

FACTORS AFFECTING GREENHOUSE GAS EMISSIONS

PROJECT REPORT

ABSTRACT

The report is about Green House Gases (GHG) Emissions in US and finding the true relationship between GHG emissions and the human activities. This report also presents the statistical significance of major factors affecting industry and energy sectors' GHG emissions.

SPEA-P507

TEAM MEMBERS:

PIYUSH SHINDE RAHUL RAGHATATE SNEHAL CHEMBURKAR

1. INTRODUCTION

"The warming of the climate system is unequivocal, and since the 1960s, many of the observed changes are unprecedented over decades to millennia." Greenhouse gases (GHG) from human activities are the most significant driver of observed climate change since the mid-20th century.

GHG Effects over climate change has been a hot topic of debates. There has been significant research work published over causes of GHG emissions and how they affect the global environment. But it comes to reality climate change and global warming are the last things on an individuals' mind.

While it is widely recognized that the emissions resulting from fossil fuel consumption are responsible for massive contributions to the global greenhouse effect, the true relationship between GHG emissions and various environmental changes is more complex. The greenhouse effect causes the atmosphere to retain heat which is ultimately resulting in an increase in Earth's surface temperature, ozone depletion, global warming etc.

In the United States, greenhouse gas emissions caused by human activities increased by 7 percent from 1990 to 2014. Since 2005, however, total U.S. greenhouse gas emissions have decreased by 7 percent. Reported emissions for 2010 were 6 percent below 2005 levels¹. Carbon dioxide accounts for most of the nation's emissions and most of the increase since 1990².

In the context of the U.S. goal as stated in 2009, at the 15th meeting of the Conference of the Parties in Copenhagen, to achieve "in the range of a 17 percent GHG emission reduction by 2020 compared to 2005 levels"*

^{*} The entire statement, available at http://unfccc.int/resource/docs/2011/ sb/eng/inf01r01.pdf, reads, "The United States communicated a target in the range of a 17 per cent emission reduction by 2020 compared with 2005 levels, in conformity with anticipated United States energy and climate legislation, recognizing that the final target will be reported to the secretariat in the light of the enacted legislation.

report examines key factors for the GHG emissions which can be controlled effectively and will be helpful for amending existing and draft emerging federal policies accordingly that are likely to reduce GHG emissions in the United States.

U.S. government GHG projections suggest that additional policy action is likely to be necessary to achieve the president's GHG reduction target and continue significant emissions reductions after 2020.

Additional policies such as standards for existing power plants, additional energy efficiency standards for appliances and equipment, and policies that reduce HFC consumption, can drive additional reductions in 2020 and beyond.

Electric power (EPA, DOE, states)

Transportation (EPA, DOT/NHTSA, FAA, states)

Industry (EPA, DOE, states)

Agriculture (USDA, DOI, USFS)

Commercial (DOE, states)

Residential (DOE, states)

FIGURE 1: Key Sectors and Legal Authorities¹

Source: Adapted from Bianco and Litz 2010, using EPA 2012. Note: The LULUCF sector is excluded.

Figure 1 depicts these authorities across the major GHG-emitting sectors. In addition, states and local governments can pass their own laws that can lead to reductions in GHG emissions.

The U.S. Department of Energy (DOE) has the authority to set energy efficiency standards for appliances and commercial equipment. Moreover, the National Highway Transportation Safety Authority (NHTSA) has the authority over fuel efficiency of vehicles. The U.S. Environmental Protection Agency (EPA) has the authority to regulate GHG

emissions. Agencies such as U.S. Federal Aviation Administration (FAA), which oversees air traffic, the U.S. Department of Agriculture (USDA), which governs agricultural and forest lands can greatly affect the GHG emissions¹.

2. OUR MODEL

Our aim is to identify which human activities contribute the most to GHG emissions which can be used to formulate policies to curb the GHG emissions.

