Genotype and SNP calling and estimation of allele frequencies

https://github.com/mfumagalli/Copenhagen

Matteo Fumagalli

We are bioinformaticians thats what we do Sample preparation Sequencing Rawdata Gene identification Novel genes Discoveries...etc http://biocomicals.blogspot.com

Sanger sequencing

aka first/former generation sequencing

Next Generation Sequencing

A. Extracted gDNA

B. gDNA is fragmented into a library of small segments that are each sequenced in parallel.

C. Individual sequence reads are reassembled by aligning to a reference genome

D. The whole-genome sequence is derived from the consensus of aligned reads.

From genomes to variants

Genome (FASTA)

TAATCCGCACGCTTTAGACTCCCCGGCTGTGATTTTTTGACAATGGCTCGGGGTTCTGCAAAGCGGGCCCTG
TCTGGGGAGTTTGGACCCCGGCACATGGTCAGCTCCATCGTGGGCACCTGAAATTCCAGGCTCCCTCAG

EASTO)

Reads (FASTQ) CCAATGATTTTTTCCGTGTTTCAGAATACGGTTAA +SRR038845.41 HWI-EAS038:6:1:0:1474

+SRR038845.41 HWI-EA5038:6:1:0:1474 length=36 BCCBA@BB@BBBBBBBBBBBBBBBBBAB&A:@693:@B= @SRR038845.53 HWI-EA5038:6:1:1:360 length=36 GTTCAAAAAGACTAAATTCTGTCAATAGAAAACTC +SRR038845.53 HWI-EA5038:6:1:1:360 length=36

Mapped Reads (mpileup, BAM)

seq1				,.\$,,.,.,
seq1	273	T	23	,,
seql	274	T	23	,.\$,
seq1	275	Α	23	,\$,1
seq1	276	G	22	T,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
segl	277	T	22	,,,,,,C.,,,,,G. +7<;<<<<<&<<<<<<<<<<<<<<<<<<
seq1	278	G	23	,^k. \\$38*<<;<7<<7<=<<;<<<<
seg1				AT,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Variants (VCF)

		•		,						
	ormat=VC									
	ate=2014									
##sourc	e=23andn	e2vcf.pl	https	://githul	.com/arr	ogantrobo	t/23and	lne2vcf		
##refer	ence=fil	e://23and	ne_v3	hg19_re	f.txt.gz					
##FORMA	T= <id=gt< td=""><td>,Number=1</td><td>, Type</td><td>String,</td><td>Descripti</td><td>on="Genot</td><td>ype"></td><td></td><td></td><td></td></id=gt<>	,Number=1	, Type	String,	Descripti	on="Genot	ype">			
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	GENOT	YPE
chr1	82154	rs447721	2	a					GT	•
/0										
chr1	752566	rs309431	5	g	A				GT	- 1
/1										
chr1	752721	rs313197	2	A	G				GT	- 1
/1										
chr1	798959	rs112407	77	9					GT	•
/0										
chr1	800007	rs668104	9	T	C				GT	1
/1										

Forget about

Statistical inference

Likelihood approach:

- All the information on the parameter is in the likelihood function (we use all the data!).
- · More data leads to less bias and less variance.
- · Suitable for hypothesis testing.

The data

• is a nucleotide/base/allele with a certain quality score

Genotype likelihoods

Likelihood

$$P(D|G = \{A_1, A_2, ..., A_n\})$$

with
 $A_i \in \{A, C, G, T\}$ and n being the ploidy

How many genotypes likelihoods do we need to

How many genotypes likelihoods do we need to calculate for each each individual at each site?

Imperial College London Genotype likelihoods

Calculating genotype likelihoods

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

- $\bullet \ L_{A_j,i} = P(D|A_G = A_j)$
- $A_i \in \{A, C, G, T\}$
- R is the depth (nr. of reads)
- N is the ploidy (nr. of chromosomes)

Example:

AAAG, all with quality score equal to 20 (in phred score) P(D|G = AC) = ?

Calculating genotype likelihoods

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^{R} \sum_{j=1}^{N} \frac{L_{A_j, i}}{N}$$

A

Α.

Α

G

& Q=20

$$P(D|G = \{A, C\}) = ...$$

Calculating genotype likelihoods

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

```
A
A
A
G
& Q=20
N = 2; i = 1; A_1 = A; A_2 = C
```

$$P(D|G = \{A, C\}) = (\frac{L_{A,1}}{2} + \frac{L_{C,1}}{2}) \times ...$$

What are $L_{A,1}$ and $L_{C,1}$?

Calculating genotype likelihoods

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^{R} \sum_{j=1}^{N} \frac{L_{A_j, i}}{N}$$

AAAG & Q=20

$$L_{C,1} = \frac{\epsilon}{3}$$

$$L_{A,1} = 1 - \epsilon$$

$$P(D|G = \{A, C\}) = (\frac{1-\epsilon}{2} + \frac{\epsilon}{6}) \times \dots$$

Calculating genotype likelihoods

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^{R} \sum_{j=1}^{N} \frac{L_{A_j, i}}{N}$$

AAAG & Q=20

$$L_{C,1} = \frac{\epsilon}{3}$$

$$L_{A 1} = 1 - \epsilon$$

$$P(D|G = \{A, C\}) = (\frac{1-\epsilon}{2} + \frac{\epsilon}{6})^3 \times \frac{\epsilon}{3}$$

What is ϵ ?

