The Wire

Christopher Hunt, Brian Reed, Leland Wendel

Consider the vector field created by the magnetic field around a wire along the z-axis carrying a constant current I in the z-direction.

$$\vec{B} = \frac{\mu_0 I}{2\pi} \left(\frac{-y\hat{i} + x\hat{j}}{x^2 + y^2} \right) = \frac{\mu_0 I}{2\pi} \frac{\hat{\phi}}{r}$$
 (1)

Ready:

(a)

Determine $\vec{B} \cdot d\vec{r}$ on any radial line of the form y = mx where m is constant.

Find $d\vec{r}$:

$$\vec{r} = x\hat{i} + mx\hat{j} \rightarrow d\vec{r} = dx\hat{i} + mdx\hat{j} dx$$

Find $\vec{B} \cdot d\vec{r}$:

$$\vec{B} \cdot d\vec{r} = \frac{\mu_0 I}{2\pi} \left(\frac{-mx}{x^2 + y^2} \right) + \frac{\mu_0 I}{2\pi} \left(\frac{mx}{x^2 + y^2} \right) = 0$$

The dot product between the vector field \vec{B} and the path derivative along any radial line will be:

0

(b)

Determine $\vec{B} \cdot d\vec{r}$ on any circle of the form $x^2 + y^2 = a^2$ where a is constant.

Find $d\vec{r}$:

$$\vec{r} = a\hat{r} \rightarrow d\vec{r} = a\hat{\phi} \ d\phi$$

Find $\vec{B} \cdot d\vec{r}$:

$$\vec{B} \cdot d\vec{r} = \frac{\mu_0 I}{2\pi a} * a d\phi = \frac{\mu_0 I}{2\pi} \ d\phi$$

The dot product between the vector field \vec{B} and the path derivative along any circle will be:

$$\frac{\mu_0 I}{2\pi} d\phi$$

Set:

For each of the following curves, evaluate the line integral $\int_c \vec{B} \cdot d\vec{r}$.

The Wire 2

 C_1

The top half of the circle r = 5, traversed in a counterclockwise direction

$$C_1 = 5\hat{r}$$
 $0 \le \phi \le \pi$

$$\int_0^{\pi} \frac{\mu_0 I}{2\pi} \ d\phi \to \frac{\mu_0 I \phi}{2\pi} |_0^{\pi} = \frac{\mu_0 I}{2}$$

 C_2

The top half of the circle r=2, traversed in a counterclockwise direction

$$C_2 = 2\hat{r} \qquad 0 \le \phi \le \pi$$

$$\int_0^\pi \frac{\mu_0 I}{2\pi} \; d\phi \to \frac{\mu_0 I \phi}{2\pi}|_0^\pi = \frac{\mu_0 I}{2}$$

 C_3

The top half of the circle r=2, traversed in a clockwise direction

$$C_3 = 2\hat{r}$$
 $\pi \ge \phi \ge 0$

$$\int_0^{\pi} \frac{\mu_0 I}{2\pi} \ d\phi \to \frac{\mu_0 I \phi}{2\pi} |_{\pi}^0 = -\frac{\mu_0 I}{2}$$

 C_4

The bottom half of the circle r = 2, traversed in a clockwise direction

$$C_4 = 2\hat{r}$$
 $2\pi > \phi > \pi$

$$\int_0^{\pi} \frac{\mu_0 I}{2\pi} d\phi \to \frac{\mu_0 I \phi}{2\pi} |_{2\pi}^{\pi} = -\frac{\mu_0 I}{2}$$

 C_5

The radial line from (2,0) to (5,0)

$$C_5 = x\hat{i} \qquad 2 \le x \le 5$$

From part one it was found that any radial path dotted with vector field will equal 0. The integral of 0 is 0, therefore the answer is 0.

 C_6

The radial line from (-5,0) to (-2,0)

$$C_6 = x\hat{i} \qquad -5 \le x \le -2$$

From part one it was found that any radial path dotted with vector field will equal 0. The integral of 0 is 0, therefore the answer is 0.

The Wire 3

Go:

(a)

Find closed curves C_7 and C_8 such that this integral is nonzero over C_7 and zero over C_8

 C_7

$$C_7 = 5\hat{r}$$
 $0 \le \phi \le 2\pi$
 $\int_0^{\pi} \frac{\mu_0 I}{2\pi} d\phi \to \frac{\mu_0 I \phi}{2\pi} |_0^{2\pi} = \mu_0 I$

 C_8

$$C_8 = C_1 + C_6 + C_3 + C_5$$

Using the calculated line integral values from above we get:

$$\frac{\mu_0 I}{2} + 0 - \frac{\mu_0 I}{2} + 0 = 0$$

(b)

Ampere's Law says that, for any closed curve C, this integral is μ_0 times the current flowing through C. Use this fact to explain your results to part (a).

This vector field is interesting since there is a discontinuity at the point where the wire is (the origin for our example). When the path encircles this discontinuity we get Ampere's Law, $\mu_0 I$, but when a circulation is made *not* around this discontinuity we get 0, which is what we would expect from a conservative vector field.

(c)

Is \vec{B} conservative?

No this field is not conservative because there is a discontinuity at the origin, therefore the vector field is not continuous on an open connected region.