ELEKTROMEHANSKI PRETVORNIKI

2 UNI

Kolokvijske naloge – Asinhronski stroji

Šolsko leto 2008/2009

Izvajalec Damijan Miljavec

Avtor dokumenta Blaž Potočnik **Skeniranje** Blaž Potočnik

UREJANJE DOKUMENTA

VERZIJA

DATUM

OPOMBE			

01.01

16.6.2009

- 1. Trifazni asinhronski motor z drsnimi obroči na rotorju ima podatke: $U_{1n} = 400 \text{ V}$, $f_1 = 50 \text{ Hz}$, $P_n = 50 \text{ kW}$, $n_n = 490 \text{ min}^{-1}$, $I_{2n} = 122 \text{ A}$, $E_{20} = 242 \text{ V}$. Določite dodatno upornost po fazi, ki jo moramo vključiti v rotorski tokokrog tako, da bo motor na gredi oddajal ½ nazivne mehanske moči pri nazivnem vrtilnem momentu!
- 2. Trifazni asinhronski motor s kratkostično kletko ima podatke: U_{1n} = 400 V, f₁ = 50 Hz, P_n = 30 kW, n_n = 735 min⁻¹, izgube trenja in ventilacije P_{tr,v} = 300 W, cos φ_n = 0.75, M_{om}/M_n = 2. Določite nazivni slip s_n, omahni slip s_{om} (iz poenostavljene Klossove enačbe), električne izgube v rotorju P_{2el}, moč vrtilnega elektromagnetnega polja P_{vp}, električno delovno moč iz omrežja P_{1n}, če so skupne izgube v železu in navitju statorja P_{Fen}+P_{Cu1n} = 1700 W, tok iz omrežja I_{1n}, izkoristek motorja η_n in frekvenco rotorske inducirane napetosti f₂.
- 3. Trifazni asinhronski motor s kratkostično kletko ima podatke: $U_{1n}=380 \text{ V}$, $f_1=50 \text{ Hz}$, $P_n=45 \text{ kW}$, $n_n=730 \text{ min}^{-1}$, $I_{1n}=93.4 \text{ A}$, fazna upornost statorskega navitja $R_1=0.1 \Omega$, izgube trenja in ventilacije $P_{tr,v}=200 \text{ W}$, $M_{om}/M_n=4.46$, $\cos \phi_{1n}=0.831$. Določite nazivni slip s_n , omahni slip s_{om} (iz poenostavljene Klossove enačbe), električne izgube v rotorju P_{2el} , moč vrtilnega elektromagnetnega polja P_{vp} , izgube v statorskem navitju P_{Cu1} , električno delovno moč iz omrežja P_{1n} , izgube v železu P_{Fen} , izkoristek motorja η_n in frekvenco rotorske inducirane napetosti f_2 .
- **4.** Asinhronski motor z drsnimi obroči in navitim rotorjem ima po katalogu proizvajalca naslednje podatke: $U_1 = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, Y, $P_n = 11 \text{ kW}$, $n_n = 1440 \text{ min}^{-1}$, $I_{1n} = 24 \text{ A}$, cos $\phi_n = 0.81$, $M_{om}/M_n = 2.5$, $E_{20} = 230 \text{ V}$, $I_{2n} = 29.5 \text{ A}$. Iz preizkusa prostega teka so znani naslednji podatki: $R_1 = 0.4 \Omega$, $P_{Fe} = 370 \text{ W}$, $P_{tr,v} = 325 \text{ W}$.
