Chapter 4

Basic Concepts in Number Theory and Finite Fields

Dr. Shin-Ming Cheng

ON ECTIFITY LAB

CS4003701

Introduction

- > Finite fields
- > Increasing importance in cryptography
 - AES, Elliptic Curve, IDEA, Public Key
- > Concern operations on "numbers"
 - where what constitutes a "number" and the type of operations varies considerably
- > Start with basic number theory concepts

Divisors 除數

- A non-zero number b divides a if for some m have a = mb (a, b, m are all integers)
 - − *b* divides into *a* with no remainder
 - denote as b|a
 - -b is a **divisor** of a
- > Example
 - all of 1,2,3,4,6,8,12,24 divide 24
 - 13 | 182; -5 | 30; 17 | 289; -3 | 33; 17 | 0

Properties of Divisibility

- \Rightarrow If a|1, then $a=\pm 1$.
- \Rightarrow If a|b and b|a, then $a=\pm b$.
- \rightarrow Any $b \neq 0$ divides 0.
- \rightarrow If $a \mid b$ and $b \mid c$, then $a \mid c$
 - 11 | 66 and 66 | 198, then 11 | 198
- > If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n
 - -b = 7; g = 14; h = 63; m = 3; n = 2 hence 7|14 and 7|63

Division Algorithm

> If divide a by n get integer quotient q and integer remainder r such that:

$$-a = qn + r$$
 where $0 \le r \le n$; $q = \lfloor (a/n) \rfloor$

> The remainder r often referred to as a **residue 餘數**

Greatest Common Divisor (GCD)

- A common problem in number theory
- gcd(a,b) of a and b is the largest integer that divides evenly into both a and b
 - $-\gcd(60,24) = 12$
- \rightarrow Define gcd(0,0) = 0
- > The numbers with no common factors (except 1) are defined as relatively prime 互質
 - $-\gcd(8,15) = 1$
 - > hence 8 and 15 are relatively prime

Greatest Common Divisor

- \rightarrow Assume $a, b \in Z, a \neq 0$ or $b \neq 0$
- > **Definition** $d \neq 0$ is a common divisor of a and b if $d \mid a$ and $d \mid b$
- > **Definition** The greatest common divisor d = gcd(a, b) is the largest of the common divisors
 - Divisors of 20: ± 1 , ± 2 , ± 4 , ± 5 , ± 10 , ± 20
 - Divisors of 16: ± 1 , ± 2 , ± 4 , ± 8 , $\pm 16 \Rightarrow \gcd(20, 16) = 4$
- \rightarrow **Proposition** $a \in P$ (positive integer)
 - $-\gcd(a,a)=a,\gcd(a,0)=a$
- \Rightarrow Proposition $a, b \in Z, a \neq 0$ or $b \neq 0$
 - $-\gcd(a,b) = \gcd(|a|,|b|), \gcd(a,b) = \gcd(b,a)$

Greatest Common Divisor

- > Theorem $a, b \in Z$, $a \neq 0$ or $b \neq 0$, then gcd(a, b) = gcd(a + kb, b) for any $k \in Z$
- > Proof

Define

- -A = The set of common divisors of a and b
- -B = The set of common divisors of a + kb and b
- $-A \subset B$:
 - Assume $d \in A$, then $d \mid a$ and $d \mid b$
 - -a = xd and b = yd for some $x, y \in Z$
 - $\Rightarrow \text{ Then } a + kb = xd + k(yd) = (x + ky)d \Rightarrow d \mid (a + kb).$
 - \rightarrow Also $d \mid b$, hence $d \in B$.

Greatest Common Divisor

- $-B \subset A$:
 - > Assume $c \in B$, then $c \mid (a + kb)$ and $c \mid b$ - a + kb = xc and b = yc for some $x, y \in Z$
 - > Then $a = xc kb = xc k(yc) = (x ky)c \Rightarrow c \mid a$.
 - \rightarrow Also $c \mid b$, hence $c \in A$.
- Therefore A = B, gcd(a, b) = gcd(a + kb, b)
- \Rightarrow Corollary b > 0, then $gcd(a, b) = gcd(b, a \mod b)$
- > **Proof** $\gcd(a,b) = \gcd\left(a \left\lfloor \frac{a}{b} \right\rfloor \times b, b\right) = \gcd(a \mod b, b) = \gcd(b, a \mod b)$ [Proposition] [Definition]

