Notes on Vector Spaces

COMP90051 Statistical Machine Learning

Semester 2, 2018 Lecturer: Ben Rubinstein

Copyright: University of Melbourne

These slides

- Notes on linear algebra
 - * Vectors and dot products
 - * Hyperplanes and vector normals

Notes on Linear Algebra

Link between geometric and algebraic interpretation of ML methods

What are vectors?

Suppose $\boldsymbol{u} = [u_1, u_2]'$. What does \boldsymbol{u} really represent?

Ordered set of numbers $\{u_1, u_2\}$

Cartesian coordinates of a point

A direction

Dot product: Algebraic definition

- Given two m-dimensional vectors \boldsymbol{u} and \boldsymbol{v} , their dot product is $\boldsymbol{u} \cdot \boldsymbol{v} \equiv \boldsymbol{u}' \boldsymbol{v} \equiv \sum_{i=1}^m u_i v_i$
 - * E.g., weighted sum of terms is a dot product x'w
- If k is a scalar, a, b, c are vectors then

$$(k\mathbf{a})'\mathbf{b} = k(\mathbf{a}'\mathbf{b}) = \mathbf{a}'(k\mathbf{b})$$
$$\mathbf{a}'(\mathbf{b} + \mathbf{c}) = \mathbf{a}'\mathbf{b} + \mathbf{a}'\mathbf{c}$$

Dot product: Geometric definition

- Given two m-dimensional Euclidean vectors u and v, their dot product is $u \cdot v \equiv u'v \equiv ||u|| ||v|| \cos \theta$
 - * $\|\boldsymbol{u}\|$, $\|\boldsymbol{v}\|$ are L_2 norms for $\boldsymbol{u}, \boldsymbol{v}$
 - * θ is the angle between the vectors

The scalar projection of \boldsymbol{u} onto \boldsymbol{v} is given by $u_{\boldsymbol{v}} = \|\boldsymbol{u}\|\cos\theta$

Thus dot product is $u'v = u_v ||v|| = v_u ||u||$

Geometric properties of the dot product

- If the two vectors are orthogonal then $m{u}'m{v}=0$
- If the two vectors are parallel then $m{u}'m{v} = \|m{u}\|\|m{v}\|$, if they are anti-parallel then $m{u}'m{v} = -\|m{u}\|\|m{v}\|$
- $u'u=\|u\|^2$, so $\|u\|=\sqrt{u_1^2+\cdots+u_m^2}$ defines the Euclidean vector length

Hyperplanes and normal vectors

- A <u>hyperplane</u> defined by parameters w and b is a set of points x that satisfy x'w + b = 0
- In 2D, a hyperplane is a line: a line is a set of points that satisfy $w_1x_1 + w_2x_2 + b = 0$

A <u>normal vector</u> for a hyperplane is a vector perpendicular to that hyperplane

Hyperplanes and normal vectors

- Consider a hyperplane defined by parameters w and
 b. Note that w is itself a vector
- <u>Lemma</u>: Vector w is normal to the hyperplane
- Proof sketch:
 - * Choose any two points u and v on the hyperplane. Note that vector (u v) lies on the hyperplane
 - * Consider dot product $(\boldsymbol{u} \boldsymbol{v})'\boldsymbol{w} = \boldsymbol{u}'\boldsymbol{w} \boldsymbol{v}'\boldsymbol{w}$ = $(\boldsymbol{u}'\boldsymbol{w} + b) - (\boldsymbol{v}'\boldsymbol{w} + b) = 0$
 - * Thus (u v) lies on the hyperplane, but is perpendicular to w, and so w is a vector normal

Example in 2D

- Consider a line defined by w_1 , w_2 and b
- Vector $\mathbf{w} = [w_1, w_2]'$ is a normal vector

Summary

- Notes on linear algebra
 - * Vectors and dot products
 - * Hyperplanes and vector normals