No. of Printed Pages: 16

5628

	A
ı	

பதிவு எண்		
Register Number		

PART-III

இயற்பியல் / PHYSICS

(தமிழ் மற்றும் ஆங்கில வழி / Tamil & English Versions)

நேரம் : 3 மணி]

[மொத்த மதிப்பெண்கள் : 150

Time Allowed: 3 Hours]

[Maximum Marks: 150

அறிவுரை:

- (1) அனைத்து வினாக்களும் சரியாக பதிவாகி உள்ளதா என்பதனை சரிபார்த்துக் கொள்ளவும். அச்சுப்பதிவில் குறையிருப்பின் அறைக் கண்காணிப்பாளரிடம் உடனடியாகத் தெரிவிக்கவும்.
- (2) நீலம் அல்லது கருப்பு மையினை மட்டுமே எழுதுவதற்குப் பயன்படுத்த வேண்டும். படங்கள் வரைவதற்கு பென்சில் பயன்படுத்தவும்.

Instructions:

- (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
- (2) Use Black or Blue ink to write and pencil to draw diagrams.

பகுதி - I/PART - I

குறிப்பு :

(i) அனைத்து வினாக்களுக்கும் விடையளிக்கவும்.

30x1=30

(ii) சரியான விடையைத் தோந்தெடுத்து எழுதவும்.

Note:

- (i) Answer all the questions.
- (ii) Choose and write the correct answer.

[திருப்புக / Turn over

1.
$$A(\overline{A} + B) = ?$$

- (의) A
- (ஆ) B
- (A) AB
- (rF) A+B

$$A(\overline{A} + B) = ?$$

- (a) A
- (b) В
- AB (c)
- A + B(d)

- (의) 15P31
- $(\mathcal{P}_5)_{15}P^{32}$
- $()_{11} Na^{23}$
- (FF) ₁₁Na²⁴

The radio isotope used in agriculture is:

- (a) $_{15}P^{31}$
- (b) $_{15}P^{32}$
- (c) $_{11}Na^{23}$
- (d) ₁₁Na²⁴

$$_4\mathrm{Be}^8$$
 அணுக்கருவின் ஆரம் :

(அ) 1.3×10^{-15} m

 $(\mathfrak{Z}_{0}) 2.6 \times 10^{-15} \text{ m}$

(a) 1.3×10^{-13} m

(fr) 2.6×10⁻¹³ m

The nuclear radius of ₄Be⁸ nucleus is :

 1.3×10^{-15} m (a)

(b) 2.6×10^{-15} m

 1.3×10^{-13} m (c)

(d) 2.6×10^{-13} m

4. காற்றில் செல்லும் ஒரு ஒளிக்கதிரானது
$$60^\circ$$
 படுகோணத்தில் அடர்மிகு தளத்தில் படுகின்றது. அடர்மிகு ஊடகத்தினுள் அதன் திசைவேகம் $2\times 10^8~{
m ms}^{-1}$ எனில், அடர்மிகு ஊடகத்தினுள் ஏற்படும் விலகுகோணத்தின் மதிப்பு :

(அ) 30°

- $(\mathfrak{S}_{h}) \sin^{-1}(0.75)$
- (a) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (FF) $\sin^{-1}(0.6666)$

A ray of light travelling in air is incident on a denser surface at an angle of 60°. If the velocity of light in the denser medium is 2×10^8 ms⁻¹, the angle of refraction inside the denser medium is:

30° (a)

- (b) $\sin^{-1}(0.75)$
- (c) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (d) $\sin^{-1}(0.6666)$

- 5. N^{13} ன் அரை ஆயுட்காலம் 10.1 நிமிடங்கள். அதன் ஆயுட்காலம் :
 - (அ) 5.05 நிமிடங்கள்

(ஆ) 20.2 நிமிடங்கள்

- (இ) $\frac{10.1}{0.6931}$ நிமிடங்கள்
- (ஈ) முடிவிலி

The half life period of N^{13} is 10.1 minute. Its mean life time is :

(a) 5.05 minutes

(b) 20.2 minutes

(c) $\frac{10.1}{0.6931}$ minutes

- (d) infinity
- 6. வீச்சுப் பண்பேற்றத்தில், பட்டை அகலம் :
 - (அ) சைகையின் அதிர்வெண்ணுக்குச் சமமாக இருக்கும்
 - (ஆ) சைகை அதிர்வெண்ணின் இரு மடங்காக இருக்கும்
 - (இ) சைகை அதிர்வெண்ணின் மும்மடங்காக இருக்கும்
 - (ஈ) சைகை அதிர்வெண்ணின் நான்கு மடங்காக இருக்கும்

