PYTHON ADVANCE ASSIGNMET BY SUDARSHAN PANDEY

April 18, 2024

[1]: import numpy as np #numpy is alias as np import pandas as pd #pandas is alias as pd import matplotlib.pyplot as plt #matplotlib is alias as plt import seaborn as sns #seaborn is alias as sns

[55]: data = pd.read_csv("honeyproduction 1998-2021.csv") print(data)

	State	numcol	yieldpercol	totalprod	stocks	priceperlb \
0	Alabama	16000.0	71	1136000.0	159000.0	0.72
1	Arizona	55000.0	60	3300000.0	1485000.0	0.64
2	Arkansas	53000.0	65	3445000.0	1688000.0	0.59
3	California	450000.0	83	37350000.0	12326000.0	0.62
4	Colorado	27000.0	72	1944000.0	1594000.0	0.70
			***	***		
980	Virginia	6000.0	40	240000.0	79000.0	8.23
981	Washington	96000.0	32	3072000.0	1206000.0	2.52
982	West Virginia	6000.0	43	258000.0	136000.0	4.80
983	Wisconsin	42000.0	47	1974000.0	750000.0	2.81
984	Wyoming	38000.0	58	2204000.0	242000.0	2.07

```
983 5547000.0 2021
984 4562000.0 2021
```

[985 rows x 8 columns]

[56]: data.head()

[56]:		State	numcol	yieldpercol	totalprod	stocks	priceperlb	\
	0	Alabama	16000.0	71	1136000.0	159000.0	0.72	
	1	Arizona	55000.0	60	3300000.0	1485000.0	0.64	
	2	Arkansas	53000.0	65	3445000.0	1688000.0	0.59	
	3	California	450000.0	83	37350000.0	12326000.0	0.62	
	4	Colorado	27000.0	72	1944000.0	1594000.0	0.70	
		prodvalue	year					
	0	818000.0	1998					
	1	2112000.0	1998					
	2	2033000.0	1998					
	3	23157000.0	1998					
	4	1361000.0	1998					

[57]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 985 entries, 0 to 984 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype			
0	State	985 non-null	object			
1	numcol	985 non-null	float64			
2	yieldpercol	985 non-null	int64			
3	totalprod	985 non-null	float64			
4	stocks	985 non-null	float64			
5	priceperlb	985 non-null	float64			
6	prodvalue	985 non-null	float64			
7	year	985 non-null	int64			
dtypes: float64(5), int64(2), object(1)						
memory usage: 61.7+ KB						

[58]: data.isnull().sum()

[58]: State 0 numcol 0 yieldpercol 0 totalprod 0 stocks 0 priceperlb 0

prodvalue 0

year 0 dtype: int64

1 Q1) How has honey production yield changed from 1998 to 2021?

```
[59]: # Group data by year and calculate total production for each year
      total_yearly_production = data.groupby('year')['totalprod'].sum().reset_index()
      # Plotting the trend over the years using a line plot
      plt.figure(figsize=(8, 6)) #setting the plot size
      #customising the line plot
      sns.lineplot(data=total_yearly_production, x='year', y='totalprod', marker='o',_
       scolor='orange', linestyle='dashed')
      #setting the title of the plot
      plt.title('Total Honey Production Over the Years Using Lineplot')
      #setting the label of x-axis
      plt.xlabel('Year')
      #setting the label of y-axis
      plt.ylabel('Total Production (lbs)')
      #to plot the grid into the graph
      plt.grid(True)
      #setting this function to rotate the x-label
      plt.xticks(rotation=45)
      #to visualize the plot
      plt.show()
```


2 Q2) Over time, what are the major production trends across the states?

```
[60]: #setting the plot size
plt.figure(figsize=(10,6))

#plotting the point plot
sns.pointplot(x='year', y='totalprod', data = data, estimator = sum, errorbar_s= None, hue='State')

#setting the title of the plot
plt.title('Total Honey Production by Year and State')

#customizing the legend
plt.legend(ncol = 2, fontsize=9, markerscale=0.8, bbox_to_anchor=(1,1))

# Customizing x-axis tick labels rotation
```

```
plt.xticks(rotation=90)

#setting the label of x-axis
plt.xlabel('Year')

#setting the label of y-axis
plt.ylabel('Total Production')

#to visualize the plot
plt.show()
```


Q3) Does the data show any trends in terms of the number of honey-producing colonies and yield per colony before 2006, which

was when concern over Colony Collapse Disorder spread nation-wide?

```
estimator=sum,col='State',kind='point',height=4,col_wrap=3,_scolor='cyan'),

# Customizing x-axis tick labels rotation
cplot.set_xticklabels(rotation=90)

# Set axis labels
cplot.set_axis_labels("Year", "Number of Colonies")

# Set titles for each subplot based on state name
cplot.set_titles("{col_name}")

# Adjust spacing to make room for the main title
plt.subplots_adjust(top=0.9)

# Set main title for the entire figure
cplot.fig.suptitle('Number of Honey-producing Colonies Before 2006 in Selected_states', fontsize=16)

#to visualize the plot
plt.show()
```


Q4)Are there any patterns that can be observed between total honey production and the value of production every year?

```
# Group data by year and calculate total honey production and total value of_
        sproduction for each year
[54]: annual_production_data = data.groupby('year')[['totalprod', 'prodvalue']].sum().
       sreset_index()
      # Plotting the relationship using a line plot
      plt.figure(figsize=(10, 6)) #setting plot size
      # Plot total production
      plt.plot(annual_production_data['year'], annual_production_data['totalprod'],
        slabel='Total Production', marker="0")
      # Plot total production
      plt.plot(annual_production_data['year'], annual_production_data['prodvalue'],
       slabel='Production Value', marker="0")
      #setting the title of the plot
      plt.title('Relationship Between Total Production and Production Value,
       s(1998-2021)')
      #setting the label of x-axis
      plt.xlabel('Year')
      #setting the label of y-axis
      plt.ylabel('Total Production / Production Value')
      #setting the legend of the plot
      plt.legend()
      #setting grid
      plt.grid(True)
      #setting this function to rotate the x-label
      plt.xticks(rotation=45)
      #To visualize the plot
      plt.show()
```


Q5)How has the value of production, which in some sense could be tied to demand, changed every year?

```
#setting the lablel of y-axis
plt.ylabel('Total Production Value')

#to plot the grid
plt.grid(True)

#setting this function to rotate the x-label
plt.xticks(rotation=45)

#to visualize the plot
plt.show()
```

