

1600

RAW SEQUENCE LISTING

SEQUENCE LISTING

PATENT APPLICATION: US/08/520,946A

DATE: 06/21/2002

TIME: 14:46:47 RECEIVED

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\06212002\H520946A.raw

JUL 0 8 2002

		SEQUENCE LISTING	FERLIATUTED LOCALOGE
	4	(1) GENERAL INFORMATION:	TECH CENTER 1600/2900
	6	(i) APPLICANT: BROW, MARY ANN D.	•
	7	LYAMICHEV, VICTOR I.	
	8	OLIVE, DAVID M.	
	10	(ii) TITLE OF INVENTION: RAPID DETECTION AND IDENTIFICATION OF	P.
	11	PATHOGENS	^
	13	(iii) NUMBER OF SEQUENCES: 165	7
	15	(iv) CORRESPONDENCE ADDRESS:	
	16	(A) ADDRESSEE: MEDLEN & CARROLL	× 4
	17	(B) STREET: 220 MONTGOMERY STREET, SUITE 2200	En We Va
	18	. (C) CITY: SAN FRANCISCO	Cy 20 CX
	19	(D) STATE: CALIFORNIA	
	20	(E) COUNTRY: UNITED STATES OF AMERICA	
	21	(F) ZIP: 94104	1/60
	23	(V) COMPUTER READABLE FORM:	TECH CENTER 100/300
	24	(A) MEDIUM TYPE: Floppy disk	590
	25	(B) COMPUTER: IBM PC compatible	40
	26	(C) OPERATING SYSTEM: PC-DOS/MS-DOS	
	27	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30	
	29	(vi) CURRENT APPLICATION DATA:	
C>	30	(A) APPLICATION NUMBER: US/08/520,946A	
C>	31	(B) FILING DATE: 30-Aug-1995	
	32	(C) CLASSIFICATION:	
	34	(viii) ATTORNEY/AGENT INFORMATION:	
	35	(A) NAME: CARROLL, PETER G.	
	36	(B) REGISTRATION NUMBER: 32,837	
	37	(C) REFERENCE/DOCKET NUMBER: FORS-01756	
	39	(ix) TELECOMMUNICATION INFORMATION:	
	40	(A) TELEPHONE: (415) 705-8410	
	41	(B) TELEFAX: (415) 397-8338	
	44		
	46	(i) SEQUENCE CHARACTERISTICS:	
	47	(A) LENGTH: 2506 base pairs	
	48		
	49		
	50		
	52		
	56		
		ATGAGGGGGA TGCTGCCCCT CTTTGAGCCC AAGGGCCGGG TCCTCCTGGT GGACGGCCAC	
	60	CACCTGGCCT ACCGCACCTT CCACGCCCTG AAGGGCCTCA CCACCAGCCG GGGGGAGCCG	
	62	GTGCAGGCGG TCTACGGCTT CGCCAAGAGC CTCCTCAAGG CCCTCAAGGA GGACGGGGAC	180
	64	GCGGTGATCG TGGTCTTTGA CGCCAAGGCC CCCTCCTTCC GCCACGAGGC CTACGGGGGG	240

