

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2019

Métodos Quantitativos

Análise de Variância

- Análise de Variância
 - Testar igualdade de médias de duas ou mais populações
 - Variabilidade pode indicar algo sobre a média
- Hipóteses
 - H₀: As médias das populações são iguais
 - H₁: As médias das populações não são iguais

Métodos Quantitativos

Sumário

- Introdução
- Estatística Descritiva
- Probabilidade
- Distribuições de Probabilidades
- Amostragem e Distribuições Amostrais
- Estimação
- Testes de Significância
- Análise de Variância
- Teste de Significância para Proporções
- Testes Não Paramétricos
- Correlação e Regressão

Métodos Quantitativos

2

Análise de Variância

- Suposições para uso da Análise de Variância
 - Amostras aleatórias e independentes
 - Amostras extraídas de populações normais
 - Populações devem ter variâncias iguais

$$\sigma_1^2=\sigma_2^2=\sigma_3^2=\cdots=\sigma_k^2$$

- Cálculo da Variância
 - Cálculo da média da amostra
 - Cálculo do quadrado da diferença entre observação e média
 - Somar os quadrados
 - Dividir por (n-1) para variância amostral

$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n - 1}$$

Métodos Quantitativos

Análise de Variância

- Se H0 verdadeira
 - Amostras são provenientes de populações com médias iguais
- Duas formas para
 - Estimar Variância Populacional
 - · Variância entre as médias amostrais
 - Variância Sistemática
 - · Estimativa "entre" (ou "between") (as amostras)
 - Média das Variâncias Amostrais
 - Variância Não Sistemática
 - · Estimativa "dentro" (ou "within") (de cada amostra)

Métodos Quantitativos

Análise de Variância

- Fundamento
 - Exame da Variância pode revelar algo sobre médias
 - Pode revelar se as médias populacionais são iguais ou não
 - Para o conjunto de amostras a testar
 - Estima-se a variância populacional por dois processos
 - Se as duas estimativas são iguais
 - · Aceita-se H0 (médias são iguais)
 - Se há grande diferença entre as duas estimativas
 - · Rejeita-se H0 (médias não são iguais)

Métodos Quantitativos

6

Análise de Variância

- Estimar Variância Populacional
 - Estimar Variância Populacional
 - · Variância entre as médias amostrais
 - Variância Sistemática
 - Estimativa "entre" (ou "between") amostras
 - Estimativa amostra entre amostras
 - Permite uma estimativa das variâncias das populações
 - · Através de uma distribuição amostral de médias
 - H0 verdadeira significa
 - · Amostras provêem da mesma população normal
 - Teorema do Limite Central
 - Distribuição amostral de médias de uma população normal tem distribuição normal

- Variância entre as médias amostrais
 - Teorema do Limite Central
 - Distribuição amostral de médias de uma população normal tem distribuição normal
 - Desvio padrão da distribuição amostral (raiz quadrada da variância amostral)
 - Está relacionado com o DP da população

Métodos Quantitativos

Análise de Variância

- Variância entre as médias amostrais
- Não se conhece Variância populacional
 - Usa-se a variabilidade (DP ou Variância) amostral para estimar o parâmetro da distribuição da qual se extraiu a amostra
- Tem-se um conjunto de médias amostrais
 - Se H0 é verdadeira significa que médias amostrais provêem da mesma distribuição amostral
- Determinação da Variância das médias amostrais
 - Permite estimar a variância populacional

Métodos Quantitativos

Análise de Variância

■ Variância entre as médias amostrais

DP da Distribuição Amostral de Médias =

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$$

$$\sigma_{\bar{x}}^2 = \frac{\sigma_x^2}{n}$$

$$s_{\bar{x}}^2 = \frac{s_x^2}{n} \quad \therefore \quad s_x^2 = n \cdot s_{\bar{x}}^2$$

