Universidade do Minho - Dep. to Informática

Licenciatura em Engenharia Informática - 1º Semestre, 2022/2023

COMUNICAÇÕES POR COMPUTADOR

Exame de Recurso Escrito – 31 janeiro 120 Minutos

PIN:	PASSWORD:
NÚMERO:	
NOME:	

Instruções

- Intervenções consideradas desnecessárias durante o teste serão penalizadas com dedução de pontos à classificação.
- A correção do teste será feita automaticamente tendo em conta as respostas assinaladas no formulário digital no computador.
- Este documento é também um enunciado do teste e é também um formulário de *backup* onde deve indicar as suas respostas.
- Para aceder ao formulário online disponível no computador à sua frente introduza o PIN e a PASSWORD indicados no cabeçalho acima e depois a sua identificação (número de aluno e nome completo).
- O teste está dividido em 4 partes distintas, cada uma valendo 5 valores.
- Cada parte tem 2 questões com 5 afirmações cada. Pede-se, em todas as questões, para se assinalar quais as afirmações que considera verdadeiras e as que considera falsas.
- Pode ignorar as questões que não souber fazer ou as afirmações que não conseguir distinguir como verdadeiras ou falsas.
- Cada afirmação bem identificada vale 0,5 pontos.
- As respostas incorretas terão uma cotação que será deduzida ao total da cotação do teste. O montante a deduzir depende da gravidade da incorreção e pode ir de -0,1 a -0,4 pontos.
- Inclua a sua identificação (número de aluno e nome completo) em todas as folhas.
- Pode usar as páginas em branco deste documento para rascunho. Não serão fornecidas folhas adicionais para rascunho.
- A duração do teste é de 120 minutos. Não será concedido qualquer tempo adicional (exceto a alunos com estatuto NEE) nem será permitida a ida ao WC (exceto a alunos com atestado médico).
- Só poderá sair da sala no final dos 120 minutos ou quando todos os alunos terminarem.
- Confirme que terminou e enviou a sua resolução digital antes de abandonar a sala.
- No final, deixe este enunciado/formulário na sua secretária/mesa.

NÚMERO:	
NOME:	

PARTE I – Protocolos de Transporte na Internet

1. Analise as seguintes afirmações genéricas sobre protocolos de transporte e indique (com **X**) se as considera verdadeiras (*true*) ou se as considera falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

	V/T	F	
1.a)	-0,2	X	As aplicações que usam protocolos de transporte não orientados à conexão (como o
			User Datagram Protocol – UDP) têm obrigatoriamente de implementar, elas
			próprias, mecanismos de controlo de fluxo e de prevenção de congestão na rede
1.b)	X	-0,2	Nunca é possível conectar/ligar um socket TCP (Transmission Control Protocol) dum
			host B a um socket UDP num host A.
1.c)	-0,1	X	Para serviços implementados sobre redes que permitem ritmos de dados muito
			elevados é sempre aconselhável usar-se um protocolo orientado à conexão como o
			TCP para potenciar ainda mais a velocidade de transferência de dados.
1.d)	-0,1	X	Uma aplicação Internet usando o protocolo de transporte TCP pode definir o valor
			dos parâmetros que definem o controlo de fluxo da informação, como o tamanho de
			janela de transmissão nos dois sentidos ou o tamanho máximo de segmento.
1.e)	X	-0,1	Apesar do tamanho máximo dum datagrama UDP ser igual ao tamanho máximo dum
			segmento TCP, um datagrama UDP pode incluir mais dados aplicacionais que um
			segmento TCP do mesmo tamanho.

2. Considere o esquema da interação protocolar duma conexão TCP entre dois *hosts* (que estão em redes IP diferentes) da Figura 1. Este esquema foi deduzido através da análise dos segmentos TCP que foram observados a circular nas redes locais respetivas, ou seja, é possível garantir que os segmentos apresentados saíram dos respetivos *hosts* de origem, mas não é possível garantir que tenham chegado ao destino. Indique (com X) se as afirmações seguintes lhe parecem verdadeiras (*true*) ou falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

	V/T	F	
2.a)	-0,1	X	O host B aceitou os valores dos parâmetros de funcionamento da conexão (tamanho
			de janela e tamanho máximo de segmento) propostos pelo host A para os dois sentidos
			da comunicação.
2.b)	-0,1	X	No segmento TCP(20), enviado pelo host B para o host A, o valor do número de
			sequência (sequence number) XXX deve ser igual a 202 e o valor do número de
			confirmação (acknowledgment number) YYY deve ser igual a 2001.
2.c)	X	-0,1	Analisando a interação protocolar podemos garantir que o segmento identificado
			como TCP(14), enviado pelo host A ao host B, demorou mais de 30ms a chegar ao
			host B.
2.d)	X	-0,1	Pela análise da interação protocolar podemos garantir que, na direção da comunicação
			do host A para o host B, o valor do timeout usado é superior a 40ms.
2.e)	-0,2	X	Pela análise da interação protocolar podemos concluir que, na direção da
			comunicação do host A para o host B, não é utilizado o mecanismo de controlo de
			congestão do TCP denominado de slow start/congestion avoidance.

