Massive Data Algorithmics

Lecture 3: External Search Trees

Binary search tree

- ullet Standard method for search among N elements
- We assume elements in leaves
- Search traces at least one root-leaf path
- If nodes stored arbitrarily on disk
 - \Rightarrow Search in $O(\log_2 N)$ I/Os
 - \Rightarrow Range-search in $O(\log_2 N + T)$ I/Os

BFS Blocking

- Block height: $O(\log_2 N)/O(\log_2 B) = O(\log_R N)$
- Output elements blocked \Rightarrow Range-search in $O(\log_B N + T/B)$ I/Os
- Optimal: O(N/B) space and $O(\log_B N + T/B)$ query

Updating

- Maintaining BFS blocking during updates?
 - Balance normally maintained in search trees using rotations

- Seems very difficult to maintain BFS blocking during rotation
 - Also need to make sure output (leaves) is blocked!

B-trees

• BFS-blocking naturally corresponds to tree with fan-out $\theta(B)$

- B-trees balanced by allowing node degree to vary
 - Re-balancing performed by splitting and merging nodes

(a,b)-Trees

- T is an (a,b)-tree $(a \ge 2)$ and $b \ge 2a 1$
 - All leaves on the same level and contain between a and b elements
 - Except for the root, all nodes have degree between a and b
 - Root has degree between 2 and b

- (a,b)-tree uses linear space and has height $O(\log_a N)$
- Choosing $a, b = \Theta(B)$, each node/leaf stored in one disk block
- O(N/B) space and $O(\log_B N + T/B)$ query

(a,b)-Trees Insert

- Search and insert element in leaf v
- DO v has b+1 elements/children
 - make nodes v' and v'' with $\lfloor (b+1)/2 \rfloor$ and $\lceil (b+1)/2 \rceil$ elements
 - insert element (ref) in parent(v)
 (make new root if necessary)
- v = parent(v)

Insert touch $O(\log_a N)$ nodes

(a,b)-Trees Deletion

- Search and delete element from leaf v
- DO v has a-1 elements/children
 - Fuse v with sibling v':
 - move children of v' to v
 - delete element (ref) from parent(v)
 (delete root if necessary)
 - If v has > b (and $\le a+b-1 < 2b$) children split v
- v = parent(v)

Delete touch $O(\log_a N)$ nodes

(a,b)-Trees Properties

 If b = 2a - 1 every update can cause many re-balancing operations

- If $b \ge 2a$ update only cause O(1) re-balancing operations amortized
- If b > 2a only O(1/(b/2-a)) = O(1/a) re-balancing operations amortized
 - *Both somewhat hard to show
- If b=4a easy to show that update causes $O(1/a\log_a N)$ re-balance operations amortized
 - * After split during insert a leaf contains $\cong 4a/2 = 2a$ elements
 - * After fuse during delete a leaf contains between $\cong 2a$ and $\cong 5a$ elements (split if more than $3a \Rightarrow$ between 3/2a and 5/2a)

Summary and Conclusion: B-trees

- B-trees: (a,b)-trees with $a,b = \Theta(B)$
 - O(N/B) space
 - $O(\log_B N + T/B)$ query
 - $O(\log_R N)$ update
- B-trees with elements in the leaves sometimes called B⁺-trees
- Construction in $O(N/B\log_{M/B}N/B)$ I/Os
 - Sort elements and construct leaves
 - Build tree level-by-level bottom-up

Summary and Conclusion: B-trees

- B-tree with branching parameter b and leaf parameter k $(b, k \ge 8)$
 - All leaves on same level and contain between 1/4k and k elements
 - Except for the root, all nodes have degree between 1/4b and b
 - Root has degree between 2 and b
- B-tree with leaf parameter $k = \Omega(B)$
 - O(N/B) space
 - Height $O(\log_b N/B)$
 - O(1/k) amortized leaf rebalance operations
 - $O(1/(bk)\log_b N/B)$ amortized internal node rebalance operations
- B-tree with branching parameter B^c , $0 < c \le 1$, and leaf parameter B
 - Space O(N/B), updates $O(\log_B N)$, queries $O(\log_B N + T/B)$

References

- External Memory Geometric Data Structures Lecture notes by Lars Arge.
 - Section 1-3