Les AILETTES

I - INTRODUCTION

Dans un échangeur de chaleur, ou bien par exemple en électronique, lorsque l'on veut augmenter l'évacuation de chaleur autour d'un composant,

- si le coefficient d'échange convectif est faible,
- on peut songer à augmenter la surface d'échange

$$\Phi = hS\Delta T, donc$$

$$\Delta T = \frac{\Phi}{hS}$$

Pour un flux Φ donné, si h demeure faible, augmenter S conduit à limiter l'échauffement ΔT

Pour cela, on emploie des surfaces auxiliaires, où conduction et convection vont apparaître comme combinées

Ces surfaces sont appelées des ailettes

Il existe une très grande variété d'ailettes

Rappel: le moteur électrique

a v

1 Ventilateur 2 Canaux statoriques

3 Entrefer (Canaux r----

Fig. 1 : Coupe schématique du moteur étudié.

Fig. 5 : Coupe radiale du moteur.

II – Un exemple d'ailette : la barre

Considérons le transfert de chaleur stationnaire le long d'une tige mince, dont la base est connectée à un solide à la température T_0

L'ambiante est supposée à T_a , éventuellement prise comme référence ($T_a = 0$)

HYPOTHESES

- Sections droites isothermes
- •L et h sont uniformes
- •T n'est seulement fonction que de x

Notations:

Section droite: a

Périmètre : p

Le gain en surface d'échange est contrebalancé, en partie, par la résistance de conduction supplémentaire R_{CD}

Ambiante Convecté

$$Q_x - Q_{x+dx} = hpdx(T(x) - T_a) = -\frac{dQ_x}{dx}dx$$

$$Q_x = -\lambda a \frac{dT}{dx}$$

$$\frac{d^2T}{dx^2} = \frac{hp}{\lambda a} (T(x) - T_a)$$

$$\frac{d^2T}{dx^2} = \frac{hp}{\lambda a} (T(x) - T_a)$$

On pose:
$$m^2 = \frac{hp}{\lambda a}$$

 $\theta(x) = T(x) - T_a$

Et l'équation de la barre devient :

$$\frac{d^2\theta}{dx^2} = m^2\theta$$

Hypothèse (supplémentaire)

La conduction (axiale) est négligeable, au bout de l'ailette :

$$\theta_L' = 0$$

Il faut donc résoudre :
$$\frac{d^2\theta}{dx^2} = m^2\theta \qquad m = \sqrt{\frac{hp}{\lambda a}}$$

$$\theta(x=0) = \theta_0 \qquad \theta_0 = T_0 - T_a$$

$$\theta'_L = 0$$

Solution du type:

$$\theta = C_1 \exp mx + C_2 \exp(-mx)$$

Conditions aux limites

$$\frac{\theta}{\theta_0} = \frac{ch \, m(L - x)}{ch \, mL}$$

Exploitation

1 – Température en bout d'ailette

$$\theta_L = T_L - T_a$$

$$\theta_{L} = \frac{\theta_{0}}{ch\left(mL\right)}$$

2 – Flux évacué par l'ailette

$$Q_0 = -\lambda a \left(\frac{\partial T}{\partial x}\right)_0$$

$$Q_0 = \lambda ma \, \theta_0$$
 th mL

$$3 - SiL \rightarrow \infty$$

$$Q_{\infty} = \lambda ma \,\theta_0$$

$$\theta = \theta_0 \exp(-mx)$$

$$\theta_L \to 0$$

1-thmLmL $\frac{ heta}{ heta_0}$ mL = 0.50.887 8.0 1.0 0.648 25% 0.6 0.425 10% 0.4 3.0 0.266 3,6% 0.2 1% 0,5% 0.013 0.4 0.6 8.0 1.0 L_{∞} : e^{-mx} (ml = 2)

