

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
https://sites.google.com/view/iitkgpakdas/

Involutions

Definition

Let S be a finite set and let f be a bijection from S to itself (i.e., $f: S \to S$). The function f is called an **involution** if $f = f^{-1}$. An equivalently, f(f(x)) = x, for all $x \in S$.

Figure: An involution on a set of five elements, $S = \{1, 2, 3, 4, 5\}$

Composition of Functions

Definition

Let $f:A\to B$ and $g:B\to C$ be two functions. The composition of f by g is the function $g\circ f:A\to C$ defined by

$$(g \circ f)(a) = g[f(a)], \forall a \in A.$$

Lemma

Let $f: A \to B$, $g: B \to C$, and $h: C \to D$ be functions. Whenever the composites involved are defined, composition of functions obeys the associate law:

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Problem [Composition of Functions]

Let $f: x \to 2x$, $g: x \to x^2$ and $h: x \to (x+1)$ defined over a set of real numbers. Then, find $h \circ (g \circ f)$ and $(h \circ g) \circ f$, and prove that each of them is $(4x^2+1)$.

Proof. Here f(x) = 2x, $g(x) = x^2$ and h(x) = x + 1. Now,

$$[h \circ (g \circ f)](x) = h \circ (g \circ f)(x)$$

$$= h \circ [g(f(x))]$$

$$= (h \circ g)(2x)$$

$$= h[g(2x)]$$

$$= h[(2x)^{2}]$$

$$= h(4x^{2})$$

$$= 4x^{2} + 1.$$

Problem [Composition of Functions]

Let $f: x \to 2x$, $g: x \to x^2$ and $h: x \to (x+1)$ defined over a set of real numbers. Then, find $h \circ (g \circ f)$ and $(h \circ g) \circ f$, and prove that each of them is $(4x^2+1)$.

Proof. Again,

$$((h \circ g) \circ f)(x) = (h \circ g)f(x)$$

$$= (h \circ g)(2x)$$

$$= h[g(2x)]$$

$$= h[(2x)^2]$$

$$= h(4x^2)$$

$$= 4x^2 + 1$$

Hence, $h \circ (g \circ f)(x) = ((h \circ g) \circ f)(x)$, for all x in the set of real numbers. Thus, $(h \circ g) \circ f = h \circ (g \circ f)$.

Identity Function

Definition

The identity function $I_S: S \to S$ maps each element of S onto itself. That is, $I_S(x) = x, \forall x \in S$.

Theorem (Identity Law)

Let $f: S \to T$, and 1_S and 1_T be the identity functions of S and T respectively. Then,

$$f \circ 1_{\mathcal{S}} = 1_{\mathcal{T}} \circ f = f$$
.

Proof.

Given $1_S: S \to S$, $1_T: T \to T$ are identity functions. So, $1_S(s) = s, \forall s \in S$ and $1_T(t) = t, \forall t \in T$.

Therefore, $f \circ 1_S : S \to T$ and $1_T \circ f : S \to T$. Let $s \in S$. Then,

$$(f \circ 1_S)(s) = f[1_S(s)]$$

= $f(s), \forall s \in S$

Identity Function

Thus,

$$f \circ 1_S = f \tag{1}$$

Again,

$$(1_{\mathcal{T}} \circ f)(s) = 1_{\mathcal{T}}[f(s)]$$

= $f(s), \forall s \in S$

Therefore,

$$1_{T} \circ f = f \tag{2}$$

Combining both Eqs. (1) and (2), we have:

$$f \circ 1_S = 1_T \circ f = f$$
.

Characteristic Function

Definition (Characteristic Function)

Any set S which is a subset of a set U ($S \subseteq U$) can be associated with a function, called its characteristic function:

 $e_{\mathcal{S}}:U\rightarrow\{0,1\}$ defined by

$$e_{S}(x) = \begin{cases} 1, & \text{if } x \in S \\ 0, & \text{if } x \notin S \end{cases}$$

In other words, if $S \subseteq U = \{u_1, u_2, \dots, u_n\}$, then $e_S : U \to \{0, 1\}$ is defined by

$$e_{S}(u_{i}) = \begin{cases} 1, & \text{if } u_{i} \in S \\ 0, & \text{if } u_{i} \notin S \end{cases}$$

Example: If $S = \{4,7,9\}$ and $U = \{1,2,3,...,10\}$, then $e_S(2) = 0$, $e_S(4) = 1$, $e_S(7) = 1$, and $e_S(12)$ is undefined since $12 \notin U$.

Inverses of Function

Definition

Let $f: S \to T$ and $g: T \to S$ $(g = f^{-1})$ be two mappings such that $g \circ f = 1_S$ and $f \circ g = 1_T$. Then, g is called the *left inverse* of f with respect to left composition and g is called the *right inverse* of f with respect to right composition.

Definition

A function which has a two-sided inverse if called **invertible**.

Theorem

- (a) A function is left-invertible iff it is one-one (injective).
- (b) A function is right-invertible iff it is onto (surjective).

Inverses of Function

Corollary

A function $f: A \rightarrow B$ is a **bijective** iff it has both a left-inverse and right inverse.

Corollary

If $g \circ f$ is defined, and both f and g have left inverses, then $g \circ f$ has a left inverse.

Definition

For all $f: S \rightarrow S$,

$$f^2 = f \circ f$$
.

If $f^2 = f$, then f is said to be an **idempotent** or a **projection**.

