

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

Факультет «Информатика и системы управления» (ИУ)
Кафедра ИУ-7 «Программное обеспечение ЭВМ и информационные технологии»

Научная статья по теме:

«Сравнительный анализ разностного и вероятностного методов исследования математической модели, построенной на дифференциальном уравнении в частных производных эллиптического типа.»

Выполнил: Аметкулов А. К.

Группа ИУ7-11м

Аннотация

Статья посвящена сравнительному анализу разностного и вероятностного методов на примере дифференциального уравнения в частных производных эллиптического вида. К каждому из методов приведены листинги программы и визуализированное решение примеров. Также указаны области применения методов, вычислены точность и эффективность выбора решения.

Цель работы.

Получение навыков проведения научно-исследовательской работы на примере применения технологии вычислительного эксперимента при численном моделировании задач, описываемых дифференциальными уравнениями эллиптического типа.

Введение

Для сложных математических моделей аналитические решения удаётся получить сравнительно редко. Поэтому среди приближённых математических методов основными методами решения задач являются численные. Эти методы позволяют добиться хорошего качественного и количественного описания исследуемого процесса или явления. В данной работе остановимся только на двух методах: метод конечных разностей и вероятностный метод.

Метод конечных разностей

Метод конечных разностей — численный метод решения дифференциальных уравнений, основанный на замене производных функций разностными схемами или шаблонами. Шаблон — это множество точек, с помощью которых аппроксимируются производные. Является сеточным методом. Точность приближения зависит от способа аппроксимации и от густоты сетки, то есть от того, насколько плотно сетка заполняет исходную область.

Для решения краевой задачи методом конечных разностей на расчётной области (L) строится сетка (рис.1). Искомая непрерывная функция y = f(x) заменяется дискретной f(i), значения которой рассчитываются в узлах сетки і. В соответствии с определением производной функции по одной f'(x):

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$
(1)

Аппроксимируется первая производная функции – выбирается разностная схема

Рис.1. Сетка к построению конечно-разностной схемы для решения краевой задачи.

С учетом конечно-разностного представления производных для каждого узла сетки записывается разностное уравнение (аналог исходного уравнения, но с использованием разностной схемы), затем производится учет краевых условий (для краевых условий второго и третьего рода также строится некоторая разностная схема). Получается система линейных алгебраических уравнений, решая которую в ответе получают приближенные значения решения в узлах. Главной проблемой метода является построение правильной разностной схемы, которая будет сходиться к решению [1]. Построение схемы выполняется исходя из свойств исходного дифференциального оператора.

Решение задач методом конечных разностей, когда процесс изменяется во времени (нестационарные задачи теплопроводности), представляет собой итерационный процесс — на каждой итерации находится решение на новом временном слое. Для решения таких задач используются явные, неявные и предиктор-корректор схемы. Последняя представляет собой пару из специально подобранных явной и неявной схем. Явные схемы и схемы предиктор-корректор просто пересчитывают значение, используя информацию с предыдущих временных слоев. Использование неявной схемы приводит к решению системы большого числа уравнений на каждом временном слое.

Реальные физические процессы протекают во времени и пространстве, имеющем три измерения. При построении разностных схем переход к многомерным задачам теплопроводности не вызывает принципиальных трудностей. Однако число неизвестных в системе разностных уравнений значительно возрастает, увеличивается число арифметических операций, необходимых для ее решения

Перенос тела в твердых телах обычно называют уравнением теплопроводности

Простейшая двухмерное уравнение теплопроводности:

$$\frac{\partial 9}{\partial \tau} = \frac{\partial^2 9}{\partial x^2} + \frac{\partial^2 9}{\partial y^2} + Q(x, y, \tau), \ 9(x, y, 0) = \Phi(x, y).$$
(2)

где Q(x, y, t) – член, описывающий выделение тепла от внутренних источников.

