An ngspice Quick Reference

JLRIpsn

June 9, 2017

1 File Layout Summary

```
*Ngspice title and/or description (first line)
.include <directory/file>
.param paramVal=10kV
Circuit layout
VName 0 node2 DC voltageForDCanalysis SIN(DCopVoltage amplitudeVoltage
freq)
R1~0~\mathrm{node}2~10\mathrm{k}
C1 0 node1 10uF
L1 node1 node2 5mH
   *tests
.control
tran < timeForTransientSim > < simStepSize >
meas tran valName PP v(node1)
PP= peak to peak
echo "words"
plot v(node1)
.\mathrm{endc}
.end
```

2 Basic Circuit Components

model statements are needed for more advance components, including diodes, MOSFETs, and $\rm BJTs.$

DC Vsource	$ ext{V}< ext{name}>< ext{node}+> ext{Code}+> ext{DC}< ext{value}(ext{V})>$
AC Vsource	$V < name > < node + > \ DC \ 0V \ SIN(< DCoffset(V) > < amplitude(V) > < freq(Hz) >)$
Resistor	m R< name> < node1> < node2>
Capacitor	$ ext{C}< ext{name}>< ext{node1}>< ext{node2}>< ext{value(F)}>$
Inductor	$ ext{L}< ext{name}>< ext{node1}>< ext{node2}>< ext{value(H)}>$
Diode	D <name></name>
MOSFET	M <name></name>
BJT	···
Subcircuit	X <name> <node1> <node2> <noden> <modelname></modelname></noden></node2></node1></name>

Table 1: Basic circuit components

3 Test and measurement basics

```
Tests are placed within the block delimited the .control and .endc commands. A simultation is general commands: plot <quantity> <comparisonQuantiy(optional)> echo <textToPrint> meas <test> <meaurementType> <quantity> <additionalSpecifiers(optional)> quantities are denoted by v(<node>) for a node voltage or i(<component>) for a component current.

.tran <stepSize> <duration> .op (calculates dc operating point) .dc <voltageSourceName> <startValue> <endValue> <stepsize> < meas command list meas TRAN <nameForValue> MAX <quantity> meas TRAN <nameForValue> MIN <quantity> meas TRAN <nameForValue> PP <quantity>
```

- 3.1 DC
- 3.2 Transient
- 3.3 AC

3.4 Additional Test and Measurement Commands

```
alter @<componentName>[subParameter] = [ new value ] e.g. alter @V1[sin] = [0.5V 1V 1k]
```