Twitter Sentiment Analysis Of 2016 United States Presidential Election

Authors: Shaurya Shekhar (14BCE0497), Aarushi Thakral (14BCE0499)

<u>Guided By:</u> Prof. Vasantha WB

ABSTRACT

Twitter is amongst the most popular social-networking websites today ^[1], with approximately 317 million monthly active users (Quarter 3 2016). Of these 67 million users are from the United States of America. Twitter being a micro-blogging platform, is widely used by people to express their opinions. Approximately 500 million tweets are posted in a day, which is around 6000 tweets per second. Assuming, even one-tenth of these tweets reflect an emotion, that results in a lot of people-generated data, which can prove to be a treasure trove of information if studied carefully. We intend to perform sentimental analysis on Twitter Data of the United States 2016 Presidential Election and then overlay our findings with respect to the two main candidates: Hillary Clinton & Donald Trump with the actual election result, to be able to categorically state whether twitter can be used as a proper indication of any election.

INTRODUCTION

In the past few years, we have seen an exponential increase in the number of users of microblogging platforms such as Twitter. These platforms allow people to express their views and opinions on a variety of issues. These views can then be used by organizations to analyze the sentiment of the general public. Twitter has grown by leaps and bounds in the past few years, the scale of which can be guessed by the fact that in 2010, they had 30 million users whereas today they have almost 328 million users. Almost 500 million tweets are sent each day. This, allowing for Twitter data to be used as an accurate representation of the sentiments of the people.

Elections allow for citizens of democratic nations to use their power to elect the people to offices of power. A democracy allows for a government for the people to be elected by the people, and thus, every election is an important event in the timeline of every nation. It allows people to play their role in deciding whose policies would be guiding the nation and who should rule the country.

Previous attempts to do the same have been done using identification of smileys in tweets and classifying them using Bayesian networks ^[6]. We thus, perform sentiment analysis on Twitter data to predict which of the 2 Presidential candidates: Hillary Clinton and Donald J. Trump would win in which state ^{[2][3][7][8][9]}. We have performed Twitter sentiment analysis using the R programming language ^[5].

Section 1 deals with how tweets have been mined and collected. Section 2 talks about the preprocessing and cleaning of tweets. Section 3 explains the processing and classification of states. Section 4 visualizes the findings in the form of bar plots and maps. Section 5 presents a brief summary and explains the result & conclusion of this project.

1. Data Mining

Using a registered Twitter account, we created an application for the purpose of mining data for sentiment analysis. Upon creating an application we were provided with a Consumer Key (API key), Consumer Secret (API Secret), Access Token and Access Token Secret.

The 'twitteR' package was installed in RStudio, to provide an interface to the generated Twitter web API [4].

After installing the 'twitteR' package and generating your consumer key, consumer secret, access token and access token secret, we make use of the 'setup_twitter_oauth(consumer_key, consumer_secret, access_token, access_secret)', which wraps the OAuth authentication handshake functions from the httr package for a twitteR session. This allows RStudio to be able to access twitter data on basis of parameters supplied to the 'searchTwitter()' function.

Data from the most populous cities of the 50 states of United States of America have been gathered. The latitudes and longitudes of these cities were found and stored.

Since, we have focused on finding tweets one day before the main Presidential election which was held on 8th November 2016, we have limited the date range to since "2016-11-07". 5 parameters were passed to the searchTwitter() function. These were:-

- 1. Search Phrase: which was set to either Trump or Clinton depending on the candidate whose tweets we are trying to find.
- 2. Number of tweets: which was set to 1000 for all the searchTwitter operations.
- 3. Language: which was set to "en", thus limiting the searching of tweets to only those which were in English for all searchTwitter operations.
- 4. Geocode: which was used to specify the latitude and longitude of the place from where tweets have to be retrieved. We also set the range (in miles) from where tweets had to retrieved from around the location specified.
- 5. Date: which has been to "2016-11-07" for all searchTwitter operations.

This resulted in us retrieving sets of 1000 tweets for each Clinton and Trump for each state, thus creating a dataset of 1,00,000 tweets. These tweets were in the form of a tweet list, which specified a number of parameters such as whether the tweets had been favorite or retweeted or not, whether the tweets were in reply to some user, the source link of the tweet, etc.

For further processing, these tweets were converted into a data frame using the twListToDF function, which is included in the 'twitteR' package.

2. <u>Data Preprocessing</u>

The tweets which we have extracted include emojis and links to other websites. These cannot be used to judge or gauge the sentiment of the tweets, as there exist a variety of ways an emoji can be used, such as the fact the smiling emoji could express happiness as well as sarcasm. Similarly, we are performing sentiment analysis only on the text found in the tweets and not on the text

found on the pages which these tweets further link to. Thus, before we can proceed with the processing of these tweets, these tweets need to be cleaned of emojis and links.

The text columns from the data frames were selected and selectively cleared of emojis and links row by row. The emojis once downloaded into R, automatically got converted into Latin and thus had to be first converted into ASCII and substituted with "" (blank spaces). This made use of the sapply() function.

