Notas de Análisis Matemático IV

Cristo Daniel Alvarado

6 de junio de 2024

Índice general

1.	Trai	nsformación de Fourier	2
	1.1.	Conceptos Fundamentales	2
	1.2.	Teoremas de Transferencia e Inversión	13
	1.3.	Fórmula de inversión en $\mathbb R$	18
	1.4.	Homomorfismos Complejos del álgebra de Banach $L_1(\mathbb{R}^n,\mathbb{C})$	21

Capítulo 1

Transformación de Fourier

La transformada de Fourier de una función de \mathbb{R}^n en \mathbb{C} generaliza en cierta forma la noción de coeficientes de Fourier de funciones periódicas

1.1. Conceptos Fundamentales

Definición 1.1.1

Se define el **producto escalar usual en** \mathbb{R}^n como

$$\langle x|y\rangle = \sum_{k=1}^{n} x_k y_k, \quad \forall x, y \in \mathbb{R}^n$$

en ocasiones también denotado como $(x|y) = \langle x|y \rangle$.

Definición 1.1.2

Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Se definen $\mathcal{F}f, \mathcal{F}^*f : \mathbb{R}^n \to \mathbb{C}$ como

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy \quad y \quad \mathcal{F}^*f(x) = \int_{\mathbb{R}^n} e^{i\langle x|y\rangle} f(y) \, dy$$

para todo $x \in \mathbb{R}^n$. Las funciones $\mathcal{F}f$ y \mathcal{F}^*f se llaman las **transformaciones de Fourier de** f. Las aplicaciones \mathcal{F} y \mathcal{F}^* de $\mathcal{L}_1(\mathbb{R}^n,\mathbb{C})$ en el conjunto de funciones de \mathbb{R}^n en \mathbb{C} se llaman las **transformaciones de Fourier**.

Observación 1.1.1

Se tiene lo siguiente:

- I. Los operadores \mathcal{F} y \mathcal{F}^* son lineales de $\mathcal{L}_1(\mathbb{R}^n,\mathbb{C})$ en el espacio de funciones de \mathbb{R}^n en \mathbb{C} .
- II. Las funciones $\mathcal{F}f(x)$ y $\mathcal{F}^*f(x)$ están definidas para todo $x \in \mathbb{R}^n$ si y sólo si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.
- III. En caso de existir, se tiene que $\mathcal{F}f(x) = \mathcal{F}^*f(-x)$.

Demostración:

De (i): Es claro que si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ entonces $\mathcal{F}f(x)$ y $\mathcal{F}^*f(x)$ están definidas para todo $x \in \mathbb{R}^n$. Para la recíproca, en particular están definidas para $x = \vec{0}$, es decir que

$$\mathcal{F}f\left(\vec{0}\right) = \int_{\mathbb{R}^n} e^{-i\langle \vec{0}|y\rangle} f(y) \, dy = \int_{\mathbb{R}^n} e^0 f(y) \, dy = \int_{\mathbb{R}^n} f(y) \, dy < \infty$$

luego $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.

De (ii): Es inmediata.

Definición 1.1.3

Sea $f \in \mathcal{L}_1([0,\infty[,\mathbb{C})]$. Se definen

$$\mathcal{F}_c f(x) = \int_0^\infty f(y) \cos xy \, dy$$
 y $\mathcal{F}_s f(x) = \int_0^\infty f(y) \sin xy \, dy$

para todo $x \in \mathbb{R}$. Las funciones $\mathcal{F}_c f$ y $\mathcal{F}_s f$ se llaman las trasnformadas coseno y seno de Fourier de f.

Definición 1.1.4

Sea $f:[0,\infty]\to\mathbb{C}$ una función. Se definen las funciones f^P y f^I de \mathbb{R} en \mathbb{C} como

$$f^{P}(x) = \begin{cases} f(x) & \text{si} \quad x \geqslant 0\\ f(-x) & \text{si} \quad x < 0 \end{cases}$$

y,

$$f^{I}(x) = \begin{cases} f(x) & \text{si } x \ge 0\\ -f(-x) & \text{si } x < 0 \end{cases}$$

Proposición 1.1.1

Sea $f \in \mathcal{L}_1([0,\infty[,\mathbb{C})]$. Se tiene

$$\mathcal{F}f^P(x) = 2\mathcal{F}_c f(x)$$
 y $\mathcal{F}f^I(x) = -2i\mathcal{F}_2 f(x)$

para todo $x \in \mathbb{R}$.

Demostración:

Sea $x \in \mathbb{R}$, entonces

$$\mathcal{F}f^{P}(x) = \int_{\mathbb{R}}^{P} f(y)e^{-i\langle x|y\rangle} dy$$

$$= \int_{-\infty}^{\infty} f^{P}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} f^{P}(y)e^{-ixy} dy + \int_{0}^{\infty} f^{P}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} f(-y)e^{-ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= \int_{0}^{\infty} f(y)e^{ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= \int_{0}^{\infty} f(y) \left[e^{ixy} + \overline{e^{ixy}}\right] dy$$

$$= \int_{0}^{\infty} f(y) \left[2\Re(e^{ixy})\right] dy$$

$$= \int_{0}^{\infty} 2f(y)\cos xy dy$$

$$= 2\int_{0}^{\infty} f(y)\cos xy dy$$

$$= 2\mathcal{F}_{c}f(x)$$

$$\mathcal{F}f^{I}(x) = \int_{\mathbb{R}} f^{I}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} f^{I}(y)e^{-ixy} dy + \int_{0}^{\infty} f^{I}(y)e^{-ixy} dy$$

$$= \int_{-\infty}^{0} (-f(-y))e^{-ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= -\int_{0}^{\infty} f(y)e^{ixy} dy + \int_{0}^{\infty} f(y)e^{-ixy} dy$$

$$= \int_{0}^{\infty} f(y) \left[-e^{ixy} + e^{-ixy} \right] dy$$

$$= \int_{0}^{\infty} f(y) \left[-\cos xy - i\sin xy + \cos(-xy) + i\sin(-xy) \right] dy$$

$$= \int_{0}^{\infty} f(y) \left[-2i\sin xy \right] dy$$

$$= -2i \int_{0}^{\infty} f(y)\sin xy dy$$

$$= -2i \mathcal{F}_{s}f(x)$$

lo que prueba el resultado.

Corolario 1.1.1

Sea $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$.

- I. Si f es par, entonces $\mathcal{F}f(x) = 2\int_0^\infty f(y)\cos xy \,dy$ para todo $x \in \mathbb{R}$.
- II. Si f es impar, entonces $\mathcal{F}f(x) = -2i\int_0^\infty f(y)\sin xy\,dy$ para todo $x \in \mathbb{R}$.

Ejemplo 1.1.1

Se tiene lo siguiente:

I. Sea $f: \mathbb{R} \to \mathbb{R}$ la función $f = \chi_I$ donde I es un intervalo con extremos a < b en \mathbb{R} . Entonces,

$$\mathcal{F}f(x) = \int_{-\infty}^{\infty} \chi_I(y)e^{-ixy} dy$$

$$= \int_a^b e^{-ixy} dy$$

$$= \begin{cases} \frac{e^{-ixb} - e^{-ixa}}{-ix} & \text{si} \quad x \neq 0 \\ b - a & \text{si} \quad x = 0 \end{cases}$$

En particular, si a > 0 se tiene que

$$\mathcal{F}\chi_{[}-a,a](x) = \begin{cases} \frac{2\sin ax}{x} & \text{si} \quad x \neq 0\\ 2a & \text{si} \quad x = 0 \end{cases}$$

Como $\mathcal{F}\chi_{[}-a,a]$ no es integrable en \mathbb{R} se concluye que, en general, la transformada de Fourier de una función integrable no necesariamente es integrable.

