

Zoidberg 2.0

Projet Intelligence Artificielle et Big Data

Introduction

Notre objectif sur ce projet

Notre but est de développer une solution de machine learning fiable et robuste afin d'assister les médecins dans le dépistage de la pneumonie chez les patients.

Introduction

Le plan de notre présentation

Partie #01

Partie #02

Partie #03

Présentation du dataset et exploration des données.

Présentation des différents model de machine learning explorés.

Analyse des résultats et comparaison des différentes méthodes.

Exploration des données

Dataset et traitement des données

Dataset

Un ensemble de données classées par catégories selon certaines caractéristiques prédéfinies.

En machine learning, cela permet d'entrainer les modèles.

Présentation

Chaque dataset représente un ensemble d'images de radio des poumons:

Infectés (virus ou bactérie)

Structure du dataset

Nouvelle structure du dataset

EXPLORATION DES DONNÉES

Visualisation du format des images

 Trop grande disparité dans les dimensions des images

• Nos models ont besoin d'être entrainé sur des images aux dimensions identiques

Traitement des données

Mise à l'échelle

C'est manipuler les images dans le but d'obtenir les mêmes dimensions

Normalisation

Faire tenir les valeurs de chaque pixel entre 0 et 1

Traitement des données

Diminution des dimensions

Supprimer les pixels qui n'apportent pas d'informations

Augmentation des données

Permet de prévenir le surapprentissage (over-fitting)

Traitement des données

Les différents models explorés

Présentation des différentes méthodes de ML utilisées

Présentation

Logistic Regression

XGBoost

CATBoost

Neural network

Optimisation bayésienne

Transfert de connaissances

Logistic Regression

- Choisi pour sa rapidité
- Bonne base de prédiction

Gradient boosting

- Bon compromis entre les solutions basiques et celles plus gourmandes en ressources
- Facilement interprétable

Neural Networks

- Plus complexe à implémenter
- Plus consommateurs en ressources machine

Plus précis

Optimisation Bayesienne

- Trouver automatiquement les meilleurs hyperparamètres
- Economise les ressources

Fine tuning

- Utiliser un modèle pré-entrainé
- Gain de ressource et de précision

Analyse des résultats

Présentation des différentes résultats obtenus et comparaison des models de ML utilisés

Analyse des résultats

Metrics

- précision, recall, roc auc, score f1?
- le score ROC AUC "macro"

Tableau de conclusion

Nom du model	ROC AUC	Avantages	Inconniénients	Conclusion
Régression logistique	0.839	Fast	modèle linéaire	Pas pris en compte
XGBClassifier	0.907	Facilement interprétable et précis	Moyennement rapide	Pris en compte
CatBoostClassifier	0.906	Facilement interprétable et précis	Moyennement rapide	Pas pris en compte

Tableau de conclusion

Nom du model	ROC AUC	Avantages	Inconniénients	Conclusion
Réseau de neurones (SeNet)	0.904	Précis	Pas facilement interprétable/long à entrainer	Pas pris en compte
Réseau de neurones (transmet de connaissance)	0.936	Très précis et rapide à entrainer	Pas facilement interprétable	Pris en compte

Matrice des métriques et de confusion Analyse détaillée des résultats

Matrice des métriques et de confusion

XGBClassifier

classification	n report:			
	precision	recall	f1-score	support
NORMAL	0.95	0.54	0.69	234
BACTERIA	0.74	0.95	0.83	242
VIRUS	0.57	0.70	0.63	148
accuracy			0.74	624
macro avg	0.75	0.73	0.72	624
weighted avg	0.78	0.74	0.73	624

Matrice des métriques et de confusion

Réseau de neurone

Voici nos résultats pour notre réseau de neurones:

classificatio	on report: precision	recall	f1-score	support
NORMAL	0.98	0.66	0.79	234
BACTERIA	0.74	0.91	0.82	242
VIRUS	0.67	0.77	0.72	148
accuracy			0.78	624
macro avg	0.80	0.78	0.77	624
weighted avg	0.81	0.78	0.78	624

macro ROC AUC: 0.936

Interprétabilité des résultats

Interprétabilité des résultats

XGBClassifier

Interprétabilité des résultats

Réseau de neurone

-0.0075

-0.0050

-0.0025

0.0000 SHAP value

0.0025

0.0050

0.0075

Models probabilistes

Models probabilistes

XGBClassifier + bagging

Models probabilistes

Réseau de neurone

True label: 2

True label: 2

Conclusion

- Le MobileNetV2 plus performant
- Models classiques plus facilement interprétables

Mercil

Avez vous des questions?