# Introducción a la geometría proyectiva

Ejercicios resueltos

### Geometría Multivista UNAM 2022-2

Gibran Zazueta Cruz

#### 1. Ejercicio 1

Utilice álgebra elemental (por ejemplo, Cramer) para determinar que las rectas definidas por  $r_1 = [a_1, b_1, c_1]^T$  y  $r_2 = [a_2, b_2, c_2]^T$  intersecan en el punto  $p = [b_1c_2 - b_2c_1, a_2c_1 - a_1c_2, a_1b_2 - a_2b_1]^T$ 

Para encontrar la intersección se igualan las rectas a 0 y se forma el sistema de ecuaciones

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -c1 \\ -c2 \end{bmatrix}$$

Se resuelve el Sistema lineal de ecuaciones con Cramer

$$x = \frac{\begin{bmatrix} -c_1 & b_1 \\ -c_2 & b_2 \end{bmatrix}}{\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}} = \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - b_1 a_2}$$

$$y = \frac{\begin{bmatrix} a_1 & -c_1 \\ a_2 & -c_2 \end{bmatrix}}{\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}} = \frac{a_2c_1 - a_1c_2}{a_1b_2 - b_1a_2}$$

Se obtiene que se intersecan en el punto p

$$p = \left[ \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - b_1 a_2}, \frac{a_2 c_1 - a_1 c_2}{a_1 b_2 - b_1 a_2}, 1 \right]^T$$

Que es igual a:

$$p = [b_1c_2 - b_2c_1, a_2c_1 - a_1c_2, a_1b_2 - b_1a_2]^T$$

Verifique que el punto de intersección p entre las rectas  $r_1 = [a_1, b_1, c_1]^T$  Y  $r_2 = [a_2, b_2, c_2]^T$  es de la forma  $p = r_1 \times r_2$ , donde "×" denota el producto vectorial. (Nótese que la simplicidad de esta fórmula para calcular el punto de intersección de dos rectas es una consecuencia de la representación de rectas y puntos como vectores homogéneos).

Se obtiene el producto vectorial

$$p = r_1 \times r_2 = \begin{vmatrix} i & j & k \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = (b_1c_2 - b_2c_1)i - (a_2c_1 - a_1c_2)j + (a_1b_2 - b_1a_2)k$$

$$p = [b_1c_2 - b_2c_1, a_2c_1 - a_1c_2, a_1b_2 - b_1a_2]^T$$

El resultado concuerda con el punto del Ejercicio 1 por lo que se comprueba la obtención del punto de intersección.

## 3. Ejercicio 3

(Ejemplo 2.3, pág. 27 de Hartley y Zisserman 5 ) El punto no homogéneo  $P_0 = [1,1]^T$  es el punto de intersección de las rectas x=1 e y=1. Utilice la fórmula del Ejercicio 2 para encontrar la representación homogénea del punto  $p_0$ .

Se tienen las rectas

$$r_1 = [1, 0, -1]^T$$
  
 $r_2 = [0, 1, -1]^T$ 

Se obtiene la intersección con el producto vectorial

$$p = r1 \times r2 = \begin{vmatrix} i & j & k \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{vmatrix} = (1)i - (-1)j + (1)k$$

$$p = [1,1,1]^T$$

#### 4. Ejercicio 4

(Ejemplo 1, pág. 4 de Birchfield 6 ) Demuestre que el punto de intersección de las rectas  $r_1 = [4,2,2]^T$  y  $r_2 = [6,5,1]^T$  es el punto  $p = [-1,1,1]^T$ 

Usando producto cruz:

$$p = r1 \times r2 = \begin{vmatrix} i & j & k \\ 4 & 2 & 2 \\ 6 & 5 & 1 \end{vmatrix} = (2 - 10) i - (4 - 12) j + (20 - 12) k$$
$$P = [-8, 8, 8]^{T}$$
$$p = [-1, 1, 1]^{T}$$

Se muestra el gráfico del punto de intersección=



## 5. Ejercicio 5

(Ecuación de la recta que pasa por dos puntos) Demuestre que la ecuación de la recta r que pasa por los puntos  $p_1 = [x_1, y_1, z_1]^T$  y  $p_2 = [x_2, y_2, z_2]^T$  cumple que  $r = p_1 \times p_2$ 

Se calcula r

$$r = p_1 \times p_2 = \begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = (y_1 z_2 - y_2 z_1) i - (x_1 z_2 - x_2 z_1) j + (x_1 y_2 - x_2 y_1) k$$

$$r = \begin{bmatrix} y_1 z_2 - y_2 z_1 \\ x_2 z_1 - x_1 z_2 \\ x_1 y_2 - x_2 y_1 \end{bmatrix}$$

Sustituyendo  $p_1$  en la recta. El punto  $p_1$  está en la recta si y solo si  $x^T r = 0$ 

$$\begin{bmatrix} x_1, y_1, z_1 \end{bmatrix} \begin{bmatrix} y_1 z_2 - y_2 z_1 \\ x_2 z_1 - x_1 z_2 \\ x_1 y_2 - x_2 y_1 \end{bmatrix} = 0$$

$$(y_1z_2 - y_2z_1) x_1 - (x_1z_2 - x_2z_1) y_1 + (x_1y_2 - x_2y_1) z_1 = 0$$

$$y_1z_2x_1 - y_2z_1x_1 - (x_1z_2y_1 - x_2z_1y_1) + x_1y_2z_1 - x_2y_1z_1 = 0$$

$$(x_1y_1z_2 - x_1y_1z_2) + (x_1y_2z_1 - x_1y_2z_1) + (x_2y_1z_1 - x_2y_1z_1)$$

$$0 = 0$$

El punto  $p_1$  cumple con la ecuación Se hace lo mismo para el punto  $p_2$ 

$$(y_1z_2 - y_2z_1) x_2 - (x_1z_2 - x_2z_1) y_2 + (x_1y_2 - x_2y_1) z_2 = 0$$

$$y_1z_2x_2 - y_2z_1x_2 - (x_1z_2y_2 - x_2z_1y_2) + x_1y_2z_2 - x_2y_1z_2 = 0$$

$$(x_2y_1z_2 - x_2y_1z_2) + (x_2y_2z_1 - x_2y_2z_1) + (x_2y_1z_2 - x_2y_1z_2)$$

$$0 = 0$$

Se comprueba que la recta r pasa por  $p_1$  y  $p_2$ .