II. Sea $f: \mathbb{R} \to \mathbb{R}$ la función

$$f(x) = e^{-k|x|}, \quad \forall x \in \mathbb{R}$$

donde k > 0. Como f es integrable, entonces

$$\mathcal{F}f(x) = \int_{-\infty}^{\infty} e^{-k|y|} e^{-ixy} \, dy$$

$$= \int_{-\infty}^{0} e^{ky} e^{-ixy} \, dy + \int_{0}^{\infty} e^{-ky} e^{-ixy} \, dy$$

$$= \int_{0}^{\infty} e^{-ky} e^{ixy} \, dy + \int_{0}^{\infty} e^{-ky} e^{-ixy} \, dy$$

$$= \int_{0}^{\infty} e^{-ky} e^{(-k+ix)y} \, dy + \int_{0}^{\infty} e^{-ky} e^{(-k-ix)y} \, dy$$

$$= \frac{-1}{-k+ix} + \frac{-1}{-k-ix}$$

$$= \frac{k+ix+k-ix}{k^2+x^2}$$

$$= \frac{2k}{k^2+x^2}$$

Ejemplo 1.1.2

Sea $f: \mathbb{R} \to \mathbb{R}$ la función

$$f(x) = e^{-kx^2}, \quad \forall x \in \mathbb{R}$$

donde k > 0. Como f es par se tiene que

$$\mathcal{F}f(x) = 2 \int_0^\infty e^{-ky^2} \cos xy \, dy$$

Sea $g(x) = \int_0^\infty e^{-ky^2} \cos xy \, dy$ para todo $x \in \mathbb{R}$. Se afirma que

$$g'(x) = -\int_0^\infty y e^{-ky^2} \sin xy \, dy, \quad \forall x \in \mathbb{R}$$

En efecto, observemos que

$$\left| ye^{-ky^2} \sin xy \right| \leqslant ye^{-ky^2}, \quad \forall y \geqslant 0$$

donde la función de la derecha es integrable e independiente de x (se nota fácilmente que una de sus antiderivadas es $y\mapsto -\frac{1}{2k}e^{-ky^2}$, por el T.F.C. II evaluando en 0 e ∞ se obtiene que la función original es integrable en $[0,\infty[)$. Por el Teorema de derivación se sigue que

$$g'(x) = -\int_0^\infty y e^{-ky^2} \sin xy \, dy, \quad \forall x \in \mathbb{R}$$

Veamos ahora que

$$g'(x) = \int_0^\infty y e^{-ky^2} \sin xy \, dy$$

$$= -\left[-\frac{1}{2k} e^{-ky^2} \sin xy \Big|_0^\infty + \frac{1}{2k} \int_0^\infty x e^{-ky^2} \cos xy \, dy \right]$$

$$= -\left[0 - 0 + \frac{x}{2k} \int_0^\infty e^{-ky^2} \cos xy \, dy \right]$$

$$= -\frac{x}{2k} \int_0^\infty e^{-ky^2} \cos xy \, dy$$

$$= -\frac{x}{2k} g(x), \quad \forall x \in \mathbb{R}$$

Luego,

$$g'(x) + \frac{x}{2k}g(x) = 0, \quad \forall x \in \mathbb{R}$$

$$\Rightarrow e^{\frac{x^2}{4k}} \left(g'(x) + \frac{x}{2k}g(x) \right) = 0, \quad \forall x \in \mathbb{R}$$

$$\Rightarrow \frac{d}{dx} \left(e^{\frac{x^2}{4k}}g(x) \right) (x_0) = 0, \quad \forall x_0 \in \mathbb{R}$$

$$\Rightarrow e^{\frac{x^2}{4k}}g(x) = c, \quad \forall x \in \mathbb{R}$$

En particular,

$$c = g(0)$$

$$= \int_0^\infty e^{-ky^2} dy$$

$$= \frac{1}{\sqrt{k}} \int_0^\infty e^{-u^2} du$$

$$= \frac{1}{2} \cdot \sqrt{\frac{\pi}{k}}$$

Por ende,

$$g(x) = \frac{1}{2} \sqrt{\frac{\pi}{k}} e^{-\frac{x^2}{4k}}, \quad \forall x \in \mathbb{R}$$

De donde se sigue que

$$\mathcal{F}f(x) = \sqrt{\frac{\pi}{k}}e^{-\frac{x^2}{4k}}, \quad \forall x \in \mathbb{R}$$

En particular, si $k = \frac{1}{2}$ entonces $f(x) = e^{-\frac{x^2}{2}}$ para todo $x \in \mathbb{R}$ y,

$$\mathcal{F}f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}} = \sqrt{2\pi}f(x)$$

es decir que f es un vector propio del operador transformada de Fourier.

Proposición 1.1.2

Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.

I. Si $g(x) = e^{i\langle a|y\rangle} f(x)$ para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = \mathcal{F}f(x-a), \quad \forall x \in \mathbb{R}^n$$

II. Si g(x) = f(x - a) para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = e^{-i\langle x|a\rangle} \mathcal{F}f(x), \quad \forall x \in \mathbb{R}^n$$

III. Si $g(x) = \overline{f(-x)}$ para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = \overline{\mathcal{F}f(x)}, \quad \forall x \in \mathbb{R}^n$$

IV. Sea $\lambda \in \mathbb{R} \setminus \{0\}$. Si $g(x) = f(\frac{x}{\lambda})$ para todo $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = |\lambda|^n \mathcal{F}f(\lambda x), \quad \forall x \in \mathbb{R}^n$$

Demostración:

De (i): Veamos que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} g(y) \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} e^{i\langle a|y\rangle} f(y) \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x-a|y\rangle} f(y) \, dy$$
$$= \mathcal{F}f(x-a)$$

para todo $x \in \mathbb{R}^n$.

De (ii): Veamos que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} g(y) \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y-a) \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x|u+a\rangle} f(u) \, du$$
$$= e^{-i\langle x|a\rangle} \mathcal{F}f(x)$$

para todo $x \in \mathbb{R}^n$.

De (iii): Veamos que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} \overline{f(-y)} \, dy$$
$$= \int_{\mathbb{R}^n} e^{i\langle x|y\rangle} \overline{f(y)} \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy$$
$$= \overline{\mathcal{F}f(x)}$$

para todo $x \in \mathbb{R}^n$.

De (iv): Veamos que

$$\begin{split} \mathcal{F}g(x) &= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} g(y) \; dy \\ &= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f\left(\frac{y}{\lambda}\right) \; dy, \; \text{haciendo el cambio de variable} \; u = \frac{y}{\lambda} \\ &= \int_{\mathbb{R}^n} e^{-i\langle x|\lambda u\rangle} f(u) \; |\lambda|^n \, du \\ &= |\lambda|^n \int_{\mathbb{R}^n} e^{-i\langle \lambda x|u\rangle} f(u) \; du \\ &= |\lambda|^n \, \mathcal{F}f(\lambda x) \end{split}$$

para todo $x \in \mathbb{R}^n$.

Teorema 1.1.1

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces,

$$|\mathcal{F}f(x)| \leq \mathcal{N}_1(f), \quad \forall x \in \mathbb{R}^n$$

Así pues, $\mathcal{F}f: \mathbb{R}^n \to \mathbb{C}$ es una función acotada. Si $\mathcal{B}(\mathbb{R}^n, \mathbb{C})$ denota al espacio de funciones acotadas de \mathbb{R}^n en \mathbb{C} provisto de la norma uniforme, entonces $\mathcal{F}\cdot$ es una aplicación lineal continua de $L_1(\mathbb{R}^n, \mathbb{C})$ en $\mathcal{B}(\mathbb{R}^n, \mathbb{C})$ tal que $\|\mathcal{F}\cdot\| = 1$.

Demostración:

Para todo $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, se tiene que

$$|\mathcal{F}f(x)| = \left| \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy \right|$$

$$\leq \int_{\mathbb{R}^n} |f(y)| \, dy$$

$$= \mathcal{N}_1(f), \quad \forall x \in \mathbb{R}^n$$

Notemos también que $\|\mathcal{F} \cdot \| \leq 1$.

Para probar la otra desiguladad se busca una función $P \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ tal que $\mathcal{N}_{\infty}(\mathcal{F}P) = \mathcal{N}_1(P) > 0$. Por ejemplo, la función $P : \mathbb{R}^n \to \mathbb{C}$ dada por:

$$P(x) = e^{-\sum_{k=1}^{n} |x_k|}, \quad \forall x \in \mathbb{R}^n$$

satisface

$$\mathcal{F}P(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} P(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} P(y) \, dy$$

$$= \int_{\mathbb{R}^n} e^{-|y_1| - ix_1 y_1} \cdots e^{-|y_n| - ix_n y_n} \, dy_1 \cdots dy_n$$

$$= \left(\int_{-\infty}^{\infty} e^{-|y_1| - ix_1 y_1} \, dy_1 \right) \cdots \left(\int_{-\infty}^{\infty} e^{-|y_n| - ix_n y_n} \, dy_n \right)$$

Se sabe por ejemplos anteriores que la transformada de $t\mapsto e^{-|t|}$ es $\frac{2}{1+t^2}$, para todo $t\in\mathbb{R}$, así pues,

$$\mathcal{F}P(x) = \frac{2^n}{(1+x_2^2)\cdots(1+x_n^2)}, \quad \forall x \in \mathbb{R}^n$$

de donde.

$$\mathcal{N}_{\infty}(\mathcal{F}P) = 2^n$$

Por otra parte,

$$\mathcal{N}_1(P) = \int_{\mathbb{R}^n} e^{-\sum_{k=1}^n |x_k|} dx_1 \cdots dx_n$$

$$= \left[\int_{-\infty}^{\infty} e^{-|t|} dt \right]^n$$

$$= 2^n \left[\int_0^{\infty} e^{-|t|} dt \right]$$

$$= 2^n$$

Por tanto,

$$\mathcal{N}_{1}(P) = \mathcal{N}_{\infty}(\mathcal{F}P)$$

$$\leq \|\mathcal{F} \cdot \|\mathcal{N}_{1}(P)\|$$

$$\Rightarrow 1 \leq \|\mathcal{F} \cdot \|$$

por tanto, de lo anterior se deduce que $\|\mathcal{F} \cdot \| = 1$.

