Algebra II: Introduction to Module Theory

Arjun Vardhan

†

Created: 23rd February 2022 Last updated: 23rd February 2022

1 Basic Definitions

- Let R be a ring. Let M be an abelian group with respect to an operation +. M is a left-module on R if there exists an action of R on M, i.e, a map $R \times M \to M$, denoted rm, such that:
 - 1. (r+s)m = rm + sm, for all $r, s \in R$ and all $m \in M$.
 - 2. (rs)m = r(sm), for all $r, s \in R$ and all $m \in M$.
 - 3. r(m+n) = rm + rn, for all $r \in R$ and all $m, n \in M$.
 - 4. If R has unity, then 1m = m for all $m \in M$.

A right-module on R can be defined analogously.

- Modules over a field \mathbb{F} and vector spaces over \mathbb{F} are the same thing.
- Let R be a ring and M be an R-module. An R-submodule of M is a subgroup N of M which is closed under the action of ring elements, i.e, $rn \in N$ for all $r \in R$ and all $n \in N$. A submodule of M thus just a subset of M which is itself a module with the same operations.
- \bullet If R is a field, then submodules are the same thing as subspaces.
- Every R-module M has at least two submodules: M itself, and $\{0\}$, the trivial submodule.

•