Special Purpose Registers for Init and Config

//Power up SPI

1

LPC_SC->PCONP

2

//set PCLK LPC_SC->PCLKSEL0

3

// Enable Slave SPI nCS

LPC_GPIO0->FIODIR
LPC GPIO0->FIOSET

4

// Perform init

LPC_PINCON->PINSEL0

Harry Li, Ph.D. SJSU

//init CR0 and CR1 registers

LPC_SSP1->CR0 LPC SSP1->CR1

6

set ssp clock rate

 $LPC_SSP1->CPSR = 8;$

SSP Init and Config

//Power up SPI

LPC SC->PCONP

2

//set PCLK
LPC_SC->PCLKSEL0

3

// Enable Slave SPI nCS

LPC_GPIO0->FIODIR
LPC GPIO0->FIOSET

PCONP Power Control for Peripherals Register

Table 14. System control registers, pp 31; Table 46, PCONP contains control bits to turn on/off individual peripheral controller for power saving purpose, pp. 64

Table 40. PCKSEL0
Peripheral Clock Selection
register 0, pp, Table 42, pp. 58
bit selection table

Bit	Symbol
17:16	PCLK_SPI
19:18	-
21:20	PCLK_SSP1
23:22	PCLK_DAC

Table 46, PCONP

Bit	Symbol
6	PCPWM1
7	PCI2C0
8	PCSPI
9	PCRTC
10	PCSSP1

// Perform init

LPC_PINCON-

>PINSEL0

Harry Li, Ph.D. SJSU

8.5.1 Pin Function Select register 0, PINSEL0 register selects the multiplexed functions of the lower half of Port 0. pp 117

Bit = 10

11:10	P0.5 ^[1]	TD2
13:12	P0.6	SSEL1
15:14	P0.7	SCK1

C-Code for SSP Init and Config

```
void initSSP1(void){
  //power up spi1
  LPC SC->PCONP |= (1<<10);
  //01 PCLK peripheral = CCLK.. 01, since it's CCLK/1
  LPC_SC->PCLKSEL0 &= ~(3<<20);
  LPC_SC->PCLKSEL0 |= (1<<20);
  //P0.6 is used as a GPIO output and acts as a Slave select
  LPC_GPIO0->FIODIR |= (1<<6);
  LPC GPIOO \rightarrow FIOSET = (1 << 6);
  //P0.7:9 init
  LPC PINCON->PINSEL0 &= \sim ((3 << 18))(3 << 16))(3 << 14));
  LPC PINCON->PINSEL0 = ((2 << 18)|(2 << 16)|(2 << 14));
  //data size set to 8 bits
   PC SSP1->CR0 = 0x07;
   or AT45 flash SI pin latched on the rising edge of SCK, while output data
 on the SO pin is always clocked out on the falling edge of SCK.
  //MS=0 (Master), SSE =1
  LPC SSP1->CR1 = 0x2;
  LPC SSP1->CPSR = 8; //SCK Frequency for Continuous Read(Low Freq) is 33Mhx max. here we are setting it
below it.
```

CR0 for SSP Init and Config

Table 371: SSPn Control Register 0 (SSP0CR0 - address 0x4008 8000, SSP1CR0 - 0x4003 0000) bit description, pp 431

6	CPOL
	Clock Out
	Polarity
7	СРНА
	Clock Out
	Phase
15:8	SCR
	Serial Clock
	Rate
31:8	-

3:0	DSS		
		0011	4-bit transfer
		0100	5-bit transfer
		0101	6-bit transfer
		0110	7-bit transfer
		0111	8-bit transfer
		1000	9-bit transfer
		1001	10-bit transfer
		1010	11-bit transfer
		1011	12-bit transfer
		1100	13-bit transfer
		1101	14-bit transfer
		1110	15-bit transfer
		1111	16-bit transfer
5:4	FRF		Frame Format.
		00	SPI
		01	TI