Guaranteed Voronoi Diagrams of Uncertain Sites

William Evans Jeff Sember

University of British Columbia

August 13-15, 2008

Standard Voronoi diagram

Standard Voronoi diagram

What if exact locations of sites are unknown?

X is guaranteed closest to a

Is X closer to a than c? Than b?

exact location of n sites is unknown

- exact location of n sites is unknown
- each site is known to lie within a region

- exact location of n sites is unknown
- each site is known to lie within a region
- what can be said about arbitrary point in \mathbb{R}^2 ?

- exact location of n sites is unknown
- each site is known to lie within a region
- what can be said about arbitrary point in \mathbb{R}^2 ?
- what does such a Guaranteed Voronoi Diagram look like?

Outline

- Properties
- Uncertain discs
- Uncertain polygons
- 4 Guaranteed Subset Voronoi Diagrams
- Conclusion

• Uncertain regions $\mathcal{D} = \{D_1, \dots, D_n\}$

- Uncertain regions $\mathcal{D} = \{D_1, \dots, D_n\}$
- Half plane H(i,j):

 points guaranteed closer to D_i than D_j

- Uncertain regions $\mathcal{D} = \{D_1, \dots, D_n\}$
- Half plane H(i,j):

 points guaranteed closer to D_i than D_j
- Edge $\langle i,j \rangle$: boundary of H(i,j)farthest point in D_i as close as nearest point in D_j

Cell for $D_i:\bigcap_{j\neq i}H(i,j)$

What if regions overlap?

No guarantee possible

Cell for both regions is empty

Lemma 1

$\delta(\cdot)$ function

Maps points on guaranteed edges to standard edges

Lemma 3: $\delta(\cdot)$ preserves ccw order

Outline

- Properties
- 2 Uncertain discs
- Uncertain polygons
- 4 Guaranteed Subset Voronoi Diagrams
- Conclusion

What if uncertain regions are discs?

What if uncertain regions are discs?

• $\langle i,j \rangle = \{ p \mid$ farthest point in D_i as close to p as nearest point in $D_j \}$

- $\langle i,j \rangle = \{ p \mid$ farthest point in D_i as close to p as nearest point in $D_j \}$
- $\langle i,j \rangle = \{ p \mid \operatorname{dist}(p,S_i) + r_i = \operatorname{dist}(p,S_j) r_j \}$

- $\langle i,j \rangle = \{ p \mid$ farthest point in D_i as close to p as nearest point in $D_j \}$
- $\langle i,j \rangle = \{ p \mid \operatorname{dist}(p,S_i) + r_i = \operatorname{dist}(p,S_j) r_j \}$
- $\langle i,j \rangle = \{ p \mid \operatorname{dist}(p,S_j) \operatorname{dist}(p,S_i) = \text{constant} \}$

- $\langle i,j \rangle = \{ p \mid$ farthest point in D_i as close to p as nearest point in $D_j \}$
- $\langle i,j \rangle = \{ p \mid \operatorname{dist}(p,S_i) + r_i = \operatorname{dist}(p,S_j) r_j \}$
- $\langle i, j \rangle = \{ p \mid \operatorname{dist}(p, S_j) \operatorname{dist}(p, S_i) = \text{constant} \}$
- $\langle i, j \rangle$ is a hyperbolic arc

More than one edge $\langle i, j \rangle$ can appear

Each edge $\langle i,j \rangle$ charged to edge of standard Voronoi diagram

Suppose distinct edges $\langle i,j \rangle$ charged to same standard edge...

 \dots edge between them must be charged somewhere. \dots

... violates Lemma 3 (ccw order of δ mapping)

• each standard Voronoi edge is charged at most twice

- each standard Voronoi edge is charged at most twice
- once by $\langle i, j \rangle$, once by $\langle j, i \rangle$

Uncertain discs: Complexity

- each standard Voronoi edge is charged at most twice
- once by $\langle i, j \rangle$, once by $\langle j, i \rangle$
- standard Voronoi diagram has linear complexity [M. Sharir, '85]

Uncertain discs: Complexity

- each standard Voronoi edge is charged at most twice
- once by $\langle i, j \rangle$, once by $\langle j, i \rangle$
- standard Voronoi diagram has linear complexity [M. Sharir, '85]

Theorem 4

Guaranteed Voronoi Diagram for discs has linear complexity

• construct standard Voronoi diagram of discs in $O(n \log n)$ time [S. Fortune, '86]

- construct standard Voronoi diagram of discs
 in O(n log n) time [S. Fortune, '86]
- use $\delta(\cdot)$ mapping on each cell

- construct standard Voronoi diagram of discs
 in O(n log n) time [S. Fortune, '86]
- use $\delta(\cdot)$ mapping on each cell
- clip resulting edges (details omitted...)