2.1. IDENTIFICATION OF THE MODEL AND ITS THEORETICAL BASE

FIGURE 2: Total U.S. Greenhouse Gas Emissions by Economic Sector in 2015⁴

From above figure, industry, electricity, and transportation sectors majorly constitute the GHG emissions. Even though we know the overview of GHG emissions across the sectors, the real causes and their effects are required to be studied to mitigate the GHG emissions at the source level. Thus, to study the major human activities which contributes to these sectorial GHG emissions, we performed analysis of the root causes. Factors such as exports (trade), cement production, fisheries production, population, GDP, and agriculture are few worthy of investigation. There are few studies which relate each of the factors mentioned here to the GHG emissions.

Trees reduce GHG emissions since they intake CO₂ which is one of the major greenhouse gas (GHG), and in turn release oxygen. Thus, deforestation causes increase in

GHGs. Increase in population leads to increase in market demands which results in more production at the cost of increased fossil fuels and electricity which leads to GHG emissions on a large scale⁴.

Cement production industry contributes heavily to GHG emissions, since the production of 1 ton of cement results in an equal amount of release of CO₂, adding to the GHG emissions⁵. As per the World Trade Organization, the expansion of international trade has resulted in an increase in GDP. "The factors affecting this trade increase are the technological changes, IT revolution, open trade, and investment policies. These factors have resulted in easy trade and coordination of production of parts and components of goods." Expansion of trade has resulted in increased energy consumption which in turn leads to increased GHG emissions. "U.S. Petroleum supplies 95 per cent of the total energy used by world transport making it a significant source of greenhouse gas emissions." Thus, theoretically, and conceptually there is proof of these factors affecting GHG emissions.

The global agriculture related emissions have increased by 8 percent and are projected to increase 15 percent above 2010 level by 2030⁴. "These increases are driven by population growth and changes in dietary preferences in the developing economies"³. We believed that these factors will be inter-related and required in-detail statistical analysis as there is not sufficient statistical evidence for their root contribution towards GHG emissions.

2.2. DESCRIPTION OF DATA AND DATA SOURCES

Data for all the variables in our model except cement production is extracted from the World Bank Data Repository. The data for cement production is extracted from the U.S Geological Survey webpage. The description of variables and their units are given in Table A in the technical appendix section 5.

Our data variables cover the different sectors – agriculture, industry, transport and electricity that are identified as the major contributors to GHG emissions. The total GHG emissions is our dependent variable that our model seeks to capture.

2.3. MISSPECIFICATION

As all the initial variables collected have theoretical inter-relation between them, we expected to find severe multicollinearity. Also, due to limitation of the complete observations to small number (43), multicollinearity was highly possible. To remove severe multicollinearity and model it as linear regression problem, we might need to remove variables which may create specification bias or misspecification error. But as analysed in theoretical background, cement production, air transport, exports, fisheries production which are the major human activities among the variables collected and in one or other way ultimately affects the major causes of GHG emissions such as fossil fuel consumption, electricity consumption, and population.

3. MODEL ANALYSIS

We first considered all 10 variables that we believed (theoretically) affect GHG emissions as already studied by researchers in past. We included three different energy variables to identify the most significant one in GHG emissions.

Since we had 10 variables and just 43 observations, we did not run regression analysis directly on our model to avoid underfitting. (Underfitting occurs when a statistical model or machine learning algorithm cannot capture the underlying trend of the data.⁸) We performed bivariate analysis by regressing GHG on each one of the 10 dependent variables as shown in table 1. Based on bivariate regression results, we filtered out the variables that were insignificant with respect to GHG.

TABLE 1: Bivariate Analysis Results for GHG emissions against each independent variable

Independent Variable	p-value	\mathbb{R}^2
airtrans	< 0.0001	0.7884
electric	< 0.0001	0.8063
energy	0.5652	0.0081
export	< 0.0001	0.5774
fossil	< 0.0001	0.5121
pop	< 0.0001	0.7424
cement	< 0.0001	0.6198
fish	< 0.0001	0.3338
agriland	< 0.0001	0.8038
gdp	< 0.0001	0.7808

Energy use (among all the three energy variables) was dropped out since it was highly insignificant. We also dropped the variable fossil fuel consumption since we already had another variable, electricity consumption which is highly correlated to fossil fuel as electricity generation is majorly sourced by fossil fuel.

