

Primer Coloquio de Divulgación de la Comunidad de Ingeniería en Sistemas

Aprendizaje Automático en Python

Gustavo Adolfo Vargas Hákim

José Clemente Hernández Hernández

COVNNEC - App

Research Group on Computer Vision, Neural Networks,

Evolutionary Computation and their Applications

Agenda

- 1. Algoritmos de aprendizaje no supervisado.
- 2. Algoritmo de K Medias (K-Means)
- 3. Algoritmos de aprendizaje por refuerzo
- 4. Algoritmo de Aprendizaje Q (Q-Learning)

En este tipo de aprendizaje los datos no están etiquetados. Es decir, no se tiene la componente **Y** para supervisar que el modelo aprenda "bien"

¿Qué patrones se pueden encontrar dentro de dichos datos no etiquetados?

¡Puedo ver un patrón! ¡Son diferentes!

Esencial para:

- Buscar patrones desconocidos en los datos, ya que pueden encontrar características que mejoren el aprendizaje
- El mundo real, porque contiene más datos sin etiquetar que etiquetados. Los datos etiquetados necesitan la intervención humana

Clustering	Asociación
 Busca estructuras o patrones dentro de los datos no etiquetados Procesa los datos buscando clusters 	- Busca asociaciones dentro de las variables de los datos

Clustering

Clustering jerárquico

K-means clustering

K-NN (K-Nearest Neighbors)

Principal Component Analysis

Singular Value Decomposition

Independent Component Analysis

Aplicaciones del no Supervisado

Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia Comput. Sci. 54, 764–771 (2015).

https://doi.org/10.1016/j.procs.2015.06.090.

Aplicaciones del no Supervisado

Alkhayrat, M., Aljnidi, M. & Aljoumaa, K. A comparative dimensionality reduction study in telecom customer segmentation using deep learning and PCA. J Big Data 7, 9 (2020). https://doi.org/10.1186/s40537-020-0286-0

x ₁	X ₂	у
0.9	2.5	
1.7	1.8	
1.1	3.9	
2	3	
3.5	2.1	•
4.6	0.8	

x ₁	X ₂	у
1	7	
3.5	5.7	
3.9	4.1	
5	3.1	
5	5	
6.5	6	

Centroides: $\mu_1 = (4.6, 1.8)$,

$$\mu_2 = (3.9, 6.2)$$

 x_1

$$\min_{\mathbf{X}} E(\boldsymbol{\mu}_i) = \min_{\mathbf{X}} \sum_{i=1}^{\kappa} \sum_{\mathbf{x}_j \in \|\mathbf{x}_j - \boldsymbol{\mu}_i\|^2$$

Minimizar la suma de las distancias entre los k centroides y los vectores \mathbf{x}_{j} , que pertenecen a un centroide i denotados por el conjunto X_{i} que, a su vez provienen del conjunto original de los datos \mathbf{X}

Distancia =
$$\|\mathbf{x}_{j} - \boldsymbol{\mu}_{i}\|^{2}$$

Calcular la distancia de los vectores \mathbf{x}_j hacia cada centroide $\boldsymbol{\mu}_i$ y elegir los centroides más cercanos para cada vector. ¿A qué centroide pertenece cada vector?

x ₁	X ₂	у	$\mu_{\scriptscriptstyle 1}$	μ_2
0.9	2.5		14.18	22.69
1.7	1.8		8.41	24.2
1.1	3.9		16.66	13.13
2	3		8.2	13.85
3.5	2.1		1.3	16.97
4.6	0.8		1	29.65

x ₁	X ₂	у	μ_1	μ_2
1	7		40	9.05
3.5	5.7		16.42	0.41
3.9	4.1		5.78	4.41
5	3.1		1.85	10.82
5	5		10.4	2.65
6.5	6		21.25	6.8

Centroides: $\mu_1 = (4.6, 1.8),$ $\mu_2 = (3.9, 6.2)$

$$\mu_i^{(t+1)} = \frac{1}{|X_i^{(t)}|} \sum_{\mathbf{x}_i \in X_i^{(t)}} \mathbf{x}_j$$

La actualización de los centroides en la siguiente iteración (t + 1), viene dada por el promedio de los vectores pertenecientes al conjunto X_i de ese centroide

Se repite el procedimiento, calculando distancias a los nuevos centroides y actualizando con respecto a los nuevos conjuntos, hasta llegar a un número dado de iteraciones, umbral o hasta que los centroides no se muevan

Es un tipo de aprendizaje menos tradicional: no contamos con datos ni etiquetas, ni con reglas ni procedimientos específicos.

¿Puede una computadora desarrollar un comportamiento inteligente por sí misma?

