Moonshot

Goal

Demonstrate my skills by completing the mission

- Critical thinking
- Plan and design
- execution

Mission

Electromagnetic gun simulation as described in the task doc

Execution principles

- Everything always can be better, concentrate on a basic version that works as time is limited.
 - o basic V1 that works.
 - o Map gaps.
 - o Suggest improvements

Design principles

- OOP
- Al to generate documentation
- Al to acquire the background knowledge
 - Electromagnetic
 - o Python
 - o MATLAB
- Al wherever it can multiply my productivity.
 - o Code structure
 - Coding
 - o Code review

Design

Represent each component and each interaction between two components in the system as a class.

The benefits of this design are:

- 1. Easy to use, maintain and understand as it's structure is the same as the simulated setup. Important because this simulation serves other non-software engineers.
- 2. scalable:
- Adding more objects i.e. connecting wires, power supplier, damping capacitor.
- Adding objects characteristics i.e. conductance, capacitance.
- Adding more interactions i.e. between the acceleration stages
- Adding more types of interactions i.e. mechanical interactions such as heat, air resistance and such

V1 system components:

- Capsule
- Acceleration stage
- Acceleration tube

V1 parameters:

- Coil current

Plan

V1

- □ Project template in PyCharm
- ☐ Upload to a GitHub repository

- ⋈ Run simulation
- ⊠ CLI

oxtimes Sample run configuration
⊠ Documentation
MATLAB
⊠ Install
⊠ Compile first task
⊠ User interface

Execution summary:

Current implementation fulfill all the system requirements.

The execution leveraged Gen AI Agents:

- ROO (VS Code extension) for designing and coding
- Bing MCP for acquiring the agent with physical background and best practices for Python and MATLAB coding, OOP and TTD.
- ChatGPT for self validation.
 - *Roo tended to overdo, next time need to strain him better.

Main gaps:

- Physical understanding of the system can and should be deeper.
 - o The force is repulsing.
 - The capsule doesn't move as expected (that's why test_simulation_termination_conditions is failing).
- More code cleaning iterations should be made.
- MATLAB integration can be simplified
- Output plots correctness should be verified i.e. final distance cant be 20mm