MODEL 870 ORIENTATION PACKAGE

SERIAL INTERFACE SPECIFICATION (v1.03)

OVERVIEW

The Model 870 Orientation package communicates over a 2-wire differential RS-485 serial data transmission line or optionally a half-duplex RS-232 data line. To interrogate the Orientation package and receive data, a Switch Data Command string is sent via a serial command program at a baud rate of **115200 bps, No Parity, 8 Data Bits and 1 Stop Bit.** When the Switch Data command is accepted, the Orientation package sends its return data back to the command program.

SWITCH DATA COMMAND

The Orientation package accepts up to 27 bytes of switch data from the serial interface and must see the switch data header (2 bytes: **0xFE** and **0x44** HEX) in order to process the switches. The Orientation package will stop accepting switch data when it sees the termination byte (**0xFD** HEX). The termination byte must be present for the head to process the switches.

Note: the Termination Byte is the only switch value allowed to have a value of 0xFD. All other switches should be set higher or lower than 0xFD (253 Decimal) so they are not interpreted as a termination byte!

Byte #				Descr	iption			
0 - 7	0xFE	0x44	Head	Reserved	Reserved	Reserved	Reserved	Reserved
			ID	0	0	0	0	0
8 – 15	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	0	0	0	0	0	0	0	0
16 – 23	Reserved	Reserved	Reserved	Reserved	Operation	Cal.	Reserved	Reserved
	0	0	0	0		Memory	0	0
						Page		
24 – 26	Switch	Reserved	Term.					
	Delay	0	0xFD					

Table 1 Model 870 Switch Data Command for reading data

SWITCH DATA COMMAND (con't)

BYTE DESCRIPTIONS

Note: All Byte values are shown in decimal unless noted with a '0x' (hexadecimal) prefix.

Byte 0	Switch Data Header (1st Byte) Always 0xFE (254 decimal)
Byte 1	Switch Data Header (2nd Byte) Always 0x44 (68 decimal)
Byte 2	Head ID 0x18 to 0x1F (0x18 standard)
Byte 3	Reserved Always 0
Byte 4	Reserved Always 0
Byte 5	Reserved Always 0
Byte 6	Reserved Always 0
Byte 7	Reserved Always 0
Byte 8	Reserved Always 0
Byte 9	Reserved Always 0
Byte 10	Reserved Always 0
Byte 11	Reserved Always 0
Byte 12	Reserved Always 0

SWITCH DATA COMMAND (con't)

Byte 13	Reserved
	Always 0
Byte 14	Reserved
	Always 0
Byte 15	Reserved
	Always 0
Byte 16	Reserved
	Always 0
Byte 17	Reserved
•	Always 0
Byte 18	Reserved
•	Always 0
Byte 19	Reserved
	Always 0
Byte 20	Operation
	0x00 = normal data returned
	0x01 = calibration data returned
	0x02 = calibration memory returned
	0x03 = calibration memory written
	0x21 = reset gyro to zero
Byte 21	Calibration memory page
-	Used for the reading and writing of calibration memory
	Set to 0 for normal operation
Byte 22	Reserved
	Always 0
Byte 23	Reserved
•	Always 0

SWITCH DATA COMMAND (con't)

Byte 24 **Switch Delay**

The Orientation package can be commanded to pause (from 0 to 510 sec) before sending its return data to allow the commanding program enough time to setup for serial reception of the return data.

0 to 255 in 2 msec increments Byte 24 = delay_in_milliseconds/2

Do not use a value of 253!

Byte 25 **Reserved**

Always 0

Byte 26 **Termination Byte**

The orientation package will stop looking for Switch Data when it sees this byte.

Always **0xFD** (253 decimal)

RETURN DATA FOR NORMAL OPERATION

This mode returns data from the Orientation module, which have been compensated with calibration values. The normal data is returned when byte 20 of the switch data command is set to 0.

Byte #			Descr	iption									
0 to 5	ASCII	ASCII	ASCII	Head ID	Serial	Reserved							
	Ί'	Ю'	'X'	0x18	Status	0							
6 to 11	Reserved	Version	Reserved	Reserved	Data	Data							
	0		0	0	Bytes	Bytes							
					(LO)	(HI)							
	Data												
12 to	Data												
(N-2)			16 Data	a Bytes									
N-1	Term												
	0xFC												

Table 2 Model 870 Return Data

BYTE DESCRIPTIONS

Note: All Byte values are shown in decimal unless noted with a '0x' prefix.