In amplitude modulation, the bandwidth is:

- (a) equal to the signal frequency
- (b) twice the signal frequency
- (c) thrice the signal frequency
- (d) four times the signal frequency
- 7. ஒரு தாளின் தளத்தில் இடதுபுறத்திலிருந்து வலப்பக்கமாக செல்லும் ஒரு கேத்தோடு கற்றையானது, தாளின் தளத்திற்கு நேர்குத்தாகவும், உள்நோக்கியும் செயல்படும் ஒரு சீரான காந்தப்புலத்தில் நுழையும்போது கற்றையானது:
 - (அ) கீழ்நோக்கி விலகலடையும்
 - (ஆ) மேல்நோக்கி விலகலடையும்
 - (இ) தாளின் தளத்திற்குக் குத்தாகவும், உள்நோக்கியும் விலகலடையும்
 - (ஈ) தாளின் தளத்திற்குக் குத்தாகவும், வெளிநோக்கியும் விலகலடையும்

A beam of cathode rays moves from left to right in a plane of the paper and it enters into a uniform magnetic field acting perpendicular to the plane of the paper and inwards. Now, the cathode rays are deflected:

- (a) downwards
- (b) upwards
- (c) in a direction perpendicular to the plane of the paper and inwards
- (d) in a direction perpendicular to the plane of the paper and outwards

8.	மின்காந்தத் தூண்டல் பயன்படுத்தப்படாதது :									
	(அ) மின்மாற்றி	அ) மின்மாற்றி			(ஆ) அறை சூடேற்றி					
	(இ) AC மின்னியற்றி		(rr·)	அത	டப்புச் (சுருள்				
	Electromagnetic induction is not used in:									
	(a) transformer		(b)	room	heater					
	(c) AC generator		(d)	choke	e coil					
9.	1 மீ நீளமுள்ள கடத்தி ஒன்று வட்டவடிவக் கம்பிச் சுருளாக மாற்றப்படுகிறது. அதன் வழியாக 3.14 A மின்னோட்டம் பாயும்போது உருவாகும் காந்த இருமுனை திருப்புதிறனின் மதிப்பு (Am² -ல்) :								அதன் மனை	
	(의) 1	(ച്കൂ) 0.5		(<u>@</u>)	0.25		(FF)	0.314		
	A wire of length 1 m is made into a circular loop and it carries a current of 3.14 Å. The magnetic dipole moment of the current loop (in Am ²) is:									
	(a) 1	(b) 0.5		(c)	0.25		(d)	0.314		
10.	மின்னூட்டம் பெற்ற ஒரு இணைத்தட்டு மின்தேக்கியின் தட்டுகளுக்கிடையே மின்காப்புப்பாளம் ஒன்றை வைக்கும்போது அதன் :									
	(அ) மின்னழுத்தம் அ	அதிகரிக்கும்				n a la l				
	(ஆ) தட்டுகளுக்கிடையே உள்ள மின்புலம் குறையும்									
	(இ) மின்னூட்டம் அதிகரிக்கும்									
	(ஈ) மின்தேக்கு திறன் குறையும்									
	When a dielectric slab is introduced between the plates of a charged parallel plate capacitor, its:								plate	
	(a) potential increas	es								
	(b) electric field dec	reases		1						
	(c) charge increases									
	(d) capacitance dec	reases						,		
1										

படத்தில் B என்ற புள்ளியில் மின்னமுத்தம் :

(a) 5.3 V

மின்காந்த அலைகளில், ஆற்றல் :

(அ) மின்புலத்திற்கும் மற்றும் காந்தப்புலத்திற்கும் ஒரே அளவாகப் பரவுகின்றன (ஆ) இரு புலங்களுக்கும் செங்குத்தாகப் பரவுகின்றன

(c)

6.3 V

- (இ) மின்புலத்தில் பரவுகிறது
- (ஈ) காந்தப்புலத்தில் பரவுகிறது

In an electromagnetic wave:

power is equally transferred along the electric and magnetic fields (a)

