The mandi Package

Paul J. Heafner (heafnerj@gmail.com)

 $March\ 3,\ 2021$

Version v3.0.0g dated 2021-03-03 **PLEASE DO NOT DISTRIBUTE THIS VERSION.**

Contents

A	owledgements	3
\mathbf{C}	ge History	4
Li	of GlowScript Programs	5
Li	of VPython Programs	5
Li	of Figures	5
1	troduction	6
_	Loading the Package	
	The Package Version	
	Package Options	
	The mandisetup Command	
2	telligent Commands for Physical Quantities and Constants	7
	Physical Quantities	
	2.1.1 Typesetting Physical Quantities	
	2.1.2 Checking Physical Quantities	
	2.1.3 Commands For Predefined Physical Quantities	
	2.1.4 Defining and Redefining Your Own Physical Quantities	
	2.1.5 Predefined Units and Constructs	
	2.1.6 Setting Global Units	
	2.1.7 Setting Units for a Single Instance	
	2.1.8 Setting Units in an Environment	
	Physical Constants	
	2.2.1 Typesetting Physical Constants	
	2.2.3 Commands For Predefined Physical Constants	
	2.2.4 Defining and Redefining Your Own Physical Constants	
	2.2.5 Setting Global Precision	
	2.2.6 Setting Precision for a Single Instance	
	2.2.7 Setting Precision in an Environment	
3	owScript and VPython Program Listings	26
	The glowscriptblock Environment	. 26
	The vpythonfile Command	. 29
	The glowscriptinline and vpythoninline Commands	. 31
4	ommands for Writing Physics Problem Solutions	31
	Introductory Needs	
	4.1.1 Traditional Vector Notation	
	4.1.2 Coordinate-Free and Index Notation	
	4.1.3 Problems and Annoted Problem Solutions	
	Intermediate and Advanced Needs	
	Useful Math Commands	. 39
5	ommands Specific to Matter & Interactions	42
	The Momentum Principle	
	The Energy Principle	
	The Angular Momentum Principle	
6	urce Code	47
7	dex	68

Acknowledgements

TO BE COMPLETED

Change History

v3.0.0g	
General: Initial release	6

List	of GlowScript Programs	
1	A GlowScript program	28
List	of VPython Programs	
1	A VPython program	30
List	of Figures	
$\frac{1}{2}$	Image shown 20 percent actual size	

1 Introduction

This is the documentation for the mandi,¹ which is designed primarily for students in introductory physics courses. This document serves to document what commands mandi provides and does not necessarily fully demonstrate how students would use them. There is a separate document that serves that purpose.

1.1 Loading the Package

Load mandi as you would any package in your preamble.

\usepackage[options]{mandi}

1.2 The Package Version

\mandiversion

Typesets the current version and build date.

The version is \mandiversion\ and is a stable build.

The version is v3.0.0g dated 2021-03-03 and is a stable build.

1.3 Package Options

N 2021-01-30 N 2021-01-30 units=\langle type of unit\rangle
preciseconstants=\langle boolean\rangle

(initially unspecified, set to alternate) (initially unspecified, set to false)

Now mandi uses a key-value interface for options. The units key can be set to base, derived, or alternate. The preciseconstants key is always either true or false.

1.4 The mandisetup Command

N 2021-02-17

\mandisetup{\langle options \rangle}

Command to set package options on the fly after loadtime. This can be done in the preamble or inside the \begin{document}...\end{document} environment.

\mandisetup{units=base}

 $^{^{1}}$ The package name can be pronounced either with two syllables, to rhyme with candy, or with three syllables, as M and I.

2 Intelligent Commands for Physical Quantities and Constants

2.1 Physical Quantities

2.1.1 Typesetting Physical Quantities

Typesetting physical quantities and constants using semantically appropriate names, along with the correct SI units, is the core function of mandi. Take momentum as the prototypical physical quantity in an introductory physics course.

N 2021-02-24

Command for momentum and its vector variant. The default units will depend on the options passed to mandi at load time. Alternate units are the default. Other units can be forced as demonstrated. The vector variant can take more than three components. Note the other variants for the quantity's value and units.

```
5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentum{5}
\momentumvalue{5}
                                                                                                 5 \,\mathrm{m}\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}
\momentumbaseunits{5}
                                                                                                 5 \, \text{N} \cdot \text{s}
\momentumderivedunits{5}
                                                                                                 5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentumalternateunits{5}
                                                                                                 m \cdot kg \cdot s^{-1}
\momentumonlybaseunits
\momentumonlyderivedunits
                                                                                                 N \cdot s
\momentumonlyalternateunits \\
                                                                                                 kg \cdot m / s
\vectormomentum{2,3,4}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
\momentumvector{2,3,4}
\momentum{\mivector{2,3,4}}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
```

Commands that include the name of a physical quantity typeset units, so they shouldn't be used for algebraic or symbolic values of components. For example, one shouldn't use $\mbox{vectormomentum}(\mbox{mv}_x,\mbox{mv}_y,\mbox{mv}_z)$ but instead the generic $\mbox{mivector}(\mbox{mv}_x,\mbox{mv}_y,\mbox{mv}_z)$ instead.

2.1.2 Checking Physical Quantities

N 2021-02-16

$\checkquantity{\langle name \rangle}$

Command to check and typeset the command, base units, derived units, and alternate units of a defined physical quantity.

2.1.3 Commands For Predefined Physical Quantities

Every other defined physical quantity can be treated similarly. Just replace momentum with the quantity's name. Obviously, the variants that begin with \vector will not be defined for scalar quantities. Here are all the physical quantities, with all their units, defined in mandi. Remember that units are not present with symbolic (algebraic) quantities, so do not use the \vector variants of these commands for symbolic components. Use \mivector \(^{\top} P.32\) instead.

N 2021-02-24	\acceleration{ $\langle magnitude \rangle$ } $\langle c_1,, c_n \rangle$	c 11		
W 2021-02-24	$\langle c_1,, \rangle$			
	name	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-2}} \end{array}$	derived N/kg	alternate m/s ²
	$\adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\backslash}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\backslash}} \adjustlength$			
	name \amount	base mol	derived mol	alternate mol
N 2021-02-24	\(magn\) \angularaccelerationvector \vectorangularacceleration	$\{\langle c_1, \dots, c_n \rangle\}$		
	${\rm name} \\ {\bf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	base rad·s ⁻²	$\frac{\text{derived}}{\text{rad}/\text{s}^2}$	$\begin{array}{c} \text{alternate} \\ \text{rad} / \text{s}^2 \end{array}$
	(magnitue	<i>de</i> }}		
	name \angularfrequency	base $rad \cdot s^{-1}$	derived rad/s	alternate rad/s
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , c_n \rangle $\}$		
	name \angularimpulse	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-1} \end{array}$	$\begin{array}{c} \text{derived} \\ \text{kg} \cdot \text{m}^2 / \text{s} \end{array}$	$\begin{array}{c} alternate \\ kg \cdot m^2 / s \end{array}$
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , $c_n \rangle \}$		
	name \angularmomentum	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-1}} \end{array}$	$\begin{array}{c} \text{derived} \\ \text{kg} \cdot \text{m}^2 / \text{s} \end{array}$	alternate $kg \cdot m^2 / s$
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\ldots, c_n\rangle\}$		
	name \angularvelocity	$\begin{array}{c} \text{base} \\ \text{rad} \cdot \text{s}^{-1} \end{array}$	derived rad/s	alternate rad/s
	$\area{(magnitude)}$			

N 2021-02-24

	name \current	base A	derived A	alternate A
N 2021-02-24	$\label{lem:currentdensity} $$ \operatorname{currentdensity}(\mbox{(c_1)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$,\ldots,c_{n}\rangle\}$		
	name \currentdensity	$\begin{array}{c} \text{base} \\ m^{-2} \cdot A \end{array}$	$\begin{array}{c} \text{derived} \\ C \cdot s / m^2 \end{array}$	alternate A/m²
	$\verb \dielectricconstant{ } (magazerous) $	$nitude$ }}		
	name \dielectricconstant	base	derived	alternate
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	(c, c_n)		
	name \displacement	base m	derived m	alternate m
	$\delta constrain {\langle magnitude \rangle}$			
	name \duration	base s	derived s	alternate s
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\operatorname{cor}\{\langle c_1,\ldots,c_n \rangle\}$		
	name	$\begin{array}{c} base \\ m \cdot s \cdot A \end{array}$	derived C·m	
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , c_n \rangle }		
	name \electricfield	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V/m	alternate N/C
	\electricflux{\(magnitude\)}	-		
	name	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$		alternate $N \cdot m^2 / C$
	\electricpotential{\langle} magna	$itude$ }}		

	name \electricpotential	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C
	\(magniti)	ide }		
	name \electroncurrent	base s ⁻¹	derived e/s	alternate e/s
	$\ensuremath{\mbox{emf}\{\langle magnitude \rangle\}}$			
	name \emf	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C
	$\ensuremath{\mbox{energy}} \{\ensuremath{\mbox{magnitude}}\}$			
	name \energy	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	derived J	alternate J
	(magnitude	2)}		
	name \energydensity	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived J/m³	alternate J/m³
N 2021-02-24	$\label{eq:constraint} $$\operatorname{cnergyflux}((magnitude)) $$ \operatorname{ctorenergyflux}((c_1,\ldots, c_1,\ldots, c_n)) $$$			
	name \energyflux	base $kg \cdot s^{-3}$	derived W/m²	alternate W/m²
	$\verb \entropy{ } (magnitude) $			
	name \entropy	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \cdot K^{-1} \end{array}$	derived J/K	alternate J/K
N 2021-02-24	$\label{eq:constraint} $$ \operatorname{constant}(c_1,\dots,c_n) $$ \operatorname{constant}(c_1,\dots,c_n) $$$			
	name \force	$\begin{array}{c} \text{base} \\ \text{m} \cdot \text{kg} \cdot \text{s}^{-2} \end{array}$	derived N	alternate N
	\frequency{(magnitude)}			
	name	$\begin{array}{c} \text{base} \\ \text{s}^{-1} \end{array}$	derived Hz	alternate Hz

N 2021-02-24	\(magn\) \gravitationalfieldvector \vectorgravitationalfield	$\{\langle c_1,\ldots,c_n\rangle\}$				
	name \gravitationalfield	base $m \cdot s^{-2}$	derived N/kg	alternate N/kg		
	<	$magnitude$ }}				
	name	$\begin{array}{c} \text{base} \\ \text{m}^2 \cdot \text{s}^{-2} \end{array}$	derived J/kg	$\begin{array}{c} \text{alternate} \\ \text{J/kg} \end{array}$		
N 2021-02-24	$\label{eq:constraint} $$ \displaystyle \operatorname{(magnitude)} $$ \operatorname{(c_1, \dots, c_n)} $$ \operatorname{(c_1, \dots, c_n)} $$$					
	name \impulse	$\begin{array}{c} {\rm base} \\ {\rm m\cdot kg\cdot s^{-1}} \end{array}$				
	\indexofrefraction{\((magnitude)\)}					
	${\rm name} \\ {\tt indexofrefraction}$	base	derived	alternate		
	\inductance{\langle magnitude \range}					
	name \inductance	$\begin{array}{c} {\rm base} \\ {m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}} \end{array}$	derived H	$\begin{array}{c} \text{alternate} \\ \text{V}\cdot\text{s}/\text{A} \end{array}$		
	(mag	$gnitude$ }}				
	${ m name}$ \linearchargedensity	$\begin{array}{c} \text{base} \\ \text{m}^{-1} \cdot \text{s} \cdot \text{A} \end{array}$	derived C/m	alternate C/m		
	\linearmassdensity{\(magnitude\)}					
	${ m name}$ \linearmassdensity	$\begin{array}{c} \text{base} \\ m^{-1} \cdot kg \end{array}$	derived kg/m	alternate kg/m		
	$\label{luminous} {\mbox{\mbox{\mbox{\langle magnitude}\rangle$}}$					
	name \luminous	base cd	derived cd	alternate cd		

 $\verb|\magneticcharge| \{\langle magnitude \rangle\}|$

	name \magneticcharge	$\begin{array}{c} \text{base} \\ \text{m} \cdot A \end{array}$		
N 2021-02-24	<pre>(r \magneticdipolemomentvectormagneticdipolemoment)</pre>	$\mathtt{ctor}\{\langle c_1,\dots,c_n \rangle\}$		
	${\rm name} \\ {\tt \ \ \ \ \ }$	$\begin{array}{c} \text{base} \\ \text{m}^2 \cdot \text{A} \end{array}$		alternate J/T
N 2021-02-24	$\label{local_magnetic} $$\max_{magneticfield vector {\{c_1\}}} \end{constraints} $$ \operatorname{magneticfield {\{c_1\}}} $$$	$,\ldots,c_{n}\rangle\}$		
	name \magneticfield	$\begin{array}{c} base \\ kg \cdot s^{-2} \cdot A^{-1} \end{array}$	derived T	$\begin{array}{c} {\rm alternate} \\ {\rm N/C\cdot (m/s)} \end{array}$
	$\verb \magneticflux{ } {\it (magnitude)} $) }		
	name \magneticflux	$\begin{array}{c} \text{base} \\ m^2 \cdot kg \cdot s^{-2} \cdot A^{-1} \end{array}$	$\begin{array}{c} \text{derived} \\ T \cdot m^2 \end{array}$	
	$\mbox{\mbox{$\mbox{mass}${\langle magnitude\rangle$}}}$			
	name \mass	base kg	derived kg	alternate kg
	\mobility {\(\magnitude\)}			
	name \mobility	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-4} \cdot A^{-1} \end{array}$	$\begin{array}{c} \text{derived} \\ m^2 / V \cdot s \end{array}$	alternate $(m/s)/(N/C)$
	$\mbox{$\$	ude }		
	name \momentofinertia	base m²·kg	$\begin{array}{c} \text{derived} \\ J \cdot s^2 \end{array}$	
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:			
	name \momentum	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-1} \end{array}$	derived N·s	
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , $c_n angle \}$		

${ m name}$ \relativepermeability	base	derived	alternate
<r< td=""><td>$nagnitude angle \}$</td><td></td><td></td></r<>	$nagnitude angle \}$		
${ m name}$	base	derived	alternate
$\verb \resistance { } (magnitude) $			
name \resistance	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	derived V/A	$_{\Omega}^{\rm alternate}$
\resistivity{(magnitude)}	ŀ		
name \resistivity	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	$\frac{\mathrm{derived}}{\Omega \cdot \mathtt{m}}$	$\begin{array}{c} \text{alternate} \\ \left(\text{V} / \text{m} \right) / \left(\text{A} / \text{m}^2 \right) \end{array}$
$\sl \mbox{solidangle} {\mbox{\sl} (magnitude)}$			
name \solidangle	$\begin{array}{c} base \\ m^2 \cdot m^{-2} \end{array}$	derived sr	alternate sr
<r< td=""><td>$nagnitude \}$</td><td></td><td></td></r<>	$nagnitude \} $		
name \specificheatcapacity	$\begin{array}{c} base \\ m^2 \cdot s^{-2} \cdot K^{-1} \end{array}$	derived J/K·kg	$\begin{array}{c} \text{alternate} \\ \text{J/K} \cdot \text{kg} \end{array}$
\langle magnit	ude }}		
name \springstiffness	base kg·s ⁻²	derived N/m	alternate N/m
$\arraycolor{\$	(e)}		
name \springstretch	base m	derived m	alternate m
\stress{\(magnitude\)}			
name \stress	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	alternate N/m²
$\operatorname{\mathtt{\baseline}}(magnitude)$			
name \strain	base	derived	alternate

	<pre>\temperature{(magnitude)}</pre>			
	name \temperature	base K	derived K	alternate K
N 2021-02-24	$\label{eq:condition} $$ \operatorname{cond}(c_1,\ldots,c_n) $$ \operatorname{cond}(c_1,\ldots,c_n) $$$			
	name \torque	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	$ \frac{\mathrm{derived}}{\mathtt{N} \cdot \mathtt{m}} $	$\begin{array}{c} \text{alternate} \\ \text{N}\cdot \text{m} \end{array}$
N 2021-02-24 N 2021-02-24	$\label{eq:continuous} $$\operatorname{coity}(\operatorname{magnitude}) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ $			
	name \velocity	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-1}} \end{array}$	derived m/s	alternate m/s
	name \velocityc	base c	derived	$_{\rm c}^{\rm alternate}$
	$\volume{(magnitude)}$			
	name \volume	base m ³	$_{m^3}^{\rm derived}$	
	$\verb \volumechargedensity \{ (magnited to the context of the contex$	ude }}		
	name \volumechargedensity	$\begin{array}{c} base \\ m^{-3} \cdot s \cdot A \end{array}$	derived C/m³	$\begin{array}{c} {\rm alternate} \\ {\rm C/m^3} \end{array}$
	$\verb \volumemassdensity \{ (magnitud \\$	$ e\rangle$		
	name \volumemassdensity	base m ⁻³ ⋅kg	derived kg/m³	$\begin{array}{c} \text{alternate} \\ \text{kg/m}^3 \end{array}$
	\wavelength{(magnitude)}			
	name \wavelength	base m	derived m	alternate m
N 2021-02-24	$\label{eq:wavenumber} $$ \operatorname{magnitude} $$ \operatorname{constant}(c_1,\dots,c_n) $$ \operatorname{constant}(c_1,\dots,c_n) $$$			

name \wavenumber	base m ⁻¹	derived /m	alternate /m
$\work{(magnitude)}$			
name \work	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-2}} \end{array}$	derived J	$\begin{array}{c} \text{alternate} \\ \text{N} \cdot \text{m} \end{array}$
\widtharpoonup	e>}		
name \youngsmodulus	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	

2.1.4 Defining and Redefining Your Own Physical Quantities

N 2021-02-16 N 2021-02-21

```
\newscalarquantity{\(\(\lame\)\)} \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\]
```

Command to define/redefine a new/existing scalar quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and <code>\newvectorquantity</code> or <code>\renewvectorquantity</code> to define/redefine a quantity.