Observer:

$$mL = 0.5$$

$$mL = 7$$

mL faible : mL = 0.5

$$\theta_L = 0.9$$
 $\frac{Q_{\infty} - Q_0}{Q_0} = 54\%$

ailette trop courte

mL très grand: mL =7

La dernière partie de l'ailette est inutile:

ailette trop longue

Règle:

Zone utile de mL: 1 < mL < 1.5 à 2

Noter:
$$m = \sqrt{\frac{hp}{\lambda a}}$$

III - Notions de rendement et d'efficacité de l'ailette

 Flux évacué par l'ailette

$$Q_0 = \lambda \, m \, a \, \theta_0 th \, mL$$

 \cdot Si $\lambda o \infty$,

ailette isotherme

$$Q_{loo} = hpL \theta_{o}$$

sans l'ailette

$$Q_{mur} = h \, a \, \theta_0$$

$$L \rightarrow \infty$$

$$Q_{L\infty} = \lambda \, ma \, \theta_o$$

Définitions

a) Efficacité

$$e = \frac{Q_0}{Q_{mur}}$$

$$e = \frac{\lambda}{hL} mL th mL$$

On cherche au moins e >2

b) Rendement

Q₀ est limité par le fait que ni I ,ni L ne peuvent devenir infinis. On peut introduire a priori deux rendements

À l'égard de L:
$$\eta_{\lambda} = \frac{Q_0}{Q_{\lambda \infty}} = \frac{th \ mL}{mL}$$
À l'égard de L:
$$\eta_{L} = \frac{Q_0}{Q_{L \infty}} = th \ mL$$

$$\eta_L = \frac{Q_0}{Q_{L^{\infty}}} = th \ mL$$

Dans la pratique, on retient plutôt la définition du rendement avec η_{λ}

Quelques commentaires sur l'efficacité

En barre de longueur infinie $e = \frac{\lambda}{hL} mL th mL \rightarrow \frac{\lambda m}{h} = \sqrt{\frac{\lambda p}{ha}}$

Sur quoi peut-on agir?

Grande conductivité: Al, Cu (poids, coût)

p/a: ailettes fines, proches, mais pas trop (h!)

Justifiées si h est faible: convection naturelle, gaz

Sur un échangeur gaz / liquide, on disposera des ailettes coté gaz.

IV – Autres types usuels de conditions aux limites

Partant de la même équation de base:

$$\frac{d^2\theta}{dx^2} = m^2\theta$$

La solution générale s'écrit: $\theta = C_1 \exp mx + C_2 \exp(-mx)$ où C_1 et C_2 dépendent des conditions aux limites

p: périmètre

a: section

λ: conductivité

Examinons les conditions aux limites suivantes

	Nature de la condition		
1 .	l'extrémité x =L convecte par sa tranche (a)	$-\lambda a \theta_L' = h \theta_L \mathbf{a}$	
2*	extrémité x =L adiabatique	$\theta_L^{'}=0$	
3	on impose en x =L $\theta = \theta_L$	$\theta(L) = \theta_L$	
4	la barre est infinie	$\lim_{L\to\infty}\theta(L)=0$	

Notations:
$$T_0 = T(x=0)$$
 $\theta = T - T_a$ $\theta_0 = \theta(0) = T_0 - T_a$
$$m = \sqrt{\frac{hp}{\lambda a}} \qquad M = \sqrt{hp\lambda a}\theta_0$$

Tableau des résultats correspondants

CAS	CONDITION (x=L)	TEMPERATURE θ/θ _o	FLUX TRANSFERE (0)
1	Convection $h\theta(L) = -\lambda d\theta/dx _{x=L}$	$\frac{chm(L-x)+(h/m\lambda)sh\ m(L-x)}{ch\ mL+(h/m\lambda)sh\ mL}$	sinh mL + (h/mλ) cosh mL Cosh mL + (h/mλ) sinh mL
2	Adiabaticité $d\theta/dx _{x=L} = 0$	$\frac{ch \ m(L-x)}{ch \ mL}$	M tanh mL
3	Temperature : $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_o) \sinh mx + \sinh m(L-x)}{\sinh mL}$	$M \frac{(\cosh mL - \theta_L/\theta_o)}{\sinh mL}$
4.	Infini (L \emptyset 8): θ (L) = 0	e-mx	M

