МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет

Кафедра высшей математики физического факультета

И.А. Долгунцева, А.П. Ульянов

ПРАКТИКУМ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И ЛИНЕЙНОЙ АЛГЕБРЕ

(Учебное пособие)

Новосибирск 2010 В настоящем учебном пособии приведены основные понятия, теоремы и методы решения задач аналитический геометрии и линейной алгебры, соответствующим программе курса «Линейная алгебра и аналитическая геометрия» по направлению «Физика» Новосибирского государственного университета.

В каждом разделе кратко изложены основные теоретические сведения и приведены типы решения задач.

Цель пособия — обеспечить помощь при самостоятельном освоении данного курса, а также при подготовке к семинарским занятиям по данному курсу студентам и начинающим преподавателям.

Авторы И. А. Долгунцева, к. ф.-м. н., А. П. Ульянов

Учебное пособие «Практикум по аналитической геометрии и линейной алгебре» подготовлено в рамках реализации «Программы развития $HUV - H\Gamma V$ на 2009-2018 годы», а также при финансовой поддержке Совета по Грантам Президента $P\Phi$ для поддержки ведущих научных школ (проект HIII-3669.2010.1).

- © И.А. Долгунцева, А.П. Ульянов, 2010
- © Новосибирский государственный университет, 2010

Содержание

1.	Векторная алгебра	1
2.		7
3.	Взаимное расположение прямых и плоскостей)
4.	Преобразование координат	3
5.	Приведение общего уравнения кривой второго порядка к ка-	
	ноническому виду	5
6.	Система комплексных чисел	3
7.	Многочлены	2
8.	Системы линейных уравнений	3
9.	Линейные пространства	5
10.	Определители	2
11.	Билинейные и квадратичные формы	7
12.	Линейные отображения и линейные операторы 82	2
13.	Собственные и корневые подпространства	3
14.	Жорданова нормальная форма линейного оператора 94	1
15.	Функции от матриц	2
16.	Геометрия евклидовых и эрмитовых пространств 104	1
17.	Операторы в евклидовом (эрмитовом) пространстве 110)
Спи	сок литературы	2

1. Векторная алгебра

Скалярное произведение			
Определение скалярного произве-	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b} \cdot \cos(\widehat{\mathbf{a}}, \widehat{\mathbf{b}})$		
дения двух векторов			
Скалярное произведение в де-	$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$		
карторых координатах			
Скалярный квадрат	$\mathbf{a}^2 = \mathbf{a} ^2 = a_1^2 + a_2^2 + a_3^2$		
Свойства:			
1) коммутативность (перемести-	$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$		
тельное)			
2) ассоциативность (сочетатель-	$\lambda(\mathbf{a} \cdot \mathbf{b}) = (\lambda \mathbf{a}) \cdot \mathbf{a} = \mathbf{a} \cdot (\lambda \mathbf{b})$		
ное) относительно скалярного			
множителя λ	(2)		
3) дистрибутивность (распредели-	$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$		
тельное)			
Условие ортогональности двух	$\mathbf{a} \cdot \mathbf{b} = 0 \Longleftrightarrow \mathbf{a} \perp \mathbf{b}$		
векторов			
Приложения:	(a b		
1) угол между векторами	$ \begin{aligned} \cos(\widehat{\mathbf{a}}, \mathbf{b}) &= \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \cdot \mathbf{b} } \\ pr_{\mathbf{b}} \mathbf{a} &= \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \end{aligned} $		
2) (векторная) проекция вектора а	$pr_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\mathbf{b}$		
на вектор b			
	произведение		
Определение векторного произве-	$\mathbf{a} imes \mathbf{b} = \mathbf{c}$, такой что:		
дения двух векторов			
	1) $ \mathbf{c} = \mathbf{a} \cdot \mathbf{b} \sin(\mathbf{a}, \mathbf{b}),$		
	(2) $\mathbf{c} \perp \mathbf{a}, \mathbf{c} \perp \mathbf{b},$		
	3) a , b , c — правая тройка векто-		
	ров.		
Вокторное произволине в немер	$egin{aligned} \mathbf{a} imes \mathbf{b} = egin{bmatrix} \mathbf{i} & a_1 & b_1 \ \mathbf{j} & a_2 & b_2 \end{bmatrix}$		
Векторное произведение в декартовых координатах	$egin{aligned} \mathbf{a} imes \mathbf{b} = egin{bmatrix} \mathbf{j} & a_2 & b_2 \ \mathbf{k} & a_3 & b_3 \end{bmatrix}$		
Свойства:	[22 %3 %3]		
1) антикоммутативность (антипе-	$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$		
реместительное)	and bina		
2) ассоциативность (сочетатель-	$\lambda(\mathbf{a} \times \mathbf{b}) = (\lambda \mathbf{a}) \times \mathbf{a} = \mathbf{a} \times (\lambda \mathbf{b})$		
ное) относительного скалярного	, , , , , , , , , , , , , , , , , , , ,		
множителя λ			
3) дистрибутивность (распредели-	$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$		
тельное)	. ,		

	$(\mathbf{b} + \mathbf{c}) \times \mathbf{a} = \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a}$
Условие коллинеарности двух	$\mathbf{a} \times \mathbf{b} = 0 \Longleftrightarrow \mathbf{a} \mathbf{b}$
ненулевых векторов	
Тождество Лагранжа ("БАЦ ми-	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$
нус ЦАБ")	
	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{a}(\mathbf{b} \cdot \mathbf{c})$
Приложение:	
1) площадь параллелограмма, по-	$S_{\mathbf{a}\mathbf{b}} = \mathbf{a} \times \mathbf{b} $
строенного на векторах a и b	
Смешанное	произведение
Определение смешанного произве-	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$
дения трёх векторов	
	$\begin{vmatrix} a_1 & b_1 & c_1 \end{vmatrix}$
Смешанное произведение в декар-	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} a_2 & b_2 & c_3 \end{vmatrix}$
товых координатах	$ a_3 b_3 c_3 $
Свойства:	
1) изменение знака при переста-	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = -(\mathbf{a}, \mathbf{c}, \mathbf{b}) = -(\mathbf{c}, \mathbf{b}, \mathbf{a}) = -(\mathbf{c}, \mathbf{b}, \mathbf{c})$
новке двух сомножителей	$-(\mathbf{b}, \mathbf{a}, \mathbf{c})$
2) не меняет знак при цикличе-	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{b}, \mathbf{c}, \mathbf{a}) = (\mathbf{c}, \mathbf{a}, \mathbf{b})$
ской перестановке множителей	
$3)$ векторы $\mathbf{a}, \mathbf{b}, \mathbf{c}$ образуют:	
- правую тройку, если	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) > 0$
- левую тройку, если	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) < 0$
Условие компланарности трёх	$(\mathbf{a},\mathbf{b},\mathbf{c})=0\Longleftrightarrow \mathbf{a},\mathbf{b},\mathbf{c}$ — компла-
векторов	нарны
Приложение:	
Объём параллелепипеда, постро-	$V_{\mathbf{a},\mathbf{b},\mathbf{c}} = (\mathbf{a},\mathbf{b},\mathbf{c}) $
енного на векторах $\mathbf{a}, \mathbf{b}, \mathbf{c}$	

Пример 1 Даны радиус-векторы \mathbf{r}_1 и \mathbf{r}_2 точек A и B. Найти радиусвектор \mathbf{r} точки C, делящей вектор \overrightarrow{AB} в отношении λ .

▶ По правилу сложения векторов \overrightarrow{OC} можно представить как сумму $\overrightarrow{OA}+\overrightarrow{AC}$, где $\overrightarrow{AC}||\overrightarrow{AB}$. Так как $\frac{AC}{CB}=\lambda$, то $\frac{AC}{AB}=\frac{\lambda}{\lambda+1}$. Следовательно, вектор $\overrightarrow{AC}=\frac{\lambda}{\lambda+1}\overrightarrow{AB}$. Далее замечаем, что $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$. Теперь, подставляя все значения в выражение \overrightarrow{OC} , получаем:

$$\overrightarrow{OC} = \overrightarrow{OA} + \frac{\lambda}{\lambda + 1} \overrightarrow{OB} - \frac{\lambda}{\lambda + 1} \overrightarrow{OA} = \frac{1}{\lambda} \mathbf{r}_1 + \frac{\lambda}{\lambda + 1} \mathbf{r}_2.$$

Рис. 1

Пример 2 Длины единичных векторов аффинной системы координат суть соответственно $|\mathbf{e}_1|=2, \ |\mathbf{e}_2|=\sqrt{3}, \ a$ угол между ними $\omega=\frac{5\pi}{6}$. Относительно этой системы координат даны два вектора $\mathbf{a}=[1,2],$ $\mathbf{b}=[2,2].$ Найти угол между этими векторами.

▶ По свойствам скалярного произведения

$$\mathbf{a} \cdot \mathbf{b} = (\mathbf{e}_1 + 2\mathbf{e}_2) \cdot (2\mathbf{e}_1 + 2\mathbf{e}_2) = 2\mathbf{e}_1^2 + 6\mathbf{e}_1\mathbf{e}_2 + 4\mathbf{e}_2^2.$$

Так как длина $|\mathbf{e}_1|=2$, то $\mathbf{e}_1^2=4$; $|\mathbf{e}_2|=\sqrt{3}$, то $\mathbf{e}_2^2=3$. Скалярное произведение базисных векторов найдем по определению:

$$\mathbf{e}_1\mathbf{e}_2 = |\mathbf{e}_1| \cdot |\mathbf{e}_2| \cos \omega = 2 \cdot \sqrt{3} \cdot \frac{-\sqrt{3}}{2} = -3.$$

Подставляем найденные значения в $\mathbf{a} \cdot \mathbf{b}$:

$$\mathbf{a} \cdot \mathbf{b} = 2 \cdot 4 - 6 \cdot 3 + 4 \cdot 3 = 2.$$

Пример 3 Даны два вектора ${\bf a}\ u\ {\bf b}$. Найти вектор ${\bf c}$, являющийся:

- (а) ортогональной проекцией вектора в на вектор а;
- (b) ортогональной проекцией вектора ${\bf a}$ на плоскость, перпендикулярную ${\bf \kappa}$ вектору ${\bf b}$.
- ▶ (a) Найдем векторную проекцию **b** на **a**. Она равна

$$c = \frac{b \cdot a}{\|a\|} \cdot \frac{a}{\|a\|} = \frac{b \cdot a}{a \cdot a} \cdot a.$$

(b) Для того, чтобы найти ортогональную проекцию ${\bf a}$ на плоскость с нормалью ${\bf b}$ нужно найти проекцию ${\bf a}$ на вектор номали ${\bf b}$, а затем вычесть и ${\bf a}$ найденную ортогональную проекицю. Полученный вектор является проекцией на плоскость.

$$c = a - \frac{a \cdot b}{b \cdot b}b.$$

Другой способ решения состоит в векторном умножении вектора \mathbf{a} дважды на единичный вектор, коллинеарный \mathbf{b} , т.е. на $\mathbf{e} = \frac{\mathbf{b}}{\|\mathbf{b}\|}$. Вычисляя первый раз векторное произведение $\mathbf{a} \times \mathbf{e}$ получим вектор, перпендикулярный \mathbf{a} и \mathbf{b} , т.е. лежащий в плоскости, нормалью к которой является \mathbf{b} . Умножая это произведение еще раз на вектор \mathbf{e} : $(\mathbf{a} \times \mathbf{e}) \times \mathbf{e}$, получим вектор, лежащий с \mathbf{a} в одной плоскости и имеющий длину, равную длине проекции \mathbf{a} на плоскость.

Пример 4 Вычислить площадь параллелограмма, построенного на векторах $\mathbf{a} = [8, 4, 1], \mathbf{b} = [2, -2, 1].$

► Площадь параллелограмма, построенного на данных, векторах равна модулю векторного произведения векторов **a** и **b**:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & 8 & 2 \\ \mathbf{j} & 4 & -2 \\ \mathbf{k} & 1 & 1 \end{vmatrix} = 6\mathbf{i} - 6j - 24\mathbf{k} \Longrightarrow$$

$$S = \|\mathbf{a} \times \mathbf{b}\| = \sqrt{6^2 + (-6)^2 + (-24)^2} = 12\sqrt{6}$$

2. Прямые и плоскости

Основные способы задания прямых и плоскостей. В таблице номера уравнений соответствуют названиям:

- 1) общее уравнение;
- 2) нормальное уравнение;
- 3) параметрическое уравнение;
- 4) уравнение по точкам.

Прямая		Π лоскость
\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^3
(1) Ax + By + C = 0	$\begin{cases} Ax + By + Cz + D = 0 \\ A'x + B'y + C'z + D' = 0 \end{cases}$	Ax + By + Cz + D = 0
$(2) (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$	$\begin{cases} (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0 \\ (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{m} = 0 \end{cases}$	$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$
$(3) \mathbf{r} = \mathbf{r}_0 + \mathbf{v}t$	$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t$	$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t + \mathbf{w}s$
$(4) \ \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$	$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$	$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$
	Обозначения:	

– вектор нормали			
$\mathbf{n} = [A, B]$	$\mathbf{n} = [A, B, C],$	$\mathbf{n} = [A, B, C]$	
	$\mathbf{m} = [A_1, B_1, C_1]$		
– заданная точка			
$\mathbf{r}_0 = [x_0, y_0]$	$\mathbf{r}_0 = [x_0, y_0, z_0],$	$\mathbf{r}_0 = [x_0, y_0, z_0]$	
$\mathbf{r}_1 = [x_1, y_1]$	$ \mathbf{r}_1 = [x_1, y_1, z_1],$	$\mathbf{r}_1 = [x_1, y_1, z_1]$	
	$\mathbf{r}_2 = [x_2, y_2, z_2]$		
– произвольная точка			
$\mathbf{r} = [x, y]$	$\mathbf{r} = [x, y, z]$	$\mathbf{r} = [x, y, z]$	
- направляющий вектор			
v	v	\mathbf{v}, \mathbf{w}	

Переход от одного способа задания к другому. Часто в задачах требуется по одному уравнению прямой или плоскости найти другое уравнение. Следующая таблица иллюстрирует способы перехода от одного уравнения к другому.

По Ищем					
		(1)	(2)	(3)	(4)
(1)	Пр. \mathbb{R}^2 Пр. \mathbb{R}^3 Пл. \mathbb{R}^3	Общее	Списать \mathbf{n} , подобрать \mathbf{r}_0	Решить урав- нение, систе- му уравнений	Пройти через параметры
(2)	Π р. \mathbb{R}^2 Π р. \mathbb{R}^3 Π л. \mathbb{R}^3	Раскрыть скобки	Нормальное	$\mathbf{v} \perp \mathbf{n}$ $\mathbf{v} = \mathbf{n} \times \mathbf{m}$ $\mathbf{v}, \mathbf{w} \perp \mathbf{n}$	Пройти через параметры
(3)	Π р. \mathbb{R}^2 Π р. \mathbb{R}^3 Π л. \mathbb{R}^3	Пройти через нормальное	$ \begin{array}{c} \mathbf{n} \bot \mathbf{v} \\ \mathbf{m}, \mathbf{n} \bot \mathbf{v} \\ \mathbf{n} = \mathbf{v} \times \mathbf{w} \end{array} $	Параметри- ческое	Подставить значение параметров
(4)	Пр. \mathbb{R}^2 Пр. \mathbb{R}^3 Пл. \mathbb{R}^3	Раскрыть все	Пройти через параметры	$\mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0$ $\mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0$ $\mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0$, $\mathbf{w} = \mathbf{r}_2 - \mathbf{r}_0$	По точкам

Пример 5 Составить общее, нормальное, параметрическое и по точкам уравнения прямой, проходящей через точки с координатами (1,3) и (2,4).

► Так как даны две точки на прямой, то сразу записываем уравнение прямой по точкам:

$$\frac{x-1}{2-1} = \frac{y-3}{4-3} \Longleftrightarrow \frac{x-1}{1} = \frac{y-3}{1}.$$

Из этого уравнения легко выводится параметрическое уравнение. Для этого достаточно заметить, что знаменатели дробей являлются координатами направляющего вектора прямой $\mathbf{v}_1 = [1,1]$. Записываем параметрические уравнения:

$$x = 1 + t, \ y = 3 + t.$$

Другой способ состоит в приравнивании каждой дроби в уравнении по точкам к параметру t:

$$\frac{x-1}{1} = \frac{y-3}{1} = t \Longrightarrow \frac{x-1}{1} = t$$
 и $\frac{y-3}{1} = t \Longrightarrow x = 1+t, \ y = 3+t.$

Для известного направляющего вектора угадываем нормаль к прямой: какой-нибудь вектор $\mathbf{n} \bot \mathbf{v}$, например, $\mathbf{n} = [-1,1]$. Тогда нормальное уравнение прямой имеет вид

$$[-1,1] \cdot [x-1,y-3] = 0.$$

Вычисляя скалярное произведение, получаем общее уравнение прямой

$$x - y + 2 = 0.$$

Пример 6 Дан треугольник ABC: A(-2,3), B(4,1) и C(6,-5). Составьте уравнение медианы этого треугольника, проведенной из вершины A.

lacktriangle Искомая прямая проходит через точку A и середину стороны BC. Сле-

Рис. 1

довательно, она содержит диагональ параллелограмма, построенного на

векторах \overrightarrow{AB} и \overrightarrow{AC} . Поэтому рассмотрим их сумму $\mathbf{v} = \overrightarrow{AB} + \overrightarrow{AC}$ в качестве направляющего вектора прямой, содержащей медиану. Найдем его координаты:

$$\overrightarrow{AB} = [4 - (-2), 1 - 3] = [6, -2],$$

 $\overrightarrow{AC} = [4 - 6, 1 - (-5)] = [-2, 6]$
 $\mathbf{v} = [6 - 2, -2 + 6] = [4, 4].$

В качестве направляющего вектора можно взять любой другой, коллинеарный данному. Пусть это будет [1,1]. Можно составить параметрические уравнения прямой: $x=-2+t,\ y=3+t$.

3. Взаимное расположение прямых и плоскостей

Всюду далее $\Delta \mathbf{r}$ обозначает $\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$.

Взаимное расположение прямых l_1 : $\mathbf{r} = \mathbf{r}_1 + \mathbf{v}_1 t_1$ и $\mathbf{r} = \mathbf{r}_2 + \mathbf{v}_2 t_2$.

Расположение:	Условие:
1) Скрещиваются	$(\mathbf{v}_1, \mathbf{v}_2, \Delta \mathbf{r}) \neq 0$
2) Пересекаются	$(\mathbf{v}_1, \mathbf{v}_2, \Delta \mathbf{r}) = 0$ и $\mathbf{v}_1 \times \mathbf{v}_2 \neq 0$
3) Параллельны	$\mathbf{v}_1 imes \mathbf{v}_2 = 0$ и $\mathbf{v}_1 imes \Delta \mathbf{r} \neq 0$
4) Совпадают	$\mathbf{v}_1 imes \mathbf{v}_2 = 0$ и $\mathbf{v}_1 imes \Delta \mathbf{r} = 0$

Взаимное расположение плоскостей α_1 : $\mathbf{n}_1(\mathbf{r}-\mathbf{r}_1)=0$ и α_2 : $\mathbf{n}_2(\mathbf{r}-\mathbf{r}-2)=0$.

Расположение:	Условие:
1) Пересекаются	$\mathbf{n}_1 imes \mathbf{n}_2 = 0$
2) Параллельны	$\mathbf{n}_1 imes \mathbf{n}_2 = 0$ и $\mathbf{n}_1 \cdot \Delta \mathbf{r} \neq 0$
3) Совпадают	$\mathbf{n}_1 \times \mathbf{n}_2 = 0$ и $\mathbf{n}_1 \cdot \Delta \mathbf{r} = 0$

Взаимное расположение прямой $l_1 \colon \mathbf{r} = \mathbf{r}_1 + \mathbf{v}_1 t$ и плоскости $\mathbf{n}_2(\mathbf{r} - \mathbf{r}_2) = 0$.

Расположение:	Условие
1) Пересекаются	$\mathbf{r}_1 \cdot \mathbf{n}_2 \neq 0$
2) Параллельны	$\mathbf{r}_1 \cdot \mathbf{n}_2 = 0$ и $\Delta \mathbf{r}_1 \cdot \mathbf{n}_2 \neq 0$
3) Прямая лежит в плоскости	$\mathbf{r}_1 \cdot \mathbf{n}_2 = 0$ и $\Delta \mathbf{r}_1 \cdot \mathbf{n}_2 = 0$

Расстояния.

От	До			
	точки ${f r}_2$	прямой $\mathbf{r}=\mathbf{r}_2+\mathbf{v}_2 t$ в \mathbb{R}^2	прямой $\mathbf{r}=\mathbf{r}_2+\mathbf{v}_2 t$ в \mathbb{R}^3	плоскости $\mathbf{n}_2(\mathbf{r} - \mathbf{r}_2) = 0$ в \mathbb{R}^3
точки \mathbf{r}_1	$\ \Delta \mathbf{r}\ $	$egin{array}{c} \ \mathbf{v}_2 imes \Delta \mathbf{r}\ \ \ \mathbf{r}_2\ \end{array}$	$egin{array}{c} \ \mathbf{v}_2 imes \Delta \mathbf{r}\ \ \ \mathbf{r}_2\ \end{array}$	$oxed{ egin{array}{c} \mathbf{n}_2\cdot\mathbf{r}_2 \ \ \mathbf{n}_2\ \end{array} }$
прямой $\mathbf{r} = \mathbf{r}_1 + \mathbf{v}_1 t$ в \mathbb{R}^2		$egin{aligned} \ \mathbf{v}_2 imes \Delta \mathbf{r}\ \ \ \mathbf{r}_2\ \ 0, & \text{если } \mathbf{v}_1 \parallel \mathbf{v}_2 \end{aligned}$	*	*
прямой $\mathbf{r} = \mathbf{r}_1 + \mathbf{v}_1 t$ в \mathbb{R}^3			$\frac{ (\mathbf{v}_1 \times \mathbf{v}_2) \cdot \Delta \mathbf{r} }{\ \mathbf{v}_1 \times \mathbf{v}_2\ }$	$\frac{ \mathbf{n}_2 \cdot \mathbf{r}_2 }{\ \mathbf{n}_2\ }$
плоскости $\mathbf{n}_1(\mathbf{r}-\mathbf{r}_1) = 0$ в \mathbb{R}^3				$\frac{ \mathbf{n}_2 \cdot \mathbf{r}_2 }{\ \mathbf{n}_2\ }$

Полезные формулы.

Наименование	Определения и формулы
Угол между прямыми l_1 и l_2 , задан-	
ных уравнениями:	
1) l_1 : $\mathbf{r} = \mathbf{r}_1 + \mathbf{v}_1 t$ и l_2 : $\mathbf{r} = \mathbf{r}_2 + \mathbf{v}_2 t$	$= \angle(\mathbf{v}_1, \mathbf{v}_2),$
2) l_1 : $\mathbf{n}_1(\mathbf{r}-\mathbf{r}_1)=0$ и l_2 : $\mathbf{n}_2(\mathbf{r}-\mathbf{r}_2)=0$	$= \angle(\mathbf{n}_1, \mathbf{n}_2).$
Угол между прямой l и плоскостью	
lpha, заданных уравнениями:	
1) $l: \mathbf{r} = \mathbf{r}_1 + \mathbf{v}_1 t$ и $\alpha: \mathbf{m}(\mathbf{r} - \mathbf{r}_2) = 0$	$=\frac{\pi}{2}-\angle(\mathbf{v}_1,\mathbf{m}),$
2) $l : \mathbf{n}(\mathbf{r} - \mathbf{r}_1) = 0$ и $\alpha : \mathbf{m}(\mathbf{r} - \mathbf{r}_2) = 0$	$=$ $\angle(\mathbf{n}_1,\mathbf{m}).$
Угол между плокостями α_1 и α_2 , за-	
данных уравнениями	
α_1 : $\mathbf{m}_1(\mathbf{r}-\mathbf{r}_1)=0$ и α_2 : $\mathbf{m}_2(\mathbf{r}-\mathbf{r}_2)=0$	$= \angle(\mathbf{m}_1, \mathbf{m}_2).$
\square Проекция точки ${f r}_1$ на прямую ${f r}_1=$	$\mathbf{r}_{\perp}=\mathbf{r}_2-rac{\mathbf{v}_2\cdot\Delta\mathbf{r}}{\mathbf{v}_2\cdot\mathbf{v}_2}\mathbf{v}_2$, где $\Delta\mathbf{r}=\mathbf{r}_2$
$\mathbf{r}_2 + \mathbf{v}_2 t$	$\mathbf{r}_2 - \mathbf{r}_1$
\square Проекция точки ${f r}_1$ на плоскость (${f r}-$	$\mathbf{r}_{\perp} = \mathbf{r}_1 + \frac{\mathbf{n}_2 \cdot \Delta \mathbf{r}}{\mathbf{n}_2 \cdot \mathbf{n}_2} \mathbf{n}_2$, где $\Delta \mathbf{r} =$
$\mathbf{r}_2) \cdot \mathbf{n}_2 = 0$	$\mathbf{r}_2 - \mathbf{r}_1$

$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{cases} (\mathbf{v}_1 \times \mathbf{v}_2, \mathbf{v}_1, \mathbf{r} - \mathbf{r}_1) = 0, \\ (\mathbf{v}_1 \times \mathbf{v}_2, \mathbf{v}_2, \mathbf{r} - \mathbf{r}_2) = 0. \end{cases}$
Основания общего перпендикуляра скрещивающихся прямых $\mathbf{r}=\mathbf{r}_1+\mathbf{v}_1t_1$ и $\mathbf{r}=\mathbf{r}_2+\mathbf{v}_2t_2$	$t_1 = \frac{(\Delta \mathbf{r} \times \mathbf{v}_2) \cdot (\mathbf{v}_1 \times \mathbf{v}_2)}{(\mathbf{v}_1 \times \mathbf{v}_2) \cdot (\mathbf{v}_1 \times \mathbf{v}_2)},$ $t_2 = -\frac{(\mathbf{v}_1 \times \Delta \mathbf{r}) \cdot (\mathbf{v}_1 \times \mathbf{v}_2)}{(\mathbf{v}_1 \times \mathbf{v}_2) \cdot (\mathbf{v}_1 \times \mathbf{v}_2)}$

Пример 7 Определите взаимное расположение прямых:

(a)
$$x = 1 + 2t$$
, $y = 2 - 2t$, $z = -t$ u $x = -2t$, $y = -5 + 3t$, $z = 4$; (b) $x = 9t$, $y = 5t$, $z = -3 + t$ u $2x - 3y - 3z - 9 = 0$, $x - 2y + z + 3 = 0$.

- ▶ Исследование взаимного расположения прямых проведем по схеме. Выясняем взаимное расположение направляющих векторов \mathbf{v}_1 и \mathbf{v}_2 . Если $\mathbf{v}_1||\mathbf{v}_2$, то далее исследуем на параллельность/совпадение, иначе пересечение/скрещивание.
- (а) Итак, с уравнений прямых находим $\mathbf{v}_1 = [2, -2, -1], \mathbf{v}_2 = [-2, 3, 0],$ $\mathbf{r}_1 = [1, 2, 0], \mathbf{r}_2 = [0, -5, 4], \Delta \mathbf{r} = [1, 7, -4].$

Вычисляем $\mathbf{v}_1 \times \mathbf{v}_2 = [3,2,2] \neq \mathbf{0}$, следовательно, прямые либо пересекаются, либо скрещиваются. Вычислим $(\mathbf{v}_1 \times \mathbf{v}_2) \cdot \Delta \mathbf{r} = 9 \neq 0$, поэтому прямые скрещиваются.

(b) Для решения второй задачи найдем направляющие векторы и какиенибудь точки на данных прямых. Находим направляющий вектор первой прямой $\mathbf{v}_1 = [9,5,1]$ и точку на ней $\mathbf{r}_1 = [0,0,-3]$.

Так как вторая прямая задана как линия пересечения двух плокостей, то ее направляющим вектором будет векторное произведение векторов нормалей к плоскостям: $\mathbf{n}_1=[2,-3,-3],\ \mathbf{n}_2=[1,-2,1],$ следовательно, $\mathbf{v}_2=\mathbf{n}_1\times\mathbf{n}_2=[-9,-5,-1].$ Видим, что \mathbf{v}_1 и \mathbf{v}_2 коллинеарны, следовательно, прямые либо параллельны либо совпадают.

В общем случае для того, чтобы найти точку на прямой, решаем систему уравнений, подставляя вместо одной из переменных какое-нибудь достаточно «хорошее» число. В данной задаче замечаем, что точка $\mathbf{r}_1 = [0,0,-3]$ удовлетворяет уравнению второй прямой. Поэтому эти прямые совпадают.

Пример 8 Для прямых x = 3 + t, y = 1 - t, z = 2 + 2t u x = -t, y = 2 + 3t, z = 3t найдите:

- (а) кратчайшее расстояние между ними;
- (b) уравнение общего перпендикуляра к ним.
- ▶ Списываем необходимые векторы с уравнений этих прямых:

$$\mathbf{r}_1 = [3, 1, 2], \quad , \mathbf{r}_2 = [0, 2, 0], \quad \mathbf{v}_1 = [1, -1, 2], \quad \mathbf{v}_2 = [-1, 3, 3].$$

Расстояние между прямыми вычисляем по формуле:

$$d = \frac{|(\mathbf{v}_1 \times \mathbf{v}_2) \cdot \Delta \mathbf{r}|}{\|\mathbf{v}_1 \times \mathbf{v}_2\|} = \frac{18}{\sqrt{110}}.$$

Уравнение общего перпендикуляра можно получить как линию пересечения плоскостей, содержащих каждую из данных прямых и общих перпендикуляр.

Находим направляющий вектор общего перпендикуляра $\mathbf{v} = \mathbf{v}_1 \times \mathbf{v}_2 = [-9, -5, 2].$

Составляем уравнения плоскостей, содержащих общий перпендикуляр:

$$(\mathbf{v}, \mathbf{v}_1, \mathbf{r} - \mathbf{r}_1) = 0 \Longrightarrow 4x - 10y - 7z - 12 = 0,$$

 $(\mathbf{v}, \mathbf{v}_2, \mathbf{r} - \mathbf{r}_2) = 0 \Longrightarrow 21x - 25y + 32z - 50 = 0.$

4. Преобразование координат

Пусть заданы два базиса (репера): базис $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ исходной (**старой**) системы координат и базис $\langle \mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3' \rangle$ другой (**новой**) системы координат. Каждый вектор **нового репера** имеет некоторые координаты в **старом репере**:

$$\mathbf{e}'_1 = t_{11}\mathbf{e}_1 + t_{21}\mathbf{e}_2 + t_{31}\mathbf{e}_3,$$

 $\mathbf{e}'_2 = t_{12}\mathbf{e}_1 + t_{22}\mathbf{e}_2 + t_{32}\mathbf{e}_3,$
 $\mathbf{e}'_3 = t_{13}\mathbf{e}_1 + t_{23}\mathbf{e}_2 + t_{33}\mathbf{e}_3.$

Mampuueŭ nepexoda от старого репера $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ к новому реперу $\langle \mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3' \rangle$ называется матрица T, составленная из координатных **столбцов** векторов \mathbf{e}_i' , (i=1,2,3), т.е. матрица

$$T = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}.$$

Матрица перехода между реперами на плоскости определяется аналогично.

Если старый и новый реперы ортонормированные и одинаково ориентированные, то матрица T перехода между ними называется матрицей nosopoma. Матрица поворота на плоскости на угол φ имеет вид:

$$T = \begin{bmatrix} \cos \varphi - \sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}.$$

Формулы преобразования координат точки на плоскости и в пространстве

Преобразование		Преобразование базисного репера с сохранием начала	Сдвиг начала с со- хранением репера
\mathbb{R}^2	В коорди- натах	$\begin{cases} x = t_{11}x' + t_{12}y', \\ y = t_{21}x' + t_{22}y'. \end{cases}$	$\begin{cases} x = x + x_0, \\ y = y' + y_0. \end{cases}$
	В матрич- ной форме	$ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t_{11} t_{12} \\ t_{21} t_{22} \end{bmatrix} \cdot \begin{bmatrix} x' \\ y' \end{bmatrix} $	$ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} $
\mathbb{R}^3	В коорди- натах	$\begin{cases} x = t_{11}x' + t_{12}y' + t_{13}z', \\ y = t_{21}x' + t_{22}y' + t_{23}z', \\ z = t_{31}x' + t_{32}y' + t_{33}z'. \end{cases}$	$\begin{cases} x = x + x_0, \\ y = y' + y_0 \\ z = z' + z_0. \end{cases}$
	В матрич- ной форме	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} t_{11} t_{12} t_{13} \\ t_{21} t_{22} t_{23} \\ t_{31} t_{32} t_{33} \end{bmatrix} \cdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} + \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$

Обозначения:

[x,y,z] — координаты некоторой точки M в старой системе координат (старом базисе);

[x', y', z'] — координаты той же точки M в новой системе координат (новом базисе);

 $[x_0, y_0, z_0]$ — координаты нового начала координат O'.

Пример 9 Даны две системы координат Оху и О'х'у'. По отношению к первой системе координат начало второй находится в точке O'[-1,3], единичные векторы второго репера имеют координаты $\mathbf{e}_1'=[2,3]$, $\mathbf{e}_2'=[1,1]$. Напишите выражения координат точек относительно первой системы координат через их координаты во второй системе координат.

▶ Преобразование координат является последовательным выполнением двух преобразований: преобразования репера с сохранением начала координат и сдвига полученного репера в новое начало. Последовательное выполнение этих преобразований (их композиция или суперпозиция) дает искомое преобразование. При этом нет принципиальной разницы какое преобразование выполнить в первую очередь, а какое — во вторую. Поэтому найдем сначала преобразование репера, а затем перенесем его в новое начало.

Поскольку известны координаты векторов нового репера, то сразу составляем матрицу перехода:

$$T = \left[\begin{array}{cc} 2 & 1 \\ 3 & 1 \end{array} \right].$$

Получаем искомое преобразование:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ 3 & 1 \end{array}\right] \cdot \left[\begin{array}{c} x' \\ y' \end{array}\right] + \left[\begin{array}{c} -1 \\ 3 \end{array}\right],$$

или в координатной форме

$$\begin{cases} x = 2x' + y' - 1, \\ y = 3x' + y' + 3. \end{cases}$$

Пример 10 Новая система координат получена из старой системы координат переносом начала координат в точку O'[3,-4] и поворотом на угол $\alpha = -\arccos\frac{12}{13}$. Найдите координаты точки A[6,-2] в новой системе координат.

▶ Найдем матрицу поворота репера в плоскости для данного $\alpha = -\arccos\frac{12}{13}$:

$$T = \frac{1}{13} \left[\begin{array}{cc} 12 & 5 \\ -5 & 12 \end{array} \right].$$

Тогда формулы преобразования координат имеют вид:

$$\begin{cases} x = \frac{1}{13}(12x' + 5y') + 3, \\ y = \frac{1}{13}(-5x' + 12y') - 4. \end{cases}$$

Известны старые координаты точки (x,y)=(6,-2). Поэтому для того, чтобы найти координаты (x',y') этой же точки в новой системе координат, нужно решить систему уравнений:

$$\begin{cases} 6 = \frac{1}{13}(12x' + 5y') + 3, \\ -2 = \frac{1}{13}(-5x' + 12y') - 4, \end{cases} \iff \begin{cases} \frac{1}{13}(12x' + 5y') = 3, \\ \frac{1}{13}(-5x' + 12y') = -2. \end{cases}$$

Откуда координаты точки A в новой системе (x', y') = (2, 3).

