МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А.И. ГЕРЦЕНА»

Направление подготовки

09.03.01 – Информатика и вычислительная техника

Профиль «Технологии разработки программного обеспечения»

Лабораторная работа №4

«Нормальное распределение»

Работу выполнили студенты 2 курса 2-1 группы:

Зухир Амира

Крючкова Анастасия

Стецук Максим

Каргаполов Денис

СОДЕРЖАНИЕ

Отчет Зухир Амиры	3
Отчет Крючковой Анастасии	6
Отчет Стецук Максима	9
Отчет Каргаполова Дениса	12

Зухир Амира ИВТ 2.1

Лабораторная работа № 4

Нормальное распределение

Цель лабораторной работы: Рассчитать теоретические частоты для нормального распределения. Определить является ли распределение нормальным. Использовать критерий Колмогорова.

Оборудование: ПК, Excel.

Задание 1:

Постановка задачи: рассчитать теоретические частоты для нормального распределения. Данные для расчета представлены в таблице из лекции.

Использованные формулы:

Среднее арифметическое взвешенное:

$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$$

Взвешенное среднее квадратическое отклонение:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2 * f_i}{\sum f_i}}$$

Нормированное отклонение от средней:

$$t_i = \frac{x_i - \bar{x}}{\sigma}$$

Функция $\phi(t)$:

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} * e^{-\frac{t^2}{2}},$$

где

$$\pi = 3,1415$$
; $e = 2,7182$;

$$f_m = \varphi(t) * \frac{Nd}{\sigma},$$

Таблица полученных значений:

Сумма затрат предприятий на производство, тыс.руб	Кол-во предпри ятий, f _i	Середин а интервал а, X _i	$t_i = x_i - y / \delta$	$\phi(t) = 1/\sqrt{2\pi}$ *e -t2/2	$f_m = \phi(t) *$ Nd/ δ
30 - 40	2	35	-2,1	0,0440	2
40 - 50	4	45	-1,76	0,0845	3
50 - 60	6	55	-1,42	0,1446	5
60-70	8	65	-1,09	0,2209	8
70 - 80	11	75	-0,75	0,3012	11
80 - 90	14	85	-0,41	0,3664	13
90 - 100	15	95	-0,07	0,3978	14
100 - 110	13	105	0,26	0,3854	14
110 - 120	11	115	0,60	0,3333	12
120 - 130	8	125	0,94	0,2571	9
130 - 140	6	135	1,27	0,1771	6
140 - 150	5	145	1,61	0,1088	4
150 - 160	3	155	1,95	0,0597	2
160 - 170	2	165	2,29	0,0292	1
Итого	108	-	-	-	106

Задание 2:

Постановка задачи: определить является распределение (из задания 1) нормальным. Использовать критерий Колмогорова.

Использованные формулы:

Расхождение между накопленными эмпирическими и теоретическими частотами:

$$D_i = |F_i - F_m|,$$

Где F_i – это накопленные эмпирические частоты, а F_m – это накопленные теоретические частоты.

Величина λ:

$$\lambda = \frac{D_{\text{max}}}{\sqrt{N}},$$

Fi	F _m	$D_i = F_i - F_m $	D _{max}	λ
2	2	0	3	0,305
6	5	1		
12	10	2		
20	18	2		
31	29	2		
45	42	3		
60	57	3		
73	71	2		
84	83	1		
92	92	0		
98	99	1		
103	103	0		
106	105	1		
108	106	2		

С помощью критерия Колмогорова мы получили $\lambda = 0,305$, теперь найдём вероятность того, что исследуемые данные имеют нормальный закон распределения. Сравнивая с табличными значениями, получаем, что $P(\lambda) \approx 1$. А это означает, что распределение исследуемых данных близко к нормальному распределению.

Крючкова Анастасия ИВТ 2.1

Лабораторная работа № 4

Нормальное распределение

Цель лабораторной работы: Рассчитать теоретические частоты для нормального распределения. Определить является ли распределение нормальным. Использовать критерий Колмогорова.

Оборудование: ПК, Excel.

Задание 1:

Постановка задачи: рассчитать теоретические частоты для нормального распределения. Данные для расчета представлены в таблице из лекции.

