DUALITE DANS LES ESPACES VECTORIELS

1 DUAL D'UN ESPACE VECTORIEL

Définitions 1.1

* Une forme linéaire sur E est une application linéaire de E dans k. $*\mathcal{L}(E,\mathbb{k})$, l'ensemble des formes linéaires sur E, est appelé le dual de E et $not\'e~E^*$.

1.2 Exemples

a) $k \in \overline{1,n}$ fixé, $\pi_k : \begin{array}{c} \mathbb{k}^n \longrightarrow \mathbb{k} \\ (x_1,...,x_n) \longmapsto x_k \end{array}$

 π_k est une forme linéaire sur \Bbbk^n appelée la $k^{i\grave{e}me}$ projection canonique de \mathbb{k}^n sur \mathbb{k} .

$$M_n(\mathbb{k}) \to \mathbb{k}$$

b)
$$tr: A = (a_{ij}) \longmapsto trA = \sum_{i=1}^{n} a_{ii}$$

tr est une forme linéaire sur $M_n(\mathbb{k})$ qui vérifie: $\forall A, B \in M_n(\mathbb{k})$:

$$tr({}^{t}A) = tr(A); \ tr(AB) = tr(BA)$$

d) $a \in \mathbb{k}$, fixé $\psi : \begin{array}{c} \mathbb{k}[X] \longrightarrow \mathbb{k} \\ P \longmapsto P(a) \end{array}$

est une forme linéaire sur $\mathbb{k}[X]$.

Dans la suite de ce chapitre on suppose E de dimension finie n

Propriétés 2

a) $\forall f \in E^* \text{ avec } f \neq 0$, on a:

 $\cdot \operatorname{Im} f = \mathbb{k}$

 \cdot ker f est un hyperplan de E.

(un hyperplan est un s e.v supplémentaire d'une droite vectorielle; en parti $culier\ si\ E\ est\ un\ espace\ vectoriel$

de dimension finie n, un hyperplan de E est un s.e.v de E de dimension n - 1)

b) $\dim E^* = \dim E$.

c) $f: E \longrightarrow \mathbb{k}$ est une forme linéaire si et seulement si son expression dans une base quelconque $B = (e_1, e_2, ..., e_n)$ de E est de la forme:

$$f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} a_i x_i$$
, avec $a_i \in \mathbb{k}$, pour $1 \le i \le n$.

a): - Im f est un sous espace vectoriel de k; mais comme dim k = 1, alors soit $\dim (\operatorname{Im} f) = 0$, soit $\dim (\operatorname{Im} f) = 1$; Mais comme $f \neq 0$, alors on a $\operatorname{Im} f \neq \{0\}$, d'où dim $(\operatorname{Im} f) \neq 0$; donc on a dim $(\operatorname{Im} f) = 1 = \dim \mathbb{k}$, d'où $\operatorname{Im} f = \mathbb{k}$.

- d'après la formule de la dimension, on a dim $E = \dim(\ker f) + \dim(\operatorname{Im} f)$, d'où dim $(\ker f) = \dim E - \dim (\operatorname{Im} f) = n - 1$, donc $\ker f$ est un hyperplan.

b) On a $E^* = \mathcal{L}(E, \mathbb{k}) \Longrightarrow \dim E^* = \dim E \times \dim \mathbb{k} = \dim E$.

c) comme f est linéaire, alors on a $f\left(\sum_{i=1}^n x_i e_i\right) = \sum_{i=1}^n x_i f\left(e_i\right)$, d'où la forme escomptée en posant $f\left(e_i\right) = a_i$, pour $1 \le i \le n$; réciproquement,

 $\forall (a_1,a_2,...,a_n) \in \mathbb{k}^n \text{, on vérifie ais\'ement que l'application } \sum^n x_i e_i \longmapsto \sum^n a_i x_i$

est linéaire, donc appartient à E^* .