RAW SEQUENCE LISTING

PATENT APPLICATION: US/08/520,946A

DATE: 06/21/2002 TIME: 14:46:47

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\06212002\H520946A.raw

66 3	TACAAGGCGG	GCCGGGCCCC	CACGCCGGAG	GACTTTCCCC	GGCAACTCGC	CCTCATCAAG	300				
					CGGGCTACGA		360				
					ACGAGGTCCG		420				
					ACGTCCTCCA		480				
					TGAGGCCCGA		540				
					CCGGGGTCAA		600				
78 (GAGAAGACGG	CGAGGAAGCT	TCTGGAGGAG	TGGGGGAGCC	TGGAAGCCCT	CCTCAAGAAC	660				
					CCCACATGGA		720				
					TGGAGGTGGA		780				
					AGAGGCTTGA		840				
86 (CTCCTCCACG	AGTTCGGCCT	TCTGGAAAGC	CCCAAGGCCC	TGGAGGAGGC	CCCCTGGCCC	900				
88 (CCGCCGGAAG	GGGCCTTCGT	GGGCTTTGTG	CTTTCCCGCA	AGGAGCCCAT	GTGGGCCGAT	960				
					GGGCCCCCGA		1020				
92 (GCCTCAGGG	ACCTGAAGGA	GGCGCGGGG	CTTCTCGCCA	AAGACCTGAG	CGTTCTGGCC	1080				
94 (CTGAGGGAAG	GCCTTGGCCT	CCCGCCCGGC	GACGACCCCA	TGCTCCTCGC	CTACCTCCTG	1140				
96 (GACCCTTCCA	ACACCACCCC	CGAGGGGGTG	GCCCGGCGCT	ACGGCGGGGA	GTGGACGGAG	1200				
98 (GAGGCGGGGG	AGCGGGCCGC	CCTTTCCGAG	AGGCTCTTCG	CCAACCTGTG	GGGGAGGCTT	1260				
100	GAGGGGGAGG	AGAGGCTCCT	TTGGCTTTAC	CGGGAGGTG	AGAGGCCCCT	TTCCGCTGTC	1320				
102	CTGGCCCACA	TGGAGGCCAC	C GGGGGTGCGC	CTGGACGTG	G CCTATCTCAG	GGCCTTGTCC	1380				
104	CTGGAGGTGG	CCGAGGAGAT	CGCCCGCCTC	C GAGGCCGAGG	TCTTCCGCCT	GGCCGGCCAC	1440				
106	CCCTTCAACC	TCAACTCCCC	GGACCAGCTO	GAAAGGGTC	C TCTTTGACGA	GCTAGGGCTT	1500				
108	CCCGCCATCG	GCAAGACGG	A GAAGACCGGC	C AAGCGCTCCA	A CCAGCGCCGC	CGTCCTGGAG	1560				
110	GCCCTCCGCG	AGGCCCACCC	CATCGTGGAG	AAGATCCTG	C AGTACCGGGA	GCTCACCAAG	1620				
112	CTGAAGAGCA	CCTACATTGA	A CCCCTTGCCG	G GACCTCATCO	CACCCAGGAC	GGGCCGCCTC	1680				
114	CACACCCGCT	TCAACCAGAC	C GGCCACGGC	CACGGGCAGG	C TAAGTAGCTO	CGATCCCAAC	1740				
116	CTCCAGAACA	TCCCCGTCC	G CACCCCGCTT	GGGCAGAGG	TCCGCCGGGC	CTTCATCGCC	1800				
118	GAGGAGGGGT	GGCTATTGGT	GGCCCTGGAC	C TATAGCCAGA	A TAGAGCTCAC	GGTGCTGGCC	1860				
						CATCCACACG	1920				
						GATGCGCCGG	1980				
						CCTCTCCCAG	2040				
126	GAGCTAGCCA	TCCCTTACGA	A GGAGGCCCAG	GCCTTCATT	AGCGCTACT	TCAGAGCTTC	2100				
						GGGGTACGTG	2160				
130	GAGACCCTCT	TCGGCCGCC	G CCGCTACGT	G CCAGACCTAG	AGGCCCGGG1	GAAGAGCGTG	2220				
132	CGGGAGGCGG	CCGAGCGCAT	GGCCTTCAAC	C ATGCCCGTC	C AGGGCACCGC	CGCCGACCTC	2280				
134	ATGAAGCTGG	CTATGGTGAA	A GCTCTTCCCC	CAGGCTGGAGG	G AAATGGGGG	CAGGATGCTC	2340				
136	CTTCAGGTCC	ACGACGAGC	GGTCCTCGAC	GCCCCAAAA	G AGAGGGCGG	GGCCGTGGCC	2400				
						GGAGGTGGAG	2460				
140	GTGGGGATAG	GGGAGGACTO	GCTCTCCGC	C AAGGAGTGA	r accacc		2506				
142	(2) INFORM	ATION FOR S	SEQ ID NO: 2	2:							
144	(i) SEQUENCE CHARACTERISTICS:										
145		(A) LENGTH:	: 2496 base	pairs			•				
146											
147	(C) STRANDEDNESS: double										
148		(D) TOPOLOG									
150			PE: DNA (ger								
154			SCRIPTION: S								
						CGGCCACCAC	60				
						GCGAACCCGTT	120				
160	CAGGCGGTCT	ACGGCTTCGC	C CAAAAGCCTC	C CTCAAGGCC	C TGAAGGAGGA	CGGGGACGTG	180				

