EE 5907: Pattern Recognition

Name: Liu Fusheng

ID: A0214203B

Q1: Beta-binomial Naive Bayes (24%)

(a) Plots of training and test error rates versus α .

For Beta-binomial Naive Bayes Classifier, we have

$$\log p(\tilde{y} = 0 | \tilde{x}, D) \propto \log p(\tilde{y} = 0 | \lambda^{ML}) + \sum_{j=1}^{57} \log p(\tilde{x}_j | x_{i \in 0, j}, \tilde{y} = 0)$$
$$= \log \lambda^{ML} + \sum_{j=1}^{57} \log p(\tilde{x}_j | x_{i \in 0, j}, \tilde{y} = 0)$$

and

$$\log p(\tilde{y} = 1 | \tilde{x}, D) \propto \log p(\tilde{y} = 1 | \lambda^{ML}) + \sum_{j=1}^{57} \log p(\tilde{x}_j | x_{i \in 1, j}, \tilde{y} = 0)$$
$$= \log(1 - \lambda^{ML}) + \sum_{j=1}^{57} \log p(\tilde{x}_j | x_{i \in 1, j}, \tilde{y} = 1)$$

with $p(\tilde{x} = 1|D) = \frac{N_1 + \alpha}{N + 2\alpha}$, where $N_1 = \# \{\tilde{x} = 1\}$ and N = # |D|.

So for testing error, we only need to compare $\log p(\tilde{y} = 0|\tilde{x}, D)$ and $\log p(\tilde{y} = 1|\tilde{x}, D)$ for \tilde{x}, \tilde{y} in the testing set; and for training error, we only need to compare $\log p(\tilde{y} = 0|\tilde{x}, D)$ and $\log p(\tilde{y} = 1|\tilde{x}, D)$ for \tilde{x}, \tilde{y} in the training set.

The following image shows training and test error rates versus $\alpha = \{0, 0.5, 1, 1.5, 2, \dots, 100\}$.

(b) What do you observe about the training and test errors as α change?

- 1. When α increases, both the training error and test error increase overall.
- 2. For any α , the training error is less than the test error.
- 3. The generalization error (test error training error) is bounded and the bound is independent of α .

(c) Training and testing error rates for $\alpha = 1, 10$ and 100.

	Training error rates	Test error rates
$\alpha = 1$	0.10962479608482871	0.11393229166666667
$\alpha = 10$	0.11582381729200653	0.124348958333333333
$\alpha = 100$	0.13605220228384993	0.145833333333333333

Q2: Gaussian Naive Bayes (24%)

(a) Training and testing error rates for the log-transformed data.

For Gaussian Naive Bayes Classifier, we have

$$\log p(\tilde{y} = 0 | \tilde{x}, D) \propto \log p(\tilde{y} = 0 | \lambda^{ML}) + \sum_{j=1}^{57} \log p(\tilde{x}_j | x_{i \in 0, j}, \tilde{y} = 0)$$

$$= \log \lambda^{ML} + \sum_{j=1}^{57} \log p(\tilde{x}_j | \mu_{j0}, \sigma_{j0}^2)$$

$$= \log \lambda^{ML} - \sum_{j=1}^{57} \log(2\pi\sigma_{j0}^2) - \frac{(\tilde{x}_j - \mu_{j0})^2}{2\sigma_{j0}^2}$$

and

$$\begin{split} \log p(\tilde{y} = 1 | \tilde{x}, D) &\propto \log p(\tilde{y} = 1 | \lambda^{ML}) + \sum_{j=1}^{57} \log p(\tilde{x}_j | x_{i \in 1, j}, \tilde{y} = 0) \\ &= \log(1 - \lambda^{ML}) + \sum_{j=1}^{57} \log p(\tilde{x}_j | \mu_{j1}, \sigma_{j1}^2) \\ &= \log(1 - \lambda^{ML}) - \sum_{j=1}^{57} \log(2\pi\sigma_{j1}^2) - \frac{(\tilde{x}_j - \mu_{j1})^2}{2\sigma_{j1}^2} \end{split}$$

with $\mu_{j0}, \sigma_{j0}^2, \mu_{j1}, \sigma_{j1}^2$ being the ML mean and ML variance of j-th feature, class $\{0, 1\}$ separately. For testing error, we compare $\log p(\tilde{y} = 0|\tilde{x}, D)$ and $\log p(\tilde{y} = 1|\tilde{x}, D)$ for \tilde{x}, \tilde{y} in the testing set; and for training error, we compare $\log p(\tilde{y} = 0|\tilde{x}, D)$ and $\log p(\tilde{y} = 1|\tilde{x}, D)$ for \tilde{x}, \tilde{y} in the training set.

