

Lecture Outline

Simple Linear Regression

Multi-linear Regression

Interpreting Model Parameters

Scaling

Collinearity

Qualitative Predictors

Lecture Outline

Simple Linear Regression

Multi-linear Regression

Interpreting Model Parameters

Scaling

Collinearity

Qualitative Predictors

Linear Models

kNN model

Note that when building our kNN model for prediction, which is non-parametric, we did not compute a closed-form solution for \hat{f} . So, what happens when we pose the question

How much more in sales can we expect if we double the TV advertising budget?

Linear Regression

Linear Models

We can build a model by first assuming a simple form of f:

$$f(x) = \beta_0 + \beta_1 X$$

... then it follows that our estimate is:

$$\widehat{Y} = \widehat{f}(x) = \widehat{\beta}_0 + \widehat{\beta}_1 X$$

where $\hat{\beta}_1$ and $\hat{\beta}_0$ are estimates of β_1 and β_0 respectively, that we compute using observations.

Estimate of the regression coefficients

For a given data set

Estimate of the regression coefficients (cont)

Is this line good?

Estimate of the regression coefficients (cont)

Maybe this one?

Estimate of the regression coefficients (cont)

Or this one?

Estimate of the regression coefficients (cont.)

Question: Which line is the best?

As before, for each observation (x_n, y_n) , the absolute residuals, $r_i = |y_i - \hat{y}_i|$ quantify the error at each observation.

Estimate of the regression coefficients (cont.)

AGAIN, we use the MSE as our loss function,

$$L(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

FIND THE VALUES OF eta_0 AND eta_1 THAT YIELD THE SMALLEST VALUE OF L

We choose β_1 and β_0 that minimizes the prediction.

Then the optimal values, $\hat{\beta}_0$ and $\hat{\beta}_1$, should be:

$$\widehat{\beta}_0, \widehat{\beta}_1 = \underset{\beta_0, \beta_1}{\operatorname{argmin}} L(\beta_0, \beta_1).$$

errors made by our

WE CALL THIS
FITTING OR
TRAINING THE
MODEL

Introducing...

SK-Learn

```
>>> from sklearn.linear_model import LinearRegression
>>> df = pd.read_csv('Advertising.csv')
>>> X= df[['TV']].values
>>> y = df['Sales'].values
```

SK-Learn

```
>>> from sklearn.linear_model import LinearRegression
>>> df = pd.read_csv('Advertising.csv')
>>> X= df[['TV']].values
>>> y = df['Sales'].values
>>> reg = LinearRegression()
>>> reg.fit(X, y)
Use the method fit() from the model LinearRegression. This method finds the values of β<sub>0</sub> and β<sub>1</sub>
```

SK-Learn

```
>>> from sklearn.linear model import LinearRegression
>>> df = pd.read csv('Advertising.csv')
>>> X= df[['TV']].values
>>> y = df['Sales'].values
                                                  Use the fitted model (i.e.
                                                 uses the values of \beta_0 and
>>> reg = LinearRegression()
                                                  \beta_1 found in the .fit()
>>> reg.fit(X, y)
                                                      to predict y.
                                                     y = \beta_0 + \beta_1 x
>>> reg.coef
array([[0.04665056]])
>>> reg.intercept
array([7.08543108])
>>> reg.predict(np.array([[100]]))
array([[11.75048733]])
```

>>> reg.fit(X, y)

Derivative definition

A derivative is the instantaneous rate of change of a single valued function. Given a function f(x) the derivative can be defined as:

$$f'(x) = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Partial derivatives

For a loss function L that depends on β_0 , β_1 we need the partial derivatives, $\frac{\partial L}{\partial \beta_i}$. Partial derivatives indicate the rate of change of the function with respect to one variable while keeping the others fixed.

Partial derivative example

If
$$L(\beta_0, \beta_1) = (y - (\beta_1 x + \beta_0))^2$$
 then what is $\frac{\partial L}{\partial \beta_0}$?

