DOCUMENT RESUME

BD 187 592

SE 031 111

TITLE

The Arithmetic Project Course for Teachers - 11.. Topics: Artificial Operations, Competing Rules. Education Development Center, Inc., Newton, Mass.;

INSTITUTION

Illinois Univ., Urbana.

SPONS AGENCY

Carnegie Corp. of New York, N.Y.: National Science

Foundation, Washington, D.C.

PUB DATE

73

NOTE

19p.: For related documents, see SE 031 100-120. Pages 16+21 "Well-Adjusted Trapezoids" removed due copyright restrictions. Contains occasional light type.

EDRS PRICE DESCRIPTORS MF01/PC01 Plus Postage.

*Algorithms: Elementary Education: *Elementary School Mathematics: *Elementary School Teachers: Films: Geometric Concepts: Grade 4: Inservice Education:

*Inservice Teacher Education: Mathematics Curriculum:

*Mathematics Instruction: Mathematics.Teachers: Number Concepts: *Problem Sets: Teacher Education

IDENTIFÎERS

*University of Illinois Arithmetic Project.

ABSTRACT

This is one of a series of 20 booklets designed for participants in an in-service course for teachers of elementary mathematics. The course, developed by the University of Illinois Arithmetic Project, is designed to be conducted by local school personnel. In addition to these booklets, a course package includes films showing mathematics being taught to classes of children, extensive discussion notes, and detailed guides for correcting written lessons. This booklet contains exercises on artificial. operations and competing rules, and a summary of the problems from the film "Some Artificial Operations." (MK)

Reproductions supplied by EDRS are the best that can be made from the original document.

THE ARITHMETIC PROJECT COURSE FOR TEACHERS

U S DEPARTMENT OF HEALTH, EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-DIJCED EXACILY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN, ATING IT POINTS OF VIEW OR OPHIONS STATED DO NOT NECESSARILY REPRE-SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRAVED BY Mr. Murphy of EDC

Mary L. Charles of SF

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

TOPICS:

Artificial Operations. Competing

Rules.

FILM;

Some Artificial Operations,

Grade 4

SUPPLEMENT:

Well-Adjusted Trapezoids

NAME (

This bookiet is part of a course for teachers produced by The Arithmetic Project in association with Education Development Center. Principal financial support has some from the Carnegie Corporation of New York, the University of Illinois, and the National Science Foundation.

The course is available from:

THE ARITHMETIC PROJECT

Education Development Center
55 Chapel Street
Newton, Massachusetts 02160

University of Illinois Arithmetic Project Copyright © 1968, 1975 by Education Development Center, Inc. All rights reserved. BOOK ELEVEN

One way to study the laws of arithmetic is to work with some new kinds of operations with numbers.

Suppose we take a new operation O ("circle-dot"). We define what O does as follows:

 \sum is the number halfway between \sum and \sum

Some examples:

$$5 \odot 8 = 6\frac{1}{2}$$

5 **⊙** −3 **=**

5 \odot 8 = $6\frac{1}{2}$ (pronounced "Five circle-dot eight equals six and one-half".)

Another way of describing what circle-dot does:

by definition is

which can be abbreviated

Continue with: $\Box \odot \triangle \stackrel{\text{df}}{=} \frac{\Box + \triangle}{2}$

6.
$$1000\frac{1}{2}$$
 \odot $\frac{1}{2}$ =

7.
$$1000\frac{1}{2}$$
 \circ $-\frac{1}{2}$ =

8.
$$1000\frac{1}{2} \odot (-1) =$$

9.
$$0 10 = 4100$$

12.
$$\odot$$
 10.00 = 0

Notice that in problems 14 and 15 the answers were different although the same numbers occurred in the same order. An expression without parentheses or loops, such as 2 0 10 0 20, is not meaningful. It does not make clear which of the two answers in problems 14 and 15 is meant. Circle-dot is not an associative operation.

A similar expression with three numbers and +'s is meaningful: 17 + 3 + 5 = 25. Addition is associative. Whichever operation you perform first, the result is the same: (17 + 3) + 5 = 17 + (3 + 5).

In problems 16 through 22, continuing with $\Box \odot \triangle \stackrel{\underline{df}}{=} \frac{\Box + \triangle}{2}$, insert parentheses to obtain the largest possible number, and give the number. The first one has been done for you.

16.
$$(1 \odot 3) \odot 6 =$$

21.
$$\frac{1}{2}$$
 \odot 400 \odot 400 =

In a student's words, what is a good strategy to follow in doing the preceding problems?

