

Purpose

Classify Baseball Players Feilding Positions

• Batting and **Fielding** Statistics

Comparing Classification Algorithms

- K-Nearest Neighbors Classifier
- SGD Classifier
- Gaussian Naïve Bayes
- Decision Tree Classifier
- Random Forest Classifier

Significance

What attributes are most important in predicting Player position?

Can organizations make a team around Players predicted positions?

Which position is the hardest to predict why are they difficult to predict?

Data Description

- 24 input variables
- - At Bats
 - Runs
 - Hits
 - Home Runs
 - Runs Batted In
 - Walks
 - Strike Outs

- Batting input variables Fielding input variables
 - **Games Started**
 - Put Outs
 - Assist
 - Errors
 - Inn Outs
 - **Double Plays**

- Out-Put variables: Player Position
 - Catcher (C)
 - Pitcher (P)
 - 1st Baseman (1B)
 - 2nd Baseman (2B)
 - 3rd Baseman (3B)
 - Short Stop (SS)
 - Out Fielder (OF)

Exploratory

Data Preparation

- Combined records that had same player ID
- Aggregate Function
- Merged batting and Fielding on player ID
- Filled NANs with Zeros
- 70/30 Train Test Split

```
y = merged_df['POS']
X = merged_df.drop('POS', axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)
```


Model Analysis

Model	Data	Accuracy	Precision	Recall	F1	Train Acc
GaussianNB()	features_df	0.494825	0.495	0.703	0.495	0.493202
SGDClassifier()	features_df	0.610518	0.611	0.781	0.611	0.610634
KNeighborsClassifier(n_neighbors=4)	features_df	0.662604	0.663	0.814	0.663	0.780163
DecisionTreeClassifier()	features_df	0.729048	0.729	0.854	0.729	0.999356
RandomForestClassifier()	features_df	0.796995	0.797	0.893	0.797	0.999356
RandomForestClassifier(max_features='log2', min_samples_split=5, n_estimators=450, n_jobs=-1, random_state=4)	features_df	0.802838	0.803	0.896	0.803	0.98626

Conclusion

• With 80% accuracy the Random Forest Classifier performed the

best

- Feature Importance
 - Put outs
 - Assist
 - Double Plays
 - Games
 - Inn Outs

- Hardest Positions to predict
 - Short Stop
 - 3rd Baseman

 \Box

20

N N

M C C

 \triangleright

 \Box

Questions