Problem: Let $f: S \rightarrow S$ be a function defined as follows:

$$f(x) = x, \forall x \in S.$$

Then,

$$f^{2}(x) = (f \circ f)(x)$$
$$= f[f(x)]$$
$$= f(x)$$

Therefore, $f^2(x) = f(x), \forall x \in S$. Hence, $f^2 = f$. As a result, f is an "idempotent" or a "projection" mapping.

Theorem

- (a) If f and g are both injective, then $g \circ f$ is injective too.
- (b) If f and g are both surjective, then $g \circ f$ is surjective too.
- (c) If f and g are both bijective, then $g \circ f$ is bijective too. In addition,

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

- (d) If $g \circ f$ is injective, f is injective too.
- (e) If $g \circ f$ is surjective, g is surjective too.

Proof.

- (a) Let $a_1, a_2 \in A$ and $a_1 \neq a_2$. RTP: $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.
- Then, $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$, since f is injective (one-one).
- $\Rightarrow g[f(a_1)] \neq g[f(a_2)]$, since g is injective (one-one)

$$[f(a_1) \in B, f(a_2) \in B \text{ and } f(a_1) \neq f(a_2)]$$

$$\Rightarrow (g \circ f)(a_1)] \neq (g \circ f)(a_2).$$

Hence, $g \circ f$ is injective.

Theorem

If X and Y be two non-empty sets and f be a mapping of X into Y. Then, for any sub-sets $A, B \in X$, $f(A \cup B) = f(A) \cup f(B)$. Also, $A \subseteq B \Rightarrow f(A) \subseteq f(B)$.

Proof.


```
RTP: (i) f(A \cup B) \subseteq f(A) \cup f(B) and (ii) f(A) \cup f(B) = f(A \cup B).

(i) Let y \in f(A \cup B) be an arbitrary element.

Then, y \in f(A \cup B)

\Rightarrow y = f(x), for some x \in A \cup B

\Rightarrow y = f(x), for some x \in A or x \in B

\Rightarrow y = f(x), for some f(x) \in f(A) or f(x) \in f(B)
```

 \Rightarrow $y \in f(A)$ or $y \in f(B) \Rightarrow y \in (f(A) \cup f(B))$

(ii) To prove other direction, let $y \in f(A) \cup f(B)$ be an arbitrary element.

Then,
$$y \in f(A) \cup f(B)$$

$$\Rightarrow y \in f(A) \text{ or } y \in f(B)$$

$$\Rightarrow$$
 $y = f(x)$, for some $x \in A$ or $x \in B$

$$\Rightarrow$$
 $y = f(x)$, for some $x \in A \cup B$

$$\Rightarrow$$
 $y = f(x)$, for $f(x) \in f(A \cup B)$

$$\Rightarrow$$
 $y \in f(A \cup B)$.

Thus,

$$f(A) \cup f(B) \subseteq f(A \cup B)$$
 (4)

By combining Eqs. (3) and (4), we have:

$$f(A \cup B) = f(A) \cup f(B).$$

Theorem

If X and Y be two non-empty sets and f be one-one mapping of X onto Y (f is bijective). Then, for any sub-sets $A, B \in Y$, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Theorem

If $f: X \to Y$ be a mapping and A, B be subsets of X. Then, $f(A \cap B) \subseteq f(A) \cap f(B)$. The equality holds, if f is one-one (injective).

Theorem

If X and Y be two non-empty sets and f be one-one mapping of X onto Y (f is bijective). Then, for any sub-sets $A, B \in Y$, $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Problem: If N be the set of natural numbers, E be the set of even natural numbers, and a mapping $f: N \to E$ be defined by

$$f(x) = 2x, \forall x \in N$$

then show that f is one-one (injective) onto (surjective) map, that is, f is bijective.

Proof.

- Claim 1: f is one-one. Let $x_1, x_2 \in N$ such that $x_1 \neq x_2$. Then, $2x_1 \neq 2x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- Claim 2: f is onto.
 If y ∈ E, then y is an even positive number. Thus, y/2 is a natural number.

Now, $y = f(x) = 2x \Rightarrow x = \frac{y}{2} \in N$, for all $y \in E$.

Since f is both one-one and onto, f is also bijective.

Problem: Show that the mapping $f: R \to R$ defined by $f(x) = \cos x, x \in R$, where R is the set of real numbers, is neither one-one nor onto.

Proof.

• Claim 1: f is NOT one-one.

Let $x_1, x_2 \in R$ be two arbitrary elements in R (domain set). Now, $x_1 \neq x_2 \Rightarrow \cos x_1 \neq \cos x_2 \Rightarrow f(x_1) \neq f(x_2)$. For example, let $x_1 = 0$ and $x_2 = 2\pi$. Then, $f(x_1) = \cos 0 = 1$ and $f(x_2) = \cos 2\pi = 1$. Thus, $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

In fact, f is many-one mapping.

• Claim 2: f is NOT onto.

Let $y \in R$ (co-domain set). Then, $y = f(x) = \cos x \Rightarrow x = \cos^{-1}(y)$. Since $-1 \le \cos x \le +1$, so $f : R \to [-1, +1] \subset R$, and $f(R) \ne R$. Thus, $f : R \to R$ is not onto (surjective). In fact, f in into mapping.

Conclusion: $f: R \to R$ defined by $f(x) = \cos x$ is many-one into mapping.