Informe – Trabajo Práctico de Laboratorio Teoría Moderna y Filtrado Activo

Guerrero, Tobías

UTN FRBA

1querrero@frba.utn.edu.ar

Resumen — En este documento se presentan el desarrollo teórico y práctico del trabajo práctico de laboratorio N°1 de la materia Teoría de Circuitos II de la carrera Ingeniería Electrónica de la UTN FRBA. El mismo constó del diseño de un filtro pasabanda dadas unas especificaciones concretas.

Términos clave — filtrado activo, teoría moderna, análisis circuital, frecuencia, atenuación, ganancia, simulación, ensayo, respuesta de módulo, respuesta de fase

I. INTRODUCCIÓN

Para el trabajo práctico de laboratorio N°1, se propuso diseñar, implementar y ensayar un filtro pasabanda activo que cumpliera con las siguientes especificaciones:

- Respuesta tipo Chebyshev
- Factor Q de 3
- Frecuencia central de 6kHz
- Atenuación máxima en banda de paso de 2,5dB
- Frecuencias de parada de 0,6kHz y 60kHz
- Atenuación mínima en frecuencias de parada de 15dB

Además, para la implementación se propone la utilización de un circuito integrado UAF42.

El filtro diseñado se simulará en LTSpice para corroborar el diseño. Una vez corroborado, se lo ensayará con un osciloscopio y con un analizador de audio. De esta forma, se podrá comparar el desempeño del filtro en la simulación y en la realidad, y bajo mediciones con distintos instrumentos.

En este informe, se desarrollará el proceso de diseño del filtro solicitado, y se exhibirán los resultados obtenidos mediante simulación circuital, y en los ensayos realizados en laboratorio.

II. DISEÑO – DESARROLLO MATEMÁTICO

En esta sección, se exhibirá el desarrollo matemático para llegar a la expresión del filtro, de forma de poder diseñar los componentes a utilizar para la implementación del mismo. Este resultado se contrastará luego con una simulación numérica en Python.

A. Desarrollo realizado en papel

En el anexo I de este documento se incluyen las hojas en las cuales se realizaron los cálculos pertinentes. Aquí se presenta una versión reducida para facilitar la lectura del informe.

A partir de las especificaciones presentadas, se planteó una plantilla prototipo pasabajos. La misma se muestra en la figura 1, junto con la plantilla objetivo pasabanda.

Figura 1: plantillas prototipo pasabajos (izquierda) y objetivo pasabanda (derecha).

Luego, se calcularon el orden del filtro y el parámetro ϵ^2 para el prototipo pasabajos, obteniendo:

- $n = 0.619 \rightarrow n = 1$
- $\bullet \quad \epsilon^2 = 0.778$

Con estos parámetros, el cuadrado del módulo de la transferencia resulta el expuesto en la ecuación (1).

$$|T_{(j\Omega)}|^2 = \frac{\frac{1}{\varepsilon^2}}{\frac{1}{\varepsilon^2} + \Omega^2} = \frac{1,285}{1,285 + \Omega^2}$$
 (1)

Donde se utilizó Ω para diferenciar la transferencia prototipo pasabajos de la objetivo pasabanda.

Con esto, se halló la transferencia prototipo pasabajos, la cual se expone en la ecuación (2).

$$T_{LP(p)} = \frac{1,133}{p+1,133}(2)$$

Donde se utilizó *p* para diferenciar la transferencia prototipo pasabajos de la objetivo pasabanda.

A partir de esta transferencia prototipo, se aplicó la técnica de partes de función, obteniendo una T(p), a la cual luego se le aplicó el núcleo de transformación de pasabajos a pasabanda, obteniendo la ecuación (3).

$$p = Q \frac{s^2 + 1}{s} \to T_n(s) = \frac{0.378 \cdot s}{s^2 + 0.378 \cdot s + 1}$$
(3)

Es importante señalar que desde el principio se trabajó con frecuencia normalizada, es decir, $\omega_0 = 1$. Al desnormalizar, se obtiene la transferencia que presenta la respuesta buscada, presentada en la ecuación 4.

$$T(s) = \frac{2\pi \cdot 2268 \cdot s}{s^2 + 2\pi \cdot 2268 \cdot s + (2\pi \cdot 6000)^2}$$
 (4)

B. Simulación numérica

Con el fin de corroborar y a su vez contrastar el resultado obtenido analíticamente, se realizó una simulación numérica mediante Python. El código de la misma se incluye en el anexo III.I. Los resultados se enseñan a continuación en las figuras 2 y 3.

$$\frac{s \ 0.3778}{s^2 + s \ 0.3778 + 1}$$

Figura 2: Transferencia hallada mediante simulación numérica

Figura 3: Gráficos de módulo y fase normalizados en frecuencia hallados mediante simulación numérica

A partir de lo enseñado en las figuras anteriores, se confirma lo obtenido analíticamente.

III. IMPLEMENTACIÓN

Como ya se expuso en la introducción, para la implementación se utilizará el circuito integrado UAF42. Este es un filtro universal cuya topología se observa en la figura 4.

Figura 4: estructura interna del UAF42.

