6. Intermediate state

Demagnetization

Without the specimen

$$\oint \mathbf{H} \cdot d\mathbf{l} = \int_{AB} \mathbf{H}_a \cdot d\mathbf{l} + \int_{BCDEFA} \mathbf{H}'_{ext} \cdot d\mathbf{l} = Ni$$

With the specimen

$$\oint \mathbf{H} \cdot d\mathbf{l} = \int_{AB} \mathbf{H}_{in} \cdot d\mathbf{l} + \int_{BCDEFA} \mathbf{H}_{ext} \cdot d\mathbf{l} = Ni$$

Due to the diamagnetism of the specimen, $\mathbf{H}'_{ext} > \mathbf{H}_{ext}$

Therefore,
$$\mathbf{H}_a < \mathbf{H}_{in}$$
 $(\mathbf{B}'_{ext} > \mathbf{B}_{ext})$

For a paramagnetic specimen, we have $\mathbf{H}'_{ext} < \mathbf{H}_{ext}$ and $\mathbf{H}_a > \mathbf{H}_{in}$

The magnetic field is reduced, called demagnetization

Demagnetizing factor

$$\mathbf{H}_{in} = \mathbf{H}_{a} - \mathbf{H}_{D}$$
Demagnetizing field

The demagnetizing field is not uniform for specimens of general shape

For a ellipsoid, the demagnetizing field is uniform and is parallel to the external field

$$\mathbf{H}_{in} = \mathbf{H}_a - n\mathbf{M}$$

n is called the demagnetizing factor

For a superconductor
$$\mathbf{M} = -\mathbf{H}_{in}$$
 $\mathbf{H}_{in} = \left(\frac{1}{1-n}\right)\mathbf{H}_{a}$ $\mathbf{H}_{in} = \mathbf{H}_{a} + n\mathbf{H}_{in}$

For a long thin wire

$$H_{\parallel}$$
 $n=0$ H_{\perp} $n=1/2$

Sphere n=1/3

Magnetic transition

In superconducting state

$$H_a > (1-n)H_C$$

$$H_{in} > H_C$$

 $\mathbf{H}_{in} = \left(\frac{1}{1-n}\right)\mathbf{H}_{a}$

The transition should occur

In normal state M=0

$$H_{in} = H_a < H_C$$

 $H_{in} = H_a < H_C$ The normal state is not stable

The coexisting of superconducting and normal states is formed

for
$$(1-n)H_C < H_a < H_C$$

called intermediate state

NS Boundary

Some restrictions for a stationary boundary between a superconducting and a normal region

From the electrodynamics, we have

$$H_{\parallel}^{(n)} = H_{\parallel}^{(s)}$$
 $B_{\perp}^{(n)} = B_{\perp}^{(s)}$ $B_{\perp}^{(n)} = B_{\perp}^{(s)} = 0$ $H_{\parallel}^{(n)} = H_{\parallel}^{(s)} = H_{C}$

$$B^{(n)} = \mu_0 H^{(n)} \mid B^{(s)} = 0$$

$$H^{(n)} \ge H_C \mid H^{(s)} \le H_C$$

$$N \mid S$$

The boundary should be parallel to the external field

Magnetic properties

The average flux density in the ellipsoid body

$$\overline{B} = \eta B_n$$

$$B_n = \mu_0 H_{in}$$
 $\overline{B} = \eta \mu_0 H_{in}$

$$\eta = \frac{n}{x_n + x_s}$$

average magnetization $\overline{M} = \frac{B}{\mu_0} - H_{in}$ $\overline{B} = \mu_0 \left(H_{in} - \overline{M} \right)$

$$H_{in} = H_a - nM = H_a - n\left(\frac{\overline{B}}{\mu_0} - H_{in}\right) = H_a - n(\eta - 1)H_{in}$$

$$H_{in} = H_a / [1 - n(1 - \eta)] = H_C$$

Gibbs free energy

$$dG = -\mu_0 M dH_a$$

$$G(H_a) = G(0) - \mu_0 \int_0^{H_a} M dH_a$$

(I)
$$0 < H_a < (1-n)H_C$$

 $M = -H_a$

$$G(H_a) = Vg_s(0) + \frac{V\mu_0 H_a^2}{2(1-n)}$$

$$(II) (1-n)H_C < H_a < H_C$$

$$M = (\eta - 1)H_{in} = (\eta - 1)H_C$$

$$G(H_a) = Vg_s(0) + \frac{V\mu_0 H_C}{2n} \left[H_a \left(2 - \frac{H_a}{H_C} \right) - H_C(1-n) \right]$$

(III)
$$H_C < H_a$$

 $G(H_a) = Vg_s(0) + \frac{V\mu_0 H_C^2}{2} = Vg_n$

Lower free energy

Experimental observations

1. MR sensor

2.Use ferromagnetic powders

3.Use superconducting powders

4.Polarized light: Faraday effect

 $H_C' \sim 0$

For a thin film: n = 1 - t/2a

The Domain

$$\eta = \frac{x_n}{x_n + x_s}$$

Can be determined

The size of the domain?

