Estatística Descritiva

Estatística é a arte de torturar os números até que eles confessem

— Piada no meio acadêmico

A estatística é uma parte da Matemática que fornece métodos para a **coleta**, **organização**, **descrição**, **análise** e **interpretação** de dados, viabilizando a utilização deles na **tomada de decisões**.

Inferencial

Probabilidade

EDIÇÃO DO MÊS

TODAS AS EDIÇÕES

VÍDEOS

CIÊNCIA

CULTURA

HISTÓRIA

SAÚDE

LIVROS

Cultura

6 razões para acreditar que estatística é a profissão do futuro

Por Da Redação Atualizado em 31 out 2016, 19h05 - Publicado em 15 abr 2011, 22h00

- 1. Dá para trabalhar onde você quiser
- 2. O próximo Einstein será um estatístico
- 3. Sobra informação

- 4. Falta gente
- 5. Sobrevive a crises
- 6. Todo mundo entende

Vamos ao trabalho!

Estatística Descritiva

Estatística descritiva

Conjunto de **métodos** e **procedimentos** para a apresentação sumarizadas das características de dados amostrais, através de **tabelas** ou **gráficos**;

Apresenta, em suma, medidas de posição, tendência central e medidas de dispersão.

Visualizando os dados de uma amostra

- **Distribuição de Frequência** dados agrupados por classes ou categorias contabilizado-se as ocorrências de cada classe;
- Histograma forma gráfica de apresentar uma distribuição de frequência;
- Outros gráficos gráfico de torta ou polígono de frequências.

Entregas app de delivery

	Produto	dia-da-semana	hora-do-pedido	tempo-entrega	tempo-entrega-real
0	Α	1	8	15	15
1	Α	6	17	15	60
2	В	6	14	30	30
3	Α	1	14	45	15
4	В	2	1	60	75
5	В	1	13	30	30
6	В	2	14	75	15
7	В	7	1	15	60
8	D	4	9	15	15
9	X	5	20	30	30
10	С	4	22	30	15
11	С	4	5	60	60
12	С	3	1	45	75

Tempo de entrega real

Figura 1.

..

Medidas de posição ou tendência central

- Medida de posição ou percentis:
 - Máximo
 - Mínimo
 - Quartis
 - Decis
- Medidas de tendência central, definem o centro da distribuição:
 - Média
 - Mediana
 - Moda

Medidas de posição

Considere os dados abaixo com uma amostra para uma variável X qualquer

X	5	20	5	5	10	15	60	45	45	90
i	1	2	3	4	5	6	7	8	9	10

Medidas de posição

- Máximo: maior valor observado;
- Mínimo: menor valor observado;
- Quartis: dividem a amostra em 4 partes iguais, ou seja, três quartis:
 - Para uma amostra com n elementos, o primeiro quartil (Q1) será o elemento de ordem n/4, o segundo (Q2) o elemento 2n/4 e o terceiro (Q3) o elemento 3n/4
 - Se as ordens dos elementos referentes aos quartis resultarem em números fracionários, arredonde-os para cima;
 - Se as ordens resultarem em números inteiros, tome a média aritmética deste com o seguinte;

5	5	5	10	15	20	45	45	60	90	
---	---	---	----	----	----	----	----	----	----	--

Q1

Média

Se x_1 , ..., x_n são os n valores (distintos ou não) da variável X, a média aritmética, ou simplesmente média, de X pode ser escrita:

$$\overline{X} = \frac{X_1 + ... + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

X	5	20	5	5	10	15	60	45	45	90
i	1	2	3	4	5	6	7	8	9	10

$$\overline{X}$$
 = Média = 30

Média

Se x_1 , ..., x_n são os n valores (distintos ou não) da variável X, a média aritmética, ou simplesmente média, de X pode ser escrita:

$$\overline{X} = \frac{X_1 + ... + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

 $\overline{X} = \frac{n_1 X_1 + n_2 X_2 + \dots + n_k X_k}{n} = \frac{1}{n} \sum_{i=1}^k n_i X_i$

 n_1 são iguais a x_1 , n_2 são iguais a x_2 etc., n_k iguais a x_k

 $\overline{X} = \sum_{i=1}^{k} f_i X_i$

f_i = frequência relativa de x_i

Mediana

Considera as *n* observações de uma variável *X* ordenadas de forma não-decrescente (eventualmente, crescente) e é dada por:

$$md(X) = \begin{cases} \frac{X_{\left(\frac{n+1}{2}\right)}}{2}, & \text{se } n \text{ impar;} \\ \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2} + 1\right)}}{2}, & \text{se } n \text{ par.} \end{cases}$$

5	5	5	10	15	20	45	45	60	90
1	2	3	4	5	6	7	8	9	10

Média = 17,5

Média vs Mediana

- Você pretende analisar o tempo que as pessoas permanecem em ligações do call center da sua empresa quando estão interessadas no assunto "cancelar assinatura". Para isso, você captura ligações ao longo de um dia e constata que muitas dessas ligações perduram por tempo similar, enquanto algumas duram muito mais tempo.
- Para verificar a tendência central dos dados seria mais adequado usar média ou mediana? Qual a consequência do uso de cada uma delas?