5. Приведение общего уравнения кривой второго порядка к каноническому виду

 $\it Общим уравнением кривой второго порядка$ называется уравнение вида

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0.$$

Удобно записывать это уравнение в матричном виде $X^{\mathsf{T}} \Delta X = 0$, где

$$\Delta = \begin{bmatrix} A & B & E \\ B & C & D \\ \hline E & D & F \end{bmatrix}, \qquad \delta = \begin{bmatrix} A & B \\ B & C \end{bmatrix}, \qquad X = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

Общее уравнение кривой определяет одну из следующих линий:

(I) $|\delta| \neq 0$. К первой группе относятся линии, имеющие единственный центр симметрии:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \begin{cases} 1 - \text{эллипс,} \\ 0 - \text{две мнимые пересекающиеся прямые,} \\ -1 - \text{мнимый эллипс,} \end{cases}$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \begin{cases} 1 - \text{гипербола,} \\ 0 - \text{пересекающиеся прямые.} \end{cases}$$

(II) $|\delta|=0,\ |\Delta|\neq 0.$ Ко второй группе относятся линии, не имеющие центра симметрии:

$$y^2 = 2px$$
 — парабола.

(III) $|\delta|=0, \, |\Delta|=0.$ К третьей группе относятся линии, имеющие прямую центров симметрии:

$$x^2 = \begin{cases} a^2, a \neq 0 - \text{две параллельные прямые,} \\ -a^2, a \neq 0 - \text{две мнимые параллельные прямые,} \\ 0 - \text{две совпавшие прямые.} \end{cases}$$

Точка (x_0, y_0) называется $uenmpom\ nunuu$ второго порядка, если ее координаты удовлетворяют системе уравнений

$$\left[\begin{array}{ccc} A & B & D \\ B & C & E \end{array}\right] \cdot \left[\begin{array}{c} x_0 \\ y_0 \\ 1 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

Существует несколько способов приводения уравнение кривой к каноническому. Их принципиальное отличие состоит в том, какое преобразование проводить в первую очередь — поворот или параллельный перенос. Рассмотрим оба способа.

МЕТОД «ПОВОРОТ
$$\rightarrow$$
 ПЕРЕНОС».

Поворот. Цель применения преобразования поворота — исключить из уравнения слагаемое, содержащее произведение xy. Поэтому предположим, что коэффициент $B \neq 0$.

Исключить B из уравнения кривой можно двумя способами. B первом случае находят угол поворота φ , преобразование координат и эти выражения подставляют в исходное уравнение.

(1) Поворот системы координат задается системой равенств:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ y_1 \end{array}\right],$$

где угол φ находим так:

(a) если $A \neq C$, то φ является решением уравнения:

$$2B\cos 2\varphi + (C-A)\sin 2\varphi = 0 \iff \operatorname{tg}^2 \varphi + \frac{A-C}{B}\operatorname{tg} \varphi - 1 = 0;$$

- (b) если A=C, то можно повернуть на угол $\varphi=\frac{\pi}{4}$.
- (2) Делаем замену координат в общем уравнении кривой. В результате приходим к уравнению

$$A_1x_1^2 + C_1y_1^2 + 2D_1x_1 + 2E_1y_1 + F = 0.$$

Коэффициенты A_1 , C_1 , D_1 , E_1 можно вычислить непосредственно или найти по формулам:

$$\begin{bmatrix} A_1 & 0 \\ 0 & C_1 \end{bmatrix} = T^{\mathsf{T}} \begin{bmatrix} A & B \\ B & C \end{bmatrix} T, \qquad \begin{bmatrix} D_1 & E_1 \end{bmatrix} = \begin{bmatrix} D & E \end{bmatrix} \cdot T,$$

где матрица T обозначает матрицу поворота.

Второй способ требует знания дополнительной теории: диагонализации симметричной матрицы, который более подробно будет рассмотрен позже.

(1) Составляем характеристическое уравнение

$$\det \left[\begin{array}{cc} A - \lambda & B \\ B & C - \lambda \end{array} \right] = 0$$

и ищем его корни — coбственные числа λ_1 и λ_2 .

(2) Находим координаты базисных (co6cmsenhux) векторов \mathbf{e}'_i как решение системы уравнений:

$$\left[\begin{array}{cc} A - \lambda_i & B \\ B & C - \lambda_i \end{array}\right] \cdot \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right], \ i = 1, 2.$$

- (3) Нормируем найденные векторы и из их координат по столбцам составляем матрицу поворота T.
- (4) В результате сразу записываем $A_1=\lambda_1$ и $C_1=\lambda_2$. Вычисляем коэфффициенты D_1 и E_1 как в предыдущем варианте решения и записываем уравнение в новых координатах: $A_1x_1^2+C_1y_1^2+2D_1x_1+2E_1y_1+F=0$.

Параллельный перенос. Далее ход решения для первого и второго способов совпадают.

(1) (a) Если $A_1C_1 \neq 0$, то в уравнении

$$A_1 x_1^2 + C_1 y_1^2 + 2D_1 x_1 + 2E_1 y_1 + F = 0$$

присутствуют оба квадрата переменных x и y. Выделяем полные квадраты с x и y:

$$A_1(x_1 - x_0)^2 + C_1(y_1 - y_0)^2 + F_1 = 0.$$

(b) Если один из коэффициентов при квадратах равен нулю, пусть, для определенности, $A_1=0$, то уравнение $C_1y_1^2+2D_1x_1+2E_1y_1+F=0$ приводится к виду

$$C_1(y_1 - y_0)^2 + 2E_1(x_1 - x_0) = 0.$$

(2) Переобозначаем переменные: $x_K = x_1 - x_0$, $y_K = y_1 - y_0$ и записываем каноническое уравнение кривой

$$A_1 x_K^2 + C_1 y_K^2 + F_1 = 0$$
 или $C_1 y_K^2 + 2E_1 x_K = 0$.

(3) Находим выражение старых координат через канонические:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{array}\right] \cdot \left[\begin{array}{c} x_K + x_0 \\ y_K + y_0 \end{array}\right],$$

где $\mathbf{e}_1' = [\cos \varphi, \sin \varphi]^\mathsf{T}, \ \mathbf{e}_2' = [-\sin \varphi, \cos \varphi]^\mathsf{T}$ и $O'(x_0, y_0)$ есть векторы канонического базиса и новое начало координат.

Метод «перенос
$$\rightarrow$$
 поворот»

Если $|\delta| \neq 0$, то для упрощения преобразований можно перенести начало координат в центр линии второго порядка, т.е. выполнить **парал- лельный перенос**. Находим:

- (a) центр линии второго порядка (x_0, y_0) ;
- (b) сдвиг системы координат:

$$x = x_c + x_0, \quad y = y_c + y_0;$$

(с) заменяем координаты в уравнении:

$$Ax_c^2 + 2Bx_cy_c + Cy_c^2 + F_1 = 0,$$

где
$$F_1 = Dx_0 + Ey_0 + F$$
.

Поворот осуществляется одним из описанных выше способов.

Если $|\delta|=0$, то приведение кривой второго порядка к каноническому виду осуществляется по схеме «поворот — паралельный перенос».

Пример 11 Определите вид и расположение линии второго порядка, заданной уравнением:

(a)
$$7x^2 + 6xy - y^2 + 14x + 6y + 23 = 0$$
;

(b)
$$9x^2 + 12xy + 4y^2 - 16x - 2y + 6 = 0$$

▶ (а) **І способ.** Из уравнения

$$tg^2 \varphi + \frac{8}{3} tg \varphi - 1 = 0.$$

находим тангенс угла поворота $\operatorname{tg} \varphi = \frac{1}{3}$ или $\operatorname{tg} \varphi = -3$. Выберем положительное значение тангенса, соответствующее повороту системы координат против часовой стрелки. Если в результате этого преобразования изменится порядок координат, то выполним еще одно преобразование, дополнительно повернув на угол 90° или переименовав оси.

Итак, пусть $\operatorname{tg} \varphi = \frac{1}{3} \Longrightarrow \cos \varphi = \frac{3}{\sqrt{10}}, \sin \varphi = \frac{1}{\sqrt{10}}$. Матрица поворота будет иметь вид

$$T = \begin{bmatrix} 3/\sqrt{10} & -1/\sqrt{10} \\ 1/\sqrt{10} & 3/\sqrt{10} \end{bmatrix},$$

а преобразование координат:

$$\begin{cases} x = \frac{1}{\sqrt{10}}(3x_1 - y_1), \\ y = \frac{1}{\sqrt{10}}(x_1 + 3y_1). \end{cases}$$

Подстановку найденных выражений для старых координат можно заменить вычислением нескольких произведений матриц:

$$\begin{bmatrix} A_1 & 0 \\ 0 & C_1 \end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix} \cdot \frac{1}{\sqrt{10}} \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix},$$
$$\begin{bmatrix} D_1 & E_1 \end{bmatrix} = \begin{bmatrix} 7 & 3 \end{bmatrix} \cdot \frac{1}{\sqrt{10}} \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix} 24 & 2 \end{bmatrix}.$$

Тогда уравнение линии в новых координатах примет вид:

$$8x_1^2 - 2y_1^2 + \frac{48}{\sqrt{10}}x_1 + \frac{4}{\sqrt{10}}y_1 + 23 = 0.$$

Далее группируем слагаемые с одинаковыми переменными и дополняем до квадратов:

$$8\left(x_1^2 + \frac{6}{\sqrt{10}}x_1 + \frac{9}{10}\right) - \frac{72}{10} - 2\left(y_1^2 - \frac{2}{10}y_1 + \frac{1}{10}\right) + \frac{2}{10} + 28 = 0;$$
$$8\left(x_1 + \frac{3}{\sqrt{10}}\right)^2 - 2\left(y_1 - \frac{1}{\sqrt{10}}\right)^2 + 16 = 0.$$

Вводим новые координаты $x_2 = x_1 + \frac{3}{\sqrt{10}}$, $y_2 = y_1 - \frac{1}{\sqrt{10}}$. В результате получаем «почти каноническое» уравнение гиперболы:

$$8x_2^2 - 2y_2^2 = -16.$$

Для того, чтобы его окончательно привести к каноническому виду, переименуем координатные оси: $x_K = y_2$, $y_K = x_2$, и разделим обе его части на -16. В результате получаем каноническое уравнение гиперболы.

$$\frac{x_K^2}{8} - \frac{y_K^2}{2} = 1.$$

Остается найти преобразование координат, приводящее к каноническому виду. Для этого нужно для всех выполненных преобразований подставить одну формулу в другую и выписать окончательные формулы:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 3 & -1 \\ 1 & 3 \end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ y_1 \end{array}\right] = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 3 & -1 \\ 1 & 3 \end{array}\right] \cdot \left[\begin{array}{c} y_K - \frac{3}{\sqrt{10}} \\ x_K + \frac{1}{\sqrt{10}} \end{array}\right],$$

откуда находим

$$\begin{cases} x = \frac{1}{\sqrt{10}}(-x_k + 3y_K) - 1, \\ y = \frac{1}{\sqrt{10}}(3x_K + y_K). \end{cases}$$

II способ. Составим характеристическое уравнение $\det(\delta - \lambda E) = 0$:

$$\begin{vmatrix} 7-\lambda & 3\\ 3 & -1-\lambda \end{vmatrix} = 0 \iff \lambda^2 - 6\lambda - 16 = 0$$

и находим его корни — собственные числа: $\lambda = -2, \ \lambda = 8$. Далее для каждого корня λ решаем систему уравнений $(\delta - \lambda E) = \mathbf{0}$:

$$\lambda = 8 \Longrightarrow \left[\begin{array}{cc} -1 & 3 \\ 3 & -9 \end{array} \right] \cdot \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \Longrightarrow \text{ решение } \left[\begin{array}{c} 3 \\ 1 \end{array} \right],$$

$$\lambda = -2 \Longrightarrow \left[\begin{array}{c} 9 & 3 \\ 3 & 1 \end{array} \right] \cdot \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \Longrightarrow \text{ решение } \left[\begin{array}{c} 1 \\ -3 \end{array} \right].$$

Нормируем полученные векторы и меняем знак у второго вектора так, чтобы получилась матрица

$$T = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 3 & 1 \\ -1 & 3 \end{array} \right].$$

Находим коэффициенты линейной части D_1 , E_1 и преобразование координат так же, как и в предыдущем случае. Кроме того, данный способ гарантирует, что $A_1 = 8$ и $C_1 = -2$. Снова получаем уравнение:

$$8x_1^2 - 2y_1^2 + \frac{48}{\sqrt{10}}x_1 + \frac{4}{\sqrt{10}}y_1 + 23 = 0.$$

Далее рассуждения повторяют предыдущий метод.

III способ. Заметим, что $|\delta| = \begin{vmatrix} 7 & 3 \\ 3 & -1 \end{vmatrix} \neq 0$, значит, данное уравнение задает центральную линию. Координаты центра линии являются решением системы уравнений:

$$\begin{cases} 7x_0 + 3y_0 + 7 = 0, \\ 3x_0 - y_0 + 3 = 0. \end{cases}$$

Получаем центр $(x_0,y_0)=(-1,0)$. Центральная система координат связана с исходной равенствами $x=x_c-1,\ y=y_c$. Тогда уравнение кривой принимает вид

$$7x_c^2 + 6x_cy_c - y_c^2 + F_1 = 0,$$

где $F_1 = 7x_0 + 3y_0 + 23 = 16$. Далее поворот выполняется одним из описанных выше способов.

Наконец, находим связь исходных и канонических координат подстановкой равенств для центральных и канонических координат в равенства связи исходных и центральных координат.

(b) В этом примере рассмотрим только второй способ приведения уравнения к каноническому. Запишем матрицу Δ для данного уравенения:

$$\Delta = \left[\begin{array}{ccc} 9 & 6 & -8 \\ 6 & 4 & -1 \\ -8 & -1 & 6 \end{array} \right].$$

Составим характеристическое уравнение $\det(\delta - \lambda E) = 0$:

$$\left| \begin{array}{cc} 9 - \lambda & 6 \\ 6 & 4 - \lambda \end{array} \right| = \lambda^2 - 13\lambda = 0$$

и находим его корни: $\lambda=0$ и $\lambda=13$. Для каждого корня λ решаем систему уравнений $(\delta-\lambda E)=\mathbf{0}$:

$$\lambda = 13 \Longrightarrow \left[\begin{array}{cc} -4 & 6 \\ 6 & -9 \end{array} \right] \cdot \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \Longrightarrow \text{ решение } \left[\begin{array}{c} 3 \\ 2 \end{array} \right],$$

$$\lambda = 0 \Longrightarrow \left[\begin{array}{c} 9 & 6 \\ 6 & 4 \end{array} \right] \cdot \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \Longrightarrow \text{ решение } \left[\begin{array}{c} 2 \\ -3 \end{array} \right].$$

Нормируем полученные векторы и меняем знак у второго вектора так, чтобы получилась матрица

$$T = \frac{1}{\sqrt{13}} \left[\begin{array}{cc} 3 & 2\\ -2 & 3 \end{array} \right].$$

Откуда получаем преобразование координат:

$$\begin{cases} x = \frac{1}{\sqrt{13}} (3x_1 - 2y_1), \\ y = \frac{1}{\sqrt{13}} (2x_1 + 3y_1). \end{cases}$$

Подставляя эти выражения в уравнение, находим коэффициенты линейной части уравнения. Таким образом, уравнение имеет вид:

$$13x_1^2 - \frac{52}{\sqrt{13}}x_1 + \frac{26}{\sqrt{13}}y_1 + 6 = 0.$$

Дополняем до полного квадрата часть выражения с переменной x_1 :

$$13\left(x_1^2 - \frac{4}{\sqrt{13}}x_1 + \frac{4}{\sqrt{13}}\right) - 4 + \frac{26}{\sqrt{13}}y_1 + 6 = 0;$$
$$13\left(x_1 - \frac{2}{\sqrt{13}}\right)^2 + \frac{2}{\sqrt{13}}y_1 + 2 = 0.$$

Теперь группируем слагаемое с y_1 и свободный член, вынося $\sqrt{2}\sqrt{13}$ за скобки, получим дополнительный сдвиг по оси y_1 :

$$13\left(x_1 - \frac{2}{\sqrt{13}}\right)^2 + \frac{26}{\sqrt{13}}\left(y_1 + \frac{1}{\sqrt{13}}\right) = 0.$$

Теперь, полагая $y_2=y_1-\frac{1}{\sqrt{13}}$ и $x_2=x_1-\frac{2}{\sqrt{13}}$ и деля обе части на 13, получим «почти каноническое» уравнение параболы

$$x_2^2 + \frac{2}{\sqrt{13}}y_2 = 0.$$

Для того, чтобы окончательно привести его к каноническому, дополнительно повернем систему координат на угол $\psi = -90^{\circ}$:

$$\begin{cases} x_2 = y_K, \\ y_2 = -x_K, \end{cases} \implies y_K^2 = \frac{2}{\sqrt{13}} x_K.$$

Наконец, находим преобразование координат:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \frac{1}{\sqrt{13}} \left[\begin{array}{cc} 3 & -2 \\ 2 & 3 \end{array}\right] \left[\begin{array}{c} y_K + \frac{2}{\sqrt{13}} \\ -x_K - \frac{1}{\sqrt{13}} \end{array}\right],$$

откуда получаем систему равенств:

$$\begin{cases} x = \frac{1}{\sqrt{13}}(2x_K + 3y_K) + \frac{8}{13}, \\ y = \frac{1}{\sqrt{13}}(-3x_K + 2y_K) + \frac{1}{13}. \end{cases}$$

6. Система комплексных чисел

Множество комплексных чисел обозначают C.

Каждое комплексное число $z \in \mathbb{C}$ может быть представленно в виде

$$z = x + iy$$

где $x, y \in \mathbb{R}$, $i^2 = -1$. Такая форма записи называется алгебраической. Число x называется действительной частью z и обозначается $\operatorname{Re} z$, а y — мнимой частью комплексного числа z и обозначается $\operatorname{Im} z$.

 ${\it Conpя}$ женным к комплексному числу z=x+iy называется число $\overline{z}=x-iy.$

Операции с коплексными числами

Сложение и вычитание комплексных чисел. При сложении или вычитании комплексных чисел $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ соответственно складываются или вычитаются их действительные и мнимые части:

$$z_1 \pm z_2 = (x_1 + iy_1) \pm (x_2 + iy_2) = (x_1 \pm x_2) + i(y_1 \pm y_2).$$

Умножение комплексных чисел. Комплексные числа перемножаются как многочлены от переменной i, при этом i^2 заменяется на -1:

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1).$$

Деление комплексных чисел. Для того, чтобы найти обратное к комплексному числу $z=x+iy\neq 0$, необходимо числитель и знаменатель дроби $\frac{1}{z}$ домножить и разделить на сопряженное к z:

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{(x+iy)\cdot(x-iy)} = \frac{x}{x^2+y^2} + i\frac{-y}{x^2+y^2}.$$

Тогда для того, чтобы разделить число $z_1=x_1+iy_1$ на $z_2=x_2+iy_2\neq 0$, нужно умножить z_1 на z_2^{-1} :

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1) \cdot (x_2 - iy_2)}{(x_2 + iy_2) \cdot (x_2 - iy_2)} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}.$$

Свойства операций с комплекными числами

Теорема 1 Сложение и умножение комплексных чисел для любых z_1 , z_2 , $z_3 \in \mathbb{C}$ обладает следующими свойствами:

- (1) $(z_1+z_2)+z_3=z_1+(z_2+z_3)$ (ассоциативность сложения);
- $(2) \ z_1 + z_2 = z_2 + z_1 \ ($ коммутативность сложения);
- (3) z + 0 = 0 + z = z (существование нуля 0);
- $(4) \ z + (-z) = (-z) + z = 0 \ (существование противоположного числа);$
- (5) $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$ (ассоциативность умножения);
- (6) $z_1 \cdot z_2 = z_2 \cdot z_1$ (коммутативность умножения);
- (7) $z \cdot 1 = 1 \cdot z = z$ (существование единицы);
- (8) $z \cdot z^{-1} = z^{-1} \cdot z = 1$, если $z \neq 0$ (существование обратного числа);
- (9) $(z_1+z_2)\cdot z_3=z_1\cdot z_3+z_2\cdot z_3$ и $z_1\cdot (z_2+z_3)=z_1\cdot z_2+z_1\cdot z_3$ (дистрибутивность умножения относительно сложения).

Пример 12 Вычислите выражения:

(a)
$$(2+i)(3-i);$$
 (b) $\frac{(5+i)(7-6i)}{3+i}$ (c) i^{77}

 \blacktriangleright (a) Раскроем скобки, считая каждое число многочленом от переменной i, и заменим i^2 на -1. Получим

$$(2+i)(3-i) = 2 \cdot 3 - 2i + 3i - i^2 = 6 - 2i + 3i + 1 = 7 + i.$$

(b) Вначале вычислим произведение в числителе дроби:

$$\frac{(5+i)(7-6i)}{3+i} = \frac{5\cdot 7 + 7i - 5\cdot 6i - 6i^2}{3+i} = \frac{35+6+7i - 30i}{3+i} = \frac{41-23i}{3+i}.$$

Теперь домножим числитель и знаменатель полученной дроби на число, сопряженное к знаменателю и раскроем все скобки:

$$\frac{41 - 23i}{3+i} = \frac{(41 - 23i) \cdot (3-i)}{(3+i) \cdot (3-i)} = \frac{123 - 69i - 41i + 23i^2}{3^2 - i^2}$$
$$= \frac{100 - 110i}{10} = 10 - 11i.$$

(c) Заметим, что
$$i^2=-1$$
 и $i^4=1$. Тогда $i^{77}=i^{4\cdot 19+1}=(i^4)^{19}\cdot i=i$

ТРИГОНОМЕТРИЧЕСКАЯ ФОРМА ЗАПИСИ КОМПЛЕКСНОГО ЧИСЛА

Рис. 1

Каждое комплексное число z=x+iy можно изобразить точкой на комплексной плоскости с координатами (x,y) в прямоугольной системе координат (рис 1). В таком случае сумма z_1+z_2 и разность z_1-z_2 комплексных чисел z_1 и z_2 геометрически изображается как сумма или разность радиусвекторов соответствующих им точек на плоскости (рис z_1).

Рассмотрим полярную систему координат, располагая ее таким образом, чтобы полюс совпадал с началом прямоугольной системы координат, и полярная ось была направлена вдоль оси Ox. Тогда формулы связи прямоугольной и полярной системы координат имеют вид:

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \end{cases}$$

где (φ, ρ) — полярные координаты точки z: ρ — длина радиус-вектора точки z, а φ — угол между радиус-вектором точки z и полярной осью (рис 4).

Следовательно, число z = x + iy можно записать в виде:

$$z = x + iy = \rho \cos \varphi + i\rho \sin \varphi = \rho(\cos \varphi + i \sin \varphi).$$

Такую форму записи комплексного числа называют тригонометрической. Число ρ называют модулем числа z и обозначают |z|, угол φ — аргументом числа z и обозначают arg z. Из определения следует, что

$$|z| = \sqrt{x^2 + y^2} \in \mathbb{R}_{>0}.$$

Заметим, что для одного и того же значения |z| аргументы φ и $\varphi + 2\pi k$, $k \in \mathbb{Z}$, определяют одну и ту же точку на плоскости, т. е. одно и то же комплексное число (рис 5). Поэтому принято рассматривать главный арzyмент $\arg z \in [0, 2\pi)$ или $\arg z \in [-\frac{\pi}{2}; \frac{\pi}{2}]$. Считают, что $\arg 0$ не определен.

Пример 13 Найдите тригонометрическую форму числа:

(a)
$$-3i$$
; (b) $-1+i$; (c) $2+\sqrt{3}+i$; (d) $\sin \alpha + i \cos \alpha$.

 \blacktriangleright (a) Число -3i на комплексной плоскости изображается точкой с коор-

Рис. 1

динатами (0; -3) (рис. 6).

 Находим аргумент $\arg(-3i)=\frac{3\pi}{2}$ и модуль |-3i|=3. Тогда тригонометрическая форма числа

$$-3i = 3\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right).$$

(b) Число -1+i на комплексной плоскости изображается точкой с

координатами (-1;1) (рис. 7). Модуль $|-1+i|=\sqrt{(-1)^2+1^2}=\sqrt{2},$ а аргумент $\arg(-1+i)=\frac{\pi}{2}+\varphi,$ где угол φ можно найти из равенства $\lg\varphi=1\Longrightarrow \varphi=\frac{\pi}{4}.$ Тогда $\arg(-1+i)=\frac{\pi}{2}+\varphi$ $\frac{3\pi}{4}$, а тригонометрическая форма числа

$$-1+i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right).$$

(c) Число $2+\sqrt{3}+i$ на комплексной плоскости изображается точкой с координатами $(2+\sqrt{3};1)$ (рис 8).

Модуль $|2+\sqrt{3}+i|=\sqrt{(2+\sqrt{3})^2+1^2}=\sqrt{8+4\sqrt{3}}=2\sqrt{2+\sqrt{3}}$. Однако для непосредственного вычисления $\arg(2+\sqrt{3}+i)$ необходимо вычислить $\arg(\frac{1}{2+\sqrt{3}})$.

Поэтому для того, чтобы найти тригонометрическую форму числа $2+\sqrt{3}+i$, преобразуем его:

$$2 + \sqrt{3} + i = 2 \cdot (1 + \frac{\sqrt{3}}{2} + i\frac{1}{2} + i \cdot 0).$$

Заменяя $1 = \cos 0$, $\frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}$, $\frac{1}{2} = \sin \frac{\pi}{6}$, $0 = \sin 0$ и применяя формулы суммы косинусов и синусов, получим:

$$\begin{aligned} 2 + \sqrt{3} + i &= 2 \cdot \left(\cos 0 + \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} + i \sin 0\right) \\ &= 2 \cdot \left(2 \cos \frac{\pi}{12} \cos \left(-\frac{\pi}{12}\right) + i \cdot 2 \sin \frac{\pi}{12} \cos \left(-\frac{\pi}{12}\right)\right) \\ &= 4 \cos \frac{\pi}{12} \cdot \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12}\right). \end{aligned}$$

Используя формулу косинуса двойного угла, можно показать, что $4\cos\frac{\pi}{12}=2\sqrt{2+\sqrt{3}}$, т.е. модулю $2+\sqrt{3}+i$. Следовательно, тригонометрическая форма числа

$$2 + \sqrt{3} + i = 2\sqrt{2 + \sqrt{3}} \cdot \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right).$$

(d) Заметим, что $|\sin \alpha + i \cos \alpha| = \sqrt{\sin^2 \alpha + \cos^2 \alpha} = 1$. Применяя формулы приведения, находим тригонометрическую форму числа

$$\sin \alpha + i \cos \alpha = \cos \left(\frac{\pi}{2} - \alpha\right) + i \sin \left(\frac{\pi}{2} - \alpha\right).$$

Умножение комплексных чисел в тригонометрической форме. При умножении двух комплексных чисел $z_1=\rho_1(\cos\varphi_1+i\sin\varphi_1)$ и $z_2=\rho_2(\cos\varphi_2+i\sin\varphi_2)$ в тригонометрической форме их модули перемножаются, а аргументы складываются:

$$z_1 \cdot z_2 = (\rho_1 \cdot \rho_2)(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Деление комплексных чисел в тригонометрической форме. При делении комплексных чисел $z_1 = \rho_1(\cos\varphi_1 + i\sin\varphi_1)$ и $z_2 = \rho_2(\cos\varphi_2 + i\sin\varphi_2) \neq 0$ в тригонометрической форме их модули делятся, а аргументы вычитаются:

 $\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$

Возведение комплексных чисел в целую степень. Для того, чтобы возвести комплексное число z в целую степень n, нужно представить z в тригонометрической форме $\rho(\cos\varphi+i\sin\varphi)$, а затем воспользоваться формулой $\partial e\ Myaepa$:

$$(\rho(\cos\varphi + i\sin\varphi))^n = \rho^n(\cos n\varphi + i\sin n\varphi), \quad n \in \mathbb{Z}.$$

Извлечение корня n-й степени из комплексного числа. Для того, чтобы извлечь корень n-й степени из комплексного числа z, нужно представить z в тригонометрической форме $\rho(\cos\varphi+i\sin\varphi)$, а затем воспользоваться формулой:

$$\sqrt[n]{\rho(\cos\varphi + i\sin\varphi)} = \sqrt[n]{\rho(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n})},$$

$$k = 0, 1, \dots, n - 1.$$

Здесь $\sqrt[n]{\rho}$ — корень n-й степени из неотрицательного действительного числа.

Существует ровно n корней из комплексного числа, при этом все корни расположены в вершинах правильного n-угольника с центром в начале координат.

Пример 14 Вычислите выражения:

(a)
$$(\sqrt{3}+i)^{21}$$
; (b) $\sqrt[4]{8\sqrt{3}i-8}$.

lacktriangledown (a) Представим $\sqrt{3}+i$ в тригонометрической форме:

$$\sqrt{3} + i = 2 \cdot \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right).$$

Тогда

$$(\sqrt{3} + 2)^{21} = 2^{21} \cdot \left(\cos\frac{21 \cdot \pi}{6} + i\sin\frac{21 \cdot \pi}{6}\right)$$
$$= 2^{21} \cdot \left(\cos\frac{7\pi}{2} + i\sin\frac{7\pi}{2}\right) = -2^{21}i.$$

(b) Представим $8\sqrt{3}i - 8$ в тригонометрической форме. Находим

$$|8\sqrt{3}i - 8| = \sqrt{(-8)^2 + (8\sqrt{3})^2} = 16,$$

$$\arg(8\sqrt{3}i - 8) = \frac{\pi}{2} + \arctan\frac{1}{\sqrt{3}} = \frac{2\pi}{3}.$$

Тогда

$$8\sqrt{3}i - 8 = 16 \cdot \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right).$$

Следовательно,

$$\sqrt[4]{8\sqrt{3}i - 8} = \sqrt[4]{16} \cdot \left(\cos\frac{2\pi/3 + 2\pi k}{4} + i\sin\frac{2\pi/3 + 2\pi k}{4}\right), \quad k = 0, 1, 2, 3.$$

Находим

$$\begin{aligned} k &= 0: \ z_0 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = \sqrt{3} + i; \\ k &= 1: \ z_1 = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = -1 + i\sqrt{3}; \\ k &= 2: \ z_2 = 2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right) = -\sqrt{3} - i; \\ k &= 3: \ z_3 = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right) = 1 - i\sqrt{3}. \end{aligned}$$

Пример 15 Представьте в виде многочленов от $\sin x$ и $\cos x$ функцию $\cos 5x$.

▶ Вычислим $(\cos x + i \sin x)^5$ двумя способами. С одной стороны, по формуле де Муавра

$$(\cos x + i\sin x)^5 = \cos 5x + i\sin 5x.$$

С другой стороны, возводя $\cos x + i \sin x$ в 5-ю степень по биному Ньютона, получим:

$$(\cos x + i \sin x)^5 = \cos^5 x + 5i \cos^4 x \sin x - 10 \cos^3 x \sin^2 x - 10i \cos^2 x \sin^3 x + 5 \cos x \sin^4 x + i \sin^5 x$$
$$= (\cos^5 x - 10 \cos^3 \sin^2 x + 5 \cos x \sin^4 x) + i (5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x).$$

Приравнивая действительные части, получим

$$\cos 5x = \cos^5 x - 10\cos^3 \sin^2 x + 5\cos x\sin^4 x.$$

Теорема 2 Сопряжение комплексных чисел обладает следующими свойствами:

- (1) $\overline{z}_1 \pm \overline{z}_2 = \overline{z_1 \pm z_2}$;
- (2) $\overline{z}_1 \cdot \overline{z}_2 = \overline{z_1 \cdot z_2};$
- (3) $\overline{z}_1/\overline{z}_2 = \overline{z_1/z_2};$
- $(4) \ z \cdot \overline{z} = |z|^2 \in \mathbb{R}_{>0};$
- (5) $z + \overline{z} = 2 \operatorname{Re} z \in \mathbb{R}$.

Экспоненциальная форма комплексного числа

Формула Эйлера $e^{i\varphi} = \cos \varphi + i \sin \varphi$ позволяет записать комплексное число $z = \rho(\cos \varphi + i \sin \varphi)$ в экспоненциальной форме:

$$z = \rho \cdot e^{i\varphi}$$
.

Кроме того, используя формулу Эйлера, тригонометрические функции $\cos \varphi$ и $\sin \varphi$ можно выразить через комплексную экспоненту:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2},$$
$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}.$$

Пример 16 Выразите через первые степени синуса и косинуса аргументов, кратных x, функцию $\sin^5 x$.

ightharpoonup Выразим $\sin x$ через комплексную экспоненту:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}.$$

Возводя в 5-ю степень обе части равенства и применяя формулу бинома Ньютона, получим:

$$\sin^5 x = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^5 =$$

$$= \frac{e^{5xi} - 5e^{4xi}e^{-xi} + 10e^{3xi}e^{-2xi} - 10e^{2xi}e^{-3xi} + 5e^{xi}e^{-4xi} - e^{-5xi}}{32i} =$$

$$= \frac{e^{5xi} - 5e^{3xi} + 10e^{xi} - 10e^{-xi} + 5e^{-3xi} - e^{-5xi}}{32i}.$$

Группируем слагаемые к подобными степенями и снова применяем формулу, выражающую функцию синус через комплексную экпоненту:

$$\sin^5 x = \frac{(e^{5xi} - e^{-5xi})}{32i} + 5\frac{e^{3xi} - e^{-3xi}}{32i} + 10\frac{e^{xi} - e^{-xi}}{32i} =$$

$$= \frac{1}{16} \left(\sin 5x + 5\sin 3x + 10\sin x \right).$$

Пример 17 Докажите равенство:

$$\sin x + \sin 2x + \dots \sin nx = \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}, \quad x \neq 2\pi k, k \in \mathbb{Z}.$$

▶ Заметим, что $\sin x = \text{Im}(\cos x + i \sin x) = \text{Im} \, e^{ix}$. Тогда $\sin kx = \text{Im} \, e^{ikx}$. Следовательно, в левой части равенства стоит сумма мнимых частей комплексных чисел e^{ix} , e^{2ix} , ..., e^{inx} . При сложении комплексных чисел отдельно складываются их действительные и мнимые части, поэтому

$$\sum_{k=1}^{n} \sin kx = \text{Im } e^{ix} + \text{Im } e^{2ix} + \dots + \text{Im } e^{inx} =$$

$$= \text{Im } \left(e^{ix} + e^{2ix} + \dots + e^{inx} \right).$$

Сумма в правой части последнего равенства — это сумма n первых членов геометрической прогрессии с первым членом $b_1 = e^{ix}$ и знаменателем $q = e^{ix}$. Получаем

$$\sum_{k=1}^{n} \sin kx = \text{Im} \, \frac{e^{ix}(1 - e^{inx})}{1 - e^{ix}}.$$

Далее, подставляя вместо $e^{ix}=\cos x+i\sin x$ и выполняя преобразование тригонометрических выражений (упражнение), получим комплексное число, мнимая часть которого равна выражению в правой части доказываемого равенства.

Пример 18 Изобразите на комплексной плоскости множество точек, соответствующих комплексным числам z, удовлетворяющим условиям: (a) |z-1-i|<1; (b) $\arg z=\frac{\pi}{3}$; (c) $|\operatorname{Re} z+\operatorname{Im} z|=1$.

