TP FINAL

CONTADOR ASCENDENTE/DESCENDENTE CONTROLADO POR UART

PRESENTADO POR: ING. JOSÉ ROBERTO CASTRO

SCHEMATIC

RECURSOS

Resource	Utilization	Available	Utilization %
LUT	587	17600	3.34
LUTRAM	24	6000	0.40
FF	1002	35200	2.85
Ю	6	100	6.00

ESTRUCTURA

```
日の甘却

✓ DEEPSEEK

∨ Fuentes

    Arty-Z7-10-Master.xdc

    top_level.vhd

≡ uart controller.vhd

   ≡ uart rx.vhd
  > project_1.cache
  > project_1.hw
  > project_1.ip_user_files
  > project_1.runs
  > project_1.sim
  > project_1.srcs
  > Simulacion
  > Sintesis
  ■ project_1.xpr
```

```
##Arty-Z7-10-Master.xdc
## Clock Signal
create clock -add -name sys clk pin -period 8.00 -waveform {0 4} [get ports { clk }];
## Reset Signal
set_property -dict { PACKAGE_PIN M20
                                  IOSTANDARD LVCMOS33 } [get_ports { reset }]; #IO_L7N_T1_AD2N_35 Sch=SW0
## UART RX Signal
set property -dict { PACKAGE PIN M19
                                   IOSTANDARD LVCMOS33 } [get ports { rx }]; #IO L7P T1 AD2P 35 Sch=SW1
## Count Output (LEDs)
set_property -dict { PACKAGE_PIN R14
                                   IOSTANDARD LVCMOS33 } [get ports { count out[0] }]; #IO L6N T0 VREF 34 Sch=LED0
                                   IOSTANDARD LVCMOS33 } [get_ports { count_out[1] }]; #IO_L6P_T0_34 Sch=LED1
set_property -dict { PACKAGE_PIN P14
set_property -dict { PACKAGE PIN N16
                                   IOSTANDARD LVCMOS33 } [get_ports { count_out[2] }]; #IO_L21N_T3_DQS_AD14N_35 Sch=LED2
                                   IOSTANDARD LVCMOS33 } [get_ports { count_out[3] }]; #IO_L23P_T3_35 Sch=LED3
set property -dict { PACKAGE PIN M14
```

ARTY-Z7-10

FUENTES

```
-- contador asc desc.vhd
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity contador asc desc is
    Port (
       clk : in STD_LOGIC;
        reset : in STD LOGIC;
       control: in STD LOGIC; -- '0' para ascendente, '1' para descendente
       count out : out STD_LOGIC_VECTOR(3 downto 0)
   );
end contador_asc_desc;
architecture Behavioral of contador asc desc is
   signal count : STD_LOGIC_VECTOR(3 downto 0) := "0000";
begin
   process(clk, reset)
    begin
        if reset = '1' then
            count <= "0000";
        elsif rising edge(clk) then
            if control = '0' then
                count <= count + 1;</pre>
            else
                count <= count - 1;</pre>
           end if;
        end if;
    end process;
   count out <= count;</pre>
end Behavioral;
```

```
-- uart controller.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity uart_controller is
    Port (
        clk : in STD LOGIC;
       reset : in STD LOGIC;
       rx : in STD LOGIC;
       control_out : out STD_LOGIC
end uart controller;
architecture Behavioral of uart controller is
    signal rx_data : STD_LOGIC_VECTOR(7 downto 0);
   signal rx_done : STD_LOGIC;
begin
   uart rx inst : entity work.uart rx
       port map (
            clk => clk,
           reset => reset,
            rx = rx
            data out => rx data,
           rx_done => rx_done
        );
    process(clk, reset)
    begin
       if reset = '1' then
           control out <= '0';</pre>
       elsif rising_edge(clk) then
            if rx done = '1' then
                if rx data = "00000000" then -- Comando para contar ascendente
                    control out <= '0';
                elsif rx data = "00000001" then -- Comando para contar descendente
                    control_out <= '1';</pre>
                end if;
            end if;
       end if;
   end process;
end Behavioral;
```

