Effective Pairings

in Isogeny-based Cryptography

Krijn Reijnders LATINCRYPT 2023

Pairings map elliptic curve problems to finite field problems

Elliptic curve arithmetic is slow

Finite field arithmetic is (very) fast

Hence, fast pairings means fast solutions

Effective Pairings in Isogeny-based Cryptography

What are pairings and what are isogenies?

Isogenies & Pairings

supersingular elliptic curve

- has p + 1 points in $E(\mathbb{F}_p)$
- choose p so that $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$
- this implies the rational points on \emph{E} have orders that divide p + 1

$$E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$$

supersingular elliptic curve

- has p + 1 points in $E(\mathbb{F}_p)$
- choose p so that $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$
- this implies the rational points on \emph{E} have orders that divide $\emph{p}+1$

$$E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$$

points on such curves

We have that

$$E(\mathbb{F}_p) \cong \mathbb{Z}_4 \times \mathbb{Z}_{\ell_1} \times \mathbb{Z}_{\ell_2} \times \ldots \times \mathbb{Z}_{\ell_n},$$

So think of a point $P \in E(\mathbb{F}_p)$ as a sum of points P_i of order ℓ_i

$$P = P_0 + P_1 + P_2 + \dots + P_n$$

which shows how scalars $[\lambda]$ with $\lambda \in \mathbb{N}$ affect the torsion

$$\begin{split} [\ell_2]P &= [\ell_2]P_0 + [\ell_2]P_1 + [\ell_2]P_2 + \ldots + [\ell_2]P_n \\ &= [\ell_2]P_0 + [\ell_2]P_1 + \mathcal{O} + \ldots + [\ell_2]P_n \end{split}$$

elliptic curves in CSIDH

Isogenies & Pairings

supersingular elliptic curve

- has p + 1 points in $E(\mathbb{F}_p)$
- choose p so that $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$
- this implies the rational points on *E* have orders that divide p + 1

$$E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$$

points on such curves

We have that

$$E(\mathbb{F}_p) \cong \mathbb{Z}_4 \times \mathbb{Z}_{\ell_1} \times \mathbb{Z}_{\ell_2} \times \ldots \times \mathbb{Z}_{\ell_n},$$

So think of a point $P \in E(\mathbb{F}_p)$ as a sum of points P_i of order ℓ_i

$$P = P_0 + P_1 + P_2 + \dots + P_n$$

which shows how scalars $[\lambda]$ with $\lambda \in \mathbb{N}$ affect the torsion

$$[\ell_2]P = [\ell_2]P_0 + [\ell_2]P_1 + [\ell_2]P_2 + \dots + [\ell_2]P_n$$

$$= [\ell_2]P_0 + [\ell_2]P_1 + \mathcal{O} + \dots + [\ell_2]P_n$$

the order of *P* is readable from the non-zero P_i 's

the torsion that *P* is *missing* are precisely the zero P_i 's

we call a point $P \in E(\mathbb{F}_p)$ a **full-torsion point** if the order is p + 1, equivalently, all P_i are non-zero

elliptic curves in CSIDH

Isogenies

& Pairings

supersingular elliptic curve

- has p + 1 points in $E(\mathbb{F}_p)$
- choose p so that $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$
- this implies the rational points on *E* have orders that divide p + 1

$$E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$$

the order of *P* is readable from the non-zero P_i 's

the torsion that *P* is *missing* are precisely the zero P_i 's

full-torsion points

we call a point $P \in E(\mathbb{F}_p)$ a **full-torsion point** if the order is p + 1, equivalently, all P_i are non-zero

torsion points and isogenies

- 1. Any* isogeny φ of degree N
 - given by kernel of size N
 - generated by point *P* of order *N*
- 2. Any* isogeny φ of degree $N = \prod \ell_i$
 - splits into sub-isogenies of degree ℓ_i
 - each generated by point P of order ℓ_i
- 3. Any* isogeny φ of degree $N=\prod \ell_i$
 - computed using one **full-torsion** *P*
 - per ℓ_i , compute $[\frac{p+1}{\ell_i}]P$ to get $\ker(\varphi_i)$ $\varphi_1(P) = \mathcal{O} + P_5' + P_7' \in E'(\mathbb{F}_p)$

