Lagrange Multipliers

We tackle the problem of maximizing a function H(P) subject to constraints $F_j(P) = 0$ for j = 1,...,J. and present three important examples.

To find local maxima, we want to find a P which is a **stationary point** in the constraint surface: if you moved slightly away from P while staying in the surface, H would decrease no matter what the direction is. Staying in the surface means that all the constraints are still true (to second order in ε) as you move in direction \vec{u} . Therefore if you replace replace P by $P + \varepsilon \vec{u}$, taking a very small step in the direction of the unit vector \vec{u} , then \vec{u} is tangent to each of the constraint surfaces, which means that: \vec{u} is perpendicular to ∇F_i for each j:

$$\vec{u} \cdot \nabla F_i(P) = 0$$
, for $j = 1, \dots J$. (1)

On the other hand, if H is locally stationary, then the <u>directional</u> derivative in this direction, $\vec{u} \cdot \nabla H(P)$ (the dot product of the direction vector with the gradient vector), is zero. That means \vec{u} and ∇H are perpendicular.

$$\vec{u} \cdot \nabla H(P) = 0. \tag{2}$$

So we want a P such that $\nabla H(P)$ lies in the subspace Ω spanned by the $\nabla F_i(P)$.

If we find it, then any \vec{u} satisfying the constraint (1) will also satisfy (2), so no direction in the constrained set will allow you increase H. The converse is a little harder to see, but if we are at a P' where $\nabla H(P')$ does <u>not</u> lie in Ω , then $\vec{u} = [projection \text{ of } \nabla H(P') \text{ onto } \Omega]$ is a non-zero vector which will satisfy (1) but violate (2), so that you can increase H by moving along \vec{u} either in the positive or negative direction.

Therefore, to find such a stationary P, solve

$$\nabla H(P) = \sum_{j=1}^{J} \lambda_j \nabla F_j(P)$$
(3)

The number of unknowns is the dimension of P (call it M), plus the number of λ 's (which is J). The number of equations is also M+J, because the gradient equation (3) is really M equations, and there are J constraints. So usually there is a unique solution.

The "Lagrangian" is
$$\mathfrak{L}(P,\lambda) = H(P) - \sum_{j=1}^{J} \lambda_j F_j(P)$$
.

Eq. 3 corresponds to $\partial \mathcal{L}/\partial P = 0$ and the constraints correspond to $\partial \mathcal{L}/\partial \lambda = 0$.

It seems odd that adding constraints makes Ω bigger . That seems to give more freedom: (3) is easier to fulfill. How can adding a constraint give more freedom? But that makes sense. Suppose we add a new constraint, going from J=1 to 2. The previous solution P still satisfies (3) but no longer satisfies the constraint, so to find the new P we have to relax (3). The new P didn't satisfy the previous (3) with J=1. But with J=2 it does. See also http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html.

Examples:

- A. Optimal weighting for weighted averages
- B. Penalized likelihoods: ridge, lasso, elastic net
- C. Constrained maximum entropy, applied to priors and statistical physics

A. Application to optimal weighting

Suppose we have estimates X_i of a parameter, each with a different variance v_i , and we want to combine them into a single estimate $\hat{\mu} = \sum w_i X_i$ with smallest variance possible. So our objective function is

$$H(w) = \operatorname{var}(\sum w_i X_i) = \sum w_i^2 v_i$$

subject to the constraint $\sum w_i = 1$. The constraint $F_1(w) = \sum w_i = K_1 = 1$ guarantees that if the X_i are unbiased, so is $\hat{\mu}$. (Without the constraint, setting all the weights to zero would make the variance zero.)

We want to find w solving $\nabla H(w) = \sum_{j=1}^{J} \lambda_j \nabla F_j(w)$,

Taking the derivatives,

$$0 = \partial / \partial w_i (\text{var}(\sum w_i X_i) - \lambda (\sum w_i - 1))$$

$$0 = 2w_i v_i - \lambda$$

$$w_i = \lambda / (2v_i)$$

Thus all $w_i \propto 1/v_i$. Finally, applying the constraint, we get our optimal weights:

$$w_{i} = \frac{1/v_{i}}{\sum_{i'} 1/v_{i'}} .$$

B. Penalized likelihoods. See Hastie Tibshirani Friedman's book.

The Lagrange method converts the constraint problem into a Lagrangian form.

	As a constraint on parameter space	As a penalized likelihood (log likelihood + log prior)
$\hat{\beta}^{\text{ridge}}$ Ridge Regression (L2 norm)	$\operatorname{argmin}_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2,$ subject to $\sum_{j=1}^{p} \beta_j^2 \le t,$	$\underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$
$\hat{eta}^{\mathrm{lasso}}$ Lasso (L1 norm)	$\underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$ subject to $\sum_{j=1}^{p} \beta_j \le t.$	$\operatorname{argmin}_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j \right\}.$

(In addition, the elastic net combines the L1 and L2 penalties. Instead of two multipliers, there is a single multiplier with a user-chosen ratio mixing the two penalties.)

C. Constrained maximum entropy

One way to obtain a prior distribution $\pi(\theta): \theta \in \Theta$ for a parameter θ is to specify a small number of constraints, then pick the distribution which maximizes the entropy $S = -\sum_{\theta} \pi(\theta) \log \pi(\theta)$ subject to those constraints. This approach was favored by E.T.Jaynes, a major proponent of the "objective Bayes" school, which favors using non-informative or minimally informative priors. In this case, we interpret P as the vector of probabilities, π . The constraints are typically moments:

$$F_{j}(\pi) = E(g_{j}(\theta)) - K_{j} = \sum_{\theta} \pi(\theta)g_{j}(\theta) - K_{j}$$

See the document "maximum entropy and lagrange multipliers.doc" for details.