SKELETON ECOSYSTEM

0x17127ECbA31712697DA50247e5ba102981EE

Table of Contents

Table of Contents	1
Disclaimer	2
Overview	3
Creation/Audit Date	3
Verified Socials	3
Contract Functions Analysis	4
Contract Safety and Weakness	7
Detected Vulnerability Description	11
Contract Flow Graph	14
Contract Interaction Graph	15
Inheritance Graph	16
Contract Desciptions	17
Audit Scope	20

SKELETON ECOSYSTEM

RUNESHUB ERC20

Global Disclaimer

This document serves as a disclaimer for the crypto smart contract audit conducted by Skeleton Ecosystem. The purpose of the audit was to review the codebase of the smart contracts for potential vulnerabilities and issues. It is important to note the following:

Limited Scope: The audit is based on the code and information available up to the audit completion date. It does not cover external factors, system interactions, or changes made after the audit. The audit itself can not guarantee 100% safaty and can not detect common scam methods like farming and developer sell-out.

No Guarantee of Security: While we have taken reasonable steps to identify vulnerabilities, it is impossible to guarantee the complete absence of security risks or issues. The audit report provides an assessment of the contract's security as of the audit date.

Continued Development: Smart contracts and blockchain technology are evolving fields. Updates, forks, or changes to the contract post-audit may introduce new risks that were not present during the audit.

Third-party Code: If the smart contract relies on third-party libraries or code, those components were not thoroughly audited unless explicitly stated. Security of these dependencies is the responsibility of their respective developers.

Non-Exhaustive Testing: The audit involved automated analysis, manual review, and testing under controlled conditions. It is possible that certain vulnerabilities or issues may not have been identified.

Risk Evaluation: The audit report includes a risk assessment for identified vulnerabilities. It is recommended that the development team carefully reviews and addresses these risks to mitigate potential exploits.

Not Financial Advice: This audit report is not intended as financial or investment advice. Decisions regarding the use, deployment, or investment in the smart contract should be made based on a comprehensive assessment of the associated risks.

By accessing and using this audit report, you acknowledge and agree to the limitations outlined above. Skeleton Ecosystem and its auditors shall not be held liable for any direct or indirect damages resulting from the use of the audit report or the smart contract itself.

Please consult with legal, technical, and financial professionals before making any decisions related to the smart contract.

Overview

Contract Name	runeshub
Ticker/Simbol	RHUB
Blockchain	Ethereum ERC20
Contract Address	0x17127ECbA31712697DA50247e5ba102981EED03a
Creator Address	0x10D578D27C74CB2FDb7707D92DC88203Be62daE5
Current Owner Address	0x000000000000000000000000000000000000
Contract Explorer	https://etherscan.io/address/0x98d0F36d4b8431B87ED CA663Cd1eB8B972bAfEE1#code
Compiler Version	v0.8.25+commit.b61c2a91
License	MIT
Optimisation	Yes with 200 Runs
Total Supply	100,000,000 RHUB
Decimals	9

Creation/Audit

Contract Deployed	19.04.2024
Audit Created	20.04.2024
Audit Update	V 1.0

Verified Socials

Website	https://runeshub.org
Telegram	https://t.me/runeshub
Twitter (X)	https://x.com/runeshuberc

Contract Function Analysis

Pass 🛕 Attention Item 📤 Risky Item

Contract Verified	✓	The contract source code is uploaded to blockchain explorer and is open source, so everybody can read it.
Contract Ownership		0х000000000000000000000000000000000000
Ownersinp		Sometimes referred to as the "zero address" or "dead address" and is not owned by anyone.
Buy Tax	5 %	Shows the taxes for purchase transactions. Above 10% may be considered a high tax rate. More than 50% tax rate means may not be tradable. Fee can be set!
Sell Tax	5 %	Shows the taxes for sell transactions. Above 10% may be considered a high tax rate. More than 50% tax rate means may not be tradable. Fee can be set!
Honeypot Analyse	✓	Holder is able to buy and sell. If honeypot: The contract blocks sell transfer from holder wallet. Multiple events may cause honeypot. Trading disabled, extremely high tax
Liqudity	~	Liqudity status on 20.04.2024
Status		99.00% UNCX for 183 days.
Trading	~	No Trading suspendable function found.
Disable Functions		If a suspendable code is included, the token maybe neither be bought or sold (honeypot risk). If contract is renounced this function can't be used
Set Fees		No Fee Setting function found.
function	✓	The contract owner may contain the authority to modify the transaction tax. If the transaction tax is increased to more than 49%, the tokens may not be able to be traded (honeypot risk).
Proxy Contract	✓	Not a Proxy contract.
Mint Function	✓	No Mint Function detected
		Mint function is transparent or non-existent. Hidden mint functions may increase the amount of tokens in circulation and effect the price of the token. Owner can mint new tokens and sell.

