

Design, Implementation and Evaluation of a System to Create a Data Set Supporting Research in the EnergieBroker Platform

Master Thesis

for the

Master of Science

in Computer Science at RheinMain University of Applied Sciences

by

Niklas Sauer

January 11th, 2022

Project Duration
Student ID
First Reviewer
Second Reviewer
Supervisor

6 Months 1209772

Prof. Dr. Heinz Werntges Prof. Dr. Robert Kaiser

Johannes Kaeppel

Contents

Acronyms					
List of Figures List of Tables					
1.	Intro	oduction	1		
		Motivation	1		
	1.2.				
	1.3.	Thesis Overview	1		
2.	The	oretical Framework	2		
	2.1.	Microservice Architecture	3		
	2.2.	Virtualization	3		
		2.2.1. Hypervisor-based	3		
		2.2.2. Container-based	3		
	2.3.	Container	3		
		2.3.1. LXC	3		
		2.3.2. Docker	3		
	2.4.	Container Orchestration	3		
	2.5.	Kubernetes	3		
		2.5.1. Overview	3		
		2.5.2. Cluster Architecture	3		
		2.5.3. Containers	3		
		2.5.4. Workloads	3		
		2.5.5. Services, Load Balancing and Networking	3		
		2.5.6. Storage	3		
		2.5.7. Configuration	3		
		2.5.8. Security	3		
		2.5.9. Policies	3		
		2.5.10. Scheduling, Preemption and Eviction	3		
	2.6.	Agile Software Development	3		
		2.6.1. CI/CD	3		
		2.6.2. DevOps	3		
		2.6.3. GitOps	3		
3.	Con	•	4		
	3.1.	Overview	4		
	3.2.	Functional Requirements	4		
	2.3	Non Functional Requirements	4		

4.	Arcl	nitecture	5
	4.1.	Component Design	5
		4.1.1. Hardware	5
		4.1.2. Backend	5
		4.1.3. Maintenance and Support Plan	5
	4.2.	Component Interaction	5
	4.3.	Component Mapping	5
	4.4.	Design Rationale	5
		4.4.1. Modeling as Cloud-Edge Computing Problem	5
5.	Imp	lementation	6
6.	Test	ing	7
7.	Con	clusion	8
8.	Sum	nmary	9
9.	Out	look	10
Αp	pend	lices	11
Α.	Con	cept	12
В.	Arcl	nitecture	13
	B.1.	Representational State Transfer (REST)	13
		Certificate-based Authentication	13
C.	Con	clusion	14

Acronyms

List of Figures

List of Tables

Listings

1. Introduction

- 1.1. Motivation
- 1.2. Goals and Scope
- 1.3. Thesis Overview

2. Theoretical Framework

- 2.1. Microservice Architecture
- 2.2. Virtualization
- 2.2.1. Hypervisor-based
- 2.2.2. Container-based
- 2.3. Container
- 2.3.1. LXC
- 2.3.2. Docker
- 2.4. Container Orchestration
- 2.5. Kubernetes
- 2.5.1. Overview
- 2.5.2. Cluster Architecture
- 2.5.3. Containers
- 2.5.4. Workloads
- 2.5.5. Services, Load Balancing and Networking

3

- **2.5.6.** Storage
- 2.5.7. Configuration
- 2.5.8. Security
- 2.5.9. Policies

3. Concept

- 3.1. Overview
- 3.2. Functional Requirements
- 3.3. Non-Functional Requirements

4. Architecture

- 4.1. Component Design
- 4.1.1. Hardware
- 4.1.2. Backend
- 4.1.3. Maintenance and Support Plan
- 4.2. Component Interaction
- 4.3. Component Mapping
- 4.4. Design Rationale
- 4.4.1. Modeling as Cloud-Edge Computing Problem

5. Implementation

6. Testing

7. Conclusion

8. Summary

9. Outlook

Appendices

A. Concept

B. Architecture

- **B.1.** Representational State Transfer (REST)
- **B.2. Certificate-based Authentication**

C. Conclusion