After bivariate analysis, we calculated correlation coefficients between 8 variables, and found both gdp(GDP) and pop(population) to be correlated with 5 variables. So, as next step towards minimizing multicollinearity, we removed both from model since these variables, are theoretically correlated.

TABLE 2: Correlation Matrix for the all the independent variables

	Pearson Correlation Coefficients, N = 43 Prob > r under H0: Rho=0												
	airtrans	electric	export	pop	cement	fish	agriland	gdp					
airtrans	1.00000	0.88802	0.95348	0.97490	0.60925	0.56077	-0.96942	0.98771					
airtrans		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001					
electric	0.88802	1.00000	0.83794	0.94298	0.56488	0.81902	-0.89420	0.93525					
electric	<.0001		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001					
export	0.95348	0.83794	1.00000	0.96452	0.39481	0.53318	-0.94000	0.96008					
export	<.0001	<.0001		<.0001	0.0088	0.0002	<.0001	<.0001					
pop	0.97490	0.94298	0.96452	1.00000	0.51005	0.68487	-0.96236	0.99577					
pop	<.0001	<.0001	<.0001		0.0005	<.0001	<.0001	<.0001					
cement	0.60925	0.56488	0.39481	0.51005	1.00000	0.31396	-0.56647	0.56848					
cement	<.0001	<.0001	0.0088	0.0005		0.0403	<.0001	<.0001					
fish	0.56077	0.81902	0.53318	0.68487	0.31396	1.00000	-0.55548	0.66085					
fish	<.0001	<.0001	0.0002	<.0001	0.0403		0.0001	<.0001					
agriland	-0.96942	-0.89420	-0.94000	-0.96236	-0.56647	-0.55548	1.00000	-0.96516					
agriland	<.0001	<.0001	<.0001	<.0001	<.0001	0.0001		<.0001					
gdp	0.98771	0.93525	0.96008	0.99577	0.56848	0.66085	-0.96516	1.00000					
gdp	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001						

3.1. MODEL 1

We ran the first multivariate regression analysis, by regressing GHG on following 6 variables as shown in Table 3:

DV (**Dependent Variable**): GHG emissions (GHG)

IV (Independent variables): airtrans, electric, export, cement, fish and agriland.

TABLE 3: Model 1 Findings

R-square	96.75%
Variable	VIF
Airtrans	47.86843
Electric	22.4918
Export	29.11771
Cement	4.17575
Fish	6.27855
Agriland	23.15159
Condition Ind	lex 866.1367
(COLLIN)	

The model showed serious multicollinearity issues, as interpreted from airtrans, electric and agriland which had $VIF\ values > 10$ and $condition\ index > 60$.

3.2. MODEL 2

To remove multicollinearity, we ran auxiliary regression on each of the problematic variables, airtrans was the only variable that had its auxiliary R^2 value higher than the R^2 of the original model. Therefore, we ran the next multivariate regression model without airtrans.

TABLE 4: Model 2 Findings

R-square		96.58%
		,
Variable		VIF
Electric		22.27183
Export		11.37046
Cement		2.14253
Fish		6.27477
Agriland		20.73613
Condition	Index	770.28439
(COLLIN)		

The model had high multicollinearity, since electric, export and agriland had VIF values >10 and condition index was >60.

3.3. MODEL 3

To remove multicollinearity, we ran auxiliary regression on each of the problematic variables. None of the aux R² values were higher than the R² of the model 2. We ran 3 trial and error regression analysis by removing each of the problematic variables. The regression model without the feature agriland had the least VIF values and condition index. So, we ran the next multivariate regression model without agriland.