Este circuito integrado permite realizar transferencias de tipo pasabajos, pasaaltos o pasabanda de segundo orden, según dónde se tome la salida. Cuenta con 4 resistencias y 2 capacitancias fijas como parte del integrado, dejando libres 4 pines para la conexión de dos resistencias, llamadas $R_{\rm fl}$ y $R_{\rm f2}$ por la hoja de datos, para el diseño de la frecuencia central del filtro. Además, conectando la entrada mediante un divisor resistivo de resistencias llamadas $R_{\rm G}$ y $R_{\rm Q}$, se pueden variar los valores del parámetro Q del filtro y de la ganancia en la frecuencia central. El circuito completo se muestra en la figura 5.

Figura 5: circuito con UAF42 y resistencias externas. Estas resistencias determinan la frecuencia central, la ganancia en banda de paso, y el parámetro Q.

De la hoja de datos del dispositivo, se obtuvieron las ecuaciones 5, 6 y 7, que son las ecuaciones con las cuales se diseñaron los valores de R_G , R_Q , R_{f1} y R_{f2} para obtener la frecuencia central, el parámetro Q y la ganancia en banda de paso, respectivamente, para así realizar la transferencia hallada en la sección II.A.

$$\omega_0^2 = \frac{R_2}{R_1 R_{f1} R_{f2} C_1 C_2}$$
(5)
$$Q = \frac{1 + \frac{R_4 (R_G + R_Q)}{R_G R_Q}}{1 + \frac{R_1}{R_2}} \sqrt{\frac{R_2 R_{f1} C_1}{R_1 R_{f2} C_2}}$$
(6)

$$A_{BP} = \frac{R_4}{R_G} \tag{7}$$

A. Diseño de la frecuencia central

Partiendo de la ecuación (5), si se toma $R_{f1} = R_{f2}$, considerando que $R_1 = R_2$ y que $C_1 = C_2$, se llega a la ecuación (8). A partir de ella, teniendo en cuenta que se busca $\omega_0 = 2\pi 6 \text{kHz}$ y que C_1 y C_2 valen 1nF según la hoja de datos del UAF42, se llega a que $R_{f1} = R_{f2} = 26525\Omega$.

$$\omega_0 = \frac{1}{R_f C} \ (8)$$

B. Diseño de A_{BP} , ganancia en banda de paso

Dado que la ganancia en banda de paso no fue especificada, se diseñará el circuito para lograr una transferencia de 0dB. Con esto en consideración, y con la ecuación (7), se llega a que $R_G = R_4 = 50k\Omega$.

C. Diseño de Q

A partir de las consideraciones realizadas en III.A y III.B, la ecuación (6) puede reducirse a la ecuación (9). En ella, la única incógnita resulta R_Q , la cual al despejarla resulta $R_Q = 15424\Omega$.

$$Q = \frac{1 + \frac{(R_G + R_Q)}{R_Q}}{2}$$
(9)

D. Normalización de resistencias

Resulta evidente que el circuito planteado es imposible de implementar, debido a que los valores de resistencia necesarios no se consiguen comercialmente. Para poder hacerlo, se eligieron los valores comerciales al 5%, cuyos valores se enseñan en la tabla 1, más cercanos a los hallados matemáticamente. De esta forma, resulta:

- $\bullet \quad R_{\rm f1}=R_{\rm f2}=27k\Omega$
- $R_G = 47k\Omega$
- $R_0 = 15k\Omega$

Recalculando los parámetros del filtro para estos valores de resistencia con las ecuaciones (4), (5) y (6), se obtiene:

- $\omega_0 = 2\pi 5,89 \text{kHz}$
- Q = 2,945
- $A_{BP} = 0.592dB$

Estas dispersiones resultan mínimas y más que aceptables para el diseño planteado.

TABLA I RESISTENCIAS NORMALIZADAS AL 5%

1	1.1	1.2	1.3
1.5	1.6	1.8	2
2.2	2.4	2.7	3
3.3	3.6	3.9	4.3
4.7	5.1	5.6	6.2
6.8	7.5	8.2	9.1

IV. ARMADO

El circuito a ensayar se armó en una placa experimental estándar, cortada para a medida para el cómodo soldado de los componentes. En el lugar que ocupará el UAF42 se soldó un zócalo de 14 pines para poder colocar y sacar cómodamente el integrado sin necesidad de soldarlo.

Para la alimentación se soldó una bornera de 3 terminales, para poder conectar tensiones positiva, negativa y masa, y se soldaron también dos conectores para realizar la conexión con el osciloscopio, tanto para la señal de entrada como para la de salida.

En las figuras 6 y 7 se muestra el resultado final, del lado superior (componentes) y del lado inferior (ruteado), respectivamente.

Figura 6: circuito implementado en placa experimenta. Lado superior (componentes).

Figura 7: circuito implementado en placa experimental. Lado inferior (ruteado).

Con el fin de conocer con la mayor precisión posible los parámetros finales del filtro armado, al mismo tiempo que poder realizar una simulación con los valores reales de los componentes, se midieron los resistores incorporados, obteniendo unos valores de:

- $R_{f1} = R_{f2} = 26,55k\Omega$
- $R_G = 46,25k\Omega$
- $R_Q = 14.7k\Omega$

Vale aclarar que al haber medido valores iguales para $R_{\rm fl}$ y $R_{\rm f2}$, las simplificaciones realizadas a las ecuaciones (5) y (6) se mantienen.

