Lecture 2: State Value and Bellman Equation

Shiyu Zhao

School of Engineering, Westlake University

In this lecture:

• A core concept: state value

• A fundamental tool: the Bellman equation

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- **7** Summary

Shiyu Zhao 3/52

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- 7 Summary

Shiyu Zhao 4/52

- What is return? The (discounted) sum of the rewards obtained along a trajectory.
- Why is return important? See the following examples.

- Question: From the starting point s₁, which policy is the "best"? Which is the "worst"?
 - Intuition: the first is the best and the second is the worst, because of the forbidden area.
 - Math: can we use mathematics to describe such intuition?
 Return could be used to evaluate policies. See the following

Shiyu Zhao 5 / 52

- What is return? The (discounted) sum of the rewards obtained along a trajectory.
- Why is return important? See the following examples.

- ullet Question: From the starting point s_1 , which policy is the "best"? Which is the "worst"?
 - Intuition: the first is the best and the second is the worst, because of the forbidden area.
 - Math: can we use mathematics to describe such intuition?
 Return could be used to evaluate policies. See the following

Shiyu Zhao 5 / 52

- What is return? The (discounted) sum of the rewards obtained along a trajectory.
- Why is return important? See the following examples.

- Question: From the starting point s_1 , which policy is the "best"? Which is the "worst"?
 - Intuition: the first is the best and the second is the worst, because of the forbidden area.

Math: can we use mathematics to describe such intuition?
 Return could be used to evaluate policies. See the following

Shiyu Zhao 5 / 52

- What is return? The (discounted) sum of the rewards obtained along a trajectory.
- Why is return important? See the following examples.

- Question: From the starting point s_1 , which policy is the "best"? Which is the "worst"?
 - Intuition: the first is the best and the second is the worst, because of the forbidden area.
 - Math: can we use mathematics to describe such intuition?
 Return could be used to evaluate policies. See the following.

 Shiyu Zhao
 5 / 52

Based on policy 1 (left figure), starting from s_1 , the discounted return is

return₁ = 0 +
$$\gamma$$
1 + γ ²1 + ...,
= γ (1 + γ + γ ² + ...)
= $\frac{\gamma}{1 - \gamma}$.

Shiyu Zhao 6/52

Based on policy 1 (left figure), starting from s_1 , the discounted return is

$$\begin{aligned} \text{return}_1 &= 0 + \gamma 1 + \gamma^2 1 + \dots, \\ &= \gamma (1 + \gamma + \gamma^2 + \dots), \\ &= \frac{\gamma}{1 - \gamma}. \end{aligned}$$

Shiyu Zhao 6/52

Exercise: Based on policy 2 (middle figure), starting from s_1 , what is the discounted return?

Answer:

$$\begin{aligned} \text{return}_2 &= -1 + \gamma 1 + \gamma^2 1 + \dots, \\ &= -1 + \gamma (1 + \gamma + \gamma^2 + \dots) \\ &= -1 + \frac{\gamma}{1 - \gamma}. \end{aligned}$$

Shiyu Zhao 7 / 52

Exercise: Based on policy 2 (middle figure), starting from s_1 , what is the discounted return?

Answer:

return₂ =
$$-1 + \gamma 1 + \gamma^2 1 + \dots$$
,
= $-1 + \gamma (1 + \gamma + \gamma^2 + \dots)$,
= $-1 + \frac{\gamma}{1 - \gamma}$.

Shiyu Zhao 7/52

Policy 3 is stochastic!

Exercise: Based on policy 3 (right figure), starting from s_1 , the discounted

return is

Answer

return₃ = 0.5
$$\left(-1 + \frac{\gamma}{1 - \gamma}\right) + 0.5 \left(\frac{\gamma}{1 - \gamma}\right)$$

= $-0.5 + \frac{\gamma}{1 - \gamma}$.

Shiyu Zhao 8 / 52

Policy 3 is stochastic!

Exercise: Based on policy 3 (right figure), starting from s_1 , the discounted

return is Answer:

$$\begin{split} \mathrm{return_3} &= 0.5 \left(-1 + \frac{\gamma}{1 - \gamma} \right) + 0.5 \left(\frac{\gamma}{1 - \gamma} \right), \\ &= -0.5 + \frac{\gamma}{1 - \gamma}. \end{split}$$

Shiyu Zhao 8/52

In summary, starting from s_1 ,

$return_1 > return_3 > return_2$

The above inequality suggests that the first policy is the best and the second policy is the worst, which is exactly the same as our intuition.

Calculating return is important to evaluate a policy.

Shiyu Zhao 9 / 52

In summary, starting from s_1 ,

$$return_1 > return_3 > return_2$$

The above inequality suggests that the first policy is the best and the second policy is the worst, which is exactly the same as our intuition.

Calculating return is important to evaluate a policy

Shiyu Zhao 9 / 52

In summary, starting from s_1 ,

$$return_1 > return_3 > return_2$$

The above inequality suggests that the first policy is the best and the second policy is the worst, which is exactly the same as our intuition.

Calculating return is important to evaluate a policy.

Shiyu Zhao 9 / 52

While return is important, how to calculate it?

Method 1: by definition

Let v_i denote the return obtained starting from s_i (i = 1, 2, 3, 4)

$$v_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$$

 $v_2 = r_2 + \gamma r_3 + \gamma^2 r_4 + \dots$
 $v_3 = r_3 + \gamma r_4 + \gamma^2 r_1 + \dots$

While return is important, how to calculate it?

Method 1: by definition

Let v_i denote the return obtained starting from s_i (i=1,2,3,4)

$$v_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$$

 $v_2 = r_2 + \gamma r_3 + \gamma^2 r_4 + \dots$
 $v_3 = r_3 + \gamma r_4 + \gamma^2 r_1 + \dots$
 $v_4 = r_4 + \gamma r_1 + \gamma^2 r_2 + \dots$

While return is important, how to calculate it?

Method 1: by definition

Let v_i denote the return obtained starting from s_i (i = 1, 2, 3, 4)

$$v_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$$

$$v_2 = r_2 + \gamma r_3 + \gamma^2 r_4 + \dots$$

$$v_3 = r_3 + \gamma r_4 + \gamma^2 r_1 + \dots$$

$$v_4 = r_4 + \gamma r_1 + \gamma^2 r_2 + \dots$$

While return is important, how to calculate it?

