Chapter 11

Generalized Method of Moments

Generalized method of moments (GMM) (Hansen, 1982) is an estimation principle that extends method of moments. It seeks the parameter value that minimizes a quadratic form of the moments. It is particularly useful in estimating structural models in which moment conditions can be derived from economic theory. GMM emerges as one of the most popular estimators in modern econometrics, and it includes conventional methods like the two-stage least squares (2SLS) and the three-stage least square as special cases.

11.1 Instrumental Regression

We first discuss estimation in a linear single structural equation

$$y_i = x_i' \beta + \epsilon_i$$

with K regressors. Identification is a prerequisite for structural estimation. From now on we always assume that the model is identified: there is an $L \times 1$ vector of instruments z_i such that $\mathbb{E}\left[z_i\epsilon_i\right] = 0_L$ and $\Sigma := \mathbb{E}\left[z_ix_i'\right]$ is of full column rank. Denote β_0 as the root of the equation $E\left[z_i\left(y_i-x_i'\beta\right)\right] = 0_L$, which is uniquely identified.

11.1.1 Just-identification

When L = K, the instrumental regression model is just-identified. The orthogonality condition implies

$$\Sigma \beta_0 = \mathbb{E} [z_i y_i].$$

When the relevance condition is satisfied, the full rank matrix $\mathbb{E}\left[z_ix_i'\right]$ is invertible and we can express β_0 as

$$\beta_0 = \Sigma^{-1} \mathbb{E} \left[z_i y_i \right]. \tag{11.1}$$

11.1.2 Over-identification

When L > K, the model is over-identified. The orthogonality condition still implies

$$\Sigma \beta_0 = \mathbb{E}\left[z_i y_i\right],\tag{11.2}$$

but Σ is not a square matrix so we cannot write it as (11.1). In order to express β_0 explicitly, we define a criterion function

$$Q(\beta) = \mathbb{E}\left[z_i \left(y_i - x_i \beta\right)\right]' W \mathbb{E}\left[z_i \left(y_i - x_i \beta\right)\right],$$

where W is an arbitrary $L \times L$ positive-definite symmetric matrix. (The choice of W will be discussed later) Because of the quadratic form, $Q(\beta) \geq 0$ for all β . Identification indicates that $Q(\beta) = 0$ if and only if $\beta = \beta_0$. Therefore we conclude

$$\beta_{0}=\arg\min_{\beta}Q\left(\beta\right) .$$

Since $Q(\beta)$ is a smooth function of β , the minimizer β_0 can be characterized by the first-order condition

$$0_{K} = \frac{\partial}{\partial \beta} Q(\beta_{0}) = -\Sigma W \mathbb{E} \left[z_{i} \left(y_{i} - x_{i} \beta_{0} \right) \right]$$

Rearranging the above equation, we have

$$\Sigma' W \Sigma \beta_0 = \Sigma' W \mathbb{E} \left[z_i y_i \right].$$

Under the rank condition, $\Sigma'W\Sigma$ is invertible so that we can solve

$$\beta_0 = (\Sigma' W \Sigma)^{-1} \Sigma' W \mathbb{E} [z_i y_i]. \tag{11.3}$$

Remark 11.1. The above equation can be derived by pre-multiplying $\Sigma'W$ on the two sides of (11.2), so that $\Sigma'W\Sigma$ becomes invertible and β_0 can be explicitly expressed as a function of moments.

Remark 11.2. Although we separate the discussion of the just-identified case and the over-identified case, the latter (11.3) actually takes (11.1) as a special case. When L=K, for any positive definite W

$$\beta_0 = (\Sigma' W \Sigma)^{-1} \Sigma' W \mathbb{E} [z_i y_i] = \Sigma^{-1} W^{-1} (\Sigma')^{-1} \Sigma' W \mathbb{E} [z_i y_i]$$
$$= \Sigma^{-1} W^{-1} W \mathbb{E} [z_i y_i] = \Sigma^{-1} \mathbb{E} [z_i y_i].$$

In the just-identified case W plays no role as any choices of W lead to the same explicit solution of β_0 .

