Column-Oriented Database Systems

VLDB 2009 Tutorial

Part 1: Stavros Harizopoulos (HP Labs)

Part 2: Daniel Abadi (Yale)

Part 3: Peter Boncz (CWI)

What is a column-store?

row-store

Date Store Product Customer Price

column-store

+ easy to add/modify a record

- + only need to read in relevant data
- might read in unnecessary data
- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Are these two fundamentally different?

- The only fundamental difference is the storage layout
- However: we need to look at the big picture

- How did we get here, and where we are heading
- What are the column-specific optimizations?
- How do we improve CPU efficiency when operating on Cs

Part 2

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- Part 2: Column-oriented execution Daniel
- Part 3: MonetDB/X100 and CPU efficiency Peter

Telco Data Warehousing example

- Typical DW installation
- Real-world example

"One Size Fits All? - Part 2: Benchmarking Results" Stonebraker et al. CIDR 2007

dimension tables account fact table or RAM usage source star schema

QUERY 2

SELECT account.account_number,
sum (usage.toll_airtime),
sum (usage.toll_price)
FROM usage, toll, source, account
WHERE usage.toll_id = toll.toll_id
AND usage.source_id = source.source_id
AND usage.account_id = account.account_id
AND toll.type_ind in ('AE'. 'AA')
AND usage.toll_price > 0
AND source.type != 'CIBER'
AND toll.rating_method = 'IS'
AND usage.invoice_date = 20051013
GROUP BY account.account_number

	Column-store	Row-store
Query 1	2.06	300
Query 2	2.20	300
Query 3	0.09	300
Query 4	5.24	300
Query 5	2.88	300

Why? Three main factors (next slides)

Telco example explained (1/3): read efficiency

row store

read pages containing entire rows

one row = 212 columns!

is this typical? (it depends)

What about vertical partitioning? (it does not work with ad-hoc queries)

read only columns needed

in this example: 7 columns

caveats:

- "select * " not any faster
- clever disk prefetching
- clever tuple reconstruction

Telco example explained (2/3): compression efficiency

- Columns compress better than rows
 - Typical row-store compression ratio 1:3
 - Column-store 1 : 10
- Why?
 - Rows contain values from different domains
 - => more entropy, difficult to dense-pack
 - Columns exhibit significantly less entropy
 - Examples:

Male, Female, Female, Male 1998, 1998, 1999, 1999, 2000

Caveat: CPU cost (use lightweight compression)

Telco example explained (3/3): sorting & indexing efficiency

- Compression and dense-packing free up space
 - Use multiple overlapping column collections
 - Sorted columns compress better
 - Range queries are faster
 - Use sparse clustered indexes

What about heavily-indexed row-stores? (works well for single column access, cross-column joins become increasingly expensive)

Additional opportunities for column-stores

- Block-tuple / vectorized processing
 - Easier to build block-tuple operators
 - Amortizes function-call cost, improves CPU cache performance
 - Easier to apply vectorized primitives
 - Software-based: bitwise operations
 - Hardware-based: SIMD

Part 3

- Opportunities with compressed columns
 - Avoid decompression: operate directly on compressed
 - Delay decompression (and tuple reconstruction)
 - Also known as: late materialization

- Exploit columnar storage in other DBMS components
 - Physical design (both static and dynamic)

See: Database Cracking, from CWI

Effect on C-Store performance

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Hachem, and Madden. SIGMOD 2008.

Summary of column-store key features

Storage layout

columnar storage

header/ID elimination

compression

Part 1

Part 1

multiple sort orders

Execution engine

avoid decompression

late materialization

Part 2

Part 2

Part 2

Part 2

Part 3

Design tools, optimizer

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- Part 2: Column-oriented execution Daniel
- Part 3: MonetDB/X100 and CPU efficiency Peter

From DSM to Column-stores

70s -1985:

TOD: Time Oriented Database – Wiederhold et al. "A Modular, Self-Describing Clinical Databank System," Computers and Biomedical Research, 1975 More 1970s: Transposed files, Lorie, Batory, Svensson.

"An overview of cantor: a new system for data analysis" Karasalo, Svensson, SSDBM 1983

1985: DSM paper

"A decomposition storage model" Copeland and Khoshafian. SIGMOD 1985.

1990s: Commercialization through SybaselQ

Late 90s – 2000s: Focus on main-memory performance

- DSM "on steroids" [1997 now] CWI: MonetDB
- Hybrid DSM/NSM [2001 2004] Wisconsin: PAX, Fractured Mirrors

Michigan: Data Morphing CMU: Clotho

2005 - : Re-birth of read-optimized DSM as "column-store"

CWI: MonetDB/X100

10+ startups

The original DSM paper

"A decomposition storage model" Copeland and Khoshafian. SIGMOD 1985.

- Proposed as an alternative to NSM
- 2 indexes: clustered on ID, non-clustered on value
- Speeds up queries projecting few columns
- Requires more storage

Memory wall and PAX

90s: Cache-conscious research

from:

"Cache Conscious Algorithms for Relational Query Processing." Shatdal, Kant, Naughton. VLDB 1994.

to:

"Database Architecture Optimized for the New Bottleneck: Memory Access." Boncz, Manegold, Kersten. VLDB 1999. and:

- PAX: Partition Attributes Across
 - Retains NSM I/O pattern
 - Optimizes cache-to-RAM communication

"Weaving Relations for Cache Performance." Ailamaki, DeWitt, Hill, Skounakis, VLDB 2001.

VLDB 2009 Tutorial

More hybrid NSM/DSM schemes

Dynamic PAX: Data Morphing

"Data morphing: an adaptive, cache-conscious storage technique." Hankins, Patel, VLDB 2003.

Clotho: custom layout using scatter-gather I/O

"Clotho: Decoupling Memory Page Layout from Storage Organization." Shao, Schindler, Schlosser, Ailamaki, and Ganger. VLDB 2004.

- Fractured mirrors
 - Smart mirroring with both NSM/DSM copies

"A Case For Fractured Mirrors." Ramamurthy, DeWitt, Su, VLDB 2002.