5.7 V

- power is transmitted in a direction perpendicular to both the fields (b)
- power is transmitted along electric field (c)
- power is transmitted along magnetic field (d)
- ஒய்வு நிலையிலுள்ள ராக்கெட் ஒன்றினுள் அமர்ந்திருக்கும் ஆய்வாளர் அதனுள் வைக்கப்பட்டிருக்கும் தண்டின் நீளத்தை 1 மீ என அளவிடுகிறார். பின்பு $36 \times 10^6 \; \mathrm{km/hr}$ வேகத்தில் ராக்கெட் இயங்கும்போது அதே ஆய்வாளரால் அளவிடப்படும் தண்டின் நீளமானது:
 - (அ) 0.997 m
- (കൂ) 1.003 m
- (A) 1 m
- (F) 1.006 m

6 V

(d)

The length of the rod placed inside a rocket is measured as 1 m by an observer inside the rocket which is at rest. When the rocket moves with a speed of 36×10^6 km/hr the length of the rod as measured by the same observer is:

- (a) 0.997 m
- 1.003 m (b)
- (c) 1 m
- (d) 1.006 m

12.

14.	சரிவு முறிவு (Avalanche breakdown) முதன்மையாக சார்ந்துள்ள நிகழ்வு :								
	(அ) மோதல்								
	(இ) மாசூட்டல் (ஈ) மறு ஒன்றிணைப்பு								
	Avalanche breakdown is primarily dependent on the phenomenon of :								
	(a) collision (b) ionisation								
	(c) doping (d) recombination								
15.	அணு நிறமாலை என்பது :								
	(0)								
	(இ) உட்கவர் வரி நிறமாலை (ஈ) உட்கவர் பட்டை நிறமாலை								
	Atomic spectrum should be:								
	(a) pure line spectrum (b) emission band spectrum								
	(c) absorption line spectrum (d) absorption band spectrum								
16.	ரூபி தண்டில் உள்ள குரோமிய அயனிகள் :								
	(அ) சிவப்பு ஒளியை உட்கவரும் (ஆ) பச்சை ஒளியை உட்கவரும்								
	(இ) நீல ஒளியை உட்கவரும் (ஈ) பச்சை ஒளியை உமிழும்								
	The chromium ions doped in the ruby rod :								
	(a) absorbs red light (b) absorbs green light								
	(c) absorbs blue light (d) emits green light								
17.	$0.6~\mu\mathrm{C}$ மற்றும் $1~\mu\mathrm{C}~$ மின்னூட்டங்கள் அளிக்கப்பட்ட A , B என்ற இரு மின்கடத்துப்								
	உள்ளீடற்ற உலோகக் கோளங்களின் ஆரங்கள் முறையே 50 cm மற்றும் 1 m ஆகும்								
	இவை இரண்டும் ஒரு மின்கடத்தும் கம்பியால் இணைக்கப்படும்பொழுத								
	மின்னூட்டமானது :								
	(அ) A-யிலிருந்து B-க்கு அவற்றின் மின்னூட்டங்கள் சமமாகும் வரை செல்லும்								
	(ஆ) A-யிலிருந்து B-க்கு அவற்றின் மின்னழுத்தங்கள் சமமாகும் வரை செல்லும்								
	(இ) B-யிலிருந்து A-க்கு அவற்றின் மின்னூட்டங்கள் சமமாகும் வரை செல்லும்								
	(ஈ) B-யிலிருந்து A-க்கு அவற்றின் மின்னழுத்தங்கள் சமமாகும் வரை செல்லும்								
	A and B are two hollow metal spheres of radii 50 cm and 1 m carrying charges 0.6 µC and 1 µC respectively. They are connected externally by a conductive point.								
	and 1 μ C respectively. They are connected externally by a conducting wire. Now the charge flows from :								
	(a) A to B till the charges become equal								
	(b) A to B till the potentials become equal								
	(c) B to A till the charges become equal								
	(d) B to A till the potentials become equal								

- 18. உயர் அதிர்வெண் அலைகள் பின்பற்றுவது :
 - (அ) தரை அலை பரவலை
- (ஆ) பார்வைக் கோட்டின் திசையை
- (இ) அயனி மண்டலப் பரவலை
- (平) புவியின் வளைவை

High frequency waves follow:

- (a) the ground wave propagation
- (b) the line of sight direction
- (c) ionospheric propagation
- (d) the curvature of the earth

