WHAT IS CLAIMED IS:

1. A combinatorial chemical library of the formula:

$$(V-L)_q$$
 S $-C(O)-L'-II'$ I

wherein:

(S) is a solid support;

T'-L- is an identifier residue;

q is 3-30;

-L'-II' is a compound/linker residue; and

-II' is of the formula:

wherein:
$$R^{1a}$$
 R^{20} R^{4}

R^{1a} is $-CH_2-O-$, $-CH_2-CH_2-O-$, $-C(=O)-CH_2-O-$, -C(=O)-, or when L' terminates in N(CH₂)₁₋₆R¹⁷, R^{1a} may additionally be -C(=O)-Z-O- or -C(=O)-4-Phe-CH₂-O-;

R² is H or lower alkyl;

R³ is H, alkyl, aryl or arylalkyl;

 R^4 and R^5 are each independently H, lower alkyl, or substituted lower alkyl where the substituents are 1-3 alkoxy, aryl, substituted aryl, carboalkoxy, carboxamido, diloweralkylamido, or $-(CH_2)_{1-4}-N$ $N-R^8$

or R^4 and R^5 taken together are $-(CH_2)_n-$, $-(CH_2)_2-O-(CH_2)_2-$, $-CH_2-O-(CH_2)_3-$, $-(CH_2)_2-NR^8-CH_2)_2-$, $-CH_2-NR^8-(CH_2)_m-$, $-(CH_2)_2XH(NHR^8)(CH_2)_2-$, $-(CH_2)_2-S(O)_{0-2}-(CH_2)_2-$, or $-CH_2CH(N-loweralkyl)(CH_2)_2CHCH_2-$;

one of R⁶ and R⁷ is H and the other is H, OH, or $N(CH_2)_{1-6}R^{14}R^{15}; \text{ or } R^6 \text{ and } R^7 \text{ taken together are}$ $0 \\ \parallel, \\ S \\ S, \\ O \\ S, \\ O \\ S, \\ O \\ S, \\ S;$

- is H, COOR⁹, CONHR¹⁰, CSNHR¹¹, COR¹², SO₂R¹³, lower alkyl, aryl lower alkyl, heteroaryl, or heteroaryl lower alkyl, wherein aryl is optionally substituted with 1-3 substituents selected from lower alkyl, lower alkoxy, halo, CN, NH₂, COOH, CONH₂, carboalkoxy, and mono- or di-lower alkylamino and wherein heteroaryl is a mono- or bicyclic heteroaromatic ring system of 5 to 10 members including 1 to 3 heteroatoms selected from O, N, and S and 0-3 substituents selected from halo, amino, cyano, lower alkyl, carboalkoxy, CONH₂, and S-lower alkyl;
- R⁹ is lower alkyl, aryl, aryl lower alkyl, heteroaryl, aryl substituted by 1-3 substituents selected from alkyl, alkenyl, alkoxy, methylene dioxy, and halo, or a 5-to 6-membered heterocyclic ring wherein the

hetero atom is 0 or N, wherein heteroaryl is a heteroaromatic ring of 5 to 6 members including 1 to 2 heteroatoms selected from 0, N, and S and 0-2 substituents selected from lower alkyl, dialkylamino, lower alkoxy, and halo;

- R¹⁰ and R¹¹ are each independently lower alkyl, aryl, aryl loweralkyl, or aryl substituted by 1-3 substituents selected from lower alkyl, halo, alkoxy and haloalkyl;
- R12 is lower alkyl, aryl, heteroaryl, aryl lower alkyl, heteroaryl lower alkyl, a 5- or 6-membered heterocyclic ring containing 1-2 heteroatoms delected from O, S, and N lower alkyl, or axyl substituted with 1-3 substituents selected from lower alkyl, alkoxy, halo, sulfamoyl, lower alkyl sulfamoyl, cyano, and phenyl;
- R¹³ is lower alkyl, aryl or aryl substituted with 1-3 substituents selected from lower alkyl, alkoxy, halo, CN, and haloalkyl;
- is H; alkyl; alkyl substituted by 1-3
 alkoxy, S-loweralkyl, sulfamoyl, halo,
 alkylsulphonamido, or arylsulphonamido;
 alkenyl; alkynyl; aryl; substituted aryl;
 heteroaryl; substituted heteroaryl;
 heterocycloalkyl; -CH2NR16C(O)R16;
 -C(O)NR16R16; -CH2OC(O)R16; or -CH2SC(O)R16;
- R^{15} is H, alkyl, -C(0)X, -C(S)X, or $-C(NCN)NR^3R^3$;

1073.008FWO

PH1002IB

R¹⁵ is lower alkyl, substituted lower alkyl, aryl, or substituted aryl,

- X is alkyl, aryl, arylalkyl, O-loweralkyl, or
 -NR³R³;
- is -(CH₂)₁₋₆-, optionally substituted with
 1-3 lower alkyl; -CHR²-; -Phe-CH₂-, where
 Phe is optionally mono-substituted with
 halogen, lower alkyl, or alkoxy; or
 heteroarylene-(CH₂)-;
- m is 2 or 3; and
- n is 4-9.

