Problem I – Intersection of Hyperrectangles

You are given n d-dimensional hyperrectangles with sides parallel to the axes numbered from 1 to n. Each of these hyperrectangles is defined by the region of all points with real coordinates (x_1, x_2, \ldots, x_d) such that $l_i \leq x_i \leq r_i$ (for $1 \leq i \leq d$). For each hyperrectangle, $2 \cdot d$ integers $l_1, r_1, l_2, r_2, \ldots, l_d, r_d$ are given.

You can do the following operation on the hyperrectangles:

• Select one hyperrectangle and move it a unit along an axis. More formally, select one hyperrectangle and a i ($1 \le i \le d$) and set l_i to $l_i + 1$ and r_i to $r_i + 1$, or set l_i to $l_i - 1$ and r_i to $r_i - 1$.

Answer q queries. In each query, you are given two integers L and R. You have to find the minimum number of operations so the intersection of the hyperrectangles numbered from L to R is **non-empty**. In other words, there must exist a point that is contained inside all such hyperrectangles. A point in the boundary of the hyperrectangle is said to be inside the hyperrectangle.

Input

The first line contains two integers n and d ($1 \le n \le 10^4$ and $1 \le d \le 50$) – the number of hyperrectangles and the number of dimensions.

The following n lines contain the description of the hyperrectangles. Each line contains $2 \cdot d$ integers $l_1, r_1, l_2, r_2, \ldots, l_d, r_d$ ($-10^9 \le l_i < r_i \le 10^9$ for $1 \le i \le d$) — the description of the hyperrectangles.

The following line contains an integer q $(1 \le q \le 10^4)$ – the number of queries.

The following q lines contain the description of the queries. Each line contains 2 integers L and R ($1 \le L \le R \le n$) — the range of each query.

Output

Print q lines with the answers to the queries.

Sample input 1	Sample output 1
3 2	0
2 4 2 4	0
0 2 0 2	4
-2 0 -2 0	
3	
1 2	
2 3	
1 3	

Sample input 2	Sample output 2
2 3 1 2 1 2 1 2 0 3 0 3 0 3 1 1 2	0

Sample input 3	Sample output 3
4 2	2
0 4 2 5	2
5 6 1 4	5
2 3 3 4	
1 2 0 1	
3	
1 3	
3 4	
1 4	

Notes

The diagram below shows the minimum number of operations needed in the third query of the first sample:

The operations are as follows:

- 1. Move the third hyperrectangle one unit in the positive direction of the first axis.
- 2. Move the third hyperrectangle one unit in the positive direction of the second axis.
- 3. Move the first hyperrectangle one unit in the negative direction of the second axis.
- 4. Move the first hyperrectangle one unit in the negative direction of the first axis.

After these 4 operations, all the hyperrectangles intersect at point (1,1). Note that the first axis is the x-axis and the second axis is the y-axis in the diagram above.