# Chapter 7 Wireless and Mobile Networks



# Computer Networking: A Top-Down Approach

8<sup>th</sup> edition Jim Kurose, Keith Ross Pearson, 2020



## Wireless and Mobile Networks: context

- more wireless (mobile) phone subscribers than fixed (wired) phone subscribers (10-to-1 in 2019)!
- more mobile-broadband-connected devices than fixed-broadbandconnected devices devices (5-1 in 2019)!
  - 4G/5G cellular networks now embracing Internet protocol stack, including SDN
- two important (but different) challenges
  - wireless: communication over wireless link
  - mobility: handling the mobile user who changes point of attachment to network



# Chapter 7 outline

Introduction

#### Wireless

- Wireless Links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G



## Mobility

- Mobility management: principles
- Mobility management: practice
  - 4G/5G networks
  - Mobile IP
- Mobility: impact on higher-layer protocols

















- typically used to connect mobile(s) to base station, also used as backbone link
- multiple access protocol coordinates link
- various transmission rates and distances, frequency bands



## Characteristics of selected wireless links











#### ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves



# Wireless network taxonomy

|                               | single hop                                                                          | multiple hops                                                                                                                   |
|-------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| infrastructure<br>(e.g., APs) | host connects to base station (WiFi, cellular) which connects to larger Internet    | host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>                            |
| no<br>infrastructure          | no base station, no<br>connection to larger<br>Internet (Bluetooth, ad<br>hoc nets) | no base station, no connection<br>to larger Internet. May have<br>to relay to reach other a given<br>wireless node MANET, VANET |

# Chapter 7 outline

Introduction

#### Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G



## Mobility

- Mobility management: principles
- Mobility management: practice
  - 4G/5G networks
  - Mobile IP
- Mobility: impact on higher-layer protocols



# Wireless link characteristics: fading (attenuation)

Wireless radio signal attenuates (loses power) as it propagates (free space "path loss")

Free space path loss  $\sim (fd)^2$ 

*f*: frequency

d: distance



higher frequency or larger free space path loss



# Wireless link characteristics: multipath

multipath propagation: radio signal reflects off objects ground, built environment, arriving at destination at slightly different times





# Wireless link characteristics: multipath

multipath propagation: radio signal reflects off objects ground, built environment, arriving at destination at slightly different times



#### Coherence time:

- amount of time bit is present in channel to be received
- influences maximum possible transmission rate, since coherence times can not overlap
- inversely proportional to
  - frequency
  - receiver velocity



## Wireless link characteristics: noise

- interference from other sources on wireless network frequencies: motors, appliances
- SNR: signal-to-noise ratio
  - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus Bit Error Rate (BER) tradeoff
  - given physical layer: increase power -> increase SNR->decrease BER
  - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)



QAM256 (8 Mbps)

– – · QAM16 (4 Mbps)

BPSK (1 Mbps)



# Wireless link characteristics: hidden terminals

Hidden terminal problem due to obstacles



- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A,
   C unaware of their interference at B

Hidden terminal problem due to signal attenuation \_\_\_\_\_



- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

# Chapter 7 outline

Introduction

#### Wireless

- Wireless links and network characteristics
- CDMA: code division multiple access
- WiFi: 802.11 wireless LANs
- Bluetooth



## Review: FDMA and TDMA





• First generation (1G) systems use Frequency Division Multiple Access (FDMA)  Most of second generation (2G) systems use Time Division Multiple Access (TDMA)



# Code Division Multiple Access (CDMA)



- Users share bandwidth by using code sequences that are orthogonal to each other
- Some 2G and most 3G systems use CDMA



# Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
  - all users share same frequency, but each user has own chipping sequence (i.e., code) to encode data
  - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
  - analogy: people speaking different languages in the same roo do not interfere with each other
- encoding: scalar-vector product: (original data) \* (chipping sequence)
  - $d * (x_1, x_2, ..., x_n) = (d^*x_1, d^*x_2, ..., d^*x_n)$ , where d = 1 or -1.
- decoding: vector-vector inner-product: (encoded data) · (chipping sequence)
  - Defined as sum of elementwise product:
  - $(x_1, x_2, ..., x_n) \cdot (y_1, y_2, ..., y_n) = (x_1^*y_1 + x_2^*y_2 + ... + x_n^*y_n)$

## Vector-Vector Inner-Product, Orthogonal Vector

- For a vector  $\mathbf{x} = (x_1, x_2, ..., x_n)$ , the inner product (or dot product) with itself is given by:  $\mathbf{x} \cdot \mathbf{x} = (x_1)^2 + (x_2)^2 + ... + (x_n)^2$ .
  - This scalar value is also known as the squared norm of the vector. It is always non-negative and equals zero if and only if the vector itself is the zero vector.
  - If each element  $x_i=1$  or -1, then  $x \cdot x = 1+1+...+1 = n$ , the vector dimension.
- A vector  $\mathbf{y} = (y_1, y_2, ..., y_n)$  is the orthogonal vector of vector  $\mathbf{x} = (x_1, x_2, ..., x_n)$  if their inner product is zero:  $\mathbf{x} \cdot \mathbf{y} = (x_1, x_2, ..., x_n) \cdot (y_1, y_2, ..., y_n) = (x_1^* y_1 + x_2^* y_2 + ... + x_n^* y_n) = 0$