Example gcd(1970,1066)

$$1970 = 1 \times 1066 + 904$$

$$1066 = 1 \times 904 + 162$$

$$904 = 5 \times 162 + 94$$

$$162 = 1 \times 94 + 68$$

$$94 = 1 \times 68 + 26$$

$$68 = 2 \times 26 + 16$$

$$26 = 1 \times 16 + 10$$

$$16 = 1 \times 10 + 6$$

$$10 = 1 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2 + 0$$

Modular Arithmetic

- > Define modulo operator/模運算 " $a \mod n$ " to be remainder when a is divided by n
 - integer n is called the **modulus**
 - b is called a **residue**/餘數 of $a \mod n$
 - \rightarrow since with integers can always write: a = qn + b
 - > usually chose smallest positive remainder as residue
 - $\rightarrow 0 \le b \le n-1$
- > a and b are congruent/全等
 - $\text{ If } a \mod n = b \mod n$
 - $-a \equiv b \mod n$
 - when divided by n, a and b have same remainder
 - \rightarrow 100 = 34 mod 11

Modular Arithmetic Operations

- > performs arithmetic with residues
- y uses a finite number of values, and loops back from either end

$$-Z_n = \{0, 1, \dots, (n-1)\}$$

- modular arithmetic is when do addition and multiplication and modulo reduce answer
- > can do reduction at any point

$$-a + b \mod n = [a \mod n + b \mod n] \mod n$$

Modular Arithmetic Operations

- $> [(a \bmod n) + (b \bmod n)] \bmod n = (a + b) \bmod n$
 - $-[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2(11 + 15) \mod 8 = 26 \mod 8 = 2$
- $> [(a \bmod n) (b \bmod n)] \bmod n = (a b) \bmod n$
 - $-[(11 \mod 8) (15 \mod 8)] \mod 8 = -4 \mod 8 = 4 (11 15) \mod 8 = -4 \mod 8 = 4$
- $(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$
 - $-[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5$ $5(11 \times 15) \mod 8 = 165 \mod 8 = 5$

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

X	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Modular Arithmetic Properties (1/2)

- Commutative laws
 - $-(w+x) \bmod n = (x+w) \bmod n$
 - $-(w \times x) \mod n = (x \times w) \mod n$
- > Associative laws
 - $-[(w+x)+y] \mod n = [w+(x+y)] \mod n$
 - $-[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$
- > Distributive laws
 - $[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$

Modular Arithmetic Properties (2/2)

- > Identities
 - $-(0+w) \mod n = w \mod n$
 - $-(1 \times w) \mod n = w \mod n$
- \rightarrow Additive inverse (-w)
 - For each $w \in Z_n$, there exists a z such that $w + z = 0 \mod n$

Euclidean Algorithm 輾轉相除法

- \rightarrow An efficient way to find the gcd(a, b)
- > Theorem

```
-\gcd(a,b) = \gcd(b, a \bmod b)
```

> Euclidean Algorithm to compute gcd(a, b) is:

```
Euclid(a,b)
int Euclid(int a, int b) {
  if (b==0)
    then return a;
  else
    return Euclid(b, a mod b);
}
```

Euclidean Algorithm

gcd(325, 234)

$$= \gcd(234, 91)$$

$$= \gcd(91, 234 \mod 91)$$

$$= \gcd(91, 52)$$

$$= \gcd(52, 91 \mod 52)$$

$$= \gcd(52,39)$$

$$= \gcd(39, 52 \mod 39)$$

$$= \gcd(39,13)$$

$$= \gcd(13, 39 \mod 13)$$

$$= \gcd(13,0) = 13$$

1	325	234	2
	234	182	
1	91	52	1
	52	39	
3	39	13	
	39		
	0		

- > Goal
 - Given $a, b \in Z$
 - Find $x, y \in Z$ such that $ax + by = d = \gcd(a, b)$
 - > calculates not only GCD but x and y:
 - Useful for later crypto computations
- $\Rightarrow \gcd(a,p) = 1$
 - -b = p is a prime number
 - -a and p are relatively prime
 - Then x is a multiplicative inverse of a in Z_P
 - $\Rightarrow ax \equiv 1 \pmod{p}$

