PROTEIN SECONDARY STRUCTURE PREDICTION AND CALCULATION OF PHYSICOCHEMICAL PROPERTIES

Introduction:

To predict the secondary structure of a protein using chou-fausman method and to display the physicochemical properties such as molecular weight, GRAVY score, extension coefficient, aminoacid composition.

Input:

Protein sequence.

Methods:

mol_weight(seq)
ext_coefficient(seq)
gravy (seq)
composition (seq)
predict(seq)

Variables:

h-helix bs-b-strand bt-b-turn mol_weight ext_coeff-extension coefficient gravy(grand average of hydropathy) compo(aminoacid composition)

Functions:

Predict(seq)-Predict the secondary structure of the entered protein sequence. Composition(seq)-Gives the amino acid composition of the entered protein sequence. Gravy(seq)-calculates the Grand average of hydropathy scores. Ext_coefficient(seq)-calculates the extension coefficient. mol_weight(seq)-calculates the molecular weight of the protein sequence.

Output:

Predicted secondary structure elements-helix,b-strand,coil Physicochemical properties:
Molecular weight.
Extension oefficient.
GRAVY scores.
Amino acid composition .

Pseudocode:

- 1. Input the protein sequence.
- 2. Create 3 dictionaries corresponding to the propensities of amino acids for forming alpha helix, beta sheet and turns.
 - 3. Input the sequence as argument to the function predict(seq).
 - 4. Convert the string to a list.
 - 5. Scan the selected residues:
 - 6. Iterating in a for loop,
 - 7. Iteration for helix,
 - 8. Extract residues with window size : 6
 - 9. Check for 4 out of 6 contiguous residues have propensity(helix)>100.
 - 10. Calculate overall helix propensity value (helix_value)
 - 11. Iteration for beta sheet/turn
 - 12. Extract residues with window size : 5
 - 13. Check for 3 out of 5 contiguous residues have propensity(sheet)>100.
 - 14. Calculate overall beta sheet propensity value (sheet_value)
 - 15. Check for 3 out of 5 contiguous residues have propensity(turn)>100.
 - 16. Calculate overall turn propensity value (turn_value)
 - 17. Check for the maximum value within helix_value, sheet_value and turn_value.
 - 18. Assign the secondary structure element based on the maximum value.
 - 19. Call the function mol_weight(seq):
 - 20. for i in (0,len(seq)):
 - 21. add the molecular weights of all the amino acids from the respective dictionary.
 - 22. Display the overall molecular weight.
 - 23. Call the function ext_coefficient(seq):
 - 24. for i in (0,len(seq)):
 - 25. add up the contribution values of the 3 amino acids (Trp, Phe, Tyr) according to their presence.
 - 26. Display the calculated extinction coefficient.
 - 27. Call the function gravy (seq):
 - 28. for i in (0,len(seq)):
- 29. add the hydropathy values of all the amino acids from the respective dictionary and divide by the length of the residues.
 - 30. Display the obtained average hydropathy value for the protein.
 - 31. Call the function composition (seq):
 - 32. for i in (0,len(seq)):
- 33. count the number of each amino acids and calculate its percentage over the entire sequence and assign it to a dictionary.
 - 34. Display the dictionary corresponding to the amino acid composition.

Summitted by Hindheeya vijayakumar Mathangi Sivakama meenakshi