Gymnázium, Praha 6, Arabská 14

Předmět Programování

MATURITNÍ PRÁCE

Knihovna pro záznam kotev v textu

Double Yell Yellow in the Art and Art and the second the second to the s	
Prohlašuji, že jsem jediným autorem tohoto projektu, všechna použitá literatura a další zdroje jsou v práci uvo (tzv. Autorský zákon) ve znění pozdějších předpisů udělu 6, Arabská 14 oprávnění k výkonu práva na rozmnožová veřejnosti (§ 18) na dobu časově neomezenou a bez ome	edené. Tímto dle zákona 121/2000 Sb. uji bezúplatně škole Gymnázium, Praha uní díla (§ 13) a práva na sdělování díla
V dne	Petr Chalupa

ANOTACE

Práce se zabývá návrhem algoritmů, které by umožnili ukládání tzv. textových kotev (označení, poznámky aj.) do statického i dynamického textu (formátu XML) tak, aby je bylo možné opětovně do textu vložit i po jeho úpravě (a případně vyhodnotit chybu při vkládání). Takovýto program by pak měl být použitelný jako knihovna např. pro webové aplikace.

KLÍČOVÁ SLOVA

Algoritmus; textová kotva; XML; knihovna; webová aplikace

ABSTRACT

The thesis deals with the design of algorithms that would enable the storage of so-called text anchors (labels, notes etc.) in static and dynamic text (XML format) so that they can be reinserted into the text even after its editing (and possibly evaluate the error during insertion). Such a program should then be usable as a library for e.g., web applications.

KEY WORDS

Algorithm; text anchor; XML; library; web application

OBSAH

1		Zadání			
2		Úvod			
3		Ты	RMINOLOGIE	6	
	3.	1	STATICKÝ TEXT	6	
	3.	2	DYNAMICKÝ TEXT	6	
	3.	3	TEXTOVÁ KOTVA	6	
		3.3	3.1 Z POHLEDU PROGRAMU CHYBA! ZÁLOŽKA NENÍ DEFINOVÁ	NA.	
4		AL	GORITMUS VYTVOŘENÍ KOTVY	7	
5		AL	GORITMUS ULOŽENÍ KOTVY	10	
6		AL	GORITMUS VLOŽENÍ KOTVY	11	
7		Kn	IIHOVNA	12	
	7.	1	Architektura	12	
	7.	2	Použití	12	
8		DE	MO	13	
	8.	1	FUNKCE	13	
	8.	2	GENEROVÁNÍ TEXTU	13	
9		ZÁ	VĚR	14	
1()	Pot	UŽITÉ ZDROJE	15	
11	[SEZ	ZNAM OBRÁZKŮ	16	
12	2	SEZ	ZNAM UKÁZEK KÓDU	16	

1 ZADÁNÍ

Téma: Knihovna pro záznam kotev v textu

Autor: Petr Chalupa

Vedoucí práce: Mgr. Jan Lána

Popis: Knihovna s algoritmy pro zapamatování vložených kotev (označení, poznámek aj.) do textu uživatelem. Cílem je, aby fungovala i pro dynamický text, tedy aby se kotvy automaticky přizpůsobovaly změnám v konkrétním textu (v rámci možností) a případně aby poskytla "zpětnou vazbu" ohledně chyb - např. nepovedené zařazení do textu apod. Měla by fungovat na formátu XML (HTML) - použití primárně ve webových aplikacích, jako je například projekt Digitálního učebnicového systému, kterého jsem spoluautorem.

Platforma: JS/TS, Vue.js

2 Úvod

Text a jeho podstata se v podstatě nikdy neměnila jako dnes. Texty, které byly doteď převážně fyzické, se v posledních letech začali v ohromném množství přesouvat do digitální podoby, ať už protože udržování fyzických kopií je neefektivní využití místa, nebo protože vytváření nových může být velmi nákladné a neekologické, nebo protože je to odpověď na čím dál více rostoucí poptávku po dostupnosti textů v digitální podobně, tedy převážně přes internet.

