

社交网络挖掘期末汇报

汇报人: 陈乐偲 姜俊哲 于淼芃

01

社区发现

Community Detection

02

网络分析

Network Analysis

03

结点分类

Node Classification

04

链接预测

Link Prediction

社区发表现

社区发现

Community Detection

评价标准: 模块度

$$Q = \frac{1}{2m} \sum_{1 \le i,j \le n} \left(\left[A_{ij} - \frac{d_i d_j}{2m} \right] \delta(c_i, c_j) \right)$$

Louvain Algorithm

Louvain on Facebook-combined

基于模块度和贪心思想的社区发现[1]

- 1.初始每个点视作一个社区
- 2.对每个点贪心选择一个模块度增加最大的社区加入
- 3. 迭代2, 直至无法更新
- 4.对每个社区缩点,回到1

Louvain Algorithm

Louvain on Facebook-combined

基于模块度和贪心思想的社区发现

Infomap

Random Walk Based Method

基于随机游走的社区发现

对于随机游走的一段路径,采用分层编码,编码第一种是群组的名字,不同群组的名字编码不一样;第二种是每个群组内部的节点及跳出标志,不同节点的名字编码不一样。但是,不同群组内部的节点的编码可以复用。

对于一个好的社区划分,可以带来更短的平均编码长度

贪心加缩点 优化信息熵

[1] Rosvall M, Axelsson D, Bergstrom C T. The map equation[J]. The European Physical Journal Special Topics, 2009, 178(1): 13-23.

Infomap

Infomap on Facebook-combined

基于随机游走的社区发现

社区发现

Community Detection

Louvain

Infomap

	Louvain	Infomap
社区数	16	78
模块度	0.83	0.81

网络分析

中心性度量

Centerness

各种属性度量

Other Metrics

平均距离、直径及平均局部聚类系数

	平均距离	直径	聚类系数
Facebook	3.69	8	0.606
优先链接模型	4.17	9	0.015
小世界模型	9.03	19	0.648
随机图	4.42	9	0.003
完全图	1	1	1

度分布

Degree Distribution

度分布

Degree Distribution

随机图

小世界模型

完全图

网络演化

Network Evolution

Ego-facebook + 链接预测

时间戳	平均距离	直径	聚类系数
0	1.95	2	0.58
1	1.92	2	0.29
2	1.88	2	0.29
3	1.86	2	0.32
4	1.83	2	0.35

网络演化

Network Evolution

随机图演化 N=500,取最大连通子图

时间戳	结点数	平均路径	直径	聚类系数	平均度
0	2	1.00	1	0.0	0.04
1	9	2.83	6	0.0	0.56
2	39	6.40	16	0.0	0.96
3	497	4.08	8	0.01	4.92
4	500	1.90	3	0.1	51.09

网络演化

Network Evolution

结点分类

结点分类任务介绍

Node classification

数据集: 学术引用网络 Cora (Citeseer Pubmed)

数据集介绍(以Cora为例):

- 结点: 论文 (2708)
- 边: 学术引用 (5429)
- 结点特征: 论文词袋 (1433)
- 结点标签: 论文类别 (7)

任务介绍: 图半监督学习

非学习方法:标签传播 (LP)

Label Propagation

原理:相同类别的学术论文更倾向于相互引用

公式:
$$\mathbf{Y}' = \alpha \cdot \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \mathbf{Y} + (1 - \alpha) \mathbf{Y}$$
,

参数设置: a=0.9, niters=30

LP in [1]	LP of ours
68	71.3

[1] Yang Z, Cohen W, Salakhudinov R. Revisiting semi supervised learning with graph embeddings[C]//International conference on machine learning. PMLR, 2016: 40-48.

基于图表示学习的方法: 随机游走

Node2Vec

From Word2Vec to Node2Vec[1] 基于NLP中的Word2Vec模型,将随机游走视作上下文

基于Node2Vec获取Embedding表示,并且辅以经典的机器学习模型,如SVM、随机森林等

		Node2Vec+ Logistic Regression
75.2	69.7	72.7

[1] Grover A, Leskovec J. node2vec: Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016: 855-864.

