Problème du rectangle inscrit

Emanuel Morille

14 Mai 2025

Table des matières

1.	Bases de théorie des catégories	2	
2.	Homologie singulière	3	
	2.1. Simplexes · · · · · · · · · · · · · · · · · · ·	3	
	2.2. Chaînes · · · · · · · · · · · · · · · · · · ·	4	
	2.3. Complexes de chaînes · · · · · · · · · · · · · · · · · · ·	6	
	2.4. Morphismes de chaînes · · · · · · · · · · · · · · · · · · ·	6	
	2.5. Paires d'espaces topologiques · · · · · · · · · · · · · · · · · · ·	7	
Bi	Bibliographie		
10	10632		

10632

1. Bases de théorie des catégories

Définition 1.1. Une *catégorie* \mathcal{C} est la donnée de :

- Une classe $ob(\mathcal{C})$ dont les éléments sont appelés les *objets de* \mathcal{C} .
- Une classe hom(*C*) dont les éléments sont appelés les *morphismes de C*.
 Un morphisme *f* ∈ hom(*C*) a un *domaine X* ∈ ob(*C*) et un *codomaine Y* ∈ ob(*C*). On note alors ce morphisme *f* : *X* → *Y* et hom(*X*, *Y*) l'ensemble des morphismes de *X* dans *Y*.
- Pour tout objets $X, Y, Z \in ob(\mathcal{C})$, une *composition*:

$$\circ$$
: hom $(Y, Z) \times \text{hom}(X, Y) \rightarrow \text{hom}(X, Z)$.

• Pour tout objet $X \in ob(\mathcal{C})$, un morphisme *identité*:

$$id_X: X \to X$$
.

Vérifiant les propriétés suivantes pour tout objets $X, Y, Z, T \in ob(\mathcal{C})$:

• Associativité: Pour tout morphismes $f: X \to Y, g: Y \to Z$ et $h: Z \to T$, on a:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

• *Identité* : Pour tout morphisme $f: X \to Y$, on a :

$$id_V \circ f = f = f \circ id_X$$
.

Exemples 1.2.

- La catégorie Top₂, les objets sont les paires d'espaces topologiques et les morphismes sont les applications continues.
- La catégorie Ab, les objets sont les groupes abéliens et les morphismes sont les morphismes de groupes.

Définition 1.3. Soit \mathcal{C} et \mathcal{D} deux catégories. Un *foncteur F* : $\mathcal{C} \to \mathcal{D}$ est la donnée :

- Pour tout objet $X \in ob(\mathcal{C})$, d'un objet $F(X) \in ob(\mathcal{D})$.
- Pour tout objets $X, Y \in ob(C)$ et morphisme $f: X \to Y$, d'un morphisme $F(f): F(X) \to F(Y)$.

Vérifiant les propriétés suivantes pour tout objets $X, Y, Z \in ob(\mathcal{C})$:

• Composition: Pour tout morphismes $f: X \to Y$ et $g: Y \to Z$, on a:

$$F(g \circ f) = F(g) \circ F(f)$$
.

• *Identité* : On a :

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$
.

Exemple 1.4.

• Pour toute catégorie \mathcal{C} , l'identité $\mathrm{id}_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}$ est un foncteur.

Définition 1.5. Soit \mathcal{C} et \mathcal{D} deux catégories, $F: \mathcal{C} \to \mathcal{D}$ et $G: \mathcal{C} \to \mathcal{D}$ deux foncteurs. Une *transformation naturelle* ∂ est la donnée pour tout objet $X \in \text{ob}(\mathcal{C})$, d'un morphisme $\partial_X: F(X) \to G(X)$, vérifiant la propriété suivante pour tout objet $Y \in \text{ob}(\mathcal{C})$ et pour tout morphisme $f: X \to Y$, on a :

$$\partial_Y \circ F(f) = G(f) \circ \partial_X$$
.

Remarque 1.6. Cette dernière égalité revient à ce que le diagramme suivant soit commutatif :

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\partial_X \downarrow \qquad \qquad \downarrow \partial_Y$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

2. Homologie singulière

La majorité des énoncés suivants sont issus de la source [1].