Proposición 1.1.3

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces $\mathcal{F}f$ es uniformemente continua en \mathbb{R}^n .

Demostración:

Basta probar que si $\{x_{\nu}\}_{\nu=1}^{\infty}$ y $\{y_{\nu}\}_{\nu=1}^{\infty}$ son dos sucesiones en \mathbb{R}^n tales que $\lim_{\nu\to\infty} \|x_{\nu}-y_{\nu}\|=0$, entonces

$$\lim_{\nu \to \infty} |\mathcal{F}f(x_{\nu}) - \mathcal{F}f(y_{\nu})| = 0$$

Considere entonces dos sucesiones que cumplan lo anterior. Se tiene

$$|\mathcal{F}f(x_{\nu}) - \mathcal{F}f(y_{\nu})| = \left| \int_{\mathbb{R}^{n}} \left(e^{-i\langle x_{\nu}|z\rangle} - e^{-i\langle y_{\nu}|z\rangle} \right) f(z) dz \right|$$

$$= \left| \int_{\mathbb{R}^{n}} e^{-i\langle x_{\nu}|z\rangle} \left(1 - e^{-i\langle y_{\nu} - x_{\nu}|z\rangle} \right) f(z) dz \right|$$

$$\leq \int_{\mathbb{R}^{n}} \left| \left(1 - e^{-i\langle y_{\nu} - x_{\nu}|z\rangle} \right) \right| |f(z)| dz$$

donde

$$\lim_{\nu \to \infty} \left| 1 - e^{-i\langle y_{\nu} - x\nu|z\rangle} \right| |f(z)| = 0, \quad \forall z \in \mathbb{R}^n$$

y, además

$$\left|1 - e^{-i\langle y_{\nu} - x\nu|z\rangle}\right| |f(z)| \leqslant 2 |f(z)|, \quad \forall z \in \mathbb{R}^n$$

donde la función de la derecha es integrable e independiente de ν . Por Lebesgue se sigue que

$$\lim_{\nu \to \infty} |\mathcal{F}f(x_{\nu}) - \mathcal{F}f(y_{\nu})| = 0$$

así, $\mathcal{F}f:\mathbb{R}^n\to\mathbb{C}$ es una función uniformemente continua.

Observación 1.1.2

 $\mathcal{F}f$ es una función uniformemente continua y acotada en \mathbb{R}^n si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.

Teorema 1.1.2 (Teorema de Riemman-Lebesgue)

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces

$$\lim_{|x| \to \infty} \mathcal{F}f(x) = 0$$

Demostración:

Se probará por casos:

I. Sea $P = I_1 \times \cdots \times I_n \subseteq \mathbb{R}^n$ un rectángulo acotado en \mathbb{R}^n donde I_k es un intervalo de extremos $a_k \leq b_k$ para todo $k \in [1, n]$. Se considera el caso en que $f = \chi_P$. En particular, notemos que

$$f(x) = \chi_{I_1}(x_1) \cdots \chi_{I_n}(x_n), \quad \forall x \in \mathbb{R}^n$$

Entonces,

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\langle x|z\rangle} f(z) dz$$

$$= \int_{\mathbb{R}^n} e^{-ix_1z_1} \chi_{I_1}(z_1) \cdots e^{-ix_nz_n} \chi_{I_n}(z_n) dz_1 \cdots dz_n$$

$$= \left(\int_{-\infty}^{\infty} e^{-ix_1z_1} \chi_{I_1}(z_1) dz_1 \right) \cdots \left(\int_{-\infty}^{\infty} e^{-ix_nz_n} \chi_{I_n}(z_n) dz_n \right)$$

luego,

$$\mathcal{F}f(x) = \varphi_1(x_1) \cdots \varphi_n(x_n), \quad \forall x \in \mathbb{R}^n$$

donde

$$\varphi_k(x_k) = \begin{cases} \frac{e^{-ix_k b_k} - e^{-ix_k a_k}}{-ik}, & \text{si} \quad x_k \neq 0\\ b_k - a_k & \text{si} \quad x_k = 0 \end{cases}$$

para $k \in [1, n]$. Es claro que $\lim_{x_k \to \infty} \varphi_k(x_k) = 0$ para todo $k \in [1, n]$. Por otra parte,

$$|\varphi_k(x_k)| \leq |\mathcal{F}\chi_{I_k}(x_k)|$$

$$\leq \mathcal{N}_1(\chi_{I_k})$$

$$= b_k - a_k$$

para $k \in [1, n]$. Sea

$$c = \max_{1 \le k \le n} \left\{ b_k - a_k \right\}$$

Dado $\varepsilon > 0$ existe R > 0 tal que para todo $k \in [1, n]$ es tiene

$$|x_k| > R \Rightarrow |\varphi_k(x_k)| < \varepsilon$$

Si se toma la norma cúbica $\|\cdot\|$ de \mathbb{R}^n , al suponer que $\|x\| > R$ se tendrá que $|x_k| > R$ para algún $k \in [1, n]$, luego

$$||x|| > R \Rightarrow |\mathcal{F}\chi_P(x)| = |\varphi_1(x_1) \cdots \varphi_n(x_n)| \leqslant c^{n-1}\varepsilon$$

Así pues, el Teorema es cierto para $f = \chi_P$. Claramente por linealidad de la transformación de Fourier el Teorema sigue siendo cierto si f es una función escalonada en \mathbb{R}^n .

II. Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ y tomemos $\varepsilon > 0$. Por la densidad de $\mathcal{E}(\mathbb{R}^n, \mathbb{C})$ en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, existe $\varphi \in \mathcal{E}(\mathbb{R}^n, \mathbb{C})$ tal que

$$\mathcal{N}_1(f-\varphi) < \frac{\varepsilon}{2}$$

Entonces,

$$|\mathcal{F}f(x)| = |\mathcal{F}f(x) - \mathcal{F}\varphi(x)| + |\mathcal{F}\varphi(x)|$$

$$= |\mathcal{F}(f - \varphi)(x)| + |\mathcal{F}\varphi(x)|$$

$$\leq \mathcal{N}_1 (f - \varphi) + |\mathcal{F}\varphi(x)|, \quad \forall x \in \mathbb{R}^n$$

$$< \frac{\varepsilon}{2} + |\mathcal{F}\varphi(x)|, \quad \forall x \in \mathbb{R}^n$$

Por tanto, de (i) existe R > 0 tal que

$$||x|| > R \Rightarrow |\mathcal{F}\varphi(x)| < \frac{\varepsilon}{2}$$

de donde se sigue que

$$||x|| > R \Rightarrow |\mathcal{F}f(x)| < \frac{\varepsilon}{2} + |\mathcal{F}\varphi(x)| < \varepsilon$$

lo que prueba el resultado.

Teorema 1.1.3

Si $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces $\mathcal{F}(f * g) = (\mathcal{F}f)(\mathcal{F}g)$.

Demostración:

Sean $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Se tiene que

$$\mathcal{F}(f * g)(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f * g(y) \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} \, dy \int_{\mathbb{R}^n} f(z)g(y-z) \, dz$$

ya se sabe que $(y,z)\mapsto f(z)g(y-z)e^{-i\langle x|y\rangle}$ es integrable en $\mathbb{R}^n\times\mathbb{R}^n$ para todo $x\in\mathbb{R}^n$. Por Fubini:

$$\mathcal{F}(f*g)(x) = \int_{\mathbb{R}^n} f(z) \, dz \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} g(y-z) \, dy, \text{ haciendo el cambio de variable } y = u+z$$

$$= \int_{\mathbb{R}^n} f(z) \, dz \int_{\mathbb{R}^n} e^{-i\langle x|u+z\rangle} g(u) \, du$$

$$= \left(\int_{\mathbb{R}^n} e^{-i\langle x|z\rangle} f(z) \, dz \right) \left(\int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} g(y) \, dy \right)$$

$$= (\mathcal{F}f(x))(\mathcal{F}g(x))$$

lo que prueba el resultado.

