Tula's Institute Dhoolkot, Dehradun 2nd Sessional Test

Course: B.Tech Propole CSE/CE/ME/EEE/ECE	SEMESTER- II
Branch: CSE/CE/ME/EEE/ECE Subject with Code – Mathematics-II (BAST-105) Session: 2019-20 Date: 14.05.2020 Answer sheet must be submit to: ashish.mishra@tulas.ed_lecturesandqueries@gmai(within 1 hour of exam sta	il.com
Time: 60 Mints.	Max Marks: 30
Section A (Objective Type) (2	2 X 9= 18)
Note: Attempt all question:	
Q1. The value of integral $\oint \frac{dz}{z-\pi i}$ over the contour C given by (a) π (b) 1 (c) 0	z = 2 is: (d) 2
Q2. Solution of the equation: $(D^3 - 6D^2D' + 11DD'^2 - 6D^2D' + 11D$	$(z)^{3}z = 0$ is:
Q3. The solution of $\frac{\partial^2 z}{\partial x \partial y} = xy^2$ is: (a) $z = \frac{x^2 y^3}{6} + f(y) + g(x)$ (b) $z = \frac{x^2 y^2}{6} + f(y)$	f(y) + g(x)
(c) $z = \frac{x^2 y^3}{6}$ (d) $z = \frac{x^2 y^3}{6} + f(z)$	
Q4. The number of poles of $f(z) = \frac{1}{z(z^2+3)(z^2+2)^3}$ inside the (a) 1 (b) 9 (c) 5	circle $ z = 1$ are: (d) 2
Q5. The residue of the function $f(z) = \frac{z+1}{(z-1)(z-2)}$ at $z=1$ is: (a) 2 (b) -2 (c) 1	(d) -1
Q6. The solution of the PDE: $yq - xp = z$ is: (a) $f(xy, yz) = 0$ (b) $f\left(xy, \frac{y}{z}\right) = 0$ (c) $f(xz, y)$	$= 0 (d) f\left(\frac{x}{z}, y\right) = 0$
Q7. If $f(z)$ is analytic within and on a closed contour C, and $\int \frac{f(z)dz}{z-a}$ is equal to:	d if 'a' is any point within C, then
(a) $f(a)$ (b) $\frac{f(a)}{2\pi i}$ (c) $2\pi i. f(a)$	(d) f(0)
Q8. The rule for finding the particular integral of $(D^3 - 3D^3)$ (a) $\frac{1}{f(a^2,b^2)}e^{ax+}$ (b) $\frac{1}{f(-a,-b)}$ (b) $(c)\frac{1}{f(a,b)}e^{ax-by}$ (d) $\frac{1}{f(a,b)}e^{ax-by}$	e^{ax+by}

Q9. Which of the following is **NOT** a singularity of the function: $f(z) = \frac{1}{(z^2+1)^2(z^2+4)^2}$?

(a) i (b) 2i (c) 2 (d) -i

Section B (Subjective Type) $(4 \times 3 = 12)$

Note: Attempt any Three

Q1. Find the general solution of $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$.

Q2. Evaluate the integral: $\int \frac{e^z dz}{z(z-1)^2}$ over the closed contour C, where C is the circle |z|=2.

Q3. Find the general solution of: $x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2)$.

Q4. Evaluate: $\int_0^{2\pi} \frac{d\theta}{5-3cos\theta}$.