Mnoho přesouvaných textů jsou původně čistě fyzické knihy, na které se již nevztahuje vlastnické právo, ale může jít také o přesun fyzických médií (jako jsou noviny) do digitální podoby. Vzhledem k tomu, že se tyto texty vyskytují často právě na internetu, dává smysl jeho uživatelům poskytnout užitečné nástroje pro manipulaci s nimi. Motiv této práce je tedy vytvořit takový nástroj, umožňující vkládání a manipulování s textovými kotvami.

Tato práce se tedy zaměřuje na problematiku vkládání, ukládání a opětovného vkládání textových kotev do statického i dynamického textu ve formátu XML. Většina textů se nachází čistě v podmnožině HTML, ale není problém funkčnost rozšířit za hranice webového standartu. Pomocí navrhnutých algoritmů může uživatel označit klíčové body v textu a používat je i po aktualizacích původního textu. V případě, že nastane po změně původního textu problém, uživatel by se o něm měl dozvědět co nejpřívětivější cestou, aby mohl se vzniklými problémy vhodně naložit.

Cílem této práce tedy je vytvořit knihovnu, která bude sloužit jako nástroj pro manipulaci s textovými kotvami, a která bude využitelná ve webových aplikacích. Implementace této knihovny poskytne uživatelům flexibilitu a efektivitu při práci s textem, přičemž bude zajišťovat nejen správnost manipulace s kotvami, ale i detekce a řešení chyb, které by mohly nastat v průběhu procesu.

3 TERMINOLOGIE

V práci se vyskytují některé pojmy, které je potřeba přesněji definovat. Proto jsou v následujících podkapitolách vysvětleny a interpretovány takovým způsobem, aby byla práce pochopitelná.

3.1 STATICKÝ TEXT

Statický text je chápán jako řetězec znaků, jehož délka není relevantní (musí ovšem být určitá), který se v průběhu času nemění. Takový text se dá v ideálním případě rozdělit na odstavce, věty a případně slova a znaky. Obecně u takového textu nezáleží na jeho smyslové podstatě a ani v této práci se s touto vlastností nepracuje. Pracovat s takovým textem lze předvídatelně a exaktně.

3.2 DYNAMICKÝ TEXT

Dynamický text je chápán jako řetězec znaků, jehož délka není relevantní (musí ovšem být určitá), který se v průběhu času může měnit. Měnit se tedy nemusí a platí, že čím méně se mění, tím lépe se s ním pracuje. Změna může být nejen v jeho délce, ale i substitucí stávajících znaků, což zahrnuje například i změnu malého písmena na velké nebo přidání diakritiky. Časté a složité změny v textu práci s ním ztěžují, což může v extrémních případech vést až k úplnému selhání operací na něm prováděných. Tato práce se zabývá prací zejména s tímto typem textů, jelikož operace na nich prováděné jsou funkční i na textech statických.

3.3 TEXTOVÁ KOTVA

Textová kotva je pojem, který označuje specifický bod v textu, který je definován svojí pozicí (cesta/souřadnice apod.), a který je v ideálním případě nehybný. Pokud její definici rozšíříme na právě dva sousední body, začne mít význam i její vizuální reprezentace – např. zabarvení jejího pozadí. Protože takto se běžně provádí označování textu, pracuje tato práce právě s touto širší definicí. Kotva může nést další data, jejichž interpretace není předmětem práce – pouze poskytuje vhodné prostředí, a kotvy spolu mohou interagovat (nap. se spojovat).

4 Programová architektura

Z pohledu programu je potřeba definici textové kotvy mírně upravit. To vyplývá ze skutečnosti, že algoritmy pro práce s nimi operují s texty ve formě XML, a tedy text zobrazovaný uživateli může být na sebe navazující, ovšem ve skutečnosti se nacházet ve vzdálených (obecně různých) uzlech DOMu. Tedy to, co uživatel vnímá jako jednu kotvu je ve skutečnosti blok jednotlivých kotev, které jsou drženy pohromadě.

4.1 DTA

Tato třída je zodpovědná za poskytování veškerých funkcí knihovny. Pro vytvoření objektu této třídy je nutné poskytnout referenci na element, ve kterém se nachází všechen text, na kterém mají být prováděny operace (tzv. rootNode). Objektů této třídy může být neomezeně mnoho, kdy, pokud nebudou mít sdílený rootNode, budou všechny fungovat nezávisle (v opačném případě mohou nastat potíže). Objekt udržuje seznam všech bloků kotev uvnitř rootNode a spravuje je.

