Home ► My courses ► EEE117-2019S-Sec1 ► Homework ► Homework 11 - Chapter 14

Started on Wednesday, 10 April 2019, 11:37 AM

State Finished

Completed on Wednesday, 10 April 2019, 11:38 AM

Time taken 33 secs

Grade 100.00 out of 100.00

Question 1

Correct

Mark 20.00 out of 20.00

P14.3 9ed

A resistor R₁ is added in series with the inductor in this circuit.

Given: $R_1 = 75 \Omega$ (Ohm) L = 10 mH (mill H) $R = 127 \Omega$ (Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_1$.

$$H(s) = 12700$$
 $\checkmark / (s + 20200 $\checkmark)$$

b) At what frequency will the magnitude of H(jw) be maximum?

$$W_{H,max} = \boxed{0}$$
 rad/sec

c) What is maximum value of the magnitude of H(jw)?

$$H(jw)_{max} = \boxed{.628}$$

d) At what frequency will the magnitude of H(jw) equal its maximum value divided by square root of 2?

$$W_{H,max,sqrt(2)} = 20200$$
 rad/sec

e) Find w (omega)

$$w_c = 20200$$
 \checkmark rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

f) Find H(jw = 0) in polar form..

g) Find $H(jw = 0.3w_0)$ in polar form.

$$H(jw = 0.3w_c) = Mag \left[.602 \right]$$
 at angle $\left[-16.7 \right]$ \circ (Degrees)

h) Find H(jw = w) in polar form.

$$H(jw = w_c) = Mag \left[.44 \right]$$
 at angle $\left[-45 \right]$ \circ (Degrees)

i) Find $H(jw = 3w_s)$ in polar form.

$$H(jw = 3w_c) = Mag$$
 .198 \checkmark at angle $\boxed{-72}$ \checkmark \circ (Degrees)

Correct

Correct

Mark 20.00 out of 20.00

P14.3_6ed

A resistor R_L is connected in parallel with the capacitor in this circuit. The circuit thus becomes a loaded low-pass filter.

Given: $R = 20 \text{ k}\Omega$ (kilo Ohm) C = 4 nF $R_L = 300 \text{ k}\Omega$ (kilo Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_i$.

$$H(s) = 12500$$
 \checkmark / (s + 13333 \checkmark)

b) Find w_c (omega_c)

$$w_c = 13333$$
 \checkmark rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

c) Find H(j0)

$$H(j0) = \left[.9375 \right]$$

d) Find $H(jw_c)$ i.e. evaluate H(jw) at $w = w_c$

$$H(jw_c) = Mag$$
 .66 Angle -45

e) Find $H(j0.2w_c)$ i.e. evaluate H(jw) at $w = 0.2 w_c$

$$H(j0.2w_c) = Mag$$
 .91 \checkmark Angle -11.3

f) Find $H(j8w_c)$ i.e. evaluate H(jw) at $w = 8w_c$

$$H(j8w_c) = Mag$$
 .116 Angle -83

Correct

Correct

Mark 20.00 out of 20.00

P14.1_9ed

a) Find the cutoff frequency in hertz.

$$f_c = 2022$$
 Hz

b) Find $H(j\omega = 0)$ in polar form.

$$H(jw = 0) = Mag$$
 at angle 0 \checkmark ° (Degrees)

Now examine the output magnitude and phase as the input frequency varies.

c) Find $H(jw = 0.2\omega_c)$ in polar form..

$$H(jw = 0.2\omega_c) = Mag$$
 98 at angle -11.3 ° (Degrees)

d) Find $H(j\omega = \omega_c)$ in polar form.

$$H(j\omega = \omega_c) = Mag \left[.707 \right]$$
 at angle $\left[-45 \right]$ \circ (Degrees)

e) Find $H(j\omega = 5\omega_c)$ in polar form.

$$H(jw = 5\omega_c) = Mag$$
 .196 at angle -78.7 \checkmark ° (Degrees)

Now given $v_i(t) = 10 \cos(\omega t) \text{ V}$. Write the steady-state expression for v_0 for:

f) $\omega = 0.2\omega_c$

$$v_0(t) = 9.8$$
 \checkmark $cos(2540)$ \checkmark $t + -11.3$ \checkmark °) Volts

g) $\omega = \omega_c$

$$v_0(t) = 7.07$$
 $\sqrt{\cos(12700)}$ $t + -45$ $\sqrt{\circ}$ Volts

h) $\omega = 5\omega_c$

$$v_0(t) = 1.96$$
 $< cos(63500) < t + -79$ $< o) Volts$

Correct

Correct

Mark 20.00 out of 20.00

P14.10_9ed

a) Find the cutoff frequency f_c for this high-pass filter.

b) Find the H(jw) for

$$H(jw = w_c) = 0.707$$
 at angle 45 \checkmark (degrees)
 $H(jw = 0.2w_c) = 0.196$ at angle 79 \checkmark o
 $H(jw = 5w_c) = 0.98$ at angle 11.3 \checkmark o

c) If $v_i(t) = 500 \cos(\omega t)$ mV (milli V), write the steady-state output voltage $v_0(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 353$ \checkmark $\cos(wt + 45)$ \checkmark °) mV (milli V)
For $\omega = 0.2\omega_c$, $v_o(t) = 98$ \checkmark $\cos(wt + 78.69)$ \checkmark °) mV (milli V)
For $\omega = 5\omega_c$, $v_o(t) = 490$ \checkmark $\cos(wt + 11.3)$ \checkmark °) mV (milli V)

Correct

Correct

Mark 20.00 out of 20.00

P14.11_9ed

Given: $R_c = 12.5 \text{ k}\Omega$ (kilo Ohm) C = 5 nF $R = 50 \text{ k}\Omega$ (kilo Ohm)

a) Find the cutoff frequency f_c for this high-pass filter.

$$f_c = 509$$
 Hz

b) Find the H(jw) for

$$H(jw = w_c) = 0.56$$
 at angle 45 \checkmark (degrees)
 $H(jw = 0.2w_c) = 0.157$ at angle 79 \checkmark of the second of the sec

c) If $v_i(t) = 500 \cos(\omega t)$ mV (milli V), write the steady-state output voltage $v_0(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 282$ $< cos(wt + 45)$ $< os(wt + 45)$

Correct

Marks for this submission: 20.00/20.00.

■ Homework 10 - Bode Diagrams

Jump to... ▼

Homework 12 - Chapter 14 ▶