Moda

- Valor que ocorre com maior frequência
 - Pode haver mais de uma moda
 - Para o exemplo anterior, a moda é 5 (3 ocorrências)
- Basta verificar a distribuição de frequências

5	20	5	5	10	15	60	45	45	90	
---	----	---	---	----	----	----	----	----	----	--

Moda = 5

Observações

- Para calcular a **moda** de uma variável, precisamos apenas da distribuição de freqüências (contagem).
- Já para a mediana necessitamos minimamente ordenar as realizações da variável.
- Finalmente, a média só pode ser calculada para variáveis quantitativas.

- O resumo de um conjunto de dados por uma única medida representativa de posição central esconde toda a informação sobre a variabilidade do conjunto de observações;
- As medidas de dispersão medem a dispersão ou espalhamento (absoluto ou relativo) dos elementos de uma amostra.

```
grupo A (variável X): 3, 4, 5, 6, 7
grupo B (variável Y): 1, 3, 5, 7, 9
grupo C (variável Z): 5, 5, 5, 5, 5
grupo D (variável W): 3, 5, 5, 7
grupo E (variável V): 3, 5, 5, 6, 6
```

$$\overline{X} = \overline{y} = \overline{z} = \overline{w} = \overline{v} = 5,0.$$


```
grupo A (variável X): 3, 4, 5, 6, 7
grupo B (variável Y): 1, 3, 5, 7, 9
grupo C (variável Z): 5, 5, 5, 5, 5
grupo D (variável W): 3, 5, 5, 7
grupo E (variável V): 3, 5, 5, 6, 6
```

$$\overline{X} = \overline{y} = \overline{z} = \overline{w} = \overline{v} = 5,0.$$

$$dm(X) = \frac{\sum_{i=1}^{n} |X_i - \overline{X}|}{n},$$

Desvio médio

$$\operatorname{var}(X) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n},$$

Variância

grupo A (variável *X*): 3, 4, 5, 6, 7 grupo B (variável *Y*): 1, 3, 5, 7, 9 grupo C (variável *Z*): 5, 5, 5, 5, 5 grupo D (variável W): 3, 5, 5, 7 grupo E (variável V): 3, 5, 5, 6, 6

$$dm(X) = \frac{\sum_{i=1}^{n} |X_i - \overline{X}|}{n},$$

Grupo A
$$\frac{dm(X) = 6/5 = 1,2,}{var(X) = 10/5 = 2,0,}$$

$$\operatorname{var}(X) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n},$$

Grupo D
$$dm(W) = 4/4 = 1,0,$$

 $var(W) = 8/4 = 2,0.$

Pelo desvio médio, o Grupo D é mais homogêneo do que o A

- Sendo a variância uma medida de dimensão igual ao quadrado da dimensão dos dados (por exemplo, se os dados são expressos em cm, a variância será expressa em cm²);
- Para contornar essa questão, costuma-se usar o desvio padrão, que é a raiz quadrada da variância:

$$dp(X) = \sqrt{var(X)}$$

Desvio-padrão como medida de risco

Exemplo – considere dois fundos de investimento, A e B, e seus respectivos retornos nos últimos 12 meses (em %)

	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov	dez
Fundo A	5,25	4,37	5,36	5,64	4,77	4,51	4,82	4,93	5,39	5,29	4,68	5,04
Fundo B	1,23	2,28	3,40	7,00	6,75	7,47	7,28	5,29	10,7	5,37	-0,2	3,45

Em qual dos dois fundos você colocaria o seu dinheiro?

Exercício

- Crie histograma e piechart no google sheets ou colab para a variável dia da semana dos dados da Figura 1;
- Considerando os dados da Figura 1, determine os quartis para a variável hora-do-pedido. Use o google Sheets para fazê-lo.
- Crie uma tabela com as frequências relativas dos dados do slide 11 e mostre que as fórmulas 1, 2 e 3 são equivalentes.
- Crie um gráfico de dispersão para as variáveis tempo-entrega e tempo-entrega-real (google sheets), da Figura 1;

Obrigado.

