Testbericht der Qualitätssicherungsphase

Definition und Durchführung von Messwertverarbeitung für den Physikunterricht auf Basis eines Raspberry Pis

Version 0.9.0

David Gawron Stefan Geretschläger Leon Huck Jan Küblbeck Linus Ruhnke

1. September 2019

Inhaltsverzeichnis

1	Ziel 1.1	des Testberichts Bedingungsüberdeckung	4
2	Plar	nung der Qualitätssicherungsphase	5
3	Gefu	undene Fehler und deren Regressionstests	8
	3.1	Übersicht aller Issues	8
	3.2	Model	9
		3.2.1 Measurement Configuration	9
		3.2.2 Sensor	12
		3.2.3 BuildingBlockDirectory	13
	3.3	Cache	14
	3.4	Backend	15
	3.5	Controller	16
	3.6	Fileservice und Main	17
	3.7	GUI	19
4	Test	en der GUI	21
	4.1	Testen der GUI durch Klickstrecken	21
		4.1.1 Öffnen der Systemmenüs und dessen Funktionen	21
		4.1.2 Erstellen, Speichern, Checken und Laden einer Messkonfiguration .	21
		4.1.3 Kontrolle des Messlaufs	21
		4.1.4 Anpassen der Einstellungen	21
	4.2	Monkey Testing	22
5	Test	en der Qualität	29
	5.1	Hallway Usability Testing	29
	5.2		29
6	Dur	chführen der Testfälle aus dem Pflichtenheft	29
	6.1	T010 Starten der Anwendung und Hilfe	29
	6.2	T020 Starten der Demo	29
	6.3	T030 Lehrer erstellt und speichert eine Messkonfiguration	29
	6.4	T040 Schüler bearbeitet Aufgabe	30
	6.5	T050 Schüler startet Messung und speichert Ergebnisse	30
	6.6	T200 Laden einer ungültigen Datei als Messkonfiguration	30
	6.7	T210 Starten einer ungültigen Messkonfiguration	30
	6.8	T220 Entfernen eines Sensors bei laufender Messung	30
7	Har	dware Tests und sonstige Tests	38
	7.1	Leistung und Speicherverbrauch	38
	7.2	-	38

8	Glos	ssar	40
	7.4	Entfernte Klassen	38
	7.3	Testen auf verschiedenen Systemen	38

1 Ziel des Testberichts

Das Ziel des Testberichtes ist es dem Leser einen Überblick über die verwendeten Testverfahren zu geben und die während der Qualitätssicherungsphase entdeckten Fehler zu dokumentieren. Die Qualitätssicherungsphase hat das Ziel, möglichst viele Fehler aufzudecken, diese zu korregieren und zu dokumentieren. Zusätzlich soll das unbemerkte Wiederauftreten bereits gefundener Fehler durch Regressionstests verhindert werden. Dabei werden die Funktionalitäten und deren Qualitäten getestet.

1.1 Bedingungsüberdeckung

Wir streben eine mehrfache Bedingungsüberdeckung an. Dadurch werden Zweig- "Anweisungs- "einfache und minimal-mehrfache Bedingungsüberdeckung subsumiert. Eine einfache Bedingungsüberdeckung ist subsumiert nicht einmal die Anweisungsüberdeckung und ist somit ungeeignet. Eine minimal-mehrfache Bedingungsüberdeckung wäre ein guter Kompromiss zwischen Aufwand und Nutzen, allerdings verwendet unser Plug-In EclEmma für JaCoCo standardmäßig mehrfache Bedingungsüberdeckung. Außerdem ist die Anzahl an Bedingungen in unserer Anwendung noch überschaubar. Eine Pfadüberdeckung streben wir nicht an, da dessen Aufwand mit 2 hoch k skaliert, wobei k die Anzahl an Anweisungen ist.

2 Planung der Qualitätssicherungsphase

Die Qualitätssicherungsphase wird in drei Meilensteine aufgeteilt, siehe dazu Abbildung 1. Der erste Meilenstein wird erfüllt, wenn das Modul Model der Anwendung eine hohe Testüberdeckung erreicht. Dabei sollen alle Tests automatisch mit J-Unit ablaufen. Das Model ist die Basis, die alle anderen Module benutzen und auch diese verbindet. Deshalb ist die erste Priorität eine getestetes Modul, um komplexe Folgefehler für die anderen Module zu verhindern.

Im zweiten Meilenstein werden alle anderen Module, außer der GUI, getestet. Auch hier erfolgt das Testen über automatische J-Unit Tests.

Die GUI ist ein Sonderfall beim Testen, da diese nur sehr begrenzt mit automatischen Tests getestet werden kann. Deshalb wird diese im dritten Meilenstein getestet. Der Dritte Meilenstein umfasst die GUI und auch das Testen der gesamten Anwendung. Die GUI wird hauptsächlich über Klickstrecken getestet. Die gesamte Anwendung wird durch Testszenarien aus dem Pflichtenheft geprüft. Weiter werden Qualitätsanforderungen der Anwendung durch verschiedene Tests geprüft. Schließlich wird die Leistung und auch die Hardware für die Anwendung getestet.

In Abbildung 2 ist der tatsächliche Verlauf der Qualitätssicherungsphase abgebildet. Man sieht sofort, dass sich der Schwerpunkt der Arbeiten auf den 31.8. verschoben hat. Dies liegt daran, dass das Testen und Beheben von Fehlern der anderen Module auch weiterhin im dritten Meilenstein stark präsent war. Weiter sieht man, dass die planmäßige Testabdeckung am Ende des zweiten geplanten Meilenstein nicht erfüllt war.

Tatsächlich wurde nur im Backend die gewollte Abdeckung erreicht. Im Cache, Model, GUI und Fileservice, betragen die Abweichungen 10, 11, 1 und 16 %. Im Controller hingegen sind es 42 %. Dies liegt um Teil daran, dass einige noch Methoden während der Laufzeit fast nie genutzt werden. Außerdem gibt es sicherlich noch einige Zeilen an Code, die nie benutzt werden. Weiter wurde zur Erstellung der Abdeckungsstatistik kein angeschlossener Pi benutzt. Schließlich wurde auch nicht jede Klickstrecke und jeder Testfall noch einmal in die Statistik aufgenommen. Außerdem wurde beim Backend auch die Statistik eines anderen Teammitglieds benutzt, der diese Tests mit dem Pi durchgeführt hat.

