

# Lecture 16

# Review

STAT 8020 Statistical Methods II September 25, 2019

Whitney Huang Clemson University

## **Simple Linear Regression**



Y: response variable; X: predictor variable

Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

where  $\beta_0$  is the intercept and  $\beta_1$  is the slope

Use method of least squares to estimate the parameters

$$\label{eq:beta1} \bullet \ \hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

• 
$$\hat{\sigma}^2 = \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2 / (n-2)$$

#### **Residual Analysis**



The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where 
$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$$

We use residuals to assess the assumptions on  $\varepsilon$ :

- $E[\varepsilon_i] = 0$
- $\operatorname{Var}[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$
- $\bullet$   $\varepsilon$  follows a normal distribution

# Sampling distribution of $\hat{eta}_1$ and $\hat{eta}_1$



• 
$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2)$$
 where  $\sigma_{\hat{\beta}_1} = \sigma/\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}$  
$$\Rightarrow \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}$$

$$\begin{split} \bullet \ \hat{\beta}_0 \sim N(\beta_0, \sigma_{\hat{\beta}_0}^2) \ \text{where} \ \sigma_{\beta_0} &= \sigma \sqrt{(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (\bar{X}_i - \bar{X})^2})} \\ \Rightarrow \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2} \end{split}$$

## **Hypothesis Test for Slope**



- $\bullet$   $H_0: \beta_1 = 0$  vs.  $H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**:  $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}}$
- Compute the P-value
- Ompare to  $\alpha$ , the prespecified significant level, and draw conclusion

# Confidence Intervals (CIs) for $\beta_1$ and $\beta_0$



•  $100 \times (1 - \alpha)$ % CI for  $\beta_1$ :

$$\left[ \hat{\beta}_{1} - t(1-\alpha/2, n-2) \hat{\sigma}_{\hat{\beta}_{1}}, \hat{\beta}_{1} + t(1-\alpha/2, n-2) \hat{\sigma}_{\hat{\beta}_{1}} \right]$$

•  $100 \times (1 - \alpha)$ % Cl for  $\beta_0$ :

$$\left[\hat{\beta}_{0} - t(1 - \alpha/2, n - 2)\hat{\sigma}_{\hat{\beta}_{0}}, \hat{\beta}_{0} + t(1 - \alpha/2, n - 2)\hat{\sigma}_{\hat{\beta}_{0}}\right]$$

## **Confidence/Prediction Intervals for Response**



Let  $Y_h$  be the response given that  $X = X_h$ 

• CI for  $\mathbb{E}(Y_h)$ :

$$\left[\hat{Y}_h - t(1 - \alpha/2, n - 2)\hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t(1 - \alpha/2, n - 2)\hat{\sigma}_{\hat{Y}_h}\right],$$

where 
$$\hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

• PI for  $Y_h$ : Replace  $\hat{\sigma}_{\hat{Y}_h}$  by

$$\hat{\sigma}_{\hat{Y}_{\mathsf{h(new)}}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

#### **ANOVA Table and F test**



| Source | -   | SS                                             | MS              |
|--------|-----|------------------------------------------------|-----------------|
| Model  | 1   | $SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$ | MSR = SSR/1     |
| Error  | n-2 | $SSE = \sum_{i=1}^{i-1} (Y_i - \hat{Y}_i)^2$   | MSE = SSE/(n-2) |
| Total  | n-1 | $SST = \sum_{i=1}^{n} (Y_i - Y_i)^2$           |                 |

- F-test: To test  $H_0: \beta_1 = 0$  vs.  $H_a: \beta_1 \neq 0$
- Test statistics  $F^* = \frac{MSR}{MSE}$
- Under  $H_0 \Rightarrow F_{1,n-2}$ , where  $F(d_1,d_2)$  denotes a F distribution with degrees of freedom  $d_1$  and  $d_2$

#### Coefficient of Determination $\mathbb{R}^2$



Defined as the proportion of total variation explained by a simple regression model:

$$R^2 = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

#### **Multiple Linear Regression**



**Goal**: To model the relationship between two or more explanatory variables (X's) and a response variable (Y) by fitting a **linear equation** to observed data:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \overset{i.i.d.}{\sim} \mathrm{N}(0, \sigma^2)$$
 Matrix form:  $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ 

- All Quantitative Predictors
- Both Quantitative and Qualitative Predictors
- Polynomial Regression

#### **ANOVA Table**



| Source | df  | SS  | MS              | F Value |
|--------|-----|-----|-----------------|---------|
| Model  | p-1 | SSR | MSR = SSR/(p-1) | MSR/MSE |
| Error  | n-p | SSE | MSE = SSE/(n-p) |         |
| Total  | n-1 | SST |                 |         |

- $\bullet$  F-test: Tests if the predictors  $\{X_1,\cdots,X_{p-1}\}$  collectively help explain the variation in Y
  - $H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$
  - $H_a$ : at least one  $\beta_k \neq 0$ ,  $1 \leq k \leq p-1$
  - $F^* = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \stackrel{H_0}{\sim} F(p-1, n-p)$
  - Reject  $H_0$  if  $F^* > F(1 \alpha, p 1, n p)$

## **Testing Individual Predictor**



$$\bullet \ \hat{\boldsymbol{\beta}} \sim \mathrm{N}_{p} \left( \boldsymbol{\beta}, \sigma^{2} \left( \boldsymbol{X}^{T} \boldsymbol{X} \right)^{-1} \right) \Rightarrow \hat{\beta}_{k} \sim \mathrm{N}(\beta_{k}, \sigma_{\hat{\beta}_{k}}^{2})$$

#### Perform t-test:

- $\bullet \ H_0: \beta_k = 0 \text{ vs. } H_a: \beta_k \neq 0$
- $\bullet \ \ \tfrac{\hat{\beta}_k \beta_k}{\hat{\sigma}_{\hat{\beta}_k}} \sim t_{n-p} \Rightarrow t^* = \tfrac{\hat{\beta}_k}{\hat{\sigma}_{\hat{\beta}_k}} \overset{H_0}{\sim} t_{n-p}$
- Reject  $H_0$  if  $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for  $\beta_k$ :  $\hat{\beta}_k \pm t_{1-\alpha/2,n-p}\hat{\sigma}_{\hat{\beta}_k}$

#### **General Linear Test**



- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- $\bullet$  Consider a full model with k predictors and reduced model with  $\ell$  predictors (  $\ell < k$  )
- Test statistic:  $F^* = \frac{\text{SSE}(\mathsf{R}) \text{SSE}(F)/(k-\ell)}{\text{SSE}(F)/(n-k-1)} \Rightarrow$  Testing  $H_0$  that the regression coefficients for the extra variables are all zero

#### Multicollinearity



# **Multicollinearity** is a phenomenon of high inter-correlations among the predictor variables

- $\bullet$   $\beta$ 's are not well estimated
- Spurious regression coefficient estimates
- ullet  $R^2$  and predicted values are usually OK

#### **Model Selection**



- Model Selection Criteria
  - Mallows' Cp
  - Adjusted R<sup>2</sup>
  - Predicted Residual Sum of Squares (PRESS)
  - AIC
  - BIC
- Automatic Search Procedures
  - Stepwise Search
  - All Subset Selection

## **Model Diagnostics**



- Leverage
- Studentized & Studentized Deleted Residuals
- Influential Observations: DFFITS
- Variance Inflation Factor (VIF)