Importing python libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
```

Load the dataset

```
In [4]: df = pd.read_csv('diabetes.csv')
```

Displaying the first 5 rows of the dataframe

In [5]:	df.head()													
Out[5]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc						
	0	6	148	72	35	0	33.6	(
	1	1	85	66	29	0	26.6	C						
	2	8	183	64	0	0	23.3	C						
	3	1	89	66	23	94	28.1	C						
	4	0	137	40	35	168	43.1	2						
	4							•						

Display the shape of the dataframe

```
In [6]: df.shape
Out[6]: (768, 9)
```

Statistical summary of the data frame

In [7]:	<pre>df.describe()</pre>												
Out[7]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	Dia					
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000						
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578						
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160						
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000						
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000						
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000						
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000						
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000						
	4							•					

Counting the 'Outcome' c0lumn

Histogram

```
In [9]: df.hist(bins=30,figsize =(15,10))
    plt.suptitle("Histograms of all features")
    plt.show()
```

Histograms of all features

Separate the features and the target variable

Boxplots to compare distributions of features for diabetic and non-diabetic patients

```
In [10]: for column in df.columns[:-1]: # Exclude the 'Outcome' column
    plt.figure(figsize=(5, 3))
    sns.boxplot(x='Outcome', y=column, data=df)
    plt.title(f"Boxplot of {column}")
    plt.show()
```


Correlation matrix plus creating a heatmap

The values ranges from -1 to 1: +1 shows perfect correlation. As one feature increases, the other features increase.

Outcome

0 means No correlation

0

30

20

-1: Perfect Negative correlation. AS one feature increases, the other feature decreases

```
In [11]: plt.figure(figsize=(12, 8))
    sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
    plt.title("Correlation Matrix")
    plt.show()
```



```
In [12]: X = df.drop(columns='Outcome',axis=1)
y = df['Outcome']
In [13]: y
```

```
Out[13]: 0
          1
          2
                  1
          3
                  0
                  1
                 . .
          763
                  0
          764
                  0
          765
                  0
          766
                  1
          767
          Name: Outcome, Length: 768, dtype: int64
```

Reasons for data standardization

1.Consistent scale - some columns have different scales. It brings all features in the same scale with a mean of 0 and a standard deviation of 1. 2. Better performance 3. Preventing Numerical Instability

Data Standardization

```
In [14]: scaler = StandardScaler()
In [15]: scaler.fit(X)
Out[15]:
             StandardScaler •
         StandardScaler()
In [16]: standardized_data = scaler.transform(X)
In [17]: standardized data
Out[17]: array([[ 0.63994726, 0.84832379, 0.14964075, ..., 0.20401277,
                  0.46849198, 1.4259954],
                [-0.84488505, -1.12339636, -0.16054575, ..., -0.68442195,
                 -0.36506078, -0.19067191],
                [1.23388019, 1.94372388, -0.26394125, ..., -1.10325546,
                  0.60439732, -0.10558415],
                [0.3429808, 0.00330087, 0.14964075, ..., -0.73518964,
                 -0.68519336, -0.27575966],
                [-0.84488505, 0.1597866, -0.47073225, ..., -0.24020459,
                 -0.37110101, 1.17073215],
                [-0.84488505, -0.8730192, 0.04624525, ..., -0.20212881,
                 -0.47378505, -0.87137393]])
In [18]: X = standardized data
```

```
In [19]: X
Out[19]: array([[ 0.63994726, 0.84832379, 0.14964075, ..., 0.20401277,
                  0.46849198, 1.4259954],
                [-0.84488505, -1.12339636, -0.16054575, ..., -0.68442195,
                 -0.36506078, -0.19067191],
                [1.23388019, 1.94372388, -0.26394125, ..., -1.10325546,
                  0.60439732, -0.10558415],
                 . . . ,
                [0.3429808, 0.00330087, 0.14964075, ..., -0.73518964,
                 -0.68519336, -0.27575966],
                [-0.84488505, 0.1597866, -0.47073225, ..., -0.24020459,
                 -0.37110101, 1.17073215],
                [-0.84488505, -0.8730192, 0.04624525, ..., -0.20212881,
                 -0.47378505, -0.87137393]
In [20]: y
Out[20]: 0
         2
                1
         3
                a
                1
         763
         764
                0
         765
         766
                1
         767
         Name: Outcome, Length: 768, dtype: int64
```

Splitting the data into training and testing sets