Métodos Quantitativos

Análise de Variância

- Variância entre as médias amostrais
- Determinação da Variância das médias amostrais

$$\bar{\bar{x}} = \frac{\sum_{j=1}^{k} \bar{x_j}}{k}$$

$$\bar{\bar{x}} = \frac{\sum_{j=1}^{k} \bar{x_j}}{k} \qquad \qquad s_{\bar{z}}^2 = \left[\frac{\sum_{j=1}^{k} (\bar{x_j} - \bar{\bar{x}})^2}{k-1} \right]$$

$$s_{\bar{x}}^2 = \frac{s_x^2}{n} \quad \therefore \quad s_x^2 = n \cdot s_{\bar{x}}^2$$

$$s_{entre/between}^2 - s_b^2 - n \cdot s_{\bar{x}}^2$$

- Variância entre as médias amostrais
- Determinação da Variância das médias amostrais
 - Médias iguais, ou quase iguais, apresentarão baixa variabilidade
 - Baixo valor de s_b²
 - Médias diferentes, ou mais dispersas/distantes, apresentarão alta variabilidade
 - Alto valor de s_b²

Métodos Quantitativos

12

Análise de Variância

- Estimar Variância Populacional
 - Cálculo da Estimativa da variância dentro (within)
 - · Médias das variâncias dentro de cada amostra

$$s_w^2 = \frac{s_1^2 + s_2^2 + s_3^2 + \dots + s_k^2}{k}$$

Métodos Quantitativos

Análise de Variância

- Estimar Variância Populacional
 - Média das Variâncias Amostrais
 - Estimativa da variância "dentro" (ou "within")
 - Cada variância amostral representa
 - · Variação de cada amostra especificamente
 - · Variação dentro daquela amostra
 - Uma forma de estimara a Variância Populacional
 - · Calcular a Média das variâncias amostrais
 - · Proporciona boa estimativa do conjunto de amostras
 - · Representa bom número de observações
 - Estimativa da variância baseada na média das variâncias amostrais
 - Estimativa da variância **dentro** (*within*)

14

Análise de Variância

- Razão F
 - Estatística de teste F
 - Comparação com Tabela de valores F

Razão
$$F = \frac{s_b^2}{s_w^2} = \frac{n \cdot s_{\bar{x}}^2}{\frac{s_1^2 + s_2^2 + s_3^2 + \dots + s_k^2}{k}}$$

- Observar termos de F
 - Alto F
 - Grande numerador (estimativa entre) relativamente ao denominador (estimativa dentro)
 - Baixo F
 - Pequeno numerador (estimativa entre) relativamente ao denominador (estimativa dentro)
 - Numerador (estimativa entre) indica <u>variabilidade</u> entre médias amostrais
 - Denominador (estimativa dentro) indica média da variabilidade das amostras

Métodos Quantitativos

Análise de Variância

- As médias dos quatro são iguais?
 - 1- Calcular variância entre amostras (between)
 - · Número de observações X Variância das médias amostrais

$$s_{entre/between}^2 = s_b^2 = n \cdot s_{\bar{x}}^2$$

- 2- Calcular variância **dentro** das amostras (*within*)
 - Médias das variâncias das amostras

$$s_w^2 = \frac{s_1^2 + s_2^2 + s_3^2 + \dots + s_k^2}{k}$$

■ 3- Calcular a Razão F

Razão
$$F = \frac{s_b^2}{s_w^2} = \frac{n \cdot s_{\bar{x}}^2}{\frac{s_1^2 + s_2^2 + s_3^2 + \dots + s_k^2}{k}}$$

■ 4- Comparar F com valor de F crítico da tabela

Métodos Quantitativos

Análise de Variância

- Exemplo
 - Quatro grupos. As médias dos quatro são iguais?

Observ	g1	g2	g3	g4
1	15,1	14,9	15,4	15,6
2	15,0	15,2	15,2	15,5
3	14,9	14,9	16,1	15,8
4	15,7	14,8	15,3	15,3
5	15,4	14,9	15,2	15,7
6	15,1	15,3	15,2	15,7
Média:	15,2	15,0	15,4	15,6
Variância:	0,088	0,040	0,124	0,032

