closure $\bar{A} = \bar{B} + \mu$ of A generates a positive semigroup of type $\omega(\bar{A}) \leq \lambda$.

If $(\lambda - A)$ is surjective, then $A = \overline{A}$.

The proof of Theorem 1.13 yields estimates for the growth bound of a positive semigroup (see A-III, (1.3)) which we state explicitly in the next corollary.

Corollary 1.14. Let A be the generator of a strongly continuous positive semigroup on C(K). Then

- $-\infty < s(A) = \omega(A) \in \sigma(A)$. (1.7)Moreover,
- (1.9) $s(A) \ge \sup \{ \mu \in \mathbb{R} : Af \ge \mu f \text{ for some } 0 < f \in D(A) \}$.

<u>Proof.</u> Let $s = \inf \{ \lambda \in \mathbb{R} : [\lambda, \infty) \subset \rho(A) \}$. Clearly, $s \le s(A)$. Moreover, by Remark 1.7, $R(\lambda,A) \ge 0$ for all $\lambda > s$. Hence it follows from (1.3) that $\omega(A) \leq s$. Consequently, $s = s(A) = \omega(A)$. Next we prove (1.9). Let $0 < f \in D(A)$ such that $Af \ge \mu f$. Assume that $\mu > s(A)$. Then $R(\mu,A) \ge 0$. Hence, $f = R(\mu,A)(\mu-A)f \le 0$, a contradiction.

Since D(A) is dense, there exists a strictly positive $u \in D(A)$. Then Au $\geq \mu u$ for some $\mu \in \mathbb{R}$. Hence, $-\infty < \mu \leq s(A)$ by (1.9). Since s(A) = s it is clear that $s(A) \in \sigma(A)$.

It remains to show (1.8). Let $\lambda > s(A)$ and $u = R(\lambda,A)1$. Then uis strictly positive (by Rem. 1.7) and Au = $\lambda u - 1 \le \lambda u$. This proves one inequality in (1.8). Assume now that u \in D(A) is strictly positive such that $Au \leq \lambda u$. Then by the proof of Thm. 1.13 we have $\omega(A) \leq \lambda$. This proves the other inequality in (1.8).

Remark 1.15. If A has compact resolvent, then by the Krein-Rutmann theorem there exists a positive eigenvector u of A corresponding to a real eigenvalue. So the equality is valid in (1.9) and the supremum is a maximum. If in addition the semigroup is irreducible (see B-III, Sec. 3 below), then u is strictly positive and in (1.8) the infimum is attained as well.

Conversely, if in (1.8) the infimum is attained, then s(A) is an eigenvalue.

П