$$a = 100, b = 35$$

$$-100 = 2 \times 35 + 30$$

$$35 = 1 \times 30 + 5$$

$$30 = 6 \times 5 + 0$$

- Hence x = -1, y = 3

$$-\gcd(100,35) = 5$$

$$= 35-30$$

$$= 35 - (100 - 2 \times 35)$$

$$= (-1) \times 100 + 3 \times 35$$

- > **Theorem** Given $a, b \in Z$, there exit $x, y \in Z$ for the linear combination $ax + by = \gcd(a, b)$.
- > Proof
 - Take $r_0 = a = a \times 1_{[=x_0]} + b \times 0_{[=y_0]} = ax_0 + by_0$
 - Take $r_1 = b = a \times 0_{[=x_1]} + b \times 1_{[=y_1]} = ax_1 + by_1$
 - For i > 0, let $q_{i+1} = \lfloor r_{i+1}/r_i \rfloor$; $x_{i+1} = x_{i-1} x_i q_{i+1}$; $r_{i+1} = r_{i-1} r_i q_{i+1}$; $y_{i+1} = y_{i-1} y_i q_{i+1}$

- Assume $r_{i-1} = ax_{i-1} + by_{i-1}$ and $r_i = ax_i + by_i$
- Then $r_{i+1} = r_{i-1} r_i q_{i+1} = (ax_{i-1} + by_{i-1}) (ax_i + by_i)q_{i+1} = a(x_{i-1} + x_i q_{i+1}) + b(y_{i-1} ax_i)q_{i+1} = a(x_i)q_{i+1} + a(x_i)q_{i+1} + b(x_i)q_{i+1} + a(x_i)q_{i+1} + a(x_i)q_{i+1}$

Notation

- $Z = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$ of integers
- $\mathbf{Z}_n = \{0, 1, 2, ..., n-1\}$
- $> \mathbf{Z}_n^* = \{1, 2, 3, ..., n-1\}$
- $N = \{0, 1, 2, 3, ...\}$ of non-negative integers
- $\rightarrow P = \{1, 2, 3, ...\}$ of positive integers
- > Q: The set of rational numbers
- > R: The set of real numbers
- > C: The set of complex numbers
- > **Q***, **R***, **C***: The set of non-zero rational, real, complex numbers

Basics of Abstract Algebra

> Group 群

> Ring 環

- Definition A group (G, •) is a set G with an operation •, such that the following conditions are satisfied:
 - Closure: $a \cdot b \in G$ for all $a, b \in G$
 - Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in G$
 - Identity: there is an element $e \in G$ such that $a = a \cdot e = e \cdot a$ for each $a \in G$
 - Inverse: for each $a \in G$, there is an element $b \in G$ such that $a \cdot b = b \cdot a = e$
 - if commutative $a \cdot b = b \cdot a$
 - > then forms an abelian group

- > Each of the following sets with the specified operation is a group
 - -Z,Q,R,C with + (addition)
 - $-Q^*, R^*, C^*$ with \times (multiplication)
 - $-5Z = \{5a | a \in Z\} \text{ with } +$
 - $-\{1,-1\}$ with \times
 - $-\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with + modulo 6
 - $-D(\mathbf{R}) = \{ f \mid f \text{ is a differentiable function on } \mathbf{R} \} \text{ with } +$

- None of the following sets with the specified operation is a group
 - $-\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ with + but no modulo
 - > not closed
 - **P** with +
 - > no identity
 - **Z** with -
 - > not associative
 - $-2Z + 1 = \{2a + 1 \mid a \in Z\} \text{ with } \times$
 - > no inverse

- > Proposition
- > The identity *e* of *G* is unique Proof
 - Assume e_1 and e_2 are identity
 - Then $e_1 = e_1 * e_2$ (: e_2 is an identity) = e_2 (: e_1 is an identity)
- > The inverse b of each $a \in G$ is unique **Proof**
 - Assume b and c are inverse of a
 - Then b = b * e = b * (a * c) = (b * a) * c = e * c = c
 - Denoted as a^{-1}

> Proposition

- $-(a^{-1})^{-1} = a \text{ for all } a \in G$
- $-(a*b)^{-1} = b^{-1}*a^{-1}$ for all $a, b \in G$

