模块一 同角三角函数关系与诱导公式 第1节 三角函数的定义(★☆)

强化训练

1. (2022・宁夏模拟・★) 已知角 θ 的终边上有一点P(-4a,3a)(a>0),则 $2\sin\theta+\cos\theta=$ ()

(A)
$$-\frac{2}{5}$$
 (B) $\frac{2}{5}$ (C) $-\frac{2}{5}$ $\frac{2}{5}$ (D) 不确定

答案: B

解析: 先由三角函数定义求出 $\sin\theta$ 和 $\cos\theta$, 由题意, $|OP| = \sqrt{(-4a)^2 + (3a)^2} = 5|a| = 5a$,

所以
$$\sin \theta = \frac{3a}{|OP|} = \frac{3}{5}$$
, $\cos \theta = \frac{-4a}{|OP|} = -\frac{4}{5}$, 故 $2\sin \theta + \cos \theta = \frac{2}{5}$.

2. $(2022 \cdot 安徽模拟 \cdot ★)$ 已知角 α 终边上一点 $P(m,4)(m \neq 0)$,且 $\cos \alpha = \frac{m}{5}$,则 $\tan \alpha = ____.$

答案: $\pm \frac{4}{3}$

解析:根据点P的坐标,求出 $\cos \alpha$,建立方程解m,再求 $\tan \alpha$,

由题意,
$$\cos \alpha = \frac{m}{\sqrt{m^2 + 16}} = \frac{m}{5}$$
,解得: $m = \pm 3$,所以 $\tan \alpha = \frac{4}{m} = \pm \frac{4}{3}$.

3. (★) 已知 $\tan \alpha = k$,且 α 在第三象限,则 $\sin \alpha =$ ____. (用 k 表示)

答案: $-\frac{k}{\sqrt{1+k^2}}$

解析:要求 $\sin \alpha$,可考虑在 α 的终边上求一个点,用三角函数定义算 $\sin \alpha$,

因为 α 在第三象限,不妨设 $P(-1,y_0)$,则 $\tan \alpha = \frac{y_0}{-1} = k$,所以 $y_0 = -k$,故P(-1,-k),

由三角函数定义,
$$\sin \alpha = \frac{y_0}{|OP|} = \frac{-k}{\sqrt{(-1)^2 + (-k)^2}} = -\frac{k}{\sqrt{1 + k^2}}$$
.

4. (2022 •潍坊二模 •★★) 已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,点 $A(x_1,2)$, $B(x_2,4)$ 在 α 的终边上,且 $x_1 - x_2 = 1$,则 $\tan \alpha =$ ()

(A) 2 (B)
$$\frac{1}{2}$$
 (C) -2 (D) $-\frac{1}{2}$

答案: C

解法 1: 只要求出 x_1 或 x_2 ,就可以用三角函数定义求得 $\tan \alpha$,已知条件中已经有 $x_1 - x_2 = 1$ 这一个方程了,可用 A、B 的坐标把 $\tan \alpha$ 表示出来,再建立一个 x_1 和 x_2 的方程,求解 x_1 或 x_2 ,

曲题意, $\tan \alpha = \frac{2}{x_1}$, $\tan \alpha = \frac{4}{x_2}$, 所以 $\frac{2}{x_1} = \frac{4}{x_2}$, 故 $x_2 = 2x_1$, 代入 $x_1 - x_2 = 1$ 可得 $x_1 = -1$, 故 $\tan \alpha = \frac{2}{x_1} = -2$.

解法 2: 题干给出 $A \setminus B$ 两点的坐标,以及 $x_1 - x_2 = 1$,想到两点连线的斜率公式,于是先画图看看,

如图,由图可知 $\tan \alpha$ 等于直线 AB 的斜率,所以 $\tan \alpha = \frac{2-4}{x_1-x_2} = \frac{-2}{x_1-x_2}$,又 $x_1-x_2=1$,所以 $\tan \alpha = -2$.

5.(2022•湛江期末•★★★)如图,角 α 的始边与x轴的非负半轴重合,终边与单位圆交于点 $A(x_1,y_1)$, 角 $\beta = \alpha + \frac{2\pi}{2}$ 的始边与角 α 的始边重合,且终边与单位圆交于点 $B(x_2,y_2)$,记 $f(\alpha) = y_1 - y_2$,若 α 为锐角, 则 $f(\alpha)$ 的取值范围是 ()

(A)
$$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

(B)
$$\left(-\frac{1}{2}, \frac{3}{2}\right)$$

(C)
$$\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

(A)
$$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 (B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$ (C) $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ (D) $\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$

