SITUATION

Déterminer la position relative de deux courbes C_f et C_g revient à savoir sur quel(s) intervalle(s) la première est au-dessus de la seconde (et inversement). Cette question se résout par une étude de signe.

ÉNONCÉ

Soient les fonctions f et g définies par :

$$orall x \in [-\pi;\pi]$$
 , $f\left(x
ight) = 2\cos\left(x
ight)$

$$orall x \in [-\pi;\pi]$$
 , $g\left(x
ight) = \cos\left(x
ight) + rac{1}{2}$

On appelle C_f et C_g les courbes représentatives de f et de g. Déterminer la position relative de C_f et C_g .

Etape 1

Énoncer la démarche

On explique la démarche : "Pour étudier la position relative de $\,C_f\,$ et de $\,C_g\,$, on étudie le signe de $f\left(x
ight)-g\left(x
ight)\,$ ".

APPLICATION

Pour étudier la position relative de C_f et de C_q , on étudie le signe de $f\left(x
ight)-g\left(x
ight)$.

Etape 2

Calculer
$$f(x) - g(x)$$

On calcule ensuite f(x) - g(x) en simplifiant le résultat au maximum, afin d'obtenir une expression dont il est facile d'étudier le signe.

APPLICATION

On a:

$$orall x \in \left[-\pi; \pi
ight]$$
 , $f\left(x
ight) - g\left(x
ight) = 2\cos \left(x
ight) - \left(\cos \left(x
ight) + rac{1}{2}
ight)$

$$orall x \in \left[-\pi; \pi
ight]$$
 , $f\left(x
ight) - g\left(x
ight) = 2\cos \left(x
ight) - \cos \left(x
ight) - rac{1}{2}$

Donc:

$$orall x\in\left[-\pi;\pi
ight]$$
 , $f\left(x
ight)-g\left(x
ight)=\cos\left(x
ight)-rac{1}{2}$

Etape 3

Étudier le signe de $f\left(x\right)-g\left(x\right)$

On étudie alors le signe de $f\left(x\right)-g\left(x\right)$ selon les valeurs de x. On dresse un tableau de signes si l'expression est compliquée.

APPLICATION

Afin d'étudier le signe de $f\left(x
ight)-g\left(x
ight)$ sur $\left[-\pi;\pi
ight]$, on résout l'équation $f\left(x
ight)-g\left(x
ight)>0$. Pour tout réel $x\in\left[-\pi;\pi
ight]$:

$$f\left(x\right) -g\left(x\right) >0$$

$$\Leftrightarrow \cos(x) - \frac{1}{2} > 0$$

$$\Leftrightarrow \cos(x) > \frac{1}{2}$$

Or
$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

Donc, pour tout réel $x \in [-\pi;\pi]$:

$$\cos\left(x
ight) > rac{1}{2}$$

$$\Leftrightarrow \cos(x) > \cos\left(\frac{\pi}{3}\right)$$

En s'aidant du cercle trigonométrique, on en déduit que pour tous réels a et b de $[-\pi;\pi]$

$$\cos\left(x
ight) > \cos\left(rac{\pi}{3}
ight) \Leftrightarrow x \in \left]-rac{\pi}{3};rac{\pi}{3}
ight[$$

On dresse le tableau de signes sur $[-\pi;\pi]$:

X	- π	_	$\frac{\pi}{3}$	$\frac{\pi}{3}$		π
f(x)-g(x)		(+		_	

Etape 4

Conclure

Finalement, on conclut en trois étapes :

- ullet Sur les intervalles où $f\left(x
 ight) -g\left(x
 ight) >0$, C_{f} est au-dessus de C_{g} .
- ullet Sur les intervalles où $f\left(x
 ight)-g\left(x
 ight)<0$, C_{f} est en dessous de C_{g} .
- ullet Lorsque $f\left(x
 ight) -g\left(x
 ight) =0$, C_{f} et C_{g} ont un point d'intersection.

APPLICATION

On conclut que:

- ullet Sur $\left]-rac{\pi}{3};rac{\pi}{3}
 ight[$, $f\left(x
 ight)-g\left(x
 ight)>0$, C_{f} est au-dessus de C_{g} .
- ullet Sur $\left[-\pi;-rac{\pi}{3}
 ight[\ \cup \
 ight]rac{\pi}{3};\pi
 ight]$, $f\left(x
 ight)-g\left(x
 ight)<0$, C_f est en dessous de C_g .

• $f\left(x
ight)-g\left(x
ight)=0$ aux points d'abscisses $x=-\frac{\pi}{3}$ et $x=\frac{\pi}{3}$, donc C_f et C_g ont deux points d'intersection.