Markov Chains

Lucas Ondel April 20, 2022

Contents

1	Semiring Weighted Finite State Machine					
2						
3	FSN	M operations	3			
	3.1	Renormalization	3			
	3.2	Union	3			
	3.3	Concatenation	3			
	3.4	Reversal	4			
	3.5	Hierarchical FSM - Composition	4			

1 Semiring

A semiring $K = (\mathbb{K}, +_K, \times_K, 0_K, 1_K)$ is a set \mathbb{K} equipped with a commutative binary operation $+_K$ (called "addition") with identity element 0_K and an associative binary operation \times_K (called "multiplication") with identity element 1_K that distributes over +.

Here are commonly used semirings:

Semiring name	\mathbb{K}	$x +_K y$	$x \times_K y$	$x/_K y$	0_K	1_K
Boolean	{true, false}	$x \vee y$	$x \wedge y$		false	true
Log	\mathbb{R}	$\ln(e^x + e^y)$	x + y	x - y	$-\infty$	0
Probability	\mathbb{R}^+	x + y	$x \cdot y$	x/y	0	1
Tropical	\mathbb{R}	$\max(x, y)$	x + y	x - y	$-\infty$	0
Union-Concatenation	$\{S:S\subseteq\Sigma^*\}$	$x \cup y$	$\{ab:a\in x,b\in y\}$		{}	$\{\epsilon\}$

Here are the main properties of the semirings:

Semiring name	idempotent	zero-sum free	divisible	ordered
Boolean	√	√		
Log		\checkmark	\checkmark	\checkmark
Probability		\checkmark	\checkmark	\checkmark
Tropical	\checkmark	\checkmark	\checkmark	\checkmark
Union-Concatenation	\checkmark	\checkmark		

2 Weighted Finite State Machine

We define a Finite State Machine (FSM) \mathcal{M} by the tuple $\mathcal{M} = (Q, \Sigma, K, L, \boldsymbol{\alpha}, \mathbf{T}, \boldsymbol{\omega}, \boldsymbol{\lambda})$ where:

• $Q = \{1, \ldots, d\}$ is the set of states (with cardinality d) identified as integers

- Σ is a set of symbols
- K is an zero-sum free and ordered semiring for the FSM's weights
- L is an union-concatenation semiring defined over $\{S: S \subseteq \Sigma^*\}$ for the FSM's labels
- $\alpha \in K^d$ is a vector such that $\alpha_i >_K 0_k$ is the initial weight of the state $i \in Q$
- $\mathbf{T} \in K^{d \times d}$ is a matrix such that T_{ij} is the transition weight from the state $i \in Q$ to the state $j \in Q$
- $\omega \in K^d$ is a vector such that ω_i is the final weight of the state $i \in Q$
- $\lambda \in L^d$ is a vector of symbol such that λ_i is the symbol of the state $i \in Q$

initial and final states: We say that a state i is an *initial state* if its initial weight is greater than 0, i.e $\alpha_i > 0$. Similarly, we say that a state i is a *final state* if its final weight is greater than 0, i.e. $\omega_i > 0$.

path: A path

$$\boldsymbol{\pi} = (\pi_1, \pi_2, \dots, \pi_n), \quad \pi_i \in Q, \quad \forall i \in \{1, \dots, n\}$$
 (1)

is a sequence of states. The weight of a path π is given by the function $\mu: Q^n \to K$:

$$\mu(\boldsymbol{\pi}) = \alpha_{\pi_1} \left[\prod_{i=1}^{n-1} T_{\pi_{i-1}, \pi_i} \right] \omega_{\pi_N}. \tag{2}$$

Similarly, the label sequence of the path π is given by the function $\sigma: \mathbb{Q}^n \to \mathbb{L}^n$:

$$\sigma(\boldsymbol{\pi}) = \prod_{n=1}^{N} \lambda_{\pi_n}.$$
 (3)

input sequence: We define an input sequence ${\bf s}$ to a FSM as a sequence of labels:

$$\mathbf{s} = \prod_{i=1}^{n} s_i, \quad s_i \in L. \tag{4}$$

The weight of an input sequence is given by the function $\nu: L^n \to K$:

$$\nu(\mathbf{s}) = \sum_{\mathbf{x} \in P} \mu(\mathbf{x}),\tag{5}$$

where $P = \{ \boldsymbol{\pi} : \sigma(\boldsymbol{\pi}) = \mathbf{s}, \ \boldsymbol{\pi} \in \mathcal{M} \}$ is the set of paths from \mathcal{M} with label sequence \mathbf{s} . We say that an input sequence is *accepted by* \mathcal{M} if $\nu(\mathbf{s}) > 0$. We denote S the set of accepted input sequence of a FSM, i.e. $S = \{ \mathbf{s} : \nu(\mathbf{s}) > 0 \}$.