MonetDB (more in Part 3)

- Late 1990s, CWI: Boncz, Manegold, and Kersten
- Motivation:
 - Main-memory
 - Improve computational efficiency by avoiding expression interpreter
 - DSM with virtual IDs natural choice
 - Developed new query execution algebra
- Initial contributions:
 - Pointed out memory-wall in DBMSs
 - Cache-conscious projections and joins
 - ...

2005: the (re)birth of column-stores

- New hardware and application realities
 - Faster CPUs, larger memories, disk bandwidth limit
 - Multi-terabyte Data Warehouses
- New approach: combine several techniques
 - Read-optimized, fast multi-column access, disk/CPU efficiency, light-weight compression
- C-store paper:
 - First comprehensive design description of a column-store
- MonetDB/X100
 - "proper" disk-based column store
- Explosion of new products

Performance tradeoffs: columns vs. rows

DSM traditionally was not favored by technology trends How has this changed?

- Optimized DSM in "Fractured Mirrors," 2002
- "Apples-to-apples" comparison

"Performance Tradeoffs in Read-Optimized Databases" Harizopoulos, Liang, Abadi, Madden, VLDB' 06

- Follow-up study "Read-Optimized Databases, In-Depth" Holloway, DeWitt,
- Main-memory DSML₽8. №SM

"DSM vs. NSM: CPU performance tradeoffs in block-oriented query processing" Boncz, Zukowski, Nes, DaMoN' 08

Flash-disks: a come-back for PAX?

"Fast Scans and Joins Using Flash Drives" Shah, Harizopoulos, Wiener, Graefe. DaMoN' 08 "Query Processing Techniques for Solid State Drives" Tsirogiannis, Harizopoulos, Shah, Wiener, Graefe, SIGMOD' 09

n-Oriented Databa

Fractured mirrors: a closer look

- Store DSM relations inside a B-tree
 - Leaf nodes contain values

- "A Case For Fractured Mirrors" Ramamurthy, DeWitt, Su, VLDB 2002.
- Eliminate IDs, amortize header overhead
- Custom implementation on Shore

Tuple Header	TID	Column Data
	1	a1
	2	a2
	3	a3
	4	a4
	5	a5

Similar: storage density comparable to column stores

"Efficient columnar storage in B-trees" Graefe. Sigmod Record 03/2007.

Fractured mirrors: performance

From PAX paper:

- Read in segments of M pages
- Merge segments in memory
- Becomes CPU-bound after 5 pages

Re-use permitted when acknowledging the original © Stavros Harizopou'

Column-scanner implementation

"Performance Tradeoffs in Read-Optimized Databases" Harizopoulos, Liang, Abadi, Madden, VLDB' 06

row scanner

column scanner

Scan performance

- Large prefetch hides disk seeks in columns
- Column-CPU efficiency with lower selectivity
- Row-CPU suffers from memory stalls
- Memory stalls disappear in narrow tuples
- Compression: similar to narrow

not shown, details in the paper

Even more results

- Same engine as before
- Additional findings

Non-selective queries, narrow tuples, favor well-compressed rows Materialized views are a win

Scan times determine early materialized joins

Column-joins are covered in part 2!

Speedup of columns over rows

"Performance Tradeoffs in Read-Optimized Databases" Harizopoulos, Liang, Abadi, Madden, VLDB' 06

- Rows favored by narrow tuples and low cpdb
 - Disk-bound workloads have higher cpdb

Varying prefetch size

No prefetching hurts columns in single scans

Varying prefetch size

- No prefetching hurts columns in single scans
- Under competing traffic, columns outperform rows for any prefetch size

"DSM vs. NSM: CPU performance trade CPU Performance offs in block-oriented query processing" Boncz, Zukowski, Nes, DaMoN' 08

- Benefit in on-the-fly conversion between NSM and DSM
- DSM: sequential access (block fits in L2), random in L1
- NSM: random access, SIMD for grouped Aggregation

Figure 5: TPC-H Q1, with a varying number of keys and different data organizations (ht – hash table)

New storage technology: Flash SSDs

- Performance characteristics
 - very fast random reads, slow random writes
 - fast sequential reads and writes
- Price per bit (capacity follows)
 - cheaper than RAM, order of magnitude more expensive than Disk
- Flash Translation Layer introduces unpredictability
 - avoid random writes!
- Form factors not ideal yet
 - SSD (→ small reads still suffer from SATA overhead/OS limitations)
 - PCI card (→ high price, limited expandability)
- Boost Sequential I/O in a simple package
 - Flash RAID: very tight bandwidth/cm³ packing (4GB/sec inside the box)
- Column Store Updates
 - useful for delta structures and logs
- Random I/O on flash fixes unclustered index access.
 - still suboptimal if I/O block size > record size
 - therefore column stores profit mush less than horizontal stores
- Random I/O useful to exploit secondary, tertiary table orderings
 - the larger the data, the deeper clustering one can exploit

Even faster column scans on flash SSDs

New-generation SSDs

30K Read IOps, 3K Write lops 250MB/s Read BW, 200MB/s Write

- Very fast random reads, slower random writes
- Fast sequential RW, comparable to HDD arrays
- No expensive seeks across columns
- FlashScan and Flashjoin: PAX on SSDs, inside Postgres

Column-scan performance over time

optimized DSM (2002)

VLDB 2009 Tutorial

Column-Oriented Databa

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- Part 2: Column-oriented execution Daniel
- Part 3: MonetDB/X100 and CPU efficiency Peter

Architecture of a column-store

storage layout

- read-optimized: dense-packed, compressed
- organize in extends, batch updates
- multiple sort orders
- sparse indexes

engine

- block-tuple operators
- new access methods
- optimized relational operators

system-level

- system-wide column support
- loading / updates
- scaling through multiple nodes
- transactions / redundancy

C-Store

"C-Store: A Column-Oriented DBMS." Stonebraker et al. VLDB 2005.