Calculating genotype likelihoods

Genotype	Likelihood (log10)	
AA	-2.49	•
AC	-3.38	
AG	-1.22	Α
AT	-3.38	Α
CC	-9.91	Α
CG	-7.74	G
CT	-9.91	$\epsilon = 0.01$
GG	-7.44	
GT	-7.74	
TT	-9.91	

Genotype calling

Genotype	Likelihood (log10)
AA	-2.49
AC	-3.38
AG	-1.22
AT	-3.38
CC	-9.91
CG	-7.74
CT	-9.91
GG	-7.44
GT	-7.74
TT	-9.91

AAAG & $\epsilon = 0.01$

What is the genotype here?

Genotype calling

Genotype	Likelihood (log10)		
AA	-2.49		
AC	-3.38		
AG	-1.22		
AT	-3.38		
CC	-9.91		
CG	-7.74		
CT	-9.91		
GG	-7.44		
GT	-7.74		
TT	-9.91		

AAAG & $\epsilon = 0.01$ What is the genotype? AG.

Maximum Likelihood

The simplest genotype caller: choose the genotype with the highest likelihood.

Major and minor alleles

Likelihood function

$$\log P(D|G = A) = \sum_{i=1}^{R} \log L_{A_j,i}$$

AAAG & $\epsilon = 0.01$

Allele	Likelihood		
Α	-2.49		
C	-3.38		
G	-1.22		
Т	-3.38		

We can reduce the genotype space to 3 entries (from 10).

Imperial College London Genotype calling

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood		
AA	-5.73		
AG	-2.80		
GG	-17.12		

Examples varying qualities and reads... open Julia script.

Genotype likelihood ratio

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

i.e. t=1 meaning that the most likely genotype is 10 times more likely than the second most likely one Pros and cons?

- Yes:
- No:

Genotype likelihood ratio

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

i.e. t=1 meaning that the most likely genotype is 10 times more likely than the second most likely one

Pros and cons?

- Yes: genotype are called with higher confidence
- No: more missing data

Practical: genotype likelihoods and (basic) genotype calling https://github.com/mfumagalli/Copenhagen

Imperial College London Statistical thinking

Figure 1: Nessie, the Loch Ness Monster. True or fake?

Statistical thinking

- $D = \{0, 1\}$, whether I tell you I saw Nessie or not.
- $N = \{0, 1\}$, whether Nessie exists or not.

Questions

- What are p(D = 1|N = 1) and p(D = 1|N = 0)?
- What is a Maximum Likelihood Estimate of N?

Imperial College London Statistical thinking

Our inference on N, our parameter, is driven solely by our observations, given by our likelihood function.

Figure 2: The eye: a "likelihood" organ.

Statistical thinking

In real life we take many decisions based not only on what we observe but also on some believes of ours.

Figure 3: The brain: a "non-likelihood" organ.

Bayesian thinking

- with "eyes only" our intuition is that $p(N|D) \approx p(D|N)$
- with "the brain" our intuition is that $p(N|D) \approx p(D|N)p(N)$

Our "belief" expresses the probability p(N) unconditional of the data.

Question

How can we define p(N)?

Imperial College London Bayesian thinking

The "belief" function p(N) is called **prior probability** and the joint product of the likelihood p(D|N) and the prior is proportional to the **posterior probability** p(N|D).

The use of posterior probabilities for inferences is called Bayesian statistics.

If D is the data and θ is your unknown parameter, then

- the frequentist conditions on parameters and integrates over the data, $p(D|\theta)$,
- the Bayesian conditions on the data and integrates over the parameters, $p(\theta|D)$.

Statistical inference

Bayesian vs. Likelihoodist

- we derive "proper" probability distributions of our parameters rather than deriving a point estimate;
- a probability is assigned to a hypothesis rather than a hypothesis is tested;
- we can "accept" the null hypothesis rather than "fail to reject" it;
- parsimony imposed in model choice rather than correcting for multiple tests.

Bayesian inference

Bayesian concepts

Bayes' Theorem

$$\rho(\vec{\theta}|\vec{y}) = \frac{f(\vec{y}|\vec{\theta})\pi(\vec{\theta})}{m(\vec{y})} = \frac{f(\vec{y}|\vec{\theta})\pi(\vec{\theta})}{\int f(\vec{y}|\vec{\theta})\pi(\vec{\theta})d\vec{\theta}}$$
(1)

- $\vec{\theta}$ is not a fixed parameter but a random quantity with prior distribution $\pi(\vec{\theta})$
- $p(\vec{\theta}|\vec{y})$ is the posterior probability distribution of $\vec{\theta}$
- $\int p(\vec{\theta}|\vec{y})d\vec{\theta} = 1$

Genotype posterior probability

Α

Α

Α

G

 $\epsilon = 0.01$

A,G alleles

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73		
AG	-2.80		
GG	-17.12		

Genotype posterior probability

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	1/3	0.05
AG	-2.80	1/3	0.95
GG	-17.12	1/3	0

Only call genotypes if the largest probability is above a certain threshold (e.g. 0.95).

