

CS 412 – Week 07

Depth-First Search, Topological Sort, and SCCs

Shah Jamal Alam

Depth-first Search (DFS)

- Searches "deep" in the graph, whenever possible.
- Each vertex u is initially white; grayed when it is discovered; and blackened when it is finished.
- Uses two **timestamps**: each vertex $m{u}$ has two timestamps
 - The first timestamp $u_{\cdot d}$ records when it is first discovered and grayed.
 - The second timestamp $u_{\cdot f}$ records when the search finishes examining u's adjacency list and blackens u_{\cdot}
- Timestamps are between 1 and 2|V| (why?) For every vertex u, $u_{\cdot d} < u_{\cdot f}$

Depth-first Search (DFS)

Input: G = (V, E), directed or undirected. No source vertex given!

Output:

- Two timestamps on each vertex.
- $\pi[v]$: **predecessor of** v = u, such that v was discovered during the scan of u's adjacency list.

• Uses the same coloring scheme for vertices as BFS.

Source: TBA.

Depth-first Search (DFS): an example

Pseudocode

DFS(*G*)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow NIL$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Uses a global timestamp *time*.

DFS-Visit(u)

- color[u] ← GRAY ∇ White vertex u has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. $do\ if\ color[v] = WHITE$
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK \quad \nabla Blacken u;$ it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Analysis of DFS

- Loops on lines 1-2 & 5-7 take $\Theta(|V|)$ time, excluding time to execute **DFS-Visit**.
- **DFS-Visit** is called once for each white vertex $v \in V$ when it is painted gray the first time. Lines 3-6 of **DFS-Visit** is executed |Adj[v]| times. The total cost of executing **DFS-Visit** is $\sum_{v \in V} |Adj[v]| = \Theta(|E|)$.
- Total running time of DFS is $\Theta(|V| + |E|)$

Parenthesis structure property of DFS

We can define four edge types in terms of the depth-first forest G_{π} produced by a depth-first search on G:

- 1. **Tree edges** are edges in the depth-first forest G_{π} . Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v).
- 2. **Back edges** are those edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree. We consider self-loops, which may occur in directed graphs, to be back edges.
- 3. **Forward edges** are those nontree edges (u, v) connecting a vertex u to a descendant v in a depth-first tree.
- 4. Cross edges are all other edges. They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other, or they can go between vertices in different depth-first trees.

Show that edge (u, v) is

- **a.** a tree edge or forward edge if and only if u.d < v.d < v.f < u.f,
- **b.** a back edge if and only if $v.d \le u.d < u.f \le v.f$, and
- c. a cross edge if and only if v.d < v.f < u.d < u.f.

Directed Acyclic Graph (DAG)

A directed graph G is acyclic if and only if a depth-first search of G yields no back edges.

Property In a dag, every edge leads to a vertex with a lower post number.

Every dag can be linearized!

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times ν . f for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 **return** the linked list of vertices

Source: Rosen

Property Every directed graph is a dag of its strongly connected components.

Property 1 If the explore subroutine is started at node u, then it will terminate precisely when all nodes reachable from u have been visited.

The basic idea

- Run DFS on a node u in the given directed graph G = (V, E).
- If we're lucky, then the node $m{u}$ belongs to the $m{sink}$ SCC in G.

Challenge:

- How do we find a node that belongs to the sink SCC in G?
- How do we continue once all nodes in the sink SCC are discovered?
- How do we find all SCCs in O(n+m)?

Trick:

- Finding a node in the *source* SCC is *easy*.
- To pick a node that belong in the *source* SCC, run DFS. The node in the highest finishing time (post-time) is in a source SCC.

Finding SCCs in a directed graph using DFS

- 1. Run DFS on G = (V, E), calculating $u_{.d}$ and $u_{.f}$ for all nodes u in V.
- 2. Run DFS on G_{rev} , picking nodes in decreasing finishing time (calculated from Step 1).
 - [Every tree in DFS of G_{rev} will be a SCC in G; recall the Parenthesis property].
- 3. Repeat Step 2.