Remark and Solutions

Sheet 5

Problem 27

Suppose that A is not a domain. There are two possible situation for this to happen: If A = 0 then $gr_i(A) = A_{(i)}/A_{(i-1)} = 0$ for every i and thus gr(A) = 0. In this case gr(A) is again not a domain.

If $A \neq 0$ then there exist nonzero $a, b \in A$ with ab = 0. Then there exist $i, j \geq 0$ with $a \in A_{(i)}$ and $b \in A_{(j)}$ but $a \notin A_{(i-1)}$ and $b \notin A_{(j-1)}$ (where $A_{(-1)} = 0$). (This means that a is of degree i and b is of degree j.) Then the resulting elements $[a]_i \in \operatorname{gr}_i(A)$ and $[b]_j \in \operatorname{gr}_j(A)$ are nonzero with

$$[a]_i \cdot [b]_j = [ab]_{i+j} = [0]_{i+j} = 0.$$

In this case gr(A) is again not a domain.

If \mathfrak{g} is a Lie algebra then $\operatorname{gr}(\operatorname{U}(\mathfrak{g})) = \operatorname{S}(\mathfrak{g})$ is a domain because $\operatorname{S}(\mathfrak{g})$ is a polynomial algebra. (More specifically, if $(x_i)_{i\in I}$ is a basis of \mathfrak{g} then $\operatorname{S}(\mathfrak{g})\cong k[t_i\mid i\in I]$.) Thus $\operatorname{U}(\mathfrak{g})$ is a domain.

 $^{{\}rm *Available\ online\ at\ https://github.com/cionx/representation-theory-1-tutorial-ss-19.}$