$$\begin{array}{c}
\varphi \\
\hline
\text{deg } 3 \cdot 5 \cdot 7
\end{array}$$

$$\overbrace{\deg_3} \xrightarrow{\deg_5} \xrightarrow{\deg_7}$$

$$P = P_3 + P_5 + P_7 \in E(\mathbb{F}_p)$$

$$[5 \cdot 7]P = P_3' + \mathcal{O} + \mathcal{O} \in E(\mathbb{F}_p)$$

$$\varphi_1(P) = \mathcal{O} + P_5' + P_7' \in E'(\mathbb{F}_p)$$

Isogenies

& Pairings

bilinear pairing from torsion groups to fields

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

bilinear pairing from torsion groups to fields

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$ there is a nice interpretation of this pairing.

Choose r dividing p+1, say $r=\prod \mathcal{C}_i=\frac{p+1}{4}$ then for $P\in E(\mathbb{F}_p)$ we get

$$P = 0 + P_1 + P_2 + \dots + P_n$$
.

bilinear pairing from torsion groups to fields

- choose a degree r
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$ there is a nice interpretation of this pairing.

Choose r dividing p+1, say $r=\prod \mathcal{E}_i=\frac{p+1}{4}$ then for $P\in E(\mathbb{F}_p)$ we get

$$P = 0 + P_1 + P_2 + \dots + P_n.$$

For $Q \in E(\mathbb{F}_p)$, we have equivalence by elements R in $rE(\mathbb{F}_{p^2})$. In this scenario, we can think of such elements R as $R_0 + \mathcal{O} + \ldots + \mathcal{O}$, which implies $Q \sim Q'$ whenever

$$Q = Q_0 + Q_1 + Q_2 + \dots + Q_n \sim Q' = Q'_0 + Q_1 + Q_2 + \dots + Q_n$$

In this specific scenario, we can think of Q as the elements $O + Q_1 + ... + Q_n$

Isogenies & Pairings

bilinear pairing from torsion groups to fields

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$ there is a nice interpretation of this pairing.

Choose r dividing p+1, say $r=\prod \mathcal{E}_i=\frac{p+1}{4}$ then for $P\in E(\mathbb{F}_p)$ we get

$$P = 0 + P_1 + P_2 + \dots + P_n.$$

For $Q \in E(\mathbb{F}_p)$, we have equivalence by elements R in $rE(\mathbb{F}_{p^2})$. In this scenario, we can think of such elements R as $R_0 + \mathcal{O} + \ldots + \mathcal{O}$, which implies $Q \sim Q'$ whenever

$$Q = Q_0 + Q_1 + Q_2 + \dots + Q_n \sim Q' = Q'_0 + Q_1 + Q_2 + \dots + Q_n$$

In this specific scenario, we can think of Q as the elements $O + Q_1 + ... + Q_n$

problem

If we pick $P, Q \in E(\mathbb{F}_p)$, then Q is a multiple of P. Then $e_r(P, Q) = 1$

the Tate pairing*

bilinear pairing from torsion groups to fields

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$ there is a nice interpretation of this pairing.

Choose r dividing p+1, say $r=\prod \mathcal{E}_i=\frac{p+1}{4}$ then for $P\in E(\mathbb{F}_p)$ we get

$$P = 0 + P_1 + P_2 + \dots + P_n$$
.

