МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Н.Э. БАУМАНА

Маркин Кирилл Вадимович

Разработка метода тематического моделирования для новостей на русском языке

Специальность 2301050065—
«Программное обеспечение вычислительной техники и автоматизированных систем»

Квалификационная работа бакалавра кандидата в бакалавры

> Научный руководитель: доцент, кандидат технических наук Клышинский Эдуард Станиславович

> > Консультант: старший преподаватель Волкова Лилия Леонидовна

1 Техническое задание

Заменить эту страницу на подписанное ТЗ

2 Календарный план

Заменить эту страницу на подписанный календарный план

3 Реферат

Объект исследования и разработки

Цель и задачи работы

Метод и методология проведения работы

Результаты работы

Основные конструктивные, технологические и технико-эксплуатационные характеристики объекта исследования

Степень внедрения

Рекомендации по внедрению

Область применения

Экономическая эффективность или значимость работы

Прогнозы и предположения о возможных направлениях развития объекта исследования

4 Перечень условных обозначений

Добавить условные обозначения (только если встречается более 3 раз)

// Документ -// Тема -

Оглавление

1	Техническое задание					
2	Kaj	Календарный план				
3	Реферат					
4	Пер	оечень	условных обозначений	5		
5	Вве	едение		8		
	5.1	// akr	гуальность выбранной темы	8		
	5.2	// под	двести к предметной области и задаче	8		
6	Ана	алитич	неский раздел	9		
	6.1	Поста	новка задачи	9		
	6.2	Задач	и тематического моделирования	9		
	6.3	В Существующие методы				
		6.3.1	Основы кластеризации и классификации документов	11		
		6.3.2	Латентный семантический анализ (LSA)	12		
		6.3.3	Вероятностные тематические модели	13		
		6.3.4	Вероятностный латентный семантический анализ			
			$(PLSA) \dots \dots$	15		
		6.3.5	Латентное размещение Дирихле (LDA)	15		
		6.3.6	Аддитивная регуляризация тематических моделей			
			(ARTM)	15		
		6.3.7	Описание задачи	15		
		6.3.8	Формализованное описание проблемы	15		
	6.4	// Фу	ткциональные требования к	16		
7	Конструкторский раздел					
	7.1	// обо	основать последовательность этапов выполнения	17		
	7.2	// Ал	горитм сбора данных	17		
	7.3	// Ал	горитм анализа	17		
	7.4	// ? t	Іто делаем	18		

	7.5	// Оценка	18				
	7.6	// Требования к программе	18				
8	Tex	Технологический раздел					
	8.1	// обоснованный выбор средств программной реализации .	19				
	8.2	// описание основных (нетривиальных) моментов					
		разработки	19				
	8.3	// методики тестирования созданного программного					
		обеспечения	19				
	8.4	// информация, необходимая для сборки и запуска					
		разработанного программного обеспечения	19				
9	Экс	периментальный раздел	20				
	9.1	// эксперименты и их результаты	20				
		9.1.1 // проводим апробацию	20				
		9.1.2 // анализируем результаты	20				
	9.2	// качественное и количественное сравнение с аналогами .	20				
	9.3	// даём рекомендации о применимости метода/софта	20				
10	Зак	лючение	21				
	10.1	// отчитаться по каждому пункту тз/по каждой задаче и					
		цели	21				
	10.2	// сказать про перспективы (мы все уже не умрём)	21				
11	Спи	Список источников					
	11.1	// Разобрать	22				
	11.2	// Датасеты	22				
12	При	лложения	23				
	12.1	//	23				

5 Введение

2 - 3 страницы

Костя пошарил свою работу - глянуть что тут должно быть

 $5.1\ \ //\$ актуальность выбранной темы $5.2\ \ //\$ подвести к предметной области и задаче

6 Аналитический раздел

25 – 30 страниц

6.1 Постановка задачи

Целью данной работы является разработка метода тематического моделирования для новостей на русском языке.

Для достижения этой цели необходимо выполнить следующие основные **задачи**:

- <u>Анализ существующих решений и выбор базового алгоритма тема-</u> тического моделирования для классификация/категоризация новостей на русском языке
- Разработка программного продукта для сбора новостей на русском языке и подготовки данных для последующего анализа
- Подбор методов улучшения алгоритма и значений их параметров
- Обучение модели
- проведение эксперимента

6.2 Задачи тематического моделирования

проводится анализ предметной области

выделяется основной объект исследования

Задачи, для решения которых используется тематическое моделирование разбивают на 2 класса: **Автоматический анализ текста** и **систематизация больших объемов информации**.