3 Base duale

Définition 3.1 : Soit $B = (e_1, ..., e_n)$ une base de $E; \forall i \in \overline{1, n}, on apelle i^{\grave{e}me}$

forme duale de B, l'application e_i^* : $x = \sum_{i=1}^{n} x_j e_j \longmapsto e_i^*(x) = x_i$

Proposition 3.1 : e_i^* est une forme linéaire sur E qui vérifie $\forall j \in \overline{1,n}$:

$$e_i^*\left(e_j\right) = \delta_{ij} = \left\{ \begin{array}{ccc} 1 & \text{si} & i & = & j \\ 0 & \text{si} & l & \neq & j \end{array} \right]$$

Preuve

simple vérification.

Théorème 3.1 et définition: Avec les considérations ci-dessus, la suite $B^* = (e_1^*, e_2^*, ..., e_n^*)$ est une base de E^* appelée la base duale de B.

Preuve

On a $Card(B^*) = n = \dim E$, donc il suffit de montrer que B^* est libre. Soit $a_1, a_2 ..., a_n \in \mathbb{k}$ tels que $a_1 e_1^* + a_2 e_2^* + ... + a_n e_n^* = 0$. Alors $\forall k = \overline{1, n}$, $(a_1 e_1^* + a_2 e_2^* + ... + a_n e_n^*)(e_k) = a_1 e_1^*(e_k) + a_2 e_2^*(e_k) + ... a_k e_k(e_k) + ... + a_n e_n^*(e_k) = a_k = 0$ d'où le résultat.

Exemple 3.1 : Base duale de la base canonique de \mathbb{k}^n

Soient $B=(e_1,...,e_n)$ la base canonique de \mathbb{k}^n , $B^*=(e_1^*,...,e_n^*)$ sa base duale .

Soit
$$i \in \overline{1,n}$$
; $\forall x = (x_1,...,x_n) \in \mathbb{k}^n$, on a $x = \sum_{j=1}^n x_j e_j \Longrightarrow e_i^*(x) = x_i = \pi_i(x)$, donc $e_i^* = \pi_i$; alors $B^* = (\pi_1, \pi_2, ..., \pi_n)$

Théorème 3.2 : Soit $B = (e_i)$ une base de E, $B^* = (e_i^*)$ la base duale de B; alors:

a)
$$\forall x \in E, \ x = \sum_{i=1}^{n} e_i^*(x) e_i$$

b)
$$\forall f \in E^*, \ f = \sum_{i=1}^n f(e_i) e_i^*$$

c) S'il existe
$$\varphi_i: E \to \mathbb{k}, \ 1 \le i \le n, \ tels \ que \ \forall x \in E, \ x = \sum_{i=1}^n \varphi_i \left(x \right) e_i \ alors$$

 $\forall i \in \overline{1,n}, \ \varphi_i \in E^* \ et \ (\varphi_1, \varphi_2, ..., \varphi_n) \ est \ la \ base \ duale \ de \ B.$

Preuve

Simples vérifications.

NB : D'après ce qui précède, si $B = (e_1, ..., e_n)$ est une base de E, on détermine sa base duale $B^* = (e_1^*, ..., e_n^*)$ par l'une des relations:

$$e_i^*(e_j) = \delta_{ij}$$
, pour $1 \le i, j \le n$; $e_i^*\left(\sum_{j=1}^n x_j e_j\right) = x_i$; $\forall x \in E, \ x = \sum_{i=1}^n e_i^*(x) e_i$

Théorème 3.3 : Soient B et B' deux bases de E; P la matrice de passage de B à B'; alors la matrice de passage de B^* à B'^* est

$${}^{t}P^{-1} = ({}^{t}P)^{-1}$$

Preuve

Posons $B=(e_i)_{1\leq i\leq n},\ B'=(e_i')_{1\leq i\leq n},\ P=(a_{ij})_{1\leq i,j\leq n}.$ Soit $P^*=(b_{ij})_{1\leq i,j\leq n}$ la matrice de passage de $B^*\grave{a}$ B'^* .

