Finding inverses: The Extended Euclidean Algorithm

- Inverses exists if e and m do not have any common factor.
- To find e⁻¹ (inverse of e) such that ee⁻¹ = 1 mod m we can use the Extended Euclidean Algorithm.
 - Before doing so it is instructive to look at the Euclidean algorithm.

GCD's and the Euclidean Algorithm

- The greatest common divisor (GCD) of two integers n₁ and n₂, not both zero, is the largest integer that divides n₁ and n₂.
- It is denoted gcd(n₁,n₂).
- Example: gcd(30, 15) = 15gcd(30, -12) = 6
- We can calculate the gcd using Euclidean algorithm.

Euclidean Algorithm

- 1) Divide the larger number by the smaller and retain the remainder.
- 2) Divide the smaller original number by the remainder, again retaining the remainder.
- 3) Continue dividing the prior remainder by the current remainder until the remainder is zero, at which point the last (non-zero) remainder is the greatest common divisor.
- **Example**: gcd(84,49).
 - 84/49 → remainder 35.
 - 49/35 → remainder 14.
 - $35/14 \rightarrow$ remainder 7.
 - $14/7 \rightarrow \text{remainder 0}$.

Therefore gcd(84,49)=7.

Extended GCD for integers

The Extended GCD Theorem for Integers states:

Given integers n_1 and n_2 , not both zero, there exist integers a and b such that $gcd(n_1,n_2)=a^*n_1+b^*n_2$

These integers are not necessarily unique though.

• Example:

$$gcd(15,12) = 3 = (+1)*15+(-1)*12$$

$$= (+1-12)*15+(-1+15)*12$$

$$= (-11)*15+(+14)*12$$

If $gcd(n_1, n_2)=1$ then it means that we can find the inverses $n_1 \mod n_2$ and $n_2 \mod n_1$.

$$gcd(n_1,n_2)=a*n_1+b*n_2=1$$

• Example:

$$gcd(65,14) = 1 = (-3)*65+(14)*14$$

 The Extended Euclidean algorithm calculates a, b and g=gcd(n₁,n₂) such that g=a*n₁+b*n₂.

Find gcd(39,11) and a,b, s.t 39a+11b=gcd(39,11)

	n ₁	n ₂	r	q	a ₁	b ₁	a ₂	b ₂
Initialise	39	11	6	3	1	0	0	_ 1
	11	6	5	1	0 4	1	1	-3
	6	5	1	1	1	-3	-1	_ 4
	5	1	0	5	-1 ^	4	2	-7
gcd(39,11)=1 1=39*2+11*(-7)								
a = 2, b = -7								