AAPL 股票 ARIMA 模型分析报告

1. 数据概览

本报告分析了AAPL股票从2014年01月02日至2017年12月29日的历史数据。

数据点总数: 1007

股价范围: \$15.55 - \$41.46

平均股价: \$26.59

标准差: \$6.06

交易日数量: 1007

ARIMA模型简介

ARIMA(自回归综合移动平均)模型是一种用于时间序列预测的统计模型,由三个部分组成:

• AR(p): 自回归部分,使用过去p个时间点的值来预测

• I(d): 综合部分,表示需要进行d次差分才能使序列平稳

• MA(q): 移动平均部分,使用过去q个预测误差来改进预测

图1: AAPL股票价格时间序列

此图展示了原始股价的变动趋势,可用于观察长期趋势、季节性和周期性模式,以及异常波动。

2. 平稳性分析

为什么需要平稳性? ARIMA模型要求时间序列数据具有平稳性(即统计特性不随时间变化)。平稳的时间序列具有恒定的均值、方差和自相关结构,这使得模型能够更准确地捕捉数据的内在模式。

时间序列分析要求数据具有平稳性。以下是原始序列和差分序列的分析:

图2: AAPL股票价格一阶差分

一阶差分序列表示相邻时间点之间的变化。平稳的差分序列应该在零附近波动,没有明显的趋势。

图3: ADF检验结果

增广迪基-富勒(ADF)检验是评估时间序列平稳性的统计检验。p值小于0.05表示序列是平稳的。

ADF检验结果

序列	ADF统计量	p值	5%临界值	平稳性
原始序列	-0.3524	0.9177	-2.8644	非平稳
一阶差分	-30.8103	0.0000	-2.8644	平稳
二阶差分	-12.8436	0.0000	-2.8645	平稳

如何解读ADF检验结果:

- p值 < 0.05: 拒绝原假设, 序列是平稳的
- ADF统计量 < 临界值: 序列是平稳的
- 如果原始序列不平稳, 我们通过差分使其平稳

3. ACF和PACF分析

ACF和PACF的作用: 自相关函数(ACF)和偏自相关函数(PACF)图用于确定ARIMA模型的p和g参数:

- ACF: 显示时间序列与其滞后值之间的相关性
- PACF: 显示时间序列与其滞后值之间的直接相关性(排除中间滞后的影响)
- p: PACF显著截尾的滞后阶数
- q: ACF显著截尾的滞后阶数

图4: 一阶差分序列的ACF和PACF图

蓝色阴影区域表示95%置信区间。超出此区域的柱状表示在该滞后处存在显著的相关性。

4. 模型选择

共测试了10个不同的ARIMA模型参数组合。选择最佳模型的标准是MAPE值低于10%且MSE最小。

评估指标说明:

- MAPE(平均绝对百分比误差): 预测误差占实际值的百分比, 越低越好
- MSE(均方误差): 预测值与实际值差值的平方的平均值, 越低越好
- RMSE(均方根误差): MSE的平方根,与原始数据单位相同,越低越好
- MAE(平均绝对误差): 预测值与实际值绝对差值的平均值, 越低越好
- AIC(赤池信息准则): 衡量模型质量的指标,考虑了拟合优度和复杂度,越低越好
- BIC(贝叶斯信息准则): 类似AIC但对模型复杂度惩罚更严格, 越低越好

图5: ARIMA模型性能指标比较 (规范化值)

热力图中颜色越深表示性能越好。这有助于直观地比较不同模型在多个评估指标上的表现。

MAPE比较

图6: 各ARIMA模型的MAPE比较

MAPE(平均绝对百分比误差)是评估预测准确性的关键指标,该图展示了不同模型的MAPE值比较。

前5个表现最好的模型

模型	MAPE (%)	MSE	RMSE	MAE	AIC	BIC
ARIMA(2, 0, 2)	0.78	0.1142	0.3379	0.3106	844.08	873.46
ARIMA(1, 1, 1)	0.82	0.1257	0.3545	0.3262	831.34	846.02
ARIMA(2, 1, 3)	0.82	0.1266	0.3558	0.3286	835.64	865.01
ARIMA(1, 1, 2)	0.82	0.1270	0.3564	0.3279	832.82	852.39
ARIMA(2, 1, 1)	0.82	0.1273	0.3568	0.3280	832.72	852.30