To clean the tweets of links, we made use of the gsub() function. We used the regular expression of hyperlinks- "(f|ht)tp(s?)://(.*)[.][a-z]" and substituted it with " " (blank spaces).

Lastly the cleaned text columns of these tweets are stored in a separate data frame.

3. Data Processing

A database of positive and negative words are loaded into RStudio.

Table 1: Sample Words From Databases		
Positive Words	Negative Words	
Adore, advocate, affirmative, fancy, fanfare,	Anxiety, antipathy, apocalypse, awful,	
idolize, immense, impressive, lavish, neat,	belligerent, biased, bizarre, blunder, bogus,	
nicest, pleased, poise, qualified, revival,	confront, crisis, degrading, harsh, poverty,	
savior	suspicious	

A function "score.sentiment(parameters)" was defined with parameters being the negative words, positive words, and the text data frames from the tweets. The functions substituted punctuations, control words, decimal numbers and new lines with "" (blank spaces) to further clean the tweets, thus allowing for easier processing. The text was then converted to lower case using the tolower() function included in the "stringr" package of R. The tweets were then split word wise and stored in a list, which was further stored in a character vector. The "match()" function was used to compare every word in the character vector to the positive words and negative words database. We thus, get either the count of matches to the different databases or "NA" in cases of no matches. This, method is referred to as 'lexical analysis' [10]. We remove the "NA" values and sum the remaining number of matches to be able to calculate the score of the tweets using the formula

Score = sum(pos.matches) – sum(neg.matches)

The scores, positive scores and negative scores are then appended to each other in a single table. This leads to multiple columns of data for each of the values. This can be decomposed into a single column of data using the "melt()" function from the "reshape2" package of R. The melt function takes data in wide format and stacks a set of columns into a single column of data.

For every state, we find all the three scores (final, positive and negative), for each of the tweets, which is then summed up in final values. This is done for both Clinton & Trump.

sitive, No ositive 98 59 98 446 70 32 290 51 21	Negative) Negative 632 774 638 273 715 698 604 533 1043
98 59 98 446 70 32 290 51	Negative 632 774 638 273 715 698 604 533
59 98 446 70 32 290 51	774 638 273 715 698 604 533
98 446 70 32 290 51	638 273 715 698 604 533
446 70 32 290 51	273 715 698 604 533
446 70 32 290 51	273 715 698 604 533
70 32 290 51 21	715 698 604 533
32 290 51 21	698 604 533
290 51 21	604 533
51 21	533
21	
	603
19	100
89	543
49	280
27	158
69	603
	463
	590
76	494
	1022
	379
	603
	467
	625
	670
	613
	889
	590
03	499
65	552
75	552
34	899
51	513
83	624
55	450
26	597
36	565
19	1070
37	550
41	544
01	609
73	559
05	616
	563
	906
	19 89 49 27 69 76 36 76 669 65 39 83 09 22 30 51 08 03 65 75 34 51 83 55 26 36 19 37 41 01 73

Vermont	274	843	569
Virginia	262	841	579
Washington	-531	457	988
West Virginia	203	827	624
Wisconsin	212	833	621
Wyoming	35	679	644

,			•
	Table	3	
Trump Scores (Final, Positive, Negative)			
State_Column	Score	Positive	Negative
Alabama	710	1273	563
Alaska	600	1256	656
Arizona	224	1185	961
Arkansas	714	1385	671
California	1169	1668	499
Colorado	732	1439	707
Connecticut	432	1267	835
Delaware	913	1424	511
Florida	596	1310	714
Georgia	555	1242	687
Hawaii	721	1361	640
Idaho	559	1239	680
Illinois	630	1287	657
Indiana	682	1374	692
Iowa	621	1487	866
Kansas	669	1403	734
Kentucky	1034	1473	439
Lousianna	575	1256	681
Maine	659	1212	553
Maryland	453	1293	840
Massachusetts	467	1503	1036
Michigan	464	1205	741
Minnesota	481	1247	766
Missisippi	560	1208	648
Missouri	546	1200	654
Montana	760	1353	593
Nebraska	494	1182	688
Nevada	732	1417	685
New	510	1175	665
Hampshire			
New Jersey	612	1212	600
New Mexico	661	1284	623
New York	514	1178	664
North Carolina	672	1334	662
North Dakota	522	1259	737
Ohio	651	1263	612
Oklahoma	636	1277	641
Oregon	642	1378	736

Pennsylvania	651	1243	592
Rhode Island	711	1286	575
South Carolina	678	1304	626
South Dakota	676	1345	669
Tennessee	570	1219	649
Texas	464	1183	719
Utah	607	1342	735
Vermont	551	1220	669
Virginia	545	1235	690
Washington	681	1419	738
West Virginia	-607	807	1414
Wisconsin	-2853	49	2902
Wyoming	598	1307	709

Depending on the basis of who has greater final score in the state, we then used used classification to predict who would win in which state.

