Monetary Policy and Dynamic Macroeconomics: Introduction

University of Birmingham

Alessandro Di Nola

Course 2024-2025

This course

- An "advanced introduction" to dynamic macroeconomics and monetary policy
- Core topics in macro general equilibrium models, from simple one period model to neoclassical growth model, fiscal policy, monetary frictions, new-Keynesian model
- But greater focus on formal economic models and analytical methods, especially dynamics
- Goal is to build intuition and to learn key macro tools, concepts and to make better sense of on-going macro policy debates

Course structure

- 1. **First half**: essentially "frictionless" macro: perfect competition and prices are fully flexible in all markets.
 - Intro to general equilibrium models
 - Neoclassical growth model and dynamic optimization
 - Fiscal policy: What are the effects of increasing government spending? Should government tax capital or labor?
- 2. Second half: macroeconomics with frictions
 - monetary economics, nominal rigidities, new Keynesian models, monetary policy

Course material

- No required text, but useful resources:
 - David Romer (2018): Advanced Macroeconomics. 5th Edition
 - Marina Azzimonti et al. (2024): Macroeconomics (preliminary draft available on Canvas)
- Slides for each lecture, posted on Canvas
- Problem sets with solutions, posted on Canvas
- Additional journal articles or working papers, posted on Canvas

Course schedule

Lectures

Mondays	09:00-11:00	Watson - WATN-LT B (101)
Fridays	14:00-16:00	University House - UNIH-110

Seminars (2 groups)

Seminar Classes

- Seminar classes will be taught by Dr. Liang Shi
- Seminar class exercises
 - In-depth analysis of topics covered in lectures
 - Offer a means of self-assessment
- You are advised to complete the exercises in advance
- Contribute to the discussion facilitated by the class teacher
- Study the solutions posted to Canvas after the class

Math Background

- This is an advanced course
- You should be familiar with standard "math for economists"
 - Multivariable calculus
 - Constrained optimization (e.g. method of Lagrange multipliers)
 - Taylor series (in particular, first-order approximations)
- If any of the above topic does not sound familiar, please review it
 - M. Pemberton and N. Rau (2001), Mathematics for Economists: an Introductory Textbook
 - Simon, C.P. and Blume, L. (1994) Mathematics for Economists

Introduction

Structure of the macroeconomy

- Households rent labor services N and capital K to firms
- Households buy consumption goods Y from firms

Structure of the macroeconomy, cont'd

- Households receive wages, rental income and profits from firms
- Firms receive revenues PY from selling goods to households

Structure of the macroeconomy, cont'd

• Households use their income to finance consumption C and investment $I=K'-(1-\delta)K$

Stylized Facts

Stylized Facts

- Relative stability of growth in real GDP per person
- Benchmark models are organized around balanced growth paths.
- These growth paths set up to capture certain 'stylized facts' (Kaldor 1963)
 - Trend growth in output and real wages
 - No trend in composition of output, i.e. consumption/output and investment/output ratios are roughly constant over time
 - No trend in capital/output ratio, or factor shares
 - How well do these "stylized facts" hold up?

Stylized Facts

- We observe data on
 - Output, Y_t
 - Consumption, C_t
 - Investment, I_t
 - Government expenditures, G_t
- How do we organize these time series into a consistent framework?
- Most dynamic models are built around these equations (feasibility and technological constraints)

$$Y_t = C_t + I_t + G_t,$$

$$K_{t+1} = (1 - \delta)K_t + I_t,$$

$$Y_t = F(K_t, N_t).$$

Stylized Facts: Real GDP and its components over time

• Output Y, consumption C, investment I and government expenditures G: Y = C + I + G

Stylized Facts: Shares

• Shares: C/Y, I/Y and G/Y

Stylized Facts: Capital-to-Output Ratio

• Note: K is a stock, while Y is a flow

Stylized Facts: Growth rates

• $\log(y_t) - \log(y_{t-1}) pprox g_t$, where $g_t = (y_t - y_{t-1}) / y_{t-1}$

Stylized Facts: Short-run changes

• Magnitude of the Covid recession stands out

Terminology

- Course will focus on macroeconomic dynamics
- Consider a function $F: \mathbb{R}_+ \to \mathbb{R}_+ \dots$ this is our 'model'

$$X_{t+1} = F\left(X_{t}\right)$$

- We will be interested in the properties of the time-series $\{X_t\}_{t=0}^{\infty}$
- We will call X_0 the initial condition
- We will say that the steady-state value of X_t is \bar{X} that satisfies

$$\bar{X} = F(\bar{X})$$

- We will refer to X_t as an endogenous variable
- Suppose $F(X_t) = \widetilde{A}X_t^{\alpha}$, we will refer to α as a parameter, we will refer to \widetilde{A} as an exogenous variable.

