Group Theory Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today, or rigorous. Any result of the above is not the author's fault.

These notes are in progress.

0 Notation

We commonly deal with the following concepts in Group Theory which I will abbreviate as follows for brevity:

Term	Notation
$\{1,2,\ldots\}$	N
$\{0,1,2,\ldots\}$	\mathbb{N}_0
The set of primes	${\mathbb P}$
$(F \setminus \{0_F\}, \times)$	F^*
(invertible $n \times n$ matrices on F, \times)	$GL_n(F)$

Contents

0	Not	ation	1
1	The	e Fundamentals	4
	1.1	Binary Operations	4
	1.2	Groups	4
		1.2.1 Distinct Powers of Group Elements	4
		1.2.2 Symmetric Groups	4
		1.2.3 Cyclic Groups	4
		1.2.4 Dihedral Groups	5
		1.2.5 The Infinite Cyclic/Dihedral Group	5
		1.2.6 Torsion Groups	5
	1.3	<i>p</i> -groups	5
	1.4	Subsets of Groups	6
		1.4.1 Set Multiplication	6
		1.4.2 Centre	6
		1.4.3 Properties of Sets	6
	1.5	Order	6
	1.6	Isomorphisms	7
	1.7	Subgroups	7
		1.7.1 The Product of Subgroups	8
		1.7.2 The Subgroup Test	8
		1.7.3 The Intersection of Subgroups	8
	1.8	Generated Subgroups	9
	1.9	Cyclic Groups	9
	1.10	Cosets	10
		1.10.1 A Bijection from Left to Right Cosets	10
		1	10
		1.10.3 Index	10
		1.10.4 Lagrange's Theorem	10
	1.11	Outer Direct Product	11
		1.11.1 Properties of the Outer Direct Product	11
2	Ноп	nomorphisms	12
4	2.1	•	12
	$\frac{2.1}{2.2}$		12
	4.4	momomorphisms and Generaling Dets	14
3	Aut	comorphisms	13
	3.1	Inner Automorphisms	13
	3.2	Conjugation	13

		14
		14
		14
		14
		15

1 The Fundamentals

1.1 Binary Operations

A binary operation on a set X is a map $X \times X \to X$.

Take a binary operation * on a set X, we say that * is associative if for all x, y, z in X:

$$x * (y * z) = (x * y) * z.$$

Furthermore, we say e in X is an identity element of * if for all x in X:

$$e * x = x * e,$$

and we say that y in X is the inverse to x if x * y and y * x are both identities of *.

1.2 Groups

A group (G, *) is a non-empty set G combined with a binary operation * such that:

- * is associative,
- G contains an identity for *,
- for each element in G, there exists some inverse in G with respect to *.

1.2.1 Distinct Powers of Group Elements

For an element x in a group G, we have that the powers of x are distinct up to the order of x.

1.2.2 Symmetric Groups

For a set X, the set of bijections $X \to X$ is a group under function composition denoted by $\operatorname{Sym}(X)$. We typically write $\operatorname{Sym}(\{1, 2, \dots, n\})$ as S_n .

1.2.3 Cyclic Groups

If we consider a regular n-gon P_n , we take rotations of $\frac{2\pi}{n}$ radians about the centre to be r and can define:

$$C_n = \{e, r, r^2, \dots, r^{n-1}\},\$$

to be the group of rotational symmetries of P_n , the cyclic group on P_n .

1.2.4 Dihedral Groups

If we consider again, a regular n-gon P_n and take:

r = a rotation of $\frac{2\pi}{n}$ radians about the centre, s = reflection in some fixed line of symmetry,

then we have that:

$$Sym(P_n) = \{e, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s\},\$$

called the dihedral group, denoted by D_{2n} .

1.2.5 The Infinite Cyclic/Dihedral Group

A map φ from $\mathbb{Z} \to \mathbb{Z}$ is a symmetry if for some n and m in \mathbb{Z} :

$$|\varphi(m) - \varphi(n)| = |m - n|.$$

Taking r to be the symmetry $n \mapsto n+1$, we can define the infinite cyclic group:

$$C_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots\}.$$

Taking s to be the symmetry $n \mapsto -n$, we can define the infinite dihedral group:

$$D_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots, r^{-2}s, r^{-1}s, s, rs, r^2s\}.$$

1.2.6 Torsion Groups

A group is a torsion group if every element has finite order and torsion-free if every non-identity element has infinite order.

