

Using social media data to enhance predictive models in finance

Nicholas Mitchell

We aimed to answer the question(s):

Can social media data improve predictive models of financial markets?

...by how much?

The Roadmap

Tapping the Twitterverse

1. Purchase them

- Every tweet since Twitter inception
- Enterprise solution
- Expensive

- Free
- Fast
- Limited to last 10 days of data

- Free
- (currently) slow
- (currently) unlimited data*

Scraping

- Twitter's advanced search:
 - Choose a search term
 - -Select a date range
 - -Tweets are displayed

Page loads - starting with youngest tweets

- Scroll downwards → backwards in time
- Dynamically loading page

ONE DOES NOT SIMPLY

Save all HTML code from Browser - WISINAYG. TWITTER DATA

Nicholas Mitchell **Master Thesis**

Search

Parsing

Take raw HTML → parse using Xpath-Element-trees

Create a one-tweet-per-line CSV file Number of search terms: 13

• In addition to tweet text, extract useful meta-data:
Date range:
- Date

Number of likesTotal timeline:Number of retweets 982 days (695 weekdays)

–Unique tweet ID Total tweets obtained: 2, 350, 217

Cleaning the tweets

- Required to facilitate accurate ser
- Tweets had to go from:
- """I wonder what people think abou ""Death Cross"" now? :)^M #trendfo
- To this:

I wonder what people think about to Cross now?:) trendfollowing

- → RegEx using Perl engine
- → hexadecimal char definitions
- → using an ASCII table

Breakdown of search terms and tweet count

Inspecting the Twitter data (1)

The Roadmap

Sentiment Analysis (1)

- 5 differing models
 - -Each focussed on short texts / social media data
 - Employ diverse linguistic approaches
- Example approaches:
 - -Grammar based scored word lists for nouns, verbs, adjectives, etc.
 - Informal text scores for smileys, slang and profanity
 - Pure word list, create by a community/mechanical Turk
 - → example: Plutchik's Wheel of Emotion

Sentiment Analysis (2)

• Basic example: score each word on two dimensions:

• Example:

Rupert loves safe investments, but Niko loves risky OTM options (1,1) (4,1) (3,2) (1,1) (1,1) (1,1) (4,1) (1,3) (1,1) (2,1)

 $\sum = (19, 13)$

The Roadmap

Market data

Commodities	Currency pairs	Fixed income
Gold spot Gold 3M Copper spot Copper 3M Oil (WTI) Natural gas	USD-AUD USD-CAD USD-EUR USD-GBP USD-JPY	U.S. Zero-coupon 1Y U.S. Zero-coupon 2Y U.S. Zero-coupon 5Y U.S. Zero-coupon 10Y U.S. Zero-coupon 15Y U.S. Zero-coupon 20Y
Indices	Volatility indicators	ETF
DAX Dow Jones FTSE100 Nikkei 225 S&P500 Shanghai SE	VIX (S&P500) Gold spread Copper spread	MSCI Emerging Markets

Σ

Datasets for comparison

Traditional market data

- Small selection → traditional_{small} 6

Everything
 → traditional_{large}
 36

Sentiment data only

- Aggregated → sentiment_{small} 22

- Individual \rightarrow sentiment_{large} 100

• Market + social media data → combined 142

→ "Correlation cut-off" used, reducing datasets for final model

The Roadmap

Modelling: Gradient Boosting

Gradient Boosting: theory in a nutshell

$$f^* \coloneqq \underset{f(\cdot)}{argmin} \, \mathbb{E}_{\mathbf{Y}, \mathbf{X}}[\rho(\mathbf{Y}, f(\mathbf{X}))]$$

$$\mathcal{R} = \frac{1}{n} \sum_{i=1}^{n} \rho(Y_i, f(X_i))$$

$$\mathcal{R} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2$$

$$\frac{\partial \mathcal{R}}{\partial f(X_i)} = \frac{\partial}{\partial f(X_i)} \left(\sum_{i=1}^n \rho(Y_i, f(X_i)) \right) = \frac{\partial}{\partial f(X_i)} \left(\rho(Y_i, f(X_i)) \right) = f(X_i) - Y_i$$

Adaptive descent

Iteratively improving our estimation

- Iteration counter: *m*
- Learning rate: v
- Total base-learners: n

$$\hat{f}_{(1)}^{[m]} = \hat{f}_{(1)}^{[m-1]} + v \cdot -\frac{\partial}{\partial f_{(1)}} (\hat{f}_{(1)}^{[m-1]})$$

Example iteration – function approximation

Evolution of coefficients

The Roadmap - master

Reminder of the datasets

Traditional market data

small selection

everything

→ traditional_{small}

→ traditional_{large}

6

Σ

36

Sentiment data only

Aggregated

Individual

→ sentiment_{small}

 $\rightarrow \ sentiment_{large}$

22

100

Market + social media data

→ combined

142

→ Correlation measures taken reduce datasets for final model

Stochastic Gradient Boosting - comparison

The Roadmap

Questions?

