Marginals

- ▶ What is $p_{XY}(1, i)$? $(= \frac{1}{12})$.
- Similarly, $p_{XY}(1,i) + p_{XY}(0,i) = \frac{1}{6} = p_Y(i)$.

The marginal PMF's p_X and p_Y can be obtained from the joint PMF as follows:

$$p_X(x) = \sum_y p_{XY}(x, y)$$
 and $p_Y(y) = \sum_x p_{XY}(x, y)$.

This is true in general, and requires a proof.

Marginals

The marginal PMF's p_X and p_Y can be obtained from the joint PMF as follows:

$$p_X(x) = \sum_y p_{XY}(x, y)$$
 and $p_Y(y) = \sum_x p_{XY}(x, y)$.

Proof:

$$p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) = x\}$$

$$= \mathbb{P}\{\bigcup_y \{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}\}$$

$$= \sum_y \mathbb{P}\{\{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}\}$$

Independence

- Back with the running example of coin and dice.
- ightharpoonup Write down $p_{XY}(x,y)$ and $F_{XY}(x,y)$.
- Notice that $p_{XY}(1, i) = p_X(1)p_Y(i)$ and $F_{XY}(1, i) = F_X(1)F_Y(i)$.
- In general, if $p_{XY}(x,y) = p_X(x)p_Y(y)$ and $F_{XY}(x,y) = F_X(x)F_Y(y)$ we say X and Y are independent.

Two random variables, X and Y are independent if the following is true:

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$
 and $F_{XY}(x,y) = F_X(x)F_Y(y)$

Independence

Two random variables, X and Y are independent if the following is true:

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$
 and $F_{XY}(x,y) = F_X(x)F_Y(y)$

- ▶ How does this relate to $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$?
- ► $A = \{\omega \in \Omega : X(\omega) \le x\}$ and $B = \{\omega \in \Omega : Y(\omega) \le y\}$.
- $F_{XY}(x,y) := \mathbb{P}\{\omega \in \Omega : X(w) \le x \text{ and } Y(\omega) \le y\} = \mathbb{P}(A \cap B).$

E[XY]

- $E[X] = \sum_{x} x p_X(x)$ and $E[Y] = \sum_{y} y p_Y(y)$
- $ightharpoonup E[X] = \sum_{x} \sum_{y} x p_{XY}(x, y) \text{ and } E[Y] = \sum_{x} \sum_{y} y p_{XY}(x, y)$
- ▶ How do we define E[XY]?
- You want to search over all values $X \times Y$ can take $(\{1, 2, ..., 6\})$ and weight it by the corresponding probabilities.
- $ightharpoonup E[XY] = \sum_{x} \sum_{y} xyp_{XY}(x, y) = 1.75 = E[X]E[Y].$

If X and Y are independent, E[XY] = E[X]E[Y].

Example where X and Y are Dependent

- Now consider rolling a dice.
- $X = \begin{cases} 1 \text{ if outcome is odd} \\ 0 \text{ otherwise} \end{cases} \text{ and } Y = \begin{cases} 1 \text{ if outcome is even} \\ 0 \text{ otherwise} \end{cases}$
- \blacktriangleright What is $p_X(x), p_Y(y), p_{XY}(x,y)$ and $F_{XY}(x,y)$?
- ightharpoonup What is E[XY]?

Consistency conditions

- $ightharpoonup F_{XY}(\infty,\infty)=1.$
- $ightharpoonup F_{XY}(-\infty,-\infty)=0.$
- $ightharpoonup F_{XY}(-\infty,\infty)=0.$
- $ightharpoonup F_{XY}(\infty,-\infty)=0$
- $ightharpoonup F_{XY}(x,\infty) = F_X(x) \ (marginal \ CDF)$
- $ightharpoonup F_{XY}(\infty,y) = F_Y(y) \text{ (marginal CDF)}$

Multiple continuous random variables

- Pick a number uniformly at random from a unit square centered at (.5, .5).
- Random variables X and Y represent the respective x and y coordinate of the point chosen.
- $ightharpoonup F_{X,Y}(x,y)$ denotes the probability that the point chosen lies below and to left of point (x,y).
- ▶ In this example, $F_{X,Y}(x,y) = xy$.
- Now visualize $F_{X,Y}(x+h,y) F_{X,Y}(x,y)$. This is the probability that the point chosen lies in the thin strip below y and between x and x+h.

Multiple continuous random variables

- Visualize $F_{X,Y}(x+h,y) F_{X,Y}(x,y)$. This is the probability that the point chosen lies in the thin strip below y and between x and x+h.
- $\frac{\partial F_{XY}(x,y)}{\partial x} = \lim_{h \to 0} \frac{F_{X,Y}(x+h,y) F_{X,Y}(x,y)}{h}.$
- ▶ This is the rate of change of the joint CDF $F_{XY}(x, y)$ in the x direction.

Multiple continuous random variables

- $\frac{\partial F_{XY}(x,y)}{\partial y} = \lim_{h \to 0} \frac{F_{X,Y}(x,y+h) F_{X,Y}(x,y)}{h} \text{ denotes the rate of change of the joint CDF in the } y \text{ direction.}$
- $f_{X,Y}(x,y) := \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$ represents the joint probability density function.
- $f_{X,Y}(x,y)dxdy$ denotes the probability that (X,Y) are in a rectangle of area dxdy around (x,y).
- In this example, $f_{X,Y}(x,y) = 1$.
- $F_{XY}(x,y) := \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(s,t) ds dt.$

Summary for Continuous random variable

- $ightharpoonup f_{XY}(x,y)$ denotes the joint pdf for X and Y.
- $F_{XY}(x,y) := \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(s,t) ds dt. \ f_{X,Y}(x,y) := \frac{\partial^{2} F_{XY}(x,y)}{\partial x \partial y}.$

The marginal pdf's f_X and f_Y can be obtained from the joint PDF as follows:

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$
 and $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$

Two random variables, X and Y are independent if the following is true:

$$f_{XY}(x,y) = f_X(x)f_Y(y), F_{XY}(x,y) = F_X(x)F_Y(y)$$
 and $E[XY] = E[X]E[Y].$

Rules similar for more than 2 random variables.