Numerics (Part IV)

[Lectures 2 & 3] Sp-Line Interpolation (Quadratic and Cubic)

Alessandro Antonucci alessandro.antonucci@supsi.ch

Input

- Given n+1 points $\{(x_i,y_i)\}_{i=0}^n$
- such that $x_{i+1} > x_i \, \forall i$ (sorted from left to right)

Output

- Find a function f(x) defined between x_0 and x_n
- Such that $f(x_i) = y_i \ \forall i = 0, 1, ..., n \ (f \text{ crosses the points})$
- f continuous (optionally first k derivatives)
- For $x_i \le x < x_{i+1}$, $f(x) = f_i(x)$ (with f_i polynomial of given degree)

Three (kinds of) Sp-line

Connecting consecutive points by:

- Line segments (linear sp-line)
- Parabolic arcs (quadratic sp-line)
- Cubic arcs (cubic sp-line)
- Linear sp-line: a single segment for each two points, no degrees of freedom (might have sharp points)
- Quadratic sp-line: infinite parabolic curves crossing two points (asking continuous derivative)
- Cubic sp-line: infinite cubic curves crossing two points (asking continuous first and second derivative)

Balancing Parameters vs. Constraints

- Connecting n + 1 points with n segments/arcs
- Linear sp-line
 - two parameters for each line segment: **2***n* parameters
 - each segment connects two points: 2n constraints
 - 2n 2n = 0 (balanced)
- Quadratic sp-line
 - every arc is parabolic (3 parameters): 3n parameters
 - every arc crosses two points: 2n constraints
 - derivative continuous in the junction points: n-1 constraints
 - 3n 2n (n 1) = 1 (a free parameter)
- Cubic sp-line
 - every arc is cubic (4 parameters) 4n parameters
 - every arc crosses two points: 2n constraints
 - der. I and II continuous in the junction points: 2(n-1) constraints
 - 4n-2n-2(n-1)=2 (two free parameters)

QUADRATIC SP-LINE

Quadratic Sp-Line

- Derivative of a quadratic sp-line is a linear sp-line
- For each i = 0, 1, ..., n, let us define $z_i := f'(x_i)$
- Rewriting the derivative of $f_i(x_i)$

$$f'_i(x) = \frac{z_{i+1} - z_i}{x_{i+1} - x_i}(x - x_i) + z_i$$

Integrating (from the derivative to the function)

$$f_i(x) = \frac{z_{i+1} - z_i}{x_{i+1} - x_i} \frac{(x - x_i)^2}{2} + z_i(x - x_i) + \alpha_i$$

- $f_i(\mathbf{x}_i) = \mathbf{y}_i$ implies $\alpha_i = \mathbf{y}_i$
- $f_i(x_{i+1}) = y_{i+1}$ implies

$$y_{i+1} = \frac{z_{i+1} - z_i}{x_{i+1} - x_i} \frac{(x_{i+1} - x_i)^2}{2} + z_i(x_{i+1} - x_i) + y_i$$

Quadratic Sp-Line (Recap)

- z₀ given
- recursively getting z_1, z_2, \dots, z_n

$$z_{i+1} = -z_i + 2\frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

 these parameters are used to obtain the parabolic curves

$$f_i(x) = rac{z_{i+1} - z_i}{2(x_{i+1} - x_i)}(x - x_i)^2 + z_i(x - x_i) + y_i$$
 with $x_i \leq x \leq x_{i+1}$

Cubic Sp-line

- Second derivative of a cubic sp-line is a linear sp-line
- For each i = 0, 1, ..., n, let $z_i := f''(x_i)$
- Let $h_i := x_{i+1} x_i$ denote the distance between two points on the x-axis
- Rewriting the second derivative of $f_i(x_i)$

$$f_i''(x) = \frac{z_{i+1}}{h_i}(x-x_i) - \frac{z_i}{h_i}(x-x_{i+1})$$

Integrating two times

$$f'_{i}(x) = \frac{z_{i+1}}{2h_{i}}(x - x_{i})^{2} - \frac{z_{i}}{2h_{i}}(x - x_{i+1})^{2} + \alpha_{i}$$

$$f_{i}(x) = \frac{z_{i+1}}{6h_{i}}(x - x_{i})^{3} - \frac{z_{i}}{6h_{i}}(x - x_{i+1})^{3} + \alpha_{i}(x - x_{i}) + \beta_{i}$$

Cubic Sp-Line

$$f_i(x) = \frac{z_{i+1}}{6h_i}(x-x_i)^3 - \frac{z_i}{6h_i}(x-x_{i+1})^3 + \alpha_i(x-x_i) + \beta_i$$

Finding α_i and β_i by setting $f(x_i) = y_i$ and $f(x_{i+1}) = y_{i+1}$

$$\alpha_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{6}(z_{i+1} - z_i)$$
 $\beta_i = y_i - z_i \frac{h_i^2}{6}$

Getting relation between z_{i+1} , z_i , z_{i-1} where $f'_{i-1}(x_i) = f'_i(x_i)$

Cubic Sp-Line (recap)

- z_0 and z_n are given (typically $z_0 = 0$ e $z_n = 0$)
- getting z_1, z_2, \dots, z_n by the linear system

$$h_{i-1}z_{i-1}+2(h_{i-1}+h_i)z_i+h_iz_{i+1}=6\left(\frac{y_{i+1}-y_i}{h_i}-\frac{y_i-y_{i-1}}{h_{i-1}}\right)$$

$$\forall i = 1, \ldots, n-1$$

• with these parameters we write the cubic curves as: $f_i(x) =$

$$\frac{z_{i+1}(x-x_i)^3+z_i(x_{i+1}-x)^3}{6h_i}+\left(\frac{y_{i+1}}{h_i}-\frac{h_i}{6}z_{i+1}\right)(x-x_i)+\left(\frac{y_i}{h_i}-\frac{h_i}{6}z_i\right)(x_{i+1}-x)$$

$$\forall x_i \leq x \leq x_{i+1}$$

Cubic Sp-Line (recap, ii)

• If the x of the points are at the same distance $h_i = h$ for each i, and h = 1, formulae rewrite as:

$$z_{i-1} + 4z_i + z_{i+1} = 6 (y_{i+1} - 2y_i + y_{i-1})$$

$$f_i(x) = \frac{z_{i+1}}{6} (x - x_i)^3 + \frac{z_i}{6} (x_{i+1} - x)^3 +$$

$$+ (y_{i+1} - \frac{z_{i+1}}{6}) (x - x_i) + (y_i - \frac{z_i}{6}) (x_{i+1} - x)$$