

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 July 2001 (12.07.2001)

PCT

(10) International Publication Number WO 01/49832 A2

(51) International Patent Classification7:

. - .

- (21) International Application Number: PCT/EP01/00060
- (22) International Filing Date: 5 January 2001 (05.01.2001)
- (25) Filing Language:

English

C12N 9/00

(26) Publication Language:

English

(30) Priority Data:

00100351.6 00124595.0 7 January 2000 (07.01.2000) EP 10 November 2000 (10.11.2000) EP

- (71) Applicant: ARTEMIS PHARMACEUTICALS GMBH [DE/DE]; Neurather Ring 1, 51063 Köln (DE).
- (72) Inventor: SCHWENK, Frieder; Kuseler Strasse 4, 50739 Köln (DE).
- (74) Agents: HELBING, Jörg et al.; Von Kreisler Selting Werner, Postfach 10 22 41, 50462 Köln (DE).

- (81) Designated States (national): AE, AG, AL, AM, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CN, CR, CU, CZ, DM, DZ, EE, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TRANSDUCTION OF RECOMBINASES FOR INDUCIBLE GENE TARGETING

(57) Abstract: The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alteration in a living organism or in cultured cells, suitable fusion proteins and a method for the production of said fusion proteins.

Transduction of recombinases for inducible gene targeting

The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alteration in a living organism or in cultured cells, suitable fusion proteins and a method for the production of said fusion proteins.

Background

For some years targeted mutagenesis in totipotent mouse embryonic stem (ES) cells has been used to inactivate genes, for which cloned sequences were available (Capecchi, Trends in Genetics 5, 70 - 76 (1989)). Since ES cells can pass mutations induced in vitro to transgenic offspring *in vivo*, it is possible to analyze the consequences of gene disruption in the context of the entire organism. Thus, numerous mouse strains with functionally inactivated genes ("knock out mice") have been created by this technology and utilized to study the biological function of a variety of genes.

A refined method of targeted mutagenesis, referred to as conditional mutagenesis, employs a site-specific recombination system (e.g. Cre/loxP or Flp/frt – Sauer and Henderson, N. Proc. Natl. Acad. Sci. USA 85, 5166-5170 (1988); Senecoff et al., J. Mol. Biol., 201, 405 - 421 (1988)) which enables a temporally and/or spatially restricted alteration of target genes (Rajewsky et al., J. Clin. Invest., 98, 600 - 603 (1996)). The creation of conditional mouse mutants requires the generation of two mouse strains, i.e. the recombinase recognition strain and the recombinase expressing strain. The recombinase recognition strain is generated by homologous recombination in ES cells as described above except that the targeted

exon(s) is (are) flanked by two recombinase recognition sequences (hereinafter "RRS"; e.g. loxP or frt). The type of recombination event mediated by the recombinase depends on the disposition of the RRS, with deletions, inversions, translocations and integrations being possible (Torres and Kühn, Oxford University Press, Oxford, New York (1997)). By placing the RRS into introns, an interference with gene expression before recombination can be avoided. The recombinase expressing strain contains a recombinase transgene (e.g. Cre, Flp) whose expression is either restricted to certain cells and tissues or is inducible by external agents. Crossing of the recombinase recognition strain with the recombinase expressing strain recombines the RRS-flanked exons from the doubly transgenic offspring in a prespecified temporally and/or spatially restricted manner. Thus, the method allows the temporal analysis of gene function in particular cells and tissues of otherwise widely expressed genes. Moreover, it enables the analysis of gene function in the adult organism by circumventing embryonic lethality which is frequently the consequence of gene mutation. For pharmaceutical research, aiming to validate the utility of genes and their products as targets for drug development, inducible mutations provide an excellent genetic tool. However, the current systems for inducible recombinase expression in transgenic animals suffer from a certain degree of leakiness in the absence of the inducer (Kühn et al., Science 269(5229):1427-9 (1995); Schwenk et al., Nucleic Acids Res.; 26(6):1427-32 (1998)). Furthermore, the generation of conditional mutants is a time consuming and labor intensive procedure, since the recombinase recognition strain and the recombinase expressing strain have to be breed at least over two generations in order to obtain animals carrying both, the recombinase transgene and two copies of the RRS-flanked target gene sequence.

Protein tranduction domains (hereinafter shortly referred to as "PTD") that have the ability to cross cell membranes were identified, e.g. in the

Antennapedia protein from *Drosophila* (Vives et al., J. Biol. Chem, 272(25):16010-7 (1997)), Kaposi fibroblast growth factor (Kaposi FGF; Lin et al., J. Biol. Chem. 270: 14255-58 (1995)), VP22 from HSV (Elliott and O'Hare, Cell, 88(2):223-33 (1997)) and TAT from HIV (Green and Loewenstein, Cell, 55(6):1179-88 (1988); Frankel and Pabo, Cell, 55(6):1189-93 (1988)). WO 99/29721 moreover mentions TAT mutants having an enhanced activity as compared to the wild-type peptide.

Fusion of PTDs to heterologuous proteins conferred the ability to transduce into cultured cells (Fawell et al., Proc. Natl. Acad. Sci. USA, 91(2):664-8 (1994); Elliott and O'Hare (1997), Phelan et al., Nature Biotech. 16; 440-443 (1998) and Dilber et al., Gene Ther., 6(1):12-21 (1999)). Dalby and Bennett showed that a fusion protein consisting of VP22 and functional Flp recombinase translocated between cells in culture (from COS-1 cells transfected with VP22-Flp to CHO cells carrying Flp recognition sites (FRT sites); see Dalby and Bennett, Invitrogen, Expressions 6.2, page 13 (1999)). Further WO 99/11809 mentions a fusion protein Antp-Cre and emphasizes that it may be used to deliver the Cre into the cell which recombines inside the cell nucleus. It is mentioned that the fusion protein is suitable for manipulating genomic DNA at precise locations in a temporal regulated manner.

Furthermore, a recent report demonstrated that the β-galactosidase protein fused to the 11 amino acids PTD from the HIV TAT protein can infiltrate all tissues of living mice reaching every single cell (Schwarze et al., Science, 285(5433):1569-72 (1999)). Finally, WO 99/60142 discloses vector constructs for gene therapy carrying a tumor cell sensitizing gene, a sensitizing gene expression regulatory system, a control gene and a control gene expression regulatory system, wherein the control gene can be a fusion gene consisting of a recombinase (viz. Cre or Flp) and a trafficking protein (viz. VP22).

PCT/EP01/00060

With regard to the fusion protein Antp-Cre of WO 99/11809, it is however, general knowledge in the art that the Antennapedia PTD is not a generally applicable transducing protein, namely it has only a limited activity with proteins having more than 100 amino acid residues (Derossi et al., Trends Cell Biol. 8: 84-87, 1998). In view of the limited transducing activity of the Antp PTD and the size of the generally known recombinases (ranging from about 200 to about 600 amino acid residues), it was desirable to provide a more potent system for the transduction of recombinases. It was, however, not clear for a person skilled in the art whether PTDs would be all with recombinases for the following (i) only a single example of PTD-mediated delivery of proteins (above 100 amino acid residues) in vivo has been reported so far (Schwarze et al., Science, 285(5433):1569-72 (1999); Fawell et al., PNAS, 91: 664-68 (1994); both references describing the TAT-mediated transduction of Bgalactosidase in mice);

- (ii) It is known that due to defolding and refolding processes the transduction of native proteins into cells may result in a significant loss of protein activity (e.g., as described for TAT-GFP; Schwarze et al, Trends Cell Biol. 10: 290-95 (2000));
- (iii) neither the number of protein molecules that can be transferred into a cell by a given translocation domain has been systematically determined, nor the number of Cre molecules in the cell nucleus that is required for efficient recombination;
- (iv) the delivery of active proteins requires unfolding- and proper refolding which is unpredictable for a given protein (Bonifaci et al., AIDS 9: 995-1000 1995); and
- (v) the mechanism by which protein transduction domains facilitate protein transduction in unknown and several findings have been published that rule out classical receptor-, transporter-, endosome- or endocytosis-mediated processes in the transduction of Ant, TAT and VP22 (G. Eliott, P. O'Hare, Cell 88, 223-233 (1997); D.A. Mann, A.D. Frankel, EMBO. J. 10,

1733-1739 (1991); D. Derossi et al., J. Biol. Chem. 269, 10444-10450 (1994); D. Derossi et al., J. Biol. Chem. 271, 18188-18193 (1996); E. Vives et al., J. Biol. Chem. 272, 16010-16017 (1997)).

Moreover, there was still the need for a generally applicable method where the genetic manipulation can be performed in both, endogenous genes and transgenes.

Summary of the Invention

It was found that site-specific DNA recombinase proteins can be translocated into cells of a living organism when fused to specific protein transduction domains, namely transduction domains being derived from the VP22 protein of HSV or from the TAT protein of HIV. Thus, whenever a gene mutation is desired, recombination is induced upon the injection of the appropriate site-specific recombinase fused to a transduction domain into such a living organism (provided, however, that said organism carries at least one appropriate RRS integrated in the genome).

The present invention thus provides

- (1) the use of a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain (PTD)
- for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome;
- (2) a method for inducing gene alterations in a living organism which comprises administering to said living organism a fusion protein comprising a site-specific DNA recombinase domain and a PTD as defined in (1) above, wherein said living organism carries at least one or more

WO 01/49832

recognition sites for said site-specific DNA recombinase integrated in its genome;

- (3) a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a PTD being derived from the VP22 protein of HSV or from the TAT protein of HIV

provided that when the site-specific DNA recombinase domain is wild-type Cre or Flp then the PTD is not the full length VP22 PTD of HSV (i.e., the fusion protein is not identical to the fusion protein of Dalby and Bennett, Invitrogen, Expressions 6.2, page 13 (1999) and of WO 99/60142);

- (4) a DNA sequence coding for the fusion protein of (3) above;
- (5) a vector comprising the DNA sequence as defined in (4) above;
- (6) a host cell transformed with the vector of (5) above and/or comprising the DNA of (4) above;
- (7) a method for producing the fusion protein of (1) above which comprises culturing the transformed host cell of (6) above and isolating the fusion protein; and
- (8) an injectable composition comprising the fusion protein as defined in (1) or (3) above.

The invention is further illustrated by the appended Figures and is explained in detail below.

Description of the Figures

<u>Fig. 1:</u> Generation of induced mouse mutants using purified fusion proteins.

A: Expression of the fusion protein consisting of the site-specific DNA recombinase (e.g. Cre) and the protein transduction domain (e.g. the HIV derived TAT peptide) in prokaryotic or eukaryotic cells.

B: Extraction and purification of the expressed fusion protein (e.g. as described in Nagahara et al., Nat. Med. 4 (12):1449-52 (1998)).

C: Injection of the purified fusion protein into mice carrying the RRS-flanked target sequence.

D: Analysis of the pattern of induced target gene recombination and the resulting phenotype.

Triangle: RRS.

Fig. 2: Scheme of the bacterial expression vector pT7-TACS (SEQ ID NO:16). The coding region of the 11 amino acid protein transduction domain of HIV TAT protein is fused to the N-terminus of the Cre recombinase protein sequence. The 10-amino-acid strep tag and the protease factor Xa recognition sequence are fused to the C-terminus. The T7 promoter permits expression of TAT-Cre protein in *E. coli*.

Fig. 3: Detection of purified TAT-Cre protein by Coomassie staining and Western blot analysis.

A: Coomassie stained SDS-PAGE gel. Lane 1: 10 kDa ladder (Life Technologies, Cat. No.: 10064-012), 2: 1000 ng BSA, 3: 750 ng BSA, 4: 500 ng BSA, 5: 100 ng BSA, 6: 50 ng BSA, 7: 5 µl TAT-Cre, 8: 1 µl TAT-Cre in Bicine buffer.

B: Western blot analysis using an alkaline phosphatase-conjugated antistrep tag antibody (IBA, Cat. No: 2-1503-001). Lane 1: MultiMark (Invitrogen, Cat. No.: LC5725), 2: 7 μl TAT-Cre, 3: 5 μl TAT-Cre, 4: 2,5 μl TAT-Cre, 5: 1,25 μl TAT-Cre in Bicine buffer.

Fig. 4: X-Gal staining of M5Pax8 cells treated with TAT-Cre protein. M5Pax8 fibroblasts where treated for 18 h with 3,5 (A), 6,9 (B) and 13,8 μg/ml TAT-Cre protein (C) in serum-free medium. Four days after treatment, cells were fixed and stained with X-Gal.

<u>Fig. 5:</u> Measurement of β-galactosidase activity in cell lysates. M5Pax8 fibroblasts where treated for 18 h with increasing concentrations of TAT-Cre, as indicated, or transiently transfected with either expression vectors

for Cre (pCMV-I-Cre-pA, see SEQ ID NO:29) or β-galactosidase (pCMV-I-β-pA, see SEQ ID NO:30). Four days after treatment, cells were lysed and the β-galactosidase activities were determined.

Fig. 6: PCR detection of TAT-Cre mediated recombination in mice.

A: PCR-analysis of genomic DNA from duodenum (lane 2), liver (3), kidney (4), spleen (5), muscle (6), lung (7), tail (8) and brain (9) of a pln13 mouse treated three times with intraperitoneal injections of 75 μg TAT Cre protein at two-day-intervals. Deletion of the loxP-flanked DNA segment is indicated by the presence of the about 400 bp fragment. Lane 1: 1-kb-ladder (Life Technologies).

B: PCR strategy to detect Cre-mediated deletion of the loxP-flanked DNA segment. Arrows indicate the positions of the primers.

C: PCR-analysis of genomic DNA from spleen of a *pln13* mouse treated three times with intraperitoneal injections of 75 µg TAT Cre protein at two-day-intervals (lane 4). To confirm the presence of the BamH I restriction site, the PCR product was digested with BamH I which produces two diagnostic fragments of about 190 and about 210 bp (5). As a control, tail DNA from untreated mice carrying the loxP-flanked (lane 2) and the detected pln13 allele (3) was subjected to PCR amplification. Lane 1: 100 bp ladder (Life Technologies), lane 6: 1 kb ladder (Life Technologies).

Fig. 7: Scheme of the bacterial expression vectors pT7-VPCS (SEQ ID NO:17) and pCRT7- Δ VPCS (SEQ ID NO:15). The coding region of the 301 amino acid protein transduction domain of HSV VP22 protein (A) or the truncated 143 amino acid Δ VP22 domain (B) is fused to the N-terminus of the Cre recombinase protein sequence. The 10-amino-acid strep tag and the protease factor Xa recognition sequence are fused to the C-terminus. The T7 promoter allows the expression of VP22-Cre and Δ VP22-Cre fusion proteins in *E. coli*. The sequence in pCRT7- Δ VPCS encoding the 15 amino

WO 01/49832 PCT/EP01/00060

9

acid N-terminal leader sequence is used for enhanced protein stability (Invitrogen).

<u>Fig. 8:</u> Detection of the purified VP22-Cre and Δ VP22-Cre fusion proteins by Coomassie staining and Western blot analysis.

A: Detection of VP22-Cre protein in a Coomassie-stained SDS-PAGE gel. Lane 1: 10 kDa ladder, 2: 1000 ng BSA, 3: 500 ng BSA, 4: 100 ng BSA, 5: inclusion body protein extract before chromatography, 6: unbound protein, 7: fraction 17, 8: fraction 18, 9: fraction 19, 10: fraction 20. The position of the 75 kDa VP22-Cre protein is indicated by the arrow head. B: Detection of VP22-Cre protein by Western blot analysis using an alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001). Lane 1: MultiMark (Invitrogen), 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 10, 5: fraction 11, 5: fraction 16, 6: fraction 17, 7: fraction 18, 8: fraction 19, 9: fraction 19, 10: fraction 20.

C: Detection of $\Delta VP22$ -Cre protein in a Coomassie-stained SDS-PAGE gel. Lane 1: 10 kDa ladder, 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 1, 5: fraction 8, 6: fraction 9, 7: fraction 15, 8: 100 ng BSA, 9: 500 ng BSA, 10: 1000 ng BSA. The position of the 60 kDa $\Delta VP22$ -Cre protein is indicated by the arrow head.

D: Detection of \triangle VP22-Cre protein by Western blot analysis using a alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001). Lane 1: MultiMark (Invitrogen), 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 4, 5: fraction 8, 6: fraction 10, 7: fraction 12, 8: soluble protein extract before chromatography, 9: unbound protein, 10: fraction 7.

Fig. 9: X-Gal staining of M5Pax8 cells treated with VP22-Cre and ΔVP22-Cre fusion proteins. M5Pax8 fibroblasts where treated for 18 h with either

Bicine buffer (A), 0.5 μ g/ml VP22-Cre (B) or 3.75 g/ml Δ VP22-Cre (C) in serum-free medium. Four days after treatment, cells were fixed and stained with X-Gal.

Fig. 10: Measurement of β-galactosidase activity in cell lysates. M5Pax8 fibroblasts where treated for 18 h with VP22-Cre, ΔVP22-Cre or Bicine buffer alone, as indicated or transiently transfected with expression vectors for Cre (pCMV-I-Cre-pA, see SEQ ID NO:29) or β-galactosidase (pCMV-I-β-pA, see SEQ ID NO:30). Four days after treatment, cells were lysed and the β-galactosidase activities were determined.

<u>Fig. 11:</u> PCR detection of Cre mediated recombination in cells treated with VP22-Cre and Δ VP22-Cre fusion proteins shown in SEQ ID NOs: 21 and 14, respectively).

A: PCR-analysis of genomic DNA isolated from M5Pax8 fibroblasts. Cells were transiently transfected with a Cre expression vector (lane 2) or treated for 18 h with either buffer alone (lane 3), 7.5 μ g/ml VP22-Cre (4, 5) or 15 μ g/ml Δ VP22-Cre (6, 7) in serum-free medium. Four days after treatment, genomic DNA was extracted and subjected to PCR amplification. Deletion of the loxP-flanked DNA segment is indicated by the presence of the 226 bp DNA fragment. To confirm the presence of the Nco I restriction site in the recombined allele, the PCR products were digested with Nco I which produces two diagnostic fragments of 85bp and 141bp (lanes 5 and 7). Lane 1: 100 bp ladder (Life Technologies), lane 8: 1 kb ladder (Life Technologies).

B: PCR strategy to detect Cre-mediated deletion of the loxP-flanked DNA segment. Arrows indicate the positions of the primers.

Detailed Description of the Invention

The expression "target sequences" according to the present invention means all kind of sequences which may be mutated (viz. deleted,

translocated, integrated and/or inverted) by the action of the recombinase. The number of RRS in the target sequence depends on the kind of mutation to be performed by the recombinase. For most of the mutations (especially for deletions and invertions) two RRS are required which are flanking the sequence to be mutated (deleted or inverted). For some kinds of integrations only one RRS may be necessary within the target sequence.

The "living organisms" according to the present invention are multi-cell organisms and can be vertebrates such as mammals (e.g., rodents such as mice or rats) or non-mammals (e.g., fish) or can be invertebrates such as insects or worms, or can be plants (higher plants, algi or fungi). Most preferred living organisms are mice and fish.

"Cell culture" according to the present invention include cells isolated from the above defined living organism and cultured *in vitro*. These cells can be transformed (immortalized) or untransformed (directly derived from the living organism; primary cell culture).

The site-specific DNA recombinase domain within the fusion protein of the invention of the present application is preferably selected from a recombinase protein derived from Cre, Flp, ϕ C31 recombinase (Thorpe and Smith, Proc. Natl. Acad. Sci, USA, vol. 95, 5505-5510 (1998)), $\gamma\delta$ resolvase (Schwickardi and Dröge, FEBS letters 471:147-150 (2000) and R recombinase (Araki et al., J. Mol. Biol., 182, 191-203 (1985)). The preferred recombinases are Cre and mutants thereof (preferably the Cre variant of aa 15 to 357 of SEQ ID NO: 2 or aa 325-667 of SEQ ID NO: 6) and Flp and variants thereof including Flpe (preferably the Flp variant of aa 15 to 437 of SEQ ID NO: 4 or aa 325 to 747 of SEQ ID NO: 8).

The protein transduction domain according to the present invention includes, but is not limited to, the PTDs mentioned in Background of the Invention. The PTD preferably is derived from the VP22 protein of HSV or from the TAT protein of HIV. Suitable TAT proteins include, but are not limited to, proteins comprising (i) the amino acid sequence shown in SEQ

ID NO: 10 and mutant thereof such as

(ii) proteins comprising the amino acid

AGRKKRRQRRR (SEQ ID NO:22)

YARKARRQARR (SEQ ID NO:23)

YARAAARQARA (SEQ ID NO:24)

YARAARRAARR (SEQ ID NO:25)

YARAARRAARA (SEQ ID NO:26)

YARRRRRRRR (SEQ ID NO:27)

YAAARRRRRR (SEQ ID NO:28)

as known from WO 99/29721. Preferred are transduction domains consisting of the TAT proteins (i) and (ii) above.

Suitable VP22 proteins include, but are not limited to, the wild-type VP22 protein, i.e., a protein comprising amino acids 1 to 302 of SEQ ID No:21, and truncated forms thereof. Truncated VP22 proteins in accordance with the present invention can be those lacking 1 to 158 amino acid residues at their N-terminal end. The most preferred VP22 protein is the truncated VP22 PTD comprising amino acid residues 16 to 157 of SEQ ID NO:14.

