ADA - Atribuição de Aulas

Ana Paula Moura Messias de Souza, Gustavo Santos Costa Soares, Isabella Valerio Mazará, Josineudo das Chagas Arruda, Paulo Kenji Yokota Muneischi

¹Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) São Paulo – SP – Brasil Curso Tecnico em Informática Integrado ao Ensino Médio PDS - Pratica para Desenvolvimento de Sistemas

Abstract. Este projeto, Atribuição de Aulas, como o próprio nome sugere, coordena e executa o processo de atribuição de aulas aos professores do Instituto
Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) - Campus São
Paulo. Como objetivo visa automatizar o processo atual, em Excel, para tornar
o preenchimento e a leitura dos dados do Formulário de Preferência de Atividade (FPA) funcional e descomplicado. Destinado a atender a necessidade final
dos docentes, o projeto também será gerido por outros funcionários, cujos cargos ficarão responsáveis pela atribuição naquele ano. Para executar todos os
processos, será utilizado o framework Django, baseado na linguagem python,
em conjunto com o PostgreSQL.

Resumo. Este meta-artigo descreve o estilo a ser usado na confecção de artigos e resumos de artigos para publicação nos anais das conferências organizadas pela SBC. É solicitada a escrita de resumo e abstract apenas para os artigos escritos em português. Artigos em inglês deverão apresentar apenas abstract. Nos dois casos, o autor deve tomar cuidado para que o resumo (e o abstract) não ultrapassem 10 linhas cada, sendo que ambos devem estar na primeira página do artigo.

1. Introdução

No IFSP Câmpus São Paulo, são mais de 350 docentes, com 56 na área de DIT. Logo, é essa a quantidade que participa da atribuição de aulas semestral e/ou anual, indicando seu extenso e intrincado processo. Além da referida quantidade, o que dá essas características à atribuição são os critérios a serem seguidos, desde a ordem de prioridade dos docentes até as preferências colocadas por cada um no FPA e os regramentos presentes na resolução vigente – em 2023, ainda rege a Resolução n°109/2015, de 4 de novembro de 2015.

Todo esse processo é realizado manualmente, através da entrega do FPA, da ferramenta Excel e da comunicação particular constante entre o administrador daquele ano e o docente, principalmente no caso de permuta. Assim, procedem adversidades, conflitos interpessoais e atrasos, relatados semestralmente pelos docentes, principalmente pelos que ficam no final da fila de prioridade (os substitutos), e comentados, após contato da equipe, pelo administrador das atribuições da DIT atual e antigo, os quais enfatizaram sobre a consequente sobrecarga em suas funções, ao tentar equilibrar a vontade de todos e, ao mesmo tempo, cumprir com a lei.

Em decorrência disso, surge a necessidade da automatização de parte dos processos, que tem como objetivo a aprimoração do andamento do fluxo de trabalho, trazendo como resultado o aumento da produtividade e a redução de custos e de erros.

E, à vista do que foi exposto, o projeto retratado propõe a elaboração de um sistema que automatize os principais processos da atribuição - as seleções do FPA e a permutação - e, simultaneamente, cumpra o exigido na Resolução, e nos outros critérios estabelecidos hoje (como a prioridade da escolha do docente na atribuição) e que podem ser posteriormente adicionados. Esse sistema é o ADA.

1.1. Objetivo

O ADA visa apresentar uma solução e uma aprimoração às problemáticas da atribuição de aulas. Logo, oferecer um sistema Web responsivo de Single Application Page (SPA) aos funcionários, que automatize essa atribuição e a respectiva e consecutiva permutação (caso habilitada), sem a necessidade de organização manual e de negociações individuais e extraoficiais.

Com processos correspondentes aos problemas centrais, terá a implementação do login, pelo e-mail oficial do Instituto no Google, tratando do gerenciamento geral dos docentes e dos administradores; da automatização do FPA, tratando da dificuldade de estruturação da grade horária seguindo todos os critérios e os regramentos; e da automatização das negociações à permuta, tratando dos atritos e da dificuldade de comunicação gerados.

Consequentemente, o sistema proporcionará, a princípio, um ambiente em que o administrador superior e os subadministradores consigam controlar e ordenar os critérios às suas área e subáreas, respectivamente, e habilitar funções como a permutação e a desativação de um em determinada matéria. Ademais, proporcionará um ambiente em que o docente consiga selecionar todas as suas preferências e solicitar suas permuta (caso habilitadas) em um único local, sem demasiadas complicações e processos.

Uma operação antes com responsabilidades individuais e organização manual, a qual incorre de mais erros devido a subjetividade e os problemas humanos, passará a ser uma operação tecnológica mais limpa e funcional, com menos erros.

2. Entrega Parcial

A fim de implementar um sistema que trate dos problemas citados e consiga atingir os objetivos propostos, são necessários processos e a utilização de determinadas tecnologias, citadas no subtópico.

