Combinational Circuits

Outline

- Bubble Pushing
- Compound Gates
- □ Logical Effort Example
- □ Input Ordering
- Asymmetric Gates
- □ Skewed Gates
- Best P/N ratio

1) Sketch a design using AND, OR, and NOT gates.

1) Sketch a design using AND, OR, and NOT gates.

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

Bubble Pushing

- □ Start with network of AND / OR gates
- □ Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
 - Remember DeMorgan's Law

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

Compound Gates

□ Logical Effort of compound gates

unit inverter $Y = \overline{A}$

$$Y = \frac{AOI21}{A \cdot B + C}$$

 $Y = \frac{AO122}{A \cdot B + C \cdot D}$

 $Y = \frac{\text{Complex AOI}}{A \cdot (B + C) + D \cdot E}$

$$\begin{array}{c|c}
A \longrightarrow \boxed{4} & B \longrightarrow \boxed{4} \\
C \longrightarrow \boxed{4} \\
A \longrightarrow \boxed{2} \\
C \longrightarrow \boxed{1} \\
B \longrightarrow \boxed{2} \\
\end{array}$$

$$g_A = 3/3$$

p = 3/3

$$g_A = 6/3$$
$$g_B = 6/3$$
$$g_C = 5/3$$

p = 7/3

$$g_A = g_B = g_A = g_A$$

$$g_C = g_D = g_D$$

$$9_D -$$

$$g_B = g_C = g_D = g_D = g_D$$

Compound Gates

☐ Logical Effort of compound gates (see sec. 4.3, p. 173)

unit inverter $Y = \overline{A}$

$$Y = \frac{AOI21}{A \cdot B + C}$$

 $Y = \frac{AO122}{A \cdot B + C \cdot D}$

 $Y = \frac{\text{Complex AOI}}{A \cdot (B + C) + D \cdot E}$

$$\begin{array}{c|c}
A \longrightarrow \boxed{4} & B \longrightarrow \boxed{4} \\
C \longrightarrow \boxed{4} \\
A \longrightarrow \boxed{2} \\
C \longrightarrow \boxed{1}
\end{array}$$

$$g_A = 3/3$$

p = 3/3

$$g_A = 6/3$$

 $g_B = 6/3$
 $g_C = 5/3$

p = 7/3

$$g_{B} = 6/3$$

$$g_{\rm C} = 6/3$$

$$g_{D} = 6/3$$

 $g_A = 6/3$

$$p = 12/3$$

$$g_{B} = 8/3$$

$$g_C = 8/3$$

$$g_{D} = 8/3$$

$$g_{E} = 8/3$$

$$p = 16/3$$

☐ The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

□ The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

$$B = 1$$

$$N = 2$$

NAND Solution

NAND Solution

$$P = 2 + 2 = 4$$

$$G = (4/3) \cdot (4/3) = 16/9$$

$$F = GBH = 160/9$$

$$\hat{f} = \sqrt[N]{F} = 4.2$$

$$D = N\hat{f} + P = 12.4\tau$$

Compound Solution

Compound Solution

$$P = 4 + 1 = 5$$

$$G = (6/3) \cdot (1) = 2$$

$$F = GBH = 20$$

$$\hat{f} = \sqrt[N]{F} = 4.5$$

$$D = N\hat{f} + P = 14\tau$$

Annotate your designs with transistor sizes that achieve this delay.

□ Annotate your designs with transistor sizes that achieve this delay.

16 160 * 1 / 4.5 = 36

Input Order

- Our parasitic delay model was too simple
 - Calculate parasitic delay for Y falling
 - If A arrives latest?
 - If B arrives latest?

Input Order

- Our parasitic delay model was too simple
 - Calculate parasitic delay for Y falling (see p 324)
 - If A arrives latest? 2τ
 - If B arrives latest? 2.33τ

Inner & Outer Inputs

- ☐ Outer input is closest to rail (B)
- ☐ *Inner* input is closest to output (A)
- ☐ If input arrival time is known
 - Connect latest input to inner terminal

Asymmetric Gates

- □ Asymmetric gates favor one input over another
- ☐ Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input

reset

- So total resistance is same
- \Box $g_A =$
- \Box $g_B =$

□ But total logical effort goes up

Asymmetric Gates

- ☐ Asymmetric gates favor one input over another
- ☐ Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input

- So total resistance is same
- \Box g_A = 10/9
- \Box $g_B = 2$
- \Box $g_{total} = g_A + g_B = 28/9$
- \Box Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

Symmetric Gates

☐ Inputs can be made perfectly symmetric

Skewed Gates

- □ Skewed gates favor one edge over another
- ☐ Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

- ☐ Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
 - $-g_u =$
 - $-g_d =$

Skewed Gates

- □ Skewed gates favor one edge over another
- ☐ Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

☐ Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.

$$-g_{IJ} = 2.5 / 3 = 5/6$$

$$- g_d = 2.5 / 1.5 = 5/3$$

HI- and LO-Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- ☐ Skewed gates reduce size of noncritical transistors
 - HI-skew gates favor rising output (small nMOS)
 - LO-skew gates favor falling output (small pMOS)
- ☐ Logical effort is smaller for favored direction
- ☐ But larger for the other direction

Catalog of Skewed Gates

Inverter

NAND2

NOR2

LO-skew

Catalog of Skewed Gates

Inverter

NAND2

NOR2

LO-skew

Catalog of Skewed Gates

Inverter

NAND2

NOR2

Asymmetric Skew

- □ Combine asymmetric and skewed gates
 - Downsize noncritical transistor on unimportant input
 - Reduces parasitic delay for critical input

Best P/N Ratio

- □ We have selected P/N ratio for unit rise and fall resistance (μ = 2-3 for an inverter).
- □ Alternative: choose ratio for least average delay
- Ex: inverter
 - Delay driving identical inverter
 - $-t_{pdf} =$
 - $-t_{pdr} =$
 - $-t_{pd} =$
 - Differentiate t_{pd} w.r.t. P
 - Least delay for P =

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance (μ = 2-3 for an inverter).
- Alternative: choose ratio for least average delay
- Ex: inverter
 - Delay driving identical inverter

$$- t_{pdf} = (P+1)$$

$$- t_{pdr} = (P+1)(\mu/P)$$

$$- t_{pd} = (P+1)(1+\mu/P)/2 = (P+1+\mu+\mu/P)/2$$

– Least delay for P =
$$\sqrt{\mu}$$

$$t_{pdf} = \frac{1.6C}{k'_{n}(W/L)_{n}V_{DD}}, t_{pdr} = \frac{1.6C}{k'_{p}(W/L)_{p}V_{DD}}$$

P/N Ratios

- ☐ In general, best P/N ratio is sqrt of equal delay ratio.
 - Only improves average delay slightly for inverters
 - But significantly decreases area and power

Inverter

fastest P/N ratio

NAND2

NOR2

P/N Ratios

- □ In general, best P/N ratio is sqrt of that giving equal delay.
 - Only improves average delay slightly for inverters
 - But significantly decreases area and power

Inverter

A = 1.414Y = 1.15 = 1.15 = 1.15 = 1.15 = 1.15 = 1.15 = 1.15 = 1.15 = 1.15 = 1.15= 1.15 NAND2

NOR2

fastest

P/N ratio

Observations

- ☐ For speed:
 - NAND vs. NOR
 - Many simple stages vs. fewer high fan-in stages
 - Latest-arriving input
- ☐ For area and power:
 - Many simple stages vs. fewer high fan-in stages