TABLE 5: Model 3 Findings

R-square		95.42%		
Variable		VIF		
Electric		15.36813		
Export		5.23250		
Cement		1.93223		
Fish		5.09232		
Condition	Index	56.94305		
(COLLIN)				

Unfortunately, we found multicollinearity, since electric had VIF value >10 and condition index was also >40.

3.4. MODEL 4

To remove multicollinearity, we ran auxiliary regression for the variable electric as dependent variable against remaining independent variables. The auxiliary R^2 value was lesser than the R^2 of Model 3. Also, we checked correlation matrix for the correlation between the four variables and found electric to be correlated with export and fish.

We ran another multivariate regression analysis without electric. This time, the resulting model had no multi-collinearity with each variable highly significant.

TABLE 6: Model 4 Findings

R-square	87.68%					
Variable	VIF					
Electric	15.36813					
Export	1.51896					
Cement	1.20603					
Fish	1.42239					
Condition	Index 22.26537					
(COLLIN)						

Model 4 shows significantly less multicollinearity. And as the no of observations were less and VIF merely more than 10, we considered variable electric in model for further diagnosis instead of dropping.

3.4.1. REGRESSION EQUATION:

$$ghg = 3373037 + 0.42654 * export + 28.79245 * cement + 81.69372 * fish + u \\ R^2 = 0.8768$$

After removing severe multicollinearity, we performed White test to check for heteroskedasticity. The model was devoid of heteroskedasticity.

Now that we had removed multicollinearity, we check for correlation between elements of series against others from same series as the data is time-series data at interval of 1 year. Therefore, performed auto-correlation testing using **Durbin – Watson statistic**. The DW statistic suggested **high positive auto-correlation**.

We ran both Cochrane-Orcutt's iterative process and Yule Walker's estimation to remove auto-correlation.

3.4.2. FINAL EQUATION USING COCHRANE- ORCUTT'S MODEL:

$$ghghat = 3977868.85 + 0.32798*export + 23.74982*cement + 52.41416*fish + u$$

 $R^2 = 0.87546$

3.4.3. FINAL EQUATION USING YULE-WALKER'S MODEL:

$$ghghat2 = 3606443 + 0.3730*export + 25.4628*cement + 90.5568*fish + u$$

 $R^2 = 0.8758$

Thus, after removing multicollinearity and autocorrelation, we selected the model obtained through **Yule-Walker's WLS estimation** as our final model since this estimation technique considers the first observation unlike Cochrane-Orcutt's iterative estimation.

4. Regression Analysis Results

4.1. Final Regression Equation

After omitting insignificant variables and those which were creating issue of multicollinearity and autocorrelation, our final regression model is as follows:

$$\widehat{ghg} = 3606443 + 0.3730 * export + 25.4628 * cement + 90.5568 * fish + \widehat{u}
 $\mathbf{R}^2 = 0.8758$$$

4.2. Final Regression Results.

The results of our regression analysis show a statistically significant relationship (F= 143.14, p <0.0001) between our dependent variable, *ghghat*, and our independent variables. Our R-squared value is 0.8758. This suggests that 87.58% of the variation in GHG (kt of CO₂ equivalent) can be explained due to changes in independent variables. The significance and standardized estimates of each of the independent variables is presented in appendix section \
5. Summary of GLM assumptions and near multicollinearity test

We performed through tests to check for multicollinearity and heteroskedasticity. Our model did not have any heteroskedasticity but it did have severe multicollinearity issues. We also confirmed that our model satisfied the GLM assumptions. We performed white test to test for heteroskedasticity, which yielded an insignificant p-value, reflecting that the model does not have any issues of heteroskedasticity. Detail results are given in appendix.

6. Conclusion

The results of our regression analysis complement our initial hypothesis that industrial activities such as cement production, exports of goods and services and total fisheries production contribute to the GHG emissions is correct. These activities increase the fuel and electricity consumption which in turn increase the GHG emissions. Fisheries production is the major contributor among these independent variables considered in the model. As explained earlier, a large amount of fuel is used in fisheries which results in GHG emissions⁶. Even cement production is a significant variable that adds to the GHG emissions. Each ton of cement releases approximately 1 ton of GHGs. Exports of goods and services also leads to an increase in GHGs but the effect is comparatively less.

