

Levure

Bactéries

Microbiologie

Champignons

Virus

Assiradara grazilara Strayania valitica Augusta valitica va

Spores

Parcours de la microbiologie à l'ISARA

- 1^{ère} année :
 - 1. Microbiologie Générale
- 2ème année : SNV S3 et S4 (M-H. Chatain)

Micro-organismes 53 (M-H. Chatain):

- 2. Nutrition Bactéries
- 3. Croissance Bactérienne
- 4. Métabolismes
- 5. Taxonomie

Micro-organismes S4:

- 1. Microbiologie de l'homme (M-H. Chatain)

 Ecosystème digestif
- 2. Microbiologie des eaux (M-H. Chatain)
- 3. Microbiologie du sol (J-F. Vian)
- 3^{ème} année : UP transformation des produits alimentaires (Y. Demarigny)
- 4ème année : Qualité, Sécurité, Environnement
- 5ème année : CIPAL, GIDE, MFE

Plan de cours Micro-organismes 53

- 1. Microbiologie générale (1ère année)
- 2. Nutrition bactériene
- 3. Croissance bactérienne
- 4. Métabolismes
- 5. Taxonomie

4 cours de 1,5 h et 4TPs de 2H

Contrôl du TP = 30 % de la note finale

Examen écrit = 70 % de la note finale

Diversité des micro-organismes

Procaryotes

Eucaryotes

Virus

Introduction Taille des micro-organismes

Rappel: Procaryotes

Structure d'une cellule procaryotes (bactéries)

Rappel: Eucaryotes

virus

- = diamètre de 20nm
- = ce ne sont que des gènes enfermés dans une coque protéique

Cours 2: Nutrition des micro-organismes

- I Besoins nutritionnels
- II Entrée des éléments
- III Milieux de culture

2. Nutrition bactérienne

I - Besoins nutritionnels

Tous les micro-organismes ont besoin :

eau, source de carbone, source d'énergie, sources d'azote et d'éléments minéraux...

Certains nécessitent un facteur de croissance

2. Nutrition bactérienne

I - Besoins nutritionnels

- A- Macro-éléments (macronutriments)
 - 1 Source de carbone
 - 2 Source d'azote
 - 3 Source de soufre et de phosphore
- B- Micro-éléments (oligoéléments)
- C- Source d'Énergie
- D Facteurs de croissances pour certains

I - Besoins nutritionnels

A- Macroéléments

1 - Source de carbone

Bactéries autotrophes

· CO2 comme seule source de carbone

Exemples: Cyanobactéries

 $\frac{6\text{CO}_2 + 6\text{H}_2\text{O}}{6\text{CO}_2 + 6\text{O}_2} = \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$

Bactéries hétérotrophes

- · composés organiques
- · rôle du CO2

Exemples: Escherichia coli

CO₂ + CH₃-CO-COOH = HOOC-CH₂-CO-COOH Acide pyruvique acide oxaloacetique

A- Macroéléments

2-Source d'azote

- Composés inorganiques :
 - -Ammoniaque, sels d'ammonium
 - Nitrites et Nitrates
- N2 organique : R-NH2

3- Source de Soufre et de Phosphore

- Soufre : sous forme de sulfate ou composés soufrés organiques (biotine, thiamine)
- Phosphore: sous forme de phosphate inorganique.

B - Micro-éléments

Na, K, Mg et le Cl2 (mg/l)

- Jouent un rôle dans l'équilibre physico-chimique de la cellule et le maintien d'un pH constant
- -Activité enzymatique, stabilisation des ribosomes et des membranes.

D'autre éléments : Fer; Mn, Mg, Vanadium...

Jouent le rôle de cofacteurs ou d'activateurs enzymatiques

I - Besoins nutritionnels

C-Source d'énergie

Deux types de sources d'énergie

Phototrophes Énergie : lumière

Chimiotrophes
Composés minéraux ou organiques

I - Besoins nutritionnels

Source d'énergie

La diversité métabolique

	Туре	Source d'énergie	Source de carbone
Photo	autotrophes	Soleil	<i>C</i> O2
Chimic	pautotrophes	Matière inorganique	CO2
Photo	hétérotrophes	Soleil	Composés organiques
Chimic	phétérotrophes	Composés organiques	Composés organiques

Exemples de Chimio-hétérotrophes

B - Besoins spécifiques-Facteurs de croissance

Prototrophes

facteurs de croissance

Auxotrophes

ne nécessitent pas de nécessitent des facteurs de croissance

Facteur de croissance **#** Métabolite essentiel

Présent dans l'environnement Synthétisé par bactéries

Exemple : Facteurs de croissance

Ex : E. coli est capable de se développer dans un milieu avec une source de Carbone et d'N et des sels minéraux.

P. Vulgaris, une autre entérobactérie est totalement incapable.

A moins qu'on rajoute au milieu de la nicotinamide.

Cette substance est synthétisée chez *E. coli* mais pas chez *Pr. Vulgaris*.

Certaines bactéries n'exigent qu'un seul facteur de croissance, d'autres nécessitent un très grand nombre, certains Lactobacillus exigent 18 acides aminés dans le milieu.

