\text{Ca}^{2+}]_i$ is ideally situated to activate Ca^{2+} -dependent Cl^- channels which are localized exclusively to the luminal membrane [54]. Subsequently, the $[\text{Ca}^{2+}]_i$ signal rapidly becomes “global”, facilitating the activation of basolateral Ca^{2+} -activated K^+ channels [80]. The process responsible for the extremely rapid globalization of the Ca^{2+} signal appears to be
15 distinct from other exocrine cells, such as pancreatic acinar cells [80], in that the increase is much too rapid to be mediated by a classical Ca^{2+} wave propagated by sequentially Ca^{2+} -induced Ca^{2+} release from neighboring release sites. Instead, experimental evidence and mathematical modeling indicate that this phenomenon is best explained by largely autonomous, local Ca^{2+} release occurring throughout the cytoplasm mediated by both
20 ryanodine receptors (RyR) and InsP_3R [80, 55].

141. Importantly this secretagogue-induced Ca^{2+} release is modulated in both mouse and human parotid acinar cells under conditions where cAMP is elevated. cAMP results in a substantial increase in the $[\text{Ca}^{2+}]_i$ signal upon muscarinic stimulation relative to stimulation in the absence of cAMP. In particular the initial increase in $[\text{Ca}^{2+}]_i$ was enhanced, sub-threshold stimulation was transformed to a measurable $[\text{Ca}^{2+}]_i$ increase and an oscillatory increase was converted to a sustained $[\text{Ca}^{2+}]_i$ increase, all consistent with a left shift in sensitivity to stimulation by Ca^{2+} mobilizing agonists. Although, there are obviously many potential molecular targets of cAMP, these studies indicated that modulation by cAMP of
25

PLC activity, pumping activity through PMCA or SERCA, and release through RyR did not appear to be responsible for the enhanced $[Ca^{2+}]_i$ signal [29, 57]. Instead the major effect appeared to be enhanced Ca^{2+} release through PKA phosphorylation of InsP₃R. Moreover, this effect was attributed in particular to the InsP₃R-II since this isoform has the greatest
 5 sensitivity to InsP₃, is the most abundant in mouse parotid, and was shown to be specifically phosphorylated [29]. Since InsP₃R are central to mobilizing $[Ca^{2+}]_i$ in parotid acinar cells, their regulation by phosphorylation provides a point of convergence whereby any secretagogues acting through Gq-PLC are subject to modulation. Indeed, this appears to be the case since Ca^{2+} release through P2Y purinoreceptors in mouse acini is also enhanced
 10 by cAMP treatment.

142. While the functional consequences of InsP₃R phosphorylation appear to be sub-type specific, recent studies in heterologous expression systems have demonstrated that phosphorylation of InsP₃R-I in addition to InsP₃R-II also leads to markedly enhanced Ca^{2+} release. The particular sites within InsP₃R-I which are functionally important for
 15 potentiated release have also been defined; two canonical PKA-phosphorylation motifs which are conserved from Drosophila to human are present in the InsP₃R-1 sequence but are not present in either the InsP₃R-II or InsP₃R-III [12]. In the splice variant of the InsP₃R-1 expressed in parotid acinar cells (S2⁻ InsP₃R-1 or “short form”) [7] phosphorylation of both sites occurs, resulting in InsP₃R with an enhanced apparent sensitivity to InsP₃. Because
 20 potentiation of Ca^{2+} release at the level of InsP₃R can be a nexus for interactions between the cAMP and Ca^{2+} signaling systems in parotid acinar cells, this project investigates the mechanism underpinning this effect by studying InsP₃R with phosphomimetic mutations. These receptors can be used therapeutically to maximize $[Ca^{2+}]_i$ signals if expressed in diseased salivary tissue.

25 **InsP₃-dependent Ca^{2+} release: cAMP effects on Ca^{2+} release**

143. In mouse parotid acinar cells raising cAMP profoundly potentiates muscarinic agonist-induced $[Ca^{2+}]_i$ signals [29, 83, 84]. A major mechanism underlying this phenomenon can be the PKA-dependent phosphorylation of InsP₃R [29]. The primary evidence supporting this is that cAMP elevation results in both InsP₃R phosphorylation and
 30 a marked potentiation of Ca^{2+} release in a PKA dependent manner [29]. Data, consistent with the idea that InsP₃R are central to this effect, is presented in Fig. 7. First, Ca^{2+} release generated through other Gq/PLC-linked receptors, such as P2Y purinergic receptors were also enhanced by cAMP elevation (Fig. 7A). Secondly, the effect was not species specific since a similar marked potentiation of the CCh-induced elevation in $[Ca^{2+}]_i$ was observed in

human parotid acini incubated with either forskolin (Fig. 7B) or β -adrenergic agonist prior to stimulation. The effects of InsP₃R phosphorylation can be subtype-specific. Enhanced Ca²⁺ release is consistent with an effect on InsP₃R-II as this InsP₃R is most abundant in parotid tissue and PKA-dependent phosphorylation of InsP₃R-II has been shown to augment 5 Ca²⁺ release in other tissues such as liver [30]. It should be noted however, that all three subtypes of InsP₃R are expressed in parotid tissue with similar localization to the apical domain of the cell.

144. Experiments expressing in the DT-40 3kocells a mutant InsP₃ R-1 where serine residues at position 1589 and 1755 are mutated to glutamate as described above, result in 10 markedly potentiated Ca²⁺ release (Fig. 8).

145. Phosphorylation of InsP₃R can alter apparent sensitivity to InsP₃ by a number of mechanisms. These include altering the sensitivity to InsP₃ itself, by changing the sensitivity of the receptor to its co-agonist Ca²⁺ or alternatively by modulating the interaction with other regulatory factors such as proteins or adenine nucleotides. Although 15 studying Ca²⁺ release in DT-40 3ko cells as described above provides a powerful system to assess the net cellular effect of phosphorylation, a complimentary approach can be employed to study the biophysical properties of single InsP₃R channels in isolated nuclei from cells overexpressing InsP₃R and mutants. This technique relies on the fact that the outer nuclear membrane is continuous with the ER and can be patch clamped in the "on nucleus" configuration [11, 85-89]. Studies have successfully recorded InsP₃ dependent 20 currents from isolated Cos-7 nuclei overexpressing InsP₃R-1 (Fig. 9). Because of the very low expression of endogenous InsP₃R in Cos-7 cells [11, 88] InsP₃-dependent channel activity in untransfected/mock transfected cells has not been observed. In the example 25 shown in Fig. 9, representative sweeps are shown from a single nucleus which was patched on 6 separate occasions; initially with saturating InsP₃, subsequently with no InsP₃, and then later again with InsP₃ in the patch pipette.

Example 3: Modulation of Ca²⁺ Release by Inositol 1,4,5-trisphosphate Receptor Phosphorylation

30 146. Inositol 1,4,5-trisphosphate receptors (InsP₃R) are the major route of intracellular calcium release in eukaryotic cells and thus are pivotal for stimulation of Ca²⁺ dependent effectors important for the control of numerous physiological processes (Figures 10 and 11). Modulation of Ca²⁺ release through InsP₃R is thus of general importance for defining the particular spatio-temporal characteristics of Ca²⁺ signals. While it is widely appreciated that

Ca²⁺ itself is an important regulator of InsP₃R, the receptor is also subject to modulation through numerous inputs, including protein-protein interactions, binding of adenine nucleotides and phosphorylation by multiple kinases. In this study, the effects on Ca²⁺ release of phosphorylation of InsP₃R by cyclic nucleotide-dependent protein kinases was

5 studied.

147. To investigate the particular sites of phosphoregulation in an unambiguously homogenous population of homomeric receptors, type-1 InsP₃R (InsP₃R-I) were expressed in DT-40 cells devoid of endogenous InsP₃R (Figure 1A) (43). In cells expressing the neuronal, S2⁺ splice variant of the InsP₃R-1, Ca²⁺ release was markedly enhanced when

10 either PKA or PKG was activated (Figure 1B-D and as described above) (23). The sites of phosphorylation were investigated by mutation of serine residues present in two canonical phosphorylation sites present in the protein. Potentiated Ca²⁺ release was abolished when serine 1755 was mutated to alanine (S1755A) but was unaffected by a similar mutation of serine 1589 (S1589A) (Figures 3 and 12). These data demonstrate that S1755 is the

15 functionally important residue for phosphoregulation by PKA and PKG in the neuronal variant of the InsP₃R-1. Activation of PKA also resulted in potentiated Ca²⁺ release in cells expressing the non-neuronal, S2⁻ splice variant of the InsP₃R-1. However, the PKA-induced potentiation was still evident in S1589A or S1755A InsP₃R-1 mutants. The effect was abolished in the double (S1589A/S1755A) mutant, indicating both sites are phosphorylated
20 and contribute to the functional effect (Figure 8). Indeed, mimicking phosphorylation by changing either S1589 or S1755 to a positively charged glutamate residue (S1589E or S1755E) resulted in InsP₃R with apparent enhanced sensitivity to InsP₃ (Figures 8 and 13). Activation of PKG had no effect on Ca²⁺ release in cells expressing the S2⁻ variant of
25 InsP₃R-1. Collectively these data indicated that phosphoregulation of InsP₃R-1 had dramatic effects on Ca²⁺ release and defined the molecular sites phosphorylated in the major variants expressed in neuronal and peripheral tissues.

148. Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains. The references disclosed are also individually and specifically incorporated by reference herein for the material contained in them that is discussed in the sentence in which the reference is relied upon.

149. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the

invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

5

REFERENCES

1. Berridge, M.J. (1993) *Nature*. **361**(6410), 315-25
- 10 2. Furuichi, T., S. Yoshikawa, A. Miyawaki, K. Wada, N. Maeda, and K. Mikoshiba. (1989) *Nature*. **342**(6245), 32-8
3. Furuichi, T., S. Yoshikawa, and K. Mikoshiba. (1989) *Nucleic Acids Res.* **17**(13), 5385-6
- 15 4. Sudhof, T.C., C.L. Newton, B.T. Archer, 3rd, Y.A. Ushkaryov, and G.A. Mignery. (1991) *Embo J.* **10**(11), 3199-206
5. Maranto, A.R. (1994) *J Biol Chem.* **269**(2), 1222-30
6. Nakagawa, T., H. Okano, T. Furuichi, J. Aruga, and K. Mikoshiba. (1991) *Proc Natl Acad Sci U S A.* **88**(14), 6244-8
- 20 7. Danoff, S.K., C.D. Ferris, C. Donath, G.A. Fischer, S. Munemitsu, A. Ullrich, S.H. Snyder, and C.A. Ross. (1991) *Proc Natl Acad Sci U S A.* **88**(7), 2951-5
8. Yoshikawa, F., M. Morita, T. Monkawa, T. Michikawa, T. Furuichi, and K. Mikoshiba. (1996) *J Biol Chem.* **271**(30), 18277-84
9. Mignery, G.A. and T.C. Sudhof. (1990) *Embo J.* **9**(12), 3893-8
10. Michikawa, T., H. Hamanaka, H. Otsu, A. Yamamoto, A. Miyawaki, T. Furuichi, Y. Tashiro, and K. Mikoshiba. (1994) *J Biol Chem.* **269**(12), 9184-9
- 25 11. Boehning, D., D.O. Mak, J.K. Foskett, and S.K. Joseph. (2001) *J Biol Chem.* **276**(17), 13509-12
12. Patel, S., S.K. Joseph, and A.P. Thomas. (1999) *Cell Calcium.* **25**(3), 247-64
13. Berridge, M.J., P. Lipp, and M.D. Bootman. (2000) *Nat Rev Mol Cell Biol.* **1**(1), 11-30 21
14. Bootman, M.D., T.J. Collins, C.M. Peppiatt, L.S. Prothero, L. MacKenzie, P. De Smet, M. Travers, S.C. Tovey, J.T. Seo, M.J. Berridge, F. Ciccolini, and P. Lipp. (2001) *Semin Cell Dev Biol.* **12**(1), 3-10

15. Mignery, G.A., P.A. Johnston, and T.C. Sudhof. (1992) *J Biol Chem.* **267**(11), 7450-5
16. Bezprozvanny, I., J. Watras, and B.E. Ehrlich. (1991) *Nature.* **351**(6329), 751-4
17. Iino, M. (1990) *J Gen Physiol.* **95**(6), 1103-22
- 5 18. Iino, M. (1991) *J Gen Physiol.* **98**(4), 681-98
19. Ehrlich, B.E. and J. Watras. (1988) *Nature.* **336**(6199), 583-6
20. Yamada, M., A. Miyawaki, K. Saito, T. Nakajima, M. Yamamoto-Hino, Y. Ryo, T. Furuichi, and K. Mikoshiba. (1995) *Biochem J.* **308** (Pt 1), 83-8
- 10 21. Tertyshnikova, S., X. Yan, and A. Fein. (1998) *J Physiol.* **512** (Pt 1), 89-96
22. Tertyshnikova, S. and A. Fein. (1998) *Proc Natl Acad Sci U S A.* **95**(4), 1613-7
23. Tang, T.S., H. Tu, Z. Wang, and I. Bezprozvanny. (2003) *J Neurosci.* **23**(2), 403-15
24. Nakade, S., S.K. Rhee, H. Hamanaka, and K. Mikoshiba. (1994) *J Biol Chem.* **269**(9), 6735-42
- 15 25. Supattapone, S., S.K. Danoff, A. Theibert, S.K. Joseph, J. Steiner, and S.H. Snyder. (1988) *Proc Natl Acad Sci U S A.* **85**(22), 8747-50
26. Wojcikiewicz, R.J. and S.G. Luo. (1998) *J Biol Chem.* **273**(10), 5670-7
27. Jayaraman, T., K. Ondrias, E. Ondriasova, and A.R. Marks. (1996) *Science.* **272**(5267), 1492-4
28. Giovannucci, D.R., G.E. Groblewski, J. Sneyd, and D.I. Yule. (2000) *J Biol Chem.* **275**(43), 33704-11
- 20 29. Bruce, J.I., T.J. Shuttleworth, D.R. Giovannucci, and D.I. Yule. (2002) *J Biol Chem.* **277**(2), 1340-8
30. Joseph, S.K. and S.V. Ryan. (1993) *J Biol Chem.* **268**(31), 23059-65
31. Ferris, C.D., R.L. Huganir, D.S. Bredt, A.M. Cameron, and S.H. Snyder. (1991) *Proc Natl Acad Sci U S A.* **88**(6), 2232-5
- 25 32. den Dekker, E., J.W. Heemskerk, G. Gorter, H. van der Vuurst, J. Donath, C. Kroner, K. Mikoshiba, and J.W. Akkerman. (2002) *Arterioscler Thromb Vasc Biol.* **22**(1), 179-86
33. DeSouza, N., S. Reiken, K. Ondrias, Y.M. Yang, S. Matkovich, and A.R. Marks. (2002) *J Biol Chem.* **277**(42), 39397-400
- 30 34. Ferris, C.D., A.M. Cameron, D.S. Bredt, R.L. Huganir, and S.H. Snyder. (1991) *Biochem Biophys Res Commun.* **175**(1), 192-8 .