Métodos Quantitativos

18

Análise de Variância

- As médias dos quatro são iguais?
 - 1- Calcular variância entre amostras (between)
 - Número de observações x Variância das médias amostrais

$$\bar{\bar{x}} = \frac{\sum_{j=1}^{R} \bar{x}_j}{k} = \frac{15,2 + 15 + 15,4 + 15,6}{4} = 15,3$$

$$s_{\bar{x}}^{2} = \left[\frac{\sum_{j=1}^{k} (\bar{x}_{j} - \bar{\bar{x}})^{2}}{k-1} \right] = \frac{(15,2-15,3)^{2} + (15-15,3)^{2} + (15,4-15,3)^{2} + (15,6-15,3)^{2}}{4-1} = 0,067$$

$$s_b^2 = n \cdot s_x^2 = 6 \cdot 0.067 = 0.402$$

- As médias dos quatro são iguais?
 - 2- Calcular variância **dentro** das amostras (*within*)
 - · Médias das variâncias das amostras

$$s_w^2 = \frac{s_1^2 + s_2^2 + s_3^2 + s_4^2}{k} = \frac{0,088 + 0,040 + 0,124 + 0,032}{4} = \frac{0,284}{4} = 0,07$$

Métodos Quantitativos

21

Análise de Variância

- As médias dos quatro são iguais?
 - 4- Comparar F com valor da tabela
- Distribuição F e
- Tabela de Probabilidades F

Métodos Quantitativos

Análise de Variância

- As médias dos quatro são iguais?
 - 3- Calcular a Razão F

$$F = \frac{s_b^2}{s_w^2} = \frac{n \cdot s_{\bar{w}}^2}{\frac{s_1^2 + s_2^2 + s_3^2 + s_{\bar{k}}^2}{L}} = \frac{6 \cdot 0.067}{\frac{0.284}{4}} = \frac{0.402}{0.071} = 5.662$$

Métodos Quantitativos

22

Análise de Variância

- Distribuição F
 - Distribuição F é assimétrica
 - Valor mínimo: 0
 - Sem valor máximo
 - Curva atinge pico próximo à origem
 - Curva aproxima-se do eixo x à medida que F aumenta
 - Distribuição F
 - Dois "tipos" de Graus de Liberdade
 - gl1 = df1 = n1 = GL do numerador
 - gl2 = df2 = n2 = GL do denominador

- Distribuição F
 - Uma distribuição F para cada combinação
 - Tamanho de amostra (n) e
 - Número de amostras (k)
 - Há uma distribuição F distinta, por exemplo, para:
 - 3 amostras (k) extraídas de seis observações (n)
 - 5 amostras (k) extraídas de seis observações (n)
 - 6 amostras (k) extraídas de sete observações (n)
 - Tabela de Probabilidades F
 - Tabulam-se valores mais usados

Métodos Quantitativos

25

Análise de Variância

- Tabela de Probabilidades F
 - Uma distribuição F para cada combinação
 - Tamanho de amostra (n observações) e
 - Número de amostras (k amostras)
 - Distribuição contínua no intervalo [0; +∞]
 - Como os termos da Razão F são ao quadrado, não há valor negativo de F
 - Forma de cada distribuição amostral teórica F depende do número de Graus de Liberdade
 - gl1 = df1 = n1 = GL do numerador; e
 - gl2 = df2 = n2 = GL do denominador

Métodos Quantitativos

27

Análise de Variância

- Tabela de Probabilidades F
 - Determinação dos Graus de Liberdade
 - gl1 = df1 = n1 = GL do numerador; e
 - gl2 = df2 = n2 = GL do denominador
 - Determinado pelos cálculos necessários para deduzir cada estimativa da variância populacional
 - Estimativa entre (between)
 - Estimativa dentro (within)

- Tabela de Probabilidades F
 - Cálculos necessários para cada estimativa da variância populacional
 - Estimativa entre (between): numerador
 - Divisão da soma de quadrados de diferenças pelo número de médias amostrais (k) menos 1
 - gl1 = df1 = n1 = GL do numerador = (k 1)

$$s_b^2 = n \cdot s_{\bar{x}}^2 = n \cdot \left[\frac{\sum_{j=1}^k (\bar{x}_j - \bar{\bar{x}})^2}{(k-1)} \right]$$

Métodos Quantitativos

20

Análise de Variância

- Cálculos necessários para cada estimativa da variância populacional
 - Estimativa dentro (within) denominador
 - A Média das variâncias obtém-se pelo quociente entre a soma das variâncias amostrais e o número de amostras (k).
 - O número de Graus de Liberdade da estimativa dentro (within) é então: k(n - 1)
 - gl2 = df2 = n2 = GL do denominador = k(n 1)