Looks like we're going to need the chain rule. But what is it? I forgot

Partial derivative example

If
$$L(\beta_0, \beta_1) = (y - (\beta_1 x + \beta_0))^2$$
 then what is $\frac{\partial L}{\partial \beta_0}$?

$$\frac{\partial L(f(\beta_0))}{\partial \beta_0} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial \beta_0}$$

Partial derivative $\frac{\partial L}{\partial \beta_0}$

If
$$L(\beta_0, \beta_1) = (y - (\beta_1 x + \beta_0))^2$$
 then what is $\frac{\partial L}{\partial \beta_0}$?

$$L = (y - \beta_1 x - \beta_0)^2$$

$$\frac{\partial L}{\partial \beta_0} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial \beta_0} \qquad L = f^2 \Rightarrow \frac{\partial L}{\partial f} = 2f \qquad f = y - \beta_1 x - \beta_0 \Rightarrow \frac{\partial f}{\partial \beta_0} = -1$$

$$\frac{\partial L}{\partial \beta_0} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial \beta_0} = -2f = -2(y - \beta_1 x - \beta_0)$$

Partial derivative $\frac{\partial L}{\partial \beta_1}$

If
$$L(\beta_0, \beta_1) = (y - (\beta_1 x + \beta_0))^2$$
 then what is $\frac{\partial L}{\partial \beta_1}$?
$$L = (y - \beta_1 x - \beta_0)^2$$

$$\frac{\partial L}{\partial \beta_1} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial \beta_1} \qquad L = f^2 \Rightarrow \frac{\partial L}{\partial f} = 2f \qquad f = y - \beta_1 x - \beta_0 \Rightarrow \frac{\partial f}{\partial \beta_1} = -x$$

$$\frac{\partial L}{\partial \beta_1} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial \beta_1} = -2xf = -2x(y - \beta_1 x - \beta_0)$$

How does one minimize a loss function?

The global minima or maxima of $L(\beta_0, \beta_1)$ must occur at a point where the gradient (slope) is:

$$\nabla L = \left[\frac{\partial L}{\partial \beta_0}, \frac{\partial L}{\partial \beta_1} \right] = \mathbf{O}$$

- Brute Force: Try every combination
- Closed-form Solution: Solve the above equation for β_0 , β_1
- Greedy Algorithm: Gradient Descent

How does one minimize a loss function?

The global minima or maxima of $L(\beta_0, \beta_1)$ must occur at a point where the gradient (slope) is:

$$\nabla L = \left[\frac{\partial L}{\partial \beta_0}, \frac{\partial L}{\partial \beta_1} \right] = \mathbf{0}$$

- Brute Force: Try every combination
- Closed-form Solution: Solve the above equation for β_0 , β_1
- Greedy Algorithm: Gradient Descent

The gradient is a vector that contains all the partial derivatives of the function with respect to its variables. The nabla symbol (∇) is used to denote the gradient operation

How does one minimize a loss function

The global minima axima of $L(\beta_0, \beta_1)$ must occur at a poil where the gradient (slope) is:

$$\nabla L = \left[\frac{\partial L}{\partial \beta_0}, \frac{\partial L}{\partial \beta_1} \right] = \mathbf{0}$$

- Brute Force: Try every combination
- Closed-form Solution: Solve the above equation for β_0 , β_1
- Greedy Algorithm: Gradient Descent

$$\nabla L = \left[\frac{\partial L}{\partial \beta_0}, \frac{\partial L}{\partial \beta_1} \right] = 0$$

Summary: Estimate of the regression coefficients

We use MSE as our loss function,

$$L(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \sum_{i=1}^{n$$

FIND THE VALUES OF eta_0 AND eta_1 THAT YIELD THE SMALLEST VALUE OF L

ctive errors made by

We choose $\hat{\beta}_1$ and $\hat{\beta}_0$ in order to minimize the pour model, i.e. minimize our loss function.

Then the optimal values for $\hat{\beta}_0$ and $\hat{\beta}_1$ should be:

$$\widehat{\beta}_0, \widehat{\beta}_1 = \underset{\beta_0, \beta_1}{\operatorname{argmin}} L(\beta_0, \beta_1).$$

WE CALL THIS
FITTING OR
TRAINING THE
MODEL

Estimate of the regression coefficients: analytical solution

Take the gradient of the loss function and find gradient is zero: $\nabla L = \left[\frac{\partial L}{\partial \beta_0}, \frac{\partial L}{\partial \beta_1}\right] = 0$

Finding the exact solution only works for rare cases. Linear regression is one of such rare cases.

ere the

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

where \bar{y} and \bar{x} are sample means.

The line:

is called the **regression line**.

$$\widehat{Y} = \widehat{\beta}_1 X + \widehat{\beta}_0$$

