

高等代数

Advanced Algebra

作者: Peknt

组织:清疏大学

时间: September 23, 2024

版本: 1.1

作者联系方式: QQ2499032096

前言

参考书

教材

- 高等代数学,谢启鸿、姚慕生、吴泉水 习题集
- 高等代数,谢启鸿、姚慕生

参考资料

南开大学凯淼淼习题课资料等

目录

第一章	行列式	1
1.1	基本概念	1
	1.1.1 行列式的定义	1
	1.1.2 行列式的性质	2
	1.1.3 Cramer 法则	2
1.2	行列式计算	2
	1.2.1 降阶法	3
	1.2.2 求和法	4
	1.2.3 递推法与数学归纳法	4
	1.2.4 拆分法	6
	1.2.5 升阶法	7
	1.2.6 求根法	7
	1.2.7 Laplace 定理	7
第二章	矩阵	9
2.1	基本概念	9
	2.1.1 矩阵及其运算	9
	2.1.2 逆矩阵	10
	2.1.3 矩阵的初等变换与初等矩阵	10
第三章	线性空间	11
第四章	线性映射	12
第五章	多项式	13
第六章	特征值	14
第七章	相似标准型	15
第八章		16
小八千		10
第九章	内积空间	17
第十章	双线性型	18

第一章 行列式

1.1 基本概念

1.1.1 行列式的定义

定义 1.1 (行列式)

 n^2 个数依次排成n 行, n 列, 并用两条竖线围起的式子:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$(1.1)$$

称为n 阶行列式。

定义 1.2 (余子式)

设 |A| 是一个 n 阶行列式,划去 |A| 的第 i 及第 j 列,剩下的 $(n-1)^2$ 个元素按原来的顺序组成一个 n-1 阶行列式,这个行列式称为 |A| 的第 (i,j) 元素的余子式,记为 M_{ij}

定义 1.3 (代数余子式)

设 |A| 是如(1.1)所示的 n 阶行列式, M_{ij} 是 |A| 的第(i,j) 元素的余子式,定义 |A| 的第(i,j) 元素的代数 余子式为

$$A_{ij} = (-1)^{i+j} M_{ij}$$

定义 1.4 (行列式的递归定义)

设 |A| 是如(1.1)所示的行列式,若 n=1,即 |A| 只含一个元素 a_{11} ,则定义 |A| 的值等于 a_{11} 。假设 n-1 阶行列式的值已经定义好,那么对任意的 i,j,|A| 的第 (i,j) 元素 a_{ij} 的余子式 M_{ij} 已定义好,定义 |A| 的值为

$$|A| = a_{11}M_{11} - a_{21}M_{21} + \dots + (-1)^{i+1}a_{i1}M_{i1} + \dots + (-1)^{n+1}a_{n1}M_{n1}$$
(1.2)

定义 1.5 (行列式的组合定义)

设|A|是n阶行列式,定义|A|的值为

$$\sum_{(k_1,\dots,k_n)\in S_n} (-1)^{N(k_1,\dots,k_n)} a_{k_1 1} a_{k_2 2} \dots a_{k_n n}$$

定理 1.1 (行列式按任意行列展开)

设|A|是如(1.1)所示的行列式,则对任意的 $1 \le j \le n$,有

$$|A| = a_{1j}A_{1j} + \dots + a_{ij}A_{ij} + \dots + a_{nj}A_{nj}$$
 (1.3)

对任意的 $1 \le i \le n$,有

$$|A| = a_{i1}A_{i1} + \dots + a_{ij}A_{ij} + \dots + a_{in}A_{in}$$
(1.4)

1.1.2 行列式的性质

性质1上(下)三角行列式的值等于其主对角线上元素之积

性质 2 若行列式的某一行 (或某一列) 全为零,则行列式的值等于零

性质 3 用某个常数 c 乘以行列式的某一行 (或某一列),所得行列式的值等于原行列式值的 c 倍

性质 4 对换行列式的两行 (或两列), 行列式的值改变符号

性质 5 若行列式的某两行(或某两列成比例),则行列式的值等于零

性质 6 若行列式的某一行 (或某一列) 元素 $a_{ij} = b_{ij} + c_{ij}$,则该行列式可分解为两个行列式之和,其中一个行列式的相应行 (列) 的元素为 b_{ij} ,另一个行列式的相应行 (列) 的元素为 c_{ij}

