HOMEWORK 1

ANIL AKSU

Problem 1

Maxwellian distribution is given as:

$$f_v(v) = \frac{1}{(2\pi)^{3/2} v_{th}^3} \exp(-\frac{v^2}{2v_{th}^2}).$$

Find

a. the average velocities of each component

Solution:

As known, the velocity vector has three components, for time being, let's stick to regular notation for the velocity $\vec{v} = (v_x, v_y, v_z)$. Maxwellian distribution given in the problem can be given explicitly in terms of these components as:

(1)
$$f_v(v_x, v_y, v_z) = \frac{1}{(2\pi)^{3/2} v_{th}^3} \exp\left(-\frac{v_x^2 + v_y^2 + v_z^2}{2v_{th}^2}\right).$$

To calculate the average velocity, first, let's find the number of particle in a unit volume as:

(2)
$$n = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_v(v_x, v_y, v_z) dv_x dv_y dv_z.$$

Note that Maxwellian distribution is separable in terms of velocity components, therefore the integral 2 can be written as:

$$n = \frac{1}{(2\pi)^{3/2} v_{th}^3} \int_{-\infty}^{\infty} \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x \int_{-\infty}^{\infty} \exp(-\frac{v_y^2}{2v_{th}^2}) dv_y \int_{-\infty}^{\infty} \exp(-\frac{v_z^2}{2v_{th}^2}) dv_z.$$

In the integral 3, the result of each integral is same, therefore if we compute one, it will be enough to proceed. It is a well known integral but let's perform it explicitly anyway.

(4)
$$\int_{-\infty}^{\infty} \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x = v_{th} \int_{-\infty}^{\infty} \exp(-\frac{v^2}{2}) dv = \sqrt{2\pi}v_{th}.$$

Date: March 18, 2017.

After plugging the result into the integral 3, the number of particles in unit volume n=1. It is unity, it facilitates the further operation. The average velocity in x direction can be found as:

(5)

$$\langle v_x \rangle = \frac{1}{(2\pi)^{3/2} v_{th}^3} \int_{-\infty}^{\infty} v_x \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x \int_{-\infty}^{\infty} \exp(-\frac{v_y^2}{2v_{th}^2}) dv_y \int_{-\infty}^{\infty} \exp(-\frac{v_z^2}{2v_{th}^2}) dv_z.$$

Here is the result of the following integral:

(6)
$$\int_{-\infty}^{\infty} v_x \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x = -2v_{th}^2 \exp(-\frac{v_x^2}{2v_{th}^2}) \bigg|_{x=0}^{\infty} = 0.$$

Therefore, $\langle v_x \rangle = 0$ Similarly the mean velocity in y direction is given as: (7)

$$\langle v_y \rangle = \frac{1}{(2\pi)^{3/2} v_{th}^3} \int_{-\infty}^{\infty} \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x \int_{-\infty}^{\infty} v_y \exp(-\frac{v_y^2}{2v_{th}^2}) dv_y \int_{-\infty}^{\infty} \exp(-\frac{v_z^2}{2v_{th}^2}) dv_z.$$

The result of the integral above is also same, as a result, $\langle v_y \rangle = 0$. Finally, the mean velocity in z direction is defined as:

(8)

$$\langle v_z \rangle = \frac{1}{(2\pi)^{3/2} v_{th}^3} \int_{-\infty}^{\infty} \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x \int_{-\infty}^{\infty} \exp(-\frac{v_y^2}{2v_{th}^2}) dv_y \int_{-\infty}^{\infty} v_z \exp(-\frac{v_z^2}{2v_{th}^2}) dv_z.$$

The integral 8 also vanishes so $\langle v_z \rangle = 0$.

b. the average kinetic energy

Solution:

The average kinetic energy is defined as:

(9)

$$\frac{1}{2}n(\langle v_x^2 \rangle + \langle v_y^2 \rangle + \langle v_z^2 \rangle) = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (v_x^2 + v_y^2 + v_z^2) f_v(v_x, v_y, v_z) dv_x dv_y dv_z.$$