Method 2:

$$v_1 = r_1 + \gamma(r_2 + \gamma r_3 + \dots) = r_1 + \gamma v_2$$

$$v_2 = r_2 + \gamma(r_3 + \gamma r_4 + \dots) = r_2 + \gamma v_3$$

$$v_3 = r_3 + \gamma(r_4 + \gamma r_1 + \dots) = r_3 + \gamma v_4$$

$$v_4 = r_4 + \gamma(r_1 + \gamma r_2 + \dots) = r_4 + \gamma v_1$$

The returns rely on each other. Bootstrapping

While return is important, how to calculate it?

Method 2:

$$v_1 = r_1 + \gamma(r_2 + \gamma r_3 + \dots) = r_1 + \gamma v_2$$

$$v_2 = r_2 + \gamma(r_3 + \gamma r_4 + \dots) = r_2 + \gamma v_3$$

$$v_3 = r_3 + \gamma(r_4 + \gamma r_1 + \dots) = r_3 + \gamma v_4$$

$$v_4 = r_4 + \gamma(r_1 + \gamma r_2 + \dots) = r_4 + \gamma v_1$$

• The returns rely on each other. Bootstrapping!

While return is important, how to calculate it?

Method 2:

$$v_1 = r_1 + \gamma(r_2 + \gamma r_3 + \dots) = r_1 + \gamma v_2$$

$$v_2 = r_2 + \gamma(r_3 + \gamma r_4 + \dots) = r_2 + \gamma v_3$$

$$v_3 = r_3 + \gamma(r_4 + \gamma r_1 + \dots) = r_3 + \gamma v_4$$

$$v_4 = r_4 + \gamma(r_1 + \gamma r_2 + \dots) = r_4 + \gamma v_1$$

• The returns rely on each other. Bootstrapping!

How to solve these equations? Write in the following matrix-vector form:

$$\underbrace{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{V}} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} + \begin{bmatrix} \gamma v_2 \\ \gamma v_3 \\ \gamma v_4 \\ \gamma v_1 \end{bmatrix} = \underbrace{ \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}}_{\mathbf{T}} + \gamma \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} }_{\mathbf{V}}$$

which can be rewritten as

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

This is the Bellman equation (for this specific deterministic problem)!!

- Though simple, it demonstrates the core idea: the value of one state relies on the values of other states.
- A matrix-vector form is more clear to see how to solve the state values

How to solve these equations? Write in the following matrix-vector form:

$$\underbrace{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} }_{\mathbf{Y}} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} + \begin{bmatrix} \gamma v_2 \\ \gamma v_3 \\ \gamma v_4 \\ \gamma v_1 \end{bmatrix} = \underbrace{ \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} }_{\mathbf{F}} + \gamma \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} }_{\mathbf{Y}} \underbrace{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} }_{\mathbf{Y}}$$

which can be rewritten as

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

This is the Bellman equation (for this specific deterministic problem)!!

- Though simple, it demonstrates the core idea: the value of one state relies on the values of other states.
- A matrix-vector form is more clear to see how to solve the state values

How to solve these equations? Write in the following matrix-vector form:

$$\underbrace{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{V}} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} + \begin{bmatrix} \gamma v_2 \\ \gamma v_3 \\ \gamma v_4 \\ \gamma v_1 \end{bmatrix} = \underbrace{ \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}}_{\mathbf{r}} + \gamma \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \underbrace{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{V}}$$

which can be rewritten as

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

This is the Bellman equation (for this specific deterministic problem)!!

- Though simple, it demonstrates the core idea: the value of one state relies
 on the values of other states.
- A matrix-vector form is more clear to see how to solve the state values

How to solve these equations? Write in the following matrix-vector form:

$$\underbrace{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{Y}} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} + \begin{bmatrix} \gamma v_2 \\ \gamma v_3 \\ \gamma v_4 \\ \gamma v_1 \end{bmatrix} = \underbrace{ \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}}_{\mathbf{r}} + \gamma \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}}_{\mathbf{P}} \underbrace{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{Y}}$$

which can be rewritten as

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

This is the Bellman equation (for this specific deterministic problem)!!

- Though simple, it demonstrates the core idea: the value of one state relies on the values of other states.
- A matrix-vector form is more clear to see how to solve the state values.

Exercise: Consider the policy shown in the figure. Please write out the relation among the returns (that is to write out the Bellman equation)

Answer

$$v_1 = 0 + \gamma v_3$$

$$v_2 = 1 + \gamma v_4$$

$$v_3 = 1 + \gamma v_4$$

$$v_4 = 1 + \gamma v_4$$

Exercise: How to solve them? We can first calculate v_4 , and then v_3, v_2, v_1

Exercise: Consider the policy shown in the figure. Please write out the relation among the returns (that is to write out the Bellman equation)

Answer:

$$v_1 = 0 + \gamma v_3$$

$$v_2 = 1 + \gamma v_4$$

$$v_3 = 1 + \gamma v_4$$

$$v_4 = 1 + \gamma v_4$$

Exercise: How to solve them? We can first calculate v_4 , and then v_3, v_2, v_1 .

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- 7 Summary

Consider the following single-step process:

$$S_t \xrightarrow{A_t} R_{t+1}, S_{t+1}$$

- t, t + 1: discrete time instances
- S_t : state at time t
- A_t : the action taken at state S_t
- ullet R_{t+1} : the reward obtained after taking A_t
- ullet S_{t+1} : the state transited to after taking A_t

Note that S_t, A_t, R_{t+1} are all random variables.

This step is governed by the following probability distributions:

- $S_t \to A_t$ is governed by $\pi(A_t = a | S_t = s)$
- $S_t, A_t \to R_{t+1}$ is governed by $p(R_{t+1} = r | S_t = s, A_t = a)$
- $S_t, A_t \to S_{t+1}$ is governed by $p(S_{t+1} = s' | S_t = s, A_t = a)$

At this moment, we assume we know the model (i.e., the probability distributions)!

Consider the following single-step process:

$$S_t \xrightarrow{A_t} R_{t+1}, S_{t+1}$$

- t, t + 1: discrete time instances
- S_t : state at time t
- A_t : the action taken at state S_t
- ullet R_{t+1} : the reward obtained after taking A_t
- S_{t+1} : the state transited to after taking A_t

Note that S_t, A_t, R_{t+1} are all random variables.

