

Logic and Computer Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 4 – Standard Form of Algebraic Representation

Asst.Prof.Dr. Preecha Tangworakitthaworn Semester 2/2023

Overview

- Recall Part 3 Algebraic Manipulation
 - Review of algebraic manipulation
 - Additional Trick for applying all identities
- Part 4 Standard Form of Algebraic Representation
 - Minterms and Maxterms
 - Index Representation of Minterms and Maxterms
 - Sum-of-Minterm (SOM) Representations
 - Product-of-Maxterm (POM) Representations

Recall Part 3: Algebraic Manipulation

How to simplify the Boolean algebra?

Algebraic Manipulation: Basic Identities

An algebraic structure defined on a set of at least two elements, together with three traditional binary operators: Or, And, Not (denoted +, \cdot , -) that satisfies the following basic identities:

1.
$$X + 0 = X$$

3.
$$X+1=1$$

$$5. X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{X} = X$$

$$2. \quad X \cdot 1 = X$$

$$4. \quad X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

$$8. \quad X \cdot \overline{X} = 0$$

$$10. \quad X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

$$14. \quad X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

$$13. \quad (XY)Z = X(YZ)$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Recommend

Commutative

Associative

Distributive

DeMorgan's

Review: Algebraic Manipulation

To consider a simplification of the expression by applying some of the identities:

$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

$$= \overline{X}Y(Z+\overline{Z}) + XZ$$
 by identity 14
$$= \overline{X}Y(1) + XZ$$
 by identity 7
$$= \overline{X}Y + XZ$$
 by identity 2

...Simplify to contain the smallest number of <u>literals</u> (result variables)

Useful Trick!

First, determine the most shared (or common)

variables:

$$F = Z + WXYZ + WXY + XZ$$

From this expression, we have X, \overline{Z} and WX are shared (or common) variables.

We choose WX to be the first determination,

Because WX is the most shared variables.

So, you will apply distributive identity as follows:

$$F = \overline{Z} + WX(Y\overline{Z} + Y) + XZ$$

Useful Trick!

Second, try to eliminate the inverted variables:

$$F = ABBC + ABC + BC$$

From this expression, we can remove BB and AA Because we can apply identity $8 (\overline{XX} = 0)$ to eliminate the first and second variable set.

So, the solution is

$$F = BC$$

Useful Trick! Distributive Pattern

Distributive identities 14 and 15 are most frequently used:

Identity 14:
$$X(Y+Z) = XY + XZ$$

Pattern
$$X (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

$$X \cdot Z$$

How to apply this trick? given algebra is $F = \overline{ABC} + ABC$

Solution

Step1: Extract shared variables → BC

Step2: Determine functions, you will get \rightarrow BC ($\overline{A}+A$)

Recommend

Useful Trick! Distributive Pattern

Recommend

Identity 15:
$$X+(YZ) = (X+Y)(X+Z)$$

Pattern
$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

$$X + (X + Z)$$

How to apply this trick?

given algebra is $F = (\overline{A} + BC)(A + BC)$

Solution

Step1: Extract shared variables → BC

Step2: Determine functions, you will get \rightarrow BC+ $(\overline{A} \cdot A)$

Useful Trick! Distributive Pattern

Recommend

Applied Trick for Identity 15:

$$(A+B)(C+D) = ?$$
Pattern
$$(A + B)(C + D) = AC+AD+BC+BD$$
AD

Example

$$F=(A+C)(AD+A\overline{D})+AC+C$$

Solution

$$=(A+C)A(D+\overline{D})+AC+C$$

identity 14

$$=(A+C)A+AC+C$$

identity 7

$$=AA+AC+AC+C$$

identity 14

$$=A(1+C+C)+C$$
 or $A+C(A+A+1)$

identity 14

$$=A+C$$

identity 3

Part 4

Standard Form of Algebraic Representation

Related Topics

- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{X}), there are 2^n minterms for n variables.
- **Example:** Two variables (X and Y) produce $2 \times 2 = 4$ combinations:

XY (both normal)

XY (X normal, Y complemented)

XY (X complemented, Y normal)

XY (both complemented)

Thus there are <u>four minterms</u> of two variables.

