

ATTRIBUTION OF TRENDS AND VARIABILITY IN SURFACE OZONE OVER THE UNITED STATES

Sarah Strode, Owen Cooper, Megan Damon,
Jennifer Logan, Jose Rodriguez, Susan Strahan,
Jacquie Witte

AGU Dec. 10, 2013

Introduction

- CASTNET observations of surface O₃ from 1990-2010 [Cooper *et al.*, 2012] show:
 - negative trends in the eastern U.S. in summer, especially at the high end of the O₃ distribution; mixed trend directions in the western U.S.
 - Positive trends throughout US in winter & in western US in Spring
- Global model can reproduce E-W gradient in summer trends but not magnitude of western US trends [Koumoutsaris & Bey, 2012]
- Can a global model w/ interactive stratosphere reproduce the trends and inter-annual variability (IAV) in U.S. surface O₃ in different regions and seasons?
- How much do changes in emissions contribute to the trends? Strat-trop exchange?

Surface O₃ 1991-2010 trend

Model and Observations

- Hourly observations from EPA Clean Air Status and Trends Network (CASTNET) rural surface stations, filtered as in *Cooper et al.* [2012]
- Mean, median, 5th & 95th percentile calculated for each month using all mid-day (11am-4pm) data
- GMI Chemical Transport Model (Duncan et al., 2007; Strahan et al., 2007) simulations of 1990-2010
 - Meteorology from the MERRA reanalysis
 - 2x2.5 degree horizontal resolution, 72 vertical levels
 - Stratospheric and tropospheric chemistry w/ 117 species, 400+ reactions
 - IGAC stratospheric SAD accounts for Pinatubo
 - Hourly output at station locations selected for mid-day hours

Emissions

- Standard simulation has time-dependent emissions
 - Biomass burning from GFED3 for 1997-2010; regional IAV based on *Duncan et al.* (2003) for 1990-1996
 - Anthropogenic emissions from EDGAR overwritten with NEI2005, EMEP, *Zhang et al.* (2009)
 - Annual scaling factors from GEOSChem for anthropogenic emissions (*van Donkelaar et al.*, 2008) for 1990-2006
 - 2007-2010 include annual scaling of whole U.S. based on NOx and CO emissions totals from EPA; REAS projections over Asia
 - 71% increase in Asian NO_x, 33% decrease in US NO_x for 1991-2010
- Sensitivity simulation with fixed emissions

Simulation	Anthro Emis	Biomass Burning
Standard	IAV	IAV
EmFix	Fixed at Y2000	Fixed at Y2000

Emissions Time Series

Modeled vs. Observed IAV

- Significant correlation of modeled and observed detrended IAV of median monthly O_3 at many stations
- Magnitude of variability underestimated
- Best correlations at eastern sites in summer, median or 95th percentiles
- Similar correlations in standard sim & EmFix

Observations
Standard (time-dependent emissions)
emFix (fixed emissions)

Large circles:
 r is significant
Small circles:
 r not significant

Summer Trends

- East-West gradient in summer trends captured by standard simulation but not EmFix simulation → key role for emission reductions
- Model underestimates magnitude of western trends

Shift in Seasonal Cycle

- Observed shift in seasonal cycle from summer peak to broader spring-summer max [Cooper et al., 2012]
- Standard simulation captures shift better than EmFix

Positive Trends in West and Winter

- Western trends more variable than eastern
- Positive trends due to changes in Asian, biomass burning, or local emissions?
Stratosphere-troposphere exchange (STE)?
Meteorology?

- Better agreement of Standard simulation in winter shows role for rising Asian emissions, while positive trends in EmFix in Summer show role for other factors
- Spring trends poorly captured → emission trends underestimated?

Strat-Trop Exchange

- Model stratO3 tracer equals O_3 above e90 tropopause, chemical loss in the troposphere
- No significant positive trends at the surface over the US for 1991-2010
- Significant negative trend in 50th-95th percentiles of east US stratO3 in Jan-March, 75th and 95th percentile in April
- Does not explain model's positive western US trends, but significant correlations between total & stratO3 winter IAV in west

Conclusions & Future Work

- 20-year hindcast captures east-west gradient in US summer ozone trends and the shift in seasonality toward a broader spring-summer max when time-dependent emissions are included
- Model underestimates positive trends in western US in spring and winter (and overestimates eastern trends in winter)
- Examined role of interactive stratosphere on modeled trends & IAV: No significant positive trend in monthly mean stratO₃ at surface; negative trend in high percentile surface stratO₃ over the eastern US

Future work:

- Conduct simulation with larger emission increase over Asia & spatially-varying emission changes over US based on satellite NO₂ (*Lamsal et al., 2011*)
- Quantify ozone trends on days with large Asian influence
- Examine impact of model resolution