 \blacktriangleright (a) Пусть z = x + iy. Тогда

$$|z-1-i| = |(x-1)+i(y-1)| = \sqrt{(x-1)^2+(y-1)^2} < 1$$

$$\iff (x-1)^2 + (y-1)^2 < 1.$$

Точки плоскости (x, y), удовлетворяющие неравенству $(x-1)^2 + (y-1)^2 < 1$, расположены внутри круга с центром в (1, 1) и радиусом 1. (рис.)

- (b) Точки z на комплексной плоскости, для которых $\arg z = \frac{\pi}{3}$, расположены на луче, выходящем из начала координат, составляющим угол $\frac{\pi}{3}$ с положительным направлением оси Ox. (рис) Так как аргумент 0 не определен, то точка (0,0) выкалывается.
 - (c) Пусть z = x + iy. Тогда

$$|\operatorname{Re} z + \operatorname{Im} z| = 1 \iff |x + y| = 1 \iff x + y = \pm 1 \iff x + y \pm 1 = 0.$$

Уравнения $x+y\pm 1=0$ задают пару параллельных прямых на плоскости. (рис.)

Задачи для самостоятельного решения

1. Вычислите выражения:

(a)
$$(2+i)(3+7i) - (1+2i)(5+3i);$$
 (b) $\frac{(2+i)(4+i)}{1+i};$ (c) $\frac{(1-i)^5-1}{(1+i)^3+1};$ (d) $\frac{(1+2i)^2-(2-i)^3}{(1-i)^3+(2+i)^2}.$

- **2.** Решите уравнение $z^2 (1+i)z + 6 + 3i = 0$.
- 3. Решите систему уравнений:

(a)
$$\begin{cases} (3-i)x + (4+2i)y = 2+6i, \\ (4+2i)x - (2+3i)y = 5+4i; \end{cases}$$
 (b)
$$\begin{cases} (2+i)x + (2-i)y = 6, \\ (3+2i)x + (3-2i)y = 8. \end{cases}$$
 (e)
$$(1+i)^n, n \in \mathbb{Z}; \quad \text{(f)} \left(\frac{1-i\sqrt{3}}{2}\right)^n, n \in \mathbb{Z}; \quad \text{(g)} \sqrt{2i};$$
 (h)
$$\sqrt[4]{-1}; \quad \text{(i)} \sqrt[3]{1+i}.$$

Ответы.

1. (a)
$$4i$$
. (b) $\frac{13}{2} - \frac{1}{2}i$. (c) $-\frac{1}{25} - \frac{32}{25}i$. (d) $5 - 5i$.

2.
$$z_1 = 1 - 2i$$
, $z_2^2 = 3i$

7. Многочлены

Обозначим \mathbb{F} одну из числовых систем \mathbb{Q} , \mathbb{R} или \mathbb{C} .

Многочленом (полиномом) от одной переменной x с коэффициентами в $\mathbb F$ называется выражение вида

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

где $a_i \in \mathbb{F}$, $i = 0, 1, \dots n$ и $a_n \neq 0$. Число n называется cmeneнью многочлена f(x) и обозначается $\deg f$. Одночлен (моном) $a_n x^n$ называется cmap mum членом многочлена f(x).

Множество всех многочленов от одной переменной с коэффициентами в \mathbb{F} обозначается $\mathbb{F}[x]$, т.е.

$$\mathbb{F}[x] = \{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \mid a_i \in \mathbb{F}, i = 0, 1, \ldots, n\}.$$
 Операции с многочленами

Сложение многочленов. При сложении многочленов f(x) и g(x) складывают коэффициенты при одинаковых степенях, при этом $\deg(f+g) \le \max\{\deg f, \deg g\}$.

Умножение многочленов. Пусть $f(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0$ и $g(x) = b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_0$. Тогда произведением многочленов f(x) и g(x) является многочлен

$$(f \cdot g)(x) = c_{m+n}x^{m+n} + \ldots + c_1x + c_0,$$

степень которого $\deg(f\cdot g)=\deg f+\deg g$, а коэффициенты c_i определены равенством

$$c_i = \sum_{t+k=i} a_t b_k, \quad i = 0, 1, \dots, m+n.$$

ДЕЛЕНИЕ МНОГОЧЛЕНА НА МНОГОЧЛЕН С ОСТАТКОМ

Теорема 3 (Алгоритм деления с остатком) Для любых двух многочленов f(x) и g(x) существуют единственные многочлены q(x) и r(x), такие, что

$$f(x) = g(x) \cdot q(x) + r(x),$$

причем $0 \le \deg r(x) < \deg g(x)$ или r(x) = 0.

Пример 19 Разделить с остатком многочлен $f(x) = x^5 + 3x^4 + x^3 + 4x^2 - 3x - 1$ на многочлен $g(x) = x^2 + x + 1$.

▶ Так как $\deg f \ge \deg g$, то ищем первый член полинома q(x) как *частное* старших членов полиномов f(x) и g(x). В данном примере он равен x^5 : $x^2 = x^3$. Находим первый остаток $f_1(x) = f(x) - x^3 \cdot g(x)$. Вычисления удобно записывать «столбиком»:

Рассмотрим многочлен

$$f_1(x) = f(x) - x^3 \cdot g(x) = 2x^4 + 4x^2 - 3x - 1.$$

Так как $\deg f_1 \geq \deg g$, то второй член $2x^2$ полинома q(x) будет равен частному старших членов полиномов $f_1(x)$ и g(x). Находим второй остаток $f_2(x) = f_1(x) - 2x \cdot g(x)$.

Повторяя рассуждения, получим:

Таким образом, $f(x) = g(x) \cdot (x^3 + 2x^2 - 2x + 4) - 5x - 5.$

Делимость многочленов. Если остаток от деления f(x) на g(x) равен нулю, то говорят, что f(x) делится (или нацело делится) на g(x).

Корни многочленов

Корни многочленов. Пусть $f(x) \in \mathbb{F}[x]$. Число $c \in \mathbb{F}$ называется корнем многочлена f(x), если f(c) = 0.

Теорема 4 Остаток от деления $f(x) \in \mathbb{F}[x]$ на x-c равен значению f(c) многочлена f(x) при x=c.

Теорема 5 (Безу) Число $c \in \mathbb{F}$ является корнем многочлена $f(x) \in \mathbb{F}[x]$ тогда и только тогда, когда x - c делит f(x) в $\mathbb{F}[x]$.

Схема Горнера. Деление многочлена f(x) на x-c удобнее осуществлять по *схеме Горнера*. Рассмотрим ее на примере.

Пример 20 Выполните деление с остатком $f(x) = 2x^5 - x^4 - 3x^3 + x - 3$ на x - 3.

 \blacktriangleright Составляем таблицу, в которой над чертой расположены все коэффициенты многочлена f(x), слева от черты — значение c, а под чертой — соответствующие коэффициенты частного и остаток, последовательно вычисляемые. В данном примере:

Таким образом, частное

$$q(x) = 2x^4 + 5x^3 + 12x^2 + 36x + 109,$$

а остаток f(3) = 324.

Кратные корни. Число $c \in \mathbb{F}$ называется k-кратным корнем многочлена $f(x) \in \mathbb{F}[x]$, если f(x) делится на $(x-c)^k$ и не делится на $(x-c)^{k+1}$. Число k называют показателем кратности корня.

Корень кратности 1 называют *простым* корнем (соответственно, при k=2 и k=3 говорят о двойном и тройном корне).

Пример 21 Найдите показатель кратности корня 2 многочлена $f(x) = x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$.

▶ Если x = 2 - k-кратный корень многочлена f(x), то остаток от деления f(x) на $(x-2)^k$ равен нулю, а остаток от деления на $(x-2)^{k+1}$ отличен от нуля. Следовательно, выполняя деление f(x) на x-2 с остатком по схеме

Горнера до тех пор, пока остаток равен нулю, найдем показатель кратности корня, который будет равен количеству нулевых остатков в схеме Горнера.

Таким образом,

$$f(x) = (x-2)^3 \cdot (x^2 + x + 1)$$

и показатель кратности корня k=3.

ТЕОРЕМА ГАУССА

Теорема 6 (Гаусс) Любой многочлен $f(x) \in \mathbb{C}$, $\deg f \geq 1$, имеет комплексный корень.

Следствие 1 Любой многочлен $f(x) \in \mathbb{C}[x]$ степени $n \geq 1$ имеет ровно n комплексных корней, считаемых со своими кратностями.

Следствие 2 Любой многочлен $f(x) \in \mathbb{C}[x]$ степени $n \geq 1$

$$f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$$

может быть представлен, причем единственным (с точностью до порядка сомножителей) образом, в виде

$$f(x) = a_0(x - c_1)(x - c_2) \dots (x - c_n),$$

 $\epsilon \partial e \ c_i \in \mathbb{C}, \ i = 1, 2, \dots, n.$

Неприводимые многочлены

Многочлен $f(x) \in \mathbb{F}[x]$, $\deg f \geq 1$, называется nenpusodumым над \mathbb{F} , если f(x) нельзя представить в виде произведения $h(x) \cdot g(x)$ многочленов h(x) и g(x) с коэффициентами в \mathbb{F} , таких, что $0 < \deg h$, $\deg g < \deg f$.

Следствие 3 Henpusodumыmu над $\mathbb C$ являются только линейные многочлены.

Теорема 7 Если c — комплексный корень $f(x) \in \mathbb{R}[x]$, то $f(\overline{c}) = 0$.

Следствие 4 *Неприводимыми над* \mathbb{R} *являются только линейные многочлены и квадратичные с отрицательным дискриминатом.*

Пример 22 Постройте многочлен наименьшей степени:

- (1) с комплексными коэффициентами;
- (2) с действительными коэффициентами; если 1 является его двойным корнем, а 2, 3 и 1+i простыми.
- ▶ (1) Многочлен $f(x) = (x-1)^2(x-2)(x-3)(x-1-i)$ многочлен наименьшей степени с комплексными коэффициентами, имеющий данные корни.
- (2) Так как 1+i является корнем искомого многочлена с deйcmвu-menьными коэффициентами, то 1-i также является его корнем. Тогда многочлен наименьшей степени равен

$$f(x) = (x-1)^2(x-2)(x-3)(x-1-i)(x-1+i)$$

= $(x-1)^2(x-2)(x-3)(x^2-2x+5)$.

Пример 23 Разложите на неприводимые множители над $\mathbb C$ и над $\mathbb R$ многочлены:

(1)
$$x^3 - 6x^2 + 11x - 6$$
; (2) $x^4 + 4$.

▶ (1) Многочлен $x^3 - 6x^2 + 11x - 6$ имеет действительные корни 1, 2 и 3, поэтому его разложения над $\mathbb C$ и над $\mathbb R$ совпадают и равны:

$$x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3).$$

(2) Многочлен x^4+4 не имеет действительных корней, однако его степень равна 4, поэтому он приводим. Действительно, прибавляя и вычитая $4x^2$, найдем разложение на неприводимые множители над \mathbb{R} :

$$x^{4} + 4 = (x^{4} + 4x^{2} + 4) - 4x^{2}$$
$$= (x^{2} + 2)^{2} - (2x)^{2}$$
$$= (x^{2} - 2x + 2)(x^{2} + 2x + 2).$$

А теперь, вычисляя корни каждого из множителей, находим разложение на неприводимые множители над \mathbb{C} :

$$x^4 = (x - 1 - i)(x - 1 + i)(x + 1 - 1)(x + 1 + i).$$

8. Системы линейных уравнений

Пусть \mathbb{F} — одна из числовых систем: \mathbb{R} или \mathbb{C} .

Системой линейных алгебраических уравнений от n неизвестных x_1, x_2, \ldots, x_n называется система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m, \end{cases}$$
 (**)

где $a_{ij}, b_i \in \mathbb{F}$.

Основной матрицей системы (★) называют матрицу

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Расширенной матрицей системы (★) называют матрицу

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}.$$

Решение системы линейных уравнений. Упорядоченный набор чисел $(x_1^\circ, x_2^\circ, \dots, x_n^\circ)$ называется *решением* системы (\bigstar) , если при подстановке $x_1 = x_1^\circ, \ x_2 = x_2^\circ, \ \dots, \ x_n = x_n^\circ$ каждое уравнение обращается в верное равенство.

Количество решений	Одно решение	Много решений	Нет решений
Система	Совместная		Несовместная
	Определенная	Неопределенная	110000mccmmus

Две системы называются *эквивалентными*, если они несовместны или совместны и имеют одинаковое множество решений.

Метод исключения неизвестных

Элементарные преобразования системы уравнений.

- (R1) Умножение уравнения системы на число, не равное нулю.
- (R2) Прибавление к одному уравнению другого, умноженного на число.
- (R3) Перестановка пары уравнений местами.

Теорема 8 Две системы эквивалентны, если одна из них получена путем применения конечной последовательности элементарных преобразований.

Ступенчатый вид матрицы. Матрицу называют ступенчатой, если:

- (1) первый слева элемент в каждой строке равен 1 (главная единица);
- (2) остальные элементы столбца, содержащего главную единицу, равны 0:
- (3) в каждой следующей строке главная единица расположена правее, чем главная единица предыдущей строки.

Под элементарными преобразованиями строк матрицы понимают преобразования, соответствующие элементарным преобразованиям уравнений, т.е.

- (R1) умножение любой строки на ненулевое число;
- (R2) прибавление к одной строке, другой, умноженной на число;
- (R3) перестановка местами любой пары строк.

Стандартный метод приведения к ступенчатому виду заключается в последовательном занулении элементов матрицы, начиная с левого столбца и двигаясь вправо.

Пример 24 Приведите κ ступенчатому виду матрицу

$$\left[\begin{array}{cccc} 0 & 1 & -2 & 3 \\ -3 & 2 & -7 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \end{array}\right].$$

ightharpoonup Обозначим через $A_{(k)}$ строку k текущей матрицы, и справа от матрицы будем указывать преобразование, которым получена данная строка.

$$\begin{bmatrix} 0 & 1 & -2 & 3 \\ -3 & 2 & -7 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$
 исходная матрица

Можно заметить, что порядок строк в матрице по ходу вычислений совершенно не важен. Достаточно лишь следить за тем, какая строка является ведущей на данном шаге, не взирая на ее положение в матрице.

Поскольку порядок строк в матрице не играет никакого значения, можно значительно сократить запись каждого шага. Заменим переписывание всей матрицы более короткими действиями:

- (1) указать элементарное преобразование R, совершаемое на данном шаге:
- (2) приписать снизу к матрице результат преобразования R, т.е. новую строку;
- (3) пометить как удаленную сроку, к которой применялось преобразование R; вместо нее далее будет рассматриваться только что полученная строка.

При этом полезно нумеровать строки, а удаленные строки не зачеркивать, а именно помечать (например, знаком \times)

Вернемся к разобранному примеру. После первого шага получилась запись

Продолжая, получим запись вычислений в виде таблицы

Располагая невычеркнутые строки матрицы в правильном порядке, по-

лучаем ступенчатый вид исходной матрицы

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} A_{(11)} \\ A_{(10)} \\ A_{(9)} \\ A_{(7)} \end{array}$$

Критерий совместности системы линейных уравнений

Теорема 9 Любая система линейных уравнений эквивалентна (единственной) системе ступенчатого вида.

Следствие 5

- (1) Система определена тогда и только тогда, когда все столбцы ступенчатой матрицы главные.
- (2) Система совместна тогда и только тогда, когда каждой нулевой строке в ступенчатой матрице соответствует нулевой свободный член.
- (3) Число параметров, описывающих множество решений системы, равно числу неглавных столбцов.

Пример 25 Решите систему линейных уравнений

$$\begin{cases}
-x_1 + x_3 - 3x_4 + 2x_5 = 1, \\
2x_1 - x_3 + 5x_4 - x_5 = 3, \\
x_1 - 2x_3 + 4x_4 - 5x_5 = -6.
\end{cases}$$

► Заметим, что все преобразования уравнений системы меняют только коэффициенты в уравнениях, поэтому все преобразования обычно производят над расширенной матрицей данной системы.

Запишем расширенную матрицу системы и приведем ее к ступенчатому виду.

$$\begin{bmatrix} -1 & 0 & 1 & -3 & 2 & 1 \\ 2 & 0 & -1 & 5 & -1 & 3 \\ 1 & 0 & -2 & 4 & -5 & -6 \\ 0 & 0 & -1 & 1 & -3 & -5 \\ 0 & 0 & 3 & -3 & 9 & 15 \\ 0 & 0 & 1 & -1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 1 & 4 \end{bmatrix} \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(4)} = A_{(1)} + A_{(3)} \\ \times & A_{(5)} = A_{(2)} - 2A_{(3)} \\ A_{(6)} = \frac{1}{3}A_{(5)} \\ A_{(7)} = A_{(4)} + A_{(6)} \\ A_{(8)} = A_{(3)} + 2A_{(6)} \end{array}$$

Итак, ступенчатая матрица данной системы

$$\left[\begin{array}{cc|ccc|c} \boxed{1} & 0 & 0 & 2 & 1 & 4 \\ 0 & 0 & \boxed{1} & -1 & 3 & 5 \end{array} \right] \quad \begin{array}{c|ccc} A_{(8)} & \\ A_{(6)} & \end{array} ,$$

где рамкой выделены главные единицы. Теперь можно записать общее решение в виде

$$\begin{cases} x_1 = -2x_4 - & x_5 + 4, \\ x_3 = & x_4 - 3x_5 + 5, \\ x_2, x_4, x_5 \in \mathbb{R} - \text{произвольные.} \end{cases}$$

Пример 26 Исследовать систему уравнений на совместность и найти общее решение в зависимости от параметра λ

$$\begin{cases} 5x_1 - 3x_2 + 2x_3 + 4x_4 = 3, \\ 4x_1 - 2x_2 + 3x_3 + 7x_4 = 1, \\ 8x_1 - 6x_1 - x_3 - 5x_4 = 9, \\ 7x_1 - 3x_2 + 7x_3 + 17x_4 = \lambda. \end{cases}$$

ightharpoonup Составим расширенную матрицу системы и приведем ее сначала к *трапецевидному* виду.

$$\begin{bmatrix} 5 & -3 & 2 & 4 & 3 \\ 4 & -2 & 3 & 7 & 1 \\ 8 & -6 & -1 & -5 & 9 \\ 7 & -3 & 7 & 17 & \lambda \end{bmatrix} \quad \begin{matrix} A_{(1)} \\ A_{(2)} \\ A_{(3)} \\ A_{(4)} \end{matrix}$$

Заметим, что в первом столбце матрицы нет ни одного числа, кратного всем остальным. Можно, например, в качестве ведущей выбрать первую строку, но тогда в ходе вычислений появятся дробные числа, что затрудняет вычисления. Однако, если вычесть из первой строки вторую, получим строку с первым единичным элементом.

$$\begin{bmatrix} 5 & -3 & 2 & 4 & 3 \\ 4 & -2 & 3 & 7 & 1 \\ 8 & -6 & -1 & -5 & 9 \\ 7 & -3 & 7 & 17 & \lambda \\ 1 & -1 & -1 & -3 & 2 \\ 0 & 2 & 7 & 19 & -7 \\ 0 & 2 & 7 & 19 & -7 \\ 0 & 4 & 14 & 38 & \lambda - 14 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda \\ 0 & 1 & \frac{7}{2} & \frac{19}{2} & -\frac{7}{2} \\ 1 & 0 & \frac{5}{2} & \frac{13}{2} & \frac{9}{2} \end{bmatrix}$$

$$\begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(3)} \\ \times & A_{(3)} \\ \times & A_{(4)} \\ \times & A_{(5)} = A_{(1)} - A_{(2)} \\ \times & A_{(6)} = A_{(2)} - 4A_{(5)} \\ \times & A_{(7)} = A_{(3)} - 8A_{(5)} \\ \times & A_{(8)} = A_{(4)} - 7A_{(5)} \\ A_{(9)} = A_{(7)} - A_{(6)} \\ A_{(10)} = A_{(8)} - 2A_{(6)} \\ A_{(12)} = A_{(5)} + A_{(11)} \end{aligned}$$

Итак, трапецевидная матрица данной системы

$$\begin{bmatrix} \boxed{1} & 0 & \frac{5}{2} & \frac{13}{2} & -\frac{3}{2} \\ 0 & \boxed{1} & \frac{7}{2} & \frac{19}{2} & -\frac{7}{2} \\ 0 & 0 & 0 & 0 & \lambda \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} A_{(12)} \\ A_{(11)} \\ A_{(10)} \\ A_{(9)} \end{matrix}$$

Поскольку система совместна тогда и только тогда, когда каждой нулевой строке основной матрицы соответствует нулевой свободный член, то данная система cosmecmha только при $\lambda=0$. Общее решение системы при $\lambda=0$

$$\begin{cases} x_1 = -\frac{1}{2}(3 + 5x_3 + 13x_4), \\ x_2 = -\frac{1}{2}(7 + 7x_3 + 19x_4), \\ x_3, x_4 \in \mathbb{R} - \text{произвольные}. \end{cases}$$

Система не совместна при $\lambda \neq 0$.

9. Линейные пространства

Пусть \mathbb{F} — одна из числовых систем: \mathbb{R} или \mathbb{C} .

Линейным (векторным) пространством над \mathbb{F} называется непустое множество \mathcal{L} с операциями сложения и умножения на скаляры из \mathbb{F} , такими, что для любых \mathbf{a} , \mathbf{b} и $\mathbf{c} \in \mathcal{L}$ и любых α и $\beta \in \mathbb{F}$ выполнены аксиомы:

- (L1) $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ (ассоциативность);
- (L2) $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ (коммутативность);
- (L3) $\exists 0 \in \mathcal{L} : \mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a} = \mathbf{a}$ (существование нуля);
- (L4) $\exists (-\mathbf{a}) \in \mathcal{L} : \mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0}$ (существование противоположного вектора);
 - (L5) $\alpha(\beta \mathbf{a}) = (\alpha \beta) \mathbf{a}$ (ассоциативность умножения на скаляр);
- (L6) $(\alpha + \beta)$ **a** = α **a** + β **a** и α (**a** + **b**) = α **a** + α **b** (дистрибутивность умножения относительно сложения;
 - (L7) $1 \cdot \mathbf{a} = \mathbf{a}$ (свойство единицы).

Элементы линейного пространства называют векторами.

Пример 27 Выясните, является ли линейным пространством каждое из следующих множеств:

(1) множество $\mathbb{F}^n = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{F}, 1 \leq i \leq n\}$ столбцов высоты n над \mathbb{F} с операциями покомпонентного сложения и умножения на скаляр:

$$[a_1, \dots a_n] + [b_1, \dots, b_n] = [a_1 + b_1, \dots, a_n + b_n],$$

 $\lambda[a_1, \dots, a_n] = [\lambda a_1, \dots, \lambda a_n];$

(2) множество $M_{m\times n}(\mathbb{F})$ прямоугольных матриц $[a_{ij}]$ порядка $m\times n$ над \mathbb{F} с операциями покомпонентного сложения и умножения на скаляр:

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}],$$

 $\lambda [a_{ij}] = [\lambda a_{ij}];$

(3) множество многочленов степени не выше п

$$\mathbb{F}_n[x] = \{ f(x) = a_t x^t + a_{t-1} x^{t-1} + \dots + a_1 x + a_0 : a_i \in \mathbb{F}, 0 \le i \le t, t \le n \}$$

с обычными операциями сложения и умножения на скаляры многочленов:

- (4) $\mathbb C$ множество комплексных чисел над $\mathbb R$ с обычными операциями сложения и умножения.
- ▶ Для того, чтобы доказать что некоторое множество образует линейное пространство, необходимо проверить выполнимость всех аксиом линейного пространства.

(1) Поскольку операции сложения и умножения на скаляры в пространстве столбцов \mathbb{F}^n определены покомпонентно, то аксиомы (L1), (L2), (L5) – (L7) выполнены, так соответствующие свойства выполняютсся для элементов \mathbb{F} . Нулевым вектором является столбец с нулевыми компонентами:

$$\mathbf{0} = [0, 0, \dots, 0].$$

Тогда вектор, противоположный данному — это вектор, все координаты которого противоположны координатам данного, т.е.

$$-[a_1, a_2, \dots, a_n] = [-a_1, -a_2, \dots, -a_n].$$

- (2) Аналогично, поскольку сложение матриц и умножение на скаляр определяется покомпонентно, то достаточно проверить выполнение аксиом (L3) и (L4). Роль нулевого элемента в пространстве матриц играет нулевая матрица матрица с нулевыми элементами, а матрица, противоположная данной, это матрица, все компоненты которой противоположны соответствующим компонентам данной матрицы.
- (3) Множество многочленов степени не более n также образуют линейное пространство. В этом множестве роль нулевого вектора выполняет нулевой многочлен, а противоположного многочлен с противоположными компонентами.
 - (4) Проверяется аналогично(1).

Линейная комбинация. Пусть $\{X_1, X_2, \dots, X_r\} = \mathcal{X} \subseteq \mathbb{F}^n$. Линейной комбинацией векторов \mathcal{X} с коэффициентами $\alpha_1, \alpha_2, \dots, \alpha_r$ называют вектор

$$X = \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_r X_r.$$

Если $\alpha_1=0,\,\alpha_2=0,\,\dots,\,\alpha_r=0,$ то комбинацию $\alpha_1X_1+\alpha_2X_2+\dots+\alpha_rX_r$ называют *тривиальной*.

Линейная зависимость. Множество векторов $\{X_1, X_2, \dots, X_r\} = \mathcal{X} \subseteq \mathbb{F}^n$ называют *линейно зависимым*, если существует их нетривиальная линейная комбинация, т.е.

$$\exists (\alpha_1, \alpha_2, \dots, \alpha_r) \neq (0, 0, \dots, 0) : \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_r X_r = 0.$$

Множество векторов $\{X_1, X_2, \dots, X_r\} = \mathcal{X} \subseteq \mathbb{F}^n$ называют линейно независимым, если

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_r X_r = 0 \Longrightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_r = 0.$$

Свойства линейных комбинаций. Для любого множества векторов $\{X_1, X_2, \dots, X_r\} = \mathcal{X}$ линейного пространства:

- (1) если $\mathcal{Y} \subseteq \mathcal{X}$ и \mathcal{Y} линейно зависимо, то \mathcal{X} линейно зависимо;
- (2) если $\mathcal{Y} \subseteq \mathcal{X}$ и \mathcal{X} линейно независимо, то \mathcal{Y} линейно независимо;
- (3) хотя бы один вектор X_i линейно выражается через остальные векторы \mathcal{X} тогда и только тогда, когда \mathcal{X} линейно зависимо;
- (4) если $\mathcal X$ линейно независимо, то $Z\in\langle\mathcal X
 angle$ тогда и только тогда, когда $\mathcal X\cup\{Z\}$ линейно зависимо.

Линейная оболочка. Подпространство. Множество $\langle \mathcal{X} \rangle$ всех возможных линейных комбинаций векторов из \mathcal{X} называется *линейной оболочной* \mathcal{X} , т.е.

$$\langle \mathcal{X} \rangle = \{ \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_r X_r \mid \alpha_i \in \mathbb{F}, i = 1, 2, \ldots, r \}.$$

Теорема 10 Пусть $\mathcal{L} \subseteq \mathbb{F}^n$ — непустое подмножество. Тогда \mathcal{L} — подпространство пространства \mathbb{F}^n тогда и только тогда, когда \mathcal{L} замкнуто относительно взятия линейных комбинаций, т.е. для любых $X,Y\in\mathcal{L}$ и для любых $\lambda,\mu\in\mathbb{F}$

$$\lambda X + \mu Y \in \mathcal{L}.$$

Линейная оболочка $\langle \mathcal{X} \rangle$ закмкнута относительно сложения векторов и умножения на скаляры, т.е. для любых $X, Y \in \langle \mathcal{X} \rangle$ их линейная комбинация $\alpha X + \beta Y \in \langle \mathcal{X} \rangle$. Следовательно, $\langle \mathcal{X} \rangle$ является подпространством \mathbb{F}^n .

Пример 28 Выясните, являются ли линейным подпространством соответствующего линейного пространства каждая из следующих совокупностей векторов:

- (1) все векторы плоскости, каждый из которых лежит на одной из осей координат Ох и Оу;
 - (2) многочлены с вещественными коэффициентами степени n;
- (3) $\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 + x_2 + \dots + x_n = 0, \}$ относительно обычных операций сложения и умножения на скаляр в \mathbb{R}^n ;
- (4) $\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 + x_2 + \dots + x_n = 1, \}$ относительно обычных операций сложения и умножения на скаляр в \mathbb{R}^n .
- \blacktriangleright (1) Множество $Ox \cup Oy$ векторов, лежащих на одной из осей Ox и Oy не замкнуто относительно сложения, следовательно, не является подпространством на плоскости.

(2) Множество многочленов степени n не образует линейное подпростраство в пространстве многочленов $\mathbb{R}[x]$. Действительно, рассмотрим два многочлена

$$f(x) = x^n + a_{n-1}x^{n-1} \dots + a_1x + a_0$$

И

$$g(x) = -x^n + b_{n-1}x^{n-1} + \dots + b_1x + b_0.$$

Тогда сумма этих многочленов

$$(f+g)(x) = (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$

имеет степень меньше n, а значит, не принадлежит данному множеству.

(3) Данное множество является линейным подпростанством. Для доказательства проверим замкнутость относительно взятия линейных комбинаций векторов данной совокупности. Пусть $[x_1, \ldots, x_n]$ и $[y_1, \ldots, y_n]$ принадлежат данному множеству, т.е.

$$x_1 + \ldots + x_n = y_1 + \ldots + y_n = 0.$$

Тогда

$$\lambda[x_1,\ldots,x_n] + \mu[y_1,\ldots,y_n] = [\lambda x_1 + \mu y_1,\ldots,\lambda x_n + \mu y_n]$$

тоже принадлежит данному множеству, т.к. удовлетворяет условию

$$(\lambda x_1 + \mu y_1) + \ldots + (\lambda x_n + \mu y_n) = \lambda (x_1 + \ldots + x_n) + \mu (y_1 + \ldots + y_n) = 0.$$

(4) Данное множество не являтеся линейным подпространством в \mathbb{R}^n , т.к. оно не замкнуто относительно взятия линейных комбинаций. Действительно, если $[x_1,\ldots,x_n]$ и $[y_1,\ldots,y_n]$ принадлежат данному множеству, т.е.

$$x_1 + \ldots + x_n = y_1 + \ldots + y_n = 1,$$

TO

$$(x_1 + y_1) + \ldots + (x_n + y_n) = (x_1 + \ldots + x_n) + (y_1 + \ldots + y_n) = 2 \neq 1.$$

Базис пространства. Размерность. Упорядоченное множество векторов $\mathbb{F}^n \supseteq \mathcal{X} = \{X_1, \dots, X_r\}$ называется *базисом* пространства $\mathcal{L} \subset \mathbb{F}^n$, если:

(1) \mathcal{X} линейно независимо;

(2)
$$\langle \mathcal{X} \rangle = \mathcal{L}$$
.

Другими словами, каждый вектор Y из \mathcal{L} однозначно представляется в виде линейной комбинации векторов из \mathcal{X} :

$$Y = \alpha_1 X_1 + \ldots + \alpha_r X_r.$$

Коэффициенты $[\alpha_1, \dots, \alpha_r]^\mathsf{T}$ в разложении вектора Y называются $\kappa oopdu-$ натами вектора Y в базисе \mathcal{X} .

Пространство \mathbb{F}^n обладает стандартным базисом:

$$E_1 = [1, 0, \dots, 0]^\mathsf{T}, E_2 = [0, 1, \dots, 0]^\mathsf{T}, \dots, E_n = [0, \dots, 0, 1]^\mathsf{T}.$$

Теорема 11 Пусть \mathcal{L} линейная оболочка в \mathbb{F}^n с базисом $\{X_1, X_2, \ldots, X_r\}$ и Y_1, Y_2, \ldots, Y_s — линейно независимая система векторов из \mathcal{L} . Тогда:

- (1) $s \leq r$;
- (2) $\{Y_1,Y_2,\ldots,Y_s\}$ может быть дополнена до базиса $\mathcal{L}.$

Теорема 12 Каждое линейное пространство $\emptyset \neq \mathcal{L} \subseteq \mathbb{F}^n$ обладает конечным базисом. Все базисы \mathcal{L} состоят из одинакового числа $r \leq n$ векторов.

Число векторов в базисе $\mathcal{L} \in \mathbb{R}^n$ называют размерностью пространства и обозначают $\dim \mathcal{L}$.

Следствие 6 Пусть $\mathcal{L} \subseteq \mathbb{R}^n$. Тогда

- (1) если $S \subseteq \mathcal{L}$ подпространство, то $\dim S < \dim \mathcal{L}$;
- (2) $ecnu \dim S = \dim L$, $mo S = \mathcal{L}$.

Пример 29 Векторы $\mathbf{e}_1 = [1,1,1]^\mathsf{T}$, $\mathbf{e}_2 = [1,1,2]^\mathsf{T}$, $\mathbf{e}_1 = [1,2,3]^\mathsf{T}$ и $\mathbf{x} = [6,9,14]^\mathsf{T}$ заданы своими координатами в некотором базисе. Показать, что $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ образуют базис пространства \mathbb{R}^3 . Найти координаты вектора \mathbf{x} в этом базисе.

▶ Рассмотрим тривиальную линейную комбинацию $\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 = \mathbf{0}$. Подставим вместо каждого вектора его столбец координат

$$\alpha_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Умножим каждый вектор на скаляр, сложим и приравняем соответствующие коэффициенты. Получим систему линейных уравнений относительно неизвестных $\alpha_1, \alpha_2, \alpha_3$

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 0, \\ \alpha_1 + \alpha_2 + 2\alpha_3 = 0, \\ \alpha_1 + 2\alpha_2 + 3\alpha_3 = 0. \end{cases}$$

Решая полученную систему уравнений, находим $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Следовательно, векторы $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ линейно независимы, поэтому они образуют базис в \mathbb{R}^3 .

Теперь найдем координаты вектора \mathbf{x} в базисе $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, т.е найдем коэффициенты в разложении $\mathbf{x} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3$. Снова подставляя вместо каждого вектора его координатный столбец, умножая на скаляры и скадывая векторы, приравнивая соотвествующие компоненты столбцов, получим систему уравнений

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 6, \\ \alpha_1 + \alpha_2 + 2\alpha_3 = 9, \\ \alpha_1 + 2\alpha_2 + 3\alpha_3 = 14. \end{cases}$$

Решим полученную систему уравнений.

Итак, ступенчатая матрица системы имеет вид

$$\begin{bmatrix} \boxed{1} & 0 & 0 & 1 \\ 0 & \boxed{1} & 0 & 2 \\ 0 & 0 & \boxed{1} & 3 \end{bmatrix} \quad \begin{array}{c} A_{(7)} \\ A_{(6)} \\ A_{(4)}. \end{array}$$

Отсюда находим $\alpha_1=1,\,\alpha_2=2,\,\alpha_3=3,\,\mathrm{r.e.}\ [1,2,3]^\mathsf{T}$ — координаты вектора $\mathbf x$ в базисе $\{\mathbf e_1,\mathbf e_2,\mathbf e_3\}.$

Пример 30 Найдите размерность и какой-нибудь базис линейного пространства, натянутого на векторы $\mathbf{a}_1 = [1,0,0,-1]^\mathsf{T}$, $\mathbf{a}_2 = [2,1,1,0]^\mathsf{T}$, $\mathbf{a}_3 = [1,1,1,1]^\mathsf{T}$, $\mathbf{a}_2 = [1,2,3,4]^\mathsf{T}$, $\mathbf{a}_1 = [0,1,2,3]^\mathsf{T}$. Найдите линейные зависимости между данными векторами.

