1. 種々の代数系, 群と環

問題 1.1. 次の (1) ~ (10) で与えられる集合と演算 \bullet が群の定義を満たすかどうかを調べ、群になる場合はアーベル群かどうかを述べよ。また、群にならないときは群の定義のどこが成り立たないかを指摘し、もし半群やモノイドになっているならばそれについても述べよ。

- (1) 集合は複素数全体 \mathbb{C} , 演算は, $a,b \in \mathbb{C}$ に対し $a \bullet b = ab$ (複素数の積).
- (2) 集合は $\mathbb{C}^{\times}=\mathbb{C}\setminus\{0\}$ (複素数全体から 0 を除いた集合), 演算 \bullet は (1) と同様に 複素数の積.
 - (3) 3 つの元からなる集合 $S = \{x, y, z\}$ に次の表によって演算 を定めたもの:

$$egin{array}{c|ccccc} \bullet & x & y & z \\ \hline x & y & z & x \\ y & z & x & y \\ z & x & y & z \\ \hline z & x & y & z \\ \hline \end{array}$$
 (例)

(4) 集合 $S = \{x, y, z\}$ に次の表によって演算 • を定めたもの:

•

$$x$$
 y
 z
 (例)

 x
 x
 y
 z
 x
 x
 x
 y
 y
 x
 x
 y
 y

(5) 4つの元からなる集合 $S = \{w, x, y, z\}$ に次の表によって演算 ● を定めたもの:

- (6) W をアルファベットの小文字 1 文字以上からなる文字列 (スペースは含まない) 全体の集合とする. $a,b \in W$ に対して $a \bullet b$ は文字列 a の後に文字列 b をつなげたもの. 例えば $a = \mathsf{daisuu}, b = \mathsf{gaku}$ のとき, $a \bullet b = \mathsf{daisuugaku}$.
- (7) 上記の (W, \bullet) に "0 文字の文字列" (便宜上, 記号 e で表す) を加えたもの. 任意の $a \in W \cup \{e\}$ に対して $e \bullet a = a \bullet e = a$ とする.
- (8) 上記にさらに別の元 d を加える. 文字列 a に対し, $a \bullet d$ は a の末尾の 1 文字を除いたもの, $d \bullet a$ は a の先頭の 1 文字を除いたものとする (ただし, e に対しては

 $e \bullet d = d \bullet e = e$). 例えば, a = daisuu のとき, $a \bullet d =$ daisu, $d \bullet a =$ aisuu. また, d = はの積は $d \bullet d = d$ とする.

- (9) 集合は $U=\left\{\left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right) \middle| a\in\mathbb{C}\right\}$, 演算 \bullet は, $A,B\in U$ に対して $A\bullet B=AB$ (行列の積) で定める.
 - $(10) 集合は <math>T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| \begin{array}{c} a,b,c \in \mathbb{C}, \\ ac \neq 0 \end{array} \right\},$ 演算 は行列の積で定める.

問題 1.2. 実数全体 $\mathbb R$ は加法 + に関して群となる. この群 $(\mathbb R,+)$ について、次の問題に答えよ.

- (1) ℝ には {0} 以外の有限部分群が存在しないことを証明せよ.
- (2) H を $\mathbb R$ の部分群とする. もし $H \neq \mathbb R$ ならば, H はいかなる開区間も含まないことを示せ.
- (3) 正の実数全体 $\mathbb{R}_{>0}$ は積・に関して群となる. このとき $(\mathbb{R},+)$ と $(\mathbb{R}_{>0},\cdot)$ が群としては同型であることを示せ.

問題 1.3. G を群とし, H_1, H_2 を G の正規部分群とする.

- (1) 写像 $\varphi:G\to G/H_1\times G/H_2$ を $\varphi(g)=(gH_1,gH_2)$ により定める. このとき φ が準同型写像になることを示し、 $\operatorname{Ker}\varphi$ を求めよ.
- (2) G/H_1 と G/H_2 が共にアーベル群ならば $G/(H_1\cap H_2)$ もアーベル群になることを示せ.

問題 1.4. n を正整数とし、可換環 $(\mathbb{Z}/n\mathbb{Z}, +_n, \cdot_n, 0, 1)$ を考える. a を整数とするとき、 $a \mod n$ が $\mathbb{Z}/n\mathbb{Z}$ の単元 (可逆元) であるためには a と n が互いに素であることが必要十分であることを示せ.

問題 1.5. 整数係数の多項式全体 $\mathbb{Z}[X]$ は単項イデアル整域になるかどうかを調べよ.