Learning From Data Lecture 21 Neural Networks: Backpropagation

Forward propagation: algorithmic computation $h(\mathbf{x})$

Backpropagation: algorithmic computation of $\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \text{weights}}$

M. Magdon-Ismail CSCI 4100/6100

RECAP: The Neural Network

Zooming into a Hidden Node

layer ℓ parameters

signals in	$\mathbf{s}^{(\ell)}$	$d^{(\ell)}$ dimensional input vector
outputs	$\mathbf{x}^{(\ell)}$	$d^{(\ell)} + 1$ dimensional output vector
., 0101100 111	$\mathrm{W}^{(\ell)}$	$(d^{(\ell-1)}+1)\times d^{(\ell)}$ dimensional matrix
weights out	$W^{(\ell+1)}$	$(d^{(\ell)} + 1) \times d^{(\ell+1)}$ dimensional matrix

layers $\ell=0,1,2,\ldots,L$ layer ℓ has "dimension" $d^{(\ell)}\implies d^{(\ell)}+1$ nodes

$$\mathbf{W}^{(\ell)} = \begin{bmatrix} \mathbf{w}_1^{(\ell)} & \mathbf{w}_2^{(\ell)} & \cdots & \mathbf{w}_{d^{(\ell)}}^{(\ell)} \\ & & & \vdots & & \end{bmatrix}$$

$$\mathbf{W} = \{\mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \dots, \mathbf{W}^{(L)}\}$$
 \leftarrow specifies the network

The Linear Signal

Input $\mathbf{s}^{(\ell)}$ is a linear combination (using weights) of the outputs of the previous layer $\mathbf{x}^{(\ell-1)}$.

$$\mathbf{s}^{(\ell)} = (W^{(\ell)})^T \mathbf{x}^{(\ell-1)}$$

$$\begin{bmatrix} s_1^{(\ell)} \\ s_2^{(\ell)} \\ \vdots \\ s_j^{(\ell)} \\ \vdots \\ s_{d^{(\ell)}}^{(\ell)} \end{bmatrix} = \begin{bmatrix} (\mathbf{w}_1^{(\ell)})^{\mathrm{T}} & \dots & \\ (\mathbf{w}_2^{(\ell)})^{\mathrm{T}} & \dots & \\ & \vdots & \\ (\mathbf{w}_j^{(\ell)})^{\mathrm{T}} & \dots & \\ \vdots & \vdots & \\ (\mathbf{w}_{d^{(\ell)}}^{(\ell)})^{\mathrm{T}} & \dots & \end{bmatrix} \mathbf{x}^{(\ell-1)}$$

$$s_j^{(\ell)} = (\mathbf{w}_j^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$$

(recall the linear signal $s = \mathbf{w}^{\mathsf{T}} \mathbf{x}$)

$$\mathbf{s}^{(\ell)} \xrightarrow{\theta} \mathbf{x}^{(\ell)}$$

Forward Propagation: Computing $h(\mathbf{x})$

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

Forward propagation to compute $h(\mathbf{x})$:

$$\mathbf{x}^{(0)} \leftarrow \mathbf{x}$$

[Initialization]

_{2:} **for**
$$\ell = 1$$
 to L **do**

[Forward Propagation]

$$\mathbf{s}^{(\ell)} \leftarrow (\mathbf{W}^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$$

$$\mathbf{x}^{(\ell)} \leftarrow egin{bmatrix} 1 \ heta(\mathbf{s}^{(\ell)}) \end{bmatrix}$$

end for
$$h(\mathbf{x}) = \mathbf{x}^{(L)}$$

[Output]

Minimizing $E_{\rm in}$

$$E_{\text{in}}(h) = E_{\text{in}}(W) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$
 $W = \{W^{(1)}, W^{(2)}, \dots, W^{(L)}\}$

Using $\theta = \tanh$ makes $E_{\rm in}$ differentiable so we can use gradient descent \longrightarrow local minimum.