11.2 GMM Estimator

In practice, we use the sample moments to replace the corresponding population moments. The GMM estimator mimics its population formula.

$$\widehat{\beta} = \left(\frac{1}{n}\sum x_i z_i' W \frac{1}{n}\sum z_i x_i'\right)^{-1} \frac{1}{n}\sum x_i z_i' W \frac{1}{n}\sum z_i y_i$$

$$= \left(\frac{X'Z}{n}W \frac{Z'X}{n}\right)^{-1} \frac{X'Z}{n}W \frac{Z'y}{n}$$

$$= \left(X'ZWZ'X\right)^{-1} X'ZWZ'y.$$

Under just-identification, this expression includes the 2SLS estimator

$$\hat{\beta} = \left(\frac{Z'X}{n}\right)^{-1} \frac{Z'y}{n} = (Z'X)^{-1} Z'y$$

as a special case.

Exercise 11.1. The same GMM estimator $\hat{\beta}$ can be obtained by minimizing

$$\left[\frac{1}{n}\sum_{i=1}^{n}z_{i}\left(y_{i}-x_{i}\beta\right)\right]'W\left[\frac{1}{n}\sum_{i=1}^{n}z_{i}\left(y_{i}-x_{i}\beta\right)\right]=\frac{\left(y-X\beta\right)'Z}{n}W\frac{Z'\left(y-X\beta\right)}{n},$$

or more concisely,

$$\hat{\beta} = \arg\min_{\beta} (y - X\beta)' ZWZ' (y - X\beta).$$

Now we check the asymptotic properties of $\hat{\beta}$. A few assumptions are in order.

Assumption 11.1 (A.1). $Z'X/n \xrightarrow{p} \Sigma$ and $Z'\epsilon/n \xrightarrow{p} 0_L$.

A.1 assumes that we can apply a law of large numbers, so that that the sample moments Z'X/n and $Z'\varepsilon/n$ converge in probability to their population counterparts.

Theorem 11.1. *Under Assumption A.1,* $\widehat{\beta}$ *is consistent.*

Proof. The step is similar to the consistency proof of OLS.

$$\widehat{\beta} = (X'ZWZ'X)^{-1} X'ZWZ' (X'\beta_0 + \epsilon)$$

$$= \beta_0 + \left(\frac{X'Z}{n}W\frac{Z'X}{n}\right)^{-1} \frac{X'Z}{n}W\frac{Z'\epsilon}{n}$$

$$\stackrel{p}{\to} \beta_0 + (\Sigma'W\Sigma)^{-1} \Sigma'W0 = \beta_0.$$

To check asymptotic normality, we assume that a central limit theorem can be applied.

Assumption 11.2 (A.2).
$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}z_{i}'\epsilon_{i}\overset{d}{\rightarrow}N\left(0_{L},\Omega\right)$$
, where $\Omega=\mathbb{E}\left[z_{i}'z_{i}\epsilon_{i}^{2}\right]$.

Theorem 11.2 (Asymptotic Normality). *Under Assumptions A.1 and A.2,*

$$\sqrt{n}\left(\widehat{\beta} - \beta_0\right) \stackrel{d}{\to} N\left(0_K, \left(\Sigma'W\Sigma\right)^{-1} \Sigma'W\Omega W\Sigma \left(\Sigma'W\Sigma\right)^{-1}\right). \tag{11.4}$$

Proof. Multiply $\hat{\beta} - \beta_0$ by the scaling factor \sqrt{n} ,

$$\sqrt{n}\left(\widehat{\beta} - \beta_0\right) = \left(\frac{X'Z}{n}W\frac{Z'X}{n}\right)^{-1}\frac{X'Z}{n}W\frac{Z'\epsilon}{\sqrt{n}} = \left(\frac{X'Z}{n}W\frac{Z'X}{n}\right)^{-1}\frac{X'Z}{n}W\frac{1}{\sqrt{n}}\sum_{i=1}^n z_i'\epsilon_i.$$