Teorema 1.1.4

Sea $C_0(\mathbb{R}^n, \mathbb{C})$ el álgebra de Banach de las funciones de \mathbb{R}^n en \mathbb{C} continuas y nulas en el infinito provisto de la norma uniforme. Entonces la aplicación $\mathcal{F} \cdot : L_1(\mathbb{R}^n, \mathbb{C}) \to C_0(\mathbb{R}^n, \mathbb{C})$ es un homomorfismo continuo entre ambas álgebras de Banach.

La norma de \mathcal{F} considerada como aplicación lineal es $\|\mathcal{F} \cdot \| = 1$.

Demostración:

Es un resumen de las propiedades anteriores.

Observación 1.1.3

Más adelante se verá que \mathcal{F} es invectiva pero no es suprayectiva.

Proposición 1.1.4

Sea $f: \mathbb{R}^n \to \mathbb{C}$ y $r \in \mathbb{N}$. Se supone que $x \mapsto x_1^{m_1} \cdots x_m^{m_n} f(x)$ e sintegrable en \mathbb{R}^n para toda colección $m_1, ..., m_n \in \mathbb{N}$ tales que $m_1 + \cdots + m_n \leq r$. Entonces, $\mathcal{F}f$ es de clase \mathbb{C}^r en \mathbb{R}^n . Si $k \in [1, k]$ y $\alpha_1, ..., \alpha_k \in [1, n]$ se tiene que

$$\partial_{\alpha_1} \cdots \partial_{\alpha_k} \mathcal{F} f = \mathcal{F} g$$

donde $g(x) = (-ix_{\alpha_1})(-ix_{\alpha_2})\cdots(-ix_{\alpha_k})f(x)$.

Demostración:

Se tiene

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i(x_1y_1 + \dots + x_ny_n)} f(y) \, dy$$

Al aplicar el operador $\partial_{\alpha_1} \cdots \partial_{\alpha_k}$ a $x \mapsto e^{-i(x_1y_1+\cdots+x_ny_n)}f(y)$ obtenemos

$$(-iy_{\alpha_i})\cdots(-iy_{\alpha_k})f(y)$$

Esta función en valor absoulto es menor o igual a

$$|y_{\alpha_1}\cdots y_{\alpha_k}f(y)|$$

la cual por hipótesis es integrable en \mathbb{R}^n e independiente de x. Por el Teorema de derivación parcial de funciones definidas por integrales, se tiene que

$$\partial_{\alpha_1} \cdots \partial_{\alpha_k} \mathcal{F} f = \mathcal{F} g$$

y, además $\mathcal{F}f$ es de clase C^r en \mathbb{R}^n .

Observación 1.1.4

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ y existe $\lim_{x \to \infty} f(x)$, necesariamente

$$\lim_{x \to \infty} f(x) = 0$$

Proposición 1.1.5

Sea $f: \mathbb{R} \to \mathbb{C}$ función de clase C^r en \mathbb{R}^n . Se supone que f y todas sus derivadas parciales hasta el orden r (inclusive) son integrables. Si $k \in [1, r]$ y $\alpha_1, ..., \alpha_k \in [1, n]$, entonces

$$\mathcal{F}(\partial_{\alpha_1}\cdots\partial_{\alpha_k}f)(x)=(ix_{\alpha_1})\cdots(ix_{\alpha_k})\mathcal{F}f(x)$$

Demostración:

Basta probar que

$$\mathcal{F}(\partial_j f)(x) = (ix_j)\mathcal{F}f(x)$$

con $j \in [\![1,n]\!]$ pues el resto se sigue por inducción. Se tiene que

$$\mathcal{F}(\partial_j f)(x) - (ix_j)\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} [\partial_j f(y) - ix_j f(y)] dy$$
$$= \int_{\mathbb{R}^n} \frac{\partial}{\partial y_j} \left[e^{-i\langle x|y\rangle} f(y) \right] dy$$

de donde, por el Teorema de Fubini

$$\mathcal{F}(\partial_j f)(x) - (ix_j)\mathcal{F}f(x) = \int_{\mathbb{R}^{n-1}} dy_1 \cdots dy_{j-1} dy_{j+1} \cdots dy_n \int_{-\infty}^{\infty} \frac{\partial}{\partial y_j} \left[e^{-i\langle x|y\rangle} f(y) \right] dy_j$$

El Teorema de Fubini asegura que existe un conjunto despreciable $Z_1 \subseteq \mathbb{R}^{n-1}$ tal que para todo $y' = (y_1, ..., y_{j-1}, y_{j+1}, ..., y_n) \in \mathbb{R}^{n-1} \setminus Z_1$ existe la integral

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial y_i} \left[e^{-i\langle x|y\rangle} f(y) \right] dy_j$$

o sea que $y_j \mapsto \frac{\partial}{\partial y_j} \left[e^{-i\langle x|y\rangle} f(y) \right]$ es integrable en \mathbb{R} . Por el 2° T.F.C. para intervalos abiertos

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial y_j} \left[e^{-i\langle x|y\rangle} f(y) \right] dy_j = \lim_{y_j \to \infty} e^{-i\langle x|y\rangle} f(y) - \lim_{y_j \to -\infty} e^{-i\langle x|y\rangle} f(y)$$

puesto que la función $y \mapsto e^{-i\langle x|y\rangle}f(y)$ es integrable en \mathbb{R}^n , por el Teorema de Fubini existe un conjunto $Z_2 \subseteq \mathbb{R}^{n-1}$ tal que para todo $y' = (y_1, ..., y_{j-1}, y_{j+1}, ..., y_n) \in \mathbb{R}^{n-1} \setminus Z_2$, la función $y_j \mapsto e^{-i\langle x|y\rangle}f(y)$ es integable en \mathbb{R} . Sea $Z = Z_1 \cup Z_2 \subseteq \mathbb{R}^{n-1}$. Por la última observación, los límites a la derecha de la ecuación anterior deben ser 0 para todo $y' = (y_1, ..., y_{j-1}, y_{j+1}, ..., y_n) \in \mathbb{R}^{n-1} \setminus Z$. Por tanto,

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial y_i} \left[e^{-i\langle x|y\rangle} f(y) \right] dy_j = 0$$

para todo $y' = (y_1, ..., y_{j-1}, y_{j+1}, ..., y_n) \in \mathbb{R}^{n-1} \setminus Z$. Se sigue entonces que

$$\mathcal{F}(\partial_j f)(x) - (ix_j)\mathcal{F}f(x) = 0$$

lo que prueba el resultado.

1.2. Teoremas de Transferencia e Inversión

Teorema 1.2.1 (Teorema de Transferencia)

Sean $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$. Entonces

$$\int_{\mathbb{R}^n} f \cdot \mathcal{F}g = \int_{\mathbb{R}^n} \mathcal{F}f \cdot g$$

y,

$$\int_{\mathbb{R}^n} f \cdot \mathcal{F}^* g = \int_{\mathbb{R}^n} \mathcal{F}^* f \cdot g$$

Demostración:

Como $\mathcal{F}f$ y $\mathcal{F}g$ son continuas acotadas en \mathbb{R}^n y $f,g\in\mathcal{L}_1(\mathbb{R}^n,\mathbb{K})$, ambas integrales existen (pues en particular $\mathcal{F}f,\mathcal{F}g\in\mathcal{L}_{\infty}(\mathbb{R}^n,\mathbb{K})$). Se tiene

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) \cdot g(x) \, dx = \int_{\mathbb{R}^n} g(x) \, dx \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy$$

ya se sabe que $(x,y) \mapsto e^{-i\langle x|y\rangle}g(x)f(y)$ es integrable en $\mathbb{R}^n \times \mathbb{R}^n$ (pues en módulo es igual al módulo del producto tensorial de g y f, siendo éste integrable). Por Fubini podemos invertir el orden de

integración, lo que resulta:

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) \cdot g(x) \, dx = \int_{\mathbb{R}^n} f(y) \, dy \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} g(x) \, dx$$

$$= \int_{\mathbb{R}^n} f(y) \, dy \int_{\mathbb{R}^n} e^{-i\langle y|x\rangle} g(x) \, dx$$

$$= \int_{\mathbb{R}^n} f(y) \cdot \mathcal{F}g(y) \, dy$$

$$\Rightarrow \int_{\mathbb{R}^n} f \cdot \mathcal{F}g = \int_{\mathbb{R}^n} \mathcal{F}f \cdot g$$

para la \mathcal{F}^* · el procedimiento es análogo.