性质 7 将行列式的某一行 (或某一列) 乘以常数 c 加到另一行 (或另一列) 上去,行列式的值不变

性质 8 行列式转置之后的值不变,即 |A'| = |A|

1.1.3 Cramer 法则

Cramer 法则适用于计算含有n个未知数,n个方程式的线性方程组线性方程组的一般形式为

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

系数按顺序排列组成一个行列式 |A|:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

定理 1.2 (Cramer 法则)

将常数项 b_1, b_2, \cdots, b_n 依次置换 |A| 的第 i 列元素,可得行列式 $|A_i|$ $(1 \le i \le n)$: 若 |A| 不等于零,则该方程组有且只有一组解:

$$x_1 = \frac{|A_1|}{|A|}, x_2 = \frac{|A_2|}{|A|}, \cdots, x_n = \frac{|A_n|}{|A|}$$

1.2 行列式计算

命题 1.1 (Vandermonde 行列式)

Vandermonde 行列式的值为

$$V_{n} = \begin{vmatrix} 1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1} \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (x_{j} - x_{i})$$

2

命题 1.2 (分块上(下) 三角行列式)

$$\begin{vmatrix} A & M \\ O & B \end{vmatrix} = |A| |B|, \begin{vmatrix} A & O \\ N & B \end{vmatrix} = |A| |B|$$

定理 1.3 (Laplace 定理)

设|A| 是n 阶行列式,在|A| 中任取k行(列),那么含于这k行(列)的全部k 阶子式与它们所对应的代数 余子式的乘积之和等于 |A|, 即若取定 k 个行: $1 \le i_1 < i_2 < \cdots < i_k \le n$, 则

$$|A| = \sum_{1 \leq j_1 < j_2 < \dots < j_k \leq n} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \widehat{A} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix}$$
 同样,若取定 k 个列: $1 \leq j_1 < j_2 < \dots < j_k \leq n$,则

$$|A| = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \widehat{A} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix}$$

1.2.1 降阶法

降阶法 利用行列式的性质,将行列式的某一行(列)化出尽可能多的零,然后按照这一行(列)展开,进行 降阶处理。

命题 1.3 (爪型行列式)

计算 n 阶行列式, 其中 $a_i \neq 0 (2 \leq i \leq n)$:

$$|A| = \begin{vmatrix} a_1 & b_2 & b_3 & \cdots & b_n \\ c_2 & a_2 & 0 & \cdots & 0 \\ c_3 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & 0 & 0 & \cdots & a_n \end{vmatrix}$$

解将第 i 列乘以 $-\frac{c_i}{a_i}$ 加到第一列上 $(2 \le i \le n)$, 可得

$$|A| = \begin{vmatrix} a_1 - \sum_{i=2}^n \frac{b_i c_i}{a_i} & b_2 & b_3 & \cdots & b_n \\ 0 & a_2 & 0 & \cdots & 0 \\ 0 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{vmatrix} = (a_1 - \sum_{i=2}^n \frac{b_i c_i}{a_i}) a_2 a_3 \cdots a_n$$

注 去掉 $a_i \neq 0 (2 \leq i \leq n)$ 的条件, 我们仍可求出

$$|A| = a_1 a_2 \cdots a_n - \sum_{i=2}^n a_2 \cdots \hat{a_i} \cdots a_n b_i c_i$$

其中 \hat{a}_i 表示不在连乘式中。例如,若 $a_i = 0$,则先按 c_i 所在行展开,再按 b_i 所在列展开,即得结论。

命题 1.4

计算 n 阶行列式, 其中 $a_i \neq 0 (1 \leq i \leq n)$:

$$|A| = \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n \end{vmatrix}$$

注 去掉 $a_i \neq 0$ 的条件, 我们仍可求出

$$|A| (-1)^{n-1} \sum_{i=1}^{n} a_1 \cdots a_{i-1} x_i a_{i+1} \cdots a_n + (-1)^n a_1 a_2 \cdots a_n$$

例题 1.1 设 $|A| = |a_{ij}|$ 是一个 n 阶行列式, A_{ij} 是它的第 (i,j) 元素的代数余子式,求证:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ y_1 & y_2 & \cdots & y_n & z \end{vmatrix} = z |A| - \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i y_j$$

1.2.2 求和法

求和法 若一个行列式各行(各列)的元素和相等,则可以将这些行(列)的所有元素加起来,提取公因子得到元素 1,然后再利用降阶法等方法对行列式进行求值。

例题 1.2 计算 *n* 阶行列式:

$$|A| = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ 2 & 3 & 4 & \cdots & n & 1 \end{vmatrix}$$

1.2.3 递推法与数学归纳法

递推法 按行或列展开行列式,比较原行列式和降阶后行列式的异同,找出递推关系。如降阶一次仍看不出关系,可再降一次试试。

命题 1.5 (三对角行列式求递推关系)

