

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL

MANUALES Armado e inicación

Alumnos:

Arien Michelle López Jáuregui 20300712 Carlos Isaac Torres Méndez 20300715 Esteban Barboza Ochoa 20300719

Carrera:

Control automático e Instrumentación

Asesor:

Ph.D Alfonso Pérez Gonzales

Asesor externo:

Ing. Carlos Barboza Ochoa Ph.D. César Méndez García

Spike

ÍNDICE

MANUAL ARMADO E INICIACIÓN	3
INTRODUCCIÓN	
OBJETIVO	
LISTA DE PARTES:	
CALIBRACIÓN DE SERVOS:	
ARMADO:	
BLUETOOTH:	

MANUAL ARMADO E INICIACIÓN

INTRODUCCIÓN

En este documento se mostrará y detalla todo lo necesario para el funcionamiento de Spike.

OBJETIVO

Explicar cómo hacer el armado de Spike, cómo hacer la iniciación del robot y las calibraciones que lleguen a ser necesarias para su buen funcionamiento.

LISTA DE PARTES:

Pieza	Cantidad	Imagen
Base (Imprimir)	2	
Fémur (Imprimir)	3 derecho 3 izquierdo	

Tarso (Imprimir)	3 derecho 3 izquierdo	
Soportes	4 largo 4 corto	
Servomotor MG995 (compra externa)	12	
Módulo Controlador de servos PCA9685	1	

Raspberry: Recomendamos modelos con bluetooth integrado (como la PI 3 modelo A+ o la Zero o Zero 2W) si se quiere utilizar la app, en caso de no querer usar esta función, se pueden usar otros modelos.	1	
Batería LiPo	1	SOUTH BOLD BATTERY RoHS (€ ♣) 12 BORD TALV RoHS (€ ♣) 12 BORD TALV ROHS (€ ♣) 12
Conector circular (Incluida en servos)	12	
Tornillo A (Incluido en servos)	12	
Tornillo B (Incluido en servos)	24	Sammen.

Tornillo C #2 x 3/8" (compra externa)	12	
Tornillo D M1.6 x 10 mm + tuercas (compra externa)	12	
Tornillo E 1/8" x 1/2 + tuercas (compra externa)	14	

CALIBRACIÓN DE SERVOS:

IMPORTANTE: solo realizar este apartado en caso de usar un modelo de servomotor diferente al MG995.

Para el lograr una calibración de servos seguir los siguientes pasos:

- Investigar la datasheet del servomotor a utilizar y buscar los siguientes datos:
 - o Frecuencia de funcionamiento.
 - o pulse width para 0 grados
 - o pulse width para 180 grados
- Poner el conector circular al servo para que sea más sencillo visualizar los ángulos de los giros.
- Conectar un servo al módulo PCA9685, el cual fue conectado previamente a la raspberry como se muestra en el diagrama de conexión (manual técnico).
- Abrir el código "Motores.py" y realizar lo siguiente:
 - En caso de encontrar los valores en la datasheet:
 - Dentro de la variable *puls* 0 guardar el valor del pulse width para 0 grados.
 - Dentro de la variable *puls_180* guardar el valor del pulse width para 180 grados.
 - Dentro de la función *pwm.set_pwm_freq()* ingresar el valor de la frecuencia de funcionamiento.
 - Iniciar el código y verificar que en efecto el servo gire de 0 a 180 grados, en caso contrario, realizar ajustes a prueba y error de los valores de *puls_0* y *puls_180*.

