Student Name: Nguyen Minh Quan
Sadeni JD: MAMA JU19036
Probability, Homework 8.
I/Special Continuous Random Variable:
21 Let Z be the standard normal vandom variable.
By the Normal Probability Table, P({Z>1.96}) = 1-P({Z≤1.96}) = 1-0.975=0.025.
3/ Let Z be the standard normal random variable.
a) P({Z>z})=0.3622 => P({Z <z})=1-p({z>z})=1-0.3622=0.6378.</z})=1-p({z>
By the Normal Probability Table, = 0.3526.
6) by the Normal Probability Table, P({Z < 2}) = 0.1131 ⇒ z = -1.2 L.
c) P(60 <z<z})= 0.4838<="" td=""></z<z})=>
=> P({Z<=}) = P({Z<0})+P({0 <z<e}) 0.5+0.4831="0.9138.</td" ==""></z<e})>
By the Normal Probability Table, == 2.14.
d) P(f-z < Z < z) = 0.95. By the symmetry of Z by the y-axis,
P(f-2 < Z < 2}) = 1-P({Z < -2}) - P({Z > 2}) = 1-2P({Z > 2})
=) $P(4Z \ge 2) = \frac{1 - P(4 - 2 < 2 < 2)}{2} = \frac{1 - 0.95}{2} = 0.025$
=> P({Z<≥}) = 1-P({Z>≥}) = 1-0.025 = 0.975.
By the Normal Probability Table, == 1.96.
4/
a) $P(\{Z \le k\}) = 1 - P(\{Z > k\}) = 1 - 0.2946 = 0.7054$
By the Normal Probability Table, k = 0.54.
b) By the Normal Probability Table, le= -1.72.

c) By the Normal Probability Table, $P(\{Z \le -0.93\}) = 0.1762$ $\Rightarrow P(\{Z \le P\}) = P(\{Z \le -0.93\}) + P(\{-0.93 < Z < P\}) = 0.1762 + 0.7235 = 0.8992$. By the Normal Probability Table, $P(\{Z \le -0.93\}) = 0.1762 + 0.7235 = 0.8992$.

Then X is a normal variable with parameters
$$\mu=200$$
, $E=15$.

$$\Rightarrow Z = \frac{X - 200}{15} \sim \mathcal{N}(0, 1).$$

a) by the Normal Probability Table,
$$P(\{X>224\}) = P(\{Z>1.6\}) = 1 - P(\{Z\le1.6\}) = 1 - 0.9452 = 0.0548.$$

by the Normal Probability Table,
$$P(\{191 \le x \le 209\}) = P(\{-0.6 \le z \le 0.63\}) = P(\{z \le 0.63\}) - P(\{z \le -0.63\})$$

$$= 0.7257 - 0.2743 = 0.4514.$$

c) By the Normal Probability Table,
$$P(\{X > 2303\}) = P(\{Z > 2\}) = 1 - P(\{Z \le 2\}) = 1 - 0.9772 = 0.0228.$$

d)
$$P(4 \times (x^3) = 0.25 \Leftrightarrow P(\{2 < \frac{x - 200\}}{15}) = 0.25$$
.
By the Normal Probability Table, $\frac{x - 200}{15} = -0.68 \Rightarrow x = 189.95$.

El Let X be obe random variable representing the piston ring diameter. Then
$$\times$$
 \sim $\mathcal{N}(10, 0.03^2) \Rightarrow Z = \frac{\times -10}{0.03} \sim \mathcal{N}(0, 1)$.

P({
$$\times$$
 >10.075}) = P({ \times >2.5}) = 1-P({ \times <2.5}) = 1-0.99 % = 0.0002 = 0.62%.

b) by the Normal Probability Table,
$$P(\{9.97 < X < 10.03\}) = P(\{-1 < Z < 1\}) = P(\{Z < 1\}) - P(\{Z < -1\})$$

$$= 0.8413 - 0.1587 = 0.6826.$$

c)
$$P(\{X < x\}) = 15\% \Leftrightarrow P\left(\{Z < \frac{x - 10}{0.03}\}\right) = 0.15$$
.

By the Normal Probability Table,
$$\frac{x-10}{0.03} = -1.036 \Rightarrow x = 9.9689$$

Then $Y \sim Bino (1000, 0.02)$. Here n = 1000 and p = 2% = 0.02

Thus, Y can be approximated by $X \sim \mathcal{N}(20, 19.6)$.

$$\Rightarrow Z = \frac{X-20}{\sqrt{19.6}} \sim \mathcal{N}(0,1).$$

a) By the Normal Probability Table,
$$P(\{Y > 25\}) \approx P(\{X > 25,5\}) = P(\{Z > 1.24\}) = 1 - P(\{Z \le 1.24\})$$
$$= 1 - 0.8925 = 0.1075.$$

By the Normal Probability Table,
$$P(\{20 < Y < 303\}) \approx P(\{20.5 < X < 29.5\}) = P(\{-0.11 < Z < 2.37\})$$
$$= P(\{Z < 2.37\}) - P(\{Z \le -0.11\}) = 0.9911 - 0.4562 = 0.5349.$$

II/Extra Exercises:

$$1/ \times \sim \mathcal{N}(102,100)$$
, $W = 5 \times + 525$.

a) Since normality is preserved by linear transformation, $W \sim \mathcal{N}(5 \times 102 + 525, 5^2 \times 100)$, i.e. $W \sim \mathcal{N}(1035, 2500)$.

The cumulative distribution function of W is given by $F(x) = P(4W \le x^3) = \int_{-\infty}^{\infty} \frac{e^{-(t-1035)^2/5000}}{50\sqrt{217}} dt. \forall x \in \mathbb{R}.$

$$Y = \frac{W - 1035}{50} \sim W(0, 1)$$

$$P(\{W \geq \}) = 0.05 \Leftrightarrow P(\{Y \leq \frac{2-1035}{50}\}) = 0.05$$
.

By the Normal Probability Table, $\frac{2-1035}{50} = -1.64 \Rightarrow 2 = 953$.

Interpretation: There is a 5% chance that your wealth after 1 year <\$953.