- 19. X- கதிர் என்பது :
 - (அ) இயக்க ஆற்றலை கதிர்வீசலாக மாற்றும் நிகழ்ச்சி
 - (ஆ) உந்தம் மாற்றப்படுதல்
 - (இ) ஆற்றல் நிறையாக மாற்றமடைதல்
 - (ஈ) மின்னூட்ட அழிவின்மைத் தத்துவம்

X-ray is:

- (a) phenomenon of conversion of kinetic energy into radiation
- (b) conversion of momentum
- (c) conversion of energy into mass
- (d) principle of conservation of charge
- 20. ஒரு மின் இருமுனையின் சமமின்னழுத்தப் பரப்பானது :
 - (அ) மின் இருமுனையின் மையத்தை மையமாகக் கொண்ட ஒரு கோளமாகும்
 - (ஆ) மின் இருமுனையின் அச்சுக்கு 45° சாய்வாக அமையும் சமதளப் பரப்பாகும்
 - (இ) மின் இருமுனையின் அச்சுக்கு செங்குத்தாக, மின் இருமுனையின் மையப்புள்ளியின் வழியாக செல்லும் சமதளப்பரப்பாகும்
 - (ஈ) மின் இருமுனையின் அச்சுக்கு இணையாக அமையும் சமதளப்பரப்பாகும் The equipotential surface of an electric dipole is :
 - (a) a sphere whose centre coincides with the centre of the electric dipole
 - (b) a plane surface inclined at an angle of 45° with the axis of the electric dipole
 - (c) a plane surface passing through the centre of the electric dipole and perpendicular to the axis of the electric dipole
 - (d) any plane surface parallel to the axis of the electric dipole
- 21. அணுக்கரு ஒன்றின் நிறைவழு 0.03 amu எனில், அதன் பிணைப்பு ஆற்றல் :
 - (அ) 27.93 eV
- (ஆ) 27.93 keV
- (இ) 27.93 MeV
- (吓) 27.93 GeV

The mass defect of a certain nucleus is found to be 0.03 amu. Its binding energy is :

- (a) 27.93 eV
- (b) 27.93 keV
- (c) 27.93 MeV
- (d) 27.93 GeV

- 22. சிறந்த வோல்ட் மீட்டரின் பண்பு :
 - (அ) சுழி மின்தடை
 - (ஆ) சுழி மதிப்பிற்கும் G-க்கும் இடையே குறிப்பிட்ட மின்தடை
 - (இ) G விட அதிகமாக ஆனால் ஈறிலா மதிப்பினைவிட குறைந்த மின்தடை
 - (ஈ) ஈறிலா மின்தடை

An ideal voltmeter has :

- (a) zero resistance
- (b) finite resistance less than G but greater than zero
- (c) resistance greater than G but less than infinity
- (d) infinite resistance
- 23. ஒரு RLC தொடர் மின்சுற்றில் எந்த ஒரு கணத்திலும் செயல்படுத்தப்படும் மின்னியக்கு விசை மற்றும் மின்னோட்டம் ஆகியவற்றின் சமன்பாடுகள் முறையே

$$e = 200 \sin\left(\omega t - \frac{\pi}{6}\right)$$

$$i = 20 \sin\left(\omega t + \frac{\pi}{6}\right)$$
 எனில்

ஒரு முழுச்சுற்றில் பயன்படுத்தப்படும் சராசரி திறன் :

- (அ) சுழி
- (ஆ) 2000 W
- (A) 1000 W
- (FF) 500 W

The instantaneous emf and current equations of an RLC series circuit are

$$e = 200 \sin\left(\omega t - \frac{\pi}{6}\right)$$

$$i = 20\sin\left(\omega t + \frac{\pi}{6}\right)$$

The average power consumed per cycle is:

- (a) zero
- (b) 2000 W
- (c) 1000 W
- (d) 500 W
- 24. அணுவில் எலக்ட்ரான்களின் நீள்வட்டப் பாதை கருத்தினைக் கூறியவர் :
 - (அ) J.J. தாம்சன்

(ஆ) போர்

(இ) சாமர்பெல்டு

(ஈ) டிபிராலி

The elliptical orbits of electron in the atom was proposed by :

