Lecture #1: Introduction

Janardhan Rao (Jana) Doppa

School of EECS, Washington State University

Course Logistics

- CptS 570: Machine Learning
 - ▲ Class Timings Tue and Thu 10:35 to 11:50 (Sloan 163)

▲ Instructor – Jana Doppa (EME 133)

◆ Office Hours – Mon, Fri 4-5?

Course Logistics

- CptS 570: Machine Learning
 - Course website − http://eecs.wsu.edu/~jana/classes/cs570-machine-learning-fall2016.html

Course announcements and discussions — Piazza

▲ Lecture Notes — Slides and notes will be posted on Piazza

Grading Policy

- 6 Home works (35%)
 - Best five will be counted towards your grade
- 2 Mid-term exams (40%)
 - will decide on the timing via polling
- 1 Project (20%)
 - Can be done in small groups (two or three students)
- Class Participation (5%)
 - Piazza and in-class

Late Policy

 All assignments, project proposal/report are due at the start of the class

Late Policy

- 0-24 hours late -- 80% of the final score
- ◆ 24-48 hours late -- 50% of the final score
- Beyond 48 hours -- 0%
- If you are late, please slip the assignment through my office door

Course Pre-requisites

- Assume strong programming experience
 - You are free to use any programming language
- NO prior knowledge of Artificial Intelligence is needed
 - This course stands on its own
- Basic knowledge of the following is expected
 - Probability and Statistics
 - Linear algebra and Multivariate calculus
 - Basic numerical optimization (e.g., gradient descent)
 - Algorithmic paradigms and Search algorithms

Course Materials

We will NOT follow a fixed textbook for this course

- Instructor will provide slides and lecture notes
- Slides and notes will be posted on Piazza site

Optional Textbooks

- ▲ A Course in Machine Learning, by Hal Daume' III (free online book and easy to follow)
- Machine Learning, by Kevin Murphy (Rich mathematical treatment)
- Machine Learning, by Tom Mitchell
- Pattern Recognition and Machine Learning, by Chris Bishop

 "If you invent a breakthrough in artificial intelligence, so machines can learn," Mr. Gates responded, "that is worth 10 Microsofts."

(Quoted in NY Times, Monday March 3, 2004)

Spam filtering

GOOGLE LOTTERY WINNER! CONTAC

From: googleteam To:

Subject: GOOGLE LOTTERY WINNER! CONTACT YOUR AGENT TO CLAIM YOUR PRIZE.

GOOGLE LOTTERY INTERNATIONAL

INTERNATIONAL PROMOTION / PRIZE AWARD.

(WE ENCOURAGE GLOBALIZATION)

FROM: THE LOTTERY COORDINATOR,

GOOGLE B.V. 44 9459 PE.

RESULTS FOR CATEGORY "A" DRAWS

Congratulations to you as we bring to your notice, the results of the First Ca inform you that your email address have emerged a winner of One Million (1,0 money of Two Million (2,000,000.00) Euro shared among the 2 winners in this email addresses of individuals and companies from Africa, America, Asia, Au CONGRATULATIONS!

Your fund is now deposited with the paying Bank. In your best interest to avo award strictly from public notice until the process of transferring your claims | NOTE: to file for your claim, please contact the claim department below on e

Optical Character Recognition (OCR)

Search engines

Automatic Translation

Recommendation Engines

> View or edit your browsing history

Self-driving cars

Google's Self Driving Car for Blind People

by EDITORS on Apr 6, 2012 - 4:07 pm

ML Successes: Perception

Credit: Tom Dietterich

ML Successes: Image Captioning

ML Successes: Perception + Translation

ML Successes: Skype Translator

ML Successes: Reasoning (SAT)

ML Successes: Poker

ML Successes: Chess and Go

ML Successes: Personal Assistants

High-Stakes Applications: Self-Driving Cars

High-Stakes Applications: Automated Surgical Assistants

High-Stakes Applications: Al Hedge Funds

High-Stakes Applications: Power Grid Control

CONTROLLING THE POWER GRID WITH ARTIFICIAL INTELLIGENCE

02.07.2015

Credit: EBM Netz AG

DARPA Exploring Ways to Protect Nation's Electrical Grid from Cyber Attack

Effort calls for creation of automated systems to restore power within seven days or less after attack

Credit: DARPA

High-Stakes Applications: Autonomous Weapons

- Analyzing and learning from social media data
 - Facebook
 - LinkedIn
 - Twitter
 - •
- Other Applications
 - Health-care
 - Education
 - Assistive technologies

What is Machine Learning?

- Machine learning is the branch of engineering that develops technology for automated inference
 - It combines

What is Machine Learning?

Machine learning = Automating Automation

Traditional Programming

Machine Learning

Training data

Learning Paradigms

Supervised Learning – main focus of this course

- Semi-Supervised Learning
- Unsupervised Learning
- Active Learning
- Reinforcement Learning

Supervised Learning

Learning a Classifier

Example problem:

X - image of a face

Y ∈ {male, female}

Learning a Classifier

Example problem:

X - image of a face

Y ∈ {male, female}

Learning for Simple Outputs

Learning for Simple Outputs

Y =set of all possible POS tag sequences

Exponential!!

had foreign affair experience as a

former First Lady."

Exponential!!

Y =set of all possible clusterings

Y = set of all possible letter sequences

Exponential!!

Y =set of all possible labelings

Exponential!!

Image Labeling

sky	sky	sky	sky	sky	sky	sky	sky	sky	sky
sky	sky	sky	sky	sky	sky	sky	sky	sky	sky
sky	sky	sky	sky	sky	sky	sky	sky	sky	sky
sky	sky	sky	sky	sky rocks	sky	sky rocks	sky	sky	sky
sky	sky rocks	-		rocks		ks	sky	sky	sky
rocks	rocks	recks	rocks	rocks	rock	tocks	sky	sky	sky
ocks	rocks	rocks	rocks	rocks	rocks	rooks	rocks	water	water
sand	sand	sand water	sand water	water	water	water	water	water	water
				water					
sand	sand	sand	water	water	water	water	water	water	water

Regression

- **Setting:** output *y* is a continuous value instead of a discrete value
 - Stock market price as a function of financial specs

Semi-Supervised Learning

 Setting: small amount of labeled data and large amount of unlabeled data

find a classifier that separates the labeled points and separates the unlabeled points "well"

Semi-Supervised Learning

Co-Training Style Algorithms

 Leverage diversity in the learners to learn from each other

- ◆ Diversity comes from multiple (redundant) views of the input In webpage classification, one view is the "words" on the page and another view is the "links" that point to that page
- ▲ If only one view, employ learners with different hypothesis spaces to achieve diversity

Clustering

 Given a collection of unlabeled examples (objects), discover self-similar groups in the data

Text Clustering

Image Segmentation

Dimensionality Reduction (aka feature learning)

- find a mapping that preserves the "structure" of objects
- find relevant features (dimensions) for a task
- reduce dimensionality to manage the complexity of high-dimensional data

Reinforcement Learning

Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model

Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model

Example MDP

State describes all visible info about cards

Goal
win the game or
play max # of cards

Action are the different legal card movements

Questions?