The conclusion follows as

$$\frac{X'Z}{n}W\frac{Z'X}{n} \xrightarrow{p} \Sigma'W\Sigma$$

and

$$\frac{X'Z}{n}W\frac{1}{\sqrt{n}}\sum z_{i}'\epsilon_{i}\stackrel{d}{\rightarrow}\Sigma'W\times N\left(0,\Omega\right)$$

by the Slutsky's theorem.

11.2.1 Efficient GMM

It is clear from (11.4) that the GMM estimator's asymptotic variance depends on the choice of W. Which W makes the asymptotic variance as small as possible? The answer

is $W = \Omega^{-1}$, under which the efficient asymptotic variance is

$$\left(\Sigma'\Omega^{-1}\Sigma\right)^{-1}\Sigma'\Omega^{-1}\Omega\Omega^{-1}\Sigma\left(\Sigma'\Omega^{-1}\Sigma\right)^{-1}=\left(\Sigma'\Omega^{-1}\Sigma\right)^{-1}.$$

Theorem 11.3. For any positive definite symmetric matrix W, the difference

$$\left(\Sigma'W\Sigma\right)^{-1}\Sigma'W\Omega W\Sigma\left(\Sigma'W\Sigma\right)^{-1}-\left(\Sigma'\Omega^{-1}\Sigma\right)^{-1}$$

is positive semi-definite.

Proof. To simplify notation, denote $A := W\Sigma (\Sigma'W\Sigma)^{-1}$ and $B := \Omega^{-1}\Sigma (\Sigma'\Omega^{-1}\Sigma)^{-1}$. We have

$$(\Sigma'W\Sigma)^{-1}\Sigma'W\Omega W\Sigma (\Sigma'W\Sigma)^{-1} - (\Sigma'\Omega^{-1}\Sigma)^{-1}$$

$$= A'\Omega A - B'\Omega B$$

$$= (A - B + B)'\Omega (A - B + B) - B'\Omega B$$

$$= (A - B)'\Omega (A - B) + (A - B)'\Omega B + B'\Omega (A - B).$$

Notice that

$$\begin{split} B'\Omega A &= \left(\Sigma'\Omega^{-1}\Sigma\right)^{-1}\Sigma'\Omega^{-1}\Omega W\Sigma\left(\Sigma'W\Sigma\right)^{-1} \\ &= \left(\Sigma'\Omega^{-1}\Sigma\right)^{-1}\Sigma'W\Sigma\left(\Sigma'W\Sigma\right)^{-1} = \left(\Sigma'\Omega^{-1}\Sigma\right)^{-1} = B'\Omega A, \end{split}$$

which implies $B'\Omega(A - B) = 0$ and $(A - B)'\Omega B = 0$. We thus conclude that

$$\left(\Sigma'W\Sigma\right)^{-1}\Sigma'W\Omega W\Sigma\left(\Sigma'W\Sigma\right)^{-1} - \left(\Sigma'\Omega^{-1}\Sigma\right)^{-1} = \left(A - B\right)'\Omega\left(A - B\right)$$

is positive semi-definite.

11.2.2 Two-Step GMM

- 1. Choose any valid W, say $W = I_L$, to get a consistent (but inefficient in general) estimator $\hat{\beta}$. Save the residual $\hat{\epsilon}_i = y_i x_i' \hat{\beta}$ and estimate the variance matrix $\hat{\Omega} = \frac{1}{n} \sum z_i z_i' \hat{\epsilon}_i^2$.
- 2. Set $W = \widehat{\Omega}^{-1}$ and obtain a second estimator

$$\widehat{\beta} = \left(X' Z \widehat{\Omega}^{-1} Z' X \right)^{-1} X' Z \widehat{\Omega}^{-1} Z' y.$$

This second estimator is asymptotic efficient.

