Semidefinite Optimization and Relaxation

Heng Yang

2024-01-19

Contents

Preface				
N	otati	on	7	
1 Mathematical Background		thematical Background	11	
	1.1	Convexity	11	
	1.2	Convex Geometry	12	
2	Sen	nidefinite Optimization	13	

Preface

This is the textbook for Harvard ENG-SCI 257: Semidefinite Optimization and Relaxation. Information about the offerings of the class is listed below.

2024 Spring

 $\mathbf{Time} \colon \operatorname{Mon/Wed} \ 2:15 - 3:30 \mathrm{pm}$

Location: Science and Engineering Complex, 1.413

Instructor: Heng Yang

Teaching Fellow: Safwan Hossain

Syllabus

Acknowledgment

Notation

We will use the following standard notation throughout this book.

Basics

\mathbb{R}	real numbers
\mathbb{R}_{+}	nonnegative real
\mathbb{R}_{++}	positive real
\mathbb{Z}	integers
\mathbb{N}	nonnegative integers
\mathbb{R}^n	n-D column vector
\mathbb{R}^n_+	nonnegative orthant
\mathbb{R}^n_+ \mathbb{R}^n_{++}	positive orthant
e_i	standard basic vector
$\Delta_n := \{x \in \mathbb{R}^n_+ \mid \sum x_i = 1\}$	standard simplex

Matrices

$\mathbb{R}^{m \times n}$	$m \times n$ real matrices
\mathbb{S}^n	$n \times n$ symmetric
	matrices
\mathbb{S}^n_+	$n \times n$ positive
	semidefinite matrices
\mathbb{S}^n_{++}	$n \times n$ positive definite
	matrices
$\langle A, B \rangle$ or \bullet	inner product in
	$\mathbb{R}^{m imes n}$
$\operatorname{tr}(A) \\ A^{ op}$	trace of $A \in \mathbb{R}^{n \times n}$
$A^{ op}$	matrix transpose
$\det(A)$	matrix determinant
$\operatorname{rank}(A)$	rank of a matrix
$\operatorname{diag}(A)$	diagonal of a matrix
	A as a vector

$\overline{\mathrm{Diag}(a)}$	turning a vector into
$BlkDiag(A,B,\dots)$	a diagonal matrix block diagonal matrix with blocks $A, B,$
$\succeq 0$ and $\preceq 0$	positive / negative semidefinite
$\succ 0$ and $\prec 0$	positive / negative definite
$\lambda_{\rm max}$ and $\lambda_{\rm min}$	maximum / minimum eigenvalue
$\sigma_{\rm max}$ and $\sigma_{\rm min}$	maximum / minimum singular value
$\operatorname{vec}(A)$	vectorization of $A \in \mathbb{R}^{m \times n}$
$\operatorname{svec}(A)$	$\operatorname{symmetric}$
	vectorization of $A \in \mathbb{S}^n$
$\ A\ _{\mathrm{F}}$	Frobenius norm

Geometry

$\ a\ _p$	p-norm
$ a ^r$	2-norm
B(o,r)	ball with center o and radius r
$\operatorname{conv}(S)$	convex hull of set S
cone(S)	conical hull of set S
int(S)	interior of set S
∂S	boundary of set S
P°	polar dual of convex body
SO(d)	special orthogonal group of dimension d
\mathcal{S}^{d-1}	unit sphere in \mathbb{R}^d

Optimization

KKT	Karush–Kuhn–Tucker
LP	linear program
QP	quadratic program
SOCP	second-order cone program
SDP	semidefinite program

Algebra

$\mathbb{R}[x]$	polynomial ring in x with real coefficients
\deg	degree of a monomial / polynomial
$\mathbb{R}[x]_d$	polynomials in x of degree up to d
$[x]_d$	vector of monomials of degree up to d
$[\![x]\!]_d$	vector of monomials of degree d

Chapter 1

Mathematical Background

- Convexity
- Convex Optimization
- Convex Geometry
- Linear Programming

1.1 Convexity

A very important notion in modern optimization is that of *convexity*. To a large extent, an optimization problem is "easy" if it is convex, and "difficult" when convexity is lost, i.e., *nonconvex*. We give a basic review of convexity here and refer the reader to (Rockafellar, 1970), (Boyd and Vandenberghe, 2004), and (Bertsekas et al., 2003) for comprehensive treatments.

We will work on a finite-dimensional real vector space, which we will identify with \mathbb{R}^n .

Definition 1.1 (Convex Set). A set S is convex if $x_1, x_2 \in S$ implies $\lambda x_1 + (1 - \lambda)x_2 \in S$ for any $\lambda \in [0,1]$. In other words, if $x_1, x_2 \in S$, then the line segment connecting x_1 and x_2 lies inside S.

Conversely, a set S is nonconvex if Definition 1.1 does not hold.

A hyperplane is a common convex set defined as

$$P = \{ x \in \mathbb{R}^n \mid \langle c, x \rangle = d \}$$

for some $c \in \mathbb{R}^n$ and scalar d. A halfspace is a convex set defined as

$$H=\{x\in\mathbb{R}^n\mid \langle c,x\rangle\geq d\}.$$

An important property of a convex set is that we can *certify* when a point is not in the set. This is usually done via a separation theorem.

Theorem 1.1 (Separation Theorem). Let S_1, S_2 be two convex sets in \mathbb{R}^n and $S_1 \cap S_2 = \emptyset$, then there exists a hyperplane that separates S_1 and S_2 , i.e., there exists c and d such that

$$\langle c, x \rangle \ge d, \forall x \in S_1,$$

$$\langle c, x \rangle \le d, \forall x \in S_2.$$

$$(1.1)$$

Further, if S_1 is compact (i.e., closed and bounded) and S_2 is closed, then the separation is strict, i.e., the inequalities in (1.1) are strict.

The strict separation theorem is used typically when S_1 is a single point (hence compact).

The intersection of convex sets is always convex (try to prove this).

1.2 Convex Geometry

Definition 1.2 (Extreme Point). Given a convex set, a point $x \in S$ is extreme if

$$\forall x_1, x_2 \in S, \exists \lambda \in (0,1) \text{ such that } x = \lambda x_1 + (1-\lambda)x_2 \Longrightarrow x = x_1 = x_2.$$

In other words, any line segment that contains x and lies inside S must be x itself.

Chapter 2

Semidefinite Optimization

- Positive Semidefinite Matrices
- Spectrahedra

Bibliography

Bertsekas, D., Nedic, A., and Ozdaglar, A. (2003). Convex analysis and optimization, volume 1. Athena Scientific. 11

Boyd, S. P. and Vandenberghe, L. (2004). *Convex optimization*. Cambridge university press. 11

Rockafellar, R. T. (1970). Convex analysis. 11