NAME: _____ TIME ALLOWED: 50 MINUTES

Part A: Multiple Choice Questions. (10 marks)

Q1. The sum of the Oxidation Numbers of the underlined elements of the following species is

	<u>C</u> O ₃ ²⁻	<u>K</u> H	H_2SO_4	$Mg(\underline{N}O_3)_2$
--	---------------------------------------	------------	-----------	--------------------------

- A) 11+
- B) 13+
- c) 15+
- D) 16+
- Q2. An Oxidising agent is one which
 - A) Contains Hydrogen atoms
 - B) Can donate electrons
 - C) Can accept electrons
 - D) Must contain an Oxygen atom

Q3 In the reaction below, which is true of Zinc ions?

$$Mg(s) + ZnCl_2(aq) \rightarrow MgCl_2(aq) + Zn(s)$$

- A) It is oxidised by losing electrons
- B) It is oxidised by gaining electrons
- C) It is reduced by losing electrons
- D) It is reduced by gaining electrons
- Q4. Acidified Potassium Permanganate solution is a strong Oxidising agent because
 - A) the Mn in the compound has a high oxidation number which can be lowered by a reducing agent.
 - B) the K⁺ ion in the compound can easily be reduced.
 - c) the compound has 4 Oxygen atoms.
 - D) the solution forms a precipitate of MnO₂ with a reducing agent.
- Q5. Which one of the following is not a redox reaction?
 - A) $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$
 - B) Mg + CuSO₄ \rightarrow MgSO₄ + Cu
 - C) $CuSO_4 + H_2S \rightarrow CuS + H_2SO_4$
 - D) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$

- Q6. Which of the following statements about oxidation numbers is false?
 - A) The oxidation number of a free element is Zero.
 - B) The oxidation number of a compound is Zero.
 - C) Cations always have positive oxidation numbers.
 - D) Non-metals always have negative oxidation numbers.
- Q7. If a metal is found in its elemental form in nature, we expect that the metal
 - A) Is very reactive
 - B) Is very electropositive
 - C) Will form very stable compounds
 - D) To be completely pure
- Q8. The Oxidation Numbers of element M in $Na_2H_2M_2O_7.6H_2O$ is
 - A) 0
 - B) +7
 - C) +5
 - D) +3
- Q9. In the compound magnesium hydride, the oxidation numbers of the magnesium and the hydrogen are

	Oxidation number				
	A.	B.	C.	D.	
Mg	+2	-2	-2	+2	
Н	-2	+2	+1	-1	

- Q10. Which of the following reactions shows that Hydrogen Peroxide is a reducing agent?
 - A) $H_2S + H_2O_2 \rightarrow S + 2H_2O$
 - B) $PbO_2 + H_2O_2 \rightarrow PbO + H_2O + O_2$
 - C) $H_2O_2 + dye \rightarrow H_2O + (dye + O)$
 - D) $H_2SO_3 + 4H_2O_2 \rightarrow H_2SO_4 + H_2O$

END OF PART A

PART B: SHORT ANSWER QUESTIONS (42 marks)

- Q11. Several Redox reactions were carried out in the lab and some of the observations were recorded. From the information provided write one complete half equation for each experiment.
 - A) An unknown halogen was added to a colourless solution of iodide ions to form a brown solution.

Half-equation:			

B) Aluminium metal was added to an unknown solution. The Aluminium dissolved producing a clear colourless solution.

Half-equation:

C) A metal was added to an unknown acid solution and a colourless gas was produced.

Half-equation:

[3 marks]

Q12. Identify the oxidising and reducing agents in each of the following:

[2 marks]

a)
$$Fe_2O_{3(s)} + 2CO_{(g)} \rightarrow 2Fe_{(s)} + 3CO_{2(g)}$$

Oxidising agent: _____ Reducing agent: _____

a)
$$Cu_2O_{(s)} + 2H^+_{(aq)} \rightarrow Cu^{2+}_{(aq)} + Cu_{(s)} + H_2O_{(l)}$$

Oxidising agent: _____ Reducing agent: _____

13. Consider the reaction:

$$Mg_{(s)} + H_2O_{(l)} \rightarrow MgO_{(s)} + H_{2(q)}$$

- a. What substance is oxidised? To what?
- b. What substance is reduced? To what?
- c. What substance is the oxidant (oxidising agent)?
- d. What substance is the reductant (reducing agent)?

(4 marks)

- 14. (a) Write the **two half equations**, the **overall reaction equation** and what you would **observe** if 5mL of a solution of potassium bromide is added to an aqueous solution of Chlorine (chlorine water). (4 marks)
 - (b) Write the **two half equations**, the **overall reaction equation** and what you would **observe** if 5 mL of acidified $K_2Cr_2O_7$ is added to an aqueous solution of FeSO₄ (iron (II) sulfate).

(4 marks)

- 15. What is the oxidation number of:
 - a. Cr in K₂Cr₂O₇
- f. P in HPO_4^{2-}
- b. Mn in MnO₄¹⁻
- O in H₂O₂ q.
- c. N in NH_4^+ h. Cl in HClO
- d. I in IO₃
- i. $N \text{ in } N_2O_3$
- e. S in $S_2O_3^{2-}$
- j. Xe in $HXeO_4^{1-}$

(5 marks)

16. Make two lists (1) oxidants and (2) reductants and classify the following into these two groups:

(4 marks)

- 17. For each of the following changes, state whether it is oxidation, reduction or neither and give the change in oxidation state of the element involved.
 - a. $Cr(OH)_3 \rightarrow Cr_2O_7^{2-}$
 - b. $CIO^{-1} \rightarrow CI^{-1}$
 - c. $MnO_2 \rightarrow Mn_2O_3$
 - d. $Cu_2S_{(s)} \rightarrow Cu_2O_{(s)}$

(8 marks)

- Determine whether the following reactions represent SPONTANEOUS redox reactions or 18. NOT. Be sure to justify your answer with working showing half equations with E⁰ values, and the full equations with phases for any reactions that occur. Where a reaction is not spontaneous you must state this as well, and show your working to justify this conclusion.
 - a. Potassium metal added to water.
 - b. Copper filings added to dilute sulfuric acid.
 - c. Silver metal added to a solution of zinc nitrate.
 - d. Magnesium ribbon added to a solution of tin (II) sulfate.

