Probability Refresher

Sample Space of an Experiment

 A random experiment is one whose outcome cannot be predicted with certainty.

e.g. Toss of a coin, roll of a dice, etc.

• Sample space (S) represents the set of all possible outcomes of the experiment.


```
e.g. Toss of a coin = {H, T}

Roll of a single dice = {1, 2, 3, 4, 5, 6}

Roll of two dice = {11, 12, ..., 16,

21, 22, ..., 26,

...,

61, 62,..., 66 }
```

Sample Space and Event

- An event (E) is a subset of S (sample space).
- Example:
 - Tossing a coin:

$$S = \{H, T\}$$
 $E = \{H\}$ is an event.

- Tossing a coin twice:

$$S = \{HH, HT, TH, TT\}$$

E = {HH, HT} is an event which describes the set which has the first outcome as heads

- Tossing a dice:

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{2, 4, 6\}$ is an event which describes the set in which the number is even.

Random Variable

• Suppose to each outcome in the sample space, we associate a value.

e.g. for heads, +1 and for tails -1 for even rolls of dice +1 and for odd rolls of dice -1

- Such a variable is known as a random variable.
- Formal definition:

A **random variable** is a function that assigns a real number to each outcome in the sample space of a random experiment.

It is generally denoted by X.
 If X takes a value x, it is written as: X = x

Random Variable

• If we restrict the random variable to the Boolean set, it may be defined as a function f:

f is a function defined over S as follows:

$$f: S \rightarrow \{0, 1\}$$

f maps every value in S to either 0 (failure) or 1 (success)

Examples of Random Variables:

 Suppose each experiment is tossing of 4 coins. You do this experiment multiple times

```
Results:
{HHHT}
{HTHT}
```

• • •

If you count the number of heads in each experiment, it would be a random variable (X)

X could have values from 0 to 4.

Each element of the sample space would map to one value of X

Examples of Random Variables:

• Suppose each experiment is sampling 100 people from a population and measure their heights.

If you measure the average of the heights of the 100 samples, you would get a random variable (X). It would be a continuous variable.

Each element of the sample space would map to a value of X

Random Variable

- Each random event A has a probability P(A) associated with it.
- It defines the fraction of the sample space in which A is true.

$$P(A) = \frac{\text{Number of events in which A is true}}{\text{Total number of events in S}}$$

e.g. in case of toss of a dice, probability of even number:

$$P(A) = \frac{3}{6} = 0.5$$

Useful Theorem

0 <= P(A) <= 1, P(True) = 1, P(False) = 0,
 P(A or B) = P(A) + P(B) - P(A and B)

→
$$P(A) = P(A ^ B) + P(A ^ ~B)$$

A = $[A \text{ and } (B \text{ or } \sim B)] = [(A \text{ and } B) \text{ or } (A \text{ and } \sim B)]$ P(A) = P(A and B) + P(A and $\sim B)$ – P((A and B) and (A and $\sim B$)) P(A) = P(A and B) + P(A and $\sim B$) – P(A and B and A and $\sim B$)

Definition of Conditional Probability

Corollary: The Chain Rule

$$P(A ^ B) = P(A|B) P(B)$$

$$P(C ^A A ^B) = P(C|A ^B) P(A|B) P(B)$$

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of analogical or inductive reasoning...

Applying Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \sim A)P(\sim A)}$$

A = you have the flu, B = you just coughed

Assume:

$$P(A) = 0.05$$

$$P(B|A) = 0.80$$

$$P(B| \sim A) = 0.2$$

what is $P(flu \mid cough) = P(A|B)$?

what does all this have to do with function approximation?

After all, that's what we are looking for

Function approximation by probability

Our aim is to approximate the class separating function
 F: X -> Y

X is the set of attributes and Y is the class.

• In case of probabilistic reasoning, we approximate it with the conditional probability

$$P(Y \mid X)$$

we find the probability of each class, given the data i.e. P(Y = 1 | X) and P(Y = 0 | X).

- How do we find the probability of class given the data?
- Need a joint distribution

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint

One you have the JD you can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

P(Poor Male) = 0.4654
$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

$$P(Poor) = 0.7604$$

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Inference with the Joint

$$P(E_1 \mid E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2} P(\text{row})}{\sum_{\text{rows matching } E_2} P(\text{row})}$$

P(Male | Poor) = 0.4654 / 0.7604 = 0.612

Learning and the Joint Distribution

Suppose we want to learn the function f: <G, H> → W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H = 40.5-) =

Let's get back to random variables

Each random variable X has a domain *D(x)* associated with it. It is the set of outcome values possible.
 e.g. for a dice D(x) = {1, 2, 3, 4, 5, 6}

for a Boolean outcome $D(x) = \{1, 2, 3, 4, 5, 6\}$

• For a pair of dice, D(x) = {11,, 66}.

Suppose X is the sum of the outcome of the dice.
X can range from 2 to 12.
Each value of X has a different probability.

Probability Distribution of X

Example:

- Imagine there are 3 doors one of them has a treasure, the other 2 nothing.
- Each one is equally likely to be selected.
 Once you open a door, you don't open it again.
- Define random variable X as the number of doors needed to open before finding the treasure.

