MULTIPLE CHOICE QUESTIONS (MCQ'S)

l.	A triangle	hasimpo	rtant element	8.				
	5514	(b) 4						
		is of finding the too of the triangle.	inknown elen	nents is called the				
	(a) formed	(b) drawing	(c) Solution	on (d) Altitude				
£,	}			Standard position				
	$(a) b^2 = a^2$		(b) $a^2 = b^2$	$+c^2-2bcCos\alpha$				
	•	$+ b^2 - 2ab Cosy$ $a^2 + c^2 + b^2 + 2ac$,					
4	,	are the sides of		n R is				
30								
	$(a) \frac{}{4}$	(b) $\frac{4\Delta}{abc}$	(c) $\overline{4\Delta}$	$(d)\frac{-}{s}$				
5.	If the Side	s of a triangle ar	e 3,4 and 5	Units, then "S" is				
	(a) 4	(b) 12	(c) 5	(d) 6				
6.	A circle pa	• •		triangle is called				
	(a) Ortho-C	ircle		(b) Circum Circle				
	(c) In-Circl	e	(d) e-circl	e ·				
7.	The radius	of Circum Circ	le is called	Circum radius is				
O.	denoted by	R =						
	(a) $\frac{abc}{4\Delta}$	(b) $\frac{abc}{\Delta}$	(c) $\frac{4\Delta}{abc}$	(d) $\frac{\Delta}{s}$				
8.	What is the	Circum-radius	if the Sides	of the triangle are				
	6cm, 8cm,	Ocm and area 24	em³	,				
	(a) 5cm	(b) 2cm	(c) 8.5 cm	n (d) 9cm				
9,	A Circle to	ouches all the	Sides of a	triangle is called				
	(a) e-Circle		(b) In-Cir	cle				
	(c) Circum-	Çirele	(d) Ortho	Circle				
10.	The radius of	of in-circle is.cal	led in-radius	Circle and is denoted by				
	L #	_,						
	(a) $\frac{4\Delta}{abc}$	(b) $\frac{a}{4\Delta}$	(c) $\frac{\Delta}{s}$	(d) $\frac{\Delta}{s-a}$				

11.	A circle touches one side and two rays of other two sides of
	a triangle is called or
	(a) escribed circle or e - circle
	(b) Incircle or e-circle (c) Incircle or circumcircle (d) Orthogistle or e-circle
12.	
	(a) 360° (b) 270° (c) 90° (d) 180°
13.	An triangle is a three side figure with none of the
	angres a right angre.
	(a) Obtuse (b) Right (c) Oblique (d) Acute
14.	A triangle with one angle of measure 90° is called
	ativie dianties.
	(a) Obtuse (b) Acute (c) Right (d) Oblique
15.	According to law of Cosine, $\cos \alpha = $
	(a) $\frac{b^2 + c^2 - a^2}{2bc}$ (b) $\frac{a^2 + b^2 - c^2}{2bc}$
	(a) 2bc (b) 2bc
	(c) $\frac{b^2 + a^2 + c^2}{2bc}$ (d) $\frac{a^2 + c^2 - b^2}{2bc}$
	200
16.	Area of triangle when measured of all of its three sides is
	given by
	(a) $\Delta = \sqrt{s(s+a)(s+b)(s+c)}$
	(b) $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$
	(c) $\Delta = \sqrt{s(s-a)}$ (d) $\Delta = \sqrt{s(s-b)}$
17.	For an e-circle $r_1 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

17. For an e-circle $r_1 =$ (a) $\frac{\Delta}{s-a}$ (b) $\frac{\Delta}{s+a}$ (c) $\frac{\Delta}{s-b}$ (d) $\frac{\Delta}{s-c}$ 18. for an e-circle $r_2 =$ (a) $\frac{\Delta}{s}$ (b) $\frac{\Delta}{s-b}$ (c) $\frac{\Delta}{s-a}$ (d) $\frac{\Delta}{s-c}$