Hardwaretest Sensoren	Cache	Backend	Model	TestSzenarien	Qualitätsanforderungen	Laufzeit & Speicherverbrauch	Monkey Testing & Hallway Testing	Klickstrecken	GUI	FileService & Main	Controller	Spalteninformationen	Testplan für die Qualitätssicherung	
													MS 0: Altlasten	11. bis 16. August
												Modul-A	Meilenstein 1	16.08.19
			65									Modul-Abdeckung Sollwert in %	: Model 90 % <i>I</i> J-Unit	20.08.19
	0	0	90						0	0	0	wert in %	\bdeckung mit	21.08.19
	0-30	0-30								0.30	08-0	Modul-A	Meilenstein 1: Model 90 % Abdeckung mit Meilenstein 2: Backend, Cache, Controller J-Unit und Fileservice 90% Abdeckung mit J-Unit	22.08.19
	30-60	30-60								30-60	30-60	Modul-Abdeckung Sollwert in %	Meilenstein 2: Backend, Cache, Controller und Fileservice 90% Abdeckung mit J-Unit	bis
	90	90	90							95	95	wert in %	he, Controller ung mit J-Unit	25.08.19
													Puffer	26.08.19
									0-20			М	Meilenste	27.08.19
									20-40			Modul-Abdeckung Sollwert in %	Meilenstein 3: GUI- Abdeckung, Belastungs- und Integrationstests	28.08.19
									40-65			ng Sollwert in	eckung, Belastı onstests	29.08.19
	95	95	95						85	95	95	%	ungs- und	30.08.19
													Puffer	31.08.19

Abbildung 1: Der Sollplan für die Qualtätssicherungsphase.

Hardwaretest Sensoren	Cache	Backend	Model	TestSzenarien	Qualitätsanforderungen	Laufzeit & Speicherverbrauch	Monkey Testing & Hallway Testing	Klickstrecken	eni	FileService & Sonstige	Controller	Spalteninformationen	Testplan für die Qualitätssicherung MS 0: Altlasten	11. bis 16. August
														. August
												Modul-	Meilenstein 1	16.08.19
												Modul-Abdeckung Istwert in %	: Model 90 % , J-Unit	20.08.19
	0	0	82						0	0	0	wert in %	Abdeckung mi	21.08.19
												Modul-	t Meilenstein und Fileservi	22.08.19
												Modul-Abdeckung Istwert in %	2 : Backend, Ca ce 90% Abdecl	bis
	75	50	75							25	0	wert in %	Meilenstein 1: Model 90 % Abdeckung mit Meilenstein 2: Backend, Cache, Controller J-Unit und Fileservice 90% Abdeckung mit J-Unit	25.08.19
													Puffer	26.08.19
													Meilenst	27.08.19
												Modul-Abdeck	æ in 3 : GUI- Ab Integra:	28.08.19
												Modul-Abdeckung Istwert in %	Meilenstein 3: GUI- Abdeckung, Belastungs- und Integrationstests	29.08.19
												3%	stungs- und	30.08.19
	84	96	85						84	79	53		Puffer	31.08.19

Abbildung 2: Der Istplan für die Qualtätssicherungsphase.

3 Gefundene Fehler und deren Regressionstests

Dieses Kapitel umfasst die Regressionstests für gefundene und behobene Fehler. Die Tests sind nach Modul und Klassen strukturiert. Jeder Regressionstest verweist auf ein Issue der verwendeten Bugtracking-Software (hier GitHub).

3.1 Übersicht aller Issues

In der Tabelle 1 wird angezeigt, wo ein Issue aufgetreten ist, und was für eine Kategorie es hat. Das Issue wird dabei durch seine Nummer repräsentiert. Zu den roten Issues gibt es keine Regressionstests, das diese nicht behoben wurden. Bei den Issues in Klammern handelt es sich um keine eigentlichen Fehler, sondern um Verbesserungen, Löschen von Ungenutztem, Fragen usw....

Art des Issue vs	Null Poin-	Index out	Path rela-	fehlerhafte	Sonstige
Fundort	ter	Of Bounds	ted	Funktion	
Backend	55				(17), 29, 34,
					36, (38)
Cache	22, 65			67	
Controller					(37),
					(46),(48),
					(49)
Gui	27		25	15, 58, 62	28, (40),(43)
					, (44), (52),
					(64), (69)
Model	7, 8, 9, 10,	11, 18		14, 20 , 21,	(32),(33),
	12, 13, 19,			23, 26 , 35,	(39), 53
	51, 59, 60			61 , 66	
Fileservice und	47		57	50, 54, 68	(30), (31),
Main					(41), (42),
					(45), (56)
Gesamtzahl	16 / 17	2	2	11 / 15	4 / 5 + (16)
					/ (21)

Tabelle 1: Übersicht über alle Issues.

Falls ein Problem hauptsächlich mit der Gui zu tun hat und ein automatischer Regressionstest nur schwer oder gar nicht realisierbar ist, wird für ein entsprechendes Issue eine Klickstrecke mit erwartetem Ergebnis geschrieben.

3.2 Model

3.2.1 Measurement Configuration

Issue Nr.7 in der Methode getInChan

Fehlersymptom: Unbehandelte NullPointer Exception bei Eingabe einer

ungültigen Id.

Fehlerursache: Prüfen nach NullPointer Exception fehlt.

Fehlerbehebung: Eine Null Prüfung wurde implementiert.

Verantwortlicher: David Gawron

Issue Nr.8 in der Methode getOutChan

Fehlersymptom: Unbehandelte NullPointer Exception bei Eingabe einer

ungültigen Id.

Fehlerursache: Prüfen nach NullPointer Exception fehlt.

Fehlerbehebung: Eine Null Prüfung wurde implementiert.

Verantwortlicher: David Gawron

Issue Nr.9 in der Methode addConnection

Fehlersymptom: Unbehandelte NullPointer Exception bei Eingabe einer

ungültigen Id.

Fehlerursache: Prüfen nach NullPointer Exception fehlt.

Fehlerbehebung: Eine Null Prüfung wurde implementiert.

Verantwortlicher: David Gawron

Issue Nr.10 in der Methode removeConnection

Fehlersymptom: Unbehandelte NullPointer Exception bei Eingabe einer

ungültigen Id.

Fehlerursache: Prüfen nach NullPointer Exception fehlt.

Fehlerbehebung: Eine Null Prüfung wurde implementiert.

Verantwortlicher: David Gawron

Issue Nr.11 in der Methode createInChannelList

Fehlersymptom: Auftreten einer Index Out Of Bounds Exception.

Fehlerursache: Eine Prüfung, ob der Index groß genug ist, fehlt.

Fehlerbehebung: Der Fehler wird abgefangen durch einen Vergleich der Anzahl der InChannel zwischen yaml-File und Prototypblock.

Verantwortlicher: David Gawron

Issue Nr.12 in der Methode getOutChanPosi

Fehlersymptom: NullPointer Exception beim Laden einer Messkonfiguration mit ungültigen Block Id.

Fehlerursache: Prüfen nach NullPointer Exception fehlt.

Fehlerbehebung: Es wird nach Null geprüft. Dann ergab sich eine Folgefehler, der sich in der Methode createLoadedConnections als eine Index Out Of Bounds Exception äußerte. Durch das Implementieren einer Methode check-BlockInitId, die prüft, ob eine geladene Id auch gültig ist, wurde der Folgefehler behoben.

Verantwortlicher: David Gawron

Issue Nr.13 in der Methode createInChannelList

Fehlersymptom: NullPointer Exception bei ungültiger Messkonfiguration mit einer fehlenden BlockChannelliste.

Fehlerursache: Prüfen nach NullPointer Exception fehlt.

Fehlerbehebung: Eine Prüfung nach Null wurde hinzugefügt.