3 FSM operations

We describe here some operations over FSMs. A FSM \mathcal{M}_i is defined as:

$$\mathcal{M}_i = (Q_i, \Sigma_i, K_i, L_i, \boldsymbol{\alpha}_i, \mathbf{T}_i, \boldsymbol{\omega}_i, \boldsymbol{\lambda}_i). \tag{6}$$

The path weight, path label and input sequencs weight function associated to this FSM are denoted $\mu_i(\cdot)$, $\sigma_i(\cdot)$ and $\nu_i(\cdot)$ respectively. The set of input sequences accepted by \mathcal{M}_i is $S_i = \{\mathbf{s} : \nu_i(\mathbf{s}) > 0\}$. In the following, for binary operator over 2 FSMs, we assume tacitly that both FSMs have the same set of symbols, i.e. $\Sigma = \Sigma_1 = \Sigma_2$, the same weight semiring, i.e. $K = K_1 = K_2$, and the same label semiring, i.e. $L = L_1 = L_2$.

3.1 Renormalization

We say that a FSM \mathcal{M} is normalized if (i) the sum of its intial weights sum up to 1, i.e. $\sum_{i \in Q} \alpha_i = 1$, and (ii) the sum of the transition weights from a state i to all other states and the final weight of the state i sum up to 1, i.e. $\omega_i + \sum_{j \in Q} T_{ij} = 1$. A FSM \mathcal{M}_1 with a zero-sum free and divisble weight semiring can be transformed into normalized FSM \mathcal{M}_2 via the renormalization operation: $\mathcal{M}_2 = \text{renorm}(\mathcal{M}_1)$. The resulting FSM is obtained by the following construction:

$$Q_2 = Q_1 \qquad \qquad \alpha_2 = \left(\sum_i \alpha_{1i}\right)^{-1} \alpha_1 \tag{7}$$

$$\mathbf{T}_{2} = \begin{bmatrix} (\omega_{1} + \sum_{i} T_{1,1i})^{-1} \mathbf{T}_{1,1} \\ \vdots \\ (\omega_{d} + \sum_{i} T_{1,di})^{-1} \mathbf{T}_{1,d} \end{bmatrix} \qquad \boldsymbol{\omega}_{2} = \begin{bmatrix} (\omega_{1} + \sum_{i} T_{1,1i})^{-1} \\ \vdots \\ (\omega_{d} + \sum_{i} T_{1,di})^{-1} \end{bmatrix} \odot \boldsymbol{\omega}_{1} \qquad (8)$$

$$\lambda_2 = \lambda_1 \tag{9}$$

3.2 Union

The union of two FSMs $\mathcal{M}_1 \cup \mathcal{M}_2$ gives a FSM \mathcal{M}_3 such that $S_3 = S_1 \cup S_2$ and $\forall \mathbf{s} \in S_3$, $\nu_3(\mathbf{s}) = \nu_1(\mathbf{s}) + \nu_2(\mathbf{s})$. \mathcal{M}_3 can be obtained with the following construction:

$$Q_3 = \{1, \dots, |Q_1| + |Q_2|\} \qquad \qquad \boldsymbol{\alpha}_3 = \begin{bmatrix} \boldsymbol{\alpha}_1 \\ \boldsymbol{\alpha}_2 \end{bmatrix}$$
 (10)

$$\mathbf{T}_{3} = \begin{bmatrix} \mathbf{T}_{1} & \\ & \mathbf{T}_{2} \end{bmatrix} \qquad \qquad \boldsymbol{\omega}_{3} = \begin{bmatrix} \boldsymbol{\omega}_{1} \\ \boldsymbol{\omega}_{2} \end{bmatrix}$$
 (11)

$$\lambda_3 = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \tag{12}$$

3.3 Concatenation

The concatenation of two FSMs concat (M_1, \mathcal{M}_2) gives a FSM \mathcal{M}_3 such that $S_3 = \{\mathbf{s}_1 \mathbf{s}_2 : \mathbf{s}_1 \in S_1, \mathbf{s}_2 \in S_2\}$. \mathcal{M}_3 can be obtained with the following

construction:

$$Q_3 = \{1, \dots, |Q_1| + |Q_2|\} \qquad \qquad \boldsymbol{\alpha}_3 = \begin{bmatrix} \boldsymbol{\alpha}_1 \\ 0 \boldsymbol{\alpha}_2 \end{bmatrix}$$
 (13)

$$\mathbf{T}_{3} = \begin{bmatrix} \mathbf{T}_{1} & \\ & \mathbf{T}_{2} \end{bmatrix} \qquad \qquad \boldsymbol{\omega}_{3} = \begin{bmatrix} 0\boldsymbol{\omega}_{1} \\ \boldsymbol{\omega}_{2} \end{bmatrix}$$
 (14)

$$\lambda_3 = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \tag{15}$$

3.4 Reversal

The reversal (denoted $^{\top}$) of a FSM \mathcal{M}_1 yields a FSM $\mathcal{M}_2 = \mathcal{M}_1^{\top}$ such that $S_2 = \{ \mathbf{s} : \mathbf{s} \in S_1 \}$ where \mathbf{s} is the sequence \mathbf{s} in reversed order. \mathcal{M}_2 is obtained by the following construction:

$$Q_2 = Q_1 \qquad \qquad \boldsymbol{\alpha}_2 = \boldsymbol{\omega}_1 \tag{16}$$

$$\mathbf{T}_2 = \mathbf{T}_1^{\mathsf{T}} \qquad \qquad \boldsymbol{\omega}_2 = \boldsymbol{\alpha}_1 \tag{17}$$

$$\lambda_2 = \lambda_1 \tag{18}$$

3.5 Hierarchical FSM - Composition

In many applications we would like to process signals with different levels of structure. A typical example is speech where we have phonotactic structure, syllabic structure and lexical structure. To handle such phenomenon, it is necessary to build *hierarchical* FSMs, i.e. FSMs where each state is itself associated to another FSM. To build a such FSM we need to *compose* a high-level FSM with a set of sub-level FSMs.

Let's consider a FSM \mathcal{M}_1 with d states. We would like to compose \mathcal{M}_1 with a sequence of d FSMs $\mathcal{M}^{1:d} = (\mathcal{M}^1, \dots, \mathcal{M}^d)$ such that the ith state of \mathcal{M}_1 is associated with the FSM \mathcal{M}^i . The composition of \mathcal{M}_1 and $\mathcal{M}^{1:d}$, denoted $\mathcal{M}_1 \circ \mathcal{M}^{1:d}$, yields a FSM \mathcal{M}_2 which can be obtained with the following construction:

$$Q_2 = \{1, \dots, \sum_{i=1}^{d} |Q^i|\} \qquad \Sigma_2 = \Sigma_1 \cup \Sigma^1 \cup \dots \cup \Sigma^d$$
 (19)

$$K_2 = K_1 = K^1 = \dots = K^d$$
 $L_2 = L_1 = L^1 = \dots = L^d$ (20)

$$\boldsymbol{\alpha}_{2} = \begin{bmatrix} \alpha_{1,1} \boldsymbol{\alpha}^{1} \\ \vdots \\ \alpha_{1,2} \boldsymbol{\alpha}^{d} \end{bmatrix} \qquad \mathbf{T}_{2} = (\mathbf{M}_{K}^{\top} \mathbf{T}_{1} \mathbf{M}_{K}) \odot (\boldsymbol{\omega}_{1} \boldsymbol{\alpha}_{1}^{\top}) \qquad (21)$$

$$\boldsymbol{\omega}_{2} = \begin{bmatrix} \omega_{1,1} \boldsymbol{\omega}^{1} \\ \vdots \\ \omega_{1,d} \boldsymbol{\omega}^{d} \end{bmatrix} \qquad \boldsymbol{\lambda}_{2} = \mathbf{M}_{L}^{\top} \begin{bmatrix} \lambda_{1,1} \boldsymbol{\lambda}^{1} \\ \vdots \\ \lambda_{1,d} \boldsymbol{\lambda}^{d} \end{bmatrix}, \tag{22}$$

 \mathbf{M}_K is a matrix whose elements belong to the semiring K and it is defined as:

$$\mathbf{M}_{K} = \begin{bmatrix} \mathbf{1}_{|Q_{1}|} & & & & \\ & \mathbf{1}_{|Q_{2}|} & & & \\ & & \ddots & & \\ & & & \mathbf{1}_{|Q_{d}|} \end{bmatrix}.$$
 (23)

where $\mathbf{1}_{|Q_i|}$ is a vector of 1 of size $|Q_i|$. \mathbf{M}_L is defined identically but has elements in the semiring L.