The fusion of the two domains of the fusion protein can occur at any possible position, i.e., the protein transduction domain can be fused to the N- or C-terminal of the site-specific DNA recombinase or can be fused to active sites within the site-specific DNA recombinase. Preferably the protein transfusion domain is fused to the N-terminal of the site-specific DNA recombinase domain.

The protein transduction domain can be fused to the site-specific DNA recombinase either through a direct chemical bond or through a linker molecule. Such linker molecule can be any bivalent chemical structure capable of linking the two domains. The preferred linker molecule according to the present invention is a short peptide, e.g., having 1 to 20, preferably 1 to 10, amino acid residues. Specifically preferred short peptides are essentially consisting of Gly, Ala and/or Leu.

The fusion protein of the invention of the present application may further comprise other functional sequences such as secretion conferring signals, nuclear localisation signals and/or signals conferring protein stabilisation.

Such a preferred DNA sequence is for instance shown in SEQ ID NO: 11. In said sequence the 3' terminal codon ggc codes for the linker Gly. The DNA sequence of a suitable recombinase may be directly attached to said codon ggc.

The fusion protein can be obtained by the following steps:

 Fusion of the recombinase coding region (e.g. encoding Cre: see amino acids 15 to 357 of SEQ ID NO: 2) with the sequence conferring protein translocation (e.g. the sequence encoding the TAT peptide YGRKKRRQRRR, SEQ ID NO: 10) using standard cloning protocols (Maniatis et al., Cold Spring Harbor Laboratory, New York (1989)) or chemical synthesis. ...i

PCT/EP01/00060

- 2. Generation of a construct for the expression of the fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, J. Mol. Biol.;166(4):557-80 (1983)) using the QIAexpress pQE vector (Qiagen, Hilden).
- 3. Expression of the above mentioned fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, 1983)
- 4. Extraction and purification of the above mentioned fusion protein e.g. as described in Nagahara et al., Nat. Med., 4(12):1449-52 (1998).

In an experiment it was shown that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting both in cell lines and living organisms. In this experiment a vector for the expression of a TAT-Cre fusion protein in E. coli was constructed, TAT-Cre protein was expressed in E. coli and purified from bacterial lysates. To test the activity of the TAT-Cre protein *in vitro*, a reporter cell line that contains a loxP-containing reporter construct was used. This reporter, when recombined by Cre recombinase, allows the expression of a B-galacosidase gene. Further, a transgenic mouse strain carrying a loxP-flanked target was used to invest the activity of the TAT-Cre protein *in vivo*.

In a second experiment it was shown that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting. In this experiment Bacterial expression vectors were constructed for the production of VP22-Cre fusion proteins in E. coli. The activity of purified VP22-Cre proteins were tested using a reporter fibroblast cell line containing a loxP-flanked reporter construct.

Thus, the injection of the purified fusion protein of the present invention into a living organism (e.g., a mouse) carrying a gene comprising the RRS-flanked target sequence (e.g., in an amount of 1 to 200, preferably 5

11

to 50 µg per g body weight). To demonstrate the feasibility of the invention, a reporter mouse strain carrying an RRS-flanked cassette was used (Thorey et al., Mol. Cell Biol., 18(10):6164 (1998)).

Analysis is achieved by determining the pattern of induced target gene recombination (e.g. through PCR analysis, Southern blot analysis or X-Gal staining on tissue sections; Maniatis et al., 1989; Gossler and Zachgo, Joyner AL (Ed.), Oxford University Press, Oxford, New York (1993)).

The procedure's advantages over current technology are as follows:

- (i) The absence of background recombination before administration of the fusion protein.
- (ii) The reduction of time and resources which are necessary to combine the recombinase transgene and two copies of the RRS-flanked target gene by conventional breeding.

In experiments it was shown the following: (a) With a suitable vector for the expression of a TAT-Cre fusion protein, a TAT-Cre fusion protein was expressed in *E. coli* and purified from bacterial lysates.

- (b) A reporter cell line containing a loxP-containing reporter construct was used to test the activity of the TAT-Cre protein *in vitro*. This reporter, when recombined by Cre recombinase, allows the expression of a ß-galacosidase gene.
- (c) A transgenic mouse strain carrying a loxP-flanked target was used to invest the activity of the TAT-Cre protein *in vivo*.

These experiments demonstrate that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting both in cell lines and living organisms.

Furthermore, bacterial expression vectors were constructed for the production of VP22-Cre fusion proteins in E. coli. The activity of purified VP22-Cre proteins were tested using a reporter fibroblast cell line containing a loxP-flanked reporter construct. These experiments demonstrate that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting.

The invention is further illustrated by the following, non-limitative examples.

Examples

; ;

Materials and Methods

Construction of pT7-TACS: The TAT-Cre coding region was generated by PCR using Advantage-HF PCR Kit (Clontech), 20 pmol of the primers gcg gca tgt cca att tac tga ccg tac acc-3'; SEQ ID NO:31) and TATcre antisense (5'-ttt cgg atc cgc cgc ata acc agt g-3'; SEQ ID NO:32) and 10 ng pCMV-I-Cre-pA (see SEQ ID NO:29) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 4 x (30" 94 °C min, 30" 50 °C, 1' 72 °C), 12 x (30" 94 °C min, 30" 55 °C, 1' 72 °C) and 10' 72 °C. The resulting PCR fragment was digested with Nco I and BamH I, treated with Klenow enzyme and ligated into the plasmid pBSII KS+ which had been opened with restriction enzyme BamH I, treated with Klenow and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pBS TAT-5'cre was verified by DNA sequencing. The Plasmid pCMV-I-Cre-pA (SEQ ID NO:29) was digested with Age I and Sal I which released a 1,036 kb fragment containing the 3' part of the Cre coding region. This fragment was ligated into the plasmid pBS TAT-5'cre which had been opened with Age I and Sal I.

10 ng pBS-TATCre was subjected to PCR amplification using 20 pmol of primers FPA001 (5'-tat atc tag acc atg ggc tac ggc cgc aag aag c-3'; SEQ ID NO:33) and FPA002 (5'-gct acc acg acc ttc gat acc atc gcc atc ttc cag cag gcg c-3'; SEQ ID NO:34). PCR was performed using 2,5 U Platinum Pfx DNA polymerase (Gibco BRL) and 2 x Enhancer Solution (Gibco BRL) according to the manufacturers protocol. The following cycle profile was used: 2' 94 °C, 25 x (30" 94 °C min, 15" 54,6 °C, 2'30" 68 °C). The amplified PCR fragment was purified using GFX columns (Amersham Pharmacia), digested with Xba I and ligated into the plasmid pASK57 (Skerra and Arne, Gene 151: 131-135 (1994)) which had been opened with restriction enzymes Xba I and Eco 47 III and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pASK75-TACS was digested with restriction enzymes Nco I and Hind III which released a 1,1 kb fragment. The fragment was subsequently ligated into the plasmid pT7-7 (Studier and Moffatt, J. Mol. Biol. 189: 113-130 (1986)) which had been opened with restriction enzymes Nco I and Hind III and dephosphorylated with calf intestinal phosphatase resulting in the plasmid pT7-TACS (SEQ ID NO:16).

Construction of pT7-VPCS: The Cre coding region was generated by PCR using Advantage-HF PCR Kit (Clontech), 20 pmol of the primers VP22cre sense (5'-taa cta gcg gcc gca tgt cca att tac tga ccg tac ac-3'; SEQ ID NO:35) and VP22cre antisense (5'-tcg agc ggc cgc cat cgc cat ctt cca gca ggc g-3'; SEQ ID NO:36) and 10 ng pgkcre-pA (SEQ ID NO:40) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 5 x (30" 94 °C, 30" 50 °C, 2' 72 °C), 15 x (30" 94 °C, 30" 55 °C, 2' 72 °C) and 10' 72 °C. The resulting PCR fragment was digested with Not I and ligated into the plasmid pVP22/Myc-His (Invitrogen), which had been opened with restriction enzyme NotI, dephosphorylated with calf intestinal phosphatase. The resulting plasmid pVP22-cre myc/His was verified by DNA sequencing.

PCT/EP01/00060

10 ng pVP22-cre myc/His was subjected to PCR amplification using 20 pmol of primers FPA004 (5'-tat atc tag aca tat gac ctc tcg ccg ctc cg-3'; SEQ ID NO:37) and FPA002 (SEQ ID NO:34). PCR was performed using 2,5 U Platinum Pfx DNA polymerase (Gibco BRL) and 2 x Enhancer Solution (Gibco BRL) according to the manufacturers protocol. The following cycle profile was used: 2' 94 °C, 25 x (30" 94 °C min, 15" 54,6 °C, 2'30" 68 °C). The amplified PCR fragment was purified using GFX columns (Amersham Pharmacia), digested with Xba I and ligated into the plasmid pASK57 (Skerra and Arne, Gene 151: 131-135 (1994)) which had been opened with restriction enzymes Xba I and Eco 47 III and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pASK75-VPCS was digested with restriction enzymes Nde I and Hind III which released a 2,0 kb fragment. The fragment was subsequently ligated into the plasmid pT7-7 (Studier and Moffatt, J. Mol. Biol. 189: 113-130 (1986)) which had been opened with restriction enzymes Nde I and Hind III and dephosphorylated with calf intestinal phosphatase resulting in the plasmid pT7-VPCS (SEQ ID NO:17).

Construction of pCRT7- Δ VPCS: The Δ VP22-Cre coding region was generated by PCR using Platinum Pfx DNA polymerase (Life Technologies), 20 pmol of the primers FPA007 (5'-ttc cga aga cga cga aac acc-3'; SEQ ID NO:38) and FPA008 (5'-tat att cga agc tta tta acc acc gaa ctg cg-3'; SEQ ID NO:39) and 30 ng pT7-VPCS (SEQ ID NO:17) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 25 x (30" 94 °C, 30" 61 °C, 2'30" 68 °C) and 7' 68 °C. The resulting 1,8 kb PCR fragment was digested with Nco I and Sfu I and ligated into the plasmid pCRT7/VP22-1 (Invitrogen), which had been opened with restriction enzymes Nco I and Sfu I, and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pCRT7- Δ VPCS (SEQ ID NO:15) was verified by DNA sequencing.

Expression of the fusion proteins in E. coli: E. coli BL21(DE3)-RIL cells (Stratagene) were transformed with pT7-TACS and grown on LB agar plates containing 100 µg/ml ampicillin. E. coli BL21(DE3)-RP cells (Stratagene) were transformed with pT7-VPCS and grown on LB agar plates containing 100 µg/ml ampicillin. E. coli BL21(DE3)-pLysS (Invitrogen) were transformed with pCRT7- Δ VPCS and grown on LB agar plates containing 25 µg/ml kanamycine and 34 µg/ml chloramphenicol. Single colonies were isolated and used to prepare glycerol stocks. Eight 5ml LB (Lura Bertani) aliquots containing antibiotics were inoculated with stabs from the glycerol stocks and grown overnight at 37°C with shaking. Two 5ml overnight cultures were each used to inoculate one of four 1L LB aliquots containing antibiotics and grown at 37°C with shaking. Growth rate was monitored by spectrophotometry at 578nm. When the cultures had obtained an $OD_{578} = 0.5$ expression of the fusion proteins were induced by the addition of 0,5 mM Isopropyl-B-D-1-thiogalactopyranosid (IPTG). Two hours after induction cells were harvested by centrifugation at 12000xg and the pellet rapidly frozen in liquid nitrogen and stored immediately at -80°C.

Purification of the fusion proteins from bacterial lysates: Each 10g cell pellet was resuspended on ice in 30ml Bicine buffer (50mM Bicine, pH 8,5) including one protease inhibitor tablet (Complete, Roche). Cells were lysed through threefold treatment (1500psi, 5 minutes) with the cell disruption bomb (Parr Instrument). 30ml of Benzonase (10000U, Merck) was added and cell extracts were incubated for 30 minutes at 4°C. Cell extracts were then centrifuged at 12,000xg (4°C). The pellet was redissolved in 8M urea, 50mM Bicine, 100mM DTT, pH 8,5 by incubation for 16 hours at 4°C. Protein extract was centrifuged at 31000xg and supernatant harvested. Protein extract was diluted in an equal volume of Chromatography buffer A (50mM Bicine, pH 8,5). PH was adjusted to pH

8,5 and the extract was filtered through a 0,45µm filter (Millipore). FPLC (Akta Explorer, Amersham Pharmacia) was performed using a cation exchange column (Sepharose SP, Column body HR_5/5 (0.5 x 5cm), column volume (CV) 1ml, linear flow 300cm/hour, Amersham Pharmacia). After addition of sample to FPLC column, buffer was exchanged with Chromatography buffer A at 10 CV.

TAT-Cre and VP22-Cre fusion proteins were eluted from the column by gradient elution using chromatography buffer B (50mM Bicine, 1M NaCl, pH 8,5) using the following profile: 0 - 50 % buffer B, 0 CV; 50 % buffer B, 10 CV; 50 - 100 % buffer B (linear gradient), 20 CV; 100 % buffer B, 10 CV. ΔVP22-Cre protein was eluted from the column by gradient elution using the following profile: 0 - 10 % buffer B, 0 CV; 10 % buffer B, 10 CV; 10 - 30 % buffer B, 0 CV; 30 % buffer B, 10 CV; 30 - 100 % buffer B, 0 CV; 100 % buffer B, 10 CV. Three 1,5ml fractions each containing purified fusion proteins were collected. Purity and concentration of protein fractions were determined by Coomassie blue stained SDS-PAGE gels and Western blot analysis using dilutions of BSA standard solutions. In addition protein content was determined using a Bradford assay (Coomassie Plus protein assay, Pierce).

1

SDS-PAGE and Western blot analysis: SDS-PAGE and Coomassie staining was performed according to standard protocols (Maniatis et al., Cold Spring Harbor Laboratory, New York (1989)) using 4 - 12 % gradient SDS-polyacrylamide gels (NuPAGE, Invitrogen, cat. no.: NPO321). Western blot analysis was performed using a Semi-Try Blotting Chamber (Biorad) and nitrocellulose membranes (0,2 µm; Schleicher & Schuell) according to the manufacturers protocols. The fusion proteins were detected by using an alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001) according to the manufacturers protocol.

PCT/EP01/00060

Generation of the M5Pax8 Cre reporter cell line: The SV40-transformed murine embryonic fibroblast line MEF5/5 (Schwenk et al., Nucl Acids Res 26(6), 1427-32 (1998)) was transfected with the vector pPGKpaX1 (Kellendonk et al, Nucl. Acids Res. 24, 1404-11 (1996)). 10⁶ MEF5/5 cells were electroporated with 20 μg pPGKpaX1 plasmid DNA linearised with Sca I and plated into 48-well-plates. The cells were cultured in DMEM/Glutamax medium (Life Technologies) supplemented with 10 % fetal calf serum at 37°C, 10 % CO₂ in humid atmosphere. Two days after transfection the medium was supplemented with 5 μg/ml puromycine (Calbiochem) for the selection of stable integrants. 14 puromycine-resistant clones were expanded and tested by transien transfection with the Cre expression vector pPGK-Cre-pA (SEQ ID NO: 40). In two out of the 14 puromycine-resistant clones, the expression of β-galactosidase could be detected by staining with X-Gal. One of these clones, M5Pax8, was used as Cre reporter cell line.

Transfection and measurement of β-galactosidase activity: Fibroblasts $(10^6 \text{ cells per } 24 \text{ well plate (Falcon)})$ were transfected with 25 ng pCMV-I-Cre-pA (see SEQ ID NO:29) or pCMV-I-β-pA (see SEQ ID NO:30) plasmids using the FuGene transfection reagent (Roche Diagnostics). After 2 days the cells were lysed and the β-galactosidase activities were determined with the β-galactosidase reporter gene assay (Roche Diagnostics) according to the manufacturers guidelines using a Lumistar luminometer (MWG).

Histochemical detection of β-galactosidase activity: To quantitate β-galactosidase expression, fibroblast cells were washed once with phosphate buffered saline (PBS), and the cells were fixed for 5 minutes at room temperature in a solution of 4% formaldehyde in PBS. Next, the cells were washed twice with PBS and finally incubated in staining solution for 24 hours at 37°C (staining solution: 5 mM K3(Fe(CN)6), 5mM

K4(Fe(CN)6), 2mM MgCl2, 1mg/ml X-Gal (BioMol) in PBS). Blue stained, β-galactosidase positive cells were detected and distinguished from negative (transparent) cells in a cell culture binocular microscope under 200x magnification. For each determination a minimum of 200 cells was counted.

PCR detection of Cre-mediated recombination: Genomic DNA extracted from tissue samples was subjected to PCR using Taq-polymerase (Gibco BRL Cat. No. 10342-020) using 20 pmol of each primer (sense: 5`-CAT CTC CGG GCC TTT CGA CCT G - 3', antisense: 5'-GCG ATC GGT GCG GGC CTC TTC - 3'; SEQ ID Nos: 41 and 42, respectively). PCR was performed using the following cycle profile: 2' 94°C, 35 x (30" 94°C, 30" 55 °C, 1' 72 °C), 10 min 72 °C. PCR products were separated on a 1,2 % agarose gel.

Example 1

 $i\bar{j}$

The vector pT7-TACS (SEQ ID NO:16) was constructed for the expression of a TAT-Cre fusion protein in E. coli. The plasmid contains the coding region of the 11 amino acid protein transduction domain of the wild-type HIV TAT protein (Green and Loewenstein, Cell, 55(6):1179-88 (1988); Frankel and Pabo, Cell, 55(6): 1189-93 (1988); SEQ ID NO:10) fused to the N-terminus of Cre recombinase protein sequence. The 10-amino-acid strep tag at the C-terminus allows the detection and purification of the fusion protein using specific antibodies (Schmidt and Skerra, J. Chromatogr A 676: 337-345 (1994)). The protease factor Xa recognition site (Ile-Glu-Gly-Arg) permits the removal of the strep tag by proteolytic cleavage. The estimated molecular weight of the TAT-Cre fusion protein is 42 kDa. A scheme of the TAT-Cre expression vector is depicted in figure 2. For the expression of TAT-Cre, the E. coli strain BL21(DE3)-RIL (Stratagene) was used. This strain carries an IPTG-inducible T7 polymerase gene and additional copies of the tRNA genes for the 'rare

codons' argU, ileY and leuW.

E. coli BL21(DE3)-RIL cells were transformed with pT7-TACS and grown in LB medium containing 100 $\mu g/ml$ ampicillin. The expression of the 40 kDa TAT-Cre fusion protein could be strongly induced by the addition of 0,5 mM IPTG to the culture medium. Analysis of protein lysates revealed that approximately 50 % of TAT-Cre protein accumulated as insoluble inclusion bodies. The inclusion bodies where extracted and dissolved in 8 M urea. TAT-Cre was subsequently purified from this fraction using ion exchange chromatography. The quantity and purity of TAT-Cre protein was determined using Coomassie stained SDS-PAGE gels and Western blot analysis (figure 3). The purification process yielded TAT-Cre protein extracts of 64 % purity and a concentration of 100 µg/ml. To analyse the ability of the purified TAT-Cre protein to transduce into cultured cells, we used the fibroblast cell line M5Pax8 (R. Kühn, unpublished) that contains a loxP-containing reporter construct. This reporter, when recombined by Cre recombinase, allows the expression of a B-galacosidase gene (Buchholz et al, Nucleic Acids Res. 24, 4256-4262, 1996). Cells were cultured for 18 h with increasing concentrations of TAT-Cre protein in serum-free medium and analysed 4 days later for B-Galacosidase activity. Staining with X-Gal showed that > 50 % of the cells treated with 13,8 μ g/ml TAT-Cre protein expressed β -galactosidase indicating recombination of the loxP-flanked reporter construct had occurred (figure 4). Measurement of ß-galactosidase activity in cell lysates revealed an up to 30-fold higher level of B-galactosidase activity in comparison to cells which had been transiently transfected with an eukaryotic Cre expression vector (figure 5).

To investigate the activity of TAT-Cre protein in a living organism, we used a transgenic mouse strain carrying a loxP-flanked target for Cre-mediated recombination (Thorey et al., 1998, Mol. Cell. Biol. 18: 3081 – 3088). Mice where treated three times with intraperitoneal injections of 75 μ g TAT Cre protein at two-day-intervals and analysed 2 days later. Genomic DNA was

isolated from a variety of organs and subjected to PCR amplification which specifically amplifies a 400 bp fragment of the recombined allele. The deleted allele could be detected in multiple tissues from treated mice indicating TAT-Cre-mediated recombination in these organs (figure 6). This experiments demonstrates that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting in cell lines and in living organisms.

Example 2

The vectors pT7-VPCS (SEQ ID NO:17) and pCRT7-ΔVPCS (SEQ ID NO:15) were constructed for the expression of VP22-Cre and ΔVP22-Cre fusion proteins in E. coli. The VP22-Cre gene of pT7-VPCS contains the full length protein translocation domain of the HSV VP22 protein (Elliott and O'Hare, Cell, 88(2): 223-33 (1987), whereas the ΔVP22-Cre gene of pCRT7-ΔVPCS contains a truncated VP22 protein transduction domain (amino acids 159 – 301; Invitrogen; aa 16-157 of SEQ ID NO:14) fused to the N-terminus of Cre recombinase protein sequence. A 10-amino-acid strep tag at the C-terminus of Cre protein sequence allows the detection and purification of the fusion proteins using specific antibodies (Schmidt and Skerra, J. Chromatogr A 676: 337-345 (1994)). The protease factor Xa recognition site permits the removal of the Strep tag by proteolytic cleavage. The estimated molecular weight is 75 kDa for VP22-Cre protein and 60 kDa for ΔVP22-Cre protein. A scheme of the vectors pT7-VPCS and pCRT7-ΔVPCS is depicted in figure 7.