For $Q \in E(\mathbb{F}_p)$, we have equivalence by elements R in $rE(\mathbb{F}_{p^2})$. In this scenario, we can think of such elements R as $R_0 + \mathcal{O} + \ldots + \mathcal{O}$, which implies $Q \sim Q'$ whenever

$$Q = Q_0 + Q_1 + Q_2 + \dots + Q_n \sim Q' = Q'_0 + Q_1 + Q_2 + \dots + Q_n$$

In this specific scenario, we can think of Q as the elements $O + Q_1 + ... + Q_n$

problem

If we pick $P, Q \in E(\mathbb{F}_p)$, then Q is a multiple of P. Then $e_r(P,Q)=1$

solution

Work over $E[r] \subseteq E(\mathbb{F}_{p^2})$. In our specific case, just use Q on the *twist*

Isogenies & Pairings

Twist over \mathbb{F}_p of supersingular curve E

- a curve E^t with p+1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

Twist over \mathbb{F}_p of supersingular curve E

- a curve E^t with p+1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

1

consider P and Q as

$$P = P_0 + P_1 + \ldots + P_n$$

$$Q = Q_0 + Q_1 + \ldots + Q_n$$

2

$$let r = p + 1$$

Tate pairing $e_r(P,Q)$ captures where **both** $P_i, Q_i \neq \emptyset$

Isogenies & Pairings

Twist over \mathbb{F}_p of supersingular curve E

- a curve E^t with p+1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

consider P and Q as

$$P = P_0 + P_1 + \dots + P_n$$

$$Q = Q_0 + Q_1 + \ldots + Q_n$$

$$let r = p + 1$$

Tate pairing $e_r(P, Q)$ captures where **both** P_i , $Q_i \neq \emptyset$

crucial lemma

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an r-th root of unity, whose order is precisely gcd of order of P, order of Q

Twist over \mathbb{F}_p of supersingular curve E

- a curve E^t with p+1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

consider P and Q as

$$P = P_0 + P_1 + \ldots + P_n$$

$$Q = Q_0 + Q_1 + \ldots + Q_n$$

let r = p + 1

Tate pairing $e_r(P, Q)$ captures where **both** P_i , $Q_i \neq \emptyset$

crucial lemma

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an r-th root of unity, whose order is precisely gcd of order of *P*, order of *Q*

example

If P and Q both full torsion, then ζ has order r = p + 1

example

If P has order 5, and Q has order 15, then ζ has order 5

the twist of E

Twist over \mathbb{F}_p of supersingular curve E

- a curve E^t with p+1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

1

consider P and Q as

$$P = P_0 + P_1 + \ldots + P_n$$

$$Q = Q_0 + Q_1 + \ldots + Q_n$$

2

let r = p + 1

Tate pairing $e_r(P,Q)$ captures where **both** $P_i, Q_i \neq \emptyset$

crucial lemma

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an r-th root of unity, whose order is precisely gcd of order of P, order of Q

example

If P and Q both full torsion, then ζ has order r = p + 1

example

If P has order 5, and Q has order 15, then ζ has order 5

notice

Curve arithmetic is slow! Field arithmetic is fast!! (more than factor 6)

the twist of E

Twist over \mathbb{F}_p of supersingular curve E

- a curve E^t with p+1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

1

consider P and Q as

$$P = P_0 + P_1 + \ldots + P_n$$

$$Q = Q_0 + Q_1 + \ldots + Q_n$$

2

let r = p + 1

Tate pairing $e_r(P,Q)$ captures where **both** $P_i, Q_i \neq \emptyset$

crucial lemma

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an r-th root of unity, whose order is precisely gcd of order of P, order of Q

example

If P and Q both full torsion, then ζ has order r = p + 1

example

If P has order 5, and Q has order 15, then ζ has order 5

notice

Curve arithmetic is slow! Field arithmetic is fast!! (more than factor 6)

core idea

Pick random $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ Instead of using curve arithmetic to compute their orders, use ζ to compute the overlap in orders!

Pairings are quite slow

core idea

pairing crypto

Choose a "nice" curve E,
Choose a "nice" prime p,
to do **pairings** with

Computing e(P, Q) is quite **fast**!

core idea

Speeding-up general pairings

pairing crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **pairings** with

Computing e(P, Q) is quite **fast**!

isogeny crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do pairings with

Computing e(P, Q) seems way too **slow**!

core idea

Add(T, f, P, Q)

Speeding-up general pairings

pairing crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **pairings** with

Computing e(P, Q) is quite **fast**!

isogeny crypto

Choose a "nice" curve E,
Choose a "nice" prime p,
to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do pairings with

Computing e(P, Q) seems way too **slow**!

