

Predicting Customer Churn

Noah Armsworthy November 8th, 2024

Problem Statement

To maintain the capital required to provide security to their customers, insurance companies must retain as many customers as possible. Predicting potential customer churn can help inform companies of critical points where retention strategies can be deployed.

METHODOLOGY

INITIAL ANALYSIS

• Getting to know the data

DATA PREPARATION

- Improve data quality
- Remove potentially misleading patterns

MODEL SELECTION

- Metric comparison on default parameters
- Cross validation

MODEL TRAINING & TUNING

- Hyper parameter tuning
- Interpret results

Feature Name	Distinct	Missing	Min	Max	Mean	Std
Customer ID	1193 (20%)	0	1001	2200	N/A	N/A
Age	81 (1%)	593 (10%)	13	125	50	18
Annual Premium	1241 (21%)	591 (10%)	0	9693	1175	630
Tenure	29 (21%)	600 (10%)	1	29	15	8.4
Province	5 (<1%)	0	N/A	N/A	N/A	N/A
Marital Status	3 (<1%)	0	N/A	N/A	N/A	N/A
Policy Type	3 (<1%)	0	N/A	N/A	N/A	N/A
Claim Frequency	1193 (20%)	0	0	4.9	2.5	1.4
Customer Satisfaction	10 (<1%)	0	1	10	5.6	2.8

Correlation

0.0 to +0.2	Very weak + or no association				
0.0 to -0.2	Very weak - or no association				

Distributions

~2:1 Imbalance for No Churn

Data Preparation

Missing Data

- Less than 0.01 correlation to the target column
- 5% Rule of Thumb
- Use simple imputer to place the most common value in that column

Data Preparation

Duplicate Records

- Near duplicates provide conflicting information for the same sample
- If valid, entries need a date or 'active' column
- Ultimately, dropping these would lose too much data.

Exact duplicates were dropped. Near duplicates were kept.

Data Preparation

Min-Max Scaling

	Age	AnnualPremium	Tenure	ClaimFrequency	CustomerSatisfaction
count	4721.000	4721.000	4721.000	4721.000	4721.000
mean	0.427	0.108	0.563	0.499	0.512
std	0.236	0.076	0.318	0.286	0.315
min	0.000	0.000	0.000	0.000	0.000
25%	0.229	0.056	0.286	0.251	0.222
50%	0.434	0.108	0.571	0.500	0.556
75%	0.651	0.157	0.857	0.750	0.778
max	1.000	1.000	1.000	1.000	1.000

Model	Accuracy	Precision		Recall		F1-Score		ROC
		No Churn	Churn	No Churn	Churn	No Churn	Churn	AUC
Logistic Regression	67%	67%	0%	100%	0%	80%	0%	55%
SVM	67%	67%	0%	100%	0%	80%	0%	55%
Decision Tree Classifier	90%	91%	87%	94%	82%	93%	84%	87%
K-Nearest Neighbor	64%	69%	43%	84%	25%	76%	31%	57%
Naive Bayes	66%	67%	40%	98%	3%	80%	5%	53%
Random Forest Classifier	93%	90%	100%	100%	78%	95%	88%	98%
Gradient Boosting Classifier	73%	71%	87%	98%	21%	83%	34%	84%

Model Selection

Model Selection

Decision Tree

$$Accuracy = rac{CorrectPredictions}{AllLabels}$$

$$Recall = rac{CorrectPositivePredictions}{AllPositiveLabels}$$

Additional benefits of Decision Tree:

- Faster training and tuning
- Potentially more interpretable
- Good for small datasets

Cross Validation Results

Decision Tree Training & Tuning

Chose **f1** scoring as the *harmonic mean* between precision and recall. "How **good** and **complete** are the positive predictions?"

Using Grid Search Cross Validation

- Class weight: {No Churn: 1, Churn: 1.5}
- Criterion: 'gini'
- No specific max depth or max features.
- Minimum samples per leaf: 1
- Minimum required samples to split: 2
- Average f1 score of 89%

Challenges & Next Steps

- O1 Consult with the data provider about duplicates records and possible outliers.
- Consider over/under-sampling if future data has different class distributions.
- **03** Gather more relevant data.

- **Q4** Post-pruning for the Decision Tree may improve performance and interpretability.
 - O5 Perform testing on a larger variety of hyper parameters.