## 6. Ejercicio 6

(Colinealidad) Demuestre que la condición para que los tres puntos  $p_1 = [x_1, y_1, z_1]^T$ ,  $p_2 = [x_2, y_2, z_2]^T$  y  $p_3 = [x_3, y_3, z_3]^T$  pertenezcan a la misma recta (o que sean colineales) es  $p_3^T(p_1 \times p_2) = 0$ , o sea que  $det[p_1 \ p_2 \ p_3] = 0$ 

Se busca la recta a la que pertenecen p1, p2

$$r = p_1 \times p_2 = \begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = (y_1 z_2 - y_2 z_1) i - (x_1 z_2 - x_2 z_1) j + (x_1 y_2 - x_2 y_1) k$$

La condición para que p3 pertenezca a la recta r es:

$$r^{T}p_{3} = 0$$

$$(y_{1}z_{2} - y_{2}z_{1})(x_{3}) - (x_{1}z_{2} - x_{2}z_{1})(y_{3}) + (x_{1}y_{2} - x_{2}y_{1})(z_{3}) = 0$$

Donde lo anterior es igual al determinante

$$det[p1 p2 p3] = (y_1 z_2 - y_2 z_1)(x_3) - (x_1 z_2 - x_2 z_1)(y_3) + (x_1 y_2 - x_2 y_1)(z_3) = 0$$

(Concurrencia) Demuestre que la condición para que las tres rectas  $r_1 = [a_1, b_1, c_1]^T$ ,  $r_2 = [a_2, b_2, c_2]^T$  y  $r_3 = [a_3, b_3, c_3]^T$  se intercepten en un mismo punto (o sea, que sean concurrentes) es que  $det[r_1 \ r_2 \ r_3] = 0$ 

Se busca el punto donde r1, r2 se intersecan

$$p = r1 \times r2 = [b_1c_2 - b_2c_1, a_2c_1 - a_1c_2, a_1b_2 - b_1a_2]^T$$

El punto no homogéneo  $\left(\frac{b_1c_2-b_2c_1}{a_1b_2-b_1a_2}, \frac{a_2c_1-a_1c_2}{a_1b_2-b_1a_2}\right)$  debe satisfacer la ecuación  $r_3=a_3\left(x\right)+b_3\left(y\right)+c_3=0$ 

$$a_3 \left( \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - b_1 a_2} \right) + b_3 \left( \frac{a_2 c_1 - a_1 c_2}{a_1 b_2 - b_1 a_2} \right) + c_3 = 0$$

$$a_3 \left( b_1 c_2 - b_2 c_1 \right) + b_3 \left( a_2 c_1 - a_1 c_2 \right) + c_3 \left( a_1 b_2 - b_1 a_2 \right) = 0$$

Lo anterior es igual al determinante

$$det [r1r2r3] = a_3 (b_1c_2 - b_2c_1) + b_3 (a_2c_1 - a_1c_2) + c_3 (a_1b_2 - b_1a_2) = 0$$

Por lo que, para que las rectas sean concurrentes, el determínate [r1r2r3] debe ser 0.

## 8. Ejercicio 8

i

(Ejemplo 2.5, pág. 28 de Hartley y Zisserman 8 ) Sean las rectas paralelas x=1 y x=2 del plano euclidiano  $\mathbb{R}^2$ , obtener el punto de intersección en el infinito en la dirección del eje y .

$$r1 = [1, 0, -1]^T$$
  
 $r1 = [1, 0, -2]^T$ 



Se encuentra la intersección

$$\begin{vmatrix} i & j & k \\ 1 & 0 & -1 \\ 1 & 0 & -2 \end{vmatrix} = 0i - (-1)j + 0k$$

$$p = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Como la 3ra coordenada es igual a 0 el punto no tiene un representante finito

### 9. Ejercicio 9

Para 'homogenizar'(3), introducimos las siguientes sustituciones  $x \to \frac{x_1}{x_3}, \ y \to \frac{x_2}{x_3}$ 

a) Comprobar que la correspondiente ecuación en coordenadas homogéneas es de la forma

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

Ecuación General de la cónica en coordenadas no homogéneas:

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

Se sustituye  $x = \frac{x_1}{x_3}; y = \frac{x_2}{x_3}$ 

$$a\left(\frac{x_1}{x_3}\right)^2 + b\left(\frac{x_1}{x_3}\right)\left(\frac{x_2}{x_3}\right) + c\left(\frac{x_2}{x_3}\right)^2 + d\left(\frac{x_1}{x_3}\right) + e\left(\frac{x_2}{x_3}\right) + f = 0$$

$$(x_3)^2 \left(a\left(\frac{x_1}{x_3}\right)^2 + b\left(\frac{x_1}{x_3}\right)\left(\frac{x_2}{x_3}\right) + c\left(\frac{x_2}{x_3}\right)^2 + d\left(\frac{x_1}{x_3}\right) + e\left(\frac{x_2}{x_3}\right) + f\right) = (x_3)^2 0$$

$$a(x_1)^2 + bx_1x_2 + c(x_2)^2 + dx_1x_3 + ex_2x_3 + f(x_3)^2 = 0$$

Resulta la ecuación (4) por lo que se comprueba que esta es la ecuación en coordenadas homogéneas

#### b) Demuestre que (4) es una ecuación polinómica homogénea de grado 2.

La ecuación es homogénea de grado 2 si para cada  $p(\alpha x, \alpha y, \alpha z) = \alpha^2 p(x, y, z)$ 

$$p(\alpha x, \alpha y, \alpha z) = a(\alpha x_1)^2 + b\alpha x_1 \alpha x_2 + c(\alpha x_2)^2 + d\alpha x_1 \alpha x_3 + e\alpha x_2 \alpha x_3 + f(\alpha x_3)^2$$
$$= \alpha^2 \left( a(x_1)^2 + bx_1 x_2 + c(x_2)^2 + dx_1 x_3 + ex_2 x_3 + f(x_3)^2 \right) (1)$$

$$\alpha^{2} p(x, y, z) = \alpha^{2} a(x_{1})^{2} + \alpha^{2} b x_{1} x_{2} + \alpha^{2} c(x_{2})^{2} + \alpha^{2} d x_{1} x_{3} + \alpha^{2} e x_{2} x_{3} + \alpha^{2} f(x_{3})^{2}$$
$$= \alpha^{2} \left( a(x_{1})^{2} + b x_{1} x_{2} + c(x_{2})^{2} + d x_{1} x_{3} + e x_{2} x_{3} + f(x_{3})^{2} \right) (2)$$

Como (1) = (2) se concluye que la ecuación (4) es homogénea de grado 2

#### c) Verificar que (4) se puede expresar en notación matricial por la ecuación

$$x^T C x = 0$$

donde  $x=[x_1,x_2,x_3]^T$  y C es la matriz simétrica de los coeficientes de la cónica, definida por

$$C = \begin{bmatrix} a & a/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

La expresión tiene la siguiente forma:

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a & \frac{b}{2} & \frac{d}{2} \\ \frac{b}{2} & c & \frac{e}{2} \\ \frac{d}{2} & \frac{e}{2} & f \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$\begin{bmatrix} ax_1 + \frac{b}{2}x_2 + \frac{d}{2}x_3 & \frac{b}{2}x_1 + cx_2 + \frac{e}{2}x_3 & \frac{d}{2}x_1 + \frac{e}{2}x_2 + fx_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$a(x_1)^2 + \frac{b}{2}x_1x_2 + \frac{d}{2}x_1x_3 + \frac{b}{2}x_1 + cx_2 + \frac{e}{2}x_3 & \frac{d}{2}x_1 + \frac{e}{2}x_2 + fx_3 = 0$$

$$a(x_1)^2 + \frac{b}{2}x_1x_2 + \frac{d}{2}x_1x_3 + \frac{b}{2}x_1x_2 + c(x_2)^2 + \frac{e}{2}x_2x_3 + \frac{d}{2}x_1x_3 + \frac{e}{2}x_2x_3 + f(x_3)^2 = 0$$

Se obtiene la ecuación (4)

$$a(x_1)^2 + bx_1x_2 + c(x_2)^2 + dx_1x_3 + ex_2x_3 + f(x_3)^2 = 0$$

Se concluye que (4) se puede expresar como

$$x^T C x = 0$$

(Resultado 2.7, pág. 31 de Hartley y Zisserman 21 ) Demuestre que la ecuación de la recta tangente r a la cónica C en un punto x está dada por r=Cx.

Para probar que r = Cx primero se debe mostrar que si x pertenece a C también pertenece a r.

Se sabe que si un punto pertenece a una recta debe cumplir que  $r^Tx=0$  Si esta recta es tangente a la cónica

$$(Cx)^T x = 0$$
$$x^T C^T x = 0$$

Como C es simétrica, reescribimos

$$x^T C x = 0$$

Esta ecuación cumple que x pertenece a la cónica

Ahora, si existe otro punto distinto 'y' que pertenece tanto a la recta tangente como a la cónica  $(y^T C y = 0, r^T y = 0)$ , se tiene:

$$(Cx)^T y = 0$$
$$x^T Cy = y^T Cx = 0$$

La combinación lineal de los dos puntos se escribe como:

$$r(\alpha) = x + \alpha y$$

Si se cumple que

$$(x + \alpha y)^T C (x + \alpha y) = 0 \forall \alpha \in R$$

Esto muestra que la recta r (combinación lineal de los dos puntos) pertenece a la cónica. Efectivamente:

$$(x + \alpha y)^{T} Cx + (x + \alpha y)^{T} C (\alpha y) = 0$$
$$x^{T} Cx + \alpha y^{T} Cx + \alpha x^{T} Cy + \alpha^{2} y^{T} Cy = 0$$
$$0 + \alpha (0) + \alpha (0) + \alpha^{2} (0) = 0$$

Entonces todos los puntos que unen a x y y deben estar en C. Esto solo sucede si la cónica es degenerada, por ejemplo, en el caso de una recta.

Estudiar concepto de cónica degenerada y el Ejemplo 2.8, pág. 32 de Hartley y Zisserman. Considerar el caso particular de las rectas  $l = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$ ,  $m = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$ , y compruebe que:

a) 
$$C = lm^{T} + ml^{T} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

b) det[c] = 0

$$det[c] = 0 \begin{vmatrix} 0 & -1 \\ -1 & 2 \end{vmatrix} - 1 \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} + -1 \begin{vmatrix} 1 & 0 \\ -1 & -1 \end{vmatrix}$$

$$det[o] = -1(2-1) - 1(-1) = 0$$

c) $x^T C x$  conduce a  $x_1 x_2 - x_1 x_3 - x_2 x_3 + x_3^2 = 0$ 

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} x_2 - x_3 \\ x_1 - x_3 \\ -x_1 - x_2 + 2x_3 \end{bmatrix} = 0$$

$$x_1(x_2 - x_3) + x_2(x_1 - x_3) + x_3(-x_1 - x_2 + 2x_3) = 0$$

$$x_1x_2 - x_1x_3 + x_1x_2 - x_2x_3 - x_1x_3 - x_2x_3 + 2x_3^2 = 0$$

$$2x_1x_2 - 2x_1x_3 - 2x_2x_3 + 2x_3^2 = 0$$

$$x_1x_2 - x_1x_3 - x_2x_3 + x_3^2 = 0$$

d) La ecuación  $x_1x_2-x_1x_3-x_2x_3+x_3^2=0$  de  $P^2$  transformada al plano  $R_2$  es (x-1)(y-1)=0 Se divide la ecuación entre  $x_3^2$ 

$$\frac{x_1}{x_3} \frac{x_2}{x_3} - \frac{x_1}{x_3} - \frac{x_2}{x_3} + 1 = 0$$

Se sabe que

$$x = \frac{x_1}{x_3}, y = \frac{x_2}{x_3}$$
$$xy - x - y + 1 = 0$$
$$x(y - 1) - (y - 1) = 0$$
$$(x - 1)(y - 1) = 0$$

e) La solución del sistema Cx=0 es la recta  $\alpha[111]^T$  Se tiene el sistema de ecuaciones

$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Donde el determinante de la matatriz es 0 Se reduce por columnas

$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Como  $0x_1 + 0x_2 + 0x_3 = 0$ , existen  $\alpha$  infinit<br/>as soluciones  $\begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix}$ 

El punto de intersección entre las rectas es l y m es  $[111]^T$ Se utiliza el producto cruz

$$p = lxm = \begin{bmatrix} i & j & k \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$
$$p = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

## 12. Ejercicio 12

Si los cuatro pares de puntos correspondientes,  $(X_i, Y_i) \leftrightarrow (x_i, y_i)$ , para i = 1, 2, 3, 4, satisfacen las ecuaciones (5), y suponiendo que  $h_{33} = 1$ , demuestre que de (5) resulta el siguiente sistema de ecuaciones lineales...

Se busca despejar x y y de las ecuaciones 5

$$x(h_{31}X + h_{32}Y + h_{33}) = h_{11}X + h_{12}Y + h_{13}$$

$$y(h_{31}X + h_{32}Y + h_{33}) = h_{21}X + h_{22}Y + h_{23}$$

$$h_{33}x = h_{11}X + h_{12}Y + h_{13} - h_{31}Xx - h_{32}Y$$

$$h_{33}y = h_{21}X + h_{22}Y + h_{23} - h_{31}Xy - h_{32}Yy$$

Se sustituye  $h_{33} = 1$  y se completan los términos h en ambas ecuaciones

$$x = h_{11}X + h_{12}Y + h_{13} + h_{21}0 + h_{22}0 + H_{23}0 - h_{31}Xx - h_{32}Y$$

$$y = h_{11}0 + h_{12}0 + h_{13}0 + h_{21}X + h_{22}Y + h_{23} - h_{31}Xy - h_{32}Yy$$