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

pairing crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **pairings** with

Computing e(P, Q) is quite **fast**!

isogeny crypto

Choose a "nice" curve E,
Choose a "nice" prime p,
to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

Computing e(P, Q) seems way too **slow**!

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

is quite **fast**!

isogeny crypto

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Choose a "nice" curve E,
Choose a "nice" prime p,
to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

Computing e(P, Q) seems way too **slow**!

is quite **fast**!

isogeny crypto

Choose a "nice" curve E, Choose a "nice" prime p, to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

Computing e(P, Q) seems way too **slow**!

core idea

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

general approach

Instead I describe the general approach, and leave all details out

core idea

 $\beta_{2i+1,P} = (\alpha_{2i,P} + \beta_{2i,P}t_2)/(x_Q - x_{2i+1,P}).$

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

 $\beta_{2i+1,P} = (\alpha_{2i,P} + \beta_{2i,P}t_2)/(x_Q - x_{2i+1,P}).$

Computing pairings fast is quite technical.
Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

 $\beta_{2i+1,P} = (\alpha_{2i,P} + \beta_{2i,P}t_2)/(x_Q - x_{2i+1,P}).$

Computing pairings fast is quite technical.
Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

 $l(Q) = \theta y_Q - y_P \left(\frac{u_{2,i} - 1}{x_{2i} - x_P} (x_Q - x_P) + 1 \right).$

 $\beta_{2i+1,P} = (\alpha_{2i,P} + \beta_{2i,P}t_2)/(x_Q - x_{2i+1,P}).$

Parallelizing a single pa

However, the right-to-left algorithm can be parall more efficient implementations by taking advant Grabher, Großschädl, and Page [34, Algorithm 2] and $\alpha_{2i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$ $\alpha_{2i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$ and $\beta_{i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

Radboud University

general approach

 $l(Q) = \theta y_Q - y_P \left(\frac{u_{2,i} - 1}{x_{2i} - x_P} (x_Q - x_P) + 1 \right).$

 $\beta_{2i+1,P} = (\alpha_{2i,P} + \beta_{2i,P}t_2)/(x_Q - x_{2i+1,P}).$

Parallelizing a single pa

However, the right-to-left algorithm can be parall more efficient implementations by taking advant Grabher, Großschädl, and Page [34, Algorithm 2] and $\alpha_{2i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$ $\alpha_{2i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$ and $\beta_{i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

Radboud University

general approach

 $l(Q) = \theta y_Q - y_P \left(\frac{u_{2,i} - 1}{x_{2i} - x_P} (x_Q - x_P) + 1 \right).$

 $\beta_{2i+1,P} = (\alpha_{2i,P} + \beta_{2i,P}t_2)/(x_Q - x_{2i+1,P}).$

Parallelizing a single pa

However, the right-to-left algorithm can be parall more efficient implementations by taking advant Grabher, Großschädl, and Page [34, Algorithm 2] and $\alpha_{2i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$ $\alpha_{2i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$ and $\beta_{i+1} = ((x_j^2 + Ax_p + B)\alpha_{2i,p}t_2 - (x_d^2 + Ax_Q + B)\beta_{2i,p})/(x_Q - x_{2i+1,p}),$

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

Radboud University

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

Algorithm 3 Right-to-left version of Miller's algorithm with postponed addition stens for even k and $ax_1 B = axid x = x B$.

6: $f \leftarrow f^{-1} \cdot \iota_{(p(x),p(x))}(P)$, $K \leftarrow \lfloor 2\rfloor K'$ 7: end for $8: R' \leftarrow A_R[0]$, $f \leftarrow A_f[0]$ (This completes proof of first part of the first claim. Now suppose a further addition is performed in Miller's algorithm. It is known that the final addition does not affect the form of the value. In general case, from Lemma 2 we deduce that the line l is $y - y_P \left(\frac{y_{2i} - 1}{y_{2i} - x_P}(x - x_P) + 1\right)$.