20. The sine and cosine laws can be applied to any _

(a) square (b) Rectangle (c) Triangle (d) Rhombus

19. for an e-circle r₃ =

Cha	pter 12 # Solutions of Tri		989			
21.	The angle of	is the angle formed	by the			
	nor izonial and the tine of S	ight when the object is a	bout the			
	nortzoniai.					
	(a) Elevation	(b) Depression				
	(c) Right	(A) A				
2	The angle of is the	e angle formed by the ho	rizonta			
	and the line of sight v	when the object is bel	low the			
	norizonai.	•				
	(a) Depression	(b) Elevation				
	(c) Right	(d) Obtuse				
3.	When angle of elevation	of an object is viewed	d by a			
	observer the object is		•			
	(a) Below	(b) Above				
	(c) At same level	(d) None of these				
4.	A line is revolve in anti	clock wise direction, the	he angl			
	described will be	•				
	(a) Positive	(b) Negative				
	(c) Zero	(d) None of these				
25.	While a pilot flying over an airport the angle made over the					
	airport will be the angle of					
	(a) Depression	(b) Elevation				
	(c) Right	(d) None of these				
26.		on the observe: is	tì			
	object.		"			
	(a) Below	(b) Above				
	(c) Behind	(d) None of these				
27.	Angle of elevation and an	gle of depression are ma	da			
	to each other.	o opregoion are ma	uc			
	(a) behind	(b) Adjacent				
	(c) Opposite	(d) None of these				
28.		ures of the sides				
	to the sines of the measur	es of the opposite and	portion			
	is called law of	es of the opposite angle:	s, this is			
	(a) Cosine	(b) topount				
	(c) Sine	(b) tangent				
•	a b C	(d) None of these				
29.	$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{C}{\sin \gamma}$ when	a, b, c are lengths of	f Sides			
	triangle then this law is c	alled law of				
	(a) Cosine	(b) Sine				
	(c) tangent	(d) None of these				
	•	(a) Fronte of these				

(a)
$$\sqrt{\frac{(s-c)(s-a)}{ab}}$$

(b)
$$\sqrt{\frac{(s-b)(s-c)}{bc}}$$

31.
$$\sin \frac{\beta}{2} =$$
_____.

(a)
$$\sqrt{\frac{(s-c)(s-a)}{ab}}$$

(b)
$$\sqrt{\frac{(s-b)(s-c)}{bc}}$$

(d) $\sqrt{\frac{(s-a)(s-b)}{c}}$

32.
$$\sin \frac{y}{2} =$$
_____.

(a)
$$\sqrt{\frac{(s-c)(s-a)}{ab}}$$

(b)
$$\sqrt{\frac{(s-b)(s-c)}{bc}}$$

(d) $\sqrt{\frac{(s-a)(s-b)}{c}}$

33.
$$\cos \frac{\alpha}{2} = \underline{\hspace{1cm}}$$

(a)
$$\sqrt{\frac{s(s-b)}{ac}}$$

(b)
$$\sqrt{\frac{s(s-c)}{ab}}$$

(d) $\sqrt{\frac{s(s-a)(s-b)}{abc}}$

34.
$$\cos \frac{\beta}{2} =$$
_____.

(a)
$$\sqrt{\frac{s(s-a)}{bc}}$$

(b)
$$\sqrt{\frac{ab}{ab}}$$

(d) $\sqrt{\frac{s(s-a)(s-b)}{abc}}$

35.
$$\cos \frac{\gamma}{2} =$$
_____.