N 2021-02-16 N 2021-02-21

```
\newvectorquantity{\((name\))} \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\]
```

Command to define/redefine a new/existing vector quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and <code>\newscalarquantity</code> or <code>\renewscalarquantity</code> to define/redefine a quantity.

2.1.5 Predefined Units and Constructs

```
\per
\usk
\emptyunit
\ampere
\atomicmassunit
\candela
\coulomb
\degree
\electronvolt
\farad
\henry
\hertz
\joule
\kelvin
\kilogram
\lightspeed
\meter
```

\metre \mole \newton \ohm \pascal \radian \second \siemens \steradian \tesla \volt \watt \weber (postfix) \tothetwo \tothethree (postfix) \tothefour (postfix) \inverse (postfix) \totheinversetwo (postfix) \totheinversethree (postfix) (postfix) \totheinversefour

2.1.6 Setting Global Units

U 2021-02-26 U 2021-02-26 U 2021-02-26 \alwaysusebaseunits \alwaysusederivedunits \alwaysusealternateunits

Modal commands (switches) for setting the default unit form for the entire document. When mandi is loaded, one of these three commands is executed depending on whether the optional units key is provided. See the section on loading the package for details. Alternate units are the default because they are the most likely ones to be seen in introductory physics textbooks.

2.1.7 Setting Units for a Single Instance

U 2021-02-26 U 2021-02-26 U 2021-02-26 \hereusebaseunits{\(\content\)}
\hereusederivedunits{\(\content\)}
\hereusedalternateunits{\(\content\)}

Commands for setting the unit form on the fly for a single instance. The example uses momentum and the Coulomb constant, but they work for any defined quantity and constant.

```
\label{eq:continuous_series} $$ \operatorname{hereusebaseunits}(\operatorname{momentum}\{5\}) $$ \ \operatorname{hereusederivedunits}(\operatorname{momentum}\{5\}) $$ \ \operatorname{hereusealternateunits}(\operatorname{momentum}\{5\}) $$ \ \no{notion}(\operatorname{momentum}\{5\}) $$ \ \no{notion}(\operatorname{moment
```

2.1.8 Setting Units in an Environment

```
U 2021-02-26
```

U 2021-02-26

U 2021-02-26

Inside these environments units are changed for the duration of the environment regardless of the global default setting.

```
\momentum{5}
                            11
\oofpez
\begin{usebaseunits}
                                                                                                     5 \, \mathrm{kg} \cdot \mathrm{m} \, / \, \mathrm{s}
                                                                                                    9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
   \momentum{5} \\
   \oofpez
                                                                                                     5\,\mathrm{m}\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}
\end{usebaseunits}
                                                                                                    9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\begin{usederivedunits}
    \momentum{5} \\
                                                                                                     5 N \cdot s
   \oofpez
                                                                                                     9 \times 10^9 \, \text{m} \, / \, \text{F}
\end{usederivedunits}
                                                                                                     5\,\mathrm{kg}\cdot\mathrm{m} / s
\begin{usealternateunits}
                                                                                                     9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
   \momentum{5} \\
\end{usealternateunits}
```

2.2 Physical Constants

2.2.1 Typesetting Physical Constants

Take the quantity $\frac{1}{4\pi\epsilon_0}$, sometimes called the Coulomb constant, as the prototypical physical constant in an introductory physics course. Here are all the ways to access this quantity in mandi. As you can see, these commands are almost identical to the corresponding commands for physical quantities.

\oofpez

Command for the Coulomb constant. The constant's numerical precision and default units will depend on the options passed to mandi at load time. Alternate units and approximate numerical values are the defaults. Other units can be forced as demonstrated.

```
9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
                                                                                        9 \times 10^{9}
\oofpez
\oofpezapproximatevalue
                                                                                        8.987551787 \times 10^9
\oofpezprecisevalue
\oofpezmathsymbol
                                                                                        9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\oofpezbaseunits
\oofpezderivedunits
                                                                                        9 \times 10^9 \, \text{m} \, / \, \text{F}
\oofpezalternateunits
                                                                                        9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
\oofpezonlybaseunits
                                                                                        m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}
\oofpezonlyderivedunits
\oofpezonlyalternateunits
                                                                                        m / F
                                                                                        N \cdot m^2 / C^2
```

2.2.2 Checking Physical Constants

U 2021-02-26

N 2021-02-02

$\checkconstant{\langle name \rangle}$

\avogadro

Command to check and typeset the constant's name, base units, derived units, alternate units, mathematical symbol, approximate value, and precise value.

2.2.3 Commands For Predefined Physical Constants

Every other defined physical constant can be treated similarly. Just replace oofpez with the constant's name. Unfortunately, there is no universal agreement on the names of every constant so consult the next section for the names that have been used. Here are all the physical constants, with all their units, defined in mandi. The constants $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$.

(2.00220			
name \avogadro symbol N _A	base mol^{-1} approximate 6×10^{23}	derived / mol precise $6.02214076 \times 10^{23}$	alternate / mol
\biotsavartconstant			
name \\delta iotsavartconstant \\delta jubo \\delta \frac{\mu_0}{4\pi} \end{ar}	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived H/m precise 10 ⁻⁷	alternate T·m/A
\bohrradius			
name \bohrradius symbol a ₀	base m approximate 5.3×10^{-11}	derived m precise $5.2917721067 \times 10^{-11}$	alternate m

\boltzmann			
name \boltzmann symbol k _B	base $m^{2} \cdot kg \cdot s^{-2} \cdot K^{-1}$ approximate 1.4×10^{-23}	derived J/K precise 1.380649×10^{-23}	alternate J/K
\coulombconstant			
$\begin{array}{c} \text{name} \\ \texttt{\coulombconstant} \\ \text{symbol} \\ \frac{1}{4\pi\epsilon_0} \end{array}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	$\begin{array}{c} \text{derived} \\ \text{m/F} \\ \text{precise} \\ 8.9875517873681764 \times 10^9 \end{array}$	alternate $N \cdot m^2$ / C^2
\earthmass			
$\begin{array}{c} \text{name} \\ \texttt{\embed{\colored}} \\ \text{symbol} \\ \text{\colored} \\ \text{M}_{\text{Earth}} \end{array}$	base kg approximate 6.0×10^{24}	derived kg precise 5.97237×10^{24}	alternate kg
\earthmoondistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ \ \ \ \ } \\ \texttt{\ \ \ \ } \\ \text{symbol} \\ \textbf{\ \ \ } \\ \textbf{\ \ \ } \\ \textbf{\ \ \ } \\ \textbf{\ \ } \\$	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\earthradius			
$\begin{array}{c} \text{name} \\ \texttt{\colored} \\ \text{symbol} \\ \text{R}_{\text{Earth}} \end{array}$	base m approximate 6.4×10^6	derived m precise 6.371×10^6	alternate m
\earthsundistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ \\ d_{\text{ES}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\electroncharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ \text{\ \ } \\ \text{\ } \\ \end{array}$	base $A \cdot s$ approximate -1.6×10^{-19}	derived C precise $-1.602176634 \times 10^{-19}$	alternate C

N 2021-02-02

\electronCharge			
name \electronCharge symbol Q _e	base $A \cdot s$ approximate -1.6×10^{-19}	derived C precise $-1.602176634 \times 10^{-19}$	alternate C
\electronmass			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \text{electronmass} \\ \text{symbol} \\ \text{m}_{e} \end{array}$	base kg approximate 9.1×10^{-31}	derived kg precise $9.10938356 \times 10^{-31}$	alternate kg
\elementarycharge			
name \elementarycharge symbol e	base A·s approximate 1.6×10^{-19}	derived C precise $1.602176634 \times 10^{-19}$	alternate C
\finestructure			
$\begin{array}{c} \text{name} \\ \texttt{\finestructure} \\ \text{symbol} \\ \alpha \end{array}$	base approximate $\frac{1}{137}$	derived precise $7.2973525664 \times 10^{-3}$	alternate
\hydrogenmass			
name \hydrogenmass symbol m _H	base kg approximate 1.7×10^{-27}	derived kg precise $1.6737236 \times 10^{-27}$	alternate kg
\moonearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\moonearthdistance} \\ \text{symbol} \\ \text{d}_{\text{ME}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\moonmass			
name \moonmass symbol M _{Moon}	base kg approximate 7.3×10^{22}	derived kg precise 7.342×10^{22}	alternate kg

\moonradius			
name \moonradius symbol R _{Moon}	base m approximate 1.7×10^6	derived m precise 1.7371 × 10 ⁶	alternate m
\mzofp			
name \mzofp symbol $\frac{\mu_0}{4\pi}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived H/m precise 10 ⁻⁷	alternate T·m/A
\neutronmass			
name \neutronmass symbol m _n	base kg approximate 1.7×10^{-27}	derived kg precise $1.674927471 \times 10^{-27}$	alternate kg
\oofpez			
name \oofpez symbol $\frac{1}{4\pi\epsilon_0}$	base $m^{3} \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^{9}	derived m/F precise 8.987551787×10^9	alternate $N \cdot m^2 / C^2$
\oofpezcs			
name \oofpezcs symbol $\frac{1}{4\pi\epsilon_0c^2}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived $T \cdot m^2$ precise 10^{-7}	alternate $N \cdot s^2 / C^2$
\planck			
name \planck symbol h	base $m^2 \cdot kg \cdot s^{-1}$ approximate 6.6×10^{-34}	derived $\begin{array}{c} \text{J} \cdot \text{s} \\ \text{precise} \\ 6.62607015 \times 10^{-34} \end{array}$	$_{\text{J}\cdot \text{s}}^{\text{alternate}}$
\planckbar			
name \planckbar symbol h	base $m^2 \cdot kg \cdot s^{-1}$ approximate 1.1×10^{-34}	derived J·s precise $1.054571817 \times 10^{-34}$	$\begin{array}{c} \text{alternate} \\ \text{J} \cdot \text{s} \end{array}$

\planckc			
name \planckc symbol hc	base $m^3 \cdot kg \cdot s^{-2}$ approximate 2.0×10^{-25}	derived $J \cdot m$ precise $1.98644586 \times 10^{-25}$	
\protoncharge			
$\begin{array}{c} \text{name} \\ \texttt{\protoncharge} \\ \text{symbol} \\ \text{\ensuremath{q_p}} \end{array}$	base A·s approximate $+1.6 \times 10^{-19}$	derived C precise $+1.602176634 \times 10^{-19}$	alternate C
\protonCharge			
$\begin{array}{c} \text{name} \\ \texttt{\protonCharge} \\ \text{symbol} \\ \text{\proton} \\ \text{\proton} \\ \text{\proton} \end{array}$	base $A \cdot s$ approximate $+1.6 \times 10^{-19}$	derived C precise $+1.602176634 \times 10^{-19}$	alternate C
\protonmass			
$\begin{array}{c} \text{name} \\ \texttt{\protonmass} \\ \text{symbol} \\ \text{m}_{\text{p}} \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.672621898 \times 10^{-27}$	alternate kg
\rydberg			
$\begin{array}{c} \text{name} \\ \texttt{\t rydberg} \\ \text{symbol} \\ \text{\t $R_{_{\infty}}$} \end{array}$	base m^{-1} approximate 1.1×10^7	derived m^{-1} precise 1.0973731568508 × 10^7	$_{\rm m^{-1}}^{\rm alternate}$
\speedoflight			
name \speedoflight symbol c	base $m \cdot s^{-1}$ approximate 3×10^{8}	derived m/s precise 2.99792458×10^8	alternate m/s
\stefanboltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\stefanboltzmann} \\ \text{symbol} \\ \sigma \end{array}$	base $kg \cdot s^{-3} \cdot K^{-4}$ approximate 5.7×10^{-8}	derived $W/m^2 \cdot K^4$ precise 5.670367×10^{-8}	alternate $W / m^2 \cdot K^4$

\sunearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\sunearthdistance} \\ \text{symbol} \\ \text{d}_{\text{SE}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\sunradius			
name \sunradius symbol R _{Sun}	base m approximate 7.0×10^8	derived m precise 6.957 × 10 ⁸	alternate m
\surfacegravfield			
name \surfacegravfield symbol g	base $m \cdot s^{-2}$ approximate 9.8	derived N/kg precise 9.807	alternate N/kg
\universalgrav			
name \universalgrav symbol G	base $m^3 \cdot kg^{-1} \cdot s^{-2}$ approximate 6.7×10^{-11}	derived $\begin{array}{c} {\rm N\cdot m^2/kg^2} \\ {\rm precise} \\ 6.67408\times10^{-11} \end{array}$	alternate $N \cdot m^2 / kg^2$
\vacuumpermeability			
$\begin{array}{c} name \\ \texttt{\begin{tabular}{l} \begin{tabular}{l} \begin{tabular}{$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate $4\pi \times 10^{-7}$	derived H/m precise $4\pi \times 10^{-7}$	alternate T·m/A
\vacuumpermittivity			
$\begin{array}{c} \text{name} \\ \texttt{\baseline} \\ \text{symbol} \\ \epsilon_0 \\ \end{array}$	base $m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ approximate 9×10^{-12}	derived F/m precise $8.854187817 \times 10^{-12}$	alternate $C^2 / N \cdot m^2$

2.2.4 Defining and Redefining Your Own Physical Constants

N 2021-02-16

N 2021-02-10

N 2021-02-21

Command to define/redefine a new/existing physical constant. If the derived or alternate units are omitted, they are defined to be the same as the base units.

2.2.5 Setting Global Precision

N 2021-02-16 N 2021-02-16

```
\alwaysuseapproximateconstants \alwaysusepreciseconstants
```

Modal commands (switches) for setting the default precision for the entire document. The default with the package is loaded is set by the presence or absence of the preciseconstants P.6 key.

2.2.6 Setting Precision for a Single Instance

N 2021-02-16 N 2021-02-16

```
\hereuseapproximateconstants{\langle content \rangle} \hereusepreciseconstants{\langle content \rangle}
```

Commands for setting the precision on the fly for a single instance.

