Data Science Lab Assignment 2 : GAN

Methods: f-GAN, Discriminator Rejection Sampling

Ángel Luque, Arij Boubaker and Lyna Bouikni

University of Paris Dauphine

November 2023

Plan

- 📵 Vanilla GAN
 - Architecture description
 - Hyperparameters tuning
 - Results
- 2 f-GAN
 - Architecture description
 - Results
- Rejection Sampling
- References

Architecture description

Vanilla GAN

Generator Network (G):

- Input : $z \in \mathbb{R}^{100}$
- Output : $G(z) \in \mathbb{R}^{784}$
- Transformation :

$$\mathsf{G}(\mathsf{z}) = \mathsf{tanh}(\mathit{W}_4 \cdot \mathsf{LeakyReLU}(\mathit{W}_3 \cdot \mathsf{LeakyReLU}(\mathit{W}_2 \cdot \mathsf{LeakyReLU}(\mathit{W}_1 \cdot \mathit{z} + \mathit{b}_1) + \mathit{b}_2) + \mathit{b}_3) + \mathit{b}_4)$$

Discriminator Network (D) :

- Input : $x \in \mathbb{R}^{784}$
- **Output** : $D(x) \in [0, 1]$
- Transformation :

$$\mathsf{D}(\mathsf{x}) = \sigma(W_4' \cdot \mathsf{LeakyReLU}(W_3' \cdot \mathsf{LeakyReLU}(W_2' \cdot \mathsf{LeakyReLU}(W_1' \cdot \mathsf{x} + b_1') + b_2') + b_3') + b_4')$$

Hyperparameters tuning

Vanilla GAN

 $\mathsf{Epochs} = 50$

Batch Size = 64

Learning rate = 0.0001

Our Results

Vanilla GAN

Time	FID	Precision	Recall
111.4	52.44	0.52	0.18

Figure – Results of the vanilla GAN

f-GAN: Generalizing GANs

Overview :

The f-GAN extends classic GANs by introducing a flexible divergence function f.

Differences from Classic GANs :

- Flexible divergence measure *f* replaces fixed divergence (e.g., KL divergence).
- Allows customization of divergence, enhancing model adaptability.

• Advantages :

- Improved stability in training.
- Greater control over precision and recall.
- Enhanced adaptability to specific application requirements.

Divergence Functions in GANs f-GAN

Binary Cross-Entropy (BCE):

$$\mathsf{BCE}(y, \hat{y}) = -\left(y \cdot \log(\hat{y}) + (1 - y) \cdot \log(1 - \hat{y})\right)$$

Kullback-Leibler Divergence (KLD):

$$D_{\mathsf{KL}}(P \parallel Q) = \sum_{i} P(i) \cdot \log \left(\frac{P(i)}{Q(i)} \right)$$

Jensen-Shannon Divergence (JS):

$$D_{\mathsf{JSD}}(P \parallel Q) = \frac{1}{2} D_{\mathsf{KL}}(P \parallel M) + \frac{1}{2} D_{\mathsf{KL}}(Q \parallel M)$$

f-GAN results - BCE

Epochs = 50:

```
74341956579219878481
```

Epochs = 100:

Epochs = 150:

Epochs = 200:

f-GAN results - KLD

Epochs = 50:

```
11911111113791911119
```

 $\mathsf{Epochs} = 100$:

Epochs = 150:

Epochs = 200:

f-GAN results - JS

Epochs = 50:

Epochs = 100:

Epochs = 150:

Epochs = 200:

f-GAN results - small training

BCE, epochs = 25:

9179924811291411691

 KLD , epochs =15:

ひろむしノテノジタフラノ39134

KLD, epochs = 20:

11991899111161371721

JS, epochs = 20 :

91132774788784911999

JS, epochs = 25:

191117111171111111111

Discriminator Rejection Sampling (DRS)

- A statistical method for generating observations from a target distribution $p_d(x)$, which is difficult to sample from directly.
- Instead, samples are drawn from a simpler proposal distribution $p_g(x)$.
- A scaling factor M ensures $M \cdot p_g(x) \ge p_d(x)$ for all x in the domain of $p_d(x)$.
- Each sample y from $p_g(x)$ is accepted with a probability of $\frac{p_d(y)}{M \cdot p_g(y)}$, otherwise rejected.

Discriminator Rejection Sampling (DRS)

General Concept

DRS improves GAN sample quality by using the discriminator's assessment to accept or reject generator outputs. This technique refines the final data to better approximate the target distribution.

Implementation Highlights

- Samples are drawn from a trained generator and evaluated by the discriminator.
- A scaling factor M is dynamically updated based on the discriminator's output.
- Acceptance probabilities are modulated by a hyperparameter γ , enhancing the selection process.
- The process iterates, accepting samples that conform to a calculated threshold.

References

- Sebastian Nowozin, Botond Cseke & Ryota Tomioka, f-GAN:
 Training Generative Neural Samplers using Variational Divergence
 Minimization.
- Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow & Augustus Odena, *Discriminator Rejection Sampling*.

END OF THE PRESENTATION

Data Science Lab Assignment 2 : GAN

Methods: f-GAN, Discriminator Rejection Sampling

Ángel Luque, Arij Boubaker and Lyna Bouikni

University of Paris Dauphine

November 2023