(a)
$$\sqrt{\frac{s(s-a)}{bc}}$$

(c) $\sqrt{\frac{s(s-b)}{bc}}$

(b)
$$\sqrt{\frac{s(s-c)}{ab}}$$

(d) $\sqrt{\frac{s(s-a)(s-b)}{abc}}$

36.
$$\tan \frac{\alpha}{2} = \underline{\hspace{1cm}}$$

$$(a) \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

Chapter 12 # Solutions of Triangles

(b)
$$\sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$

(c)
$$\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$

(d)
$$\sqrt{s(s-a)(s-b)(s-c)}$$

37.
$$\tan \frac{\beta}{2} =$$

(a)
$$\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

(b)
$$\sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$

(c)
$$\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$

(d)
$$\sqrt{s(s-a)(s-b)(s-c)}$$

38.
$$\tan \frac{y}{2} =$$
_____.

(a)
$$\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

(b)
$$\sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$

(c)
$$\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$

(d)
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Area of triangle when measure of two sides and there included angle "α" is given by _____.

(a)
$$\Delta = \frac{1}{2}$$
 ab Sin γ

(b)
$$\Delta = \frac{1}{2} \operatorname{ac} \operatorname{Sin} \beta$$

(c)
$$\Delta = \frac{1}{2} bc \sin \alpha$$

(d) None of these

Area of triangle when measure of two sides and their included angle "β" is given by ______

(a)
$$\Delta = \frac{1}{2}$$
 ab Siny

(b)
$$\Delta = \frac{1}{2} \operatorname{ac} \operatorname{Sin} \beta$$

(c)
$$\Lambda = \frac{1}{2}$$
 bc Sin α

(d) None of these

 Area of triangle when measure of two sides and their included angle "γ" is givne by ______.

(a)
$$\Delta = \frac{1}{2}$$
 ab Siny

(b)
$$\Delta = \frac{1}{2} \arcsin \beta$$

(c)
$$\Delta = \frac{1}{2}bc$$
 Sin α

(d) None of these

ileteral AABC =	A
42. for an equilateral $\triangle ABC =$	(b) $r_1: R: r = 3 \cdot 2$
(a) $R: r: r_1: 3: 1: 2$	(d) $r: r_1: R = 1:2:1$
(c) $f: R: I_1 = 2 \cdot 3 \cdot 1$	(b) $r_1 : R : r = 3 : 2 : 1$ (d) $r : r_1 : R = 1 : 2 : 3$ Sides of the triangle then $Centre$
43. The Circle touches all the	Centra
(h) C	(c) $(i + (d))$
(a) O (b) C	(c) G (d) I
44. The Centre of e-circle of	oposite to the vertex "A" denoted
· · · · · · · · · · · · · · · · · · ·	
(a) I (b) I_1	(c) I ₂ (d) I ₃
45. The centre of e-circle op	posite to the vertex "B" denoted
U)	
(a) I (b) I_1	(c) I_2 (d) I_3
46. The centre of e-circle op	posite to the vertex "C" denoted
(a) I (b) I_1	(c) I_2 (d) I_3
47. a, b, c, α , β and γ having	the usual meaning, then circum
radius R =	
<u>a</u>	(b) $\frac{b}{2 \sin \beta}$
(a) $\frac{a}{2 \sin \alpha}$	^(b) 2 Sin β
$(c) \frac{c}{2Siny}$	(d) All of these
48. If the measure of the Sides	of a triangle are 17, 10, 21, A =
84 and $S = 24$ then $R = $	of a diangle are 17, 10, 21, 4 =
(a) 10.625 (b) 3.5	
(a) 10.025 (b) 5.5	of a triangle are 17 10 at
	s of a triangle are 17, 10, 21, A
= 84, and $S = 24$ then $r =$	(1)
(a) 10.625 (b) 3.5	(c) 12 (d) 6
50. If the measures of the sides	s of triangle are 17, 10, 21, \blacktriangle =
84 and $S = 24$ then $r_1 =$	
(a) 10.625 (b) 3.5	(c) 12 (d) 6
If the measures of the Sides	of triangle are 17, 10, 21, ▲ =
84, and $S = 24$ then $r_2 =$	
84, and $S = 24$ then $r_2 = $	(b) 12 (d) 6
50 If the management of the Cides	of triangle are 17 10 21 A -
84 and S = 24 then r ₂ =	
(a) 3.5 (b) 12	(d) 6
(a) 3.3 . (b) 12	(c) 0 (d) 20
53. $\frac{1}{-1} + \frac{1}{1} = \frac{1}{1}$	and the state of t
ab ac bc ——	
2s - 1	
$(a) \frac{2s}{abc}$	(b) $\frac{s}{2abc}$
	Lauc
(c) $\frac{s}{abc}$	(d) None of these
abc	(a) Hone of these