4.2 ANCHORBLOCK

Blok kotev je třída, jejíž objekty slouží jako pouze určitý obal pro menší celky – kotvy. Kromě toho, že drží reference na tyto kotvy a spravuje je, zároveň uchovává jejich sdílené informace, jako jsou například barva nebo objekt s daty. Každý blok kotev má svůj identifikátor UUID¹. Bloky kotev lze vytvářet, mazat a spojovat s přiléhajícími bloky kotev.

4.3 ANCHOR

Tato třída je zodpovědná za chování jednotlivých nejmenších celků kotvy, kterou vidí uživatel. Spolupracuje s ostatními kotvami v celém svém bloku tak, aby vytvořila dojem, že jde o jednolitý celek, i když jde o více elementů. Každá kotva má svůj identifikátor UUID.

Do kapitol o algoritmech vysvětlení termínů zde nebo tak??

 $^{^1}$ UUID – Universally Unique Identifier ~ Univerzálně Unikátní Identifikátor

5 PŘÍSTUPNOST

Jelikož knihovna pracuje s textem, o kterém se předpokládá, že se může dostat k jakémukoliv člověku, je nutné zajistit, aby byly i vytvořené kotvy přístupné a přívětivé bez ohledu na uživatele. V této kapitole jsou popsány způsoby a funkce, jak je tohoto dosaženo.

Předpřipravené styly

Funkce invertHexColor() slouží k získání kontrastově obrácené barvy k zadané barvě. Funkce má jako argument barvu v HEX formátu a stejně tak vrací barvu v HEX formátu. Jako kontrastově obrácená barva se v tomto případě myslí buď černá (#000000), nebo bílá (#ffffff), jelikož funkce je využita při přebarvování Anchoru tak, aby byla barva textu vždy dostatečně kontrastivní s barvou jeho pozadí. Funkce podporuje argument v 3 nebo 6 znakovém zápisu i s možností vynechat "#". Nejdříve je u každé barvy zajištěn 6 znakový zápis – tzn. převod v případě potřeby a poté její číselné rozložení na jednotlivé prvky R, G a B.

Nakonec...

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-on-background-color/3943023#3943023

Dále knihovna podporuje ovládání pomocí klávesnice; ve smyslu pohybování se po stránce pomocí klávesy Tab (popřípadě Shift + Tab). Jelikož kotvy jsou v jádru tvořeny více elementy, je focus povolen pokaždé pouze na prvním z nich. Díky tomu je možné se pohybovat po celých kotvách. Aby bylo možné změnit styl focused kotvy, je všem elementům kotvy přidáván nebo odebírán atribut data-focused.

Pro umožnění přečtení textu celé kotvy předčítačem, je opět pouze na prvním elementu kotvy udržován atribut aria-label. Tímto způsobem je možné zkombinovat tuto knihovnu například i s knihovnou blind-friendly-library², která mimo jiné umožňuje pomocí ovládání klávesnicí předčítání takových elementů.

8

² BFL - <u>https://www.npmjs.com/package/blind-friendly-library</u>, autor: Filip Beneš

6 ALGORITMUS VYTVOŘENÍ KOTVY

Algoritmus pro vytvoření kotvy není omezen ani horizontálním, ani vertikálním rozsahem označeného textu, tedy textu, který má být de facto kotvami ohraničen. Jediné omezení udává přednastavený blok, který udává, se kterým textem lze takto manipulovat; tj. předek všech textových bloků, se kterými lze manipulovat – kořenový blok (rootNode). Začátku algoritmu tedy předchází impuls od uživatele, kterému v ideálním případě předcházelo označení textu. Pokud by bylo označení prázdné, nebo jiným způsobem neplatné, algoritmus skončí, protože nemůže vytvořit žádnou kotvu. Je vhodné podotknout, že takto definovaných bloků může být více a každý může operovat nezávisle na ostatních.

V případě, že je výběr validní, začne pokus o vytvoření kotvy. Označení (Selection) se v takovém případě skládá z jednoho a více objektů rozsahu (Range) – více těchto objektů je specifické pro Firefox³, který umožňuje tzv. nesouvislý výběr. S každým rozsahem se pak pracuje zvlášť.

