MATERI 10

TUJUAN INSTRUKSIONAL KHUSUS

Setelah menyelesaikan pertemuan ini mahasiswa diharapkan :

- Dapat mencari basis orthogonal dan orthonormal dari suatu SPL
- Dapat menghitung proyeksi orthogonal dari suatu vektor

RUANG PERKALIAN DALAM

DEFINISI:

 $V = ruang \ vektor; \ \mathbf{u}, \mathbf{v} \in V, \ maka \ \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{skalar}$

Bab 3: perkalian titik (dot product, Euclidean Inner Product)

$$\mathbf{R}^2: \mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2$$

$$R^3 : \mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \mathbf{u}_3 \mathbf{v}_3$$

Bab 6: perkalian dalam (bersifat umum)

$$R^{n}: \mathbf{u} \cdot \mathbf{v} = \mathbf{w}_{1}u_{1}v_{1} + \mathbf{w}_{2}u_{2}v_{2} + \mathbf{w}_{3}u_{3}v_{3} + \dots + \mathbf{w}_{n}u_{n}v_{n}$$

$$\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \dots, \mathbf{w}_n$$
 disebut bobot (weight)

Norm (u):

di dalam Ruang Perkalian Dalam tertentu

$$\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{\frac{1}{2}}$$

Jarak

di antara dua titik / vektor u dan v

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

<u>Contoh</u>: Ruang Vektor = R^2 , dengan perkalian dalam = $3u_1v_1 + 2u_2v_2$

- 1. Jika $\mathbf{u} = (1, 0)$ maka $||\mathbf{u}|| = \sqrt{3}$
- 2. Jika $\mathbf{u} = (1, 0) \text{ dan } \mathbf{v} = (0, 1) \text{ maka } \mathbf{d}(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$ $= ||(1, -1)|| = \sqrt{5}$

Teorema / aksioma: lihat theorem 6.2.7. Halaman 308

Sifat pada R² dan R³ yang berlaku pada Rn, yaitu :

1.
$$u \cdot v = v \cdot u$$

 $\overline{u} \cdot \overline{v} = v \cdot u$ \rightarrow komutatif

2.
$$\bar{u} \cdot (\bar{v} + \bar{w}) = \bar{u} \cdot \bar{v} + \bar{u} \cdot \bar{w}$$
 \rightarrow distributif

3.
$$(\bar{s} \cdot \bar{u}) \cdot \bar{v} = \bar{s} \cdot (\bar{u} \cdot \bar{v})$$
 \rightarrow homogin

4.
$$u \cdot v \ge 0$$

5.
$$\overline{u} \cdot \overline{u} = 0$$

5. $\bar{u} \cdot \bar{u} = 0$ jika dan hanya jik $\bar{\mathbf{a}} = \bar{0}$

$$6. \qquad \overline{u} \cdot \overline{v} = \overline{u} + \overline{v}$$

6. $\bar{u} \cdot \bar{v} = \bar{u} + \bar{v}$ \rightarrow Bentuk Matriks, u-t=transpose matriks u

Sudut antara dua vektor:

$$\langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta,$$

di mana θ adalah sudut antara u dan v

Sifat ortogonal:

dua vektor u dan v dalam suatu Ruang Perkalian Dalam saling ortogonal jika $\langle u, v \rangle = 0$

Sebuah himpunan vektor dalam suatu Ruang Perkalian Dalam (RPD) disebut ortogonal jika untuk semua vektor \mathbf{u} , \mathbf{v} di RPD ($\mathbf{u} \neq \mathbf{v}$) dipenuhi $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Contoh:

Ruang Perkalian Dalam : R³ dengan Euclidean product

Himpunan vektor
$$\mathbf{H} = \{ \mathbf{u} = (0, 1, 0), \mathbf{v} = (1, 0, 1), \mathbf{w} = (1, 0, -1) \}$$

H adalah himpunan ortogonal sebab

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{0}$$
 $\langle \mathbf{u}, \mathbf{w} \rangle = \mathbf{0}$
 $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{0}$

9

Himpunan ortonormal:

Sebuah himpunan vektor ortogonal dalam suatu Ruang Perkalian Dalam (RPD) disebut ortonormal jika untuk semua vektor \mathbf{u} di RPD $\parallel \mathbf{u} \parallel = 1$

Contoh:

Ruang Perkalian Dalam : R³ dengan Euclidean product

Himpunan vektor
$$\mathbf{H} = \{ \mathbf{u} = (0, 1, 0), \mathbf{v} = (1, 0, 1), \mathbf{w} = (1, 0, -1) \}$$

Normalisasi H menghasilkan himpunan ortonormal $H' = \{u', v', w'\}$

Caranya:

$$\mathbf{u'} = \mathbf{u} / || \mathbf{u} || = (0, 1, 0)$$

 $\mathbf{v'} = \mathbf{v} / || \mathbf{v} || = (1/\sqrt{2}, 0, 1/\sqrt{2})$
 $\mathbf{w'} = \mathbf{w} / || \mathbf{w} || = (1/\sqrt{2}, 0, -1/\sqrt{2})$

