BAHASA PEMROGRAMAN

TIM PENGAJAR PEMROGRAMAN Departemen Ilmu Komputer IPB

Pertemuan 2 Paradigma Pemrograman (Logic Programming)

PARADIGMA PEMROGRAMAN

- Paradigma pemrograman adalah bentuk pemecahan masalah mengikuti aliran atau "genre" tertentu dari program dan bahasa.
- Klasifikasi:

Imperative/ Algorithmic	Declarative		Object-Oriented
	Functional	Logic	
	Programming	Programming	
Algol	Lisp	Prolog	Smalltalk
Cobol	Haskell		Simula
PL/1	ML		C++
Ada	Miranda		Java
C	APL		
Modula-3			

PROLOG: Knowledge Representation

- Facts: offspring(liz, tom)
- RULE: offspring(Y, X):- parent(X, Y)

LOGIC PROGRAMMING (LP)

- Pemrograman deklaratif, mendeklarasikan tujuan komputasi, bukan menyusun algoritme secara detil. Disebut juga rule-based programming.
- LP dirancang untuk mendeskripsikan properti dari suatu obyek. Hubungan antar obyek dinyatakan dengan aturan if-then (jika-maka).
- LP memiliki mekanisme *built-in* untuk menarik kesimpulan (*inference*) berdasarkan deskripsi properti obyek tersebut.
- Contoh Aplikasi:
 - Artificial intelligence, misalnya MYCIN
 - Database information retrieval, misalnya SQL

FIRST ORDER PREDICATE LOGIC

- Dasar pemrograman logika adalah First Order Predicate Logic, sering disingkat FOPL, dengan versi khusus (penyederhanaan), yang disebut Horn Clause.
- Logika predikat merupakan bentuk notasi lain dari logika proposisi. Contoh fakta dalam logika proposisi: "joko adalah lelaki", "amir adalah lelaki", "shinta adalah perempuan"; dalam logika proposisi misalnya dilambangkan dengan P, Q, R → sulit menggambarkan hubungan antar obyek.
- Lebih mudah ditulis sebagai: LELAKI(joko), LELAKI(amir), PEREMPUAN(shinta).

PREDICATE CALCULUS

- Ada 3 pengertian yang harus dipahami dalam kalkulus proposisi, yaitu:
 - Terms
 - Predicates
 - Quantifiers
- Term adalah:
 - constant (konstanta), berupa individu atau konsep tunggal, misalnya 5, joko, dsb.
 - variable, menyatakan suatu individu atau konsep tunggal.
 - function, memetakan n term ke sebuah term. Misalnya f adalah simbol fungsi dan t_1, \ldots, t_n adalah term, maka $f(t_1, \ldots, t_n)$ adalah term.

PREDICATE CALCULUS

- Predicate adalah:
 - relation yang memetakan *n* term ke nilai true (T) atau false (F).
 - Contoh:
 - LOVE(joko, tuty).
 - LOVE(father(joko), joko).

LOVE adalah relasi, father adalah fungsi.

- Quantifiers:
 - Ada 2 jenis, yaitu "ada" (\exists), dan "untuk semua" (\forall).
 - Contoh:
 - "setiap orang akan mati" ditulis sebagai $(\forall x)(ORANG(x) \rightarrow MATI(x))$
 - $(\forall y \exists x) (ORANG(y) \rightarrow IBU(x, y))$

PREDICATE CALCULUS

Contoh:

 Pernyataan "x lebih besar dari y" dapat direpresentasikan dalam kalkulus predikat sebagai LEBIHBESAR(x,y). Jadi:

LEBIHBESAR
$$(x, y) = T$$
, jika x>y
= F , selainnya

- Pernyataan joko mencintai (loves) setiap orang dapat direpresentasikan sebagai: $(\forall x)$ LOVE(joko, x).
- Pernyataan setiap ayah mencintai (loves) anaknya dapat direpresentasikan sebagai: $(\forall x)$ LOVE(ayah(x), x).

QUANTIFIER

Contoh:

- Everyone loves Honey-Bunny : $(\forall x)$ LOVE(x, Honey-bunny)
- Someone loves Honey-Bunny : $(\exists x)$ LOVE(x, Honey-Bunny)
- Someone loves everybody : $(\exists x)(\forall y)$ LOVE(x, y)
- Everybody loves someone : $(\forall x)(\exists y)LOVE(x,y)$

LATIHAN KELAS 1

Tuliskan setiap pernyataan berikut ke dalam kalkulus predikat:

- setiap mahasiswa memiliki nim.
- dari semua mahasiswa, ada yang berhenti (DO)
- otidak semua tanaman memiliki bunga
- ada gajah yang jantan dan ada yang betina
- o tidak semua mahasiswa itu adalah manusia yang cerdas

HORN CLAUSE

Perhatikan pernyataan: if $(P_1 \wedge P_2 \wedge \cdots \wedge P_n)$ then Q.

