Real Analysis in Stat 6410 (Iowa State)

Wednesday, June 26, 2024 3:06 PM

More than just a catchy phrase, "ontogeny recapitulates phylogeny" is the foundation of recapitulation theory. Recapitulation theory posits that the development of individual organisms (ontogeny) follows (recapitulates) the same phases of the evolution of larger ancestral groups of related organisms (phylogeny). Feb 10, 2017

A Catchy Phrase, But is It True? - New York Botanical Garden

About featured snippets • Feedback

Stat 6410! measure theory

- need basics of analysis/calculus.

 extends those ideas to stable math foundation for prob. Theory.

4	Adv	anced	Calculus: A Review	573
	A.1	Eleme	ntary set theory	573
		A.1.1	Set operations	574
		A.1.2	The principle of induction	577
		A.1.3	Equivalence relations	
	A.2	Real n	numbers, continuity, differentiability, and integration.	578
		A.2.1	Real numbers	578
		A.2.2	Sequences, series, limits, limsup, liminf	580
		A.2.3	Continuity and differentiability	582
		A.2.4	Riemann integration	
	A.3 Complex numbers, exponential and trigonometric fund			586
	A.4 Metric spaces		spaces	590
		A.4.1	Basic definitions	590
		A.4.2	Continuous functions	592
		A.4.3	Compactness	
		A.4.4	Sequences of functions and uniform convergence	593
	A.5	Proble	ems	594

Into to measure theory

(everything here will be discussed in detail later)

- * Shootcomings of Riemann integration/Calculus.
- * Connecting loose ends of prob. Theory!
- * Math paradoxes that lead to unreasonable results

Math paradoxes that lead to unreasonable results

(Reasons for Measure (heavy)

Theorem 5.5.9 (Strong Law of Large Numbers) Let X_1, X_2, \ldots be iid random variables with $EX_i = \mu$ and $Var X_i = \sigma^2 < \infty$, and define $X_n = (1/n) \sum_{i=1}^n X_i$.

Then, for every $\epsilon > 0$, $P(\{\omega : \lim_{n \to \infty} |\bar{X}_n| = 0\}) = 1$ $P(\lim_{n \to \infty} |\bar{X}_n - \mu| < \epsilon) = 1;$ P($\lim_{n \to \infty} |\bar{X}_n| = 0$) = 1That is \bar{X}_n converges almost surely to μ .

$$P\lim_{n\to\infty}|\bar{X}_n-\mu|<\epsilon)=1; \qquad P\left(\lim_{n\to\infty}|\bar{X}_n-\mu|=0\right)=1$$

that is, \bar{X}_n converges almost surely to μ .

Usual text for 641

https://www.amazon.com/Measure-Theory-Probability-Springer-Statistics/dp/038732903X

Classic reference for analysis (advanced calculus):

 $\underline{https://www.google.com/search?client=opera\&q=analysis+rudin\&sourceid=opera\&ie=UTF-8\&oe=UT$

Rudin's textbook for real analysis.