(a) J.J. Thomson

(b) Bohr

(c) Sommerfeld

(d) de Broglie

[திருப்புக / Turn over

25.	விடு	திறனின் அலகு	:								
	(의)	$C^2N^{-1}m^{-2}$			(曑)	Nm ²	C^{-2}			***************************************	
	(<u>@</u>)	Hm^{-1}			(FF)	NC ²	m^{-2}				
	The	unit of permittivi	ty is :	•						:	
	(a)	$C^2N^{-1}m^{-2}$			(b)	Nm ²	C^{-2}			÷	
	(c)	Hm^{-1}			(d)	NC ²	m^{-2}			•	
						•					
				· →	_		\rightarrow	• :			
26.		காந்த அலைகளி _ வேறுபாடு :	ിക് ഥി	ன்புலம் E ၊	மற்றுட	ந்ராக ப	தப்புலம் B	-க்கு	(இ	െ ഡെ ഉദ്	ांबा
		9 0					. San			•	
	(의)	$\frac{\pi}{4}$	(ஆ)	$\frac{\pi}{2}$		(@)	π .		(FF)	சுழி	
	-	1			• • • •				. →	,	
		electromagnetic →	wave,	the phase d	ifferei	nce be	tween elect	ric fiel	aЕa	ind magne	etic
	field	B is:		٠.			and single	,5,3			
	(a)	$\frac{\pi}{4}$	(b)	$\frac{\pi}{2}$							
		4	. 1,	2		13	the state of the s	1 × 1		This is a	٠.
27.		ள் தொடக்க அதிர்	i Gold	ത്തിറ്റ് ഒ	லக்டா	ான்க	നിക് കികക്	്ലെങ്	\ '•	San	() î
- 7.		_		_	оос		•	302010		0	0
	• •	. சுறி) பெருமம்			சிறுமம்	•		முடிவில	
		ne threshold frequ									
	(a)	zero	(b)	maximum		(c)	minimum	, · · ·	(d)	infinite	7
28.	1 ഖ	ாட் மணி (1 Wh)	என்ட	பதற்கு சமம	ான ∈	அலகு	:				
	(அ)	$36 \times 10^5 \text{ J}$	(ஆ)	$)$ 36 \times 10 ⁴ J							
	1 W	h (Watt hour) is e	qual t	:o:	÷:		Park Care	* 2"t. # -		e de la companya. Orangan	
	(a)	$36 \times 10^5 \text{ J}$	(b)	$36 \times 10^4 \text{ J}$		(c)	3600 J		(d)	3600 Js	1

29. சீரான காந்தப்புலத்தில், செவ்வக வடிவ கம்பிச்சுருள் ஒன்று, அதன் தளம் காந்தப் புலத்திற்கு இணையாக இருக்குமாறு வைக்கப்படும்பொழுது, அக்கம்பிச்சுருளுடன் தொடர்பு கொண்ட காந்தப்பாயம் மற்றும் தூண்டப்பட்ட மின்னியக்குவிசை ஆகியவற்றின் மதிப்புகள் முறையே :

(அ) சுழி மற்றும் சுழி

(ஆ) சுழி மற்றும் பெருமம்

(இ) பெருமம் மற்றும் சுழி

(ஈ) பெருமம் மற்றும் பெருமம்

A rectangular coil of wire is placed in a uniform magnetic field such that the plane of the coil is parallel to the magnetic field. The magnetic flux linked with the coil and the emf induced are respectively:

(a) zero and zero

(b) zero and maximum

(c) maximum and zero

(d) maximum and maximum

30. லென்ஸ் விதி _____ விதியின் அடிப்படையிலானது.

(அ) மின்னூட்ட அழிவின்மை

(ஆ) பாய அழிவின்மை

(இ) உந்த அழிவின்மை

(ஈ) ஆற்றல் அழிவின்மை

Lenz's law is in accordance with the law of:

(a) conservation of charges

(b) conservation of flux

(c) conservation of momentum

(d) conservation of energy

பகுதி *-* II/PART *-* II

குறிப்பு : எவையேனும் பதினைந்து வினாக்களுக்கு விடையளி.

15x3=45

Note: Answer any fifteen questions.

31. நிலை மின்னியலில் காஸ் விதியைக் கூறுக. State Gauss's law in electrostatics.

- 32. மின்விசைக் கோடுகளின் பண்புகளில் எவையேனும் மூன்றினை எழுதுக. Write any three properties of electric lines of force.
- 33. இயக்க எண் வரையறு. அதன் அலகினைத் தருக. Define mobility. Give its unit.
- 34. 10 Ω மின்தடை ஒன்று 10 V மின்னியக்குவிசை கொண்ட மின்கலத்துடன் தொடராக இணைக்கப்பட்டுள்ளது. மின்கலத்துடன் பக்க இணைப்பில் வோல்ட்மீட்டர் இணைக்கப்படும்போது, அது காட்டும் அளவு 9.9 V எனில் மின்கலத்தின் அகமின்தடையைக் கணக்கிடுக.

