ANGLE MODULATION

Overview: Categories of modulation Where is angle modulation?

ANGLE MODULATION

- The phase angle (θ) of a sinusoidal wave is varied with respect to time. While keeping the amplitude of the carrier frequency constant.
- So the frequency or phase of the carrier is varied according to the amplitude of the modulating (information) signal.
- They are two forms:
 - i. frequency modulation: When amplitude of modulating signal is used to modulate frequency of carrier signal..
 - ii. phase modulation: When amplitude of modulating signal is used to modulate phase (angle) of carrier signal.

Mathematically expression of angle modulation

The angle modulated wave is given by:

$$s(t)=V_c cos[\omega_c t + \theta(t)]$$

Where: s(t)= angle modulated wave

 V_c = peak carrier amplitude

 $\omega_c = 2\pi f_c = carrier radian frequency$

 $\theta(t)$ = instantaneous phase deviation in radians

The angle modulation is expressed mathematically as

$$\theta(t) = F[m(t)]$$
 where m(t) = the modulated signal

 Note that: varying frequency inherently causes phase to vary and vice versa.

• Therefore:

- FM is generated when the frequency of the carrier is varied directly in accordance with the modulating signal. The change in frequency (Δf) is frequency deviation, and is the relative displacement of the carrier frequency in Hz.
- PM is generated when the phase of the carrier is varied directly in accordance with the modulating signal. The change in phase ($\Delta\theta$) is phase deviation, and is the relative angular displacement in radians of the carrier in respect to a reference phase. Δ

Mathematical analysis of PM

- Instanteous phase deviation = $\theta(t)$ radians
- Instantaneous phase = $\omega_c t + \theta(t)$ (i)
- For a modulating signal m(t), $Phase\ modulation = \theta(t) = k_p\ m(t) \qquad in\ radians$ where k_p is phase sensitivity constant expressed in radian per volt
- Substituting $\theta(t)$ in eq (i) above we get: instantaneous phase = $\omega_c t + k_p m(t)$

Mathematical analysis of PM

Also the general equation becomes:

$$s(t) = V_c cos [\omega_c t + k_p m(t)]$$

• Substituting modulating signal, m(t) = V_m cos ($\omega_m t$) we get $s(t) = V_c$ cos [$\omega_c t + k_p V_m$ cos ($\omega_m t$)]

Mathematical analysis of FM

- Instantaneous frequency deviation = $\frac{d \theta(t)}{d t}$ rad/s
- Instantaneous frequency (f_i) = $\frac{d}{dt} [\omega_c t + \theta(t)] \text{ rad/s}$ = $\omega_c + \frac{d\theta(t)}{dt} \text{ rad/s}$ = $2\pi f_c + \frac{d\theta(t)}{dt}$ = $f_c + \frac{d\theta(t)}{dt} \text{ Hz}$

Mathematical analysis of FM continued

Frequency modulation for a modulating signal m(t) can be given as

frequency modulation =
$$\frac{d \theta(t)}{d t} = k_f m(t)$$
 rad/s

where k_f is the frequency sensitivity of the modulator in rad/volt second

- From eq (), $\theta(t) = \int k_f m(t) d(t)$
- Substituting $\theta(t)$ in general equation we get:

$$s(t) = V_c cos [\omega_c t + \int k_f m(t) d(t)]$$

Substitution
$$m(t) = V_m \cos(\omega_m t)$$
 we get

$$V_c \cos \left[\omega_c t + \int k_f V_m \cos \left(\omega_m t\right)\right]$$

Mathematical analysis of FM continued

- Integrating we get: $V_c \cos \left[\omega_c t + k_f V_m \frac{\sin \omega_m t}{\omega_m}\right]$
- Substituting $\theta(t)$ we get the instantaneous frequency as:

$$f_i = f_c + \frac{d}{2\pi d t} \left(\int k_f m(t) d(t) \right)$$

$$f_i = f_c + \frac{k_f}{2\pi} m(t)$$

- From the above discussion we can realize that phase modulation and frequency modulation are not only very similar but are inseparable.
- Replacing m(t) in equating for PM with ∫ m(t) dt changes PM into FM.
- Thus a signal which is an FM wave corresponding to m(t) is also the PM wave corresponding to ∫ m(t) dt.
- Similarly, a PM wave corresponding to m(t) is the FM wave corresponding to d/dt m(t).

