Qualcomm Research

RaptorQ Forward Error Correction Technology Overview and Use Cases

October 2012

Presentation Contents

- Raptor Forward Error Correction Technology
- RaptorQ File Delivery Service Overview diagram
- RaptorQ FEC Solves Digital Media Challenges
- FEC Implementation Considerations for File Delivery using RaptorQ chart
- RaptorQ File Delivery: FLUTE example
- RaptorQ Streaming Video/Media Protection Process Overview diagram
- FEC Implementation Considerations for Streaming Video/Media using RaptorQ chart
- RaptorQ Streaming Implementation: FEC Framework
- Challenges of adding FEC and RaptorQ Advantages chart
- Use Case: File Delivery Services over Satellite Networks
- Use Case: Mobile Live Broadcasting
- Use Case: Streaming Video Conferencing within the Enterprise
- Use Case: Mobile File Delivery Services over Cellular Networks
- Use Case: IP Set-Top-Box Streaming Video Service
- Raptor Technology Solutions Summary
- Products and Business Model

Raptor Forward Error Correction Technology

Raptor is generically known as Application Layer-FEC (AL-FEC) and can be integrated into software to improve a wide range of content delivery solutions. FEC technologies solve network packet loss by sending repair data in addition to the original source data.

RaptorQ is the latest Raptor version and has the best performance of any AL-FEC code. Raptor Technology encodes original data at the sender and then decodes it at the receiver from an amount of received encoded data only slightly greater than the original source data, regardless of which specific data has been received.

Key Benefits:

- Improves customer QoS
- Reduces operating costs
- Eliminates HW expense
- Improves timeliness
- Superior for mobile apps

Why is Raptor the best FEC choice:

- Efficiency very fast encode/decode, low cost/power device
- Superior Performance HD video, high-speed data transfer
- Flexibility low latency streaming to large file transfer
- Versatile device/network/operating system agnostic
- Cost Effective software only solution for easy integration

Where is the biggest Benefit?

- Networks with high/bursty packet loss, large latencies, intermittent connectivity
- Sending very large files efficiently over the network using less bandwidth and memory
- Receiving large files (movies) on memory constrained devices (handsets/STB)
- Enabling HD streaming with existing hardware
- Services without a backchannel (i.e. over UDP) t require high QoS content delivery

RaptorQ File Delivery Service Overview

Reliable and Efficient File Delivery Over any Network to any Device

Forward Error Correction (FEC) Technology

RaptorQ solves digital media delivery challenges

Traditional Approach

FEC protects against network packet loss

RaptorQ complements traditional error coding

Frotects against Data Corruption, Usually in Hardware

Protects against Data Lost in Transmission, Usually Software

RaptorQ is a systematic fountain code

- Encoding = source + repair generated from the source
- Efficiently generate as much repair as desired, on the fly
- Recovery of source is possible if enough encoding is received
 Independent of what is lost
- Can dynamically change the amount of repair based on loss

RaptorQ - the most advanced software FEC

- Highly efficient allows excellent data recovery
- Optimized for mobile
- Wide range of applications

RaptorQ is used in an application specific manner

- Software only
- File delivery encode the entire file as a block or a set of sub-blocks if receiver memory is limited
- Streaming encode blocks of the stream
- Can be used at MAC layer to protect all data

RaptorQ is IETF standards RFC 6330 & 6681

FEC Implementation Considerations for File Delivery using RaptorQ

Application layer FEC is used in file delivery solutions to protect against data loss. Technical and business challenges require trade-offs decisions when choosing and implementing a file delivery solution using FEC.

Challenge	Solution	RaptorQ Advantage	How to implement
Maximize file protection in	Sending the file as a single	Very CPU efficient encoding and	Object files up to 3.4GB can
the most efficient way.	source block maximizes	decoding algorithm, particularly	be sent as a single source
	decoding efficiency and	for sending source blocks.	block.
	protection due to time diversity		
	(spreading the protection across		
	the whole file).		
Recovery of file using	Recover small portions of the file	Sub-blocking algorithm preserves	Partion large source blocks
limited available receiver	at a time.	the time diversity advantage of	into multiple sub-blocks
memory.		using larger source blocks, while	based on the size of
		providing efficient memory	available receiver memory.
		decoding of one sub-block at a	
		time.	

