

Report: EMC_SL18040601-RIO-001_FCC_ISED

EMC TEST REPORT

Report: EMC_ SL18040601-RIO-001_FCC_ISED

Supersedes: None

Applicant Name:			Resin.io				
Product Name:				Balena Fin			
Model Name:				Balena Fin			
Test Standard:				FCC 15 Subpart B (Class A) ICES 003 Issue 6:2017			
	To	est Method:					ANCI C63.4
	D	ate of Test:				04-30	/2018 & 05/01/2018
	Rep	ort Issue Date:					05/21/2018
		ith the specification	_				
Equipment did r	ot com	ply with the specific	ations:				
This test report is	issued	under the authority o	f:				
	Y	styll!					Anish Komo
Full N	ame:	Kushal Shastri			Full	Name:	Anish Kumar
	Title	EMC Test Engineer				Title	Compliance Engineer/Peviewer)

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the tested sample only.

ISSUED BY: SIEMIC Laboratories 775 Montague Expressway, Milpitas, CA 95035 USA

Report: EMC_SL18040601-RIO-001_FCC_ISED

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for conformity assessment

Accreditation Body	Scope	
FCC, A2LA	EMC, RF/Wireless, Telecom	
IC, A2LA, NIST	EMC, RF/Wireless, Telecom	
BSMI, NCC, NIST	EMC, RF, Telecom, Safety	
OFTA, NIST	RF/Wireless, Telecom	
NATA, NIST	EMC, RF, Telecom, Safety	
KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety	
VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom	
NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom	
A2LA, NIST	EMC, RF, Telecom, Safety	
MOC, NIST	EMC, RF, Telecom, Safety	
	FCC, A2LA IC, A2LA, NIST BSMI, NCC, NIST OFTA, NIST NATA, NIST KCC/RRA, NIST VCCI, JATE, TELEC, RFT NOM, COFETEL, Caniety A2LA, NIST	

Accreditations for conformity assessment

Country/Region	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	ISED FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & RED Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

Report: EMC_SL18040601-RIO-001_FCC_ISED

Table of Contents 1. Report revision history4 2. Executive summary 4 3. Customer information 4 4. Test site information4 5. Test software version 5 6. EUT Information6 7.1. EUT Description.......6 7.2. 7.3. EUT Photos8 7.4. Supporting equipment / Software / Cabling information......11 8.1. Support equipment11 8.2. VO Ports 11 8.3. Test software description11 8.4. 9. 10. 11. Guideline for interference allowed15 12. 12.1. 12.2. 13. 14.

Report: EMC_SL18040601-RIO-001_FCC_ISED

1. Report revision history

Version No.	Description	Issue Date	
Original Report	FCC_ISED Report	05/21/2018	

2. Executive summary

The purpose of this test program was to demonstrate compliance of following product:

Company: Resin.io Product: Balena Fin Model: Balena Fin

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3. Customer information

Applicant Name:	Resin.io		
Applicant Address:	7 Winkley Street, London E2 6PY, UK		
Manufacturer Name:	Resin.io		
Manufacturer Address:	7 Winkley Street, London E2 6PY, UK		

4. Test site information

Lab Performing Tests:		SIEMIC Laboratories	
Lab Address:		775 Montague Expressway, Milpitas, CA 95035	
FCC Test Site No:		881796	
IC Test Site No:		4842D-2	

5. Modification

Index	Item	Description	Note
1	N/A	N/A	-

Report: EMC_SL18040601-RIO-001_FCC_ISED

6. Test software version

Test Item	Vendor	Software	Version
Radiated Emission	EMISoft	EMISoft Vasona	V6.0
Conducted Emission	EMISoft	EMISoft Vasona	V5.0

Report: EMC_SL18040601-RIO-001_FCC_ISED

7. EUT Information

7.1. EUT Description

Product Name:	Balena Fin	
Trade Name:	Resin.in	
Model No:	Balena Fin	
Serial No.:	N/A	
Input Power:	120VAC/60Hz	
Date of EUT received:	04/15/2018	
Equipment Class:	Class A	
Highest frequency generated or used in the device or on which the device operates or tunes:	5.8GHz	
Port/Connectors:	1 X RJ45, 2 X USB, 1 X mini USB, 1 X HDMI	
Remark:	N/A	

Report: EMC_SL18040601-RIO-001_FCC_ISED

7.2. EUT Test modes / Configuration description

7.2.1.EUT Test modes: Pre-test mode

Pre-scan Test Mode				
Mode 1	Mode 1 Normal Operation- Manufacturer specific			
Remark: EUT was continuously communicating with laptop via wired connection through a router.				

