5112 11 - 14 Hash Tables

What is a hash table?

A dictionary that uses a hash function to determine where to store items. a data Structure supporting

Insert Qury (Delete) (Scan) = ut supported by hold lotter

#### Hash tables generalize direct mapping



## What is a hash function?

Have a universe U of keys.

e.g., integers between 0 and 232

strings of byte

points in R3.

A hash function is a randomized function h: U -> Eo, ..., m-13 for some m.

## Chaining Hash Table

Hash each item to a bucket and star each bucket as a linked list.

1 2 3 4 5 6 7 8 7 10 11 12 17 14 19 11 17 18 m=18

$$h(A) = 11 \quad h(B) = 3 \quad h(C) = 7 \quad h(D) = 3$$

Hash each item to a bucket and sten each bucket as a linked list. What properties do we want from our high function? Could I use a deterministic function? Could I just up roudon numbers?

Suppose I insert B, then guery B. trunchon!

No! Word the some value each time. This is hard to analyse.

|   | lash each item | to a bucket a | and Stee each | bucket as a linked | list. |                            |
|---|----------------|---------------|---------------|--------------------|-------|----------------------------|
| , | 1 2 3 4        | 5 6 7 8       | T 20 11 12 1  | 7 14 19 16 17 18   | m=18  | 1 1/21 1/2 - 1             |
| Ļ | <del></del>    | $\perp$       |               |                    |       | What properties do we wan  |
|   | 101            |               |               |                    |       | from our high function?    |
|   | 4              |               | I.A.          |                    |       | trovi our rady the crion i |
|   |                |               |               |                    |       |                            |
|   | 10)            |               |               |                    |       |                            |

Expected cost of a guery is proportional to the expected list length.

How can the hish function minimize this? By distributing item to different buckets.

# Totally Roudon Hash Functions

Choose h uniformly from the set of all functions from U -> 20, ..., m-13.

Equivalent to picking a random number from 20, ..., m-13 for each x & U.

To stone h, how namy bits do I heed? I log in bits. Also need some way to afternally compute.

way too big

#### Universal Hash Functions

Idea: pick h from a smaller set of potential high functions.

A family of hash functions is called universal if for all x xy & U,

#### Universal Hash Functions

Example:  $h_{a,5}(x) = [(ax + b)] \mod p$ ] mod m.

p is a fixed prime with p> 121, OEa, 5 < p, with a 70.

Number Heary => universal. How to encode which high function were usery: Trust week to provide p, a, b.

## Universal Hash Functions

Example: Multiply-Shift.

Assume  $m = 2^k$ , a odd number  $0 < a < 2^{\omega}$  $h_a(x) = (ax \text{ und } 2^{\omega}) / 2^{\omega - k}$ 

Multiplying x by 4, then transfilm to a work
Then shift right to get a k-bit result.
Not universal, but almost universal

### K-wise independent hash functions

A family is k-vine independent if for all  $x_1...,x_k \in \mathcal{U}_1$   $x_1...,x_k \in \mathcal{U}_1$  x

Strayer condition than naivesol. Lots of Carstacuting

## Hash Functions in Practice

Basizally com of the theory matters.

Marmar Hosh: come loop that does a myltiply and a rotation.

After wind by

Note: Nese hash functions are not cryptographic.

Crypto hash functions are hard to invert.

I have extremly few collisions (home > 256 5 its & output)

| 3  | 4      | 5 | c | 7 | 8   | 1 | lo | G | 12 |       |   |       |       |       | l'i                                  |
|----|--------|---|---|---|-----|---|----|---|----|-------|---|-------|-------|-------|--------------------------------------|
| ,  |        |   | Г | 1 |     |   |    |   |    |       |   |       |       | П     |                                      |
| Ţ  |        |   |   | Ţ |     |   |    | Ţ |    |       |   |       |       | _     |                                      |
| B  | (      |   |   | C |     |   |    | A |    |       |   |       |       |       |                                      |
| T. |        |   |   | _ | ,   |   |    |   |    |       |   |       |       |       |                                      |
| ń  |        |   |   |   |     |   |    |   |    |       |   |       |       |       |                                      |
| رں |        |   |   |   |     |   |    |   |    |       |   |       |       |       |                                      |
|    | B<br>D | 8 | 8 | 8 | B C |   |    |   |    | 8 C A | 8 | B C A | 8 C A | 8 C A | 8 C 7 8 7 10 11 12 17 14 15 16 17 16 |

Expected cost of a guery is proportional to the expected list length.

Suppose there are niteus in the high table.

Let Cf be the number of 14eus hashing to t.

Elcost & a gury ] = ElCe]

$$= \sum_{i} Pr\{h(x_i) = \xi\}$$

$$= O(\frac{n}{m}) \quad (h \approx univesal)$$

= G(1) if m = T(n)

Hash each item to a bucket and sten each bucket as a linked list. If h is totally random, and m= O(n), then  $C_{t} = O\left(\frac{\log n}{\log \log n}\right)$ with high probability. What about the worst case? All items in the same bucket => O(s)! Very unlikely!



How large does a high table week to be to have no collisins?

$$E\left(\text{the collisions}\right) = \sum_{i < j} \Pr\left(h(x_i) = h(x_j)\right)$$

$$= \frac{1}{m} \text{ for } distruct pairs}$$

$$= \frac{1}{m} \frac{n(n-1)}{2} = O\left(\frac{n^2}{m}\right)$$
If we choose in large enough that this expectation is  $\approx \frac{1}{2}$  then can use Markov's chaquelity to say  $\Pr\left(x_i > h_i\right) = O\left(\frac{n^2}{m}\right)$ 

Markous Ineguality If X is a non-negative R.V, and a >0, then

Pr [X > a ? 5 EEx]

Pr [#Palism > 1] & E[#f collisms] = = 1.