N = total number of return bytes

Byte 0 - 2 **Imagenex Return Data Header** ASCII 'IOX'

Byte 3 **Head ID**

0x18 to 0x1F

Byte 4 **Serial Status**

Bit 0 - 0 = Normal, 1 = Gyro Error

Bit 1 - 0

Bit 2 - 0

Bit 3 - 0

Bit 4 - 0

Bit 5 - 0

Bit 6 - 1 = Switches Accepted

Bit 7 - 1 = Character Overrun

Byte 5 **Reserved**

Always 0

Byte 6 **Reserved**

Always 0

Byte 7 **Version**

0 - original

1 - add Microstrain 3DM-GX1 for pitch, roll and heading

2 - add KVH DSP-3000 Fiber Optic Gyro

3 - uses Imagenex sensor for pitch, roll and heading

4 - add water contact for air sonar

5 - uses new Imagenex sensor with gyro status

6 - air sonar with water contact and new Imagenex sensor with gyro status

Byte 8 9 Reserved

Always 0

Byte 10 -11 **Data bytes**

			Byt	e 10							Byt	e 11			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0 Data bytes (LO)							0		Dat	a by	tes (HI)		L

Data Bytes High Byte = (Byte 9 & 0x7E)>>1

Data Bytes Low Byte = [((Byte 9 & 0x01) << 7) | (Byte 8 & 0x7F)]

Data Bytes = (Data Bytes High Byte<<8) | Data Bytes Low Byte

Byte 12-13 **Temperature external**

			Byt	e 12							Byt	e 13			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0 Temperature ext (LO)								Te	mpe	ratu	ire e	xt (F	HI)	L

Temperature ext High Byte = (Byte 13 & 0x7E)>>1

Temperature ext Low Byte = [((Byte 13 & 0x01) << 7) | (Byte 12 & 0x7F)]

Temperature ext = (Temperature ext High Byte << 8)

| Temperature ext Low Byte

 $0 = -55 \,^{\circ}\text{C}$ $880 = 0 \,^{\circ}\text{C}$ $2880 = 125 \,^{\circ}\text{C}$

Byte 14-15 **Temperature internal**

			Byt	e 14							Byt	e 15			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0 Temperature int (LO)								Te	empe	eratu	ıre i	nt (E	H)	L

Temperature int High Byte = (Byte 15 & 0x7E)>>1 Temperature int Low Byte = [((Byte 15 & 0x01)<<7) | (Byte 14 & 0x7F)] Temperature int = (Temperature int High Byte<<8) | Temperature int Low Byte

 $0 = -55 \,^{\circ}\text{C}$ $880 = 0 \,^{\circ}\text{C}$ $2880 = 125 \,^{\circ}\text{C}$

Byte 16-17 **Depth**

			Byt	e 16							Byt	e 17			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0										D	eptl	ı (H	()		L

Depth High Byte = (Byte 17 & 0x7E)>>1 Depth Low Byte = [((Byte 17 & 0x01)<<7) | (Byte 16 & 0x7F)] Depth = (Depth High Byte<<8) | Depth Low Byte

0 = 0 M2000 = 200M

Byte 18-19 **Pitch**

			Byt	e 18							Byt	e 19			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0 Ditch (I O)							0		J	Pitch	(HI)		L

Pitch High Byte = (Byte 19 & 0x7E)>>1 Pitch Low Byte = [((Byte 19 & 0x01)<<7) | (Byte 18 & 0x7F)] Pitch = (Pitch High Byte<<8) | Pitch Low Byte

0 = -90° 900 = 0° 1800 = +90°

Byte 20-21 Roll

			Byt	e 20							Byt	e 21			
7	6	5	4	3	2	1	0	7 6 5 4 3 2 1							
0	0 Roll (LO)										Roll	(HI))		L

Roll High Byte = (Byte 21 & 0x7E)>>1 Roll Low Byte = [((Byte 21 & 0x01)<<7) | (Byte 20 & 0x7F)] Roll = (Roll High Byte<<8) | Roll Low Byte

