18.100A Assignment 2

Octavio Vega

February 11, 2023

Problem 1

Proof. (By contradiction).

Suppose instead that $xy \leq xz$. Then

$$\implies xy - xz \le 0$$

$$\implies x(y-z) \le 0.$$

Since x < 0 by assumption, it must then be true that $y - z \ge 0$. But then

$$\implies y \ge z \implies \iff$$

which is a contradiction since we assumed that y < z. Thus, xy > xz.

Problem 2

(a)

Proof. We want to show that $\exists b \in S$ such that $\forall a \in A, a \leq b$.

Since S is ordered, then for every $x, y \in S$, we have that either x < y, x > y, or x = y. But since $A \subset S$, then $\forall a \in A, a \in A \implies a \in S$.

$$\implies \forall a, b \in A$$
, either $a < b$, $a > b$, or $a = b$.

So A is also ordered. Since A is finite, then $\exists a_0 \in A$ such that $\forall a \in A, a_0 \geq a$.

Thus, A is bounded. \Box

(b)

Proof. (By contradiction).

Assuming A is finite, suppose instead that there is no maximal element in A. Choose an element $a_1 \in A$. Then, since a_1 is not the maximum, $\exists a_2 \in A$ such that $a_1 < a_2$. But a_2 is also not the maximum of A, so $\exists a_3 \in A$ such that

 $a_2 < a_3$. Continuing in this manner, we find an increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ of elements of A, i.e. such that

$$a_1 < a_2 < \dots < a_n < a_{n+1} < \dots$$
 (1)

But because this sequence is infinite and contained in A, this contradicts the assumption that A is finite. Thus, there must exist a maximal element in A.

To show that there exists a minimum element, we recreate the same argument from above where instead, supposing that there is no minimal element, we demonstrate that we can construct an infinite decreasing sequence

 $\cdots a_n < \cdots < a_2 < a_1$ of elements of A, once again arriving at a contradiction.

Therfore, both $\inf A$ and $\sup A$ exist in A.

Problem 3

Proof. Since b is an upper bound for A, then $\forall a \in A, a \leq b$.

Suppose $b \neq \sup A$. Then \exists some other element $c \in A$ such that $c = \sup A$, since by problem 2, A must have a supremum because it is finite and a subset of an ordered set. But since $b \in A$, then $b \leq c$.

However, we assumed that b is an upper bound for A, so since $c \in A$, this imples that $b \ge c$. Thus we have that $b \le c$ and $b \ge c$, so it must hold that b = c.

Therefore $b = \sup A$, as desired.