První krok je získání nejbližšího společného předka počátečního a koncového bloku rozsahu. Tento předek je pak zaručeně nejmenší možný blok obsahující celý rozsah (commonAncestorContainer). Následně jsou získány všechny textové bloky kořenového bloku, do kterých zároveň zasahuje rozsah. Z nich jsou vyřazeny všechny ty, které se již podílí na tvoření nějaké kotvy, čímž je zabráněno překrývání kotev – jsou nahrazeny hodnotou null. Účast na tvoření kotvy znamená, že v cestě k němu skrze DOM⁴ se vyskytuje element typu Anchor. Pomocí hodnot null je pak pole těchto bloků rozděleno na menší sub-pole, která budou každé zvlášť představovat blok kotev. Tedy k rozdělení na více bloků kotev dojde pouze v případě, že označení je de facto rozděleno jednou nebo více už existujícími kotvami.

Pro každé takové sub-pole je tedy vytvořen AnchorBlok, který kromě referencí na jednotlivé menší bloky textu nese i další informace jako jsou například barva nebo data. Začátek bloku kotev je dán jeho prvním Anchorem, který přebírá odsazení svého začátku od začátku původního textového bloku z rozsahu (startOffset). Konec je pak dán jeho posledním Anchorem, který z rozsahu přebírá odsazení svého konce od začátku původního textového bloku (endOffset). Všechny případné Anchory mezi nimi mají vždy odsazení začátku nastavené na hodnotu 0 a hodnotu odsazení konce na délku textového bloku – pokrývají ho vždy celý.

Nakonec jsou všechny Anchory interně spojeny pomocí hodnot leftJoin a rightJoin, čímž algoritmus končí.

Přidat UML

³ Zdroj: https://developer.mozilla.org/en-US/docs/Web/API/Selection/rangeCount

⁴ DOM – Document Object Model ~ Objektový Model Dokumentu

7 ALGORITMUS ULOŽENÍ KOTEV

Knihovna samotná neukládá vytvořené kotvy do žádné databáze ani jiného uložiště. Implementace ukládání dat je tedy nechána na uživateli, ovšem o data samotná se nijak starat nemusí. Knihovna obsahuje metodu serialize(), která má jako návratovou hodnotu všechna data, která jsou nezbytná pro pozdější rekonstrukci kotev.

Po zavolání této metody na objektu DTA se rekurzivně volá metoda serialize() na každém AnchorBlocku, která vrací zpracovaná data právě tohoto AnchorBlocku. V těchto datech se nachází barva, objekt s daty, textová hodnota (value) celého bloku a opět rekurzivně získaná data jednotlivých objektů Anchor. Z každého z nich je získán jeho startOffset, endOffset, xPath a jeho textová hodnota. Výsledná datová struktura je tedy vrácena jako jeden objekt viz obrázek níže.

Přidat obrázek!!!

8 ALGORITMUS REKONSTRUKCE KOTEV

Opětovné vkládání kotev zajišťuje funkce deserialize(), která jako vstupní parametr předpokládá předem uložená data, která nesmí být pro správnou funkčnost algoritmu nijak porušena. Algoritmus postupuje po jednotlivých uložených AnchorBlocích – tedy vytvoří objekt AnchorBlock a v rámci něj se následně zpracovávají jednotlivé kotvy.

Prvním krokem pro rekonstrukci kotvy je nalezení rodičovského elementu. K tomu je použita uložená hodnota xPath. Pokud není požadovaný element nalezen, je kotva uložena do seznamu kotev určených k opravě a algoritmus přejde k obnově další kotvy. V opačném případě přejde algoritmus ke druhému kroku – kontrole textu elementu, který se nachází mezi uloženými hodnotami startOffset a endOffset. Text se porovnává s uloženou hodnotou striktně, kdy, pokud se shodují, je možné obnovit kotvu do původního stavu. Když ke shodě nedojde, jsou texty porovnány ještě nestriktně, v jejich normalizované podobě, tedy zbaveny veškeré diakritiky, interpunkce a nezávisle na velikosti písma. V případě, že byl text změněn jen drobnou úpravou jako například opravou diakritiky, je kotva obnovena, ale je označena jako změněná (je jí přiřazen atribut data-changed, což umožňuje například změnu stylu). Pokud nedojde ke shodě ani v tomto případě, je kotva zařazena do seznamu kotev určených k opravě. Pokud se podařilo obnovit alespoň jednu kotvu, jsou do AnchorBlocku vloženy uložená data a barva a je zařazen mezi aktivní AnchorBlocky.