Définition 2.1. Une *théorie de l'homologie* sur la catégorie des paires d'espaces topologiques Top_2 dans la catégorie des groupes abéliens Ab est une suite de foncteurs $(H_n : \mathsf{Top}_2 \to \mathsf{Ab})_{n \in \mathbb{Z}}$ munie de transformations naturelles $(\partial_n : H_n(X,A) \to H_{n-1}(A) := H_{n-1}(A,\emptyset))_{n \in \mathbb{Z}}$ vérifiant les *axiomes d'Eilenberg-Steenrod* pour toutes paires d'espaces topologiques (X,A), (Y,B) et $n \in \mathbb{Z}$:

- *Dimension*: Soit P un espace constitué d'un unique point. Alors le groupe $H_n(P)$ est non-trivial si et seulement si n=0.
- *Exactitude*: En notant $i: A \to X$ et $j: X \to (X, A)$ les inclusions canoniques, alors la suite suivante est exacte:

$$\cdots \to H_{n+1}(X,A) \overset{\partial_{n+1}}{\to} H_n(A) \overset{H_n(i)}{\to} H_n(X) \overset{H_n(j)}{\to} H_n(X,A) \overset{\partial_n}{\to} H_{n-1}(A) \to \cdots$$

- *Homotopie*: Soit $f_0, f_1: (X,A) \to (Y,B)$ deux morphismes de paires homotopes. Alors les applications induites en homologie $H_n(f_0), H_n(f_1): H_n(X,A) \to H_n(Y,B)$ sont égales.
- *Excision*: Soit U un sous-ensemble de A tel que l'adhérence de U est contenue dans l'intérieur de A. En notant $i: (X \setminus U, A \setminus U) \to (X, A)$ l'inclusion canonique. Alors l'application induite en homologie $H_n(i): H_n(X \setminus U, A \setminus U) \to H_n(X, A)$ est un isomorphisme.

2.1. Simplexes

Définition 2.2. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si :

$$\forall p,q \in A, [p,q] \coloneqq \{(1-t)p + tq \mid t \in [0,1]\} \subset A.$$

Définition 2.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison convexe* une combinaison de la forme $t_0p_0 + \cdots + t_np_n$, telle que $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 2.4. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Si A est convexe, alors toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0p_0 + \cdots + t_np_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0p_0 + t_1p_1 = (1-t)p_0 + tp_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose :

$$p \coloneqq \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 2.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de* A, notée [A], l'ensemble des combinaisons convexes d'éléments de A.

Proposition 2.6. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in [A]$ et $t \in [0,1]$. Puisque p et q sont des combinaisons convexes d'éléments de A, la combinaison (1-t)p+tq est aussi une combinaison convexe d'éléments de A, d'après la Proposition 2.4 on a $(1-t)p+tq \in [A]$. Donc l'ensemble [A] est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in [A]$. Puisque x est une combinaison convexe d'éléments de $A \subset B$, d'après la Proposition 2.4 on a $x \in B$. Donc $[A] \subset B$.

Définition 2.7. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F et que F et

Définition 2.8. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Proposition 2.9. Soit E un \mathbb{R} -espace vectoriel et $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E. Alors l'application :

$$\langle f_0, ..., f_n \rangle : \Delta^n \to [F]; (t_0, ..., t_n) \mapsto t_0 f_0 + ... + t_n f_n$$

est un homéomorphisme.

Démonstration. Soit $(s_0,...,s_n), (t_0,...,t_n) \in \Delta^n$ tels que $s_0f_0+...+s_nf_n=t_0f_0+...+t_nf_n$. En particulier on a $(s_0-t_0)f_0+...+(s_n-t_n)f_n=0$, et puisque la famille $(f_0,...,f_n)$ est libre, on obtient $s_0-t_0=...=s_n-t_n=0$, c'est-à-dire $(s_0,...,s_n)=(t_0,...,t_n)$. Donc $\langle f_0,...,f_n\rangle$ est injective.

Soit $x \in [F]$. Alors par définition de [F], il existe $(t_0, ..., t_n) \in \Delta^n$ tels que $x := t_0 f_0 + ... + t_n f_n$. Donc $\langle f_0, ..., f_n \rangle$ est surjective.

