ЛАБОРАТОРНАЯ РАБОТА № 1

Интерполяция и аппроксимация функциональных зависимостей

Цель: освоить способы интерполяции и аппроксимации функциональных зависимостей статических непрерывных систем.

1. Теоретические сведения

Интерполяционная формула. Интерполяционная формула сопоставляет с функцией y(x) функцию известного класса $Y(x) = Y(x, a_0, a_1, ..., a_n)$, зависящую от n+1 параметров a_i , выбранных так, чтобы значения Y(x) совпадали со значениями y(x) для данного множества n+1 значений аргумента x_k (узлов интерполяции).

Интерполяционная формула Лагранжа.

$$Y(x) = \frac{(x - x_1)(x - x_2) \cdot \dots \cdot (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \cdot \dots \cdot (x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2) \cdot \dots \cdot (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \cdot \dots \cdot (x_1 - x_n)} y_1 + \dots + \frac{(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \cdot \dots \cdot (x_n - x_{n-1})} y_n.$$

Интерполяционная формула Ньютона.

$$Y(x) = y_0 + \sum_{i=1}^{n} \left[\Delta_i(x_0, ..., x_i) \prod_{k=0}^{i-1} (x - x_k) \right],$$

где

$$\Delta_{1}(x_{0}, x_{1}) = \frac{(y_{1} - y_{0})}{(x_{1} - x_{0})},$$

$$\Delta_{r}(x_{0}, x_{1}, ..., x_{r}) = \frac{\Delta_{r-1}(x_{1}, x_{2}, ..., x_{r}) - \Delta_{r-1}(x_{0}, x_{1}, ..., x_{r-1})}{(x_{r} - x_{0})}.$$

Аппроксимация функций отрезком ряда Фурье. Даны m значений функции $y(x_k) = y_k$ при $x_k = kT/m$ (k = 0, 1, 2, ..., m-1), требуется аппроксимировать y(x) на интервале (0, T) тригонометрическим полиномом

$$Y(x) = \frac{1}{2}A_0 + \sum_{i=1}^{n} (A_i \cos(i\frac{2\pi x}{T}) + B_i \sin(i\frac{2\pi x}{T}))$$
 $(n < \frac{m}{2})$

так чтобы минимизировать сумму квадратов отклонений $\sum_{k=0}^{m-1} |Y(x_k) - y_k|^2$. Искомые коэффициенты A_i, B_i определяются по формулам

$$A_{i} = \frac{2}{m} \sum_{k=0}^{m-1} y_{k} \cos(i\frac{2\pi k}{m}), \quad B_{i} = \frac{2}{m} \sum_{k=0}^{m-1} y_{k} \sin(i\frac{2\pi k}{m})$$
 $(0 \le i < \frac{m}{2})$

2. Порядок выполнения

1. По 11 измерениям входного x и выходного y сигналов статической системы, осуществить интерполяцию зависимости y = y(x) выходной переменной от

- входной на основе интерполяционных формул Лагранжа и Ньютона. В среде MATLAB написать функции, которые осуществляют вывод на экран графиков Y(x) с шагом 0.1 для интерполяционных формул Лагранжа и Ньютона.
- 2. По 11 измерениям входного x и выходного y сигналов статической системы, осуществить аппроксимацию функции y = y(x) отрезком ряда Фурье при n = 5. В среде MATLAB написать функцию, которая осуществляют вывод на экран графика Y(x) с шагом 0.1 и вычисляет сумму квадратов отклонений.

3. Содержание отчета

- 1. Исходные данные.
- 2. Интерполяционная формула Лагранжа.
- 3. Интерполяционная формула Ньютона.
- 4. Аппроксимирующий тригонометрический полином.
- 5. Исходные тексты функций
- 6. Результаты вычислительных экспериментов.

4. Варианты исходных данных

Значение	Значения функции																			
аргумента	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	-3	0	4	2	3	9	7	5	6	7	-7	6	3	6	7	7	-7	3	5	3
1	-2	-1	3	0	2	6	5	5	5	3	-9	6	3	4	5	8	-5	3	6	3
2	0	-3	2	3	1	7	5	7	3	5	-5	6	9	5	4	9	-3	4	6	3
3	-1	-6	3	-1	0	5	1	3	2	4	-9	4	9	4	2	6	-1	5	7	3
4	2	-9	2	5	-1	3	3	7	8	4	-4	3	7	4	1	4	2	4	5	6
5	5	-1	3	-3	-2	9	6	9	5	4	-6	7	7	3	6	2	2	3	3	7
6	7	3	4	0	-3	4	8	7	4	0	-5	8	9	3	7	1	2	2	2	6
7	9	4	4	0	0	8	4	4	3	0	-3	4	0	8	7	-4	5	2	5	5
8	10	5	6	1	3	2	2	3	5	0	-1	3	7	5	5	-5	4	4	6	4
9	5	6	7	1	6	6	1	2	8	-1	3	2	5	3	3	-6	6	4	7	7
10	1	1	4	3	9	8	-1	-3	0	-4	3	7	5	1	1	-7	4	4	7	6