§11. Дифференциалы высших порядков. Нарушение свойства инвариантности

Определение 11.1. Пусть функция y = f(x) дифференцируема на множестве X. Дифференциалом второго порядка d^2y , или вторым дифференциалом данной функции в точке $x \in X$, называется дифференциал, взятый в этой точке (если это возможно) от её дифференциала dy, который в этом контексте называют первым дифференциалом. Итак,

$$d^2y = d(dy)$$
.

Дифференциал dy можно вычислить по формуле (3.4): dy = y'(x)dx. В этой формуле y'(x) — функция точки $x \in X$, а $dx = \Delta x$ не зависит от аргумента x, тогда $d^2y = d(y'(x))dx = (y''(x)dx)dx = y''(x)dx^2$. Под обозначением dx^2 всегда подразумевают степень дифференциала: $dx^2 = (dx)^2$, дифференциал от степени обозначается так: $d(x^2)$. Таким образом, для d^2y имеем:

$$d^2y = y''(x)dx^2. (11.1)$$

Пример 11.1. Найти d^2y , если $y = x \ln x$.

►Имеем
$$y' = \ln x + x \frac{1}{x} = \ln x + 1$$
, $y'' = \frac{1}{x}$, $d^2y = \frac{1}{x}dx^2$ (формула (11.1). \blacktriangleleft

Определение 11.2. Дифференциалом третьего порядка d^3y или третьим дифференциалом функции y = f(x) в точке $x \in X$ называется дифференциал, взятый в этой точке от её второго дифференциала d^2y , $d^3y = d(d^2y)$ и т.д. Дифференциалом n-го порядка d^ny функции y = f(x) в точке $x \in X$ называется дифференциал, взятый в этой точке от её дифференциала (n-1)—порядка $d^{n-1}y$, т. е. $d^ny = d(d^{n-1}y)$.

Замечание 11.1. В математическом анализе принято, что при каждой операции дифференцирования в определениях 11.1, 11.2 приращение (дифференциал) аргумента берётся одним и тем же.

Для $d^n y$ справедлива формула

$$d^{n}y = y^{(n)}dx^{n}. (11.2)$$

▶При n=1,2 она следует из формул (3.4) и (11.1). Предположим, что эта формула верна при n=k, где k — любое натуральное число, т. е. $d^k y = y^{(k)} dx^k$. Из определения 11.2 имеем $d^{k+1} y = d(d^k y)$, поэтому в силу нашего предположения, $d^{k+1} y = d(y^{(k)} dx^k)$. Вычислим $d(y^{(k)} dx^k)$ по формуле (3.4): $d^{k+1} y = (y^{(k)} dx^k)' dx = y^{(k+1)} dx^{k+1}$. Итак, заключаем, что формула (11.2) остаётся справедливой и при n=k+1, откуда следует, что она верна при $\forall n \in \mathbb{N}$. \blacktriangleleft

Из равенства (11.2) следует, что символ производной n-го порядка $\frac{d^n y}{dx^n}$ можно рассматривать как дробь.

Пример 11.2. Найти d^4y , если $y = \frac{x^3 + 2}{x - 1}$.

►Из (11.2) при n=4 следует равенство $d^4y = y^{IV}dx^4$. Поскольку $y^{IV} = 72/(x-1)^5$ (пример 9.2), то $d^4y = 72/(x-1)^5 dx^4$. \blacktriangleleft

Первый дифференциал dy обладает свойством инвариантности формы, т.е. его можно вычислять по формуле (3.4) независимо от того, является x независимой или зависимой переменной (см. 6). Покажем, что дифференциалы высших порядков этим свойством не обладают.

Пусть y = f(x), $x \in X$, а x = g(t), $t \in T$, причём $E(g) \subset D(f)$, следовательно, y является сложной функцией t: y = f(g(t)), $t \in T$. Её первый дифференциал обладает свойством инвариантности формы и может быть вычислен по формуле (3.4): $dy = y_x' \cdot dx$, где $dx = x_t' \cdot dt$ является частью приращения функции x = g(t) и потому зависит от t. Вычислим d^2y :

$$d^2y = d(y'_x \cdot dx) = dy'_x \cdot dx + y'_x \cdot d(dx).$$

Для dy'_x в силу свойства инвариантности формы первого дифференциала имеем равенство: $dy'_x = (y'_x)'_x dx = y''_{x^2} dx^2$, а $d(dx) = d^2x$. Окончательно приходим к соотношению:

$$d^2y = y''_{x^2} \cdot dx^2 + y'_x \cdot d^2x. \tag{11.3}$$

Сравнивая формулы (11.1) и (11.3), заключаем, что d^2y не обладает свойством инвариантности формы. Для дифференциала третьего и более высоких порядков можно получить аналогичные формулы, причём число добавочных слагаемых по сравнению с формулой (11.2) в их правых частях будет расти вместе с порядком дифференциала. Заметим, однако, что в случае $d^2x = 0$ свойство инвариантности формы имеет место и для d^2y . Например, если x — линейная функция t, x = at + b, то $d^2x = 0$ и d^2y можно вычислить по формуле (11.1).

Пример 11.3. Найти d^2y , если $y = \cos 2x$, если: а) x — независимая переменная; б) $x = \varphi(t)$, где $\varphi(t)$ — дважды дифференцируемая функция независимой переменной t.

▶ а) В силу равенства (11.1) имеем: $d^2y = y''(x)dx^2 = -4\cos 2x dx^2$; б) в силу (11.3) имеем: $d^2y = y''_{x^2} \cdot dx^2 + y'_x \cdot d^2x = -4\cos 2x dx^2 - 2\sin 2x d^2x$. ◀