O MX222 E40 91 find sign and exp 0x222 E4051 <u>-)</u> 00/0.00/000/0 . - - · 26122-127 = [-5]

Spin to 8-3 format (no denormal) bias: 3 total = f Exp=3

10010010 + e=/ m ->t/, oulox2. -> + /100/0x2 (-3 -> f /, co/ox2 - ? -> 0,0/0010 £ + 37 =

B) Rin to 8-3 format denormal

bias: 3 total = f EXP=3 M:4 dehona! it (donounce) ±0, Mx > 1-biss 40,0010x21-3 -> 0,00/0x2-2 ->0,0000/0 -> 52 -> 0,03/2r 4) Bin to float (Small) to eal length =12 Exp=4 bigs=5 (denormal included) M = 7000001001000 A(01) -> to, Mx2 (-b/95 -> + 0,100/000x21-5  $-) + 0.1001000x2^{-4}$ -> 0,0000/00/000





## HW1.5. Float Ordering (8-3 format)

Consider a floating point format with

- 8 total bits
- 1 bit for the sign
- 3 bits for the exponent
- a bias of 3
- · 4 bits for the mantissa
- no denormal encodings

Given the following floating point numbers in binary format, order them from **most negative** (top) to **most positive** (bottom).

(Try and see if you can do it without calculating the numbers.)



$$\int_{0}^{1} \left( U \right)^{3} = \frac{7}{64}$$

$$= \frac{1}{64} + \frac{2}{64} + \frac{4}{64}$$

$$= \frac{1}{64} + \frac{1}{32} + \frac{4}{76}$$

$$0.000.11$$
 $2^{-2}$ 
 $2^{4-bias} = 2^{-2}$ 

$$\frac{0000}{5} \frac{000}{\epsilon} \frac{111}{111}$$

(heck it denormal

1-bigs

1: t/. 0 × 2

Lenormal

-(x21-has 6) |x21-has

6), 2 -0.1875 = -70 = -70 - 70 = -70 - 70denormal,

 $-0.0011 = 2^{-bsc}$   $= 2^{-2}$   $= 2^{-2}$   $-0.((x)^{-2}$   $+ \frac{1}{600169} \text{ format}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$   $-0.0011 = 2^{-1}$ 

$$=-\left(\frac{5}{32}+\frac{2}{32}+\frac{5}{32}\right)$$

$$E-6.605=-2$$
->  $E-7=-2$ 
->  $E-8$ 
-> 0101

Florat to Bin cinclude devormals 7= 9 F = 3 6,93=3  $M = \sum$ 0.21875= 32 = 5 + 5 + 5 = 52+70+8 t 01 00/11

 $\frac{fO_1OO/11}{2^{1/6005}}$   $\frac{1}{5}$   $\frac{1}{5}$   $\frac{1}{5}$   $\frac{OVV}{S}$   $\frac{11100}{M}$ 

(9) FP Convert tormat 1: T=8 denomal E=3 included 6,205=3 m = 4 format 2 7=8 Lenormal · = } big 5 = 7 included M = 4 $0\chi02$ (e) nuert 00000010

+ OLUUIOX2 = 0,00/0 x2 20,00000 denormal # 3 21-6:95 [-7=2 nut denomal

F2 (no denural) 0,00000 1. M12 \* Flati
1. M12 \* Flati
1. B X 2 E-7=-5 E=2-2/)\0 D0100000 SE J hex 0X2 0

12 format 1: 7 = 8 denurmal E=3 included bias = 4 M=4 7= 8 E=3 denormal included bias=6 M=4 0x05 -> 00000101

Since E:000 it's denormal (f1)  $2^{1-b'95} = 2^{-3}$ O, MX2 0,0/01X2 -> 0, 0000/0/ -> 0, 0000/0/ ->0,0390625 to denormal check  $2^{1-42pias} = 2^{1-6} = 2^{-5}$ 

UU33... -0103/25 0 0103/25 not denormal 5 5M/1, MX2 E-6:45 1,01X2 E-6=-5 F = ) E-DD01 5->() hex 00(0100->(4

(10) FP Convert H: T=8 denomal E=3 6/45=3 induded M =4 T=10 +2: E=3 denorma ( in cluded 62a5=3 M = 60×23 -1 0010 0011 t E M not denovel

E= 2

E-big ( -) /, U D [ 1 X Z 7/10011X2 2-3 -> /, vul(X2 - 1 → U, 10 U [ 7 5 + 76 + 32 -> 0.59375 chede formata denovad 2 (-f2bias=) (-3

-0.25 0 625 059 not denorma ( 1,001/x 2-1 E-6:205=- ( F-3=-1 luex

+1: T=8 inchude bias=3 denorma ( M=4 12i 7=12 include F, 54 denumnal bias-7 m=7 0x8e -> 1000 1110

SE A

-> denormal

fi

-0 (110 X 2 1-6 igs -7, U~ (110 X 2 - 2 7000110 -> 0.21875 check to denormal  $2^{-7} = 2^{-6} = 0.015025$ 

-00/6027 0 00/2/22 015022 00/5/2022

not deroymal 0,001110 1.MX2 1 110x2-3 E2-67952---3 E2-7=-3 E2=4 0100 I, nex



## HW1.11. Format Comparison

- 11 total bits
- 1 bit for the sign
- 4 bits for the exponent
- a bias of *6*
- 6 bits for the mantissa
- no denormal encodings

| and Format-2 with                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>12 total bits</li> <li>1 bit for the sign</li> <li>4 bits for the exponent</li> <li>a bias of 4</li> <li>7 bits for the mantissa</li> <li>no denormal encodings</li> </ul>                                                                                                                                |
| Which of the following formats can represent a larger magnitude number?                                                                                                                                                                                                                                            |
| <ul><li>(a) Format 1</li><li>(b) Format 2</li><li>(c) They can both represent the same largest magnitude number</li></ul>                                                                                                                                                                                          |
| Which of the following formats can represent a <i>smaller magnitude</i> number?                                                                                                                                                                                                                                    |
| <ul> <li>(a) Format 1</li> <li>(b) Format 2</li> <li>(c) They can both represent the same smallest magnitude number</li> <li>Suppose we changed both formats to support denormal representations. Would this change the answer to the previous (smaller magnitude) part? Pick the answer for this case.</li> </ul> |
| <ul> <li>(a) Format 1</li> <li>(b) Format 2</li> <li>(c) They can both represent the same smallest magnitude number</li> </ul>                                                                                                                                                                                     |