Results for Naïve Bayes

Aditi Helekar

March 6, 2017

Contents:

1.	Naïve Bayes	
	1.1 Digit Recognition Dataset	2
	1.2 Amazon Dataset	3

1. Naïve Bayes:

1.1 Digit Recognition Dataset

Sample 1 Multinomial ::: Accuracy: 0.922171353826

Training Accuracy 1: 0.922171353826

0.91884817 0.91029024 0.90501319 0.91777188]

Average: 0.912355391477

Sample 2 Gaussian::: [6 8 3 ..., 8 8 9]

Accuracy: 0.748855461086

Sample 3 Bernoulli:::

[6 7 3 ..., 8 8 9]

Accuracy: 0.864617396991

Testing::::

Sample 1 Multinomial :::

[1 1 3 ..., 8 9 8]

Accuracy: 0.889198218263

Sample 2 Gaussian:::

[1 8 3 ..., 8 8 8]

Accuracy: 0.786191536748

Sample 3 Bernoulli:::

[6 7 3 ..., 8 8 9]

Accuracy: 0.864617396991

1.2 Amazon Dataset

1. MultinomialNB classifier, alpha = 1, fit_prior = True give Accuracy = 54.97%.

Accuracy:

0.549753559693

2. MultinomialNB classifier, alpha = 5, fit_prior = True give Accuracy = 54.75%.

Accuracy:

0.547508214677

3. MultinomialNB classifier, alpha = 5, fit_prior = False give Accuracy = 27.53%.

Accuracy:

0.275355969332