2.2.7 Setting Precision in an Environment

N 2021-02-16

N 2021-02-16

Inside these environments precision is changed for the duration of the environment regardless of the global default setting.

```
\begin{use approximate constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use approximate constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use approximate constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 8.987551787\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\
```

3 GlowScript and VPython Program Listings

3.1 The glowscriptblock Environment

U 2021-02-26

```
\begin{glowscriptblock} [\langle options \rangle] (\langle link \rangle) \{\langle caption \rangle\} \\ \langle GlowScript\ code \rangle \\ \begin{glowscriptblock} \end{glowscriptblock} \end{glowscriptblock}
```

Code placed here is nicely formatted and optionally linked to its source on GlowScript.org. Clicking anywhere in the code window will open the link in the default browser. A caption is mandatory, and

a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

```
\begin{glowscriptblock}(tinyurl.com/y3lnqyn3){A \texttt{GlowScript} Program}
GlowScript 3.0 vpython
scene.width = 400
scene.height = 760
# constants and data
g = 9.8  # m/s^2
mball = 0.03 \# kg
Lo = 0.26 # m
ks = 1.8
             # N/m
deltat = 0.01 # s
# objects (origin is at ceiling)
ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
             width=0.2)
ball = sphere(pos=vector(0,-0.3,0),radius=0.025,
             color=color.orange)
spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
              color=color.cyan,thickness=0.003,coils=40,
              radius=0.010)
# initial values
pball = mball * vector(0,0,0)
                                   # kg m/s
Fgrav = mball * g * vector(0,-1,0) # N
t = 0
# improve the display
scene.autoscale = False
                              # turn off automatic camera zoom
scene.center = vector(0,-Lo,0) # move camera down
scene.waitfor('click')
                              # wait for a mouse click
# initial calculation loop
# calculation loop
while t < 10:
   rate(100)
    # we need the stretch
    s = mag(ball.pos) - Lo
    # we need the spring force
    Fspring = ks * s * -norm(spring.axis)
    Fnet = Fgrav + Fspring
    pball = pball + Fnet * deltat
    ball.pos = ball.pos + (pball / mball) * deltat
    spring.axis = ball.pos - ceiling.pos
    t = t + deltat
\end{glowscriptblock}
```

GlowScript Program 1: A GlowScript program 1 GlowScript 3.0 vpython scene.width = 4003 scene.height = 7604 # constants and data g = 9.8# m/s^2 mball = 0.03 # kg# m Lo = 0.26ks = 1.8# N/m deltat = 0.01 # s10 11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, 17 color=color.cyan,thickness=0.003,coils=40, 18 radius=0.010) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene.waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 34 rate(100) # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 39 Fnet = Fgrav + Fspring pball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\GlowScript\ program \ref{gs:1} is nice.
It's called \nameref{gs:1} and is on page \pageref{gs:1}.

GlowScript program 1 is nice. It's called A GlowScript program and is on page 28.
```

3.2 The vpythonfile Command

U 2021-02-26

\vpythonfile[\langle options \rangle] \{\langle file \rangle \} \{\langle caption \rangle \}

Command to load and typeset a VPython program. The file is read from $\{\langle file \rangle\}$. Clicking anywhere in the code window can optionally open a link, passed as an option, in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

\vpythonfile[hyperurl interior = https://vpython.org]{vdemo.py}
{A \VPython\ program}

VPython Program 1: A VPython program from vpython import * scene.width = 4003 scene.height = 7604 # constants and data g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m deltat = 0.01 # s11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=0.010) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene.waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 34 rate(100) # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 Fnet = Fgrav + Fspring 39 pball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\VPython\ program \ref{vp:1} is nice.
It's called \nameref{vp:1} and is on page \pageref{vp:1}.

VPython program 1 is nice. It's called A VPython program and is on page 30.
```

3.3 The glowscriptinline and vpythoninline Commands

```
U 2021-02-26
U 2021-02-26
```

```
\glowscriptinline{\langle GlowScript code \rangle}
\vpythoninline{\langle VPython code \rangle}
```

Typesets a small, in-line snippet of code. The snippet should be less than one line long.

```
\GlowScript\ programs begin with \glowscriptinline{GlowScript 3.0 VPython} and \VPython\ programs begin with \vpythoninline{from vpython import *}.

GlowScript programs begin with GlowScript 3.0 VPython and VPython programs begin with from vpython import *.
```

4 Commands for Writing Physics Problem Solutions

4.1 Introductory Needs

mandi provides a collection of commands physics students can use for writing problem solutions. This new version focuses on the most frequently needed tools. These commands should always be used in math mode.

4.1.1 Traditional Vector Notation

```
\ensuremath{\vec{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for boldface notation) 
\ensuremath{\vec*{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for arrow notation)
```

Powerful and intelligent command for symbolic vector notation. The mandatory argument is the symbol for the vector quantity. The optional label(s) consists of superscripts and/or subscripts and can be mathematical or textual in nature. If textual, be sure to wrap them in \symup{...} for proper typesetting. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels can be arbitrarily mixed, and order doesn't matter.

```
\zerovec (use this variant for boldface notation)
\zerovec* (use this variant for arrow notation)
```

Command for typesetting the zero vector. The starred version gives arrow notation whereas without the star you get boldface notation.

```
\(\zerovec \)\\\\(\zerovec*\)
```

```
\Dvec{\(symbol\)} \( \text{use this variant for boldface notation} \)
\( \text{\(symbol\)} \)
\( \text{use this variant for arrow notation} \)
```

Command for typesetting the change in a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported so if you need the symbol for the change in a subscripted or superscripted vector, just put \changein in front of it. This command must be used in math mode.

```
\(\Dvec{r}\\)\\\\(\Dvec*{r}\\)
```

```
\dirvec{\langle symbol\rangle} \( \text{use this variant for boldface notation} \\ \dirvec*{\langle symbol\rangle} \( \text{use this variant for arrow notation} \)
```

Command for typesetting the direction of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\( \dirvec{r} \) \\ \( \dirvec*{r} \) \widehat{r}
```

```
\magvec{(symbol)} (use this variant for boldface notation)
\magvec*{(symbol)} (use this variant for arrow notation)
```

Command for type setting the magnitude of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\(\magvec{r}\)\\\\(\magvec*{r}\)
```

Typesets a vector as either numeric or symbolic components with an optional unit (for numerical components only). There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma. The notation mirrors that of $Matter\ \mathcal{E}$ Interactions.

```
N 2021-02-21
N 2021-02-21
```

```
 \begin{array}{l} \texttt{\direction[(} delimiter)\texttt{]} \{ \langle c_1, \dots, c_n \rangle \} \\ \texttt{\unitvector[(} delimiter)\texttt{]} \{ \langle c_1, \dots, c_n \rangle \} \end{array}
```

Semantic aliases for $\backslash \text{mivector}^{\rightarrow P.32}$.

4.1.2 Coordinate-Free and Index Notation

Beyond the current level of introductory physics, we need intelligent commands for typesetting vector and tensor symbols and components suitable for both coordinate-free and index notations.

```
      \veccomp{(symbol)}
      (use this variant for coordinate-free vector notation)

      \tencomp*{(symbol)}
      (use this variant for index vector notation)

      \tencomp*{(symbol)}
      (use this variant for coordinate-free tensor notation)

      \tencomp*{(symbol)}
      (use this variant for index tensor notation)
```

Conforms to ISO 80000-2 notation.

```
\(\veccomp{r}\)\\
\(\veccomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r
```

4.1.3 Problems and Annoted Problem Solutions

```
N 2021-02-03
```

.....

```
N 2021-02-03
```

Provides an environment for stating physics problems. Each problem will begin on a new page. See the examples for how to handle single and multiple part problems.

```
\begin{physicsproblem}{Problem 1}
This is a physics problem with no parts.
\end{physicsproblem}

Problem 1

This is a physics problem with no parts.
```

```
\begin{physicsproblem}{Problem 2}
This is a physics problem with multiple parts.
The list is vertical.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{parts}
\end{physicsproblem}
```

Problem 2

This is a physics problem with multiple parts. The list is vertical.

- (a) This is the first part.
- (b) This is the second part.
- (c) This is the third part.

```
\begin{physicsproblem*}{Problem 3}
This is a physics problem with multiple parts.
The list is in-line.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{physicsproblem*}
```

Problem 3

This is a physics problem with multiple parts. The list is in-line. (a) This is the first part. (b) This is the second part. (c) This is the third part.

U 2021-02-26

U 2021-02-26

This environment is only for mathematical solutions. The starred variant omits numbering of steps. See the examples.

```
(1)
                                                                          x = y + z
\begin{physicssolution}
 x &= y + z \\
                                                                                                    (2)
                                                                          z = x - y
 z &= x - y \\
                                                                          y = x - z
                                                                                                    (3)
 y &= x - z
\end{physicssolution}
\begin{physicssolution*}
 x &= y + z \\
 z &= x - y \\
                                                                          x = y + z
 y &= x - z
\end{physicssolution*}
                                                                          z = x - y
                                                                          y = x - z
```

U 2012-02-26

\reason{\(\text{reason}\)}

Provides an annotation in a step-by-step solution. Keep reasons short and to the point. Wrap mathematical content in math mode.

```
(4)
                                                                x = y + z
                                                                              This is a reason.
\begin{physicssolution}
  x \&= y + z \geq \{This is a reason.\}
                                                                                                                  (5)
                                                                 z = x - y
                                                                              This is a reason too.
  z &= x - y \reason{This is a reason too.} \\
y &= x - z \reason{final answer}
                                                                                                                  (6)
                                                                y = x - z
                                                                              final answer
\end{physicssolution}
\begin{physicssolution*}
  x &= y + z \reason{This is a reason.}
  z &= x - y \reason{This is a reason too.} \\
y &= x - z \reason{final answer}
                                                                 x = y + z
                                                                                 This is a reason.
\end{physicssolution*}
                                                                  z = x - y
                                                                                 This is a reason too.
                                                                  y = x - z
                                                                                 final answer
```

When writing solutions, remember that the physics solution $^{\rightarrow P.34}$ environment is *only* for mathematical content, not textual content or explanations.

```
\begin{physicsproblem}{Combined Problem and Solution}

This is an interesting physics problem.
\begin{physicssolution}

The solution goes here.
\end{physicssolution}

\end{physicsproblem}
```

```
\begin{physicsproblem}{Combined Multipart Problem with Solutions}
 This is a physics problem with multiple parts.
 \begin{parts}
   \problempart This is the first part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the second part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the third part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
 \end{parts}
\end{physicsproblem}
```

N 2021-02-06

Hilites the desired target, which can be an entire mathematical expression or a part thereof. The default color is magenta and the default shape is a rectangle.

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

```
\Delta \mathbf{p} = \mathbf{F}_{\text{net}} \Delta t
```

U 2021-02-26

$\label{limits} $$ \mbox{image} [(options)] {(caption)} {(label)} {(image)} $$$

Simplified interface for importing an image. The images are treated as floats, so they may not appear at the most logically intuitive place.

```
\image[scale=0.20]{example-image-1x1}
{Image shown 20 percent actual size.}{reffig1}
```

 1×1 (Defend size 200 x 200 kp)

Figure 1: Image shown 20 percent actual size.

```
Figure \ref{reffig1} is nice.
It's captioned \nameref{reffig1} and is on page \pageref{reffig1}.

Figure 1 is nice. It's captioned Image shown 20 percent actual size and is on page 37.
```

```
\image[scale=0.20,angle=45]{example-image-1x1}
{Image shown 20 percent actual size and rotated.}{reffig1}
```


Figure 2: Image shown 20 percent actual size and rotated.

```
Figure \ref{reffig2} is nice.
It's captioned \nameref{reffig2} and is on page \pageref{reffig2}.

Figure 2 is nice. It's captioned Image shown 20 percent actual size and rotated and is on page 38.
```

4.2 Intermediate and Advanced Needs

Typesets column vectors and row vectors as numeric or symbolic components. There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma.

Typesets tensor valence. The starred variant typesets it horizontally.

```
A vector is a \(\valence\{1\}\{0\}\) tensor. \\
A vector is a \(\valence\{1\}\{0\}\) tensor.

A vector is a \((\valence\{1\}\{0\}\)) tensor.

A vector is a \((1,0)\) tensor.
```

```
\contraction\{\langle slot, slot \rangle\}\contraction*\{\langle slot, slot \rangle\}
```

Typesets tensor contraction in coordinate-free notation. There is no standard on this so we assert one here.

```
\(\contraction{1,2} \)\\\\(\contraction*{1,2} \)\\ C_{1,2}
```

```
\slot[(vector)]
\slot*[(vector)]
```

An intelligent slot command for coordinate-free vector and tensor notation. The starred variants suppress the underscore.

```
\( (\slot) \) \\
\( (\slot[\vec{a}]) \) \\
\( (\slot*) \) \\
\( (\slot*[\vec{a}]) \) \\
( a)
```

4.3 Useful Math Commands

```
\timestento{\langle number\rangle} \\ \timestento{\langle number\rangle} \\ \timestento{\langle number\rangle} \\
```

Commands for powers of ten and scientific notation.

```
\tento{-4} \\
3\timestento{8} \\
3\xtento{8} \\
3\xtento{8}
```

\changein

Semantic alias for \Delta.

```
\doublebars[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
N 2021-02-21
                            \doublebars*[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                            \singlebars[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                            \singlebars*[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                            \agglebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                            \agglebrackets*[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
N 2021-02-21
                            \parentheses[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                             \parentheses*[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                            \squarebrackets[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                            \squarebrackets*[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                            \curlybraces[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                            \curlybraces*[\langle size \rangle] \{\langle quantity \rangle\}
```

```
(double bars)
(double bars for fractions)
(single bars)
(single bars for fractions)
(angle brackets)
(angle brackets for fractions)
(parentheses)
(parentheses for fractions)
(square brackets)
(square brackets for fractions)
(curly braces)
(curly braces)
```

If no argument is given, a placeholder is provided. Sizers like \big,\Big,\bigg, and \Bigg can be optionally specified. Beginners are encouraged not to use them. See the mathtools package documentation for details.

```
\|\cdot\|
                                                                                                                              \|a\|
\[ \doublebars{} \]
\[ \doublebars{\vec{a}} \]
                                                                                                                             \left\| \frac{\boldsymbol{a}}{3} \right\|
\[ \doublebars*{\frac{\vec{a}}{3}} \]
|\cdot|
\[\singlebars{} \]
\[\singlebars{x} \]
\[\singlebars*{\frac{x}{3}} \]
                                                                                                                              |x|
                                                                                                                              \left|\frac{x}{3}\right|
\[ \] \[ \] \]
                                                                                                                              (·)
\[ \anglebrackets{} \]
\[ \anglebrackets{\vec{a}} \]
\[ \anglebrackets*{\frac{\vec{a}}{3}} \]
\[ \anglebrackets[\Bigg]{\frac{\vec{a}}{3}} \]
                                                                                                                              \langle a \rangle
                                                                                                                              (·)
\[ \parentheses{} \]
\[ \parentheses{x} \]
\[ \parentheses*{\frac{x}{3}} \]
                                                                                                                              (x)
\[\] \[ \parentheses[\Bigg]{\frac{x}{3}} \]
```

N 2021-02-21 N 2021-02-21 N 2021-02-21 N 2021-02-21 N 2021-02-21 N 2021-02-21

```
\magnitude [\(\size\)] {\(\quantity\)}
\magnitude*[\(\size\)] {\(\quantity\)}
\norm[\(\size\)] {\(\quantity\)}
\norm*[\(\size\)] {\(\quantity\)}
\absolutevalue[\(\size\)] {\(\quantity\)}
\absolutevalue*[\(\size\)] {\(\quantity\)}
```

Semantic aliases.

5 Commands Specific to Matter & Interactions

mandi comes with an accessory package mandiexp which includes commands specific to *Matter & Interactions*². The commands are primarily for typesetting mathematical expressions used in the text. Use of mandiexp is optional and so must be manually loaded by including the line \usepackage{mandiexp} in your document's preamble.