Os processos principais são três, o cadastramento dos usuários, a automatização do FPA e a possibilidade de habilitação de outros processos, por parte dos administradores, com destaque à permutação dos horários já atribuídos e à desativação de um docente em determinada matéria.

2.1. Cadastramento dos usuários

Preliminar à qualquer utilização do ADA, o Administrador Superior (Admin), será cadastrado pelos próprios programadores e terá o maior nível de acesso, podendo realizar quaisquer alterações e controlar quais serão os Administradores (Staff).

Então, os outros funcionários receberão um link para acessarem o ADA via Google, pelo e-mail institucional - o que evita acessos não permitidos, e serão atribuídos instantaneamente ao papel de Professor (professor); como mencionado, a mudança desse

nível de acesso para o de Staff é realizada pelo Admin. E acessos posteriores poderão ser através do Google ou do prontuário e senha.

2.2. Configuração do ambiente

A configuração do ambiente é um subprocesso, em que o Admin será responsável por habilitar a possibilidade de permuta e de desativação do docente em uma disciplina; prazos limites à organização; e definição ou atualização dos critérios da atribuição - baseados na legislação vigente e na ordem de prioridade de escolha das disciplinas.

E o Staff será responsável pela subárea, consequentemente, por subir a grade horária; determinar prazos específicos; autorizar a permutação e se deseja participar da aprovação das permuta; controlar os docentes desativados; e adicionar¹ os que participarão de sua subárea.

2.3. Automatização do FPA

Finalizada a organização do sistema pelos administradores e todos os docentes cadastrados nas subáreas, eles poderão acessar o sistema e iniciar o processo de escolha da disponibilidade de horários e da preferência de aulas (prioritária e secundária) e de atividades. Conforme é realizado esse processo, o ADA verifica se cada escolha segue os regramentos, e impossibilita a escolha de disciplinas em conflito; igualmente, informa com uma mensagem breve caso o docente selecione uma em que foi desativado.

A determinação da preferência de atividades poderá ser modificada dentro do prazo de entrega estabelecido pelo Staff. Porém, ao encerrar o prazo, o ADA percorre a lista de docentes, em ordem decrescente, e atribui as aulas de acordo com o selecionado. O processo é interrompido - e é armazenado o que já foi feito - caso haja conflito com uma disciplina já escolhida; assim, aquele docente receberá uma solicitação para alterar sua escolha dentro de determinado prazo.

2.4. Permutação

A permutação é aberta, caso habilitada com a conclusão da grade pelo sistema. De modo geral, é feita com a solicitação de um docente pela troca de sua aula por uma específica do outro, selecionada na grade. É impossibilitada mais de uma solicitação, ao mesmo tempo, para uma mesma aula; Apenas é liberada quando essa for aceita ou recusada. Igualmente é impossibilidada a solicitação de alguma que descumpra o regramento. Caso o Staff seja moderador, ele terá que aprovar a aceitação da permuta pelo segundo docente.

Por fim, é gerada a grade horária final, onde os docentes e os administradores conseguem visualizar e salvar a atribuição de aulas da subárea. Além da possibilidade de gerar o FPA com essa grade pronta.

3. Tecnologias e ferramentas aplicadas

Em vista do desenvolvimento do ADA de maneira concisa e eficaz, a implementação de tecnologias e suas respectivas ferramentas se faz necessária. Além disso, repositórios de controle de versão e Integrated Development Environment (IDE) deverão, e serão, utilizados.

¹Essa adição será manual e de acordo com a prioridade escolhida. Portanto, um subprocesso, onde o Staff colocará os docentes na ordem e, igualmente, poderá alterá-la em caso de erro ou modificações futuras.

3.1. Tecnologias

A seguir estão as tecnologias utilizadas, suas características principais e, assim, porque foram escolhidas. A finalidade principal desse conjunto é escrever a aplicação de forma rápida e eficiente, em acordo com o conhecimento da equipe, concentrando toda a energia no desenvolvimento e na aplicação da lógica, e, logo, poupando tempo em funcionalidades básicas.

3.1.1. Django

É um framework Web open source e de alto nível, desenvolvido em Python, que se baseia no padrão MTV, apresentando semelhança com o MVC. Assim, segue o princípio dry², é moderadamente opinativo³e apresenta suporte para erros comuns de segurança. Além desses benefícios, foi escolhido devido a sua aplicação em grandes empresas (como Mozilla e Pinterest) e, principalmente, no SUAP do IFSP, o que permite manter o padrão de tecnologias no Instituto.

É uma mudança da separação anterior entre *front* e *backend*, pelo framework Angular e Spring Boot, respectivamente. Foi realizada visando uma maior produtividade, porque, em comparação, a configuração do ambiente do Spring é mais complexa, pois necessita implementar diversas dependências com o Maven. Isso difere do Django, que cria o projeto inicial em uma única linha de código. Ademais, o desenvolvimento se torna mais complicado com os dois framework, afinal, são dois serviços funcionando ao mesmo tempo, o que demanda muito processamento dos computadores do IFSP, tornando-os lentos e atrapalhando o processo de construção da aplicação, já que a equipe utilizará eles para programar.

