Poisson Processes

You should solve these problems with as few calculations as possible, relying on properties of Poisson processes as much as possible.

- 1. Calls arrive at a customer service center according to a Poisson process with with $\lambda=3$ calls per minute. Compute and interpret the following quantities.
- a. $\mathrm{E}(N_1)$. b. $SD(N_1)$. c. $P(N_1 = 2)$. d. $P(N_1 = 2, N_3 = 6)$. e. $P(N_1 = 2 | N_3 = 6)$. f. $P(N_3 = 6|N_1 = 2)$. g. $E[N_{15}|N_{10}=8]$ h. $E[N_{10}|N_{15}=8]$. i. $Cov(N_{10}, N_{15})$. j. $Corr(N_{10}, N_{15})$.
- 2. Arrivals of spam emails to your email spam filter follow a Poisson process with mean rate 1.5 spam emails per minute. For the parts below in addition to computing, denote the corresponding probability in terms of proper symbols and notation.
- a. Compute the probability that exactly 4 spam emails arrive to the filter in the next 2 minutes.
- b. Compute the conditional probability that more than 3 minutes elapse, starting now, before the next spam email arrives, given that the most recent spam email arrived 2 minutes ago.
- c. Compute the probability that the next spam email arrives some time after 3 minutes but before 5 minutes from now.
- d. Compute the probability that exactly one spam email arrives in the time interval from 3 minutes to 5 minutes
- e. If only 1 spam email arrives in the next 5 minutes, compute the conditional probability that it arrives in the next minute.
- f. Compute the conditional probability that 2 spam emails arrive in the first minute, given that 5 spam emails arrive in the first 3 minutes.