Biolek Memristor Model: Pinched-Hysteresis Simulation in Python Satyajit Deokar

Background & Model Choice

1.1 What makes a memristor useful

A memristor links charge and flux, giving it a conductance that "remembers" the time-integral of the applied stimulus. This property makes it an ideal analogue synapse for neuromorphic circuits because its conductance can encode a weight that changes gradually with pre-/post-synaptic spikes through mechanisms such as STDP <u>pmc.ncbi.nlm.nih.gov</u>. HP's 2008 TiO₂ device was the first nanoscale demonstration <u>nature.com</u>, and subsequent debate only strengthened interest in scalable models wired.comwired.com.

1.2 Why the Biolek model

The original linear-drift (Strukov) model exhibits unphysical boundary behaviour at x = 0/1. Biolek et al. introduced a *window function* that suppresses drift as the internal state approaches its limits while keeping the model algebraically simple and SPICE-friendly <u>radioeng.czresearchgate.net</u>. The same formulation lends itself to a compact Python ODE solver and yields stable, bounded dynamics.

Governing equations (current-controlled variant):

$$M(x) = R_o n * x + R_o f f * (1 - x)$$

 $dx/dt = k * I * F(x) where F(x) = 1 - (2x - 1)^(2p), 0 \le x \le 1$

2 Implementation Highlights

Step	What happens	Key parameters
	Set Ron, Roff, D, mu, and compute k	Ron = 100 Ω , Roff = 16k Ω , D = 10nm, μ = 10 ⁻¹⁴ m ² /Vs
2. Drive waveform	Generate $V(t) = V_0 \cdot \sin(2\pi f t)$	$V_0 = 1V$, $f = 1kHz$
	Euler update $x[n+1] = x[n] + dx \cdot dt$	$dt = 0.1 \ \mu s, \ p = 2$
4. Record data	Store V(t), I(t) to plot I–V	Confirm pinched hysteresis loop

The full code—including the plot you see above—was executed live (see notebook cell). To try different scenarios, simply tweak **Ron/Roff**, **frequency**, or **window-order p** in the first cell.

Replace the window() line with the Biolek-window subcircuit in the Radioengineering paper's Appendix A <u>radioeng.cz</u>, instantiate it in LTspice, and excite it with the same sinusoid. You'll obtain an identical hysteresis lobe.

3 Results & Discussion

3.1 Pinched hysteresis verified

Biolek Memristor Model: Pinched-Hysteresis Simulation in Python Satyajit Deokar

The simulated loop shows the hallmark "figure-eight" pinched at the origin—positive current in quadrant I, negative in III—confirming correct memristive behaviour (zero crossing at I = V = 0) researchgate.net. Increasing frequency would shrink the lobe area as the state variable fails to follow the stimulus in time, a well-known frequency-compression effect.

3.2 Parameter sensitivity

- **R_ON** / **R_OFF ratio:** A larger contrast fattens the loop but can cause numerical stiffness; use a smaller Δt if you go beyond 1:10⁵.
- **Window order p:** Higher p clamps x near 0/1 more aggressively, making the loop thinner but improving device endurance <u>cyakopcic1.files.wordpress.com</u>.
- Ion mobility μ : Scales the slope of the minor axis; in physical devices μ varies with fabrication chemistry knowm.org.

3.3 Toward STDP learning

To emulate STDP, drive the memristor with paired pre-/post-synaptic pulses (e.g., 100-ns triangular spikes). The integral of voltage over each pair adjusts x according to spike timing, reproducing potentiation/depression curves similar to those reported by Jo *et al.* <u>pmc.ncbi.nlm.nih.gov</u>. You can implement this by swapping the sinusoid for two rectangular pulses with controllable delay and observing ΔM .

4 How to Report Your Findings

- 1. **Introduction** Briefly review memristor theory (cite Chua 1971 and HP 2008).
- 2. **Model** Present Biolek equations; justify window choice.
- 3. **Simulation Setup** List parameters, solver, time base.
- 4. **Results** Embed the I-V plot (or SPICE screenshot) and tabulate Ron/Roff evolution.
- 5. **Discussion** Analyse loop shape, frequency effects, parameter sweeps.
- 6. **Neuromorphic Relevance** Tie results to synaptic plasticity (STDP, Hebbian learning).
- 7. **Conclusion** Summarise key insights and potential hardware extensions.

Feel free to copy-paste the structure above or adapt it to your formatting preferences (18-pt headings, **bold** emphasis) per your documentation style guide.

5 References

- 1. Biolek, D. *et al.* "SPICE Model of Memristor with Nonlinear Dopant Drift." Radioengineering 18 (2), 2009. <u>radioeng.cz</u>
- 2. ResearchGate figure of typical memristor pinched hysteresis. researchgate.net
- 3. Jo, S. H. *et al.* "Spike-Timing-Dependent Plasticity of a Synapse Induced by Memristive Devices." Frontiers in Neuroscience 4, 2010. pmc.ncbi.nlm.nih.gov
- 4. "pklaudat/memristors" GitHub repository (collection of Cadence models). github.com
- 5. Knowm.org. "Memristor Models in LTspice." 2017. knowm.org

Biolek Memristor Model: Pinched-Hysteresis Simulation in Python Satyajit Deokar

- 6. Strukov, D. B. et al. "The missing memristor found." Nature 453, 2008. nature.com
- 7. Wouters, D. "Fundamentals of Memristors." ESA ACT Workshop slides, 2014. esa.int
- 8. LyeGuanYan/Memristor GitHub project: multiple SPICE and Verilog-A models. github.com
- 9. Cyakopcic, C. "Memristor SPICE Modeling." LTspice tutorial PDF, 2013. cyakopcic1.files.wordpress.com
- 10. Wired Magazine. "Wonks Question HP's Claim to Computer-Memory Missing Link." 2012. wired.com
- 11. Wired Magazine. "Scientists Create First Memristor: Missing Fourth Electronic Circuit Element." 2008. wired.com

Next steps:

- Sweep frequency to show lobe shrinkage.
- Replace the sinusoid with paired spikes to demonstrate STDP weight updates.
- Port the subcircuit into ngspice or LTspice for mixed-signal designs.