Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	30 /04 /2020	Client

1 Input Parameters

Modu	ıle		Bear	m Coverplate Connection	
MainModule			Moment Connection		
Moment(kNm)*				10.0	
Shear(l	(N)*			10.0	
Axial (k	(N) *			10.0	
	·	Section	'		
	Beam S	ection *		UB 457 x 152 x 60	
	Prefe	rences		Outside + Inside	
т	Mate	erial *		E 250 (Fe 410 W)A	
	Ultimate stren	ngth, fu (MPa)		410	
<u>(B-t)</u> t — α Z D	Yield Strength , fy (MPa)	230	R2(mm)	0.0	
	Mass	59.8	Iz(mm4)	255000000.0	
R ₁	Area(mm2) -	7620.0	Iy(mm4)	7940000.0	
В	D(mm)	455.0	rz(mm)	183.0	
Y	B(mm)	152.9	ry(mm)	32.0	
	t(mm)	8.1	Zz(mm3)	1122000.0	
	T(mm)	13.3	Zy(mm3)	104000.0	
	FlangeSlope	90	Zpz(mm3)	1287000.0	
	R1(mm)	10.2	Zpy(mm3)	104000.0	
		Bolt Details			
Diameter	` '		[12.0,	16.0,20.0,24.0,30.0,36.0]	
Grade			[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]		
Туре	*		Bearing Bolt		
Bolt.fu			600.0		
Bolt.fy		479.999999999999			
Bolt hole type		Standard			
Slip factor	r (µ_f)			0.3	
Type of	edges		a - S	Sheared or hand flame cut	
Gap between beam and	<pre>color="block">support (</pre>	mm)		10.0	
Are the members exposed to	 br>corrosive	influences		False	

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	30 /04 /2020	Client

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$Ac = \frac{A * f_y}{\gamma_{m0} * 1000}$ $= \frac{7620.0 * 230}{1.1 * 1000}$ $= 1593.27$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 1000}$ $= \frac{428.4 * 8.1 * 230}{\sqrt{3} * 1.1 * 1000}$ $= 418.89869$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 1000000}$ $= \frac{1 * 371641 * 230}{1.1 * 1000000}$ $= 77.71$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1}$ $= \frac{1.5 * 1122000.0 * 230}{1.1}$ $= 351.9$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(77.71, 351.9)$ = 77.71	

2.2 Load Considered

Check	Required	Provided	Remarks
	$Ac_{min} = 0.3 * A_c$	$Au = max(A, Ac_{min})$	
Applied Axial Load Au	= 0.3 * 1593.27	= max(10.0, 477.98)	Pass
(kN)	=477.98	=477.98	
	$Sc_{min} = 0.6 * A_c$	$Vu = max(V, Vc_{min})$	
Applied Shear Load Vu	= 0.6 * 418.9	= max(10.0, 251.34)	Pass
(kN)	=251.34	=251.34	
	$Mc_{min} = 0.5 * M_c$	$Mu = max(M, Mc_{min})$	
Applied Moment Load Mu	= 0.5 * 77.71	= max(10.0, 38.85)	Pass
(kNm)	= 38.85	= 38.85	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	30 /04 /2020	Client	

Check	Required	Provided	Remarks
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(455.0 - 2 * 13.3) * 8.1 * 477.98}{7620.0}$ $= 217.67$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{371641 * 38.85}{1287000.0}$ $= 11.22$	
Forces Carried by Flange		$A_f = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{477.98 * 152.9 * 13.3}{7620.0}$ $= 127.56$ $M_f = Moment \ in \ flange$ $= Mu - M_w$ $= 38.85 - 11.22$ $= 27.63$ $f_f = flange \ force$ $= \frac{M_f * 1000}{D - T} + A_f$ $= \frac{27.63}{455.0 - 13.3} + 127.56$ $= 190.12$	

2.3 Flange Bolt Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{600.0 * 2 * 84.3}{\sqrt{3} \ * 1.25}$ $= 46.72$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 13.3 * 410}{1.25}$ $= 67.95$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (46.72, 67.95)$ $= 46.72$	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	30 /04 /2020	Client	

Check	Required	Provided	Remarks
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 190.12^{2}}}{46.72}$ $= 10$	12	
No of Columns		6	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 8.0, \ 300 \ mm)$ $= 300$	30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 8.0, \ 300 \ mm)$ $= 300$ $e/e'_{min} = [1.5 \ or \ 1.7] * d_0$	0.0	N/A
Min. End Distance (mm)	,	25	Pass
Max. End Distance (mm)	$= 1.7 * 13.0 = 22.1$ $e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 8.0 * \sqrt{\frac{250}{230}}$ $= 99.84$ $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$	25	Pass
Min. Edge Distance (mm)	= 1.7 * 13.0 = 22.1	31.1	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{230}}$ $= 99.84$	31.1	Pass

