COMP0084 Information Retrieval and Data Mining (IRDM)

Lecture 1: Introduction

Ingemar J. Cox Computer Science, UCL

Lecturers

Prof. Ingemar J. Cox <u>i.cox@ucl.ac.uk</u>

Dr. Vasileios (Bill) Lampos v.lampos@ucl.ac.uk

Prof. Emine Yilmaz <u>e.yilmaz@cs.ucl.ac.uk</u>

Teaching assistants

Aarzoo Dhiman (aarzoo.dhiman@ucl.ac.uk)
Yue Feng (yue.feng.20@ucl.ac.uk)
Michael Morris (michael.morris.19@ucl.ac.uk)
Fanghua Ye (fanghua.ye.19@ucl.ac.uk)

Office hours

• Time:

- 9AM-10AM Tuesdays
- Office hour: Tuesdays 9-10AM. Please use MS Teams and call Dr Vasileios Lampos. Please avoid group calls.
- Please do not discuss Coursework 1 in the forum or any other public medium.

Please ask directly during the office hours or any time via an email. The tutor will respond either via email or via a public announcement to all students.

Questions

- There a two types of questions:
 - Course specific
 - Other
- All course-specific questions should be sent via Moodle
- Any other (personal) questions should be sent directly to the appropriate person

Overwhelmed with Information and Data

Information Retrieval and Data Mining

 Making optimal decision heavily relies on gathered information and knowledge

Relevant Extracted Decision Knowledge

- Need Information Retrieval (IR):
 - obtain relevant information by searching large-scale unstructured data (data -> relevant information)
- Need <u>Data Mining</u> (DM):
 - extract knowledge, insights and useful information by mining the obtained information and data (data -> patterns and knowledge)

Outline

- Course administration
 - Outline of the syllabus
 - Learning outcomes
 - Project assignment
 - Grading system
 - Supporting
- Introduction of IR and DM

What will you expect from this course?

 Learn how a search engine (e.g. Google) works

www-csli.stanford.edu/~hinrich/information-retrieval-book.html - 12k -Cached - Similar pages - Note this

What you will expect from this course?

- Learn how search engine (Google) works
- Learn how to employ
 Data Mining to extract
 knowledge

Overview of the syllabus

Learning outcomes

- You will:
- understand the theory and practical algorithms underlying IR/DM systems retrieval, filtering, probabilistic ranking, etc
 - know how to *build* an IR/DM system practical algorithms, data structures, etc
 - know how to *evaluate* IR/DM systems does the new algorithm perform better?

Prerequisite

- A basic understanding of probability and statistics
 - -Chain rule, Bayes' rule, Maximum likelihood estimation, Gaussian distribution, Multinomial distribution etc
- Basic machine learning knowledge (not essential)
 - -Classification, clustering, regression, generative models etc
- For those who are not familiar with Probability and Statistics, please self-study some online materials
- You need to know Python programming for the course work. Java is also possible, but Python is strongly recommended.

Assessment Criteria

Coursework: (100%) (details will follow)

Coursework	Weight	Submission deadline
1	50%	Friday 03 Mar 2023 at 16:00 (UK time)
2	50%	Tuesday 28 Mar 2023 at 16:00 (UK time)

Project report

- Assessment is based on quality, not quantity
 - Write succinctly clear, but brief
 - Style should be as a research article
 - NOT a press release
 - Provide ALL details needed to replicate the experiments
 - Speculation should only be present in the Conclusion

Cheating and Plagiarism

You CANNOT:

- –Use someone else's work (text,codes) and ideas as your own (copy/paste, recycle, etc)
- –Employ a professional or anyone else (including systems such as ChatGPT) to produce work for you

You CAN:

- –Quote, paraphrase but you must mention the source
- -use public data but interpretation and conclusions derived from that data i.e. the 'write-up' must be your own.

System support: Moodle

We use Moodle

Login/access

http://moodle.ucl.ac.uk using your UCL's account

Course name:

COMP0084: Information Retrieval and Data Mining

Support System: Moodle

- You will find:
 - Syllabus,
 - Reading assignments,
 - Projects,
 - Lecture notes,
 - Copies of papers
 - Software packages/Data files

Recommended textbooks

 Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction of information retrieval, Cambridge, 2008 http://nlp.stanford.edu/IR-book/

 Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Addison-Wesley, 2006

http://wwwusers.cs.umn.edu/~kumar/dmbook/index.php

COURSE OUTLINE

Week 1: Ingemar J. Cox

General introduction to information retrieval

Week 2: Bill Lampos & Emine Yilmaz

Text processing and indexing

Week 3 – Emine Yilmaz

IR evaluation

Week 4: Ingemar J. Cox

Content independent ranking Relevance feedback

Week 5: Bill Lampos

Introduction to machine learning and data mining

Week 6: Emine Yilmaz

Deep learning for IR

Lecture 7: Bill Lampos

Topic models and word embeddings

Week 8: Ingemar J. Cox

Compression algorithms

Week 9:

Guest lectures

Week 10: Ingemar J. Cox

And guest lectures

Guest lectures

Elad Yom-Tov, Microsoft Research
Adam Tsakalidis, Queen Mary University
Peter Wijeratne, UCL
Rishabh Mehrotra, Spotify