5.1 The Momentum Principle

```
\lhsmomentumprinciple
                                                                 (LHS of delta form, bold vectors)
                                                                 (RHS of delta form, bold vectors)
\rhsmomentumprinciple
\lhsmomentumprincipleupdate
                                                                (LHS of update form, bold vectors)
\rhsmomentumprincipleupdate
                                                               (RHS of update form, bold vectors)
\momentumprinciple
                                                                         (delta form, bold vectors)
\momentumprincipleupdate
                                                                       (update form, bold vectors)
                                                                (LHS of delta form, arrow vectors)
\lhsmomentumprinciple*
\rhsmomentumprinciple*
                                                                (RHS of delta form, arrow vectors)
\lhsmomentumprincipleupdate*
                                                              (LHS of update form, arrow vectors)
\rhsmomentumprincipleupdate*
                                                              (RHS of update form, arrow vectors)
\momentumprinciple*
                                                                       (delta form, arrow vectors)
\momentumprincipleupdate*
                                                                      (update form, arrow vectors)
```

Variants of command for typesetting the momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta oldsymbol{p}_{	ext{svs}}
                                                                                               \mathbf{F}_{\text{sys,net}} \Delta t
\(\lhsmomentumprinciple\)
                                                               11
                                                                                               \boldsymbol{p}_{\mathrm{sys,final}}
\(\rhsmomentumprinciple\)
                                                               //
                                                                                               \mathbf{p}_{\mathrm{sys,initial}} + \mathbf{F}_{\mathrm{sys,net}} \Delta t

\Delta \mathbf{p}_{\mathrm{sys}} = \mathbf{F}_{\mathrm{sys,net}} \Delta t
\(\lhsmomentumprincipleupdate\)
\(\rhsmomentumprincipleupdate\)
\(\momentumprinciple\)
                                                                                               p_{\text{sys,final}} = p_{\text{sys,initial}} + F_{\text{sys,net}} \Delta t
                                                               //
\(\momentumprincipleupdate\)
                                                                                               \Delta \overline{p}_{\mathrm{sys}}
\(\lhsmomentumprinciple*\)
\(\rhsmomentumprinciple*\)
                                                                                               \vec{F}_{\rm sys,net} \Delta t
\( \lhsmomentumprincipleupdate* \)
                                                                                               \vec{p}_{\text{sys,final}}
\(\rhsmomentumprincipleupdate*\)\\
                                                                                               \vec{p}_{\text{sys,initial}} + \vec{F}_{\text{sys,net}} \Delta t
\(\momentumprinciple*\)
                                                               11
\(\momentumprincipleupdate* \)
                                                                                               \Delta \vec{p}_{\text{sys}} = \vec{F}_{\text{sys,net}} \Delta t
                                                                                               \overrightarrow{p}_{\text{sys,final}} = \overrightarrow{p}_{\text{sys,initial}} + \overrightarrow{F}_{\text{sys,net}} \Delta t
```

5.2 The Energy Principle

```
\lhsenergyprinciple (LHS of delta form) \rhsenergyprinciple[\((\rho\) process...\)] (RHS of delta form) \lhsenergyprincipleupdate (LHS of update form)
```

²See Matter & Interactions and https://matterandinteractions.org/ for details

```
\label{lem:continuous} $$ \energyprincipleupdate [ (+process...) ] $$ (RHS of update form) $$ (delta form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update fo
```

Variants of command for typesetting the energy principle.

```
\Delta E_{\rm sys}
                                                                                       W_{\rm ext}
\( \lhsenergyprinciple \)
\(\rhsenergyprinciple\)
                                                                                        W_{\text{ext}} + Q
\(\rhsenergyprinciple[+Q]\)
                                                                                       \Delta E_{\rm sys} = W_{\rm ext}
\Delta E_{\rm sys} = W_{\rm ext} + Q
\( \energyprinciple \)
\( \energyprinciple[+Q] \)
\(\lhsenergyprincipleupdate\)
                                                                                        E_{\rm sys,final}
                                                                                       E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,initial} + W_{\rm ext} + Q
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext} + Q
\(\rhsenergyprincipleupdate\)
\(\rhsenergyprincipleupdate[+Q]\)
\(\energyprincipleupdate\)
\(\energyprincipleupdate[+Q]\)
```

5.3 The Angular Momentum Principle

```
(LHS of delta form, bold vectors)
\lhsangularmomentumprinciple
                                                                (RHS of delta form, bold vectors)
\rhsangularmomentumprinciple
\lhsangularmomentumprincipleupdate
                                                              (LHS of update form, bold vectors)
\rhsangularmomentumprincipleupdate
                                                              (RHS of update form, bold vectors)
\angularmomentumprinciple
                                                                       (delta form, bold vectors)
                                                                      (update form, bold vectors)
\angularmomentumprincipleupdate
\lhsangularmomentumprinciple*
                                                               (LHS of delta form, arrow vectors)
\rhsangularmomentumprinciple*
                                                               (RHS of delta form, arrow vectors)
\lhsangularmomentumprincipleupdate*
                                                             (LHS of update form, arrow vectors)
\rhsangularmomentumprincipleupdate*
                                                             (RHS of update form, arrow vectors)
\angularmomentumprinciple*
                                                                      (delta form, arrow vectors)
\angularmomentumprincipleupdate*
                                                                    (update form, arrow vectors)
```

Variants of command for typesetting the angular momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta \mathbf{L}_{A, \mathrm{sys, net}}
                                                                                                          	au_{A, 	ext{sys,net}} \Delta t
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}}^{I, I, I}
\(\lhsangularmomentumprinciple\)
                                                                                    //
\(\rhsangularmomentumprinciple\)
                                                                                                          \boldsymbol{L}_{A, \mathrm{sys,initial}} + \boldsymbol{\tau}_{A, \mathrm{sys,net}} \Delta t
\(\lhsangularmomentumprincipleupdate\)
                                                                                    //
                                                                                                          \Delta \mathbf{L}_{A, \mathrm{sys, net}} = \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\rhsangularmomentumprincipleupdate\)
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}} = \mathbf{L}_{A, \mathrm{sys, initial}} + \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\angularmomentumprinciple\)
                                                                                    //
\( \angularmomentumprincipleupdate \)
\( \lhsangularmomentumprinciple* \)
                                                                                    //
                                                                                                          \Delta \overline{L}_{A, \mathrm{sys, net}}
\(\rhsangularmomentumprinciple*\)
                                                                                                           \overrightarrow{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\lhsangularmomentumprincipleupdate*\)\\
                                                                                                          \overrightarrow{L}_{A, \rm sys, final}
\(\rhsangularmomentumprincipleupdate* \) \\
                                                                                                          \vec{L}_{A, \text{sys, final}}^{A, \text{sys, final}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\Delta \vec{L}_{A, \text{sys, net}} = \vec{\tau}_{A, \text{sys, net}} \Delta t
\vec{L}_{A, \text{sys, final}} = \vec{L}_{A, \text{sys, initial}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\( \angularmomentumprinciple* \)
\(\angularmomentumprincipleupdate* \)
```

5.4 Other Expressions

N 2021-02-13

$\ensuremath{\mbox{energyof}} \{\langle label \rangle\} [\langle label \rangle]$

Generic symbol for the energy of some entity.

<pre>\(\energyof{\symup{electron}} \) \\ \(\energyof{\symup{electron}}[\symup{final}] \)</pre>	$E_{ m electron} \ E_{ m electron,final}$
--	---

N 2021-02-13

\systemenergy $[\langle label \rangle]$

Symbol for system energy.

<pre>\(\systemenergy \) \\ \(\systemenergy[\symup{final}] \)</pre>	$E_{ m sys} \ E_{ m sys,final}$
--	---------------------------------

N 2021-02-13

$\protect\$ \pro

Symbol for particle energy.

<pre>\(\particleenergy \) \\ \(\particleenergy[\symup{final}] \)</pre>	$E_{ m particle} \ E_{ m particle,final}$
--	---

N 2021-02-13

$\rule (label)$

Symbol for rest energy.

```
\(\restenergy\)\\ \(\restenergy[\symup{final}]\) E_{\rm rest} = E_{\rm rest,final}
```

N 2021-02-13

$\time lenergy [\langle label \rangle]$

Symbol for internal energy.

<pre>\(\internalenergy \) \\ \(\internalenergy[\symup{final}] \)</pre>	$E_{ m internal} \ E_{ m internal,final}$
--	---

N 2021-02-13

\chemicalenergy $[\langle label \rangle]$

Symbol for chemical energy.

<pre>\(\chemicalenergy \) \\ \(\chemicalenergy[\symup{final}] \)</pre>	$E_{ m chem} \ E_{ m chem,final}$
--	-----------------------------------

N 2021-02-13

$\text{ \text{thermalenergy} [($label)$]}$

Symbol for thermal energy.

N 2021-02-13

\photonenergy [$\langle label \rangle$]

Symbol for photon energy.

<pre>\(\photonenergy \) \\ \(\photonenergy[\symup{final}] \)</pre>	$E_{ m photon} \ E_{ m photon,final}$
--	---------------------------------------

N 2021-02-13

N 2021-02-13

Symbol for translational kinetic energy. The starred variant gives ${\cal E}$ notation.

<pre>\(\translationalkineticenergy \) \\ \(\translationalkineticenergy[\symup{initial}] \) \\ \(\translationalkineticenergy* \) \\ \(\translationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m trans}$ $K_{ m trans,initial}$ $E_{ m K}$ $E_{ m K,initial}$
---	---

N 2021-02-13 N 2021-02-13

$\triangledown Trotational kinetic energy [\langle label \rangle]$

$\triangle \triangle \tri$

Symbol for rotational kinetic energy. The starred variant gives E notation.

<pre>\(\rotationalkineticenergy \) \\ \(\rotationalkineticenergy[\symup{initial}] \) \\ \(\rotationalkineticenergy* \) \\ \(\rotationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m rot} \ K_{ m rot,initial} \ E_{ m rot} \ E_{ m rot,initial}$
---	---

N 2021-02-13

N 2021-02-13

Symbol for vibrational kinetic energy. The starred variant gives E notation.

<pre>\(\vibrationalkineticenergy \) \\ \(\vibrationalkineticenergy[\symup{initial}] \) \\ \(\vibrationalkineticenergy* \) \\ \(\vibrationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m vib}$ $K_{ m vib,initial}$ $E_{ m vib}$ $E_{ m vib,initial}$
---	---

N 2021-02-13

$\gravitationalpotentialenergy[\langle label\rangle]$

Symbol for gravitational potential energy.

\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<pre>\(\gravitationalpotentialenergy \) \\ \(\gravitationalpotentialenergy[\symup{final}] \)</pre>
---------------------------------------	--

N 2021-02-13

$\ensuremath{\mbox{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}\ensuremath{\mbox{\sim}}\ens$

Symbol for electric potential energy.

```
\( \electricpotentialenergy \) \\ \( \electricpotentialenergy[\symup{final}] \) U_{\rm e} = U_{\rm e,final}
```

N 2021-02-13

\springpotentialenergy [$\langle label \rangle$]

Symbol for spring potential energy.

```
\(\springpotentialenergy \) \\ \(\springpotentialenergy[\symup{final}] \) U_{\rm S} = U_{\rm S,final}
```

6 Source Code

Definine the package version and date for global use, exploiting the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands, with @ in the name, that are not for the user to know about.

```
1 \def\mandi@Version{3.0.0g}
2 \def\mandi@Date{2021-03-03}
3 \NeedsTeXFormat{LaTeX2e}[1999/12/01]
4 \providecommand\DeclareRelease[3]{}
5 \providecommand\DeclareCurrentRelease[2]{}
6 \DeclareRelease{v3.0.0g}{2021-03-03}{mandi.sty}
7 \DeclareCurrentRelease{v\mandi@Version}{\mandi@Date}
8 \ProvidesPackage{mandi}
9 [\mandi@Date\space v\mandi@Version\space Macros for introductory physics]
Define a convenient package version command.
10 \newcommand*{\mandiversion}{v\mandi@Version\space dated \mandi@Date}
Set up the fonts to be consistent with ISO 80000-2 notation. The unicode-mate.
```

Set up the fonts to be consistent with ISO 80000-2 notation. The unicode-math package loads the fontspec and xparse packages. Note that xparse is now part of the IATEX kernel. Because unicode-math is required, all documents using mandi must be compiled with an engine that supports Unicode. We recommend LuaIATEX.

```
11 \RequirePackage{unicode-math}
12 \unimathsetup{math-style=ISO}
13 \unimathsetup{warnings-off={mathtools-colon,mathtools-overbracket}}
14 \setmathfont[Scale=MatchLowercase]{TeX Gyre DejaVu Math} % single-storey g.
```

Use normal math letters from Latin Modern Math for familiarity with textbooks.

15 \setmathfont[Scale=MatchLowercase,range=it/]{Latin Modern Math}

Borrow mathscr and mathbfscr from XITS Math. See https://tex.stackexchange.com/a/120073/218142.

16 \setmathfont[Scale=MatchLowercase,range={\mathscr,\mathbfscr}]{XITS Math}

Get original and bold mathcal fonts.

See https://tex.stackexchange.com/a/21742/218142.

17 \setmathfont[Scale=MatchLowercase, range={\mathcal,\mathbfcal},StylisticSet=1]{XITS Math}

Borrow Greek letters from Latin Modern Math.

```
\label{thm:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:cont:eq:c
```

Load third party packages, documenting why each one is needed.

```
23 \RequirePackage{amsmath}
                                        % AMS goodness (don't load amssymb or amsfonts)
24 \RequirePackage[inline] {enumitem}
                                        % needed for physicsproblem environment
25 \RequirePackage{eso-pic}
                                        % needed for \hilite
26 \RequirePackage[g]{esvect}
                                        % needed for nice vector arrow, style g
27 \RequirePackage{pgfopts}
                                        % needed for key-value interface
28 \RequirePackage{array}
                                        % needed for \checkquantity and \checkconstant
                                        % needed for requiring LuaLaTeX
29 \RequirePackage{iftex}
30 \RequirePackage{makebox}
                                        % needed for consistent \dirvect; \makebox
31 \RequirePackage{mathtools}
                                        % needed for paired delimiters; extends amsmath
32 \RequirePackage{nicematrix}
                                        % needed for column and row vectors
33 \RequirePackage[most]{tcolorbox}
                                        % needed for program listings
34 \RequirePackage{tensor}
                                        % needed for index notation
35 \RequirePackage{tikz}
                                        % needed for \hilite
```

```
36 \usetikzlibrary{shapes,fit,tikzmark} % needed for \hilite 37 \RequirePackage{hyperref} % load last 38 \RequireLuaTeX % require this engine
```

Need to tweak the esvect package fonts to get the correct font size. Code provided by @egreg. See https://tex.stackexchange.com/a/566676.

```
39 \DeclareFontFamily{U}{esvect}{}
40 \DeclareFontShape{U}{esvect}{m}{n}{%
    <-5.5> vect5
41
42
    <5.5-6.5> vect6
    <6.5-7.5> vect7
44
    <7.5-8.5> vect8
    <8.5-9.5> vect9
45
   <9.5-> vect10
46
47 }{}%
48 \directlua{%
49 luaotfload.add_colorscheme("colordigits",
     {["8000FF"] = {"one","two","three","four","five","six","seven","eight","nine","zero"}})
51 }%
52 \newfontfamily\colordigits{DejaVuSansMono} [RawFeature={color=colordigits}]
```

Set up a color scheme and a new code environment for listings. The new colors are more restful on the eye. All listing commands now use tcolorbox.