Ch	apter 12 # Sc	olutions of Tric	ingles	99
54.	$(a) \triangleq$	=	(c) ▲ ³	(d) ▲ ⁴
55.	$\frac{\Gamma_1 \Gamma_2 \Gamma_3}{\Gamma} = -$			
56.	$\frac{(a) s}{\sqrt{rr_1r_2r_3}} = \underline{\hspace{1cm}}$	(b) √s	(c) s ²	(d) s ²
	(a) \Delta	(b) Δ	(c) √∆	(d) Δ ⁴
	$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} =$ (a) $\frac{1}{R}$	(b) $\frac{1}{S}$	(c) $\frac{1}{r_i}$	(d) $\frac{1}{r}$
58.	$\frac{a}{2\sin\alpha} = \frac{b}{2 \text{ Sin}}$			
59.	(a) r $(r_1 - r)(r_2 - r_1)$	(b) r_1) $(r_3 - r) =$	(c) r ₂	(d) R
60.	(a) $4\Delta^2 R$	(b) $4\Delta R^2$ = xcm then $R =$	(c) 4ΔR	(d) 4rR
,	(a) $\frac{\sqrt{3x}}{6}$	(b) $\frac{\sqrt{3}x}{3}$	$\frac{cm}{(c)}\frac{\sqrt{3x}}{2}$	(d) √3
61.		x cm then $r = _{-}$	cm	_
62.	(a) $\frac{x\sqrt{3}}{3}$	(b) $\frac{x\sqrt{3}}{2}$ excm then $r_1 = $	(c) $\frac{x\sqrt{3}}{6}$	$(d)\frac{\sqrt{3}}{2}$
02.	$x\sqrt{3}$	$x = \sqrt{2}$		_
		(b) $\frac{x\sqrt{3}}{3}$	· · · · · · · · · · · · · · · · · · ·	$(d) \frac{x\sqrt{3}}{2}$
63.		xcm then Area		cm ² .
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{x^2}{2}$	(c) $\frac{x\sqrt{3}}{6}$	$(d)\frac{\sqrt{3} x^2}{2}$
64.	$\frac{\Gamma}{s-a} = $			
	(a) $\tan \frac{\beta}{2}$		(b) $\tan \frac{\alpha}{2}$	
	(c) $\tan \frac{\gamma}{2}$		(d) None of	these

(a)
$$\tan \frac{\beta}{2}$$

(b)
$$\tan \frac{\gamma}{2}$$

(c)
$$\tan \frac{\alpha}{2}$$

(d) None of these

66.
$$\frac{r}{s-c} =$$
______.

(a)
$$\tan \frac{\beta}{2}$$

(b)
$$\tan \frac{\gamma}{2}$$

(c)
$$\tan \frac{\alpha}{2}$$

(d) None of these

67. law of sine was given by a muslim mathematican

- (a) Al Kindi
- (b) Bin Ali Sina
- (c) Al Razi
- (d) Al Beruni
- 68. $1 \cos \alpha =$ _
 - (a) $2\cos\frac{2\alpha}{2}$ (b) $2\tan\frac{2\alpha}{2}$ (c) $2\sin\frac{2\alpha}{2}$ (d) $2\csc\frac{2\alpha}{2}$
- 69. $1 + \cos \alpha =$ _
- 1 + $\cos \alpha =$ _____. (a) $2\sin^{2} \frac{\alpha}{2}$ (b) $2\sec^{2} \frac{\alpha}{2}$ (c) $2\tan^{2} \frac{\alpha}{2}$ (d) $2\cos^{2} \frac{\alpha}{2}$
- 70. Area of triangle = ___
 - (a) $\frac{1}{2}$ × base × height
- (b) $\frac{1}{2}$ + base + height
- (c) $\frac{1}{2}$ base height
- (d) $\frac{1}{2}$ × base + height
- 71. $\triangle = \frac{1}{2} ab$ _____.