RAW SEQUENCE LISTING

PATENT APPLICATION: US/08/520,946A

DATE: 06/21/2002 TIME: 14:46:47

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\06212002\H520946A.raw

						CONCOCCENC	240					
162	GTGGTGGTGG	TCTTTGACGC	CAAGGCCCCC	TCCTTCCGCC	ACGAGGCCTA	CGAGGCCTAC	300					
164	AAGGCGGGCC	GGGCCCCAC	CCCGGAGGAC	TTTCCCCGGC	AGCTGGCCCT	CATCAAGGAG	360					
166	TTGGTGGACC	TCCTAGGCCT	TGTGCGGCTG	GAGGTTCCCG	GCTTTGAGGC	GGACGACGTG	420					
168	CTGGCCACCC	TGGCCAAGCG	GGCGGAAAAG	GAGGGGTACG	AGGTGCGCAT	TCACTGCC	480					
170	GACCGCGACC	TCTACCAGCT	CCTTTCGGAG	CGCATCGCCA	TCCTCCACCC	TGAGGGGTAC	540					
172	CTGATCACCC	CGGCGTGGCT	TTACGAGAAG	TACGGCCTGC	GCCCGGAGCA	GTGGGTGGAC	600					
174	TACCGGGCCC	TGGCGGGGGA	CCCCTCGGAT	AACATCCCCG	GGGTGAAGGG	CATCGGGGAG	660					
176	AAGACCGCCC	AGAGGCTCAT	CCGCGAGTGG	GGGAGCCTGG	AAAACCTCTT	CCAGCACCTG	720					
178	GACCAGGTGA	AGCCCTCCTT	GCGGGAGAAG	CTCCAGGCGG	GCATGGAGGC	CCTGGCCCTT	720 780					
180	TCCCGGAAGC	TTTCCCAGGT	GCACACTGAC	CTGCCCCTGG	AGGTGGACTT	CGGGAGGCGC						
182	CGCACACCCA	ACCTGGAGGG	TCTGCGGGCT	TTTTTGGAGC	GGTTGGAGTT	TGGAAGCCTC	840					
184	CTCCACGAGT	TCGGCCTCCT	GGAGGGGCCG	AAGGCGGCAG	AGGAGGCCCC	CTGGCCCCCT	900					
186	CCGGAAGGGG	CTTTTTTGGG	CTTTTCCTTT	TCCCGTCCCG	AGCCCATGTG	GGCCGAGCTT	960					
188	CTGGCCCTGG	CTGGGGCGTG	GGAGGGGCGC	CTCCATCGGG	CACAAGACCC	CCTTAGGGGC	1020					
190	CTGAGGGACC	TTAAGGGGGT	GCGGGGAATC	CTGGCCAAGG	ACCTGGCGGT	TTTGGCCCTG	1080					
192	CGGGAGGCC	TGGACCTCTT	CCCAGAGGAC	GACCCCATGC	TCCTGGCCTA	CCTTCTGGAC	1140					
194	CCCTCCAACA	CCACCCTGA	GGGGGTGGCC	CGGCGTTACG	GGGGGGAGTG	GACGGAGGAT	1200					
196	GCGGGGGAGA	GGGCCCTCCT	GGCCGAGCGC	CTCTTCCAGA	CCCTAAAGGA	GCGCCTTAAG	1260					
198	GGAGAAGAAC	GCCTGCTTTG	GCTTTACGAG	GAGGTGGAGA	AGCCGCTTTC	CCGGGTGTTG	1320					
200	GCCCGGATGG	AGGCCACGGG	GGTCCGGCTG	GACGTGGCCT	ACCTCCAGGC	CCTCTCCCTG	1380					
202	GAGGTGGAGG	CGGAGGTGCG	CCAGCTGGAG	GAGGAGGTCT	TCCGCCTGGC	CGGCCACCCC	1440					
204	TTCAACCTCA	ACTCCCGCGA	CCAGCTGGAG	CGGGTGCTCT	TTGACGAGCT	GGGCCTGCCT	1500					
