

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO ESTRUTURA DE DADOS II (DEIN0083) 2019.2

Professor(a): João Dallyson Sousa de Almeida

Data: 11/12/2019

Matrícula:_____ Aluno: ____

3ª Avaliação

1) (2pt) Protocolos de roteamento de estado de enlace utilizam difusão para propagar informações de estado de enlace que são usadas para calcular rotas individuais. Entretanto, algumas técnicas provocam a transmissão de pacotes redundantes na rede. Idealmente, cada nó deveria receber apenas uma cópia do pacote de difusão. Uma técnica utilizada para resolver o problema da redundância de pacotes, é a spanning tree (árvore difusão por geradora). Se cada enlace tiver um custo associado e o custo de uma árvore for a soma dos custos dos enlaces, então uma árvore cujo custo seja o mínimo entre todas as árvores geradoras do grafo é denominada uma árvore geradora mínima.

Considere uma rede composta por 6 roteadores, designados pelas letras A, B, C, D, E e F, conectados conforme a seguinte tabela de custos de seus enlaces:

Conexão	Enlace
A-B	3
A-C	3
A-F	5
B-C	3
B-D	4
C-D	4
C-E	2
C-F	2
D-F	3
E-F	2

Neste cenário, apresente o custo da árvore geradora mínima correspondente. Descreva a sua solução.

2) (2pt) Mostre a sequência de vértices descobertos no grafo durante a execução do algoritmos de Busca em Profundidade, tempos início e término de descoberta e a classificação das arestas. Para isso, inicie a busca do vértice r. Utilize a lista de adjacências em ordem alfabética crescente como critério para priorizar a exploração.

3) (2pt) Considere o grafo da figura abaixo. Explique e execute o algoritmo de Belman-Ford no grafo abaixo. Apresente a o estado dos pesos e do predecessor após cada iteração.

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO ESTRUTURA DE DADOS II (DEIN0083) 2019.2

4) (2pt) Execute o algoritmo de Dijkstra no gráfico ponderado abaixo, usando o vértice "b" como origem. Apresente o estado da fila de prioridade após a cada iteração e a árvore de caminho mais curto final.

5) (2pt) Apresente a árvore de busca em largura no grafo abaixo, partindo do **vértice "H"**. Apresente o vértice mais distante de H (quantidade de arestas). Qual o vértice a ser alcançado com maior custo e com menor custo?

