

Вопрос по выбору Звезда X и планета-океан

1 Рассматриваемая модель:

Будем рассматривать планету-океан, котороя почти по идеальной круговой орбите вращается вокруг некоторой звезды X. Ось собственного вращения планеты перпендикулярна плоскости орбиты, а угловая скорость этого вращения равна угловой скорости вращения планеты вокруг звезды (оба вращения происходят в одном направлении). Сама планета в значительной мере состоит из воды, однако внутри нее есть твердое ядро, в котором происходят процессы ядерного распада и гравитационной дифференцировки недр, порождающие дополнительный поток теплоты, идущий изнутри планеты. При этом вся поверхность планеты снаружи покрыта льдом. Ледяная поверхность шероховатая и загрязненная космической пылью, поэтому на дневной стороне она прогревается достаточно быстро, и при этом излучение в космос идет практически только с поверхности планеты.

Основные характеристики:

- ullet радиус звезды $R_X = 7 \cdot 10^8 \; \mathrm{M}$
- радиус орбиты планеты-океана $r_o = 7 \cdot 10^{11}$ м
- \bullet ускорение свободного падения на поверхности планеты-океана $g=1~\mathrm{m/c^2}$
- максимальная температура на экваторе дневной стороны планеты-океана $T_2=100~{
 m K};$ температура на полюсе $T_1=50~{
 m K}$
- плотность воды $\rho_o \approx 1$ г/см³, плотность льда $\rho \approx 0.9$ г/см³
- удельная теплота плавления льда $\lambda \approx 340~\rm{Дm/r}$, удельная теплота парообразования воды $L \approx 2250~\rm{Дm/r}$
- зависимость коэффициента теплопроводности льда χ от абсолютной температуры T в интересующем нас диапазоне температур с точностью не хуже 5% описывается интерполяционной формулой $\chi(T)\approx 5.40~{\rm Bt/(m\cdot K)\cdot \left[1-\frac{T}{456{\rm K}}\right]}$
- фазовая диаграмма воды:

2 Тепловой баланс и ледяной покров

В нашей модели планета всегда обращена к звезде одной стороной. Предположим, что толщина покрова льда мала по сравнению с радиусом планеты и центробежные силы принебрежимо малы в виду малости угловой скорости. Поэтому толщина покрова льда практически неизменна.

Также учтем что радиальный поток тепла намного больше, чем поток вдоль поверхности льда: в достаточно большом диапазоне давлений температура границы раздела вода-лед близка к температуре тройной точки $T_{tp}\approx 273~\mathrm{K}$. То есть максимальный радиальный перепад температур $T_{tp}-T_2=173~\mathrm{K}$ более чем в три раза больше максимального продольного $T_2-T_1=50\mathrm{K}$. При этом толщина льда много меньше расстояния от полюса до экватора. Тогда радиальный градиент температур много больше градиента вдоль поверхности.

2.1 Тепловой поток из недр планеты

Запишем условие теплового равновесия для небольшого объема льда на дневной стороне на широте θ :

$$q_0 + \sigma T_X^4 \cos\theta \frac{R_x^2}{r_o^2} = \sigma T^4$$

Где T_x – температура фотосферы звезды. На полюсе $(\theta = \frac{\pi}{2})$ это уравнение примет вид:

$$q_0 = \sigma T_1^4 \approx 0.35 \; {\rm Bt/m}^2$$

2.2 Толщина льда на полюсе и на экваторе

Рассмотрим геотермальный поток через слой льда толщиной dH. По закону Фурье:

$$q_0 = \chi(T) \frac{dT}{dH} \quad \Rightarrow \quad H_1 = \frac{1}{q_0} \int_{T_1}^{T_{tp}} \chi(T) dT$$

Подставим $\chi(T) \approx A \cdot [1-\beta T]$, где $A = 5{,}40~{\rm Br/(m \cdot K)},~\beta = (1/465)K^{-1}$:

$$H_1 = \frac{A}{\sigma T^4} (T_{tp} - T_1) \left(1 - \frac{\beta}{2} (T_{tp} + T_1) \right) \approx 2250 \text{M}$$
 (1)

Зная ускорение свободного падения и состав планеты, оценим ее радиус $r \sim \frac{3g}{4\pi G \rho_0} \approx 3600$ км, что подтверждает наше предположение о малости толщины льда по сравнению с радиусом планеты. Таким образом, оценка толщины льда получена с погрешностью не более 10%.

Определим по (1) толщину льда на экваторе $H_2 \approx 1600$ м. Точность данной оценки определить сложнее в виду того, что нам неизвестна точность приближения абсолютно черного тела (неизвестна отражательная способность льда).

Давление, которое создает слой льда состовляет $\rho g H_2 \approx 1.5 \cdot 10^6$ Па, что подтверждает предположение о близости температуры на нижней кромке льда к 273 К.

