

1 Exercise 9.2

Q1. In the figure given below, ABCD is a parallelogram, $AE \perp DC$ and $CF \perp AD$. If AB=16cm, AE=8cm and CF=10cm, find AD. Construction

Figure 1: Parallelogram ABCD

The input parameters for the above construction are shown in the table below :

Symbol	Value	Description
D	Origin $(0,0)$	Vertex D
AB	16cm	$\parallel \mathbf{B} - \mathbf{A} \parallel$
CD	16cm	$\parallel \mathbf{D} - \mathbf{C} \parallel = \parallel \mathbf{B} - \mathbf{A} \parallel$
С	(16,0)	Vertex C (because $CD = 16cm$)
AE	8cm	$\parallel \mathbf{E} - \mathbf{A} \parallel$
CF	10cm	F – C
A	(10,8)	$Ay = Dy + \overrightarrow{AE} $
		$Ax = \sqrt{\frac{CF^2}{AB^2 - CF^2}}$
В	(26,8)	$By = Dy + \overrightarrow{AE} $
		Bx = Ax + AB
F	(9.75,7.806:)	Fy = 0.8 X Fx
Е	(10,0)	Ex = Ax, Ey = 0

Table 1: Parameters

Solution

It is given that the length of AB = 16cm.So,

$$\|\mathbf{B} - \mathbf{A}\| = 16cm\tag{1}$$

(2)

As the figure above is a parallelogram,

$$\|\mathbf{B} - \mathbf{A}\| = \|\mathbf{C} - \mathbf{D}\| = 16cm \tag{3}$$

(4)

In order to find $\angle DCF$,

Let
$$\theta_2 = \angle FCD$$
 (5)

Let
$$\theta_2 = \angle FCD$$
 (5)
 $\mathbf{n_1} = \mathbf{C} - \mathbf{F} = \begin{pmatrix} 6.25 \\ -7.806 \end{pmatrix}, \mathbf{n_2} = \mathbf{C} - \mathbf{D} = \begin{pmatrix} 16 \\ 0 \end{pmatrix}$ (6)

$$\theta_2 = \cos^{-1} \frac{\mathbf{n_1}^\top \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|} \tag{7}$$

$$\theta_{2} = \cos^{-1} \frac{\mathbf{n_{1}}^{\top} \mathbf{n_{2}}}{\|\mathbf{n_{1}}\| \|\mathbf{n_{2}}\|}$$

$$\Rightarrow \theta_{2} = \cos^{-1} \frac{\left(6.25 - 7.806\right) \binom{16}{0}}{(10)(16)} = 51.32^{\circ}$$
(8)

As the sum of interal angles of a triangle are 180°, from $\triangle DFC$

$$\angle CFD + \angle FCD + \angle D = 180^{\circ} \tag{9}$$

$$\angle D = 180^{\circ} - (\angle CFD + \angle FCD) \tag{10}$$

$$\angle D = 180^{\circ} - 141.32^{\circ} \tag{11}$$

$$\angle D = 38.68^{\circ} \tag{12}$$

(13)

The area of parallelogram is calculated using the below formula

$$Area = (base) * (height)$$
 (14)

(15)

For the above problem this can be written as,

$$Area = \|\mathbf{A} - \mathbf{E}\| \|\mathbf{B} - \mathbf{A}\| \tag{16}$$

$$\implies (8)(16) = 128 \tag{17}$$

(18)

The area of parallelogram can also be found out using cross product of two vectors, for the above problem it can be written as;

$$Area of parallelogram ABCD = \mathbf{DC} \times \mathbf{AD} \tag{19}$$

$$\mathbf{DC} \times \mathbf{AD} = \|\mathbf{D} - \mathbf{C}\| \|\mathbf{D} - \mathbf{A}\| \sin D \tag{20}$$

(21)

From 3 and 20

$$\|\mathbf{D} - \mathbf{A}\| (16) \sin 38.68 = 128 \tag{22}$$

$$\|\mathbf{D} - \mathbf{A}\| (16)(\frac{5}{8}) = 128$$
 (23)
 $\|\mathbf{D} - \mathbf{A}\| = \frac{64}{5}$

$$\|\mathbf{D} - \mathbf{A}\| = \frac{64}{5} \tag{24}$$

$$\|\mathbf{D} - \mathbf{A}\| = 12.8cm \tag{25}$$

(26)

Therefore, $|\overrightarrow{AD}| = 12.8 \text{ cm}$