ICS 第四次小班课习题

【体系结构基础】

1. 下列描述更符合(早期) RISC 还是 CISC?

	描述	R	С	
(1)	指令机器码长度固定			
(2)	指令类型多、功能丰富			
(3)	不采用条件码			
(4)	实现同一功能,需要的汇编代码较多			
(5)	译码电路复杂			
(6)	访存模式多样			
(7)	参数、返回地址都使用寄存器进行保存			
(8)	x86-64			
(9)	MIPS			
(10)	广泛用于嵌入式系统			
(11)	已知某个体系结构使用 add R1,R2,R3 来完成加法运算。当要将数据			
	从寄存器 S 移动至寄存器 D 时,使用 add S,#ZR,D 进行操作(#ZR			
	是一个恒为 0 的寄存器),而没有类似于 mov 的指令。			
(12)	已知某个体系结构提供了 xlat 指令,它以一个固定的寄存器 A 为基地			
	址,以另一个固定的寄存器 B 为偏移量,在 A 对应的数组中取出下标为			
	B 的项的内容,放回寄存器 A 中。			

2. 写出下列电路的表达式

3. 下列寄存器在时钟上升沿锁存数据, 画出输出的电平(忽略建立/保持时间)

【顺序处理器】

4. 根据 32 位 Y86-64 模型完成下表

		call Dest	jXX Dest
Fetch	icode,ifun	icode:ifun <- M1[PC]	icode:ifun <- M1[PC]
	rA, rB	\	\
	valC	valC <- M8[PC+1]	valC <- M8[PC+1]
	valP	valP <- PC+9	valP <- PC+9
Decode	valA,srcA		
	valB,srcB		
Execute	valE		
	Cond Code		
Memory	valM		
Write back	dstE		
	dstM		
PC	PC		

5. 已知 valC 为指令中的常数值,valM 为访存得到的数据,valP 为 PC 自增得到的 值,

完成以下的 PC 更新逻辑:

```
int new_pc = [
  icode == ICALL : _____;
  icode == IJXX && Cnd: _____;
  icode == IRET : _____;
  1: ______;
]
```