Linear Algebra and Analytic Geometry

Conf.univ.,dr. Elena Cojuhari

elena.cojuhari@mate.utm.md
Technical University of Moldova

2020

- Parabolas
- Ellipses
- Hyperbolas
- Introduction to Polar Coordinates
- Polar Equations of the Conics
- Parametric Equations

Subsection 1

Parabolas

Conic Sections

Definition of Parabola

Definition of Parabola

A **parabola** is the set of points in a plane that are equidistant from a fixed line, called the **directrix**, and a fixed point, called the **focus**, not on the directrix.

The line passing through the focus and perpendicular to the directrix is called the axis of symmetry of the parabola;

Standard Forms of the Equation of the Parabola

When the parabola has vertex at the origin, the standard forms of the

equation are:

Example I

• Find the focus and directrix of the parabola given by the equation $y = -\frac{1}{2}x^2$;

$$y = -\frac{1}{2}x^2$$
 \Rightarrow $x^2 = -2y$ \Rightarrow $x^2 = 4(-\frac{1}{2})y$;

This shows that $p=-\frac{1}{2}$, i.e., the focus is $(0,-\frac{1}{2})$ and the directrix $y=\frac{1}{2}$;

Example II

• Find the equation in standard form of the parabola with vertex at the origin and focus at (-2,0);

We have p = -2; Therefore, the equation is

$$y^2 = 4(-2)x \quad \Rightarrow \quad y^2 = -8x;$$

Standard Forms of the Equation of the Parabola

Equation is

$$(x-h)^2 = 4p(y-k);$$

Equation is

$$(y-k)^2 = 4p(x-h);$$

Example I

• Find the equation of the directrix and the coordinates of the vertex and of the focus of the parabola given by the equation $3x + 2y^2 + 8y - 4 = 0$;

$$3x + 2y^{2} + 8y - 4 = 0 \Rightarrow 2y^{2} + 8y = -3x + 4$$

$$\Rightarrow 2(y^{2} + 4y) = -3x + 4 \Rightarrow 2(y^{2} + 4y + 4) = -3x + 12$$

$$\Rightarrow 2(y + 2)^{2} = -3(x - 4) \Rightarrow (y + 2)^{2} = -\frac{3}{2}(x - 4)$$

$$\Rightarrow (y + 2)^{2} = 4(-\frac{3}{2})(x - 4);$$

So V=(4,-2), parabola opens left and $p=-\frac{3}{8}$; Therefore, directrix is $x=4+\frac{3}{8} \Rightarrow x=\frac{35}{8}$ and focus is at $(4-\frac{3}{8},-2)=(\frac{29}{8},-2)$;

Example II

• Find an equation in the standard form of the parabola with directrix x = -1 and focus (3, 2);

Directrix is vertical; Focus on the right of directrix, so equation has the form $(y - k)^2 = 4p(x - h)$; Therefore, since the distance from focus to directrix is 4, we get p = 2 and (h, k) = (1, 2); These give equation $(y - 2)^2 = 8(x - 1)^2$;

Application: Focus of a Satellite Dish

A dish has a paraboloid shape; The signals it receives are reflected to a receiver at its focus; If the dish is 8 feet across at its opening and 1.25 feet deep at its center, find the location of the focus;

The dish may be modeled by the equation $y^2 = 4px$; Since at $x = \frac{5}{4}$ feet, we have y = 4 feet, we obtain

$$4^2 = 4p\frac{5}{4} \quad \Rightarrow \quad p = \frac{16}{5} \text{ feet},$$

i.e., its focus is located $\frac{16}{5}$ feet above its vertex;

Subsection 2

Ellipses

Definition of Ellipses

Definition of an Ellipse

An **ellipse** is the set of all points in the plane the sum of whose distances from two fixed points, called the **foci**, is a positive constant.