Lema 1.2.1 (Efecto de la transformación de Fourier sobre sucesiones de Dirac) Sea $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de Dirac en $\mathcal{L}_{1}(\mathbb{R}^{n},\mathbb{C})$. Defina

$$h_{\nu} = \mathcal{F} \rho_{\nu}, \quad \forall \nu \in \mathbb{N}$$

Entonces,

- I. $|h_{\nu}(x)| \leq 1$ para todo $x \in \mathbb{R}^n$.
- II. $\lim_{\nu\to\infty} h_{\nu}(x) = 1$, para todo $x \in \mathbb{R}^n$.

Demostración:

De (i): Se tiene

$$|h_{\nu}(x)| = |\mathcal{F}\rho_{\nu}(x)|$$

$$\leq \mathcal{N}_{1}(\rho_{\nu})$$

$$= \int_{\mathbb{R}^{n}} \rho_{\nu}$$

$$= 1$$

para todo $x \in \mathbb{R}^n$.

De (ii): Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$. Entonces $\{f * \rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ que converge en promedio a f. Como la transformación de Fourier es un homomorfismo continuo del álgebra de Banach $L_1(\mathbb{R}^n, \mathbb{K})$ en $\mathcal{C}_0(\mathbb{R}^n, \mathbb{K})$, se debe tener que

 $\lim_{\nu \to \infty} \mathcal{F}(f * \rho_{\nu}) = \mathcal{F}f \text{ uniformemente en } \mathbb{R}^n$

pero,

$$\mathcal{F}(f*\rho_{\nu}) = \mathcal{F}f \cdot \mathcal{F}\rho_{\nu} = h_{\nu}\mathcal{F}f$$

es decir,

$$\lim_{\nu \to \infty} h_{\nu} \mathcal{F} f = \mathcal{F} f \text{ uniformemente en } \mathbb{R}^n$$

$$\Rightarrow \mathcal{F} f \lim_{\nu \to \infty} h_{\nu} = \mathcal{F} f \text{ uniformemente en } \mathbb{R}^n$$

Fijando f de tal suerte que $\mathcal{F}f(x)\neq 0$ para todo $x\in\mathbb{R}^n$ se concluye que

$$\lim_{\nu \to \infty} h_{\nu}(x) = 1$$

(por ejemplo, tome $f(x) = e^{-\frac{x^2}{2}}$).

Observación 1.2.1

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces no necesariamente su transformada de Fourier es integrable. Por ejemplo

$$\mathcal{F}\chi_{[-1,1]} = \begin{cases} \frac{2\sin x}{x} & \text{si} \quad x \neq 0\\ 2 & \text{si} \quad x = 0 \end{cases}$$

es continua, nula en el infinito pero no es integrable en \mathbb{R} .

Teorema 1.2.2 (Teorema de Inversión de Fourier)

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ es tal que $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces

$$\mathcal{F}^*(\mathcal{F}f) = \mathcal{F}(\mathcal{F}^*f) = (2\pi)^n f$$
 c.t.p. en \mathbb{R}^n

Si además f es continua en \mathbb{R}^n , la fórmula es válida en todo punto de \mathbb{R}^n .

Demostración:

Se probará por casos:

- 1. Suponga por el momento hallada una sucesión de Dirac $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ en $\mathcal{L}_{1}(\mathbb{R}^{n},\mathbb{C})$ que cumpla las condiciones:
 - I) $\mathcal{F}\rho_{\nu} \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, luego también $\mathcal{F}^*\rho_{\nu} \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$.
 - II) $\mathcal{F}^*\mathcal{F}\rho_{\nu} = \mathcal{F}(\mathcal{F}^*\rho_{\nu}) = (2\pi)^n \rho_{\nu}$ c.t.p. en \mathbb{R}^n .

Sea $h_{\nu} = \mathcal{F} \rho_{\nu}$ para todo $\nu \in \mathbb{N}$. Por (ii), ρ_{ν} es una función acotada, luego $f * \rho_{\nu}$ existe en todo punto de \mathbb{R}^n . Se tiene

$$f * \rho_{\nu}(x) = \int_{\mathbb{R}^n} \rho_{\nu}(y) f(x - y) dy$$
$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \mathcal{F}^* h_{\nu}(y) f(x - y) dy$$

será necesario aplicar \mathcal{F}^* a la función de y tal que $y\mapsto f(x-y)$. Sea s(y)=f(-y), para todo $y\in\mathbb{R}^n$. Entonces,

$$\mathcal{F}s(y) = \int_{\mathbb{R}^n} e^{-i\langle u|y\rangle} s(u) \, du$$
$$= \int_{\mathbb{R}^n} e^{i\langle u|y\rangle} f(u) \, du$$
$$= \int_{\mathbb{R}^n} e^{-i\langle u|-y\rangle} f(u) \, du$$
$$= \mathcal{F}f(-y)$$

sea ahora r(y) = f(x-y) = f(-(y-x)) = s(y-x). Por (ii) de las propiedades de la transformación de Fourier:

$$\mathcal{F}r(y) = e^{-i\langle x|y\rangle} \mathcal{F}s(y) = e^{-i\langle x|y\rangle} \mathcal{F}f(y), \quad \forall y \in \mathbb{R}^n$$

Así pues,

$$\mathcal{F}^*r(y) = \mathcal{F}r(-y) = e^{-i\langle x|-y\rangle}\mathcal{F}f(y) = e^{i\langle x|y\rangle}\mathcal{F}f(y), \quad \forall y \in \mathbb{R}^n$$

Por el Teorema de transferencia (aplicado a \mathcal{F}^*) se sigue que:

$$f * \rho_{\nu}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \mathcal{F}^* h_{\nu}(y) f(x - y) \, dy$$
$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \mathcal{F}^* h_{\nu}(y) r(y) \, dy$$
$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} h_{\nu} \mathcal{F}^* r(y) \, dy$$
$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} h_{\nu} e^{i\langle x|y\rangle} \mathcal{F} f(y) \, dy$$

Todo lo anterior es válido bajo la sola hipótesis de que $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Suponga también que $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Entonces,

$$\lim_{\nu \to \infty} h_{\nu}(y) e^{i\langle x|y\rangle} \mathcal{F} f(y) = e^{i\langle x|y\rangle} \mathcal{F} f(y)$$

У

$$|h_{\nu}(y)e^{i\langle x|y\rangle}\mathcal{F}f(y)| \leqslant \mathcal{F}f(y), \quad \forall y \in \mathbb{R}^n$$

donde la función de la derecha es integrable e independiente de $\nu \in \mathbb{N}$. Por Lebesgue se sigue pues que

$$\lim_{\nu \to \infty} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} h_{\nu}(y) e^{i\langle x|y\rangle} \mathcal{F}f(y) \, dy = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\langle x|y\rangle} \mathcal{F}f(y) \, dy, \quad \forall x \in \mathbb{R}^n$$

Lo que realmente estamos diciendo es que

$$\lim_{\nu \to \infty} f * \rho_{\nu}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\langle x|y\rangle} \mathcal{F}f(y) \, dy, \quad \forall x \in \mathbb{R}^n$$

puntualmente en \mathbb{R}^n . Pero $\{f*\rho_{\nu}\}_{\nu=1}^{\infty}$ converge en promedio a f, entonces debe tenerse que

$$f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\langle x|y\rangle} \mathcal{F}f(y) \, dy$$

para casi todo $x \in \mathbb{R}^n$.

2. Queda por construir una sucesión de Dirac tal que cumpla (i) y (ii). La función $x\mapsto e^{-\sum_{k=1}^n x_k^2}$ es no negativa y

$$\int_{\mathbb{R}^n} e^{-\sum_{k=1}^n x_k^2} dx_1 \cdots dx_n = \left(\int_{-\infty}^{\infty} e^{-t^2} dt \right)^n = \pi^{n/2}$$

defina

$$\rho(x) = \frac{1}{\pi^{n/2}} e^{-\sum_{k=1}^{n} x_k^2}, \quad \forall x \in \mathbb{R}^n$$

Esta función satisface que

$$\int_{\mathbb{R}^n} \rho = 1$$

Se sabe que la sucesión $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ dada por:

$$\rho_{\nu}(x) = \nu^{n} \rho(\nu x) = \frac{\nu^{n}}{\pi^{n/2}} e^{-\sum_{k=1}^{n} \nu^{2} x_{k}^{2}}, \quad \forall x \in \mathbb{R}^{n}$$

es una sucesión de Dirac en $\mathcal{L}_1(\mathbb{R}^n,\mathbb{C})$. Recuerde que si a>0, la transformada de Fourier de $t\mapsto e^{-at^2}$ es

$$t \mapsto \sqrt{\frac{\pi}{a}} e^{-\frac{t^2}{4a}}$$

para todo $t \in \mathbb{R}$. Entonces,

$$\mathcal{F}\rho_{\nu}(x) = \frac{\nu^{n}}{\pi^{n/2}} e^{-\sum_{k=1}^{n} \frac{x_{k}^{2}}{4\nu^{2}}}$$
$$= e^{-\sum_{k=1}^{n} \frac{x_{k}^{2}}{4\nu^{2}}}, \quad \forall x \in \mathbb{R}^{n}$$

