Sequencer

User Guide

October 20, 2019

Sequencer USER GUIDE

Contents

1	Intro	oduction	7
2	Seq	uencer operation	7
3	Bloc	ck Diagram	8
4	Peri	pherals	8
	4.1	General Purpose Register File	9
	4.2	Debug Printer	9
	4.3	Sequencer Loop Controller	9
	4.4	LED Driver	10
	4.5	Switch Driver	10
	4.6	Push-Button Driver	10
5	Inte	rface Signals	12
6	Men	nory Map	12
7	Imp	lementation Results	13
8	Con	nclusions	13

www.iobundle.com

List of Tables

1	Sequencer Loop Controller Inputs	9
2	Sequencer Loop Controller Outputs	10
3	Led driver inputs	10
4	Led driver outputs	10
5	Switch driver inputs	11
6	Switch driver outputs	11
7	Push-button driver inputs	11
8	Push-button driver outputs	11
9	Interface signals	13
10	Memory map base addresses	13

List of Figures

1	Picoversat code main loop.	7
2	Sequencer Loop controler peripheral main loop	7
3	Block Diagram	8
4	Basys 2 board peripherals	8
5	PicoVersat SoC with two peripherals	9
6	PicoVersat SoC with two peripherals	9
7	PicoVersat SoC with two peripherals	10
8	PicoVersat SoC with two peripherals	10
9	PicoVersat SoC with two peripherals	11
10	Peripherals interconnections	12

1 Introduction

A sequencer is a device that can produce rythmic loops programmed by the user. The loop is devided into 8 equally spaced steps and each step can be activated by the user. The sequencer will go trough the loop and will play a sound on the activated steps. The loop period and the sound frequency can be set by the user.

The sequencer hardware is implemented in Verilog and uses the Picoversat SoC as the basic processing unit. Refer to the Picoversat manual for more information. This sequencer implementation is meant to be used on the Basys2 FPGA, and in order to make that possible, custom-made peripherals are used in order to use the board's features (e.g.LEDs, Switched, etc...). For more information is present on the peripherals chapter (insert ref).

2 Sequencer operation

Since the sequencer depends on multiple time-dependant routines and there is no trivial way to deal with this on the picoversat controller (because of the lack of interrupts), the main logic needed to be divided into two routines: one for the main sequencer loop, implemented as a standalone peripheral, and other for the reading and debouncing of the switches and pushbuttons and for data handling (frequencies).

Figure 1: Picoversat code main loop.

Figure 2: Sequencer Loop controler peripheral main loop.

3 Block Diagram

The hardware platform used for the developed sequencer is the Basys 2 FPGA board by digilent. The sequencer will interface with some of the board peripherals as shown in the Figure ??

Figure 3: Block Diagram

Figure x shows the Basys 2 peripherals that the user can use in order to interact with the sequencer.

Figure 4: Basys 2 board peripherals

- 1. 8xLED
- 2. 8xSlide-Switches
- 3. 4xPush-Button
- 4. 1xAudio Output

4 Peripherals

In order to controll the Basys 2 board peripherals with the picoversat controller, peripheral drivers are used. The pheripherals are mapped in memmory, refer to the memory map in section 6 to check the peripheral's addresses.

Figure 5: PicoVersat SoC with two peripherals

4.1 General Purpose Register File

This peripheral contains a 16x32bit register file that can be used by user programs. Refer to the picoversat manual for more information about this peripheral.

4.2 Debug Printer

This peripheral can be used by user programs to print characters, mainly for debug purposes. Refer to the picoversat manual for more information about this peripheral.

4.3 Sequencer Loop Controller

This peripheral is used to generate the sequencer loop. The loop and note frequency can be set by using the *freq* input and by selecting the according selector signal. The Sequencer loop controller will output a square wave corresponding to the loop ouput. The led outputs are directly connected to the LED driver peripheral and send information about the current note.

Figure 6: PicoVersat SoC with two peripherals

Table 1: Sequencer Loop Controller Inputs

	Table 1. Sequencer Loop Controller inputs				
Name	#bits	Description			
freq 8 Loop Period /		Loop Period / Note Frequency			
sel_loop 1 Loop period seld		Loop period select signal (address decoder)			
sel_snd	1	Note frequency select signal (address decoder)			

Table 2: Sequencer Loop Controller Outputs

	-1	
Name	#bits	Description
snd_out	1	Audio Output
seq_led_out	t 8	Current note led output

4.4 LED Driver

The LED driver will display the current note. The input of the driver is directly controlled by the sequencer loop controller.

Figure 7: PicoVersat SoC with two peripherals

Table 3: Led driver inputs

Name #bits Description

data_in 8 Led display information

Table 4: Led driver outputs

Name #bits Description

led_out 8 Led display output

4.5 Switch Driver

This driver reads the state of the slide-switches of the Basys 2 board.

Figure 8: PicoVersat SoC with two peripherals

4.6 Push-Button Driver

This driver reads the state of the push-buttons of the Basys 2 board.

Table 5: Switch driver inputs

Name	#bits	Description
sw_in	8	Switch state inputs
sel	1	driver selector (address decoder)

Table 6: Switch driver outputs

Name	#bits	Description	
kbd_out	8	Switch state outputs	

Figure 9: PicoVersat SoC with two peripherals.

Table 7: Push-button driver inputs

Name	#bits	Description
sw_in	4	Push-button state inputs
sel	1	Driver selector (address decoder)

Table 8: Push-button driver outputs

Name	#bits	Description	
sw_out	4	Switch state outputs	

The peripheral are interconnected according to the following picture:

Figure 10: Peripherals interconnections.

5 Interface Signals

The interface signals of the Versat controller core are described in Table 9..

6 Memory Map

The memory map of the system, as seen by picoVersat programs, is given in Table 10.

Name Direction		Description				
clk	IN	Clock signal.				
rst	IN	Reset signal.				
	Instruction Bus Interface					
instruction[31:0] IN Instruction to execute.		Instruction to execute.				
pc[9:0] OUT		Program Counter (instruction address).				
Data Bus Interface						
data_sel OUT		Read or write request.				
data_we	OUT	Write enable.				
data_addr[9:0] OUT		Data address.				
data_to_rd[31:0] IN		Data to be read.				
data_to_wr[31:0] OUT		Data to be written.				

Table 9: Interface signals.

Mnemonic Address		Read/Write	Read Latency	Description
REGF_BASE	0	Read+Write	0	Register file peripheral
CPRT_BASE	1	Write only	NA	Debug printer periheral
PROG_BASE	3	Read+Write	1	User programs and data

Table 10: Memory map base addresses

7 Implementation Results

8 Conclusions