Analysis III WS 13/14

Singhof

15. Oktober 2013

Kapitel I: Maß- und Integrationstheorie

1. Quader und Figuren

Bez. Sei X eine Menge. Mit $\mathscr{P}(X)$ bezeichnen wir die Potenzmenge von X, also die Menge aller Teilmengen von X.

Wünschenswert wäre eine Abbildung $\mu: \mathscr{P}(\mathbb{R}^n) \to [0,\infty]$ mit folgenden Eigenschaften:

- (0) $\mu(\emptyset) = 0$.
- (1) Ist Q ein Quader in \mathbb{R}^n mit den Kantenlängen c_1, \ldots, c_n , so ist $\mu(Q) = c_1 \cdot \ldots \cdot c_n$.
- (2) Sind $A_1, A_2, \ldots \in \mathscr{P}(\mathbb{R}^n)$ paarweise disjunkt, so ist

$$\mu\big(\bigcup_{i=1}^{\infty} A_i\big) = \sum_{i=1}^{\infty} \mu(A_i) .$$

(3) Sind $A, B \in \mathscr{P}(\mathbb{R}^n)$ kongruent zueinander, so ist $\mu(A) = \mu(B)$.

Eine solche Abbildung gibt es aber nicht, wie aus dem Banach-Tarski-Paradoxon folgt, für dessen Beweis man allerdings das Auswahlaxiom braucht. Dieses "Paradoxon" besagt:

Seien $A, B \in \mathscr{P}(\mathbb{R}^n)$ zwei beliebige Mengen mit nicht-leerem Inneren, $n \geq 1$. Dann gibt es Mengen $C_1, C_2, \ldots, D_1, D_2, \ldots \in \mathscr{P}(\mathbb{R}^n)$ mit folgenden Eigenschaften:

- A ist die disjunkte Vereinigung von C_1, C_2, \ldots
- B ist die disjunkte Vereinigung von D_1, D_2, \ldots
- C_i ist kongruent zu D_i für alle i.

Wenn es also ein μ wie oben gäbe, so hätten alle Teilmengen von \mathbb{R}^n , die ein nichtleeres Innere haben, dasselbe Volumen! Deswegen müssen wir in einem komplizierten Prozess definieren, wann eine Menge "messbar" ist, also ein Volumen besitzt.

Seien $a = (a_1, ..., a_n), b = (b_1, ..., b_n) \in \mathbb{R}^n$.

$$a \le b: \Leftrightarrow a_i \le b_i \text{ für } i = 1, \dots, n$$

 $a < b: \Leftrightarrow a_i < b_i \text{ für } i = 1, \dots, n.$

Ist $a \leq b$, so sei $[a,b] := \{x \in \mathbb{R}^n \mid a \leq x < b\}$. Eine solche Menge heißt ein (achsenparalleler, halboffener) Quader in \mathbb{R}^n .

Ist $a \leq b$, aber nicht a < b, so ist $[a, b] = \emptyset$.

Die Menge aller Quader im \mathbb{R}^n wird mit \mathcal{Q}^n bezeichnet.

Für $[a, b] \in \mathcal{Q}^n$ sei

$$\lambda^{n}([a, b\,]) := (b_{1} - a_{1}) \cdot \ldots \cdot (b_{n} - a_{n}).$$

Eine Vereinigung von endlich vielen Quadern in \mathbb{R}^n heiße Figur in \mathbb{R}^n . Es sei \mathscr{F}^n die Menge aller Figuren in \mathbb{R}^n .

Def. Sei X eine Menge und $\mathscr{R} \subseteq \mathscr{P}(X)$.

 \mathcal{R} heißt ein Ring von Teilmengen von X, falls gilt:

- (1) $\emptyset \in \mathscr{R}$.
- (2) Sind $A, B \in \mathcal{R}$, so ist $A \cup B \in \mathcal{R}$.
- (3) Sind $A, B \in \mathcal{R}$, so ist $A \setminus B \in \mathcal{R}$.

Satz 1. \mathcal{F}^n ist ein Ring von Teilmengen von \mathbb{R}^n .

Def. Sei X eine Menge, \mathscr{R} ein Ring von Teilmengen von X. Eine Abbildung $\mu: \mathscr{R} \to \mathbb{R} \cup \{\infty\}$ heißt ein $Pr\ddot{a}ma\beta$ auf \mathscr{R} , falls gilt:

- (1) $\mu(\emptyset) = 0$.
- $(2) \ \mu(A) \ge 0 \ \forall \ A \in \mathscr{R}.$
- (3) Sind $A_1,A_2,\ldots\in \mathscr{R}$ paarweise disjunkt und ist $\bigcup_{m=1}^\infty A_m\in \mathscr{R}$, so ist $\mu(\bigcup_m A_m)=\sum_m \mu(A_m).$

 \mathbf{Satz} 2. Es gibt genau ein Prämaß λ^n auf \mathscr{F}^n mit

$$\lambda^n([a,b]) = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n) \ \forall \ [a,b] \in \mathcal{Q}^n.$$