Though the model has helped successfully identify the significance of specific industrial factors that lead to an increase in GHG emissions, there is scope for future research. The data in this model is from 1970-2012 for United States only. We could not consider multiple cross-sections due to missing values for other countries. Data should be collected from each industry to be able to identify the ones causing most problems and create policies to control the GHG emissions caused by them. There should be cap defined for the GHG emission allowed to each company. A rule should be put in place that forces the companies to plant trees for some level of GHG emission. Also, a cap should be placed on the permissible level of GHG emissions, violating which would result in some severe action such as shutting down the company. Such strict measures need to be in place since its human nature to ignore minor penalties until it doesn't affect his work or earnings severely. Making it compulsory to plant trees in order to help balance the GHG emissions caused by them will help keep in check, if not reduce the GHG emissions.

7. Technical Appendix

7.1. Included Variables

Initially we collected data for 10 independent variables that we thought affected the greenhouse gas emissions the most namely agricultural land, energy use, fossil fuel energy consumption, electric power consumption, population, GDP, exports of goods and services, total fisheries production, air transport (freight), cement production. All our data is compiled from world bank, except for cement production, which is extracted from the U.S geological Survey web portal. The variables and their data source are given in Table A.

The numbers for agricultural land, exports of goods and services and total fisheries productions were huge in the original data. To bring the data to a uniform range, we divide these data values by a suitable power of 10. The data for agricultural land extracted from the World bank site is converted to thousands of sq. km from sq.km. Exports of goods and services is converted to millions of US dollars. Similarly, total fisheries production is converted from metric tons to thousands of metric tonnes.

Table A. Data Sources

Variable Name	Variable description	Data Source				
Agriland	Agricultural land (sq. km)	World Bank				
Energy	Energy use (kg of oil equivalent per capita)	World Bank				
Fossil	Fossil fuel energy consumption (% of total)	World Bank				
Electric	Electric power consumption (kWh per capita)	World Bank				
Ghg	Total greenhouse gas emissions (kt of CO2 equivalent)	World Bank				
Pop	Population (People)	World Bank				
Gdp	GDP-USD (Million US\$ (2010))	World Bank				
Export	Exports of goods and services millions US\$)	World Bank				
Fish	Total fisheries production (thousands metric tons)	World Bank				
Airtrans	Air transport, freight (million ton-km)	World Bank				
Cement	Portland Cement Production (thousand metric tonnes)	USGS – US				
		Geological Survey				

7.2. Overall Significance Test

In testing for the overall significance of our final equation, we have the following null and alternative hypotheses:

$$H_0$$
: $\beta 2 = \beta 3 = \beta 4 = \beta 5 = \beta 6 = \beta 7$

H₁: Not H₀

Given an F statistic value of 143.14, and a p-value of <0.0001, we can reject H_0 at the 0.001 level of significance, indicating that there is statistically significant evidence of a relationship between GHGs (Greenhouse Gas Emissions) and the independent variables.

7.3. Parameter Estimates for Final Model

 $\hat{\beta}_1 = 3606443$ is the intercept where the regression plane crosses the Y axis when all independent variables are equal to zero.

 $\hat{\beta}_2 = 0.3730$; A one unit increase in exports results in a 0.3730 unit increase in total GHGs

 $\hat{\beta}_3 = 25.4628$; A one unit increase in the cement production results in a 25.46 unit increase in total GHGs.

 $\hat{\beta}_4 = 90.5568$; A one unit increase in total fisheries production results in 90.5568 unit increase in total GHGs.