Standard Form of the Equation of an Ellipse

Example I

• Find the vertices and foci of the ellipse given by the equation $\frac{x^2}{25} + \frac{y^2}{49} = 1$; Sketch its graph;

The y^2 term has a larger denominator, so the major axis is on the y-axis;

$$a^{2} = 49 \Rightarrow a = 7$$

$$b^{2} = 25 \Rightarrow b = 5$$

$$c^{2} = a^{2} - b^{2} = 24$$

$$\Rightarrow c = 2\sqrt{6};$$

Thus, the vertices are at (0,7), (0,-7), the foci are at $(0,2\sqrt{6})$, $(0,-2\sqrt{6})$:

Example II

• Consider the ellipse with foci (3,0) and (-3,0) and major axis of length 10 as shown in the figure; Find an equation for this ellipse;

$$c = 3;$$

 $a = 5;$
 $b^2 = a^2 - c^2 \Rightarrow b^2 = 16$
 $\Rightarrow b = 4;$

Thus, an equation for this ellipse is

$$\frac{x^2}{25} + \frac{y^2}{16} = 1;$$

Standard Forms of the Equation of an Ellipse

Example I

• Find the center, vertices and foci of the ellipse $4x^2 + 9y^2 - 8x + 36y + 4 = 0$; Then sketch the graph;

$$4x^{2} + 9y^{2} - 8x + 36y + 4 = 0 \Rightarrow 4x^{2} + 9y^{2} - 8x + 36y = -4$$

$$\Rightarrow 4(x^{2} - 2x) + 9(y^{2} + 4y) = -4$$

$$\Rightarrow 4(x^{2} - 2x + 1) + 9(y^{2} + 4y + 4) = -4 + 4 + 36$$

$$\Rightarrow 4(x - 1)^{2} + 9(y + 2)^{2} = 36 \Rightarrow \frac{(x - 1)^{2}}{9} + \frac{(y + 2)^{2}}{4} = 1;$$

Thus, center is (1,-2), a=3 and, therefore, vertices are at (4,-2) and (-2,-2) and $c^2=a^2-b^2=5\Rightarrow c=\sqrt{5}$, and, thus, foci are at $(1+\sqrt{5},-2)$ and $(1-\sqrt{5},-2)$;

Example II

• Find the standard form of the equation of the ellipse with center at (4, -2), foci $F_2(4, 1)$ and $F_1(4, -5)$ and minor axis of length 10;

$$(h,k) = (4,-2);$$

$$c = 3;$$

$$b = 5;$$

$$a^{2} = b^{2} + c^{2} = 34;$$

$$\frac{(x-4)^{2}}{25} + \frac{(y+2)^{2}}{34} = 1;$$

Eccentricity

Eccentricity of an Ellipse

The **eccentricity** e of an ellipse is the ratio of e to a, where e is the distance from the center to a focus and e is one-half the length of the major axis, i.e., $e = \frac{e}{a}$.

• Example: What is the eccentricity of the ellipse with equation

$$8x^{2} + 9y^{2} = 18?$$

$$8x^{2} + 9y^{2} = 18 \implies \frac{4x^{2}}{9} + \frac{y^{2}}{2} = 1 \implies \frac{x^{2}}{(3/2)^{2}} + \frac{y^{2}}{(\sqrt{2})^{2}} = 1;$$

$$a = \frac{3}{2}; \qquad c = \sqrt{a^{2} - b^{2}} = \sqrt{\frac{9}{4} - 2} = \frac{1}{2};$$

$$e = \frac{c}{a} = \frac{1/2}{3/2} = \frac{1}{3};$$

Application: The Earth's Orbit

Earth has a mean distance of 93 million miles and a perihelion distance of 91.5 million miles. Find an equation for Earth's orbit;

The mean distance gives a = 93; The distance from the Sun to the center of the Earth's orbit is

$$c = 93 - 91.5 = 1.5$$
 million miles;

Therefore, $b^2 = a^2 - c^2 = 8646.75$; Thus, an equation of the orbit is

$$\frac{x^2}{93^2} + \frac{y^2}{8646.75} = 1;$$

Subsection 3

Hyperbolas

Definition of a Hyperbola

Definition of a Hyperbola

A **hyperbola** is the set of all points in the plane the difference between whose distances from two fixed points, called **foci**, is a positive constant.