▶ Задача сводится к обычной задаче приведения матрицы к ступенчатому виду.

I способ.

- (1) Из данных векторов *по строкам* составляем матрицу A.
- (2) Приводим A к ступенчатому виду A'.

- (3) Ненулевые строки ступенчатой матрицы A' образуют базис линейной оболочки $\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5 \rangle$.
- (4) Восстанавливая выражение каждой нулевой строки A', получаем линейные зависимости между данными векторами.

В этом случае пометки, детализирующие элементарные преобразования, позволяют найти такие зависимости посредством обратных подстановок.

Итак, получили ступенчатую матрицу

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} A_{(1)} \\ A_{(12)} \\ A_{(11)} \\ A_{(7)} \\ A_{(10)}. \end{array}$$

Строки $A_{(1)} = [1, 0, 0, -1]^\mathsf{T}$, $A_{(12)} = [0, 1, 0, 1]^\mathsf{T}$, $A_{(11)} = [0, 0, 1, 1]^\mathsf{T}$ образуют базис линейной оболочки $\mathcal{L} = \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5 \rangle$, $\dim \mathcal{L} = 3$.

Найдем линейные зависимости между векторами $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5$. Для этого выразим нулевые строки $A_{(7)}$ и $A_{(10)}$ через исходные.

$$\begin{split} A_{(7)} = & A_{(6)} - A_{(5)} = A_{(4)} - A_{(3)} - A_{(5)} = \mathbf{0}, \\ A_{(10)} = & A_{(9)} - A_{(8)} = A_{(2)} - 2A_{(1)} - A_{(3)} + A_{(1)} \\ = & - A_{(1)} + A_{(2)} - A_{(3)} = \mathbf{0}. \end{split}$$

Так как $A_{(i)}=\mathbf{a}_i,\,1\leq i\leq 5,$ то искомые линейные зависимости имеют вид

$$\mathbf{a}_1 - \mathbf{a}_2 + \mathbf{a}_3 = \mathbf{0},$$

 $\mathbf{a}_3 - \mathbf{a}_4 + \mathbf{a}_5 = \mathbf{0}.$

II способ.

- (1) Из данных векторов по столбиам составляем матрицу A.
- (2) Приводим A к ступенчатому виду A'.
- (3) Векторы, соответствующие *главным столбцам* матрицы A', линейно независимы и образуют базис линейной оболочки $\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5 \rangle$.
- (4) Неглавные столбцы матрицы A' это координаты остальных векторов в найденном базисе.

По сравнению с предыдущим, этот способ отыскания линейных зависимостей проще, потому что не требует обратных подстановок и подробных, громоздких пометок.

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 3 & 2 \\ -1 & 0 & 1 & 4 & 3 \\ 0 & 2 & 2 & 5 & 3 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 1 & 2 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 & 1 \end{bmatrix} \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(3)} \\ \times & A_{(4)} \\ \times & A_{(5)} = A_{(4)} + A_{(1)} \\ \times & A_{(6)} = A_{(3)} - A_{(6)} \\ A_{(7)} = A_{(5)} - 2A_{(2)} \\ A_{(8)} = A_{(6)} - A_{(7)} \\ A_{(9)} = A_{(2)} - 2A_{(7)} \\ \times & A_{(10)} = A_{(1)} - A_{(7)} \\ A_{(11)} = A_{(10)} - 2A_{(9)} \end{array}$$

Оставшиеся строки

$$\left[\begin{array}{cccccc}
1 & 0 & -1 & 0 & 1 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]$$

показывают, что множество $\{{\bf a}_1,{\bf a}_2,{\bf a}_4\}$ является искомым базисом, т.к. эти векторы соответствуют главным столбцам ступенчатой матрицы, а неглавные столцы суть координаты векторов ${\bf a}_3$ и ${\bf a}_5$ в базисе $\{{\bf a}_1,{\bf a}_2,{\bf a}_4\}$:

$$\mathbf{a}_3 = -\mathbf{a}_1 + \mathbf{a}_2,$$

 $\mathbf{a}_5 = \mathbf{a}_1 - \mathbf{a}_2 + \mathbf{a}_4.$

Матрица перехода от одного базиса к другому

Пусть в пространстве \mathcal{L} даны два базиса $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ и $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n\}$, которые мы будем условно называть «старый» и «новый» соответственно. Mampuuей nepexoda от базиса $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ к базису $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n\}$ называется матрица, по cmonbuam которой стоят координаты новых базисных векторов в старом базисе, т.е. если

$$\mathbf{f}_i = t_{1j}\mathbf{e}_1 + t_{2j}\mathbf{e}_2 + \ldots + t_{nj}\mathbf{e}_n, \quad 1 \le j \le n,$$

то матрица перехода

$$T = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots & \dots \\ t_{n1} & t_{n2} & \dots & t_{nn} \end{bmatrix}.$$

Координаты вектора в разных базисах. Пусть $\mathbf{x} \in \mathcal{L}$ — произвольный вектор. Тогда его координаты $[x_1, x_2, \dots, x_n]^\mathsf{T}$ в старом базисе $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ связаны с координатами $[x_1', x_2', \dots, x_n']^\mathsf{T}$ в новом базисе $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n\}$ равенством

$$[x_1, x_2, \dots, x_n]^{\mathsf{T}} = T \cdot [x'_1, x'_2, \dots, x'_n]^{\mathsf{T}}.$$

Пример 31 Даны два базиса

$$\mathbf{e}_1 = [1, 2, 1]^\mathsf{T}, \quad \mathbf{e}_2 = [2, 3, 3]^\mathsf{T}, \quad \mathbf{e}_3 = [3, 7, 1]^\mathsf{T};$$

 $\mathbf{f}_1 = [3, 1, 4]^\mathsf{T}, \quad \mathbf{f}_2 = [5, 2, 1]^\mathsf{T}, \quad \mathbf{f}_3 = [1, 1, -6]^\mathsf{T}.$

Найдите связь координат одного и того же вектора в этих базисах.

▶ Для того, чтобы найти связь координат одного и того же вектора в разных базисах, найдем матрицу перехода. Для этого нужно решить три системы линейных уравнений

$$x_{1j}\mathbf{e}_1 + x_{2j}\mathbf{e}_2 + x_{3j}\mathbf{e}_3 = \mathbf{f}_j, \quad 1 \le j \le 3,$$

отличающихся только значениями столбца свободных членов. Поскольку эти значения не играют никакой роли при выборе элементарных преобразований, разумно составить расширенную матрицу из основной матрицы и столбцов координат $\mathbf{f_1}$, $\mathbf{f_2}$, $\mathbf{f_3}$.

$$\begin{bmatrix} 1 & 2 & 3 & 3 & 5 & 1 \\ 2 & 3 & 7 & 1 & 2 & 1 \\ 1 & 3 & 1 & 4 & 1 & -6 \\ 0 & 1 & -2 & 1 & -4 & -7 \\ 0 & -1 & 1 & -5 & -8 & -1 \\ 0 & 0 & -1 & -4 & -12 & -8 \\ 0 & 0 & 1 & 4 & 12 & 8 \\ 0 & 1 & 0 & 9 & 20 & 9 \\ 1 & 2 & 0 & -9 & -31 & -23 \\ 1 & 0 & 0 & -27 & -71 & -51 \end{bmatrix} \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(4)} = A_{(3)} - A_{(1)} \\ \times & A_{(5)} = A_{(2)} - 2A_{(1)} \\ \times & A_{(6)} = A_{(4)} + A_{(5)} \\ A_{(7)} = -A_{(6)} \\ A_{(8)} = A_{(4)} + 2A_{(7)} \\ \times & A_{(9)} = A_{(1)} - 3A_{(7)} \\ A_{(10)} = A_{(9)} - 2A_{(8)} \end{array}$$

Получили ступенчатую матрицу

$$\begin{bmatrix} \boxed{1} & 0 & 0 & -27 & -71 & -51 \\ 0 & \boxed{1} & 0 & 9 & 20 & 9 \\ 0 & 0 & \boxed{1} & 4 & 12 & 8 \end{bmatrix} \quad \begin{array}{c} A_{(10)} \\ A_{(8)} \\ A_{(7)}. \end{array}$$

Находим решение каждой системы линейных уравнений.

Для
$$\mathbf{f}_1$$
:
$$\begin{cases} x_{11} = -27, \\ x_{21} = 9, \\ x_{31} = 4. \end{cases}$$
 Для \mathbf{f}_2 :
$$\begin{cases} x_{12} = -71, \\ x_{22} = 20, \\ x_{32} = 12. \end{cases}$$
 Для \mathbf{f}_3 :
$$\begin{cases} x_{13} = -51, \\ x_{23} = 9, \\ x_{33} = 8. \end{cases}$$

Составляя из найденных координат, матрицу перехода, замечаем, что полученная матрица совпадает с матрицей, расположенной справа от черты в расширенной матрице, т.е. с матрицей

$$T = \left[\begin{array}{rrr} -27 & -71 & -51 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{array} \right].$$

Итак, формулы связи координат одного и того же вектора в этих базисах имеют вид

$$\begin{cases} x_1 = -27x_1' - 71x_2' - 51x_3', \\ x_2 = 9x_1' + 20x_2' + 9x_3', \\ x_3 = 4x_1' + 12x_2' + 8x_3'. \end{cases}$$

Операции с подпространствами

Пусть \mathcal{V} и \mathcal{W} — два подпространства линейного пространства \mathcal{L} . $\mathit{Cymmoй}\ \mathcal{V} + \mathcal{W}$ подпространств \mathcal{V} и \mathcal{W} называется минимальное подпространство, содержащее оба подпространства.

$$V + W = \{ \mathbf{v} + \mathbf{w} \mid \mathbf{v} \in V, \mathbf{w} \in W \}.$$

 Π ересечением $\mathcal{V} \cap \mathcal{W}$ подпространств \mathcal{V} и \mathcal{W} называется максимальное подпространство, содержащееся в каждом из них.

$$V \cap W = \{ \mathbf{v} \mid \mathbf{v} \in V \land \mathbf{v} \in W \}.$$

Сумма $\mathcal{V}+\mathcal{W}$ и пересечение $\mathcal{V}\cap\mathcal{W}$ подпространств \mathcal{V} и \mathcal{W} является подпространством в \mathcal{L} .

Теорема 13 (формула Грассмана) Пусть V и W — два подпространства линейного пространства. Тогда

$$\dim \mathcal{V} + \dim \mathcal{W} = \dim(\mathcal{V} + \mathcal{W}) + \dim \mathcal{V} \cap \mathcal{W}.$$

Сумма $\mathcal{V} + \mathcal{W}$ называется *прямой*, если $\mathcal{V} \cap \mathcal{W} = \{\mathbf{0}\}$.

Пример 32 Даны векторы

$$\begin{aligned} \mathbf{a}_1 &= [1,1,0,0,-1]^\mathsf{T}, & \mathbf{b}_1 &= [1,0,1,0,1]^\mathsf{T}, \\ \mathbf{a}_2 &= [0,1,1,0,1]^\mathsf{T}, & \mathbf{b}_2 &= [0,2,1,1,0]^\mathsf{T}, \\ \mathbf{a}_1 &= [0,0,1,1,1]^\mathsf{T}; & \mathbf{b}_1 &= [1,2,1,2,-1]^\mathsf{T}. \end{aligned}$$

Найдите базисы суммы и пересечения линейных оболочек

$$\mathcal{A} = \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle \ \textit{u} \ \mathcal{B} = \langle \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 \rangle.$$

▶ I способ.

- (1) Из векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ и $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ составляем по *строкам* матрицы A и B.
 - (2) Из матриц A и B составляем блочную матрицу

$$\begin{bmatrix} A & 0 \\ \hline B & B \end{bmatrix}.$$

- (3) Приводим ее к ступенчатому виду и отбрасываем ненулевые строки, если такие есть. Их не будет вовсе, если $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ и $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ являются базисами линейных оболочек $\mathcal A$ и $\mathcal B$.
- (4) Ненулевые строки блочной матрицы, расположенные слева от вертикальной черты образуют базис суммы $\mathcal{A} + \mathcal{B}$; ненулевые строки правой половины матрицы, у которых левые половины нулевые, составляют базис пересечения $\mathcal{A} \cap \mathcal{B}$.

Составляем блочную матрицу. При этом достаточно получить трапецевидную матрицу.

Шесть оставшихся строк

дают трапецевидную матрицу, строки которой линейно независимы. Ввиду того, что

$$A_{(12)} = A_{(11)} + A_{(3)} = A_{(5)} - 2A_{(2)} + A_{(3)},$$

получаем линейную независимость \mathbf{b}_2 от $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$; следовательно, множество $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{b}_2\}$ образуют базис $\mathcal{A} + \mathcal{B}$. В качестве базиса $\mathcal{A} \cap \mathcal{B}$ можно взять векторы

$$[1, 0, 0, 1, 1]^\mathsf{T}, [0, 1, 1, 0, 0]^\mathsf{T}.$$

II способ. Задача сводится к отысканию линейных зависимостей между векторами.

- (1) Из векторов ${f a}_1,{f a}_2,{f a}_3$ и ${f b}_1,{f b}_2,{f b}_3$ составляем по $\mathit{столбцам}$ матрицы A и B
 - (2) Из матриц A и B составляем блочную матрицу $\left[\begin{array}{c|c}A & B\end{array}\right]$.

- (3) Приводим ее к ступенчатому виду и отбрасываем ненулевые строки, если такие есть.
- (4) Векторы, отвечающие главным столбцам ступенчатой матрицы, образуют базис суммы $\mathcal{A} + \mathcal{B}$; из неглавных столбцов находим базис пересечения $\mathcal{A} \cap \mathcal{B}$.

Итак, найдем линейные зависимости между данными векторами.

Выпишем ненулевые строки, помечая главные столбцы соответствующим исходными векторами:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\ \hline 1 & 0 & 0 & 0 & 1 & 2 \\ 0 & \overline{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \overline{1} & 0 & 1 & 2 \\ 0 & 0 & 0 & \overline{1} & -1 & -1 \end{bmatrix} \quad \begin{matrix} A_{(9)} \\ A_{(10)} \\ A_{(4)} \\ A_{(12)}.$$

Из этой таблицы сразу находим, что $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{b}_1\}$ образуют базис $\mathcal{A} + \mathcal{B}$. Также находим выражения для оставшихся векторов

$$\mathbf{b}_2 = \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3 - \mathbf{b}_1,$$

 $\mathbf{b}_3 = 2\mathbf{a}_1 + 2\mathbf{a}_3 - \mathbf{b}_1.$

Поэтому базис $\mathcal{A} \cap \mathcal{B}$ можно составить из векторов

$$\mathbf{b}_1 + \mathbf{b}_2 = \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3,$$

 $\mathbf{b}_1 + \mathbf{b}_3 = 2\mathbf{a}_1 + 2\mathbf{a}_3.$

Ответ отличается от полученного первым способом, но они и не должны совпадать, так как базис подпространства не определяется однозначно. ◀

Ранг матрицы

Pангом матрицы A по строкам называется размерность пространства ее строк и обозначается $\mathrm{rk}_{\Gamma}\,A$.

Pангом матрицы A по столбиам называется размерность пространства ее столбцов и обозначается rk $_B$ A.

Теорема 14 Ранги матрицы по строкам и по стролбцам равны. Это число называется **рангом** матрицы и обозначается rk A.

Для нахождения ранга матрицы достаточно привести ее к ступенчатому виду. Тогда ранг матрицы равен числу ненулевых строк в ее ступенчатом виде.

Пространство решений системы линейных уравнений

Система линейных уравнений называется $\mathit{odnopodhoй}$, если столбец свободных членов равен $\mathbf{0}$.

Множество решений однородной системы уравнений является линейным пространством (точнее, подпространством в \mathbb{F}^n .

Теорема 15 (1) Размерность пространства решений системы $AX = \mathbf{0}$ равна n - r, где n — число неизвестных, $r = \operatorname{rk} A$.

(2) Всякое подпространство $\mathcal{L} \subseteq \mathbb{F}^n$ является пространством решений некоторой однородной системы уравнений.

Базис пространства решений системы $AX=\mathbf{0}$ называется $\phi y n \partial a м e n manbhoù системой решений.$

Пример 33 Найдите общее решение и фундаментальную систему решений системы

$$\begin{cases}
-x_1 + x_3 - 3x_4 + 2x_5 = 0, \\
2x_1 - x_3 + 5x_4 - x_5 = 0, \\
x_1 - 2x_3 + 4x_4 - 5x_5 = 0.
\end{cases}$$

► Заметим, что основная матрица системы совпадает с матрицей в примере 25. Тогда общее решение системы уравнений

$$\begin{cases} x_1 = -2x_4 - & x_5, \\ x_3 = & x_4 - 3x_5, \\ x_2, x_4, x_5 \in \mathbb{R} - \text{произвольные.} \end{cases}$$

Для того, чтобы найти фундаментальную систему решений, по очереди присваиваем каждой свободной неизвестной значение 1, а остальным — 0. Таким образом, решения $X_1 = [0,1,0,0,0]^\mathsf{T}, \ X_2 = [-2,0,1,1,0]^\mathsf{T}$ и $X_3 = [-1,0,-3,0,1]^\mathsf{T}$ образуют базис пространства решений данной системы уравнений.

Пример 34 Найти систему уравнений, задающих линейное пространство, натянутое на векторы

$$\mathbf{a}_1 = [1, -1, 1, 0]^\mathsf{T}, \quad \mathbf{a}_2 = [1, 1, 0, 1]^\mathsf{T}, \quad \mathbf{a}_3 = [2, 0, 1, 1]^\mathsf{T}.$$

▶ Пусть $\mathbf{x} \in \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$ — произвольный вектор. Предположим, что координаты $\mathbf{x} = [x_1, x_2, x_3, x_4]^\mathsf{T}$. Тогда

$$\mathbf{x} = \alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \alpha_3 \mathbf{a}_3$$

для некоторых α_1 , α_2 , α_3 . Существование таких чисел означает совместность системы уравнений

$$\begin{cases}
\alpha_1 + \alpha_2 + 2\alpha_3 = x_1, \\
\alpha_1 + \alpha_2 = x_2, \\
-\alpha_1 + \alpha_3 = x_3, \\
\alpha_2 + \alpha_3 = x_4.
\end{cases}$$

Составим расширенную матрицу системы и приведем ее к ступенчатому виду.

$$\begin{bmatrix} 1 & 1 & 2 & x_1 \\ -1 & 1 & 0 & x_2 \\ 1 & 0 & 1 & x_3 \\ 0 & 1 & 1 & x_4 \\ 0 & 2 & 2 & x_1 + x_2 \\ 0 & -1 & -1 & x_3 - x_1 \\ 0 & 0 & 0 & x_4 + x_3 - x_1 \\ 0 & 0 & 0 & x_1 + x_2 - 2x_4 \end{bmatrix} \quad \begin{array}{c} A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ A_{(4)} \\ \times & A_{(5)} = A_{(2)} + A_{(1)} \\ \times & A_{(6)} = A_{(3)} - A_{(1)} \\ A_{(7)} = A_{(6)} + A_{(4)} \\ A_{(8)} = A_{(5)} - 2A_{(4)} \end{array}$$

Полученная система совместна тогда и только тогда, когда

$$x_1 - x_3 - x_4 = 0,$$

 $x_1 + x_2 - 2x_4 = 0.$

Линейные многообразия

Теорема 16 (1) Множество решений системы уравнений AX = B совпадает с линейным многообразием $X_0 + \mathcal{L}$, где X_0 — некоторое частное решение AX = B, \mathcal{L} — пространство решений сопутствующей однородной системы $AX = \mathbf{0}$.

(2) Всякое линейное многообразие в \mathbb{F}^n является множеством решений некоторой неоднородной системы уравнений.

Пример 35 Найдите общее решение и линейное многообразие системы уравнений

$$\begin{cases}
-x_1 + x_3 - 3x_4 + 2x_5 = 1, \\
2x_1 - x_3 + 5x_4 - x_5 = 3, \\
x_1 - 2x_3 + 4x_4 - 5x_5 = -6.
\end{cases}$$

Общее решение данной системы

$$\begin{cases} x_1 = -2x_4 - x_5 + 4, \\ x_3 = x_4 - 3x_5 + 5, \\ x_2, x_4, x_5 \in \mathbb{R} - \text{произвольные,} \end{cases}$$

было найдено в примере 25, а базис пространства решений сопутствующей однородной системы — в примере 33:

$$X_1 = [0, 1, 0, 0, 0]^\mathsf{T}, X_2 = [-2, 0, 1, 1, 0]^\mathsf{T}, X_3 = [-1, 0, -3, 0, 1]^\mathsf{T}.$$

Частное решение удобно находить, зануляя все свободные переменные:

$$X_0 = [4, 0, 5, 0, 0]^\mathsf{T}.$$

Итак, множество решений данной системы можно представить в виде

$$X_0 + \alpha X_1 + \beta X_2 + \gamma X_3,$$

где α , β и $\gamma \in \mathbb{R}$ — произвольные.

Пример 36 Даны векторы

$$\begin{aligned} \mathbf{a}_0 &= [1, -1, 1, -1]^\mathsf{T}, & \mathbf{a}_1 &= [1, -1, 1, 0]^\mathsf{T}, \\ \mathbf{a}_2 &= [1, 1, 0, 1]^\mathsf{T}, & \mathbf{a}_3 &= [2, 0, 1, 1]^\mathsf{T}. \end{aligned}$$

Найдите систему уравнений, задающих линейное многообразие

$$\{\mathbf{a}_0 + \alpha \mathbf{a}_1 + \beta \mathbf{a}_2 + \gamma \mathbf{a}_3\}.$$

ightharpoonup Сначала найдем сопутствующую однородную систему уравнений, пространство решений которой является линейной оболочкой векторов \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 .

В примере 34 мы нашли сопутствующую однородную систему

$$\begin{cases} x_1 - x_3 - x_4 = 0, \\ x_1 + x_2 - 2x_4 = 0. \end{cases}$$

Тогда \mathbf{a}_0 — частное решение неоднородной системы уравнений

$$\begin{cases} x_1 - x_3 - x_4 = b_1, \\ x_1 + x_2 - 2x_4 = b_2. \end{cases}$$

Подставляя вместо неизвестных координаты вектора ${\bf a}_0$, находим $b_1=1,$ $b_2=2.$

Итак, неоднородная система линейных уравнений

$$\begin{cases} x_1 - x_3 - x_4 = 1, \\ x_1 + x_2 - 2x_4 = 2. \end{cases}$$

10. Определители

Перестановки и подстановки. Всякое расположение чисел $1, 2, \ldots, n$ в некотором порядке называется *перестановкой* (n-перестановкой).

Множество всех n-перестановок обозначается \mathbb{P}_n . Число всевозможных n-перестановок равно n!.

Говорят, что в данной перестановке числа i и j образуют инверсию, если i>j, но стоит раньше j. Перестановка называется четной, если число инверсий четное, иначе — нечетной.

Всякое взаимно однозначное отображение множества $\{1,2,\ldots,n\}$ на себя называется nodcmanoskoŭ (n-nodcmanoskoŭ). Обычно подстановки записывают в виде таблицы, располагая числа в первой строке в порядке возрастания:

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{array}\right),\,$$

где (i_1, i_2, \dots, i_n) — n-перестановка. Такая форма записи означает, что $\sigma(1) = i_1, \, \sigma(2) = i_2, \, \dots, \, \sigma(n) = i_n$.

Множество всех n-подстановок обозначается \mathbb{S}_n . Число различных n-подстановок равно числу всех n-перестановок. Число инверсий подстановки inv σ равно числу инверсий перестановки (i_1, i_2, \ldots, i_n) . Знак $\operatorname{sgn} \sigma$ подстановки σ равен $(-1)^{\operatorname{inv} \sigma}$.

Пример 37 Определите четность перестановки (7,5,6,4,1,3,2).

 \blacktriangleright Количество инверсий можно подсчитать как число элементов перестановки перед 1+ число элементов перед 2, кроме 1,+ число элементов перед 3, кроме 1 и 2, и т.д...

Для данной перестановки число инверсий равно 4+5+4+3+1+1=18. Следовательно, данная перестановка четная.

Определитель n-го порядка. Пусть A — квадратная матрица n-го порядка. Определителем матрицы A называется алгебраическая сумма n! слагаемых, каждый член которой — произведение n элементов матрицы A, взятых по одному из каждой строки и каждого столбца. При этом каждое слагаемое $a_{1i_1}a_{2i_2}\dots a_{ni_n}$ входит со знаком $\operatorname{sgn} \sigma$, где

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{array}\right),\,$$

T.e.

$$\det A = \sum_{\sigma \in \mathbb{S}_n} \operatorname{sgn} \sigma \ a_{1i_1} a_{2i_2} \dots a_{ni_n}.$$

Пример 38 Выясние, какие из произведений входят в определитель соответствующего порядка? Если входят, то с каким знаком?

- (1) $a_{27}a_{36}a_{51}a_{74}a_{25}a_{43}a_{62}$;
- $(2) \ a_{33}a_{16}a_{72}a_{27}a_{55}a_{61}a_{44}.$
- \blacktriangleright (1) Не входит, т.к. содержит два множителя из второй строки: a_{27} и a_{25} .
 - (2) Входит со знаком +, т.к. подстановка

четная (число инверсий равно 16).

Пример 39 Пользуясь только определением определителя, вычислите

$$\begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

▶ Заметим, что единственным ненулевым слагаемым в правой части (♠) будет только произведение $a_{11}a_{22}\dots a_{nn}$. Его индексы составляют тождественную подстановку $\varepsilon = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$, $\operatorname{sgn} \varepsilon = 1$. Следовательно,

$$\begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11}a_{22}\dots a_{nn}.$$

Вычисление определителей 2-го и 3-го порядка.

Свойства определителей

Теорема 17 Для любой квадратной матрицы $\det A = \det A^\mathsf{T}$.

В частности, все свойства, сформулирванные для строк, верны и для столбцов.

Теорема 18 Если в матрице поменять местами любые две строки, то определитель матрицы сменит знак на противоположный. Иначе говоря, det есть кососимметрическая фукнция строк матрицы.

Теорема 19 Определитель есть линейная фукнция элементов любой ее строки. Иначе говоря, определитель есть **полилинейная** функция строк матрицы.

Теорема 20 Для всех $n \times n$ матриц $A \cup B$,

$$\det(A \cdot B) = \det A \cdot \det B.$$

Следствие 7 Определитель матрицы с нулевой строкой равен нулю.

Следствие 8 Определитель матрицы с двумя одинаковыми строками равен нулю.

Следствие 9 Для любой $n \times n$ матрицы A и любого скаляра λ ,

$$\det(\lambda A) = \lambda^n \det A.$$

Следствие 10 Прибавление к одной строке другой, умноженной на число, не меняет определителя.

Разложение определителя по строке. Минором порядка k (не обязательно квадратной) матрицы A называют определитель матрицы, составленной из элементов матрицы A, стоящих на пересечении каких-либо различных k строк и k столбцов матрицы A.

Пусть $A-n\times n$ матрица. Обозначим $M_{ij}(A)$ минор порядка n-1, полученный из A вычеркиванием строки и столбца, содержащих a_{ij} . Число $(-1)^{i+j}M_{ij}(A)$ называют алгебраическим дополнением элемента a_{ij} матрицы A

Теорема 21 (Лаплас) Для каждой строки матрицы А определитель det A равен сумме произведений элементов в этой строке на их алгебраические дополнения; аналогично для каждого столбца:

$$\det A = \sum_{1 \le j \le n} (-1)^{i+j} a_{ij} M_{ij}(A), \quad 1 \le i \le n;$$

$$\det A = \sum_{1 \le i \le n} (-1)^{i+j} a_{ij} M_{ij}(A), \quad 1 \le j \le n.$$

Пример 40 Пользуясь свойствами определителей, вычислите:

$$(1) \begin{bmatrix} a & 3 & 0 & 5 \\ 0 & b & 0 & 2 \\ 1 & 2 & c & 3 \\ 0 & 0 & 0 & d \end{bmatrix}; \quad (2) \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}.$$

▶ (1) Определители порядка 4 и выше вычисляют разложением по строке или по столбцу. При этом лучше выбирать ту строку (или столбец), в которой почти все элементы равны нулю.

В данном примере разложим определитель, например, по последней строке. Так как почти все элементы этой строки, кроме d, равны нулю, то единственным ненулевым слагаемым будет произведение d на его алгебраическое дополнение

$$\begin{vmatrix} a & 3 & 0 & 5 \\ 0 & b & 0 & 2 \\ 1 & 2 & c & 3 \\ 0 & 0 & 0 & d \end{vmatrix} = (-1)^{4+4} d \cdot \begin{vmatrix} a & 3 & 0 \\ 0 & b & 0 \\ 1 & 2 & c \end{vmatrix} = d \cdot \begin{vmatrix} a & 3 & 0 \\ 0 & b & 0 \\ 1 & 2 & c \end{vmatrix}.$$

Далее можно разложить по последнему столбцу

$$d \cdot \begin{vmatrix} a & 3 & 0 \\ 0 & b & 0 \\ 1 & 2 & c \end{vmatrix} = (-1)^{3+3} cd \begin{vmatrix} a & 3 \\ 0 & b \end{vmatrix} = abcd.$$

(2) Преобразуем определитель таким образом, чтобы один из его столбцов (или одна из строк) содержал максимальное количество нулей. Для этого будем прибавлять к строкам (столбцам) определителя другие строки (столбцы), умноженные на подходящие числа. При этом важно следить за тем, чтобы изменять именно ту строку (столбец), к которой прибавляем, а также за порядком строк.

Прибавим последнюю строку ко всем предыдущим и разложим по последнему столбцу

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 2 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & -1 \end{vmatrix} = (-1)^{4+4} \cdot (-1) \cdot \begin{vmatrix} 2 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{vmatrix}.$$

Далее, если вынести 2 из каждой строки определителя и вычесть из первого столбца последний, получим

$$- \begin{vmatrix} 2 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{vmatrix} = -2^3 \cdot \begin{vmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}.$$

Осталось разложить по первому столбцу:

$$-2^{3} \cdot \left| \begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right| = -2^{3} \cdot (-1)^{3+1} \cdot \left| \begin{array}{ccc} 1 & 1 \\ 0 & 1 \end{array} \right| = -2^{3}.$$

МЕТОДЫ ВЫЧИСЛЕНИЯ ОПРЕДЕЛИТЕЛЕЙ n-го ПОРЯДКА

Метод вычисления определителей с числовыми элементами, состоящий в обращении в нуль всех элементов некоторой строки (столбца), кроме одного, и последующем понижении порядка, становится весьма громоздким в случае определителей с буквенными элементами. Тем более этот метод неудобен в случае вычисления определителей произвольного порядка n.

Общего метода для вычисления таких определителей не существует. К определителям того или иного специального вида применяют различные методы, приводящие к более простой, чем (♦), формуле. Приведем наиболее употребительные из них.

Приведение к треугольному виду. Определитель преобразуют к такому виду, где все элементы, лежащие по одному сторону одной из диагоналей, равны нулю. Случай побочной диагонали сводится к главной путем изменения порядка строк (столбцов).

Пример 41 Вычислите приведением к треугольному виду определитель

▶ Вычтем последнюю строку из каждой строки.

Разложим полученный определитель по последнему столбцу. Получим определитель, содержащий нулевые элементы ниже побочной диагонали. При этом полученный определитель имеет порядок n-1.

$$D = (-1)^{n+n} \cdot n \cdot \begin{vmatrix} 1-n & 2-n & \dots & -2 & -1 \\ 2-n & 3-n & \dots & -1 & 0 \\ \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & 0 & 0 \end{vmatrix}.$$

Перестановкой столбцов приведем матрицу определителя к верхнетреугольному виду. Для этого сначала поставим последний столбец на место первого, последовательно переставляя его с соседним столбцом. При этом будет произведено n-1 перестановка столбцов. Следовательно, определитель изменит знак n-1 раз.

$$D = n \cdot (-1)^{n-1} \cdot \begin{vmatrix} -1 & 1-n & 2-n & \dots & -2 \\ 0 & 2-n & 3-n & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & -1 & 0 & \dots & 0 \end{vmatrix}.$$

Аналогично переставим последний столбец полученного определителя на место второго. При этом определитель изменит знак n-2 раза.

$$D = n \cdot (-1)^{(n-1)+(n-2)} \cdot \begin{vmatrix} -1 & -2 & 1-n & 2-n & \dots & -3 \\ 0 & -1 & 2-n & 3-n & \dots & -2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & -1 & 0 & \dots & 0 \end{vmatrix}.$$

Продолжая так далее переставлять столбцы, получим

$$D = n \cdot (-1)^{(n-1)+(n-2)+\dots+1} \cdot \begin{vmatrix} -1 & -2 & \dots & 1-n \\ 0 & -1 & \dots & 2-n \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 \end{vmatrix}$$
$$= n \cdot (-1)^{\frac{n(n-1)}{2}} \cdot (-1)^{n-1} = (-1)^{\frac{(n-1)(n+2)}{2}} \cdot n.$$

Метод рекуррентных соотношений. Определитель выражают, преобразуя и разлагая по строке или столбцу, через определители *того жее вида*, но *меньшего порядка*. Полученное равенство называется *рекуррентным* соотношением.

I способ («снизу вверх»). По общему виду определителя вычисляют столько определителей низших порядков, сколько их было в правой части рекуррентного соотношения. Определители более высоких порядков вычисляются последовательно из реккурентного соотношения. При этом, вычислив из рекуррентного соотношения несколько определителей малых порядков, стараются заметить вид искомого выражения, а затем доказывают справедливость этого выражения при любом n с помощью рекуррентного соотношения и индукции по n.

II способ («сверху вниз»). В рекуррентное соотношение, выражающее определитель n-го порядка, подставляют выражение определителя (n-1)-го порядка, полученное из того же рекуррентного соотношения заменой n на n-1, далее подставляют аналогичное выражение для определителя (n-2)-го порядка и т.д., пока не выяснится вид искомого общего выражения определителя n-го порядка.

Можно комбинировать оба пути, используя второй способ для нахождения общего вида выражения определителя n-го порядка, а затем доказывая справедливость данного выражения по индукции.