0 = -90° 900 = 0° 1800 = +90°

Byte 22-23 **Heading**

			Byt	e 22							Byt	e 23			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0 Heading (LO)							0		Н	adiı	ng (F	HI)		L

Heading High Byte = (Byte 23 & 0x7E)>>1 Heading Low Byte = [((Byte 23 & 0x01)<<7) | (Byte 22 & 0x7F)] Heading = (Heading High Byte<<8) | Heading Low Byte

0 = 0° 3599 = 359.9°

Byte 24-25 **Gyro Heading**

			Byt	e 24							Byt	e 25			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0 Gyro Heading (LO)							0	(yro	Hea	ding	g (Hl	(I)	L

Gyro Heading High Byte = (Byte 25 & 0x7E)>>1 Gyro Heading Low Byte = [((Byte 25 & 0x01)<<7) | (Byte 24 & 0x7F)] Gyro Heading = (Gyro Heading High Byte<<8) | Gyro Heading Low Byte

 $0 = 0^{\circ}$ 3599 = 359.9 °

Byte 26	Reserved Always 0
Byte 27	Reserved Always 0
Byte 28	Termination Byte 0xFC

RETURN DATA FOR CALIBRATION

This mode returns data to be used in the calibration of the device. The calibration data is returned when byte 20 of the switch data command is set to 1.

Byte #			Descr	iption		
0 to 5	ASCII	ASCII	ASCII	Head ID	Serial	Reserved
	Ί'	Ю,	'X'	0x18	Status	0
6 to 11	Reserved	Reserved	Reserved	Reserved	Data	Data
	0	0	0	0	Bytes	Bytes
					(LO)	(HI)
12 to			Da	ata		
(N-2)			16 Data	a Bytes		
N-1	Term					'
	0xFC					
	1	I				

Table 3 Model 870 Return Data

BYTE DESCRIPTIONS

Note: All Byte values are shown in decimal unless noted with a '0x' prefix. N = total number of return bytes

Byte 0 - 2 Imagenex Return Data Header

ASCII 'IOX'

Byte 3 **Head ID**

0x18 to 0x1F

Byte 4 Serial Status

Bit 0 - 0

Bit 1 - 0

Bit 2 - 0

Bit 3 - 0

Bit 4 - 0

Bit 5 - 0

Bit 6 - 1 = Switches Accepted

Bit 7 - 1 = Character Overrun

Byte 5 **Reserved**

Always 0

Byte 6 **Reserved**

Always 0

Byte 7 **Reserved**

Always 0

Byte 8 **Reserved**

Always 0

Byte 9 **Reserved**

Always 0

Byte 10 -11 **Data bytes**

I				Byt	e 10							Byt	e 11			
Ī	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Ī	0		D	ata l	bytes	s (L(D)		0		Dat	a by	tes (HI)		L

Data Bytes High Byte = (Byte 9 & 0x7E)>>1

Data Bytes Low Byte = [((Byte 9 & 0x01) << 7) | (Byte 8 & 0x7F)]

Data Bytes = (Data Bytes High Byte<<8) | Data Bytes Low Byte

Byte 12-13 **Temperature external calibration value**

			Byt	e 12							Byt	e 13			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	۲.	Гет	pera	ture	ext	(LO)	0	Te	mpe	ratu	re e	xt (F	H)	L

Temperature ext High Byte = (Byte 13 & 0x7E)>>1

Temperature ext Low Byte = [((Byte 13 & 0x01) << 7) | (Byte 12 & 0x7F)]

Temperature ext = (Temperature ext High Byte<<8)

| Temperature ext Low Byte

 $0 = -55 \,^{\circ}\text{C}$ $880 = 0 \,^{\circ}\text{C}$

 $2880 = 125 \,^{\circ}\text{C}$

Byte 14-15 **Temperature internal calibration value**

	·	·	Byt	e 14							Byt	e 15	·	·	
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	r	Гет	pera	ture	int	(LO)	0	Te	empe	eratu	ıre i	nt (E	II)	L

Temperature int High Byte = (Byte 15 & 0x7E)>>1
Temperature int Low Byte = [((Byte 15 & 0x01)<<7) | (Byte 14 & 0x7F)]
Temperature int = (Temperature int High Byte<<8)
| Temperature int Low Byte