# Direct-Sequence Spread Spectrum CDMA



- □ Chipping sequence (Code): (1,1,1,-1,1,-1,-1)
- The 8-bit sequence 1\*(1,1,1,-1,1,-1,-1,-1) encodes data bit 1 (corresponding to application bit 1).
- □ The 8-bit sequence (-1)\*(1,1,1,-1,1,-1,-1,-1) = (-1,-1,-1,1,-1,1,1,1) encodes data bit -1 (corresponding to application bit 0).
- □ Spreading factor = Code length/data bit = 8
  - □ 10-100 commercial (Min 10 by FCC), 10,000 for military
- Two codes are orthogonal to each other, if their inner product equals 0.



# CDMA encode/decode



Decoded data in slot 1:

$$= (1/8)^*(-1,-1,-1,1,-1,1,1) \cdot (1,1,1,-1,1,-1,-1,-1)$$

= -1



# CDMA encode/decode

- Sender 1 Code  $c_m$ , m = 1 ... M: (1,1,1,-1,1,-1,-1)
- Encoded data in slot 1:  $Z_{1,m} = d_1 * c_m$ 
  - -1\*(1,1,1,-1,1,-1,-1)
  - $\bullet$  = (-1,-1,-1,1,-1,1,1)
- Decoded data in slot 1 is normalized (divided by code length M) inner product of the encoded  $Z_{i,m}$  with Sender 1 Code:  $d_1 =$

```
\frac{1}{M}\sum_{m=1}^{M}Z_{1,m}\cdot c_m
```

- =  $(1/8)^*(-1,-1,-1,1,-1,1,1) \cdot (1,1,1,-1,1,-1,-1,-1)$
- = (1/8)\*((-1)\*1+(-1)\*1+(-1)\*1+1\*(-1)+(-1)\*1+1\*(-1)+1\*(-1)+1\*(-1))
- $\bullet = (1/8)^*(-8)$
- = -1

## CDMA: two-sender interference





channel sums together transmissions by sender 1 and 2

Encoded data in slot 1: -1\*(1,1,1,-1,1,-1,-1) + 1\*(1,-1,1,1,1,-1,1,1) = (0,-2,0,2,0,0,2,2)

Decoded data in slot 1 for Sender 1:  $d_1^1 = (1/8)^*(0^*1 + (-2)^*1 + 0^*1 + 2^*(-1) + 0^*1 + 0^*(-1) + 2^*(-1) + 2^*(-1))$  $= (1/8)^*(-8) = -1$  code



using same code as sender 1, receiver recovers sender 1's original data from summed channel data!

(provided the codes for different senders are orthogonal)



## CDMA: two-sender interference

- Orthogonal codes:
  - Sender 1 Code:  $c_m^1$ , m = 1 ... 8: (1,1,1,-1,1,-1,-1)
  - Sender 2 Code:  $c_m^2$ , m = 1 ... 8: (1,-1,1,1,1,-1,1,1)
  - The two codes are orthogonal since their inner product is 0:
  - $(1,1,1,-1,1,-1,-1,-1) \cdot (1,-1,1,1,1,-1,1,1)$
  - =1\*1+1\*(-1)+1\*1+(-1)\*1 +1\*1+(-1)\*(-1)+(-1)\*1+(-1)\*1
  - =0
- Encoded data in slot 1 is sum of encoded -1 for Sender 1 and encoded 1 for Sender 2:
  - $Z_{1.m}^* = d_1^1 * c_m^1, Z_{2.m}^* = d_1^2 * c_m^2$
  - -1\*(1,1,-1,-1,-1,-1) + 1\*(1,-1,1,1,1,-1,1,1)
  - $\bullet$  = (0,-2,0,2,0,0,2,2)
- Decoded data for Sender 1 in slot 1 is  $d_1^1 = \frac{1}{M} \sum_{m=1}^M Z_{1,m}^* \cdot c_m^1$ :
  - $d_1^1 = (1/8)^*(0,-2,0,2,0,0,2,2) \cdot (1,1,1,-1,1,-1,-1,-1)$
  - =(1/8)\*(0\*1+(-2)\*1+0\*1+2\*(-1)+0\*1+0\*(-1)+2\*(-1)+2\*(-1))
  - =(1/8)\*(-8)
  - =-1
- Decoded data for Sender 2 in slot 1 is  $d_1^2 = \frac{1}{M} \sum_{m=1}^M Z_{1,m}^* \cdot c_m^2$ :
  - $d_1^2 = (1/8)^*(0,-2,0,2,0,0,2,2) \cdot (1,-1,1,1,1,-1,1,1)$
  - =(1/8)\*(0\*1+(-2)\*(-1)+0\*1+2\*1+0\*1+0\*(-1)+2\*1+2\*1)
  - =(1/8)\*8
  - =1



