

 Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 11.1

In einem Kolben-Zylinder-System befinden sich $0.12 \,\mathrm{kg}$ Ethylen im Phasengleichgewicht Gas-Flüssigkeit (Zustand 1: $T_1 = 0 \,\mathrm{^{\circ}C}, \, V_1 = 1 \,\mathrm{dm}^3$). Nacheinander werden nun folgende Zustandsänderungen durchlaufen:

1→2: isochore Erwärmung bis zum Druck $p_2 = 60$ bar.

 $2\rightarrow 3$: reversibel isobare Zustandsänderung auf das Volumen $V_3=0.4\cdot V_2$.

 $3\rightarrow 4$: isochore Kühlung bis zur Temperatur $T_4=T_1$ (der Zustandspunkt 4 liegt im Zweiphasengebiet).

 $4\rightarrow 1$: isotherme Zustandsänderung auf das Volumen V_1 .

- a) Wie groß sind die Drücke p_1 und p_4 ?
- b) Berechnen Sie die Dampfgehalte x_1 und x_4 sowie den mit Flüssigkeit gefüllten Volumenanteil im Zustand 1.
- c) Zeichnen Sie die vier Zustandsänderungen qualitativ richtig in ein p, ρ -Diagramm ein, und skizzieren Sie dabei auch den Verlauf der Isothermen.
- d) Berechnen Sie die Volumenänderungsarbeit W_{23} und die abzuführende Wärme Q_{34} .
- e) Bei welcher Temperatur wird die Phasengrenze während der Zustandsänderung $\widehat{(3)} \to \widehat{(4)}$ überschritten?

Stoffdaten für Ethylen:

Zweiphasengebiet:

ſ	T	p	ρ'	ho''	u'	u''
	$[^{\circ}C]$	[bar]	$[\mathrm{kg/m^3}]$	$[\mathrm{kg/m^3}]$	[kJ/kg]	[kJ/kg]
	0.0	40.990	341.21	98.265	293.05	448.60
	2.0	42.897	329.94	107.18	302.43	443.75
	4.0	44.877	316.65	118.13	312.85	437.44
	8.0	49.080	274.25	155.75	341.79	413.72

Zustandsgrößen am kritischen Punkt:

 $T_K = 9.2 \,^{\circ}\text{C}, \, p_K = 50.40 \,\text{bar}, \, \rho_K = 214.2 \,\text{kg/m}^3$

Einphasengebiet:

	$p = 60 \mathrm{bar}$		
T	ρ	u	
[°C]	$[\mathrm{kg/m^3}]$	[kJ/kg]	
0	374.49	273.24	
5	353.04	293.58	
10	323.87	318.18	
12	307.66	330.49	
14	285.68	345.97	
16	251.45	368.36	
20	170.07	425.40	
25	135.84	457.99	
30	119.82	477.73	