 En caso de no encontrar los valores en la datasheet, utilizar los puestos en el código como referencia y realizar los ajustes necesarios.

```
11  #Configurar los pulsos

12  puls_0 = 100

13  puls_180 = 500

14

15  #Setear la frecuencia de los servos

16  pwm.set_pwm_freq(50)

17
```

- El código realizará la siguiente secuencia (se puede modificar la variable de tiempo entre movimientos *t* si el usuario lo ve necesario):
 - Girar 0 grados y esperar
 - Girar 90 grados y esperar
 - Girar 180 grados y esperar

```
1/
18 #tiempo entre movimientos (segundos):
19 t = 1
20
```

```
25
26 try:
27 while True:
28 print("0")
29 pwm.set_pwm(0, 0, girar(0))
30 sleep(t)
31 print("90")
32 pwm.set_pwm(0, 0, girar(90))
33 sleep(t)
34 print("180")
35 pwm.set_pwm(0, 0, girar(180))
36 sleep(t)
37
```

• La importancia de probar con estos 3 ángulos radica en que podría pasar que los servos giran 0 y 180 grados, pero no tengan el pulse width correcto (sucede cuando se eligen valores menores al correcto de 0 y mayores al correcto de 180), entonces el resto de ángulos no serán correctos. Para ello agregamos el ángulo de 90°.

- Si los tres ángulos son correctos, el servo estará calibrado, en caso contrario realizar las modificaciones necesarias.
- Verificar que funcione correctamente para todos los servomotores que se quieran utilizar.

ARMADO:

Para el apartado de armado del robot seguir los siguientes pasos:

- Conectar los servos al módulo de relevadores previamente conectado a la raspberry.
 La conexión de servos a módulo puede ser arbitraria.
 - IMPORTANTE: no tener armada ninguna parte del robot, los servos deben estar sueltos.
- Utilizando el código "Principal.py", descomentar el bloque "while True". Dentro de
 él, descomentar tarsos90() y femurs90(). Deja comentado el resto y corre el código;
 esto hará que todos los servos tengan un ángulo de 90 grados para poder ser unidos
 al resto de partes.

Desconectar los servos del módulo y colocarlos en tarso y fémur, asegurándolos con los tornillos B. Unir el conector circular al fémur usando dos tornillos C y agregar la pieza del tarso con su motor usando la pieza circular como conexión, y un tornillo A para asegurar que quede sujeto.

Asegurarse que el motor tenga un ángulo de 90° en relación al fémur, como se muestra en las imágenes de referencia.

Repetir este paso con las 6 patas.

• Tomar una base, poner los conectores circulares donde se encuentran las hendiduras y asegurarlos bien utilizando los Tornillos D con sus respectivas tuercas.

• Lo siguiente es agregar las piezas de las patas con ayuda de los tornillos A y los conectores circulares.

IMPORTANTE: las patas deben tener un acomodo como se muestra en la imagen.

TIP: conectar los servos de atrás hacia adelante (atrás es donde la base tiene los rectángulos cortados) y cada que se conecte un servo pasar los cables a la parte superior a través de los rectángulos.

Asegurar los soportes a la base con los tornillos E y sus tuercas, deslizar las pilas y
colocar los otros dos soportes de la parte de atrás. Después, colocar la otra base y
unirla con los tornillos E y sus tuercas a la parte de abajo de los soportes como se
muestra en la imagen.

• Terminando el armado se vería algo así

BLUETOOTH:

Para verificar el bluetooth es necesario que primero descarguen la app BlueDot (solo android o python).

Los pasos para verificar son los siguientes:

- Enlazar el bluetooth del dispositivo en el que tengamos descargada la app con nuestra raspberry. https://descubrearduino.com/wifi-bluetooth-raspberry-pi/
- Abrir el código "BT.py".
- Iniciar el código en la raspberry, abrir la app BlueDot y verificar que se muestre la siguiente distribución de botones:

- El botón verde es el botón de inicio, el botón rojo será nuestro botón de descanso.
 Usando el rojo como referencia, el botón arriba de él será adelante, a su izquierda botón izquierda, a su derecha botón derecha y hacia abajo botón atrás.
- En la terminal de la raspberry deberá mostrarse la acción presionada en texto, en caso de que se muestran direcciones que no son las presionadas, verificar el código y que no se haya modificado algún punto.
- Si no hay problemas, el bluetooth funciona correctamente.