```
In [21]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
```

Printing the shape of training set

```
In [22]: X_train.shape
Out[22]: (614, 8)
```

Printing the shape of testing sets

```
In [23]: X_test.shape
Out[23]: (154, 8)
```

Train the model

Train the SVM model with a linear kernel

```
In [24]: #linear kernel is faster to train than non-linear
         clf = svm.SVC(kernel='linear')
In [25]: clf.fit(X_train,y_train)
Out[25]:
                 SVC
         SVC(kernel='linear')
```

Accuracy on train data

```
In [26]: X_train_prediction = clf.predict(X_train)
         accuracy_score(X_train_prediction,y_train)
```

Out[26]: 0.7719869706840391

Accuracy on test data

```
In [27]: X_test_prediction = clf.predict(X_test)
         accuracy_score(X_test_prediction,y_test)
Out[27]: 0.7597402597402597
```

Confusion matrix (Visualizes the performance classification model)

```
In [28]:
        conf_matrix = confusion_matrix(y_test, X_test_prediction)
         plt.figure(figsize=(8, 6))
         sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Non-Diabe
         plt.title("Confusion Matrix")
         plt.ylabel('Actual')
         plt.xlabel('Predicted')
         plt.show()
```


Example input for prediction

```
In [ ]: input_sample = (5,166,72,19,175,22.7,0.6,51)
In [ ]: input_np_array = np.asarray(input_sample)
In [ ]: input_np_arry_reshaped = input_np_array.reshape(1,-1)
In [ ]: std_data = scaler.transform(input_np_arry_reshaped)
In [ ]: std_data
```

Predict the outcome

```
In [ ]: prediction = clf.predict(std_data)
In [ ]: prediction
```

Interpreting the prediction

```
In [ ]: if(prediction[0] ==0):
          print("Person is not diabetic")
        else:
          print("Person is diabetic")
```

- 1. Title Diabetes Prediction
- 2. Description This is a diabetes dataset. It has 769 rows and 9 columns Problem Statement Diabetes is a chronic disease. It results to an economic burden to those affected. My aim is to come up with a model which will help in predicting diabetes. The ability to predict a persons chances of getting diabetes can help people know their chances, early detection and health providers can advise on a healthy lifestyle.

Column Descriptions: Pregnancies: Number of times pregnant. Glucose: Plasma glucose concentration. BloodPressure: Diastolic blood pressure (mm Hg). SkinThickness: Triceps skin fold thickness (mm). Insulin: 2-Hour serum insulin (mu U/ml). BMI: Body mass index (weight in kg/(height in m)^2). DiabetesPedigreeFunction: Diabetes pedigree function. Age: Age (years). Outcome: Class variable (0 or 1, where 1 indicates the presence of diabetes)

The data contains a mix of integer and float types.

3. Why the choice of data It has the right columns and data to help me predict whether a person has diabetes or not. This is a diabetes dataset. It has 769 rows and 9 columns

4.Data Preparation I downloaded the data, it had no missing values

5.Training I used the following models for training. SVM (Support Vector Model) Its a machine learning algorithm that uses supervised learning model to solve complex classification ,regression and outlier detection. In our case, the diabetes dataset is supervised.

6.Results Accuracy on train results = 77% Accuracy on test results = 76%

7.Importance of the results Through the results, we get to know if the person is diabetic or not If 1 then you are diabetic If 0 then you are not diabetic The model needs improvement since its health data. There are several ways of improving the models performance one being combining different models(hybrid)

```
In [ ]:
```