 $l(Q) = \theta y_Q - y_P u_{i,P} \left(\frac{3x_{i,P}^2 + A}{2(x_{i,P}^3 + Ax_{i,P} + B)} (x_Q - x_{i,P}) + 1 \right).$

 $\alpha_{2i,P} = (\alpha'_{2i,P}t_1 - (x_Q^3 + Ax_Q + B)\beta'_{2i,P})/(x_Q - x_{2i,P})$

 $\beta_{2i,P} = ((x_P^3 + Ax_P + B)t_1\beta'_{2i,P} + \alpha'_{2i,P})/(x_Q - x_{2i,P}).$

Algorithm 3 Right-to-left version of Miller's algorithm steps for even k and at-like pairings Input: $Q' \in G'_2$, $P \in G_1$, $m = (m_{i-1}, m_{i-2}, \dots, m_0]$. Output: $f_{m,k}(g_i/P)$ representing a class in $\mathbb{P}_{q'}^{i}/(3)$: $R' \leftarrow Q'$, $f \leftarrow 1$, $j \leftarrow 0$ 2: for i from 0 to $\ell - 1$ do

3: if $(m_i = 1)$ then 4: $A_R[j] \leftarrow R'$, $A_f[j] \leftarrow f$, $j \leftarrow j +$ 5: end if and $f \leftarrow f' \cdot l_{\psi(R'),\psi(R')}(P)$, $R' \leftarrow [2]R'$

sharing trick.

Algorithm 3 Right-to-left version it on steps for even k and at-like pa Input: $Q \in G_s$, $P \in G_s$, m = (m-1).

Output: $\int_{m,m(C)} P$ prepresenting a $1: R \leftarrow Q^*$, $f \leftarrow 1$, $f \leftarrow 0$ 2: for i from 0 to $\ell - 1$ do 3: if (m, = 1) then 4: $A_R[j] \leftarrow R^*$, $A_f[j] \leftarrow S_s$: end if 6: $f \leftarrow f^*$ $f \leftarrow f_{i}(R^*)$, $g(R^*)$, $g(R^*)$.

7: end for 8: $R \leftarrow A_R[0]$, $f \leftarrow A_f[0]$ when $f \leftarrow f^*$ is $f \leftarrow f^*$. In $f \leftarrow f^*$ is $f \leftarrow f^*$ in $f \leftarrow f^*$ is $f \leftarrow f^*$ in $f \leftarrow f^*$

the function $\ell_{prod} = \ell \ell'$ is $(\ell_{prod}) = (\ell) + (\ell') = Q)) + (-[2]R) - 6(\mathcal{O})$. The divisor of $\ell_{qpod} = \ell$ (P) + (Q) + (-(P+Q)) - 2(R) - (-[2]R). Note that

E at O; projectifying $\ell/\ell' = \frac{y - \lambda_1 x + \nu_1}{y - \lambda_2 x + \nu_2}$ gives $\frac{Y - \lambda_1 X}{Y - \lambda_2 X}$ to any zeros or poles at Z = 0. Suppose we want

the function $\ell_{\rm prod} = \ell \ell'$ is $(\ell_{\rm prod}) = (\ell) + (\ell') =$

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

Radboud University

!

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

!

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

!

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

fast pairings

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

fast pairings

Fast pairings Sogeny crypto

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion *P*

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion *P*

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion *P*

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion *P*

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p+1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion *P*

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p+1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

A: take random, P,Q, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion *P*

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p+1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

A: take random, P,Q, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

A: take random, P,Q, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion *P*

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

A: take random, P,Q, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

A: take random, P, Q, then find $\zeta = e(P, Q)$. Verify order $\zeta \ge 4\sqrt{p}$.

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

A: take random, P,Q, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

A: take random, P, Q, then find $\zeta = e(P, Q)$. Verify order $\zeta \ge 4\sqrt{p}$.

speedup: -27% compared to CSIDH's

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

A: take random, P,Q, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

A: take random, P, Q, then find $\zeta = e(P, Q)$. Verify order $\zeta \ge 4\sqrt{p}$.

speedup: +2% compared to Doliskani

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

Applying pairings in isogeny crypto

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

CSIDH's maturity?

classical security well understood

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

- classical security well understood
- ? quantum security well understood

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

- classical security well understood
- quantum security well understood
- quite slow constant-time

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

- classical security well understood
- ? quantum security well understood
- ? quite slow constant-time
- very slow deterministic, dummy-free

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

CSIDH's maturity?