- The axis joining the vertices is the transverse axis;
- The midpoint of the transverse axes is the center;
- The conjugate axis is the segment passing through the center and perpendicular to the transverse axis;

Standard Forms of the Equation of a Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

$$c^2 = a^2 + b^2;$$

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1,$$

$$c^2 = a^2 + b^2;$$

Example

• Find the vertices and the foci of the hyperbola given by the equation

$$\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1;$$

$$a = 4;$$

$$b = 3;$$

$$c = \sqrt{a^{2} + b^{2}} = 5;$$

Vertices at (-4,0) and (4,0); Foci at (-5,0) and (5,0);

Asymptotes

Example

• Find the vertices, the foci and the asymptotes of the hyperbola given by $\frac{y^2}{9} - \frac{x^2}{4} = 1$; Then sketch its graph;

$$a = 3;$$

 $b = 2;$
 $c = \sqrt{a^2 + b^2} = \sqrt{13};$

Vertices at (0, -3) and (0, 3); Foci at $(0, -\sqrt{13})$ and $(0, \sqrt{13})$; Asymptotes $y = -\frac{3}{2}x$ and $y = \frac{3}{2}x$;

Standard Forms of the Equation of a Hyperbola

Example

• Find the center, vertices, foci and asymptotes of the hyperbola given by the equation $4x^2 - 9y^2 - 16x + 54y - 29 = 0$; Then sketch its graph;

$$4x^{2} - 9y^{2} - 16x + 54y - 29 = 0 \Rightarrow 4x^{2} - 9y^{2} - 16x + 54y = 29$$

$$\Rightarrow 4(x^{2} - 4x) - 9(y^{2} - 6y) = 29$$

$$\Rightarrow 4(x^{2} - 4x + 4) - 9(y^{2} - 6y + 9) = 29 + 16 - 81$$

$$\Rightarrow 4(x - 2)^{2} - 9(y - 3)^{2} = -36 \Rightarrow \frac{(y - 3)^{2}}{4} - \frac{(x - 2)^{2}}{9} = 3$$
So $(h, k) = (2, 3), a = 2, b = 3, and$

$$c = \sqrt{13}$$

These give that center is at (2,3), vertices are at (2,5) and (2,1), foci are at $(2,3+\sqrt{13})$ and $(2,3-\sqrt{13})$ and asymptotes are $y-3=-\frac{2}{3}(x-2)$ and $y-3=\frac{2}{3}(x-2)$;

Eccentricity

Eccentricity of a Hyperbola

The **eccentricity** e of a hyperbola is the ratio of c to a, where c is the distance from the center to a focus and a is one-half the length of the transverse axis, i.e., $e = \frac{c}{a}$.

• Example: What is an equation for a hyperbola centered at the origin with eccentricity $e = \frac{3}{2}$ and focus at (6,0)?

c = 6;
$$\frac{c}{a} = \frac{3}{2} \Rightarrow a = 4;$$
 $b^2 = c^2 - a^2 = 20;$ $\frac{x^2}{16} - \frac{y^2}{20} = 1;$

Subsection 4

Introduction to Polar Coordinates

Polar Coordinates

Polar Equations

- A **polar equation** is an equation in r and θ ;
- A **solution** to a polar equation is an ordered pair (r, θ) that satisfies the equation;
- The graph of a polar equation is the set of all points whose ordered pairs are solutions of the equation;
- What is the graph of the polar equation $\theta = \frac{\pi}{6}$?
- What is the graph of r = 2?

Polar Equation of a Line

The graph of a polar equation $\theta = \alpha$ is a line through the pole at an angle α from the polar axis;

Graph of r = a

The graph of a polar equation r = a is a circle with center at the pole and radius a;

Graphs of $r \sin \theta = a$ and $r \cos \theta = a$

Graphs of $r \sin \theta = a$ and $r \cos \theta = a$

- The graph of $r \sin \theta = a$ is a horizontal line passing through the point $(a, \frac{\pi}{2})$;
- The graph of $r \cos \theta = a$ is a vertical line passing through the point (a,0);

Symmetries and Tests for Symmetry

Substitution	Symmetry w.r.t
$-\theta$ for θ	the line $\theta = 0$
$\pi - \theta$ for θ ,— r for r	the line $\theta = 0$
$\pi - \theta$ for θ	the line $ heta=rac{\pi}{2}$
$-\theta$ for θ , $-r$ for r	the line $\theta = \frac{\pi}{2}$
-r for r	the pole
$\pi + \theta$ for θ	the pole

Example of Testing for Symmetry

Substitution	Symmetry w.r.t
$-\theta$ for θ	the line $\theta = 0$
$\pi - \theta$ for θ , $-r$ for r	the line $\theta = 0$

• Example: Show that the graph of $r = 4\cos\theta$ is symmetric with respect to $\theta = 0$; Graph the equation;

$$r = 4\cos(-\theta) \Leftrightarrow r = 4\cos\theta;$$

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
r	4	$2\sqrt{3}$	$2\sqrt{2}$	2	0
θ	0	$-\frac{\pi}{6}$	$-\frac{\pi}{4}$	$-\frac{\pi}{3}$	$-\frac{\pi}{2}$
r	4	$2\sqrt{3}$	$2\sqrt{2}$	2	0

