Teoria Sygnałów w zadaniach

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Zadanie 1. Oblicz wartość średnią okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (1)

Wartość średnią sygnału wyznaczamy z wzoru

$$\bar{f} = \frac{1}{T} \int_{T} f(t) \cdot dt \tag{2}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\bar{f} = \frac{1}{T} \int_{T} f(t) \cdot dt =
= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =
= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =
= \frac{1}{T} \left(A \cdot t |_{0}^{\frac{T}{2}} \right) =
= \frac{A}{T} \cdot t |_{0}^{\frac{T}{2}} =
= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =
= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

Średnia wartość sygnału wynosi $\frac{A}{2}$

Zadanie 2. Oblicz wartość średnią sygnału $f(t)=\mathbf{1}(t)\cdot e^{-a\cdot t}\cdot \sin\left(\frac{2\pi}{T}\cdot t\right)$ przedstawionego na rysunku

Wartość średnią sygnału wyznaczamy z wzoru

$$\bar{f} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) \cdot dt \tag{4}$$

Podstawiamy do wzoru wzór naszej funkcji

$$\begin{split} \bar{f} &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) \cdot dt \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \mathbf{1}(t) \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{-\frac{\tau}{2}}^{0} 0 \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{0}^{\frac{\tau}{2}} 1 \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{-\frac{\tau}{2}}^{0} 0 \cdot dt + \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(0 + \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \right) \Big|_{0}^{\frac{\tau}{2}} - \int_{0}^{\frac{\tau}{2}} -\frac{1}{a} \cdot e^{-a \cdot t} \cdot \frac{2\pi}{T} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \right) \Big|_{0}^{\frac{\tau}{2}} - \int_{0}^{\frac{\tau}{2}} -\frac{1}{a} \cdot e^{-a \cdot t} \cdot \frac{2\pi}{T} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \left\{ u \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right\} dv = e^{-a \cdot t} \cdot dt \\ du = -\frac{2\pi}{T} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \quad v = -\frac{1}{a} \cdot e^{-a \cdot t} \right\} \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) - \frac{1}{a} \cdot e^{-a \cdot t} \cdot \frac{2\pi}{T} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \right) \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \left(-\frac{1}{a} \cdot e^{-a \cdot t} \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \right) \left[\frac{\pi}{0} - \int_{0}^{\frac{\tau}{2}} -\frac{1}{a} \cdot e^{-a \cdot t} \cdot \frac{2\pi}{T} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) \right) \end{aligned}$$

$$\begin{split} &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a} \cdot 1 \cdot 0 \right) \right. \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a} \cdot e^{-a \cdot 0} \cdot \cos \left(\frac{2\pi}{T} \cdot 0 \right) \right) \right. \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \int_{0}^{\tau} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + 0 \right) \right. \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a} \cdot 1 \cdot 1 \right) \right. \\ &+ \frac{1}{a} \cdot \frac{2\pi}{T} \cdot \int_{0}^{\tau} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \right) \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &+ \frac{1}{a^{2}} \cdot \frac{T^{2}}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &+ \frac{1}{a^{2}} \cdot \frac{T^{2}}{4\pi^{2}} \cdot \int_{0}^{\tau} e^{-a \cdot t} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right. \\ &= \left\{ -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &+ \left. \frac{1}{a^{2}} \cdot \frac{T^{2}}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &= \left\{ -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &= \left\{ -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt - \frac{1}{a^{2}} \cdot \frac{T^{2}}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &= \left\{ -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &= \left\{ -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &= \left\{ -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a^{2}} \cdot \frac{T}{2\pi} \right. \\ &= \left\{ -\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) - \frac{1}{a^{2$$

Średnia wartość sygnału wynosi 0

Zadanie 3. Oblicz wartość średnią sygnału $f(t) = A \cdot cos^4 (\omega_0 \cdot t)$ okresowego przedstawionego na rysunku

Wartość średnią sygnału okresowego wyznaczamy z wzoru

$$\bar{f} = \frac{1}{T} \int_{T} f(t) \cdot dt \tag{5}$$

Pierwszym krokiem jest ustalenie okresu funkcji. W naszym przypadku $T=\frac{\pi}{\omega_0}$. Podstawiamy do wzoru na wartość średnią wzór naszej funkcji

$$\begin{split} \bar{f} &= \frac{1}{T} \int_{T} f(t) \cdot dt \\ &= \frac{1}{\pi} \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} A \cdot \cos\left(\omega_0 \cdot t\right)^4 \cdot dt \\ &= \frac{1}{\omega_0} \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} A \cdot \cos\left(\omega_0 \cdot t\right)^4 \cdot dt \\ &= \frac{\omega_0}{\pi} \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} A \cdot \left(e^{j\omega_0 \cdot t} + e^{-j\omega_0 \cdot t}\right)^4 \cdot dt \\ &= \left\{\cos(x) = \frac{e^{j\cdot x} + e^{-j\cdot x}}{2}\right\} \\ &= \frac{\omega_0}{\pi} \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} A \cdot \left(\frac{e^{j\omega_0 \cdot t} + e^{-j\omega_0 \cdot t}}{2}\right)^4 \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{\left(e^{j\omega_0 \cdot t} + e^{-j\omega_0 \cdot t} + e^{-j\omega_0 \cdot t} + \left(e^{-j\omega_0 \cdot t}\right)^2\right)^2 \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{e^{j\cdot 2\cdot\omega_0 \cdot t} + 2 \cdot e^{j\cdot\omega_0 \cdot t} + e^{-j\cdot 2\cdot\omega_0 \cdot t}}{4}\right)^2 \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{e^{j\cdot 2\cdot\omega_0 \cdot t} + 2 \cdot e^0 + e^{-j\cdot 2\cdot\omega_0 \cdot t}}{4}\right)^2 \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{e^{j\cdot 2\cdot\omega_0 \cdot t} + 2 \cdot e^0 + e^{-j\cdot 2\cdot\omega_0 \cdot t}}{4}\right)^2 \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{e^{j\cdot 2\cdot\omega_0 \cdot t} + 2 \cdot e^{-j\cdot 2\cdot\omega_0 \cdot t}}{4}\right)^2 \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{e^{j\cdot 2\cdot\omega_0 \cdot t} + e^{-j\cdot 2\cdot\omega_0 \cdot t} + 2}{4}\right)^2 \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{e^{j\cdot 2\cdot\omega_0 \cdot t} + e^{-j\cdot 2\cdot\omega_0 \cdot t} + 2 \cdot \left(e^{j\cdot 2\cdot\omega_0 \cdot t} + e^{-j\cdot 2\cdot\omega_0 \cdot t}\right) \cdot 2 + 2^2} \cdot dt \\ &= \frac{\omega_0}{\pi} \cdot A \cdot \int_{-\frac{\pi}{2\omega_0}}^{\frac{\pi}{2\omega_0}} \left(\frac{e^{j\cdot 2\cdot\omega_0 \cdot t} + e^{-j\cdot 2\cdot\omega_0 \cdot t} + e^{-$$

$$\begin{split} &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{-\frac{\pi}{2-\omega_0}}^{\frac{\pi}{2-\omega_0}}\frac{(e^{j2\omega_0v^{\dagger}}+2\cdot e^{j2\omega_0v^{\dagger}}+e^{-j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+2\cdot e^{-j2\omega_0v^{\dagger}}\cdot 2+4\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{-\frac{\pi}{2-\omega_0}}^{\frac{\pi}{2-\omega_0}}\frac{e^{j22\omega_0v^{\dagger}}+2\cdot e^{j2\omega_0v^{\dagger}}+2\cdot e^{-j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+4\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{-\frac{\pi}{2-\omega_0}}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+2\cdot e^{-j4\omega_0v^{\dagger}}+4\cdot e^{j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+4\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{-\frac{\pi}{2-\omega_0}}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+2\cdot e^{-j4\omega_0v^{\dagger}}+4\cdot e^{j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+4\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{-\frac{\pi}{2-\omega_0}}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+4\cdot e^{j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+6\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{-\frac{\pi}{2-\omega_0}}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+4\cdot e^{j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+6\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{-\frac{\pi}{2-\omega_0}}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+4\cdot e^{j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+6\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{0}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+4\cdot e^{j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+6\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{0}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+4\cdot e^{j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+6\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{0}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+4\cdot e^{-j2\omega_0v^{\dagger}}+d\cdot e^{-j2\omega_0v^{\dagger}}+d\cdot dt}{16} \\ &=\frac{\omega_0}{\pi}\cdot A\cdot \int_{0}^{\frac{\pi}{2-\omega_0}}\frac{e^{j4\omega_0v^{\dagger}}+dv^{\dagger}+e^{-j4\omega_0v^{\dagger}}+e^{-j4\omega_0v^{\dagger}}+d\cdot e^{-j2\omega_0v^{\dagger}}+d\cdot e^{-j2\omega_0v^{\dagger}$$

$$\begin{split} &=\frac{\omega_0}{\pi}\cdot\frac{A}{16}\cdot\left(\frac{1}{\jmath\cdot 4\cdot\omega_0}\cdot(0)+\frac{1}{-\jmath\cdot 4\cdot\omega_0}\cdot(0)+\frac{4}{\jmath\cdot 2\cdot\omega_0}\cdot(0)+\frac{4}{-\jmath\cdot 2\cdot\omega_0}\cdot(0)+6\cdot\left(\frac{\pi}{\omega_0}\right)\right)\\ &=\frac{\omega_0}{\pi}\cdot\frac{A}{16}\cdot\left(0+0+0+0+6\cdot\left(\frac{\pi}{\omega_0}\right)\right)\\ &=\frac{\omega_0}{\pi}\cdot\frac{A}{16}\cdot 6\cdot\left(\frac{\pi}{\omega_0}\right)\\ &=\frac{A}{16}\cdot 6\\ &=\frac{A}{8}\cdot 3\\ &=\frac{3}{8}\cdot A \end{split}$$

Wartość średnią sygnału wynosi $\frac{3}{8}\cdot A$

Zadanie 4. Oblicz energię sygnału f(t) przedstawionego na rysunku

$$f(t) = \begin{cases} -A \cdot e^{a \cdot t} & dla \quad t \in (-\infty; 0) \\ A \cdot e^{-a \cdot t} & dla \quad t \in (0; \infty) \end{cases}$$
 (6)

Energię sygnału nieokresowego wyznaczamy z wzoru

$$E = \lim_{\tau \to \infty} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} |f(t)|^2 \cdot dt \tag{7}$$

Podstawiamy do wzoru na enargie wzór naszej funkcji

$$\begin{split} E &= \lim_{\tau \to \infty} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} |f(t)|^2 \cdot dt \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} \left| -A \cdot e^{a \cdot t} \right|^2 \cdot dt + \int_{0}^{\frac{\tau}{2}} \left| A \cdot e^{-a \cdot t} \right|^2 \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} \left(-A \cdot e^{a \cdot t} \right)^2 \cdot dt + \int_{0}^{\frac{\tau}{2}} \left(A \cdot e^{-a \cdot t} \right)^2 \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} \left(-A \right)^2 \cdot \left(e^{a \cdot t} \right)^2 \cdot dt + \int_{0}^{\frac{\tau}{2}} \left(A \right)^2 \cdot \left(e^{-a \cdot t} \right)^2 \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(\int_{-\frac{\tau}{2}}^{0} A^2 \cdot e^{2 \cdot a \cdot t} \cdot dt + \int_{0}^{\frac{\tau}{2}} A^2 \cdot e^{-2 \cdot a \cdot t} \cdot dt \right) \\ &= \lim_{\tau \to \infty} \left(A^2 \cdot \int_{-\frac{\tau}{2}}^{0} e^{2 \cdot a \cdot t} \cdot dt + A^2 \cdot \int_{0}^{\frac{\tau}{2}} e^{-2 \cdot a \cdot t} \cdot dt \right) \\ &= \lim_{\tau \to \infty} A^2 \cdot \left(\int_{-\frac{\tau}{2}}^{0} e^{2 \cdot a \cdot t} \cdot dt + \int_{0}^{\frac{\tau}{2}} e^{-2 \cdot a \cdot t} \cdot dt \right) \\ &= \begin{cases} z = 2 \cdot a \cdot t & w = -2 \cdot a \cdot t \\ dz = 2 \cdot a \cdot dt & dw = -2 \cdot a \cdot dt \\ dt = \frac{dz}{2 \cdot a} & dt = \frac{dw}{-2 \cdot a} \end{cases} \\ &= \lim_{\tau \to \infty} A^2 \cdot \left(\int_{-\frac{\tau}{2}}^{0} e^z \cdot \frac{dz}{2 \cdot a} + \int_{0}^{\frac{\tau}{2}} e^w \cdot \frac{dw}{-2 \cdot a} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(\int_{-\frac{\tau}{2}}^{0} e^z \cdot dz - \int_{0}^{\frac{\tau}{2}} e^w \cdot dw \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(e^z \big|_{-\frac{\tau}{2}}^{0} - e^w \big|_{0}^{\frac{\tau}{2}} \right) \end{split}$$

$$\begin{split} &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(e^{2 \cdot a \cdot t} \Big|_{-\frac{\tau}{2}}^{0} - e^{-2 \cdot a \cdot dt} \Big|_{0}^{\frac{\tau}{2}} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(\left(e^{2 \cdot a \cdot 0} - e^{-2 \cdot a \cdot \frac{\tau}{2}} \right) - \left(e^{-2 \cdot a \cdot \frac{\tau}{2}} - e^{-2 \cdot a \cdot 0} \right) \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(\left(e^0 - e^{-a \cdot \tau} \right) - \left(e^{-a \cdot \tau} - e^0 \right) \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(1 - e^{-a \cdot \tau} - e^{-a \cdot \tau} + 1 \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot \left(2 - 2 \cdot e^{-a \cdot \tau} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{2 \cdot a} \cdot 2 \cdot \left(1 - e^{-a \cdot \tau} \right) \\ &= \lim_{\tau \to \infty} \frac{A^2}{a} \cdot \left(1 - e^{-a \cdot \tau} \right) \\ &= \frac{A^2}{a} \end{split}$$

Energia sygnału wynosi $\frac{A^2}{a}$

Zadanie 5. Oblicz moc okresowego sygnału f(t) przedstawionego na rysunku

Zaczynamy od zapisania wzoru funkcji przedstawionej na rysunku

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{3} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{3} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (8)

Moc sygnału okresowego wyznaczamy z wzoru:

$$P = \frac{1}{T} \cdot \int_{T} |f(t)|^{2} \cdot dt \tag{9}$$

Podstawiamy do wzoru na moc wzór naszej funkcji dla pierwszego okresu k=0

$$P = \frac{1}{T} \cdot \int_{T} |f(t)|^{2} \cdot dt$$

$$= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{3}} |A|^{2} \cdot dt + \int_{\frac{T}{3}}^{T} |0|^{2} \cdot dt \right)$$

$$= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{3}} A^{2} \cdot dt + \int_{\frac{T}{3}}^{T} 0 \cdot dt \right)$$

$$= \frac{1}{T} \cdot \left(A^{2} \cdot \int_{0}^{\frac{T}{3}} dt + 0 \right)$$

$$= \frac{A^{2}}{T} \cdot t \Big|_{0}^{\frac{T}{3}}$$

$$= \frac{A^{2}}{T} \cdot \left(\frac{T}{3} - 0 \right)$$

$$= \frac{A^{2}}{T} \cdot \frac{T}{3}$$

$$= \frac{A^{2}}{3}$$

Moc sygnału wynosi $\frac{A^2}{3}$

Zadanie 6. Oblicz moc sygnału okresowego f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać ogólnym równaniem prostej:

$$f(t) = a \cdot t + b \tag{10}$$

W pierwszym okresie wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz (T,A). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry a i b.

$$\begin{cases} 0 = a \cdot 0 + b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ \frac{A}{T} = a \end{cases}$$

A więc funkcję przedstawioną na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{T} \cdot t$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \frac{A}{T} \cdot (t - k \cdot T) \land k \in C$$

Moc sygnału okresowego wyznaczamy z wzoru:

$$P = \frac{1}{T} \cdot \int_{T} |f(t)|^{2} \cdot dt \tag{11}$$

Podstawiamy do wzoru wzór naszej funkcji

$$P = \frac{1}{T} \cdot \int_{T} \left| f(t) \right|^{2} \cdot dt$$

$$\begin{split} &= \frac{1}{T} \cdot \int_0^T \left| \frac{A}{T} \cdot t \right|^2 \cdot dt \\ &= \frac{1}{T} \cdot \int_0^T \left(\frac{A}{T} \cdot t \right)^2 \cdot dt \\ &= \frac{1}{T} \cdot \int_0^T \frac{A^2}{T^2} \cdot t^2 \cdot dt \\ &= \frac{1}{T} \cdot \frac{A^2}{T^2} \cdot \int_0^T t^2 \cdot dt \\ &= \frac{A^2}{T^3} \cdot \left(\frac{1}{3} \cdot t^3 \right|_0^T \right) \\ &= \frac{A^2}{T^3} \cdot \left(\frac{1}{3} \cdot T^3 - \frac{1}{3} \cdot 0^3 \right) \\ &= \frac{A^2}{T^3} \cdot \left(\frac{1}{3} \cdot T^3 - 0 \right) \\ &= \frac{A^2}{T^3} \cdot \frac{1}{3} \cdot T^3 \\ &= \frac{A^2}{T^3} \cdot \frac{1}{3} \cdot T^3 \\ &= \frac{A^2}{T^3} \cdot \frac{1}{3} \cdot T^3 \end{split}$$

Moc sygnału wynosi $\frac{A^2}{3}$

Zadanie 7. Oblicz moc sygnału okresowego $f(t) = A + B \cdot sin\left(\frac{2\pi}{T} \cdot t\right)$ przedstawionego na rysunku

Moc sygnału okresowego wyznaczamy z wzoru:

$$P = \frac{1}{T} \cdot \int_{T} |f(t)|^{2} \cdot dt \tag{12}$$

Podstawiamy do wzoru wzór naszej funkcji

$$\begin{split} P &= \frac{1}{T} \cdot \int_{T} |f(t)|^{2} \cdot dt \\ &= \frac{1}{T} \cdot \int_{0}^{T} \left| A + B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right|^{2} \cdot dt \\ &= \frac{1}{T} \cdot \int_{0}^{T} \left(A + B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right)^{2} \cdot dt \\ &= \frac{1}{T} \cdot \int_{0}^{T} \left(A^{2} + 2 \cdot A \cdot B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) + B^{2} \cdot \sin^{2} \left(\frac{2\pi}{T} \cdot t \right) \right) \cdot dt \\ &= \frac{1}{T} \cdot \left(\int_{0}^{T} A^{2} \cdot dt + \int_{0}^{T} 2 \cdot A \cdot B \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt + \int_{0}^{T} B^{2} \cdot \sin^{2} \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \\ &= \frac{A^{2}}{T} \cdot \int_{0}^{T} dt + \frac{2 \cdot A \cdot B}{T} \cdot \int_{0}^{T} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt + \frac{B^{2}}{T} \cdot \int_{0}^{T} \sin^{2} \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= \left\{ z = \frac{2\pi}{T} \cdot t \right. \\ &dz = \frac{2\pi}{T} \cdot dt \quad dt = \frac{dz}{\frac{2\pi}{T}} = \frac{T}{2\pi} \cdot dz \right\} \\ &= \frac{A^{2}}{T} \cdot t |_{0}^{T} + \frac{2 \cdot A \cdot B}{T} \cdot \int_{0}^{T} \sin(z) \cdot \frac{T}{2\pi} \cdot dz + \frac{B^{2}}{T} \cdot \int_{0}^{T} \frac{1}{2} \cdot \left(1 - \cos \left(2 \cdot \frac{2\pi}{T} \cdot t \right) \right) \cdot dt \\ &= \frac{A^{2}}{T} \cdot (T - 0) + \frac{2 \cdot A \cdot B}{T} \cdot \frac{T}{2\pi} \cdot \int_{0}^{T} \sin(z) \cdot dz + \frac{B^{2}}{T} \cdot \frac{1}{2} \cdot \int_{0}^{T} \left(1 - \cos \left(2 \cdot \frac{2\pi}{T} \cdot t \right) \right) \cdot dt \\ &= \frac{A^{2}}{T} \cdot T + \frac{A \cdot B}{\pi} \cdot \left(-\cos(z)|_{0}^{T} \right) + \frac{B^{2}}{2 \cdot T} \cdot \left(\int_{0}^{T} 1 \cdot dt - \int_{0}^{T} \cos\left(2 \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt \right) \\ &= \left\{ \frac{w = 2 \cdot \frac{2\pi}{T} \cdot dt}{dt} \cdot dt = \frac{dw}{\frac{4\pi}{T}} = \frac{T}{4\pi} \cdot dw \right\} \\ &= A^{2} + \frac{A \cdot B}{\pi} \cdot \left(-\cos\left(\frac{2\pi}{T} \cdot t \right) |_{0}^{T} \right) + \frac{B^{2}}{2 \cdot T} \cdot \left(t |_{0}^{T} - \int_{0}^{T} \cos\left(w \right) \cdot \frac{T}{4\pi} \cdot dw \right) \\ &= A^{2} + \frac{A \cdot B}{\pi} \cdot \left(-\cos\left(\frac{2\pi}{T} \cdot t \right) |_{0}^{T} \right) + \frac{B^{2}}{2 \cdot T} \cdot \left(t |_{0}^{T} - \int_{0}^{T} \cos\left(w \right) \cdot \frac{T}{4\pi} \cdot dw \right) \\ &= A^{2} + \frac{A \cdot B}{\pi} \cdot \left(-\cos\left(\frac{2\pi}{T} \cdot t \right) |_{0}^{T} \right) + \cos\left(\frac{2\pi}{T} \cdot 0 \right) + \frac{B^{2}}{2 \cdot T} \cdot \left((T - 0) - \frac{T}{4\pi} \cdot \int_{0}^{T} \cos\left(w \right) \cdot dw \right) \end{aligned}$$

$$\begin{split} &=A^{2}+\frac{A\cdot B}{\pi}\cdot\left(-\cos\left(2\pi\right)+\cos\left(0\right)\right)+\frac{B^{2}}{2\cdot T}\cdot\left(T-\frac{T}{4\pi}\cdot-\sin\left(w\right)|_{0}^{T}\right)\\ &=A^{2}+\frac{A\cdot B}{\pi}\cdot\left(-1+1\right)+\frac{B^{2}}{2\cdot T}\cdot\left(T+\frac{T}{4\pi}\cdot\sin\left(2\cdot\frac{2\pi}{T}\cdot t\right)\right|_{0}^{T}\right)\\ &=A^{2}+\frac{A\cdot B}{\pi}\cdot0+\frac{B^{2}}{2\cdot T}\cdot\left(T+\frac{T}{4\pi}\cdot\left(\sin\left(2\cdot\frac{2\pi}{T}\cdot T\right)-\sin\left(2\cdot\frac{2\pi}{T}\cdot 0\right)\right)\right)\\ &=A^{2}+\frac{B^{2}}{2\cdot T}\cdot\left(T+\frac{T}{4\pi}\cdot\left(\sin\left(4\pi\right)-\sin\left(0\right)\right)\right)\\ &=A^{2}+\frac{B^{2}}{2\cdot T}\cdot\left(T+\frac{T}{4\pi}\cdot\left(0-0\right)\right)\\ &=A^{2}+\frac{B^{2}}{2\cdot T}\cdot\left(T\right)\\ &=A^{2}+\frac{B^{2}}{2\cdot T}\cdot\left(T\right) \end{split}$$

Moc sygnału wynosi $A^2+\frac{B^2}{2}$

Zadanie 8. Oblicz energię sygnału okresowego f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać za pomocą dwuch prostych. Ogólne równanie prostej:

$$f(t) = m \cdot t + b \tag{13}$$

W pierwszym okresie w pierwszej części wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz $(a \cdot T, A)$. Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry m i b.

$$\begin{cases} 0 = m \cdot 0 + b \\ A = m \cdot a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = m \cdot a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = m \cdot a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ \frac{A}{a \cdot T} = m \end{cases}$$

A więc pierwszy odcinek funkcji przedstawionej na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{a \cdot T} \cdot t$$

Drugi odcinek funkcji jest prostą przechodzącą przez następujące dwa punkty: $(a \cdot T, 0)$ oraz (T, -B). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry m i b.

$$\begin{cases} 0 = m \cdot a \cdot T + b \\ -B = m \cdot T + b \end{cases}$$

$$\begin{cases} -m \cdot a \cdot T = b \\ -B = m \cdot T - m \cdot a \cdot T \end{cases}$$

$$\begin{cases} -m \cdot a \cdot T = b \\ -B = m \cdot (T - a \cdot T) \end{cases}$$

$$\begin{cases} -m \cdot a \cdot T = b \\ -\frac{B}{T - a \cdot T} = m \end{cases}$$

$$\begin{cases} \frac{B}{T - a \cdot T} \cdot a \cdot T = b \\ -\frac{B}{T - a \cdot T} = m \end{cases}$$

$$\begin{cases} \frac{B}{1 - a} \cdot a = b \\ -\frac{B}{T - a \cdot T} = m \end{cases}$$

A więc drugi odcinek funkcji przedstawionej na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = -\frac{B}{T - a \cdot T} \cdot t + \frac{B}{1 - a} \cdot a$$

W związku z tym całą funkcję w pierwszym okresie można zapisać jako funkcje przedziałową

$$f(t) = \begin{cases} \frac{A}{a \cdot T} \cdot t & dla \quad t \in (0; a \cdot T) \\ -\frac{B}{T - a \cdot T} \cdot t + \frac{B}{1 - a} \cdot a & dla \quad t \in (a \cdot T; T) \end{cases}$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \begin{cases} \frac{A}{a \cdot T} \cdot (t - k \cdot T) & dla \quad t \in (0 + k \cdot T; a \cdot T + k \cdot T) \\ -\frac{B}{T - a \cdot T} \cdot (t - k \cdot T) + \frac{B}{1 - a} \cdot a & dla \quad t \in (a \cdot T + k \cdot T; T + k \cdot T) \end{cases} \land k \in C$$

Energię sygnału okresowego wyznaczamy z wzoru

$$E = \int_{T} |f(t)|^{2} \cdot dt \tag{14}$$

Podstawiamy do wzoru wzór naszej funkcji

$$\begin{split} E &= \int_{T} |f(t)|^{2} \cdot dt \\ &= \int_{0}^{a \cdot T} \left| \frac{A}{a \cdot T} \cdot t \right|^{2} \cdot dt + \int_{a \cdot T}^{T} \left| \frac{B}{T - a \cdot T} \cdot t - \frac{B}{1 - a} \cdot a \right|^{2} \cdot dt \\ &= \int_{0}^{a \cdot T} \left(\frac{A}{a \cdot T} \cdot t \right)^{2} \cdot dt + \int_{a \cdot T}^{T} \left(\frac{B}{T - a \cdot T} \cdot t - \frac{B}{1 - a} \cdot a \right)^{2} \cdot dt \\ &= \int_{0}^{a \cdot T} \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot t^{2} \cdot dt + \int_{a \cdot T}^{T} \left(\left(\frac{B}{T - a \cdot T} \cdot t \right)^{2} - 2 \cdot \frac{B}{T - a \cdot T} \cdot t \cdot \frac{B}{1 - a} \cdot a + \left(\frac{B}{1 - a} \cdot a \right)^{2} \right) \cdot dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \int_{0}^{a \cdot T} t^{2} \cdot dt + \int_{a \cdot T}^{T} \left(\frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot t^{2} - 2 \cdot \frac{B^{2}}{T \cdot (1 - a)^{2}} \cdot t \cdot a + \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \right) \cdot dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \left(\frac{1}{3} \cdot t^{3} \cdot dt \right|_{0}^{a \cdot T} \right) + \int_{a \cdot T}^{T} \frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot t^{2} \cdot dt - \int_{a \cdot T}^{T} 2 \cdot \frac{B^{2}}{T \cdot (1 - a)^{2}} \cdot t \cdot a \cdot dt + \int_{a \cdot T}^{T} \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \cdot dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \left(\frac{1}{3} \cdot t^{3} \right|_{0}^{a \cdot T} \right) + \frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot \int_{a \cdot T}^{T} t^{2} \cdot dt - \frac{2 \cdot B^{2}}{T \cdot (1 - a)^{2}} \cdot a \cdot \int_{a \cdot T}^{T} t \cdot dt + \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \cdot \int_{a \cdot T}^{T} dt \\ &= \frac{A^{2}}{a^{2} \cdot T^{2}} \cdot \left(\frac{1}{3} \cdot (a \cdot T)^{3} - \frac{1}{3} \cdot 0^{3} \right) + \frac{B^{2}}{T^{2} \cdot (1 - a)^{2}} \cdot \left(\frac{1}{3} \cdot t^{3} \right|_{a \cdot T}^{T} \right) - \frac{2 \cdot B^{2}}{T \cdot (1 - a)^{2}} \cdot a \cdot \left(\frac{1}{2} \cdot t^{2} \right|_{a \cdot T}^{T} \right) \\ &+ \frac{B^{2}}{(1 - a)^{2}} \cdot a^{2} \cdot \left(t \right|_{a \cdot T}^{T} \right) \end{split}$$

$$\begin{split} &=\frac{A^2}{a^2 \cdot T} \cdot \left(\frac{1}{3} \cdot a^3 \cdot T^3 - 0\right) + \frac{B^2}{T^2 \cdot (1-a)^2} \cdot \left(\frac{1}{3} \cdot T^3 - \frac{1}{3} \cdot (a \cdot T)^3\right) \\ &- \frac{2 \cdot B^2}{T \cdot (1-a)^2} \cdot a \cdot \left(\frac{1}{2} \cdot T^2 - \frac{1}{2} \cdot (a \cdot T)^2\right) + \frac{B^2}{(1-a)^2} \cdot a^2 \cdot (T-a \cdot T) \\ &=\frac{A^2}{a^2 \cdot T^2} \cdot \frac{1}{3} \cdot a^3 \cdot T^3 + \frac{B^2}{T^2 \cdot (1-a)^2} \cdot \left(\frac{1}{3} \cdot T^3 - \frac{1}{3} \cdot a^3 \cdot T^3\right) \\ &- \frac{2 \cdot B^2}{T \cdot (1-a)^2} \cdot a \cdot \left(\frac{1}{2} \cdot T^2 - \frac{1}{2} \cdot a^2 \cdot T^2\right) + \frac{B^2}{(1-a)^2} \cdot a^2 \cdot (1-a) \cdot T \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{T^2 \cdot (1-a)^2} \cdot \left(1-a^3\right) \cdot \frac{1}{3} \cdot T^3 \\ &- \frac{2 \cdot B^2}{T \cdot (1-a)^2} \cdot a \cdot \left(1-a^2\right) \cdot \frac{1}{2} \cdot T^2 + \frac{B^2}{(1-a)^2} \cdot a^2 \cdot (1-a) \cdot T \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{(1-a)^2} \cdot (1-a) \cdot \left(1+a+a^2\right) \cdot \frac{1}{3} \cdot T \\ &- \frac{2 \cdot B^2}{(1-a)^2} \cdot a \cdot (1-a) \cdot (1+a) \cdot \frac{1}{2} \cdot T + \frac{B^2}{1-a} \cdot a^2 \cdot T \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot \left(1+a\right) \cdot \frac{1}{3} \cdot T - \frac{2 \cdot B^2}{1-a} \cdot a \cdot (1+a) \cdot \frac{1}{2} \cdot T + \frac{B^2}{1-a} \cdot a^2 \cdot T \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \left(\left(1+a+a^2\right) \cdot \frac{1}{3} - 2 \cdot a \cdot (1+a) \cdot \frac{1}{2} + a^2\right) \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \left(\left(1+a+a^2\right) \cdot \frac{2}{6} - 2 \cdot a \cdot (1+a) \cdot \frac{3}{6} + a^2 \cdot \frac{6}{6}\right) \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{6} \cdot \left(\left(1+a+a^2\right) \cdot 2 - 2 \cdot a \cdot (1+a) \cdot 3 + a^2 \cdot 6\right) \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{6} \cdot \left(2+2 \cdot a + 2 \cdot a^2 - 6 \cdot a - 6 \cdot a^2 + 6 \cdot a^2\right) \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{6} \cdot \left(2-4 \cdot a + 2 \cdot a^2\right) \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{3} \cdot \left(1-2 \cdot a + a^2\right) \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{3} \cdot \left(1-2 \cdot a + a^2\right) \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{1-a} \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot \left(1-a\right) \cdot T \cdot \frac{1}{3} \cdot \left(1-a\right)^2 \\ &=\frac{A^2}{3} \cdot a \cdot T + \frac{B^$$

Energia sygnału wynosi $\frac{A^2}{3} \cdot a \cdot T + \frac{B^2}{3} \cdot (1-a) \cdot T$

Zadanie 9. Oblicz wartość energii sygnału $f(t) = A \cdot sin^2 (\omega_0 \cdot t)$ okresowego przedstawionego na rysunku