Training error rates	Test error rates
0.166721044045677	0.18359375

Q3: Logistic regression (24%)

(a) Plots of training and test error rates versus λ .

For logistic regression on binary classification, we know

$$p(y=1|x) = \frac{1}{1 + e^{-\mathbf{w}^{\top}x}}, \quad p(y=0|x) = \frac{1}{1 + e^{\mathbf{w}^{\top}x}}$$

where $\mathbf{w} = \text{vec}\{b, w\}$, which is the whole parameter set that contains weight w and bias b. Note that we concatenate 1 to start of x_i , i.e., $\mathbf{w}, x_i \in \mathbb{R}^{58}$. But we do not want to regularize the bias term, so to optimize w, we minimize the negative log likelihoood with ℓ_2 regularization:

$$NLL_{reg}(\mathbf{w}) = -\sum_{i=1}^{N} \log p(y_i|x_i, \mathbf{w}) + \frac{\lambda}{2} \|w\|_2^2$$
$$= -\sum_{i=1}^{N} [y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)] + \frac{\lambda}{2} \|w\|_2^2$$

The Newton's Method for Logistic Regression is given by

$$\mathbf{w}_{k+1} = \mathbf{w}_k - H_{reg}(\mathbf{w}_k)^{-1} g_{reg}(\mathbf{w}_k)$$
$$= \mathbf{w}_k - (H(\mathbf{w}_k) + \lambda I)^{-1} (g(\mathbf{w}_k) + \lambda \mathbf{w}_k)$$

Since we don't regularize the bias term, the iteration is modified as

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \left(H(\mathbf{w}_k) + \lambda \begin{pmatrix} 0 & 0 \\ 0 & I_D \end{pmatrix} \right)^{-1} \left(g(\mathbf{w}_k) + \lambda \begin{pmatrix} 0 \\ w_k \end{pmatrix} \right)$$

The following image shows training and test error rates versus $\lambda = \{1, 2, \dots, 9, 10, 15, 20, \dots, 100\}$.

(b) What do you observe about the training and test errors as λ change?

- 1. When λ increases, both the training error and test error fluctuated, but they are increasing asymptotically.
- 2. For any λ , the training error is less than the test error.
- 3. The generalization error (test error training error) is bounded for all λ and the bound is independent to λ .

(c) Training and testing error rates for $\lambda = 1, 10$ and 100.

	Training error rates	Testing error rates
$\lambda = 1$	0.04926590538336052	0.0618489583333333336
$\lambda = 10$	0.05187601957585644	0.061197916666666664
$\lambda = 100$	0.06133768352365416	0.06901041666666667

Q4: K-Nearest Neighbors (24%)

(a) Plots of training and test error rates versus K.

For KNN classifier, we need to find K images among training set that are closest to each training (testing) image, and compare the corresponding probability by $\frac{\#\{y=0\}}{K}$ and $\frac{\#\{y=1\}}{K}$. The following image shows training and test error rates versus $K = \{1, 2, \cdots, 9, 10, 15, 20, \cdots, 100\}$.

(b) What do you observe about the training and test errors as K change?

- 1. When K increases, both the training error and test error fluctuated, especially when K is small, but they are increasing asymptotically.
- 2. For small K, the training error is less than the test error, but when K is large enough, this may not hold.
- 3. The generalization error (test error training error) is decreasing when K increasing.

(c) Training and testing error rates for K = 1, 10 and 100.

	Training error rates	Testing error rates
K = 1	0.0006525285481239804	0.069010416666666667
K = 10	0.04469820554649266	0.07161458333333333
K = 100	0.09559543230016314	0.092447916666666667

Q5: Survey (4%)

(a) Please give an estimate of how much time you spent on this assignment.

I spent around 30 hours to finish this assignment.