- Dapat juga ditulis sebagai: $Q \leftarrow (P_1 \land P_2 \land \cdots \land P_n)$ dibaca Q hanya jika P_1 dan P_2 dan . . . dan P_n
- Pernyataan Q akan benar (True) jika semua pernyataan P_1, P_2, \dots, P_n secara simultan benar.
- Ingat: $A \rightarrow B$ setara (memiliki nilai kebenaran yang sama) dengan $\neg A \vee B$.
- Oleh karena itu, pernyataan implikasi tadi dapat dinyatakan dalam bentuk disjunctive normal sebagai:

$$Q \vee \neg P_1 \vee \neg P_2 \vee \cdots \vee \neg P_n$$

Ekspresi ini disebut Horn Clause.

HORN CLAUSE

- Prolog meniru sejauh mungkin bentuk horn clause.
- Pernyataan $Q \leftarrow (P_1 \land P_2 \land \cdots \land P_n)$, dalam Prolog dituliskan sebagai: $Q := P_1, P_2, \dots, P_n$. Q disebut sebagai head, dan P disebut sebagai body.
- Penarikan kesimpulan dalam Prolog berdasarkan modus ponens syllogism:
 - (1) Jika P(x) maka Q(x)
 - (2) P(a)
 - (3) Kesimpulan: Q(a)

Contoh:

- (1) Jika orang(X) maka mati(X)
- (2) orang(socrates)
- (3) Kesimpulan: mati(socrates)
- Prolog mengandung ekspresi logika bentuk (1):aturan dan (2):fakta.

PROLOG

- Term: constant variable structure
- Constants: atoms integers
- Atoms: string karakter yang dimulai dengan huruf kecil, menyatakan nama dari obyek atau relasi. Misal: joko, ibu, lelaki
- Variables: string karakter yang dimulai dengan huruf besar.
 Misal: X, Joko
- **Structure**: predikat dengan nama dan sejumlah argumen yang telah *fixed*. Misal: ibu(shinta,X).

TYPES of CLAUSES

- Rules (aturan): ekspresi logika "hanya jika", Horn clauses.
- Facts (fakta): aturan tanpa body.

Contoh:

```
habisDibagiDua(X) :- genap(X).
```

Pernyataan tersebut setara dengan pernyataan kalkulus predikat: $(\forall x) \ (\text{genap}(x) \rightarrow \text{habisDibagiDua}(x))$

CONVERSION OF FOL TO PROLOG

```
(\forall x) (\forall y) (\forall z) (father(x, z) \land parent(z, y) \rightarrow grandfather(x, y)) grandfather(x, y) :- father(x, z), parent(z, y)
```

Sentence	Prolog writing	Terminology
$a_1 \wedge a_2 \wedge \ldots \wedge a_n \Rightarrow c$	$c := a_1, a_2, \ldots, a_n.$	Rule/clause
true ⇒ c	c.	Unit rule/clause
c ⇒ false	:- c	Goal
The list (a b c)	[a,b,c,]	
The list (cons X L)	[X L]	
The empty list	[]	

CONVERT TO PROLOG FORM

- bill likes icecream: likes (bill, icecream)
- bill is tall: height (bill, tall)
- john travel to London by train: travels(john, london, train)
- if someone needs a bike then they may borrow jane's borrow(x, bike, jane): - need(x, bike)
- all humans are mortal: $(\forall x)$ (human $(x) \rightarrow mortal(x)$) mortal (x): human (x)

CONJUNCTION dan DISJUNCTION

- *Conjunction* dari predikat direpresentasikan sebagai deretan struktur yang dipisahkan oleh tanda koma (,).
- Disjunction dalam Prolog:
 - Menggunakan tanda titik koma (;) untuk memisahkan struktur
 - Menyusun dalam clause yang terpisah
- Negation: predikat untuk negasi adalah not.

Contoh:

- sibling (X,Y): kakak (X,Y); adik (X,Y).
- sibling(X,Y):- kakak(X,Y). sibling(X,Y):- adik(X,Y).
- ganjil(X):- not genap(X).

LATIHAN KELAS 2

Buatlah klausa Prolog untuk persoalan berikut:

- X adalah kakek dari Y.
- X adalah nenek dari Y.
- Faktorial dari 0 adalah 1.
- \bullet Fungsi f didefinisikan sbb:

$$f(x,y) = \begin{cases} x, & x > y \\ y, & \text{selainnya} \end{cases}$$

HOMEWORK

Buat kalkulus predikat dan struktur Prolog untuk masalah berikut (penjelasan detil ada di LMS):

- Bill mengambil payungnya jika hujan
- Hewan buas adalah hewan yang berwarna gelap, berbadan besar, dan gigi bertaring.
- Hewan jinak adalah hewan yang berwarna terang, gigi tak bertaring dan berbadan kecil.
- Penjumlahan dua bilangan.
- Faktorial dari suatu bilangan bulat positif.

Jawaban diketik menggunakan komputer, simpan dalam format PDF, dan kumpulkan melalui LMS-IPB paling lambat Jumat, 4 Maret 2016 pukul 11am.