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- **Example:** Two variables (X and Y) produce $2 \times 2 = 4$ combinations:

X + Y (both normal)

X + Y (x normal, y complemented)

 $\overline{X} + Y$ (x complemented, y normal)

 $\overline{\mathbf{X}} + \overline{\mathbf{Y}}$ (both complemented)

Index of Maxterms and Minterms

Recommend

Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}}\overline{\mathbf{y}}$	x + y
1	x y	$x + \overline{y}$
2	х ӯ	$\overline{\mathbf{x}} + \mathbf{y}$
3	ху	$\overline{\mathbf{x}} + \overline{\mathbf{y}}$

The index above is important for describing which variables in the terms are true and which are complemented.

Purpose of the Index

- The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.
- For Minterms (AND):
 - "1" (or T) means the variable is "Not Complemented"
 - "0" (or F) means the variable is "Complemented".
- For Maxterms (OR):
 - "0" (or F) means the variable is "Not Complemented"
 - "1" (or T) means the variable is "Complemented".

Index Example for Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The Index 0 (base 10) = 000 (base 2) for three variables. All three variables are complemented for minterm 0 ($\overline{X}, \overline{Y}, \overline{Z}$) and no variables are complemented for Maxterm 0 (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}\overline{Z}$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6? XYZ
 - Maxterm 6? X+Y+Z

Index Examples – Four Variables

Recommend

Index Binary Minterm Maxterm

i	Pattern	$\mathbf{m_i}$	$\mathbf{M_i}$	
0	0000	abcd	a+b+c+d	
1	0001	abcd	?	$a + b + c + \overline{d}$
3	0011	?	a+b+c+d	$\overline{\mathbf{a}} \ \overline{\mathbf{b}} \ \mathbf{c} \ \mathbf{d}$
5	0101	abcd	$a+\overline{b}+c+\overline{d}$	
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$	a b c d
10	1010	$a \overline{b} c \overline{d}$	$\bar{a} + b + \bar{c} + d$	
13	1101	abcd	?	$\overline{a} + \overline{b} + c + \overline{d}$
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$	

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \cdot \overline{y}$
- Two-variable example: $M_2 = \overline{x} + y$ and $m_2 = x \cdot \overline{y}$
 - Thus M_2 is the complement of m_2 .
- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving:

$$M_i = \overline{M}_{i \text{ and } m_i} = \overline{M}_{i}$$

Thus M_i is the complement of m_i.

Function Tables for 2 variables

Minterms of2 variables

M	laxterms of
2	variables

ху	$\mathbf{m_0}$	\mathbf{m}_1	m ₂	m ₃	
0 0	1	0	0	0	\overline{XY}
01	0	1	0	0	XY
10	0	0	1	0	$\overline{X\overline{Y}}$
11	0	0	0	1	XY

хy	$\mathbf{M_0}$	\mathbf{M}_1	M_2	M_3
0 0	0	1	1	1
0 1	1	0	1	1
10	1	1	0	1
11	1	1	1	0

 $\begin{array}{c} X+Y \\ \hline X+\overline{Y} \\ \hline \overline{X}+Y \\ \hline \overline{X}+\overline{Y} \end{array}$

Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Recommend

X	Y	Z	Product term	Symbol	m ₀	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	Χ̄ῩZ̄	m_0	1	0	0	0	0	0	0	0
0	0	1	Χ̄ῩZ	m_1	0	1	0	0	0	0	0	0
0	1	0	Χ̄ΥZ̄	m_2	0	0	1	0	0	0	0	0
0	1	1	Χ̄ΥΖ	m_3	0	0	0	1	0	0	0	0
1	0	0	ΧŸZ	m_4	0	0	0	0	1	0	0	0
1	0	1	ΧŸΖ	m_5	0	0	0	0	0	1	0	0
1	1	0	XYZ	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

