OPER 732: Optimization under Uncertainty Lecture 7: Regularized Decomposition

Department of Statistical Sciences and Operations Research Virginia Commonwealth University

Oct. 2, 2017

Criticism of L-shaped method

- Bouncing around effect
- The current relaxation solution may be misleading!
- Cannot take advantage of "good" starting point

Behavior of the L-shaped method with an optimal initial solution:

- Move away from the optimal (or even feasible region).
- Then bounce around a while.
- At last converge back to optimal.

Q: How to fix this?

One cycle of multicut Benders decomposition

Master problem:

$$\begin{split} z_L^* &= \min_{x \in X} \hat{F}(x) := c^\top x + \min \ \sum_{k \in N} p_k \theta^k \\ \text{s.t. } \theta^k &\geq G^k x + g^k, \ (G^k, g^k) \in \mathcal{G}^k, \ \forall k \in N \\ Lx &\geq l, \ (L, l) \in \mathcal{L}, \ \forall k \in N. \end{split}$$

- For each $k \in N$, \mathcal{G}^k collects all the optimality cuts added for scenario k, and \mathcal{L} collects all the feasibility cuts added so far
- $\hat{F}(x)$ gives a piecewise linear relaxation of the true objective function F(x)
- Given a solution $(\hat{x}, \hat{\theta})$ of the master problem, check its optimality/feasibility, and add more cuts if necessary

A couple more disadvantages:

- Too many cuts may be added
- There is no reliable criterion to drop cuts

One cycle of multicut Benders decomposition

Master problem:

$$\begin{split} z_L^* &= \min_{x \in X} \hat{F}(x) := c^\top x + \min \ \sum_{k \in N} p_k \theta^k \\ \text{s.t. } \theta^k &\geq G^k x + g^k, \ (G^k, g^k) \in \mathcal{G}^k, \ \forall k \in N \\ Lx &\geq l, \ (L, l) \in \mathcal{L}, \ \forall k \in N. \end{split}$$

- For each $k \in N$, \mathcal{G}^k collects all the optimality cuts added for scenario k, and \mathcal{L} collects all the feasibility cuts added so far
- $\hat{F}(x)$ gives a piecewise linear relaxation of the true objective function F(x)
- Given a solution $(\hat{x}, \hat{\theta})$ of the master problem, check its optimality/feasibility, and add more cuts if necessary

A couple more disadvantages:

- Too many cuts may be added
- There is no reliable criterion to drop cuts

Regularized decomposition (Ruszczyński, QDECOM)

Motivation: let good initial solutions be truely beneficial

- When starting with some good overall feasible first-stage iterates z^i , want the next iterate x^i to be not too far from z^i
 - "overall": both first-stage and second-stage feasible
- Cuts are more likely to be built around the optimal solution x^*
 - Less cuts may be necessary
 - Faster convergence is expected

To do it, introduce a regularization term into the objective:

min
$$c^{\top}x + \sum_{k \in \mathbb{N}} p_k \theta^k + \frac{1}{2\rho} ||x - z^i||^2$$
,

with a control parameter $\rho > 0$, and a reference point z^i in each iteration i

Regularized decomposition (Ruszczyński, QDECOM)

Motivation: let good initial solutions be truely beneficial

- When starting with some good overall feasible first-stage iterates z^i , want the next iterate x^i to be not too far from z^i
 - "overall": both first-stage and second-stage feasible
- Cuts are more likely to be built around the optimal solution x^*
 - Less cuts may be necessary
 - Faster convergence is expected

To do it, introduce a regularization term into the objective:

min
$$c^{\top}x + \sum_{k \in N} p_k \theta^k + \frac{1}{2\rho} ||x - z^i||^2$$
,

with a control parameter $\rho > 0$, and a reference point z^i in each iteration i

Moving forward

Two cases after solving the regularized master problem (and get the next iterate x^i):

- If x^i is not feasible, add feasibility cuts, and keep the reference point z^k unchanged
- If x^i is feasible, need to decide if we maintain the old reference point z^k or replace it by x^i

Three possibilities:

Moving forward

Two cases after solving the regularized master problem (and get the next iterate x^i):

- If xⁱ is not feasible, add feasibility cuts, and keep the reference point z^k unchanged
- If x^i is feasible, need to decide if we maintain the old reference point z^k or replace it by x^i

Three possibilities:

Three possibilities

- Case 1: $\hat{F}(x^i) = F(x^i)$, the relaxation function is exact at x^i
 - Must move z^i to x^i ! Since no cut will be added at x^i , if we do not change z^i , the algorithm will run into an infinite loop
- **2** Case 2: $\hat{F}(x^i) < F(x^i)$
 - Case 2.1: x^i is at a "kink" of \hat{F} , and $F(x^i) < F(z^i)$, i.e., the upper bound has been "reliably" improved
 - Move z^i to x^i
 - 2 Case 2.2: Others: keep z^i unchanged

To check if x^i is a "kink" of \hat{F} , check if exactly n_1+N constraints are active at (x^i,θ^i)

Enable cut removal

After solving the regularized master problem, we can delete the inactive cuts from the master!

- Assume nondegeneracy, at the extreme points solution there is no more than $n_1 + N$ active constraints (Q: Why?)
 - So # of cuts are well controlled!
- Why can we delete inactive cuts?

Algorithm: QDECOM

- Solve the QP master problem at z^i , get (x^i, θ^i) . If $\hat{F}_i := c^\top x^i + \sum_i p_i \theta^i$ is very close to $F(z^i)$ (the current upper bound), stop.
- ② Remove inactive optimality cuts at (x^i, θ^i) .
- 3 Solve the second stage problems at x^i , and add feasibility/optimality cuts if necessary.
- 4 If at least one feasibility cut is added, put $z^{i+1} = z^i$, skip the next step.
- If $F(x^i) = \hat{F}_i$, or else if $F(x^i) < F(z^i)$ and exactly n + N constraints are active at (x^i, θ^i) , put $z^{i+1} = x^i$. Otherwise, put $z^{i+1} = z^i$.
- **1** Let i := i + 1, go to Step 1.

Summary

Benefits of regularized decomposition:

- Stablize the master problem
- Make cut removal possible
- Facilitate good initial feasible solutions
- Readings:
 - Stochastic Programming book by Kall and Wallace, Section 3.3 on regularized decomposition
 - Ruszczyński's paper on regularized decomposition
- Homework 3