ผลงานวิจัยภายในรอบ 5 ปีย้อนหลัง

ชื่อ-นามสกุล	ชื่อผลงาน	แหล่งเผยแพร่/ตีพิมพ์	ปีที่ตีพิมพ์
1. นายสมนึก ศรีสวัสดิ์	1. Novel inertial methods for fixed	Rendiconti del Circolo	2023
	point problems in reflexive	Matematico di Palermo	
	Banach spaces with applications	Series 2	
	2. On the Vieta-Jacobsthal-like	Note on number Theory	2022
	polynomial	and Discrete Mathematics	
	3. An Iterative Method for Solving	International Journal of	2021
	Split Monotone Variational	Mathematics and	
	Inclusion Problems and Finite	Mathematical Sciences	
	Family of Variational Inequality		
	Problems in Hilbert Spaces		
	4. VIETA-PELL-LIKE POLYNOMAILS	Journal of Science and	2021
	AND SOME IDENTITIES	Arts	
	5. Vieta-Fibonacci-like polynomials	Annales Mathematicae et	2021
	and some identities	Informaticae	
	6. On the (s,t)-Pell and (s,t)-Pell-	Progress in Applied	2021
	Lucas Polynomials	Science and Technology	
	7. Weak and Strong Convergence	Kyungpook	2019
	of Hybrid Subgradient Method	Mathematical Journal	
	for Pseudomonotone		
	Equilibrium Problems and		
	Nonspreading- Type Mappings in		
	Hilbert Spaces		
2. นายพงศกร	Novel inertial methods for	Rendiconti del Circolo	2023
สุนทรายุทธ์	fixed point problems in	Matematico di Palermo	
9 9	reflexive Banach spaces	Series 2	
	with applications		
	2. Inertial-like Bregman	Mathematical Methods	2023
	projection method for	in the Applied Sciences	
	solving systems of		
	variational inequalities		
	3. Inertial projection and	Carpathian Journal of	2023
	contraction methods for	Mathematics	
	solving variational		

	1	1
inequalities with		
applications to image		
restoration problems		
4. Two-step inertial method for	AIMS Mathematics	2023
solving split common null point		
problem with multiple output		
sets in Hilbert spaces		
5. Modified accelerated	Optimization	2023
Bregman projection		
methods for solving quasi-		
monotone variational		
inequalities		
6. Modified inertial extragradient	International Journal of	2022
methods for finding minimum-	Computer Mathematics	
norm solution of the variational		
inequality problem with		
applications to optimal control		
problem		
7. Analysis of two versions of	Computational and	2022
relaxed inertial algorithms with	Applied Mathematics	
Bregman divergences for solving		
variational inequalities		
8. The Analysis of Fractional- Order	Complexity	2022
System Delay Differential		
Equations Using a Numerical		
Method		
9. Solving Fractional-Order	Journal of Function	2022
Diffusion Equations in a Plasma	Spaces	
Diffusion Equations in a Plasma and Fluids via a Novel Transform	Spaces	
!	Spaces Optimization	2022
and Fluids via a Novel Transform		2022
and Fluids via a Novel Transform 10. Weak and strong convergence		2022
and Fluids via a Novel Transform 10. Weak and strong convergence results for solving monotone		2022
and Fluids via a Novel Transform 10. Weak and strong convergence results for solving monotone variational inequalities in		2022 9 May
and Fluids via a Novel Transform 10. Weak and strong convergence results for solving monotone variational inequalities in reflexive Banach spaces	Optimization	
and Fluids via a Novel Transform 10. Weak and strong convergence results for solving monotone variational inequalities in reflexive Banach spaces 11. A Novel Multicriteria Decision-Making	Optimization	9 May
and Fluids via a Novel Transform 10. Weak and strong convergence results for solving monotone variational inequalities in reflexive Banach spaces 11. A Novel Multicriteria Decision-Making Approach for Einstein	Optimization	9 May
and Fluids via a Novel Transform 10. Weak and strong convergence results for solving monotone variational inequalities in reflexive Banach spaces 11. A Novel Multicriteria Decision-Making Approach for Einstein Weighted Average	Optimization	9 May
and Fluids via a Novel Transform 10. Weak and strong convergence results for solving monotone variational inequalities in reflexive Banach spaces 11. A Novel Multicriteria Decision-Making Approach for Einstein	Optimization	9 May