7.2.2.EUT Test modes: Final test mode

Final Test Mode					
Normal Operation- Manufacturer specific					
EUT was continuously communicating with laptop via wired connection through a router.					

Report: EMC_SL18040601-RIO-001_FCC_ISED

7.3. EUT Photos

Report: EMC_SL18040601-RIO-001_FCC_ISED

7.4. EUT Photos | Test setup

Note*: - For Radiated Emissions Testing, Laptop and Router placed outside from testing area.

Report: EMC_SL18040601-RIO-001_FCC_ISED

8. Supporting equipment / Software / Cabling information

8.1. Support equipment

Item	Support Equipment Description	Model	Serial Number	Manufacturer
1	Router	WNR3500L	215802000480	Net gear
2	Laptop	Vostro 1520	C6ZKQK1	DELL

8.2. I/O Ports

Item	Connection S	Start	Connectio	Length / shielding Info		
	From	I/O Port	То	I/O Port	Length (m)	Shielding
1	Laptop	/ RJ45	Router	RJ45	<3M	No
2	EUT	RJ45	Router	RJ45	<3M	No

8.3. Test software description

Test Item	Software	Description
1	Command Prompt	For Continuously pinging the EUT via Laptop
2	Resin.io	Manufacturer Provided Test Mode Software

Report: EMC_SL18040601-RIO-001_FCC_ISED

8.4. System setup block diagram

Report: EMC_SL18040601-RIO-001_FCC_ISED

9. Test summary

	Emissions							
Test Item	Test Standard	Test Method / Procedure	Pass / Fail					
AC Conducted Emissions	FCC 15 Subpart B (Class A) ICES 003 Issue 6:2017	ANSI C63.4:2014	X Pass Fail N/A					
Radiated Spurious Emissions Below 1GHz	FCC 15 Subpart B (Class A) ICES 003 Issue 6:2017	ANSI C63.4:2014	X Pass Fail N/A					
Radiated Spurious Emissions Above 1GHz	FCC 15 Subpart B (Class A) ICES 003 Issue 6:2017	ANSI C63.4:2014	X Pass Fail N/A					

10. Measurement uncertainty

	Emissions								
Test Item	Frequency Range	Description	Uncertainty						
AC Conducted Emissions	150KHz – 30MHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2	±3.5dB						
Radiated Spurious Emissions	30MHz – 1GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/- 4.5dB						
Radiated Spurious Emissions	>1GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+4.3dB/- 4.1dB						

Report: EMC_SL18040601-RIO-001_FCC_ISED

11. Frequency Range of Radiated Measurements

(b) For unintentional radiators:

(1) Except as otherwise indicated in paragraphs (b)(2) or (b)(3) of this section, for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

(2) A unintentional radiator, excluding a digital device, in which the highest frequency generated in the device, the highest frequency used

highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30.
1.705-108	1000.
108-500	2000.
500-1000	5000.
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

in the device and the highest frequency on which the device operates or tunes are less than 30 MHz and which, in accordance with §15.109, is required to comply with standards on the level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a device designed to conduct its radio frequency emissions via connecting wires or cables, e.g., a carrier current system not intended to radiate, shall be investigated from the lowest radio frequency generated or used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in the following table. If the unintentional radiator contains a digital device, the upper frequency to be investigated shall be that shown in the table below or in the table in paragraph (b)(1) of this section, as based on both the highest frequency generated and the highest frequency used in the digital device, whichever range is higher.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-10	400
10-30	500

(3) Except for a CB receiver, a receiver employing superheterodyne techniques shall be investigated from 30 MHz up to at least the second harmonic of the highest local oscillator frequency generated in the device. If such receiver is controlled by a digital device, the frequency range shall be investigated up to the higher of the second harmonic of the highest local oscillator frequency generated in the device or the upper frequency of the measurement range specified for the digital device in paragraph (b)(1) of this section.