Polar Equations of Circle

Polar Equations of a Circle

- The graph of r = a is a circle with center at the pole and radius a;
- The graph of $r = a \cos \theta$ is a circle that is symmetric with respect to the line $\theta = 0$;
- The graph of $r = a \sin \theta$ is a circle that is symmetric with respect to the line $\theta = \frac{\pi}{2}$;

Polar Equations of Limaçons

Polar Equations of a Limaçon

- The graph of the equation $r = a + b \cos \theta$ is a **limaçon** that is symmetric with respect to the line $\theta = 0$;
- The graph of the equation $r = a + b \sin \theta$ is a limaçon that is symmetric with respect to the line $\theta = \frac{\pi}{2}$;
- If |a| = |b|, then the graph is called a **cardioid**;

Example of a Limaçon

• Sketch the graph of $r = 2 - 2\sin\theta$;

θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0
r	4	$2 + \sqrt{3}$	$2 + \sqrt{2}$	3	2
θ	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	

Polar Equations of Rose Curves

Polar Equations of a Roses

The graphs of the equations $r = a \cos n\theta$ and $r = a \sin n\theta$ are **rose curves**; When n is even, the number of petals is 2n; When n is odd the number of petals is n;

Example of a Rose Curve

• Sketch the graph of $r = 2 \sin 3\theta$;

θ	0	$\frac{\pi}{18}$	$\frac{\pi}{6}$	$\frac{5\pi}{18}$	$\frac{\pi}{3}$	$\frac{7\pi}{18}$	$\frac{\pi}{2}$
r	0	1	2	1	0	- 1	- 2

Transformations Between Rectangular and Polar

Transformations Between Rectangular and Polar Coordinates

• Given the point (r, θ) in polar coordinates, the transformation equations to change its representation into rectangular coordinates are

$$x = r \cos \theta$$
 $y = r \sin \theta$;

• Given the point (x, y) in rectangular coordinates, the transformation equations to change its representation into polar coordinates are

$$r = \sqrt{x^2 + y^2}$$
 $\tan \theta = \frac{y}{x}, \ x \neq 0,$

where θ is chosen so that the point lies in the appropriate quadrant;

Transforming Coordinates

 Find the rectangular coordinates of the points whose polar coordinates are:

$$(6, \frac{3\pi}{4});$$

$$x = r \cos \theta = 6 \cos \frac{3\pi}{4} = 6(-\frac{\sqrt{2}}{2}) = -3\sqrt{2};$$

$$y = r \sin \theta = 6 \sin \frac{3\pi}{4} = 6\frac{\sqrt{2}}{2} = 3\sqrt{2};$$

$$(6, \frac{3\pi}{4}) \equiv (-3\sqrt{2}, 3\sqrt{2});$$

$$(-4, 30^{\circ});$$

•
$$(-4,30^{\circ});$$

 $x = r\cos\theta = -4\cos 30^{\circ} = -4 \cdot \frac{\sqrt{3}}{2} = -2\sqrt{3};$
 $y = r\sin\theta = -4\sin 30^{\circ} = -4 \cdot \frac{1}{2} = -2;$
 $(-4,30^{\circ}) \equiv (-2\sqrt{3},-2);$

• Find the polar coordinates of the point with rectangular coordinates $(-2, -2\sqrt{3})$:

$$r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (-2\sqrt{3})^2} = 4;$$

$$\tan \theta = \frac{y}{x} = \frac{-2\sqrt{3}}{-2} = \sqrt{3} \implies \theta = \frac{4\pi}{3};$$

$$(-2, -2\sqrt{3}) \equiv (4, \frac{4\pi}{3});$$

Transforming Equations I

• Find a rectangular form of the equation $r^2 \cos 2\theta = 3$;

$$r^{2}\cos 2\theta = 3 \Rightarrow r^{2}(2\cos^{2}\theta - 1) = 3 \Rightarrow 2r^{2}\cos^{2}\theta - r^{2} = 3$$

 $\Rightarrow 2(r\cos\theta)^{2} - r^{2} = 3 \Rightarrow 2x^{2} - (x^{2} + y^{2}) = 3$
 $\Rightarrow x^{2} - y^{2} = 3$;