Verantwortlicher: David Gawron

Issue Nr.14 in der Methode loadConfig

Fehlersymptom: Fehlerhaftes Verhalten beim Laden der fehlerhaften Messkonfiguration 4, die einen Block mit sich selber verbindet.

Fehlerursache: Überprüfen der Verbindung fehlt.

Fehlerbehebung: Die Überprüfung der Verbindung wurde implementiert.

Verantwortlicher: David Gawron

Issue Nr.18 in der Methode removeBlock

Fehlersymptom: Der Versuch einen nicht existierenden Block zu entfernen, resultiert in eines Index Out Of Bounds Exception.

Fehlerursache: Der Index wurde nicht geprüft.

Fehlerbehebung: Eine Prüfung des Indexes wurde hinzugefügt. Außerdem wurde der Rückgabewert der Methode von void zu boolean geändert.

Verantwortlicher: David Gawron

Issue Nr.19 in der Methode removeBlock

Fehlersymptom: Der Versuch eine Konfiguration ohne eine Liste von Block Ids zu laden, führt zu einer Null Pointer Exception.

Fehlerursache: Es wurde nicht nach Null geprüft.

Fehlerbehebung: Die betreffende Zeile wurde in einen schon existierenden Null-Check verschoben.

Verantwortlicher: David Gawron

Issue Nr.23 in der Methode loadConfig

Fehlersymptom: Der Versuch eine Konfiguration mit einem Splitter mit vertauschten Verbindungstupel führt zu einem ungewollten Fehlschlag des Ladens.

Fehlerursache: Die private Methode createInChannelList, die von loadConfig benutzt wird, funktionierte nicht korrekt.

Fehlerbehebung: Die private Methode createInChannelList wurde reimplementiert.

Verantwortlicher: David Gawron

Fehler Nr.35 in der Methode getInitId

Fehlersymptom: Die Methode funktionierte nicht richtig und gab immer NULL zurück.

Fehlerursache: Der Zugriff auf die Blöcke in der Hasmap der Konfigurationsblöcke schlägt fehl.

Fehlerbehebung: Die KonfigurationsId wird nun über die Blockliste der Messkonfiguration geholt.

Verantwortlicher: David Gawron

3.2.2 Sensor

Issue Nr.51 in der Methode constructBuildingBlocks

Fehlersymptom: Die Methode liefert bei Übergabe von null oder einer leeren Map eine NullPointerException.

Fehlerursache: Fehlende Überprüfung der Übergabewerte auf die notwendigen Argumente

Fehlerbehebung: constructBuildingBlock() überprüft, ob die Map null oder leer ist.

Verantwortlicher: Linus Ruhnke

Issue Nr.59 in der Methode processKvPair

Fehlersymptom: Die Methode liefert bei falschen Übergabewerten eine Null-PointerException.

Fehlerursache: Fehlende Überprüfung der Übergabewerte auf die notwendigen Argumente

Fehlerbehebung: processKvPair() überprüft, ob die Map der Bausteine die notwendigen Argumente zum Aufbauen des Bausteins enthält.

Verantwortlicher: Linus Ruhnke

Issue Nr.60 in der Methode initialiseModel

Fehlersymptom: Die Methode überprüft Bausteine nicht auf null und kann somit eine NullPointerException liefern.

Fehlerursache: Fehlende Überprüfung der Bausteine auf die null.

Fehlerbehebung: Die Methode überprüft, ob die Bausteine null sind.

Verantwortlicher: Linus Ruhnke

3.2.3 BuildingBlockDirectory

Issue Nr.21 in der Methode addConfigBlock

Fehlersymptom: Konfigurationsbausteine konnten mehrfach mit dem gleichen Key zu der Liste hinzugefügt werden. Alte Einträge mit dem gleichen Key wurden überschrieben.

Fehlerursache: Standart-Funktion einer HashMap.

Fehlerbehebung: Konfigurationsbausteine können nicht mehrfach mit dem gleichen Key hinzugefügt werden. Alte Einträge werden nicht mehr überschrieben.

Verantwortlicher: Linus Ruhnke

3.3 Cache

Issue Nr.65 in der Klasse Cache

Fehlersymptom: NullPointerException, wenn ein Messlauf mit inkorrekter Messkonfiguration gestartet wird.

Fehlerursache: Keine Überprüfung auf null in der Methode latestMSetFrom-Collection(...).

Fehlerbehebung: Methode gibt nun anstatt null eine leer initialisierte Instanz von MSet zurück.

Verantwortlicher: Jan Küblbeck

3.4 Backend

Issue Nr.36 in der Klasse PickupPointForBackendAgents

Fehlersymptom: Es war nicht möglich, gleichzeitig eine simulierte und eine tatsächliche Backend-Verbindung aufzubauen.

Fehlerursache: Durch PickupPointForBackendAgents wurde immer nur entweder eine echte oder eine simulierte Verbindung initialisiert.

Fehlerbehebung: Durch separate Methoden können nun eine echte und eine simulierte Verbindung separat verwendet werden.

Verantwortlicher: Jan Küblbeck

3.5 Controller

 Im Controller sind keine Fehler aufgetreten. Es wurden lediglich unbenutze Befehle entfernt.

3.6 Fileservice und Main

Issue Nr.54 in der Methode saveIntoYaml

Fehlersymptom: Beim Speichern einer Konfiguration als .yaml-Datei, werden einzelne ungewollte Anführungszeichen hinuzugefügt.

Fehlerursache: SnakeYaml hat wohl Schwierigkeiten bei unseren Einstellungen mit eckigen Klammern umzugehen. Daraus resultieren die einzelnen Anführungszeichen.

Fehlerbehebung: Es wurde eine private Methode im FileService angelegt, die die neu gespeicherte Datei erneut öffnet und alle einzelnen Anführungszeichen entfernt.

Verantwortlicher: David Gawron

Issue Nr.47 in der Methode readOutAllYamll

Fehlersymptom: Bei einem Fehler beim Lesen des Inhalt einer Yaml-Datei wird null zurückgegeben.

Fehlerursache: Implementierung der Methode.

Fehlerbehebung: Bei einem Fehler beim Lesen wird eine leere Map zurückgegeben.

Verantwortlicher: Linus Ruhnke

Issue Nr.50 in der Methode testWriteIntoYaml

Fehlersymptom: Die Methode löschte eine durch den Test erzeugte Methode bei einem erfolgreichen Durchlauf nicht, was zur Folge hatte, dass beim nächsten Test der Test fehl schlug.

Fehlerursache: Unbekannt.

Fehlerbehebung: Die Methode löscht vor dem Test die Datei aus dem Verzeichniss.

Verantwortlicher: Linus Ruhnke

Issue Nr.57 in der Methode readFromYaml

Fehlersymptom: Falls ein angegebener Pfad nicht existiert wird eine Exception von SnakeYaml übergeben.

Fehlerursache: Übergebener Pfad existiert nicht, aber wird nicht abgefangen.

Fehlerbehebung: Vor dem Lesen wird überprüft, ob eine Ressource in dem Verzeichnis mit dem Pfad existiert.

