STAT 443: Lab 6

Aronn Grant Laurel (21232475)

14 February, 2022

Question 1

(a)

(b)

```
# this is where your R code goes
fig.height=8
par(mfrow = c(3, 1), mar = c(4, 4, 2.5, 1))
# Time series plot
plot(summer_ts,
    main = "Summer Minimum Temperatures",
    ylab = "Temperature",
    xlab = "Year",
    col = "blue")
# sample acf
acf(summer_ts,
   main = "Autocorrelation Function (ACF) of Summer Temperatures",
                                                                    col = "red")
# sample pacf
pacf(summer_ts,
    main = "Partial Autocorrelation Function (PACF) of Summer Temperatures",
    col = "red")
```


Autocorrelation Function (ACF) of Summer Temperatures

Partial Autocorrelation Function (PACF) of Summer Temperatures

(c) For our time series plot, we see an noticable increasing trend over time from 1920 to 2000 meaning that there is a general increase in summer minimum temperature over the years.

For the ACF plot, we can observe slowly decaying positive autocorrelation at lags 0-15, suggesting a strong trend in the time series.

For the PACF plot, we see significant autocorrelation at lag 1, 2, and 5 while the other lags seem to stay within the boundary line.

(d) In our ACF function, we see patterns throughout with no cut off in patterns, therefore q = 0. In our PACF function, we observe a cut off at lag 2, therefore p = 2

Hence, I believe an ideal model would be ARMA(2,0)

Question 2

(a)

```
# this is where your R code goes
fit <- arima(summer_ts, order = c(2, 0, 0))
fit</pre>
```

```
##
## Call:
## arima(x = summer_ts, order = c(2, 0, 0))
##
```

```
## Coefficients:  
## ar1 ar2 intercept  
## 0.4297 0.3466 7.1615  
## s.e. 0.0986 0.0994 0.3482  
## ## sigma^2 estimated as 0.607: log likelihood = -105.65, aic = 219.3  
X_t = 7.1615 + 0.4297X_t - 1 + 0.3466X_t - 2 + Z_t
```

Question 3

```
# this is where your R code goes
confint(fit)

## 2.5 % 97.5 %
## ar1 0.2364843 0.6228622
## ar2 0.1517571 0.5413514
## intercept 6.4789359 7.8439979
```

We can observe the true values of ar1, ar2, and the true mean to be between the values given above.

Question 4

We observe fluctuations and oscillations from 2 to -2 for our standardized residual plot.

For our ACF plot, we can see an osciliation within the boundary for all lags starting lag = 1. Mo significant autocorrelation at any lag suggests that our model captures the temporal dependence in our data well.

For our p values, we see most p-values are well above 0.05 across different lags which indicates that we fail to reject the null hypothesis of no autocorrelation.

Overall, I believe my ARMA(2,0) model fits well because there are no significant autocorrelation in our residuals and it does not exhibit any patterns.