This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

2004-03-11 18:08 宛先-OBLON

殿 送信元-ザクラ国際特許事務所 OIPE T-064 P.003/007 U-950

MAR 1 6 200

DOCKET NO: 204628US0

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

IN RE APPLICATION OF

MICHIYASU KOMATSU

: EXAMINER:

SERIAL NO: 09/805,035

FILED: MARCH 14, 2001

: GROUP ART UNIT: 1755

FOR: SILICON NITRIDE WEAR RESISTANT MEMBER AND

MANUFACTURING METHOD THEREOF

DECLARATION UNDER 37 C.F.R. § 1.132

COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313

SIR:

- I, Mr. Michiyasu Komatsu, declare and state as follows:
- 1. I am the named inventor of the above-identified application.
- 2 I am familiar with the claims, and have read the Office Action mailed December 16, 2003 in the above-identified application.
- 3. The present invention is characterized in that a ball-shaped wear resistant member has a rolling fatigue life of 400 hr or more. Such an excellent rolling fatigue life is based on the titanium nitride particles having a long axis in the range from 0.04 to 1 μ m and an aspect ratio in the range from 1.0 to 1.2 (at least 80% by volume of particles), and β -Si₃N₄ phase as a main phase of the silicon nitride sintered body. The rolling fatigue life of the ball-shaped wear resistant member is influenced by the form of the titanium nitride particles and the main phase of the silicon nitride sintered body (β -Si₃N₄ phase or α -Si₃N₄ phase).

•,

- 4. Tables 1 and 2 attached herewith represent experiments conducted under my supervision and/or control. The Tables show the relationship between rolling fatigue life and the main phase of the silicon nitride sintered body. Table 2 shows that silicon nitride sintered bodies having o-Si₃N₄ phase are inferior with respect to rolling fatigue life.
- 5. The following discussion of Embodiments is in connection with the Embodiments described in the specification of the above-identified application.

6. Experimental data (Table 1)

The form of Embodiment 2 (ball) is different from the form of Embodiment 1 (circular board), but Embodiment 2 is made under conditions (same composition, same degreasing condition, same heat-treatment condition, same sintering condition and same HIP condition) identical to Embodiment 1. Therefore, the main phase of the Si_3N_4 sintered body in Embodiment 1 consists essentially of β - Si_3N_4 phase in the same way as Embodiment 2.

In Table 1, under the heading "Embodiment," the first number relates to a "ball" embodiment, while the number in parenthesis relates to a "circular board" embodiment, but which is otherwise identical, as detailed above.

Part of the data in Table 1 can be found in Tables 3 and 4 of the specification.

Experimental data (Table 2)

The data in Table 2 was carried out as follows:

First, the raw materials having the composition shown in the Table 2 were made. The raw materials contain organic binder. The raw materials, after being preliminarily molded spherical by means of a mold, underwent cold isostatic pressing under a pressure of 98 MPa to prepare spherically molded bodies of a diameter 11 mm.

These molded bodies were degreased at 450°C in a stream of air for 4 hr, thereafter followed by sintering in a nitrogen gas atmosphere under the conditions shown in the Table.

2004-03-11 18:09 宛先-OBLON

The obtained eintered bodies were HIP treated under the conditions shown in the Table. The sintered bodies after the HIP treatment were polished into balls of a diameter 9.52 mm and a surface roughness Ra of 0.01 µm to prepare samples.

In the samples (ball-shaped \$13N₄ sintered bodies), the respective amounts of o-\$13N₄ phase and \$313N₄ phase in the \$13N₄ sintered bodies were measured by x-ray diffraction. Furthermore, crushing strength at room temperature, fracture toughness due to a microindentation method, and rolling fangue life were measured in the same way as described for Embodiment 2 in the specification. These measurements are shown in Table 2.

- 7. The samples shown in Table 2 have a α-Si₃N₄ phase. Table 2 shows characteristics of the atheon nitride sintered bodies having a α-Si₃N₄ phase. The rolling faugue life for all the silicon nitride sintered bodies shown therein is shorter than 400 hours due to the silicon nitride sintered bodies having a α-Si₃N₄ phase.
- 8. The undersigned declares further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any parent issuing thereon.
 - 9. Further declarant sauli not

