Q1(1):

By F = kx = mg, the spring extended by $x = \frac{mg}{k} m$ in length after the mass is hung. Setting the gravitational potential energy to be zero at the natural length of the spring. Then, we have:

Total mechanical energy at the equilibrium position=EPE+GPE= $\frac{1}{2}kx^2-mgx=\frac{1}{2}k(\frac{mg}{k})^2-mg(\frac{mg}{k})=-\frac{m^2g^2}{2k}$ J.

Total mechanical energy at the natural length of the spring=EPE+GPE=0+0=0 J. Then, the work done= $0 - (-\frac{m^2g^2}{2k}) = \frac{m^2g^2}{2k} J$. The answer is $\boxed{(c)}$.

Q1(2):

The vectors of electric fields of negative charge and positive charge are pointing at a direction toward and outward the charge respectively. As the triangle is a equilateral triangle, we have each internal angle is equal to 60° . Therefore, the angle between the positive x-axis and the vectors of electric fields of the -q charge and the +q charge at the point P are $180+60=240^{\circ}$ and $180-60=120^{\circ}$ respectively.

On the other hand, the magnitudes of the two vectors are the same, which is $k \frac{q}{d^2} \ N/C.$

Now, the vector sum of the two vectors is pointing towards the direction D and with a magnitude of $2k\frac{q}{d^2}\cos 60^\circ = k\frac{\sqrt{3}q}{d^2} \ N/C$. Hence the answers are (d) and (f) respectively.

Q1(3):

As particles in a longitudinal wave is travelling at the same direction of the wave. The positive direction of displacement of particle (i.e. positive y direction) is in the positive x direction.

Consider the graph of the wave right afterwards, which is obtained by horizontally translate the graph to the positive x direction by a bit. Finding the corresponding positions of each particle, we have the displacements of A and D decreased and the displacements of B and C increased. Hence only particles B and C are travelling to the positive x direction. Moreover, as C is at the trough, it has the greatest acceleration.

Given the above, the particle that has the greatest acceleration in the positive x direction is C and the answer is C.

Q1(4):

We have the equation: $^{238}_{92}U$ \rightarrow ? + x $^4_2\alpha$ + y $^0_{-1}\beta$, where $x,y\in\mathbb{N}$ and ? is the final stable nucleus.

As the mass number and the number of protons must be conserved. Let m be the mass number of the final stable nucleus, we have 238 = m + 4x, or m = 238 - 4x. Note that among the four options, only for m = 206 (take x = 8) we can find a corresponding $x \in \mathbb{N}$. Therefore, we have the answer is ${}^{206}_{82}Pb$, $\boxed{(c)}$.

Q2:

- (1): Right after the switch S_1 is closed, as the capacitor is uncharged, we have the resistance of it is 0Ω and all the voltages are consumed by the resistor R_1 . Hence, by Ohm's law, we have 6 = I(4), i.e. I = 1.5 A. The answer is (a).
- (2): After the capacitor is fully charged, it has infinite resistance and all the voltages are consumed by it. By the defination of capacitance, we have $C = \frac{Q}{V}$, i.e. $Q = CV = (2\mu)(6) = 12 \ \mu C$. The answer is (b).
- (3): The work done by the battery is equal to $V\Delta Q$. In this case, the charges consumed is equal to the charges stored in the capacitor, i.e. $\Delta Q=12~\mu C$. Therefore, we have $W=6(12\mu)=72~\mu J$. The answer is $\boxed{(d)}$.
- (4): The internal energy of the fully charge capacitor= $U = \frac{1}{2}QV = \frac{1}{2}(12\mu)(6) = 36 \ \mu J$. Therefore, the energy loss= $W U = 72 36 = 36 \ \mu J$. All the energy loss are transferred to heat energy released by the resistor. Hence, the heat energy= $36 \ \mu J$. The answer is (c).
- (5): The equivalent resistance of the capacitor and the resistor $R_2 = \frac{1}{\frac{1}{\infty} + \frac{1}{2}} = 2 \Omega$. Therefore, the voltage across the capacitor becomes $\frac{2}{4+2} \cdot 6 = 2 V$ after switch S_2 closed. By $C = \frac{Q}{V}$, we have $Q = (2\mu)(2) = 4 \mu C$. The answer is (a).