7.4. Tests for Near Multicollinearity

We performed thorough tests to check for multicollinearity and heteroskedasticity. Our initial model did not have any heteroskedasticity but it did have severe multicollinearity issues. We also confirmed that our model satisfied the GLM assumptions. Even though dropping a variable from the model is not the best way forward in case of multicollinearity, our model had severe multicollinearity issues that couldn't be sorted using other methods. Multicollinearity is a problem with the model and a different sample might have less multicollinearity. But due to the limited observations the sample size could not be increased. In case our had near

multicollinearity issues, we could have let them be, but severe issues cannot be ignored. Since each variable was somehow related to the other independent variables in the model, it's effect might be duplicative, hence causing severe multicollinearity issues. Thus, we removed the problematic variables with the understanding that the other independent variables in the final model are somehow covering the effect of those variables. We tested for multicollinearity using correlation table, variation inflation factor (VIF), tolerance (TOL) and condition index (COLLIN). Our final model had VIF values below 10, hence did not indicate any multicollinearity issues.

7.5. Test for Autocorrelation

Autocorrelation is usually seen in time series data and our data set is no exception to this. To test for autocorrelation, we performed Durbin-Watson test, which confirmed our suspicions. Significant value of Pr<DW reflects positive autocorrelation. To remove autocorrelation, we performed iterative Cochrane-Orcutt as well as Yule Walker methods. Both the methods yield similar results and successfully remove autocorrelation from the model. The Yule Walker is preferred in this case, since the observations are less. Yule Walker includes the first observation during the correction, unlike Cochrane-Orchutt. The R2 of this model is 87.579, which means that cement production, exports and fisheries production explain most of the variation in the model.

7.6. Dataset

ye	agrila	energ		popgr	electr				expo		airtra	cem
ar	nd	У	fossil	owth	ic	ghg	pop	gdp	rt	fish	ns	ent
19		7569.	95.91	1.1650	7236.	5400	20505	477968	5190	2962.	5151.	689
70	4344	077	877	03	657	504	2000	4.39	0	979	2	47
19		7644.	95.64	1.2643	7517.	5440	20766	493719	5971	3050.	5540.	728
71	4333	525	381	34	305	421	1000	7.78	0	82	8	61
19		7940.	95.36	1.0705	8076.	5704	20989	519705	6296	2946.		767
72	4323	998	676	23	409	297	6000	5.47	4	225	6283	08
19		8163.	94.97	0.9544	8573.	5912	21190	549033	7084	2978.	7060.	794
73	4312	604	719	77	194	971	9000	1.80	4	682	1	44
19	4301.	7909.	94.15	0.9136	8449.	5756	21385	546193	9527	3053.	7255.	751
74	58	586	645	6	928	864	4000	8.30	0	006	4	94

