课程五:综合示例

• QAOA 变量类(Var)

```
表达式 = Var1 + Var2 — Var3 X Var4 ÷ VarN
```

```
from pyqpanda import *

if __name__ == "__main__":
    v1 = p.var(10)
    v2 = p.var(5)

add = v1 + v2
    minus = v1 - v2
    multiply = v1 * v2
    divide = v1 / v2

print("add: ", p.eval(add))
    print("minus: ", p.eval(minus))
    print("multiply: ", p.eval(multiply))
    print("divide: ", p.eval(divide))
```

```
add: [[15.]]
minus: [[5.]]
multiply: [[50.]]
divide: [[2.]]
```

```
v1.set_value([[20]])

print("add: ", p.eval(add))
print("minus: ", p.eval(minus))
print("multiply: ", p.eval(multiply))
print("divide: ", p.eval(divide))
```

add: [[25.]] minus: [[15.]] multiply: [[100.]] divide: [[4.]]

QAOA 可变量子逻辑门(VQG)


```
from pyqpanda import *

if __name__ == "__main__":
    ...
    x = p.var(1)
    y = p.var(2)

g1 = p.VariationalQuantumGate_H(q[0])
    g2 = p.VariationalQuantumGate_RX(q[0], x)
    g3 = p.VariationalQuantumGate_RY(q[0], y)
    g4 = p.VariationalQuantumGate_RZ(q[0], 0.12)
    g5 = p.VariationalQuantumGate_CZ(q[0], q[1])
    g6 = p.VariationalQuantumGate_CNOT(q[0], q[1])
    ...
```

• QAOA 可变量子线路(VQC)


```
from pyqpanda import *
if __name__=="__main__":
  machine=p.init quantum machine()
   q = machine.qAlloc_many(2)
  x = p.var(1)
  y = p.var(2)
  vqc = p.VariationalQuantumCircuit()
  vqc.insert(p.VariationalQuantumGate_H(q[0]))
  vqc.insert(p.VariationalQuantumGate_RX(q[0], x))
  vqc.insert(p.VariationalQuantumGate_RY(q[1], y))
   circuit = vqc.feed()
   prog = p.QProg()
   prog.insert(circuit)
   print(p.qRunesProg(prog))
  x.set_value([[4]])
   circuit2 = vqc.feed()
   prog2 = p.QProg()
   prog2.insert(circuit2)
   print(p.qRunesProg(prog2))
```

QINIT 2 CREG 0 H 0 RX 0,"1.000000" RY 1,"2.000000" QINIT 2 CREG 0 H 0 RX 0,"4.000000" RY 1,"2.000000"

本 源 • QAOA 最大切割问题

		矛盾值			矛盾值
A	E	0.73	С	F	0.88
А	F	0.33	С	G	0.58
А	G	0.5	D	F	0.67
В	E	0.69	D	G	0.43
В	F	0.36			

本 源 量 子 · QAOA 代码演示

追本溯源 高掌远跖

支持与交流

https://github.com/OriginQ/QPanda-2

https://www.originqc.com.cn