Теория категорий Декартово замкнутые категории

Валерий Исаев

02 марта 2017 г.

План лекции

Произведения

Декартово замкнутые категории

Интерпретация лямбда исчисления

Терминальные объекты

- ▶ В категориях **Set** и **Hask** существует много похожих объектов: \mathbb{Z} и *Integer*, $\{*\}$ и (), $A \times B$ и (a, b).
- Существует ли обобщение этих конструкций в произвольных катгеориях?
- ▶ Объект A некоторой категории ${\bf C}$ называется терминальным, если для любого объекта B существует уникальная стрелка $B \to A$.
- ightharpoonup Другими словами, A является терминальным, если для любого B множество $Hom_{\mathbf{C}}(B,A)$ одноэлементно.

Примеры терминальных объектов

- ▶ В **Set** множество терминально тогда и только тогда, когда оно одноэлементно.
- В Grp группа терминальна тогда и только тогда, когда она одноэлементна.
- В Hask есть следующие терминальные объекты: (), data Unit = Unit.
- ▶ Утверждение строчкой выше не является верным :(
- В группоиде существует терминальный объект только если он тривиален.

Уникальность терминальных объектов

Proposition

Любые два терминальных объекта изоморфны.

Доказательство.

Если A и B — терминальные объекты, то существует пара стрелок $f:A\to B$ и $g:B\to A$. При этом по уникальности верно, что $g\circ f=id_A$ и $f\circ g=id_B$.

Уникальность терминальных объектов

Proposition

Любые два терминальных объекта изоморфны.

Доказательство.

Если A и B — терминальные объекты, то существует пара стрелок $f:A\to B$ и $g:B\to A$. При этом по уникальности верно, что $g\circ f=id_A$ и $f\circ g=id_B$.

Терминальный объект обычно обозначают 1. Уникальный морфизм из X в 1 обычно обозначают $!_X: X \to 1$.

Декартово произведение

- Множество B вместе с парой функций $\pi_i: B \to A_i$ является декартовым произведением множеств A_1 и A_2 , если для любых $a_i \in A_i$ существует уникальный $b \in B$ такой, что $\pi_i(b) = a_i$.
- Объект B вместе с парой отображений $\pi_i: B \to A_i$ называется декартовым произведением A_1 и A_2 , если для любых $f_i: C \to A_i$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.

Уникальность декартова произведения

Proposition

Если (B, π_i^B) и (C, π_i^C) – произведения объектов A_1 и A_2 , то B и C изоморфны.

Доказательство.

По определению декартова произведения существуют стрелки $g:B\to C$ и $h:C\to B$ как на диаграмме ниже. По уникальности $h\circ g=id_B$ и, аналогично, $g\circ h=id_C$.

Произведение множества объектов

- ▶ Если $\{A_i\}_{i\in I}$ колекция объектов некоторой категории, то объект B вместе с морфизмами $\pi_i: B \to A_i$ называется декартовым произведением объектов A_i , если для любой коллекции морфизмов $\{f_i: C \to A_i\}_{i\in I}$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.
- ▶ Декартово произведение объектов $\{A_i\}_{i\in I}$ уникально с точностью до изоморфизма.
- lacktriangle Оно обозначается $\prod_{i \in i} A_i$. Если $I = \{1, \dots n\}$, то оно обозначается $A_1 \times \dots \times A_n$. Уникальный морфизм $C \to A_1 \times \dots \times A_n$ обозначается $\langle f_1, \dots f_n \rangle$.

Декартовы категория

Категория, в которой существует терминальный объект и бинарные произведения, называется *декартовой*.

Декартовы категория

Категория, в которой существует терминальный объект и бинарные произведения, называется *декартовой*.

Proposition

Категория декартова тогда и только тогда, когда в ней существуют все конечные произведения.

Доказательство.

Терминальный объект — произведение пустого множества объектов, бинарные произведения — произведение двух объектов. И наоборот, произведение A_i можно сконструировать как

$$A_1 \times (A_2 \times \ldots (A_{n-1} \times A_n) \ldots)$$

Это можно доказать по индукции.