35. Haug, L.S., V. Jensen, O. Hvalby, S.I. Walaas, and A.C. Ostvold. (1999) *J Biol Chem.* **274**(11), 7467-73
36. Komalavilas, P. and T.M. Lincoln. (1994) *J Biol Chem.* **269**(12), 8701-7
37. Komalavilas, P. and T.M. Lincoln. (1996) *J Biol Chem.* **271**(36), 21933-8
- 5 38. LeBeau, A.P., D.I. Yule, G.E. Groblewski, and J. Sneyd. (1999) *J Gen Physiol.* **113**(6), 851-72
39. Pieper, A.A., D.J. Brat, E. O'Hearn, D.K. Krug, A.I. Kaplin, K. Takahashi, J.H. Greenberg, D. Ginty, M.E. Molliver, and S.H. Snyder. (2001) *Neuroscience.* **102**(2), 433-44
40. Koga, T., Y. Yoshida, J.Q. Cai, M.O. Islam, and S. Imai. (1994) *J Biol Chem.* **269**(15), 11640-7
- 10 41. Straub, S.V., D.R. Giovannucci, J.I. Bruce, and D.I. Yule. (2002) *J Biol Chem.* **277**(35), 31949-56
42. Miyakawa, T., A. Maeda, T. Yamazawa, K. Hirose, T. Kurosaki, and M. Iino. (1999) *Embo J.* **18**(5), 1303-8
- 15 43. Sugawara, H., M. Kurosaki, M. Takata, and T. Kurosaki. (1997) *Embo J.* **16**(11), 3078-88
44. Kubista, H., T. Hawkins, and S.E. Moss. (1998) *Biochim Biophys Acta.* **1448**(2), 299-310
45. Li, W., J. Llopis, M. Whitney, G. Zlokarnik, and R.Y. Tsien. (1998) *Nature.* **392**(6679), 936-41
- 20 46. Cavallini, L., M. Coasson, A. Borean, and A. Alexandre. (1996) *J Biol Chem.* **271**(10), 5545-51
47. Wojcikiewicz, R.J. (1995) *J Biol Chem.* **270**(19), 11678-83
48. Rapoport, R.M., M.B. Draznin, and F. Murad. (1982) *Proc Natl Acad Sci U S A.* **79**(21), 6470-4
- 25 49. Colbran, J.L., S.H. Francis, A.B. Leach, M.K. Thomas, H. Jiang, L.M. McAllister, and J.D. Corbin. (1992) *J Biol Chem.* **267**(14), 9589-94
50. Houslay, M.D. and G. Milligan. (1997) *Trends Biochem Sci.* **22**(6), 217-24
51. Ammendola, A., A. Geiselhöringer, F. Hofmann, and J. Schlossmann. (2001) *J Biol Chem.* **276**(26), 24153-9
- 30 52. Schlossmann, J., A. Ammendola, K. Ashman, X. Zong, A. Huber, G. Neubauer, G.X. Wang, H.D. Allescher, M. Korth, M. Wilm, F. Hofmann, and P. Ruth. (2000) *Nature.* **404**(6774), 197-201

53. Nezu, A., et al., *Evidence that zymogen granules do not function as an intracellular Ca²⁺ store for the generation of the Ca²⁺ signal in rat parotid acinar cells*. Biochem J, 2002. **363**(Pt 1): p. 59-66.
- 5 54. Hassoni, A.A. and P.T. Gray, *Flash photolysis studies of the localization of calcium release sites in rat parotid isolated acinar cells*. J Physiol, 1994. **478 Pt 3**: p. 461-7.
55. Sneyd, J., et al., *A model of calcium waves in pancreatic and parotid acinar cells*. Biophys J, 2003. **85**(3): p. 1392-405.
- 10 56. Bruce, J.I., S.V. Straub, and D.I. Yule, *Crosstalk between cAMP and Ca(2+)* signaling in non-excitable cells. Cell Calcium, 2003. **34**(6): p. 431-44.
57. Bruce, J.I., D.I. Yule, and T.J. Shuttleworth, *Ca²⁺-dependent protein kinase--a modulation of the plasma membrane Ca²⁺-ATPase in parotid acinar cells*. J Biol Chem, 2002. **277**(50): p. 48172-81.
- 15 58. Mertz, L.M., B.J. Baum, and I.S. Ambudkar, *Refill status of the agonist-sensitive Ca²⁺ pool regulates Mn²⁺ influx into parotid acini*. 1990. **265**(25): p. 15010-15014.
59. Putney, J.W., Jr., *Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine*. 1976. **198**(2): p. 375-384.
60. Mertz, L.M., et al., *Calcium entry in rat parotid acini: activation by carbachol and aluminum fluoride*. 1990. **258**(4 Pt 1): p. C654-C661.
- 10 61. Turner, R.J., *Mechanisms of fluid secretion by salivary glands*. Ann N Y Acad Sci, 1993. **694**: p. 24-35.
- 20 62. Mandel, I.D., *The role of saliva in maintaining oral homeostasis*. J Am Dent Assoc, 1989. **119**(2): p. 298-304.
63. Atkinson, J.C. and P.C. Fox, *Salivary gland dysfunction*. Clin Geriatr Med, 1992. **8**(3): p. 499-511.
- 25 64. Baum, B.J., *Principles of saliva secretion*. Ann N Y Acad Sci, 1993. **694**: p. 17-23.
65. Petersen, O.H., *Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells*. J Physiol, 1992. **448**: p. 1-51.
66. Frizzell, R.A., M. Field, and S.G. Schultz, *Sodium-coupled chloride transport by epithelial tissues*. Am J Physiol, 1979. **236**(1): p. F1-8.
- 30 67. Melvin, J.E., *Chloride channels and salivary gland function*. Crit Rev Oral Biol Med, 1999. **10**(2): p. 199-209.
68. Naunofte, B., *Regulation of electrolyte and fluid secretion in salivary acinar cells*. Am J Physiol, 1992. **263**(6 Pt 1): p. G823-37.

69. Evans, R.L., et al., *Severe impairment of salivation in Na⁺/K⁺/2Cl⁻ cotransporter (NKCC1)-deficient mice*. J Biol Chem, 2000. **275**(35): p. 26720-6.
70. Melvin, J.E. and R.J. Turner, *Cl⁻ fluxes related to fluid secretion by the rat parotid: involvement of Cl(-)-HCO₃⁻ exchange*. Am J Physiol, 1992. **262**(3 Pt 1): p. G393-8.
- 5 71. Turner, R.J. and J.N. George, *Cl(-)-HCO₃⁻ exchange is present with Na⁺-K⁺-Cl⁻ cotransport in rabbit parotid acinar basolateral membranes*. Am J Physiol, 1988. **254**(3 Pt 1): p. C391-6.
72. Turner, R.J., J.N. George, and B.J. Baum, *Evidence for a Na⁺/K⁺/Cl⁻ cotransport system in basolateral membrane vesicles from the rabbit parotid*. J Membr Biol, 1986. **10 94**(2): p. 143-52.
73. Garrett, J.R. and A. Kidd, *The innervation of salivary glands as revealed by morphological methods*. Microsc Res Tech, 1993. **26**(1): p. 75-91.
74. Tojyo, Y., A. Tanimura, and Y. Matsumoto, *Imaging of intracellular Ca²⁺ waves induced by muscarinic receptor stimulation in rat parotid acinar cells*. Cell Calcium, 1997. **15 22**(6): p. 455-62.
75. Watson, E.L., et al., *Identification of muscarinic receptor subtypes in mouse parotid gland*. Am J Physiol, 1996. **271**(3 Pt 1): p. C905-13.
76. Watson, E.L., J.A. Williams, and I.A. Siegel, *Calcium mediation of cholinergic-stimulated amylase release from mouse parotid gland*. Am J Physiol, 1979. **236**(5): p. **20 C233-7.**
77. Sawaki, K., et al., *Involvement of G alpha q/11 in m₃-muscarinic receptor stimulation of phosphatidylinositol 4,5 bisphosphate-specific phospholipase C in rat parotid gland membranes*. Arch Biochem Biophys, 1993. **305**(2): p. 546-50.
78. Evans, R.L. and R.J. Turner, *Upregulation of Na⁽⁺⁾-K⁽⁺⁾-2Cl⁻ cotransporter activity in rat parotid acinar cells by muscarinic stimulation*. J Physiol, 1997. **499** (Pt 2): p. 351-9.
79. Ambudkar, I.S., *Regulation of calcium in salivary gland secretion*. 2000. **11**(1): p. 4-25.
80. Giovannucci, D.R., et al., *Cytosolic Ca(2+) and Ca(2+)-activated Cl⁽⁻⁾ current dynamics: insights from two functionally distinct mouse exocrine cells*. J Physiol, 2002. **30 540**(Pt 2): p. 469-84.
81. Zhang, X., et al., *Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland*. Biochem J, 1999. **340** (Pt 2): p. 519-27.

82. Lee, M.G., et al., *Polarized expression of Ca²⁺ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca²⁺]i waves.* J Biol Chem, 1997. **272**(25): p. 15765-70.
83. Tanimura, A., et al., *Isoproterenol potentiates alpha-adrenergic and muscarinic receptor-mediated Ca²⁺ response in rat parotid cells.* Am J Physiol, 1999. **276**(6 Pt 1): p. C1282-7.
84. Tanimura, A., Y. Matsumoto, and Y. Tojyo, *Evidence that isoproterenol-induced Ca²⁺(+)-mobilization in rat parotid acinar cells is not mediated by activation of beta-adrenoceptors.* Biochim Biophys Acta, 1990. **1055**(3): p. 273-7.
- 10 85. Mak, D.O. and J.K. Foskett, *Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei.* J Biol Chem, 1994. **269**(47): p. 29375-8.
86. Mak, D.O., S. McBride, and J.K. Foskett, *ATP regulation of type 1 inositol 1,4,5-trisphosphate receptor channel gating by allosteric tuning of Ca(2+) activation.* J Biol Chem, 1999. **274**(32): p. 22231-7.
- 15 87. Mak, D.O., et al., *Single-channel properties in endoplasmic reticulum membrane of recombinant type 3 inositol trisphosphate receptor.* J Gen Physiol, 2000. **115**(3): p. 241-56.
88. Boehning, D., et al., *Single-channel recordings of recombinant inositol trisphosphate receptors in mammalian nuclear envelope.* Biophys J, 2001. **81**(1): p. 117-24.
- 20 89. Mak, D.O., S. McBride, and J.K. Foskett, *Regulation by Ca²⁺ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca²⁺ activation uniquely distinguishes types 1 and 3 insp3 receptors.* J Gen Physiol, 2001. **117**(5): p. 435-46.

IV. CLAIMS

What is claimed is:

1. A InsP₃R mutant, comprising at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site of a wild-type InsP₃R, wherein the mutant has an enhanced Ca²⁺ release function as compared to the wild-type InsP₃R.
- 5 2. The mutant of claim 1, wherein the Ca²⁺ release function is at least 5 times greater than the Ca²⁺ release function of the wild-type InsP₃R.
3. The mutant of claim 1, wherein the InsP₃R mutant is an InsP₃R-1 mutant and the wild-type InsP₃R is InsP₃R-1.
- 10 4. The mutant of claim 3, comprising at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site, wherein the phosphorylation site is selected from residue 1589 or 1755 of a wild-type InsP₃R-1 sequence.
5. The mutant of claim 4, wherein the substitution of serine for the negatively charged amino acid is at residue 1589.
- 15 6. The mutant of claim 4, wherein glutamate is substituted for serine at residue 1589.
7. The mutant of claim 6, wherein the mutant comprises the amino acid sequence of SEQ ID NO:1.
8. The mutant of claim 6, wherein the mutant comprises the amino acid sequence of SEQ ID NO:1 with one or more conservative amino acid substitutions.
- 20 9. The mutant of claim 6, wherein the mutant comprises the amino acid sequence of SEQ ID NO:2.
10. The mutant of claim 6, wherein the mutant comprises the amino acid sequence of SEQ ID NO:2 with one or more conservative amino acid substitutions.
11. The mutant of claim 4, wherein aspartate is substituted for serine at residue 1589.
- 25 12. The mutant of claim 11, wherein the mutant comprises the amino acid sequence of SEQ ID NO:3.
13. The mutant of claim 11, wherein the mutant comprises the amino acid sequence of SEQ ID NO:3 with one or more conservative amino acid substitutions.
14. The mutant of claim 11, wherein the mutant comprises the amino acid sequence of SEQ ID NO:4.
- 30 15. The mutant of claim 11, wherein the mutant comprises the amino acid sequence of SEQ ID NO:4 with one or more conservative amino acid substitutions.
16. The mutant of claim 4, wherein the substitution of serine for the negatively charged amino acid is at residue 1755.
- 35 17. The mutant of claim 16, wherein glutamate is substituted for serine at residue 1755.
18. The mutant of claim 17, wherein the mutant comprises the amino acid sequence of SEQ ID NO:5.
19. The mutant of claim 17, wherein the mutant comprises the amino acid sequence of SEQ ID NO:5 with one or more conservative amino acid substitutions.
- 40 20. The mutant of claim 17, wherein the mutant comprises the amino acid sequence of SEQ ID NO:6.
21. The mutant of claim 17, wherein the mutant comprises the amino acid sequence of SEQ ID NO:6 with one or more conservative amino acid substitutions.
22. The mutant of claim 16, wherein aspartate is substituted for serine at residue 1755.
- 45 23. The mutant of claim 22, wherein the mutant comprises the amino acid sequence of SEQ ID NO:7.
24. The mutant of claim 22, wherein the mutant comprises the amino acid sequence of SEQ ID NO:7 with one or more conservative amino acid substitutions.
25. The mutant of claim 22, wherein the mutant comprises the amino acid sequence of SEQ ID NO:8.

26. The mutant of claim 22, wherein the mutant comprises the amino acid sequence of SEQ ID NO:8 with one or more conservative amino acid substitutions.
27. The mutant of claim 4, wherein the substitutions of serine for the negatively charged amino acid is at residues 1589 and 1755.
- 5 28. The mutant of claim 27, wherein glutamate is substituted for serine at residues 1589 and 1755.
29. The mutant of claim 28, wherein the mutant comprises the amino acid sequence of SEQ ID NO:9.
- 10 30. The mutant of claim 28, wherein the mutant comprises the amino acid sequence of SEQ ID NO:9 with one or more conservative amino acid substitutions.
31. The mutant of claim 28, wherein the mutant comprises the amino acid sequence of SEQ ID NO:10.
32. The mutant of claim 28, wherein the mutant comprises the amino acid sequence of SEQ ID NO:10 with one or more conservative amino acid substitutions.
- 15 33. The mutant of claim 27, wherein aspartate is substituted for serine at residues 1589 and 1755.
34. The mutant of claim 33, wherein the mutant comprises the amino acid sequence of SEQ ID NO:11.
- 20 35. The mutant of claim 33, wherein the mutant comprises the amino acid sequence of SEQ ID NO:11 with one or more conservative amino acid substitutions.
36. The mutant of claim 33, wherein the mutant comprises the amino acid sequence of SEQ ID NO:12.
37. The mutant of claim 33, wherein the mutant comprises the amino acid sequence of SEQ ID NO:12 with one or more conservative amino acid substitutions.
- 25 38. The mutant of claim 27, wherein aspartate is substituted for serine at residue 1589 and glutamate is substituted for serine at residue 1755.
39. The mutant of claim 37, wherein the mutant comprises the amino acid sequence of SEQ ID NO:13.
40. The mutant of claim 37, wherein the mutant comprises the amino acid sequence of SEQ ID NO:13 with one or more conservative amino acid substitutions.
- 30 41. The mutant of claim 37, wherein the mutant comprises the amino acid sequence of SEQ ID NO:14.
42. The mutant of claim 37, wherein the mutant comprises the amino acid sequence of SEQ ID NO:14 with one or more conservative amino acid substitutions.
- 35 43. The mutant of claim 25, wherein glutamate is substituted for serine at residue 1589 and aspartate is substituted for serine at residue 1755.
44. The mutant of claim 43, wherein the mutant comprises the amino acid sequence of SEQ ID NO:15.
45. The mutant of claim 43, wherein the mutant comprises the amino acid sequence of SEQ ID NO:15 with one or more conservative amino acid substitutions.
- 40 46. The mutant of claim 43, wherein the mutant comprises the amino acid sequence of SEQ ID NO:16.
47. The mutant of claim 43, wherein the mutant comprises the amino acid sequence of SEQ ID NO:16 with one or more conservative amino acid substitutions.
- 45 48. A nucleic acid that encodes the mutant of claim 1-47.
49. An expression vector comprising the nucleic acid of claim 48 operable linked to an expression control sequence.
50. A cultured cell comprising the vector of claim 48.
51. The cell of claim 50, wherein the cell is a DT-40 cell.

