Max Absolute Sum

Given a matrix $A \in \mathbb{R}^{m \times n}$, find

$$\max_{j=1,2,...,n} \sum_{i=1}^{m} |a_{ij}|$$

This means we want to find the column with the maximum sum of absolute values.

Example:

Consider the matrix:

$$A = \begin{pmatrix} 2 & -3 & 1 & 4 \\ -1 & 5 & -2 & 0 \\ 3 & -1 & 6 & -2 \end{pmatrix}$$

The answer is 9 (from the third column: |1| + |-2| + |6| = 9).

Input Format

• Matrix $A \in \mathbb{R}^{m \times n}$ as a 2d numpy array

Output Format

Output the maximum absolute column sum as a floating-point number.

Constraints

- $A \in \mathbb{R}^{m \times n}$ where $1 \le m, n \le 1000$
- All input values are real numbers in the range [-100, 100]

Sample Input

$$A = [[2, -3, 1, 4], \\ [-1, 5, -2, 0], \\ [3, -1, 6, -2]]$$

Sample Output

9.0

Implementation

Goal: Fill in the following function:

```
def max_abs_sum(A):
    ...
    return ... # Return the maximum absolute column sum
exec("\n".join(iter(input, "#Exit"))) # Don't remove this line
```