

© Benesóczky Zoltán 2004 A jegyzetet a szerzői jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges.

Kombinációs automata

A kimenet csak az aktuális bemenettől függ.

Megvalósítása kombinációs hálózattal.

Sorrendi automata

A kimenet az *előző bemenetektől* is függ.

- *Emlékező* tulajdonsága van, melyet az állapotokkal (Q) reprezentálunk. Az állapotot az ún. szekunder változók kombinációja valósítja meg.
- A *következő állapot* az aktuális (t időpontbeli) állapot és az aktuális bemenet függvénye.

$$Q^{t+1}=g(X^t,Q^t),$$

- A szinkron sorrendi hálózat (SSH) állapotait memória tulajdonságú alkatrészek (flip-flopok, állapot regiszter) tárolják, egy órajellel ütemezett időpontokban.
- A kimenet az aktuális állapot és az aktuális bemenet függvénye ún. Mealy modell szerinti működésnél.

$$Y=f(X^t,Q^t)$$

A kimenet *csak az aktuális állpottól függ* ún. *Moore modell* szerinti működés esetén.

$$Y=f(Q^t)$$

A szinkron sorrendi hálózat felépítése

Mivel az aktuális állapot a előző állapottól és a bemenettől függ, így az a hálózatot előzőleg ért sorozattól függ. Ugyanígy a kimenet is.

A működés szemléltetése idődiagrammon

A sorrendi hálózat leírási módjai

állapottábla

	x=0	x=1
а	b/0	c/0
b	d/0	e/0
C	e/0	f/0
d	a/0	a/0
е	a/0	a/1
f	a/1	a/0

- irányított gráf
- állapot -> gráfpont
- állapot átmenet ->él
- élre írva: bemeneti komb./kimenet

- táblázatos forma
- akt. állapot->sor
- bemeneti kombináció-> oszlop
- rubrika: köv. áll./kimenet

Legegyszerűbb állapottároló a D flip-flop.

Az órajel aktív élére tárolja a D bemeneten levő értéket. Q^{t+1}=D

A működést szemléltető idődiagram:

Aszinkron törlő és preset bemenete is lehet:

Aszinkron Pr és Cl esetén kimenet az órajeltől függetlenül 1 lesz Pr, 0 lesz Cl hatására.

Készítsünk olyan áramkört, mely megjegyzi az x bemenetére az órajellel szinkronban jutó utolsó 3 értéket és azokat kiadja a kimenetein x^{t-1},x^{t-2},x^{t-3} sorrendben. Ezt az áramkört *shiftregiszternek* nevezik.

Állapotgráf:

Moore modell szerinti működés, a kimenet csak az állapottól függ. A kimenet itt maga az *állapotkód*.

Kódolt állapottábla:

	X=0	x=1
000	000	100
001	000	100
010	001	101
011	001	101
100	010	110
101	010	110
110	011	111
111	011	111

- A sorrendi automata állapotait *kódolva* reprezentálja a megvalósított hálózat.
- Az állapothoz rendelt kód az állapotkód.
- Egy-egy állapot kódja az állapotregiszter (flip-flopok) kimenetének egy meghatározott kombinációja.
- n állapotú automata megvalósításához legalább $\lceil \log_2(n) \rceil$ darab flip-flop szükséges. (Pl. 7 állapothoz 3.)

Megvalósítás szemlélet alapján:

Az *óragenerátor* állítja elő az órajelet.

A **RESET** áramkör bekapcsoláskor vagy a nyomógomb megnyomásakor impulzust ad ki, melyet a sorrendi hálózat kezdő állapotának beállítására használunk. (A továbbiakban nem rajzoljuk le külön.)

SSH tervezése szisztematikusan Feladat:

Egy sorrendi hálózat egyetlen bemenetére sorosan érkeznek 3 bites számok, az órajellel szinkronban. A megtervezendő automatának fel kell ismerni, ha a 3 bites számokban pontosan 2db 1-es van, és jelezni a 3. bit beérkezésekor.

PI:

x: 010 011 111 101 110 100 001 011

y: 00**0** 00**1** 00**0** 00**1** 00**1** 00**0** 00**0** 00**1**

1. Szöveg alapján előzetes állapotgráf megrajzolása.

2. Állapotminimalizálás

Az előbbi e és f állapotok egyetlen állapottal helyettesíthetők, mivel csak azt kell megjegyezni, hogy hány 1-es jött.