52. The cell of claim 51, wherein the cell further comprises a nucleic acid that encodes an acetylcholine receptor.
53. The cell of claim 52, wherein the acetylcholine receptor is an M3 receptor.
54. An InsP₃R mutant, comprising at least one substitution of serine for an amino acid with an aliphatic side chain at a phosphorylation site of a wild-type InsP₃R, wherein the mutant is nonphosphorylatable.
55. The mutant of claim 50, wherein the nonphosphorylatable mutant is an InsP₃R-1 mutant.
- 10 56. The mutant of claim 50, wherein the nonphosphorylatable mutant of InsP₃R is selected from the group consisting of an S1755A, or S1589A/S1755A mutation.
57. A nucleic acid that encodes the mutant of claim 50.
58. An expression vector comprising the nucleic acid of claim 57 operable linked to an expression control sequence.
- 15 59. A cultured cell comprising the vector of claim 57.
60. The cell of claim 59, wherein the cell is a DT-40 cell.
61. The cell of claim 60 wherein the cell further comprises a nucleic acid that encodes an acetylcholine receptor.
62. The cell of claim 61, wherein the acetylcholine receptor is an M3 receptor.
- 20 63. A method of screening for an agent that preferentially modulates Ca²⁺ release by phosphorylated InsP₃R, comprising
 - a. contacting the cell of claim 50 with the agent to be screened, under conditions that allow Ca²⁺ release;
 - b. measuring Ca²⁺ release; and
 - c. comparing the amount of Ca²⁺ release in step b with a control cell, wherein the control cell comprises an un-phosphorylated InsP₃R and wherein the control cell is contacted with the agent to be screened, an increase or decrease in Ca²⁺ release as compared to a control cell indicating an agent that preferentially modulates unphosphorylated InsP₃R.
- 25 64. The method of claim 63, wherein the un-phosphorylated InsP₃R is a nonphosphorylatable mutant InsP₃R.
- 30 65. The method of claim 64, wherein the nonphosphorylatable mutant comprises a substitution of a serine at a phosphorylation site with an amino acid having an aliphatic side-chain.
66. The method of claim 65, wherein the amino acid having an aliphatic side chain is alanine.
- 35 67. The method of claim 65, wherein the phosphorylation site is either residue 1589 or 1755 or a combination thereof of wild-type InsP₃R.
68. A method of expressing a mutant InsP₃R in a cell *in vivo*, comprising
 - a. providing the expression vector of claim 48;
 - b. introducing the vector into a cell *in vivo*;
 - 40 c. maintaining the cell under condition that permit expression of the mutant InsP₃R by the cell.
69. A method of treating a subject with xerostomia, comprising introducing into the subject the expression vector of claim 48 under conditions that an amount of InsP₃R mutant is expressed in an effective amount to alleviate the symptoms of xerostomia.
- 45 70. A method of treating a subject with cystic fibrosis, comprising introducing into the subject the expression vector of claim 48 under conditions that an amount of InsP₃R mutant is expressed in an effective amount to alleviate the symptoms of cystic fibrosis.
71. The mutant of claim 1, wherein the InsP₃R mutant is an InsP₃R-2 mutant and the wild-type InsP₃R is InsP₃R-2.

72. The mutant of claim 71, comprising at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site, wherein the phosphorylation site is selected from residue 766, 1772, 1856, 2058; 2227 of a wild-type InsP₃R-2 sequence.
- 5 73. The mutant of claim 72, wherein one or more serines are substituted with glutamate.
74. The mutant of claim 72, wherein one or more serines are substituted with aspartate.
75. The mutant of claim 72, wherein any combination of the serines are substituted with any combination of aspartate or glutamate.
76. The mutant of claim 1, wherein the InsP₃R mutant is an InsP₃R-3 mutant and the wild-type InsP₃R is InsP₃R-3.
- 10 77. The mutant of claim 76, comprising at least one substitution of serine for a negatively charged amino acid residue at a phosphorylation site, wherein the phosphorylation site is selected from residue 934, 1640, 1834, 2009, 2041, 2189 of a wild-type InsP₃R-3 sequence.
- 15 78. The mutant of claim 77, wherein one or more serines are substituted with glutamate.
79. The mutant of claim 77, wherein one or more serines are substituted with aspartate.
80. The mutant of claim 77, wherein any combination of the serines are substituted with any combination of aspartate or glutamate.

20

FIG. 1

FIG. 2

FIG. 3

FIG. 4

A

B

C

FIG. 5

FIG. 6

Figure 7

Figure 8

Figure 9

Figure 10

Adapted from Mikoshiba TIPS. 14(3):86-9, 1993

S2⁺=neuronal “long form”
 S2=peripheral “short form”

Figure 11

Figure 12

Figure 13

DT-40 IP_3R -III cells

Figure 14

Figure 15

Figure 16

SEQUENCE LISTING

<110> Yule, D.I.
Wagner II, Larry

<120> Inositol 1,4,5-trisphosphate receptor
mutants and uses thereof

<130> 21108.0042U1

<160> 22

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2710
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 1
Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
1 5 10 15
Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
20 25 30
Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
35 40 45
Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
50 55 60
Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
65 70 75 80
Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
85 90 95
Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
100 105 110
Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
115 120 125
Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
130 135 140
Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
145 150 155 160
Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
165 170 175
Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
180 185 190
Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
195 200 205
Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
210 215 220
Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
225 230 235 240
Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
245 250 255
Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
260 265 270

Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750

Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230

Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Glu Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710

Arg Arg Glu Ser Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190

Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Met Val Ile Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670

Ser	Gly	Gln	Leu	Ser	Glu	Leu	Lys	Asp	Gln	Met	Thr	Glu	Gln	Arg	Lys
2675					2680					2685					
Gln	Lys	Gln	Arg	Ile	Gly	Leu	Leu	Gly	His	Pro	Pro	His	Met	Asn	Val
2690					2695					2700					
Asn	Pro	Gln	Gln	Pro	Ala										
2705					2710										

<210> 2
<211> 2749
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 2																
Met	Ser	Asp	Lys	Met	Ser	Ser	Phe	Leu	His	Ile	Gly	Asp	Ile	Cys	Ser	
1				5				10						15		
Leu	Tyr	Ala	Glu	Gly	Ser	Thr	Asn	Gly	Phe	Ile	Ser	Thr	Leu	Gly	Leu	
								20		25				30		
Val	Asp	Asp	Arg	Cys	Val	Val	Gln	Pro	Glu	Ala	Gly	Asp	Leu	Asn	Asn	
					35			40					45			
Pro	Pro	Lys	Lys	Phe	Arg	Asp	Cys	Leu	Phe	Lys	Leu	Cys	Pro	Met	Asn	
					50			55			60					
Arg	Tyr	Ser	Ala	Gln	Lys	Gln	Phe	Trp	Lys	Ala	Ala	Lys	Pro	Gly	Ala	
					65			70		75			80			
Asn	Ser	Thr	Thr	Asp	Ala	Val	Leu	Leu	Asn	Lys	Leu	His	His	Ala	Ala	
						85			90			95				
Asp	Leu	Glu	Lys	Lys	Gln	Asn	Glu	Thr	Glu	Asn	Arg	Lys	Leu	Leu	Gly	
						100			105			110				
Thr	Val	Ile	Gln	Tyr	Gly	Asn	Val	Ile	Gln	Leu	Leu	His	Leu	Lys	Ser	
						115			120			125				
Asn	Lys	Tyr	Leu	Thr	Val	Asn	Lys	Arg	Leu	Pro	Ala	Leu	Leu	Glu	Lys	
					130			135			140					
Asn	Ala	Met	Arg	Val	Thr	Leu	Asp	Glu	Ala	Gly	Asn	Glu	Gly	Ser	Trp	
					145			150			155			160		
Phe	Tyr	Ile	Gln	Pro	Phe	Tyr	Lys	Leu	Arg	Ser	Ile	Gly	Asp	Ser	Val	
						165			170			175				
Val	Ile	Gly	Asp	Lys	Val	Val	Leu	Asn	Pro	Val	Asn	Ala	Gly	Gln	Pro	
					180			185			190					
Leu	His	Ala	Ser	Ser	His	Gln	Leu	Val	Asp	Asn	Pro	Gly	Cys	Asn	Glu	
					195			200			205					
Val	Asn	Ser	Val	Asn	Cys	Asn	Thr	Ser	Trp	Lys	Ile	Val	Leu	Phe	Met	
					210			215			220					
Lys	Trp	Ser	Asp	Asn	Lys	Asp	Asp	Ile	Leu	Lys	Gly	Gly	Asp	Val	Val	
					225			230			235			240		
Arg	Leu	Phe	His	Ala	Glu	Gln	Glu	Lys	Phe	Leu	Thr	Cys	Asp	Glu	His	
						245			250			255				
Arg	Lys	Lys	Gln	His	Val	Phe	Leu	Arg	Thr	Thr	Gly	Arg	Gln	Ser	Ala	
					260			265			270					
Thr	Ser	Ala	Thr	Ser	Ser	Lys	Ala	Leu	Trp	Glu	Val	Glu	Val	Val	Gln	
					275			280			285					
His	Asp	Pro	Cys	Arg	Gly	Gly	Ala	Gly	Tyr	Trp	Asn	Ser	Leu	Phe	Arg	
					290			295			300					
Phe	Lys	His	Leu	Ala	Thr	Gly	His	Tyr	Leu	Ala	Ala	Glu	Val	Asp	Pro	
					305			310			315			320		
Asp	Phe	Glu	Glu	Cys	Leu	Glu	Phe	Gln	Pro	Ser	Val	Asp	Pro	Asp		
					325			330			335					

Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815

Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295

His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Glu Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 - 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Ser Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775

Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255

Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu.
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735

