Summary statistics

DATA MANIPULATION WITH PANDAS

Summarizing numerical data

```
    dogs["height_cm"].mean()
    .median(), .mode()
    .min(), .max()
    .var(), .std()
    .sum()
```

.quantile()

Summarizing dates

Oldest dog:

```
dogs["date_of_birth"].min()
```

'2011-12-11'

Youngest dog:

```
dogs["date_of_birth"].max()
```

'2018-02-27'

The .agg() method

```
def pct30(column): column.quantile(0.3)
    return
dogs["weight_kg"].agg(pct30)
```

22.59999999999998

Summaries on multiple columns

```
dogs[["weight_kg", "height_cm"]].agg(pct30)
```

```
weight_kg 22.6
```

height_cm 45.4

dtype: float64

Multiple summaries

```
def pct40(column): column.quantile(0.4)
    return
dogs["weight_kg"].agg([pct30, pct40])
```

 pct30
 22.6

 pct40
 24.0

 Name:
 weight_kg, dtype: float64

Cumulative sum

```
dogs["weight_kg"]
```

```
0
      24
      24
1
2
      24
3
      17
4
      29
5
6
      74
Name: weight_kg,
                      dtype:
                              int64
```

```
dogs["weight_kg"].cumsum()
```

```
0 24
1 48
2 72
3 89
4 118
5 120
6 194
Name: weight_kg, dtype: int64
```

Cumulative statistics

- .cummax()
- .cummin()
- .cumprod()

Walmart

sales.head()

	store	type	dept	date	weekly_sales	is_holiday	temp_c	fuel_price	unemp
0	1	Α	1	2010-02-05	24924.50	False	5.73	0.679	8.106
1	1	Α	2	2010-02-05	50605.27	False	5.73	0.679	8.106
2	1	Α	3	2010-02-05	13740.12	False	5.73	0.679	8.106
3	1	Α	4	2010-02-05	39954.04	False	5.73	0.679	8.106
4	1	А	5	2010-02-05	32229.38	False	5.73	0.679	8.106

Counting DATA MANIPULATION WITH PANDAS

Avoiding double counting

Vet visits

print(vet_visits)

	date	name	breed	weight_kg
0	2018-09-02	Bella	Labrador	24.87
1	2019-06-07	Max	Labrador	28.35
2	2018-01-17	Stella	Chihuahua	1.51
3	2019-10-19	Lucy	Chow Chow	24.07
••				
71	2018-01-20	Stella	Chihuahua	2.83
72	2019-06-07	Max	Chow Chow	24.01
73	2018-08-20	Lucy	Chow Chow	24.40
74	2019-04-22	Max	Labrador	28.54

Dropping duplicate names

vet_visits.drop_duplicates(subset="name")

	date	name	breed	weight_kg
0	2018-09-02	Bella	Labrador	24.87
1	2019-06-07	Max	Chow Chow	24.01
2	2019-03-19	Charlie	Poodle	24.95
3	2018-01-17	Stella	Chihuahua	1.51
4	2019-10-19	Lucy	Chow Chow	24.07
7	2019-03-30	Cooper	Schnauzer St.	16.91
10	2019-01-04	Bernie	Bernard	74.98
(6	2019-06-07	Max	Labrador	28.35)

Dropping duplicate pairs

unique_dogs = vet_visits.drop_duplicates(subset=["name", "breed"]) print(unique_dogs)

	date	name	breed	weight_kg
0	2018-09-02	Bella	Labrador	24.87
1	2019-03-13	Max	Chow Chow	24.13
2	2019-03-19	Charlie	Poodle	24.95
3	2018-01-17	Stella	Chihuahua	1.51
4	2019-10-19	Lucy	Chow Chow	24.07
6	2019-06-07	Max	Labrador	28.35
7	2019-03-30	Cooper	Schnauzer St.	16.91
10	2019-01-04	Bernie	Bernard	74.98

Easy as 1, 2, 3

unique_dogs["breed"].value_counts()

Labrador 2
Schnauzer 1
St. Bernard 1
Chow Chow 2
Poodle 1
Chihuahua 1
Name: breed, dtype: int64

unique_dogs["breed"].value_counts(sort=True)

Labrador 2
Chow Chow 2
Schnauzer 1
St. Bernard 1
Poodle 1
Chihuahua 1
Name: breed, dtype: int64