This step is governed by the following probability distributions:

- $S_t \to A_t$ is governed by $\pi(A_t = a | S_t = s)$
- $S_t, A_t \to R_{t+1}$ is governed by $p(R_{t+1} = r | S_t = s, A_t = a)$
- $S_t, A_t \to S_{t+1}$ is governed by $p(S_{t+1} = s' | S_t = s, A_t = a)$

At this moment, we assume we know the model (i.e., the probability distributions)!

Consider the following multi-step trajectory:

$$S_t \xrightarrow{A_t} R_{t+1}, S_{t+1} \xrightarrow{A_{t+1}} R_{t+2}, S_{t+2} \xrightarrow{A_{t+2}} R_{t+3}, \dots$$

The discounted return is

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

- $\gamma \in (0,1)$ is a discount rate.
- G_t is also a random variable since R_{t+1}, R_{t+2}, \ldots are random variables.

Consider the following multi-step trajectory:

$$S_t \xrightarrow{A_t} R_{t+1}, S_{t+1} \xrightarrow{A_{t+1}} R_{t+2}, S_{t+2} \xrightarrow{A_{t+2}} R_{t+3}, \dots$$

The discounted return is

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

- $\gamma \in (0,1)$ is a discount rate.
- G_t is also a random variable since R_{t+1}, R_{t+2}, \ldots are random variables.

The expectation (or called expected value or mean) of G_t is defined as the state-value function or simply state value:

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

Remarks:

- It is a function of s. It is a conditional expectation with the condition that the state starts from s.
- It is based on the policy π . For a different policy, the state value may be different

Q: What is the relationship between return and state value?

A: The state value is the mean of all possible returns that can be obtained starting from a state. If everything - $\pi(a|s)$, p(r|s,a), p(s'|s,a) - is deterministic, then state value is the same as return.

The expectation (or called expected value or mean) of G_t is defined as the state-value function or simply state value:

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

Remarks:

- It is a function of s. It is a conditional expectation with the condition that
 the state starts from s.
- ullet It is based on the policy π . For a different policy, the state value may be different.

Q: What is the relationship between return and state value?

A: The state value is the mean of all possible returns that can be obtained starting from a state. If everything – $\pi(a|s)$, p(r|s,a), p(s'|s,a) – is deterministic, then state value is the same as return.

Shiyu Zhao 17/52

The expectation (or called expected value or mean) of G_t is defined as the state-value function or simply state value:

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

Remarks:

- It is a function of s. It is a conditional expectation with the condition that
 the state starts from s.
- ullet It is based on the policy π . For a different policy, the state value may be different.

Q: What is the relationship between return and state value?

A: The state value is the mean of all possible returns that can be obtained starting from a state. If everything - $\pi(a|s)$, p(r|s,a), p(s'|s,a) - is deterministic, then state value is the same as return.

Shiyu Zhao 17/5

Example:

Recall the returns obtained from \emph{s}_1 for the three examples:

Shiyu Zhao

Example:

Recall the returns obtained from s_1 for the three examples:

$$v_{\pi_1}(s_1) = 0 + \gamma 1 + \gamma^2 1 + \dots = \gamma (1 + \gamma + \gamma^2 + \dots) = \frac{\gamma}{1 - \gamma}$$

Shiyu Zhao 18/52

Example:

Recall the returns obtained from s_1 for the three examples:

$$v_{\pi_1}(s_1) = 0 + \gamma 1 + \gamma^2 1 + \dots = \gamma (1 + \gamma + \gamma^2 + \dots) = \frac{\gamma}{1 - \gamma}$$

$$v_{\pi_2}(s_1) = -1 + \gamma 1 + \gamma^2 1 + \dots = -1 + \gamma (1 + \gamma + \gamma^2 + \dots) = -1 + \frac{\gamma}{1 - \gamma}$$

Shiyu Zhao 18/52

Example:

Recall the returns obtained from s_1 for the three examples:

$$v_{\pi_1}(s_1) = 0 + \gamma 1 + \gamma^2 1 + \dots = \gamma (1 + \gamma + \gamma^2 + \dots) = \frac{\gamma}{1 - \gamma}$$

$$v_{\pi_2}(s_1) = -1 + \gamma 1 + \gamma^2 1 + \dots = -1 + \gamma (1 + \gamma + \gamma^2 + \dots) = -1 + \frac{\gamma}{1 - \gamma}$$

$$v_{\pi_3}(s_1) = 0.5 \left(-1 + \frac{\gamma}{1 - \gamma} \right) + 0.5 \left(\frac{\gamma}{1 - \gamma} \right) = -0.5 + \frac{\gamma}{1 - \gamma}$$

Shiyu Zhao 18/52

Outline

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- 7 Summary

Shiyu Zhao

Bellman equation

- While state value is important, how to calculate? The answer lies in the Bellman equation.
- In a word, the Bellman equation describes the relationship among the values of all states.
- Next, we derive the Bellman equation
 - There is some math.
 - We already have the intuition.

Shiyu Zhao 20 / 52

Bellman equation

- While state value is important, how to calculate? The answer lies in the Bellman equation.
- In a word, the Bellman equation describes the relationship among the values of all states.
- Next, we derive the Bellman equation
 - There is some math
 - We already have the intuition.

Shiyu Zhao 20 / 52

Bellman equation

- While state value is important, how to calculate? The answer lies in the Bellman equation.
- In a word, the Bellman equation describes the relationship among the values of all states.
- Next, we derive the Bellman equation.
 - There is some math.
 - We already have the intuition.

Shiyu Zhao 20 / 52

Consider a random trajectory:

$$S_t \xrightarrow{A_t} R_{t+1}, S_{t+1} \xrightarrow{A_{t+1}} R_{t+2}, S_{t+2} \xrightarrow{A_{t+2}} R_{t+3}, \dots$$

The return G_t can be written as

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots,$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots),$
= $R_{t+1} + \gamma G_{t+1},$

Then, it follows from the definition of the state value that

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

$$= \mathbb{E}[R_{t+1}|S_t = s] + \gamma \mathbb{E}[G_{t+1}|S_t = s]$$

Next, calculate the two terms, respectively.