 $0 = -55 \,^{\circ}\text{C}$ $880 = 0 \,^{\circ}\text{C}$ $2880 = 125 \,^{\circ}\text{C}$

Byte 16-17 **Depth calibration value**

			Byt	e 16							Byt	e 17			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0			Dep	oth (LO)			0		Γ	eptl	ı (H	I)		L

Depth High Byte = (Byte 17 & 0x7E)>>1 Depth Low Byte = [((Byte 17 & 0x01)<<7) | (Byte 16 & 0x7F)] Depth = (Depth High Byte<<8) | Depth Low Byte

Byte 18-19 **Pitch duty cycle**

			Byt	e 18							Byt	e 19			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0			Pit	ch (I	(O)			0]	Pitch	(HI)		L

Pitch High Byte = (Byte 19 & 0x7E)>>1 Pitch Low Byte = [((Byte 19 & 0x01)<<7) | (Byte 18 & 0x7F)] Pitch = (Pitch High Byte<<8) | Pitch Low Byte

Byte 20-21 Roll duty cycle

			Byt	e 20							Byt	e 21			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0			Ro	ll (L	(O)			0			Roll	(HI))		L

Roll High Byte = (Byte 21 & 0x7E)>>1

Roll Low Byte = [((Byte 21 & 0x01) << 7) | (Byte 20 & 0x7F)]

Roll = (Roll High Byte << 8) | Roll Low Byte

Byte 22-23 **Heading X axis**

			Byt	e 22							Byt	e 23			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0		Hea	ding	χXa	xis(]	LO)		0	Н	lead	ing 2	X ax	is(H	(I)	L

Heading X axis High Byte = (Byte 23 & 0x7E)>>1

Heading X axis Low Byte = [((Byte 23 & 0x01) << 7) | (Byte 22 & 0x7F)]

Heading X axis = (Heading High Byte<<8) | Heading Low Byte

Heading X axis = Heading X axis - 8192

Byte 24-25 **Heading Y axis**

			Byt	e 22							Byt	e 23			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0		Hea	ding	g Y a	xis(LO)		0	H	Iead	ing \	Y ax	is(H	I)	L

Heading Y axis High Byte = (Byte 23 & 0x7E)>>1

Heading Y axis Low Byte = [((Byte 23 & 0x01) << 7) | (Byte 22 & 0x7F)]

Heading Y axis = (Heading High Byte<<8) | Heading Low Byte

Heading Y axis = Heading Y axis - 8192

Byte 26 Reserved

Always 0

Byte 27 **Reserved**

Always 0

Byte 28 **Termination Byte 0xFC**

The Orientation package accepts 123 bytes of switch data from the serial interface and must see the switch data header (2 bytes: **0xFE** and **0x44** HEX) in order to process the switches. The Orientation package will stop accepting switch data when it sees the termination byte (**0xFD** HEX). The termination byte must be present for the head to process the switches.

This mode is used to write data into the Orientation module. Data is written in 64 byte blocks, pointed to by byte 21 of the switch data command. A block of data should read from the Orientation module, modified, and then written back.

Note: the Termination Byte is the only switch value allowed to have a value of 0xFD. All other switches should be set higher or lower than 0xFD (253 Decimal) so they are not interpreted as a termination byte!

Byte #				Descr	iption			
0 - 7	0xFE	0x44	Head	Reserved	Reserved	Reserved	Reserved	Reserved
			ID	0	0	0	0	0
8 – 15	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	0	0	0	0	0	0	0	0
16 - 23	Reserved	Reserved	Reserved	Reserved	Operation	Cal.	Reserved	Reserved
	0	0	0	0		Memory	0	0
						Page		
24 - 26	Switch	Reserved						
	Delay	0						
27 – 121				Da	ata			
				96 b	ytes			
Term.								
0xFD								

Table 3 Model 870 Switch Data Command for writing calibration data

BYTE DESCRIPTIONS

Note: All Byte values are shown in decimal unless noted with a '0x' (hexadecimal) prefix.