Soient $i, j \in \overline{1, n}$; Par définition de la base duale, on a : $e_i^{\prime *}(e_i^{\prime}) = \delta_{ji} = \delta_{ij}$.

D'autre part on a:
$$e'_i = \sum_{k=1}^n a_{ki} e_k$$
; $e'^*_j = \sum_{l=1}^n b_{lj} e^*_l$. D'où $e'^*_j(e'_i) =$

$$\left(\sum_{l=1}^{n} b_{lj} e_{l}^{*}\right) \left(\sum_{k=1}^{n} a_{ki} e_{k}\right) = \sum_{1 \le k, l \le n} a_{ki} b_{lj} e_{l}^{*}(e_{k}) = \sum_{k=1}^{n} a_{ki} b_{kj} \quad \text{car} \quad e_{l}^{*}(e_{k}) = \delta_{lk}$$

On a donc: $\sum_{k=1}^{n} a_{ki} b_{kj} = \delta_{ij}, \forall i, j \in \overline{1, n}$. Cette dernière égalité se traduit

matriciellement par :

$${}^{t}PP^{*} = I \text{ d'où } P^{*} = ({}^{t}P)^{-1}$$

4 Bidual

Définition 3.2: Le bidual de E est $E^{**} = (E^*)^*$

 $\forall x \in E$, considérons $\hat{x}: \begin{cases} E^* \longrightarrow \mathbb{k} \\ f \longmapsto f(x) \end{cases}$

 $\forall f,g \in E^*, \forall \alpha \in \mathbb{k}, \, \hat{x}(\alpha f + g) = (\alpha f + g)(x) = \alpha f(x) + g(x) = \alpha \hat{x}(f) + \hat{x}(g);$ alors \hat{x} est linéaire donc $\hat{x} \in E^{**}$

Théorème 3.4: L'application $\varepsilon: \begin{array}{cc} E \longrightarrow E^{**} \\ x \longmapsto \widehat{x} \end{array}$

est un isomorphisme.

preuve

Soient $x, y \in E$, $\alpha \in \mathbb{k}$. $\forall f \in E^*$, $[\varepsilon(\alpha x + y)](f) = \widehat{(\alpha x + y)}(f) = f(\alpha x + y) = \alpha f(x) + f(y) = \alpha \widehat{x}(f) + \widehat{y}(f)$

 $= (\alpha \widehat{x} + \widehat{y})(f) = (\alpha \varepsilon(x) + \varepsilon(y))(f). \text{ Donc } \varepsilon(\alpha x + y) = \alpha \varepsilon(x) + \varepsilon(y), \text{ alors } \varepsilon \text{ est linéaire. En outre } \varepsilon(x) = 0 \Leftrightarrow \widehat{x} = 0 \Leftrightarrow \forall f \in E^*, \widehat{x}(f) = f(x) = 0 \Leftrightarrow x = 0 \text{ Donc } \ker(\varepsilon) = \{0\}, \text{ alors } \varepsilon \text{ est injectif, et comme } \dim E = \dim E^{**} \text{ finie, alors } \varepsilon \text{ est bijectif, d'où le résultat.}$

Remarque 3.1

- 1) Cet isomorphisme canonique permet d'identifier E et E^{**} (c.a.d qu'on peut écrire $E^{**}=E$), ainsi un vecteur $x\in E$ peut être considéré comme une forme linéaire sur $E^*; x\in E$ étant la forme $f\to f(x)$. On peut donc écrire $\forall x\in E, \forall f\in E^*, x(f)=f(x)$
- 2) Soient $B=(e_i)_{1\leq i\leq n}$ une base de E et $B^*=(e_i^*)_{1\leq i\leq n}$ la base duale de B; en vertu de l'assimilation de E à E^{**} , on a $\forall 1\leq i,j\leq n$, $e_i(e_j^*)=e_j^*(e_i)=\delta_{ji}=\delta_{ij}$, donc B est la base duale de B^* : on a donc: $B=(B^*)^*$.

