PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-281461

(43)Date of publication of application: 07.10.1992

(51)Int.CI.

G03G 5/147

G03G 5/147

(21)Application number: 03-069066

(71)Applicant : RICOH CO LTD

(22)Date of filing:

08.03.1991

(72)Inventor: NOSHO SHINJI

SETO MITSURU
ROKUTANZONO SETSU

(54) ELECTROPHOTOGRAPHIC SENSITIVE MATERIAL

(57)Abstract:

PURPOSE: To obtain an electrophotographic sensitive material which shows excellent mechanical strength, significantly small residual potential in a copy machine and small variation against environmental conditions, and gives picture of high quality for a long period. CONSTITUTION: The electrophotographic sensitive material consists of a conductive supporting body and photoconductive layer and surface protective layer successively deposited on the supporting body. The surface protective layer contains a hole carrier material and binder resin with dispersion of metal or metal oxide fine powder. The hole carrier material is, for example, 4- methoxybenzaldehyde, 1-methyl-1-phenylhydrazone, 9-ethylcarbazole-3-aldehyde, 1-methyl-1-phenylhydrazone, etc.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

BEST AVAILABLE COPY

(19) D本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出際公開番号

特開平4-281461

(43)公開日 平成4年(1992)10月7日

(51) IntCl.5

識別配号

庁内整理番号

6958-2H 504

技術表示箇所

G03G 5/147 6958-2H 503

平成3年(1991)3月8日

審査論求 未論求 論求項の数15(全 12 頁)

(21)出願番号

(22)出頭目

特膜平3-69066 →

(71)出腺人 000006747

FΙ

株式会社リコー

東京都大四区中馬込1丁目3番6号

(72)発明者 納所 仲二

東京都大田区中縣込1丁目3番6号 株式

会社リコード

(72)発明者 瀬戸 満

東京都大田区中島込1丁目3番6号 株式

会社リコー内

(72)発明者 六反圆 節

京京都大田区中属込1丁目3番6号 株式

会社リコー内

(74)代理人 弁理土 抽搐 敏明 (外1名)

(54) [発明の名称] 電子写真用感光体

(57) [要 約]

[情 成] 等電性支持体上に、光導電層及び正孔搬送 物質(倒えば、4-メトキシペンズアルデヒド 1-メ チルー1-フェニルヒドラゾン、9-エチルカルパゾー ルー3-アルデヒド 1-メチル-1-フェニルヒドラ ゾン等)を含有し、金属あるいは金属酸化物薬粉末を結 若樹脂中に分散した表面保護層を順次積層した電子写真

【効 果】 機械的強度に優れ、かつ複写機内の残留電 位及びその環境変動量が苦しく小さく、しかも長期に複 って高品質な固律が得られる。

(2)

10

特開平4-281461

【特許請求の範囲】

【謝求項1】 導電性支持体上に光導電局及び表面保護 層を順次積層した電子写真用感光体において、表面保護 層が会局あるいは金属酸化物散粉末を結着樹脂中に分散 させた層からなり、かつ正孔振送物質を含有させたこと を特徴とする電子写真用感光体。

[請求項2] 正孔敷送物質として、下記化1で示される化合物を合有させたことを特徴とする請求項1起載の電子写真用感光体。

化11

(式中、R₁はアルキル基、ベンジル基、フェニル基を 表わし、R₂は水未、炭素数1~3のアルキル基、炭素 数1~3のアルコキシ基、ジアルキルアミノ基、ジアラ ルキルアミノ基またはジアリールアミノ基を表わし、n は1~4の整数を表わし、nが2以上のときR₂は同じ でも異なっていてもよい。R₂は水素またはメトキシ基 20 を売わす。)

[蔚永項3] 正孔像送物質として、下記化2で示される化合物を含有させたことを特徴とする資求項1記載の報子写真用感光体。

[化2]

(式中、R1はメチル基、エチル基、2-ヒドロキシエチル基又は2-クロルエチル基を表わし、R2はメチル基、エチル基、ベンジル基又はフェニル基を表わし、R1は水本、塩本、具本、炭本数1~4のアルキル基、炭条数1~4のアルキル基、炭条数1~4のアルコキシ基、ジアルキルアミノ基又は二トロ基を表わす。)

【謝求項4】 正孔撤送物質として、下記化3で示される化合物を含有させたことを特徴とする請求項1記載の電子写真用感光体。

(化3)

$$A_{r}-C_{H}=N-N-\bigcirc$$

(式中、Aェはナフタリン環、アントラセン環、スチリ

ル基及びそれらの置換体あるいはビリジン環、フラン環、チオフェン環を表わし、Rはアルキル基又はペンジ

ル基を表わす。)

[請求項5] 正礼教送物質として、下記化4で示される化合物を含有させたことを特徴とする謝求項1記載の 電子写真用磁光体。

[化4]

$$Ar-N < A^2$$

(式中、A1、A1は協議もしくは無信儀のアルギル基又は置集もしくは無信儀のアリール基を表わし、それぞれ同一でも異なっていてもよい。A1は置換または無置換の総合多項式炎化水菜基を変わす。)

【請求項6】 正孔敷送物質として、下配化5で示される化合物を含有させたことを特徴とする請求項1記載の電子写真用感光体。

[作5]

$$(K_1)^{\beta} \qquad (K_2)^{\beta} \qquad (K_3)^{\alpha}$$

【式中、R1, R2及びR4は水素原子、アミノ基、アルコキシ基、チオアルコキシ基、アリールオキシ基、メチレンジオキシ基、異様もしくは無関換のアルキル基、ハロゲン原子又は置換もしくは無置換のアリール基を、R4は水素原子、アルコキシ基、置換もしくは無置換のアルキル基又はハロゲンを表わす。kは1~5の整数、1は1~4の整数、nは1~5の整数である。)

