Progressive Feature Extraction of Biological Sequences for Machine Learning

Author A1, Author B, Shahid Bhat¹, Prashant Singh Rana^{1*}

Thapar Institute of Engineering and Technology, Patiala, Punjab, India. Email: { PSRana@gmail.com}

Abstract:

The availability of biological sequences (such as mRNA, circRNA, lncRNA, ncRNAs, epitopes, etc.) has increased massively in recent years. Therefore, new computational methods are needed to extract the significant discriminatory and relevant information to classify these sequences accurately using predictive methods such as Machine learning. Here, we extracted 56 physicochemical properties (such as aliphatic Index, boman Index, homent Index, molecular Weight, peptide Charge, Hydrophobicity, isoelectric point, kidera Factors, instability index, etc.) of a biological sequence in a progressive manner. There are three parts in progressive feature extraction: (i) First, the biological sequence is divided into incremental order (e.g. The sequence "RRSFYRIF" is divided as R, RR, RRS, RRSF, RRSFY, RRSFYR, RRSFYRI, RRSFYRIF) (ii) Second, extract all the 56 physicochemical for every part (iii) Merge all the calculated values using mathematical models (such as Entropy, Fourier and Complex Networks) in vertical order. However, this type of feature extraction technique calculates the same number of features for all the biological sequences even though they differ in length. This type of feature extraction may extract significant discriminatory and relevant information from biological sequences. As a case study, we analyze the 600 peptide sequences of varying length and try to classify as epitopes or non-epitopes. A web service is developed that extract the features of biological sequences in a progressive manner (www.mltool.in/ProgressiveFeatureExtraction).

Keywords: Progressive Features, Feature Extraction, Biological Sequences, Entropy, Fourier, Epitopes.

Methodology:

PART 1				Progress	ive Feature	Extracti	on for sequence	"RRSFYRIF"					
		aliphatic	boman		molecular	peptid		isoElectric	1	instability	+	+	
	Sequence	Index	Index	Index	Weight	Charge	Hydrophobibity	Point	Factors	index			
	R	25.32	56.20	44.88	6.34	85.45	17.46	60.74	13.75	46.84			
	RR	13.96	92.10	11.25	9.17	1.70	14.49	81.66	50.60	33.04			
	RRS	34.71	71.24	23.61	8.47	35.82	69.60	13.91	78.93	60.71			
	RRSF	35.47	49.07	64.57	18.55	57.85	14.32	20.35	21.44	15.47			
	RRSFY	13.60	4.99	22.82	35.12	14.29	46.43	61.64	45.77	56.33			
	RRSFYR	82.59	87.48	5.54	58.01	47.78	40.02	58.48	61.12	10.06			
	RRSFYRI	48.12	86.86	51.23	44.15	18.13	11.01	45.51	7.47	66.78			
	RRSFYRIF	21.68	37.29	5.21	74.72	20.73	9.17	2.35	63.08	48.71	T	T	
PART 2											T		
	min	13.60	4.99	5.21	6.34	1.70	9.17	2.35	7.47	10.06	T	T	
	Max	82.59	92.10	64.57	74.72	85.45	69.60	81.66	78.93	66.78			
	SD	22.70	30.01	22.39	25.56	27.41	21.84	27.81	25.83	20.85			
PART 3													
				SD					Max			\top	
		Min	Max	aliphati	Min	Max	SD	Min	homen	SD			
		aliphatic	aliphatic	c	boman	boman	boman	homent	t	homent			
	Sequence	Index	Index	Index	Index	Index	Index	Index	Index	Index	 		
	RRSFYRIF	13.60	82.59	22.70	4.99	92.10	30.01	5.21	64.57	22.39	 		
	ASDQWE	41.63	43.35	41.87	15.30	84.35	25.63	55.00	22.20	23.75	 		_
	ZXCGFD	19.70	22.18	27.78	14.41	24.59	77.29	19.39	31.33	41.57	 _	-	
	RTYR	33.21	37.26	20.76	26.32	19.12	56.01	61.36	68.93	96.39	 _	_	_
	NBVDGDGDFG	39.94	35.94	39.88	31.85	78.42	25.38	40.32	61.41	31.65	 		_
	XXCV	48.34	15.95	83.10	18.95	18.97	17.85	43.67	11.34	20.35	 	-	_
	WRWERRW	26.97	18.74	14.78	941.38	37.76	31.62	59.34	48.69	19.18	 _	-	_

Physicochemical Properties Description

Feature	Count	Features	Description
Code			
F1	1	F1	
F2	2	F2_1	
		F2_2	
F3	5	F3_1	
		F3_2	
		F3 3	
		F3_4	
		F3_4 F3_5	
F4	10	10	

Mathematical Functions

Feature Code	Parameters	Description
F1	1	
F2	2	
F3	5	
F4	10	