

Année scolaire : 2024-2025

TRAVAUX DE RENFORCEMENT DE CAPACITES DES APPRENANTS CANDIDATS AU CAP, DT ET BAC

Epreuve : Mesures et Essais de Laboratoire (MEL) **Durée** : 4 h

 $Classe: T^{le} EL$

Sujet 1: REDRESSEUR A DIODES

Un montage redresseur double alternance à quatre (4) diodes considérées comme parfaites est alimentée par une tension alternative u délivré par un transformateur 220V/12V-50Hz.

Ce montage permettra d'alimenter successivement les charges suivantes :

- Charge 1 : Un conducteur ohmique de résistance R = 470Ω ;
- Charge 2 : Un électromoteur de force contre électromotrice E = 9 V et de résistance interne négligeable en série avec une résistance R = 220 Ω.

Etude théorique

- 1) Proposez le schéma de chacun des deux montages.
- 2) Représentez l'oscillogramme de chacune des tensions u₁ et u₂ respectivement aux bornes des charges 1 et 2.
- 3) Justifiez sur une période l'allure de l'oscillogramme de la tension u_1 aux bornes de la charge 1
- 4) Déterminez pour la charge 2 l'angle de conducteur α des diodes au cours d'une période de

Etude pratique

- 1) Réalisez le schéma de montage de la charge 2.
- 2) Mesurez les valeurs moyenne et efficace du courant dans la charge.
- 3) Relevez à l'oscilloscope la tension :
 - a) u au secondaire du transformateur;
 - b) u_2 aux bornes de charge 2.
 - c) u_R aux bornes de la résistance R = 220 Ω puis déduisez-en le courant maximal I_{max} dans l'ensemble de la charge 2.

Serge SAVI 1

TRAVAUX DE RENFORCEMENT DE CAPACITES DES APPRENANTS CANDIDATS AU CAP, DT ET BAC

Epreuve : Mesures et Essais de Laboratoire (MEL) **Durée** : 5 h

Classe: The EL

Sujet 2 : Montage à amplificateur opérationnel

On considère le montage de la figure suivante.

Etude théorique

- 1) Exprimez v_S en fonction de v_1 et v_2 .
- 2) Quel est le nom de ce montage?

Etude pratique

 v_1 est une tension sinusoïdale d'expression instantanée v_1 = $6 \sin \omega t$ avec $\omega = 2000 \, \pi \, rad/s$ et v_2 est une tension continue de valeur 2V. On donne R = 100 k Ω . L'AOP est polarisée par une source symétrique délivrant – 15 V ; 0V ; + 15 V

- 1) Relevez à l'oscilloscope les allures de v₁, v₂ et v_S dans les cas suivants :
 - a- Interrupteur K ouvert;
 - b- Interrupteur K fermé.
- 2) Interprétez les courbes obtenues puis concluez.

Serge SAVI 2