Por lo tango se tiene el sistema de ecuaciones:

$$\begin{bmatrix} X & Y & 1 & 0 & 0 & 0 & -xX & -yY \\ 0 & 0 & 0 & X & Y & 1 & -xX & -yY \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Para los 4 puntos el sistema queda como:

$$\begin{bmatrix} X_1 & Y_1 & 1 & 0 & 0 & 0 & -x_1X_1 & -y_1Y_1 \\ 0 & 0 & 0 & X_1 & Y_1 & 1 & -x_1X_1 & -y_1Y_1 \\ X_2 & Y_2 & 1 & 0 & 0 & 0 & -x_2X_2 & -y_2Y_2 \\ 0 & 0 & 0 & X_2 & Y_2 & 1 & -x_2X_2 & -y_2Y_2 \\ X_3 & Y_3 & 1 & 0 & 0 & 0 & -x_3X_3 & -y_3Y_3 \\ 0 & 0 & 0 & X_3 & Y_3 & 1 & -x_3X_3 & -y_3Y_3 \\ X_4 & Y_4 & 1 & 0 & 0 & 0 & -x_4X_4 & -y_4Y_4 \\ 0 & 0 & 0 & X_4 & Y_4 & 1 & -x_4X_4 & -y_4Y_4 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ x_3 \\ y_3 \\ x_4 \\ y_4 \end{bmatrix}$$

## 13. Ejercicio 13

Probar que las cónicas duales  $R^TC^*R=0$  del plano proyectivo de partida se transforman proyectivamente en cónicas duales  $r^TC^{*\prime}r=0$  del plano proyectivo de llegada donde  $C^{*\prime}=HC^*H^T$ 

$$r = H^{-T}R$$
$$H^{T}r = R$$

Se sustituye en la ecuación del plano proyectivo de partida

$$(H^T r)^T C^* (H^T r) = 0$$

$$(r^T H)C^*(H^T r) = 0$$

$$r^T (HC^*H^T)r = 0$$

donde el término entre paréntesis es igual a  $C^{*\prime}$ , la ecuación queda:

$$r^T C^{*\prime} r = 0$$

## 14. Ejercicio 14

Demuestre que la distancia Euclidiana entre dos puntos  $P_i = [X_i, Y_i, Z_i]^T$  y  $P_j = [X_j, Y_j, Z_j]^T$  (para i,  $\mathbf{j} = \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$ ) calculada a partir de sus correspondientes puntos del plano Euclidiano  $R^2$  se expresa por la fórmula  $\Delta_{ij} = \sqrt{\left(\frac{X_i}{Z_i} - \frac{Y_i}{Z_i}\right)^2 + \left(\frac{X_j}{Z_j}, \frac{Y_j}{Z_j}\right)^2}$ 

Se expresa  $P_i$  y  $P_j$  en  $\mathbb{R}^2$ 

$$P_i = \left[\frac{X_i}{Z_i}, \frac{Y_i}{Z_i}\right], P_j = \left[\frac{X_j}{Z_j}, \frac{Y_j}{Z_j}\right]$$

Se calcula la distancia euclidiana entre dos puntos con pitágoras.

$$\Delta_{ij} = \sqrt{\left(\frac{X_i}{Z_i} - \frac{Y_i}{Z_i}\right)^2 + \left(\frac{X_j}{Z_j}, \frac{Y_j}{Z_j}\right)^2}$$

La expresión anterior es la solicitada.

## 15. Ejercicio 15

Escriba cinco posibles fórmulas para razón cruzada de cuatro puntos colineales  $P_1, P_2, P_3, P_4$  de  $P^2$ , ¿Cuántas fórmulas posibles pudieran encontrarse?

Se considera que se fijan los 2 primeros puntos de los paréntesis

$$Cr(P_1, P_2, P_3, P_4) = \frac{\Delta_{13}\Delta_{24}}{\Delta_{14}\Delta_{23}}$$

$$Cr(P_1, P_2, P_4, P_3) = \frac{\Delta_{14}\Delta_{23}}{\Delta_{13}\Delta_{24}}$$

$$Cr(P_1, P_3, P_2, P_4) = \frac{\Delta_{12}\Delta_{34}}{\Delta_{14}\Delta_{32}}$$

$$Cr(P_1, P_3, P_4, P_2) = \frac{\Delta_{14}\Delta_{32}}{\Delta_{12}\Delta_{34}}$$

$$Cr(P_1, P_4, P_2, P_3) = \frac{\Delta_{12}\Delta_{43}}{\Delta_{12}\Delta_{42}}$$

¿Cuántas fórmulas posibles podrían formularse

El número total de formulas es igual al total de combinaciones posibles de 4 números (4! = 24)

Demuestre que la transformación proyectiva sobre la recta R es de la forma  $x = \frac{h_{11}X + h_{12}}{h_{21}X + h_{22}}$  la cual es la forma bidimensional de la ecuación(5).

La transformación p=HP sobre la recta proyectiva  $P^1$  se representa con el sistema de ecuaciones:

$$x_1 = h_{11}X_1 + h_{12}X_2$$
$$x_2 = h_{21}X_1 + h_{22}X_2$$

como  $x = \frac{x_1}{x_2}$ 

$$x = \frac{x_1}{x_2} = \frac{h_{11}X_1 + h_{12}X_2}{h_{21}X_1 + h_{22}X_2}$$

Se multiplica por  $\frac{X_2}{X_2}$ 

$$x = \frac{x_1}{x_2}(1) = \frac{h_{11}X_1 + h_{12}X_2}{h_{21}X_1 + h_{22}X_2}(\frac{X_2}{X_2})$$

Se sabe que  $X = \frac{X_1}{X_2}$ 

$$x = \frac{h_{11}X + h_{12}}{h_{21}X + h_{22}}$$

## 17. Ejercicio 17

Demuestre que la distancia Euclidiana entre dos puntos  $P_i = [X_i, Y_i]^T$  y  $P_j = [X_j, Y_j]^T$  de  $P^1$  (para i, j =1,2,3,4) calculada a partir de sus correspondientes puntos de la recta Euclidiana R se calcula por la fórmula  $\Delta_{ij} = \frac{1}{|Y_iY_j|} det[PiPj]$ 

Los puntos en 'R son:

$$P_i = \frac{X_i}{Y_i}, P_j = \frac{X_j}{Y_i}$$

Se calcula distancia como el valor absoluto de la diferencia numérica de sus coordenadas

$$\Delta_{ij} = \left| \frac{X_i}{Y_i} - \frac{X_j}{Y_j} \right| = \left| \frac{X_i Y_j - X_j Y_i}{Y_i Y_j} \right|$$