Notas:

WIN=tamanho de janela, MSS=tamanho máximo de segmento.

Só são apresentados os campos/flags relevantes ou que não se alteram de segmento para segmento enviado pelo mesmo host.

Figura 1: Interação protocolar TCP no exercício 2.

NÚMERO:	
NOME:	

PARTE II – Serviço DNS na Internet

3. Analise as seguintes afirmações genéricas sobre o serviço de resolução de nomes da Internet (*Domain Name Resolution* – DNS) e indique (com **X**) se as considera verdadeiras (*true*) ou se as considera falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

	V/T	F	
3.a)	-0,2	X	O serviço DNS da Internet utiliza comunicação assíncrona na implementação da
			comunicação entre servidores e clientes, sendo que as queries DNS são sempre
			encapsuladas em segmentos TCP.
3.b)	-0,2	X	Na organização hierárquica dos domínios de DNS, os nomes que podem ser utilizados
			para domínios só têm restrições para os domínios de topo (top-level domains). Para
			subdomínios dos domínios de topo a escolha dos nomes não sofre qualquer limitação.
3.c)	X	-0,2	No modo recursivo de funcionamento da pesquisa/procura de informação no DNS,
			ainda que um servidor de topo aceite esse modo, não é garantido que esse modo seja
			utilizado pelos servidores seguintes necessários para se obter uma resposta final.
3.d)	X	-0,2	Se um cliente fizer duas <i>queries</i> iguais, consecutivamente, ao mesmo servidor DNS,
			se a resposta for válida, o cliente irá receber mais rapidamente a resposta à segunda
			query, desde que algum dos servidores envolvidos na iteração implemente cache.
3.e)	X	-0.1	Um servidor secundário dum domínio de DNS pode ter a sua base de dados
			desatualizada durante algum tempo (diferente da base de dados do respetivo servidor
			primário) e, mesmo assim, ser um servidor autoritativo para esse domínio.

4. Uma aplicação cliente envia a *query* "sss.mmm.big. MX" a um servidor *resolver* (SR). Parta do princípio que todos os domínios existem e que os servidores primários são identificados/registados no DNS com o nome "sp.nome_do_domínio" (por exemplo, sp.big é o nome do servidor primário (SP) do domínio de topo big) e que os servidores secundários (SS) são identificados/registados como "ss*N.nome_do_domínio*" (por exemplo, ss1.big é o nome dum servidor secundário do domínio de topo big). Admita que o único servidor de topo (ST) registado no SR é identificado pelo endereço 10.10.10, todos os servidores funcionam no modo iterativo e nenhum tem, inicialmente, entradas úteis em *cache*. Tendo em consideração os aspetos mais importantes das primeiras ações relevantes do serviço DNS, assinale como verdadeiras (*true*) ou falsas (*false*) as afirmações:

(Nota: RV="RESPONSE VALUES", AV="AUTHORITIES VALUES", EV="EXTRA VALUES".)

	V/T	F	
4.a)	X	-0,1	i) No início, o SR reenvia a query para o ST 10.10.10 que responde com o
			campo RV nulo, no campo AV inclui as entradas NS respetivas, sp.big, ss1.big
			e ss2.big, e no campo EV inclui o endereço IP desses servidores.
4.b)	X	-0,1	ii) O SR recebe a resposta do ST, guarda as entradas dos campos AV e EV em cache
			e reenvia a <i>query</i> inicial para sp.big que responde com RV nulo, em AV inclui as
			entradas NS sp.mmm.big e ss1.mmm.big, e no campo EV os seus endereços IP.
4.c)	X	-0,1	iii) O SP contactado em ii) responde com o campo RV nulo, no campo AV inclui os
			nomes dos servidores autoritativos para sss.mmm.big e no campo EV inclui os
			respetivos endereços IP.
4.d)	-0,2	X	iv) O SR recebe a resposta referida em iii), guarda as entradas dos campos RV, AV e
			EV em <i>cache</i> e reenvia a resposta para o cliente.
4.e)	-0,2	X	Por razões de segurança e eficiência é natural e desejável que os subdomínios dos
			domínios de topo (como o domínio mmm.big deste exemplo) tenham pelo menos um
			servidor secundário na mesma rede local do servidor primário do seu domínio de topo.

