Decoupled Graph Energy-based Model for Node Out-of-Distribution Detection on Heterophilic Graphs

Yuhan Chen¹*, Yihong Luo²*, Yifan Song², Pengwen Dai¹, Jing Tang², Xiaochun Cao¹ (*Equally contributed)

¹Sun Yat-sen University, ²The Hong Kong University of Science and Technology

Background

- We focus on the **node Out-of-Distribution detection (OOD)** task. Extensive efforts have focus on image area (i.i.d.), but OOD detection on nodes in graph learning (non-i.i.d.) remains underexplored.
- Existing node OOD detection method are mostly based on **homophilic assumption**, will experience dramatic performance degradation when dealing with heterophilic graphs.

Methodology: Decoupled Graph Energy-based Model (DeGEM)

Fig 1. Framework of **DeGEM**

Motivation

We utilize graph energy-based model (EBM) in node OOD detection, and model the true node distribution $p_d(x)$ by Boltzmann distribution $p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{Z_{\theta}}$, which can be trained by negative log-likelihood (NLL) loss:

$$\mathcal{L}_{\text{NLL}} = -\mathbb{E}_{\boldsymbol{x} \sim p_d(\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x})] \Leftrightarrow \mathbb{E}_{\boldsymbol{x} \sim p_d(\boldsymbol{x})}[E_{\theta}(\boldsymbol{x})] - \mathbb{E}_{\widetilde{\boldsymbol{x}} \sim p_{\theta}(\widetilde{\boldsymbol{x}})}[E_{\theta}(\widetilde{\boldsymbol{x}})]$$

For efficiently training the graph EBM, we **decouple** the graph EBM into two parts: a graph encoder g_{α} and an energy head f_{ω} : $E_{\theta}(x) = f_{\omega} \circ g_{\alpha}(x, \mathcal{N}(x))$, such that the graph encoder first extract node features and topology information, then the energy-head only needs to sampling node representations in latent space.

Graph Contrastive Learning for Training Graph Encoder

We train a powerful graph encoder using **Graph Contrastive Learning (GCL).** Following DGI, given the original and augmented graph $\{X,A\}$ & $\{X',A'\}$, we obtain the original and augmented node representations $h_i=g_{\alpha}(x_i,\mathcal{N}(x_i))$ & $h'_i = g_{\alpha}(x'_i, \mathcal{N}(x'_i))$, and the readout summary $s = \frac{1}{N} \sum_{i=1}^{N} h_i$, using a discriminator D_{ψ} the **contrastive loss** is:

$$\mathcal{L}_{\text{cl}} = -\frac{1}{2N} \left(\sum_{i=1}^{N} \log D_{\psi}(\boldsymbol{h}_{i}, \boldsymbol{s}) + \sum_{j=1}^{N} \log \left(1 - D_{\psi}(\boldsymbol{h}'_{j}, \boldsymbol{s}) \right) \right)$$

Surrogate EBM Training

We perform a surrogate optimization for our graph EBM in latent space:

$$\mathcal{L}_{\text{ebm}} = \mathbb{E}_{\boldsymbol{h} \sim p_d(\boldsymbol{h})}[f_{\omega}(\boldsymbol{h})] - \mathbb{E}_{\widetilde{\boldsymbol{h}} \sim p_{\theta}(\widetilde{\boldsymbol{h}})}[f_{\omega}(\widetilde{\boldsymbol{h}})] = \frac{1}{N} \sum_{i=1}^{N} f_{\omega}(\boldsymbol{h}_i) - \frac{1}{M} \sum_{j=1}^{M} f_{\omega}(\widetilde{\boldsymbol{h}}_j)$$

