NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR

Features

- Epitaxial Planar Die Construction
- Complementary PNP Type Available (MMBT3906)
- Ideal for Medium Power Amplification and Switching
- Available in Lead Free/RoHS Compliant Version (Note 2)

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Solderable per MIL-STD-202, Method 208
- Also Available in Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe). Please see Ordering Information, Note 5, on Page 2
- Marking (See Page 2): K1N
- Ordering & Date Code Information: See Page 2
- Weight: 0.008 grams (approximate)

SOT-23							
Dim	Min	Max					
Α	0.37	0.51					
В	1.20	1.40					
С	2.30	2.50					
D	0.89	1.03					
Е	0.45	0.60					
G	1.78	2.05					
Н	2.80	3.00					
J	0.013	0.10					
K	0.903	1.10					
L	0.45	0.61					
М	0.085	0.180					
α	0°	8°					
All Dimensions in mm							

Maximum Ratings @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	MMBT3904	Unit
Collector-Base Voltage	V _{CBO}	60	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current - Continuous (Note 1)	Ic	200	mA
Power Dissipation (Note 1)	Pd	300	mW
Thermal Resistance, Junction to Ambient (Note 1)	R ₀ JA	417	°C/W
Operating and Storage and Temperature Range	T _j , T _{STG}	-55 to +150	°C

Notes:

- 1. Device mounted on FR-5 PCB 1.0 x 0.75 x 0.062 inch pad layout as shown on Diodes, Inc. suggested pad layout AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 2. No purposefully added lead.

Electrical Characteristics @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition			
OFF CHARACTERISTICS (Note 3)				•				
Collector-Base Breakdown Voltage	V _{(BR)CBO}	60	_	V	$I_C = 10 \mu A, I_E = 0$			
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	40	_	V	I _C = 1.0mA, I _B = 0			
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	6.0	_	V	$I_E = 10 \mu A, I_C = 0$			
Collector Cutoff Current	I _{CEX}	_	50	nA	V _{CE} = 30V, V _{EB(OFF)} = 3.0V			
Base Cutoff Current	I _{BL}	_	50	nA	V _{CE} = 30V, V _{EB(OFF)} = 3.0V			
ON CHARACTERISTICS (Note 3)								
DC Current Gain	h _{FE}	40 70 100 60 30	300	_	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	0.20 0.30	V	I _C = 10mA, I _B = 1.0mA I _C = 50mA, I _B = 5.0mA			
Base-Emitter Saturation Voltage	V _{BE(SAT)}	0.65	0.85 0.95	V	I _C = 10mA, I _B = 1.0mA I _C = 50mA, I _B = 5.0mA			
SMALL SIGNAL CHARACTERISTICS	•			•				
Output Capacitance	C _{obo}	_	4.0	pF	$V_{CB} = 5.0V$, $f = 1.0MHz$, $I_E = 0$			
Input Capacitance	C _{ibo}	_	8.0	pF	$V_{EB} = 0.5V$, $f = 1.0MHz$, $I_{C} = 0$			
Input Impedance	h _{ie}	1.0	10	kΩ				
Voltage Feedback Ratio	h _{re}	0.5	8.0	x 10 ⁻⁴	$V_{CE} = 10V, I_{C} = 1.0mA,$			
Small Signal Current Gain	h _{fe}	100	400		f = 1.0kHz			
Output Admittance	h _{oe}	1.0	40	μS				
Current Gain-Bandwidth Product	f⊤	300	_	MHz	$V_{CE} = 20V$, $I_C = 10mA$, $f = 100MHz$			
Noise Figure	NF	_	5.0	dB	$V_{CE} = 5.0V$, $I_{C} = 100 \mu A$, $R_{S} = 1.0 k \Omega$, $f = 1.0 k Hz$			
SWITCHING CHARACTERISTICS								
Delay Time	t _d	_	35	ns	$V_{CC} = 3.0V, I_{C} = 10mA,$			
Rise Time	t _r		35	ns	$V_{BE(off)} = -0.5V, I_{B1} = 1.0mA$			
Storage Time	ts	_	200	ns	$V_{CC} = 3.0V, I_{C} = 10mA,$			
Fall Time	t _f		50	ns	$I_{B1} = I_{B2} = 1.0 \text{mA}$			

Ordering Information (Note 4)

Device	Packaging	Shipping
MMBT3904-7	SOT-23	3000/Tape & Reel

Notes:

- 3. Short duration test pulse used to minimize self-heating effect.
- 4. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.
- 5. For Lead Free/RoHS Compliant version part number, please add "-F" suffix to the part number above. Example: MMBT3904-7-F.

Marking Information

Date Code Key

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Code	J	K	L	М	N	Р	R	S	Т	U	V	W
Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Fig. 2, Input and Output Capacitance vs.
Collector-Base Voltage

Fig. 4, Typical Collector-Emitter
Saturation Voltage vs. Collector Current

Saturation Voltage vs. Collector Current