	TO BE FILLED BY THE STUDENT
Roll No.:	Tutorial Group: T Sign:
Name:	
	Instructions

- 1. Write all required information in the appropriate places above.
- 2. Check that you have 6 printed pages.
- 3. Write your answers in this booklet and only in the space marked for answers.
- 4. Additional space for writing/continuing your answers has been provided towards the end of the booklet. You must clearly indicate the question number(s) while using the additional space.
- 5. Supplementary sheets will be provided for rough work only. These sheets will NOT be evaluated.
- 6. No clarifications about the questions will be provided during examination.
- 7. This exam has 4 questions, for a total of 17 marks (points). You may attempt as many as you want.
- 8. The first question has 10 parts. Each part is worth **0.5** marks (points). They require only the correct answer for full credit. Remaining questions need all necessary steps for full credit.
- 9. The marks (points) you obtain or 15, whichever is lesser, will be your final score.

FOR OFFICE USE ONLY								
Question Number	1	2	3	4	Total	Min(s,15)		
Maximum Marks	5	4	4	4	17			
Marks Obtained (s)								

Jobs	Invigilator	Grader	Scrutinizer	Rechecker	Rechecker
Initials					

Space For Recheck Cribs

[5^{points}]

1. Write TRUE or FALSE in the spaces provided for answers. Each correct answer gets a score of $\frac{1}{2}$, each incorrect answer gets a score of $-\frac{1}{2}$ and each un-attempted question gets a score of 0.

QUESTION	ANSWER
(i) Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 5 \\ 3 & 4 & 5 \end{bmatrix}$. Then Null(A) is a	
proper subspace of $Null(B)$.	
(ii) Consider the subspaces $U = \{[x,y,z,0]^t : x,y,z \in \mathbb{R}\}$ and	
$V = \{[0, y, 0, w]^t : y, w \in \mathbb{R}\}. \text{ Then } \mathbb{R}^4 = U \oplus V.$	
(iii) There exist two non-zero 2×2 matrices whose product is zero.	
(iv) If the $RREF(A)$ is R then the $RREF(-A)$ is $-R$.	
(v) The rank of the matrix $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ [1 1 2] is 1.	
(vi) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ be a linearly independent set of vectors in \mathbb{R}^4 .	
Then for each 3×4 matrix A , the set $\{A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3, A\mathbf{v}_4\}$ is	
linearly dependent.	
(vii) There is a 4×5 matrix A whose columns are linearly independent.	
(viii) If A is a matrix of rank 2 then there is a matrix B such that	
rank(AB) = 3.	
(ix) The dimension of the subspace	
$\{[x_1, x_2, x_3, x_4]^t \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\} \text{ is } 3.$	
(x) Let B be the matrix obtained from $A_{4\times4}$ by replacing each entry	
in the first column of A with its negative.	
Then $\dim(\text{Null}(A)) = \dim(\text{Null}(B))$.	

 $[4^{\text{points}}]$

2. Consider the planes given by the equations x + y + z = 1, x + 2y + 3z = 2 and x + 3y + cz = d. Using Gaussian elimination, find all possible values of c and d such that these planes have (a) infinitely many common points (b) no common points and (c) a unique common point.

[4^{points}] 3. Consider $\mathbf{u} = [1, 0, 0, 1]^t, \mathbf{v} = [0, 1, 1, 0]^t \in \mathbb{R}^4$.

- (a) Is the set $\{\mathbf{u}, \mathbf{v}\}$ linearly independent? Justify.
- (b) Find an invertible matrix T such that $T\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ is in reduced row echelon form.
- (c) Fill the blanks appropriately in the following paragraph. You get 1 mark if all the answers are correct and 0 mark, otherwise. No justification is required for this part.

Let A be the sub-matrix formed by the bottom two rows of T obtained in part (b). Notice that these rows are _______, as they are rows of an invertible matrix. Hence RREF(A) has _____ pivotal columns and so $\dim(\operatorname{Null}(A)) = \underline{}$ ____. As $\mathbf{u}, \mathbf{v} \in \operatorname{Null}(A)$ and $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, we find that $\{\mathbf{u}, \mathbf{v}\}$ is a basis of $\operatorname{Null}(A)$.

[4^{points}] 4. (a) Find the inverse of $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 0 & -1 & -1 \end{bmatrix}$ using Gauss-Jordan method. 3

(b) Consider the set S in \mathbb{R}^3 of all points lying on the union of x-axis and y-axis. Check whether S is a subspace or not. $|\mathbf{1}|$

$\underline{\text{Extra space for answers}}$

EXTRA SPACE FOR ANSWERS

EXTRA SPACE FOR ANSWERS