

FOURTH EDITION

Organic Chemistry

L. G. Wade, Jr.

Whitman College

BEST AVAILABLE COPY

PRENTICE HALL
Upper Saddle River, New Jersey 07458

BEST AVAILABLE COPY

acid chloride An acid derivative with a chlorine atom in place of the hydroxyl group. (p. 75)

Chapter 2 Glossary

alcohol A compound that contains a hydroxyl group; R—OH. (p. 73)

aldehyde A carbonyl group with one alkyl group and one hydrogen; R—C=H. (p. 74)

alkanes Hydrocarbons containing only single bonds. (p. 70)

alkenes Hydrocarbons containing C=C double bonds. (p. 71)

alkynes Hydrocarbons containing C≡C triple bonds. (p. 72)

alkyl group A hydrocarbon group with only single bonds; an alkane with one hydrogen removed, to allow bonding to another group; symbolized by R. (p. 70)

amide An acid derivative that contains an amine instead of the hydroxyl group of the acid. (p. 76)

amine An alkylated analogue of ammonia; R—NH₂, R₂N, or R₃N. (p. 75)

aromatic hydrocarbons (arenes) Hydrocarbons containing a *benzene ring*, a six-membered ring with three double bonds. (p. 72)

bond dipole moment A measure of the polarity of an individual bond in a molecule, defined as $\mu = (4.8 \times d \times \delta)$. μ is the dipole moment in debyes (10^{-10} esu-Å), d is the bond length in angstrom units, and δ is the effective amount of charge separated, in units of the electronic charge. (p. 59)

carbonyl group The $\text{>} \text{C=O}$ functional group, as in a ketone or aldehyde. (p. 74)

carboxyl group The —COOH functional group, as in a carboxylic acid. (p. 74)

carboxylic acid A compound that contains the carboxyl group; R—C=OH. (p. 74)

cis-trans isomers (geometric isomers) Stereoisomers that differ in their cis-trans arrangement on a ring or a double bond. The cis isomer has similar groups on the same side, while the trans isomer has similar groups on opposite sides. (p. 58)