SRN						

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE18MA101

END SEMESTER ASSESSMENT (ESA), B. TECH. I- SEMESTER- Dec. 2018 **UE18MA101- ENGINEERING MATHEMATICS-I**

Tin	ne: 3	Hrs Answer All Questions Max Marks: 1	L00		
1.	a)	Verify Cauchy's Mean value theorem for the function $f(x) = \sin x$, $g(x) = \cos x$ in the interval $[\pi/6, \pi/3]$.			
	b)	Show that the two curves $r=a$, $r=a\left(1+\cos\theta\right)$ intersects at an angle $\pi/4$.	4		
	c)	Show that for the curve $r=f(\theta)$, the curvature is given by $\left[\frac{d^2u}{d\theta^2}+u\right]\sin^3\phi$, where $u=\frac{1}{r}$.	7		
	d)	Find the n th derivative of $\frac{1}{2}e^{3x}\cos x\sin^2 x$.	5		
2.	a)	If $x=e^u tanv$, $y=e^u secv$, $z=e^{-2u} f(v)$, Prove that $xz_x + yz_y + 2z = 0$	6		
	b)	A hot water storage thank is a vertical cylinder surmounted by a hemispherical top of the same diameter. The tank is designed to hold 400 m^3 of liquid. Determine the total height H and the diameter 2r of the tank if the surface heat loss is to be a minimum.	7		
	c)	Expand $e^x \cos y$ in powers of (x-1) and $(y-\pi/4)$ using Taylor's series up to the third degree term.	7		
3.	a)	Trace the curve $(x^2 + y^2) x = 2 ay^2$.	6		
	b)	Evaluate $\int \int_E \int x dv$, where E is the region enclosed by $z = 0$, $z = x + y + 5$, $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.	7		
	c)	Evaluate $\int_{0}^{a/\sqrt{(2)}} \int_{y}^{\sqrt{(a^2-y^2)}} \log \left(x^2+y^2\right) dx dy$ by changing the order of integration.	7		
4.	a)	Find the Orthogonal trajectories for the family of curves $r = \frac{2a}{1 + \cos \theta}$	6		
	b)	Solve $x - yp = ap^2$, using the method of equation solvable for y.	7		
	c)	Solve $\frac{dy}{dx} = 1 + \frac{y}{x} + \frac{y^2}{x^2}$	7		
5.	a)	Solve $(D^4 + D^2 + 1) y = ax^2 + b \sin 2 x$	6		
	b)	Solve $(5+2x)^2 y'' - 6(5+2x) y' + 8 y = 6x$.	7		
	c)	Solve $(x^2D^2 + xD - 1)y = x^2e^x$ by the method of variation of parameters. (Reduce the given differential equation to a differential equation with constant coefficient first)	7		