1.3 p-groups

For p in \mathbb{P} , we say that a group G is a p-group if the order of each element of G is a power of p.

1.4 Subsets of Groups

1.4.1 Set Multiplication

For X, Y subsets of a group (G, *), we define:

$$X * Y = \{x * y : x \in X, y \in Y\},\$$

the product set of X and Y (which is a subset of G). We have that * is an associative binary operation on $\mathcal{P}(G)$. Additionally, we define:

$$X^{-1} = \{x^{-1} : x \in X\}.$$

However, these definitions do not define a group on $\mathcal{P}(G)$ as an inverse does not necessarily exist for each element, despite the existence of an identity $\{e_G\}$.

1.4.2 Centre

For a group G, the centre of G is the set of elements that commute with all elements of G, denoted by Z(G):

$$Z(G) = \{ z \in G : gz = zg, \forall g \in G \}.$$

We have that Z(G) is a subgroup.

1.4.3 Properties of Sets

For a group (G, *) with $X \subseteq G$, we have some defined properties:

- X is symmetric if for each x in X, x^{-1} is also in X,
- X is closed under * if for all x, y in X, x * y is in X.

1.5 Order

For a group G = (X, *), G has order |X|. The order of an element x of X is defined as follows:

$$|x| = \infty$$
 if $x^n \neq e_G$ for any n in \mathbb{N} , $|x| = \min\{n \in \mathbb{N} \mid x^n = e_G\}$ otherwise.

Taking x in X, if x has finite order, then:

- 1. $x^n = e_G$ if and only if |x| divides n,
- 2. $x^n = x^m$ if and only if |x| divides m n,

and if x has infinite order:

3. $x^n = x^m$ if and only if n = m.

Proof. For (1), we take n = q|x| + r for some q in \mathbb{Z} , r in $\{0, 1, \ldots, |x| - 1\}$. Thus:

$$x^n = x^{q|x|}x^r,$$

= $e_G^q x^r,$
= $x^r,$

and we can see that $x^r = e_G$ if and only if r = 0 as r < |x| and |x| is minimal. Thus, $x^n = e_G$ if and only if r = 0 which occurs if and only if |x| divides n.

For (2) and (3), we take x to have any order and consider:

$$x^n = x^m,$$

$$x^{m-n} = e_G.$$

Thus, if $|x| < \infty$ then |x| divides m - n by (1) and if $|x| = \infty$ then m - n = 0 by the definition of order.

1.6 Isomorphisms

For (G, *), (H, \circ) groups, an isomorphism $\varphi : G \to H$ is a bijection such that $\varphi(x * y) = \varphi(x) \circ \varphi(y)$ for all x, y in G. If such a map exists, we say G is isomorphic to H, denoted by $G \cong H$.

We can restrict isomorphisms to subgroups, compose them, or take the inverse and the result will be an isomorphism.

1.7 Subgroups

A subset X of a group (G, *) is a subgroup if and only if (X, *) (with * restricted to X, for which X must be closed under *) is a group, denoted by $X \leq G$ (or if $X \neq G, X < G$).

Alternatively, we have that X is a subgroup if and only if:

- e_G is in X,
- X is closed under *,
- X is symmetric under *.

1.7.1 The Product of Subgroups

For $H, K \leq G, HK$ is a subgroup of G if and only if HK = KH.

Proof. By the alternate definition of a subgroup above, we know that for a subgroup X of G, X contains e_G , and X is closed and symmetric under *.

Suppose $HK \leq G$, thus:

$$HK = (HK)^{-1}$$
$$= K^{-1}H^{-1}$$
$$= KH$$

Now, suppose HK = KH:

- $e_G = e_G e_G$ is in HK,
- (HK)(HK) = H(KH)K = H(HK)K = (HH)(KK) = HK,
- $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$,

so HK is a subgroup.