The NS boundary accompanies with a surface energy

The energy is proportional to the boundary area

Negative surface energy No Meissner effect

Intermediate state in a flat slab

Landau's work (1937)
Periodic laminar structure
surface energy per area

$$a = \frac{1}{2} \mu_0 H_C^2 \Delta$$

The free energy: F_1 and F_2

Surface energy

Non-uniform field outside the slab

$$F_1 = \frac{2da}{D} = \frac{2d\Delta}{D} \left(\frac{1}{2} \mu_0 H_C^2 \right)$$
 Surface energy per unit area of the slab

The non-uniform field region extend to a distance, $L \sim \min(x_n, x_s)$

$$L \simeq \frac{1}{x_n^{-1} + x_s^{-1}} = \eta (1 - \eta) D \qquad \eta = \frac{x_n}{x_n + x_s}$$

Total free energy

$$F_{1} + F_{2} = \frac{1}{2} \mu_{0} \left[\frac{2d\Delta}{D} H_{C}^{2} + \eta^{2} (1 - \eta)^{2} D H_{n}^{2} \right]$$

Minimize F with respect to D

$$D \approx \frac{\sqrt{d\Delta}H_C}{\eta(1-\eta)H_n}$$

A refined calculation yields

$$\frac{H_C}{\eta (1-\eta)H_n} = \frac{H_C}{(1-\eta)H_a}$$

$$\frac{x_s}{d} = \frac{D(1-\eta)}{d} \sim \frac{\sqrt{\Delta/d}}{H_a/H_c}$$

 $D^{2} = \frac{2d\Delta H_{C}^{2}}{n^{2} (1-n)^{2} H_{C}^{2}}$

Restoration of resistance

$$H_{\perp}$$
 $n=1/2$

$$H_{C}^{'} = 0.5 H_{C}$$

Because of a positive surface energy

$$H_{C}^{'} > 0.5 H_{C}$$

Surface energy

Coherence: proposed by A. B. Pippard in 1957

The number density of super electrons n_s , cannot change rapidly with position

Coherence length
$$\xi$$
 ~10⁻⁴cm
Impurity effect ξ ~ $\sqrt{\xi_0 l_e}$

A hint of the coherence: extreme sharpness of the transition

 ΔT can be as small as 10⁻⁵ K

Normal

Superconducting

(a) Penetration depth and coherence range at boundary

$$a = \frac{1}{2} \mu_0 H_C^2 \Delta \qquad \Delta \sim (\xi - \lambda)$$

For Pb or Sn, $\Delta \sim 5 \times 10^{-5}$ cm

$$\lambda \sim 3.9 \times 10^{-6} \text{cm}$$

$$\Delta \simeq \xi \gg \lambda$$

 ξ is temperature dependent and increases at higher temperature

At T_C , ξ becomes infinite

Homework

- 1. Show that the demagnetizing factor of a sphere is 1/3.
- 2. Evaluate the surface energy per area by assuming that the position dependence of the n_s obeys the exponential law, i.e. $n_s \sim n_s(0) \left(1 e^{-x/\xi}\right)$, in which x is the distance from the NS boundary and $n_s(0)$ is the number density deep inside the superconduting region.

7. Transport currents in superconductors

Critical currents

The transport current generates a magnetic field, which is screened by a surface current.

A superconducting wire loses its zero resistance when the total magnetic field strength exceeds the critical field strength at any point on the surface.

In the absence of external field

$$2\pi aH_i = i$$

$$2\pi aH_C = i_C$$

In a longitudinal field

$$H_C^2 = H_a^2 + (i_C/2\pi a)^2$$

In a transverse field

$$H_C = 2H_a + i_C/2\pi a$$

Demagnetizing factor

Longitudinal field

transverse field

Intermediate state induced by a current

Once the current exceeds i_c , the wire cannot have a superconducting cylindrical core.

When the current is uniformly distributed, the field inside the superconducting wire becomes smaller than H_C

An intermediate state with a non-zero resistance

London's model

F. London (1937)

normal

intermediate state

In the intermediate state

$$H(r) = H_C$$

Current density

$$H(r) = \frac{i(r)}{2\pi r} \qquad i(r) = 2\pi r H_C$$

$$i(r) = 2\pi r H_C$$

$$J(r) = \frac{1}{2\pi r} \frac{di}{dr} = \frac{H_C}{r}$$

From
$$\rho(r)J(r) = E$$

$$\rho(r) \propto r$$

$$J(r) = \frac{Er_1}{\rho r}$$
 Resistivity ρ tant of r $r_1 = \frac{H_C \rho}{E}$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

 $\nabla \times E = -\frac{\partial B}{\partial t}$ Electric field is constant of r

$$r_1 = \frac{H_C \rho}{F}$$

The total current in the core should generate H_C at the core surface

$$J(r) = \frac{Er_1}{\rho r} \qquad i_1 = i(r_1) = 2\pi r_1 H_C = \frac{2\pi \rho H_C^2}{E}$$

The current in the outer shell is

$$i_{2} = \frac{E}{\rho} \pi \left(a^{2} - r_{1}^{2}\right) = \frac{\pi a^{2} E}{\rho} - \frac{\pi \rho H_{C}^{2}}{E}$$

$$i = i_{1} + i_{2} = \frac{\pi a^{2} E}{\rho} + \frac{\pi \rho H_{C}^{2}}{E}$$

$$E = \frac{2\rho i}{\pi a^{2}} \left\{ 1 \pm \left[1 - \frac{i_{C}}{i}\right]^{1/2} \right\} \qquad i_{C} = 2\pi a H_{C}$$

$$\stackrel{R}{\Longrightarrow} \frac{1}{2} \left\{ 1 \pm \left[1 - \frac{i_{C}}{i}\right]^{1/2} \right\} \qquad \text{For } i > i_{C}$$

Suggested structure of the intermediate state