

METODOLOGÍA DE LA PROGRAMACIÓN

Grado en Ingeniería Informática de Gestión y Sistemas de Información Escuela de Ingeniería de Bilbao (UPV/EHU) Departamento de Lenguajes y Sistemas Informáticos

Curso: 1º – Curso académico: 2018-19

14 de febrero de 2019

Examen parcial – Tema 2: Documentación – Grupo 01 – 2 puntos

EJERCICIO 1 – (1,100 puntos)

a) (0,075 puntos) Definir el predicado **mayor_igual(G(1..r), H(1..r), x)** que exprese que, posición a posición, si el valor de G(1..r) es un 1, el valor de H(1..r) es mayor o igual que x. **Ejemplo:**

Los vectores G(1..8) y H(1..8) de este ejemplo cumplen mayor_igual(G(1..8), H(1..8), 20)

G(18)	5	1	1	12	4	1	0	1
	1	2	3	4	5	6	7	8
H(18)	10	88	23	12	50	20	3	40
11(10)	10	2	3	4	5	6	7	8

b) (0,025 puntos) Definir el predicado **bits**(**I**(1..**r**)) que exprese que el vector **I**(1..**r**) solo contiene ceros y unos.

Ejemplo: El vector I(1..8) de este ejemplo cumple **bits**(**I(1..8**))

I(18)	0	0	1	0	1	1	1	1
	1	2	3	4	5	6	7	8

c) (0,100 puntos) Definir el predicado

 $\begin{array}{l} \text{division}(D(1..r), (d_1, d_2, ..., d_r), E(1..r), (e_1, e_2, ..., e_r), F(1..r), (f_1, f_2, ..., f_r), pos) \\ \text{que exprese lo siguiente:} \end{array}$

- pos es mayor o igual que 0 y menor o igual que r.
- En las posiciones k comprendidas entre 1 y pos (las posiciones 1 y pos incluidas):
 - $ightharpoonup Si f_k$ es 1, entonces el valor de D(k) es d_k / e_k , el valor de E(k) es $(((d_k / e_k) + 1) * e_k) d_k$ y el valor de F(k) es f_k . Por tanto, en D(k) se tiene el resultado de la división entera entre d_k y e_k y en E(k) se tiene la diferencia (positiva) entre d_k y el primer múltiplo de e_k que es mayor que d_k .
 - ightharpoonup Si f_k no es 1, entonces el valor de D(k) es d_k , el valor de E(k) es e_k y el valor de F(k) es f_k .

Ejemplo:

Los vectores D(1..8), (5, 19, 10, 20, 10, 30, 38, 40), E(1..8), (8, 4, 15, 6, 15, 20, 32, 43), F(1..8) y (30, 1, -5, 1, 1, 15, -4) de este ejemplo cumplen lo siguiente:

division(D(1..8), (**5**, **19**, **10**, **20**, **10**, 30, 38, 40), E(1..8), (**8**, **4**, **15**, **6**, **15**, 20, 32, 43), F(1..8), (**30**, **1**, -**5**, **1**, **1**, 1, 15, -4), **5**)

siendo D(1..8), E(1..8) y F(1..8) los siguientes vectores:

		19 / 4		20 / 6	10 / 15			
D(18)	5	4	10	3	0	30	38	17
_	1	2	3	4	5	6	7	8
				0	•			
-		α		β	δ		1	1
E(18)	8	1	15	4	5	20	32	-6
_	1	2	3	4	5	6	7	8
F(18)	30	1	-5	1	1	1	15	-4
	1	2	3	4	5	6	7	8

donde $\alpha = (((19/4) + 1) * 4) - 19$, $\beta = (((20/6) + 1) * 6) - 20$ y $\delta = (((10/15) + 1) * 15) - 10$ Para esos mismos vectores, no se cumple:

division(D(1..8), (<u>5, 19, 10, 20, 10, 30, 38, 40</u>), E(1..8), (<u>8, 4, 15, 6, 15, 20, 32, 43</u>), F(1..8), (<u>30, 1, -5, 1, 1, 1, 15, -4</u>), <u>6</u>)

porque en la posición 6 los vectores D, E y F deberían tener los valores 1 (30/20), 10 ((((30/20) + 1) * 20) – 30) y 1 respectivamente, en vez de los valores 30, 20 y 1.

