JP 62004351

1/9/1

DIALOG(R) File 347: JAPIO

(c) 2003 JPO & JAPIO. All rts. reserv.

Image available

MANUFACTURE OF SEMICONDUCTOR CARRIER

PUB. NO.:

62-004351 [JP 62004351 A]

PUBLISHED:

January 10, 1987 (19870110)

INVENTOR(s):

SAITO TAMIO

APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

60-143734 [JP 85143734] June 29, 1985 (19850629)

FILED: INTL CLASS:

[4] H01L-023/48

JAPIO CLASS:

42.2 (ELECTRONICS -- Solid State Components); 14.2 (ORGANIC

CHEMISTRY -- High Polymer Molecular Compounds)

JOURNAL:

Section: E, Section No. 512, Vol. 11, No. 171, Pg. 41, June

02, 1987 (19870602)

ABSTRACT

PURPOSE: To improve the productivity, by burying a semiconductor chip in a package consisting of side members provided by insulator frames and of an upper member provided by an insulation layer, and by connecting an electrode pad on the chip to input/output terminals of a carrier through a conductor pattern.

CONSTITUTION: A semiconductor wafer 1 is cut off on a flexible support sheet 3 into separate chips 4. Insulator frames 5, which will be side members of a semiconductor carrier, are mounted in the gaps defined between the chips 4 so as to fill the gaps and to fix the chips positionally. An insulation layer 6, which will be a surface member, is then deposited on the chip. The insulation layer 6 is melt selectively above an electrode pad 4a on the chip 4 so as to provide an opening 7. Conductor patterns 8 are then formed on the surfaces of the insulator frames 5 and insulation layer 6 such that they are connected to the electrode pad 4a of the semiconductor chip through the opening 7 formed in the insulating layer 6. Finally, the insulator frame 5 is cut off between the semiconductor chips 4 so that semiconductor carriers 9 each consisting of one chip are obtained.

⑩日本国特許庁(JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭62-4351

@Int_Cl.4

識別記号

庁内整理番号

❷公開 昭和62年(1987)1月10日

H 01 L 23/48

6732-5F

審査請求 未請求 発明の数 1 (全6頁)

半導体キャリアの製造方法 図発明の名称

> ②特 顧 昭60-143734 頤 昭60(1985)6月29日

川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内

川崎市幸区堀川町72番地 ⑪出 願 人 株式会社東芝

弁理士 鈴江 武彦 外2名 20代 理 人

1. 発明の名称

半導体キャリアの製造方法

2. 特許請求の範囲

素子が形成され且つ電極バッドを有する 半導体ウェハを可能性支持シート上で個々のチッ プに切断し、波シートを伸長させてそのチップ闘 間隙を拡大する工程と、

前記シート上で娘チップ問問頭を埋める絶縁体 フレームを装着する工程と、

この絶殺体フレームが装着された状態で何記チ ップ上に絶録層を形成する工程と、

この絶縁層の前記電極パッド上方に閉口部を形 成する工程と、

この閉口部を過して前記電極パッドと接続され る事体パターンを前記絶縁体フレームおよび前記 絶録層の表面に形成する工程と、

この導体パターンの形成後、前記チップの相互 間で前記絶録体フレームを切断することにより、 チップ単位に分割された半導体キャリアを得る工 程とを何えたことを特徴とする半導体キャリアの

- 前記絶縁体フレームは樹脂成型品である ことを特徴とする特許請求の範囲第1項記載の半 導体キャリアの製造方法。
- 前記絶録体フレームは紫外線硬化性樹脂 からなるものであることを特徴とする特許期求の 範囲第1項記載の半導体キャリアの製造方法。
- **耐紀絶縁体フレームは前記導体パターン** と接触する位置に半導体キャリアの入出力端子と なる金属ピンが挿入されたものであることを特徴 とする特許請求の範囲第1項~第3項のいずれか に記載の半導体キャリアの製造方法。
- 前記絶様体フレームは関ロ部を有し、そ の関ロ部に前記導体パターンと接続され、且つ前 記絶録体フレームの切断によって半導体キャリア の側面上に半導体キャリアの入出力増子として蕗 出する導体が充填されることを特徴とする特許額 求の範囲第1項~第3項のいずれかに記載の半導 体キャリアの製造方法。

-243-

1 14

特開昭62-4351(2)