11.2.3 Two Stage Least Squares

If we further assume conditional homoskedasticity $\mathbb{E}\left[\epsilon_i^2|z_i\right]=\sigma^2$, then

$$\Omega = \mathbb{E}\left[z_i z_i' \epsilon_i^2\right] = \mathbb{E}\left[z_i z_i' \mathbb{E}\left[\epsilon_i^2 | z_i\right]\right] = \sigma^2 \mathbb{E}\left[z_i z_i'\right].$$

In the first-step of the two-step GMM we can estimate the variance of the error term by $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \widehat{\epsilon}_i^2$ and the variance matrix by $\widehat{\Omega} = \widehat{\sigma}^2 \frac{1}{n} \sum_{i=1}^n z_i z_i' = \widehat{\sigma}^2 Z' Z/n$. When we plug this $W = \widehat{\Omega}^{-1}$ into the GMM estimator,

$$\widehat{\beta} = \left(X'Z \left(\widehat{\sigma}^2 \frac{Z'Z}{n} \right)^{-1} Z'X \right)^{-1} X'Z \left(\widehat{\sigma}^2 \frac{Z'Z}{n} \right)^{-1} Z'y$$

$$= \left(X'Z \left(Z'Z \right)^{-1} Z'X \right)^{-1} X'Z \left(Z'Z \right)^{-1} Z'y.$$

This is exactly the same expression of 2SLS for L > K. Therefore, 2SLS can be viewed as a special case of GMM with $W \propto (Z'Z/n)^{-1}$. Under conditional homoskedasticity, 2SLS is the efficient estimator; otherwise 2SLS is inefficient.

Remark 11.3. 2SLS gets its name because it can be obtained using two steps: first regress

X on all instruments Z, and then regress y on the fitted value along with the included exogenous variables. However, 2SLS can actually be obtained by one step using the above equation. It is a special case of GMM.

11.3 GMM in Nonlinear Model*

The principle of GMM can be used in models where the parameter enters the moment conditions nonlinearly. Let $g_i(\beta) = g(w_i, \beta) \mapsto \mathbb{R}^L$ be a function of the data w_i and the parameter β . If economic theory implies $\mathbb{E}\left[g_i(\beta)\right] = 0$, we can write the GMM population criterion function as

$$Q(\beta) = \mathbb{E}\left[g_i(\beta)\right]' W \mathbb{E}\left[g_i(\beta)\right]$$

Example 11.1. Nonlinear models nest the linear model as a special case. For the linear IV model in the previous section, the data is $w_i = (y_i, x_i, z_i)$, and the moment function is $g(w_i, \beta) = z'_i(y_i - x_i\beta)$.

In practice we use the sample moments to mimic the population moments in the criterion function

$$Q_{n}\left(\beta\right) = \left(\frac{1}{n}\sum_{i=1}^{n}g_{i}\left(\beta\right)\right)'W\left(\frac{1}{n}\sum_{i=1}^{n}g_{i}\left(\beta\right)\right).$$

The GMM estimator is defined as

$$\hat{\beta} = \arg\min_{\beta} Q_n(\beta).$$

In these nonlinear models, a closed-form solution is in general unavailable, while the asymptotic properties can still be established. We state these asymptotic properties without proofs.

Theorem 11.4. (a) If the model is identified, and

$$\mathbb{P}\left[\sup_{\beta}\left|\frac{1}{n}\sum_{i=1}^{n}g_{i}\left(\beta\right)-\mathbb{E}\left[g_{i}\left(\beta\right)\right]\right|>\varepsilon\right]\to0$$

for any constant $\varepsilon > 0$, then $\hat{\beta} \stackrel{p}{\to} \beta$.