基于图表示学习的方法: 随机游走

Node2Vec

但可以从矩阵分解的角度证明,此类模型存在缺陷:

- 学习得到的Embedding具有旋转不变性 [1]
- 非端到端训练

[1]Levy O, Goldberg Y. Neural word embedding as implicit matrix factorization[J]. Advances in neural information processing systems, 2014, 27: 2177-2185.

图神经网络 (GNN)

Graph Neural Network

基于图结构和结点特征,获取结点的表示向量,用于各类任务

- 结点分类
- 链接预测

图卷积神经网络: GCN

Graph Convolution Network

将卷积运算推广至图结构 利用图信号处理中的傅里叶变换,将傅里叶变换的卷积核作为由切比雪夫多项 式定义的可学习参数,可以得到切比雪夫卷积(ChebConv)

$$\mathbf{X}' = \sum_{k=1}^K \mathbf{Z}^{(k)} \cdot \mathbf{\Theta}^{(k)}$$

对图拉普拉斯矩阵的特征值等做出合理的近似,得到GCN

$$\mathbf{X}' = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta},$$

- [1] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering[J]. arXiv preprint arXiv:1606.09375, 2016.
- [2] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

其他图神经网络: GraphSAGE

Sample and Aggregate on Graph

GNN (Graph Neural Network) 的本质是消息传递机制 (Message Passing) 可以拆分为采样和聚合操作,

[1] Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs[J]. arXiv preprint arXiv:1706.02216, 2017.

其他图神经网络: GAT

Graph Attention Network

Attention is all your need!

注意力: 为不同的邻居赋予不同的权重

$$\mathbf{x}_i' = lpha_{i,i} \mathbf{\Theta} \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} lpha_{i,j} \mathbf{\Theta} \mathbf{x}_j,$$

权重的计算和Embedding相似,

$$\alpha_{i,j} = \frac{\exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}^{\top}[\boldsymbol{\Theta}\mathbf{x}_i \parallel \boldsymbol{\Theta}\mathbf{x}_j]\right)\right)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}^{\top}[\boldsymbol{\Theta}\mathbf{x}_i \parallel \boldsymbol{\Theta}\mathbf{x}_k]\right)\right)}.$$

[1] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10903, 2017.

图神经网络:实验结果

Graph Neural Network

GCN	SAGE	GAT
81.1	79.6	81.19

选用GCN作为基础模型:

- 理论推导严谨
- 模型表现相对满意
- 自实现了该模型

Kronecker-factored Approximate Curvature

- 基于Fisher信息矩阵的自然梯度的二阶优化
- 对于交叉熵损失,Fisher信息矩阵是Hessian矩阵的期望
- 对于经验Fisher信息矩阵,可以使用基于Kronecker积的近似矩阵分解在低 复杂度内计算矩阵
- 在合理的独立性等假设下,经验Fisher信息矩阵是分块对角的,可以在低复杂度内求逆

GCN	GCN + K-FAC
81.1	81.7

[1] Martens J, Grosse R. Optimizing neural networks with kronecker-factored approximate curvature[C]//International conference on machine learning. PMLR, 2015: 2408-2417.

使用优化器改进: SAM

Sharpness Awareness Minimization

Sharpness: 泛化误差

SAM:根据PAC贝叶斯泛化误差理论上界设计相应的优化器

将SAM运用于GNN中

GCN	GCN + SAM
81.1	82.1
GAT	GAT + SAM
81.9	82.3

[1] Foret P, Kleiner A, Mobahi H, et al. Sharpness-Aware Minimization for Efficiently Improving Generalization[J]. arXiv preprint arXiv:2010.01412, 2020.

Deeper Graph Neural Networks

由于过平滑化效应(OverSmoothness),更深的GNN不一定更好根据六度空间理论,也不需要过深的GNN

过平滑化理论[1]:根据GNN和动力系统的关系,模型学到的embedding会收敛到某一子空间

GCN2	GCN4	GCN8	GCN16
81.1	62.5	56.4	15.3

[1] Oono K, Suzuki T. On asymptotic behaviors of graph cnns from dynamical systems perspective[J]. 2019.

