MAPS OF 1-COHOMOLOGIES

Let K, V be algebraic groups such that K acts on V by group automorphisms, so we can define $Z^1(K, V), H^1(K, V)$. Denote the action of K on V by $x \cdot v$ for $x \in K, v \in V$.

Proposition 1. Let K' be an algebraic group that acts on V by group automorphisms, so we can define $Z^1(K',V), H^1(K',V)$. Denote the action of K' on V by x * v for $x \in K', v \in V$.

Let $\zeta: K' \to K$ be a homomorphism and suppose that $x * v = \zeta(x) \cdot v$ for all $x \in K', v \in V$. Then for all $\alpha \in Z^1(K, V), \alpha \circ \zeta \in Z^1(K', V)$.

Proof. Let $\alpha \in Z^1(K, V)$ and let $x, y \in K'$. Then

$$(\alpha \circ \zeta)(xy) = \alpha(\zeta(x)\zeta(y))$$

$$= \alpha(\zeta(x)) (\zeta(x) \cdot \alpha(\zeta(y)))$$

$$= \alpha(\zeta(x)) (x * \alpha(\zeta(y)))$$

$$= (\alpha \circ \zeta)(x) (x * (\alpha \circ \zeta)(y)).$$

Therefore, since $\alpha \circ \zeta$ is a morphism and satisfies the 1-cocycle condition, $\alpha \circ \zeta \in Z^1(K', V)$.

Proposition 2. Let V' be an algebraic group on which K acts by group automorphisms. Denote the action of K on V' by $x \wedge v$ for all $x \in K, v \in V'$.

Let $\xi: V \to V'$ be a K-equivariant homomorphism, that is, $x \land \xi(v) = \xi(x \cdot v)$ for all $x \in K, v \in V$. Then for all $\alpha \in Z^1(K, V), \xi \circ \alpha \in Z^1(K, V')$.

Proof. Let $\alpha \in Z^1(K,V)$ and let $x,y \in K$. Then

$$\begin{split} (\xi \circ \alpha)(xy) &= \xi \left(\alpha(x)(x \cdot \alpha(y)) \right) \\ &= \xi(\alpha(x))\xi(x \cdot \alpha(y)) \\ &= \xi(\alpha(x)) \left(x \wedge \xi(\alpha(y)) \right) \\ &= \left(\xi \circ \alpha \right) (x) \left(x \wedge (\xi \circ \alpha)(y) \right). \end{split}$$

Therefore, since $\xi \circ \alpha$ is a morphism and satisfies the 1-cocycle condition, $\xi \circ \alpha \in Z^1(K, V')$.

Proposition 3. Let K', V' be algebraic groups, such that

(a) K' acts on V by group automorphisms, denoted by x * v for all $x \in K', v \in V$,

(b) K' acts on V' by group automorphisms, denoted by $x \wedge v$ for all $x \in K', v \in V'$.

Let $\zeta: K' \to K$ and $\xi: V \to V'$ be homomorphisms such that

(c)
$$x * v = \zeta(x) \cdot v$$
 for all $x \in K', v \in V$,

(d)
$$\xi(x * v) = x \wedge \xi(v)$$
 for all $x \in K', v \in V$.

Then the function defined by

$$Z^{1}(\zeta,\xi)(\alpha) = \xi \circ \alpha \circ \zeta,$$

maps $Z^1(K, V) \rightarrow Z^1(K', V')$.

Furthermore, $Z^1(\zeta,\xi)$ descends to give a well-defined map $H^1(\zeta,\xi)$: $H^1(K,V) \to H^1(K',V')$, defined by

$$H^{1}(\zeta,\xi)(\psi(\alpha)) = (\psi' \circ Z^{1}(\zeta,\xi))(\alpha),$$

for all $\alpha \in Z^1(K,V)$, where $\psi : Z^1(K,V) \to H^1(K,V)$ and $\psi' : Z^1(K',V') \to H^1(K',V')$ are the canonical projections.

Moreover, the following diagram commutes:

$$Z^{1}(K,V) \xrightarrow{Z^{1}(\zeta,\xi)} Z^{1}(K',V')$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi'}$$

$$H^{1}(K,V) \xrightarrow{H^{1}(\zeta,\xi)} H^{1}(K',V').$$

Proof. Let $\alpha \in Z^1(K, V)$ and let $x, y \in K'$. Then

$$(\xi \circ \alpha \circ \zeta)(xy) = \xi ((\alpha \circ \zeta)(x)) \xi (x * (\alpha \circ \zeta)(y))$$
 (by Prop. 1)
= $\xi ((\alpha \circ \zeta)(x)) (x \wedge \xi(\alpha \circ \zeta)(y))$ (by (d))
= $(\xi \circ \alpha \circ \zeta)(x) (x \wedge (\xi \circ \alpha \circ \zeta)(y))$.

Therefore $(\xi \circ \alpha \circ \zeta) \in Z^1(K', V')$.

It remains to show $H^1(\zeta,\xi)$ is well-defined. Let $\beta \in Z^1(K,V)$ such that $\psi(\alpha) = \psi(\beta)$. Then there exists $v \in V$ such that

$$\beta(x) = v\alpha(x)(x \cdot v^{-1}),$$

for all $x \in K$.

Then, for all $x \in K'$

$$(Z^{1}(\zeta,\xi)(\beta))(x) = \xi (\beta(\zeta(x)))$$

$$= \xi (v\alpha(\zeta(x)) (\zeta(x) * v^{-1}))$$

$$= \xi(v)\xi(\alpha(\zeta(x)))\xi (\zeta(x) * v^{-1})$$

$$= \xi(v)\xi(\alpha(\zeta(x))) (x \wedge \xi(v^{-1}))$$

$$= \xi(v) (Z^{1}(\zeta,\xi)(\alpha)) (x) (x \wedge \xi(v^{-1})).$$

This shows that $\psi'(Z^1(\zeta,\xi)(\alpha)) = \psi'(Z^1(\zeta,\xi)(\alpha))$, hence $H^1(\zeta,\xi)$ is well-defined. This completes the proof.

Remark 1. The slightly unfortunate choice of notation " $Z^1(K,V)$ " doesn't explicitly mention the action. The consequence is that given suitable homomorphisms

$$\zeta: K \to K,$$

 $\xi: V \to V,$

the statement

$$H^{1}(\zeta,\xi):H^{1}(K,V)\to H^{1}(K,V)$$

is misleading on its own: Is the 1-cohomology on the left of the arrow the same as the one on the right? Later we adopt a modified notation for the 1-cocycles and the 1-cohomology which carries the action defining the 1-cocycles.