Использованные формулы:

Среднее арифметическое взвешенное:

$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$$

Взвешенное среднее квадратическое отклонение:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2 * f_i}{\sum f_i}}$$

Нормированное отклонение от средней:

$$t_i = \frac{x_i - \bar{x}}{\sigma}$$

Функция $\phi(t)$:

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} * e^{-\frac{t^2}{2}},$$

где

$$\pi = 3,1415$$
; $e = 2,7182$;

$$f_m = \varphi(t) * \frac{Nd}{\sigma},$$

N- объём совокупности; D- длина интервала

Таблица полученных значений:

Сумма затрат предприятий на производство, тыс.руб	Кол-во предпри ятий, f _i	Середин а интервал а, X _i	$t_i = x_i - y / \delta$	$\phi(t) = 1/$ $\sqrt{2\pi}$ *e -t2/2	$f_m = \phi(t) *$ Nd/ δ
30 - 40	2	35	-2,1	0,0440	2
40 - 50	4	45	-1,76	0,0845	3
50 - 60	6	55	-1,42	0,1446	5
60-70	8	65	-1,09	0,2209	8
70 - 80	11	75	-0,75	0,3012	11
80 - 90	14	85	-0,41	0,3664	13
90 - 100	15	95	-0,07	0,3978	14
100 - 110	13	105	0,26	0,3854	14
110 - 120	11	115	0,60	0,3333	12
120 - 130	8	125	0,94	0,2571	9
130 - 140	6	135	1,27	0,1771	6
140 - 150	5	145	1,61	0,1088	4
150 - 160	3	155	1,95	0,0597	2
160 - 170	2	165	2,29	0,0292	1
Итого	108	-	-	-	106

Задание 2:

Постановка задачи: определить является распределение (из задания 1) нормальным. Использовать критерий Колмогорова.

Использованные формулы:

Расхождение между накопленными эмпирическими и теоретическими частотами:

$$D_i = |F_i - F_m|,$$

Где F_i – это накопленные эмпирические частоты, а F_m – это накопленные теоретические частоты.

Величина λ:

$$\lambda = \frac{D_{\text{max}}}{\sqrt{N}},$$

Fi	F _m	$D_i = F_i - F_m $	D _{max}	λ
2	2	0	3	0,305
6	5	1		
12	10	2		
20	18	2		
31	29	2		
45	42	3		
60	57	3		
73	71	2		
84	83	1		
92	92	0		
98	99	1		
103	103	0		
106	105	1		
108	106	2		

С помощью критерия Колмогорова мы получили $\lambda = 0,305$, теперь найдём вероятность того, что исследуемые данные имеют нормальный закон распределения. Сравнивая с табличными значениями, получаем, что $P(\lambda) \approx 1$. А это означает, что распределение исследуемых данных близко к нормальному распределению.

Стецук Максим ИВТ 2.1

Лабораторная работа № 4

Нормальное распределение

Цель лабораторной работы: Рассчитать теоретические частоты для нормального распределения. Определить является ли распределение нормальным. Использовать критерий Колмогорова.

Оборудование: ПК, Excel.

Задание 1:

Постановка задачи: рассчитать теоретические частоты для нормального распределения. Данные для расчета представлены в таблице из лекции.

Использованные формулы:

Среднее арифметическое взвешенное:

$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$$

Взвешенное среднее квадратическое отклонение:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2 * f_i}{\sum f_i}}$$

Нормированное отклонение от средней:

$$t_i = \frac{x_i - \bar{x}}{\sigma}$$

Функция $\phi(t)$:

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} * e^{-\frac{t^2}{2}},$$

где

$$\pi = 3,1415$$
; $e = 2,7182$;

$$f_m = \varphi(t) * \frac{Nd}{\sigma},$$

N- объём совокупности; D- длина интервала

Таблица полученных значений:

Сумма затрат предприятий на производство, тыс.руб	Кол-во предпри ятий, f _i	Середин а интервал а, X _i	$t_i = x_i - y / \delta$	$\phi(t) = 1/\sqrt{2\pi}$ *e -t2/2	$f_m = \phi(t) *$ Nd/ δ
30 - 40	2	35	-2,1	0,0440	2
40 - 50	4	45	-1,76	0,0845	3
50 - 60	6	55	-1,42	0,1446	5
60-70	8	65	-1,09	0,2209	8
70 - 80	11	75	-0,75	0,3012	11
80 - 90	14	85	-0,41	0,3664	13
90 - 100	15	95	-0,07	0,3978	14
100 - 110	13	105	0,26	0,3854	14
110 - 120	11	115	0,60	0,3333	12
120 - 130	8	125	0,94	0,2571	9
130 - 140	6	135	1,27	0,1771	6
140 - 150	5	145	1,61	0,1088	4
150 - 160	3	155	1,95	0,0597	2
160 - 170	2	165	2,29	0,0292	1
Итого	108	-	-	-	106

Задание 2:

Постановка задачи: определить является распределение (из задания 1) нормальным. Использовать критерий Колмогорова.

