

3D Digital Content Production

Solar System

Global Entrepreneurship and ICT

Creation beyond technology

Autodesk Maya

- 3D computer graphics software to produce 3D contents including video games, animated films, TV series, or visual effects
- First released in 1998 by Alias Systems Corporation, and acquired by Autodesk, Inc. in early 2006
- Used by top feature film animation studios

Main Menu Bar

 In Maya, menu choices can be changed by switching menu sets, which are Modeling, Rigging, Animation, FX (Special Effects), and Rendering.

Status Line / Shelf

Frequently-used menu items and tools are located.

Tools for polygonal modeling

Tools for making/editing curves and surfaces

Viewport Navigation

• Spacebar: toggle between a four-panel layout and a single view panel.

• Alt+MMB¹+Click: Translates the viewport as it is done in two dimensions.

¹MMB: Middle Mouse Button ²RMB: Right Mouse Button

 Alt+RMB²+Click (= scrolling the mouse wheel): This zooms the view in and out.

 Alt+Click: This rotates or orbits the camera around the center of the viewport.

 Ctrl+Alt+Click and Drag: zooms in on the area specified by the mouse drag.

• Press 'F' key: Zooms in on selected objects so that they fills the viewport.

Manipulating Objects

- Basic transformation tools
 - Select (Q)

- Move (W)
- Rotate (E)
- Scale (R)

Marking Menus

- Pop-up menus to quickly access commonly-used tools
- How to use
 - Hold down RMB for a short while.
 Then, a marking menu appears soon.
 - The menu is **context-aware**, which means it provides different menu items according to the context of your task.

Making Selections

- Click an object in the workplace
 - Its attributes appear in the Attribute Editor or Channel Box on the right.
- Multiple selections
 - Shift + Click: toggle the selection of an object.
 - Ctrl + Click: cancel the selection of an object.

- Duplication of selected objects
 - Turn on the Move tool and drag the selected objects white holding down Shift + LMB.
 - Or simply press Ctrl + D.

Project: Solar System Animation

- Making Key-frame Animation
- Outputting Animation
- Outputting a High-quality Video

Making Key-frame Animation

- What to animate
 - Rotate the sun and the planets about their own axes for their self-rotation.
 - Rotate the moons around the planets for their lunar orbits.
 - Rotate the planets and their moons around the Sun.
- Setup for animation
 - Set the Scene Start Frame to 1 and the Scene End Frame to 240 on the Range slider at the bottom of the user interface.

Current Frame

Scene Start Frame

Scene End Frame

Self-Rotating Sun

- 1. Select Sun and set the initial key frame for the Y-axis rotation.
 - Make sure you are on frame 1.
 - RMB+click the attribute name for Rotate Y in the Channel Box to show a pop-up menu.
 - Select Key Selected from the menu.

- 2. Go to frame 240 and select the Rotate tool (or press E).
 - Rotate Sun about the Y-axis a few times using the tool.
 - Choose Key Selected for Rotate Y again on the Channel Box.

- Playing back the animation
 - Click button in the Payback Controls or drag the cursor on the Time Slider.

^{*} Issue: slow start and slow end !!

Select the Sun and click Windows → Animation Editors → Graph Editor.

- While holding down a Shift key, select the keys at the front and the end.
- Then, choose Tangents → Linear (or click icon).

Resulting video

Self-Rotating Mercury

In a similar way to self-rotating the Sun sphere, self-rotate the Mercury about the Y-axis.

Animating Mercury to orbit the Sun

Pivot point

Pivot point placed at the center of the sphere (default)

Any rotation around object's center produces only its self-rotation.

In order for Mercury to orbit the Sun, it must revolve around a pivot point that is placed at the center of the Sun sphere.

Solution 1: moving the current pivot

- Move the current pivot point to the center of the Sun sphere.
- That would, however, negate Mercury's self-rotation.

How to Move the Pivot Point

• Select the **Move** tool (or Press **W**) and press the **Insert** key. Then, a yellow dot shape will appear at the center of the handle of the Move tool.

 In the Quick Selection Field, choose the Absolute transform option. Then, set x, y, z to 0 and press Enter.

Press Enter.

• It will place the pivot point at the origin of the world coordinate system.

Solution 2: adding a second pivot

- Preserve the original pivot at Mercury's center so it can self-rotate.
- Add a second pivot point at Sun's center so that Mercury can revolve around it.

How can we do so?

- With Mercury selected, choose the Rotate tool (or press E) and then choose Edit → Group (or press Ctrl+G).
- 2. The Channel Box displays attributes for a new group named **group1**.
 - Notice that the pivot point of group1 is placed at the origin while Mercury maintains its own pivot.

Pivot of group1

Pivot of the Mercury sphere

- Rename the group mercuryGroup on the Channel Box.
- 4. Set key frames for Y Rotate of mercuryGroup at frames 1 and 240 for Mercury to orbit the Sun (You may enter -720 in Rotate Y at frame 240).

