Nome:	N° Mec.:
Declaro que desisto	

7 de fevereiro de 2022

Duração total: 2 horas

Informações

- 1. Esta prova é constituída por 6 questões, distribuídas por 4 folhas (Folha 1 Questões 1 e 2; Folha 2 Questões 3 e 4; Folha 3 Questão 5 e Folha 4 Questão 6).
 - (a) Responda no próprio enunciado, usando, se necessário, o verso de cada folha.
 - (b) Caso necessite de folhas de continuação, deve utilizar uma para cada questão e indicar na folha de continuação o número da questão no local indicado para o efeito.
 - (c) Caso não responda a uma das questões escreva isso na respetiva folha.
- 2. Quando terminar a sua prova, organize-a de forma a juntar as folhas de continuação (caso as tenha utilizado) à folha da questão respetiva e coloque-as nos locais indicados pelo professor vigilante da sala. Não será necessário entregar esta folha de informações, exceto em caso de desistência da prova.
- 3. Caso pretenda desistir desta prova, <u>assinale-o no cabeçalho desta folha</u>, assinando no local a isso destinado e entregue todas as folhas de prova que lhe foram distribuídas. Contudo, se desistir mantém-se no regime de avaliação discreta, não podendo realizar o exame final.
- 4. <u>Justifique</u> todas as suas respostas das questões, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.
- 5. Só pode levar para a mesa onde vai realizar a prova material de escrita.
 - (a) Não é permitida a utilização de qualquer tipo de calculadora.
 - (b) Não pode ter consigo telemóvel nem qualquer dispositivo eletrónico (ainda que desligado).
 - (c) Garanta que tem em cima da mesa de prova um documento que o identifique, com fotografia (preferencialmente o Cartão de Cidadão).

Fórmulas trigonométricas

$$sec u = \frac{1}{\cos u} \quad cosec u = \frac{1}{\sin u} \quad cotg u = \frac{\cos u}{\sin u} \quad 1 + tg^2 u = sec^2 u \quad 1 + cotg^2 u = cosec^2 u$$

$$sen^2 u = \frac{1 - \cos(2u)}{2} \quad cos^2 u = \frac{1 + \cos(2u)}{2} \quad cos(u + v) = cos u cos v - sen u sen v$$

$$sen u sen v = \frac{\cos(u - v) - \cos(u + v)}{2}$$

$$cos u cos v = \frac{\cos(u - v) + \cos(u + v)}{2}$$

$$sen u cos v = \frac{\cos(u - v) + \cos(u + v)}{2}$$

$$sen u cos v = \frac{\sin(u - v) + \sin(u + v)}{2}$$

$$sen^2 (arccos u) = 1 - u^2$$

$$sen^2 (arccos u) = 1 - u^2$$

Uma fórmula de recorrência

$$\int \frac{1}{(x^2+a)^n} \, dx = \frac{1}{a} \left(\frac{x}{2(n-1)(x^2+a)^{n-1}} + \frac{2n-3}{2n-1} \int \frac{1}{(x^2+a)^{n-1}} \, dx \right), \ a \neq 0, \ n \neq 1.$$

Formulário de Derivadas				
Função	Derivada	Função	Derivada	
$Ku \ (K \in \mathbb{R})$	K u'	$\ln u $	$\frac{u'}{u}$	
u^r	$r u^{r-1} u'$	$\log_a u \ (a > 0 \ \mathrm{e} \ a \neq 1)$	$\frac{u'}{u \ln a}$	
e^u	$u'e^u$	$a^u(a>0 e a \neq 1)$	$a^u \ln a u'$	
$\operatorname{sen} u$	$u'\cos u$	$\cos u$	$-u' \operatorname{sen} u$	
$\operatorname{tg} u$	$u'\sec^2 u$	$\cot g u$	$-u'\csc^2 u$	
$\sec u$	$\sec u \operatorname{tg} u u'$	$\operatorname{cosec} u$	$-\csc u \cot u u'$	
$\operatorname{arcsen} u$	$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$	
$\operatorname{arctg} u$	$\frac{u'}{1+u^2}$	$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$	
$\operatorname{senh} u$	$u'\cosh u$	$\cosh u$	$u'\operatorname{senh} u$	

Universidade de Aveiro Teste 2 de Cálculo I - Agrupamento 2

7 de fevereiro de 2022 Duração total: 2 horas

Nome:	N° Mec.:
Classificação: Questão 1	Questão 2

1. (45 pts) Determine a natureza das seguintes séries numéricas, indicando, em caso de convergência, se se trata de convergência simples ou absoluta:

(a)
$$\sum_{n=1}^{+\infty} \frac{n^3 + 6}{3(n^2 + 2n - 1)(n^2 + 5)};$$

(b)
$$\sum_{n=3}^{+\infty} (-1)^n \left(1 - \frac{2}{n}\right)^{n^2}$$
;

(c)
$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1} \cos[(n+1)\pi].$$

2. (20 pts) Mostre, usando séries numéricas, que a dízima infinita periódica 1,7(9) é igual a $\frac{18}{10}$.