 - (a) Sinα (b) Sinβ
- (c) Sin² \alpha
- (d) Siny

- 72. $\triangle = \frac{1}{2} \text{ ac}$ _____.
 - (a) Sinß
- (b) Sina
- (c) Siny
- (d) Sin²a

- 73. $\triangle = \frac{1}{2} bc$
 - (a) Sinß
- (b) Sina
- (c) Siny
- (d) Sin²a

- - $(a) \frac{Sin\gamma}{Sin\alpha Sin\beta}$ $(c) \frac{Sin\alpha Sin\beta}{Sin\gamma}$

- - $(a) \frac{Siny Sin\beta}{Sin\alpha}$
- (b) Sinα Sinβ Siny
- (c) $\frac{\sin\alpha}{\text{Siny Sin}\beta}$
- (d) $\frac{Sin\alpha Sin\gamma}{Sin\beta}$
- - $\text{(a)} \; \frac{\text{Siny Sin}\beta}{\text{Sin}\alpha}$
- (b) $\frac{\sin \alpha \sin \gamma}{\sin \beta}$
- (c) $\frac{\text{Sin}\alpha\text{Sin}\beta}{\text{Sin}\gamma}$
- Sina (d) $\frac{\sin \sin \beta}{\sin \beta \sin \beta}$
- - (a) (a b + c)
- (b) (a + b + c)
- (c) (a b c)
- (d) (-a + b + c)
- - (a) (a b + c)
- (b) (a + b + c)

- (d) (b-c-a)
- - (a) (a b c)(a b + c)
- (b) (a + b + c)(a b c)
- (c) (a + b + c)(b + c a)
- (d) (a+b-c)(a+b-c)
- 80. According to law of tangent
 - (a) $\frac{b-c}{b+c}$ (b) $\frac{c-a}{c+a}$ (c) $\frac{a-b}{a+b}$ (d) $\frac{a+b}{a-b}$

Mathematics XI 996

- According to law of tangent $\frac{\beta + \gamma}{\tan \frac{\beta + \gamma}{2}}$
- According to law of tangent $\frac{\tan \frac{\gamma \alpha}{2}}{\tan \frac{\gamma + \alpha}{2}} = \underline{\hspace{1cm}}$
 - (a) $\frac{c-a}{c+a}$ (b) $\frac{a-b}{a+b}$ (c) $\frac{b-c}{b+c}$ (d) $\frac{c+a}{c-a}$

(a) $\frac{\tan\frac{\beta-\gamma}{2}}{\tan\frac{\beta+\gamma}{2}}$ (b) $\frac{\tan\frac{\alpha-\beta}{2}}{\tan\frac{\alpha+\beta}{2}}$ (c) $\frac{\tan\frac{\gamma-\alpha}{2}}{\tan\frac{\gamma+\alpha}{2}}$ (d) $\frac{\tan\frac{\alpha+\beta}{2}}{\tan\frac{\alpha-\beta}{2}}$