• Find a rectangular form of the equation $r = 8 \cos \theta$;

$$r = 8\cos\theta \implies r^2 = 8r\cos\theta \implies x^2 + y^2 = 8x$$

$$\Rightarrow x^2 - 8x + y^2 = 0 \implies x^2 - 8x + 16 + y^2 = 16$$

$$\Rightarrow (x - 4)^2 + y^2 = 4^2;$$

Subsection 5

Polar Equations of the Conics

Focus-Directrix Definitions of the Conics

Focus-Directrix Definitions of the Conics

Let F be a fixed point and D a fixed line on the plane; Consider the set of all points P, such that $\frac{d(P,F)}{d(P,D)}=e$, where e is a constant; The graph is a parabola for e=1, an ellipse for 0< e<1, and a hyperbola for e>1.

Standard Forms of Polar Equations of the Conics

Standard Forms of Polar Equations of the Conics

Suppose that the pole is the focus of a conic section of eccentricity e, with directrix d units from the focus; Then the equation of the conic is given by one of the following:

	Directrix right or above	Directrix left or below
Vertical Directrix	$r = \frac{ed}{1 + e\cos\theta}$	$r = \frac{ed}{1 - e\cos\theta}$
Horizontal Directrix	$r = \frac{ed}{1 + e \sin \theta}$	$r = \frac{ed}{1 - e \sin \theta}$

When the equation involves $\cos \theta$, the line $\theta=0$ is an axis of symmetry; When it involves $\sin \theta$, the line $\theta=\frac{\pi}{2}$ is an axis of symmetry.

Example I

• What type is the conic that is given by the equation $r = \frac{4}{5 - 3\sin\theta}$?

$$r = \frac{4}{5 - 3\sin\theta}$$

$$\Rightarrow r = \frac{4}{5(1 - \frac{3}{5}\sin\theta)}$$

$$\Rightarrow r = \frac{\frac{4}{5}}{1 - \frac{3}{5}\sin\theta};$$

Thus, $e = \frac{3}{5} < 1$, showing that this is the equation of an ellipse;

Note that the fact that the denominator has a "-" and a sine immediately reveals that the directrix is horizontal and lies below the focus located at the pole.

Example II

• Describe and sketch the graph of $r = \frac{8}{2 - 3\sin\theta}$;

$$r = \frac{8}{2 - 3\sin\theta} \implies r = \frac{8}{2(1 - \frac{3}{2}\sin\theta)}$$
$$\implies r = \frac{4}{1 - \frac{3}{2}\sin\theta};$$

Thus, $e = \frac{3}{2} > 1$, showing that this is the equation of a hyperbola;

The fact that the denominator has a "-" and a sine immediately reveals that the directrix is horizontal and lies below the focus. Moreover, $ed = \frac{3}{2}d = 4 \Rightarrow d = \frac{8}{2}$;

Example III

• Describe and sketch the graph of $r = \frac{4}{2 + \cos \theta}$;

$$r = \frac{4}{2 + \cos \theta} \implies r = \frac{4}{2(1 + \frac{1}{2}\cos \theta)}$$
$$\implies r = \frac{2}{1 + \frac{1}{2}\cos \theta};$$

Thus, $e = \frac{1}{2} < 1$, showing that this is the equation of an ellipse;

The fact that the denominator has a "+" and a cosine immediately reveals that the directrix is vertical and lies to the right of the focus. Moreover, $ed = \frac{1}{2}d = 2 \Rightarrow d = 4$;

Example IV

• Find the polar equation of a parabola with vertex at $(2, \frac{\pi}{2})$ and focus at the pole;

The directrix is horizontal and lies above the pole; Therefore, the equation must involve the sine function and have a "+" sign, i.e., it is of the form $r = \frac{ed}{1 + e \sin \theta}$; Since the conic is a parabola, e = 1; Since the distance from the focus to the directrix is 4, we have d = 4;

Therefore, the equation must be $r = \frac{4}{1 + \sin \theta}$;

Subsection 6

Parametric Equations

Curves and Parametric Equations

Curve and Parametric Equations

Given an interval I, a **curve** is a set of ordered pairs (x, y), where

$$x = f(t),$$
 $y = g(t),$ for $t \in I$;

The variable t is called the **parameter** and the equations x = f(t) and y = g(t) the **parametric equations** of the curve.