V. SIMULACIÓN CIRCUITAL

Previo a la realización del ensayo del filtro en el laboratorio, se comprobó que el mismo cumpla con las especificaciones mediante simulación circuital en LTSpice.

El circuito simulado se enseña en la figura 8, y los resultados en la figura 9. En ella, se puede observar que el filtro diseñado cumple con las especificaciones pedidas.

Luego, se simuló el mismo circuito con los valores de resistencia medidos e indicados en IV, en lugar de los calculados teóricamente. El resultado se muestra en la figura 10. Allí, se observa un ligero desvío en los parámetros, a saber:

- $\omega_0 = 5.99 \text{kHz}$
- Q = 3.14
- $A_{BP} = 0.73dB$

Se considera que estos desvíos son asumibles. A modo de comentario, se indica que una forma de corregirlos sería incorporando potenciómetros en lugar de resistencias fijas, de forma de poder calibrar el filtro para alcanzar los valores especificados.

Figura 8: Circuito simulado en LTSpice. Se obviaron los valores de R_G, R_Q, R_{f1} y R_{f2} debido a que los mismos cambiaron durante las dos simulaciones realizadas.

Figura 9: Resultado obtenido al simular con los valores comerciales de resistencia

Figura 10: Resultado obtenido al simular con los valores de resistencia medidos

A partir de lo expuesto, se puede afirmar que el filtro cumple con lo pedido y puede ser ensayado en el laboratorio. Además, ya se conocen los valores esperados de los parámetros a medir, lo cual representa una ventaja a la hora de realizar los ensayos.

A. PROCEDIMIENTO Y EQUIPOS

El ensayo constó de dos partes:

- 1) En primer lugar, se inyectó una señal de frecuencia variable con un generador de señales, mientras se medían la salida y la entrada del filtro con un osciloscopio. A partir de los valores de amplitud y desfase temporal medidos, se calcularon los valores de ganancia y fase del filtro para cada frecuencia, trazando con ellos la respuesta en frecuencia de este. El desfase temporal se midió mediante los cursores del osciloscopio, colocando cada uno en picos positivos consecutivos. La amplitud de las señales se leyó directamente de la medición de tensión RMS del osciloscopio.
- 2) En segundo lugar, se ensayó el filtro con un analizador de audio, que realiza un proceso similar de forma automática, y entrega una tabla con valores de ganancia o fase en función de la frecuencia. Con estos valores, se realizaron los mismos gráficos que en el apartado anterior, para así poder comparar todos ellos.

A la señal de entrada se decidió darle una amplitud de 10Vpp. Esta decisión fue tomada considerando el rango dinámico del osciloscopio, que es de aproximadamente 30dB. Una señal de 10Vpp atenuada en 30dB tendrá una amplitud de 10mV, la cual es resoluble por el instrumento. Al mismo tiempo, se evita llegar a la tensión de saturación del UAF42, considerando la alimentación utilizada, que será de ±15V.

En función a esto también se escogió el rango de frecuencias a ensayar: el filtro diseñado alcanza una atenuación de 30dB para frecuencias de 476Hz y 76,12kHz, por lo cual se escogió el rango de 400Hz a 80kHz. La distribución dentro del rango no fue lineal: se acumularon más puntos cercanos a la frecuencia de corte, y se ensayaron menos puntos en los extremo del rango.

Previo a la realización de ambos ensayos, se alimentó al filtro con una fuente partida de ± 15 V, realizada mediante dos fuentes de corriente continua en serie, y se comprobaron las tensiones de alimentación y masa sobre el filtro mediante los correspondientes Test-Points.

También se midió la resistencia de los cables a utilizar para alimentación, de forma de poder comprobar que la caída de tensión en los mismos no representaría un problema.

Por último, se comprobó que las puntas de osciloscopio estuvieran calibradas y compensadas. Una de ellas resultó no estarlo, con lo cual se la compensó para poder realizar el ensayo.

Los equipos utilizados se listan a continuación:

- Fuentes de continua HY3005D, códigos internos NG 1804 y NG1818.
- Generador de funciones Twintex TFG3205E, código interno NG1905.
- Osciloscopio GWInstek GDS1102AU, código interno NG1844.

B. RESULTADOS

Los resultados de las mediciones preliminares se listan a continuación:

- Tensión fuente positiva: 15,09V
- Tensión fuente negativa: -15,09V
- Impedancia de cable de tensión positiva: 0.1Ω
- Impedancia de cable de tensión negativa: 0.09Ω
- Impedancia de cable de masa: $0,1\Omega$

Al estar estos valores dentro de lo esperado, se concluye que se puede realizar el ensayo sin que los errores introducidos por la fuente o por los cables sean considerables.