Puisque $\langle f_0, ..., f_n \rangle$ est une application linéaire et que Δ^n est de dimension finie, $\langle f_0, ..., f_n \rangle$ est continue. De plus Δ^n est compact et [F] est séparé, donc $\langle f_0, ..., f_n \rangle$ est un homéomorphisme. \square

Définition 2.10. Soit E un \mathbb{R} -espace vectoriel, $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E et $x := t_0 f_0 + ... + t_n f_n$ un élément de [F]. On appelle coordonnées barycentriques de x les coefficients $t_0, ..., t_n \in [0, 1]$.

Définition 2.11. Soit E un \mathbb{R} -espace vectoriel, F une famille libre de n+1 éléments de E et G une famille non-vide d'éléments de F. On dit que [G] est une face de [F].

2.2. Chaînes

Définition 2.12. Soit X un espace topologique. On appelle *n-simplexe singulier sur* X une application continue de Δ^n dans X.

Exemple 2.13. L'application $\langle e_0, ..., e_n \rangle$ de la Proposition 2.9, où $(e_0, ..., e_n)$ est la base canonique de \mathbb{R}^{n+1} , est un *n*-simplexe singulier sur \mathbb{R}^{n+1} .

Définition 2.14. Soit X un espace topologique. On note $C_n(X)$ le groupe abélien libre engendré par les n-simplexes singuliers sur X, on appelle n-chaîne singulière un élément de $C_n(X)$.

Proposition 2.15. Soit X et Y deux espaces topologiques, $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X et $f: X \to Y$ une application continue. Alors la composition $f \circ \sigma: \Delta^n \to Y$ est un n-simplexe singulier sur Y.

Démonstration. Puisque f est continue sur X et σ est continue sur Δ^n , par composition $f \circ \sigma$ est continue de Δ^n dans Y. Donc $f \circ \sigma$ est un n-simplexe singulier sur X.

Définition 2.16. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. On appelle *application induite par* f, notée f_* , le morphisme de groupes :

$$f_*: C_n(X) \to C_n(Y); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k (f \circ \sigma_k).$$

Proposition 2.17. Soit X, Y et Z trois espaces topologiques, $f: X \to Y$ et $g: Y \to Z$ deux applications continues. Alors $(g \circ f)_* = g_* \circ f_*$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$(g \circ f)_*(\sigma) = (g \circ f) \circ \sigma = g \circ (f \circ \sigma) = g \circ f_*(\sigma) = g_*(f_*(\sigma))$$

Définition 2.18. Soit X un espace topologique et $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X. On appelle *bord de* σ , noté $\mathrm{d}_n \sigma$, la (n-1)-chaîne singulière sur X définie par :

$$d_n \sigma := \sum_{k=0}^n (-1)^k \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ... e_n \right\rangle \right).$$

où le symbole - signifie que l'élément est enlevé.

Définition 2.19. Soit X un espace topologique et $n \in \mathbb{N}$. On appelle *morphisme de bord*, noté d_n , le morphisme de groupes induit:

$$d_n: C_n(X) \to C_{n-1}(X); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k d_n \sigma_k.$$

Proposition 2.20. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. Alors pour tout $n \in \mathbb{N}$, on a $d_n f_* = f_* d_n$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$\begin{split} \mathbf{d}_n f_*(\sigma) &= \sum_{k=0}^n \left(-1\right)^k \left((f \circ \sigma) \circ \left\langle e_0, ..., \overline{e_k}, ..., e_n \right\rangle \right) \\ &= \sum_{k=0}^n \left(-1\right)^k \left(f \circ \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., e_n \right\rangle \right) \right) \\ &= f_*(\mathbf{d}_n \sigma). \end{split}$$