5 ORTHOGONAL DUAL

Définition 3.3

- Soit F une partie non vide de E; $f \in E^*$ est appelé un annihilateur de F si $\forall x \in F$, f(x) = 0

- $F^{\circ} = \{f \in E^*, f(x) = 0, \forall x \in F\}$, l'ensemble des annihilateurs de F, est appelé l'orthogonal dual de F.

Théorème 3.5

a) Soit $F \neq \phi$ un sous ensemble de E, alors $F^{\circ} = (vect(F))^{\circ}$ et c'est un sous espace vectoriel de E^* .

Si F est un s.e.v de E alors:

b)
$$\dim F + \dim (F)^{\circ} = \dim E$$

c)
$$(F^{\circ})^{\circ} = F = \{x \in F \mid f(x) = 0, \forall f \in E^*\} \ (où E^{**} \text{ est identifié à } E)$$

Preuve

a) se vérifie facilement

b) Soit $k=\dim F,$ $H=(v_1,v_2,...,v_k)$ une base de F qu'on complète en une base $B=(v_1,v_2,...,v_k,v_{k+1},...,v_n)$ de E et soit $B^*=(v_1^*,v_2^*,...,v_n^*)$ la base

duale de B. On a donc $\forall 1 \leq i, j \leq n, v_i^*(v_j) = \delta_{ij}$. Soit $f = \sum_{i=1}^n a_i v_i^* \in E^*$. $f \in F^{\circ} = H^{\circ}$ (d'après a)) $\Leftrightarrow f(v_j) = 0, \forall j \in \overline{1,k} \Leftrightarrow a_j = 0,$

$$f \in F^{\circ} = H^{\circ} \text{ (d'après a))} \Leftrightarrow f(v_j) = 0, \forall j \in \overline{1,k} \Leftrightarrow a_j = 0, \forall j \in \overline{1,k} \Leftrightarrow f = \sum_{i=k+1}^{n} a_i v_i^*. \text{ Par suite } F^{\circ} = Vect(v_{k+1}^*, ..., v_n^*) \text{ d'où } \dim(F^{\circ}) = n-k$$

c) D'après la preuve de b), on a
$$(F^{\circ})^{\circ} = (Vect(v_{k+1}^{*},...,v_{n}^{*}))^{\circ} = Vect(v_{1}^{**},...,v_{k}^{**}) = \langle (v_{1},...,v_{k}) \rangle = F.$$

Application aux systèmes homogènes.

Théorème 3.6 : Soit le système d'équations homogènes suivant:

$$(S) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

 $m, n \in N^*, a_{ij} \in \mathbb{k}, \forall i = \overline{1, m}, j = \overline{1, n}$ d'inconnues, $x_{1,x_{2}}, \ldots, x_{n}$. Soit $A = (a_{ij})$ la matrice associée à (S). Alors l'ensemble des solutions de(S) est un s.e.v $de \mathbb{k}^{n}$ de dimension n - rgA.

preuve

Soit $\forall i=\overline{1,m}$, la forme f_i définie par $\forall x=(x_1,x_2,...,x_n)\in \mathbb{k}^n, \, f_i(x)=a_{i1}x_1+a_{i2}x_2+...+a_{in}x_n$, Alors, x solution de $(S)\Leftrightarrow f_i(x)=0, \forall i=\overline{1,m}\Leftrightarrow x\in (f_1,f_2,...,f_m)^\circ$. Donc l'ensemble des solutions de (S) est $F=(f_1,f_2,...,f_m)^\circ$ qui est un s.e.v de \mathbb{k}^n . En outre d'après le théo 2.5, on a: $\dim F=\dim \mathbb{k}^n-\dim \langle f_1,f_2,...,f_m\rangle=n-rg(A)$ cqfd.

