Introdução à Computação Quântica

Fundamentos Algébricos e Matemáticos

Leonardo Camargo Rossato

1 Esfera de Bloch

A esfera de Bloch é uma representação gráfica dos estados quânticos de um qubit, usada para visualizar estados quânticos de dois níveis. O estado geral de um qubit pode ser expresso usando a notação de Dirac (notação ket) como:

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

Aqui, θ e ϕ são os ângulos de Bloch, que determinam a posição do vetor de estado na esfera de Bloch. A amplitude $\cos\left(\frac{\theta}{2}\right)$ é associada ao estado base $|0\rangle$, e a amplitude $\sin\left(\frac{\theta}{2}\right)$ ao estado base $|1\rangle$, com uma fase relativa $e^{i\phi}$ entre eles.

Para $\theta = 0$ e $\phi = 0$, o estado quântico $|\psi\rangle$ é simplesmente $|0\rangle$, que é um dos estados base do qubit, correspondendo ao polo norte na esfera de Bloch.

Bloch Sphere and $|\psi\rangle$ State Vector

Figure 1: Representação da Esfera de Bloch

Agora, vamos calcular os seis estados extremos na esfera de Bloch, considerando os seguintes pontos:

- 1. $|0\rangle$ (Polo Norte)
- 2. $|1\rangle$ (Polo Sul)
- 3. $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ (Estado x+)

4.
$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$
 (Estado x-)

5.
$$|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$
 (Estado y+)

6.
$$|-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$
 (Estado y-)

1. Estado $|0\rangle$ - Ângulos: $\theta = 0$, $\phi = 0$ - Cálculo:

$$|\psi\rangle = \cos\left(\frac{0}{2}\right)|0\rangle + e^{i\cdot 0}\sin\left(\frac{0}{2}\right)|1\rangle$$

$$|\psi\rangle = 1|0\rangle + 0|1\rangle = |0\rangle$$

2. Estado $|1\rangle$ - Ângulos: $\theta=\pi,\,\phi=0$ - Cálculo:

$$|\psi\rangle = \cos\left(\frac{\pi}{2}\right)|0\rangle + e^{i\cdot 0}\sin\left(\frac{\pi}{2}\right)|1\rangle$$

$$|\psi\rangle = 0|0\rangle + 1|1\rangle = |1\rangle$$

3. Estado $|+\rangle$ - Ângulos: $\theta=\frac{\pi}{2},\,\phi=0$ - Cálculo:

$$|\psi\rangle = \cos\left(\frac{\pi}{4}\right)|0\rangle + e^{i\cdot 0}\sin\left(\frac{\pi}{4}\right)|1\rangle$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

4. Estado $|-\rangle$ - Ângulos: $\theta=\frac{\pi}{2},\,\phi=\pi$ - Cálculo:

$$|\psi\rangle = \cos\left(\frac{\pi}{4}\right)|0\rangle + e^{i\pi}\sin\left(\frac{\pi}{4}\right)|1\rangle$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + (-1)\frac{1}{\sqrt{2}}|1\rangle$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

5. Estado $|+i\rangle$ - Ângulos: $\theta = \frac{\pi}{2}$, $\phi = \frac{\pi}{2}$ - Cálculo:

$$|\psi\rangle = \cos\left(\frac{\pi}{4}\right)|0\rangle + e^{i\frac{\pi}{2}}\sin\left(\frac{\pi}{4}\right)|1\rangle$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + i\frac{1}{\sqrt{2}}|1\rangle$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

6. Estado $|-i\rangle$ - Ângulos: $\theta=\frac{\pi}{2},\,\phi=-\frac{\pi}{2}$ - Cálculo:

$$|\psi\rangle = \cos\left(\frac{\pi}{4}\right)|0\rangle + e^{-i\frac{\pi}{2}}\sin\left(\frac{\pi}{4}\right)|1\rangle$$
$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + (-i)\frac{1}{\sqrt{2}}|1\rangle$$
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$

7. Estado com $\theta = \frac{\pi}{4}$ e $\phi = \frac{\pi}{3}$

Para o estado com $\theta = \frac{\pi}{4}$ e $\phi = \frac{\pi}{3}$, os cálculos dos coeficientes são os seguintes: 1. $\cos\left(\frac{\pi}{8}\right) \approx 0.9239$ 2. $\sin\left(\frac{\pi}{8}\right) \approx 0.3827$ 3. $e^{i\frac{\pi}{3}} \approx 0.5 + 0.8660i$ Assim, o estado quântico $|\psi\rangle$ é:

$$|\psi\rangle \approx 0.9239|0\rangle + (0.5 + 0.8660i) \cdot 0.3827|1\rangle$$

$$|\psi\rangle \approx 0.9239|0\rangle + (0.1913 + 0.3304i)|1\rangle$$

Este estado representa um ponto específico na esfera de Bloch, determinado pelos ângulos $\theta=\frac{\pi}{4}$ e $\phi=\frac{\pi}{3}$.

