Lemmi sempreverdi di Analisi

SCAMBIO DI LIMITE CON INTEGRALE E/O SUCCESSIONE

DERIVABILITÀ DEL LIMITE DI UNA SUCCESSIONE

Sia $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni derivabili sull'intervallo I=[a,b]. Si supponga che:

- 1. Le derivate f_n' convergano uniformemente su I ad una funzione g
- 2. $\exists x_0 \in I \text{ tale che } \lim_{n \to \infty} f_n(x_0) = l \in \mathbb{R}$

Allora le funzioni f_n convergono uniformemente su I alla funzione f che soddisfa le condizioni:

$$\begin{cases} f'(x) = g(x) & \forall x \in I \\ f(x_0) = l \end{cases}$$

CONVERGENZA TOTALE

Sia (V, ||||) uno spazio vettoriale normato. Sono allora equivalenti le seguenti due condizioni:

- 1. Rispetto alla distanza d(v, v') = ||v v'|| indotta dalla norma $||\cdot||$, (V, d) è completo
- 2. Data comunque una successione $(v_n)_{n\in\mathbb{N}}$ di elementi di V tali che $\sum_0^\infty \|v_n\| < +\infty$, le serie $\sum_0^\infty v_n$ converge ad un elemento di V

CONVERGENZA NORMALE E CRITERIO DI WEIERSTRASS

Sia $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni a valori reali definite su un insieme E, e si supponga che:

- 1. $\forall n \in \mathbb{N}$ esiste una costante $M_n > 0$ tale che $|f_n(x)| \leq M_n \quad \forall x \in E$
- $2. sum_{n=0}^{\infty} M_n < +\infty$

Allora la serie $\sum_0^\infty f_n$ converge uniformemente su E. In particolare, se (E,d) è uno spazio metrico e le funzioni f_n sono continue, anche la somma della serie $\sum_0^\infty f_n$ è continua.

DERIVAZIONE SOTTO IL SEGNO D'INTEGRALE

Sia $L:[a,b]\times(c,d)\to\mathbb{R}$ \mathcal{C}^0 e tale che $\frac{\mathrm{d}L(t,s)}{\mathrm{d}s}$ è continua in $[a,b]\times(c,d)$. Allora vale

$$\frac{\mathrm{d}}{\mathrm{d}s} \int_{a}^{b} L(t,s) \, \mathrm{d}t = \int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}s} L(t,s) \, \mathrm{d}t \qquad \forall s \in (c,d)$$

SCAMBIO LIMITE INTEGRALE

Sia $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni che converge puntualmente ad f su un insieme E, e che converge uniformemente in ogni compatto contenuto in E ed esiste una funzione g ad integrale finito tale che $|f_n(x)| \leq g(x) \quad \forall x \forall n$. Allora si ha $\lim_{n \to +\infty} \int_E f_n(x) = \int_E \lim_{n \to +\infty} f_n(x)$