UNIT 3 Sample Test

REDOX TEST

52 marks

NAME: Solutions

TIME ALLOWED: 55 MINUTES

Part A: Multiple Choice Questions. (10 marks)

1	2	3	4	5	6	7	8	9	10
D	С	D	Α	С	D	D	С	D	В

PART B: SHORT ANSWER QUESTIONS (10 marks)

- Q11. Several Redox reactions were carried out in the lab and some of the observations were recorded. From the information provided write one complete half equation for each experiment.
 - D) An unknown halogen was added to a colourless solution of iodide ions to form a brown solution.

Half-equation: $2I_{(aq)}^- \rightarrow I_{2(aq)} + 2e_{(g)}^-$

E) Aluminium metal was added to an unknown solution. The Aluminium dissolved producing a clear colourless solution.

Half-equation: $\frac{Al_{(s)} \rightarrow Al^{3+}_{(aq)} + 3e^{-}}{}$

F) A metal was added to an unknown acid solution and a colourless gas was produced.

Half-equation: $2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}$

Q12. Identify the oxidising and reducing agents in each of the following:

[2 marks]

[3 marks]

a) $Fe_2O_{3(s)} + 2CO_{(g)} \rightarrow 2Fe_{(s)} + 3CO_{2(g)}$

Oxidising agent: Fe₂O₃ Reducing agent: CO_____

13. $Cu_2O_{(s)} + 2H^+_{(aq)} \rightarrow Cu^{2+}_{(aq)} + Cu_{(s)} + H_2O_{(l)}$

Oxidising agent: ____Cu₂O_____ Reducing agent: ____Cu₂O ____

- 13. a. Mg \rightarrow Mg²⁺ or MgO (1 each)
 - b. $H_2O \rightarrow H_2$ (1 each)
 - c. H_2O (1 mark)
 - d. Mg (1 mark)

4 marks

14. (a) $Cl_2 + 2e^{-} \rightarrow 2Cl^{-1}$ (1 mark) $2Br^{-1} \rightarrow Br_2 + 2e^{-}$ (1 mark)

$$Cl_2 + 2Br^{-1} \rightarrow 2Cl^{-1} + Br_2$$
 (1 mark)

Obs: A clear colourless solution is added to a pale yellow solution. Upon addition the solution turns orange. (1 mark)

4 marks

(b)
$$Cr_2O_7^{-2} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$
 (1 mark)
6($Fe^{2+} \rightarrow Fe^{3+} + e^-$) (1 mark)
 $Cr_2O_7^{-2} + 6Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$ (1 mark)

i.

Obs: An orange coloured solution is added to a pale green solution. Upon addition a dark green solution is produced. (1 mark)

4 marks

15. a.
$$Cr = +6$$

d.

f.
$$P = +5$$

b.
$$Mn = +7$$

I = +5

g.
$$O = -1$$

c.
$$N = -3$$

h.
$$Cl = +1$$

N = +3

e.
$$S = +2$$

j.
$$Xe = +6$$

5 marks

16. 1. Oxididants =
$$F_2$$
, HClO, MnO₄⁻¹, Cr₂O₇²⁻, Ag⁺

2. Reductants = Zn, Al, I^{-1}

1/2 each x 8 = 4 marks

17. a.
$$Cr(OH)_3 \rightarrow Cr_2O_7^{2-}$$

(+3) (+6)
$$\Delta = +3$$
 (1 mark) \rightarrow Oxidation (½ mark)

b.
$$CIO^{-1} \rightarrow CI^{-1}$$

(+1) (-1)
$$\Delta$$
 = -2 (1 mark) → Reduction (½ mark)

c.
$$MnO_2 \rightarrow Mn_2O_3$$

(+4) (+3)
$$\Delta = -1$$
 (1 mark) \rightarrow Reduction (½ mark)

d.
$$Cu_2S \rightarrow Cu_2O$$

(+1) $(+1) \Delta = 0 (1 \text{ mark}) \rightarrow \text{Neither } (\frac{1}{2} \text{ mark})$

8 marks

18. a.
$$K_{(s)} + H_2O_{(l)}$$
 $2H_2O + 2e - \rightarrow H_2 + 2OH^ E^\circ = -0.83V$ (best reduction)
 $E^\circ = +2.94V$ (best oxidation))
 $E^\circ = +2.11V$

(1)

Positive E° value, therefore reaction is spontaneous. (1)
 $E^\circ = +2.11V$

(1)

Positive E° value, therefore reaction is spontaneous. (1)
 $E^\circ = +2.11V$

(1)

Positive E° value, therefore reaction is spontaneous. (1)
 $E^\circ = +2.11V$

(2)

Description $E^\circ = +2.11V$

(3)

Regative E° value, therefore reaction is spontaneous. (1)
 $E^\circ = -0.34V$ (best oxidation)
 $E^\circ = -0.34V$ (best oxidation)
 $E^\circ = -0.34V$ (1)

Regative E° value, therefore reaction NOT spontaneous. (1)
 $E^\circ = -0.34V$ (1)

Regative E° value, therefore reaction NOT spontaneous. (1)
 $E^\circ = -0.80V$ (best oxidation)
 $E^\circ = -0.80V$ (best

(1)

(2 marks total)