UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT-INF 1100 — Modellering og

beregninger.

Eksamensdag: Onsdag 13. oktober 2010.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 6 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Svarene føres på eget svarark.

De 10 første oppgavene teller 2 poeng hver, de siste 10 teller 3 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

NB. Husk å sjekke at du har ført inn svarene riktig på svararket!

Oppgaveark

Oppgave 1. Det binære tallet 11101101_2 er det samme som det desimale tallet

A: 221

B: 227

C: 231

D: 255

✓E: 237

Oppgave 2. Skrevet i totallssystemet blir det heksadesimale tallet $a.bc_{16}$

A: 1010.101101₂

✓B: 1010.101111₂

C: 1010.001101₂

D: 1011.001111₂

E: 1110.00001111₂

Oppgave 3. Desimaltallet 1.7 kan skrives på binær form som

A: 1.0100110010001 · · · der sifrene 10001 gjentas uendelig mange ganger

B: 1.10100100

C: 1.111

 $\checkmark\mathbf{D:}$ 1.1011001100110011 · · · · der sifrene 0110 gjentas uendelig mange ganger

E: 1.010010010010 · · · der sifrene 010 gjentas uendelig mange ganger

Oppgave 4. For hvilket grunntall β vil det rasjonale tallet 2/3 kunne representeres med en endelig sifferutvikling?

A: $\beta = 2$

B: $\beta = 4$

C: $\beta = 16$

D: $\beta = 10$

 \checkmark **E**: $\beta = 6$

Oppgave 5. For hvilket grunntall β vil tallet 26 ha representasjonen 101_{β} ?

 \checkmark **A:** $\beta = 5$

B: $\beta = 8$

C: $\beta = 6$

 $\mathbf{D} \colon \beta = 2$

E: $\beta = 16$

Oppgave 6. Tallet

$$\frac{\pi + \sqrt{\pi}}{\pi - \sqrt{\pi}} - \frac{2}{\sqrt{\pi} - 1}$$

er

A: et rasjonalt tall på formen $a/2^n$ der n er et passende naturlig tall og

0 < a < n

B: $1 + \sqrt{\pi}$

C: 0

√D: 1

E: et tall på formen $\sqrt{\pi}/2^n$ der n er et passende naturlig tall

Oppgave 7. En følge er definert ved $x_n = \sqrt{n}/(1+n^2)$ for $n \ge 1$. Hva er største nedre skranke for tallmengden gitt ved $\{x_n \mid n \ge 1\}$?

A: 1/2

B: er ikke definert

✓ C: 0

D: 1

E: $\sqrt{2}$

Oppgave 8. Hva er Taylor-polynomet av grad 2 om a = 0 for funksjonen f(x) = 1/(1+x)?

A:
$$1 + x^2$$

√B:
$$1 - x + x^2$$

$$\mathbf{C}$$
: x^2

D:
$$1 + x + x^2$$

E:
$$1 - x^2$$

Oppgave 9. Hva er Taylor-polynomet av grad 2 om a = 0 for funksjonen $f(x) = \sin x^2$?

A:
$$1 + x + x^2$$

$$\sqrt{\mathbf{B}}$$
: x^2

$$\mathbf{C}$$
: x

D:
$$x + x^2$$

E:
$$1 + x^2$$

Oppgave 10. Vi har funksjonen $f(x) = \cos x$ og punktene $x_0 = 0$, $x_1 = \pi/2$ og $x_2 = \pi$. Da har den dividerte differansen $f[x_0, x_1, x_2]$ verdien

A:
$$-4/\pi^2$$

B:
$$4/\pi^2$$

C:
$$2/\pi$$

D:
$$-2/\pi$$

Vi minner om at dividerte differanser tilfredstiller de to relasjonene

$$f[x_0, x_1, \dots, x_{k-1}, x_k] = \frac{f[x_1, \dots, x_{k-1}, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}, \quad k > 0$$

og
$$f[x] = f(x)$$
.

Oppgave 11. Vi tilnærmer funksjonen $f(x) = \cos x$ med sitt Taylorpolynom av grad n om a = 0. Hva er minste verdi av n som gjør den absolutte feilen i tilnærmingen mindre enn 0.001 for alle x i intervallet [0,1]?

A:
$$n = 1$$

B:
$$n = 3$$

C:
$$n = 5$$

√D:
$$n = 6$$

E:
$$n = 8$$

Oppgave 12. Anta at vi beregner Taylor-polynomet av grad n om punktet a = 0 for funksjonen $f(x) = e^x$. Hva kan vi da si om feilleddet $R_n(x)$?

