Alumno : Victor Daniel Archundia Sánchez EXAMEN 1ª PARCIAL

1. Mencionar 5 aplicaciones del cómputo paralelo

Química cuántica

Clima global

Diseño de materiales

Medicina y modelado de órganos y huesos

Ingeniería Genética

2. Describir la taxonomía de Flynn

Se basa en el flujo de información en donde tanto el flujo de datos como el flujo de instrucciones pueden ser únicos o

múltiples pudiendo clasificar así en 4 categorías la arquitectura de computadora

3. Describir el método científico contemporáneo

A través de la observación se genera una teoría que a su vez es validada por la simulación numérica.

Esta misma sustituye a la experimentación

Para poder lograr esto se necesita de un extraordinario poder de cómputo y de un alto rendimiento

4. Describir el modelo PRAM

Es un modelo teorico que proporciona marcos de trabajo o entornos de trabajo en el cual se desbriben y analizan algoritmos se utiliza para obtener cotas o limites

Tiene una unidad de control, una unidad de memoria global compartida por p procesadores.

Con este tipo de maquina se garantiza el acceso atomico a los datos localizados en la memoria compartida

Mencionar 2 características de un procesador vectorial y dos características de un arreglo de procesadores

Procesador vectorial

Puede ejecutar la misma instrucción ens grandes conjunto de datos

Puede decodificar instrucciones cuyos operandos son vectores completos

Arreglo de procesadores

almacena el programa y los datos que serán operados en paralelo

ejecuta la porción del programa que es secuencial.

6. Describir las maneras de mejorar el rendimiento

Se puede mejorar a través de mejoras en el hardware para poder dar un mejor funcionamiento y poder tener una mayor rapidez

Trabajar de manera inteligente con algoritmos mejor elaborados y más eficientes

7. Mencionar dos características de un multiprocesador y dos características de una multicomputadora

MULTIPROCESADOR:

- Permite trabajar con máquinas que poseen más de un microprocesador.
- Cuenta con dos o más microprocesadores
- puede ejecutar simultáneamente varios hilos pertenecientes a un mismo proceso o bien a procesos diferentes.

MULTICOMPUTADORA:

- La memoria es privada (es decir, cada procesador tiene un mapa de direcciones propio que no es accesible directamente a los demás).
- La comunicación entre procesadores es por paso de mensajes a través de una red de interconexión.

8. Describir la metodología PCAM

Partición: va a ser realizado junto con los datos, se descomponen en pequeñas tareas, reconoce las oportunidades de la ejecución paralela.

Comunicación: se destina la comunicación requerida para coordinar la ejecución de tareas, además de definir los algoritmos y las estructuras de comunicación apropiadas.

Aglomeración: se evalúa lo definido anteriormente con respecto a los requerimientos de desempeño y a los costos de implementación.

Mapeo: cada tarea asigna a un procesador de tal manera que satisfaga el objetico de maximizar la utilización de cada procesador y minimice los costos de comunicación

9. Describir las maneras de programar en paralelo

Enriquecer un compilador existente: El programador escribirá sus programas secuenciales con directivas de compilador, para que el compilador paralelice correctamente el programa.

Enriquecer un lenguaje existente: Los programadores pueden implementar una amplia variedad de diseños paralelos usando un mismo ambiente de programación.

Agregar una nueva capa al lenguaje paralelo: El programador usara un nuevo sistema de programación paralelo, están clasificados en Computationally Oriented Display Enviroment y Heterogeneous Computing Enviroment.

Definir un nuevo lenguaje paralelo: Desarrollo de un lenguaje de programación paralelo que soporte la ejecución de procesos en paralelo como secuenciales y la comunicación y sincronización entre ellos.

Mencionar dos características de un cluster y mencionar dos características de un MPP(Procesador Masivamente Paralelo) CLUSTER

- proporcionar una mejor disponibilidad en caso de que uno de los nodos presente ciertos fallos de hardware o software.
- contiene exactamente dos controladores de almacenamiento o dispositivos

MPP

- No utiliza memoria compartida.
- Distribuye la memoria RAM entre los procesadores de modo que se semeja a una red (cada procesador con su memoria distribuida asociada es similar a un computador dentro de una red de procesamiento distribuido)