2. A combinatorial chemical library of Claim 1 wherein:

T'-L- is of the Formula:

$$= CH \underbrace{ \begin{array}{c} O^{-(CH_2)_n} \\ O-Ar \\ OCH_3 \end{array} }_{CH_3} III$$

wherein

n=3-12 when Ar is pentachlorophenyl and n=3-6 when Ar is 2,4,6-trichlorophenyl; q is 4-12; and

-L'- is
$$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \end{array}$$
 or
$$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \end{array}$$
 or
$$\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$$
 (b)

wherein the left-hand bond as shown is the point of attachment to the solid support and the right hand bond is the point of attachment to the compound, and B is O or $N(CH_2)_{1-6}R^{17}$, with the proviso that in (b) when B is $N(CH_2)_{1-6}R^{17}$, the compound is attached to B through a carbonyl group; and wherein

H; alkyl; alkyl substituted by 1-3
alkoxy, S-loweralkyl, sulfamoyl, halo,
alkylsulphonamido, or
arylsulphonamido; alkenyl; alkynyl;
aryl; substituted aryl; heteroaryl;
substituted heteroaryl;
heterocycloalkyl; substituted
heterocycloalkyl; diphenylmethyl;
-CH₂NR¹⁶C(O)R¹⁶; -C(O)NR¹⁶R¹⁶;
-CH₂OC(O)R¹⁶; or -CH₂SC(O)R¹⁶.

3. A combinatorial chemical library/of claim 1 wherein -C(0)-L'-II'is:

$$R^{6}$$
 R^{7} R^{5} R^{5} R^{5} R^{6} R^{7} R^{5} R^{7} R^{6} R^{7} R^{5} R^{7} R^{7

$$(CH_2)_{1-6}R^{17}$$
 R^6
 R^7
 R^5
 R^4
 R^5
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R

$$(CH_2)_{0-6}R^{17}$$
 R^6 R^7 R^5 R

wherein:

R¹⁷ is H; alkyl; alkyl substituted by 1-3 alkoxy, S-loweralkyl, sulfamoyl, halo, alkylsulphonamido, or

arylsulphonamido; alkenyl; alkynyl; aryl; substituted aryl; heteroaryl; substituted heteroaryl; heterocycloalkyl; substituted heterocycloalkyl; substituted heterocycloalkyl; diphenylmethyl; -CH₂NR¹⁶C(O)R¹⁶; -C(O)NR¹⁶R¹⁶; -CH₂OC(O)R¹⁶; or -CH₂SC(O)R¹⁶.

4. A compound of the formula:

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

wherein:

R¹ is OH, O(CH₂)₁₋₂OH, OCH₂CO₂H, CO₂H, $O-Z-C(O) \ NHCHR^{18} \ (CH_2)_{0-5}R^{17}, \ or \\ OCH_2-4-Phe-C(O) \ NHCHR_{18} \ (CH_2)_{0-5}R^{17};$

R² is H or lower alkyl;

R³ is H, alkyl, aryl, or arylalkyl;

R⁴ and R⁵ are each independently H, lower alkyl, or substituted lower alkyl where the substituents are 1-3 alkoxy, aryl, substituted aryl, carboalkoxy, carboxamido, di-loweralkylamido, or

$$-(CH_2)_{1-4}-N$$
 $N-R^8$

or R4 and R5 taken together are -(CH $_2$) $_3$ -, -(CH $_2$) $_2$ -O-(CH $_2$) $_2$ -, -CH $_2$ -O-(CH $_2$) $_3$ -,

 $- (CH_2)_2 - NR^8 - CH_2)_2 - , - CH_2 - NR^8 - (CH_2)_m - , \\ - (CH_2)_2 XH (NHR^8) (CH_2)_2 - , - (CH_2)_2 - S (O)_{0-2} - (CH_2)_2 - , \\ \text{or } - CH_2 CH (N-loweralkyl) (CH_2)_2 CHCH_2 - ;$

one of R⁶ and R⁷ is H and the other is H, OH, or $N(CH_2)_{1-6}R^{14}R^{15}; \text{ or } R^6 \text{ and } R^7 \text{ taken together}$

are 0, S, S, O, S, O, O, S, O or S, S

 R^8 is

H, COOR⁹, CONHR¹⁰, CSNHR¹¹, COR¹², SO₂R¹³, lower alkyl, aryl lower alkyl, heteroaryl, or heteroaryl lower alkyl, wherein aryl is optionally substituted with 1-3 substituents selected from lower alkyl, lower alkoxy, halo, CN, NH₂, COOH, CONH₂, carboalkoxy, and mono- or di-lower alkylamino and wherein heteroaryl is a mono- or bicyclic heteroaromatic ring system of 5 to 10 members including 1 to 3 heteroatoms selected from O, N, and S and 0-3 substituents selected from halo, amino, cyano, lower alkyl, carboalkoxy, CONH₂, and S-lower alkyl;