Proposition 2.21. Soit *X* un espace topologique. Alors pour tout $n \in \mathbb{N}$, on a $d_n \circ d_{n+1} = 0$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les *n*-chaînes singulières sont engendrées par les *n*-simplexes singuliers, il suffit de montrer le résultat pour un *n*-simplexe singulier $\sigma: \Delta^n \to X$. Alors on a :

$$d_{n+1}(\sigma) = \sum_{k=0}^{n+1} (-1)^k (\sigma \circ \langle e_0, ..., \overline{e_k}, ..., e_n \rangle)$$

donc en appliquant d_n , on obtient :

$$\begin{split} (\mathbf{d}_{n} \circ \mathbf{d}_{n+1})(\sigma) &= \mathbf{d}_{n} \Biggl(\sum_{k=0}^{n+1} (-1)^{k} \Bigl(\sigma \circ \left\langle e_{0}, \, ..., \, e_{k}, \, ..., \, e_{n} \right\rangle \Bigr) \Biggr) \\ &= \sum_{k=0}^{n+1} (-1)^{k} \mathbf{d}_{n} \Bigl(\sigma \circ \left\langle e_{0}, \, ..., \, e_{k}, \, ..., \, e_{n} \right\rangle \Bigr) \\ &= \sum_{0 \leq k < l \leq n+1} (-1)^{k+l} \Bigl(\sigma \circ \left\langle e_{0}, \, ..., \, e_{k}, \, ..., \, e_{l}, \, ..., \, e_{n} \right\rangle \Bigr) \\ &+ \sum_{0 \leq l < k \leq n+1} (-1)^{k+l-1} \Bigl(\sigma \circ \left\langle e_{0}, \, ..., \, e_{l}, \, ..., \, e_{k}, \, ..., \, e_{n} \right\rangle \Bigr) \\ &= \sum_{0 \leq k < l \leq n+1} \Bigl((-1)^{k+l} + (-1)^{k+l+1} \Bigr) \Bigl(\sigma \circ \left\langle e_{0}, \, ..., \, e_{k}, \, ..., \, e_{l}, \, ..., \, e_{n} \right\rangle \Bigr) \\ &= 0 \end{split}$$

car les puissances de −1 s'annulent.

2.3. Complexes de chaînes

Définition 2.22. Soit X un espace topologique. On appelle *complexe de chaînes singulières*, noté $C_{\bullet}(X)$, la suite de groupes abéliens libres $(C_n(X))_{n \in \mathbb{Z}}$ munie des morphismes de bords $(d_n : C_n(X) \to C_{n-1}(X))_{n \in \mathbb{Z}}$, avec pour convention $C_n(X)$ trivial si n < 0.

Définition 2.23. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On appelle *n-cycle singulier* un élément de $Z_n(X) := \ker(d_n)$.
- On appelle *n-bord singulier* un élément de $B_n(X) := \operatorname{im}(d_{n+1})$.
- On appelle n^e groupe d'homologie singulière le groupe quotient $H_n(X) := Z_n(X)/B_n(X)$.

Remarque 2.24. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$. Puisque $d_n \circ d_{n+1} = 0$, on a $B_n(X) = \operatorname{im}(d_{n+1}) \subset \ker(d_n) = Z_n(X)$.

Remarque 2.25. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$. Si n < 0, alors $Z_n(X)$ et $B_n(X)$ sont triviaux, donc $H_n(X)$ est trivial.

Définition 2.26. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On dit que $C_{\bullet}(X)$ est exact en $C_n(X)$ si $H_n(X)$ est trivial, c'est-à-dire, im $(d_{n+1}) = \ker(d_n)$.
- On dit que $C_{\bullet}(X)$ est *exact* s'il est exact en tout $(C_n(X))_{n \in \mathbb{Z}}$.
- On dit que $C_{\bullet}(X)$ est acyclique s'il est exact en tout $(C_n(X))_{n\in\mathbb{Z}}$ avec $n\neq 0$.

Définition 2.27. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$. On appelle n^e nombre de Betti de X le rang de $H_n(X)$ s'il est fini.

2.4. Morphismes de chaînes

Définition 2.28. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières. On appelle *morphisme* de chaînes, noté $\varphi_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$, une suite de morphismes $(\varphi_n: C_n(X) \to C_n(Y))_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $d_n \varphi_n = \varphi_{n-1} d_n$.

Proposition 2.29. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, $\varphi_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$ un morphisme de chaînes. Alors pour tout $n \in \mathbb{Z}$, φ_n induit un morphisme de $H_n(X)$ dans $H_n(Y)$.

