

Department of Computer Engineering

Experiment No. 7

Data Visualization using Hive/PIG/R/Tableau

Date of Performance: 12/10/2023

Date of Submission: 16/10/2023

Department of Computer Engineering

Aim: Data Visualization using Hive/PIG/R/Tableau/.

Theory:

Data visualisation is the technique used to deliver insights in data using visual cues such as graphs, charts, maps, and many others. This is useful as it helps in intuitive and easy understanding of the large quantities of data and thereby make better decisions regarding it.

The popular data visualisation tools that are available are Tableau, Plotly, R, Google Charts, Infogram, and Kibana. The various data visualisation platforms have different capabilities, functionality, and use cases. They also require a different skill set. This article discusses the use of R for data visualisation.

R is a language that is designed for statistical computing, graphical data analysis, and scientific research. It is usually preferred for data visualisation as it offers flexibility and minimum required coding through its packages.

Consider the following air quality data set for visualisation in R:

Ozone	Solar R.	Wind	Temp	Month	Day
41	190	7.4	67	5	1
36	118	8.0	72	5	2
12	149	12.6	74	5	3
18	313	11.5	62	5	4
NA	NA	14.3	56	5	5
28	NA	14.9	66	5	6

CSL702: Big Data Analytics Lab

Department of Computer Engineering

1. Bar Plot

There are two types of bar plots- horizontal and vertical which represent data points as horizontal or vertical bars of certain lengths proportional to the value of the data item. They are generally used for continuous and categorical variable plotting. By setting the horiz parameter to true and false, we can get horizontal and vertical bar plots respectively.

Example 1:

Horizontal Bar Plot for

Ozone concentration in air barplot(airquality\$Ozone,

main = 'Ozone Concenteration in air', xlab = 'ozone levels', horiz = TRUE)

Example 2:

Vertical Bar Plot for

Ozone concentration in air

barplot(airquality\$Ozone, main = 'Ozone Concenteration in air', xlab = 'ozone levels', col = 'blue', horiz = FALSE)

Department of Computer Engineering

2. Histogram

A histogram is like a bar chart as it uses bars of varying height to represent data distribution. However, in a histogram values are grouped into consecutive intervals called bins. In a Histogram, continuous values are grouped and displayed in these bins whose size can be varied.

Histogram for Maximum Daily Temperature data(airquality)

hist(airquality\$Temp, main ="CSMT Airport\ Maximum Temperature(Daily)",

xlab ="Temperature(Fahrenheit)", xlim = c(50, 125), col ="lightblue", freq = TRUE)

Department of Computer Engineering

3. Box Plot

The statistical summary of the given data is presented graphically using a boxplot. A box plot depicts information like the minimum and maximum data point, the median value, first and third quartile, and interquartile range.

```
# Box plot for average wind speed
data(airquality)
boxplot(airquality$Wind, main = "Average wind speed\ at
CSMT Airport",
    xlab = "Miles per hour", ylab = "Wind", col =
    "green", border = "brown", horizontal =
    TRUE, notch = TRUE)
```


Department of Computer Engineering

4. Scatter Plot

A scatter plot is composed of many points on a Cartesian plane. Each point denotes the value taken by two parameters and helps us easily identify the relationship between them.

Example:.

```
# Scatter plot for Ozone Concentration per month data(airquality)
plot(airquality$Ozone, airquality$Month,
main ="Scatterplot Example",
xlab ="Ozone Concentration in parts per billion", ylab
=" Month of observation ", pch = 19)
```


Department of Computer Engineering

5. Heat Map

Heatmap is defined as a graphical representation of data using colours to visualise the value of the matrix. heatmap() function is used to plot heatmap.

Syntax: heatmap(data)

Parameters: data: It represent matrix data, such as values of rows and columns Return: This function draws a heatmap.

```
# Set seed for reproducibility #
set.seed(110)
# Create example data
data <- matrix(rnorm(50, 0, 5), nrow = 5, ncol = 5)
# Column names
colnames(data) <- paste0("col", 1:5)
rownames(data) <- paste0("row", 1:5)
# Draw a heatmap
heatmap(data)</pre>
```


Department of Computer Engineering

6. Map visualisation in R

Here we are using maps package to visualise and display geographical maps using an R programming language.

```
install.packages("maps")
Link of the dataset: worldcities.csv

# Read dataset and convert it into #
Dataframe
data <- read.csv("worldcities.csv") df <-
data.frame(data)

# Load the required libraries
library(maps)
map(database = "world")

# marking points on map
points(x = df$lat[1:500], y = df$lng[1:500], col = "Red")</pre>
```


Department of Computer Engineering

7. 3D Graphs in R

Here we will use the preps() function, This function is used to create 3D surfaces in perspective view. This function will draw perspective plots of a surface over the x-y plane.

Syntax: persp(x, y, z)

Parameter: This function accepts different parameters i.e. x, y and z where x and y are vectors defining the location along x- and y-axis. z-axis will be the height of the surface in the matrix z

Return Value: persp() returns the viewing transformation matrix for projecting 3D coordinates (x, y, z) into the 2D plane using homogeneous 4D coordinates (x, y, z, t).

Adding Titles and Labeling Axes to Plot
cone <- function(x, y){
sqrt(x ^ 2 + y ^ 2)
}
prepare variables.
x <- y <- seq(-1, 1, length = 30) z
<- outer(x, y, cone)
plot the 3D surface
Adding Titles and Labeling Axes to Plot
persp(x, y, z,</pre>

Department of Computer Engineering

main="Perspective Plot of a Cone", zlab = "Height", theta = 30, phi = 15, col = "orange", shade = 0.4)

Conclusion:

R, a flexible tool for producing informative graphical representations of data, was used in this experiment to explore data visualization strategies. There were several sorts of visualizations shown, including heatmaps, box plots, scatter plots, bar graphs, and histograms, among others. Practical code examples for generating visualizations from real-world datasets were provided for each kind. Effective data exploration and communication of patterns and correlations within the data were made possible by the usage of R's packages and functions. In data analysis and decision-making, data visualization is a critical step. This experiment demonstrated R's ability to produce useful and aesthetically pleasing graphics to support data interpretation.

Department of Computer Engineering