- Compress columns
- No alignment
- Big disk blocks
- Only materialized views (perhaps many)
- Focus on Sorting not indexing
- Data ordered on anything, not just time
- Automatic physical DBMS design
- Optimize for grid computing
- Innovative redundancy
- Xacts but no need for Mohan
- Column optimizer and executor

C-Store: only materialized views (MVs)

- Projection (MV) is some number of columns from a fact table
- Plus columns in a dimension table with a 1-n join between Fact and Dimension table
- Stored in order of a storage key(s)
- Several may be stored!
- With a permutation, if necessary, to map between them
- Table (as the user specified it and sees it) is not stored!
- No secondary indexes (they are a one column sorted MV plus a permutation, if you really want one)

User view:

EMP (name, age, salary, dept) Dept (dname, floor)

Possible set of MVs:

MV-1 (name, dept, floor) in floor order MV-2 (salary, age) in age order MV-3 (dname, salary, name) in salary order

Continuous Load and Query (Vertica)

Hybrid Storage Architecture

Trickle Load > Write Optimized Store (WOS)

ВС

TUPLE MOVER
Asynchronous

Asynchronous Data Transfer

- Memory based
- Unsorted / Uncompressed
- Segmented
- Low latency / Small quick inserts

- > Read Optimized Store (ROS)
 - On disk
 - Sorted / Compressed
 - Segmented
 - Large data loaded direct

(A B C | A)

Loading Data (Vertica)

- > INSERT, UPDATE, DELETE
- > Bulk and Trickle Loads
 - COPY
 - COPY DIRECT
- > User loads data into logical Tables
- > Vertica loads atomically into storage

Write-Optimized Store (WOS)

In-memory

Automatic Tuple Mover

Read-Optimized Store (ROS) On-disk

Applications for column-stores

- Data Warehousing
 - High end (clustering)
 - Mid end/Mass Market
 - Personal Analytics
- Data Mining
 - E.g. Proximity
- Google BigTable
- RDF
 - Semantic web data management
- Information retrieval
 - Terabyte TREC
- Scientific datasets
 - SciDB initiative
 - SLOAN Digital Sky Survey on MonetDB

List of column-store systems

- Cantor (history)
- Sybase IQ
- SenSage (former Addamark Technologies)
- Kdb
- 1010data
- MonetDB
- C-Store/Vertica
- X100/VectorWise
- KickFire
- SAP Business Accelerator
- Infobright
- ParAccel
- Exasol

Outline

- Part 1: Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- Part 2: Column-oriented execution Daniel
- Part 3: MonetDB/X100 and CPU efficiency Peter

Simulate a Column-Store inside a Row-Store

Option A: Vertical Partitioning

	ate		S	tore
TID	Value	[ΓID	Value
1	01/01		1	BOS
2	01/01	,	2	NYC
3	01/01		3	BOS

Pı	roduct	Cus
TID	Value	TID
1	Table	1
2	Chair	2
3	Bed	3

Cu	Price				
TID	Value	. [TID Value		
1	Mesa		1	\$20	
2	Lutz		2	\$13	
3	Mudd		3	\$79	

Simulate a Column-Store inside a Row-Store

Date	Store	Product	Customer	Price
01/01	BOS	Table	Mesa	\$20
01/01	NYC	Chair	Lutz	\$13
01/01	BOS	Bed	Mudd	\$79

Option A: Vertical Partitioning

Date				
Value	StartPos	Length		
01/01	1	3		

Can explicitly runlength encode date

"Teaching an Old Elephant New Tricks." Bruno, CIDR 2009.

Store		Product		Customer		Price	
TID	Value	TID	Value	TID	Value	TID	Value
1	BOS	1	Table	1	Mesa	1	\$20
2	NYC	2	Chair	2	Lutz	2	\$13
3	BOS	3	Bed	3	Mudd	3	\$79

Option B: Index Every Column Date Index

Store Index

Experiments

Star Schema Benchmark (SSBM)

Adjoined Dimension Column Index (ADC Index) to Improve Star Schema Query Performance". O' Neil et. al. ICDE 2008.

- Implemented by professional DBA
- Original row-store plus 2 column-store simulations on same row-store product

What's Going On? Vertical Partitions

- Vertical partitions in row-stores:
 - Work well when workload is known
 - ..and queries access disjoint sets of columns
 - See automated physical design
- Do not work well as full-columns
 - TupleID overhead significant
 - Excessive joins

Tuple Header	TID	Column Data
	1	
	2	
	3	

"Column-Stores vs. Row-Stores: How Different Are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008.

Queries touch 3-4 foreign keys in fact table, 1-2 numeric columns

Complete fact table takes up ~4 GB (compressed)

Vertically partitioned tables take up 0.7-1.1 GB (compressed)

What's Going On? All Indexes Case

- Tuple construction
 - Common type of query:

SELECT store_name, SUM(revenue)
FROM Facts, Stores
WHERE fact.store_id = stores.store_id
 AND stores.country = "Canada"
GROUP BY store_name

- Result of lower part of query plan is a set of TIDs that passed all predicates
- Need to extract SELECT attributes at these TIDs
 - BUT: index maps value to TID
 - You really want to map TID to value (i.e., a vertical partition)
- → Tuple construction is SLOW

So....

