

planetmath.org

Math for the people, by the people.

properties of tensor product

Canonical name PropertiesOfTensorProduct

Date of creation 2013-03-22 17:21:06 Last modified on 2013-03-22 17:21:06 Owner polarbear (3475) Last modified by polarbear (3475)

Numerical id 10

Author polarbear (3475)

Entry type Derivation Classification msc 18-00 Classification msc 13-00 **Theorem 1.** Let V_1, V_2 be two vector spaces over a field F. If $x_1, \ldots, x_n \in V_1$ are linearly independent and $y_1, \ldots, y_n \in V_2$ then

$$\sum x_i \otimes y_i = 0 \Rightarrow y_i = 0, \text{ for all } i$$

Proof. Take the dual vectors x_i^* to the vectors x_i , i.e. $x_i^*(x_j) = \delta_{i,j}$. Given arbitrary linear functionals $f_i: V_2 \to F$, define a bilinear form $f: V_1 \times V_2 \to F$ by

$$f(x,y) = \sum_{j=1}^{n} x_{j}^{*}(x) f_{j}(y)$$

By the definition of tensor product there exists a unique linear functional $\phi: V_1 \otimes V_2 \to F$ such that $\phi \circ \iota = f$. Therefore

$$0 = \phi \left(\sum_{i} x_{i} \otimes y_{i} \right)$$

$$= \sum_{i} \phi \circ \iota(x_{i}, y_{i})$$

$$= \sum_{i} f(x_{i}, y_{i})$$

$$= \sum_{i} \sum_{j} x_{j}^{*}(x_{i}) f_{j}(y_{i})$$

$$= \sum_{i} f_{i}(y_{i}).$$

Since the f_i are arbitrary, it follows that $y_i = 0$ for all i.