Since the distribution function is isotropic meaning that it is independent of the direction, the average kinetic energy can also be given as:

(10)
$$\frac{3}{2}n < v_x^2 > = \frac{3}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v_x^2 f_v(v_x, v_y, v_z) dv_x dv_y dv_z.$$

The integral 10 can be explicitly given as:

(11)

$$\frac{3}{2}n < v_x^2 > = \frac{3}{2(2\pi)^{3/2}v_{th}^3} \int_{-\infty}^{\infty} v_x^2 \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x \int_{-\infty}^{\infty} \exp(-\frac{v_y^2}{2v_{th}^2}) dv_y \int_{-\infty}^{\infty} \exp(-\frac{v_z^2}{2v_{th}^2}) dv_z.$$

The only result was not obtained previously in the integral 13 is:

$$\int_{-\infty}^{\infty} v_x^2 \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x = -v_{th}^2 v_x \exp(-\frac{v_x^2}{2v_{th}^2}) \Big|_{-\infty}^{\infty} + v_{th}^2 \int_{-\infty}^{\infty} \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x = \sqrt{2\pi} v_{th}^3.$$

After replacing this and the previous results, the average kinetic energy is obtained as:

(13)
$$\frac{3}{2}n < v_x^2 > = \frac{3}{2}v_{th}^2.$$

c. the average velocity $\langle |v| \rangle$

Solution:

The average velocity is defined as:

$$(14) \qquad \langle |v| \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{v_x^2 + v_y^2 + v_z^2} f_v(v_x, v_y, v_z) dv_x dv_y dv_z.$$

The easiest way to take this integral is to write it in spherical coordinates as follows:

(15)
$$\langle |v| \rangle = \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} v f_v(v) v^2 \sin \phi dv d\phi d\theta.$$

The integral in v direction can be taken separately as:

(16)

$$\int_0^\infty v^3 \exp(-\frac{v^2}{2v_{th}^2}) dv = -v_{th}^2 v^2 \exp(-\frac{v^2}{2v_{th}^2}) \Big|_0^\infty + 2v_{th}^2 \int_0^\infty v \exp(-\frac{v^2}{2v_{th}^2}) dv_x = 2v_{th}^4.$$

After replacing this result into equation 15, it is found that

(17)
$$\langle |v| \rangle = \frac{8\pi v_{th}^4}{(2\pi)^{3/2} v_{th}^3} = \sqrt{\frac{8}{\pi}} v_{th}.$$

d. the flux of charged particles $\Gamma_{p,x} = \frac{1}{2}n_0 < |v_x| > \text{along } x \text{ direction}$ Solution:

(18)
$$\langle |v_x| \rangle = \frac{1}{(2\pi)^{3/2} v_{th}^3} \int_{-\infty}^{\infty} |v_x| \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x \int_{-\infty}^{\infty} \exp(-\frac{v_y^2}{2v_{th}^2}) dv_y \int_{-\infty}^{\infty} \exp(-\frac{v_z^2}{2v_{th}^2}) dv_z.$$

Here is the result of the following integral:

(19)

$$\int_{-\infty}^{\infty} |v_x| \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x = 2 \int_{0}^{\infty} v_x \exp(-\frac{v_x^2}{2v_{th}^2}) dv_x = -4v_{th}^2 \exp(-\frac{v_x^2}{2v_{th}^2}) \bigg|_{0}^{\infty} = 4v_{th}^2.$$

Therefore, the flux is obtained as:

(20)
$$\Gamma_{p,x} = \sqrt{\frac{2}{\pi}} v_{th}.$$

ANIL AKSU

Problem 2

Find the plasma parameters λ_D , \wedge , ω_{pe} , ω_{pi} , ω_{ci} , ω_{ce} for the ionized gas given in table 1.