- All indexes approach is a poor way to simulate a column-store
- Problems with vertical partitioning are NOT fundamental
 - Store tuple header in a separate partition
 - Allow virtual TIDs
 - Combine clustered indexes, vertical partitioning
- So can row-stores simulate column-stores?
 - Might be possible, BUT:
 - Need better support for vertical partitioning at the storage layer
 - Need support for column-specific optimizations at the executer level
 - Full integration: buffer pool, transaction manager, ...
 - When will this happen?
 - Most promising features = soon

See Part 2, Part 3 for most promising features

 ..unless new technology / new objectives change the game (SSDs, Massively Parallel Platforms, Energy-efficiency)

End of Part 1

- Basic concepts Stavros
 - Introduction to key features
 - From DSM to column-stores and performance tradeoffs
 - Column-store architecture overview
 - Will rows and columns ever converge?
- Part 2: Column-oriented execution Daniel
- Part 3: MonetDB/X100 and CPU efficiency Peter

Part 2 Outline

- Compression
- Tuple Materialization
- Joins

Column-Oriented Database Systems

VLDB 2009 Tutorial

Compression

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE' 06

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi, Madden, and Ferreira, SIGMOD '06

•Query optimization in compressed database systems" Chen, Gehrke, Korn, SIGMOD' 01

Compression

- Trades I/O for CPU
- Increased column-store opportunities:
 - Higher data value locality in column stores
 - Techniques such as run length encoding far more useful
 - Can use extra space to store multiple copies of data in different sort orders

Run-length Encoding

Quarter	Product ID	Price	Quarter	Product ID	Price
Q1 Q1 Q1 Q1 Q1	1 1 1 1 1 2	5 7 2 9 6 8	(value, start_pos, run_length) (Q1, 1, 300) (Q2, 301, 350) (Q3, 651, 500) (Q4, 1151, 600)	(value, start_pos, run_leng (1, 1, 5) (2, 6, 2) (1, 301, 3) (2, 304, 1)	5 7 2 9 6 8
Q1 Q2 Q2	1 1	3 8		•••	5 3 8
Q2 Q2	2	4			1 4

Bit-vector Encoding

- For each unique value, v, in column c, create bit-vector b
 - b[i] = 1 if c[i] = v
- Good for columns with few unique values
- Each bit-vector can be further compressed if sparse

Dictionary Encoding

- For each unique value create dictionary entry
- Dictionary can be per-block or per-column
- Column-stores have the advantage that dictionary entries may encode multiple values at once

Frame Of Reference Encoding

- Encodes values as b bit offset from chosen frame of reference
- Special escape code (e.g. all bits set to 1) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written

"Compressing Relations and Indexes" Goldstein, Ramakrishnan, Shaft, ICDE' 98

Differential Encoding

- Encodes values as b bit offset from previous value
- Special escape code (just like frame of reference encoding) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written
- Performs well on columns containing increasing/decreasing sequences
 - inverted lists
 - timestamps
 - object IDs
 - sorted / clustered columns

"Improved Word-Aligned Binary Compression for Text Indexing" Ahn, Moffat, TKDE' 06

What Compression Scheme To Use?

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE' 06

Heavy-Weight Compression Schemes

Algorithm	Decompression Bandwidth
BZIP	10 MB/s
ZLIB	80 MB/s
LZO	300 MB/s

- Modern disk arrays can achieve > 1GB/s
- 1/3 CPU for decompression → 3GB/s needed
 - Lightweight compression schemes are better
 - Even better: operate directly on compressed data

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

- I/O CPU tradeoff is no longer a tradeoff
- Reduces memory–CPU bandwidth requirements
- Opens up possibility of operating on multiple records at once

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

Column-Oriented Database Systems

VLDB 2009 Tutorial

Tuple Materialization and Column-Oriented Join Algorithms

"Materialization Strategies in a Column-Oriented DBMS" Abadi, Myers, DeWitt, and Madden. ICDE 2007.

"Self-organizing tuple reconstruction in column-stores", Idreos, Manegold, Kersten, SIGMOD' 09

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008. "Query Processing Techniques for Solid State Drives" Tsirogiannis, Harizopoulos Shah, Wiener, and Graefe, SIGMOD 2009.

"Cache-Conscious Radix-Decluster Projections", Manegold, Boncz, Nes, VLDB' 04

When should columns be projected?

- Where should column projection operators be placed in a query plan?
 - Row-store:
 - Column projection involves removing unneeded columns from tuples
 - Generally done as early as possible
 - Column-store:
 - Operation is almost completely opposite from a row-store
 - Column projection involves reading needed columns from storage and extracting values for a listed set of tuples
 - This process is called "materialization"
 - Early materialization: project columns at beginning of query plan
 - Straightforward since there is a one-to-one mapping across columns
 - Late materialization: wait as long as possible for projecting columns
 - More complicated since selection and join operators on one column obfuscates mapping to other columns from same table
 - Most column-stores construct tuples and column projection time
 - Many database interfaces expect output in regular tuples (rows)
 - Rest of discussion will focus on this case

When should tuples be constructed?

QUERY:
SELECT custID,SUM(price)
FROM table
WHERE (prodID = 4) AND
(storeID = 1) AND
GROUP BY custID

- Solution 1: Create rows first (EM).
 But:
 - Need to construct ALL tuples
 - Need to decompress data
 - Poor memory bandwidth utilization

Solution 2: Operate on columns

QUERY:
SELECT custID,SUM(price)
FROM table
WHERE (prodID = 4) AND
(storeID = 1) AND
GROUP BY custID

QUERY:
SELECT custID,SUM(price)
FROM table
WHERE (prodID = 4) AND
(storeID = 1) AND
GROUP BY custID

"Materialization Strategies in a Column-Oriented DBMS" Abadi, Myers, DeWitt, and Madden. ICDE 2007.

For plans without joins, late materialization is a win

QUERY:

```
SELECT C_1, SUM(C_2)
FROM table
WHERE (C_1 < CONST) AND
(C_2 < CONST)
GROUP BY C_1
```

 Ran on 2 compressed columns from TPC-H scale 10 data "Materialization Strategies in a Column-Oriented DBMS" Abadi, Myers, DeWitt, and Madden. ICDE 2007.

Even on uncompressed data, late materialization is still a win

QUERY:

```
SELECT C_1, SUM(C_2)
FROM table
WHERE (C_1 < CONST) AND
(C_2 < CONST)
GROUP BY C_1
```

Materializing late still works best

What about for plans with joins? B, C, E, H, F Select R1.B, R1.C, R2.E, R2.H, R3.F From R1, R2, R3 **Project** Where R1.A = R2.D AND R2.G = R3.KB, C, E, H, F Join F G = KB, C K B, C, E, G, H Scan F, K **Project** Scan Join A = DE, H **D**, **E**, **G**, **H** A, B, C A D Scan Scan Scan Scan

70

What about for plans with joins?

