Métodos de diseño y Análisis de Experimentos

Tarea 03

Rivera Torres Francisco de Jesús Rodríguez Maya Jorge Daniel Samayoa Donado Víctor Augusto Trujillo Barrios Georgina

Marzo 26, 2019

1 Ejercicio 1

Teniendo un diseño completamente al azar, unifactorial, de efectos fijos con 3 tratamientos y 4 repeticiones para cada uno.

1.1 Completa todos los espacios vacios de la tabla de ANOVA:

Tabla 1: Tabla ANOVA FVGLSum Sq Mean Sq F- value P-value Tratamiento t-1=2 $SSt = CMt^*(t-1) = 0.1317$ F*CME = 0.06585.643 .025806Error SSE=CME*(n-t)=0.1050.01167n-t=9Total SSt + SSE = 0.2366744n-1=11

1.2 ¿Cuál es el modelo?

$$y_{i,j} = \mu_i + e_{i,j}$$

1.3 ¿Cuál es la hipótesis nula?

$$H_0: \mu_1 = \mu_2 = \mu_3$$

1.4 Con un nivel de significancia $\alpha = .01$, ¿qué cuantil de la distribución F usarías para determinar la zona de rechazo?; Rechazarías H_{0} ?

El cuantil que usamos para determinar la zona de rechazo es

[1] 0.05158674

Como este resultado, 0.0515867 es mayor que el el p-value de la tabla ANOVA, sí rechazaríamos la hipótesis nula: es decir, con $\alpha = 0.05$, el efecto de al menos un tratamiento difiere de los otros.

1.5 Con un nivel de significancia $\alpha = .05$, ¿qué cuantil de la distribución F usarías para determinar la zona de rechazo?; Rechazarías H_{0} ?

El cuantil que usamos para determinar la zona de rechazo es

```
cuantil <- qf(0.01, 2,9)
cuantil</pre>
```

[1] 0.01006157

Como el cuantil, 0.0100616 es menor que el el p-value de la tabla ANOVA, no rechazaríamos la hipótesis nula: es decir, no hay evidencia estadísticamente significativa ($\alpha=0.01$) para afirmar que el efecto promedio de los tratamientos difiere.

2 Ejercicio 2

Se quiere contrastar la efectividad de 3 diferentes repelentes para insectos, para hacerlo se corrió un pequeño experimento con 12 viajeros de una excursión al Amazonas, aleatoriamente se determinó qué repelente se aplicaría cada viajero y al final del viaje se contó el número de piquetes que cada uno tenía.

Viajero	Repelente	# Piquetes
1	UXM	3
2	UXM	1
3	UXM	2
4	JFH-1	6
5	JFH-1	6
6	JFH-1	9
7	K300	2
8	K300	4
9	K300	0
10	Placebo	7
11	Placebo	9
12	Placebo	5

Responde lo siguiente:

2.1 ¿Cuántos factores son? ¿Cuántos tratamientos se tienen? y ¿Cuántas repeticiones se hicieron para cada tratamiento?

En los datos existe un único factor **Repelente**. Hay 4 niveles para este factor y como es un único factor se tiene que los niveles son los tratamientos, los cuales son; **UMC**, **JFH-1**, **K300** y **Placebo**. Y se realizaron 3 repeticiones por cada uno de los tratamientos

2.2 ¿Cuál es la unidad experimental? y ¿Cuál es la variable respuesta?

La unidad experiemntal (u.e.) son los **viajeros** y la variable respuesta es el **número de piquetes** en cada viajero.

2.3 ¿Cuál sería la pregunta de investigación?

¿Alguno de los repelentes reduce el número de piquetes en comparación con otros?

2.4 Describe el modelo de efectos y cada uno de sus elementos

Debido a que solamente se tiene un factor, el modelo de efectos es el modelo de medias

$$y_{ij} = \mu_i + \varepsilon_{ij}$$

donde:

$$j=$$
 viajero = 1,2,3. $i=$ UMC, JFH-1, K-300, Placebo $\varepsilon_{ij}=$ error experimental unidad $ij,$ $\mu=$ media del i-ésimo tratamiento $y_{ij}=$ número de piquetes en el viajero j del tratamiento i

2.5 Especifica los supuestos y las hipótesis

Para este modelo se tienen los siguientes supuestos:

- Existe una población de referencia para cada unidad experimental.
- La variable respuesta de cada unidad de la población (los viajeros) tiene una media μ y una varianza σ^2 .
- Las unidades observadas se seleccionaron de forma aleatoria para cada población.

Las hipótesis son:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu$$
 v.s. $H_a: \mu_i \neq \mu_k$, para alguna $i \neq k$

2.6 Obtén una tabla ANOVA con los datos

Warning: package 'bindrcpp' was built under R version 3.4.4

Tabla 3: Tabla ANOVA

F.V	g.l	SS	CM	F	Pr(>F)
Repelente	3	75	25	8.3333	0.0076
Error	8	24	3		
Total	11	99			

2.7 ¿Qué conclusión puedes sacar de la ANOVA?

De la tabla ANOVA, se observa que el p-value = $0.00763 < 0.01 = \alpha$. Por lo tanto, a un nivel de significancia de $\alpha = 0.01$ se rechaza la hipótesis nula. Por lo que existe algún repelente que tiene un comportamiento diferente al promedio.

2.8 Analiza la diferencia entre pares usando Tukey

Tabla 4: Tabla TukeyHSD

		T , 1		
		Intervalo de confianza		
Repelente	Diferencias	Inferior	Superior	p ajustada
UXM-K300	0	-4.5288	4.5288	1.0000
JFH-1-Placebo	0	-4.5288	4.5288	1.0000
Placebo-UXM	5	0.4712	9.5288	0.0314
Placebo-K300	5	0.4712	9.5288	0.0314
JFH-1-UXM	5	0.4712	9.5288	0.0314
JFH-1-K300	5	0.4712	9.5288	0.0314

2.9 Esquematiza la comparación de pares en un cuadro

2.10 ¿Qué puedes concluir?

Las poblaciones de los viajeros que usaron los repelentes UXM-300 y K300 tienen la misma media, esto es, ambos repelentes tienen el mismo efecto.

Mientras que la población de los viajeros que usaron el repelente **JFH-1** tiene la misma media que los viajeros con **Placebo**

3 Ejercicio 3

Una compañía de pisos desea indagar en la resistencia de 5 diferentes materiales para piso y para ello somete 4 piezas de cada tipo de material a pruebas de resistencia, midiendo el tiempo en segundos que tarda cada material para quebrarse.