



# FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES I

TEMA: Endereçamento IPv4

#### Grupo Docente:

- Eng°. Felizardo Munguambe (MsC)
- Engo. Délcio Chadreca (MsC)

# Tópicos da Aula

- ► Introdução;
- ► Endereçamento IP;
- ► Classe de Redes;
- ► Endereços Reservados;
- ► Calculo de Sub-Redes;
- ► Conclusão; e
- ► Exercícios ;

# Introdução

Dentro de uma rede TCP/IP, cada estação recebe um endereço IP único que o identifica na rede. Um endereço IP é composto por uma sequência de 32 bits, subdivididos em 4 grupos de 8 bits cada. Cada grupo de 8 bits recebe o nome de Octeto.

Para permitir uma gama maior de endereços, houve necessidade de subdividir os endereços IP em classes.

Na presente aula, aspectos como o formato, classificação de endereços IP, e o cálculos com vista a subdividir endereços IPs serão abordados.

# Endereçamento IP



# Encapsulamento

Todas as comunicações em uma rede de computadores têm uma origem (source) e são enviadas (encaminhadas) para um destino (destination)

- As informações emitidas em uma rede são chamadas de Unidade de dados de Protocolo (Protocol Data Unit PDU) dependendo de cada camada, a PDU tem uma designação especifica . Na camada de rede é denominada por pacote
- Se um computador desejar enviar dados para outro computador, os dados devem primeiro ser "empacotados" através de um processo chamado encapsulamento

# Endereçamento IP

Todos os dispositivos que pretendem comunicar através de uma rede TCP/IP devem ser identificados por um endereço logico (ou endereço IP). Enquanto o endereço físico (*MAC adrress*) é utilizado para comunicar dentro de uma mesma rede, o endereço logico e usado para comunicação entre dispositivos em redes separadas.

A versão 4 do protocolo IP (IPv4) considera endereços lógicos de 32 *bits* que são divididos em quatro grupos de 8 bits cada. O endereçamento IP pode ser identificado em decimal pontuado ou em notação binaria.

Ex: 192.168.10.1 ou

11000000.01000100.00001010.00000001

#### Cont.

Octeto



## Cont.

Os 8 bits de cada um dos quatro grupos de endereço IP permitem representar valores entre 0 a 255. Assim um endereço IP pode variar entre 0.0.0.0 e 255.255.255.255.255. No total em teoria temos 2<sup>32</sup> endereços IP. Quer isto dizer que em uma rede TCP/IP pode ter ate 2<sup>32</sup> dispositivos.

Como atribuir os endereços aos dispositivos? Os endereços IP podem ser atribuídos sem obedecer nenhuma regra ou estrutura?

A camada de Rede identifica todos os dispositivos conectados a uma rede com um endereço lógico (IP).

Todos os pacotes transmitidos incluem no cabeçalho o endereço lógico do dipositivo destino e do dispositivo origem.

Dado um conjunto de IPs, coloca-se o problema de como atribuir os endereços aos dispositivos da rede? Exemplo:



O processo de atribuição de endereços IPs exemplificado na figura é flexível, mas cria um problema4de encaminhamento de pacotes!

Para facilitar o processo de encaminhamento, optou-se por atribuir endereços de modo hierárquico. No modo de endereçamento hierárquico, um endereço IP é dividido num campo de identificação de rede, designado endereço de rede e num campo de identificação do dispositivo, designado endereço de dispositivo.

Endereço de Rede

Endereço de Dispositivo



EX: 1.1.1.0, endereço de rede. 1.1.1.1 endereço do dispositivo. Os endereços de rede são geralmente representados por 32bits, mas com a parte de endereço do dispositivo igual a zero (0). Em cada uma das redes, foram atribuídos os endereços de dispositivos de acordo com a rede a que pertencem.

# Formato de Endereço IP



## Classe de Redes

De acordo com o formato de endereçamento hierárquico, o endereço de rede e endereço do dispositivo tem tamanho variável, mas a soma do numero de bits de ambos é sempre igual a 32. Como forma de estruturar a divisão do endereço IP, decidiu-se criar classes de redes desde a classe A ate a classe E.

| Classe | Bits           | Faixa de Endereçamento      | Descrição |
|--------|----------------|-----------------------------|-----------|
| A      | 00001010.X.X.X | 0.0.0.0 - 126.255.255.255   | R.H.H.H   |
| В      | 10000010.X.X.X | 128.0.0.0 - 191.255.255.255 | R.R.H.H   |
| С      | 11000000.X.X.X | 192.0.0.0 - 223.255.255.255 | R.R.R.H   |
| D      | 11100000.X.X.X | 224.0.0.0 - 239.255.255.255 |           |
| Е      | 11110001.X.X.X | 240.0.0.0 – 247.255.255.255 |           |

#### Onde:

R – Rede

H – Host

X – Qualquer valor

## Classe A

Todos os endereços IP de classe A usam apenas os oito primeiros bits para identificar a parte da rede do endereço. Os três octetos restantes representam a parte do host do endereço IP.

