- 1. Implement high gain, high frequency, and adaptive controller in MATLAB simulation for (a) and (b) with ground truth m=2, l=1, M=3, $q_d(t)=\sin(t)+\cos\left(\frac{t}{2}\right)$.
- (a) Given a system with dynamics $m\ddot{q} + mglsin(q) = \tau$, where $g \in \mathbb{R}$ is the gravity, m, $l \in \mathbb{R}$ are unknown constants, and q, $\dot{q} \in \mathbb{R}$ are measurable states. Please design an adaptive controller to track some desired trajectory q_d .
- (b) Given a system with dynamics $m\ddot{q} + Msin(q) = u$, where $m, M \in \mathbb{R}$ are unknown constants, and $q, \dot{q} \in \mathbb{R}$ are measurable states. Please design an adaptive controller to track some desired trajectory q_d .