中国科学技术大学

2018-2019 学年第 1 学期期末试卷

整理: 邵锋 fshao99@gmail.com

课程名称: 概率论 日期: 2019年1月11日 开课院系: 数学科学学院

题号	1	2	3	4	5	6	7	总分
分数								

- 1. (15 分) 设 $X_1 \sim N(0,1), X_2 \sim N(\mu,1)$, 且 X_1 与 X_2 独立, 求 $Y = X_1^2 + X_2^2$ 的特征函数.
- 2. (15 分) 设随机变量 X 的分布列为 $P(X = x_k) = p_k, k = 1, 2, \dots, n$, 证明对任一可测函数 g 有熵不等式 $H(g(X)) \le H(X)$.
- 3. (15 分) 设 X, Y 为独立同的非负随机变量, 其密度函数 f 在 $(0, +\infty)$ 上连续. 若对任何 u > 0 给定 X + Y = u 时 X 为 [0, u] 上均匀分布, 试证 X 服从指数分布.
- 4. (15 分) $S_n = \sum_{k=1}^n X_k$ 为独立同随机变量之和, 若矩母函数 $M(t) = \mathbb{E}(e^{tX_1})$ 存在, 证明 对 t>0 有

$$P(X_1 > a) < e^{-at}M(t),$$

并进一步对 $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$ 证明

$$P(S_n \ge a) \le e^{-\frac{a^2}{2n}}, \qquad a > 0.$$

5. (15 分) 设 $\{X_k\}$ 为相互独立的随机变量列, $P(X_k=1)=\frac{1}{k}, P(X_k=0)=1-\frac{1}{k}$, 记 $S_n=\sum_{k=1}^n X_k$. 试选择适当的数列 μ_n,σ_n 并验证

$$\frac{1}{\sigma_n}(S_n - \mu_n) \xrightarrow{D} N(0, 1).$$

- 6. (15 分) 设 $\{X_k\}_{k\geq 1}$ 为非负随机变量列, $\mathbb{E}(X_1)=\mu>0, S_n=\sum_{k=1}^n X_k$, 令 $N(t)=\max\{n:S_n\leq t\}$. 试证
 - $(1)P(\lim_{t\to\infty}N(t)=\infty)=1.$
 - $(2)\frac{1}{t}N(t) \xrightarrow{a.s.} \frac{1}{\mu}, \qquad t \to \infty.$
- 7. (10 分) 实对称随机矩阵 $A_n = [a_{ij}]_{i,j=1}^n$, 这里 $\{a_{ij} : 1 \le i \le j \le n\}$ 相互独立且与 Y 同分布. 假设 $\mathbb{E}(Y) = 0$, $\mathbb{E}(Y^2) = 1$, 且 $\mathbb{E}(|Y|^k) < \infty (\forall k \ge 3)$. 令 $X_{n,k} = \frac{1}{n} \mathrm{Tr}((\frac{A_n}{\sqrt{n}})^k)$, 试证当 $n \to \infty$ 时
 - $(1)X_{n,k} \xrightarrow{P} \gamma_k := \begin{cases} 0, & k \text{ 为奇数,} \\ \frac{1}{1+k/2} {k \choose k/2}, & k \text{ 为偶数.} \end{cases}$
 - (2) 进一步假设 Y 各奇阶矩为零, 则有 $X_{n,3} \xrightarrow{a.s.} 0$.