Exercise 1. Let (X, \mathscr{A}) be a measurable space. Use Proposition 2.6.1 and Example 2.1.2(a) to give another proof that if $f, g: X \to \mathbb{R}$ are measurable, then f+g and fg are measurable. (Hint: Consider the function $H: X \to \mathbb{R}^2$ defined by H(x) = (f(x), g(x)).)

Proof. As a reminder, Proposition 2.6.1 shows that $f \circ g$ is measurable when both f and g are measurable. Example 2.1.2(a) shows that f non-decreasing on an interval I is Borel-measurable.

Example 2.6.5 noted that $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$ is measurable on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ if and only if $\forall i, f_i$ is measurable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. From this we deduce that the function H is measurable.

Next, we note that the functions $\mathbb{R}^2 \to \mathbb{R}$ defined by $\phi : (x,y) \mapsto x+y$ and $\psi : (x,y) \mapsto xy$ are continuous on \mathbb{R}^2 , and therefore measurable on $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2))$. From proposition 2.6.1, we deduce that the composites $\phi \circ H$ and $\psi \circ H$ are Borel-measurable

Exercise 2. Show that if f is a measurable complex-valued function on (X, \mathcal{A}) , then |f| is also measurable.

Proof. The functions $\mathbb{C} \to \mathbb{R}^2$, $z \mapsto (\Re z, \Im z)$ and $\mathbb{R}^2 \to \mathbb{R}_+$, $(x, y) \mapsto \sqrt{x^2 + y^2}$ are composable and continuous on their respective domains, so their composite $\mathbb{C} \to \mathbb{R}_+$, $z \mapsto |z|$ is also continuous and thus Borel-measurable \square

Exercise 3. Let (X, \mathscr{A}) be a measurable space, and let $f, g : X \to \mathbb{C}$ be measurable. Show that if g does not vanish, then f/g is measurable.

Proof. We note that:

$$\forall z \in \mathbb{C} \mid g(z) \neq 0, \quad \frac{f(z)}{g(z)} = \frac{f(z)\overline{g(z)}}{|g(z)|^2}$$

The functions $\mathbb{R}_+^* \to \mathbb{R}_+^*$, $x \mapsto 1/x$, $\mathbb{C} \to \mathbb{R}_+$, $z \mapsto |z|^2$, and $\mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$ are all continuous. Whenever g(z) is not zero, the expression given in the equation above is the product of a real-valued function $\phi(z) = 1/|g(z)|^2$ and complex-valued function $\psi(z) = f(z)\overline{g(z)}$. As the composition of Borel-measurable functions wherever g does not vanish, ϕ is Borel-measurable. The function ψ is continuous as the composition of continuous fonctions, and is therefore Borel-measurable. We deduce that the product $\phi(z)\psi(z) = f(z)/g(z)$ is Borel-measurable wherever both ϕ and ψ are Borel-measurable, e.g. wherever g is not zero

Exercise 4. Not done.

Exercise 5. Let X and Y be sets, and let f be a function from X to Y. Show that

1. if \mathscr{A} is a σ -algebra on X, then $\{B \subset Y : f^{-1}(B) \in \mathscr{A}\}$ is a σ -algebra on Y

- 2. if \mathscr{B} is a σ -algebra on Y, then $\{f^{-1}(B): B \in \mathscr{B}\}$ is a σ -algebra on X, and
- 3. if \mathscr{C} is a collection of subsets of Y, then

$$\sigma\big(\{f^{-1}(C):C\in\mathscr{C}\}\big)=\{f^{-1}(B):B\in\sigma(\mathscr{C})\}$$

Proof.

- 1. Let us note $\mathscr{B} = \{B \subset Y : f^{-1}(B) \in \mathscr{A}\}$. $Y \subset Y$ and $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\} = X \in \mathscr{A}$, so $Y \in \mathscr{B}$. Next, we note that for all $B \subset Y$, we have $f^{-1}(B)^c = f^{-1}(B^c)$, so \mathscr{B} is stable by complementation. Finally, for any family of sets B, $f^{-1}(\bigcup B) = \bigcup f^{-1}(B)$, which gives us the stability of \mathscr{B} for unions (we only need countable unions). Combining the preceding results, we conclude that \mathscr{B} is a σ -algebra on Y.
- 2. Let us note $\mathscr{A} = \{f^{-1}(B) : B \in \mathscr{B}\}$. As noted above, $f^{-1}(Y) = X$, so $X \in \mathscr{A}$. The same arguments on complementation and stability by union from the previous point apply here too, completing the proof that \mathscr{A} is a σ -algebra on X.
- 3. For every σ -algebra \mathscr{B} on Y that contains \mathscr{C} , $g(\mathscr{B}) = \{f^{-1}(B) : B \in \mathscr{B}\}$ is a σ -algebra on X. The family \mathscr{F} of such σ -algebras respects inclusion: if for $\mathscr{B} \in \mathscr{F}$ and $\mathscr{D} \in \mathscr{F}$, we have $\mathscr{B} \subset \mathscr{D}$, then $g(\mathscr{B}) \subset g(\mathscr{D})$ is also true. We conclude the following:

$$g\left(\bigcap_{F\in\mathscr{F}}F\right)=\bigcap_{F\in\mathscr{F}}g(F) \qquad with$$

$$g\left(\bigcap_{F\in\mathscr{F}}F\right)=g\bigl(\sigma(\mathscr{C})\bigr)=\{f^{-1}(B):B\in\sigma(\mathscr{C})\} \qquad and$$

$$\bigcap_{F\in\mathscr{F}}g(F)=\sigma\bigl(\{f^{-1}(B):B\in\mathscr{C}\}\bigr)$$