 - a. Za nazivno obratovalno stanje izračunajte slip s_n , rotorsko frekvenco f_2 , rotorsko inducirano napetost E_2 in rotorsko upornost R_2 , nazivni in omahni vrtilni moment (M_n in M_{om}), omahni slip s_{om} , nazivni izkoristek η_n , izgube v rotorskem navitju P_{2el} , moč vrtilnega elektromagnetnega polja P_{vp} .
 - b. Motor obratuje na nazivnem omrežju (U_1, f_1) . Obremenjen je tako, da je inducirana napetost v rotorskem navitju $E_2 = 6.9$ V. Izračunajte slip s_b , rotorsko frekvenco f_2 , vrtilno hitrost n_b , rotorski tok I_{2b} , vrtilni moment motorja M_{mb} in izkoristek η_b (izgube trenja, ventilacije in v železu ostanejo nespremenjene).
- 5. Za trifazni asinhronski motor z drsnimi obroči in podatki $U_{1n} = 380 \text{ V}$, $P_n = 5.5 \text{ kW}$, $n_n = 945 \text{ min}^{-1}$, $I_{1n} = 13 \text{ A}$, $\cos \varphi_n = 0.76$, $M_{om}/M_n = 3$, $E_{20} = 158 \text{ V}$, $I_{2n} = 21.3 \text{ A}$, f = 50 Hz izračunajte R_2 , M_n , M_{om} , s_n , s_{om} in η_n !
- 6. Asinhronski motor z drsnimi obroči ima podatke $P_n = 8.5 \text{ kW}$, $U_{1n} = 380 \text{ V}$, f = 50 Hz, $n_n = 2910 \text{ min}^{-1}$, $I_{1n} = 17 \text{ A}$, $\cos \phi_n = 0.88$, $E_{20} = 204 \text{ V}$, $I_{2n} = 25 \text{ A}$. Motor poganja delovni stroj, katerega bremenski moment je linearno odvisen od vrtilne hitrosti ($M_b = k * n$). Motor je pri kratko sklenjenih drsnih obročih nazivno obremenjen. Kakšne dodatne upore moramo vključiti v rotorski tokokrog, da se bo stroj vrtel z $n' = 2000 \text{ min}^{-1}$?
- 7. Trifazni asinhronski motor z drsnimi obroči ima podatke $P_n = 11 \text{ kW}$, $n_n = 720 \text{ min}^{-1}$, $I_{1n} = 29 \text{ A}$, $U_1 = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, $E_{20} = 204 \text{ V}$, $I_{2n} = 25 \text{ A}$. Motor poganja breme s karakteristiko $M_b = k * n$ in je pri tem nazivno obremenjen. Določite dodatno upornost $R_{2\text{dod}}$, ki jo moramo vključiti v rotorski tokokrog, da se bo stroj vrtel z $n' = 400 \text{ min}^{-1}$?