71

Early Materialization Example

Early Materialization Example

QUERY:

SELECT C.lastName,SUM(F.price)
FROM facts AS F, customers AS C
WHERE F.custID = C.custID
GROUP BY C.lastName

Late Materialization Example

Late Materialized Join Performance

- Naïve LM join about 2X slower than EM join on typical queries (due to random I/O)
 - This number is very dependent on
 - Amount of memory available
 - Number of projected attributes
 - Join cardinality
- But we can do better
 - Invisible Join
 - Jive/Flash Join
 - Radix cluster/decluster join

Invisible Join

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008.

- Designed for typical joins when data is modeled using a star schema
 - One ("fact") table is joined with multiple dimension tables
- Typical query:

```
select c_nation, s_nation, d_year,
    sum(lo_revenue) as revenue
from customer, lineorder, supplier, date
where lo_custkey = c_custkey
    and lo_suppkey = s_suppkey
    and lo_orderdate = d_datekey
    and c_region = 'ASIA'
    and s_region = 'ASIA'
    and d_year >= 1992 and d_year <= 1997
group by c_nation, s_nation, d_year
order by d_year asc, revenue desc;
```


Invisible Join

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008.

Apply "region = 'Asia'" On Customer Table

custkey	region	nation	
1	ASIA	CHINA	
2	ASIA	INDIA	
3	ASIA	INDIA	
4	EUROPE	FRANCE	

Apply "region = 'Asia' " On Supplier Table

suppkey	region	nation	
1	ASIA	RUSSIA	
2	EUROPE	SPAIN	
3	ASIA	JAPAN	

Hash Table (or bit-map) Containing Keys 1, 3

Apply "year in [1992,1997]" On Date Table

dateid	year	
01011997	1997	
01021997	1997	
01031997	1997	

Hash Table Containing Keys 01011997, 01021997, and 01031997

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009) Original Fact Table "Column-Stores vs Row-Stores: suppkey orderdate revenue orderkey custkey How Different are They Really?" Abadint. al. SICMOD 2008, **Hash Table Hash Table Hash Table Containing** Containing Containing Keys 01011997, **Keys 1, 2 and 3** Keys 1 and 3 01021997, and 01031997 orderdate custkey suppkey

VLDB 2009 Tutorial

1997

1997

"Column-Stores vs Row-Stores: How Different are They Really?" Abadi, Madden, and Hachem. SIGMOD 2008.

Invisible Join

Apply "region = 'Asia' " On Customer Table

custkey	region	nation	
1	ASIA	CHINA	
2	ASIA	INDIA	
3	ASIA	INDIA	
4	EUROPE	FRANCE	

Hash Table (or bit-map)
Containing Keys 1, 2 and 3

Range [1-3] (between-predicate rewriting)

Apply "region = 'Asia' " On Supplier Table

suppkey	region	nation	
1	ASIA	RUSSIA	
2	EUROPE	SPAIN	
3	ASIA	JAPAN	

Hash Table (or bit-map) Containing Keys 1, 3

Apply "year in [1992,1997]" On Date Table

dateid	year	
01011997	1997	
01021997	1997	
01031997	1997	

Hash Table Containing Keys 01011997, 01021997, and 01031997

Invisible Join

Bottom Line

- Many data warehouses model data using star/snowflake schemes
- Joins of one (fact) table with many dimension tables is common
- Invisible join takes advantage of this by making sure that the table that can be accessed in position order is the fact table for each join
- Position lists from the fact table are then intersected (in position order)
- This reduces the amount of data that must be accessed out of order from the dimension tables
- "Between-predicate rewriting" trick not relevant for this discussion

Jive/Flash Join

"Fast Joins using Join Indices". Li and Ross, VLDBJ 8:1-24, 1999.

CHINA
INDIA
INDIA
FRANCE

Still accessing table out of order

"Query Processing Techniques for Solid State Drives". Tsirogiannis, Harizopoulos et. al. SIGMOD 2009.

Jive/Flash Join

- Add column with dense ascending integersfrom 1
- Sort new position list by second column
- 3. Probe projected column in order using new sorted position list, keeping first column from position list around
- Sort new result by first column

Jive/Flash Join

Bottom Line

- Instead of probing projected columns from inner table out of order:
 - Sort join index
 - Probe projected columns in order
 - Sort result using an added column
- LM vs EM tradeoffs:
 - LM has the extra sorts (EM accesses all columns in order)
 - LM only has to fit join columns into memory (EM needs join columns and all projected columns)
 - Results in big memory and CPU savings (see part 3 for why there is CPU savings)
 - LM only has to materialize relevant columns
 - In many cases LM advantages outweigh disadvantages
- LM would be a clear winner if not for those pesky sorts ... can we do better?

Radix Cluster/Decluster

- The full sort from the Jive join is actually overkill
 - We just want to access the storage blocks in order (we don't mind random access within a block)
 - So do a radix sort and stop early
 - By stopping early, data within each block is accessed out of order, but in the order specified in the original join index
 - Use this pseudo-order to accelerate the post-probe sort as well
 - •"Database Architecture Optimized for the New Bottleneck: Memory Access" VLDB' 99
 - •"Generic Database Cost Models for Hierarchical Memory Systems", VLDB' 02 (all Manegold, Boncz, Kersten)

"Cache-Conscious Radix-Decluster Projections", Manegold, Boncz, Nes, VLDB' 04

Radix Cluster/Decluster

- Bottom line
 - Both sorts from the Jive join can be significantly reduced in overhead
 - Only been tested when there is sufficient memory for the entire join index to be stored three times
 - Technique is likely applicable to larger join indexes, but utility will go down a little
 - Only works if random access within a storage block
 - Don't want to use radix cluster/decluster if you have variablewidth column values or compression schemes that can only be decompressed starting from the beginning of the block

LM vs EM joins

- Invisible, Jive, Flash, Cluster, Decluster techniques contain a bag of tricks to improve LM joins
- Research papers show that LM joins become 2X faster than EM joins (instead of 2X slower) for a wide array of query types

Tuple Construction Heuristics

- For queries with selective predicates, aggregations, or compressed data, use late materialization
- For joins:
 - Research papers:
 - Always use late materialization
 - Commercial systems:
 - Inner table to a join often materialized before join (reduces system complexity):
 - Some systems will use LM only if columns from inner table can fit entirely in memory

Outline

- Computational Efficiency of DB on modern hardware
 - how column-stores can help here
 - Keynote revisited: MonetDB & VectorWise in more depth
- CPU efficient column compression
 - vectorized decompression
- Conclusions
 - future work

Column-Oriented Database Systems

VLDB 2009 Tutorial

40 years of hardware evolution

VS.