Tool

 We will often use linearization (or, first-order Taylor approxim.) to do some back-of-envelope calculations

$$F(X_t) \approx F(\bar{X}) + \frac{\partial F(X)}{\partial X}\Big|_{X=\bar{X}} (X_t - \bar{X})$$

This gives

$$X_{t+1} pprox ar{X} + \left. rac{\partial F(X)}{\partial X} \right|_{X = ar{X}} (X_t - ar{X})$$

Manipulating

$$\left. \frac{X_{t+1} - \bar{X}}{\bar{X}} pprox \frac{\partial F(X)}{\partial X} \right|_{X = \bar{X}} \left(\frac{X_t - \bar{X}}{\bar{X}} \right)$$

Example: Back-of-envelope

• Approximately, what is the effect of a 1 percent increase in C_t on Y_t ?

$$Y_t = C_t + I_t + G_t$$
 , $Y_t = F(C_t, I_t, G_t)$

ullet Take an approximation around average values: $ar{X}:=\mathbb{E}\left[X_{t}
ight]$

$$F(C_t, I_t, G_t) \approx F(\bar{C}, \bar{I}, \bar{G}) + 1(C_t - \bar{C}) + 1(I_t - \bar{I}) + 1(G_t - \bar{G})$$

Manipulating

$$\frac{Y_t - \bar{Y}}{\bar{Y}} \approx \frac{\bar{C}}{\bar{Y}} \left(\frac{C_t - \bar{C}}{\bar{C}} \right) + \frac{\bar{I}}{\bar{Y}} \left(\frac{I_t - \bar{I}}{\bar{I}} \right) + \frac{\bar{G}}{\bar{Y}} \left(\frac{G_t - \bar{G}}{\bar{G}} \right)$$

- Answer given by average consumption \bar{C} divided by average GDP \bar{Y}
- In the U.S. economy \bar{C}/\bar{Y} is about 0.7 (See graph in previous slides).

Constant-returns to scale and factor shares

- Suppose output in the economy is produced by a profit-maximizing firm that operates a constant-returns to scale CRS production function F
- F has CRS if

$$F(\lambda K, \lambda N) = \lambda F(K, N)$$
, for all $\lambda > 0$

For example, Cobb-Douglas function has CRS property:

$$F(K, N) = K^{\alpha} N^{1-\alpha}, \quad \alpha \in (0, 1)$$

Profit-maximizing firm solves

$$\Pi_t = \max_{\mathcal{K}_t, \mathcal{N}_t} \left\{ P_t \mathcal{K}_t^{\alpha} \mathcal{N}_t^{1-\alpha} - R_t \mathcal{K}_t - \mathcal{W}_t \mathcal{N}_t \right\}$$

First-order condition for N_t

$$(1-\alpha) P_t K_t^{\alpha} (N_t)^{-\alpha} - W_t = 0$$

Constant-returns to scale and factor shares

- **Result**. Under constant returns to scale, competitive pricing of inputs implies that factor shares equal output elasticities.
- The labor share, in particular, is equal to

$$\frac{W_t N_t}{P_t Y_t} = 1 - \alpha$$

- This "model" has a testable implication: the labor share is constant over time
- Does this hold approxim. in the data?

US Factor Shares

Source: Jones (2016). Green lines are the factor shares for the corporate sector from Karabarbounis and Neiman (2014).

${\sf Appendix}$

Data Sources

Download data from https://fred.stlouisfed.org/

- Output. Real Gross Domestic Product (GDPC1)
- Consumption. Real Personal Consumption Expenditures (PCECC96)
- Investment. Real Gross Private Domestic Investment (GPDIC1)
- Government expenditures. Real Government Consumption Expenditures and Gross Investment (GCEC1)
- Capital stock. Capital Stock at Constant National Prices for United States (RKNANPUSA666NRUG)