

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Разработка базы данных и приложения для онлайнмониторинга состояния трасс и загруженности подъемников горнолыжного курорта.

Студент: Зайцева Алена Андреевна ИУ7-62Б

Научный руководитель: Гаврилова Юлия Михайловна

Цели и задачи

Цель – разработка базы данных для онлайн-мониторинга состояния трасс и подъемников горнолыжного курорта.

Задачи:

- проанализировать существующие решения;
- формализовать задачу и данные;
- проанализировать способы хранения данных и системы управления базами данных;
- выбрать наиболее подходящие для задачи тип БД и СУБД;
- спроектировать и разработать базу данных;
- реализовать программное обеспечение для доступа к данным посредством REST API;
- провести исследование зависимости времени обработки данных от их объема и от распределения вычислений между базой данных и приложением.

Анализ существующих решений

Название	Открытость трасс и подъемников	Очереди на подъемниках	Связи трасс и подъемников (сводная)	Связи трасс и подъемников (конкретизированная)
Газпром	+ (список)	-	+ (на карте)	-
Courchevel	+ (на карте)	-	+ (на карте)	-
Роза Хутор	+ (список)	+ (камеры)	+ (на карте)	-

Ни одно из решений не отображает всю информацию, которую предполагается предоставлять в разрабатываемом приложении.

ER-диаграмма БД «Горнолыжный курорт» в нотации

Чена

Типы пользователей: авторизованный и неавторизованный

Типы пользователей: сотрудник лыжного патруля и администратор

Классификация БД по месту хранения информации

Класс БД	Энергонеза- висимость	Надежность хранения данных	Ограничение размера объемом оперативной памяти	Скорость обработки данных	Пропускная способность
Традиционные: на устройствах постоянного хранения	+	+	-	ниже	ниже
Резидентные (in-memory): в оперативной памяти	-	+(при наличии репликации)	+	выше	выше

Для решения поставленной задачи был выбран класс резидентных БД

Выбор in-memory СУБД

Название	Поддержка строк и целых чисел	Вторичные индексы; триггеры или хранимые процедуры	Репликация данных
Memcached	-	-	-
Redis	+	-	+
Tarantool	+	+	+

Диаграмма БД «Горнолыжный курорт»

БД хранит следующие таблицы:

- трассы slopes;
- подъемники lifts;
- связи трасс и подъемников lifts_slopes;
- турникеты turnstiles;
- проездные карты cards;
- считывания карт на турникетах подъемников card_readings;
- сообщения messages;
- пользователи users.

Алгоритм расчета времени в очереди на подъемник

Время в очереди = max(предыдущее время в очереди - прошедшее время + (количество считываний * время подъема * 2 / количество мест), 0)

Архитектура приложения и стек технологий

Исследование зависимости времени обработки данных от их объема и от распределения вычислений между БД и приложением.

В эксперименте сравнивается время обновления длительности ожидания в очередях к подъемникам в зависимости от:

- их количества: 50, 100, 200, 400, 600, 800;
- используемого алгоритма:
 пронумерованы в порядке убывания объема вычислений, производимых на стороне БД.

Заключение

Цель курсовой работы достигнута, все поставленные задачи решены:

- проанализированы существующие решения;
- формализованы задача и данные;
- проанализирована способы хранения данных и системы управления базами данных;
- выбраны наиболее подходящие для задачи тип БД и СУБД;
- спроектирована и разработана база данных;
- реализовано программное обеспечение для доступа к данным посредством REST API;
- проведено исследование зависимости времени обработки данных от их объема и от распределения вычислений между базой данных и приложением.

Направления дальнейшего развития

Возможное дальнейшее развитие:

- использование данных с видеокамер;
- добавление информации о погодных условиях.