System wykrywania podejrzanych transakcji.

Analiza danych w czasie rzeczywistym – projekt zaliczeniowy

Michał Truszczyński

Cel projektu

- Cel: Zbudowanie zautomatyzowanego systemu wykrywania podejrzanych transakcji.
- Potrzeba biznesowa
- Problem: Oszustwa kartowe i płatnicze generują znaczące straty dla instytucji
 finansowych. Problem jest znaczący ponieważ rośnie liczba transakcji
 elektronicznych a więc i liczba tego typu przestępstw. Jak najszybsze wykrywanie
 tego typu sytuacji umożliwia zablokowanie transakcji przed ich finalizacją. Instytucją
 finansowym w procesie zarządzania ryzykiem podejrzanych transakcji zależy zarówno
 na unikaniu fałszywych alarmów jak i nie przepuszczaniu realnych zagrożeń.
- Korzyści z wdrożenia rozwiązania: redukcja strat finansowych i kosztów związanych z kontrolą, zwiększenie zaufania klientów, dostosowanie się do reguł i wymagań prawnych, automatyzacja procesów, ograniczenie potrzebnych nakładów pracy administracyjnej.

Architektura systemu - przepływ danych 1

- 1. Dane wejściowe plik: creditcard.csv
 - Źródłem danych jest zbiór transakcji płatniczych z oznaczeniem, czy są one oszustwem (Class = 1) czy nie (Class = 0).
 - Dane zawierają m.in. czas transakcji, kwotę oraz 28 cech (V1–V28) po transformacji PCA.
 - Źródło danych: Kaggle, https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
- 2. Producent symulator strumienia danych
 - Wczytuje dane z pliku CSV i przesyła każdą transakcję jako wiadomość do Kafki.
 - Dodaje losowe lub zdefiniowane opóźnienia, aby naśladować prawdziwy strumień zdarzeń.
- 3. Kafka system kolejkowania zdarzeń
 - Odbiera dane z producenta i buforuje je w tzw. Topicu.
 - Zapewnia niezawodne przekazywanie danych do konsumenta (Spark).
 - Działa jako pośrednik między źródłem danych a analizą w czasie rzeczywistym.

Architektura systemu - przepływ danych 2

- 4. Spark konsument i analityk
 - Spark odczytuje dane z Kafka topicu i przetwarza je w mikropartiach (batchach)
 - Ładuje wcześniej wytrenowany model (model.pkl) i dokonuje predykcji na każdej transakcji.
 - Wykrywa, które transakcje są potencjalnym oszustwem (prediction == 1).
- 5. Model ML wykrywanie oszustw
 - Model został wytrenowany offline na zbiorze creditcard.csv
 - Po załadowaniu do Sparka działa jako funkcja predykcyjna.
 - Służy do klasyfikacji transakcji na fraud lub non-fraud w czasie rzeczywistym.
- 6. WebSocket przesyłanie wyników do użytkownika
 - Jeśli transakcja zostanie uznana za podejrzaną, Spark przesyła ją do serwera WebSocket.
 - WebSocket zapewnia stałe połączenie z przeglądarką użytkownika, umożliwiając natychmiastowe wyświetlanie alertów.

Architektura systemu - przepływ danych 3

- 7. Dashboard HTML interfejs użytkownika
 - Użytkownik widzi nowo wykryte przypadki oszustw w formie wiadomości na stronie web.
 - Wizualizacja odbywa się w czasie rzeczywistym, bez potrzeby odświeżania strony.
- 8. Docker Compose uruchomienie całości
 - Każdy komponent (Kafka, Spark, Produtent, Model, WebSocket) to osobny kontener.
 - Cały system można uruchomić jednym poleceniem docker compose up kafka producer consumer websocket.
 - Wcześniej należy uruchomić kontener trainer aby stworzyć model.

Propozycje kierunku rozwoju

- 1. Udoskonalenie modelu wykrywania podejrzanych transakcji.
- 2. Rozbudowa dashboardu:
 - Dodanie statystyki wykrytych transakcji podejrzanych
 - Dodanie panelu do ręcznej oceny transakcji przez analityków
 - Statystyki wykrytych nieprawidłowości
- 3. Automatyczna reakcja systemu:
 - o Powiadomienia SMS, email do klientów
 - Blokada konta
 - o Integracja z systemem bankowym