(b) If in addition $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}g_{i}\left(\beta_{0}\right)\overset{d}{\rightarrow}N\left(0,\Omega\right)$, then

$$\sqrt{n}\left(\hat{\beta}-\beta_{0}\right)\overset{d}{\rightarrow}N\left(0,\left(\Sigma'W\Sigma\right)^{-1}\left(\Sigma'W\Omega W\Sigma\right)\left(\Sigma'W\Sigma\right)^{-1}\right)$$

where $\Sigma = \mathbb{E}\left[\frac{\partial}{\partial \beta'}g_{i}\left(\beta_{0}\right)\right]$ and $\Omega = \mathbb{E}\left[g_{i}\left(\beta_{0}\right)g_{i}\left(\beta_{0}\right)'\right]$.

(c) If we choose $W = \Omega^{-1}$, then the GMM estimator is efficient, and the asymptotic variance becomes $(\Sigma'\Omega^{-1}\Sigma)^{-1}$.

Remark. The list of assumptions in the above statement is incomplete. We only lay out the key conditions but neglect some technical details.

 $Q_n(\beta)$ measures how close are the moments to zeros. It can serve as a test statistic with proper formulation. Under the null hypothesis $\mathbb{E}\left[g_i(\beta)\right] = 0_L$, this so-called "*J*-test" checks whether a moment condition is violated. The test statistic is

$$J\left(\widehat{\beta}\right) = n\left(\frac{1}{n}\sum_{i=1}^{n}g_{i}\left(\widehat{\beta}\right)\right)'\widehat{\Omega}^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}g_{i}\left(\widehat{\beta}\right)\right)$$
$$= \left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}g_{i}\left(\widehat{\beta}\right)\right)'\widehat{\Omega}^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}g_{i}\left(\widehat{\beta}\right)\right)$$

where $\widehat{\Omega}$ is a consistent estimator of Ω , and $\widehat{\beta}$ is an efficient estimator, for example, the second $\widehat{\beta}$ from the two-step GMM. This statistics converges in distribution to a chi-square random variable with degree of freedom L-K. That is, under the null,

$$J\left(\widehat{\beta}\right) \stackrel{d}{\to} \chi^2\left(L - K\right)$$

If the null hypothesis is false, then the test statistic tends to be large, and it is more likely to reject the null.

11.4 Summary

The popularity of GMM in econometrics comes from the fact that economic theory is often not informative enough about the underlying parametric relationship between the variables. Instead, many economic assumptions suggest moment restrictions. From example, the *efficient market hypothesis* postulates that the future price movement $\Delta p_t + 1$ cannot be predicted by available past information set \mathscr{I}_t so that $\mathbb{E}\left[\Delta p_{t+1}|\mathscr{I}_t\right] = 0$. It implies that any functions of variables in the information set \mathscr{I}_t is orthogonal to Δp_{t+1} . A plethora of moment conditions can be formed in order to test the efficient market hypothesis.

GMM is an important estimation principle. Conceptually simple though, in reality GMM has many practical issues. These is vast econometric literature about issues of GMM and their remedies.

Historical notes: 2SLS was attributed to Theil (1953). In the linear IV model, the *J*-statistic was proposed by Sargan (1958).

Further reading: The quadratic form of GMM makes it difficult to extend to accommodate many moments in the big data problems. *Empirical likelihood* is an alternative estimator for models defined by moment restrictions. Shi (2016) solves the estimation problem of high-dimensional moments under the framework of empirical likelihood.

Zhentao Shi. November 23, 2020

Bibliography

- Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. *Econometrica: Journal of the Econometric Society*, 1029–1054.
- Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. *Econometrica: Journal of the Econometric Society*, 393–415.
- Shi, Z. (2016). Econometric estimation with high-dimensional moment equalities. *Journal of Econometrics* 195(1), 104–119.
- Theil, H. (1953). Repeated least squares applied to complete equation systems. *The Hague:* central planning bureau.