Quantum Mechanics

Homework Assignment 05

Fall, 2019

- 1. [C-T Exercise 2-1] $|\varphi_n\rangle$ are the eigenstates of a Hermitian operator \hat{H} (\hat{H} is, for example, the Hamiltonian of an arbitrary physical system). Assume that the states $|\varphi_n\rangle$ form a discrete orthonormal basis. The operator $\hat{U}(m,n)$ is defined by $\hat{U}(m,n) = |\varphi_m\rangle\langle\varphi_n|$.
 - (a) Calculate the adjoint $\hat{U}^{\dagger}(m,n)$ of $\hat{U}(m,n)$.
 - (b) Calculate the commutator $[\hat{H}, \hat{U}(m, n)]$.
 - (c) Prove the relation $\hat{U}(m,n)\hat{U}^{\dagger}(p,q) = \delta_{nq}\hat{U}(m,p)$.
 - (d) Calculate $\text{Tr}\{\hat{U}(m,n)\}\$, the trace of the operator $\hat{U}(m,n)$.
 - (e) Let \hat{A} be an operator, with matrix elements $A_{mn} = \langle \varphi_m | \hat{A} | \varphi_n \rangle$. Prove the relation $\hat{A} = \sum_{m,n} A_{mn} \hat{U}(m,n)$.
 - (f) Show that $A_{pq} = \text{Tr}\{\hat{A}U^{\dagger}(p,q)\}.$
- 2. [C-T Exercise 2-2] In a three-dimensional vector space, consider the operator whose matrix, in an orthonormal basis $\{|1\rangle, |2\rangle, |3\rangle\}$, is written as $\hat{L}_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$.
 - (a) Is \hat{L}_y Hermitian? Calculate its eigenvalues and eigenvectors (giving their normalized expansion in terms of the $\{|1\rangle, |2\rangle, |3\rangle\}$ basis).
 - (b) Calculate the matrices which represent the projectors onto these eigenvectors. Then verify that they satisfy the orthogonality and closure relations.
- 3. [C-T Exercise 2-3] The state space of a certain physical system is three-dimensional. Let $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ be an orthonormal basis of this space. The kets $|\psi_0\rangle$ and $|\psi_1\rangle$ are defined by

$$\begin{split} |\psi_0\rangle &= \frac{1}{\sqrt{2}} |u_1\rangle + \frac{i}{2} |u_2\rangle + \frac{1}{2} |u_3\rangle, \\ |\psi_1\rangle &= \frac{1}{\sqrt{3}} |u_1\rangle + \frac{i}{\sqrt{3}} |u_3\rangle. \end{split}$$

- (a) Are these kets normalized?
- (b) Calculate the matrices ρ_0 and ρ_1 representing, in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis, the projection operators onto the state $|\psi_0\rangle$ and onto the state $|\psi_1\rangle$. Verify that these matrices are Hermitian.
- 4. [C-T Exercise 2-9] Let \hat{H} be the Hamiltonian operator of a physical system. Denote by $|\varphi_n\rangle$ the eigenvectors of \hat{H} , with eigenvalues E_n , $\hat{H} |\varphi_n\rangle = E_n |\varphi_n\rangle$.
 - (a) For an arbitrary operator \hat{A} , prove the relation $\langle \varphi_n | [\hat{A}, \hat{H}] | \varphi_n \rangle = 0$.
 - (b) Consider a one-dimensional problem, where the physical system is a particle of mass m and of potential energy $\hat{V}(\hat{x})$. In this case, \hat{H} is written as $\hat{H} = \frac{1}{2m}\hat{p}^2 + \hat{V}(\hat{x})$.
 - i. In terms of \hat{p} , \hat{x} , and $\hat{V}(\hat{x})$, find the commutators: $[\hat{H}, \hat{p}]$, $[\hat{H}, \hat{x}]$, and $[\hat{H}, \hat{x}\hat{p}]$.
 - ii. Show that the matrix element $\langle \varphi_n | \hat{p} | \varphi_n \rangle$ is zero.
 - iii. Establish a relation between $E_k = \langle \varphi_n | \frac{\hat{p}^2}{2m} | \varphi_n \rangle$ and $\langle \varphi_n | \hat{x} \frac{d\hat{V}(\hat{x})}{d\hat{x}} | \varphi_n \rangle$. Apply the derived relation to $\hat{V}(\hat{x}) = V_0 \hat{x}^{\lambda}$ with $\lambda = 2, 4, 6, \cdots$ and $V_0 > 0$?
- 5. [C-T Exercise 2-10] Using the relation $\langle x|p\rangle = (2\pi\hbar)^{-1/2}e^{ipx/\hbar}$, find the expressions $\langle x|\hat{x}\hat{p}|\psi\rangle$ and $\langle x|\hat{p}\hat{x}|\psi\rangle$ in terms of $\psi(x)$. Can these results be found directly by using the fact that in the $\{|x\rangle\}$ representation, \hat{p} acts like $-i\hbar\frac{d}{dx}$?