Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 034

email: schulz@ira.uka.de

$$\begin{tabular}{lll} \begin{tabular}{lll} \begin{tabular}{lll} for & $i \leftarrow 0$ & to & n & do \\ & & $R(i)$ & & & \\ \begin{tabular}{lll} \begin{tabular}{lll$$

Zeitbedarf:

$$\sum_{i=0}^{n} T(R(i))$$

$$T(R(i)) = 4i^3 + 7i + 3 + \log_2 i$$

$$\begin{tabular}{ll} \begin{tabular}{ll} for & $i \leftarrow 0$ & to & n & do \\ & & $R(i)$ & \\ \begin{tabular}{ll} \begin{tabular}{l$$

$$T(R(i)) = 4i^3 + 7i + 3 + \log_2 i$$

 $T(R(i)) \in \Theta(i^3)$

$$T(R(i)) = 4i^3 + 7i + 3 + \log_2 i$$

 $T(R(i)) \in \Theta(i^3)$
 $T(n) \in \Theta(\sum_{i=0}^n i^3)$

$$T(R(i)) = 4i^3 + 7i + 3 + \log_2 i$$

 $T(R(i)) \in \Theta(i^3)$
 $T(n) \in \Theta(\sum_{i=0}^n i^3)$
 $T(n) \le c \cdot (n+1)n^3 \in O(n^4)$

$$T(R(i)) = 4i^3 + 7i + 3 + \log_2 i$$

$$T(R(i)) \in \Theta(i^3)$$

$$T(n) \in \Theta(\sum_{i=0}^n i^3)$$

$$T(n) \ge c \cdot \frac{n}{2} \cdot (\frac{n}{2})^3 \in \Omega(n^4)$$

$$T(R(i)) = 4i^3 + 7i + 3 + \log_2 i$$

 $T(n) \in \Theta(n^4)$

Wieso muss man bei $O(\log n)$ keine Basis angeben?

Wieso muss man bei $O(\log n)$ keine Basis angeben?

$$\forall a, b > 1 : \log_a n \in \Theta(\log_b(n))$$

Wieso muss man bei $O(\log n)$ keine Basis angeben?

$$\forall a, b > 1 : \log_a n \in \Theta(\log_b(n))$$

$$\log_a(n) = \frac{\log_2 n}{\log_2 a} = \frac{\log_2 a}{\log_2 b} \frac{\log_2 n}{\log_2 a} = \frac{\log_2 a}{\log_2 b} \log_b n$$

Endliche Automaten

Merke:

Mealy Automaten: Ausgabefunktion hat Argumente (Zustand, Symbol)

Moore Automaten: Ausgabefunktion hat Argument (Zustand)

_

Endliche Automaten

Merke:

Mea-ly Automaten: 2 Silben

 \rightarrow Ausgabefunktion hat zwei Argumente

Moore Automaten: 1 Silbe

→ Ausgabefunktion hat ein Argument

Eingabe: abbababba, Ausgabe:

Eingabe: abbababba, Ausgabe:

Eingabe: abbababba, Ausgabe: x

Eingabe: abbababba, Ausgabe: x

Eingabe: abbababba, Ausgabe: xx

Eingabe: abbababba, Ausgabe: xx

Eingabe: abbababba, Ausgabe: xxyx

Eingabe: abbababba, Ausgabe: xxyx

Eingabe: abbababba, Ausgabe: xxyxx

Eingabe: abbababba, Ausgabe: xxyxx

Eingabe: abbababba, Ausgabe: xxyxxxyz

Eingabe: abbababba, Ausgabe: xxyxxxyz

Eingabe: abbababba, Ausgabe: xxyxxxyzx

Eingabe: abbababba, Ausgabe: xxyxxxyzx

Eingabe: abbababba, Ausgabe: xxyxxxyzxx

Eingabe: abbababba, Ausgabe: xxyxxxyzxx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyxx

Eingabe: abbababba, Ausgabe: xxyxxxyzxxyxx

$$X = \{0, 1\}^2, Y = \{0, 1\}, Z = \{0, 1\}, z_0 = 0$$

 $f(z, (x, y)) = (z + x + y) \text{ div } 2$
 $g(z, (x, y)) = (z + x + y) \text{ mod } 2$

•

$$X = \{0, 1\}^2, Y = \{0, 1\}, Z = \{0, 1\}, z_0 = 0$$

 $f(z, (x, y)) = (z + x + y) \text{ div } 2$
 $g(z, (x, y)) = (z + x + y) \text{ mod } 2$

