CS 5600 Triet Ngo Dr. Guerra Gomez 3 Nov 2023

Requirements and Conceptual Document

CATabase: A Cat Adoption Database Management System

I. Requirements

a. Problem Description

There are approximately 50-70 million feral cats in the United States, with some figures estimating at least 100 million without a home. Cats are natural predators and thus pose a serious threat to the local wildlife while also being at risk of being attacked by other cats, aggressive animals, or seriously injured by fast-moving vehicles. And yet, there are only about 2 million cats being adopted each year in the US. As such, a comprehensive cat adoption database will help people more easily connect with owners and shelters to adopt and reduce the number of vulnerable cats out in the elements.

- b. Summarized Nouns and Verbs
 - i. Nouns
 - 1. Cats (Note: cats available for adoption)
 - (1) cat id: unsigned integer
 - (2) cat name: string
 - (3) cat_birthday: yyyy-mm-dd
 - (4) cat weight lb: float
 - (a) Note: Weight in pounds
 - 2. Breeds
 - (1) <u>breed id</u>: integer
 - (2) breed_name: {"Siamese", "Bengal", "American Shorthair", "Russian Blue", ...}
 - 3. Personality
 - (1) personality id: integer
 - (2) personality_name: {"Friendly", "Shy", "Energetic", "Moody",...}
 - 4. Shelters
 - (1) <u>shelter id</u>: unsigned integer
 - (2) shelter name: string
 - (3) shelter location: string
 - (4) shelter email: string
 - (5) shelter phone: 10-digit integer
 - 5. Users:
 - (1) <u>user id</u>: unsigned integer
 - (2) user first name: string

- (3) user last name: string
- (4) user_address: string
- (5) user email: string
- (6) user phone: 10-digit integer
- ii. Verbs
 - 1. House
 - 2. Adopt
 - 3. Rate
- c. Narratives
 - i. Cats
 - 1. Each cat is housed by one shelter only
 - 2. Each cat has only one breed
 - 3. Each cat has only one personality
 - 4. Each cat can be applied for by zero or more users
 - ii. Breeds
 - 1. Each breed is of one or more cats
 - iii. Personality
 - 1. Each personality is of one or more cats
 - iv. Shelters
 - 1. A shelter can house zero or more cats
 - 2. A shelter can approve zero or more users for adoption
 - 3. A shelter can be rated by zero or more users
 - v. Users
 - 1. A user can apply to adopt one or more existing cats
 - 2. A user can rate zero or more existing shelters on the scale of 1 to 5
 - 3. A user can be approved by zero or more shelters
- d. Challenges
 - i. Should a cat have multiple personalities?
 - ii. Should there be a separate owner class?

II. Conceptual Model (UML)

CATabase UML Class Diagram

III. Entity-Relationship Model (ERD)

CATabase ER Diagram

IV. Relational Schema in BCNF

a. Schema with Functional Dependencies

- i. Cat(<u>cat id</u>, cat name, cat breed, cat birthday, cat weight lb)
 - 1. cat id \rightarrow {cat name, cat breed, cat birthday, cat weight lb}
 - 2. Candidate key: cat id
- ii. Breed(<u>breed id</u>, breed name)
 - 1. breed id \rightarrow breed name
 - 2. Candidate key: breed id
- iii. Personality(<u>personality_id</u>, breed_name)
 - 1. personality_id → breed_name
 - 2. Candidate key: personality id
- iv. Shelter(<u>shelter_id</u>, shelter_name, shelter_location, shelter_email, shelter_phone)
 - shelter_id → {shelter_name, shelter_location, shelter_email, shelter_phone}
 - 2. Candidate key: shelter id
- v. User(<u>user_id</u>, user_first_name, user_last_name, user_address, user_email, user_phone)
 - user_id → {user_first_name, user_last_name, user_address, user_email, user_phone}
 - 2. Candidate key: user id
- vi. CatBreed(cat id, breed id)
 - 1. Candidate key: {cat id, breed id}
- vii. CatPersonality(cat id, personality id)
 - 1. Candidate key: {cat id, personality id}
- viii. Houses(cat id, shelter id).
 - 1. Candidate key: {cat id, shelter id}
- ix. Ratings(*user id, shelter id,* rating_score)
 - 1. {user id, shelter id} \rightarrow rating_score
 - 2. *Note:* each attribute of the composite key are themselves keys in different tables
- x. Adopts(user id, cat id, adoption date)
 - 1. {user id, cat id} \rightarrow adoption date
 - 2. Candidate key: {user id, cat id}

b. BCNF Analysis

- i. Schema is in 1NF:
 - 1. No multi-valued attributes
- ii. Schema is in 2NF:
 - 1. Schema is in 1NF
 - 2. No partial functional dependencies: in all tables, all proper subsets of the candidate key give non-key attributes

iii. Schema is in 3NF:

- 1. Schema is in 2NF
- 2. No transitive dependency: no tables exhibit any transitive dependency

iv. Schema is in BCNF

- 1. Schema is in 3NF
- 2. For every dependency A → B in the schema, A is either a candidate key or a super key. Therefore, the Relational Schema is in BCNF