2

(9) BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 1

Aktenzeichen:

P 26 15 341.3

Anmeldetag:

8. 4.76

2

Offenlegungstag:

27. 10. 77

30 Unionspriorität:

39 39 39

被禁责的人的

(54) Bezeichnung:

Phosphorigsäureester enthaltende Polyalkylenterephthalate

6

Zusatz zu:

P 22 55 639.4

1

Anmelder:

Bayer AG, 5090 Leverkusen

1

Erfinder:

Binsack, Rudolf, Dr., 4150 Krefeld; Rempel, Dieter, Dr., 5090 Leverkusen; Eimers, Erich, Dr., 4150 Krefeld

- 1. Verfahren zur Stabilisierung gemäß Hauptpatent (Patentanmeldung P 22 55 639.4), dadurch gekennzeichnet, daß anstelle hochmolekularer Polycarbonate hochmolekulare lineare Polycarbonate stabilisiert werden.
- 2. Hochmolekulare lineare Polyester, denen 0,01 0,5 Gew. % Ester A zugesetzt werden.

Le A 16 918

-8 -

709843/0173

1

2615341 Zentralbereich Patente, Marken und Lizenzen

5090 Leverkusen, Bayerwerk

Pv/VS

- 7. April 1976

Phosphorigsäureester enthaltende Polyalkylenterephthalate (Zusatz zu Patent (Anmeldung P 22 55 639.4))

Die DT-OS 2 255 639 betrifft Ester der phosphorigen Säure der Formel A $\bigcap_{l} (RO)_2 P - 07_{n_1} - Ar - (-0 - P - 0 - Ar)_{n_2} - \bigcap_{l} (O - P (OR)_2 - 7_{n_3})$

worin

n₁ 1 oder eine beliebige ganze Zahl > 1,

 n_2 0 oder eine beliebige ganze Zahl > 0,

 n_3 1 oder eine beliebige ganze Zahl > 1,

R Alkyl, Aralkyl, Cycloalkyl, Aryl oder Hetaryl, wobei mindestens einer der Reste R den Rest eines mindestens eine Oxetangruppe enthaltenden Alkohols darstellt, und

Ar den Rest eines Phenols mit zwei oder mehr phenolischen Hydroxylgruppen bedeuten, wobei für $n_2 \neq 0$ Ar unter sich gleich oder verschieden sein können, insbesondere

Ester der Formel A, worin

R dem Rest eines oxetangruppenhaltigen C₁-C ₁₈-Monoalkohols und

Ar einem Rest der Formel B

Le A 16 918

709843/0173

entspricht,

worin R^1 und R^2 gleich oder verschieden sind, und H, C_1 - C_{18} -Alkyl, ein- oder mehrkerniges C_3 - C_6 -Cycloalkyl oder ein oder mehrkerniges C_6 - C_{18} -Aryl bedeuten, und worin R^3 , R^3 , R^4 , R^5 , R^5 , R^5 , R^6 und R^6 , gleich oder verschieden sind und H, C_1 - C_{18} -Alkyl, ein oder mehrkerniges C_3 - C_6 -Cycloalkyl, ein- oder mehrkerniges C_6 - C_{18} -Aryl, C_1 - C_{18} -Alkoxy, C_1 - C_{18} -Aryloxy oder Halogen bedeuten.

Weiterer Gegenstand der DT-OS 2 255 639 ist ein Verfahren zur Stabilisierung von hochmolekularen Polycarbonaten auf Basis aromatischer Bishydroxyverbindungen mittels der Ester A, die zu diesem Zweck vorzugsweise in Mengen von 0.02 - 0.3 Gew.-%, bezogen auf das Gesamtgewicht, eingesetzt werden.

Es wurde nun gefunden, daß sich die Ester A überraschenderweise auch zur Stabilisierung von linearen Polyestern eignen. So konnten bei der Stabilisierung von Polyalkylenterephthalaten wie Polyäthylenterephthalat, Polypropylenterephthalat, insbesondere Polybutylenterephthalat, aber auch von Polyalkylenterephthalat-Copolyestern, bei denen ein Teil der Terephthalsäurereste durch Reste anderer aromatischer Dicarbonsäuren oder aliphatischer cycloaliphatische Dicarbonsäuren und/oder ein Teil der Diolreste durch andere aliphatische (evtl. verzweigte), cycloaliphatische oder aromatische Diolreste ersetzt sind,

Le A 16 918

709843/0173

durch Zusatz der Ester A in Mengen von 0,01 bis 0,5 Gew. %, vorzugsweise in Mengen von 0.02 bis 0.3 Gew. %, in speziellen Fällen in Mengen von 0.05 bis 0.2 Gew. %, bezogen auf den linearen Polyester, sehr gute Ergebnisse erzielt werden.

Die Stabilisatoren werden mit Vorteil solchen linearen Polyestern oder Copolyestern zugesetzt, die thermischen und/oder oxydativen Belastungen oder starker UV-Bestrahlung ausgesetzt sind, unter denen sie Abbau erleiden und unter denen sie wesentliche Eigenschaften, die für ihre praktische Anwendung von großer Bedeutung sind, verlieren, z. B. Zähigkeit und Dehnungsfähigkeit.

Für die Stabilisierung mit den Estern A sehr gut geeignete lineare Polyester sind z. B. Polypropylenterephthalat, vorzugsweise Polybutylenterephthalat mit einem genügend hohen Molekulargewicht, gekennzeichnet durch eine Intrinsic-Viskosität von 0,5 bis 2,0 dl/g, bevorzugt von 0,6 bis 1,5 dl/g und besonders bevorzugt von 0,7 bis 1,3 dl/g, gemessen in einem Gemisch aus 50 % Phenol und 50 % Tetrachloräthan bei 25° C.