Eingabe w(0,0)

$$R(\epsilon) = \epsilon$$
$$R(wx) = xR(w)$$

$$w_1(\epsilon) = \epsilon$$

$$w_1(w(x, y)) = w_1(w)x$$

$$w_2(\epsilon) = \epsilon$$

$$w_2(w(x, y)) = w_2(w)x$$

$$X = \{0, 1\}^2, Y = \{0, 1\}, Z = \{0, 1\}, z_0 = 0$$

 $f(z, (x, y)) = (z + x + y) \text{ div } 2$
 $g(z, (x, y)) = (z + x + y) \text{ mod } 2$

Eingabe: w(0,0)

Ausgabe:
$$Num_2(R(w')) = Num_2(R(w_1(w))) + Num_2(R(w_2(w)))$$

$$X = \{0, 1\}^2, Y = \{0, 1\}, Z = \{0, 1\}, z_0 = 0$$

 $f(z, (x, y)) = (z + x + y)$ div 2
 $g(z, (x, y)) = (z + x + y)$ mod 2

Eingabe: w(0,0)

Ausgabe: $Num_2(R(w')) = Num_2(R(w_1(w))) + Num_2(R(w_2(w)))$

Beweis: $Num_2(R(g^{**}(0,w)))+f^*(0,w)\cdot 2^{|w|}=Num_2(R(w_1(w)))+Num_2(R(w_2(w))).$

Definitionen zum Abkürzen:

$$\bar{g}(w) = g^{**}(0, w)$$
$$\bar{f}(w) = f^{*}(0, w)$$
$$N(w) = Num_2(R(w))$$

$$X = \{0, 1\}^2, Y = \{0, 1\}, Z = \{0, 1\}, z_0 = 0$$

 $f(z, (x, y)) = (z + x + y) \text{ div } 2$
 $g(z, (x, y)) = (z + x + y) \text{ mod } 2$

Eingabe: w(0,0)

Ausgabe: $Num_2(R(w')) = Num_2(R(w_1(w))) + Num_2(R(w_2(w)))$

Beweis: $N(\bar{g}(w)) + \bar{f}(w) \cdot 2^{|w|} = N(w_1(w)) + N(w_2(w)).$

$$X = \{0, 1\}^2, Y = \{0, 1\}, Z = \{0, 1\}, z_0 = 0$$

 $f(z, (x, y)) = (z + x + y) \text{ div } 2$
 $g(z, (x, y)) = (z + x + y) \text{ mod } 2$

Eingabe: w(0,0)

Ausgabe: $Num_2(R(w')) = Num_2(R(w_1(w))) + Num_2(R(w_2(w)))$

Beweis: $N(\bar{g}(w)) + \bar{f}(w) \cdot 2^{|w|} = N(w_1(w)) + N(w_2(w)).$

Stimmt für $w = \epsilon$.

$$X = \{0, 1\}^2, Y = \{0, 1\}, Z = \{0, 1\}, z_0 = 0$$

 $f(z, (x, y)) = (z + x + y) \text{ div } 2$
 $g(z, (x, y)) = (z + x + y) \text{ mod } 2$

Eingabe: w(0,0)

Ausgabe: $Num_2(R(w')) = Num_2(R(w_1(w))) + Num_2(R(w_2(w)))$

Beweis: $N(\bar{g}(w)) + \bar{f}(w) \cdot 2^{|w|} = N(w_1(w)) + N(w_2(w)).$

Wenn es für w gilt, dann auch für w(x,y).

$$N(\bar{g}(w(x,y))) + \bar{f}(w(x,y)) \cdot 2^{|w|+1} = N(\bar{g}(w)g(\bar{f}(w),(x,y))) + f(\bar{f}(w,(x,y))) \cdot 2^{|w|+1}$$

$$\begin{split} &N(\bar{g}(w(x,y))) + \bar{f}(w(x,y)) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)g(\bar{f}(w),(x,y))) + f(\bar{f}(w,(x,y))) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)(\bar{f}(w)+x+y) \mod 2) + ((\bar{f}(w)+x+y) \dim 2) \cdot 2^{|w|+1} \end{split}$$

$$\begin{split} &N(\bar{g}(w(x,y))) + \bar{f}(w(x,y)) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)g(\bar{f}(w),(x,y))) + f(\bar{f}(w,(x,y))) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)(\bar{f}(w)+x+y) \mod 2) + ((\bar{f}(w)+x+y) \dim 2) \cdot 2^{|w|+1} = \\ &= Num_2(((\bar{f}(w)+x+y) \mod 2)R(\bar{g}(w))) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) \end{split}$$

