

MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS ENGINEERING DEPARTMENT MTE 408 ROBOTICS

SESSION 4 INTRODUCTION TO ROBOTICS LAB

WALEED ELBADRY MARCH 2022

Assignment

Assume any missing data, compute ${}^{A}\xi_{C}$, ${}^{B}\xi_{C}$, and ${}^{A}\xi_{B}$ transformation and find the ${}^{A}P$, ${}^{B}P$

Hint

Hint

Source: Wikipedia

Hint

$$\boldsymbol{f}_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \boldsymbol{\theta}_z = 0^o$$

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} \cos(0) & -\sin(0) \\ \sin(0) & \cos(0) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$${}^{A}\boldsymbol{\xi}_{B} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$


```
28
29
       %% Frame {B}
      TB = [1 \ 0 \ 3; \dots]
30 -
             0 -1 3;...
31
             0 0 1];
      disp('Frame B Transformation Matrix:')
34 -
       TB
35
  Error using matlab.graphics.primitive.Transform/set
  Invalid value for Matrix property.
  Error in <u>trplot2</u> (<u>line 265</u>)
      set(hq, 'Matrix', se2t3(T));
  Error in RTBPose/plot (line 867)
                     [varargout{1:nargout}] =
```


Since the flip is about x - axis, we violated the 2D constraints

Rotation about z, Translation on x and y

$$f^{1}\xi_{f2} = \begin{bmatrix} \cos(\theta_{z}) & -\sin(\theta_{z}) & t_{x} \\ \sin(\theta_{z}) & \cos(\theta_{z}) & t_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

Point in 3D – space

$$p = x\hat{x} + y\hat{y} + z\hat{z}$$

$$\hat{x} = \hat{y} \times \hat{z}$$
 $\hat{y} = \hat{x} \times \hat{z}$ $\hat{z} = \hat{x} \times \hat{y}$

Right-hand rule

"Any two independent orthonormal coordinate frames can be related by a sequence of rotations (not more than **three**) about coordinate axes, where no two successive rotations may be about the same axis"

Euler's rotation theorem (Kuipers 1999)

Rotation about an axis

$$R_x R_y \neq RyRx$$
Order of Roration

a Original

b $\frac{\pi}{2}$ about *x*-axis

c π about *x*-axis

 $f \frac{\pi}{2}$ about z-axis

$$^{A}P = {}^{A}R_{B}{}^{B}P$$

$$\begin{bmatrix} A_{x} \\ A_{y} \\ A_{z} \end{bmatrix} = {}^{A}\boldsymbol{R}_{B} \begin{bmatrix} B_{x} \\ B_{y} \\ B_{z} \end{bmatrix}$$

$${}^{A}\mathbf{R}_{B} \subset \mathbb{R}^{3x3}$$

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

$$\begin{bmatrix} A_{x} \\ A_{y} \\ A_{z} \end{bmatrix} = {}^{A}\mathbf{R}_{B} \begin{bmatrix} B_{x} \\ B_{y} \\ B_{z} \end{bmatrix}$$

$$\mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \end{bmatrix}$$

$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\boldsymbol{R}_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

ORIFNIATION

$$\boldsymbol{R}_{x}(90^{0})\boldsymbol{R}_{y}(90^{0}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(90^{0}) & -\sin(90^{0}) \\ 0 & \sin(90^{0}) & \cos(90^{0}) \end{bmatrix} \begin{bmatrix} \cos(90^{0}) & 0 & \sin(90^{0}) \\ 0 & 1 & 0 \\ -\sin(90^{0}) & 0 & \cos(90^{0}) \end{bmatrix}$$

$$R_{x}(90^{0})R_{y}(90^{0}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix} WHAT DOES IT MEAN$$


```
>> base = [1 0 0;0 1 0;0 0 1];
```

>> trplot(base)

>> view(30,30)

$$>> Rx = rotx(90)$$

>> trplot(Rx)

>> view(30,30)

>> trplot(RxRy)

>> view(30,30)

Revolute Joint (R)

Prismatic Joint (P)

Articulated Arm (RRR)

ABB IRB1400 Anthropomorphic Robot

Cartesian Robot (PPP)

Epson Cartesian Robot

KINEMATIC CONFIGURATION SCARA Robot (RRP)

Adept Cobra i600

SCARA Robot (RPP)

Seiko RT3300 Robot

3D-HOMOGENEOUS TRANSFORM

Spherical Robot (RRP)