- ✓ classical security well understood
- ? quantum security well understood
- ? quite slow constant-time
- x very slow deterministic, dummy-free

how do we achieve fast high-security CSIDH?

constant-time, deterministic, dummy-free

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

CSIDH's maturity?

- classical security well understood
- ? quantum security well understood
- ? quite slow constant-time
- very slow deterministic, dummy-free

how do we achieve fast high-security CSIDH?

constant-time, deterministic, dummy-free

- add seed for torsion points in key
- **slow** verification of torsion points
- **slow** group action due to dummy-free

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

CSIDH's maturity?

- classical security well understood
- ? quantum security well understood
- ? quite slow constant-time
- x very slow deterministic, dummy-free

how do we achieve fast high-security CSIDH?

constant-time, deterministic, dummy-free

- add seed for torsion points in key
- **slow** verification of torsion points
- **slow** group action due to dummy-free

- **fast** verification of torsion points
- removes probability from CTIDH
- improved group action and ss verify!

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

CSIDH's maturity?

- ✓ classical security well understood
- ? quantum security well understood
- ? quite slow constant-time
- x very slow deterministic, dummy-free

how do we achieve fast high-security CSIDH?

constant-time, deterministic, dummy-free

previously

with pairings

to do

- add seed for torsion points in key
- **slow** verification of torsion points
- **slow** group action due to dummy-free

- **fast** verification of torsion points
- removes probability from CTIDH
- improved group action and ss verify!

- analyse **optimal** use of torsion
- can we use **faster** torsion finding?
- can improve group action!

Thank you! Any questions*?

Finite field world

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^*

Curve world

Given curve E over $\mathbb{F}_{p'}$ find full torsion point P

Constant-time Gauss' algorithm?

Finite field world

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^*

A:

GAUSS' ALGORITHM

- 1. Take random $\zeta \in \mathbb{F}_{q'}$ compute $t = \text{Order}(\zeta)$
- 2. If t = q 1, **stop**,
- 3. **else** take random $\beta \in \mathbb{F}_q^*$ and compute $s = \text{Order}(\beta)$
 - a. if s = q 1, stop
 - b. **else** find coprime $d \mid t$ and $e \mid s$ with $d \cdot e = \text{lcm}(t, s)$
 - c. set $\zeta \leftarrow \zeta^{t/d} \cdot \beta^{s/e}$ and $t \leftarrow d \cdot e$ and **repeat** from 2.

Curve world

Given curve E over $\mathbb{F}_{p'}$ find full torsion point P

Take P and Q,
Compute their torsion.

If P not full torsion,
 take right multiple Q set $P \leftarrow P + Q$ to fill
 missing torsion in P repeat until full torsion

Constant-time Gauss' algorithm?

Finite field world

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^*

A:

GAUSS' ALGORITHM

- 1. Take random $\zeta \in \mathbb{F}_{q'}$ compute $t = \mathsf{Order}(\zeta)$
- 2. If t = q 1, **stop**,
- 3. **else** take random $\beta \in \mathbb{F}_q^*$ and compute $s = \text{Order}(\beta)$
 - a. if s = q 1, **stop**
 - b. **else** find coprime $d \mid t$ and $e \mid s$ with $d \cdot e = \text{lcm}(t, s)$
 - c. set $\zeta \leftarrow \zeta^{t/d} \cdot \beta^{s/e}$ and $t \leftarrow d \cdot e$ and **repeat** from 2.

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^* in constant-time

Curve world

Given curve E over $\mathbb{F}_{p'}$ find full torsion point P

Take P and Q,
Compute their torsion.

If P not full torsion,
 take right multiple Q set $P \leftarrow P + Q$ to fill
 missing torsion in P repeat until full torsion

Given curve E over $\mathbb{F}_{p'}$ find full torsion point P in constant-time

