IT-Security (ITS) B1 DIKU, E2024

Today's agenda

Forensics defined

Memory forensics

Disk forensics

Forensics defined

Digital forensics is a branch of forensic science encompassing the recovery and investigation of material found on digital devices

Applied in a corporate, civil, or criminal setting (originated in law enforcement)

Applied to a **security** investigation or **personnel** investigation

In security investigations, forensics either means a **root cause or impact analysis** of a cyber-attack, often post-mortem, **or simply techniques** used in the process of uncovering, understanding, and responding to a security incident

In security, **DFIRMA** = digital forensics + incident response + malware analysis

DFIRMA in practice

while true:

intrusion analysis

if intrusion suspected:

preliminary analysis

if intrusion verified:

repeat until incident fully contained:

forensic analysis malware anaysis incident response

update plans

Recap: Intrusion detection

Many forms of forensics

Digital forensics =

Computer forensics

Memory forensics

Network forensics

Mobile forensics

Etc. forensics

Memory forensics

Memory forensics

From Wikipedia:

"Memory forensics is forensic analysis of a computer's memory dump.

Its primary application is investigation of advanced computer attacks which are stealthy enough to avoid leaving data on the computer's hard drive."

First, get a copy

Live acquisition

Different techniques

Live analysis

Direct analysis of the running kernel

Dead acquisition

Hibernation files, page files

Virtualization - thank you

What to find in memory?

Running processes Memory only malware

Listening sockets Closed connections

Open connections Terminated processes

Encryption keys Open file handles

Credentials Deobfuscated code

Memory forensic analysis process

- 1: Find rogue processes
- 2: Analyse DLLs
- 3: Review network artefacts
- 4: Look for evidence of code injections
- 5: Dump suspicious processes → further analysis

How to find processes (on Windows)

How to find processes (on Windows)

Process enumeration:

Step 1 revisited: Find rogue processes

Those that:

Hide

Have odd parents

Do network comm but shouldn't

Have unusually many handles open

Contain maliciously injected code

...

Direct kernel objection manipulation (DKOM)

Example: Stuxnet

Volatility and Stuxnet

Edit View Search Terminal Help						ninal	
us_stux]\$ python volatility atility Foundation Volatili	/vol.py -	f stux.	mempr	ofile=Wi	nXPSP3x	B6 pslist	
set(V) Name			Thds	Hnds	Sess	Wow64 Start Exi	
		Θ	59	403		0	
23c8830 System 20df020 smss.exe 21a2da0 csrss.exe	376	4	3	19		0 2010-10-29 17:08:53 UTC+0000	
21a2da0 csrss.exe	600	376	11	395	0	0 2010-10-29 17:08:54 UTC+0000	
lda5650 winlogon.exe	624	376	19	570	0	0 2010-10-29 17:08:54 UTC+0000	
2073020 services.exe	668	624	21	431	0	0 2010-10-29 17:08:54 UTC+0000	
1e70020 lsass.exe	680	624	19	342	0	0 2010-10-29 17:08:54 UTC+0000	
23315d8 vmacthlp.exe	844	668	1	25	0	0 2010-10-29 17:08:55 UTC+0000	
ldb8da0 svchost.exe	856	668	17	193	0	0 2010-10-29 17:08:55 UTC+0000	
le61da0 svchost.exe	940	668	13	312	0	0 2010-10-29 17:08:55 UTC+0000	
22843e8 svchost.exe	1032	668	61	1169		0 2010-10-29 17:08:55 UTC+0000	
le18b28 svchost.exe	1080	668	5	80	0	0 2010-10-29 17:08:55 UTC+0000	
1ff7020 svchost.exe	1200	668	14	197	0	0 2010-10-29 17:08:55 UTC+0000	
1fee8b0 spoolsv.exe	1412	668	10	118	0	0 2010-10-29 17:08:56 UTC+0000	
le0eda0 jgs.exe	1580	668	5	148	0	0 2010-10-29 17:09:05 UTC+0000	
1fe52d0 vmtoolsd.exe	1664	668	5	284	0	0 2010-10-29 17:09:05 UTC+0000	
21a0568 VMUpgradeHelper	1816	668	3	96	0	0 2010-10-29 17:09:08 UTC+0000	
205ada0 alg.exe	188	668	6	107	0	0 2010-10-29 17:09:09 UTC+0000	
20ec7e8 explorer.exe	1196	1728	16	582	0	0 2010-10-29 17:11:49 UTC+0000	
20ecc10 wscntfy.exe	2040	1032	1	28	0	0 2010-10-29 17:11:49 UTC+0000	
1e86978 TSVNCache.exe	324	1196		54	0	0 2010-10-29 17:11:49 UTC+0000	
lfc5da0 VMwareTray.exe	1912	1196	1	50	0	0 2010-10-29 17:11:50 UTC+0000	
le6b660 VMwareUser.exe	1356	1196	9	251	0	0 2010-10-29 17:11:50 UTC+0000	
210d478 jusched.exe	1712	1196	1	26	0	0 2010-10-29 17:11:50 UTC+0000	
2279998 imapi.exe	756	668		116	0	0 2010-10-29 17:11:54 UTC+0000	
22b9a10 wuauclt.exe	976	1032	3	133	0	0 2010-10-29 17:12:03 UTC+0000	
1c543a0 Procmon.exe	660	1196	13	189	0	0 2011-06-03 04:25:56 UTC+0000	
1fa5390 wmiprvse.exe	1872	856		134	0	0 2011-06-03 04:25:58 UTC+0000	
1c498c8 lsass.exe	868	668	2	23	0	0 2011-06-03 04:26:55 UTC+0000	
1c47c00 lsass.exe	1928	668		65	0	0 2011-06-03 04:26:55 UTC+0000	
1c0cda0 cmd.exe	968	1664			ō		L1-06-03 04:31:36 UTC+0000
1f14938 ipconfig.exe	304	968	Θ -		0	0 2011-06-03 04:31:35 UTC+0000 201	11-06-03 04:31:36 UTC+0000
us stux]\$ python volatility	/vol.py -	f stux.r	mempr	ofile=Wi			
atility Foundation Volatili							
le70020 lsass.exe	680	624	19	342	0	0 2010-10-29 17:08:54 UTC+0000	
1c498c8 lsass.exe	868	668	2	23	0	0 2011-06-03 04:26:55 UTC+0000	
1c47c00 Lsass.exe	1928	668	4	65	ō	0 2011-06-03 04:26:55 UTC+0000	

Further reading

Disk (or, file system) forensics

"Vi fik ham. Bombeplanen lå på hans bærbar."

Copy

+ calculate hashsum

Deleted != destroyed

When a file is deleted, data still exists on disk until overwritten

If overwritten, remnants may still exist in

extra copies of the file

page/swap/hibernation file, or

elsewhere on the disk due to (de)fragmentation

However, if disk wiped, only just once, recovery infeasible

Think libraries

Format is not wiping

Formats create and replace file system structures

Files are not overwritten

Regular formats take longer as the disk is scanned for bad sectors

Use wiping software for wiping

Further reading