Energię sygnału okresowego wyznaczamy ze wzoru

$$E = \int_{T} |f(t)|^2 \cdot dt \tag{15}$$

Podstawiamy do wzoru na enargie wzór naszej funkcji dla pierwszego okresu k=0

$$\begin{split} E &= \int_{T} |f(t)|^{2} \cdot dt \\ &= \int_{0}^{T} \left| A \cdot \sin^{2} \left(\omega_{0} \cdot t \right) \right|^{2} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \sin^{4} \left(\omega_{0} \cdot t \right) \cdot dt \\ &= \left\{ \sin(x) = \frac{e^{jx} - e^{-jx}}{2 \cdot j} \right\} \\ &= \int_{0}^{T} A^{2} \cdot \left(\frac{e^{j\omega_{0} \cdot t} - e^{-j\omega_{0} \cdot t}}{2 \cdot j} \right)^{4} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{\left(e^{j\omega_{0} \cdot t} - e^{-j\omega_{0} \cdot t} \right)^{4}}{2 \cdot j} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{\left(e^{j\omega_{0} \cdot t} - e^{-j\omega_{0} \cdot t} \right)^{4}}{2 \cdot j} \cdot dt \\ &= \begin{cases} n = 0 : & 1 & 1 & 1 \\ n = 1 : & 1 & 1 & 1 \\ n = 2 : & 1 & 2 & 1 \\ n = 3 : & 1 & 3 & 3 & 1 \\ n = 4 : & 1 & 4 & 6 & 4 & 1 \end{cases} \\ &= \int_{0}^{T} A^{2} \cdot \frac{\left(e^{j\omega_{0} \cdot t} \right)^{4} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{0} + 4 \cdot \left(e^{j\omega_{0} \cdot t} \right)^{3} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{1} + 6 \cdot \left(e^{j\omega_{0} \cdot t} \right)^{2} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{1} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{1} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{2} + 4 \cdot \left(e^{j\omega_{0} \cdot t} \right)^{1} \cdot \left(-e^{-j\omega_{0} \cdot t} \right)^{2} \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4 \cdot j\omega_{0} \cdot t} \cdot e^{-0 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{3 \cdot j\omega_{0} \cdot t} \cdot e^{-j\omega_{0} \cdot t} + 6 \cdot e^{2 \cdot j\omega_{0} \cdot t} \cdot e^{-2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} \cdot e^{-4 \cdot j\omega_{0} \cdot t}}{16 \cdot 1} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4 \cdot j\omega_{0} \cdot t} - 6 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot dt \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t} + 6 \cdot e^{0} \cdot dt} \\ &= \int_{0}^{T} A^{2} \cdot \frac{e^{4 \cdot j\omega_{0} \cdot t} - 4 \cdot e^{2 \cdot j\omega_{0} \cdot t$$

$$\begin{split} & = \int_{0}^{T} A^{2} \cdot \frac{e^{4 j \omega_{0} t} + e^{-4 j \omega_{0} t} - 4 \cdot e^{2 j \omega_{0} t} - 4 \cdot e^{-2 j \omega_{0} t} + 6}{16} \cdot dt \\ & = \frac{A^{2}}{16} \cdot \int_{0}^{T} \left(e^{4 j \omega_{0} t} + e^{-4 j \omega_{0} t} - 4 \cdot e^{2 j \omega_{0} t} - 4 \cdot e^{-2 j \omega_{0} t} + 6 \right) dt \\ & = \frac{A^{2}}{16} \cdot \left(\int_{0}^{T} e^{4 j \omega_{0} t} \cdot dt + \int_{0}^{T} e^{-4 j \omega_{0} t} \cdot dt - 4 \cdot \int_{0}^{T} e^{2 j \omega_{0} t} \cdot dt - 4 \cdot \int_{0}^{T} e^{-2 j \omega_{0} t} \cdot dt + 6 \cdot \int_{0}^{T} dt \right) \\ & = \begin{cases} z_{1} = 4 \cdot j \cdot \omega_{0} \cdot t & z_{2} = -4 \cdot j \cdot \omega_{0} \cdot t & z_{3} = 2 \cdot j \cdot \omega_{0} \cdot t & z_{4} = -2 \cdot j \cdot \omega_{0} \cdot t \\ dt = \frac{1}{3 + j \cdot \omega_{0}} \cdot dt & dz_{2} = -4 \cdot j \cdot \omega_{0} \cdot dt & dz_{3} = 2 \cdot j \cdot \omega_{0} \cdot dt & dz_{4} = -2 \cdot j \cdot \omega_{0} \cdot dt \\ dt = \frac{1}{3 + j \cdot \omega_{0}} \cdot dz_{1} & dt = \frac{1}{-4 \cdot j \cdot \omega_{0}} \cdot dz_{2} + \int_{0}^{T} e^{2 i} \cdot dz_{3} & dt = \frac{2 j \cdot \omega_{0}}{2 + j \cdot \omega_{0}} \cdot dz_{3} + \int_{0}^{T} e^{2 i} \cdot dz_{3} \\ dt = \frac{1}{3 + j \cdot \omega_{0}} \cdot dz_{1} & dz_{1} + \int_{0}^{T} e^{2 i} \cdot dz_{2} & dt = \frac{2 j \cdot \omega_{0}}{2 \cdot j \cdot \omega_{0}} \cdot dz_{3} - 4 \cdot \int_{0}^{T} e^{2 i} \cdot dz_{3} \\ -\frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot \omega_{0}} \cdot \int_{0}^{T} e^{2 i} \cdot dz_{1} + \frac{1}{4 \cdot j \cdot \omega_{0}} \cdot \int_{0}^{T} e^{2 i} \cdot dz_{2} - 4 \cdot \frac{1}{2 \cdot j \cdot \omega_{0}} \cdot \int_{0}^{T} e^{2 i} \cdot dz_{3} - 4 \cdot \int_{0}^{T} e^{2 i} \cdot dz_{3} \\ -\frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot \omega_{0}} \cdot e^{2 i} \int_{0}^{T} - \frac{1}{4 \cdot j \cdot \omega_{0}} \cdot e^{2 i} \int_{0}^{T} - \frac{4}{2 \cdot j \cdot \omega_{0}} \cdot e^{2 i} \int_{0}^{T} + 6 \cdot t \int_{0}^{T} + 6 \cdot t \int_{0}^{T} e^{2 i} \cdot dz_{3} \\ -\frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot \omega_{0}} \cdot e^{2 i j \omega_{0}} \right) - \frac{1}{4 \cdot j \cdot \omega_{0}} \cdot e^{2 i j \omega_{0}} \cdot e^{2 i j \omega_{0}} \right) - \frac{4}{2 \cdot j \cdot \omega_{0}} \cdot (e^{2 j \omega_{0}} \cdot e^{2 j \omega_{0}} \right) + \frac{2}{2} \\ -\frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot \omega_{0}} \cdot \left(e^{4 j \omega_{0}} \right) - \frac{4}{4 \cdot j \cdot \omega_{0}} \cdot \left(e^{4 j \omega_{0}} \right) - \frac{4}{2 \cdot j \cdot \omega_{0}} \cdot \left(e^{2 j \omega_{0}} \right) - e^{2 j \omega_{0}} \right) \right) + \frac{2}{2} \\ -\frac{A^{2}}{16} \cdot \left(\frac{1}{4 \cdot j \cdot \omega_{0}} \cdot \left(e^{4 j \omega_{0}} \right) - 1 - \frac{1}{4 \cdot j \cdot \omega_{0}} \cdot \left(e^{4 j \omega_{0}} \right) - e^{4 j \omega_{0}} \cdot \left(e^{2 j \omega_{0}} \right) - e^{2 j \omega_{0}} \right) + \frac{4}{2 \cdot j \cdot \omega_{0}} \cdot \left(e^{2 j \omega_{0}} \right) - \frac{4}{2 \cdot j \cdot \omega_{0}} \cdot \left(e^{2 j \omega_{0}} \right) - \frac$$

$$=\frac{A^2}{4}\cdot\frac{3\pi}{\omega_0}$$

Energia sygnału wynosi $\frac{A^2}{4}\cdot\frac{3\pi}{\omega_0}$

Zadanie 10. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (16)

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{17}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(A \cdot t |_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T} \cdot t |_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

Wartość współczynnika a_0 wynosi $\frac{A}{2}$

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{19}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_{k} = \frac{2}{T} \int_{T} f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2}{T} \int_{0}^{\frac{T}{2}} A \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z = k \cdot \frac{2\pi}{T} \cdot t \\ dz = k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{k^{\frac{2\pi}{T}}} \end{cases}$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \cos(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}}$$

$$= \frac{2 \cdot A}{T \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} \cos(z) \cdot dz$$

$$= \frac{A}{k \cdot \pi} \sin(z) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{k \cdot \pi} \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{k \cdot \pi} \left(\sin\left(k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right)$$

$$= \frac{A}{k \cdot \pi} \left(\sin(k \cdot \pi) - \sin(0)\right)$$

$$= \frac{A}{k \cdot \pi} \left(\sin(k \cdot \pi) - 0\right)$$

$$= \frac{A}{k \cdot \pi} \cdot \sin(k \cdot \pi)$$

$$= \frac{A}{k \cdot \pi} \cdot 0$$

$$= 0$$

Wartość współczynnika a_k wynosi 0

Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{21}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$b_{k} = \frac{2}{T} \int_{T} f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2}{T} \int_{0}^{\frac{T}{2}} A \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z = k \cdot \frac{2\pi}{T} \cdot t \\ dz = k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{k \cdot \frac{2\pi}{T}} \end{cases}$$

$$= \frac{2 \cdot A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}}$$

$$= \frac{2 \cdot A}{T \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz$$

$$= -\frac{A}{k \cdot \pi} \cos(z) \Big|_{0}^{\frac{T}{2}}$$

$$= -\frac{A}{k \cdot \pi} \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}}$$

$$= -\frac{A}{k \cdot \pi} \left(\cos\left(k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}\right) - \cos\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right)$$

$$= -\frac{A}{k \cdot \pi} \left(\cos\left(k \cdot \pi\right) - \cos\left(0\right)\right)$$

$$= -\frac{A}{k \cdot \pi} \left(\cos\left(k \cdot \pi\right) - 1\right)$$

$$= \frac{A}{k \cdot \pi} \left(1 - \cos\left(k \cdot \pi\right)\right)$$

Wartość współczynnika b_k wynosi $\frac{A}{k \cdot \pi} \left(1 - \cos\left(k \cdot \pi\right)\right)$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_0 = \frac{A}{2}$$

$$a_k = 0$$

$$b_k = \frac{A}{k \cdot \pi} (1 - \cos(k \cdot \pi))$$
(23)

Możemy wyznaczyć kilka wartości współczynników a_k i b_k

k	1	2	3	4	5	6
a_k	0	0	0	0	0	0
b_k	$\frac{2 \cdot A}{\pi}$	0	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{2 \cdot A}{5 \cdot \pi}$	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
 (24)

W przypadku sumowania do $k_{\max}=1$ otrzymujemy

W przypadku sumowania do $k_{\max}=3$ otrzymujemy

W przypadku sumowania do $k_{\max}=5$ otrzymujemy

W przypadku sumowania do $k_{\max}=11$ otrzymujemy

W przypadku sumowania do $k_{\max}=21$ otrzymujemy

W granicy sumowania do $k_{max} = \infty$ otrzymujemy oryginalny sygnał.

Zadanie 11. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} -A & t \in \left(-\frac{T}{4} + k \cdot T; 0 + k \cdot T\right) \\ A & t \in \left(0 + k \cdot T; \frac{T}{4} + k \cdot T\right) & \land k \in C \\ 0 & t \in \left(\frac{T}{4} + k \cdot T; \frac{3 \cdot T}{4} + k \cdot T\right) \end{cases}$$
(25)

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{26}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + \int_{\frac{T}{4}}^{\frac{3 \cdot T}{4}} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^{0} dt + A \cdot \int_{0}^{\frac{T}{4}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot t \Big|_{-\frac{T}{4}}^{0} + A \cdot t \Big|_{0}^{\frac{T}{4}} \right) =$$

$$= \frac{1}{T} \left(-A \cdot \left(0 - \left(-\frac{T}{4} \right) \right) + A \cdot \left(\frac{T}{4} - 0 \right) \right) =$$

$$= \frac{1}{T} \left(-A \cdot \frac{T}{4} + A \cdot \frac{T}{4} \right) =$$

$$= \frac{1}{T} (0) =$$

Wartość współczynnika a_0 wynosi 0

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{28}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{aligned} a_k &= \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \left(\int_{-\frac{T}{4}}^0 -A \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_0^{\frac{T}{4}} A \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + A \cdot \int_0^{\frac{T}{4}} \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot dt \right) \\ &= \begin{cases} z &= k \cdot \frac{2\pi}{T} \cdot dt \\ dz &= k \cdot \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dt}{k \cdot \frac{2\pi}{T}} \end{cases} \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 \cos(z) \cdot \frac{dt}{k \cdot \frac{2\pi}{T}} + A \cdot \int_0^{\frac{T}{4}} \cos(z) \cdot \frac{dt}{k \cdot \frac{2\pi}{T}} + 0 \right) \\ &= \frac{2}{T} \left(-\frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_{-\frac{T}{4}}^0 \cos(z) \cdot dt + \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_0^{\frac{T}{4}} \cos(z) \cdot dt \right) \\ &= \frac{2}{T} \cdot \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \left(-\sin(z) |_{-\frac{T}{4}}^0 + \sin(z)|_0^{\frac{T}{0}} \right) \\ &= \frac{2 \cdot A}{k \cdot 2\pi} \cdot \left(-\sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) |_{-\frac{T}{4}}^0 + \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) |_0^{\frac{T}{4}} \right) \\ &= \frac{2 \cdot A}{k \cdot 2\pi} \cdot \left(-\left(\sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right) + \left(\sin\left(k \cdot \frac{2\pi}{T} \cdot \frac{T}{4}\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right) \right) \right) \\ &= \frac{A}{k \cdot 2\pi} \cdot \left(-\left(\sin(0) - \sin\left(-k \cdot \frac{2\pi}{4}\right)\right) + \left(\sin\left(k \cdot \frac{2\pi}{4}\right) - \sin(0)\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\left(0 - \sin\left(-k \cdot \frac{\pi}{2}\right)\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\sin\left(k \cdot \frac{\pi}{2}\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\sin\left(k \cdot \frac{\pi}{2}\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(-\sin\left(k \cdot \frac{\pi}{2}\right) + \sin\left(k \cdot \frac{\pi}{2}\right) \right) \end{aligned}$$

Wartość współczynnika a_k wynosi 0

Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{30}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} b_{k} &= \frac{2}{T} \int_{T} f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \left(\int_{-\frac{T}{4}}^{0} - A \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^{0} \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + A \cdot \int_{0}^{\frac{T}{4}} \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{4}}^{\frac{3T}{4}} 0 \cdot dt \right) \\ &= \begin{cases} z = k \cdot \frac{2\pi}{T} \cdot t \\ dz = k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{k \cdot \frac{2\pi}{T}} \end{cases} \right. \\ &= \frac{2}{T} \left(-A \cdot \int_{-\frac{T}{4}}^{0} \sin(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}} + A \cdot \int_{0}^{\frac{T}{4}} \sin(z) \cdot \frac{dz}{k \cdot \frac{2\pi}{T}} + 0 \right) \\ &= \frac{2}{T} \left(-\frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_{-\frac{T}{4}}^{0} \sin(z) \cdot dz + \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \int_{0}^{T} \sin(z) \cdot dz \right) \\ &= \frac{2}{T} \cdot \frac{A}{k \cdot \frac{2\pi}{T}} \cdot \left(-\int_{-\frac{T}{4}}^{0} \sin(z) \cdot dz + \int_{0}^{\frac{T}{4}} \sin(z) \cdot dz \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\cos(z)|_{-\frac{T}{4}}^{0} - \cos(z)|_{0}^{\frac{T}{4}} \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\cos\left(k \cdot \frac{2\pi}{T} \cdot t\right)|_{-\frac{T}{4}}^{0} - \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right)|_{0}^{\frac{T}{4}} \right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\left(\cos(0) - \cos\left(-k \cdot \frac{\pi}{2}\right)\right) - \left(\cos\left(k \cdot \frac{\pi}{2}\right) - \cos(0)\right)\right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(\cos(0) - \cos\left(-k \cdot \frac{\pi}{2}\right) - \cos\left(k \cdot \frac{\pi}{2}\right) + \cos(0)\right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right) - \cos\left(k \cdot \frac{\pi}{2}\right) + 1\right) \\ &= \frac{A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \\ &= \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right) \end{aligned}$$

Wartość współczynnika b_k wynosi $\frac{2\cdot A}{k\cdot \pi}\cdot \left(1-\cos\left(k\cdot\frac{\pi}{2}\right)\right)$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_0 = 0$$

$$a_k = 0$$

$$b_k = \frac{2 \cdot A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2}\right)\right)$$
(32)

Możemy wyznaczyć kilka wartości współczynników a_k i b_k

k	1	2	3	4	5	6
a_k	0	0	0	0	0	0
b_k	$\frac{2 \cdot A}{\pi}$	$\frac{2\cdot A}{\pi}$	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{2 \cdot A}{5 \cdot \pi}$	$\frac{2 \cdot A}{3 \cdot \pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
 (33)

W przypadku sumowania do $k_{\max}=1$ otrzymujemy

W przypadku sumowania do $k_{max}=2$ otrzymujemy

W przypadku sumowania do $k_{max}=3$ otrzymujemy

W przypadku sumowania do $k_{\max}=5$ otrzymujemy

W przypadku sumowania do $k_{\max}=6$ otrzymujemy

W przypadku sumowania do $k_{\max}=11$ otrzymujemy

W przypadku sumowania do $k_{max}=21$ otrzymujemy

W granicy sumowania do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 12. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać ogólnym równaniem prostej:

$$f(t) = a \cdot t + b \tag{34}$$

W pierwszym okresie wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz (T,A). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry a i b.

$$\begin{cases} 0 = a \cdot 0 + b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ \frac{A}{T} = a \end{cases}$$

A więc funkcję przedstawioną na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{T} \cdot t$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \frac{A}{T} \cdot (t - k \cdot T) \land k \in C$$

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{35}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt$$

$$= \frac{1}{T} \int_0^T \frac{A}{T} \cdot t \cdot dt$$

$$= \frac{A}{T^2} \int_0^T t \cdot dt$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot t^2 \Big|_0^T$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot \left(T^2 - 0^2\right)$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot T^2$$

$$= \frac{A}{2}$$

Wartość współczynnika a_0 wynosi $\frac{A}{2}$

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{36}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} a_k &= \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \int_0^T \frac{A}{T} \cdot t \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2 \cdot A}{T^2} \int_0^T t \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \begin{cases} u &= t \quad dv = \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ du &= dt \quad v = \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \end{cases} \\ &= \frac{2 \cdot A}{T^2} \cdot \left(t \cdot \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right)\right) \Big|_0^T - \int_0^T \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2 \cdot A}{T^2} \cdot \left(\left(T \cdot \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot T\right) - 0 \cdot \frac{T}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_0^T \right) \\ &= \frac{2 \cdot A}{T^2} \cdot \left(\frac{T^2}{k \cdot 2\pi} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot T\right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \left(\cos\left(k \cdot \frac{2\pi}{T} \cdot T\right) - \cos\left(k \cdot \frac{2\pi}{T} \cdot 0\right)\right)\right) \\ &= 2 \cdot A \cdot \left(\frac{1}{k \cdot 2\pi} \cdot \sin\left(k \cdot 2\pi\right) + \frac{1}{(k \cdot 2\pi)^2} \cdot \left(\cos\left(k \cdot 2\pi\right) - \cos\left(0\right)\right)\right) \\ &= 2 \cdot A \cdot \left(\frac{1}{k \cdot 2\pi} \cdot 0 + \frac{1}{(k \cdot 2\pi)^2} \cdot (1 - 1)\right) \\ &= 2 \cdot A \cdot \left(0 + \frac{1}{(k \cdot 2\pi)^2} \cdot 0\right) \\ &= 2 \cdot A \cdot 0 \\ &= 0 \end{split}$$

(37)

Wartość współczynnika a_k wynosi 0

Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{38}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} b_k &= \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \int_0^T \frac{A}{T} \cdot t \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2 \cdot A}{T^2} \int_0^T t \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \begin{cases} u &= t \quad dv \quad \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ du &= dt \quad v \quad -\frac{T}{K^2 - x} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \end{cases} \\ &= \frac{2 \cdot A}{T^2} \cdot \left(-t \cdot \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right) \Big|_0^T + \int_0^T \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2 \cdot A}{T^2} \cdot \left(-\left(T \cdot \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot T\right) - 0 \cdot \frac{T}{k \cdot 2\pi} \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot 0\right) \right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \Big|_0^T \right) \\ &= \frac{2 \cdot A}{T^2} \cdot \left(-\left(\frac{T^2}{k \cdot 2\pi} \cdot \cos\left(k \cdot 2\pi\right) \right) + \frac{T^2}{(k \cdot 2\pi)^2} \cdot \left(\sin\left(k \cdot \frac{2\pi}{T} \cdot T\right) - \sin\left(k \cdot \frac{2\pi}{T} \cdot 0\right) \right) \right) \\ &= 2 \cdot A \cdot \left(-\left(\frac{1}{k \cdot 2\pi} \cdot 1\right) + \frac{1}{(k \cdot 2\pi)^2} \cdot (\sin\left(k \cdot 2\pi\right) - \sin\left(0\right) \right) \right) \\ &= 2 \cdot A \cdot \left(-\frac{1}{k \cdot 2\pi} + \frac{1}{(k \cdot 2\pi)^2} \cdot (0 - 0) \right) \\ &= 2 \cdot A \cdot \left(-\frac{1}{k \cdot 2\pi} + \frac{1}{(k \cdot 2\pi)^2} \cdot 0 \right) \\ &= 2 \cdot A \cdot \left(-\frac{1}{k \cdot 2\pi} + \frac{1}{(k \cdot 2\pi)^2} \cdot 0 \right) \\ &= -\frac{2 \cdot A}{k \cdot 2\pi} \\ &= -\frac{A}{k \cdot 2\pi} \end{aligned}$$

Wartość współczynnika b_k wynosi $-\frac{A}{k \cdot \pi}$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_0 = \frac{A}{2}$$

$$a_k = 0$$

$$b_k = -\frac{A}{k \cdot \pi}$$

$$(40)$$

Możemy wyznaczyć kilka wartości współczynników a_k i b_k

k	1	2	3	4	5	6
a_k	0	0	0	0	0	0
b_k	$-\frac{A}{\pi}$	$-\frac{A}{2\cdot\pi}$	$-\frac{A}{3\cdot\pi}$	$-\frac{A}{4\cdot\pi}$	$-\frac{A}{5\cdot\pi}$	$-\frac{A}{6\cdot\pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
 (41)

W przypadku sumowania do $k_{\max}=1$ otrzymujemy

W przypadku sumowania do $k_{max}=2$ otrzymujemy

W przypadku sumowania do $k_{max}=3$ otrzymujemy

W przypadku sumowania do $k_{max}=7$ otrzymujemy

W przypadku sumowania do $k_{\max}=11$ otrzymujemy

W granicy sumowania do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 13. Wyznacz współczynniki trygonometrzycznego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$

$$(42)$$

Współczynnik a_0 wyznaczamy ze wzoru

$$a_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{43}$$

$$a_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \frac{1}{T} \int_{\frac{T}{2}}^{T} 0 \cdot dt \right)$$

$$= \frac{A}{T} \left(\int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right)$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{\frac{2\pi}{T}} \end{cases}$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{\frac{2\pi}{T}}$$

$$= \frac{A}{T \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz$$

$$= \frac{A}{2\pi} \cdot \left(-\cos(z) |_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) |_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) - \cos\left(\frac{2\pi}{T} \cdot 0\right) \right)$$

$$\begin{split} &= -\frac{A}{2\pi} \cdot (\cos{(\pi)} - \cos{(0)}) \\ &= -\frac{A}{2\pi} \cdot (-1 - 1) \\ &= -\frac{A}{2\pi} \cdot (-2) \\ &= \frac{A}{\pi} \end{split}$$

Wartość współczynnika a_0 wynosi $\frac{A}{\pi}$

Współczynnik a_k wyznaczamy ze wzoru

$$a_k = \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{44}$$

$$\begin{split} a_k &= \frac{2}{T} \int_T f(t) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \begin{cases} \cos\left(x\right) &= \frac{e^{j\pi} + e^{-j\pi}}{2j} \\ \sin\left(x\right) &= \frac{e^{j\pi} - e^{-j\pi}}{2j} \end{cases} \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t}}{2j} \cdot \frac{e^{jk \cdot \frac{2\pi}{T} \cdot t} + e^{-jk \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot dt + 0 \right) \\ &= \frac{2}{T} \cdot \left(\frac{A}{2 \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} + e^{j\frac{2\pi}{T} \cdot t} + e^{-jk \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \frac{A}{2 \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot e^{jk \cdot \frac{2\pi}{T} \cdot t} + e^{j\frac{2\pi}{T} \cdot t} \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot jk \cdot \frac{2\pi}{T} \cdot t} + e^{j\frac{2\pi}{T} \cdot t} \cdot jk \cdot \frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \cdot jk \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot (1+k) + e^{j\frac{2\pi}{T} \cdot t} \cdot (1+k) - e^{-j\frac{2\pi}{T} \cdot t} \cdot (1-k) - e^{-j\frac{2\pi}{T} \cdot t} \cdot (1+k) \right) \cdot dt \\ &= \frac{A}{T} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot (1+k) - e^{-j\frac{2\pi}{T} \cdot t} \cdot (1+k) - e^{-j\frac{2\pi}{T} \cdot t} \cdot (1-k) \right) \right) \cdot dt \\ &= \frac{A}{T} \cdot \int_0^{\frac{T}{2}} \left(\sin\left(\frac{2\pi}{T} \cdot t \cdot (1+k) \right) + \sin\left(\frac{2\pi}{T} \cdot t \cdot (1-k) \right) \right) \cdot dt \\ &= \frac{A}{T} \cdot \left(\int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t \cdot (1+k) \right) \cdot dt + \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t \cdot (1-k) \right) \cdot dt \right) \end{aligned}$$

$$\begin{cases} z_1 &= \frac{2\pi}{T} \cdot t \cdot (1+k) & z_2 &= \frac{2\pi}{T} \cdot t \cdot (1-k) \\ dt &= \frac{2\pi}{T} \cdot (1+k) \cdot dt & z_2 &= \frac{2\pi}{T} \cdot (1-k) \cdot dt \\ dt &= \frac{dz_1}{T} \cdot (h+k) \cdot dt & z_2 &= \frac{2\pi}{T} \cdot (1-k) \cdot dt \\ dt &= \frac{dz_1}{T} \cdot (h+k) \cdot k \neq -1 & dt &= \frac{dz_2}{T} \cdot (1-k) \cdot k \neq 1 \\ -\frac{A}{T} \cdot \left(\frac{1}{2} \cdot \sin(z_1) \cdot \frac{z}{T} \cdot (1+k) + \int_0^{T} \sin(z_2) \cdot \frac{dz_2}{T} \cdot (1-k) \right) \\ &= \frac{A}{T} \cdot \left(\frac{1}{2T} \cdot (1+k) \cdot \left(-\cos(z_1) \right)_0^{\frac{1}{2}} \right) + \frac{1}{2T} \cdot (1-k) \cdot \left(-\cos(z_2) \right)_0^{\frac{1}{2}} \right) \\ &= \frac{A}{T} \cdot \left(\frac{1}{2T} \cdot (1+k) \cdot \left(-\cos(z_1) \right)_0^{\frac{1}{2}} \right) + \frac{1}{2T} \cdot (1-k) \cdot \left(-\cos(z_2) \right)_0^{\frac{1}{2}} \right) \\ &= \frac{A}{T} \cdot \left(\frac{1}{2T} \cdot (1+k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t \cdot (1+k)\right) \right) \right)_0^{\frac{1}{2}} + \frac{1}{2T} \cdot (1-k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t \cdot (1-k)\right) \right) \right) \\ &= \frac{A}{T} \cdot \left(\frac{-1}{2T} \cdot (1+k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot \frac{T}{T} \cdot (1+k)\right) - \cos\left(\frac{2\pi}{T} \cdot 0 \cdot (1+k)\right) \right) \\ &= \frac{A}{T} \cdot \left(\frac{-1}{2T} \cdot (1+k) \cdot \left(\cos\left(\frac{2\pi}{T} \cdot \frac{T}{T} \cdot (1+k)\right) - \cos\left(\frac{2\pi}{T} \cdot 0 \cdot (1+k)\right) \right) \right) \\ &= \frac{A}{T} \cdot \left(\frac{-1}{2T} \cdot (1+k) \cdot \left(\cos\left(\pi \cdot (1+k)\right) - \cos(0) \right) \right) \\ &= \frac{A}{T} \cdot \left(\frac{-1}{2T} \cdot (1+k) \cdot \left(\cos\left(\pi \cdot (1+k)\right) - \cos(0) \right) \right) \\ &= \frac{A}{T} \cdot \left(\frac{1}{2T} \cdot (1+k) \cdot \left(\cos\left(0\right) - \cos\left(\pi \cdot (1+k)\right) \right) \right) \\ &= \frac{A}{2\pi} \cdot \left(\frac{1}{1+k} \cdot (1 - \cos\left(\pi \cdot (1+k)\right) + \frac{1}{1-k} \cdot (1 - \cos\left(\pi \cdot (1-k)\right) \right) \right) \\ &= \frac{A}{2\pi} \cdot \left(\frac{1-k}{(1+k) \cdot (1-k)} \cdot \left(-\cos\left(\pi \cdot (1+k)\right) + \frac{1+k}{(1+k) \cdot (1-k)} \cdot (1+k) \cdot (1-k) \right) \\ &= \frac{A}{2\pi} \cdot \left(\frac{1-\cos(\pi \cdot (1+k)) - k + k \cdot \cos(\pi \cdot (1+k)) + 1 - \cos(\pi \cdot (1-k)) + k - k \cdot \cos(\pi \cdot (1-k)) }{(1+k) \cdot (1-k)} \right) \\ &= \frac{A}{2\pi} \cdot \left(\frac{1-\cos(\pi \cdot (1+k)) - k + k \cdot \cos(\pi \cdot (1+k)) + 1 - \cos(\pi \cdot (1-k)) + k - k \cdot \cos(\pi \cdot (1-k)) }{(1+k) \cdot (1-k)} \right) \\ &= \frac{A}{2\pi} \cdot \left(\frac{1-\cos(\pi \cdot (1+k)) - k + k \cdot \cos(\pi \cdot (1+k)) + 1 - \cos(\pi \cdot (1-k)) + k - k \cdot \cos(\pi \cdot (1-k)) }{(1+k) \cdot (1-k)} \right) \\ &= \frac{A}{2\pi} \cdot \frac{2 + \cos(\pi \cdot (1+k)) + k + \cos(\pi \cdot (1+k)) - \cos(\pi \cdot (1-k) + k - k \cdot \cos(\pi \cdot (1-k)) }{1 - k^2} \\ &= \frac{A}{2\pi} \cdot \frac{2 + 2 \cdot \cos(k \cdot \pi)}{1 - k^2} \\ &= \frac{A}{2\pi} \cdot \frac{2 + 2 \cdot \cos(k \cdot \pi)}{1 - k^2} \\ &= \frac{A}{2\pi} \cdot \frac{1 + \cos(k \cdot \pi)}{1 - k^2} \\ &= \frac{A}{2\pi} \cdot \frac{1 + \cos(k \cdot \pi)}{1 - k^2}$$

Wartość współczynnika a_k wynosi $\frac{A}{\pi} \cdot \frac{1+\cos(k \cdot \pi)}{1-k^2}$ dla $k \neq 1$ a_k dla k = 1 musimy wyznaczyć raz jeszcze tak wiec wyznaczmy wprost a_1

$$\begin{split} a_1 &= \frac{2}{T} \int_T f(t) \cdot \cos\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \\ &= \frac{2}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot \cos\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt\right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt\right) \\ &= \begin{cases} \cos(x) &= \frac{e^{x^2 + e^{-x^2 + t}}}{2} \\ \sin(x) &= \frac{e^{x^2 - e^{-x^2 + t}}}{2} \end{cases} \end{cases} \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{x^2 - t^2 - e^{-x^2 + t}}}{2} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} + e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot dt + 0\right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{x^2 - t^2 - t} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{y^{\frac{2\pi}{T} \cdot t}} + e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot dt + 0\right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{x^2 - t^2 - t} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{y^{\frac{2\pi}{T} \cdot t}} + e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{y^{\frac{2\pi}{T} \cdot t}} \cdot dt + 0\right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{x^2 - t^2 - t} - e^{-y^{\frac{2\pi}{T} \cdot t}} + e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot dt + 0\right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \left(e^{x^2 - t^2 - t} - e^{-y^{\frac{2\pi}{T} \cdot t}} + e^{y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot t}} - e^{-y^{\frac{2\pi}{T} \cdot t}} \cdot e^{-y^{\frac{2\pi}{T} \cdot$$

$$\begin{split} &= -\frac{A}{4\pi} \cdot \left(\cos\left(\frac{4\pi}{T} \cdot \frac{T}{2}\right) - \cos\left(\frac{4\pi}{T} \cdot 0\right)\right) \\ &= -\frac{A}{4\pi} \cdot \left(\cos\left(2\pi\right) - \cos\left(0\right)\right) \\ &= -\frac{A}{4\pi} \cdot \left(1 - 1\right) \\ &= -\frac{A}{4\pi} \cdot 0 \\ &= 0 \end{split}$$

A wiec wartość współczynnika a_1 wynosi 0

Współczynnik b_k wyznaczamy ze wzoru

$$b_k = \frac{2}{T} \int_T f(t) \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt \tag{45}$$

$$\begin{split} a_k &= \frac{2}{T} \int_T f(t) \cdot \sin \left(k \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= \frac{2}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot \sin \left(k \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot \sin \left(k \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot \sin \left(k \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \sin \left(x \right) \right. \\ &= \left\{ \sin \left(x \right) \right. \\ &= \frac{e^{jx} - e^{-jx}}{2j} \right\} \\ &= \frac{2}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t}}{2j} \cdot \frac{e^{jk\cdot\frac{2\pi}{T} \cdot t} - e^{-jk\cdot\frac{2\pi}{T} \cdot t}}{2j} \cdot dt + 0 \right) \\ &= \frac{2}{T} \cdot \left(\frac{A}{2j \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot e^{jk\cdot\frac{2\pi}{T} \cdot t} - e^{-jk\cdot\frac{2\pi}{T} \cdot t} - e^{-jk\cdot\frac{2\pi}{T} \cdot t} \right) \cdot dt \right) \\ &= \frac{2}{T} \cdot \frac{A}{2j \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot e^{jk\cdot\frac{2\pi}{T} \cdot t} - e^{j\frac{2\pi}{T} \cdot t} \cdot e^{-jk\cdot\frac{2\pi}{T} \cdot t} + e^{-j\cdot\frac{2\pi}{T} \cdot t} \cdot e^{-jk\cdot\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot j \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot t \right) \cdot e^{j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} + e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-jk\cdot\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot j \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot t \cdot (1+k) - e^{j\frac{2\pi}{T} \cdot t} \cdot (1+k) - e^{-j\frac{2\pi}{T} \cdot t} \cdot (1-k) + e^{-j\frac{2\pi}{T} \cdot t} \cdot (1-k) \right) \cdot dt \\ &= \frac{A}{T \cdot j \cdot j} \cdot \int_0^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} \cdot t \cdot (1+k) + e^{-j\frac{2\pi}{T} \cdot t} \cdot (1+k) - e^{j\frac{2\pi}{T} \cdot t} \cdot (1-k) \right) \cdot dt \\ &= -\frac{A}{T} \cdot \int_0^{\frac{T}{2}} \left(\cos \left(\frac{2\pi}{T} \cdot t \cdot (1+k) \right) - \cos \left(\frac{2\pi}{T} \cdot t \cdot (1-k) \right) \right) \cdot dt \\ &= -\frac{A}{T} \cdot \left(\int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \cdot (1+k) \right) \cdot dt - \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \cdot (1-k) \right) \cdot dt \right) \end{aligned}$$

$$\begin{split} & = \begin{cases} z_1 &= \frac{2\pi}{T} \cdot t \cdot (1+k) & z_2 &= \frac{2\pi}{T} \cdot t \cdot (1-k) \\ dz_1 &= \frac{2\pi}{T} \cdot (1+k) \cdot dt & z_2 &= \frac{2\pi}{T} \cdot (1-k) \cdot dt \\ dt &= \frac{2\pi}{2\frac{\pi}{T} \cdot (1+k)} \wedge k \neq -1 & dt &= \frac{dz_2}{2\frac{\pi}{T} \cdot (1-k)} \wedge k \neq 1 \\ \\ & = -\frac{A}{T} \cdot \left(\int_0^{\frac{T}{T}} \cos(z_1) \cdot \frac{dz_1}{\frac{\pi}{T} \cdot (1+k)} - \int_0^{\frac{T}{T}} \cos(z_2) \cdot \frac{dz_2}{\frac{2\pi}{T} \cdot (1-k)} \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{\pi}{T} \cdot (1+k)} \cdot \int_0^{\frac{T}{T}} \cos(z_1) \cdot dz_1 - \frac{1}{2\frac{\pi}{T} \cdot (1-k)} \cdot \int_0^{\frac{T}{T}} \cos(z_2) \cdot dz_2 \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{\pi}{T} \cdot (1+k)} \cdot \left(\sin(z_1) \Big|_0^{\frac{T}{T}} \right) - \frac{1}{2\frac{\pi}{T} \cdot (1-k)} \cdot \left(\sin(z_2) \Big|_0^{\frac{T}{T}} \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{\pi}{T} \cdot (1+k)} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot t \cdot (1+k)\right) \Big|_0^{\frac{T}{T}} \right) - \frac{1}{2\frac{\pi}{T} \cdot (1-k)} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot t \cdot (1-k)\right) \Big|_0^{\frac{T}{T}} \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\frac{\pi}{T} \cdot (1+k)} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot \frac{T}{2} \cdot (1+k)\right) - \sin\left(\frac{2\pi}{T} \cdot 0 \cdot (1+k)\right) \right) \right) \\ & - \frac{1}{2\pi} \cdot \left(1-k \right) \cdot \left(\sin\left(\frac{2\pi}{T} \cdot \frac{T}{2} \cdot (1-k)\right) - \sin\left(\frac{2\pi}{T} \cdot 0 \cdot (1-k)\right) \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot \left(\sin(\pi \cdot (1+k)) - \sin(0) \right) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot (0-0) \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot 0 - \frac{1}{2\pi} \cdot (1-k) \cdot 0 \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot 0 - \frac{1}{2\pi} \cdot (1-k) \cdot 0 \right) \\ & = -\frac{A}{T} \cdot \left(\frac{1}{2\pi} \cdot (1+k) \cdot 0 - \frac{1}{2\pi} \cdot (1-k) \cdot 0 \right) \\ & = -\frac{A}{T} \cdot 0 \\ & = 0 \end{aligned}$$

Wartość współczynnika b_k wynosi 0 dla $k \neq 1$ b_k dla k=1 musimy wyznaczyć raz jeszcze tak wiec wyznaczmy wprost b_1

$$b_{1} = \frac{2}{T} \int_{T} f(t) \cdot \sin\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \frac{2}{T} \cdot \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \sin\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot \sin\left(1 \cdot \frac{2\pi}{T} \cdot t\right) \cdot dt\right)$$

$$= \frac{2}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt\right)$$

$$= \left\{\sin\left(x\right) = \frac{e^{j \cdot x} - e^{-j \cdot x}}{2^{j}}\right\}$$

$$\begin{split} &=\frac{2}{T}\cdot\left(A\cdot\int_{0}^{\frac{T}{2}}\frac{e^{y\frac{2\pi}{T}\cdot t}-e^{-y\frac{2\pi}{T}\cdot t}}{2J}\cdot e^{y\frac{2\pi}{T}\cdot t}-e^{-y\frac{2\pi}{T}\cdot t}\right)\cdot dt +0 \\ &=\frac{2}{T}\cdot\left(\frac{A}{2j\cdot 2j}\cdot\int_{0}^{\frac{T}{2}}\left(e^{y\frac{2\pi}{T}\cdot t}-e^{-y\frac{2\pi}{T}\cdot t}\right)\cdot \left(e^{y\frac{2\pi}{T}\cdot t}-e^{-y\frac{2\pi}{T}\cdot t}\right)\cdot dt \right) \\ &=\frac{2}{T}\cdot\frac{A}{2j\cdot 2j}\cdot\int_{0}^{\frac{T}{2}}\left(e^{y\frac{2\pi}{T}\cdot t}+e^{y\frac{2\pi}{T}\cdot t}-e^{y\frac{2\pi}{T}\cdot t}-e^{-y\frac{2\pi}{T}\cdot t}-e^{-y\frac{2\pi}{T}$$

A wiec wartość współczynnika b_1 wynosi $\frac{A}{2}$

Ostatecznie współczynniki trygonometrycznego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$a_{0} = \frac{A}{\pi}$$

$$a_{1} = 0$$

$$a_{k} = \frac{A}{\pi} \cdot \frac{1 + \cos(k \cdot \pi)}{1 - k^{2}}$$

$$b_{1} = \frac{A}{2}$$

$$b_{k} = 0$$

$$(46)$$

Możemy wyznaczyć kilka wartości współczynników \boldsymbol{a}_k i \boldsymbol{b}_k

k	1	2	3	4	5	6
a_k	0	$-\frac{2}{3}\frac{A}{\pi}$	0	$-\frac{2}{15}\frac{A}{\pi}$	0	$-\frac{2}{35}\frac{A}{\pi}$
b_k	$\frac{A}{2}$	0	0	0	0	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cdot \cos\left(k \cdot \frac{2\pi}{T} \cdot t\right) + b_k \cdot \sin\left(k \cdot \frac{2\pi}{T} \cdot t\right) \right]$$
 (47)

W przypadku sumowania do $k_{max} = 1$ otrzymujemy

W przypadku sumowania do $k_{max} = 2$ otrzymujemy

W przypadku sumowania do $k_{max}=4$ otrzymujemy

W przypadku sumowania do $k_{\max}=6$ otrzymujemy

W przypadku sumowania do $k_{\max}=12$ otrzymujemy

W granicy sumowania do $k_{max} = \infty$ otrzymujemy oryginalny sygnał.