1.7.2 The Subgroup Test

For X a subset of a group G, X is a subgroup if and only if $X \neq \emptyset$ and $x^{-1}y$ is in X for each x, y in X.

Proof. Suppose $X \leq G$, then e_G is in X so $X \neq \emptyset$. For x, y in X, x^{-1} is also in X by the inverse rule of subgroups, so $x^{-1}y$ is also in X by the closure of subgroups.

Suppose $X \neq \emptyset$ and for each x, y in $X, x^{-1}y$ is also in X. Taking x, y in X, we have that $x^{-1}x = e_G$ is also in X. Also, $x^{-1}e_G = x^{-1}$ is in X. Finally, $xy = (x^{-1})^{-1}y$. \square

1.7.3 The Intersection of Subgroups

We have that for a group G with A a set of subgroups of G:

$$\bigcap_{a \in \mathcal{A}} a,$$

is a subgroup of G.

Proof. We will use the subgroup test. We set X to be the intersection of the subgroups in A, X must be non-empty as each subgroup must contain e_G . Taking x, y in X, for each a in A, we know that x and y are in a. As a is a subgroup, x^{-1} and thus $x^{-1}y$ are in a. As a is arbitrary, $x^{-1}y$ must be in X.

1.8 Generated Subgroups

For a group G with $X \subseteq G$ non-empty, we define the subgroup generated by X as:

$$\langle X \rangle = \bigcap_{A \le G: X \subseteq A} A,$$

the intersection of all the subgroups containing X. This can also be called the smallest subgroup containing X.

Alternatively, we have that:

$$\langle X \rangle = \Gamma(X) = \{x_1 x_2 \cdots x_n : x_i \in X \cup X^{-1}, m \in \mathbb{N}\}.$$

Proof. We can see that $\Gamma(X) \subseteq \langle X \rangle$ as $\langle X \rangle$ contains X and is a subgroup so it contains all the finite products of elements of $X \cup X^{-1}$ by closure and existence of inverses.

If we can show that $\Gamma(X)$ is a subgroup, then that would mean $\langle X \rangle \subseteq \Gamma(X)$ as $\Gamma(X)$ contains X so would have been included in the intersection used to generate $\langle X \rangle$. We know that $\Gamma(X)$ is non-empty as X is non-empty and taking x, y in $\Gamma(X)$, for some n, m in \mathbb{N} , we have that:

$$x = x_1 x_2 \cdots x_n,$$

$$y = y_1 y_2 \cdots y_m,$$

by the definition of $\Gamma(X)$. For each x_i with i in [n], we know that x_i^{-1} is in $\Gamma(X)$ as $X^{-1} \subset \Gamma(X)$ so:

$$x^{-1}y = (x_1x_2 \cdots x_n)^{-1}y$$

= $x_n^{-1}x_{n-1}^{-1} \cdots x_1^{-1}y_1y_2 \cdots y_m$,

is in $\Gamma(X)$ by its definition. Thus, $\Gamma(X)$ is a subgroup as required.

1.9 Cyclic Groups

A group G is cyclic if it is generated by a single element. Elements in G that generate G are called generators. Supposing G is cyclic:

- For x a generator of G, $G = \{x^n : n \in \mathbb{Z}\},\$
- \bullet G is abelian,
- $G \cong C_{|G|}$,
- For X < G, X is cyclic.

1.10 Cosets

For a group G with $H \leq G$ and x in G, the subset xH is a left coset of H in G and similarly, Hx is a right coset. We have some properties of left cosets:

- For h in H, hH = H = Hh,
- For g in $G \setminus H$ we cannot say gH = Hg in general,
- G is the union of all the left cosets,
- For x, y in G, xH = yH if and only if x is in yH,
- For x, y in G, either xH = yH or $xH \cap yH = \emptyset$,
- For all x in G, |xH| = |H|.

1.10.1 A Bijection from Left to Right Cosets

For a group G with $H \leq G$, the map $xH \mapsto Hx^{-1}$ is a bijection from the set of left cosets to the set of right cosets.

