Wizualizacja szybkości zbieżności metody Czebyszewa (w dziedzinie zespolonej) zastosowanej do znalezienia zera wielomianu:

 $w_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + T_n(x)$

Elżbieta Jowik, Filip Chrzuszcz 13 stycznia 2020

Spis treści

1	Wst	tę p	3
	1.1	Ogólny schemat metod iteracyjnego znajdowania	
		zer funkcji	3
	1.2	Metoda Czebyszewa	3
	1.3	Wielomiany Czebyszewa	4
2	Funkcje opracowane na potrzeby realizacji		
	zało	ożeń projektu	5
	2.1	Funkcja służąca do obliczania wartości wielomianu T_n oraz	
		jego pochodnych w punkcie x	5
	2.2	Funkcja obliczająca wartość wielomianu w punkcie	
		z wykorzystaniem schematu Hornera	6
	2.3	Funkcja odpowiadająca za wyznaczenie zer wielomianu: $w_n(x) =$	
		$a_0 + a_1 * x + a_2 * x^2 + \dots + a_{n-1} * x^{n-1} + T_n$	
		metodą Czebyszewa	7
	2.4	Funkcja wizualizująca szybkość zbieżności metody	
		Czebyszewa zastosowanej do wyznaczania zera wielomianu w	
		dziedzinie zespolonej	9
3	Tes	ty	11
	3.1	Test 1.:	11
	3.2	Test 2.:	12
	3.3	Test 3.:	13
	3.4	Test 4.:	14
4	Program obliczeniowy		15
	4.1	<u> </u>	15
	4 2	Skrypt programu obliczeniowego	15

1 Wstęp

1.1 Ogólny schemat metod iteracyjnego znajdowania zer funkcji

Krok 1.

Równanie f(x) = 0 przekształcamy do postaci:

$$x = \phi(x)$$
,

gdzie: $\phi(x) = x - g(x)f(x)$, g jest funkcją ciągłą, $g \neq 0$

Punkt x^* taki, że równanie jest spełnione nazywa się punktem stałym.

Krok 2.

Tworzymy ciąg kolejnych przybliżeń $x^{(0)}, x^{(1)}, ..., x^{(p)}, ...$ (w założeniu zbieżny do x^*) taki, że:

$$x^{(p+1)} = \phi(x^{(p)})$$

gdzie $x^{(0)}$ jest przybliżeniem początkowym.

Taka procedura nazywana jest procedurą iteracyjną a funkcja ϕ funkcją iteracyjną.

Krok 3.

Procedurę iteracyjną kończymy, wówczas gdy kolejne przybliżenia x^* różnią się odpowiednio mało (mówimy wtedy o zbieżności) lub wykonana już została maksymalna zadana liczba kroków (wówczas mówimy o brak zbieżności).

1.2 Metoda Czebyszewa

Metoda Czebyszewa jest przykładem procedury, w której dla danego równania:

$$f(x) = 0$$

ciąg punktów jest obliczany wg wzoru:

$$x^{n+1} = \phi(x^n) \ (n \ge 0),$$

gdzie ϕ wyraża się przez f.

Dlatego też metoda Czebyszewa określana jest mianem metody iteracyjnej. Załóżmy, że $x^{(0)} \in \mathbb{C}$ jest danym przybliżeniem początkowym.

Kolejne przybliżenia $x^{(1)},\,x^{(2)},\,x^{(3)},\,\dots$ w metodzie Czebyszewa wyznacza się za pomocą następujących wzorów: dla k = 0, 1, ...

$$y^{(k)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$
$$x^{(k+1)} = y^{(k)} - \frac{f''(x^{(k)})(y^{(k)} - x^{(k)})^2}{2f'(x^{(k)})}$$

Na potrzeby projektu, zrezygnowaliśmy ze sprowadzania zadanego wielomianu do postaci naturalnej. Do obliczenia wartości wielomianu $w_n(x)$ oraz pochodnych wykorzystaliśmy związek rekurencyjny spełniany przez wielomiany Czebyszewa.

