Arquitecturas de Deep Learning

Roberto Muñoz, PhD

Astrónomo y Data Scientist MetricArts

Temario

- Arquitecturas más populares
 - Red neuronal prealimentada o feed-forward
 - Redes neuronales convolucionales
 - Redes neuronales recurrentes
- Regularización

Feed-forward network

REDES NEURONALES PREALIMENTADAS

Perceptrón

- Perceptrón lo introduce Frank Rosenblatt (1958)
- Principales componentes
 - Valores de entrada o capa de input
 - Pesos (weights) y sesgo (bias)
 - Suma total
 - Función de activación

Paso 1

- Cada uno de los valores de entrada x es multiplicado por un valor de peso w.
- El resultado se llama k = x × w.

Paso 2

 Sumar todos los valores de k. Esa suma se llama suma pesada.

Paso 3

- Usar el valor de la suma pesada como valor de entrada para la función de activación.
- Funciones de activación: lineal, limitante, escalón, sigmoidal, tangente hiperbólica, Gaussiana, etc.

¿Porqué usar pesos y sesgo?

- Los pesos indican cuán importante es un nodo.
- Los valores de sesgo permiten desplazar el threshold de la función de activación ya sea hacia valores bajos o altos.

Feed-forward network

- Las Redes neuronales prealimentadas fueron las primeras que se desarrollaron y son el modelo más sencillo.
- En estas redes la información se mueve en una sola dirección: hacia adelante.
- Los principales exponentes de este tipo de arquitectura son el perceptrón y el perceptrón multicapa.

CNN

REDES CONVOLUCIONALES

- Las redes neuronales convolucionales son similares a las redes neuronales ordinarias.
- Se componen de neuronas que tienen pesos y sesgos que pueden aprender.
- Cada neurona recibe algunas entradas, realiza un producto escalar y luego aplica una función de activación.

- CNN calcula mapas de features a partir de una imagen de entrada. Cada elemento proviene de un región local de píxels.
- La región local de píxels se denomina local receptive field o campos receptivos.

- ¿Porqué funcionan tan bien en imágenes?
 - Conectividad local: Cada elemento del mapa de features está conectado con una pequeña región de píxels/patrones. Función de respuesta alta de los filtros aprendidos. Se parte con representaciones de pequeñas regiones y luego se escala a regiones de mayor tamaño.
 - Pesos compartidos: Cada filtro se replica a lo largo del campo de visión completo. Invariancia respecto a translación.

- Las redes neuronales convolucionales van a estar construidas por 3 tipos de capas,
 - Capa convolucional
 - Capa de reducción o pooling. Reducir cantidad de parámetros, características más comunes.
 - Capa clasificadora totalmente conectada. Suelen ser las últimas capas de la red.
- LeNet, AlexNet, VGGNet, GoogleNet, ResNet, etc.

LeNet-5

- Propuesta por Yan LeCun et al. (1998)
- Usada por bancos para reconocer números escritos a mano en cheques digitalizados.

AlexNet

- Propuesta por Krizhevsky et al. (2012) como solución al challenge de ImageNet 2012.
- Clasificación de pequeñas imágenes.
- Top-5 score: Etiqueta anotada es una de las 5 predicciones con mayor probabilidad.
- Redujo error top-5 de 26,2% a 15,3%.

AlexNet

- Contiene 5 capas convolucionales y 3 capas densas (fullyconnected).
- Se aplica ReLU después de cada capa convolucional y capa densa.
- Se aplica dropout antes de la primera y segunda capa densa.

Stride, padding, pooling

7 x 7 Input Volume

3 x 3 Output Volume

0	0	0	0	0	0
0	35	19	25	6	0
0	13	22	16	53	0
0	4	3	7	10	0
0	9	8	1	3	0
0	0	0	0	0	0

Example of Maxpool with a 2x2 filter and a stride of 2

AlexNet – Parámetros

o. 10				N. I. Co.	
Size / Operation	Filter	Depth S	tride Padding	Number of Parameters	Forward Computation
3*227 *227					
Conv1 + Relu	11 * 11	96	4	(11*11*3 + 1) * 96=34944	(11*11*3 + 1) * 96 * 55 * 55=105705600
96 * 55 * 55					
Max Pooling	3 * 3		2		
96 * 27 * 27					
Norm					
Conv2 + Relu	5 * 5	256	1	2 (5 * 5 * 96 + 1) * 256=614656	(5 * 5 * 96 + 1) * 256 * 27 * 27=448084224
256 * 27 * 27					
Max Pooling	3 * 3		2		
256 * 13 * 13					
Norm					
Conv3 + Relu	3 * 3	384	1	1 (3 * 3 * 256 + 1) * 384=885120	(3 * 3 * 256 + 1) * 384 * 13 * 13=149585280
384 * 13 * 13					
Conv4 + Relu	3 * 3	384	1	1 (3 * 3 * 384 + 1) * 384=1327488	(3 * 3 * 384 + 1) * 384 * 13 * 13=224345472
384 * 13 * 13					
Conv5 + Relu	3 * 3	256	1	1 (3 * 3 * 384 + 1) * 256=884992	(3 * 3 * 384 + 1) * 256 * 13 * 13=149563648
256 * 13 * 13					
Max Pooling	3 * 3		2		
256 * 6 * 6					
Dropout (rate 0.5)					
FC6 + Relu				256 * 6 * 6 * 4096=37748736	256 * 6 * 6 * 4096=37748736
409	6				
Dropout (rate 0.5)					
FC7 + Relu				4096 * 4096=16777216	4096 * 4096=16777216
409	6				
FC8 + Relu				4096 * 1000=4096000	4096 * 1000=4096000
1000 classes					
Overall				62369152=62.3 million	1135906176=1.1 billion
Conv VS FC					%) Conv: 1.08 billion (95%) , FC: 58.6 million (5%)
				22	, (55,5)

AlexNet

- La red tiene 62,3 millones de parámetros
- Necesita de 1.100 millones de unidades cómputo en un solo forward pass.
- Las capas convolucionales representan el 6% de todos los parámetros. Consumen cerca del 95% del cómputo.
- Capas convolucionales tienen pocos parámetros y requieren un elevado número de cálculos.
- Capas densas o fully-connected tienen muchos parámetros y requiere pocos cálculos.

CNN architectures

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogleNet/Inception

- Fue propuesta por el equipo de Google el año 2014
- Alcanzó un error top-5 del 6,6%
- Consiste de 22 capas de CNN
- Se emplea un módulo llamado inception, el cual consiste en usar varias redes convolucionales pequeñas para así reducir el número de parámetros.

Módulo Inception

- La idea es cubrir una gran área de la imagen, pero seguir manteniendo una resolución mas fina para extraer información de regiones pequeñas.
- Un mayor número de parámetros aumenta la probabilidad de hacer sobre ajuste.

Módulo Inception

Capa bottleneck

 Digamos que tenemos 256 features de entrada y 256 de salida. Configuramos un módulo de inception que aplique convoluciones 3x3.

Número de cálculos: 256x256x3x3 = 589.000 MAC MAC=multiply-accumulate

- Otra alternativa es configurar un módulo inception que reduzca la dimensionalidad de los features, digamos de 256 a 64.
 - -256x64x1x1 = 16.000 MAC
 - -64x64x3x3 = 36.000 MAC
 - -64x256x1x1 = 16.0000 MAC TOTAL=70.000 MAC