Your Name: _

Group Members:_

In-class Problem 1 Find the greatest common divisors of the pairs of integers below and write the greatest common divisor as a linear combination of the integers.

(a) (21, 28)

Solution: By inspection: 28 - 21 = 7.

Using the Euclidean Algorithm: a = 28, b = 21

$$28 = 21(1) + 7$$

$$q_1 = 1, r_1 = 7$$

$$7 = 21(1) + 28(-1)$$

$$21 = 7(3) + 0$$

$$q_2 = 3, r_2 = 0$$

so
$$28 + (-1)21 = 7 = (28, 21)$$

(b) (32, 56)

Solution: Using the Euclidean Algorithm: a = 56, b = 32

$$56 = 32(1) + 24$$
 $q_1 = 1, r_1 = 24$

$$24 = 56(1) + 32(-1)$$

$$32 = 24(1) + 8$$

$$q_2 = 1, r_2 = 8$$

$$8 = 32(1) + 24(-1) = 32(1) + (56(1) + 32(-1))(-1) = 32(2) + 56(-1)$$

$$32 = 8(4) + 0$$

$$q_3 = 4, r_3 = 0.$$

so
$$56(-1) + 32(2) = 8 = (56, 32)$$

(c) (0, 113)

Solution:

Since 0 = 113(0), (0, 113) = 113 = 0(0) = 113(1).

(d) (78,708)

Solution:

Using the Euclidean Algorithm: a = 708, b = 78

$$708 = 78(9) + 6$$

$$q_1 = 9, r_1 = 6$$

$$6 = 708(1) + 78(-9)$$

$$78 = 6(13) + 0$$

$$q_2 = 13, r_2 = 0.$$

so
$$708(1) + 78(-6) = 6 = (78, 708)$$

In-class Problem 2 Let p be prime.

(a) If (a,b) = p, what are the possible values of (a^2,b) ? Of (a^3,b) ? Of (a^2,b^3) ?

Learning outcomes:

Author(s): Claire Merriman

Solution: If (a,b)=p, then there exist $j,k\in\mathbb{Z}$ such that a=pj,b=pk, and $p\nmid j$ or $p\nmid k$ (otherwise $(a,b)=p^2$).

$$a^2 = p^2 j^2$$
, $a^3 = p^3 j^3$, $b^3 = p^3 k^3$

Then (a^2,b) is p if $p \nmid k$ or p^2 if $p \mid k$; and (a^3,b) is p if $p \nmid k$, p^2 if $p \mid k$ and $p^2 \nmid k$, or p^3 if $p^2 \mid k$.

If $p \mid j$, then $p \nmid k$ and $(a^2, b^3) = p^3$. If $p \nmid j$, then $(a^2, b^3) = p^2$.

(b) If (a,b) = p and $(b,p^3) = p^2$, find (ab,p^4) and $(a+b,p^4)$.

Solution: There exists $j,k \in \mathbb{Z}$ such that $a=pj,b=p^2k$, and $p \nmid k,p \nmid k$. Then $ab=p^3jk$ and $a+b=pj+p^2k=p(j+pk)$. Thus, $(ab,p^4)=p^3$ and $(a+b,p^4)=p$.