(6) 前記絶縁体フレームの前記開口部への導体の充填を前記導体バターンの形成と同時に行なうことを特徴とする特許請求の範囲第5項記載の半導体キャリアの製造方法。

(7) 前記絶録層は無外線硬化性樹脂または無 硬化性樹脂からなるものであり、前起閉口部を形 成する工程は設樹脂からなる絶縁層を選択的に溶 解することにより開口部を形成することを特徴と する特許請求の範囲第1項記載の半導体キャリア の製造方法。

3. 発明の詳細な説明

(発明の技術分野)

本発明は、半導体チップを小型パッケージに実 装した半導体キャリアの製造方法に関する。

[発明の技術的背景とその問題点]

IC、LSI等の半導体素子の実装法については従来より様々なものがあるが、その一つとして半導体チャブをセラミック製のパッケージ内にマウントし、パッケージに設けられた入出力増子に導体パターンを介して接続された電極パッドと、

提供することを目的とする。

- 〔発明の概要〕

本発明はこの目的を達成するため、まず、業子が形成され且つ電極パッドを有する半導体ウェハを可提性支持シート上で個々のチップに切断し、 波シートを伸長させることによって、そのチップ 間間隙を拡大する。

次に、チップをシート上に載せた状態で、この 拡大されたチップ問問職を埋めるように、半導体 キャリアの側面部材となる絶縁体フレームを装着 して、各チップの位置を固定する。絶縁体フレーム なる絶縁体フレームを装着 して、各チップの位置を固定する。絶縁体フレー なる側えば、予め作製された樹脂成型品が使用さ れるか、あるいはチップ問間際に無外線硬化性樹 脂樹脂を充填した後、固化させることによって形

次に、この絶縁体フレームが装着された状態で、 半導体キャリアの表面部材となる絶縁層をチップ 上に形成する。この絶縁層としては、例えばフォ トレジストのような紫外線硬化性樹脂、またはポ リイミド、アクリル、エポキシ、ブタジェン等の チップの電極バッドとをワイヤボンディングにより 接続して半導体キャリア (チップキャリアともいう) を得る方法がある。

しかしながら、このような方法では半導体キャリアの小型化に限界がある。即ち、緩積方のペースいてはチャアとパッケージ内壁との間にスペースが必要なために、寸法がチャブの緩接寸法に比較してかなり大きくなる。高さ方向につばば、パディングワイヤの占める高さの合計に若干のマージンを見た寸法が必要であり、2.5mm程度が限界となっている。

また、この方法では半導体チップをチップ単位で、予め用意されたパッケージに別々に実装するため、多数のキャリアをまとめて製造することができず、生産性の面でも問題があった。

(発明の目的)

本発明はこのような従来の問題点に鑑みてなされたもので、より小型な半導体キャリアが得られ、しかも生産性の良い半導体キャリアの製造方法を

熱硬化性樹脂を用いることができる。

次に、この絶縁勝の半導体チップに設けられた 電機パッド上方を選択的に溶解して、関口部を形成する。絶縁隔が上述したような間脂で形成され ている場合、これを選択的に溶解するには、反応 性イオンエッチング、ケミカルドライエッチング、 または紫外線照射等による光反応、あるいはレー ザ、マイクロ波照射等による熱反応を利用すれば よい。

次に、絶縁体フレームおよび絶縁層の表面に、 該絶縁層に形成された開口部を通して半導体チップの電極パッドと接続される導体パターンを形成 オス

そして、最後に半導体チップの相互間で絶縁体フレームを切断することにより、チップ単位に分割された半導体キャリアを得る。

なお、半導体キャリアの入出力増子としては例えば、半導体チップの電極パッドに接続された導体パターンの適部をそのまま使用することができる。また、絶縁休フレームに上記導体パターンと

特開昭62-4351(3)

被触する位置に金属ピンを挿入しておけば、この金属ピンを人出力端子とすることもできる。 さらに別の方法として、絶縁体フレームに関口部を設けておき、ここに例えば上記導体バターンの形は時に導体を同時に充填しておけば、絶縁体フレームを切断した時に半導体キャリアの側面上に 該導体が露出するので、これを入出力増子とすることが可能である。

(発明の効果)

ることにより、第1図(c)に示すようにチップ #4間の間膜を拡大する。この第1図(c)の状態 **

次に、第1図(d)に示すような絶縁体プレーム 5 を用意し、これを同図(e)に示す如くチップ 4 間の間隙を埋めるように装着する。絶縁体フレーム 5 は、この例では樹脂の成型品が使用される