En particular, $\mathcal{F}\rho_{\nu}$ es integrable en \mathbb{R}^{n} . Además, por la parte (iv) de las propieaddes de la trasnformación de Fourier

$$\mathcal{F}^*(\mathcal{F}\rho_{\nu})(x) = \mathcal{F}(\mathcal{F}^*\rho_{\nu})(x)$$

$$= \mathcal{F}(\mathcal{F}\rho_{\nu})(-x)$$

$$= \mathcal{F}(\mathcal{F}\rho_{\nu})(x)$$

$$= \mathcal{F}\left[e^{-\sum_{k=1}^{n} \frac{x_k^2}{4\nu^2}}\right]$$

$$= \left[\frac{\pi}{\frac{1}{4\nu^2}}\right]^{n/2} e^{-\sum_{k=1}^{n} \frac{x_k^2}{4\left(\frac{1}{4\nu^2}\right)}}$$

$$= (2\pi)^n \cdot \frac{\nu^n}{\pi^{n/2}} e^{-\sum_{k=1}^{n} \nu^2 x_k^2}$$

$$= (2\pi)^n \rho_{\nu}(x), \quad \forall x \in \mathbb{R}^n$$

lo que demuestra la existencia de tal sucesión de Dirac.

Proposición 1.2.1

La transformación de Fourier \mathcal{F} · es un homomorfismo inyectivo del álgebra de Banach $L_1(\mathbb{R}^n, \mathbb{C})$ en el álgebra de Banach $\mathcal{C}_0(\mathbb{R}^n, \mathbb{C})$.

Demostración:

Basta probar que el kernel de \mathcal{F} · se reduce a 0. En efecto, sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ tal que $\mathcal{F}f = 0$ en \mathbb{R}^n , luego $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Así se puede aplicar el Teorema anterior, que resulta en que

$$0 = \mathcal{F}^*0 = \mathcal{F}^*(\mathcal{F}f) = (2\pi)^n f$$
 c.t.p. en \mathbb{R}^n

por tanto, f = 0 c.t.p. en \mathbb{R}^n .

Proposición 1.2.2

Sean $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Se supone que alguna de $\mathcal{F}f$ y/o $\mathcal{F}g$ es integrable en \mathbb{R}^n . Entonces se cumple la **Identidad de Parseval**.

$$\int_{\mathbb{R}^n} \mathcal{F} f \overline{\mathcal{F} g} = (2\pi)^n \int_{\mathbb{R}^n} f \overline{g}$$

Demostración:

Suponga que $\mathcal{F}f$ es integrable en \mathbb{R}^n . Siendo $\mathcal{F}g$ medible acotada, el primer lado tiene sentido. Se tiene que

$$\overline{\mathcal{F}g(x)} = \overline{\int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} g(y) \, dy}$$
$$= \int_{\mathbb{R}^n} e^{i\langle x|y\rangle} \overline{g(y)} \, dy$$
$$= \mathcal{F}^* \overline{g}(x)$$

Así pues

$$\int_{\mathbb{R}^n} \mathcal{F} f \overline{\mathcal{F}} g = \int_{\mathbb{R}^n} \mathcal{F} f \mathcal{F}^* \overline{g}$$
$$= \int_{\mathbb{R}^n} \mathcal{F}^* \mathcal{F} f \cdot \overline{g}$$
$$= (2\pi)^n \int_{\mathbb{R}^n} f \overline{g}$$

1.3. Fórmula de inversión en \mathbb{R}

Observación 1.3.1

Se afirma que

$$\int_0^{-\infty} \frac{\sin ax}{x} \, dx = \frac{\pi}{2}$$

y de la paridad de $x \mapsto \frac{\sin ax}{x}$ se concluye que

$$\int_{-\infty}^{+\infty} \frac{\sin ax}{x} \, dx = \pi, \quad \forall a > 0.$$

Demostración:

En efecto, veamos que para a > 0:

$$\int_0^R \frac{\sin ax}{x} dx = \int_0^{aR} \frac{\sin y}{\frac{y}{a}} \frac{dy}{a}$$
$$= \int_0^{aR} \frac{\sin y}{y} dy$$

de donde se sigue el resultado. Si a < 0, se tiene que

$$\int_0^R \frac{\sin ax}{x} \, dx = -\int_0^R \frac{\sin(-a)x}{x} \, dx \longrightarrow -\frac{\pi}{2}$$

Se concluye que

$$\int_0^{-\infty} \frac{\sin ax}{x} dx = \begin{cases} \frac{\pi}{2} & \text{si} \quad a > 0\\ 0 & \text{si} \quad a = 0\\ -\frac{\pi}{2} & \text{si} \quad a < 0 \end{cases}$$

Teorema 1.3.1 (Teorema de inversión en \mathbb{R})

Sean $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$. Se supone que f cumple la condición de Dini en cierto punto $x \in \mathbb{R}$, es decir, existe $\delta > 0$ tal que

$$\int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \infty$$

Entonces,

$$f(x) = \lim_{R \to \infty} \frac{1}{2\pi} \int_{-R}^{R} e^{ixy} \mathcal{F}f(y) dy$$
$$= \lim_{R \to \infty} \frac{1}{2\pi} \int_{-R}^{R} e^{ixy} dy \int_{-\infty}^{\infty} e^{-iyz} f(z) dz$$

y más aún:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{-\infty} f(t) \cos(y(t-x)) dt$$

Demostración:

Para R > 0 se tiene lo siguiente:

$$\int_{-R}^{R} e^{ixy} \, dy \int_{-\infty}^{\infty} e^{-iyt} f(t) \, dt = \int_{-R}^{R} \, dy \int_{-\infty}^{\infty} e^{ixy} e^{-iyt} f(t) \, dt$$

$$= \int_{-R}^{R} \, dy \int_{-\infty}^{\infty} e^{-iy(t-x)} f(t) \, dt$$

$$= \int_{-R}^{R} \, dy \int_{-\infty}^{\infty} f(t) \cos(y(t-x)) \, dt + i \int_{-R}^{R} \, dy \int_{-\infty}^{\infty} f(t) \sin(y(t-x)) \, dt$$

como $y \mapsto \int_{-\infty}^{\infty} f(t) \sin(y(t-x)) dt$ es impar, entonces:

$$\int_{-R}^{R} dy \int_{-\infty}^{\infty} f(t) \sin(y(t-x)) dt = 0$$

y, como $y \mapsto \int_{-\infty}^{\infty} f(t) \cos(y(t-x)) dt$ es par,

$$\int_{-R}^{R} dy \int_{-\infty}^{\infty} f(t) \cos(y(t-x)) dt = 2 \int_{0}^{R} dy \int_{-\infty}^{\infty} f(t) \cos(y(t-x)) dt$$

Si se prueba que

$$f(x) = \lim_{R \to \infty} \frac{1}{\pi} \int_0^R dy \int_{-\infty}^{\infty} f(t) \cos(y(t-x)) dt$$

se habrá probado también que

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{-\infty} f(t) \cos(y(t-x)) dt$$

(que es más de lo que se pide probar). Sea

$$J(R) = \frac{1}{\pi} \int_0^R dy \int_{-\infty}^\infty f(t) \cos(y(t-x)) dt, \quad \forall R > 0$$

Veamos que

$$\lim_{R \to \infty} J(R) = f(x)$$

En efecto, sea R>0. Se tiene que la función $(y,t)\mapsto f(t)\cos(y(t-x))$ es medible para la cual se cumple que

$$\int_{0}^{R} dy \int_{-\infty}^{\infty} |f(t)\cos(y(t-x))| dt \leqslant \int_{0}^{R} dy \int_{-\infty}^{\infty} |f(t)| dt$$
$$\leqslant R\mathcal{N}_{1}(f)$$
$$< \infty$$

Luego, por Fubini se tiene que

$$J(R) = \frac{1}{\pi} \int_0^R dy \int_{-\infty}^\infty f(t) \cos(y(t-x)) dt$$

$$= \frac{1}{\pi} \int_{-\infty}^\infty dt \int_0^R f(t) \cos(y(t-x)) dy$$

$$= \frac{1}{\pi} \int_{-\infty}^\infty f(t) dt \int_0^R \cos(y(t-x)) dy$$

$$= \frac{1}{\pi} \int_{-\infty}^\infty f(t) \left[\frac{\sin(y(t-x))}{t-x} \Big|_{y=0}^{y=R} \right] dt$$

$$= \frac{1}{\pi} \int_{-\infty}^\infty f(t) \cdot \frac{\sin(R(t-x))}{t-x} dt, \quad \text{haciendo el cambio de variable } t = z + x$$

$$= \frac{1}{\pi} \int_{-\infty}^\infty f(z+x) \cdot \frac{\sin(Rz)}{z} dz$$

Por otro lado, recuerde de la observación anterior que

$$f(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(z) \cdot \frac{\sin(Rz)}{z} dz, \quad \forall R > 0$$