6 TRANSPOSEE D'UNE APPLICATION LINEAIRE

Soient E, F des \mathbb{k} -e.v, $u \in \mathcal{L}(E, F)$. $\forall f \in F^*$; on a: $f \circ u : E \xrightarrow{u} F \xrightarrow{f} \mathbb{k}$. est linéaire donc $f \circ u \in E^*$.

Définition 3.4: L'application

$$tu: f^* \longrightarrow E^*$$

 $f \longmapsto f \circ u$

est appelée la transposée de u

Proposition 3.2: tu est linéaire donc ${}^tu \in \mathcal{L}(F^*, E^*)$

Preuve

En effet $\forall f, g \in F^*, \forall \alpha \in \mathbb{k}$; on a

 ${}^{t}u\left(\alpha f+g\right)=\left(\alpha f+g\right)\circ u=\alpha (f\circ u)+\left(g\circ u\right)=\alpha {}^{t}u\left(f\right)+{}^{t}u\left(g\right).$

 $\forall f = \alpha_1 \pi_1 + \alpha_2 \pi_2 \in (\mathbb{R}^2), ((\pi_1, \pi_2) \text{ est une base de } (\mathbb{R}^2)^*, \text{ duale de la base}$ canonique de \mathbb{R}^2), $\forall X = (x, y, z) \in \mathbb{R}^3$, $[{}^tu(f)](X) = (f \circ u)(X) = f(x, y) =$ $\alpha_1 x + \alpha_2 y = \alpha_1 \pi_1 (X) + \alpha_2 \pi_2 (X) = (\alpha_1 \pi_1 + \alpha_2 \pi_2) (X)$

$$\Leftrightarrow {}^{t}u(f) = \alpha_1\pi_1 + \alpha_2\pi_2$$

 $(\mathbb{R}^2)^* \to (\mathbb{R}^3)^*$ $\alpha_1\pi_1 + \alpha_2\pi_2 \longmapsto \alpha_1\pi_1 + \alpha_2\pi_2 \ (+0\pi_3)$

Théorème 3.7

- 1°) $\forall u \in \mathcal{L}(E, F)$; $t(^tu) = u$ (via l'idendification $E^{**} = E$)
- 2°) $\forall u, v \in \mathcal{L}(E, F), \forall \alpha \in \mathbb{k}, t(u+v) = tu + tv; t(\alpha u) = \alpha^{t}u$
- 3°) $\forall (u,v) \in \mathcal{L}(E,F) \times \mathcal{L}(F,G) \text{ on a } {}^{t}(v \circ u) = {}^{t}u \circ {}^{t}v$

Preuve

1°) Soit $x \in E$. $\forall f \in F^*$, $\begin{bmatrix} t & (tu) \circ (\widehat{x}) \end{bmatrix} (f) = (\widehat{x} \circ^t u) (f) = \widehat{x} \begin{bmatrix} tu & (f) \end{bmatrix} = (f)$

 $\widehat{x}(f \circ u) = (f \circ u)(x) = f(u(x)) = \widehat{u(x)}(f)$

donc $t(tu) \circ (\widehat{x}) = \widehat{u(x)}$, d'où par identification de E^{**} et E, $\widehat{(x)} = x$, $\widehat{u(x)} = x$ u(x)),

 $t(tu)(x) = u(x), \forall x \in E$; par suite t(tu) = u

 $(2^{\circ}) \forall f \in F^*, t(\alpha u + v) \circ (f) = f \circ (\alpha u + v) = \alpha f \circ u + f \circ v = \alpha^t u(f) + tv(f)$

Par suite $^t(\alpha u + v) = \alpha^t u + ^t v$

 3°) $\forall f \in G^*$ on a $t(v \circ u)(f) = f \circ (v \circ u) = (f \circ v) \circ u = t(f \circ v) = t$ $u\left[v^{t}\left(f\right)\right] = (^{t}u \circ ^{t}v)\left(f\right)$

Par suite $t(v \circ u) = t u \circ t v$

Corollaire: L'application $u \mapsto^t u$ est un isomorphisme de $\mathcal{L}(E,F)$ dans $\mathcal{L}\left(F^{*},E^{*}\right)$.