Esta Estado

$$S_t$$
 S_{t+1}

Tiempo t

Recompensa

$$r_{t+1}$$

Dos componentes esenciales:

Definamos la función de valor [1]:

Recompensa en el tiempo *t*

Recompensa en el tiempo t + 1

$$V^{\pi}(s_t) = rr_{tt} + \gamma \gamma r_{t+l+1} + r\gamma_{t+2t+2}^2 + \dots$$

Recompensa en el tiempo t + 2

Factor de descuento

$$0 \le \gamma \le 1$$

Un ejemplo:

Acciones
$$A = \{\bigcirc, \times\}$$

Recompensa
$$R = \{1, 0, -1\}$$

Estados
$$S = \{ posición de \bigcirc y \times \}$$

Política
$$\pi = S \times A$$

Función de valor predicción de la recompensa a futuro

Otro ejemplo:

Acciones $A = \{\uparrow, \rightarrow, \downarrow, \leftarrow\}$

Recompensa $R = \{-t \mid t \text{ es un episodio}\}$

Estados S = localización del agente

Política π (flechas en color azul)

Otro ejemplo:

Acciones
$$A = \{\uparrow, \rightarrow, \downarrow, \leftarrow\}$$

Recompensa $R = \{-t \mid t \text{ es un episodio}\}$

Estados *S* = localización del agente

Política π (flechas en color azul)

Función de valor predicción de la recompensa a futuro

Otro ejemplo:

Acciones
$$A = \{\uparrow, \rightarrow, \downarrow, \leftarrow\}$$

Recompensa $R = \{-t \mid t \text{ es un episodio}\}$

Estados *S* = localización del agente

Política π (flechas en color azul)

Función de valor predicción de la recompensa a futuro

Más optimización:

$$\max_{\pi} V^{\pi}(s_t)$$

Maximizar la función de valor en cada estado a partir de la política.

Ejemplos muy interesantes:

Una algoritmo de Aprendizaje por Refuerzo muy popular.

Estados S = (posición, rapidez)

Acciones $A = \{acelerar a la izquierda, acelerar a la derecha, no hacer nada \}$

Meta: pos = 0.5

Recompensa: -1 en cada instante donde no se llegue a la meta

Primero definimos los límites para las variables de estado:

Variable	Min	Max
Posición	-1.2	0.6
Rapidez	-0.07	0.07

Para cada estado s_t Una acción a_t Recompensa $R(s_t, a_t) = r_t$

Si tenemos una cantidad finita de estados, habrá una cantidad finita de acciones. Podemos organizar las recompensas en la Tabla \mathbb{Q} para cada instante t:

	a_1	a_2	•••	a_{m}
s_1	0	1		1
s_2	1	0		999
•••				
S _n	0	1		0

El valor de $Q(s_i, a_j)$ es la máxima recompensa esperada si el agente toma la acción a_i en el estado s_i .

Cuando elegimos una nueva acción para el nuevo episodio t+1, tenemos que actualizar la Tabla Q:

Coeficiente de La actualización aprendizaje de Q(s, a)

Recompensa inmediata de aplicar a en s

Tasa de descuento

$$Q(s, a) = Q(s, a) + \infty R(s, a) + \gamma \max_{t \in \mathcal{A}} Q^{t+l}(s^{t+l}, a^{t+l}) Q(s, a)$$

El valor anterior de Q(s, a)

El valor máximo esperado de cualquier futura acción después de haber elegido a en este episodio

Después de una cantidad **predeterminada** de repeticiones, la Tabla Q estará actualizada con los valores máximos esperados de recompensa.

La política π será la propia Tabla Q; una vez que el agente está entrenado, resolver el problema consiste en que, para cada posible estado s_i , seleccionemos la acción a_m que devuelva el mayor valor $Q(s_i, a_m)$.

En nuestro ejemplo, elegiremos la siguiente acción de la siguiente forma:

El parámetro ε se reduce ligeramente durante cada episodio.

Referencias

- 1. Zemel, R. Ursatun, R., Fidler, S. (2016). *CSC 411: Lecture 19: Reinforcement Learning*. Recuperado de: https://www.cs.toronto.edu/~urtasun/courses/CSC411 Fall16/19 rl.pdf
- n.a. (2018). An introduction to Q-Learning: reinforcement learning. Recuperado de: https://www.freecodecamp.org/news/an-introduction-to-q-learning-reinforcement
 - -learning-14ac0b4493cc/
- 3. n.a. (2019). *Mountain_Car.py.* Recuperado de: https://gist.github.com/gkhayes/3d154e0505e31d6367be22ed3da2e955

Imágenes

- i1. Rus, C. (2018). 'AlphaGo' es el documental de Netflix que explica lo que supuso la victoria de la IA de Google al campeón de Go. Recuperado de: https://www.xataka.com/cine-y-tv/alphago-es-el-documental-de-netflix-que-mejor-explica-lo-que-supuso-la-victoria-de-la-ia-de-google-al-campeon-de-go
- i2. Heess, N., Merel, J., Wang, Z. (2017). *Producing flexible behaviours in simulated environments*. Recuperado de:

 https://deepmind.com/blog/article/producing-flexible-behaviours-simulated-environments
- i3. Sethi, V. (2019). *Reinforcement Learning: a Subtle Introduction*. Recuperado de: https://towardsdatascience.com/reinforcement-learning-a-subtle-introduction-7a150e3796 0e