では、チップ4間の間隙は規定されていない。

次に、第1図(1)に示すようにチップ4上に 絶縁層6を形成する。この絶縁層6は例えばチッ ブ4上に紫外線硬化性樹脂を充填し、これを上側 から紫外線の照射により硬化させることによって 形成することができる。

次に、第1図(g)(h)に示すように絶縁層6の、チップ4上の電極パッド4a上方に閉口部7を形成する。この閉口部7の形成方法としては、絶縁隔6が無外線硬化性樹脂の場合は例えば閉口部7を形成すべき部分を選択的に踏光した後、RIE(反応性イオンエッチング)またはCDE(ケミカルドライエッチング)、または紫外線の

免明によるとこのようなスペースが不要であり、 またワイヤポンディングのためのスペースが不要 であるため、高さ方向の寸法も大きく減少する。

さらに、本発明によると同一の半導体ウェハから切出されたチップを、一連の工程で同時に半導体キャリア化できるため、チップ単位で別々に半導体キャリアにする従来法に比較して生産性が苦しく向上し、キャリアの単価を引下げることが可能である。

(発明の実施例)

照射による光反応、あるいはレーザ光またはマイクロ波の照射による無反応を利用して除去すれば よい。

次に、第1図(i)(j)に示すように、絶縁 体フレーム 5 および能数層 B 上に導体パターン 8 を形成する。この導体バターン8の一端側は第1 図(g)(h)の工程により形成された閉口部? を通してチップ4上の環様パッド4aと接続され、 他端例はフレーム5上に延在される。導体パター ン8の形成法としては、無電解めっき。磊沓また はCVDとフォトエッチングの工程、あるいは印 刷,導体箔の接着等のいずれでもよく、特に限定 されない。ここで、チップ4間の間歇がフレーム 5によって均一に規定されていることにより、導 体パターン8のパターニングを全チップ1につい て共通にできる、即ちフォトエッチングで用いる マスクや、印刷で用いるスクリーン等のパターン が単純な雑返しパターンでよいから、導体パター ン8の形成を容易に行なうことができる。

そして、最後に第1図(1)の破線に沿って絶

特開昭62-4351(4)

TO A THE THE STREET OF STREET

機体フレーム 5 を切断することにより、チャブ4 単位に分割された半導体キャリアを得る。フレーム 5 の切断の手段としては、半導体チャブを切断するのに通常使用される自動送り切断機を用いることができる。即ち、個々のチャブ4 間の問政はフレーム 5 によって規定されているため、フレーム 5 を自動送り切断機により一定ピッチで X 、 Y 方向に送りながら切断することが可能である。

以上の工程により、第1図(k)に示すような、チャブ4の側面がフレーム5の構成部材、上面が絶縁階6でそれぞれ型われ、且つ導体パターン8の蟾部を入出力端子とする半導体キャリア9を同時に多数個得ることができる。導体パターン8の蟾部に形成された入出力端子は、例えば半導体キャリア8を基板等に実装する場合のワイヤボンディングとして用いられる。

次に、第2図を参照して本発明の第2の実施例を説明する。第2図(a)~(g)はそれぞれ第1図の(e)~(k)に対応する工程を示している。この実施例では第2図(a)に示すように、

体フレーム 5 を切断すれば、郊 3 図(g) に示すような、チャブ 4 の側面がフレーム 5 の構成部材、上面が絶縁隔 6 でそれぞれ選われ、且つ導体パターン 8 の端部に接続された導体 1 3 が側面に入出力増子として誘出した半導体キャリア 1 4 を得ることができる。

4. 図面の簡単な説明

第1 図 (a) ~ (k) は本発明の第1の実施例に係る半導体キャリアの製造工程を説明するための図、第2 図 (a) ~ (g) は本発明の第2 の実施例に係る製造工程の第1 図と異なる部分を説明するための図、第3 図 (a) ~ (g) は本発明の第3の実施例に係る製造工程の第1 図と異なる部分を説明するための図である。

1 … 半導体ウェハ、 2 … 切れ目、 3 … 可能性シート、 4 … 半導体チップ、 5 … 絶縁体フレーム、 6 … 絶縁層、 7 … 閉口部、 8 … 導体パターン、 9 … 半導体キャリア、 1 0 … 金属ピン、 1 1 … 半導体キャリア、 1 2 … 関口部、 1 3 … 導体、 1 4 … 半導体キャリア。

出願人代理人 弁理士 鈴江武彦

特開昭62-4351(5)

特開昭62-4351(6)

