Лабораторная работа 7

Отчет по лабораторной работе 7

Милёхин Александр НПМмд-02-21

Содержание

1	Цель работы	4
2	Теоретические сведения	5
3	Задание	6
4	Выполнение лабораторной работы	7
5	Выводы	20

List of Figures

4.1	Команды для построения графика	7
4.2	График циклоиды	8
4.3	Построение графика в полярных координатах	8
4.4	Улитка Паскаля	9
4.5	Реализация улитки Паскаля в полярных осях	10
4.6	График улитки Паскаля в полярных осях	10
4.7	Реализация неявно определенной функции	.12
4.8	График неявно определенной функции	.12
4.9	Построение касательной к окружности	.13
4.10	График касательной к окружности	.13
4.11	Действия с комплексными числами	.14
4.12	Построение графиков в комплексной плоскости	. 15
4.13	Графики в комплексной плоскости	. 15
4.14	Извлечение кубического корня из отрицательного числа	.16
4.15	Построение гамма функции и факториала	.16
4.16	Изображение гамма-функции и факториала	.17
4.17	Разделение на интервалы	.18
	График гамма-функции и факториала после устранения артефактов	

1 Цель работы

Научиться строить различные виды графиков: параметрические, неявных функций, в полярных координатах. Обучиться работе с комплексными числами, изображать их на координатной плоскости.

2 Теоретические сведения

Вся теоретическая часть по выполнению лабораторной работы была взята из инструкции по лабораторной работе №5 ("Лабораторная работа №7. Описание") на сайте:

https://esystem.rudn.ru/course/view.php?id=12766

3 Задание

Выполните работу и задокументируйте процесс выполнения.

4 Выполнение лабораторной работы

1. Параметрические графики

В самом начале работы включим журналирование. Построим график трёх периодов циклоиды радиуса 2. Для этого определим параметр как вектор в некотором диапазоне, затем вычислим х и у. Выполнение команд показано на Fig. 1.

Figure 4.1: Команды для построения графика

Полученный график изображен на Fig. 2.

Figure 4.2: График циклоиды

2. Полярные координаты

Графики в полярных координатах строятся аналогичным образом. Построим улитку Паскаля. Ход работы показан на Fig. 3.

Figure 4.3: Построение графика в полярных координатах

Полученный график можно увидеть на Fig. 4.

Figure 4.4: Улитка Паскаля

Более того, можно построить данный график в полярных осях. Команды показаны на Fig. 5.

Figure 4.5: Реализация улитки Паскаля в полярных осях

А сам график показан на Fig. 6.

Figure 4.6: График улитки Паскаля в полярных осях

3. Графики неявных функций

Следует построить неявно определённую функцию с помощью ezplot. Зададим график функции, используя лямбда-функцию, как показано на Fig. 7.

Figure 4.7: Реализация неявно определенной функции

После чего построим ее график. См. Fig. 8.

Figure 4.8: График неявно определенной функции

Найдём уравнение касательной к некоторой окружности. Сначала построим круг, используя лямбда-функцию. Далее по правилу дифференцирования найдём уравнение касательной и изобразим ее на графике. См. Fig. 9.

Figure 4.9: Построение касательной к окружности

Полученный график можно увидеть на Fig. 10.

Figure 4.10: График касательной к окружности

4. Комплексные числа

Зададим два комплексных числа и запишем основные арифметические операции с ними: сложение, вычитание, умножение, деление. См. Fig. 11.

Figure 4.11: Действия с комплексными числами

Построим графики в комплексной плоскости, используя команду compass, используя команды, показанные на Fig. 12.

Figure 4.12: Построение графиков в комплексной плоскости

Изображение графиков показано на Fig. 13.

Figure 4.13: Графики в комплексной плоскости

Иногда мы можем получить странные результаты вывода программы. При вычислении корня третьей степени из -8, мы ожидаем ответ -2, но получаем другое число. Это объясняется тем, что Octave возвращает тот ответ, у которого меньший аргумент. Для того, чтобы получить -2, мы должны использовать команду nthroot, как показано на Fig. 14.

Figure 4.14: Извлечение кубического корня из отрицательного числа

5. Специальные функции

Построим гамма-функцию $\Gamma(x+1)$ и n! на одном графике, как показано на Fig. 15.

Figure 4.15: Построение гамма функции и факториала

Изображение показано на Fig. 16.

Figure 4.16: Изображение гамма-функции и факториала

Разделив область значения на отдельные интервалы, можно убрать артефакты вычислений. Для этого следует выполнить команды, указанные на Fig. 17.

Figure 4.17: Разделение на интервалы

После проведения вышеуказанных действий, построим график. См. Fig. 18

Figure 4.18: График гамма-функции и факториала после устранения артефактов

5 Выводы

Я научился строить в Octave различные виды графиков: параметрические, неявных функций, в полярных координатах. Также поработал с комплексными числами, научился изображать их на координатной плоскости; построил гаммафункцию и график факториала.