Can we formally verify implementations of cryptographic libraries like the c-kzg library?

Thanh-Hai Tran

Brett Decker

Independent Researcher

Galois

Marcella Hastings

Ryan McCleeary

Roberto Saltini

Galois

Galois

Independent Researcher

Implementing crytographic libraries is challenging

Formal methods in cryptography

- 1. Correctness of cryptographic algorithms
- 2. Correctness of cryptographic libraries

Example: the c-kzg library in EIP 4844

Verification of the c-kzg library

Verification of the c-kzg library

Verification of the c-kzg library (cont)

Finished writing a Cryptol specification

- Tested the equivalence between Python functions and Cryptol functions
 - o compute_kzg_proof, evaluate_polynomial_in_evaluation_form, ...
- Formally proved correctness of some C functions
 - o bit_reversal_permutations, reverse_bits, ...

Formal verification in cryptography

Thanh-Hai Tran

