AYUDANTÍA 6: HEURÍSTICAS Y BÚSQUEDA ADVERSARIA

Benjamín Pizarro - Tomás Couso

HEURÍSTICAS

¿QUÉ ES UNA HEURÍSTICA?


```
Algoritmo A*
Input: Un problema de búsqueda (S, A, s_0, G)
Output: Un nodo objetivo
 1 for each s \in \mathcal{S} do g(s) \leftarrow \infty
 2 Open \leftarrow \{s_0\}
  g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0) 
 4 while Open \neq \emptyset
       Extrae un u desde Open con menor valor-f
 5
       if u es objetivo return u
 6
       for each v \in Succ(u) do
                                             Insertar v en Open
 7
                                               1 cost_v = g(u) + c(u, v)
          Insertar v
                                                                                    // el costo de llegar a v por u
  8
                                               2 if cost_v \ge g(v) return // seguimos solo si cost_v < g(v)
                                               3 parent(v) \leftarrow u
                                               4 g(v) \leftarrow cost_v
                                              5 f(v) \leftarrow g(v) + h(v)
                                               6 if v \in Open then Reordenar Open
                                                                                             // depende de la impl.
                                               7 else Insertar v en Open
```

¿QUÉ ES UNA HEURÍSTICA?

• La idea es utilizar **conocimiento previo** para discriminar qué estados son "mejores" o "peores".

• Así, se busca **reducir el tiempo de búsqueda** y no irse por caminos que probablemente no son buenos.

• Se busca estimar qué tan cerca estamos de la solución.

Y FORMALMENTE...

Dado un problema de búsqueda (S, A, S_INIT, G)

• Una heurística es una función h, que recibe como entrada un nodo (s) y entrega un valor real.

• La idea es que el valor h(s) sea una medida de qué tan cerca está el estado s de alguna solución g.

EJEMPLOS DE HEURÍSTICAS

- No comprar un producto del que escuchamos malas opiniones.
- Llevar paraguas cuando el día está nublado.
- Elegir un producto porque su envase se ve de mejor calidad.
- Distancia Euleriana
- Distancia de Manhattan

ADMISIBILIDAD

Una heurística h se dice admisible si y solo si nunca sobre-estima respecto a un camino óptimo. Es decir:

$$h(s) \le h^*(s) \setminus$$

para todo estado s.

costo de un camino óptimo desde s a una solución

EJEMPLO

Distancia Manhattan en el puzzle de 8.

CONSISTENCIA

Una heurística h se dice consistente si y sólo si:

No se sobre-estima en los objetivos

 $\blacksquare h(s) \le c(s,s') + h(s')$, para todo vecino s' de s

La variación del h de dos estados no es mayor que el costo de ir de uno al otro

CONSISTENTE

INCONSISTENTE

IMPORTANTE

• Una heuristica consistente implica que es admisible (¿por qué?).

• El algoritmo A* siempre entrega soluciones óptimas si se usa con una heurística admisible.

EL ALGORITMO A* SIEMPRE ENTREGA SOLUCIONES ÓPTIMAS SI SE USA CON UNA HEURÍSTICA ADMISIBLE.

UNA TÉCNICA: RELAJACIÓN DE PROBLEMAS

- Obtener un supergrafo de búsqueda que contenga al original, y encontrar el costo óptimo en este supergrafo.
- Ese costo óptimo nos servirá como heurística del problema original.

HEURÍSTICA DE RELAJACIÓN

Si se pudieran atravesar las paredes, el costo óptimo estaría dado por la distancia de Manhattan

VEAMOS UN POQUITO DE CÓDIGO

BÚSQUEDA CON ADVERSARIO

JUEGOS

Tratamos con juegos de dos jugadores, turnos, información perfecta y suma cero.