R° is lower alkyl, aryl, aryl lower alkyl, heteroaryl, aryl substituted by 1-3 substituents selected from alkyl, alkenyl, alkoxy, methylene dioxy, and halo, or a 5-to 6-membered heterocyclic ring wherein the hetero atom is 0 or N, wherein heteroaryl is a heteroaromatic ring of 5 to 6 members

including 1 to 2 heteroatoms selected from O, N, and S and 0-2 substituents selected from lower alkyl, dialkylamino, lower alkoxy, and halo;

- R¹⁰ and R¹¹ are each independently lower alkyl, aryl, aryl lower alkyl, or aryl substituted by 1-3 substituents selected from lower alkyl, halo, alkoxy and haloalkyl;
- R¹² is lower alkyl, aryl, heteroaryl, aryl lower alkyl, heteroaryl lower alkyl, a 5- or 6-membered heterocyclic ring containing 1-2 heteroatoms selected from O, S, and N lower alkyl, or aryl substituted with 1-3 substituents selected from lower alkyl, alkoxy, halo, sulfamoyl, lower alkyl sulfamoyl, cyano, and phenyl;
- R¹³ is lower alkyl, aryl, or aryl substituted with 1-3 substituents selected from lower alkyl, alkoxy, halo, CN, and haloalkyl;
- R¹⁴ is H; alkyl; alkyl substituted by 1-3 alkoxy, S-, loweralkyl, sulfamoyl, halo, alkylsulphonamido, or arylsulphonamido; alkenyl; alkynyl; aryl; substituted aryl; heteroaryl; substituted heteroaryl; heterocycloalkyl; -CH₂NR¹⁶C(O)R¹⁶;-C(O)NR¹⁶R¹⁶; -CH₂OC(O)R¹⁶; or -CH₂SC(O)R¹⁶;
- R^{15} is H, alkyl, -C(O)X, -C(S)X, or $-C(NCN)NR^3R^3$;
- R¹⁶is lower alkyl, substituted lower alkyl, aryl, or substituted aryl;
- R¹⁷ is H; alkyl; alkyl substituted by 1-3 alkoxy,

S-, loweralkyl, sulfamoyl, halo, alkylsulphonamido, or arylsulphonamido; alkenyl; alkynyl; aryl; substituted aryl; heteroaryl; substituted heteroaryl; heterocycloalkyl; heterocycloalkyl; diphenylmethyl; $-CH_2NR^{16}C(O)R^{16}$; $-C(O)NR^{16}R^{16}$; $-CH_2OC(O)R^{16}$; or $-CH_2SC(O)R^{16}$; H or $-(CH_2)_{0-5}R^{17}$; alkyl, aryl, arylalkyl, O-loweralkyl, or $-NR^3R^3$; -(CH_2)₁₋₆-, optionally substituted with 1-3 lower alkyl; -CHR2-; -Phe-CH2-, where Phe is optionally mono-substituted with halogen, lower alkyl, or alkoxy; or heteroarylene-(CH₂)-; 2 or 3;

n is 4-9;

R¹⁸ is

X is

Z is

m is

1.

or a pharmaceutically acceptable salt thereof.

- 5. A compound of claim 4 wherein \mathbb{R}^{12} is sulfamoylphenyl.
- 6. A compound of claim 4 wherein \mathbb{R}^{12} is p-sulfamoylphenyl.
- 7. A compound of claim 4 wherein:
- R¹ is OH, OCH₂C(O)NH(CH₂)₁₋₅R¹⁷, or $OCH_2-4-Phe-C(O)NH(CH_2)_{1-6}R^{17};$
- R² is H or lower alkyl;

 \mbox{R}^4 and \mbox{R}^5 are each lower alkyl or $-(\mbox{CH}_2)_{1\text{-}4} - \mbox{N} \mbox{} - \mbox{R}^8$;

or R^4 and R^5 taken together are $-(CH_2)_5-$, $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_2-NR^8-(CH_2)_2-$, $-(CH_2)_2-CH(NHR^8)(CH_2)_2-$, $-(CH_2)_2-S-(CH_2)_2-$, or $-CH_2CH(NCH_3)(CH_2)_2CHCH_2-$;

 R^6/R^7 are H/OH; =0, or $-S(CH_2)_2S-$;

- is H, COOR9, CONHR10, CSNHR11, COR12, SO2R13, lower alkyl, aryl lower alkyl, heteroaryl wherein the ring members include 1 to 3 N atoms and the substituents are halo or amino, heteroaryl lower alkyl wherein heteroaryl is 6-membered and the heteroatoms are N, or aryl lower alkyl substituted with 1 substituent selected from lower alkyl, alkoxy, and halo;
- R° is lower alkyl, aryl lower alkyl, aryl, tetrahydrofuranyl, tetrahydropyranyl, or aryl substituted by 1 to 2 substituents selected from lower alkyl, alkenyl, alkoxy, methylene dioxy, and halo;
- R¹⁰ and R¹¹ are each independently aryl, aryl lower alkyl, or aryl substituted by 1 substituent selected from lower alkyl, halo, alkoxy, trifluoromethyl, and pentafluoroethyl;
- R^{12} is lower alkyl, aryl, aryl lower alkyl, heteroaryl lower alkyl wherein the heteroatoms are N, a 5- or 6-membered heterocyclic ring containing 1-2 heteroatoms selected from S and N

lower alkyl, or aryl substituted with 1
substituent selected from lower alkyl, alkoxy,
halo, sulfamoyl, cyano, or phenyl;

R¹³ is lower alkyl, aryl, or aryl substituted with 1 substituent selected from lower alkyl, alkoxy, and halo;

or a pharmaceutically acceptable salt thereof.

