Divvy Case Study, Data Cleaning Report

Tanner Quesenberry

7/13/2021

Data Cleaning Steps

- Install and load the tidyverse, lubridate, ggplot2 and dplyr packages.
- Read in the .csv data files for the months of June 2020 to May 2021.
- Join the tables from June 2020 to Nov 2020 together with full_join() to get combined data frames. Example: apr_may <- full_join(apr_2021_trips, may_2021_trips)
- Repeat table joining for tables from Dec 2020 to May 2021.
- Resolve the incompatible type difference of start_station_id and end_station_id columns by casting to characters.

```
jun_nov <- jun_nov %>% mutate(start_station_id = as.character(start_station_id))
jun_nov <- jun_nov %>% mutate(end_station_id = as.character(end_station_id))
```

- Join these two 6 month tables to form a single one year table for analysis.
- Save the table to a .csv file for later reference if needed.
 write.csv(df, "~/Desktop/Programming/DataAnalyst/Capstone/202006-202105-divvy-tripdata.csv", row.names = FALSE)
- Found 209 duplicate rows exist using
 df %>% summarise(count = n_distinct(ride_id))
- Removed duplicate rows
 df <- df %>% distinct(ride_id, .keep_all = TRUE)
- Verified that member_casual contains correct data
 View(filter(df, member_casual != "casual", member_casual != "member"))
- Verified start_at and ended_at had times for all rows through viewing and sorting the table.
- Checked that rideable_type column contained the correct bike options. df %>% distinct(rideable_type)
- Removed the start_station_id and end_station_id as they serve no purpose in this analysis.
 df <- subset(df, select = -c(start_station_id,end_station_id))
- Similarly removed start_lat, start_lng, end_lat, end_lng
 df <- subset(df, select = -c(start_lat, start_lng, end_lat, end_lng))
- Created an additional column day_of_week to indicate which weekday the ride starts on.
 df <- df %>% mutate(day_of_week = wday(started_at))
- Created additional columns for date, month, day, and year to aggregate on later.
 df\$date <- as.Date(df\$started_at)
 df\$month <- format(as.Date(df\$date), "%m")
 df\$day <- format(as.Date(df\$date), "%d")
 df\$year <- format(as.Date(df\$date), "%Y")

• Created an additional column for ride_length_secs. Then removed any row with a negative duration, and converted to a time format column ride_length.

```
df <- mutate(df, ride_length_secs = (ended_at - started_at))
df <- subset(df, df$ride_length_secs > 0)
df <- mutate(df, ride_length = hms::hms(seconds_to_period(df$ride_length_secs)))</pre>
```

 Saved the cleaned data set as divvy-cleaned-data.csv write.csv(df, "~/Desktop/Programming/DataAnalyst/Capstone/divvy-cleaned-data.csv", row.names = FALSE)

Descriptive Analysis

Gathering the descriptive statistics for the user ride lengths.

```
Ride length (seconds)
Min: 1
```

Max: 3257001 Median: 843 Mean: 1617.189

Comparing the ride lengths of members vs casual riders

Mean

```
Rider length_secs
1 casual 2562.0662
2 member 930.4542
```

Median

```
Rider length_secs
1 casual 1213
2 member 664
```

Max

```
Rider length_secs
1 casual 3257001
2 member 2476260
```

Min

```
Rider length_secs
1 casual 1
2 member 1
```

Comparing casual vs member ride lengths by day of week

```
Sunday = 1 \dots Saturday = 7
```

```
Rider weekday length secs
1 casual
              1
                  2933.7257
2 member
                  1048.1504
3 casual
              2
                  2533.2514
              2
4 member
                  895.2528
5 casual
              3
                  2280.4173
6 member
              3
                 874.5032
7 casual
              4
                  2299.0170
8 member
                  888.9209
              5 2394.7949
9 casual
```

```
      10 member
      5
      876.9482

      11 casual
      6
      2430.4863

      12 member
      6
      912.9767

      13 casual
      7
      2674.2422

      14 member
      7
      1019.6252
```

Analyze ridership by type and weekday

A tibble: 14 x 4

##	#	Groups:	member_casual	[2]	
----	---	---------	---------------	-----	--

##		$member_casual$	weekday	number_of_rides	average_duration
##		<chr></chr>	<ord></ord>	<int></int>	<dbl></dbl>
##	1	casual	Sun	329920	2934.
##	2	casual	Mon	188393	2533.
##	3	casual	Tue	174391	2280.
##	4	casual	Wed	182540	2299.
##	5	casual	Thu	191733	2395.
##	6	casual	Fri	246620	2430.
##	7	casual	Sat	396397	2674.
##	8	member	Sun	307785	1048.
##	9	member	Mon	315457	895.
##	10	member	Tue	329375	875.
##	11	member	Wed	347149	889.
##	12	member	Thu	341939	877.
##	13	member	Fri	350544	913.
##	14	member	Sat	360531	1020.

Visualize ridership by type