【蔚求項?】 正孔敷送物質として、下記化6で示される化合物を含有させたことを特徴とする請求項1記載の 電子写真用感光体。

[化6]

[式中R:は水素、ハロゲン、シアノ基、炭素数1~4 のアルコキシ基または炭素数1~4のアルキル基を表わ し、Arは

-452-

10

蜂邸平4-281461

R・は炭素数1~4のアルキル基を表わし、R・は水素、ハロゲン、炭素数1~4のアルキル基、皮素数1~4のアルコキシ基またはジアルキルアミノ基を表わし、nは1または2であって、nが2のときはR・は同一でも異なってもよく、R・およびR・は水米、炭素数1~4の置換または無置換のアルキル基あるいは置換または無置換のペンジル基を表わす。〕

【爺永項8】 正孔搬送物質として、下記化りで示され る化合物を含有させたことを特徴とする隣求項1記載の 電子写真用感光体。

[化7]

(式中、R₁は炭米数1~11のアルキル基、置換もしくは無置換のフェニル基又は根果聚基を表わし、R₁、R₁はそれぞれ同一でも異なっていてもよく水素、炭素数1~4のアルキル基、ヒドロキシアルキル基、クロルアルキル基。置換または無置換のアラルキル基を表わし、また。R₂とR₁は互いに結合し窒素を含む複素環を形成していてもよい。R₄は同一でも異なっていてもよく水素、炭米数1~4のアルキル基、アルコキシ基又はハロゲンを表わす。)

【ਡੇ水項9】 正孔優送物質として、下記化8で示される化合物を含有させたことを特徴とする繭水項1記載の 銀子写真用感光体。

[(E8]

(式中、Rはカルパソリル基、ピリジル基、チエニル基、インドリル基、フリル基或いはそれぞれ倒換もしくは無置換のフェニル基、スチリル基、ナフチル基またはアントリル基であって、これらの置換基がジアルキルアミノ基、アルキル基、アルコキシ基、カルポキシ基またはそのエスチル、ハロゲン原子、シアノ基、アラルキルアミノ基、N-アルキル-N-アラルキルアミノ基。アラルキルアミノ基、ニトロ基およびアセチルアミノ基からなる群から選ばれた基を表わす。〕

【献求項10】 正孔報送物質として、下記化9で示される化合物を含有させたことを特徴とする離求項1記載の電子写真用感光体。

【作9】

(式中、nは0または1の数数、R:は水素原子、アルキル基または間後もしくは無置後のフェニル基を示し、

Aは

$$\langle O \rangle^{(R_2)m}$$

9-アントリル基または置換もしくは無置換のN-アルキルカルパゾリル基を表わし、ここでR:は水素原子、アルキル基、アルコキシ基、ハロゲン原子または

$$-N < \frac{R_2}{R_2}$$

(但し、R:およびR:はアルキル基、置換または無置換のアラルキル基、置換または無置換のアリール基を示し、R:およびR:は繋を形成してもよい)を表わし、mは0,1.2または3の整数であって、mが2以上のときはR:は同一でも異なってもよい。〕

[語求項11] 正孔観送物質として、下記化10で示される化合物を含有させたことを特徴とする語求項1記 載の電子写真用感光体。

【化10】

(式中、R,は低級アルキル基またはペンジル基を表わし、R,は水衆原子、低級アルキル基、低級アルコキシ基、ハロゲン原子、ニトロ基、アミノ基あるいは低級アルキル基またはペンジル基で置換されたアミノ基を表わし、11は1または2の整数を表わす。)

[請求項12] 正孔散送物質として、下記化11で示される化合物を含有させたことを特徴とする請求項1記載の電子写真用感光体。

【化11】

$$Ar - CH = C - R_1$$

$$R_2$$

$$R_3$$

(式中、R,は水糸原子、アルキル基、アルコキシ基またはハロゲン原子を表わし、R,およびR,はアルキル基、置換または無置後のアラルキル基あるいは置換または無置後のアリール基を表わし、R,は水米原子または置換もしくは無置換のフェニル基を表わし、また、A, はフェニル基またはナフテル基を表わす。)

【請求項13】 正孔搬送物質として、下記化12で示される化合物を含有させたことを特徴とする請求項1記載の電子写真用感光体。

[张12]

-459-

(4)

€ CH=CH-AF

(式中、Rは水素またはハロゲン原子を表わし、Arは 関接または無管機のフェニル基、ナフチル基、アントリ ル基あるいはカルパゾリル基を表わす。〕

【謝求項14】 正孔機造物質として、下記化13で示される化合物を含有させたことを特徴とする請求項1記 10 数の電子写真用感光体。

[他13]

$$R_{1} = CH = CH$$

$$R_{2} = CH$$

$$R_{3} = CH$$

(式中、R₁, R₁およびR₁は水素、低級アルキル基、 低級アルコキシ基、ジアルキルアミノ基またはハロゲン 20 原子を表わし、nは0または1を表わす。〕

【蘇永項15】 正孔像送物質と結管樹脂との重量比が 1:99~50:50であることを特徴とする蔚求項1 ないし14のいずれかに記載された電子写真用感光体。

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は表面保護層を有する電子 写真用感光体に関する。

[0002]

【従来の技術】従来、電子写真感光体としては、導電性 30 支持体上にセレンないしセレン合金を主体とする光導電局を設けたもの、酸化亜鉛、酸化カドミウムなどの無機光導電材料をバインダー中に分散させたもの、ボリーNーピニルカルバゾールとトリニトロフルオレノンあるいはアゾ飼料などの有機光導電材料を用いたもの及び非晶質シリコンを用いたもの等が一般に知られている。これらの感光体に対して、長時間高直質を保つ信頼性の要求が年々高まっている。しかし光導電層が電出している場合、希電過程のコロナ放電による領傷と複写プロセスで受ける他部材との接触による物理的あるいは化学的な損 40 個が感光体の寿命を損なうものであった。