8. A compound of Claim 4 of the formula:

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

wherein:

 R^1 is 6- or 7-OH;

 R^2 is H or lower alkyl;

R⁴ and R⁵ is each methyl; or R⁴ and R⁵ taken together are $-(CH_2)_5-$, $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_2-NR^8-(CH_2)_2-$, $-CH_2-NR^8-(CH_2)_3-$, $-CH_2-NR^8-(CH_2)_2-$, or $-(CH_2)_2-CH(NHR^8)(CH_2)_2-$;

one of R^6 and R^7 is H and the other is OH or R^6 and R^7 taken together are =0 or $-S(CH_2)_2S-$;

R⁸ is H, COOR⁹, CQNHR¹⁰, CSNHR¹¹, COR¹², SO₂R¹³, benzyl, -CH₂-Ph-4-F, -CH₂-Ph-4-OCH₃, -CH₂-4-Py, n-butyl, -CH₂-c-propyl,

$$\begin{array}{c} N = \\ N = \\$$

R⁹ is i-propyl, phenyl, phenethyl, t-butyl,

phenyl, p-chlorophenyl, or
p-trifluoromethylphenyl;

R¹¹ is phenyl, benZyl, or 1-naphthyl;

 \mathbb{R}^{12} is

R¹³ is 1- or 2-naphthyl, phenyl, 4-chlorophenyl, 4-methylphenyl, 4-t-butylphenyl, n-butyl, or i-propyl;

or a pharmaceutically acceptable salt thereof.

9. A compound of Claim 4 of the formula:

$$R^{1}$$
 R^{2}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

wherein:

 R^1 is 6- or 7-OH when R^2 is H;

 R^1 is 7-OH when R^2 is CH_3 ;

 R^4 and R^5 is each methyl; or $\!\!/R^4$ and R^5 taken together

are $-(CH_2)_5-$, $-(CH_2)_2-O-(CH_2)_2-$,

 $-(CH_2)_2-NR^8-(CH_2)_2+$, $-CH_2-NR^8-(CH_2)_3-$,

 $-CH_{2}-NR^{8}-(CH_{2})_{2}-,$ or $-(CH_{2})_{2}-CH(NHR^{8})(CH_{2})_{2}-;$

one of R^6 and R^7 is H and the other is OH or R^6 and R^7

taken together are =0 or $-S(CH_2)_2S-$; and

	N C	CH ₃ S-72
CI-(C C C	$CH_3 \longrightarrow S$ $CH_3 \longrightarrow O_2$
CF ₃ —N-C'-7		t-Bu-\$\sigma_s\sigma_2
⟨N/2 \	CH3O	NH ₂ N CI
\	N N N N N N N N N N N N N N N N N N N	N
CI N CI	CH ₃ ~~	F—
>-\ ² \	t-Bu.	or H•

10. A compound of claim 4 of the formula:

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

wherein:

R¹ is 6- or $7-OCH_2C(O)NHCHR^{18}(CH_2)_{0-5}R^{17}$, 6- or $7-OCH_2-4-Phe-C(O)NHCHR_{18}(CH_2)_{0-5}R^{17}$ when

 R_2 is H;

R¹ is $7-OCH_2C(O)NHCHR^{18}(CH_2)_{0-5}R^{17}$, or $7-OCH_2-4-Phe-C(O)NHCHR_{18}(CH_2)_{0-5}R^{17}$ when R² is

CH₃;

 R^4 and R^5 are each methyl; or R^4 and R^5 taken together $\mbox{are -(CH$_2)$_5-, -(CH$_2)$_2-O-(CH$_2)$_2-,}$

 $-(CH_2)_2-NR^8-(CH_2)_2-$, $-(CH_2)_2-CH(NHR^8)(CH_2)_2-$,

- $(CH_2)_2$ -S- $(CH_2)_2$ -, or $-CH_2CH(NCH_3)(CH_2)_2CHCH_2$ -;

or R^4 is methyl and R^5 is $-CH_2OCH_3$ or $-(CH_2)_3N(Et)_2$;

one of R⁶ and R⁷ is H and the other is OH; or R⁶ and R⁷ taken together are =0 or $-S(CH_2)_2S$ -; or one of R⁶ and R⁷ is H and the other is NAB, where A is methyl, 2-methoxyethyl, 2-phenylethyl, 4-methoxybenzyl,