X can have values {1, 2}. Find the probability distribution of X.

$$P(X = 1) = 1/3$$

 $P(X = 2) = (2/3) * (1/2)$

-- Assume a person is smart enough to figure it out after two attempts -- ©

Example 2: Consider a group of five potential blood donors -a, b, c, d, and e—of whom only a and b have type O+ blood. Five blood samples, one from each individual, will be typed in random order until an O+ individual is identified. Let the rv Y= the number of typings necessary to identify an O+ individual. Then the pmf of Y is

$$p(1) = P(Y = 1) = P(a \text{ or } b \text{ typed first}) = \frac{2}{5} = .4$$

$$p(2) = P(Y = 2) = P(c, d, \text{ or } e \text{ first}, \text{ and then } a \text{ or } b)$$

$$= P(c, d, \text{ or } e \text{ first}) \cdot P(a \text{ or } b \text{ next} \mid c, d, \text{ or } e \text{ first}) = \frac{3}{5} \cdot \frac{2}{4} = .3$$

$$p(3) = P(Y = 3) = P(c, d, \text{ or } e \text{ first and second, and then } a \text{ or } b)$$

$$= \left(\frac{3}{5}\right)\left(\frac{2}{4}\right)\left(\frac{2}{3}\right) = .2$$

$$p(4) = P(Y = 4) = P(c, d, \text{ and } e \text{ all done first}) = \left(\frac{3}{5}\right)\left(\frac{2}{4}\right)\left(\frac{1}{3}\right) = .1$$

$$p(y) = 0 \quad \text{if } y \neq 1, 2, 3, 4$$

Binary Variables

- Let's focus on the case where the random variable X can only take two values {0, 1}.
- X is said a Boolean random variable.
- For every outcome in the sample space, you associate 0 (failure) or 1 (success).
- Example:
 - Coin toss Heads = 1, Tails = 0
 - Lottery Winning Number = 1, Rest of the numbers = 0

- ...

Expected Value and Variance

• Expected value of a discrete random variable under P:

$$E_P(X) = \sum_{x \in D(x)} x P(x)$$

take each value and multiply by its probability

• Variance of the random variable under P:

$$var_P(X) = \sum_{x \in D} (x - E_P(x))^2 P(x)$$

Shortcut formula:

$$var_P(X) = E_P(X^2) - [E_P(X)]^2$$

Expected Value and Variance

• Expected value of a continuous random variable under a continuous probability function f:

$$E_f(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

• Variance of the random variable under P:

$$var_f(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Shortcut formula:

$$var_f(X) = E_f(X^2) - \left[E_f(X)\right]^2$$

Continuous Probability Density Function

Example:

You draw one card from a standard deck of playing cards. If you pick a heart, you will win\$10. If you pick a face card (K, Q, J), which is not a heart, you win \$8. If you pick any other card, you lose \$6. Do you want to play? Explain.

Solution

Let X be the random variable that takes on the values 10, 8 and -6, the values of the winnings. First, we calculate the following probabilities:

$$P(X = 10) = \frac{13}{52}$$
, $P(X = 8) = \frac{9}{52}$, and $P(X = -6) = \frac{30}{52}$.

The expected value of the game is

$$E(X) = P(X = 10) * 10 + P(X = 8) * 8 - P(X = -6) * 6$$

$$= \frac{13}{52} * 10 + \frac{9}{52} * 8 - \frac{30}{52} * 6$$

$$= \frac{130 + 72 - 180}{52}$$

$$= \frac{22}{52}$$

Since the expected value of the game is approximately \$.42, it is to the player's advantage to play the game.

Binary Variables

Consider coin flipping which has 2 outcomes (heads = 1 and tails = 0)
If you know probability of heads, you know the distribution.
Let's say

$$p(x = 1 | \mu) = \mu$$
 $p(x = 0 | \mu) = 1 - \mu$

• Probability of heads in **one** coin flip makes the Bernoulli Distribution (Bern):

$$Bern(x \mid \mu) = \mu^{x} (1 - \mu)^{1-x}$$

Not convinced?

Plug in x = 0 and x = 1 in this equation to see

Easy to show that

$$E_{Bern}(x) = \mu$$

$$var_{Bern}(x) = \mu(1 - \mu)$$

What do you notice? If I know μ , I know everything

about the distribution.

Binomial Distribution

 Now imagine you throw that same coin N times and you want to find the probability of m heads where m can be from 0 to N.

$$p(m heads | N, \mu)$$

• This is called the Binomial distribution.

$$Bin(m \mid N, \mu) = \binom{N}{m} \mu^m (1 - \mu)^{N-m}$$

It is easy to show that:

$$Bin(m\mid N,\mu) = \binom{N}{m}\mu^m(1-\mu)^{N-m}$$
 What do you notice? If I know N and μ , I know P about the distribution.

If I know N and μ, I know

$$var[m] = \sum_{m=1}^{N} (m - E[m])^{2} Bin(m \mid N, \mu) = N \mu(1 - \mu)$$

Uniform Probability Distribution

Continuous Distribution:
 Density plot shown on right

The function f(x) is defined by:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{2(b-a)} \left[x^{2} \right]_{a}^{b}$$

$$= \frac{b^{2} - a^{2}}{2(b-a)}$$

$$= \frac{b+a}{2}$$
What do you observe?

Just need a and b to know everything about the distribution.

$$V(X) = E(X^2) - [E(X)]^2$$

$$= \int_a^b x^2 \cdot \frac{1}{b-a} dx - \left(\frac{b+a}{2}\right)^2 = \frac{1}{3(b-a)} \left[x^3\right]_a^b - \left(\frac{b+a}{2}\right)^2$$

$$= \frac{b^3 - a^3}{3(b-a)} - \left(\frac{b+a}{2}\right)^2$$
withing
$$= \frac{b^2 + ab + a^2}{3} - \frac{b^2 + 2ab + a^2}{4}$$

$$= \frac{(b-a)^2}{12}$$