Byte 0
Switch Data Header (1st Byte)
Always 0xFE (254 decimal)

Byte 1
Switch Data Header (2nd Byte)
Always 0x44 (68 decimal)

Byte 2
Head ID
0x18 to 0x1F (0x18 standard)

Byte 3	Reserved Always 0
Byte 4	Reserved Always 0
Byte 5	Reserved Always 0
Byte 6	Reserved Always 0
Byte 7	Reserved Always 0
Byte 8	Reserved Always 0
Byte 9	Reserved Always 0
Byte 10	Reserved Always 0
Byte 10 Byte 11	
·	Always 0 Reserved
Byte 11	Always 0 Reserved Always 0 Reserved
Byte 11 Byte 12	Always 0 Reserved Always 0 Reserved Always 0 Reserved
Byte 11 Byte 12 Byte 13	Always 0 Reserved Always 0 Reserved Always 0 Reserved Always 0 Reserved

Byte 17 Reserved Always 0 Byte 18 Reserved Always 0 Byte 19 Reserved Always 0 Byte 20 **Operation** 0 = normal data returned1 = calibration data returned 2 = calibration memory returned 3 =calibration memory written Byte 21 Calibration memory page Sets the page of calibration memory to read from or write to 0 -5°C calibration page 5 0°C calibration page 55 50°C calibration page =0xE0 =Pitch Linearization (L0) 0xE1 =Pitch Linearization (HI) 0xE8 =Roll Linearization (LO) 0xE9 =Roll Linearization (HI) Configuration page 0xF0 =**EEPROM** 0xF1 =Byte 22 Reserved Always 0 Byte 23 Reserved Always 0

Byte 24 **Switch Delay**

The Orientation package can be commanded to pause (from 0 to 510 sec) before sending its return data to allow the commanding program enough time to setup for serial reception of the return data.

0 to 255 in 2 msec increments

Byte 24 = delay in milliseconds/2

Do not use a value of 253!

Byte 25 **Reserved** Always 0

Byte 26-28 **Data word 0**

Byte 26						Byte 27						Byte 28											
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0		Calil	orati	ion b	yte	(LO))	0	Calibration byte (HI) L				0	0	0	0	0	0	L	L			

Calibration High Byte = [(Byte 14 & 0x03) <<6) | (Byte 13 & 0x3F)] Calibration Low Byte = [((Byte 13 & 0x01)<<7) | (Byte 12 & 0x7F)] Calibration Word = (Calibration High Byte<<8) | Calibration Low Byte

Byte 29-31	Data word 1
Byte 32-34	Data word 2
Byte 35-37	Data word 3
Byte 38-40	Data word 4
Byte 41-43	Data word 5
Byte 44-46	Data word 6
Byte 47-49	Data word 7
Byte 50-52	Data word 8
Byte 53-55	Data word 9
Byte 56-58	Data word 10
Byte 59-61	Data word 11
Byte 62-64	Data word 12
Byte 65-67	Data word 13
Byte 68-70	Data word 14
Byte 71-73	Data word 15
Byte 74-76	Data word 16
Byte 77-79	Data word 17
Byte 80-82	Data word 18
Byte 83-85	Data word 19
Byte 86-88	Data word 20
Byte 89-91	Data word 21
Byte 92-94	Data word 22
Byte 95-97	Data word 23
Byte 98-100	Data word 24
Byte 101-103	Data word 25
Byte 104-106	Data word 26
Byte 107-109	Data word 27
Byte 110-112	Data word 28
Byte 113-115	Data word 29
Byte 116-118	Data word 30
Byte 119-121	Data word 31

Byte 122 **Termination Byte**

The orientation package will stop looking for Switch Data when it sees this byte.

Always **0xFD** (253 decimal)

RETURN DATA FOR READ / WRITE OF CALIBRATION MEMORY

II 1 ID		
Head ID	Serial	Reserved
0x18	Status	0
Reserved	Data	Data
0	Bytes	Bytes
	(LO)	(HI)
ta		
Bytes		
te	Reserved 0	Reserved Data 0 Bytes (LO)

Table 4 Model 870 Return Data for reading \ writing calibration memory

BYTE DESCRIPTIONS

Note: All Byte values are shown in decimal unless noted with a '0x' prefix. N = total number of return bytes

Byte 0 - 2 Imagenex Return Data Header

ASCII 'IOX'

Byte 3 **Head ID**

0x18 to 0x1F

Byte 4 **Serial Status**

Bit 0 - 0

Bit 1 - 0

Bit 2 - 0

Bit 3 - 0

Bit 4 - 0

Bit 5 - 0

Bit 6 - 1 = Switches Accepted

Bit 7 - 1 = Character Overrun

Byte 5 **Reserved**

Always 0

RETURN DATA FOR READ / WRITE OF CALIBRATION MEMORY (con't)

