★ Spé - St Joseph/ICAM Toulouse ★

2020-2021 -

Math. - ES 2 - S2 - Epreuve 1

lundi 17 mai 2021 - Durée 2 h

EXERCICE 1

Dans le plan euclidien rapporté à un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$, on considère le point A de coordonnées (a, b), où $a, b \in \mathbb{R}$.

A chaque point A du plan, on associe la courbe Γ_A ayant pour représentation paramétrique

$$\begin{cases} x(t) = t^3 + 3t^2 - at \\ y(t) = t^3 - 3t^2 - bt \end{cases}, t \in \mathbb{R}$$

1. Étude de Γ_A dans le cas où a=b=9

- a. Montrer que Γ_A possède un axe de symétrie que l'on précisera. On étudiera donc x et y sur \mathbb{R}_+ .
- **b.** Étudier les variations de x et de y; on consignera les résultats dans un tableau de variations en précisant les tangentes verticales, horizontales et la tangente au point de paramètre 0.
- c. Étudier la branche infinie de la restriction de Γ_A à \mathbb{R}_+ .
- d. Tracer Γ_A sur la feuille annexe.

2. On revient au cas général

- a. Montrer que la courbe Γ_A possède un point singulier si et seulement si A appartient à une courbe \mathscr{P} dont on donnera une équation.
- **b.** Montrer que \mathscr{P} est une conique dont on précisera les éléments caractéristiques.
- c. Tracer \mathcal{P} sur la feuille annexe.

EXERCICE 2

L'espace \mathbb{R}^3 est muni de sa structure euclidienne usuelle et d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

1. Une première étude

On considère la surface $\mathscr S$ paramétrée par $\left\{ \begin{array}{ll} x=u^2\\ y=uv\\ z=u^2+v \end{array} \right.,\quad (u,v)\in\mathbb R^2.$

- a. Déterminer l'ensemble des points non réguliers de \mathscr{S} .
- **b.** Donner une équation cartésienne du plan tangent à \mathscr{S} en tout point régulier de \mathscr{S} .

Dans la suite de l'exercice, U désigne un ouvert de \mathbb{R}^2 et a, b, c et d quatre fonctions de classe C^1 sur U. On considère la famille de plans $(P_{u,v})_{(u,v)\in U}$ d'équation cartésienne

$$a(u, v)x + b(u, v)y + c(u, v)z = d(u, v)$$

L'objectif est de déterminer une surface Σ dont l'ensemble des plans tangents est la famille $(P_{u,v})_{(u,v)\in U}$. Pour cela, on considère un paramétrage régulier

$$(u,v) \in U \mapsto M(u,v) = (x(u,v),y(u,v),z(u,v))$$

de la surface Σ tel que pour tout $(u,v) \in U$, le plan tangent à Σ au point M(u,v) est le plan $P_{u,v}$.

T.S.V.P. ▶

2. Cas général

a. Démontrer que la surface Σ convient si et seulement si

$$\forall (u,v) \in U, \quad \begin{cases} a(u,v)x(u,v) + b(u,v)y(u,v) + c(u,v)z(u,v) = d(u,v) & (\mathbf{Eq1}) \\ a(u,v)\frac{\partial x}{\partial u}(u,v) + b(u,v)\frac{\partial y}{\partial u}(u,v) + c(u,v)\frac{\partial z}{\partial u}(u,v) = 0 & (\mathbf{Eq2}) \\ a(u,v)\frac{\partial x}{\partial v}(u,v) + b(u,v)\frac{\partial y}{\partial v}(u,v) + c(u,v)\frac{\partial z}{\partial v}(u,v) = 0 & (\mathbf{Eq3}) \end{cases}$$

On note (\mathcal{S}_1) ce système.

b. Démontrer soigneusement que le système (\mathscr{S}_1) est équivalent au système (\mathscr{S}_2) suivant

$$\forall (u,v) \in U, \quad \begin{cases} a(u,v)x(u,v) + b(u,v)y(u,v) + c(u,v)z(u,v) = d(u,v) & (\mathbf{Eq1}) \\ \frac{\partial a}{\partial u}(u,v)x(u,v) + \frac{\partial b}{\partial u}(u,v)y(u,v) + \frac{\partial c}{\partial u}(u,v)z(u,v) = \frac{\partial d}{\partial v}(u,v) & (\mathbf{Eq4}) \\ \frac{\partial a}{\partial v}(u,v)x(u,v) + \frac{\partial b}{\partial v}(u,v)y(u,v) + \frac{\partial c}{\partial v}(u,v)z(u,v) = \frac{\partial d}{\partial v}(u,v) & (\mathbf{Eq5}) \end{cases}$$

On note alors (\mathcal{S}_3) le système

$$\begin{cases} a(u,v)X + b(u,v)Y + c(u,v)Z = d(u,v) \\ \frac{\partial a}{\partial u}(u,v)X + \frac{\partial b}{\partial u}(u,v)Y + \frac{\partial c}{\partial u}(u,v)Z = \frac{\partial d}{\partial u}(u,v) \\ \frac{\partial a}{\partial v}(u,v)X + \frac{\partial b}{\partial v}(u,v)Y + \frac{\partial c}{\partial v}(u,v)Z = \frac{\partial d}{\partial v}(u,v) \end{cases}$$

3. Une application

Dans cette question, $U = \mathbb{R}^2$ et a, b, c et d sont les fonctions

$$a:(u,v)\mapsto 2u^2+v$$
 $b:(u,v)\mapsto 1-(2u^2+v)$ $c:(u,v)\mapsto u$ $d:(u,v)\mapsto uv+u^3$

- a. Vérifier que la matrice du système (\mathcal{S}_3) est inversible pour tout $(u,v) \in \mathbb{R}^2$.
- **b.** Résoudre (\mathscr{S}_3) .
- c. Vérifier que le paramétrage ainsi trouvé est régulier.

Fin de l'énoncé

Nom, Prénom:

À RENDRE AVEC LA COPIE