Noter: $m = \sqrt{\frac{hp}{\lambda a}}$ $M = \sqrt{hp\lambda a}\theta_0$

V - Le concept de conductance thermique globale

Dans le cas $\theta'_L = 0$, le flux extrait s'écrit:

$$Q_0 = \lambda ma \,\theta_0 \, th \, mL = \sqrt{hp \,\lambda a} \, \theta_0 th \, mL$$

Il est donc de la forme $G(T_0 - T_a)$, d'où la conductance :

$$G = \sqrt{hp\lambda a} \ th \ mL$$

Tableau des conductances

Cas	Condition aux limites	G(W/K)
1	$-\lambda \dot{\theta_{\rm L}} = \mathbf{h} \theta$	$\frac{\sinh L + \frac{h}{m\lambda} \cosh mL}{\sqrt{h p \lambda a}} \frac{\sinh L + \frac{h}{m\lambda} \cosh mL}{\cosh m L + \frac{h}{m\lambda} \sinh mL}$
2	$\dot{\theta_{\rm L}} = 0$	$\sqrt{hp \lambda a}$ th mL
3	$\theta(\mathbf{L}) = \theta_{\mathbf{L}}$	$\sqrt{h p \lambda a} \frac{ch mL - \theta_L/\theta_0}{sh mL}$
4	$\lim_{L\to\infty}\theta(\mathbf{L})=0$	√hp λa

Remarque

$$Q_0 = \eta \ Q_{\lambda \infty} = \eta \ h S_{tot} \ \theta_0$$

D'où la formulation générale:

$$G = \eta h S_{tot}$$

VI – La relation de Harper Brown

Elle concerne l'écart entre les conditions d'extrémité adiabatique $\theta'_{I} = 0$ et de type convection naturelle

Extrémité
$$\begin{cases} \theta_L' = 0 \\ \theta = \theta_o \frac{ch \quad m(L-x)}{ch \, mL} \\ Q_o = \sqrt{hp\lambda a} (T_o - T_a) th \, mL \end{cases}$$

Extrémité en convection naturelle
$$Q_o = \sqrt{hp\lambda a} (T_o - T_a) \frac{ch m(L-x) + \frac{h}{m\lambda} sh m(L-x)}{ch mL + \frac{h}{m\lambda} sh mL}$$

Correction $L_c = L + \Delta L$

Principe

Egalité des flux évacués

$$\frac{sh mL + \frac{h}{m\lambda} ch mL}{ch mL + \frac{h}{m\lambda} sh mL} = \frac{sh mL_c}{ch mL_c}$$

soit:
$$thm(L_c - L) = \frac{h}{m\lambda}$$

Hypothèse d'une correction faible :

$$th\varepsilon \approx \varepsilon \to L_c = L + \frac{h}{m^2 \lambda}$$

relation de Harper Brown

$$L_c = L + \frac{e}{2}$$

A quoi sert cette relation de Harper Brown?

Des abaques ont été construits pour le cas $\theta_L' = 0$, donnant

$$\eta = f(L, h, \lambda, a)$$

On corrige L par :
$$L_c = L + \frac{h}{m^2 \lambda}$$

Et on peut ainsi atteindre facilement le rendement

$$\eta = f(L_c, h, \lambda, a)$$

Comme
$$\eta = \frac{Q_0}{Q_{\lambda \infty}}$$
 il vient : $Q_0 = \eta \ h S_{tot} \ \theta_0$

Exemple d'abaque

Si $\theta_L' \neq 0$ prendre L_c