План лекции

Произведения

Декартово замкнутые категории

Интерпретация лямбда исчисления

Мотивация

- Очередная конструкция, которую мы хотим обобщить, это множество/тип функций.
- ▶ Эта конструкция называется по разномы: экспонента, внутренний *Hom*.
- ▶ Пусть A и B объекты декартовой категории C. Тогда экспонента обозначаются либо B^A , либо [A, B].
- Какие операции должны быть определены для B^A .
- Как минимум мы должны иметь аппликацию, которая обычно обозначается ev и является следующим морфизмом:

$$ev: B^A \times A \rightarrow B$$

▶ Морфизм ev позволяет нам "вычислять" элементы B^A .

Элементы объекта (a side note)

- ▶ В категории **Set** элементы множества X соответствуют морфизмам из термнального объекта в X.
- ▶ В произвольной категории (с терминальным объектом) мы можем определить элемент объекта таким же образом.
- Но это не очень полезное определение, так как в произвольной категории объект не определяется своими элементами.
- Например, в категории графов морфизмы из терминального графа в граф X соответствуют петлям X.
- ▶ Мы можем определить обощенный элемент объекта X как морфизм из произвольного объекта Γ в X.
- ► В категории графов вершины и ребра графа *X* являются его обобщенными элементами (конечно, существует и много других обобщенных элементов этого графа).

Определение

- Благодаря морфизму ev, мы можем думать об элементах B^A как о морфизмах $A \to B$. Мы еще должны сказать, что B^A содержит Bce такие морфизмы.
- То есть мы должны сказать чему соответствуют обобщенные элементы B^A . Ясно, что у нас должна быть биекция между обобщенными элементами $\Gamma \to B^A$ и морфизмами $\Gamma \times A \to B$.
- ▶ Имея морфизм $f: \Gamma \to B^A$, мы можем построить его каррирование следующим образом:

$$\Gamma \times A \xrightarrow{f \times id_A} B^A \times A \xrightarrow{ev} B$$

▶ Объект B^A вместе с морфизмом $ev: B^A \times A \to B$ называется экспонентой A и B, если для любого $g: \Gamma \times A \to B$ существует уникальный $f: \Gamma \to B^A$ такой, что композиция стрелок в диаграмме выше равна g.

Примеры

- ightharpoonup Категория называется декартово замкнутой, если для любых ее объектов A и B существует их экспонента B^A .
- ▶ **Set** декартово замкнута. Действительно, B^A это просто множество функций из A в B.
- ▶ **Agda** декартово замкнута. Действительно, B^A это просто тип функций из A в B.
- Все алгебраические категории, которые мы рассматривали, не являются декартово замкнутыми (Grp, Vec, Ring, и т.д.).
- Категория графов декартово замнута.

Объект натуральных чисел

Definition

Объект натуральных чисел в декартово замкнутой категории — это объект $\mathbb N$ вместе с парой морфизмов $zero: 1 \to \mathbb N$ и $suc: \mathbb N \to \mathbb N$, удовлетворяющие условию, что для любых других морфизмов $z: 1 \to X$ и $s: X \to X$ существует уникальная стрелка h, такая что диаграмма ниже коммутирует.

Свойства

- Объект натуральных чисел уникален с точностью до изоморфизма.
- ► В любой декартово замкнутой категории с объектом натуральных чисел можно определить все примитивно рекурсивные функции.
- ▶ Морфизм $\mathit{suc}: \mathbb{N} \to \mathbb{N}$ является расщепленным мономорфизмом.

План лекции

Произведения

Декартово замкнутые категории

Интерпретация лямбда исчисления

Мотивация

- Лямбда исчисление предоставляет синтаксис для (декартово замкнутых) категорий, а категории предоставляют семантику лямбда исчисления.
- ▶ С одной стороны, лямбда исчисление позволяет просто описывать различные конструкции в категориях.
- С другой стороны, различные конструкции в категориях могут мотивировать новые языковые конструкции для лямбда исчисления.

Лямбда исчисление как теория

- ► Для любой (односортной) алгебраической теории можно определить множество термов этой теории, построив его индуктивно из функций этой теории и переменных.
- ▶ Например, в теории групп множество термов будет включать такие термы как x*inv(y) и x*(y*inv(z))*1, где x,y,z переменные, а *, inv и 1 функции теории групп.
- ▶ Типизированное лямбда исчисление можно определить как двусортную алгебраическую теорию.
- Но мы вместо этого просто определим его ручками.
- ▶ В лямбда исчислении у нас есть два сорта: сорт типов и сорт термов.

