Rob J Hyndman George Athanasopoulos

# FORECASTING PRINCIPLES AND PRACTICE



## 10. Dynamic regression models

10.6 Lagged predictors

OTexts.org/fpp3/

Sometimes a change in  $x_t$  does not affect  $y_t$  instantaneously

#### Sometimes a change in $x_t$ does not affect $y_t$ instantaneously

- $y_t$  = sales,  $x_t$  = advertising.
- $y_t$  = stream flow,  $x_t$  = rainfall.
- $y_t$  = size of herd,  $x_t$  = breeding stock.

#### Sometimes a change in $x_t$ does not affect $y_t$ instantaneously

- $y_t$  = sales,  $x_t$  = advertising.
- $y_t$  = stream flow,  $x_t$  = rainfall.
- $y_t$  = size of herd,  $x_t$  = breeding stock.
- These are dynamic systems with input  $(x_t)$  and output  $(y_t)$ .
- $\mathbf{x}_t$  is often a leading indicator.
- There can be multiple predictors.

The model include present and past values of predictor:

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \dots + \gamma_k x_{t-k} + \eta_t$$

where  $\eta_t$  is an ARIMA process.

The model include present and past values of predictor:

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where  $\eta_t$  is an ARIMA process.

#### Rewrite model as

$$y_t = a + (\gamma_0 + \gamma_1 B + \gamma_2 B^2 + \dots + \gamma_k B^k) x_t + \eta_t$$
  
=  $a + \gamma(B) x_t + \eta_t$ .

The model include present and past values of predictor:

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where  $\eta_t$  is an ARIMA process.

#### Rewrite model as

$$y_t = a + (\gamma_0 + \gamma_1 B + \gamma_2 B^2 + \dots + \gamma_k B^k) x_t + \eta_t$$
  
=  $a + \gamma(B) x_t + \eta_t$ .

- $\gamma$  (B) is called a *transfer function* since it describes how change in  $x_t$  is transferred to  $y_t$ .
- x can influence y, but y is not allowed to influence x.

```
insurance |>
  pivot_longer(Quotes:TVadverts) |>
  ggplot(aes(x = Month, y = value)) +
  geom_line() +
  facet_grid(vars(name), scales = "free_y") +
  labs(y = NULL, title = "Insurance advertising and quotations")
```





```
fit <- insurance |>
  # Restrict data so models use same fitting period
  mutate(Quotes = c(NA, NA, NA, Quotes[4:40])) |>
  # Fstimate models
  model(
    ARIMA(Ouotes ~ pdg(d = 0) + TVadverts).
    ARIMA(Quotes ~ pdq(d = 0) + TVadverts + lag(TVadverts)),
    ARIMA(Quotes ~ pdq(d = 0) + TVadverts + lag(TVadverts) +
      lag(TVadverts, 2)),
    ARIMA(Ouotes ~ pdq(d = 0) + TVadverts + lag(TVadverts) +
      lag(TVadverts, 2) + lag(TVadverts, 3))
```

glance(fit)

| Lag order | sigma2 | log_lik | AIC  | AICc | BIC  |
|-----------|--------|---------|------|------|------|
| 0         | 0.265  | -28.3   | 66.6 | 68.3 | 75.0 |
| 1         | 0.209  | -24.0   | 58.1 | 59.9 | 66.5 |
| 2         | 0.215  | -24.0   | 60.0 | 62.6 | 70.2 |
| 3         | 0.206  | -22.2   | 60.3 | 65.0 | 73.8 |

```
fit best <- insurance |>
 model(ARIMA(Ouotes ~ pdq(d = 0) + TVadverts + lag(TVadverts)))
report(fit_best)
## Series: Ouotes
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
##
         ar1 ma1 ma2 TVadverts lag(TVadverts) intercept
## 0.512 0.917 0.459
                            1.2527 0.1464 2.16
## s.e. 0.185 0.205 0.190 0.0588 0.0531 0.86
##
## sigma^2 estimated as 0.2166: log likelihood=-23.9
## AIC=61.9 AICc=65.4 BIC=73.7
```

```
fit best <- insurance |>
 model(ARIMA(Ouotes ~ pdg(d = 0) + TVadverts + lag(TVadverts)))
report(fit_best)
## Series: Ouotes
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
                          TVadverts lag(TVadverts) intercept
##
         ar1
               ma1 ma2
                            1.2527 0.1464 2.16
## 0.512 0.917 0.459
## s.e. 0.185 0.205 0.190 0.0588 0.0531 0.86
##
## sigma^2 estimated as 0.2166: log likelihood=-23.9
## AIC=61.9 AICc=65.4 BIC=73.7
```

$$y_t = 2.155 + 1.253x_t + 0.146x_{t-1} + \eta_t,$$
  

$$\eta_t = 0.512\eta_{t-1} + \varepsilon_t + 0.917\varepsilon_{t-1} + 0.459\varepsilon_{t-2}.$$





