Software Engineering Process: Overview

- Some context, terms & concepts relating to software engineering
- The meaning of process
- Software lifecycle and its standard phases
- Several different software-process models

One reality

Software Engineering: context

- "Software Engineering" as a term was invented in the late 1960s
 - From 1945 to early 1960s, major cost was computing hardware
 - That started to change in the early 1960s
 - Programming environments, languages, and tools were focused on the computer, not the programmer
- By 1967/68 many experts declared a "software crisis". They saw the following:
 - Inability to hire enough trained programmers
 - Cost & budget overruns
 - Buggy software resulting in property damage or theft
 - Software defects leading to injury or even death
- Another view: Programmers were struggling to write code that would be correct, useable, and on time
- Proposal in 1968: To develop and apply principles to the development of software in a manner similar to established engineering disciplines.

Software development effort

COMPONENT TEST

- Intensity of effort varies throughout the life of a project.
- Effort can be broken into sequential phases.
- Some activities span the duration of the project.

University of Victoria Department of Computer Science

From NATO report (1968)

RELEASE

Software engineering: definition

- No one definition encompasses all uses of the term
 - Thousands of researchers
 - Tens of thousands of research papers + books
 - Many tools
 - Many disagreements over what problems are most important...
- Wikipedia's 2013 definition will work for our course
 - The application of a systematic, disciplined, quantifiable approach to the design, development, operation, and maintenance of software, and the study of these approaches; that is, the application of engineering to software."

45+ years of research

- Since 1968 there have been many advances in software engineering
 - New programming languages
 - Advances in computing hardware
 - Developments in operating systems, networking
 - New computer-based tools supporting software-system construction
 - Much more besides
- As a result:
 - We are now able to develop, deploy and maintain very complex software systems
 - We are better able to manage the construction of such systems
 - We can collaborate on such work while geographically distributed
 - We very often use the computer itself to support the coordination task (e.g., Subversion)

Some areas in software engineering

System Engineering

Requirements Engineering

Analysis Modelling

Design Engineering

Component-Level Design

Architecture Design

User Interface Design

Software Metrics

Software Testing Strategies

Formal Methods

Software Evolution

Re-engineering

Reverse Engineering

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods Software Development Process: Slide 7

Changing nature of software

- The variety of software systems makes it challenging to describe one single best approach to designing and building software systems
- There are several broad categories of software
 - System software
 - Application software
 - Engineering/scientific software
 - Embedded software
 - Product-line software
 - Web applications
 - Artificial intelligence (AI) software
- New challenges in development continue to arise:
 - Open source
 - Ubiquitous computing
 - Cloud computing

Software Process

Process

- A series of steps involving activities, constraints, and resources that produce an intended output of some kind
- Involves a set of tools and techniques
- Processes are considered important for several reasons:
 - They impose consistency and structure on a set of activities
 - They also guide us to understand, control, examine, and improve the activities
 - Ultimately this enables us to capture our experiences and pass them along to future projects

Example process: Waterfall model

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods Software Development Process: Slide 10

Characteristics of a process model

- Prescribes all major process activities
- Uses resources, subject to set of constraints (such as a schedule)
- Produces intermediate and final products
- May be composed of subprocesses with hierarchy or links
- Each process activity has entry and exit criteria
- Activities are organized in sequence, so timing is clear
- Each process has guiding principles, including goals of each activity
- Constraints may apply to an activity, resource or product

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods Software Development Process: Slide 11

Why bother modeling a process?

- Phrased differently:
 - "Why don't we stop navel gazing and start writing the darn software right away? We're all pretty smart programmers!"
- Reasons to model a process:
 - To form a common understanding amongst team members.
 - To find inconsistencies, redundancies, omissions within the process.
 - To find and evaluate appropriate activities for reaching process goals.
 - To tailor a general process for a particular situation in which it will be used.

An aside: Kinds of coders

- Gandalf
- The Martyr
- Fanboy
- Heavy Metal
- Ninja
- Theoretician
- Code Cowboy
- Paratrooper
- Mediocre Wo/Man
- Evangelist

Cowboy Coders are programmers who write code according to their own rules. They may be very good at writing code, but [the code] doesn't generally follow the standards, processes, policies, or anything else derived from the group. Cowboy Coders work well alone, or in the old-style CaveProgrammer environment, but they rarely, if ever, work well in a team. Often times, they are a burr in the saddle that keeps the team from getting positive work done.

HIIYAHI

Software life cycle

- Sometimes a software development process is also referred to as a software lifecycle
- The lifecycle involves some variant and arrangement of these seven phases:
 - 1. Requirements analysis and system specification
 - System design (i.e., architecture)
 - Program design (i.e., detailed / procedural)
 - **4. Writing** the program (i.e., coding, implementation)
 - 5. Testing (unit testing, integration testing, system testing, acceptance testing)
 - **System delivery** (i.e., deployment)
 - 7. Maintenance

Department of Computer Science

University of Victoria

1. Requirements & Specification

