Homework 6

Michael Brodskiy

Professor: Q. Yan

 $March\ 29,\ 2023$

Permitted Wave Functions

(a) One reason why this function is not permitted is because it violates the normalization condition, $\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$; more specifically, solving for the boundary conditions makes it violate this:

$$A\cos(kx) = B\sin(kx)$$
$$A\cos(0) = B\sin(0)$$
$$A = 0$$

Differentiating to find B:

$$0 = Bk\cos(kx)$$
$$B = 0$$

Because both constants are zero, the integral over the entire boundary does not equal 1.

- (b) $\psi(x) = \frac{Ae^{-kx}}{x}$ can not be a solution because it is discontinuous; at the point x=0, the function has a discontinuity.
- (c) $A \sin^{-1}(kx)$ can not be a solution because it is discontinuous. \sin^{-1} is only valid for values in the range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, and, thus, it must have a discontinuity somewhere in its domain, unless k where to have the value of zero; in such a case, the function would violate the normalization condition, as it would be zero over its whole domain.
- (d) $A \tan(kx)$ can not be a solution because it is discontinuous every $n\pi$ values.

The Schrödinger Equation

Expectation Values

A Particle in a 3D Box

Quantum Simple Harmonic Oscillator

- (a)
- (b)