Verantwortlicher: Linus Ruhnke

3.7 **GUI**

Issue Nr.27 in der Methode pushData

Fehlersymptom: NullPointerException tritt auf, wenn ein Messlauf begonnen wird ohne zuvor die GUI zu starten.

Fehlerursache: Es wurde in der Klasse DataVisualisation auf ein Textfeld zugegriffen, welches nicht initialisiert wurde.

Fehlerbehebung: Das Textfeld wird nun zuerst auf null überprüft.

Verantwortlicher: Jan Küblbeck

Issue Nr.62 in der Klasse MeasurementButtonField

Fehlersymptom: Durch das klicken des "Reset"-Knopfs wurden die angezeigten Daten des vorhergegangenen Messlaufs nicht aus der Anwendung entfernt.

Fehlerursache: Fehlender Code in der Klasse MeasurementButtonField.

Fehlerbehebung: Code hinzugefügt, um die Daten zu entfernen.

Verantwortlicher: Jan Küblbeck

Issue Nr.66 in der Gui

Fehlersymptom: Lädt man eine gültige Konfiguration, macht sie ungültig und checkt sie dann ohne Erfolg, bleibt die alte, gültige Konfiguration im Model geladen und startbar, obwohl in der Gui die ungültige zu sehen ist.

Fehlerursache: Die Methode deleteMeasurementConfiguration in der MeasurementConfiguration funktionierte nicht richtig.

Fehlerbehebung: Die Methode wurde entsprechend angepasst.

Klickstrecke: Anwendung wird geöffnet \rightarrow lade gültige Konfiguration \rightarrow mache sie ungültig \rightarrow drücke den Check-Knopf \rightarrow klicke OK \rightarrow klicke run

erwartetes Ergebnis: Die Messung wird nicht gestartet und es werden keine Daten angezeigt.

Verantwortlicher: David Gawron

4 Testen der GUI

4.1 Testen der GUI durch Klickstrecken

4.1.1 Öffnen der Systemmenüs und dessen Funktionen

In dieser Klickstrecke werden die Funktionen des Systemleistenmenüs getestet unter der Vorbedinung, dass die Anwendung geöffnet ist. In Klickstrecke Nr.1 werden mehrere Bausteine bei der Initialisierung der Anwendung geladen und bei Klickstrecke Nr.2 sind keine Bausteine bei dem angegeben Pfad initialisiert worden.

4.1.2 Erstellen, Speichern, Checken und Laden einer Messkonfiguration

In dieser Klickstrecke wird die Anwendung anhand ihrer Funktion rund um das Erstellen, Speichern und Laden einer Messkonfiguration getestet. Als Vorbedingung ist hier die geöffnete Anwendung mit einer leeren Messkonfiguration gegeben. Die Klickstrecke und deren Ergebnisse sind in Tabelle 3 zu sehen. Dabei besteht Konfiguration A aus einem BMP180 Sensor-Baustein, einer textuellen Repräsentation für einen Kanal und der korrekten Verbindung dazwischen. Konfiguration B besteht aus dem selben Bausteinen wie Konfiguration A, aber die Verbindung fehlt.

4.1.3 Kontrolle des Messlaufs

Durch diese Klickstrecke (Tabelle 4) wird überprüft, ob das Starten, Pausieren, Fortsetzen und Beenden eines Messlaufs und das Speichern von Messdaten korrekt funktioniert. Vorbedingung ist, dass eine korrekte Messkonfiguration bereits geladen ist (siehe vorherige Klickstrecke)

4.1.4 Anpassen der Einstellungen

Durch diese Klickstrecke soll das Ändern von Einstellungen überprüft werden.

4.2 Monkey Testing

Monkey Testing bedeutet die Durchführung von zufälligen oder pseudozufälligen Eingaben mit dem Ziel, Fehler in einer Anwendung zu provozieren.

Auch in dieser Qualitätssicherungsphase wurde Monkey Testing durchgeführt. Dabei wurden mehrere Fehler gefunden und im Issue-Tracker dokumentiert.

Nr.	Aktions- und Klickstrecke	Erwartetes Erg- benis	Bewertung tatsächliches Ergebnis
1	Anwendung wird geöffnet \rightarrow Systemmenü "Bausteine" wird gedrückt.	"Prototyp- Bausteine Fenster wird geöffnet. Ge- ladene Bausteine werden im dem Fenster angezeigt.	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergebnis überein.
2	Anwendung wird geöffnet \rightarrow Systemmenü "Bausteine" wird gedrückt.	"Prototyp- Bausteine Fenster wird geöffnet. Es werden keine Bau- steine im Fenster angezeigt	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergebnis überein.
4	Systemmenü "Bausteine" wird gedrückt → Sensoren-Untermenü wird geöffnet → Transformation-Untermenü wird geöffnet → Repräsentation-Untermenü wird geöffnet. Klicke auf "Bearbeiten" Knopf unter den Namen der Bausteine → Bearbeiten der Baustein-Informationen durch Editieren des Textfeldes der Wert-Spalte.	Beim Öffnen der Untermenüs werden die einzelnen Bausteine der unterschiedlichen Typen angezeigt. Beim Drücken des Knopfes öffnet sich das Eigenschaften"Fenster mit Baustein-Spezifischen Informationen über den Baustein. Eigenschaften lassen sich bearbeiten und der dadurch neu entstandene Baustein soll gespeichert oder weiterverwendet werden können.	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergeb- nis überein. Es öffnet sich das Ëinstellun- gen"Fenster im Hintergrund hinter dem "Prototyp- Bausteine"Fenster. Es werden nicht alle Eigenschaften, welche in der Tabelle dargestellt werden sollen dargestellt. Das Wert-Textfeld lässt sich editie- ren. Das Editieren des Textfeld erfüllt jedoch keine Funk- tionalität und lässt keine weiteren
5	Systemmenü Einstellungen"wird gedrückt.	Es öffnet sich das Ëinstellungen"Fenster im Vordergrund der Anwendung, bestehend aus mehreren Untermenüs zu verschiedenen Einstellungsmöglichkeiten.	Funktionalitäten zu. Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergeb- nis überein. (Weitere Klickstrecken zum Einstellungen" Menü im Unterpunkt 4.1.todo)

Nr.	Aktions- und Klickstrecke	Erwartetes Ergeb-	Bewertung
		nis	tatsächliches
			Ergebnis
6	Systemmenü "Hilfe" wird gedrückt.	Es öffnet sich das	Das erwartete
		"Hilfe"Fenster im	Ergebnis stimmt
		Vordergrund der	mit dem dem
		Anwendung. In	tatsächlichen Ergeb-
		diesem Fenster sind	nis überein.
		Informationen über	
		die Anwendung, wie	
		auch über die Ent-	
		wicklung zu finden.	
		Zu den wichtiges-	
		ten Funktionen der	
		Anwendung gibt es	
		ebenfalls kleinere	
		Tutorials.	

Tabelle 2: Testen der Systemmenüs und dessen Funktionen.