- 8. Asinhronski motor z drsnimi obroči in navitim rotorjem s podatki: $P_n = 15$ kW, $U_{1n} = 400$ V, $f_1 = 50$ Hz, $n_n = 720$ min⁻¹, $I_{1n} = 61$ A, $\cos \varphi_n = 0.75$, $I_{2n} = 43$ A, $E_{20} = 212$ V, $M_{on}/M_n = 2.8$ obratuje na nazivnem omrežju. V rotorski tokokrog vključimo dodatno upornost $R_{2dod} = 1.5$ Ω . Izračunajte slip s, vrtilno hitrost n in izkoristek motorja η , če je obremenjen z bremenskim momentom, ki je enak nazivnemu $M_b = M_n$ (trenje motorja je zanemarljivo)!
- 9. Trifazni asinhronski motor z drsnimi obroči na rotorju ima podatke: $U_{1n} = 400 \text{ V}$, $f_1 = 50 \text{ Hz}$, $P_n = 55 \text{ kW}$, $n_n = 730 \text{ min}^{-1}$, $I_{2n} = 122 \text{ A}$, $E_{20} = 274 \text{ V}$. Določite dodatno upornost, ki jo moramo vključiti v rotorski tokokrog tako, da bo motor na gredi oddajal ¾ nazivne mehanske moči pri nazivnem vrtilnem momentu!
- **10.** Trifazni asinhronski motor z drsnimi obroči na rotorju ima podatke: $U_{1n} = 400 \text{ V}$, $f_1 = 50 \text{ Hz}$, $P_n = 90 \text{ kW}$, $n_n = 591 \text{ min}^{-1}$, $I_{2n} = 153 \text{ A}$, $E_{20} = 358 \text{ V}$. Določite dodatno upornost po fazi, ki jo moramo vključiti v rotorski tokokrog tako, da bo motor na gredi oddajal 3/4 nazivne mehanske moči pri nazivnem vrtilnem momentu!
- **11.** Trifazni asinhronski motor z drsnimi obroči na rotorju ima podatke: $U_{1n} = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, $P_n = 45 \text{ kW}$, $n_n = 591 \text{ min}^{-1}$, $I_{2n} = 153 \text{ A}$, $E_{20} = 358 \text{ V}$. Določite dodatno upornost po fazi, ki jo moramo vključiti v rotorski tokokrog tako, da bo motor na gredi oddajal 2/3 nazivne mehanske moči pri nazivnem vrtilnem momentu!
- 12. Trifazni asinhronski motor s kratkostično kletko ima podatke: $U_{1n} = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, $P_n = 45 \text{ kW}$, $n_n = 730 \text{ min}^{-1}$, $I_{1n} = 93.4 \text{ A}$, fazna upornost statorskega navitja $R_1 = 0.1 \Omega$, izgube trenja in ventilacije $P_{tr,v} = 200 \text{ W}$, cos $\phi_{1n} = 0.831$, $M_{om}/M_n = 4.46$. Določite nazivni slip s_n , omahni slip s_{om} (iz poenostavljene Klossove enačbe), električne izgube v rotorju P_{2el} , moč vrtilnega elektromagnetnega polja P_{vp} , izgube v statorskem navitju P_{Cu1} , električno delovno moč iz omrežja P_{1n} , izgube v železu P_{Fen} , izkoristek motorja η_n in frekvenco rotorske inducirane napetosti f_2 .
- **13.** Za trifazni motor s podatki 4,5 kW, 380 V, 11 A, 700 vrt./min, cos fi = 0.75, f = 50 Hz določite nazivni slip, nazivni moment in nazivni izkoristek!
- **14.** Asinhronski motor z drsnimi obroči ima podatke: $P_n = 10$ kW, 50 Hz, 1430 vrt./min, $M_{om}/M_n = 2.5$, $M_z/M_n = 1.5$. Določite omahni iz zagonski moment. Kolikšno upornost moramo vključiti v tokokrog rotorja, da bo zagonski moment enak omahnemu ($E_{20} = 200$ V, $I_{2n} = 55$ A)?
- **15.** Trifazni asinhronski motor z drsnimi obroči na rotorju ima podatke: $U_n = 440 \text{ V}$, $f_n = 60 \text{ Hz}$, $P_n = 100 \text{ kW}$, $n_n = 876 \text{ min}^{-1}$, $I_{2n} = 200 \text{ A}$, $E_{20} = 300 \text{ V}$. Določite dodatno upornost po fazi, ki jo moramo vključiti v rotorski tokokrog, da bo motor na gredi oddajal ¼ nazivne mehanske moči pri ½ nazivnega momenta. Izgube trenja in ventilacije zanemarite.
- **16.** Dva trifazna asinhronska motorja sta mehansko povezana in poganjata isto breme. Prvi motor ima podatke: 500 kW, 1450 vrt./min, drugi pa 400 kW, 1400 vrt./min. S kakšnim slipom obratujeta motorja, če poganjata konstantno breme z navorom 5000 Nm. Ali je tako obratovanje dopustno?
- 17. Asinhronski motor z drsnimi obroči ima podatke: 10 kW, 50 Hz, 1430 vrt./min, $M_{om}/M_n = 2$. Kolikšno upornost moramo vključiti v rotorski tokokrog, da bo zagonski navor enak omahnemu ($E_{20} = 200 \text{ V}$, $I_{2n} = 55 \text{ A}$)?