[0003] このような欠点を解消する方法として感光体表面に保護層を設ける技術が知られている。具体的には感光層の表面に有機フィルムを設ける方法(特公昭38-15446)、無機酸化物を設ける方法(特公昭43-14517)、接着層を設けた後、絶縁層を装層する方法(特公昭43-27591)、あるいはプラズマCVD法・光CVD法等によってa-Si層、a-Si:N:H層、a-Si:O:H層等を積層する方法(特開昭57-179859、特開昭59-5843

7) が開示されている。しかしながら、保護層が電子写真的に高抵抗 (10¹⁴ Q・c m以上) になると、残留電位の均大、繰返時の蓄積などが問題となり、実用上好ましくない。

【0004】上記欠点を補う技術として保護局を光導電局とする方法(特公昭48-38427、特公昭43-16198、特公昭49-10258、USP-2901348)、保護局中に色素やルイス酸に代表される移動剤を抵加する方法(特公昭44-834、特開昭53-133444)、成いは金属や金属酸化物微粒子の添加により保護層の抵抗を制御する方法(特開昭53-338)等が健康されている。しかし、このような場合には保護層による光の吸収が生じ光導電層へ到達する光度が減少するため、結果として電子写真用感光体の感度が低下するという問題が生じる。

【0006】この様な観点から特開昭57-30846 に順示されているように平均粒径0.3μm以下の金属 酸化物散粒子を抵抗制御剤として表面保護層中に分散さ せることにより、可視光に対して実質的に透明にする方 法がある。この表面保護層をもった電子写真用感光体は 感度低下も少なく。表面保護層の機械的強度も増し、耐 久性が向上する。しかしながら、この感光体を実際の複 写機に組み込んだ場合、残留電位が生じ画像上に地脈行 れを発生させるという欠点がある。この残留電位は表面 保護層上に苦積した残留電荷により発生し、特に低温低 福時に苦しく増大する。

[0006]

【発明が解決しようとする課題】本発明はこうした実情に魅み、高い機械的強度を増えかつ低温時に発留感位の増加を生じない安定な電気特性を示す保護層を有し、長期に渡って品質の高い画像を安定して形成しうる電子写真用感光体を提供することを目的とする。

[0007]

【課職を解決するための手段】本発明は、導電性支持体上に光導電層及び表面保護層を順次積層した電子写真用 感光体において、表面保護層が金属あるいは金属酸化物 微粉末を結若樹脂中に分散させた層からなり、かつ正孔 搬送物質を含有させたことを特徴とするものであり、該正孔搬送物質として、例えば次に示す化1~化13で表わされる化合物を用いることを特徴とするものであり、また、該正孔搬送物質と該結若樹脂との重量比が1:99~50:50:50であることを特徴とするものである。

[8000]

【化1】

$$(R_2)$$
 D $CH = N - N - O - R$

(式中、R:はアルキル基、ペンジル基、フェニル基を 50 表わし、R:は水素、炭素数1~3のアルキル基、炭素

-454-

(5)

数1~3のアルコキシ基、ジアルキルアミノ基、ジアラルキルアミノ基またはジアリールアミノ基を表わし、nは1~4の整数を表わし、nが2以上のときRzは同じでも異なっていてもよい。Rzは水素またはメトキシ基を表わす。)

[0000]

[化2]

$$R_3 \longrightarrow CH = N - N \longrightarrow R_2$$

(式中、R1はメチル基、エチル基、2ーヒドロキシエチル基メは2ークロルエチル基を表わし、R2はメチル基、エチル基、ベンジル基又はフェニル基を表わし、R3は水木、塩素、臭素、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ジアルキルアミノ基又はニトロ基を表わす。〕

[0010] [化3]

(式中、Arはナフタリン環、アントラセン環、スチリル基及びそれらの置換体あるいはピリジン環、フラン環、チオフェン環を表わし、Rはアルキル基又はペンジル基を表わす。)

[0011] [佐4]

$$A r - N < A^2$$

R: は炭来数1~4のアルキル基を表わし、R: は水素、ハロゲン、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはジアルキルアミノ基を表わし、nは 401または2であって、nが2のときはR: は同一でも異なってもよく、R: およびR: は水来、炭素数1~4の置換または無四換のアルキル基あるいは四換または無四換のベンジル基を表わす。)

[0014] [化7]

* 〔式中、A¹, A¹は恒換もしくは無面換のアルギル基又 は面換もしくは無面換のアリール基を表わし、それぞれ 同一でも異なっていてもよい。Arは個換または無面換 の絡合多環式炭化水素基を表わす。〕

[0012] [化5]

$$(R^4)k$$
 $(R^2)g$ $(R^4)n$

(式中、R1, R1及びR1は水衆原子、アミノ基、アルコキシ基、チオアルコキシ基、アリールオキシ基、メチレンジオキシ基、置換もしくは無置換のアルキル基、ハロゲン原子又は置換もしくは無置換のアリール基を、R1は水米原子、アルコキシ基、置換もしくは無置機のアルキル基又はハロゲンを表わす。kは1~5の整数、lit1~4の整数、mは1~5の整数であ

20 る。) [0013] 【化6]

【式中R:は水路、ハロゲン、シアノ基、炭索数1~4のアルコキシ基または炭索数1~4のアルキル基を表わし、Arは

(式中、R:は炭素数1~11のアルキル基、置換もしくは無面線のフェニル基又は複素環基を表わし、R:、R:はそれぞれ同一でも異なっていてもよく水素、炭素数1~4のアルキル基、ヒドロキシアルキル基、クロルアルキル基、置換または無置換のアラルキル基を表わし、また、R:とR:は互いに結合し空素を含む複素環を形成していてもよい。R:は同一でも異なっていてもよく水素、炭素数1~4のアルキル基、アルコキシ基又はハロゲンを表わす。〕