See https://tex.stackexchange.com/a/529421/218142.

```
53 \newfontfamily{\gsfontfamily}{DejaVuSansMono}
                                                     % new font for listings
54 \definecolor{gsbggray}
                              {rgb}{0.90,0.90,0.90} % background gray
55 \definecolor{gsgray}
                              \{rgb\}\{0.30,0.30,0.30\} % gray
56 \definecolor{gsgreen}
                              {rgb}{0.00,0.60,0.00} % green
57 \definecolor{gsorange}
                              {rgb}{0.80,0.45,0.12} % orange
58 \definecolor{gspeach}
                              \{rgb\}\{1.00,0.90,0.71\} % peach
59 \definecolor{gspearl}
                              {rgb}{0.94,0.92,0.84} % pearl
60 \definecolor{gsplum}
                              {rgb}{0.74,0.46,0.70} % plum
61 \lstdefinestyle{vpython}{%
                                                     % style for listings
62
    backgroundcolor=\color{gsbggray},%
                                                     % background color
63
    basicstyle=\colordigits\footnotesize,%
                                                     % default style
    breakatwhitespace=true%
64
                                                     % break at whitespace
65
    breaklines=true,%
                                                     % break long lines
66
    captionpos=b,%
                                                     % position caption
                                                     % STILL DON'T UNDERSTAND THIS
67
    classoffset=1,%
    commentstyle=\color{gsgray},%
68
                                                     % font for comments
69
    deletekeywords={print},%
                                                     % delete keywords from the given language
    emph={self,cls,@classmethod,@property},%
                                                     % words to emphasize
70
    emphstyle=\color{gsorange}\itshape,%
                                                     % font for emphasis
71
    escapeinside={(*0}{0*)},%
72
                                                     % add LaTeX within your code
73
    frame=tb,%
                                                     % frame style
    framerule=2.0pt,%
                                                     % frame thickness
74
75
    framexleftmargin=5pt,%
                                                     % extra frame left margin
    %identifierstyle=\sffamily,%
76
                                                      % style for identifiers
    keywordstyle=\gsfontfamily\color{gsplum},%
                                                     % color for keywords
77
    language=Python,%
                                                     % select language
78
    linewidth=\linewidth,%
                                                     % width of listings
79
                                                     % VPython/GlowScript specific keywords
    morekeywords={%
80
      __future__,abs,acos,align,ambient,angle,append,append_to_caption,%
81
      append to title, arange, arrow, asin, astuple, atan, atan2, attach arrow, %
82
      attach_trail,autoscale,axis,background,billboard,bind,black,blue,border,%
83
      bounding_box,box,bumpaxis,bumpmap,bumpmaps,camera,canvas,caption,capture,%
84
      ceil,center,clear,clear_trail,click,clone,CoffeeScript,coils,color,combin,%
85
      comp,compound,cone,convex,cos,cross,curve,cyan,cylinder,data,degrees,del,%
86
```

```
delete, depth, descender, diff angle, digits, division, dot, draw complete, %
87
       ellipsoid.emissive.end face color.equals.explog.extrusion.faces.factorial.%
88
       False, floor, follow, font, format, forward, fov, frame, gcurve, gdisplay, gdots, %
89
       get_library,get_selected,ghbars,global,GlowScript,graph,graphs,green,gvbars,%
90
       hat, headlength, headwidth, height, helix, hsv_to_rgb, index, interval, keydown, %
91
       keyup, label, length, lights, line, linecolor, linewidth, logx, logy, lower left, %
92
93
       lower_right, mag, mag2, magenta, make_trail, marker_color, markers, material, %
       max, min, mouse, mousedown, mousemove, mouseup, newball, norm, normal, objects, %
94
       offset, one, opacity, orange, origin, path, pause, pi, pixel_to_world, pixels, plot, %
95
       points, pos, pow, pps, print, print function, print options, proj, purple, pyramid, %
96
       quad, radians, radius, random, rate, ray, read_local_file, readonly, red, redraw, %
97
       retain, rgb_to_hsv, ring, rotate, round, scene, scroll, shaftwidth, shape, shapes, %
98
       shininess, show_end_face, show_start_face, sign, sin, size, size_units, sleep, %
99
       smooth, space, sphere, sqrt, start, start_face_color, stop, tan, text, textpos, %
100
       texture, textures, thickness, title, trail_color, trail_object, trail_radius, %
101
       trail type, triangle, trigger, True, twist, unbind, up, upper left, upper right, %
102
       userpan, userspin, userzoom, vec, vector, vertex, vertical_spacing, visible, %
103
       visual, vpython, VPython, waitfor, white, width, world, xtitle, yellow, yoffset, %
104
105
       ytitle%
106
     },%
     morekeywords={print,None,TypeError},%
                                                    % additional keywords
107
     morestring=[b]{"""},%
                                                    % treat triple quotes as strings
108
     numbers=left,%
                                                    % where to put line numbers
109
     numbersep=10pt,%
                                                    % how far line numbers are from code
110
                                                    \% set to 'none' for no line numbers
     numberstyle=\bfseries\tiny,%
111
     showstringspaces=false,%
                                                    % show spaces in strings
112
113
     showtabs=false,%
                                                    % show tabs within strings
     stringstyle=\gsfontfamily\color{gsgreen},% % color for strings
114
     upquote=true,%
                                                    % how to typeset quotes
115
116 }%
    Introduce a new, more intelligent glowscriptblock P. 26 environment.
117 \NewTCBListing[auto counter,list inside=gsprogs]{glowscriptblock}
     { O{} D(){glowscript.org} m }{%
     breakable,%
119
     center,%
120
     code = \newpage,%
121
     %derivpeach,%
122
123
     enhanced, %
     hyperurl interior = https://#2,%
124
     label = {gs:\thetcbcounter},%
125
126
     left = 8mm, %
127
     list entry = \thetcbcounter~~~#3,%
128
    listing only,%
    listing style = vpython,%
129
    nameref = #3,%
     title = \texttt{GlowScript} Program \thetcbcounter: #3,%
    width = 0.9\textwidth,%
133 #1,
134 }%
    A new command for generating a list of GlowScript programs.
135 \NewDocumentCommand{\listofglowscriptprograms}{}{\tcblistof[\section*]{gsprogs}
    {List of \texttt{GlowScript} Programs}}%
    Introduce a new, more intelligent \vpythonfile \rightarrow P. 29 command.
137 \NewTCBInputListing[auto counter, list inside=vpprogs] {\vpythonfile}
    \{ 0\{\} m m \}\{\%
139
     breakable,%
```

```
center,%
140
141
     code = \newpage,%
     %derivgray,%
142
143
     enhanced, %
     hyperurl interior = https://,%
144
     label = {vp:\thetcbcounter},%
145
     left = 8mm, %
     list entry = \thetcbcounter~~~#3,%
147
    listing file = {#2},%
148
     listing only,%
149
     listing style = vpython,%
150
     nameref = #3,%
151
     title = \texttt{VPython} Program \thetcbcounter: #3,%
     width = 0.9\textwidth,%
154
     #1,%
155 }%
    A new command for generating a list of VPython programs.
156 \NewDocumentCommand{\listofvpythonprograms}{}{\tcblistof[\section*]{vpprogs}
     {List of \texttt{VPython} Programs}}%
    Introduce a new \glowscriptinline \P.31 command.
158 \DeclareTotalTCBox{\glowscriptinline}{ m }{%
     bottom = Opt,%
159
     bottomrule = 0.0mm,%
160
161
     boxsep = 1.0mm,%
     colback = gsbggray,%
162
     colframe = gsbggray,%
163
     left = Opt,%
164
     leftrule = 0.0mm,%
165
     nobeforeafter,%
166
     right = Opt,%
167
     rightrule = 0.0mm,%
     sharp corners,%
169
170
     tcbox raise base,%
     top = Opt,%
171
     toprule = 0.0mm,%
172
173 }{\lstinline[style = vpython]{#1}}%
    Define \vpythoninline \cdot P.31, a semantic alias for VPython in-line listings.
174 \NewDocumentCommand{\vpythoninline}{}{\glowscriptinline}%
    Define units to be used with the unit engine. All single letter macros are now gone. We basically absorbed and adapted
the now outdated Slunits package. We make use of \symup{...} from the unicode-math package.
```

```
175 \NewDocumentCommand{\per}{}\ensuremath{\,/\,}}
176 \NewDocumentCommand{\usk}{}{\ensuremath{\,\cdot\,}}
177 \NewDocumentCommand{\unit}{ m m }{\ensuremath{{#1}\;{#2}}}
178 \NewDocumentCommand{\ampere}{}{\ensuremath{\symup{A}}}}
179 \end{atomic mass unit} {} {\ensuremath {\symup {u}}} }
180 \NewDocumentCommand{\candela}{}\ensuremath{\symup{cd}}}
181 \NewDocumentCommand{\coulomb}{}{\ensuremath{\symup{C}}}}
182 \NewDocumentCommand{\degree}{}{\ensuremath{^{\circ}}}
183 \NewDocumentCommand{\electronvolt}{}{\ensuremath{\symup{eV}}}}
184 \ensuremath{\symup{F}}}
185 \NewDocumentCommand{\henry}{}{\ensuremath{\symup{H}}}}
186 \NewDocumentCommand{\hertz}{}{\ensuremath{\symup{Hz}}}
187 \NewDocumentCommand{\joule}{}{\ensuremath{\symup{J}}}}
188 \NewDocumentCommand{\kelvin}{}{\ensuremath{\symup{K}}}}
189 \NewDocumentCommand{\kilogram}{}{\ensuremath{\symup{kg}}}
```

```
190 \NewDocumentCommand{\lightspeed}{}{\ensuremath{\symup{c}}}
191 \NewDocumentCommand{\meter}{}{\ensuremath{\symup{m}}}
192 \NewDocumentCommand{\metre}{}{\meter}
193 \NewDocumentCommand{\mole}{}{\ensuremath{\symup{mol}}}
194 \NewDocumentCommand{\newton}{}{\ensuremath{\symup{N}}}
195 \NewDocumentCommand{\ohm}{}{\ensuremath{\symup\Omega}}
196 \NewDocumentCommand{\pascal}{}{\ensuremath{\symup{Pa}}}
197 \NewDocumentCommand{\radian}{}{\ensuremath{\symup{rad}}}}
198 \NewDocumentCommand{\second}{}{\ensuremath{\symup{s}}}
199 \NewDocumentCommand{\siemens}{}{\ensuremath{\symup{S}}}}
200 \NewDocumentCommand{\steradian}{}{\ensuremath{\symup{sr}}}
201 \NewDocumentCommand{\tesla}{}{\ensuremath{\symup{T}}}}
202 \NewDocumentCommand{\volt}{}{\ensuremath{\symup{V}}}}
203 \NewDocumentCommand{\watt}{}{\ensuremath{\symup{W}}}}
204 \NewDocumentCommand{\weber}{}{\ensuremath{\symup{Wb}}}
205 \NewDocumentCommand{\tothetwo}{}{\ensuremath{^2}}
                                                                   % postfix 2
206 \NewDocumentCommand{\tothethree}{}{\ensuremath{^3}}
                                                                   % postfix 3
207 \NewDocumentCommand{\tothefour}{}{\ensuremath{^4}}
                                                                   % postfix 4
208 \NewDocumentCommand{\inverse}{}{\column{-1}}}
                                                                   % postfix -1
209 \NewDocumentCommand{\totheinversetwo}{}{\ensuremath{^{-2}}}
                                                                   % postfix -2
210 \NewDocumentCommand{\totheinversethree}{}{\ensuremath{^{-3}}}} % postfix -3
211 \NewDocumentCommand{\totheinversefour}{}\ensuremath{^{-4}}} % postfix -4
212 \NewDocumentCommand{\emptyunit}{}{\ensuremath{\mdlgwhtsquare}}
    The core unit engine has been completely rewritten in expl3 for both clarity and power.
    Generic internal selectors.
213 \newcommand*{\mandi@selectunits}{}
214 \newcommand*{\mandi@selectprecision}{}
    Specific internal selectors.
215 \newcommand*{\mandi@selectapproximate}[2]{#1}
                                                      % really \@firstoftwo
216 \newcommand*{\mandi@selectprecise}[2]{#2}
                                                      % really \@secondoftwo
217 \newcommand*{\mandi@selectbaseunits}[3]{#1}
                                                      % really \Offirstofthree
218 \newcommand*{\mandi@selectderivedunits}[3]{#2}
                                                      % really \@secondofthree
219 \newcommand*{\mandi@selectalternateunits}[3]{#3} % really \@thirdofthree
    Document level global switches.
220 \NewDocumentCommand{\alwaysusebaseunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectbaseunits}}%
222 \NewDocumentCommand{\alwaysusederivedunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectderivedunits}}%
224 \NewDocumentCommand{\alwaysusealternateunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectalternateunits}}%
226 \NewDocumentCommand{\alwaysuseapproximateconstants}{}
     {\renewcommand*{\mandi@selectprecision}{\mandi@selectapproximate}}%
228 \NewDocumentCommand{\alwaysusepreciseconstants}{}
     {\tt \{\normand*{\tt \{\normand*{\tt \{\normand: \&clectprecision\}{\tt \{\normand: \&clectprecise\}}\}\%}}
229
    Document level localized variants.
230 \NewDocumentCommand{\hereusebaseunits}{ m }{\begingroup\alwaysusebaseunits#1\endgroup}}%
231 \NewDocumentCommand{\hereusederivedunits}{ m }{\begingroup\alwaysusederivedunits#1\endgroup}%
232 \NewDocumentCommand{\hereusealternateunits}{ m }{\begingroup\alwaysusealternateunits#1\endgroup}%
233 \NewDocumentCommand{\hereuseapproximateconstants}{ m }{\hegingroup\alwaysuseapproximateconstants#1\endgroup}\%
234 \NewDocumentCommand{\hereusepreciseconstants}{ m }{\begingroup\alwaysusepreciseconstants#1\endgroup}%
    Document level environments.
235 \NewDocumentEnvironment{usebaseunits}{}{\alwaysusebaseunits}{}%
236 \NewDocumentEnvironment{usederivedunits}{}{\alwaysusederivedunits}{}}
237 \NewDocumentEnvironment{usealternateunits}{}{\alwaysusealternateunits}{}}
```

```
238 \NewDocumentEnvironment{useapproximateconstants}{}{\alwaysuseapproximateconstants}{}}
239 \NewDocumentEnvironment{usepreciseconstants}{}{\alwaysusepreciseconstants}{}}
    Defining a new scalar quantity:
240 \NewDocumentCommand{\newscalarquantity}{ m m 0{#2} 0{#2} }{%
     \expandafter\newcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
     \expandafter\newcommand\csname #1value\endcsname[1]{##1}%
     \expandafter\newcommand\csname #1baseunits\endcsname[1]{##1\.\mandi@selectbaseunits{#2}{#3}{#4}}%
243
244
     \expandafter\newcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
     \expandafter\newcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
245
     \expandafter\newcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
246
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
247
248
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
249 }%
    Redefining a new scalar quantity:
250 \NewDocumentCommand{\renewscalarquantity}{ m m O{#2} O{#2} }{%
     \expandafter\renewcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
     \expandafter\renewcommand\csname #1value\endcsname[1]{##1}%
252
253
     \expandafter\renewcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
     \expandafter\renewcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
254
     \expandafter\renewcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
255
     \expandafter\renewcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
256
     \expandafter\renewcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
257
     \expandafter\renewcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
258
259 }%
    Defining a new vector quantity. Note that a corresponding scalar is also defined.
260 \NewDocumentCommand{\newvectorquantity}{ m m O\{\#2\} O\{\#2\} }{%
     \newscalarquantity{#1}{#2}[#3][#4]
261
     \expandafter\newcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
262
263
     \expandafter\newcommand\csname #1vector\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
264 }%
    Redefining a new vector quantity. Note that a corresponding scalar is also redefined.
265 \NewDocumentCommand{\renewvectorquantity}{ m m 0{#2} 0{#2} }{%
    \renewscalarquantity{#1}{#2}[#3][#4]
     \expandafter\renewcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
267
     \expandafter\renewcommand\csname #1vector\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
268
269 }%
    Defining a new physical constant:
270 \NewDocumentCommand{\newphysicalconstant}{ m m m m m 0{#5} 0{#5} }{%
     \expandafter\newcommand\csname #1\endcsname
271
       272
273
     \expandafter\newcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
     \expandafter\newcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
274
275
     \expandafter\newcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
     \expandafter\newcommand\csname #1baseunits\endcsname
276
       277
     \expandafter\newcommand\csname #1derivedunits\endcsname
278
       279
     \expandafter\newcommand\csname #1alternateunits\endcsname
280
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectalternateunits{#5}{#6}{#7}}%
281
     \expandafter\newcommand\csname #1onlybaseunits\endcsname
282
       {\mandi@selectbaseunits{#5}{#6}{#7}}%
283
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname
284
285
       {\mandi@selectderivedunits{#5}{#6}{#7}}%
```

