Simple Polygon

Problem

You are given two integers, the number of vertices $\mathbf N$ and area $\mathbf A$. You need to construct a <u>simple polygon</u> of $\mathbf N$ vertices such that the area of the polygon is exactly $\frac{\mathbf A}{2}$, and all the vertices have non-negative integer coordinates with value up to 10^9 .

A simple polygon is one that:

- · Defines a closed area.
- · Does not have self-intersections, even at a single point.
- · No two consecutive edges form a straight angle.

Input

The first line of the input gives the number of test cases, T. T lines follow. The first line of each test case contains two integers, T denoting the number of vertices and T, denoting double the required area of the polygon.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is IMPOSSIBLE if it is not possible to construct a polygon with the given requirements and POSSIBLE otherwise.

If you output POSSIBLE, output ${\bf N}$ more lines with 2 integers each. The i-th line should contain two integers X_i and Y_i which denote the coordinates of the i-th vertex. For each i, the coordinates should satisfy the $0 \le X_i, Y_i \le 10^9$ constraints. Vertices of the polygon should be listed in consecutive order ($vertex_i$ should be adjacent to $vertex_{i-1}$ and $vertex_{i+1}$ in the polygon).

If there are multiple possible solutions, you can output any of them.

Limits

 $\begin{array}{l} \text{Memory limit: 1 GB.} \\ 1 \leq \mathbf{T} \leq 100. \\ 1 \leq \mathbf{A} \leq 10^9. \end{array}$

Test Set 1

Time limit: 20 seconds. $3 \leq N \leq 5$.

Test Set 2

Time limit: 40 seconds. $3 \le N \le 1000$.

Sample

Sample Input 2 4 36 5 2

Sample Output

Case #1: POSSIBLE
2 5
6 5
8 2
0 2
Case #2: IMPOSSIBLE

In Sample Case #1, we can output the above quadrilateral with coordinates (2,5), (6,5), (0,2) and (8,2). The area of this quadrilateral is equal to 18.

In Sample Case #2, there is no way to construct a polygon with 5 vertices and area equal to 1.