Proportions

unique_dogs["breed"].value_counts(normalize=True)

Labrador	0.250		
Chow Chow	0.250		
Schnauzer	0.125		
St. Bernard	0.125		
Poodle	0.125		
Chihuahua	0.125		
Name: breed, dtype: float64			

Grouped summary statistics

DATA MANIPULATION WITH PANDAS

Summaries by group

```
dogs[dogs["color"] == "Black"]["weight_kg"].mean()
dogs[dogs["color"] == "Brown"]["weight_kg"].mean()
dogs[dogs["color"] == "White"]["weight_kg"].mean()
dogs[dogs["color"] == "Gray"]["weight_kg"].mean()
dogs[dogs["color"] == "Tan"]["weight_kg"].mean()
```


Grouped summaries

```
dogs.groupby("color")["weight_kg"].mean()
```


Multiple grouped summaries

dogs.groupby("color")["weight_kg"].agg([min, max, sum])

	min	max	sum
color			
Black	24	29	53
Brown	24	24	48
Gray	17	17	17
Tan	2	2	2
White	74	74	74

Grouping by multiple variables

dogs.groupby(["color", "breed"])["weight_kg"].mean()

color	breed Chow	
Black	Chow	25
	Labrador	29
	Poodle Chow	24
Brown	Chow	24
	Labrador	24
Gray	Schnauzer	17
Tan	Chihuahua	2
White	St. Bernard	74
Name: w	veight_kg, dtype: int	:64

Many groups, many summaries

dogs.groupby(["color", "breed"])[["weight_kg", "height_cm"]].mean()

		weight_kg	height_cm
color	breed		
Black	Labrador	29	59
	Poodle	24	43
Brown	Chow Chow	24	46
	Labrador	24	56
Gray	Schnauzer	17	49
Tan	Chihuahua	2	18
White	St. Bernard	74	77

Pivot tables

DATA MANIPULATION WITH PANDAS

Group by to pivot table

```
dogs.groupby("color")["weight_kg"].mean()
```

```
color

Black 26

Brown 24

Gray 17

Tan 2

White 74

Name: weight_kg, dtype: int64
```

```
      weight_kg

      color

      Black
      26.5

      Brown
      24.0

      Gray
      17.0

      Tan
      2.0

      White
      74.0
```

Different statistics

```
import numpy as np
dogs.pivot_table(values="weight_kg", index="color", aggfunc=np.median)
```


Multiple statistics

dogs.pivot_table(values="weight_kg", index="color", aggfunc=[np.mean, np.median])

	mean	median
	weight_kg	weight_kg
color		
Black	26.5	26.5
Brown	24.0	24.0
Gray	17.0	17.0
Tan	2.0	2.0
White	74.0	74.0

Pivot on two variables

```
dogs.groupby(["color", "breed"])["weight_kg"].mean()
```

dogs.pivot_table(values="weight_kg", index="color", columns="breed")

breed	Chihuahua	Chow Chow	Labrador	Poodle	Schnauzer	St.	Bernard
color							
Black	NaN	NaN	29.0	24.0	NaN		NaN
Brown	NaN	24.0	24.0	NaN	NaN		NaN
Gray	NaN	NaN	NaN	NaN	17.0		NaN
Tan	2.0	NaN	NaN	NaN	NaN		NaN
White	NaN	NaN	NaN	NaN	NaN		74.0

Filling missing values in pivot tables

dogs.pivot_table(values="weight_kg", index="color", columns="breed", fill_value=0)

breed	Chihuahua	Chow Chow	Labrador	Poodle	Schnauzer	St. Bernard	
color							
Black	0	0	29	24	0	0	
Brown	0	24	24	0	0	0	
Gray	0	0	0	0	17	0	
Tan	2	0	0	0	0	0	
White	0	0	0	0	0	74	

Summing with pivot tables

dogs.pivot_table(values="weight_kg", index="color", columns="breed", fill_value=0, margins=True)

breed	Chihuahua	Chow Chow	Labrador	Poodle	Schnauzer	St. Bernard	All
color							
Black	0	0	29	24	0	0	26.500000
Brown	0	24	24	0	0	0	24.000000
Gray	0	0	0	0	17	0	17.000000
Tan	2	0	0	0	0	0	2.00000
White	0	0	0	0	0	74	74.000000
All	2	24	26	24	17	74	27.714286