AMENDMENTS

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of the Claims:

1.-55. (Withdrawn)

56. (Previously Presented) A substrate for analyzing a nucleic acid, the substrate comprising:

a cavitated fiber optic wafer formed from a fused bundle of a plurality of individual optical fibers, each individual optical fiber having a diameter between 3 and 100 µm, the wafer

.

comprising a top surface and a bottom surface, the top surface comprising at least 10,000 wells,

wherein said wells are etched into the top surface of the cavitated fiber optic wafer and wherein

the thickness of the wafer between the top surface and the bottom surface is between 0.5 mm and

5.0 mm in thickness; wherein the depth of each well ranges from between one half the diameter

of an individual optical fiber and three times the diameter of an individual optical fiber; and

wherein a plurality of wells on the top surface of the cavitated wafer have a nucleic acid disposed

therein; and

a plurality of beads disposed within wells on the top surface of the cavitated wafer, said

beads having a pyrophosphate sequencing reagent attached thereto.

57. (Previously Presented) The substrate of claim 56, wherein the nucleic acid immobilized

on the wells or on said beads.

58. (Previously Presented) The substrate of claim 56, wherein the diameter of each individual

optical fiber in the cavitated wafer is between 6-50 μm.

59. (Previously Presented) The substrate of claim 58, wherein the fiber optic surface includes

two or more nucleic acids separated by approximately 10 µm to approximately 200 µm.

2

Applicants: Rothberg, et al.

U.S.S.N. 09/814,338

60. (Previously Presented) The substrate of claim 58, wherein the fiber optic surface includes two or more nucleic acids separated by approximately 10 µm to approximately 150 µm.

61. (Previously Presented) The substrate of claim 58, wherein the fiber optic surface includes

two or more nucleic acids separated by approximately 150 µm.

62.-63. (Cancelled)

64. (Previously Presented) The substrate of claim 56 wherein the wafer further comprises 10³

or more groups of nucleic acid sequences in said wells.

65. (Previously Presented) The substrate of claim 64, wherein said substrate comprises 10⁴ or

more different groups of nucleic acid sequences in discrete known regions.

66. (Previously Presented) The substrate of claim 64, wherein said substrate comprises 10⁵ or

more different groups of nucleic acid sequences in discrete known regions.

67. (Previously Presented) The substrate of claim 64, wherein the nucleic acid sequences are

attached to the wells or beads by a linker.

68. (Previously Presented) The substrate of claim 64, wherein the nucleic acid sequences are

covalently attached to the wells or beads.

69.-83. (Cancelled)

84. (Previously Presented) An apparatus for processing a plurality of nucleic acids, the

apparatus comprising:

a flow chamber having disposed therein a cavitated fiber optic wafer;

3

a cavitated fiber optic wafer formed from a fused bundle of a plurality of individual optical fibers, each individual optical fiber having a diameter between 3 and $100 \mu m$, the wafer comprising a top surface and a bottom surface, the top surface comprising at least 10,000 wells, wherein said wells are etched into the top surface of the cavitated fiber optic wafer and wherein the thickness of the wafer between the top surface and the bottom surface is between 0.5 mm and 5.0 mm in thickness; wherein the depth of each well ranges from between one half the diameter of an individual optical fiber and three times the diameter of an individual optical fiber; and wherein a plurality of wells on the on the top surface of the cavitated wafer have a nucleic acid disposed therein;

a plurality of beads disposed within wells on the top surface of the cavitated wafer, said beads having a pyrophosphate sequencing reagent attached thereto;

fluid means for delivering pyrophosphate sequencing reagents, including sequential delivery of nucleotide triphosphates, from one or more reservoirs to the flow chamber so the nucleic acids disposed on beads in the wells on the top surface of the fiber optic wafer are exposed to the reagents; and

detection means for detecting optical signals from each well, wherein said detection means is in communication with the wells, each optical signal being indicative of reaction of the pyrophosphate sequencing reagents with the nucleic acid in a well.

- 85. (Previously Presented) The apparatus of claim 84, wherein the diameter of each individual optical fiber in the cavitated wafer is between 6-50 µm.
- 86. (Previously Presented) The apparatus of claim 85, wherein said detection means is a CCD camera.
- 87. (Previously Presented) The apparatus of claim 84, wherein the nucleic acid is DNA.
- 88. (Previously Presented) The substrate of claim 56 wherein the substrate has a polished fiber optic surface opposite to the cavitated fiber optic surface.

Applicants: Rothberg, et al.

U.S.S.N. 09/814,338

89. (Previously Presented) The substrate of claim 88 wherein the polished surface allows for

optical coupling to a second optical fiber.

90. (Previously Presented) The substrate of claim 56 wherein the cavitated fiber optic wafer

is coated.

91. (Previously Presented) The substrate of claim 90 wherein the coating is selected from the

group consisting of plastic, gold layers, organosilane reagents, photoreactive linkers, hydrophilic

polymer gels and pluronic polymers.

92. (Previously Presented) The substrate of claim 56 wherein said sequencing reagent is

luciferase.

93. (Previously Presented) The substrate of claim 56 wherein said sequencing reagent is

sulfurylase.

94.-95. (Cancelled)

96. (Previously Presented) The apparatus of claim 84 wherein the cavitated fiber optic wafer

is coated.

97. (Previously Presented) The apparatus of claim 96 wherein the coating is selected from the

group consisting of plastic, gold layers, organosilane reagents, photoreactive linkers, hydrophilic

polymer gels and pluronic polymers.

98. (Previously Presented) The apparatus of claim 84 wherein said sequencing reagent is

luciferase.

99. (Previously Presented) The apparatus of claim 84 wherein said pyrophosphate sequencing

reagent is sulfurylase.

5