Next we work down the second column of A using previously calculated expressions for b_{21} and b_{31} to find that

$$a_{22} = b_{21}^2 + b_{22}^2$$
 $b_{22} = (a_{22} - b_{21}^2)^{\frac{1}{2}}$ $a_{32} = b_{21}b_{31} + b_{22}b_{32}$ $b_{32} = \frac{a_{32} - b_{21}b_{31}}{b_{22}}.$

Finally, we use the third column of A and the previously calculated expressions for b_{31} and b_{32} to determine b_{33} as

$$a_{33} = b_{31}^2 + b_{32}^2 + b_{33}^2$$
 $b_{33} = (a_{33} - b_{31}^2 - b_{32}^2)^{\frac{1}{2}}$.

For another example, if

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix},$$

we find that

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

We leave it as an exercise to find similar formulae (involving conjugation) to factor a complex Hermitian positive definite matrix A as $A=BB^*$. The following Matlab program implements the Cholesky factorization.

```
function B = Cholesky(A)
n = size(A,1);
B = zeros(n,n);
for j = 1:n-1;
   if j == 1
        B(1,1) = sqrt(A(1,1));
      for i = 2:n
        B(i,1) = A(i,1)/B(1,1);
   end
   else
      B(j,j) = sqrt(A(j,j) - B(j,1:j-1)*B(j,1:j-1)');
      for i = j+1:n
```