import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from google.colab import files uploaded =files.upload()

Choose files No file chosen enable.

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to

df=pd.read_csv("data.csv")
df.head()

→		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_
	0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0
	1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0
	2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0
	3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0
	4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0

5 rows x 32 columns

df.head()

→		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_
	0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0
	1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0
	2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0
	3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0
	4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0

5 rows x 32 columns

df.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):

#	Column		-Null Count	Dtype			
0	id	569	non-null	int64			
1	diagnosis	569	non-null	object			
2	radius_mean	569	non-null	float64			
3	texture_mean	569	non-null	float64			
4	perimeter_mean	569	non-null	float64			
5	area_mean	569	non-null	float64			
6	smoothness_mean	569	non-null	float64			
7	compactness_mean	569	non-null	float64			
8	concavity_mean	569	non-null	float64			
9	concave_points_mean	569	non-null	float64			
10	symmetry_mean	569	non-null	float64			
11	<pre>fractal_dimension_mean</pre>	569	non-null	float64			
12	radius_se	569	non-null	float64			
13	texture_se	569	non-null	float64			
14	perimeter_se	569	non-null	float64			
15	area_se	569	non-null	float64			
16	smoothness_se	569	non-null	float64			
17	compactness_se	569	non-null	float64			
18	concavity_se	569	non-null	float64			
19	concave_points_se	569	non-null	float64			
20	symmetry_se	569	non-null	float64			
21	fractal_dimension_se	569	non-null	float64			
22	radius_worst	569	non-null	float64			
23	texture_worst		non-null	float64			
24	perimeter_worst		non-null	float64			
25	area_worst	569		float64			
26	smoothness_worst	569	non-null	float64			
27	compactness_worst		non-null	float64			
28	concavity_worst		non-null	float64			
29	concave_points_worst		non-null	float64			
30	symmetry_worst		non-null	float64			
31	fractal_dimension_worst		non-null	float64			
dtypes: float64(30), int64(1), object(1)							

```
memory usage: 142.4+ KB

df['diagnosis'].unique()

    array(['M', 'B'], dtype=object)

df['diagnosis'] = df['diagnosis'].map({'M': 1, 'B': 0})

correlation_matrix = df.corr()

plt.figure(figsize=(20, 20))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', square=True, linewidths=0.5)
plt.title('Correlation Matrix of Breast Cancer Dataset')
plt.show()
```


The heatmap shows how features in the Breast Cancer dataset are related to each other. Correlation values range from -1 to 1, where -1 means a perfect negative relationship, 0 means no relationship, and 1 means a perfect positive relationship.

High correlation: Some features are almost perfectly related, like "mean radius" and "mean perimeter" (0.997). You can choose just one for analysis to avoid redundancy. Low correlation: Some features are almost unrelated, like "mean symmetry" and "mean fractal dimension" (0.008). These independent features can be useful for building accurate models.

```
# Distribution Plots
sns.pairplot(df, hue='diagnosis', vars=['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean'])
plt.show()

plt.figure(figsize=(8, 6))
sns.countplot(x='diagnosis', data=df, color='skyblue')
plt.title('Diagnosis Frequency')
plt.show()
```



```
threshold = 0.5
high_corr_features = correlation_matrix.index[abs(correlation_matrix['diagnosis']) > threshold].tolist()
high_corr_features.remove('diagnosis')
len(high_corr_features)
high_corr_features
   ['radius_mean',
      'perimeter_mean',
      'area_mean',
      'compactness_mean',
      'concavity_mean'
      'concave_points_mean',
      'radius_se',
'perimeter_se',
      'area_se',
      'radius_worst',
      'perimeter_worst',
      'area_worst',
      'compactness_worst',
      'concavity_worst',
      'concave_points_worst']
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

```
X = df[high_corr_features]
y = df['diagnosis']
Y train Y tact v train v tact - train tact cnlit/Y v tact ciza-0 7 random ctata-17)
model = LogisticRegression(max_iter=10000)
model.fit(X_train, y_train)
             LogisticRegression
    LogisticRegression(max_iter=10000)
logistecReegression_y_pred = model.predict(X_test)
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
accuracy = accuracy_score(y_test, logistecReegression_y_pred)
print("Accuracy:", accuracy)
Accuracy: 0.9824561403508771
knn_model = KNeighborsClassifier(n_neighbors=3)
knn_model.fit(X_train, y_train)
knn_y_pred = knn_model.predict(X_test)
accuracy = accuracy_score(y_test, knn_y_pred)
print("Accuracy:", accuracy)
→ Accuracy: 0.9298245614035088
numerical_cols = [col for col in numerical_cols if 'id' not in col]
id_ = "id"
if id_ in numerical_cols:
```