Théorème 3.8: Soit $u \in \mathcal{L}(E, F)$, B une base de E, B' une base de F, $A = mat_{BB'}(u), H = mat_{B'^*B^*}(^tu);$

Alors on a $H = {}^{t}A$.

Soit
$$n = \dim E$$
, $m = \dim F$, $B = (e_i)$, $B' = (e'_j)$, $A = (a_{ij})$, $H = (h_{ij})$.
On a pour $1 \le i \le n$, $u(e_i) = \sum_{k=1}^{m} a_{ki}e'_k$. Soit $x = \sum_{i=1}^{n} x_ie_i \in E$. Alors
$$u(x) = \sum_{i=1}^{n} x_i u(e_i) = \sum_{i=1}^{n} x_i \left(\sum_{k=1}^{m} a_{ki}e'_k\right) = \sum_{k=1}^{m} \left(\sum_{i=1}^{n} a_{ki}x_i\right) e'_k$$
Alors $\forall j \in \overline{1, m}$, $\begin{bmatrix} tu(e'_j) \end{bmatrix}(x) = (e'_j \circ u)(x) = e'_j [u(x)] = e'_j \left(\sum_{k=1}^{m} a_{ki}x_i\right) e'_k\right)$

$$^{t}u\left(e_{j}^{\prime\ast}\right)=\sum_{i=1}^{n}a_{ji}e_{i}^{\ast}.$$

Or on a pour $1 \leq j \leq m$, ${}^tu\left(e_j'^*\right) = \sum_{i=1}^n h_{ij}e_i^*$ on en déduit que $h_{ij} = a_{ji}$,

$$\forall 1 \leq i \leq n \text{ et } \forall 1 \leq j \leq m, \text{ d'où } H = {}^t A \text{ cqfd.}$$

Soit $n = \dim E, m = \dim F, B = (e_i), B' = (e'_j), A = (a_{ij}), H = (h_{ij}).$

On a pour
$$1 \le i \le n$$
, $u(e_i) = \sum_{k=1}^{m} a_{ki} e'_k$. Soit $x = \sum_{i=1}^{n} x_i e_i \in E$. Alors

$$u(x) = \sum_{i=1}^{n} x_i u(e_i) = \sum_{i=1}^{n} x_i \left(\sum_{k=1}^{m} a_{ki} e'_k\right) = \sum_{k=1}^{m} \left(\sum_{i=1}^{n} a_{ki} x_i\right) e'_k$$

Alors
$$\forall j \in \overline{1, m}$$
, $\begin{bmatrix} tu\left(e_j'^*\right) \end{bmatrix}(x) = \left(e_j'^* \circ u\right)(x) = e_j'^* \begin{bmatrix} u\left(x\right) \end{bmatrix} = e_j'^* \left(\sum_{k=1}^m \left(\sum_{i=1}^n a_{ki}x_i\right) e_k'\right)$

$$= \sum_{i=1}^{n} x_i a_{ji} = \sum_{i=1}^{n} a_{ji} e_i^* (x) = \left(\sum_{i=1}^{n} a_{ji} e_i^* \right) (x), \forall x \in E \text{ d'où}$$

$$^{t}u\left(e_{j}^{\prime*}\right) = \sum_{i=1}^{n} a_{ji}e_{i}^{*}.$$

Or on a pour $1 \leq j \leq m$, $tu\left(e_j'^*\right) = \sum_{i=1}^n h_{ij}e_i^*$ on en déduit que $h_{ij} = a_{ji}$, $\forall 1 < i < n \text{ et } \forall 1 < j < m, \text{ d'où } H = ^t A \text{ cqfd}$