- **18.** Asinhronski motor z drsnimi obroči ima podatke: $P_n = 30 \text{ kW}$, $U_1 = 380 \text{ V}$, $n_n = 972 \text{ min}^{-1}$, $I_{1n} = 102 \text{ A}$, f = 50 Hz, $E_{20} = 120 \text{ V}$, $I_{2n} = 151 \text{ A}$. Kolikšno upornost moramo vključiti v rotorski tokokrog po fazi, da bo zagonski moment enak nazivnemu?
- 19. Trifazni asinhronski motor s podatki: 4,5 kW, 380 V, 11 A, 700 vrt./min, $\cos \varphi_n = 0.75$, f = 50 Hz. Kolikšen je nazivni slip, nazivni moment, nazivni izkoristek? Izračunajte električne izgube v rotorju pri nazivni obremenitvi, če zanemarimo izgube zaradi trenja in ventilacije!
- **20.** Asinhronski motor z drsnimi obroči ima podatke: $P_n = 100$ kW, $f_n = 50$ Hz, $n_n = 740$ vrt./min, $M_{om}/M_n = 2.5$, $M_z/M_n = 1.5$. Določite omahni ter zagonski moment. Kolikšno upornost moramo vključiti v rotorski tokokrog, da bo zagonski moment enak nazivnemu $(E_{20} = 350 \text{ V}, I_{2n} = 164 \text{ A})$?
- **21.** Trifazni AM s kratkostično kletko ima sledeče nazivne podatke: $P_n = 3$ kW, $U_n = 380$ V, $n_n = 1400$ vrt./min in $M_{om}/M_n = 2.7$. Obremenjen je z dvojnim nazivnim navorom $M_b = 2$ * M_n . S kakšno hitrostjo se motor vrti?
- **22.** Desetpolni AM s kratkostično kletko s podatki $P_n = 4.5$ kW, $U_n = 380$ V, $n_n = 580$ vrt./min spušča breme z maso 151 kg. Premer vitla znaša $d_v = 10$ cm. Gravitacijski pospešek znaša g = 9.81 m/s². S kakšno hitrostjo generator spušča breme?
- 23. Trifazni asinhronski motor s kratkostično kletko ima podatke: $P_n = 30 \text{ kW}$, $U_n = 380 \text{ V}$, $f_n = 50 \text{ Hz}$, $I_n = 62 \text{ A}$, $\cos \phi_n = 0.8$, $n_n = 730 \text{ min}^{-1}$, $M_{om}/M_n = 2.4$. Izračunajte izkoristek, električne izgube v rotorju, izgube na statorju (v bakru in železu skupaj) pri nazivni obremenitvi motorja (trenje zanemarite!). Motor je nazivno obremenjen s konstantnim bremenom. Napetost omrežja se postopoma znižuje. Pri kateri napetosti omahne?
- **24.** Trifazni asinhronski motor z drsnimi obroči na rotorju ima podatke: $U_1 = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, $P_n = 5.5 \text{ kW}$, $I_{1n} = 13 \text{ A}$, $n_n = 945 \text{ min}^{-1}$, $I_{2n} = 21.3 \text{ A}$, $E_{20} = 158 \text{ V}$. Poganja ventilator $M_b = k * n^2$ in je pri tem nazivno obremenjen. Izračunajte dodatno rotorsko upornost tako, da se bo motor vrtel z $n' = 315 \text{ min}^{-1}$. Izračunajte mehansko moč na gredi, električne izgube v rotorskem tokokrogu ter dodatni upornosti! Izgube trenja zanemarite.
- **25.** Trifazni asinhronski motor ima na napisni tablici nazivne podatke: $P_n = 1.1 \text{ kW}$, $U_n = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, $I_n = 2.5 \text{ A}$, $n_n = 1380 \text{ min}^{-1}$, $\cos \phi_n = 0.8$. V laboratoriju opravljamo obremenilni preizkus s pomočjo Prony-jeve zavore, ki ima ročico dolžine r = 0.75 m. S kolikšno silo pritiska ročica na tehtnico, če smo namerili vrtilno hitrost $n' = 1400 \text{ min}^{-1}$? Predpostavite, da je karakteristika navora motorja od prostega teka do nazivne obremenitve linearna!
- **26.** Asinhronski motor z drsnimi obroči in navitim rotorjem ima po katalogu proizvajalca naslednje podatke: $P_n = 5.5 \text{ kW}$, $U_1 = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, $n_n = 945 \text{ min}^{-1}$, $I_{1n} = 13 \text{ A}$, $\cos \varphi_1 = 0.76$, $I_{2n} = 21.3 \text{ A}$, $E_{20} = 158 \text{ V}$, $M_{om}/M_n = 3$. Obratuje na nazivnem omrežju.
 - a. Izračunajte izkoristek nazivno obremenjenega motorja η_n , rotorsko inducirano napetost E_{2n} , frekvenco te napetosti f_{2n} , omahni moment M_{om} , omahni slip s_{om} in omahno hitrost n_{om} .