Donde  $X_iY_j - X_jY_i = det[P_iP_j]$ , por lo que la distancia se puede expresar:

$$\Delta_{ij} = \frac{1}{|Y_i Y j|} det[PiPj]$$

**Demuestre que**  $Cr(P_1, P_2, P_3, P_4) = \frac{\det[P_1 P_3] \det[P_2 P_4]}{\det[P_2 P_3] \det[P_1 P_4]}$ 

Si las delta se pueden calcular como:

$$\Delta_{ij} = \frac{1}{|Y_i Y j|} det[PiPj]$$

Entonces la relación cruzada es:

$$Cr = \frac{\left(\frac{\det[P_{1}P_{3}]}{|Y_{1}Y_{3}|}\right)\left(\frac{\det[P_{2}P_{4}]}{|Y_{2}Y_{4}|}\right)}{\left(\frac{\det[P_{2}P_{3}]}{|Y_{2}Y_{3}|}\right)\left(\frac{\det[P_{1}P_{4}]}{|Y_{1}Y_{4}|}\right)}$$

$$Cr = \frac{\frac{\det[P_{1}P_{3}]\det[P_{2}P_{4}]}{|Y_{1}Y_{2}Y_{3}Y_{4}|}}{\frac{\det[P_{2}P_{3}]\det[P_{1}P_{4}]}{|Y_{1}Y_{2}Y_{3}Y_{4}|}}$$

$$Cr = \frac{\det[P_{1}P_{3}]\det[P_{2}P_{4}]}{\det[P_{2}P_{3}]\det[P_{1}P_{4}]}$$

## 19. Ejercicio 19

Demuestre que bajo la transformación proyectiva p=HP se cumple que Cr(p1,p2,p3,p4)=Cr(P1,P2,P3,P4)

Se tienen los puntos:

$$p_1 = HP_1$$

$$p_2 = HP_2$$

$$p_3 = HP_3$$

$$p_4 = HP_4$$

Se calcula Cr como

$$Cr(p1, p2, p3, p4) = \frac{det[HP_1HP_3]det[HP_2HP_4]}{det[HP_2HP_3]det[HP_1HP_4]}$$

Se extrae factor comun

$$Cr(p1, p2, p3, p4) = \frac{H^2 det[P_1 P_3] H^2 det[P_2 P_4]}{H^2 det[P_2 P_3] H^2 det[P_1 P_4]}$$

$$Cr(p1, p2, p3, p4) = (\frac{H^4}{H^4})(\frac{det[P_1P_3]det[P_2P_4]}{det[P_2P_3]det[P_1P_4]})$$

Se comprueba que

$$Cr(p1, p2, p3, p4) = Cr(P1, P2, P3, P4)$$

Demuestre que una transformación es una transformación de semejanza, sí y solo sí, esta mantiene invariantes los puntos absolutos  $i = [1, i, 0]^T$  y  $j = [1, -i, 0]^T$ 

$$H_{semejanza}p_{abs} = \begin{bmatrix} \alpha cos\theta & -\alpha sin\theta & h_{13} \\ \alpha sin\theta & \alpha cos\theta & h_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \pm i \\ 0 \end{bmatrix}$$

$$H_{semejanza}i = \begin{bmatrix} \alpha cos\theta - \alpha sin\theta(\pm i) \\ -\alpha sin\theta + \alpha cos\theta(\pm i) \\ 0 \end{bmatrix}$$

Se sacan constantes de la matriz y se usa notación de Euler

$$H_{semejanza}p_{abs} = \pm \alpha \begin{bmatrix} \cos\theta - \sin\theta \\ i(\cos\theta - i\sin\theta) \\ 0 \end{bmatrix} = \pm \alpha \begin{bmatrix} e^{-i\theta} \\ ie^{-i\theta} \\ 0 \end{bmatrix}$$
$$H_{semejanza}i = \alpha e^{-i\theta} \begin{bmatrix} 1 \\ \pm i \\ 0 \end{bmatrix}$$

La transformación de semejanza mantiene a ambos puntos absolutos.

### 21. Ejercicio 21

(El objetivo de este ejercicio es obtener una fórmula clásica para determinar el ángulo entre las correspondientes proyecciones de las rectas  $r_1$  y  $r_2$  en el plano Euclidiano)

Dadas las rectas  $r_1=[a_1,-1,0]^T$  y  $r_2=[a_2,-1,0]^T$  del plano proyectivo  $P^2$ :

a) Verifique que sus correspondientes ecuaciones cartesianas (en el plano Euclidiano  $R^2$ ) son  $a_1x - y = 0$  y  $a_2x - y = 0$ , respectivamente.

Una recta ax + by + c = 0 del plano euclidiano  $\mathbb{R}^2$  se identifica por un vector  $[a,b,c]^T$  Entonces para  $r_1$ 

$$(a_1)x + (-1)y + (0) = 0$$
$$a_1x - y = 0$$

Similarmente, para  $r_2$ 

$$(a_2)x + (-1)y + (0) = 0$$
$$a_2x - y = 0$$

b)Compruebe que sus ecuaciones vectoriales son, respectivamente,  $r_1(\alpha) = \alpha[1, a_1]^T$  y  $r_2(\alpha) = \alpha[1, a_2]^T$ 

Si x es igual a un parémetro  $\alpha$  y y es una función de  $\alpha$ 

$$y = a_1 \alpha$$
$$x = \alpha$$

La ecuación vectorial es

$$r_1(\alpha) = \alpha[1, a_1]^T$$

Similarmente para  $r_2$ 

$$r_2(\alpha) = \alpha [1, a_2]^T$$

c)El ángulo  $\theta$  entre las rectas  $r_1$  y  $r_2$  coincide con el ángulo entre los vectores directores  $v_1 = [1.a_1]$  y  $v_2 = [1.a_2]$ . Demuestre que  $tan\theta = \frac{|v_2 \times v_1|}{v_2 \cdot v_1} = \frac{a_1 - a_2}{1 + a_1 a_2}$  Se desarrolla  $tan\theta$ 

$$tan\theta = \frac{\begin{vmatrix} 1 & 1 \\ a_2 & a_1 \end{vmatrix}}{\begin{bmatrix} 1 \\ a_2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ a_1 \end{bmatrix}} = \frac{a_1 - a_2}{1 + a_1 a_2}$$

#### 22. Ejercicio 22

El objetivo de este ejercicio es obtener una fórmula clásica para determinar el ángulo entre las rectas r1 y r2 en el plano proyectivo y comparar con la obtenida en el Ejercicio 21)

Dadas las rectas  $r_1 = [a_1, -1, 0]^T$  y  $r_2 = [a_2, -1, 0]^T$  del plano proyectivo  $P^2$ :

a) Comprobar que los puntos de intersección  $p_i$  entre las rectas  $r_i$  y la recta ideal  $r_{\infty}$  son de la forma  $p_i = [1, a_i, 0]^T$  (i = 1, 2).