A 10 Ω resistance is connected in series with a cell of emf 10 V. A voltmeter is connected in parallel to a cell, and it reads 9.9 V. Find the internal resistance of the cell.

- 35. மின்தடை வெப்பநிலை எண் வரையறு.

 Define temperature coefficient of resistance.
- 36. காற்றில் வைக்கப்பட்டுள்ள நீண்ட நேர்க்கடத்தி வழியே 10 A மின்னோட்டம் பாயும்போது அதிலிருந்து 10 cm தொலைவிலுள்ள புள்ளியில் ஏற்படும் காந்தத் தூண்டலைக் கணக்கிடுக.

Calculate the magnetic induction at a point 10 cm from a long straight wire placed in air carrying a current of 10 A.

- 37. தூண்டப்பட்ட மின்னியக்கு விசையை உருவாக்கும் முறைகள் யாவை? What are the methods of producing induced emf?
- 38. ஒரு விமானத்தின் இறக்கையின் முனைகளுக்கிடையே உள்ள தூரம் 20.48 m. இது வடக்கு நோக்கி $40~{
 m ms}^{-1}$ என்ற வேகத்தில் பறக்கிறது. புவிகாந்தப் புலத்தின் செங்குத்துக் கூறு அவ்விடத்தில் $2\times 10^{-5}{
 m T}$ எனில், இறக்கையின் முனைகளுக்கிடையே தூண்டப்படும் மின்னியக்கு விசையைக் கணக்கிடுக.

An aircraft having a wingspan of 20.48 m flies due north at a speed of 40 ms⁻¹. If the vertical component of earth's magnetic field at the place is 2×10^{-5} T, calculate the emf induced between the ends of the wings.

- 39. குறுக்கீட்டு விளைவு, விளிம்பு விளைவு வேறுபடுத்துக.
 Distinguish between interference and diffraction.
- 40. போலராய்டுகளின் பயன்களில் எவையேனும் மூன்றினை எழுதுக.
 Write any three uses of polaroids.
- 41. மோஸ்லே விதியினைக் கூறுக. அதன் சமன்பாட்டை எழுதுக. State Moseley's law. Write its equation.

- 42. மில்லிகன் ஆய்வில் $4.9\times10^{-14}~{\rm kg}$ நிறையுள்ள எண்ணெய்த் திவலை ஒன்று $9.8~{\rm kV}$ மின்னழுத்த வேறுபாட்டினால் தாங்கப்படுகின்றது. இரண்டு மின்கடத்தும் தகடுகளுக்கிடையில் உள்ள தொலைவு $12.8~{\rm mm}$ எனில், அந்த திவலையில் உள்ள அடிப்படை மின்னூட்டங்களின் எண்ணிக்கை யாது? (${\rm g}\!=\!10~{\rm ms}^{-2}$ என்க) In Millikan's experiment, an oil drop of mass $4.9\times10^{-14}~{\rm kg}$ is balanced by applying a potential difference of $9.8~{\rm kV}$ between the two plates which are $12.8~{\rm mm}$ apart. Calculate the number of elementary charges on the drop. (Take ${\rm g}\!=\!10~{\rm ms}^{-2}$)
- 43. எலக்ட்ரான் நுண்ணோக்கியின் பயன்களை எழுதுக. Write the uses of electron microscope.
- 44. β சிதைவு என்றால் என்ன? ஒரு எடுத்துக்காட்டு தருக.
 What is β-decay? Give an example.
- 45. அணுக்கரு உலையின் பயன்களில் எவையேனும் மூன்றினை எழுதுக. Write any three uses of nuclear reactor.
- 46. செனர் டையோடைப் பயன்படுத்தி அமைக்கப்படும் மின்னழுத்த சீரமைப்பான் ஒன்றின் மின்சுற்று படம் வரைக.