Shiyu Zhao

Consider a random trajectory:

$$S_t \xrightarrow{A_t} R_{t+1}, S_{t+1} \xrightarrow{A_{t+1}} R_{t+2}, S_{t+2} \xrightarrow{A_{t+2}} R_{t+3}, \dots$$

The return G_t can be written as

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots,$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots),$
= $R_{t+1} + \gamma G_{t+1},$

Then, it follows from the definition of the state value that

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

$$= \mathbb{E}[R_{t+1}|S_t = s] + \gamma \mathbb{E}[G_{t+1}|S_t = s]$$

Next, calculate the two terms, respectively.

Shiyu Zhao 21/52

First, calculate the first term $\mathbb{E}[R_{t+1}|S_t=s]$:

$$\mathbb{E}[R_{t+1}|S_t = s] = \sum_a \pi(a|s)\mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$
$$= \sum_a \pi(a|s)\sum_r p(r|s, a)r$$

Note that

This is the mean of immediate rewards

Shiyu Zhao 22/5

First, calculate the first term $\mathbb{E}[R_{t+1}|S_t=s]$:

$$\mathbb{E}[R_{t+1}|S_t = s] = \sum_a \pi(a|s)\mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$
$$= \sum_a \pi(a|s)\sum_r p(r|s, a)r$$

Note that

• This is the mean of immediate rewards

Shiyu Zhao 22/5

Second, calculate the second term $\mathbb{E}[G_{t+1}|S_t=s]$:

$$\mathbb{E}[G_{t+1}|S_t = s] = \sum_{s'} \mathbb{E}[G_{t+1}|S_t = s, S_{t+1} = s']p(s'|s)$$

$$= \sum_{s'} \mathbb{E}[G_{t+1}|S_{t+1} = s']p(s'|s)$$

$$= \sum_{s'} v_{\pi}(s')p(s'|s)$$

$$= \sum_{s'} v_{\pi}(s') \sum_{a} p(s'|s, a)\pi(a|s)$$

Note that

- This is the mean of future rewards
- $\mathbb{E}[G_{t+1}|S_t=s,S_{t+1}=s']=\mathbb{E}[G_{t+1}|S_{t+1}=s']$ due to the memoryless Markov property.

Shiyu Zhao 23 / 5

Second, calculate the second term $\mathbb{E}[G_{t+1}|S_t=s]$:

$$\mathbb{E}[G_{t+1}|S_t = s] = \sum_{s'} \mathbb{E}[G_{t+1}|S_t = s, S_{t+1} = s']p(s'|s)$$

$$= \sum_{s'} \mathbb{E}[G_{t+1}|S_{t+1} = s']p(s'|s)$$

$$= \sum_{s'} v_{\pi}(s')p(s'|s)$$

$$= \sum_{s'} v_{\pi}(s') \sum_{a} p(s'|s, a)\pi(a|s)$$

Note that

- This is the mean of future rewards
- $\mathbb{E}[G_{t+1}|S_t=s,S_{t+1}=s']=\mathbb{E}[G_{t+1}|S_{t+1}=s']$ due to the memoryless Markov property.

Shiyu Zhao 23 / 5

Therefore, we have

$$\begin{aligned} & v_{\pi}(s) = \mathbb{E}[R_{t+1}|S_t = s] + \gamma \mathbb{E}[G_{t+1}|S_t = s], \\ & = \underbrace{\sum_{a} \pi(a|s) \sum_{r} p(r|s, a)r}_{\text{mean of immediate rewards}} + \underbrace{\gamma \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a)v_{\pi}(s')}_{\text{mean of future rewards}}, \\ & = \underbrace{\sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]}_{r}, \quad \forall s \in \mathcal{S}. \end{aligned}$$

Highlights:

- The above equation is called the Bellman equation, which characterizes the relationship among the state-value functions of different states.
- It consists of two terms: the immediate reward term and the future reward term

• A set of equations: every state has an equation like this!!

Shiyu Zhao 24/5

Therefore, we have

$$\begin{aligned} & \boldsymbol{v_{\pi}(s)} = \mathbb{E}[R_{t+1}|S_t = s] + \gamma \mathbb{E}[G_{t+1}|S_t = s], \\ & = \underbrace{\sum_{a} \pi(a|s) \sum_{r} p(r|s,a)r}_{\text{mean of immediate rewards}} + \underbrace{\gamma \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a) v_{\pi}(s')}_{\text{mean of future rewards}}, \\ & = \underbrace{\sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a) v_{\pi}(s') \right]}_{r}, \quad \forall s \in \mathcal{S}. \end{aligned}$$

Highlights:

- The above equation is called the *Bellman equation*, which characterizes the relationship among the state-value functions of different states.
- It consists of two terms: the immediate reward term and the future reward term.

• A set of equations: every state has an equation like this!!!

Shiyu Zhao 24/5

Therefore, we have

$$\begin{aligned} & \boldsymbol{v_{\pi}(s)} = \mathbb{E}[R_{t+1}|S_t = s] + \gamma \mathbb{E}[G_{t+1}|S_t = s], \\ & = \underbrace{\sum_{a} \pi(a|s) \sum_{r} p(r|s,a)r}_{\text{mean of immediate rewards}} + \underbrace{\gamma \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a)v_{\pi}(s')}_{\text{mean of future rewards}}, \\ & = \underbrace{\sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s') \right]}_{r}, \quad \forall s \in \mathcal{S}. \end{aligned}$$

Highlights: symbols in this equation

- $v_{\pi}(s)$ and $v_{\pi}(s')$ are state values to be calculated. Bootstrapping!
- \bullet $\pi(a|s)$ is a given policy. Solving the equation is called policy evaluation.
- p(r|s,a) and p(s'|s,a) represent the dynamic model. What if the model is known or unknown?

Shiyu Zhao 25/5

Write out the Bellman equation according to the general expression:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]$$

This example is simple because the policy is deterministic.

First, consider the state value of s_1 :

•
$$\pi(a = a_3|s_1) = 1$$
 and $\pi(a \neq a_3|s_1) = 0$.

•
$$p(s'=s_3|s_1,a_3)=1$$
 and $p(s'\neq s_3|s_1,a_3)=0$.

