1.1 - The Nature of Time Series Data

Overview

There are two big approaches to time series analysis (not necessarily mutually exclusive), which are the *time domain approach* and the *frequency domain approach*.

Time Domain Approach:

Prioritizes looking at relationships across time (ex: how will today's data point affect tomorrow's data point?)

Frequency Domain Approach:

Prioritizes looking at cycles in the data (ex: what is the economic cycle through periods of expansion and recession?)

Now we will discuss notable examples from the textbook.

Global Warming

This example is notable because it gives a preview of how time series data is not always a "direct" source, such as monthly average temperatures or daily closing stock prices. Here our data are relative to some "anchor" point, making finding a pattern easier compared to raw temperature data.

```
library(tidyverse)
library(ggfortify)
autoplot(globtempl, xlab = "Year", ylab = "Temp Deviations")
```


Returns on the Dow Jones Industrial Average

This example follows from the previous one. Instead of plotting the DJIA directly, we first perform the following calculations to get data we want to plot:

$$ext{Return}_t = r_t = rac{x_t - x_{t-1}}{x_{t-1}} \ 1 + r_t = rac{x_t}{x_{t-1}} \implies \ln(1+r_t) = \ln(rac{x_t}{x_{t-1}}) = \ln(x_t) - \ln(x_{t-1}) pprox r_t$$

```
library(xts)

djiR<-diff(log(djia$Close))[-1]
autoplot(djiR, xlab = "Time", ylab = "Return")</pre>
```


fMRI Imaging

Here we have an example of a multivariate time series, where we work with vectors instead of single-variable data.

Relevant Problems

<u>Chapter 1 Homework Problems > Problem 1.1</u>