МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов Направление подготовки 18.04.01 «Химическая технология» Образовательная программа «Химическая технология подготовки нефти и газа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2

По дисциплине		
РҮТНО N ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИ И		

Студент

Группа	ФИО	Подпись	Дата
2ДМ22	Лукьянов Д.М.	Ly	02.12.2023

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент ОХИ ИШПР	Чузлов В.А.	к.т.н.		04.12.2023

ЗАДАНИЕ 1

Формула нормализованной гауссовой функции со средним значением μ и стандартным отклонением σ :

$$g(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Необходимо написать функцию, основанную на использовании массивов NumPy для вычисления гауссовых функций при $\mu=0$ и $\sigma^2=0.5, 1.0, 1.5$. Использовать сетку из 1000 точек в интервале $-10 \le x \le 10$. Постройте графики данных функций.

РЕШЕНИЕ 1

Программная реализация:

```
Cell 1
      import numpy as np
      Polynomial = np.polynomial.Polynomial
      from scipy.optimize import least squares
      import matplotlib.pyplot as plt
      Cell 2
      def gauss(mu: float,
                sig square: list,
                x_start: float,
                x end: float) -> np.array:
          x = np.linspace(x start, x end, 1000)
          line number = len(sig square)
          res = np.ones((line_number, x.size), dtype=float)
          for i in range(len(sig_square)):
              res[i] = 1 / (sig_square[i] * (2 * np.pi)**0.5) * np.exp(-(x - mu)**2 / (2))
* sig_square[i]**2))
          return x, res
```

```
ss_list = [0.5, 1.0, 1.5]

x, y = gauss(0, ss_list, -10, 10)

fig = plt.figure(figsize = (8,6), dpi=450)

ax = fig.add_subplot()

ax.plot(x, y[0], 'k', label=f'$\sigma$ = {ss_list[0]}')

ax.plot(x, y[1], '-.k', label=f'$\sigma$ = {ss_list[1]}')

ax.plot(x, y[2], '--k', label=f'$\sigma$ = {ss_list[2]}')

ax.legend()

ax.set_ylabel('Значение Y')

ax.set_xlabel('Значение X');
```

Ответ:

Рисунок 1 — Гауссовы функции при $\mu = 0$ и $\sigma^2 = 0.5, 1.0, 1.5$

ЗАДАНИЕ 2

Уравнение Ван-дер-Ваальса, описывающее состояние газа, можно записать в виде следующей формулы как зависимость давления p газа от его молярного объема V и температуры T:

$$p = \frac{RT}{V - b} - \frac{a}{V^2}$$

где a и b – специальные молекулярные константы;

 $R = 8.314 \, \text{Дж/(моль·К)} - \text{универсальная газовая константа.}$

Формулу легко преобразовать для вычисления температуры по заданному давлению и объему, но ее форма, представляющая молярный объем в отношении к давлению и температуре, является кубическим уравенением:

$$pV^3 - (pb + RT)V^2 + aV - ab = 0$$

Все три корня этого уравнения ниже критической точки (T_c, p_c) являются действительными: наибольший и наименьший соответсвует молярному объему газообразной фазы и жидкой фазы соответсвенно. Выше критической точки, где не существует жидкая фаза, только один корень является действительным и соответствует жидкая фаза, только один корень является действительным и соответсвует молярному объему газа (в этой области его также называют сверхкритической жидкостью, или сверхкритической средой).

Критическая точка определяется по условию $\left(\frac{\partial p}{\partial V}\right)_T = \left(\frac{\partial^2 p}{\partial V^2}\right)_T = 0$ и для идеального газа Ван-дер-Ваальса выводятся формулы:

$$T_c = \frac{8a}{27Rb} \qquad p_c = \frac{a}{27b^2}$$

Для NH_3 константы Ван-дер-Ваальса $a=0.4225~\mathrm{\Pi a\cdot m^6\cdot moлb^{-2}}$ и $b=37.07\cdot 10^{-6}~\mathrm{m^3\cdot moлb^{-1}}.$

- Найти критичесую точку для аммиака, затем определить молярный объем при комнатной температуре и давлении (298 К, 1 атм) и при следующих условиях (500 К, 12 МПа);
- Изотерма это множество точек (p,V) при постоянной температуре, соответсвующее уравнению состояния газа. Построить изотерму (p в зависимости от V) для аммиака при температуре 350 K, используя уравнения Ван-дер-Ваальса, и сравнить ее с изотермой при температуре 350 K для идеального газа, уравления состояния которого имеет вид p = RT/V (принять значение p принадлежащими интервалу [101325; 1000000] Па , 1000 элементов).