\rightarrow For all $a, b, c \in G$

- -a*x = b and y*a = b have unique solutions in G
 - $a^{-1} * a * x = x = a^{-1} * b$
 - $y * a * a^{-1} = y = b * a^{-1}$
- $-a*b=a*c\Rightarrow b=c$ and $a*b=c*b\Rightarrow a=c$

Cyclic Group

> **Definition** A group (G, \cdot) is **cyclic** if there exists a generator $g \in G$ such that every $a \in G$ is of the form $a = g \cdot ... \cdot g$ (n copies) for some $n \in Z$

> Example

- $-(\mathbf{Z},+)$ is cyclic with generators 1 and -1
- $-(\mathbf{Z}_{7}^{*}, \otimes)$ is cyclic: $\{1_{=3}^{0}, 2_{=3}^{6}, 2_{=3}^{2}, 3_{=3}^{1}, 4_{=3}^{4}, 5_{=3}^{5}, 6_{=3}^{3}\}$
- $-(\mathbf{Z}_{9}^{*},\otimes)$ is cyclic with generators 2 and 5

Cyclic Group

Define exponentiation as repeated application of operator

$$-a^3=a \cdot a \cdot a$$

- > Let identity be: $e = a^0$
- A group is cyclic if every element is a power of some fixed element
 - $-b = a^k$ for some a and every b in group
- > a is said to be a generator of the group

Ring

- > **Definition** A ring $(R, +, \times)$ is a set R with two binary operations + and \times such that
 - (R,+) is an abelian group/交換群
 - Closed under \times : $a \times b \in R$ for all $a, b \in R$
 - Associative under x:

$$a \times (b \times c) = (a \times b) \times c$$

for all $a, b, c \in R$

Distributive laws :

$$a \times (b + c) = a \times b + a \times c$$

 $(a + b) \times c = a \times c + b \times c$
for all $a, b, c \in R$

Field

- > **Definition** A ring R is a field if every nonzero $a \in R$ has an inverse a^{-1}
- > Example
 - Q, R, C are fields
 - \mathbf{Z}_p with prime p is a field
 - \rightarrow also denoted as F_p or GF(p), Galois field of order p
 - $-GF(2^8)$ is used in AES
- > Example
 - \mathbf{Z} is not a field, since $2^{-1} \notin \mathbf{Z}$

Group, Ring, Field

Finite (Galois) Fields

- > Évariste Galois (1811–1832)
 - French mathematician
 - Died from wounds suffered in a duel

- > finite fields play a key role in cryptography
 - show number of elements in a finite field ${\bf must}$ be a power of a prime p^n
- \rightarrow Galois fields denoted $GF(p^n)$
- > in particular often use the fields:
 - -GF(p)
 - $GF(2^n)$

Galois Fields GF(p)

- \rightarrow GF(p) is the set of integers $\{0,1,...,p-1\}$ with arithmetic operations modulo prime p
- > these form a finite field
 - since have multiplicative inverses
 - find inverse with Extended Euclidean algorithm
- > hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Polynomial Arithmetic

> Can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum a_i x^i$$

- not interested in any specific value of x
- known as the indeterminate
- > Several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coefficients mod p
 - \rightarrow Coefficients are in GF(p)
 - poly arithmetic with coefficients mod p and polynomials mod m(x) whose highest power is some integer n

Ordinary Polynomial Arithmetic

- > Add or subtract corresponding coefficients
- > Multiply all terms by each other

> Let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- > When computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- > Could be modulo any prime
- > We are most interested in mod 2
 - all coefficients are 0 or 1

- let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$
 $f(x) + g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + x^2$

Polynomial Division

- > can write any polynomial in the form:
 - f(x) = q(x)g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $-r(x) = f(x) \bmod g(x)$
- \rightarrow if have no remainder say g(x) divides f(x)
- \Rightarrow if g(x) has no divisors other than itself and 1 say it is irreducible (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- > can find greatest common divisor for polys
 - $-c(x) = \gcd(a(x), b(x))$ if c(x) is the poly of greatest degree which divides both a(x), b(x)
- > can find greatest common divisor for polys
 - can adapt Euclid's Algorithm to find it

```
Euclid (a(x), b(x))

if (b(x) = 0) then return a(x);

else return

Euclid (b(x), a(x) \mod b(x));
```

