

Ejercicios de Conversiones

Nota: los ejercicios marcados con (*) al principio están sacados del libro de la cátedra los ejercicios marcados con (°) al principio están basados en uno tomado en un final

1. Dada la siguiente ER (a+bc)*a encuentre el diagrama de transición correspondiente a aplicar el algoritmo de Thompson

2. Dada la siguiente ER b(ac+b)* encuentre el diagrama de transición correspondiente a aplicar el algoritmo de Thompson

3. Dada la siguiente ER (a+b)(c+d)* encuentre el diagrama de transición correspondiente a aplicar el algoritmo de Thompson

4. Convierta el AFN-ε dado por la siguiente tabla de transición a un AFD

TT	a	b	ε
0-	{0,1}	{2}	{4}
1	-	{2}	-
2	{1}	{1,4}	{3}
3	{4}	{1}	-
4+	-	-	-

Solución

Clausura- $\varepsilon(\{0\}) = \{0,4\}$

Hacia $({0,4},a) = {0,1}$

Clausura- $\varepsilon(\{0,1\}) = \{0,1,4\}$

Hacia $(\{0,4\},b) = \{2\}$

Clausura- $\varepsilon(\{2\}) = \{2,3\}$

Hacia($\{0,1,4\},a$) = $\{0,1\}$

Hacia $(\{0,1,4\},b) = \{2\}$

 $\overline{\text{Hacia}(\{2,3\},a)} = \{1,4\}$

Clausura- $\varepsilon(\{1,4\}) = \{1,4\}$

Hacia $(\{2,3\},b) = \{1,4\}$

Hacia $(\{1,4\},a) = -$

Hacia($\{1,4\},b$) = $\{2\}$

TT	a	b
{ 0,4 }±	{0,1,4}	{2,3}
{0,1,4}+	{0,1,4}	{2,3}
{2,3}	{1,4}	{1,4}
{1,4}+	-	{2,3}

TT	a	b
0±	1	2
1+	1	2
2	3	3
3+	-	2

No se pedía pero se pueden simplificar los estados equivalentes 0 y 1 quedando

TT	a	b
0±	0	2
2	3	3
3+	-	2

5. Convierta el AFN-ε dado por la siguiente tabla de transición a un AFD

TT	a	b	ε
0-	{0}	{1,2}	{3}
1	-	{2}	-
2	{1,4}	{1}	{1}
3	{4}	{2}	-
4+	-	{4}	-

Solución

Clausura- $\varepsilon(\{0\}) = \{0,3\}$

Hacia $(\{0,3\},a) = \{0,4\}$

Clausura- $\varepsilon(\{0,4\}) = \{0,3,4\}$

Hacia $(\{0,3\},b) = \{1,2\}$

Clausura- $\varepsilon(\{1,2\}) = \{1,2\}$

Hacia($\{0,3,4\},a$) = $\{0,4\}$

Hacia $(\{0,3,4\},b) = \{1,2,4\}$

Clausura- $\varepsilon(\{1,2,4\}) = \{1,2,4\}$

Hacia $(\{1,2\},a) = \{1,4\}$

Clausura- $\varepsilon(\{1,4\}) = \{1,4\}$

Hacia($\{1,2\},b$) = $\{1,2\}$

Hacia($\{1,2,4\},a$) = $\{1,4\}$

Hacia($\{1,2,4\},b$) = $\{1,2,4\}$

Hacia $(\{1,4\},a) = -$

Hacia $(\{1,4\},b) = \{2,4\}$

Clausura- $\varepsilon(\{2,4\}) = \{1,2,4\}$

TT	a	b
{0,3}-	{0,3,4}	{1.2}
{0,3,4}+	{0,3,4}	{1,2,4}
{1.2}	{1,4}	{1,2}
{1,2,4}+	{1,4}	{1,2,4}
{1,4}+	_	{1,2,4}

