BOBEM I Find the number of all the intergal solution of equations as follow:

- 1. $x^2 \equiv 3766 \pmod{5987}$;
- 2. $x^2 \equiv 3149 \pmod{5987}$. Where 5987 is a prime.

ROBEM II

- 1. When the equation has solutions, apply theorm 1 in section 2 to find the solution of $x^2 \equiv a \pmod{p}$, p = 4m + 3.
- 2. When the equation has solutions, apply theorem 1 in section 2 and section 3 to find the solution of $x^2 \equiv a \pmod{p}$, p = 8m + 5.
- 3. If the equation $x^2 \equiv a \pmod{p}$, p = 8m + 1 has solutions, and N is non quadratic residue. Give one way to solve the equation above.
- 1. Since the equation has solution, we know that $a^{\frac{p-1}{2}} \equiv 1 \mod p$. So $a^{2m+1} \equiv 1 \mod p$. So $a^{2m+2} \equiv a \mod p$. So $(a^{m+1})^2 \equiv a \mod p$. So the solution is $x \equiv \pm a^{m+1} \mod p$.
- 2. Since the equation has solution, we know that $a^{\frac{p-1}{2}} \equiv 1 \mod p$, then $a^{4m+2} \equiv 1 \mod p$. So $a^{2m+1} \equiv \pm 1 \mod p$. If $a^{2m+1} \equiv 1 \mod p$, then we have $(a^{m+1})^2 \equiv a \mod p$, so $x \equiv \pm a^{m+1} \mod p$. Else, since $\binom{2}{p} = (-1)^{\frac{p^2-1}{8}} = -1$, we have $2^{4m+2} \equiv -1 \mod p$. So $2^{4m+2}a^{2m+2} \equiv a \mod p$. So $x \equiv \pm 2^{2m+1}a^{m+1} \mod p$.
- 3. For the same reason, we easily get that $a^{4m} \equiv 1 \mod p$ and $N^{4m} \equiv -1 \mod p$. We can find the solution by following method:
 - (a) let x = 4m, y = 0.
 - (b) if $2 \nmid x$, goto ??.
 - (c) If $a^{\frac{x}{2}}N^{\frac{y}{2}} \equiv 1 \mod p$, then let $x = \frac{x}{2}, y = \frac{y}{2}$. If $a^{\frac{x}{2}}N^{\frac{y}{2}} \equiv -1 \mod p$, then let $x = \frac{x}{2}, y = \frac{3y}{2}$.
 - (d) goto ??.
 - (e) Now we have $2 \nmid x, 2 \mid y, a^x N^y \equiv 1 \mod p$. So $x \equiv a^{\frac{x+1}{2}} N^{\frac{y}{2}} \mod p$.

It is easy to prove that this method can end because every turn the calue of $v_2(x)$ will -1. And easy to prove that $2 \mid y$ because we can use MI to prove that $v_2(y) > v_2(x)$.

BOBEM III Solve the following equations

- 1. $x^2 \equiv 59 \pmod{125}$.
- 2. $x^2 \equiv 41 \pmod{64}$.
- SOUTION. 1. First solve $x^2 \equiv 4 \mod 5$. Solution is $x \equiv \pm 2 \mod 5$. Second solve $x^2 \equiv 9 \mod 25$, assume $x = 5y \pm 2$, easy to get that $x \equiv \pm 3 \mod 25$. Finally solve $x^2 \equiv 59 \mod 125$ and assume $x = 25y \pm 3$. Easily $x \equiv \pm 53 \mod 125$. So the solution is $x \equiv \pm 53 \mod 125$.

2. Easy to find that $x \equiv \pm 13, \pm 19 \mod 64$.

ROBEM IV

- 1. Prove equation $x^2 \equiv 1 \pmod{m}$ and $(x+1)(x-1) \equiv 0 \pmod{m}$ are equal.
- 2. Apply ?? to give one way of finding all the solutions of $x^2 \equiv 1 \pmod{m}$.

SOLUTION. 1. Obviously because $x^2 - 1 = (x+1)(x-1)$.

- 2. We can solve the equation by this way:
 - (a) Dissolve m into product of primes, write $m = 2^{\alpha} \prod_{i=1}^{n} p_i^{\alpha_i}$.
 - (b) For $p_i^{\alpha_i}$, easy to get that solution of $x^2 \equiv 1 \mod p_i^{\alpha_i}$ is $x \equiv \pm 1 \mod p_i^{\alpha_i}$.
 - (c) For 2^{α} , if $\alpha \geq 1$, we need to find solution of $x^2 \equiv 1 \mod 2^{\alpha}$. When $\alpha = 1$, the solution is $x \equiv 1 \mod 2$. When $\alpha = 2$, the solution is $x \equiv 1, 3 \mod 4$. When $\alpha \geq 3$, the solution is $x \equiv \pm 1, \pm (2^{\alpha-1} + 1) \mod 2^{\alpha}$.
 - (d) Use Chinese Reminder Theorem to find all the solution of $x^2 \equiv 1 \mod m$.