• Example: Consider the equations $\begin{cases} x = 2t - 1 \\ y = 4t + 1 \end{cases}$ for $t \in (-\infty, \infty)$; Plot a few points to reveal the curve:

t	x=2t-1	y=4t+1	(x, y)
- 2	– 5	- 7	(-5, -7)
-1	– 3	– 3	(-3, -3)
0	- 1	1	(-1, 1)
1	1	5	(1,5)
2	3	9	(3,9)

Example

Consider the equations $\begin{cases} x = t^2 + t \\ y = t - 1 \end{cases}$ for $t \in (-\infty, \infty)$;

Plot a few points to reveal the curve:

t	$x = t^2 + t$	y = t - 1	(x,y)
– 3	6	- 4	(6, -4)
- 2	2	– 3	(2, -3)
- 1	0	- 2	(0, -2)
0	0	-1	(0, -1)
1	2	0	(2,0)
2	6	1	(6,1)

Eliminating the Parameter

• Consider again the equations $\begin{cases} x = t^2 + t \\ y = t - 1 \end{cases}$ for $t \in (-\infty, \infty)$; Solve the second for t: t = y + 1; Plug in this value in for t in the first equation:

$$x = (y+1)^2 + (y+1) \Rightarrow x = y^2 + 2y + 1 + y + 1 \Rightarrow x = y^2 + 3y + 2;$$

This clearly represents a parabola in Cartesian coordinates as we saw by plotting the parametric curve:

Example I

Eliminate the parameter and sketch the curve of the parametric equations

$$\begin{cases} x = \sin t \\ y = \cos t \end{cases} \text{ for } 0 \le t \le 2\pi;$$

Square the first equation $x^2 = \sin^2 t$; Square the second equation $y^2 = \cos^2 t$; Add the two equations

$$x^2 + y^2 = \sin^2 t + \cos^2 t = 1;$$

Thus, we have a circle of radius 1 centered at the origin:

Example II

Eliminate the parameter and sketch the curve of the parametric equations

$$\begin{cases} x = 2 + 3\cos t \\ y = 3 + 2\sin t \end{cases} \text{ for } 0 \le t \le \pi;$$

Solve the first equation for cos t and square:

$$\cos^2(t) = (\frac{x-2}{3})^2$$
; Solve the second equa-

tion for sin t and square: $\sin^2 t = (\frac{y-3}{2})^2$; Add the two equations

$$\cos^2 t + \sin^2 t = \left(\frac{x-2}{3}\right)^2 + \left(\frac{y-3}{2}\right)^2$$

$$\Rightarrow \frac{(x-2)^2}{9} + \frac{(y-3)^2}{4} = 1;$$

Thus, we have an ellipse with center (2,3) and length of major axis 6: Because $0 \le t \le \pi$, we actually get only the upper half of the ellipse!

Time as a Parameter

Consider the equations
$$\begin{cases} x = t^2 \\ y = t+1 \end{cases}$$
 for $-2 \le t \le 3$;

Plot a few points to reveal the curve:

t	$x = t^2$	y = t + 1	(x,y)
- 2	4	-1	(4, -1)
- 1	1	0	(1,0)
0	0	1	(0, 1)
1	1	2	(1,2)
2	4	3	(4,3)
3	9	4	(9,4)

Example

Suppose the equations $\begin{cases} x = \sin t \\ y = \cos t \end{cases}$, for $0 \le t \le 2\pi$, describe the motion of a point in a plane; Describe the motion of the point.

Plot a few points to reveal the curve:

t	$x = \sin t$	$y = \cos t$	(x,y)
0	0	1	(0,1)
$\frac{\pi}{2}$	1	0	(1,0)
π	0	- 1	(0, -1)
$\frac{3\pi}{2}$	-1	0	(-1, 0)
2π	0	1	(0,1)

The point starts at (0,1) and rotates clockwise around the unit circle centered at the origin until it reaches back to its original position.

The Cycloid

 A cycloid is the curve traced by a point on the circumference of a circle of radius a that is rolling on a straight line without slipping;

$$x = h - a\sin\theta; \quad y = k - a\cos\theta;$$

Note k = a and $h = a\theta$; Therefore, the parametric equations describing the cycloid are

$$\begin{cases} x = a(\theta - \sin \theta) \\ y = a(1 - \cos \theta) \end{cases}, \quad \theta \ge 0;$$