

实验报告

井 课字期:	2023 年春季
课程名称:	计算机网络
实验名称:	RIP 路由配置及协议分析
实验性质:	课内实验
实验时间:	<u>4月21日</u> 地点: <u>T2507</u>
学生专业:	计算机科学与技术
学生学号:	200110513
学生姓名:	宗晴
评阅教师:	
报告成绩:	

实验与创新实践教育中心印制 2023年3月

实验四 RIP 路由配置及协议分析

1. 给出你自己的实验组网图(把你在 Cisco Packet Tracer 上的拓扑图截图即可)。

2. 在启动 RIP 协议前,在 R0 上 ping 各台计算机,看是否能够 ping 通?通过在 R0 上查看路由表,分析其原因?

```
RO#ping 192.168.2.11

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.2.11, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/6 ms

RO#ping 192.168.3.13

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.3.13, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)

RO#ping 192.168.3.14

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.3.14, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)

RO#
```

如上图所示,在R0上ping各台计算机,其中PC0可以ping通,但PC1和PC2无法ping通。

在 R0 上查看路由器表:

```
RO#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     1.0.0.0/32 is subnetted, 1 subnets
        1.1.1.1 is directly connected, Loopbackl
C
     192.168.1.0/24 is directly connected, FastEthernet0/0
C
     192.168.2.0/24 is directly connected, FastEthernet0/1
RO#
```

发现 R0 的路由器表中有 loopback 回环接口 1.1.1.1,以及 192.168.1.0/24 网段和 192.168.2.0/24 网段。由于 PC0 的 ip 地址为 192.168.2.11,在 192.168.2.0/24 网段,因此可以 ping 通。但 PC1 的 ip 地址为 192.168.3.13, PC2 的 ip 地址为 192.168.3.14,均在 192.168.3.0/24 网段,R0 的路由表中没有该网段的记录,因此 PC1 和 PC2 均无法 ping 通。

3. 在配置 RIP 协议后,比较和配置 RIP 协议前中 R0 路由表的差异;测试 R0 和各台计算机是 否能够通信,并说明原因。

配置 RIP 协议后, RO 的路由表如下图所示:

```
RO#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 1 subnets

C 1.1.1.1 is directly connected, Loopback1

C 192.168.1.0/24 is directly connected, FastEthernet0/0

C 192.168.2.0/24 is directly connected, FastEthernet0/1

R 192.168.3.0/24 [120/1] via 192.168.1.2, 00:00:25, FastEthernet0/0

R0#
```

和配置 RIP 协议之前(即上一小问的第2张图所示)相比,新增了最后一行,即新增了途径 192.168.1.2 端口到 192.168.3.0/24 网段的路径。

测试 R0 和其它各台计算机是否能够通信:

```
RO#ping 192.168.2.11

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.2.11, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/6 ms

RO#ping 192.168.3.13

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.3.13, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms

RO#ping 192.168.3.14

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.3.14, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
RO#
```

发现 R0 和各台计算机均能够 ping 通。这是因为 R0 的路由表中新增了 192.168.3.0/24 网段的信息,而 PC1 和 PC2 均在 192.168.3.0/24 网段中,因此能 ping 通。PC0 如上一小问中 所述,也能 ping 通。

4. 观察你所截获的 RIP 响应报文 (任选一条响应报文),填写下表:

截获的 RIP 相应报文如下图所示:

		字段	值	含义
IP		目的地址	224.0.0.9	RIPv2 的组播地址(目的主机的
				IP 地址)
UDP		端口号	520	RIP 协议用 UDP 520 端口收发
				报文(目的进程的端口号)
RIP		命令字段	0x2	表示应答报文
	头部	版本号	0x2	RIP 报文的版本是版本 2,即
				RIPv2
	路由	协议族	0x2	表示 IP 协议族

实验报告

信息	网络地址	192.168.2.0	目的地址所在的子网地址
	网络掩码	255.255.255.0	目的子网掩码
	下一跳	192.168.1.1	下一跳将被转发到的地址
	跳数	0x1	到达目的所在的子网需要跳一
			步

5. 比较水平分割前后 R0 发给 R1 的 RIP 报文路由信息的不同,填写到下表中。

	IP Address	Metric
	1.1.1.1	0x1
西洲水巫八割苗	192.168.2.0	0x1
取消水平分割前		
	1.1.1.1	0x1
取消水平分割后	192.168.1.0	0x1
	192.168.2.0	0x1
	192.168.3.0	0x2