APPENDIX

This section includes the proofs of Lemma 1 and Proposition 1.

The numbering cited in this section (e.g., (1)) corresponds to the numbered equations in the main text.

Proof of Lemma 1

Lemma 1:

Suppose μ is a positive regular Borel measure, and f,e are Simple Functions that $f(x)=\sum_{i=1}^n \alpha_i\chi_{I_i^f}(x)$ and $e(x)=\sum_{j=1}^m \beta_j\chi_{I_j^e}(x)$ then the distance d(f,e) defined under (1) can be expressed as

$$d(f,e) = \sum_{i=1}^n \sum_{j=1}^m
ho(lpha_i,eta_j) \cdot \mu(I_i^f \cap I_j^e).$$

Proof:

Follow (1), we have

$$d(f,e) = \int_{\mathbb{X}}
ho(\sum_{i=1}^n lpha_i \cdot \chi_{I_i^f}(x), \sum_{j=1}^m eta_j \cdot \chi_{I_j^e}(x)) \, d\mu.$$

Under the definition of Simple Function, $\{I_i^f\}_{i=1}^n$ and $\{I_i^e\}_{i=1}^m$ are both measurable partitions of \mathbb{X} .

Therefor

$$\sum_{i=1}^n \chi_{I_i^f}(x) \equiv 1 \, , \, \sum_{j=1}^m \chi_{I_j^e}(x) \equiv 1 .$$

Consequently,

$$\sum_{i=1}^n lpha_i \chi_{I_i^f}(x) = \sum_{i=1}^n lpha_i \cdot (\chi_{I_i^f}(x) \cdot \sum_{j=1}^m \chi_{I_i^e}(x)) = \sum_{i=1}^n \sum_{j=1}^m lpha_i \cdot \chi_{I_i^f \cap I_i^e}(x).$$

Similarly,

$$\sum_{i=1}^m eta_j \cdot \chi_{I_j^e}(x) = \sum_{i=1}^m \sum_{i=1}^n eta_j \cdot \chi_{I_j^e \cap I_i^f}(x).$$

Hence, we obtain

$$d(f,e) = \int_{\mathbb{X}} \sum_{i=1}^n \sum_{j=1}^m
ho(lpha_i,eta_j) \cdot \chi_{I_i^f \cap I_j^e}(x) \, d\mu.$$

Notably, $\{I_i^f\cap I_j^e\}$ is also a measurable partition of $\mathbb X$, and μ is a positive regular Borel measure. Thus, we can further simplify the expression as

$$egin{aligned} d(f,e) &= \sum_{i=1}^n \sum_{j=1}^m \int_{I_i^f \cap I_j^e} \sum_{i=1}^n \sum_{j=1}^m
ho(lpha_i,eta_j) \cdot \chi_{I_i^f \cap I_j^e}(x) \, d\mu \ &= \sum_{i=1}^n \sum_{j=1}^m \int_{I_i^f \cap I_j^e}
ho(lpha_i,eta_j) \cdot \chi_{I_i^f \cap I_j^e}(x) \, d\mu \ &= \sum_{i=1}^n \sum_{j=1}^m
ho(lpha_i,eta_j) \, \cdot \mu(I_i^f \cap I_j^e). \end{aligned}$$

Proof of Proposition 1

Proposition 1:

Under *Problem 2* and (4), (5), let the function $\rho(p_1, p_2)$ is linear depend on p_1 for a fixed p_2 , then the $d(\mathcal{F}, \mathcal{E})$ in (8) is equivalent to

$$d(\mathcal{F},\mathcal{E}) = \sum_{k=1}^K \sum_{i=1}^{L^{(k)}} \sum_{j=1}^m
ho(p_i^{(k)},p_j^{\mathcal{E}}) \cdot \mu(I_i^{(k)} \cap I_j^{\mathcal{E}}).$$

Proof:

If $\rho(p_1, p_2)$ is linear depend on p_1 for a fixed p_2 , under (5) and (6), we can rewrite the ρ in (8) as:

$$ho(p_i^{\mathcal{F}},p_j^{\mathcal{E}}) = rac{1}{K} \sum_{k=1}^K
ho(p_{i^k}^{(k)},p_j^{\mathcal{E}}),$$

where $I_i^{\mathcal{F}} \subseteq I_{i^k}^{(k)}$ for every k. Therefor,

$$egin{aligned} d(\mathcal{F}, \mathcal{E}) &= \sum_{i=1}^{L^{\mathcal{F}}} \sum_{j=1}^{m} (rac{1}{K} \sum_{k=1}^{K}
ho(p_{i^k}^{(k)}, p_j^{\mathcal{E}})) \cdot \mu(I_i^{\mathcal{F}} \cap I_j^{\mathcal{E}}) \ &= rac{1}{K} \sum_{i=1}^{L^{\mathcal{F}}} \sum_{j=1}^{m} \sum_{k=1}^{K}
ho(p_{i^k}^{(k)}, p_j^{\mathcal{E}}) \cdot \mu(I_i^{\mathcal{F}} \cap I_{i^k}^{(k)} \cap I_j^{\mathcal{E}}). \end{aligned}$$

Furthermore, for every $l \neq i^k$, we have $I_i^{\mathcal{F}} \cap I_l^{(k)} = \emptyset$, which implies:

$$egin{aligned} d(\mathcal{F},\mathcal{E}) &= rac{1}{K} \sum_{i=1}^{L^{\mathcal{F}}} \sum_{j=1}^{m} \sum_{k=1}^{K} \sum_{l=1}^{L^{(k)}}
ho(p_l^{(k)},p_j^{\mathcal{E}}) \cdot \mu(I_i^{\mathcal{F}} \cap I_l^{(k)} \cap I_j^{\mathcal{E}}) \ &= rac{1}{K} \sum_{k=1}^{K} \sum_{l=1}^{L^{(k)}} \sum_{j=1}^{m}
ho(p_l^{(k)},p_j^{\mathcal{E}}) \cdot \sum_{i=1}^{L^{\mathcal{F}}} \mu(I_i^{\mathcal{F}} \cap I_l^{(k)} \cap I_j^{\mathcal{E}}). \end{aligned}$$

As we defined in *Lemma 1*, μ is a positive regular Borel measure and $\{I_i^{\mathcal{F}}\}_{i=0}^{L^{\mathcal{F}}}$ is a measurable partition of \mathbb{X} . Hence, we obtain

$$\sum_{i=1}^{L^{\mathcal{F}}} \mu(I_i^{\mathcal{F}} \cap I_l^{(k)} \cap I_j^{\mathcal{E}}) = \mu((igcup_{i=1}^{L^{\mathcal{F}}} I_i^{\mathcal{F}}) \cap I_l^{(k)} \cap I_j^{\mathcal{E}}) = \mu(I_l^{(k)} \cap I_j^{\mathcal{E}}).$$

Using these results, we can simplify the expression for $d(\mathcal{F},\mathcal{E})$ as follows:

$$egin{aligned} d(\mathcal{F}, \mathcal{E}) &= rac{1}{K} \sum_{k=1}^K \sum_{l=1}^K \sum_{j=1}^m
ho(p_l^{(k)}, p_j^{\mathcal{E}}) \cdot \mu(I_l^{(k)} \cap I_j^{\mathcal{E}}) \ &= rac{1}{K} \sum_{k=1}^K \sum_{i=1}^K \sum_{j=1}^m
ho(p_i^{(k)}, p_j^{\mathcal{E}}) \cdot \mu(I_i^{(k)} \cap I_j^{\mathcal{E}}). \end{aligned}$$