- d) (0,900 puntos) **Documentar**, dando las fórmulas que se cumplen en los puntos indicados y utilizando los predicados definidos en los apartados anteriores, el siguiente programa que:
 - Recibe como datos de entrada tres vectores de enteros A(1..n), B(1..n) y C(1..n) donde n ≥ 1 y donde, C(1..n) solo contiene ceros y unos, y posición a posición, siempre que en C(1..n) se tenga un 1, en A(1..n) se tiene un valor mayor o igual que 0 y en B(1..n) se tiene un valor mayor o igual que 1.
 - ➤ Como <u>resultado</u>, para cada posición k comprendida entre 1 y n, si el valor inicial de C(k) es 1, A(k) contendrá el resultado de la división entera de los valores iniciales de A(k) y B(k); por su parte, B(k) contendrá la diferencia (positiva) entre el valor inicial de A(k) y el primer múltiplo del valor inicial de B(k) que es mayor que el valor inicial de A(k); en cuanto a C(k), conserva su valor inicial. Si el valor inicial de C(k) no es 1, los tres vectores conservan su valor inicial.

(1) {Precondición}	0,060	Puntuación que
i : = 1;	-,	corresponde a
(2) {Aserción intermedia}	0,005	cada fórmula
while (3) {Invariante} $i \le n$ loop	0,200	
(4) {Aserción intermedia}	0,010	
if $C(i) = 1$ then		
(5) {Aserción intermedia}	0,010	
aux := A(i) / B(i);		
(6) {Aserción intermedia}	0,050	/ es la división
B(i) := ((aux + 1) * B(i)) - A(i);		entera.
(7) {Aserción intermedia}	0,150	Ejemplos:
A(i) := aux;		9/4 = 2
(8) {Aserción intermedia}	0,150	12 / 9 = 1
end if;		8/4 = 2
(9) {Aserción intermedia}	0,050	
i := i + 1;		
(10) {Aserción intermedia}	0,100	
end loop;		
(11) {Postcondición}	0,090	
(12) {Expresión cota E}	0,025	

EJERCICIO 2 – (0,900 puntos)

a) (0,020) Definir el predicado **multiplo(x, y)** que exprese que **x** es un múltiplo de **y**, es decir, el resto de dividir **x** por **y** es cero.

Ejemplos:

multiplo(8, 4) es True porque el resto de dividir el número 8 por 4 es 0. En cambio, multiplo(9, 4) es False porque el resto de dividir el número 9 por 4 no es 0. De la misma forma, multiplo(4, 8) es False porque el resto de dividir el número 4 por 8 no es 0.

- b) (0,880 puntos) **Documentar** dando las fórmulas que se cumplen en los puntos indicados y utilizando el predicado definido en el apartado anterior, el siguiente programa que:
 - Recibe como <u>datos de entrada</u> cuatro números enteros p, q, v y w donde p es mayor o igual que 1, q es mayor o igual que p + 1, v es mayor o igual que q + 1 y w es mayor o igual v.
 - Como <u>resultado</u>, devuelve en la variable *mc* el número de múltiplos comunes de p y q en el intervalo [v..w].

		1
(1) {Precondición}	0,010	Puntuación
h := v - 1;		que
(2) {Aserción intermedia}	0,005	corresponde a
mc := 0;		cada fórmula
(3) {Aserción intermedia}	0,005	←
while (4) {Invariante} $h \le w - 1$ loop	0,210	
(5) {Aserción intermedia}	0,030	
aux : = $(((h + 1) \text{ mod } p) = 0) \text{ and } (((h + 1) \text{ mod } q) = 0);$		
(6) {Aserción intermedia}	0,040	
<u>if</u> aux = True <u>then</u>		mod es el resto
(7) {Aserción intermedia}	0,040	de la división
mc := mc + 1;		entera.
(8) {Aserción intermedia}	0,180	Ejemplos:
<u>end</u> <u>if</u> ;		$9 \mod 4 = 1$ $12 \mod 9 = 3$
(9) {Aserción intermedia}	0,050	$8 \mod 4 = 0$
h := h + 1;		8 mod 4 = 0
(10) {Aserción intermedia}	0,180	
end loop;		
(11) {Postcondición}	0,100	
(12) {Expresión cota E}	0,030	