

	Raketenstart		
Aufgabennummer: B_054			
Technologieeinsatz:	möglich ⊠	erforderlich	

Trägerraketen ermöglichen es, schwere Nutzlasten in die Erdumlaufbahn zu befördern. Ariane 5 ist die leistungsfähigste europäische Trägerrakete.

Beim Start der Ariane 5 lässt sich der senkrecht nach oben zurückgelegte Weg s in Abhängigkeit von der Zeit *t* modellhaft annähernd durch eine quadratische Funktion beschreiben.

a)

t in s	s(t) in m
0	0
2	16,1
4	53,8

t ... Zeit in Sekunden (s)

s(t) ... zurückgelegter Weg in Metern (m) zum Zeitpunkt t

- Stellen Sie die allgemeine Funktion s für den gegebenen Zusammenhang auf.
- Ermitteln Sie mithilfe der Werte aus der Tabelle die entsprechenden Parameter der Funktion s.
- b) Folgender Graph beschreibt modellhaft den zurückgelegten Weg s in Abhängigkeit von der Zeit *t* in der Startphase der Rakete:

- Erklären Sie den Unterschied zwischen der Momentangeschwindigkeit v für den Zeitpunkt $t_0 = 30$ s und der Durchschnittsgeschwindigkeit \overline{v} für $\Delta t = 30$ s 0 s mithilfe der Begriffe Differenzenquotient und Differenzialquotient.
- Veranschaulichen Sie diese in obiger Grafik.

- c) Die Beschleunigung der Ariane 5 in der Startphase beträgt etwa 5,4 m/s².
 - Stellen Sie die Funktionen für die Beschleunigung, die Geschwindigkeit und den Weg in Abhängigkeit von der Zeit auf.
- d) Der Graph stellt die Geschwindigkeit-Zeit-Funktion *v* der Rakete in den ersten 5 Sekunden des Starts dar.

- Veranschaulichen Sie die Abhängigkeit der Beschleunigung-Zeit-Funktion a und der Weg-Zeit-Funktion s von der gegebenen Funktion v, indem Sie a und s zeichnen.
- Erklären Sie, was man aus der Kenntnis der Eigenschaften des Graphen von *v* über die Graphen von *a* und *s* aussagen kann.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

a) Aufstellen der allgemeinen Gleichung einer quadratischen Funktion:

$$s(t) = at^2 + bt + c$$

Aufstellen eines Gleichungssystems:

I:
$$c = 0$$

II:
$$4a + 2b = 16,1$$

III:
$$16a + 4b = 53.8$$

Lösen des linearen Gleichungssystems:

$$a = 2,7$$
, $b = 2,65$, $c = 0$

$$s(t) = 2.7t^2 + 2.65t$$

Alternative Lösungen über Datenfit-Routine sind auch zulässig, z. B. mit GeoGebra: TrendPoly {Liste von Punkten; Grad der Funktion}.

b)

$$\overline{v}(t) = \frac{\Delta s}{\Delta t} \dots$$
 Steigung der Sekante, Differenzenquotient

Die Durchschnittsgeschwindigkeit ist der Differenzenquotient aus Wegdifferenz durch Zeitdifferenz. (In diesem Fall ist $\Delta t = 30$ s, Δs errechnet man aus der Funktionsgleichung.)

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt} = s'(t)$$
 ... Steigung der Tangente, Differenzialquotient

Die Momentangeschwindigkeit erhält man durch die Bildung des Grenzwerts des Differenzenquotienten, wobei man Δt gegen 0 streben lässt. Der Differenzialquotient ist die erste Ableitung des Weges nach der Zeit und die Steigung der Tangente an der Stelle t=30 s.

c)
$$a(t) = 5.4$$

 $v(t) = \int 5.4 dt = 5.4t + C_1$
 $s(t) = \int (5.4t + C_1) dt = 2.7t^2 + C_1t + C_2$

 $C_2 = 0$, da der zurückgelegte Weg zum Zeitpunkt t = 0 gleich 0 ist. $C_1 = 0$, da die Geschwindigkeit zum Zeitpunkt t = 0 gleich 0 ist.

$$v(t) = 5.4t$$

 $s(t) = 2.7t^2$

d)

a ist die Steigungsfunktion von v. Da die Geschwindigkeit linear steigt, ist die Beschleunigung konstant, und der Graph von a ist eine waagrechte Gerade.

 $\it v$ ist die Steigungsfunktion von s. Da die Geschwindigkeit linear zunimmt, steigt der Weg mit dem Quadrat der Zeit, und s ist eine quadratische Funktion.

Klassifikation

☐ Teil A 🗵 Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 2 Algebra und Geometrie
- b) 4 Analysis
- c) 4 Analysis
- d) 4 Analysis

Nebeninhaltsdimension:

- a) —
- b) —
- c) —
- d) 3 Funktionale Zusammenhänge

Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) D Argumentieren und Kommunizieren
- c) B Operieren und Technologieeinsatz
- d) B Operieren und Technologieeinsatz

Nebenhandlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) —
- c) A Modellieren und Transferieren
- d) D Argumentieren und Kommunizieren

Schwierigkeitsgrad:

Punkteanzahl:

a) leicht
 b) leicht
 b) 4
 c) mittel
 d) schwer
 d) 4

Thema: Physik

Quellen: http://www.raumfahrer.net, http://www.esa.int