Nr.	Aktions- und Klickstrecke	Erwartetes Ergebnis	Bewertung tatsächliches Ergebnis
1	Erstelle Konfiguration A \rightarrow klicke auf Check-Knopf \rightarrow klicke auf Ok \rightarrow klicke auf Speichern-Knopf \rightarrow wähle Namen und Pfad aus und klicke auf Speichern	Die Datei mit dem entsprechenden Namen ist am entsprechenden Ort zu finden. Die Datei enthält die Konfiguration A.	Das tatsächliche Ergebnis stimmt mit dem erwarteten Ergebnis überein.
2	Erstelle Konfiguration B \rightarrow klicke auf Check-Knopf	Eine Meldung öffnet sich, dass die Konfi- guration nicht gültig ist.	Das tatsächliche Ergebnis stimmt mit dem erwarteten Ergebnis überein.
3	klicke auf Speichern-Knopf \rightarrow klicke auf Abbrechen	Das Hauptfenster ist geöffnet und es hat sich nichts verändert.	Das tatsächliche Ergebnis stimmt mit dem erwarteten Ergebnis überein.
4	klicke auf Laden-Knopf \rightarrow klicke auf Abbrechen	Das Hauptfenster ist geöffnet und es hat sich nichts verändert.	Das tatsächliche Ergebnis stimmt mit dem erwarteten Ergebnis überein.
5	klicke auf Laden-Knopf \rightarrow klicke auf laden, wobei Konfiguration A aus Nr. 1 ausgewählt ist	Eine Fenster öffnet sich und zeigt an, dass die Konfigura- tion erfolgreich gela- den wurde.	Das tatsächliche Ergebnis stimmt mit dem erwarteten Ergebnis überein.
6	klicke auf Laden-Knopf \rightarrow klicke auf laden, wobei Konfiguration B aus Nr. 2 ausgewählt ist	Eine Fenster öffnet sich und zeigt an, dass die Konfigurati- on nicht gültig, und somit nicht startbar ist.	Das tatsächliche Ergebnis stimmt mit dem erwarteten Ergebnis überein.

Tabelle 3: Klickstrecke um das Erstellen, Checken, Laden und Speichern einer Messkonfiguration mit der Gui zu testen.

Nr.	Aktions- und Klickstrecke	Erwartetes Ergeb-	Bewertung
		nis	tatsächliches
			Ergebnis
1	klicke "Run Configuration"	Auslesen und Anzei-	Das tatsächliche Er-
		gen der Messdaten	gebnis stimmt mit
		(Messlauf) beginnt	dem erwarteten Er-
			gebnis überein.
2	klicke "Pause"	Es werden keine neu-	Das tatsächliche Er-
		en Daten verarbeitet	gebnis stimmt mit
		und angezeigt.	dem erwarteten Er-
			gebnis überein.
3	klicke "Resume"	Der Messlauf wird	Das tatsächliche Er-
		fortgesetzt.	gebnis stimmt mit
			dem erwarteten Er-
			gebnis überein.
4	klicke "Pause" \rightarrow "Save Measurement	bisher gemessene	Das tatsächliche Er-
	Data" \rightarrow wähle Zielpfad aus \rightarrow klicke	Daten werden in	gebnis stimmt mit
	"Save"	einer Datei gespei-	dem erwarteten Er-
		chert	gebnis überein.
5	klicke "Reset"	Der Messlauf	Die angezeigten
		wird auf den ur-	Messdaten wer-
		sprünglichen Zu-	den nicht aus dem
		stand zurückgesetzt.	Anzeigefeld entfernt.

Tabelle 4: Kontrolle des Messlaufs

Nr.	Aktions- und Klickstrecke	Erwartetes Erg- benis	Bewertung tatsächliches
			Ergebnis
1	Anwendung wird geöffnet → Systemmenü "Bausteine" wird gedrückt.	"Prototyp- Bausteine Fenster wird geöffnet. Be- reits vorhandene Bausteine werden angezeigt.	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergebnis überein.
2	Im Bausteinprototyp-Bereich Sensor wird bei einem Sensor auf "Bearbeiten" geklickt.	Es öffnet sich ein neues Fenster in dem alle Eigenschaften des Sensors angezeigt und bearbeitet werden können.	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergebnis überein.
3	Klicke auf eine Zelle in der Spalte "Bausteineigenschaften".	Diese Spalte bleibt unverändert und kann nicht aus- gewählt werden.	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergebnis überein.
4	Klicke auf "Wert" von "Name" und trage neuen Wert ein.	Der neue Wert wird in der Zelle ange- zeigt.	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergebnis überein.
5	Bestätige Eingabe mit Enter.	Der neue Wert wird übernommen und fortan in der Zelle angezeigt. Der Wert wird im Model übernommen und für alle weiteren Berechnungen verwendet.	Nach dem Bestätigen der Eingabe springt der Wert der Zel- le wieder auf den alten Wert zurück. Im Model kommen keine Änderungen an.
6	Klicke auf "X".	Das Einstellungsfenster schließt sich.	Das erwartete Ergebnis stimmt mit dem dem tatsächlichen Ergeb- nis überein.

Tabelle 5: Änderungen von Bausteineinstellungen

Nr.	Aktions- und Klickstrecke	Erwartetes Erg-	Bewertung
		benis	tatsächliches
			Ergebnis
1	Anwendung wird geöffnet \rightarrow System-	Das Fenster mit den	Das Fenster wird
	menü Einstellungen" wird gedrückt.	Systemeinstellungen	geöffnet. Es erscheint
		wird, im Vorder-	nicht notwendiger-
		grund, geöffnet.	weiße an der selben
			Position, wie die
			Anwendung.
2	Klicke: "Fester" \rightarrow "System" \rightarrow "Mess-	Das Fenster ändert	Das erwartete
	lauf" \rightarrow "RasPI" \rightarrow "Test Modus"	sich und zeigt die	Ergebnis stimmt
		entsprechenden	mit dem dem
		Informatione an.	tatsächlichen Ergeb-
	,,		nis überein.
3	Klicken in "TestModus" \rightarrow Ändere auf	Der neu Wert wird in	Das erwartete
	"Ja".	dem Feld angezeigt.	Ergebnis stimmt
			mit dem dem
			tatsächlichen Ergeb-
			nis überein.
4	Klicke auf "Einstellungen speichern".	Der neue Wert wird	Das erwartete
		für das System	Ergebnis stimmt
		übernommen. Somit	mit dem dem
		befindet sich die	tatsächlichen Ergeb-
		Anwendung nun im	nis überein.
	A 11.2-11	Test Modus.	
5	Klicke auf "X".	Das Einstellungs-	Das erwartete
		fenster schließt	Ergebnis stimmt
		sich.	mit dem dem
			tatsächlichen Ergeb-
			nis überein.

Tabelle 6: Änderungen von Systemeinstellungen

5 Testen der Qualität

5.1 Hallway Usability Testing

Von der Verwendung von Hallway-Tests wurde abgesehen.

5.2 Testen der Qualität der Funktionalitäten

Die Qualität der Funktionalitäten wurde nicht zusätzlich getestet. Aus den vorhandenen Testfällen lassen sich Qualitätsmerkmale, wie beispielsweise die Bearbeitungszeit von einzelnen Szenarien, herleiten.

