Project: Creditworthiness

By: Fairoza Amira Binti Hamzah

Step 1: Business and Data Understanding

Key Decisions:

Answer these questions

What decisions needs to be made?

Predict the list of creditworthiness of new loan applicants based on historical data of previous loan applicants' history, to approve the new applicants' loan.

- What data is needed to inform those decisions?
 - 1. Account-Balance
 - 2. Duration-of-Credit-Month
 - 3.Payment-Status-of-Previous-Credit
 - 4.Purpose
 - 5.Credit-Amount
 - 6. Value-Savings-Stocks
 - 7.Length-of-current-employment
 - 8.Instalment-per-cent
 - 9. Guarantors
 - 10. Duration-in-Current-address
 - 11. Most-valuable-available-asset
 - 12. Age-years
 - 13. Concurrent-Credits
 - 14. Type-of-apartment
 - 15. No-of-Credits-at-this-Bank
 - 16. Occupation
 - 17. No-of-dependents
 - 18. Telephone
 - 19. Foreign-Worker
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Binary – Creditworthy (approved) or non-creditworthy (rejected)

Step 2: Building the Training Set

Answer this question:

• In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

Checking the null values in the dataset	
Credit-Application-Result	0
Account-Balance	0
Duration-of-Credit-Month	0
Payment-Status-of-Previous-Credit	0
Purpose	0
Credit-Amount	0
Value-Savings-Stocks	0
Length-of-current-employment	0
Instalment-per-cent	0
Guarantors	0
Duration-in-Current-address	344
Most-valuable-available-asset	0
Age-years	12
Concurrent-Credits	0
Type-of-apartment	0
No-of-Credits-at-this-Bank	0
Occupation	0
No-of-dependents	0
Telephone	0
Foreign-Worker	0

Impute the Age-years by using its median to 33 and *remove* the Duration-in-Current-a ddress as it has 344 null values.

Checking the number of unique values for each columns Credit-Application-Result 2

2
30
3
4
464
3
3
4
2
4
4
53
_1
3

No-of-Credits-at-this-Bank	2
Occupation	1
No-of-dependents	2
Telephone	2
Foreign-Worker	2

Removed the Concurrent-Credits and Occupation as it only has 1 value only.

Finding the correlation between all features to Credit-Application-Result.

Credit-Application-Result	1.000000
Account-Balance	0.316080
Duration-of-Credit-Month	0.202504
Credit-Amount	0.2019461
Most-valuable-available-asset	0.141332
Value-Savings-Stocks	0.133424
Payment-Status-of-Previous-Credit	0.096541
Purpose	0.090912
Length-of-current-employment	0.089383
Duration-in-Current-address	0.082826
Instalment-per-cent	0.062107
No-of-Credits-at-this-Bank	0.056549
Age-years	0.052914
Guarantors	0.044105
No-of-dependents	0.041048
Telephone	0.028971
Type-of-apartment	0.026516
Foreign-Worker	0.009186

Investigate the skewness of all columns.

Account-Balance	0.096400
Duration-of-Credit-Month	0.991000
Payment-Status-of-Previous-Credit	-0.687677
Purpose	1.257190
Credit-Amount	2.108522
Value-Savings-Stocks	0.983026
Length-of-current-employment	0.637223
Instalment-per-cent	-0.596533
Guarantors	2.962197
Duration-in-Current-address	1.566395
Most-valuable-available-asset	0.013780
Age-years	1.102038
Concurrent-Credits	0.000000
Type-of-apartment	-0.056348
No-of-Credits-at-this-Bank	0.585090
Occupation	0.000000
No-of-dependents	2.011101
Telephone	0.409478
Foreign-Worker	4.847285

Investigate the amount of data in each feature to further understand which features need to be removed.

Number of dependents

Type of apartment

Guarantors

Thus, below features are removed:

- Duration-in-Current-address
- Concurrent-Credits
- Occupation
- Telephone
- Foreign-Worker
- Guarantors
- No-of-dependents

Step 3: Train your Classification Models

Answer these questions for each model you created:

 Which predictor variables are significant or the most important? Please show the p- values or variable importance charts for all your predictor variables.