Signature

2004 Harch, //

2004-03-11 18:10 宛先-OBLON

Embodimens		Raw M	Raw Material		Sition (9	Composition (% by mass)	F		Sintering	Sint.	H	HTP Conditions	Hous	Comst	Constituting			Rolling
			,				ļ		Conditions	homs				Phase	Phase (%)	Crushing	Fracture	Fatigue
	2,5	~		Al ₃ O ₃	AIN	VLT.		ОВМ	Team	Tione	Temp-	Time	Pressure	Ą	也	Strength	Toughaess	Life
		Oxide	#			Source	8		етарис	<u>a</u>	cratare	â	(atm)	Syk	Z,	(MPa)	(MPa·m ¹²)	Ð
									ဥ		5							
2(1)	87.5	γ,0,	5	3	8	TiO,	1.5	:	1750	4	1700	1	1000	100	1	270	7.3	X 00
26(3)	87.5	Y,O,	2	3	3	TiO,	5.5	;	1750	4	1	:	:	1004	:	245	6.9	00) ×
27 (4)	88.8	y_jO_j	5	3	3	T30,	7		1750	4	1700		1000	100	1	260	6.7	>400
28 (5)	84.0	1,00,	5	5	٦.	130,	2	;	1750	4	1700	-	1000	1004	L	285	7.1	>400
29 (6)	86.9	Y,O3	5	2	5	TiO	Э	;	1850	4	1800	1	1000	100	1	230	\$. 8	>400
30 (7)	86.5	Y,0,	5	2	2	O.I.	1.5	ı	1750	4	1700	1	300	100	:	265	6.9	00▶<
31 (8)	86.5	Y,0,	\$	S	2	TiO,	1.5	:	1600	4	1600]	1000	100	;	275	6.7	X
32 (9)	86.5	Y ₂ O ₃	Ş	j	5	TiO,	1.5	;	1750	4	1700	_	1000	1004	1	300	7.2	00 0
33 (30)	89.5	Y_2O_3	5	1	_ =	TiO,	3.5	1	1750	4	1700	_	1000	100	1	280	89	>400
34 (11)	97.0	y,0,	0.5	5	ı	TiO,	0.5	ı	1900	4	1850	1	1000	100		240	6.7	>400
35 (12)	75.0	γ,0,	10	3	\$	Tio	5	-	1700	Þ	1600	1	1000	•001	:	235	6.6	00₹<
36 (13)	87.0	Y,0,	5	3	3	TiO,	1	2	1700	4	1600	1	1000	100	-	285	7.1	¥00
37(14)	86.0	Y,0,	\$	EU.	3	TiO,	_	2	1750	¥		•	•	100	:	250	6.7	×400
38 (15)	86.0	Y20,	15	3	3	TiO ₂	1	:	1700	4	1650	-	1000	100*	-	289	6.9	004<
39 (16)	87.5	γ,0,	5	3	3	TIC	1.5	:	1750	4	00/1	•	1000	100	-	270	7.1	7400
40 (17)	87.5	Y,0,	5	.3	3	N.L.	1.5	- 1	1750	4	1700	1	1000	100	_	255	6.8	×00
41 (18)	87.5	Y,0,	3	3	3	T.B,	1.5	_	1750	4	1700	1	1000	•001		260	6.6	237
42 (19)	87.5	Y,O,	\$	æ.	3	TiSi,	1.5	_	1750	v	1700	1	1000	100		260	6.5	00) ×
43 (20)	87.5	Cc,O,	5	3	3	₹0 <u>;IL</u>	1.5	;	1750	*	1700	1	1000	100	:	275	6.7	>400
44 (21)	87.5	Nd ₃ O ₃	}	3	3	TiO,	1.5	:	1750	4	1700		1000	100	~	270	6.7	>400
45 (22)	87.5	Sm ₂ O ₄	5	3	3	TiO,	1.5	-	1750	4	1700	1	1000	100	t	255	6.6	200
46 (23)	87.5	Dy2O3	5	3	3	TiO_2	1.5	:	1750	4	1700	1	1000	100*	l	285	6.9	₩
47 (24)	85.0	Er,0,	7.5	3	3	TiO,	1.5	-	1750	4	1700	1	1000	1004		290	7.0	용
48 (25)	87.5	Yb ₂ O ₃	S		3	TiO,	1.5	1	1750	4	1700	-	1000	100	:	270	6.7	X 88
										i	ĺ					i	:	1

* Si3N4 grains consist essentially of B-Si3N4.

Table 2

		٩	9	<u> </u>			Τ	٦		T	_	Τ		-	Т	٦		Ţ	7	_	
		Rollin	_	rangue Tir		Ē	×	3	Ş		333	32,5	75.	375	ř	3	22	350	֚֚֚֚֚֡֝֝֟֝֟֝֟֝֟֝֟֝֟֝ ֚	150	
		Fracture	Transland	Office of the second	(TTO DAT)		5 R	ا	-9		6.0	6.1		6.5	105		62	6.5		5.6	
		Crushing	Shearach		(a 200)		200		240	37.0	700	260		265	160		235	260	Ť	2	
		Constituting	6	2	3	Nicio.	22	1	2	-	إر	2	Ī,	•	S	į	70	\$	75	유 유	
		Const	Phase (%)	g	2	7	22	ă	6	0,	;	2	į	,,	20	1	₹.	55	1	3	
		_		Pressure	(mta)		1000	וחייו	3	50		1000	1000	200	1000	000	302	1000	1500	355	
		HIP Candition		Time	Ξ			1		_	1		-		_	-	-	_		Ţ ,	
4 400		HIP		Temperature	ភូ	1600	1300	1500			200	non i			DOC!	1500		2000	25		
					Ē	_		4		-	_	_	¥		-	4		- -	-		
	Charles	राजाताताळ देश स्थात		Temperature	(၁	55			1600	1000	500	200		1500	3	250	1600	7,000			
	9	<u> </u>	7			_	-	1	_	-	_		_	-	,	- -	9	†			
	Raw Material Composition (% hy mass)		4	in I		- 1.5	-		٠ <u>٠</u>		7.5	7	7:7	1.5		-	1.5		٦		
) partition		12.7		1	2	-	4	2	1	i			7	,	•	2	٥	•		
	ria Com	1	2			7	-	1	7	[ç.	۳,		7	-		7	•			
	TAW Male		\ \frac{1}{2}	<u>;</u>	ŀ	-	•		^		_	Ş		C	5		^	\$			
	<u>~</u>		2		3 00	200	885	2 00	5	> 0.0	2,70	89.5		3	89.5	200	3.5	865			
		Sample			_		7	٦,		7		<u>n</u>	١	-	7			6			