6 Durchführen der Testfälle aus dem Pflichtenheft

6.1 T010 Starten der Anwendung und Hilfe

DISCLAIMER: Der Testfall wurde so nicht wirklich durchgeführt, da der Pfad zur Textdatei noch nicht richtig funktioniert. Siehe Issue Nr. 15 in Git-Hub. Der Testfall wurde so angelegt, wie er später aussehen könnte. Er dient lediglich dazu, frühzeitig Feedback zu erhalten.

6.2 T020 Starten der Demo

Der Demomodus funktioniert anders als im Pflichtenheft vorgesehen. Es muss dazu in den Einstellungen der Anwendung der Demomodus eingestellt werden. Außerdem muss der Pfad angegeben werden, wo die Dateien mit Demo-Messdaten zu finden sind. Dann kann einfach eine gewöhnliche Konfiguration geladen (siehe Klickstrecke 4.1.2) und eine Messung gestartet werden (siehe Klickstrecke 4.1.3), als wäre der Raspberry Pi angeschlossen.

6.3 T030 Lehrer erstellt und speichert eine Messkonfiguration

Die Durchführung dieses Testfalles ist in Tabelle 8 zu sehen. Der Testfall aus dem Pflichtenheft schlägt fehl, weil viele Features nicht oder nur teilweise implementiert sind.

6.4 T040 Schüler bearbeitet Aufgabe

Die Durchführung dieses Testfalles ist in Tabelle 9 zu sehen. Dabei wird bei dem Informieren über die Bausteine das Untermenü aller Bausteine beliebig genutzt. Eine explizite Klickstrecke wird nicht angegeben, da eine solche über alle Bausteine viel Schreibarbeit und wenig Erkenntnis bringt

6.5 T050 Schüler startet Messung und speichert Ergebnisse

Die Durchführung dieses Testfalles ist in Tabelle 10 zu sehen.

6.6 T200 Laden einer ungültigen Datei als Messkonfiguration

Die Durchführung dieses Testfalles ist in Tabelle 11 zu sehen.

6.7 T210 Starten einer ungültigen Messkonfiguration

Die Durchführung dieses Testfalles ist in Tabelle 12 zu sehen.

6.8 T220 Entfernen eines Sensors bei laufender Messung

Die Durchführung dieses Testfalles ist in Tabelle 13 zu sehen.

Strukturelement	Beschreibung
Testfallnummer	T010
(Pflichtenheft)	
Testfallverweis	Zum Testen dieses Szenarios werden ausschließlich Klickstre-
	cken benutzt. JUnit Tests sind zur Überprüfung von Gui-
	Verhalten ungeeignet und werden deswegen nicht benutzt.
Verantwortlicher	Linus
Tester	
Vorbedingung	Die Anwendung ist als fat-Jar-Datei auf dem Rechner vor-
	handen. Es läuft keine Instanz dieser Anwendung. Die An-
	wendung wurde zuvor auf dem Rechner ausgeführt.
Testziel	Zu Testen ist das Verhalten des Anwendung, wenn sie gestar-
	tet wird. Außerdem soll die Hilfe-Funktion der Anwendung
	getestet werden.
Klickstrecke	Doppelklick auf Fat-jar. Einzelklick auf Hilfe-Systemmenü.
Beschreibung	Die Anwendung öffnet sich bei dem Öffnen der Fat-Jar-
	Datei. Dabei öffnet sich das Hauptfenster, in dem keine
	Messkonfiguration zu sehen ist. Während des Startvorgan-
	ges werden Bausteine und Benutzereigenschaften geladen.
	Drückt man den Knopf für die Hilfe, öffnet sich das Hilfefens-
	ter mit Informationen über die Benutzung der Anwendung,
	kurze Tutorials und Informationen über die Entwicklung.
Erwartetes Ergebnis	Das Hauptfenster und das Hilfefenster öffnen sich wie ge-
	wollt. Das Hilfefenster steht nach Öffnen im Vordergrund
	der Anwendung.
Verhalten im Fehler-	Eine Fehlermeldung wird angezeigt, falls beim Pfad zur
fall	Textdatei für das Hilfefenster keine Datei gefunden wurde.
	Falls in den Einstellungen falsche Pfade zur Initialisierung
	angegeben werden erscheinen ebenfalls aussagekräftige Feh-
	lermeldungen.
Nachbedingung	Das Hauptfenster der Anwendung ist geöffnet. Es wird
	von dem geöffneten Hilfe-Fenster teilweise überdeckt. Das
	Hauptfenster ist leer, Bausteine und Eigenschaften wurden
	automatisch geladen. Der Hilfstext wird im Hilfe-Fenster an-
	gezeigt.
Getestete Anforde-	F010 erreiche GUI nach Start, F140 leere Darstellung nach
rungen	Anwendungsstart, F480 Hilfe zu Anwendung, F490 Texte
	der Anwendung auf Deutsch

Tabelle 7: Testfall T010 aus dem Pl
fichtenheft: Öffnen der Anwendung und Hilfe.

Strukturelement	Beschreibung		
Testfallnummer	T30		
(Pflichtenheft)			
Verantwortlicher	David		
Tester			
Vorbedingung	Die Anwendung ist geöffnet, das Konfigurationsfeld ist leer.		
Testziel	Zu Testen ist das Verhalten des Anwendung, wenn eine Kon-		
	figuration über den Editor teilweise erstellt wird, und als		
	Zwischenergebnis gespeichert wird.		
Klickstrecke	erstelle Konfiguration (siehe Beschreibung) \rightarrow klicke auf		
	Speichern-Knopf \rightarrow wähle Pfad und Namen aus und klicke		
	auf speichern		
Beschreibung	Der Benutzer erstellt eine Konfiguration textuell über den		
	Editor. Dabei gibt er die Blöcke als Liste von BlockIds an.		
	Hier enthält die Liste zwei Sensoren(BMP180, MMA8451)		
	und eine Transformation(Transformation-Add-2-Channel).		
	Zu den drei Bausteinen erstellt der Benutzer eine jeweili-		
	ge List ihrer Channel. Die Liste aller Verbindungen bleibt		
	hier leer.		
Abweichungen vom	Der Ablauf dieses Testfalles unterscheidet sich massiv von		
Pflichtenheft	dem Testfall aus dem Pflichtenheft. Die Anwendung un-		
	terstützt kein Drag-and-Drop. Deshalb kann auch kein Bau-		
	stein im Konfigurationsfeld als Icon sichtbar werden. Hier		
	erfolgt die Erstellung der Konfiguration ausschließlich tex-		
	tuell über den Editor. Außerdem prüft die Anwendung nicht,		
	ob der entsprechende Sensor angeschlossen ist, wenn ein Sen-		
	sorbaustein hinzugefügt wird. Weiter überprüft die Anwen-		
	dung nicht explizit beim Speichern, ob die Messkonfigurati-		
	on gültig oder vollständig ist. Dies geschieht entweder über		
	den Check-Knopf oder beim Laden der Konfiguration. Es		
	könne keine expliziten Einstellung für nur eine Messkonfigu-		
	ration eingestellt und mit ihr gespeichert werden.		
Erwartetes Ergebnis	Die Anwendung ist geöffnet, die Konfiguration ist im Kon-		
	figurationsfeld zu sehen. Außerdem ist ein Fenster geöffnet,		
	mit der Meldung, dass die Konfiguration erfolgreich gespei-		
	chert wurde. Die unfertige Konfiguration ist als Datei am		
	entsprechenden Ort als Datei gespeichert.		
Verhalten im Fehler-	Die Anwendung gibt nur bei Benutzung des Check-Knopfes		
fall	an, ob die Konfiguration gültig ist.		
Nachbedingung	Das Hauptfenster der Anwendung ist geöffnet. Es wird von		
0 0	dem geöffneten Hilfe-Fenster teilweise überdeckt.		
Getestete Anforde-	F180 füge Sensor hinzu, F210 füge Transformation hinzu,		
rungen	F250 speichere Messkonfiguration		
fehlende zu testete	F190 prüfe ob Sensor angeschlossen, F290 Einstellungen		
Anforderungen	Messkonfiguration		