解

$$D_n = a_n D_{n-1} - b_{n-1} c_{n-1} D_{n-2} (n \ge 2), D_0 = 1, D_1 = a_1$$

$$D_n = D_{n-1} + D_{n-2}, D_0 = 1, D_1 = 1$$

这就是著名的 Fibonacci 数列。

命题 1.6 (三对角行列式)

计算n 阶行列式 $(bc \neq 0)$:

$$D_{n} = \begin{vmatrix} a & b & & & & \\ c & a & b & & & \\ & c & a & b & & \\ & & \ddots & \ddots & \ddots & \\ & & & c & a & b \\ & & & c & a \end{vmatrix}$$

解 递推式为 $D_n = aD_{n-1} - bcD_{n-2} (n \ge 2)$ 。 令 $a = \alpha + \beta, bc = \alpha\beta$,则

$$D_n - \alpha D_{n-1} = \beta (D_{n-1} - \alpha D_{n-2}), D_n - \beta D_{n-1} = \alpha (D_{n-1} - \beta D_{n-2})$$

于是

$$D_n - \alpha D_{n-1} = \beta^n, D_n - \beta D_{n-1} = \alpha^n$$

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

$$D_n = (n+1)(\frac{a}{2})^n$$

命题 1.7 (Cauchy 行列式)

计算 n 阶行列式:

$$|A| = \begin{vmatrix} (a_1 + b_1)^{-1} & (a_1 + b_2)^{-1} & \cdots & (a_1 + b_n)^{-1} \\ (a_2 + b_1)^{-1} & (a_2 + b_2)^{-1} & \cdots & (a_2 + b_n)^{-1} \\ \vdots & & \vdots & & \vdots \\ (a_n + b_1)^{-1} & (a_n + b_2)^{-1} & \cdots & (a_n + b_n)^{-1} \end{vmatrix}$$

解记|A|为 D_n ,则

$$D_{n} = \begin{vmatrix} \frac{1}{a_{1}+b_{1}} & \cdots & \frac{1}{a_{1}+b_{n-1}} & \frac{1}{a_{1}+b_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}+b_{1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & \frac{1}{a_{n-1}+b_{n}} \\ \frac{1}{a_{n}+b_{1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & \frac{1}{a_{n-1}+b_{n}} \\ \frac{1}{a_{n}+b_{1}} & \cdots & \frac{1}{a_{n}+b_{n-1}} & \frac{1}{a_{n}+b_{n}} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{b_{n}-b_{1}}{(a_{1}+b_{1})(a_{1}+b_{n})} & \cdots & \frac{b_{n}-b_{n-1}}{(a_{1}+b_{n-1})(a_{1}+b_{n})} & \frac{1}{a_{1}+b_{n}} \\ \vdots & & \vdots & \vdots \\ \frac{b_{n}-b_{1}}{(a_{n-1}+b_{1})(a_{n-1}+b_{n})} & \cdots & \frac{b_{n}-b_{n-1}}{(a_{n}-b_{n-1})(a_{n-1}+b_{n})} & \frac{1}{a_{n-1}+b_{n}} \end{vmatrix}$$

$$= \frac{\sum_{i=1}^{n-1} (b_{n}-b_{i})}{\sum_{j=1}^{n} (a_{j}+b_{n})} \cdot \begin{vmatrix} \frac{1}{a_{1}+b_{1}} & \cdots & \frac{1}{a_{1}+b_{n-1}} & 1\\ \frac{1}{a_{n}+b_{1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \frac{1}{a_{n-1}+b_{1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \frac{1}{a_{n}+b_{1}} & \cdots & \frac{1}{a_{n}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n}+b_{n-1}} & 0\\ \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & \cdots\\ \frac{1}{a_{n-1}+b_{n-1}} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & \cdots\\ \frac{1}{a_{n$$

不断递推下去得,

$$|A| = \frac{\prod\limits_{1 \leq i < j \leq n} (a_j - a_i)(b_j - b_i)}{\prod\limits_{i,j=1}^n (a_i + b_j)}$$

数学归纳法 本质上也是一种递推法,但须事先知道结论。因此有时可以先猜出结论,然后再归纳地证明它。

1.2.4 拆分法

拆分法 利用行列式的性质 6 可将一个行列式拆分为两个或多个行列式之和来计算。 **例题 1.3** 设 t 是一个参数,

$$|A| = \begin{vmatrix} a_{11} + t & a_{12} + t & \cdots & a_{1n} + t \\ a_{21} + t & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & & \vdots \\ a_{n1} + t & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix}$$

