

Real Numbers Ex 1.4 Q11

Answer:

GIVEN: A circular field has a circumference of 360 km. Three cyclists start together and can cycle 48, 60, and 72 km a day, round the field.

TO FIND: When they meet again.

In order to calculate the time when they meet, we first find out the time taken by each cyclist in covering the distance.

Number of days 1 st cyclist took to cover 360 km = $\frac{\text{Total distance}}{\text{Distance covered in 1 day}} = \frac{360}{48} = 7.5 = \frac{75}{10} = \frac{15}{2} \text{ days}$

Similarly, number of days taken by 2^{nd} cyclist to cover same distance = $\frac{360}{60}$ = 6 days

Also, number of days taken by 3^{rd} cyclist to cover this distance $=\frac{360}{72}=5$ days Now, LCM of $\left(\frac{15}{2},\ 6\ \text{and}\ 5\right)=\frac{\text{LCM of numerators}}{\text{HCF of denominators}}=\frac{30}{1}=30$ days

Thus, all of them will take 30 days to meet again.

Real Numbers Ex 1.4 Q12

Answer:

GIVEN: LCM and HCF of two numbers are 180 and 6 respectively. If one number is 30

TO FIND: Other number

We know that,

 $L.C.M \times H.C.F = First Number \times Second Number$

 $180 \times 6 = 30 \times Second Number$

Second Number = $\frac{180 \times 6}{30}$

Second Number = 36

Real Numbers Ex 1.4 Q13

Answer:

GIVEN: HCF of two numbers is 16. If product of numbers is 3072

TO FIND: L.C.M of numbers

We know that.

 $L.C.M \times H.C.F = First Number \times Second Number$

 $L.C.M \times 16 = 3072$

$$L.C.M = \frac{3072}{16}$$

L.C.M = 192