	2 Dhanamanf +l	Moves in Develo	2022
	Phenomena of thermo-sloutal time's relaxation in mixed	Waves in Random and Complex Media	2022
	convection Carreau fluid with	omprex media	
	heat sink/Source		
1	3. A New Self-Adaptive	Vietnam Journal of	2022
	Method for the Multiple-	Mathematics	
	Sets Split Common Null		
	Point Problem in Banach		
	Spaces		
1	4. Analysis of non-singular	Chaos, Solitons and	2022
	fractional bioconvection and	Fractals	
	thermal memory with		
	generalized Mittag-Leffler		
	kernel		
1	5. Numerical solution of	AIMS Mathematics	2022
	stochastic and fractional		
	competition model in Caputo		
	derivative using Newton		
	method		
1	.6. Unsteady MHD Flow for	Journal of Function	2022
	Fractional Casson Channel	Spaces	
	Fluid in a Porous Medium: An		
	Application of the Caputo-		
	Fabrizio Time Fractional		
	Derivative		
1	.7. Impact of nanoparticle	Case Studies in Thermal	2022
	aggregation on heat transfer	Engineering	
	phenomena of second grade		
	nanofluid flow over melting		
	surface subject to		
	homogeneous heterogeneous		
	reactions		
1	8. Two New Inertial Algorithms	Numerical Functional	2021
	for Solving Variational	Analysis and	
	Inequalities in Reflexive	Optimization	
	Banach Spaces		
1	9. An iterative algorithm with	Asian-European Journal	2021
	inertial technique for solving	of Mathematics	
	the split common null point		
	problem in Banach spaces		

	2021
20. Convergence results of Applications of iterative algorithms for the Mathematics	2021
sum of two monotone	
operators in reflexive Banach	
spaces	
21. A Generalized Self-Adaptive Bulletin of the Iranian	2021
Algorithm for the Split Mathematical Society	2021
Feasibility Problem in Banach	
Spaces	
	2001
22. An inertial self-adaptive Rendiconti del Circolo	2021
algorithm for the generalized Matematico di Palermo	
split common null point Series 2	
problem in Hilbert spaces	
23. New Bregman projection	2021
methods for solving seudo- Mathematics and	
monotone variational Computing	
inequality problem	
24. Mann-type algorithms for Ricerche di Matematica	2021
solving the monotone	
inclusion problem and the	
fixed point problem in	
reflexive Banach spaces	
25. The Comparative Study for Symmetry	2021
Solving Fractional-Order	
Fornberg–Whitham Equation	
via ρ -Laplace Transform	
26. A modified Popov's Journal of Nonlinear	2021
subgradient extragradient Functional Analysis	
method for variational	
inequalities in Banach spaces	
27. Modified Tseng's splitting AIMS Mathematics	2021
algorithms for the sum of two	
Monotone operators in Banach	
spaces	
28. Iterative Methods for Solving Thai Journal of	2020
the Monotone Inclusion Mathematic	
Problem and the Fixed Point	
Problem in Banach Spaces	

	 29. Strong convergence of a generalized forward–backward splitting method in reflexive Banach spaces 30. The generalized viscosity explicit rules for solving variational inclusion problems in Banach spaces 31. Strong convergence of a 	Optimization Optimization Journal of Applied	2020
	general viscosity explicit rule for the sum of two monotone operators in Hilbert spaces	Analysis and Computation	
	32. An explicit parallel algorithm for solving variational inclusion problem and fixed point problem in Banach spaces	Banach Journal of Mathematical Analysis	2019
	33. A modified extragradient method for variational inclusion and fixed point problems in Banach spaces	Applicable Analysis	2019
	34. Convergence theorems for generalized viscosity explicit methods for nonexpansive mappings in Banach spaces and some applications	Mathematics	2019
	35. An iterative method with residual vectors for solving the fixed point and the split inclusion problems in Banach spaces	Computational and Applied Mathematics	2019
3. นายวงศ์วิศรุต เชื่องสตุ่ง	Self-adaptive CQ-type algorithms for the split feasibility problem involving two bounded linear operators in Hilbert spaces	Carpathian Journal of Mathematics	2024
	2. A regularization method for solving the G-variational inequality problem and fixed-point problems	Journal of Inequalities and Applications	2024