答案: D

解析:给出角的终边与单位圆的交点坐标,想到用三角函数的定义把 $\sin \alpha$, $\sin \beta$ 都表示出来,

由三角函数定义, $\sin \alpha = y_1$, $\sin \beta = \sin(\alpha + \frac{2\pi}{2}) = y_2$,

所以
$$f(\alpha) = y_1 - y_2 = \sin \alpha - \sin(\alpha + \frac{2\pi}{3}) = \sin \alpha - (\sin \alpha \cos \frac{2\pi}{3} + \cos \alpha \sin \frac{2\pi}{3}) = \frac{3}{2} \sin \alpha - \frac{\sqrt{3}}{2} \cos \alpha = \sqrt{3} \sin(\alpha - \frac{\pi}{6})$$

因为
$$\alpha$$
为锐角,所以 $0 < \alpha < \frac{\pi}{2}$,从而 $-\frac{\pi}{6} < \alpha - \frac{\pi}{6} < \frac{\pi}{3}$,故 $-\frac{1}{2} < \sin(\alpha - \frac{\pi}{6}) < \frac{\sqrt{3}}{2}$,所以 $f(\alpha) \in (-\frac{\sqrt{3}}{2}, \frac{3}{2})$.

6.
$$(2021 \cdot 北京巻 \cdot ★★★)$$
 若点 $A(\cos\theta,\sin\theta)$ 关于 y 轴的对称点为 $B(\cos(\theta + \frac{\pi}{6}),\sin(\theta + \frac{\pi}{6}))$,写出 θ 的一个取值为_____.

答案: $\frac{5\pi}{12}$ (答案不唯一,详见解析)

解法 1: 由三角函数定义,A,B 两点分别是 θ 和 θ + $\frac{\pi}{6}$ 的终边与单位圆的交点,

由于只需填一个值,所以不妨直接画图看,

如图 1,当 θ 与 θ + $\frac{\pi}{6}$ 互补时,它们的终边就关于y轴对称,所以令 θ +(θ + $\frac{\pi}{6}$)= π ,解得: θ = $\frac{5\pi}{12}$.

解法 2: 由三角函数定义,A,B 两点分别是 θ 和 θ + $\frac{\pi}{6}$ 的终边与单位圆的交点,

接下来我们也给一个完备的寻找 θ 与 θ + $\frac{\pi}{6}$ 的关系的方法,先画图看看这两个角可能的位置,

因为A, B 两点关于y 轴对称,所以 θ 和 $\theta + \frac{\pi}{6}$ 的终边也关于y 轴对称,

如图 1 和图 2, 在[0,2 π)这个范围内, θ 可取 $\frac{5\pi}{12}$ 或 $\frac{17\pi}{12}$,

在这两个值上加 2π 的整数倍,不改变终边的位置,所以 $\theta = \frac{5\pi}{12} + 2k\pi$ 或 $\frac{17\pi}{12} + 2k\pi$,

注意到 $\frac{17\pi}{12} = \frac{5\pi}{12} + \pi$,所以这两种结果也可以统一写成 $\theta = \frac{5\pi}{12} + k\pi(k \in \mathbb{Z})$.

7. $(2022 \cdot \cdot \star \star \star \star \star)$ 已知角 α 的始边与 x 轴非负半轴重合,终边上一点 $P(\sin 3, \cos 3)$,若 $0 \le \alpha \le 2\pi$,则 $\alpha = ($

$$(A)$$
 3

(B)
$$\frac{\pi}{2} - 3$$

(A) 3 (B)
$$\frac{\pi}{2}$$
 -3 (C) $\frac{5\pi}{2}$ -3 (D) $3-\frac{\pi}{2}$

(D)
$$3-\frac{\pi}{2}$$

答案: C

解析:给出终边上一点,先把三角函数的定义式写出来,

 $\cos \alpha = \sin 3$ 因为 $\sin^2 3 + \cos^2 3 = 1$,所以点P在单位圆上,故

接下来把右侧的函数名化为和左侧一致,就可以找到 α 的终边,再化到[0,2 π]上即可选答案,

因为
$$\sin 3 = \cos(\frac{\pi}{2} - 3)$$
, $\cos 3 = \sin(\frac{\pi}{2} - 3)$, 所以
$$\begin{cases} \cos \alpha = \cos(\frac{\pi}{2} - 3) \\ \sin \alpha = \sin(\frac{\pi}{2} - 3) \end{cases}$$
, 故 α 与 $\frac{\pi}{2} - 3$ 有相同的终边,如图,

所以 $\alpha = \frac{\pi}{2} - 3 + 2k\pi(k \in \mathbb{Z})$,因为 $0 \le \alpha \le 2\pi$,所以k = 1, $\alpha = \frac{5\pi}{2} - 3$.

《一数•高考数学核心方法》