- 84. law of tangent $\frac{b-c}{b+c}$
 - (a) $\frac{\tan\frac{\alpha-\beta}{2}}{\tan\frac{\alpha+\beta}{2}}$ (b) $\frac{\tan\frac{\gamma-\alpha}{2}}{\tan\frac{\gamma+\alpha}{2}}$ (c) $\frac{\tan\frac{\beta-\gamma}{2}}{\tan\frac{\beta+\gamma}{2}}$ (d) $\frac{\tan\frac{\beta+\gamma}{2}}{\tan\frac{\beta-\gamma}{2}}$
- 85. law of tangent $\frac{c-a}{c+a} = \frac{1}{1+a}$ (a) $\frac{\tan \frac{\alpha \beta}{2}}{\tan \frac{\alpha + \beta}{2}}$ (b) $\frac{\tan \frac{\beta \gamma}{2}}{\tan \frac{\beta + \gamma}{2}}$ (c) $\frac{\tan \frac{\gamma + a}{2}}{\tan \frac{\gamma a}{2}}$ (d) $\frac{\tan \frac{\gamma \alpha}{2}}{\tan \frac{\gamma + \alpha}{2}}$

- $\text{tan} \frac{\overline{\Delta z}}{2} \quad \text{tan} \frac{\overline{z}}{2} \quad \text{tan} \frac{\overline{z}}{2} \quad \text{tan} \frac{\overline{z}}{2}$ $\text{86. If } r^2 = \frac{(s-a)(s-b)(s-c)}{s} \text{ then } \tan \frac{\alpha}{2} = \underline{\qquad}$ $\text{(a)} \frac{r}{s-b} \quad \text{(b)} \frac{r}{s-c} \quad \text{(c)} \frac{r}{s-a} \quad \text{(d)} \frac{r}{s+a}$ $\text{87. According to law of Sine, } \frac{\sin \alpha}{\sin \beta} = \underline{\qquad}$ $\text{(a)} \frac{a}{b} \quad \text{(b)} \frac{b}{a} \quad \text{(c)} \frac{a}{c} \quad \text{(d)} \frac{b}{c}$ $\text{(a)} \frac{c}{s+a} \quad \text{(a)} \frac{\alpha}{2} = \underline{\qquad}$ $\text{(a)} C \quad \text{(b)} \Delta$ $\text{(b)} \Delta^2$ $\text{(a)} r_1 r_2 + r_2 r_3 + r_3 r_1 = \underline{\qquad}$ $\text{(a)} r_1 r_2 + r_3 r_1 = \underline{\qquad}$ $\text{(a)} r_1 r_2 r_3 r_1 = \underline{\qquad}$ $\text{(a)} r_1 r_3 r_3 -$

Chapter 12 # Solutions of Triangles 88. According to law of Sine $\frac{a}{b} =$

- (c) $\frac{\sin\beta}{\sin\alpha}$ $(a) \frac{Sin\beta}{Sin\gamma}$ (b) $\frac{\sin\alpha}{\sin\beta}$
- 89. $c^2 = \frac{}{(a) a^2 b^2 + 2abCos\gamma}$ (c) $a^2 + b^2 + 2abCos\gamma$ (b) $a^2 + b^2 - 2abCos\gamma$ (d) $b^2 + c^2 - 2abCos\alpha$
- (a) $b^2 c^2 + 2bcCos\alpha$ (c) $b^2 + c^2 2bcCos\alpha$ $b^2 =$ (b) $b^2 - c^2 + 2bcCos\alpha$ (d) $a^2 - c^2 - 2acCos\beta$
- $b^2 = \frac{1}{(a) a^2 + c^2 + 2acCos\beta}$ (b) $a^2 - c^2 - 2acCos\beta$ (d) $a^2 + c^2 - 2acCos\beta$ (c) $a^2 + c^2 - 2abCos\gamma$
- (c) $a^2 + c^2 2ab \cos \beta$ 92. According to law of Cosine Cos $\beta = \frac{1}{2ab}$ (a) $\frac{b^2 + c^2 a^2}{2bc}$ (b) $\frac{a^2 + b^2 c^2}{2ab}$ (c) $\frac{a^2 + c^2 + b^2}{2ac}$ (d) $\frac{a^2 + c^2 b^2}{2ac}$
- 93. According to law of Cosine Cos $\gamma = \frac{a^2 + b^2 c^2}{2ab}$ (b) $\frac{b^2 + c^2 a^2}{2bc}$ (c) $\frac{a^2 + c^2 b^2}{2ac}$ (d) $\frac{a^2 + c^2 + b^2}{2ac}$
- 94. $(r_1 + r_2) \tan \frac{\beta}{2} =$ ____
 - (c) R (d) a
- 95. $(r_1 + r_2) \tan \frac{\gamma}{2} =$ (b) **Δ** (c) R
- (d) b
 - (d) R (d) a
 - (d) \mathbb{R}^2 (d) S²
- (d) 4S (d) 4R
 - (b) rR² (d) Rs²