Введём обозначения и запишем в операторной форме:

$$L_{x} = \frac{\partial^{2}}{\partial x^{2}}, L_{y} = \frac{\partial^{2}}{\partial y^{2}},$$

$$\frac{\partial 9}{\partial \tau} = L_{x}9 + L_{y}9 + Q(x, y, \tau).$$
(4)

Для решения уравнения (4) необходимо разбить пространство на элементы размер шага по координате h будем определять как отношение толщины пластины к число отрезков при разведении по координате, а размер шага по времени как число отрезков и разбиения по времени.

Введём разностную сетку с шагами h_x , h_y , $\Delta \tau$ по переменным x, y, τ . Примем обозначения:

$$\theta_{k,l}^{n} = \theta(kh_{x}, lh_{y}, n\Delta\tau),$$

$$\Lambda_{x}\theta^{n} = \frac{\theta_{k+1,l}^{n} - 2\theta_{k,l}^{n} + \theta_{k-1,l}^{n}}{h_{x}^{2}},$$

$$\Lambda_{y}\theta^{n} = \frac{\theta_{k,l+1}^{n} - 2\theta_{k,l}^{n} + \theta_{k,l-1}^{n}}{h_{y}^{2}}.$$
(5, 6, 7)

Для задачи запишем две схемы:

$$\frac{\theta_{k,l}^{n+1} - \theta_{k,l}^n}{\Delta \tau} = \Lambda_x \theta^n + \Lambda_y \theta^n + Q_{k,l}^n , \qquad (8)$$

$$\frac{\theta_{k,l}^{n+1} - \theta_{k,l}^n}{\Delta \tau} = \Lambda_x \theta^{n+1} + \Lambda_y \theta^{n+1} + Q_{k,l}^n. \tag{9}$$

Первая схема (8) явная, в которой 1 $\theta_{k,l}^{n+1}$ определяется через пять значений θ на нижнем временном слое. Она устойчива при $r=\frac{\Delta \tau}{h^2}<1.4$.

Для вычисления $\theta_{k,l}^{n+1}$ требуется много процессорного времени, поэтому схема (8) является малоэффективной.

Вторая схема (9) неявная. Она устойчива при любых h_x , h_y , $\Delta \tau$, но для вычисления $\theta_{k,l}^{n+1}$ необходимо решать систему уравнений с использованием матричной прогонки, требующей большого объема вычислений.

Для решения многомерных задач математической физики применяются разностные методы, основанные на методе дробных шагов. Такие схемы обладают свойством абсолютной устойчивости и для перехода с одного временного слоя на другой требуют числа арифметических операций пропорционального числу узлов разностной сетки. Такая экономичность разностных схем достигается благодаря тому, что решение сложной многомерной задачи сводится к решению ряда одномерных, решаемых методом прогонки.

Листинг 2. Метод конечных разностей.

function fd f = @() ellip(18,3,6,32,16,0.01);t = timeit(f); disp(t); [PSI,X,Y] = ellip(18,3,6,32,16,0.01);surf(X,Y,PSI'); title('Example 12.4'); xlabel('X'); ylabel('Y'); end function [psi,x,y] = ellip(R,a,b,Nx,Ny,eps) hy = 2 * a / Ny;hx = 2 * b / Nx;for i=1:Nx+1 x(i) = R-b+(i-1) * hx;psi(i,1) = 0;psi(i, Ny+1)=0; end for i=1:Ny+1 y(i) = -a+(i-1) * hy;psi(1,i) = 0;psi(Nx+1,i)=0;end $A = 2/hy^2+2/hx^2$; $D = 1/hy^2;$ for i = 2 : Nx + 1 $B(i)=1/hx^2+5/(2*hx*x(i));$ $C(i)=1/hx^2-5/(2*hx*x(i));$ end p=1; k=0;

while p > epsfor i = 2:Nx

```
for j = 2:Ny
           V = 1/A^*(B(i)^*psi(i-1,j) + C(i)^*psi(1+i,j) + D^*(psi(i,j-1) + psi(i,j+1)) + 2);
           R(i,j)=abs(V-psi(i,j));
           psi(i,j)=V;
        end
     end
     p=R(2,2);
     for i=2:Nx
        for j=2:Ny
           if R(i,j) > p
              p = R(i,j);
           end
        end
     end
     k = k + 1;
  end
end
```

На рисунке 1 показан результат работы программы

Рисунок 1. График решения

Вероятностный метод

Метод статистических испытаний (метод Монте-Карло) состоит в решении различных задач вычислительной математики путем построения случайного процесса с параметрами, равными искомым величинам. При этом определение этих величин происходит путем наблюдения за случайным процессом и вычисления его статистических характеристик, приближенно равных искомым параметрам [2].

