AISTATS 2020

AsyncQVI: Asynchronous Parallel Q-value Iteration for Markov Decision Processes

Yibo Zeng

Columbia University, IEOR

Fei Feng

UCLA, Math

Wotao Yin

UCLA, Math

Markov Decision Process

A framework for Reinforcement Learning.

- $M := (S, A, p, r, \gamma)$.
- Transition kernel $p(s_{t+1}|s_t, a_t)$ & reward function $r(s_t, a_t, s_{t+1})$
- A policy $\pi: S \to A$
- We execute π to obtain a trajectory: s_0 , a_0 , r_0 , s_1 , a_1 , r_1 ...
- State-value function:

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s, \pi\right]$$

state S_t reward R_{t-1} R_t Environment action A_t

• Goal: find a policy that maximizes the value function V^{π} .

Recent Successes and Time Demands in RL

[DeepMind 2015]

Human-level performance on **Atari 2600**. Trained for **38 days** of game experience

[DeepMind 2017]

AlphaGo Zero. Trained for **40 days** to surpass all old versions.

[OpenAl 2019]
Defeating **Dota 2** world champion.

Trained for 180 days.

Parallel computing accelerates training.

[Minh et al. 2016]

Parallel Computing

Sync-parallel

- probably long idle time;
- little tolerant to communication glitches;
- keeps information consistent.

Async-parallel

- saves idle time;
- more tolerant to communication glitches;
- easier to incorporate new agents;
- information is delayed or inconsistent.

Our goal: a theoretically justified async-parallel algorithm for MDPs.

Review the Bellman Operator

- Initialize a table Q_0 of size $S \times A$.
- Bellman Operator (Q-value iteration):

$$Q_{t+1}(s,a) = T^B(Q_t) = E_{s' \sim p(\cdot|s,a)}[r(s,a) + \gamma \max_{a'} Q_t(s',a')]$$
(1)

• The fixed point Q^* can induce an optimal policy [Sutton & Barto, 1999].

T^B is friendly for parallel design:

- A nice structure: linear (expectation) + simple nonlinear (max).
- \circ A nice convergence property: γ -contraction under $||\cdot||_{\infty}$.

The original Q-value iteration:

$$Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), \quad \forall \ (s,a) \in \mathcal{S} \times \mathcal{A}.$$

Revise to a coordinate-update fashion:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

Implement in an asynchronous parallel manner:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^{a} (r_{ss'}^{a} + \gamma \max_{a'} \hat{Q}_{s',a'}), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

Approximate with Samples:

$$Q_{s,a}(t+1) = \begin{cases} \frac{1}{K} \sum_{k=1}^{K} (r_k + \gamma \max_{a'} \hat{Q}_{s'_k, a'}) - c, & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}) \end{cases}$$

Update **ALL** entries per iteration. Time complexity per iteration: $O(S^2A)$.

The original Q-value iteration:

$$Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), \quad \forall \ (s,a) \in \mathcal{S} \times \mathcal{A}.$$

Revise to a coordinate-update fashion:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

1 Implement in an asynchronous parallel manner:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^{a} (r_{ss'}^{a} + \gamma \max_{a'} \hat{Q}_{s',a'}), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

Approximate with Samples:

$$Q_{s,a}(t+1) = \begin{cases} \frac{1}{K} \sum_{k=1}^{K} (r_k + \gamma \max_{a'} \hat{Q}_{s'_k, a'}) - c, & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}) \end{cases}$$

Update **ONE** entry per iteration. Time complexity per iteration: O(S).

1 The original Q-value iteration:

$$Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), \quad \forall \ (s,a) \in \mathcal{S} \times \mathcal{A}.$$

Revise to a coordinate-update fashion:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

Implement in an asynchronous parallel manner:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^{a} (r_{ss'}^{a} + \gamma \max_{a'} \hat{Q}_{s',a'}), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

Approximate with Samples:

$$Q_{s,a}(t+1) = \begin{cases} \frac{1}{K} \sum_{k=1}^{K} (r_k + \gamma \max_{a'} \hat{Q}_{s'_k, a'}) - c, & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}) \end{cases}$$

Parallel run with **N** agents.

Scatter computing load.