Facteurs de croissance

Trois classes principales:

- Acides aminés
- Purines et pyrimidines
- Vitamines

Peut être proportionnelle à la croissance

- · Diffusion facilitée
 - ·Diffusion passive
 - ·Diffusion facilitée
- Transport actif
- Translocation de groupes

Diffusion simple = Passive

Suit le gradient de concentration Va du plus concentré au moins concentré

Diffusion facilitée

- Suit le gradient de concentration
- Grâce aux protéines de transport canal ou perméase

Diffusion passive et facilité

Transport actif

- Va à l'encontre du gradient de concentration
- Besoin d'une protéine transporteur et d'énergie

Transport actif

ATPasique

Gradient chimiques

Translocation de groupe

Modification chimiques

Le plus connu est la phosphotransférase

PEP + sucre (extérieur) → pyruvate + sucre (intérieur) - P

Exemple: Les transports chez E.coli

III - Culture des bactéries

Milieux de culture : généralités

- Leurs caractéristiques varie de même que leur composition.
- Utilisés pour l'isolement et la maintenance de cultures pures et aussi pour les identifications.
- Recherche, diagnostic, fermentations industrielles.

Milieux de culture : généralités

Composition d'un milieu minimum:

- Une source de carbone et d'énergie, généralement le glucose.
- Une source de potassium et de phosphore: K2HPO4
- Une source d'azote et de soufre: (NH4)2504
- Une source de magnésium: MgCl2
- Une source de calcium: CaCl2
- Une source de fer: on emploie le citrate de fer
- Une source d'oligo-élements: sels de Cu, Zn, Co, Ni, B, Ti
- Une source d'eau, (stérile)
- Un tampon pH: KH2PO4 par exemple

- Selon la composition
- Selon la consistance
- Selon l'utilisation

Selon la composition

Trois types de milieux

- a- Milieux naturels = milieux complexes non définie
- b- Milieux Synthétiques = Milieux Définis
- c- Milieux semi-synthétiques

a-Milieux naturels ou complexe

- * Très utilisés
- Contenant des composants indéfinis :
 - Peptones

Peptetons pepsiques, peptones trysiques... de viande Source de carbone, d'énergie, d'azote

> Extraits de viande

Extrait de bœuf : riche en acides aminé, vitamines, peptides, nucléotides, acides organiques, minéraux...

> Extraits de levures

Vitamine B, carbone, azote...

a-Milieux naturels ou complexes

Exemple:

Bouillon nutritif (g/l)

Peptone 5
Extrait de bœuf 3

Bouillon de soja

Tryptone (Peptone de caséine)	17
Peptone	3
Glucose	2,5
NaCl	5
K ₂ HPO ₄	2,5

b- Milieux Synthétiques = milieux définis Importants pour bactéries <u>exigent les nutriments</u> Exemple :

Component	Amount	Function of component
NH4Cl	0.52 g	N source
KH2PO4	0.28 g	P and K source
MgSO4 7H2O	0.25 g	S and Mg++ source
CaCl2 2H2O	0.07 g	Ca++ source
s <mark>oufre minérale</mark>	1.56 g	Energy source
C02	5%*	C source
W ater	1000 ml	
р <mark>Н</mark> 3.0		

^{*} Aerate medium intermittently with air containing 5% CO2.

c- Milieux semi-synthétiques

Ils contiennent en plus, certains composés favorisant la croissance comme l'extrait de levure (acides aminés + vitamines) ou une peptone

Ex : la gélose EMB (milieu de Teague-Levine)

C'est un milieu qui est <u>à la fois séléctif et différentiel</u> utilisé pour isoler les Gram – , entériques.

Peptone	10g
Phosphate dipotassique	2g
Lactose	10g
Eos ine	0.4g
Bleu de méthylène	0,065g
Agar-agar	15g
Eau distillée qsp	1000m

Selon la consistance : liquide et Solide

Liquides : Bouillons de culture

En tubes

En flacons

Croissance bactérienne = trouble du bouillon

Ex: bouillons d'hémoculture

mhchatain@isara.fr

Selon la consistance : liquide et Solide

Solides : Milieux gélosés en boîtes de pétri

L'agar : polysaccharide extrait d'algue marine \rightarrow gélifiant

Selon l'utilisation

- a- Milieux sélectifs
- b- Milieux d'enrichissement

a- Milieux sélectifs : exemples

Ex1: Milieu de Chapman: Staphylococcus

Peptone 10g

Extrait de viande 1g

Mannitol 10g

NaCl 75g

Rouge de phénol 0,025g

Agar-agar 15g

Eau distillée 1000ml

L'agent inhibiteur est le NaCl à concentration de 75% qui permet principalement la culture de *Staphylococcus*.

Rouge de Phénol = indicateur de pH.

- Si le milieu reste rouge : pas de dégradation de mannitol
- Si le milieu devient jaune, acidification donc, dégradation du mannitol.

Exemple: Milieux sélectifs ou enrichissement

- Staphylococcus aureus (Chapman)

Staphylococcus aureus

- Milieu de Chapman
 - -75 g/l NaCl + mannitol

b- Milieux d'enrichissement

Exemple: Milieu de Muller-Kauffmann

Bouillon de viande	900ml
Carbonate de Ca (tampon)	0,5g
Thiosulfate de Na à 50%	100ml
Solution iodo-iodurée	20ml
Vert brillant	0,01g
Bile	50ml

Ce milieu est destiné à rechercher Salmonella par coproculture.

Il permet d'enrichir en Salmonella et inhiber et retarder la croissance des autres espèces fécales à Gram positif et à Gram négatif.

- La bile inhibe les Gram + et certains bacilles Gram- principalement $E.\ coli.$

Résumé

- Besoins nutritifs
- Facteurs de croissance
- Comment les micro-organismes transportent des nutriments
- Décrire des différents types de milieux de culture

questions??>