E. coli BL21(DE3)-RIP cells (Stratagene) were transformed with pT7-VPCS and cultured in LB medium containing 100 μ g/ml ampicillin. E. coli BL21(DE3)-pLysS cells (Stratagene) were transformed with pCRT7- Δ VPCS and cultured in LB medium containing 25 μ g/ml kanamycine and 34 μ g/ml chloramphenicol. Expression of the VP22-Cre and Δ VP22-Cre fusion proteins could be induced by the addition of 0,5 mM IPTG to the culture medium. Analysis of protein extracts using Coomassie staining and

Western blotting of SDS-PAGE gels revealed that 50 - 60 % of VP22-Cre and Δ VP22-Cre proteins accumulated as insoluble inclusion bodies. The inclusion bodies where extracted and dissolved in 8 M urea. VP22-Cre and Δ VP22-Cre fusion proteins were subsequently purified using ion exchange chromatography. The quantity and purity of the isolated VP22-Cre and Δ VP22-Cre fusion proteins was determined using Coomassie stained SDS-PAGE gels and Western blot analysis (figure 8).

To analyse the ability of the purified fusion proteins to transduce into cultured cells, we used the fibroblast cell line M5Pax8 that contains a loxPcontaining reporter construct. When recombined by Cre recombinase, the reporter allows the expression of a β-galacosidase gene (Buchholz et al, Nucleic Acids Res. 24, 4256-4262, 1996). The cells where cultured for 18 h with increasing concentrations of VP22-Cre and ΔVP22-Cre in serum-free medium and analysed 4 days later for B-Galacosidase activity. Staining with X-Gal showed ~2 % blue cells in the cultures treated with up to 15 μg/ml ΔVP22-Cre indicating recombination of the loxP-flanked reporter construct had occurred. In contrast, cell cultures treated with up to 0,5 µg/ml VP22-Cre did not show any X-gal staining (figure 9). Measurement of cell lysates revealed a strong increase of β -galactosidase activity upon Δ VP22-Cre treatment when compared to untreated cells (figure 10). Genomic DNA was isolated fand subjected to PCR amplification that specifically amplifies a 250 bp fragment of the recombined allele. The deleted allele could be detected in cells treated with both VP22-Cre and A VP22-Cre fusion proteins (figure 11).

 i_i^{γ}

This experiment demonstrates that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting.

SEQUENCE LISTING

<11	0> A	> ARTEMIS Pharmaceuticals GmbH														
<12	0> T t	rans	duct ting	ion	of r	ecom	bina	ses	for	indu	cibl	e ge	ne			
<13	0> 0	1000	7wo/	JH/m	1											
<14 <14						•										
<16	0> 4	2														
<17	0> P	aten	tIn '	Ver.	2.1											
<213 <213	<210> 1 <211> 1074 <212> DNA <213> Artificial Sequence															
	<pre><220> <223> Description of Artificial Sequence: DNA sequence</pre>															
<220> <221> CDS <222> (1)(1071)																
<400 atg Met 1	ggc	tac Tyr	ggc Gly	cgc Arg 5	aag Lys	aag Lys	cgc Arg	cgc Arg	caa Gln 10	cgc Arg	cgc Arg	cgc Arg	ggc Gly	atg Met 15	tcc Ser	. 48
aat Asn	tta Leu	ctg Leu	acc Thr 20	gta Val	cac His	caa Gln	aat Asn	ttg Leu 25	cct Pro	gca Ala	tta Leu	ccg Pro	gtc Val 30	gat Asp	gca Ala	96
acg Thr	agt Ser	gat Asp 35	gag Glu	gtt Val	cgc Arg	aag Lys	aac Asn 40	ctg Leu	atg Met	gac Asp	atg Met	ttc Phe 45	agg Arg	gat Asp	cgc Arg	144
cag Gln	gcg Ala 50	ttt Phe	tct Ser	gag Glu	cat His	acc Thr 55	tgg Trp	aaa Lys	atg Met	ctt Leu	ctg Leu 60	tcc Ser	gtt Val	tgc Cys	cgg Arg	192
tcg Ser 65	tgg Trp	gcg Ala	gca Ala	tgg Trp	tgc Cys 70	aag Lys	ttg Leu	aat Asn	aac Asn	cgg Arg 75	aaa Lys	tgg Trp	ttt Phe	ccc Pro	gca Ala 80	240
gaa Glu	cct Pro	gaa Glu	gat Asp	gtt Val 85	cgc Arg	gat Asp	tat. Tyr	ctt Leu	cta Leu 90	tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 95	ggt Gly	288
ctg Leu	gca Ala	gta Val	aaa Lys 100	act Thr	atc Ile	cag Gln	caa Gln	cat His 105	ttg Leu	ggc Gly	cag Gln	cta Leu	aac Asn 110	atg Met	ctt Leu	336
cat His	cgt Arg	cgg Arg 115	tcc Ser	ggg Gly	ctg Leu	cca Pro	cga Arg 120	cca Pro	agt Ser	gac Asp	agc Ser	aat Asn 125	gct Ala	gtt Val	tca Ser	384

1. 7

	ctg Leu	gtt Val 130	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 135	aaa Lys	gaa Glu	aac Asn	gtt Val	gat Asp 140	gcc Ala	ggt Gly	gaa Glu	cgt Arg	432
	gca Ala 145	aaa Lys	cag Gln	gct Ala	cta Leu :	gcg Ala 150	ttc Phe	gaa Glu	cgc Arg	act Thr	gat Asp 155	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 160	480
	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 165	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 170	gat Asp	ata Ile	cgt Arg	aàt Asn	ctg Leu 175	gca Ala	528
	ttt Phe	ctg Leu	Gly	att Ile 180	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 185	tta Leu	cgt Arg	ata Ile	gcc Ala	gaa Glu 190	att Ile	gcc Ala	576
	agg Arg	atc Ile	agg Arg 195	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 200	cgt Arg	act Thr	gac Asp	ggt Gly	ggg Gly 205	aga Arg	atg Met	tta Leu	624
1_1	atc Ile	cat His 210	att Ile	ggc Gly	aga Arg	acg Thr	aaa Lys 215	acg Thr	ctg Leu	gtt Val	agc Ser	acc Thr 220	gca Ala	ggt Gly	gta Val	gag Glu	672
	aag Lys 225	gca Ala	ctt Leu	agc Ser	ctg Leu	ggg Gly 230	gta Val	act Thr	aaa Lys	ctg Leu	gtc Val 235	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 240	720
	gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 245	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 250	Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 255	gtc Val	768
	aga Arg	aaa Lys	aat Asn	ggt Gly 260	gtt Val	gcc Ala	gcg Ala	ccá Pro	tct Ser 265	gcc Ala	acc Thr	agc Ser	cag Gln	cta Leu 270	tca Ser	act Thr	816
٠	cgc Arg	gcc Ala	ctg Leu 275	gaa Gl'u	ggg Gly	att Ile	ttt Phe	gaa Glu 280	gca Ala	act Thr	cat His	cga Arg	ttg Leu 285	att Ile	tac Tyr	ggc Gly	864
. •	gct Ala	aag Lys 290	gat Asp	gac Asp	tct Ser	ggt Gly	cag Gln 295	aga Arg	tac Tyr	ctg Leu	gcc Ala	tgg Trp 300	tct Ser	gga Gly	cac His	agt Ser	912
-	gcc Ala 305	cgt Arg	gtc Val	gga Gly	gcc Ala	gcg Ala 310	cga Arg	gat Asp	atg Met	gcc Ala	cgc Arg 315	gct Ala	gga Gly	gtt Val	tca Ser	ata Ile 320	960
	ccg Pro	gag Glu	atc Ile	atg Met	caa Gln 325	gct Ala	ggt Gly	ggc Gly	tgg Trp	acc Thr 330	aat Asn	gta Val	aat Asn	att Ile	gtc Val 335	atg Met	1008
	aac Asn	tat Tyr	atc Ile	cgt Arg 340	aac Asn	ctg Leu	gat Asp	agt Ser	gaa Glu 345	aca Thr	ggg Gly	gca Ala	atg Met	gtg Val 350	cgc Arg	ctg Leu	1056
	ctg Leu	gaa Glu	gat Asp 355	ggc Gly	gat Asp	tag		•									1074

<210> 2 <211> 357 <212> PRT <213> Artificial Sequence
<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein TAT-Cre

Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala 20 25 30

Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg 35 40

Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg
50 60

Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala 65 70 75 80

Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly 85 90 95

Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu 100 105 110

His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser 115 120 125

Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg 130 135 140

Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg 145 150 155 160

Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala 165 170 175

Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala 180 · 185 · 190

Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu 195 200 205

Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu 210 215 220

Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser 225 230 235 240

Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val 245 250 255

Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr 260 . 265 270

Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly 275 280 285

Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser 290 295 300

Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile 305 310 315 320

Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp 355 <210> 3 <211> 1317 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein TAT-Flpe <220> <221> CDS <222> (1)..(1311) <400> 3 48 Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser caa ttt gat ata tta tgt aaa aca cca cct aag gtc ctg gtt cgt cag 96 Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val Arg Gln ttt gtg gaa agg ttt gaa aga cct tca ggg gaa aaa ata gca tca tgt 144 Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala Ser Cys 35 gct gct gaa cta acc tat tta tgt tgg atg att act cat aac gga aca 192 Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn Gly Thr gca atc aag aga gcc aca ttc atg agc tat aat act atc ata agc aat 240 Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile Ser Asn tog ctg agt ttc gat att gtc aac aaa tca ctc cag ttt aaa tac aag 288 Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys Tyr Lys acg caa aaa gca aca att ctg gaa gcc tca tta aag aaa tta att cct Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu Ile Pro gct tgg gaa ttt aca att att cct tac aat gga caa aaa cat caa tct 384 Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn Gly Gln Lys His Gln Ser 120 gat atc act gat att gta agt agt ttg caa tta cag ttc gaa tca tcg 432 Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu Ser Ser 135 gaa gaa.gca gat aag gga aat agc cac agt aaa aaa atg ctt aaa gca 480

Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu Lys Ala

155

cti Lei	ct: Le:	a ag u Se	t gag r Gli	g ggt u Gly 165	, 970	ago Ser	ato Ile	tgg Trp	gag Glu 170	1 TTE	act Thi	gag Glu	g aaa 1 Lys	a ata 5 Ile 175	cta Leu	528
aat Asr	tc Ser	g tt r Ph	t gag e Glu 180	и тут	aco Thr	tcg Ser	aga Arg	ttt Phe 185	Thr	aaa Lys	aca Thr	aaa Lys	act Thr	Lev	tac Tyr	576
caa Glr	tto Phe	c cto	w	c cta e Leu	gct Ala	act Thr	ttc Phe 200	TTE	aat Asn	tgt Cys	gga Gly	aga Arg 205	f Phe	ago Ser	gat Asp	624
att Ile	aag Lys 210	, wei	c gtt n Val	gat L Asp	ccg Pro	aaa Lys 215	tca Ser	ttt Phe	aaa Lys	tta Leu	gto Val 220	Gln	. aat . Asn	aag Lys	tat Tyr	672
ctg Leu 225	223	gta Val	a ata L Ile	ato : Ile	cag Gln 230	tgt Cys	tta Leu	gtg Val	aca Thr	gag Glu 235	Thr	aag Lys	aca Thr	agc Ser	gtt Val 240	720
agt Ser	agg Arg	cac His	ata Ile	tac Tyr 245	ttc Phe	ttt Phe	agc Ser	gca Ala	agg Arg 250	ggt Gly	agg Arg	atc Ile	gat Asp	cca Pro 255	ctt Leu	768
gta Val	tat Tyr	ttg Leu	gat Asp 260	GIU	ttt Phe	ttg Leu	agg Arg	aat Asn 265	tct Ser	gaa Glu	cca Pro	gtc Val	cta Leu 270	aaa Lys	cga Arg	816
gta Val	aat Asn	agg Arg 275	acc Thr	ggc	aat Asn	tct Ser	tca Ser 280	agc Ser	aac Asn	aaa Lys	cag Gln	gaa Glu 285	tac Tyr	caa Gln	tta Leu	864
tta Leu	aaa Lys 290	gat Asp	aac Asn	tta Leu	gtc Val	aga Arg 295	tcg Ser	tac Tyr	aac Asn	aag Lys	gct Ala 300	ttg Leu	aag Lys	aaa Lys	aat Asn	912
gcg Ala 305	cct Pro	tat Tyr	cca Pro	atc Ile	ttt Phe 310	gct Ala	ata Ile	aag Lys	aat Asn	ggc Gly 315	cca Pro	aaa Lys	tct Ser	cac His	att Ile 320	960
gga Gly	aga Arg	cat His	ttg Leu	atg Met 325	acc Thr	tca Ser	ttt Phe	ctg Leu	tca Ser 330	atg Met	aag Lys	ggc Gly	cta Leu	acg Thr 335	gag Glu	1008
ttg Leu	act Thr	aat Asn	gtt Val 340	gtg Val	gga Gly	aat Asn	Trp	agc Ser 345	gat Asp	aag Lys	cgt Arg	gct Ala	tct Ser 350	gcc Ala	gtg Val	1056
gcc Ala	agg Arg	aca Thr 355	acg Thr	tat Tyr	act Thr	HIS	cag Gln 360	ata Ile	aca Thr	gca Ala	ata Ile	cct Pro 365	gat Asp	cac His	tac Tyr	1104
	gca Ala 370	cta Leu	gtt Val	tct Ser	cgg Arg	tac Tyr 375	tat Tyr	gca Ala	tat Tyr	Asp	cca Pro 380	ata Ile	tca Ser	aag Lys	gaa Glu	1152
atg Met 385	ata Ile	gca Ala	ttg Leu	тÃR	gat Asp 390	gag : Glu '	act a	aat Asn	Pro	att Ile 395	gag Glu	gag Glu	tgg Trp	cag Gln	cat His 400	1200
ata Ile	gaa Glu	cag Gln	cta Leu	aag Lys 405	ggt Gly	agt (Ser)	gct (Ala (Glu	gga Gly 410	agc Ser	ata Ile	cga Arg	tac Tyr	ccc Pro 415	gca Ala	1248

tgg aat ggg ata ata tca cag gag gta cta gac tac ctt tca tcc tac 1296 Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser Ser Tyr 420 425 ata aat aga cgc ata taatga 1317 Ile Asn Arg Arg Ile 435 <210> 4 <211> 437 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein TAT-Flpe <400> 4 Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Gly Met Ser Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val Arg Gln Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala Ser Cys Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn Gly Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys Tyr Lys Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu Ile Pro 105 Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn Gly Gln Lys His Gln Ser Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu Ser Ser 135 Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu Lys Ala Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu Ile Thr Glu Lys Ile Leu 165 · Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr Lys Thr Lys Thr Leu Tyr Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn Cys Gly Arg Phe Ser Asp 200 Ile Lys Asn Val Asp Pro Lys Ser Phe Lys Leu Val Gln Asn Lys Tyr Leu Gly Val Ile Ile Gln Cys Leu Val Thr Glu Thr Lys Thr Ser Val

230

WO 01/49832 PCT/EP01/00060

32

Ser Arg His Ile Tyr Phe Phe Ser Ala Arg Gly Arg Ile Asp Pro Leu 245 250 255

Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser Glu Pro Val Leu Lys Arg 260 265 270

Val Asn Arg Thr Gly Asn Ser Ser Ser Asn Lys Gln Glu Tyr Gln Leu 275 · 280 285

Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn Lys Ala Leu Lys Lys Asn 290 295 300

Ala Pro Tyr Pro Ile Phe Ala Ile Lys Asn Gly Pro Lys Ser His Ile 305. 310 315

Gly Arg His Leu Met Thr Ser Phe Leu Ser Met Lys Gly Leu Thr Glu 325 330 335

Leu Thr Asn Val Val Gly Asn Trp Ser Asp Lys Arg Ala Ser Ala Val 340 345 350

Ala Arg Thr Thr Tyr Thr His Gln Ile Thr Ala Ile Pro Asp His Tyr 355 360 365

Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr Asp Pro Ile Ser Lys Glu 370 375 380

Met Ile Ala Leu Lys Asp Glu Thr Asn Pro Ile Glu Glu Trp Gln His 385 390 395 400

Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly Ser Ile Arg Tyr Pro Ala 405 410 415

Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser Ser Tyr
420 425 430

Ile Asn Arg Arg Ile 435

<210> 5

11

<211> 2004

<212> DNA

<213> Artificial Sequence

<220×

<223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22-Cre

<220>

<221> CDS

<222> (1)..(2001)

<400> 5

atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg cgc 48
Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
1 5 10 15

gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt
Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser
20 25 30

			35	,	, 110	nap	, 1111	40)	Arg	. GTÀ	/ Ala	Let 45	Glr	Thr	cgc Arg	144	
٠	Ser	r cgc : Arg 50	, 01.	agg Arg	: Gly	gag Glu	gtc Val 55	Arg	tto Phe	gto Val	cag Gln	tac Tyr 60	Asp	gag Glu	tcg Ser	gat Asp	192	
	65				GLY	70	ser	ser	Ser	GLU	Asp 75	Asp	Glu	His	Pro	gag Glu 80	240	
	gto Val	Pro	Arg	acg Thr	cgg Arg 85	cgt Arg	ccc Pro	gtt Val	tcc Ser	ggg ggg	Ala	gtt Val	ttg Leu	tcc	ggc Gly 95	ccg	288	
	GJ À aaa	cct Pro	gcg Ala	cgg Arg 100	nra	cct Pro	ccg Pro	cca Pro	ccc Pro 105	gct Ala	Gly	tcc	gga Gly	ggg Gly 110	gcc	gga Gly	336	
[.i	cgc Arg	aca Thr	ccc Pro 115	acc Thr	acc Thr	gcc Ala	ccc Pro	cgg Arg 120	gcc Ala	ccc Pro	cga Arg	acc Thr	cag Gln 125	cgg Arg	gtg Val	gcg Ala	384	
	act Thr	aag Lys 130	144	Pro	gcg Ala	gcc Ala	ccg Pro 135	gcg Ala	gcg Ala	gag Glu	acc Thr	acc Thr 140	cgc Arg	ggc Gly	agg Arg	aaa Lys	432	
	tcg Ser 145	117.0	cag Gln	cca Pro	gaa Glu	tcc Ser 150	gcc Ala	gca Ala	ctc Leu	cca Pro	gac Asp 155	gcc Ala	ccc Pro	gcg Ala	tcg Ser	acg Thr 160	480	
	gcg Ala	cca Pro	acc Thr	cga Arg	tcc Ser 165	aag Lys	aca Thr	ccc Pro	gcg Ala	cag Gln 170	ggg Gly	ctg Leu	gcc Ala	aga Arg	aag Lys 175	ctg Leu	528	
	0		061	180	gcc Ala	PIO	PIO	ASN	185	Asp	Ala	Pro	Trp	Thr 190	Pro	Arg	576	
	gtg Val	gcc Ala	ggc Gly 195	ttt Phe	aac Asn	aag Lys	cgc Arg	gtc Val 200	ttc Phe	tgc Cys	gcc Ala	gcg Ala	gtc Val 205	Gly ggg	cgc Arg	ctg Leu	624	
	gcg Ala	gcc Ala 210	atg Met	cat His	gcc Ala	arg	atg Met 215	gcg Ala	gcg Ala	gtc Val	cag Gln	ctc Leu 220	tgg Trp	gac Asp	atg Met	tcg Ser	672	
	cgt Arg 225	ccg Pro	cgc Arg	aca Thr	gac Asp	gaa Glu 230	gac Asp	ctc Leu	aac Asn	gaa Glu	ctc Leu 235	ctt Leu	ggc Gly	atc Ile	acc Thr	acc Thr 240	720	
	atc Ile	cgc Arg	gtg Val	acg Thr	gtc Val 245	tgc Cys	gag Glu	ggc Gly	гÃг	aac Asn 250	ctg Leu	ctt Leu	cag Gln	cgc Arg	gcc Ala 255	aac Asn	768	Ü
٠	gag Glu	ttg Leu		aat Asn 260	cca Pro	gac Asp	gtg Val	gtg Val	cag Gln 265	gac Asp	gtc Val	gac 'Asp	gcg Ala	gcc Ala 270	acg Thr	gcg Ala	816	
	act Thr	5	ggg Gly 275	cgt Arg	tct Ser	gcg Ala	ATA .	tcg Ser 280	cgc Arg	ccc Pro	acc Thr	GIu	cga Arg 285	cct Pro	cga Arg	gcc Ala	864	