Пример 42 Вычислите методом рекуррентных соотношений определитель

Будем раскладывать данный определитель по последней строке.

$$D_{n} = (-1)^{n+n} \cdot 3 \cdot D_{n-1} + (-1)^{n+(n-1)} \begin{vmatrix} 5 & 6 & 0 & 0 & 0 & \dots & 0 & 0 \\ 4 & 5 & 2 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 3 & 2 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 3 & 2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{vmatrix}.$$

Далее разложим второй определитель по последнему столбцу. Получим рекуррентное соотношение

$$D_n = 3 \cdot D_{n-1} - 2 \cdot D_{n-2}.$$

Данное соотношение можно преобразовать к выражению вида

$$D_n - D_{n-1} = 2 \cdot (D_{n-1} - D_{n-2})$$

или

$$D_n - 2D_{n-1} = D_{n-1} - 2D_{n-2}.$$

Рассмотрим первое из них. Используя это рекуррентное соотношение найдем выражение для $D_{n-1}-D_{n-2}$ и подставим его в исходное (метод «сверху вниз»).

$$D_n - D_{n-1} = 2 \cdot (D_{n-1} - D_{n-2}) = 2^2 \cdot (D_{n-2} - D_{n-3}).$$

Продолжая так далее, находим выражение для D_n-D_{n-1} через определители наименьших порядков D_2 и D_1 , которые соответственно равны 1 и 5.

$$D_n - D_{n-1} = 2^{n-2} \cdot (D_2 - D_1) = -2^n.$$

Теперь рассмотрим второе следствие рекуррентного соотношения

$$D_n - 2D_{n-1} = D_{n-1} - 2D_{n-2}.$$

Повторяя рассуждения, находим значение $D_n - 2D_{n-1}$:

$$D_n - 2D_{n-1} = D_{n-1} - 2D_{n-2} = \dots = D_2 - 2D_1 = -9.$$

Из системы равенств

$$D_n - D_{n-1} = -2^n$$
, $D_n - 2D_{n-1} = -9$,

находим
$$D_{n-1} = 9$$
. Тогда $D_n = D_{n-1} - 2^n = 9 - 2^n$.

Представление определителя в виде суммы определителей. Некоторые определители легко вычисляются путем разложения определителя в сумму определителей того же порядка относительно строк (столбцов).

Пример 43 Представив определитель в виде суммы двух определетелей, вычислите

$$D_n = \left| \begin{array}{ccccc} x_1 & a_1b_2 & a_1b_3 & \dots & a_1b_n \\ a_2b_1 & x_2 & a_2b_3 & \dots & a_2b_n \\ a_3b_1 & a_3b_2 & x_3 & \dots & a_3b_n \\ \dots & \dots & \dots & \dots & \dots \\ a_nb_1 & a_nb_2 & a_nb_3 & \dots & x_n \end{array} \right|.$$

 \blacktriangleright К x_n прибавим и вычтем a_nb_n . Тогда последний столбец данного определителя можно представить в виде суммы двух столбцов, а сам определитель — в виде суммы двух определителей, отличающихся только последними столбцами.

$$D_{n} = \begin{vmatrix} x_{1} & a_{1}b_{2} & \dots & a_{1}b_{n} \\ a_{2}b_{1} & x_{2} & \dots & a_{2}b_{n} \\ \dots & \dots & \dots & \dots \\ a_{n}b_{1} & a_{n}b_{2} & \dots & (x_{n} - a_{n}b_{n}) + a_{n}b_{n} \end{vmatrix}$$

$$= \begin{vmatrix} x_{1} & a_{1}b_{2} & \dots & a_{1}b_{n} \\ a_{2}b_{1} & x_{2} & \dots & a_{2}b_{n} \\ \dots & \dots & \dots & \dots \\ a_{n}b_{1} & a_{n}b_{2} & \dots & a_{n}b_{n} \end{vmatrix} + \begin{vmatrix} x_{1} & a_{1}b_{2} & \dots & 0 \\ a_{2}b_{1} & x_{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n}b_{1} & a_{n}b_{2} & \dots & x_{n} - a_{n}b_{n} \end{vmatrix}.$$

Раскладывая второй определитель в сумме по последнему столбцу, получим определитель того же вида, что и исходный, только порядка n-1.

Рассмотрим отдельно первый определитель в сумме. Вычислим его методом приведения к треугольному виду. Заметим, что все элементы

последней строки кратны a_n . Вынесем a_n из последней строки и, последовательно домножая ее на a_i , будем вычитать из i-ой строки, где $1 \le i \le (n-1)$.

$$\begin{vmatrix} x_1 & a_1b_2 & \dots & a_1b_n \\ a_2b_1 & x_2 & \dots & a_2b_n \\ \dots & \dots & \dots & \dots \\ a_nb_1 & a_nb_2 & \dots & a_nb_n \end{vmatrix} = a_n \cdot \begin{vmatrix} x_1 & a_1b_2 & \dots & a_1b_n \\ a_2b_1 & x_2 & \dots & a_2b_n \\ \dots & \dots & \dots & \dots \\ b_1 & b_2 & \dots & b_n \end{vmatrix}$$

$$= a_n \cdot \begin{vmatrix} x_1 - a_1b_1 & 0 & \dots & 0 \\ 0 & x_2 - a_2b_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ b_1 & b_2 & \dots & b_n \end{vmatrix}.$$

Полученный определитель — определитель нижнетреугольной. Он равен произведению элементов главной диагонали. Следовательно,

$$\begin{vmatrix} x_1 & a_1b_2 & \dots & a_1b_n \\ a_2b_1 & x_2 & \dots & a_2b_n \\ \dots & \dots & \dots & \dots \\ a_nb_1 & a_nb_2 & \dots & a_nb_n \end{vmatrix} = a_nb_n(x_1 - a_1b_1)(x_2 - a_2b_2)\dots(x_{n-1} - a_{n-1}b_{n-1}).$$

Итак, рекуррентное соотношение для D_n имеет вид

$$D_n = (x_1 - a_1b_1)(x_2 - a_2b_2)\dots(x_{n-1} - a_{n-1}b_{n-1})a_nb_n + (x_n - a_nb_n)D_{n-1}.$$

Используя рекуррентное соотношение, находим

$$D_n = (x_1 - a_1b_1)(x_2 - a_2b_2) \dots (x_{n-1} - a_{n-1}b_{n-1})a_nb_n$$

$$+ (x_1 - a_1b_1) \dots (x_{n-2} - a_{n-2}b_{n-2})(x_n - a_nb_n)a_{n-1}b_{n-1}$$

$$+ (x_n - a_nb_n)(x_{n-1} - a_{n-1}b_{n-1})D_{n-2}.$$

Продолжая так далее, находим

$$D_n = (x_1 - a_1b_1)(x_2 - a_2b_2) \dots (x_{n-1} - a_{n-1}b_{n-1})a_nb_n$$

$$+ (x_1 - a_1b_1) \dots (x_{n-2} - a_{n-2}b_{n-2})(x_n - a_nb_n)a_{n-1}b_{n-1} + \dots$$

$$+ (x_2 - a_2b_2) \dots (x_{n-1} - a_{n-1}b_{n-1})(x_n - a_nb_n)a_1b_1.$$

Вынеся множитель $\prod_{1 \leq i \leq n} (x_i - a_i b_i)$, получим выражение определителя

$$D_n = \prod_{1 \le i \le n} (x_i - a_i b_i) \times \sum_{1 \le j \le n} \frac{a_j b_j}{x_j - a_j b_j}.$$

Выделение линейных множителей. Определитель рассматривается как многочлен от одной или нескольких входящих в него букв. Преобразуя его, выясняют, что он делится на ряд линейных множителей, а значит, если эти множители взаимно просты, и на их произведение.

Сравнивая отдельные члены определителя с членами произведения множителей, находят частное от деления определителя на это произведение и тем самым находят сам определитель.

Пример 44 Вычислите методом выделения линейных множителей определитель Вандермонда п-го порядка

$$D_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix}.$$

▶ Рассмотрим D_n как многочлен от переменной x_n в коэффициентами, зависящими от $x_1, x_2, \ldots, x_{n-1}$. Видим, что D_n обращается в нуль при $x_n = x_1, x_n = x_2, \ldots, x_n = x_{n-1}$. Следовательно, D_n делится на многочлены $x_n - x_1, x_n - x_2, \ldots, x_n - x_{n-1}$. Так как все эти многочлены взаимно просты, то D_n делится и на их произведение, т.е.

$$D_n = q \cdot (x_n - x_1)(x_n - x_2) \dots (x_n - x_{n-1}), \tag{*}$$

где q — некоторый многочлен, зависящий от x_1, x_2, \ldots, x_n .

Разлагая определитель Вардермонда по последней строке, видим, что он является многочленом степени n-1 от x_n , причем коэффициент при старшем члене x_n^{n-1} равен D_{n-1} :

$$D_n = D_{n-1} x_n^{n-1} +$$
 младшие члены.

С другой стороны, из равенства (*) коэффициент при x_n^{n-1} равен q. Следовательно,

$$q = D_{n-1}.$$

Получили рекуррентную формулу

$$D_n = D_{n-1}(x_n - x_1)(x_n - x_2) \dots (x_n - x_{n-1}).$$

Откуда находим выражение для исходного определителя

$$D_n = \prod_{1 \le j < i \le n} (xi - x_j).$$

НЕКОТОРЫЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛИТЕЛЕЙ

Ранг матрицы по минорам. Метод окаймляющих миноров. Pангом по минорам произвольной (необязательно квадратной) матрицы A называют наибольший порядок $\operatorname{rk}_{\mathrm{M}} A$ ее минора c ненулевым значением.

Теорема 22 Ранг матрицы по минорам равен ее рангу по строкам/столбиам.

Oкаймляющим минором данного минора M матрицы A называют каждый минор \widetilde{M} , вычеркивание из которого крайней строки и крайнего столбца дает M.

Теорема 23 Ранг A по минорам равен такому числу r, что у A имеется ненулевой минор M порядка r, а значения всех миноров A, окаймляющих M, нулевые.

Таким образом, при вычислении ранга матрицы A по минорам, следует переходить от миноров меньших порядков к минорам меньших порядков. Если $M \neq 0$ порядка r, то следует вычислять лишь миноры порядка r+1, окаймляющие M. Если все они равны 0, то $\operatorname{rk} A = r$.

Пример 45 Найдите методом окаймляющих миноров ранг матрицы

$$A = \left[\begin{array}{rrrrr} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{array} \right].$$

▶ В качестве ненулевого минора порядка 1 можно взять $M_1=2$. Рассмотрим минор $M_2=\begin{vmatrix}2&-1\\4&-2\end{vmatrix}$ порядка 2, окаймляющий найденный минор M_1 . Заметим, что $M_2=0$. Поэтому рассмотрим еще один минор $M_2'=\begin{vmatrix}2&3\\4&5\end{vmatrix}$ порядка 2, окаймляющий минор M_1 . Так как $M_2'\neq 0$, то перейдем к минорам 3-го порядка, окаймляющим данный минор.

В матрице A содержится три минора порядка 3, окаймляющих минор M_2' . А именно,

$$M_3 = \begin{vmatrix} 2 & 3 & -1 \\ 4 & 5 & -2 \\ 2 & 1 & -1 \end{vmatrix}, \quad M_3' = \begin{vmatrix} 2 & 3 & -2 \\ 4 & 5 & 1 \\ 2 & 1 & 8 \end{vmatrix}, \quad M_3'' = \begin{vmatrix} 2 & 3 & 4 \\ 4 & 5 & 7 \\ 2 & 1 & 2 \end{vmatrix}.$$

Поскольку каждый из них равен нулю, то ${\rm rk_M}\,A=2$.

Критерий невырожденности матрицы. Обратные матрицы. Матричные уравнения.

Теорема 24 Следующие условия на $n \times n$ матрицу A равносильны:

- (1) $\det A \neq 0$;
- (2) $\operatorname{rk} A = n$;
- (3) существует такая матрица A^{-1} , что $AA^{-1} = A^{-1}A = E$.

Если эти условия выполнены, то матрицу A называют невырожденной, а матрицу A^{-1} — обратной к A.

Обозначим A^{\vee} транспонированную матрицу алгебраических дополнений, т.е. матрицу с элементами $a_{ij}^{\vee}=(-1)^{i+j}M_{ji}$. Тогда

$$A^{-1} = \frac{1}{\det A} \cdot A^{\vee}.$$

Однако при вычислении обратных матриц более эффективным и менее трудоемким явяется **метод элементарных преобразований**.

Заметим, что обратная матрица A^{-1} является решением матричного уравнения AX=E с известной матрицей A и единичной матрицей E (того же размера). Тогда матрица X должна быть квадратной, и каждый ее столбец $X^{(i)}$ является решением системы уравнений $AX^{(i)}=E^{(i)}$, где $X^{(i)}$ обозначает i-й столбец X. Разумно поступить аналогично примеру 31, составив расширенную матрицу [A|E] и приведя ее к ступенчатому виду, найти обратную матрицу.

Пример 46 *Найдите обратную матрицу* A^{-1} для матрицы

$$A = \left[\begin{array}{rrr} 3 & 1 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right].$$

lacktriangledown Приписываем к матрице A справа столбцы единичной матрицы E, т.е. саму единичную матрицу, затем приводим левую половину к ступенчатому виду:

$$\begin{bmatrix} 3 & 1 & 1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & \hline 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 & 0 & -3 \\ 0 & 0 & \hline 1 & 1 & -1 & -5 \end{bmatrix} \quad \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ A_{(3)} \\ A_{(4)} = A_{(2)} + 2A_{(3)} \\ \times & A_{(5)} = A_{(1)} - 3A_{(3)} \\ A_{(6)} = A_{(5)} - A_{(4)}. \end{array}$$

Выписываем оставшиеся строки матрицы

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & -1 & -5
\end{bmatrix}
\quad
\begin{matrix}
A_{(3)} \\
A_{(4)} \\
A_{(6)}.$$

Матрица, стоящая в правой части, обратна к исходной матрице A.

Пример 47 Решите матричное уравнение

$$\begin{bmatrix} 2 & -3 & 1 \\ 3 & -5 & 2 \\ 2 & -4 & 2 \end{bmatrix} \cdot X = \begin{bmatrix} -3 & 5 & -2 \\ -5 & 8 & -3 \\ -4 & 6 & -2 \end{bmatrix}.$$

 \blacktriangleright Если матрица A невырождена, то решение X матричного уравнения AX=B (XA=B) можно найти, умножая обе части уравнения на матрицу A^{-1} :

$$X = A^{-1}B$$
 $(X = BA^{-1}).$

В данном примере матрица A не обратима, т.к. ее столбцы линейно зависимы: $A^{(1)}+A^{(2)}+A^{(3)}=\mathbf{0}$. Заметим, что столбцы матрицы B также линейно зависимы: $B^{(1)}+B^{(2)}+B^{(3)}=\mathbf{0}$. Найдем решение данного уравнения.

Составим таблицу и приведем ее левую половину к ступенчатому виду:

$$\begin{bmatrix} 2 & -3 & 1 & | & -3 & 5 & -2 \\ 3 & -5 & 2 & | & -5 & 8 & -3 \\ 2 & -4 & 2 & | & -4 & 6 & -2 \\ 1 & -1 & 0 & | & -1 & 2 & -1 \\ 0 & \boxed{1} & -1 & 1 & | & -1 & 0 \\ 0 & -2 & 2 & | & -2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \boxed{1} & 0 & -1 & 0 & 1 & -1 \end{bmatrix} \quad \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(4)} = A_{(2)} - A_{(3)} \\ \times & A_{(5)} = A_{(1)} - A_{(3)} \\ \times & A_{(6)} = A_{(3)} - 2A_{(4)} \\ A_{(7)} = A_{(6)} + 2A_{(5)} \\ A_{(8)} = A_{(4)} + A_{(5)}. \end{array}$$

В сторке $A_{(7)}$ выяснилось, что все три столбца начальной матрицы B дают совместные системы. Выпишем оставшиеся ненулевые строки:

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 1 & -1 \\
0 & 1 & -1 & 1 & -1 & 0
\end{bmatrix}
A_{(8)}$$
 $A_{(5)}$.

Теперь по ним нужно записать фундаментальные решения сопутствующей однородной системы $AX=\mathbf{0}$ и по одному частному решению неоднородной системы $AX=B^{(k)}$ для каждого столбца матрицы B. Пусть x_3

— параметр. Подставляя $x_3 = 1$, находим фундаментальное решение X_0 ; подставляя $x_3 = 0$ находим частные решения X_1, X_2, X_3 :

$$X_0 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right], \quad X_1 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \quad X_2 = \left[\begin{array}{c} 1 \\ -1 \\ 0 \end{array} \right], \quad X_3 = \left[\begin{array}{c} -1 \\ 0 \\ 0 \end{array} \right].$$

Общее решение системы $AX = B^{(k)}$ есть линейное многообразие

$$\{X^{(k)} + \alpha_k X^{(0)} \mid \alpha_k \in \mathbb{R}\},\$$

причем параметры α_1 , α_2 , α_3 между собой независымы. Поэтому общее решение исходного матричного уравнения записывается в виде

$$X = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix},$$

или

$$X = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}.$$

Правило Крамера.

Теорема 25 Если $\det A \neq 0$, то система AX = B линейных уравнений в матричной форме записи, она же

$$A^{(1)}x_1 + A^{(2)}x_2 + \ldots + A^{(n)}x_n = B$$

в форме линейной комбинации столбцов, имеет единственное решение

$$X = [\widehat{x}_1, \widehat{x}_2, \dots, \widehat{x}_n]^\mathsf{T}, \quad \widehat{x}_j = D_j / \det A,$$

где D_j есть определитель матрицы, полученной из матрицы A заменой столбца $A^{(j)}$ на столбец B.

Применение определителей к составлению уравнений и доказательству линейной (не)зависимости.

Пример 48 Найдите условия, необходимые и достаточные для того, чтобы три точки $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ лежали на одной прямой.

ightharpoonup Пусть Ax + By + c = 0 — уравнение прямой. Принадлежность данных точек прямой равносильно тому, что каждое из равенств

$$\begin{cases} Ax_1 + By_1 + C = 0, \\ Ax_2 + By_2 + C = 0, \\ Ax_3 + By_3 + C = 0 \end{cases}$$

является тождеством. Данную систему можно рассматривать как систему линейных уравнений относительно неизвестных $A,\ B,\ C,$ не равных одновременно нулю.

Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ${\rm rk}\,A$ меньше числа переменных. Последнее означает линейную зависимость строк матрицы, что равносильно равенству нулю определителя матрицы системы, т.е.

$$\left| \begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right| = 0.$$

Пример 49 Составьте уравнение окружности, проходящей через точки $(x_1, y_1), (x_2, y_2), (x_3, y_3),$ не лежащие на одной прямой.

▶ Пусть (x,y) есть произвольная точка окружности, и $(x-x_0)^2+(y-y_0)^2=R^2$ — уравнение искомой окружности. Так как все четыре точки $(x,y),\ (x_1,y_1),\ (x_2,y_2),\ (x_3,y_3)$ принадлежат на данной окружности, то их координаты удовлетворяют уравнению окружности. Получаем систему уравнений относительно $x_0,\ y_0$ и R:

$$\begin{cases} x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 - R^2 = 0, \\ x_1^2 - 2x_1x_0 + x_0^2 + y_1^2 - 2y_1y_0 + y_0^2 - R^2 = 0, \\ x_2^2 - 2x_2x_0 + x_0^2 + y_2^2 - 2y_2y_0 + y_0^2 - R^2 = 0, \\ x_3^2 - 2x_3x_0 + x_0^2 + y_3^2 - 2y_3y_0 + y_0^2 - R^2 = 0, \end{cases}$$

которую перепишем в виде

$$\begin{cases} -2xx_0 - 2yy_0 + (x_0^2 + y_0^2 - R^2) + (x^2 + y^2) = 0, \\ -2x_1x_0 - 2y_1y_0 + (x_0^2 + y_0^2 - R^2) + (x_1^2 + y_1^2) = 0, \\ -2x_2x_0 - 2y_2y_0 + (x_0^2 + y_0^2 - R^2) + (x_2^2 + y_2^2) = 0, \\ -2x_3x_0 - 2y_3y_0 + (x_0^2 + y_0^2 - R^2) + (x_3^2 + y_3^2) = 0. \end{cases}$$

Получили систему уравнений относительно неизвестных x_0 , y_0 и $x_0^2 + y_0^2 - R^2$. Она совместна тогда, когда строки расширенной матрицы данной системы линейно зависимы. т.е.

$$\begin{vmatrix} -2x & -2y & 1 & x^2 + y^2 \\ -2x_1 & -2y_1 & 1 & x_1^2 + y_1^2 \\ -2x_2 & -2y_2 & 1 & x_2^2 + y_2^2 \\ -2x_3 & -2y_3 & 1 & x_3^2 + y_3^2 \end{vmatrix} = 0.$$

Пример 50 Докажите линейную независимость системы функций

$$e^{k_1x}, e^{k_2x}, \dots, e^{k_nx},$$

где все $k_1,\,k_2,\,\ldots,\,k_n$ — попарно различные вещественные числа.

▶ Запишем тривиальную линейную комбинацию

$$\alpha_1 e^{k_1 x} + \alpha_2 e^{k_2 x} + \ldots + \alpha_n e^{k_n x} = \mathbf{0}$$

и продифференцируем полученное равенство n-1 раз. Получим систему уравнений:

$$\begin{bmatrix} e^{k_1x} & e^{k_2x} & \dots & e^{k_nx} \\ k_1e^{k_1x} & k_2e^{k_2x} & \dots & k_ne^{k_nx} \\ \dots & \dots & \dots & \dots & \dots \\ k_1^{n-1}e^{k_1x} & k_2^{n-1}e^{k_2x} & \dots & k_n^{n-1}e^{k_nx} \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix} = \mathbf{0}.$$

Так как $e^{k_i} \neq 0, i = 1, 2, ..., n$, то система равносильна системе

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ k_1 & k_2 & \dots & k_n \\ \dots & \dots & \dots & \dots \\ k_1^{n-1} & k_2^{n-1} & \dots & k_n^{n-1} \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix} = \mathbf{0}.$$

Определитель матрицы данной системы есть определитель Вандремонда, который не равен нулю для попарно различных чисел k_1, k_2, \ldots, k_n . Следовательно, система уравнений имеет только нулевое решение $\alpha_1 = \ldots = \alpha_n = 0$, и данная система функций линейно независима.

11. Билинейные и квадратичные формы

Пусть $\mathbb F$ обозначает одну из числовых множеств $\mathbb R$ или $\mathbb C$.

 $\mathit{Билиней}$ ной формой на \mathbb{F}^n называют выражение вида

$$f(X,Y) = X^{\mathsf{T}}AY,$$

где $X = [x_1, \ldots, x_n]^\mathsf{T}$ и $Y = [y_1, \ldots, y_n]^\mathsf{T}$ принимают значения из \mathbb{F}^n , а $A = [a_{ij}]$ — матрица коэффициентов порядка $n \times n$, которая называется матрицей билинейной формы.

Билинейную форму можно записать в виде многочлена от переменных $x_1, \ldots, x_n, y_1, \ldots, y_n$

$$f(X,Y) = \sum_{1 \le i,j \le n} a_{ij} x_i y_j.$$

Билинейная форма обладает свойством nune йно cmu по каждому аргументу:

$$f(\alpha_1 X_1 + \alpha_2 X_2, Y) = \alpha_1 f(X_1, Y) + \alpha_2 f(X_2, Y),$$

$$f(X, \beta_1 Y_1 + \beta_2 Y_2) = \beta_1 f(X, Y_1) + \beta_2 f(X, Y_2),$$

где $X_i, Y_j \in \mathbb{F}^n$, $\alpha_i, \beta_j \in \mathbb{F}$ (i, j = 1, 2).

Квадратичной формой называют выражение вида

$$q(X) = f(X, X) = X^{\mathsf{T}} A X.$$

которое также можно представить в виде многочлена

$$q(X) = \sum_{1 \le i, j \le n} a_{ij} x_i x_j.$$

Билинейная форма называется симметричной, если

$$f(X,Y) = f(Y,X).$$

Теорема 26 Билинейная форма $f(X,Y) = X^{\mathsf{T}}AY$ симметричная тогда и только тогда, когда матрица A билинейной формы f симметрична.

Теорема 27 Любая квадратичная форма задается симметричной матрицей.

Изменение матрицы билинейной формы при смене базисов. Пуств S — матрица перехода от базиса $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ к базису $\{\mathbf{f}_1,\ldots,\mathbf{f}_n\}$, связывающая старые и новые координаты векторов X=SX' и Y=SY'. Тогда матрица билинейной формы в новых координатах имеет вид:

$$A' = S^{\mathsf{T}} A S$$
.

Две билинейные формы называются *эквивалентыми*, если одна получена из другой заменой переменных.

Говорят, что билинейная форма f имеет канонический вид, если ее матрица A диагональна. Базис \mathcal{B} , в котором A диагональна, называется каноническим.

Теорема 28 (Лагранж) Для всякой квадратичной формы существует канонический базис.

Метод приведения квадратичной формы к каноническому виду (метод Лагранжа, метод выделения полных квадратов). Пусть дана квадратичная форма

$$q(X) = \sum_{1 \le i, j \le n} a_{ij} x_i x_j.$$

(1) Пусть $a_{11} \neq 0$. Если $a_{11} = 0$ и $a_{ii} \neq 0$, то перенумеровываем переменные.

Итак, можно считать, что $a_{11} \neq 0$. Сгруппируем все слагаемые, содержащие x_1 , и выделим полный квадрат:

$$q(X) = [a_{11}x_1^2 + 2x_1(a_{12}x_2 + \dots + a_{1n}x_n)] + \sum_{2 \le i,j \le n} a_{ij}x_ix_j$$
$$= a_{11}(x_1 + \frac{a_{12}}{a_{11}}x_2 + \dots + \frac{a_{1n}}{a_{11}}x_n)^2 + \sum_{2 \le i,j \le n} b_{ij}x_ix_j.$$

Далее повторяем рассуждения для формы $\sum_{2 \leq i,j \leq n} b_{ij} x_i x_j$ и т.д.

(2) Если все $a_{ii} = 0$ и $a_{ij} \neq 0$, то можно сделать замену переменных:

$$x_i = x_i' - x_j', \quad x_j = x_i' + x_j', \quad x_k = x_k'$$
 для всех $k \neq i, j$.

Пример 51 Найдите нормальный вид и невырожденное линейное преобразование, приводящее к этому виду форму, для формы

$$q(X) = x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_1.$$

▶ Так как все $a_{ii} = 0$ и $a_{12} \neq 0$, то выполним замену

$$x_1 = y_1 - y_2$$
, $x_2 = y_1 + y_2$, $x_3 = y_3$, $x_4 = y_4$.

Тогда

$$q(Y) = (y_1 - y_2)(y_1 + y_2 + y_4) + (y_1 + y_2)y_3 + y_3y_4$$

= $y_1^2 + y_1y_3 + y_1y_4 - y_2^2 - y_2y_4 + y_2y_3 + y_3y_4$.

Теперь квадратичная форма содержит y_1^2 . Сгруппируем слагаемые, содержашие y_1 , и выделим полный квадрат:

$$\begin{aligned} q(Y) = & [y_1^2 + y_1(y_3 + y_4)] - y_2^2 - y_2y_4 + y_2y_3 + y_3y_4 \\ = & [y_1 + \frac{1}{2}y_3 + \frac{1}{2}y_4]^2 - \frac{1}{4}(y_3 + y_4)^2 - y_2^2 - y_2y_4 + y_2y_3 + y_3y_4 \\ = & [y_1 + \frac{1}{2}y_3 + \frac{1}{2}y_4]^2 - y_2^2 + y_2y_3 - y_2y_4 - \frac{1}{4}[y_3 - y_4]^2. \end{aligned}$$

Повторяя рассуждения для $-y_2^2 + y_2y_3 - y_2y_4 - \frac{1}{4}[y_3 - y_4]^2$, найдем канонический вид квадратичной формы:

$$q(Y) = [y_1 + \frac{1}{2}y_3 + \frac{1}{2}y_4]^2 - [y_2 - \frac{1}{2}y_3 + \frac{1}{2}y_4]^2.$$

Введем новые переменные $z_1=y_1+\frac{1}{2}y_3+\frac{1}{2}y_4,\,z_2=y_2-\frac{1}{2}y_3+\frac{1}{2}y_4,\,z_3=y_3$ и $z_4=y_4.$ Тогда квадратичная форма примет вид:

$$q(Z) = z_1^2 - z_2^2.$$

Теперь найдем преобразование переменных, приводящее квадратичную форму к каноническому виду. Перепишем преобразования переменных в матричном виде:

$$X = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot Y, \qquad Y = \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot Z$$

Итак, преобразование переменных, приводящее данную квадратичную форму к каноническому виду:

$$X = \begin{bmatrix} 1 & -1 & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot Z.$$

Заметим, что преобразование координат определено неоднозначно.

ВЕЩЕСТВЕННЫЕ КВАДРАТИЧНЫЕ ФОРМЫ

Следствие 11 Для всякой квадратичной формы q ранга r на пространстве \mathbb{F}^n , найдется базис, в котором

$$q(X) = c_1 x_1^2 + \dots c_r x_r^2, \quad \text{ide } c_i \in \mathbb{F}^{\times} = \mathbb{F} \setminus \{\mathbf{0}\}.$$

В случае $\mathbb{F} = \mathbb{C}$ квадратичную форму можно привести к сумме квадратов. Случай $\mathbb{F} = \mathbb{R}$ сложнее: нельзя избавится от минусов.

Следствие 12 Для всякой вещественной квадратичной формы q существует базис, в котором она принимает **нормальный** вид

$$q(X) = x_1^2 + \ldots + x_p^2 - x_{p+1}^2 - \ldots - x_r^2.$$

Теорема 29 (закон инерции) Числа p и r, определяющие вид нормальный вид вещественной квадратичной формы q, зависят только от q и не зависят от выбора базиса, приводящего его κ каноническому виду.

Число r называется undeкcom unepuuu (panrom) квадратичной формы, p-nonoжumenьным индексом инерции, r-p-ompuuqamenьным индексом инерции, 2p-r— сигнатура. Иногда сигнатурой называют пару чисел (p,r-p).

Индекс	Название	Дополнительные
инерции	Пазвание	условия
r=n	Невырож денная	
p = n	Положительно определеная	$\mathbf{x} \neq 0 \Longrightarrow q(\mathbf{x}) > 0$
r-p=n	Отрицательно определеная	$\mathbf{x} \neq 0 \Longrightarrow q(\mathbf{x}) < 0$
r-p=0	Неотрицательно полуопределеная	$q(\mathbf{x}) \ge 0$
p = 0	Неположительно полуопределеная	$q(\mathbf{x}) \le 0$

Главным минором матрицы A называется минор $\Delta_k(A)$, составленный из первых k строк матрицы A и первых k столбцов.

Теорема 30 Если все главные миноры матрицы вещественной квадратичной формы q имеют ненулевые значения $\Delta_0, \ldots, \Delta_n$, то количества сохранений и перемен знаков в этой последовательности равны положительному и отрицательному индексам инерции формы q.

Следствие 13 (критерий Сильвестра) Для всякой вещественной квадратичной формы равносильны утверждения:

- (1) квадратичная форма положительно определена;
- (2) в любом базисе ее главные миноры положительны.

Пример 52 Найдите все значения параметра λ , при которых положительно определена квадратичная форма

$$f = 2x_1^2 + x_2^2 + 3x_3^2 + 2\lambda x_1 x_2 + 2x_1 x_3.$$

▶ Выпишем матрицу квадратичной формы:

$$A = \left[\begin{array}{ccc} 2 & \lambda & 1\\ \lambda & 1 & 0\\ 1 & 0 & 3 \end{array} \right],$$

и вычислим главные миноры матрицы A:

$$\Delta_0 = 1$$
, $\Delta_1 = 2$, $\Delta_2 = 2 - \lambda^2$, $\Delta_3 = 5 - 3\lambda^2$.

Для положительной определенности данной форму необходимо, чтобы $\Delta_2=2-\lambda^2>0$ и $\Delta_3=5-3\lambda^2>0$. Решая полученную систему неравенств, находим $|\lambda|<\sqrt{5/3}$.

12. Линейные отображения и линейные операторы

Пусть $\mathbb F$ обозначает одну из числовых систем: $\mathbb R$ или $\mathbb C$. Предположим, что $\mathcal V$ и $\mathcal W$ — линейные пространства над $\mathbb F$ размерностей $\dim \mathcal V = n$ и $\dim \mathcal W = m$ соответственно.

Отображение $\varphi: \mathcal{V} \to \mathcal{W}$ пространства \mathcal{V} в пространство \mathcal{W} называется линейным, если для любых $X,Y \in \mathcal{V}$ и для любых $\alpha,\beta \in \mathbb{F}$

$$\varphi(\alpha X + \beta Y) = \alpha \varphi(X) + \beta \varphi(Y).$$

Если $\mathcal{V}=\mathcal{W},$ то линейное отображение $\varphi:\mathcal{V}\to\mathcal{V}$ называется линейным оператором.

Теорема 31 Между линейными отображениями V в W и $m \times n$ матрицами имеется взаимно однозначное соответствие.

Матрица линейного отображения. Соответствие между линейными отображениями и матрицами задается следующим образом. Рассмотрим стандартный базис $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ пространства \mathbb{F}^n . Образы $\varphi(\mathbf{e}_i)$ $(i=1,\ldots,n)$ векторов стандартного базиса $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ принадлежат пространству \mathbb{F}^m , следовательно, могут быть разложены по базису $\{\mathbf{f}_1,\ldots,\mathbf{f}_m\}$ стандратного базиса \mathbb{F}^m :

$$\varphi(\mathbf{e}_1) = a_{11}\mathbf{f}_1 + \ldots + a_{m1}\mathbf{f}_m,$$

$$\vdots$$

$$\varphi(\mathbf{e}_n) = a_{1n}\mathbf{f}_1 + \ldots + a_{mn}\mathbf{f}_m.$$

Тогда матрица, **столбцы** которой состоят из координат образов $\varphi(\mathbf{e}_i)$ базисных векторов,

$$A = \left[\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{array} \right]$$

будет искомой матрицей. Она называется матрицей линейного отображения в базисах $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}, \{\mathbf{f}_1, \dots, \mathbf{f}_m\}$.

Пример 53 Найдите матрицу линейного оператора $\varphi(\mathbf{x})=(\mathbf{x},\mathbf{a})\mathbf{a}$ в ев-клидовом пространстве \mathbb{R}^3 , если $\mathbf{a}=\mathbf{e}_1-2\mathbf{e}_3$ в ортонормированном базисе $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$, а (\mathbf{x},\mathbf{a}) обозначает стандартное скалярное произведение.

▶ Вычислим $\varphi(\mathbf{e}_i)$, i = 1, 2, 3:

$$\begin{split} & \varphi(\mathbf{e}_1) = (\mathbf{e}_1, \mathbf{e}_1 - 2\mathbf{e}_3) \cdot (\mathbf{e}_1 - 2\mathbf{e}_3) = (\mathbf{e}_1, \mathbf{e}_1) \cdot (\mathbf{e}_1 - 2\mathbf{e}_3) = \mathbf{e}_1 - 2\mathbf{e}_3, \\ & \varphi(\mathbf{e}_2) = (\mathbf{e}_2, \mathbf{e}_1 - 2\mathbf{e}_3) \cdot (\mathbf{e}_1 - 2\mathbf{e}_3) = \mathbf{0}, \\ & \varphi(\mathbf{e}_3) = (\mathbf{e}_3, \mathbf{e}_1 - 2\mathbf{e}_3) \cdot (\mathbf{e}_1 - 2\mathbf{e}_3) = -3(\mathbf{e}_3, \mathbf{e}_3) \cdot (\mathbf{e}_1 - 2\mathbf{e}_3) = -3\mathbf{e}_1 + 6\mathbf{e}_3. \end{split}$$

Таким образом, матрица линейного оператора φ в базисе $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ имеет вид

$$A = \left[\begin{array}{rrr} 1 & 0 & -3 \\ 0 & 0 & 0 \\ -2 & 0 & 6 \end{array} \right].$$

Образ вектора при линейном отображении. Пусть $\mathbf{x} \in \mathcal{V}$ в базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ имеет координаты X. Предположим, что линейное отображение $\varphi: \mathcal{V} \to \mathcal{W}$ задано матрицей A в базисах $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, $\{\mathbf{f}_1, \dots, \mathbf{f}_n\}$. Тогда координаты образа вектора \mathbf{x} в базисе $\{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ можно найти по формуле:

$$\varphi(\mathbf{x}) = AX.$$

Пример 54 Докажите, что существует единственный линейный оператор пространства \mathbb{R}^3 , переводящий векторы $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ соответственно в векторы $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$, если $\mathbf{a}_1 = [2, 3, 5]^\mathsf{T}$, $\mathbf{a}_2 = [0, 1, 2]^\mathsf{T}$, $\mathbf{a}_3 = [1, 0, 0]^\mathsf{T}$, $\mathbf{b}_1 = [1, 1, 1]^\mathsf{T}$, $\mathbf{b}_2 = [1, 1, -1]^\mathsf{T}$, $\mathbf{b}_3 = [2, 1, 2]^\mathsf{T}$.