Example:

If the EUT has a transceiver operating or tunes at 2.4GHz, then both the Receiver, and the Transmitter needs to be tested separately to the Fifth Harmonic (e.g. Upper Frequency range would be 12GHz). A Transceiver consists of both a transmitter and a receiver, the receiver portion of which is always subject to the part 15 Subpart B Unintentional Radiator rules.

Report: EMC_SL18040601-RIO-001_FCC_ISED

12. Guideline for interference allowed

12.1. Conducted emissions

Spec	Item	Requirement				Applicable
	a)	utility (AC) power line, the radi on any frequency or frequenci in § 15.107 (a), as measured of	ces, for equipment that is designe to frequency voltage that is condu es within the band 150 kHz to 30 using a 50 µH/50 ohms line imped for Conducted Emissions at the	cted back onto th MHz shall not ex ance stabilizatio	ne AC power line ceed the limits set	YES
§ 15.107 ICES 003 Issue		Section	Frequency ranges	Limit	(dBuV)	
6:2017		Section	(MHz)	QP	Average	
		Class A devices	0.15 ~ 0.5 0.5 ~ 30	79 73	66	
		NOTE 1 The lower limit shall	apply at the transition frequencie		60	
Test Setup		2. Both	Horizontal Ground Reference Is sort units were connected to second LISN. of LISNs (AMN) are 80 cm from EUT and at other metal planes			
Procedure	1r 2. Th 3. Th 4. Al 5. Th 6. A te 7. Hi 8. Th re te 9. Al	n x 0.8m high, non-metallic table he power supply for the EUT was he RF OUT of the EUT LISN was I other supporting equipment was he EUT was switched on and allo scan was made on the Neutral/P st receiver. gh peaks, relative to the limit line he EMI test receiver was then tunceiver bandwidth setting of 10 kH sts, both Quasi-peak and Average	fed through a 500/500H EUT LISN, connected to the EMI test receive is powered separately from another wed to warm up to its normal open thase line (for AC mains) or Earth line, were then selected. The selected frequencies and the selected frequencies and the selected frequencies and the measurements were made are investigated. Only the 6 worst of the selected frequencies and the selected f	connected to filter via a low-loss commain supply. ating condition. ne over the requirements of the content o	ered mains. coaxial cable. fired frequency range heasurements made were made; while for	using an EMI with a · CISPR/EN

Report: EMC_SL18040601-RIO-001_FCC_ISED

Description of the Conducted Emission Program	This EMC Measurement software, EMI Soft Vasona offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 15 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.					
	At 20 MHz					
	Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB					
Sample Calculation	Q-P reading obtained directly from EMI Receiver = 40.00 dBμV					
Example	(Calibrated for system losses)					
	Therefore, Q-P margin = 47.96 – 40.00 = 7.96 i.e. 7.96 dB below limit					
Remarks	N/A					

Test Data: Yes X N/A

Test Plot: Yes (See below) X N/A

Test specification:	AC Cond	ducted Emissions (Class A)				
	Temp(°C):	22.60				
Environmental Conditions:	Humidity (%):	46.70	_	X Pass		
	Atmospheric(mbar):	Result:				
Mains Power:	120Vac, 60H					
Tested by:	Kushal Shas	tri	_			
Test Date:	04/30/2018					
Remarks:		Neutral Connection				

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail
0.151792	40.54	9.33	0.05	49.92	Quasi Peak	Neutral	79	-29.08	Pass
0.15	40.65	9.33	0.05	50.03	Quasi Peak	Neutral	79	-28.97	Pass
0.19378	35.47	9.32	0.04	44.83	Quasi Peak	Neutral	79	-34.17	Pass
0.497519	34.62	9.33	0.04	43.99	Quasi Peak	Neutral	79	-35.01	Pass
0.232978	31.89	9.32	0.04	41.25	Quasi Peak	Neutral	79	-37.75	Pass
13.35767	23.44	9.37	0.32	33.12	Quasi Peak	Neutral	73	-39.88	Pass
0.151792	25.7	9.33	0.05	35.08	Average	Neutral	66	-30.92	Pass
0.15	25.65	9.33	0.05	35.03	Average	Neutral	66	-30.97	Pass
0.19378	24.76	9.32	0.04	34.13	Average	Neutral	66	-31.87	Pass
0.497519	27.3	9.33	0.04	36.66	Average	Neutral	66	-29.34	Pass
0.232978	26.43	9.32	0.04	35.79	Average	Neutral	66	-30.21	Pass
13.35767	20.54	9.37	0.32	30.22	Average	Neutral	60	-29.78	Pass