His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
2740 2745

```
<210> 3
<211> 2710
<212> PRT
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845

Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325

Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Asp Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Ser Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805

Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Gly Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285

Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Phe Met Val Ile Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685
 Gln Lys Gln Arg Ile Gly Leu Leu Gly His Pro Pro His Met Asn Val
 2690 2695 2700
 Asn Pro Gln Gln Pro Ala
 2705 2710

<210> 4
 <211> 2749
 <212> PRT
 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 4

Met	Ser	Asp	Lys	Met	Ser	Ser	Phe	Leu	His	Ile	Gly	Asp	Ile	Cys	Ser
1				5				10					15		
Leu	Tyr	Ala	Glu	Gly	Ser	Thr	Asn	Gly	Phe	Ile	Ser	Thr	Leu	Gly	Leu
								20		25			30		
Val	Asp	Asp	Arg	Cys	Val	Val	Gln	Pro	Glu	Ala	Gly	Asp	Leu	Asn	Asn
					35			40				45			
Pro	Pro	Lys	Lys	Phe	Arg	Asp	Cys	Leu	Phe	Lys	Leu	Cys	Pro	Met	Asn
					50			55			60				
Arg	Tyr	Ser	Ala	Gln	Lys	Gln	Phe	Trp	Lys	Ala	Ala	Lys	Pro	Gly	Ala
					65			70		75			80		
Asn	Ser	Thr	Thr	Asp	Ala	Val	Leu	Leu	Asn	Lys	Leu	His	His	Ala	Ala
					85				90			95			
Asp	Leu	Glu	Lys	Gln	Asn	Glu	Thr	Glu	Asn	Arg	Lys	Leu	Leu	Gly	
					100			105			110				
Thr	Val	Ile	Gln	Tyr	Gly	Asn	Val	Ile	Gln	Leu	Leu	His	Leu	Lys	Ser
					115			120			125				
Asn	Lys	Tyr	Leu	Thr	Val	Asn	Lys	Arg	Leu	Pro	Ala	Leu	Leu	Glu	Lys
					130			135			140				
Asn	Ala	Met	Arg	Val	Thr	Leu	Asp	Glu	Ala	Gly	Asn	Glu	Gly	Ser	Trp
					145			150		155			160		
Phe	Tyr	Ile	Gln	Pro	Phe	Tyr	Lys	Leu	Arg	Ser	Ile	Gly	Asp	Ser	Val
					165			170			175				
Val	Ile	Gly	Asp	Lys	Val	Val	Leu	Asn	Pro	Val	Asn	Ala	Gly	Gln	Pro
					180			185			190				
Leu	His	Ala	Ser	Ser	His	Gln	Leu	Val	Asp	Asn	Pro	Gly	Cys	Asn	Glu
					195			200			205				
Val	Asn	Ser	Val	Asn	Cys	Asn	Thr	Ser	Trp	Lys	Ile	Val	Leu	Phe	Met
					210			215			220				
Lys	Trp	Ser	Asp	Asn	Lys	Asp	Asp	Ile	Leu	Lys	Gly	Gly	Asp	Val	Val
					225			230		235			240		
Arg	Leu	Phe	His	Ala	Glu	Gln	Glu	Lys	Phe	Leu	Thr	Cys	Asp	Glu	His
					245			250			255				
Arg	Lys	Lys	Gln	His	Val	Phe	Leu	Arg	Thr	Thr	Gly	Arg	Gln	Ser	Ala
					260			265			270				
Thr	Ser	Ala	Thr	Ser	Ser	Lys	Ala	Leu	Trp	Glu	Val	Glu	Val	Val	Gln
					275			280			285				
His	Asp	Pro	Cys	Arg	Gly	Gly	Ala	Gly	Tyr	Trp	Asn	Ser	Leu	Phe	Arg
					290			295			300				
Phe	Lys	His	Leu	Ala	Thr	Gly	His	Tyr	Leu	Ala	Ala	Glu	Val	Asp	Pro
					305			310		315			320		
Asp	Phe	Glu	Glu	Glu	Cys	Leu	Glu	Phe	Gln	Pro	Ser	Val	Asp	Pro	Asp
					325			330			335				
Gln	Asp	Ala	Ser	Arg	Ser	Arg	Leu	Arg	Asn	Ala	Gln	Glu	Lys	Met	Val
					340			345			350				
Tyr	Ser	Leu	Val	Ser	Val	Pro	Glu	Gly	Asn	Asp	Ile	Ser	Ser	Ile	Phe
					355			360			365				
Glu	Leu	Asp	Pro	Thr	Thr	Leu	Arg	Gly	Gly	Asp	Ser	Leu	Val	Pro	Arg
					370			375			380				
Asn	Ser	Tyr	Val	Arg	Leu	Arg	His	Leu	Cys	Thr	Asn	Thr	Trp	Val	His
					385			390		395			400		
Ser	Thr	Asn	Ile	Pro	Ile	Asp	Lys	Glu	Glu	Lys	Pro	Val	Met	Leu	
					405			410			415				
Lys	Ile	Gly	Thr	Ser	Pro	Leu	Lys	Glu	Asp	Lys	Glu	Ala	Phe	Ala	Ile
					420			425			430				
Val	Pro	Val	Ser	Pro	Ala	Glu	Val	Arg	Asp	Leu	Asp	Phe	Ala	Asn	Asp
					435			440			445				

Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925

Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405

Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Asp Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Ser Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885

Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365

Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 5
 <211> 2710
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 5

Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480

Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960

Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440

Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Ser Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Glu Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920

Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400

Ile Ile Leu Thr Ala Ala Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Met Val Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685
 Gln Lys Gln Arg Ile Gly Leu Leu Gly His Pro Pro His Met Asn Val
 2690 2695 2700
 Asn Pro Gln Gln Pro Ala
 2705 2710

<210> 6
<211> 2749
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 6
Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
1 5 10 15
Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
20 25 30
Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
35 40 45
Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
50 55 60

Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540

Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 . 730 735 .
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020

Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500

Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Ser Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Glu Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980

Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460

Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 7
 <211> 2710
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 7
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95

Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575

Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055

Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535

Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Ser Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Asp Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015

Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495

Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Met Val Ile Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685
 Gln Lys Gln Arg Ile Gly Leu Leu Gly His Pro Pro His Met Asn Val
 2690 2695 2700
 Asn Pro Gln Gln Pro Ala
 2705 2710

<210> 8
 <211> 2749
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 8
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160

Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640

Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120

Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Ser Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600

Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Asp Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080

Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560

Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 9
 <211> 2710
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 9
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190

Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670

Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150

Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Glu Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630

Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Glu Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110

Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Met Val Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590

Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685
 Gln Lys Gln Arg Ile Gly Leu Leu Gly His Pro Pro His Met Asn Val
 2690 2695 2700
 Asn Pro Gln Gln Pro Ala
 2705 2710

<210> 10
 <211> 2749
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 10
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255

Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735

Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215

Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Glu Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695

Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Glu Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175

Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655

Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp			
2660	2665	2670	
Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu			
2675	2680	2685	
Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr			
2690	2695	2700	
Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp			
2705	2710	2715	2720
Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly			
2725	2730	2735	
His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala			
2740	2745		

<210> 11
<211> 2710
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 11			
Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser			
1	5	10	15
Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu			
20	25	30	
Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn			
35	40	45	
Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn			
50	55	60	
Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala			
65	70	75	80
Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala			
85	90	95	
Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly			
100	105	110	
Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser			
115	120	125	
Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys			
130	135	140	
Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp			
145	150	155	160
Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val			
165	170	175	
Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro			
180	185	190	
Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu			
195	200	205	
Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met			
210	215	220	
Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val			
225	230	235	240
Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His			
245	250	255	
Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala			
260	265	270	
Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln			
275	280	285	

His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765

Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245

Gln Gln Asn Gln Ala Leu Leu His His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Asp Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Asp Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725

Gly Pro Ser Lys Pro Gly Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205

Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Met Val Ile Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685

Gln	Lys	Gln	Arg	Ile	Gly	Leu	Leu	Gly	His	Pro	Pro	His	Met	Asn	Val
2690					2695							2700			
Asn	Pro	Gln	Gln	Pro	Ala										
2705					2710										

<210> 12
<211> 2749
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 12																
Met	Ser	Asp	Lys	Met	Ser	Ser	Phe	Leu	His	Ile	Gly	Asp	Ile	Cys	Ser	
1				5				10						15		
Leu	Tyr	Ala	Glu	Gly	Ser	Thr	Asn	Gly	Phe	Ile	Ser	Thr	Leu	Gly	Leu	
					20			25					30			
Val	Asp	Asp	Arg	Cys	Val	Val	Gln	Pro	Glu	Ala	Gly	Asp	Leu	Asn	Asn	
					35			40				45				
Pro	Pro	Lys	Lys	Phe	Arg	Asp	Cys	Leu	Phe	Lys	Leu	Cys	Pro	Met	Asn	
					50			55			60					
Arg	Tyr	Ser	Ala	Gln	Lys	Gln	Phe	Trp	Lys	Ala	Ala	Lys	Pro	Gly	Ala	
					65			70			75		80			
Asn	Ser	Thr	Thr	Asp	Ala	Val	Leu	Leu	Asn	Lys	Leu	His	His	Ala	Ala	
					85			90			95					
Asp	Leu	Glu	Lys	Lys	Gln	Asn	Glu	Thr	Glu	Asn	Arg	Lys	Leu	Gly		
					100			105			110					
Thr	Val	Ile	Gln	Tyr	Gly	Asn	Val	Ile	Gln	Leu	Leu	His	Leu	Lys	Ser	
					115			120			125					
Asn	Lys	Tyr	Leu	Thr	Val	Asn	Lys	Arg	Leu	Pro	Ala	Leu	Leu	Glu	Lys	
					130			135			140					
Asn	Ala	Met	Arg	Val	Thr	Leu	Asp	Glu	Ala	Gly	Asn	Glu	Gly	Ser	Trp	
					145			150			155		160			
Phe	Tyr	Ile	Gln	Pro	Phe	Tyr	Lys	Leu	Arg	Ser	Ile	Gly	Asp	Ser	Val	
					165			170			175					
Val	Ile	Gly	Asp	Lys	Val	Val	Leu	Asn	Pro	Val	Asn	Ala	Gly	Gln	Pro	
					180			185			190					
Leu	His	Ala	Ser	Ser	His	Gln	Leu	Val	Asp	Asn	Pro	Gly	Cys	Asn	Glu	
					195			200			205					
Val	Asn	Ser	Val	Asn	Cys	Asn	Thr	Ser	Trp	Lys	Ile	Val	Leu	Phe	Met	
					210			215			220					
Lys	Trp	Ser	Asp	Asn	Lys	Asp	Asp	Ile	Leu	Lys	Gly	Gly	Asp	Val	Val	
					225			230			235		240			
Arg	Leu	Phe	His	Ala	Glu	Gln	Glu	Lys	Phe	Leu	Thr	Cys	Asp	Glu	His	
					245			250			255					
Arg	Lys	Lys	Gln	His	Val	Phe	Leu	Arg	Thr	Thr	Gly	Arg	Gln	Ser	Ala	
					260			265			270					
Thr	Ser	Ala	Thr	Ser	Ser	Lys	Ala	Leu	Trp	Glu	Val	Glu	Val	Val	Gln	
					275			280			285					
His	Asp	Pro	Cys	Arg	Gly	Gly	Ala	Gly	Tyr	Trp	Asn	Ser	Leu	Phe	Arg	
					290			295			300					
Phe	Lys	His	Leu	Ala	Thr	Gly	His	Tyr	Leu	Ala	Glu	Val	Asp	Pro		
					305			310			315		320			
Asp	Phe	Glu	Glu	Glu	Cys	Leu	Glu	Phe	Gln	Pro	Ser	Val	Asp	Pro	Asp	
					325			330			335					
Gln	Asp	Ala	Ser	Arg	Ser	Arg	Leu	Arg	Asn	Ala	Gln	Glu	Lys	Met	Val	
					340			345			350					

Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830

Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310

Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Asp Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Asp Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790

Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270

Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 13
 <211> 2710
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

 <400> 13
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400

Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880

Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Asp Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Glu Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840

Asp Leu Gly Asn Lys Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320

Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Phe Met Val Ile Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685
 Gln Lys Gln Arg Ile Gly Leu Leu Gly His Pro Pro His Met Asn Val
 2690 2695 2700
 Asn Pro Gln Gln Pro Ala
 2705 2710

<210> 14
 <211> 2749
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 14

Met	Ser	Asp	Lys	Met	Ser	Ser	Phe	Leu	His	Ile	Gly	Asp	Ile	Cys	Ser
1				5				10					15		
