

DEPARTAMENTO	MATEMATICAS PURAS Y APLICADAS			
ASIGNATURA	FS2212 FISICA IV			
HORAS/SEMANA	T : 3	P:2	L:0	U : 3
REQUISITOS	FS2211, MA2115			

PROGRAMA

OBJETIVO GENERAL DEL CURSO

El estudiante debe desarrollar competencias para el uso de algunas de las leyes fundamentales del electromagnetismo tales como las leyes de Ampere, Faraday, Lenz y las ecuaciones de Maxwell, así como para el manejo de los conceptos básicos de la óptica geométrica.

CONTENIDOS

- 1.- LEY DE AMPERE. Cálculo del campo de un alambre largo y recto. Líneas de inducción magnética. Conductores paralelos. Calculo del campo para un solenoide.
- 2.- PROPIEDADES MAGNETICAS DE LA MATERIA. Diamagnetismo y Paramagnetismo.
- 3.- INDUCCION ELECTROMAGNETICA. Ley de Faraday. Ley de Lenz. Campos eléctricos inducidos. Campos magnéticos variables con el tiempo. Inducción e inductores. Cálculo de la inductancia. Energía en inductores y en el campo magnético.
- 4.- CORRIENTES ELECTRICAS VARIABLES. Circuitos RL, LC, RLC. Circuitos de Corriente Alterna.
- 5.- ECUACIONES DE MAXWELL Y ONDAS ELECTROMAGNETICAS. Corriente de desplazamiento. Ecuaciones de Maxwell. Ecuaciones de ondas EM. Ondas planas y velocidad de propagación. Energía y vector de Poynting.
- 6.- OPTICA GEOMETRICA. Construcción de Huygens. Reflexión y refracción en superficies planas. Reflexión total interna. Reflexión y Refracción en superficies esféricas.

ESTRATEGIAS METODOLÓGICAS

La estrategia metodológica para la ejecución del curso es la de clases magistrales con ciclos de preguntas y respuestas y discusión colectiva, sesiones prácticas guiadas, consulta individual, apoyo audiovisual y demostraciones.

ESTRATEGIAS DE EVALUACIÓN

Las estrategias de evaluación consisten en evaluaciones de tipo escrito y ejercicios, tareas y/o asignaciones para fuera del aula

FUENTES DE INFORMACIÓN

- 15. Sears, Zemansky, Young, Freedman, Física Universitaria, Vol. II. Pearson Addison Wesley.
- 16. E. Eisberg, L. Lerner, Física. Mc.Graw-Hill.
- 17. R. Resnick, D. Halliday, Física para estudiantes de ciencias e ingeniería. Compañía Editorial Continental.
- 18. D. Giancoli, Física General. Prentice Hall
- 19. R. Serway, Física. INTERAMERICANA.
- 20. Berkeley Physics Course, vol. II (Electricidad y Magnetismo). Ed. Reverté.