•
$$p(r=0|s_1,a_3)=1$$
 and $p(r\neq 0|s_1,a_3)=0$.

Substituting them into the Bellman equation gives

$$v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3)$$

Shiyu Zhao 26 / 52

Write out the Bellman equation according to the general expression:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]$$

This example is simple because the policy is deterministic.

First, consider the state value of s_1 :

- $\pi(a = a_3|s_1) = 1$ and $\pi(a \neq a_3|s_1) = 0$.
- $p(s' = s_3|s_1, a_3) = 1$ and $p(s' \neq s_3|s_1, a_3) = 0$.
- $p(r=0|s_1,a_3)=1$ and $p(r\neq 0|s_1,a_3)=0$.

Substituting them into the Bellman equation gives

$$v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3)$$

Shiyu Zhao 26/52

Write out the Bellman equation according to the general expression:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]$$

This example is simple because the policy is deterministic.

First, consider the state value of s_1 :

- $\pi(a = a_3|s_1) = 1$ and $\pi(a \neq a_3|s_1) = 0$.
- $p(s'=s_3|s_1,a_3)=1$ and $p(s'\neq s_3|s_1,a_3)=0$.
- $p(r=0|s_1,a_3)=1$ and $p(r\neq 0|s_1,a_3)=0$.

Substituting them into the Bellman equation gives

$$v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3)$$

Shiyu Zhao 26/52

Write out the Bellman equation according to the general expression:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]$$

Similarly, it can be obtained that

$$v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3),$$

$$v_{\pi}(s_2) = 1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_3) = 1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_4) = 1 + \gamma v_{\pi}(s_4).$$

Shiyu Zhao 27/5

How to solve them?

$$v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3),$$

$$v_{\pi}(s_2) = 1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_3) = 1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_4) = 1 + \gamma v_{\pi}(s_4).$$

Solve the above equations one by one from the last to the first:

$$v_{\pi}(s_4) = \frac{1}{1 - \gamma},$$

$$v_{\pi}(s_3) = \frac{1}{1 - \gamma},$$

$$v_{\pi}(s_2) = \frac{1}{1 - \gamma},$$

$$v_{\pi}(s_1) = \frac{\gamma}{1 - \gamma}.$$

Shiyu Zhao 28 / 52

How to solve them?

$$v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3),$$

$$v_{\pi}(s_2) = 1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_3) = 1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_4) = 1 + \gamma v_{\pi}(s_4).$$

Solve the above equations one by one from the last to the first:

$$v_{\pi}(s_4) = \frac{1}{1-\gamma},$$

$$v_{\pi}(s_3) = \frac{1}{1-\gamma},$$

$$v_{\pi}(s_2) = \frac{1}{1-\gamma},$$

$$v_{\pi}(s_1) = \frac{\gamma}{1-\gamma}.$$

Shiyu Zhao

If $\gamma = 0.9$, then

$$v_{\pi}(s_4) = \frac{1}{1 - 0.9} = 10,$$

$$v_{\pi}(s_3) = \frac{1}{1 - 0.9} = 10,$$

$$v_{\pi}(s_2) = \frac{1}{1 - 0.9} = 10,$$

$$v_{\pi}(s_1) = \frac{0.9}{1 - 0.9} = 9.$$

What to do after we have calculated state values? Be patient (calculating action value and improve policy)

Shiyu Zhao 29 / 52

Exercise:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]$$

• write out the Bellman equations for each state.

• solve the state values from the Bellman equations.

• compare with the policy in the last example.

Answer:

$$\begin{split} v_{\pi}(s_1) &= 0.5[0 + \gamma v_{\pi}(s_3)] + 0.5[-1 + \gamma v_{\pi}(s_2)], \\ v_{\pi}(s_2) &= 1 + \gamma v_{\pi}(s_4), \\ v_{\pi}(s_3) &= 1 + \gamma v_{\pi}(s_4), \\ v_{\pi}(s_4) &= 1 + \gamma v_{\pi}(s_4). \end{split}$$

Solve the above equations one by one from the last to the first.

$$v_{\pi}(s_4) = \frac{1}{1 - \gamma}, \quad v_{\pi}(s_3) = \frac{1}{1 - \gamma}, \quad v_{\pi}(s_2) = \frac{1}{1 - \gamma},$$
$$v_{\pi}(s_1) = 0.5[0 + \gamma v_{\pi}(s_3)] + 0.5[-1 + \gamma v_{\pi}(s_2)],$$
$$= -0.5 + \frac{\gamma}{1 - \gamma}.$$

Substituting $\gamma = 0.9$ yields

$$v_{\pi}(s_4) = 10$$
, $v_{\pi}(s_3) = 10$, $v_{\pi}(s_2) = 10$, $v_{\pi}(s_1) = -0.5 + 9 = 8.5$.

Compare with the previous policy. This one is worse.

Outline

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- 7 Summary

Why consider the matrix-vector form? Because we need to solve the state values from it!

• One unknown relies on another unknown. How to solve the unknowns?

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]$$

- Elementwise form: The above *elementwise form* is valid for every state $s \in \mathcal{S}$. That means there are $|\mathcal{S}|$ equations like this!
- Matrix-vector form: If we put all the equations together, we have a set of linear equations, which can be concisely written in a matrix-vector form. The matrix-vector form is very elegant and important.

Why consider the matrix-vector form? Because we need to solve the state values from it!

One unknown relies on another unknown. How to solve the unknowns?

$$\mathbf{v_{\pi}(s)} = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a) \mathbf{v_{\pi}(s')} \right]$$

- Elementwise form: The above *elementwise form* is valid for every state $s \in S$. That means there are |S| equations like this!
- Matrix-vector form: If we put all the equations together, we have a set of linear equations, which can be concisely written in a matrix-vector form. The matrix-vector form is very elegant and important.

Why consider the matrix-vector form? Because we need to solve the state values from it!

One unknown relies on another unknown. How to solve the unknowns?

$$\mathbf{v_{\pi}(s)} = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)\mathbf{v_{\pi}(s')} \right]$$

- Elementwise form: The above *elementwise form* is valid for every state $s \in \mathcal{S}$. That means there are $|\mathcal{S}|$ equations like this!
- Matrix-vector form: If we put all the equations together, we have a set of linear equations, which can be concisely written in a matrix-vector form. The matrix-vector form is very elegant and important.