206	GCCATCGGCA	AGACGGAGAA	GACGGGGAAA	CGCTCCACCA	GCGCTGCCGT	GCTGGAGGCC	1560					
208	CTGCGAGAGG	CCCACCCCAT	CGTGGACCGC	ATCCTGCAGT	ACCGGGAGCT	CACCAAGCTC	1620					
210	AAGAACACCT	ACATAGACCC	CCTGCCCGCC	CTGGTCCACC	CCAAGACCGG	CCGGCTCCAC	1680					
212	ACCCGCTTCA	ACCAGACGGC	CACCGCCACG	GGCAGGCTTT	CCAGCTCCGA	CCCCAACCTG	1740					
214	CAGAACATCC	CCGTGCGCAC	CCCTCTGGGC	CAGCGCATCC	GCCGAGCCTT	CGTGGCCGAG	1800					
216	GAGGGCTGGG	TGCTGGTGGT	CTTGGACTAC	AGCCAGATTG	AGCTTCGGGT	CCTGGCCCAC	1860					
218	CTCTCCGGGG	ACGAGAACCT	GATCCGGGTC	TTTCAGGAGG	GGAGGGACAT	CCACACCCAG	1920					
220	ACCGCCAGCT	GGATGTTCGG	CGTTTCCCCC	GAAGGGGTAG	ACCCTCTGAT	GCGCCGGGCG	1980					
222	GCCAAGACCA	TCAACTTCGG	GGTGCTCTAC	GGCATGTCCG	CCCACCGCCT	CTCCGGGGAG	2040					
224	CTTTCCATCC	CCTACGAGGA	GGCGGTGGCC	TTCATTGAGC	GCTACTTCCA	GAGCTACCCC	2100					
226	AAGGTGCGGG	CCTGGATTGA	GGGGACCCTC	GAGGAGGCC	GCCGGCGGGG	GTATGTGGAG	2160					
228	ACCCTCTTCG	GCCGCCGGCG	CTATGTGCCC	GACCTCAACG	CCCGGGTGAA	GAGCGTGCGC	2220					
230	CACCCCCCCC	AGCGCATGGC	CTTCAACATG	CCGGTCCAGG	GCACCGCCGC	CGACCTCATG	2280					
230	AAGCTGGCCA	TGGTGCGGCT	TTTCCCCCGG	CTTCAGGAAC	TGGGGGCGAG	GATGCTTTTG	2340					
234	CAGGTGCACG	ACGAGCTGGT	CCTCGAGGCC	CCCAAGGACC	GGGCGGAGAG	GGTAGCCGCT	2400					
234	TTGGCCAAGG	AGGTCATGGA	GGGGGTCTGG	CCCCTGCAGG	TGCCCCTGGA	GGTGGAGGTG	2460					
230	CCCCTCCCC	AGGACTGGCT	CTCCGCCAAG	GAGTAG			2496					
	B GGCCTGGGGG AGGACTGGCT CTCCGCCAAG GAGTAG											
240) (2) INFORMATION FOR SEQ ID NO: 3: 2 (i) SEQUENCE CHARACTERISTICS:											
242	(A) LENGTH: 2504 base pairs											
243	(B) TYPE: nucleic acid											
245	(C) STRANDEDNESS: double											
245		(D) TOPOLOG										
248		OLECULE TYP		omic)								
252	(TT) M	SEQUENCE DES	CRIPTION: S	EO ID NO: 3	:							
254	Д ТССВСССО (A+) В	TGCTTCCGCT	CTTTGAACCC	AAAGGCCGGG	TCCTCCTGGT	GGACGGCCAC	60					
254	CACCTCCCCT	ACCGCACCTT	CTTCGCCCTG	AAGGCCTCA	CCACGAGCCG	GGGCGAACCG .	120					
200	CACCIGGCCI											