(0015) (化8)

-455-

(6)

寺開平4-281461

$$A_r - CH = C - Q - N < R_*$$

(式中、Rはカルパソリル基、ビリジル基、チエニル 甚、インドリル基、フリル基或いはそれぞれ置換もしく は無関係のフェニル基、スチリル基、ナフチル基または アントリル基であって、これらの関類基がジアルキルア ミノ基、アルキル基、アルコキシ基、カルボキシ基また はそのエステル、ハロゲン原子、シアノ基、アラルキル アミノ基、N-アルキル-N-アラルキルアミノ基、ア ミノ基、ニトロ基およびアセチルアミノ基からなる群か ら選ばれた基を表わす。〕

[化9]

(式中、nは0または1の整数、R1は水素原子、アルキル基または管接もしくは無置接のフェニル基を示し、Aは

9 - アントリル基または置換もしくは無置換のN-アル キルカルパゾリル基を衰わし、ここでR2は水素原子、 アルキル基、アルコキシ基、ハロゲン原子または

$$-N < \frac{R}{R}$$

(但し、 R_1 および R_1 はアルキル基、微検宏たは無置検のアラルキル基、置検または無置換のアリール基を示し、 R_1 および R_1 は原を形成してもよい)を表わし、mは0, 1, 2または3の整数であって、mが2以上まときは R_1 は同一でも異なってもよい。〕

[0017] [化10]

(式中、R,は低級アルキル基またはペンジル基を衰わし、R,は水東原子、低級アルキル基、低級アルコキシ 紙、ハロゲン原子、ニトロ基、アミノ基あるいは低級アルキル基またはペンジル基で置換されたアミノ基を表わし、nは1または2の整数を表わす。)

[0018] [化11] 【式中、R1 は水素原子、アルキル基、アルコキシ基またはハロゲン原子を表わし、R1 およびR3 はアルキル基、函換または気優換のアラルキル基あるいは函換または無質換のアリール基を表わし、R1は水素原子または10 置換もしくは無置換のフェニル基を表わし、また、Arはフェニル基またはナフチル基を表わす。〕

[0019] [化12]

(式中、Rは水素またはハロゲン原子を表わし、Arは の置換または無置換のフェニル基、ナフチル基、アントリル基あるいはカルバブリル基を表わす。)

[0020] [4:13]

$$R_{1} \xrightarrow{\text{ICH} = \text{CH}} \bigcap_{n} \bigcap_{n} R_{n}$$

(式中、 R_1 、 R_2 および R_1 は水素、低級アルキル基、 低級アルコキシ基、ジアルキルアミノ基またはハロゲン 原了を表わし、nは0または1を表わす。)

【0021】以下、本発明をさらに詳しく説明する。本 宛明に用いられる正孔教送物質としては次のようなもの が等げられる。化1で示される具体例としては、4-メ トキシベンズアルデヒド1-メチル-1-フェニルヒド ラゾン、2、4-ジメトキシベンズアルデヒド1ーペン ジル-1-フェニルヒドラゾン、1-ジエチルアミノベ ンズアルデヒド1、1-ジフェニルヒドラゾン、4-メ トキシベンズアルデヒド1ーペンジル-1-(4-メト キシ)フェニルヒドラゾン、4-ジフェニルアミノペン ズアルデヒド1ーペンジル-1-フェニルヒドラゾン、 4-ジペンジルアミノペンズアルデヒド1、1-ジフェ ニルヒドラゾンなどがある。

【0022】 化2で表わされる具体例としては、9-エ チルカルパゾール-3-アルデヒド1-メチル-1-フ ェニルヒドラゾン、9-エチルカルパゾール-3-アル デヒド1-ペンジル-1-フェニルヒドラゾン、9-エ チルカルパゾール-3-アルデヒド1、1-ジフェニル ヒドラゾンなどがある。

--456--

11

【0023】 化3 で表わされる具体例としては、4-ジ エチルアミノスチレン-8-アルデヒド1-メチル-1-フェニルヒドラゾン、4-メトキシナフタレン-1-アルデヒド1-ペンジル-1-フェニルヒドラゾンなどがある。

【0024】化4で表わされる具体例としては、1-N, N-ビス (4-メチルフェニル) アミノピレン、1 -N. N-ピス(3-メチルフェニル)アミノビレン。 【0025】化5で表わされる具体例としては、N.N. ン、N, N-ピス(4-メチルフェニル)- 〔1, 1° - ピフェニル) - 4 - アミン、N, N - ピス(4 - メチ ルフェニル) - (1、1゜-ピフェニル)-4-アミ ン、4'-メチルーN、N-ピス(4-メチルフェニ ル) - (1, 1'-ピフェニル) - 4-アミン、4'-エチル -N, N - ピス (4 - メチルフェニル) <math>- (1, 1 - ピフェニル) -4-アミン、4 - エープチルー N, N-ピス (3-メチルフェニル) - [1, 1'-ビ フェニル] -4-アミン、2',4',6'-トリメチ ルーN, Nーピス (4 - メチルフェニル) - 〔1, 1° ーピフェニル) -4-アミン、3-メチル-3*-メチ ルーN-4-メトキシフェニル-N-4-メチルフェニ ル) - (1, 1°-ピフェニル) - 4-アミン、4°-フェノキシーN、N-ピス(4-クロルフェニル)-(1, 1'ーピフェニル) ー4ーアミン、4'ーペンジ ルーN、N-ピス (2-エチルフェニル) - [1, 1* -ピフェニル) -4-アミン。

[0026] 化6で表わされる具体例としては、9-(4-ジメチルアミノベンジリデン)フルオレン、3-(9-フルオレニリデン)-9-エチルカルパゾールな 30 どがある。

