Лабораторная работа 5.4.1

Калинин Даниил, Б01-108

18 сентября 2023 г.

Цель работы: Измерить пробег α -частиц в воздухе двумя способами и определить энергию частип.

В работе используются: торцевой счётчик Гейгера, сцинтилляционный счётчик.

Теоритическая справка:

Явление радиоктивности состоит в самопроизвольном распаде ядер с испусканием одной или нескольких частиц. К числу радиоактивных процессов относятся α - и β -распады (в том числе и K-захват), γ -излучение, деление ядер, а также испускание запаздывающих нейтронов и протонов. В нашей работе мы будем рассматривать первое явление.

При α -распаде исходное родительское ядро испускает ядро гелия (α -частицу) и превращается в дочернее ядро, число протонов и нейтронов которого меньше на две единицы. Функциональная связь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой:

$$lgT_{1/2} = \frac{a}{\sqrt{E}} + b \tag{1}$$

Экспериментально энергию α -частиц удобно определять по величине их пробега в веществе. Они, главным образом, теряют свою энегрию от неупругих столкновений с атомами вещества. Эти столкновения вызывают ионизацию и возбуждение атомов, поэтому такие потери называются ионизационными.

В нашем рабочем диапазоне (от 4 до 9 МэВ) длину пробега можно вычислить с помощью следующей экспериментальной формулы:

$$R = 0.32E^{3/2} \tag{2}$$

где R выражается в сантиметрах, а E- в МэВ.

Экспериментальная установка:

Энергию β -частиц определяют с помощью β -спектрометров. В работе используется магнитный спектрометр с «короткой линзой». На рис. 3 изображена схема установки. А на рис. 2 — общая блок-схема.

Рис. 1. Установка для измерения пробега α -частиц с помощью торцевого счётчика Гейгера

Рис. 2. Установка для измерения пробега α -частиц с помощью сцинтилляционного счётчика

Рис. 3. Схема устройства ионизационной камеры

Ход работы:

1. Для начала воспользуемся счетчиком Гейгера. Снимем зависимость скорости счёта от расстояния x от источника до приёмника. Результаты представлены в таблице 1.

t, c	70.218	40.162	40.212	44.857	76.341	125.074	120.178	40.209
N	907	657	603	612	506	42	26	581
x, MM	10.0	12.0	14.0	16.0	18.0	20.0	25.0	15.0

t, c	40.206	40.206	40.584	51.685	119.884	119.975	120.123
N	568	544	505	502	339	108	47
x, MM	15.5	16.5	17.0	17.5	18.5	19.0	19.5

Таблица 1. Измерения на счётчике Гейгера

2. Построим график $\frac{N}{t}(x)$ и $\frac{d(N/t)}{dx}(x)$ (см. рис. 4). Определим по нем средний и экстраполированный пробег α -частиц. Получаем:

$$R_{cp} pprox 18$$
 мм $R_{ extstyle g} = 19.2 \pm 1.2$ мм

Т. к. $p_{amm}=100$ кПа, т. е. плотность воздуха $\rho\approx 1.184\cdot 10^{-3}~\frac{e}{c M^3}$, то можно перевести величины в $\frac{e}{c M^2}$:

$$R_{cp} \approx 2.1 \cdot 10^{-3}$$
 $\frac{c}{cM^2}$ $R_{\theta} = (2.27 \pm 0.14) \cdot 10^{-3}$ $\frac{c}{cM^2}$

Рис. 4. График N(x)

3. Теперь снимем данные с помощью сцинтилляционного счётчика. Снимем зависимость N(p), результат занесем в таблицу 2.

N 3601 3455 3344 3314 2975 2714 2233 1774 1242 717			1	40	50	1.0	100	125	150	175	200	225
t c 10 10 10 10 10 10 10	N	3601 3455	3344	3314	2975		2233	1774	1242	717	409	180
	t, c	10 10	10	10	10	10	10	10	10	10	10	10

Δp , mm. pt. ct.	250	275	300	325	190	210	240	260	290	310	340
N	93	64	16	3	680	294	119	87	59	7	5
t, c	10	10	10	10	10	10	10	10	10	10	10

Таблица 2. Измерения на сцинтилляционном счётчике

4. Построим график N(p), где $p=p_{amm}-\Delta p,\,p_{amm}=750$ мм. рт. ст. Найдём, аналогично предыдущему пункту, p_{cp} и p_{\jmath} . Получаем:

$$p_{cp} \approx 147$$
 мм. $pm.~cm.$
 $p_{\vartheta} = (228 \pm 41)$ мм. $pm.~cm.$

Рис. 5. График N(p)

5. Пересчитаем пробег к R при p=760 мм. рт. ст. и T=288 К. Учтём, что общая длина установки 9 см.

$$R_{cp} \approx 17 \text{ MM} = 2 \cdot 10^{-3} \frac{e}{cM^2}$$

 $R_{\theta} = (27 \pm 6) \text{ MM} = (3.2 \pm 0.7) \cdot 10^{-3} \frac{e}{cM^2}$

6. Отсюда найдём толщину слюды:

$$l = 1.2 \cdot (R_{II} - R_I) = (10 \pm 7) \cdot 10^{-3} \frac{\epsilon}{\epsilon_{M}^2}$$

7. Вычислим по формуле (2) энегрию α -частиц:

$$E = (4 \pm 1) M \ni B$$

Табличное значени – $E=5.15~{
m M}{
m s}{
m B}$. Таким образом, полученные данные совпадают с табличными в рамках погрешности.

8. Приступим к измерениям с помощью ионизационной камеры. Исследуем зависимость I(p). Результаты представлены в таблице 3.

	Δp , mm. pt.	CT.	30	50	75	100	125	150	178	200	225	250	
	I , πA		25	55	92	125	166	203	242	274	322	362	
	Δp , MM. p	т. ст.	27	5 3	00	325	350	375	400	425	450	475	
	I , πA		408	8 4	50	492	538	585	630	685	725	778	
Δp	мм. рт. ст.	500	530	0 5	50	575	600	625	650	675	700	725	750
	I , πA	826	87	5 9	00	914	916	915	908	906	897	891	890

Таблица 3. Метод ионизационной камеры

- 9. Изобразим зависимость на графике (рис. 6).
- 10. Из графика находим, что:

$$p_{2} = (569 \pm 10) \text{ MM. pm. cm.}$$

11. Далее найдём величины из предыдущих пунктов. Учтём, что $0.5~{\rm cm}$ и $10~{\rm cm}$ — диаметры первого и второго электродов.

$$R_{\theta} = (3.40 \pm 0.07) \cdot 10^{-3} \frac{e}{cM^2}$$

 $E = (4.8 \pm 0.1) M_{\theta}B$

Заключение:

В ходе лабораторной работы был измерен пробег α -частиц в воздухе двумя способами и определена энергию частиц. Данные совпали с табличными по порядку величины.

Рис. 6. Зависимость I(p)