2-tetrahydro-furanylmethyl,

2-(3,4-dimethoxyphenyl)ethyl, or

2,2-diphenylethyl and B is

H ,
$$-SO_2CH_3$$
 , NH_2 , N

R⁸ is H, CONHCH₃, SO₂Phe, $(CH_2)_3CH_3$, CO $(CH_2)_2CH_3$, benzyl, C(O)-(4-Phe)-SO₂NH₂, or N= ;

 $(CH_2)_{1-4}R^{14}$ is methyl, n-butyl, 3-methoxy-n-propyl, CH_2 -c-propyl,or - $(CH_2)_{1-3}$ -phenyl; and

 $(CH_2)_{1-6}R^{17}$ is methyl, 2-methoxyethyl, 2-phenylethyl,

4-methoxybenzyl, methyl-2-tetrahydrofuranyl,

2-(3,4-dimethoxyphenyl)ethyl, or

2,2- diphenylethyl;

or a pharmaceutically acceptable salt thereof.

11. A compound of claim 4 of the formula IIb, IIc, or IId:

$$R^{1} \xrightarrow{5} R^{6}$$

$$R^{7} \xrightarrow{3} N-R^{8}$$

$$IIb \qquad IIc$$

$$R^{1} \xrightarrow{5} R^{6}$$

$$R^{7} \xrightarrow{3} N-R^{8}$$

$$IId$$

wherein:

 R^{1} is 6- or 7-OH, 6- or 7-OCH₂C(O)NHCHR¹⁸(CH₂)₀₋₅R¹⁷,

or 6- or $7-OCH_2-4-Phe-C(O)NHCHR^{18}(CH_2)_{0-5}R^{17};$

 R^2 is H or CH_3 ;

 R^8 is $-CO-Phe-p-SO_2NH_2$; and

 R^6 and R^7 together are =0 or -SCH $_2$ CH $_2$ S-.

12. A compound of Claim 11 wherein the substituents are as follows:

	Formula IIb	Formula IIc	Formula IId			
R ¹	7-OH	6-OH	6-OH/	6-OH	7-OH	
R^2	Н	Н	Н	Н	CH ₃	
R^6/R^7	- O-	-SCH ₂ CH ₂ S-	-0-	-SCH ₂ CH ₂ S-	-SCH ₂ CH ₂ S-	

13. A compound of Claim 4 of the formula:

				<u></u>	
R ^I	R ²	R ⁴	R ⁵	R ⁶	R^7
6-OH	8-CH ₃	C ₂ H ₅	Q_2H_5	ОН	Н
7-OH	8-CH ₃	CH ₃	CH ₃	Н	ОН
5-OH	7-C ₂ H ₅	Н ,	CH ₂ H ₅	NH ₂	Н
6-OH-(CH ₂) ₂ OH	Н	C ₃ H ₇	CH ₃	=O	/
7-OCH ₂ CO ₂ H	7-CH ₂ H ₅	-(C	H ₂) ₄ -	н	morpholino
8-O-(CH ₂) ₂ OH	Н	-(C	H ₂) ₅ -	N(CH ₃) ₂	Н
6-CO ₂ H	8-CH ₃	-(CH ₂)	6-	-S(C	H ₂) ₂ S-
6-OH	н	-(CH ₂) ₂	O(CH ₂) ₂ -	=O	
7-OH	8-CH ₃	CH ₃	CH ₃	-S(C	H ₂) ₂ S-
6-OH	Н	-(CH ₂)	5-	=O	

14. A compound of Claim 4 of the formula:

wherein the substituents are as

follows:

R ¹	R ²	R ⁴ /R ⁵	R ⁶	R ⁷	R ⁸
6-OH	Н	$-(CH_2)_2NR^8(CH_2)_2-$, он	Н	-CONH-Ph-4-CF ₃
7-OH	8-CH ₃	-CH ₂ NR ⁸ (CH ₂) ₃ -	JN_SO₂	Н	-SO ₂ -2-Naph
5-O(CH ₂) ₂ OH	7-C ₂ H ₅	-(CH ₂) ₂ NR CH ₂ -	-N	Н	- CSNH-Ph
6-OH	Н	-(CH ₂) ₂ NR ³ (CH ₂) ₂ -	=O		-CO-Ph-4-SO ₂ NH ₂
7-OH	Н	-(CH ₂) ₂ CH(NR ⁸)(CH ₂) ₂ -	-S(CH ₂) ₂ S-		-CO-Ph-4-SO ₂ NH ₂
6-OH	Н	-(CH ₂) ₂ NR ⁸ (CH ₂) ₂ -	=O		-COCH ₂ Ph
6-OH	Н	-(CH ₂) ₂ NR ⁸ CH ₂ -	-S(CH ₂) ₂ S-		-CO ₂ -2-Py
7-OH	8-CH ₃	-(CH ₂) ₂ NR ⁸ (CH ₂) ₂ -	-S(CH ₂) ₂ S-		-CO-Ph-4-SO ₂ NH ₂
6-OH	Н	-(CH ₂) ₂ NR ⁸ CH ₂ -	-S(CH ₂) ₂ S-		-CO-Ph-4-SO ₂ NH ₂