Jestliže není seznam kotev určených k opravě prázdný, prochází tyto kotvy procesem pokusu o opravu. V tomto procesu je znám původní AnchorBlock a index dané kotvy v seznamu kotev tohoto AnchorBlocku. Pro účely opravy je vytvořen nový AnchorBlock, do kterého se opravená kotva přiřadí (přebírá také data i barvu původního AnchorBlocku). Tentokrát se místo konkrétního elementu vyhledávají veškeré výskyty uloženého textu, a to nezávisle na velikosti písma. Z těchto výskytů jsou vyloučeny všechny, jež se už nachází uvnitř nějaké kotvy. Pro případ, že by se nějaký z těchto výskytů nacházel v požadovaném uloženém elementu (existujeli), je tento výskyt upřednostněn, jinak je použit první výskyt v textu. V určeném výskytu je dále nalezen výskyt nejblíže k uloženým hodnotám startOffset a endOffset (pro případ, že by se v daném elementu hledaný text vyskytoval vícekrát). Na tomto výskytu je následně obnovena kotva, která je dále označena za změněnou. Pokud by ovšem došlo k tomu, že by se nový AnchorBlock nacházel právě vedle původního AnchorBlocku (existuje-li), přesněji by se opravená kotva nacházela právě vedle kotvy, vedle které byla původně (a to i vzhledem ke straně), jsou tyto AnchorBlocky spojeny do jednoho, čímž je snížen negativní vliv opravy.

9 KNIHOVNA

Celý projekt je koncipován jako knihovna pro použití ve webovém prostředí; přesněji přímo ve webových aplikacích. Od toho se také odvíjí architektura projektu a styl jeho vývoje. Důraz byl například kladen velmi na omezení využívání dalších knihoven (dependecies). Celá knihovna je pak dostupná v registru npm⁵ pod názvem dynamic-text-anchors. Díky npm je jednoduché publikovat nové verze knihovny přímo z GitHub repozitáře nebo knihovnu jednoduše sémanticky verzovat (major.minor.patch). Npm ostatním vývojářům poskytuje přehledné informace o knihovně, jako je například odkaz na demo nebo README projektu.

9.1 ARCHITEKTURA

Celý projekt je v zásadě rozdělený na dvě části – /lib a /demo. Demo, vytvořené pomocí frameworku Vue.JS, umožňuje vývojářům vyzkoušet si funkčnost knihovny v předpřipraveném prostředí. Celé demo je popsáno podrobněji v následující kapitole. Lib obsahuje soubory samotné knihovny, které jsou psány v jazyce TS, který je následně kompilován do standartního JS – tyto soubory jsou poté zveřejňovány do registru npm, a používány i v demu. Hlavním souborem knihovny je index.ts, který obsahuje třídu DTA, tedy je to soubor, který je určen k importování. Do dalších souborů jsou rozděleny třídy AnchorBlock, Anchor a teké pomocné funkce. Speciálním souborem je zde soubor s defaultním stylováním kotev, který může vývojář také importovat pro zajištění základního funkčního stylování.

9.2 Použití

Celý proces od instalace po užití je objasněn v README. Po instalaci je potřeba knihovnu pouze importovat:

'import DTA from "dynamic-text-anchors";'

Poté je nutné vytvořit objekt DTA, do jehož konstruktoru se vkládá element, v němž má být možné operovat s kotvami:

'const dta = new DTA(rootElement);'

Následně je již možné používat všechny veřejné metody knihovny.

Posunout za Demo????

_

⁵ npm, Inc. – správce JS balíčků (knihoven) pro Node.JS

- **9.3 DEMO**
 - **9.3.1** FUNKCE
 - 9.3.2 GENEROVÁNÍ TEXTU

10 ZÁVĚR

11 Použité zdroje

Aktuální dokument neobsahuje žádné prameny.

12 SEZNAM OBRÁZKŮ

Nenalezena položka seznamu obrázků.

13 SEZNAM UKÁZEK KÓDU

Nenalezena položka seznamu obrázků.