19	4301.	7656.	93.09	0.9859	8522.	5539	21597	545114	1266	3065.	6999.	632
75	58	264	795	86	394	255	3000	1.22	51	741	6	49
19	4301.	8100.	93.00	0.9502	8968.	5868	21803	574474	1387	3272.	7438.	675
76	58	562	562	2	776	460	5000	4.60	07	174	2	80
19	4303.	8285.	92.42	1.0057	9337.	6048	22023	600949	1495	3211.	7920.	726
77	31	571	23	72	724	233	9000	6.75	15	927	6	29
19	4281.	8438.	91.74	1.0595	9560.	6054	22258	634372	1593	3636.	8406.	772
78	63	403	381	73	545	465	5000	6.02	50	483	8	62
19	4281.	8327.	91.80	1.1035	9700.	6135	22505	654518	1868	3722.	8658.	763
79	63	042	293	77	695	463	5000	3.14	85	375	1	23
19	4281.	7942.	91.42	0.9595	9862.	5896	22722	652917	2301	3871.	8615.	695
80	63	253	607	9	365	083	5000	3.87	29	666	4	88
19	4281.	7647.	90.83	0.9814	9976.	5830	22946	669857	2807	3931.	8606.	661
81	63	538	195	15	694	249	6000	1.36	73	248	9	62
19	4313.	7259.	90.04	0.9533	9544.	5534	23166	657056	3052	4214.	8295.	583
82	99	079	312	18	461	118	4000	8.95	39	408	8	69
19	4313.	7199.	89.45	0.9143	9742.	5524	23379	687494	2832	4421.	9284.	647
83	99	119	507	79	006	778	2000	7.75	09	466	5	24
19	4313.	7443.	88.90	0.8658	1028	5761	23582	737400	2769	5048.	1029	713
84	99	32	104	17	2.37	217	5000	6.18	96	228	3.1	95
19	4313.	7456.	88.30	0.8861	1041	5776	23792	768657	3023	5043.	9672.	715
85	99	263	167	29	4.21	898	4000	0.95	83	441	2	39
19	4313.	7376.	87.65	0.9241	1042	5731	24013	795649	3032	5253.	1061	724
86	99	096	663	64	4.43	026	3000	3.69	09	141	9	98
19	4269.	7622.	87.37	0.8938	1088	5743	24228	823192	3210	6077.	1202	721
87	48	173	781	29	6.86	633	9000	7.43	00	501	3.2	22
19	4269.	7849.	87.07	0.9079	1129	6185	24449	857799	3639	6028.	1387	709
88	48	754	724	99	8.33	748	9000	5.35	44	323	5.6	88
19	4269.	7890.	87.09	0.9444	1153	6221	24681	889371	4446	5860.	1465	712
89	48	287	329	06	1.93	392	9000	0.53	01	605	1	67
19	4269.	7671.	86.43	1.1296	1171	6136	24962	906441	5042	5936.	1479	713
90	48	773	784	51	3.33	094	3000	3.77	91	132	1.4	10
19	4269.	7631.	85.69	1.3362	1213	6073	25298	905769	5518	5607.	1448	671
91	48	468	474	61	4.17	644	1000	8.44	74	652	6.2	93
19	4254.	7677.	85.57	1.3868	1201	6137	25651	937973	5949	5688.	1561	695
92	29	401	482	86	4.96	498	4000	5.50	32	778	7.6	85
19	4229.	7709.	86.11	1.3186	1226	6282	25991	963728	6330	6025.	1634	738
93	48	497	796	8	1.52	704	9000	9.60	53	071	3	07
19	4211.	7757.	85.91	1.2262	1245	6374	26312	100264	6548	6043.	1908	779
94	39	831	213	96	5.16	979	6000	08.99	00	96	3.8	48
19	4201.	7763.	85.46	1.1907	1265	6365	26627	102990	7209	5712.	1962	769
95	39	755	934	87	9.61	297	8000	24.62	39	653	2.9	703
19	4163.	7844.	85.51	1.1634	1285	6577	26939	106899	8128	5454.	2167	792 66
96	06	468	006	12	4.3	713	4000	63.36	13	047	6.4	66
19	4148.	7828.	86.45	1.2039	1288	6724	27265	111696	8675	5493.	2547	825
97	85 4145	581	649	1 1657	9.83	6740	7000	24.85	90	228	8.8	82
19	4145. ••	7803.	86.08	1.1657	1315	6749	27585	116666	9538	5180.	2575	839
98	88 4129	698	659	15	4.76	016	4000	63.21	06	987	7.9	31
19	4138.	7923.	85.78	1.1483	1328	6808	27904	122132	9529	5310.	2729	859 52
99	87	224	46	4	1.87	138	0000	69.67	81	497	2.2	52

