CpE 151 and EEE 234 CMOS and VLSI Design

Quiz – 3

For CpE 151, 5 lowest grade questions will be dropped. For EEE234 2 questions will be dropped.

Na	me: _			336 30 30 32	G. A. DANGSON AND	Artist Line
1	DC Analysis	is used to evaluate	which of the	following infor	mation?	
	a.	Noise Analysis				
	b.	Band width				
	C.	Slew-Rate		7.00		
	d	Bias Conditions/Ope	erating poin	t		
2.	AC Analysis	is used to evaluate v	which of the	following infor	mation?	
+	a.	Noise Analysis				
,	(b.)	Band width				
	MAN	Slew-Rate				
	d.	Bias Conditions/Ope	erating poir	t		
3.	Transient A	analysis is used to eva Noise Analysis	aluate whicl	n of the followin	g information?	
	b.	Band width				
	(c.)	Slew-Rate				
	d.	Bias Conditions/Op	erating poir	t		
		Blad Collandia, a p				
4.	RC delay m	odel approximates a	transistor a	isa <u>Switch</u>	in series with a	resistor.
1				resistor	Staneon I - In	Switch
	A unit nM	OS transistor (M1) wi	th I · and \	N dimensions	has a resistance of R a	nd a Canacitance
13.					twice the width of M1?	
/	01 01 11114					R
6.	What wou	ld be the diffusion ca	p of a pMO	S (M3) with k-tir	mes the width of M1? _	kC
1	The Capac its width.	itance of a MOS trans	sistor is	directly	(directly) inverse	ly) proportional to
8.	The Capac its length.	itance of a MOS trans	sistor is	directly	(directly) inverse	ly) proportional to

	(120)
9.	By increasing the W of a MOS transistor, its resistance is <u>decreased</u> (increased decreased)?
10.	In Elmore-delay estimation, the effect of the largest Resistance is felt closest to the source load.
11.	. The Figure – 1 shown below, represents a fanout-of-1 inverter. What is its total delay in terms of R and C defined in problem 5? $3RC + 3RC$.
	a Noise Analysis

Figure - 1. Fanout - of - 1 inverter

12. In figure – 1: if the fanout of the first inverter is 4 instead of 1, what would be its delay? 15RC. 12RC + 3RC = 15RC

13. In figure – 1, what percentage of the delay is from self-loading (parasitic and internal capacitances) of a fanout – of – 1 inverter? ______ $50^{\circ}/^{\circ}$ _____ (25% $\sqrt{50\%}$ 75% / 100%)

15. In linear delay model, the relationship between d, g, h and p is given by d = gh + p where:

d: delay (Normalized to units of delay of a parasitic free fanout-of-1 inverter)

f: effort component of the delay

p: parasitic component of the delay

g: logical effort

h: fanout (electrical effort)