Zadanie 14. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (48)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{49}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(A \cdot t \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T} \cdot t \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

Wartość współczynnika F_0 wynosi $\frac{A}{2}$

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{51}$$

$$F_{k} = \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{1}{T} \int_{0}^{\frac{T}{2}} A \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \begin{cases} z = -j \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz = -j \cdot k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}} \end{cases}$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}}$$

$$= -\frac{A}{T \cdot j \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} e^{z} \cdot dz$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}}$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right)$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - e^{0} \right)$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - 1 \right)$$

$$= j \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-j \cdot k \cdot \pi} - 1 \right)$$

Wartość współczynnika F_k wynosi $j \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-j \cdot k \cdot \pi} - 1\right)$

Współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-\jmath \cdot k \cdot \pi} - 1 \right)$$
(53)

Możemy wyznaczyć kilka wartości współczynników F_k

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	$j \cdot \frac{A}{5\pi}$	0	$j \cdot \frac{A}{3\pi}$	0	$j \cdot \frac{A}{\pi}$	0	$-\jmath\cdot\frac{A}{\pi}$	0	$-\jmath \cdot \frac{A}{3\pi}$	0	$-\jmath\cdot rac{A}{5\pi}$
$ F_k $	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{\pi}$	0	$\frac{A}{\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$
$Arg\{F_k\}$	π	0	π	0	π	0	$-\pi$	0	$-\pi$	0	$-\pi$

Podstawiając to wzoru aproksymacyjnego funkcje f(t)możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (54)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{\min} = -3$ do $k_{\max} = 3$ otrzymujemy

W przypadku sumowania od $k_{min}=-5$ do $k_{max}=5$ otrzymujemy

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy

W przypadku sumowania od $k_{\min} = -21$ do $k_{\max} = 21$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 15. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} -A & t \in \left(-\frac{T}{4} + k \cdot T; 0 + k \cdot T\right) \\ A & t \in \left(0 + k \cdot T; \frac{T}{4} + k \cdot T\right) & \land k \in C \\ 0 & t \in \left(\frac{T}{4} + k \cdot T; \frac{3 \cdot T}{4} + k \cdot T\right) \end{cases}$$
(55)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{56}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + \int_{\frac{T}{4}}^{\frac{3 \cdot T}{4}} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(\int_{-\frac{T}{4}}^{0} -A \cdot dt + \int_{0}^{\frac{T}{4}} A \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^{0} dt + A \cdot \int_{0}^{\frac{T}{4}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(-A \cdot t \Big|_{-\frac{T}{4}}^{0} + A \cdot t \Big|_{0}^{\frac{T}{4}} \right) =$$

$$= \frac{1}{T} \left(-A \cdot \left(0 - \left(-\frac{T}{4} \right) \right) + A \cdot \left(\frac{T}{4} - 0 \right) \right) =$$

$$= \frac{1}{T} \left(-A \cdot \frac{T}{4} + A \cdot \frac{T}{4} \right) =$$

$$= \frac{1}{T} (0) =$$

$$= 0$$

Wartość współczynnika F_0 wynosi 0

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{58}$$

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_{-\frac{T}{4}}^0 - A \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_0^{\frac{T}{4}} A \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{4}}^{\frac{3\cdot T}{4}} 0 \cdot e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + A \cdot \int_0^{\frac{T}{4}} e^{-jk \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{4}}^{\frac{3\cdot T}{4}} 0 \cdot dt \right) \\ &= \begin{cases} z &= -j \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz &= -j \cdot k \cdot \frac{2\pi}{T} \cdot dt \end{cases} \\ dt &= \frac{dt}{-jk \cdot \frac{2\pi}{T}} \end{cases} \\ &= \frac{1}{T} \left(-A \cdot \int_{-\frac{T}{4}}^0 e^z \cdot \frac{dt}{-j \cdot k \cdot \frac{2\pi}{T}} + A \cdot \int_0^{\frac{T}{4}} e^z \cdot \frac{dt}{-j \cdot k \cdot \frac{2\pi}{T}} + 0 \right) \\ &= \frac{1}{T} \left(-\frac{A}{-j \cdot k \cdot \frac{2\pi}{T}} \cdot \int_{-\frac{T}{4}}^0 e^z \cdot dt + \frac{A}{-j \cdot k \cdot \frac{2\pi}{T}} \cdot \int_0^{\frac{T}{4}} e^z \cdot dt \right) \\ &= \frac{1}{T} \cdot \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(e^z \Big|_{-\frac{T}{4}}^0 - e^z \Big|_0^{\frac{T}{4}} - e^z \Big|_0^{\frac{T}{4}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(\left(e^{-jk \cdot \frac{2\pi}{T} \cdot 0} - e^{jk \cdot \frac{2\pi}{T} \cdot \frac{T}{4}} \right) - \left(e^{-jk \cdot \frac{2\pi}{T} \cdot \frac{T}{4}} - e^{-jk \cdot \frac{2\pi}{T} \cdot 0} \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(\left(e^0 - e^{jk \cdot \frac{2\pi}{4}} \right) - \left(e^{-jk \cdot \frac{2\pi}{4}} - e^0 \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{\pi}{2}} \right) - \left(e^{-jk \cdot \frac{\pi}{2}} - 1 \right) \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{\pi}{2}} + e^{-jk \cdot \frac{\pi}{2}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{\pi}{2}} + e^{-jk \cdot \frac{\pi}{2}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - e^{jk \cdot \frac{\pi}{2}} + e^{-jk \cdot \frac{\pi}{2}} \right) \\ &= \frac{A}{j \cdot k \cdot 2\pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2} \right) \right) \\ &= \frac{A}{j \cdot k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2} \right) \right) \\ &= \frac{A}{j \cdot k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2} \right) \right) \\ &= -j \cdot \frac{A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2} \right) \right) \\ &= -j \cdot \frac{A}{k \cdot \pi} \cdot \left(1 - \cos\left(k \cdot \frac{\pi}{2} \right) \right) \\ &= -j \cdot \frac{A}{k \cdot \pi} \cdot \left(\cos\left(k \cdot \frac{\pi}{2} \right) - 1 \right) \end{aligned}$$

Wartość współczynnika F_k wynosi $j \cdot \frac{A}{k \cdot \pi} \cdot \left(\cos\left(k \cdot \frac{\pi}{2}\right) - 1\right)$

Ostatecznie współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_0 = 0$$

$$F_k = j \cdot \frac{A}{k \cdot \pi} \cdot \left(\sin\left(k \cdot \frac{\pi}{2}\right) - 1 \right)$$
(59)

Możemy wyznaczyć kilka wartości współczynników ${\cal F}_k$

k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
F_k	$-\jmath \cdot \frac{A}{3\pi}$	$j \cdot \frac{A}{5\pi}$	0	$j \cdot \frac{A}{3\pi}$	$j \cdot \frac{A}{\pi}$	$j \cdot \frac{A}{\pi}$	0	$-\jmath\cdot\frac{A}{\pi}$	$-\jmath\cdot\frac{A}{\pi}$	$-j \cdot \frac{A}{3\pi}$	0	$-j \cdot \frac{A}{5\pi}$	$\int \cdot \frac{A}{3\pi}$
$ F_k $	$\frac{A}{3\pi}$	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	$\frac{A}{\pi}$	$\frac{A}{\pi}$	0	$\frac{A}{\pi}$	$\frac{A}{\pi}$	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$	$\frac{A}{3\pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{k \cdot \frac{2\pi}{T} \cdot t}$$
 (60)

W przypadku sumowania od $k_{min}=-1$ do $k_{max}=1$ otrzymujemy

W przypadku sumowania od $k_{\min}=-2$ do $k_{\max}=2$ otrzymujemy

W przypadku sumowania od $k_{\min} = -3$ do $k_{\max} = 3$ otrzymujemy

W przypadku sumowania od $k_{min}=-5$ do $k_{max}=5$ otrzymujemy

W przypadku sumowania od $k_{min}=-6$ do $k_{max}=6$ otrzymujemy

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy

W przypadku sumowania od $k_{\min} = -21$ do $k_{\max} = 21$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 16. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja odcinkowa. W pierwszym okresie możemy ja opisać ogólnym równaniem prostej:

$$f(t) = a \cdot t + b \tag{61}$$

W pierwszym okresie wykres funkcji jest prostą przechodzącą przez dwa punkty: (0,0) oraz (T,A). Możemy wiec napisać układ równań rozwiązać go i znaleźć nie znane parametry a i b.

$$\begin{cases} 0 = a \cdot 0 + b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + b \end{cases}$$

$$\begin{cases} 0 = b \\ A = a \cdot T + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ \frac{A}{T} = a \end{cases}$$

A więc funkcję przedstawioną na rysunku, w pierwszy okresie można opisać wzorem

$$f(t) = \frac{A}{T} \cdot t$$

I ogólniej całą funkcję można wyrazić następującym wzorem

$$f(t) = \frac{A}{T} \cdot (t - k \cdot T) \land k \in C$$

Współczynnik a_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{62}$$

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt$$

$$= \frac{1}{T} \int_0^T \frac{A}{T} \cdot t \cdot dt$$

$$= \frac{A}{T^2} \int_0^T t \cdot dt$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot t^2 \Big|_0^T$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot \left(T^2 - 0^2\right)$$

$$= \frac{A}{T^2} \cdot \frac{1}{2} \cdot T^2$$

$$= \frac{A}{2}$$

Wartość współczynnika F_0 wynosi $\frac{A}{2}$

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{63}$$

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \int_0^T \frac{A}{T} \cdot t \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1 \cdot A}{T^2} \int_0^T t \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1 \cdot A}{T^2} \int_0^T t \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \begin{cases} u &= t \quad dv &= e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ du &= dt \quad v &= \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \end{cases} \\ &= \frac{A}{T^2} \cdot \left(t \cdot \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right)_0^T - \int_0^T \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T^2} \cdot \left(\left(T \cdot \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot T} - 0 \cdot \frac{T}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) + \frac{T^2}{(-j \cdot k \cdot 2\pi)^2} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \right) \\ &= \frac{A}{T^2} \cdot \left(\frac{T^2}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot T} + \frac{T^2}{-(k \cdot 2\pi)^2} \cdot \left(e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot T} - e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} \cdot e^{-j \cdot k \cdot 2\pi} - \frac{1}{(k \cdot 2\pi)^2} \cdot (1 - 1) \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} - \frac{1}{(k \cdot 2\pi)^2} \cdot (1 - 1) \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} - \frac{1}{(k \cdot 2\pi)^2} \cdot 0 \right) \\ &= A \cdot \left(\frac{1}{-j \cdot k \cdot 2\pi} - 0 \right) \\ &= \frac{A}{-j \cdot k \cdot 2\pi} \end{aligned}$$

$$= \jmath \cdot \frac{A}{k \cdot 2\pi}$$

Wartość współczynnika F_k wynosi $\jmath \cdot \frac{A}{k \cdot 2\pi}$

Ostatecznie współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi}$$
(64)

Możemy wyznaczyć kilka wartości współczynników ${\cal F}_k$

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	$-\jmath \cdot \frac{A}{10 \cdot \pi}$	$-j \cdot \frac{A}{8 \cdot \pi}$	$-j \cdot \frac{A}{6 \cdot \pi}$	$-\jmath \cdot \frac{A}{4 \cdot \pi}$	$-\jmath \cdot \frac{A}{2 \cdot \pi}$	$\frac{A}{2}$	$\int \cdot \frac{A}{2 \cdot \pi}$	$j \cdot \frac{A}{4 \cdot \pi}$	$j \cdot \frac{A}{6 \cdot \pi}$	$j \cdot \frac{A}{8 \cdot \pi}$	$j \cdot \frac{A}{10 \cdot \pi}$
$ F_k $	$\frac{A}{10 \cdot \pi}$	$\frac{A}{8 \cdot \pi}$	$\frac{A}{6 \cdot \pi}$	$\frac{A}{4 \cdot \pi}$	$\frac{A}{2 \cdot \pi}$	$\frac{A}{2}$	$\frac{A}{2 \cdot \pi}$	$\frac{A}{4 \cdot \pi}$	$\frac{A}{6 \cdot \pi}$	$\frac{A}{8 \cdot \pi}$	$\frac{A}{10 \cdot \pi}$
$Arg\left(F_{k}\right)$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (65)

W przypadku sumowania od $k_{min}=-1$ do $k_{max}=1$ otrzymujemy

W przypadku sumowania od $k_{\min}=-2$ do $k_{\max}=2$ otrzymujemy

W przypadku sumowania od $k_{min} = -3$ do $k_{max} = 3$ otrzymujemy

W przypadku sumowania od $k_{\min} = -7$ do $k_{\max} = 7$ otrzymujemy

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 17. Wyznacz współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (66)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{67}$$

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \frac{1}{T} \int_{\frac{T}{2}}^{T} 0 \cdot dt \right)$$

$$= \frac{A}{T} \left(\int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right)$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{\frac{2\pi}{T}} \end{cases}$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{\frac{2\pi}{T}}$$

$$= \frac{A}{T} \cdot \frac{2\pi}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz$$

$$= \frac{A}{2\pi} \cdot \left(-\cos(z) \Big|_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}} \right)$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) - \cos\left(\frac{2\pi}{T} \cdot 0\right) \right)$$

$$\begin{split} &= -\frac{A}{2\pi} \cdot (\cos{(\pi)} - \cos{(0)}) \\ &= -\frac{A}{2\pi} \cdot (-1 - 1) \\ &= -\frac{A}{2\pi} \cdot (-2) \\ &= \frac{A}{\pi} \end{split}$$

Wartość współczynnika F_0 wynosi $\frac{A}{\pi}$

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{68}$$

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \sin\left(x\right) \right. &= \frac{e^{\jmath x} - e^{-\jmath x}}{2\jmath} \right\} \\ &= \frac{1}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \frac{2\pi}{T} \cdot t} - e^{-\jmath \frac{2\pi}{T} \cdot t}}{2\jmath} \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{1}{T} \cdot \left(\frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \frac{2\pi}{T} \cdot t} - e^{-\jmath \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2\jmath} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \frac{2\pi}{T} \cdot t - \jmath k \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \frac{2\pi}{T} \cdot t - \jmath k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2\jmath} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \frac{2\pi}{T} \cdot t - \jmath k \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \frac{2\pi}{T} \cdot t - \jmath k \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \frac{2\pi}{T} \cdot t \cdot (1 - k)} - e^{-\jmath \frac{2\pi}{T} \cdot t \cdot (1 + k)} \right) \cdot dt \\ &= \left\{ \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \frac{2\pi}{T} \cdot t \cdot (1 - k)} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \frac{2\pi}{T} \cdot t \cdot (1 + k)} \cdot dt \right) \right. \\ &= \left\{ \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{2\imath} \cdot \frac{dz_1}{T \cdot (1 - k)} \cdot dt - \int_0^{\frac{T}{2}} e^{2\imath} \cdot \frac{dz_2}{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot dt \right. \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\int_0^{\frac{T}{2}} e^{2\imath} \cdot \frac{dz_1}{J \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath} \cdot dz_1 - \frac{1}{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath} \cdot dz_2 \right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath} \cdot dz_1 - \frac{1}{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{2\imath} \cdot dz_2 \right) \end{aligned}$$

$$\begin{split} &=\frac{A}{T\cdot 2g\cdot g\cdot \frac{2\pi}{T}}\cdot\left(\frac{1}{1-k}\cdot\int_{0}^{\frac{\pi}{2}}e^{z_{1}}\cdot dz_{1}+\frac{1}{1+k}\cdot\int_{0}^{\frac{\pi}{2}}e^{z_{2}}\cdot dz_{2}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot e^{z_{1}}\Big|_{0}^{2}+\frac{1}{1+k}\cdot e^{z_{2}}\Big|_{0}^{2}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot e^{y\cdot \frac{2\pi}{T}\cdot(1-k)\cdot t}\Big|_{0}^{\frac{\pi}{2}}+\frac{1}{1+k}\cdot e^{-y\cdot \frac{2\pi}{T}\cdot(1+k)\cdot t}\Big|_{0}^{\frac{\pi}{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot \left(e^{y\cdot \frac{2\pi}{T}\cdot(1-k)\cdot \frac{\pi}{2}}-e^{y\cdot \frac{2\pi}{T}\cdot(1-k)\cdot 0}\right)+\frac{1}{1+k}\cdot \left(e^{-y\cdot \frac{2\pi}{T}\cdot(1+k)\cdot \frac{\pi}{2}}-e^{-y\cdot \frac{2\pi}{T}\cdot(1+k)\cdot 0}\right)\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1}{1-k}\cdot \left(e^{y\cdot \pi\cdot(1-k)}-e^{0}\right)+\frac{1}{1+k}\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-e^{0}\right)\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{1+k}{(1-k)\cdot(1+k)}\cdot \left(e^{y\cdot \pi\cdot(1-k)}-1\right)+\frac{1-k}{(1-k)\cdot(1+k)}\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-1\right)\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{(1+k)\cdot \left(e^{y\cdot \pi\cdot(1-k)}-1\right)}{(1-k)\cdot(1+k)}+\frac{(1-k)\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-1\right)}{(1-k)\cdot(1+k)}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{(1+k)\cdot \left(e^{y\cdot \pi\cdot(1-k)}-1\right)+(1-k)\cdot \left(e^{-y\cdot \pi\cdot(1+k)}-1\right)}{(1-k)\cdot(1+k)}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot(1-k)}-1+k\cdot e^{y\cdot \pi\cdot(1-k)}-k+e^{-y\cdot \pi\cdot(1+k)}-1-k\cdot e^{-y\cdot \pi\cdot(1+k)}+k}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot(1-k)}-2+k\cdot e^{y\cdot \pi\cdot(1-k)}+e^{-y\cdot \pi\cdot(1+k)}-k\cdot e^{-y\cdot \pi\cdot(1+k)}+k}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot(1-k)}-2+k\cdot e^{y\cdot \pi\cdot(1-k)}+e^{-y\cdot \pi\cdot(1+k)}-k\cdot e^{-y\cdot \pi\cdot(1+k)}+k}{1-k^{2}}\right)\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{e^{y\cdot \pi\cdot(1-k)}-2+k\cdot e^{y\cdot \pi\cdot(1-k)}+e^{-y\cdot \pi\cdot(1+k)}-k\cdot e^{-y\cdot \pi\cdot(1+k)}+k}-k\cdot e^{-y\cdot \pi\cdot k}-k\cdot e^{-y\cdot \pi\cdot k}$$

Wartość współczynnika F_k wynosi $\frac{A}{2 \cdot \pi} \cdot \frac{e^{-\jmath \cdot \pi \cdot k} + 1}{1 - k^2}$ dla $k \neq 1 \land k \neq -1$ F_k dla k = 1 musimy wyznaczyć wspołczynnik raz jeszcze tak wiec wyznaczmy wprost F_1

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \end{split}$$

$$\begin{split} &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) \\ &= \left\{ \sin \left(x \right) \right. = \frac{e^{jx} - e^{-jx}}{2j} \right\} \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t}}{2j} \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{1}{T} \cdot \left(\frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} \left(e^{j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} - e^{-j\frac{2\pi}{T} \cdot t} \right) \cdot dt \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) - e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{0} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} dt - \int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} dt - \int_{0}^{\frac{T}{2}} e^{j\frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\left(\frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j\frac{4\pi}{T} \cdot t} \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\left(\frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j\frac{4\pi}{T} \cdot t} \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j\frac{2\pi}{T} - e^{0} \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j\frac{2\pi}{T} - e^{0} \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j\frac{2\pi}{T} - e^{0} \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j\frac{2\pi}{T} - e^{0} \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(1 - 1 \right) \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}$$

$$= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{T}{2} + 0\right)$$

$$= \frac{A}{T \cdot 2\jmath} \cdot \frac{T}{2}$$

$$= \frac{A}{4\jmath}$$

$$= -\jmath \cdot \frac{A}{4}$$

A wiec wartość współczynnika F_1 wynosi $-\jmath \cdot \frac{A}{4}$

 F_k dla k=-1 musimy wyznaczyć wspołczynnik raz jeszcze tak wiec wyznaczmy wprost F_{-1}

$$\begin{split} F_{-1} &= \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{2}} A \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) \\ &= \left\{ \sin \left(x \right) \right. &= \frac{e^{j \cdot x} - e^{-j \cdot x}}{2j} \right\} \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \right. \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \right. \\ &= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \right. \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot (1-1)} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot 0} \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{0 \cdot dt} \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} 1 \cdot dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{4\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) \end{aligned}$$

$$\begin{split} &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \int_{0}^{\frac{T}{2}} e^{z} \cdot dz - \int_{0}^{\frac{T}{2}} dt\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot e^{z} \Big|_{0}^{\frac{T}{2}} - t \Big|_{0}^{\frac{T}{2}}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot e^{-\jmath \cdot \frac{4\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}} - \left(\frac{T}{2} - 0\right)\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \left(e^{-\jmath \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{-\jmath \cdot \frac{4\pi}{T} \cdot 0}\right) - \left(\frac{T}{2} - 0\right)\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \left(e^{-\jmath \cdot 2\pi} - e^{0}\right) - \frac{T}{2}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(\frac{1}{\jmath \cdot \frac{4\pi}{T}} \cdot \left(1 - 1\right) - \frac{T}{2}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(0 - \frac{T}{2}\right) \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left(0 - \frac{T}{2}\right) \\ &= -\frac{A}{4\jmath} \\ &= \jmath \cdot \frac{A}{4} \end{split}$$

A wiec wartość współczynnika F_{-1} wynosi $\jmath \cdot \frac{A}{4}$

Ostatecznie współczynniki zespolonego szeregu fouriera dla funkcji przedstawionej na rysunku przyjmują wartości

$$F_{0} = \frac{A}{\pi}$$

$$F_{k} = \frac{A}{2 \cdot \pi} \cdot \frac{e^{-\jmath \cdot \pi \cdot k} + 1}{1 - k^{2}}$$

$$F_{-1} = \jmath \cdot \frac{A}{4}$$

$$F_{1} = -\jmath \cdot \frac{A}{4}$$
(69)

Możemy wyznaczyć kilka wartości współczynników F_k

F_k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
F_k	$-\frac{A}{35\pi}$	0	$-\frac{A}{15\pi}$	0	$-\frac{A}{3\pi}$	$-\jmath\cdot\frac{A}{4}$	$\frac{A}{\pi}$	$j \cdot \frac{A}{4}$	$\frac{A}{3\pi}$	0	$\frac{A}{15\pi}$	0	$\frac{A}{35\pi}$
$ F_k $	$\frac{A}{35\pi}$	0	$\frac{A}{15\pi}$	0	$-\frac{A}{3\pi}$	$\frac{A}{4}$	$\frac{A}{\pi}$	$\frac{A}{4}$	$\frac{A}{3\pi}$	0	$\frac{A}{15\pi}$	0	$\frac{A}{35\pi}$

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (70)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{\min}=-2$ do $k_{\max}=2$ otrzymujemy

W przypadku sumowania od $k_{min} = -4$ do $k_{max} = 4$ otrzymujemy

W przypadku sumowania od $k_{\min}=-6$ do $k_{\max}=6$ otrzymujemy

W przypadku sumowania od $k_{\min} = -12$ do $k_{\max} = 12$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 18. Wyznacz wszystkie współczynniki zespolonego szeregu fouriera dla okresowego sygnału f(t) będącego przekształceniem sygnału cosinusoidalnego przedstawionego na rysunku.

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (71)

Współczynnik F_0 wyznaczamy ze wzoru

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{72}$$

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right)$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right)$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot dt$$

$$= \begin{cases} z &= \frac{2\pi}{T} \cdot t \\ dz &= \frac{2\pi}{T} \cdot dt \\ dt &= \frac{1}{2\pi} \cdot dz \\ dt &= \frac{T}{2\pi} \cdot dz \end{cases}$$

$$= \frac{A}{T} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot \frac{T}{2\pi} \cdot dz$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \int_{0}^{\frac{T}{2}} \cos(z) \cdot dz$$

$$= \frac{A}{T} \cdot \frac{T}{2\pi} \cdot \sin(z) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{2\pi} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}}$$

$$= \frac{A}{2\pi} \cdot \left(\sin\left(\frac{2\pi}{T} \cdot \frac{T}{2}\right) - \sin\left(\frac{2\pi}{T} \cdot 0\right)\right)$$

$$= \frac{A}{2\pi} \cdot (\sin(pi) - \sin(0))$$

$$= \frac{A}{2\pi} \cdot (0 - 0)$$

$$= \frac{A}{2\pi} \cdot 0$$

$$= 0$$

Wartość współczynnika F_0 wynosi 0

Współczynnik F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (73)

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \cos \left(x \right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot k \cdot \frac{2\pi}{T} \cdot t \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot t} \cdot dt + \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot t} \right) \\ &= \left\{ \frac{z_1}{dz_1} \cdot \frac{2\pi}{T} \cdot (1 - k) \cdot dt + \frac{1}{dz_2} - j \cdot \frac{2\pi}{T} \cdot (1 + k) \cdot dt \right\} \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_0^{\frac{T}{2}} e^{z_1} \cdot \frac{1}{dz_1} \right) \cdot dz_1 + \int_0^{\frac{T}{2}} e^{z_2} \cdot \frac{1}{-j \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{1}{j \cdot \frac{2\pi}{T} \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 + \frac{1}{-j \cdot \frac{2\pi}{T} \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{j \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{j \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{j \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{j \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{j \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{j \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{j \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{j \cdot 2\pi \cdot (1 + k)} \cdot \int_0^{\frac{T}{2}} e^{z_2} \cdot dz_2 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{j \cdot 2\pi \cdot (1 - k)} \cdot \int_0^{\frac{T}{2}} e^{z_1} \cdot dz_1 - \frac{T}{j$$

$$\begin{split} &= \frac{A}{2 \cdot T} \cdot \frac{T}{j \cdot 2\pi} \cdot \left(\frac{1}{(1-k)} \cdot \int_{0}^{\frac{T}{2}} e^{z_{1}} \cdot dz_{1} - \frac{1}{(1+k)} \cdot \int_{0}^{\frac{T}{2}} e^{z_{2}} \cdot dz_{2}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{z_{1}} \Big|_{0}^{\frac{T}{2}} - \frac{1}{(1+k)} \cdot e^{z_{2}} \Big|_{0}^{\frac{T}{2}}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot e^{j \cdot \frac{2\pi}{T} \cdot (1-k) \cdot t} \Big|_{0}^{\frac{T}{2}} - \frac{1}{(1+k)} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot (1+k) \cdot t} \Big|_{0}^{\frac{T}{2}}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{j \cdot \frac{2\pi}{T} \cdot (1-k) \cdot \frac{T}{2}} - e^{j \cdot \frac{2\pi}{T} \cdot (1-k) \cdot 0}\right) - \frac{1}{(1+k)} \cdot \left(e^{-j \cdot \frac{2\pi}{T} \cdot (1+k) \cdot \frac{T}{2}} - e^{-j \cdot \frac{2\pi}{T} \cdot (1+k) \cdot 0}\right)\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{j \cdot \pi \cdot (1-k)} - e^{0}\right) - \frac{1}{(1+k)} \cdot \left(e^{-j \cdot \pi \cdot (1+k)} - 1\right)\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(e^{j \cdot \pi} \cdot e^{-j \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(e^{-j \cdot \pi} \cdot e^{-j \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{-j \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{-j \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{1}{(1-k)} \cdot \left(-1 \cdot e^{-j \cdot k \cdot \pi} - 1\right) - \frac{1}{(1+k)} \cdot \left(-1 \cdot e^{-j \cdot k \cdot \pi} - 1\right)\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{\left(-e^{-j \cdot k \cdot \pi} - 1\right) \cdot \left(1+k\right)}{(1-k) \cdot \left(1+k\right)} - \frac{\left(-e^{-j \cdot k \cdot \pi} - 1\right) \cdot \left(1-k\right)}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{\left(-e^{-j \cdot k \cdot \pi} - 1 - k \cdot e^{-j \cdot k \cdot \pi} - k + e^{-j \cdot k \cdot \pi} - 1 + k \cdot e^{-j \cdot k \cdot \pi} + k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{\left(-e^{-j \cdot k \cdot \pi} - 1 - k \cdot e^{-j \cdot k \cdot \pi} - k + e^{-j \cdot k \cdot \pi} + 1 - k \cdot e^{-j \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{\left(-e^{-j \cdot k \cdot \pi} - 1 - k \cdot e^{-j \cdot k \cdot \pi} - k + e^{-j \cdot k \cdot \pi} + 1 - k \cdot e^{-j \cdot k \cdot \pi} - k}{(1-k) \cdot \left(1+k\right)}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{\left(-e^{-j \cdot k \cdot \pi} - 1 - k \cdot e^{-j \cdot k \cdot \pi} - k + e^{-j \cdot k \cdot \pi} + 1 - k \cdot e^{-j \cdot k \cdot \pi} - k}{1-k^{2}}\right) \\ &= \frac{A}{j \cdot 4\pi} \cdot \left(\frac{\left(-e^{-j \cdot k \cdot \pi} - 1 - k \cdot e^{-j \cdot k \cdot \pi} - k + e^{-j \cdot k \cdot \pi} + 1 - k \cdot e^{-j \cdot k \cdot \pi} - k}{1-k^{2}}\right) \\ &= -\frac{A \cdot k}{j \cdot 2\pi} \cdot \left(\frac{e^{-j \cdot k \cdot \pi} + 1}{1-k^{2}}\right) \end{aligned}$$

Wartość współczynnika F_k wynosi $-\frac{A\cdot k}{\jmath\cdot 2\pi}\cdot \left(\frac{e^{-\jmath\cdot k\cdot\pi}+1}{1-k^2}\right)$.