Tabelle 8: Testfall T030 aus dem Pl
fichtenheft: Öffnen der Anwendung und Hilfe.

Strukturelement	Beschreibung			
Testfallnummer	T40			
(Pflichtenheft)				
Verantwortlicher	David			
Tester				
Vorbedingung	Die Anwendung ist geöffnet, das Konfigurationsfeld ist leer.			
Testziel	Zu Testen ist das Laden einer unvollständigen Konfigurati-			
	on, deren Vervollständigung und das speichern der komplet-			
	ten Konfiguration.			
Klickstrecke	klicke auf Laden-Knopf \rightarrow wähle richtige Datei aus und kli-			
	cke auf laden \rightarrow klicke auf OK \rightarrow klicke auf Bausteine in der			
	Systemleiste und informiere dich \rightarrow klicke auf X \rightarrow klicke			
	auf Hilfe und informiere dich klicke auf $X \rightarrow \text{vervollständige}$			
	Konfiguration und klicke auf Check-Knopf \rightarrow klicke Mel-			
	$dung(Konfiguration gültig) weg \rightarrow klicke auf speichern und$			
	führe den Dialog korrekt aus			
Beschreibung	Die ungültige Konfiguration wird geladen. Die Angebotenen			
	Bausteine sind im Untermenü der Bausteine zu finden. Der			
	Benutzer bearbeitet die Konfiguration, in dem er der Liste			
	eine textuelle Repräsentation mit drei Kanälen hinzufügt.			
	Außerdem erstellt er die Liste der Verbindungen. Eine Ver-			
	bindung ist dabei ein Tupel zweier Kanäle. Ist der Benutzer			
	der Meinung, dass die Konfiguration fertig ist, kann er den			
	Check-Knopf benutzten, um zu prüfen, ob die Konfiguration			
	gültig ist. Die Konfiguration kann jederzeit gespeichert und			
	geladen werden.			
Abweichungen vom	Die Anwendung prüft nicht beim Laden der Konfiguration,			
Pflichtenheft	ob für die benutzten Sensorbausteine entsprechende Senso-			
	ren angeschlossen sind. Außerdem kann die Anwendung die			
	graphische Darstellung der Konfiguration nicht aktualisie-			
	ren, dass es keine solche gibt.			
Erwartetes Ergebnis	Die vollständige Konfiguration ist als Datei am entsprechen-			
	den Pfad zu finden.			
Verhalten im Fehler-	Beim Laden gibt die Anwendung an, dass die Konfiguration			
fall	ungültig ist und bearbeitet werden sollte. Außerdem gibt sie			
	bei Benutzung des Check-Knopfes an, ob die Konfiguration			
	gültig ist.			
Nachbedingung	Das Hauptfenster der Anwendung ist geöffnet. Die			
	vollständige Konfiguration ist im Feld zu sehen. Sie ist auch			
	als Datei gespeichert.			
Getestete Anforde-	F230 füge Darstellung hinzu, F470 Hilfe zu Bausteinen			
rungen				
fehlende zu testete				
Anforderungen				

Tabelle 9: Testfall T040 aus dem Pl
fichtenheft: Öffnen der Anwendung und Hilfe.

Strukturelement	Beschreibung		
Testfallnummer	T050		
(Pflichtenheft)			
Verantwortlicher	Jan		
Tester			
Vorbedingung	Die Anwendung ist gestartet und es ist die in T040 erstelle		
	Messkonfiguration geladen worden.		
Testziel	Teste die Anwendung aus Sicht eines Schülers, der Messung		
	starten und deren Ergebnisse speichern soll.		
Klickstrecke	klicke auf "Run Configuration" \rightarrow warte, bis Daten ange-		
	zeigt werden \rightarrow klicke auf "Pause" \rightarrow klicke auf "Save Mea-		
	surement Data" \rightarrow definiere, wo die Daten gespeichert wer-		
	den sollen \rightarrow klicke auf "Save"		
Beschreibung	Der Messlauf, der durch die bereits vorbereitete Konfigura-		
	tion definiert ist, wird gestartet. Nachdem einige Daten er-		
	folgreich ausgelesen wurden, wird der Messlauf angehalten		
	und die Daten gespeichert.		
Abweichungen vom	Da die Daten in der umgesetzten Anwendung nicht grafisch		
Pflichtenheft	dargestellt werden können, kann auch keine grafische Dar-		
	stellung gespeichert werden.		
Erwartetes Ergebnis	Die ausgelesenen Daten sind in einer Datei am angegebenen		
	Pfad gespeichert.		
Verhalten im Fehler-	Falls die Zieldatei bereits existiert, werden die Daten nicht		
fall	gespeichert.		
Nachbedingung	Das Hauptfenster der Anwendung ist geöffnet. Die Konfigu-		
	ration ist weiterhin geladen. Der Messlauf ist im pausierten		
	Zustand. Die bislang ausgelesenen Daten sind in einer Datei		
	gespeichert.		
Getestete Anforde-	F130, F300 Messung starten, F150, F320 Messdaten wer-		
rungen	den angezeigt, F370 Messung pausieren, 400 Messdaten		
	speichern		
fehlende zu testete	F410 da kein Graph erzeugt wird, kann auch kein Graph		
Anforderungen	gespeichert werden		

Tabelle 10: Testfall T050 aus dem Pl
fichtenheft: Öffnen der Anwendung und Hilfe.