▶ Обозначим A_{φ} матрицу искомого линейного оператора φ в том же базисе, в котором заданы координаты векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$. Тогда

$$A_{\varphi} \cdot \mathbf{a}_i = \mathbf{b}_i, \quad i = 1, 2, 3.$$

Составим матрицы A и B из столбцов координат векторов ${\bf a}_1, {\bf a}_2, {\bf a}_3$ и ${\bf b}_1, {\bf b}_2, {\bf b}_3$ соответственно. Тогда матрица A_{φ} будет решением матричного уравнения

$$A_{\varphi} \cdot A = B.$$

Это уравнение имеет единственное решение тогда и только тогда, когда A — обратимая матрица, т.е. ее столбцы $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ линейно независимы.

Итак,
$$A_{\varphi} = BA^{-1}$$
. Находим $A^{-1} = \begin{bmatrix} 0 & 2 & -1 \\ 0 & -5 & 3 \\ 1 & -4 & 2 \end{bmatrix}$. Следовательно,

$$A_{\varphi} = \begin{bmatrix} 2 & -11 & 6 \\ 1 & -7 & 4 \\ 2 & -1 & 0 \end{bmatrix}.$$

Матрица линейного отображения в разных базисах. Рассмотрим $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ и $\{\mathbf{e}'_1,\ldots,\mathbf{e}'_n\}$ — старый и новый базисы пространства \mathcal{V} , а $\{\mathbf{f}_1,\ldots,\mathbf{f}_m\}$ и $\{\mathbf{f}'_1,\ldots,\mathbf{f}'_m\}$ — старый и новый базисы пространства \mathcal{W} . Обозначим соответственно S и T матрицы перехода между базисами пространств \mathcal{V} и \mathcal{W} .

Пусть $\varphi: \mathcal{V} \to \mathcal{W}$ — линейное отображение. Тогда матрица A этого отображения в базисах $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, $\{\mathbf{f}_1, \dots, \mathbf{f}_m\}$ связана с матрицей A' отображения в базисах $\{\mathbf{e}'_1, \dots, \mathbf{e}'_n\}$, $\{\mathbf{f}'_1, \dots, \mathbf{f}'_m\}$ равенством

$$A' = S^{-1}AT.$$

 Π ример 55 Линейный оператор φ в базисе $\{{f e}_1,{f e}_2,{f e}_3\}$ имеет матрицу

$$A = \left[\begin{array}{rrr} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{array} \right].$$

Найти матрицу этого оператора в базисе $\mathbf{f}_1 = 2\mathbf{e}_1 + 3\mathbf{e}_2 + \mathbf{e}_3$, $\mathbf{f}_2 = 3\mathbf{e}_1 + 4\mathbf{e}_2 + \mathbf{e}_3$, $\mathbf{f}_3 = \mathbf{e}_1 + 2\mathbf{e}_2 + 2\mathbf{e}_3$.

▶ Матрицу оператора в новом базисе найдем по формуле $A' = T^{-1}AT$. Составляем матрицу перехода, находим T^{-1} , а затем A':

$$T = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{bmatrix}, \quad T^{-1} = \begin{bmatrix} -6 & 5 & -2 \\ 4 & -3 & 1 \\ 1 & -1 & 1 \end{bmatrix}, \quad A' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Ядро и образ линейного отображения. $\mathit{Ядром}$ Кег φ линейного отображения $\varphi: \mathcal{V} \to \mathcal{W}$ называется такое множество векторов $\mathbf{x} \in \mathcal{V}$, что $\varphi(\mathbf{x}) = \mathbf{0}$, т.е.

$$\operatorname{Ker} \varphi = \{ x \in \mathcal{V} \mid \varphi(\mathbf{x}) = \mathbf{0} \}.$$

Образом $\operatorname{Im} \varphi$ линейного отображения $\varphi: \mathcal{V} \to \mathcal{W}$ называется множество образов $\varphi(\mathbf{x})$ всех векторов $\mathbf{x} \in \mathcal{V}$, т.е.

$$\operatorname{Im} \varphi = \varphi(\mathcal{V}) = \{ \varphi(\mathbf{x}) \mid \mathbf{x} \in \mathcal{V} \}.$$

Если A — матрица линейного оператора φ , то

 $\operatorname{Ker} \varphi = \operatorname{пространство} \operatorname{решений} A\mathbf{x} = \mathbf{0},$ $\operatorname{Im} \varphi = \operatorname{пространство} \operatorname{столбцов} \operatorname{матрицы} A.$

Пример 56 Найдите базис ядра и образа линейного оператора, заданного матрицей

$$A = \left[\begin{array}{cccc} 2 & 1 & -1 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & -3 & 5 & 1 \\ 5 & 1 & 0 & 3 \end{array} \right].$$

▶ І способ. Для того, чтобы найти базис ядра $\operatorname{Ker} \varphi$ линейного оператора φ , нужно найти базис пространства решений системы уравнений $AX = \mathbf{0}$.

$$\begin{bmatrix} 2 & 1 & -1 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & -3 & 5 & 1 \\ 5 & 1 & 0 & 3 \\ 1 & -1 & 2 & 1 \\ 0 & 3 & -5 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 6 & -10 & -2 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & -3 & 0 \end{bmatrix} \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(3)} \\ \times & A_{(4)} \\ \times & A_{(5)} = A_{(2)} - A_{(1)} \\ \times & A_{(6)} = A_{(1)} - 2A_{(5)} \\ A_{(7)} = A_{(6)} + A_{(3)} \\ \times & A_{(8)} = A_{(4)} - 5A_{(5)} \\ A_{(9)} = A_{(8)} + 2A_{(3)} \\ A_{(10)} = A_{(5)} - A_{(3)} \end{array}$$

Выпишем ненулевые строки ступенчатой матрицы, выделяя главные единицы:

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -3 & 5 & 1 \end{bmatrix} \quad \begin{array}{c} A_{(10)} \\ A_{(3)}. \end{array}$$

Теперь последовательно подставляя вместо свободных переменных x_2 , x_3 значение 1 и зануляя остальные свободные переменные, находим базис пространства решений:

$$X_1 = \begin{bmatrix} -2\\1\\0\\3 \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 3\\0\\1\\-5 \end{bmatrix}.$$

Далее, чтобы найти базис образа ${\rm Im}\, \varphi$ оператора φ , нужно определить базис пространства столбцов матрицы A. По найденному ступенчатому виду матрицы A, определяем, что, например, первый и последний столбцы матрицы A можно взять в качестве базисных.

Итак,

$$\operatorname{Ker} \varphi = \langle [-2, 1, 0, 3]^{\mathsf{T}}, [3, 0, 1, -5]^{\mathsf{T}} \rangle$$

$$\operatorname{Im} \varphi = \langle [2, 3, 0, 5]^{\mathsf{T}}, [12, 1, 3]^{\mathsf{T}} \rangle$$

II способ позволяет одновременно находить базис ядра и образа линейного отображения. Для этого нужно:

- (1) составить расширенную матрицу $[E|A^{\mathsf{T}}]$;
- (2) над строками расширенной матрицы выполнить преобразования, приводящие $A\mathsf{T}$ к ступенчатому виду B, и пусть в результате справа будет получена матрица C;
- (3) ненулевые строки матрицы B образуют базис образа линейного отображения, а строки матрицы C, справа от которых стоят нулевые строки матрицы B, образуют базис ядра линейного отображения.

Итак, составляем расширенную матрицу $[E|A^{\mathsf{T}}]$ и приводим A^{T} к ступенчатому виду:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 2 & 3 & 0 & 5 \\ 0 & 1 & 0 & 0 & 1 & 0 & -3 & 1 \\ 0 & 0 & 1 & 0 & -1 & 1 & 5 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 0 & 0 & 1 & 2 & 1 \\ 0 & -1 & 0 & 1 & 0 & 2 & 4 & 2 \\ 1 & -2 & 0 & 0 & 0 & 3 & 6 & 3 \\ 0 & -3 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & -5 & -3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} \times & A_{(1)} \\ A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(4)} \\ A_{(5)} = A_{(2)} + A_{(3)} \\ \times & A_{(6)} = A_{(4)} - A_{(2)} \\ \times & A_{(7)} = A_{(1)} - 2A_{(2)} \\ A_{(8)} = A_{(6)} - 2A_{(5)} \\ A_{(9)} = A_{(7)} - 3A_{(5)}. \end{array}$$

Выпишем оставшиеся строки:

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & -3 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 2 & 1 \\ \hline 0 & -3 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & -5 & -3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} A_{(2)} \\ A_{(5)} \\ A_{(8)} \\ A_{(9)}. \end{matrix}$$

Находим

$$\operatorname{Ker} \varphi = \langle [0, -3, 2, 1]^{\mathsf{T}}, [1, -5, -3, 0]^{\mathsf{T}} \rangle, \\ \operatorname{Im} \varphi = \langle [1, 0, -3, 1]^{\mathsf{T}}, [0, 1, 2, 1]^{\mathsf{T}} \rangle.$$

Найденные вторым способом базисы ядра и образа отличается от предыдущих. Но базис и не определяется однозначно. ◀

13. Собственные и корневые подпространства

Инвариантные подпространства. Подпространство $\mathcal{U}\subseteq\mathcal{V}$ называется инвариантным относительно линейного оператора $\varphi:\mathcal{V}\to\mathcal{V},$ если $\varphi(\mathcal{U})\subseteq\mathcal{U},$ т.е.

$$\varphi(\mathbf{x}) \in \mathcal{U}$$
 для всех $\mathbf{x} \in \mathcal{U}$.

Теорема 32 Для всякого линейного оператора $\varphi \colon \mathcal{V} \to \mathcal{V}$ следующие условия эквивалентны:

- (1) $\mathcal{V} = \mathcal{V}_1 \oplus \mathcal{V}_2 \oplus \cdots \oplus \mathcal{V}_k$, где все \mathcal{V}_i инвариантны относительно φ ;
- (2) в некотором базисе пространства $\mathcal V$ оператор φ задается блочнодиагональной матрицей с k блоками на диагонали.

Собственные векторы и собственные значения. Вектор $\mathbf{v} \neq \mathbf{0}$ называется собственным вектором линейного оператора $\mathsf{A}: \mathcal{V} \to \mathcal{V}$, принадлежащим собственному значению (числу) $\lambda \in \mathbb{F}$, если $\mathsf{A}(\mathbf{x}) = \lambda \mathbf{x}$.

Собственным подпространством, принадлежщим собственному числу $\lambda \in \mathbb{F}$, называют множество собственных векторов оператора A, отвечающих собственному значению λ , в объединении с нулевым вектором, т.е.

$$\mathcal{V}^{\lambda} = \{\mathbf{x} \in \mathcal{V} \mid \mathsf{A}(\mathbf{x}) = \lambda \mathbf{x}\} \cup \{\mathbf{0}\}$$

Другими словами, $\mathcal{V}^{\lambda} = \mathrm{Ker}(\mathsf{A} - \lambda \mathsf{E})$, где за E обозначен тождественный оператор на \mathcal{V} . Размерность $\dim \mathcal{V}^{\lambda}$ собственного подпространства \mathcal{V}^{λ} называют $\mathit{геометрической}$ $\mathit{кратностью}$ числа λ .

Спектром оператора A называют множество всех собственных значений A вместе с их геометрическими кратностями и обозначают Spec A.

Теорема 33 Пусть дан линейный оператор A: $V \to V$. Тогда:

- (1) собственные векторы, принадлежащие различным собственным значениям, линейно независимы;
 - (2) сумма всех собственных подпространств прямая.

Характеристический многочлен матрицы и оператора. Многочлен $\chi_A(t) = \det(A - tE)$ называется характеристическим многочленом матрицы A.

Xарактеристический многочлен $\chi_{\mathsf{A}}(t)$ оператора $\mathsf{A}\colon \mathcal{V} \to \mathcal{V}$ — это характеристический многочлен матрицы A этого оператора в некотором базисе

Можно доказать, что для матрицы порядка $n \times n$ характеристический многочлен равен

$$|A - \lambda E| = (-\lambda)^n + c_1(-\lambda)^{n-1} + \ldots + c_n,$$

где c_i — сумма главных миноров порядка i матрицы A.

Теорема 34 Пусть $\lambda \in \mathbb{F}$. Тогда следующие утверждения эквивалентни:

- $(1) \lambda coбственное число оператора A;$
- (2) $\chi_{\mathsf{A}}(\lambda) = 0$;
- (3) $\mathcal{V}^{\lambda} \neq \{\mathbf{0}\}.$

Пример 57 Найдите собственные числа и собственные векторы линейного оператора, заданного в некотором базисе матрицей

$$A = \left[\begin{array}{ccc} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{array} \right].$$

 \blacktriangleright (1) Составим характеристический многочлен $\chi_A(\lambda) = \det(A - \lambda E)$. Тогда по теореме 34 все собственные числа данного оператора являются корнями многочлена $\chi_A(\lambda)$. Вычисляя главные миноры матрицы A, находим характеристический многочлен оператора:

$$\chi_A(\lambda) = \begin{vmatrix} 4 - \lambda & -5 & 2 \\ 5 & -7 - \lambda & 3 \\ 6 & -9 & 4 - \lambda \end{vmatrix} = (-\lambda)^3 + (4 - 7 + 4)(-\lambda)^2$$

$$+ \left(\begin{vmatrix} 4 & -5 \\ 5 & -7 \end{vmatrix} + \begin{vmatrix} 4 & 2 \\ 6 & 4 \end{vmatrix} + \begin{vmatrix} -7 & 3 \\ -9 & 4 \end{vmatrix} \right) (-\lambda) + \begin{vmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{vmatrix}$$

$$= -\lambda^3 + \lambda^2.$$

Корнями многочлена $\chi_A(\lambda)$, а, следовательно, и собственными числами оператора являются $\lambda=1$ и $\lambda=0$.

(2) Найдем собственные векторы, принадлежащие собственным числам 1 и 0. Для этого достаточно найти базис собственных подпространств \mathcal{V}^1 и \mathcal{V}^0 , т.е. базис $\operatorname{Ker}(\mathsf{A} - \lambda \mathsf{E})$ для $\lambda = 1$ и $\lambda = 0$.

 $\underline{\lambda=1}$. Составляем матрицу оператора $\mathsf{A}_1=\mathsf{A}-\lambda\mathsf{E}$ при $\lambda=1$:

$$A_1 = A - 1 \cdot E = \left[\begin{array}{ccc} 4 - 1 & -5 & 2 \\ 5 & -7 - 1 & 3 \\ 6 & -9 & 4 - 1 \end{array} \right] = \left[\begin{array}{ccc} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 6 & -9 & 3 \end{array} \right].$$

Ищем базис ядра оператора A_1 . Для этого составляем расширенную матрицу $[E|A_1^{\mathsf{T}}]$ и приводим ее к ступенчатому виду:

$$\begin{bmatrix} 1 & 0 & 0 & 3 & 5 & 6 \\ 0 & 1 & 0 & -5 & -8 & -9 \\ 0 & 0 & 1 & 2 & 3 & 3 \\ 1 & 0 & 1 & 5 & 8 & 9 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 2 & 3 \\ -5 & -3 & 0 & 0 & -1 & -3 \end{bmatrix} \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ \times & A_{(3)} \\ \times & A_{(4)} = A_{(3)} + A_{(1)} \\ A_{(5)} = A_{(4)} + A_{(2)} \\ A_{(6)} = A_{(2)} + 2A_{(1)} \\ A_{(7)} = A_{(1)} - 3A_{(6)}. \end{array}$$

Получили матрицу:

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 2 & 3 \\ -5 & -3 & 0 & 0 & -1 & -3 \\ \hline 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} A_{(6)} \\ A_{(7)} \\ A_{(5)}. \end{array}$$

Отсюда определяем базис ядра $\ker A_1$ составляет вектор с координатами $[1,1,1]^\mathsf{T}$. Значит, $\mathcal{V}^1=\langle [1,1,1]^\mathsf{T}\rangle$.

Теперь рассмотрим $\underline{\lambda=0}$ и оператор $\mathsf{A}_0=\mathsf{A}.$ Повторяя рассужения, находим:

$$\begin{bmatrix}
0 & 1 & 2 & -1 & -1 & -1 \\
0 & 2 & 5 & 0 & 1 & 2 \\
\hline
1 & 2 & 3 & 0 & 0 & 0
\end{bmatrix}.$$

Итак, базис ядра оператора A_0 составляет вектор $[1,2,3]^\mathsf{T}$. Значит, $\mathcal{V}^0 = \langle [1,2,3]^\mathsf{T} \rangle$.

Пример 58 Доказать, что линейное подпространство, натянутое на любую систему собственных векторов преобразования A, инвариантно относительно A.

▶ Пусть $\mathbf{a}_1, \dots, \mathbf{a}_k$ — собственные векторы оператора A, принадлежащие собственным значениям $\lambda_1, \dots, \lambda_k$ соответственно. Рассмотрим линейную оболочку $\langle \mathbf{a}_1, \dots, \mathbf{a}_k \rangle$ и вектор $\mathbf{x} \in \langle \mathbf{a}_1, \dots, \mathbf{a}_k \rangle$. Тогда

$$A\mathbf{x} = A(x_1\mathbf{a}_1 + \ldots + x_k\mathbf{a}_k) = (x_1\lambda_1)\mathbf{a}_1 + \ldots + (x_k\lambda_k)\mathbf{a}_k,$$

то есть $A\mathbf{x} \in \langle \mathbf{a}_1, \dots, \mathbf{a}_k \rangle$.

Диагонализация линейного оператора

Линейный оператор A называется ∂u агонализируемым, если в некотором базисе его матрица A диагональна.

Многочлен в $\mathbb{F}[x]$ называется вполне разложимым над \mathbb{F} , если он разлагается в произведение линейных множителей в $\mathbb{F}[x]$.

Теорема 35 (критерий диагонализируемости) Для всякого линейного оператора A на линейном пространстве $\mathcal V$ над $\mathbb F$ эквивалентны утверждения:

- (1) оператор А диагонализируем;
- (2) характеристический многочлен $\chi_{A}(t)$ вполне разложим над \mathbb{F} и геометрическая кратность корня λ равна его кратности как корня $\chi_{A}(t)$;
- (3) прямая сумма всех собственных подпространств оператора A равна всему пространству V, т.е.

$$\mathcal{V} = \bigoplus_{\lambda \in \operatorname{Spec} A} \mathcal{V}^{\lambda}.$$

Следствие 14 Любой оператор, имеющий различные собственные значения, диагонализируем.

Пример 59 Выясните, можно ли привести κ диагональному виду над \mathbb{R} матрии оператора:

$$(a) \left[\begin{array}{ccc} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{array} \right]; \quad (b) \left[\begin{array}{ccc} 6 & -5 & -3 \\ 3 & -2 & -2 \\ 2 & -2 & 0 \end{array} \right]; \quad (c) \left[\begin{array}{ccc} 1 & -2 & 0 \\ 0 & 1 & -2 \\ -2 & 0 & 1 \end{array} \right].$$

Если возможно, то найдите этот вид и базис, в котором матрица оператора диагональна.

 \blacktriangleright (a) Составляем характеристический многочлен $\chi_{\mathsf{A}}(\lambda)$ и находим его корни.

$$\chi_{\mathsf{A}}(\lambda) = \left| \begin{array}{ccc} -1 - \lambda & 3 & -1 \\ -3 & 5 - \lambda & -1 \\ -3 & 3 & 1 - \lambda \end{array} \right| = -(\lambda - 2)^2 (\lambda - 1).$$

Многочлен $\chi_{A}(\lambda)$ имеет простой корень 1 и двойной корень 2.

Найдем базис собственного подпространства $\mathcal{V}^1 = \operatorname{Ker} \mathsf{A}_1$, где $\mathsf{A}_1 = \mathsf{A} - 1 \cdot \mathsf{E}$.

$$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 & -3 \\ 0 & 1 & 0 & 3 & 4 & 3 \\ 0 & 0 & 1 & -1 & -1 & 0 \\ 1 & 0 & 1 & -3 & -4 & -3 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \times A_{(1)} \times A_{(2)} \times A_{(3)} \times A_{(4)} = A_{(1)} + A_{(3)} \times A_{(5)} = A_{(2)} + A_{(4)}.$$

Получили матрицу

$$\begin{bmatrix} 1 & 0 & 1 & -3 & -4 & -3 \\ 0 & 0 & 1 & -1 & -1 & 0 \\ \hline 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} A_{(4)} \\ A_{(3)} \\ A_{(5)} \end{array}$$

Поэтому $\mathcal{V}^1 = \operatorname{Ker} A_1 = \langle [1, 1, 1]^T \rangle$.

Теперь найдем базис для собственного подпространства $\mathcal{V}^2=\operatorname{Ker}\mathsf{A}_2,$ где $\mathsf{A}_2=\mathsf{A}-2\cdot\mathsf{E}.$

$$\left[\begin{array}{ccc|cccc} 1 & 0 & 0 & -3 & -3 & -3 \\ 0 & 1 & 0 & 3 & 3 & 3 \\ 0 & 0 & 1 & -1 & -1 & -1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 & 0 \end{array} \right] \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ A_{(3)} \\ A_{(4)} = A_{(1)} + A_{(2)} \\ A_{(5)} = A_{(2)} + 3A_{(3)}. \end{array}$$

Тогда матрица имеет вид

$$\begin{bmatrix} 0 & 0 & 1 & -1 & -1 & -1 \\ \hline 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} A_{(3)} \\ A_{(4)} \\ A_{(5)} \\ \end{array}$$

Поэтому $\mathcal{V}^2 = \text{Ker } \mathsf{A}_2 = \langle [1, 1, 0]^\mathsf{T}, [0, 1, 3]^\mathsf{T} \rangle.$

Итак, $\mathcal{V}^1 \oplus \mathcal{V}^2 = \langle [1,1,1]^\mathsf{T}, [1,1,0]^\mathsf{T}, [0,1,3]^\mathsf{T} \rangle = \mathcal{V}$. Следовательно, оператор A диагонализируем. Переходя к базису, составленному из собственных векторов, находим матрицу оператора в новом базисе:

$$A' = T^{-1}AT = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix},$$

где
$$T = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
 — матрица перехода к новому базису.

(b) Составляем характеристический многочлен $\chi_{\mathsf{B}}(\lambda)$ и находим его корни.

$$\chi_{\mathsf{B}}(\lambda) = \left| \begin{array}{ccc} 6 - \lambda & -5 & -3 \\ 3 & -2 - \lambda & -2 \\ 2 & -2 & 0 - \lambda \end{array} \right| = -(\lambda - 1)^2 (\lambda - 2).$$

Многочлен $\chi_{\mathsf{B}}(\lambda)$ имеет простой корень 2 и двойной корень 1.

Найдем базис собственного подпространства $\mathcal{V}^1 = \operatorname{Ker} \mathsf{B}_1,$ где $\mathsf{B}_1 = \mathsf{B} - 1 \cdot \mathsf{E}.$

$$\begin{bmatrix} 1 & 0 & 0 & 5 & 3 & 2 \\ 0 & 1 & 0 & -5 & -3 & -2 \\ 0 & 0 & 1 & -3 & -2 & -1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & -1 & -1 & 0 \end{bmatrix} \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ A_{(3)} \\ A_{(4)} = A_{(2)} + A_{(1)} \\ A_{(5)} = A_{(1)} + 2A_{(3)}. \end{array}$$

Полученная матрица имеет вид

$$\begin{bmatrix} 0 & 0 & 1 & -3 & -2 & -1 \\ 1 & 0 & 2 & -1 & -1 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} A_{(3)} \\ A_{(5)} \\ A_{(4)}. \end{array}$$

Поэтому $\mathcal{V}^1 = \operatorname{Ker} \mathsf{B}_1 = \langle [1,1,0]^\mathsf{T} \rangle.$

Теперь найдем базис для собственного подпространства $\mathcal{V}^2=\mathrm{Ker}\,\mathsf{B}_2,$ где $\mathsf{B}_2=\mathsf{B}-2\cdot\mathsf{E}.$

$$\left[\begin{array}{c|cccc} 1 & 0 & 0 & 4 & 3 & 2 \\ 0 & 1 & 0 & -5 & -4 & -2 \\ 0 & 0 & 1 & -3 & -2 & -2 \\ 0 & 1 & 1 & -8 & -6 & -4 \\ 2 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{array} \right] \left. \begin{array}{c} A_{(1)} \\ \times A_{(2)} \\ \times A_{(3)} \\ \times A_{(4)} = A_{(2)} + A_{(3)} \\ A_{(5)} = A_{(4)} + 2A_{(1)} \\ A_{(6)} = A_{(3)} + A_{(1)} \end{array} \right.$$

Тогда матрица имеет вид

$$\begin{bmatrix} 1 & 0 & 0 & 4 & 3 & 2 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ \hline 2 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} A_{(6)} A_{(6)}.$$

Значит, $\mathcal{V}^2 = \operatorname{Ker} \mathsf{B}_2 = \langle [2,1,1]^\mathsf{T} \rangle$. Итак, $\mathcal{V}^1 \oplus \mathcal{V}^2 = \langle [1,1,0]^\mathsf{T}, [2,1,1]^\mathsf{T} \rangle \subsetneq \mathcal{V}$. Следовательно, оператор В не диагонализируем.

(c) Составляем характеристический многочлен $\chi_{\mathsf{C}}(\lambda)$ и находим его корни.

$$\chi_{\mathsf{C}}(\lambda) = \left| \begin{array}{ccc} 1 - \lambda & -2 & 0 \\ 0 & 1 - \lambda & -2 \\ -2 & 0 & 1 - \lambda \end{array} \right| = -(\lambda + 1)(\lambda^2 - 4t + 7).$$

Многочлен $\chi_{\mathsf{C}}(\lambda)$ имеет вещественный корень -1 и два комплексных корня $2 \pm i\sqrt{3}$. Поэтому $\chi_{\mathsf{C}}(\lambda)$ не является вполне разложимым над \mathbb{R} , следовательно, оператор С не диагонализируем.

Таким образом, важными условиями диагонализируемости матрицы линейного оператора, являются:

- (1) разложимость на линейные множители характеристического многочлена матрицы оператора;
- (2) равенство размерности собственного подпространства и кратности характеристического корня.

Корневое разложение пространства

Корневым подпространством $V(\lambda)$, соответствующим собственному значению λ оператора A, называется ядро линейного оператора $(A - \lambda E)^n$, где $n = \dim V$.

Размерность $\dim \mathcal{V}(\lambda)$ называется алгебраической кратностью корня λ .

Заметим, что
$$\mathcal{V}^{\lambda} = \operatorname{Ker}(A - \lambda E) \subseteq \operatorname{Ker}(A - \lambda E)^n = \mathcal{V}(\lambda)$$
.

Теорема 36 (корневое разложение) Для всякого оператора А на линейном пространстве $\mathcal V$ над $\mathbb F$ эквивалентны утверждения:

- (1) характеристический многочлен $\chi_{A}(\lambda)$ вполне разложим над \mathbb{F} :
- (2) npsmas cumma scex kophe bux <math>nod npocmpa hcms pasha scem V.

Алгоритм нахождения корневого разложения пространства.

- (1) Найти собственые значения линейного оператора А.
- (2) Составить матрицу линейного оператора $A_i = A \lambda_i E$ для некоторого $\lambda_i \in \operatorname{Spec} A$.

(3) Найти базис ядра

$$\operatorname{Ker} \mathsf{A}_{i}^{n_{i}} = \operatorname{Ker} (\mathsf{A} - \lambda_{i} \mathsf{E})^{n_{i}}$$

и образа

$$\operatorname{Im} \mathsf{A}_i^{n_i} = \operatorname{Im} (\mathsf{A} - \lambda_i \mathsf{E})^{n_i}$$

оператора $A_i^{n_i}$, где n_i — показатель кратности корня λ_i многочлена $\chi_{\mathsf{A}}(t)$. Базис ядра $\ker A_i^{n_i}$ является базисом корневого подпространства $\mathcal{V}(\lambda_i)$.

(4) Повторить (1) – (3) для всех $\lambda_i \in \operatorname{Spec} A$.

Пример 60 Найти корневые подпространства линейного оператора A, заданного в некотором базисе матрицей:

$$\left[\begin{array}{ccc} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{array}\right].$$

▶ Составляем характеристический многочлен:

$$\chi_{\mathsf{A}}(\lambda) = -\lambda^3 + \lambda^2.$$

Тогда спектр линейного оператора A равен Spec $A = \{1, 0\}$.

Найдем корневое подпространство $\mathcal{V}(1)$ для $\lambda=1$. Для этого составляем матрицу оператора $\mathsf{A}_1=\mathsf{A}-1\cdot\mathsf{E}=\mathsf{A}-\mathsf{E}$:

$$A_1 = A - E = \begin{bmatrix} 4-1 & -5 & 2 \\ 5 & -7-1 & 3 \\ 6 & -9 & 4-1 \end{bmatrix} = \begin{bmatrix} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 6 & -9 & 3 \end{bmatrix}.$$

Так как $\lambda = 1$ — простой корень характеристического многочлена $\chi_{\mathsf{A}}(t)$ (показатель кратности этого корня равен 1), то корневое подпространство

$$\mathcal{V}(1) = \operatorname{Ker} A_1^1 = \operatorname{Ker} (A - E)^1$$

равно собственному подпространству

$$\mathcal{V}^1 = \operatorname{Ker} \mathsf{A}_1 = \operatorname{Ker} (\mathsf{A} - \mathsf{E}),$$

принадлежащим собственному значению $\lambda = 1$. Поэтому достаточно найти базис ядра Ker A₁ (см. решение примера 57).

$$\begin{bmatrix}
2 & 1 & 0 & 1 & 2 & 3 \\
-5 & -3 & 0 & 0 & -1 & -3 \\
\hline
1 & 1 & 1 & 0 & 0 & 0
\end{bmatrix}$$

Следовательно, $V(1) = V^1 = \langle [1, 1, 1]^T \rangle$.

Теперь найдем корневое подпространство V(0), соответствующее собственному значению $\lambda=0$. Так же составляем матрицу оператора $\mathsf{A}_0=\mathsf{A}-0\cdot\mathsf{E}=\mathsf{A}$:

$$A_0 = A = \left[\begin{array}{ccc} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{array} \right].$$

Так как показатель кратности корня $\lambda=0$ характеристического многочлена $\chi_{\mathsf{A}}(t)$ равна 2, то корневое подпространство $\mathcal{V}(0)=\operatorname{Ker}\mathsf{A}_0^2=\operatorname{Ker}\mathsf{A}^2$. Матрица линейного оператора A_0^2 равна:

$$A_0^2 = A^2 = \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix}^2 = \begin{bmatrix} 3 & -3 & 1 \\ 3 & -3 & 1 \\ 3 & -3 & 1 \end{bmatrix}.$$

Найдем ядро $\operatorname{Ker} \mathsf{A}_0^2$, матрица которого равна A_0^2 .

$$\begin{bmatrix} 1 & 0 & 0 & 3 & 3 & 3 \\ 0 & 1 & 0 & -3 & -3 & -3 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 & 0 \end{bmatrix} \times A_{(1)} \times A_{(2)} \times A_{(3)} \times A_{(4)} = A_{(1)} + A_{(2)} \times A_{(5)} = A_{(2)} + 3A_{(3)}.$$

Получили матрицу вида:

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} A_{(3)} \\ A_{(4)} \\ A_{(5)}. \end{array}$$

Следовательно, $\mathcal{V}(0) = \langle [1, 1, 0]^\mathsf{T}, [0, 1, 3]^\mathsf{T} \rangle$.

Итак, корневое разложение векторного пространства $\mathbb{R}^3 = \mathcal{V}(1) \oplus \mathcal{V}(0).$

Заметим, что

$$\mathbb{R}^3 = \mathcal{V}(1) \oplus \mathcal{V}(0).$$

Поскольку корневое подпространство $\mathcal{V}(1)$ есть ядро $\mathrm{Ker}(\mathsf{A}-\mathsf{E})$ оператора $\mathsf{A}-\mathsf{E}$, то образом $\mathrm{Im}(\mathsf{A}-\mathsf{E})$ этого оператора будет второе слагаемое $\mathcal{V}(0)$ в прямой сумме $\mathcal{V}(1)\oplus\mathcal{V}(0)$. Следовательно, в качестве базиса корневого подпространства $\mathcal{V}(0)$ можно взять базисные векторы $\mathrm{Im}(\mathsf{A}-\mathsf{E})$, т.е. векторы $[1,2,3]^\mathsf{T}$ и $[0,1,3]^\mathsf{T}$.

14. Жорданова нормальная форма линейного оператора

Случай нильпотентного оператора

Ниль-цепи. Пусть $\mathbb{N}: \mathcal{V} \to \mathcal{V}$ — нильпотентный линейный оператор, т. е. $\mathbb{N}^m(\mathcal{V}) = \mathbf{0}$ для некоторого целого m > 1.

Пусть $\mathbf{u} \in \mathcal{V}$. Последовательность векторов \mathbf{u} , $N\mathbf{u}$, $N^2\mathbf{u}$, ..., $N^{h-1}\mathbf{u}$ называется ниль-цепью высоты h с началом в векторе \mathbf{u} , если $N^h\mathbf{u} = \mathbf{0}$.

Система векторов, составленная из ниль-цепей, называется *жордановой*. Запись жордановой системы векторов в виде таблицы из ниль-цепей называется *жордановой таблицей*.

высота	h_1	+	1
высота	h_1		
высота	h_1	_	1
высота	h_1	_	2

высота 1

\mathbf{u}_1		
$N\mathbf{u}_1$	\mathbf{u}_2	
$N^2\mathbf{u}_1$	$N\mathbf{u}_2$	 \mathbf{u}_k
$N^3\mathbf{u}_1$	$N^2\mathbf{u}_2$	 $N\mathbf{u}_k$
$N^{h_1}\mathbf{u}_1$	$N^{h_2}\mathbf{u}_2$	 $N^{h_k}\mathbf{u}_k$

Элементарные преобразования жорданой таблицы.

- (1) Исключение нулевого вектора на высоте 1 со сдвигом всей цепи вниз.
 - (2) Умножение на $\alpha \neq 0$.
- (3) Прибавление к одной цепи высоты h отрезка высоты h другой цепи (высоты $\geq h$).
 - (4) Перестановка цепей.

Теорема 37 Если в жордановой системе векторы на высоте 1 линейно независимы, то вся система линейно независима.