【0027】化7で表わされる具体例としては、トリス (4-ジエチルアミノフェニル)メタン、1、1-ビス (4-ジベンジルアミノフェニル)プロパン、2、2、 -ジメチルー4、4、-ビス(ジエチルアミノ)-トリ フェニルメタンなどがある。

【0028】化8で表わされる具体例としては、1,2 ーピス(4-ジエチルアミノスチリル)ペンゼン、1, 2-ピス(2,4-ジメトキシスチリル)ペンゼンがある。

 $\{0\ 0\ 2\ 9\}$ 化 9 で表わされる具体例としては、4 ージフェニルアミノー α ーフェニルスチルベン、4 ーメチルフェニルアミノー α ーフェニルスチルベンなどがある。

【0030】化10で衰わされる具体例としては、3-スチリル-9-エチルカルパゾール、3- (4-メトキ シスチリル)-9-エチルカルパゾールなどがある。

【0031】化11で表わされる具体例としては、4-ジフェニルアミノスチルベン、4-ジベンジルアミノス チルベン、4-ジトリルアミノスチルベン、1-(412 ジフェニルアミノスチリル)ナフタレン、1 - (4 - ジ エチルアミノスチリル)ナフタレンなどがある。

【0032】化12で表わされる具体例としては、9-(4-ジエチルアミノスチリル)アントラセン、9-プロム-10-(4-ジエチルアミノスチリル)アントラセンなどがある。

【0034】これらの化合物は単独でも2種以上併用しても良い。正孔敷送物質と結着樹脂との重量比は1:99~50:50であり、好ましくは10:90~20:80の範囲のとき所期の目的を達成することができる。1:99以下では残留電位低減の効果は無く、20:80以上では機械的強度が劣化する。本発明の表面保露を形成するには全属又は金属酸化物粉末を結着樹脂溶液中にポールミルあるいはピーズミルなどの方法で分散し、次にこの分散液にたいし正孔療送物質と結ぞ樹脂との意量比が1:99~50:50になるように上記正孔療送物質を添加し、これを光導電層上に浸液・スプレーなどの方法で塗布。乾燥、硬化させればよい。

[0035] 本発明に用いられる金属あるいは金属酸化 物被粉末としては銅、スズ、アルミニウム、インジウム 等の金属あるいは酸化スズ、酸化亜鉛、酸化チタン、酸 化インジウム、酸化アンチモン、酸化ビスマス、アンチ モンをドープした酸化スズ、スズをドープした酸化イン ジウム等の金属酸化物做粉末を用いることができる。こ れら金属あるいは金属酸化物微粉末は2種以上混合して もかまわない。これら微粉末の平均粒径は0.5μm以 下好ましくは0.2μm以下にあることが保護層の透過 摩の白から好ましい。

【0036】木晃明に用いられる結若樹脂としては、シリコーン樹脂、ボリウレタン樹脂、アクリル樹脂、ボリエステル樹脂、ボリカーポネート樹脂、ボリスチレン樹脂、エポキシ樹脂等が例示できる。なお、保護層中には分散性、接着性あるいは平滑性を向上させる目的で種々の添加剤を加えても良い。

【0037】本発明に用いられる光導電層としてはSe. Se-Te. As:Se:等のSe合金、ZnO. CdS. CdSe等のII~VI族化合物の粒子を樹脂に分散させたもの、ポリビニルカルパゾール等の有機光導電材料あるいはa-Si等が用いられる。光導電層の構成は特に制約がなく、単層でも電荷発生層と電荷輸送層の積層であってもかまわない。さらに保護層と光導電層との間に密着性を高めるための接着層や電荷住入を阻止するための電気的パリアー層を設けてもよい。

[0038] 等電性支持体としては等電体あるいは等電 処理をした絶滅体が用いられる。たとえばAl、Ni、 Fe、Cu、Auなどの金属あるいは合金、ポリエステ ル、ポリカーポネート、ポリイミド、ガラス等の絶縁性 基体上にAl、Ag、Au等の金属あるいはIn:O:、 SnO:等の専電材料の整鎖を形成したもの、導電処理 をした紙等が例示できる。また導电性支持体の形状は特 に制約はなく、必要に応じて板状、ドラム状、ベルト状 のものが用いられる。

[0039]

【実施例】以下、本発明を実施例に従って説明する。 実施例]

80mmφ×340mm(長さ)のAlドラム支持体を 真空蒸着装置内にセットし、またこの装置の蒸着源ボー トにAsiSei合金を入れ、真空度3/10fTor r、支持体温度200℃、ボート温度450℃の条件で 蒸岩を行い、支持体上に60μm厚の光導電局を形成し た。次にこの上に、a) アルコキシ基合有ポリシロキサ ンとb)水酸基含有ポリシロキサンとc)炭素原子に結 合したアミノ基、イミノ基又はニトリル基を少なくとも 1個及びアルコキシ基が2~3個結合した珪素原子を有 する有機産業化合物とを主成分とするシリコーン樹脂A 20 用磁光体を作製した。 (トーレシリコーン社製AY42-440) と前記 a)、b)及びc)の成分比が異なるシリコーン樹脂B (トーレシリコーン社製AY42-441)との等量 (重量) 混合物のリグロイン溶液をスプレー塗布し、1 20℃で1時間乾燥して0、15µm厚の電気的パリア 一届 (中間層)を形成した。次にSL-MMA-2-H EMA共取合体の20wt%酢酸2-エトキシエチル/ メチルイソプチルケトン(7/3里量比)溶液30里量 越と抵抗制御剤SnOz 14豆量部とをポールミルで1 2.0時間分散後、ヘキサメチレンジイソシアナート3重 30 量部、4-メトキシベンズアルデヒド1-メチル-1-フェニルヒドラゾン 0. 9 量量部を加えこれを電気的パ リアー層 (中間層) 上にスプレー塗布し、130℃で1 時間の乾燥を行い5 mm厚の表面保護層を形成し、電子 写真用感光体を作製した。

[0040] 実施例2

前記正孔撤送物質を4-メトキシベンズアルデヒド1-メチルー1-フェニルヒドラゾン0.09重量部に変え た他は実施例1と全く同様にして電子写真用感光体を作 製した。

[0041] 実施例3

前記正孔撤送物質を4-メトキシペンズアルデヒド1-メチルー1-フェニルヒドラゾン9重量部に変えた他は 実施例1と全く同様にして電子写真用感光体を作製し た.