Strukturelement	Beschreibung		
Testfallnummer	T200		
(Pflichtenheft)			
Verantwortlicher	Leon		
Tester			
Vorbedingung	Die Anwendung ist geöffnet, das Konfigurationsfeld ist leer.		
Testziel	Zu Testen ist das Verhalten der Anwendung beim Laden von		
	ungültigen Messkonfigurationsdateien.		
Klickstrecke	Klicke "Lade Konfiguration" \rightarrow Wähle im Datei-		
	Management-System die bereits existierende, fehlerhafte,		
	Konfiguration aus \rightarrow Klicke auf "Öffnen".		
Beschreibung	Der Benutzer versucht eine Konfiguration über den vorge-		
	sehenen Weg zu laden. Nachdem die Konfigurationsauswahl		
	getroffen wurde überprüft FreeJDAQ das Format der Kon-		
	figuration.		
Abweichungen vom	Keine		
Pflichtenheft			
Erwartetes Ergebnis	FreeJDAQ zeigt eine Fehlermeldung an, die auf die fehler-		
	hafte Konfiguration hinweist. Anschließend wird der Lade-		
	vorgang der Konfiguration abgebrochen.		
Nachbedingung	FreeJDAQ ist geöffnet und es ist keine Konfiguration gela-		
	den. FreeJDAQ wird von dem geöffneten Warnungs-Fenster		
	teilweise überdeckt.		
Getestete Anforde-	F430 überprüfe Format beim Laden der Konfiguration.		
rungen			
Fehlende zu testete	Keine		
Anforderungen			

Tabelle 11: Testfall T200 aus dem Pl
fichtenheft: Laden einer ungültigen Datei als Messkonfiguration

Strukturelement	Beschreibung		
Testfallnummer	T210		
(Pflichtenheft)			
Verantwortlicher	Leon		
Tester			
Vorbedingung	Die Anwendung ist geöffnet. Das Konfigurationsfeld ist leer.		
Testziel	Zu Testen ist das Verhalten der Anwendung beim Ausführen		
	einer ungültigen Konfiguration.		
Klickstrecke	Klicke in das Konfigurationsfeld um das Bearbeiten der Kon-		
	figuration zu beginnen. \rightarrow Erstelle eine ungültige Konfigu-		
	ration (Konkret: Füge "Test" ein). \rightarrow Klicke "Starte Mess-		
	lauf".		
Beschreibung	Der Benutzer versucht eine Konfiguration über den vorge-		
	sehenen Weg zu laden. Nachdem die Konfigurationsauswahl		
	getroffen wurde überprüft FreeJDAQ das Format der Kon-		
	figuration.		
Abweichungen vom	Keine		
Pflichtenheft			
Erwartetes Ergebnis	FreeJDAQ zeigt eine Fehlermeldung an, die auf die fehler-		
	hafte Konfiguration hinweist. Anschließend wird das Starten		
	des Messlaufes abgebrochen.		
Nachbedingung	FreeJDAQ ist geöffnet und es ist keine Konfiguration gela-		
	den. FreeJDAQ wird von dem geöffneten Warnungs-Fenster		
	teilweise überdeckt.		
Getestete Anforde-	F310 überprüfe Messkonfiguration beim Start des Messlau-		
rungen	fes.		
fehlende zu testete	Keine		
Anforderungen			

Tabelle 12: Testfall T210 aus dem Plfichtenheft: Starten einer ungültigen Messkonfiguration

Strukturelement	Beschreibung		
Testfallnummer	T220		
(Pflichtenheft)			
Verantwortlicher	Jan		
Tester			
Vorbedingung	Die Anwendung ist geöffnet. Alle verwendeten Sensoren sind		
	angeschlossen und betriebsbereit. Eine gültige Messkonfigu-		
	ration aus zwei Sensoren, einer Transformation und einer		
	Darstellung wurde geladen.		
Testziel	Teste das Verhalten der Anwendung, wenn ein Sensor		
	ausfällt und dessen Datenstrom abbricht.		
Klickstrecke	klicke auf "Run Configuration" \rightarrow trenne Verbindung zum		
	Sensor		
Beschreibung	Der Benutzer startet die Messung. Die Verbindung zu einem		
	Sensor wird getrennt.		
Abweichungen vom			
Pflichtenheft			
Erwartetes Ergebnis	Die Anwendung erkennt, dass ein Sensor keine Daten mehr		
	sendet. Die Messung stoppt. Eine aussagekräftige Fehlermel-		
	dung wird ausgegeben.		
Verhalten im Fehler-	Der Messlauf bricht ab, ohne eine Fehlermeldung anzuzei-		
fall	gen.		
Nachbedingung	Das Hauptfenster der Anwendung ist geöffnet. Die Konfigu-		
	ration ist weiterhin geladen. Der Messlauf ist im pausierten		
	Zustand. Die bislang ausgelesenen Daten sind in einer Datei		
	gespeichert.		
Getestete Anforde-	F450		
rungen			
fehlende zu testete			
Anforderungen			

Tabelle 13: Testfall T
220 aus dem Plfichtenheft: Öffnen der Anwendung und Hilfe.

7 Hardware Tests und sonstige Tests

7.1 Leistung und Speicherverbrauch

Ein expliziter Test zu Leistung und Speicherverbrauch wurde nicht durchgeführt. Der Speicherverbrauch wächst allerdings mit der Dauer des Messlaufs und es kann womöglich bei Überschreiten des maximalen zugewiesenen Speichers für Java, ein Fehler durch nicht genug verfügbaren Arbeitsspeicherplatz kommen.

7.2 Hardware Test der Sensoren

Es wurden die Sensoren MMA8451 und den Bmpx80 getestet. Der analog-digital-Wandler wurde in einer frühen Phase getestet. Bei allen dreien wurden Daten erfolgreich geladen. Die beiden anderen zu testenden Sensoren wurden nicht unmittelbar aufgefunden. Darum wurde ein Testen dieser Sensoren nicht durchgeführt, da wir den Fokus auf die Funktionalität richten.

7.3 Testen auf verschiedenen Systemen

Ein expliziter Test für Windows und Linux wurde nicht durchgeführt. Implizit, wurden beide Betriebssysteme beim Durchführen der Phase mit getestet. Auch hier wurde der Fokus auf die Funktionalität und dem Beheben von Fehlern gelegt.

7.4 Entfernte Klassen

Eine Übersicht ist in Abbildung 3 zu finden. Gründe für das Löschen waren: Klasse wurde nicht benutzt, Funktionalität wurde in andere Klassen gemergt oder die Funktionalität der Klasse wurde durch eine andere Klasse ersetzt. Diese Übersicht wurde allerdings nur spärlich benutzt. Die wirkliche Anzahl an gelöschten Dateien liegt wahrscheinlich höher.

Тур	Name	Datum	Gelöscht von
Klasse	GraphicDataloInterface	21.08.2019	Leon Huck
Enum	MeasurementRun (Backend)	21.08.2019	Jan
Enum	MeasurementStateRun (Model)	21.00.2019	
Klasse	ChannelMismatchException	21.08.2019	Jan
Paket	mockup	21.08.2019	Linus
Paket	main	11.08.2019	Linus
Klasse	CommandNotUndoableException	31.08.2019	Jan

Abbildung 3: Eine Übersicht über entfernte Klassen.

8 Glossar

EclEmma EclEmma ist ein Plug-In für Eclipse für Code-Überdeckungsanalysen. Es basiert auf JaCoCo. Die hier verwendete Version ist 3.1.2.

JaCoCo JaCoCo ist eine freie Code-Überdeckungs Bibliothek für Java. Hier verwendete Version: 0.8.4.

Raspberry Pi Der Raspberry Pi ist ein Einplatinencomputer. In diesem Projekt dient der Raspberry Pi als Hardwareplattform, um Messwerte aus angeschlossenen Sensoren auszulesen.