RAW SEQUENCE LISTING

PATENT APPLICATION: US/08/520,946A

DATE: 06/21/2002 TIME: 14:46:47

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\06212002\H520946A.raw

```
258 GTGCAGGCGG TCTACGGCTT CGCCAAGAGC CTCCTCAAGG CCCTGAAGGA GGACGGGTAC
                                                                         180
260 AAGGCCGTCT TCGTGGTCTT TGACGCCAAG GCCCCTCCT TCCGCCACGA GGCCTACGAG
                                                                         240
262 GCCTACAAGG CGGGGAGGGC CCCGACCCCC GAGGACTTCC CCCGGCAGCT CGCCCTCATC
                                                                         300
264 AAGGAGCTGG TGGACCTCCT GGGGTTTACC CGCCTCGAGG TCCCCGGCTA CGAGGCGGAC
                                                                         360
266 GACGTTCTCG CCACCCTGGC CAAGAAGGCG GAAAAGGAGG GGTACGAGGT GCGCATCCTC
                                                                         420
                                                                         480
268 ACCGCCGACC GCGACCTCTA CCAACTCGTC TCCGACCGCG TCGCCGTCCT CCACCCCGAG
                                                                         540
270 GGCCACCTCA TCACCCCGGA GTGGCTTTGG GAGAAGTACG GCCTCAGGCC GGAGCAGTGG
272 GTGGACTTCC GCGCCCTCGT GGGGGACCCC TCCGACAACC TCCCCGGGGT CAAGGGCATC
                                                                         600
274 GGGGAGAAGA CCGCCCTCAA GCTCCTCAAG GAGTGGGGAA GCCTGGAAAA CCTCCTCAAG
                                                                         660
276 AACCTGGACC GGGTAAAGCC AGAAAACGTC CGGGAGAAGA TCAAGGCCCA CCTGGAAGAC
                                                                         720
                                                                         780
278 CTCAGGCTCT CCTTGGAGCT CTCCCGGGTG CGCACCGACC TCCCCCTGGA GGTGGACCTC
                                                                         840
280 GCCCAGGGC GGGAGCCCGA CCGGGAGGGG CTTAGGGCCT TCCTGGAGAG GCTGGAGTTC
282 GGCAGCCTCC TCCACGAGTT CGGCCTCCTG GAGGCCCCCG CCCCCTGGA GGAGGCCCCC
                                                                         900
284 TGGCCCCGC CGGAAGGGGC CTTCGTGGGC TTCGTCCTCT CCCGCCCCGA GCCCATGTGG
                                                                         960
286 GCGGAGCTTA AAGCCCTGGC CGCCTGCAGG GACGGCCGGG TGCACCGGGC AGCAGACCCC
                                                                         1020
288 TTGGCGGGC TAAAGGACCT CAAGGAGGTC CGGGGCCTCC TCGCCAAGGA CCTCGCCGTC
                                                                         1080
290 TTGGCCTCGA GGGAGGGGCT AGACCTCGTG CCCGGGGACG ACCCCATGCT CCTCGCCTAC
                                                                         1140
292 CTCCTGGACC CCTCCAACAC CACCCCGAG GGGGTGGCGC GGCGCTACGG GGGGGAGTGG
                                                                         1200
294 ACGGAGGACG CCGCCCACCG GGCCCTCCTC TCGGAGAGGC TCCATCGGAA CCTCCTTAAG
                                                                         1260
296 CGCCTCGAGG GGGAGGAGAA GCTCCTTTGG CTCTACCACG AGGTGGAAAA GCCCCTCTCC
                                                                         1320
298 CGGGTCCTGG CCCACATGGA GGCCACCGGG GTACGGCTGG ACGTGGCCTA CCTTCAGGCC