## CDMA: two-sender interference: Sender 1

- Decoded data for Sender 1 in slot 1 is  $d_1^1 = \frac{1}{M} \sum_{m=1}^M Z_{1,m}^* \cdot c_m^1$
- $= (1/8)^*((-1)^*(1,1,1,-1,1,-1,-1,-1) \cdot (1,1,1,-1,-1,-1,-1) + (1/8)^*1^*(1,-1,1,1,-1,-1,-1,-1,-1) + (1/8)^*1^*(1,-1,1,1,-1,-1,-1,-1,-1)$

(First term: Sender 1 Code's inner product with itself is sum of M 1's, M=8 is its dimension. Second term: Sender 1 Code's inner product with Sender 2 Code equals 0, since the codes for different senders are orthogonal)

- $= (1/8)^*(-1^*(1+1+1+1+1+1+1+1) + 1^*(1^*1+1^*(-1)+1^*1+(-1)^*1 + 1^*1+(-1)^*(-1)+(-1)^*1+(-1)^*1)$
- = (1/8)\*(-1\*8 + 1\*0)
- **■** = -1



## CDMA: two-sender interference: Sender 2

- Decoded data for Sender 2 in slot 1 is  $d_1^1 = \frac{1}{M} \sum_{m=1}^M Z_{2,m}^* \cdot c_m^2$
- $= (1/8)^*((-1)^*(1,1,1,-1,-1,-1,-1) + 1^*(1,-1,1,1,1,-1,1,1)) \cdot (1,-1,1,1,1,-1,1,1,-1,1,1)$
- $= (1/8)^*((-1)^*(1,1,1,-1,1,-1,-1,-1) \cdot (1,-1,1,1,1,-1,1,1) + (1/8)^*1^*(1,-1,1,1,1,-1,1,1)$

(First term: Sender 1 Code's inner product with Sender 2 Code equals 0, since the codes for different senders are orthogonal. Second term: Sender 2 Code's inner product with itself is sum of M 1's, M=8 is its dimension.)

- $= (1/8)^*(-1^*0 + 1^*(1^*1 + (-1)^*(-1) + 1^*1 + 1^*1 + 1^*1 + (-1)^*(-1) + 1^*1 + 1^*1))$
- = (1/8)\*(-1\*0 + 1\*8)
- **=** = 1



## Quiz 1

- Q1: Consider the codes for two senders: Sender 1 Code: (1,-1,-1,-1,-1,-1,-1), Sender 2 Code: (1,-1,1,-1,1,-1). Are they orthogonal?
- A: Inner product (1,-1,-1,-1,-1,-1,-1) · (1,-1,1,-1,1,-1,1,-1) = 4, so not orthogonal
- Q2: Consider the codes for two senders: Sender 1 Code: (1,-1,1,-1,1,-1,-1), Sender 2 Code: (1,1,1,1,1,1,1). Are they orthogonal?
- A: inner product (1,-1,1,-1,1,-1,-1)· (1,1,1,1,1,1,1,-1) = 0, so they are orthogonal
- Q3: With the codes in Q2, suppose Sender 1 sends data bit 1 and Sender 2 sends data bit -1 simultaneously, compute the encoded data.
- A: 1\*(1,-1,1,-1,1,-1,-1,-1) + (-1)\*(1,1,1,1,1,1,1,1,-1) = (0,-2,0,-2,0,-2,-2,0)
- Q4: Compute the decoded data bit for Sender 1 and decoded data bit Sender 2.
- A: Decoded bit for Sender 1:  $(1/8)*(0,-2,0,-2,0,-2,0)\cdot(1,-1,1,-1,1,-1,-1,-1)=1$
- Decoded bit for Sender 2:  $(1/8)*(0,-2,0,-2,0,-2,0)\cdot(1,1,1,1,1,1,1,1,-1) = -1$



# Quiz 2

- Q: A CDMA receiver receives the following encoded data:
- (-1 +1 -3 +1 -1 -3 +1 +1).
- Assuming the following codes used by four sending stations (they are pairwise orthogonal to each other),
  - A=(-1,-1,-1,+1,+1,-1,+1,+1)
  - B=(-1,-1,+1,-1,+1,+1,-1)
  - C=(-1,+1,-1,+1,+1,+1,-1,-1)
  - D=(-1,+1,-1,-1,-1,+1,-1)
- which stations transmitted, and which bits did each one send?
- A: Compute the normalized inner products with each code:
  - A's data: $(1/8)*(-1+1-3+1-1-3+1+1) \cdot (-1,-1,-1,+1,+1,+1,+1) = 1$
  - B's data: $(1/8)*(-1+1-3+1-1-3+1+1) \cdot (-1-1+1-1+1+1+1-1) = -1$
  - C's data: $(1/8)*(-1+1-3+1-1-3+1+1) \cdot (-1+1-1+1+1+1-1-1) = 0$
  - D's data:(1/8)\*  $(-1+1-3+1-1-3+1+1) \cdot (-1-1-1-1-1-1-1) = 1$
- Stations A, B, and D transmitted bits 1, -1, 1 respectively while station C did not transmit.
  - Transmitted bits 1, -1, 1 correspond to application bits 1, 0, 1