- 1. Localizar vectorialmente los números z_1+z_2 y $z_1-z_2,$ donde
 - a) $z_1 = 2i$, $z_2 = \frac{2}{3} i$;
 - b) $z_1 = (-3, 1), z_2 = (1, 4);$
 - c) $z_1 = x + iy$, $z_2 = x_1 iy_1$.
- 2. Verificar que

a)
$$(\sqrt{2} - i) - i(1 - \sqrt{2}i) = -2i$$
.

- b) $\frac{1+2i}{3-4i} + \frac{2-i}{5i} = -\frac{2}{5}$
- c) $\frac{5i}{(1-i)(2-i)(3-i)} = -\frac{1}{2}$
- d) $(1-i)^4 = -4$.
- 3. Reducir a la forma x + iy:
 - a) $(1-5i)^2-4i$;
 - b) -i(-1+i)+2;
 - c) (3+i)(1-11i);
 - d) $(\sqrt{2} i\sqrt{5})(\sqrt{5} + i\sqrt{2})$

 - e) $\frac{3-4i}{2i}$; f) $\frac{2+5i}{-1+i\sqrt{3}}$;
 - $g) \frac{(2-2i)^2}{1+i};$
 - $h) \frac{z-\bar{z}i}{\bar{z}-zi}$
- 4. Probar que
 - a) $\operatorname{Re}(\mathrm{i}z) = -\operatorname{Im}(z)$;
 - b) $(1+z)^2 = 1 + 2z + z^2$;
 - c) Si $z_1 z_2 = 0$, entonces $z_1 = 0$ o $z_2 = 0$;
 - d) $z_1 z_2 = \bar{z_1} \bar{z_2};$
 - e) $z_1z_2 = \bar{z_1}\bar{z_2}$;
 - f) $\omega = \frac{1}{2} \left(-1 \sqrt{3}i \right)$ satisface
 - 1) $\omega^2 + \omega + 1 = 0$;
 - 2) $\omega^3 = 1$.