求证:

$$|A(t)| = |A(0)| + t \sum_{i,j=1}^{n} A_{ij}$$

推论 1.1

设

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

则

$$|A(t_1, t_2, \dots, t_n)| = |A| = \sum_{j=1}^{n} \left(t_j \sum_{i=1}^{n} A_{ij} \right)$$

1.2.5 升阶法

升阶法 计算行列式通常用降阶法,但有时候也可反其道而行之。升阶法常常用于一些"缺少"某行(列)的行列式,加上适当的行(列)后反而可以简化问题。

1.2.6 求根法

求根法

设 n 阶行列式 |A| 的元素 $a_{ij}=a_{ij}(x_1,x_2,\cdots,x_m)$ 都是关于未定元 x_1,x_2,\cdots,x_m 的多项式,则 |A| 是一个多元多项式。若把 x_1 看成主未定元,则可将 |A| 整理成关于 x_1 的一元多项式:

$$|A| = c_0(x_2, \dots, x_m)x_1^d + c_1(x_2, \dots, x_m)x_1^{d-1} + \dots + c_d(x_2, \dots, x_m)$$
(1.5)

其中 $c_0(x_2, \dots, x_m) \neq 0, d \geq 1$ 为次数。假设存在互异的多项式 $g_1(x_2, \dots, x_m), \dots, g_d(x_2, \dots, x_m)$,使得当 $x_1 = g_i(x_2, \dots, x_m)(1 \leq i \leq d)$ 时 |A| = 0,则

$$|A| = c_0(x_2, \dots, x_m) \cdot (x_1 - g_1(x_2, \dots, x_m)) \cdot \dots (x_1 - g_d(x_2, \dots, x_m))$$

求根法的原理

- 1. 确定主未定元 x_1 的次数 d 以及方程 (1.5)d 个不同的根 $g_i(x_2, \dots, x_m)$
- 2. 首项系数 $c_0(x_2, \cdots, x_m)$ 或可直接得到,或可通过第一步的方法继续确定
- 3. 若 |A| 是对称多项式,则可将主未定元进行轮换,简化讨论的过程

1.2.7 Laplace 定理

Laplace 定理推广了"行列式可以按任意一行 (列) 进行展开"这一性质:行列式可以按任意 k 行 (列) 进行展开。

例题 1.4 设 A, B 都是 n 阶矩阵,求证:

$$|A + B| = |A| + |B| + \sum_{\substack{1 \le k \le n \\ 1 \le j_1 < j_2 < \dots < j_k \le n}} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix} \hat{B} \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{pmatrix}$$

命题 1.8 (行列式的刻画)

设 f 为从 n 阶方阵全体构成的集合到数集上的映射,使得对任意的 n 阶方阵 A,任意的指标 $1 \le i \le n$,以及任意的常数 c,满足下列条件:

- 设 A 的第 i 列是方阵 B 和 C 的第 i 列之和,且 A 的其余列与 B 和 C 的对应列完全相同,则 f(A) = f(B) + f(C)
- 将 A 的第 i 列乘以常数 c 得到方阵 B, 则 f(B) = cf(A)
- 对换 A 的任意两列得到方阵 B, 则 f(B) = -f(A)
- $f(I_n) = 1$, 其中 I_n 是单位阵

求证:f(A) = |A|

以上给出了行列式的刻画:在方阵n个列向量上的多重线性和反对称性,以及正规性(即单位阵处的取值为1),唯一确定了行列式这个函数。

例题 1.5 令

$$(a_1 a_2 \cdots a_n) = \begin{vmatrix} a_1 & 1 \\ -1 & a_2 & 1 \\ & -1 & a_3 & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \ddots & a_{n-1} & 1 \\ & & & & -1 & a_n \end{vmatrix}$$

证明关于连分数的如下等式成立:

$$a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_{n-1} + \frac{1}{a_n}}}} = \frac{(a_1 a_2 \cdots a_n)}{a_2 a_3 \cdots a_n}$$

第二章 矩阵

2.1 基本概念

2.1.1 矩阵及其运算

定义 2.1

由 $m \times n$ 个数 $a_{ij}(1 \le i \le m, 1 \le j \le n)$ 排成 m 行 n 列的如下矩形阵列:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