2.3 Температура фотосферы и распределение температуры по широтам

Согласно полученным выводам и уравнению теплового баланса для объема льда на экваторе можно записать:

$$\sigma T_X^4 \frac{R_X^2}{r_0^2} = \sigma (T_2^4 - T_1^4)$$

$$T_X = \sqrt[4]{\frac{r_o^2}{R_X^2} (T_2^4 - T_1^4)} \approx 3100 \text{K}$$

Тогда для температуры на дневной стороне на широте θ :

$$T(\theta) = \sqrt[4]{T_1^4 + (T_2^4 - T_1^4)\cos\theta}$$

3 Полынья и кратер

Пусть на экваторе в области, где температура максимальна, на участке поверхности достаточно большой площади (размеры этого участка порядка толщины льда, но намного меньше радиуса планеты) очень быстро и «бесследно» исчез весь слой льда, то есть образовалась полынья. Рассмотрим процесс заполнения данной полыньи.

Во-первых будет происходить подъем воды под действием давления соседних льдов. Вовторых над поверхностью воды образуется практически нулевое давление при температуре T_{tp} , что, согласно фазовой диаграмме, означает интенсивное испарение жидкости. При этом теплота испарения будет забираться у нижележащей воды, которая в результате будет охлаждаться и замерзать. Так как мы рассматриваем процесс установления равновесия, процессы испарения и замерзания будут происходить в одном темпе с процессом поднятия воды.

3.1 Время подъема воды

Давление над поверхностью воды будет быстро сравниваться с давлением насыщенного пара, но все равно будет много меньше давления льда $\rho g H_2$, т.е. равновесия установится за счет столба жидкости $H_0 = \frac{\rho}{\rho_0} H_2 \approx 1440$ м. Пусть вода поднялась на высоту x, ее скорость подъема V, тогда исходя из уравнения Бернулли:

$$\rho_0 gx + \frac{\rho_0 V^2}{2} \approx \rho g H_2 \quad \Rightarrow \quad V = \sqrt{2g(H_0 - x)}$$

$$\tau = \int_0^{H_0} \frac{dx}{\sqrt{2g(H_0 - x)}} = \sqrt{\frac{2H_0}{g}} = \sqrt{\frac{2\rho H_2}{g\rho_0}} \approx 54 \text{ c}$$

3.2 Образование новой кромки льда

Как было отмечено ранее, за счет испарения воды будет происходить замерзание нижних слоев воды. Согласно фазовой диаграмме, при температуре T_{tp} это будет происходить на глубине, где давление состовляет $p_3 \approx 610~\Pi$ a: $h_{\text{\tiny B}} = \frac{p_3}{\rho_0 g} = 61~\text{см}$. Тогда из уравнения теплового баланса следует:

$$ho_0 g h_{\scriptscriptstyle B} L =
ho h_0 \lambda \ \Rightarrow \ h_0 = rac{L p_3}{
ho \lambda g} pprox 4.5 \ {
m M}$$

Таким образом, в результате установления равновесия образуется кратер глубиной ≈ 160 м.

4 Замерзание тоннеля

Если слой льда в некотором месте тоньше, чем в окружающей области, то отток теплоты через тонкую «корку» при одной и той же разности температур будет существенно больше, и не будет скомпенсирован геотермальным притоком. Поэтому слой льда будет расти с течением времени t, причем поток теплоты отвердевания вместе с геотермальным потоком будет уходить из жидкости через лед наружу. Пусть толщина растущего слоя льда в некоторый момент времени t равна H. Тогда для малого промежутка времени dt:

$$\frac{1}{H} \int_{T_2}^{T_{tp}} \chi(T) dT \cdot S dt = q_0 S dt + \lambda \rho S dH \quad \Rightarrow \quad \lambda \rho \frac{dH}{dt} = \left(\frac{1}{H} - \frac{1}{H_2}\right) \int_{T_2}^{T_{tp}} \chi(T) dT$$

$$\int_{T_2}^{T_{tp}} \chi(T)dT = q_0 H_2 \quad \Rightarrow \quad t = \frac{\lambda \rho}{q_0 H_2} \int_{h_0}^{H(t)} \frac{H_2 H}{H_2 - H} dH$$

4.1 Увеличение в два раза

На начальной стадии промерзания $H(t) << H_2$ (соответственно геотермальный поток на начальных стадиях пренебрежимо мал по сравнению с оттоком теплоты, и им можно пренебречь):

$$t_1 pprox rac{\lambda
ho}{q_0 H_2} igg(rac{(2h_0)^2}{2} - rac{h_0^2}{2} igg) = rac{3\lambda
ho h_0^2}{2q_0 H_2} pprox 1,66 \cdot 10^7 \ \mathrm{c} pprox 192 \ \mathrm{земных} \ \mathrm{дня}$$

4.2 Возраст полыньи

Определим возраст полыньи с толщиной льда 100 м. Здесь верно то же приблежение, что и в предыдущем пункте:

$$t_2 pprox rac{\lambda
ho}{q_0 H_2} igg(rac{h^2}{2} - rac{h_0^2}{2}igg) pprox 2.7 \cdot 10^9
m c pprox 87$$
 земных лет

4.3 Полное восстановление

Чтобы определить время, за которое нижная кромка полыньи сравняется с окружающим льдом, воспользуемся точной формулой:

$$t = \frac{\lambda \rho}{q_0} \left[H_2 \cdot ln \left(\frac{H_2 - h_0}{H_2 - H(t)} \right) - H(T) + h_0 \right] \Rightarrow t_3 \approx 1,96 \cdot 10^{13} \text{ c} \approx 62 \text{ тыс. земных лет}$$