\expandafter\newcommand\csname #1onlyalternateunits\endcsname

286

```
{\mandi@selectalternateunits{#5}{#6}{#7}}%
287
288 }%
    Redefining a new physical constant:
289 \NewDocumentCommand{\renewphysicalconstant}{ m m m m 0{#5} 0{#5} }{%
     \expandafter\renewcommand\csname #1\endcsname
290
       291
     \expandafter\renewcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
292
     \expandafter\renewcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
293
     \expandafter\renewcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
294
     \expandafter\renewcommand\csname #1baseunits\endcsname
295
       296
     \expandafter\renewcommand\csname #1derivedunits\endcsname
297
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectderivedunits{#5}{#6}{#7}}%
298
     \expandafter\renewcommand\csname #1alternateunits\endcsname
299
300
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectalternateunits{#5}{#6}{#7}}%
     \expandafter\renewcommand\csname #1onlybaseunits\endcsname
301
       {\mandi@selectbaseunits{#5}{#6}{#7}}%
302
     \expandafter\renewcommand\csname #1onlyderivedunits\endcsname
303
       {\mandi@selectderivedunits{#5}{#6}{#7}}%
304
     \expandafter\renewcommand\csname #1onlyalternateunits\endcsname
305
       {\mandi@selectalternateunits{#5}{#6}{#7}}%
306
307 }%
    mandi now has a key-value interface, implemented with pgfopts and pgfkeys. There are two options:
units P.6, with values base, derived, or alternate selects the default form of units
preciseconstants \stackrel{\rightarrow}{} P. 6, with values true and false, selects precise numerical values for constants rather than approximate
    First, define the keys. The key handlers require certain commands defined by the unit engine, and thus must be defined
and processed after the unit engine code.
308 \newif\ifusingpreciseconstants
309 \pgfkeys{%
310
    /mandi/options/.cd,
     initial@setup/.style={%
311
       /mandi/options/buffered@units/.initial=alternate,%
312
    },%
313
     initial@setup,%
314
     preciseconstants/.is if=usingpreciseconstants,%
    units/.is choice,%
316
     units/.default=derived,%
317
     units/alternate/.style={/mandi/options/buffered@units=alternate},%
318
     units/base/.style={/mandi/options/buffered@units=base},%
320
     units/derived/.style={/mandi/options/buffered@units=derived},%
321 }%
    Process the options.
322 \ProcessPgfPackageOptions{/mandi/options}
    Write a banner to the console showing the options in use. The value of the units ^{\rightarrow P.6} kev is used in situ to set the
default units.
323 \newcommand*{\mandi@linetwo}{\typeout{mandi: Loadtime options...}}
324 \newcommand*{\mandi@do@setup}{%
     \typeout{}%
326
     \typeout{mandi: You are using mandi \mandiversion.}%
327
     \csname alwaysuse\pgfkeysvalueof{/mandi/options/buffered@units}units\endcsname%
328
     \typeout{mandi: You will get \pgfkeysvalueof{/mandi/options/buffered@units}\space units.}%
329
     \ifusingpreciseconstants
330
```

\alwaysusepreciseconstants

331

```
332  \typeout{mandi: You will get precise constants.}%
333  \else
334  \alwaysuseapproximateconstants
335  \typeout{mandi: You will get approximate constants.}%
336  \fi
337  \typeout{}%
338 }%
339 \mandi@do@setup
```

Define a setup command that overrides the loadtime options when called with new options. A new banner is written to the console.

```
340 \NewDocumentCommand{\mandisetup}{ m }{%

341 \IfValueT{#1}{%

342 \pgfqkeys{/mandi/options}{#1}

343 \renewcommand*{\mandi@linetwo}{\typeout{mandi: mandisetup options...}}

344 \mandi@do@setup

345 }%

346 }%
```

Define every quantity we need in introductory physics, alphabetically for convenience. This is really the core feature of mandi that no other package offers. There are commands for quantities that have no dimensions or units, and these quantities are defined for semantic completeness.

```
347 \newvectorquantity{acceleration}%
     {\meter\usk\second\totheinversetwo}%
348
     [\newton\per\kilogram]%
349
     [\meter\per\second\tothetwo]%
351 \newscalarquantity{amount}%
     {\mole}%
353 \newvectorquantity{angularacceleration}%
     {\radian\usk\second\totheinversetwo}%
354
     [\radian\per\second\tothetwo]%
355
     [\radian\per\second\tothetwo]%
357 \newscalarquantity{angularfrequency}%
     {\radian\usk\second\inverse}%
     [\radian\per\second]%
359
     [\radian\per\second]%
360
361 %\ifmandi@rotradians
362 % \newphysicalquantity{angularimpulse}%
        {\meter\tothetwo\usk\kilogram\usk\second\inverse\usk\radian\inverse}%
363 %
364 %
        [\joule\usk\second\per\radian]%
365 %
        [\newton\usk\meter\usk\second\per\radian]%
      \newphysicalquantity{angularmomentum}%
366 %
        {\meter\tothetwo\usk\kilogram\usk\second\inverse\usk\radian\inverse}%
367 %
        [\kilogram\usk\meter\tothetwo\per(\second\usk\radian)]%
368 %
        [\newton\usk\meter\usk\second\per\radian]%
369 %
370 %\else
     \newvectorquantity{angularimpulse}%
371
       {\meter\tothetwo\usk\kilogram\usk\second\inverse}%
372
       [\kilogram\usk\meter\tothetwo\per\second]% % also \joule\usk\second
373
       [\kilogram\usk\meter\tothetwo\per\second] % % also \newton\usk\meter\usk\second
374
     \newvectorquantity{angularmomentum}%
375
       {\meter\tothetwo\usk\kilogram\usk\second\inverse}%
376
       [\kilogram\usk\meter\tothetwo\per\second]% % also \joule\usk\second
377
378
       [\kilogram\usk\meter\tothetwo\per\second] % % also \newton\usk\meter\usk\second
379 %\fi
380 \newvectorquantity{angularvelocity}%
     {\radian\usk\second\inverse}%
381
     [\radian\per\second]%
382
     [\radian\per\second]%
383
```

```
384 \newscalarquantity{area}%
     {\meter\tothetwo}%
385
386 \newscalarquantity{areamassdensity}%
     {\meter\totheinversetwo\usk\kilogram}%
387
     [\kilogram\per\meter\tothetwo]%
388
     [\kilogram\per\meter\tothetwo]%
389
390 \newscalarquantity{areachargedensity}%
     {\meter\totheinversetwo\usk\second\usk\ampere}%
     [\coulomb\per\meter\tothetwo]%
392
     [\coulomb\per\meter\tothetwo]%
393
394 \newscalarquantity{capacitance}%
     {\meter\totheinversetwo\usk\kilogram\inverse\usk\second\tothefour\usk\ampere\tothetwo}%
     [\farad]%
     [\coulomb\per\volt]% % also \coulomb\tothetwo\per\newton\usk\meter, \second\per\ohm
397
398 \newscalarquantity{charge}%
     {\ampere\usk\second}%
399
     [\coulomb]%
400
     [\coulomb]% % also \farad\usk\volt
401
402 \newvectorquantity{cmagneticfield}%
     {\meter\usk\kilogram\usk\second\totheinversethree\usk\ampere\inverse}%
     [\volt\per\meter]%
404
     [\newton\per\coulomb]%
405
406 \newscalarquantity{conductance}%
     {\meter\totheinversetwo\usk\kilogram\inverse\usk\second\tothethree\usk\ampere\tothetwo}%
407
     [\siemens]%
408
     [\ampere\per\volt]%
410 \newscalarquantity{conductivity}%
     {\meter\totheinversethree\usk\kilogram\inverse\usk\second\tothethree\usk\ampere\tothetwo}%
411
     [\siemens\per\meter]%
412
     [(\ampere\per\meter\tothetwo)\per(\volt\per\meter)]%
413
414 \newscalarquantity{conventionalcurrent}%
     {\ampere}%
415
     [\coulomb\per\second]%
416
417
     [\ampere]%
418 \newscalarquantity{current}%
     {\ampere}%
420 \newscalarquantity{currentdensity}%
     {\meter\totheinversetwo\usk\ampere}%
421
     [\coulomb\usk\second\per\meter\tothetwo]%
422
     [\ampere\per\meter\tothetwo]%
424 \newscalarquantity{dielectricconstant}%
425
     {}%
426 \newvectorquantity{displacement}%
     {\meter}
427
428 \newscalarquantity{duration}%
     {\second}%
430 \newvectorquantity{electricdipolemoment}%
     {\meter\usk\second\usk\ampere}%
431
     [\coulomb\usk\meter]%
432
     [\coulomb\usk\meter]%
433
434 \newvectorquantity{electricfield}%
     435
     [\volt\per\meter]%
     [\newton\per\coulomb]%
437
438 \newscalarquantity{electricflux}%
     {\meter\tothethree\usk\aipgram\usk\second\totheinversethree\usk\ampere\inverse}%
439
     [\volt\usk\meter]%
440
441
     [\newton\usk\meter\tothetwo\per\coulomb]%
442 \newscalarquantity{electricpotential}%
```

```
{\meter\tothetwo\usk\kilogram\usk\second\totheinversethree\usk\ampere\inverse}}
443
     [\volt]%
444
     [\joule\per\coulomb]%
445
446 \newscalarquantity{electroncurrent}%
     {\second\inverse}%
447
     [\ensuremath{\symup{e}}\per\second]%
448
     [\ensuremath{\symup{e}}\per\second]%
450 \newscalarquantity{emf}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversethree\usk\ampere\inverse}%
451
     [\volt]%
452
     [\joule\per\coulomb]%
453
454 \newscalarquantity{energy}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo}%
     [\joule]% % also \newton\usk\meter
     [\joule]%
457
458 \newscalarquantity{energydensity}%
     {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
459
     [\joule\per\meter\tothethree]%
460
     [\joule\per\meter\tothethree]%
462 \newscalarquantity{energyflux}%
     {\kilogram\usk\second\totheinversethree}%
463
     [\watt\per\meter\tothetwo]%
464
     [\watt\per\meter\tothetwo]%
465
466 \newscalarquantity{entropy}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\kelvin\inverse}%
467
     [\joule\per\kelvin]%
468
     [\joule\per\kelvin]%
469
470 \newvectorquantity{force}%
     {\meter\usk\kilogram\usk\second\totheinversetwo}%
471
     [\newton]%
472
     [\newton]% % also \kilogram\usk\meter\per\second\tothetwo
473
474 \newscalarquantity{frequency}%
     {\second\inverse}%
     [\hertz]%
476
     [\hertz]%
477
478 \newvectorquantity{gravitationalfield}%
     {\meter\usk\second\totheinversetwo}%
479
480
     [\newton\per\kilogram]%
     [\newton\per\kilogram]%
482 \newscalarquantity{gravitationalpotential}%
     {\meter\tothetwo\usk\second\totheinversetwo}%
483
     [\joule\per\kilogram]%
484
     [\joule\per\kilogram]%
485
486 \newvectorquantity{impulse}%
     {\meter\usk\kilogram\usk\second\inverse}%
     [\newton\usk\second]%
     [\newton\usk\second]%
489
490 \newscalarquantity{indexofrefraction}%
492 \newscalarquantity{inductance}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
493
     [\henry]%
494
     [\volt\usk\second\per\ampere]% % also \square\meter\usk\kilogram\per\coulomb\tothetwo, \Wb\per\ampere
496 \newscalarquantity{linearchargedensity}%
     {\meter\inverse\usk\second\usk\ampere}%
497
     [\coulomb\per\meter]%
498
     [\coulomb\per\meter]%
500 \newscalarquantity{linearmassdensity}%
     {\meter\inverse\usk\kilogram}%
```

```
[\kilogram\per\meter]%
502
503
     [\kilogram\per\meter]%
504 \newscalarquantity{luminous}%
     {\candela}%
505
506 \newscalarquantity{magneticcharge}%
     {\meter\usk\ampere}%
508 \newvectorquantity{magneticdipolemoment}%
     {\meter\tothetwo\usk\ampere}%
     [\ampere\usk\meter\tothetwo]%
510
     [\joule\per\tesla]%
511
512 \newvectorquantity{magneticfield}%
     {\kilogram\usk\second\totheinversetwo\usk\ampere\inverse}%
     [\tesla]%
     [\newton\per\coulomb\usk(\meter\per\second)]% % also \Wb\per\meter\tothetwo
516 \newscalarquantity{magneticflux}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\ampere\inverse}%
518
     [\tesla\usk\meter\tothetwo]%
     [\volt\usk\second]% % also \Wb and \joule\per\ampere
519
520 \newscalarquantity{mass}%
     {\kilogram}%
522 \newscalarquantity{mobility}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversefour\usk\ampere\inverse}%
523
     [\meter\tothetwo\per\volt\usk\second]%
524
     [(\meter\per\second)\per(\newton\per\coulomb)]%
525
526 \newscalarquantity{momentofinertia}%
527
     {\meter\tothetwo\usk\kilogram}%
     [\joule\usk\second\tothetwo]%
528
     [\kilogram\usk\meter\tothetwo]%
529
530 \newvectorquantity{momentum}%
     {\meter\usk\kilogram\usk\second\inverse}%
531
     [\newton\usk\second]%
532
     [\kilogram\usk\meter\per\second]%
534 \newvectorquantity{momentumflux}%
     {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
535
536
     [\newton\per\meter\tothetwo]%
     [\newton\per\meter\tothetwo]%
537
538 \newscalarquantity{numberdensity}%
     {\meter\totheinversethree}%
539
     [\per\meter\tothethree]%
540
     [\per\meter\tothethree]%
542 \newscalarquantity{permeability}%
     {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
543
544
     [\tesla\usk\meter\per\ampere]%
     [\henry\per\meter]%
545
546 \newscalarquantity{permittivity}%
547
     {\meter\totheinversethree\usk\kilogram\inverse\usk\second\totheinversefour\usk\ampere\tothetwo}%
     [\farad\per\meter]%
548
     [\coulomb\tothetwo\per\newton\usk\meter\tothetwo]%
549
550 \newscalarquantity{planeangle}%
     {\meter\usk\meter\inverse}%
551
     [\radian]%
552
     [\radian]%
553
554 \newscalarquantity{polarizability}%
     {\kilogram\inverse\usk\second\tothefour\usk\ampere\tothetwo}%
555
     [\coulomb\usk\meter\tothetwo\per\volt]%
556
     [\coulomb\usk\meter\per(\newton\per\coulomb)]%
557
558 \newscalarquantity{power}%
559
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversethree}%
560
     [\watt]%
```

```
[\joule\per\second]%
561
562 \newvectorquantity{poynting}%
     {\kilogram\usk\second\totheinversethree}%
563
     [\watt\per\meter\tothetwo]%
564
     [\watt\per\meter\tothetwo]%
565
566 \newscalarquantity{pressure}%
     {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
568
     [\pascal]%
     [\newton\per\meter\tothetwo]%
570 \verb|\newscalarquantity{relativepermeability}|
572 \newscalarquantity{relativepermittivity}%
574 \newscalarquantity{resistance}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversethree\usk\ampere\totheinversetwo}%
575
     [\volt\per\ampere]%
576
     [\ohm]%
577
578 \newscalarquantity{resistivity}%
     {\meter\tothethree\usk\kilogram\usk\second\totheinversethree\usk\ampere\totheinversetwo}%
580
     [\ohm\usk\meter]%
     [(\volt\per\meter)\per(\ampere\per\meter\tothetwo)]%
581
582 \newscalarquantity{solidangle}%
     {\meter\tothetwo\usk\meter\totheinversetwo}%
583
     [\steradian]%
584
585
     [\steradian]%
586 \newscalarquantity{specificheatcapacity}%
     {\meter\tothetwo\usk\second\totheinversetwo\usk\kelvin\inverse}%
587
     [\joule\per\kelvin\usk\kilogram]%
588
     [\joule\per\kelvin\usk\kilogram]
589
590 \newscalarquantity{springstiffness}%
     {\kilogram\usk\second\totheinversetwo}%
591
     [\newton\per\meter]%
592
593
     [\newton\per\meter]%
594 \newscalarquantity{springstretch}% % This is really just a displacement.
     {\meter}%
596 \newscalarquantity{stress}%
     {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
598
     [\pascal]%
     [\newton\per\meter\tothetwo]%
600 \newscalarquantity{strain}%
     {}%
601
602 \newscalarquantity{temperature}%
    {\kelvin}%
604 %\ifmandi@rotradians
605 % \newphysicalquantity{torque}%
606 %
        {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\radian\inverse}%
607 %
        [\newton\usk\meter\per\radian]%
608 %
        [\newton\usk\meter\per\radian]%
609 %\else
     \newvectorquantity{torque}%
610
       {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo}%
611
612
       [\newton\usk\meter]%
       [\newton\usk\meter]%
613
614 %\fi
615 \newvectorquantity{velocity}%
     {\meter\usk\second\inverse}%
616
617
     [\meter\per\second]%
618
     [\meter\per\second]%
```

