Computació Numèrica

Conceptes Bàsics

Full $n^{\circ}1$

1 MATLAB $^{\mathbb{R}}$

1 Operacions

1. Calcula les quantitats següents:

$$r = \sqrt{1 - \frac{2}{\pi^5}}$$
, $r = e^2 \ln 5$, $r = \sin^2 2 + \cos^2 4$.

2. Evalueu les üents expressions:

$$b = (5 >= 5.5)$$
, $b = (\sin(\pi) == 0)$, $b = ((7 <= 8) == (3/2 == 1))$.

2 Fer una gràfica per cada una de les funcions següents:

$$\star f(x) = x^5 e^{-x^2} - \frac{\sin x}{x^2 + 1} \text{ per } x \in [-2\pi, 2\pi].$$

$$\star f(x) = \frac{x^2 - 4x - 7}{x^2 - x - 6}$$
 per $-6 \le x \le 6$ (presenta dues assímptotes).

 $\star~f(x) = \cos x$ i les seves aproximacions de Taylor de grau0,2,4,6.

Preneu un mínim de 50 punts en l'interval; representeu les gràfiques amb títol, quadrícula.

3 Scripts

- 1. Escriviu un script que calculi $1+2+\cdots+n$ per a diferents valors de n.
- 2. Escriviu un script que calculi $1^p + 2^p + \cdots + n^p$ per a diferents valors de n i p.
- 3. Escriviu un script per a resoldre les equacions de segon grau $ax^2 + bx + c = 0$, on a, b, c són nombres reals. Cal distingir els casos trivials i els casos a = 0, $b^2 4ac < 0$ i $b^2 4ac > 0$. Feu un joc de proves.

4 Funcions

- 1. Escriviu una funció que retorni l'error absolut i l'error relatiu de les dades $x,\,\tilde{x}.$
- 2. Escriviu una funció que retorni elsi decimals exactes i les xifres significatives de les dades x, \tilde{x} .
- 3. Escriviu una funció que generi una mostra de v.a.u. de mida "n", en faci l'histograma, calculi la mitja i la desviació stàndar. No ha de retornar cap argument
- $\bf 5$ Escriviu una ${\bf funció}$ d'argument m que calculi

$$\sqrt{12}\sum_{n=0}^{m}\frac{(-1/3)^n}{2n+1}$$

Calculeu el valor per $m=5,\ m=10,\ \mathrm{i}\ m=20\ \mathrm{i}\ \mathrm{compareu}$ el resultat amb $\pi.$

Computació Numèrica Full n°1

6 Avalueu les funcions

$$f(x) = \sqrt{x^2 + 1} - 1$$
, $g(x) = x^2 / \sqrt{x^2 + 1} + 1$

per a la successió de valors de $x_n = 8^{-n}$, $n \ge 1$. Encara que f(x) = g(x), l'ordinador dóna resultats diferents. Quins resultats són de fiar i quins no? Per què? Justifiqueu la vostra resposta.

7 La succesió

$$x_1 = 2\sqrt{2}$$
, $x_2 = 2^2\sqrt{2-\sqrt{2}}$, $x_3 = 2^3\sqrt{2-\sqrt{2+\sqrt{2}}}$, $x_4 = 2^4\sqrt{2-\sqrt{2+\sqrt{2}+\sqrt{2}}}$, ...

convergeix a π . Escriu un **script** de MATLAB® que calculi x_k i $|x_k - \pi|$ per k = 1, 2, ..., 15.

2 Algorismes

8 Calcular el valor x_{10} del mètode iteratiu següent:

$$x_k = \frac{1}{2} \left(x_{k-1} + \frac{a}{x_{k-1}} \right) \quad k \ge 1 \ i \ x_0 = a \ .$$

Comparar el resultat obtingut amb el valor \sqrt{a} , quants decimals correctes s'obtenen?

9 Definim el nombre e com $e = \sum_{k=0}^{\infty} \frac{1}{k!}$. Per calcular-ne una aproximació considerem el mètode iteratiu definit per

$$x_k = x_{k-1} + \frac{1}{k!}, \quad k \ge 1, \quad x_0 = 1$$

Calculeu els 20 primers termes de la recurrència, compareu els vostres resultats amb el valor exp(1) retornat per Matlab.

10 Escriviu una function que calculi e^x per a tot x a partir de la sèrie de Taylor en x = 0 de la funció exponencial,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Feu un joc de proves per a diferents valors de n i de x; compareu el vostre resultat amb el resultat que retorna la funció \exp de Matlab. (Feu un joc de proves).

- 11 Escriviu un script que calculi e^x amb almenys 12 decimals correctes (feu ús de la funció anterior).
- 12 Per calcular les integrals $I_n = \int_0^1 x^n e^{x-1} dx$, $n \ge 1$, dispossem de dos mètodes iteratius diferents:

a)
$$I_{n-1} = \frac{1 - I_n}{n}$$
, $n \ge 2$ on $I_{50} = 0$,

b)
$$I_n = 1 - nI_{n-1}, n \ge 2$$
 on $I_1 = 1/e$.

Discutiu la estabilitat de la recurrència.

Propagació de l'error 3

13 Per a calcular el punt mig de dos punts a i b a la recta real, podem utilitzar les dues expressions següents:

$$0.5(a+b)$$
 i $a+0.5(b-a)$

Calculeu les dues quan a = 0.982 i b = 0.987, amb una aritmètica de tres xifres bo i tallant. Repetiu els càlculs ara arrodonint. Comenteu els resultats obtinguts.

- **14** Calculeu: $\sum_{k=1}^{6} \frac{1}{3^k}$ i $\sum_{k=1}^{6} \frac{1}{3^{(7-k)}}$
 - a) Fent ús de l'aritmètica de tres xifres arrodonint.
 - b) Fent ús de l'aritmètica de quatre xifres arrodonint.
 - c) Per què donen diferent? Calculeu en cada cas l'error relatiu percentual.
- Calculeu $\frac{1}{(\sqrt{3}+2)^4}$ tenint accés al valor aproximat de 1.7321 per $\sqrt{3}$. Calculeu l'error comès si es fa el càlcul directe o avaluant l'expressió $97 - 56\sqrt{3}$.
- Determineu l'error màxim en el càlcul de $y=\frac{x_1x_2^2}{\sqrt{x_3}}$ amb $x_1=2.0\pm0.1,\,x_2=3.0\pm0.2$ i $x_3=1.0\pm0.1$. Quina de les dades contribueix més a l'error en y? Per què?