100. A tree of 8m high has the sh	nadow 6m in length the
100. A tree of 8m high has the sh elevation of the Sun at that r	moment is angle of
101 If a, b, c are the Sides of	f the triangle ABC 15
(a) 0 (b) 90° 101 If a, b, c are the Sides of	s, then S =
(a) $\frac{a+b+c}{a}$ (b) $\frac{a+b+c}{a}$	(c) $\frac{a+b+c}{c}$
102 The angles of a triangles are	in the ratio 2 . 2
102. The angles of a triangles are largest angle of the triangle?	what is the
() DOO (L) DOO	(-) 1000
(a) 90° (b) 80° 103. If "r" is the radius of the circumcircle of a ΔABC the	e circle and "R" is man
circumcircle of a AABC the	n
(a) $r = 2R$ (b) $R = 2r$	(c) $r = R$ (d) $r > R$
104. In order to solve a right	triangle we have to s.
measures of	to find the
(a) two acute angles	(b) two sides
(c) an angles	(d) None of these
105. $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \dots$	
$\frac{105.}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{bc}$	
(a) $\frac{1}{ac}$ (b) $\frac{1}{a^2}$	~ 1
(a) ${ac}$ (b) ${a^2}$	(c) $\frac{1}{c^2}$ (d) $\frac{1}{b^2}$
106. r ₁ =	
(a) S $\tan \frac{\gamma}{2}$	(b) S $\tan \frac{\beta}{2}$
. ~	- .
(c) S $\tan \frac{\alpha}{2}$	(d) S tan α
2	•
107. r ₂ =	
(a) $S \tan \frac{\gamma}{2}$ (b) $S \tan \frac{\beta}{2}$	$\alpha \cot 2 \left(\frac{\Delta}{\Delta} \right) = \cot 2 \left(\frac{\Delta}{\Delta} \right)$
(a) 5 tan 2	(c) 3 tan 2 (d) 3 tan t
108. $r_3 = $	
	α
(a) S tan $\frac{y}{2}$ (b) S tan $\frac{\beta}{2}$	(c) $S \tan \frac{\pi}{2}$ (d) $S \tan \alpha$
109. With usual notation, the valu	ne of a - b + c is
(a) $s + b$ (b) $s - b$	
10. The greatest angle is opposit	
(a) Smallest Side	(b) greatest Side
(c) Same Side	
(c) Sallie Side .	(d) right Side

```
Chapter 12 # Solutions of Triangles
112. Cot
113. e-radius corresponding to ∠A =
     (a) \frac{\Delta}{s}
114. e - radius corresponding to ∠B =
115. e - radius corresponding to ∠C is
      (a) \frac{\Delta}{s}
116. By Hero's formula \Delta =
      (a) s(s-a)(s-b)(s-c)
                                       (b) \sqrt{s(s-a)(s-b)(s-c)}
      (c) s\sqrt{(s-a)(s-b)(s-c)}
117. Hero's formula is used to Calculate
      (a) area of \Delta
                                        (b) Sides of \Delta
      (c) angles of \Delta
                                        (d) None of these
 118. for a triangle ABC, the true Statement is _
      (a) (\overline{AC})^2 = (\overline{AB})^2 + (\overline{AC})^2
      (b) AC = AB + BC
                                         (c) AC < AB + BC
       (d) None of the above
 119. In a triangle, the perpendicular from vertex to the base
       bisect the base. The triangle is
       (a) Isosceles
                                          (b) Right angled
```