1.10.2 A Equivalence Relation on Cosets

We can define an equivalence relation \sim on a group G with $H \leq G$ by setting:

$$x \sim y \iff y \in xH$$
,

where xH is the equivalence class containing x.

1.10.3 Index

For a group G with $H \leq G$, the number of distinct left cosets of H in G is called the index of H in G, denoted by [G:H] (the choice of left cosets here is arbitrary due to the bijection between the coset types).

1.10.4 Lagrange's Theorem

For a finite group G with $H \leq G$, |G| = [G:H]|H|.

This means, for any subgroup $H \leq G$, its index and order divide the order of G. Thus, for G a finite group:

- For x in G, |x| divides |G|,
- If G has prime order, G is cyclic and every non-identity element is a generator,
- For p in \mathbb{P} with $P, Q \leq G$ and |P| = |Q| = p, $P \cap Q = \emptyset$ or P = Q.

1.11 Outer Direct Product

For G_1, \ldots, G_n groups, we set:

$$G_1 \times \cdots \times G_n = \{(a_1, \dots, a_n) : a_i \in G_i, i \in [n]\},$$

and define a binary operation on $G = G_1 \times \cdots \times G_n$ by:

$$(a_1, \ldots, a_n)(b_1, \ldots, b_n) = (a_1b_1, \ldots, a_nb_n).$$

G is a group under this operation.

1.11.1 Properties of the Outer Direct Product

For G_1, \ldots, G_n groups, with $G = \prod_{i \in [n]} G_i$:

- $|G| = \prod_{i \in [n]} |G_i|$,
- $Z(G) = \prod_{i \in [n]} Z(G_i),$
- If G is cyclic, G_i is cyclic for each i in [n],
- For all σ in S_n , $G \cong \prod_{i \in [n]} G_{\sigma(i)}$,
- For the integers $1 \le n_1 < n_1 < \dots < n_r < n$,

$$G \cong (G_1 \times \cdots \times G_{n_1}) \times (G_{n_1+1} \times \cdots \times G_{n_2}) \times \cdots \times (G_{n_r+1} \times \cdots \times G_n),$$

• For H_1, \ldots, H_n groups with $G_i \cong H_i$ for each i in [n] $G \cong \prod_{i \in [n]} H_i$.

2 Homomorphisms

For G, H groups, a homomorphism $\varphi:G\to H$ is a map that for all x,y in G satisfies:

$$\varphi(xy) = \varphi(x)\varphi(y).$$

The image and kernel are defined as expected:

$$Im(\varphi) = \{ \varphi(g) : g \in G \},$$

$$Ker(\varphi) = \{ g \in G : \varphi(g) = e_H \}.$$

2.1 Properties of Homomorphisms

For G, H groups and $\varphi: G \to H$ a homomorphism, we have that:

- 1. $\varphi(e_G) = e_H$,
- 2. $Ker(\varphi)$ is a subgroup of G,
- 3. $\operatorname{Im}(\varphi)$ is a subgroup of H,
- 4. φ is injective if and only if $Ker(\varphi) = \{e_G\},\$
- 5. $\varphi(x^{-1}) = \varphi(x)^{-1}$ for every x in G,
- 6. For x_1, \ldots, x_n in G, $\varphi(x_1 \cdots x_n) = \varphi(x_1) \cdots \varphi(x_n)$.

These properties lead us to the following:

- For a finitely ordered element g in G, $|\varphi(g)|$ divides |g| by (6),
- If G is a p-group for p in \mathbb{P} , the image of every homomorphism on G is a p-group also.

We can restrict homomorphisms to subgroups or compose them and the result will be a homomorphism.

2.2 Homomorphisms and Generating Sets

For G, H groups, a homomorphism $\varphi: G \to H$, and $X \subseteq G$, we have that $\varphi(\langle X \rangle) = \langle \varphi(X) \rangle$.

Furthermore, for another homomorphism $\psi: G \to H$ with X being a generating set for G, if $\varphi(x) = \psi(x)$ for each x in X, then $\varphi = \psi$.

3 Automorphisms

An automorphism is an isomorphism from a group to itself. The set of all automorphisms on a group G is denoted by Aut(G) which is a group under composition.