Métodos Quantitativos

21

Análise de Variância

- Cálculos necessários para cada estimativa da variância populacional
 - Estimativa dentro (within): denominador
 - Cada variância amostral resulta da divisão da soma de quadrados de diferenças pelo número de observações (n) menos 1: (n - 1)

$$5_x^2 - \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

$$s_w^2 = \frac{\sum_{i=1}^n (x_i - \bar{x}_1)^2}{n-1} + \frac{\sum_{i=1}^n (x_i - \bar{x}_2)^2}{n-1} + \cdots \frac{\sum_{i=1}^n (x_i - \bar{x}_k)^2}{n-1}}{\binom{k}}$$

Métodos Quantitativos

30

Análise de Variância

• gl2 = df2 = n2 = GL do denominador = k(n - 1)

$$s_w^2 = \frac{\sum_{i=1}^n (x_i - \bar{x}_1)^2 \sum_{i=1}^n (x_i - \bar{x}_2)^2 \sum_{i=1}^n (x_i - \bar{x}_k)^2}{n-1} \frac{\sum_{i=1}^n (x_i - \bar{x}_k)^2}{n-1}$$

$$s_w^2 = \left(\frac{1}{n-1}\right) \left[\frac{\sum_{i=1}^n (x_i - \bar{x}_1)^2 + \sum_{i=1}^n (x_i - \bar{x}_2)^2 + \dots + \sum_{i=1}^n (x_i - \bar{x}_k)^2}{k} \right]$$

$$s_w^2 = \underbrace{\frac{1}{k(n-1)}} \left[\sum_{i=1}^n (x_i - \bar{x}_1)^2 + \sum_{i=1}^n (x_i - \bar{x}_2)^2 + \dots + \sum_{i=1}^n (x_i - \bar{x}_k)^2 \right]$$

■ Tabela F

- Uma tabela para cada nível de significância α
 - Algumas tabelas F tabulam valores de F para mais de um nível de significância α
- Linha superior
 - GL do numerador estimação entre (between)
 - gl1 = df1 = n1 = GL do numerador = (k 1)
- Coluna à esquerda
 - GL do denominador estimação dentro (within)
 - gl2 = df2 = n2 = GL do denominador = k(n-1)

Métodos Quantitativos

33

Análise de Variância

Significação em uma cauda **F**_{sig (0,05)}

n1 = Graus de Liberdade do Numerador de F (variância entre/between)

n2 = Graus de Liberdade do Denominador de F (variância dentro/within)

df1 = GL Numerador = (k -1) (variância entre/between)

df2 = k(n-1)	1	2	3	4	5	6
1	161	199	216	225	230	234
2	18,5	19	19,2	19,2	19,3	19,3
3	10,1	9,55	9,28	9,12	9,01	8,94
4	7,71	6,94	6,59	6,39	6,26	6,16
5	6,61	5,79	5,41	5,19	5,05	4,95
6	5,99	5,14	4,76	4,53	4,39	4,28
7	5,59	4,74	4,35	4,12	3,97	3,87
8	5,32	4,46	4,07	3,84	3,69	3,58
9	5,12	4,26	3,86	3,63	3,48	3,37
Métodos Quantitativos						35

Análise de Variância

- Tabela F
 - Para uma tabela de nível de significância α
 - Valores de gl1 (k-1) e gl2 [k(n-1)] determinam
 - Valor F na célula específica
 - Valor da célula
 - Valor Crítico de F (limite região de aceitação de H₀)
 - Linha, ou valor, limítrofe para o teste de variação entre as médias comparadas
 - Variação devida ao acaso
 - · Variação Não devida ao acaso

Métodos Quantitativos

34

Análise de Variância

- Uso da Tabela F
 - Para as seguintes situações, ver o valor de F ao nível de significância (α) de 5% (0,05)

Número de	GL Numerador	Tamanho	GL Denominador	Valor
amostras (k)	(k - 1)	amostra (n)	[k(n - 1)]	de F
			_	
5	4	2	5	5,19
4	3	3	8	4,07
6	5	2	<u>6</u>	4,39
2	1	5	8	5,32
3	2	4	<i>9</i>	4,26
2	1	11	20	4,35
Métodos Quantitativos	'			36