1. PRIMER ENSAYO – OSCILOSCOPIO

En la tabla I del anexo 1¹ se incluyen los valores medidos de amplitud para señales de entrada y salida [V] y de desfase temporal entre ambas [ms] para cada frecuencia [Hz] ensayada. Luego, en la tabla II del mismo anexo se incluyen los valores de respuesta de módulo y fase para cada frecuencia, calculados según las ecuaciones (10) y (11) respectivamente. A partir de esta última tabla, se realizaron los gráficos presentados en las figuras 8 y 9.

$$|T_{(\omega)}| = 20 \cdot \log \left(\frac{Out_{(\omega)}}{In_{(\omega)}}\right) (10)$$

$$\varphi_{(\omega)} = \frac{\frac{\omega}{2\pi} \cdot \Delta t \cdot 2 \cdot 180}{1000} \tag{11}$$

¹ Todas las tablas obtenidas se incluyeron en el anexo 1 para simplificar la lectura del informe.

Figura 10: Gráfico obtenido a partir de la tabla III para la respuesta de módulo del filtro.

Figura 11: Gráfico obtenido a partir de la tabla III para la respuesta de fase del filtro.

Cabe aclarar que los gráficos se realizaron con la herramienta nativa de Excel. Si bien podría haberse extraído la tabla en formato csv para graficarla con Python, al igual que lo que se hizo para los puntos del analizador de audio, se consideró interesante graficar ambos resultados con distintas herramientas, de forma de poder comparar los resultados.

2. SEGUNDO ENSAYO – ANALIZADOR DE AUDIO

Del analizador de audio se obtuvieron las tablas AI.III y AI.IV, a partir de las cuales se obtuvieron los gráficos de las figuras 10 y 11, mediante el código en Python que se presenta en el anexo III.II y III.III.

Es importante realizar una aclaración respecto al código desarrollado para graficar la fase. Al realizar el ensayo con el analizador, se encontró que el gráfico de fase que el mismo realizaba no se condecía con lo graficado mediante los puntos hallados en el osciloscopio. Esto es porque el analizador tiene una fase inicial de -90°, mientras que para calcular la fase mediante el osciloscopio se consideró una fase inicial de 270°. Por esto, se incluye un desfasaje de 360° en las frecuencias cuya fase sea mayor a -180°. Luego de este valor, el analizador "da la vuelta", debido a que grafica valores de fase entre 180° y -180°, por lo cual la corrección ya no es necesaria luego de alcanzado este valor de fase. La frecuencia a la cual sucede esto se halló observando la tabla, y este valor (aproximado) se tomó para realizar la corrección en el código.

Por otro lado, también resulta interesante realizar el siguiente comentario. Si bien en los gráficos no es tan notorio debido a la escala, en las tablas se observa mejor que hay una diferencia constante entre las mediciones realizadas por el analizador de audio y los cálculos realizados a partir de lo observado en el osciloscopio. Esta diferencia, que se percibe como un offset, es debida a la forma de medir la magnitud del analizador: la ganancia la mide en dB **relativos**, lo cual quiere decir que se elige un nivel que se define como 0dB, y las ganancias se miden relativas a ese nivel. En el presente caso, se eligió como nivel de referencia el medido para la frecuencia central de 6kHz. La ganancia calculada para esta frecuencia mediante el osciloscopio es de 0,71dB, lo cual coincide (dentro de cierto rango de error) con el offset hallado entre ambos métodos.

Figura 12: gráfico de módulo obtenido con los puntos extraídos del analizador mediante Python

Figura 13: gráfico de módulo expandido en la zona de interés (frecuencia central)

 $Figura\ 14:\ gr\'{a}fico\ de\ fase\ obtenido\ con\ los\ puntos\ extra\'{i}dos\ del\ analizador\ mediante\ Python$

Figura 15: gráfico de fase expandido en la zona de interés (frecuencia central)

VII. CONCLUSIONES

A modo de recapitulación, en el presente trabajo:

- Se obtuvo la transferencia de un filtro para unas especificaciones dadas.
- Se comprobó la transferencia hallada mediante simulación numérica utilizando Python.
- Se implementó el filtro utilizando un circuito integrado UAF42.
- Se simuló el circuito implementado mediante LTSpice.
- Se armó el circuito en una placa experimental.
- Se ensayó el filtro con un osciloscopio y un generador de señales, inyectando una señal de frecuencia variable y midiendo la amplitud de la señal de salida y el desfasaje entre esta y la señal de entrada para cada frecuencia.
- Se ensayó el filtro utilizando un analizador de audio, que realiza un proceso similar al descrito en el punto anterior pero automáticamente.
- Se graficaron las respuestas de módulo y fase a partir de los datos obtenidos mediante los dos métodos anteriores.

Se encontró en Python una herramienta poderosa y altamente útil. En lo que respecta a simulación numérica, permitió corregir errores que pasaron por alto al momento de realizar el diseño en papel, de forma que no sólo sirvió para verificar sino también para corregir y evitar implementar un circuito incorrecto. Además, en un puñado de líneas permitió realizar los gráficos a partir de lo medido en el laboratorio.

La utilización del UAF42 resultó en una implementación mucho más sencilla (debido a que sólo debieron diseñarse cuatro resistencias), un armado más cómodo (debido a que se necesitó soldar menos componentes que si se implementara con amplificadores operacionales) y una visualización más clara y limpia del circuito ya armado. Además, la hoja de datos proveyó toda la información necesaria para el diseño de los componentes en función de los parámetros requeridos.