Balance Modifier Function	~	No Balance Modifier function found. If there is a function for this, the contract owner can have the authority to modify the balance of tokens at other addresses. For example revoke the bought tokens from the holders wallet. Common form of scam: You buy the token, but it's disappearing from your wallet.
Blacklist Function	✓	No Blacklist Setting function found. If there is a blacklist, some addresses may not be able to trade normally. Example: you buy the token and right after your Wallet getting blacklisted. Like so you will be unable to sell. Honeypot
Whitelist Function	✓	No Whitelist Setting function found.
		If there is a function for this Developer can set zero fee or no max wallet size for adresses (for example team wallets can trade without fee. Can cause farming)
Hidden Owner		No Hidden or multi owner with authorisation
Analysis	~	For contract with a hidden owner, developer can still manipulate the contract even if the ownership has been abandoned.
Retrieve Ownership	~	No Functions found which can retrieve ownership of the contract.
Function		If this function exists, it is possible for the project owner to regain ownership even after relinquishing it. Also known as fake renounce.
Self Destruct	✓	No Self Destruct function found.
Function		If this function exists and is triggered, the contract will be destroyed, all functions will be unavailable, and all related assets will be erased.
Specific Tax	✓	No Specific Tax Changing Functions found.
Changing Function		If it exists, the contract owner may set a very outrageous tax rate for assigned address to block it from trading. Can assign all wallets at once!
Trading Cooldown Function	✓	No Trading Cooldown Function found. If there is a trading cooldown function, the user will not be able to sell the token within a certain time or block after buying. Like a temporary honeypot.
Max Transaction		Max Transaction and Holding Modify function found. Toggle remove limits triggered before renounce.
and Holding Modify Function	A	Max wallet and max transfer = Totalsupply Contract renounced, function can not be triggered by owner.
		If there is a function for this, the maximum trading amount or maximum position can be modified. Can cause honeypot
Transaction	~	No Transaction Limiter Function Found.
Limiting Function		The number of overall token transactions may be limited (honeypot risk)

Details of Risk - Attention Items

Removing Risk of contract function based on renounced ownership

Following detected contract functions serve as informational purposes about the contract. The owner has no more authorisation to trigger functions.

One exception found:

⚠ Max Transaction and Holding Modify function

In code as: Remove limits function. Triggered before renounce.

Max wallet and Max transfer = totalSupply

```
ftrace|funcSig

function rmvlim() external onlyOwner{

maxTxAmount = _tTotal;

maxWalletSize=_tTotal;

transferDelayEnabled=false;

emit MaxTxAmountUpdated(_tTotal);

emit MaxTxAmountUpdated(_tTotal);

}
```


Contract Security

Total Findings: 6

- **High Severity Issues:** High possibility to cause problems, need to be resolved.
- **Medium Severity Issue:** Will likely cause problems, recommended to resolve.
- **Low Severity Issues:** Won't cause problems, but for improvement purposes could be adjusted.
- Informational Severity Issues: Not harmful in any way, information for the developer team.

SKELETON ECOSYSTEM SMART CONTRACT AUDIT REPORT

RUNESHUB ERC20

Contract Security List of Found Issues

- High severity Issues: (0)
- Medium severity issues: (2)
 - Incorrect Acces Control
 - Use of tx.origin
- Low severity issues: (2)
 - Long number literals
 - Max Value Approval
- Informational severity issues: (2)
 - Public Functions Should be Declared External
 - State Variables Should be Declared Constant

Contract Weakness Classisication

THE SMART CONTRACT WEAKNESS CLASSIFICATION REGISTRY (SWC REGISTRY) IS AN IMPLEMENTATION OF THE WEAKNESS CLASSIFICATION SCHEME PROPOSED IN EIP-1470. IT IS LOOSELY ALIGNED TO THE TERMINOLOGIES AND STRUCTURE USED IN THE COMMON WEAKNESS ENUMERATION (CWE) WHILE OVERLAYING A WIDE RANGE OF WEAKNESS VARIANTS THAT ARE

