1 二次方程式とグラフの関係性

まとめ

検討

二次関数 $y = x^2 + 3x - 4$ について, いろいろ調べてみよう.

$y = ax^2 + bx + c$ について

$D = b^2 - 4ac$		
a>0 で グラフの形		
a < 0 で グラフの形		
x 軸との 位置関係		
x 軸との 共有点の個数		
$ax^2 + bx + c = 0$ の実数解		

練習 1

以下の2次方程式を解け.

$$(1) \ x^2 - 3x + 2 = 0$$

$$(2) \ x^2 + 2x + 1 = 0$$

$$(3) \ x^2 + x - 3 = 0$$

練習 2

次の 2 次関数のグラフと x 軸の共有点の個数を求めよ.

$$(1) \ y = x^2 + 4x - 5$$

$$(2) \ y = -2x^2 + 3x - 1$$

$$(3) \ y = 3x^2 - 4x + 5$$

練習3

以下の問いに答えよ.

(1) 2 次方程式 $x^2 + 2x + m = 0$ が、異なる 2 つの実数解を持つ とき、定数 m の値の範囲を求めよ.

(2) m を定数とする. 2 次方程式 $x^2 + mx + 1 = 0$ が重解を持つように、定数 m の値を求めよ. また、その重解を求めよ.

練習 4

以下の問いに答えよ.

(1) 2次関数 $y = x^2 + 4x + m$ のグラフと x 軸の共有点の個数は、定数 m の値によってどのように変わるか.

(2) m を定数とする. 2 次関数 $y = x^2 + 2x + m$ のグラフと x 軸の共有点の個数を求めよ.

1.1 定数分離

例題

2 次関数 $y = x^2 + 4x + 3 - k$ が x 軸と共有点を持たないように、定数 k の値の範囲を求めよ.

定数分離

練習

(1) 方程式 $y=x^2+4x+3-k$ とx軸の共有点の個数を求めよ.

(2) 方程式 $y = -x^2 + 2x + 1 - 2k$ と x 軸の共有点の個数を求めよ.

1.2 連立方程式って

復習

(1) 連立方程式 $\begin{cases} y = x+1 \\ y = 2x+3 \end{cases}$ を解け.

(2) 2 つのグラフを描き, 共有点の座標を求めてみよう.

y									
							,	x	

練習

(1) 放物線 $y=x^2+5x+5$ と、直線 y=x+2 の共有点の座標を求めよ.

(2) 放物線 $y=2x^2+3$ と、直線 y=-3x+5 の共有点の座標を求めよ.

(3) 放物線 $y=x^2+3x+3$ と, 直線 y=x+2の共有点の座標を求めよ.

練習

- (1) 放物線 $y=x^2+3x+1$ と、直線 y=x+k が接するとき、定数 k の値を求めよ、また、そのときの接点の座標を求めよ、
- (2) 放物線 $y = -x^2 + 2$ と、直線 y = x k が共有点を持たないように、定数 k の値の範囲を求めよ.