→ 2 elevado a 24, menos 2, (2<sup>24</sup>-2), ou seja, 16.777.214 endereços IP possíveis para os dispositivos conectados à rede.



### Classe B

Os dois primeiros bits de um endereço de classe B são sempre 10 (um e zero).

Todos os endereços IP de classe B usam os primeiros 16 bits para identificar a parte da rede no endereço. Os dois octetos restantes do endereço IP podem ser usados para a parte do host do endereço.

 $\rightarrow$  2 elevado a 16, (2<sup>16</sup>) (menos 2, novamente), ou seja, 65.534 endereços IP possíveis



## Classe C

Os três primeiros bits de um endereço de classe C são sempre 110 (um, um e zero).

Todos os endereços IP de classe C usam os primeiros 24 bits para identificar a parte da rede no endereço. Apenas o último octeto de um endereço IP de classe C pode ser usado para a parte do host do endereço.

→ 2 elevado 8, 28, (menos 2), ou seja, 254 endereços IP possíveis



### Classes D & E

A classe D é usada para endereços de Multicast:

- Tem os primeiros 4 bits do endereço da rede iguais a 1110
- Exemplo: 224.1.1.1 (11100000.0000001.00000001.00000001)
- A classe E é usada para fins científicos ou de investigação:
  - Tem os seus primeiros 5 bits iguais a 11110
  - Exemplo: 241.1.1.1(11110000.00000001.00000001.00000001)

# Endereços reservardos para fins específicos

| Endereço                            | Aplicação                                                                                |
|-------------------------------------|------------------------------------------------------------------------------------------|
| Endereço 127.0.0.1 -127.255.255.255 | Usado para diagnostico                                                                   |
| 255.255.255                         | Network Broadcast                                                                        |
| Endereço 0.0.0.0                    | Usado pelos routers para identificar uma rota por defeito ou rota padrão. Route process. |

| Endereço                                                             | Aplicação                                                                                                                                    |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 127.0.0.1                                                            | Endereço de <i>loopback</i> . Identifica o nó local e permite enviar um pacote para sí próprio sem que o pacote seja enviado para a rede.    |
| Endereço com todos os bits do campo de ID da rede iguais a 0.        | Usado para indicar uma rede específica.                                                                                                      |
| Endereço com todos os bits do campo de ID da rede iguais a 1.        | Usado para identificar todas as redes.                                                                                                       |
| Endereço com todos os bits do campo de ID do dispositivo iguais a 0. | ID da rede. Por exemplo, a rede 10.10.10 é identificada por 10.10.10.0                                                                       |
| Endereço com todos os bits do campo de ID do dispositivo iguais a 1. | Identifica todos os nós da rede (endereço de <i>broadcast</i> ). Ex: 10.10.10.255 identifica todos os dispositivos da rede 10.10.10.0        |
| Endereço com todos os Bits a 0                                       | Usado pelos routers Cisco para designar uma rota por defeito.                                                                                |
| Endereço com todos os Bits a 1                                       | Identifica todos os nós da rede actual. Ao contrário do endereço de Broadcast anterior, este endereço não identifica uma rede em particular. |
| 22/03/2024                                                           | 18                                                                                                                                           |

# Classe de Redes A,B e C

Cada uma das classes de endereços A, B e C, estabelece a parte do endereço IP que deve ser interpretada como endereço de **rede** e a que deve ser interpretada como endereço do **dispositivo**.

| Classe | N de redes             | Endereços Validos           | N de Dispositivos                  | Endereços Válidos         |
|--------|------------------------|-----------------------------|------------------------------------|---------------------------|
| A      | 2 <sup>7</sup> =128    | 1.0.0.0 até 126.0.0.0       | <b>2</b> <sup>24</sup> -2=16777214 | X.0.0.1 até X.255.255.254 |
| В      | 2 <sup>14</sup> =16386 | 128.0.0.0 até 191.255.0.0   | 2 <sup>16</sup> -2=65534           | X.X.0.1 até X.X.255.254   |
| С      | $2^{21}$ =2097154      | 192.0.0.0 até 223.255.255.0 | 2 <sup>8</sup> -2=254              | X.X.X.1 até X.X.X254      |

#### **Endereços Privados**

| Classe | Endereços Válidos               | Default Mask  |
|--------|---------------------------------|---------------|
| A      | 10.0.0.0 até 10.255.255.255     | 255.0.0.0     |
| В      | 172.16.0.0 até 172.16.255.255   | 255.255.0.0   |
| С      | 192.168.0.0 até 192.168.255.255 | 255.255.255.0 |

19

# **Endereços Privados**

Um **endereço IP privado é um endereço IP** reservado para uso em uma rede interna, sendo separado de uma rede **pública** (como a Internet) por um roteador ou outro dispositivo que efetue **NAT**. Também podemos chamá-lo de **Endereço IP Local**.

