Pumping Lemma for CFL

Lemma: Let L be a CFL. Then there exists a constant p > 0 such that for any w in L with $|w| \ge p$, we can write w = u v x y z with $|v x y| \le p$, |v y| > 0 and for $k \ge 0$ u $v^k x y^k z$ is in L.

We omit the proof. As in the case of Regular Languages, the proof of the Pumping Lemma for CFL uses the Pigeon Hole Principle.

Applications:

<.....><.....>

L = {aⁿ bⁿ cⁿ | n ≥ 0} is not a CFL.
Suppose L is a CFL and let p be the Pumping Lemma constant. Then take w = a^p b^p c^p.
Obviously w is in L and | w | ≥ p. Hence w = u v x y z with |vxy|≤ p, |vy| > 0 and for k≥0 u v^k x y^k z is in L. Since | v x y| ≤ p, v x y cannot have a's and c's both.
a..a. a b..b..b c..c..c

p p

If v x y does not have a's then uv^0xy^0z has p a's and less than 2 p b's and c's - cannot be in L – a contradiction.

If v x y does not have c's then uv^0xy^0z has p c's and less than 2 p a's and b's – cannot be in L – a contradiction.

This proves that L is not a CFL.

- 2) L = { w w | w is in {0, 1]* } is not a CFL.See Book Example 7.21.
- 3) $L = \{0^i 1^j | j = i^2\}$ is not a CFL. Let L be a CFL and let p be the Pumping Lemma constant.

Take $w = 0^p 1^{p^2}$. We have $w = u \vee x \vee z$, $| \vee x \vee y | \leq p$ ie $| \vee y | \leq p$. Suppose $v \vee y$ has $\alpha \vee 0$ and $\beta \wedge 1$ 1's. Then $u \vee v^0 \times y^0 \times z = 0^{p-\alpha} \wedge 1^{p^2}$ is in L. Hence $p^2 - \beta = (p-\alpha)^2$.

Similarly u v^2 x y^2 z is in L. Hence $p^2 + \beta = (p + \alpha)^2$. Thus $2 p^2 = 2 p^2 + 2 \alpha^2$ and hence $\alpha = 0$

and therefore $\beta > 0$. On the other hand 0^{ρ} $1^{\rho^2-\beta}$ is in L which is a contradiction. Hence L is not a CFL.

- 4) HW: $L = \{0^n \mid n \text{ a prime}\}$ is not a CFL.
- 5) HW: $L = \{0^n \mid n \text{ a perfect square}\}\$ is not a CFL.
 - Hint for 4) and 5): as for the proof that these languages are not regular.
- 6) L = Palindromes where number of 0's is equal to number of 1's. Let $w = 0^p 1^{2p} 0^p$ where p is the PL constant. Then by PL w = uvxyz where $|vxy| \le p$, |vy| > 0 and $uv^k xy^k z$ is in L for $k \ge 0$. If v has some 0 from the left side of w then y cannot have any 0 from the right side and vice versa. In this case then by pumping out we will get a string which is not a palindrome. Otherwise vxy will be entirely 1 and in that case by pumping out

the number of 1's will be less and again we get a contradiction. Thus L is not a CFL.