Note: From our discussion in the session, don't be confused with the axis assignment. You can pick any finger arrangement to axes but **you must keep this arrangement** when assigning frames to the whole mechanism

In this problem, I picked **ZXY**, but you may use any arrangement of preference.

$${}_{1}^{0}T = Rz_{1}^{0}R + {}_{1}^{0}t$$

$$R_z = \begin{bmatrix} c\theta_1 & -s\theta_1 & 0 \\ s\theta_1 & c\theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$${}_{1}^{0}R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c(-90) & -s(-90) \\ 0 & s(-90) & c(-90) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} a_{1}$$

$${}_{1}^{0}t = \begin{bmatrix} 0 \\ 0 \\ a_{1} \end{bmatrix} \qquad {}_{1}^{0}R_{c} = \begin{bmatrix} c\theta_{1} & 0 & -s\theta_{1} \\ s\theta_{1} & 0 & c\theta_{1} \\ 0 & -1 & 0 \end{bmatrix}$$

$${}_{1}^{0}T = Rz_{1}^{0}R + {}_{1}^{0}t$$

$${}_{1}^{0}t = \begin{bmatrix} 0 \\ 0 \\ a_{1} \end{bmatrix} \qquad {}_{1}^{0}R_{c} = \begin{bmatrix} c\theta_{1} & 0 & -s\theta_{1} \\ s\theta_{1} & 0 & c\theta_{1} \\ 0 & -1 & 0 \end{bmatrix}$$

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & 0 & s\theta_{1} & 0 \\ s\theta_{1} & 0 & c\theta_{1} & 0 \\ 0 & -1 & 0 & a_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = Rz_{2}^{1}R + {}_{2}^{1}t$$

$$R_z = \begin{bmatrix} c\theta_2 & -s\theta_2 & 0 \\ s\theta_2 & c\theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}R = \begin{bmatrix} c(90) & 0 & s(90) \\ 0 & 1 & 0 \\ -s(90) & 0 & c(90) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$${}_{2}^{1}t = \begin{bmatrix} a_{2}c\theta_{2} \\ -a_{2}s\theta_{2} \\ 0 \end{bmatrix} \quad {}_{2}^{1}R_{c} = \begin{bmatrix} 0 & -s\theta_{2} & c\theta_{2} \\ 0 & c\theta_{2} & s\theta_{2} \\ -1 & 0 & 0 \end{bmatrix}$$

$${}_{2}^{1}T = Rz_{2}^{1}R + {}_{2}^{1}t$$

$${}_{2}^{1}t = \begin{bmatrix} a_{2}c\theta_{2} \\ -a_{2}s\theta_{2} \\ 0 \end{bmatrix} \quad {}_{2}^{1}R_{c} = \begin{bmatrix} 0 & -s\theta_{2} & c\theta_{2} \\ 0 & c\theta_{2} & s\theta_{2} \\ -1 & 0 & 0 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} 0 & -s\theta_{2} & c\theta_{2} & a_{2}c\theta_{2} \\ 0 & c\theta_{2} & s\theta_{2} & -a_{2}s\theta_{2} \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$_{3}^{2}T = Rz_{3}^{2}R + _{3}^{2}t$$

$$R_z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} # No rotation$$

$${}_{3}^{2}R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} # Same frame orientation$$

$${}_{3}^{2}t = \begin{bmatrix} 0 \\ 0 \\ a_{3} + d_{3} \end{bmatrix} \quad {}_{3}^{2}R_{c} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$_{3}^{2}T = Rz_{3}^{2}R + _{3}^{2}t$$

$${}_{3}^{2}t = \begin{bmatrix} 0 \\ 0 \\ a_{3} + d_{3} \end{bmatrix} \quad {}_{3}^{2}R_{c} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a_{3} + d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T$$

$${}_{3}^{0}T = \begin{bmatrix} c\theta_{1} & 0 & -s\theta_{1} & 0 \\ s\theta_{1} & 0 & c\theta_{1} & 0 \\ 0 & -1 & 0 & a_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -s\theta_{2} & c\theta_{2} & a_{2}c\theta_{2} \\ 0 & c\theta_{2} & s\theta_{2} & -a_{2}s\theta_{2} \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a_{3} + d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find the homogeneous transform for all stated confihurations in section. Share your answer with you colleagues

NEXT SECTION : D - H PARAMETERS

