

UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Seminario De Problemas De Programación De Sistemas Reconfigurables.

Decodificador BCD A Nombre Con GAL22V10

Alumno: Meneses López Arisai Ricardo. Docente: María Patricia Ventura Núñez.

15 de septiembre de 2019

${\bf \acute{I}ndice}$

1.	Objetivo Del Proyecto	1
2.	Marco Teórico	2
3.	Desarrollo 3.1. Planteamiento Del Problema	4 4
	3.2. Métodos De Diseño	4
	3.3. Obtención De Ecuaciones	6 7
	3.5. Protoboard	8
4.	Resultados	9
5.	Conclusiones	11
6.	Bibliografía	11
$\mathbf{A}_{\mathbf{J}}$	péndices	12
Α.	Apéndice A 1 Diagrama Eléctrico De Las Salidas	12

Materiales

Componentes.

- · Protoboard.
- \cdot Cable Para Proto.
- \cdot Pinzas De Corte/Agarre.
- · Display 7 Segmentos
- · Fuente De Voltaje $(5\mathbf{V})$.
- · Resistencias 1k Ω y 220 Ω .

Dispositivos Lógicos Programable (PLD).

· GAL22V10.

Software.

- \cdot Boole-Deusto.
- · Win Cupl.
- \cdot Proteus Design Suite.

1. Objetivo Del Proyecto

· Decodificador BCD a Nombre con dispositivos lógicos programables (PLD).

2. Marco Teórico

Tabla 1: Compuerta NOT - Tabla De Verdad

A	В	\mathbf{S}
0	0	0
0	1	0
1	0	0
1	1	1

Tabla 2: Compuerta AND - Tabla De Verdad

Α	В	\mathbf{S}
0	0	0
0	1	1
1	0	1
1	1	1

Tabla 3: Compuerta OR - Tabla De Verdad

A	В	\mathbf{S}
0	0	0
0	1	1
1	0	1
1	1	0

Tabla 4: Compuerta XOR - Tabla De Verdad

Figura 1: Configuración Display Cátodo Común y Ánodo Común

Figura 2: GAL22V10 - Datasheet.

3. Desarrollo

3.1. Planteamiento Del Problema

El Diagrama BCD se compone de 4 entradas y 7 salidas que a su vez van a cada segmento del Display.

Trabajaremos con mintérminos, así que el Display a usar será el Cátodo Común que se activa con unos.

Se usarán las primeras diez combinaciones (0-9) del sistema binario para expresar el Nombre en el Display, las demás combinaciones (10-15) se tomarán como indefinidas.

3.2. Métodos De Diseño

A	B	C	D	$\mid a \mid$	b	c	d	e	f	g	Name
0	0	0	0	1	1	1	0	1	1	1	A
0	0	0	1	0	0	0	0	1	0	1	r
0	0	1	0	0	0	1	0	0	0	0	i
0	0	1	1	1	0	1	1	0	1	1	\mathbf{S}
0	1	0	0	1	1	1	0	1	1	1	A
0	1	0	1	0	0	1	0	0	0	0	i
0	1	1	0	0	0	0	0	1	0	1	\mathbf{r}
0	1	1	1	0	0	1	0	0	0	0	i
1	0	0	0	1	0	0	1	1	1	0	\mathbf{C}
1	0	0	1	0	1	1	0	1	1	1	Η
1	0	1	0	x	X	x	\mathbf{x}	X	\mathbf{x}	\mathbf{x}	?
1	0	1	1	x	X	x	\mathbf{x}	X	\mathbf{x}	\mathbf{x}	?
1	1	0	0	x	X	x	\mathbf{x}	X	\mathbf{x}	\mathbf{x}	?
1	1	0	1	x	X	X	\mathbf{x}	X	\mathbf{x}	\mathbf{x}	?
1	1	1	0	x	X	X	\mathbf{x}	X	\mathbf{x}	\mathbf{x}	?
1	1	1	1	x	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	?

Tabla 5: BCD A Nombre - Tabla De Verdad.

```
PIN 2=A;
PIN 3=B;
PIN 4=C;
PIN 5=D;
PIN 6=X;
PIN 15=F7;
PIN 16=F6;
PIN 17=F5;
PIN 18=F4;
PIN 19=F3;
PIN 20=F2;
PIN 21=F1;
F1=(!C&!D)#(!B&C&D);
F2=(!A&!C&!D)#(A&D);
F3=(A&D) # (C&D) # (B&!C) # (!A&!B&!D);
F4=(!B&C&D)#(A&!D);
F5=(!B&!C)#(B&!D);
F6=(!C&!D)#(!B&C&D)#(A);
F7=(B&!D) #(!B&D) #(!A&!B&!C);
Fl.oe=!X;
F4.oe=!X;
F5.oe=!X;
F7.oe=!X;
```

Figura 3: Código Wincupl

El Tercer estado se muestra al final: cuando se activa X se apagan F1, F4, F5 y F7.

3.3. Obtención De Ecuaciones

 \cdot Para obtener las ecuaciones se dió uso al programa "Boole Deusto"

$$a = \overline{CD} + \overline{B}CD \tag{1}$$

$$b = \overline{ACD} + AD \tag{2}$$

$$c = AD + CD + B\overline{C} + \overline{A}\overline{B}\overline{D} \tag{3}$$

$$d = \overline{B}CD + A\overline{D} \tag{4}$$

$$e = \overline{BC} + B\overline{D} \tag{5}$$

$$f = \overline{CD} + \overline{B}CD + A \tag{6}$$

$$g = B\overline{D} + \overline{B}D + \overline{A}\overline{B}\overline{C} \tag{7}$$

3.4. Simulación

Figura 4: Simulacion Decodificador BCD A Nombre Con GAL22V10.

3.5. Protoboard

El activador del tercer estado en este caso es el bit más significativo (5 bit).

Figura 5: Protoboard - Letra A

4. Resultados

Figura 6: Letra A Con Tercer Estado Activado - Proto

Figura 7: Letra C - Proto

Figura 8: Letra H - Proto

5. Conclusiones

· El uso de PLD hace más simple la implementación de circuitos complejos en protoboard.

6. Bibliografía

- 1 José Escamilla, [6-03-2018], DISEÑO E IMPLEMENTACIÓN DE UN DECODIFICADOR BCD A 7 SEGMENTOS, available on: https://www.studocu.com/es-mx/document/instituto-tecnologico-de-leon/electronica-digital/practica/diseno-e-implementacion-de-un-decodificador-bcd-a-7-segmentos/3115812/view
- 2 Julio De La Cruz, [17-005-2013], Electrónica y Programación, Lógica combinatoria con GAL, available on: http://micropinguino.blogspot.com/2013/05/logica-combinatoria-con-gal-y-wincupl.html

A. Apéndice

A.1. Diagrama Eléctrico De Las Salidas

Figura 9: Salida a

Figura 10: Salida b

Figura 11: Salida c

Figura 12: Salida d

Figura 13: Salida e

Figura 14: Salida f

Figura 15: Salida g