3.1 Inner Automorphisms

For a group G, we have that $\varphi: G \to G$ defined for some g in G as $x \mapsto g^{-1}xg$ is an automorphism. Any automorphism of this form is called an inner automorphism.

Proof. For x, y in G:

$$\varphi(xy) = g^{-1}xyg$$

$$= g^{-1}xe_Gyg$$

$$= g^{-1}xgg^{-1}yg$$

$$= \varphi(x)\varphi(y),$$

so φ is a homomorphism. We can see that $g^{-1}xg = e_G$ implies that $x = gg^{-1} = e_G$ so $Ker(\varphi) = \{e_G\}$. Finally, we see that $x = g^{-1}(gxg^{-1})g$ so φ is surjective as x is arbitrary in G. Thus, φ is an automorphism.

3.2 Conjugation

The operation performed by inner automorphisms is called conjugation by an element. For a group G with x, y, g in G and $X \subseteq G$:

- $g^{-1}xg$ is the conjugation of x by g,
- $g^{-1}xg$ is denoted by x^g ,
- $g^{-1}Xg$ is similarly denoted by X^g ,
- x and y are said to be conjugate if there exists some g in G such that $x = y^g$.

3.2.1 Conjugations on Subgroups

For G a group with $H \leq G$ and g in G, H^g is a subgroup of G and $H^g \cong H$.

Two subgroups $H, K \leq G$ are said to be conjugate if there exists some g in G with $H = K^g$.

4 Normal and Characteristic Subgroups

For a group G, a subgroup H of G is normal if for each g in G, gH = Hg. This is denoted by $H \leq G$.

We say H is a characteristic subgroup if for every φ in $\operatorname{Aut}(G)$, $\varphi(H) = H$ (denoted by $H \leq G$). We know characteristic subgroups are normal as $\operatorname{Aut}(G)$ contains inner automorphisms.

4.1 Normal Subgroups of Index 2

For a group G with $H \leq G$ and [G:H] = 2, $H \leq G$.

Proof. Taking x in G, suppose x is in H, then xH = H = Hx.

Suppose x is not in H, then $xH \neq H$ as x is in xH. Thus, xH and H are disjoint cosets of H and as [G:H]=2, $G=H\cup xH$ the disjoint union of these cosets. So, $xH=G\backslash H$. We can apply this reasoning to the right coset and deduce that xH=Hx as required.

4.2 A Test for Normal and Characteristic Subgroups

Let G be a group with $H \leq G$:

- 1. If for every g in $G, H^g \subseteq H$ then $H \subseteq G$,
- 2. If for every φ in $\operatorname{Aut}(G)$, $\varphi(H) \subseteq H$ then $H \leq_{\operatorname{char}} G$.

Proof. (2) Suppose that $\varphi(H) \subseteq H$ for each φ in $\operatorname{Aut}(G)$. We take φ in $\operatorname{Aut}(G)$, φ^{-1} is also an isomorphism so is also in $\operatorname{Aut}(G)$. We have that $\varphi^{-1}(H) \subseteq H$ by our assumption, applying φ to both sides, we see that $H \subseteq \varphi(H)$ so combined with our assumptions, $H = \varphi(H)$ as required.

(1) We can perform the same argument as (2) by using the fact that the inverse of an inner automorphism is also an inner automorphism. \Box

4.3 Simple Groups

A non-trivial group is simple if its only normal subgroups are itself and the trivial subgroup.

4.4 Properties of the Centre

For a group G, Z(G) is a characteristic subgroup of G and every subgroup of Z(G) is normal.

Proof. We know that $Z(G) \leq G$. We take φ in $\operatorname{Aut}(G)$ and take z in Z(G). We take an arbitrary g in G, as z is in Z(G), zg = gz, thus $\varphi(z)\varphi(g) = \varphi(g)\varphi(z)$ as φ is a homomorphism. Furthermore, $\varphi(z)h = h\varphi(z)$ for every h in G as φ is surjective. Thus, $\varphi(z)$ is in Z(G) as required.

Taking $H \leq Z(G)$, we know that for all g in G, h in H, gh = hg as h is in Z(G). Thus, gH = Hg for all g in G.