Dla k=1 i k=-1 trzeba wyzanczyć wartość współczynnika raz jeszcze wprost ze wzoru

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) \\ &= \left\{ \cos\left(x\right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} \\ &= \frac{1}{T} \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \int_0^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{2\pi}{T} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt \end{split}$$

$$\begin{split} &= \frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot (1-1) \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot (1+1) \cdot t} \right) \cdot dt \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot 0 \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot 2 \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{0} \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} 1 \cdot dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} dt + \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{4\pi}{T} \cdot t} \cdot dt \right) \\ &= \left\{ \begin{aligned} z &= -j \cdot \frac{4\pi}{T} \cdot t \\ dt &= -j \cdot \frac{4\pi}{T} \cdot dt \\ dt &= -j \cdot \frac{4\pi}{T} \cdot dt \\ dt &= -j \cdot \frac{4\pi}{T} \cdot dt \end{aligned} \right\} \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} dt + \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot dz \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} dt + \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot e^{z} \Big|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\left(\frac{T}{2} - 0 \right) - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j \cdot \frac{4\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}} \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot \frac{4\pi}{T} \cdot 0} \right) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot (1 - 1) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot (1 - 1) \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) \\ &= \frac{A}{2 \cdot T} \cdot \left(\frac{T}{2} - 0 \right) \end{aligned}$$

Wartość współczynnika F_1 wynosi $\frac{A}{4}$.

$$\begin{split} F_{-1} &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &= \frac{1}{T} \left(\int_0^{\frac{T}{2}} A \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) \end{split}$$

$$\begin{split} &=\frac{1}{T}\left(A \cdot \int_{0}^{\frac{T}{2}} \cos\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{j\frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt\right) \\ &=\left\{\cos\left(x\right) = \frac{e^{j\cdot x} + e^{-j\cdot x}}{2}\right\} \\ &=\frac{1}{T}\left(A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t}}{2} \cdot e^{j\cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0\right) \\ &=\frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t}\right) \cdot e^{j\cdot \frac{2\pi}{T} \cdot t} \cdot dt \\ &=\frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t}\right) \cdot dt \\ &=\frac{A}{2 \cdot T} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t} + e^{-j\cdot \frac{2\pi}{T} \cdot t + j\cdot \frac{2\pi}{T} \cdot t}\right) \cdot dt \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{2\pi}{T} \cdot 2 \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot \frac{2\pi}{T} \cdot 0 \cdot t} \cdot dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot dt}\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{4\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} dt\right) \\ &=\frac{A}{2 \cdot T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot t} \cdot dt + \int_{0}^{\frac{T}{2}} e^{j\cdot \frac{\pi}{T} \cdot$$

$$=\frac{A}{4}$$

Wartość współczynnika F_{-1} wynosi $\frac{A}{4}$.

Tak wiec ostatecznie współczynniki zespolonego szeregu fouriera

$$F_{0} = 0$$

$$F_{1} = \frac{A}{4}$$

$$F_{-1} = \frac{A}{4}$$

$$F_{k} = -\frac{A \cdot k}{j \cdot 2\pi} \cdot \left(\frac{e^{-j \cdot k \cdot \pi} + 1}{1 - k^{2}}\right)$$

$$(74)$$

Możemy wyznaczyć kilka wartości współczynników F_k

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	0	$j \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0	$j \cdot \frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$-j \cdot \frac{2 \cdot A}{3 \cdot \pi}$	0	$-j \cdot \frac{4 \cdot A}{15 \cdot \pi}$	0
$ F_k $	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0	$\frac{2 \cdot A}{3 \cdot \pi}$	$\frac{A}{4}$	0	$\frac{A}{4}$	$\frac{2 \cdot A}{3 \cdot \pi}$	0	$\frac{4 \cdot A}{15 \cdot \pi}$	0
$Arg\left\{F_{k}\right\}$	0	π	0	π	0	0	0	$-\pi$	0	$-\pi$	0

Podstawiając to wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$
 (75)

W przypadku sumowania od $k_{\min} = -1$ do $k_{\max} = 1$ otrzymujemy

W przypadku sumowania od $k_{min}=-2$ do $k_{max}=2$ otrzymujemy

W przypadku sumowania od $k_{min} = -4$ do $k_{max} = 4$ otrzymujemy

W przypadku sumowania od $k_{\min} = -10$ do $k_{\max} = 10$ otrzymujemy

W przypadku sumowania od $k_{\min} = -20$ do $k_{\max} = 20$ otrzymujemy

W granicy sumowania od $k_{min}=-\infty$ do $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

Zadanie 19. Wyznacz udział mocy podstawowej (pierwszej) harmonicznej w całkowitej mocy okresowego sygnału f(t) przedstawionego na rysunku:

$$\frac{P_1}{P} = ? \tag{76}$$

W pierwszej kolejności należy opisać sygnał za pomocą wzoru:

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ -A & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (77)

Moc sygnału możemy obliczyć ze wzoru:

$$P = \frac{1}{T} \cdot \int_{T} |f(t)|^{2} \cdot dt \tag{78}$$

Podstawiając wartości sygnału f(t) do wzoru na moc otrzymujemy:

$$\begin{split} P &= \frac{1}{T} \cdot \int_{T} |f(t)|^{2} \cdot dt \\ &= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{2}} |A|^{2} \cdot dt + \int_{\frac{T}{2}}^{T} |-A|^{2} \cdot dt \right) \\ &= \frac{1}{T} \cdot \left(A^{2} \cdot \int_{0}^{\frac{T}{2}} dt + A^{2} \cdot \int_{\frac{T}{2}}^{T} dt \right) \\ &= \frac{A^{2}}{T} \cdot \left(t|_{0}^{\frac{T}{2}} + t|_{\frac{T}{2}}^{T} \right) \\ &= \frac{A^{2}}{T} \cdot \left(\frac{T}{2} - 0 + T - \frac{T}{2} \right) \\ &= \frac{A^{2}}{T} \cdot (T) \\ &= A^{2} \end{split}$$

Moc sygnału f(t) równa się A^2 .

Moc podstawowej (pierwszej) harmonicznej to (na podstawie twierdzenia Parsevala):

$$P_1 = |F_1|^2 + |F_{-1}|^2 (79)$$

Ponieważ sygnał f(t) jest sygnałem rzeczywistym, to $|F_1| = |F_{-1}|$, czyli moc podstawowej harmonicznej:

$$P_1 = 2 \cdot |F_1|^2 \tag{80}$$

W związku z tym, należy obliczyć wartość współczynnika F_1 . Można to zrobić bezpośrednio ze wzoru na F_k :

$$F_k = \frac{1}{T} \cdot \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{81}$$

podstawiając k = 1:

$$F_1 = \frac{1}{T} \cdot \int_T f(t) \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \tag{82}$$

Podstawiając wartości sygnału f(t) do wzoru na F_1 otrzymujemy:

$$F_{1} = \frac{1}{T} \cdot \int_{T} f(t) \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$

$$= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{2}} A \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} - A \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right)$$

$$= \frac{A}{T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{\frac{T}{2}}^{T} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right)$$

$$= \begin{cases} z &= -j \cdot \frac{2\pi}{T} \cdot t \\ dz &= -j \cdot \frac{2\pi}{T} \cdot dt \\ dt &= \frac{dz}{-j \cdot \frac{2\pi}{T}} \end{cases}$$

$$= \frac{A}{T} \cdot \left(\int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-j \cdot \frac{2\pi}{T}} - \int_{\frac{T}{2}}^{T} e^{z} \cdot \frac{dz}{-j \cdot \frac{2\pi}{T}} \right)$$

$$= -\frac{A}{T \cdot j \cdot \frac{2\pi}{T}} \cdot \left(\int_{0}^{\frac{T}{2}} e^{z} \cdot dz - \int_{\frac{T}{2}}^{T} e^{z} \cdot dz \right)$$

$$= -\frac{A}{j \cdot 2\pi} \cdot \left(e^{-j \cdot \frac{2\pi}{T} \cdot t} \Big|_{0}^{T} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \Big|_{\frac{T}{2}}^{T} \right)$$

$$= -\frac{A}{j \cdot 2\pi} \cdot \left(e^{-j \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \Big|_{\frac{T}{2}}^{T} \right)$$

$$= -\frac{A}{j \cdot 2\pi} \cdot \left(e^{-j \cdot \pi} - e^{0} - e^{-j \cdot \frac{2\pi}{T} \cdot t} + e^{-j \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} \right)$$

$$= -\frac{A}{j \cdot 2\pi} \cdot \left(e^{-j \cdot \pi} - e^{0} - e^{-j \cdot 2 \cdot \pi} + e^{-j \cdot \pi} \right)$$

$$= \begin{cases} e^{-j \cdot 2 \cdot \pi} = \cos(2\pi) - j \cdot \sin(2\pi) = 1 \\ e^{-j \cdot \pi} = \cos(\pi) - j \cdot \sin(\pi) = -1 \end{cases}$$

$$= -\frac{A}{j \cdot 2\pi} \cdot (-1 - 1 - 1 - 1)$$

$$= -\frac{A}{j \cdot 2\pi} \cdot (-4)$$

$$= \frac{2 \cdot A}{j \cdot \pi}$$

$$= -j \cdot \frac{2 \cdot A}{j \cdot \pi}$$

Wartość współczynnika F_1 to $-\jmath \cdot \frac{2 \cdot A}{\pi}$

Podstawiając wartość współczynnika F_1 do wzoru na moc podstawowej harmonicznej otrzymujemy:

$$P_1 = 2 \cdot |F_1|^2$$

$$= 2 \cdot \left| -\jmath \cdot \frac{2 \cdot A}{\pi} \right|^2$$

$$= 2 \cdot \left(\frac{2 \cdot A}{\pi} \right)^2$$

$$= 2 \cdot \frac{4 \cdot A^2}{\pi^2}$$

$$= \frac{8 \cdot A^2}{\pi^2}$$

Moc podstawowej harmonicznej równa się $P_1 = \frac{8 \cdot A^2}{\pi^2}$.

Teraz można wyznaczyć udział mocy podstawowej (pierwszej) harmonicznej w całkowitej mocy okresowego sygnału f(t):

$$\frac{P_1}{P} = \frac{\frac{8 \cdot A^2}{\pi^2}}{A^2} = \frac{8}{\pi^2} \approx 81\% \tag{83}$$

Zadanie 20. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

W pierwszej kolejności opiszmy sygnał za pomocą sygnałów elementarnych:

$$f(t) = A \cdot \Pi(\frac{t}{\tau}) \tag{84}$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (85)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} A \cdot \Pi(\frac{t}{\tau}) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-\frac{\tau}{2}} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{\frac{\tau}{2}}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-\frac{\tau}{2}} 0 \cdot dt + \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{\frac{\tau}{2}}^{\infty} 0 \cdot dt \\ &= 0 + \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= A \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \begin{cases} z &= -\jmath \cdot \omega \cdot t \\ dz &= -\jmath \cdot \omega \cdot dt \\ dt &= \frac{1}{-\jmath \cdot \omega} \cdot dz \end{cases} \\ &= A \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cdot e^{z} \cdot \frac{1}{-\jmath \cdot \omega} \cdot dz \\ &= A \cdot \frac{1}{-\jmath \cdot \omega} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cdot e^{z} \cdot dz \\ &= A \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{z} \Big|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \\ &= A \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \Big|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \\ &= \frac{A}{-\jmath \cdot \omega} \cdot \left(e^{-\jmath \cdot \omega \cdot \frac{\tau}{2}} - e^{-\jmath \cdot \omega \cdot (-\frac{\tau}{2})} \right) \end{split}$$

$$\begin{split} &= \frac{A}{\jmath \cdot \omega} \cdot \left(e^{\jmath \cdot \omega \cdot \frac{\tau}{2}} - e^{-\jmath \cdot \omega \cdot \frac{\tau}{2}} \right) \\ &= \left\{ sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= \frac{2 \cdot A}{\omega} \cdot sin\left(\omega \cdot \frac{\tau}{2}\right) \\ &= \left\{ \frac{sin(x)}{x} = Sa(x) \right\} \\ &= A \cdot \tau \cdot Sa\left(\omega \cdot \frac{\tau}{2}\right) \end{split}$$

Transformata sygnału $f(t)=A\cdot\Pi(\frac{t}{\tau})$ to $F(\jmath\omega)=A\cdot\tau\cdot Sa\left(\omega\cdot\frac{\tau}{2}\right)$ Narysujmy widmo sygnału $f(t)=A\cdot\Pi(\frac{t}{\tau})$ czyli:

$$F(j\omega) = A \cdot \tau \cdot Sa\left(\omega \cdot \frac{\tau}{2}\right) \tag{86}$$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j \cdot \omega)| \tag{87}$$

Widmo fazowe obliczamy ze wzoru:

$$\Phi(\omega) = arctg(\frac{Im\{F(j \cdot \omega)\}}{Re\{F(j \cdot \omega)\}})$$
(88)

Zadanie 21. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

$$f(t) = \begin{cases} 0 & dla & t \in (-\infty; 0) \\ A \cdot e^{-a \cdot t} & dla & t \in (0; \infty) \end{cases}$$
(89)

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (90)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 0 + \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{0}^{\infty} A \cdot e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= A \cdot \int_{0}^{\infty} e^{-(a + \jmath \cdot \omega) \cdot t} \cdot dt \\ &= \lim_{\tau \to \infty} A \cdot \int_{0}^{\tau} e^{-(a + \jmath \cdot \omega) \cdot t} \cdot dt \\ &= \left\{ \begin{aligned} z &= -(a + \jmath \cdot \omega) \cdot t \\ dz &= -(a + \jmath \cdot \omega) \cdot dt \\ dt &= \frac{1}{-(a + \jmath \cdot \omega)} \cdot dz \end{aligned} \right. \\ &= \lim_{\tau \to \infty} A \cdot \int_{0}^{\tau} e^{z} \cdot \frac{1}{-(a + \jmath \cdot \omega)} \cdot dz \\ &= A \cdot \frac{1}{-(a + \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z} \cdot dz \\ &= A \cdot \frac{1}{-(a + \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{-(a + \jmath \cdot \omega) \cdot t} \Big|_{0}^{\tau} \\ &= \frac{A}{-(a + \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{-(a + \jmath \cdot \omega) \cdot \tau} - e^{-(a + \jmath \cdot \omega) \cdot 0} \right) \end{split}$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{-(a+\jmath \cdot \omega) \cdot \tau} - e^{0} \right)$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{-(a+\jmath \cdot \omega) \cdot \tau} - 1 \right)$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} e^{-(a+\jmath \cdot \omega) \cdot \tau} - 1 \right)$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} e^{-a \cdot \tau} \cdot e^{-a \cdot \tau} - 1 \right)$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} e^{-a \cdot \tau} \cdot e^{-a \cdot \tau} - 1 \right)$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} e^{-a \cdot \tau} \cdot \lim_{\tau \to \infty} e^{-a \cdot \tau} - 1 \right)$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{-a \cdot \tau} - 1 \right)$$

$$= \frac{A}{-(a+\jmath \cdot \omega)} \cdot (0-1)$$

$$= \frac{A}{a+\jmath \cdot \omega}$$

Transformata sygnalu f(t) to $F(j\omega) = \frac{A}{a+r\omega}$

Wyznaczmy jawnie część rzeczywistą i urojoną transformaty:

$$F(\jmath\omega) = \frac{A}{(a+\jmath\cdot\omega)}$$

$$= \frac{A}{(a+\jmath\cdot\omega)} \cdot \frac{(a-\jmath\cdot\omega)}{(a-\jmath\cdot\omega)}$$

$$= \frac{A\cdot(a-\jmath\cdot\omega)}{(a^2+\omega^2)}$$

$$= \frac{A\cdot a}{(a^2+\omega^2)} - \jmath\cdot\frac{A\cdot\omega}{(a^2+\omega^2)}$$
(91)

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j\omega)|$$

$$= \sqrt{\left(\frac{A \cdot a}{(a^2 + \omega^2)}\right)^2 + \left(\frac{-A \cdot \omega}{(a^2 + \omega^2)}\right)^2}$$

$$= \sqrt{\frac{A^2 \cdot (a^2 + \omega^2)}{(a^2 + \omega^2)^2}}$$

$$= \sqrt{\frac{A^2}{(a^2 + \omega^2)}}$$

$$= \frac{A}{\sqrt{a^2 + \omega^2}}$$
(92)

Widmo fazowe obliczamy ze wzoru:

Zadanie 22. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Wykorzystując sygnały elementarne możemy napisać:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) \tag{94}$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (95)

Do obliczenia całki potrzebujemy jawnej postaci równań opisujących proste na odcinkach $(-t_0, 0)$ oraz $(0, t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{96}$$

Dla pierwszego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0,0)$ oraz (0,A). Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} 0 = m \cdot (-t_0) + b \\ A = m \cdot 0 + b \end{cases}$$

$$\begin{cases} -b = m \cdot (-t_0) \\ A = b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = b \end{cases}$$

$$\begin{cases} A = b \\ \frac{A}{t_0} = m \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0,0)$ to:

$$f(t) = \frac{A}{t_0} \cdot t + A$$

Dla drugiego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: (0, A) oraz $(t_0, 0)$. Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} 0 = m \cdot t_0 + b \\ A = m \cdot 0 + b \end{cases}$$

$$\begin{cases} -b = m \cdot t_0 \\ A = b \end{cases}$$

$$\begin{cases} -\frac{b}{t_0} = m \\ A = b \end{cases}$$

$$\begin{cases} A = b \\ -\frac{A}{t_0} = m \end{cases}$$

Równianie prostej dla t z zakresu $(0, t_0)$ to:

$$f(t) = -\frac{A}{t_0} \cdot t + A$$

Podsumowując, sygnal f(t) możemy opisać jako:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) = \begin{cases} 0 & dla & t \in (-\infty; -t_0) \\ \frac{A}{t_0} \cdot t + A & dla & t \in (-t_0; 0) \\ -\frac{A}{t_0} \cdot t + A & dla & t \in (0; t_0) \\ 0 & dla & t \in (t_0; \infty) \end{cases}$$
(97)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{0} \left(\frac{A}{t_0} \cdot t + A \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} \left(-\frac{A}{t_0} \cdot t + A \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot dt + \int_{-t_0}^{0} \frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{0} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} -\frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{0}^{t_0} A \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot dt \\ &= 0 + \frac{A}{t_0} \cdot \int_{-t_0}^{0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + A \cdot \int_{-t_0}^{0} e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &- \frac{A}{t_0} \cdot \int_{0}^{t_0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + A \cdot \int_{0}^{t_0} e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= \begin{cases} u &= t \quad dv &= e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ du &= dt \quad v &= \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \end{cases} \\ &= \frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \right) \Big|_{-t_0}^{0} - \int_{-t_0}^{0} \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &+ A \cdot \left(\frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \right) \Big|_{-t_0}^{0} \right) \end{split}$$

$$\begin{split} &-\frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_0^{t_0} - \int_0^{t_0} \frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \cdot dt\right) \\ &+ A \cdot \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_0^{t_0}\right) \\ &= \frac{A}{t_0} \cdot \left(0 \cdot e^{-j\omega \cdot 0} - (-t_0) \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot (-t_0)} + \frac{1}{j \cdot \omega} \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega t} \Big|_{-t_0}^{0}\right)\right) \\ &+ \frac{A}{-j \cdot \omega} \cdot \left(e^{-j\omega \cdot 0} - e^{-j\omega \cdot (-t_0)}\right) \\ &- \frac{A}{t_0} \cdot \left(t_0 \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t_0} - 0 \cdot e^{-j\omega \cdot 0} + \frac{1}{j \cdot \omega} \left(\frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t} \Big|_0^{t_0}\right)\right) \\ &+ \frac{A}{-j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - e^{-j\omega \cdot 0}\right) \\ &= \frac{A}{t_0} \cdot \left(0 - t_0 \cdot \frac{1}{j \cdot \omega} \cdot e^{j\omega \cdot t_0} - \frac{1}{j^2 \cdot \omega^2} \left(e^{-j\omega \cdot 0} - e^{-j\omega \cdot (-t_0)}\right)\right) \\ &- \frac{A}{j \cdot \omega} \cdot \left(t_0 \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j\omega \cdot t_0} - 0 - \frac{1}{j^2 \cdot \omega^2} \left(e^{-j\omega \cdot t_0} - e^{-j\omega \cdot 0}\right)\right) \\ &- \frac{A}{j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - 1\right) \\ &= -\frac{A}{j \cdot \omega} \cdot \left(e^{-j\omega \cdot t_0} - \frac{A}{t_0 \cdot j^2 \cdot \omega^2} + \frac{A}{t_0 \cdot j^2 \cdot \omega^2} \cdot e^{j\omega \cdot t_0} - \frac{A}{j \cdot \omega} \cdot e^{-j\omega \cdot t_0} + \frac{A}{j \cdot \omega} \cdot e^{j\omega \cdot t_0} \right) \\ &= \frac{2 \cdot A}{t_0 \cdot j^2 \cdot \omega^2} + \frac{A}{t_0 \cdot j^2 \cdot \omega^2} \cdot \left(e^{j\omega \cdot t_0} + e^{-j\omega \cdot t_0}\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(e^{j\omega \cdot t_0} + e^{-j\omega \cdot t_0}\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - \cos(\omega \cdot t_0)\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - \cos(\omega \cdot t_0)\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - 1 + 2 \cdot \sin^2(\omega)\right) \\ &= \frac{2 \cdot A}{t_0 \cdot \omega^2} \cdot \left(1 - 1 + 2 \cdot \sin^2(\omega)\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \\ &= \frac{A \cdot t_0}{t_0 \cdot \omega^2} \cdot \sin^2(\frac{\omega \cdot t_0}{2}\right) \end{aligned}$$

Transformata sygnału $f(t)=A\cdot\Lambda(\frac{t}{t_0})$ to $F(\jmath\omega)=A\cdot t_0\cdot Sa^2(\frac{\omega\cdot t_0}{2})$

Zadanie 23. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku

$$f(t) = \begin{cases} 0 & dla \quad t \in (-\infty; 0) \\ e^{-a \cdot t} \cdot \sin(\omega_0 \cdot t) & dla \quad t \in (0; \infty) \end{cases}$$
(98)

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt \tag{99}$$

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{0}^{\infty} e^{-a \cdot t} \cdot \sin(\omega_{0} \cdot t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{\infty} e^{-a \cdot t} \cdot \left(\frac{e^{\jmath \cdot \omega_{0} \cdot t} - e^{-\jmath \cdot \omega_{0} \cdot t}}{2 \cdot \jmath} \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 0 + \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \left(\int_{0}^{\tau} e^{-a \cdot t} \cdot e^{\jmath \cdot \omega_{0} \cdot t} \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \cdot dt - \int_{0}^{\tau} e^{-a \cdot t} \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \cdot dt \right) \\ &= \lim_{\tau \to \infty} \frac{1}{2 \cdot \jmath} \left(\int_{0}^{\tau} e^{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \cdot dt - \int_{0}^{\tau} e^{(-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \cdot dt \right) \\ &= \begin{cases} z = (-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t & w = (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t \\ dt = \frac{1}{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot dt & dw = (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot dt \\ dt = \frac{1}{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z} \cdot dz - \frac{1}{2 \cdot \jmath \cdot (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{w} \cdot dw \\ &= \frac{1}{2 \cdot \jmath \cdot (-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{z} \Big|_{0}^{\tau} - \frac{1}{2 \cdot \jmath \cdot (-a - \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{w} \Big|_{0}^{\tau} \\ &= \frac{1}{2 \cdot \jmath \cdot (-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega)} \cdot \lim_{\tau \to \infty} e^{(-a + \jmath \cdot \omega_{0} - \jmath \cdot \omega) \cdot t} \Big|_{0}^{\tau} \end{aligned}$$

$$\begin{split} &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{(-a + j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - e^{(-a + j \cdot \omega_0 - j \cdot \omega)} \right) \\ &= \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \lim_{\tau \to \infty} \left(e^{(-a - j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - e^{(-a - j \cdot \omega_0 - j \cdot \omega) \cdot \tau} \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(j \cdot \omega_0 - j \cdot \omega) \cdot \tau} \right) - \lim_{\tau \to \infty} 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a - j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} \right) - \lim_{\tau \to \infty} 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} \right) - 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(\lim_{\tau \to \infty} \left(e^{-a \cdot \tau} \cdot e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(0 \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right) \\ &= \frac{-1}{2 \cdot j \cdot (-a + j \cdot \omega_0 - j \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{(-j \cdot \omega_0 - j \cdot \omega) \cdot \tau} - 1 \right)$$

Transformata sygnaluf(t) to $F(\jmath\omega)=\frac{\omega_0}{\omega_0^2+(a+\jmath\cdot\omega)^2}$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j\omega)|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + (a+j\cdot\omega)^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot j \cdot \omega + (j \cdot \omega)^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot j \cdot \omega - \omega^2} \right|$$

$$= \left| \frac{\omega_0}{\omega_0^2 - \omega^2 + a^2 + j \cdot 2 \cdot a \cdot \omega} \right|$$

$$= \left\{ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \right\}$$

$$= \frac{|\omega_0|}{|\omega_0^2 - \omega^2 + a^2 + j \cdot 2 \cdot a \cdot \omega|}$$

$$= \left\{ |a + \jmath \cdot b| = \sqrt{a^2 + b^2} \right\}$$
$$= \frac{\omega_0}{\sqrt{\left(\omega_0^2 - \omega^2 + a^2\right)^2 + \left(2 \cdot a \cdot \omega\right)^2}}$$

Widmo fazowe obliczamy ze wzoru:

$$\begin{split} &\Phi(\omega) = arg \left(\frac{\omega_0}{\omega_0^2 + (a + \jmath \cdot \omega)^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot \jmath \cdot \omega + (\jmath \cdot \omega)^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 + a^2 + 2 \cdot a \cdot \jmath \cdot \omega - \omega^2} \right) \\ &= arg \left(\frac{\omega_0}{\omega_0^2 - \omega^2 + a^2 + \jmath \cdot 2 \cdot a \cdot \omega} \right) \\ &= \left\{ arg \left(\frac{z_1}{z_2} \right) = arg \left(z_1 \right) - arg \left(z_2 \right) \right\} \\ &= arg \left(\omega_0 \right) - arg \left(\omega_0^2 - \omega^2 + a^2 + \jmath \cdot 2 \cdot a \cdot \omega \right) \\ &= \left\{ arg \left(a + \jmath \cdot b \right) = arctg \left(\frac{b}{a} \right) \right\} \\ &= arctg \left(\frac{0}{\omega_0} \right) - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= arctg \left(0 \right) - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= 0 - arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \\ &= -arctg \left(\frac{2 \cdot a \cdot \omega}{\omega_0^2 - \omega^2 + a^2} \right) \end{split}$$

Zadanie 24. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

W pierwszej kolejności opiszmy sygnał za pomocą sygnałów elementarnych:

$$f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0) \tag{100}$$

Transformate Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (101)

$$F(\jmath\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} A \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{-\infty}^{\infty} A \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= A \cdot \int_{-\infty}^{\infty} \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - A \cdot \int_{-\infty}^{\infty} \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\}$$

$$= A \cdot e^{-\jmath \cdot \omega \cdot t_0} - A \cdot e^{-\jmath \cdot \omega \cdot (-t_0)}$$

$$= A \cdot e^{-\jmath \cdot \omega \cdot t_0} - A \cdot e^{\jmath \cdot \omega \cdot t_0}$$

$$= A \cdot \left(e^{-\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= -A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= -A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

$$= \left\{ \sin(x) = \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \right\}$$

$$= -2 \cdot \jmath \cdot A \cdot \sin(\omega \cdot t_0)$$

Transformata sygnału $f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)$ to $F(j\omega) = -2 \cdot j \cdot A \cdot \sin(\omega \cdot t_0)$ Narysujmy widmo sygnału $f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)$ czyli:

$$F(j\omega) = -2 \cdot j \cdot A \cdot \sin(\omega \cdot t_0) \tag{102}$$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j \cdot \omega)| \tag{103}$$

Widmo fazowe obliczamy ze wzoru:

$$\Phi(\omega) = arctg(\frac{Im\{F(j \cdot \omega)\}}{Re\{F(j \cdot \omega)\}})$$
(104)

Zadanie 25. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ A \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$

$$(105)$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (106)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{t_0} A \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\} \\ &= \int_{-\infty}^{-t_0} 0 \cdot dt + \int_{-t_0}^{t_0} A \cdot \frac{e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t}}{2} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot dt \\ &= 0 + \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t} \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t} \cdot e^{-\jmath \cdot \omega \cdot t} \right) \cdot dt \\ &= \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \frac{2\pi}{t_0} \cdot t} - \jmath \cdot \omega \cdot t + e^{-\jmath \cdot \frac{2\pi}{t_0} \cdot t} - \jmath \cdot \omega \cdot t \right) \cdot dt \\ &= \frac{A}{2} \cdot \int_{-t_0}^{t_0} \left(e^{\jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot t} + e^{-\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot t} \right) \cdot dt \\ &= \frac{A}{2} \cdot \left(\int_{-t_0}^{t_0} e^{\jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot t} \cdot dt + \int_{-t_0}^{t_0} e^{-\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot t} \cdot dt \right) \\ &= \begin{cases} z_1 = \jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot t & z_2 = -\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot t \\ dz_1 = \jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right) \cdot dt & dz_2 = -\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right) \cdot dt \end{cases} \\ dt = \frac{1}{\jmath \cdot \left(\frac{2\pi}{t_0} - \omega\right)} \cdot dz_1 & dt = \frac{1}{-\jmath \cdot \left(\frac{2\pi}{t_0} + \omega\right)} \cdot dz_2 \end{cases} \end{split}$$

$$\begin{split} &=\frac{A}{2} \cdot \left(\int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J \cdot \left(\frac{2\pi}{t_0} - \omega \right)} \cdot dz_1 + \int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J \cdot \left(\frac{2\pi}{t_0} + \omega \right)} \cdot dz_2 \right) \\ &=\frac{A}{2} \cdot \left(\frac{1}{J \cdot \left(\frac{2\pi}{t_0} - \omega \right)} \cdot \int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J_0}} \cdot \frac{1}{I_0} \left(\frac{2\pi}{t_0} + \omega \right) \cdot \int_{-t_0}^{t_0} e^{\pm i \cdot \frac{1}{J_0}} \cdot \frac{1}{I_0} e^{\pm i \cdot \frac{1}{J_0}} \right) \\ &=\frac{A}{2} \cdot \left(\frac{1}{J \cdot \left(\frac{2\pi}{t_0} - \omega \right)} \cdot e^{\pm i \cdot \frac{1}{t_0}} + \frac{1}{J \cdot \left(\frac{2\pi}{t_0} + \omega \right)} \cdot e^{\pm i \cdot \frac{1}{t_0}} \right) \\ &=\frac{A}{2} \cdot \left(\frac{1}{J \cdot \left(\frac{2\pi}{t_0} - \omega \right)} \cdot e^{\pm i \cdot \frac{1}{t_0}} + \frac{1}{J \cdot \left(\frac{2\pi}{t_0} + \omega \right)} \cdot e^{\pm i \cdot \frac{1}{t_0}} \right) \\ &=\frac{A}{2} \cdot \left(\frac{1}{J \cdot \left(\frac{2\pi}{t_0} - \omega \right)} \cdot e^{\pm i \cdot \frac{1}{t_0}} \right) + \frac{1}{J \cdot \left(\frac{2\pi}{t_0} + \omega \right)} \cdot e^{-J \cdot \left(\frac{2\pi}{t_0} + \omega \right)} \cdot$$

Transformata sygnału f(t) to $F(j\omega) = A \cdot t_0 \cdot \left(Sa\left(\left(\frac{2\pi}{t_0} - \omega \right) \cdot t_0 \right) + Sa\left(\left(\frac{2\pi}{t_0} + \omega \right) \cdot t_0 \right) \right)$

Narysujmy widmo sygnału f(t) czyli:

$$F(j\omega) = A \cdot t_0 \cdot \left(Sa\left(\left(\frac{2\pi}{t_0} - \omega \right) \cdot t_0 \right) + Sa\left(\left(\frac{2\pi}{t_0} + \omega \right) \cdot t_0 \right) \right)$$
 (107)

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j \cdot \omega)| \tag{108}$$

Widmo fazowe obliczamy ze wzoru:

$$\Phi(\omega) = arctg(\frac{Im\{F(j \cdot \omega)\}}{Re\{F(j \cdot \omega)\}})$$
(109)

Zadanie 26. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (110)

Do obliczenia całki potrzebujemy jawnej postaci funkcji f(t). Funkcja ta jest określona za pomocą równań opisujących proste na odcinkach $(-t_0, 0)$ oraz $(0, t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{111}$$

Dla pierwszego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0, A)$ oraz (0, 0). Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} A = m \cdot (-t_0) + b \\ 0 = m \cdot 0 + b \end{cases}$$

$$\begin{cases} A = m \cdot (-t_0) + b \\ 0 = b \end{cases}$$

$$\begin{cases} A = m \cdot (-t_0) + 0 \\ 0 = b \end{cases}$$

$$\begin{cases} -\frac{A}{t_0} = m \\ 0 = b \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0, 0)$ to:

$$f(t) = -\frac{A}{t_0} \cdot t$$

Dla drugiego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: (0;0) oraz $(t_0;A)$. Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} A = m \cdot t_0 + b \\ 0 = m \cdot 0 + b \end{cases}$$

$$\begin{cases} A = m \cdot t_0 + b \\ 0 = b \end{cases}$$

$$\begin{cases} A = m \cdot t_0 + 0 \\ 0 = b \end{cases}$$

$$\begin{cases} \frac{A}{t_0} = m \\ 0 = b \end{cases}$$

Równianie prostej dla t z zakresu $(0, t_0)$ to:

$$f(t) = \frac{A}{t_0} \cdot t$$

Podsumowując, sygnał f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & dla & t \in (-\infty; -t_0) \\ -\frac{A}{t_0} \cdot t & dla & t \in (-t_0; 0) \\ \frac{A}{t_0} \cdot t & dla & t \in (0; t_0) \\ 0 & dla & t \in (t_0; \infty) \end{cases}$$
(112)