Al momento de realizar el ensayo, se contaba con las herramientas de criterio para definir las condiciones del mismo; principalmente, amplitud y frecuencia de las señales a ensayar. Esto facilitó la obtención de datos útiles para la verificación del filtro armado.

El proceso de ensayo con el osciloscopio resultó más tedioso que el realizado con el analizador. Para cada frecuencia se debía anotar los valores de tensión RMS para las señales de entrada y salida, luego colocar los cursores de forma de medir el desfase temporal entre dos máximos consecutivos, y luego cambiar la frecuencia y repetir el proceso. Cada paso además debió realizarse con la misma escala del osciloscopio, debido a que la medición del mismo se ve alterada en distintas escalas. Esto se nota en la tabla AI.I en las primeras mediciones, donde esto no se tuvo en cuenta y se observan distintos valores de tensión RMS de entrada cuando la amplitud de la señal no se varió. Esto a su vez da cuenta de que el osciloscopio no es el instrumento más apropiado para medir la amplitud de una señal.

El proceso con el analizador fue mucho más sencillo, debido a que lo descrito anteriormente lo realiza de forma automática. Simplemente se conectó el filtro, se ensayaron algunos puntos para verificar que la ganancia fuera coherente con lo diseñado y con lo obtenido en el osciloscopio, y luego se realizó el barrido.

Una vez realizados ambos procesos, se realizaron los gráficos de módulo y fase para cada uno, comprobando que, en forma, se obtuvo el mismo resultado con los dos instrumentos. Se aclara que la igualdad es en forma porque, si bien el gráfico se ve igual en ambos casos, no es tan sencillo constatar que sean idénticos cuantitativamente. Para comprobar esto, se pueden revisar las tablas, donde se observa un offset entre las mediciones de ambos instrumentos. Como ya se explicó en VI.B.2, este offset se corresponde a la forma de medir con cada instrumento: mientras que con el osciloscopio se calcula la ganancia en dB respecto a la señal de entrada, el analizador calcula la ganancia en dBr relativa a un punto de referencia, que en el caso del filtro ensayado se correspondía a 0,71dB, equivalente al offset visto.

A partir de los resultados obtenidos y expuestos en VI.B, y de lo expuesto en este mismo apartado, se puede concluir que el proceso fue satisfactorio, tanto en su realización como en sus resultados: se consiguió diseñar,

implementar, y ensayar un filtro que cumple con las especificaciones solicitadas, dentro de un rango de error.

ANEXO I – CÁLCULOS EN PAPEL

Reports Tep (5) = 0,378 5 · Para la implementación, se propose el UNEUZ. Ver - Aur & Un dende $\begin{cases} \circ \text{ App } = \frac{Ru}{Ra} & (4) \\ \circ \text{ wh}^2 = \frac{Rz}{Ra} & (2) \end{cases}$ 0 Q = 1 + Pu(Ratha) Reface (3) · Diseño a ABO: Como no se fide garancia en Landa de paso, se diseña para odos => P= P4 = 50 KSZ => Se selecciona Rg = 47 km, que es un valor normalizado, aceptando una garancia de « 0,537 de en bando de paso I win : Si se toma RF1 = RF2, considerando que R=R2 y Gn=G2, la econción (2) se reduce a: $\overline{W_n} = \frac{1}{R_FC}$; can $\overline{W_n} = 2\pi 6 \text{kHz}$ y C= 1 nF=> PF = 10 FF 20.6 KH2 = 26,525 KR → Se selecciona lf = lf2 = 27ksz, valor normalizado, admitiendo una un= 2π. S. 27kHz 09: En westro caso, $9 = \frac{4}{0.378} = \frac{1}{0.378}$ con las consideraciones hachas antenormente, la ecuación (3) se reduce a: Q= 1,03 + 0,53 47ex => Rq= 15,424 kr. or se selectioner Pq=15 KR normalitada, aceptando un Q=2,691

ANEXO II – TABLAS

TABLA AI.I Mediciones de Amplitud en entrada y salida y desfase temporal

f [Hz]	In [Vrms]	Out [Vrms]	Δt [ms]
400	3.47	0.0940	1.85000
500	3.47	0.116	1.49000
600	3.54	0.137	1.23000
700	3.54	0.162	1.06000
800	3.48	0.186	0.92000
900	3.55	0.212	0.81600
1000	3.49	0.240	0.73600
1200	3.57	0.289	0.61200
1400	3.56	0.344	0.52400
1600	3.57	0.397	0.46000
1800	3.56	0.459	0.40400
2000	3.50	0.527	0.36400
2200	3.52	0.595	0.33000
2400	3.59	0.659	0.30000
2600	3.54	0.744	0.27600
2800	3.61	0.820	0.25600
3000	3.15	0.915	0.23800
3250	3.57	1.050	0.21600
3500	3.50	1.160	0.19900
3750	3.50	1.320	0.18500
4000	3.50	1.520	0.17000
4250	3.50	1.750	0.15800
4500	3.50	2.010	0.14700
4750	3.50	2.330	0.13600
5000	3.50	2.680	0.12500
5250	3.50	3.090	0.11400
5500	3.50	3.450	0.10400
5750	3.50	3.620	0.09300
6000	3.50	3.800	0.08200
6250	3.50	3.700	0.07440
6500	3.50	3.470	0.06600
6750	3.50	3.180	0.06040
7000	3.50	2.890	0.05480
7250	3.50	2.630	0.05080