Por outro lado, o **IP público** é para dispositivos acessíveis na internet. Endereço de **IP** (ou *Internet Protocol*) é o número que funciona como um identificador para os dispositivos conectados juntos em uma rede de computadores.

| Tabela de Endereçamento Privado |                                 |               |  |  |
|---------------------------------|---------------------------------|---------------|--|--|
| Classe                          | Endereços Validos               | Default Mask  |  |  |
| A                               | 1.0.0.0 até 10.255.255.255      | 255.0.0.0     |  |  |
| В                               | 172.16.0.0 até 172.16.255.255   | 255.255.0.0   |  |  |
| С                               | 192.168.0.0 até 192.168.255.255 | 255.255.255.0 |  |  |

# Máscara de Rede e "Tabela Mágica"

Uma **máscara de rede** consiste em uma máscara de 32 bits que é usada para dividir um endereço IP em **sub-redes** e especificar os hosts disponíveis na **rede**.

#### **Endereço IP**

10.1.1.0/8

172.16.0.0/16

192.168.10.0/24

#### Máscara em Binário

1111111.00000000.00000000.00000000

Máscara Decimal

**255**.0.0.0

| Conversão | 128 | 64  | 32  | 16  | 8   | 4   | 2   | 1   | Octeto   |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|----------|
| Máscara   | 128 | 192 | 224 | 240 | 248 | 252 | 254 | 255 |          |
| Bits      | X   | X   | X   | X   | X   | X   | X   | X   |          |
| Slash /A  | /9  | /10 | /11 | /12 | /13 | /14 | /15 | /8  | Segundo  |
| Slash /B  | /17 | /18 | /19 | /20 | /21 | /22 | /23 | /16 | Terceiro |
| Slash /C  | /25 | /26 | /27 | /28 | /29 | /30 | /31 | /24 | Quarto   |

### Calculo de Sub-Redes

O número de bits iguais um (1) é usado para realizar o calculo do endereço de rede a partir da seguinte forma:  $2^n-2$ 

O número de bits (0) é usado para realizar o calculo do endereço de host apartir da seguinte forma:  $2^{n}-2 > necessidade$ .

Na mascara de rede o numero de bits (1) representam a **rede** e o numero de bits (0), correspondem ao número de host.

IP Gateway: usado para enviar pacotes entre redes, hosts podem agir como gateway entre duas redes numa LAN

#### Cont.

- 2 (menos dois) Onde um (1) endereço IP está reservado para o endereço de **REDE** e ou para endereço IP de *BROADCAST*.
- Gateway é o dispositivo numa rede responsável por garantir acesso a **Internet (não necessariamente)**, numa rede podendo ser um endereço arbitrário. Normalmente escolhe se o primeiro ou o ultimo endereço IP.
- O IP Gateway é o endereço IP usado pelo Router ou Computador Servidor

### Cont.

Numa rede de computadores o primeiro e o último IP's não podem ser usados.

O primeiro IP de uma rede, é o que tem os bits da parte variável do endereço todos com valor **0**, é usado para identificar a rede, e é designado por endereço de rede.

O último IP de uma rede, é o que tem os bits da parte variável do endereço todos com o valor 1, e é usado para enviar mensagens a todos os IP da rede, é designado por endereço de Broadcast.

# Exemplo

Para o endereço de rede 192.168.1.0/27 (Mascara 255.255.255.224), determine o numero máximo de sub-redes e numero máximo de endereços disponíveis por sub-redes, os endereços validos dentro das sub-redes e os endereços de broadcast em cada sub-rede.

#### 1- Converter a mascara para o binário:

Redes:  $2^3$ -2=6 suporta 6 sub-redes; Redes=n, assim n= 1, 2, 3,4,5,6

Hots: 2<sup>5</sup> -2=30 suporta 30 dispositivos validos por rede.