Démonstration. Soit $n \in \mathbb{Z}$.

Soit $\sigma \in Z_n(X)$. Alors on a $d_n \varphi_n(\sigma) = \varphi_{n-1}(d_n \sigma) = \varphi_{n-1}(0) = 0$, donc $\varphi_n(\sigma) \in Z_n(Y)$. Soit $\beta \in B_n(X)$. Alors il existe $\sigma \in C_{n+1}(X)$ tel que $\beta = d_{n+1}\sigma$, et on a :

$$\varphi_n(\beta) = \varphi_n(d_{n+1}\sigma) = d_{n+1}\varphi_{n+1}(\sigma)$$

donc $\varphi_n(\beta) \in B_n(Y)$.

On pose $\psi_n := \overline{\varphi_n} : Z_n(X) \to H_n(Y)$, alors $B_n(X) \subset \ker(\psi_n)$ et d'après la propriété universelle du groupe quotient le morphisme ψ_n induit bien un morphisme de $H_n(X)$ dans $H_n(Y)$.

Définition 2.30. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, $\varphi_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$ un morphisme de chaînes. Pour tout $n \in \mathbb{Z}$, on note $H_n(\varphi): H_n(X) \to H_n(Y)$ le morphisme induit par φ_n .

Proposition 2.31. Soit $C_{\bullet}(X)$, $C_{\bullet}(Y)$ et $C_{\bullet}(Z)$ trois complexes de chaînes singulières, $\varphi_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$ et $\psi_{\bullet}: C_{\bullet}(Y) \to C_{\bullet}(Z)$ deux morphismes de chaînes. Alors la composition $\psi_{\bullet} \circ \varphi_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Z)$ est un morphisme de chaînes.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a :

$$d_n(\psi_n \circ \varphi_n) = \psi_{n-1} d_n \varphi_n = (\psi_{n-1} \circ \varphi_{n-1}) d_n.$$

Donc $(\psi_n \circ \varphi_n)_{n \in \mathbb{Z}}$ est bien un morphisme de chaînes.

Proposition 2.32. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, et $f: X \to Y$ une application continue. Alors l'application induite f_* détermine un morphisme de chaînes.

Démonstration. Pour tout $n \in \mathbb{Z}$, on considère le morphisme défini par $\varphi_n := f_*$. Soit $n \in \mathbb{Z}$. Alors d'après la Proposition 2.20 on a :

$$d_n \varphi_n = d_n f_* = f_* d_n = \varphi_{n-1} d_n$$
.

Donc $(\varphi_n)_{n\in\mathbb{Z}}$ est bien un morphisme de chaînes.

Définition 2.33. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, et $f: X \to Y$ une application continue. Pour tout $n \in \mathbb{Z}$, on note $H_n(f): H_n(X) \to H_n(Y)$ le morphisme induit par le morphisme de chaînes déterminé par f_* .

2.5. Paires d'espaces topologiques

Définition 2.34. Soit X un espace topologique et A un sous-ensemble de X. On appelle *paire d'espaces topologiques* le couple (X,A).

Proposition 2.35. Soit (X,A) une paire d'espaces topologiques. Alors pour tout $n \in \mathbb{Z}$, d_n induit un morphisme \overline{d}_n de $C_n(X)/C_n(A)$ dans $C_{n-1}(X)/C_{n-1}(A)$ tel que $\overline{d}_n \circ \overline{d}_{n+1} = 0$.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a $C_n(A) \subset C_n(X)$, on peut donc former le quotient $C_n(X)/C_n(A)$.

On pose $\delta_n := \overline{\operatorname{d}_n} : C_n(X) \to C_{n-1}(X)/C_{n-1}(A)$, alors $C_n(A) \subset \ker(\delta_n)$ et d'après la propriété universelle du groupe quotient δ_n induit bien un morphisme $\overline{\operatorname{d}}_n$ de $C_n(X)/C_n(A)$ dans $C_{n-1}(X)/C_{n-1}(A)$. Enfin puisque $\operatorname{d}_n \circ d_{n+1} = 0$, on a $\overline{\operatorname{d}}_n \circ \overline{\operatorname{d}}_{n+1} = 0$.