Sampling from $p_{\theta}(h)$ can be achieved by **efficient** K-step MCMC sampling in latent space:

$$\widetilde{\boldsymbol{h}}^{(k)} = \widetilde{\boldsymbol{h}}^{(k-1)} - \lambda \nabla_{\widetilde{\boldsymbol{h}}^{(k-1)}} f_{\omega} (\widetilde{\boldsymbol{h}}^{(k-1)}) + \boldsymbol{\epsilon}^{(k)}, \qquad \boldsymbol{\epsilon}^{(k)} \sim \mathcal{N}(0, \boldsymbol{\sigma}^2)$$

Multi-hop (MH) Graph Feature Encoder

To fully extract informative node representations and handle **heterophilic graphs**, we design a L-layer graph encoder:

$$\mathbf{X}^{(\ell)} = (\beta \mathbf{I} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}) \mathbf{X}^{(\ell-1)}, \qquad \mathbf{X}^{(0)} = \mathbf{X}$$

$$\mathbf{H} = g_{\alpha}(\mathbf{X}, \mathbf{A}) = [\mathbf{H}^{(0)} || \mathbf{H}^{(1)} || \cdots || \mathbf{H}^{(L)}] \mathbf{W}_{\text{enc}} + \boldsymbol{b}_{\text{enc}}, \qquad \mathbf{H}^{(\ell)} = \mathbf{X}^{(\ell)} \mathbf{W}^{(\ell)} + \mathbf{b}^{(\ell)}$$

Contrastive Energy (CE)

Energy Readout (ERo)

Here we use readout s as supervised global prior information in energy head:

$$f_{\omega}(\boldsymbol{h}_{i}, \boldsymbol{s}) = \mathbf{W}[\boldsymbol{h}_{i}||\rho \boldsymbol{s}] + \boldsymbol{b}$$
, or $f_{\omega}(\boldsymbol{h}_{i}, \boldsymbol{s}) = \boldsymbol{h}_{i}^{\mathsf{T}}\mathbf{W}\boldsymbol{s}$

To consider the importance of each node when computing readout, we use node energy to calculate weight $\bar{p} = \operatorname{softmax}(-f_{\omega}(\boldsymbol{h}_i))$, then

$$\boldsymbol{s}_{p} = \gamma \sum_{i}^{N} \bar{p} \boldsymbol{h}_{i} + (1 - \gamma) \frac{1}{N} \sum_{i}^{N} \boldsymbol{h}_{i}$$

Recurrent Update

We design a **Recurrent Update** to promote ERo s_p and CE $f_{\omega}(h_i, s)$ recurrently (see paper).

Experiments

	Cora						Amazon-Photo						Twitch				Arxiv				Ava	
Method	Structure		Feature		Label		Structure		Feature		Label		ES	ES FR		RU Acc↑		2019	2020	Acc↑	Avg	
	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	AUC↑	AUC↑	Acc	AUC↑	AUC↑	AUC↑	Acc	AUC↑	Acc↑
MSP	75.05	77.30	85.87	77.30	91.10	88.29	98.94	93.64	97.02	92.89	95.49	95.84	66.08	47.40	57.41	63.89	61.76	63.52	67.06	53.87	83.07	80.38
ODIN	30.57	74.60	21.19	77.50	20.29	87.66	3.50	91.42	5.31	92.91	10.16	96.08	43.97	51.84	49.53	62.05	44.01	42.63	38.96	49.29	22.67	78.94
Mahalanobis	41.03	71.90	63.92	74.20	67.45	88.92	62.40	93.42	72.47	92.88	60.80	95.84	46.73	49.69	38.38	62.95	57.08	56.76	56.92	51.59	58.74	78.96
Energy	79.48	79.10	89.34	79.30	93.26	90.19	99.94	93.04	98.51	92.76	97.13	95.68	58.42	72.91	69.90	65.59	64.61	65.90	70.37	53.92	86.46	81.20
ResidualFlow	61.23	82.20	60.72	82.20	64.69	82.20	82.58	93.55	75.46	93.55	78.31	93.55	62.60	55.59	67.68	66.37	62.38	63.82	62.21	54.84	68.47	81.06
GKDE	84.49	78.00	90.75	81.70	94.59	91.77	92.68	89.69	54.52	31.90	76.35	85.55	57.52	57.48	46.25	60.42	69.44	71.32	71.73	21.15	77.25	67.52
GPN	82.21	81.00	88.06	78.80	91.74	91.77	90.35	82.63	86.47	63.38	89.90	89.30	84.07	76.32	78.36	60.29	OOM	OOM	OOM	OOM	N/A	N/A
OODGAT	53.75	34.90	57.03	14.50	95.57	89.56	71.41	25.42	70.93	25.21	99.18	96.16	77.35	77.72	73.24	60.29	72.35	73.97	72.30	54.69	74.61	50.09
GNNSafe	87.98	75.30	92.18	75.40	92.36	88.92	98.69	93.74	98.47	92.96	97.34	95.72	51.00	79.08	82.93	66.18	67.27	69.20	79.02	54.26	88.73	80.31
DeGEM (Ours)	99.93	84.20	99.84	84.30	97.58	93.04	100.00	94.49	99.91	93.97	99.28	95.80	94.83	97.36	94.76	64.51	81.30	86.00	86.01	58.20	97.08	83.56