Outliner window (Windows → Outliner)

Note: The transformation of a group is applied to all its elements.

Rotating Venus

- 1. Follow the same procedure as for Mercury's **self-rotation** and **orbit around the Sun**.
 - Make sure to name the group containing Venus venusGroup.
 - Each planet's orbital speed should be different from those of the others.

Rotating Earth and its Moon

- Give Earth and Moon their respective self-rotation animation.
- Group Moon to itself and name the group earthMoonGroup.
 - Copy the x position of the Earth. Then, move the pivot point of earthMoonGroup to the copied
 position accurately using the Quick Selection Field.
 - Set key frames for Y Rotate of earthMoonGroup at frames 1 and 240 for Moon to orbit Earth.
- Select Earth and earthMoonGroup and group them by choosing Edit → Group.
- 4. Rename the group **earthGroup** and set its key frames at frames 1 and 240 so that Earth and Moon orbit the Sun sphere.

Rotating other planets and their moons

Follow the previous steps to produce self-rotation and orbit around the Sun.

Outputting Animation

Playblasting

- A fast way of outputting an animation as a video file
- Mainly used to test intermediate results
- How to use
 - RMB+click anywhere in the Timer slider and select Playblast.

How to save the output file:

- Click □ next to "Playblast..." to open Playblast Options.
- The resulting animation file will be stored to the Movies subfolder under your project folder if you check the "Save to file" option".

Type over here a desired file name.

Resulting video

Outputting a High-quality Video

- Playblasting is fast to produce a resulting video but its rendering quality is quite low.
- In order to produce a high-quality video, we should render each of all the frames with more computational time. Once all frames are rendered, we can combine the resulting images into a single video using other image composition tools.

How to use the batch renderer

- Set the menu set to Rendering and choose Render → Render Settings...
 (or click in the status line).
- Set Image format to PNG (any other format we want to apply).
- Set Frame ext to "name_#.ext", where # will be replaced by each frame number.
- Set Start frame and End frame to 1 and 240, respectively.

 Select Render -> Batch Render to produce a sequence of rendered images (it will take a certain amount of time).

 You can find the rendered images in the images subfolder under the current project folder.

How to use VirtualDub

- Visit the following website: http://virtualdub.sourceforge.net/
- Download a zip file for VirtualDub.
 - Latest version: Release build -- 1.10.4 (stable), 64-bit (x64) version
- Unzip the downloaded file and execute Veedub64.exe ().

Initial screen of VirtualDub

- Choose File
 Open video file in the menu bar.
- Select the first file of all the rendered image files and press the Open button.
- Make sure that Automatically load linked segments is checked.

• Then, all the images will be loaded into VirtualDub.

- Choose Video → Frame rate in the menu bar and change the frame rate to 24 fps.
- Choose Video → Compression...
 and select a suitable video compressor.

 Finally, save the video file by choosing File -> Save as AVI... in the main menu.

Output video

Extending My Solar System

 Try to extend your solar system as you want so that the animation looks more interesting.

- Examples
 - Adding a background image
 - Adding a rocket animation
 - Adding moving meteoric stones
 - Putting it all together
 - Adding Galaxy Effects

Adding a Background Image

- Add the background using a universe image from the Internet. To make a texture background
 - Select View
 Camera Attribute Editor from the panel menus.
 - In the Attribute Editor, under the Environment section, click the Create button to the right of the Image Plane attribute.

This makes an image plane and connects it to the camera.

- Set the Type attribute for the image plane to Texture.
- Click the texture icon I next to the Texture attribute.

In the Create Render Node window that appears, select the texture you want to use as a background (for example, an Environment Texture).

This connects the texture to the image plane.

Adding a Rocket Animation

- Import the maya scene, 'Rocket' and produce its keyframe animation:
 - At the first frame, set keys for the starting position of the rocket.
 - At the last frame, set another keys for the end position of the rocket
 - Then, you can see the intermediate robot motion between the first frame and the last frame.
 - Likewise, add keys for the scale and rotation of the rocket if desired.

Adding Moving Meteoric Stones

- Import the maya scene, 'Meteoric stone'. You may duplicate the stone multiple times.
- Group all your stone models and produce a keyframe animation for these stones.

Putting It All Together

Adding Galaxy Effects

- Select Generate → Get Brush in the Main menu and find galaxy.mel under Examples → Paint Effects → Galactic folder.
- Then, choose Generate → Paint Effects Tool and draw a curve (draw more than one curve if you want). In the Attribute Editor, change the property of the brush:
 - Global scale: 7
 - Brush Profile → Width: 0.3
 - Shading: Change the Color1 and Color2 under Tube Shading
 - Glow: Set Glow to 1.0 and change the Glow Color.