Why consider the matrix-vector form? Because we need to solve the state values from it!

One unknown relies on another unknown. How to solve the unknowns?

$$\mathbf{v_{\pi}(s)} = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a) \mathbf{v_{\pi}(s')} \right]$$

- Elementwise form: The above *elementwise form* is valid for every state $s \in \mathcal{S}$. That means there are $|\mathcal{S}|$ equations like this!
- Matrix-vector form: If we put all the equations together, we have a set of linear equations, which can be concisely written in a matrix-vector form. The matrix-vector form is very elegant and important.

Recall that:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s') \right]$$

Rewrite the Bellman equation as

$$v_{\pi}(s) = r_{\pi}(s) + \gamma \sum_{s'} p_{\pi}(s'|s) v_{\pi}(s')$$
 (1)

where

$$r_{\pi}(s) \triangleq \sum_{a} \pi(a|s) \sum_{r} p(r|s, a)r, \qquad p_{\pi}(s'|s) \triangleq \sum_{a} \pi(a|s) p(s'|s, a)$$

Suppose the states could be indexed as s_i ($i=1,\ldots,n$). For state s_i , the Bellman equation is

$$v_{\pi}(s_i) = r_{\pi}(s_i) + \gamma \sum_{s_j} p_{\pi}(s_j|s_i) v_{\pi}(s_j)$$

Put all these equations for all the states together and rewrite to a matrix-vector form

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

where

• $v_{\pi} = [v_{\pi}(s_1), \dots, v_{\pi}(s_n)]^T \in \mathbb{R}^n$

• $r_{\pi} = [r_{\pi}(s_1), \dots, r_{\pi}(s_n)]^T \in \mathbb{R}^n$

• $P_{\pi} \in \mathbb{R}^{n \times n}$, where $[P_{\pi}]_{ij} = p_{\pi}(s_j|s_i)$, is the state transition matrix

Suppose the states could be indexed as s_i (i = 1, ..., n). For state s_i , the Bellman equation is

$$v_{\pi}(s_i) = r_{\pi}(s_i) + \gamma \sum_{s_j} p_{\pi}(s_j|s_i) v_{\pi}(s_j)$$

Put all these equations for all the states together and rewrite to a matrix-vector form

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

where

• $v_{\pi} = [v_{\pi}(s_1), \dots, v_{\pi}(s_n)]^T \in \mathbb{R}^n$

• $r_{\pi} = [r_{\pi}(s_1), \dots, r_{\pi}(s_n)]^T \in \mathbb{R}^n$

• $P_{\pi} \in \mathbb{R}^{n \times n}$, where $[P_{\pi}]_{ij} = p_{\pi}(s_j|s_i)$, is the state transition matrix

Illustrative examples

If there are four states, $v_{\pi}=r_{\pi}+\gamma P_{\pi}v_{\pi}$ can be written out as

$$\underbrace{\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}}_{v_{\pi}} = \underbrace{\begin{bmatrix} r_{\pi}(s_1) \\ r_{\pi}(s_2) \\ r_{\pi}(s_3) \\ r_{\pi}(s_4) \end{bmatrix}}_{r_{\pi}(s_4)} + \gamma \underbrace{\begin{bmatrix} p_{\pi}(s_1|s_1) & p_{\pi}(s_2|s_1) & p_{\pi}(s_3|s_1) & p_{\pi}(s_4|s_1) \\ p_{\pi}(s_1|s_2) & p_{\pi}(s_2|s_2) & p_{\pi}(s_3|s_2) & p_{\pi}(s_4|s_2) \\ p_{\pi}(s_1|s_3) & p_{\pi}(s_2|s_3) & p_{\pi}(s_3|s_3) & p_{\pi}(s_4|s_3) \\ p_{\pi}(s_1|s_4) & p_{\pi}(s_2|s_4) & p_{\pi}(s_3|s_4) & p_{\pi}(s_4|s_4) \end{bmatrix}}_{P_{\pi}} \underbrace{\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}}_{v_{\pi}}.$$

Shiyu Zhao 36 / 52

Illustrative examples

If there are four states, $v_\pi = r_\pi + \gamma P_\pi v_\pi$ can be written out as

$$\underbrace{\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}}_{v_{\pi}} = \underbrace{\begin{bmatrix} r_{\pi}(s_1) \\ r_{\pi}(s_2) \\ r_{\pi}(s_3) \\ r_{\pi}(s_4) \end{bmatrix}}_{r_{\pi}(s_4)} + \gamma \underbrace{\begin{bmatrix} p_{\pi}(s_1|s_1) & p_{\pi}(s_2|s_1) & p_{\pi}(s_3|s_1) & p_{\pi}(s_4|s_1) \\ p_{\pi}(s_1|s_2) & p_{\pi}(s_2|s_2) & p_{\pi}(s_3|s_2) & p_{\pi}(s_4|s_2) \\ p_{\pi}(s_1|s_3) & p_{\pi}(s_2|s_3) & p_{\pi}(s_3|s_3) & p_{\pi}(s_4|s_3) \\ p_{\pi}(s_1|s_4) & p_{\pi}(s_2|s_4) & p_{\pi}(s_3|s_4) & p_{\pi}(s_4|s_4) \end{bmatrix}}_{p_{\pi}} \underbrace{\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}}_{v_{\pi}}.$$

For this specific example:

$$\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}$$

Shiyu Zhao 36/52

Illustrative examples

If there are four states, $v_\pi = r_\pi + \gamma P_\pi v_\pi$ can be written out as

$$\underbrace{\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}}_{v_{\pi}} = \underbrace{\begin{bmatrix} r_{\pi}(s_1) \\ r_{\pi}(s_2) \\ r_{\pi}(s_3) \\ r_{\pi}(s_4) \end{bmatrix}}_{r_{\pi}} + \gamma \underbrace{\begin{bmatrix} p_{\pi}(s_1|s_1) & p_{\pi}(s_2|s_1) & p_{\pi}(s_3|s_1) & p_{\pi}(s_4|s_1) \\ p_{\pi}(s_1|s_2) & p_{\pi}(s_2|s_2) & p_{\pi}(s_3|s_2) & p_{\pi}(s_4|s_2) \\ p_{\pi}(s_1|s_3) & p_{\pi}(s_2|s_3) & p_{\pi}(s_3|s_3) & p_{\pi}(s_4|s_3) \\ p_{\pi}(s_1|s_4) & p_{\pi}(s_2|s_4) & p_{\pi}(s_3|s_4) & p_{\pi}(s_4|s_4) \end{bmatrix}}_{P_{\pi}} \underbrace{\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}}_{v_{\pi}}.$$

For this specific example:

$$\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix} = \begin{bmatrix} 0.5(0) + 0.5(-1) \\ 1 \\ 1 \\ 1 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ v_{\pi}(s_3) \\ v_{\pi}(s_4) \end{bmatrix}.$$

Shiyu Zhao 37/52

Outline

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- 7 Summary

Shiyu Zhao 38/52

Why to solve state values?