FUENTES


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity uart_rx is
   Port (
        clk : in STD_LOGIC;
        reset : in STD_LOGIC;
        rx : in STD LOGIC;
        data_out : out STD_LOGIC_VECTOR(7 downto 0);
        rx_done : out STD_LOGIC
   );
end uart_rx;
architecture Behavioral of uart rx is
    signal rx_data : STD_LOGIC_VECTOR(7 downto 0);
    signal rx_done_reg : STD_LOGIC := '0';
begin
   process(clk, reset)
        variable bit_count : integer := 0;
        variable rx_buffer : STD_LOGIC_VECTOR(7 downto 0);
    begin
        if reset = '1' then
            rx_done_reg <= '0';</pre>
            bit_count := 0;
        elsif rising_edge(clk) then
            if rx = '0' then -- Start bit detected
                bit count := 0;
                rx_done_reg <= '0';</pre>
            elsif bit_count < 8 then</pre>
                rx buffer(bit count) := rx;
                bit_count := bit_count + 1;
            elsif bit_count = 8 then
                rx_data <= rx_buffer;</pre>
                rx_done_reg <= '1';</pre>
                bit count := 0;
            end if;
        end if;
    end process;
    data out <= rx data;</pre>
    rx done <= rx done reg;
end Behavioral;
```

FUENTES

```
--top level.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC STD.ALL;
library work;
use work.all;
entity top_level is
   Port (
       clk : in STD LOGIC;
       reset : in STD_LOGIC;
       rx : in STD_LOGIC;
       count_out : out STD_LOGIC_VECTOR(3 downto 0)
    );
end top_level;
architecture Behavioral of top level is
   signal control : STD LOGIC;
   signal vio clk : STD LOGIC;
   signal vio reset : STD LOGIC;
   signal vio rx : STD LOGIC;
   signal vio_control : STD_LOGIC;
   signal vio_count_out : STD_LOGIC_VECTOR(3 downto 0);
   signal control_mux : STD_LOGIC;
    COMPONENT vio
       PORT (
           clk : IN STD LOGIC;
           probe in0 : IN STD LOGIC VECTOR(3 DOWNTO 0);
           probe out0 : OUT STD LOGIC VECTOR(0 DOWNTO 0);
           probe_out1 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
           probe out2 : OUT STD LOGIC VECTOR(0 DOWNTO 0);
           probe out3 : OUT STD LOGIC VECTOR(0 DOWNTO 0)
       );
    END COMPONENT;
```

```
begin
    control mux <= vio control when reset = '0' else '0';
    uart controller inst : entity work.uart controller
        port map (
            clk => vio_clk,
            reset => vio reset,
            rx => vio rx,
            control_out => control
        );
    contador asc desc inst : entity work.contador asc desc
        port map (
            clk => vio clk,
            reset => vio reset,
            control => control mux,
            count_out => vio count out
        );
    vio inst : vio
        PORT MAP (
            clk \Rightarrow clk
            probe in0 => vio count out, -- 4 bits para count out
            probe_out0(0) => vio_clk, -- 1 bit para clk
            probe_out1(0) => vio_reset, -- 1 bit para reset
            probe_out2(0) => vio_rx, -- 1 bit para rx
            probe out3(0) => vio control -- 1 bit para control
        );
    count_out <= vio count out;</pre>
end Behavioral;
```

SIMULACIONES

				` ` `	11111
Name	Value		Activity	Direction	VIO
୍ଲ vio_clk	[B] 1	w		Output	hw_vio_1
୍ଲ vio_control	[B] 0	Ψ		Output	hw_vio_1
୍ଷ vio_reset	[B] 0	Ψ		Output	hw_vio_1
¹₌ vio_rx	[B] 0	w		Output	hw_vio_1
∨ 🖫 vio_count_out[3:0]	[H] 0			Input	hw_vio_1
_ vio_count_out				Input	hw_vio_1
_ vio_count_out				Input	hw_vio_1
_ vio_count_out	0			Input	hw_vio_1
_ vio_count_out	•			Input	hw_vio_1

Name	Value	999,990 ps	999,991 ps	999,992 ps	999,993 ps	999,994 ps	999,995 ps	999,996 ps	999,997 ps	999,998 ps	999,999 ps
₩ clk	U										
	U										
₩ rx	U										
> 1 count_out[3:0]	0					0					
ॏ control	U										
¹⊌ vio_clk	0										
¹⊌ vio_reset	0										
√ vio_rx	0										
¹₀ vio_control	0										
> V vio_count_out[3:0]	0					0					
る control_mux	0										

GRACIAS

