Digital Logic Design

Digital Logic design		
Lecture hours per week: 3 Tutorial hours per week: 0 Practical hours per week:3 Total Credits:4.5		
EL114		
B.Tech - Semester II		
Core		
None		
Electronic Engineering Courses, Project based study		
 □ The aim of this 14-15 week course is to give a broad grounding in the principles and practice of Digital Logic Design and basic digital electronics. □ The course, covers topics in basic digital circuits, combinatorial, sequential circuits, finite state machine, counters, shift registers, RAM, ROM, basic building blocks of computers, and HDL. □ This course also involves design/lab element that will cover moderate to advanced use of the following tools and languages: Logisim tool Verilog simulator Hardware design kit Datasheets □ Labs, Homework, Quizzes are used to reinforce learning during the semester 		
Optional		
 Text Book: Digital Design, 4th Ed, M. Morris Mano and M. D. Ciletti,, Pearson Education, ©2007. Digital Design, Morris Mano, Prentice Hall, ©2002. Reference Books: Digital Fundamentals, 10th Ed, Floyd T L, Prentice Hall, ©2009. Digital Design - Principles and Practices, 4th Ed, J F Wakerly, Prentice Hall, ©2006 Digital Systems: Principles and Applications, Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, Pearson Education, Limited, © 2011 Fundamentals of Digital Logic with Verilog Design, 2nd Ed, S. Brown and Z. Vrsaniec, McGraw Hill, ©2007 Having successfully completed the module, the student will be able to design and implement digital circuits both in hardware and software and understand and use the datasheets. 		

	 Knowledge and Understanding Having successfully completed the module, you will be able to demonstrate knowledge and understanding of: Digital Circuits Basic building blocks of Computer Finite state machine Combinatorial Circuits Sequential Circuits Hardware Description Languages 	
	 □ Intellectual Skills: Having successfully completed the module, y will be able to: 1. Digital Circuit Design Skills 2. Use of basic design Tools 3. Understanding of Digital Simulation 4. Understanding Datasheets 	ou
	 □ Practical Skills: Having successfully completed the module, you will be able to: 1. Digital Circuit Analysis 2. Logisim simulation and analysis 3. Hardware design, Datasheet interpretation 	
Comments	☐ 15% Insem1 ☐ 20% Insem 2 ☐ 40% Final Exam ☐ 20% Lab ☐ 5% Quiz	

Detailed Course Contents

Lecture	Lecture Notes
Lecture 1-10	Number Systems, Boolean Algebra, K-Maps,
	Quine McCluskey Minimization techniques
Lecture 11-13	Circuit Analysis, Combinatorial Procedure
Lecture 14-18	Adders, Comparators, Mux, Encoders, Decoders,
Lecture 19-25	Latches, Flip Flops, FSM, State Reduction
Lecture 26-28	Registers, Counters
Lecture 29-34	Timing, Hazards, RAM, ROM
Lecture 35-36	ALU, Datapath Analysis
Lecture 37-38	HDL, Register Transfer Level, PLDs
Lecture 39	Applications of ICT
Lecture 40	Final Exam Review