U

cca Pro	gcc Ala 290	cgc Arg	tcc Ser	gct Ala	tct Ser	cgc Arg 295	ccc Pro	aga Arg	cgg Arg	ccc Pro	gtc Val 300	gag Glu	ggt Gly	acc Thr	gag Glu	912
ctc Leu 305	gga Gly	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	gca Ala	gat Asp	atc Ile	cag Gln	cac His 320	960
agt Ser	ggc	ggć Gly	cgc Arg	atg Met 325	tcc Ser	aat Asn	tta Leu	ctg Leu	acc Thr 330	gta Val	cac His	caa Gln	aat Asn	ttg Leu 335	cct Pro	1008
gca Ala	tta Leu	ccg Pro	gtc Val 340	gat Asp	gca Ala	acg Thr	agt Ser	gat Asp 345	gag Glu	gtt Val	cgc Arg	aag Lys	aac Asn 350	ctg Leu	atg Met	1056
gac Asp	atg Met	ttc Phe 355	agg Arg	gat Asp	cgc Arg	cag Gln	gcg Ala 360	ttt Phe	tct Ser	gag Glu	cat His	acc Thr 365	tgg Trp	aaa Lys	atg Met	1104
ctt Leu	ctg Leu 370	tcc Ser	gtt Val	tgc Cys	cgg Arg	tcg Ser 375	tgg Trp	gcg Ala	gca Ala	tgg Trp	tgc Cys 380	aag Lys	ttg Leu	aat Asn	aac Asn	1152
cgg Arg 385	aaa Lys	tgg Trp	ttt Phe	ccc Pro	gca Ala 390	gaa Glu	cct Pro	gaa Glu	gat Asp	gtt Val 395	cgc Arg	gat Asp	tat Tyr	ctt Leu	cta Leu 400	1200
tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 405	ggt Gly	ctg Leu	gca Ala	gta Val	aaa Lys 410	act Thr	atc Ile	cag Gln	caa Gln	cat His 415	ttg Leu	1248
ggc Gly	cag Gln	cta Leu	aac Asn 420	atg Met	ctt Leu	cat His	cgt Arg	cgg Arg 425	tcc Ser	ggg Gly	ctg Leu	cca Pro	cga Arg 430	cca Pro	agt Ser	1296
gac Asp	agc Ser	aat Asn 435	gct Ala	gtt Val	tca Ser	ctg Leu	gtt Val 440	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 445	aaa Lys	gaa Glu	aac Asn	1344
gtt Val	gat Asp 450	gcc Ala	ggt Gly	gaa Glu	cgt Arg	gca Ala 455	Lys	cag Gln	gct Ala-	cta Leu	gcg Ala 460	ttc Phe	gaa Glu	.cgc Arg	act Thr	1392
gat Asp 465	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 470	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 475	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 480	1440
gat Asp	ata Ile	cgt Arg	aat Asn	ctg Leu 485	gca Ala	ttt Phe	ctg Leu	gly ggg	att Ile 490	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 495	tta Leu	1488
cgt Arg	ata Ile	gcc Ala	gaa Glu 500	att Ile	gcc Ala	agg Arg	atc Ile	agg Arg 505	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 510	cgt Arg	act Thr	1536
gac Asp	ggt Gly	ggg Gly 515	aga Arg	atg Met	tta Leu	atc Ile	cat His 520	att Ile	G1A ggc.	aga Arg	acg [.] Thr	aaa Lys 525	acg Thr	ctg Leu	gtt Val	1584
agc Ser	acc Thr 530	gca Ala	ggt Gly	gta Val	Glu	aag Lys 535	gca Ala	ctt Leu	agc Ser	ctg Leu	ggg Gly 540	gta Val	act Thr	aaa Lys	ctg Leu	1632

PCT/EP01/00060 WO 01/49832

35

gtc Val 545	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 550	gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 555	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 560	1680
tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 565	gtc Val	aga Arg	aaa Lys	aat Asn	ggt Gly 570	gtt Val	gcc Ala	gcg Ala	cca Pro	tct Ser 575	gcc Ala	1728
acc Thr	agc Ser	cag Gln	cta Leu 580	tca Ser	act Thr	cgc Arg	gcc Ala	ctg Leu 585	gaa Glu	Gly ggg	att Ile	ttt Phe	gaa Glu 590	gca Ala	act Thr	1776
cat His	cga Arg	ttg Leu 595	att Ile	tac Tyr	ggc Gly	gct Ala	aag Lys 600	gat Asp	gac Asp	tct Ser	ggt Gly	cag Gln 605	aga Arg	tac Tyr	ctg Leu	1824
gcc Ala	tgg Trp 610	tct Ser	gga Gly	cac His	agt Ser	gcc Ala 615	cgt Arg	gtc Val	gga Gly	gcc Ala	gcg Ala 620	cga Arg	gat Asp	atg Met	gcc Ala	1872
cgc Arg 625	gct Ala	gga Gly	gtt Val	tca Ser	ata Ile 630	ccg Pro	gag Glu	atc Ile	atg Met	caa Gln 635	gct Ala	ggt Gly	ggc Gly	tgg Trp	acc Thr 640	1920
aat Asn	gta Val	aat Asn	att Ile	gtc Val 645	atg Met	aac Asn	tat Tyr	atc Ile	cgt Arg 650	aac Asn	ctg Leu	gat Asp	agt Ser	gaa Glu 655	aca Thr	1968
Gly ggg	gca Ala	atg Met	gtg Val 660	cgc Arg	ctg Leu	ctg Leu	gaa Glu	gat Asp 665	ggc Gly	gat Asp	tag					2004

<210> 6

<211> 667

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22-Cre

<400> 6

Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg

Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser 20 25 30

Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg

Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp 50 60

Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu 65 70 75 80

Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro

Gly Pro Ala Arg Ala Pro Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly

Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala

Thr Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn 250 Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala 260 Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala 280 Pro Ala Arg Ser Ala Ser Arg Pro Arg Pro Val Glu Gly Thr Glu 295 Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met 345 Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met 360 Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn 440

Val Asp Ala Gly Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr

37 Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala 565 570 Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu 600 Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp 660 <210> 7 <211> 2247 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22-Flpe <220> <221> CDS <222> (1)..(2241)

i :

atg acc tot ego ego toe gtg aag tog ggt eeg egg gag gtt eeg ego 48 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg

gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser 20

	Pro	gat Asp	agt Ser 35	PIO	cct Pro	gac Asp	acc Thr	tcc Ser 40	cgc Arg	cgt Arg	ggc	gcc Ala	cta Leu 45	cag Gln	aca Thr	cgc Arg	144
	tcg Ser	cgc Arg 50	cag Gln	agg Arg	ggc Gly	gag Glu	gtc Val 55	cgt Arg	ttc Phe	gtc Val	cag Gln	tac Tyr 60	gac Asp	gag Glu	tcg Ser	gat Asp	192
	tat Tyr 65	vra	ctc Leu	tac Tyr	ggg	ggc Gly 70	tcg Ser	tct Ser	tcc Ser	gaa Glu	gac Asp 75	gac Asp	gaa Glu	cac His	ccg Pro	gag Glu 80	240
	gtc Val	ccc Pro	cgg Arg	acg Thr	cgg Arg 85	cgt Arg	ccc Pro	gtt Val	tcc Ser	ggg 90	gcg Ala	gtt Val	ttg Leu	tcc Ser	ggc Gly 95	ccg Pro	288
	ggg Gly	cct Pro	gcg Ala	cgg Arg 100	gcg Ala	cct Pro	ccg Pro	cca Pro	ccc Pro 105	gct Ala	ggg Gly	tcc Ser	gga Gly	ggg Gly 110	gcc Ala	gga Gly	336
Di Ti	cgc Arg	aca Thr	ccc Pro 115	acc Thr	acc Thr	gcc Ala	ccc Pro	cgg Arg 120	gcc Ala	ccc Pro	cga Arg	acc Thr	cag Gln 125	cgg Arg	gtg Val	gcg Ala	384
	act Thr	aag Lys 130	gcc Ala	ccc Pro	gcg Ala	gcc Ala	ccg Pro 135	gcg Ala	gcg Ala	gag Glu	acc Thr	acc Thr 140	cgc Arg	ggc Gly	agg Arg	aaa Lys	432
	tcg Ser 145	gcc Ala	cag Gln	cca Pro	gaa Glu	tcc Ser 150	gcc Ala	gca Ala	ctc Leu	cca Pro	gac Asp 155	gcc Ala	ccc Pro	gcg Ala	tcg Ser	acg Thr 160	480
	gcg Ala	cca Pro	acc Thr	cga Arg	tcc Ser 165	aag Lys	aca Thr	ccc Pro	gcg Ala	cag Gln 170	.Gla gaa	ctg Leu	gcc Ala	aga Arg	aag Lys 175	ctg Leu	528
	cac His	ttt Phe	agc Ser	acc Thr 180	gcc Ala	ccc Pro	cca Pro	aac Asn	ccc Pro 185	gac Asp	gcg Ala	cca Pro	tgg Trp	acc Thr 190	ccc Pro	cgg Arg	576
	gtg Val	gcc Ala	ggc Gly 195	ttt Phe	aac Asn	aag Lys	cgc Arg	gtc Val 200	ttc Phe	tgc Cys	gcc Ala	gcg Ala	gtc Val 205	Gly ggg	cgc Arg	ctg Leu	624
	gcg Ala	gcc Ala 210	atg Met	cat His	gcc Ala	cgg Arg	atġ Met 215	gcg Ala	gcg Ala	gtc Val	cag Gln	ctc Leu 220	tgg Trp	gac Asp	atg Met	tcg Ser	672
	cgt Arg 225	ccg Pro	cgc Arg	aca Thr	gac Asp	gaa Glu 230	gac Asp	cte Leu	aac Asn	gaa Glu	ctc Leu 235	ctt Leu	ggc Gly	atc Ile	acc Thr	acc Thr 240	720
	atc Ile	cgc Arg	gtg Val	acg Thr	gtc Val 245	tgc Cys	gag Glu	ggc Gly	aaa Lys	aac Asn 250	ctg Leu	ctt Leu	cag Gln	cgc Arg	gcc Ala 255	aac Asn	768
	gag Glu	ttg Leu	var	aat Asn 260	cca Pro	gac Asp	gtg Val	gtg Val	cag Gln 265	gac Asp	gtc Val	gac Asp	gcg Ala	gcc Ala 270	acg Thr	gcg Ala	816
	act Thr	Arg	ggg Gly 275	cgt Arg	tct Ser	gcg Ala	gcg Ala	tcg Ser 280	cgc Arg	ccc Pro	acc Thr	Glu	cga Arg 285	cct Pro	cga Arg	gcc Ala	864

	~		+	a 1.	4											
Pro	gcc Ala 290	arg	Ser	gct Ala	tct Ser	cgc Arg 295	Pro	aga Arg	cgg Arg	Pro	gtc Val 300	gag Glu	ggt Gly	acc Thr	gag Glu	912
ctc Leu 305	gga Gly	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	gca Ala	gat Asp	atc Ile	cag Gln	cac His 320	960
agt Ser	ggc	ggc Gly	cgc Arg	atg Met 325	agt Ser	caa Gln	ttt Phe	gat Asp	ata Ile 330	tta Leu	tgt Cys	aaa Lys	aca Thr	cca Pro 335	cct Pro	1008
aag Lys	gtc Val	ctg Leu	gtt Val 340	cgt Arg	cag Gln	ttt Phe	gtg Val	gaa Glu 345	agg Arg	ttt Phe	gaa Glu	aga Arg	cct Pro 350	tca Ser	GJÀ āāā	1056
gaa Glu	aaa Lys	ata Ile 355	gca Ala	tca Ser	tgt Cys	gct Ala	gct Ala 360	gaa Glu	cta Leu	acc Thr	tat Tyr	tta Leu 365	tgt Cys	tgg Trp	atg Met	1104
att Ile	act Thr 370	cat His	aac Asn	gga Gly	aca Thr	gca Ala 375	atc Ile	aag Lys	aga Arg	gcc Ala	aca Thr 380	ttc Phe	atg Met	agc Ser	tat Tyr	1152
aat Asn 385	act Thr	atc Ile	ata Ile	agc Ser	aat Asn 390	tcg Ser	ctg Leu	agt Ser	ttc Phe	gat Asp 395	att Ile	gtc Val	aac Asn	aaa Lys	tca Ser 400	1200
ctc Leu	cag Gln	ttt Phe	aaa Lys	tac Tyr 405	aag Lys	acg Thr	caa Gln	aaa Lys	gca Ala 410	aca Thr	att Ile	ctg Leu	gaa Glu	gcc Ala 415	tca Ser	. 1248
tta Leu	aag Lys	aaa Lys	tta Leu 420	att Ile	cct Pro	gct Ala	tgg Trp	gaa Glu 425	ttt Phe	aca Thr	att Ile	att Ile	cct Pro 430	tac Tyr	aat Asn	1296
gga Gly	caa Gln	aaa Lys 435	cat His	caa Gln	tct Ser	gat Asp	atc Ile 440	act Thr	gat Asp	att Ile	gta Val	agt Ser 445	agt Ser	ttg Leu	caa Gln	1344
tta Leu	cag Gln 450	ttc Phe	gaa Glu	tca Ser	tcg Ser	gaa Glu 455	gaa Glu	gca Ala	gat Asp	aag Lys	gga Gly 460	aat Asn	agc Ser	cac His	agt Ser	1392
aaa Lys 465	aaa Lys	atg Met	ctt Leu	aaa Lys	gca Ala 470	ctt Leu	cta Leu	agt Ser	gag Glu	ggt Gly 475	gaa Glu	agc Ser	atc Ile	tgg Trp	gag Glu 480	1440
atc Ile	act Thr	gag Glu	aaa Lys	ata Ile 485	cta Leu	aat Asn	tcg Ser	ttt Phe	gag Glu 490	tat Tyr	acc Thr	tcg Ser	aga Arg	ttt Phe 495	aca Thr	1488
aaa Lys	aca Thr	aaa Lys	act Thr 500	tta Leu	tac Tyr	caa Gln	ttc Phe	ctc Leu 505	ttc Phe	cta Leu	gct Ala	act Thr	ttc Phe 510	atc Ile	aat Asn	İ536
tgt Cys	gga Gly	aga Arg 515	ttc Phe	agc Ser	gat Asp	att Ile	aag Lys 520	aac Asn	gtt Val	gat Asp	ccg Pro	aaa Lys 525	tca Ser	ttt Phe	aaa Lys	1584
tta Leu	gtc Val 530	caa Gln	aat Asn	aag Lys	tat Tyr	ctg Leu 535	gga Gly	gta Val	ata Ile	atc Ile	cag Gln 540	tgt Cys	tta Leu	gtg Val	aca Thr	1632

gag Glu 545	aca Thr	aag Lys	aca Thr	agc Ser	gtt Val 550	agt Ser	agg Arg	cac His	ata Ile	tac Tyr 555	ttc Phe	ttt Phe	agc Ser	gca Ala	agg Arg 560	1680
ggt Gly	agg Arg	atc Ile	gat Asp	cca Pro 565	ctt Leu	gta Val	tat Tyr	ttg Leu	gat Asp 570	gaa Glu	ttt Phe	ttg Leu	agg Arg	aat Asn 575	tct Ser	1728
gaa Glu	cca Pro	gtc Val	cta Leu 580	aaa Lys	cga Arg	gta Val	aat Asn	agg Arg 585	acc Thr	GJ y ggc	aat Asn	tct Ser	tca Ser 590	agc Ser	aac Asn	1776
aaa Lys	cag Gln	gaa Glu 595	tac Tyr	caa Gln	tta Leu	tta Leu	aaa Lys 600	gat Asp	aac Asn	tta Leu	gtc Val	aga Arg 605	tcg Ser	tac Tyr	aac Asn	1824
aag Lys	gct Ala 610	ttg Leu	aag Lys	aaa Lys	aat Asn	gcg Ala 615	cct Pro	tat Tyr	cca Pro	atc Ile	ttt Phe 620	gct Ala	ata Ile	aag Lys	aat Asn	1872
ggc Gly 625	cca Pro	aaa Lys	tct Ser	cac His	att Ile 630	gga Gly	aga Arg	cat His	ttg Leu	atg Met 635	acc Thr	tca Ser	ttt Phe	ctg Leu	tca Ser 640	1920
atg Met	aag Lys	ggc Gly	cta Leu	acg Thr 645	gag Glu	ttg Leu	act Thr	aat Asn	gtt Val 650	Val	gga Gly	aat Asn	tgg Trp	agc Ser 655	Asp	1968
 aag Lys	cgt Arg	gct Ala	tct Ser	gcc Ala	gtg Val	gcc Ala	agg Arg	aca Thr	acg Thr	tat Tyr	act Thr	cat His	-G1n	T-T-6	aca Thr	2016
_			660					665					670			2064
gca Ala	ata Ile	cct Pro 675	Asp	cac His	tac Tyr	ttc Phe	gca Ala 680	Leu	gtt Val	tct Ser	cgg Arg	Tyr 685	Tyr	gca Ala	tat Tyr	2064
gat Asp	cca Pro 690	Ile	tca Ser	aag Lys	gaa Glu	atg Met 695	ata Ile	gca Ala	ttg Lev	aag Lys	gat Asp 700	Glu	act Thr	aat Asn	cca Pro	2112
att Ile 705	Glu	gag Glu	tgg Trp	cag Gln	cat His 710	Ile	gaa Glu	cag Glr	r cta Lev	aag Lys 715	Gly	agt Ser	gct Ala	gaa Glu	gga Gly 720	2160
agc Ser	ata Ile	cga Arg	tac Tyr	Pro	Ala	tgg Trp	aat Asn	. ggc	7 ata 7 Ile 730	e Ile	tca Ser	caç Glr	gaq Glu	gta Val 735	t cta Leu	2208
gac Asp	tac Tyr	ctt Leu	tca Ser 740	tcc Ser	tac Tyr	ata Ile	aat Asr	aga Arg 745	g Ar	e ata g Ile	a taa	atga				2247

<210> 8

<211> 747

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22-Flpe

<400> 8 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg 1 5 10 15

Asp	Glu	Tyr	Glu 20	Asp	Leu	Tyr	Tyr	Thr 25	Pro	Ser	Ser	Gly	Met 30	Ala	Ser
Pro	Asp	Ser 35	Pro	Pro	Asp	Thr	Ser 40	Arg	Arg	Gly	Ala	Leu 45	Gln	Thr	Arg
Ser	Arg 50	Gln	Arg	Gly	Glu	Val 55	Arg	Phe	Val	Gln	Tyr 60	Asp	Glu	Ser	Asp
Tyr 65	Ala	Leu	Tyr	Gly	Gly 70	Ser	Ser	Ser	Glu	Asp 75	Asp	Glu	His	Pro	Glu 80
Val	Pro	Arg	Thr	Arg 85	Arg	Pro	Val	Ser	Gly 90	Ala	Val	Leu	Ser	Gly 95	Pro
Gly	Pro	Ala	Arg 100	Ala	Pro	Pro	Pro	Pro 105	Ala	Gly	Ser	Gly	Gly 110	Ala	Gly
Arg	Thr	Pro 115	Thr	Thr	Ala	Pro	Arg 120	Ala	Pro	Arg	Thr	Gln 125	Arg	Val	Ala
Thr	Lys 130	Ala	Pro	Ala	Ala	Pro 135	Ala	Ala	Glu	Thr	Thr 140	Arg	Gly	Arg	Lys
Ser 145	Ala	Gln	Pro	Glu	Ser 150	Ala	Ala	Leu	Pro	Asp 155	Ala	Pro	Ala	Ser	Thr 160
Ala	Pro	Thr	Arg	Ser 165	Lys	Thr	Pro	Ala	Gln 170	Gly	Leu	Ala	Arg	Lys 175	Leu
His	Phe	Ser	Thr 180	Ala	Pro	Pro	Asn	Pro 185	Asp	Ala	Pro	Trp	Thr 190	Pro	Arg
Val	Ala	Gly 195	Phe	Asn	Lys	Arg	Val 200	Phe	Cys	Ala	Ala	Val 205	Gly	Arg	Leu
Ala	Ala 210	Met	His	Ala	Arg	Met 215	Ala	Ala	Val	Gln	Leu 220	Trp	Asp	Met	Ser
Arg 225	Pro	Arg	Thr	Asp	Glu 230	Asp	Leu	Asn	Glu	Leu 235	Leu	Gly	Ile	Thr	Thr 240
Ile	Arg	Val	Thr	Val 245	Cys	Glu	Gly	Lys	Asn 250	Leu	Leu	Gln	Arg	Ala 255	Asn
Glu	Leu	Val	Asn 260	Pro	Asp	Val	Val	Gln 265	Asp	Val	Asp	Ala	Ala 270	Thr	Ala
Thr	Arg'	Gly 275	Arg	Ser	Ala	Ala	Ser 280	Arg	Pro	Thr	Glu	Arg 285	Pro	Arg	Ala
Pro	Ala 290	Arg	Ser	Ala	Ser	Arg 295	Pro	Arg	Arg	Pro	Val 300	Glu	Gly	Thr	Glu
Leu 305	Gly	Ser	Thr	Ser	Pro 310	Val	Trp	Trp	Asn	Ser 315	Ala	Asp	Ile	Gln	His 320
Ser	Gly	Gly	Arg	Met 325	Ser	Gln	Phe	Asp	Ile 330	Leu	Суз	ГÀЗ	Thr	Pro 335	Pro
Lys	Val	Leu	Val	Arg	Gln	Phe	Val	Ģlu	Arg	Phe	Glu	Arg	Pro	Ser	Gly