Теорема 38 Для всякого нильпотентного оператора $N: \mathcal{V} \to \mathcal{V}$ существует базис \mathcal{V} , являющийся жордановой системой. При этом число c_h ниль-цепей высоты h не зависит от выбора жордановой системы и равно

$$c_h = r_{h-1} - 2r_h + r_{h+1}$$

 $r\partial e \ r_i = \dim \mathsf{N}^i(\mathcal{V}).$

Алгоритм нахождения жордановой базы векторного пространства относительно нильпотентного оператора.

(1) Пусть ${\bf e}_1 \in {\cal V}$ — базисный вектор. Вычислить ниль-цепь с началом в ${\bf e}_1$:

$$e_1, Ne_1, N^2e_1, \dots, N^{h-1}e_1 \neq 0,$$

если $N^h \mathbf{e}_1 = \mathbf{0}$. Записать этот столбец в жорданову таблицу.

- (*) Если число векторов в жордановой таблице равно размерности всего пространства V, то они образуют базу. В противном случае перейти к п. 2.
 - (2) Дополнить таблицу ниль-цепью с началом в новом векторе \mathbf{e}_i .
- (3) Элементарными преобразованиями ниль-цепей перестроить жорданову таблицу таким образом, чтобы система веторов на высоте 1 была линейно независима.

Перейти к (*).

(4) Перенумеровать векторы в жордановой системе снизу вверх и слева направо. Например,

$$\begin{array}{c|c} \mathbf{v}_3 \\ \hline \mathbf{v}_2 & \mathbf{v}_5 \\ \hline \mathbf{v}_1 & \mathbf{v}_4 & \mathbf{v}_6 \\ \end{array}$$

Пример 61 Найти канонический вид матрицы линейного оператора N и матрицу перехода к новому (жордановому) базису, если N задан в некотором базисе матрицей

$$N = \left[\begin{array}{rrr} 2 & 4 & 8 \\ 1 & 2 & 4 \\ -1 & -2 & -4 \end{array} \right]$$

lacktriangled Составляем характеристический многочлен $\chi_{\mathsf{N}}(\lambda) = -\lambda^3$. Он имеет тройной корень 0:

$$\operatorname{Spec} \mathsf{N} = \{0\}.$$

Далее возводим N в степень $\leq 3 = \dim \mathbb{R}^3$. Однако уже

$$\mathsf{N}^2 = \left[\begin{array}{ccc} 2 & 4 & 8 \\ 1 & 2 & 4 \\ -1 & -2 & -4 \end{array} \right]^2 = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

Следовательно, $\mathsf{N}:\mathbb{R}^3\to\mathbb{R}^3$ — нильпотентный линейный оператор, степень нильпотентности N равна 2, т. е. $\mathsf{N}^2=\mathsf{O}$ и 2 — наименьшее число с этим свойством.

Построим жорданов базис для оператора N. В качестве исходного базиса пространства \mathbb{R}^3 можно взять стандартный базис.

Пусть $\dot{\mathbf{e}}_1 = [1,0,0]^\mathsf{T}$. Строим ниль-цепь с началом в векторе \mathbf{e}_1 :

$$\mathbf{e}_1 = [1, 0, 0]^\mathsf{T}, \quad \mathsf{N}\mathbf{e}_1 = \left[\begin{array}{ccc} 2 & 4 & 8 \\ 1 & 2 & 4 \\ -1 & -2 & -4 \end{array} \right] \cdot \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} 2 \\ 1 \\ -1 \end{array} \right], \quad \mathsf{N}^2\mathbf{e}_1 = \mathbf{0}.$$

Записываем эти векторы в жорданову таблицу:

 $\begin{array}{c|c}
1 & 0 \\
0 & \\
\hline
2 & \\
1 & \\
-1 & \\
\end{array}$

Так как количество векторов в жордановой таблице равно $2 < \dim \mathbb{R}^3$, то берем следующий базисный вектор $\mathbf{e}_2 = [0,1,0]^\mathsf{T}$ пространства \mathbb{R}^3 и строим ниль-цепь с началом в \mathbf{e}_2 :

$$\mathbf{e}_2 = [0, 1, 0]^\mathsf{T}, \mathsf{N}\mathbf{e}_2 = \left[\begin{array}{ccc} 2 & 4 & 8 \\ 1 & 2 & 4 \\ -1 & -2 & -4 \end{array} \right] \cdot \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} 4 \\ 2 \\ -2 \end{array} \right], \quad \mathsf{N}^2\mathbf{e}_2 = \mathbf{0}.$$

Дописываем найденную ниль-цепь в жорданову таблицу:

Видим, что векторы $[2,1,-1]^{\mathsf{T}}$ и $[4,2,-2]^{\mathsf{T}}$ высоты 1 линейно зависимы. Преобразуем жорданову таблицу так, чтобы векторы высоты 1 были линейно независимы. Для этого вычтем из второго столбца удвоенный первый:

Исключаем нулевой вектор на высоте 1 сдвигом всей цепи вниз:

Так как число векторов в таблице равно $3 = \dim \mathbb{R}^3$, то найденные векторы образуют жорданов базис: $\mathbf{f}_1 = [2,1,-1]^\mathsf{T}, \ \mathbf{f}_2 = [1,0,0]^\mathsf{T}, \ \mathbf{f}_3 = [-2,1,0]^\mathsf{T}.$

Найдем матрицу оператора N в этом базисе. Для этого вычислим

$$\mathbf{Nf_1} = \begin{bmatrix} 2 & 4 & 8 \\ 1 & 2 & 4 \\ -1 & -2 & -4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \\
\mathbf{Nf_2} = \begin{bmatrix} 2 & 4 & 8 \\ 1 & 2 & 4 \\ -1 & -2 & -4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \mathbf{f_1}, \\
\mathbf{Nf_3} = \begin{bmatrix} 2 & 4 & 8 \\ 1 & 2 & 4 \\ -1 & -2 & -4 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Тогда матрица оператора в жордановом базисе

$$N' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}, \qquad T = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix},$$

где T — матрица перехода к жордановому базису. Вертикальная и горизональная линии разделяют жорданову матрицу N' на две подматрицы

$$\left[egin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}
ight]$$
 и $\left[0
ight] - 2 cop дановы клетки.$

Общий случай

Пусть $\mathcal{V} = \mathcal{V}(\lambda_1) \oplus \mathcal{V}(\lambda_2) \oplus \ldots \oplus \mathcal{V}(\lambda_s)$ — корневое разложение пространства \mathcal{V} относительно оператора A с собственными значениями $\lambda_1, \ \lambda_2, \ \ldots, \ \lambda_s$ соответственно. Обозначим $\mathsf{N}_i = (\mathsf{A} - \lambda_i \mathsf{E})|_{\mathcal{V}(\lambda_i)}$. Так как

$$\mathcal{V}(\lambda_i) = \operatorname{Ker}(\mathsf{A} - \lambda_i \mathsf{E})^{k_i},$$

то $\mathsf{N}_i^{k_i}|_{\mathcal{V}(\lambda_i)} = \mathsf{O}$ и N_i нильпотентный оператор на $\mathcal{V}(\lambda_i)$.

Жорданова нормальная форма (матрицы) линейного оператора. Жордановой клеткой $J_k(\lambda)$ порядка k с собственным значением λ на главной диагонали называется матрица вида:

$$J_k(\lambda) = \underbrace{\begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda \end{bmatrix}}_{k}.$$

Жордановой нормальной формой матрицы А линейного оператора A называется блочно-диагональная матрица, на диагонали которой стоят жордановы клетки:

$$J(A) = \begin{bmatrix} J_{k_1}(\lambda_1) & & & & \\ & J_{k_2}(\lambda_2) & & & & \\ & & & \ddots & & \\ & & & & J_{k_s}(\lambda_s) \end{bmatrix},$$

где собственные значения $\lambda_1, \lambda_2, \ldots, \lambda_s$ не обязательно все различны.

Пусть k — наивысший порядок жордановых клеток $J_t(\lambda)$ на главной диагонали; $r_i = \dim \mathsf{N}^i(\mathcal{V})$. Тогда число c_h таких клеток порядка h $(h=1,2,\ldots,k)$ определяется по формуле

$$c_h = r_{h-1} - 2r_h + r_{h+1}, \ h = 1, 2, \dots, k.$$

Теорема 39 Для всякого оператора A на линейном пространстве V над \mathbb{F} эквивалентны утвержения:

- (1) характеристический многочлен $\chi_{A}(t)$ вполне разложим над \mathbb{F} ;
- (2) существует базис в V, в котором A задается жордановой матрицей.

Алгоритм нахождения жордановой формы произвольного линейного оператора.

- (1) Найти корневое разложение пространства $\mathcal{V} = \mathcal{V}(\lambda_1) \oplus \ldots \oplus \mathcal{V}(\lambda_s)$ относительно оператора A с собственными значениями $\lambda_1, \ldots, \lambda_s$.
- (2) На каждом корневом подпространстве $\mathcal{V}(\lambda_i)$ ($i=1,\ldots,s$) рассмотреть нильпотентный оператор $\mathsf{N}_i:\mathcal{V}(\lambda_i)\to\mathcal{V}(\lambda_i)$; для него построить жорданову систему и найти жорданову нормальную форму.
- (3) Жорданова форма матрицы A оператора A получается объединением найденных жордановых клеток, а жорданова система оператора A получается объединением жордановых систем всех корневых подпространств.

Пример 62 Найдите жорданову нормальную форму линейного оператора, заданного матрицей

$$A = \left[\begin{array}{rrrr} 0 & 6 & -2 & 2 \\ -1 & 5 & -1 & 1 \\ -1 & 1 & -1 & -1 \\ 2 & -4 & 4 & 2 \end{array} \right].$$

▶ Найдем корневое разложение оператора А. Для этого составим характеристический многочлен $\chi_A(\lambda) = \lambda(\lambda-2)^3$ и найдем его корни: простой корень $\lambda=0$ и тройной корень $\lambda=2$.

В разложении $\mathcal{V}=\mathcal{V}(0)\oplus\mathcal{V}(2)$ корневое подпространство $\mathcal{V}(0)$ равно собственному подпространству $\mathcal{V}^0=\mathrm{Ker}(\mathsf{A}-0\cdot\mathsf{E})=\mathrm{Ker}\,\mathsf{A}$, так как $\lambda=0$ — простой корень. Следовательно, второе прямое слагаемое $\mathcal{V}(2)$ будет образом $\mathrm{Im}(\mathsf{A}-0\cdot\mathsf{E})=\mathrm{Im}\,\mathsf{A}$. Используем это замечание для нахождения корневого разложения.

Итак, найдем корневое подпространство $\mathcal{V}(0)$:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2 \\ 0 & 1 & 0 & 0 & 6 & 5 & 1 & -4 \\ 0 & 0 & 1 & 0 & -2 & -1 & -1 & 4 \\ 0 & 0 & 0 & 1 & 2 & 1 & -1 & 2 \\ 0 & 0 & 1 & 1 & 0 & 0 & -2 & 6 \\ 0 & 1 & 0 & -3 & 0 & 2 & 4 & -10 \\ 2 & 1 & 0 & -3 & 0 & 0 & 2 & -6 \\ 2 & 1 & 1 & -2 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} A_{(1)} \\ \times A_{(2)} \\ \times A_{(3)} \\ \times A_{(4)} \\ \times A_{(5)} = A_{(4)} + A_{(3)} \\ \times A_{(6)} = A_{(2)} - 3A_{(4)} \\ A_{(7)} = A_{(6)} + 2A_{(1)} \\ A_{(8)} = A_{(5)} + A_{(7)}. \end{array}$$

Выпишем оставшиеся строки полученной матрицы:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 1 & -1 & 2 \\ 1 & 0 & 0 & 0 & 0 & -1 & -1 & 2 \\ 2 & 1 & 0 & -3 & 0 & 0 & 2 & -6 \\ \hline 2 & 1 & 1 & -2 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} A_{(7)} \\ A_{(4)} \\ A_{(8)}.$$

Находим базисы корневых подпространств: $\mathcal{V}(0) = \operatorname{Ker} A = \langle [2, 1, 1, -2]^{\mathsf{T}} \rangle$ и $\mathcal{V}(2) = \operatorname{Im} A = \langle [2, 1, -1, 2]^{\mathsf{T}} [0, 1, 1, -2]^{\mathsf{T}}, [0, 0, 1, -3]^{\mathsf{T}} \rangle$.

Поскольку корневое подпространство $\mathcal{V}(0)$ одномерно, то жорданов базис на этом подпространстве совпадает с $[2,1,1,-2]^\mathsf{T}$, а жорданова клетка оператора A имеет вид [0].

Найдем жордавнову систему для $\mathcal{V}(2)$. Оператор $\mathsf{N}=\mathsf{A}-2\mathsf{E}$ нильпотентен на $\mathcal{V}(2)$. Его матрица:

$$N = A - 2E = \begin{bmatrix} -2 & 6 & -2 & 2 \\ -1 & 3 & -1 & 1 \\ -1 & 1 & -3 & -1 \\ 2 & -4 & 4 & 0 \end{bmatrix}.$$

Построим ниль-цепь в началом в векторе $\mathbf{e}_1 = [2,1,-1,2]^\mathsf{T}$:

$$\mathbf{e}_1, \quad \mathsf{N}\mathbf{e}_1 = \left[\begin{array}{cccc} -2 & 6 & -2 & 2 \\ -1 & 3 & -1 & 1 \\ -1 & 1 & -3 & -1 \\ 2 & -4 & 4 & 0 \end{array} \right] \cdot \left[\begin{array}{c} 2 \\ 1 \\ -1 \\ 2 \end{array} \right] = \left[\begin{array}{c} 8 \\ 4 \\ 0 \\ -4 \end{array} \right], \quad \mathsf{N}^2\mathbf{e}_1 = \mathbf{0}.$$

Добавляем найденную нильцепь в жорданову таблицу:

 $\begin{array}{c|c}
2 \\
1 \\
-1 \\
2 \\
\hline
8 \\
4 \\
0 \\
-4 \\
\end{array}$

Число векторов в таблице равно $2 < \dim \mathcal{V}(2) = 3$. Поэтому построим еще одну ниль-цепь с началом в векторе $\mathbf{e}_2 = [0, 1, 1, -2]^\mathsf{T}$: \mathbf{e}_2 , $\mathsf{N}\mathbf{e}_2 = \mathbf{0}$, и допишем ее в жорданову таблицу:

2	
1	
-1	
2	
8	0
8 4	0

Теперь число векторов в жордановой таблице равно 3, причем векторы высоты 1 линейно независимы. Следовательно, векторы $\mathbf{f}_1 = [8,4,0,-4]^\mathsf{T}$, $\mathbf{f}_2 = [2,1,-1,2]^\mathsf{T}$, $\mathbf{f}_3 = [0,1,1,-2]^\mathsf{T}$ образуют жорданову систему подпространства $\mathcal{V}(2)$, в котором оператор A имеет жорданову форму

$$\begin{bmatrix}
 2 & 1 & 0 \\
 0 & 2 & 0 \\
 \hline
 0 & 0 & 2
 \end{bmatrix}.$$

Заметим, что размер каждой жордановой клетки с собственным значением λ на диагонали также равен высоте ниль-цепи. В данном примере мы нашли две ниль-цепи, высоты 1 и 2, в корневом подпространстве $\mathcal{V}(2)$, в матрице J(A) им соответствуют две жордановых клетки порядка 1 и 2, соответствующих этим цепям.

Теперь, чтобы найти жорданов базис всего пространства $\mathcal V$ и жорданову форму матрицы J(A) достаточно объединить найденные базисы и составить J(A) из найденных клеток:

$$J(A) = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad T = \begin{bmatrix} 8 & 2 & 0 & 2 \\ 4 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ -4 & 2 & -2 & -2 \end{bmatrix}.$$

15. Функции от матриц

Пусть $J_n(\lambda)$ есть жорданова клетка порядка n с собственным значением λ на главной диагонали:

$$J_n(\lambda) = \left[\begin{array}{ccccc} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda \end{array} \right].$$

Тогда для любой числовой функции f(x), определенной в окрестности λ , имеющей конечные производные $f'(\lambda), \ldots, f^{(n-1)}(\lambda)$ в этой точке, значение фукнции от жордановой клетки $J_n(\lambda)$ равно

$$f(J_n(\lambda)) = \begin{bmatrix} f(\lambda) & \frac{1}{1!}f'(\lambda) & \frac{1}{2}f''(\lambda) & \dots & \frac{1}{(n-1)!}f^{(n-1)}(\lambda) \\ 0 & f(\lambda) & \frac{1}{1!}f'(\lambda) & \dots & \frac{1}{(n-2)!}f^{(n-2)}(\lambda) \\ 0 & 0 & f(\lambda) & \dots & \frac{1}{(n-3)!}f^{(n-3)}(\lambda) \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & f(\lambda) \end{bmatrix}.$$

Если матрица J является блочно-диагональной матрицей с жордановыми клектами J_1, J_2, \ldots, J_k на главной диагонали

$$J = \left[\begin{array}{ccc} J_1 & & \\ & J_2 & \\ & & \ddots \\ & & & J_k \end{array} \right],$$

то значение f(J) равно

$$J = \begin{bmatrix} f(J_1) & & & \\ & f(J_2) & & \\ & & \ddots & \\ & & f(J_k) \end{bmatrix}.$$

Пусть A — произвольная матрица порядка n, J(A) — ее жорданова нормальная форма, T — матрица перехода к жордановому базису, т.е. $J(A) = T^{-1}AT$ или, наоборот, $A = TJ(A)T^{-1}$. Тогда

$$f(A) = Tf(J(A))T^{-1}.$$

Таким образом, для того, чтобы вычислить функцию f от матрицы A, нужно:

- (1) привести матрицу A к жордановой форме J и найти жорданову систему (матрицу перехода T);
- (2) вычислить значение фукнции от каждой из жордановых клеток и составить из них матрицу f(J);
 - (3) найти f(A) по формуле (\clubsuit).

Пример 63 Вычислите
$$\exp A$$
, если $A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$.

▶ Найдем жорданову форму матрицы A. Составляем характеристическое уравнение $\chi_A(\lambda) = \lambda^2$. Полученное уравнение имеет двойной корень $\lambda = 0$. Следовательно, матрица A нильпотентна, ее корневое подпространство совпадает со всем пространством.

Рассмотрим стандартный базис $\{e_1, e_2\}$ пространства \mathbb{R}^2 . Построим ниль-цепь с началом в векторе e_1 :

$$\mathbf{e}_1, \quad A\mathbf{e}_1 = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}, \quad A^2\mathbf{e}_1 = \mathbf{0}.$$

Так как высота ниль-цепи равна $2 = \dim \mathbb{R}^2$, то векторы $A\mathbf{e}_1$, \mathbf{e}_1 образуют жорданову систему векторов. Выписываем жорданову нормальную форму матрицы A и считаем значение f(A):

$$J(A) = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \Longrightarrow f(J(A)) = \left[\begin{array}{cc} e^0 & e^0 \\ 0 & e^0 \end{array} \right] = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right].$$

Тогда матрица f(A) будет равна:

$$f(A) = Tf(J(A))T^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \frac{1}{4} \begin{bmatrix} 4 & 2 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1/4 \\ 0 & -1 \end{bmatrix}.$$

16. Геометрия евклидовых и эрмитовых пространств

Сравним евклидово и эрмитово пространство.

Евклидово	Унитарноe			
пространство над числовым полем				
\mathbb{R}	C			
со скалярным произведением —				
билинейной функцией, ставящей	билинейной функцией, ставящей			
каждой паре векторов (\mathbf{x}, \mathbf{y}) та-	каждой паре векторов (\mathbf{x},\mathbf{y}) такое			
кое вещественное число, что для	комплексное число, что для лю-			
любых $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}, \alpha, \beta \in \mathbb{R}$ выпол-	бых $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}, \ \alpha, \beta \in \mathbb{C}$ выполне-			
нены следуюшие условия:	ны следующие условия:			
$(1) (\mathbf{x}, \mathbf{y}) = (\mathbf{y}, \mathbf{x});$	$(1) (\mathbf{x}, \mathbf{y}) = \overline{(\mathbf{y}, \mathbf{x})};$			
(2) $(\mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{z});$	(2) $(\mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z}) = \alpha(\mathbf{x}, \mathbf{y}) + \beta(\mathbf{x}, \mathbf{z});$			
$(3) (\mathbf{x}, \mathbf{x}) > 0$ для любого $\mathbf{x} \neq 0$.	$(3) (\mathbf{x}, \mathbf{x}) > 0$ для любого $\mathbf{x} \neq 0$.			
Скалярное произведение в ОНБ				
i=1	$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \overline{x}_i y_i = X^{\dagger} Y$			
Матрица Грама $G_{\mathbf{e}}=[g_{ij}]=[(\mathbf{e}_i,\mathbf{e}_j)]$ базиса $(\mathbf{e}_1,\ldots,\mathbf{e}_n)$				
Матрица Грама в различных базисах				
$G' = S^{T}GS$	$G' = S^{\dagger}GS$			
Скалярное произведение в произвольном базисе $(\mathbf{e}_1,\ldots,\mathbf{e}_n)$				
$(\mathbf{x}, \mathbf{y}) = \sum_{i,j=1}^{n} g_{ij} x_i y_j = X^{T} G Y$	$(\mathbf{x}, \mathbf{y}) = \sum_{i,j=1}^{n} g_{ij} \overline{x}_i y_j = X^{\dagger} G Y$			

Геометрия евклидова (эрмитова) пространства. Длиной (нормой) вектора \mathbf{x} называется действительное число $\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}$. Вектор длины 1 называется нормированным.

Неравенство Коши — Буняковского $|(\mathbf{x},\mathbf{y})| \leqslant |\mathbf{x}| \cdot |\mathbf{y}|$ позволяет определить угол α между векторами

$$\cos \alpha = (\mathbf{x}, \mathbf{y})/(|\mathbf{x}| \cdot |\mathbf{y}|).$$

Векторы ${\bf x}$ и ${\bf y}$ называются *ортогональными*, если $({\bf x},{\bf y})=0$.

Объем n-мерного параллелепипеда, построенного на векторах $\mathbf{a}_1,\dots,\mathbf{a}_n$:

$$V(\mathbf{a}_1,\ldots,\mathbf{a}_n) = \sqrt{\det G_{\mathbf{a}}}.$$

Пример 64 В пространстве вещественных многочленов $\mathbb{R}[x]_{\leq 3}$ от переменной x степени ≤ 3 со скалярным произведением

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

задан треугольник со сторонами $x, x^3, x-x^3$. Найдите угол треугольника между сторонами x и $x-x^3$ и длину противолежащей стороны x^3 .

lacktriangle Длина $\|x^3\|$ стороны x^3 равна $\|x^3\| = \sqrt{(x^3,x^3)}$. Находим

$$(x^3, x^3) = \int_{-1}^{1} x^6 dx = \frac{x^7}{7} \Big|_{-1}^{1} = \frac{2}{7}.$$

Откуда $||x^3|| = \sqrt{\frac{2}{7}}$.

Найдем косинус угла α между x и $x-x^3$:

$$\cos \alpha = \frac{(x, x - x^3)}{\|x\| \cdot \|x - x^3\|}.$$

Для этого вычислим скалярные произведения $(x, x-x^3)$, (x, x), $(x-x^3, x-x^3)$:

$$(x, x - x^3) = \int_{-1}^{1} (x^2 - x^4) dx = \frac{4}{15},$$
$$(x, x) = \int_{-1}^{1} x^2 dx = \frac{2}{3},$$
$$(x - x^3, x - x^3) = \int_{-1}^{1} (x^2 - x^4) dx = \frac{16}{105}.$$

Тогда $\cos \alpha = \sqrt{0,7}$.

Ортогональное проектирование вектора на подпространство. Рассмотрим подпространство $\mathcal{W} = \langle \mathbf{e}_1, \dots, \mathbf{e}_k \rangle$ евклидова пространства \mathcal{V} и $\mathbf{x} \in \mathcal{V}$ — произвольный вектор. Найдем ортогональную проекцию \mathbf{x}_{\parallel} и ортогональную составляющую \mathbf{x}_{\perp} вектора \mathbf{x} относительно подпространства \mathcal{W} .

Представим вектор \mathbf{x} в виде суммы векторов $\mathbf{x}_{\parallel} + \mathbf{x}_{\perp}$, где $\mathbf{x}_{\parallel} \in \mathcal{W}$ и $\mathbf{x}_{\perp} \perp \mathcal{W}$. Последнее означает, что $\mathbf{x}_{\perp} \perp \mathbf{y}$ для всех векторов $\mathbf{y} \in \mathcal{W}$. Поэтому $\mathbf{x}_{\perp} \perp \mathbf{e}_{i}$ для всех $i = 1, 2, \ldots, k$.

Так как $\mathbf{x}_{\perp} = \mathbf{x} - \mathbf{x}_{\parallel}$, то для всех $i = 1, 2, \dots, k$

$$(\mathbf{e}_i, \mathbf{x} - \mathbf{x}_{\parallel}) = 0 \quad \Rightarrow \quad (\mathbf{e}_i, \mathbf{x}_{\parallel}) = (\mathbf{e}_i, \mathbf{x}).$$

Поскольку $\mathbf{x}_{\parallel} \in \mathcal{W}$, то $\mathbf{x}_{\parallel} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_k \mathbf{e}_k$. Поэтому система равенств $(\mathbf{e}_i, \mathbf{x}_{\parallel}) = (\mathbf{e}_i, \mathbf{x}) \ (i = 1, 2, \ldots, k)$ принимает вид:

$$x_1(\mathbf{e}_i, \mathbf{e}_1) + x_2(\mathbf{e}_i, \mathbf{e}_2) + \ldots + x_k(\mathbf{e}_i, \mathbf{e}_k) = (\mathbf{e}_i, \mathbf{x}), \quad i = 1, 2, \ldots, k.$$
 (1)

Рис. 1

Система (1) представляет собой систему линейных алгебраических уравнений относительно неизвестных x_1, x_2, \ldots, x_k . Решая полученную систему уравнений, находим \mathbf{x}_{\parallel} , а затем \mathbf{x}_{\perp} .

Пример 65 Найдите ортогональную проекцию \mathbf{x}_{\parallel} и ортогональную составляющую \mathbf{x}_{\perp} вектора $\mathbf{x} = [2, -1, 3, -2]^{\mathsf{T}}$ относительно подпространства \mathcal{W} , натянутого на вектори $\mathbf{e}_1 = [3, -2, 1, 1]^{\mathsf{T}}$, $\mathbf{e}_2 = [1, 0, -1, 1]^{\mathsf{T}}$, $\mathbf{e}_3 = [2, -2, 2, 0]^{\mathsf{T}}$.

▶ Заметим, что вектор e_3 является линейной комбинацией векторов e_1 , e_2 :

$$\mathbf{e}_3 = \mathbf{e}_1 - \mathbf{e}_2,$$

а векторы \mathbf{e}_1 и \mathbf{e}_2 — линейно независимы. Возьмем их в качестве базисных векторов пространства \mathcal{W} .

Пусть $\mathbf{x} = \mathbf{x}_{\parallel} + \mathbf{x}_{\perp}$, где $\mathbf{x}_{\parallel} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$ — вектор, принадлежащий \mathcal{W} . Составим систему линейных уравнений:

$$\begin{cases} x_1(\mathbf{e}_1, \mathbf{e}_1) + x_2(\mathbf{e}_1, \mathbf{e}_2) = (\mathbf{e}_1, \mathbf{x}), \\ x_1(\mathbf{e}_2, \mathbf{e}_1) + x_2(\mathbf{e}_2, \mathbf{e}_1) = (\mathbf{e}_2, \mathbf{x}). \end{cases}$$
(2)

Находим матрицу системы и свободные коэффициенты:

$$\begin{aligned} &(\mathbf{e}_1,\mathbf{e}_1) = 3^2 + (-2)^2 + 1^2 + 1^2 = 15, \\ &(\mathbf{e}_1,\mathbf{e}_2) = (\mathbf{e}_2,\mathbf{e}_1) = 3 \cdot 1 + (-2) \cdot 0 + 1 \cdot (-1) + 1 \cdot 1 = 3, \\ &(\mathbf{e}_2,\mathbf{e}_2) = 1^2 + 0^2 + (-1)^2 + 1^2 = 3, \\ &(\mathbf{x},\mathbf{e}_1) = 2 \cdot 3 + (-1) \cdot (-2) + 3 \cdot 1 + (-2) \cdot 1 = 9, \\ &(\mathbf{x},\mathbf{e}_2) = 2 \cdot 1 + (-1) \cdot 0 + 3 \cdot (-1) + (-2) \cdot 1 = -3. \end{aligned}$$

Подставляем найденные значения в систему (2):

$$\begin{cases} 15x_1 + 3x_2 &= 9, \\ 3x_1 + 3x_2 &= -3. \end{cases}$$
 (3)

Решая систему уравнений (3), находим $x_1 = 1$ и $x_2 = -2$. Следовательно,

$$\mathbf{x}_{\parallel} = \begin{bmatrix} 3 \\ -2 \\ 1 \\ 1 \end{bmatrix} - 2 \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix},$$

$$\mathbf{x}_{\perp} = \begin{bmatrix} 2 \\ -1 \\ 3 \\ -2 \end{bmatrix} - \begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}.$$

Ортогональное дополнение к подпространству. Пусть W — подпространство евклидова (эрмитова) пространства V.

Вектор $\mathbf{x} \in \mathcal{V}$ называется *ортогоналеным* подпространству \mathcal{W} и обозначается $\mathbf{x} \perp \mathcal{W}$, если $\mathbf{x} \perp \mathbf{y}$ для всех $\mathbf{y} \in \mathcal{W}$.

 $\mathit{Opmozohanbhыm}$ dononhehuem к подпространству \mathcal{W} называют множество

$$\mathcal{W}^{\perp} = \{ \mathbf{x} \in \mathcal{V} : \mathbf{x} \perp \mathbf{y}$$
для всех $\mathbf{y} \in \mathcal{W} \}.$

При этом $\mathcal{V} = \mathcal{W} \oplus \mathcal{W}^{\perp}$.

Найдем базис ортогонального дополнения \mathcal{W}^{\perp} подпространства \mathcal{W} , если подпространство \mathcal{W} есть линейная оболочка векторов $\mathbf{a}_1, \dots, \mathbf{a}_k$.

Пусть \mathbf{x} — произвольный вектор \mathcal{W}^{\perp} . Тогда \mathbf{x} ортогонален всем векторам $\mathbf{y} \in \mathcal{W}$. Значит, \mathbf{x} ортогонален $\mathbf{a}_1, \dots, \mathbf{a}_k$:

$$(\mathbf{x}, \mathbf{a}_i) = 0, \quad i = 1, 2, \dots, k. \tag{4}$$

Предположим, что векторы $\mathbf{a}_1, \dots, \mathbf{a}_k$ заданы своими координатами в ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$:

$$\mathbf{a}_i = a_{i1}\mathbf{e}_1 + \ldots + a_{in}\mathbf{e}_n, \quad i = 1, 2, \ldots, k.$$

Будем искать вектор x в виде

$$\mathbf{x} = x_1 \mathbf{e}_1 + \ldots + x_n \mathbf{e}_n,$$

где x_1, \ldots, x_n — неизвестные. Подставляем разложения векторов $\mathbf{a}_1, \ldots, \mathbf{a}_k, \mathbf{x}$ в равенства (4) (для простоты будем считать, что пространство вещественные):

$$(x_1\mathbf{e}_1 + \ldots + x_n\mathbf{e}_n, a_{i1}\mathbf{e}_1 + \ldots + a_{in}\mathbf{e}_n) = 0 \iff$$

$$x_1 a_{i1} + \ldots + x_n a_{in} = 0, \quad i = 1, 2, \ldots, k.$$
 (5)

Получили систему k линейных уравнений относительно неизвестных x_1 , ..., x_n . Пространство решений этой системы совпадает с \mathcal{W}^{\perp} . Таким образом, чтобы найти базис \mathcal{W}^{\perp} , нужно найти базис пространства решений системы уранений (5).

Пример 66 Найдите ортогональное дополнение \mathcal{W}^{\perp} линейной оболочки \mathcal{W} системы векторов $\mathbf{a}_1 = [1, -2, 2, -3]^{\mathsf{T}}, \ \mathbf{a}_2 = [2, -3, 2, -2]^{\mathsf{T}}, \ \mathbf{a}_3 = [1, -1, 0, 1]^{\mathsf{T}}.$

ightharpoonup Пусть $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 + x_4 \mathbf{e}_4$. Из того, что $(\mathbf{x}, \mathbf{a}_i) = 0$, i = 1, 2, 3, получаем систему линейных уравнений:

$$\begin{cases} x_1 - 2x_2 + 2x_3 - 3x_4 = 0, \\ 2x_1 - 3x_2 + 2x_3 - 2x_4 = 0, \\ x_1 - x_2 + x_4 = 0. \end{cases}$$

Находим общее решение и базис пространства решений:

$$\mathbf{x} = \left[egin{array}{c} 2c_1 - 5c_2 \ 2c_1 - 4c_2 \ c_1 \ c_2 \end{array}
ight] = c_1 \left[egin{array}{c} 2 \ 2 \ 1 \ 0 \end{array}
ight] + c_2 \left[egin{array}{c} -4 \ -5 \ 0 \ 1 \end{array}
ight], \quad c_1, c_2 -$$
 параметры.

Таким образом, $\mathcal{W}^{\perp} = \langle [2, 2, 1, 0]^{\mathsf{T}}, [-4, -5, 0, 1]^{\mathsf{T}} \rangle$.

Процесс ортогонализации Грама — **Шмидта.** Пусть дан произвольный базис $(\mathbf{e}_1, \dots, \mathbf{e}_n)$ векторного пространства \mathcal{V} . Построим ортогональный базис $(\mathbf{f}_1, \dots, \mathbf{f}_n)$.

- 1) Полагаем \mathbf{f}_1 равным \mathbf{e}_1 , т. е. $\mathbf{f}_1 := \mathbf{e}_1$.
- 2) Будем искать второй базисный вектор \mathbf{f}_2 , исходя из условия $\mathbf{f}_2 \perp \mathbf{f}_1$. Для этого рассмотрим вектор $\mathbf{f}_2 = \mathbf{e}_2 \alpha \mathbf{f}_1$, где коэффициент α пока неизвестен. Домножим обе части равенства $\mathbf{f}_2 = \mathbf{e}_2 \alpha \mathbf{f}_1$ скалярно на \mathbf{f}_1 :

$$(\mathbf{f}_1, \mathbf{f}_2) = (\mathbf{f}_1, \mathbf{e}_2) - \alpha(\mathbf{f}_1, \mathbf{f}_1).$$

В силу ортогональности векторов $(\mathbf{f}_1, \mathbf{f}_2) = 0$, поэтому

$$\alpha = \frac{(\mathbf{f}_1, \mathbf{e}_2)}{(\mathbf{f}_1, \mathbf{f}_1)}.$$

Подставляя найденное значение α в $\mathbf{f}_2 = \mathbf{e}_2 - \alpha \mathbf{f}_1$, находим \mathbf{f}_2 .

Другими словами, на этом шаге находим ортогональную составляющую вектора ${\bf e}_2$ относительно подпространства $\langle {\bf f}_1 \rangle$.

