

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 14 martie 2015

SOLUŢII ŞI BAREME ORIENTATIVE - CLASA a VII-a

Problema 1. a) Arătați că numărul $a = \sqrt{9 - \sqrt{77}} \cdot \sqrt{2} \cdot (\sqrt{11} - \sqrt{7}) \cdot (9 + \sqrt{77})$ este natural. b) Se consideră numerele reale x is y astfel încât xy = 6. Dacă x > 2 și y > 2, arătați că x + y < 5.

Gazeta Matematică

Soluție

a) Numărul a se poate rescrie $\sqrt{18-2\sqrt{77}}\cdot\left(\sqrt{11}-\sqrt{7}\right)\cdot\left(9+\sqrt{77}\right)$	1 p
$18 - 2\sqrt{77} = \left(\sqrt{11} - \sqrt{7}\right)^2 \dots \dots$	2p
Ca urmare, $a = (\sqrt{11} - \sqrt{7})^2 \cdot (9 + \sqrt{77}) = (18 - 2\sqrt{77})(9 + \sqrt{77}) = 8 \in \mathbb{N}$	
b) Dacă $x>2,\ y>2,$ atunci $(x-2)(y-2)>0$	2p
Rezultă $xy - 2(x + y) + 4 > 0$, de unde $x + y < \frac{1}{2}(xy + 4) = 5$	1 p

Problema 2. a) Arătaţi că dacă există două numere naturale p şi q astfel încât $\sqrt{2p-q}$ şi $\sqrt{2p+q}$ sunt numere naturale, atunci q este par.

b) Determinați câte numere naturale p au proprietatea că $\sqrt{2p-4030}$ și $\sqrt{2p+4030}$ sunt simultan numere naturale.

Soluție

a) Din ipoteză, există numerele naturale k și r astfel încât $2p-q=k^2$, $2p+q=r^2$; atunci r^2-k^2	$=2q \ldots 1p$
Atunci $(r-k)(r+k)=2q$, iar concluzia se obține din faptul că $r-k$ și $r+k$ au aceeași paritate	2p
b) Notând ca mai sus, avem $(r - k)(r + k) = 2 \cdot 4030 = 2^2 \cdot 5 \cdot 13 \cdot 31$	1p
Cum $r - k$ şi $r + k$ au aceeaşi paritate, iar $r - k < r + k$, perechea $(r - k, r + k)$ poate fi $(2, 4030)$	0), (10,806),
(310) sau $(62, 130)$.	

Problema 3. În triunghiul ABC, fie M mijlocul laturii [AC] și punctul $N \in (AM)$. Paralela prin N la AB intersectează dreapta BM în P, paralela prin M la BC intersectează dreapta BN în Q, iar paralela prin N la AQ intersectează dreapta BC în S.

Demonstrați că dreptele PS și AC sunt paralele.

Soluție

Notând $MQ \cap AB = \{E\}$ şi $\{D\} = NP \cap ME$, obţinem $EA = EB$ şi $ND = DP$	2p
Cum $ANPB$ este trapez, punctele A, Q, P sunt coliniare	2p
$\Delta ADP \equiv \Delta SDN \text{ (U.L.U.)}$	1p
Rezultă $[AP] \equiv [SN]$ și, cum $AP \parallel SN$, patrulaterul $ANSP$ este paralelogram, deci $PS \parallel AC$	2p

Problema 4. În exteriorul pătratului ABCD se construiește triunghiul isoscel ABE, cu $m (\not ABE) = 120^{\circ}$. Se notează cu M piciorul perpendicularei din B pe bisectoarea unghiului EAB, cu N piciorul perpendicularei din M pe AB, iar cu P intersecția dreptelor CN și MB.

Fie G centrul de greutate al triunghiului ABE. Demonstrați că dreptele PG și AE sunt paralele.

Soluție

Din $MN \parallel BC$ rezultă $\Delta PMN \sim \Delta PBC$, deci $\frac{PM}{PB} = \frac{MN}{BC} = \frac{1}{4}$ şi, notând $\{Q\} = BM \cap AE$, rezult		
de unde $PB = PM + \frac{1}{2}BQ = \frac{2}{3}BQ$		3p
Dacă F este mijlocul segmentului $[AE]$, atunci $\frac{BG}{BF} = \frac{2}{3}$ și, conform reciprocei teoremei lui Thale	s, rezu	ıltă că
$PG \parallel AE$		2 _I