В задачах автоматического анализа текста обычно выделяют следующие направления:

• Классификация и категоризация документов - необходимо присвоить каждому документу соответствующие классы. Если классы имеют иерархическую структуру - говорят о категоризации.

- Автоматическое аннотирование документов составление краткого обзора на документ, используя наиболее важные фразы.
- **Автоматическая суммаризация коллекций** решение предыдущей задачи для большой коллекции документов.
- Тематическая сегментация документов разбиение длинного документа части с различными темами.

В задачах систематизации больших объемов информации обычно выделяют следующие направления:

- Семантический (разведочный) поиск информации поиск по коллекции документов на базе тематического моделирования позволяет использовать длинный документ в качестве поискового запроса, а так же находить документы близкие по смыслу даже если ключевые слова, используемые при поиске отсутствуют в результатах поиска.
- Визуализация тематической структуры коллекции все задачи связанные с графическим представлением больших массивов документов.
- Анализ динамики развития тем обычно используется при наличии данных о времени создания документов в коллекции.
- **Тематический мониторинг новых поступлений** автоматический мониторинг настроенных ресурсов на наличие новых документов, схожих по тематике с настроенным целевым документом.
- **Рекомендация документов пользователям** создание систем рекомендации на основании данных о просмотренных документов пользователем и его активности.

6.3 Существующие методы

обзор существующих путей/методов/решений и алгоритмов решения

Классификация и кластеризация документов, VSM (Vector Space Model)

LSA - Латентно-семантическое индексирование, SVD - Singular Value Decomposition

? Графические модели

PLSA - Probabilistic latent semantic analysis

LDA - Latent Dirichlet allocation - латентное размещение Дирихле - специальный регуляризатор для Баеса

? pLDA

JPM - Join Probabilistic Model, AHMM - Aspect Hidden Markov Model,

ATM - Autor-Topic Model, CTM - Correlated Topic Model

ARTM - Additive Regularization for Topic Modeling

Обзор

dwl.kiev.ua - Дмитрия Владимировича Ландэ

обосновывается необходимость разработки нового или адаптации существующего метода или алгоритма

выводы из обзора (лучше сравнительную таблицу) отсюда актуальность (никто не делал так/улучшаем то-то и то-то)

6.3.1 Основы кластеризации и классификации документов

В первый раз задача определения и отслеживания тем (TDT, Topic Detection and Tracking) встречается в работе "Topic Detection and Tracking Pilot Study. Final Report."[]. Темой в этой работе называют событие или действие вместе со всеми непосредственно связанными событиями или действиями. Задачей является извлечение событий.

Документы представляются векторной моделью (VSM, Vector Space Model). В такой модели каждому слову сопоставляется определенный вес, вычисляемый по весовой функции.

Базовый вариант весовых функций в таком представлении данных:

$$TF - IDF(t,d,D) = TF(t,d) \times IDF(t,D),$$

где

$$TF(t,d) = \frac{freq(t,d)}{max_{W \in D}freq(w,d)}$$
$$IDF(t,D) = \log \frac{|D|}{|\{d \in D : t \in d\}|}$$

пояснить что такое freq

Еще вариант из работы []:

$$w(t,D) = (1 + \log_2 TF(t,D)) \times \frac{IDF(t)}{||\vec{d}||},$$

где $||\vec{d}||$ - номер вектора представляющего документ D. Еще варианты модификаций TF-IDF из работ []:

$$TF' = \frac{TF}{TF + 0.5 + 1.5 \frac{l_d}{l_{avg}}},$$

где l_d - длинна документа d, а l_{avg} - средняя длинна документа.

$$IDF' = \frac{\log(IDF)}{\log(N+1)}$$

Для определения расстояния в таком представлении данных использовались различные метрики: дивергенция Кульбака-Лейблера, косинус и другие. В первых работах для решения таких задач использовались алгоритмы кластеризации: метод К-средних, инкрементальная кластеризация и т. д. Каждый кластер описывал то или иное событие.

Главным недостатком такого подхода является однозначность отношения документ-тема. То есть один документ относится к одной теме (событию). В рассматриваемом выше примере про новость финансирования спорта мы увидели, что в одном документе затрагиваются сразу две темы и футбол и финансы. При таком подходе эти данные теряются.

6.3.2 Латентный семантический анализ (LSA)

Dumais et al [] в 1988 году предложил метод LSA. Суть метода в

том, что бы спроецировать документы и термины в пространство более низкой размерности. Для этого анализируется совместная встречаемость слов (терминов) в документах. Таким образом задача состоит в том, что бы часто встречающиеся вместе термины были спроецированы в одно и то же измерение семантического пространства.