DBMS computational efficiency

CPU Architecture

Elements:

- Storage
 - CPU caches L1/L2/L3
- Registers
- Execution Unit(s)
 - Pipelined
 - SIMD

CPU Metrics

16-bit	32
address/,	add
bus,	b
micro-	mi
coded	co
80286	80
1982	19
134	2
6	
16	
12.5	- 1
2	
320	3
	address/, bus, micro- coded 80286 1982 134 6 16 12.5

CPU Metrics

Processor	16-bit	32-bit	5-stage	2-way	Out-of-	Out-of-order,	Multi-core
	address/,	address/	pipeline,	super-	order,	super-	
	bus,	bus,	on-chip	scalar,	3-way	pipelined,	
	micro-	micro-	I&D caches	64-bit bus	super-	on-chip	
	coded	coded	FPU		$_{ m scalar}$	L2 cache	
Product	80286	80386	80486	Pentium	PentiumPro	Pentium4	CoreDuo
Year	1982	1985	1989	1993	1997	2001	2006
Transistors	134	275	1,200	3,100	5,500	42,000	151,600
(thousands)							
Latency	6	5	5	5	10	22	12
(clocks)							
Bus width	16	32	32	64	64	64	64
(bits)							
Clock rate	12.5	16	25	66	200	1500	2333
(MHz)							
Bandwidth	2	6	25	132	600	4500	21000
(MIPS)							
Latency	320	313	200	76	50	15	5
(ns)							

DRAM Metrics

Super-Scalar Execution (pipelining)

Hazards

- Data hazards
 - Dependencies between instructions
 - L1 data cache misses

- Control Hazards
 - Branch mispredictions
 - Computed branches (late binding)
 - L1 instruction cache misses

Result: bubbles in the pipeline

	I	ı :	I	ı	I	ı	Flushe	d instr	uctions		ı	ı	
Instruction fetch	IF−1	IF-2	IF−3	IF-4	IF−5	IF-6	8 5// 7//	%F//8 //	<u> </u>	IF-7			• • •
Instruction decode		ID-1	ID-2	ID-3	ID-4	ID-5	ID-6	8 0/ 7//	10/8/	•	ID-7		
Execute			EX-1	EX-2	EX- 3	EX-4	EX-5	EX-6	#X+1 /	•		EX-7	
Write back				WB-1	WB-2	WB-3	WB-4	WB-5	WB-6	•	•	•	WB-7

Out-of-order execution addresses data hazards

control hazards typically more expensive

- Single Instruction Multiple Data
 - Same operation applied on a vector of values
 - MMX: 64 bits, SSE: 128bits, AVX: 256bits
 - SSE, e.g. multiply 8 short integers

A Look at the Query Pipeline

SELECT id, name
(age-30)*50 AS bonus
FROM employee
WHERE age > 30

A Look at the Query Pipeline

Operators

Iterator interface

-open()

-next(): tuple

-close()

A Look at the Query Pipeline

Primitives

Provide computational functionality

All arithmetic allowed in expressions, e.g. Multiplication

Database Architecture causes Hazards

DB workload execution on a modern computer

"DBMSs On A Modern Processor: Where Does Time Go?" Ailamaki, DeWitt, Hill, Wood, VLDB' 99

DBMS Computational Efficiency

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- Results:
 - C program: ?
 - MySQL: 26.2s
 - DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR' 05

DBMS Computational Efficiency

TPC-H 1GB, query 1

 selects 98% of fact table, computes net prices and aggregates all

Results:

• C program: 0.2s

• MySQL: 26.2s

DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR' 05

Column-Oriented Database Systems

VLDB 2009 Tutorial

MONET DB a column-store

- "save disk!/Q when scan-intensive queries meed a few celumns"
- "avoid an expression interpreter to improve computational efficiency"

peop (void)	le_id (int)	pec (void)	ople_name (str)	people (void)	e_age (int)
0	101	0	Alice	0	22
1	102	1	lvan	1	37
2	104	2	Peggy	2	45
3	105	3	Victor	3	25
4	108	4	Eve	4	19
5	109	5	Walter	5	31
6	112	6	Trudy	6	27
7	113	7	Bob	7	29
8	114	8	Zoe	8	42
9	115	9	Charlie	9	35

SELECT id, name, (age-30)*50 as bonus

FROM people

WHERE age > 30

RISC Database Algebra

CPU happy? Give it "nice" code!

- few dependencies (control,data)
- CPU gets out-of-order execution
- compiler can e.g. generate SIMD

One loop for an entire column

- no per-tuple interpretation
- arrays: no record navigation
- better instruction cache locality

Simple, hardcoded semantics in operators

RISC Database Algebra

CPU happy? Give it "nice" code!

- few dependencies (control,data)
- CPU gets out-of-order execution
- compiler can e.g. generate SIMD

One loop for an entire column

- no per-tuple interpretation
- arrays: no record navigation
- better instruction cache locality

```
for(i=0; i<n; i++)
    res[i] = col[i] - val;
}</pre>
```


a column-store

- "save disk i/O when scan-intensive queries incode a few columns"
- "avoid an expression interpreter to improve computational efficiency"

How?