7500	3.50	2.400	0.04760
7750	3.50	2.190	0.04480
8000	3.50	2.010	0.04200
8500	3.50	1.730	0.03820
9000	3.50	1.510	0.03500
9500	3.50	1.340	0.03240
10000	3.50	1.220	0.03000
11000	3.50	1.020	0.02700
12000	3.50	0.894	0.02380
13000	3.50	0.792	0.02160
14000	3.50	0.711	0.02000
15000	3.50	0.650	0.01860
16000	3.50	0.599	0.01710
17000	3.50	0.553	0.01600
18000	3.50	0.507	0.01490
19000	3.50	0.475	0.01410
20000	3.48	0.447	0.01330
25000	3.48	0.347	0.01050
30000	3.48	0.283	0.00860
35000	3.47	0.240	0.00732
40000	3.47	0.209	0.00636
45000	3.47	0.185	0.00564
50000	3.47	0.166	0.00504
55000	3.47	0.151	0.00456
60000	3.47	0.138	0.00420
65000	3.47	0.128	0.00388
70000	3.47	0.119	0.00360
75000	3.47	0.111	0.00340
80000	3.47	0.104	0.00316

TABLA AI.II RESPUESTA DE MÓDULO Y FASE CALCULADAS PARA CADA FRECUENCIA SEGÚN LA TABLA II

f [Hz]	Ganancia [dB]	Fase [°]
400	-31.34	266.40
500	-29.52	268.20
600	-28.25	265.68
700	-26.79	267.12
800	-25.44	264.96
900	-24.48	264.38
1000	-23.25	264.96
1200	-21.84	264.38
1400	-20.30	264.10
1600	-19.08	264.96
1800	-17.79	261.79
2000	-16.45	262.08
2200	-15.44	261.36
2400	-14.72	259.20
2600	-13.55	258.34
2800	-12.87	258.05
3000	-10.74	257.04
3250	-10.63	252.72
3500	-9.59	250.74
3750	-8.47	249.75
4000	-7.24	244.80
4250	-6.02	241.74
4500	-4.82	238.14
4750	-3.53	232.56
5000	-2.32	225.00
5250	-1.08	215.46
5500	-0.12	205.92
5750	0.29	192.51
6000	0.71	177.12
6250	0.48	167.40
6500	-0.07	154.44
6750	-0.83	146.77
7000	-1.66	138.10
7250	-2.48	132.59
7500	-3.28	128.52

7750	-4.07	124.99
8000	-4.82	120.96
8500	-6.12	116.89
9000	-7.30	113.40
9500	-8.34	110.81
10000	-9.15	108.00
11000	-10.71	106.92
12000	-11.85	102.82
13000	-12.91	101.09
14000	-13.84	100.80
15000	-14.62	100.44
16000	-15.33	98.50
17000	-16.03	97.92
18000	-16.78	96.55
19000	-17.35	96.44
20000	-17.83	95.76
25000	-20.02	94.50
30000	-21.80	92.88
35000	-23.20	92.23
40000	-24.40	91.58
45000	-25.46	91.37
50000	-26.40	90.72
55000	-27.23	90.29
60000	-28.01	90.72
65000	-28.66	90.79
70000	-29.30	90.72
75000	-29.90	91.80
80000	-30.47	91.01

TABLA AI.III
Respuesta de módulo obtenida mediante el analizador de audio

X (Hz)	Ch-1 (dBr)
600	-28.6929506
628.569452	-28.310023
658.499259	-27.892121
689.854197	-27.4752489
722.702124	-27.0558708
757.11413	-26.6353811
793.164689	-26.2153518
830.931823	-25.7961679
870.497267	-25.3746315
911.94665	-24.950206
955.369676	-24.5248011
1000.86032	-24.0991977
1048.51704	-23.6698452
1098.44297	-23.2433634
1150.74616	-22.807238
1205.5398	-22.3717532
1262.94249	-21.9345346
1323.07844	-21.4927097
1386.07782	-21.047697
1452.07696	-20.5972997
1521.2187	-20.1446556
1593.65267	-19.6855305
1669.53564	-19.2215639
1749.03184	-18.7514628
1832.31331	-18.2747516
1919.56028	-17.7910974
2010.96159	-17.2985799
2106.71504	-16.7951441
2207.02786	-16.2829216
2312.11716	-15.7584499
2422.21036	-15.2202803
2537.54572	-14.6673932
2658.37287	-14.0975593