619 \newvectorquantity{velocityc}%

```
{\lightspeed}%
620
621
     []%
    [\lightspeed]%
622
623 \newscalarquantity{volume}%
    {\meter\tothethree}%
625 \newscalarquantity{volumechargedensity}%
    {\meter\totheinversethree\usk\second\usk\ampere}%
     [\coulomb\per\meter\tothethree]%
627
    [\coulomb\per\meter\tothethree]%
628
629 \newscalarquantity{volumemassdensity}%
    {\meter\totheinversethree\usk\kilogram}%
630
     [\kilogram\per\meter\tothethree]%
631
     [\kilogram\per\meter\tothethree]%
633 \newscalarquantity{wavelength}% % This is really just a displacement.
    {\meter}%
635 \newvectorguantity{wavenumber}%
    {\meter\inverse}%
636
    [\per\meter]%
637
     [\per\meter]%
639 \newscalarquantity{work}%
    {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo}%
640
641
    [\joule]%
     [\newton\usk\meter]%
642
643 \newscalarquantity{youngsmodulus}% % This is really just a stress.
    {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
644
645
     [\pascal]%
    [\newton\per\meter\tothetwo]%
646
   Define physical constants for introductory physics, again alphabetically for convenience.
647 \newphysicalconstant{avogadro}%
    {\sup\{N_A}}
648
649
    {6\timestento{23}}{6.02214076\timestento{23}}%
650
    {\mole\inverse}%
    [\per\mole]%
651
    [\per\mole]%
652
653 \neq 53 \newphysicalconstant{biotsavartconstant}% % alias for \mzofp
    {\sum_{0}{4\pi_0}}%
    {\left(-7\right)}{\left(-7\right)}
655
    {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
656
     [\henry\per\meter]%
657
     [\tesla\usk\meter\per\ampere]%
658
659 \newphysicalconstant{bohrradius}%
    {\symup{a_0}}%
660
    {5.3\times -11}}{5.2917721067\times -11}}%
661
662
    {\meter}%
663 \newphysicalconstant{boltzmann}%
    {\sup\{k_B}}%
    {1.4\times -23}{1.380649\times -23}%
665
    {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\kelvin\inverse}%
666
     [\joule\per\kelvin]%
667
     [\joule\per\kelvin]%
668
669 \newphysicalconstant{coulombconstant}% % alias for \oofpez
    {\sup{\frac{1}{4\pi 0}}}%
    {9}\times{9}\times{9}
671
672
    673
    [\meter\per\farad]%
    [\newton\usk\meter\tothetwo\per\coulomb\tothetwo]%
675 \newphysicalconstant{earthmass}%
```

{\symup{M_{Earth}}}%

```
{6.0\timestento{24}}{5.97237\timestento{24}}%
677
     {\kilogram}%
678
679 \newphysicalconstant{earthmoondistance}%
     {\sup\{d_{EM}\}}%
     {3.8\times 1550\times 8}
681
     {\meter}%
682
683 \newphysicalconstant{earthradius}%
     {\symup{R {Earth}}}%
     \{6.4 \times \{6.4 \}\} \{6.371 \times \{6\}\} \%
685
     {\meter}%
686
687 \newphysicalconstant{earthsundistance}%
     {\symup{d_{ES}}}%
     \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
     {\meter}%
690
691 \newphysicalconstant{electroncharge}%
     {\sup\{q_e\}}%
692
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
693
     {\ampere\usk\second}%
694
695
     [\coulomb]%
     [\coulomb]%
697 \newphysicalconstant{electronCharge}%
     {\sup{Q_e}}
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
699
     {\ampere\usk\second}%
700
     [\coulomb]%
701
     [\coulomb]%
702
703 \newphysicalconstant{electronmass}%
704
     {\sup\{m_e\}}%
     {9.1\times -31}
705
706
     {\kilogram}%
707 \newphysicalconstant{elementarycharge}%
     {\symup{e}}%
     {1.6\times \{1.6\times \{-19\}\}}{1.602176634\times \{-19\}\}}%
     {\ampere\usk\second}%
710
     [\coulomb]%
711
     [\coulomb]%
713 \newphysicalconstant{finestructure}%
    {\symup{\alpha}}%
714
     {\frac{1}{137}}{7.2973525664\times{-3}}%
715
717 \newphysicalconstant{hydrogenmass}%
     {\sup_{m_H}}%
718
     {1.7}\times{-27}{1.6737236}\times{-27}}%
719
     {\kilogram}%
721 \newphysicalconstant{moonearthdistance}%
     {\sup\{d_{ME}\}}%
     {3.8\times \{3.8\times \{3.81550\times \{8\}\}\}}
     {\meter}%
725 \newphysicalconstant{moonmass}%
     {\sup\{M_{Moon}\}}
726
     \label{eq:continuous} $\{7.3\times \text{timestento}\{22\}\} $\{7.342\times \text{timestento}\{22\}\} $\%$ $
727
728
     {\kilogram}%
729 \newphysicalconstant{moonradius}%
     {\symup{R_{Moon}}}%
730
731
     {1.7\times 6}}{1.7371\times 6}}%
     {\meter}%
732
733 \newphysicalconstant{mzofp}%
     {\sup{\frac{mu_0}{4\pi}}}
     {\left(-7\right)}{\left(-7\right)}
```

```
{\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
736
737
     [\henry\per\meter]%
     [\tesla\usk\meter\per\ampere]%
738
739 \newphysicalconstant{neutronmass}%
    {\sup\{m_n}}%
     {1.7}\times{0.674927471}\times{0.674927471}
741
    {\kilogram}%
743 \newphysicalconstant{oofpez}%
    {\symup{\frac{1}{4\pi\epsilon_0}}}%
     {9\timestento{9}}{8.987551787\timestento{9}}%
745
     {\meter\tothethree\usk\kilogram\usk\second\totheinversefour\usk\ampere\totheinversetwo}%
746
     [\meter\per\farad]%
747
     [\newton\usk\meter\tothetwo\per\coulomb\tothetwo]%
749 \newphysicalconstant{oofpezcs}%
     {\sup{\frac{1}{4\pi c_1}}{4\pi c_0 c_2}}%
750
     {\tento{-7}}{\tento{-7}}%
751
752
     {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
     [\tesla\usk\meter\tothetwo]%
753
     [\newton\usk\second\tothetwo\per\coulomb\tothetwo]%
755 \newphysicalconstant{planck}%
     {\sup\{h}}%
756
     \{6.6\timestento\{-34\}\}\{6.62607015\timestento\{-34\}\}\%
757
     {\meter\tothetwo\usk\kilogram\usk\second\inverse}%
758
     [\joule\usk\second]%
759
     [\joule\usk\second]%
760
    See https://tex.stackexchange.com/a/448565/218142.
761 \newphysicalconstant{planckbar}%
     {\sum_{k=0}^{n} {\mathbf AF}}\
762
     {1.1\times -34}}{1.054571817\times -34}}%
763
    {\meter\tothetwo\usk\kilogram\usk\second\inverse}%
764
765
     [\joule\usk\second]%
     [\joule\usk\second]
767 \newphysicalconstant{planckc}%
    {\symup{hc}}%
     {2.0\times {-25}}{1.98644586\times {-25}}%
769
     {\meter\tothethree\usk\kilogram\usk\second\totheinversetwo}%
770
     [\joule\usk\meter]%
771
772
     [\joule\usk\meter]%
773 \newphysicalconstant{protoncharge}%
     {\sup\{q_p\}}%
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
775
     {\ampere\usk\second}%
776
     [\coulomb]%
777
     [\coulomb]%
778
779 \newphysicalconstant{protonCharge}%
     {\sup{Q_p}}%
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
781
     {\ampere\usk\second}%
782
     [\coulomb]%
783
     [\coulomb]%
784
785 \newphysicalconstant{protonmass}%
     {\sup\{m_p}}%
786
     {1.7}\times{-27}{1.672621898}\times{-27}}%
787
     {\kilogram}%
788
789 \newphysicalconstant{rydberg}%
790
    {\symup{R_{\infty}}}%
     {1.1\times 10973731568508\times 10973731568508}
791
    {\meter\inverse}%
```

```
793 \newphysicalconstant{speedoflight}%
     {\svmup{c}}%
794
     {3\timestento{8}}{2.99792458\timestento{8}}%
795
     {\meter\usk\second\inverse}%
796
     [\meter\per\second]%
797
     [\meter\per\second]
799 \newphysicalconstant{stefanboltzmann}%
     {\symup{\sigma}}%
     \{5.7\timestento\{-8\}\}\{5.670367\timestento\{-8\}\}\%
801
     {\kilogram\usk\second\totheinversethree\usk\kelvin\totheinversefour}%
802
     [\watt\per\meter\tothetwo\usk\kelvin\tothefour]%
803
804
     [\watt\per\meter\tothetwo\usk\kelvin\tothefour]
805 \newphysicalconstant{sunearthdistance}%
     {\symup{d_{SE}}}%
     \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
807
     {\meter}%
808
809 \newphysicalconstant{sunmass}%
     {\symup{M_{Sun}}}%
     {2.0\times {30}}{1.98855\times {30}}
     {\kilogram}%
813 \newphysicalconstant{sunradius}%
     {\sup\{R_{Sun}\}}
     {7.0\times \{6.957\times \{8\}\}}
815
816
817 \newphysicalconstant{surfacegravfield}%
     {\symup{g}}%
     {9.8}{9.807}%
     {\meter\usk\second\totheinversetwo}%
820
     [\newton\per\kilogram]%
821
     [\newton\per\kilogram]%
822
823 \newphysicalconstant{universalgrav}%
     {\sup\{G}}%
825
     \{6.7\timestento\{-11\}\}\{6.67408\timestento\{-11\}\}\%
     {\meter\tothethree\usk\kilogram\inverse\usk\second\totheinversetwo}%
826
     [\newton\usk\meter\tothetwo\per\kilogram\tothetwo]% % also \joule\usk\meter\per\kilogram\tothetwo
827
     [\newton\usk\meter\tothetwo\per\kilogram\tothetwo]%
828
829 \newphysicalconstant{vacuumpermeability}%
     {\symup{\mu_0}}%
830
     {4\pi}{4\pi}{timestento}{-7}}{4\pi}{timestento}{-7}}%
831
     {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
     [\henry\per\meter]%
833
     [\tesla\usk\meter\per\ampere]%
834
835 \newphysicalconstant{vacuumpermittivity}%
     {\symup{\epsilon_0}}%
836
     {9 \times {-12}}{8.854187817 \times {-12}}%
837
     {\meter\totheinversethree\usk\kilogram\inverse\usk\second\tothefour\usk\ampere\tothetwo}%
     [\farad\per\meter]%
839
     [\coulomb\tothetwo\per\newton\usk\meter\tothetwo]%
840
    A better, intelligent coordinate-free \vec<sup>\rightarrow P.31</sup> command. Note the use of the e{ ^} type of optional argument. This
 accounts for much of the flexibility and power of this command. Also note the use of the TFX primitives \sb{} and \sp{}.
 Why doesn't it work when I put spaces around #3 or #4? Because outside of \ExplSyntaxOn...\ExplSyntaxOff, the
 character has a different catcode and is treated as a mathematical entity.
 See https://tex.stackexchange.com/q/554706/218142.
See also https://tex.stackexchange.com/a/531037/218142.
841 \RenewDocumentCommand{\vec}{ s m e{_{^{}}} }{%
     \ensuremath{%
842
       % Note the \, used to make superscript look better.
843
       \IfBooleanTF {#1}
                                 % check for *
844
```

```
{\vv{#2}% % * gives an arrow
845
            % Use \sp{} primitive for superscript.
846
            % Adjust superscript for the arrow.
847
            \sp{\IfValueT{#4}{\,#4}\vphantom{\smash[t]{\big|}}}
848
         }%
849
          {\symbfit{#2} % no * gives us bold
850
851
            % Use \sp{} primitive for superscript.
            % No superscript adjustment needed.
852
             \sp{\IfValueT{#4}{#4}\vphantom{\smash[t]{\big|}}}
853
         }%
854
       % Use \sb{} primitive for subscript.
855
       \sh\{\If ValueT{#3}{#3}\vphantom{\smash[b]{|}}}
856
857
     }%
858 }%
    The zero vector.
859 \NewDocumentCommand{\zerovec}{ s }{%
     \IfBooleanTF {#1}
860
861
       {\vv{0}}%
862
       {\symbfup{0}}%
863 }%
    A command for the change in a vector.
864 \NewDocumentCommand{\Dvec}{ s m }{%
     \Delta
865
     \IfBooleanTF{#1}
866
       {\vec*}%
867
       {\vec{\vec}}
868
869
     {#2}
870 }%
    A command for the direction of a vector. We use a slight tweak is needed to get uniform hats that requires the makebox
package.
See https://tex.stackexchange.com/a/391204/218142.
871 \NewDocumentCommand{\dirvec}{ s m }{%
```

```
\widetilde{\mbox{(w)}}{\%}
872
873
        \ensuremath{%
          \IfBooleanTF{#1}%
874
            {#2}%
875
            {\symbfit{#2}}%
876
877
          }%
       }%
878
    }%
879
880 }%
    A command for the magnitude of a vector.
881 \NewDocumentCommand{\magvec}{ s m }{%
     \doublebars{%
882
        \IfBooleanTF{#1}
883
884
          {\vec*}%
          {\vec}%
885
        {#2}
886
     }%
887
888 }%
```

Intelligent commands for typesetting vector and tensor symbols and components suitable for use with both coordinate-free and index notations. Use starred form for index notation, unstarred form for coordinate-free.

```
889 \NewDocumentCommand{\veccomp}{ s m }{%
     % Consider renaming this to \vectorsym.
```

```
\IfBooleanTF{#1}
891
     \{\%\ We have a *.
892
       \ensuremath{\symnormal{#2}}%
893
     }%
894
     {\%} We don't have a *.
895
896
       \ensuremath{\symbfit{#2}}%
897
     }%
898 }%
899 \NewDocumentCommand{\tencomp}{ s m }{%
     % Consider renaming this to \tensororsym.
     \IfBooleanTF{#1}
901
     {% We have a *.
902
       \ensuremath{\symsfit{#2}}%
903
904
     {% We don't have a *.
905
       \ensuremath{\symbfsfit{#2}}%
906
     }%
907
908 }%
    An environment for problem statements. The starred version gives in-line lists.
909 \NewDocumentEnvironment{physicsproblem}{ m }{%
     \newpage%
910
     \texttt{\section*{#1}}\%
911
     \newlist{parts}{enumerate}{2}%
912
     \setlist[parts]{label=\bfseries(\alph*)}}%
913
914
915 \NewDocumentEnvironment{physicsproblem*}{ m }{%
     \newpage%
916
     \section*{#1}%
917
     \newlist{parts}{enumerate*}{2}%
918
     \setlist[parts]{label=\bfseries(\alph*)}}%
919
920
921 \NewDocumentCommand{\problempart}{}{\times}
    An environment for problem solutions.
922 \NewDocumentEnvironment{physicssolution}{ +b }{%
     % Make equation numbering consecutive through the document.
923
     \begin{align}
924
       #1
925
     \end{align}
926
927 }{}%
928 \NewDocumentEnvironment{physicssolution*}{ +b }{%
     % Make equation numbering consecutive through the document.
929
     \begin{align*}
930
931
       #1
     \end{align*}
932
933 }{}%
    A simplified command for importing images.
934 \NewDocumentCommand{\image}{ O{scale=1} m m m }{\%}
     \begin{figure}[ht!]
935
       \begin{center}%
936
          \includegraphics[#1]{#2}%
937
       \end{center}%
938
       \caption{#3}%
939
       \label{#4}%
940
     \end{figure}%
941
942 }%
```

```
943 \NewDocumentCommand{\reason}{ 0{4cm} m }
    {&&\begin{minipage}{#1}\raggedright\small #2\end{minipage}}
    Notation for column and row vectors. \mivector→P.32 is a workhorse command.
Orginal code provided by @egreg.
See https://tex.stackexchange.com/a/39054/218142.
945 \ExplSyntaxOn
946 \NewDocumentCommand{\mivector}{ 0{,} m o }%
947 {%
      \mi_vector:nn { #1 } { #2 }
948
      \IfValueT{#3}{\; {#3}}
949
950 }%
951 \seq_new:N \l__mi_list_seq
952 \cs_new_protected:Npn \mi_vector:nn #1 #2
953 {%
954
     \ensuremath{%
       \seq_set_split:Nnn \l__mi_list_seq { , } { #2 }
955
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \left\langle }
956
       \seq_use:Nnnn \l__mi_list_seq { #1 } { #1 } { #1 }
957
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \right\rangle }
958
    }%
959
960 }%
961 \NewDocumentCommand{\colvec}{ O{,} m }{%
     \vector_main:nnnn { p } { \\ } { #1 } { #2 }
963 }%
964 \NewDocumentCommand{\rowvec}{ O{,} m }{%
     \vector_main:nnnn { p } { & } { #1 } { #2 }
965
966 }%
967 \seq_new:N \l__vector_arg_seq
968 \cs_new_protected:Npn \vector_main:nnnn #1 #2 #3 #4 {%
     \seq_set_split:Nnn \l__vector_arg_seq { #3 } { #4 }
969
     \begin{#1NiceMatrix}[r]
970
       \seq_use:Nnnn \l__vector_arg_seq { #2 } { #2 } { #2 }
971
     \end{#1NiceMatrix}
972
973 }%
974 \ExplSyntaxOff
    Commands for scientific notation.
975 \NewDocumentCommand{\tento}{ m }{\ensuremath{10^{#1}}}
976 \NewDocumentCommand{\timestento}{ m }{\censuremath{\;\times\;\tento{#1}}}
977 \NewDocumentCommand{\xtento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
978 \NewDocumentCommand{\changein}{}{\Delta}
    Intelligent delimiters provided via the mathtools package. Use the starred versions for fractions. You can supply optional
sizes. Note that default placeholders are used when the argument is empty.
979 \DeclarePairedDelimiterX{\doublebars}[1]{\\IVert}{\\r\#1}{\\:\cdot\\:\}#1}}
980 \DeclarePairedDelimiterX{\singlebars}[1]{\lvert}{\rvert}{\ifblank{#1}{\:\cdot\:}{#1}}
981 \DeclarePairedDelimiterX{\anglebrackets}[1]{\langle}{\rangle}{\ifblank{#1}{\:\cdot\:}{#1}}
982 \DeclarePairedDelimiterX{\parentheses}[1]{(}{)}{\ifblank{#1}{\:\cdot\:}{#1}}}
983 \DeclarePairedDelimiterX{\squarebrackets}[1]{\lbrack}{\rbrack}{\lifblank{#1}{\:\cdot\:}{#1}}
984 \DeclarePairedDelimiterX{\curlybraces}[1]{\lbrace}{\rbrace}{\ifblank{#1}}{\:\cdot\:}{#1}}
    Some semantic aliases.
985 \NewDocumentCommand{\magnitude}{}{\doublebars}
986 \NewDocumentCommand{\norm}{}{\doublebars}
987 \NewDocumentCommand{\absolutevalue}{}{\singlebars}
988 \label{lem:section} $$98 \label{lem:section} {\label{lem:section} } $$
989 \NewDocumentCommand{\unitvector}{}{\mivector}
```

