Otimização II

Prof. Dr. Paulo Roberto Maia

Paulo.maia@inatel.br

P108 - Otimização II

Agenda

- ☐ Problema do fluxo máximo;
- ☐ Problema do caminho mínimo
- ☐ Problema custo mínimo

Redes

☐ Problema que representa um outro caso especial de problemas de redes, em que as arestas significam a distância entre 2 pontos (nós).

O objetivo e encontrar o caminho mínimo que une estes pontos. Os nós intermediários, podem representar cidades, subestações etc...

Exemplo 1

Passos para resolução do problema:

1. Definição das variáveis de decisão;

- 2. Definição da função objetivo;
- 3. Definição das restrições;
- 4. Resolução do problema.

Exemplo 1

Variáveis de **Decisão**

 X_{ij} = Variáveis binárias, se o valor da variável for igual a 1, significa que aquele trecho deve ser percorrido, se for igual a 0, o trecho não deve ser percorrido.

Exemplo 1

Passos para resolução do problema:

- 1. Definição das variáveis de decisão;
- 2. Definição da função objetivo;
- 3. Definição das restrições;
- 4. Resolução do problema.

Exemplo 1

Função objetivo

Min
$$Z = 4X_{12} + 7X_{13} + 5X_{25} + 3X_{23} + 2X_{34} + 3X_{45}$$

Exemplo 1

Passos para resolução do problema:

- 1. Definição das variáveis de decisão;
- 2. Definição da função objetivo;
- 3. Definição das restrições;

4. Resolução do problema.

Exemplo 1

Restrições

Nó 1
$$X_{12} + X_{13} = 1$$

Nó 2
$$X_{12} - X_{23} - X_{25} = 0$$

$$N_{63}$$
 $X_{13} + X_{23} - X_{34} = 0$

$$N_{04}$$
 $X_{34} - X_{45} = 0$

$$N_{05}$$
 $X_{25} + X_{45} = 1$

$$X_{ij} = 0 \text{ ou } 1; \quad i = 1, 2,; \quad j = 1, 2,$$

Exemplo 1

Passos para resolução do problema:

- 1. Definição das variáveis de decisão;
- 2. Definição da função objetivo;
- 3. Definição das restrições;
- 4. Resolução do problema.

Exemplo 1

Função **objetivo**

$$Min Z = 9$$

Variável de decisão	Valor	
X12	1	
X13	0	
X23	0	
X25	1	
X34	0	
X45	0	

Exemplo 2

Função **objetivo**

$$Min Z = 9$$

Variável de decisão	Valor	
X12	0	
X13	1	
X14	0	
X25	0	
X34	0	
X35	1	
X36	0	
X46	0	
X57	1	
X67	0	

Exemplo 3

Função **objetivo**

Min Z = 15

Variável de decisão	Valor
Xsa	0
Xsc	1
Хав	0
XAD	0
XBC	0
Хве	0
XBF	0
XCF	1
XDt	0
XEt	0
XFE	0
XFt	1

Considere um grafo (G) ponderado com os "pesos" das arestas, orientado, definidos a origem e destino.

O peso de cada aresta deve ser positivo.

Problemas de logística;

Redes de computadores;

Tráfego humano;

Sistemas Rodoviários e Aéreos.

Exemplo 3

	S	Α	В	С	D	Е	F	t
1ª Iteração (s)	(0,s)	(8,s)		(5,s)				
2ª iteração (C)				(5,s)			(9,C)	
3ª Iteração (A)		(8,s)	(12,A)		(13,A)			
4ª Iteração (F)						(12,F)	(9,C)	(15,F)
5ª iteração (B)			(12,A)	(15,B)		(14,B)	(14,B)	
6ª Iteração (E)						(12,F)		(16,E)
7ª Iteração (D)					(13,A)			(19,D)
8ª iteração (t)								(15,F)