[0042] 実施例4

前記正孔撤送物質を4-ジメトキシペンズアルデヒド1 - ペンジルー1-フェニルヒドラゾン0.9重量部に変 えた他は実施例1と全く同様にして電子写真用感光体を 作製した。

【0043】実施例5

前記正孔撤送物質を9-エチルカルパゾール-3-アル デヒド1-メチル-1-フェニルヒドラゾン0、9重量 部に変えた他は実施例1と同様にして電子写真用感光体 を作製した。

14

[0044] 実施財務

前記正孔鍛送物質を9ーエチルカルパゾールー3ーアル デヒド1-メチル-1-フェニルヒドラゾン0.09草 量部に変えた他は実施例1と全く同様にして電子写真感 10 光体を作製した。

[0045] 実施例7

前記正孔搬送物質を9-エチルカルパゾール-3-アル デヒド1-メチルー1-フェニルヒドラゾン9重量部に 変えた他は実施例1と全く回様にして電子写真用感光体 を作却した。

[0046] 実施例8

前記正孔搬送物質を9-エチルカルパゾール-3-アル デヒド 1ーペンジルー1ーフェニルヒドラゾン0.9 **重量部に変えた他は実施例1と全く同様にして電子写真**

[0047] 実施例9

前記搬送物質を4ーメトキシナフタレンー] -アルデヒ ド1-ベンジル-1-フェニルヒドラゾン0.9重量部 に変えた他は実施例1と全く同様にして電子写真用感光 体を作製した。

[0048] 実施例10

前記正孔搬送物質を4-メトキシナフタレン-1-アル **デヒド 1-ベンジル-1-フェニルヒドラゾン0.0** 9 魚量部に変えた他は実施例1と全く同様にして電子写 真用感光体を作駆した。

[0049] 実施例11

前記正孔搬送物質を4ーメトキシナフタレンー1ーアル デヒド 1-ベンジル-1-フェニルヒドラゾン9重量 部に変えた他は実施例1と全く同様にして電子写真用感 光体を作型した。

[0050] 実施例12

前配正孔搬送物質を4ージエチルアミノスチレンーβー アルデヒド 1-メチル-1-フェニルヒドラゾン0. 9 重量部に変えた他は実施例1と全く同様にして電子写 真用感光体を作製した。

[0051] 実施例13

前記搬送物質を1-N, N-ビス(4-メチルフェニ ル) アミノビレン0.9 豆量部に変えた他は実施例1と 全く同様にして電子写真用感光体を作製した。

[0052] 実施例14

前起正孔搬送**物**質を1-N,N-ピス(4-メチルフェ ニル)アミノピレン 0. 0 9重量部に変えた他は実施例 1 と全く同様にして電子写真用感光体を作製した。

[0053] 実施例15

前記正孔徹送物質を1-N, N-ピス(4-メチルフェ

458-

15 ニル) アミノビレン9重量部に変えた他は実施例1と全 く同様にして電子写真用感光体を作製した。

[0054] 実施例16

前記正孔撤送物質を1-N, N-ピス(3-メチルフェ ニル) アミノピレン 0. 9 意量部に変えた他は実施例 1 と全く同様にして電子写真用感光体を作製した。

【0055】 実施例17

前記撤送物質をN, Nージフェニル〔1, 1'ーピフェ ニル) - 4-アミン0、9 量量部に変えた他は実施例1 と全く同様にして電子写真用感光体を作製した。

[0056] 実施例18

前記正孔撤送物質をN, N-ジフェニル〔1, 1'-ビ フェニル】- 4-アミン0.09重量部に変えた他は実 施例1と全く同様にして電子写真用感光体を作製した。

[0057] 実施例19

前記正孔撤送物質をN, Nージフェニル〔1, 1'ービ フェニル)-4-アミン9皇量部に変えた他は実施例1 と全く同様にして電子写真用感光体を作製した。

[0058] 実施例20

前記正孔搬送物質をN、N-ピス(4-メチルフェニ 20 ル) - (1, 1'-ピフェニル) -4-アミン0.9重 量部に変えた他は実施例1と全く同様にして電子写真用 感光体を作製した。