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-t_0}^{0} \left(-\frac{A}{t_0} \cdot t \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} \frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{-t_0} 0 \cdot dt - \int_{-t_0}^{0} \frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &+ \int_{0}^{t_0} \frac{A}{t_0} \cdot t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{t_0}^{\infty} 0 \cdot dt \\ &= 0 - \frac{A}{t_0} \cdot \int_{-t_0}^{0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \frac{A}{t_0} \cdot \int_{0}^{t_0} t \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + 0 \\ &= \begin{cases} u &= t \quad dv \quad = e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ du &= dt \quad v \quad = \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \end{cases} \\ &= -\frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \Big|_{-t_0}^{0} - \int_{-t_0}^{0} \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &+ \frac{A}{t_0} \cdot \left(t \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \Big|_{0}^{t_0} - \int_{0}^{t_0} \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &= -\frac{A}{t_0} \cdot \left(0 \cdot e^{-\jmath \cdot \omega \cdot 0} - (-t_0) \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} + \frac{1}{\jmath \cdot \omega} \left(\frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \Big|_{-t_0}^{0} \right) \right) \\ &+ \frac{A}{t_0} \cdot \left(t_0 \cdot \frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t_0} - 0 \cdot e^{-\jmath \cdot \omega \cdot 0} + \frac{1}{\jmath \cdot \omega} \left(\frac{1}{-\jmath \cdot \omega} \cdot e^{-\jmath \cdot \omega \cdot t} \Big|_{-t_0}^{t_0} \right) \right) \end{split}$$

$$\begin{split} &= -\frac{I_{0}}{t_{0}} \cdot \left(0 - t_{0} \cdot \frac{1}{j \cdot \omega} \cdot e^{j \omega \cdot t_{0}} - \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - e^{-j \omega \cdot (t_{0})}\right)\right) \\ &+ \frac{A}{t_{0}} \cdot \left(t_{0} \cdot \frac{1}{-j \cdot \omega} \cdot e^{-j \omega \cdot t_{0}} - 0 - \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - e^{-j \omega \cdot 0}\right)\right) \\ &= \frac{A}{t_{0}} \cdot \left(t_{0} \cdot \frac{1}{j \cdot \omega} \cdot e^{j \omega \cdot t_{0}} + \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - e^{0}\right)\right) \\ &+ \frac{A}{t_{0}} \cdot \left(-t_{0} \cdot \frac{1}{j \cdot \omega} \cdot e^{-j \omega \cdot t_{0}} - \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - e^{0}\right)\right) \\ &= \frac{A}{t_{0}} \cdot \left(t_{0} \cdot \frac{1}{j \cdot \omega} \cdot e^{-j \omega \cdot t_{0}} + \frac{1}{j^{2} \cdot \omega^{2}} \left(1 - e^{-j \omega \cdot (-t_{0})}\right)\right) \\ &- \frac{A}{t_{0}} \cdot \left(t_{0} \cdot \frac{1}{j \cdot \omega} \cdot e^{-j \omega \cdot t_{0}} + \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - 1\right)\right) \\ &= \frac{A}{t_{0}} \cdot t_{0} \cdot \frac{1}{j \cdot \omega} \cdot e^{-j \omega \cdot t_{0}} + \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \left(1 - e^{-j \omega \cdot (-t_{0})}\right) \\ &- \frac{A}{t_{0}} \cdot t_{0} \cdot \frac{1}{j \cdot \omega} \cdot e^{-j \omega \cdot t_{0}} + \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - 1\right) \\ &= \frac{A}{t_{0}} \cdot e^{-j \omega \cdot t_{0}} - \frac{A}{t_{0}} \cdot e^{-j \omega \cdot t_{0}} - \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - 1\right) \\ &= \frac{A}{j \cdot \omega} \cdot e^{j \omega \cdot t_{0}} - e^{-j \omega \cdot t_{0}} + \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \left(e^{-j \omega \cdot t_{0}} - 1\right) \\ &= \frac{A}{j \cdot \omega} \cdot \left(e^{j \omega \cdot t_{0}} - e^{-j \omega \cdot t_{0}}\right) \\ &+ \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \cdot A \cdot \frac{1}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \cdot e^{-j \omega \cdot t_{0}} + \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \cdot e^{-j \omega \cdot t_{0}} + \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \cdot e^{-j \omega \cdot t_{0}} \\ &= \frac{2 \cdot A}{\omega} \cdot \frac{e^{j \omega \cdot t_{0}} - e^{-j \omega \cdot t_{0}}}{2 \cdot j} \\ &+ \frac{2 \cdot A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \cdot \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \cdot \left(e^{j \omega \cdot t_{0}} + e^{-j \omega \cdot t_{0}}\right) \\ &= \frac{2 \cdot A}{\omega} \cdot \frac{e^{j \omega \cdot t_{0}} - e^{-j \omega \cdot t_{0}}}{2 \cdot j} \\ &+ \frac{A}{t_{0}} \cdot \frac{1}{j^{2} \cdot \omega^{2}} \cdot \left(2 - \frac{2}{2} \cdot \left(e^{j \omega \cdot t_{0}} + e^{-j \omega \cdot t_{0}}\right)\right) \\ &= \frac{2 \cdot A}{t_{0}} \cdot \frac{e^{j \omega \cdot t_{0}} - e^{-j \omega \cdot t_{0}}}{2 \cdot j} \\ &= \frac{2 \cdot A}{t_{0}} \cdot \frac{e^{j \omega \cdot t_{0}} - e^{-j \omega \cdot t_{0}}}{2 \cdot j} \\ &= \frac{2 \cdot A}{t_{0}} \cdot \frac{e^{j \omega \cdot t_{0}} - e^{-j \omega \cdot t_{0}}}{2 \cdot j} \\ &= \frac{2 \cdot A}{t_{0}} \cdot \frac{e^{j \omega \cdot t_$$

$$\begin{split} &= \frac{2 \cdot A}{\omega} \cdot \sin\left(\omega \cdot t_0\right) + \frac{A}{t_0} \cdot \frac{4}{\jmath^2 \cdot \omega^2} \cdot \sin^2\left(\frac{1}{2} \cdot \omega \cdot t_0\right) \\ &= \frac{2 \cdot A}{\omega} \cdot \frac{t_0}{t_0} \sin\left(\omega \cdot t_0\right) + \frac{A}{t_0} \cdot \frac{4}{\jmath^2 \cdot \omega^2} \cdot \frac{t_0}{t_0} \cdot \sin^2\left(\frac{1}{2} \cdot \omega \cdot t_0\right) \\ &= 2 \cdot A \cdot t_0 \cdot \frac{\sin\left(\omega \cdot t_0\right)}{t_0 \cdot \omega} + A \cdot t_0 \cdot \frac{4}{-1 \cdot \omega^2 \cdot t_0^2} \cdot \sin^2\left(\frac{1}{2} \cdot \omega \cdot t_0\right) \\ &= 2 \cdot A \cdot t_0 \cdot \frac{\sin\left(\omega \cdot t_0\right)}{t_0 \cdot \omega} + A \cdot t_0 \cdot \frac{-1}{\frac{\omega^2 \cdot t_0^2}{4}} \cdot \sin^2\left(\frac{1}{2} \cdot \omega \cdot t_0\right) \\ &= 2 \cdot A \cdot t_0 \cdot \frac{\sin\left(\omega \cdot t_0\right)}{t_0 \cdot \omega} - A \cdot t_0 \cdot \frac{\sin^2\left(\frac{1}{2} \cdot \omega \cdot t_0\right)}{\left(\frac{\omega \cdot t_0}{2}\right)^2} \\ &= 2 \cdot A \cdot t_0 \cdot \frac{\sin\left(\omega \cdot t_0\right)}{t_0 \cdot \omega} - A \cdot t_0 \cdot \left(\frac{\sin\left(\frac{1}{2} \cdot \omega \cdot t_0\right)}{\frac{1}{2} \cdot \omega \cdot t_0}\right)^2 \\ &= \left\{Sa\left(x\right) = \frac{\sin(x)}{x}\right\} \\ &= 2 \cdot A \cdot t_0 \cdot Sa\left(\omega \cdot t_0\right) - A \cdot t_0 \cdot Sa^2\left(\frac{1}{2} \cdot \omega \cdot t_0\right) \end{split}$$

Transformata sygnału f(t) wynosi $F(j\omega) = 2 \cdot A \cdot t_0 \cdot Sa\left(\omega \cdot t_0\right) - A \cdot t_0 \cdot Sa^2\left(\frac{1}{2} \cdot \omega \cdot t_0\right)$

Zadanie 27. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku wykorzystując twierdzenia opisujące własciwości transformacji Fouriera. Wykorzystaj informację o tym, że $\mathcal{F}\{\Pi(t)\} = Sa\left(\frac{\omega}{2}\right)$.

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Wykorzystując sygnały elementarne możemy napisać:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) \tag{113}$$

Wyznaczmy pochodną sygnału f(t), czyli sygnał $g(t) = \frac{\partial}{\partial t} f(t)$.

Sygnał g(t) można opisać, wykorzystując sygnały elementarne:

$$g(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - (-\frac{t_0}{2})}{t_0}) - \frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0})$$
(114)

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$f(t) = \int_{-\infty}^{t} g(x) \cdot dx \tag{115}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
(116)

Z powyzszego równania widać, że musimy znać $G(j\omega)$, czyli transformatę sygnału g(t):

$$g(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - (-\frac{t_0}{2})}{t_0}) - \frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0})$$
(117)

Ponieważ transformacja Fouriera jest przekształceniem liniowym, dlatego można wyznaczyć osobno transformaty poszczególnych prostokatów, czyli:

$$g(t) = g_1(t) - g_2(t) (118)$$

gdzie:

$$g_1(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - (-\frac{t_0}{2})}{t_0})$$
$$g_2(t) = \frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0})$$

Wyznaczmy transformtę sygnału $g_1(t)$, czyli $G_1(j\omega)$.

Z tablic matematycznych wiemy, że: $\mathcal{F}\{\Pi(t)\} = Sa\left(\frac{\omega}{2}\right)$.

$$\begin{split} \Pi(t) & \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right) \\ \Pi(\frac{t}{t_0}) & \xrightarrow{\mathcal{F}} \frac{1}{\left|\frac{1}{t_0}\right|} \cdot Sa\left(\frac{\frac{\omega}{t_0}}{2}\right) \\ \Pi(\frac{t}{t_0}) & \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}\right) & \xrightarrow{\mathcal{F}} e^{-\jmath \cdot \omega \cdot \left(-\frac{t_0}{2}\right)} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}\right) & \xrightarrow{\mathcal{F}} e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ \frac{A}{t_0} \cdot \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}\right) & \xrightarrow{\mathcal{F}} A \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ \frac{A}{t_0} \cdot \Pi(\frac{t - \left(-\frac{t_0}{2}\right)}{t_0}\right) & \xrightarrow{\mathcal{F}} A \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \end{split}$$

Transformata sygnału $g_1(t)$ to:

$$G_1(j\omega) = \mathcal{F}\{g_1(t)\} = A \cdot e^{j \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$
(119)

Teraz wyznaczmy transformtę sygnału $g_2(t)$, czyli $G_2(j\omega)$.

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$\Pi(\frac{t}{t_0}) \xrightarrow{\mathcal{F}} \frac{1}{\left|\frac{1}{t_0}\right|} \cdot Sa\left(\frac{\frac{\omega}{\frac{1}{t_0}}}{2}\right)$$

$$\Pi(\frac{t}{t_0}) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi(\frac{t - (\frac{t_0}{2})}{t_0}) \xrightarrow{\mathcal{F}} e^{-\jmath \cdot \omega \cdot (\frac{t_0}{2})} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi(\frac{t - \frac{t_0}{2}}{t_0}) \xrightarrow{\mathcal{F}} e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\begin{split} &\frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0}) \xrightarrow{\mathcal{F}} & \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \\ &\frac{A}{t_0} \cdot \Pi(\frac{t - \frac{t_0}{2}}{t_0}) \xrightarrow{\mathcal{F}} & A \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \end{split}$$

Transformata sygnału $g_2(t)$ to:

$$G_2(j\omega) = \mathcal{F}\{g_2(t)\} = A \cdot e^{-j \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$
(120)

Czyli transformata sygnału g(t) to:

$$G(\jmath\omega) = \mathcal{F}\{g(t)\} = A \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) - A \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$G(\jmath\omega) = A \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot \left(e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} - e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}\right)$$

$$G(\jmath\omega) = A \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot \left(e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} - e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}\right)$$

$$\left\{sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath}\right\}$$

$$G(\jmath\omega) = A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right)$$

Mamy wyznaczoną transformatę $G(j\omega)$. Teraz, z twierdzenia o całkowaniu sygnału, możemy wyznaczyc transformatę sygnału f(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
(121)

$$F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right) + \pi \cdot \delta(\omega) \cdot G(0)$$

$$\begin{cases} G(0) = A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{0 \cdot t_0}{2}\right) \cdot sin\left(\frac{0 \cdot t_0}{2}\right) \\ G(0) = A \cdot 2 \cdot \jmath \cdot Sa(0) \cdot sin(0) \\ G(0) = A \cdot 2 \cdot \jmath \cdot 1 \cdot 0 \\ G(0) = 0 \end{cases}$$

$$= \frac{1}{\jmath \cdot \omega} \cdot A \cdot 2 \cdot \jmath \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right)$$

$$= \left\{\frac{sin(x)}{x} = Sa(x)\right\}$$

$$= \frac{A \cdot 2 \cdot t_0}{\omega \cdot t_0} \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot sin\left(\frac{\omega \cdot t_0}{2}\right)$$

$$= A \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$= A \cdot t_0 \cdot Sa^2(\frac{\omega \cdot t_0}{2})$$

Transformata sygnału $f(t)=A\cdot\Lambda(\frac{t}{t_0})$ to $F(\jmath\omega)=A\cdot t_0\cdot Sa^2(\frac{\omega\cdot t_0}{2})$

Zadanie 28. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku wykorzystując twierdzenia opisujące własciwości transformacji Fouriera.

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Wykorzystując sygnały elementarne możemy napisać:

$$f(t) = A \cdot \Lambda(\frac{t}{t_0}) \tag{122}$$

Wyznaczmy pochodną sygnału f(t), czyli sygnał $g(t) = \frac{\partial}{\partial t} f(t)$.

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$f(t) = \int_{-\infty}^{t} g(x) \cdot dx \tag{123}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
 (124)

Pytanie, czy można dalej uproście sygnał g(t) dokonując jego rózniczkowania. Wyznaczmy pochodną sygnału g(t), czyli drugą pochodną sygnału f(t):

$$h(t) = \frac{\partial}{\partial t}g(t) = \frac{\partial^2}{\partial t^2}f(t)$$
 (125)

Sygnał h(t) można opisać, wykorzystując sygnały elementarne:

$$h(t) = \frac{A}{t_0} \cdot \delta(t - (-t_0)) - \frac{2 \cdot A}{t_0} \cdot \delta(t) + \frac{A}{t_0} \cdot \delta(t - (t_0))$$
 (126)

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$g(t) = \int_{-\infty}^{t} h(x) \cdot dx \tag{127}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$G(j\omega) = \frac{1}{j \cdot \omega} \cdot H(j\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$
(128)

Z powyzszego równania widać, że musimy znać $H(j\omega)$, czyli transformatę sygnału h(t):

$$h(t) = \frac{A}{t_0} \cdot \delta(t - (-t_0)) - \frac{2 \cdot A}{t_0} \cdot \delta(t) + \frac{A}{t_0} \cdot \delta(t - (t_0))$$
 (129)

Ponieważ transformacja Fouriera jest przekształceniem liniowym, dlatego można wyznaczyć osobno transformaty poszczególnych delt Diraca, czyli:

$$\begin{split} H(\jmath\omega) &= \mathcal{F}\{h(t)\} \\ &= \mathcal{F}\left\{\frac{A}{t_0} \cdot \delta(t-(-t_0)) - \frac{2 \cdot A}{t_0} \cdot \delta(t) + \frac{A}{t_0} \cdot \delta(t-(t_0))\right\} \\ &= \mathcal{F}\left\{\frac{A}{t_0} \cdot \delta(t-(-t_0))\right\} - \mathcal{F}\left\{\frac{2 \cdot A}{t_0} \cdot \delta(t)\right\} + \mathcal{F}\left\{\frac{A}{t_0} \cdot \delta(t-(t_0))\right\} \\ &= \frac{A}{t_0} \cdot \mathcal{F}\left\{\delta(t-(-t_0))\right\} - \frac{2 \cdot A}{t_0} \cdot \mathcal{F}\left\{\delta(t)\right\} + \frac{A}{t_0} \cdot \mathcal{F}\left\{\delta(t-(t_0))\right\} \\ &= \begin{cases} \delta(t) \xrightarrow{\mathcal{F}} 1 \\ \delta(t-(-t_0)) \xrightarrow{\mathcal{F}} 1 \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} \\ \delta(t-(t_0)) \xrightarrow{\mathcal{F}} 1 \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} \end{cases} \\ &= \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} - \frac{2 \cdot A}{t_0} \cdot 1 + \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= \frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - 2 + e^{-\jmath \cdot \omega \cdot t_0}\right) \\ &\left\{\cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2}\right\} \end{split}$$

$$= \frac{A}{t_0} \cdot (2 \cdot \cos(\omega \cdot t_0) - 2)$$
$$= \frac{2 \cdot A}{t_0} \cdot (\cos(\omega \cdot t_0) - 1)$$

Czyli transformata sygnału h(t) to:

$$H(j\omega) = \frac{2 \cdot A}{t_0} \cdot (\cos(\omega \cdot t_0) - 1) \tag{130}$$

Mamy wyznaczoną transformatę $H(\jmath\omega)$. Teraz, z twierdzenia o całkowaniu sygnału, możemy wyznaczyć transformatę $G(\jmath\omega)$:

$$G(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \frac{2 \cdot A}{t_0} \cdot (\cos(\omega \cdot t_0) - 1) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$\begin{cases} H(0) = \frac{2 \cdot A}{t_0} \cdot (\cos(0 \cdot t_0) - 1) \\ H(0) = \frac{2 \cdot A}{t_0} \cdot (\cos(0) - 1) \\ H(0) = \frac{2 \cdot A}{t_0} \cdot (1 - 1) \\ H(0) = 0 \end{cases}$$

$$= \frac{2 \cdot A}{\jmath \cdot \omega \cdot t_0} \cdot (\cos(\omega \cdot t_0) - 1)$$

Mamy wyznaczoną transformatę $G(j\omega)$. Teraz, kolejny raz z twierdzenia o całkowaniu sygnału, możemy wyznaczyć transformatę $F(j\omega)$:

$$\begin{split} F(\jmath\omega) &= \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0) \\ &= \frac{1}{\jmath \cdot \omega} \cdot \frac{2 \cdot A}{\jmath \cdot \omega \cdot t_0} \cdot (\cos(\omega \cdot t_0) - 1) + \pi \cdot \delta(\omega) \cdot G(0) \\ \begin{cases} G(0) &= \frac{2 \cdot A}{\jmath \cdot 0 \cdot t_0} \cdot (\cos(0 \cdot t_0) - 1) \\ G(0) &= \frac{0}{0}!!! \\ G(0) &= \int_{-\infty}^{\infty} g(t) \cdot dt = \int_{-t_0}^{0} \frac{A}{t_0} \cdot dt + \int_{0}^{t_0} (-\frac{A}{t_0}) \cdot dt \\ G(0) &= \frac{A}{t_0} \cdot (0 - (-t_0)) - \frac{A}{t_0} \cdot (t_0 - 0) = A - A \\ G(0) &= 0 \end{cases} \\ &= \frac{1}{\jmath \cdot \omega} \cdot \frac{2 \cdot A}{\jmath \cdot \omega \cdot t_0} \cdot (\cos(\omega \cdot t_0) - 1) \\ &= \frac{2 \cdot A}{\jmath^2 \cdot \omega^2 \cdot t_0} \cdot (\cos(\omega \cdot t_0)) \\ &= \frac{2 \cdot A}{\omega^2 \cdot t_0} \cdot (1 - \cos(\omega \cdot t_0)) \\ &\left\{ \sin^2(x) &= \frac{1}{2} - \frac{1}{2} \cdot \cos(2 \cdot x) \\ \cos(2 \cdot x) &= 1 - 2 \cdot \sin^2(x) \right\} \end{split}$$

$$\begin{split} &= \frac{2 \cdot A}{\omega^2 \cdot t_0} \cdot \left(1 - 1 + 2 \cdot \sin^2\left(\frac{\omega \cdot t_0}{2}\right)\right) \\ &= \frac{4 \cdot A}{\omega^2 \cdot t_0} \cdot \sin^2\left(\frac{\omega \cdot t_0}{2}\right) \\ &= \left\{\frac{\sin(x)}{x} = Sa(x)\right\} \\ &= A \cdot t_0 \cdot Sa^2(\frac{\omega \cdot t_0}{2}) \end{split}$$

Transformata sygnału $f(t)=A\cdot\Lambda(\frac{t}{t_0})$ to $F(\jmath\omega)=A\cdot t_0\cdot Sa^2(\frac{\omega\cdot t_0}{2})$

Zadanie 29. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ A & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (131)

W pierwszej kolejności wyznaczamy pochodna sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ 0 & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases} + A \cdot \delta(t + t_0) - A \cdot \delta(t - t_0)$$

$$(132)$$

czyli po prostu

$$g(t) = f'(t) = A \cdot \delta(t + t_0) - A \cdot \delta(t - t_0)$$

$$\tag{133}$$

Wyznaczanie transformaty sygnału g(t) złożonego z delt diracka jest znacznie prostsze.

$$G(j\omega) = \int_{-\infty}^{\infty} g(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt \tag{134}$$

$$\begin{split} G(\jmath\omega) &= \int_{-\infty}^{\infty} g(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(A \cdot \delta(t+t_0) - A \cdot \delta(t-t_0) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(A \cdot \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} - A \cdot \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \right) \cdot dt \end{split}$$

$$\begin{split} &= \int_{-\infty}^{\infty} A \cdot \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{-\infty}^{\infty} A \cdot \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= A \cdot \int_{-\infty}^{\infty} \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - A \cdot \int_{-\infty}^{\infty} \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t-t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= A \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} - A \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= A \cdot e^{\jmath \cdot \omega \cdot t_0} - A \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= A \cdot 2 \cdot \jmath \cdot \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \\ &= \left\{ \sin \left(x \right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= A \cdot 2 \cdot \jmath \cdot \sin \left(\omega \cdot t_0 \right) \\ &= \jmath \cdot 2 \cdot A \cdot \sin \left(\omega \cdot t_0 \right) \end{split}$$

Transformata sygnału g(t) to $G(j\omega) = j \cdot 2 \cdot A \cdot \sin(\omega \cdot t_0)$

Następnie możemy wykorzystać twierdzenie o całkowaniu aby wyznaczyć transformatę sygnału f(t) na podstawie transformaty sygnału g(t) = f'(t)

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając obliczona wcześniej transformatę $G(j\omega)$ sygnału g(t) otrzymujemy transformatę $F(j\omega)$ sygnału f(t)

$$F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(0) \cdot G(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \jmath \cdot 2 \cdot A \cdot \sin(\omega \cdot t_0) + \pi \cdot \delta(0) \cdot \jmath \cdot 2 \cdot A \cdot \sin(0 \cdot t_0)$$

$$= \frac{1}{\omega} \cdot 2 \cdot A \cdot \sin(\omega \cdot t_0) + \pi \cdot \delta(0) \cdot \jmath \cdot 2 \cdot A \cdot \sin(0)$$

$$= \frac{1}{\omega} \cdot 2 \cdot A \cdot \sin(\omega \cdot t_0) \cdot \frac{t_0}{t_0} + \pi \cdot \delta(0) \cdot \jmath \cdot 2 \cdot A \cdot 0$$

$$= 2 \cdot A \cdot t_0 \cdot \frac{\sin(\omega \cdot t_0)}{\omega \cdot t_0} + 0$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= 2 \cdot A \cdot t_0 \cdot Sa(\omega \cdot t_0)$$

Ostatecznie transformata sygnału f(t) jest równa $F(j\omega) = 2 \cdot A \cdot t_0 \cdot Sa(\omega \cdot t_0)$.

Zadanie 30. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

W pierwszej kolejności trzeba wyznaczyć jawną postać równań opisujących funkcję f(t).

W tym celu wyznaczamy równanie prostej na odcinku $(-t_0, t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{135}$$

Dla rozważanego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0,0)$ oraz (t_0,A) . Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} 0 = m \cdot (-t_0) + b \\ A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} -b = m \cdot (-t_0) \\ A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = \frac{b}{t_0} \cdot t_0 + b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = b + b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ A = 2 \cdot b \end{cases}$$

$$\begin{cases} \frac{b}{t_0} = m \\ \frac{A}{2} = b \end{cases}$$

$$\begin{cases} \frac{A}{2 \cdot t_0} = m \\ \frac{A}{2} = b \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0, t_0)$ to:

$$f(t) = \frac{A}{2 \cdot t_0} \cdot t + \frac{A}{2}$$

Podsumowując, sygnal f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ \frac{A}{2 \cdot t_0} \cdot t + \frac{A}{2} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
(136)

W pierwszej kolejności wyznaczamy pochodna sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ \frac{A}{2 \cdot t_0} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases} - A \cdot \delta(t - t_0)$$
(137)

Funkcja g(t) składa się z dwóch sygnałów $g_1(t)$ i $g_2(t)$

$$g(t) = g_1(t) + g_2(t) (138)$$

$$g_1(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ \frac{A}{2 \cdot t_0} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (139)

$$g_2(t) = -A \cdot \delta(t - t_0) \tag{140}$$

Wyznaczenie transformaty sygnału $g_2(t)$ złożonego z delty diracka jest znacznie prostsze.

$$G_2(j\omega) = \int_{-\infty}^{\infty} g_2(t) \cdot e^{-j\cdot\omega \cdot t} \cdot dt$$
 (141)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$G_2(\jmath\omega) = \int_{-\infty}^{\infty} g_2(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (-A \cdot \delta(t - t_0)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= -A \cdot \int_{-\infty}^{\infty} \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\}$$

$$= -A \cdot e^{-\jmath \cdot \omega \cdot t_0}$$

Transformata sygnału $g_2(t)$ to $G_2(j\omega) = -A \cdot e^{-j \cdot \omega \cdot t_0}$

Funkcja $g_1(t)$ jest jeszcze zbyt złożona tak wiec wyznaczamy pochodną raz jeszcze

$$h(t) = g_1'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ 0 & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases} + \frac{A}{2 \cdot t_0} \delta(t + t_0) - \frac{A}{2 \cdot t_0} \delta(t - t_0)$$

$$(142)$$

czyli po prostu

$$h(t) = g_1'(t) = \frac{A}{2 \cdot t_0} \delta(t + t_0) - \frac{A}{2 \cdot t_0} \delta(t - t_0)$$
(143)

Wyznaczanie transformaty sygnału h(t) złożonego z delt diracka jest znacznie prostsze.

$$H(j\omega) = \int_{-\infty}^{\infty} h(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt \tag{144}$$

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} H(\jmath\omega) &= \int_{-\infty}^{\infty} h(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(\frac{A}{2 \cdot t_0} \cdot \delta(t + t_0) - \frac{A}{2 \cdot t_0} \cdot \delta(t - t_0) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(\frac{A}{2 \cdot t_0} \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} - \frac{A}{2 \cdot t_0} \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \right) \cdot dt \\ &= \int_{-\infty}^{\infty} \frac{A}{2 \cdot t_0} \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{-\infty}^{\infty} \frac{A}{2 \cdot t_0} \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \frac{A}{2 \cdot t_0} \cdot \int_{-\infty}^{\infty} \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \frac{A}{2 \cdot t_0} \cdot \int_{-\infty}^{\infty} \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= \frac{A}{2 \cdot t_0} \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} - \frac{A}{2 \cdot t_0} \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= \frac{A}{2 \cdot t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= \frac{A}{2 \cdot t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= \frac{A}{t_0} \cdot j \cdot \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot j} \\ &= \left\{ \sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot j} \right\} \\ &= \frac{A}{t_0} \cdot j \cdot \sin(\omega \cdot t_0) \\ &= j \cdot \frac{A}{t_0} \cdot \sin(\omega \cdot t_0) \end{split}$$

Transformata sygnału h(t) to $H(\jmath\omega)=\jmath\cdot\frac{A}{t_0}\cdot\sin\left(\omega\cdot t_0\right)$

Następnie możemy wykorzystać twierdzenie o całkowaniu aby wyznaczyć transformatę sygnału $g_1(t)$ na podstawie transformaty sygnału $h(t) = g_1'(t)$

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$g_1(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} G_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

Podstawiając obliczona wcześniej transformatę $H(j\omega)$ sygnału h(t) otrzymujemy transformatę $G_1(j\omega)$ sygnału $g_1(t)$

$$G_{1}(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(0) \cdot H(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \jmath \cdot \frac{A}{t_{0}} \cdot \sin(\omega \cdot t_{0}) + \pi \cdot \delta(0) \cdot \jmath \cdot \frac{A}{t_{0}} \cdot \sin(0 \cdot t_{0})$$

$$= \frac{1}{\omega} \cdot \frac{A}{t_{0}} \cdot \sin(\omega \cdot t_{0}) + \pi \cdot \delta(0) \cdot \jmath \cdot \frac{A}{t_{0}} \cdot \sin(0)$$

$$= A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} + \pi \cdot \delta(0) \cdot \jmath \cdot \frac{A}{t_{0}} \cdot 0$$

$$= A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} + 0$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= A \cdot Sa(\omega \cdot t_{0})$$

Ostatecznie transformata sygnału $g_1(t)$ jest równa $G_1(j\omega) = A \cdot Sa(\omega \cdot t_0)$. Korzystając z jednorodności transformaty Fouriera

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g_2(t) \xrightarrow{\mathcal{F}} G_2(\jmath\omega)$$

$$g(t) = \alpha \cdot g_1(t) + \beta \cdot g_2(t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \alpha \cdot G_1(\jmath\omega) + \beta \cdot G_2(\jmath\omega)$$

można wyznaczyć transformatę Fouriera $G(j\omega)$ funkcji g(t)

$$G(\jmath\omega) = G_1(\jmath\omega) + G_2(\jmath\omega)$$

$$= A \cdot Sa(\omega \cdot t_0) - A \cdot e^{-\jmath \cdot \omega \cdot t_0}$$

$$= A \cdot \left(Sa(\omega \cdot t_0) - e^{-\jmath \cdot \omega \cdot t_0} \right)$$

Znając transformatę $G(\jmath\omega)$ i korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $F(\jmath\omega)$ funkcji f(t)

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając otrzymujemy

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(0) \cdot G(0)$$

$$\begin{split} &= \frac{1}{\jmath \cdot \omega} \cdot A \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-\jmath \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot \left(Sa\left(0 \cdot t_0\right) - e^{-\jmath \cdot 0 \cdot t_0} \right) \\ &= \frac{A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-\jmath \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot \left(Sa\left(0\right) - e^0 \right) \\ &= \frac{A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-\jmath \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot (1 - 1) \\ &= \frac{A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-\jmath \cdot \omega \cdot t_0} \right) + \pi \cdot \delta(0) \cdot A \cdot 0 \\ &= \frac{A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-\jmath \cdot \omega \cdot t_0} \right) + 0 \\ &= \frac{A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - e^{-\jmath \cdot \omega \cdot t_0} \right) \end{split}$$

Ostatecznie transformata sygnału f(t) jest równa $F(\jmath\omega) = \frac{A}{\jmath\cdot\omega}\cdot \left(Sa\left(\omega\cdot t_0\right) - e^{-\jmath\cdot\omega\cdot t_0}\right)$.

Zadanie 31. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

W pierwszej kolejności trzeba wyznaczyć jawną postać równań opisujących funkcję f(t).

W tym celu wyznaczamy równanie prostej na odcinku $(-t_0, t_0)$

Ogólne równanie prostej to:

$$f(t) = m \cdot t + b \tag{145}$$

Dla rozważanego zakresu wartości t wykres funkcji jest prostą przechodzącą przez dwa punkty: $(-t_0, A)$ oraz $(t_0, -A)$. Możemy więc napisać układ równań, rozwiązać go i wyznaczyć parametry prostej m i b.

$$\begin{cases} A = m \cdot (-t_0) + b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} A = -m \cdot t_0 + b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} A - A = -m \cdot t_0 + b + m \cdot t_0 + b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} 0 = 2 \cdot b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 + b \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 + 0 \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 \end{cases}$$

$$\begin{cases} 0 = b \\ -A = m \cdot t_0 \end{cases}$$

Równianie prostej dla t z zakresu $(-t_0, t_0)$ to:

$$f(t) = -\frac{A}{t_0} \cdot t$$

Podsumowując, sygnal f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ -\frac{A}{t_0} \cdot t & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (146)

W pierwszej kolejności wyznaczamy pochodna sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ -\frac{A}{t_0} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases} + A \cdot \delta(t + t_0) + A \cdot \delta(t - t_0)$$
(147)

Funkcja g(t) składa się z dwóch sygnałów $g_1(t)$ i $g_2(t)$

$$g(t) = g_1(t) + g_2(t) (148)$$

$$g_1(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ -\frac{A}{t_0} & t \in (-t_0; t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
 (149)

$$g_2(t) = A \cdot \delta(t + t_0) + A \cdot \delta(t - t_0) \tag{150}$$

Wyznaczenie transformaty sygnału $g_2(t)$ złożonego z delt diracka jest znacznie prostsze.

$$G_2(j\omega) = \int_{-\infty}^{\infty} g_2(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (151)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$G_{2}(\jmath\omega) = \int_{-\infty}^{\infty} g_{2}(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (A \cdot \delta(t + t_{0}) + A \cdot \delta(t - t_{0})) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= A \cdot \int_{-\infty}^{\infty} (\delta(t + t_{0}) + \delta(t - t_{0})) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= A \cdot \left(\int_{-\infty}^{\infty} \delta(t + t_{0}) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t - t_{0}) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right)$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t - t_{0}) \cdot f(t) \cdot dt = f(t_{0}) \right\}$$

$$= A \cdot \left(e^{-\jmath \cdot \omega \cdot (-t_{0})} + e^{-\jmath \cdot \omega \cdot t_{0}} \right)$$

$$= A \cdot \left(e^{\jmath \cdot \omega \cdot t_{0}} + e^{-\jmath \cdot \omega \cdot t_{0}} \right)$$

$$= A \cdot \left(e^{\jmath \cdot \omega \cdot t_{0}} + e^{-\jmath \cdot \omega \cdot t_{0}} \right)$$

$$= \left\{ \cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\}$$

$$= 2 \cdot A \cdot \cos(\omega \cdot t_{0})$$

Transformata sygnału $g_2(t)$ to $G_2(j\omega) = 2 \cdot A \cdot \cos(\omega \cdot t_0)$

Funkcja $g_1(t)$ jest jeszcze zbyt złożona tak wiec wyznaczamy pochodną raz jeszcze

$$h(t) = g_1'(t) = \begin{cases} 0 & t \in (-\infty; -t_0) \\ 0 & t \in (-t_0; t_0) -\frac{A}{t_0} \delta(t + t_0) + \frac{A}{t_0} \delta(t - t_0) \\ 0 & t \in (t_0; \infty) \end{cases}$$
(152)

czyli po prostu

$$h(t) = g_1'(t) = -\frac{A}{t_0}\delta(t + t_0) + \frac{A}{t_0}\delta(t - t_0)$$
(153)

Wyznaczanie transformaty sygnału h(t) złożonego z delt diracka jest znacznie prostsze.

$$H(j\omega) = \int_{-\infty}^{\infty} h(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (154)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} H(\jmath\omega) &= \int_{-\infty}^{\infty} h(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(-\frac{A}{t_0} \cdot \delta(t+t_0) + \frac{A}{t_0} \cdot \delta(t-t_0) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(-\frac{A}{t_0} \cdot \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} + \frac{A}{t_0} \cdot \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \right) \cdot dt \\ &= -\int_{-\infty}^{\infty} \frac{A}{t_0} \cdot \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \frac{A}{t_0} \cdot \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= -\frac{A}{t_0} \cdot \int_{-\infty}^{\infty} \delta(t+t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \frac{A}{t_0} \cdot \int_{-\infty}^{\infty} \delta(t-t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t-t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= -\frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} + \frac{A}{t_0} \cdot e^{-\jmath \cdot \omega \cdot t_0} \\ &= -\frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -\frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -\frac{A}{t_0} \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -\frac{2 \cdot A}{t_0} \cdot \jmath \cdot \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \\ &= \left\{ \sin\left(x\right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= -\frac{2 \cdot A}{t_0} \cdot \jmath \cdot \sin\left(\omega \cdot t_0\right) \\ &= -\jmath \cdot \frac{2 \cdot A}{t_0} \cdot \sin\left(\omega \cdot t_0\right) \end{split}$$

Transformata sygnału h(t) to $H(\jmath\omega) = -\jmath \cdot \frac{2\cdot A}{t_0} \cdot \sin{(\omega \cdot t_0)}$

Następnie możemy wykorzystać twierdzenie o całkowaniu aby wyznaczyć transformatę sygnału $g_1(t)$ na podstawie transformaty sygnału $h(t)=g_1'(t)$

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$g_1(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} G_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

Podstawiając obliczona wcześniej transformatę $H(j\omega)$ sygnału h(t) otrzymujemy transformatę $G_1(j\omega)$ sygnału $g_1(t)$

$$G_{1}(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \left(-\jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(\omega \cdot t_{0})\right) + \pi \cdot \delta(\omega) \cdot \left(-\jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(0 \cdot t_{0})\right)$$

$$= -\frac{1}{\omega} \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(\omega \cdot t_{0}) - \pi \cdot \delta(\omega) \cdot \jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot \sin(0)$$

$$= -2 \cdot A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} - \pi \cdot \delta(\omega) \cdot \jmath \cdot \frac{2 \cdot A}{t_{0}} \cdot 0$$

$$= -2 \cdot A \cdot \frac{\sin(\omega \cdot t_{0})}{\omega \cdot t_{0}} - 0$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= -2 \cdot A \cdot Sa(\omega \cdot t_{0})$$

