Earthquake kinematic source modelling using a new technique with ADER-DG

Earthquake kinematic source modelling using a new technique with ADER-DG

Yongki Andita Aiman yongki.aiman@gmail.com

2011 – Geofisika Universitas Padjadjaran

2016 – Geofisika LMU – TUM Munich

Yongki Andita Aiman

yongki.aiman@gmail.com

2011 – Geofisika Universitas Padjadjaran

2016 – Geofisika LMU – TUM Munich

Bidang Minat

- Seismologi Komputasi
- Seismic Hazard Assessment
- Geodinamika : Topografi dinamis
- Gravity and Magnetic Field from Space

Yongki Andita Aiman

@aimanyongki

yongki.aiman@gmail.com

2011 – Geofisika Universitas Padjadjaran

2016 – Geofisika LMU – TUM Munich

Bidang Minat

- Seismologi Komputasi
- Seismic Hazard Assessment
- Geodinamika : Topografi dinamis
- Gravity and Magnetic Field from Space

Ingin belajar

- Machine Learning in Geophysics
- Version Control: Github
- High-Performance Computing

Outline

Sumber Seismik

Model Sumber Gempa Bumi

Inversi Slip

Metode ADER - DG

Source Modelling with ADER-DG

Sumber seismik

Sumber seismik

- Cakupan ilmu seismologi
 - Ilmu yang mempelajari gempa bumi dan perambatan gelombang elastik di dalam bumi
 - Deskripsi sumber seismik
 - Persamaan gerak mengenai penjalaran gelombang → wave equation
 - Teori yang menggabungkan keduanya + dari solusi persamaan gelombang

Sumber seismik

- Fisika sumber gempa Mengapa penting dipelajari?
 - Kunci utama dalam studi prediksi *ground motion*
 - (i) Ground motion is the movement of the earth's surface from earthquakes or explosions
 - Memahami proses inisiasi,
 perambatan dan healing

- Sumber seismik:
 - External: angin, gelombang laut, hantaman meteorit, peluncuran roket, letusan gunung api
 - Internal: Gempa bumi, ledakan bawah permukaan

Bagaimana cara menggambarkan sumber seismik secara matematis?

→ Mencari body force yang ekuivalen dengan proses terjadinya gempa bumi

Model Sumber Gempa Bumi

- Single force point source
 - Simple explosions (Nakano, 1923)
- Double couple
 - Ekuivalen dengan patahan pada model elastik (Maruyama, 1963; Burridge and Knopoff, 1964)
- Finite Source Model
 - Model kinematis / model slip
 - Distribusi moment tensor sources

Finite Source Model

- Model point source → sumber gempa kecil dan jauh dari pengamat
- Perlu mempertimbangkan
 - geometri dari sumber gempa dan
 - perambatan ruptur pada patahan
- Model finite source → distribusi sumber tensor momen

What we have discussed:

- What we have discussed:
 - Teori atau model sumber gempa bumi

- What we have discussed:
 - Teori atau model sumber gempa bumi

What we actually have:

- What we have discussed:
 - Teori atau model sumber gempa bumi

- What we actually have:
 - Rekaman seismogram

- Bagaimana cara mempelajari fenomena fisis ketika ruptur gempa terjadi?
- Harus mengetahui spatial and temporal behavior dari gempa
 - Proses ruptur → model distribusi slip patahan = slip model

(i) Earthquake rupture is the extent of slip that occurs during an earthquake in the Earth's crust.

Inversi Slip

- Trifunac (1974) melakukan inversi slip dari gempa bumi San Fernando 1971
- Membagi bidang patahan menjadi sejumlah **subfaults**

- Broadband seismogram
- Strong-motion data

Estimasi final slip distribution

Model Slip Patahan

Parameter patahan (fault)

- Posisi: latitude, longitude, kedalaman
- Size: panjang dan lebar
- Orientasi: strike dan dip
- Parameter slip: nilai slip dan sudut rake

Model Slip Patahan

- Dip = 90° Rake = 0° \rightarrow
- Dip = 90° Rake = 180° →
- Dip = 45° Rake = 90° \rightarrow
- Dip = 45° Rake = -90° \rightarrow

Model Slip Patahan

• Dip = 90° Rake = 0° \rightarrow left-lateral strike-slip

• Dip = 90° Rake = 180° \rightarrow right lateral strike slip

• Dip = 45° Rake = 90° \rightarrow reverse fault

• Dip = 45° Rake = -90° → normal fault

ADER - DG

Arbitrary high order DERivative – Discontinuous Galerkin

Igel, 2018

Finite Difference Method

- Metode grid
- Mudah diaplikasikan
- Sulit diaplikasikan pada patahan nonplanar

Finite Difference Method

- Metode grid
- Mudah diaplikasikan
- Sulit diaplikasikan pada patahan nonplanar

Pseudo-spectral Method

- Metode FD dengan menggunakan fungsi diskrit: Fourier series
- Sulit diaplikasikan untuk pemrograman paralel

Finite Difference Method

- Metode grid
- Mudah diaplikasikan
- Sulit diaplikasikan pada patahan nonplanar

Pseudo-spectral Method

- Metode FD dengan menggunakan fungsi diskrit: Fourier series
- Sulit diaplikasikan untuk pemrograman paralel

Finite Element Method

- Orthogonal basis function
- Fleksibel untuk geometri yang kompleks
- Dispersif

Finite Difference Method

- Metode grid
- Mudah diaplikasikan
- Sulit diaplikasikan pada patahan nonplanar

Finite Element Method

- Orthogonal basis function
- Fleksibel untuk geometri yang kompleks
- Dispersif

Pseudo-spectral Method

- Metode FD dengan menggunakan fungsi diskrit: Fourier series
- Sulit diaplikasikan untuk pemrograman paralel

Spectral Element Method

- Akurat dan flexibel
- Hexahedral-based

Metode ADER – DG

- Discontinuous Galerkin → FE method, diskontinu pada element interfaces
- Akurasi tinggi: spasial dan temporal
- Fleksibilitas → elemen triangular atau tetrahedral
- Aplikasi pada kasus kompleks: material heteregon, anisotropik, viskoelastik

Käser and Dumbser, 2006

Metodologi

Data: Model kinematis sumber gempa bumi → SIV Benchmark

- 56 receivers
- 73 x 37 subfaults dengan spasi 500 m

- Dimensi patahan: ~ 36 km x 18 km
- Hypocenter: [9.2, -2.5, 14.0] km
- Strike-slip fault dengan dip 80°
- Right-lateral dengan fault strike 90°
- Seismic moment $M_0 = 1.06 \times 10^{19} \text{ Nm}$ atau $M_w = 6.6$

Pembuatan mesh model patahan → GoCAD dan simModeler

Simulasi: SeisSol

Simulasi gelombang permukaan detik ke-10