Test specification:	AC Cond	ducted Emissions (Class A)				
	Temp(°C):	22.60				
Environmental Conditions:	Humidity (%):	46.70	_	X Pass		
	Atmospheric(mbar):	Result:				
Mains Power:	120Vac, 60H					
Tested by:	Kushal Shas	tri	_			
Test Date:	04/30/2018					
Remarks:		Live Connection				

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail
0.494104	33.87	9.33	0.04	43.24	Quasi Peak	Live	79	-35.76	Pass
0.150086	39.45	9.33	0.05	48.83	Quasi Peak	Live	79	-30.17	Pass
0.187599	34.75	9.32	0.04	44.12	Quasi Peak	Live	79	-34.88	Pass
14.27571	21.57	9.37	0.34	31.29	Quasi Peak	Live	73	-41.71	Pass
12.80789	22.69	9.37	0.31	32.37	Quasi Peak	Live	73	-40.63	Pass
9.938124	21.26	9.96	0.22	31.44	Quasi Peak	Live	73	-41.56	Pass
0.494104	26.74	9.33	0.04	36.11	Average	Live	66	-29.89	Pass
0.150086	26.67	9.33	0.05	36.05	Average	Live	66	-29.95	Pass
0.187599	24.84	9.32	0.04	34.2	Average	Live	66	-31.8	Pass
14.27571	20.73	9.37	0.34	30.45	Average	Live	60	-29.55	Pass
12.80789	16.87	9.37	0.31	26.55	Average	Live	60	-33.45	Pass
9.938124	15.51	9.96	0.22	25.7	Average	Live	60	-34.3	Pass

Report: EMC_SL18040601-RIO-001_FCC_ISED

12.2. Radiated Emissions Below 1GHz (Class A)

Requirement(s):

Spec	Item	Requirement	Applicable
§ 15.109 ICES 003 Issue 6:2017	a)	Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: Frequency range (MHz) Quasi Peak Limit (uV/m)	Yes
Test Setup		Semi Anechoic Chamber Radio Absorbing Material The semi Anechoic Chamber Antenna Antenna Spectrum Analyzer	
Procedure	2. The ami follo a. ch b. c. 4. A Q 5. Ste	hosen. The EUT was then rotated to the direction that gave the maximum emission.	on of the height in the
Description of the Radiated Emissions Program	measur system run a p differer MHz to parts o degree The ste after th	EMC Measurement software, EMI Soft Vasona offers a common user interface for electromagnetic interfacements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers ins. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, the pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the antenna heights, 2 antenna polarity, and 360 degrees table rotation. For example, the program was on 1 GHz scan; the program will first start from a meter antenna height and divide the 30 MHz to 1 GHz into for maximum hold sweeps. Each parts of maximum hold sweep, the program will collect the data from 0 testable rotation. After the program complete the 1m scan, the antenna continues to rise to 2m and continues will repeated for all specified antenna height and polarity. This program will perform the Quasi Peak the signal maximization process and pre-scan routine. The final measurement will be based on the tion result.	and EMC test is program will e scan on four s set to run 30 to 10 separate degree to 360 inue the scan. measurement

Report: EMC_SL18040601-RIO-001_FCC_ISED

Sample Calculation Example	At 300 MHz
Remarks	N/A

Test Data: X Yes (See below) N/A

Test Data: X Yes (See below) N/A

Report: EMC_SL18040601-RIO-001_FCC_ISED

Radiated Emission Test Results (Below 1GHz, Class A)

Test specification:	Radiated Emissions (Below 1GHz)						
	Temp(°C): 25.7						
Environmental Conditions:	Humidity (%):	43.3		X Pass			
	Atmospheric(mbar):	1014.9	Result:				
Mains Power:	120VAC~60H	Hz					
Tested by:	Kushal Shas	tri		Fail			
Test Date:	05/01/2018						
Remarks:	The testi	The testing was done in a 3m chamber					