2784.9533	-13.5083555
2917.56095	-12.8985405
3056.48281	-12.2648948
3202.01954	-11.6043875
3354.48611	-10.9122885
3514.21249	-10.1826274
3681.54436	-9.4131292
3856.84387	-8.5919985
4040.49039	-7.74310982
4232.88139	-6.81778301
4434.43322	-5.83032608
4645.5821	-4.78009946
4866.78498	-3.67657282
5098.52062	-2.53108265
5341.29051	-1.47471681
5595.62008	-0.58390288
5862.05974	-0.06530422
6141.18613	-0.07274999
6433.60333	-0.60434859
6739.9442	-1.50278333
7060.87171	-2.57909503
7397.08044	-3.70285479
7749.29799	-4.82414873
8118.28665	-5.85167679
8504.84498	-6.83634168
8909.80957	-7.7596291
9334.05686	-8.62591192
9778.50501	-9.43879255
10244.1159	-10.2059682
10731.8972	-10.9380082
11242.9045	-11.6110303
11778.2439	-12.2699522
12339.0739	-12.9017591
12926.6081	-13.5102115
13542.1183	-14.0972454
14186.9365	-14.6659085
14862.4581	-15.2177555

15570.1453	-15.7538293
16311.5295	-16.2765123
17088.2152	-16.7882725
17901.8834	-17.2900552
18754.2951	-17.7818352
19647.295	-18.265507
20582.8157	-18.7397847
21562.882	-19.2057713
22589.6148	-19.6655877
23665.2364	-20.1209243
24792.0744	-20.5707516
25972.5677	-21.0165493
27209.271	-21.4593671
28504.861	-21.9003627
29862.1414	-22.3390337
31284.0497	-22.7682594
32773.6633	-23.1952443
34334.206	-23.6205713
35969.055	-24.0445541
37681.7487	-24.4673328
39475.9935	-24.8890427
41355.6726	-25.3045628
43324.8541	-25.7188131
45387.7997	-26.1329228
47548.9739	-26.5475452
49813.0541	-26.9618571
52184.9402	-27.3678428
54669.7654	-27.7723375
57272.9074	-28.1801134
60000	-28.590781

TABLA AI.IV
RESPUESTA DE FASE OBTENIDA MEDIANTE EL ANALIZADOR DE AUDIO

600-92.1643753628.569452-92.2440643658.499259-92.3537598689.854197-92.4678955722.702124-92.586731757.11413-92.7111816793.164689-92.8678284830.931823-93.0063934870.497267-93.153389911.94665-93.3079376955.369676-93.47048951000.86032-93.61907961048.51704-93.80044561098.44297-94.01509861150.74616-94.21734621205.5398-94.40866091262.94249-94.63540651323.07844-94.89897161386.07782-95.15409851452.07696-95.4018251521.2187-95.71378331593.65267-95.99810791669.53564-96.32633971749.03184-96.70108031832.31331-97.07768251919.56028-97.4591372010.96159-97.89541632106.71504-98.38986212207.02786-98.87710572312.11716-99.43226622422.21036-100.061922537.54572-100.7265012658.37287-101.458656	X (Hz)	Ch-1 (deg)
658.499259 -92.3537598 689.854197 -92.4678955 722.702124 -92.586731 757.11413 -92.7111816 793.164689 -92.8678284 830.931823 -93.0063934 870.497267 -93.153389 911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057	600	-92.1643753
689.854197 -92.4678955 722.702124 -92.586731 757.11413 -92.7111816 793.164689 -92.8678284 830.931823 -93.0063934 870.497267 -93.153389 911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662	628.569452	-92.2440643
722.702124 -92.586731 757.11413 -92.7111816 793.164689 -92.8678284 830.931823 -93.0063934 870.497267 -93.153389 911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192	658.499259	-92.3537598
757.11413 -92.7111816 793.164689 -92.8678284 830.931823 -93.0063934 870.497267 -93.153389 911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	689.854197	-92.4678955
793.164689 -92.8678284 830.931823 -93.0063934 870.497267 -93.153389 911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	722.702124	-92.586731
830.931823 -93.0063934 870.497267 -93.153389 911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	757.11413	-92.7111816
870.497267 -93.153389 911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	793.164689	-92.8678284
911.94665 -93.3079376 955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	830.931823	-93.0063934
955.369676 -93.4704895 1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	870.497267	-93.153389
1000.86032 -93.6190796 1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	911.94665	-93.3079376
1048.51704 -93.8004456 1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	955.369676	-93.4704895
1098.44297 -94.0150986 1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1000.86032	-93.6190796
1150.74616 -94.2173462 1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1048.51704	-93.8004456
1205.5398 -94.4086609 1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1098.44297	-94.0150986
1262.94249 -94.6354065 1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1150.74616	-94.2173462
1323.07844 -94.8989716 1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1205.5398	-94.4086609
1386.07782 -95.1540985 1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1262.94249	-94.6354065
1452.07696 -95.401825 1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1323.07844	-94.8989716
1521.2187 -95.7137833 1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1386.07782	-95.1540985
1593.65267 -95.9981079 1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1452.07696	-95.401825
1669.53564 -96.3263397 1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1521.2187	-95.7137833
1749.03184 -96.7010803 1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1593.65267	-95.9981079
1832.31331 -97.0776825 1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1669.53564	-96.3263397
1919.56028 -97.459137 2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1749.03184	-96.7010803
2010.96159 -97.8954163 2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1832.31331	-97.0776825
2106.71504 -98.3898621 2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	1919.56028	-97.459137
2207.02786 -98.8771057 2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	2010.96159	-97.8954163
2312.11716 -99.4322662 2422.21036 -100.06192 2537.54572 -100.726501	2106.71504	-98.3898621
2422.21036 -100.06192 2537.54572 -100.726501	2207.02786	-98.8771057
2537.54572 -100.726501	2312.11716	-99.4322662
	2422.21036	-100.06192
2658.37287 -101.458656	2537.54572	-100.726501
	2658.37287	-101.458656

