

Considerations for fungi

Dr Johanna Rhodes

Learning outcomes

- DNA extractions for NGS
 - main steps and considerations for fungi
- Applications
- Challenges and limitations

Who am I?

Genomics workflow

Fungal genomics complexities Considerations

- >1000 fungal species have been genome sequenced
 - >130k bacterial species
- Genome sizes can range from ~2-180 million nucleotides
 - predicted proteomes 2-35 thousand proteins
- DNA extraction difficulties
 - Lysis buffer may not degrade cell wall containing ergosterol
 - beat beating not good for long read sequencing
- Genomes:
 - haploid, diploid, polyploid, aneuploidy

- Pure or mixed culture, sample or ancient?
- Short or long read technology?
 - Sonication or bead-beating good to break cell wall -> fragmentation
 - Enzymatic digest -> less fragmentation
- Which life cycle stage?
- Personal recommendations (caveats liquid culture best, and does depend on species....):
 - Illumina: Lucigen MasterPure DNA extraction plus bead beating
 - ONT/PacBio: in-house protocol for filamentous fungi, Epicentre with modifications for yeasts

- Pure or mixed culture, sample or ancient?
 - What is your question (research/diagnostic)?
 - Pure liquid culture
 - Sample host tissue —> dominate sequence reads
 - Extraction from BAL High Pure PCR Template Prep kit (Roche)
 - Ancient CTAB method

DNA extractions Considerations for fungi

- Pure or mixed culture, sample or ancient?
- Short or long read technology?
 - Sonication or bead-beating good to break fungal ergosterol cell wall -> fragmentation
 - short read sequencing
 - Enzymatic digest -> less fragmentation
 - long read sequencing
 - Personnel recommendations for high-molecular weight DNA:
 - MasterPure with large liquid culture start and no bead beating, keep very cold throughout —> great for
 yeasts (see 'Rhodes et al. Emerging Microbes & Infection')
 - MasterPure extraction and QIAGEN Uneasy Blood & Tissue kit for clean up —> works for molds (see 'Hemmings et al. Mycopathologia')

- Pure or mixed culture, sample or ancient?
- Short or long read technology?
 - Sonication or bead-beating good to break cell wall -> fragmentation
 - Enzymatic digest -> less fragmentation
- Which life cycle stage?
 - spores, hyphae...

- No single extraction method optimal for all species/life stages
- Spores:
 - Thick cell walls, maybe coated, making them resistant to standard lysis —> bead beating, enzymatic treatments
 - Small spore size means less biomass = lower DNA yield
 - Also consider purification to remove contaminants from extracellular material

- No single extraction method optimal for all species/life stages
- Hyphae:
 - Filamentous, less thick cell walls but still a problem —> bead beating
 - DNA is usually of high yield and quality/easier to purify

- No single extraction method optimal for all species/life stages
- Mycelium:
 - Dense network of hyphae containing extracellular proteins + polysaccharides which can inhibit extraction—> CTAB or phenol-chloroform
 - High biomass = good yield

- No single extraction method optimal for all species/life stages
- Fruiting body
 - Complex, multicellular structure that produces spores.
 - Dense tissue needs extensive mechanical disruption
 - Needs extensive purification e.g. column purification
 - Large biomass = good yield

- Other sequencing approaches:
 - amplicon-based on the MinION (or other ONT platform)
 - QIAGEN PowerSoil Pro kit
 - bead beating using FastPrep-24 5G (Thermo Fisher)

Other considerations

- Cell wall composition varies across species, life stages and environmental conditions
- Secondary metabolites and pigments
 - can inhibit extractions, so important to perform purification step(s) to improve DNA quality
- DNA yield varies across species
 - Adjust initial sample based on expected/desired yield
- Biosafety requirements
- Storage
- Optimise buffers to improve DNA stability