Learning to Identify Drilling Defects in **Turbine Blades with Single Stage Detectors**

Andrea Panizza, Szymon Tomasz Stefanek, Stefano Melacci, Giacomo Veneri, Marco Gori

Motivation

Defects in turbine blades can impact the operating life, safety and performance of the gas turbine, so they have to be detected before assembly^[1]. To this end, we acquire X-ray scans of the blades from different viewing angles. Manual detection of drilling defects in these X-rays is tedious, time-consuming, and requires expert knowledge. Thus there is a significant opportunity to increase operating efficiency by automating the detection process with Machine Learning.

A turbine blade (not a BH one)

Examples of drilling defects

Defects and their close context

Main Issues

size of a blade vs. size of a single defect

Defects are hard to find

- Experts sometimes need to look at multiple views of a blade to identify a shape as a defect
- Context matters: a defect-like shape in the wrong place is not a defect

Small and Unbalanced Data Set

- 498 blades only 88 with defects
- Multiple views (poses) for some blades
- 694 distinct poses 134 with defects

Large Images

• 1500×1900 px

Small Defects

- Average defect dimensions: 14 x 20 px
- Large ratio between image and defect size

Detector Model

Retinanet [2]

- Single stage detector using focal loss
- Anchor boxes are assigned to ground-truth object boxes

- bottom-up pathway, the backbone network which calculates the feature maps at different scales (ResNet-50)
- top-down pathway and lateral connections
- classification subnetwork predicts the probability of an object being present at each spatial location for each anchor box and object class
- d) regression subnetwork regresses the offset for the bounding boxes from the anchor boxes to a nearby ground-truth object, if one exists.

Approach

100 -

25 -

model thresholds

Smallest anchor

Large Images / Small defect area

- 5×5 overlapping tiles of 500×600 px
- Scale up tiles by 2× in height and width ratio between defect area and smallest anchor area increases

Unbalanced data set

Extract a **balanced sub-set**

Small data set

 Apply data augmentation via random transforms

Improve performance

Optimize anchor sizes and aspect ratios with differential evolution search [3]

normalized area

Area distribution of defects, normalized wrt area of smallest Distribution of normalized defects area after upscaling 2x anchor box (32x32). Most of the defects are very small – below the distribution mean is much closer to 1

Results

Settings	mAP	Accuracy*
Original images (1500×1900), default RetinaNet parameters	0.06	0.56
Split tiles (500×600), default RetinaNet parameters	0.10	0.53
Split tiles + 2× upscaling (1000×1200) + random transform	0.73	0.90
Split tiles + 2× upscaling (1000×1200) + random transform + anchor optimization	0.90	0.94

*the accuracy is a custom metric, more aligned to our business goals, obtained by recasting the defect detection task as an image classification task (more details in paper)

Findings

- We developed a functioning model for identifying drilling defects in X-ray images of gas turbine blades.
- Training a vanilla RetinaNet model on our dataset did not deliver usable results.
- We identified the key issues:
 - large image sizes
 - small annotations area (this turned out to be a key finding!)
 - small and unbalanced data set
 - use of default anchor scales and aspect ratios, not optimized for our data distribution.
- The final model delivers very good results

Future Work

- Deploy the model in production
- Apply the same methodology to Non-Destructive Testing of other gas turbine components

References

[1] J. Aust and D. Pons, "Taxonomy of gas turbine blade defects". In: Aerospace, vol. 6, no. 5, p. 58, May 2019. http://dx.doi.org/10.3390/aerospace6050058

[2] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). "Focal loss for dense object detection". In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988).

[3] M. Zlocha, Q. Dou, and B. Glocker, "Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels" http://arxiv.org/abs/1906.02283