24. Solve (
$$\triangle$$
 \bigcirc \triangle) \bigcirc \triangle = 30.5%

Here are some more problems with the operations "star" and "check" that you saw in the film. (For convenience we shall use the same symbols, but the choice of symbols is otherwise arbitrary.) Although the definitions were not written in this form, you will recall that

(pronounced "the maximum of box and wedge")

Examples:

1.
$$15\frac{2}{9} \checkmark 15 =$$

3.
$$-13 \sqrt{-13\frac{1}{5}} =$$

Continue With: $\Box * \triangle \stackrel{\text{df}}{=} \Box + \Box + \triangle$

 $\Box \lor \triangle \stackrel{\mathrm{df}}{=} \mathrm{max}(\Box, \triangle)$

- 9. **★** ★ → -12
- 10. $(2 \times \boxed{)} * 7 = 17$
- 11. $(2 \times []) * (2 \times []) = 30$

- 14. ★ 26 = 26 ✓

- 17. $4\frac{1}{2} * \square = 4\frac{1}{2} \checkmark \square$
- $$\Rightarrow 18.$ $$\Rightarrow 4 = (3 \times \square) \lor 10$

(Hint: Two numbers work.)

- **★**19. *****2 = (3 × **)** √ 10
- ¥20. Find a number for the wedge so that only one number will work in the box:

Comment?

Rules:

For the following starting places, which rule lands you on the larger number in one jump? (Write "a" or "b", as in the first example. Recall that $4 \times -1 = -4$, $-1 \times -1 = -1$, $4 \times -3 = -12$, and $-3 \times -3 = 9$. Don't compute specific landing points whenever you can be sure without computing.)

	Starting Place		Winner
1.0	0	1	a
2.	, 1		4
£ 3.	-1		-
4.	2		
5.	3 °		
6.	, 4		
7.	, 4 ¹ / ₂		
8.	5.		
		·	

Continue with the rules: $\Box \xrightarrow{a} 4 \times \Box + 1$

Starting Place	Winner
8	-W
100	
10,081,314	
-10	
-400	
$-\frac{1}{5}$	
1	

10.

11.

12.

13.

☆14.

☆15.

The artificial operations you have been working with were defined by using combinations of the ordinary arithmetic operations. Furthermore, they were defined for all numbers. We can define an artificial operation on just a few numbers by giving a table:

		Second Number				
Operation	*	1	4	10 •	11	
•	1	11	10	10	10	
First	4	10	11	4	4	
Number	10)	.10	1	11	() 4	
28	1/1	10	4	4	11	

According to the table:

$$4 \oplus 1 = .10$$
 $10 \oplus 11 = 0$
 $11 \oplus 11 = 11$

Don't look for any special pattern or system here—just follow the table. Is \$\displays an associative operation? With a little time you could check all possibilities.

For now, try

So far it looks as though + might be associative. But now try

$$(1 \oplus 4) \oplus 10 \stackrel{?}{=} 1 \oplus (4 \oplus 10)$$

This one example shows that our operation is not associative. Is \$\phi\$ commutative? If you try various pairs, they come out the same when the numbers are interchanged—with one exception:

$$4 \Leftrightarrow 10 = 4$$

$$10 \Leftrightarrow 4 = 1$$

But this makes it non-commutative.

The particular numbers used in the previous table had no significance in themselves. We can just as well say that we have four elements, a, b, c, and d and an operation \oplus on them defined by the following table:

	المسرا)) ,	,
. •	a	, b .	C	d
"a	d	U	Ċ	С
b	С	d	Ъ	þ
c " `	С	a`·	d 🍇	Ъ
d	• C	b	р	d

We can begin studying this system. For example, you might notice that whenever you have $\Box \oplus \Box$ you get d for the answer. Also, there is only one way to get a for an answer: $c \oplus b = a$

Again, notice that no matter what computation you do with \oplus and a, b, c, and d, the table tells you that your answer will always be a, b, c, or d. If the table said that a \oplus b = f, for example, then you wouldn't know how to do other problems involving f unless the table were enlarged to include the element f.

To include an element f, a new table might look like this:

		r			•
(⊗	a	Ъ	С	d	f
a	d	$\cdot \mathbf{f}$	¢	С	b
b	• c	d	· b	b	f
С	n S	a .	d	b	d
d	С	ห่	b •••	d	C
f	a	a	а	þ	a

Using four elements such as a, b, c, d, and an operation \bigoplus , it is possible to make up systems that are associative and commutative. Here is one such system that is commonly used in modern algebra:

Φ.	a	b	e e	d
a	a	b	C	d
b	ъ	C if	d _s	а
С	ે	.સ.	a	b
d	d	*a	b	νc
				· ·

Can you show that @ is commutative? Associative?

