Nothing takes place in the world whose meaning is not that of some maximum or minimum - $Leonhard\ Euler$

1 Review Topics

Continuity, uniform continuity, Lipschitz continuity

2 Exercises

- 2.1 Classify the following functions as continuous, uniformly continuous, or not continuous
 - $\sin \frac{1}{x}$, on $(0, \infty)$.
 - $\frac{1}{x}$, on \mathbb{R} .
 - $\frac{1}{x}$ on $[a, \infty)$, for a > 0.
- **2.2** For $f(x) = x^2$, what is the pre-image of (-2, -1). How about (1, 2)?

2.3 Consider the functions x^2 and \sqrt{x} as functions on $(0, \infty)$. Thus, each function is the inverse of the other. Provide an intuitive explanation for why \sqrt{x} is uniformly continuous and x^2 is not.

2.4 Let $f(x) = \frac{\sin x}{x}$. Is there an alteration of this function such that $\tilde{f}(x) = f(x)$ at all continuity points of x, and \tilde{f} is continuous?

2.5 Let $f: X \to \mathbb{R}$ be a continuous function, and let $A = \{x \in X \mid f(x) < a\}$, for some $a \in \mathbb{R}$. Show that A is an open set.

2.6 Prove x^2 is Lipschitz on any bounded interval in \mathbb{R} .

2.7 Let f on $A \subset \mathbb{R}$ have bounded derivative. Prove f is Lipschitz.