1.3 Wielomiany Czebyszewa

Wielomiany Czebyszewa, ze względu na mnogość własności są ważnym narzędziem matematyki stosowanej.

Wielomiany Czebyszewa I rodzaju można określić wzorem rekurencyjnym:

$$T_0(x) = 1, T_1(x) = x$$

 $T_n(x) = 2 \cdot T_{n-1}(x) - T_{n-2}(x), (n \ge 2).$

2 Funkcje opracowane na potrzeby realizacji założeń projektu

2.1 Funkcja służąca do obliczania wartości wielomianu T_n oraz jego pochodnych w punkcie x

```
function [t,dt, ddt] = Values(n,x)
    % Funkcja wykorzystuje związek rekurencyjny, spełn. przez w. Czebyszewa.
    % Funkcja zwraca:
    % t = Tn(x), dt = Tn'(x), ddt = Tn''(x)
    % Wiadomo, że:
    \% TO(x) = 1, T1(x) = x, Tk(x) = 2x * T_k-1(x) + T_k-2(x)
    % Wyznaczenie wektorów t, dt i ddt t.że:
    % t(i) = Ti(x), dt(i) = Ti'(x), ddt(i) = Ti''(x)
    t = zeros(n);
    dt = zeros(n);
    ddt = zeros(n);
    t(1) = x;
    t(2) = 2 * x^2 - 1;
    dt(1) = 1;
    dt(2) = 4 * x;
    ddt(1) = 1;
    ddt(2) = 4;
    for i = 3:1:n
        t(i) = 2*x * t(i-1) - t(i-2);
        dt(i) = 2 * dt(i-1) + 2 * x * dt(i-1) - t(i-2);
        ddt(i) = 4 * dt(i-1) + 2 * x * ddt(i-1) - ddt(i-2);
    end
    t = t(n);
    dt = dt(n);
    ddt = ddt(n);
```

end

2.2 Funkcja obliczająca wartość wielomianu w punkcie z wykorzystaniem schematu Hornera

2.3 Funkcja odpowiadająca za wyznaczenie zer wielomianu:

```
w_n(x) = a_0 + a_1 * x + a_2 * x^2 + ... + a_{n-1} * x^{n-1} + T_n
metodą Czebyszewa.
```

```
function[count] = IterativeMethod(a, x0, acc, iter_max)
```

```
% Konwencja nazewnicza stworzona na potrzeby programu:
% w_x = w(x)
% a - współczynniki ai wielomianu wn
% iter_max - maksymalna zadana liczba iteracji
% x0 - dane przybliżenie początkowe
\% acc - dokładność z jaką funkcja wyznacza pierwiastki wielomianu w
n = max(size(a));
dx = acc + 1;
count = 0; % liczba wykonanych iteracji
a = fliplr(a);
da = polyder(a); % 1. pochodna wielomianu o współczynnikach z a
dda = polyder(da); % 2. pochodna wielomianu o współczynnikach z a
while abs(dx) > acc && count <= iter_max</pre>
    % do pętli wchodzimy tak długo, jak długo dokładność wyniku jest
    % niesatysfakcjonująca i nie wykonaliśmy maksymalnej liczby iteracji
    % (zarówno pożądana dokładność jak i maksymalna 1. iteracji zadane są
    % na wejściu)
    % Obliczenie wartości wielomianu, jego 1. i 2. pochodnej w punkcie x0
    w1 = Horner(a, x0);
    dw1 = Horner(da, x0);
    ddw1 = Horner(dda, x0);
    [w2, dw2, ddw2] = Values(n, x0);
    w = w1 + w2;
    \% Wykorzystujemy fakt, że pochodna sumy jest równa sumie pochodnych
    dw = dw1 + dw2;
    ddw = ddw1 + ddw2;
```