Gradient Descent

$$W(t+1) = W(t) - \eta \nabla E_{in}(W(t))$$

Gradient of $E_{\rm in}$

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} e(h(\mathbf{x}_n), y_n)$$

$$\frac{\partial E_{\rm in}(\mathbf{w})}{\partial \mathbf{W}^{(\ell)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \mathbf{e}_n}{\partial \mathbf{W}^{(\ell)}}$$

We need

$$\frac{\partial \mathsf{e}(\mathbf{x})}{\partial \mathrm{W}^{(\ell)}}$$

Numerical Approach

$$\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{W}_{ij}^{(\ell)}} \approx \frac{\mathbf{e}(\mathbf{x}|\mathbf{W}_{ij}^{(\ell)} + \Delta) - \mathbf{e}(\mathbf{x}|\mathbf{W}_{ij}^{(\ell)} - \Delta)}{2\Delta}$$

approximate inefficient

Algorithmic Approach

 $\mathbf{e}(\mathbf{x})$ is a function of $\mathbf{s}^{(\ell)}$ and $\mathbf{s}^{(\ell)} = (\mathbf{W}^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$

$$\frac{\partial \mathbf{e}}{\partial \mathbf{W}^{(\ell)}} = \frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{W}^{(\ell)}} \cdot \left(\frac{\partial \mathbf{e}}{\partial \mathbf{s}^{(\ell)}}\right)^{\mathrm{T}} \tag{chain rule}$$

$$= \mathbf{x}^{(\ell-1)} (\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

sensitivity

$$oldsymbol{\delta}^{(\ell)} = rac{\partial \mathsf{e}}{\partial \mathbf{s}^{(\ell)}}$$

Computing $\boldsymbol{\delta}^{(\ell)}$ Using the Chain Rule

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

Multiple applications of the chain rule:

$$\Delta \mathbf{s}^{(\ell)} \stackrel{\theta}{\longrightarrow} \Delta \mathbf{x}^{(\ell)} \stackrel{\mathbf{W}^{(\ell+1)}}{\longrightarrow} \Delta \mathbf{s}^{(\ell+1)} \cdots \longrightarrow \Delta \mathbf{e}(\mathbf{x})$$

The Backpropagation Algorithm

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

Backpropagation to compute sensitivities $\delta^{(\ell)}$:

(Assume $\mathbf{s}^{(\ell)}$ and $\mathbf{x}^{(\ell)}$ have been computed for all ℓ)

$$\delta^{(L)} \leftarrow 2(x^{(L)} - y) \cdot \theta'(s^{(L)})$$

[Initialization]

2: **for**
$$\ell = L - 1$$
 to 1 **do**

[Back-Propagation]

Compute (for tanh hidden node):

$$\theta'(\mathbf{s}^{(\ell)}) = \left[1 - \mathbf{x}^{(\ell)} \otimes \mathbf{x}^{(\ell)}\right]_1^{d^{(\ell)}}$$

$$\boldsymbol{\delta}^{(\ell)} \leftarrow \boldsymbol{\theta}'(\mathbf{s}^{(\ell)}) \otimes \left[\mathbf{W}^{(\ell+1)} \boldsymbol{\delta}^{(\ell+1)} \right]_{1}^{d^{(\ell)}}$$

 \leftarrow componentwise multiplication

5: end for

Algorithm for Gradient Descent on E_{in}

```
Algorithm to Compute E_{in}(\mathbf{w}) and \mathbf{g} = \nabla E_{in}(\mathbf{w}):
Input: weights \mathbf{w} = \{ \mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)} \}; \text{ data } \mathcal{D}.
Output: error E_{\text{in}}(\mathbf{w}) and gradient \mathbf{g} = \{G^{(1)}, \dots, G^{(L)}\}.
   Initialize: E_{\rm in} = 0; for \ell = 1, ..., L, G^{(\ell)} = 0 \cdot W^{(\ell)}.
   for Each data point \mathbf{x}_n (n = 1, ..., N) do
          Compute \mathbf{x}^{(\ell)} for \ell = 0, \dots, L. [forward propagation]
         Compute \boldsymbol{\delta}^{(\ell)} for \ell = 1, \ldots, L. [backpropagation]
        E_{\rm in} \leftarrow E_{\rm in} + \frac{1}{N} (\mathbf{x}_1^{(L)} - y_n)^2.
   for \ell = 1, \ldots, L do
   G(\ell)(\mathbf{x}_n) = [\mathbf{x}^{(\ell-1)}(\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}]
          \mathbf{G}^{(\ell)} \leftarrow \mathbf{G}^{(\ell)} + \frac{1}{N} \mathbf{G}^{(\ell)}(\mathbf{x}_n)
          end for
  _{10:} end for
```

Can do batch version or sequential version (SGD).

Digits Data

Average Intensity