Proses Gram-Schmidt

Diketahui V adalah RPD dengan basis $B = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$

Dengan proses Gram-Schmidt basis B dapat ditransformasi menjadi

basis ortogonal B' =
$$\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$$

Algoritmanya:

$$\mathbf{v}_{1} = \mathbf{u}_{1}$$

$$\mathbf{v}_{2} = \mathbf{u}_{2} - (\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle / || \mathbf{v}_{1} ||^{2}) \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - (\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle / || \mathbf{v}_{1} ||^{2}) \mathbf{v}_{1} - (\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle / || \mathbf{v}_{2} ||^{2}) \mathbf{v}_{2}$$

$$\cdots$$

$$\mathbf{v}_{n} = \mathbf{u}_{n} - (\langle \mathbf{u}_{n}, \mathbf{v}_{1} \rangle / || \mathbf{v}_{1} ||^{2}) \mathbf{v}_{1} - (\langle \mathbf{u}_{n}, \mathbf{v}_{2} \rangle / || \mathbf{v}_{2} ||^{2}) \mathbf{v}_{2} - \cdots - (\langle \mathbf{u}_{n}, \mathbf{v}_{n-1} \rangle / || \mathbf{v}_{n-1} ||^{2}) \mathbf{v}_{n-1}$$

Contoh 7:

Ruang R³ dengan Euclidean product dan basis $B = \{u_1 = (1, 1, 1), u_2 = (0, 1, 1), u_3 = (0, 0, 1)\}$. Basis B dijadikan ortogonal $B' = \{v_1, v_2, v_3\}$ dengan proses Gram-Schmidt, menjadi:

$$\mathbf{v}_{1} = \mathbf{u}_{1} = (1, 1, 1)$$

$$\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle = 2, \quad || \mathbf{v}_{1} ||^{2} = 3$$

$$\mathbf{v}_{2} = \mathbf{u}_{2} - (\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle / || \mathbf{v}_{1} ||^{2}) \mathbf{v}_{1}$$

$$= (0, 1, 1) - (2/3) (1, 1, 1)$$

$$= (-2/3, 1/3, 1/3)$$

$$\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle = 1, \quad \langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle = 1/3, \quad || \mathbf{v}_{2} ||^{2} = 6/9 = 2/3$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - (\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle / || \mathbf{v}_{1} ||^{2}) \mathbf{v}_{1} - (\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle / || \mathbf{v}_{2} ||^{2}) \mathbf{v}_{2}$$

$$= (0, 0, 1) - (1/3) / (1, 1, 1) - ((1/3) / (2/3))(-2/3, 1/3, 1/3)$$

$$= (0, -1/2, 1/2)$$

Contoh 7:

Ruang R^3 dengan Euclidean product dan basis ortogonal B' dinormalisasi menjadi basis $B'' = (q_1, q_2, q_3)$ yang ortonormal

$$\mathbf{v_1} = (1, 1, 1); \quad \mathbf{v_2} = (-2/3, 1/3, 1/3); \quad \mathbf{v_3} = (0, -1/2, 1/2)$$

$$q_k = v_k / ||v_k||$$
 untuk $k = 1, 2, 3$

$$q_1 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3});$$

 $q_2 = (-2/\sqrt{6}, 1/\sqrt{6}, 1/\sqrt{6});$
 $q_3 = (0, -1/\sqrt{2}, 1/\sqrt{2});$

Definisi:

Diketahui: Ruang Perkalian Dalam V;

W adalah subspace dari V

Suatu vektor u ∈ V disebut ortogonal W jika u ortogonal terhadap <u>semua vektor</u> di W

Himpunan vektor-vektor di V yang ortogonal W disebut komplemen ortogonal dari W

Notasi: komplemen ortogonal W ditulis W^{\(\)}

Teorema:

Diketahui: Ruang Perkalian Dalam V dengan dimensi berhingga;

Jika W adalah subspace dari V, maka

- 1. W[⊥] adalah subspace dari V
- 2. $W \cap W^{\perp} = \{ 0 \}$
- 3. $(W^{\perp})^{\perp} = W$

PROYEKSI ORTHOGONAL

- Misalkan u₁,u₂,...,u_n merupakan basis orthogonal dari sub ruang V di Rⁿ.
- Untuk suatu vektor a di Rⁿ, vektor a-p merupakan vektor terpendek di V, dimana

$$p = \frac{a \bullet u_1}{u_1 \bullet u_1} u_1 + \frac{a \bullet u_2}{u_2 \bullet u_2} u_2 + \bullet \bullet \bullet + \frac{a \bullet u_n}{u_n \bullet u_n} u_n$$

Contoh:

Diketahui sub ruang V di R⁴ yang dibangun oleh vektor $u_1 = (1,1,0,1)$, $u_2 = (1,-2,3,1)$, $u_3 = (-4,3,3,1)$ Carilah proyeksi dari vektor ke sub ruang V Penyelesaian:

$$p = \frac{14}{3}(1,1,0,1) + \frac{-7}{5}(1,-2,3,1) + \frac{28}{25}(-4,3,3,1)$$
$$p = (1,8,1,5)$$