粘着技術とタッキファイヤーの基礎 と応用展開

~ 第七章 東亞合成での開発例 ~

佐々木 裕1

東亞合成株式会社

2024/2/15

¹hiroshi_sasaki@mail.toagosei.co.jp

- 高温連続ラジカル重合によるオリゴマー
 - 東亞合成でのアクリル系材料
 - 各種重合法と生成ポリマーの分子量
 - 高温連続ラジカル重合について

- ② OCA 改質用新規タッキファイヤーの開発
 - 開発ターゲットの設定
 - タッキファイヤーの選択

- 高温連続ラジカル重合によるオリゴマー
 - 東亞合成でのアクリル系材料
 - 各種重合法と生成ポリマーの分子量
 - 高温連続ラジカル重合について

- ② OCA 改質用新規タッキファイヤーの開発
 - 開発ターゲットの設定
 - タッキファイヤーの選択

東亞合成でのオリゴマー

弊社では以前よりアクリル系ポリマーを利用した材料の開発を行ってきており、アクリル系オリゴマーの低価格製造法も確立してきている。

アクリル系オリゴマーの低価格製造法

- 高温での連鎖移動を積極的に利用した塊状連続重合
- アクリル系モノマーを加熱された反応器へ連続的に 供給
- オリゴマーを合成するプロセス
- 官能基を有するモノマーを共重合し反応性を付与可能

アクリル系モノマー

各種重合法と生成ポリマーの分子量

高温連続ラジカル重合プロセス

◎ 高温連続ラジカル重合プロセス

◎ 一般の溶液重合プロセス

セミハ・ッチプロセス

T<150℃(80-100℃) 反応時間:4-8hrs 圧力:常圧

高温連続ラジカル重合の特徴

高温ラジカル重合でのオリゴマー製造

オリゴマー製品

「高温連続ラジカル重合によるオリゴマー」の まとめ

- 東亞合成でのアクリル系材料
 - アクリル系オリゴマーの低価格製造法も確立
 - 多様なモノマーを使用して各種の設計が可能
- 各種重合法と生成ポリマーの分子量
 - 重合法の選択により幅広い分子量のポリマー
 - 高温塊状重合を用いれば特徴あるオリゴマー
- 高温連続ラジカル重合
 - 無溶剤で液状オリゴマーが製造可能
 - 各種の特性を持った製品

- 高温連続ラジカル重合によるオリゴマー
 - 東亞合成でのアクリル系材料
 - 各種重合法と生成ポリマーの分子量
 - 高温連続ラジカル重合について

- ② OCA 改質用新規タッキファイヤーの開発
 - 開発ターゲットの設定
 - タッキファイヤーの選択

OCA への要求性能

カバーパネル <mark>粘着剤(OCA)</mark> タッチパネル <mark>粘着剤 (OCA)</mark> ディスプレイ スマートフォン等のタッチ パネル搭載機器

透明な粘着剤(OCA, Optical Clear Adhesive) が使用されている。

現在のカバーパネル材質 → 主にガラス

軽量化、耐衝撃性向上のため、 プラスチック(PC等)化の検討

課題

加熱・湿熱負荷に よって発泡が起こる

発泡を抑制する TFの検討

発泡現象とその機構の推定

発泡抑制の考え方

TFの添加によって、<mark>粘着力を向上させる</mark>ことができれば、発泡を抑制できるのでは?

具体的にどういうTFが粘着力を向上させて、 耐発泡性を向上させるのかはわからない・・・

BPとの混和性、Tgと耐発泡性の関係を調べる

- ・BPとの混和性
- · DP COX底和III

混和性と溶解度パラメータの関係

混和性、Tgと 耐発泡性の関係 混和性が異なる TFを用意する必要がある。

混和性を決める要素

- 体積分率∅
- ・重合度N
- ・相互作用パラメータ

 $\chi_{BP ext{-}TF}$

BPとTFの相性の良さ (xが小さいほど相性が良い) $\chi_{BP-TF} = \frac{V(\delta_{BP} - \delta_{TF})^2}{RT}$

δ:溶解度 パラメータ(SP) V: モル体積 R: 気体定数

T:温度

BPとTFの溶解度パラメータの 近さで、 χ が決まる。

(近いほど小さくなる。)

タッキファイヤーの SP 値

以下に示したように、SP値(およびガラス転移温度 Tg)の 異なるタッキファイヤーを各種合成した。

混和性の評価方法

BP(高分子量)とTF(低分子量)の相図

相図による混和性の確認

混和性を決める要素

χとSP値の関係

- 体積分率φ
- 重合度N
- ・相互作用パラメータ χ

SP値の異なるオリゴマーを合成

BPとオリゴマーの相図

相図による混和性の確認

タッキファイヤーの混和性、Tgと耐発泡性

				耐発泡性	
組成 (w/w)	SP^*	混和性	Tg	60℃	85℃
				95%	85%
Blank (TFなし)	≒10	-	-	×	×
A/B=50/50	9.2	混和しない	78	-	×
A/B=60/40	9.4	ぎりぎり混和	77	0	0
A/C=60/40	9.6		46	0	×
A/B=70/30	9.5	よく混和	87	-	×
A/C=80/20	9.7		45	×	×
A=100	9.9		64	×	×
A/D=50/50	>10		82	-	×
A/D=35/65	>10	ぎりぎり混和	87		×
7,40=33/03	, 10				^\
A/D=30/70	>10	混和しない	86	_	×
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22 25 25 25 25 25 25 25 25 25 25 25 25 2	75-11 O/6.V			

粘着力の測定条件

耐発泡性が向上した粘着剤

耐発泡試験時の粘着力が高くなったため、 発泡しなくなったのでは?

耐発泡試験に近い条件で粘着力を測定

測定条件

- ・被着体: PET
 - * 発泡はPET側で生じているため
- ・温度:60、85℃
 - * 耐発泡試験温度(60℃/95%、85℃/85%)

耐発泡性と高温での粘着力の関係

耐発泡試験温度での剥離強度が耐発泡性と関連した。

*180°剥離試験、剥離速度:30mm/min、基材:100µm易接着PET

XPS 測定条件

X線源条件

- Al-K α (1486.6eV)
- スポット径=φ 100 μ m
- X線入射角=0°
- 光電子検出角=45°
 - ⇒ 約5nm まで観察

ブチルアクリレートの場合

XPS によるタッキファイヤーの表面偏析

タッキファイヤーの表面濃度

約 9% の添加にもかかわらず、表面はほとんどタッキファイヤーで覆われていた。

※各スペクトルは、C1sスペクトル全体の面積で規格化した

おしまい

ご清聴ありがとうございました。