7-OH	Н	-(CH ₂) ₂ NR ⁸ - (CH ₂) ₂ -	=0		•CO-Ph-4-SO ₂ NH ₂
6-OH	Н	-(CH ₂) ₂ NR ⁸ - (CH ₂) ₂ -	он н		CONH-Ph-4-CF ₃
7-ОН	8-CH ₃	-(CH ₂) ₂ NR ³ - CH ₂ -	N(CH ₃) ₂	Н	-SO ₂ -2-Naph
5-O(CH ₂) ₂ - OH	7-C ₂ H ₅	-(CH ₂) ₂ NR ⁸ - CH ₂ -	-SCH ₂ CH- (CH ₃)S-	H	-CSNH-Ph
6-OH	Н	-(CH ₂) ₂ NR ³ - (CH ₂) ₂ -	=O		-CO-Ph-4-SO ₂ NH ₂
7-OH	Н	-(CH ₂) ₂ NR ⁸ - (CH ₂) ₂ -	-S(CH ₂) ₂ S	<u> </u>	-CO-Ph-4-SO ₂ NH ₂
6-OH	Н	-(CH ₂) ₂ NR ⁸ - (CH ₂) ₂ -	=O		COCH ₂ Ph
6-OH	Н	-(CH ₂) ₂ NR ⁸ - CH ₂ -	-S(CH ₂) ₂ S-		-CO ₂ -2-Py
7-OH	8-CH ₃	-(CH ₂) ₂ NR ⁸ - (CH ₂) ₂ -	-S(CH ₂) ₂ S-		-CO-Ph-4-SO ₂ NH ₂
6-OH	Н	-(CH ₂) ₂ NR ⁸ - CH ₂ -	-S(CH ₂) ₂ S-		-CO-Ph-4-SO ₂ NH ₂
7-OH	Н	-(CH ₂) ₂ NR ⁸ - (CH ₂) ₂ -	=0		-CO-Ph-4-SO ₂ NH ₂

- 15. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 4 and a pharmaceutically acceptable carrier.
- 16. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 9 and a pharmaceutically acceptable carrier.
- 17. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 10 and a pharmaceutically acceptable carrier.

- 18. A pharmaceutical composition for inhibiting carbonic anhydrase in a mammal comprising a therapeutically effective amount of a compound of Claim 11 and a phrmaceutically acceptable carrier.
- 19. A method of inhibiting carbonic anhydrase isozymes in a mammal which comprises administering to said mammal an effective amount of a compound of Claim 11.
- 20. A method of treating glaucoma in a mammal which comprises administering to a mammal in need of such treatment an effective amount of a compound of Claim 11.
- 21. A method of identifying a ligand having a desired characteristic which comprises synthesizing a combinatorial library of Claim 1 and testing the compounds in said library in an assay which identifies compounds having the desired characteristic.

22. A method of Claim 21 wherein the compounds in said library are those wherein -C(0)-L''II' is of the formula Ia:

$$\begin{array}{c|c} & \mathbb{R}^6 & \mathbb{R}^7 \\ & \mathbb{R}^2 & \mathbb{R}^5 & \mathbb{R}^4 \end{array}$$

- 23. A method of Claim 21 further comprising determining the structure of any ligand so identified.
- 24. A method of Claim 21 wherein said characteristic is carbonic anhydrase inhibition.
- 25. A method of identifying a ligand having a desired characteristic which comprises synthesizing a combinatorial library of Claim 1, detaching the ligands from the solid supports in said library, and testing said library of ligands in an assay which identifies compounds having the desired characteristic.
- 26. A method of Claim 25 to further comprising determining the structure of any ligand so identified.
- 27. The use of divinylbenzene-cross-linked, polyethyleneglycol-grafted polystyrene beads as the

solid supports for constructing combinatorial libraries of Claim 1.

28. A method of Claim 27 where in the ligand is detached from said solid supports by photolysis.

29. A process for preparing a compound of the formula:

where R² is H or lower alkyl;
which comprises a) reacting allyl or methyl
4-(hydroxymethyl)-3-nitrobenzoate with a compound of
the formula:

in the presence of triphenylphosphine, toluene, and DEAD and stirring the mixture at room temperature to produce

 $\label{eq:where R is allyl or methyl} % \begin{center} \begin{ce$

methylene chloride, tetrakistriphenylphospine palladium(O), and pyrrolidine and stirring the mixture at 0°C, or when R is methyl reacting said compound with dilute NaOH and THF and stirring the mixture at 0°C.

30. A compound of the formulæ:

wherein:

(S) is a solid support

R¹⁶ is lower alkyl, substituted lower alkyl, aryl, or substituted aryl;

R¹⁷ is H; alkyl; substituted heterocycloalkyl;
alkyl substituted by 1-3 alkoxy,
S-loweralkyl, sulfamoyl, halo,
alkylsulphonamido, or arylsulphonamido;
alkenyl; alkynyl; aryl; substituted aryl;
heteroaryl; substituted heteroaryl;

heterocycloalkyl; -CH₂SC(0) R^{16} ; -CH₂NR¹⁶C(0) R^{16} ; -C(0) NR¹⁶R¹⁵; or -CH₂OC(0) R^{16} ;

R is H or alkyl; and Y is aryl or heteroaryl.