ID	Description	Al	Manual	Result
SWC-100	Function Default Visibility	Passed	Passed	Passed
SWC-101	Integer Overflow and Underflow	Passed	Passed	Passed
SWC-102	Outdated Compiler Version	Passed	Passed	Passed
SWC-103	Floating Pragma	low	Passed	Passed
SWC-104	Unchecked Call Return Value	Passed	Passed	Passed
SWC-105	Unprotected Ether Withdrawal	Passed	Passed	Passed
SWC-106	Unprotected SELFDESTRUCT Instruction	Passed	Passed	Passed
SWC-107	Reentrancy	Passed	Passed	Passed
SWC-108	State Variable Default Visibility	Passed	Passed	Passed
SWC-109	Uninitialized Storage Pointer	Passed	Passed	Passed
SWC-110	Assert Violation	Passed	Passed	Passed
SWC-111	Use of Deprecated Solidity Functions	Passed	Passed	Passed
SWC-112	Delegatecall to Untrusted Callee	Passed	Passed	Passed
SWC-113	DoS with Failed Call	Passed	Passed	Passed
SWC-114	Transaction Order Dependence	Passed	Passed	Passed
SWC-115	Authorization through tx.origin	High	Medium	Medium
SWC-116	Block values as a proxy for time	Passed	Passed	Passed
SWC-117	Signature Malleability	Passed	Passed	Passed
SWC-118	Incorrect Constructor Name	Passed	Passed	Passed
SWC-119	Shadowing State Variables	Passed	Passed	Passed

SWC-120	Weak Sources of Randomness from Chain Attributes	Passed	Passed	Passed
SWC-121	Missing Protection against Signature Replay Attacks	Passed	Passed	Passed
SWC-122	Lack of Proper Signature Verification	Passed	Passed	Passed
SWC-123	Requirement Violation	Passed	Passed	Passed
SWC-124	Write to Arbitrary Storage Location	Passed	Passed	Passed
SWC-125	Incorrect Inheritance Order	Passed	Passed	Passed
SWC-126	Insufficient Gas Griefing	Passed	Passed	Passed
SWC-127	Arbitrary Jump with Function Type Variable	Passed	Passed	Passed
SWC-128	DoS With Block Gas Limit	Passed	Passed	Passed
SWC-129	Typographical Error	low	Passed	Passed
SWC-130	Right-To-Left-Override control character (U+202E)	Passed	Passed	Passed
SWC-131	Presence of unused variables	Passed	Passed	Passed
SWC-132	Unexpected Ether balance	Passed	Passed	Passed
SWC-133	Hash Collisions With Multiple Variable Length Arguments	Passed	Passed	Passed
SWC-134	Message call with hardcoded gas amount	Passed	Passed	Passed
SWC-135	Code With No Effects	Passed	Passed	Passed
SWC-136	Unencrypted Private Data On-Chain	Passed	Passed	Passed

Detected High and Medium Severity Vulnerability Description.

 Λ Incorrect Acces Control (2 Item)

Item: 1	Location:	Line 202-205	Severity:	Medium
---------	-----------	--------------	-----------	--------

Function	Access control plays an important role in segregation of privileges in smart contracts and other applications. If this is misconfigured or not properly validated on sensitive functions, it may lead to loss of funds, tokens and in some cases compromise of the smart contract.
	The contract runeshub is importing an access control library @openzeppelin/contracts/access/Ownable.sol but the function approve is missing the modifier onlyOwner.
Remedation	 Ensure that initialization functions can only be called once and only by authorized entities. Implement least-privilege roles using libraries like OpenZeppelin's Access Control. Add proper access control modifiers to sensitive functions, such as onlyOwner or custom roles.

```
function approve(address spender1, uint256 amount1) public override returns (bool) {
    _approve(_msgSender(), spender1, amount1);
    return true;
ftrace I funcSig
```


Item: 2	Location:	Line 193-196	Severity:	Medium
---------	-----------	--------------	-----------	--------

Function	Access control plays an important role in segregation of privileges in smart contracts and other applications. If this is misconfigured or not properly validated on sensitive functions, it may lead to loss of funds, tokens and in some cases compromise of the smart contract. The contract runeshub is importing an access control library @openzeppelin/contracts/access/Ownable.sol but the function transfer is missing the modifier onlyOwner.
Remedation	 Ensure that initialization functions can only be called once and only by authorized entities. Implement least-privilege roles using libraries like OpenZeppelin's Access Control. Add proper access control modifiers to sensitive functions, such as onlyOwner or custom roles.

```
ftrace | funcSig
function transfer(address recipient*), uint256 amount*) public override returns (bool) {
   _transfer(_msgSender(), recipient1, amount1);
    return true;
```