- Given a policy, finding out the corresponding state values is called policy
 evaluation! It is a fundamental problem in RL. It is the foundation to find
 better policies.
- It is important to understand how to solve the Bellman equation.

Shiyu Zhao 39 / 52

The Bellman equation in matrix-vector form is

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

• The closed-form solution is:

$$v_{\pi} = (I - \gamma P_{\pi})^{-1} r_{\pi}$$

In practice, we still need to use numerical tools to calculate the matrix inverse.

Can we avoid the matrix inverse operation? Yes, by iterative algorithms.

An iterative solution is.

$$v_{k+1} = r_{\pi} + \gamma P_{\pi} v_k$$

This algorithm leads to a sequence $\{v_0, v_1, v_2, \dots\}$. We can show that

$$v_k \to v_\pi = (I - \gamma P_\pi)^{-1} r_\pi, \quad k \to \infty$$

The Bellman equation in matrix-vector form is

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

• The closed-form solution is:

$$v_{\pi} = \left(I - \gamma P_{\pi}\right)^{-1} r_{\pi}$$

In practice, we still need to use numerical tools to calculate the matrix inverse.

Can we avoid the matrix inverse operation? Yes, by iterative algorithms.

• An iterative solution is:

$$v_{k+1} = r_{\pi} + \gamma P_{\pi} v_k$$

This algorithm leads to a sequence $\{v_0, v_1, v_2, \dots\}$. We can show that

$$v_k \to v_\pi = (I - \gamma P_\pi)^{-1} r_\pi, \quad k \to \infty$$

Shiyu Zhao 40/52

The Bellman equation in matrix-vector form is

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

• The closed-form solution is:

$$v_{\pi} = \left(I - \gamma P_{\pi}\right)^{-1} r_{\pi}$$

In practice, we still need to use numerical tools to calculate the matrix inverse.

Can we avoid the matrix inverse operation? Yes, by iterative algorithms.

An iterative solution is:

$$v_{k+1} = r_{\pi} + \gamma P_{\pi} v_k$$

This algorithm leads to a sequence $\{v_0, v_1, v_2, \dots\}$. We can show that

$$v_k \to v_\pi = (I - \gamma P_\pi)^{-1} r_\pi, \quad k \to \infty$$

Solve state values (optional)

Proof.

Define the error as $\delta_k=v_k-v_\pi$. We only need to show $\delta_k\to 0$. Substituting $v_{k+1}=\delta_{k+1}+v_\pi$ and $v_k=\delta_k+v_\pi$ into $v_{k+1}=r_\pi+\gamma P_\pi v_k$ gives

$$\delta_{k+1} + v_{\pi} = r_{\pi} + \gamma P_{\pi} (\delta_k + v_{\pi}),$$

which can be rewritten as

$$\delta_{k+1} = -v_{\pi} + r_{\pi} + \gamma P_{\pi} \delta_k + \gamma P_{\pi} v_{\pi} = \gamma P_{\pi} \delta_k.$$

As a result,

$$\delta_{k+1} = \gamma P_{\pi} \delta_k = \gamma^2 P_{\pi}^2 \delta_{k-1} = \dots = \gamma^{k+1} P_{\pi}^{k+1} \delta_0.$$

Note that $0 \leq P_\pi^k \leq 1$, which means every entry of P_π^k is no greater than 1 for any $k=0,1,2,\ldots$ That is because $P_\pi^k \mathbf{1} = \mathbf{1}$, where $\mathbf{1} = [1,\ldots,1]^T$. On the other hand, since $\gamma < 1$, we know $\gamma^k \to 0$ and hence $\delta_{k+1} = \gamma^{k+1} P_\pi^{k+1} \delta_0 \to 0$ as $k \to \infty$.

Shiyu Zhao 41/52

Examples: $r_{\rm boundary} = r_{\rm forbidden} = -1$, $r_{\rm target} = +1$, $\gamma = 0.9$

The following are two "good" policies and the state values. The two policies are different for the top two states in the forth column.

	1	2	3	4	5		1	2	3	4	5
	-	-	-	1	1	1	3.5	3.9	4.3	4.8	5.3
	1	_	-	1	1	2	3.1	3.5	4.8	5.3	5.9
	†	ļ	1	1		3	2.8	2.5	10.0	5.9	6.6
	†	-		-	1	4	2.5	10.0	10.0	10.0	7.3
	1	_	1	-	-	5	2.3	9.0	10.0	9.0	8.1
L						J					
L						, ,					
L	1	2	3	4	5		1	2	3	4	5
	1	2	3	4	5	1	3.5	3.9	3 4.3	4 4.8	5.3
	1 -	2	3	4		1					
H	1 †	2 →	3 	4 			3.5	3.9	4.3	4.8	5.3
	1 1	2	3	4 → →		2	3.5	3.9	4.3	4.8 5.3	5.3

Shiyu Zhao 42/52

Examples: $r_{\rm boundary} = r_{\rm forbidden} = -1$, $r_{\rm target} = +1$, $\gamma = 0.9$

The following are two "bad" policies and the state values. The state values are less than those of the good policies.

Outline

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- 7 Summary

Shiyu Zhao 44/52

From state value to action value:

- State value: the average return the agent can get starting from a state.
- Action value: the average return the agent can get starting from a state and taking an action.

Why do we care action value? Because we want to know which action is better. This point will be clearer in the following lectures.

From state value to action value:

- State value: the average return the agent can get starting from a state.
- Action value: the average return the agent can get *starting from a state* and *taking an action*.

