& Proof Techniques Direct and indirect proofs $b \rightarrow 9$ livect $\forall x P(y) \rightarrow Q(x)$ 79 > 76 indirect/ Proof by contraposition Proposition: $\forall n \in \mathcal{H}$, $n \in \mathcal{H}$ and $\forall 3n + 5 \in \mathcal{H}$. Proof: " \Rightarrow " n = 2k + 1 3n + 5 = 3x(2k + 1) + 5= 6K + 8 = 2(3k + 4)n is not odd. n is even. n = 2k $3n+5=3\times 2k+5=6k+5$ = 2(3k+2)+7

Existence Proofs

3x P(n)

4x 3y P(x,y)

constructive

non-constructive

Theorem: I irrational numbers 2, y such that x is rational.

Proof $Z = \sqrt{2}$ If $Z = \sqrt{2}$ is rational, we are done Otherwise, $Z = \sqrt{2} = (\sqrt{2})^2 + (\sqrt{2})^2 = 2$

Theorem: For all positive integers n, there exists a positive integer x such that x, x+1, x+2,...,x+h-1 are all composite.

Proof [Constructive]

$$\chi = (n+1)! + 2$$

$$\chi + 1 = (n+1)! + 3$$

$$\chi + 2 = (n+1)! + 4$$

$$x+n-1 = (n+1)! + (n+1)$$

Theorem: & positive integer n, there exists a prime > n P-roof [non-constructive] n! + 1 not divisible by any prime < n. Any prime divisor of n!+1 must be >n.

Proof by cases P1 V P2 V···· V PK -> 9 P1→9, P2→4, ---, PK→9 Theorem: $\forall positive integer n>1, 4+n' is composite.$ Proof: Case 1: n is even $4^{h} + n^{4} > 2$ and is a multiple of 2.

 $\frac{\text{Case 2 : } n \text{ is odd}}{4^{n} + n^{4}} = (2^{n} + n^{2})^{2} - 2^{n+1} n^{2}$ $= (2^{n} + n^{2})^{2} + (2^{n} + n^{2})^{2} +$

Proof by contradiction b, b > 9 pintrue g in false Arrive et a contradiction (like MATY) Theorem: J2 is irrational. Proof: Assume that JE is rational. \(\frac{1}{2} = \frac{1}{b} c= p1 p2 ... p1 $26^2 = \alpha$ $c' = |z_1|^{2e_1} |z_2|^{2e_2} \cdots |z_k|^{2e_k}$ cycle of implications Example: For any two integers (positive) a and b, the following conditions are equivalent (1) a is a divisor of b (2) gcd(a,b) = a(3) $|b|_{a}$ = b/aa is a divisor of l $(1) \Rightarrow (2)$ a is a divisor of a a is a common dinser of a and b.

a is the greatest common divisor of a and b.

(2)
$$\Rightarrow$$
 (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (1) \Rightarrow (4) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1) \Rightarrow (1) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1) \Rightarrow (3) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (8) \Rightarrow (9) \Rightarrow (9) \Rightarrow (1) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4) \Rightarrow (4) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (8) \Rightarrow (8) \Rightarrow (9) \Rightarrow (9) \Rightarrow (1) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4) \Rightarrow (4) \Rightarrow (4) \Rightarrow (5) \Rightarrow (7) \Rightarrow (8) \Rightarrow (8) \Rightarrow (8) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1) \Rightarrow (1) (1) \Rightarrow (

Proof by disjunction トラタVY 三つトノタノイ = (7+ V4)Vr = 7 (P/74) VY $= \rho \wedge \neg q \rightarrow r$

Theorem: Let p be a prime, and a, b be integers. If p divides alo, then p divides either p divider als Proof: b doer not divide a gid(a,p)=1= ua+vp for rome u,v + Z b = uab + vp divisible le is a multiple of b.

Disproofs Yx P(x) - it sufficer to find out an x for which P(x) in false (counterexample)] x P(x) -Yz[7P(x)] (counterexamples do not work) Ya, belR, 2<62 + a<b Theorem: Proof:

a = 2, b = -3 $a^2 < b^2$ but $a \neq b$.

0 off Exercise: L1, L2,..., Ln lamps 1 on for (i=1; i<=n; ++i) Li=0; for (i=1; i<=n;++i) for (j=i; j<=n; j+=i) $L_j = 1 - L_j$ After thin, which lamps are on? Why?