PARTE III – Protocolo de Transporte HTTP

5. Analise as seguintes afirmações genéricas sobre o protocolo de transporte aplicacional *Hypertext Transfer Protocol* (HTTP) e indique (com **X**) se as considera verdadeiras (*true*) ou falsas (*false*).

	V/T	F	
5.a)	-0,1	X	Os métodos PUT e DELETE introduzidos na versão 1.1 do HTTP são métodos
			perfeitamente seguros desde que os clientes HTTP tenham cuidados acrescidos
			quando enviam estes tipos de pedidos aos servidores.
5.b)	-0,2	X	Uma das características melhoradas na evolução do HTTP 1.1 para o HTTP 2.0 foi a
			capacidade dum cliente poder usar uma única conexão TCP para pedir todos os
			objetos duma página a um servidor HTTP.
5.c)	X	-0,2	Apesar de ser um protocolo assíncrono e seguindo um paradigma de comunicação
			sem estados (stateless protocol), o HTTP inclui a implementação do conceito de
			sessão através de <i>cookies</i> , o que permite ultrapassar parte das suas limitações.
5.d)	X	-0,1	Quando uma página tem múltiplos objetos, é preferível o cliente utilizar o método de
			pipelining do HTTP numa única conexão TCP com o servidor, do que usar várias
			conexões TCP para o mesmo servidor sem o método pipelining.
5.e)	X	-0,2	Os proxy HTTP servem para acelerar o acesso a objetos que estejam na sua cache
			mas não são úteis para serviços em que os objetos/informação no servidor esteja em
			constante atualização, como é o caso do acesso a serviços de videoconferência.

6. Considere uma interação HTTP 1.1 em que um cliente A tenta obter uma página web dum servidor B. O RTT (Round Trip Time) médio, usando TCP (sem conexões paralelas e sem perda de dados), entre A e B é de 20 ms e o tempo que um segmento TCP demora a ir de A para B é o mesmo que o tempo que demora a ir de B para A, i.e., RTT/2. Assuma que: i) o tempo de processamento dos pacotes e o tempo de execução de qualquer tarefa computacional associada ao serviço prestado pelo servidor é irrelevante; ii) o tempo de transmissão dos segmentos TCP para a rede é irrelevante, tanto em A como em B; iii) o tamanho de janela do TCP nos dois sentidos será igual a oito MSS (Maximum Segment Size) e o MSS nos dois sentidos será igual a um Kbyte; iv) é utilizado o mecanismo de slow start, nos dois sentidos, iniciando a janela de congestão com um MSS e com um threshold de quatro MSS; v) o cliente A não tem a capacidade de usar várias conexões TCP em paralelo; vi) os dados estão disponíveis para o cliente A assim que todos os bytes de todos os objetos da página chegam (i.e., para o tempo que o cliente A demora a obter os dados não se considera o tempo utilizado para fechar a última conexão TCP se depois disso já não há dados para receber); vi) a página web é constituída por um ficheiro HTML de 500 bytes, uma imagem A com 3500 bytes (1ª referência a aparecer na página) e outra B com 1100 bytes (2ª referência a aparecer). Indique se acha as afirmações verdadeiras ou falsas.

	V/T	F	
6.a)	-0,1	X	i) Se for usado o modo persistente sem método de <i>pipelining</i> , o tempo mínimo que se pode esperar para o cliente A poder obter os três objetos da página referida é de 80 ms.
6.b)	X	-0,2	ii) Se não for usado o modo persistente nem o método de <i>pipelining</i> , o cliente A irá obter os três objetos da página referida num tempo mínimo que é maior do que o do método referido em i) porque teria de fazer três conexões TCP para o servidor.
6.c)	-0,1	X	iii) Se for usado o modo persistente com método de <i>pipelining</i> , o cliente A pode obter os três objetos da página referida num tempo mínimo que é menor do que o do método referido em i) apenas se a imagem B for transferida em primeiro lugar.
6.d)	X	-0,2	Neste caso, se entre o cliente A e o servidor B introduzirmos um <i>proxy</i> , estaremos sempre a diminuir o tempo de acesso do cliente a essa página desde que, pelo menos, uma das imagens ou a própria página esteja já na <i>cache</i> do <i>proxy</i> .
6.e)	X	-0,1	A versão do protocolo HTTP é irrelevante para quem cria conteúdo <i>web</i> para ser publicado num servidor HTTP. Ou seja, do ponto de vista comunicacional, o HTTP não se importa com a versão do HTML (ou outra linguagem) dos objetos a transferir.