Deeper Graph Neural Networks

训练更深的网络:

• DropEdge[1]: 减缓过平滑化效应,从随机游走的角度证明[2]

GCN2	GCN4	GCN8
81.1	62.5	56.4
GCN2+DropEdge	GCN4+DropEdge	GCN8+DropEdge

[1] Rong Y, Huang W, Xu T, et al. Dropedge: Towards deep graph convolutional networks on node classification[J]. arXiv preprint arXiv:1907.10903, 2019.

[2] Lovász L. Random walks on graphs: A survey[J]. Combinatorics, Paul erdos is eighty, 1993, 2(1): 1-46.

Deeper Graph Neural Networks

训练更深的网络:

- DropEdge: 减缓过平滑化效应,
- 残差连接 (Jump Knowledge Network [1])

GCN4	GCN8
62.5	56.4
JK+DropEdge	JK+DropEdge
82.9	82.8

JumpKnowledge、DropEdge、DropOut相辅相成 使用JumpKnowledge+DropEdge可以令DropOut概率为0.9

[1] Xu K, Li C, Tian Y, et al. Representation learning on graphs with jumping knowledge networks[C]//International Conference on Machine Learning. PMLR, 2018: 5453-5462.

Correct and Smooth

本质类似一种迭代法[1]

Correct: 减小训练集误差

Smooth: 平滑Embedding (GNN的初始化trick)

在简单的MLP上加入Correct and Smooth可以大幅提升性能使用Correct and Smooth作为后处理手段优化GCN的结果

MLP			MLP+Correct and Smooth	
51.8			72.9	
GCN	GCN+SAM	GCN+SAM+Correct and Smooth		
81.1	82.1	83.0		

[1] Huang Q, He H, Singh A, et al. Combining Label Propagation and Simple Models Out-performs Graph Neural Networks[J]. arXiv preprint arXiv:2010.13993, 2020.

实验结果

Experiments

Method	Detail	Accuracy
Deeper GCN	GCN4+DropEdge+ JKNet + SAM	82.9
GCN with post process	GCN2+SAM+ Correct and Smooth	83

链接预测

链接预测

Link Prediction

基于Embedding

转化为二分类问题, 给定任意两个点对, 判断边的有无 (0/1二分类)

真实图的稀疏性:使用负采样技术保证正负样本的均衡

图自编码器 (GAE)

Graph Auto Encoder

思想: 重构原图

编码器: GCN等

解码器: 简单的点积编码器等

变分自编码器 (VGAE)

Variational Graph Auto Encoder

将自编码器看作含隐变量的参数推断 使用EM算法进行参数推断,并使用神经网络拟合隐变量的分布等 可以看作GAE加入KL散度作为正则项

球面变分自编码器 (S-VGAE)

Sphere - VGAE

解决一般VGAE使用正态分布的KL崩塌问题, 使用vMF分布[1,2](von Mises-Fisher Distribution)替代正态分布 通过控制凝聚度超参数κ使得KL散度具有正下界

[1] Xu J, Durrett G. Spherical latent spaces for stable variational autoencoders[J]. arXiv preprint arXiv:1808.10805, 2018.

[2] Davidson T R, Falorsi L, De Cao N, et al. Hyperspherical variational auto-encoders[J]. arXiv preprint arXiv:1804.00891, 2018.

对抗正则变分自编码器 (ARVGAE)

Adversarial Regulated VGAE

KL散度对判断分布距离存在问题 借鉴GAN的思想,使用网络Discriminator鉴别分布的距离(W-GAN)

实验结果

Experiments

	AUC	AP
GAE	91.14	91.28
VGAE	90.56	91.56
ARVGAE	92.5	92.9
S-VGAE	92.88	93.1

THANKS

THANKS AGAIN

小组分工

Teamwork

姜俊哲: 社区发现, 网络分析

陈乐偲: 结点分类, 链接预测

于淼芃:网络生成,部分数据集训练 (Citeseer, Pubmed)

节标题

■ 节标题

内容

文本