- Información perfecta: Tenemos visualización completa del tablero de juego
- Suma cero: Lo que es bueno para mí es en igual medida malo para mi oponente

BÚSQUEDA

- Podemos considerar un juego como un espacio de búsqueda:
 - o Tablero: nodo
 - Jugadas: conecciones

0

- El objetivo será llegar a un tablero donde ganemos:
 - Gato: tres fichas nuestras en línea
 - Conecta-4: cuatro fichas nuestras en línea
 - Ajedrez: Jaque-mate al rey del oponente

ADVERSARIO

Para cada estado que revisemos en la búsqueda, tenemos que considerar si es mi turno o el de mi adversario.

La búsqueda puede pensarse como una simulación del juego entre dos jugadores: Max y Min.

- Si es mi turno: Max
 - Elijo la mejor jugada que tengo disponible, de modo que **max**imizamos el puntaje.
- Si es el turno de mi oponente: Min
 - Asumimos que el oponente tiene decisiones óptimas, y elegimos la peor jugada que tenemos disponible, de modo que minimizamos.

¿CÓMO DEFINIMOS LA MEJOR JUGADA DESDE UN TABLERO?

• Puntuamos tablero en base a valor minimax

```
\begin{aligned} & \text{MINIMAX}(s) = \\ & \left\{ \begin{array}{ll} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ & \text{max}_{a \in Actions(s)} \, \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ & \text{min}_{a \in Actions(s)} \, \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{array} \right. \end{aligned}
```

 Para jugar de manera óptima, elegimos la acción asociada al valor minimax

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \leftarrow \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

Retorno de minimax: Nos trasladamos al estado asociado al 8 (hijo izquierdo)

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

BÚSQUEDA MINIMAX

 Algoritmo que recibe un tablero y retorna la acción asociada al valor minimax de dicho tablero

```
function MAX-VALUE(game, state) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v, move \leftarrow -\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a))
    if v^2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v, move \leftarrow +\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v. move
```

¿CÓMO MEJORAMOS EL RENDIMIENTO DE ESTO?

- Búsqueda minimax corre DFS sobre el árbol de estados completo:
 - Para el ajedrez, esto es explorar 10^44 estados
- Una opción es podar ramas del árbol de búsqueda
- Otra es acotar la profundidad del árbol de búsqueda

PODA ALPHA BETA

- Podemos podar buena parte del árbol si guardamos dos parámetros adicionales en cada llamada a búsqueda minimax
 - o alpha: Cota inferior del valor de un nodo.
 - o beta: Cota superior del valor de un nodo.
- Tener cotas nos indica si es necesario calcular un nodo

EJEMPLO PODA ALFA - BETA: COTA SUPERIOR

Cota superior beta

Sabemos que x >= 10 apenas verificamos el valor del primer nodo hijo. Como beta es igual a 8, sabemos que el nodo s no optará por el valor x. Luego, podemos omitir el cálculo de los nodos hijos aún no calculados y llegar a la misma elección (podamos el sub-árbol)

(muchos otros nodos cuyo valor no conocemos)

Primer nodo hijo calculado; beta se actualiza a 8

EJEMPLO PODA ALFA - BETA: COTA INFERIOR

Cota superior beta

Primer nodo hijo calculado; alfa se actualiza a 8

PODA ALPHA-BETA

```
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
     if v^2 > v then
        v, move \leftarrow v2, a
        \alpha \leftarrow \text{MAX}(\alpha, \nu)
     if v \geq \beta then return v, move
  return v, move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow +\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a), \alpha, \beta)
     if v^2 < v then
        v, move \leftarrow v2, a
        \beta \leftarrow \text{MIN}(\beta, \nu)
     if v < \alpha then return v, move
  return v, move
```

FUNCIÓN DE EVALUACIÓN

- Como una heurística, pero en el contexto de búsqueda adversaria.
- Asigna puntajes a estados no terminales, lo que permite limitar a un máximo la altura de un árbol

VEAMOS UN POQUITO DE CÓDIGO