문서 유사도 & Clustering

성균관대학교 정윤경

Outline

- 문서 유사도
- Text clustering

문서 유사도

Euclidean distance vs. Manhattan distance

Euclidean Distance

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
 $|x_1-x_2|+|y_1-y_2|$

Manhattan Distance

$$|x_1 - x_2| + |y_1 - y_2|$$

Hamming distance

Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different

- "karolin" and "kathrin" is 3
- "karolin" and "kerstin" is 3
- 1011101 and 1001001 is 2
- 2173896 and 2233796 is 3

Levenshtein edit distance

- edit distance: minimum number of operations required to transform one string into the other
- Operations are adding/removing or substituting letters from the strings
- Uses dynamic programming algorithm to compute the edit distance

Jaccard Index

- Number of letters match
 - "Dynamo" and "yDnamo" as being identical
 - "Dynamo" and "Dyno" is a better match than "Dinomo", because "Dyno" is only four letters long and shares more letters in common.

Jaccard Index	Dynamo	dynamo	yDnamo	Dyno	Dymamo	Dinomo
Dynamo	1.00	0.71	1.00	0.67	0.83	0.57
dynamo	0.71	1.00	0.71	0.43	0.57	0.38
yDnamo	1.00	0.71	1.00	0.67	0.83	0.57
Dyno	0.67	0.43	0.67	1.00	0.50	0.50
Dymamo	0.83	0.57	0.83	0.50	1.00	0.43
Dinomo	0.57	0.38	0.57	0.50	0.43	1.00

Jaccard Index


```
def jaccard(str1, str2):
    a = set(str1.lower().split())
    b = set(str2.lower().split())
    c = a.intersection(b)
    return float(len(c)) / (len(a) + len(b) - len(c))
```

nltk.metrics.distance module

```
>>> from nltk.metrics import *
>>> edit_distance("rain", "shine") # Levenshtein edit-distance
3
>>> s1 = set([1,2,3,4])
>>> s2 = set([3,4,5])
>>> print(jaccard_distance(s1, s2))
0.6
>>> print(jaccard_distance(set('rain'), set('shine')))
0.7142857142857143
```


Cosine similarity

$$similarity = cos(\Theta) = rac{A \cdot B}{||A|| \ ||B||} = rac{\sum_{i=1}^n A_i imes B_i}{\sqrt{\sum_{i=1}^n (A_i)^2} imes \sqrt{\sum_{i=1}^n (B_i)^2}}$$

코사인 유사도 : -1

코사인 유사도: 0

코사인 유사도:1


```
from konlpy.tag import Okt
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine similarity
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
x data = np.array(['영희가 사랑하는 강아지 백구를 산책시키고 있다.',
    '철수가 사랑하는 소 누렁이를 운동시키고 있다.'.
    '영희와 철수는 소와 강아지를 산책 및 운동시키고 있다.'])
twitter = Okt()
for i, document in enumerate(x data):
  nouns = twitter.nouns(document)
  x data[i] = ' '.join(nouns)
print(x data)
vect = TfidfVectorizer()
x data = vect.fit transform(x data)
cosine_similarity_matrix = cosine_similarity(x_data, x_data)
print(cosine similarity matrix)
sns.heatmap(cosine similarity matrix.toarray(), cmap='viridis')
plt.show()
```

['영희 사랑 강아지 백구 산책', '철수 사랑 소 누렁이 운동', '영희 철수 소 강아지 산책 및 운동']

[[1. 0.19212486 0.56053185] [0.19212486 1. 0.4113055] [0.56053185 0.4113055 1.]]

출처: https://wikidocs.net/76349

유사도를 이용한 추천 시스템 구현하기

- 코드 출처: https://wikidocs.net/24603
- 데이터셋 출처 : https://www.kaggle.com/rounakbanik/the-movies-dataset
- movies_metadata.csv: 총 24개의 열을 가진 45,466개의 샘플로 구성된 영화 정보 데이터
- Adult, belongs_to_collection, budget, genres, homepage, id, imdb_id, original_language,
 original_title, overview, popularity, poster_path, production_companies, production_countries,
 release_date, revenue, runtime, spoken_languages, status, tagline, title, video, vote_average,
 vote_count


```
import pandas as pd
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine similarity
data = pd.read csv('movies metadata.csv', low memory=False)
data = data.head(20000)
data['overview'] = data['overview'].fillna(") # 결측값을 빈 값으로 대체
tfidf = TfidfVectorizer(stop words='english')
tfidf matrix = tfidf.fit transform(data['overview'])
cosine sim = cosine similarity(tfidf matrix, tfidf matrix)
#영화의 타이틀을 key, 영화의 인덱스를 value로 하는 딕셔너리
title to index = dict(zip(data['title'], data.index))
def get recommendations(title, cosine sim=cosine sim):
  # 선택한 영화 제목으로 인덱스 검색
  idx = title to index[title]
  # 해당 영화와 모든 영화와의 유사도
  sim scores = list(enumerate(cosine sim[idx]))
  sim scores = sorted(sim scores, key=lambda x: x[1], reverse=True)
  sim scores = sim scores[1:11]
  # 가장 유사한 10개의 영화의 인덱스 리턴
  movie indices = [idx[0] for idx in sim_scores]
  # 가장 유사한 10개의 영화의 제목을 리턴
  return data['title'].iloc[movie indices]
```

get recommendations('The Dark Knight Rises')