- construct standard Voronoi diagram of discs
 in O(n log n) time [S. Fortune, '86]
- use $\delta(\cdot)$ mapping on each cell
- clip resulting edges (details omitted...)

Theorem 6

Guaranteed Voronoi Diagram for discs can be constructed in $O(n \log n)$ time

Outline

- Properties
- Uncertain discs
- Uncertain polygons
- 4 Guaranteed Subset Voronoi Diagrams
- Conclusion

 $\langle i,j \rangle$ consists of parabolic arcs $\langle i^u,j^v \rangle$


```
i^u is farthest vertex of R_{\langle i \rangle}
j^v is nearest vertex or edge of R_{\langle j \rangle}
```


• each $p \in \langle i^u, j^v \rangle$ mapped via $\delta(\cdot)$ to standard Voronoi edge

- each $p \in \langle i^u, j^v \rangle$ mapped via $\delta(\cdot)$ to standard Voronoi edge
- complexity at most 2× that of standard Voronoi diagram, linear [Kirkpatrick, '79] . . .

- each $p \in \langle i^u, j^v \rangle$ mapped via $\delta(\cdot)$ to standard Voronoi edge
- complexity at most 2× that of standard Voronoi diagram, linear [Kirkpatrick, '79] . . .
- ... plus 2× that of farthest point Voronoi diagram, linear...

- each $p \in \langle i^u, j^v \rangle$ mapped via $\delta(\cdot)$ to standard Voronoi edge
- complexity at most 2× that of standard Voronoi diagram, linear [Kirkpatrick, '79] . . .
- ...plus 2× that of farthest point Voronoi diagram, linear...

Theorem 7

Guaranteed Voronoi Diagram for polygons has linear complexity

Outline

- Properties
- Uncertain discs
- Uncertain polygons
- 4 Guaranteed Subset Voronoi Diagrams
- Conclusion

Much of \mathbb{R}^2 falls in 'neutral zone': no guaranteed closest site

Modify guarantee to involve subsets of sites

Guarantee: p closest to some $D_i \in S$ than to any $D_i \in \overline{S}$

Lemma 8: Complexity is $O(n^4)$

Complexity is $\Omega(n^2)$

Complexity is $\Omega(n^2)$

Complexity is $\Omega(n^2)$

Outline

- Properties
- Uncertain discs
- Uncertain polygons
- 4 Guaranteed Subset Voronoi Diagrams
- Conclusion

Related work

• uncertain sites, probabilistic view: expected closest, probably closest [Aurenhammer et al., '91]

Related work

- uncertain sites, probabilistic view: expected closest, probably closest [Aurenhammer et al., '91]
- 'neutral zone' similar to zone diagrams

[Asano et al., '07]

DOM

ullet efficient algorithm for generating $V(\mathcal{D})$ (polygons)

John T

ullet efficient algorithm for generating $V(\mathcal{D})$ (polygons)

ullet tighten bound for complexity of $V^{\{\}}(\mathcal{D})$

John T

ullet efficient algorithm for generating $V(\mathcal{D})$ (polygons)

- ullet tighten bound for complexity of $V^{\{\}}(\mathcal{D})$
- efficient algorithm for generating $V^{\{\}}(\mathcal{D})$

ullet efficient algorithm for generating $V(\mathcal{D})$ (polygons)

- ullet tighten bound for complexity of $V^{\{\}}(\mathcal{D})$
- efficient algorithm for generating $V^{\{\}}(\mathcal{D})$

ullet investigate dual of $V(\mathcal{D})$

Resources

Java applet available at: www.cs.ubc.ca/~jpsember

