Optimisation Methods - Linear Programming

Mateusz Pełechaty

1 April 2024

1 Exercise (Sysło, Deo, Kowalik 1993)

One of the tests for precision and resistance of LP algorithms is the following problem:

$$\min \mathbf{c}^T \mathbf{x}$$

$$A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \geqslant \mathbf{0}$$

$$A_{ij} = \frac{1}{i+j-1}, \quad i, j = 1, \dots, n$$

$$c_i = b_i = \sum_{i=1}^n \frac{1}{i+j-1}, \quad i = 1, \dots, n$$

It's solution should be x = 1. Problem is *ill-conditioned* due to A being Hilbert's Matrix.

- 1. Describe problem in GNU MathProg and solve it in glpsol \square
- 2. Use glpsol to find n for which there is 2-digit precision. \square
- 3. Print relative error $||x-\bar{x}||_2/||x||_2$ for every n. \bar{x} is computed $x \square$
- 4. Generalize the solution by separating model and data. Maximally parametrize model description
- 5. * Solve it with all clp, HiGHS, GLPK ⊠

2 Exercise (Camper rental)

Certain company rents campers in several cities and in two standards: BASIC and VIP. In this situation, company has surplus of campers in some places and shortage in other places. It can be seen here.

	Shortage		Surplus		
cities	BASIC VIP BASIC		VIP		
Warszawa		4	14		
Gdańsk	20	_		2	
Szczecin	-	_	12	4	
Wrocław	8	_		10	
Kraków	-	8	10	_	
Berlin	16	4		_	
Rostok	2	_		4	
Lipsk	3	_		10	
Praga		4	10 —		
Brno	9	_	_ 2		
Bratysława	4	_	_	_ 8	
Koszyce	4	_		4	
Budapeszt	8			4	
Total	74	20	46	48	

Table 1: Shortage and Surplus of campers in certain places

Plan out camper relocation with following constraints:

- Cost of BASIC camper relocation is proportional to distance
- Cost of VIP is 15% higher than BASIC
- BASIC can be replaced by VIP

Do the following

Describe problem in GNU MathProg and solve it in glpsol
 Generalize the solution by separating model and data. Maximally parametrize model description
 Is explicitly writing in model decision variables are integers necessary?

3 Exercise (Factory)

Factory produces 4 type of products. P_1 , P_2 , P_3 , P_4 . To create them, it uses resources R_1 , R_2 , R_3 . During creation of P_1 , and P_2 , some of R_i turns into $W_{i,j}$ - Waste from creation of P_j out of resource R_i . $W_{i,j}$ can be used in creation of P_3 and P_4 , however if it won't be used, then factory will have to pay for utilization. Factory wants to know how to maximize profit.

Resource	Min	Max	Cost of 1kg
	(kg)	(kg)	(\$)
R_1	2000	6000	2.1
R_2	3000	5000	1.6
R_3	4000	7000	1.0

Table 2: Minimum and maximum values of resources to buy

Product	Value
P_1	$3\$/\mathrm{kg}$
P_2	$2.5\$/\mathrm{kg}$
P_3	$0.6\$/\mathrm{kg}$
P_4	$0.5\$/\mathrm{kg}$

Table 3: Value of products

Waste	Cost
$W_{1,1}$	0.1
$W_{1,2}$	0.2
$W_{2,1}$	0.2
$W_{2,2}$	0.2
$W_{3,1}$	0.4
$W_{3,2}$	0.5

Table 4: Disposal Costs

Product	Input	Variable Constraints Output	
P_1	$r_1 \operatorname{kg} R_1,$ $r_2 \operatorname{kg} R_2,$ $r_3 \operatorname{kg} R_3$	$r_1 \geqslant = 0.2 \cdot r,$ $r_2 \geqslant = 0.4 \cdot r,$ $r_3 \leqslant = 0.1 \cdot r$ $r = r_1 + r_2 + r_3$	$0.1 \cdot r_1 \text{ kg W11}, \\ 0.2 \cdot r_2 \text{ kg W21}, \\ 0.4 \cdot r_3 \text{ kg W31}$ Other P1
P_2	$r_2 \operatorname{kg} R_2$	$egin{aligned} r_1 \geqslant &= 0.1 \cdot r, \ r_3 \leqslant &= 0.3 \cdot r \ \mathrm{r} = r_1 + r_2 + r_3 \end{aligned}$	$0.2 \cdot r_1 \text{ kg W12},$ $0.2 \cdot r_2 \text{ kg W22},$ $0.5 \cdot r_3 \text{ kg W32},$ Other P2
P_3	$w_{1,1} \text{ kg } W_{1,1}$ $w_{2,1} \text{ kg } W_{2,1}$ $w_{3,1} \text{ kg } W_{3,1}$ $r_1 \text{ kg } R_1$	$r_1 = 0.3 \cdot r$ $r = w_{1,1} + w_{2,1} + w_{3,1} + r_1$	r kg P3
P_4	$w_{1,2} \text{ kg } W_{1,2}$ $w_{2,2} \text{ kg } W_{2,2}$ $w_{3,2} \text{ kg } W_{3,2}$ $r_2 \text{ kg } R_2$	$r_2 = 0.3 \cdot r$ $r = w_{1,2} + w_{2,2} + w_{3,3} + r_2$	r kg P4

Table 5: Possible Production Lines

Do the following

- 1. Describe problem in GNU MathProg and solve it in glpsol
- 2. How many resources R_1 , R_2 , R_3 should factory buy? \square
- 3. How many resources should be used to what product? \square
- 4. How many waste should be utilized and how many should go towards production of C and D? \square

4 Exercise (Student Schedule)

Student needs to choose his schedule. He needs to pick 5 subjects (A, B, C, D, E). For every subject there are 4 groups and he needs to pick one of them. Groups are following:

	A	В	\mathbf{C}	D	${f E}$
Ι	Pn. 13-15	Pn. 13-15	Wt. 8-11	Pn. 8-10	Pn. 9-10:30
II	Wt. 10-12	Wt. 10-12	Wt. 10-13	Pn. 8-10	Pn. 10:30-12
III	Śr. 10-12	Śr. 11-13	Cz. 15-18	Cz. 13-15	Pt. 11-12:30
IV	Śr. 11-13	Cz. 8-10	Cz. 17-20	Pt. 13-15	Pt. 13-14:30

He also has preferences and they are following:

	A	В	\mathbf{C}	D	Ε
I	5	4	3	10	0
II	4	4	5	10	5
III	10	5	7	7	3
IV	5	6	8	5	4

He wants to sign up for classes and choose schedule that maximizes sum of preference points. There are also 3 constraints that he wants to meet:

- Do not sign up for more than 4 hours a day
- Everyday, have 1 hour lunch break between 12 and 14.

• Practice sport at least once a week. Trainings are Mon. 13-15, Wed. 11-13, Wed. 13-15
Do the following
1. Describe problem in GNU MathProg and solve it in glpsol \square
2. Is there a schedule where all groups are only in Mon, Tue, Thu, and all preference points are not less than 5? \square