12481 The Dark Knight
150 Batman Forever
1328 Batman Returns
15511 Batman: Under the Red Hood
585 Batman
9230 Batman Beyond: Return of the Joker
18035 Batman: Year One
19792 Batman: The Dark Knight Returns, Part 1
3095 Batman: Mask of the Phantasm
10122 Batman Begins

출처: https://wikidocs.net/76349

Text Clustering

Text Clustering

Feature Vectors => Similarity, Distance between documents

K-means algorithm

Hierarchical Clustering – Dendrogram

Clustering evaluation with ground truth labels

- Homogeneity: quantifies how much clusters contain only members of a single class
- Completeness: quantifies how much members of a given class are assigned to the same clusters
- V-measure: harmonic mean of completeness and homogeneity
- Rand-Index: measures how frequently pairs of data points are grouped consistently
- Adjusted Rand-Index, a chance-adjusted Rand-Index such that a value close to 0.0 for random
 labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings
 are identical

Clustering evaluation without ground truth labels

- **Silhouette Coefficient** estimates how well samples are clustered with other samples that are similar to each other. Silhouette score is calculated for each sample of different clusters.
 - Mean distance (a) between the observation and all other data points in the same cluster. This
 distance can also be called as mean intra-cluster distance.
 - Mean distance (b) between the observation and all other data points of the next nearest cluster. This distance can also be called as mean nearest-cluster distance.

$$S = \frac{(b-a)}{max(a,b)}$$

The value of the score varies from -1 to 1.

1: the cluster is dense and well-separated than other clusters

0: overlapping clusters with samples very close to the decision boundary of the neighbouring clusters

a negative score [-1, 0] indicates that the samples might have got assigned to the wrong clusters.

Newsgroup clustering example

```
import numpy as np
from sklearn.datasets import fetch_20newsgroups

categories = [ "alt.atheism", "talk.religion.misc", "comp.graphics", "sci.space"]

dataset = fetch_20newsgroups(
   remove=("headers", "footers", "quotes"),
   subset="all",
   categories=categories,
   shuffle=True,
   random_state=42)

labels = dataset.target
   unique_labels, category_sizes = np.unique(labels, return_counts=True)
   true_k = unique_labels.shape[0]

print(f"{len(dataset.data)} documents - {true_k} categories")
```

- 데이터 로딩
- 4개의 카테고리, 3387 문서
- 출처: https://scikit-learn.org/stable/auto_examples/text/plot_document_cluste ring.html

3387 documents - 4 categories


```
from collections import defaultdict
from sklearn import metrics
def fit and evaluate(km, X, n runs=5):
  scores = defaultdict(list)
  for seed in range(n runs):
     km.set params(random state=seed)
     km.fit(X)
     scores["Homogeneity"].append(metrics.homogeneity score(labels, km.labels ))
     scores["Completeness"].append(metrics.completeness score(labels, km.labels ))
     scores["V-measure"].append(metrics.v measure score(labels, km.labels ))
     scores["Adjusted Rand-Index"].append(metrics.adjusted rand score(labels, km.labels))
     scores["Silhouette Coefficient"].append(metrics.silhouette score(X, km.labels , sample size=2000))
  for score name, score values in scores.items():
     mean score, std score = np.mean(score values), np.std(score values)
     print(f"{score name}: {mean score:.3f} ± {std score:.3f}")
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max df=0.5, min df=5, stop words="english",)
X tfidf = vectorizer.fit transform(dataset.data)
```

kmeans = KMeans(n_clusters=true_k, max_iter=100, n_init=5)

fit and evaluate(kmeans, X tfidf)

clustering done in 0.19 ± 0.05 s Homogeneity: 0.347 ± 0.009 Completeness: 0.397 ± 0.006 V-measure: 0.370 ± 0.007

Adjusted Rand-Index: 0.197 ± 0.014

Silhouette Coefficient: 0.007 ± 0.000

Summary

- Similarity between two words/sentences is associated with their distance
- Distance metrics
- Document recommendation
- Text clustering using K-means algorithm