Week 0 of the INDIA RISC-V Chip Takeout Program (with IIT Gandhinagar) focused on learning the chip design flow, creating a GitHub repo, and setting up tools for future labs.

This week I learned how a chip is designed step by step:

C Model (O0 & O1): First, we write the chip's functions in C and test it with a C testbench. GCC is used to run and check the outputs.

RTL Design (O2): The hardware is described in Verilog (RTL). Same testbench is used to check if RTL behaves like the C model.

Synthesis (O3): RTL is converted into a gate-level netlist. Then SoC is built with processor, peripherals, macros, and IPs. Steps like floorplanning, placement, CTS, routing, and checks (DRC/LVS) are done.

Final Chip (O4): Chip runs at target speed (100–130 MHz). The design is verified again so every stage ($C \rightarrow RTL \rightarrow Netlist \rightarrow Final Chip$) gives the same result.

Such chips are used in smartwatches, Arduino, TVs, ACs, etc.

Key Idea: Each stage must match the original design to avoid errors before fabrication.

Tasks

Task 1 – GitHub Setup

Created a repository.

Added this summary.

Will store logs, screenshots, and updates there.

Task 2 – Tool Installation (In Progress)

Need to install these on Ubuntu 20.04 (VirtualBox):

- Yosys
- Icarus Verilog (iverilog)
- GTKWave
- ngspice

- Magic
- OpenLANE

The commands below are prepared but not executed yet. Actual installation logs and screenshots will be uploaded once Ubuntu setup is complete.

Installation Commands (Ready to Run after it ready)

Yosys

sudo apt-get update git clone https://github.com/YosysHQ/yosys.git cd yosys

sudo apt install make build-essential clang bison flex libreadline-dev gawk tcl-dev libffi-dev git graphviz xdot pkg-config python3 libboost-system-dev libboost-python-dev libboost-filesystem-dev zlib1g-dev

make config-gcc

make

sudo make install

Icarus Verilog

sudo apt-get update sudo apt-get install iverilog

GTKWave

sudo apt-get update sudo apt install gtkwave

Ngspice

tar -zxvf ngspice-37.tar.gz

```
cd ngspice-37
mkdir release && cd release
../configure --with-x --with-readline=yes --disable-debug
make
sudo make install
```

Magic

sudo apt-get install m4 tcsh csh libx11-dev tcl-dev tk-dev libcairo2-dev mesa-common-dev libglu1-mesa-dev libncurses-dev

git clone https://github.com/RTimothyEdwards/magic cd magic ./configure make

OpenLANE

make install

sudo apt-get update && sudo apt-get upgrade
sudo apt install -y build-essential python3 python3-venv python3-pip make git
sudo apt install apt-transport-https ca-certificates curl software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o
/usr/share/keyrings/docker-archive-keyring.gpg

echo "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt update
sudo apt install docker-ce docker-ce-cli containerd.io
sudo docker run hello-world
sudo groupadd docker
sudo usermod -aG docker \$USER
sudo reboot