> all foundation for polynomial fields as see next

Modular Polynomial Arithmetic

- \rightarrow Compute in field $GF(2^n)$
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- > form a finite field
- > can always find an inverse
 - can extend Euclid's Inverse algorithm to find
- > Motivation
 - 8 bits: 256 is not prime (251 is)

Example $GF(2^3)$

Table 4.7 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

(a) Addition

		000	001	010	011	100	101	110	111
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
001	1	1	0	x+1	x	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
100	x ²	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	x
110	$x^{2} + x$	$x^{2} + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x ²	x + 1	х	1	0

(b) Multiplication

		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x ²	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^{2} + x$	$x^2 + 1$	$x^2 + x + 1$	x ²	1	x
100	x^2	0	x ²	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	x ²	x + 1

Modular Polynomial Arithmetic

> Consider the set S of all polynomials of degree n-1 or less over the field Z_p . Thus, each polynomial has the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum a_i x^i$$

- Each a_i takes on a value in the set $\{0,1,...,p-1\}$.
- There are a total of p^n different polynomials in S
- For p = 3 and n = 2, the $3^2 = 9$ polynomial S in the set are
 - -0,1,2,x,x+1,x+2,2x,2x+1,2x+2
- > For p = 2 and n = 3, the $2^3 = 9$ polynomial S in the set are

$$-0,1,x,x+1,x^2,x^2+1,x^2+x,x^2+x+1$$

Finding the Multiplicative Inverse

- > Extended GCD
 - Given polynomials a(x) and b(x) with the degree of a(x) greater than the degree of b(x), we wish to solve the following equation for the values v(x), w(x), and d(x), where $d(x) = \gcd[a(x), b(x)]$

$$a(x)v(x) + b(x)w(x) = d(x)$$

> If d(x) = 1, there w(x) is the multiplicative inverse of b(x) modulo a(x)

Computational Considerations

- > Since coefficients are 0 or 1, can represent any such polynomial as a bit string
- > addition becomes *XOR* of these bit strings
- > multiplication is shift and *XOR*
 - long-hand multiplication
- > modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift and XOR)
 - if in $GF(2^n)$ then irreducible poly g(x) has highest term x^n , and if compute $x^n \mod g(x)$ answer is $g(x) x^n$

Computational Example

- $GF_8 = GF(2^3)$ $(x^2 + 1)$ is 101_2 and $(x^2 + x + 1)$ is 111_2
- > addition is

$$-(x^2+1) + (x^2+x+1) = x$$

- $-101 XOR 111 = 010_2$
- > multiplication is

$$-(x+1) \times (x^2+1) = x(x^2+1) + 1(x^2+1)$$
$$= x^3 + x + x^2 + 1 = x^3 + x^2 + x + 1$$

- $011 \times 101 = (101) << 1 XOR (101) << 0 = 1010 XOR 101 = 1111₂$
- \rightarrow polynomial modulo reduction (get q(x) and r(x)) is

$$- (x^3 + x^2 + x + 1) \mod (x^3 + x + 1) = 1(x^3 + x + 1) + (x^2) = x^2$$

 $-1111 \mod 1011 = 1111 XOR 1011 = 0100_2$

Galois Fields

> Irreducible Polynomials for the Modulus

n=1	е
10 11	1 1
n=2	е
111	3
n=3	е
1011 1101	7 7
n=4	е
10011 11001 11111	15 15 5

_		
	n=5	е
	100101 101001 101111 110111 111011 111101	31 31 31 31 31 31
	n=6	е
	1000011 1001001 1010111 1011011 1100001 1100111 1110110	63 9 21 63 63 63 63 63 21

n=7	е
10000011 10001001 10001111 10010001 10011101 10101011 10111001 10111111	127 127 127 127 127 127 127 127 127 127
11101111 11110001 11110111	127 127 127
11111101	127

n=8	е
100011011 100011101 100101011 100101101 100111001 10011111 101001101 101100011 101101	51 255 255 255 17 85 255 255 255 255 255 255 85 85

110000111	255
110001011	85
110001101	255
100111111	51
110100011	85
10101001	255
110110001	51
110111101	85
111000011	255
111001111	255
111010111	17
111011101	85
111100111	255
111110011	51
111110101	255
111111001	85