# Clever Randomization and Ensembling Strategies for Accommodating Multiple Data Pathologies in Conjoint Studies

Jeff Dotson (BYU) and Marc Dotson (BYU)

Southern Utah University

April 4, 2019

#### Outline

Conjoint Analysis

**Ensembles** 

Data Pathologies

Model Development

Conclusion

# Conjoint Analysis in Marketing

- Products are defined by attributes, each with a number of levels
- Individuals choose from among a number of alternatives
- We infer individual-level preferences for each attribute level
- ▶ We can use these preferences to perform **counterfactual analyses**
- Instead of evaluating attributes separately, individuals are forced to make tradeoffs among combinations of various product attribute and price levels

Conjoint Analysis 2 / 41

#### Conjoint Analysis Example - Choice Task

Taking into consideration all of the features presented, please pick the **pregnancy monitoring device** that you would be **most likely to buy.** 

|                                                                                          | Option 1      | Option 2       | Option 3       | Options 4        |
|------------------------------------------------------------------------------------------|---------------|----------------|----------------|------------------|
| Tracks fetal heart rate                                                                  | summer infant | MOTOROLA       | &<br>bloomlife | Owlet            |
| Tracks fetal heart rate                                                                  | •             | 8              | •              | 8                |
| Records fetal heartbeat                                                                  | •             | <b>Ø</b>       | 8              | 0                |
| Notifies if fetal health<br>(heartbeat and kicks) is<br>trending outside normal<br>range | 0             | •              | 0              | •                |
| Counts kicks                                                                             | •             | <b>Ø</b>       | 8              | 0                |
| Tracks contractions                                                                      | 8             | <b>Ø</b>       | 8              | 0                |
| Tracks maternal sleep position                                                           | •             | 0              | •              | •                |
| Provides reports to share with friends and family                                        | 8             | •              | •              | •                |
| Payment Schedule                                                                         | Rental        | 1 time payment | Rental         | Monthly payments |
| Total Price                                                                              | \$174         | \$399          | \$374          | \$374            |
| Refund if returned at end of pregnancy                                                   | \$20          | \$60           | \$80           | \$10             |
|                                                                                          | 0             | 0              |                | 0                |

Conjoint Analysis 3 / 41

## Hierarchical Models in Marketing

- ► Hierarchical Bayesian choice models enable both individual and aggregate-level preference parameter estimation
- ► This is possible even in the presence of few observations per individual by **sharing information** across individuals through an upper-level model

$$Pr(y_{h,j} = k|\beta_h) = \frac{\exp(x'_{k,j}\beta_h)}{\sum_{k=1}^K \exp(x'_{k,j}\beta_h)}$$

$$\beta_h = \Gamma z_h + \xi_h, \quad \xi_h \sim N(0, V_\beta)$$

Conjoint Analysis 4 / 41

#### Conjoint Analysis Example - Attribute Importance



Conjoint Analysis 5 / 41

## Conjoint Analysis Example - Brand Premium



Conjoint Analysis 6 / 41

#### Forecasting Demand with Market Simulators

- ► Market simulators make use of individual-level preference estimates to forecast the demand for **potential products** compared with the competition
- ► This can inform **new product development**, product line optimization, and go-no-go decision-making

Conjoint Analysis 7 / 4:

# Conjoint Analysis Example - Optimal Price



Conjoint Analysis 8 / 41

#### Motivation: Ensemble Approaches to Prediction

1. Ensemble-based approaches currently dominate the world of **competitive prediction** (e.g., Kaggle, Netflix Prize, etc.)

Ensembles 9 / 41

## Wisdom from a Kaggle Superstar

No matter how faithful and well-tuned your individual models are, you are likely to improve the accuracy with ensembling. Ensembling works best when the individual models are less correlated. Throwing a multitude of mediocre models into a blender can be counterproductive. Combining a few well-constructed models is likely to work better.

Ensembles 10 / 41

## Motivation: Ensemble Approaches to Conjoint Prediction

- 1. Ensemble-based approaches currently dominate the world of competitive prediction (e.g., Kaggle, Netflix Prize, etc.)
- 2. With a few notable exceptions, most conjoint projects are still conducted using a **single model** for both inference and simulation

Ensembles 11 / 41

## The Current Approach to Prediction



Ensembles 12 / 41

## Motivation: Ensemble Approaches to Conjoint Prediction

- 1. Ensemble-based approaches currently dominate the world of competitive prediction (e.g., Kaggle, Netflix Prize, etc.)
- 2. With a few notable exceptions, most conjoint projects are still conducted using a single model for both inference and simulation
- A notable exception is Kevin Lattery's Sawtooth 2015 presentation and paper, "A Machine Learning Approach to Conjoint"