20	4143.	8056.	85.88	1.1127	1367	6969	28216	127130	9919	5216.	3017	878
00	99	864	083	69	1.05	124	2411	58.21	80	83	1.98	46
20	4149.	7827.	86.34	0.9897	1304	6821	28496	128371	1096	5462.	2792	889
01	44	886	598	41	6.61	236	8955	35.35	835	163	4.57	00
20	4130.	7843.	86.24	0.9277	1329	6981	28762	130664	1026	5483.	2955	897
02	64	345	908	97	6.18	787	5193	22.98	713	648	4.68	32
20	4139.	7794.	86.27	0.8594	1330	6991	29010	134331	1002	5534.	3420	928
03	25	236	839	82	7.49	255	7933	68.20	509	652	5.55	43
20	4115.	7881.	86.12	0.9254	1338	7244	29280	139417	1040	5602.	3745	974
04	21	579	431	84	8.59	272	5298	13.40	279	988	0.12	34
20	4117.	7846.	86.01	0.9217	1370	7182	29551	144080	1181	5475.	3735	993
05	84	5	854	13	4.58	808	6599	93.84	507	187	7.64	19
20	4092.	7697.	85.62	0.9642	1358	6994	29837	147923	1308	5378.	3988	981
06	148	653	647	54	3.27	087	9912	03.79	901	772	1.9	67
20	4128.	7758.	85.61	0.9510	1365	7128	30123	150553	1476	5296.	4061	954
07	576	166	471	55	7.45	952	1207	95.30	316	214	7.74	64
20	4133.	7488.	84.96	0.9458	1366	6648	30409	150114	1664	4861.	3931	863
08	126	082	822	65	3.43	991	3966	90.54	625	785	3.6	10
20	4099.	7056.	84.15	0.8766	1291	6604	30677	145948	1841	4715.	3509	639
09	607	784	425	51	3.71	069	1529	42.18	942	028	7.67	07
20	4084.	7160.	84.15	0.8359	1339	6713	30934	149643	1587	4893.	3935	664
10	262	97	059	92	4.05	349	6863	72.00	742	331	3.26	47
20	4046.	7026.	83.71	0.7638	1324	6571	31171	152040	1852	5520.	3962	678
11	693	902	405	5	0.13	654	8857	19.63	335	449	1.91	95
20	4087.	6867.	83.45	0.7618	1295	6343	31410	155421	2106	5521.	3911	741
12	065	106	825	08	4.9	841	2623	61.72	371	244	1.34	51

8. Bibliography

- 1. Damassa, T., Bianco, N., Fransen, T., & Hatch, J. (2012). GHG Mitigation in the United States: An Overview of the Current Policy Landscape. World Resources Institute, Washington, DC.
- 2. WTO, "The impact of trade opening on climate change," Available online at https://www.wto.org/english/tratop_e/envir_e/climate_impact_e.html>, Accessed: 2017-04-28.
- 3. Wilson Center, "Human Population Growth and Green-house Gas Emissions" https://www.wilsoncenter.org/sites/default/files/Human%20Population%20Growth%20and%20Greenhouse%20Gas%20Emissions.pdf>,2011, Accessed: 2017-04-28.
- 4. United States Environmental Protection Agency | US EPA. Sources of Greenhouse Gas Emissions | Greenhouse Gas (GHG) Emissions | US EPA. Retrieved April 27, 2017, Available online at http://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

- R. Rehan, M. Nehdi, Carbon dioxide emissions and climate change: policy implications for the cement industry, Environmental Science & Policy, Volume 8, Issue 2, April 2005, Pages 105-114, ISSN 1462-9011, https://doi.org/10.1016/j.envsci.2004.12.006.
 https://www.sciencedirect.com/science/article/pii/S1462901105000109>
- 6. North Sea Foundation, "SEAS AT RISK," Web Page,Accessed: 2017-04-28. Available online at https://energyefficiency-fisheries.jrc.ec.europa.eu/c/document_library/get_file?uuid=924c1ba8-94af-440d-94cb-f9cb124d2d57&groupId=12762
- 7. International Energy Agency (IEA). 2011. Energy Statistics of OECD Countries. Paris: OECD/IEA. Available online at http://data.iea.org/ieastore/default.asp
- 8. Eric, C. (2014, March 20). Statistics Blogs @ StatsBlogs.com | All About Statistics | . Machine Learning Lesson of the Day Overfitting and Underfitting | StatsBlogs.com | All About Statistics. Retrieved April 27, 2017, from http://www.statsblogs.com/2014/03/20/machine-learning-lesson-of-the-day-overfitting-and-underfitting/