- RISC query algebra: hard-coded semantics
 - Decompose complex expressions in multiple operations
- Operators only handle simple arrays
 - No code that handles slotted buffered record layout
- Relational algebra becomes array manipulation language
 - Often SIMD for free
 - Plus: use of cache-conscious algorithms for Sort/Aggr/Join

a Faustian pact

- You want efficiency
 - Simple hard-coded operators
- I take scalability
 - Result materialization

C program: 0.2s

MonetDB: 3.7s

MySQL: 26.2s

DBMS "X":

28.1s

Column-Oriented Database Systems

VLDB 2009 Tutorial

MONET DB as a research platform

SIGMOD 1985

A DECOMPOSITION STORAGE MODEL

relations mign.

Hollenbach, VLDBJ' 09

Web data management" Abadi, Marcus, Madden,

The MONET DB Software Stack

frontend

backend

- Cache-Conscious Joins
 - Radix-decluster
- MonetDB/XQuery:
 - structural joins exploiting positional column access
- Cracking:

MonetDB

- on-the-fly automatic indexing without workload knowledge
- Recycling:
- Run-time Query Optimization:
 - correlation-aware run-time optimization without cost model

 "Database Architecture Optimized for the New Bottleneck: Memory Access" VLDB' 99

3oncz (20)

- Cost Models, Radix-cluster "Generic Database Cost Models for Hierarchical Memory Systems", VLDB' 02 (all Manegold, Boncz, Kersten)
 - "Cache-Conscious Radix-Decluster Projections", Manegold, Boncz, Nes, VLDB' 04

"MonetDB/XQuery: a fast XQuery processor powered by a relational engine" Boncz, Grust, vanKeulen, Rittinger, Teubner, SIGMOD' 06

"Database Cracking", CIDR' 07

"Updating a cracked database ", SIGMOD' 07 "Self-organizing tuple reconstruction in columnstores", SIGMOD' 09 (all Idreos, Manegold, Kersten)

"An architecture for recycling intermediates in a using materialized intermediates column-store", Ivanova, Kersten, Nes, Goncalves, SIGMOD'09

> "ROX: run-time optimization of XQueries", Abdelkader, Boncz, Manegold, vanKeulen, SIGMOD'09

Column-Oriented Database Systems

VLDB 2009 Tutorial

vectorwise

"MonetDB/X100" vectorized query processing

MonetDB spin-off: MonetDB/X100

vectorwise

Materialization vs Pipelining

"Vectorized In Cache Processing"

vector = array of \sim 100

processed in a tight loop

CPU cache Resident

Observations:

next() called much less often →
more time spent in primitives less
in overhead

primitive calls process an array of values in a **loop**:

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD

Observations:

next() called much less often →
more time spent in primitives less
in overhead

primitive calls process an array of values in a **loop**:

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD

Tricks being played:

- Late materialization
- Materialization avoidance using selection vectors


```
map_mul_flt_val_flt_col(
  float *res,
  int* sel,
  float val,
  float *col, int n)
  for(int i=0; i<n; i++)
         res[i] = val * col[sel[i]];
selection vectors used to reduce
vector copying
contain selected positions
```



```
map_mul_flt_val_flt_col(
  float *res,
  int* sel,
  float val,
  float *col, int n)
  for(int i=0; i<n; i++)
         res[i] = val * col[sel[i]];
selection vectors used to reduce
vector copying
contain selected positions
```


MonetDB/X100

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

- Both efficiency
 - Vectorized primitives
- and scalability...
 - Pipelined query evaluation

C program: 0.2s

MonetDB/X100: 0.6s

MonetDB: 3.7s

MySQL: 26.2s

DBMS "X":

28.1s

Memory Hierarchy

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR' 05

Chented Database Systems

(raid)

Disk(s)

Memory Hierarchy

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR' 05

Vectors are only the in-cache representation

RAM & disk representation might actually be different

(vectorwise uses both PAX & DSM)

Optimal Vector size?

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR' 05

All vectors together should fit the CPU cache

Optimizer should tune this, given the query characteristics.

vectorwise

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes,

Varying the Vector Size

Varying the Vector Size

vectorwise

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes,

Varying the Vector \$126

Benefits of Vectorized Processing

- 100x less Function Calls
 - iterator.next(), primitives
- No Instruction Cache Misses
 - High locality in the primitives
- Less Data Cache Misses
 - Cache-conscious data placement
- No Tuple Navigation
 - Primitives are record-oblivious, only see arrays
- Vectorization allows algorithmic optimization
 - Move activities out of the loop ("strength reduction")
- Compiler-friendly function bodies
 - Loop-pipelining, automatic SIMD

"Buffering Database Operations for Enhanced Instruction Cache Performance" Zhou, Ross, SIGMOD' 04

> "Block oriented processing of relational database operations in modern computer architectures" Padmanabhan, Malkemus, Agarwal, ICDE' 01

"Balancing Vectorized Query Execution with Bandwidth Optimized Storage" Zukowski, CWI 2008

Vectorizing Relational Operators

- Project
- Select
 - Exploit selectivities, test buffer overflow
- Aggregation
 - Ordered, Hashed
- Sort
 - Radix-sort nicely vectorizes
- Join
 - Merge-join + Hash-join

Column-Oriented Database Systems

VLDB 2009 Tutorial

Efficient Column Store Compression

vectorwise

Key Ingredients

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE' 06

- Compress relations on a per-column basis
 - Columns compress well
- Decompress small vectors of tuples from a column into the CPU cache
 - Minimize main-memory overhead
- Use light-weight, CPU-efficient algorithms
 - Exploit processing power of modern CPUs

vectorwise

Key Ingredients

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE' 06

- Compress relations on a per-column basis
 - Columns compress well
- Decompress small vectors of tuples from a column into the CPU cache
 - Minimize main-memory overhead

Vectorized Decompression

ldea:

decompress a vector only

compression:

- -between CPU and RAM
- -Instead of disk and RAM (classic)

RAM-Cache Decompression

- Decompress vectors on-demand into the cache
- RAM-Cache boundary only crossed once
- More (compressed) data cached in RAM
- Less bandwidth use