Ensembles 13 / 41

#### An Ensemble Approach to Conjoint Prediction

- 1. Training dataset
- 2. Estimate different types of models
- 3. Simulate outcomes on new data
- 4. Generate a consensus prediction



Ensembles 14 / 41

## Results from Kevin Lattery's 2015 Paper



Ensembles 15 / 41

#### Why Do Ensembles Perform So Well?

- They strike an optimal trade-off on the bias/variance frontier
  - Wisdom of the Crowd
- ▶ They allow for efficient exploration of the model space
  - All models are wrong, but some models are useful
- ► They provide a hedge against data conditions that are pathological with respect to a single model (our hypothesis)

Ensembles 16 / 41

#### What is a Data Pathology?

**Pathology:** Structural and functional **deviations from the normal** that constitute disease or characterize a particular disease

**Data Pathology:** Any **respondent-level behavior** that deviates from the **normative model** of consumer choice, thus impeding accurate out-of-sample prediction

Data Pathologies 17 / 41

# What is the Normative Model of Consumer Choice? (In Math)

For a given individual and choice task:

$$y \in \{1, 2, \cdots, J\}$$
  $U_j = V_j + \varepsilon_j$   $V_j = \beta_1 x_{1j} + \beta_2 x_{2j} + \beta_k x_{kj}$   $\varepsilon_j \sim \mathsf{iid} \; \mathsf{Gumbel}$ 

Across respondents:

$$eta \sim N\left(ar{eta}, \Sigma
ight)$$

Data Pathologies 18 / 41

# What is the Normative Model of Consumer Choice? (In Words)

- Consumers are able to assess the "utility" of each alternative in a choice set
- ▶ They pick the alternative that provides the greatest level of utility
- ▶ Utility is made up of two components: A deterministic component and a random (to the researcher) component
- ► The deterministic component is expressed as a (linear, compensatory) function of the design of the alternative
- ► The random component is assumed to come from an independent and identically distributed Gumbel distribution
- ▶ While we estimate preferences at the individual level, we assume that the preferences of all individuals are drawn from a common Multivariate Normal Distribution

Data Pathologies 19 / 41

#### Models of Data Pathologies

- Most innovations in the academic conjoint literiture focus on addressing specific data pathologies
- ▶ These models fit better and provide marginal improvements in predictive fit
- ▶ Although prospectively useful, these models are rarely used in practice

Data Pathologies 20 / 41

#### **Examples of Data Pathologies**

- Attribute Non-Attendance
- Screening Rules and Other Forms of Non-Compensatory Choice
- Poor Respondent Quality
- Non-IIA Choice Behavior
- Respondent Fatigue
- ► Alternative Decision Rules (e.g., Regret Minimization)

Data Pathologies 21 / 41

#### Why Aren't These Models Used in Practice?

- 1. They are theoretically and computationally complex (i.e., difficult to understand and time-consuming to estimate and simulate)
- We don't have high-quality commercial software that can be used to fit these models
- Each model deals with a single data pathology
  - A priori how do I know which pathology will prove problematic (i.e., which model should I fit)?
  - What if multiple pathologies are present in a single dataset?

Data Pathologies 22 / 41

## Our Proposed Approach

- Create an ensemble of models where diversity in the ensemble is created through various forms of (clever) randomization
- Induce diversity in the ensemble by thinking about how specific forms of randomization are related to specific data pathologies
- ▶ Generate a **consensus prediction** from the set of models in the ensemble

Note: Our focus in this study is to improve **out-of-sample predictive validity!** 

Data Pathologies 23 / 41

#### A Summary Thus Far...

- Conjoint analysis is a powerful tool
- Decisions are informed based on predictions using a market simulator
- Ensembles are cool and powerful for prediction
- We don't use them in the world of conjoint
- Data pathologies can lead to bad inference and prediction
- Cleverly designed ensembles of models might help hedge against data pathologies, thus improving inference
  - We don't have to fit complicated models, but we do need to fit a lot of models!
  - Trade-off between model complexity and computational intensity

Data Pathologies 24 / 41

# Pathology 1: Attribute Non-Attendance (ANA)

**Attribute Non-Attendance**: Respondents ignore subsets of attributes when making decisions (i.e.,  $\beta = 0$  for all levels of the attribute)

**Randomization Strategy for the Ensemble**: Create an ensemble where we randomly set the coefficients for a full attribute to 0