Использованные формулы:

Расхождение между накопленными эмпирическими и теоретическими частотами:

$$D_i = |F_i - F_m|,$$

Где F_i – это накопленные эмпирические частоты, а F_m – это накопленные теоретические частоты.

Величина λ:

$$\lambda = \frac{D_{\text{max}}}{\sqrt{N}},$$

Fi	F _m	$D_i = F_i - F_m $	D _{max}	λ
2	2	0	3	0,305
6	5	1		
12	10	2		
20	18	2		
31	29	2		
45	42	3		
60	57	3		
73	71	2		
84	83	1		
92	92	0		
98	99	1		
103	103	0		
106	105	1		
108	106	2		

С помощью критерия Колмогорова мы получили $\lambda = 0,305$, теперь найдём вероятность того, что исследуемые данные имеют нормальный закон распределения. Сравнивая с табличными значениями, получаем, что $P(\lambda) \approx 1$. А это означает, что распределение исследуемых данных близко к нормальному распределению.

Каргаполов Денис ИВТ 2.1

Лабораторная работа № 4

Нормальное распределение

Цель лабораторной работы: Рассчитать теоретические частоты для нормального распределения. Определить является ли распределение нормальным. Использовать критерий Колмогорова.

Оборудование: ПК, Excel.

Задание 1:

Постановка задачи: рассчитать теоретические частоты для нормального распределения. Данные для расчета представлены в таблице из лекции.

Использованные формулы:

Среднее арифметическое взвешенное:

$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$$

Взвешенное среднее квадратическое отклонение:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2 * f_i}{\sum f_i}}$$

Нормированное отклонение от средней:

$$t_i = \frac{x_i - \bar{x}}{\sigma}$$

Функция $\phi(t)$:

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} * e^{-\frac{t^2}{2}},$$

где

$$\pi = 3,1415$$
; $e = 2,7182$;

$$f_m = \varphi(t) * \frac{Nd}{\sigma},$$

N- объём совокупности; D- длина интервала

Таблица полученных значений:

Сумма затрат предприятий на производство, тыс.руб	Кол-во предпри ятий, f _i	Середин а интервал а, X _i	$t_i = x_i - y / \delta$	$\phi(t) = 1/\sqrt{2\pi}$ *e -t2/2	$f_m = \phi(t) *$ Nd/ δ
30 - 40	2	35	-2,1	0,0440	2
40 - 50	4	45	-1,76	0,0845	3
50 - 60	6	55	-1,42	0,1446	5
60-70	8	65	-1,09	0,2209	8
70 - 80	11	75	-0,75	0,3012	11
80 - 90	14	85	-0,41	0,3664	13
90 - 100	15	95	-0,07	0,3978	14
100 - 110	13	105	0,26	0,3854	14
110 - 120	11	115	0,60	0,3333	12
120 - 130	8	125	0,94	0,2571	9
130 - 140	6	135	1,27	0,1771	6
140 - 150	5	145	1,61	0,1088	4
150 - 160	3	155	1,95	0,0597	2
160 - 170	2	165	2,29	0,0292	1
Итого	108	-	-	-	106

Задание 2:

Постановка задачи: определить является распределение (из задания 1) нормальным. Использовать критерий Колмогорова.

Использованные формулы:

Расхождение между накопленными эмпирическими и теоретическими частотами:

$$D_i = |F_i - F_m|,$$

Где F_i – это накопленные эмпирические частоты, а F_m – это накопленные теоретические частоты.

Величина λ:

$$\lambda = \frac{D_{\text{max}}}{\sqrt{N}},$$

Fi	F _m	$D_i = F_i - F_m $	D _{max}	λ
2	2	0	3	0,305
6	5	1		
12	10	2		
20	18	2		
31	29	2		
45	42	3		
60	57	3		
73	71	2		
84	83	1		
92	92	0		
98	99	1		
103	103	0		
106	105	1		
108	106	2		

С помощью критерия Колмогорова мы получили $\lambda = 0,305$, теперь найдём вероятность того, что исследуемые данные имеют нормальный закон распределения. Сравнивая с табличными значениями, получаем, что $P(\lambda) \approx 1$. А это означает, что распределение исследуемых данных близко к нормальному распределению.