[0059] 実施例21

前記撤送物質を9- (4-ジメチルアミノベンジリデ ン) フルオレン 0、9 重量部に変えた他は実施例 1 と全 く同様にして電子写真用感光体を作製した。

[0060] 実施例22

前記正孔撤送物質を9-(4-ジメチルアミノベンジリ と全く同様にして電子写真用感光体を作製した。

[0061] 実施例23

前記正孔撤送物質を9-(4-ジメチルアミノベンジリ デン) フルオレン9 蛍量部に変えた他は実施例1と全く 同様にして電子写真用感光体を作気した。

[0062] 実施例24

前記正孔搬送物質を3-(9-フルオレニリデン)-9 - エチルカルパゾール 0、 9 重量部に変えた他は実施例 1と全く関係にして電子写真用感光体を作製した。

[0063] 実施例25

前記撤送物質を1、1-ビス(4-ジペンジルアミノフ ェニル)プロパン0、9国量部に変えた他は実施例1と 全く同様にして電子写真用感光体を作製した。

【0064】実施例26

前配正孔搬送物質を1、1-ビス(4-ジペンジルアミ ノフェニル)プロパン0.09重量部に変えた他は実施 例1と全く同様にして電丁写真用感光体を作製した。

【0065】実施例27

前記正孔撤送物質を1, 1-ビス(4-ジペンジルアミ ノフェニル)プロパン9単量部に変えた他は実施例1と 50

全く同様にして電子写真用感光体を作製した。

[0066] 生質例28

前記正孔機送物質をトリス(4 - ジエチルアミノフェニ ル)メタン0、9重量部に変えた他は実施例1と全く同 様にして電子写真用感光体を作製した。

[0067] 実施例29

前記搬送物質を1、2-ビス(4-ジエチルアミノスチ リル) ペンゼン 0、9 重量部に変えた他は実施例 1 と全 く同様にして電子写真用感光体を作製した。

[0068] 実施例30

前記正孔撒送物質を1,2-ピス(4-ジエチルアミノ スチリル)ペンゼン 0. 09重量部に変えた他は実施例 1と全く同様にして電子写真用感光体を作製した。

【0069】実施例31

前配正孔撤送物質を1,2-ピス(4-ジエチルアミノ スチリル)ペンゼン9重量部に変えた他は実施例1と全 く同様にして電子写真用感光体を作製した。

[0070] 実施例32

前配正孔撒送物質を1,2-ピス(2,4-ジメトキシ スチリル) ベンゼン 0.9 重量部に変えた他は実施例 1 と全く同様にして電子写真用感光体を作製した。

【0071】 宴施例33

前記搬送物質を4′ージフェニルアミノーαーフェニル スチルペン0.9重量部に変えた他は実施例1と全く同 様にして電子写真用感光体を作製した。

[0072] 実施例34

前記正孔搬送物質を4°ージフェニルアミノーαーフェ ニルスチルベンロ、09型量部に変えた他は実施例1と 全く同様にして電子写真用感光体を作製した。

【0073】 実施例35

前記正孔搬送物質を4'ージフェニルアミノーαーフェ ニルスチルベン9重量部に変えた他は実施例1と全く同 様にして電子写真用感光体を作製した。

【0074】実施例36

前記正孔搬送物質を4°ーメチルフェニルアミノーαー フェニルスチルペン0、9重量部に変えた他は実施例1 と全く同様にして電子写真用感光体を作製した。

[0075] 実施例37

前記搬送物質を3ースチリルー9ーエチルカルパゾール 0.9 重量部に変えた他は実施例1と全く同様にして電 于写真用感光体を作製した。

[0076] 実施例38

前記正孔兼送物質を3ースチリルー9-エチルカルパゾ ール0.09重量部に変えた他は実施例1と全く同様に して電子写真用感光体を作製した。

[0077] 実施例39

前記正孔撒送物質を3-スチリル-9-エチルカルパゾ ール9重量部に変えた他は実施例1と全く同様にして電 子写真用函光体を作製した。

[0078] 実施例40

-459-

17

前記正孔搬送物質を3- (4-メトキシスチリル) - 9 -エチルカルパゾール 0. 9 重量部に変えた他は実施例 1と全く阿様にして電子写真用感光体を作製した。

[0079] 実施例41

前記正孔機送物質4-ジフェニルアミノスチルベンを 0、9重量部に変えた他は実施例1と全く同様にして電子写真用感光体を作製した。

[0080] 実施例42

前記正孔機造物質を4-ジフェニルアミノスチルベン 0.09 重点部に変えた他は実施例1と全く同様にして 10 電子写真用感光体を作製した。

【0081】実施例43

前記正孔撒送物質を4-ジフェニルアミノスチルペン9 重量部に変えた他は実施例1と全く同様にして電子写真 用感光体を作製した。

[0082] 実施例44

前記正孔機送物質を4-ジフェニルアミノスチルベン 0.9重量部に変えた他は実施例1と全く同様にして電子写真用感光体を作裂した。

[0083] 実施例45

前記搬送物質を9ー(4ージエチルアミノスチリル)アントラセン0、9重量部に変えた他は実施例1と全く同様にして電子写真用感光体を作製した。

[0084] 実施例46

前記正孔機送物質を9-(4-ジエチルアミノスチリル)アントラセン0.09益量都に変えた他は実施例1 と全く同様にして電子写真用感光体を作製した。

[0085] 実施例47

前記正孔撒送物質を9-(4-ジエチルアミノスチリル)アントラセン9重量部に変えた他は実施例1と全く 30 同様にして電子写真用感光体を作製した。

[0086] 実施例48

的配正孔搬送物質を9ープロム-10-(4-ジエチルアミノスチリル)アントラセン0.9単量部に変えた他

18

は実施例1と全く同様にして電子写真用感光体を作製した。

[0087] 実施例49

前記搬送物質を1ーフェニルー3ー(4ージエチルアミノスチリル)-5-(4ージエチルアミノフェニル)ピラゾリン0.9重量部に変えた他は実施例1と全く同様にして電子写真用感光体を作製した。

[0088] 実施例50

[0089] 実施例51

前記正孔搬送物質を1-フェニル-3-(4-ジエチルアミノスチリル)-5-(4-ジエチルアミノフェニル)ピラゾリン9金融部に変えた他は実施例1と全く同様にして電子写真用感光体を作製した。

[0090] 実施例52

前配正孔索送物質を1-フェニル-3-(4-ジメチル) アミノスチリル) -5-(4-ジメチルアミノフェニル) ピラソリン0.9 重量部に変えた他は実施例1と全く同様にして電子写真用感光体を作製した。

[0091] 比較例

前配正孔線送物質を加えない他は実施例1と全く同様に して電子写真用感光体を作製した。

【0092】上記のようにして得た電子写真用感光体に対して、リコー根被写機FT6550を用いて、20℃65%及び10℃15%の環境下での被写機内の残留電位を評価し、更に10万枚の画像テストを行い、画像テスト前後の保護層の順序測定を実施しその摩託量の評価を行った。評価結果を設1に示す。