Model Development 25 / 41

#### Formal Model for Attribute Non-Attendance

Standard model for each individual *h* in a choice task:

$$U_{jh}=eta_{1h}x_{1j}+eta_{2h}x_{2j}+eta_{kh}x_{kj}+arepsilon_{j}$$
 and  $arepsilon_{j}\sim$  iid Gumbel

Respondent h's attendance to attribute m is given by

$$au_{hm} \in \{1,c\}$$

Across respondents:

$$eta_h \sim N\left(C_{ au h} \ ar{eta}, C_{ au h} \ \Sigma \ C_{ au h}
ight) \quad ext{with} \quad C_{ au h} = ext{diag}( au_h)$$
 $Pr\left( au_{hm} = c
ight) = heta_m \quad ext{with} \quad heta_m \sim ext{beta}(lpha, eta)$ 

Model Development 26 / 41

#### Ensemble Algorithm for Attribute Non-Attendance

- 1. Estimate an HB MNL on training data
- 2. Loop over respondent-level estimates  $(\hat{\beta}_h)$ 
  - randomly select an attribute
  - with probability  $\theta$  set all coefficients for that attribute to 0
- 3. Predict first choices (e.g., max utility) for each choice set in the out-of-sample holdout (test) data
- 4. Repeat 2 and 3 many times
- 5. Generate a consensus (e.g., most commonly selected) prediction

Model Development 27 / 41

## Pathology 2: Screening Behavior

**Screening Behavior**: Respondents use certain attribute levels to screen out alternatives from consideration (i.e.,  $\beta \approx -\infty$  for levels being screened on)

Randomization Strategy for the Ensemble: Create an ensemble where we randomly set the coefficients for attribute levels to  $\approx -\infty$ 

Model Development 28 / 41

## Formal Model for Screening Behavior

For a given individual and choice task:

$$Pr(j) = Pr([\beta x_j + \epsilon_j] \cdot I_j > [\beta x_k + \epsilon_k] \cdot I_k \text{ for all } k \neq j)$$

where for each attribute level:

$$I_i = \prod_{l=1}^L \left[1 - \tau_l \cdot s_l\right]$$

Model Development 29 / 41

## Ensemble Algorithm for Screening Behavior

- 1. Estimate HB MNL on training data
- 2. Loop over respondent-level estimates  $(\hat{\beta}_h)$ 
  - randomly select an attribute level
  - with probability  $\psi$  set the coefficient for that attribute level to  $\approx -\infty$
- 3. Predict first choices (e.g., max utility) for each choice set in the validation data
- 4. Repeat 2 and 3 many times
- 5. Generate a consensus (e.g., most commonly selected) prediction

Model Development 30 / 41

#### Simulation Study

- ► Simulate data with the presence or absence of pathologies: attribute non-attendance and screening
- ▶ 500 respondents; 12 choice tasks; 6 attributes
- Generate prediction from standard HBMNL results (lower level) and the joint ANA + Screening Ensemble

Model Development 31 / 41

# Joint Ensemble Algorithm for Attribute Non-Attendance and Screening

- 1. Estimate HB MNL on training data
- 2. Loop over respondent-level estimates  $(\hat{\beta}_h)$ 
  - randomly select an attribute level
  - with probability  $\psi$  set the coefficient for that attribute level to  $\approx -\infty$
  - randomly select an attribute
  - with probability heta set all coefficients for that attribute to 0
- 3. Predict first choices (e.g., max utility) for each choice set in the validation data
- 4. Repeat 2 and 3 many times
- 5. Generate a consensus (e.g., most commonly selected) prediction

Model Development 32 / 41

# Simulated Data: No ANA + No Screening



Model Development 33 / 41

# Simulated Data: ANA without Screening



Model Development 34 / 41

# Simulated Data: Screening without ANA



Model Development 35 / 41

# Simulated Data: ANA + Screening



Model Development 36 / 41

#### Predictive Fit as a Function of Ensemble Size



Model Development 37 / 41

#### Performance on Actual Data - Interior Paint



Model Development 38 / 41

#### Conclusion

- Cleverly designed ensembles of models appear to help hedge against data pathologies and improve prediction
- ► The ensemble approach is especially powerful in the presence of multiple data pathologies

Conclusion 39 / 41

#### Next Steps

- 1. Faster computation (Stan)
- 2. More pathologies
- 3. Smarter ensembles: Can we employ principles of experimental design to (cleverly) cover the design space of multiple pathologies?
- 4. Better aggregation of prediction (e.g., model stacking via a meta-learner rather than consensus predictions)
- 5. Ensembles for inference: Can we learn about the severity of a particular pathology by examining the relative fit of ensemble members?

Conclusion 40 / 41

Thank You!

Conclusion 41 / 41