Ostatecznie transformata sygnału $g_1(t)$ jest równa $G_1(\jmath\omega) = -2 \cdot A \cdot Sa(\omega \cdot t_0)$. Korzystając z jednorodności transformaty Fouriera

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g_2(t) \xrightarrow{\mathcal{F}} G_2(\jmath\omega)$$

$$g(t) = \alpha \cdot g_1(t) + \beta \cdot g_2(t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \alpha \cdot G_1(\jmath\omega) + \beta \cdot G_2(\jmath\omega)$$

można wyznaczyć transformatę Fouriera $G(j\omega)$ funkcji g(t)

$$G(\jmath\omega) = G_1(\jmath\omega) + G_2(\jmath\omega)$$

$$= -2 \cdot A \cdot Sa(\omega \cdot t_0) + 2 \cdot A \cdot cos(\omega \cdot t_0)$$

$$= -2 \cdot A \cdot (Sa(\omega \cdot t_0) - cos(\omega \cdot t_0))$$

Znając transformatę $G(\jmath\omega)$ i korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $F(\jmath\omega)$ funkcji f(t)

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając otrzymujemy

$$\begin{split} F(\jmath\omega) &= \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0) \\ &= \frac{1}{\jmath \cdot \omega} \cdot (-2 \cdot A \cdot (Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right))) + \pi \cdot \delta(\omega) \cdot (-2 \cdot A \cdot (Sa\left(0 \cdot t_0\right) - \cos\left(0 \cdot t_0\right))) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot (Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right)) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot (Sa\left(0\right) - \cos\left(0\right)) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot (Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right)) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot (1 - 1) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot (Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right)) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot 0 \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot (Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right)) - 0 \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot (Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right)) \end{split}$$

Ostatecznie transformata sygnału f(t) jest równa $F(j\omega) = -\frac{2\cdot A}{j\cdot \omega} \cdot (Sa(\omega \cdot t_0) - cos(\omega \cdot t_0)).$

Zadanie 32. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

Sygnal f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ 1 - t^2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (155)

W pierwszej kolejności wyznaczamy pochodną sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 \cdot t & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (156)

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$f(t) = \int_{-\infty}^{t} g(x) \cdot dx \tag{157}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
 (158)

Pytanie, czy można dalej uproście sygnał g(t) dokonując jego rózniczkowania. Wyznaczmy pochodną sygnału g(t), czyli drugą pochodną sygnału f(t):

$$h(t) = \frac{\partial}{\partial t}g(t) = \frac{\partial^2}{\partial t^2}f(t)$$
 (159)

$$h(t) = g'(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases} + 2 \cdot \delta(t+1) + 2 \cdot \delta(t-1)$$
 (160)

Funkcja h(t) składa się z dwóch sygnałów $h_1(t)$ i $h_2(t)$

$$h(t) = h_1(t) + h_2(t) (161)$$

$$h_1(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (162)

$$h_2(t) = 2 \cdot \delta(t+1) + 2 \cdot \delta(t-1) \tag{163}$$

Wyznaczenie transformaty sygnału $h_2(t)$ złożonego z delt Diracka jest znacznie prostsze.

$$H_2(j\omega) = \int_{-\infty}^{\infty} h_2(t) \cdot e^{-j\cdot\omega \cdot t} \cdot dt$$
 (164)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$H_{2}(\jmath\omega) = \int_{-\infty}^{\infty} h_{2}(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (2 \cdot \delta(t+1) + 2 \cdot \delta(t-1)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= 2 \cdot \int_{-\infty}^{\infty} (\delta(t+1) + \delta(t-1)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= 2 \cdot \left(\int_{-\infty}^{\infty} \delta(t+1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t-1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right)$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t-t_{0}) \cdot f(t) \cdot dt = f(t_{0}) \right\}$$

$$= 2 \cdot \left(e^{-\jmath \cdot \omega \cdot (-1)} + e^{-\jmath \cdot \omega \cdot 1} \right)$$

$$= 2 \cdot \left(e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right)$$

$$= 2 \cdot \left(e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right)$$

$$= 4 \cdot \frac{e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega}}{2}$$

$$= \left\{ \cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\}$$

$$= 4 \cdot \cos(\omega)$$

Transformata sygnału $h_2(t)$ to $G_2(j\omega) = 4 \cdot cos(\omega)$

Funkcja $h_1(t)$ jest jeszcze zbyt złożona, więc wyznaczamy pochodną raz jeszcze

$$i(t) = h'_1(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ 0 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases} - 2\delta(t+1) + 2\delta(t-1)$$

$$(165)$$

,czyli po prostu:

$$i(t) = h_1'(t) = -2\delta(t+1) + 2\delta(t-1)$$
(166)

Wyznaczanie transformaty sygnału i(t) złożonego z delt Diracka jest znacznie prostsze.

$$I(j\omega) = \int_{-\infty}^{\infty} i(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (167)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} I(\jmath\omega) &= \int_{-\infty}^{\infty} i(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(-2 \cdot \delta(t+1) + 2 \cdot \delta(t-1) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 2 \cdot \int_{-\infty}^{\infty} \left(-\delta(t+1) + \delta(t-1) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 2 \cdot \left(\int_{-\infty}^{\infty} -\delta(t+1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t-1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t-t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= 2 \cdot \left(-e^{-\jmath \cdot \omega \cdot (-1)} + e^{-\jmath \cdot \omega \cdot 1} \right) \\ &= 2 \cdot \left(-e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right) \\ &= -2 \cdot \left(e^{\jmath \cdot \omega} - e^{-\jmath \cdot \omega} \right) \cdot \frac{2 \cdot \jmath}{2 \cdot \jmath} \\ &= -4 \cdot \jmath \cdot \frac{e^{\jmath \cdot \omega} - e^{-\jmath \cdot \omega}}{2 \cdot \jmath} \\ &= \left\{ \sin\left(x \right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= -4 \cdot \jmath \cdot \sin\left(\omega \right) \end{split}$$

Transformata sygnału i(t) to $I(j\omega) = -4 \cdot j \cdot \sin(\omega)$

Następnie możemy wykorzystać twierdzenie o całkowaniu, aby wyznaczyć transformatę sygnału $h_1(t)$ na podstawie transformaty sygnału $i(t) = h'_1(t)$

$$i(t) \xrightarrow{\mathcal{F}} I(\jmath\omega)$$

$$h_1(t) = \int_{-\infty}^t i(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} H_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot I(\jmath\omega) + \pi \cdot \delta(\omega) \cdot I(0)$$

Podstawiając obliczoną wcześniej transformatę $I(j\omega)$ sygnału i(t) otrzymujemy transformatę $H_1(j\omega)$ sygnału $h_1(t)$

$$H_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot I(\jmath\omega) + \pi \cdot \delta(\omega) \cdot I(0)$$

$$\begin{cases} I(0) = -4 \cdot \jmath \cdot \sin(0) \\ I(0) = -4 \cdot \jmath \cdot 0 \\ I(0) = 0 \end{cases}$$

$$= \frac{1}{\jmath \cdot \omega} \cdot (-4 \cdot \jmath \cdot \sin(\omega)) + 0$$

$$= -4 \cdot \frac{\sin(\omega)}{\omega}$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= -4 \cdot Sa(\omega)$$

Ostatecznie transformata sygnału $h_1(t)$ jest równa $H_1(j\omega) = -4 \cdot Sa(\omega)$. Korzystając z liniowości transformacji Fouriera

$$h_1(t) \xrightarrow{\mathcal{F}} H_1(\jmath\omega)$$

$$h_2(t) \xrightarrow{\mathcal{F}} H_2(\jmath\omega)$$

$$h(t) = \alpha \cdot h_1(t) + \beta \cdot h_2(t) \xrightarrow{\mathcal{F}} H(\jmath\omega) = \alpha \cdot H_1(\jmath\omega) + \beta \cdot H_2(\jmath\omega)$$

można wyznaczyć transformatę Fouriera $H(j\omega)$ funkcji h(t)

$$H(\jmath\omega) = H_1(\jmath\omega) + H_2(\jmath\omega)$$
$$= -4 \cdot Sa(\omega) + 4 \cdot cos(\omega)$$
$$= 4 \cdot (cos(\omega) - Sa(\omega))$$

Znając transformatę $H(j\omega)$ i korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $G(j\omega)$ funkcji g(t)

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$
$$g(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} G(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot H(\jmath\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

Podstawiając odpowiednie dane otrzymujemy:

$$G(j\omega) = \frac{1}{j \cdot \omega} \cdot H(j\omega) + \pi \cdot \delta(\omega) \cdot H(0)$$

$$\begin{cases} H(0) = 4 \cdot (\cos(0) - Sa(0)) \\ H(0) = 4 \cdot (1 - 1) \\ H(0) = 4 \cdot 0 \\ H(0) = 0 \end{cases}$$

$$= \frac{1}{\jmath \cdot \omega} \cdot (4 \cdot (\cos(\omega) - Sa(\omega))) + 0$$

$$= \frac{4}{\jmath \cdot \omega} \cdot (\cos(\omega) - Sa(\omega))$$

Ostatecznie transformata sygnału g(t) jest równa $G(j\omega) = \frac{4}{j\cdot\omega}\cdot(\cos{(\omega)} - Sa{(\omega)}).$

Znając transformatę $G(\jmath\omega)$ i kolejny raz korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $F(\jmath\omega)$ funkcji f(t)

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając odpowiednie dane otrzymujemy:

$$F(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

$$\begin{cases}
G(0) = \frac{4}{\jmath \cdot 0} \cdot (\cos(0) - Sa(0)) \\
G(0) = \frac{0}{0}!!! \\
G(0) = \int_{-\infty}^{\infty} g(t) \cdot dt = \int_{-1}^{1} (-2) \cdot t \cdot dt = (-2) \cdot \frac{t^2}{2} \Big|_{-1}^{1} \\
G(0) = (-2) \cdot \left(\frac{1}{2} - \frac{1}{2}\right) = (-2) \cdot 0 \\
G(0) = 0
\end{cases}$$

$$= \frac{1}{\jmath \cdot \omega} \cdot \frac{4}{\jmath \cdot \omega} \cdot (\cos(\omega) - Sa(\omega)) + 0$$

$$= \frac{4}{\jmath^2 \cdot \omega^2} \cdot (\cos(\omega) - Sa(\omega))$$

$$= \frac{4}{(-1) \cdot \omega^2} \cdot (\cos(\omega) - Sa(\omega))$$

$$= \frac{4}{\omega^2} \cdot (Sa(\omega) - \cos(\omega))$$

Ostatecznie transformata sygnału f(t) jest równa $F(j\omega) = \frac{4}{\omega^2} \cdot (Sa(\omega) - cos(\omega))$.

Zadanie 33. Oblicz transformatę Fouriera sygnału $f(t) = Sa\left(\omega_0 \cdot t\right) \cdot sin\left(\omega_0 \cdot t\right)$ za pomocą twierdzeń, wiedząc że transformata sygnału $\Pi(t)$ jest rowna $Sa\left(\frac{\omega}{2}\right)$.

$$f(t) = Sa(\omega_0 \cdot t) \cdot sin(\omega_0 \cdot t) \tag{168}$$

$$\Pi(t) \xrightarrow{F} Sa\left(\frac{\omega}{2}\right)$$
 (169)

W pierwszej kolejności można funkcję f(t) rozpisać następująco

$$f(t) = Sa(\omega_0 \cdot t) \cdot sin(\omega_0 \cdot t)$$

$$= \left\{ sin(x) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\}$$

$$= Sa(\omega_0 \cdot t) \cdot \frac{e^{\jmath \cdot \omega_0 \cdot t} - e^{-\jmath \cdot \omega_0 \cdot t}}{2 \cdot \jmath}$$

$$= \frac{1}{2 \cdot \jmath} \cdot \left(Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} - Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t} \right)$$

$$= \left\{ f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \right\}$$

$$= \frac{1}{2 \cdot \jmath} \cdot (f_1(t) - f_2(t))$$

Należy zauważyć iż funkcja $f_1(t)$ i $f_2(t)$ jest złożeniem funkcji Sa i funkcji wykładniczych.

$$f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t}$$
$$f_2(t) = Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{-\jmath \cdot \omega_0 \cdot t}$$

Znając transformatę sygnału $g(t) = Sa(\omega_0 \cdot t)$ możemy skorzystać z twierdzenia o przesunięciu w dziedzinie częstotliwości.

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F(\jmath\omega) = G(\jmath(\omega - \omega_0))$$

Aby wyznaczyć transformatę sygnału g(t) możemy skorzystać z twierdzenia o symetrii. Znając transformatę $H(\jmath\omega)$ sygnału h(t) można wyznaczyć transformatę $G(\jmath\omega)$ sygnału g(t)

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$
$$g(t) = H(t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = 2\pi \cdot h(-\omega)$$

Tak wiec zacznijmy od transformaty sygnału prostokątnego $h(t)=\Pi(t)$ i wyznaczymy transformatę funkcji Sa

$$h(t) = \Pi(t) \xrightarrow{F} H(\jmath\omega) = Sa\left(\frac{\omega}{2}\right)$$
$$g_1(t) = H(t) = Sa\left(\frac{t}{2}\right) \xrightarrow{F} G_1(\jmath\omega) = 2\pi \cdot h(-\jmath\omega) = \pi \cdot \Pi\left(-\omega\right) = 2\pi \cdot \Pi\left(\omega\right)$$

Wyznaczyliśmy transformatę funkcji $g_1(t)$. Jednak funkcja $g_1(t)$ nie ma takiej samej postaci jak funkcja g(t)

$$g(t) = Sa \left(\omega_0 \cdot t\right)$$

$$= Sa \left(\omega_0 \cdot t \cdot \frac{2}{2}\right)$$

$$= Sa \left(2 \cdot \omega_0 \cdot \frac{t}{2}\right)$$

$$= Sa \left(\frac{2 \cdot \omega_0 \cdot t}{2}\right)$$

$$= \left\{a = 2 \cdot \omega_0\right\}$$

$$= Sa \left(\frac{a \cdot t}{2}\right)$$

$$= g_1(a \cdot t)$$

Znając transformatę funkcji $g_1(t)$ możemy wyznaczyć transformatę funkcji $g(t)=g_1(a\cdot t)$ za pomocą twierdzenia o zmianie skali.

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g(t) = g_1(\alpha \cdot t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

Podstawiając wyznaczoną transformatę $G_1(j\omega)$

$$G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

$$= \left\{\alpha = 2 \cdot \omega_0\right\}$$

$$= \frac{1}{|2 \cdot \omega_0|} \cdot G_1(\frac{\omega}{2 \cdot \omega_0})$$

$$= \left\{G_1(\jmath\omega) = 2\pi \cdot \Pi(\omega)\right\}$$

$$= \frac{1}{2 \cdot \omega_0} \cdot 2\pi \cdot \Pi\left(\frac{\omega}{2 \cdot \omega_0}\right)$$

$$= \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega}{2 \cdot \omega_0}\right)$$

Tak wiec transformata sygnału $g(t) = Sa\left(\omega_0 \cdot t\right)$ jest równa $G(\jmath\omega) = \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega}{2 \cdot \omega_0}\right)$ Kolejnym krokiem jest wyznaczenie transformaty dwóch sygnałów

$$f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t}$$

$$f_2(t) = Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t}$$

Korzystając z twierdzenie o przesunięciu w dziedzinie częstotliwości

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f_1(t) = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F_1(\jmath\omega) = G(\jmath(\omega - \omega_0))$$

otrzymujemy wprost

$$F_1(j\omega) = G(j(\omega - \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right)$$

$$F_2(j\omega) = G(j(\omega + \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)$$

Ostatecznie korzystając z liniowości transformaty Fouriera

$$f_1(t) \xrightarrow{\mathcal{F}} F_1(\jmath\omega)$$

 $f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = \alpha \cdot F_1(\jmath\omega) + \beta \cdot F_2(\jmath\omega)$$

otrzymujemy

$$F(j\omega) = F_1(j\omega) - F_2(j\omega)$$

$$= \frac{1}{2 \cdot j} \cdot \left(\frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right) - \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)\right)$$

Transformata Fouriera sygnału f(t) jest równa $F(j\omega) = \frac{1}{2\cdot j} \cdot \left(\frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega - \omega_0}{2\cdot \omega_0}\right) - \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega + \omega_0}{2\cdot \omega_0}\right)\right)$

Zadanie 34. Oblicz transformatę Fouriera sygnału $f(t) = Sa^2(\omega_0 \cdot t) \cdot cos(\omega_0 \cdot t)$ za pomocą twierdzeń, wiedząc że transformata sygnału $\Lambda(t)$ jest rowna $Sa^2(\frac{\omega}{2})$.

$$f(t) = Sa^{2}(\omega_{0} \cdot t) \cdot \cos(\omega_{0} \cdot t) \tag{170}$$

$$\Lambda(t) \stackrel{F}{\to} Sa^2 \left(\frac{\omega}{2}\right) \tag{171}$$

W pierwszej kolejności można funkcję f(t) rozpisać następująco

$$f(t) = Sa^{2} (\omega_{0} \cdot t) \cdot \cos(\omega_{0} \cdot t)$$

$$= \left\{ \cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\}$$

$$= Sa^{2} (\omega_{0} \cdot t) \cdot \frac{e^{\jmath \cdot \omega_{0} \cdot t} + e^{-\jmath \cdot \omega_{0} \cdot t}}{2}$$

$$= \frac{1}{2} \cdot \left(Sa^{2} (\omega_{0} \cdot t) \cdot e^{\jmath \cdot \omega_{0} \cdot t} + Sa^{2} (\omega_{0} \cdot t) \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \right)$$

$$= \left\{ f_{1}(t) = Sa^{2} (\omega_{0} \cdot t) \cdot e^{\jmath \cdot \omega_{0} \cdot t} \right\}$$

$$= \left\{ f_{2}(t) = Sa^{2} (\omega_{0} \cdot t) \cdot e^{-\jmath \cdot \omega_{0} \cdot t} \right\}$$

$$= \frac{1}{2} \cdot (f_{1}(t) + f_{2}(t))$$

Należy zauważyć iż funkcja $f_1(t)$ i $f_2(t)$ jest złożeniem funkcji Sa^2 i funkcji wykładniczych.

$$f_1(t) = Sa(\omega_0 \cdot t) \cdot e^{\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t}$$

$$f_2(t) = Sa(\omega_0 \cdot t) \cdot e^{-\jmath \cdot \omega_0 \cdot t} = g(t) \cdot e^{-\jmath \cdot \omega_0 \cdot t}$$

Znając transformatę sygnału $g(t) = Sa(\omega_0 \cdot t)$ możemy skorzystać z twierdzenia o przesunięciu w dziedzinie częstotliwości.

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath \omega)$$

$$f(t) = g(t) \cdot e^{j \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F(j\omega) = G(j(\omega - \omega_0))$$

Aby wyznaczyć transformatę sygnału g(t) możemy skorzystać z twierdzenia o symetrii. Znając transformatę $H(\jmath\omega)$ sygnału h(t) można wyznaczyć transformatę $G(\jmath\omega)$ sygnału g(t)

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath \omega)$$
$$g(t) = H(t) \xrightarrow{\mathcal{F}} G(\jmath \omega) = 2\pi \cdot h(-\omega)$$

Tak wiec zacznijmy od transformaty sygnału prostokątnego $h(t)=\Pi(t)$ i wyznaczymy transformatę funkcji Sa

$$\begin{split} h(t) &= \Lambda(t) \stackrel{F}{\to} H(\jmath \omega) = Sa^2 \left(\frac{\omega}{2}\right) \\ g_1(t) &= H(t) = Sa^2 \left(\frac{t}{2}\right) \stackrel{F}{\to} G_1(\jmath \omega) = 2\pi \cdot h(-\jmath \omega) = \pi \cdot \Lambda \left(-\omega\right) = 2\pi \cdot \Lambda \left(\omega\right) \end{split}$$

Wyznaczyliśmy transformatę funkcji $g_1(t)$. Jednak funkcja $g_1(t)$ nie ma takiej samej postaci jak funkcja g(t)

$$g(t) = Sa^{2} (\omega_{0} \cdot t)$$

$$= Sa^{2} \left(\omega_{0} \cdot t \cdot \frac{2}{2}\right)$$

$$= Sa^{2} \left(2 \cdot \omega_{0} \cdot \frac{t}{2}\right)$$

$$= Sa^{2} \left(\frac{2 \cdot \omega_{0} \cdot t}{2}\right)$$

$$= \left\{a = 2 \cdot \omega_{0}\right\}$$

$$= Sa^{2} \left(\frac{a \cdot t}{2}\right)$$

$$= g_{1}(a \cdot t)$$

Znając transformatę funkcji $g_1(t)$ możemy wyznaczyć transformatę funkcji $g(t) = g_1(a \cdot t)$ za pomocą twierdzenia o zmianie skali.

$$g_1(t) \xrightarrow{\mathcal{F}} G_1(\jmath\omega)$$

$$g(t) = g_1(\alpha \cdot t) \xrightarrow{\mathcal{F}} G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

Podstawiając wyznaczoną transformatę $G_1(j\omega)$

$$G(\jmath\omega) = \frac{1}{|\alpha|} \cdot G_1(\jmath\frac{\omega}{\alpha})$$

$$\begin{split} &= \left\{ \alpha = 2 \cdot \omega_0 \right\} \\ &= \frac{1}{|2 \cdot \omega_0|} \cdot G_1(\frac{\omega}{2 \cdot \omega_0}) \\ &= \left\{ G_1(\jmath \omega) = 2\pi \cdot \Lambda(\omega) \right\} \\ &= \frac{1}{2 \cdot \omega_0} \cdot 2\pi \cdot \Lambda\left(\frac{\omega}{2 \cdot \omega_0}\right) \\ &= \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega}{2 \cdot \omega_0}\right) \end{split}$$

Tak wiec transformata sygnału $g(t)=Sa\left(\omega_0\cdot t\right)$ jest równa $G(\jmath\omega)=\frac{\pi}{\omega_0}\cdot\Lambda\left(\frac{\omega}{2\cdot\omega_0}\right)$ Kolejnym krokiem jest wyznaczenie transformaty dwóch sygnałów

$$f_1(t) = Sa^2 (\omega_0 \cdot t) \cdot e^{j \cdot \omega_0 \cdot t}$$

$$f_2(t) = Sa^2 (\omega_0 \cdot t) \cdot e^{-j \cdot \omega_0 \cdot t}$$

Korzystając z twierdzenie o przesunięciu w dziedzinie częstotliwości

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f_1(t) = g(t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F_1(\jmath\omega) = G(\jmath(\omega - \omega_0))$$

otrzymujemy wprost

$$F_1(j\omega) = G(j(\omega - \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right)$$

$$F_2(j\omega) = G(j(\omega + \omega_0))$$
$$= \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)$$

Ostatecznie korzystając z liniowości transformaty Fouriera

$$f_1(t) \xrightarrow{\mathcal{F}} F_1(\jmath\omega)$$

$$f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$$

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = \alpha \cdot F_1(\jmath\omega) + \beta \cdot F_2(\jmath\omega)$$

otrzymujemy

$$F(j\omega) = F_1(j\omega) - F_2(j\omega)$$

$$= \frac{1}{2} \cdot \left(\frac{\pi}{\omega_0} \cdot \Lambda \left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right) + \frac{\pi}{\omega_0} \cdot \Lambda \left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)\right)$$

Transformata Fouriera sygnału f(t) jest równa $F(j\omega) = \frac{1}{2} \cdot \left(\frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right) + \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)\right)$

Zadanie 35. Oblicz transformatę Fouriera sygnału f(t) = sgn(t) za pomocą twierdzeń.

Sygnał f(t) można zapisać jako

$$f(t) = sgn(t)$$
$$= 1(t) - 1(-t)$$
$$= f_1(t) - f_2(t)$$

Wyrażnie widac iż funkcja jest złożeniem dwóch skoków jednostkowych

$$f_1(t) = \mathbb{1}(t)f_2(t)$$
 = $\mathbb{1}(-t)$

Transformaty sygnału $f_1(t)=\mathbbm{1}(t)$ nie można wyznaczyć wprost ze wzoru. Ale łatwo można wyznaczyć pochodnią $f_1'(t)$

$$g(t) = f_1'(t) = \delta(t)$$

dla której w bardzo łatwy sposób można wyznaczyć transformatę Fouriera.

$$G(\jmath\omega) = \int_{-\infty}^{\infty} g(t) \cdot e^{-\jmath \cdot \omega \cdot t}$$

$$= \int_{-\infty}^{\infty} \delta(t) \cdot e^{-\jmath \cdot \omega \cdot t}$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\}$$

$$= e^{-\jmath \cdot \omega \cdot 0}$$

$$= e^{0}$$

$$= 1$$

Transformatą Fouriera sygnału $g(t) = \delta(t)$ jest $G(j\omega) = 1$

Korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę funkcji $f_1(t)$

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f_1(t) = \int_{-\infty}^t g(\tau) \cdot d\tau \xrightarrow{\mathcal{F}} F_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Tak wiec mamy

$$F_1(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
$$= \frac{1}{j \cdot \omega} \cdot 1 + \pi \cdot \delta(\omega) \cdot 1$$
$$= \frac{1}{j \cdot \omega} + \pi \cdot \delta(\omega)$$

A wiec transformata skoku jednostkowego jest $F_1(j\omega)=\frac{1}{j\cdot\omega}+\pi\cdot\delta(\omega)$ Funkcję $f_2(t)$ można zapisać jako

$$f_2(t) = \mathbb{1}(-t)$$
$$= \mathbb{1}(-1 \cdot t)$$

$$= f_1(-1 \cdot t)$$

A wiec transformatę funkcji $f_2(t)$ można wyznaczyć z twierdzenia o zmianie skali

$$f_1(t) \xrightarrow{\mathcal{F}} F_1(\jmath\omega)$$

$$f_2(t) = f_1(\alpha \cdot t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega) = \frac{1}{|\alpha|} \cdot F_1(\jmath\frac{\omega}{\alpha})$$

$$F_2(\jmath\omega) = \frac{1}{|a|} \cdot F_1(\jmath\frac{\omega}{a})$$

$$= \left\{a = -1\right\}$$

$$= \frac{1}{|-1|} \cdot \frac{1}{\jmath \cdot \frac{\omega}{-1}} + \pi \cdot \delta(\frac{\omega}{-1})$$

$$= \frac{1}{1} \cdot \frac{1}{-\jmath \cdot \omega} + \pi \cdot \delta(-\omega)$$

$$= -\frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega)$$

A więc transformata funkcji $f_2(t)$ jest równa $F_2(\jmath\omega) - \frac{1}{\jmath\cdot\omega} + \pi\cdot\delta(\omega)$ Transformatę funkcji f(t) możemy wyznaczyć z twierdzenia o jednorodności

$$f_1(t) \xrightarrow{\mathcal{F}} F_1(\jmath\omega)$$

$$f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$$

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = \alpha \cdot F_1(\jmath\omega) + \beta \cdot F_2(\jmath\omega)$$

$$F(\jmath\omega) = F_1(\jmath\omega) - F_2(\jmath\omega)$$

$$= \frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega) - \left(-\frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega)\right)$$

$$= \frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega) + \frac{1}{\jmath \cdot \omega} - \pi \cdot \delta(\omega)$$

$$= \frac{2}{\jmath \cdot \omega}$$

Ostatecznie transformata funkcji f(t)jest równa $F(\jmath\omega)=\frac{2}{\jmath\cdot\omega}.$

Zadanie 36. Oblicz transformatę Fouriera sygnału $f(t) = \frac{1}{1+t^2}$ za pomocą twierdzeń.

Załóżmy sygnał $g(t)=e^{-|t|}$ i wyznaczmy jego transformatę.

$$\begin{split} G(\jmath\omega) &= \int_{-\infty}^{\infty} g(t) \cdot e^{-\jmath\omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} e^{-|t|} \cdot e^{-\jmath\omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} e^{t} \cdot e^{-\jmath\omega \cdot t} \cdot dt + \int_{0}^{\infty} e^{-t} \cdot e^{-\jmath\omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} e^{t} \cdot e^{-\jmath\omega \cdot t} \cdot dt + \int_{0}^{\infty} e^{-t-\jmath\omega \cdot t} \cdot dt \\ &= \lim_{\tau \to \infty} \int_{-\tau}^{0} e^{(1-\jmath\omega) \cdot t} \cdot dt + \lim_{\tau \to \infty} \int_{0}^{\tau} e^{-(1+\jmath\omega) \cdot t} \cdot dt \\ &= \lim_{\tau \to \infty} \int_{-\tau}^{0} e^{(1-\jmath\omega) \cdot t} \cdot dt + \lim_{\tau \to \infty} \int_{0}^{\tau} e^{-(1+\jmath\omega) \cdot t} \cdot dt \\ &= \begin{cases} z_{1} = -(1+\jmath\cdot\omega) \cdot t & z_{2} = (1-\jmath\cdot\omega) \cdot t \\ dz_{1} = -(1+\jmath\cdot\omega) \cdot dz & dz_{2} = (1-\jmath\cdot\omega) \cdot dt \end{cases} \\ &= \lim_{\tau \to \infty} \int_{-\tau}^{0} e^{z_{2}} \cdot \frac{1}{1-\jmath\cdot\omega} \cdot dz_{2} + \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z_{1}} \cdot \frac{1}{-(1+\jmath\cdot\omega)} \cdot dz_{1} \\ &= \lim_{\tau \to \infty} \int_{-\tau}^{0} e^{z_{2}} \cdot \frac{1}{1-\jmath\cdot\omega} \cdot dz_{2} + \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z_{1}} \cdot \frac{1}{-(1+\jmath\cdot\omega)} \cdot dz_{1} \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} e^{z_{2}} \Big|_{-\tau}^{0} + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} e^{z_{1}} \Big|_{0}^{\tau} \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} \left(e^{(1-\jmath\omega) \cdot t} \Big|_{-\tau}^{0} + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} e^{-(1+\jmath\omega) \cdot t} \Big|_{0}^{\tau} \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} \left(e^{(1-\jmath\omega) \cdot 0} - e^{(1-\jmath\omega) \cdot (-\tau)} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} \left(e^{-(1+\jmath\omega) \cdot \tau} - e^{-(1+\jmath\omega) \cdot 0} \right) \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} \left(e^{0} - e^{-(1-\jmath\omega) \cdot \tau} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} \left(e^{-(1+\jmath\omega) \cdot \tau} - e^{0} \right) \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} \left(1 - e^{-\tau + \jmath\omega \cdot \tau} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} \left(e^{-\tau - \jmath\omega \cdot \tau} - \lim_{\tau \to \infty} 1 \right) \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \left(\lim_{\tau \to \infty} 1 - \lim_{\tau \to \infty} e^{-\tau} \cdot \lim_{\tau \to \infty} e^{\jmath\omega \cdot \tau} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \left(\lim_{\tau \to \infty} e^{-\tau} \cdot \lim_{\tau \to$$

$$\begin{split} &= \frac{1}{1 - \jmath \cdot \omega} \cdot \left(1 - 0 \cdot \lim_{\tau \to \infty} e^{\jmath \cdot \omega \cdot \tau}\right) + \frac{1}{-(1 + \jmath \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{-\jmath \cdot \omega \cdot \tau} - 1\right) \\ &= \frac{1}{1 - \jmath \cdot \omega} \cdot (1 - 0) + \frac{1}{-(1 + \jmath \cdot \omega)} \cdot (0 - 1) \\ &= \frac{1}{1 - \jmath \cdot \omega} + \frac{1}{-(1 + \jmath \cdot \omega)} \cdot (-1) \\ &= \frac{1}{1 - \jmath \cdot \omega} + \frac{1}{1 + \jmath \cdot \omega} \\ &= \frac{(1 + \jmath \cdot \omega)}{(1 + \jmath \cdot \omega) \cdot (1 - \jmath \cdot \omega)} + \frac{(1 - \jmath \cdot \omega)}{(1 + \jmath \cdot \omega) \cdot (1 - \jmath \cdot \omega)} \\ &= \frac{(1 + \jmath \cdot \omega) + (1 - \jmath \cdot \omega)}{(1 + \jmath \cdot \omega) \cdot (1 - \jmath \cdot \omega)} \\ &= \frac{2}{1 + \omega^2} \end{split}$$

Transformata sygnału $g(t)=e^{-|t|}$ jest równa $G(\jmath\omega)=\frac{2}{1+\omega^2}$. Postać funkcji $G(\jmath\omega)=\frac{2}{1+\omega^2}$ nie jest identyczna z postacią funkcji f(t), funkcja różni się o współczynnik 2.

Z twierdzenia o liniowości transformaty

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$h(t) = \alpha \cdot g(t) \xrightarrow{\mathcal{F}} H(\jmath\omega) = \alpha \cdot G(\jmath\omega)$$

otrzymujemy

$$h(t) = \frac{1}{2} \cdot e^{-|t|}$$

$$H(j\omega) = \frac{1}{2} \cdot \frac{2}{1 + \omega^2}$$

$$= \frac{1}{1 + \omega^2}$$

Na podstawie sygnału h(t) i korzystając z twierdzenia o symetrii możemy wyznaczyć transformatę sygnału f(t).

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$f(t) = H(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = 2\pi \cdot h(-\omega)$$

$$F(j\omega) = 2\pi \cdot h(-\omega)$$
$$= 2\pi \cdot \frac{1}{2} \cdot e^{-|-\omega|}$$
$$= \pi \cdot e^{-|\omega|}$$

Transformata Fouriera sygnału $f(t) = \frac{1}{1+t^2}$ jest równa $F(\jmath\omega) = \pi \cdot e^{-|\omega|}$

Zadanie 37. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku wykorzystując twierdzenia opisujące własciwości transformacji Fouriera. Wykorzystaj informację o tym, że $\mathcal{F}\{\Pi(t)\} = Sa\left(\frac{\omega}{2}\right)$ oraz $\mathcal{F}\{\Lambda(t)\} = Sa^2\left(\frac{\omega}{2}\right)$.

W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Możemy zauważyć iż przedstawiony sygnał można otrzymać przez oodjęcie trójkąta od sygnału prostokątnego. Wykorzystując sygnały elementarne możemy to zapisać następująco:

$$f(t) = A \cdot \left(\Pi\left(\frac{t}{2 \cdot t_0}\right) - \Lambda\left(\frac{t}{t_0}\right) \right) \tag{172}$$

Ponieważ transformacja Fouriera jest przekształceniem liniowym, dlatego można wyznaczyć osobno transformaty poszczególnych sygnałów elementarnych, czyli:

$$f(t) = A \cdot (f_1(t) - f_2(t)) \tag{173}$$

gdzie:

$$f_1(t) = \Pi\left(\frac{t}{2 \cdot t_0}\right)$$

$$f_2(t) = \Lambda\left(\frac{t}{t_0}\right)$$

Wyznaczmy transformtę sygnału $f_1(t)$, czyli $F_1(j\omega)$.