Why do we care action value? Because we want to know which action is better. This point will be clearer in the following lectures.
We will frequently use action values.

From state value to action value:

- State value: the average return the agent can get starting from a state.
- Action value: the average return the agent can get *starting from a state* and *taking an action*.

Why do we care action value? Because we want to know which action is better. This point will be clearer in the following lectures.

We will frequently use action values

From state value to action value:

- State value: the average return the agent can get starting from a state.
- Action value: the average return the agent can get *starting from a state* and *taking an action*.

Why do we care action value? Because we want to know which action is better. This point will be clearer in the following lectures. We will frequently use action values.

Definition:

$$q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

- ullet $q_{\pi}(s,a)$ is a function of the state-action pair (s,a)
- $q_{\pi}(s,a)$ depends on π

It follows from the properties of conditional expectation that

$$\underbrace{\mathbb{E}[G_t|S_t=s]}_{v_{\pi}(s)} = \sum_{a} \underbrace{\mathbb{E}[G_t|S_t=s, A_t=a]}_{q_{\pi}(s,a)} \pi(a|s)$$

Hence

$$v_{\pi}(s) = \sum_{a} \pi(a|s)q_{\pi}(s,a) \tag{2}$$

Definition:

$$q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

- $q_{\pi}(s,a)$ is a function of the state-action pair (s,a)
- $q_{\pi}(s,a)$ depends on π

It follows from the properties of conditional expectation that

$$\underbrace{\mathbb{E}[G_t|S_t=s]}_{v_{\pi}(s)} = \sum_{a} \underbrace{\mathbb{E}[G_t|S_t=s,A_t=a]}_{q_{\pi}(s,a)} \pi(a|s)$$

Hence,

$$v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a) \tag{2}$$

Recall that the state value is given by

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\underbrace{\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s')}_{q_{\pi}(s,a)} \right]$$
(3)

By comparing (2) and (3), we have the action-value function as

$$q_{\pi}(s, a) = \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')$$
(4)

- (2) and (4) are the two sides of the same coin
- (2) shows how to obtain state values from action values.
- (4) shows how to obtain action values from state values

Recall that the state value is given by

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\underbrace{\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')}_{q_{\pi}(s, a)} \right]$$
(3)

By comparing (2) and (3), we have the action-value function as

$$q_{\pi}(s, a) = \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')$$
(4)

- (2) and (4) are the two sides of the same coin
- (2) shows how to obtain state values from action values
- (4) shows how to obtain action values from state values

Shiyu Zhao 47/5

Recall that the state value is given by

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\underbrace{\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')}_{q_{\pi}(s, a)} \right]$$
(3)

By comparing (2) and (3), we have the action-value function as

$$q_{\pi}(s, a) = \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')$$
(4)

- (2) and (4) are the two sides of the same coin:
- (2) shows how to obtain state values from action values.
- (4) shows how to obtain action values from state values.

Shiyu Zhao 47/5

Write out the action values for state s_1 .

$$q_{\pi}(s_1, a_2) = -1 + \gamma v_{\pi}(s_2),$$

Questions

• $q_{\pi}(s_1, a_1), q_{\pi}(s_1, a_3), q_{\pi}(s_1, a_4), q_{\pi}(s_1, a_5) = ?$ Be careful!

Write out the action values for state s_1 .

$$q_{\pi}(s_1, a_2) = -1 + \gamma v_{\pi}(s_2),$$

Questions:

 $\bullet \ q_{\pi}(s_1,a_1), q_{\pi}(s_1,a_3), q_{\pi}(s_1,a_4), q_{\pi}(s_1,a_5) = ?$ Be careful!

For the other actions:

$$\begin{split} q_{\pi}(s_1, a_1) &= -1 + \gamma v_{\pi}(s_1), \\ q_{\pi}(s_1, a_3) &= 0 + \gamma v_{\pi}(s_3), \\ q_{\pi}(s_1, a_4) &= -1 + \gamma v_{\pi}(s_1), \\ q_{\pi}(s_1, a_5) &= 0 + \gamma v_{\pi}(s_1). \end{split}$$

Shiyu Zhao 49/52

Highlights:

- Action value is important since we care about which action to take.
- We can first calculate all the state values and then calculate the action values.

• We can also directly calculate the action values with or without models.

Shiyu Zhao 50/52

Outline

- 1 Motivating examples
- 2 State value
- 3 Bellman equation: Derivation
- 4 Bellman equation: Matrix-vector form
- 5 Bellman equation: Solve the state values
- 6 Action value
- **7** Summary

Shiyu Zhao 51/52

Key concepts and results:

- State value: $v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$
- Action value: $q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$
- The Bellman equation (elementwise form)

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\underbrace{\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')}_{q_{\pi}(s, a)} \right]$$
$$= \sum_{a} \pi(a|s) q_{\pi}(s, a)$$

• The Bellman equation (matrix-vector form):

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

• How to solve the Bellman equation: closed-form solution, iterative solution

Shiyu Zhao 52/52

Key concepts and results:

- State value: $v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$
- Action value: $q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$
- The Bellman equation (elementwise form):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\underbrace{\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')}_{q_{\pi}(s, a)} \right]$$
$$= \sum_{a} \pi(a|s)q_{\pi}(s, a)$$

The Bellman equation (matrix-vector form):

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

• How to solve the Bellman equation: closed-form solution, iterative solution

Key concepts and results:

- State value: $v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$
- Action value: $q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$
- The Bellman equation (elementwise form):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\underbrace{\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')}_{q_{\pi}(s, a)} \right]$$
$$= \sum_{a} \pi(a|s)q_{\pi}(s, a)$$

• The Bellman equation (matrix-vector form):

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

• How to solve the Bellman equation: closed-form solution, iterative solution

Shiyu Zhao 52/52

Key concepts and results:

- State value: $v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$
- Action value: $q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$
- The Bellman equation (elementwise form):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[\underbrace{\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi}(s')}_{q_{\pi}(s, a)} \right]$$
$$= \sum_{a} \pi(a|s)q_{\pi}(s, a)$$

• The Bellman equation (matrix-vector form):

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

• How to solve the Bellman equation: closed-form solution, iterative solution

Shiyu Zhao 52/52