Термы лямбда исчисления

- ▶ Типы строятся индуктивно из двух бинарных функций \times и \to и одной константы \top (и переменных).
- Термы строятся индуктивно согласно следующим правилам:

$$\frac{\Gamma \vdash}{\Gamma, x : A \vdash}, x \notin \Gamma \qquad \frac{\Gamma \vdash}{\Gamma \vdash x : A}, (x : A) \in \Gamma$$

$$\frac{\Gamma \vdash}{\Gamma \vdash unit : \top} \qquad \frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a, b) : A \times B}$$

$$\frac{\Gamma \vdash p : A \times B}{\Gamma \vdash fst \ p : A} \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash snd \ p : B}$$

$$\frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash \lambda \times b : A \to B} \qquad \frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash a : A}{\Gamma \vdash f \ a : B}$$

Аксиомы лямбда исчисления

Кроме того, у нас есть следующие аксиомы:

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash fst(a, b) \equiv a : A} \qquad \frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash snd(a, b) \equiv b : B}$$

$$\frac{\Gamma \vdash t : \top}{\Gamma \vdash unit \equiv t : \top} \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash (fst p, snd p) \equiv p : A \times B}$$

$$\frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash a : A}{\Gamma \vdash (\lambda x . b) a \equiv b[x := a] : B} \qquad \frac{\Gamma \vdash f : A \to B}{\Gamma \vdash \lambda x . f x \equiv f : A \to B}$$

Интерпретация лямбда исчисления

- ▶ Что является моделями алгебраической теории лямбда исчисления (которую мы так и не построили)?
- Это в точности декартово замкнутые категории!
- Так как мы точно не определили эту теорию, то мы и не можем доказать это утверждение, но мы хотя бы можем проинтерпретировать лямбда исчисление в произвольной декартовой категории (так же как термы теории групп можно проинтерпретировать в произвольной группе).
- ▶ Пусть С декартово замкнутая категория. Тогда мы будем интерпретировать типы как объекты категории, а термы как ее морфизмы.

Интерпретация типов

- ▶ Интерпретацию типов и термов мы будем обозначать как $[\![-]\!]$.
- Тогда типы интерпретируются следующим образом:

▶ Если $\Gamma = x_1 : A_1, \dots x_n : A_n$, то мы можем определить интерпретацию Γ как $\llbracket \Gamma \rrbracket = \llbracket A_1 \rrbracket \times \dots \times \llbracket A_n \rrbracket$.

Интерпретация термов

- Теперь мы определим интерпретацию термов.
- ▶ Если $\Gamma \vdash a : A$, то $\llbracket a \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$.
- ▶ $[\![x_i]\!] = \pi_i$ если $\Gamma = x_1 : A_1, \dots x_n : A_n$.
- [unit] =![[Γ]]
- $\qquad \qquad \llbracket (a,b) \rrbracket = \langle \llbracket a \rrbracket, \llbracket b \rrbracket \rangle.$
- $[fst p] = \pi_1 \circ [p]$.
- $[\![snd p]\!] = \pi_2 \circ [\![p]\!].$
- $lackbox \llbracket f \ a
 rbracket = ev \circ \langle \llbracket f
 rbracket, \llbracket a
 rbracket \rangle$, где $ev : \llbracket B
 rbracket^{\llbracket A
 rbracket} \times \llbracket A
 rbracket \to \llbracket B
 rbracket.$
- ▶ $[\![\lambda x.b]\!] = \varphi([\![b]\!])$, где $\varphi: Hom([\![\Gamma]\!] \times [\![A]\!], [\![B]\!]) \simeq Hom([\![\Gamma]\!], [\![B]\!]^{[\![A]\!]})$ функция каррирования из определения экспонент.

Проверка аксиом

- Разумеется нам нужно проверить, что эта интерпретация уважает аксиомы.
- ▶ Для этого сначала нужно доказать лемму, что подстановка интерпретируется как композиция, то есть если $\Gamma, x: A \vdash b: B$ и $\Gamma \vdash a: A$, то $\llbracket b \llbracket x := a \rrbracket \rrbracket = \llbracket b \rrbracket \circ \langle id_{\llbracket \Gamma \rrbracket}, \llbracket a \rrbracket \rangle$. Это легко сделать индукцией по b.
- ▶ Теперь бета эквивалентность соответствуют тому, что функция каррирования и обратная к ней дают тождественную функцию при композиции, а эта эквивалентность соответствует тому, что эти функции дают id при композиции в обратном порядке.
- Аксиомы для \top и \times легко следуют из определения произведений.