Course Overview: "Adventures in Coding: Build Your First AI App!"

Duration: 10 Sessions (2 Weeks)

Target Audience: Grade 3-4 Beginners (Ages 8-10)

Tools: MIT App Inventor

Course Philosophy: "Learn by Creating"

Course Outcomes

By the end of this course, students will:

- 1. Understand basic coding concepts (sequences, events, loops).
- 2. Build 5+ interactive apps using MIT App Inventor.
- 3. Explain AI in simple terms and create basic AI-powered apps.
- 4. Develop problem-solving and logical thinking skills.
- 5. Collaborate on projects and present their work confidently.

Daily Curriculum Breakdown

Week 1: Coding Fundamentals

Day	Topic	Objectives	Project	Assessment
1	What is an App?	- Understand app components(UI, logic)- Navigate MIT App Inventor	"Talk to Me" (Text-to- Speech)	Participation + Completed App
2	Game Design Basics	Learn event-driven programmingUse collision detection	"Ball Bounce" game	Debugging challenges
3	Creative Storytelling	Sequence animationsIntegrate multimedia (images/sound)	"Digital Comic Maker"	Storyboard worksheet
4	Intro to AI	Define AI in kid-friendly termsExplore image recognition	"Emoji Mood Detector"	Quiz: "How AI Sees the World"

Day	Topic	Objectives	Project	Assessment
5	Mini Hackathon	Apply Week 1 skillsCollaborate in teams	Customized app showcase	Peer feedback + Teacher rubric

Week 2: AI & Real-World Apps

Day	Topic	Objectives	Project	Assessment
6	Chatbots	- Understand Q&A logic- Create simple decision trees	"My First Chatbot"	Accuracy of bot responses
7	Voice Technology	Explore voice assistantsUse speech recognition	"Voice Drawing Board"	Creativity in commands
8	Puzzle Games	Develop logical reasoningUse GPS/location concepts	"Treasure Hunt"	Problem-solving checklist
9	AI for Good	Discuss ethical AI useDesign apps for social impact	"Save the Tigers Quiz"	Idea pitch to class
10	Demo Day	Present projectsReflect on learning	Final app showcase	Parent/teacher evaluation rubric

Pedagogical Approach

1. **Scaffolded Learning**:

- Session 1-3: Concrete projects (visual output)
- Session 4-6: Abstract thinking (Al logic)
- Session 7-10: Creative application

2. Inclusive Activities:

- o Unplugged option: Use printed "block coding" cards for students without devices.
- o Pair programming: Team up advanced learners with beginners.

3. **Differentiated Instruction**:

- Extension: Add complexity (e.g., score counters in games).
- **Support**: Pre-built templates for struggling students.

Assessment Tools

1. Formative:

- Thumbs-up/down check-ins
- Screenshot journals (Students save daily progress)

2. Summative:

- Demo Day Rubric (Rate creativity, functionality, presentation)
- Parent Feedback Form (Post-course survey)

Materials Checklist

For Students:

- Worksheets (e.g., "Design Your Dream App")
- Certificate templates

For Trainers:

- Troubleshooting guide (Common MIT App Inventor errors)
- o Sample apps for demonstration

Sample Lesson Plan (Day 4: Intro to AI)

Objective: Students will train a simple image classifier to detect emotions.

1. **Hook (10 mins)**:

Play Google Quick Draw; discuss how AI "learns" from examples.

2. Direct Instruction (15 mins):

- o Demo "Emoji Mood Detector" app.
- Teach: "Al is like teaching a baby show it many pictures!"

3. Guided Practice (20 mins):

Students add 3 emoji images (happy/sad/angry) to their app.

4. Independent Practice (10 mins):

Customize: Change emoji colors or add sound effects.

5. **Wrap-up (5 mins)**:

Share: "How could this app help someone in real life?"

Post-Course Outcomes

- **Skills Gained**: Computational thinking, design mindset, Al literacy.
- Tangible Takeways:
 - Portfolio of 5+ apps
 - o Certificate of Completion
 - o Parent guide to continue learning at home