R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU III Semester B. E. Examinations Nov/Dec-16

Common to CSE / ISE

DISCRETE MATHEMATICAL STRUCTURES

Time: 03 Hours Maximum Marks: 100 Instructions to candidates:

- 3. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 4. Answer FIVE full questions from Part B.

PART-A

1	1.1	How many arrangements are there of all letters in SOCIOLOGICAL?	01
	1.2	Rewrite the following statement as an implication in if-then form	
		"Soumya will be allowed on Suraj's motorcycle only if she wears	
		helmet".	01
	1.3	Define an Injective function.	01
	1.4	Define group code.	01
	1.5	A student is to answer seven out of ten questions on an examination.	
		In how many ways can he make his selection if:	
		i) There are no restrictions	
		ii) He must answer the first two questions.	02
	1.6	Let p(x) be the open statement " $x^2 = 2x$ ", where the universe comprise	
		of all integers. Determine whether each of the following statements is	
		true or false:	
		a) $p(0)$	
		b) p(1)	
		c) p(2)	
		d) $\exists xp(x)$.	02
	1.7	If there are 2187 functions $f: A \to B$ and $ B = 3$, what is $ A $?	02
	1.8	Find a recurrence relation with initial condition, that uniquely	
		determines the following geometric progression: 6, –18, 54, –162,	02
	1.9	Determine whether $R = \{(x, y) x, y \in Z, y = x^2 + 7\}$, a relation from Z to	
		Z, is a function. Find its range if it is a function.	02
	1.10	Let C be a set of code words, where $C \subseteq \mathbb{Z}_2^7$. In the following, two of	
		e(error pattern), r (received word) and c (code word) are given with	
		r = C + e. Determine the third term:	
		i) $c = 1010110, r = 1011111$	
		ii) $c = 1010110, e = 0101101.$	02
	1.11	Define cyclic group with an example.	02
	1.12	Show that $n^3 - n$ is divisible by 3, where n is positive integer.	02

PART-B

2	а	Three students write an examination. Their chances of passing are	
		$\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$, respectively. find the probability that:	
		i) All of them pass	
		ii) Atleast one of them pass	
		iii) Atmost two of them pass.	06
	b	Consider the following program segment, where i, j , and k are integer	
		variables:	
		for $i \leftarrow 1$ to 20 do	
		$for j \leftarrow 1 \text{ to } i \text{ do}$	
		for $k \leftarrow 1$ to j do	
		print $(i * j + k)$.	
		How many times is the print statement executed in this program segment?	06
	С	Find and list all the dearrangements of 1,2 3,4.	04
	C	This and not all the deal angements of 1,2 3,1.	
		OR	
3	a	In a survey of 260 college students the following data were obtained:	
		64 had taken machine learning course, 94 had taken cloud	
		computing, 58 had taken big data, 26 had taken both machine	
		learning and cloud computing, 28 had taken machine learning and	
		big data, 22 had taken cloud computing and big data and 14 had	
		taken all the three courses. In the survey:	
		i) How many students had taken none of the three courses?	06
	b	ii) How many had taken only cloud computing course? Define the cartesian product of two sets. For non empty sets <i>A</i> , <i>B</i> and	00
	D	C, prove that $A \times (B - C) = (A \times B) - (A \times C)$.	06
	С	Find the rook polynomial for the standard 8×8 chess board. State for	
		$n \times n$ chess board too.	04
4	а	State the induction principle. Prove by induction that $6^{n+2} + 7^{2n+1}$ is	
	1	divisible by 43 for each positive integer n .	06
	b	For the sequence $\{a_n\}$ defined recursively by $a_1 = 8, a_2 = 22,$	06
	C	$a_n = 4(a_{n-1} - a_{n-2})$ for $n \ge 3$, prove that $a_n = (5+3n)2^{n-1}$ for $n \ge 1$.	06 04
	С	Find a_{12} if $a_{n+1}^2 = 5a_n^2$.	04
5	0	If F F are fibonacci numbers, prove that ∇^n $F - F = 1$	06
٥	a b	If $F_0, F_1, F_2,$ are fibonacci numbers, prove that $\sum_{i=0}^n F_i = F_{n+2} - 1$.	06 06
	C	Solve the recurrence relation $2a_n = 7a_{n-1} - 3a_{n-2}$; $a_0 = 2$, $a_1 = 5$. Show that $2^n > n^2$ whenever n is a positive integer greater than 4.	04
		one and 2 > n whenever n is a positive integer greater than 7.	0.1
6	а	Define the converse and the inverse of a conditional. State the	
		converse and inverse of the following statement "If Suraj can solve	
		then puzzle ten Suraj can solve the problem".	06
	b	Prove that $(p \to (q \lor r)) \leftrightarrow ((p \land \sim q) \to r)$ is a tautology.	06
	c	Establish the validity of the argument	
		$(q \lor \sim r) \lor s$	
		$\frac{\sim q \vee (r \wedge \sim q)}{\text{therefore } r \rightarrow q}$	04
		therefore $r \rightarrow s$	04
<u> </u>			<u> </u>

7	0	Test the validity of the argument:	
'	a	All employers pay their employees	
		Mukesh is an employer	
		therefore Anil pays his employees.	06
	h		
	b	Prove by contradiction that "if n^2 is an odd integer then n is odd ".	06
	С	Prove that for all real numbers x and y if $x + y \ge 100$ then $x \ge 50$ or	0.4
		$y \ge 50$.	04
8	a	If $A = \{1,2,3,4\}$ and R is a relation on A defined by	
		$R = \{(1,2), (1,3), (2,4), (3,2), (3,3), (3,4)\}$ find R^2 and R^3 . Also draw their	0.5
		digraphs.	06
	b	Find the number of equivalence relations that can be defined on a	0.5
		finite set A with $ A = 6$.	06
	С	Let $A = \{1,2,3,4\}$, f and g be functions from A to A given by:	
		$f = \{(1,4), (2,1), (3,2), (4,3)\}$	
		$g = \{(1,2), (2,3), (3,4), (4,1)\}$	
		Prove that f and g are inverses of each other.	04
		OR	
9	а	Let $A = R, B = \{x x \text{ is real and } x \ge 0\}$. Is the function $f: A \to B$ defined by	
		$f(a) = a^2$ an onto function? a one to one function?	06
	b	Let $A = \{1,2,3,4,5,6,7\}$ and R be an equivalence relation on A that	
	~	induces the partition: $A = \{1,2\} \cup \{3\} \cup \{4,5,7\} \cup \{6\}$. find R .	06
	С	Draw the Hasse diagram representing the positive divisors of 36.	04
10	a	The parity check matrix for an encoding function $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ is given	
	•	by	
		/1 0 1 1 0 0\	
		$H = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$	
		$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$	
		i) Determine the associated generator matrix.	
		ii) Does this code correct all single errors in transmission?	06
	b	i) Define cyclic group.	
		ii) Prove that the group $(Z_4, +)$ is cyclic. Find all its generators.	06
	c	State and prove the Lagrange's theorem.	04
		OR	
1 1	0	A binary armonatria abancal bas mabability a 0.05 of income	
11	a	A binary symmetric channel has probability $p = 0.05$ of incorrect	
		transmission. If the word $c = 011011101$ is transmitted, what is the	
		probability that	
		i) A single error occurs	
		ii) A double error occurs	
		iii) A triple error occurs.	06
	b	Show that any group G is abelian iff $(ab)^2 = a^2b^2$ for all $a, b \in G$.	06
	c	Prove that every subgroup of a cyclic group is cyclic.	04