                                                                         1380
300 CTTTCCCTGG AGCTTGCGGA GGAGATCCGC CGCCTCGAGG AGGAGGTCTT CCGCTTGGCG
                                                                         1440
302 GGCCACCCCT TCAACCTCAA CTCCCGGGAC CAGCTGGAAA GGGTGCTCTT TGACGAGCTT
                                                                         1500
304 AGGCTTCCCG CCTTGGGGAA GACGCAAAAG ACAGGCAAGC GCTCCACCAG CGCCGCGGTG
                                                                         1560
306 CTGGAGGCCC TACGGGAGGC CCACCCCATC GTGGAGAAGA TCCTCCAGCA CCGGGAGCTC
                                                                         1620
308 ACCAAGCTCA AGAACACCTA CGTGGACCCC CTCCCAAGCC TCGTCCACCC GAGGACGGGC
                                                                         1680
310 CGCCTCCACA CCCGCTTCAA CCAGACGGCC ACGGCCACGG GGAGGCTTAG TAGCTCCGAC
                                                                         1740
312 CCCAACCTGC AGAACATCCC CGTCCGCACC CCCTTGGGCC AGAGGATCCG CCGGGCCTTC
                                                                         1800
314 GTGGCCGAGG CGGGTTGGGC GTTGGTGGCC CTGGACTATA GCCAGATAGA GCTCCGCGTC
                                                                         1860
316 CTCGCCCACC TCTCCGGGGA CGAAAACCTG ATCAGGGTCT TCCAGGAGGG GAAGGACATC
                                                                         1920
318 CACACCCAGA CCGCAAGCTG GATGTTCGGC GTCCCCCCGG AGGCCGTGGA CCCCCTGATG
                                                                         1980
320 CGCCGGGCGG CCAAGACGGT GAACTTCGGC GTCCTCTACG GCATGTCCGC CCATAGGCTC
                                                                         2040
322 TCCCAGGAGC TTGCCATCCC CTACGAGGAG GCGGTGGCCT TTATAGAGGC TACTTCCAAA
                                                                         2100
2160
326 ACGTGGAAAC CCTCTTCGGA AGAAGGCGCT ACGTGCCCGA CCTCAACGCC CGGGTGAAGA
                                                                         2220
328 GCGTCAGGGA GGCCGCGGAG CGCATGGCCT TCAACATGCC CGTCCAGGGC ACCGCCGCCG
                                                                         2280
330 ACCTCATGAA GCTCGCCATG GTGAAGCTCT TCCCCCGCCT CCGGGAGATG GGGGCCCGCA
                                                                         2340
332 TGCTCCTCCA GGTCCACGAC GAGCTCCTCC TGGAGGCCCC CCAAGCGCGG GCCGAGGAGG
                                                                         2400
                                                                         2460
334 TGGCGGCTTT GGCCAAGGAG GCCATGGAGA AGGCCTATCC CCTCGCCGTG CCCCTGGAGG
                                                                         2504
336 TGGAGGTGGG GATGGGGGAG GACTGGCTTT CCGCCAAGGG TTAG
338 (2) INFORMATION FOR SEQ ID NO: 4:
         (i) SEQUENCE CHARACTERISTICS:
340
              (A) LENGTH: 832 amino acids
341
              (B) TYPE: amino acid
342
              (C) STRANDEDNESS: single
343
344
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: protein
346
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
350
        Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu
352
```