$$\begin{split} &N(\bar{g}(w(x,y))) + \bar{f}(w(x,y)) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)g(\bar{f}(w),(x,y))) + f(\bar{f}(w,(x,y))) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)(\bar{f}(w)+x+y) \mod 2) + ((\bar{f}(w)+x+y) \dim 2) \cdot 2^{|w|+1} = \\ &= Num_2(((\bar{f}(w)+x+y) \mod 2)R(\bar{g}(w))) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) + N(\bar{g}(w)) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \mod 2) + N(\bar{g}(w)) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) \end{split}$$

$$\begin{split} N(\bar{g}(w(x,y))) + \bar{f}(w(x,y)) \cdot 2^{|w|+1} &= \\ N(\bar{g}(w)g(\bar{f}(w),(x,y))) + f(\bar{f}(w,(x,y))) \cdot 2^{|w|+1} &= \\ N(\bar{g}(w)(\bar{f}(w)+x+y) \mod 2) + ((\bar{f}(w)+x+y) \dim 2) \cdot 2^{|w|+1} &= \\ Num_2(((\bar{f}(w)+x+y) \mod 2)R(\bar{g}(w))) \\ + 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) + N(\bar{g}(w)) \\ + 2^{|w|}(2(\bar{f}(w)+x+y) \mod 2) + N(\bar{g}(w)) \\ + 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) &= \\ N(\bar{g}(w)) + 2^{|w|}(\bar{f}(w)+x+y) \end{split}$$

$$\begin{split} &N(\bar{g}(w(x,y))) + \bar{f}(w(x,y)) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)g(\bar{f}(w),(x,y))) + f(\bar{f}(w,(x,y))) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)(\bar{f}(w)+x+y) \mod 2) + ((\bar{f}(w)+x+y) \dim 2) \cdot 2^{|w|+1} = \\ &= Num_2(((\bar{f}(w)+x+y) \mod 2)R(\bar{g}(w))) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) + N(\bar{g}(w)) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \mod 2) + N(\bar{g}(w)) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) = \\ &N(\bar{g}(w)) + 2^{|w|}(\bar{f}(w)+x+y) = \\ &N(\bar{g}(w)) + 2^{|w|}\bar{f}(w) + 2^{|w|}x + 2^{|w|}y \end{split}$$

$$\begin{split} &N(\overline{g}(w(x,y))) + \overline{f}(w(x,y)) \cdot 2^{|w|+1} = \\ &N(\overline{g}(w)g(\overline{f}(w),(x,y))) + f(\overline{f}(w,(x,y))) \cdot 2^{|w|+1} = \\ &N(\overline{g}(w)(\overline{f}(w)+x+y) \mod 2) + ((\overline{f}(w)+x+y) \dim 2) \cdot 2^{|w|+1} = \\ &= Num_2(((\overline{f}(w)+x+y) \mod 2)R(\overline{g}(w))) \\ &+ 2^{|w|}(2(\overline{f}(w)+x+y) \dim 2) = \\ &2^{|w|}((\overline{f}(w)+x+y) \mod 2) + N(\overline{g}(w)) \\ &+ 2^{|w|}(2(\overline{f}(w)+x+y) \mod 2) + N(\overline{g}(w)) \\ &+ 2^{|w|}(2(\overline{f}(w)+x+y) \dim 2) = \\ &N(\overline{g}(w)) + 2^{|w|}(\overline{f}(w)+x+y) = \\ &N(\overline{g}(w)) + 2^{|w|}\overline{f}(w) + 2^{|w|}x + 2^{|w|}y \stackrel{IV}{=} \\ &N(w_1(w)) + 2^{|w|}x + N(w_2(w)) + 2^{|w|}y \end{split}$$

$$\begin{split} &N(\bar{g}(w(x,y))) + \bar{f}(w(x,y)) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)g(\bar{f}(w),(x,y))) + f(\bar{f}(w,(x,y))) \cdot 2^{|w|+1} = \\ &N(\bar{g}(w)(\bar{f}(w)+x+y) \mod 2) + ((\bar{f}(w)+x+y) \dim 2) \cdot 2^{|w|+1} = \\ &= Num_2(((\bar{f}(w)+x+y) \mod 2)R(\bar{g}(w))) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) = \\ &2^{|w|}((\bar{f}(w)+x+y) \mod 2) + N(\bar{g}(w)) \\ &+ 2^{|w|}(2(\bar{f}(w)+x+y) \dim 2) = \\ &N(\bar{g}(w)) + 2^{|w|}(\bar{f}(w)+x+y) = \\ &N(\bar{g}(w)) + 2^{|w|}(\bar{f}(w)+2^{|w|}x+2^{|w|}y \stackrel{IV}{=} \\ &N(w_1(w)) + 2^{|w|}x + N(w_2(w)) + 2^{|w|}y = N(w_1(w)x) + N(w_2(w)y) = \\ &N(w_1(w(x,y))) + N(w_2(w(x,y))) \end{split}$$

-