Квадратичные вычеты

Определение. Символом Лежандра числа a по простому модулю p>2 называется выражение, обозначаемое $\left(\frac{a}{p}\right)$, и принимающее значение 0, если a кратно p, значение 1, если a квадратичный вычет по модулю p, и значение -1, если a невычет.

Далее во всех задачах рассматриваются квадратичные вычеты по нечетному простому модулю p.

- **1.** (а) Докажите, что существует ровно $\frac{p-1}{2}$ вычетов и $\frac{p-1}{2}$ невычетов.
 - (6) Чему равно произведение всех квадратичных вычетов по модулю p? А всех квадратичных невычетов?
- 2. (а) Докажите, что произведение двух вычетов вычет.
 - (б) Докажите, что произведение вычета на невычет невычет.
 - (в) Докажите, что произведение двух невычетов вычет.

Следствие:
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$$
.

- **3.** (а) Докажите, что если a квадратичный вычет, то $a^{\frac{p-1}{2}} \equiv 1 \, (\text{mod } p)$.
 - (6) Докажите, что если a квадратичный невычет, то $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. $\Pi o \partial c \kappa a \beta \kappa a$: Надо воспользоваться задачами 16) и 2.

Таким образом получаем **критерий Эйлера**: $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

- **4.** Вычислите $\left(\frac{2+57+1543}{179}\right)$.
- **5.** Даны целые числа a,b и нечетное простое число p. Известно, что (a,p)=1. Найдите, чему равна $\sum\limits_{i=0}^{p-1}\left(\frac{ax+b}{p}\right)$.
- **6.** Решите уравнение в натуральных числах: $4xy x y = z^2$.
- 7. Докажите, что не существует натуральных чисел m,n>2, таких что $\frac{m^2+1}{n^2-5}$ является целым числом.