Tab 1. Evaluation on **homophilic** graphs

				Actor							Cornell						Ava			
Method	Structure		Feature		Label		Structure		Feature		Label		Structure		Feature		Label		Avg	
	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑	AUC↑	Acc↑
MSP	99.28	33.41	70.92	32.42	53.32	43.89	71.38	21.64	59.11	24.34	56.32	37.27	81.50	41.50	71.89	43.54	68.50	63.81	70.25	37.98
ODIN	60.09	28.80	53.20	33.24	68.07	37.01	42.32	22.30	52.57	23.90	65.10	35.79	67.99	38.78	85.76	38.10	42.16	63.81	59.69	35.75
Mahalanobis	99.59	29.90	58.93	33.41	42.42	44.54	79.96	24.23	65.94	23.72	52.58	31.98	69.84	36.73	70.08	43.54	81.73	62.86	69.01	36.77
Energy	91.94	<u>37.14</u>	67.75	37.58	59.92	41.69	64.26	25.21	51.71	24.33	55.00	36.71	83.09	38.10	86.70	38.10	69.70	62.86	70.01	37.97
ResidualFlow	48.24	34.50	53.82	34.50	56.16	34.50	49.72	27.63	50.07	27.63	50.68	27.63	67.80	<u>43.54</u>	66.33	43.54	73.09	43.54	57.32	35.22
GKDE	96.06	30.12	67.33	34.94	60.22	40.40	71.27	25.63	58.08	19.56	53.72	33.60	80.53	14.97	77.48	42.86	81.18	63.81	71.76	33.99
GPN	82.90	20.41	64.99	30.99	72.68	34.71	78.58	18.67	62.13	20.21	<u>75.04</u>	38.08	89.68	43.54	83.36	42.86	82.93	63.81	76.92	34.81
OODGAT	54.89	26.06	53.86	29.73	65.33	40.68	51.25	23.65	52.00	25.77	65.39	36.30	67.16	42.18	69.42	42.86	68.52	64.76	60.87	36.89
GNNSafe	34.36	35.33	57.46	38.07	52.18	43.43	31.76	26.30	50.66	26.20	51.60	<u>37.92</u>	74.66	25.17	76.22	41.50	68.17	63.81	55.23	37.52
DeGEM (Ours)	99.99	57.82	99.70	57.93	89.68	64.46	99.76	31.97	99.98	33.87	100.00	36.02	97.97	48.30	100.00	65.31	90.90	77.14	97.55	52.53

DeGEM (Ours) GNNSafe++ Energy-FT Relative Labeled Ratio (%)

Conclusion

We proposed **DeGEM** for node OOD detection task, overcoming the heterophily issue and computational challenges when MCMC sampling on large graphs. Extensive experiments demonstrate our superiority across datasets and under **few-label scenario**.

