Madhurima Chakraborty

Software+ML Engineer/Researcher | Ph.D. candidate in Computer Science, UC Riverside LinkedIn | Google Scholar | GitHub | Email

Broadly interested in the applied and fundamental aspects of programming languages, applications of software engineering and intelligent decision making; particularly developing structured code analysis and automated software testing or debugging techniques. My current research focuses on the intersection of machine learning and program analysis. Actively seeking Full time positions.

ACHIEVEMENTS

- ACM Student Research Competition Grand Finals, 2022 Third Place, Graduate Category.
- SPLASH Student Research Competition, 2021 Winner, Graduate Category.
- Dean's Distinguished Fellowship from University of California, Riverside, 2019
- Student Travel Award: ICLR 2020

KEY SKILLS

Python, JavaScript, TypeScript, Java, C/C++, Bash **Programming**

ML Libraries numpy, pandas, scikit-learn, pytorch, transformers, matplotlib, seaborn

Tools Git. Docker Operating System Linux, MacOS, Windows

SQL Version Control Git Database

EDUCATION

Ph.D. in Computer Science, University of California, Riverside 09/2019-present GPA - 3.87/4 Riverside, CA, USA

B. Tech. in Information Technology, RCC Institute of Information Technology 05/2011-05/2015 GPA - 8.6/10 Kolkata, WB, India

EXPERIENCE

Research Intern 06/2022 - 09/2022 Microsoft Research Seattle, WA, USA

Code Defect Detection using LLMs: Investigated the application of machine learning to detect source-sink vulnerabilities in code using static analysis techniques and large language models. Developed a neural modeling framework to identify sanitized and unsanitized data flows for various Common Weakness Enumeration (CWE) vulnerabilities.

Computing Scholar 06/2024 - 09/2024

Lawrence Livermore National Lab

Seattle, WA, USA Pre/Post Condition Summaries: Developed program analysis capabilities in the ROSE compiler to automatically summarize pre and post-conditions of functions for C++ and Ada code.

Graduate Researcher 09/2019 - Present University of California, Riverside Riverside, CA, USA

Data-driven Call Graph Optimizer: Trained a neural model to identify specific call types generated by dynamic call-graphs that are otherwise difficult for static call graph generators to capture, subsequently enhancing the static call graph with these relations to improve recall rates.

Call Graph Performance Optimization: Developed and implemented a novel technique for improving static call graph analysis in JavaScript, addressing performance challenges for real-world programs. Achieved impressive speed-up results in experimental evaluations on large Node.js-based programs and medium-sized web and mobile benchmarks, with minimal impact on recall and precision.

Call Graph Evaluation: Developed an automated technique to assess the significance of root causes in call graph unsoundness for JavaScript applications. Evaluated the performance of state-of-the-art call graph construction methods on web applications, identifying areas for improvement and offering valuable insights for analysis design.

Product Specialist 01/2018 - 05/2019

Cognizant Technology Solutions

Kolkata, WB, India

• Migrated legacy mainframe-based applications to Java APIs, leveraging Java and H-Base, resulting in enhanced system efficiency and performance.

• Demonstrated strong software engineering skills in handling large codebases and integrating old systems into modern environments.

Senior Systems Engineer

08/2015 - 12/2017

Infosys Limited

Bhubaneshwar, Odisha, India

- Led the development and maintenance of high-performance Mainframe applications.
- Implemented new features and performance improvements using COBOL, JCL, and DB2.

SELECTED

PUBLICATIONS

- Chakraborty, Madhurima, Aakash Gnanakumar, Manu Sridharan, and Anders Møller. "Indirection-Bounded Call Graph Analysis." In 38th European Conference on Object-Oriented Programming (ECOOP 2024).
- Chakraborty, Madhurima, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. "Automatic root cause quantification for missing edges in javascript call graphs." In 36th European Conference on Object-Oriented Programming (ECOOP 2022).
- Chakraborty, Madhurima. "A study of call graph effectiveness for framework-based web applications." In Companion Proceedings of the 2021 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity, pp. 13-15. 2021. [SPLASH Student Research Competition: Winner, Graduate Category]
- 4. Chakraborty, Madhurima. "SPLASH: G: A Study of Call Graph Effectiveness for Framework-Based Web Applications." [ACM Student Research Competition Grand Finals: Third Place, Graduate Category]

ACCOLADES/INVOLVEMENTS

Academic Achievements

2023: Attended Twelfth Summer School on Formal Techniques at SRI.

2021: Participated in the Programming Language Implementation Summer School.

2020: Recognized a bug during **DeepCode's Bug Bounty program** at DeepCode.ai.

2018; Awarded the Google Nanodegree Scholarship for Front End Web Developer by Google India & Udacity.

2018: Shortlisted for the International Women's Hackathon by Hackerearth.

Professional Recognitions

2018: Received the 1 Star Award at Cognizant Technology Solutions for exceptional performance.

2017: Earned the Insta Award at Infosys Limited for the successful implementation of a high-visibility project.

2017: Recognized with the Insta Award at Infosys Limited for excellent analytical skills.

2016: Acknowledged as a **High Performer Trainee** at Infosys Limited, awarded to the top 10% of employees.

Extracurricular and Leadership

2017: Achieved the **Division-level Public Speaking Champion** title at Toastmasters International.

2017: Earned the Triple Crown Award at Toastmasters International.

Synergistic Activities

Program Committee: SAS'22 (AEC), PLDI'24 (AEC), SPLASH'24 (SV Co-Chair)

Reviewer: ECML PKDD'22, MSR 2025, TechDebt 2025

Mentor: Open Source Day Summer 21.

Student Volunteer: PLDI'20, SPLASH'20, ESEC/FSE'23.