NÚMERO:	
NOME:	

PARTE IV - Encaminhamento IP

7. Estude as seguintes afirmações genéricas sobre algoritmos e protocolos de encaminhamento IP e indique (com **X**) se as considera verdadeiras (*true*) ou se as considera falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

Nota: LS – algoritmos estado das ligações; DV – algoritmos vetores de distância.

	V/T	F	
7.a)	-0,1	X	Os protocolos de encaminhamento dinâmico IP são usados para gerir a informação
			do plano de controlo e precisam de regras de comunicação entre os <i>routers</i> que têm
			de seguir as próprias tabelas de encaminhamento criadas por eles próprios.
7.b)	X	-0,2	Um protocolo de encaminhamento dinâmico normalizado incluí um algoritmo de
			encaminhamento, regras de comunicação entre os routers e outros mecanismos
			necessários para a completa implementação do plano de controlo em redes IP.
7.c)	X	-0,2	Tanto os protocolos de encaminhamento interno como os protocolos de
			encaminhamento externo podem utilizar algoritmos de encaminhamento LS ou DV
			na sua implementação.
7. d)	X	-0,2	Um router pode, ao mesmo tempo, implementar um protocolo de encaminhamento
			interno e um protocolo de encaminhamento externo. É o caso dos <i>routers</i> fronteira
			dos sistemas autónomos na Internet.
7.e)	-0,1	X	Ao contrário dos algoritmos DV, os algoritmos LS não podem ser utilizados com
			topologias de rede em que o custo da ligação é diferente nos dois sentidos duma
			ligação/conexão direta entre dois routers.

8. Considere uma rede com a seguinte topologia: C(u,w)=5, C(u,z)=2, C(z,w)=2, C(z,y)=5 e C(w,y)=2; em que C(a,b) indica o custo de usar a ligação direta entre o *router a* e o *router b*. O custo é igual nos dois sentidos da comunicação e coincide com o tempo (em ms) que leva uma mensagem a ser transmitida entre os *routers*. Assuma que este tempo é independente da quantidade de dados em cada mensagem, quer sejam mensagens LSA (*Link-State Announcement/Advertisement*) ou mensagens de anúncios de tabelas DV. Assuma também que o tempo de processamento de mensagens e execução de tarefas associadas aos algoritmos de encaminhamento é irrelevante e nunca há perda de mensagens. Indique (com X) se acha as seguintes afirmações verdadeiras (*true*) ou falsas (*false*). Não responda se não sabe a resposta. Nota: LS – algoritmos estado das ligações; DV – algoritmos vetores de distância.

	V/T	F	
8.a)	-0,1	X	Se for usado um algoritmo LS a topologia de rede tem de ser conhecida em todos os
			routers antes do algoritmo LS ser executado. Usando difusão LSA, o tempo mínimo
			para que todos os <i>routers</i> tenham a informação da topologia estabilizada é de 12 ms.
8.b)	X	-0,1	Se for usado o algoritmo de Dijkstra, depois de conhecida a topologia de rede por
			todos os <i>routers</i> , obtém-se uma tabela LS para o <i>router</i> u igual à Tabela 1 (em anexo).
8.c)	X	-0,2	Se for usado o algoritmo de Bellman-Ford, na primeira iteração o router u recebe a
			seguinte informação dos vizinhos: $V_z = \{(u,2),(y,5),(w,2)\}$ e $V_w = \{(u,5),(z,2),(y,2)\}$;
			em que V_R são as melhores entradas (custo mais baixo) da tabela DV do router R .
8.d)	X	-0,1	Se for usado o algoritmo de Bellman-Ford, depois da primeira iteração em que o
			router u recebe a informação dos routers vizinhos z e w, a tabela DV do router u é
			igual à Tabela 2 (em anexo).
8.e)	-0,2	X	As tabelas de encaminhamento nos algoritmos DV precisam de ser deduzidas das
			tabelas DV, enquanto que nos algoritmos LS as tabelas de encaminhamento não
			precisam de ser deduzidas das tabelas LS, são imediatas.

Tabela 1: Informação LS do router u do exercício 8.b)

Step	N'	D(z), last hop before z	D(y), last hop before y	D(w), last hop before w
0	u	2, z*	∞, y*	5, w*
1	uz	-	7, z	4, z
2	uzw	-	6, w	-
3	uzwy	-	-	-

Nota*: no primeiro passo também se pode considerar o próprio router u como last hop before R.

Tabela 2: Informação DV do router u do exercício 8.d)

Distance to Destination	First hop is z	First hop is w
Z	2	7
y	7	7
W	4	5