Data Mining Project 2 Report 309552007 袁鈺勛

A. Readme

Argument	Description	Default	Туре	
l,learning_rate	Learning rate	0.1	Float	
r,regularization	0: without L2 regularization, 1: with L2 regularization	0 (0-1)	Int	
p,penalty	Hyperparameter of regularization	1.0	Float	
tun				
Run Argument	Description	Default		
	Description Learning rate	Default		
Argument				
Argument	Learning rate	0.1		
Argument I,learning_rate r,regularization	Learning rate 0: without L2 regularization, 1: with L2 regularization	0.1		

Program file 中有一個 LogisticRegression class,"-l" 可以控制 learning rate,"-r"可以控制是否要使用 regularization,"-p"可以控制 regularization 的 hyperparameter。在 run program 的時候除了上面提到的三個 argument 之外,還有"-m"可以控制是要做 cross validation 還是做 prediction,"-v"可以控制是否要 print 一些額外的 information。Training data 和 testing data 以及 submission 這三個 file 要放在和 program file 同一層的 data directory下。做 完 prediction 的 result 會輸出成 result.csv。

B. Preprocessing

上圖為"predict_info_fixer" function,會將共病症、抗生素、細菌的缺格補上0,並且幫共病症各種類別給上特定的數值,抗生素和細菌則是非0的話給1,0的話就給0。

上圖為"predict_tpr_fixer" function,他會將 training data 做標準化後,將標準化時算出的 mean 和 variance 用來將 testing data 標準化,以避免 feature 間單位和數值區間的不同。

C. Feature Selection

```
# Use mutual information to select top k features
list_of_col = SelectKBest(mutual_info_classif, k=k).fit(training_data, training_target).get_support(indices=True)
features = list(map(list(training_data).__getitem__, list_of_col))
return features
```

利用 mutual information 來取出前 k 個和 label 最相關的 feature。

D. Model Construction

```
# Calculate parameters
num_of_data = len(training_data)

# Set up $\phi$ and group
group = training_data['Target'].to_numpy().reshape((num_of_data, 1))
del training_data['Target']
self.features = list(training_data)
num_of_features = len(self.features)
phi = np.ones((num_of_data, num_of_features + 1))
phi[:, 1:] = training_data.to_numpy()

# Get gradient descent result
self.omega = self.gradient_descent(phi, group, num_of_features)
return self.omega
```

上圖為 model 的"fit" function,他會先取出每個 data entity 對應到的 label,以及取出 training 所用到的 feature,而且會將 data 組成一個新的 phi 用於 gradient descent 的計算。

return phi.T.dot(expit(phi.dot(omega)) - group)

上兩張圖分別為 model 的"gradient_descent" function 和"get_delta_j" function,當 gradient descent 收斂的時候便可以得到 optimal weight omega,而且收斂的方式區分為有 regularization 以及沒有 regularization,兩種方法都會使用 momentum term。

```
# Calculate parameters
testing_data = test_data[self.features]
num_of_data = len(testing_data)
num_of_features = len(list(testing_data))

# Set up Φ
phi = np.ones((num_of_data, num_of_features + 1))
phi[:, 1:] = testing_data.to_numpy()

# Get results of gradient descent
weight = weight.reshape((len(weight), 1))
result = expit(phi.dot(weight))
result[result > 0.5] = 1
result[result < 0.5] = 0
result = result.reshape(num_of_data).astype(int)</pre>
```

上圖為 model 的"prediction" function,他會將 testing data 組成的 phi 和 weight 餵給 logistic function,機率大於等於 0.5 的就歸類為 label 1,小於 0.5 的就歸類給 label 0。

```
# Calculate parameters
testing_data = test_data[self.features]
num_of_data = len(testing_data)
num_of_features = len(list(testing_data))

# Set up 
phi = np.ones((num_of_data, num_of_features + 1))
phi[:, 1:] = testing_data.to_numpy()

# Get results of gradient descent
result = expit(phi.dot(weight)).reshape(num_of_data)

return result
```

上圖為 model 的"pred_prob" function,同樣會將 testing data 以及 weight 餵給 logistic function,並且回傳 data 可能為 label 1 的機率。

E. Validation

Setup K fold skf = RepeatedStratifiedKFold(n_repeats=10, random_state=0)

使用 stratified k-fold 來驗證,預設 5個 fold,跑 10次來測試。

```
for train_index, test_index in skf.split(training_data, training_target):
    # Get training set and testing set
    data_train, target_train = training_data.iloc[train_index.tolist()], training_target.iloc[
        train_index.tolist()]
    data_test, target_test = training_data.iloc[test_index.tolist()], training_target.iloc[test_index.tolist()]

# Use training set to select features
for k in range(2, total_features):
    info_log(f' = Iteration: {iteration}, Num of features: {k} = ')
    features = feature_selection(data_train, target_train, k)
```

每次從 training data set 中取出 training data 以及 testing data, 並利用 training data 選取要使用的 feature。

上面三張圖為沒有 regularization 的 validation 結果,左上圖為取不同數量的 feature 得到的各自平均 accuracy 以及平均 fl-score,右上圖即為左上圖的視覺化,第三張即是不同數量 feature 的情況底下得到的平均 weight。

上面三張圖為有 regularization 的 validation 結果,可以看出他相對沒有 regularization 的結果較為穩定,所以在做 prediction 時是採用有 regularization 的結果。

F. Prediction

上圖是 model 的"visualize" function,他會將 fit 得到的 feature 以及對應的 weight 視覺化成下面兩張圖類型的 horizontal bar chart。

上圖為沒有 regularization 方式做 prediction 後得到的 feature weight。

上圖為有 regularization 方式做 prediction 後得到的 feature weight。