Дописать что надо по минимуму, что бы был понятен PLSA

6.3.3 Вероятностные тематические модели

В вероятностных тематических моделях в отличие от рассмотренных выше методов сначала задается модель, а после с помощью матрицы слов в документах оцениваются ее скрытые параметры. В связи с чем появляется возможность дообучения моделей и упрощается подбор параметров.

Для лучшего понимания алгоритма рассмотрим детальнее процесс написания новости журналистом. Для начала работы он выбирает тему своей новостной статьи. Это, в свою очередь, влияет на то, какие слова он будет использовать. Очевидно, что если журналист решил написать новость про футбол, то слово «мяч» в таком документе появится с большей вероятностью, чем слово «антиматерия». При этом если статья затрагивает финансовую сторону вопроса, то вероятности возникновения слов «мяч» и слово «бюджет» могут сравняться. В таком случае мы можем сказать что такая новость имеет минимум две темы - «спорт» и «финансы», которые в свою очередь и породили слова «мяч» и «бюджет».

Продолжая эту аналогию можно представить себе любую новость как смесь разных тем. А каждое слово, встречающееся в новости как результат срабатывания события упоминания этого слова журналистом из тем, на которые он опирался создавая документ.

«процесс порождения текстового документа вероятностной тематической моделью.png»

Вставить картинку

Допущения

- Порядок слов в документе не важен (bag of words).
- Слова в документах генерируются темой, а не самим документом.

- Порядок документов в коллекции не важен.
- Каждое отношение документ-слово (d,w) связано с некоторой темой $t \in T$.
- Коллекция представляет собой последовательность троек документслово-тема (d, w, t).
- В теме не большое число образующих слов.
- В документе используется не большое число тем.

Пусть:

- ullet D коллекция документов размера n_d с документами d.
- W словарь терминов размера n_w со словами w.
- ullet T список тем размера размера n_t с темами t.
- ullet n_{dw} количество использований слова w в документе d.
- Каждый документ состоит из слов: $d \subset W$
- ullet p(w|d) вероятность появления слова w в документе d
- ullet p(w|t) вероятность появления слова w в теме t
- ullet p(t|d) вероятность появления темы t в документе d
- ullet $\hat{p}(w|d) = rac{n_d w}{n_d}$ наблюдаемая частота слова w в документе d

Требуется найти параметры вероятностной порождающей тематической модели. То есть представить вероятность появления слов в документе p(w|d) в виде:

$$p(w|d) = \sum_{t \in T} p(w|t)p(t|d)$$

Запишем вероятности p(w|t) в матрицу $\Phi = (\phi_{wt})$, а вероятности p(t|d) в матрицу $\Theta = (\theta_{td})$. Тогда вероятность появления слов в документе

можно представить в виде матричного разложения:

$$p(w|d) = \sum_{t \in T} \phi_{wt} \theta_{td}$$

«матричное разложение.png»

Вставить картинку

То есть решается задача обратная к генерации текста (работе журналиста). Необходимо по имеющийся коллекции документов понять какими распределениями матриц ϕ_{wt} и θ_{td} она могла быть получена.

6.3.4 Вероятностный латентный семантический анализ (PLSA)

6.3.5 Латентное размещение Дирихле (LDA)

6.3.6 Аддитивная регуляризация тематических моделей (ARTM)

6.3.7 Описание задачи

В данной работе рассматривается задача классификации и категоризации документов. В качестве документов выступают новости на русском языке. Необходимо с помощью выбранного метода и способов его усовершенствования разбить коллекцию новостей на темы, интерпретируемые человеком и получить возможность оценивать новый документ (новость) на принадлежность этим темам.

Особенностью тематического моделирования является возможность не использовать в процессе построения модели размеченные данные. То есть темы, на которые разбивается коллекция так же создаются по ходу формирования модели.

6.3.8 Формализованное описание проблемы

Необходимая существующая математика

описание входных и выходных данных

Откуда брать данные и какие они бывают

описание критериев сравнения нескольких реализаций метода или алгоритма

Входные данные:

• Коллекция новостей на русском языке на разные темы в сети интернет.