RaptorQ has been optimized to be the best performing and most flexible FEC for file delivery services, particularly those with very large files.

RaptorQ is RFC 6330, IETF FEC standard for object delivery over WWAN.

RaptorQ File Delivery: FLUTE Example

Properties of Qualcomm implementation of RaptorQ FEC Scheme codecs:

- Highly portable C code
- •Very fast, patented algorithms and data structures
- •Excellent decoder CPU performance
- •Verified to be compliant to RaptorQ specification

RaptorQ Streaming Video/Media Protection Process Overview

FEC Implementation Considerations for Streaming Video/Media using RaptorQ

Application layer FEC is used in streaming solutions to increase Quality-of-Service (QoS). Technical and business challenges require trade-offs decisions when choosing and implementing a streaming solution using FEC.

Challenge	Solution	RaptorQ Advantage	How to implement
Maximize Quality-of-Service (QoS)	Determine how delay-sensitive	Flexible block size parameter	Split the video/audio stream
while minimizing latency.	your application/service is	range and fountain property	into consecutive source blocks
	(e.g. video conferencing is	provides best FEC protection	and add RaptorQ repair data to
	more sensitive than video	due to time diversity and low	the blocks to protect against
	broadcast) and use the largest	CPU required for decoding.	packet loss. Send the source
	acceptable source block size.	Allows flexible QoS trade-off	+ repair data of a given block
		between increasing protection	in the same time period slot
		amount vs. increasing latency.	that would be used to send just
			the source block with no FEC
Ensuring QoS in a mobile	Maximize coverage area and	Fountain code property and	added (additional bandwidth
environment while optimizing	minimize transmit power needs	low code overhead reduces	needed is directly proportional
network power requirements.	to achieve target QoS.	bandwidth usage, resulting in	to amount of repair data).
		lower power needs for a given	
		coverage area and QoS target.	

RaptorQ has been optimized to maximize transmit power management and minimize latency in streaming solutions, ensuring the best possible QoS.

RaptorQ is RFC 6681, IETF FEC standard for media streams for FECFRAME

RaptorQ Streaming Implementation: FEC Framework

How to Protect a Video Stream

Challenges of Adding FEC and RaptorQ Advantages

	Name and Address of the Owner, where the Owner, which is the	
	P^	otock
	nu	ptor
•		

Challenges of adding FEC	RaptorQ Advantage	
Application		
	Software only - no additional	
Cost to add FEC	hardware costs	
Very large files (digital cinema) that	Large block sizes decode faster,	
require efficient delivery	more bandwidth efficient to send	
require enficient delivery	Easily portable for platforms with C	
	compiliers; ready-to-go for Intel x86	
Service/application runs on a custom	and ARM; operating system	
device (STB, vehicle navigation)	independent.	
device (STB, verilcle flavigation)	ппаерепаети.	
Service/application requires very fast	Performance data available to verify	
encode/decode	requirements	
Chicode, decode	requirements	
Device/Receiver		
	Sub-blocking feature allows large files	
Small receiver memory - not enough	to be divided into smaller chunks that	
to decode whole file in memory	fit the reciever memory; great for	
increases decoding time	handsets, STBs, low-cost devices	
Receiver device has limited CPU		
available for decoding	Low CPU requirement	

Challenges of adding FEC	RaptorQ Advantage	
Network		
	Fountain code property allows for a	
Highly intermittent reception	long transmission period	
Given network loss is not consistent,	Dynamically set protection amount	
how to maximize Quality-of-Service	(if backchannel is available) - allows	
(QoS) by adding the minimum	optimal use of bandwidth with best	
amount of FEC	QoS	
	Low code overhead (2 additional	
	symbols) allows virtually perfect	
Bandwidth contstraints	delivery (99.9999%)	
	Receiver does not require	
No backchannel available for network	notification about the amount of	
feedback	repair - simplifies architecture	
Some networks have very high loss	Fountain code property allows	
and need large amounts of repair	unlimited amount of repair data to	
data	be sent	
	File delivery with sub-blocking	
Network experiences bursty loss	makes it immune to bursty loss	