Remarque 2.36. Soit (X,A) une paire d'espaces topologiques. La suite $(C_n(X)/C_n(A))_{n\in\mathbb{Z}}$ munie des morphismes de bords induits $\left(\overline{\operatorname{d}}_n:C_n(X)/C_n(A)\to C_{n-1}(X)/C_{n-1}(A)\right)_{n\in\mathbb{Z}}$ forme un complexe de chaînes singulières.

Définition 2.37. Soit (X,A) une paire d'espaces topologiques. On appelle *complexe de chaînes* singulières de la paire (X,A) le complexe de chaînes singulières quotient $C_{\bullet}(X,A) := C_{\bullet}(X)/C_{\bullet}(A)$.

Remarque 2.38. Dans le cas de la paire d'espaces topologiques (X, \emptyset) , on trouve $C_{\bullet}(X, \emptyset) \simeq C_{\bullet}(X)$ et $H_{\bullet}(X, \emptyset) \simeq H_{\bullet}(X)$.

Définition 2.39. Soit (X,A) et (Y,B) deux paires d'espaces topologiques, et $f:X\to Y$ une application continue. On dit que f est un *morphisme de paires*, noté $f:(X,A)\to (Y,B)$, si f(A) est contenue dans B.

Proposition 2.40. Soit $C_{\bullet}(X,A)$ et $C_{\bullet}(Y,B)$ deux complexes de chaînes singulières, et $f:(X,A)\to (Y,B)$ un morphisme de paires. Alors l'application induite $f_*:C_n(X)\to C_n(Y)$ détermine un morphisme de chaînes.

Démonstration. Pour tout $n \in \mathbb{Z}$, on pose $\varphi_n := \overline{f_*} : C_n(X) \to C_n(Y, B)$, alors puisque $f(A) \subset B$, on en déduit $f_*(C_n(A)) \subset \ker(\varphi_n)$ et d'après la propriété universelle du groupe quotient φ_n induit un morphisme $\overline{\varphi_n}$ de $C_n(X,A)$ dans $C_n(Y,B)$.

Soit $n \in \mathbb{Z}$. Alors d'après la Proposition 2.20 puisque $d_n f_* = f_* d_n$, on a $\overline{d_n \varphi_n} = \overline{\varphi_{n-1} d_n}$. Donc φ_n est bien un morphisme de chaînes.

Définition 2.41. Soit $C_{\bullet}(X,A)$ et $C_{\bullet}(Y,B)$ deux complexes de chaînes singulières, et $f:(X,A) \to (Y,B)$ un morphisme de paires. Pour tout $n \in \mathbb{Z}$, on note $H_n(f):H_n(X,A) \to H_n(Y,B)$ le morphisme induit par le morphisme de chaînes déterminé par f_* .

Théorème 2.42. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie singulière des paires d'espaces topologiques $H_n : \mathsf{Top}_2 \to \mathsf{Ab}$ est un foncteur.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit (X,A) une paire d'espaces topologiques. Alors le n^e groupe d'homologie singulière $H_n(X,A)$ est bien un groupe abélien libre.
- Soit (X,A) et (Y,B) deux paires d'espaces topologiques, et $f:(X,A)\to (Y,B)$ un morphisme de paires. Alors l'application $H_n(f):H_n(X,A)\to H_n(Y,B)$ est un bien morphisme de groupes.

Soit (X, A), (Y, B) et (Z, C) trois paires d'espaces topologiques.

• Soit $f:(X,A) \to (Y,B)$ et $g:(Y,B) \to (Z,C)$ deux morphismes de paires. Alors la composition $g \circ f:(X,A) \to (Z,C)$ est un morphisme de paires qui passe au quotient et vérifie :

$$H_n(g \circ f) = H_n(g) \circ H_n(f).$$

• On considère $id_{(X,A)}$. Soit $\sigma: \Delta^n \to (X,A)$ un *n*-simplexe singulier, alors:

$$id_{(X,A)*}(\sigma) = id_{(X,A)} \circ \sigma = \sigma$$

puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, on en déduit que $\mathrm{id}_{(X,A)*} = \mathrm{id}_{C_n(X,A)}$, par passage au quotient on a :

$$H_n(\mathrm{id}_{(X,A)}) = \mathrm{id}_{H_n(X,A)}.$$

Donc H_n est un foncteur.

