```
    Laura Haege

    Philipp Noel von Bachmann, Matrikelnummer: 4116220

Exercise 11
(a)
```

Statistical Machine Learning Exercise Sheet 7

 $\langle \Phi_m(x), \Phi_m(y)
angle = \sum_{x \in \mathcal{X}} \Phi_m(x), \Phi_m(y)$ $u = \sum_{m \in M} \sqrt{rac{d!}{\prod_i m_i!}} \prod_i x_i^{m_i} \cdot \sqrt{rac{d!}{\prod_i m_i!}} \prod_i y_i^{m_i}$ $u=\sum_{m\in M}rac{d!}{\prod_i m_i!}(\prod_i x_i^{m_i}\prod_i y_i^{m_i})$ $egin{aligned} &= \sum_{m \in M} rac{d!}{\prod_i m_i!} \prod_i x_i^{m_i} y_i^{m_i} \end{aligned}$ $=\sum_{m\in M}rac{d!}{\prod_i m_i!}\prod_i (x_i\cdot y_i)^{m_i}$ $=(x_1\cdot y_1+\cdots+x_n\cdot y_n)^d$

(b) assume a Loss function $\sum\limits_{i=1}^n L(y_i,\phi(x_i)) + \lambda ||\phi||_H^2$ minimized by $\phi^*(x) = \sum_{i=1}^n lpha_i K(x,x_i)$ equivalent (due to representer theorem) to: $\sum_{i=1}^n L(y_i,lpha_i K) + \lambda \sum_{i,j=1}^n lpha_i lpha_j K$

for L_2 - Loss there exists a unique solution: $lpha^* = (K + \lambda I)^{-1} y$ With $\Omega = R^d$ we get $K(x,y) = (1 + \sum\limits_{i=1}^{n} x_i y_i)^d = (1 + \sum\limits_{i=0}^{n-1} x_i y_i)^d$ $=ig(^d_kig)1^{d-k}st\sum\limits_{i=0}^{n-1}x_iy_i^d$

Therefore the dimension of H is $\binom{(d+n-1)}{d}$

(c) We have d=5 and n=16*16=256. Therefore we get a dimension of H of $\binom{5+256+1}{5}=\binom{262}{5}$. This means we have too mayn features to explicitly compute/store. However if we use the kernel $\langle x,y\rangle^5$, we first have to take a product over 256 dimensions and then

Exercise 12

We can reformulate the problem as:

Therefore it is sufficient to show that $P(2\sup_{f\in F}|\hat{R}_m(f)-R(f)|\geq \epsilon)\leq \delta\Rightarrow \epsilon=\sqrt{rac{2}{m}\lograc{2N}{\delta}}$ Reformulating gives $P(2\sup_{f\in F}|\hat{R}_m(f)-R(f)|\geq \epsilon)=P(\sup_{f\in F}|\hat{R}_m(f)-R(f)|\geq rac{\epsilon}{2})$

a sum over 256 dimensions and finally just compute the power of one number, which is much cheaper to compute and store.

 $R(f') = \inf_{f \in F} R(f) + R(f') - \inf_{f \in F} R(f)$

 $\leq \inf_{f \in F} R(f) + |R(f') - \inf_{f \in F} R(f)|$

 $\leq \inf_{f \in F} R(f) + 2 \sup_{f \in F} |\hat{R}_m(f) - R(f)|$

 $\leq P(\cup_{f\in F}(|\hat{R}_m(f)-R(f)|\geq rac{\epsilon}{2})$

 $=\sum_{f\in F}P(|\hat{R}_m(f)-R(f)|\geq rac{\epsilon}{2})$

 $=\sum_{f\in F}2exp(-2m(rac{\epsilon}{2})^2)$

 $\Rightarrow \delta = 2Nexp(-\frac{1}{2}m\epsilon^2)$

 $=2Nexp(-rac{1}{2}m\epsilon^2)$

Exercise 13

import numpy as np

from numpy.linalg import norm

X_train = data["Xtrain"] Y_train = data["Ytrain"]

from scipy.linalg import cho_factor, cho_solve

data = np.load("diabetes_data.npy", allow_pickle=True).item()

from scipy.spatial.distance import cdist

K = gaussian kernel(X, X, mu)

for mu_index, mu in enumerate(mus):

validation_loss = []

for l_index, l in enumerate(lambdas): # compute k-fold cross validation

print("The resulting train loss is: ", final_train_loss)

test_loss = test(X_test, Y_test, X_train, alpha=best_alphas, mu=0.1)

alphas, train loss = train(x_train, y_train, 1, mu)

TrainErrors[l index, mu index] = train loss

The pest parameters are given as mu=0.1, lambda=0.0001

The resulting train loss is: 95.33362470817943

print("The resulting test loss is: ", test_loss)

