

• Ultra-low R_{DS(on)}

• Low Profile (<0.7 mm)

• Dual Sided Cooling Compatible ①

- Ultra-low Package Inductance
- Optimized for high speed switching or high current switch (Power Tool)
- Low Conduction and Switching Losses
- Compatible with existing Surface Mount Techniques ①

DirectFET™ Power MOSFET ②

V _{DSS}	V _{GS}	R _{DS(on)}	R _{DS(on)}
30V max	±20V max	1.3mΩ@10V	1.9mΩ@ 4.5V

Typical values (unless otherwise specified)

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

90	CV	CT.	MQ	MX	MT	MP		
SQ	3/	31	IVIQ	IVIA	IVI	IVIE		

Description

The IRF8301MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve very low on-state resistance in a package that has the footprint of an SO-8 or a PQFN 5x6mm and only 0.7mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by

The IRF8301MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses and very high current carrying capability make this product ideal for power tools.

Ordering Information

Base Part Number	Package Type	Standard	Orderable Part Number	
		Form	Quantity	
IRF8301MPbF	DirectFET MT	Tape and Reel	4800	IRF8301MTRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{GS}	Gate-to-Source Voltage	±20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	34	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	27	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ④	192	
I _{DM}	Pulsed Drain Current ^⑤	250	
E _{AS}	Single Pulse Avalanche Energy ®	260	mJ
IAR	Avalanche Current ⑤	25	Α

5.0

4.0

Gate-to-Source Voltage (V) V_{DS}= 15V 3.0 2.0 1.0 Vgs, (0.0 10 40 0 20 30 Q_G, Total Gate Charge (nC)

V_{DS}

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage

50

60

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		21		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.3	1.5	mΩ	$V_{GS} = 10V, I_D = 32A$ ⑦
			1.9	2.4		$V_{GS} = 4.5V, I_{D} = 25A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.7	2.35	V	$V_{DS} = V_{GS}$, $I_D = 150 \mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-6.0		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
gfs	Forward Transconductance	150			S	$V_{DS} = 15V, I_D = 25A$
Q_g	Total Gate Charge		51	77		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		12			$V_{DS} = 15V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		5.4		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		16			$I_D = 25A$
Q_{godr}	Gate Charge Overdrive		18			See Fig. 15
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		21			
Q _{oss}	Output Charge		28		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_{G}	Gate Resistance		1.0	3.0	Ω	
t _{d(on)}	Turn-On Delay Time		20			V _{DD} = 15V, V _{GS} = 4.5V ⑦
t _r	Rise Time		30		ns	I _D = 25A
t _{d(off)}	Turn-Off Delay Time		25			$R_G = 1.8\Omega$
t _f	Fall Time		17			See Fig. 17
C _{iss}	Input Capacitance		6140			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1270		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		590			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			110		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			250		integral reverse
	(Body Diode) ⑤					p-n junction diode.
V_{SD}	Diode Forward Voltage		0.77	1.0	V	$T_J = 25^{\circ}C$, $I_S = 25A$, $V_{GS} = 0V$ \bigcirc
t _{rr}	Reverse Recovery Time		27	41	ns	T _J = 25°C, I _F = 25A
Q_{rr}	Reverse Recovery Charge		45	68	nC	di/dt = 500A/µs ⑦

Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- $\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\sc G}}}}$ Surface mounted on 1 in. square Cu board, steady state.
- $\ensuremath{\mathfrak{G}}$ T_C measured with thermocouple mounted to top (Drain) of part.
- ⑤ Repetitive rating; pulse width limited by max. junction temperature.
- © Starting T_J = 25°C, L = 0.82mH, R_G = 25 Ω , I_{AS} = 25A.
- $\ensuremath{ \ensuremath{ \bigcirc}}$ Pulse width $\le 400 \mu s;$ duty cycle $\le 2\%.$

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ③	2.8	W
P _D @T _A = 70°C	Power Dissipation ③	1.8	
P _D @T _C = 25°C	Power Dissipation ④	89	
T _P	Peak Soldering Temperature	270	°C
T _J	Operating Junction and	-40 to + 150	
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 30		45	
$R_{\theta JA}$	Junction-to-Ambient ®®	12.5		
$R_{\theta JA}$	Junction-to-Ambient ®®			°C/W
$R_{\theta JC}$	Junction-to-Case ⊕®		1.4	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor ③	0.0	022	W/°C

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ③

Fig 4. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Notes:

- ® Used double sided cooling , mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.

③ Surface mounted on 1 in. square Cu (still air).

 Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 5. Typical Output Characteristics

Fig 7. Typical Transfer Characteristics

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage

Fig 6. Typical Output Characteristics

Fig 8. Normalized On-Resistance vs. Temperature

Fig 10. Typical On-Resistance vs. Drain Current and Gate Voltage

Fig 11. Typical Source-Drain Diode Forward Voltage

Fig 13. Maximum Drain Current vs. Case Temperature

Fig 12. Maximum Safe Operating Area

Fig 14. Typical Threshold Voltage vs. Junction Temperature

Fig 15. Maximum Avalanche Energy vs. Drain Current

Fig 16a. Gate Charge Test Circuit

Fig 17a. Unclamped Inductive Test Circuit

Fig 18a. Switching Time Test Circuit

Fig 16b. Gate Charge Waveform

Fig 17b. Unclamped Inductive Waveforms

Fig 18b. Switching Time Waveforms

Fig 19. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

DirectFET™ Board Footprint, MT Outline (Medium Size Can, T-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET™ Outline Dimension, MT Outline (Medium Size Can, T-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET™ Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF8301MTRPbF).

-	REEL DIMENSIONS				
	STAN	IDARD OPT	ION (QTY	4000)	
CODE	ME	ΓRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	
В	20.2	N.C	0.795	N.C	
С	12.8	13.2	0.504	0.520	
D	1.5	N.C	0.059	N.C	
E	100.0	N.C	3.937	N.C	
F	N.C	18.4	N.C	0.724	
G	12.4	14.4	0.488	0.567	
Н	11.9	15.4	0.469	0.606	

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS					
	ME	TRIC	IMPERIAL		
CODE	MIN	MAX	MIN	MAX	
Α	7.90	8.10	0.311	0.319	
В	3.90	4.10	0.154	0.161	
С	11.90	12.30	0.469	0.484	
D	5.45	5.55	0.215	0.219	
E	5.10	5.30	0.201	0.209	
F	6.50	6.70	0.256	0.264	
G	1.50	N.C	0.059	N.C	
Н	1.50	1.60	0.059	0.063	

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Revision History

Tiovicion Thotory					
Date	Comments				
09/05/2013	Added the StrongIRFET logo on the top of the part number, on page 1.				

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/