#### Endereços das sub-redes:

```
n * (2^8 - Mascara) = n * (2^8 - 224)
```

n \* 32, com n = 1, 2, 3, 4, 5, 6,

logo as sub-redes são: 32,64,96,128,160 e 192

## Tabela das sub-redes

| Sub-rede | Endereço de Rede | Hosts Validos                 | Mascara         | Broadcast     |
|----------|------------------|-------------------------------|-----------------|---------------|
| 1        | 192.168.1.32     | 192.168.1.33 - 192.168.1.62   | 255.255.255.224 | 192.168.1.63  |
| 2        | 192.168.1.64     | 192.168.1.65 - 192.168.1.94   | 255.255.255.224 | 192.168.1.95  |
| 3        | 192.168.1.96     | 192.168.1.97 - 192.168.1.126  | 255.255.255.224 | 192.168.1.127 |
| 4        | 192.168.1.128    | 192.168.1.129 - 192.168.1.158 | 255.255.255.224 | 192.168.1.159 |
| 5        | 192.168.1.160    | 192.168.1.161 - 192.168.1.190 | 255.255.255.224 | 192.168.1.191 |
| 6        | 192.168.1.192    | 192.168.1.193 - 192.168.1.222 | 255.255.255.224 | 192.168.1.223 |

# Atenção

Ao fazer o cálculo de sub-redes, ao todo são encontradas 8 (resultante da potência 2<sup>3</sup>) sub-redes, mas duas das sub-redes foram deixadas de fora (2<sup>3</sup>-2=6).

```
— Sub-rede 0: 192.168.1.0/27 [+32 = 2^5] (Não foi considerada)
```

- Sub-rede 1:192.168.1.32/27  $[+32 = 2^5]$
- Sub-rede 2:192.168.1.64/27  $[+32 = 2^5]$
- Sub-rede 3:192.168.1.96/27 [+32 =  $2^5$ ]
- Sub-rede 4:192.168.1.128/27 [+32 =  $2^5$ ]
- Sub-rede 5:192.168.1.160/27  $[+32 = 2^5]$
- Sub-rede 6:192.168.1.192/27 [ $+32 = 2^5$ ]
- Sub-rede 7:192.168.1.224/27 (Não foi considerada)

# Indentificação de Endereço de Rede

Através de um endereço IP de host e mascara da sub-rede do mesmo host é possível identificar o endereço de rede.

**Exemplo:** 192.168.100.225/26 (255.255.255.192)

- 1. Converter os endereços IP e Mascara em binário
- 2. Efectuar o calculo binário do **and logico** entre a endereço IP e Mascara

| 192.168.100.11100001<br>X . X . X .11000000<br>—————————————————————————————— | Onde:<br>X – 11111111                             | 0 | 0 | 0 |   |
|-------------------------------------------------------------------------------|---------------------------------------------------|---|---|---|---|
| { 192.168.100.11000000}                                                       |                                                   | 1 | U | U |   |
| { 192.108.100.11000000 } · · · · · · · · · · · · · · · ·                      | Este é o endereço de Rede                         | 1 | 1 | 1 |   |
|                                                                               | encontrado com recurso ao<br>método de AND lógico |   | 1 | 1 | J |

Nota: A parte 192.168.100. não foi convertida para binário para efeitos de simplificação. Pois sabe-se pela propriedade da álgebra booleana que:  $\mathbf{a} \wedge \mathbf{1} = \mathbf{a}$  (a AND  $1 = \mathbf{a}$ ), pois X representa a sequencia de 1 da máscara.

# Bibliografia consultada

- ► Larry L. Peterson and Bruce S. Davie Computer Network a system approach 5th Edition
- ► Tanenbaum A. S. and Wetherall D. J. Computer networks 5th Edition.

## Actividade - 01

Dados os endereços abaixo encontre o endereço de rede:

- a) 145.77.88.4/22
- b) 192.168.100.150/27
- c) 10.0.29.254/20
- d) 192.168.100.251/24
- e) 200.1.1.128 255.255.255.224
- f) 220.8.7.100 255.255.255.240
- g) 167.88.99.66 255.255.255.192

## Actividade - 02

#### **Actividade:**

Dado o bloco de endereços IP 192.168.10.0/24. São necessárias, pelo menos, 15 sub-redes. Determinar o seguinte:

- a) Quantos bits serão necessários para fazer a divisão e obter pelo menos 15 sub-redes?
- b) Quantos Endereços IP (hosts) estarão disponíveis em cada sub-rede?
- c) Quantos Endereços IP (hosts) validos estarão disponíveis em cada subrede?
- d) Qual a nova máscara de sub-rede?
- e) Listar a faixa de endereços de cada sub-rede.

#### Actividade - 03

Dado o bloco de endereços IP de **172.16.0.0** /**24**, projecte um esquema de endereçamento IP que atenda um total de 8100 hosts

| Sub-rede A                                                      |  |  |
|-----------------------------------------------------------------|--|--|
| Número de bits da sub-rede                                      |  |  |
| Máscara IP (binário)                                            |  |  |
| Nova máscara de IP (decimal)                                    |  |  |
| Número máximo de sub-redes utilizáveis (incluindo a sub-rede 0) |  |  |
| Endereço de sub-rede IP                                         |  |  |
| Priméiro endereço de Host IP                                    |  |  |
| Ultimo endereço de Host IP                                      |  |  |

## **OBRIGADO!!!**