		1
in Hilbert spaces endowed with		
graphs.		
3. An intermixed algorithm for	Carpathian Journal of	2024
solving fixed point problems of	Mathematics	
proximal operators in Hilbert		
Spaces.		
4. Impact of pretreatment with	Journal of the Science	2024
dielectric barrier	of Food and Agriculture	
discharge plasma on the drying		
characteristics and bioactive		
compounds of jackfruit slices		
5. An intermixed method for	Journal of Inequalities	2023
solving the combination of	and Applications	
mixed variational inequality		
problems and fixed-point		
problems		
6. Strong Convergence for the	The Thai Journal of	2022
Modified Split Monotone	Mathematics	
Variational Inclusion and Fixed		
Point Problem		
7. On an Open Problem in	Science & Technology	2022
Complex Valued Rectangular b-	Asia	
Metric Spaces with an	7.5.0	
Application		
8. Convergence results for	Journal of mathematics	2021
modified SP-iteration in		2021
	and computer science	
uniformly convex metric spaces	Thei laureal of	2021
9. The Convergence Results for an	Thai Journal of	2021
AK-Generalized Nonexpansive	Mathematics	
Mapping in Hilbert Spaces	T 1	000:
10. A Method for Solving the	Tamkang journal of	2021
Variational Inequality Problem	mathematics	
and Fixed Point Problems in		
Banach Spaces		
11. The Modification of	Thai Journal of	2021
Generalized Mixed Equilibrium	Mathematics	
Problems for Convergence		
Theorem of Variational		
Inequality Problems and Fixed		
Point Problems		
	·	

	12. Fixed Point Theorems for a Demicontractive Mapping and Equilibrium Problems in Hilbert Spaces	Communications in Mathematics and Applications	2020
	13. The Convergence Theorem for a Square α -Nonexpansive Mapping in a Hyperbolic Space	Thai Journal of Mathematics	2020
	14. The Rectangular Quasi-Metric Space and Common Fixed Point Theorem for ψ- Contraction and ψ-Kannan Mappings	Thai Journal of Mathematics	2020
	15. The Method for Solving Fixed Point Problem of G- Nonexpansive Mapping in Hilbert Spaces Endowed with Graphs and Numerical Example	Indian J Pure Appl Math	2020
	16. An iterative method for solving proximal split feasibility problems and fixed point problems	Comp. Appl. Math	2019
	17. The Finite Family L- Lipschitzian Suzuki-Generalized Nonexpansive Mappings	Communications in Mathematics and Applications	2019
	18. The Generalized - Nonexpansive Mappings and Related Convergence Theorems in Hyperbolic Spaces	Journal of Informatics and Mathematical Sciences	2019
	Novel inertial methods for fixed point problems in reflexive Banach spaces with applications	Rendiconti del Circolo Matematico di Palermo Series 2	2023
4. นายรัฐพรหม พรหมคำ	2. New inertial self-adaptive algorithms for the split common null-point problem: application to data classifications	Journal of Inequalities and Applications	2023
	3. Two-step inertial method for solving split common null point	AIMS Mathematics	2023

	problem with multiple output sets in Hilbert spaces		
	4. Strong convergence of a generalized forward–backward splitting method in reflexive Banach spaces	Optimization	2022
	5. Convergence Results of Iterative Algorithms for the Sum of Two Monotone Operators in Reflexive Banach Spaces	Applications of Mathematics	2021
5. นายมงคล ทาทอง	The Differential Equation in Terms of Jacobsthal and Jacobsthal-Lucas Numbers	PROGRESS IN APPLIED SCIENCE AND TECHNOLOGY	2023
	2. Some Identities of the Modified (s,t) Jacobsthal and Modified (s,t) Jacobsthal – Lucas Numbers by the Matrix Method	Burapha Science Journal, 27(1), 492 – 503 (Published January 2022)	2022
	3. Matrix Sequences in Terms of Gaussian Pell Polynomial, Gaussian Modified Pell Polynomial, Gaussian Pell Number, Gaussian Pell-Lucas Number, Gaussian Modified Pell Number, Pell Polynomial, Pell-Lucas Polynomial and Modified Pell Polynomial	Burapha Science Journal	2021
	4. Generalized Identities for third order Pell Number, Pell-Lucas Number and Modified Pell Number	Science and Technology RMUTT Journal	2020
	5. Generalized Identities Related for The k-Fibonacci Number, The k-Lucas Number and k-Fibonacci-Like Number	Science and Technology RMUTT Journal	2018
	6. Generalized Identities Related for the Fibonacci Number, Lucas Number and Fibonacci-Like Number By Matrix Method	Science and Technology RMUTT Journal	2018