Q3:

(1): Set the gravitational energy to be zero at the heigh y=0. Then, the gravitational energy at the point $P=mgY\ J$ (note that the y-axis is at the same direction as the gravitational acceleration). We have:

Total mechanical energy at the point $O=KE+GPE=\frac{m}{2}v_0^2+0=\frac{m}{2}v_0^2~J.$ Total mechanical energy at the point $P=KE+GPE=\frac{m}{2}v^2+mgY~J.$ By the conservation of energy, we have $\frac{m}{2}v^2+mgY=\frac{m}{2}v_0^2.$ The answer is $\boxed{(a)}$.

- (2): The perpendicular length of P to the horizontal line y=R (i.e. the horizontal line passes through the centre of the circle) equals to R-Y m. The distance between the centre of the circle and P equals to the radius of the circle (i.e. R). Consider the sine ratio of this right-angled triangle, we have $\sin\theta = \frac{R-Y}{R}$.
- (3), (4): By $\frac{m}{2}v^2 + mgY = \frac{m}{2}v_0^2$, we have $mv^2 = mv_0^2 2mgY$. Substitue it and $\sin \theta = \frac{R-Y}{R}$ into the provided equation, we have:

$$mg\frac{R-Y}{R} = \frac{mv_0^2 - 2mgY}{R}$$

$$g(R-Y) = v_0^2 = 2gY$$

$$3gY = gR - v_0^2$$

$$Y = \frac{1}{3}R - \frac{1}{3}\frac{v_0^2}{g}$$

Therefore, the answers for part (3) and (4) are (b) and (d) repsectively.

(5): As the object undergoes free fall after separated from the sphere, we have its path is a parabola with constant accerelation (a = g). The answer is (d).

Q4:

(1): Note that the pressure inside is constant as the volume is variable. Then,

by pV = nRT, work done by the gas (to the piston)= $p\Delta V = nR\Delta T = R \times 1 \ mol \times 1 \ K$. The answer is (b).

- (2): By $Q = Cn\Delta T$, where C is the molar heat capacity of gas, we have $Q = C \times 1 \ mol \times 1 \ K$. The answer is $\boxed{(a)}$.
- (3): By $U = \frac{3}{2}nRT$, we have the change in internal energy of the gas $\Delta U = \frac{3}{2}nR\Delta T$. Then, by the first law of thermaldynamics, we have $\Delta U = Q W_{gas}$. Therefore, $Q = \Delta U + W_{gas} = \frac{3}{2}Rn\Delta T + Rn\Delta T = \frac{5}{2}Rn\Delta T$. Therefore, $C = \frac{5}{2}R > R$. The answer is (a).
- (4): By P = IV and V = IR, we have $P = \frac{V^2}{R} = \frac{E^2}{R_0} J/s$. Therefore, the heat per unit time= $P = \frac{E^2}{R_0} J/s$. The answer is (d).

Q5:

- (1): By the general form of Doppler's effect $f_{observed} = \frac{v v_{observer}}{v v_{source}} f$. Therefore, we have the frequency of wave moving in front of the ship when the ship is moving $= \frac{bT}{bT V_0} f$ and the ratio $\frac{\text{frequency of wave moving in front of the ship when the ship is moving}}{\text{frequency of wave moving in front of the ship when the ship is stationary}} = \frac{bT}{bT V_0} f$ By $v = f\lambda$, for fixed wave speed v, we have λ is proportional to $\frac{1}{f}$. Hence, the required ration $\frac{bT V_0}{bT}$. The answer is (c).
- the ship when the ship is moving $=\frac{bT}{bT-(-V_0)}f=\frac{bT}{bT+V_0}f$. Therefore, the ratio $\frac{\text{frequency of wave moving behind the ship when the ship is moving}}{\text{frequency of wave moving behind the ship when the ship is stationary}}=\frac{\frac{bT}{bT+V_0}f}{f}=\frac{bT}{bT+V_0}$ and the required ratio $=\frac{bT+V_0}{bT}$. The answer is (e).

(2): Similar to that in part (1), we have the frequency of wave moving behind