2.4 Web Bolt Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{600.0 * 2 * 84.3}{\sqrt{3} * 1.25}$ $= 46.72$	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	30 /04 /2020	Client	

Check	Required	Provided	Remarks
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ *0.52 *12.0 *8.1 *410}{1.25}$ $= 41.38$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (46.72, 41.38)$ $= 41.38$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{251.34^{2} + 217.67^{2}}}{41.38}$ $= 18$	32	
No of Columns		4	
No of Rows		8	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ =2.5 * 12.0 = 30.0	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.0, \ 300 \ mm)$ = 300	30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ =2.5 * 12.0 = 30.0	45	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 6.0, \ 300 \ mm)$ $= 300$	45	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	25	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	25	Pass

${\bf 2.5}\quad {\bf Inner\ and\ Outer\ flange\ plate\ Checks}$

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	30 /04 /2020	Client	

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$min\ flange\ plate\ ht = beam\ width$ $= 152.9$	152.9	Pass
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{6}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 218.4$	230.0	Pass
Min. Inner Plate Height (mm)	$= 218.4$ $= \frac{B - t - (2 * R1)}{2}$ $= \frac{152.9 - 8.1 - 2 * 10.2}{2}$ $= 62.2$	62.2	Pass
Max. Inner Plate Height (mm)	$= 62.2$ $= \frac{B - t - (2 * R1)}{2}$ $= \frac{152.9 - 8.1 - 2 * 10.2}{2}$ $= 62.2$	62.2	Pass
Min. Inner Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{6}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 218.4$	230.0	Pass
Min.Plate Thickness (mm)	$t_w = 6.65$	8.0	Pass

2.6 Member Checks

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{152.9 * 13.3 * 230}{\sqrt{3} * 1.1}$ $= 425.2$	
Flange Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (152.9 - 2 * 13.0) * 13.3 *}{1.25}$ $= 498.23$	410

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	30 /04 /2020	Client	

Check	Required	Provided	Remarks
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Flange Block Shear Capacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 410983.346$	
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Flange Tension Capacity	190.12	= Min(425.2, 498.23, 410.98)	Pass
(kN)		=410.98	
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
Web Tension Yielding Ca-		$=\frac{428.4*8.1*230}{\sqrt{3}*1.1}$	
pacity (kN)		$\sqrt{5*1.1}$ = 725.55	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Web Tension Rupture Ca-		$= \frac{0.9 * (428.4 - 8 * 13.0) * 8.1 * 4}{2}$	10
pacity (kN)		1.25	
		=775.68	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Web Block Shear Capacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 702.95$	
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	217.67	= Min(725.55, 775.68, 702.95)	Pass
		=702.95	

${\bf 2.7}\quad {\bf Flange\ Plate\ Capacity\ Checks\ in\ axial-Outside/Inside}$

Check	Required	Provided	Remarks
Tension Yielding Capacity		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{277.3 * 8.0 * 230}{230}$	
(kN)		$-\frac{\sqrt{3} * 1.1}{463.85}$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (277.3 - 2 * 13.0) * 8.0 * 4}{1.25}$ $= 593.47$	10
Block Shear Capacity (KN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 542.09$	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	30 /04 /2020	Client	

Check	Required	Provided	Remarks
Plate Tension Capacity (kN)	190.12	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(463.85, 593.47, 542.09)$ $= 463.85$	Pass

2.8 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{365 * 6.0 * 230}{\sqrt{3} * 1.1}$ $= 915.82$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (365 - 8 * 13.0) * 6.0 * 410}{1.25}$ $= 924.57$)
Block Shear Capacity (KN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 1041.41$	
Plate Tension Capacity (kN)	217.67	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(915.82, 924.57, 1041.41)$ $= 915.82$	Pass

${\bf 2.9}\quad {\bf Web\ Plate\ Capacity\ Checks\ in\ Shear}$

Check	Required	Provided	Remarks
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{365 * 6.0 * 230}{\sqrt{3} * 1.1}$ $= 528.75$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 0.9 * (365 - (2.0 * 13.0)) * 6.0 *$ $= 533.8$	410
Block Shear Capacity in Shear (V_db) (kN)		$T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 633.96$	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	30 /04 /2020	Client	

Check	Required	Provided	Remarks
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Plate Shear Capacity (kN)	251.34	= Min(528.75, 533.8, 1041.41)	Pass
		=528.75	

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	30 /04 /2020	Client

3 3D View

Figure 1: 3D View