[0093]

【表1-(1)】

	正孔 搬送 物質	残留	館 位	会商	東西東京
		20065%	10℃15%	初知	10万枚铁
突旋例1		75V	7 5 V	5μm	4. 0 µm
2	化1	90V	90V	5 µm	5 μ m
3	1	70V	70V	6 µm	3. 5 µm
4		8 5 V	90V	5 µm	4. 0 µm

(11)

特闘平4-281461

20 19 80V 4. 8 µm 8 0 V 5 µ m 100V 5 µ m 5 µ m 9 0 V 化2 5 µ m 4. 2 µm 7 O V 75 V 7 8 5 V 8 5 V 5 µm 4. 7 µm 8 7 5 V 6 # m 4. 7 µm 7 O V 9 9 5 V 5 µ m 5 μ m. 9 O V 化3 10 8 0 V 5 **µm** 4. 3 µm 7 D V 11 12 7 O V 75 V 5 μm 4. 6 μm 13 7 O V 75 V 5 µm 4. 3 µm 5 µ m 化4 9 5 V 100V 5 µ m 14 5 µ m 4.0 µm 15 7 O V 70 V 16 6 5 V 70 V 5 µ m 4. 5 µm

[0094]

[表1-(2)]

	正孔 假送 物質	残 留	電位	表面像	薩磨膜厚
		20065%	10℃16%	初期	10万枚後
17		7 O V	80V	5 µm	4.7 µm
18	化5	70V	90V	5 µ m	5 μm.
19		60V	60V	5 µm	4. 3 µm
20		807	90V	5 μm	4. 5 µm
21		6 5 V	6 5 V	6 µm	4. 0 µm
22	化台	90V	100V	6 µm	5 μ m.
23		50V	50 V	5 µm	3. 5 µm
24		65V	85V	5 µ m	4. 5 µm
25		9 O V	9 5 V	5 μm	4. 2 µm
26	化7	65V	75 V	5 µm	5 μ m
27		55V	60V	5 µm	3. 9 µm
28		957	106V	5 µm	4. 2 µm
29		8 0 V	80V	5 μm	4. 5 µm
30	化8	90V	9 5 V	5 µm	5 µm
31	"-	45V	55V	5 µm	4. 0 µm
32		8 D V	90V	5 µm	4. 6 µm

[0095]

【表1- (3)】

(12)

特開平4-281461

21

	谣	费 留	低位	表面多	P. 護尼族 草
	般送 物質	20065%	101015%	初旗	10万枚後
突盖例33		7 5 V	90V	5µm	4. 8 mm
34	化9	9 O V	100V	6 # m	5 μm
36		55V	70V	5 µm	4. 2 µm
36		807	90V	5 μ m	4.7 µm
37		8 O V	90V	δμm	4. 3 µm
38	1610	95V	105V	5 µm	5 4 m
39		70V	75 V	5 µ m	3. 6 µm
40		75V	80V	5 µ ca	4. 2 µm
40		8 O V	8 5 V	5 µm	4. 3 µm
42	fb11	807	100V	5 µ m	5 μ m
43		65V	70V	6 µ m	8. 9 µm
44	!	907	100V	5µm	4. 4 µm
45		75V	80 V	δμm	4. 5 µm
46	Æ12	100V	105V	Бμm	5 μ m
47	ŀ	75V	75 V	5 µm	4. 0 µm
48		70V	70V	5 µ m	4. 3 µm

[0096]

「表	1 -	(4) 1

	正孔 報送 物質	残留	角位	表面包	民義問題 厚
		20065%	10℃15%	初無	10万枚後
実施例49		7 O V	80 V	6 µm	4. 5 µm
50	1618	80V	100V	Бμт	5 μ m
51		60V	60V	5 µm	4 a m
52		80V	90 V	5 µ m	4. 5 µm
比较例	ナシ	120V	180V	5µm	5μm

【0097】表1に示されるように、本発明に係る実施 例1~52の電子写真用感光体は20℃65%及び10 40 ℃15%下での残留電位が大きく低減されており、更に 正孔搬送物質と結着樹脂との黒量比が1:99~50: 50の範囲にあるので10万枚複写後の表面保護層の膜 厚減少量も著しく小さいことがわかる。また、実施例1 ~52の電子写真用感光体は初期から10万枚後まで品 質の高い画像が安定して継続的に得られるものであっ

ح. (0098)

【発明の効果】以上説明したように、本発明に係る表面 保護層を有する電子写真用感光体は高い機械的強度をそ なえ、かつ複写機内の残留電位及びその環境変動量も著 しく小さい安定した電気特性を示し、更に高品質な画像 が長期に絞って安定して得られる信頼性の高いものであ

特開平4-281461

[公報種別] 特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第2区分

[発行日] 平成11年(1999)6月18日

[公開香号]特開平4-281461

【公開日】平成4年(1992)10月7日

【年通号数】公開特許公報4-2815

[出職番号] 特願平3-69066

【国際特許分類第6版】

G03G 5/147 504

503

[FI] ·

G03G 5/147 504

503

【手続補正告】

【提出日】平成10年3月5日

【手続補正1】

【補正対象書類名】明細書

【補正方法】変更

【補正内容】

[0008]

[111]

$$(R_2)_3$$
 $CH = N - N - C + R_3$

【式中、R、はアルキル益、ベンジル益、フェニル基を表わし、R。は水素、炭素数 $1\sim3$ のアルキル益、炭素数 $1\sim3$ のアルコキシ基、ジアルキルアミノ基、ジアラルキルアミノ甚またはジアリールアミノ基を表わし、nは $1\sim4$ の整数を表わし、nが2以上のときR。は同じでも異なっていてもよい。R。は水素またはメトキシ基を表わす。]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.