See https://tex.stackexchange.com/q/570223/218142.

```
Command for highlighting parts of, or entire, mathematical expressions.
 Original code by anonymous user @abcdefg, modified by me.
 See https://texample.net/tikz/examples/beamer-arrows/.
 See also https://tex.stackexchange.com/a/406084/218142.
 See also https://tex.stackexchange.com/a/570858/218142.
 See also https://tex.stackexchange.com/a/570789/218142.
 See also https://tex.stackexchange.com/a/79659/218142.
 See also https://tex.stackexchange.com/q/375032/218142.
 See also https://tex.stackexchange.com/a/571744/218142.
 990 \newcounter{tikzhighlightnode}
991 \NewDocumentCommand{\hilite}{ O{magenta!60} m O{rectangle} }{%
992
      \stepcounter{tikzhighlightnode}%
993
      \tikzmarknode{highlighted-node-\number\value{tikzhighlightnode}}{#2}%
994
      \edef\temp{%
995
        \noexpand\AddToShipoutPictureBG{%
          \noexpand\begin{tikzpicture}[overlay,remember picture]%
996
          \noexpand\iftikzmarkoncurrentpage{highlighted-node-\number\value{tikzhighlightnode}}}
997
           \noexpand\node[inner sep=1.0pt,fill=#1,#3,fit=(highlighted-node-\number\value{tikzhighlightnode})]{};%
998
999
          \noexpand\fi
          \noexpand\end{tikzpicture}%
1000
1001
        }%
1002
      }%
      \temp%
1003
1004 }%
     Intelligent slot command for coordinate-free tensor notation.
1005 \NewDocumentCommand{\slot}{ s d[] }{%
      % d[] must be used because of the way consecutive optional
      % arguments are handled. See xparse docs for details.
1007
      \IfBooleanTF{#1}
1008
      {\%} We have a *.
1009
        \IfValueTF{#2}
1010
        {% Insert a vector, but don't show the slot.
1011
1012
          \smash{\makebox[1.5em]{\ensuremath{#2}}}
        }%
1013
1014
        {% No vector, no slot.
1015
          \smash{\makebox[1.5em]{\ensuremath{}}}
1016
        }%
1017
      }%
1018
      {% We don't have a *.
        \IfValueTF{#2}
1019
1020
        {% Insert a vector and show the slot.
          \underline{\smash{\makebox[1.5em]{\ensuremath{#2}}}}
1021
1022
        {% No vector; just show the slot.
1023
          \underline{\smash{\makebox[1.5em]{\ensuremath{}}}}
1024
        }%
1025
     }%
1026
1027 }%
     Intelligent notation for contraction on pairs of slots.
1028 \NewDocumentCommand{\contraction}{ s m }{%
      \IfBooleanTF{#1}
      {\mathbf C}} We have a *.
      {\symbb{C}} We don't have a *.
1031
     _{#2}
1032
```

1033 }%

Intelligent differential (exterior derivative) operator.

1071 }%

```
1034 \NewDocumentCommand{\dd}{ s }{%
      \mathop{}\!
1035
      \IfBooleanTF{#1}
1036
      {\symbfsfup{d}}% We have a *.
1037
      {\symsfup{d}}% We don't have a *.
1038
1039 }%
     Command to typeset tensor valence.
1040 \NewDocumentCommand{\valence}{ s m m }{\%}
      \IfBooleanTF{#1}
1041
        {(#2,#3)}
1042
        {\binom{#2}{#3}}
1043
1044 }%
     Diagnostic commands to provide sanity checks on commands that represent physical quantities and constants.
1045 \NewDocumentCommand{\checkquantity}{ m }{\%
      % Works for both scalar and vector quantities.
      \begin{center}
1047
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm}} >{\centering}p{4cm} >{\centering}p{3cm}}
1048
          name & base & derived & alternate \tabularnewline
1049
1050
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
          \small{\csname #1onlybaseunits\endcsname} &
1051
          \small{\csname #1onlyderivedunits\endcsname} &
1052
          \small{\csname #1onlyalternateunits\endcsname}
1053
        \end{tabular}
1054
      \end{center}
1055
1056 }%
1057 \NewDocumentCommand{\checkconstant}{ m }{%
      \begin{center}
1058
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm} >{\centering}p{4cm} >{\centering}p{3cm}}
1059
          name & base & derived & alternate \tabularnewline
1060
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
1061
          \small{\csname #1onlybaseunits\endcsname} &
1062
1063
          \small{\csname #1onlyderivedunits\endcsname} &
          \small{\csname #1onlyalternateunits\endcsname} \tabularnewline
1064
          symbol & approximate & precise \tabularnewline
1065
          \small{\csname #1mathsymbol\endcsname} &
1066
          \small{\csname #1approximatevalue\endcsname} &
1067
          \small{\csname #1precisevalue\endcsname} \tabularnewline
1068
        \end{tabular}
1069
      \end{center}
1070
```

7 Index

Page numbers refer to page where the corresponding entry is documented and/or referenced.

A	\checkquantity
	• •
\absolutevalue	\chemicalenergy
•	\cmagneticfield 9
\acceleration	\cmagneticfieldvector 9
\accelerationvector 8	\colvec
alternate value 6, 53	\conductance9
\alwaysusealternateunits	\conductivity 9
\alwaysuseapproximateconstants 26	\contraction
\alwaysusebaseunits	\contraction* 38
\alwaysusederivedunits	\conventionalcurrent 9
\alwaysusepreciseconstants 26	\coulomb 17
\amount 8	\coulombconstant
\ampere 17	\curlybraces
\anglebrackets 39	\curlybraces* 39
\anglebrackets* 39	\current 9
\angularacceleration 8	\currentdensity 10
\angularaccelerationvector 8	\currentdensityvector 10
\angularfrequency 8	_
\angularimpulse 8	D
$\verb \angularimpulsevector \dots \dots$	\degree 17
\angularmomentum 8	derived value
\angularmomentumprinciple 43	\dielectricconstant 10
$\angular momentum principle * \dots 43$	\direction 33
\angularmomentumprincipleupdate $\dots 43$	\dirvec 32
$\angular momentum principle update*$	\dirvec* 32
\angularmomentumvector 8	\displacement 10
\angularvelocity 8	\displacementvector 10
$\verb \angularvelocityvector 8$	\doublebars 39
\area 8	\doublebars* 39
\areachargedensity 9	\duration 10
\areamassdensity 9	\Dvec 32
\atomicmassunit 17	\Dvec* 32
\avogadro 20	
	${f E}$
В	\earthmass 21
base value 6, 53	\earthmoondistance 21
\biotsavartconstant 20	\earthradius
\bohrradius 20	\earthsundistance 21
\boltzmann 21	\electricdipolemoment 10
	\electricdipolemomentvector 10
\mathbf{C}	\electricfield 10
\candela 17	$\verb \electricfield vector \dots \dots$
\capacitance 9	\electricflux 10
\changein 39	$\verb \electric potential \dots \dots$
\charge 9	\electricpotentialenergy 46
(onargo	
\checkconstant	\electronCharge 22

\electroncharge 21	\hilite 36
\electroncurrent 11	\hydrogenmass 22
\electronmass 22	
\electronvolt 17	I
\elementarycharge 22	\image 37
\emf 11	\impulse 12
\emptyunit 17	\impulsevector 12
\energy 11	$local_loc$
\energydensity 11	\inductance 12
\energyflux 11	\internalenergy 45
\energyfluxvector 11	\inverse 18
\energyof 44	
\energyprinciple 43	J
\energyprincipleupdate 43	\joule 17
\entropy 11	
Environments	K
glowscriptblock 26	\kelvin 17
physicsproblem	Keys
physicsproblem* 33	${\tt preciseconstants} \dots \dots 6$
physicssolution 34	units 6
physicssolution* 34	\kilogram 17
usealternateunits 19	
useapproximateconstants $\dots 26$	L
usebaseunits 19	\lhsangularmomentumprinciple
usederivedunits 19	\lhsangularmomentumprinciple* 43
usepreciseconstants	\lambda \lambd
	\lambda \lambd
\mathbf{F}	\lambda \lambd
false value 6, 53	\lhsenergyprincipleupdate 42
\farad 17	\lambda \lambd
\finestructure 22	\lambda \lambd
\force 11	\lhsmomentumprincipleupdate 42
\forcevector 11	\lambda \lambda \lambda lhsmomentumprincipleupdate* 42
\frequency 11	\lightspeed
	\linearchargedensity
\mathbf{G}	\linearmassdensity 12
glowscriptblock environment	\luminous 12
$\verb \glowscriptinline $	D.C.
\gravitationalfield 12	M
\gravitationalfieldvector 12	\magneticcharge 12
\gravitationalpotential 12	\magneticdipolemoment
$\verb \gravitational potential energy 46 $	\magneticdipolemomentvector 13
	\magneticfield
H	\magneticfieldvector
\henry 17	\magneticflux 13
\hereuseapproximateconstants 26	\magnitude
\hereusebaseunits	\magnitude* 41
\hereusedalternateunits 18	\magvec 32
\hereusederivedunits 18	\magvec* 32
\hereusepreciseconstants 26	\mandisetup 6
\hertz 17	$\mbox{\mbox{$\backslash$}}$ mandiversion

\mass 13	\planckc	24
\meter 17	\planeangle	14
\metre 18	\polarizability	14
\mivector 32	\power	14
\mobility 13	\poynting	14
\mole 18	\poyntingvector	14
\momentofinertia 13	preciseconstants key	. 6
\momentum 7, 13	\pressure	14
\momentumflux 13	\protonCharge	24
\momentumfluxvector 13	\protoncharge	24
\momentumprinciple 42	\protonmass	24
\momentumprinciple* 42		
\momentumprincipleupdate 42	R	
\momentumprincipleupdate* 42	\radian	18
\momentumvector 7	\reason	35
\momentumvectordemo 13	\relativepermeability	14
\moonearthdistance 22	\relativepermittivity	15
\moonmass 22	\renewphysicalconstant	25
\moonradius 23	\renewscalarquantity	17
\mzofp 23	\renewvectorquantity	17
•	\resistance	15
$\mathbf N$	\resistivity	15
\neutronmass 23	\restenergy	44
$\verb \newphysicalconstant $	\rhsangularmomentumprinciple	43
\newscalarquantity 17	\rhsangularmomentumprinciple*	43
\newton 18	\rhsangularmomentumprincipleupdate	43
\newvectorquantity 17	\rhsangularmomentumprincipleupdate*	43
\norm 41	\rhsenergyprinciple	42
\norm* 41	\rhsenergyprincipleupdate	43
\numberdensity 14	\rhsmomentumprinciple	42
	\rhsmomentumprinciple*	42
0	\rhsmomentumprincipleupdate	42
\ohm 18	\rhsmomentumprincipleupdate*	42
\oofpez 19, 23	\rotationalkineticenergy	45
\oofpezcs 23	\rotationalkineticenergy*	45
_	\rowvec	38
P	\rydberg	24
\parentheses		
\parentheses*	${f S}$	
\particleenergy 44	\second	18
\pascal 18	\siemens	
\per	\singlebars	
\permeability	\singlebars*	
\permittivity	\slot	
\photonenergy	\slot*	
physicsproblem environment	\solidangle	
physicsproblem* environment	\specificheatcapacity	
physicssolution environment	\speedoflight	
physicssolution* environment	\springpotentialenergy	
\planck 23	\springstiffness	15
\planckbar 23		

\springstretch 15	base 6, 53
\squarebrackets 39	derived 6, 53
\squarebrackets* 39	false $\dots 6, 53$
\stefanboltzmann 24	true 6, 53
\steradian 18	\vec 31
\strain 15	\vec* 31
\stress 15	\veccomp 33
\sunearthdistance	\veccomp* 33
\sunradius 25	\vectoracceleration 8
\surfacegravfield 25	\vectorangularacceleration 8
\systemenergy 44	\vectorangularimpulse 8
<u>_</u>	\vectorangularmomentum 8
T	\vectorangularvelocity 8
\temperature 16	\vectorcmagneticfield 9
\tencomp 33	\vectorcurrentdensity 10
\tencomp* 33	\vectordisplacement 10
\tento 39	$\verb \vectorelectricdipolemoment 10$
\tesla 18	\vectorelectricfield 10
\thermalenergy 45	\vectorenergyflux 11
\timestento 39	\vectorforce 11
\torque 16	$\vectorgravitational field \dots 12$
\torquevector 16	\vectorimpulse 12
\tothefour 18	\vectormagneticdipolemoment 13
\totheinversefour 18	\vectormagneticfield
\totheinversethree 18	\vectormomentum
\totheinversetwo 18	\vectormomentumflux 13
\tothethree 18	\vectorpoynting 14
\tothetwo 18	\vectortorque 16
\t translationalkineticenergy 45	\vectorvelocity 16
\translationalkineticenergy* 45	\vectorvelocityc 16
true value 6, 53	\vectorwavenumber 16
	\velocity 16
U	\velocityc 16
\unit	\velocitycvector 16
units key6	\velocityvector 16
\unitvector 33	\vibrationalkineticenergy 46
\universalgrav	\forall vibrationalkineticenergy*
usealternateunits environment	\volt 18
useapproximateconstants environment 26	\volume 16
usebaseunits environment	$\verb \volumechargedensity $
usederivedunits environment	\volumemassdensity
usepreciseconstants environment 26	\vpythonfile 29
\usk 17	\vpythoninline 31
V	
•	\mathbf{W}
\vacuumpermeability	\watt 18
\vacuumpermittivity	\wavelength 16
\valence	\wavenumber 16
Values Values	\wavenumbervector 16
	\weber 18
alternate $\dots \dots \dots$	

\work			 								17
\xtento	X		 								39
\youngsmodulus	Y		 								17
\zerovec											
\zerovec*			 			 					31