Leu	Tyr	Ala	Glu	Gly	Ser	Thr	Asn	Gly	Phe	Ile	Ser	Thr	Leu	Gly	Leu
				20				25					30		
Val	Asp	Asp	Arg	Cys	Val	Val	Gln	Pro	Glu	Ala	Gly	Asp	Leu	Asn	Asn
				35				40				45			
Pro	Pro	Lys	Lys	Phe	Arg	Asp	Cys	Leu	Phe	Lys	Leu	Cys	Pro	Met	Asn
		50					55				60				
Arg	Tyr	Ser	Ala	Gln	Lys	Gln	Phe	Trp	Lys	Ala	Ala	Lys	Pro	Gly	Ala
				65				70			75		80		
Asn	Ser	Thr	Thr	Asp	Ala	Val	Leu	Leu	Asn	Lys	Leu	His	His	Ala	Ala
					85				90				95		
Asp	Leu	Glu	Lys	Lys	Gln	Asn	Glu	Thr	Glu	Asn	Arg	Lys	Leu	Leu	Gly
					100				105				110		
Thr	Val	Ile	Gln	Tyr	Gly	Asn	Val	Ile	Gln	Leu	Leu	His	Leu	Lys	Ser
				115				120				125			
Asn	Lys	Tyr	Leu	Thr	Val	Asn	Lys	Arg	Leu	Pro	Ala	Leu	Leu	Glu	Lys
		130				135					140				
Asn	Ala	Met	Arg	Val	Thr	Leu	Asp	Glu	Ala	Gly	Asn	Glu	Gly	Ser	Trp
		145				150				155				160	
Phe	Tyr	Ile	Gln	Pro	Phe	Tyr	Lys	Leu	Arg	Ser	Ile	Gly	Asp	Ser	Val
				165				170				175			
Val	Ile	Gly	Asp	Lys	Val	Val	Leu	Asn	Pro	Val	Asn	Ala	Gly	Gln	Pro
				180				185				190			
Leu	His	Ala	Ser	Ser	His	Gln	Leu	Val	Asp	Asn	Pro	Gly	Cys	Asn	Glu
				195				200				205			
Val	Asn	Ser	Val	Asn	Cys	Asn	Thr	Ser	Trp	Lys	Ile	Val	Leu	Phe	Met
				210				215				220			
Lys	Trp	Ser	Asp	Asn	Lys	Asp	Asp	Ile	Leu	Lys	Gly	Gly	Asp	Val	Val
		225			230				235				240		
Arg	Leu	Phe	His	Ala	Glu	Gln	Glu	Lys	Phe	Leu	Thr	Cys	Asp	Glu	His
				245				250				255			
Arg	Lys	Lys	Gln	His	Val	Phe	Leu	Arg	Thr	Thr	Gly	Arg	Gln	Ser	Ala
				260				265				270			
Thr	Ser	Ala	Thr	Ser	Ser	Lys	Ala	Leu	Trp	Glu	Val	Glu	Val	Val	Gln
				275				280				285			
His	Asp	Pro	Cys	Arg	Gly	Gly	Ala	Gly	Tyr	Trp	Asn	Ser	Leu	Phe	Arg
		290			295				300						
Phe	Lys	His	Leu	Ala	Thr	Gly	His	Tyr	Leu	Ala	Ala	Glu	Val	Asp	Pro
		305			310				315				320		
Asp	Phe	Glu	Glu	Glu	Cys	Leu	Glu	Phe	Gln	Pro	Ser	Val	Asp	Pro	Asp
				325				330				335			
Gln	Asp	Ala	Ser	Arg	Ser	Arg	Leu	Arg	Asn	Ala	Gln	Glu	Lys	Met	Val
				340				345				350			
Tyr	Ser	Leu	Val	Ser	Val	Pro	Glu	Gly	Asn	Asp	Ile	Ser	Ser	Ile	Phe
				355				360				365			
Glu	Leu	Asp	Pro	Thr	Thr	Leu	Arg	Gly	Gly	Asp	Ser	Leu	Val	Pro	Arg
				370				375				380			
Asn	Ser	Tyr	Val	Arg	Leu	Arg	His	Leu	Cys	Thr	Asn	Thr	Trp	Val	His
				385				390			395		400		
Ser	Thr	Asn	Ile	Pro	Ile	Asp	Lys	Glu	Glu	Glu	Lys	Pro	Val	Met	Leu
					405				410				415		
Lys	Ile	Gly	Thr	Ser	Pro	Leu	Lys	Glu	Asp	Lys	Glu	Ala	Phe	Ala	Ile
					420				425				430		
Val	Pro	Val	Ser	Pro	Ala	Glu	Val	Arg	Asp	Leu	Asp	Phe	Ala	Asn	Asp
				435				440				445			
Ala	Ser	Lys	Val	Leu	Gly	Ser	Ile	Ala	Gly	Lys	Leu	Glu	Lys	Gly	Thr
				450				455				460			
Ile	Thr	Gln	Asn	Glu	Arg	Arg	Ser	Val	Thr	Lys	Leu	Leu	Glu	Asp	Leu
		465				470				475				480	

Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960

Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440

Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Asp Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920

Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400

Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 15
 <211> 2710
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 15
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30

Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510

Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990

Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470

Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Glu Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Asp Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950

Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045
 Lys Asn Asn Ala Ser Lys Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430

Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525
 Tyr Asp Leu Leu Phe Phe Met Val Ile Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685
 Gln Lys Gln Arg Ile Gly Leu Leu Gly His Pro Pro His Met Asn Val
 2690 2695 2700
 Asn Pro Gln Gln Pro Ala
 2705 2710

<210> 16
 <211> 2749
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 16
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95

Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575

Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro .
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055

Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535

Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Glu Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Asp Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015

Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110
 Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495

Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 17
 <211> 2710
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 17
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gln Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125

Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605

His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085

Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150
 Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565

Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Ser Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630
 Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gly Glu Ala Leu
 1685 1690 1695
 Arg Gln Ile Leu Val Asn Arg Tyr Tyr Gly Asn Ile Arg Pro Ser Gly
 1700 1705 1710
 Arg Arg Glu Ser Leu Thr Ser Phe Gly Asn Gly Pro Leu Ser Pro Gly
 1715 1720 1725
 Gly Pro Ser Lys Pro Gly Gly Gly Gly Pro Gly Ser Gly Ser
 1730 1735 1740
 Thr Ser Arg Gly Glu Met Ser Leu Ala Glu Val Gln Cys His Leu Asp
 1745 1750 1755 1760
 Lys Glu Gly Ala Ser Asn Leu Val Ile Asp Leu Ile Met Asn Ala Ser
 1765 1770 1775
 Ser Asp Arg Val Phe His Glu Ser Ile Leu Leu Ala Ile Ala Leu Leu
 1780 1785 1790
 Glu Gly Gly Asn Thr Thr Ile Gln His Ser Phe Phe Cys Arg Leu Thr
 1795 1800 1805
 Glu Asp Lys Lys Ser Glu Lys Phe Phe Lys Val Phe Tyr Asp Arg Met
 1810 1815 1820
 Lys Val Ala Gln Gln Glu Ile Lys Ala Thr Val Thr Val Asn Thr Ser
 1825 1830 1835 1840
 Asp Leu Gly Asn Lys Lys Asp Asp Glu Val Asp Arg Asp Ala Pro
 1845 1850 1855
 Ser Arg Lys Lys Ala Lys Glu Pro Thr Thr Gln Ile Thr Glu Glu Val
 1860 1865 1870
 Arg Asp Gln Leu Leu Glu Ala Ser Ala Ala Thr Arg Lys Ala Phe Thr
 1875 1880 1885
 Thr Phe Arg Arg Glu Ala Asp Pro Asp Asp His Tyr Gln Ser Gly Glu
 1890 1895 1900
 Gly Thr Gln Ala Thr Thr Asp Lys Ala Lys Asp Asp Leu Glu Met Ser
 1905 1910 1915 1920
 Ala Val Ile Thr Ile Met Gln Pro Ile Leu Arg Phe Leu Gln Leu Leu
 1925 1930 1935
 Cys Glu Asn His Asn Arg Asp Leu Gln Asn Phe Leu Arg Cys Gln Asn
 1940 1945 1950
 Asn Lys Thr Asn Tyr Asn Leu Val Cys Glu Thr Leu Gln Phe Leu Asp
 1955 1960 1965
 Cys Ile Cys Gly Ser Thr Thr Gly Gly Leu Gly Leu Leu Gly Leu Tyr
 1970 1975 1980
 Ile Asn Glu Lys Asn Val Ala Leu Ile Asn Gln Thr Leu Glu Ser Leu
 1985 1990 1995 2000
 Thr Glu Tyr Cys Gln Gly Pro Cys His Glu Asn Gln Asn Cys Ile Ala
 2005 2010 2015
 Thr His Glu Ser Asn Gly Ile Asp Ile Ile Thr Ala Leu Ile Leu Asn
 2020 2025 2030
 Asp Ile Asn Pro Leu Gly Lys Lys Arg Met Asp Leu Val Leu Glu Leu
 2035 2040 2045

Lys Asn Asn Ala Ser Lys Leu Leu Leu Ala Ile Met Glu Ser Arg His
 2050 2055 2060
 Asp Ser Glu Asn Ala Glu Arg Ile Leu Tyr Asn Met Arg Pro Lys Glu
 2065 2070 2075 2080
 Leu Val Glu Val Ile Lys Lys Ala Tyr Met Gln Gly Glu Val Glu Phe
 2085 2090 2095
 Glu Asp Gly Glu Asn Gly Glu Asp Gly Ala Ala Ser Pro Arg Asn Val
 2100 2105 2110
 Gly His Asn Ile Tyr Ile Leu Ala His Gln Leu Ala Arg His Asn Lys
 2115 2120 2125
 Glu Leu Gln Thr Met Leu Lys Pro Gly Gly Gln Val Asp Gly Asp Glu
 2130 2135 2140
 Ala Leu Glu Phe Tyr Ala Lys His Thr Ala Gln Ile Glu Ile Val Arg
 2145 2150 2155 2160
 Leu Asp Arg Thr Met Glu Gln Ile Val Phe Pro Val Pro Ser Ile Cys
 2165 2170 2175
 Glu Phe Leu Thr Lys Glu Ser Lys Leu Arg Ile Tyr Tyr Thr Thr Glu
 2180 2185 2190
 Arg Asp Glu Gln Gly Ser Lys Ile Asn Asp Phe Phe Leu Arg Ser Glu
 2195 2200 2205
 Asp Leu Phe Asn Glu Met Asn Trp Gln Lys Lys Leu Arg Ala Gln Pro
 2210 2215 2220
 Val Leu Tyr Trp Cys Ala Arg Asn Met Ser Phe Trp Ser Ser Ile Ser
 2225 2230 2235 2240
 Phe Asn Leu Ala Val Leu Met Asn Leu Leu Val Ala Phe Phe Tyr Pro
 2245 2250 2255
 Phe Lys Gly Val Arg Gly Gly Thr Leu Glu Pro His Trp Ser Gly Leu
 2260 2265 2270
 Leu Trp Thr Ala Met Leu Ile Ser Leu Ala Ile Val Ile Ala Leu Pro
 2275 2280 2285
 Lys Pro His Gly Ile Arg Ala Leu Ile Ala Ser Thr Ile Leu Arg Leu
 2290 2295 2300
 Ile Phe Ser Val Gly Leu Gln Pro Thr Leu Phe Leu Leu Gly Ala Phe
 2305 2310 2315 2320
 Asn Val Cys Asn Lys Ile Ile Phe Leu Met Ser Phe Val Gly Asn Cys
 2325 2330 2335
 Gly Thr Phe Thr Arg Gly Tyr Arg Ala Met Val Leu Asp Val Glu Phe
 2340 2345 2350
 Leu Tyr His Leu Leu Tyr Leu Leu Ile Cys Ala Met Gly Leu Phe Val
 2355 2360 2365
 His Glu Phe Phe Tyr Ser Leu Leu Phe Asp Leu Val Tyr Arg Glu
 2370 2375 2380
 Glu Thr Leu Leu Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Pro
 2385 2390 2395 2400
 Ile Ile Leu Thr Ala Ala Leu Ala Ile Leu Val Tyr Leu Phe Ser
 2405 2410 2415
 Ile Val Gly Tyr Leu Phe Phe Lys Asp Asp Phe Ile Leu Glu Val Asp
 2420 2425 2430
 Arg Leu Pro Asn Glu Thr Ala Gly Pro Glu Thr Gly Glu Ser Leu Ala
 2435 2440 2445
 Asn Asp Phe Leu Tyr Ser Asp Val Cys Arg Val Glu Thr Gly Glu Asn
 2450 2455 2460
 Cys Thr Ser Pro Ala Pro Lys Glu Glu Leu Leu Pro Val Glu Glu Thr
 2465 2470 2475 2480
 Glu Gln Asp Lys Glu His Thr Cys Glu Thr Leu Leu Met Cys Ile Val
 2485 2490 2495
 Thr Val Leu Ser His Gly Leu Arg Ser Gly Gly Val Gly Asp Val
 2500 2505 2510
 Leu Arg Lys Pro Ser Lys Glu Glu Pro Leu Phe Ala Ala Arg Val Ile
 2515 2520 2525

Tyr Asp Leu Leu Phe Phe Met Val Ile Ile Ile Val Leu Asn Leu
 2530 2535 2540
 Ile Phe Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys
 2545 2550 2555 2560
 Gln Lys Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu
 2565 2570 2575
 Glu Arg Asp Lys Phe Asp Asn Lys Thr Val Thr Phe Glu Glu His Ile
 2580 2585 2590
 Lys Glu Glu His Asn Met Trp His Tyr Leu Cys Phe Ile Val Leu Val
 2595 2600 2605
 Lys Val Lys Asp Ser Thr Glu Tyr Thr Gly Pro Glu Ser Tyr Val Ala
 2610 2615 2620
 Glu Met Ile Arg Glu Arg Asn Leu Asp Trp Phe Pro Arg Met Arg Ala
 2625 2630 2635 2640
 Met Ser Leu Val Ser Ser Asp Ser Glu Gly Glu Gln Asn Glu Leu Arg
 2645 2650 2655
 Asn Leu Gln Glu Lys Leu Glu Ser Thr Met Lys Leu Val Thr Asn Leu
 2660 2665 2670
 Ser Gly Gln Leu Ser Glu Leu Lys Asp Gln Met Thr Glu Gln Arg Lys
 2675 2680 2685
 Gln Lys Gln Arg Ile Gly Leu Leu Gly His Pro Pro His Met Asn Val
 2690 2695 2700
 Asn Pro Gln Gln Pro Ala
 2705 2710

<210> 18
 <211> 2749
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 18
 Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80
 Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95
 Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175
 Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190

Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205
 Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220
 Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255
 Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320
 Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335
 Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350
 Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365
 Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380
 Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400
 Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415
 Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430
 Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445
 Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460
 Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480
 Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495
 Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510
 Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525
 Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540
 Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655
 Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670

Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Val Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Ala Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960
 Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975
 Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990
 Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005
 Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020
 Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040
 Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055
 Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070
 Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085
 Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100
 Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120
 Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135
 Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150

Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165
 Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180
 Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200
 Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215
 Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230
 Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245
 Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Asn
 1250 1255 1260
 Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280
 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295
 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310
 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325
 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340
 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360
 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Phe Met Tyr His Ile
 1365 1370 1375
 His Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile
 1410 1415 1420
 Asn Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp
 1460 1465 1470
 Ser Val Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr
 1475 1480 1485
 Thr Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr
 1490 1495 1500
