Problems Class III

Dr. James Mullaney

March 3, 2020

Equations and constants

The Friedmann Equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon - \frac{\kappa c^2}{R_0^2}\frac{1}{a^2}$$

The Fluid Equation:

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0$$

Cosmological parameter values in The Benchmark Model:

$$\Omega_{\rm M,0} = 0.31, \ \Omega_{\rm D,0} = 0.69, \ \Omega_{\rm R,0} = 9 \times 10^{-5}, \ H_0 = 67.7 \ \rm km \ s^{-1} \ Mpc^{-1}$$

Parsec in SI units: 1 pc = 3.09×10^{16} m

Questions

- 1. Re-write the expressions for $\epsilon_{\rm m}(t)$, $\epsilon_{\rm r}(t)$ and $\epsilon_{\rm d}(t)$ in terms of the current critical energy density, $\epsilon_{\rm c,0}$, the scale factor, a(t), and their respective current density parameters (i.e., $\Omega_{\rm M,0}$, $\Omega_{\rm R,0}$ and $\Omega_{\rm D,0}$).
- 2. Using the answers to Q1, calculate the redshifts at which the:
 - (a) dark energy and matter energy densities;
 - (b) radiation and matter energy densities

were equal in a universe in which $\Omega_{M,0} = 0.25$, $\Omega_{R,0} = 0.05$, and $\Omega_{D,0} = 0.7$.

- 3. In Lecture 6, we saw that both matter and radiation-dominated universes have a horizon distance (i.e., a maximum proper distance corresponding to $z = \infty$). Calculate the current horizon distance in a matter-only universe in which $H_0 = 67.7 \text{ km s}^{-1} \text{ Mpc}^{-1}$. Give your answer in Gpc.
- 4. We saw in the last problems class that $a(t) = e^{H_0(t-t_0)}$ in a Dark Energy-only universe. Derive the expression for how angular distance changes with redshift for such a universe. Your answer should include the following terms: H_0 , c, and z.

¹The horizon distance corresponds to the furthest observable distance in a universe and thus defines the extent of the observable universe.