Definitions:

4

Debye length $\lambda_D = \sqrt{\epsilon_0 T_e/n_e e^2}$ Number of particles in Debye sphere $\wedge = n \lambda_D^3$ electron plasma frequency $\omega_{pe} = \sqrt{4\pi n_e e^2/m_e}$ ion plasma frequency $\omega_{pi} = \sqrt{4\pi n_i Z^2 e^2/m_i}$ electron gyrofrequency $\omega_{ce} = eB/m_e c$ ion gyrofrequency $\omega_{ci} = ZeB/m_i c$

Note that $e = 1.602 \times 10^{-19} C$, $m_e = 9.109^{-31} kg$, $\epsilon_0 = 8.85^{-12} Cm^{-1} V^{-1}$ and $c = 3.00 \times 10^8 ms^{-1}$.

Plasma criteria are given as:

- the length scale $L >> \lambda_D$
- Number of particles in Debye sphere $\wedge >> 1$
- $\omega_{pi}\tau > 1$

Under these conditions, only Interstellar Gas and Solar Corona satisfy these criteria. Indeed, I could not check the last criteria as I don't know how to calculate the average time between collisions τ .

Table 1. Plasma Parameters of Some Ionized Gases

Ionized Gas	λ_D (m)	\wedge	ω_{pe}	ω_{pi}	ω_{ce}	ω_{ci}
Interstellar Gas	1.85×10^{10}	6.4×10^{36}	0.59		5.9×10^{-9}	
Solar Wind	1.85×10^{10}	6.4×10^{37}	1.88		5.9×10^{-7}	
Val ellen Belts	5.8×10^{9}	2.02×10^{38}	18.8		5.9×10^{-5}	
Earth's Ionosphere	1.85×10^{7}	6.4×10^{33}	188.1		1.7×10^{-3}	
Solar Corona	5.87×10^{7}	2.02×10^{36}	1881.6		5.8×10^{-8}	
Gas Discharge	2.6×10^{4}	2.02×10^{36}	5.9×10^{5}		0	
Process Plasmas	1.85×10^{5}	1.81×10^{32}	5.9×10^{5}		58.6	
Fusion Experiments	1.85×10^{5}	6.4×10^{35}	5.9×10^{6}		2.9×10^3	
Fusion Reactor	1.85×10^5	6.4×10^{35}	5.9×10^{5}		2.9×10^{3}	

```
1 % created by Anil Aksu to calculate plasma parameters of ...
     some ionized gases
2
3 clear all
4 format long
Plasma related constants
11
12 % the speed of light
13 c=3.*10^8;
14 % the charge of electron
15 e=1.602*10^-19;
16 % the mass of electron
17 m=9.109*10^-31;
18 % permitivity of vacuum
19 eps=8.85*10^-12;
23 %
        Ionized Medium Parameters
24 %
27 %% let's read them from excel document
28 Plasma = xlsread('PlasmaParameters.xlsx');
30 % the number of ionized gas
31 Nion=length(Plasma(:,1));
32 % the debye length array
33 Debye=zeros(Nion, 1);
34 % the number of particles in debye sphere
35 webge=zeros(Nion, 1);
36 % the electron plasma frequency
```

```
37 omega_pe=zeros(Nion,1);
38 % the electron gyro frequency
39 omega_ce=zeros(Nion,1);
40
41 % let's calculate them
42 for i=1:Nion
       % the debye length
43
       [ Debye(i,1) ] = getDebyeLength( ...
44
           eps, Plasma(i, 3), Plasma(i, 2), e);
       % the number of particles in debye sphere
45
       wedge(i,1)=Plasma(i,2)*Debye(i,1)^3.;
46
       % the plasma electron frequency
47
       [ omega_pe(i,1) ] = getPlasmaFrequency( ...
          eps, Plasma(i, 2), e, m);
       % the plasma gyro frequency
       [ omega_ce(i,1) ] = getGyroFrequency(e,Plasma(i,4),m,c);
51 end
```