 Arg Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr
 1505 1510 1515 1520
 His Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn
 1555 1560 1565
 Ile Val Gln Lys Thr Ala Met Asn Trp Arg Leu Ser Ala Arg Asn Ala
 1570 1575 1580
 Ala Arg Arg Asp Ser Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile
 1585 1590 1595 1600
 Ile Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg
 1605 1610 1615
 Pro Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg
 1620 1625 1630

Pro Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu
 1635 1640 1645
 Ser Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu
 1650 1655 1660
 Glu Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg
 1665 1670 1675 1680
 Glu Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile
 1685 1690 1695
 Asp Glu Leu Glu Asn Ala Glu Leu Pro Gln Pro Pro Glu Ala Glu Asn
 1700 1705 1710
 Ser Thr Glu Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Ser Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Gly Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870
 Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885
 Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900
 Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920
 Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935
 Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950
 Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000
 Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030
 Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045
 Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080
 Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu Leu
 2085 2090 2095
 Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110

Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125
 Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140
 Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160
 Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175
 Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe, Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Pro Ile Ile Leu Thr Ala Ala Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Gly Pro
 2465 2470 2475 2480
 Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Val Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590

Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Pro Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 19
 <211> 2701
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 19
 Met Ser Asp Lys Met Ser Ser Phe Leu Tyr Ile Gly Asp Ile Val Ser
 1 5 10 15
 Leu Tyr Ala Glu Gly Ser Val Asn Gly Phe Ile Ser Thr Leu Gly Leu
 20 25 30
 Val Asp Asp Arg Cys Val Val His Pro Glu Ala Gly Asp Leu Thr Asn
 35 40 45
 Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Val Cys Pro Met Asn
 50 55 60
 Arg Tyr Ser Ala Gln Lys Gln Tyr Trp Lys Ala Lys Gln Ala Lys Gln
 65 70 75 80
 Gly Asn His Thr Glu Ala Ala Leu Leu Lys Lys Leu Gln His Ala Ala
 85 90 95
 Glu Leu Glu Gln Lys Gln Asn Glu Ser Glu Asn Arg Lys Leu Leu Gly
 100 105 110
 Glu Ile Val Lys Tyr Ser Lys Val Ile Gln Leu Leu His Ile Lys Ser
 115 120 125
 Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140
 Asn Ala Met Arg Val Ser Leu Asp Ala Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160
 Phe Tyr Ile His Pro Phe Trp Lys Leu Arg Ser Glu Gly Asp Asn Ile
 165 170 175
 Val Val Gly Asp Lys Val Val Leu Met Pro Val Asn Ala Gly Gln Pro
 180 185 190
 Leu His Ala Ser Asn Val Glu Leu Leu Asp Asn Pro Gly Cys Lys Glu
 195 200 205
 Val Asn Ala Val Asn Cys Asn Thr Ser Trp Lys Ile Thr Leu Phe Met
 210 215 220

Lys Phe Ser Ser Tyr Arg Glu Asp Val Leu Lys Gly Gly Asp Val Val
 225 230 235 240
 Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Asp Tyr
 245 250 255
 Glu Lys Lys Gln His Ile Phe Leu Arg Thr Thr Leu Arg Gln Ser Ala
 260 265 270
 Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Ile Glu Val Val His
 275 280 285
 His Asp Pro Cys Arg Gly Gly Ala Gly Gln Trp Asn Ser Leu Phe Arg
 290 295 300
 Phe Lys His Leu Ala Thr Gly Asn Tyr Leu Ala Ala Glu Leu Asn Pro
 305 310 315 320
 Asp Tyr Arg Asp Ala Gln Asn Glu Gly Lys Thr Val Arg Asp Gly Glu
 325 330 335
 Leu Pro Thr Ser Lys Lys His Gln Ala Gly Glu Lys Ile Met Tyr
 340 345 350
 Thr Leu Val Ser Val Pro His Gly Asn Asp Ile Ala Ser Leu Phe Glu
 355 360 365
 Leu Asp Ala Thr Thr Leu Gln Arg Ala Asp Cys Leu Val Pro Arg Asn
 370 375 380
 Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val Thr Ser
 385 390 395 400
 Thr Ser Ile Pro Ile Asp Thr Glu Glu Glu Arg Pro Val Met Leu Lys
 405 410 415
 Ile Gly Thr Cys Gln Thr Lys Glu Asp Lys Glu Ala Phe Ala Ile Val
 420 425 430
 Cys Val Pro Leu Ser Glu Val Arg Asp Leu Asp Phe Ala Asn Asp Ala
 435 440 445
 Asn Lys Val Leu Ala Thr Thr Val Lys Lys Leu Glu Asn Gly Ser Ile
 450 455 460
 Thr Gln Asn Glu Arg Arg Phe Val Thr Lys Leu Leu Glu Asp Leu Ile
 465 470 475 480
 Phe Phe Val Ala Asp Val Thr Asn Asn Gly Gln Asp Val Leu Asp Val
 485 490 495
 Val Ile Thr Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu Gln
 500 505 510
 Asn Ile Leu Ala Gln Val Phe Gly Ile Leu Lys Ala Pro Phe Lys Glu
 515 520 525
 Lys Ala Gly Glu Gly Ser Met Leu Arg Leu Glu Asp Leu Gly Asp Gln
 530 535 540
 Arg Tyr Ala Pro Tyr Lys Tyr Val Leu Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575
 Asn Phe Cys Val Met Gln Ser Gln Ile Gly Tyr Asp Ile Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Ala Lys Glu Ile Glu Thr Phe Val Ser Leu Leu Arg Arg
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Asn Ser Thr Ala Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Phe Met
 645 650 655
 Leu Ser Pro Gly Asn Ala Asp Ile Leu Ile Gln Thr Lys Leu Val Ser
 660 665 670
 Met Gln Val Glu Asn Pro Met Glu Ser Ser Ile Leu Pro Asp Asp Ile
 675 680 685
 Asp Asp Glu Glu Val Trp Leu Tyr Trp Ile Asp Ser Asn Lys Glu Pro
 690 695 700

His Gly Lys Ala Ile Arg His Leu Ala Gln Glu Ala Arg Glu Gly Thr
 705 710 715 720
 Lys Ala Asp Leu Glu Val Leu Thr Tyr Tyr Arg Tyr Gln Leu Asn Leu
 725 730 735
 Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile Asn Gln Ile
 740 745 750
 Ser Thr Gln Leu Ser Val Asp Leu Ile Leu Arg Cys Val Ser Asp Glu
 755 760 765
 Ser Leu Pro Phe Asp Leu Arg Ala Ser Phe Cys Arg Leu Met Leu His
 770 775 780
 Met His Val Asp Arg Asp Pro Gln Glu Ser Val Val Pro Val Arg Tyr
 785 790 795 800
 Ala Arg Leu Trp Thr Glu Ile Pro Thr Lys Ile Thr Ile His Glu Tyr
 805 810 815
 Asp Ser Ile Thr Asp Ser Ser Arg Asn Asp Met Lys Arg Lys Phe Ala
 820 825 830
 Leu Thr Met Glu Phe Val Glu Glu Tyr Leu Lys Glu Val Val Asn Gln
 835 840 845
 Pro Phe Pro Phe Gly Asp Lys Glu Lys Asn Lys Leu Thr Phe Glu Val
 850 855 860
 Val His Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Ser Phe Ser
 865 870 875 880
 Glu Leu Leu Arg Leu Thr Arg Thr Leu Leu Ala Ile Leu Asp Ile Val
 885 890 895
 Gln Ala Pro Met Ser Ser Tyr Phe Glu Arg Leu Ser Lys Phe Gln Asp
 900 905 910
 Gly Ser Asn Asn Val Met Arg Thr Ile His Gly Val Gly Glu Met Met
 915 920 925
 Thr Gln Met Val Leu Ser Arg Gly Ser Ile Phe Pro Val Ser Trp Pro
 930 935 940
 Asp Ala Gln Pro Ser Val His Pro Ser Lys Gln Ala Ser Pro Gly Glu
 945 950 955 960
 Gln Glu Asp Val Thr Val Met Asp Thr Lys Leu Lys Val Ile Glu Ile
 965 970 975
 Leu Gln Phe Ile Leu Ser Val Arg Leu Asp Tyr Arg Ile Ser Tyr Met
 980 985 990
 Leu Ser Ile Tyr Lys Lys Glu Phe Gly Glu Asn Asp Gly Asn Gly Asp
 995 1000 1005
 Pro Ser Ala Ser Gly Thr Pro Glu Thr Leu Leu Pro Ser Ala Leu Val
 1010 1015 1020
 Pro Asp Ile Asp Glu Ile Ala Ala Gln Ala Glu Thr Met Phe Ala Gly
 1025 1030 1035 1040
 Arg Lys Glu Lys Thr Pro Val Gln Leu Asp Asp Glu Gly Gly Arg Thr
 1045 1050 1055
 Phe Leu Arg Val Leu Ile His Leu Ile Met His Asp Tyr Ala Pro Leu
 1060 1065 1070
 Leu Ser Gly Ala Leu Gln Leu Leu Phe Lys His Phe Ser Gln Arg Ala
 1075 1080 1085
 Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val Ser Asn Gln
 1090 1095 1100
 Asp Val Asp Asn Tyr Lys Gln Ile Lys Ala Asp Leu Asp Gln Leu Arg
 1105 1110 1115 1120
 Leu Thr Val Glu Lys Ser Glu Leu Trp Val Glu Lys Ser Gly Ser Tyr
 1125 1130 1135
 Glu Asn Gly Asp Met Gly Glu Gly Gln Ala Lys Gly Gly Glu Glu Ala
 1140 1145 1150
 Asn Glu Glu Ser Asn Leu Leu Ser Pro Val Gln Asp Gly Ala Lys Thr
 1155 1160 1165
 Pro Gln Ile Asp Ser Asn Lys Gly Asn Asn Tyr Arg Ile Val Lys Glu
 1170 1175 1180

Ile Leu Ile Arg Leu Ser Lys Leu Cys Val Gln Asn Lys Lys Cys Arg
 1185 1190 1195 1200
 Asn Gln His Gln Arg Leu Leu Lys Asn Met Gly Ala His Ser Val Val
 1205 1210 1215
 Leu Asp Leu Leu Gln Ile Pro Tyr Glu Lys Thr Asp Glu Lys Met Asn
 1220 1225 1230
 Glu Val Met Asp Leu Ala His Thr Phe Leu Gln Asn Phe Cys Arg Gly
 1235 1240 1245
 Asn Pro Gln Asn Gln Val Leu Leu His Lys His Leu Asn Leu Phe Leu
 1250 1255 1260
 Thr Pro Gly Leu Leu Glu Ala Glu Thr Met Arg His Ile Phe Met Asn
 1265 1270 1275 1280
 Asn Tyr His Leu Cys Asn Glu Ile Ser Glu Arg Val Val Gln His Phe
 1285 1290 1295
 Val His Cys Ile Glu Thr His Gly Arg His Val Glu Tyr Leu Arg Phe
 1300 1305 1310
 Leu Gln Thr Ile Val Lys Ala Asp Gly Lys Tyr Val Lys Lys Cys Gln
 1315 1320 1325
 Asp Met Val Met Thr Glu Leu Ile Asn Gly Gly Glu Asp Val Leu Ile
 1330 1335 1340
 Phe Tyr Asn Asp Arg Ala Ser Phe Pro Ile Leu Leu Asn Met Met Cys
 1345 1350 1355 1360
 Ser Glu Arg Ala Arg Gly Asp Glu Ser Gly Pro Leu Ala Tyr His Ile
 1365 1370 1375
 Thr Leu Val Glu Leu Leu Ala Ala Cys Thr Glu Gly Lys Asn Val Tyr
 1380 1385 1390
 Thr Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg
 1395 1400 1405
 Val Val Thr His Asp Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Val
 1410 1415 1420
 Asn Phe Val Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu
 1425 1430 1435 1440
 Ile Tyr Thr Ser Asn His Ile Trp Lys Leu Phe Glu Asn Phe Leu Val
 1445 1450 1455
 Asp Met Ala Arg Val Cys Asn Thr Thr Asp Arg Lys His Ala Asp
 1460 1465 1470
 Thr Phe Leu Glu Arg Cys Val Thr Glu Ser Val Met Asn Ile Val Ser
 1475 1480 1485
 Gly Phe Phe Asn Ser Pro Phe Ser Asp Asn Ser Thr Ser Leu Gln Thr
 1490 1495 1500
 His Gln Pro Val Phe Ile Gln Leu Leu Gln Ser Ala Phe Arg Ile Tyr
 1505 1510 1515 1520
 Asn Cys Thr Trp Pro Asn Pro Ala Gln Lys Ala Ser Val Glu Ser Cys
 1525 1530 1535
 Ile Arg Ala Leu Ala Glu Val Ala Lys Asn Arg Gly Ile Ala Ile Pro
 1540 1545 1550
 Val Asp Leu Asp Ser Gln Val Asn Thr Leu Phe Met Lys Asn His Ser
 1555 1560 1565
 Ser Thr Val Gln Arg Ala Ala Met Gly Trp Arg Leu Ser Ala Arg Ser
 1570 1575 1580
 Gly Pro Arg Phe Lys Glu Ala Leu Gly Gly Pro Ala Trp Asp Tyr Arg
 1585 1590 1595 1600
 Asn Ile Ile Glu Lys Leu Gln Asp Val Val Ala Ser Leu Glu Gln Gln
 1605 1610 1615
 Phe Ser Pro Met Met Gln Ala Glu Phe Ser Val Leu Val Asp Val Leu
 1620 1625 1630
 Tyr Ser Pro Glu Leu Leu Phe Pro Glu Gly Ser Asp Ala Arg Ile Arg
 1635 1640 1645
 Cys Gly Ala Phe Met Ser Lys Leu Ile Asn His Thr Lys Lys Leu Met
 1650 1655 1660

Glu Lys Glu Glu Lys Leu Cys Ile Lys Ile Leu Gln Thr Leu Arg Glu
 1665 1670 1675 1680
 Met Leu Glu Lys Lys Asp Ser Phe Met Glu Glu Ser Ser Thr Leu Arg
 1685 1690 1695
 Lys Ile Leu Leu Asn Arg Tyr Phe Lys Gly Asp His Ser Val Gly Val
 1700 1705 1710
 Asn Gly Pro Leu Ser Gly Ala Tyr Ala Lys Thr Ala Gln Val Gly Gly
 1715 1720 1725
 Gly Phe Thr Gly Gln Asp Ala Asp Lys Thr Gly Ile Ser Met Ser Asp
 1730 1735 1740
 Ile Gln Cys Leu Leu Asp Lys Glu Gly Ala Ser Glu Leu Val Ile Asp
 1745 1750 1755 1760
 Val Ile Val Asn Thr Lys Asn Asp Arg Ile Phe Ser Glu Gly Ile Leu
 1765 1770 1775
 Leu Gly Ile Ala Leu Leu Glu Gly Gly Asn Thr Gln Thr Gln Asn Ser
 1780 1785 1790
 Phe Tyr Gln Gln Leu His Glu Gln Lys Lys Ser Glu Lys Phe Phe Lys
 1795 1800 1805
 Val Leu Tyr Asp Arg Met Lys Ala Ala Gln Lys Glu Ile Arg Ser Thr
 1810 1815 1820
 Val Thr Val Asn Thr Ile Asp Leu Gly Ser Lys Lys Arg Glu Glu Asp
 1825 1830 1835 1840
 Ser Asp Leu Met Ala Leu Gly Pro Arg Met Arg Val Arg Asp Ser Ser
 1845 1850 1855
 Leu His Leu Lys Glu Gly Met Lys Gly Gln Leu Thr Glu Ala Ser Ser
 1860 1865 1870
 Ala Thr Ser Lys Ala Tyr Cys Val Tyr Arg Arg Glu Met Asp Pro Asp
 1875 1880 1885
 Ile Asp Thr Met Cys Pro Gly Gln Glu Ala Gly Ser Ala Glu Glu Lys
 1890 1895 1900
 Ser Ala Glu Glu Val Thr Met Ser Pro Ala Ile Thr Ile Met Arg Pro
 1905 1910 1915 1920
 Ile Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Glu Leu
 1925 1930 1935
 Gln Asn Phe Leu Arg Asn Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val
 1940 1945 1950
 Cys Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly
 1955 1960 1965
 Gly Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu
 1970 1975 1980
 Val Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys
 1985 1990 1995 2000
 His Glu Asn Gln Thr Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp
 2005 2010 2015
 Ile Ile Ile Ala Leu Ile Leu Ser Asp Ile Asn Pro Leu Gly Lys Tyr
 2020 2025 2030
 Arg Met Asp Leu Val Leu Gln Leu Lys Asn Asn Ala Ser Lys Leu Leu
 2035 2040 2045
 Leu Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile
 2050 2055 2060
 Leu Phe Asn Met Arg Pro Lys Glu Leu Val Asp Val Met Lys Asn Ala
 2065 2070 2075 2080
 Tyr Asn Gln Gly Leu Glu Cys Asn His Gly Asp Glu Glu Gly Gly Asp
 2085 2090 2095
 Asp Gly Val Ser Pro Lys Asp Val Gly His Asn Ile Tyr Ile Leu Ala
 2100 2105 2110
 His Gln Leu Ala Arg His Asn Lys Leu Leu Gln Gln Met Leu Lys Pro
 2115 2120 2125
 Gly Ser Asp Pro Glu Glu Gly Asp Glu Ala Leu Lys Tyr Tyr Ala Asn
 2130 2135 2140

His Thr Ala Gln Ile Glu Ile Val Arg His Asp Arg Thr Met Glu Gln
 2145 2150 2155 2160
 Ile Val Phe Pro Val Pro Asn Ile Cys Glu Phe Leu Thr Arg Glu Ser
 2165 2170 2175
 Lys Tyr Arg Val Phe Asn Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys
 2180 2185 2190
 Val Asn Asp Phe Phe Gln Gln Thr Glu Asp Leu Tyr Asn Glu Met Lys
 2195 2200 2205
 Trp Gln Lys Lys Ile Arg Asn Asn Pro Ala Leu Phe Trp Phe Ser Arg
 2210 2215 2220
 His Ile Ser Leu Trp Gly Ser Ile Ser Phe Asn Leu Ala Val Phe Ile
 2225 2230 2235 2240
 Asn Leu Ala Val Ala Leu Phe Tyr Pro Phe Gly Asp Asp Gly Asp Glu
 2245 2250 2255
 Gly Thr Leu Ser Pro Leu Phe Ser Ala Leu Leu Trp Val Ala Val Ala
 2260 2265 2270
 Ile Cys Thr Ser Met Leu Phe Phe Ser Lys Pro Val Gly Ile Arg
 2275 2280 2285