Recommend

X	Y	Z	Product term	Symbol	$\mathbf{M_0}$	\mathbf{M}_{1}	M ₂	\mathbf{M}_3	\mathbf{M}_{4}	M_5	M ₆	\mathbf{M}_7
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	X+Y+ Z	M_1	1	0	1	1	1	1	1	1
0	1	0	$X+\overline{Y}+Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X+\overline{Y}+\overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	\bar{X} +Y+Z	M_4	1	1	1	1	0	1	1	1
1	0	1	$\bar{X}+Y+\bar{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X}+\overline{Y}+Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\bar{X}+\bar{Y}+\bar{Z}$	M_7	1	1	1	1	1	1	1	0

Minterm Function Example

Recommend

• Example: Find $F_1 = m_1 + m_4 + m_7$

101

110

_	-	<i>y</i> –		y - -	•				
	хуz	index	\mathbf{m}_1	+	$\mathbf{m_4}$	+	m ₇	$= \mathbf{F}_1$	
	000	0	0	+	0	+	0	= 0	_
	001	1	1	+	0	+	0	= 1	
	010	2	0	+	0	+	0	= 0	
	011	3	0	+	0	+	0	= 0	
	1 0 0	4	0	+	1	+	0	= 1	

Method

+ 1 = 1

Chapter 2 - Part 4

= 0

Maxterm Function Example

Recommend

Example: Implement F1 in maxterms:

$$F_{1} = M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6}$$

$$F_{1} = (x + y + z) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z})$$

$$\cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$$

$$x y z \quad i \quad M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6} = F1$$

$$0 0 0 \quad 0 \quad 0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \quad = 0$$

$$0 0 1 \quad 1 \quad 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \quad = 1$$

$$0 1 0 \quad 2 \quad 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 \quad = 0$$

$$0 1 1 \quad 3 \quad 1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \quad = 0$$

$$1 0 0 \quad 4 \quad 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \quad = 1$$

$$1 0 1 \quad 5 \quad 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \quad = 0$$

$$1 1 0 \quad 6 \quad 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \quad = 0$$

$$1 1 1 \quad 7 \quad 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \quad = 1$$

Canonical Sum of Minterms

- Any Boolean function can be expressed as a Sum of Minterms (SOM).
 - For the function table, the minterms used are the terms corresponding to the 1's
 - For expressions, expand all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(\mathbf{v} + \overline{\mathbf{v}})$.
- **Example:** Implement $F = x + \overline{x} \overline{y}$ as a sum of minterms. Recommend

First expand terms: $F = x(y + \overline{y}) + \overline{x} \overline{y}$

Then distribute terms: $F = xy + x\overline{y} + \overline{x}\overline{y}$

Express as sum of minterms: $F = m_3 + m_2 + m_0$

Shorthand SOM Form

Recommend

From the previous example, we started with:

$$F = X + \overline{X} \overline{Y}$$

We ended up with:

$$\mathbf{F} = \mathbf{m_0} + \mathbf{m_2} + \mathbf{m_3}$$

This can be denoted in the formal shorthand:

$$F(X,Y) = \sum_{m} (0,2,3)$$

Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product of Maxterms (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law , "ORing" terms missing variable v with a term equal to v v and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x,y,z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$$

Express as POM: $f = M_2 \cdot M_3$ or $\Pi_M(2,3)$

Shorthand POM Form

Recommend

From the previous example, we started with:

$$F(X,Y,Z) = X + \overline{X} \overline{Y}$$

We ended up with:

$$\mathbf{F} = \mathbf{M}_2 + \mathbf{M}_3$$

This can be denoted in the formal shorthand:

$$F(X,Y,Z) = \Pi_{M}(2,3)$$

Note that we explicitly show the standard variables in order and drop the "M" designators.