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
173.7413	41.99	12.38	-24.57	29.8	Quasi Max	٧	176	259	43.5	-13.7	Pass
249.9972	50.54	12.93	-25.2	38.27	Quasi Max	٧	105	18	46.4	-8.14	Pass
62.77125	43.5	11.53	-27.69	27.34	Quasi Max	٧	169	34	39	-11.66	Pass
153.8784	35.96	12.21	-23.61	24.57	Quasi Max	٧	251	138	43.5	-18.94	Pass
125.0022	42.09	12.12	-22.93	31.29	Quasi Max	٧	100	78	43.5	-12.22	Pass
98.48094	43.86	11.87	-25.8	29.93	Quasi Max	V	247	45	43.5	-13.57	Pass

Report: EMC_SL18040601-RIO-001_FCC_ISED

12.3. Radiated Emissions above 1GHz (Class A)

Requirement(s):

рес	Item	Requirement			Applicable
§ 15.109	a)	Except for Class A digital devices, unintentional radiators at a distance			YES
ICES 003 Issue 6:2017		Frequency range (GHz)	Average limit dB(uV/m)	Peak limit dB(uV/m)	
		Above 1	60	80	
Test Setup		Radio Absorbing Material LUT 1.5m	ami Anechoic Chamber 3m	Antenna 1-4m	Spectrum Analyzer
Procedure	X 1. 2. The 3. The emit the a. b. c. 4. A Po 5. Step 6. The	EUT and supporting equipment were 0m X 0.8m high, non-metallic table EUT was switched on and allowed to test was carried out at the selected fresions, was carried out by rotating the following manner: Vertical or horizontal polarisation (which chosen. The EUT was then rotated to the direct finally, the antenna height was adjusted and Average measurement was the sign and 4 were repeated for the next frequency range covered was from 100MHz) using a horn antenna.	warm up to its normal opera equency points obtained from EUT, changing the antennal nichever gave the higher emi- ection that gave the maximum sted to the height that gave the then made for that frequency frequency point, until all sele	ating condition. In the EUT characterisation polarization, and adjustiction is significant and emission. In emission. In emission. In emaximum emission. In epoint. In ected frequency points we see the EUT characteristics.	on. Maximization of the ng the antenna height in ation of the EUT) was ere measured.
Remarks	NA NA	omi iz/ doing a norn antonna.			

Test Data: X Yes (See below) N/A

Test Data: X Yes (See below) N/A

Test specification:	Radiated Emissions			
	Temp(°C):	25.7		
Environmental Conditions:	Humidity (%):	43.3		X Pass
	Atmospheric(mbar):	Result:		
Mains Power:	120VAC~60H	lz .		
Tested by:	Kushal Shasi	tri		Fail
Test Date:	04/30/2018			
Remarks:	1-18GHz. The	testing was done in a 10m cha	amber	

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
17938.16	39.26	7.93	8.69	55.87	Peak Max	Н	104	86	80	-24.13	Pass
15897.38	39.09	7.8	5.86	52.76	Peak Max	٧	239	93	80	-27.25	Pass
5899.807	39.8	4.75	-0.6	43.96	Peak Max	٧	135	156	80	-36.04	Pass
2484.191	41.26	3	-3.66	40.6	Peak Max	Н	287	90	80	-39.41	Pass
5171.113	40.64	4.33	-1.03	43.95	Peak Max	٧	142	38	80	-36.05	Pass
2948.423	40.91	3.25	-1.79	42.37	Peak Max	٧	118	196	80	-37.63	Pass
17938.16	26.88	7.93	8.69	43.5	Average Max	Н	104	86	60	-16.5	Pass
15897.38	27.11	7.8	5.86	40.77	Average Max	٧	239	93	60	-19.23	Pass
5899.807	27.44	4.75	-0.6	31.59	Average Max	٧	135	156	60	-28.41	Pass
2484.191	29.21	3	-3.66	28.55	Average Max	Н	287	90	60	-31.45	Pass
5171.113	27.84	4.33	-1.03	31.15	Average Max	٧	142	38	60	-28.85	Pass
2948.423	28.11	3.25	-1.79	29.57	Average Max	٧	118	196	60	-30.43	Pass

Test specification:	Radiated Emissions				
	Temp(°C):	25.7			
Environmental Conditions:	Humidity (%):	43.3		X Pass	
	Atmospheric(mbar):	Result:			
Mains Power:	120VAC~60H	łz			
Tested by:	Kushal Shasi	tri		Fail	
Test Date:	05/01/2018				
Remarks:	18-30GHz. The testing was done in a 10m chamber.				