WO 01/49832

Glu	T.ue	Tla	- ומ	802	Cuc	בות	71-	C1	T 011	mb	m	T	C	m	N# - 4-
GIU	пÀ2	355	Ala	ser	cys	Ald	360	GIU	Leu	Tnr	Tyr	365	Cys	Trp	Met
Ile	Thr 370	His	Asn	Gly	Thr	Ala 375	Ile	Lys	Arg	Ala	Thr 380	Phe	Met	Ser	Tyr
Asn 385	Thr	Ile	Ile	Ser	Asn 390	Ser	Leu	Ser	Phe	Asp 395	Ile	Val	Asn	Lys	Ser 400
Leu	Gln	Phe	Lys	Tyr 405	Lys	Thr	Gln	Lys	Ala 410	Thr	Ile	Leu	Glu	Ala 415	Ser
Leu	Lys	Lys	Leu 420	Ile	Pro	Ala	Trp	Glu 425	Phe	Thr	Ile	Ile	Pro 430	Tyr	Asn
Gly	Gln	Lys 435	His	Gln	Ser	Asp	Ile 440	Thr	Asp	Ile	Val	Ser 445	Ser	Leu	Gln
Leu	Gln 450	Phe	Glu	Ser	Ser	Glu 455	Glu	Ala	Asp	Lys	Gly 460	Asn	Ser	His	Ser
Lys 465	Lys	Met	Leu	Lys	Ala 470	Leu	Leu	Ser	Glu	Gly 475	Glu	Ser	Ile	Trp	Glu 480
Ile	Thr	Glu	Lys	Ile 485	Leu	Asn	Ser	Phe	Glu 490	Tyr	Thr	Ser	Arg	Phe 495	Thr
Lys	Thr	Lys	Thr 500	Leu	Tyr	Gln	Phe	Ьеи 505	Phe	Leu	Ala	Thr	Phe 510	Ile	Asn
Cys	Gly	Arg 515	Phe	Ser	Asp	Ile	Lys 520	Asn	Val	qeA	Pro	Lys 525	Ser	Phe	Lys
Leu	Val 530	Gln	Asn	Lys	Tyr	Leu 535	Gly	Val	Ile	Ile	Gln 540	Cys	Leu	Val	Thr
Glu 545	Thr	Lys	Thr	Ser	Val 550	Ser	Arg	His	Ile	Tyr 555	Phe	Phe	Ser	Ala	Arg 560
Gly	Arg	Ile	Asp	Pro 565	Leu	Val	Tyr	Leu	Asp 570	Glu	Phe	Leu	Arg	Asn 575	Ser
Glu	Pro	Val	Leu 580	Lys	Arg	Val	Asn	Arg 585	Thr	Gly	Asn	Ser	Ser 590	Ser	Asn
Lys	Gln	Glu 595	Tyr	Gln	Leu	Leu	Lys 600	Asp	Asn	Leu	Val	Arg 605	Ser	Tyr	Asn
Lys	Ala 610	Leu	Lys	Lys	Asn	Ala 615	Pro	Tyr	Pro	Ile	Phe 620	Ala	Ile	Lys	Asn
Gly 625	Pro	Lys	Ser	His	Ile 630	Gly	Arg	His	Leu	Met 635	Thr	Ser	Phe	Leu	Ser 640
Met	Lys	Gly	Leu	Thr 645	Glu	Leu	Thr	Asn	Val 650	Val	Gly	Asn	Trp	Ser 655	Asp
Lys	Arg	Ala	Ser 660	Ala	Val	Ala	Arg	Thr 665	Thr	Tyr	Thr	His	Gln 670	Ile	Thr
Ala	Ile	Pro 675	Asp	His	Tyr	Phe	Ala 680	Ļeu	Val	Ser	Arg	Tyr 685	Tyr	Ala	Tyr

```
Asp Pro Ile Ser Lys Glu Met Ile Ala Leu Lys Asp Glu Thr Asn Pro
                         695
  Ile Glu Glu Trp Gln His Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly
  Ser Ile Arg Tyr Pro Ala Trp Asn Gly Ile Ile Ser Gln Glu Val Leu
  Asp Tyr Leu Ser Ser Tyr Ile Asn Arg Arg Ile
              740
                                                    1.7
  <210> 9
  <211> 33
  <212> DNA
  <213> Human immunodeficiency virus
  tacggccgca agaagcgccg ccaacgccgc cgc
                                                                33
  <210> 10
  <211> 11
  <212> PRT
  <213> Human immunodeficiency virus
  <400> 10
  Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg
  <210> 11
  <211> 42
  <212> DNA
  <213> Human immunodeficiency virus
  <220>
  <221> CDS
  <222> (4)..(42)
  <400> 11
  42
      Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Gly
  <210> 12
  <211> 13
  <212> PRT
  <213> Human immunodeficiency virus
  <400> 12
  Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Gly
  <210> 13
  <211> 1623
  <212> DNA
  <213> Artificial Sequence
·. <220>
```

<223>	Descrip	tion o	of Arti	ficial S	equence:	DNA	sequence
							-StrepTag

<220> <221> CDS <222> (1)..(1617) atg gct agc atg act ggt gga cag caa atg ggt cgg gat ccg tcg acg Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Pro Ser Thr gcg cca acc cga tcc aag aca ccc gcg cag ggg ctg gcc aga aag ctg Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu cae ttt age ace gee eee eea aac eee gae geg eea tgg ace eee egg 144 His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg 40 gtg gcc ggc ttt aac aag cgc gtc ttc tgc gcc gcg gtc ggg cgc ctg Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu gcg gcc atg cat gcc cgg atg gcg gct gtc cag ctc tgg gac atg tcg Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser 240 cgt ccg cgc aca gac gaa gac ctc aac gaa ctc ctt ggc atc acc acc 288 Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr 90 atc ege gtg acg gtc tgc gag ggc aaa aac etg ett eag ege gee aac 336 Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn 105 gag ttg gtg aat cca gac gtg gtg cag gac gtc gac gcg gcc acg gcg Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala act cga ggg cgt tct gcg gcg tcg cgc ccc acc gag cga cct cga gcc 432 Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala 130 135 cca gcc cgc tcc gct tct cgc ccc aga cgg ccc gtc gag ggt acc gag 480 Pro Ala Arg Ser Ala Ser Arg Pro Arg Pro Val Glu Gly Thr Glu ctc gga tcc act agt cca gtg tgg tgg aat tct gca gat atc cag cac 528 Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His 170 agt ggc ggc cgc atg tcc aat tta ctg acc gta cac caa aat ttg cct Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro 180 185 gca tta ccg gtc gat gca acg agt gat gag gtt cgc aag aac ctg atg 624 Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met gac atg ttc agg gat cgc cag gcg ttt tct gag cat acc tgg aaa atg 672. Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met 215

ctt Leu 225	ctg Leu	tcc Ser	gtt Val	tgc Cys	cgg Arg 230	tcg Ser	tgg Trp	gcg Ala	gca Ala	tgg Trp 235	tgc Cys	aag Lys	ttg Leu	aat Asn	aac Asn 240	720
cgg Arg	aaa Lys	tgg Trp	ttt Phe	ccc Pro 245	gca Ala	gaa Glu	cct Pro	gaa Glu	gat Asp 250	gtt Val	cgc Arg	gat Asp	tat Tyr	ctt Leu 255	cta Leu	768
tat Tyr	ctt Leu	cag Gln	gcg Ala 260	cgc Arg	ggt Gly	ctg Leu	gca Ala	gta Val 265	aaa Lys	act Thr	atc Ile	cag Gln	caa Gln 270	cat His	ttg Leu	816
ggc Gly	cag Gln	cta Leu 275	aac Asn	atg Met	ctt Leu	cat His	cgt Arg 280	cgg Arg	tcc Ser	GJ À GG À	ctg Leu	cca Pro 285	cga Arg	cca Pro	agt Ser	864
gac Asp	agc Ser 290	aat Asn	gct Ala	gtt Val	tca Ser	ctg Leu 295	gtt Val	atg Met	cgg Arg	cgg Arg	atc Ile 300	cga Arg	aaa Lys	gaa Glu	aac Asn	912
gtt Val 305	gat Asp	gcc Ala	ggt Gly	gaa Glu	cgt Arg 310	gca Ala	aaa Lys	cag Gln	gct Ala	cta Leu 315	gcg Ala	ttc Phe	gaa Glu	cgc Arg	act Thr 320	960
gat Asp	ttc Phe	gac Asp	cag Gln	gtt Val 325	cgt Arg	tca Ser	ctc Leu	atg Met	gaa Glu 330	aat Asn	agc Ser	gat Asp	cgc Arg	tgc Cys 335	cag Gln	1008
gat Asp	ata Ile	cgt Arg	aat Asn 340	ctg Leu	gca Ala	ttt Phe	ctg Leu	ggg Gly 345	att Ile	gct Ala	tat Tyr	aac Asn	acc Thr 350	ctg Leu	tta Leu	1056
cgt Arg	ata Ile	gcc Ala 355	gaa Glu	att Ile	gcc Ala	agg Arg	atc Ile 360	agg Arg	gtt Val	aaa Lys	gat Asp	atc Ile 365	tca Ser	cgt Arg	act Thr	1104
gac Asp	ggt Gly 370	ggg Gly	aga Arg	atg Met	tta Leu	atc Ile 375	cat His	att Ile	ggc Gly	aga Arg	acg Thr 380	aaa Lys	acg Thr	ctg Leu	gtt Val	1152
agc Ser 385	acc Thr	gca Ala	ggt Gly	gta Val	gag Glu 390	aag Lys	gca Ala	ctt Leu	agc Ser	ctg Leu 395	ggg Gly	gta Val	act Thr	aaa Lys	ctg Leu 400	1200
gtc Val	gag Glu	cga Arg	tgg Trp	att Ile 405	tcc Ser	gtc Val	tct Ser	ggt Gly	gta Val 410	gct Ala	gat Asp	gat Asp	ccg Pro	aat Asn 415	aac Asn	1248
tac Tyr	ctg Leu	ttt Phe	tgc Cys 420	cgg Arg	gtc Val	aga Arg	aaa Lys	aat Asn 425	ggt Gly	gtt Val	gcc Ala	gcg Ala	cca Pro 430	tct Ser	gcc Ala	1296
acc Thr	agc Ser	cag Gln 435	cta Leu	tca Ser	act Thr	cgc Arg	gcc Ala 440	ctg Leu	gaa Glu	gly	att Ile	ttt Phe 445	gaa Glu	gca Ala	act Thr	1344
cat His	cga Arg 450	ttg Leu	att Ile	tac Tyr	ggc Gly	gct Ala 455	aag Lys	gat Asp	gac Asp	tct Ser	ggt Gly 460	cag Gln	aga Arg	tac Tyr	ctg Leu	1392
gcc Ala 465	tgg Trp	tct Ser	gga Gly	cac His	agt Ser 470	gcc Ala	cgt Arg	gtc Val	gga Gly	gcc Ala 475	gcg Ala	cga Arg	gat Asp	atg Met	gcc Ala 480	1440

cgc gct gga gtt Arg Ala Gly Val	tca ata ccg Ser Ile Pro 485	gag atc atg Glu Ile Met 490	caa gct ggt Gln Ala Gly	ggc tgg acc Gly Trp Thr 495	1488
aat gta aat att Asn Val Asn Ile 500	Val Met Asn	tat atc cgt Tyr Ile Arg 505	Asn Leu Asp	agt gaa aca Ser Glu Thr 510	1536
ggg gca atg gtg Gly Ala Met Val 515	cgc ctg ctg Arg Leu Leu	gaa gat ggc Glu Asp Gly 520	gat ggt atc Asp Gly Ile 525	gaa ggt cgt Glu Gly Arg	1584
ggt agc gct tgg Gly Ser Ala Trp 530		Gln Phe Gly			1623
<210> 14 <211> 539 <212> PRT <213> Artificia <223> Descripti coding fo	on of Artifi		e: DNA sequen VP22cre-Strep		
<400> 14 Met Ala Ser Met 1	Thr Gly Gly	Gln Gln Met	Gly Arg Asp	Pro Ser Thr 15	
Ala Pro Thr Arg		Pro Ala Gln 25	Gly Leu Ala	Arg Lys Leu 30	
His Phe Ser Thr 35	Ala Pro Pro	Asn Pro Asp 40	Ala Pro Trp 45	Thr Pro Arg	
Val Ala Gly Phe 50	Asn Lys Arg 55	_	Ala Ala Val 60	Gly Arg Leu	
Ala Ala Met His 65	Ala Arg Met 70	Ala Ala Val	Gln Leu Trp 75	Asp Met Ser 80	
Arg Pro Arg Thr	Asp Glu Asp 85	Leu Asn Glu 90	Leu Leu Gly	Ile Thr Thr 95	
Ile Arg Val Thr 100		Gly Lys Asn 105	Leu Leu Gln	Arg Ala Asn 110	
Glu Leu Val Asn 115	Pro Asp Val	Val Gln Asp 120	Val Asp Ala 125	Ala Thr Ala	
Thr Arg Gly Arg 130	Ser Ala Ala 135	-	Thr Glu Arg 140	Pro Arg Ala	·
Pro Ala Arg Ser 145	Ala Ser Arg 150	Pro Arg Arg	Pro Val Glu 155	Gly Thr Glu 160	
Leu Gly Ser Thr	Ser Pro Val 165	Trp Trp Asn 170	Ser Ala Asp	Ile Gln His 175	
Ser Gly Gly Arg 180		Leu Leu Thr 185	Val His Gln	Asn Leu Pro 190	
Ala Leu Pro Val 195	Asp Ala Thr	Ser Asp Glu 200	Val Arg Lys 205	Asn Leu Met	

WO 01/49832

									4/						
Asp	Met 210	Phe	Arg	Asp	Arg	Gln 215	Ala	Phe	Ser	Glu	His 220	Thr	Trp	Lys	Met
Leu 225	Leu	Ser	Val	Суѕ	Arg 230	Ser	Trp	Ala	Ala	Trp 235	Cys	Lys	Leu	Asn	Asn 240
Arg	Lys	Trp	Phe	Pro 245	Ala	Glu	Pro	Glu	Asp 250	Val	Arg	Asp	Tyr	Leu 255	Leu
Tyr	Leu	Gln	Ala 260	Arg	Gly	Leu	Ala	Val 265	Lys	Thr	Ile	Gln	Gln 270	His	Leu
Gly	Gln	Leu 275	Asn	Met	Leu	His	Arg 280	Arg	Ser	Gly	Leu	Pro 285	Arg	Pro	Ser
Asp	Ser 290	Asn	Ala	Val	Ser	Leu 295	Val	Met	Arg	Arg	Ile 300	Arg	Lys	Glu	Asn
Val 305	Asp	Ala	Gly	Glu	Arg 310	Ala	ГÀЗ	Gln	Ala	Leu 315	Ala	Phe	Glu	Arg	Thr 320
Asp	Phe	Asp	Gln	Val 325	Arg	Ser	Leu	Met	Glu 330	Asn	Ser	Asp	Arg	Cys 335	Gln
Asp	Ile	Arg	Asn 340	Leu	Ala	Phe	Leu	Gly 345	Ile	Ala	Tyr	Asn	Thr 350	Leu	Leu
Arg	Ile	Ala 355	Glu	Ile	Ala	Arg	Ile 360	Arg	Val	Lys	Asp	Ile 365	Ser	Arg	Thr
Asp	Gly 370	Gly	Arg	Met	Leu	Ile 375	His	Ile	Gly	Arg	Thr 380	Lys	Thr	Leu	Val
Ser 385	Thr	Ala	Gly	Val	Glu 390	Lys	Ala	Leu	Ser	Leu 395	Gly ·	Val	Thr	Lys	Leu 400
Val	Glu	Arg	Trp	Ile 405	Ser	Val	Ser	Gly	Val 410	Ala	Asp	Asp	Pro	Asn 415	Asn
Tyr	Leu	Phe	Cys 420	Arg	Val	Arg	Lys	Asn 425	Gly	Val ·	Ala	Ala	Pro 430	Ser	Ala
Thr	Ser	Gln 435	Leu	Ser	Thr	Arg	Ala 440	Leu	Glu	Gly	Ile	Phe 445	Glu	Ala	Thr
His	Arg 450	Leu	Ile	Tyr	Gly	Ala 455	Lys	Asp	Asp	Ser	Gly 460	Gln	Arg	Tyr	Leu
Ala 465	Trp	Ser	Gly	His	Ser 470	Ala	Arg	Val	Gly	Ala 475	Ala	Arg	Asp	Met	Ala 480
Arg	Ala	Gly	Val	Ser 485	Ile	Pro	Glu	Ile	Met 490	Gln	Ala	Gly	Gly	Trp 495	Thr
Asn	Val	Asn	Ile 500	Val	Met	Asn	Tyr	Ile 505	Arg	Asn	Leu	Asp	Ser 510	Glu	Thr
Gly	Ala	Met 515	Val	Arg	Leu	Leu	Glu 520	Asp	Gly	Asp	Gly	Ile 525	Glu	Gly	Arg
Gly	Ser 530	Ala	Trp	Arg	His	Pro 535	Gln	Phe	Gly	Gly					

```
<210> 15
<211> 5953
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
     pCRT7-deltaVPCS
<400> 15
cgatggattt ccgtctctgg tgtagctgat gatccgaata actacctgtt ttgccgggtc 60
agaaaaaatg gtgttgccgc gccatctgcc accagccagc tatcaactcg cgccctggaa 120
gggatttttg aagcaactca tcgattgatt tacggcgcta aggatgactc tggtcagaga 180
tacctggcct ggtctggaca cagtgcccgt gtcggagccg cgcgagatat ggcccgcgct 240
ggagtttcaa taccggagat catgcaagct ggtggctgga ccaatgtaaa tattgtcatg 300
aactatatee gtaacetgga tagtgaaaca ggggeaatgg tgegeetget ggaagatgge 360
gatggtatcg aaggtcgtgg tagcgcttgg cgtcacccgc agttcggtgg ttaataagct 420
togaacaaaa actoatotoa gaagaggato tgaatatgoa tacoggtoat catoacoato 480
accattgagt tttgagcaat aactagcata acccettggg geetetaaae gggtettgag 540
gggttttttg ctgaaaggag gaactatatc cggatatcca caggacgggt gtggtcgcca 600
tgatcgcgta gtcgatagtg gctccaagta gcgaagcgag caggactggg cggcggccaa 660
agcggtcgga cagtgctccg agaacgggtg cgcatagaaa ttgcatcaac gcatatagcg 720
ctagcagcac gccatagtga ctggcgatgc tgtcggaatg gacgatatcc cgcaagaggc 780
ccggcagtac cggcataacc aagcctatgc ctacagcatc cagggtgacg gtgccgagga 840
tgacgatgag cgcattgtta gatttcatac acggtgcctg actgcgttag caatttaact 900
gtgataaact accgcattaa agcttatcga tgataagctg tcaaacatga gaattaattc 960
ttagaaaaac tcatcgagca tcaaatgaaa ctgcaattta ttcatatcag gattatcaat 1020
accatatttt tgaaaaagcc gtttctgtaa tgaaggagaa aactcaccga ggcagttcca 1080
taggatggca agatcctggt atcggtctgc gattccgact cgtccaacat caatacaacc 1140
tattaatttc ccctcgtcaa aaataaggtt atcaagtgag aaatcaccat gagtgacgac 1200
tgaatccggt gagaatggca aaagcttatg catttettte cagacttgtt caacaggeca 1260
gccattacgc tcgtcatcaa aatcactcgc atcaaccaaa ccgttattca ttcgtgattg 1320
cycctgagcg agacgaaata cycgatcyct yttaaaagga caattacaaa caggaatcya 1380
atgcaaccgg cgcaggaaca ctgccagcgc atcaacaata ttttcacctg aatcaggata 1440
ttcttctaat acctggaatg ctgttttccc ggggatcgca gtggtgagta accatgcatc 1500
atcaggagta cggataaaat gcttgatggt cggaagaggc ataaattccg tcagccagtt 1560
tagtctgacc atctcatctg taacatcatt ggcaacgcta cctttgccat gtttcagaaa 1620
caactetgge geateggget teccatacaa tegatagatt gtegeacetg attgeeegae 1680
attatogoga goccatttat accoatataa atcagcatoc atgttggaat ttaatogogg 1740
cctcgagcaa gacgtttccc gttgaatatg gctcataaca ccccttgtat tactgtttat 1800
gtaagcagac agttttattg ttcatgacca aaatccctta acgtgagttt tcgttccact 1860
gagegteaga eccegtagaa aagateaaag gatettettg agateetttt titetgegeg 1920
taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc 1980
aagagctacc aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata 2040
ctgtccttct agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta 2100
catacetege tetgetaate etgttaceag tggetgetge eagtggegat aagtegtgte 2160
ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg 2220
ggggttcgtg cacacagccc agettggage gaacgaccta caccgaactg agatacctac 2280
agegtgaget atgagaaage geeaegette eegaagggag aaaggeggae aggtateegg 2340
taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt 2400
atetttatag teetgteggg tttegecace tetgaettga gegtegattt ttgtgatget 2460
cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg 2520
ccttttgetg gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata 2580
accytattac cycctttgag tgagctgata ccyctcyccy cayccyaacy accyagcyca 2640
gcgagtcagt gagcgaggaa gcggaagagc gcctgatgcg gtattttctc cttacgcatc 2700
tgtgcggtat ttcacaccgc atatatggtg cactctcagt acaatctgct ctgatgccgc 2760
atagttaagc cagtatacac tccgctatcg ctacgtgact gggtcatggc tgcgccccga 2820
caccegeeaa caccegetga egegeeetga egggettgte tgeteeegge ateegettae 2880
agacaagetg tgaccgtete egggagetge atgtgteaga ggtttteace gteateaceg 2940
aaacgcgcga ggcagctgcg gtaaagctca tcagcgtggt cgtgaagcga ttcacagatg 3000
tetgeetgtt cateegegte cagetegttg agttteteca gaagegttaa tgtetggett 3060
ctgataaagc gggccatgtt aagggeggtt ttttcctgtt tggtcactga tgcctccgtg 3120
taagggggat ttctgttcat gggggtaatg ataccgatga aacgagagag gatgctcacg 3180
atacgggtta ctgatgatga acatgecegg ttactggaac gttgtgaggg taaacaactg 3240
```