The resulting test loss is: 193.4644670217247

return TrainErrors, TestErrors

Evaluating of the final parameters on the test set

return alpha, train loss

train loss = Loss(Y, predict(X, X, alpha, mu))

Now solve for epsilon
$$\delta = 2N \exp(-\frac{1}{2}m\epsilon^2)$$

$$\frac{\delta}{2N} = \exp(-\frac{1}{2}m\epsilon^2)$$

$$\frac{2N}{\delta} = \exp(\frac{1}{2}m\epsilon^2)$$

$$\log\frac{2N}{\delta} = \frac{1}{2}m\epsilon^2$$

$$\frac{2}{m}\log\frac{2N}{\delta} = \epsilon^2$$

$$\sqrt{\frac{2}{m}\log\frac{2N}{\delta}} = \epsilon$$

X_test = data["Xtest"] Y_test = data["Ytest"] def gaussian_kernel(x, y, mu): return np.exp(- mu * cdist(x,y)**2) def Loss(Y, Y_prediction):

return 0.5* norm(Y == np.sign(Y prediction)) In [4]: def train(X, Y, lambda reg, mu): n = X.shape[0]

alpha = cho solve(cho factor(K + n * lambda reg * np.eye(n)), Y)

def predict(X pred, X t, alpha, mu): return np.sum(np.multiply(np.squeeze(alpha), gaussian kernel(X pred, X t, mu)), axis=1) def test(X test, Y test, X, alpha, mu): return Loss(Y test, predict(X test, X, alpha, mu)) def CrossValidation(X, Y, lambdas, mus, k=5): X split = np.array(np.array split(X, k)) Y_split = np.array(np.array_split(Y, k)) min_loss=np.inf min mu = None min_lambda = None CVErrors = np.zeros((len(lambdas), len(mus)))

for i in range(k): x train = np.concatenate(np.delete(X split, i, axis=0)) y train = np.concatenate(np.delete(Y split, i, axis=0)) $x_val = X_split[i]$ y val = Y split[i] alphas, train_loss = train(x_train, y_train, 1, mu) validation loss.append(test(x val, y val, x train, alphas, mu)) # average over all losses and store validation_loss = np.mean(validation_loss) CVErrors[l_index, mu_index] = validation_loss # check if smaller if validation loss < min loss:</pre> min_loss = validation_loss min mu = mu min_lambda = 1 print(f"The pest parameters are given as mu={min_mu}, lambda={min_lambda}") # finally train on the whole set again return train(X, Y, min lambda, min mu), CVErrors **Cross Validation Training** mus = [1e-4, 1e-3, 1e-2, 1e-1, 1]lambdas = [1e-4, 1e-3, 1e-2, 1e-1, 1]

(best alphas, final train loss), validation loss = CrossValidation(X train, Y train, lambdas, mus, 5)

Plots

In [8]: def train_test_plot(x_train, y_train, x_test, y_test, lambdas, mus): TrainErrors = np.zeros((len(lambdas), len(mus))) TestErrors = np.zeros((len(lambdas), len(mus))) for mu index, mu in enumerate(mus): for 1 index, 1 in enumerate(lambdas): # compute k-fold cross validation

TestErrors[l_index, mu_index] = test(x_test, y_test, x_train, alpha=alphas, mu=mu)

In [9]: TrainErrors, TestErrors = train_test_plot(X_train, Y_train, X_test, Y_test, lambdas, mus)

For cross validation

For whole train set

For test set

from matplotlib import pyplot as plt from matplotlib import cm fig, ax = plt.subplots(subplot kw={"projection": "3d"})

surf = ax.plot_surface(plot_lambda, plot_mu, validation_loss, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set(xlabel="\$\lambda\$", ylabel="\$\mu\$", zlabel="Cross-validation error");

0

plot lambda, plot mu = np.meshgrid(np.log10(lambdas), np.log10(mus))

20.4 20.2 20.0 19.6 19.4 Cross-validation

from matplotlib import cm fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) surf = ax.plot_surface(plot_lambda, plot_mu, TrainErrors, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set(xlabel="\$\lambda\$", ylabel="\$\mu\$", zlabel="Train error"); 102 100 98 96 94 0 **-**3 **-**2

from matplotlib import pyplot as plt

206 204 202 200 198 196 194 0

from matplotlib import pyplot as plt

fig, ax = plt.subplots(subplot kw={"projection": "3d"})

surf = ax.plot_surface(plot_lambda, plot_mu, TestErrors, cmap=cm.coolwarm, linewidth=0, antialiased=False)

ax.set(xlabel="\$\lambda\$", ylabel="\$\mu\$", zlabel="Test error");

from matplotlib import cm

We can see in general that the larger μ gets, the better the error becomes. For λ it is the other way around. Note however that the minimum for the Test error and the Cross Validation error is not given for $\mu=1$ (as in the Train set), but for $\mu=0.1$. This shows that Cross validation gives a better estimate of the test error.