

III. országos magyar matematikaolimpia XXX. EMMV Déva, 2020. február 11–16.

IX. osztály – I. forduló

- **1. feladat.** Legyen $A_n = \{x \in (0, +\infty) \mid x^{\alpha} + [x] \leq n\}$ és $B_n = \{x \in (0, +\infty) \mid [x^{\alpha}] + x \leq n\}$, ahol [x] jelöli az x szám egész részét és $\alpha \in \mathbb{Z}$.
 - a) Igazold, hogy $A_n \subset B_{n+1}$, bármely $n \in \mathbb{N}$ esetén!
 - b) Igazold, hogy $B_n \subset A_{n+1}$, bármely $n \in \mathbb{N}$ esetén!
- 2. feladat. Oldd meg a valós számok halmazán az

$$1010 \cdot \left(\left(\frac{x}{a} \right)^{1010} + \left(\frac{a}{x} \right)^{1010} \right) = 2022 - \left(\left(\frac{y}{b} \right)^{2020} + \left(\frac{b}{y} \right)^{2020} \right)$$

egyenletet, ahol $a, b \in \mathbb{R}^*$.

- **3. feladat.** Legyen $x_1=4,\ x_2=6$ és minden $n\geq 3$ esetén legyen x_n az a legkisebb összetett természetes szám, amely nagyobb, mint $2x_{n-1}-x_{n-2}$.
 - a) Határozd meg a sorozat 2020-adik tagját!
 - b) Igazold, hogy $\sum_{k=3}^{n} \frac{1}{x_k x_{k+1} x_{k+2}} < \frac{1}{1575}$.
- **4. feladat.** Jelölje O az \overrightarrow{ABC} háromszög köré írt kör középpontját. Legyen $k \in (0,1)$ és E, illetve F két olyan pont amelyre $\overrightarrow{AE} = k \cdot \overrightarrow{AB}$ és $\overrightarrow{AF} = k \cdot \overrightarrow{AC}$.
 - a) Igazold, hogy $\overrightarrow{AB} = \overrightarrow{AC}$ akkor és csakis akkor, ha létezik olyan λ nullától különböző valós szám, amelyre $\overrightarrow{BF} + \overrightarrow{CE} = \lambda \cdot \overrightarrow{OA}$.
 - b) Legyen $BF \cap CE = \{P\}$. Igazold, hogy ha $\overrightarrow{BF} + \overrightarrow{CE} = \overrightarrow{OA}$ és OEPF négyszög paralelogramma, akkor P az ABC háromszög ortocentruma és OEPF rombusz!