Z treści zadania wiemy, że: $\mathcal{F}\{\Pi(t)\}=Sa\left(\frac{\omega}{2}\right)$. Wykorzystując twierdzenie o zmianie skali mamy:

$$\begin{split} g(t) &\xrightarrow{\mathcal{F}} G(\jmath \omega) \\ f(t) &= g(\alpha \cdot t) \xrightarrow{\mathcal{F}} F(\jmath \omega) = \frac{1}{|\alpha|} \cdot G(\jmath \frac{\omega}{\alpha}) \end{split}$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$\Pi(\frac{t}{2 \cdot t_0}) \xrightarrow{\mathcal{F}} \frac{1}{\left|\frac{1}{2 \cdot t_0}\right|} \cdot Sa\left(\frac{\frac{\omega}{\frac{1}{2 \cdot t_0}}}{2}\right)$$

$$\Pi(\frac{t}{2 \cdot t_0}) \xrightarrow{\mathcal{F}} 2 \cdot t_0 \cdot Sa\left(\frac{\omega \cdot 2 \cdot t_0}{2}\right)$$

$$\Pi(\frac{t}{2 \cdot t_0}) \xrightarrow{\mathcal{F}} 2 \cdot t_0 \cdot Sa\left(\omega \cdot t_0\right)$$

Transformata sygnału $f_1(t)$ to:

$$F_1(j\omega) = \mathcal{F}\{f_1(t)\} = 2 \cdot t_0 \cdot Sa\left(\omega \cdot t_0\right) \tag{174}$$

Teraz wyznaczmy transformtę sygnału $f_2(t)$, czyli $F_2(j\omega)$.

Z treści zadania wiemy, że: $\mathcal{F}\{\Lambda(t)\}=Sa^{2}\left(\frac{\omega}{2}\right).$

Wykorzystując twierdzenie o zmianie skali mamy:

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = g(\alpha \cdot t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = \frac{1}{|\alpha|} \cdot G(\jmath\frac{\omega}{\alpha})$$

$$\Lambda(t) \xrightarrow{\mathcal{F}} Sa^{2} \left(\frac{\omega}{2}\right)$$

$$\Lambda(\frac{t}{t_{0}}) \xrightarrow{\mathcal{F}} \frac{1}{\left|\frac{1}{t_{0}}\right|} \cdot Sa^{2} \left(\frac{\frac{\omega}{1}}{\frac{t_{0}}{2}}\right)$$

$$\Lambda(\frac{t}{t_{0}}) \xrightarrow{\mathcal{F}} t_{0} \cdot Sa^{2} \left(\frac{\omega \cdot t_{0}}{2}\right)$$

Transformata sygnału $f_2(t)$ to:

$$F_2(j\omega) = \mathcal{F}\{f_2(t)\} = t_0 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right)$$
(175)

Czyli transformata sygnału f(t) to:

$$F(j\omega) = \mathcal{F}\{f(t)\} = A \cdot \left(2 \cdot t_0 \cdot Sa\left(\omega \cdot t_0\right) - t_0 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right)\right)$$

Transformata sygnału $f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) - A \cdot \Lambda\left(\frac{t}{t_0}\right)$ to $F(\jmath \omega) = 2 \cdot A \cdot t_0 \cdot Sa\left(\omega \cdot t_0\right) - A \cdot t_0 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right)$

Zadanie 38. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń, wiedząc że transformata sygnału prostokątnego $g(t) = \Pi(t)$ jest równa $G(j\omega) = Sa\left(\frac{\omega}{2}\right)$.

Sygnał zbudowany jest z ciągu poprzesuwanych sygnałów prostokątnych o wykładniczo malejącej amplitudzie.

$$f(t) = \sum_{n=0}^{\infty} \frac{A}{2^n} \cdot \Pi\left(\frac{t - \frac{T}{2} - n \cdot T}{T}\right)$$

Nasz sygnał jest nieskończoną sumą funkcji prostokątnych. Korzystając z liniowość transformaty fouriera

$$f_1(t) \xrightarrow{\mathcal{F}} F_1(\jmath\omega)$$

$$f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$$

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = \alpha \cdot F_1(\jmath\omega) + \beta \cdot F_2(\jmath\omega)$$

możemy napisać że:

$$F(j\omega) = \sum_{n=0}^{\infty} \frac{A}{2^n} \cdot H_n(j\omega)$$

gdzie $H_n(j\omega)$ jest transformatą Fouriera odpowiednio przesuniętego sygnału prostokątnego $h_n(t) = \prod \left(\frac{t-\frac{T}{2}-n\cdot T}{T}\right)$.

Transformata sygnału $g(t) = \Pi(t)$ jest równa $G(j\omega) = Sa(\frac{\omega}{2})$. Postać funkcji g(t) nie jest identyczna z postacią funkcji $h_n(t)$, funkcja różni się skalą i przesunięciem. Zacznijmy od skali.

Wyznaczanym transformaty funkcji przeskalowanej $h(t) = \Pi\left(\frac{t}{T}\right)$

Z twierdzenia o zmianie skali mamy

$$\begin{split} g(t) &\xrightarrow{\mathcal{F}} G(\jmath \omega) \\ h(t) &= g(\alpha \cdot t) \xrightarrow{\mathcal{F}} H(\jmath \omega) = \frac{1}{|\alpha|} \cdot G(\jmath \frac{\omega}{\alpha}) \end{split}$$

a wiec otrzymujemy

$$h(t) = \Pi\left(\frac{t}{T}\right)$$
$$= \Pi\left(\frac{1}{T} \cdot t\right)$$
$$= g\left(\frac{1}{T} \cdot t\right)$$

$$\alpha = \frac{1}{T}$$

$$H(\jmath\omega) = \frac{1}{\frac{1}{T}} \cdot G\left(\frac{\jmath\omega}{\frac{1}{T}}\right)$$
$$= \frac{1}{\frac{1}{T}} \cdot Sa\left(\frac{\frac{\omega}{\frac{1}{T}}}{2}\right)$$
$$= T \cdot Sa\left(\frac{\omega \cdot T}{2}\right)$$

Dalej wyznaczanym transformaty funkcji przeskalowanej i przesuniętej $h_n(t) = \Pi\left(\frac{t - \frac{T}{2} - n \cdot T}{T}\right)$ Korzystając z twierdzenia o przesunięciu w dziedzinie czasu

$$h_n(t) \xrightarrow{\mathcal{F}} H_n(\jmath\omega)$$

$$h(t) = h_n(t - t_0) \xrightarrow{\mathcal{F}} H(\jmath\omega) = H_n(\jmath\omega) \cdot e^{-\jmath \cdot \omega \cdot t_0}$$

możemy napisać że:

$$H_n(j\omega) = H(j\omega) \cdot e^{-j \cdot \omega \cdot t_0}$$
$$= T \cdot Sa\left(\frac{\omega \cdot T}{2}\right) \cdot e^{-j \cdot \omega \cdot \left(\frac{T}{2} + n \cdot T\right)}$$

Osatatecznie wzór na transformatę sygnału f(t) jest równy

$$F(j\omega) = \sum_{n=0}^{\infty} \frac{A}{2^n} \cdot H_n(j\omega)$$

$$= \sum_{n=0}^{\infty} \frac{A}{2^n} \cdot T \cdot Sa\left(\frac{\omega \cdot T}{2}\right) \cdot e^{-j \cdot \omega \cdot \left(\frac{T}{2} + n \cdot T\right)}$$

$$= \sum_{n=0}^{\infty} \frac{A}{2^n} \cdot T \cdot Sa\left(\frac{\omega \cdot T}{2}\right) \cdot e^{-j \cdot \omega \cdot \frac{T}{2}} \cdot e^{-j \cdot \omega \cdot n \cdot T}$$

Zadanie 39. Oblicz energię sygnału $f(t) = Sa(\omega_0 \cdot t)$, wiedząc że transformata sygnału $\Pi(t)$ jest równa $Sa(\frac{\omega}{2})$.

$$f(t) = Sa\left(\omega_0 \cdot t\right) \tag{176}$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$
 (177)

Energię sygnału można wyznaczyc ze wzoru:

$$E = \int_{-\infty}^{\infty} |f(t)|^2 \cdot dt \tag{178}$$

Podstawiając dany sygnał f(t) do wzoru na energie otrzymujemy:

$$E = \int_{-\infty}^{\infty} |f(t)|^2 \cdot dt$$

$$= \int_{-\infty}^{\infty} |Sa(\omega_0 \cdot t)|^2 \cdot dt$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= \int_{-\infty}^{\infty} \left| \frac{\sin(\omega_0 \cdot t)}{(\omega_0 \cdot t)} \right|^2 \cdot dt$$

$$= \int_{-\infty}^{\infty} \frac{\sin^2(\omega_0 \cdot t)}{(\omega_0 \cdot t)^2} \cdot dt$$

Próbując obliczyc energię tym sposobem musimy obliczyć całkę cykliczną. A może jest łatwiejszy sposób?

Spróbumy wykorzystać twierdzenie Parsevala:

$$E = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(j\omega)|^2 \cdot d\omega \tag{179}$$

W tym podejściu musimy obliczyć transformatę Fouriera sygnału f(t), czyli $F(\jmath\omega)$. Skoro wiemy, że:

$$g(t) = \Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$
 (180)

to, na podstawie twierdzenia o symetrii przekształcenia Fouriera:

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f(t) = G(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = 2\pi \cdot g(-\omega)$$

otrzymujemy:

$$Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(-\omega)$$

 $Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(\omega)$

Teraz musimy przeskalować $Sa\left(\frac{t}{2}\right)$ tak, aby otrzymać $Sa\left(\omega_0 \cdot t\right)$. W tym celu skorzystamy z twierdzenia o zmianie skali podstawiając $\alpha = 2 \cdot \omega_0$:

$$\begin{split} f(t) &\xrightarrow{\mathcal{F}} F(\jmath \omega) \\ g(t) &= f(\alpha \cdot t) \xrightarrow{\mathcal{F}} G(\jmath \omega) = \frac{1}{|\alpha|} \cdot F(\jmath \frac{\omega}{\alpha}) \end{split}$$

$$Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(\omega)$$

$$Sa\left(2 \cdot \omega_0 \cdot \frac{t}{2}\right) \xrightarrow{\mathcal{F}} \frac{1}{2 \cdot \omega_0} \cdot 2\pi \cdot \Pi(\frac{\omega}{2 \cdot \omega_0})$$

$$Sa\left(\omega_0 \cdot t\right) \xrightarrow{\mathcal{F}} \frac{\pi}{\omega_0} \cdot \Pi(\frac{\omega}{2 \cdot \omega_0})$$

Narysujmy widmo amplitudowe sygnału f(t), czyli $|F(j\omega)|$.

$$|F(j\omega)| = \begin{cases} 0 & \omega \in (-\infty; -\omega_0) \\ \frac{\pi}{\omega_0} & \omega \in (-\omega_0; \omega_0) \\ 0 & \omega \in (\omega_0; \infty) \end{cases}$$

Ponieważ energię wyznaczamy ze wzoru:

$$E = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(j\omega)|^2 \cdot d\omega \tag{181}$$

to wyznaczmy $|F(j\omega)|^2$:

$$|F(j\omega)|^2 = \begin{cases} 0 & \omega \in (-\infty; -\omega_0) \\ \left(\frac{\pi}{\omega_0}\right)^2 & \omega \in (-\omega_0; \omega_0) \\ 0 & \omega \in (\omega_0; \infty) \end{cases}$$

$$E = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(j\omega)|^2 \cdot d\omega$$

$$\begin{split} &= \frac{1}{2\pi} \cdot \left(\int_{-\infty}^{-\omega_0} 0 \cdot d\omega + \int_{-\omega_0}^{\omega_0} \left(\frac{\pi}{\omega_0} \right)^2 \cdot d\omega + \int_{\omega_0}^{\infty} 0 \cdot d\omega \right) \\ &= \frac{1}{2\pi} \cdot \left(0 + \left(\frac{\pi}{\omega_0} \right)^2 \cdot \int_{-\omega_0}^{\omega_0} d\omega + 0 \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{\pi}{\omega_0} \right)^2 \cdot \left(\omega \Big|_{-\omega_0}^{\omega_0} \right) \\ &= \frac{\pi}{2 \cdot \omega_0^2} \cdot (\omega_0 - (-\omega_0)) \\ &= \frac{\pi}{2 \cdot \omega_0^2} \cdot (2 \cdot \omega_0) \\ &= \frac{\pi}{\omega_0} \end{split}$$

Energia sygnału $f(t) = Sa\left(\omega_0 \cdot t\right)$ równa się $E = \frac{\pi}{\omega_0}.$

Zadanie 40. Oblicz, jaka część energi sygnału $f(t) = A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot cos^2\left(2 \cdot \omega_0 \cdot t\right)$ przypada na wartości pulsacji $|\omega| < 2 \cdot \omega_0$. Wykorzystaj informację, że transformata sygnału $\Pi(t)$ jest równa $Sa\left(\frac{\omega}{2}\right)$.

$$f(t) = A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot \cos^2\left(2 \cdot \omega_0 \cdot t\right) \tag{182}$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$
 (183)

$$\frac{E_{|\omega|<2\cdot\omega_0}}{E} = ? \tag{184}$$

Ponieważ musimy obliczyć energię tylko dla pewnego zakresu pulsacji, to wykorzystamy twierdzenie Parsevala:

$$E = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(j\omega)|^2 \cdot d\omega \tag{185}$$

W tym podejściu musimy obliczyć transformatę Fouriera sygnału f(t), czyli $F(j\omega)$.

Ponieważ możemy korzystać tylko ze znanych twierdzeń oraz wiedzy o transformacie sygnału $\Pi(t)$, to spróbujmy przekształcić sygnał f(t) do postaci, w której wprost możemy zastosować twierdzenia. Zauważmy, że:

$$\begin{split} f(t) &= A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot cos^2\left(2 \cdot \omega_0 \cdot t\right) \\ &= \left\{cos\left(x\right) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2}\right\} \\ &= A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot \left(\frac{e^{2 \cdot \jmath \cdot \omega_0 \cdot t} + e^{-2 \cdot \jmath \cdot \omega_0 \cdot t}}{2}\right)^2 \\ &= A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot \left(\frac{\left(e^{2 \cdot \jmath \cdot \omega_0 \cdot t}\right)^2 + 2 \cdot e^{2 \cdot \jmath \cdot \omega_0 \cdot t} \cdot e^{-2 \cdot \jmath \cdot \omega_0 \cdot t} + \left(e^{-2 \cdot \jmath \cdot \omega_0 \cdot t}\right)^2}{4}\right) \\ &= A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot \left(\frac{e^{4 \cdot \jmath \cdot \omega_0 \cdot t} + 2 \cdot e^{2 \cdot \jmath \cdot \omega_0 \cdot t} - 2 \cdot \jmath \cdot \omega_0 \cdot t}{4}\right) \\ &= A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot \left(\frac{e^{4 \cdot \jmath \cdot \omega_0 \cdot t} + 2 \cdot e^{0} + e^{-4 \cdot \jmath \cdot \omega_0 \cdot t}}{4}\right) \\ &= \frac{A}{4} \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot e^{4 \cdot \jmath \cdot \omega_0 \cdot t} + \frac{A}{2} \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) + \frac{A}{4} \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot e^{-4 \cdot \jmath \cdot \omega_0 \cdot t} \\ &= f_1(t) + f_2(t) + f_3(t) \end{split}$$

Korzystając z liniowości przekształcenia Fouriera możemy niezależnie obliczyć transformaty dla sygnałów $f_1(t)$, $f_2(t)$ i $f_3(t)$, a następnie zsumować te transformaty. Zacznijmy od sygnału $f_2(t)$:

Skoro wiemy, że:

$$g(t) = \Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$
 (186)

to, na podstawie twierdzenia o symetrii przekształcenia Fouriera:

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$f_2(t) = G(t) \xrightarrow{\mathcal{F}} F_2(j\omega) = 2\pi \cdot g(-\omega)$$

otrzymujemy:

$$Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(-\omega)$$

 $Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(\omega)$

Teraz musimy przeskalować $Sa\left(\frac{t}{2}\right)$ tak, aby otrzymać $Sa\left(2 \cdot \omega_0 \cdot t\right)$. W tym celu skorzystamy z twierdzenia o zmianie skali podstawiając $\alpha = 4 \cdot \omega_0$:

$$f(t) \xrightarrow{\mathcal{F}} F(\jmath \omega)$$

$$f_1(t) = f(\alpha \cdot t) \xrightarrow{\mathcal{F}} F_1(\jmath \omega) = \frac{1}{|\alpha|} \cdot F(\jmath \frac{\omega}{\alpha})$$

$$Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(\omega)$$

$$Sa\left(4 \cdot \omega_0 \cdot \frac{t}{2}\right) \xrightarrow{\mathcal{F}} \frac{1}{4 \cdot \omega_0} \cdot 2\pi \cdot \Pi\left(\frac{\omega}{4 \cdot \omega_0}\right)$$

$$Sa\left(2 \cdot \omega_0 \cdot t\right) \xrightarrow{\mathcal{F}} \frac{\pi}{2 \cdot \omega_0} \cdot \Pi\left(\frac{\omega}{4 \cdot \omega_0}\right)$$

$$f_2(t) = \frac{A}{2} \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{4 \cdot \omega_0} \cdot \Pi\left(\frac{\omega}{4 \cdot \omega_0}\right) = F_2(\jmath\omega)$$

Podsumowując, transformata sygnału $f_2(t)$ to $F_2(\jmath\omega) = \frac{A\cdot\pi}{4\cdot\omega_0} \cdot \Pi\left(\frac{\omega}{4\cdot\omega_0}\right)$.

Zauważmy, że $f_1(t) = \frac{1}{2} \cdot f_2(t) \cdot e^{4 \cdot j \cdot \omega_0 \cdot t}$, czyli $f_1(t)$ to zmodulowany sygnał $f_2(t)$. Stosując twierdzenie o modulacji:

$$f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$$

$$f_1(t) = f_2(t) \cdot e^{\jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F_1(\jmath\omega) = F_2(\jmath(\omega - \omega_0))$$

otrzymujemy:

$$f_2(t) \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{4 \cdot \omega_0} \cdot \Pi\left(\frac{\omega}{4 \cdot \omega_0}\right)$$

$$f_2(t) \cdot e^{4 \cdot \jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{4 \cdot \omega_0} \cdot \Pi\left(\frac{\omega - 4 \cdot \omega_0}{4 \cdot \omega_0}\right)$$

$$f_1(t) = \frac{1}{2} \cdot f_2(t) \cdot e^{4 \cdot \jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{8 \cdot \omega_0} \cdot \Pi\left(\frac{\omega - 4 \cdot \omega_0}{4 \cdot \omega_0}\right) = F_1(\jmath \omega)$$

Podsumowując, transformata sygnału $f_1(t)$ to $F_1(j\omega) = \frac{A \cdot \pi}{8 \cdot \omega_0} \cdot \prod \left(\frac{\omega - 4 \cdot \omega_0}{4 \cdot \omega_0} \right)$.

Podobnie, zauważmy, że $f_3(t) = \frac{1}{2} \cdot f_2(t) \cdot e^{-4 \cdot \jmath \cdot \omega_0 \cdot t}$, czyli $f_3(t)$ to zmodulowany sygnał $f_2(t)$. Stosując twierdzenie o modulacji:

$$f_2(t) \xrightarrow{\mathcal{F}} F_2(\jmath\omega)$$

$$f_3(t) = f_2(t) \cdot e^{j \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} F_3(j\omega) = F_2(j(\omega - \omega_0))$$

otrzymujemy:

$$f_2(t) \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{4 \cdot \omega_0} \cdot \Pi\left(\frac{\omega}{4 \cdot \omega_0}\right)$$

$$f_2(t) \cdot e^{-4 \cdot \jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{4 \cdot \omega_0} \cdot \Pi\left(\frac{\omega + 4 \cdot \omega_0}{4 \cdot \omega_0}\right)$$

$$f_3(t) = \frac{1}{2} \cdot f_2(t) \cdot e^{-4 \cdot \jmath \cdot \omega_0 \cdot t} \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{8 \cdot \omega_0} \cdot \Pi\left(\frac{\omega + 4 \cdot \omega_0}{4 \cdot \omega_0}\right) = F_3(\jmath \omega)$$

Podsumowując, transformata sygnału $f_3(t)$ to $F_3(\jmath\omega) = \frac{A\cdot\pi}{8\cdot\omega_0} \cdot \Pi\left(\frac{\omega+4\cdot\omega_0}{4\cdot\omega_0}\right)$. Teraz możemy podać transformatę sygnału $f(t) = f_1(t) + f_2(t) + f_3(t)$,

$$\begin{split} F(\jmath\omega) &= F_1(\jmath\omega) + F_2(\jmath\omega) + F_3(\jmath\omega) \\ &= \frac{A \cdot \pi}{8 \cdot \omega_0} \cdot \Pi\left(\frac{\omega - 4 \cdot \omega_0}{4 \cdot \omega_0}\right) + \frac{A \cdot \pi}{4 \cdot \omega_0} \cdot \Pi\left(\frac{\omega}{4 \cdot \omega_0}\right) + \frac{A \cdot \pi}{8 \cdot \omega_0} \cdot \Pi\left(\frac{\omega + 4 \cdot \omega_0}{4 \cdot \omega_0}\right) \end{split}$$

Narysujmy widmo amplitudowe sygnału f(t), czyli $|F(j\omega)|$.

$$|F(\jmath\omega)| = \begin{cases} 0 & \omega \in (-\infty; -6 \cdot \omega_0) \\ \frac{A \cdot \pi}{8 \cdot \omega_0} & \omega \in (-6 \cdot \omega_0; -2 \cdot \omega_0) \\ \frac{A \cdot \pi}{4 \cdot \omega_0} & \omega \in (-2 \cdot \omega_0; 2 \cdot \omega_0) \\ \frac{A \cdot \pi}{8 \cdot \omega_0} & \omega \in (2 \cdot \omega_0; 6 \cdot \omega_0) \\ 0 & \omega \in (6 \cdot \omega_0; \infty) \end{cases}$$

Ponieważ energię wyznaczamy ze wzoru:

$$E = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(j\omega)|^2 \cdot d\omega \tag{187}$$

to wyznaczmy $|F(j\omega)|^2$:

$$|F(\jmath\omega)|^{2} = \begin{cases} 0 & \omega \in (-\infty; -6 \cdot \omega_{0}) \\ \left(\frac{A \cdot \pi}{8 \cdot \omega_{0}}\right)^{2} & \omega \in (-6 \cdot \omega_{0}; -2 \cdot \omega_{0}) \\ \left(\frac{A \cdot \pi}{4 \cdot \omega_{0}}\right)^{2} & \omega \in (-2 \cdot \omega_{0}; 2 \cdot \omega_{0}) \\ \left(\frac{A \cdot \pi}{8 \cdot \omega_{0}}\right)^{2} & \omega \in (2 \cdot \omega_{0}; 6 \cdot \omega_{0}) \\ 0 & \omega \in (6 \cdot \omega_{0}; \infty) \end{cases}$$

$$\begin{split} E &= \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(\jmath\omega)|^2 \cdot d\omega \\ &= \frac{1}{2\pi} \cdot \left(\int_{-\infty}^{-6 \cdot \omega_0} 0 \cdot d\omega + \int_{-6 \cdot \omega_0}^{-2 \cdot \omega_0} \left(\frac{A \cdot \pi}{8 \cdot \omega_0} \right)^2 \cdot d\omega + \int_{-2 \cdot \omega_0}^{2 \cdot \omega_0} \left(\frac{A \cdot \pi}{4 \cdot \omega_0} \right)^2 \cdot d\omega + \int_{2 \cdot \omega_0}^{6 \cdot \omega_0} \left(\frac{A \cdot \pi}{8 \cdot \omega_0} \right)^2 \cdot d\omega + \int_{6 \cdot \omega_0}^{\infty} 0 \cdot d\omega \right) \\ &= \frac{1}{2\pi} \cdot \left(0 + \frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot \int_{-6 \cdot \omega_0}^{-2 \cdot \omega_0} d\omega + \frac{A^2 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot \int_{-2 \cdot \omega_0}^{2 \cdot \omega_0} d\omega + \frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot \int_{2 \cdot \omega_0}^{6 \cdot \omega_0} d\omega + 0 \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot \omega |_{-6 \cdot \omega_0}^{-2 \cdot \omega_0} + \frac{A^2 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot \omega |_{-2 \cdot \omega_0}^{6 \cdot \omega_0} + \frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot \omega |_{2 \cdot \omega_0}^{6 \cdot \omega_0} \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot (-2 \cdot \omega_0 - (-6 \cdot \omega_0)) + \frac{A^2 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot (2 \cdot \omega_0 - (-2 \cdot \omega_0)) + \frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot (6 \cdot \omega_0 - 2 \cdot \omega_0) \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot 4 \cdot \omega_0 + \frac{A^2 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot 4 \cdot \omega_0 + \frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot 4 \cdot \omega_0 \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot 4 \cdot \omega_0 + \frac{A^2 \cdot \pi^2}{16 \cdot \omega_0} \cdot 4 \cdot \omega_0 + \frac{A^2 \cdot \pi^2}{64 \cdot \omega_0^2} \cdot 4 \cdot \omega_0 \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} + \frac{A^2 \cdot \pi^2}{16 \cdot \omega_0} \right) \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{16 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \right) \right) \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{16 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \right) \right) \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{16 \cdot \omega_0} \cdot \left(\frac{A^2 \cdot \pi^2}{4 \cdot \omega_0} \cdot \left(\frac$$

$$= \frac{A^2 \cdot \pi}{8 \cdot \omega_0} \cdot \left(\frac{3}{2}\right)$$
$$= \frac{3 \cdot A^2 \cdot \pi}{16 \cdot \omega_0}$$

Energia sygnału $f(t) = A \cdot Sa\left(2 \cdot \omega_0 \cdot t\right) \cdot cos^2\left(2 \cdot \omega_0 \cdot t\right)$ równa się $E = \frac{3 \cdot A^2 \cdot \pi}{16 \cdot \omega_0}$.

Energię sygnału dla pewnego zakresu pulsacji, także można wyznaczyć z twierdzenia Parsevala, ale zmieniając granice w całce zgodnie z oczekiwanym zakresem pulsacji, czyli dla pulsacji $|\omega| < 2 \cdot \omega_0$ otrzymamy wzór:

$$E_{|\omega|<2\cdot\omega_0} = \frac{1}{2\pi} \cdot \int_{-2\cdot\omega_0}^{2\cdot\omega_0} |F(\jmath\omega)|^2 \cdot d\omega \tag{188}$$

Podstawiając dane dla naszego sygnału otrzymamy:

$$\begin{split} E_{|\omega|<2\cdot\omega_0} &= \frac{1}{2\pi} \cdot \int_{-2\cdot\omega_0}^{2\cdot\omega_0} |F(\jmath\omega)|^2 \cdot d\omega \\ &= \frac{1}{2\pi} \cdot \int_{-2\cdot\omega_0}^{2\cdot\omega_0} \left| \frac{A \cdot \pi}{4 \cdot \omega_0} \right|^2 \cdot d\omega \\ &= \frac{1}{2\pi} \cdot \int_{-2\cdot\omega_0}^{2\cdot\omega_0} \left(\frac{A \cdot \pi}{4 \cdot \omega_0} \right)^2 \cdot d\omega \\ &= \frac{1}{2\pi} \cdot \left(\frac{A \cdot \pi}{4 \cdot \omega_0} \right)^2 \cdot \int_{-2\cdot\omega_0}^{2\cdot\omega_0} d\omega \\ &= \frac{1}{2\pi} \cdot \left(\frac{A^2 \cdot \pi^2}{16 \cdot \omega_0^2} \right) \cdot \omega|_{-2\cdot\omega_0}^{2\cdot\omega_0} \\ &= \frac{A^2 \cdot \pi}{32 \cdot \omega_0^2} \cdot (2 \cdot \omega_0 - (-2 \cdot \omega_0)) \\ &= \frac{A^2 \cdot \pi}{32 \cdot \omega_0^2} \cdot (4 \cdot \omega_0) \\ &= \frac{A^2 \cdot \pi}{8 \cdot \omega_0} \end{split}$$

Podsumowując $E_{|\omega|<\omega_0}=\frac{A^2\cdot\pi}{8\cdot\omega_0}.$

Teraz możemy obliczyć:

$$\frac{E_{|\omega|<2\cdot\omega_0}}{E} = ? \tag{189}$$

Podstawiając nasze wczesniejsze wyniki otrzymujemy:

$$\frac{E_{|\omega|<2\cdot\omega_0}}{E} = \frac{\frac{A^2 \cdot \pi}{8 \cdot \omega_0}}{\frac{3 \cdot A^2 \cdot \pi}{16 \cdot \omega_0}} = \frac{A^2 \cdot \pi}{8 \cdot \omega_0} \cdot \frac{16 \cdot \omega_0}{3 \cdot A^2 \cdot \pi} = \frac{2}{3} \approx 66\%$$

Na pulsacje z zakresu $|\omega| < 2 \cdot \omega_0$ przypada około 66% energii sygnału.

Zadanie 41.

Oblicz, jaka część energi sygnału $f(t) = Sa^2(\omega_0 \cdot t) \cdot \cos(\omega_0 \cdot t)$ przypada na wartości pulsacji $|\omega| < \omega_0$. Wykorzystaj informację, że transformata sygnału $\Lambda(t)$ jest równa $Sa^2(\frac{\omega}{2})$.

$$f(t) = Sa^{2}(\omega_{0} \cdot t) \cdot \cos(\omega_{0} \cdot t)$$
(190)

$$\Lambda(t) \xrightarrow{\mathcal{F}} Sa^2\left(\frac{\omega}{2}\right)$$
(191)

$$\frac{E_{|\omega| < \omega_0}}{E} = ? \tag{192}$$

Całkowitą energię sygnału można wyznaczyc z twierdzenia Parsevala:

$$E = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(j\omega)|^2 \cdot d\omega \tag{193}$$

W tym celu musimy wyznaczyc transformatę sygnału f(t).

W jednym z wcześniejszych zadań obliczyliśmy, że transformata Fouriera sygnału $f(t) = Sa^2 (\omega_0 \cdot t) \cdot \cos(\omega_0 \cdot t)$ jest równa $F(\jmath\omega) = \frac{1}{2} \cdot \left(\frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega - \omega_0}{2 \cdot \omega_0}\right) + \frac{\pi}{\omega_0} \cdot \Lambda\left(\frac{\omega + \omega_0}{2 \cdot \omega_0}\right)\right)$.

Narysujmy widmo amplitudowe sygnału f(t), czyli $|F(j\omega)|$.

$$|F(\jmath\omega)| = \begin{cases} 0 & \omega \in (-\infty; -3 \cdot \omega_0) \\ \frac{\pi}{4 \cdot \omega_0^2} \cdot \omega + \frac{3 \cdot \pi}{4 \cdot \omega_0} & \omega \in (-3 \cdot \omega_0; -\omega_0) \\ \frac{\pi}{2 \cdot \omega_0} & \omega \in (-\omega_0; \omega_0) \\ -\frac{\pi}{4 \cdot \omega_0^2} \cdot \omega + \frac{3 \cdot \pi}{4 \cdot \omega_0} & \omega \in (\omega_0; 3 \cdot \omega_0) \\ 0 & \omega \in (3 \cdot \omega_0; \infty) \end{cases}$$

Podstawiając do wzoru na energię całkowitą, otrzymujemy:

$$\begin{split} E &= \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |F(y\omega)|^2 \cdot d\omega \\ &= \frac{1}{2\pi} \cdot \left[\int_{-\infty}^{3-\omega_0} |0|^2 \cdot d\omega + \int_{-3-\omega_0}^{-\omega_0} \left| \frac{\pi}{4 \cdot \omega_0} \cdot \omega + \frac{3 \cdot \pi}{4 \cdot \omega_0} \right|^2 \cdot d\omega + \int_{-\omega_0}^{\omega_0} \left| \frac{\pi}{2 \cdot \omega_0} \right|^2 \cdot d\omega \right. \\ &+ \int_{\omega_0}^{3-\omega_0} \left| -\frac{\pi}{4 \cdot \omega_0^2} \cdot \omega + \frac{3 \cdot \pi}{4 \cdot \omega_0} \right|^2 \cdot d\omega + \int_{3-\omega_0}^{\infty} |0|^2 \cdot d\omega \right] \\ &= \frac{1}{2\pi} \cdot \left[0 + \int_{-3-\omega_0}^{-\omega_0} \left(\left(\frac{\pi}{4 \cdot \omega_0^2} \right)^2 \cdot \omega^2 + 2 \cdot \frac{\pi}{4 \cdot \omega_0^2} \cdot \frac{3 \cdot \pi}{4 \cdot \omega_0} \cdot \omega + \left(\frac{3 \cdot \pi}{4 \cdot \omega_0} \right)^2 \right) \cdot d\omega + \frac{\pi^2}{4 \cdot \omega_0^2} \cdot \int_{-\omega_0}^{\omega_0} d\omega \right. \\ &+ \int_{\omega_0}^{3-\omega_0} \left(\left(-\frac{\pi}{4 \cdot \omega_0^2} \right)^2 \cdot \omega^2 - 2 \cdot \frac{\pi}{4 \cdot \omega_0^2} \cdot \frac{3 \cdot \pi}{4 \cdot \omega_0} \cdot \omega + \left(\frac{3 \cdot \pi}{4 \cdot \omega_0} \right)^2 \right) \cdot d\omega + 0 \right] \\ &= \frac{1}{2\pi} \cdot \left[\frac{\pi^2}{16 \cdot \omega_0^4} \cdot \int_{-3-\omega_0}^{-\omega_0} \omega^2 \cdot d\omega + \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \int_{-3-\omega_0}^{-\omega_0} \omega \cdot d\omega + \frac{9 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot \int_{-3-\omega_0}^{-\omega_0} d\omega + \frac{\pi^2}{4 \cdot \omega_0^2} \cdot \omega \right] \\ &+ \frac{\pi^2}{16 \cdot \omega_0^4} \cdot \int_{\omega_0}^{3\omega_0} \omega^2 \cdot d\omega - \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \frac{\omega^2}{2} \right]_{-3-\omega_0}^{-\omega_0} \omega \cdot d\omega + \frac{9 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot \int_{-3-\omega_0}^{-\omega_0} d\omega + \frac{\pi^2}{4 \cdot \omega_0^2} \cdot \omega \right] \\ &= \frac{1}{2\pi} \cdot \left[\frac{\pi^2}{16 \cdot \omega_0^4} \cdot \frac{\omega^3}{3} \right]_{-3-\omega_0}^{-\omega_0} + \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \frac{\omega^2}{2} \right]_{-3-\omega_0}^{-\omega_0} + \frac{9 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot \omega \right] \\ &= \frac{1}{2\pi} \cdot \left[\frac{\pi^2}{16 \cdot \omega_0^4} \cdot \left(-\frac{\omega_0^3}{3} - \left(-\frac{27 \cdot \omega_0^3}{3} \right) \right) + \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \left(\frac{\omega^2}{2} - \frac{9 \cdot \omega_0^2}{2} \right) + \frac{9 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot (-\omega_0 - (-3 \cdot \omega_0)) \right. \\ &+ \frac{\pi^2}{4 \cdot \omega_0^2} \cdot 2 \cdot \omega_0 + \frac{\pi^2}{16 \cdot \omega_0^4} \cdot \left(-\frac{27 \cdot \omega_0^3}{3} - \frac{\omega_0^3}{3} \right) - \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \left(\frac{9 \cdot \omega_0^2}{2} - \frac{9 \cdot \omega_0^2}{2} \right) + \frac{9 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot (3 \cdot \omega_0 - \omega_0) \right] \\ &= \frac{1}{2\pi} \cdot \left[\frac{\pi^2}{16 \cdot \omega_0^4} \cdot \frac{26 \cdot \omega_0^3}{3} + \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \left(-\frac{8 \cdot \omega_0^2}{2} \right) + \frac{9 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot 2 \cdot \omega_0 + \frac{\pi^2}{16 \cdot \omega_0^2} \cdot \left(-\frac{26 \cdot \omega_0^3}{3} - \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \frac{2}{3} - \frac{9 \cdot \omega_0^2}{3} \right) - \frac{6 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot 2 \cdot \omega_0 + \frac{\pi^2}{16 \cdot \omega_0^2} \cdot \left(-\frac{26 \cdot \omega_0^3}{3} - \frac{6 \cdot \pi^2}{16 \cdot \omega_0^3} \cdot \frac{29 \cdot \omega_0^2}{3} \right) - \frac{9 \cdot \pi^2}{16 \cdot \omega_0^2} \cdot 2 \cdot \omega_0 + \frac{\pi^2}{16 \cdot \omega_0^2} \cdot \left(-\frac{26 \cdot \omega_0^3}{3}$$

$$= \frac{\pi}{4 \cdot \omega_0} \cdot \left[\frac{52}{24} - 6 + \frac{108}{24} + 1 \right]$$

$$= \frac{\pi}{4 \cdot \omega_0} \cdot \left[\frac{160}{24} - 5 \right]$$

$$= \frac{\pi}{4 \cdot \omega_0} \cdot \left[\frac{160}{24} - \frac{120}{24} \right]$$

$$= \frac{\pi}{4 \cdot \omega_0} \cdot \left[\frac{40}{24} \right]$$

$$= \frac{5 \cdot \pi}{12 \cdot \omega_0}$$

Podsumowując, całkowita energia sygnału $f(t) = Sa^2(\omega_0 \cdot t) \cdot cos(\omega_0 \cdot t)$ to $E = \frac{5 \cdot \pi}{12 \cdot \omega_0}$.

