Research works in IIT Hyderabad

2015-02-23,24@UoT-IITH Symposium Hiroyuki Ikegami

Overview of the research

 Demand Control with Smart Circuit Breaker, new online component for micro grid, for unstable power supply environment

- Features of SCB (Smart Circuit Breaker)
 - Dynamic Trip Threshold
 - Controllable from Computer Network
 - Current flow metering

Background: What is interesting

 Unstable power supply and local generator operation is interesting for ICT side SmartGrid guy

Background: Events on power outage

- 1. Power outage of PC
- 2. Change source*
- 3. Turn on generator*
- Resuming
- 5. Check demand
- 6. Control breaker (goto 5)
- 7. Resuming on PC
- 8. Return source*
- 9. Short term power outage
- 10. Resuming

(*) State-of-the-art generator controls them automatically

Operated by **hand** in IIT-H

Position of proposal

- 1. Power outage of PC
- 2. Change source
- 3. Turn on generator
- 4. Resuming
- 5. Check demand
- 6. Control breaker (goto 5)
- 7. Resuming on PC
- 8. Return source
- 9. Short term power outage
- 10. Resuming

Automatic control with SCB

- Smart Circuit Breaker: Battery backup Online Circuit Breaker
- Changeable trip threshold
- SCB based system changes that these controls are from human knowledge to optimization problem.

Proposed system

 Changes power grid based on SCB and controls current flow in building automatically

Conventional Ways

- Deploying much size generator
- Automatic controlling breaker

	#electrical panels	Target circuit selection	Control Method	Environment
Home Energy Management System (HEMS)	1 or 2	Dynamic	ON/OFF	House
Building power grid system with control wire for circuit breaker	Around 1000	Static	ON/OFF	Commercial Building
Proposal	Around 1000	Dynamic	Control Threshold of Trip state	Commercial Building

Technical Requirements

- Time limitation to resuming power providing:
 All configuration must be done in some tens seconds
- Awareness of Human Activity: Must have interface to communicate users in building or forecasting system
- No guarantee of network connectivity: SCB must work on standalone, even if it isolated with another SCBs

Milestones

- 1: Launch up the project
 - 1.1: Confirm Feasibility
 - 1.2: Architecture Design
 - 1.3: Developing components
 - 1.4: Experiment

- 2: Publishing Paper
- 3: Experiment w/ Real Building

Progress

- Done
 - Check feasibility roughly by current metering system
 - Prototyping of SCB
 - Draft version of SCB-based power system Architecture
- Ongoing
 - Check feasibility correctly
 - Discussion about Fixing research problem w/ Prasad
 (*) these things must be done till 20th March
- Not bad... just not bad

Feasibility Checking: Investigation of IITH Yeddumailaram campus

- Deployed meters to know current flow
- 3 current transfers for 3-phases
- Stored at IITH's server over IEEE1888
- Neutral Line is not measured => Need to fix

Prototyping SCB

- Hardware Part: done (proof of work impl.)
- Software Part: waiting for system design

Collaboration with IITH

- Feedbacks from faculties
- Facilities/Environment support
- From students
 - Prasad (Doctor student under Pr. Raji)
 - Many Idea
 - Mathematical part (model and optimization)
 - Many guys in smart-x-student mailing List

Summary

- Smart Circuit Breaker will give us new way to control power consumption in building
- Finish 1st milestones in this trip

I can contribute Smart Campus Project