•			

Nome:	N° Mec.:	
Classificação: Questão 3	Questão 4	

7 de fevereiro de $2022\,$

Duração total: 2 horas

3. (40 pts) Dada uma função $f:[3,+\infty[\to \mathbb{R},$ considere o integral impróprio de 1ª espécie

$$\int_{3}^{+\infty} f(x) \, dx.$$

- (a) Suponha que o integral impróprio referido acima é convergente. Explicite o significado matemático desta afirmação.
- (b) Enuncie um teorema que lhe permite comparar a natureza de uma série numérica real com a de um integral impróprio adequado.
- (c) Aplicando o teorema referido em (b) estude a natureza da série

$$\sum_{n=3}^{+\infty} \frac{1}{n \ln n \left(\ln(\ln n) \right)}.$$

4. (25 pts) Calcule o integral definido $\int_1^5 \frac{2x}{\sqrt{2x-1}} dx.$

•			

Nome:	N° Mec.:
Classificação Questão 5:	

7 de fevereiro de 2022

Duração total: 2 horas

5. (40 pts) Sejam $\varphi : \mathbb{R} \to \mathbb{R}$ uma função contínua, positiva e derivável em \mathbb{R} e $f : \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \int_{x}^{x^2} \varphi(t) dt, \ x \in \mathbb{R}.$$

- (a) Mostre que f é duas vezes derivável e determine expressões para f' e f''.
- (b) Prove que f é estritamente decrescente em] $-\infty,0[$.
- (c) Estude o sinal de f em \mathbb{R} .

•			

Nome:	N° Mec.:
Ci assiricação Ouestão 6:	

7 de fevereiro de $2022\,$

Duração total: 2 horas

	NOME: N° MEC.:
	Classificação Questão 6:
6.	30 pts) Para cada uma das questões seguintes, assinale a opção correta.
	(a) A área da região limitada pelas curvas de equação $y=\sqrt[3]{x},\ y=x^2$ e $x=-1$ pode ser dada por
	(A) $\int_{-1}^{1} (\sqrt[3]{x} - x^2) dx$
	(B) $\int_{-1}^{1} (x^2 - \sqrt[3]{x}) dx$
	(C) $\int_{-1}^{0} (\sqrt[3]{x} - x^2) dx + \int_{0}^{1} (x^2 - \sqrt[3]{x}) dx$
	(D) $\int_{-1}^{0} (x^2 - \sqrt[3]{x}) dx + \int_{0}^{1} (\sqrt[3]{x} - x^2) dx$
	(b) Seja $\sum_{n=1}^{+\infty} a_n$ uma série cuja natureza se pretende determinar e $\sum_{n=1}^{+\infty} b_n$ uma série cuja natureza
	se conhece. Qual das seguintes conclusões é verdadeira?
	(A) Se $ a_n < b_n $, $\forall n \in \mathbb{N}$ e $\sum_{n=1}^{+\infty} b_n $ converge, então $\sum_{n=1}^{+\infty} a_n$ também converge
	(B) Se $ a_n > b_n $, $\forall n \in \mathbb{N}$ e $\sum_{n=1}^{+\infty} b_n $ converge, então $\sum_{n=1}^{+\infty} a_n$ também converge
	(C) Se $ a_n > b_n $, $\forall n \in \mathbb{N}$ e $\sum_{n=1}^{+\infty} b_n $ diverge, então $\sum_{n=1}^{+\infty} a_n$ também diverge
	(D) Se $ a_n < b_n $, $\forall n \in \mathbb{N}$ e $\sum_{n=1}^{+\infty} b_n $ diverge, então $\sum_{n=1}^{+\infty} a_n$ também diverge
	(c) Seja f uma função real de variável real de domínio \mathbb{R} . Se $\lim_{x\to+\infty} f(x)=2$ então o integral
	impróprio $\int_{1}^{+\infty} \frac{f(x)}{x^{2}} dx$
	(A) é convergente.
	(B) é divergente.
	(C) é igual a $+\infty$.
	(D) é igual a 2