Video Quality Assessment

Learning Progress Report

James Hsu June 13th 2025

Learning Goals and Topics

- Why I'm Exploring the Use of IQA in GANs and Diffusion Models
 - Struggled to generate high-quality, condition-specific images (e.g., Cinnamoroll) using diffusion models
 - No-reference IQA is subjective, but offers a way to evaluate visual quality without ground truth
 - Curious if IQA can guide generation models to produce more perceptually aligned results
- Dataset
 - AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment (link)
- IQA used in discriminator of GAN
 - Paper: Quality Aware Generative Adversarial Networks (link)
- IQA used in diffusion
 - Paper: IQA-Adapter: Exploring Knowledge Transfer from Image Quality Assessment to Diffusion-based
 Generative Models (link)

Datasets for No-Reference IQA on Al-Generated Images

- Traditional IQA datasets focus on distortion from real images
- Al-generated content (AIGC) such as:
 - Diffusion models (e.g., Stable Diffusion)
 - GANs (e.g., StyleGAN) are semantically plausible but may lack fidelity
- Need dedicated datasets to evaluate AIGC quality without reference images

Existing quality databases for Al-Generated Images/Videos

Database	Grain Size	Images	Ratings	Models	CFG	Iteration	Resolution
HPD	Coarse-grained	98,807	98,807	1	Fixed	Fixed	Fixed
ImageReward	Coarse-grained	136,892	136,892	3	Fixed	Fixed	Dynamic
Pick-A-Pic	Coarse-grained	500,000	500,000	6	Fixed	Fixed	Dynamic
AGIQA-1K	Fine-grained	1,080	23,760	2	Fixed	Fixed	Fixed
AGIQA-3K	Fine-grained	2,982	125,244	6	Dynamic	Dynamic	Fixed
AIGCIQA	Fine-grained	2,400	48,000	6	Fixed	Fixed	Fixed
AGIN	Fine-grained	6,049	181,470	18	Dynamic	Fixed	Fixed
AIGIQA-20K	Fine-grained	20,000	420,000	15	Dynamic	Dynamic	Dynamic

CFG: Classifier-Free Guidance Scale

Definition:

A key parameter in Stable Diffusion and similar models that adjusts how closely the output image follows the input **prompt**.

Lower CFG:

- More diverse images
- Less adherence to the prompt

Higher CFG:

- Images align more strictly with the prompt
- Risk of artifacts or over-constrained outputs

Dataset: AGIQA-1k

GitHub: AGIQA-1k

- CVPR 2023 paper: arXiv:2303.12618
- 1,080 images generated by:
 - Text-to-Image models: stable-inpaintingv1, stable-diffusion-v2
 - Hot keywords from the PNGIMG website for AGIs generation
- Each image is rated by 22 human annotators
 - MOS (Mean Opinion Score): For overall visual quality
- First dedicated **NR-IQA benchmark** for Al-generated images

Dataset: DiffusionDB

DiffusionDB Website

- 2 million+ images generated by Stable Diffusion
- Each image paired with:
 - The prompt used to generate it
 - Model & inference parameters (guidance scale, steps, etc.)

No built-in quality labels, but...

- We can:
 - Apply existing IQA models (e.g., AIGC-QA finetuned)
 - Collect user feedback to derive MOS
 - Use prompt-image pairs for training semantic consistency models

IQA used in discriminator of GAN - QAGAN

- Quality Aware Generative Adversarial Networks (QAGAN)
- Motivation
 - Traditional GANs focus on fooling the discriminator, not perceptual quality.
 - IQA (Image Quality Assessment) metrics like SSIM and NIQE reflect human visual perception.
 - QAGAN uses these IQA metrics during training to guide high-quality image generation.
- Key Contributions
 - Introduced SSIM Distance into Generator loss
 - Added NIQE-Guided Gradient Penalty in Discriminator
 - Achieved improved visual quality and FID/IS scores

QAGAN Architecture Overview

SSIM: Structural Similarity Index

- Goal: Quantify how similar two images are based on human vision
- Formula:

$$SSIM(x,y) = [l(x,y)]^{lpha} \cdot [c(x,y)]^{eta} \cdot [s(x,y)]^{\gamma}$$

Where:

- (l(x,y)): Luminance (brightness similarity)
- (c(x,y)): Contrast similarity
- (s(x,y)): Structural similarity

SSIM Visual Example Reference vs. Distorted Image

NIQE: Naturalness Image Quality Evaluator

- No-reference IQA metric: doesn't need ground-truth
- Measures how "natural" an image looks statistically
- In QAGAN, NIQE is used to:
 - Apply gradient penalty in Discriminator
 - Push the Generator to produce more natural-looking images

Inception Score (IS)

- Evaluates image quality and diversity based on classification confidence.
- $lacksquare Formula: IS = \exp\left(\mathbb{E}_x\left[D_{KL}(p(y|x) \parallel p(y))
 ight]
 ight)$
- ullet (p(y|x)): predicted label distribution for generated image
- ullet (p(y)): marginal class distribution across all generated images
- High IS:
 - Clear, recognizable images (confident predictions)
 - Diverse class distribution

Inception Score (IS)

Interpretation:

IS Score	Meaning
~11.2	Real CIFAR-10 images
~6-8	Good GAN-generated images
↑ Higher	Better quality & diversity

Fréchet Inception Distance (FID)

- Measures distribution similarity between real and generated images
 → Lower FID means closer to real data
- Formula:

$$FID = \|\mu_r - \mu_q\|^2 + Tr(\Sigma_r + \Sigma_q - 2(\Sigma_r\Sigma_q)^{1/2})$$

- (μ_r, Σ_r) : mean and covariance of real image features
- ullet (μ_g, Σ_g) : mean and covariance of generated image features
- Computed using Inception-v3 feature activations

Fréchet Inception Distance (FID)

Interpretation:

FID Score	Meaning
~2	Real images
30-50	GAN baseline (e.g., WGAN-GP)
~25.8	QAGAN (improved quality)
↓ Lower	Better visual fidelity

Results Summary

Metric	WGAN-GP	QAGAN
Inception Score ↑	6.23	7.10
FID ↓	43.5	25.8

- Tested on: CIFAR-10, STL-10, CelebA
- Better quality and more stable training

Training Details

■ Base model: **WGAN-GP** architecture.

■ Datasets used: CIFAR-10, STL-10, CelebA.

• Evaluation metrics: Inception Score (IS), FID.

Results

- Outperforms WGAN-GP and variants on IS and FID.
- Better human-perceived image quality.
- More stable training behavior observed.

Summary & Insights

- IQA plays a crucial role in guiding perceptual quality of generated images, especially when ground-truth references are unavailable.
- Datasets like AIGIQA-20K provide a strong foundation to evaluate and train models for realistic, natural image generation.
- QAGAN demonstrates that integrating IQA into GAN training improves both objective scores (FID/IS) and subjective quality.
- SSIM and NIQE offer complementary perspectives:
 - SSIM: Structural similarity to reference images
 - NIQE: Naturalness without reference
- These principles may also be extended to diffusion models (e.g., IQA-Adapter) for further improving visual quality control.
- Future direction: Leverage IQA not only for evaluation, but also as trainable feedback signals for generative models.

Thank You