- In both PM and FM, the angle of the carrier is varied according to some measurement modulating signal m(t).
- In PM it is directly proportional to m(t) while in FM it is proportional to the integral of m(t)

- Fig a, indicates two complete cycles of a signal.
- Fig b, indicates the FM wave produced by m(t).
- To determine the phase modulated wave for m(t), we have seen that it is the same as the FM produced by d/dt [m(t)]
- Fig. c, shows the derivative of m(t).
 Note it is a cosine wave.
- Fig d, indicates the desired PM wave.

Example:

• Determine the minimum and maximum frequencies in the modulated FM given m(t) is 4kHz with V_{PP} = -1V to 1V, constants k_f =2 π x10 5 and k_p = 8 π and k_c = 100MHz.

Solution: if we synthesize the problem we see than the diagrams of FM

and PM look as below:

• T=Period = $1/4kHz=2.5x10^{-4}s$

For FM:

$$f_{min} = f_c + \frac{k_f}{2\pi} m(t)_{min} = 100 MHz + \frac{2\pi x 105}{2\pi} x (-1) Hz = 99.9 MHz$$

$$f_{max} = f_c + \frac{k_f}{2\pi} m(t)_{max} = 100 MHz + \frac{2\pi x 105}{2\pi} x (+1) Hz = 100.1 MHz$$

The FM carrier swings from 99.9MHz to 100.1MHz at 4kHz

For PM: note PM for m(t) is FM for d/dt [m(t)]

Note that the time derivative of triangular m(t) shown is the square wave as shown. So we find the FM for the derived m(t) as:

$$f_i = f_c + \frac{k_p}{2\pi} \frac{d}{dt} m(t) = f_c + \frac{8\pi}{2\pi} \frac{d}{dt} m(t) = f_c + 4 \frac{d}{dt} m(t)$$

So the minimum frequency of phase modulated signal is:

$$f_{i \min} = f_c + 4\left[\frac{d}{dt}m(t)\right]_{min} = 100MHz + 4\left[\frac{-2}{\frac{1}{2}(2.5x10-4)}\right]Hz = 99.872MHz$$

The maximum frequency of the phase modulated signal is:

$$f_{i \text{ max}} = f_c + 4\left[\frac{d}{dt}m(t)\right]_{max} = 100\text{MHz} + 4\left[\frac{2}{\frac{1}{2}(2.5\text{x}10-4)}\right]Hz$$

= 100.128MHz

This indirect method of finding PM has been used here because the wave is a continuous wave, otherwise just use a direct method.

Since d/dt [m(t)] switches back and forth from a value of ± 3200 to ± 3200 . The carrier swings from 99.9MHz to ± 100.1 MHz.

The Carrier swing of an FM signal

 The total variation in frequency from lowest to highest is known as carrier swing.

```
carrier swing=2 x \Delta f
where \Delta f = frequency deviation
```

• Note that the frequency variation depends on loudness (amplitude) of the modulating signal. k_f =

Modulation index of FM

Is the ratio of frequency deviation to the modulating frequency

modulation index,
$$m_f = \frac{\text{frequency deviation}}{\text{modulation frequency}} = \frac{\Delta f}{f_m}$$

Modulating index in FM may be greater than 1

Mathematical Expression for single-tone frequency modulation

- Let carrier signal be: $c(t) = A \cos \omega_c t$
- Let the modulating signal be: $x(t) = V_m \cos \omega_m t$
- Let the FM wave be: $c(t) = A \cos \phi_i$ where ϕ_i is instantaneous phase angle of the modulated wave
- We know instantaneous freq. of modulated signal is given by:

$$\omega_i = \omega_c + k_f \cdot x(t)$$

• Substituting value of x(t), we get: $\omega_i = \omega_c + k_f \cdot V_m \cos \omega_m t$