2784.9533	-102.245903
2917.56095	-103.149017
3056.48281	-104.184738
3202.01954	-105.328445
3354.48611	-106.607483
3514.21249	-108.104523
3681.54436	-109.843369
3856.84387	-111.886948
4040.49039	-114.315437
4232.88139	-117.254417
4434.43322	-120.839203
4645.5821	-125.366302
4866.78498	-131.076706
5098.52062	-138.397873
5341.29051	-147.702179
5595.62008	-159.42511
5862.05974	-173.189301
6141.18613	172.243103
6433.60333	158.587311
6739.9442	147.017532
7060.87171	137.783035
7397.08044	130.553513
7749.29799	124.951874
8118.28665	120.394676
8504.84498	116.826721
8909.80957	113.892517
9334.05686	111.503189
9778.50501	109.473984
10244.1159	107.744568
10731.8972	106.230026
11242.9045	104.875168
11778.2439	103.727913
12339.0739	102.686211
12926.6081	101.798553
13542.1183	100.977966
14186.9365	100.210968
14862.4581	99.5331726

98.9355774 98.3405914 97.8120728 97.3214722 96.8878555 96.4371643 96.0596848 95.6593018 95.3032227 94.9901123 94.6472015 94.3665161 94.0767059
97.8120728 97.3214722 96.8878555 96.4371643 96.0596848 95.6593018 95.3032227 94.9901123 94.6472015
97.3214722 96.8878555 96.4371643 96.0596848 95.6593018 95.3032227 94.9901123 94.6472015 94.3665161
96.8878555 96.4371643 96.0596848 95.6593018 95.3032227 94.9901123 94.6472015 94.3665161
96.4371643 96.0596848 95.6593018 95.3032227 94.9901123 94.6472015 94.3665161
96.0596848 95.6593018 95.3032227 94.9901123 94.6472015 94.3665161
95.6593018 95.3032227 94.9901123 94.6472015 94.3665161
95.3032227 94.9901123 94.6472015 94.3665161
94.9901123 94.6472015 94.3665161
94.6472015
94.3665161
94.0767059
93.7763367
93.5343246
93.2793655
93.0106812
92.7975006
92.5449219
92.3458862
92.130188
91.9200211
91.6913452
91.5140228
91.3168488
91.1003418
90.9328232
90.721138
90.721138

ANEXO III - CÓDIGOS EN PYTHON UTILIZADOS

I. Simulación Numérica

```
import scipy.signal as sig
import math
from pytc2.sistemas_lineales import
pretty_print_lti,tf2sos_analog,pretty_print_SOS
from IPython.display import display, Math, Latex
amax = 2.5
amin = 15
omega\_stop = 10
Q = 3
n \ calc = (math.log(math.sqrt(4*((10**(0.1*amin) -
1)/(10**(0.1*amax) -
1)))))/(math.log(omega_stop+(math.sqrt((omega_stop*
*2)-1))))
n = math.ceil(n \ calc)
z,p,k = sig.cheb1ap(n,amax)
num, den = sig.zpk2tf(z,p,k)
num\_bp, den\_bp = sig.lp2bp(num,den,1,1/Q)
tf_bp = tf2sos_analog(num_bp, den_bp)
pretty_print_SOS(tf_bp)
analyze_sys(tf_bp)
```

```
import csv
import matplotlib.pyplot as plt
frecs = []
gains = []
frec = []
gain = []
with open('modulo.csv','r') as csv_file:
       csv_reader = csv.reader(csv_file, delimiter=',')
       line\_count = 0
       i = 0
       for row in csv_reader:
               line\_count += 1
               if line\_count > 107 and len(row) > 1:
                      frecs.append(row[0])
                      gains.append(row[1])
                      i += 1
for j in range(len(frecs)-1):
       frec.append(float(frecs[j]))
       gain.append(float(gains[j]))
plt.plot(frec,gain)
plt.show()
```

```
import csv
import matplotlib.pyplot as plt
frecs = []
phases = []
frec = []
phase = []
with open('fase.csv','r') as csv_file:
       csv_reader = csv.reader(csv_file, delimiter=',')
        line\_count = 0
        i = 0
        for row in csv_reader:
            line\_count += 1
       if line_count > 107 and len(row) > 1:
              frecs.append(row[0])
              phases.append(row[1])
               i += 1
for j in range(len(frecs)-1):
       frec.append(float(frecs[j]))
       if frec[j] < 5900:
              phase.append(float(phases[j])+360
       else:
               phase.append(float(phases[j]))
plt.plot(frec,phase)
plt.show()
```