2 Portas Lógicas do IBM Quantum

Portas de um Qubit

Pauli-X (X):

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Pauli-Y (Y):

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Pauli-Z (Z):

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Hadamard (H):

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Porta \sqrt{X}

$$\sqrt{X} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}$$

Porta \sqrt{X}^\dagger (Transposta Conjugada de $\sqrt{X})$

$$\sqrt{X}^{\dagger} = \begin{pmatrix} \frac{1-i}{2} & \frac{1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{pmatrix}$$

Porta S (S):

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

Porta Sdg (S^{\dagger}) :

$$S^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$$

Porta T (T):

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

Porta Tdg (T^{\dagger}) :

$$T^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{pmatrix}$$

Porta de rotação em torno do eixo X (Rx):

$$R_x(\theta) = \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -i\sin\left(\frac{\theta}{2}\right) \\ -i\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}$$

Porta de rotação em torno do eixo Y (Ry):

$$R_y(\theta) = \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}$$

Porta de rotação em torno do eixo Z (Rz):

$$R_z(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{pmatrix}$$

Porta U1 (U1):

$$U1(\lambda) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\lambda} \end{pmatrix}$$

Porta U2 (U2):

$$U2(\phi, \lambda) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -e^{i\lambda} \\ e^{i\phi} & e^{i(\phi + \lambda)} \end{pmatrix}$$

Porta U3 (U3):

$$U3(\theta, \phi, \lambda) = \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -e^{i\lambda}\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)}\cos\left(\frac{\theta}{2}\right) \end{pmatrix}$$

Portas de dois ou mais Qubits

Porta CNOT (CX):

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Porta Swap (SWAP):

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Porta de controle-Z (CZ):

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Porta de controle-Y (CY):

$$CY = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}$$

Porta Toffoli (CCX):

$$CCX = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

3 Calculando Circuitos Quânticos

Para ilustrar o funcionamento de uma operação Hadamard em um qubit, podemos começar com um qubit no estado base $|0\rangle$ ou $|1\rangle$ e aplicar a porta Hadamard para criar uma superposição.

1. Definição da Porta Hadamard (H)

A porta Hadamard é definida pela seguinte matriz:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

2. Aplicação da Porta Hadamard no Estado $|0\rangle$

Inicialmente, consideramos o qubit no estado $|0\rangle$:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Aplicando a porta Hadamard, temos:

$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 \\ 1 \cdot 1 + (-1) \cdot 0 \end{pmatrix}$$
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]$$
$$= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

3. Aplicação da Porta Hadamard no Estado |1>

Agora, consideramos o qubit no estado $|1\rangle$:

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Aplicando a porta Hadamard, temos:

$$H|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \cdot 0 + 1 \cdot 1 \\ 1 \cdot 0 + (-1) \cdot 1 \end{pmatrix}$$

$$=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

4. Interpretação dos Resultados

A operação Hadamard transforma o estado $|0\rangle$ em uma superposição igual dos estados $|0\rangle$ e $|1\rangle$, com coeficientes de amplitude de $\frac{1}{\sqrt{2}}$. Da mesma forma, transforma o estado $|1\rangle$ em uma superposição, mas com uma diferença de fase de π (ou seja, com um sinal negativo no estado $|1\rangle$).

3.1 Mostrando equivalência entre Porta Not e 2 aplicações da Porta \sqrt{X}

Definição das Portas

1. Porta NOT (X):

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

2. Porta \sqrt{X} :

$$\sqrt{X} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}$$

Prova da Equivalência

Queremos mostrar que aplicar a Porta \sqrt{X} duas vezes resulta na Porta X.

Passo 1: Multiplicação das Matrizes \sqrt{X}

A multiplicação das duas portas \sqrt{X} é dada por:

$$\sqrt{X} \cdot \sqrt{X} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}$$

Passo 2: Cálculo dos Elementos da Matriz Resultante

Vamos calcular cada elemento da matriz resultante:

Elemento (1,1):

$$\left(\frac{1+i}{2}\right)\left(\frac{1+i}{2}\right) + \left(\frac{1-i}{2}\right)\left(\frac{1-i}{2}\right)$$
$$= \frac{(1+i)^2}{4} + \frac{(1-i)^2}{4}$$

$$= \frac{1+2i+i^2}{4} + \frac{1-2i+i^2}{4}$$

$$= \frac{1+2i-1}{4} + \frac{1-2i-1}{4}$$

$$= \frac{2i}{4} - \frac{2i}{4} = 0$$

Elemento (1,2):

$$\left(\frac{1+i}{2}\right)\left(\frac{1-i}{2}\right) + \left(\frac{1-i}{2}\right)\left(\frac{1+i}{2}\right)$$

$$= \frac{(1+i)(1-i)}{4} + \frac{(1-i)(1+i)}{4}$$

$$= \frac{1-i^2}{4} + \frac{1-i^2}{4}$$

$$= \frac{2}{4} = \frac{1}{2}$$

Elemento (2,1):

$$\left(\frac{1-i}{2}\right) \left(\frac{1+i}{2}\right) + \left(\frac{1+i}{2}\right) \left(\frac{1-i}{2}\right)$$

$$= \frac{(1-i)(1+i)}{4} + \frac{(1+i)(1-i)}{4}$$

$$= \frac{1-i^2}{4} + \frac{1-i^2}{4}$$

$$= \frac{2}{4} = \frac{1}{2}$$

Elemento (2,2):

$$\left(\frac{1-i}{2}\right)\left(\frac{1-i}{2}\right) + \left(\frac{1+i}{2}\right)\left(\frac{1+i}{2}\right)$$
$$= \frac{(1-i)^2}{4} + \frac{(1+i)^2}{4}$$

$$= \frac{1 - 2i + i^2}{4} + \frac{1 + 2i + i^2}{4}$$

$$= \frac{1 - 2i - 1}{4} + \frac{1 + 2i - 1}{4}$$

$$= \frac{-2i}{4} + \frac{2i}{4} = 0$$

Passo 3: Resultado Final

A matriz resultante é:

$$\sqrt{X} \cdot \sqrt{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X$$

Portanto, duas aplicações da Porta \sqrt{X} são equivalentes à aplicação da Porta NOTX.

3.2 Hadamar x Porta \sqrt{X}

Para aplicar a porta \sqrt{X} a um qubit no estado $|0\rangle$, seguimos os passos abaixo:

Aplicação da Porta \sqrt{X} ao Estado $|0\rangle$

Para encontrar o estado resultante, multiplicamos a matriz da porta \sqrt{X} pelo vetor coluna $|0\rangle$:

$$\sqrt{X}|0\rangle = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Cálculo dos Componentes do Estado Resultante

Calculamos cada componente do vetor resultante:

Componente superior (primeiro elemento):

$$\frac{1+i}{2} \cdot 1 + \frac{1-i}{2} \cdot 0 = \frac{1+i}{2}$$

Componente inferior (segundo elemento):

$$\frac{1-i}{2} \cdot 1 + \frac{1+i}{2} \cdot 0 = \frac{1-i}{2}$$

Assim, o estado resultante é:

$$\sqrt{X}|0\rangle = \begin{pmatrix} \frac{1+i}{2} \\ \frac{1-i}{2} \end{pmatrix}$$

Decompondo o vetor resultante em termos dos estados base $|0\rangle$ e $|1\rangle$, temos:

$$\sqrt{X}|0\rangle = \frac{1+i}{2}|0\rangle + \frac{1-i}{2}|1\rangle$$

Isso representa uma superposição dos estados $|0\rangle$ e $|1\rangle$ com coeficientes complexos $\frac{1+i}{2}$ e $\frac{1-i}{2}$, respectivamente.

Comparação com a Porta Hadamard

A aplicação da porta Hadamard ao estado $|0\rangle$ resulta em:

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Aqui, o estado resultante também é uma superposição igual dos estados $|0\rangle$ e $|1\rangle$, mas com coeficientes reais e iguais $\frac{1}{\sqrt{2}}$.

Interpretação

Enquanto a porta Hadamard cria uma superposição com coeficientes iguais e reais, a porta \sqrt{X} introduz uma fase complexa nos coeficientes, resultando em uma superposição com coeficientes complexos. Essa diferença nas amplitudes de probabilidade reflete as diferentes operações realizadas por cada porta nos estados quânticos.

3.3 Comparativo: Versão Esfera de Bloch

Figure 2: Qubit inicial no estado $|0\rangle$

Figure 4: Qubit inicial no estado $|0\rangle$

Figure 3: Estado após aplicação da porta \sqrt{X}

Figure 5: Estado após aplicação da porta Hadamard

3.4 Comparativo: Versão Q-Sphere do IBM Quantum Composer

Figure 6: Qubit inicial na Q-Sphere (fases em vermelho)

Figure 8: Qubit inicial na Q-Sphere (fases em vermelho)

Figure 7: Estado após aplicação da porta \sqrt{X} na Q-Sphere (fases representadas por cores)

Figure 9: Estado após aplicação da porta Hadamard na Q-Sphere (fases representadas por cores)