最佳模型: ARIMA(1, 1, 1) (选择标准: MAPE < 10%且MSE最小)

模型解释: ARIMA(1, 1, 1) 表示:

• p = 1: 自回归项的阶数,表示模型使用过去1个时间点的值

• d = 1: 差分阶数,表示需要进行1次差分使序列平稳

• q = 1: 移动平均项的阶数,表示模型使用过去1个预测误差

5. 预测结果

3天预测

图9:3天预测结果

图中蓝色线表示历史数据,红色线表示预测值,红色阴影区域表示预测的95%置信区间。 置信区间 间越宽,预测的不确定性越大。

预测精度评估指标

指标	值	说明
MSE	0.0646	平均平方误差 - 预测值与实际值差的平方的平均值
RMSE	0.2542	均方根误差 - MSE的平方根,与原始数据的量纲相同
MAE	0.2107	平均绝对误差 - 预测值与实际值的绝对差的平均值
MAPE	0.5284%	平均绝对百分比误差 - 相对误差的平均值
MASE	0.8090	平均绝对缩放误差 - 相对于简单预测方法的MAE

7天预测

图9:7天预测结果

图中蓝色线表示历史数据,红色线表示预测值,红色阴影区域表示预测的95%置信区间。 置信区间越宽,预测的不确定性越大。

预测精度评估指标

指标	值	说明
MSE	0.1257	平均平方误差 - 预测值与实际值差的平方的平均值
RMSE	0.3545	均方根误差 - MSE的平方根,与原始数据的量纲相同
MAE	0.3262	平均绝对误差 - 预测值与实际值的绝对差的平均值
MAPE	0.8167%	平均绝对百分比误差 - 相对误差的平均值
MASE	1.2521	平均绝对缩放误差 - 相对于简单预测方法的MAE

30天预测

图9:30天预测结果

图中蓝色线表示历史数据,红色线表示预测值,红色阴影区域表示预测的95%置信区间。 置信区间越宽,预测的不确定性越大。

预测精度评估指标

指标	值	说明
MSE	0.3208	平均平方误差 - 预测值与实际值差的平方的平均值
RMSE	0.5663	均方根误差 - MSE的平方根,与原始数据的量纲相同
MAE	0.4550	平均绝对误差 - 预测值与实际值的绝对差的平均值
MAPE	1.1184%	平均绝对百分比误差 - 相对误差的平均值
MASE	1.7467	平均绝对缩放误差 - 相对于简单预测方法的MAE

残差分析

图10: 模型残差分析

残差分析用于评估模型拟合的充分性。理想情况下,残差应该呈现白噪声特性:均值为零,方差 恒定,各观测值之间相互独立。

残差分析解读:

- QQ图: 评估残差是否服从正态分布, 点越接近直线表示越符合正态分布
- 残差自相关: 检验残差之间是否存在相关性, 如果大部分值在置信区间内, 说明残差是独立的
- 残差分布: 应该近似正态分布, 且均值接近于0

6. 结论

基于对{self.symbol}股票历史数据的ARIMA模型分析, 我们得出以下结论:

1. 数据平稳性: 原始股价序列不满足平稳性条件, 需要进行差分处理。一阶差分后的序列满足平稳性要求。

- 2. 最优模型: ARIMA{best order}模型在多个评估指标上表现最佳。
- 3. 短期预测(3天)精度: MAPE = 0.53% (优秀)
- 4. 中期预测(7天)精度: MAPE = 0.82% (优秀)
- 5. 长期预测(30天)精度: MAPE = 1.12% (优秀)
- 6. 总体评价: 模型预测精度较高, 适合用于短期和中期的股价预测。
- 7. 模型应用建议:
 - 短期预测: 可以作为交易决策的参考之一
 - 中长期预测: 应结合更多因素, 如宏观经济指标、公司基本面和市场情绪
 - 模型局限性: ARIMA模型主要捕捉线性关系,可能无法充分反映市场的非线性动态
- 8. 未来改进方向:
 - 考虑结合机器学习模型如LSTM或GRU以捕捉非线性关系
 - 加入更多特征如交易量、市场指数等提高预测精度
 - 尝试集成多个模型的预测结果以提高稳定性

本报告由ARIMA分析工具自动生成 | 生成日期: 2025-03-21 15:23:33

© 2024 ARIMA股票分析系统