Die Herstellung der Polyalkylenterephthalate ist seit langem bekannt (vgl. Kunststoff-Handbuch, Bd. VIII, 695 f., Carl-Hanser-Verlag, München 1973 und die dort angegebenen Literaturstellen).

Die Herstellung der stabilisierten Polyester kann nach verschiedenen Verfahren erfolgen, von denen beispielhaft folgende genannt werden:

a) Zusatz der Ester A in reiner oder gelöster Form zum geschmolzenen Polyester, z.B. beim Aufschmelzen auf einer Schnecke,

Le A 16 918

- b) Auftragen der Ester A in reiner oder gelöster Form auf das Polyesterharz, das anschließend aufgeschmolzen und zum fertigen Formkörper verformt werden kann,
- c) Zusatz der Ester A in reiner oder gelöster Form während der Oligokondensation bzw. während der Polykondensation bei der Herstellung des Polyesters.

Die erfindungsgemäß stabilisierten Polyester können, falls dies gewünscht wird, selbstverständlich neben den Estern A als Stabilisator, auch andere, übliche Zusatzstoffe enthalten. So können die stabilisierten Polyester enthalten:

übliche Verstärkungszusätze (vergl. z. B. DT-AS 20 42 447), übliche flammwidrige Zusätze(vergl. z. B. DT-AS 20 42 450), übliche Formtrennmittel (vergl. z. B. DT-OS 19 21 010), übliche Nucleierungsmittel (vergl. z. B. DT-OS 21 11 605 und 21 39 125),

sowie übliche Farbstoffpigmente und andere Füllstoffe.

Gegenstand der Erfindung ist ein Verfahren zur Stabilisierung gemäß Hauptpatent, dadurch gekennzeichnet, daß an Stelle hochmolekularer Polycarbonate hochmolekulare, lineare Polyester stabilisiert werden.

Ein weiterer Gegenstand der Erfindung sind lineare Polyester, denen 0,01 bis 0,5 Gew. % Ester A zugesetzt wurden.

Die Herstellung der Ester A erfolgt gewöhnlich so, daß man ein oder mehrere Bisphenole der Formel C

worin R¹ bis R⁶ sowie R³ bis R⁶ die oben genannte Bedeutung haben, mit Triphenylphosphit im Molverhältnis 1:2 in Gegenwart eines alkalischen Katalysators unter Abspaltung von 2 Mol Phenol bei Temperaturen zwischen 100 - 180° C umsetzt, und das erhaltene Reaktionsprodukt mit einem oxetangruppenhaltigen C₁-C₁₈-Monoalkohol R-OH bei Temperaturen von 100-180°C und in Gegenwart eines Katalysators umsetzt, wobei die Menge an oxetangruppenhaltigem Monoalkohol der abzuspaltenden Phenolmenge äquivalent ist.

Die Stabilisierung der Polyester wird durch folgendes Beispiel erläutert:

Beispiel:

Auf einer Dreizonen-Einwellenschnecke mit folgenden Abmessungen:

Durchmesser: 6 cm
Länge: 162 cm
Einzugzone: 42 cm
Kompressionszone: 30 cm
Meteringzone: 90 cm

709843/0173

Le A 16 918

wurden bei 260° C 99,9 Teile Polybutylenterephthalat, Intrinsic-Viskosität 1,10 g/dl, und 0,1 Teil 4,4'Isopropylidendiphenyl-bis-/bis -(3-äthyloxetan-3-ylmethyl)phosphit 7 aufgeschmolzen und homogenisiert. Der Schmelzstrang wurde in Wasser abgekühlt und anschließend granuliert. Das Granulat wurde bei 260° C auf einer handelsüblichen Spritzgießmaschine zu Normkleinstäben bzw. zu
Zugstäben verspritzt, die in einem Umlufttrockenschrank
160° C heißer Luft ausgesetzt wurden. Nach der thermischoxydativen Behandlung wurden folgende Eigenschaften
gemessen:

2615341

0,92

Vergleich von stabilisiertem Polybutylenterephthalat mit nicht stabilisiertem Polybutylenterephthalat

	Temperur	Temperung an heißer Luft von 160 $^{\rm O}_{\rm C}$	Ber Luft	ron 160°C		
	O Tage	2 Tage	4 Tage	2 Tage 4 Tage 8 Tage	16 Tage	32 Tage
Schlagzähigkeit nach DIN 53 453 in / $\kappa J/m^2$ /						
Polybutylenterephthalat, stabilisiert	ng	gu	Bu	អាខ	60,3	21,4
rolyputylenterephthalat, nicht stabilisiert	ng	ng	Bu	14,1	6,1	5,2
Reißdehnung nach DIN 53 455 in %						
Polybutylenterephthalat, stabilisiert	262	25,	115	ಧ	6	t
Polybutylenterephthalat, nicht stabilisiert 304	7 0€	1 20	, 0	; ;	ָבָּ מַנ	, , , , , , , , , , , , , , , , , , ,
			- I		N.	٥ , ۵
	Темреги	ng an hei	Ber Luft	Temperung an heißer Luft von 160° C		
	O Tage	O Tage 5 Tage	15 Tage	25 Tage	40 Tage	60 Tage
Intrinsic-Viskosität, gemessen in Phenol /						

709843/0173

Tetrachloräthan 1: 1, in dl/g

0.04	0,60
0,98	0,65
1,00	0,80
1,04	86.0
1,10	1,10
erephthalat, stabilisiert	erephthalat, nicht stabilisiert
Polybutylente	Polybutylente

"ng" bedeutet nicht gebrochen

Le A 16 918