Lab session 6

Machine Learning for Behavioral Data (CS-421)

March 31, 2021

Today

- 08:15-08:50 Tutorial on Additive Factors Model
- **08:50-09:00** SHORT BREAK
- 09:00-09:30 Tutorial on Performance Factor Analysis
- **09:30-10:00** Homeworks and Project
 - Next steps for the project and questions time
 - Solution HW3, introduction HW5 and questions time

Where we are

Week	Lecture	Lab Sessions	Project
1	Introduction	Tutorial	
2	Data Handling	Tutorial + Homework	
3	Regression & Classification	Tutorial + Homework	
4	Model Selection & Evaluation	Tutorial + Homework	Presentation of data sets and research questions
5	Latent Variable Models	Tutorial + Homework	M1: Preferences on team members and data sets
6	LatVarMod +Unsupervised Learning	Tutorial + Homework + PO	
7	Spring Break	Spring Break	Spring Break

ML for Behavioral Data: Modeling

SpeakUp

Android / iOS:

http://speakup.info/

Web App:

https://web.speakup.info/

Room number:

AFM

SpeakUp: How do you feel about Additive Factors Models (AFM)?

A: I have never heard of AFM.

B: I am **not confident at all** about using AFM.

C: I am **slightly confident** about using AFM.

D: I am **fairly confident** about using AFM.

E: I am **very confident** about using AFM.

PFA

SpeakUp: How do you feel about Performance Factors Analysis (PFA)?

A: I have never heard of PFA.

B: I am **not confident at all** about using PFA.

C: I am **slightly confident** about using PFA.

D: I am fairly confident about using PFA.

E: I am **very confident** about using PFA.

Generalized Linear Models revisited

Example 1: strength gain by weight training

$$y_n = \beta_0 + \beta_1 x_{n,1}$$

 Example 2: probability of passing exam depending on hours studied

$$\log\left(\frac{y_n}{1 - y_n}\right) = \beta_0 + \beta_1 x_{n,1}$$

Generalized Linear Models revisited

Example 1: strength gain by weight training

 Example 2: probability of passing exam depending on hours studied

$$\log\left(\frac{y_n}{1-y_n}\right) = \beta_0 + \beta_1 x_{n,1}$$

"Fixed" Effects

Generalized Linear Mixed Effects Model

- Example 1: strength gain by weight training
 - Each person has individual starting strength

$$y_n = \frac{\beta_0}{\beta_0} + u_n + \frac{\beta_1}{\beta_1} x_{n,1}$$
 $u_n \sim N(0, \sigma_u^2)$

"Fixed" Effects

"Random" Effect

Generalized Linear Mixed Effects Model

- Example 1: strength gain by weight training
 - Each person has individual starting strength

$$y_n = \frac{\beta_0}{\beta_0} + u_n + \frac{\beta_1}{\beta_1} x_{n,1}$$
 $u_n \sim N(0, \sigma_u^2)$

$$u_n \sim N(0, \sigma_u^2)$$

Fitting the parameters:

- Fixed effects only: linear least squares
- Mixed effects: maximum likelihood estimation

"Fixed" Effects

"Random" Effect

"Mixed" Effects

Item Response Theory (IRT)

Goal: explain the relationship between latent traits
 (unobservable characteristic or attribute) and their
 manifestations (i.e. observed outcomes, responses or
 performance)

Item Response Theory (IRT)

Goal: explain the relationship between latent traits
 (unobservable characteristic or attribute) and their manifestations (i.e. observed outcomes, responses or performance)

 Ability

Binary answer to an item (task)

Rasch Model

$$\log\left(\frac{p_{i,n}}{1-p_{i,n}}\right) = \theta_n - b_i$$

Probability that student n will solve item i correctly.

 θ_n : student ability

 b_i : difficulty of item i

Rasch Model

$$\log\left(\frac{p_{i,n}}{1-p_{i,n}}\right) = \theta_n - b_i$$

Probability that student n will solve item i correctly.

 θ_n : student ability

 b_i : difficulty of item i

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$

Probability that student n will solve task i correctly.

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}} \qquad \pi_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$

$$\frac{1}{1+e^{-\pi_{n,i}}} \qquad \pi_{n,i} = \theta_n + \sum_{k} q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$

Student proficiency:

$$\theta_n \sim N(0, \sigma_{\theta}^2)$$

$$p_{n,i} = \frac{1}{1+e^{-\pi_{n,i}}}$$

$$\pi_{n,i} = \frac{\theta_n}{1+e^{-\pi_{n,i}}} + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$
Student proficiency:
$$\theta_n \sim N(0, \sigma_\theta^2)$$

$$q_{ik} = 1, \text{ if item } i \text{ uses skill } k$$

$$p_{n,i} = \frac{1}{1 + e^{-\pi_{n,i}}}$$

$$\pi_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$
Student proficiency:
$$\theta_n \sim N(0, \sigma_{\theta}^2)$$
Difficulty of skill k

$$p_{n,i} = \frac{1}{1+e^{-\pi_{n,i}}} \qquad \pi_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$
 Student proficiency:
$$\theta_n \sim N(0, \sigma_\theta^2)$$
 Difficulty of skill k Number of practice opportunities student n had at skill k Learning rate at skill k

AFM - Assumptions

- Students may initially know more or less
- Students learn at the same rate
- Some skills are more likely to initially be known
- Some skills are easier to learn than others
- Students learn with each practice opportunity
- Each item belongs to one or more skills

Performance Factors Analysis (PFA)

$$\pi_{n,i} = \theta_n + \sum_k q_{i,k} \cdot (\beta_k + \gamma_k \cdot T_{n,k})$$

Performance Factors Analysis (PFA)

PFA - Assumptions

- Students may initially know more or less
- Students learn at the same rate
- Some skills are more likely to initially be known
- Some skills are easier to learn than others
- Students learning rate differs for correct and wrong practice opportunities
- Each item belongs to one or more skills

Tutorial 6

Tutorial 6

 Task: Pull Tutorial 6 from GitHub. We will then alternate walk-through and independent work phases based on your speed. Use SpeakUp to tell us when you're ready!

Virtual environments:

- https://janakiev.com/blog/jupyter-virtual-envs/
- Create virtual environment: python -m venv myenv
- Activate virtual environment: source myenv/bin/activate
- add to Jupyter (deactivate virtual environment first)
 python -m ipykernel install --user --name=myenv

Homeworks and Project