Az *állapotminimalizálás*ra szisztematikus módszerek léteznek (lsd. később). Ezek kiindulópontja az előzetes állapottábla, ez alapján készítik el a minimalizált állapottáblát.

Minimalizált állapotgráf:

Az állapotokba beírtuk, hogy mit jegyeznek meg (eddig hány 1-es jött).

A további eljárások kiindulópontja a *minimalizált* állapottábla.

Az állapottáblát az állapotgráf alapján töltjük ki:

	x=0	x=1
A	B/0	C/0
В	D/0	E/0
C	E/0	F/0
D	A/0	A/0
Е	A/0	A /1
F	A/1	A/0

3. Állapotkódolás

Az állapotokhoz kódokat kell rendelni. Erre szintén vannak *szisztematikus módszerek* (lsd. később).

Itt 'ad hoc' módszerrel ("hasraütésre") rendelünk kódot az állapotokhoz. Az állapotot a szekunder változók (Q2Q1Q0) egy kombinációja

reprezentálja.

Q2Q1Q0	x=0	x=1
A 000	001/0	010/0
B 001	011/0	100/0
C 010	100/0	101/0
D 011	000/0	000/0
E 100	000/0	000/1
F 101	000/1	000/0

A maradék állapotkódokhoz is ki kell tölteni az állapottáblát.

Q2Q1Q0	x=0	x=1
000	001/0	010/0
001	011/0	100/0
010	100/0	101/0
011	000/0	000/0
100	000/0	000/1
101	000/1	000/0
110	/_	/_
111	/-	/-

- Ha a többi (normál működésnél nem használt) állapotkódhoz közömbös bejegyzést teszünk, több egyszerűsítési lehetőség adódhat a kombinációs hálózatrész tervezésénél.
- Ha megbízhatóbb működésre törekszünk, akkor célszerű előírnunk, hogy a normál működésnél nem használt állapotkódokból is a használtakba vezessen a hálózat. (Normál működésnél nem használt állapotkódba kerülhet a hálózat külső zavar hatására. Közömbös kitöltésnél szerencsétlen esetben itt ragadhat az automata, ha a következő állapotok kódja szintén nem használt állapotkódba vezet!)

Szekunder változók és a kimenet 4. függvényeinek meghatározása

A megtervezendő automata struktúrája:

Megtervezendők a szekunder változók

és a kimenet $Z(Q2^t,Q1^t,Q0^t,x)$ függvényei.

Igazságtáblájukat egyszerre tartalmazza a kódolt állapottábla. Ez alapján lehet az egyes függvények Karnaugh tábláit kitölteni.

Mit csinál az automata RESET után az X=011 bemeneti sorozat hatására?

Q2, Q1, Q0, Z igazságtábláját egyszerre tartalmazza a kódolt állapottábla. Ez alapján lehet az egyes függvények Karnaugh tábláit kitölteni.

Q2Q1Q0	x=0	x=1
A 000	001/0	010/0
B 001	011/0	100/0
C 010	100/0	101/0
D 011	000/0	000/0
E 100	000/0	000/1
F 101	000/1	000/0
110	/-	/-
111	/-	/-

5. Flip-flop választás

Az állapotregisztert különféle flip-flopokkal lehet megvalósítani (D, J-K, T). A flip-flop választás befolyásolja a kombinációs hálózatrész bonyolultságát.

6. Flip-flop vezérlő függvények meghatározása Szinkron sorrendi hálózat flip-flop vezérlő függvényeit nem kell hazárdmentesíteni! (Két órajel közötti időben lezajlanak a hazárdok.) Ha D flip-flopot választunk, akkor a flip-flop vezérlő függvénye a megfelelő szekunder változó függvénnyel megegyezik, mivel Q^{t+1}=D.