Byte 6 **Reserved**

Always 0

Byte 7 **Reserved**

Always 0

Byte 8 Reserved

Always 0

Byte 9 **Reserved**

Always 0

Byte 10 -11 **Data bytes**

Byte 10										Byt	e 11				
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0 Data bytes (LO)							0		Dat	a by	tes (HI)		L	

Data Bytes High Byte = (Byte 9 & 0x7E)>>1

Data Bytes Low Byte = [((Byte 9 & 0x01) << 7) | (Byte 8 & 0x7F)]

Data Bytes = (Data Bytes High Byte<<8) | Data Bytes Low Byte

Byte 12-14 **Data word 0**

			Byt	e 12				Byte 13						Byte 14									
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	(Calil	brati	on b	yte	(LO)	0	0 Calibration byte (HI) L				0	0	0	0	0	0	L	L			

Calibration High Byte = [(Byte 14 & 0x03) <<6) | (Byte 13 & 0x3F)]Calibration Low Byte = [((Byte 13 & 0x01) <<7) | (Byte 12 & 0x7F)]Calibration Word = (Calibration High Byte <<8) | Calibration Low Byte

Byte 15-17 **Data word 1**

Byte 18-20 **Data word 2**

Byte 21-23 **Data word 3**

Byte 24-26 **Data word 4**

Byte 27-29 **Data word 5**

Byte 30-33 **Data word 6**

Byte 34-36 **Data word 7**

Byte 37-39 **Data word 8**

Byte 40-42 **Data word 9**

RETURN DATA FOR READ / WRITE OF CALIBRATION MEMORY (con't)

Byte 43-45	Data word 10
Byte 46-48	Data word 11
Byte 49-51	Data word 12
Byte 52-54	Data word 13
Byte 55-57	Data word 14
Byte 58-60	Data word 15
Byte 61-63	Data word 16
Byte 64-66	Data word 17
Byte 67-69	Data word 18
Byte 70-72	Data word 19
Byte 73-75	Data word 20
Byte 76-78	Data word 21
Byte 79-81	Data word 22
Byte 82-84	Data word 23
Byte 85-87	Data word 24
Byte 88-90	Data word 25
Byte 91-93	Data word 26
Byte 94-96	Data word 27
Byte 97-99	Data word 28
Byte 100-102	Data word 29
Byte 103-105	Data word 30
Byte 106-108	Data word 31
•	

Byte 109 **Termination Byte 0xFC**

Calibration \ Configuration locations

	Calibration Page (0 – 63)	Configuration Page (0xF0)
Data word 0	Pitch duty cycle at 0°	Reserved
Data word 1	Pitch duty cycle per G	Reserved
Data word 2	Reserved	Reserved
Data word 3	Reserved	Reserved
Data word 4	Roll duty cycle at 0°	Reserved
Data word 5	Roll duty cycle per G	Reserved
Data word 6	Reserved	Reserved
Data word 7	Reserved	Reserved
Data word 8	Depth at 0 PSI	Reserved
Data word 9	Depth at full scale	Reserved
Data word 10	Reserved	Reserved
Data word 11	Reserved	Reserved
Data word 12	Heading X axis offset (low)	Heading X axis offset (low)
Data word 13	Heading X axis offset (high)	Heading X axis offset (high)
Data word 14	Heading Y axis offset (low)	Heading Y axis offset (low)
Data word 15	Heading Y axis offset (high)	Heading Y axis offset (high)
Data word 16	Reserved	Reserved
Data word 17	Reserved	Reserved
Data word 18	Reserved	Reserved
Data word 19	Reserved	Reserved
Data word 20	Reserved	Reserved
Data word 21	Reserved	Reserved
Data word 22	Reserved	Reserved
Data word 23	Reserved	Reserved
Data word 25	Reserved	Reserved
Data word 26	Reserved	Reserved
Data word 27	Reserved	Reserved
Data word 28	Reserved	Reserved
Data word 29	Reserved	Head ID
Data word 30	External temperature offset	Reserved
Data word 31	Internal temperature offset	Reserved