Para encontrar la intersección se hace el producto cruz con  $r_{\text{inf}} = [0, 0, 1]^T$ 

$$p_1 = \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ a_1 & -1 & 0 \end{vmatrix} = i(1) - j(-a_1) + 0$$

$$p_1 = [1, a_1, 0]^T$$

$$p_2 = \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ a_2 & -1 & 0 \end{vmatrix} = i(1) - j(-a_2) + 0$$

$$p_2 = [1, a_2, 0]^T$$

b) Comprobar que la razón cruzada entre los puntos  $p_1 = [1, a_1, 0]^T$ ,  $p_1 = [1, a_2, 0]^T$ ,  $i = [1, i, 0]^T$  y  $j = [1, -i, 0]^T$  está dada por

$$Cr(p_1, p_2, i, j) = e^{2i(tan^{-1}(\frac{a_1 - a_2}{a_1 a_2 + 1}))}$$

$$Cr(p_1, p_2, i, j) = \frac{\Delta_{p_1 i} \Delta_{p_2 j}}{\Delta_{p_2 i} \Delta_{p_1 j}}$$

$$Cr(p_1, p_2, i, j) = \frac{(p_1 - i)(p_2 - j)}{(p_2 - i)(p_1 - j)} = \frac{(a_1 - i)(a_2 + i)}{(a_2 - i)(a_1 + i)}$$

$$Cr(p_1, p_2, i, j) = \frac{a_1 a_2 + a_1 i - a_2 i + 1}{a_1 a_2 + a_2 i - a_i i + 1}$$

$$Cr(p_1, p_2, i, j) = \frac{a_1 a_2 + 1 + i(a_1 - a_2)}{a_1 a_2 + 1 + i(a_2 - a_i)}$$

$$(1)$$

Se convierte el numerador y denominador de 1 a polares

$$\theta_1 = tan^{-1} \left( \frac{a_1 - a_2}{a_1 a_2 + 1} \right)$$

$$\theta_2 = tan^{-1} \left( \frac{a_2 - a_1}{a_1 a_2 + 1} \right)$$

$$Cr(p_1, p_2, i, j) = \frac{e^{i \left( tan^{-1} \left( \frac{a_1 - a_2}{a_1 a_2 + 1} \right) \right)}}{e^{i \left( tan^{-1} \left( \frac{a_2 - a_1}{a_1 a_2 + 1} \right) \right)}}$$

$$Cr(p_1, p_2, i, j) = e^{i \left( tan^{-1} \left( \frac{a_1 - a_2}{a_1 a_2 + 1} \right) - tan^{-1} \left( \frac{a_2 - a_1}{a_1 a_2 + 1} \right) \right)}$$

$$Cr(p_1, p_2, i, j) = e^{2i \left( tan^{-1} \left( \frac{a_1 - a_2}{a_1 a_2 + 1} \right) \right)}$$

c)Comprobar de (26) y (27) resulta (25).

De 27

$$Cr(p_1, p_2, i, j) = e^{2i\left(tan^{-1}\left(\frac{a_1 - a_2}{a_1 a_2 + 1}\right)\right)}$$

$$\frac{1}{2i}ln\left(Cr(p_1, p_2, i, j)\right) = \left(tan^{-1}\left(\frac{a_1 - a_2}{a_1a_2 + 1}\right)\right)$$

De 26

$$\theta = \tan^{-1}\left(\frac{a_1 - a_2}{a_1 a_2 + 1}\right)$$

$$\frac{1}{2i}ln\left(Cr(p_1,p_2,i,j)\right) = \theta$$

La ecuación obtenida es (25)

El objetivo de este ejercicio es visualizar la interpretación geométrica Euclidiana de la recta r que pasa por dos puntos no ideales  $P_1$  y  $P_2$  de  $P^3$  Sea r la recta de  $P^3$  que pasa por los puntos  $P_1 = [1,1,0,1]^T$  y  $P_2 = [0,1,1,1]^T$ 

a) Escribir la ecuación de la recta r usando la fórmula (10).

$$r = [l_{41}, l_{42}, l_{43}, l_{23}, l_{31}, l_{12}]$$

$$l_{41} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1; \quad l_{42} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0; \quad l_{43} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1$$

$$l_{23} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1; \quad l_{31} = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1; \quad l_{12} = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1$$

$$r = [-1, 0, 1, 1, -1, 1]$$

b) Hallar los puntos  $P_1$  y  $P_2$  , correspondientes de  $R^3 = \{(x,y,z)\}$ , en coordenadas no homogéneas.

$$\overline{P}_1 = [1, 1, 0]^T, \quad \overline{P}_2 = [0, 1, 1]^T$$

c) Hallar la ecuación vectorial de la recta r que pasa por los puntos  $\overline{P}_1$  y  $\overline{P}_2$ 

$$r = p + \lambda \overline{P}_1 \overline{P}_2$$

Se encuentra el vector director:

$$\overline{P}_1\overline{P}_2=\overline{P}_2-\overline{P}_1=[-1,0,1]^T$$

La ecuación de la recta se escribe como

$$r = [1, 1, 0] + \lambda[-1, 0, 1]$$

d)Hallar la ecuación cartesiana Ax+By+Cz=0 del plano que pasa por el origen y por los puntos  $\overline{P}_1$  y  $\overline{P}_2$ 

$$n \cdot (x, y, z)$$

$$n = \overline{P}_1 \times \overline{P}_2$$

$$n = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = (1, -1, 1)$$

$$x - y + z = 0$$

e) Ilustrar gráficamente en el primer octante del espacio Cartesiano  $R^3=(x,y,z)$ , a los puntos  $\overline{P}_1$  y  $\overline{P}_2$ , al plano que pasa por el origen y por los puntos  $\overline{P}_1$  y  $\overline{P}_2$ , y al vector normal a dicho plano  $n=\overline{P}_1\times\overline{P}_2$ 



Figura 1: Plano



Figura 2: Recta

## 24. Ejercicio 24

(Sucesión de pasos que conduce a la ecuación del plano que pasa por tres puntos dehomogéneas)  $P^3$  a partir del vector normal en coordenadas no homogéneas)

a) Verificar que, si  $D \neq 0$ , el sistema (13) se puede expresar en notación matricial como sigue:

Se desarrolla el sistema:

$$x_1\left(\frac{A}{D}\right) + y_1\left(\frac{B}{D}\right) + z_1\left(\frac{C}{D}\right) = -1$$

$$x_2\left(\frac{A}{D}\right) + y_2\left(\frac{B}{D}\right) + z_2\left(\frac{C}{D}\right) = -1$$

$$x_3\left(\frac{A}{D}\right) + y_3\left(\frac{B}{D}\right) + z_3\left(\frac{C}{D}\right) = -1$$

Se multiplica por D

$$x_1A + y_1B + z_1C = 0$$
  
 $x_2A + y_2B + z_2C = 0$   
 $x_3A + y_3B + z_3C = 0$ 

Se verifica que la matriz representa al sistema de ecuaciones.

b) Suponiendo que  $\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$  aplicar Cramer, para comprobar que las componentes  $\bar{n_x}\bar{n_y}\bar{n_z}$  del vector normal  $\bar{n}=[\bar{n_x}\bar{n_y}\bar{n_z}]^T$  satisfacen las siguientes relaciones...

