International TOR Rectifier

IR2011(S) & (PbF)

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational up to +200V
 Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10V to 20V
- Independent low and high side channels
- Input logicHIN/LIN active high
- Undervoltage lockout for both channels
- 3.3V and 5V input logic compatible
- CMOS Schmitt-triggered inputs with pull-down
- Matched propagation delay for both channels
- Also available LEAD-FREE (PbF)

Applications

- Audio Class D amplifiers
- High power DC-DC SMPS converters
- Other high frequency applications

Description

The IR2011 is a high power, high speed power MOSFET driver with independent high and low side referenced output channels, ideal for Audio Class D and DC-DC converter applications. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.0V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET in the high side configuration which operates up to 200 volts. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.

Product Summary

Voffset	200V max.
I _O +/-	1.0A /1.0A typ.
Vout	10 - 20V
t _{on/off}	80 & 60 ns typ.
Delay Matching	20 ns max.

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	I Definition		Min.	Max.	Units
V _B	High side floating supply voltage		-0.3	225	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
VHO	High side floating output voltage		Vs - 0.3	V _B + 0.3	
Vcc	Low side fixed supply voltage		-0.3	25	V
V _{LO}	Low side output voltage		-0.3	V _{CC} +0.3	
V _{IN}	Logic input voltage (HIN & LIN)		-0.3	V _{CC} +0.3	
dV _s /dt	Allowable offset supply voltage transient (figure 2)		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8-lead DIP)	_	1.0	10/
		(8-lead SOIC)	_	0.625	W
R _{THJA}	Thermal resistance, junction to ambient	(8-lead DIP)	_	125	°C/W
		(8-lead SOIC)	_	200	C/VV
TJ	Junction temperature		_	150	
T _S	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. The Vs and COM offset ratings are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	200	
V _{HO}	High side floating output voltage	Vs	V_{B}	.,
V _{CC}	Low side fixed supply voltage	10	20	V
V _{LO}	Low side output voltage	0	VCC	
V _{IN}	Logic input voltage (HIN & LIN)	СОМ	5.5	
T _A	Ambient temperature	-40	125	

Note 1: Logic operational for V_S of -4 to +200V. Logic state held for V_S of -4V to -VBS.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF, T_A = 25°C unless otherwise specified. Figure 1 shows the timing definitions.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	80	_		V _S = 0V
t _{off}	Turn-off propagation delay	_	75	_	ns	V _S = 200V
t _r	Turn-on rise time	_	35	50		
t _f	Turn-off fall time	_	20	35		
DM1	Turn-on delay matching ton (H) - ton (L)	_	_	20		
DM2	Turn-off delay matching t _{off} (H) - t _{off} (L)	_	_	20		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM and are applicable to all logic input leads: HIN and LIN. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	2.2	_	_		V _{CC} = 10V - 20V
V _{IL}	Logic "0" input voltage	_	_	0.7	V	VCC = 10V - 20V
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	_	2.0		I _O = 0A
VoL	Low level output voltage, VO	_	_	0.2		20mA
I _{LK}	Offset supply leakage current	_	_	50		$V_B = V_S = 200V$
I _{QBS}	Quiescent V _{BS} supply current	_	90	210		V _{IN} = 0V or 3.3V
IQCC	Quiescent V _{CC} supply current	_	140	230	μA	V _{IN} = 0V or 3.3V
I _{IN+}	Logic "1" input bias current	_	7.0	20		V _{IN} = 3.3V
I _{IN-}	Logic "0" input bias current	_	_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	8.2	9.0	9.8		
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8.2	9.0	9.8		
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9.0		
I _{O+}	Output high short circuit pulsed current	_	1.0	_	_	V _O = 0V, PW ≤ 10 μs
I _O -	Output low short circuit pulsed current	_	1.0		А	V _O = 15V, PW ≤ 10 μs

Functional Block Diagram

Lead Definitions

LCGG D		
Symbol	Description	
HIN	Logic input for high side gate driver output (HO), in phase	
LIN	Logic input for low side gate driver output (LO), in phase	
VB	High side floating supply	
НО	High side gate drive output	
Vs	High side floating supply return	
Vcc	Low side supply	
LO	Low side gate drive output	
СОМ	Low side return	

Lead Assignments

Figure 1. Timing Diagram

Figure 2A. Turn-on Propagation Delay vs. Temperature

Figure 2B. Turn-on Propagation Delay vs. Supply Voltage

Figure 3A. Turn-off Propagation Delay vs. Temperature

Figure 3B. Turn-off Propagation Delay vs. Supply Voltage

100 SE 80 Max. Typ. 10 12 14 16 18 20 Supply Voltage (V)

Figure 4A. Turn-on Rise Time vs. Temperature

Figure 4B. Turn-on Rise Time vs. Supply Voltage

Figure 5A. Turn-off Fall Time vs. Temperature

Figure 5B. Turn-off Fall Time vs. Supply Voltage

Figure 6A. Turn-on Delay Matching Time vs. Temperature

Figure 6B. Turn-on Delay Matching Time vs. Supply Voltage

Figure 7A. Turn-off Delay Matching Time vs. Temperature

Figure 7B. Turn-off Delay Matching Time vs. Supply Voltage

Figure 8A. Logic "1" Input Voltage vs. Temperature

Figure 8B. Logic "1" Input Voltage vs. Supply Voltage

Figure 9A. Logic "0" Input Voltage vs. Temperature

Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

Figure 10A. High Level Output vs.Temperature

Figure 10B. High Level Output vs. Supply Voltage

Figure 11A. Low Level Output vs. Temperature

Figure 11B. Low Level Output vs. Supply Voltage

Figure 12A. Offset Supply Leakage Current vs. Temperature

Figure 14A. V_{CC} Supply Current vs. Temperature

Figure 14B. $V_{\rm cc}$ Supply Current vs. $V_{\rm cc}$ Supply Voltage

Figure 15A. Logic "1" Input Bias Current vs. Temperature

Figure 16A. Logic "0" Input Bias Current vs. Temperature

Figure 16B. Logic "0" Input Bias Current vs. Supply Voltage

Figure 17. V_{CC} and V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 18. V_{CC} and V_{BS} Undervoltage Threshold (-) vs. Temperature

(4) tue thought of the total of

Figure 19A. Output Source Current vs. Temperature

Figure 19B. Output Source Current vs. Supply Voltage

Figure 20A. Output Sink Current vs. Temperature

Figure 20B. Output Sink Current vs. Supply Voltage

Figure 21. Maximum $\rm V_S$ Negative Offset vs. $\rm V_{BS}$ Floating Supply Voltage

International TOR Rectifier

Case outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2011 order IR2011 8-Lead SOIC IR2011S order IR2011S

Leadfree Part

8-Lead PDIP IR2011 order IR2011PbF 8-Lead SOIC IR2011S order IR2011SPbF

International

This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR's Web Site http://www.irf.com/.

Data and specifications subject to change without notice

WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 3/4/2008