но равных искомым параметрам. Наибольшие успехи метод Монте-Карло принес в тех областях, где основная математическая задача состоит в исследовании того или иного случайного процесса (например е задачи нейтронной физики, выделения сигнала на фоне случайных шумов и т ,д.).

Однако существуют вычислительные задачи, которые в своей постановке не связаны с теорией вероятности, но к которым хорошо применим метод Монте-Карло. Наиболее типичный пример — это краевые задачи для эллиптических уравнений (например, для уравнения Лапласа) и родственные им задачи для уравнений параболического типа (основной пример - уравнение теплопроводности). Решения этих уравнений тесно связаны с характеристиками некоторых случайных процессов диффузионного типа. Поэтому решение подобных уравнений удобно сводится к моделированию таких процессов.

Из всего вышеизложенного можно, следовательно, выделить две характерные особенности метода Монте-Карло. Во-первых, метод Мойте-Карло позволяет моделировать любой процесс, на протекание которого влияют случайные факторы; во-вторых, для многих математических задач, не связанных с какими-либо случайными процессами, можно искусственно построить вероятностную модель, позволяющую решать эта задачи [3]. Рассмотрим пример:

$$\frac{\partial^{2}T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial y^{2}} = 0$$

$$1 \quad X^{1,5} \quad X^{2,5} \quad X^{3,5} \quad X^{4,5} \quad X^{5,5}$$

$$X^{1,4} \quad \overline{O}^{2,4} \quad \overline{O}^{3,4} \quad \overline{O}^{4,4} \quad X^{5,4}$$

$$X^{1,3} \quad \overline{O}^{2,3} \quad \overline{O}^{3,3} \quad \overline{O}^{4,3} \quad X^{5,3}$$

$$X^{1,2} \quad \overline{O}^{2,2} \quad \overline{O}^{3,2} \quad \overline{O}^{4,2} \quad X^{5,2}$$

$$0 \quad X^{1,1} \quad X^{2,1} \quad X^{3,1} \quad X^{4,1} \quad X^{5,1}$$

$$0 \quad X^{1,1} \quad X^{1,2} \quad$$

Рисунок 2. Пример сетки для метода Монте-Карло

Строится сетка, по которой частицы могут перемещаться в одном из четырех возможных направлений на 1 позицию за каждый шаг. Направление выбирается случайным образом на каждом шагу. Чтобы начать вычисление температуры в точке $T_{i,j}$, в этой точке приводится в движение случайно блуждающая частица. После этого частица начинает блуждать от одной узловой точки к другой. Перемещение частицы прекращается, когда она попадает на граничный слой. Можно доказать, что с вероятностью, равной 1, блуждание точки через конечное число шагов заканчивается на границе [4].

Для каждого прохода частицы от начального положения до границы сетки получается усредненное значение функции воздействия \overline{f} по всем точкам на данном пути. После чего, вычисляется результирующее значение температуры для данного прохода: $y_{\text{pn}ij} = \frac{\overline{f}*h_x*h_z}{4k} + y_{\text{c}}$. Здесь y_{c} – значение температуры на граничном слое.

