NOM: NOM du binôme:

Document réponse

Activité 1-1 : Echange entre 2 ordinateurs

1-1) Donner l'adresse IP des deux ordinateurs.

1-2) Combien de message envoie l'ordinateur émetteur suite à la commande PING ?

Activité 1-2 Echange entre 2 ordinateurs ou plus

1-2-1) Donner les adresses IP des trois stations.

Station A :	•	•	•	
Station B :				
Station C :				

1-2-2) Le switch possède-t-il une adresse IP?

Activité 2-1: Notion de masque de sous-réseaux

2-1-1) Est-ce-que la station A communique correctement avec la station B ? Justifier votre réponse.

2-1-2) Donner l'adresse IP que vous avez donné et le masque de sous-réseau de la station C.

Station C - @IP:	•	•	•	
Station C – masque :			•	

Activité 2-2 : Configurer les stations d'un réseau

2-2-1) Donner les adresses et masques de sous-réseau des trois stations.

Station A @IP:	•		•	
Station B @IP:			•	
<u>Masque :</u>		[•	

2-2-2) Combien de stations théoriques peuvent appartenir à ce réseau?

2-2-3) Quelle est l'adresse de la station C?

	1	1	1	
Station C @IP:				
Station C Win.	•	•	•	

2-2-4) Prouver que la station A (B ou C) n'appartient pas au même réseau que la station D.

Activité 2.3 : Maitrise des masques de sous-réseau ?

2-3-1) Compléter le tableau récapitulant les communications possibles ou non entre les stations

→	Α	В	С	D
Α				
В				
С				Oui
D				

En mettant oui dans la case $C \rightarrow D$, cela signifie que C peut communiquer avec D (l'inverse n'étant pas forcément vraie).

2-3-2) Définir les adresses des réseaux.

Réseau de l'hôte A:	
Réseau de l'hôte B :	
Réseau de l'hôte C:	
Réseau de l'hôte D:]. [

2-3-3) A partir de l'adresse de chaque hôte et des masques de sous-réseau, compléter le tableau qui définit si un hôte appartient au réseau d'un autre hôte.

→	Réseau de l'Hôte A	Réseau de l'Hôte B	Réseau de l'Hôte C	Réseau de l'Hôte D
Hôte A	Oui	Non		
Hôte B		Oui		
Hôte C			Oui	
Hôte D				Oui

En mettant oui cela signifie que l'hôte en question appartient au réseau d'un autre hôte. Par définition, l'hôte appartient à son propre réseau.

- 2-3-4) Pourquoi la station A ne voit pas la station B et vice-versa?
- 2-2-5) Que pouvez-vous dire sur les stations C et D vis-à-vis des stations A et B?

Activité 3-1 : Adresse Mac et Port physique

- 3.1.1) Reporter l'adresse MAC des deux stations dans le tableau.
- 3.1.2) Donner le nombre total de ports physiques pour le Switch.

3.1.3) Identifier (0/1;1/1;...n/1) les ports physiques sur lesquels sont connectés les stations et le reporter dans le tableau :

	Adresse MAC	Port du switch
Station A		
Station B		

3.1.4) Combien d'équipements peut-on ajouter dans ce réseau?

Activité 3.2 : Adresses MAC et IP dans un datagramme

3.2.1) Reporter l'adresse MAC des deux stations dans le tableau.

	Adresse MAC
Station A	
Station B	

3.2.2) Compléter le datagramme (avec des couleurs, différenciez l'hôte source de l'hôte destinataire).

3.2.3) Pourquoi un switch tient à jour une table MAC?

Activité 4-1 : Découverte du Protocole ARP

4.1.1) justifier succinctement que toutes les stations appartiennent bien au même sous-réseau :

- 4.1.1) Lors d'une tentative nouvelle de communication d'une station à une autre, combien de messages sont créés ? Quels sont-ils ?
- 4.1.2) Que se passe-t-il lorsqu'un autre message est envoyé à une station déjà connue ?

PC-PT Station A Station B Station C 192.180.10.1/24 192.180.10.2/24 192.180.10.3/24

Activité 4-2 : Le Protocole ARP plus en détail

4.2.1) Trame Ethernet à compléter de la requête ARP de la station A (phase 1)

Protocole ARP

4.2.2) Datagramme ARP de la réponse de la station C (phase 3)

4.2.3) Diagramme de séquence à compléter.

@C : adresse MAC et IP de la station C (Idem pour A, B)

4.1.4) Que se passe-t-il pour un envoi d'un message de la station A vers la station B?

Activité 5-1 : Connecter deux réseaux entre eux (le routeur)

5.1.1) Donner le NetId des deux réseaux sur le document réponse.

5.1.2) Donner le *HostId* des quatre stations.

Station	1A	1B	2A	2B
HostId				

5.1.3) Donner l'adresse de la passerelle que vous avez mise pour la station 1B :

et pour la station 2B:

5.1.4) Compléter l'organigramme (toutes les cases blanches) traitant du cheminement d'un message lors de son envoi au niveau d'une station.

Activité 5-2 : Cheminement des messages via les routeurs

5.2.1) Pour les trois réseaux, donner leur adresse (*NetId*) en complétant le diagramme du document réponse.

- 5.2.2) Est-ce que le message de 1A→1B transite par un routeur ? Pourquoi d'après vous ?
- 5.2.3) Est-ce que le message de 1A→2A transite par les routeurs ? Pourquoi d'après vous ?
- 5.2.4) Compléter le tableau du document réponse en identifiant la source du message au niveau des adresses IP et MAC ainsi que le destinataire du message

Etapes	Sou	ırce	Destination		
	@IP	@MAC	@IP	@MAC	
1A (Out Layer)	1A	1A			
R1 (Out Layer)					
R2 (Out Layer)					
2A (Out Layer)					
R2 (Out Layer)					
R1 (Out Layer)					
1A (In Layer)					

- 5.2.5) Pourquoi le passage des messages au niveau des Switchs a été volontairement omis de l'étude de leur cheminement?
- 5.2.6) Que font les routeurs dans cette configuration?