les atomes

Orbitales électroniques

L'électron d'un atome d'hydrogène est décrit par une fonction d'onde Ψ_{n,ℓ,m_ℓ,m_s} indexée par 4 nombres quantiques.

n nombre quantique principal couche électronique
Caractérise l'énergie de l'électron

 $n \in \mathbb{N}^*$

 m_ℓ nombre quantique magnétique orbitale électronique

 $-\ell \le m_\ell \le \ell$

nombre quantique secondaire sous-couche électronique $0 \le \ell \le n-1$ $\ell = 1, 2, 3, 4, 5 \to s, p, d, f, g$

 m_s nombre quantique de spin m_s moment magnétique $m_s=\pmrac{1}{2}$

Configuration électronique

Dans un atome à plusieurs électrons, les orbitales électroniques restent inchangées mais leurs énergies sont modifiées.

Principe d'exclusion de Pauli

Deux électrons ne peuvent pas avoir leurs 4 nombres quantiques identiques

Deux électrons appariés sur la même orbitale

Deux électrons célibataires sur deux orbitales

sous-couche	S	р	d	f
nb d'électrons	2	6	10	14

Règle de Klechkowski

Les sous-couches doivent être remplies à $n+\ell$ croissant, et pour le même $n+\ell$, à n croissant.

ordre de remplissage : 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

Règle de Hund

Les électrons occupent le plus d'orbitales avec des spins identiques. $\begin{bmatrix} ^{12}{6}{\rm C} \end{bmatrix} = \underbrace{1s^2}_{ \begin{array}{c} \bullet \\ \bullet \\ \end{array}} \underbrace{2s^2}_{ \begin{array}{c} \bullet \\ \bullet \\ \end{array}} \underbrace{2p^2}_{ \begin{array}{c} \bullet \\ \bullet \\ \end{array}}$

Électrons de coeur et de valence

Les électrons de valence sont les électrons des sous-couches de n le plus grand ainsi que ceux des sous souches non pleines.

$$\begin{bmatrix} {}_{13}\text{Al} \end{bmatrix} = \underbrace{1s^2 2s^2 2p^6}_{\text{cœur}} \quad \underbrace{3s^2 3p^1}_{\text{valence}}$$

Classification périodique des éléments

Classification périodique

Métaux alcalins (Li, Na, K, ...)

Métaux mous a basse température de fusion et faible densité.

Réagissent fortement avec l'eau pour produire des hydroxydes basiques.

Halogènes (Cl, F, I, Br, ...)

On les trouve naturellement sous forme de molécules diatomiques (Cl_2 , I_2 , Br_2 , ...)

S'associent avec des éléments métaliques pour former des sels (ex : NaCl).

Gaz nobles (He, Ne, Ar, Kr, ...)

On les trouve naturellement sous forme gaz monoatomiques, incolores, inodores.

Ont une très faible réactivité (sous-couches de valence remplies).