File Delivery Services Over Satellite Networks

Challenge: Vehicle Navigation

How to reliably update map databases to moving vehicles that are not always connected to the network

Servers

Challenge: Digital Cinema

Need fast, reliable and efficient multicast digital cinema file delivery that can be cost effectively delivered

Receivers

Receivers

Mobile: GPS vehicle navigation systems

Integration: embedded platform with onboard

GPS software

Integration: Runs directly on

enterprise's digital cinema servers

Mobile Live Broadcasting

Challenge:

- Streaming HD video over cellular networks
- Requires low latency with high QoS

Application Features:

- Broadcast quality live video streaming Dynamically segment live video and Mobility allows broadcasts from anywhere transmit via multiple cellular connections

Video Conferencing System

Challenge:

- Vivid real-time video conferencing
- Requires low bandwidth with HD video quality

Requires low latency with high audio QoS

Enterprise LAN/WAN

Receivers

Application Features:

- HD video streaming
- High quality audio streaming
- Content sharing during streaming
- Multi-way call (up to 4 sites)

Fixed: Within the Enterprise

Integration: Within VCS product

Mobile File Delivery Services Over Cellular Networks

Challenge: reliable file delivery to mobile devices

Applications:

- Movie clip file casting
- News ticker
- Roaming list updates

Mobile: Millions of handsets from

numerous OEMs

Integration: Within handset flash

image

IP Set-Top-Box Streaming Video Service

Challenge: IPTV

- Network loss disrupts video viewing
- Requires low latency with high QoS for chat

Applications:

- Streaming Video-on-Demand
- Video Chat (Peer2Peer Duplex)

Raptor FEC Technology is Proven across a Broad Range of Solutions

- Proven in Content Delivery Services
 - Enterprises send large database updates and digital cinema files daily to hundreds of sites via satellite multi-cast network
 - Service Providers deliver VOD movies over various networks to subscribers
 - Cellular operators broadcast or multi-cast news flashes and video clips
 - Navigation service providers deliver map updates to fleets of vehicles
 - Military broadcasts image data via private mobile communications
- Proven in Streaming Solutions
 - Enterprises use multi-site HD video conferencing over public networks
 - TV stations broadcast mobile live news in HD formats
 - IPTV deployments in Asia and Europe on set-top-boxes, cable and Wi-Fi
 - Video surveillance streams near-real-time video to control centers
 - Military airborne operations stream live video feeds to ground troops
 - Ground sensor networks transmit data to central command centers

Our experienced engineering team understands embedded integration and low latency solutions

Products and Business Model

RaptorQ Platforms:

- Windows / Linux: x86 (32 bit and 64 bit)
- Android / Linux: ARM
- Apple IOS: ARM
- Mac OS X: Intel
- Other platforms can be ported for a fee

RaptorQ Software Development Kit (SDK):

- Encoder and Decoder library for target platform
- Header file for library (same for all platforms)
- Documentation: Developer's Guide, Release Notes, Installation instructions, README
- Source code for file delivery and streaming sample applications
- Test application code: SelfTest (sanity check), SysCheck (encode/decode and verify) and PerfTest (performance test)
- Supporting files for sample code: makefile or project files (e.g. on Windows)

Licenses:

- Evaluation Kit (Free): sample file delivery and streaming applications and demos
- Commercial: SDK, 6 month no obligation free development period

For more information on Raptor products or to request your free RaptorQ Evaluation Kit please go to www.qualcomm.com/raptor

For questions please email <raptorsupport@qti.qualcomm.com>

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Qualcomm is a trademark of QUALCOMM Incorporated, registered in the United States and other countries. All QUALCOMM Incorporated trademarks are used with permission. Other products and brand names may be trademarks or registered trademarks of their respective owners.