OLS Regression Results

Dep. Variable: Credit-Appl Model: Method: Date: Su Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Sin, 08 Au	OLS quares g 2021	R-squared (Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	<pre>red (uncen : tistic):</pre>		2.68e- -270	.759 .754 54.1 -144 0.49 61.0
		coef	std err	 t	======= P> t	[0.025	0.975]
Account-Balance		 0.2336	0.039	5.992	0.000	0.157	0.310
Payment-Status-of-Previous-Cre			0.029				
Purpose				4.357			
Credit-Amount	-1.	99e-05	7.24e-06	-2.750		-3.41e-05	
Value-Savings-Stocks		0.0976	0.028	3.431	0.001	0.042	0.154
Length-of-current-employment		0.0291	0.024	1.216	0.224	-0.018	0.076
Most-valuable-available-asset	-	0.0390	0.020	-1.939	0.053	-0.078	0.001
Age-years		0.0040	0.002	2.303	0.022	0.001	0.007
Type-of-apartment		0.0582	0.038	1.551	0.121	-0.016	0.132
No-of-Credits-at-this-Bank		0.1332	0.043	3.092	0.002	0.049	0.218
Omnibus:	41.507	Durbii	n-Watson:		1.878		
Prob(Omnibus):	0.000	Jarque	e-Bera (JB):		43.229		
Skew:	-0.675	Prob (JB):		4.10e-10		
Kurtosis:	2.496	Cond.	No.		1.08e+04		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 1.08e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The predictor variables that are significant with P value <0.05 are:

- Account-Balance
- Payment-Status-of-Previous-Credit
- Purpose
- No-of-Credits-at-this-Bank
- Value-Savings-Stocks
- Credit-Amount
- Age-years

Feature importance for each model

- Validate your model against the Validation set. What was the overall percent accuracy? Show the confusion matrix. Are there any bias seen in the model's predictions?
 - By using the variables with P value < 0.05 and the above feature importance, the results are as

below.

 The data is divided to 7:3 ratio for training and validation data.

Method	Overall Accuracy	Non-creditworthy Accuracy	Creditworthy Accuracy
Logistic Regression	0.800	0.3721	0.9720
Decision Tree Classifier	0.660	0.3721	0.7757
Random Forest Classifier	0.767	0.4186	0.9065
AdaBoost Classifier	0.773	0.3488	0.9439
XGBoost	0.747	0.1628	0.9813

Below are the confusion matrix for each method:

Logistic Regression

Decision Tree Classifier

Random Forest Classifier

AdaBoost Classifier

XGBoost

There are bias in the models, as shown in the table above.

Step 4: Writeup

Answer these questions:

- Which model did you choose to use? Please justify your decision using all of the following techniques. Please only use these techniques to justify your decision:
 - Overall Accuracy against your Validation set
 - Accuracies within "Creditworthy" and "Non-Creditworthy" segments
 - o ROC graph
 - o Bias in the Confusion Matrices

The ROC graph for each model is as below.

The validation and test accuracy table for each model is as below.

Method	Validation Accuracy	Testing Accuracy
Logistic Regression	0.800	0.680
Decision Tree Classifier	0.660	0.580
Random Forest Classifier	0.767	0.634
AdaBoost Classifier	0.773	0.644
XGBoost	0.747	0.682

Method	Non-creditworthy Accuracy	Creditworthy Accuracy
Logistic Regression	0.1549	0.8883
Decision Tree Classifier	0.3521	0.6704
Random Forest Classifier	0.2042	0.8044
AdaBoost Classifier	0.2042	0.8184
XGBoost	0.1056	0.9106

Confusion matrices for each model is as below.

Logistic Regression

Decision Tree Classifier

Random Forest Classifier

AdaBoost Classifier

XGBoost Classifier

From the results above, using AdaBoost model can achieve higher both categories accuracy and ROC.

How many individuals are creditworthy?
 406 people predicted to be creditworthy