РЕШЕНИЕ 2

Програмная реализация:

```
Cell 3
R = 8.314
a = 0.4225
b = 37.07E-6
tc = 8 * a / (27 * R * b)
pc = a / (27 * b**2)
print(f'Критическая температура аммиака {tc:.2f} K\
\nКритическое давление аммиака {pc/1000:.0f} kPa\n')
cond1 = [298, 101325]
cond2 = [500, 12E6]
poly1 = Polynomial([-a * b, a, -(cond1[1] * b + R * cond1[0]), cond1[1]])
poly2 = Polynomial([-a * b, a, -(cond2[1] * b + R * cond2[0]), cond2[1]])
roots1 = poly1.roots()
roots2 = poly2.roots()
def choose_roots(cond: list,
                roots: list) -> list:
    critical = False
    num_roots = roots.size
    mask = np.full((num_roots,), fill_value = True, dtype=bool)
```

```
for i in range(num_roots):
        if np.imag(roots[i]) != 0:
            mask[i] = False
            critical = True
    if critical == False:
        vml = min(roots)
        vmv = max(roots)
    else:
        res = np.real(roots[mask][0])
        vmv, vml = res, res
    return vmv, vml
vmv1, vml1 = choose_roots(cond1, roots1)
vmv2, vml2 = choose_roots(cond2, roots2)
print(f'\Pipu T = {cond1[0]:.2f} K, p = {cond1[1]/1000:.0f} kPa:\
\nМольный объем жидкости = {vmv1:.2e} м3/моль\
\nМольный объем газа = {vml1:.2e} м3/моль\
\n T = \{ cond2[0]:.2f \} K, p = \{ cond2[1]/1000:.0f \} kPa: \
\nМольный объем жидкости = {vmv2:.2e} м3/моль\
\nМольный объем газа = {vml2:.2e} м3/моль')
p_ig = np.linspace(101325, 1000000, 1000)
T = 350
v_{ig} = R * T / p_{ig}
p_vander = R * T / (v_ig - b) - a / (v_ig**2)
fig = plt.figure(figsize = (8,6), dpi=450)
ax = fig.add_subplot()
ax.plot(v_ig, p_ig/1000, 'k', label='Уравнения Менделеева-Клапейрона')
ax.plot(v_ig, p_vander/1000, 'r', label='Уравнение Ван-дер-Ваальса')
ax.legend()
ax.set_ylabel('Давление, кПа')
ax.set_xlabel('Мольный объем, м$^3$/моль');
```

Ответ:

Критическая температура аммиака 406.18 К Критическое давление аммиака 11387 kPa

При T = 298.00 K, p = 101 kPa:

Мольный объем жидкости = 2.43e-02 м3/моль

Мольный объем газа = 5.44е-05 м3/моль

При T = 500.00 K, p = 12000 kPa:

Мольный объем жидкости = 2.72е-04 м3/моль

Мольный объем газа = 2.72e-04 м3/моль

Рисунок 2 — Сравнение изотерм по уравнениям идеального газа и Ван-дер-Ваальса

ЗАДАНИЕ 3

Закон Бугера-Ламберта-Бера связывает концентрацию вещества c в образце раствора с интенсивностью света, проходящего через этот образец I_t с заданной толщиной слоя вещества l при известной длине волны λ :

$$I_t = I_0 e^{-\alpha cl}$$

где I_0 — интенсивность света на входе в веществе;

 α – коэффициент поглощения при длине волны λ .

После проведения ряда измерений, позволяющих определить часть света, которая прошла сквозь раствор, I_t , I_0 , коэффициент поглощения α можно при помощи линейной аппроксимации:

$$y = \ln\left(\frac{I_t}{I_0}\right) = -\alpha cl$$

Несмотря на то что эта прямамя проходит через начало координат (y=0 при c=0), мы будем выполнять подгонку для более общего линейного отношения:

$$y = mc + k$$

где $m = -\alpha l$ с проверкой k на приближение к нулю.

При рассмотрении образца раствора с толщиной слоя $0.8\,\mathrm{cm}$ при измерениях были получены данные, приведенные в таблице: отношение I_t/I_0 при пяти различных концентрациях:

С, моль/л	I_t/I_0
0.4	0.891
0.6	0.841
0.8	0.783
1.0	0.744
1.2	0.692

Используя линейную аппроксимацию, определите коэффициент α .

РЕШЕНИЕ 3

Программная реализация:

```
Cell 4
```

```
conc = np.array([0.4, 0.6, 0.8, 1.0, 1.2])
ratio = np.array([0.891, 0.841, 0.783, 0.744, 0.692])
ln_ratio = np.log(ratio)
1 = 0.8
def linear(x, params):
 k, b = params
 return k * x + b
def residuals(params, x, y, func):
  return y - func(x, params)
res = least_squares(residuals, x0=[1, 1], args=(conc, ln_ratio, linear))
k, b = res.x
alpha = -k / 1
print(f'alpha = {alpha:.2f} л/(см·моль)')
fig = plt.figure(figsize = (8,6), dpi=450)
xlim = [0, 1.5]
ax = fig.add_subplot(xlim=xlim, ylim=[-0.4, 0])
ax.plot(xlim, [k * xlim[0] + b, k * xlim[1] + b], 'k', label='Аппроксимация')
ax.scatter(conc, np.log(ratio), c='r', label='Эксперимент')
ax.legend()
ax.set ylabel('$ln{(I t/I 0)}$')
ax.set_xlabel('Концентрация, моль/л');
```

Ответ:

$$\alpha = 0.39 \frac{\pi}{\text{моль} \cdot \text{см}}$$

Рисунок 3 – Линейная аппроксимация экспериментальных данных