Mathematical Expression for single-tone frequency modulationcontinued

- Substituting value of x(t), we get: $\omega_i = \omega_c + k_f \cdot V_m \cos \omega_m t$
- But we know frequency deviation is given as:

$$\Delta \omega = |\mathbf{k}_f \cdot \mathbf{x}(t)|_{\text{max}} = |\mathbf{k}_f \cdot \mathbf{x}(t)|_{\text{max}} = |\mathbf{k}_f \cdot \mathbf{V}_m|$$

- Therefore: $\omega_i = \omega_c + \Delta \omega$. $\cos \omega_m t$
- The total phase angle ϕ_i of the modulated wave is given as:
- $\phi_i = \int \omega_i dt$
- Putting the value of ω_i from equation above, we get:

$$\phi_i = \int [\omega_c + \Delta \omega. \cos \omega_m t] dt = \omega_c t + \frac{\Delta \omega}{\omega_m} \sin \omega_m t$$

Mathematical Expression for single-tone frequency modulationcontinued

• Putting the value of ω_i from equation above, we get:

$$\begin{aligned} & \varphi_i = \int \left[\omega_c + \Delta \omega. \cos \omega_m t \right] dt = \omega_c t + \frac{\Delta \omega}{\omega_m} \sin \omega_m t \\ & \text{since } \frac{\Delta \omega}{\omega_m} = m_f \quad \text{we now have: } \varphi_i = \omega_c t + m_f \sin \omega_m t \end{aligned}$$

Mathematical Expression for single-tone frequency modulationcontinued

• Substituting ϕ_f in equation $s(t) = A \cos \phi_i$ we get: $s(t) = A \cos [\omega_c t + m_f \sin \omega_m t]$

And this is the mathematical expression for a singletone FM wave.

Exercise

1. A singletone FM is represented by the voltage equation

$$v(t) = 12 \cos (6x10^8 t + 5 \sin 1250t)$$

Determine:

. Carrier frequency (Answer: 95.5 MHz)

ii. Modulating frequency (199Hz)

iii. Modulating index (5)

iv. Maximum deviation (995Hz)

v. Power that this FM wave will dissipate in 10Ω resistor. (7.2W)

Exercise

 A 107.6MHz carrier signal is frequency modulated by a 7kHz sine wave. The resultant FM signal has a frequency deviation of 50kHz.
 Determine the following:

```
i. The carrier swing of the FM signal (Answer: 100kHz)
```

- ii. The highest frequency attained by the modulated signal (107.65MHz)
- iii. The lowest frequency attained by the modulated signal (107.55MHz)
- iv. the modulation index of the FM wave. (7.143)

• Determine the frequency deviation and carrier swing for a frequency modulated (FM) signal which has a resting frequency of 105MHz and whose upper frequency is 105.007 MHz when modulated by a particular wave. Find the lowest frequency reached by the wave.

(Answers: 7kHz, 14kHz, 104.993MHz)

 What is the modulation index of an FM signal having a carrier swing of 100 kHz when the modulating signal has a frequency of 8kHz?
 (50kHz)

Exercise

- An FM transmission has a frequency deviation of 20kHz. Determine:
 - i. the percentage modulation of this signal if it is broadcasted in the 88-108MHz band. (26.67%)
 - ii. The percentage modulation if this signal is broadcasted as the audio portion of a television broadcast. (80%)
- A certain country regulates the requirement for FM broadcast as follows: the maximum allowable frequency deviation from the carrier is 75kHz, the guard band on either side is 25kHz. Determine the number of FM radio channels that could fit in a 88MHz-108MHz available spectrum. (Answer: 100 stations)

Relationship between FM and PM

- Replacing m(t) in Eq. (5.3b) with $\int_{-\infty}^{t} m(\propto) d(\propto)$ changes PM into FM.
- Thus, a signal that is an FM wave corresponding to m(t) is also the PM wave corresponding to $\int_{-\infty}^{t} m(\propto) d(\propto)$ as in (Fig. a)
- Similarly, a PM wave corresponding to m(t) is the FM wave corresponding to $\dot{m}(t)$ as in (Fig. b).
- Therefore, methods of generation and demodulation of FM and PM use the same principles.
- In both PM and FM, the angle of a carrier is varied in proportion to some measure of m(t). In PM, it is directly proportional to m(t), whereas in FM, it is proportional to the integral of m(t).

Phase and frequency modulation are equivalent and interchangeable.