49

```
gcggtatgga tgcggcggga ccagagaaaa atcactcagg gtcaatgcca gcgcttcgtt 3300 aatacagatg taggtgttcc acagggtagc cagcagcatc ctgcgatgca gatccggaac 3360
ataatggtgc agggcgctga cttccgcgtt tccagacttt acgaaacacg gaaaccgaag 3420
accattcatg ttgttgctca ggtcgcagac gttttgcagc agcagtcgct tcacgttcgc 3480
tegegtateg gtgatteatt etgetaacea gtaaggeaae eeegeeagee tageegggte 3540
ctcaacgaca ggagcacgat catgcgcacc cgtggccagg acccaacgct gcccgagatg 3600
cgccgcgtgc ggctgctgga gatggcggac gcgatggata tgttctgcca agggttggtt 3660
tgcgcattca cagttctccg caagaattga ttggctccaa ttcttggagt ggtgaatccg 3720
ttagegaggt geegeegget teeatteagg tegaggtgge eeggeteeat geacegegae 3780
gcaacgcggg gaggcagaca aggtataggg cggcgcctac aatccatgcc aacccgttcc 3840
atgtgctcgc cgaggcggca taaatcgccg tgacgatcag cggtccagtg atcgaagtta 3900
ggctggtaag agccgcgagc gatccttgaa gctgtccctg atggtcgtca tctacctgcc 3960
tggacagcat ggcctgcaac gcgggcatcc cgatgccgcc ggaagcgaga agaatcataa 4020
tggggaagge catccagcet cgcgtcgcga acgccagcaa gacgtagecc agcgcgtcgg 4080
ccgccatgcc ggcgataatg gcctgcttct cgccgaaacg tttggtggcg ggaccagtga 4140
cgaaggcttg agcgagggcg tgcaagattc cgaataccgc aagcgacagg ccgatcatcg 4200
tegegeteca gegaaagegg teetegeega aaatgaeeea gagegetgee ggeaeetgte 4260
ctacgagttg catgataaag aagacagtca taagtgcggc gacgatagtc atgccccgcg 4320
cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcga cgctctccct 4380
tatgcgactc ctgcattagg aagcagccca gtagtaggtt gaggccgttg agcaccgccg 4440
ccgcaaggaa tggtgcatgc aaggagatgg cgcccaacag tcccccggcc acggggcctg 4500
ccaccatacc cacgccgaaa caagcgctca tgagcccgaa gtggcgagcc cgatcttccc 4560
categgtgat gteggegata taggegeeag caacegeace tgtggegeeg gtgatgeegg 4620
ccacgatgcg tccggcgtag aggatcgaga tctcgatccc gcgaaattaa tacgactcac 4680
tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 4740
tatacatatg gctagcatga ctggtggaca gcaaatgggt cgggatccgt cgacggcgcc 4800
aacccgatcc aagacacccg cgcaggggct ggccagaaag ctgcacttta gcaccgcccc 4860
cccaaacccc gacgcgccat ggaccccccg ggtggccggc tttaacaagc gcgtcttctg 4920
cgccgcggtc gggcgcctgg cggccatgca tgcccggatg gcggctgtcc agctctggga 4980
catgtcgcgt ccgcgcacag acgaagacct caacgaactc cttggcatca ccaccatccg 5040
cgtgacggtc tgcgagggca aaaacctgct tcagcgcgcc aacgagttgg tgaatccaga 5100
cgtggtgcag gacgtcgacg cggccacggc gactcgaggg cgttctgcgg cgtcgcgccc 5160
caccgagega cetegagece cagecegete egettetege cecagaegge cegtegaggg 5220
taccgagete ggatecacta gtccagtgtg gtggaattet geagatatec ageacagtgg 5280
cggccgcatg tccaatttac tgaccgtaca ccaaaatttg cctgcattac cggtcgatgc 5340
aacgagtgat gaggttegca agaacetgat ggacatgtte agggategce aggegtttte 5400
tgagcatacc tggaaaatgc ttctgtccgt ttgccggtcg tgggcggcat ggtgcaagtt 5460
gaataaccgg aaatggtttc ccgcagaacc tgaagatgtt cgcgattatc ttctatatct 5520
tcaggcgcgc ggtctggcag taaaaactat ccagcaacat ttgggccagc taaacatgct 5580
teategtegg teegggetge caegaccaag tgacagcaat getgttteac tggttatgeg 5640
gcggatccga aaagaaaacg ttgatgccgg tgaacgtgca aaacaggctc tagcgttcga 5700
acgcactgat ttcgaccagg ttcgttcact catggaaaat agcgatcgct gccaggatat 5760
acgtaatctg gcatttctgg ggattgctta taacaccctg ttacgtatag ccgaaattgc 5820
caggatcagg gttaaagata tctcacgtac tgacggtggg agaatgttaa tccatattgg 5880
cagaacgaaa acgctggtta gcaccgcagg tgtagagaag gcacttagcc tgggggtaac 5940
taaactggtc gag
<210> 16
<211> 4727
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
      pT7-TACS
<400> 16
atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt 120
tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagtgcggcc gcaagcttat 180
taaccaccga actgcgggtg acgccaagcg ctaccacgac cttcgatacc atcgccatct 240
tccagcagge geaccattge ecetgtttea ctatecaggt tacggatata gttcatgaca 300
```

atatttacat tggtccagcc accagettgc atgateteeg gtattgaaac tecagegegg 360

gccatatctc	gegeggetee	gacacgggca	ctgtgtccag	accaggccag	gtatctctga	420
ccagagtcat	ccttagcgcc	gtaaatcaat	cgatgagttg	cttcaaaaat	cccttccagg	480
gcgcgagttg	atagctggct	ggtggcagat	aacacaacaa	caccattttt	tetgaccegg	540
caaaacaaat	anttattonn	atcatcagct	3909099000	caccactece	tocatorse	600
actttactta	agecaccagg	accuccagee	acaccayaya	cygaaaccca	cogologaco	600
ayectayeta	between	aagtgccttc	cccacacctg	eggtgetaae	cagcgttttc	660
gttctgccaa	tatggattaa	cattetecea	ccgtcagtac	gtgagatatc	tttaaccctg	720
atcctggcaa	tttcggctat	acgtaacagg	gtgttataag	caatccccag	aaatgccaga	780
ttacgtatat	cctggcagcg	atcgctattt	tccatgagtg	aacgaacctg	gtcgaaatca	840
qtqcqttcqa	acoctagage	ctgttttgca	cattcaccaa	catcaacott	ttettttegg	900
atconconca	taaccantna	aacagcattg	ctatcactta	atcataccaa	cccccccgg	060
castassaas	tatttaacta	accageates	tastastas	bitth	cccggaccga	1000
cgatgaagca	atacases	gcccaaatgt	Lyclygatag	tttttactgt	cagacegege	1020
gcccgaagac	acagaagaca	atcgcgaaca	tcttcaggtt	ctgcgggaaa	ccatttccgg	1080
ttattcaact	tgcaccatgc	cgcccacgac	cggcaaacgg	acagaagcat	tttccaggta	1140
tgctcagaaa	acgcctggcg	atccctgaac	atgtccatca	ggttcttgcg	aacctcatca	1200
ctcgttgcat	cgaccggtaa	tgcaggcaaa	ttttggtgta	cggtcagtaa	attggacatg	1260
ccacaacaac	attaacaaca	cttcttgcgg	ccgtagccca	tootatatct	ccttcttaaa	1320
gttaaacaaa	attatttcta	gagggaaacc	attataatet	ccctatagtg	antontatta	1380
atttcccccc	atcascatct	caaaaaaaa	tacatactac	ccccacageg	gootgotta	1440
acticegeggg	thereses	cgggcagcgt	egggteetgg	ccacgggtgt	gcatgategt	1440
geteetgeeg	Ligaggacee	ggctaggctg	gcggggttgc	cttactggtt	agcagaatga	1200
atcaccgata	cgcgagcgaa	cgtgaagcga	ctgctgctgc	aaaacgtctg	cgacctgagc	1560
aacaacatga	atggtcttcg	gtttccgtgt	ttcgtaaagt	ctggaaacgc	ggaagtcagc	1620
gccctgcacc	attatgttcc	ggatctgcat	cgcaggatgc	tgctggctac	cctgtggaac	1680
acctacatct	gtattaacga	agcgctggca	ttgaccctga	gtgattttc	tctaatccca	1740
ccccatccat	accoccaott	gtttaccctc	acaacottco	antaaccooo	catottcatc	1800
atcagtaacc	catateataa	gcatcctctc	teatttate	agtatooggg	cacacatass	1960
accageaacc	agttoaca	gcacccccc		ggtattatta	ttt	1000
Cagaaatccc	ccccacacgg	aggcatcagt	gaccaaacag	gaaaaaaccg	cccttaacat	1920
ggcccgcttt	atcagaagcc	agacattaac	gcttctggag	aaactcaacg	agctggacgc	1980
ggatgaacag	gcagacatct	gtgaatcgct	tcacgaccac	gctgatgagc	tttaccgcag	2040
ctgcctcgcg	cgtttcggtg	atgacggtga	aaacctctga	cacatgcagc	tcccggagac	2100
ggtcacagct	totctotaao	cggatgccgg	gaggagagaa	accepteaga	acacat eaac	2160
gaatattaac	agatataga	gcgcagccat	gagoagabaa	catagedays	acadaatata	2220
tactectta	9990900999	at an anama	gacccagcca	cycaycyaca	geggagegea t-t-t-	2220
-tactygetta	actatgegge	atcagagcag	attgtactga	gagtgcacca	catatgcggt	2280
		gtaaggagaa				
cgctcactga	ctcgctgcgc	tcggtcgttc	ggctgcggcg	agcggtatca	gctcactcaa	2400
aggcggtaat	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	2460
aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	actageattt	ttccataggc	2520
tecaccecee	tgacgagcat	cacaaaaatc	gacgeteaag	tcagaggtgg	cgaaacccga	2580
caggactata	aanataccan	gcgtttcccc	ctagaaactc	ceteatacae	teteetatte	2640
caagactaca	acttaccas	tagetetee	ceggaageee	ttorrange	ctccccgttt	2700
cyaccetyce	gectaeegga	tacctgtccg	cerrecee	ttegggaage	gragederrr	2700
ctcatagete	acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	2/60
gtgtgcacga	accccccgtt	cagecegace	gctgcgcctt	atccggtaac	tatcgtcttg	2820
agtccaaccc	ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	2880
gcagagcgag	gtatgtaggc	ggtgctacag	agttcttgaa	ataataacct	aactacggct	2940
acactagaag	gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	3000
gagttggtag	ctcttgatcc	ggcaaacaaa	ccaccactaa	tancontont	++++++	3060
adacadacad	gattaggggg	agaaaaaaag	antotonage	ageggegge	atatttata	3120
cyggytctga	egereagegg	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	3180
caaaaaggat	cttcacctag	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	3240
gtatatatga	gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	3300
cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact	ccccatcata	tagataacta	3360
cgatacggga	gggcttacca	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	3420
caccooctcc	agatttatca	gcaataaacc	auccauccau	Sauduccusu	cacaaaaata	3480
atcetacase	tttatcccc	tccatccagt	ctattaatta	ttaccaaaa	actornation	3240
geocegoac	anthantant	theatecayt	Ctattaatty	Ligitogggaa	gctagagtaa	3540
gragitogeo	agicaatagt	ttgcgcaacg	ttgttgccat	rgcrgcaggc	arcgrggtgt	3600
cacgetegte	gtttggtatg	gcttcattca	gctccggttc	ccaacgatca	aggcgagtta	3660
catgatcccc	catgttgtgc	aaaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	3720
gaagtaagtt	ggccgcagtq	ttatcactca	tggttatggc	agcactgcat	aattctctta	3780
ctgtcatgcc	atccotaaga	tgcttttctg	tgactgotga	gtactcaacc	aagtcattct	3840
gagaatagtg	tatacaacaa	ccgagttgct	cttaccaaa	atcastacco	dataatacca	3000
	caraacttta	aaaataata	tanttana.	accacacyy	garaaraccy	2200
tatass	cayaaciiid	aaagtgctca	ccactygaaa	acquiecteg	gggcgaaaac	7300
ccccaaggat	cccaccgccg	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	4020
gatcttcagc	atcttttact	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	4080
atgccgcaaa	aaagggaata	agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	4140
ttcaatatta	ttgaagcatt	tatcagggtt	attotctcat	gagcggatac	atatttgaat	4200
		333	J	J J . J J		

```
gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg 4260
aaattgtaaa cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 4320
tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 4380
tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 4440
acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 4500
aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 4560
cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 4620
cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 4680
caccegeege gettaatgeg cegetacagg gegegteeca ttegeca
<210> 17
<211> 4488
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
         pT7-VPCS
<400> 17
aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 60
gaggeaceta teteagegat etgtetattt egtteateea tagttgeetg aeteeeegte 120
gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg 180
cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc 240
gagegeagaa gtggteetge aactttatee geeteeatee agtetattaa ttgttgeegg 300
gaagetagag taagtagtte geeagttaat agtttgegea aegttgttge cattgetaea 360
ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga 420
tcaaggegag ttacatgate ecceatgttg tgeaaaaaag eggttagete etteggteet 480
ccgategttg tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg 540
cataattete ttactgteat gecateegta agatgetttt etgtgaetgg tgagtaetea 600
accaagtcat totgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaaca 660
egggataata eegegeeaca tageagaact ttaaaagtge teateattgg aaaaegttet 720
toggggcgaa aactotoaag gatottacog otgttgagat ocagttogat gtaacccact 780
cgtgcaccca actgatette agcatetttt actttcacca gcgtttctgg gtgagcaaaa 840 acaggaagge aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatacte 900
atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga 960
tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga 1020
aaagtgccac ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg 1080
cgtatcacga ggccctttcg tcttcaagaa ttaaaaggat ctaggtgaag atcctttttg 1140
ataateteat gaceaaaate eettaaegtg agttttegtt eeactgageg teagaceeeg 1200
tagaaaagat caaaggatct tcttgagatc ctttttttct gegegtaatc tgctgcttgc 1260
aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 1320
tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt 1380
ageographic aggeoaccae the against characters generally aggeorates aggeographic agg
taatcetgtt accagtggct getgecagtg gegataagte gtgtettace gggttggaet 1500
caagacgata gttaccggat aaggegeage ggtcgggetg aacggggggt tcgtgcacac 1560
agcccagett ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag 1620
aaagegecac getteeegaa gggagaaagg eggacaggta teeggtaage ggcagggteg 1680
gaacaggaga gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg 1740
tegggttteg ceacetetga ettgagegte gatttttgtg atgetegtea ggggggegga 1800
gcctatggaa aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt 1860
ttgctcacat gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct 1920
ttgagtgagc tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg 1980
 aggaagcgga agagcgcctg atgcggtatt ttctccttac gcatctgtgc ggtatttcac 2040
 accgcatcag atctgatggt gcactctcag tacaatctgc tctgatgccg catagttaag 2100
ccagtatata cacteegeta tegetaegtg actgggteat ggetgegeee egacaceege 2160
caacacccgc tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag 2220
 etgtgaccgt etcegggage tgcatgtgte agaggtttte accgteatea cegaaacgeg 2280
cgaggcccag cgattcgaac ttctgataga cttcgaaatt aatacgactc actataggga 2340
gaccacaacg gtttccctct agaaataatt ttgtttaact ttaagaagga gatatacata 2400
 tgacctctcg ccgctccgtg aagtcgggtc cgcgggaggt tccgcgcgat gagtacgagg 2460
 atotytacta caccocytot toagytatyy cyaytocoya taytocycot yacacotoco 2520
 geographics cetacagaea egetegegee agaggggega ggteegttte gteeagtaeg 2580
```

```
acgagtcgga ttatgccctc tacgggggct cgtcttccga agacgacgaa cacccggagg 2640
tecceeggae geggegteee gttteegggg eggttttgte eggeeegggg eetgegegg 2700
cgcctccgcc acccgctggg tccggagggg ccggacgcac acccaccacc gcccccggg 2760
cccccgaac ccagcgggtg gcgtctaagg cccccgcggc cccggcggcg gagaccaccc 2820
geggeaggaa ateggeeeag ceagaateeg eegeaeteee agaegeeeee gegtegaegg 2880
egecaaceeg atecaagaca eeegegeagg ggetggeeag aaagetgeac tttageaceg 2940
ccccccaaa ccccgacgcg ccatggaccc cccgggtggc cggctttaac aagcgcgtct 3000
tetgegeege ggtegggege etggeggeea tgeatgeeeg gatggegget gteeagetet 3060
gggacatgtc gcgtccgcgc acagacgaag acctcaacga actccttggc atcaccacca 3120
tccgcgtgac ggtctgcgag ggcaaaaacc tgcttcagcg cgccaacgag ttggtgaatc 3180
cagacgtggt gcaggacgtc gacgcggcca cggcgactcg agggcgttct gcggcgtcgc 3240 gccccaccga gcgacctcga gccccagccc gctccgcttc tcgccccaga cggcccgtcg 3300
agggtaccga gctcggatcc actagtccag tgtggtggaa ttctgcagat atccagcaca 3360
gtggcggccg catgtccaat ttactgaccg tacaccaaaa tttgcctgca ttaccggtcg 3420
atgcaacgag tgatgaggtt cgcaagaacc tgatggacat gttcagggat cgccaggcgt 3480
tttctgagca tacctggaaa atgcttctgt ccgtttgccg gtcgtgggcg gcatggtgca 3540
agttgaataa ccggaaatgg tttcccgcag aacctgaaga tgttcgcgat tatcttctat 3600
atcttcaggc gcgcggtctg gcagtaaaaa ctatccagca acatttgggc cagctaaaca 3660
tgcttcatcg tcggtccggg ctgccacgac caagtgacag caatgctgtt tcactggtta 3720
tgcggcggat ccgaaaagaa aacgttgatg ccggtgaacg tgcaaaacag gctctagcgt 3780
tegaacgcac tgatttegac caggttegtt cacteatgga aaatagegat egetgecagg 3840
atatacgtaa tctggcattt ctggggattg cttataacac cctgttacgt atagccgaaa 3900
ttgccaggat cagggttaaa gatatctcac gtactgacgg tgggagaatg ttaatccata 3960
ttggcagaac gaaaacgctg gttagcaccg caggtgtaga gaaggcactt agcctggggg 4020
taactaaact ggtcgagcga tggatttccg tctctggtgt agctgatgat ccgaataact 4080
acctgttttg ccgggtcaga aaaaatggtg ttgccgcgcc atctgccacc agccagctat 4140
caactcgcgc cctggaaggg atttttgaag caactcatcg attgatttac ggcgctaagg 4200
atgactotgg toagagatac otggcotggt otggacacag tgcccgtgto ggagccgcgc 4260
gagatatggc ccgcgctgga gtttcaatac cggagatcat gcaagctggt ggctggacca 4320
atgtaaatat tgtcatgaac tatatccgta acctggatag tgaaacaggg gcaatggtgc 4380
gcctgctgga agatggcgat ggtatcgaag gtcgtggtag cgcttggcgt cacccgcagt 4440
tcggtggtta ataagcttat cgatgataag ctgtcaaaca tgagaatt
<210> 18
<211> 1125
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: DNA sequence
      coding for a fusion protein TATcreStrepTag
<220>
<221> CDS
<222> (1)..(1119)
<400> 18
48
Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser
aat tta ctg acc gta cac caa aat ttg cct gca tta ccg gtc gat gca
                                                                   96
Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala
                                 25
acg agt gat gag gtt cgc aag aac ctg atg gac atg ttc agg gat cgc
                                                                   144
Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg
cag gcg ttt tct gag cat acc tgg aaa atg ctt ctg tcc gtt tgc cgg
                                                                   192
Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg
```

tcg Ser 65	tgg Trp	gcg Ala	gca Ala	tgg Trp	tgc Cys 70	aag Lys	ttg Leu	aat Asn	aac Asn	cgg Arg 75	aaa Lys	tgg Trp	ttt Phe	ccc Pro	gca Ala 80	240
gaa Glu	cct Pro	gaa Glu	gat Asp	gtt Val 85	cgc Arg	gat Asp	tat Tyr	ctt Leu	cta Leu 90	tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 95	ggt Gly	288
ctg Leu	aca Thr	gta Val	aaa Lys 100	act Thr	atc Ile	cag Gln	caa Gln	cat His 105	ttg Leu	ggc Gly	cag Gln	Leu	Asn 110	atg Met	ctt Leu	336
cat His	cgt Arg	cgg Arg 115	tcc Ser	GJÀ ààà	ctg Leu	cca Pro	cga Arg 120	cca Pro	agt Ser	gac Asp	agc Ser	aat	gct Ala	gtt Val	tca Ser	384
ctg Leu	gtt Val 130	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 135	aaa Lys	gaa Glu	aac Asn	gtt Val	gat Asp 140	gcc Ala	ggt Gly	gaa Glu	cgt Arg	432
gca Ala 145	aạa Lys	cag Gln	gct Ala	cta Leu	gcg Ala 150	ttc Phe	gaa Glu	cgc Arg	act Thr	gat Asp 155	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 160	480
			gaa Glu													528
			att Ile 180													576
			gtt Val													624
atc Ile	cat His 210	att Ile	GJ Y ggc	aga Arg	acg Thr	aaa Lys 215	acg Thr	ctg Leu	gtt Val	agc Ser	acc Thr 220	gca Ala	ggt Gly	gta Val	gag Glu	672
			agc Ser													720
gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 245	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 250	tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 255	gtc Val	768
aga Arg	aaa Lys	aat Asn	ggt Gly 260	gtt Val	gcc Ala	gcg Ala	cca Pro	tct Ser 265	gcc Ala	acc Thr	agc Ser	cag Gln	cta Leu 270	tca Ser	act Thr	816
			gaa Glu													864
gct Ala	aag Lys 290	gat Asp	gac Asp	tct Ser	ggt Gly	cag Gln 295	aga Arg	tac Tyr	ctg Leu	gcc Ala	tgg Trp 300	tct Ser	gga Gly	cac His	agt Ser	912
gcc Ala 305	cgt Arg	gtc Val	gga Gly	gcc Ala	gcg Ala 310	cga Arg	gat Asp	atg Met	gcc Ala	cgc Arg 315	gct Ala	gga Gly	gtt Val	tca Ser	ata Ile 320	960

