0	MOSTEFAOUT Mayan IPT - cycles 3-4
	IPT - cycles 3 4
Q1)	La requêté SPL domandée est
	SELECT PATIENT. id FROM PATIENT JOIN MEDICAL ON (PATIENT id = MEDICAL id AND etat = hernix discale');
Q_{2}) La regrête cut:
E	SELECT PATIENT nom, PATIENT prewm FROM PATIENT JOIN MEDICAL DN (PATIENT IV = MEDICAL IV AND etat = 'spondylolisthesis');
Q3)) La régrête est:
	SELECT MEDICAL etat, MAX(btat-groupe) FROM (SELECT etat, count (*) as etat groupe FROM MEDICAL OROUP BY etat);
Q ₄₎	L'intérêt d'utilises numpy est de peuvoir disposer de fonctions optimisées en omplexité temposelle pour des tableaux de (très) grande taille, facilitant de fait le traisement des données.
· Q5)	Pour N=10 ⁵ :
	· le tablem ontra contrat 6×105 cases stockant des réels coté sur 4 octets.
	Donc le coût de shockage est de : 6x105x4=2,4x10° octets, soit 2,4H pour le tableau vater et de 105x1=105 octets, soit 0,140 pour le tableau etat, d'en un botal de 2,5Mo.

ae)	La sonction de mandée est:
CHIEF CA	def separationPar Grage (cluba-etat):
	vecteur etest, """
	spplab = [[],[],[]]
	for i in range (len (khb)):
	septab[etat[i]].append(data[i])
	return uptab
Q7)	Les organents à utiliser sont:
	· pour ARUSI: (in, in, i+j)
	pour ARGS2: (groupes [i], groupes [k]) marker = mark[k])
	• peul ARGS 3 groupes[i] • peul TEST: i!=j
(8)	les d'agrammes de la diagonale permettent d'avoir une distribution le du mombre de patrents peur un attribut donné.
	les d'aggrammes hor d'aggnale peuvent pernettre en lumière
	les diagrammes hor diagonale peuvent pernettre en lumière certaines distributions de valeurs pour une pathologie donnée.
∞ 9)	Une expression & xnorm, serait:
	γ x_j - min(k)
	$\chi_{norm,j} = \frac{\chi_{j} - \min(\chi)}{\max(\chi) - \min(\chi)}$
5.7	

60) def min_max(X) = "" Refourne le maximum et le minimum de X."" miniX, maxiX = 0,0 for x in X: #invoriant: (miniX, maxix) = (min(X), max(X))if x> maxiX: maxiX = x elif x < miniX: miniX= x return minix, maxix La fonction est bien de complexité livéaire Qu) def distance (z, data): dist = [] Zourm= [(K-min2)/(max2-min2) for k in 2] min X, max = min-max (Z) for i in range ((en(data)) manx, maxx = min-max (data[i]) Xnorm = [(x-iminx)/(maxx-minx) for x in data[i]] for j in range (len (Xnorm)): d += (ZnormEj] - Xnorm [j]) = 2 d = sgrt(d)dist. append (d) return dist

Q12) Expliation de la touction KNN. Portre 1: - on initialise T (liste de liste contenant distli] et 1) arec une liste vide. - on calcule dist, was pendant aux distances entre z et les données de data → on ajoute à 7 la liste [dist(1), i] de manière à ce que 7 soit au format de l'évoucé, avec une boucle for de N tours. - on the en place T. Partie 2: > on initialise une liste de no zéros appelés select. -> vine bouck for de K tours incrementant de 1 la case portée por l'indice de l'état de la ligne i de T: select [etat [T[i][1]]] += 1 réupère le nunéro récupère 12 fat correspondent dans le vecteur. (entre 0 et 2) case de select à incrementa. Partle 3 - on initialise ind a 0 - on initialize res avec la première cerc à relect. - bende for de nb-1 tours avec. un test de comparaison et éven hiellement deux effectations. vorable res: cordinal ou groupe majorinire, ind: nunero du groupe majoritaire.

(213) L'information apportée par la udidyonale est de savoir si l'élast i (si osisz) est conforme à l'état prédit par l'algorithme 10NN Premier ligner 23 uplets avec étattest = étatorésit 4 uplets avec étatgrédit = 1 état-prédit e [0,2] 7 uplets arec étatpédit=2 23 uplets arec Satprosit = étattest Première colonne: état_préduit = 0 Etat test e 50,27 7 uplets avec état lest = 1 L 5 uplets arec élattest=2 Cettre matrice seit à mesure la correlation entre la privision de l'algorithme KNN et les données de test, L'idée étailet de Ex La rendre idealement diagonale, ou au moins à coefficients diagonal, dominants. Q14) La courbe obtenue affiche des valeurs comprises entre E 70% et 75% à révssite, avec le maximum attents pour K=8 et K=11. Cela preuve que l'algorithme KNN n'est fonctionnel q'avec des valeurs "modérées", On peut aussi critique le peur contage de réussité, insuffisamment élevé peur une application comme le pré-diagnostic nédical.

C				
Q15) de f	moyenne (x): un Calcule la moyenne de x."" man = 2			
	meg -, 0			
	n = len(x) for i in range(n):			
	mog += X[i]			
	return (noy/n)			
def	variance (X):	blen de	fenchlons comploxité	ivéaine.
	varian = 0			
	moyx = moyenne(x) n = len(x)			
(for i in range(n):			
	$varian += (X[i] - moyX^{**}2)$	A		
	return (varian/n)			
Q16) def	synthe le (data, etat):			
	synth = [[]]*len(etat)			
Control Contro	for i in range (len (etat)): for j in range (len (data!)): mu = moyenne (data [j][i]) vari = variance (data [j][i])			
	mu = moyenne (data[j][i]) vori = voriance (data[j][i])			

Q17) def	
411) (001)	gaussienne (a, moy, v):
	reham (1/sqrt(2*pi*v)) exp ((-(a-moy)*2)/2*v)
Q18) def	probabilité Groupe (z, dala, elat):
	probas = [0,0,0]
	groupes = separation for troupe (data, etat).
	synth = synthese (data, etat)
	for i in range (3):
	proba = 1, -(1, -1)
	for i in range (len(z)):
	proba = gaustenne (Z[i], synth [i][i][o], synth [i][i][1])
	probas [j] = proba*(1/3)
	rehrn probas
Q19) def	prediction (z, data, etat):
	prob = probabilite Groupe (Z, data, etat)
	maxp, maxindex = 0,0
	maxp, maxindex = 0,0 for i in range (len(prob)):
	maxp, indxindex = 0,0 for i in range (len(prob)): if prob[i] > moxp:
	maxp, maxindex = 0,0 for i in range (len(prob)): if prob[i] > maxp: maxp = prob[i]
	maxp, indxindex = 0,0 for i in range (len(prob)): if prob[i] > moxp:
	maxp, maxindex = 0,0 for i in range (len(prob)): if prob[i] > maxp: maxp = prob[i] maxindex = i
	maxp, maxindex = 0,0 for i in range (len(prob)): if prob[i] > maxp: maxp = prob[i]
	maxp, maxindex = 0,0 for i in range (len(prob)): if prob[i] > maxp: maxp = prob[i] maxindex = i

Q 20) (Q 21)	L'vi calca peh	h'liso Jeu Hes	ihlon: il	d. est in	u (o. gli o'éi	yariq vika	lh nc rahi	que en	s exp de curs	ligu m	anipo arro	ov der	les des	prol	babil auh	ilés tés	ton'	étam	Pa	
				-2.7																