Обозначим температуру в конце первого блуждания Tw_1 . Затем из точки Ті, і выпускается вторая, третья, ..., N -я частицы и записываются соответствующие температуры в конечных точках блуждания Tw_2 , ... Tw_N . Температура внутренней точки определяется осреднением N температур граничных точек, достигнутых беспорядочно блуждающими частицами. Следовательно, решение для температуры $T_{i,j}$ по методу Монте-Карло выражается в виде:

$$T_{i,j} = \frac{1}{N} \sum_{j=1}^{N} Tw_j$$

Листинг 2. Вероятностный метод.

```
function prob
T = calc();
X = 0:0.5:9.9;
Y = 0:0.5:9.9;
surf(X,Y,T');
xlabel('X');
```

```
ylabel('Y');
function res = f(x,z)
    res = 3000 * \exp(-0.0036 * (x - 5)^2 * (z - 5)^2);
function T = calc()
    T = zeros(20);
    for i = 1:20
        for j = 1:20
            T(i,j) = 300;
        end
    end
    for i = 2:19
        for j = 2:19
            T = walk(T, i, j, 2);
        end
    end
function T = walk(T, i0, j0, layer)
    N = 2000;
    x = 0:0.5:9.9;
    z = 0:0.5:9.9;
    tmp = 0;
    for it = 1:N
        i = i0;
        j = j0;
        fsum = f(x(i), z(j));
        jumps = 0;
        while(i >= layer && i <= (21 - layer) && j >= layer && j <= (21 - layer))</pre>
            chance = randi(4);
            switch chance
                case 1
                     i = i + 1;
                case 2
                    i = i - 1;
                case 3
                    j = j + 1;
                case 4
                    j = j - 1;
            end
            fsum = fsum + f(x(i), z(j));
            jumps = jumps + 1;
        end
        tmp = tmp + fsum * 0.5 / (16 * jumps) + T(i,j);
    T(i0,j0) = tmp / N;
```

Сравнение производительности

Время работы каждой программы замерялось с использованием функционала matlab. Для этого использовалась функция timeit. Данная функция измеряет время выполнения переданной ей в качестве аргумента функции несколько раз, после чего выдает среднее среди полученных значений в качестве результата.

Листинг 3. Пример измерения времени работы.

```
f = @() calc();
t = timeit(f);
disp(t);
```

Метод конечных разностей позволяет получить результат за 0.003 секунды. Результат, сравнимый по точности с данным для вероятностного метода достигается при сетке 20Х20 и 2000 запусков каждой частицы. Для его вычисления данным методом требуется от 3.9 до 4.2 секунд. Разброс обуславливается стохастическим характером метода — время его выполнения напрямую зависит от случайного пути, пройденного точкой, из-за чего даже неоднократное повторение замеров внутри функции timeit приводят к несколько отличающимся результатам.

То есть, вероятностный метод работает в среднем в $\frac{4,1}{0,003} = 1366,7$ раз дольше.

При уменьшении размерности сетки скорость работы вероятностного метода значительно возрастает, однако решение становится слишком грубым по сравнению с методом конечных разностей. Таким образом, результат, сравнимый по точности с результатом разностного метода, можно получить с помощью вероятностного метода с неоправданно большим временем работы.

Заключение

Метод Монте-Карло универсален и прост в реализации, однако он уступает в производительности методам, специфичным для конкретных задач (например, методу конечных разностей при решении дифференциальных уравнений).

Несмотря на то, что метод конечных разностей является более сложным в реализации и менее интуитивно понятным методом, его использование позволяет получить более точный результат и заметно сократить время выполнения программы.

Вывод

В статье была рассмотрена математическая модель, выраженная дифференциальным уравнением и описывающая температурное состояние тонкой плиты, подверженной температурному излучению f. Рассмотрены два метода решения данной модели: метод конечных разностей и метод Монте-Карло. Приведено их сравнение по точности и времени работы, которое показало большую эффективность метода конечных разностей по сравнению с методом Монте-Карло.

Список литературы

- 1. Кузнецов Г. В., Шеремет М. А. Разностные методы решения задач теплопроводности. 2007.
- 2. Кузнецов В. Ф. Решение задач теплопроводности методом Монте-Карло //М.: Ин-т атомной энергии им. ИВ Курчатова. — 1973.
- 3. Ермаков С. М., Сипин А. С. Метод Монте-Карло и параметрическая разделимость алгоритмов. Издательство Санкт-Петербургского университета, 2014.
- 4. Сдвижников О.А., Математика на компьютере: Maple 8. М.: Солон-Пресс, 2003.