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + \overline{B}$
 - POS: $(A+B)\cdot (A+\overline{B}+\overline{C})\cdot C$
- These "mixed" forms are neither SOP nor POS
 - (A B + C) (A + C)
 - \bullet ABC+AC(A+B)

 $SOP \rightarrow SOM \quad POS \rightarrow POM$

Useful Trick!

- In Mathematics
 - represents the process of adding, for example, 1+2+3+4
- In Digital System (Boolean function)
 - represents the summation of AND for example, $A+(A\cdot B)+(B\cdot C)$

It represents the sum-of-product (SOP)

Useful Trick!

- Identity 14 represents Sum-of-Product (SOP)
- Identity 15 represents Product-of-Sum (POS)

SOP 12.
$$(X+Y)+Z=X+(Y+Z)$$
 11. $XY=YX$ Commutative 12. $(X+Y)+Z=X+(Y+Z)$ 13. $(XY)Z=X(YZ)$ POS Associative 14. $X(Y+Z)=XY+XZ$ 15. $X+YZ=(X+Y)(X+Z)$ Distributive 16. $X+Y=X\cdot Y$ 17. $X\cdot Y=X+Y$ DeMorgan's

So, if the given expression is SOP form, you can apply identity 15 to convert into POS form!!

Example 1 (without missing var.)

• Given $F(X,Y,Z) = \overline{X}(\overline{Y}\overline{Z} + Y\overline{Z}) + X(Y\overline{Z} + YZ)$

Convert the above expression into SOP and list the Minterms of F

Solution

No Missing Variables

$$= \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + XY\overline{Z} + XYZ$$

SOP Form

Then, determine the index of SOM

$$= m_0 + m_2 + m_6 + m_7$$

Thus, the solution is

$$=\sum_{m}(0,2,6,7)$$

Apply Index of SOP

List of Minterms

Example 2 (with missing var.)

• Given F(A,B) = A + AB

Convert the above expression into SOP and list the Minterms of F.

Solution

Assign the missing variables

$$=A(B+B)+AB$$

 $=AD+A\overline{D}+\overline{A}D$

 $= AB + A\overline{B} + \overline{A}B$

Missing Variables B

SOP Form

Then, determine the index of SOM

$$= m_3 + m_2 + m_1$$

Apply Index of SOP

Thus, the solution is

$$=\sum_{m}(1,2,3)$$

List of Minterms Chapter 2 - Part 4

Example 3

Given
$$F(A,B,C) = (AC+B)\overline{C}+(B+C)A$$

Answer the following questions:

- 1) List the Minterms of function F
- 2) Convert function F into the sum-of-minterms (SOM) algebraic form.
- 3) Simplify function F to expression with minimal literals

Example 3 (SOP vs POS)

Given
$$F(A,B,C) = (AC+B)\overline{C} + (B+C)A$$

 $= AC\overline{C} + B\overline{C} + AB + AC$
 $= B\overline{C} + AB + AC$
 $= (A+\overline{A})B\overline{C} + AB(C+\overline{C}) + AC(B+\overline{B})$
 $= AB\overline{C} + \overline{A}B\overline{C} + ABC + AB\overline{C} + ABC + A\overline{B}C$
 $= AB\overline{C} + \overline{A}B\overline{C} + ABC + AB\overline{C}$
 $= AB\overline{C} + \overline{A}B\overline{C} + ABC + AB\overline{C}$
 $= m6 + m2 + m7 + m5$

 $\sum_{m}(2,5,6,7)$

Thus, the Minterms of F is

Answer 1

Example 3 (SOP vs POS)

$$= ABC + \overline{A}BC + ABC + \overline{A}BC$$

$$= AB(C+\overline{C}) + \overline{A}BC+A\overline{B}C$$

$$= AB + \overline{A}B\overline{C} + A\overline{B}C$$

$$= A(B+\overline{B}C)+\overline{A}B\overline{C}$$

Answer 3