 Draw the circuit diagram of a voltage regulator using zener diode.
- 47. ஒரு பெருக்கிக்கு எதிர்பின்னூட்டம் கொடுக்கப்படும்பொழுது அதன் பெருக்க எண் 50 லிருந்து 25 எனக் குறைகிறது. அதன் பின்னூட்டத் தகவினைக் கணக்கிடுக. When the negative feedback is applied to an amplifier of gain 50, the gain after feedback falls to 25. Calculate the feedback ratio.
- 48. பொது கேட்டுகள் என்றால் என்ன ? ஏன் அவ்வாறு அழைக்கப்படுகின்றன ? What are universal gates ? Why are they called so ?
- 49. தொகுப்புச் சுற்றின் நற்பயன்களை எழுதுக. Write the advantages of Integrated Circuits (ICs).
- 50. தாவு தொலைவு என்றால் என்ன ? What is skip distance ?

பகுதி *-* III/PART - III

குறிப்பு: (i) வினா எண் 51-க்கு கண்டிப்பாக விடையளிக்கவும்.

7x5 = 35

- (ii) மீதமுள்ள **11** வினாக்களில் எவையேனும் **ஆறு** வினாக்களுக்கு விடையளிக்கவும்.
- (iii) தேவைப்படும் இடங்களில் **படங்கள்** வரைக.

Note:

- (i) Answer question number 51 compulsorily.
- (ii) Answer any six of the remaining 11 questions.
- (iii) Draw diagrams wherever necessary.
- 51. ஒரு இணைத்தட்டு மின்தேக்கியின் ஒவ்வொரு தகட்டின் பரப்பும் 90 cm² ஆகும். அவ்விரு தட்டுகளும் 2.5 mm இடைவெளியில் பிரித்து வைக்கப்பட்டுள்ளன. மின்தேக்கியானது 400 V மூலத்துடன் இணைக்கப்பட்டு மின்னேற்றம் செய்யப்படுகிறது எனில், அதில் தேக்கி வைக்கப்பட்டுள்ள நிலை மின்னியல் ஆற்றல் எவ்வளவு ?

அல்லது

 $60~\rm cm$ பக்கங்கள் கொண்ட ஒரு சமபக்க முக்கோணத்தின் உச்சிகளில் $+1~\mu C$, $+3~\mu C$ மற்றும் $-5~\mu C$ மின்னூட்டங்கள் வைக்கப்பட்டுள்ளன. இம்மின்னூட்டங்களின் அமைப்பின் மின்னழுத்த ஆற்றலைக் கணக்கிடுக.

The plates of a parallel plate capacitor have an area of 90 cm² each and are separated by 2.5 mm. The capacitor is charged by connecting it to a 400 V supply. How much electrostatic energy is stored by the capacitor?

OR

Three charges $+1~\mu\text{C}$, $+3~\mu\text{C}$ and $-5~\mu\text{C}$ are kept at the vertices of an equilateral triangle of sides 60 cm. Find the electrostatic potential energy of the system of charges.

- 52. மீக்கடத்திகளின் பயன்களில் எவையேனும் ஐந்தினை எழுதுக. Write any five applications of Superconductors.
- 53. மின்னாற்பகுப்பு பற்றிய ஃபாரடேயின் முதல் விதியை எழுதி, அவ்விதி சோதனை மூலம் எவ்வாறு சரி பார்க்கப்படுகிறது என விளக்குக.

 State Faraday's first law of electrolysis. How is it verified experimentally?

54. காந்தவியல் லொரன்ஸ் விசையின் சிறப்புகள் யாவை ?

Write the special features of Magnetic Lorentz force.

55. மாறுதிசை மின்னியக்குவிசை செயல்படுத்தப்படும் மின்தடையாக்கி மட்டுமே உடைய ஒரு ac சுற்றில் பாயும் மின்னோட்டத்திற்கான சமன்பாட்டைப் பெறுக. மின்னழுத்தத்திற்கும் மின்னோட்டத்திற்கும் உள்ள கட்டத் தொடர்பை வரைபடத்துடன் விளக்குக.

Obtain an expression for the current flowing in a circuit containing resistance only to which alternating emf is applied. Explain the phase relationship between voltage and current with a graph.

56. யங் இரட்டை பிளவு ஆய்வில் இரண்டு ஓரியல் மூலங்களின் செறிவுகளின் தகவு 64 : 1. இதனால் திரையில் குறுக்கீட்டுப் பட்டைகள் தோன்றுகின்றன. பெரும மற்றும் சிறுமச் செறிவுக்கான தகவு காண்க.