3) Аналогично, находим третий базисный вектор \mathbf{f}_3 как ортогональную составляющую вектора \mathbf{e}_3 относительно подпространства $\langle \mathbf{f}_1, \mathbf{f}_2 \rangle$, т. е. полагаем $\mathbf{f}_3 = \mathbf{e}_3 - \beta \mathbf{f}_1 - \gamma \mathbf{f}_2$, где β и γ — некоторые коэффициенты. Поскольку $\mathbf{f}_3 \perp \mathbf{f}_1$ и $\mathbf{f}_3 \perp \mathbf{f}_2$, то

$$0 = (\mathbf{f}_1, \mathbf{f}_3) = (\mathbf{f}_1, \mathbf{e}_3) - \beta(\mathbf{f}_1, \mathbf{f}_1) - \gamma(\mathbf{f}_1, \mathbf{f}_2),$$

$$0 = (\mathbf{f}_2, \mathbf{f}_3) = (\mathbf{f}_2, \mathbf{e}_3) - \beta(\mathbf{f}_2, \mathbf{f}_1) - \gamma(\mathbf{f}_2, \mathbf{f}_2).$$

Так как $(\mathbf{f}_2, \mathbf{f}_1) = (\mathbf{f}_1, \mathbf{f}_2) = 0$, получаем:

$$\beta = \frac{(\mathbf{f}_1, \mathbf{e}_3)}{(\mathbf{f}_1, \mathbf{f}_1)}, \qquad \gamma = \frac{(\mathbf{f}_2, \mathbf{e}_3)}{(\mathbf{f}_2, \mathbf{f}_2)},$$

и т. д. . . .

k+1) Пусть векторы $\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_k$ попарно ортогональны. Найдем вектор \mathbf{f}_{k+1} как ортогональную составляющую вектора \mathbf{e}_{k+1} относительно подпространства $\langle \mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_k \rangle$:

$$\mathbf{f}_{k+1} = \mathbf{e}_{k+1} - \alpha_1 \mathbf{f}_1 - \ldots - \alpha_k \mathbf{f}_k,$$

где

$$\alpha_i = \frac{(\mathbf{f}_i, \mathbf{e}_{k+1})}{(\mathbf{f}_i, \mathbf{f}_i)}, \quad i = 1, 2, \dots, k.$$

Пример 67 Применяя процесс ортогонализации, построить ортогональный базис подпространства, натянутого на данную систему векторов:

$$\mathbf{e}_1 = [2, 1, 3, -1]^\mathsf{T}, \quad \mathbf{e}_2 = [7, 4, 3, -3]^\mathsf{T}, \quad \mathbf{e}_3 = [1, 1, -6, 0]^\mathsf{T}, \quad \mathbf{e}_4 = [5, 7, 7, 8]^\mathsf{T}.$$

- ▶ 1) Полагаем $\mathbf{f}_1 = \mathbf{e}_1 = [2, 1, 3, -1]^\mathsf{T}$.
 - 2) Ищем $\mathbf{f}_2 = \mathbf{e}_2 \alpha \mathbf{f}_1$, где

$$\alpha = \frac{(\mathbf{f}_1, \mathbf{e}_2)}{(\mathbf{f}_1, \mathbf{f}_1)} = \frac{7 \cdot 2 + 4 \cdot 1 + 3 \cdot 3 - 3 \cdot (-1)}{2^2 + 1^2 + 3^2 + (-1)^2} = 2.$$

Тогда

$$\mathbf{f}_2 = \begin{bmatrix} 7\\4\\3\\-3 \end{bmatrix} - 2 \cdot \begin{bmatrix} 2\\1\\3\\-1 \end{bmatrix} = \begin{bmatrix} 3\\2\\-3\\-1 \end{bmatrix}.$$

3) Ищем $\mathbf{f}_3 = \mathbf{e}_3 - \beta \mathbf{f}_1 - \gamma \mathbf{f}_2$, где

$$\beta = \frac{(\mathbf{f}_1, \mathbf{e}_3)}{(\mathbf{f}_1, \mathbf{f}_1)} = \frac{1 \cdot 2 + 1 \cdot 1 - 6 \cdot 3 + 0 \cdot (-1)}{2^2 + 1^2 + 3^2 + (-1)^2} = -1;$$

$$\gamma = \frac{(\mathbf{f}_2, \mathbf{e}_3)}{(\mathbf{f}_2, \mathbf{f}_2)} = \frac{1 \cdot 3 + 1 \cdot 2 - 6 \cdot (-3) + 0 \cdot (-1)}{3^2 + 2^2 + (-3)^2 + (-1)^2} = 1.$$

Так как

$$\begin{bmatrix} 1 \\ 1 \\ -6 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

то вектор \mathbf{e}_3 лежит в подпространстве $\langle \mathbf{f}_1, \mathbf{f}_2 \rangle$. Значит, $\mathbf{f}_3 = \mathbf{e}_4 - \beta' \mathbf{f}_1 - \gamma' \mathbf{f}_2$, где

$$\beta' = \frac{(\mathbf{f_1}, \mathbf{e_4})}{(\mathbf{f_1}, \mathbf{f_1})} = \frac{5 \cdot 2 + 7 \cdot 1 + 7 \cdot 3 + 8 \cdot (-1)}{2^2 + 1^2 + 3^2 + (-1)^2} = 2;$$
$$\gamma' = \frac{(\mathbf{f_2}, \mathbf{e_4})}{(\mathbf{f_2}, \mathbf{f_2})} = \frac{5 \cdot 3 + 7 \cdot 2 + 7 \cdot (-3) + 8 \cdot (-1)}{3^2 + 2^2 + (-3)^2 + (-1)^2} = 0.$$

Тогда

$$\mathbf{f}_{3} = \begin{bmatrix} 5 \\ 7 \\ 7 \\ 8 \end{bmatrix} - 2 \cdot \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix} + 0 \cdot \begin{bmatrix} 3 \\ 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 1 \\ 10 \end{bmatrix}.$$

Таким образом, ортогональный базис пространства $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4 \rangle$:

$$\mathbf{f}_1 = [2, 1, 3, -1]^\mathsf{T}, \qquad \mathbf{f}_2 = [3, 2, -3, -1]^\mathsf{T}, \qquad \mathbf{f}_3 = [1, 5, 1, 10]^\mathsf{T}.$$

Можно сократить вычисления, если сразу заметить, что вектор \mathbf{e}_3 равен линейной комбинации $(-4) \cdot \mathbf{e}_1 + \mathbf{e}_2$. Тогда, выбирая в качестве базиса систему векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_4 , применяем процесс ортогонализации уже к ним.

17. Операторы в евклидовом (эрмитовом) пространстве

Сопряженный оператор. Пусть A: $\mathcal{V} \to \mathcal{V}$ — линейный оператор, действующий в эрмитовом (или евклидовом) пространстве \mathcal{V} . Оператор A* называется *сопряженным* к A, если для любых $\mathbf{x}, \mathbf{y} \in \mathcal{V}$

$$(A\mathbf{x},\mathbf{y})=(\mathbf{x},A^*\mathbf{y}).$$

Теорема 40 Пусть A — матрица линейного оператора A в некотором базисе $\{e_1, \ldots, e_n\}$ и G — матрица Грама векторов базиса $\{e_1, \ldots, e_n\}$. Тогда матрица A^* сопряженного линейного оператора A^* имеет вид:

в евклидовом пространстве	в эрмитовом пространстве
$A^* = G^{-1}A^TG$	$A^* = G^{-1}A^{\dagger}G.$

Пример 68 Пусть в некотором базисе скалярное произведение задано билинейной формой $(\mathbf{x}, \mathbf{y}) = x_1y_1 + 5x_2y_2 + 6x_3y_3 + 2x_1y_3 + 2x_3y_1 + 3x_2y_3 + 3x_3y_2$, а линейный оператор A матрицей

$$A = \left[\begin{array}{ccc} 0 & 1 & -2 \\ 2 & 0 & -1 \\ 3 & -2 & 0 \end{array} \right].$$

Hайdите матрицу A^* сопряженного преобразования A^* в том же базисе.

▶ Перепишем данную билинейную форму в матричном виде:

$$(\mathbf{x}, \mathbf{y}) = [x_1, x_2, x_3] \cdot \begin{bmatrix} 1 & 0 & 2 \\ 0 & 5 & 3 \\ 2 & 3 & 6 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

где $G = \left[egin{array}{ccc} 1 & 0 & 2 \\ 0 & 5 & 3 \\ 2 & 3 & 6 \end{array} \right]$ есть матрица Грама. Тогда матрица A^* сопряженного

оператора A* равна
$$A^* = G^{-1}A^{\mathsf{T}}G = \begin{bmatrix} 128 & 413 & 514 \\ 36 & 117 & 145 \\ -61 & -197 & -245 \end{bmatrix}$$
.

Оператор A называется *нормальным*, если $AA^* = A^*A$. Изучим их более подробно.

Самосопряженные операторы

Оператор $A: \mathcal{V} \to \mathcal{V}$ называется самосопряженным, если $A = A^*$.

	Самоспоряженный оператор		
	в евклидовом простран-	в унитарном простран-	
	стве	стве	
название	симметрический	эрмитовый	
матрица в ОНБ	$A^{T} = A$	$A^{\dagger} = A$	

Теорема 41 Пусть A — самосопряженный оператор на евклидовом (эрмитовом) и A — его матрица. Тогда:

- (1) Spec A вещественный;
- (2) собственные векторы, отвечающие различным собственным числам, ортогональны;
 - (3) существует ОНБ из собственных векторов;
- (4) существует диагональная матрица D и ортогональная (или унитарная) матрица S такие, что $D=S^{\mathsf{T}}AS$ ($D=S^{\dagger}AS$) .

Пример 69 Найдите ОНБ собственных векторов и матрицу D в этом базисе для линейного оператора, заданного в некотором ортонормированном базисе матрицей

$$A = \left[\begin{array}{rrr} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{array} \right].$$

▶ Задача нахождения канонической формы самосопряженного оператора и канонического базиса сводится к обычной задаче диагонализации матрицы оператора с последующим построением ортонормированного базиса из найденных собственных векторов.

Итак, составляем характеристический многочлен оператора $\chi_A(\lambda) = -\lambda^3 + 3\lambda^2 + 9\lambda - 27$ и находим его корни: двойной корень $\lambda = 3$ и простой $\lambda = -3$. Следовательно, спектр Spec A = $\{-3, 3, 3\}$.

Находим базис собственного подпространства $\mathcal{V}^3=\operatorname{Ker}\mathsf{A}_3=\operatorname{Ker}(\mathsf{A}-3\mathsf{E})$:

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 2 & -1 \\ 0 & 1 & 0 & 2 & -4 & 2 \\ 0 & 0 & 1 & -1 & 2 & -1 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} \times & A_{(1)} \\ \times & A_{(2)} \\ A_{(3)} \\ A_{(4)} = A_{(1)} - A_{(3)} \\ A_{(4)} = A_{(2)} + 2A_{(3)}. \end{array}$$

Выписываем оставшиеся строки:

$$\begin{bmatrix} 0 & 0 & 1 & -1 & 2 & -1 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{matrix} A_{(3)} \\ A_{(4)} \\ A_{(4)}.$$

Тогда собственное подпространство \mathcal{V}^3 есть линейная оболочка

$$\mathcal{V}^3 = \langle [1, 0, -1]^\mathsf{T}, [2, 1, 0]^\mathsf{T} \rangle.$$

Более того, так как собственное подпространство \mathcal{V}^{-3} является образом $\operatorname{Im} A_3 = \operatorname{Im} (A - 3E)$, то сразу находим его базис: $\mathcal{V}^{-3} = \langle [1, -2, 1]^\mathsf{T} \rangle$.

Теперь для найденного базиса, состоящего из собственных векторов оператора A, построим ортонормированный базис. Во-первых, заметим, что базисный вектор $[1,-2,1]^{\mathsf{T}}$ подпространства \mathcal{V}^{-3} ортогонален подпространству \mathcal{V}^3 . Нормируя его, получаем первый вектор искомого базиса $\mathbf{f}_1 = \frac{1}{\sqrt{6}}[1,-2,1]^{\mathsf{T}}$. Теперь рассмотрим базис $\mathbf{e}_1 = [1,0,-1]^{\mathsf{T}}$ и $\mathbf{e}_2 = [2,1,0]^{\mathsf{T}}$ подпространства \mathcal{V}^3 . Применяя к ним процесс ортогонализации и нормируя полученные векторы, найдем оставшиеся два вектора. Пусть $\mathbf{f}_2 = \frac{1}{\sqrt{2}}[1,0,-1]^{\mathsf{T}}$. Тогда

$$\mathbf{e}_{2\perp} = \mathbf{e}_2 - \mathbf{e}_{2\parallel} = \mathbf{e}_2 - \frac{(\mathbf{e}_2, \mathbf{e}_1)}{(\mathbf{e}_1, \mathbf{e}_1)} \mathbf{e}_1 = [1, 1, 1]^\mathsf{T}.$$

Следовательно, $\mathbf{f}_3 = \frac{1}{\sqrt{3}}[1, 1, 1]^\mathsf{T}$.

Таким образом, канонический вид матрицы самосопряженного оператора и матрица перехода к каноническому базису: $A = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ и

$$T = \begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ -2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix}.$$

Приведение симметричной квадратичной формы к главным осям. Каждой квадратичной форме $q(\mathbf{x}) = X^\mathsf{T} A X$ соответствует единственный линейный оператор A, имеющий с q одну и ту же матрицу в одинаковых базисах. Так как квадратичная форма q задается симметричной (эрмитовой) матрицей, то A — симметрический (эрмитовый) оператор. Следовательно, для A существует OHБ, в котором матрица его матрица диагональна. Но тогда в этом базисе квадратичная форма q тоже будет иметь диагональный вид.

Теорема 42 Для всякой симметричной (эрмитовой) формы $q(\mathbf{x})$ на евклидовом (эрмитовом) пространстве \mathcal{V} над \mathbb{F} существует такой ортонормированный базис, в котором $q(\mathbf{x})$ имеет вид:

$$q(\mathbf{x}) = \lambda_1 ||x_1||^2 + \ldots + \lambda_n ||x_n||^2.$$

Пример 70 Найдите ортогональное преобразование, приводящее квадратичную форму $x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$ к главным осям.

▶ Задача сводится к диагонализации матрицы данной квадратичной формы и поиску ортонормированного базиса, в котором она имеет диагональный вид. Симметричность матрицы гарантирует существование такого базиса.

Запишем матрицу квадратичной формы:

$$A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array} \right].$$

Найдем ее характеристический многочлен $\chi_A(\lambda) = -\lambda^3 + 3\lambda^2 + 9\lambda + 5$ и собственные числа: простой корень $\lambda = 5$ и двойной корень $\lambda = -1$.

Далее находим собственные подпространства для данного оператора:

$$\mathcal{V}^5 = \text{Ker}(A - 5E) = \langle [1, 1, 1]^\mathsf{T} \rangle;$$

 $\mathcal{V}^{-1} = \text{Ker}(A + E) = \langle [1, -1, 0]^\mathsf{T}, [1, 0, -1]^\mathsf{T} \rangle.$

Применяя процесс ортогонализации для базиса каждого подпространства и нормируя полученные векторы, находим нужный нам ортонормированный базис:

$$\mathcal{V}^{5} = \left\langle \frac{1}{\sqrt{3}} [1, 1, 1]^{\mathsf{T}} \right\rangle;$$

$$\mathcal{V}^{-1} = \left\langle \frac{1}{\sqrt{2}} [1, 0, -1]^{\mathsf{T}}, \frac{1}{\sqrt{6}} [1, -2, 1]^{\mathsf{T}} \right\rangle.$$

Тогда, применяя преобразование координат

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

получим канонический вид квадратичной формы q:

$$q(\mathbf{y}) = 5y_1^2 - y_2^2 - y_3^2.$$

Приведение пары квадратичных форм к главным осям.

Теорема 43 Пусть на линейном пространстве \mathcal{V} над \mathbb{F} заданы две симметричные (эрмитовы) формы $q(\mathbf{x}) = X^{\dagger}AX$ и $r(\mathbf{x})$, причем $r(\mathbf{x})$ положительно определена. Тогда существует невыроженное линейное преобразование пространства \mathcal{V} , в котором обе формы имеют диагональный вид.

Алгоритм приведения пары квадратичных форм к каноническому виду.

- (1) Проверяем, что r положительно определена.
- (2) Приводим r к нормальному виду методом Лагранжа (выделения полных квадратов). Пусть T матрица перехода к базису, в котором r имеет нормальный вид:

$$r = Y^{\dagger}Y, \quad X = TY.$$

- (3) Вычисляем матрицу квадратичной формы q в новом базисе: $B = T^{\dagger}AT, \, B$ эрмитовая матрица.
- (4) Унитарным преобразованием S приводим матрицу B к диагональному виду:

$$D = \operatorname{diag} \{\lambda_1, \dots, \lambda_n\} = S^{\mathsf{T}} B S, \quad Y = S Z.$$

(5) Находим преобразование пространства X=RZ, где R=TS, при этом квадратичные формы имеют вид:

$$r = Z^{\dagger}Z, \quad q = Z^{\dagger}DZ.$$

Пример 71 Найдите невырожденное линейное преобразование пространства, приводящее пару квадратичных форм к каноническому виду:

$$f = x_1^2 + 2x_1x_2 + 3x_2^2$$
, $g = 4x_1^2 + 16x_1x_2 + 6x_2^2$.

▶ Заметим, что f положительно определена. Приведем f к нормальному виду методом Лагранжа:

$$f = (x_1^2 + 2x_1x_2 + x_2^2) + 2x_2^2 = (x_1 + x_2)^2 + (\sqrt{2}x_2)^2.$$

Положим $y_1 = x_1 + x_2$ и $y_2 = \sqrt{2}x_2$. Получим нормальный вид квадратичной формы f и соответствующее преобразование координат:

$$f(\mathbf{y}) = y_1^2 + y_2^2, \qquad \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{cc} 1 & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{array} \right] \cdot \left[\begin{array}{c} y_1 \\ y_2 \end{array} \right].$$

Найдем матрицу второй квадратичной формы g в тех же координатах:

$$B = \begin{bmatrix} 1 & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 4 & 8 \\ 8 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 4 & 2\sqrt{2} \\ 2\sqrt{2} & -3 \end{bmatrix}.$$

Далее приведем $q(\mathbf{y}) = Y^\mathsf{T} B Y$ к главным осям. Находим характеристический многочлен $\chi_B(\lambda) = \lambda^2 - \lambda - 20$ и его корни $\lambda = 5$ и $\lambda = -4$; собственные подпространства:

$$\mathcal{V}^5 = \operatorname{Ker}(B - 5E) = \langle [2\sqrt{2}, 1]^{\mathsf{T}} \rangle;$$
$$\mathcal{V}^{-4} = \operatorname{Ker}(B + 4E) = \langle [-1, 2\sqrt{2}]^{\mathsf{T}} \rangle.$$

Нормируя полученные векторы, находим канонический вид квадратичной формы g и соотвествующее преобразование координат:

$$g(\mathbf{z}) = 5z_1^2 - 4z_2^2, \qquad \left[\begin{array}{c} y_1 \\ y_2 \end{array} \right] = \left[\begin{array}{cc} 2\sqrt{2}/3 & -1/3 \\ 1/3 & 2\sqrt{2}/3 \end{array} \right] \cdot \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right].$$

Заметим, что последнее преобразование является ортогональным, поэтому не меняет вид квадратичной формы f:

$$f = Y^{\mathsf{T}}Y = Z^{\mathsf{T}}Z.$$

Остается найти преобразование координат как композицию первого и второго преобразований:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix} \cdot \begin{bmatrix} 2\sqrt{2}/3 & -1/3 \\ 1/3 & 2\sqrt{2}/3 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{2}/2 & -1 \\ \sqrt{2}/6 & 2/3 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}.$$

Изометричекие и кососамосопряженные операторы

Оператор A называется *изометрическим*, если $AA^* = E$.

	Изометрический оператор		
	в евклидовом простран-	в унитарном простран-	
	стве	стве	
название	ортогональный	унитарный	
матрица в ОНБ	$A^{T} \cdot A = A \cdot A^{T} = E$	$A^{\dagger} \cdot A = A \cdot A^{\dagger} = E$	
спектр	$\operatorname{Spec} \varphi = \{\lambda : \lambda = 1\}$		
канонический	блочно-диагональная	диагональная	
вид матрицы	(см. т. 44.)	диагональная	

Теорема 44 Пусть A — ортогональный оператор, A — матрица A. Тогда:

- (1) существует ОНБ из собственных векторов;
- (2) существует блочно-диагональная матрица D с блоками

$$[\pm 1], \quad \left[\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array} \right]$$

u ортогональная матрица S такие, что $D = S^T A S = S^{-1} A S$.

Оператор A называется $\kappa o co camo conpяженным$, если $A^* = -A$.

	Кососамопряженный оператор		
	в евклидовом простран-	в унитарном простран-	
	стве	стве	
название	кососимметрический	косоэрмитовый	
матрица в ОНБ	$A^{T} = -A$	$A^{\dagger} = -A$	
спектр	$\operatorname{Spec} \varphi = \{\lambda : \operatorname{Re} \lambda = 0\}$		
канонический	блочно-диагональная	пиатоналі пад	
вид матрицы	(см. т. 45.)	диагональная	

- (1) существует ОНБ из собственных векторов;
- (2) существует блочно-диагональная матрица D с блоками

$$[0], \quad \left[\begin{array}{cc} 0 & \lambda \\ -\lambda & 0 \end{array} \right]$$

u ортогональная матрица S такие, что $D = S^T A S = S^{-1} A S$.

Пример 72 Для ортогонального преобразования φ , заданного в ОНБ матрицей

$$A = \frac{1}{4} \left[\begin{array}{ccc} 3 & 1 & -\sqrt{6} \\ 1 & 3 & \sqrt{6} \\ \sqrt{6} & -\sqrt{6} & 2 \end{array} \right],$$

найдите канонический вид матрицы этого оператора и ОНБ, в котором она имеет канонический вид. (Искомый базис определен неоднозначно.)

▶ 1) Ищем собственные числа данного оператора. Для этого составляем характеристический многочлен $\chi_{\mathsf{A}}(\lambda) = -\lambda^3 + 2\lambda^2 - 2\lambda + 1$ и находим его корни $\lambda = 1$ и $\lambda = \frac{1}{2} \pm i\frac{\sqrt{3}}{2}$. Следовательно,

Spec A =
$$\left\{1, \frac{1}{2} + i\frac{\sqrt{3}}{2}, \frac{1}{2} - i\frac{\sqrt{3}}{2}\right\}$$
.

2) Ищем собственные векторы для каждого действительного собственного числа и для одного из пары комплексно сопряженных.

Рассмотрим $\underline{\lambda=1}$. Матрица оператора $\mathsf{A}_1=\mathsf{A}-1\cdot\mathsf{E}=\mathsf{A}-\mathsf{E}$ (характеристическая матрица) имеет вид:

$$A - E = \left[\begin{array}{ccc} \frac{3}{4} - 1 & \frac{1}{4} & -\frac{\sqrt{6}}{4} \\ \frac{1}{4} & \frac{3}{4} - 1 & \frac{\sqrt{6}}{4} \\ \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & \frac{1}{2} - 1 \end{array} \right] = \left[\begin{array}{ccc} -\frac{1}{4} & \frac{1}{4} & -\frac{\sqrt{6}}{4} \\ \frac{1}{4} & -\frac{1}{4} & \frac{\sqrt{6}}{4} \\ \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & -\frac{1}{2} \end{array} \right].$$

Ищем ядро оператора A - E:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} - \frac{1}{4} \quad \frac{1}{4} \quad \frac{\sqrt{6}}{4} \\ \frac{1}{4} \quad -\frac{1}{4} \quad -\frac{\sqrt{6}}{4} \\ -\frac{\sqrt{6}}{4} \quad \frac{\sqrt{6}}{4} \quad -\frac{1}{2} \\ 0 \quad 0 \quad 0 \quad 0 \end{bmatrix} \times \begin{array}{c} A_{(1)} \\ A_{(2)} \\ A_{(3)} \\ A_{(4)} = A_{(1)} + A_{(2)}. \end{array}$$

Следовательно, собственный вектор, отвечающий собственному значению 1, равен $\mathbf{v}_1 = [1,1,0]^\mathsf{T}$. Нормируем его: $\mathbf{f}_1 = [\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0]^\mathsf{T}$.

Пусть комплексному собственному числу $\sigma + i\rho$ отвечает собственный вектор ${\bf v}$, представленный в виде ${\bf v}={\bf x}+i{\bf y}$, где векторы ${\bf x}$ и ${\bf y}$ имеют вещественные координаты. Тогда ${\bf x}$ и ${\bf y}$ ортогональны, имеют одинаковую длину, причем

$$A(\mathbf{x}) = \sigma \mathbf{x} - \rho \mathbf{y}, \quad A(\mathbf{y}) = \rho \mathbf{x} + \sigma \mathbf{y}.$$

Другими словами, двумерное подпространство, натянутое на векторы \mathbf{x} , \mathbf{y} , инвариантно относительно оператора A , и его матрица на этом подпространстве имеет вид

 $\left[\begin{array}{cc} \sigma & \rho \\ -\rho & \sigma \end{array}\right].$

Заметим, что комплексно сопряженному собственному числу $\sigma-i\rho$ отвечает собственный вектор $\mathbf{v}'=\mathbf{x}-i\mathbf{y}$, поэтому двумерное инвариантное подпространство для собственного числа $\sigma-i\rho$ совпадает с двумерным инваринатным подпространством для собственного числа $\sigma+i\rho$. Значит, достаточно рассмотреть только одно из комплексно сопряженных собственных чисел.

Итак, рассмотрим собственное число $\lambda = \frac{1}{2} - i \frac{\sqrt{3}}{2}$. Непосредственное нахождение ядра комплексной матрицы связано со значительными вычислительными трудностями, которые можно избежать следующим образом.

Возьмем какой-нибудь вектор, ортогональный \mathbf{v} , например, вектор $\mathbf{u} = [0,0,1]^\mathsf{T}$. Так как он ортогонален \mathbf{v} , то он принадлежит двумерному инвариантному подпространству. Найдем его образ при действии оператора $\mathsf{A} - \left(\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) \mathsf{E}$:

$$\left(\mathsf{A} - \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\mathsf{E}\right)\mathbf{u} = \mathsf{A}\mathbf{u} - \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\mathbf{u} = \left[\sqrt{6}/4, -\sqrt{6}/4, -i\sqrt{3}/2\right]^\mathsf{T}.$$

Найденный вектор является собственным вектором оператора A, принадлежащим комплексному собственному значению $\lambda=\frac{1}{2}+i\frac{\sqrt{3}}{2}$. Отсюда находим $\mathbf{f}_2=[0,0,1]^\mathsf{T}$, $\mathbf{f}_3=[\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},0]^\mathsf{T}$ и соответствующий блок матрицы A (причем в этом случае отрицательный синус всегда будет стоять ниже главной диагонали):

$$\left[\begin{array}{cc} \frac{\frac{1}{2}}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right].$$

Теперь запишем канонический вид матрицы линейного оператора A и матрицу перехода к ОНБ, в котором она имеет такой вид:

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}, \quad S = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \end{bmatrix}.$$

Алгоритм нахождения канонического вида матрицы кососамосопряженного оператора совпадает с предыдущим.

Полярное и сингулярное разложения отображения

Эрмитовый оператор А: $\mathcal{V} \to \mathcal{V}$ называется неотрицательным, если для любого вектора $\mathbf{x} \in \mathcal{V}$

$$(\mathbf{A}\mathbf{x}, \mathbf{x}) \geq 0.$$

Теорема 46 Для любого оператора $A: \mathcal{V} \to \mathcal{V}$ операторы AA^* u A^*A — неотрицательные.

Теорема 47 Линейный оператор A — неотрицательный тогда и только тогда, когда $\operatorname{Spec} A \subseteq \mathbb{R}^+ = \{x \in \mathbb{R} \mid x \geq 0\}.$

Теорема 48 Для любого линейного преобразования $A: \mathcal{V} \to \mathcal{V}$ унитарного пространства \mathcal{V} существуют такое эрмитовое преобразование P_1 (P_2) и такое унитарное преобразование W , что $\mathsf{A} = \mathsf{P}_1 W$ — левое полярное разложение ($\mathsf{A} = W \mathsf{P}_2$ — правое полярное разложение).

Алгоритм нахождения левого полярного разложения.

- (1) Составляем матрицу AA^* оператора AA^* .
- (2) Вычисляем $P_1 = \sqrt{AA^*}$:
- находим Spec AA^* ;
- находим ОНБ из собственных векторов, в котором AA^* имеет диагональный вид D, T матрица перехода к этому базису;
 - вычисляем $D' = \sqrt{D}$;
 - вычисляем $P_1 = TD'T^{-1}$.
 - (3) ищем матрицу W такую, чтобы $A = P_1 W$.

Если $\det A \neq 0$, то $W=P_1^{-1}A$ (или $W=AP_2^{-1}$). В противном случае вначале следует найти сингулярное разложение, тогда $W=UV^\dagger$ (см. сингулярное разложение).

Алгоритм нахождения **правого полярного разложения** получается из алгоритма левого полярного разложения заменой AA^* на A^*A и $A=P_1W$ на $A=WP_2$.

Теорема 49 Пусть A: $\mathbb{R}^m \to \mathbb{R}^n$, $\operatorname{rk} A = r$. Тогда существуют такие унитарные преобразования U пространства \mathbb{R}^n и V пространства \mathbb{R}^m , что $A = \mathsf{U} \Sigma \mathsf{V}^\dagger$, $\operatorname{rd} e$

$$\Sigma = \left[\begin{array}{cccc} \lambda_1 & \dots & 0 & \dots & 0 \\ 0 & \ddots & \lambda_r & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 \end{array} \right] \quad u \ \lambda_1 \geq \dots \geq \lambda_r > 0.$$

Такое представление называется сингулярным разложением оператора A, а числа $\lambda_1, \ldots, \lambda_r$ — сингулярными числами.

Алгоритм построения сингулярного разложения $(m \le n)$.

- (1) Составляем матрицу A^*A .
- (2) Находим Spec $A^*A = \{\lambda_1^2, \dots, \lambda_r^2, 0\}$ и OHБ из собственных векторов: $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$. Пусть V матрица перехода к этому базису.
- (3) Полагаем $\mathbf{f}_i = \frac{1}{\lambda_i} A \mathbf{e}_i$ (i = 1, 2, ..., r), а $\mathbf{f}_{r+1}, ..., \mathbf{f}_n$ выбираем так, чтобы $\mathbf{f}_1, ..., \mathbf{f}_n$ составляли ОНБ. Тогда U матрица, составленная из столбцов координат векторов $\mathbf{f}_1, ..., \mathbf{f}_n$.
 - (4) Полагаем Σ как в теореме 2. Проверка сингулярного разложения.

Пример 73 Найти сингулярное разложение матрицы

$$A = \left[\begin{array}{cc} 1 & 3 \\ 1 & 3 \end{array} \right].$$

▶ Находим

$$A^\dagger A = \left[\begin{array}{cc} 1 & 1 \\ 3 & 3 \end{array} \right] \cdot \left[\begin{array}{cc} 1 & 3 \\ 1 & 3 \end{array} \right] = \left[\begin{array}{cc} 2 & 6 \\ 6 & 18 \end{array} \right].$$

Матрица вырождена, поэтому один корень 0, а второй находится по следу и равен 20. Значит,

$$\Sigma = \left[\begin{array}{cc} 2\sqrt{5} & 0 \\ 0 & 0 \end{array} \right].$$

Подбираем собственный вектор $[-3,1]^\top$ для корня 0 и нормируем его. Второй собственный вектор должен быть ортогонален, поэтому $[1,3]^\top$ подходит и имеет ту же норму. В соответствии с порядком сингулярных чисел по невозрастанию составляем

$$V = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 1 & -3\\ 3 & 1 \end{array} \right].$$

Находить U напрямую из уравнения $U\Sigma = AV$ неудобно: матрица Σ вырождена, решение не единственно. Поскольку $\operatorname{rk}\Sigma = 1$, дополним первый столбец матрицы AV до ортогонального базиса, затем нормируем столбцы и получим U:

$$AV = \left[\begin{array}{cc} \sqrt{10} & 0 \\ \sqrt{10} & 0 \end{array} \right] \quad \leadsto \quad \left[\begin{array}{cc} \sqrt{10} & -1 \\ \sqrt{10} & 1 \end{array} \right] \quad \Longrightarrow \quad U = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right].$$

Проверка сингулярного разложения:

$$U\Sigma V^{\dagger} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \cdot 2\sqrt{5} \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \cdot \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 1 & 3 \\ -3 & 1 \end{array} \right] = \left[\begin{array}{cc} 1 & 3 \\ 1 & 3 \end{array} \right] = A.$$

Пример 74 Найти левое и правое полярные разложения матрицы А из предыдущей задачи.

▶ Используя найденное сингулярное разложение, вычисляем унитарную матрицу

$$W=UV^\dagger=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1\\1 & 1\end{array}\right]\cdot\frac{1}{\sqrt{10}}\left[\begin{array}{cc}1 & 3\\-3 & 1\end{array}\right]=\frac{1}{2\sqrt{5}}\left[\begin{array}{cc}4 & 2\\-2 & 4\end{array}\right]=\left[\begin{array}{cc}2 & 1\\-1 & 2\end{array}\right].$$

Теперь вычисляем две неотрицательные эрмитовы матрицы:

$$P_{1} = U\Sigma U^{\dagger} = AW^{\dagger} = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix};$$

$$P_{2} = V\Sigma V^{\dagger} = W^{\dagger}A = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}.$$

Получаем левое полярное разложение $A = P_1 W$ и правое полярное разложение $A = W P_2$.

Список литературы

- 1. Александров А.Д., Нецветаев Н.Ю. Геометрия. М.: Наука, 1990.
- 2. *Александрова Н.И.* Семинары по высшей алгебре и аналитической геометрии. Ч. I. Новосибирск, 2007.
- 3. *Бахвалов С.В., Моденов П.С., Пархоменко А.С.* Сборник задач по аналитической геометрии. М.: Наука, 1964.
- 4. *Беклемишев Д.В.* Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2005.
- 5. Беклемишева Л.А., Петрович А.Ю., Чубаров И.А. Сборник задач по аналитической геометрии и линейной алгебре М.: Физматлит, 2001.
- 6. *Ильин В.А.*, *Позняк В.Э.* Аналитическая геометрия. М.: Физматлит, 1999.
- 7. Кострикин А.И. Введение в алгебру. Ч. І. М.: Физматлит, 2001.
- 8. Кострикин А.И. Введение в алгебру. Ч. II. М.: Физматлит, 2001.
- 9. *Курош А.Г.* Курс высшей алгебры. М.: Наука, 1971.
- 10. Моденов П.С. Аналитическая геометрия. М.: Изд-во МГУ, 1969.
- 11. *Погорелов А.В.* Аналитическая геометрия. М.: Наука, 1978.
- 12. *Проскуряков И.В.* Сборник задач по линейной алгебре. М.: Наука, 1978.
- 13. Сборник задач по по алгебре. / Под ред. Кострикина А.И. В 2 т. Т. 1. — М.: Физматлит, 2007.
- 14. Ульянов $A.\Pi$. Конспект лекций по алгебре и геометрии. Ч. І. Новосибирск, 2007.
- 15. Ульянов А.П. Конспект лекций по алгебре и геометрии. Ч. II. Новосибирск, 2007.
- 16. Ульянов A.П. Конспект лекций по алгебре и геометрии. Ч. III. Новосибирск, 2007.
- 17. $\Phi a d d e e e \mathcal{A}$. К. Лекции по алгебре. М.: Наука, 1984.
- 18. $\Phi addees$ Д.К., Соминский И.С. Сборник задач по высшей алгебре. М.: Наука, 1972.