Se aplica Cramer al sistema de ecuaciones:

$$n_{x} = \frac{A}{D} = \frac{\begin{vmatrix} -1 & y_{1} & z_{1} \\ -1 & y_{2} & z_{2} \\ -1 & y_{3} & z_{3} \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{vmatrix}}$$

$$n_{y} = \frac{B}{D} = \frac{\begin{vmatrix} x_{1} & -1 & z_{1} \\ x_{2} & -1 & z_{2} \\ x_{3} & -1 & z_{3} \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{vmatrix}}$$

$$n_{z} = \frac{C}{D} = \frac{\begin{vmatrix} x_{1} & y_{1} & -1 \\ x_{2} & y_{2} & -1 \\ x_{3} & y_{3} & -1 \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{vmatrix}}$$

c)Homogeneizar el vector normal  $\bar{n} = [\bar{n_x}\bar{n_y}\bar{n_z}]^T$  mediante los cambios  $x_i = \frac{X_i}{W_i}$ ,  $y_i = \frac{Y_i}{W_i}$  y  $z_i = \frac{Z_i}{W_i}$  aplicando propiedades de los determinantes, obtener la siguiente ecuación del plano que pasa por los puntos  $P_1 = [X_1, Y_1, Z_1]^T$ ,  $P_2 = [X_2, Y_2, Z_2]^T$  y  $P_3 = [X_3, Y_3, Z_3]^T$ 

Se aplica la sustitución y homogenización

$$\bar{n} = \begin{bmatrix} \begin{vmatrix} -1 & \frac{Y_1}{W_1} & \frac{Z_1}{W_1} \\ -1 & \frac{Y_2}{W_2} & \frac{Z_1}{W_2} \\ -1 & \frac{Y_3}{W_3} & \frac{Z_3}{W_3} \end{vmatrix}, \begin{vmatrix} \frac{X_1}{W_1} & -1 & \frac{Z_1}{W_1} \\ \frac{X_2}{W_2} & -1 & \frac{Z_2}{W_2} \\ \frac{X_3}{W_3} & -1 & \frac{Z_3}{W_3} \end{vmatrix}, \begin{vmatrix} \frac{X_1}{W_1} & \frac{Y_1}{W_1} & -1 \\ \frac{X_2}{W_2} & \frac{Y_2}{W_2} & -1 \\ \frac{X_1}{W_1} & \frac{Y_1}{W_1} & \frac{Z_1}{W_1} \\ \frac{X_2}{W_2} & \frac{Y_2}{W_2} & \frac{Z_2}{W_2} \end{vmatrix}, \begin{vmatrix} \frac{X_1}{W_1} & \frac{Y_1}{W_1} & \frac{Z_1}{W_1} \\ \frac{X_2}{W_2} & \frac{Y_2}{W_2} & \frac{Z_2}{W_2} \\ \frac{X_3}{W_3} & \frac{X_3}{W_3} & \frac{X_3}{W_3} & \frac{X_3}{W_3} \end{vmatrix}, \begin{vmatrix} \frac{X_1}{W_1} & \frac{Y_1}{W_1} & \frac{Z_1}{W_1} \\ \frac{X_2}{W_2} & \frac{Y_2}{W_2} & \frac{Z_2}{W_2} \\ \frac{X_3}{W_3} & \frac{X_3}{W_3} & \frac{X_3}{W_3} & \frac{X_3}{W_3} \end{vmatrix}, \begin{vmatrix} \frac{X_1}{W_1} & \frac{Y_1}{W_1} & \frac{Z_1}{W_1} \\ \frac{X_2}{W_2} & \frac{Y_2}{W_2} & \frac{Z_2}{W_2} \\ \frac{X_2}{W_2} & \frac{X_2}{W_2} & \frac{Z_3}{W_3} \end{vmatrix}, \end{vmatrix}$$

Se multiplica la primera fila por  $W_1$ , la segunda por  $W_2$  y la tercera por  $W_3$ , tomando en cuenta la propiedad  $det \begin{pmatrix} \begin{bmatrix} r & r \\ 1 & 1 \end{bmatrix} \end{pmatrix} = rdet \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}$ 

$$\bar{n} = \begin{bmatrix} W_1 W_2 W_3 \begin{vmatrix} -W_1 & Y_1 & Z_1 \\ -W_2 & Y_2 & Z_2 \\ -W_3 & Y_3 & Z_3 \end{vmatrix}, W_1 W_2 W_3 \begin{vmatrix} X_1 & -W_1 & Z_1 \\ X_2 & -W_2 & Z_2 \\ X_3 & -W_3 & Z_3 \end{vmatrix}, W_1 W_2 W_3 \begin{vmatrix} X_1 & Y_1 & -W_1 \\ X_2 & -W_2 & Z_2 \\ X_3 & Y_3 & -W_3 \end{vmatrix}, \frac{W_1 W_2 W_3 \begin{vmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ X_3 & Y_3 & Z_3 \end{vmatrix}}{W_1 W_2 W_3 \begin{vmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ X_3 & Y_3 & Z_3 \end{vmatrix}}, \frac{W_1 W_2 W_3 \begin{vmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ X_3 & Y_3 & Z_3 \end{vmatrix}}{W_1 W_2 W_3 \begin{vmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ X_3 & Y_3 & Z_3 \end{vmatrix}}, 1 \end{bmatrix}^T$$

$$\bar{n} = \begin{bmatrix} \begin{vmatrix} -W_1 & Y_1 & Z_1 \\ -W_2 & Y_2 & Z_2 \\ -W_3 & Y_3 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & -W_1 & Z_1 \\ X_2 & -W_2 & Z_2 \\ X_3 & -W_3 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & Y_1 & -W_1 \\ X_2 & Y_2 & -W_2 \\ X_3 & -W_3 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & Y_1 & -W_1 \\ X_2 & Y_2 & -W_2 \\ X_3 & Y_3 & -W_3 \end{vmatrix}, 1 \end{bmatrix}^T$$

Se multiplica por  $\begin{vmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ X_3 & Y_3 & Z_3 \end{vmatrix}$ 

$$\bar{n} = \begin{bmatrix} -W_1 & Y_1 & Z_1 \\ -W_2 & Y_2 & Z_2 \\ -W_3 & Y_3 & Z_3 \end{bmatrix}, \begin{vmatrix} X_1 & -W_1 & Z_1 \\ X_2 & -W_2 & Z_2 \\ X_3 & -W_3 & Z_3 \end{bmatrix}, \begin{vmatrix} X_1 & Y_1 & -W_1 \\ X_2 & Y_2 & -W_2 \\ X_3 & Y_3 & -W_3 \end{vmatrix}, \begin{vmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ X_3 & Y_3 & Z_3 \end{vmatrix} \end{bmatrix}^T$$

Se transpone tomando en cuenta que  $det(A) = det(A^T)$ 

$$\bar{n} = \begin{bmatrix} \begin{vmatrix} -W_1 & -W_2 & -W_3 \\ Y_1 & Y_2 & Y_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ -W_1 & -W_2 & -W_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 \\ -W_1 & -W_2 & -W_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix} \end{bmatrix}^T$$