Proposition 2.43. Soit $C_{\bullet}(X,A)$ un complexe de chaînes singulières. Alors pour tout $n \in \mathbb{Z}$, les groupes $H_n(X,A)$ et $d_n^{-1}(C_{n-1}(A))/(d_{n+1}(C_{n+1}(X)) + C_n(A))$ sont isomorphes.

Démonstration. Soit $n \in \mathbb{Z}$.

Soit $\tau \in d_{n+1}(C_{n+1}(X)) + C_n(A)$, il existe $\sigma_1 \in C_{n+1}(X)$ et $\sigma_2 \in C_n(A)$ tels que $\tau = d_{n+1}\sigma_1 + \sigma_2$. Alors d'après la Proposition 2.21 on a :

$$d_n \tau = d_n (d_{n+1} \sigma_1 + \sigma_2) = (d_n \circ d_{n+1}) \sigma_1 + d_n \sigma_2 = d_n \sigma_2$$

donc $\tau \in \mathrm{d}_n^{-1}(C_{n-1}(A))$, on peut donc former le quotient $\mathrm{d}_n^{-1}(C_{n-1}(A))/(\mathrm{d}_{n+1}(C_{n+1}(X)) + C_n(A))$.

On pose $\varphi: d_n^{-1}(C_{n-1}(A)) \to H_n(X,A); \sigma \mapsto \overline{\sigma}$, qui est bien un morphisme de groupes.

- Soit $\eta \in \underline{H_n}(X, A)$, il existe $\zeta \in Z_n(X, A)$ et $z \in C_n(X)$ tels que $\eta = \overline{\zeta}$ et $\zeta = \overline{z}$. Puisque $\overline{d_n z} = \overline{d_n} \zeta = 0 \in C_n(X, A)$, il existe $\sigma \in C_{n-1}(A)$ tel que $d_n z = \sigma$, d'où $z \in d_n^{-1}(C_{n-1}(A))$. Donc $\varphi(z) = \eta$ et φ est surjectif.
- Soit $\sigma \in \ker(\varphi)$. Puisque $\overline{\tau} = 0 \in H_n(X, A)$, il existe $b \in B_n(X, A)$ tel que $\overline{\tau} = \overline{b}$. C'est-à-dire qu'il existe $c \in C_{n+1}(X, A)$ et $\sigma \in C_{n+1}(X)$ tels que $b = \overline{d}_{n+1}c$ et $c = \overline{\sigma}$. On peut écrire $\overline{\tau} = \overline{d}_{n+1}\overline{\sigma} = \overline{d}_{n+1}\sigma \in C_n(X, A)$, donc $\tau \in d_{n+1}(C_{n+1}(X)) + C_n(A)$.

Soit
$$\tau \in d_{n+1}(C_{n+1}(X)) + C_n(A)$$
, il existe $\sigma_1 \in C_{n+1}(X)$ et $\sigma_2 \in C_n(A)$ tels que $\tau = d_{n+1}\sigma_1 + \sigma_2$.
Alors $\overline{\tau} = \overline{d_{n+1}\sigma_1} = \overline{d_{n+1}\overline{\sigma}} \in C_n(X,A)$, d'où $\overline{\tau} \in B_n(X,A)$ et $\overline{\tau} = 0 \in H_n(X,A)$, donc $\tau \in \ker(\varphi)$.

D'après le premier théorème d'isomorphisme φ induit un isomorphisme entre les groupes $H_n(X,A)$ et $d_n^{-1}(C_{n-1}(A))/(d_{n+1}(C_{n+1}(X)) + C_n(A))$.

Proposition 2.44. Soit $C_{\bullet}(X,A)$ un complexe de chaînes singulières. Alors pour tout $n \in \mathbb{Z}$, d_n induit un morphisme ∂_n de $H_n(X,A)$ dans $H_{n-1}(A)$.