Así pues,

$$J(R) - f(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(x+z) - f(x)}{z} \cdot \sin(Rz) dz$$

Sea N > 0, por lo anterior se tiene para cada R > 0:

$$J(R) - f(x) = \frac{1}{\pi} \int_{--\infty}^{+\infty} \frac{f(x+z) - f(x)}{z} \cdot \sin(Rz) dz$$

$$= \frac{1}{\pi} \int_{-N}^{N} \frac{f(x+z) - f(x)}{z} \cdot \sin(Rz) dz + \frac{1}{\pi} \int_{|z| > N} f(x+z) \cdot \frac{\sin(Rz)}{z} dz$$

$$- \frac{f(x)}{\pi} \int_{N}^{+\infty} \frac{\sin(Rz)}{z} dz - \frac{f(x)}{\pi} \int_{--\infty}^{-N} \frac{\sin(Rz)}{z} dz$$

Analicemos por partes, se tiene lo siguiente:

$$\left| \int_{|z|>N} f(x+z) \cdot \frac{\sin(Rz)}{z} dz \right| \leqslant \int_{|z|>N} \frac{|f(x+z)|}{|z|} dz$$

$$\leqslant \frac{1}{N} \int_{|z|>N} |f(x+z)| dz$$

$$= \frac{\mathcal{N}_1(f)}{N}$$

ahora, si R > 1 y por el Segundo Teorema del Valor Medio:

$$\left| \int_{N}^{M} \frac{\sin(Rz)}{z} dz \right| \leqslant \left[\frac{1}{N} + \frac{2}{M} \right] \cdot \sup_{N \leqslant \zeta \leqslant M} \left| \int_{N}^{\zeta} \sin Rz \, dz \right|$$

$$= \left(\frac{1}{N} + \frac{2}{M} \right) \cdot \sup_{N \leqslant \zeta \leqslant M} \left| -\frac{\cos(Rz)}{z} \right|_{z=N}^{z=\zeta}$$

$$\leqslant \left(\frac{1}{N} + \frac{2}{M} \right) \cdot \left(\frac{2}{R} \right)$$

$$\leqslant \frac{6}{NR}$$

$$\leqslant \frac{6}{N}$$

Por tanto,

$$\left| \int_{N}^{\infty} \frac{\sin(Rz)}{z} \, dz \right| \leqslant \frac{6}{N}$$

y, haciendo el cambio de variable u = -z se sigue que

$$\left| \int_{-\infty}^{-N} \frac{\sin(Rz)}{z} \, dz \right| \leqslant \frac{6}{N}$$

Sea ahora $\varepsilon > 0$. Se sigue de las tres desiguladades anteriores que si se fija N lo suficientemente grande, los módulos de las tres últimas integrales de la derecha son menor o iguales a $\frac{\varepsilon}{2}$. Por ende,

$$|J(R) - f(x)| \le \frac{1}{\pi} \left| \int_{-N}^{N} \frac{f(x+z) - f(x)}{z} \cdot \sin(Rz) \, dz \right| + \frac{\varepsilon}{2}$$

Como la función $z\mapsto \frac{f(x+z)-f(x)}{z}$ es integrable en $]-\delta,\delta[$ para algún $0<\delta<\pi,$ necesariamente tiene que serlo en [-N,N] (por la condición de Dini y separando la integral en los intervalos disjuntos $]-N,-\delta[,]-\delta,\delta[$ y $]\delta,N[$, tomando en este caso el N>0 tal que $N>\delta).$ Luego, por el Teorema de Riemman-Lebesgue existe $R_0>1$ tal que

$$\frac{1}{\pi} \left| \int_{-N}^{N} \frac{f(x+z) - f(x)}{z} \cdot \sin(Rz) \, dz \right| < \frac{\varepsilon}{2}, \quad \forall R \geqslant R_0$$

Se sigue entonces que para todo $R \geqslant R_0$:

$$|J(R) - f(x)| < \varepsilon$$

por ende,

$$\lim_{R \to \infty} J(R) = f(x)$$

lo que prueba el resultado.

Observación 1.3.2

Recuerde que la condición de Dini se cumple, por ejemplo, si f tiene derivada por la derecha y la izquierda en ese punto.

1.4. Homomorfismos Complejos del álgebra de Banach $L_1(\mathbb{R}^n,\mathbb{C})$

Observación 1.4.1

 \mathbb{R}^n_+ denota al grupo abeliano $(\mathbb{R}^n,+)$ y \mathbb{C}^* denota al grupo abeliano $(\mathbb{C}\setminus\{0\},\cdot)$.

Proposición 1.4.1

Todo homomorfismo continuo de \mathbb{R}_+ en \mathbb{C}^* es de la forma

$$t \mapsto e^{at}$$

con $a \in \mathbb{C}$.

Demostración:

Primero, es claro que para todo $a \in \mathbb{C}$, la función $t \mapsto e^{at}$ es homomorfismo continuo de \mathbb{R}_+ en \mathbb{C}^* . Fije un homomorfismo continuo $\varphi : \mathbb{R}_+ \to \mathbb{C}^*$.

1. Se afirma que φ es diferenciable en todo punto de \mathbb{R} . En efecto, considere su integral indefinida

$$x \mapsto \int_0^x \varphi(t) dt$$

esta función es diferenciable con derivada $\varphi(x)$ para todo $x \in \mathbb{R}$ (pues φ es continua). Ya que $\varphi(x) \neq 0$, la función anterior no puede ser la constante cero. Existe pues $\alpha \in \mathbb{R}$ tal que

$$c = \int_0^\alpha \varphi(t) \ dx \neq 0$$

Se tiene para todo $x \in \mathbb{R}$:

$$c\varphi(x) = \int_0^\alpha \varphi(x)\varphi(t) dt$$
$$= \int_0^\alpha \varphi(x+t) dt$$
$$= \int_0^{x+\alpha} \varphi(u) du$$

pues φ es homomorfismo y haciendo el cambio de variable t=u-x. Como la función $x\mapsto \int_x^{x+\alpha} \varphi(t)\,dx$ es derivable en todo punto de $\mathbb R$ (con derivada $\varphi(x+a)-\varphi(x)$) y $c\neq 0$, entonces se sigue que φ es derivable en todo punto de $\mathbb R$.

2. Se afirma ahora que

$$\varphi(t) = \varphi'(0)\varphi(t), \quad \forall t \in \mathbb{R}$$

Esto se sigue de que

$$\frac{\varphi(t+h) - \varphi(t+0)}{h} = \frac{\varphi(t)\varphi(h) - \varphi(t)}{h}$$
$$= \varphi(t) \cdot \frac{\varphi(h) - \varphi(0)}{h}$$

tomando límites cuando $h \to 0$ se tiene el resultado.

3. Sea $a = \varphi'(0)$. Se tiene que

$$\frac{d}{dt} (\varphi(t)e^{-at}) = \varphi'(t)e^{-at} - a\varphi(t)e^{-at}$$
$$= a\varphi(t)e^{-at} - a\varphi(t)e^{-at}$$
$$= 0, \quad \forall t \in \mathbb{R}$$

así pues, $t\mapsto \varphi(t)e^{-at}$ es constante en $\mathbb R$ de valor $\varphi(0)e^{-a\cdot 0}=\varphi(0)=1.$ Por tanto:

$$\varphi(t) = e^{at}, \quad \forall t \in \mathbb{R}$$

Teorema 1.4.1

Todos los homomorfismos continuos de \mathbb{R}^n_+ en \mathbb{C}^* son las funciones

$$x \mapsto e^{\langle a|x\rangle} \cdot e^{i\langle b|x\rangle}$$

donde $a, b \in \mathbb{R}^n$.

Demostración:

Primero, es claro que todas las funciones descritas anteriormente son homomorfismos continuos del grupo \mathbb{R}^n_+ en \mathbb{C}^* .