In Young's double slit experiment two coherent sources of intensity ratio of 64:1 produce interference fringes. Calculate the ratio of maximum and minimum intensities.

57. புழைக்கதிர்களின் பண்புகளில் எவையேனும் ஐந்தினை எழுதுக.

Write any five properties of canal rays.

- 58. ஒளிமின் விளைவு என்றால் என்ன ? ஒளிமின் விளைவிற்கான விதிகளைக் கூறுக.

 What is photoelectric effect ? State the laws of photoelectric emission.
- 59. கால நீட்டிப்பை ஒரு எடுத்துக்காட்டுடன் விளக்குக.

Explain time dilation with an example.

60. கீழ்வரும் வினையில் வெளிப்படும் ஆற்றலைக் கணக்கிடுக.

$$_3\text{Li}^6 + _0\text{n}^1 \rightarrow {}_2\text{He}^4 + _1\text{H}^3$$

 $_{3}\text{Li}^{6}$ அணுக்கருவின் நிறை = 6.015126 amu

 $_1$ H^3 அணுக்கருவின் நிறை =3.016049 amu

 $_2$ He 4 அணுக்கருவின் நிறை = 4.002604 amu

 $_0$ n^1 -ன் நிறை = 1.008665 amu எனக் கொடுக்கப்பட்டுள்ளது.

Calculate the energy released in the following reaction.

$$_{3}\text{Li}^{6} + _{0}\text{n}^{1} \rightarrow _{2}\text{He}^{4} + _{1}\text{H}^{3}$$

Given:

Mass of $_3Li^6$ nucleus = 6.015126 amu

Mass of $_1H^3$ nucleus = 3.016049 amu

Mass of ₂He⁴ nucleus = 4.002604 amu

Mass of $_0$ n¹=1.008665 amu

- 61. ஒரு டையோடு அரை அலைத்திருத்தியாக செயல்படும் விதத்தினை விவரி. Explain the working of a half wave diode rectifier.
- 62. ஒளி இழை என்றால் என்ன ? நற்பண்புகளை எழுதுக. What is an optical fiber ? Write its advantages.

பகுதி - IV/PART - IV

- குறிப்பு: (i) எவையேனும் நான்கு வினாக்களுக்கு விரிவான விடையளிக்கவும்.
 - (ii) தேவையான இடங்களில் படங்கள் வரைக.

4x10=40

Note: (i) Answer any four questions.

- (ii) Draw diagrams wherever necessary.
- 63. மின் இருமுனையால் அச்சுக்கோட்டிலுள்ள ஒரு புள்ளியில் ஏற்படும் மின்புலச் செறிவிற்கான கோவையைப் பெறுக.

Derive an expression for electric field due to an electric dipole at a point on its axial line.

- 64. சைக்ளோட்ரானின் தத்துவம், அமைப்பு மற்றும் செயல்பாடு ஆகியவற்றைப் படத்துடன் விவரி.
 Explain with neat diagram the principle, construction and working of a cyclotron.
- 65. ஒரு கட்ட AC மின்னியற்றியின் தத்துவம், அமைப்பு மற்றும் வேலை செய்யும் விதத்தை விளக்குக.
 Explain in detail the principle, construction and working of a single phase AC generator.
- 66. இராமன் விளைவை ஆற்றல் மட்ட வரைபடத்துடன் விளக்குக. Explain Raman effect with the help of energy level diagram.
- 67. எலக்ட்ரானின் மின்னூட்ட நிறைவு தகவு காணும் J.J. தாம்சன் சோதனையை விவரி. Describe the J.J. Thomson method for determining the specific charge of an electron.
- 68. பெயின்பிரிட்ஜ் நிறை நிறமாலைமானியின் அமைப்பு மற்றும் வேலை செய்யும் விதத்தை விவரி. அதன் பயனைக் குறிப்பிடுக.

 Explain the construction and working of a Bainbridge mass spectrometer. Mention its use.
- 69. செயல்பாட்டுப் பெருக்கி என்றால் என்ன? புரட்டலற்ற பெருக்கியின் (non-inverting) செயல்பாட்டை விளக்குக.
 What is an operational amplifier? Explain its working as a non-inverting amplifier.
- 70. கருப்பு வெள்ளை தொலைக்காட்சி ஒளிபரப்பியின் செயல்முறையை கட்டப்படம் வரைந்து விளக்குக.
 With the functional block diagram explain the working of a monochrome TV transmitter.