IEEE International Conference on Robotics and Automation Workshop on Multi-robot Perception-Driven Control and Planning 2017

A Lower Bound on Observability for Target Tracking with Range Sensors and its Application to Sensor Assignment

Lifeng Zhou and Pratap Tokekar

RAAS Lab

Motivation

Reduce the communication in decentralized target tracking

 $p_1 \sim p_5$ are five range sensors q_o is the target

[Martinez & Bullo. Automatica '06]

[Zhou & Tokekar. ICRA '17]

Select sensors to improve the observability in tracking a potentially mobile target

Target's Motion and Measurement Model

$$\begin{cases} \dot{o} = u_o, \\ z_i = h_i(o) = \frac{1}{2} ||p_i - o||_2^2, \ i = 1, ..., N \end{cases}$$
$$||u_o||_2 \le u_{o,\text{max}}.$$

Partially Known Observability Matrix

$$O(o, u_o) = \begin{bmatrix} o_x - p_{1x}, o_y - p_{1y} \\ o_x - p_{2x}, o_y - p_{2y} \\ \vdots \\ o_x - p_{Nx}, o_y - p_{Ny} \\ u_{ox}, u_{oy} \end{bmatrix}$$

Known

✓ (relative position)

$$O(o) := \begin{bmatrix} o_x - p_{1x}, o_y - p_{1y} \\ o_x - p_{2x}, o_y - p_{2y} \\ \vdots \\ o_x - p_{Nx}, o_y - p_{Ny} \end{bmatrix}$$

Unknown (control input)

$$O(u_o) := \left[u_{ox}, u_{oy} \right]$$

Lower Bound for the Unknown Observability Metric

Inverse of condition number

$$C^{-1}(O(o, u_o)) = \frac{\sigma_{\min}(O(o, u_o))}{\sigma_{\max}(O(o, u_o))}.$$

Lower bound

$$\underline{C}^{-1}(O(o,u_o)) = \frac{\sigma_{\min}(O(o))}{\sqrt{\sigma_{\max}^2(O(o)) + u_o^2}}$$
 $unknown \geq \frac{\sigma_{\min}(O(o))}{\sqrt{\sigma_{\max}^2(O(o)) + u_{o,\max}^2}}$
 $known = ||u_o||_2 \leq u_{o,\max}.$

Citations

MartíNez, S., & Bullo, F. (2006). Optimal sensor placement and motion coordination for target tracking. *Automatica*, 42(4), 661-668.

Zhou, L., & Tokekar, P. (2017). Active Target Tracking with Self-Triggered Communications in Multi-Robot Teams. *arXiv* preprint *arXiv*:1704.07475.

Thanks for listening!

Lifeng Zhou and Pratap Tokekar

lfzhou@vt.edu www.raas.ece.vt.edu

The material is based upon work supported by the National Science Foundation under Grant Nos. 1566247 and 1637915

RAAS Lab

