Tutorial 6

\$15.6. Linear operators.

Recall that an operator is linear if

(i) L(x+y) = L(x) + L(y)

(ii) L(cx) = cL(x).

Are the following differential equations linear?

(17) $y'' - 3y' - 2y = 9 \sec^2 x$.

Solution: This equation is linear, because it is written in standard form

 $a_0(x)y'' + a_1(x)y' + a_2(x)y = F(x)$. On the other hand, we can also check linearity by verifying that the associated operator $\phi(D) = D^2 - 3D - 2$ is linear.

We chech:

(i)
$$\phi(D)(y_1+y_2)$$

= $(y_1+y_2)'' - 3(y_1+y_2)' - 2(y_1+y_2)$
= $y_1'' + y_2'' - 3y_1' - 3y_2' - 2y_1 - 2y_2$
= $y_1'' - 3y_1' - 2y_1 + y_2'' - 3y_2' - 2y_2$
= $\phi(D)y_1 + \phi(D)y_2$

and
(ii)
$$\varnothing(D)(Gy)$$

= $(cy)'' - 3(cy)' - 2(cy)$

= $c[(y'') - 3y' - 2y]$

= $c\varnothing(D)$.

(19) $\sqrt{1+y'} + x^2 = 4$

If we try to isolate the terms containing y and the derivatives of y (to get it in standard linear form) then the best we can do is:

$$|+y' = (4-x^2)^2$$
=) $y' = (4-x^2)^2 - 1$

Now this is first order linear because it has the standard form y' + P(x)y = Q(x), where P(x) = 0.

Example: Is y"+y2=x linear or not?

Solution: This DE is already arranged so that the left hand side contains only y's, derivatives of y and multiples/functions thereof.

However the left hand side does not behave 3 m a linear way.

For example, suppose we plug in cy in place of y. Then we get

$$(cy)'' + (cy)^2 = x$$

$$\Rightarrow$$
 cy" + c²y² = x

$$\Rightarrow C(y'' + Cy^2) = X$$

because of this c here, we cannot cleanly factor out a 'c' like L(cy) = cL(y).

Similarly if we test a sum y, +y2 plugged into the LHS:

$$(y_1 + y_2)'' + (y_1 + y_2)^2 = x$$

$$=) y_1'' + y_2'' + y_1^2 + (2y_1y_2) + y_2^2 = X$$

- because of this term, it's not equal to plugging in y, 8 y 2 separately;

$$(y_1'' + y_1^2) + (y_2'' + y_2^2)$$

Then we covered the following fact:

For nth order linear homogeneous equations, if y.(x), ..., y.(x) are linearly independent then Ciy, +...+ Cnyn is a general solution.

Linearly independent:

If $C_1y_1 + C_2y_2 + ... + C_ny_n = 0$ forces $C_1 = C_2 = C_3 = ... = C_n = 0$ then $y_1, ..., y_n$ are linearly independent.

Example: Show that the functions

 $y_1(x) = x$, $y_2(x) = x^3$, $y_3(x) = e^x$ are linearly independent.

Solution: We write

 $c_1 g_1(x) + c_2 y_2(x) + c_3 y_3(x) = 0$ ie. $c_1 x + c_2 x^3 + c_3 e^x = 0$

and see if this forces $c_1 = c_2 = c_3 = 0$.

Plug in X=0:

 $C_1 \cdot O + C_2 \cdot O + C_3 e^{\circ} = O$ $= C_3 = O$.

Now using $c_3=0$ oure equation is $c_1X + c_2X^3 = 0$.

Plug m x=1: $C_1 + C_2 = 0 \implies C_1 = -C_2$.

Plug in x=2: 2c1+8c2=0

 $2(-c_2) + 8c_2 = 0$

=) $6C_2=0$ =) $C_2=0$, so from $C_1+C_2=0$ $C_1=0$.

Therefore $c_1, c_2, c_3 = 0$ and x, x^3, e^x are linearly independent.

Remark: Wronskians do this for you if you continue on in math, see q. 10 \$ 15.7.

Example: Find the general solution to y''' - 6y'' + 12y' - 8y = 0

For polynomials of degree 3 and higher, factoring is a bit of a pain. The complementary equation is: $m^3 - 6m^2 + 12m - 8 = 0$.

Hint: Always test the divisors of the constant term to see if they are roots. So the divisors of 8 are: ±1, ±2, ±4, ±8. Test them!

We find a root of m=2:

$$2^{-3} - 6(2)^{2} + 12(2) - 8 = 8 - 24 + 24 - 8 = 0$$

So it factors as (m-2) something, and we find that something using long division:

$$m^{2}-4m+4$$

$$m-2 \int_{m^{3}-6m^{2}+12m-8}^{m^{2}-6m^{2}+12m-8}$$

$$-(m^{3}-2m^{2})$$

$$-4m^{2}+12m$$

$$-(-4m^{2}+8m)$$

$$-(4m-8)$$

So
$$m^3 - 6m^2 + 12m - 8 = (m-2)(m^2 - 4m + 4)$$

 $(m-2)^2$
 $= (m-2)^3$

So we have a root r=2 of multiplicity 3. So the corresponding solution is $y(x) = (C_1 + C_2 x + C_3 x^2)e^{2x}$

and since r=2 is the only root, this is the general solution.

Example: Solve the following:

16y''-40y'+25y=0, y(0)=3 and $y'(0)=\frac{-9}{4}$.

Solution: We can factor the complementary equation

$$\Rightarrow$$
 $(4m-5)^2 = 0$.

and find roofs $r_1, r_2 = \frac{5}{4}$

Or, you can use the quadratic equation:

$$r_1, r_2 = \frac{+40 \pm \sqrt{40^2 - 4(16)(25)}}{2(16)}$$

$$=\frac{40\pm\sqrt{0}}{32}=\frac{5}{4}$$

So, the solution is:

$$y(x) = (C_1 + C_2 x)e^{5/4x}$$

and the derivative is:

$$y'(x) = \frac{5}{4} c_1 e^{\frac{5}{4}x} + c_2 e^{\frac{5}{4}x} + \frac{5}{4} c_2 x e^{\frac{5}{4}x}$$

Then
$$y(0) = 3$$
 gives
 $3 = (C_1 + C_2 \cdot 0)e^\circ = C_1$

$$3 - \frac{9}{4} = \frac{5}{4} \cdot 3 + C_{2}$$

$$3 - \frac{9 - 15}{4} = C_{2} \Rightarrow C_{2} = \frac{-24}{4} = -6.$$
The solution is

So the solution is
$$y(x) = (3 + 6x)e^{5/4x}.$$