DATE: 06/21/2002 RAW SEQUENCE LISTING TIME: 14:46:47 PATENT APPLICATION: US/08/520,946A

Input Set : A:\Seqsub2.app
Output Set: N:\CRF3\06212002\H520946A.raw

252	1				5					10					15	
353	1	7 an	Clu	uic		Lau	λla	Тvr	Δrα		Phe	His	Ala	Leu	Lvs	Glv
355	Val	ASP	GIY	20	птэ	пеп	AIu	111	25		1			30	-1-	
356	T 011	шhъ	Пhr		λκα	Glv	Glu	Pro		Gln	Δla	va 1	Tyr	Glv	Phe	Ala
358	Leu	1111	35	261	AIG	GIY	Giu	40	, uı	0111	1124	,	45	1		
359	T	Cor		T OU	Twe	λla	Lau		Glu	Δsn	Glv	Asp	Ala	Val	Ile	Val
361	ьуѕ	50	ьец	ьeu	пуз	АІЦ	55	цуз	OIG	пър	011	60				
362	77. 1		3	210	Tura	ת 1 ת		Cor	Dho	λνα	Hic		Ala	Tvr	Glv	Glv
364		Pué	ASP	Ата	гаг	70	PIO	261	FIIC	Arg	75	Olu	mu	- 1 -	011	80
365	65	T	31-	a 1	7 ~~		Dro	шhт	Dro	Clu		Dha	Pro	Δrα	Gln	Leu
367	Tyr	ьуs	Ата	СТУ		Ald	PIO	1 111	PIU	90	лър	riic	110	9	95	псч
368	. 1 .	.	-1 -	T	85	T 0.11	Wa 1	7 an	Lou		C137	T.O.I	Ala	Δra		Glu
370	Ата	Leu	TTE		GIU	ьeu	Val	ASP	105	цец	GLY	пец	лти	110	LCu	O_Lu
371		D	01	100	G1	21.	7 an	7 an		LOU	λla	Sar	Leu		T.v.c	Lvs
373	vaı	Pro		туг	GIU	Ата	Asp	120	Val	ьец	AId	261	125	ALU	цу	шуБ
374		a 1	115	a 1	a1	m	C1		7 ~~	т1 о	Lou	Thr	Ala	Aen	T.vs	Δen
376	Ala		Lys	GIU	СТА	туг		Val	Arg	ire	цец	140	AIG	дър	цуо	АЗР
377	_	130	a 1		.	a	135	3	т1.	mi a	17.5 1		Uic	Dro	Glu	Glv
379		Tyr	GIn	Leu	Leu		Asp	Arg	тте	HIS	155	Leu	His	PIO	GIU	160
380	145	_		_1	_	150	m	T	III	C1		Птт	Clv	LOU	λνα	
382	Tyr	Leu	He	Thr		Ala	Trp	Leu	ттр		гуѕ	TAT	Gly	пец	175	FIU
383	_		_		165	m	3	7.1.	T 011	170	C117	7 an	Glu	Cor		Δen
385	Asp	GIn	Trp		Asp	Tyr	Arg	Ala		THE	GIY	ASP	Glu	190	ASP	ASII
386				180	_	a 1	- 1 -	a 1	185	T	m h	1 J n	7 ~~		LOU	LOU
388	Leu	Pro		Val	ьуs	GIY	тте		GIU	гуѕ	1111	Ата	Arg 205	цуз	пец	пеа
389		_ =	195				a	200	T	т	T	7 an		A an	7 ~ ~	Lau
391	Glu		Trp	GIY	ser	Leu		Ата	ьeu	Leu	Lys	220	Leu	ASP	AIG	цец
392		210			_	a 1	215	T1-	T	3 1 n	ni a		7 an	λαn	Lou	Lare
394		Pro	Ala	lle	Arg		Lys	шe	Leu	Ala	235	Met	Asp	АЗР	цец	240
395	225	_	_			230	T	17 1	7 ~~~	mb.~		LOU	Bro	LAu	Glu	
397	Leu	Ser	Trp	Asp		Ата	гăг	vaı	Arg		ASP	Leu	Pro	ьeu	255	Val
398		_,		_	245	•	a 1	D	7	250	C1	7 ~~	T 011	λνα		Dhe
400	Asp	Phe	Ala		Arg	Arg	GIU	PLO			GIU	AIG	Leu	270	AIG	FIIC
401	_		_	260	a1	D1	a1	a	265		ni a	Clu	Dho		LAII	Leu
403	Leu	GIu		Leu	GIU	Pne	GIY		ьeu	Leu	HIS	GIU	Phe 285	GIY	пец	пси
404		_	275	_		.	01	280	31.	Dwa	m ~~	Dro		Dro	Clu	Gly
406	Glu		Pro	Lys	Ата	Leu		GIU	АТа	PIO	ттр	300	Pro	, P10	GIU	GIY
407		290	1	a 1	D1	**- 1	295		7 ~~	T 110	Clu		Mot	Фrn	λla	Agn
409		Phe	Val	GIY	Pne		Leu	ser	AIG	Lys	315	PIO	Met	пр	AIG	320
410	305	_		_		310	. 1 -	3	01	c1		val	Hic	Λrα	λla	_
412	Leu	Leu	Ala	Leu		Ата	АТА	arg	GIY		Ary	Val	His	AIG	335	PIO
413				_	325	_			T	330	G1	3 1 a	7 ~~	C1,,		Lou
415	Glu	Pro	Tyr		Ala	Leu	Arg	ASP			GIU	Ата	Arg	350	ьец	пец
416	_			340	_	1	-		345		a 1	C1	T 011		LOU	Dro
418	Ala	Lys		Leu	ser	val	ьeu		ьeu	arg	GIU	СТА	Leu 265	дту	пец	F10
419	_		355	_	_		. .	360	31-	m	т о	T 0:-	365	Dro	802	λan
421	Pro		Asp	Asp	Pro	met		ьeu	АТа	туr	ьeu	леи 380	Asp	F10	ser	ASII
422		370	_				375	3	3	m	C1		C1	Пъъ	Пhъ	Glu
424		Thr	Pro	Glu	Gly		Ala	arg	arg	тyr		сту	Glu	ттр	1111	400
425	385					390					395					- 00