31. A compound of the formula:

or

wherein:

(S) is a solid support;

R¹⁶ is lower alkyl, substituted lower alkyl, aryl, or substituted aryl; and

H; alkyl; substituted heterocycloalkyl;
alkyl substituted by 1-3 alkoxy,
S-loweralkyl, sulfamoyl, halo,
alkylsulphonamido, or arylsulphonamido;
alkenyl; alkynyl; aryl; substituted aryl;
heteroaryl; substituted heteroaryl;
heterocycloalkyl; -CH₂SC(O)R¹⁶;
-CH₂NR¹⁶C(O)R¹⁶; -C(O)NR¹⁵R¹⁵; or -CH₂OC(O)R¹⁵.

32. A compound of the formula:

wherein:

(S) is a solid support;

R¹⁶ is lower alkyl, substituted lower alkyl, aryl, or substituted aryl;

H; alkyl; substituted heterocycloalkyl; alkyl substituted by 1-3 alkoxy, S-lower alkyl, sulfamoyl, halo, alkylsulphonamido, or arylsulphonamido; alkenyl; alkynyl; aryl; substituted aryl; heteroaryl; substituted heteroaryl; heterocycloalkyl; substituted heterocycloalkyl -CH₂SC(O)R¹⁶; -CH₂NR¹⁶C(O)R¹⁶; -C(O)NR¹⁵R²⁶; or -CH₂OC(O)R¹⁶;

 R^{18} is H or $(CH_2)_{0-5}R^{17}$;

R is H or alkyl; and

Y is aryl or heteroaryl.

33. A compound of the formula:

wherein:

(S) is a solid support;

R¹⁶ is lower alkyl, substituted lower alkyl, aryl, or substituted aryl;

R¹⁷ is H; alkyl; substituted heterocycloalkyl;
alkyl substituted by 1-3 alkoxy,
S-loweralkyl, sulfamoyl, halo,
alkylsulphonamido, or arylsulphonamido;
alkenyl; alkynyl; aryl; substituted aryl;
heteroaryl; substituted heteroaryl;
heterocycloalkyl; substituted
heterocycloalkyl; -CH₂SC(O)R¹⁶;
-CH₂NR¹⁶C(O)R¹⁶; -C(O)NR¹⁵R¹⁶; or -CH₂OC(O)R¹⁵;
and

34. A compound of the formula:

 R^{18} is H or $(CH_2)_{0-5}R^{17}$;

wherein:

R¹⁶ is lower alkyl, substituted lower alkyl, aryl, or substituted aryl;

PH1002IB 1073.008FWO

> H; alkyl; substituted heterocycloalky; R¹⁷ is alkyl substituted by 1-3 alkoxy, S-loweralkyl, sulfamoy/, halo, alkylsulphonamido, or/arylsulphonamido; alkenyl; alkynyl; aryl; substituted aryl; heteroaryl; substiruted heteroaryl; heterocycloalkyl; / substituted heterocycloalkyl; -CH₂SC(O)R¹⁶; $- CH_{2}NR^{16}C\left(O\right)R^{16}; \ /- C\left(O\right)NR^{16}R^{16}; \ or \ - CH_{2}OC\left(O\right)R^{16}; \\$

H or $(CH_2)_{0-5}R^{17}$; R¹⁸ is H or alkyl; and

R is

aryl or heteroaryl. Y is

A method of synthesizing combinatorial libraries which comprises the use in said syntheses of a compound of the formula 11a', 12a', 14, 14a, D, or 14':

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 R^{13} is H or $(CH_2)_{0-5}R^{17}$; and Y is aryl or heteroaryl.

-CH₂OCOR¹⁶;

wherein:

is

is

 R^{16} is

 R^{17} is

heterocycloalkyl; diphenylmethyl,

 $-CH_2SC(O)R^{16}$; $-CH_2NR^{16}C(O)R^{16}$; $-C(O)NR^{16}R^{16}$; or

36. A combinatorial chemical library of the formula:

wherein:

(S) is a solid support;

-L'-II' is a compound/linker residue; and

-II' is of the formula:

$$-R^{\frac{1}{2}} = R^{\frac{1}{2}} + R^{\frac{1}{2}}$$

is $-CH_2-O-$, $-C(=O)-CH_2-O-$, -C(=O)or when Ly terminates in $N(CH_2)_{1-6}R^{17}$, R^{1a} may additionally be -C(=0)-Z-O- or $-C(=0) - 4 - Phe - CH_2 - 0 - ;$

