Едрышов Артем Дмитриевич, группа 9-1 Лабораторная работа №1

Вариант № 1-Ь

Моделирование случайных величин

Цель работы. Исследовать алгоритмы генерации случайных величин в среде Python. Научиться вычислять значения выборочных характеристик случайной величины.

Задание

Постройте график зависимости значения выборочной дисперсии от числа реализаций СВ. Так же отобразите на графике значение дисперсии, вычисленное на основе соотношений из таблицы 1.

		масштаба, формы	математическое ожидание m и дисперсия D	
1 1	Равномерное распределение	R:a,b	$p(x) = \begin{cases} 1/b, & a \le x \le a+b, \\ 0, & x < a, & x > a+b, \end{cases}$ $m = a + b/2, D = b^2/12$	$R: a, b \sim a + b\alpha$

Код программы

```
import numpy as np
import matplotlib.pyplot as plt

a = 100
b = 200

theoretical_variance = b ** 2 / 12

def generate_uniform(a, b, size):
    alpha = np.random.rand(size)
    samples = a + b * alpha
    return samples

realizations = np.arange(100, 100001, 100)
sample_variances = []

print(f"Pавномерное распределение R({a}, {b})")
print(f"Teopeтическая дисперсия: {theoretical_variance:.4f}")
```

```
print("Генерация данных...")
for N in realizations:
  samples = generate_uniform(a, b, N)
  sample_var = np.var(samples)
  sample_variances.append(sample_var)
  if N % 5000 == 0:
     print(f"N = {N}: выборочная дисперсия = {sample_var:.4f}")
def plot_graph(x, y, filename, ylabel):
  plt.figure(figsize=(10, 6))
  plt.scatter(
     Χ,
    у,
     s=15,
     alpha=0.7,
     linewidth=1,
     label='Выборочная дисперсия',
  plt.axhline(
     y=theoretical_variance,
     color='r',
     linestyle='--',
     linewidth=2,
    label=f'Teoретическая дисперсия = {theoretical_variance:.4f}',
  )
  plt.xlabel('Количество реализаций')
  plt.ylabel(ylabel)
  plt.title(f'Зависимость дисперсии от числа реализаций для R({a}, {b})')
  plt.legend()
  plt.grid(True, alpha=0.3)
  plt.tight_layout()
  plt.savefig(filename, dpi=150)
plot_graph(realizations, sample_variances, 'krutoy_graphic.png', 'Дисперсия')
```

Результат выполнения задания

Рисунок 1.

Вывод

На основе имитационного моделирования делаем вывод, что выборочная дисперсия приближается к теоретической дисперсии при увеличении количества реализаций СВ.