Exercise 6. Let μ be a nonzero finite Borel measure on \mathbb{R} , and let $F: \mathbb{R} \to \mathbb{R}$ be the function defined by $F(x) = \mu((-\infty, x])$. Define a function g on the interval $(0, \lim_{x \to +\infty} F(x))$ by

$$g(x) = \inf\{t \in \mathbb{R} : F(t) \ge x\}.$$

- 1. Show that g is nondecreasing, finite valued, and Borel measurable.
- 2. Show that $\mu = \lambda g^{-1}$. (Hint: start by showing that $\mu(B) = \lambda (g^{-1}(B))$ when B has the form $(-\infty, b]$.)

Proof.

1. μ being a nonzero finite measure, $0 \le F(x) \le \mu(\mathbb{R})$, $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to +\infty} F(x) = \mu(\mathbb{R})$. Further, F is non-decreasing, nonnegative, right-continuous (Proposition 1.3.9).

Let x and y in $(0, \lim_{x \to +\infty} F(x))$ such that x < y. For all t such that $F(t) \ge y$, we also have $F(t) \ge x$, and therefore $\{t \in \mathbb{R} : F(t) \ge y\} \subset \{t \in \mathbb{R} : F(t) \ge x\}$, from which we deduce that $g(y) \ge g(x)$.

g being non-decreasing on the interval $(0, \lim_{x\to +\infty} F(x))$ is therefore Borel-measurable on that interval.

Let $x \in \mathbb{R}$ such that $0 < x < \lim_{+\infty} F$. Since μ is nonzero, such an x exists, and thus there also exists $t_0 \in \mathbb{R}$ such that $F(t_0) \geq x$. This shows that $\{t \in \mathbb{R} : F(t) \geq x\} \neq \emptyset$. Since $\lim_{-\infty} F = 0$ and x > 0, there exists $t_1 \in \mathbb{R}$ such that $0 \leq F(t_1) < x$. F being non-decreasing, we have $t_1 < t_0$, which shows that $\{t \in \mathbb{R} : F(t) \geq x\}$ has a lower bound in \mathbb{R} , e.g. g has finite values.

2. Let $b \in \mathbb{R}$ and $B = (-\infty, b]$. We have

$$\lambda \left(g^{-1}(B) \right) = \int_{\mathbb{R}} \chi_{g^{-1}(B)} d\lambda = \int_{0}^{\lim F} \chi_{B} \circ g d\lambda = \int_{\mathbb{R}} \chi_{B} d(\lambda g^{-1})$$
$$= \lambda g^{-1}(B)$$
$$\mu(B) = \int_{-\infty}^{b} d\mu = \int_{0}^{F(b)} g d\lambda = \int_{0}^{\lim F} \chi_{B} \circ g d\lambda$$

so $\mu(B) = \lambda g^{-1}(B)$. Since the Borel σ -algebra on \mathbb{R} is generated by sets of the form $(-\infty, b]$ for $b \in \mathbb{R}$ and the measures μ and λg^{-1} agree on such sets, we conclude that they agree on the whole of the Borel σ -algebra.

Exercise 7. Show that a convex subset of \mathbb{R}^2 need not be a Borel set. (Hint: consider an open ball, together with part of its boundary).

Proof. Let B be a non-Borel set in [0,1] and $f:[0,1] \to \mathscr{C}, x \mapsto (\cos(2\pi x), \sin(2\pi x))$ with $\mathscr{C} = \{(x,y) \mid x^2 + y^2 = 1\}$ the unit circle for the Euclidean norm.

f is continuous, hence Borel-measurable. f is also injective, which implies that $f^{-1}(f(B)) = B$; hence f(B) is not a Borel set.

Let $\mathscr{D} = \{(x,y) \mid x^2 + y^2 < 1\}$ be the open unit ball of \mathbb{R}^2 . \mathscr{D} is convex. Since $f(B) \subset \mathscr{C}$, line segments from points in f(B) to any other point in f(B) or \mathscr{D} stay in \mathscr{D} (except for the end points which can be in f(B)). Therefore $\mathscr{D} \cup f(B)$ is a convex set.

However, $\mathscr{D} \cup f(B)$ is not a Borel set, since \mathscr{D} is a Borel set but f(B) is not