### Multivibrators, Timer Circuit and Schmitt Trigger

**EEE 203: Electronic Devices and Circuits & Pulse Techniques** 







# Multivibrators Using Op-Amps

### **Astable Multivibrator**





(a) When  $V_o = +V_{\text{sat}}$ ,  $V_C$  charges toward  $V_{UT}$ .



(a) When  $V_o = -V_{\text{sat}}$ ,  $V_C$  charges toward  $V_{LT}$ .

### **Astable Multivibrator**





$$V_{UT} = \frac{R_2}{R_1 + R_2} (+V_{sat})$$

$$V_{LT} = \frac{R_2}{R_1 + R_2} (-V_{sat})$$

$$T = 2R_f C \ln \left( \frac{2R_1 + R_2}{R_2} \right)$$

\*\*Self Study: One-shot (Monostable) Multivibrator from Ref 1.

Md. Istiac Ahmed, Lecturer, EEE, GUB from  $Ref\ 1.$ 

# 555 Timer



Md. Istiac Ahmed, Lecturer, EEE, GUB

### **Internal Diagram**







### **DIP Structure**

4

There is a **Voltage divider** circuit consisting of three  $5 k\Omega$  resistors. Again it has adjustable controls over the timing of the output signal. For these reasons, this IC is called 555 Timer.



- 1. Voltage Divider
- 2. Comparators
- 3. Flip-Flop
- 4. Discharge
- 5. Output





| Conc                          | C1=S                          | C2=R | Q |              |
|-------------------------------|-------------------------------|------|---|--------------|
| $V_{THD} > \frac{2}{3}V_{CC}$ | $V_{TRG} > \frac{1}{3}V_{CC}$ | 1    | 0 | 1<br>[SET]   |
|                               | $V_{TRG} < \frac{1}{3}V_{CC}$ | 1    | 1 | [INVALID]    |
| $V_{THD} < \frac{2}{3}V_{CC}$ | $V_{TRG} > \frac{1}{3}V_{CC}$ | 0    | 0 | [NC]         |
|                               | $V_{TRG} < \frac{1}{3}V_{CC}$ | 0    | 1 | 0<br>[RESET] |

DISCHARGE

Md. Istiac Ahmed, Lecturer, EEE, GUB

The output of the 555 timer is taken from  $\overline{Q}$  through an inverting buffer (NOT Gate).  $\overline{Q}$  is also fed to the discharge unit.





| $\overline{m{Q}}$ | O/P | Q1  | Capacitor<br>Status |
|-------------------|-----|-----|---------------------|
| 1                 | 0   | ON  | Discharging         |
| 0                 | 1   | OFF | Charging            |

# **Monostable Multivibrator** using 555 Timer IC





An external resistor  $R_1$  and capacitor  $C_1$  is used to set up the 555 timer as a monostable multivibrator. The pulse width of the output is determined by the time constant of  $R_1$  and  $C_1$  according to the following formula;

$$t_w = 1.1R_1C_1$$



(a) Prior to triggering. (The current path is indicated by the red arrow.) (b) When triggered

### **Monostable Multivibrator**







Determine the pulse width of a 555 timer one-shot when  $C = 1\mu F$  and  $R = 10k\Omega$ 

## Astable Multivibrator using 555 Timer IC





Frequency, 
$$f = \frac{1.44}{(R_1 + 2R_2)C_1}$$

Duty Cycle = 
$$\left(\frac{R_1 + R_2}{R_1 + 2R_2}\right) \times 100\%$$



**FIGURE 7–57** Operation of the 555 timer in the astable mode.

A 555 timer configured to run in the astable mode is shown. Determine the frequency of the output and the duty cycle.

$$f = \frac{1.44}{(R_1 + 2R_2)C_1} = \frac{1.44}{(2.2k\Omega + 9.4k\Omega)0.022\mu F}$$
$$f = 5.64 \text{ kHz}$$

$$D. C. = \left(\frac{R_1 + R_2}{R_1 + 2R_2}\right) 100\% = \left(\frac{2.2k\Omega + 4.7k\Omega}{2.2k\Omega + 9.4k\Omega}\right) 100\%$$



# Schmitt Trigger



#### Introduction

15

Schmitt trigger is basically a voltage comparator consisting of operational amplifier circuits. Both inverting and non-inverting comparator can be designed. Schmitt trigger eliminates the noise effect.





### **Noise Effect on Comparator**







Unlike typical comparator, Schmitt trigger uses 2 reference voltages; Upper Threshold Voltage,  $V_{UT}$  and Lower Threshold Voltage,  $V_{LT}$ , respectively.



- 1. The output will be LOW until the signal crosses the upper threshold voltage when the comparator is turned on.
- 2. If the noise affected input signal is greater that or equal the upper threshold voltage  $(V_{in} \ge V_{UT})$ , then the comparator output is HIGH.
- 3. If the noise affected input signal is less than the upper threshold voltage but greater that the lower threshold voltage  $(V_{LT} < V_{in} < V_{UT})$ , still the comparator output is HIGH.
- 4. If the noise-affected input signal is less than or equal the lower threshold voltage  $(V_{in} \leq V_{LT})$ , the comparator output is LOW.



#### Draw the output for the given output signals







### Non-inverting Schmitt Trigger





$$V > 0$$
;  $V_{out} = V_H$   
 $V < 0$ ;  $V_{out} = V_L$ 

Applying KCL at V, we get,

$$V = \frac{R_1}{R_1 + R_2} V_{out} + \frac{R_2}{R_1 + R_2} V_{in}$$

Assuming when  $V = V_1$ ,  $V_{out} = V_H$ Therefore,  $V_1 = \frac{R_1}{R_1 + R_2} V_L + \frac{R_2}{R_1 + R_2} V_{in}$ Now, following the condition,  $\frac{R_2}{R_1 + R_2} V_{in} > -\frac{R_1}{R_1 + R_2} V_L$ Finally,  $V_{in} > -\frac{R_1}{R_2} V_L$  and so

Similarly,

$$\frac{VUT - \frac{1}{R_2}VL}{R_4}$$

$$V_{LT} = -\frac{R_1}{R_2} V_H$$

#### Derive the formulations for inverting Schmitt trigger



**Inverting Schmitt Trigger Circuit** 

### References



1. Operational Amplifiers and Linear Integrated Circuits, 6<sup>th</sup> Ed., R.F. Coughlin, F.F. Driscoll

Chapter 06: Section 6.0 - 6.2; All examples, Relevant exercises



2. Op-Amps and Linear Integrated Circuits, 4th Ed., R.A. Gayakwad



3. Digital Fundamentals 11<sup>th</sup> Ed., T.L. Floyd Chapter 07