- In the previous fig.b:
 - a frequency modulator can be directly used to generate an FM signal
 - or the message input m(t) can be processed by a filter (differentiator) with transfer function H(s) = s to generate PM signals.
- (see more)

Power of an Angle Modulated Wave

- Although the instantaneous frequency and phase of an anglemodulated wave can vary with time, the amplitude A remains constant.
- Hence, the power of an angle-modulated wave (thus PM or FM) is always $\frac{A^2}{2}$, regardless of the value of k_p or k_t .
- (see more)

Example:

• Sketch FM and PM waves for the modulating signal m(t) shown in Fig. below. The constants k_t and k_p are $2\pi x 10^5$ and 10π , respectively, and the carrier frequency f_c is 100 MHz.

solution

• For FM:

$$\omega_i = \omega_c + k_f m(t)$$

• Dividing throughout by 2π , we get instantaneous frequency as:

$$f_i = f_c + \frac{k_f}{2\pi} m(t)$$

= $10^8 + 10^5 m(t)$
 $(f_i)_{min} = 10^8 + 10^5 [m(t)]_{min} = 99.9 MHz$
 $(f_i)_{max} = 10^8 + 10^5 [m(t)]_{max} = 100.1 MHz$

• Because m(t) increases and decreases linearly with time, the instantaneous frequency increases linearly from 99.9 to 100.1 MHz over a half-cycle and decreases linearly from 100. 1 to 99.9 MHz over the remaining half-cycle of the modulating signal. As shown below

•For PM:

• note that PM for m(t) is FM for $\dot{m}(t)$

$$f_i = f_c + \frac{k_p}{2\pi} \dot{m}(t)$$

= $10^8 + 5 \dot{m}(t)$
 $(f_i)_{min} = 10^8 + 5 [\dot{m}(t)]_{min} = 10^8 - 10^5 = 99.9 \text{MHz}$
 $(f_i)_{max} = 10^8 + 5 [\dot{m}(t)]_{max} = 100.1 \text{MHz}$

• PM sketch with frequency 99.9 to 100.1MHz

Example

• Sketch FM and PM waves for the digital modulating signal m (t) shown below. The constants k_t and k_p are $2\pi x$ 10^5 and $\pi/2$, respectively, and f_c =100 MHz.

For FM

$$f_i = f_c + \frac{k_f}{2\pi} m(t) = 10^8 + I O^5 m(t)$$

• Because m(t) switches from 1 to - 1 and vice versa, the FM wave frequency switches back and forth between 99.9 and 100.1MHz, as shown below.

- Also note that:
- This scheme of carrier frequency modulation by a digital signal is called **frequency shift keying (FSK)** because information digits are transmitted by keying different frequencies.
- (to be discussed later)

• For PM:

$$f_i = f_c + \frac{k_p}{2\pi} \dot{m}(t) = 10^8 + \frac{1}{4} \dot{m}(t)$$

- The derivative $\dot{m}(t)$ see figure below is zero except at points of discontinuity of m(t) where impulses of strength ±2 are present.
- This means that the frequency of the PM signal stays the same except at these isolated points of time!

- It is not immediately apparent how an instantaneous frequency can be changed by an infinite amount and then changed back to the original frequency in zero time.
- Let us consider the direct approach

$$\varphi_{PM}(t) = A \cos \left[\omega_c t + k_p m(t)\right]$$

$$= A \cos \left[\omega_c t + \frac{\pi}{2} m(t)\right]$$

$$= \begin{cases} A \sin \omega_c t & \text{when } m(t) = -1 \\ -A \sin \omega_c t & \text{when } m(t) = 1 \end{cases}$$

- This PM wave is shown in Fig. below. This scheme of carrier PM by a digital signal is called **phase shift keying (PSK)** because information digits are transmitted by shifting the carrier phase.
- Note that PSK may also be viewed as a DSB-SC modulation by m(t).

- The PM wave $\varphi_{PM}(t)$ in this case has phase discontinuities at instants where impulses of m(t) are located.
- At these instants, the carrier phase shifts by π instantaneously. A finite phase shift in zero time implies infinite instantaneous frequency at these instants.
- This agrees with our observation about m(t).