Sea $\varphi : \mathbb{R}^n_+ \to \mathbb{C}^*$ un homomorfismo continuo. Sea $(e_1, ..., e_n)$ la base natural de \mathbb{R}^n . Para cada $k \in [1, n]$ se define

$$\varphi_k: \mathbb{R} \to \mathbb{C}$$

dada como

$$\varphi_k(t) = \varphi(te_k), \quad \forall t \in \mathbb{R}$$

Se tiene para todo $s, t \in \mathbb{R}$:

$$\varphi_k(s+t) = \varphi(se_k + t_e k)$$

$$= \varphi(se_k) \cdot \varphi(te_k)$$

$$= \varphi_k(s) \cdot \varphi_k(t)$$

Luego φ_k es homomorfismo. Además, φ_k es continua por ser composición de funciones continuas. Por el resultado anterior existen $a_k, b_k \in \mathbb{R}$ tales que

$$\varphi_k(t) = e^{a_k t} \cdot e^{ib_k t}, \quad \forall t \in \mathbb{R}$$

Sea $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Se tiene

$$\varphi(x) = \varphi\left(\sum_{k=1}^{n} x_k e_k\right)$$

$$= \prod_{k=1}^{n} \varphi(x_k e_k)$$

$$= \prod_{k=1}^{n} e^{a_k x_k} \cdot e^{ib_k x_k}$$

$$= e^{\sum_{k=1}^{n} a_k x_k} \cdot e^{i\sum_{k=1}^{n} b_k x_k}$$

$$= e^{\langle a|x \rangle} \cdot e^{i\langle b|x \rangle}, \quad \forall x \in \mathbb{R}^n$$

siendo $a = (a_1, ..., a_n)$ y $b = (b_1, ..., b_n)$.

Observación 1.4.2

Sea \mathbb{T} el subgrupo de \mathbb{C}^* de todos los números complejos con módulo 1. \mathbb{T} es llamado **el grupo** del círculo.

Todos los homomorfismos continuos de \mathbb{R}^n_+ en \mathbb{T} se llaman **caracteres de** \mathbb{R}^n , los cuales son funciones de la forma

$$x \mapsto e^{i\langle b|x\rangle}$$

(pues si $a \neq 0$ entonces $e^{\langle a|x\rangle} > 1$ para casi todo $x \in \mathbb{R}^n$). En particular, la transformada de Fourier

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy$$

es el resultado de integrar un caracter por f.

Lema 1.4.1

Si Φ es un homomorfismo de un álgebra de Banach \mathcal{A} en \mathbb{K} , entonces Φ es un funcional lineal continuo sobre \mathcal{A} de norma $\|\Phi\| \leq 1$.

Demostración:

Claramente Φ es funcional lineal sobre \mathcal{A} . Se debe probar que

$$\|\Phi(x)\| \le \|x\|, \quad \forall x \in \mathcal{A}$$

Suponga por el contrario que existe $x_0 \in \mathcal{A}$ tal que

$$||x_0|| < ||\Phi(x_0)||$$

necesariamente debe tenerse que $\Phi(x_0) \neq 0$. Al tomar

$$x = \frac{x_0}{\Phi(x_0)}$$

resulta que

$$||x|| < 1$$
 y $\Phi(x) = 1$

Recuerde que en toda álgebra de Banach se cumple que $||x \cdot y|| \le ||x|| \cdot ||y||$. Entonces

$$||x^k|| \leqslant ||x||^k$$

Entonces, la serie de términos positivos $\sum_{k=1}^{\infty} \|x\|^k$ es convergente, luego la serie $\sum_{k=1}^{\infty} \|x^k\|$ también es convergente, es decir que la serie

$$\sum_{k=1}^{\infty} x^k$$

es absolutamente convergente en el álgebra de Banach \mathcal{A} . Siendo \mathcal{A} completo, dicha serie es convergente, digamos

$$y = -\sum_{k=1}^{\infty} x^k$$

para algún $y \in \mathcal{A}$. Entonces

$$x \cdot y = x \cdot \left(-\sum_{k=1}^{\infty} x^k \right)$$
$$= -\sum_{k=1}^{\infty} x^{k+1}$$
$$= y + x$$
$$= x + y$$

Como Φ es homomofismo:

$$\Phi(x) + \Phi(y) = \Phi(x+y)$$
$$= \Phi(xy)$$
$$= \Phi(x) \cdot \Phi(y)$$

lo cual es incompatible con $\Phi(x) = 1$. Por tanto, Φ es continua de norma menor o igual a 1.

Teorema 1.4.2 (Homomorfismos no nulos del álgebra de Banach $L_1(\mathbb{R}^n,\mathbb{C})$ en $\mathbb{C})$

Para todo $a \in \mathbb{R}^n$, sea $\Phi_a : L_1(\mathbb{R}^n, \mathbb{C}) \to \mathbb{C}$ la función

$$\Phi_a(f) = \mathcal{F}f(a), \quad \forall f \in L_1(\mathbb{R}^n,)$$

Entonces, Φ_a es un homomorfismo no nulo del álgebra de Banach $L_1(\mathbb{R}^n, \mathbb{C})$ en \mathbb{C} . Además, la aplicación $\Phi: a \mapsto \Phi_a$ es una biyección de \mathbb{R}^n sobre el conjunto de todos los homomorfismos no nulos de $L_1(\mathbb{R}^n, \mathbb{C})$ en \mathbb{C} .

Demostración:

Se harán varias cosas:

1. Para cada $a \in \mathbb{R}^n$ fijo, se tiene

$$\Phi_a(\lambda f) = \mathcal{F}(\lambda f)(a)$$
$$= \lambda \mathcal{F}f(a)$$
$$= \lambda \Phi_a(f)$$

para todo $\lambda \in \mathbb{C}$. También,

$$\Phi_a(f+g) = \mathcal{F}(f+g)(a)$$
$$= \mathcal{F}f(a) + \mathcal{F}g(a)$$
$$= \Phi_a(f) + \Phi_a(g)$$

y,

$$\Phi_a(f * g) = \mathcal{F}f * g(a)$$

$$= \mathcal{F}f(a) \cdot \mathcal{F}g(a)$$

$$= \Phi_a(f) \cdot \Phi_a(g)$$

para todo $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Por tanto, Φ_a es homomorfismo de $L_1(\mathbb{R}^n, \mathbb{C})$ en \mathbb{C} .

Es claro que ϕ_a no es el homomorfismo nulo, pues existen funciones $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ tales que

$$\mathcal{F}f(a) \neq 0, \quad \forall a \in \mathbb{R}^n$$

por ejemplo $f(x) = e^{-\sum_{k=1}^n |x_k|}$ para todo $x \in \mathbb{R}^n$ es tal que f es integrable y

$$\mathcal{F}f(a) = \frac{2^n}{(1 + a_1^2) \cdot \dots \cdot (1 + a_n^2)} \neq 0, \quad \forall a \in \mathbb{R}^n$$

2. Se afirma que $\Phi: a \mapsto \Phi_a$ es inyectiva de \mathbb{R}^n en el conjunto de todos los homomorfismos no nulos de $L_1(\mathbb{R}^n, \mathbb{C})$ en \mathbb{C} . Sean pues $a = (a_1, ..., a_n)$ y $b = (b_1, ..., b_n)$ en \mathbb{R}^n tales que

$$\Phi_a = \Phi_b$$

es decir que

$$\mathcal{F}f(a) = \mathcal{F}f(b), \quad \forall f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$$

o sea que

$$\int_{\mathbb{R}^n} e^{-i\langle a|x\rangle} f(x) \, dx = \int_{\mathbb{R}^n} e^{-i\langle b|x\rangle} f(x) \, dx, \quad \forall f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$$

se debe probar que a=b. Por el lema anterior, $\Phi_a=\Phi_b$ es un funcional lineal continuo de $L_1(\mathbb{R}^n,\mathbb{C})$ en \mathbb{C} . Por el Teorema de Dualidad entre L_1 y L_{∞} , existe $\beta \in \mathcal{L}_{\infty}(\mathbb{R}^n,\mathbb{C})$ único salvo equivalencias tal que

$$\int_{\mathbb{R}^n} e^{-i\langle a|x\rangle} f(x) \, dx = \int_{\mathbb{R}^n} e^{-i\langle b|x\rangle} f(x) \, dx = \int_{\mathbb{R}^n} \beta(x) f(x) \, dx$$

para todo $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Por tanto, de la unicidad de β debe suceder que

$$e^{-i\langle a|x\rangle}=e^{-i\langle b|x\rangle}=\beta(x)$$
 c.t.p. en \mathbb{R}^n

siendo las dos primeras continuas, debe tenerse que

$$r(x) = e^{-i\langle a|x\rangle} = e^{-i\langle b|x\rangle} = s(x), \quad \forall x \in \mathbb{R}^n$$

entonces,

$$\frac{\partial}{\partial x_k}r(0) = -ia_k = -ib_k = \frac{\partial}{\partial x_k}s(0)$$

para todo $k \in [\![1,n]\!].$ Así, a=b.

3.