 \mathbb{R}^2 is H or lower alkyl;

is H, alkyl, aryl or arylalkyl; \mathbb{R}^3

 R^4 and R^5 are each independently H, lower alkyl, or substituted lower alkyl where the substituents are 1-3 alkoxy, aryl, substituted aryl, carboalkoxy, carboxamido, diloweralkylamido,

or
$$-(CH_2)_{1-4}-N$$
 $N-R^8$

or R^4 and R^5 taken together are $-(CH_2)_n$ -,

$$-(CH_2)_2-O-(CH_2)_2-$$
, $-CH_2-O-(CH_2)_3-$,

$$-(CH_2)_2 - NR^8 - CH_2)_2 - , -CH_2 - NR^8 - (CH_2)_m - ,$$

 $-(CH_{2})_{2}XH(NHR^{8})(CH_{2})_{2}-, -(CH_{2})_{2}-S(O)_{0-2}-(CH_{2})_{2}-, or \\ -CH_{2}CH(N-loweralkyl)(CH_{2})_{2}CHCH_{2}-$

- one of R^6 and R^7 is H and the other is H, OH, or $N\left(CH_2\right)_{1-6}R^{14}R^{15}; \text{ or } R^6 \text{ and } R^7 \text{ taken together are}$ $0 \\ R^2 \\ S, 0 \\ S, 0 \\ S, 0 \\ S, 0 \\ S;$
- R* is H, COOR*, CONHR*10, CSNHR*11, COR*12, SO2R*13, lower alkyl, aryl lower alkyl, heteroaryl, or heteroaryl lower alkyl, wherein aryl is optionally substituted with 1-3 substituents selected from lower alkyl, lower alkoxy, halo, CN, NH2, COOH, CONM2, carboalkoxy, and mono- or di-lower alkylamino and wherein heteroaryl is a mono- or bicyclic heteroaromatic ring system of 5 to 10 members including 1 to 3 heteroatoms selected from 0, N, and S and 0-3 substituents selected from halo, amino, cyano, lower alkyl, carboalkoxy, CONH2, and S-lower alkyl;
- R⁹ is lower alkyl, aryl, aryl lower alkyl,
 heteroaryl, aryl substituted by 1-3 substituents
 selected from alkyl, alkenyl, alkoxy, methylene
 dioxy, and halo, or a 5- to 6-membered
 heterocyclic ring wherein the hetero atom is 0
 or N, wherein heteroaryl is a heteroaromatic
 ring of 5 to 6 members including 1 to 2
 heteroatoms selected from 0, N, and S and 0-2
 substituents selected from lower alkyl,
 dialkylamino, lower alkoxy, and halo;

R¹⁰ and R¹¹ are each independently lower alkyl, aryl, aryl loweralkyl, or aryl substituted by 1-3 substituents selected from lower alkyl, halo, alkoxy and haloalkyl;

- is lower alkyl, aryl, heteroaryl, aryl lower alkyl, heteroaryl lower alkyl, a 5- or 6-membered heterocyclic ring containing 1-2 heteroatoms selected from O, S, and N lower alkyl, or aryl substituted with 1-3 substituents selected from lower alkyl, alkoxy, halo, sulfamoyl, lower alkyl sulfamoyl, cyano, and phenyl;
- R¹³ is lower alkyl, aryl or aryl substituted with 1-3 substituents selected from lower alkyl, alkoxy, halo, dw, and haloalkyl;
- is H; alkyl; alkyl substituted by 1-3 alkoxy,
 S-loweralkyl, sulfamoyl, halo,
 alkylsulphonamido, or arylsulphonamido; alkenyl;
 alkynyl; aryl; substituted aryl; heteroaryl;
 substituted heteroaryl; heterocycloalkyl;
 -CH2NR16C(0)R16; -C(0)NR16R16; -CH2OC(0)R16; or
 -CH2SC(0)R16;
- R^{15} is H, alkyl, -C(0)X, -C(S)X, or $-C(NCN)NR^3R^3$;
- R16 is lower alkyl, substituted lower alkyl, aryl,
 or substituted aryl;
- X is alkyl, aryl, arylalkyl, O-loweralkyl, or -NR³R³;
- Z is $-(CH_2)_{1-6}-$, optionally substituted with 1-3 lower alkyl; $-CHR^2-$; $-Phe-CH_2-$, where Phe is optionally mono-substituted with halogen, lower

alkyl, or alkoxy; or heteroarylene-(CH2)-;

m is 2 or 3; and

n is 4-9.

37. A combinatorial chemical library according to claim 36 wherein -C(O)-L'-IT' is:

wherein:

R¹⁷ is H; alkyl; alkyl substituted by 1-3 alkoxy, S-loweralkyl, sulfamoyl, halo, alkylsulphonamido, or arylsulphonamido; alkenyl; alkynyl; aryl; substituted aryl; heteroaryl; substituted heteroaryl; heterocycloalkyl; substituted heterocycloalkyl; substituted heterocycloalkyl; diphenylmethyl; -CH₂NR¹⁶C(O)R¹⁶; -C(O)NR¹⁶R¹⁶; -CH₂OC(O)R¹⁶; or -CH₂SC(O)R¹⁶.