称为m行n列矩阵,简称 $m \times n$ 矩阵。

矩阵的运算

1. 矩阵的加法和数乘。设有两个 $m \times n$ 矩阵 $A = (a_{ij}), B = (b_{ij}),$ 定义 A + B 仍是一个 $m \times n$ 矩阵,且 A + B 的 第 (i,j) 元素等于 $a_{ij} + b_{ij}$,即 $A + B = (a_{ij} + b_{ij})$ 。若 k 是一个数,定义 k 和矩阵 A 的乘法也是一个 $m \times n$ 矩阵,且 kA 的第 (i,j) 元素等于 ka_{ij} ,即 $kA = (ka_{ij})$ 。

矩阵的加法和数乘适合的规则

- (a). A + B = B + A
- (b). (A + B) + C = A + (B + C)
- (c). O + A = A + O = A
- (d). A + (-A) = O
- (e). $1 \cdot A = A$
- (f). k(A + B) = kA + kB
- (g). (k+l)A = kA + lA
- (h). (kl)A = k(lA)
- 2. 矩阵的乘法。设 $A=(a_{ij}), B=(b_{ij})$ 分别是 $m\times k$ 矩阵和 $k\times n$ 矩阵,定义 A 与 B 的乘积 AB 是一个 $m\times n$ 矩阵,它的第 (i,j) 元素 c_{ij} 等于:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

矩阵乘法适合的规则:

- (a). (AB)C = A(BC)
- (b). (A + B)C = AC + BC, C(A + B) = CA + CB
- (c). k(AB) = (kA)B = A(kB)
- 3. 方阵的幂。设 $A = (a_{ij})$ 是 n 阶方阵,定义 A 的 k 次幂为 k 个 A 的乘积,即 $A^k = A \cdot A \cdots A(k \land A)$ 方阵幂适合的规则:
 - (a). $A^{r}A^{s} = A^{r+s}$
 - (b). $(A^r)^s = A^{rs}$
- 4. 矩阵的转置。设 $A = (a_{ij})$ 是一个 $m \times n$ 矩阵,定义 A 的转置 A'(或写为 A^T) 为一个 $n \times m$ 矩阵,它的第 j 行为 A 的第 j 列 $(1 \le j \le n)$

矩阵转置适合的规则:

- (a). (A')' = A
- (b). (A + B)' = A' + B'

- (c). (kA)' = kA'
- (d). (AB)' = B'A'
- 5. 矩阵的共轭。设 $A = (a_{ij})$ 是一个 $m \times n$ 复数矩阵,定义 A 的共轭为一个 $m \times n$ 矩阵 $\overline{A} = (\overline{a_{ij}})$ 矩阵共轭适合的规则:
 - (a). $\overline{A+B} = \overline{A} + \overline{B}$
 - (b). $\overline{kA} = \overline{kA}$
 - (c). $\overline{AB} = \overline{AB}$
 - (d). $\overline{(A')} = (\overline{A})'$

定理 2.1 (方阵乘积的行列式)

两个同阶方阵乘积的行列式等于行列式的乘积,即|AB| = |A||B|

2.1.2 逆矩阵

定义 2.2

设 $A \ge n$ 阶方阵,如果存在n 阶方阵B,使得 $AB = BA = I_n$,则称A 是可逆矩阵,称 $B \ge A$ 的逆矩阵,记 $B = A^{-1}$ 。可逆矩阵也称非奇异矩阵,简称非异阵。不是逆矩阵的方阵称为奇异矩阵,简称奇异阵。

求逆运算满足下列法则(下列矩阵均假设是可逆矩阵):

- 1. $(A^{-1})^{-1} = A$
- 2. $(AB)^{-1} = B^{-1}A^{-1}$
- 3. $(kA)^{-1} = k^{-1}A^{-1}$
- 4. $(A')^{-1} = (A^{-1})'$

性质可逆矩阵之积为可逆矩阵。

性质任意一个方阵和同阶奇异阵之积为奇异阵。

定义 2.3 (伴随矩阵)

设 $A = (a_{ij})$ 是一个 n 阶方阵,行列式 |A| 中元素 a_{ij} 的代数余子式记为 A_{ij} ,称下列矩阵为 A 的伴随矩阵,记为 A^* :

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

伴随矩阵具有下列重要性质:

$$AA^* = A^*A = |A| I_n$$

定理 2.2

设 $A = (a_{ij})$ 是n 阶方阵,则A 是可逆矩阵的充要条件是A 的行列式 $|A| \neq 0$,此时

$$A^{-1} = \frac{A^*}{|A|}$$

2.1.3 矩阵的初等变换与初等矩阵

第三章 线性空间

第四章 线性映射

第五章 多项式

第六章 特征值

第七章 相似标准型

第八章 二次型

第九章 内积空间

第十章 双线性型