北京大学数学科学学院 2018-2019 学年第一学期数学分析 III 期中试题

请在答卷上填写院系、姓名与学号

- 1. (共 16 分, 每小题 2 分) 将下列命题 (1)-(8) 中你认为 正确 的结论的序号写在答题纸上, 下面的 $\vec{f}: \mathbf{R}^n \to \mathbf{R}^m$ 为连续映射.
 - (1) 开集在 扩下的 原像 恒为开集. (2) 开集在 扩下的 像 恒为开集. 中行一位
 - (3) 闭集在f下的原像恒为闭集. (4) 闭集在f下的像恒为闭集.
 - (5) 道路连通集在 了下的 原像 恒为道路连通集.
 - (6) 道路连通集在 扩下的 像 恒为道路连通集.
 - (7) 道路连通集的闭包恒为道路连通集
 - (8) 对任可数多个集合 A_k , 有 $\overline{\bigcup_{k=1}^{+\infty} A_k} = \bigcup_{k=1}^{+\infty} \overline{A_k}$ χ
 - 2. (8分) 设 E_1 , $E_2 \subset \mathbf{R}^d$ 为非空集合,它们之间的距离定义为

$$d(E_1, E_2) = \inf_{\vec{x} \in E_1, \ \vec{y} \in E_2} d(\vec{x}, \vec{y}).$$

若 E_1 , E_2 为有界闭集 (可直接使用闭集的各种等价定义), 问是否一定存在 $\vec{x}_0 \in E_1$, $\vec{y}_0 \in E_2$ 满足

 $d(E_1, E_2) = d(\vec{x}_0, \vec{y}_0)$ $+ (\chi_1, \chi_2) - f(\chi_1, \chi_2)$ $+ (\chi_2, \chi_2, \chi_3) - f(\chi_1, \chi_3)$

简述理由.

- 3. (10分) 设 f(x,y) 为 $[0,1] \times [0,1]$ 上的函数, 对每个固定 $y \in [0,1]$, f(x,y) 对 $x \in [0,1]$ 连续; 对每个固定 $x \in [0,1]$, f(x,y) 对 $y \in [0,1]$ 连续. 问 f(x,y) 是否一定是 $(x,y) \in [0,1] \times [0,1]$ 的连续函数? 简述理由.
 - 4. (14 分) 给出一个函数 f(x,y), 使它同时满足下述条件(简述理由):
 - (a) f(x,y) 在 (0,0) 各个偏导数存在;
 - (b) f(x,y) 在 (0,0) 各个方向导数存在:
 - (c) f(x,y) 在 (0,0) 不可微.
- 5. (12分) 设 $D \subset \mathbf{R}^n$ 为一个凸区域, 函数 $f(\vec{x})$ 在 D 内有二阶连续偏导数, 证明下述两结论等价:
 - (1) 对任 \vec{x}_0 , $\vec{x} \in D$, 有 $f(\vec{x}) \ge f(\vec{x}_0) + f'(\vec{x}_0)(\vec{x} \vec{x}_0)^{\mathrm{T}}$;
 - (2) 对任 $\vec{x}_0 \in D$, $f(\vec{x})$ 在 \vec{x}_0 处的 Hessi 矩阵 $\mathbf{H}_f(\vec{x}_0)$ 半正定.
- **6**. (14分) $f(x,y,z) = 2x^2 + y^4 + z^4$ 在条件 xyz = 1 下是否存在最小值?简述理由. 若存在,求之.

请注意, 背面有题

- 7. (10分) 用反函数存在定理证明隐函数存在定理.
- 8. (6分) 设 $\vec{f}: \mathbf{R}^n \to \mathbf{R}^n$ 为 C^1 映射. 若对任 $\vec{x} \in \mathbf{R}^n$ 导数 $\vec{f}'(\vec{x})$ 为对称且正定矩阵,证明 \vec{f} 为单射.
- 9. (10分) 形如 $(u,v)\mapsto (u,\phi(u,v))$ 或 $(u,v)\mapsto (\psi(u,v),v)$ 的 映射称为简单 映射. 设 $F:\mathbf{R}^2\to\mathbf{R}^2$ 为 C^1 同胚 (即 F 可逆,且 F 与 F^{-1} 皆为 C^1). 证明对任 $P_0(x_0,y_0)$ 都存在 P_0 的一个邻域 U 使得 $F:U\to F(U)$ 可分解为两个简单 C^1 映射的合成,即 $F=\Psi\circ\Phi$,其中 $\Phi:U\to V$ (V 为 \mathbf{R}^2 开子集), $\Psi:V\to F(U)$ 皆为简单 C^1 同胚.