2.4 Funkcja wizualizująca szybkość zbieżności metody Czebyszewa zastosowanej do wyznaczania zera wielomianu w dziedzinie zespolonej

```
function = Visualization(a, b, c, d, n, m, poly, acc, iter_max)
    % Opis działania funkcji:
    % W danym obszarze prostokątnym [a, b] x [c, d] tworzymy siatkę punktów
    % (xk, yk), gdzie xk należy do przedziału [a, b] a yj do [c, d],
    % xk = a + kh1, k = 0, 1, ..., n
    \% yj = c + jh2, j = 0, 1, ..., m
    % h1 = (b-a)/n
    \frac{1}{2} h2 = (d-c)/m
    h1 = (b-a)/n;
    h2 = (d-c)/m:
    X = zeros(1, n+1); % Lista współrzędnych x punktów z siatki
    Y = zeros(1, n+1); % Lista współrzędnych y punktów z siatki
    for k = 0:1:n
        x = a + k*h1;
        X(k+1) = x;
    end
    for j = 0:1:m
        y = c + j * h2;
        Y(j+1) = y;
    end
    % Tworzymy macierz A o wymiarach (n+1) x (m+1) wypełnioną zerami
    % lub jedynkami
    A = ones(n+1, m+1);
    % Dla każdego z punktów siatki (xk, yj), wykonujemy obliczenia metodą
    % Czebyszewa przyjmując punkt xk + i * yj jako przybliżenie początkowe
    % Wykonaną liczbę iteracji zapamiętujemy w odpowiedniej komórce macierzy A
```

```
for k = 0:1:n
    for j = 0:1:m
        x0 = X(k+1) + Y(j+1) * i;
        count = IterativeMethod(poly, x0, acc, iter_max);
        A(k+1, j+1) = count;
    end
end

% Wyświetlamy macierz A
imagesc(A);
colormap("default");
colorbar;
end
```

3 Testy

3.1 Test 1.:

a=-1;b=1;c=-1;d=1;m=21;n=12;acc=eps;iter_max=100;poly=[0,0,1]; Visualization(a, b, c, d, n, m, poly, acc, iter_max);

3.2 Test 2.:

```
a=-10;b=10;c=-eps;d=eps;m=100;n=100;acc=eps;iter_max=100;
poly=[10,21i,-21+10i,-15i];
Visualization(a, b, c, d, n, m, poly, acc, iter_max);
```


3.3 Test 3.:

a=-100;b=100;c=-100;d=100;m=1000;n=1000;acc=eps;iter_max=1000;poly=[i,-i];
Visualization(a, b, c, d, n, m, poly, acc, iter_max);

3.4 Test 4.:

 $a=-100; b=100; c=-100; d=100; m=1000; n=1000; acc=eps; iter_max=1000; poly=[1,-1]; \\ Visualization(a, b, c, d, n, m, poly, acc, iter_max); \\$

4 Program obliczeniowy

4.1 Interfejs programu obliczeniowego

4.2 Skrypt programu obliczeniowego

```
switch kontrol
        case 1
            a =input('Podaj a ');
            b = input('Podaj b ');
        case 2
            c =input('Podaj c ');
            d= input('Podaj d ');
        case 3
            m =input('Podaj m ');
            n= input('Podaj n ');
        case 4
             poly = input('Podaj wielomian ');
        case 5
            acc = input('Tolerancja ');
            iter_max = input('Ilosc iteracji ');
        case 6
           Visualization(a, b, c, d, n, m, poly, acc, iter_max);
        case 7
            a=-1;b=1;c=-1;d=1;m=21;n=12;acc=eps;iter_max=100;poly=[0,0,1];
            Visualization(a, b, c, d, n, m, poly, acc, iter_max);
        case 8
            a=-10;b=10;c=-eps;d=eps;m=100;n=100;
            acc=eps;iter_max=100;poly=[10,21i,-21+10i,-15i];
            Visualization(a, b, c, d, n, m, poly, acc, iter_max);
        case 9
             a=-100; b=100; c=-100; d=100; m=1000;
             n=1000;acc=eps;iter_max=1000;poly=[i,-i];
            Visualization(a, b, c, d, n, m, poly, acc, iter_max);
        case 10
             a=-100; b=100; c=-100; d=100; m=1000;
             n=1000;acc=eps;iter_max=1000;poly=[1,-1];
            Visualization(a, b, c, d, n, m, poly, acc, iter_max);
        case 11
            break
    end
end
```