(d) None of these

(c) Equilateral

1000		semancs XI				
120	The measures of three angles	of a triangle are in the				
120.	· 2 · 3 then, the thangle is ——					
	(a) Right angled	(b) Equinacial				
121.	Ci-cumcentre of a fight	ingled triangle lies				
	(-) in the interior of the thank	μC				
	as the exterior of the utall)	ZIC .				
	(c) at the mid point of the hyp	otenuse				
	(d) None of these					
122.	The mid point of the Sides o	a triangle along with any of				
	the marticles as the fourth built	t illanc a				
	(a) parallelogram (c) Rectangle	(d) None of the				
	(c) Rectangle	(d) None of these				
123.	Half the product of measure	of the base and measure of the				
	altitude gives	(b) Area of a Triangle				
	(a) Area of a Circle (c) Area of Rectangle	(d) None of these				
	(c) Area of Rectangle	a triangle which is				
124.	The point in the plane of a triangle which is at equal perpendicular distance from the sides of the triangle is					
	perpendicular distance from	the sides of the triangle is				
	() I Contra	(b) Circum - Centre				
	(a) In - Centre (c) Orthocentre	(d) None of these				
105	The point of triangle at wh					
125.	sides meet is called					
	(a) Incentre	(b) Circumcentre				
	(c) Ex - Centre	(d) None of these				
154	The point of triangle at w					
120.	angle of triangle meet is calle	ed				
	(a) In centre	(b) Circum – centre				
		(d) None of these				
	(c) Ex - Centre The Circumcentre of a tri	iangle is determined by the				
127.	The Circumcente of a di	migic is commission,				
	(a) Altitudes	(b) Medians				
•	(c) Perpendicular bisectors of					
	(d) None of these					
120	If the three altitudes of a tria	nole are equal then the triangle				
128.	if the three attitudes of a tria	uPro mo adam min				
	is	(b) Isosceles				
	(a) equilateral	(d) None of these				
	(c) Right anoled	, (u) None of these				

	9.0			Answ	ers	1			
C-1664	a	2.	с	3.	b	4.	c	5.	d
1.	$\frac{a}{b}$	7.	а	8.	a	9.	b	10.	с
6.	a	12.	d	13.	c	14.	С	15.	а
11.	$\frac{a}{b}$	17.	а	18.	b	19.	d	20.	c
16.	a	22.	а	23.	b	24.	а	25.	а
21.	_	27.	c	28.	С	29.	b	30.	b
26.	a c	32.	$\frac{\sigma}{d}$	33.	c	34.	C	35.	b
31.		37.	b	38.	c	39.	с	40.	b
36.	a	42.	b	43.	ď	44.	b	45.	C
41.	d	47.	d	48.	a	49.	b	50.	c
46.	d	52.	d	53.	а	54.	ь	55.	C
51.	$\frac{a}{b}$	57.	d	58.	d	59.	a	60.	b
56.		62.	d	63.	d	64.	b	65.	а
61.	b	67.	d	68.	c	69.	d	70.	а
66.	$\frac{b}{d}$	72.	a	73.	b	74.	С	75.	d
71.	a	77.	a	78.	b	79.	c	80.	C
76.	d	82.	a	83.	$\frac{b}{b}$	84.	c.	85.	d
81.	c	87.	a	88.	b	89.	b	90.	С
86.	d	92.	d	93.	a	94.	a	95.	d
91.	d	97.	d	98.	d	99.	C	100.	С
96. 101.	C	102.	ь	103.	b	104.	a	105.	a
106.	C	107.	b	108.	a	109.	d	110.	b
111.	a	112.	b	113.	b	114.	C	115.	a
116.	b	117.	a	118.	c	119,	a	120.	b
121.	C	122.	a	123.	b	124.	a	125.	0
126.	a	127.	c	128.	a	1200			