1) Considere o modelo de rede a seguir, números indicados em cada aresta significam o número de quilômetros necessários para um automóvel percorrer a estrada entre duas cidades indicadas pelos nós extremos das arestas observadas. Formule o modelo e determine a rota que um automóvel deve seguir para sair de São Paulo a Pouso Alegre, percorrendo a menor quantidade de quilômetros possível. Modele o problema e resolva-o com auxílio do solver e pelo algoritmo Dijkstra. (**Z**= **1.600**)

2) A rede abaixo representa uma rede de transmissão de músicas em formato MP3 entre duas estações de rádio (nós A e B) pertencentes a uma mesma empresa. O envio das músicas da estação A para estação B pode se dar através de diversos pontos de transmissão, os quais estão representados pelos nós 1, 2, 3 e 4. Os valores sobre os arcos representam o tempo de transmissão (em segundos) de uma música de um nó para outro. Pede-se: descubra qual é o caminho mais rápido que a empresa deve escolher para enviar uma música da estação A para estação B. Formule e resolva através do Solver e pelo algoritmo Dijkstra. (Z= 11)

3) Uma firma industrial localizada na cidade 1 embarca seu produto através de via férrea para a cidade 5. Várias rotas diferentes estão disponíveis, como mostrado no diagrama de rede a seguir. Cada círculo na cadeia representa uma cidade com junção de via férrea. Cada aresta é uma filial de via férrea entre duas cidades. O número sobre cada aresta é o custo necessário para transportar 1 tonelada de produto de cidade para cidade. A empresa quer transportar 5 toneladas de seu produto da cidade A para cidade P a um custo mínimo. Formule e resolva através do Solver e pelo algoritmo Dijkstra. (**Z**= 9.000)

4) Encontre a trilha mais curta entre os nós 1 e 6. Todos os arcos são ← → .Formule e resolva através do Solver e pelo algoritmo Dijkstra. (**Z**= **10**)

5) A RentCar está desenvolvendo uma política de reposição para sua frota de carros considerando uma projeção de planejamento de quatro anos. No início de cada ano é tomada uma decisão sobre a conservação em operação ou reposição de um carro. Um carro deve permanecer em serviço por no mínimo um ano e no máximo três anos. A tabela a seguir dá o custo de reposição como função do ano em que o carro foi adquirido e do número de anos em operação. Formule e resolva através do Solver e pelo algoritmo Dijkstra. (**Z**= **12.500**)

Equipamento adquirido	Custo de reposição (R\$) por anos em operação		
no início do ano	1	2	3
1	4.000	5.400	9.800
2	4.300	6.200	8.700
3	4.800	7.100	-
4	4.900	-	-

6) A RentCar está desenvolvendo uma política de reposição para sua frota de carros considerando uma projeção de planejamento de quatro anos. No início de cada ano é tomada uma decisão sobre a conservação em operação ou reposição de um carro. Um carro deve permanecer em serviço por no mínimo dois anos e no máximo quatro anos. A tabela a seguir dá o custo de reposição como função do ano em que o carro foi adquirido e do número de anos em operação. Formule e resolva através do Solver e pelo algoritmo Dijkstra. (**Z**= **8.900**)

Equipamento adquirido	Custo de reposição (R\$) por anos em operação		
no início do ano	2	3	4
1	3.800	4.100	6.800
2	4.000	4.800	7.000
3	4.200	5.300	7.200
4	4.800	5.700	-
5	5.300	-	-

- Frederick S. Hillier, Gerald J. Lieberman; Introdução à Pesquisa Operacional; 9ª Edição, Editora Mc Graw Hill; 2013.
- Marcos Arenales, Vinícius Armentano, Reinaldo Morabito, Horacio Yanasse; Pesquisa Operacional; 6ª Edição, Editora Campus, 2007.
- Eduardo L. de Andrade, Introdução a Pesquisa Operacional; 4ª Edição; Editora LTC; 2009.
- Gerson Lachtermacher, Pesquisa Operacional, 4ª Edição, Editora Pearson, 2009.
- Wagner, H.M., Pesquisa Operacional, 2a edição. Prentice-Hall do Brasil, 1986.
- Taha, H. A., Pesquisa Operacional, 8a edição. Pearson (Prentice-Hall), 2008

Sobre a disciplina

Dúvidas?

Obrigado!