Démonstration. Soit $n \in \mathbb{Z}$. D'après la Proposition 2.43 il existe un isomorphisme :

$$\varphi: \mathrm{d}_n^{-1}(C_{n-1}(A))/(\mathrm{d}_{n+1}(C_{n+1}(X)) + C_n(A)) \to H_n(X,A).$$

Pour tout $\eta \in H_n(X,A)$, il existe $\tau \in \mathrm{d}_n^{-1}(C_{n-1}(A))$ tel que $\underline{\eta} = \varphi(\overline{\tau})$. Alors d'après la Proposition 2.21 on a $\mathrm{d}_{n-1}\mathrm{d}_n\tau = 0$, donc $\mathrm{d}_n\tau \in Z_{n-1}(A)$. On pose $\partial_n(\eta) := \overline{\mathrm{d}_n\tau} \in H_{n-1}(A)$.

Supposons que $\eta=0$, c'est-à-dire $\tau\in \mathrm{d}_{n+1}(C_{n+1}(X))+C_n(A)$, alors $\mathrm{d}_n\tau\in B_n(A)$, d'où $\partial_n(\eta)=0$. Donc ∂_n est un morphisme bien défini.

Théorème 2.45. Soit $C_{\bullet}(X,A)$ et $C_{\bullet}(Y,B)$ deux complexes de chaînes singulières, $\varphi_{\bullet}:C_{\bullet}(X)\to C_{\bullet}(Y)$ un morphisme de chaînes. Pour tout $n\in\mathbb{Z}$, le morphisme ∂_n est une transformation naturelle, c'est-à-dire :

$$\partial_n \varphi_n = \varphi_{n-1} \partial_n$$
.

Démonstration. Soit $n \in \mathbb{Z}$. Puisque ∂_n est induit par d_n , d'après la Proposition 2.21 on a bien :

$$\partial_n \varphi_n = \varphi_{n-1} \partial_n$$
.

П

Théorème 2.46. La suite des n^e groupe d'homologie singulière des paires d'espaces topologiques $(H_n: \mathsf{Top}_2 \to \mathsf{Ab})_{n \in \mathbb{Z}}$ munie des morphismes $(\partial_n: H_n(X,A) \to H_{n-1}(A))_{n \in \mathbb{Z}}$ est une théorie de l'homogie vérifiant les axiomes d'Eilenberg-Steenrod.

Démonstration de l'axiome de dimension. Si n < 0, on a clairement $H_n(P) \simeq \{0\}$. Si $n \ge 0$, il existe un unique n-simplexe singulier $\sigma_n : \Delta^n \to P$, alors on a :

$$\partial_n \sigma_n = \begin{cases} 0 & \text{si } n = 0 \text{ ou } n \text{ est impair} \\ \sigma_{n-1} & \text{si } n \neq 0 \text{ et } n \text{ est pair} \end{cases}$$

dans le cas n = 0, alors $H_0(P) = \langle \sigma_0 \rangle / \{0\} \simeq \mathbb{Z}$,

dans le cas $n \neq 0$ et n est impair, alors $H_n(P) = \langle \sigma_n \rangle / \langle \sigma_n \rangle \simeq \{0\}$,

dans le cas $n \neq 0$ et n est pair, alors $H_n(P) = \{0\}/\{0\} \simeq \{0\}$.

Démonstration de l'axiome d'exactitude. TODO.

Démonstration de l'axiome d'homotopie. TODO.

Démonstration de l'axiome d'excision. TODO.

Théorème 2.47 (Théorème de Mayer-Vietoris). Soit U et V deux ouverts d'un espace topologique. En notant $i_U: U\cap V\to U,\ i_V: U\cap V\to V,\ j_U: U\to U\cup V$ et $j_V: V\to U\cup V$ les inclusions canoniques, alors la suite suivante est exacte :

$$\dots \to H_{n+1}(U \cup V) \overset{\hat{\sigma}_{n+1}}{\to} H_n(U \cap V) \overset{(-i_{U*}, i_{V*})}{\to} H_n(U) \oplus H_n(V) \overset{j_{U*}+j_{V*}}{\to} H_n(U \cup V) \to \dots$$

Démonstration. TODO.

Bibliographie

[1] Eduard Looijenga, Algebraic Topology - an introduction. 2010.