MTV Derivação da arquitetura de software MVC, de três camadas, altera a nomenclatura e a relação entre os arquivos. O Model permanece o mesmo, como um canal de conexão entre os tipos de dados e como serão armazenados no Banco de Dados, e a exibição ao ter requisição à View. Essa é responsável, então, pelo gerenciamento das requisições e a lógica de negócio, com a formatação dos dados enviados pelo Model. Por fim, o Template é a interação com o usuário, através de uma exibição estática ou inserção de sintaxe de conteúdo dinâmico, com a renderização dos dados entregues pela View.

3.1.2. Python

É uma linguagem de programação *open source* e de alto nível, interpretada em *scripts* e com Orientação a Objetos (OO), que apresenta tipagem dinâmica⁴ forte. Logo, prioriza

²Permite que as aplicações sejam desenvolvidas com a maior quantidade de aproveitamento de código possível.

³Flexibilidade que o framework dá aos desenvolvedores à resolução dos problemas. Opinativo, já possui uma maneira correta de resolvê-los, sem margens; não-opinativo, não possui essas regras e deixa livre para resolvê-los como quiser. Django equilíbrio entre soluções prontas e arquitetura desacoplada com liberdade na resolução de erros.

⁴Tipo do dado é determinado no tempo de execução, de acordo com o valor do dado, não a partir da sua variável.

a agilidade por meio de sua sintaxe menor e simplificada, e sem muitas exigências gramaticais. E é por isso que foi escolhida, uma ótima opção que supriu de forma excelente a necessidade de uma aprendizagem rápida pela equipe e fácil codificação nos dispositivos do IFSP, além de poder ser facilmente integrada a outras linguagens de programação populares, caso seja necessário no decorrer do projeto.

É uma mudança, ao invés do Java, a linguagem de programação anterior. Ao realizar a troca do framework Spring Boot pelo Django, as linguagens foram substituídas também, pois cada framework tem a sua específica.

3.1.3. A.JAX

O ajax é uma técnica de desenvolvimento *web*, caracterizada pela criação de aplicações interativas através de requisições ao servidor. Uma junção das funcionalidades do Javascript com a troca dos dados, armazenados e transmitidos, nesse caso, pelo JSON (mais próximo do JS). Foi escolhido justamente por servir como um canal de comunicação independente entre o cliente e o servidor.

3.1.4. JavaScript

É uma linguagem de programação de alto nível e interpretada em *scripts*, com recursos de OO e API, que apresenta tipagem dinâmica. Assim, por meio de um funcionamento assíncrono⁵, usa trechos dos códigos HTML para renderizar funções que proporcionem uma interação dinâmica local com o conteúdo da página. Foi escolhida para proporcionar essa dinamicidade em tempo real, recarregamento automático, em conjunto com o AJAX.

3.1.5. HTML

O HTML é uma estrutura responsável pela exibição dos dados no navegador *web*, caracterizado por seus elementos hierarquizados e sua marcação que abriga elementos como tags. Na aplicação ADA, é utilizada nos templates, explicados no parágrafo 2.4.1.1.1.

3.1.6. CSS

O CSS é uma linguagem de marcação, responsável pela estilização de elementos HTML. Foi escolhido a fim de ajudar na formatação dos templates em detalhes específicos que, por vezes, não são compreendidos pelo framework, pois este é mais genérico.

3.1.7. Bootstrap

É um framework *front-end*, logo, voltado à estilização, e *open source*. Foi escolhido e mantido devido à agilidade no desenvolvimento da página para o usuário, característica

⁵A programação assíncrona é uma técnica na qual o programa inicia uma tarefa e ainda é capaz de executar simultaneamente outros eventos, ao invés de bloquear processos para esperar o término da execução.

nos framework, e, principalmente, devido à responsividade proporcionada.

3.2. Hospedagem

A fim de ter uma instância em nuvem e conseguir fazer a hospedagem da aplicação, foi utilizada a AWS. É uma plataforma que disponibiliza diversos serviços de computação em uma rede de servidores remotos. Assim, é possível criar instâncias de máquinas com sistema operacional Windows ou Linux, de modo que a aplicação funcione constantemente, sem necessitar que um dispositivo pessoal fique ligado.

Somente com ela já é disponibilizada a aplicação na web. Todavia, o acesso é difícil, pois aparecerá somente o endereço IPv4 público da máquina virtual criada. Para resolvê-lo, foi comprado o domínio mottarios.cloud no website Hostinger.

É importante ressaltar que a equipe já tinha experiência com os serviços da Amazon, então, não foram testados outros serviços de hospedagem. Ademais, a AWS fornece um ano de gratuidade em alguns dos seus serviços, o que foi crucial para a escolha.

Apêndices

References