ASSIGNMENT 5

Sections 3, 4, and 5 in the Red Module

1. (a) In your own words, explain what is meant by $\lim_{(x,y)\to(a,b)} f(x,y) = L$.

(b) Explain how you would show that $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

2. Show that the following limits do not exist. Sketch the domains and paths involved.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2+y^2}$$

(b) $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^4}$

3. (a) Explain what you would have to show in order to prove that a function f(x,y) is continuous at (a,b).

(b) Find a function g such that $\lim_{(x,y)\to(5,4)}g(x,y)$ exists but g is not continuous at (5,4).

(c) Find and sketch the largest domain on which $z = \ln(y - x) + \sqrt{y + x}$ is continuous.

4. Use the definition of continuity to show that

$$h(x,y) = \begin{cases} 4 - e^{-x-y+2} & \text{if } (x,y) \neq (1,1) \\ 3 & \text{if } (x,y) = (1,1) \end{cases}$$

is continuous at (1,1).

5. Assume that the function T(x, y, t) models the temperature (in degrees Celsius) at time t in a city located at a longitude of x degrees and a latitude of y degrees. The time t is measured in hours. What is the meaning of the partial derivative $T_t(x, y, t)$? What are its units? What is most likely going to be the sign of $T_y(x, y, t)$ for Winnipeg, Manitoba in January?

6. Below is an excerpt from a table of values of I, the temperature-humidity index, which is the perceived air temperature when the actual temperature is T (degrees fahrenheit), and the relative humidity is h (percent).

<i>T</i> ↓	<i>h</i> →	20	30	40	50	60	70
80		74	76	78	82	83	86
85		81	82	84	86	90	94
90		86	90	93	96	101	106
95		94	94	98	107	111	125
100		99	101	109	122	129	138

(a) Write the definition (equation) of the partial derivative of I(T, h) with respect to h.

(b) Approximate $I_h(95, 40)$ and interpret your answer, i.e., write a statement to explain what this number represents.

7. Compute the indicated partial derivatives.

(a)
$$f(x,y) = \frac{4x - xy}{x^2 + y^2}$$
; $f_x(x,y)$

(b) $h(x,t) = e^{\sqrt{x-4t^2}}; h_t(5,1)$

- 8. A hiker is standing at the point (2,1,21) on a hill whose shape is given by the graph of the function $f(x,y) = 24 (x-3)^2 2(y-2)^2$.
- (a) In which of the two directions (x-direction or y-direction) is the hill steeper?

(b) Sketch a graph of the function $f(x,y) = 24 - (x-3)^2 - 2(y-2)^2$. On the graph, draw the curves z = f(2,y) and z = f(x,1). Draw the tangent line to each curve at the point (2,1,21).

(c) For what x- and y-coordinates will the hiker reach the top of the hill? What are the values of f_x and f_y at this point?

- 9. Let $f(x,y) = \ln(3x y + 1)$.
- (a) Compute the partial derivatives of f.

(b) Find and sketch the domains of f_x and f_y .

(c) Is f differentiable at (1,0)? Explain.

- 10. Consider the function $f(x,y) = \sqrt{y + \cos^2 x}$.
- (a) Show that the function is differentiable at (0,0).

(b) Verify the linear approximation $\sqrt{y + \cos^2 x} \approx 1 + \frac{1}{2}y$ at (0,0).