Egszerűsítés után:

$$Q0 = x.\overline{Q0}.Q1 + \overline{x}.\overline{Q2}.\overline{Q1}$$

8 kapu bemenet

$$Q1 = \overline{x}.Q0.\overline{Q1}.\overline{Q2} + x.\overline{Q0}.\overline{Q1}.\overline{Q2}$$

10 bemenet

$$Q3 = \overline{Q0}.Q1 + x.Q0.\overline{Q1}.\overline{Q2}$$

8 bemenet

Összesen 26 kapu bemenet

A J-K flip-flop és működése

Állapottáblája

Függvénye:
$$Q^{t+1} = J\overline{Q^t} + \overline{K}Q^t$$

Hogyan kell vezérelni a J-K flip-flopot, hogy a szekunder változójának függvénye által legyen a következő állapota?

$Q_i^t Q_i^{t+1}$	J _i	Ki
00	0	ı
01	1	-
10	_	1
11	_	0

$Q_i^t Q_i^{t+1}$	Ji	Ki
00	0	_
01	1	_
10	_	1
11	_	0

$$Q^{t+1} = J\overline{Q^{t}} + \overline{K}Q^{t}$$

$$Q^{t} = 1 \longrightarrow Q^{t+1} = J \longrightarrow J = Q^{t+1}$$

$$Q^{t} = 0 \longrightarrow Q^{t+1} = \overline{K} \longrightarrow K = \overline{Q^{t+1}}$$

Egyszerű szabály:

$$Q_i^t=0 \Rightarrow J_i=Q_i^{t+1}$$
 és $K=-Q_i^t=1 \Rightarrow J_i=-$ és $K=/Q_i^{t+1}$

A feladat szekunder változóinak függvényei alapján a J és K vezérlőfüggvények:

$$J0=X.Q1+/X./Q1./Q2 \qquad 7 \text{ kapu bemenet} \\ K0=Q1+Q2+X \qquad 3 \text{ bemenet} \\ J1=X./Q0./Q2+/X.Q0./Q2 \qquad 8 \text{ bemenet} \\ K1=1 \qquad 0 \text{ bemenet} \\ J2=/Q0.Q1+X.Q0./Q1 \qquad 7 \text{ bemenet} \\ K2=1 \qquad 0 \text{ bemenet} \\$$

Összesen 25 kapu bemenet. (D-vel 26 volt.)

A T flip-flop és működése

Állapottáblája

Függvénye:
$$Q^{t+1} = T\overline{Q^t} + \overline{T}Q^t$$

Hogyan kell vezérelni a T flip-flopot, hogy a szekunder változójának függvénye által előírt legyen a következő állapota?

$Q_i^t Q_i^{t+1}$	T_i
00	0
01	1
10	1
11	0

$$Q^{t+1} = T\overline{Q^t} + \overline{T}Q^t$$

$$Q^t = 0: Q^{t+1} = T \to T = Q^{t+1} Q^t = 1: Q^{t+1} = \overline{T} \to T = \overline{Q^{t+1}}$$

Egyszerű szabály:
$$Q_i^t=0 \Rightarrow T_i=Q_i^{t+1}$$

 $Q_i^t=1 \Rightarrow T_i=/Q_i^{t+1}$

Összesen 32 kapu bemenet.

7. Kapcsolási rajz

A J-K flip-flopos megvalósítás a legolcsóbb.

Flip-flopok egymásba alakítása

A különféle flip-floppok megvalósíthatók egymással. Amely flip-floppot meg akarjuk valósítani, annak az állapottáblája lesz a kiinduló kódolt állapottábla. Amely flip-floppot felhasználjuk a megvalósításra, annka a vezérlő függvényeit kell a megvalósítandó flip-flop állapottáblája alapján megterveznünk.

D-ből T

Ha D flip-flopot használunk a megvalósításra, akkor egyszerűen a megvalósítandó flip-flop állapottáblája a vezérlőfüggvény.

D-ből JK

T-ből D

T-ből JK

JK-ból D

JK-ból T

Gyakorló feladat

Tervezzen konfigurálható flip-flopot, JK-ból.

A speciális flip-flop bemenetei:

V2,V1konfiguráló bementek TDJ, K, a flip-flop bemenetek.

Viselkedése:

V2	V1	
0	_	JK flip-flop: J=TDJ, K=K
1	0	D flip-flop: D=TDJ
1	1	T flip-flop: T=TDJ

A megvalósításhoz ÉS, VAGY, EXOR kapukat használhat. Törekedjen az egyszerűségre!