- b. V rotorski tokokrog vključimo $R_{2dod} = 1.5 \Omega$. Izračunajte slip s, vrtilno hitrost n in izkoristek motorja η , če je obremenjen z bremenskim momentom, ki je enak $M_b=M_n$ (trenje motorja zanemarite).
- **27.** Asinhronski motor s kratkostično kletko ima nazivne podatke: $P_n = 11$ kW, $n_n = 570$ min⁻¹, $U_n = 380$ V, f = 50 Hz, $\cos \varphi_n = 0.66$, $I_z/I_n = 4$, $M_z/M_n = 1.4$, $I_n = 30$ A, trikot vezava.
 - a. Dokoliče nazivni izkoristek η_n , nazivni slip s_n , nazivni moment motorja M_n .
 - b. Kolikšna sta zagonski tok in zagonski moment motorja, če ga zaganjamo v vezavi zvezda?
- **28.** Trifazni asinhronski motor z drsnimi obroči in navitim rotorjem $P_n = 5.5$ kW, $U_1 = 380$ V, $f_1 = 50$ Hz, $I_{1n} = 13$ A, $\cos \phi_{1n} = 0.76$, $n_n = 945$ min⁻¹, $E_{20} = 158$ V, $I_{2n} = 21.3$ A, $M_{om}/M_n = 3$ obratuje na nazivnem omrežju.
 - a. Nazivno obremenjenemu motorju izračunajte izkoristek, če so izgube trenja in ventilacije $P_{tr,v} = 100$ W; električne izgube v rotorskem navitju P_{2el} ; celotne izgube na statorju $P_{Fe} + P_{Cu1}$; rotorsko inducirano napetost E_2 in frekvenco te napetosti f_2 .
 - b. Pri kateri vrtilni hitrosti n_{om} in navoru M_{om} motor omahne?
 - c. Izračunajte vrtilno hitrost n', mehansko moč na gredi P_2 ', rotorsko inducirano napetost E_2 ', frekvenco te napetosti f_2 ', izgube v rotorskem tokokrogu P_{2el} ', če je v rotorski tokokrog vključena dodatna upornost $R_{2dod} = 3 \Omega$ (po vsaki fazi), v rotorskem tokokrogu teče ravno nazivni tok!
- **29.** Trifazni asinhronski motor s kratkostično kletko ima podatke $U_{1n}=400~V,~f_1=50~Hz,~P_n=15~kW,~n_n=475~min^{-1},~tok~iz~omrežja~I_{1n}=40~A,~izgube~trenja~in~ventilacije~P_{tr,v}=300~W,~cos~\phi_n=0.65,~M_{om}/M_n=2.1.~Določite~nazivni~slip~s_n,~omahni~slip~s_{om}~(iz~poenostavljene~Klossove~enačbe),~električne~izgube~v~rotorju~P_{2el},~moč~vrtilnega~elektromagnetnega~polja~P_{vp},~električno~delovno~moč~iz~omrežja~P_{1n},~izkoristek~motorja~\eta_n~in~frekvenco~rotorske~inducirane~napetosti~f_2.$
- **30.** Trifazni asinhronski motor z drsnimi obroči in navitim rotorjem s podatki $P_n = 11 \text{ kW}$, $n_n = 955 \text{ min}^{-1}$, $I_{1n} = 25 \text{ A}$, $U_1 = 380 \text{ V}$, $f_1 = 50 \text{ Hz}$, $E_{20} = 210 \text{ V}$, $I_{2n} = 31.6 \text{ A poganja breme}$ $M_b = k * n^2$ in je pri tem nazino obremenjen. Določite dodatno upornost R_{2dod} , ki jo moramo vključiti v rotorski tokokrog tako, da se bo motor vrtel s hitrostjo n' = 600 min⁻¹.