Выходные данные:

- Обученная тематическая модель с настроенными регуляризаторами.
- Список тем с образующими их словами
- Названия тем

Получение данных:

- Парсинг новостных агрегаторов
- Парсинг крупных новостных сайтов

Подготовка данных:

- Удаление форматирования текста
- Исправление опечаток
- Слияние слишком коротких текстов
- Выделение терминов
- Приведение слов к нормальной форме (лемматизация)
- Удаление слишком частых слов
- Удаление слишком редких слов

6.4 // Функциональные требования к

Что мы хотим получить (это и будет "мостиком"к конструкторской)

7 Конструкторский раздел

25 – 30 страниц

$7.1 \ //$ обосновать последовательность этапов выполнения $7.2 \ //$ Алгоритм сбора данных

как будем извлекать данные (без кода пока)

Мой написанный код для парсинга

Уже предварительно собранные открытые данные

https://newspaper.readthedocs.io/en/latest/ - возможный инструмент для парсинга

25 500 новостей (там суммарно 9 000 000 слов - я посчитал) за все время существования media.zone (я сам написал парсер, могу его же натравить на любой другой новостной ресурс) - уже скачены и лежат на моем компьютере

statmt.org - это не совсем подходит нам, тут новости короткие совсем. Но тоже скачал на всякий случай поиграться - тут суммарно 8,4 гига-байта чистого текста - уже скачены и лежат на моем компьютере

webhose.io - 290 000 новостей - уже скачены и лежат на моем компьютере

Можно сделать сервис на РИА новости

Можно сделать сервис на агрегаторы новостей

7.3 // Алгоритм анализа

разработка метода

Базовый алгоритм: ARTM (bigartm.readthedocs.io)

Предобработка текста: лемматизация, удаление стоп-слов, ngrams

Используем модальности (дата публикации, ссылки на другие документы, авторы)

Используем производные от статьи данные по различным алгоритмам (записываем в модальности) - алгоритмы еще не выбраны

IDEF0 метода

7.4 // ? Что делаем

Можно попробовать обучаться на месяце/неделе/дне (и это в теории можно вынести в экперимент) и выдавать как меняются темы решить иерархически ли хотим строить темы или многое ко многим

7.5 // Оценка

как будем оценивать (без кода)

Разбиение на 2 части и замеры разницы оценки - устойчивость - Через предложение разбивать статью можно попробовать

Толока - описание теста - выбрать лишнее слово, подумать что еще можно

7.6 // Требования к программе

8 Технологический раздел

20 - 25 страниц

8.1 // обоснованный выбор средств программной реализации
8.2 // описание основных (нетривиальных) моментов разработки
8.3 // методики тестирования созданного программного обеспечения
8.4 // информация, необходимая для сборки и запуска разработанного программного обеспечения

9 Экспериментальный раздел

10 - 15 страниц

9.1 // эксперименты и их результаты

Можно поиграть с периодом обучение и сравнения данных (месяц/неделя/день) и смотреть где лучше (?что лучше)

Можно поиграть с размером новости и посмотреть как от этого зависят результаты

- 9.1.1 // проводим апробацию
- 9.1.2 // анализируем результаты
- 9.2 // качественное и количественное сравнение с аналогами оцениваем адекватность и качество
 - 9.3 // даём рекомендации о применимости метода/софта

10 Заключение

- $10.1 \ \ //$ отчитаться по каждому пункту тз/по каждой задаче и цели
 - 10.2~// сказать про перспективы (мы все уже не умрём)

11 Список источников

11.1 // Разобрать

Ссылка на записи с datafest

Воронцов - книги и лекции

Ученики Воронцова - доклады и статьи

Анастасия Янина - работала с Воронцовым - посмотреть ее доклады и статьи

Потапенко Анна - работала с Воронцовым - посмотреть ее доклады и статьи

"Диалог NLP Конференция

курсы на курсере

dwl.kiev.ua - Дмитрия Владимировича Ландэ

Обзор

Topic Detection and Tracking Pilot Study. Final Report.

11.2 // Датасеты

25 500 новостей (там суммарно 9 000 000 слов - я посчитал) за все время существования media.zone (я сам написал парсер, могу его же натравить на любой другой новостной ресурс) - уже скачены и лежат на моем компьютере

statmt.org - это не совсем подходит нам, тут новости короткие совсем. Но тоже скачал на всякий случай поиграться - тут суммарно 8,4 гига-байта чистого текста - уже скачены и лежат на моем компьютере

webhose.io - 290 000 новостей - уже скачены и лежат на моем компьютере

Можно сделать сервис на РИА новости

Можно сделать сервис на агрегаторы новостей

12 Приложения

добавить схемы, листинги программного кода, наборы тестов и др

12.1 //