▲ Use of tx.origin (2 Item)

Item: 1	Location:	Line 231	Severity:	Medium
Item: 2	Location:	Line 235	Severity:	Medium

Function	In Solidity, tx.origin is a global variable that returns the address of the account that sent the transaction. Using the variable for authorization could make a contract vulnerable. For example, if an authorized account calls a malicious contract which triggers it to call the vulnerable contract that passes an authorization check since tx.origin returns the original sender of the transaction which in this case is the authorized account.
Remedation	Use msg.sender instead of tx.origin for authorization in smart contracts. This isn't to say that the tx.origin variable should never be used. It does have some legitimate use cases in smart contracts. For example, if one wanted to deny external contracts from calling the current contract, they could implement a require of the from require(tx.origin == msg.sender). This prevents intermediate contracts being used to call the current contract, limiting the contract to regular code-less addresses.

```
it (tol := address(uniswapvzkouter) && tol := address(uniswapvzrair)) {
       _holderLastTransferTimestamp[tx.origin] <</pre>
          block.number,
   holderLastTransferTimestamp[tx.origin] = block.number;
```


Contract Flow Graph

Contract Interaction Graph

Inheritance Graph

Contract Functions

Contract	Туре	Bases		
L	Function Name	Visibility	Mutability	Modifiers
Context	Implementation			
L	_msgSender	Internal 🖺		
IERC20	Interface			
L	totalSupply	External 🎚		NO
L	balanceOf	External 🎚		NO
L	transfer	External 🎚		NO
L	allowance	External 🎚		NO
L	арргоvе	External 🎚		NO
L	transferFrom	External 🎚		Мо[
SafeMath	Library			
L	add	Internal 🖺		
L	sub	Internal 🖺		
L	sub	Internal 🖺		
L	mul	Internal 🖺		
L	div	Internal 🖺		
L	div	Internal 🖺		
Ownable	Implementation	Context		
L		Public 🎚		NO
L	owner	Public 🎚		NO
L	renounceOwner ship	Public 🎚		onlyOwner

Contract	Туре		Bases	
IUniswapV2Fact ory	Interface			
L	createPair	External 🏻		Пои
IUniswapV2Rout er02	Interface			
L	swapExactToke nsForETHSuppo rtingFeeOnTran sferTokens	External [lon
L	factory	External [No[
L	WETH	External 🎚		Мо[
L	addLiquidityETH	External [<u>an</u>	¶ои
runeshub	Implementation	Context, IERC20, Ownable		
L		Public 🎚		Nol
L	name	Public 🎚		NOÎ
L	symbol	Public 🎚		NOÎ
L	decimals	Public 🎚		NOÎ
L	totalSupply	Public 🎚		NOÎ
L	balanceOf	Public 🎚		NOÎ
L	transfer	Public 🎚		Nol
L	allowance	Public 🎚		Nol
L	approve	Public 🎚		Nol
L	transferFrom	Public 🎚		Nol
L	_approve	Private 🖺		
L	_transfer	Private 🖺		
L	min	Private 🖺		

Contract	Туре		Bases	
L	swapTokensFor Eth	Private 🖺		lockTheSwap
L	rmvlim	External [onlyOwner
L	sendETHToFee	Private 🖺		
L	opentx	External [onlyOwner
L		External [d D	No[
L	caresc	External [No[

Function can modify state

Function is payable

Audit Scope

Audit Method.

Our smart contract audit is an extensive methodical examination and analysis of the smart contract's code that is used to interact with the blockchain. Goal: discover errors, issues and security vulnaribilities in the code. Findings getting reported and improvements getting suggested.

Automatic and Manual Review

We are using automated tools to scan functions and weeknesses of the contract. Transfers, integer over-undeflow checks such as all CWE events.

Tools we use:

Visual Studio Code **CWE SWC** Solidity Scan **SVD**

In manual code review our auditor looking at source code and performing line by line examination. This method helps to clarify developer's coding decisions and business logic.

Skeleton Ecosystem

https://skeletonecosystem.com

https://github.com/SkeletonEcosystem/Audits