Finalmente, se intercambian las filas correspondientes para que encontrar (16). Se toma en cuenta que al hacer el intercambio hay un cambio de signo en el determinante

$$\bar{n} = \begin{bmatrix} -\begin{vmatrix} Y_1 & Y_2 & Y_3 \\ -W_1 & -W_2 & -W_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix}, -\begin{vmatrix} X_1 & X_2 & X_3 \\ Z_1 & Z_2 & Z_3 \\ -W_1 & -W_2 & -W_3 \end{vmatrix}, -\begin{vmatrix} X_1 & X_2 & X_3 \\ -W_1 & -W_2 & -W_3 \\ Y_1 & Y_2 & Y_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix} \end{bmatrix}^T$$

Y se multiplican las filas de W corresponddientes por -1.

$$\bar{n} = \begin{bmatrix} \begin{vmatrix} Y_1 & Y_2 & Y_3 \\ W_1 & W_2 & W_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ W_1 & W_2 & W_3 \\ Y_1 & Y_2 & Y_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 \\ Z_1 & Z_2 & Z_3 \end{bmatrix}^T$$

Se obtiene (16)

## 25. Ejercicio 25

(Tres planos concurrentes en un punto) Deduzca, por dualidad con (16), la fórmula del punto de intersección p entre los planos  $n_1=[n_1^1,n_2^1,n_3^1,n_4^1],\ n_2=[n_1^2,n_2^2,n_3^2,n_4^2]$  y  $n_3=[n_1^3,n_2^3,n_3^3,n_4^3]$  de  $P^3$ .

Por dualidad la misma fórmula anterior se puede usar para encontrar el punto de intersección entre 3 planos.

Se tiene el sistema de ecuaciones

$$n_1^1 X + n_2^1 Y + n_3^1 Z + n_4^1 W = 0$$

$$n_1^2 X + n_2^2 Y + n_3^2 Z + n_4^2 W = 0$$

$$n_1^3 X + n_2^3 Y + n_3^3 Z + n_4^3 W = 0$$

$$\begin{bmatrix} n_1^1 & n_2^1 & n_3^1 \\ n_1^2 & n_2^2 & n_3^2 \\ n_1^3 & n_2^3 & n_3^3 \end{bmatrix} \begin{bmatrix} X/W \\ Y/W \\ Z/W \end{bmatrix} = \begin{bmatrix} -n_4^1 \\ -n_4^2 \\ -n_4^3 \end{bmatrix}$$

Se resuelve con Cramer

$$\bar{p_x} = \frac{\begin{vmatrix} -n_4^1 & n_2^1 & n_3^1 \\ -n_4^2 & n_2^2 & n_3^2 \\ -n_4^3 & n_2^3 & n_3^3 \end{vmatrix}}{\begin{vmatrix} n_1^1 & n_2^1 & n_3^1 \\ n_1^2 & n_2^2 & n_3^2 \\ n_1^3 & n_2^3 & n_3^3 \end{vmatrix}}, \quad \bar{p_y} = \frac{\begin{vmatrix} n_1^1 & -n_4^1 & n_3^1 \\ n_1^2 & -n_4^2 & n_3^2 \\ n_1^3 & -n_4^3 & n_3^3 \end{vmatrix}}{\begin{vmatrix} n_1^1 & n_1^1 & n_1^1 & n_1^1 \\ n_1^2 & n_2^2 & n_3^2 \\ n_1^3 & n_2^3 & n_3^3 \end{vmatrix}}, \quad \bar{p_z} = \frac{\begin{vmatrix} n_1^1 & n_1^1 & n_1^1 & -n_4^1 \\ n_1^2 & n_2^2 & -n_4^2 \\ n_1^3 & n_2^3 & -n_4^3 \end{vmatrix}}{\begin{vmatrix} n_1^1 & n_1^1 & n_1^1 \\ n_1^2 & n_2^2 & n_3^2 \\ n_1^3 & n_2^3 & n_3^3 \end{vmatrix}}$$

Se tiene el vector  $\bar{p}$ 

$$\bar{p} = \begin{bmatrix} -n_4^1 & n_2^1 & n_3^1 \\ -n_4^2 & n_2^2 & n_3^2 \\ -n_4^3 & n_2^3 & n_3^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & -n_4^1 & n_3^1 \\ n_1^2 & -n_4^2 & n_3^2 \\ -n_4^3 & n_2^3 & n_3^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & -n_4^1 & n_3^1 \\ n_1^2 & -n_4^2 & n_3^2 \\ n_1^3 & -n_4^3 & n_3^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & n_2^1 & -n_4^1 \\ n_1^2 & n_2^2 & -n_4^2 \\ n_1^3 & n_2^3 & n_3^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & n_1^2 & n_1^3 \\ n_1^2 & n_2^2 & n_3^2 \\ n_1^3 & n_2^3 & n_3^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & n_2^1 & n_1^3 \\ n_1^2 & n_2^2 & n_3^2 \\ n_1^3 & n_2^3 & n_3^3 \end{bmatrix}, 1 \end{bmatrix}^T$$

$$\bar{p} = \begin{bmatrix} -n_4^1 & n_2^1 & n_3^1 \\ -n_4^2 & n_2^2 & n_3^2 \\ -n_4^3 & n_2^3 & n_3^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & -n_4^1 & n_3^1 \\ n_1^2 & -n_4^2 & n_3^2 \\ n_1^3 & -n_4^3 & n_3^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & n_2^1 & -n_4^1 \\ n_1^2 & n_2^2 & -n_4^2 \\ n_1^3 & n_2^3 & -n_4^3 \end{bmatrix}, \begin{vmatrix} n_1^1 & n_2^1 & n_3^1 \\ n_1^2 & n_2^2 & n_3^2 \\ n_1^3 & n_2^3 & -n_4^3 \end{bmatrix}^T$$

Se realiza la transposición y cambio de filas

$$\bar{p} = \begin{bmatrix} \begin{vmatrix} n_2^1 & n_2^2 & n_2^3 \\ n_4^1 & n_4^2 & n_4^3 \\ n_3^1 & n_3^2 & n_3^3 \end{vmatrix}, \begin{vmatrix} n_1^1 & n_1^2 & n_1^3 \\ n_1^3 & n_2^3 & n_3^3 \\ n_4^1 & n_4^2 & n_4^3 \end{vmatrix}, \begin{vmatrix} n_1^1 & n_1^2 & n_1^3 \\ n_1^4 & n_2^2 & n_2^3 \\ n_1^2 & n_2^2 & n_2^3 \end{vmatrix}, \begin{vmatrix} n_1^1 & n_1^2 & n_1^3 \\ n_1^2 & n_2^2 & n_2^3 \\ n_3^1 & n_3^2 & n_3^3 \end{bmatrix}^T$$

La anterior es la fórmula del punto de intersección de 3 planos.