Boyce-Codd Normal Form

Designing Schemas

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Kevin C.C. Chang, Professor Computer Science @ Illinois

Learning Objectives

By the end of this video, you will be able to:

- Define what BCNF is.
- Determine whether a given relation is in BCNF.
- Transform a relation into BCNF with BCNF decomposition.

Towards BCNF: Boyce and Codd

- **Codd** invented the relational model, created the era of declarative (in contrast to procedural) data management.
- **Boyce** -- in addition to BCNF, he has a major contribution to make declarative data management a reality. *Stay tuned!!*

Google search result of "Boyce Codd Normal Form" Google search result of "Raymond F. Boyce"

Recall the Problematic Schema

- Why is it bad?
- A student's name and birthday are repeated for each major.
- So? We should not store name and birthday with major.

id	name	major	birthday
1	Bugs Bunny	CS	2004-11-06
1	Bugs Bunny	Music	2004-11-06
2	Donald Duck	Bio	1997-02-01
3	Peter Pan	Econ	1998-10-01
3	Peter Pan	Social	1998-10-01
3	Peter Pan	ME	1998-10-01
4	Mickey Mouse	CS	1995-04-01

What Is the Culprit?

Why would name and birthday repeat, but major does not?

- id \rightarrow name, birthday
- id → major

id	name	major	birthday
1	Bugs Bunny	CS	2004-11-06
1	Bugs Bunny	Music	2004-11-06
2	Donald Duck	Bio	1997-02-01
3	Peter Pan	Econ	1998-10-01
3	Peter Pan	Social	1998-10-01
3	Peter Pan	ME	1998-10-01
4	Mickey Mouse	CS	1995-04-01

id determines some attributes A.

Example Students table

- id does not determine other attributes; i.e., it is not a superkey.
- Thus, A will repeat!
- Lesson: An FD by non-key attributes can cause redundancy.

Boyce-Codd Normal Form

A relation R is in BCNF if and only if:

Whenever there is a **nontrivial FD** for R, $A \longrightarrow B$ then A is a superkey for R.

- Whenever a set of attributes of R determines another attribute, it should determine all attributes of R.
- That is, no bad FDs!

BCNF or Not?

- Likes(name, addr, likeBeer)
 - name \rightarrow addr
 - name
 → likeBeer
- BCNF?

- Favorites(name, addr, favoriteBeer)
 - name \rightarrow addr
 - name → favoriteBeer
- BCNF?

name	addr	likeBeer
Alex	100 Green St	Sam Adams
Bob	300 Purple St	Sam Adams
Carissa	200 Green St	Bud Light
Alex	100 Green St	Coors

Example Likes table

name	addr	favoriteBeer
Alex	100 Green St	Sam Adams
Carissa	200 Green St	Bud Light
Alex	100 Green St	Coors

Example Favorites table

BCNF Decomposition

Algorithm BCNF

- Input: Relation R, FDs F
- If (exists an FD $A \longrightarrow B$ that violates the BCNF condition)
 - Decompose R(A, B, C) into $R_1(A, B)$ and $R_2(A, C)$.
 - Compute FDs for R_1 and R_2 as F_1 and F_2 .
 - Return BCNF(R_1, F_1) \cup BCNF(R_2, F_2).
- Else
 - Return R.

Α	В	C
•••	•••	•••

Α	В
•••	•••

Α	С
•••	•••

Decomposing into BCNF

- R = (id, name, major, birthday)
- $F = \{ id \rightarrow name, id \rightarrow birthday \}$

id	name	major	birthday
1	Bugs Bunny	CS	2004-11-06
1	Bugs Bunny	Music	2004-11-06
2	Donald Duck	Bio	1997-02-01
3	Peter Pan	Econ	1998-10-01
3	Peter Pan	Social	1998-10-01
3	Peter Pan	ME	1998-10-01
4	Mickey Mouse	CS	1995-04-01

Example Students table

- FD f: id \longrightarrow name, birthday violates BCNF
- Decompose into:
 - $R_1 = (id, name, birthday), F_1 = \{id \rightarrow name, id \rightarrow birthday\}$
 - $R_2 = (id, major), F_2 = \emptyset$
- Done?

Decomposing into BCNF

- R = (id, name, major, birthday, adviser)
- $F = \{ id \rightarrow name, id \rightarrow birthday, major \rightarrow adviser \}$

- FD f: id \longrightarrow name, birthday violates BCNF
- Decompose into:
 - $R_1 = (id, name, birthday), F_1 = \{id \rightarrow name, id \rightarrow birthday\}$
 - $R_2 = (id, major, adviser), F_2 = \{major \rightarrow adviser\}$
- Done?

Is BCNF unique? I.e., given a relation R and FDs F, does BCNF decomposition results in a unique BCNF?

- Students(id, name, phone)
- Suppose: id \rightarrow name, name \rightarrow id

What BCNF exists?