 Pro Phe Leu Val Ser Ile Met Leu Arg Ser Ile Tyr Thr Ile Gly Leu
 2290 2295 2300
 Gly Pro Thr Leu Ile Leu Gly Ala Ala Asn Leu Cys Asn Lys Ile
 2305 2310 2315 2320
 Val Phe Leu Val Ser Phe Val Gly Asn Arg Gly Thr Phe Thr Arg Gly
 2325 2330 2335
 Tyr Arg Ala Val Ile Leu Asp Met Ala Phe Leu Tyr His Val Ala Tyr
 2340 2345 2350
 Val Leu Val Cys Met Leu Gly Leu Phe Val His Glu Phe Phe Tyr Ser
 2355 2360 2365
 Phe Leu Leu Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val
 2370 2375 2380
 Ile Lys Ser Val Thr Arg Asn Gly Arg Ser Ile Ile Leu Thr Ala Val
 2385 2390 2395 2400
 Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser Ile Ile Gly Phe Leu Phe
 2405 2410 2415
 Leu Lys Asp Asp Phe Thr Met Glu Val Asp Arg Leu Lys Asn Arg Thr
 2420 2425 2430
 Pro Val Thr Gly Asn Asp Gly Val Pro Thr Met Thr Leu Thr Ser Met
 2435 2440 2445
 Leu Gly Thr Cys Pro Lys Glu Asn Cys Ser Pro Thr Ile Pro Ser Ser
 2450 2455 2460
 Asn Ala Ala Gly Glu Gly Glu Asp Gly Ile Glu Arg Thr Cys Asp
 2465 2470 2475 2480
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Asn Gln Gly Leu Arg Asn
 2485 2490 2495
 Gly Gly Gly Val Gly Asp Val Leu Arg Arg Pro Ser Lys Asp Glu Pro
 2500 2505 2510
 Leu Phe Ala Ala Arg Val Val Tyr Asp Leu Leu Phe Phe Ile Val
 2515 2520 2525
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2530 2535 2540
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Lys Ile Leu Lys Thr
 2545 2550 2555 2560
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2565 2570 2575
 Val Ser Phe Glu Glu His Ile Lys Ser Glu His Asn Met Trp His Tyr
 2580 2585 2590
 Leu Tyr Phe Ile Val Leu Val Lys Val Lys Asp Pro Thr Glu Tyr Thr
 2595 2600 2605
 Gly Pro Glu Ser Tyr Val Ala Gln Met Ile Thr Glu Lys Asn Leu Asp
 2610 2615 2620

Trp	Phe	Pro	Arg	Met	Arg	Ala	Met	Ser	Leu	Val	Ser	Asn	Glu	Gly	Asp
2625				2630				2635							2640
Ser	Glu	Gln	Asn	Glu	Ile	Arg	Asn	Leu	Gln	Glu	Lys	Leu	Glu	Ser	Thr
				2645				2650							2655
Met	Ser	Leu	Val	Lys	Gln	Leu	Ser	Gly	Gln	Leu	Ala	Glu	Leu	Lys	Glu
				2660				2665							2670
Gln	Met	Thr	Glu	Gln	Arg	Lys	Asn	Lys	Gln	Arg	Leu	Gly	Phe	Leu	Gly
				2675				2680							2685
Ser	Asn	Thr	Pro	His	Glu	Asn	His	His	Met	Pro	Pro	Pro	His		
				2690				2695							2700

<210> 20
<211> 2670
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 20																
Met	Asn	Glu	Met	Ser	Ser	Phe	Leu	His	Ile	Gly	Asp	Ile	Val	Ser	Leu	
1				5					10						15	
Tyr	Ala	Glu	Gly	Ser	Val	Asn	Gly	Phe	Ile	Ser	Thr	Leu	Gly	Leu	Val	
					20				25						30	
Asp	Asp	Arg	Cys	Val	Val	Glu	Pro	Ala	Ala	Gly	Asp	Leu	Asp	Asn	Pro	
					35				40						45	
Pro	Lys	Lys	Phe	Arg	Asp	Cys	Leu	Phe	Lys	Val	Cys	Pro	Met	Asn	Arg	
					50				55						60	
Tyr	Ser	Ala	Gln	Lys	Gln	Tyr	Trp	Lys	Ala	Lys	Gln	Thr	Lys	Gln	Asp	
					65				70						80	
Lys	Glu	Lys	Ile	Ala	Asp	Val	Val	Leu	Leu	Gln	Lys	Leu	Gln	His	Ala	
					85				90						95	
Ala	Gln	Met	Glu	Gln	Lys	Gln	Asn	Asp	Thr	Glu	Asn	Lys	Lys	Val	His	
					100				105						110	
Gly	Asp	Val	Val	Lys	Tyr	Gly	Ser	Val	Ile	Gln	Leu	Leu	His	Met	Lys	
					115				120						125	
Ser	Asn	Lys	Tyr	Leu	Thr	Val	Asn	Lys	Arg	Leu	Pro	Ala	Leu	Leu	Glu	
					130				135						140	
Lys	Asn	Ala	Met	Arg	Val	Thr	Leu	Asp	Ala	Thr	Gly	Asn	Glu	Gly	Ser	
					145				150						160	
Trp	Leu	Phe	Ile	Gln	Pro	Phe	Trp	Lys	Leu	Arg	Ser	Asn	Gly	Asp	Asn	
					165				170						175	
Val	Val	Val	Gly	Asp	Lys	Val	Ile	Leu	Asn	Pro	Val	Asn	Ala	Gly	Gln	
					180				185						190	
Pro	Leu	His	Ala	Ser	Asn	Tyr	Glu	Leu	Ser	Asp	Asn	Val	Gly	Cys	Lys	
					195				200						205	
Glu	Val	Asn	Ser	Val	Asn	Cys	Asn	Thr	Ser	Trp	Lys	Ile	Asn	Leu	Phe	
					210				215						220	
Met	Gln	Phe	Arg	Asp	His	Leu	Glu	Glu	Val	Leu	Lys	Gly	Gly	Asp	Val	
					225				230						240	
Val	Arg	Leu	Phe	His	Ala	Glu	Gln	Glu	Lys	Phe	Leu	Thr	Cys	Asp	Glu	
					245				250						255	
Tyr	Arg	Gly	Lys	Leu	Gln	Val	Phe	Leu	Arg	Thr	Thr	Leu	Arg	Gln	Ser	
					260				265						270	
Ala	Thr	Ser	Ala	Thr	Ser	Ser	Asn	Ala	Leu	Trp	Glu	Val	Glu	Val	Val	
					275				280						285	
His	His	Asp	Pro	Cys	Arg	Gly	Gly	Ala	Gly	His	Trp	Asn	Gly	Leu	Tyr	
					290				295						300	

Arg Phe Lys His Leu Ala Thr Gly Asn Tyr Leu Ala Ala Glu Glu Asn
 305 310 315 320
 Pro Ser Tyr Lys Gly Asp Val Ser Asp Pro Lys Ala Ala Gly Pro Gly
 325 330 335
 Ala Gln Ser Arg Thr Gly Arg Arg Asn Ala Gly Glu Lys Ile Lys Tyr
 340 345 350
 Arg Leu Val Ala Val Pro His Gly Asn Asp Ile Ala Ser Leu Phe Glu
 355 360 365
 Leu Asp Pro Thr Thr Leu Gln Lys Thr Asp Ser Phe Val Pro Arg Asn
 370 375 380
 Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Ile Gln Ser
 385 390 395 400
 Thr Asn Ala Pro Ile Asp Val Glu Glu Glu Arg Pro Ile Arg Leu Met
 405 410 415
 Leu Gly Thr Cys Pro Thr Lys Glu Asp Lys Glu Ala Phe Ala Ile Val
 420 425 430
 Ser Val Pro Val Ser Glu Ile Arg Asp Leu Asp Phe Ala Asn Asp Ala
 435 440 445
 Ser Ser Met Leu Ala Ser Ala Val Glu Lys Leu Asn Glu Gly Phe Ile
 450 455 460
 Ser Gln Asn Asp Arg Arg Phe Val Ile Gln Leu Leu Glu Asp Leu Val
 465 470 475 480
 Phe Phe Val Ser Asp Val Pro Asn Asn Gly Gln Asn Val Leu Asp Ile
 485 490 495
 Met Val Thr Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Asp Glu
 500 505 510
 Asn Ile Leu Lys Gln Ile Phe Gly Ile Leu Lys Ala Pro Phe Arg Asp
 515 520 525
 Lys Gly Gly Glu Gly Pro Leu Val Arg Leu Glu Glu Leu Ser Asp Gln
 530 535 540
 Lys Asn Ala Pro Tyr Gln Tyr Met Phe Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560
 Arg His Ser Gln Glu Asp Tyr Arg Lys Asn Gln Glu His Ile Ala Lys
 565 570 575
 Gln Phe Gly Met Met Gln Ser Gln Ile Gly Tyr Asp Ile Leu Ala Glu
 580 585 590
 Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605
 His Ile Thr Lys Thr Glu Val Glu Thr Phe Val Ser Leu Val Arg Lys
 610 615 620
 Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640
 Asn Arg Ile Ala Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Cys Val
 645 650 655
 Leu Asp Pro Lys Asn Ser Asp Ile Leu Ile Gln Thr Glu Leu Arg Pro
 660 665 670
 Val Lys Glu Met Ala Gln Ser His Glu Tyr Leu Ser Ile Glu Tyr Ser
 675 680 685
 Glu Glu Glu Val Trp Leu Thr Trp Thr Asp Arg Asn Asn Glu His His
 690 695 700
 Glu Lys Ser Val Arg Gln Leu Ala Gln Glu Ala Arg Ala Gly Asn Ala
 705 710 715 720
 His Asp Glu Asn Val Leu Ser Tyr Tyr Arg Tyr Gln Leu Lys Leu Phe
 725 730 735
 Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile Asp Glu Ile Ser
 740 745 750
 Lys Gln Leu Gly Val Glu Leu Leu Phe Leu Cys Met Ala Asp Glu Met
 755 760 765
 Leu Pro Phe Asp Leu Arg Ala Ser Phe Cys His Leu Met Leu His Val
 770 775 780

His Val Asp Arg Asp Pro Gln Glu Leu Val Thr Pro Val Lys Phe Ala
 785 790 795 800
 Arg Leu Trp Thr Glu Ile Pro Thr Ala Ile Thr Ile Lys Asp Tyr Asp
 805 810 815
 Ser Asn Leu Asn Ala Ser Arg Asp Asp Lys Lys Asn Lys Phe Ala Ser
 820 825 830
 Thr Met Glu Phe Val Glu Asp Tyr Leu Asn Asn Val Val Gly Glu Ala
 835 840 845
 Val Pro Phe Ala Asn Asp Glu Lys Asn Ile Leu Thr Phe Glu Val Val
 850 855 860
 Ser Leu Ala His Asn Leu Ile Tyr Phe Gly Phe Tyr Ser Phe Ser Glu
 865 870 875 880
 Leu Leu Arg Leu Thr Arg Thr Leu Leu Gly Ile Ile Asp Cys Ile Gln
 885 890 895
 Ala Pro Ala Ala Val Leu Gln Ala Tyr Glu Glu Pro Gly Gly Lys Asn
 900 905 910
 Val Arg Arg Ser Ile Gln Gly Val Gly His Met Met Ser Thr Met Val
 915 920 925
 Leu Ser Arg Lys Gln Ser Val Phe Gly Ala Ser Ser Leu Pro Thr Gly
 930 935 940
 Val Gly Val Pro Glu Gln Leu Asp Arg Ser Lys Phe Glu Asp Asn Glu
 945 950 955 960
 His Thr Val Val Met Glu Thr Lys Leu Lys Ile Leu Glu Ile Leu Gln
 965 970 975
 Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Tyr Leu Leu Ser
 980 985 990
 Val Phe Lys Lys Glu Phe Val Glu Val Phe Pro Met Gln Asp Ser Gly
 995 1000 1005
 Ala Asp Gly Thr Ala Pro Ala Phe Asp Ser Ser Thr Ala Asn Met Asn
 1010 1015 1020
 Leu Asp Arg Ile Gly Glu Gln Ala Glu Ala Met Phe Gly Val Gly Lys
 1025 1030 1035 1040
 Thr Ser Ser Met Leu Glu Val Asp Asp Glu Gly Gly Arg Met Phe Leu
 1045 1050 1055
 Arg Val Leu Leu His Leu Thr Met His Asp Tyr Pro Pro Leu Val Ser
 1060 1065 1070
 Gly Ala Leu Gln Leu Leu Phe Lys His Phe Ser Gln Arg Gln Glu Ala
 1075 1080 1085
 Met His Thr Phe Lys Gln Val Gln Leu Leu Ile Ser Ala Gln Asp Val
 1090 1095 1100
 Glu Asn Tyr Lys Val Ile Lys Ser Glu Leu Asp Arg Leu Arg Thr Met
 1105 1110 1115 1120
 Val Glu Lys Ser Glu Leu Trp Val Asp Lys Lys Gly Ser Val Lys Gly
 1125 1130 1135
 Glu Glu Gly Glu Ala Gly Ala Ser Lys Asp Lys Lys Glu Arg Pro Ser
 1140 1145 1150
 Asp Glu Glu Gly Phe Leu Gln Pro His Gly Glu Lys Ser Ser Glu Asn
 1155 1160 1165
 Tyr Gln Ile Val Lys Gly Ile Leu Glu Arg Leu Asn Lys Met Cys Gly
 1170 1175 1180
 Val Gly Glu Gln Met Arg Lys Lys Gln Gln Arg Leu Leu Lys Asn Met
 1185 1190 1195 1200
 Asp Ala His Lys Val Met Leu Asp Leu Leu Gln Ile Pro Tyr Asp Lys
 1205 1210 1215
 Asn Asp Asn Lys Met Met Glu Ile Leu Arg Tyr Thr His Gln Phe Leu
 1220 1225 1230
 Gln Lys Phe Cys Ala Gly Asn Pro Gly Asn Gln Ala Leu Leu His Lys
 1235 1240 1245
 His Leu Gln Leu Phe Leu Thr Pro Gly Leu Leu Glu Ala Glu Thr Met
 1250 1255 1260

Gln His Ile Phe Leu Asn Asn Tyr Gln Leu Cys Ser Glu Ile Ser Glu
 1265 1270 1275 1280
 Pro Val Leu Gln His Phe Val His Cys Trp Pro Thr His Gly Arg His
 1285 1290 1295
 Val Gln Tyr Leu Asp Phe Leu His Thr Val Ile Lys Ala Glu Gly Lys
 1300 1305 1310
 Tyr Val Lys Lys Cys Gln Asp Met Ile Met Thr Glu Leu Thr Asn Ala
 1315 1320 1325
 Gly Asp Asp Val Val Val Phe Tyr Asn Asp Lys Ala Ser Leu Ala His
 1330 1335 1340
 Leu Leu Asp Met Met Lys Ala Ala Arg Asp Gly Val Glu Asp His Ser
 1345 1350 1355 1360
 Pro Leu Met Tyr His Ile Ser Leu Val Asp Leu Leu Ala Ala Cys Ala
 1365 1370 1375
 Glu Gly Lys Asn Val Tyr Thr Glu Ile Lys Cys Thr Ser Leu Leu Pro
 1380 1385 1390
 Leu Glu Asp Val Val Ser Val Val Thr His Glu Asp Cys Ile Thr Glu
 1395 1400 1405
 Val Lys Met Ala Tyr Val Asn Phe Val Asn His Cys Tyr Val Asp Thr
 1410 1415 1420
 Glu Val Glu Met Lys Glu Ile Tyr Thr Ser Asn His Ile Trp Thr Leu
 1425 1430 1435 1440
 Phe Glu Asn Phe Thr Leu Asp Met Ala Leu Val Cys Asn Lys Arg Glu
 1445 1450 1455
 Lys Arg Leu Ser Asp Pro Thr Leu Glu Lys Tyr Val Leu Thr Val Val
 1460 1465 1470
 Leu Asp Thr Ile Ser Ala Phe Phe Ser Ser Pro Phe Ser Glu Asn Ser
 1475 1480 1485
 Thr Ser Leu Gln Thr His Gln Thr Ile Val Val Gln Leu Leu Gln Ser
 1490 1495 1500
 Thr Thr Arg Leu Leu Glu Cys Pro Trp Leu Gln Gln Gln His Lys Gly
 1505 1510 1515 1520
 Ser Val Glu Ala Cys Val Arg Thr Leu Ala Met Val Ala Lys Ser Arg
 1525 1530 1535
 Ala Ile Leu Leu Pro Met Asp Leu Asp Ala His Met Ser Ala Leu Leu
 1540 1545 1550
 Ser Ser Gly Gly Ser Cys Ser Ala Ala Ala Gln Arg Ser Ala Ala Asn
 1555 1560 1565
 Tyr Lys Thr Ala Thr Arg Thr Phe Pro Arg Val Ile Pro Thr Ala Asn
 1570 1575 1580
 Gln Trp Asp Tyr Lys Asn Ile Ile Glu Lys Leu Gln Asp Ile Ile Thr
 1585 1590 1595 1600
 Ala Leu Glu Glu Arg Leu Lys Pro Leu Val Gln Ala Glu Leu Ser Val
 1605 1610 1615
 Leu Val Asp Met Leu His Trp Pro Glu Leu Leu Phe Leu Glu Gly Ser
 1620 1625 1630
 Glu Ala Tyr Gln Arg Cys Glu Ser Gly Gly Phe Leu Ser Lys Leu Ile
 1635 1640 1645
 Arg His Thr Lys Gly Leu Met Glu Ser Glu Glu Lys Leu Cys Val Lys
 1650 1655 1660
 Val Leu Arg Thr Leu Gln Gln Met Leu Gln Lys Lys Ser Lys Tyr Gly
 1665 1670 1675 1680
 Asp Arg Gly Asn Gln Leu Arg Lys Met Leu Leu Gln Asn Tyr Leu Gln
 1685 1690 1695
 Asn Arg Lys Ser Gly Pro Arg Gly Glu Leu Thr Asp Pro Thr Gly Ser
 1700 1705 1710
 Gly Val Asp Gln Asp Trp Ser Ala Ile Ala Ala Thr Gln Cys Arg Leu
 1715 1720 1725
 Asp Lys Glu Gly Ala Thr Lys Leu Val Cys Asp Leu Ile Thr Ser Thr
 1730 1735 1740

Lys Asn Glu Lys Ile Phe Gln Glu Ser Ile Gly Leu Ala Ile Arg Leu
 1745 1750 1755 1760
 Leu Asp Gly Gly Asn Thr Glu Ile Gln Lys Ser Phe Tyr Asn Leu Met
 1765 1770 1775
 Thr Ser Asp Lys Lys Ser Glu Arg Phe Phe Lys Val Leu His Asp Arg
 1780 1785 1790
 Met Lys Arg Ala Gln Gln Glu Thr Lys Ser Thr Val Ala Val Asn Met
 1795 1800 1805
 Ser Asp Leu Gly Ser Gln Pro Arg Glu Asp Arg Glu Pro Ala Asp Pro
 1810 1815 1820
 Thr Thr Lys Gly Arg Val Ser Ser Phe Ser Met Pro Ser Ser Ser Arg
 1825 1830 1835 1840
 Tyr Ser Leu Gly Pro Gly Leu His Arg Gly His Asp Val Ser Glu Arg
 1845 1850 1855
 Ala Gln Asn Asn Glu Met Gly Thr Ser Val Leu Ile Met Arg Pro Ile
 1860 1865 1870
 Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1875 1880 1885
 Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1890 1895 1900
 Glu Thr Leu Gln Phe Leu Asp Ile Met Cys Gly Ser Thr Thr Gly Gly
 1905 1910 1915 1920
 Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Asp Asn Val Gly Leu Val
 1925 1930 1935
 Ile Gln Thr Leu Glu Thr Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 1940 1945 1950
 Glu Asn Gln Thr Cys Ile Val Thr His Glu Ser Asn Gly Ile Asp Ile
 1955 1960 1965
 Ile Thr Ala Leu Ile Leu Asn Asp Ile Ser Pro Leu Cys Lys Tyr Arg
 1970 1975 1980
 Met Asp Leu Val Leu Gln Leu Lys Asp Asn Ala Ser Lys Leu Leu
 1985 1990 1995 2000
 Ala Leu Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2005 2010 2015
 Ile Ser Leu Arg Pro Gln Glu Leu Val Asp Val Ile Lys Lys Ala Tyr
 2020 2025 2030
 Leu Gln Glu Glu Glu Arg Glu Asn Ser Glu Val Ser Pro Arg Glu Val
 2035 2040 2045
 Gly His Asn Ile Tyr Ile Leu Ala Leu Gln Leu Ser Arg His Asn Lys
 2050 2055 2060
 Gln Leu Gln His Leu Leu Lys Pro Val Lys Arg Ile Gln Glu Glu Glu
 2065 2070 2075 2080
 Ala Glu Gly Ile Ser Ser Met Leu Ser Leu Asn Asn Lys Gln Leu Ser
 2085 2090 2095
 Gln Met Leu Lys Ser Ser Ala Pro Ala Gln Glu Glu Glu Asp Pro
 2100 2105 2110
 Leu Ala Tyr Tyr Glu Asn His Thr Ser Gln Ile Glu Ile Val Arg Gln
 2115 2120 2125
 Asp Arg Ser Met Glu Gln Ile Val Phe Pro Val Pro Ala Ile Cys Gln
 2130 2135 2140
 Phe Leu Thr Glu Glu Thr Lys His Arg Leu Phe Thr Thr Glu Gln
 2145 2150 2155 2160
 Asp Glu Gln Gly Ser Lys Val Ser Asp Phe Phe Asp Gln Ser Ser Phe
 2165 2170 2175
 Leu His Asn Glu Met Glu Trp Gln Arg Arg Leu Arg Ser Met Pro Leu
 2180 2185 2190
 Ile Tyr Trp Phe Ser Arg Arg Met Thr Leu Trp Gly Ser Ile Ser Phe
 2195 2200 2205
 Asn Leu Ala Val Phe Ile Asn Ile Ile Ala Phe Phe Tyr Pro Tyr
 2210 2215 2220

Val Glu Gly Ala Ser Thr Gly Val Leu Gly Ser Pro Leu Ile Ser Leu
 2225 2230 2235 2240
 Leu Phe Trp Ile Leu Ile Cys Phe Ser Ile Ala Ala Leu Phe Thr Lys