TT	a	b
0-	1	2
1+	1	3
2	4	2
3+	4	3
4+	-	3

6. Convierta el AFN-ε dado por la siguiente tabla de transición a un AFD

TT	a	b	ε
0-	{2}	{0,3}	{4 }
1	-	{2}	{3}
2	{3}	-	-
3	{1,2}	{4}	-
4+	-	-	{3}

Solución

Clausura- $\varepsilon(\{0\}) = \{0,3,4\}$ Hacia($\{0,3,4\},a$) = $\{1,2\}$ Clausura- $\varepsilon(\{1,2\}) = \{1,2,3\}$ Hacia($\{0,3,4\},b$) = $\{0,3,4\}$ Clausura- $\varepsilon(\{0,3,4\}) = \{0,3,4\}$ Hacia($\{1,2,3\},a$) = $\{1,2,3\}$ Clausura- $\varepsilon(\{1,2,3\}) = \{1,2,3\}$ Hacia($\{1,2,3\},b$) = $\{2,4\}$ Clausura- $\varepsilon(\{2,4\}) = \{2,3,4\}$ Hacia($\{2,3,4\},a$) = $\{1,2,3\}$ Hacia($\{2,3,4\},b$) = $\{4\}$ Clausura- $\varepsilon(\{4\}) = \{3,4\}$ Hacia($\{3,4\},a$) = $\{1,2\}$

Hacia $(\{3,4\},b) = \{4\}$

TT	a	b
$\{0,3,4\}\pm$	{1,2,3}	{0,3,4}
{1,2,3}	{1,2,3}	{2,3,4}
{2,3,4}+	{1,2,3}	{3,4}
{3,4}+	{1,2,3}	{3,4}

TT	a	b
0±	1	0
1	1	2
2+	1	3
3+	1	3

No se pedía pero se pueden simplificar los estados equivalentes 2 y 3 quedando

TT	a	b
0±	1	0
1	1	2
2+	1	2

7. (°) Obtenga el ER del lenguaje reconocido por el siguiente AF. Debe aplicar los algoritmos estudiados y explicar los pasos realizados

TT	a	b
0-	2	1
1+	4	5
2	5	4
3	4	4
4+	5	4
5	5	5

Estado 5 es erróneo y el estado 3 es inalcanzable por lo tanto la TT queda

TT	a	b
0-	2	1
1+	4	-
2	-	4
4+	-	4

Las ecuaciones son

0 = a2 + b1

 $1 = a4 + \varepsilon$

2 = b4

 $4 = b4 + \varepsilon$

Resolviendo

 $4 = b^* \epsilon = b^*$

2 = bb*

 $1 = ab* + \varepsilon$

 $0 = abb^* + b(ab^* + \varepsilon) = abb^* + bab^* + b = (ab + ba)b^* + b$

8. (°) Dada la tabla T1, tabla de transiciones de un AFND que reconoce palabras de un lenguaje L, obtenga la ER de L utilizando el algoritmo de las ecuaciones. Describa los pasos realizados.

T1	a	b
0-	{0,3}	{1}
1+	{2}	{4}
2+	-	{3}
3	{3}	{3}
4	{1}	{3}

El estado 3 es un estado erróneo y puedo eliminarlo, queda la tabla:

Universidad Tecnológica Nacional

T1	a	b
0-	{0}	{1}
1+	{2}	{4}
2+	-	-
4	{1}	-

Las ecuaciones son

$$0 = a0 + b1$$

$$1 = a2 + b4 + \varepsilon$$

$$2 = \varepsilon$$

$$4 = a1$$

Resolviendo

$$1 = a\varepsilon + ba1 + \varepsilon$$

$$1 = (ba)*(a+\varepsilon)$$

$$0 = a0 + b (ba)*(a+\epsilon)$$

$$0 = a*b(ba)*(a+\varepsilon)$$

9. Obtenga la ER correspondiente a la siguiente tabla de transición

TT	a	b
0-	1	-
1	1	2
2+	3	-
3	-	2

Solución

Reducimos estados equivalentes (nota, en este caso si no se reduce, igual se llega a la solución correcta si se plantean bien las ecuaciones)

TT	a	b
0-	1	-
1	-	2
2+	1	-

Las ecuaciones:

$$0 = a1$$

$$1 = b2$$

$$2 = a1 + \varepsilon = ab2 + \varepsilon = (ab) * \varepsilon = (ab) *$$

Por tanto:

$$1 = b(ab)*$$

$$0 = ab(ab)*$$