Opcode: Beq: 4, Bne: 5, J: 2, Lw: 35

S0: 16, T0: 8 Register convention:

0x8D100123: 1.1

1. 2's complement integer: -0x72EFFEDD (-不能缺) 因为负值→1000 1101 0001 0000 0000 0001 0010 0011 所以: 取反+1: 0111 0010 1110 1111 1111 1110 1101 1101

2. sign and magnitude: -0x0D100123

IEEE single precision FP: -(1.001000000000100100011)two*2⁻¹⁰¹ <u>1000 1101 0</u>001 0000 0000 0001 0010 0011 $-(\underline{1}.00100000000000100100011)_2 * 2^{(26-127)}$ "1." is defult, not include in the part of mantissa.

\$T0, 291(\$S0) 4. LW

1000 11 01 000 1 0000 0000 0001 0010 0011

Op rs rt imm 35 8 16 256+32+3=291

1.2 IEEE single precision FP: -12.3 1100.01001100110011001100*2

<u>1</u>.10001001100110011001100*2³

3+127 = 130

<u>1 1000 0010 10001001100110011001100</u>

1 4 4 C C С

1.3

\$A	\$B	\$C=\$A+\$B	CF	OF	\$D after	\$D after
					Slt \$D, \$A,\$B	Sltu \$D, \$A,\$B
121	107	E4	0	1	0	0
98	-112	F2	0	0	0	1
-87	-76	5D	1	1	1	1
-67	123	38	1	0	1	0

		<u>1</u> 111 0010	<u>1</u> 0101 1101	<u>1</u> 0011 1000
	<u>1</u> 110 0100		-76 1011 0100	
		-112: 1001 0000	76: 0100 1100	123: 0111 1011
107:	0110 1011	112: 0111 0000	-87: 1010 1001	-67: 1011 1101
121:	0111 1001	98: 0110 0010	87: 0101 0111	67: 0100 0011

_	
—,	
	$\overline{}$

1000	R1: Beq \$s0, \$t0, R1	000100 10000 01000 1111 1111 1111 1111	0x1208FFFF
1004	Sub \$s0, \$s1, \$s2	000000 10001 10010 10000 00000 100010	0x02328022
1008	Bne \$s1, st1, R1	000101 10001 01001 1111 1111 1111 1101	0x1629FFFD
1012	Lw \$t0, -124(\$s0)	100011 10000 01000 1111 1111 1000 0100	0x8E08FF84
1016	J R1	000010 00000 00000 0000 0000 1111 1010	0x080000FA

PC + 4 + imm = PC imm = -4 0000 0000 0100 \rightarrow 1111 1111 1111 1100 \rightarrow shift 2 bits right PC+4 + imm = PC-8 imm = -12 0000 0000 0100 \rightarrow 1111 1111 1111 1111 0100 \rightarrow shift 2 bits right 124 \rightarrow 64 + 32+ 16 + 8+4 \rightarrow 0000 0000 0111 1100 \rightarrow 1111 1111 1000 0100 1000 \rightarrow 1111 101 000 \rightarrow 0011111010

If (\$r1<=\$r2) goto R1	slt \$at,\$r2,\$r1
	beq \$at,\$zero,R1
If (\$r1>\$r2) goto R1	slt \$at,\$r2,\$r1
	bne \$at,\$zero,R1
\$r = BIG in 2's complement	lui \$r, BIG_Hi + adj
format	ori \$r, \$r, BIG_Lo
\$r1 = (\$r2!=\$r3) ? 1:0	sub \$at,\$r2,\$r3
	sltu \$r1,\$zero,\$at
	If (\$r1>\$r2) goto R1 \$r = BIG in 2's complement format

```
int abssum(int *p, int n )
         int i,m=p[0];
         For (i=1; i<n; i++) {
               If (p[i] > 0) m+=p[i]; else m-=p[i];
         }
         Return m.
# i->$t0,
              m->$t1
abssum: lw $t1,0($a0)
                           #get the first value of m from parameter
    addi
            $t0,$zero,1
                                #set the initial value i = 1
for: slt $t2,$t0,$a1
    beq $t2,$zero,Exit
                              #i !<n
    sll $t2,$t0,2
                               #i*4
    add $t2,$t2,$a0
                           #p[i] address = p0+i*4
    lw $t2,0($t2)
                         #p[i]
    slt $t3,$t2,$zero
                             #p[i]<0
    bne $t3,$zero,R1
    add $t1,$t1,$t2
                         #m+=p[i]
        R2
R1: sub $t1,$t1,$t2
                       #m-=p[i]
R2: addi
            $t0,$t0,1
                                 #i++
    i
        for
Exit:
        add $v0,$t1,$zero
   jr
        $ra
```

五、BNE \$r1, \$r2, label 实现 1.OP:6, \$r1:5, \$r2:5, Label:16
2.ALU 的 zero 加一 zero 非,连一多路选择器 MUX 二选一,由新控制信号: bne 控制 3.Branch=1,ALUop=01,bne(New)=1 其余均为 0。