Asynchronous causes
information delay.

The original Q-value iteration:

$$Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), \quad \forall \ (s,a) \in \mathcal{S} \times \mathcal{A}.$$

Revise to a coordinate-update fashion:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^a \left(r_{ss'}^a + \gamma \max_{a'} Q_{s',a'}(t) \right), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

Implement in an asynchronous parallel manner:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^{a} (r_{ss'}^{a} + \gamma \max_{a'} \hat{Q}_{s',a'}), & (s,a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s,a) \neq (s_{t+1}, a_{t+1}). \end{cases}$$

Approximate with Samples:

$$Q_{s,a}(t+1) = \begin{cases} \frac{1}{K} \sum_{k=1}^{K} (r_k + \gamma \max_{a'} \hat{Q}_{s'_k, a'}) - c, & (s, a) = (s_{t+1}, a_{t+1}); \\ Q_{s,a}(t), & (s, a) \neq (s_{t+1}, a_{t+1}) \end{cases}$$

Generative Model (GM):

Input: any (s, a)

Output: $(s', r) \sim p(\cdot | s, a)$

Stochastic approximation with a generative model.
Scatter sampling load.

AsyncQVI

N computing agent continuously and asynchronously do:

- Selection can be random or cyclic.
- Memory complexity: O(S);
- The copying can be done in a less frequent fashion;
- The overhead of updating lock is neglectible;
- Parallel speedup: N times faster (ideally).

Theoretical Guarantee

Assumptions [partial asynchronism]:

- 1. Delay is uniformly bounded by B_1 ;
- 2. The time interval between consecutive updates for each entry is bounded by B_2 .

Theorem 1 (Zeng, Feng, and Yin 2020)

Under the above assumptions, with probability at least $1-\delta$, AsyncQVI returns an ε -optimal policy using samples

$$\tilde{\mathcal{O}}\left(\frac{B_1 + B_2}{(1 - \gamma)^5 \varepsilon^2} \log\left(\frac{1}{\delta}\right)\right).$$

If $B_1 + B_2 = O(SA)$, our sample complexity is near-optimal.

The sample complexity of single-thread methods with a generative model is:

$$\Theta\left(\frac{SA}{(1-\gamma)^3\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$$

[Azar et al. 2013, Agarwal et al. 2019]

Related Works

Algorithm	Setting	Async-parallel	Sample	Memory
Totally Async QVI ²	Full knowledge	Unbdd delay	N/A	$\mathcal{O}(SA)$
Partially Async QVI ³	Full knowledge	Bdd delay	N/A	$\mathcal{O}(SA)$
Async Q-learning ⁴	RL	Unbdd delay	N/A	$\mathcal{O}(SA)$
VRVI ⁵	Generative model	×	$\tilde{O}\left(\frac{SA}{(1-\gamma)^4 \varepsilon^2} \log(\frac{1}{\delta})\right)$	$\mathcal{O}(SA)$
$VRQVI^6$	Generative model	×	$\tilde{O}\left(\frac{SA}{(1-\gamma)^3 \varepsilon^2} \log(\frac{1}{\delta})\right)$	$\mathcal{O}(SA)$
AsyncQVI	Generative model	Bdd delay	$\tilde{O}\left(\frac{SA}{(1-\gamma)^5 \varepsilon^2} \log(\frac{1}{\delta})\right)$	$\mathcal{O}(S)$

AsyncQVI trades a few more samples for less running time and memory.

²Bertsekas and John N Tsitsiklis 1989.

³Bertsekas and John N Tsitsiklis 1989.

⁴John N. Tsitsiklis 1994.

⁵Sidford, Wang, Wu, and Ye 2018.

⁶Sidford, Wang, Wu, L. Yang, et al. 2018.

Numerical Experiment

- 100*100 grid world;
- Noises in transition;
- A big reward at the target;
- Minor traveling costs.

Parallel algorithms are run with 20 threads.

Conclusion:

- We propose an async-parallel algorithm for MDPs with a near-optimal sample complexity.
- AsyncQVI trades a little more samples for less time and memory.
- AsyncQVI has linear parallel speedup empirically.

Future work:

- Involve exploration.
- Consider function approximation.

Thank you!