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
29950.07	41.46	11	12.66	65.13	Peak Max	٧	220	62	80	-14.87	Pass
24505.69	38.39	9.82	14.59	62.8	Peak Max	Н	214	310	80	-17.2	Pass
24707.73	38.38	9.91	13.88	62.17	Peak Max	٧	259	2	80	-17.83	Pass
26080.13	41.24	10.21	12.21	63.66	Peak Max	٧	316	192	80	-16.34	Pass
28146.24	39.7	10.91	11.38	62	Peak Max	٧	243	235	80	-18	Pass
22433.19	38.56	9.37	13.33	61.26	Peak Max	٧	103	215	80	-18.74	Pass
29950.07	28.87	11	12.66	52.54	Average Max	٧	220	62	60	-7.46	Pass
24505.69	26.44	9.82	14.59	50.85	Average Max	Н	214	310	60	-9.15	Pass
24707.73	25.92	9.91	13.88	49.71	Average Max	٧	259	2	60	-10.29	Pass
26080.13	28.59	10.21	12.21	51.01	Average Max	٧	316	192	60	-8.99	Pass
28146.24	27.24	10.91	11.38	49.54	Average Max	٧	243	235	60	-10.46	Pass
22433.19	26.13	9.37	13.33	48.83	Average Max	٧	103	215	60	-11.17	Pass

Report: EMC_SL18040601-RIO-001_FCC_ISED

13. Annex A | Test instruments and method

Instrument	Model	Serial #	Cal Cycle	Cal Due	In use
	Co	nducted Emissions	'		
EMI Test Receiver	ESIB 40	100179	1 Year	07/21/2018	YES
Transient Limiter (9kHz - 100MHz)	EM-7600-5	106	1 Year	09/07/2018	YES
LISN (9kHz - 30MHz)	3816/2NM	214372	1 Year	09/27/2018	YES
	Ra	adiated Emissions			
50 GHz Spectrum Analyzer	N9030B	MY57140374	1 Year	09/06/2018	YES
Hybrid Antenna	JB6	A111717	1 Year	12/05/2018	YES
Double Ridged Waveguide Horn Antenna (1 - 18 GHz)	3117	218554	2 Years	11/29/2019	YES
18-40GHz Horn Antenna	SAS-574	579	1 Year	08/04/2018	YES
RF Preamplifier	LPA-6-30	11170602	1 Year	08/9/2018	YES
Pre-Amplifier (1-26.5GHz)	8449B	3008A00715	1 Year	8/16/2018	YES
Pre-Amplifier (18 - 40GHz)	PA-840	181251		06/23/2018	YES
5GHz Notch Filter	BRM50705	41	1 Year	08/11/2018	YES
2.4GHz Notch Filter	BRM50702	G242	1 Year	8/11/2018	YES

Report: EMC_SL18040601-RIO-001_FCC_ISED

14. Annex B | SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)		Please see the documents for the detailed scope
ISO Guide 65 (A2LA)		Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation		FCC Declaration of Conformity Accreditation
FCC Site Registration		3-meter site
FCC Site Registration		10-meter site
IC Site Registration		3-meter site
IC Site Registration	₽ E	10-meter site
	₹.	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB	M	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB (Certification Body)	包包	Phase I, Phase II
Vietnam MIC CAB Accreditation	₽	Please see the document for the detailed scope
Hong Kong OFCA		(Phase II) OFCA Foreign Certification Body for Radio and Telecom
		(Phase I) Conformity Assessment Body for Radio and Telecom
Industry Canada CAB		Radio: Scope A – All Radio Standard Specification in Category I
		Telecom: CS-03 Part I, II, V, VI, VII, VIII
Japan Recognized Certification Body Designation		Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
Korea CAB Accreditation	₺	EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EM, KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS

		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10,
		RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80,
		RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with
		attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	Z	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	₽	CNS 13438
Japan VCCI		R-3083: Radiation 3-meter site
	Z	C-3421: Main Ports Conducted Interference Measurement
		T-1597: Telecommunication Ports Conducted Interference Measurement
		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS
		61000.6.3, AS/NZS 61000.6.4
		Radio communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1,
A 1 1 0AB B 10	-	AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1,
Australia CAB Recognition	2	AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06,
		AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF
		S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	_	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF
	Z	S016,AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2