Multi-Core Bandwidth & Compression

Performance Degradation with Concurrent Queries

CPU Efficient Decompression

- Decoding loop over cache-resident vectors of code words
- Avoid control dependencies within decoding loop
 - no if-then-else constructs in loop body
- Avoid data dependencies between loop iterations

Disk Block Layout DE'06

 Forward growing section of arbitrary size code words (code word size fixed per block)

- Forward growing section of arbitrary size code words (code word size fixed per block)
- Backwards growing exception list

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz,

Naïve Decompression Algorithm

 Use reserved value from code word domain (MAXCODE) to mark exception positions

```
int code[n]; /* temporary machine addressable buffer ,

/* blow up next vector of b-bit input code words into machine addressable representation */
UNPACK[b] (code, input, n);

for(i=j=0; i<n; i++) {
    if (code[i] < MAXCODE) {
        output[i] = DECODE(code[i]);
    } else {
        output[i] = exception[--j]);
    }
}</pre>
```


"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz,

Deterioriation With Exception%

Xeon Decompression Bandwidth

1.2GB/s deteriorates to 0.4GB/s

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz,

Deterioriation With Exception%

• Perf Counters: CPU mispredicts if-then-else

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE' 06

Patching

 Maintain a patch-list through code word section that links exception positions

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz, ICDE' 06

Patching

- Maintain a patch-list through code word section that links exception positions
- After decoding, patch up the exception positions with the correct values

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz,

Patched Decompression

```
/* initialize cur to index of first exception within codes */
int cur = first exception;
int code[n]; /* temporary machine addressable buffer /
/* blow up next vector of b-bit input code words into machine
    addressable representation */
UNPACK[b] (code, input, n) ;
/* LOOP1: decode all values */
for(int i=0; i<n; i++) {
         output[i] = DECODE(code[i]);
/* LOOP2: patch it up */
for(int i=1; cur < n; i++) {
          output[cur] = exception[-i];
```

cur = cur + code[cur];

"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz,

Patched Decompression

```
/* initialize cur to index of first exception within codes */
int cur = first exception;
int code[n]; /* temporary machine addressable buffer /
/* blow up next vector of b-bit input code words into machine
    addressable representation */
UNPACK[b] (code, input, n) ;
/* LOOP1: decode all values */
for(int i=0; i<n; i++) {
          output[i] = DECODE(code[i]);
/* LOOP2: patch it up */
for(int i=1; cur < n; i++) {
          output[cur] = exception[-i];
          cur = cur + code[cur];
```


"Super-Scalar RAM-CPU Cache Compression" Zukowski, Heman, Nes, Boncz,

Decompression Bandwidth

Xeon Decompression Bandwidth

Patching makes two passes, but is faster!

Column-Oriented Database Systems

VLDB 2009 Tutorial

Conclusion

Summary (1/2)

- Columns and Row-Stores: different?
 - No fundamental differences
 - Can current row-stores simulate column-stores now?
 - not efficiently: row-stores need change
 - On disk layout vs execution layout
 - actually independent issues, on-the-fly conversion pays off
 - column favors sequential access, row random
 - Mixed Layout schemes
 - Fractured mirrors
 - PAX, Clotho
 - Data morphing

Summary (2/2)

- Crucial Columnar Techniques
 - Storage
 - Lean headers, sparse indices, fast positional access
 - Compression
 - Operating on compressed data
 - Lightweight, vectorized decompression
 - Late vs Early materialization
 - Non-join: LM always wins
 - Naïve/Invisible/Jive/Flash/Radix Join (LM often wins)
 - Execution
 - Vectorized in-cache execution
 - Exploiting SIMD

Future Work

- looking at write/load tradeoffs in column-stores
 - read-only vs batch loads vs trickle updates vs OLTP

Updates (1/3)

- Column-stores are update-in-place averse
 - In-place: I/O for each column
 - + re-compression
 - + multiple sorted replicas
 - + sparse tree indices

Update-in-place is infeasible!

Updates (2/3)

- Column-stores use differential mechanisms instead
 - Differential lists/files or more advanced (e.g. PDTs)
 - Updates buffered in RAM, merged on each query
 - Checkpointing merges differences in bulk sequentially
 - I/O trends favor this anyway
 - trade RAM for converting random into sequential I/O
 - this trade is also needed in Flash (do not write randomly!)
 - How high loads can it sustain?
 - Depends on available RAM for buffering (how long until full)
 - Checkpoint must be done within that time
 - The longer it can run, the less it molests queries
 - Using Flash for buffering differences buys a lot of time
 - Hundreds of GBs of differences per server

Updates (3/3)

- Differential transactions favored by hardware trends
- Snapshot semantics accepted by the user community
 - can always convert to serialized
 "Serializable Isolation For Snapshot Databases"
 Alomari, Cahill, Fekete, Roehm, SIGMOD' 08
- → Row stores could also use differential transactions and be efficient!
 - Implies a departure from ARIES
 - Implies a full rewrite

My conclusion:

a system that combines row- and columns needs differentially implemented transactions.

Starting from a pure column-store, this is a limited add-on. Starting from a pure row-store, this implies a full rewrite.

Future Work

- looking at write/load tradeoffs in column-stores
 - read-only vs batch loads vs trickle updates vs OLTP
- database design for column-stores
- column-store specific optimizers
 - compression/materialization/join tricks → cost models?
- hybrid column-row systems
 - can row-stores learn new column tricks?
 - Study of the minimal number changes one needs to make to a row store to get the majority of the benefits of a column-store
 - Alternative: add features to column-stores that make them more like row stores

Conclusion

- Columnar techniques provide clear benefits for:
 - Data warehousing, BI
 - Information retrieval, graphs, e-science
- A number of crucial techniques make them effective
 - Without these, existing row systems do not benefit
- Row-Stores and column-stores could be combined
 - Row-stores may adopt some column-store techniques
 - Column-stores add row-store (or PAX) functionality
- Many open issues to do research on!