A: Feilleddet vil for hver x bli større når n øker

 $\sqrt{\mathbf{B}}$: For ethvert reelt tall x vil feilleddet gå mot 0 når n går mot ∞

C: Feilleddet er 0 overalt

 $\mathbf{D}\text{:}$ Feilleddet vil gå mot 0 for alle x i intervallet [0,1], men ikke for andre verdier av x

E: For alle n og alle reelle tall x vil absoluttverdien til feilleddet være mindre enn 1

Oppgave 13. Hvilket av følgende uttrykk vil kunne gi stor relativ feil for minst en verdi av x når det beregnes på datamaskin ved hjelp av flyttall?

$$\checkmark$$
A: $x^3 + \pi$

B:
$$1 + x^2$$

C:
$$x^2 + 2(\cos x)^2$$

D:
$$1/(1+x^2)$$

E:
$$e^x + x^2$$

Oppgave 14. Vi interpolerer funksjonen $f(x) = x^3$ med et polynom p_3 av grad 3 i punktene 0, 1, 2, 3. Da er p_3 lik

A:
$$x^2$$

$$\checkmark \mathbf{B} : x^3$$

C:
$$x + 3x(x - 1) + x^3$$

D:
$$x + x^3$$

E:
$$-x^3$$

Oppgave 15. Differensligningen

$$x_{n+1} - 2x_n = a, \ n \ge 0, \quad x_0 = 1$$

har løsningen $x_n = 2^{n+1} - 1$. Hva er da a?

A:
$$a = 0$$

√B:
$$a = 1$$

C:
$$a = -1$$

D:
$$a = 2$$

E:
$$a = 3$$

Oppgave 16. Vi har gitt en differensligning med initialbetingelser,

$$x_{n+2} - 6x_{n+1} + 9x_n = 0, \ n \ge 0, \quad x_0 = 1, \ x_1 = 4.$$

Hva er løsningen?

A:
$$x_n = 3n + 1$$

B:
$$x_n = 3^n + 1$$

C:
$$x_n = 3^n$$

$$\checkmark$$
D: $x_n = (3+n)3^{n-1}$

E:
$$x_n = n3^n + 1$$

(Fortsettes på side 5.)

Oppgave 17. Vi har differensligningen

$$x_{n+1} = x_n^4, \ n \ge 0, \quad x_0 = a$$

der $a \neq 0$. Da er løsningen gitt ved

A:
$$x_n = a^{n+1}$$

√B:
$$x_n = a^{(4^n)}$$

C:
$$x_n = a4^n$$

D:
$$x_n = a2^n$$

E:
$$x_n = a$$

Oppgave 18. Vi har differensligningen

$$x_{n+1} - 3x_n = 2$$
, $n \ge 0$, $x_0 = 2$,

og simulerer denne med 64-bits flyttall. For alle n over en viss grense vil da den beregnede løsningen \bar{x}_n gi som resultat:

A:
$$-1$$

B:
$$-1 + 3^{n+1}$$

✓E: Det blir overflow

Oppgave 19. Vi har differensligningen

$$5x_{n+2} - 16x_{n+1} + 3x_n = 8$$
, $n \ge 0$, $x_0 = 0$, $x_1 = -4/5$

og simulerer denne med 64-bits flyttall på datamaskin. For alle n over en viss grense vil da den beregnede løsningen \bar{x}_n gi som resultat:

A:
$$-1$$

B:
$$-4/5$$

$$\mathbf{C} \colon 0$$

✓D: Det blir overflow og deretter NaN

E:
$$5^{-n} - 1$$

Oppgave 20. Vi har differensligningen

$$x_n = \frac{x_{n-1}}{x_{n-2}}, \ n \ge 2, \quad x_0 = 1, x_1 = 2.$$

Vi lar nå P_n betegne påstanden

 P_n : x_n er enten 1 eller 2.

Et induksjonsbevis for at P_n er sann for alle heltall $n \geq 0$ kan være som følger:

- 1. Vi ser lett at P_0 og P_1 er sanne.
- 2. Anta nå at vi har bevist at P_0, \ldots, P_k er sanne. For å fullføre induksjonsbeviset, må vi vise at P_{k+1} også er sann. Fra induksjonshypotesen vet vi at både x_{k-1} og x_k er enten 1 eller 2 så

$$x_{k+1} = \frac{x_k}{x_{k-1}}$$

er også enten 1 eller 2. Altså er også P_{k+1} sann.

Hvilket av følgende utsagn er sant?

- **A:** Påstanden P_n er sann, men del 2 av induksjonsbeviset er feil
- $\sqrt{\mathbf{B}}$: Påstanden P_n er feil, og del 2 av induksjonsbeviset er feil
 - C: Påstanden P_n er feil, og del 1 av induksjonsbeviset er feil
 - **D:** Både påstanden P_n og induksjonsbeviset er riktige
 - E: Beviset er riktig, men det er ikke noe induksjonsbevis

Det var det!