CSE2202: Numerical Methods Lab Online: 2 Section: B2

Time: 40 Minutes Total: 10

Set A

Problem Statement: Determine the real root x_{root} of the equation: $f(x) = x^5 - 3x^2 - 100$ using Newton Raphson Method. Employ initial guess of $x_0 = 2$ and iterate until $f(x_{root}) = 0$.

Tasks:

- 1. Write a program using Newton Raphson method to locate the approximate root of the function $(x) = x^5 3x^2 100$ with initial guess $x_0 = 2$.
- 2. Iterate until $f(x_{root}) = 0$ and use Horner's method to find value of $f(x_{root})$.
- 3. If after n iterations $f(x_{root})$ return 0 then print Root found using Newton Raphson method is exact root.
- 4. Use Horner's method to evaluate the functions.
- 5. Use appropriate math function for your code.
- 6. Print the your output as the following output format.

Sample Input/output:

```
ENTER THE TOTAL NO. OF POWER: 5

x^0::
x^1::
x^2::
x^2::
x^3::
x^4::
x^5::
THE POLYNOMIAL IS ::: 1x^5 + 0x^4 + 0x^3 -3 x^2 -0x^1 -100
INTIAL X1--->3
After n iteration the Root is:
Value Return by Horner's Method is : 0.000000
Root Found Using Newton Raphson Method is Exact Root
```

Set B

Problem Statement: Determine the real root x_{root} of the equation: $f(x) = x^5 - 3x^2 - 100$ using Secant Method. Employ initial guess of $x_0 = 2$ and $x_1 = 4$ and iterate until $f(x_{root}) = 0$.

Tasks:

- 1. Write a program using Secant method to locate the approximate root of the function $f(x) = x^5 3x^2 100$ with initial guess $x_0 = 2$ and $x_1 = 4$.
- 2. Iterate until iterate until $f(x_{root}) = 0$ and use Horner's method to find value of $f(x_{root})$.
- 3. If after n iterations $f(x_{root})$ return 0 then print Root found using Secant method is exact root.
- 4. Use Horner's method to evaluate the functions.
- 5. Use appropriate math function for your code.
- 6. Print the your output as the following output format.

Sample Input/output:

```
ENTER THE TOTAL NO. OF POWER: 5

x^0::
x^1::
x^2::
x^3::
x^4::
x^5::
THE POLYNOMIAL IS ::: 1x^5 + 0x^4 + 0x^3 -3 x^2 -0x^1 -100
INTIAL X0--->2 and X1--->4
After n iteration the Root is:
Value Return by Horner's Method is : 0.000000
Root Found Using Secant Method is Exact Root
```

Set C

Problem Statement: Determine the real root x_{root} of the equation: $f(x) = x^5 - 3x^2 - 100$ using Fixed Point Iterations Method. Employ initial guess of $x_0 = 2$ and iterate until $f(x_{root}) = 0$.

Tasks:

- 1. Write a program using Fixed Point Iterations method to locate the approximate root of the function $f(x) = f(x) = x^5 3x^2 100$ with initial guess $x_0 = 2$.
- 2. You must check for your g(x), g(x)' < 0, otherwise your process may not converge.
- 3. Iterate until iterate until $f(x_{root}) = 0$ and use Horner's method to find value of $f(x_{root})$.
- 4. If after n iterations $f(x_{root})$ return 0 then print Root found using Fixed Point Iterations method is exact root.
- 5. Use Horner's method to evaluate the functions.
- 6. Use appropriate math function for your code.
- 7. Print the your output as the following output format.

Sample Input/output:

```
ENTER THE TOTAL NO. OF POWER: 5

x^0::
x^1::
x^2::
x^3::
x^4::
x^5::
THE POLYNOMIAL IS: 1x^5 + 0x^4 + 0x^3 -3 x^2 -0x^1 -100
The g(x) function is:
INTIAL X0--->2
After n iteration the Root is:
Value Return by Horner's Method is: 0.000000
Root Found Using Fixed point iteration Method is Exact Root
```