Genotype posterior probability

AAAG &
$$\epsilon=0.01$$
 & A,G alleles & **A** is the reference allele $P(AA)>P(AG)>P(GG)$

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.80	0.22
AG	-2.80	0.15	0.78
GG	-17.12	0.05	0

The reference allele is just one of the possible alleles, often chosen arbitrarily: why give it so much weight?

Genotype posterior probability

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from a reference panel P(AA) = ?; P(AG) = ?; P(GG) = ?

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73		
AG	-2.80		
GG	-17.12		

Genotype posterior probability

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from a reference panel P(AA) = ?; P(AG) = ?; P(GG) = ?

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.06
AG	-2.80	0.42	0.94
GG	-17.12	0.09	0

If the assumption of HWE can be reasonably met.

Empirical Bayesian inference

Genotype posterior probability AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.6 from the data itself P(AA) = ?; P(AG) = ?; P(GG) = ?

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.04
AG	-2.80	0.42	0.96
GG	-17.12	0.09	0

- if the assumption of HWE can be reasonably met
- if you have enough samples to have a robust estimate of the allele frequencies

Practical: genotype calling

https://github.com/mfumagalli/Copenhagen

Genotype posterior probability

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.6 from the data itself

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.04
AG	-2.80	0.42	0.96
GG	-17.12	0.09	0

- if the assumption of HWE can be reasonably met
- if you have enough samples to have a robust estimate of the allele frequencies

How can we estimate allele frequencies?

Estimating allele frequencies

Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4

What is the simplest estimator of allele frequencies?

Estimating allele frequencies
Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{A,i}}{\sum_{i=1}^{N} (n_{A,i} + n_{G,i})}$$

 $\hat{f} = 0.75$

What is wrong with this estimator?

Estimating allele frequencies Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{n_A} = \sum_{i=1}^{N} (1 - \epsilon) n_{A,i} + \epsilon n_{G,i} - \epsilon n_{A,i} - (1 - \epsilon) n_{G,i}$$

$$\hat{f} = 0.77$$

Estimating allele frequencies

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g)P(G = g|f)$$

Estimating allele frequencies

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g)P(G = g|f)$$

P(D|G = g) is the genotype likelihood and P(G = g|f) is given by HWE (for instance).

In our previous example, $\hat{f}=0.46$ which is much closer to the true value than previous estimators.

Imperial College London SNP calling

Challenges

- If high levels of missing data, then genotypes can be lost.
- Rare variants are hard to detect.
- Trade off between false positive and false negative rates.

How to call SNPs?

- If at least one heterozygous genotype has been called.
- If the estimated allele frequency is above a certain threshold.

Imperial College London SNP calling

Call a SNP if

$$\hat{f} \geq t$$

where t can be the minimum sample allele frequency detectable (e.g. t = 1/2N with N diploids).

Likelihood Ratio Test

A Likelihood Ratio Test (LRT) compares the goodness of fit between the null and the alternative model:

- Null model: f = 0
- Alternative model: $f \neq 0$

$$T = -2\log\frac{L(f=0)}{L(f=\hat{f}_{MLE})}$$

where T is χ^2 distributed with 1 degree of freedom.

Practical: allele frequencies and SNP calling https://github.com/mfumagalli/Copenhagen

SNP calling procedures

Alignment-based caller

We completely rely on how reads have been mapped

Figure from Erik Garrison

SNP calling procedures

- Assembly-based caller (as in GATK)
- Local re-alignment around putative variants; better resolution for INDELs detection.
- Haplotype-based caller (as in freebayes)

Figure from Erik Garrison

Haplotype imputation

Haplotype imputation - simplified Reference 1000 Genomes Reference data Phased using family structures new data partial information New data Imputed data Probabilistic approach · The results retains the Imputed data uncertainty of both the genotype and the haplotypes Anders Albrechtsen

Haplotype imputation

Haplotype imputation

Reference

haplotype frequencies

new data

 Data with known and unknown genotypes

first haplotype

$$p(? = T) = \frac{0.56}{0.56 + 0.03} = 0.95$$
$$p(? = A) = \frac{0.03}{0.56 + 0.03} = 0.05$$

second haplotype

$$p(? = T) = \frac{0.21}{0.21 + 0.2} = 0.51$$

 $p(? = A) = \frac{0.2}{0.21 + 0.2} = 0.49$

Anders Albrechtsen

Haplotype imputation

Haplotype imputation - simplified

Bayes formula

$$p(H = h|f,G) = P(G|H=h)P(H=h|f)$$

$$\sum_{h'} P(G|H=h')P(H=h'|f)$$

P(G|H=h)

1 if consistent

0 otherwise

first haplotype

$$p(? = T) = \frac{0.56}{0.56 + 0.03} = 0.95$$

 $p(? = A) = \frac{0.03}{0.56 + 0.03} = 0.05$