Table 4		
Predictions		
State_Column	Predicted Winner	
Alabama	Trump	
Alaska	Trump	
Arizona	Trump	
Arkansas	Clinton	
California	Trump	
Colorado	Trump	
Connecticut	Clinton	
Delaware	Trump	
Florida	Trump	
Georgia	Trump	
Hawaii	Trump	
Idaho	Trump	
Illinois	Trump	
Indiana	Trump	
Iowa	Trump	
Kansas	Trump	
Kentucky	Trump	
Lousianna	Trump	
Maine	Trump	
Maryland	Trump	
Massachusetts	Trump	
Michigan	Trump	
Minnesota	Trump	
Missisippi	Trump	
Missouri	Trump	
Montana	Trump	

Nebraska	Trump
Nevada	Trump
New	Trump
Hampshire	
New Jersey	Trump
New Mexico	Trump
New York	Trump
North Carolina	Trump
North Dakota	Trump
Ohio	Trump
Oklahoma	Trump
Oregon	Trump
Pennsylvania	Trump
Rhode Island	Trump
South Carolina	Trump
South Dakota	Trump
Tennessee	Trump
Texas	Trump
Utah	Trump
Vermont	Trump
Virginia	Trump
Washington	Trump
West Virginia	Clinton
Wisconsin	Clinton
Wyoming	Trump

4. Data Visualization

The positive and negative scores can be represented using a bar plot for both Clinton & Trump. The barplot was generated using the "barplot()" function of the "ggplot2" package of R.

Figure 1: Trump Barplot

The overall scores of Trump & Clinton with respect to the different states can also be visualized using the "barplot()" function of the "ggplot2" library of R.

Figure 3: Trump Overall Score Barplot

Figure 4: Clinton Overall Score Barplot

We then proceeded further to represent our findings on the map using the "maps" package of R.

Map 1: Predicted Wins

We then compared it to the actual results map of the United States Presidential Election 2016.

Map 2: Actual Wins

We have then compared the above two maps (Map 1 & Map 2) and displayed the correctly predicted states in Map 3 in green.

Map 3: Correct Predictions (in green)

Results

We have performed data retrieval using the Twitter API and imported them into RStudio. We then cleaned the tweets of emojis, links, punctuations, control words, decimal words and new lines to prepare the tweet texts for further processing.

Upon performing lexical analysis with respect to the pre-defined positive and negative word databases, we then calculate positive scores and negative scores of every tweet. Scores are then calculated by subtracting the negative score from the positive scores.

On the basis of scores, states are classified, we have thus, been able to classify 31 of the 50 states correctly, and have achieved 62% accuracy.

As can be seen from Figure 1 & Figure 2, the number of positive scores (darker region) is much greater than the number of negative scores (lighter region) in the case of Trump, than with

Clinton. The only anomaly in the case of Trump would be Wisconcin, which presented a stark contrast to what the other states, by giving a major negative score to Trump.

Similarly in Figure 3 & Figure 4, while Trump managed an overall positive score across almost all the states, Clinton had a more varied score across the country. Trump had an overall negative score only in West Virginia and Wisconsin.

Map 1, 2 and 3, are efficient representations of our findings on the United States map state-bystate. While 1 represents our predictions, 2 represents the actual results and 3 compares map 1 and map 2 and colors the correctly predicted states in green.

Twitter sentiment analysis has many wide-ranging applications and elections are just one of them. There exist many ways to perform sentiment analysis and the one we have performed is called "lexical analysis" and has been followed up with classification. There exists tremendous scope for us to expand these methods so as to allow them to factor-in greater number of factors while classifying tweets as 'positive' or 'negative'.

References

- 1. Liu, Y., Kliman-Silver, C., & Mislove, A. (2014). The Tweets They Are a-Changin: Evolution of Twitter Users and Behavior. In *ICWSM* (Vol. 30, pp. 5-314).
- 2. Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. *ICWSM*, *10*(1), 178-185.
- 3. Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2011). Election forecasts with Twitter: How 140 characters reflect the political landscape. *Social science computer review*, 29(4), 402-418.
- 4. Makice, K. (2009). *Twitter API: Up and running: Learn how to build applications with the Twitter API*. " O'Reilly Media, Inc.".
- 5. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011, June). Sentiment analysis of twitter data. In *Proceedings of the workshop on languages in social media* (pp. 30-38). Association for Computational Linguistics.
- 6. Chin, D., Zappone, A., & Zhao, J. (2016). Analyzing Twitter Sentiment of the 2016 Presidential Candidates.
- 7. Wang, Y., Li, Y., & Luo, J. (2016). Deciphering the 2016 US Presidential campaign in the Twitter sphere: A comparison of the Trumpists and Clintonists. *arXiv preprint arXiv:1603.03097*.
- 8. Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis on twitter. *IJCSI International Journal of Computer Science Issues*, 9(3), 372-378.
- 9. Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. *ICWSM*, *10*(1), 178-185.
- 10. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. *Computational linguistics*, *37*(2), 267-307.