									٠.							
ccg Pro	gag Glu	atc Ile	atg Met	caa Gln 325	Ala	ggt Gly	ggc Gly	tgg Trp	acc Thr 330	aat Asn	gta Val	aat Asn	att Ile	gtc Val 335	atg Met	1008
aac Asn	tat Tyr	atc Ile	cgt Arg 340	aac Asn	ctg Leu	gat Asp	agt Ser	gaa Glu 345	aca Thr	GJÅ āāā	gca Ala	atg Met	gtg Val 350	cgc Arg	ctg Leu	1056
ctg Leu	gaa Glu	gat Asp 355	ggc Gly	gat Asp	ggt Gly	atc Ile	gaa Glu 360	ggt Gly	cgt Arg	ggt Gly	agc Ser	gct Ala 365	tgg Trp	cgt Arg	cac His	1104
ccg Pro	cag Gln 370	ttc Phe	ggt Gly	ggt Gly	taa	taa							•	•		1125
<21: <21: <21:	3> D	73 RT rtifi escr:	icial iptic g for	on o	f Art	tifi	cial rote:	Sequ in T	uence ATcre	e: Di eStr	NA se epTac	g eque	nce			
	0> 19 Gly		Gly	Arg 5	Lys	Lys	Arg	Arg	Gln 10	Arg	Arg	Arg	Gly	Met 15	Ser	
Asn	Leu	Leu	Thr 20	Val	His	Gln	Asn	Leu 25	Pro	Ala	Leu	Pro	Val 30	Asp	Ala	
Thr	Ser	Asp 35	Glu	Val	Arg	Lys	Asn 40	Leu	Met	Asp	Met	Phe 45	Arg	Asp	Arg	
Gln	Ala 50	Phe	Ser	Glu	His	Thr 55	Trp	Lys	Met	Leu	Leu 60	Ser	Val	Cys	Arg	
Ser 65	Trp	Ala	Ala	Trp	Cys 70	Lys	Leu	Asn	Asn	Arg 75	Lys	Trp	Phe	Pro	Ala 80	
Glu	Pro	Glu	Asp	Val 85	Arg	Asp	Tyr	Leu	Leu 90	Tyr	Leu	Gln	Ala	Arg 95	Gly	
Leu	Thr	Val	Lys 100	Thr	Ile	Gln	Gln	His 105	Leu	Gly	Gln	Leu	Asn 110	Met	Leu	
His	Arg	Arg 115	Ser	Gly	Leu	Pro	Arg 120	Pro	Ser	Asp	Ser	Asn 125	Ala	Val	Ser	
Leu	Val 130	Met	Arg	Arg	Ile	Arg 135	Ъуз	Glu	Asn	Val	Asp 140	Ala	Gly	Glu	Arg	
Ala 145	Lys	Gln	Ala	Leu	Ala 150	Phe	Glu	Arg	Thr	Asp 155	Phe	Asp	Gln	Val	Arg 160	
Ser	Leu	Met	Glu	Asn 165	Ser	Asp	Arg	Cys	Gln 170	Asp	Ile	Arg	Asn	Leu 175	Ala	
Phe	Leu	Gly	Ile 180	Ala	Tyr	Asn	Thr	Leu 185	Leu	Arg	Ile	Ala	Gľu 190	Ile	Ala	
Arg	Ile	Arg 195	Val	Lys	Asp	Ile	Ser 200	Arg	Thr	Asp	Gly	Gly 205	Arg	Met	Leu	

Ile	His 210	Ile	Gly	Arg	Thr	Lys 215	Thr	Leu	Val	Ser	Thr 220	Ala	Gly	Val	Glu	
Lys 225	Ala	Leu	Ser	Leu	Gly 230	Val	Thr	Lys	Leu	Val 235	Glu	Arg	Trp	Ile	Ser 240	
Val	Ser	Gly	Val	Ala 245	Asp	Asp	Pro	Asn	Asn 250	Tyr	Leu	Phe	Cys	Arg 255	Val	
Arg	Lys	Asn	Gly 260	Val	Ala	Ala	Pro	Ser 265	Ala	Thr	Ser		270	Ser	Thr	
Arg	Ala	Leu 275	Glu	Gly	Ile	Phe	Glu 280	Ala	Thr	His	Arg	Leu 285	Ile	Tyr	Gly	
Ala	Lys 290	Asp	Asp	Ser	Gly	Gln 295	Arg	Tyr	Leu	Ala	Trp 300	Ser	Gly	His	Ser	
Ala 305	Arg	Val	Gly	Ala	Ala 310	Arg	Asp	Met	Ala	Arg 315	Ala	Gly	Val	Ser	Ile 320	
Pro	Glu	Ile	Met	Gln 325	Ala	Gly	Gly	Trp	Thr 330	Asn	Val	Asn	Ile	Val 335	Met	
Asn	Tyr	Ile	Arg 340	Asn	Leu	Asp	Ser	Glu 345	Thr	Gly	Ala	Met	Val 350	Arg	Leu	
Leu	Glu	Asp 355	Gly	Asp	Gly	Ile	Glu 360	Gly	Arg	Gly	Ser	Ala 365	Trp	Arg	His	
Pro	Gln 370	Phe	Gly	Gly												
<21 <21	<210> 20 <211> 2055 <212> DNA <213> Artificial Sequence															
	<pre><220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22creStrepTag</pre>															
<22	<pre><220> <221> CDS <222> (1)(2049)</pre>															
atg	0> 20 acc Thr	tct	cgc Arg	cgc Arg 5	tcc Ser	gtg Val	aag Lys	tcg Ser	ggt Gly 10	ccg Pro	cgg Arg	gag Glu	gtt Val	ccg Pro 15	cgc Arg	48
gat Asp	gag Glu	tac Tyr	gag Glu 20	gat Asp	ctg Leu	tac Tyr	tac Tyr	acc Thr 25	ccg Pro	tct Ser	tca Ser	ggt Gly	atg Met 30	gcg Ala	agt Ser	96
ccc Pro	gat Asp	agt Ser 35	ccg Pro	cct Pro	gac Asp	acc Thr	tcc Ser 40	cgc Arg	cgt Arg	ggc Gly	gcc Ala	cta Leu 45	cag Gln	aca Thr	cgc Arg	144
tcg Ser	cgc Arg 50	cag Gln	agg Arg	ggc Gly	gag Glu	gtc Val 55	cgt Arg	ttc Phe	gtc Val	cag Gln	tac Tyr 60	gac Asp	gag Glu	tcg Ser	gat Asp	192

														ccg Pro		240
gtc Val	ccc Pro	cgg Arg	acg Thr	cgg Arg 85	cgt Arg	ccc Pro	gtt Val	tcc Ser	ggg Gly 90	gcg Ala	gtt Val	ttg Leu	tcc Ser	ggc Gly 95	ccg Pro	288
												Gly	Gly 110	gcc Ala		336
												cag		gtg Val		384
														agg Arg		432
														tcg Ser		480
														aag Lys 175		528
														ccc Pro		576
														cgc Arg		624
														atg Met		672
					Glu									acc Thr		720
														gcc Ala 255		768
gag Glu	ttg Leu	gtg Val	aat Asn 260	cca Pro	gac Asp	gtg Val	gtg Val	cag Gln 265	gac Asp	gtc Val	gac Asp	gcg Ala	gcc Ala 270	acg Thr	gcg Ala	816
														cga Arg		864
														acc Thr		912
ctc Leu 305	Gly	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	gca Ala	gat Asp	atc Ile	cag Gln	cac His 320	960

agt Ser	ggc Gly	ggc	cgc Arg	atg Met 325	tcc Ser	aat Asn	tta Leu	ctg Leu	acc Thr 330	gta Val	cac His	caa Gln	aat Asn	ttg Leu 335	cct Pro	1008
gca Ala	tta Leu	ccg Pro	gtc Val 340	Asp	gca Ala	acg Thr	agt Ser	gat Asp 345	gag Glu	gtt Val	cgc Arg	aag Lys	aac Asn 350	ctg Leu	atg Met	1056
gac Asp	atg Met	ttc Phe 355	agg Arg	gat Asp	cgc Arg	cag Gln	gcg Ala 360	ttt Phe	tct Ser	gag Glu	cat His	acc Thr 365	tgg Trp	aaa Lys	atg Met	1104
ctt Leu	ctg Leu 370	tcc Ser	gtt Val	tgc Cys	cgg Arg	tcg Ser 375	tgg Trp	gcg Ala	gca Ala	tgg Trp	tgc Cys 380	aag Lys	ttg Leu	aat Asn	aac Asn	1152
cgg Arg 385	aaa Lys	tgg Trp	ttt Phe	ccc Pro	gca Ala 390	gaa Glu	cct Pro	gaa Glu	gat Asp	gtt Val 395	cgc Arg	gat Asp	tat Tyr	ctt Leu	cta Leu 400	1200
tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 405	ggt Gly	ctg Leu	gca Ala	gta Val	aaa Lys 410	act Thr	atc Ile	cag Gln	caa Gln	cat His 415	ttg Leu	1248
ggc Gly	cag Gln	cta Leu	aac Asn 420	atg Met	ctt Leu	cat His	cgt Arg	cgg Arg 425	tcc Ser	GJÅ âââ	ctg Leu	cca Pro	cga Arg 430	cca Pro	agt Ser	1296
gac Asp	agc Ser	aat Asn 435	gct Ala	gtt Val	tca Ser	ctg Leu	gtt Val 440	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 445	aaa Lys	gaa Glu	aac Asn	1344
gtt Val	gat Asp 450	gcc Ala	ggt Gly	gaa Glu	cgt Arg	gca Ala 455	aaa Lys	cag Gln	gct Ala	cta Leu	gcg Ala 460	ttc Phe	gaa Glu	cgc Arg	act Thr	1392
gat Asp 465	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 470	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 475	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 480	1440
gat Asp	ata Ile	cgt Arg	aat Asn	ctg Leu 485	gca Ala	ttt Phe	ctg Leu	GJÀ âàà	att Ile 490	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 495	tta Leu	1488
cgt Arg	ata Ile	gcc Ala	gaa Glu 500	att Ile	gcc Ala	agg Arg	atc Ile	agg Arg 505	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 510	cgt Arg	act Thr	1536
gac Asp	ggt Gly	ggg Gly 515	aga Arg	atg Met	tta Leu	atc Ile	cat His 520	att Ile	ggc Gly	aga Arg	acg Thr	aaa Lys 525	acg Thr	ctg Leu	gtt Val	1584
agc Ser	acc Thr 530	gca Ala	ggt Gly	gta Val	gag Glu	aag Lys 535	gca Ala	ctt Leu	agc Ser	ctg Leu	ggg Gly 540	gta Val	act Thr	aaa Lys	ctg Leu	1632
gtc Val 545	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 550	gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 555	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 560	1680
tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 565	gtc Val	aga Arg	aaa Lys	aat Asn	ggt Gly 570	gtt Val	gcc Ala	gcg Ala	cca Pro	tct Ser 575	gcc Ala	1728

58

acc agc cag cta tca act cgc gcc ctg gaa ggg att ttt gaa gca act Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr 580 585 cat cga ttg att tac ggc gct aag gat gac tct ggt cag aga tac ctg 1824 His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu gcc tgg tct gga cac agt gcc cgt gtc gga gcc gcg cga gat atg gcc 1872 Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala cgc gct gga gtt tca ata ccg gag atc atg caa gct ggt ggc tgg acc 1920 Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr 630 aat gta aat att gtc atg aac tat atc cgt aac ctg gat agt gaa aca 1968 Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr 650 ggg gca atg gtg cgc ctg ctg gaa gat ggc gat ggt atc gaa ggt cgt 2016 Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg

ggt agc gct tgg cgt cac ccg cag ttc ggt ggt taataa 2055 Gly Ser Ala Trp Arg His Pro Gln Phe Gly Gly 675 680

<210> 21

<211> 683

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein VP22creStrepTag

<400> 21

Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
1 5 10 15

Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser 20 25 30

Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg
35 40

Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp
.50 55 60

Tyr Ala Leu Tyr Gly Gly Ser Ser Glu Asp Asp Glu His Pro Glu 65 70 75 80

Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro 85 90 95

Gly Pro Ala Arg Ala Pro Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly
100 105 110 (

Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala 115 120 125

Ser Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys 130 135 140

Ser 145	Ala	Gln	Pro	Glu	Ser 150	Ala	Ala	Leu	Pro	Asp 155	Ala	Pro	Ala	Ser	Thr 160
Ala	Pro	Thr	Arg	Ser 165	Lys	Thr	Pro	Ala	Gln 170	Gly	Leu	Ala	Arg	Lys 175	Leu
His	Phe	Ser	Thr 180	Ala	Pro	Pro	Asn	Pro 185	Asp	Ala	Pro	Trp	Thr 190	Pro	Arg
Val	Ala	Gly 195	Phe	Asn	Lys	Arg	Val 200	Phe	Cys	Ala	Ala	Val 205	Gly	Arg	Leu
Ala	Ala 210	Met	His	Ala	Arg	Met 215	Ala	Ala	Val	Gln	Leu 220	Trp	Asp	Met	Ser
Arg 225	Pro	Arg	Thr	Asp	Glu 230	Asp	Leu	Asn	Glu	Leu 235	Leu	Gly	Ile	Thr	Thr 240
Ile	Arg	Val	Thr	Val 245	Cys	Glu	Gly	Lys	Asn 250	Leu	Leu	Gln	Arg	Ala 255	Asn
Glu	Leu	Val	Asn 260	Pro	Asp	Val	Val	Gln 265	Asp	Val	Asp	Ala	Ala 270	Thr	Ala
Thr	Arg	Gly 275	Arg	Ser	Ala	Ala	Ser 280	Arg	Pro	Thr	Glu	Arg 285	Pro	Arg	Ala
Pro	Ala 290	Arg	Ser	Ala	Ser	Arg 295	Pro	Arg	Arg	Pro	Val 300	Glu	Gly	Thr	Glu
Leu 305	Gly	Ser	Thr	Ser	Pro 310	Val	Trp	Trp	Asn	Ser 315	Ala	Asp	Ile	Gln	His 320
Ser	Gly	Gly	Arg	Met 325	Ser	Asn	Leu	Leu	Thr 330	Val	His	Gln	Asn	Leu 335	Pro
Ala	Leu	Pro	Val 340	Asp	Ala	Thr	Ser	Asp 345	Glu	Val	Arg	Lys	Asn 350	Leu	Met
Asp	Met	Phe 355	Arg	Asp	Arg	Gln	Ala 360	Phe	Ser	Glu	His.	Thr 365	Trp	Lys	Met
Leu	Leu 370	Ser	Val	Cys	Arg	Ser 375	Trp	Ala	Ala	Trp	Cys 380	Lys	Leu	Asn	Asn
Arg 385	Lys	Trp	Phe	Pro	Ala 390	Glu	Pro	Glu	Asp	Val 395	Arg	Asp	Tyr	Leu	Leu 400
Tyr	Leu	Gln	Ala	Arg 405	Gly	Leu	Ala	Val	Lys 410	Thr	Ile	Gln	Gln	His 415	Leu
Gly	Gln	Leu	Asn 420	Met	Leu	His	Arg	Arg 425	Ser	Gly	Leu	Pro	Arg 430	Pro	Ser
Asp	Ser	Asn 435	Ala	Val	Ser	Leu	Val 440	Met	Arg	Arg	Ile	Arg 445	Lys	Glu	Asn
Val	Asp 450	Ala	Gly	Glu	Arg	Ala 455	Lys	Gln	Ala	Leu	Ala 460	Phe	Glu	Arg	Thr
Asp 465	Phe	Asp	Gln	Val	Arg 470	Ser	Leu	Met	Glu	Asn 475	Ser	Asp	Arg	Суѕ	Gln 480

Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu 485 490 495

Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr 500 505 510

Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val 515 520 525

Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu 530 535 540

Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn 545 550 555 560

Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala 565 570 575

Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr 580 585 590

His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu 595 600 605

Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala 610 615 620

Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr 625 635 640

Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr
645 650 655

Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg 660 665 670

Gly Ser Ala Trp Arg His Pro Gln Phe Gly Gly
675

<210> 22

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:synthetic TAT
 protein

<400> 22

Ala Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 1 5 10

<210> 23

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic TAT
 protein

WO 01/49832

```
<400> 23
Tyr Ala Arg Lys Ala Arg Arg Gln Ala Arg Arg
       5
<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
     protein
<400> 24
Tyr Ala Arg Ala Ala Arg Gln Ala Arg Ala
                 5
<210> 25
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
<400> 25
Tyr Ala Arg Ala Ala Arg Arg Ala Ala Arg Arg
<210> 26
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic TAT
     protein
<400> 26
Tyr Ala Arg Ala Ala Arg Arg Ala Ala Arg Ala
<210> 27
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
      protein
<400> 27
Tyr Ala Arg Arg Arg Arg Arg Arg Arg Arg
                 5
                                     10
<210> 28
<211> 11
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
<400> 28
Tyr Ala Ala Ala Arg Arg Arg Arg Arg Arg
<210> 29
<211> 4960
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
      pCMV-I-Cre-pA
<400> 29
aaacagtccg atgtacgggc cagatatacg cgttgacatt gattattgac tagttattaa 60
tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 120
cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 180
atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggac 240
tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 300
cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 360
tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg 420
cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 480
ctccaccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca 540
aaatgtegta acaacteege eecattgaeg caaatgggeg gtaggegtgt aeggtgggag 600
gtctatataa gcagagctct ctggctaact agagaaccca ctgcttactg gcttatcgaa 660
attaatacga ctcactatag ggagacccaa gctgactcta gacttaatta agcgttgggg 720
tgagtactcc ctctcaaaag cgggcatgac ttctgcgcta agattgtcag tttccaaaaa 780
cgaggaggat ttgatattca cctggcccgc ggtgatgcct ttgagggtgg ccgcgtccat 840
ctggtcagaa aagacaatct ttttgttgtc aagcttgagg tgtggcaggc ttgagatctg 900
gccatacact tgagtgacat tgacatccac tttgcctttc tctccacagg tgtccactcc 960
cagggcggcc tcgaccatgc ccaagaagaa gaggaaggtg tccaatttac tgaccgtaca 1020
ccaaaatttg cctgcattac cggtcgatgc aacgagtgat gaggttcgca agaacctgat 1080
ggacatgttc agggatcgcc aggcgttttc tgagcatacc tggaaaatgc ttctgtccgt 1140
ttgccggtcg tgggcggcat ggtgcaagtt gaataaccgg aaatggtttc ccgcagaacc 1200
tgaagatgtt cgcgattatc ttctatatct tcaggcgcgc ggtctggcag taaaaactat 1260
ccagcaacat ttgggccagc taaacatgct tcatcgtcgg tccgggctgc cacgaccaag 1320
tgacagcaat gctgtttcac tggttatgcg gcggatccga aaagaaaacg ttgatgccgg 1380
tgaacgtgca aaacaggctc tagcgttcga acgcactgat ttcgaccagg ttcgttcact 1440
catggaaaat agcgatcgct gccaggatat acgtaatctg gcatttctgg ggattgctta 1500 taacaccctg ttacgtatag ccgaaattgc caggatcagg gttaaagata tctcacgtac 1560
tgacggtggg agaatgttaa tccatattgg cagaacgaaa acgctggtta gcaccgcagg 1620
tgtagagaag gcacttagcc tgggggtaac taaactggtc gagcgatgga tttccgtctc 1680
tggtgtagct gatgatccga ataactacct gttttgccgg gtcagaaaaa atggtgttgc 1740
cgcgccatct gccaccagcc agctatcaac tcgcgccctg gaagggattt ttgaagcaac 1800
tcatcgattg atttacggcg ctaaggatga ctctggtcag agatacctgg cctggtctgg 1860
acacagtgcc cgtgtcggag ccgcgcgaga tatggcccgc gctggagttt caataccgga 1920
gatcatgcaa gctggtggct ggaccaatgt aaatattgtc atgaactata tccgtaacct 1980
ggatagtgaa acaggggcaa tggtgcgcct gctggaagat ggcgattagc cattaacgcg 2040
taaatgattg cagatccact agttctaggg ccgcgtcgac ctcgagatcc aggcgcggat 2100
caataaaaga tcattatttt caatagatct gtgtgttggt tttttgtgtg ccttggggga 2160
gggggaggcc agaatgaggc gcggccaagg gggaggggga ggccagaatg accttggggg 2220
agggggagge cagaatgace ttgggggagg gggaggecag aatgaggege geceegggt 2280 acegageteg aatteaetgg eegtegtttt acaacgtegt gaetgggaaa accetggegt 2340
tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta atagcgaaga 2400
ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat ggcgcctgat 2460
geggtatttt eteettaege atetgtgegg tattteaeae egeatatggt geaeteteag 2520
tacaatetge tetgatgeeg catagttaag ceageecega caceegecaa caceegetga 2580
```