 2245 2250 2255
 His Tyr Ser Val Arg Pro Leu Ile Val Ala Leu Val Leu Arg Ser Ile
 2260 2265 2270
 Tyr Tyr Leu Gly Ile Gly Pro Thr Leu Asn Ile Leu Gly Ala Leu Asn
 2275 2280 2285
 Leu Thr Asn Lys Ile Val Phe Val Val Ser Phe Val Gly Asn Arg Gly
 2290 2295 2300
 Thr Phe Ile Arg Gly Tyr Lys Ala Met Val Met Asp Met Glu Phe Leu
 2305 2310 2315 2320
 Tyr His Val Gly Tyr Ile Leu Thr Ser Val Leu Gly Leu Phe Ala His
 2325 2330 2335
 Glu Leu Phe Tyr Ser Ile Leu Leu Phe Asp Leu Ile Tyr Arg Glu Glu
 2340 2345 2350
 Thr Leu Phe Asn Val Ile Lys Ser Val Thr Arg Asn Gly Arg Ser Ile
 2355 2360 2365
 Leu Leu Thr Ala Leu Leu Ala Leu Ile Leu Val Tyr Leu Phe Ser Ile
 2370 2375 2380
 Val Gly Phe Leu Phe Leu Lys Asp Asp Phe Ile Leu Glu Val Asp Arg
 2385 2390 2395 2400
 Leu Pro Gly Asn His Ser Arg Ala Ser Thr Leu Gly Met Pro His Gly
 2405 2410 2415
 Ala Ala Thr Phe Met Gly Thr Cys Ser Gly Asp Lys Met Asp Cys Val
 2420 2425 2430
 Ser Glu Val Ser Val Pro Glu Ile Leu Glu Glu Asp Glu Glu Leu Asp
 2435 2440 2445
 Ser Thr Glu Arg Ala Cys Asp Thr Leu Leu Met Cys Ile Val Thr Val
 2450 2455 2460
 Met Asn His Gly Leu Arg Asn Gly Gly Val Gly Asp Ile Leu Arg
 2465 2470 2475 2480
 Lys Pro Ser Lys Asp Glu Ser Leu Phe Pro Ala Arg Val Val Tyr Asp
 2485 2490 2495
 Leu Leu Phe Phe Ile Val Ile Ile Val Leu Asn Leu Ile Phe
 2500 2505 2510
 Gly Val Ile Ile Asp Thr Phe Ala Asp Leu Arg Ser Glu Lys Gln Lys
 2515 2520 2525
 Lys Glu Glu Ile Leu Lys Thr Thr Cys Phe Ile Cys Gly Leu Glu Arg
 2530 2535 2540
 Asp Lys Phe Asp Asn Lys Thr Val Ser Phe Glu Glu His Ile Lys Leu
 2545 2550 2555 2560
 Glu His Asn Met Trp Asn Tyr Leu Tyr Phe Ile Val Leu Val Arg Val
 2565 2570 2575
 Lys Asn Lys Thr Asp Tyr Thr Gly Pro Glu Ser Tyr Val Ala Gln Met
 2580 2585 2590
 Ile Lys Asn Lys Asn Leu Asp Trp Phe Pro Arg Met Arg Ala Met Ser
 2595 2600 2605
 Leu Val Ser Gly Glu Gly Glu Gly Glu Gln Asn Glu Ile Arg Ile Leu
 2610 2615 2620
 Gln Glu Lys Leu Gly Ser Thr Met Lys Leu Val Ser His Leu Thr Ala
 2625 2630 2635 2640
 Gln Leu Asn Glu Leu Lys Glu Gln Met Thr Glu Gln Arg Lys Arg Arg
 2645 2650 2655
 Gln Arg Leu Gly Phe Val Asp Val Gln Asn Cys Met Ser Arg
 2660 2665 2670

<210> 21
 <211> 4
 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<221> VARIANT

<222> 2, 3

<223> Xaa = Any amino acid

<400> 21

Arg Xaa Xaa Ser

1

<210> 22

<211> 9759

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 22

gagagaaaagc gcacgccgag aggagggtgtg ggtgttccgc tcccatccta acggaacgag 60
ctcccctttc gcgacatgg gattgccccag cggctgtctaa cccctgtcct ggtcctgtatc 120
cctcaaaccg gctgtggctcc ccggtcacca agtagctgac tacaaaggat ttgcatacctt 180
ggctgggagt ccattggcta cagagtgcct gacctgggtc aggctttca acaaggacat 240
gtctgacaaa atgtcttagtt tcctacatat cgagacatt tggatctgt atgcagaggg 300
atctacgaat ggatttatca gcaccttggg cttgggtat gaccgttgcg ttgtacagcc 360
agaagctggg gacctaaca atccacccaa gaaattcaga gactgcctct ttaagctatg 420
tcctatgaat cgatattctg cacagaagca gttctggaaa gctgctaagc ccggggccaa 480
cagtacaaca gatgcgggtgc tgctcaacaa attgcatcat gctgcagact tgaaaaagaa 540
gcagaatgag acagaaaaaca gggaaattgct ggggacggtc atccagatg gcaacgtgat 600
ccagctccta catttggaaaa gcaataaaata cttaactgtg aataagggc ttctgcctt 660
gctggagaag aacgcctatga gaggtaatgtt ggtatggggct ggaaatgaag ggtcttggtt 720
ttacatttcg ccgttctaca agctccgctc catcgagac atgtgtgtca taggtgacaa 780
ggtagtttg aaccctgtca atgctgggca gccgctacat gccagcagcc atcagctgtt 840
ggataacccg ggctgcaatg aggtcaactc cgtcaactgt aacacaagct gggaaatagt 900
gcttttcatg aaatggatgt ataacaaaga tgacattcta aaaggaggtg atgtggtaag 960
actcttccat gctgagcaag agaagtttct cacgtgcgtat gaggcacagga agaagcagca 1020
cgtcttcctg aggacaaccg gcagacagtc agccacgtcg gccaccagct ccaaagccct 1080
gtggaaatgtt gaggtatgtcc agcatgaccc atgtcggttgggt ggagctgggt actggatag 1140
cctcttcccg ttcaagcacc tggctacagg gcattacttg gcagcagagg tagaccctga 1200
cttgaggaa gaatgcctgg agtttcagcc ctcagttggac cctgatcagg acccatctcg 1260
gagcagggtt agaaatgccc aagaaaaaat ggtgtactct ctggctctg tgccctgaggg 1320
caacgacatc tcctccatct ttgagctaga cccacaact ctacgtggag gtgacagccct 1380
tgtcccaagg aactcctatg tccggctctag acacctgtgt acaaacacct gggttcacag 1440
cacaacatc cccattgaca aggaagagga aaaacctgtc atgctgaaga ttgttacctc 1500
tcccctgaag gaggacaagg aagcttttc catagcccc gtttctctg ctgaggttcg 1560
ggacctggac ttgcctatg atgcctggaa ggtgtgggc tccatcgctg ggaagttgga 1620
aaaggccacc atcaccctaga atgagagaag gtctgtcacc aagctgtgg aagacttgg 1680
ttactttgtc acgggtggaa cgaactctgg ccaagacgtg cttgaatgt tcttctctaa 1740
gcccaaccga gagcggcaga agctgtatg ggaacagaat attctcaagc agatcttcaa 1800
gttttgcag gccccttca cggactgcgg ggtatggcca atgcttcggc tggaggagct 1860
gggggaccag cggcacgctc ctttcagaca catttgcggc ctctgcataa gggtcctgag 1920
acactcacag caagactaca ggaagaacca ggatcataa gccaaggact ttggcttcat 1980
gcagaagcag atggctatg atgtgttggc cgaagacacc atcactgccc tgctccacaa 2040
caaccgaaag ctccctggaaa agcacatcac cgcagcagag attgacacgt ttgtcagcc 2100

ggtgcgaaaag aacaggggagc ccaggttctt ggattacctc tctgacctct gtgtatccat 2160
 gaataagtca atccctgtga cccaggagct catttgtaaa gctgtgtga atccccaccaa 2220
 tgctgacatc ctgattgaga ccaagttggc tctttctcgat tttaggtttg aaggcgtttc 2280
 caccggagag aatgctctgg aagctgggaa agatgaggaa gaggtgtggc tggctggag 2340
 ggacagcaac aaagagatcc gtagcaagag tgttagggaa ttggcacaag atgctaaaga 2400
 ggacagcaag gaagacaggag atgtcctcag ctactacagg tatcagctga acctcttgc 2460
 aaggatgtgt ctggaccgc c actacatggc catcaatgaa atatccggc agctggatgt 2520
 tgacctcatc ctccgctgca tggccatgtga gaacctcccc tatgacctca gacatcctt 2580
 ttggcccttc atgcttcaca tgcattgtgga ccgagatccc caggagcagg tgaccctgt 2640
 gaaatacgc cgtctgtgg cagaaattcc ctccgagatc gccattgacg actatgacag 2700
 cagtggagca tcgaaggatg aaatcaagga gaggtttgt cagacgatgg agtttggtga 2760
 ggagtacctg agagatgtgg tttgtcaaag attccccctt tctgataagg agaaaaataa 2820
 gctcacattt gagggtgtga acttagccag gaacctcata tactttggct tctacaactt 2880
 ttctgacattt ctccgattaa ccaagatctt ctggcaatc ttagactgtg ttcatgtgac 2940
 aaccatctt cccattagca agatgacgaa aggcaagag aataaaggca gcaacgtgat 3000
 gagatctatc catggagttt gggagctcat gaccagggtg gtgcttcggg gaggaggctt 3060
 ttggccatgtt actccatgtt ctgctgcctt tgaaggaaat gtgaagcagg cagagccaga 3120
 gaaagaggat atcatggtca tggacaccaa gttaaagatc attgaatac tccagtttat 3180
 tttaaatgtt agattggatt ataggatctc ctgcctcctt tggatattt a gcccggatgt 3240
 tggatgaaaggc aattcccaatg catcagaaac atccctccga aacagcagcc aagaaggggcc 3300
 aagtaatgtt ccaggtgtc ttgacttttga acacattgaa gagcaagcagg aaggcatctt 3360
 tgggggaagt gaggagaaca cacctctgga ctggatgtat catggggca gAACCTTCC 3420
 cagggtctcg ctccacttga caatgcatttga ttacccaccc ctgggtctg gggccctgca 3480
 gctcctcttc cggcatttca gccagaggca ggaggtcctt caggcatttca aacagggttca 3540
 actgctgggtt actagccaag atgtggacaa ctacaaacag atcaagcaag acttggacca 3600
 gctaagatcc atcggtggaga agtctgagct ctgggtatataa aaggccagg gtcccgatga 3660
 gcctatggac ggagccctcg gtgaaaacga acataagaaa actgaggagg ggaccagtaa 3720
 gccactgaag cacgaaagca ccagcagcta caactaccga gtggtaaaag agattctgat 3780
 tcgacttagc aagctctgtt ttcaagagag cgcgtcggtg aggaagagca ggaagcagca 3840
 gcagcgactg ctgaggaaca tgggtgccc tgctgtggtg ctggagctgc tgcagatccc 3900
 ctatgagaag gccgaagata ccaagatgca ggagatcatg aggctggctc acgaattttt 3960
 gcagaatttc tgcgcaggca accagcagaa ccaagtttg ctacataaac acataaacct 4020
 gtttctcaac ccaggatcc tggaaagcattt gaccatgcag cacatcttca tgaacaactt 4080
 ccagctgtgc agtggatca acgagagatg ggtccagcat ttccgttact gcatagagac 4140
 ccacgggtcg aatgtccatg atatcaagtt tctccagact attgtcaagg ccgaaggggaa 4200
 attcattttt aagtgcctt aatgtgtcat ggctgagctt gtcaattctg gagaggacgt 4260
 cctcgtgttc tacaatgaca gaggctctt ccagactctg atccagatga tgcgggtccga 4320
 gctgtgaccgg atggatgaga acagccctt catgtaccac atccatctgg tggagcttctt 4380
 ggctgtgtgc acagagggca agaatgtgtt cacagagatc aagtgcactt ccctgctccc 4440
 gctcgatgac atcggtcgat tggacttca tgaagactgt atccccggg ttaagattgc 4500
 ttacatcaac ttccgttactt actgtctatgt ggacacttgat gtggagatga agagattta 4560
 cacaagtaat cacatgtgga agttgtttga gaatttccctt gtggacatct gcaaggccctg 4620
 taacaacaca agtgcacagga agcatgcaga ctgggttctg gagaagatcg tcaactgaaat 4680
 cgtgatgagc attgtccatc ctttcttcag ctctcccttc tcagaccaga gtaccactct 4740
 gcagactcgc cagcctgtct ttgtgcagct cctgcaaggc gtgttccgag ttaccactg 4800
 caactgggtt atgcccggcc agaaaggctt ggtggagagc tggatcccg tggatcccg 4860
 ctagccaaag agccggccca tagccattcc tggatgttca gacagccaaag tcaacaacct 4920
 cttccctgaaat tcccacaaca ttgtgcagaa aacagccatg aactggcggt tatcagcccc 4980
 caacgtgtct cgttagagact ctgtctggc agtccatgtt gactaccga atattattga 5040
 gaggttacag gacatgtt ctggcttggc ggaccgactt ggcccttgg tccaggccga 5100
 gctgtctgtt ctggatgtt ttctacacag accggaaactt ctttccctg agaacaacggg 5160
 tggcaggagg aaatgcgaaa gtggaggtt catgtcaag ctcataaaac acaccaagca 5220
 gctgttagag gagaatgtt agaaactgtt cattaaatgtt ttacagaccc tcaggaaat 5280
 gatgacccaa gatagaggct atggagaaaa gcaatttcc attgtatgaat tggaaaatgc 5340
 cgagctgcca cagccaccgg aagctgagaa ctccacagag caggagctt aaccaagtcc 5400
 accccctgagg caactggaaat accataaaat gggtgaggca ctccggcaaa ttttggtcaa 5460
 ccgttactat gggaaatca gacccatgtt aagaagagatc agccttacca gctttggcaa 5520
 tggtccacta tcaccaggag gacccatgtt gcctggggga ggagggggag gtccctgggtc 5580
 cggctccaca agccgggggtt agatgagctt ggctgagggtt caatgttcatc tggacaaggaa 5640
 aggccctcc aatctgttca tcgacccatc aatgtatgtt tccagcggacc gaggatattcca 5700
 cggaaaggcatt ctccctggccca tggcacttctt ggaaggaggc aacaccacta tccagcactc 5760

atttttctgc cggctgacgg aagataagaa atcagagaag ttcttcaagg tctttacga 5820
 tcgaatgaag gtggcccagc aggaaatcaa ggcgacagtg accgtgaaca ccagcgattt 5880
 gggaaacaaa aagaagatg atgaagtgga ccgggatgcc ccatcccgga agaaagccaa 5940
 agagcccaca acacagataa cagaagaggt ccgggatcag ctcttgaag catctgctgc 6000
 caccagaaaa gccttacca cttccggag ggaggccgac cctgatgacc attaccaatc 6060
 tggggagggc acccaggcta caacggacaa agccaaggat gacctagaga tgagtgcagt 6120
 catcaccatc atgcagccta tcctgcgcct cctgcagctc ctgtgtaaa accacaaccg 6180
 cgatctgcag aatttccttc gttccaaaa taataagacc aactacaact tgggtgtga 6240
 gacactgcag tttctggact gtatctgtgg gagcacaact ggaggcctt gtcctctcg 6300
 actgtacata aatgaaaaga atgttagctt tatcaaccaa accctggaga gtcgtactga 6360
 gtactgtcaa gggccttgcc atgaaaacca gaactgcattt gccaccacg agtccaatgg 6420
 catcgatatac atcacagccc tcaccccttaa cgatatacacc cctctggga agaaacggat 6480
 ggacctgggt ttagaactga agaacaatgc ttcaaagcta ctccctggcc tcatggaaag 6540
 cagacacgat agtggaaatg cagagaggat cctgtacaac atgaggccca aggagctgg 6600
 ggaagtgatc aagaaggcct acatgcacgg cgaagtggag tttgaggatg gggagaacgg 6660
 tgaggatggc gcagcctccc ccaggaacgt gggccataac atctacatcc tcgctcacca 6720
 gttggctcggt cataacaaag aacttcaaac catgctgaaa cctggaggcc aggtggatgg 6780
 cgatgaagct ctggagttct atgcgaagca cacagcacaa attgagattt tcagactgga 6840
 ccgaactatg gaacagattt tcttcctgt gcccagcatc tgtgaattt tgactaagga 6900
 atcgaaactt cgaatatattt acaccacaga gagggatgag caaggcagca agatcaatga 6960
 cttcttcctg cgctccgagg acctttaa tgagatgaac tggcagaaga aacttcgagc 7020
 ccagcctgtc ttgtactggt ggcggccaaa catgttttgc tggagcagca ttccttcaa 7080
 cctggccgtc ctgatgaacc tgctgggtgc gtttttctac ccatttaaag gagtggagg 7140
 aggaacacta gagccgact gtcggccct cctgtggaca gccatgctca tctctctggc 7200
 aattgtcatt ggcgtccccca agccccatgg catccgggccc ttaattgtttt ctacaatcc 7260
 acgactgata ttttcaatgg ttttcaatgtt ttttcaatgtt ttttcaatgtt 7320
 ctgcaataaaa atcatcttcc ttttcaatgtt ttttcaatgtt ttttcaatgtt 7380
 ctaccgagcc atgggtcttcc ttttcaatgtt ttttcaatgtt ttttcaatgtt 7440
 tgccatgggc ctcttcgttcc ttttcaatgtt ttttcaatgtt ttttcaatgtt 7500
 cagagaggag acttttcaatgg ttttcaatgtt ttttcaatgtt ttttcaatgtt 7560
 ctgtacagcg gtcctggctc ttttcaatgtt ttttcaatgtt ttttcaatgtt 7620
 cttcaaggat gactttatct ttttcaatgtt ttttcaatgtt ttttcaatgtt 7680
 aacttggtagg agtttggccca acgatttccct ttttcaatgtt ttttcaatgtt 7740
 ggagaactgc accttccgg cacccaaaga agagctgtc cctgtggaaag aaacggaaaca 7800
 ggataaggag cacacgtgtg agacactgtc catgtgcattt gtcaccgttc tgagtgcacgg 7860
 gctgcggagt gggggccggag taggagatgt gtcaggaaag ccattccaaag aggagccct 7920
 gtttgcgtca aggggtatct ttttcaatgtt ttttcaatgtt ttttcaatgtt 7980
 gaaccttcaatgg ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8040
 gaaggaagag atcttaaaaaa ccacgtgttcc ttttcaatgtt ttttcaatgtt 8100
 caataagacc gtcaccccttcc ttttcaatgtt ttttcaatgtt ttttcaatgtt 8160
 gtgtttccatc gtgtttccatc ttttcaatgtt ttttcaatgtt ttttcaatgtt 8220
 cgtggcagag atgatcaggg aaagaaaacct ttttcaatgtt ttttcaatgtt 8280
 ctttgttccatc agtgcatttcc ttttcaatgtt ttttcaatgtt ttttcaatgtt 8340
 ggagtccacc atgaagctgg ttttcaatgtt ttttcaatgtt ttttcaatgtt 8400
 gatgacagaa caaaggaaagc agaaaacaaag aatggccctt ttttcaatgtt 8460
 gaatgtcaac ccacacgttcc ttttcaatgtt ttttcaatgtt ttttcaatgtt 8520
 ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8580
 ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8640
 ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8700
 gtttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8760
 gtttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8820
 gtttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8880
 aacttccgttcaatgg ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 8940
 ataaatgggtt aaatatcaaa ttttcaatgtt ttttcaatgtt ttttcaatgtt 9000
 tggcccttgg gcaattttgtt accttgcattt ttttcaatgtt ttttcaatgtt 9060
 aatggcattt gtcaccccttcc ttttcaatgtt ttttcaatgtt ttttcaatgtt 9120
 attcattttt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 9180
 catttaaagg ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 9240
 tcgtgaaat aatttttttcaatgg ttttcaatgtt ttttcaatgtt ttttcaatgtt 9300
 gtttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 9360
 tagctgtatgg ttttcaatgtt ttttcaatgtt ttttcaatgtt ttttcaatgtt 9420

attatgcata tatacacata tacatccata taaggcaaag taggagctgt ccccttagga 9480
tgcatagctg ccccccttagg gtgcagagct caacactgac agtgctgttc tgagagagcc 9540
acgtttgggt ttatattctt tgtcacatga ttctttctt ggatgtgtgc aagtataaca 9600
ggaagtgttt tctacctgtt gtttttgc tacctgggtc tcgtttact agaccatctc 9660
tgcacaaaaag ttaaaaaaat gaaccgtaag cagagttctg aagcaagtca agttgttaag 9720
tgcatatcg aaattattta ataaatgacg cagaatact 9759