Another such four-element system, shown on the following page, is known as Cayley's four group. Is it associative? Commutative?

Cayley's four group:

0	а	b	·c	d
a	а	b	· (* -	d
b	D	a	d	°C
c .	C	d	a	Ъ
d	d	С	b,	a

Pedple are often curious about the symbols that appear in the written lessons. Although many of the symbols have been devised by the Project, others (such as absolute value) appear in standard mathematics texts. The symbols Θ , *, and \checkmark do not necessarily have to mean the operations that are used in this written lesson. In the next lesson, the symbol \checkmark will be used for a different artificial operation. You should notice, however, that although special binary symbols (such as \checkmark or Θ are used, the ideas they stand for are not necessarily new. Averaging, $\frac{\Box + \triangle}{2}$, and maximum, $\max(\Box, \triangle)$, are standard mathematical operations.

Summary of Problems in the Film.

Some Artificial Operations!

- 4th Grade, Phillips School, Watertown, Massachusetts Teacher: Phyllis R. Klein

Here is a symbol that does something to numbers. You figure out what it does.

$$10 * 3 = 23$$

$$50 * 7\frac{1}{2} = 107\frac{1}{2}.$$

$$22 * \frac{1}{8} = 44\frac{1}{8}$$

Tell me the answer if you know what star does.

$$\frac{1}{100} * \frac{2}{5} = (200 \frac{2}{5}).$$

$$\frac{1}{3} * 8 = (8 \frac{2}{3})$$

More problems:

$$\square * 17 = 18$$
 $(\frac{1}{2})$

$$\square \times 17. = 17. \tag{0}$$

Tell me what to write: " * means: Double the first number and add the second.

Don't do any arithmetic. Where do you put the numbers to get the biggest answer?

Think of what 10 * 3 is. Now do:

$$(10 * 3) * \frac{1}{2} = (46\frac{1}{2})$$

$$10 * (3 * \frac{1}{2}) =$$

Difference between top and bottom?

$$(50 * \frac{1}{3}) * 4 = 50 * (\frac{1}{3} * 4) =$$

Difference between top and bottom?

Predict what the difference is:

$$(4**5)*100 = (126)$$

Student: You double the first number and that tells you how far apart.

Problem: Give me 3 numbers (and we'll put stars and parentheses between them) so the difference between the top one and bottom one is 0

Student:
$$(25 * \frac{1}{3}) * 14 =$$

$$25 * (\frac{1}{3} * 14) =$$

How far apart?

Get the difference to be '.0 but one of the numbers has to be 10.

Student:
$$(10 \times 10) \times 10 = (70)$$

(20 apart)

Student:
$$(0 * 10) * 0 = (20)$$
, (0 apart)

$$0 * (10 * 0) = (20)$$

Student: Put 0 for the first number.

Write what goes in the box to make this true:

(Kept on board: (10 * 10) * 10 = 70)

$$(\square * \square) * \square = .21 \tag{3}$$

$$(\square * \square) * \square = 56 \tag{8}$$

$$(\square * \square) * \square = 14$$

How are you getting your answers?

Student: If you look at $(\square * \square) \stackrel{*}{=} \square = 14$

there are 7 boxes and you think

$$7 \times 2 = 14$$

Student: Divide the number by 7.

Let's do something different—a new operation, ✓. It's very simple.

Examples:
$$10 \sqrt{14} = 14$$

$$100\frac{1}{3} \checkmark 55 = 100\frac{1}{3}$$

Guess:
$$88 \checkmark 0 = (88)$$

$$1047 \sqrt{1048} = (1048)$$

$$17 \checkmark -17 =$$

Silly question:
$$-18 \sqrt{-17} =$$

On side board:

* means: Double first number and add second.

√ means: Take the larger number.

More problems:

· 🗆 🗸 100 = 100

$$\Box$$
 \checkmark 5 = 16

$$\Box$$
 \checkmark 5 = 2

Give me some numbers to write on the board:

$$((((1 \checkmark 6) \lor 8\frac{1}{2})) \lor 8\frac{1}{1,000,000}) \lor 3,000)$$

Use:

-)
- 'n
- 100

Arrange them so you get the biggest answer.

PAGES 16-21 REMOVED DUE TO COPYRIGHT RESTRICTIONS.