63

```
egegeeetga egggettgte tgeteeegge atcegettae agacaagetg tgaeegtete 2640
egggagetge atgtgtcaga ggttttcace gtcatcaceg aaacgegega gacgaaaggg 2700
cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt cttagacgtc 2760
aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt tctaaataca 2820
ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa 2880
aaggaagagt atgagtatte aacattteeg tgtegeeett atteeetttt ttgeggeatt 2940
ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca 3000
gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag 3060
ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc 3120
ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca 3180
gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt 3240
aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct 3300
gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt 3360
aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga 3420
caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact 3480 tactctagct tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc 3540 acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga 3600
gegtgggtet egeggtatea ttgeageact ggggeeagat ggtaageeet eeegtategt 3660
agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga 3720
gataggtgcc tcactgatta agcattggta actgtcagac caagtttact catatatact 3780
ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga tcctttttga 3840
taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt cagaccccgt 3900
agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct gctgcttgca 3960
aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc taccaactct 4020
ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc ttctagtgta 4080
gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc tcgctctgct 4140
aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg ggttggactc 4200
aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 4260
gcccagettg gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga 4320
aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 4380
aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt atagtcctgt 4440
egggtttege cacetetgae ttgagegteg atttttgtga tgetegteag gggggeggag 4500
cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt gctggccttt 4560
tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta ttaccgcctt 4620
tgagtgaget gatacegete geegeageeg aacgaeegag egeagegagt cagtgagega 4680
ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc cgattcatta 4740
atgcagetgg cacgacaggt ttecegactg gaaageggge agtgagegea aegeaattaa 4800
tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc cggctcgtat 4860
gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta 4920
cgccaagcta gcccgggcta gcttgcatgc ctgcaggttt
<210> 30
<211> 7332
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: vector
      pCMV-I-beta-pA
aaacagtccg atgtacgggc cagatatacg cgttgacatt gattattgac tagttattaa 60
tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 120
cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 180
atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggac 240
tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 300
cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 360
tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg 420
cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 480
ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca 540
aaatgtegta acaacteege eecattgaeg caaatgggeg gtaggegtgt aeggtgggag 600
gtctatataa gcagagctct ctggctaact agagaaccca ctgcttactg gcttatcgaa 660
```

attaatacga ctcactatag ggagacccaa gctgactcta gacttaatta agcgttgggg 720

A A			4.44 4.			700
tgagtactcc	ctctcaaaag	egggcatgac	ttctgcgcta	agattgtcag	tttccaaaaa	180
cgaggaggat	ttgatattca	cctggcccgc	ggtgatgcct	ttgagggtgg	ccgcgtccat	840
ctggtcagaa	aagacaatct	ttttgttgtc	aagcttgagg	tgtggcaggc	ttgagatctg	900
				tctccacagg		
				aagcaaaaaa		
				cggtctggga		
rggacaccag	caaggagctg	ctcaagcgcg	acceegtegt	tttacaacgt	cgrgacrggg	1140
				tcccctttc		
gtaatagcga	agaggcccgc	accgatcgcc	cttcccaaca	gttgcgcagc	ctgaatggcg	1260
aatggcgctt	tgcctggttt	ccqqcaccaq	aagcggtgcc	ggaaagctgg	ctggagtgcg	1320
atetteetga	ggccgatact	atcateatec	cctcaaactg	gcagatgcac	ggttacgatg	1380
				tecgeegttt		
				tgaaagctgg		
				tcatctgtgg		
				atttgacctg		
tacgcgccgg	agaaaaccgc	ctcgcggtga	tggtgctgcg	ttggagtgac	ggcagttatc	1680
tggaagatca	ggatatgtgg	cggatgagcg	gcattttccg	tgacgtctcg	ttgctgcata	1740
				ctttaatgat		
				gcgtgactac		
				caccgcgcct		
cagtititit	acygeaggge	yaaacycayy	tegecagegg	caccycyccc		1000
				actacgtctg		
				tgcggtggtt		
ccgccgacgg	cacgctgatt	gaagcagaag	cctgcgatgt	cggtttccgc	gaggtgcgga	2100
ttgaaaatgg	tctgctgctg	ctgaacggca	agccgttgct	gattcgaggc	gttaaccgtc	2160
				gacgatggtg		
toctoatoaa	осапавсавс	tttaacgccg	tacactatte	gcattatccg	aaccatccoc	2280
				ggatgaagcc		
				gcgctggcta		
gcgaacgcgt	aacgcgaatg	gtgcagcgcg	atcgtaatca	cccgagtgtg	atcatctggt	2460
cgctggggaa	tgaatcaggc	cacggcgcta	atcacgacgc	gctgtatcgc	tggatcaaat	2520
ctgtcgatcc	ttcccgcccg	gtgcagtatg	aaggcggcgg	agccgacacc	acggccaccg	2580
atattattto	cccgatgtac	acacacataa	atgaagacca	gcccttcccg	actataccaa	2640
				gcgcccgctg		
aatggteeat	caaaaaaacgg	ananatatta	ccggagagac	taaatactgg	accountite	2760
greagratee	ccgtttacag	ggcggcttcg	tetgggaetg	ggtggatcag	tegetgatta	2820
				tgattttggc		
				ccgcacgccg		
tgacggaagc	aaaacaccag	cagcagtttt	tccagttccg	tttatccggg	caaaccatcg	3000
aagtgaccag	cgaatacctg	ttccgtcata	gcgataacga	gctcctgcac	tggatggtgg	3060
				ggatgtcgct		
				cgccgggcaa		
				ageegggeae		
				ccccaccaca		
				gctgggtaat		
				tggcgataaa		
tgacgccgct	gcgcgatcag	ttcacccgtg	caccgctgga	taacgacatt	ggcgtaagtg	3480
aagcgacccg	cattgaccct	aacgcctggg	tcgaacgctg	gaaggcggcg	ggccattacc	3540
				tgctgatgcg		
				tatcagccgg		
cgaccgccca	tagtagtag	atacagggga	aaaccccacc	tgaagtggcg	addaccedce	2720
				ggtagcagag		
				tactgccgcc		
gctgggatct	gccattgtca	gacatgtata	ccccgtacgt	cttcccgagc	gaaaacggtc	3900
tgcgctgcgg	gacgcgcgaa	ttgaattatg	qcccacacca	gtggcgcggc	gacttccagt	3960
				cagecatege		
				tatggggatt		
				cgccggtcgc		
				atgtctgccc		
				ttggatgttc		
				tttcccgatt		
				tgccgctatt		
				actoggooto		
				gatcattatt		
				ccagaatgag		
	2000000000	-59999	3433333633	Jouguacyay	gogoggeeau	1500

```
gggggaggg gaggccagaa tgaccttggg ggagggggag gccagaatga ccttggggga 4620 gggggaggcc agaatgaggc gcgccccgg gtaccgagct cgaattcact ggccgtcgtt 4680
ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct tgcagcacat 4740
ecceptting characteristics taxtagegaa gaggeorgea cogatogece ticceaacaq 4800
ttgcgcagcc tgaatggcga atggcgcctg atgcggtatt ttctccttac gcatctgtgc 4860
ggtatttcac accgcatatg gtgcactctc agtacaatct gctctgatgc cgcatagtta 4920
agccagccc gacacccgcc aacacccgct gacgcgccct gacgggcttg tctgctcccg 4980
gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca gaggttttca 5040
ccgtcatcac cgaaacgcgc gagacgaaag ggcctcgtga tacgcctatt tttataggtt 5100
aatgtcatga taataatggt ttcttagacg tcaggtggca cttttcgggg aaatgtgcgc 5160
ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 5220
taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 5280
cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa 5340
acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 5400 ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 5460
atgageactt ttaaagttet getatgtige geggtattat eeegtattga egeegggeaa 5520
gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 5580
acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 5640
atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 5700
accgcttttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag 5760
ctgaatgaag ccataccaaa cgacgagegt gacaccacga tgcctgtagc aatggcaaca 5820
acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 5880
gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 5940
tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 6000
ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca 6060 actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 6120
taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 6180
tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 6240
gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 6300
cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg 6360
gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 6420
gegeagatae caaatactgt cettetagtg tageegtagt taggecaeca etteaagaae 6480
tetgtageae egeetacata cetegetetg etaateetgt taccagtgge tgetgeeagt 6540
ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 6600
eggteggget gaaegggggg ttegtgeaca cageceaget tggagegaae gaeetacaee 6660
gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag 6720
geggaeaggt atceggtaag eggeagggte ggaacaggag agegeaegag ggagetteea 6780
gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 6840
cgatttttgt gatgctcgtc agggggggg agcctatgga aaaacgccag caacgcggcc 6900 tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttcttcc tgcgttatcc 6960
cotgattotg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 7020
cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 7080
cogcetetee cogcegettg geogatteat taatgeaget ggeacgacag gtttecegae 7140
tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc 7200
caggetttac actttatget teeggetegt atgttgtgtg gaattgtgag eggataacaa 7260
tttcacacag gaaacagcta tgaccatgat tacgccaagc tagcccgggc tagcttgcat 7320
gcctgcaggt tt
<210> 31
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 31
atgccatggg ctacggccgc aagaagcgcc gccaacgccg ccgcggcatg tccaatttac 60
tgaccgtaca cc
<210> 32
<211> 25
```

```
<212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: primer
     <400> 32
     tttcggatcc gccgcataac cagtg
                                                                         25
     <210> 33
     <211> 34
     <212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: primer
     <400> 33
     tatatctaga ccatgggcta cggccgcaag aagc
                                                                         34
     <210> 34
     <211> 43
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence: primer
     <400> 34
     getaccacga cettegatac categocate ttecageagg ege
                                                                         43
     <210> 35
     <211> 38
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence: primer
     <400> 35
     taactagcgg ccgcatgtcc aatttactga ccgtacac
                                                                         38
     <210> 36
     <211> 34
     <212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: primer
     <400> 36
     tcgagcggcc gccatcgcca tcttccagca ggcg
                                                                         34
     <210> 37
     <211> 32
     <212> DNA
    <213> Artificial Sequence
i .i <220>
```

```
<223> Description of Artificial Sequence: primer
    <400> 37
                                                                        32
    tatatctaga catatgacct ctcgccgctc cg
    <210> 38
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Description of Artificial Sequence: primer
    <400> 38
                                                                         21
    ttccgaagac gacgaaacac c
    <210> 39
    <211> 32
    <212> DNA
    <213> Artificial Sequence
    <223> Description of Artificial Sequence: primer
    <400> 39
                                                                         32
    tatattcgaa gcttattaac caccgaactg cg
    <210> 40
    <211> 4847
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Description of Artificial Sequence: vector
          pGK-cre-pA
    <400> 40
    aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt tctaaataca 60
    ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa 120
    aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt 180
    ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca 240
    gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag 300
    ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc 360
    ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca 420
    gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt 480
    aagagaatta tgeagtgetg ccataaccat gagtgataac actgeggeea acttacttet 540
    gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt 600
    aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga 660
    caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact 720
    tactctagct tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc 780
    acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga 840 gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct cccgtatcgt 900
    agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga 960
    gataggtgcc tcactgatta agcattggta actgtcagac caagtttact catatatact 1020
    ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga tcctttttga 1080
    taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt cagaccccgt 1140
    agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct gctgcttgca 1200
    aacaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc taccaactct 1260
    ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc ttctagtgta 1320
     geographia ggecaecaet teaagaacte tgtageaeeg eetaeataee tegetetget 1380
aatectgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg ggttggactc 1440
```

```
aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 1500
gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga 1560
aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 1620
aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt atagtcctgt 1680
cgggtttege cacetetgae ttgagegteg atttttgtga tgetegteag gggggeggag 1740
cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt gctggccttt 1800
tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta ttaccgcctt 1860
tgagtgaget gatacegete geegeageeg aacgacegag egeagegagt cagtgagega 1920
ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc cgattcatta 1980
atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca acgcaattaa 2040
tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc cggctcgtat 2100 gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta 2160
cgccaagege geaattaace etcaetaaag ggaacaaaag etgggtaceg ggeeeceet 2220
cgaggtcgac ggtatcgata agcttgatat cgaattctac cgggtagggg aggcgctttt 2280
cccaaggcag totggagcat gcgctttagc agccccgctg gcacttggcg ctacacaagt 2340
ggcctctggc ctcgcacaca ttccacatcc accggtagcg ccaaccggct ccgttctttg 2400
gtggcccett cgcgccactt ctactcctcc cctagtcagg aagtttcccc cagcaagetc 2460
gcgtcgtgca ggacgtgaca aatggaagta gcacgtctca ctagtctcgt gcagatggac 2520
agcaccgctg agcaatggaa gcgggtaggc ctttggggca gcggccaata gcagctttgt 2580
teettegett tetgggetea gaggetggga aggggtgggt eegggggegg geteagggge 2640
gggctcaggg gcgggcgggc gcccgaaggt cctcccgagg cccggcattc tgcacgcttc 2700
aaaagcgcac gtctgccgcg ctgttctcct cttcctcatc tccgggcctt tcgacctgca 2760
gctcgaggtc gaccatgccc aagaagaaga ggaaggtgtc caatttactg accgtacacc 2820
aaaatttgcc tgcattaccg gtcgatgcaa cgagtgatga ggttcgcaag aacctgatgg 2880 acatgttcag ggatcgccag gcgttttctg agcatacctg gaaaatgctt ctgtccgttt 2940
gccggtcgtg ggcggcatgg tgcaagttga ataaccggaa atggtttccc gcagaacctg 3000
aagatgtteg egattatett etatatette aggegegegg tetggeagta aaaaetatee 3060
agcaacattt gggccagcta aacatgcttc atcgtcggtc cgggctgcca cgaccaagtg 3120
acagcaatgc tgtttcactg gttatgcggc ggatccgaaa agaaaacgtt gatgccggtg 3180
aacgtgcaaa acaggctcta gcgttcgaac gcactgattt cgaccaggtt cgttcactca 3240
tggaaaatag cgatcgctgc caggatatac gtaatctggc atttctgggg attgcttata 3300
acaccetgtt acgtatagec gaaattgcca ggatcagggt taaagatate teacgtactg 3360
acggtgggag aatgttaatc catattggca gaacgaaaac gctggttagc accgcaggtg 3420
tagagaaggc acttagcctg ggggtaacta aactggtcga gcgatggatt tccgtctctg 3480
gtgtagctga tgatccgaat aactacctgt tttgccgggt cagaaaaaat ggtgttgccg 3540
cgccatctgc caccagccag ctatcaactc gcgccctgga agggattttt gaagcaactc 3600
atcgattgat ttacggcgct aaggatgact ctggtcagag atacctggcc tggtctggac 3660
acagtgcccg tgtcggagcc gcgcgagata tggcccgcgc tggagtttca ataccggaga 3720
tcatgcaagc tggtggctgg accaatgtaa atattgtcat gaactatatc cgtaacctgg 3780
atagtgaaac aggggcaatg gtgcgcctgc tggaagatgg cgattagcca ttaacgcgta 3840
aatgattgca gatccactag ttctagagct cgctgatcag cctcgactgt gccttctagt 3900
tgccagccat ctgttgtttg cccctcccc gtgccttcct tgaccctgga aggtgccact 3960
cccactgtcc tttcctaata aaatgaggaa attgcatcgc attgtctgag taggtgtcat 4020
tctattctgg ggggtggggt ggggcaggac agcaaggggg aggattggga agacaatagc 4080
aggeatgetg gggatgeggt gggetetatg gettetgagn nngaaagaac cagetgggge 4140
togagatoca ctagttotag cotogaggot agagoggoog coacogoggt ggagotocaa 4200
ttcgccctat agtgagtcgt attacgcgcg ctcactggcc gtcgttttac aacgtcgtga 4260
ctgggaaaac cctggcgtta cccaacttaa tcgccttgca gcacatcccc ctttcgccag 4320
ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc caacagttgc gcagcctgaa 4380 tggcgaatgg gacgcgcct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 4440 cagcgtgacc gctacacttg ccagcgcct agcgcccgct cctttcgctt tcttcccttc 4500
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 4560
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 4620
acqtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 4680
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 4740
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 4800
acaaaaattt aacgcgaatt ttaacaaaat attaacgctt acaattt
```

<210> 41

<211> 22

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: primer <400> 41 catctccggg cctttcgacc tg 22 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 42 gcgatcggtg cgggcctctt c 21

Claims

- 1. Use of a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain (PTD)

for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in an endogenous gene.

- 2. The use of claim 1, wherein the PTD is not derived from Antennapedia and preferably is a PTD derived from the VP22 protein of HSV or from the TAT protein of HIV.
- 3. Use of a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain (PTD) being not derived from Antennapedia and preferably being derived from the VP22 protein of HSV or from the TAT protein of HIV

for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.

- 4. The use of claim 3, wherein the recognition sites for said site specific recombinase is present within an endogenous gene or a transgene.
- 5. The use of any one of claims 2 to 4, wherein the TAT protein comprises
- (i) the amino acid sequence YGRKKRRQRRR (SEQ ID NO: 10) or a mutant thereof including
- (ii) peptides having the amino sequences

AGRKKRRQRRR (SEQ ID NO:22)

YARKARRQARR (SEQ ID NO:23)

YARAAARQARA (SEQ ID NO:24)

YARAARRAARR (SEQ ID NO:25)

YARAARRAARA (SEQ ID NO:26)

YARRRRRRRR (SEQ ID NO:27)

YAAARRRRRRR (SEQ ID NO:28);

preferably the TAT protein consists of one of the sequences shown in (i) or (ii) above.

- 6. The use of any one of claims 2 to 4, wherein the VP22 protein comprises the amino acid 16-157 of SEQ ID NO:14.
- 7. The use of any one of claims 1 to 6, wherein the site-specific DNA recombinase domain is selected from a recombinase protein derived from Cre, Flp, ϕ C31 recombinase, and R recombinase and preferably is Cre having amino acids 15 to 357 of SEQ ID NO: 2 or Flpe having amino acids 15 to 437 of SEQ ID NO: 4.
- 8. The use of any one of claims 1 to 7, wherein the protein transduction domain is fused to the N-terminal of the site-specific DNA recombinase domain.
- 9. The use of any one of claims 1 to 8, wherein the protein transduction domain is fused to the site-specific DNA recombinase domain through a direct chemical bond or through a linker molecule.
- 10. The use of any one of claim 9, wherein the linker molecule is a short peptide having 1 to 20, preferably 1 to 10 amino acid residues.

- 11. The use of any one of claims 1 to 10, wherein said fusion protein further comprises additional functional sequences.
- 12. The use of claim 1, wherein the fusion protein has the sequence shown in SEQ ID NOs: 2, 4, 6 or 8.
- 13. The use of any one of claims 1 to 12, wherein the living organism is a vertebrate, preferably a rodent or a fish.
- 14. A method for inducing gene alterations in a living organism which comprises administering to said living organism, a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain as defined in claims 1 to 12, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.
- 15. A fusion protein comprising
- (a) a site-specific DNA recombinase domain as defined in claims 2 to 9 and
- (b) a protein transduction domain (PTD) as defined in claims 2 to 9 provided that when (a) is the wild-type Flp or Cre then (b) is not the full length VP22 protein of HSV.
- 16. The fusion of claim 15, wherein the (PTD) is derived from the TAT protein of HIV.
- 17. A DNA sequence coding for the fusion protein of claim 15 or 16, said DNA sequence preferably comprising the sequence shown in SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 18 and/or 20.
- 18. A vector comprising the DNA sequence of claim 17.

WO 01/49832

- 19. A host cell transformed with the vector of claim 18 and/or comprising the DNA of claim 17.
- 20. A method for producing the fusion protein of claim 15 which comprises culturing the transformed host cell of claim 19 and isolating the fusion protein.
- 21. An injectable composition comprising the fusion protein as defined in claims 1 to 12 or 15 to 16.

Fig. 1

SUBSTITUTE SHEET (RULE 26)

Figure 3

Figure 4

Fig. 5

Figure 6

Fig. 7

Α

Figure 8

Figure 9

Fig. 10

Figure 11

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.