- Hipóteses
 - H₀: As médias das populações são iguais
 - H₁: As médias das populações não são iguais

Métodos Quantitativos

27

Análise de Variância

- Tabela F
 - Para certa Razão, ou teste, F calculada(o)
 - Sob determinado nível de significância (α)
 - Se F calculado é inferior ao valor tabelado para gl1 e gl2
 - Não se descarta H0
 - · Médias são iguais
 - Se F calculado é superior ao valor tabelado para gl1 e gl2
 - Rejeita-se H0 e aceita-se H1
 - · Médias não são iguais

Métodos Quantitativos

20

Análise de Variância

- Voltando ao exemplo
 - As médias dos quatro grupos são iguais?
 - 3- Calcular a Razão F

$$F = \frac{s_b^2}{s_w^2} = \frac{n \cdot s_{\bar{x}}^2}{\frac{s_1^2 + s_2^2 + s_3^2 + s_k^2}{k}} = \frac{6 \cdot 0,067}{\frac{0,284}{4}} = \frac{0,402}{0,071} = 5,662$$

- Quatro amostras de seis observações cada
 - Calcular GL
 - Número de amostras (k) = 4
 - GL Numerador (k 1) = 4 1 = 3 (GL1 = df1 = n1)
 - Tamanho amostra (n) = 6
 - GL Denominador [k(n-1)] = 4*(6-1) = 20 (GL2)

Número de amostras (k)	GL Numerador (k - 1)	Tamanho amostra (n)	GL Denominador [k(n - 1)]	Valor de F (0,10)
4	3	6	20	2,38
			1	
	GL			
Número de	Numerador	Tamanho	GL Denominador	Valor de F
amostras (k)	(k - 1)	amostra (n)	[k(n - 1)]	(0,05)
4	3	6	20	3,1
	GL			
Número de	Numerador	Tamanho	GL Denominador	Valor de F
amostras (k)	(k - 1)	amostra (n)	[k(n - 1)]	(0,01)
4	3	6	20	4,94
Métodos Quantitativos				41

- *F* calculado = **5,662**
 - Supera F crítico ao nível de 0,01
 - Muito significativo
 - F calculado é superior a valor F tabelado
 - Rejeita-se H0 e aceita-se H1
 - · Médias dos quatro grupo são diferentes
 - · Amostras não são oriundas da mesma população

Métodos Quantitativos

Análise de Variância

- Resumo:
- 1- Calcular variância **entre** amostras (**between**) Numerador
 - Número de observações (n) X Variância das médias amostrais

$$s_{\textit{entre/between}}^2 = s_b^2 = n \cdot s_{\bar{x}}^2$$

- 2- Calcular variância dentro das amostras (within) Denominador
 - Médias das variâncias das amostras

$$s_w^2 = \frac{s_1^2 + s_2^2 + s_3^2 + \dots + s_k^2}{k}$$

3- Calcular a Razão F

Razão
$$F = \frac{s_b^2}{s_w^2} = \frac{n \cdot s_k^2}{s_1^2 + s_2^2 + s_3^2 + \dots + s_k^2}$$

4- Comparar F calculado com F crítico da tabela

- Se amostras de tamanhos distintos
- Ajuste das fórmulas
 - Estimativa entre (*between*)

$$s_b^{\,2} = \frac{n_1(\bar{x}_1 - \bar{\bar{x}})^{\,2} + n_2(\bar{x}_2 - \bar{\bar{x}})^{\,2} + \dots + n_k(\bar{x}_k - \bar{\bar{x}})^{\,2}}{k-1}$$

■ Estimativa dentro (within)

• gl2 = df2 =
$$(n_1 + n_2 + ... + n_k)$$
 - k

$$s_w^2 = \frac{\sum_{i=1}^{n_2} (x_i - \bar{x}_1)^2}{\frac{n_1 - 1}{n_1 - 1}} + \frac{\sum_{i=1}^{n_2} (x_i - \bar{x}_2)^2}{\frac{n_2 - 1}{n_2 - 1}} + \dots \frac{\sum_{i=1}^{n_k} (x_i - \bar{x}_k)^2}{\frac{n_k - 1}{n_k - 1}}$$