Exercices du chapitre 3

Exercice 1

1° Montrer que l'application "trace" $tr: M_n(\mathbb{k}) \longrightarrow \mathbb{k}$ est une forme $A \longmapsto tr(A)$ linéaire sur $M_n(\mathbb{k})$

2° a) Montrer que $\forall A \in M_n(\mathbb{k}), tr(^tA) = tr(A)$.

b) Montrer que $\forall A, B \in M_n(\mathbb{k}), tr(AB) = tr(BA)$. En déduire que deux matrices semblables ont la même trace.

3° Existe t-il deux matrice $A, B ∈ M_n(\mathbb{k})$ telles que AB - BA = I?

Exercice 2

Pour $i \in \overline{0, n}$ on note f_i l'application $f_i: \begin{array}{c} \mathbb{R}_n[X] \longrightarrow \mathbb{R} \\ P \longmapsto P(\frac{i}{n}) \end{array}$

1° Montrer que f_i est une forme linéaire sur $\mathbb{R}_n[X]$ et montrer que la famille $(f_0, f_1, ..., f_n)$ est une base de $(\mathbb{R}_n[X])^*$

2° En déduire que: $\exists (a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$ tel que $\forall P \in \mathbb{R}_n[X], \int_0^t P(t)dt =$

$$\sum_{i=0}^{n} a_i P(\frac{i}{n})$$

Soit $E = \mathbb{k}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$ à coefficients

1° a) Déterminer la base duale de la base canonique $B = (X^i)_{i=0,n}$

b) Même question pour la base $L = (L_i)_{i=0,n}$ avec $\forall i \in \overline{0,n}, L_i =$

 $\prod_{j=1}^{N} \frac{X-a_j}{a_i-a_j}$, où $a_0, a_1, ..., a_n$ sont des éléments distincts de k. $1 \le j \le n$ 2° on prend n = 3.

Soient f_1, f_2, f_3 et $f_4 \in E^*$ définies par : $f_1(P) = P(0)$; $f_2(P) = P'(0)$; $f_3(P) = P(1); f_4(P) = P'(1).$

Vérifier que $\mathcal{F} = (f_1, f_2, f_3, f_4)$ est une base de E^*

Déterminer la base duale de \mathcal{F}

Exercice 4

1° Soient E et F des espaces vectoriels sur \mathbb{k} , $u \in \mathcal{L}(E,F)$. Montrer que $\ker({}^t u) = (\operatorname{Im} u)^{\circ}$. En déduire que u est surjectif si et seulement si ${}^t f$ est injectif.

 2° Lorsque E et F sont de dimension finie montrer que $rg(u) = rg({}^{t}u)$. En déduire que pour toute matrice A à coefficients dans k, on a: $rq(A) = rq(^tA)$

Exercice 5:

Soient E un k-espace vectoriel, $B = (v_1, v_2, ..., v_n)$ une famille de vecteurs de E, $\mathcal{F} = (f_1, f_2, ..., f_n)$ une famille d'éléments de E^* .

Montrer que si la matrice $(f_i(v_j))_{1 \leq i,j \leq n}$ est inversible alors B est une famille libre de E et \mathcal{F} est une famille libre de E^* .

Application

Soit $E = \mathbb{k}_n[X]$, On note $P_0 = 1$, $P_i = X(X - 1)...(X - i + 1)$ pour $i \ge 1$, et $f_i : P \longmapsto P(i)$.

- 1) Montrer que $B = (P_0, ..., P_n)$ est une base de E et $\mathcal{F} = (f_0, ..., f_n)$ est une base de E^* .
- 2) Décomposer la forme linéaire P_n^* dans la base $\mathcal{F}.$ En déduire la base duale de B.