UNIVERSIDAD DEL PACÍFICO

Departamento Académico de Economía Machine Learning para Economistas Segundo semestre de 2022 Profesor: F. Rosales, JP: R. Arauco

- 1. Muestre que una variable aleatoria Gaussiana tiene una distribución de probabilidad perteneciente a la familia de distribuciones exponenciales. (5 puntos)
- 2. Considere el método de clasificación KNN con K=3, la norma $\|x\|_{\infty}=\max_{i=1,\dots,n}\{|x_i|\}$, y los siguientes datos

PRÁCTICA CALIFICADA 1

Obs.	Data	X_1	X_2	X_3	Y
1	train	1/2	1	3/4	Verde
2	train	1	1	1/4	Verde
3	train	3/4	1/2	3/4	Verde
4	train	1/4	1/4	1/2	Azúl
5	train	1	3/4	1/4	Rojo
6	train	1/2	1/2	3/4	Azúl
7	test	0	0	0	Rojo
8	test	1/2	1/2	1/2	Azúl
9	test	1	1	1	Verde

- (a) Clasifique las observaciones en data de prueba. (2 puntos)
- (b) Calcule el ratio de error de su clasificación en (a). (1 punto)
- 3. Considere el caso de regresión lineal múltiple de $y \in \mathbb{R}^n$ con respecto a $X \in \mathbb{R}^{n \times p}$
 - (a) Muestre que la recta de regresión estimada siempre pasa por el punto (\bar{x}, \bar{y}) . (2.5 puntos)
 - (b) Muestre que el \mathbb{R}^2 es igual al cuadrado de la correlación entre y y \hat{y} . (2.5 puntos)
 - (c) Muestre que $\boldsymbol{H}_{ii} \in [0,1]$, donde $\boldsymbol{\hat{f}} = \boldsymbol{H}\boldsymbol{y}$. (2.5 puntos)
 - (d) Muestre que $\sum_{i=1}^{n} \boldsymbol{H}_{ii} = p$. (2.5 puntos)
- 4. Considere el caso de regresión lineal de $\mathbf{y} \in \mathbb{R}^n$ con respecto a $\mathbf{x} \in \mathbb{R}^n$. Suponga que se recogen datos y se separan en data de entrenamiento (70% de obs) y data de prueba (30% de obs). Se ajustan dos modelos a la data: una regresión lineal simple y una regresión cúbica, es decir: $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2 + \beta_3 \mathbf{x}^3 + \epsilon$.
 - (a) Suponga que la verdadera relación entre \boldsymbol{x} e \boldsymbol{y} es lineal, es decir, $\boldsymbol{y} = \beta_0 + \beta_1 \boldsymbol{x} + \epsilon$. Considere el MSE para la regresión lineal, y para la regresión cúbica utilizando data de entrenamiento. ¿Cómo se comparan estas dos cantidades? (1 punto)
 - (b) Responda (a) usando la data de prueba en lugar de la data de entrenamiento. (1 punto)