Energię sygnału dla pewnego zakresu pulsacji, także można wyznaczyc z twierdzenia Parsevala, ale zmieniając granice w całce zgodnie z oczekiwanym zakresem pulsacji, czyli dla pulsacji $|\omega| < \omega_0$ otrzymamy wzór:

$$E_{|\omega| < \omega_0} = \frac{1}{2\pi} \cdot \int_{-\omega_0}^{\omega_0} |F(j\omega)|^2 \cdot d\omega \tag{194}$$

Podstawiając dane dla naszego sygnału otrzymamy:

$$E_{|\omega|<\omega_0} = \frac{1}{2\pi} \cdot \int_{-\omega_0}^{\omega_0} |F(\jmath\omega)|^2 \cdot d\omega$$

$$= \frac{1}{2\pi} \cdot \int_{-\omega_0}^{\omega_0} \left| \frac{\pi}{2 \cdot \omega_0} \right|^2 \cdot d\omega$$

$$= \frac{1}{2\pi} \cdot \int_{-\omega_0}^{\omega_0} \left(\frac{\pi}{2 \cdot \omega_0} \right)^2 \cdot d\omega$$

$$= \frac{1}{2\pi} \cdot \left(\frac{\pi}{2 \cdot \omega_0} \right)^2 \cdot \int_{-\omega_0}^{\omega_0} d\omega$$

$$= \frac{1}{2\pi} \cdot \left(\frac{\pi^2}{4 \cdot \omega_0^2} \right) \cdot \omega \Big|_{-\omega_0}^{\omega_0}$$

$$= \frac{\pi}{8 \cdot \omega_0^2} \cdot (\omega_0 - (-\omega_0))$$

$$= \frac{\pi}{8 \cdot \omega_0^2} \cdot (2 \cdot \omega_0)$$

$$= \frac{\pi}{4 \cdot \omega_0}$$

Podsumowując $E_{|\omega|<\omega_0} = \frac{\pi}{4\cdot\omega_0}$.

Teraz możemy obliczyć:

$$\frac{E_{|\omega|<\omega_0}}{E} = ? \tag{195}$$

Podstawiając nasze wczesniejsze wyniki otrzymujemy:

$$\frac{E_{|\omega|<\omega_0}}{E} = \frac{\frac{\pi}{4 \cdot \omega_0}}{\frac{5 \cdot \pi}{12 \cdot \omega_0}} = \frac{\pi}{4 \cdot \omega_0} \cdot \frac{12 \cdot \omega_0}{5 \cdot \pi} = \frac{12}{20} = \frac{6}{10} = 60\%$$

Na pulsacje z zakresu $|\omega|<\omega_0$ przypada 60% energi sygnału.

Zadanie 42. Oblicz splot sygnałów $f(t) = A \cdot \Pi\left(\frac{t-T}{T}\right)$ i $h(t) = \mathbb{1}(t) \cdot e^{-a \cdot t}$

Wzór na slot sygnałów

$$y(t) = \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau$$
 (196)

Wzory sygnałów pod całką

$$f(\tau) = A \cdot \Pi\left(\frac{\tau}{T}\right)$$

$$h(t - \tau) = \mathbb{1}(t) \cdot e^{-a \cdot (t - \tau)}$$

$$f(\tau) = \begin{cases} 0 & \tau \in (-\infty; 0) \\ A & \tau \in (0; T) \\ 0 & \tau \in (T; \infty) \end{cases}$$
$$h(t - \tau) = \begin{cases} e^{-a \cdot (t - \tau)} & \tau \in (-\infty; t) \\ 0 & \tau \in (t; \infty) \end{cases}$$

Wykresy obu funkcji w dziedzinie τ dla różnych wartości t:

Po wymnożeniu obu funkcji, dla przykładowych wartości t, otrzymujemy (ciągła, czerwona linia):

Z wykresu widać, że dla różnych wartości t otrzymujemy różny kształt funkcji podcałkowej $f(\tau)$ · $h(t-\tau)$. W związku z tym, wyznaczymy splot oddzielnie dla posczególnych przedziałów wartości t

Przedział 1 Dla wartości t spełniających warunek t < 0 otrzymujemy:

$$y(t) = \int_{-\infty}^{\infty} 0 \cdot d\tau$$
$$= 0$$

Przedział 2 Dla wartości tspełniających warunki $t \geq 0$ i t < Totrzymujemy

$$f(\tau) \cdot h(t - \tau) = \begin{cases} 0 & \tau \in (-\infty; 0) \\ A \cdot e^{-a \cdot (t - \tau)} & \tau \in (0; t) \\ 0 & \tau \in (t; \infty) \end{cases}$$

Wartość splotu y(t) wyznaczamy ze wzoru:

$$y(t) = \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau$$

$$= \int_{-\infty}^{0} 0 \cdot d\tau + \int_{0}^{t} \left(A \cdot e^{-a \cdot (t - \tau)} \right) \cdot d\tau + \int_{t}^{\infty} 0 \cdot d\tau$$

$$= 0 + A \cdot \int_{0}^{t} \left(e^{-a \cdot t} \cdot e^{a \cdot \tau} \right) \cdot d\tau + 0$$

$$= A \cdot e^{-a \cdot t} \cdot \int_{0}^{t} \left(e^{a \cdot \tau} \right) \cdot d\tau$$

$$= A \cdot e^{-a \cdot t} \cdot \frac{1}{a} \cdot e^{a \cdot \tau} \Big|_{0}^{t}$$

$$= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot t} - e^{a \cdot 0} \right)$$

$$= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot t} - 1 \right)$$

$$= \frac{A}{a} \cdot \left(e^{a \cdot t} \cdot e^{-a \cdot t} - 1 \cdot e^{-a \cdot t} \right)$$

$$= \frac{A}{a} \cdot \left(e^{a \cdot t - a \cdot t} - e^{-a \cdot t} \right)$$

$$= \frac{A}{a} \cdot \left(e^{0} - e^{-a \cdot t} \right)$$

$$= \frac{A}{a} \cdot \left(e^{0} - e^{-a \cdot t} \right)$$

Przedział 3 Dla wartości t spełniających warunki $t \geq T$ otrzymujemy

$$f(\tau) \cdot h(t - \tau) = \begin{cases} 0 & \tau \in (-\infty; 0) \\ A \cdot e^{-a \cdot (t - \tau)} & \tau \in (0; T) \\ 0 & \tau \in (T; \infty) \end{cases}$$

Wartość splotu y(t) wyznaczamy ze wzoru:

$$\begin{split} y(t) &= \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau \\ &= \int_{-\infty}^{0} 0 \cdot d\tau + \int_{0}^{T} \left(A \cdot e^{-a \cdot (t - \tau)} \right) \cdot d\tau + \int_{T}^{\infty} 0 \cdot d\tau \\ &= 0 + A \cdot \int_{0}^{T} \left(e^{-a \cdot t} \cdot e^{a \cdot \tau} \right) \cdot d\tau + 0 \\ &= A \cdot e^{-a \cdot t} \cdot \int_{0}^{T} \left(e^{a \cdot \tau} \right) \cdot d\tau \\ &= A \cdot e^{-a \cdot t} \cdot \frac{1}{a} \cdot e^{a \cdot \tau} \Big|_{0}^{T} \\ &= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot T} - e^{a \cdot 0} \right) \\ &= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot T} - 1 \right) \end{split}$$

Podsumowując:

$$y(t) = \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau = \begin{cases} 0 & t \in (-\infty; 0) \\ \frac{A}{a} \cdot (1 - e^{-a \cdot t}) & t \in (0; T) \\ \frac{A}{a} \cdot e^{-a \cdot t} \cdot (e^{a \cdot T} - 1) & t \in (T; \infty) \end{cases}$$

Zadanie 43. Oblicz splot sygnałów $f(t) = \prod \left(\frac{t}{T}\right)$ i $g(t) = \Lambda \left(\frac{t}{T}\right)$

Wzór na slot sygnałów

$$h(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) \cdot d\tau \tag{197}$$

Wzory sygnałów pod całką

$$f(\tau) = \Pi\left(\frac{\tau}{T}\right)$$

$$g(t-\tau) = \Lambda\left(\frac{t-\tau}{T}\right)$$

$$f(\tau) = \begin{cases} 0 & \tau \in \left(-\infty; -\frac{T}{2}\right) \\ A & \tau \in \left(-\frac{T}{2}; \frac{T}{2}\right) \\ 0 & \tau \in \left(\frac{T}{2}; \infty\right) \end{cases}$$

$$g(t-\tau) = \begin{cases} 0 & \tau \in (-\infty; t-T); \\ \frac{1}{T} \cdot \tau - \frac{t-T}{T} & \tau \in (t-T; t) \\ -\frac{1}{T} \cdot \tau - \frac{-t-T}{T} & \tau \in (t; t+T) \\ 0 & \tau \in (t+T; \infty); \end{cases}$$

Wykresy obu funkcji dla różnych wartości \boldsymbol{t}

Po wymnożeniu obu funkcji dla przykładowych wartości t otrzymujemy

Jak widać dla różnych wartości totrzymujemy różny kształt funkcji podcałkowej $f(\tau)\cdot g(t-\tau).$

Przedział 1 .

Dla wartości tspełniających warunek $t+T<-\frac{T}{2}$

$$t+T<-\frac{T}{2}$$

$$t<-\frac{T}{2}-T$$

$$t<-\frac{3}{2}\cdot T$$

w wyniku mnożenia otrzymyjemy 0 a więc wartość splotu jest także równa 0

$$h(t) = \int_{-\infty}^{\infty} 0 \cdot d\tau$$
$$= 0$$

Przedział 2 .

Dla wartości tspełniających warunki $t+T \geq -\frac{T}{2}$ i $t < -\frac{T}{2}$

$$t + T \ge -\frac{T}{2} \qquad \qquad \wedge \qquad \qquad t < -\frac{T}{2}$$

$$t \ge -\frac{T}{2} - T \qquad \qquad \wedge \qquad \qquad t < -\frac{T}{2}$$

$$t \ge -\frac{3}{2} \cdot T \qquad \qquad \wedge \qquad \qquad t < -\frac{T}{2}$$

a więc $t \in \left\langle -\frac{3}{2} \cdot T, -\frac{T}{2} \right)$

w wyniku mnożenia otrzymujemy prostą zdefiniowaną na odcinku $t \in \left(-\frac{T}{2}, t+T\right)$.

$$f(\tau) \cdot g(t - \tau) = \begin{cases} 0 & \tau \in \left(-\infty; -\frac{T}{2}\right) \\ -\frac{1}{T} \cdot \tau - \frac{-t - T}{T} & \tau \in \left(-\frac{T}{2}; t + T\right) \\ 0 & \tau \in (t + T; \infty) \end{cases}$$

wartość splotu wyznaczamy z ze wzoru

$$\begin{split} h(t) &= \int_{-\infty}^{\infty} f(\tau) \cdot g(t-\tau) \cdot d\tau \\ &= \int_{-\infty}^{\frac{T}{2}} 0 \cdot d\tau + \int_{-\frac{T}{2}}^{t+T} \left(-\frac{1}{T} \cdot \tau - \frac{-t-T}{T} \right) \cdot d\tau + \int_{t+T}^{\infty} 0 \cdot d\tau \\ &= 0 - \int_{-\frac{T}{2}}^{t+T} \frac{1}{T} \cdot \tau d\tau + \int_{-\frac{T}{2}}^{t+T} \frac{t+T}{T} \cdot d\tau + 0 \\ &= -\frac{1}{T} \cdot \int_{-\frac{T}{2}}^{t+T} \tau \cdot d\tau + \frac{t+T}{T} \cdot \int_{-\frac{T}{2}}^{t+T} d\tau \\ &= -\frac{1}{T} \cdot \left(\frac{1}{2} \cdot \tau^2 \right)_{-\frac{T}{2}}^{t+T} + \frac{t+T}{T} \cdot (\tau)_{-\frac{T}{2}}^{t+T} \\ &= -\frac{1}{T} \cdot \frac{1}{2} \cdot \left((t+T)^2 - \left(-\frac{T}{2} \right)^2 \right) + \frac{t+T}{T} \cdot \left(t+T - \left(-\frac{T}{2} \right) \right) \\ &= -\frac{1}{2 \cdot T} \cdot \left(t^2 + 2 \cdot t \cdot T + T^2 - \frac{T^2}{4} \right) + \frac{t+T}{T} \cdot \left(t+T + \frac{T}{2} \right) \end{split}$$

$$\begin{split} &= -\frac{1}{2 \cdot T} \cdot \left(t^2 + 2 \cdot t \cdot T + \frac{3}{4} \cdot T^2\right) + \frac{t + T}{T} \cdot \left(t + \frac{3}{2} \cdot T\right) \\ &= -\frac{1}{2 \cdot T} \cdot \left(t^2 + 2 \cdot t \cdot T + \frac{3}{4} \cdot T^2\right) + \frac{1}{T} \cdot \left(t^2 + \frac{3}{2} \cdot t \cdot T + t \cdot T + \frac{3}{2} \cdot T^2\right) \\ &= -\frac{1}{2 \cdot T} \cdot \left(t^2 + 2 \cdot t \cdot T + \frac{3}{4} \cdot T^2\right) + \frac{2}{2 \cdot T} \cdot \left(t^2 + \frac{5}{2} \cdot t \cdot T + \frac{3}{2} \cdot T^2\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(-t^2 - 2 \cdot t \cdot T - \frac{3}{4} \cdot T^2\right) + \frac{1}{2 \cdot T} \cdot \left(2 \cdot t^2 + 5 \cdot t \cdot T + 3 \cdot T^2\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(-t^2 - 2 \cdot t \cdot T - \frac{3}{4} \cdot T^2 + 2 \cdot t^2 + 5 \cdot t \cdot T + 3 \cdot T^2\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(t^2 + 3 \cdot t \cdot T + 2\frac{1}{4} \cdot T^2\right) \\ &= \frac{1}{2 \cdot T} \cdot t^2 + \frac{1}{2 \cdot T} \cdot 3 \cdot t \cdot T + \frac{1}{2 \cdot T} \cdot \frac{9}{4} \cdot T^2 \\ &= \frac{1}{2 \cdot T} \cdot t^2 + \frac{3}{2} \cdot t + \frac{9}{8} \cdot T \end{split}$$

Przedział 3 .

Dla wartości tspełniających warunki $t \geq -\frac{T}{2}$ i $t < \frac{T}{2}$

$$t \ge -\frac{T}{2} \qquad \qquad \land \qquad \qquad t < \frac{T}{2}$$

a więc $t \in \left\langle -\frac{1}{2} \cdot T, \frac{1}{2} \cdot T \right\rangle$

w wyniku mnożenia otrzymujemy dwie proste zdefiniowaną na odcinkach $t\in\left(-\frac{T}{2},t\right)$ oraz $t\in\left(t,\frac{T}{2}\right)$.

$$f(\tau) \cdot g(t - \tau) = \begin{cases} 0 & \tau \in \left(-\infty; -\frac{T}{2}\right) \\ \frac{1}{T} \cdot \tau - \frac{t - T}{T} & \tau \in \left(-\frac{T}{2}; t\right) \\ -\frac{1}{T} \cdot \tau - \frac{-t - T}{T} & \tau \in \left(t; \frac{T}{2}\right) \\ 0 & \tau \in \left(\frac{T}{2}; \infty\right) \end{cases}$$

wartość splotu wyznaczamy z ze wzoru

$$\begin{split} h(t) &= \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) \cdot d\tau \\ &= \int_{-\infty}^{-\frac{T}{2}} 0 \cdot d\tau + \int_{-\frac{T}{2}}^{t} \left(\frac{1}{T} \cdot \tau - \frac{t - T}{T} \right) \cdot d\tau + \int_{t}^{\frac{T}{2}} \left(-\frac{1}{T} \cdot \tau - \frac{-t - T}{T} \right) \cdot d\tau + \int_{\frac{T}{2}}^{\infty} 0 \cdot d\tau \\ &= 0 + \int_{-\frac{T}{2}}^{t} \frac{1}{T} \cdot \tau \cdot d\tau - \int_{-\frac{T}{2}}^{t} \frac{t - T}{T} \cdot d\tau + \int_{t}^{\frac{T}{2}} \left(-\frac{1}{T} \cdot \tau \right) \cdot d\tau - \int_{t}^{\frac{T}{2}} \frac{-t - T}{T} \cdot d\tau + 0 \\ &= \frac{1}{T} \cdot \int_{-\frac{T}{2}}^{t} \tau \cdot d\tau - \frac{t - T}{T} \cdot \int_{-\frac{T}{2}}^{t} d\tau - \frac{1}{T} \cdot \int_{t}^{T} \tau \cdot d\tau + \frac{t + T}{T} \cdot \int_{t}^{T} d\tau \\ &= \frac{1}{t} \cdot \frac{1}{2} \cdot \tau^{2} \Big|_{-\frac{T}{2}}^{t} - \frac{t - T}{T} \cdot \tau \Big|_{-\frac{T}{2}}^{t} - \frac{1}{T} \cdot \frac{1}{2} \cdot \tau^{2} \Big|_{t}^{T} + \frac{t + T}{T} \cdot \tau \Big|_{t}^{T} \\ &= \frac{1}{2 \cdot T} \cdot \left(t^{2} - \left(-\frac{T}{2} \right)^{2} \right) - \frac{t - T}{T} \cdot \left(t - \left(-\frac{T}{2} \right) \right) - \frac{1}{2 \cdot T} \cdot \left(\left(\frac{T}{2} \right)^{2} - t^{2} \right) + \frac{t + T}{T} \cdot \left(\frac{T}{2} - t \right) \\ &= \frac{1}{2 \cdot T} \cdot \left(t^{2} + \frac{1}{4} \cdot T^{2} \right) - \frac{t - T}{T} \cdot \left(t + \frac{T}{2} \right) - \frac{1}{2 \cdot T} \cdot \left(\frac{1}{4} \cdot T^{2} - t^{2} \right) + \frac{t + T}{T} \cdot \left(\frac{T}{2} - t \right) \\ &= \frac{1}{2 \cdot T} \cdot \left(t^{2} + \frac{1}{4} \cdot T^{2} \right) - \frac{2}{2 \cdot T} \cdot \left(t - T \right) \cdot \left(t + \frac{T}{2} \right) - \frac{1}{2 \cdot T} \cdot \left(\frac{1}{4} \cdot T^{2} - t^{2} \right) + \frac{2}{2 \cdot T} \cdot \left(t + T \right) \cdot \left(\frac{T}{2} - t \right) \\ &= \frac{1}{2 \cdot T} \cdot \left(t^{2} + \frac{1}{4} \cdot T^{2} \right) - \frac{2}{2 \cdot T} \cdot \left(t^{2} + \frac{1}{2} \cdot t \cdot T - t \cdot T - \frac{1}{2} \cdot T^{2} \right) - \frac{1}{2 \cdot T} \cdot \left(\frac{1}{4} \cdot T^{2} - t^{2} \right) + \frac{2}{2 \cdot T} \cdot \left(\frac{1}{2} \cdot t \cdot T - t \cdot T \right) \\ &= \frac{1}{2 \cdot T} \cdot \left(t^{2} + \frac{1}{4} \cdot T^{2} \right) + \frac{1}{2 \cdot T} \cdot \left(-2 \cdot t^{2} - t \cdot T + 2 \cdot t \cdot T + T^{2} \right) + \frac{1}{2 \cdot T} \cdot \left(-\frac{1}{4} \cdot T^{2} + t^{2} \right) + \frac{1}{2 \cdot T} \cdot \left(t \cdot T - 2 \cdot t \right) \\ &= \frac{1}{2 \cdot T} \cdot \left(t^{2} + \frac{1}{4} \cdot T^{2} - 2 \cdot t^{2} - t \cdot T + 2 \cdot t \cdot T + T^{2} - \frac{1}{4} \cdot T^{2} + t^{2} + t \cdot T - 2 \cdot t^{2} + T^{2} - 2 \cdot t \cdot T \right) \\ &= \frac{1}{2 \cdot T} \cdot \left(-2 \cdot t^{2} + 2 \cdot T^{2} \right) \\ &= \frac{1}{T} \cdot \left(-t^{2} + T^{2} \right) \\ &= \frac{1}{T} \cdot \left(-t^{2} + T^{2} \right) \\ &= -\frac{1}{T} \cdot t^{2} + T$$

Przedział 4 .

Dla wartości tspełniających warunki $t-T \geq -\frac{T}{2}$ i $t-T < \frac{T}{2}$

$$\begin{split} t-T &\geq -\frac{T}{2} & \wedge & t-T < \frac{T}{2} \\ t &\geq -\frac{T}{2} + T & \wedge & t < \frac{T}{2} + T \\ t &\geq \frac{1}{2} \cdot T & \wedge & t < \frac{3}{2} \cdot T \end{split}$$

a więc $t \in \left\langle \frac{1}{2} \cdot T, \frac{3}{2} \cdot T \right)$

w wyniku mnożenia otrzymujemy prostą zdefiniowaną na odcinku $t \in \left(t-T, \frac{T}{2}\right)$.

$$f(\tau) \cdot g(t - \tau) = \begin{cases} 0 & \tau \in (-\infty; t - T) \\ \frac{1}{T} \cdot \tau - \frac{t - T}{T} & \tau \in \left(t - T; \frac{T}{2}\right) \\ 0 & \tau \in \left(\frac{T}{2}; \infty\right) \end{cases}$$

wartość splotu wyznaczamy z ze wzoru

$$\begin{split} h(t) &= \int_{-\infty}^{\infty} f(\tau) \cdot g(t-\tau) \cdot d\tau \\ &= \int_{-\infty}^{t-T} 0 \cdot d\tau + \int_{t-T}^{\frac{T}{2}} \left(\frac{1}{T} \cdot \tau - \frac{t-T}{T}\right) \cdot d\tau + \int_{\frac{T}{2}}^{\infty} 0 \cdot d\tau \\ &= 0 + \int_{t-T}^{\frac{T}{2}} frac1T \cdot \tau \cdot d\tau - \int_{t-T}^{\frac{T}{2}} \frac{t-T}{T} \cdot d\tau + 0 \\ &= \frac{1}{T} \cdot \int_{t-T}^{\frac{T}{2}} \tau \cdot d\tau - \frac{t-T}{T} \cdot \int_{t-T}^{\frac{T}{2}} d\tau \\ &= \frac{1}{T} \cdot \frac{1}{2} \cdot \tau^2 \Big|_{t-T}^{\frac{T}{2}} - \frac{t-T}{T} \cdot \tau \Big|_{t-T}^{\frac{T}{2}} \\ &= \frac{1}{T} \cdot \frac{1}{2} \cdot \left(\left(\frac{T}{2}\right)^2 - (t-T)^2 \right) - \frac{t-T}{T} \cdot \left(\frac{T}{2} - (t-T)\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(\frac{1}{4} \cdot T^2 - \left(t^2 - 2 \cdot t \cdot T + T^2\right)\right) - \frac{t-T}{T} \cdot \left(\frac{T}{2} - t + T\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(\frac{1}{4} \cdot T^2 - t^2 + 2 \cdot t \cdot T - T^2\right) - \frac{1}{T} \cdot (t-T) \cdot \left(\frac{3}{2} \cdot T - t\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(-\frac{3}{4} \cdot T^2 - t^2 + 2 \cdot t \cdot T\right) - \frac{2}{2 \cdot T} \cdot \left(\frac{3}{2} \cdot t \cdot T - t^2 - \frac{3}{2} \cdot T^2 + t \cdot T\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(-\frac{3}{4} \cdot T^2 - t^2 + 2 \cdot t \cdot T\right) - \frac{1}{2 \cdot T} \cdot \left(\frac{6}{2} \cdot t \cdot T - 2 \cdot t^2 - \frac{6}{2} \cdot T^2 + 2 \cdot t \cdot T\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(-\frac{3}{4} \cdot T^2 - t^2 + 2 \cdot t \cdot T - \frac{6}{2} \cdot t \cdot T + 2 \cdot t^2 + \frac{6}{2} \cdot T^2 - 2 \cdot t \cdot T\right) \\ &= \frac{1}{2 \cdot T} \cdot \left(\frac{9}{4} \cdot T^2 - 3 \cdot t \cdot T + t^2\right) \\ &= \frac{1}{2 \cdot T} \cdot \frac{9}{4} \cdot T^2 - \frac{1}{2 \cdot T} \cdot 3 \cdot t \cdot T + \frac{1}{2 \cdot T} \cdot t^2 \\ &= \frac{9}{8} \cdot T - \frac{3}{2} \cdot t + \frac{1}{2 \cdot T} \cdot t^2 \end{split}$$

Przedział 5 .

Dla wartości tspełniających warunek $t-T \geq \frac{T}{2}.$

$$t - T \ge \frac{T}{2}$$

$$t \ge \frac{T}{2} + T$$

$$t \ge \frac{3}{2} \cdot T$$

a więc $t \in \left(\frac{3}{2} \cdot T, \infty\right)$

w wyniku mnożenia otrzymujemy sygnał zerowy

$$f(\tau) \cdot g(t - \tau) = 0$$

a więc wartość splotu wyznaczona ze wzoru

$$h(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) \cdot d\tau$$
$$= \int_{-\infty}^{\infty} 0 \cdot d\tau$$
$$= 0$$

Podsumowanie Zbierająć wyniki, wynik splotu wyrażony jest jako funkcja o pięciu przedziałach

$$h(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) \cdot d\tau$$

$$= \begin{cases} 0 & \tau \in \left(-\infty; -\frac{3}{2} \cdot T\right); \\ \frac{1}{2 \cdot T} \cdot t^2 + \frac{3}{2} \cdot t + \frac{9}{8} \cdot T & \tau \in \left(-\frac{3}{2} \cdot T; -\frac{1}{2} \cdot T\right); \\ -\frac{1}{T} \cdot t^2 + \frac{3}{4} \cdot T & \tau \in \left(-\frac{1}{2} \cdot T; \frac{1}{2} \cdot T\right); \\ \frac{9}{8} \cdot T - \frac{3}{2} \cdot t + \frac{1}{2 \cdot T} \cdot t^2 & \tau \in \left(\frac{1}{2} \cdot T; \frac{3}{2} \cdot T\right); \\ 0 & \tau \in \left(\frac{3}{2} \cdot T; \infty\right); \end{cases}$$

Zadanie 44.

Na układ LTI o transmitancji podanej poniżej, podano sygnał $u(t) = A \cdot Sa\left(3 \cdot \omega_0 \cdot t\right)$. Wyznacz odpowiedź układu y(t) wiedząc, że $\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$.

Wiemy, że odpowiedź układu LTI można obliczyć z zależności y(t)=u(t)*h(t), gdzie h(t) jest odpowiedzią impulsową układu. Wiemy także, że transformatę odpowiedzi układu można wyznaczyć ze wzoru $Y(\jmath\omega)=U(\jmath\omega)\cdot H(\jmath\omega)$.

Ponieważ wyznaczenie spłotu liniowego sygnałów jest bardziej skomplikowane niż operacja mnożenia, dlatego spróbujemy skorzystać z tej drugie zależności, czyli mnożenia transformat. W tym celu musimy wyznaczyć transformatę sygnału wejściowego u(t), czyli $U(\jmath\omega)$.

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(-\omega)$$

$$Sa\left(6 \cdot \omega_0 \cdot \frac{t}{2}\right) \xrightarrow{\mathcal{F}} \frac{1}{|6 \cdot \omega_0|} \cdot 2\pi \cdot \Pi\left(\frac{\omega}{6 \cdot \omega_0}\right)$$

$$A \cdot Sa\left(3 \cdot \omega_0 \cdot t\right) \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{3 \cdot \omega_0} \cdot \Pi\left(\frac{\omega}{6 \cdot \omega_0}\right)$$

Transformata sygnału wejściowego u(t) to $U(j\omega) = \frac{A \cdot \pi}{3 \cdot \omega_0} \cdot \prod \left(\frac{\omega}{6 \cdot \omega_0}\right)$.

Transformatę sygnału wyjściowego, czyli $Y(\jmath\omega)=U(\jmath\omega)\cdot H(\jmath\omega)$ wyznaczymy graficznie, W tym celu na wykresie transmitancji $H(\jmath\omega)$ dodamy transformatę $U(\jmath\omega)$:

Teraz dokonujmy operacji mnożenia transformat $U(j\omega)$ przez $H(j\omega)$

$$Y(\jmath\omega) = \frac{A \cdot \pi}{3 \cdot \omega_0} \cdot \Pi\left(\frac{\omega - 2 \cdot \omega_0}{2 \cdot \omega_0}\right) + \frac{A \cdot \pi}{3 \cdot \omega_0} \cdot \Pi\left(\frac{\omega + 2 \cdot \omega_0}{2 \cdot \omega_0}\right)$$
(198)

Skoro zanmy transformatę sygnału wyjściowego, to spróbujmy wyznaczyć sygnał wyjściowy w dziedzinie czasu wykorzystując wcześniejsze obliczenia. Transformata $Y(\jmath\omega)$ to suma dwóch przeskalowanych prostokątów, przesuniętych na osi pulsacji. W takim razie można wnioskować, że sygnał w dziedzinie czasiu to będzie suma dwóch zmodulowanych i przeskalowanych funkcji Sa(t).

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$Sa\left(\frac{t}{2}\right) \xrightarrow{\mathcal{F}} 2\pi \cdot \Pi(-\omega)$$

$$Sa\left(2 \cdot \omega_0 \cdot \frac{t}{2}\right) \xrightarrow{\mathcal{F}} \frac{1}{|2 \cdot \omega_0|} \cdot 2\pi \cdot \Pi\left(\frac{\omega}{2 \cdot \omega_0}\right)$$

$$Sa(\omega_0 \cdot t) \xrightarrow{\mathcal{F}} \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega}{2 \cdot \omega_0}\right)$$

$$e^{(j \cdot 2 \cdot \omega_0 \cdot t)} \cdot Sa(\omega_0 \cdot t) \xrightarrow{\mathcal{F}} \frac{\pi}{\omega_0} \cdot \Pi\left(\frac{\omega - 2 \cdot \omega_0}{2 \cdot \omega_0}\right)$$

$$\frac{A}{3} \cdot e^{(j \cdot 2 \cdot \omega_0 \cdot t)} \cdot Sa(\omega_0 \cdot t) \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{3 \cdot \omega_0} \cdot \Pi\left(\frac{\omega - 2 \cdot \omega_0}{2 \cdot \omega_0}\right)$$

$$\frac{A}{3} \cdot e^{(j \cdot (-2 \cdot \omega_0) \cdot t)} \cdot Sa(\omega_0 \cdot t) \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{3 \cdot \omega_0} \cdot \Pi\left(\frac{\omega - (-2 \cdot \omega_0)}{2 \cdot \omega_0}\right)$$

$$\frac{A}{3} \cdot e^{(j \cdot (-2 \cdot \omega_0) \cdot t)} \cdot Sa(\omega_0 \cdot t) \xrightarrow{\mathcal{F}} \frac{A \cdot \pi}{3 \cdot \omega_0} \cdot \Pi\left(\frac{\omega + 2 \cdot \omega_0}{2 \cdot \omega_0}\right)$$

Podsumowując sygnał wyjściowy y(t):

$$y(t) = \frac{A}{3} \cdot e^{(\jmath \cdot 2 \cdot \omega_0 \cdot t)} \cdot Sa(\omega_0 \cdot t) + \frac{A}{3} \cdot e^{(\jmath \cdot (-2 \cdot \omega_0) \cdot t)} \cdot Sa(\omega_0 \cdot t)$$

$$= \frac{A}{3} \cdot Sa(\omega_0 \cdot t) \cdot \left(e^{(\jmath \cdot 2 \cdot \omega_0 \cdot t)} + e^{(\jmath \cdot (-2 \cdot \omega_0) \cdot t)} \right)$$

$$\left\{ \cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\}$$

$$= \frac{2 \cdot A}{3} \cdot Sa(\omega_0 \cdot t) \cdot \cos(2 \cdot \omega_0 \cdot t)$$

Odpowiedź układu to $y(t) = \frac{2 \cdot A}{3} \cdot Sa(\omega_0 \cdot t) \cdot cos(2 \cdot \omega_0 \cdot t)$.

Zadanie 45.

Wyznacz odpowiedź implusową h(t) układu LTI, wiedząc, że sygnały u(t) oraz y(t) wygladają jak na poniższych wykresach. Wykorzystaj informacje o transformatach sygnałów: $\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$ oraz $\Lambda(t) \xrightarrow{\mathcal{F}} Sa^2\left(\frac{\omega}{2}\right)$.

Wiemy, że transformatę odpowiedzi układu można wyznaczyć ze wzoru $Y(\jmath\omega)=U(\jmath\omega)\cdot H(\jmath\omega)$ oraz że $h(t)\xrightarrow{\mathcal{F}} H(\jmath\omega)$. W związku z tym $H(\jmath\omega)=\frac{Y(\jmath\omega)}{U(\jmath\omega)}$ oraz $h(t)\xrightarrow{\mathcal{F}^{-1}} H(\jmath\omega)$.

W pierwszym kroku wyznaczmy transformaty sygnałów u(t) oraz y(t):

Skoro zanmy transformaty sygnałów wejściowego i wyjściowego, to możemy wyznaczyc transmitancję układu, czyli $H(\jmath\omega)$.

$$\begin{split} H(\jmath\omega) &= \frac{Y(\jmath\omega)}{U(\jmath\omega)} \\ &= \frac{A \cdot t_0^2 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right)}{A \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}}} \\ &= t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \end{split}$$

Teraz możemy wyznaczć odpowiedź implusową układu h(t):

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$? \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$\Pi\left(\frac{1}{t_0} \cdot t\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi\left(\frac{t - \frac{t_0}{2}}{t_0}\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}$$

Odpowiedź implusowa układu to $h(t) = \Pi\left(\frac{t - \frac{t_0}{2}}{t_0}\right)$.