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/08/520,946A

DATE: 06/21/2002 TIME: 14:46:48

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\06212002\H520946A.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:7; N Pos. 4,5,181,182,190,366,617,628,685,714,722,738,784,1022,1029
Seq#:7; N Pos. 1038,1053,1098,1105,1206,1227,1244,1251,1252,1253,1350,1380
Seq#:7; N Pos. 1497,1530,1569,1572,1641,1653,1655,1770,1812,2319,2346,2396
Seq#:8; Xaa Pos.2,63,109,186,205,209,227,228,233,240,243,244,247,260,290
Seq#:8; Xaa Pos.329,336,340,368,414,417,418,431,551,605,773,794,798,823,833

VERIFICATION SUMMARY

PATENT APPLICATION: US/08/520,946A

DATE: 06/21/2002 TIME: 14:46:48

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\06212002\H520946A.raw

L:30 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:] L:31 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:] L:1126 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:0 L:1135 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:48 L:1144 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:96 L:1159 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:176 L:1162 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:192 L:1165 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:208 L:1168 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:224 L:1171 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:240 L:1174 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:256 $L:1180 \ M:341 \ W:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:288 $L:1186 \ M:341 \ W:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:320 $L:1189 \ M:341 \ W:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:336 L:1192 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:352 L:1201 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:400 L:1204 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:416 L:1228 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:544 L:1237 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:592 L:1270 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:768 L:1273~M:341~W:~(46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:784 $L:1279 \ M:341 \ W:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:816 L:1282 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:832