Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32021	К работе допущен	
Студент	Лопатенко	Работа выполнена	07.05.2023
Преподаватель _	Тимофеева Э.О.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №5.IBM.1

Махинации в	IBM (Quantum
-------------	-------	---------

1. Цель работы:

Изучить функционал квантового компьютера ІВМ.

2. Задачи, решаемые при выполнении работы:

- 1. Построить однокубитные квантовые цепи;
- 2. Зарегистрировать результаты моделирования цепочек;
- 3. Сравнить данные моделирований с теоретическими распределениями.

3. Объект исследования:

Квантовый компьютер, распределение вероятности однокубитных и многокубитных цепей.

4. Метод экспериментального исследования:

Внедрение вентилей в построение схем, проведение моделирований.

5. Выполнение упражнения №1:

- 5.1. Зарегистрироваться в системе IBM Quantum
- 5.2. Создать схему из двух кубитов (один в состоянии |0>, а второй в состоянии |1>) и применить операцию измерения данных кубитов. Провести симуляцию

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	520	504	0.5078	0.4921

5.3. Построить систему из кубита в состоянии $\frac{1}{\sqrt{2}}(|0>+|1>)$

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1	0	1	0.00	1.00
2	1	1	0.50	0.50
8	3	5	0.38	0.62
32	17	15	0.53	0.47
64	32	32	0.50	0.50
128	60	68	0.47	0.53
512	265	247	0.52	0.48
1024	505	519	0.49	0.51
8192	4106	4086	0.50	0.50

Из результатов симуляции становится понятно, что теоретическая модель подтверждается, а оператор Адамара можно использовать в качестве однокубитного аналога системы из двух кубитов в противоположных состояниях, где состояния системы |0> и |1> равновероятны. Результаты моделирования достаточно выразительно подтверждают этот факт.

5.4. Сравнить две схемы по вентилю СПОТ

	Frequency	
Shots	01>	00>
1024	511	513

	Frequency		
Shots	01>	00>	
1024	0	1024	

Результаты моделирования ожидаемы, потому что глобально схемы отличаются лишь в выбранных управляющих кубитах вентиля CNOT.

Первый кубит q[0] может равновероятно находиться в состояниях $|0\rangle$ и $|1\rangle$, и при выборе q[0] в качестве управляющего, состояние управляемого кубита q[1] тоже равновероятно $|0\rangle$ и $|1\rangle$ соответственно.

Если же выбрать управляющим q[1], то влияния на q[0] вентиля инвертирования связки не будет. Естественно заметить, что измерения для q[0] уже проводились, а в этом задании нас интересует состояние второго кубита q[1]. Как уже было сказано, состояние q[1] может принимать равновероятный характер (выбор q[1] в качестве управляемого) и постоянный характер (выбор q[1] в качестве управляющего).

5.5. Сравнить схемы на двух кубитах по оператору Адамара

	Frequency		
Shots	0>	1>	
1024	505	519	

	Frequency		
Shots	0>	1>	
1024	500	524	

Наверное, схемы необходимо было лишь преобразовать по количеству считывающих битов, чтобы состояние каждого из кубитов можно было рассмотреть на одной схеме, например:

Теперь ясно, что каждый из кубитов может принимать равновероятно состояния $|0\rangle$ и $|1\rangle$, что и подтверждают первые две таблицы, ведь они в себе содержат результаты измерения соответственно на q[0] и q[1]. В схеме можно было обойтись без управляющего CNOT: в таком случае состояния были бы расположены ортогонально:

5.6. Создать прочие схемы и проанализировать расположение векторов в Q-сфере

1) Ky6ut RESET + MEASUREMENT:

Ничего необычного не регистрируем, кубит имеет лишь одно состояние | 0>.

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	0	1024	0	1

2) Ky6ut RESET + NOT + MEASUREMENT:

Ничего необычного не регистрируем, кубит имеет лишь одно состояние |1>, ввиду X gate.

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	1024	0	1	0

3) Кубит + оператор Адамара + MEASUREMENT

Регистрируем почти равномерное распределение вероятности приобретения одного из состояний |0> и |1>. Заметим, что на Q-сфере отображается лишь одно состояние: это можно объяснить наличием детерминированного наблюдения MEASUREMENT.

Симуляция подтверждает равновесное попадание в оба состояния:

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	545	479	0.53	0.47

4) Kyбит + NOT + оператор Адамара + MEASUREMENT

Регистрируем почти равномерное распределение вероятности приобретения одного из состояний |0> и |1>. На Q-сфере отображается лишь одно состояние (с обратной фазой): это можно объяснить наличием детерминированного наблюдения MEASUREMENT.

Симуляция подтверждает равновесное попадание в оба состояния:

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	504	520	0.49	0.51

5) Kyбит + RX(60) + MEASUREMENT

Вентиль RX отвечает за вращение относительно оси X на Q-сфере.

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	271	753	0.26	0.74

6) Kyбит + RX(60) + NOT + MEASUREMENT

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	783	241	0.76	0.24

6. Выполнение упражнения №2:

6.1. Получить кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(|0>+|1>)$

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	501	523	0.4893	0.5107

6.2. Получить кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(|0>-|1>)$ двумя способами

Стоит заметить, что схема XH не сохраняет коэффициенты состояний, в отличие от схемы HZ

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	505	519	0.4932	0.5068

6.3. Получить кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}$ (-|0>+|1>)

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
1024	508	516	0.4961	0.5039

6.4. С помощью RX получить кубит в состоянии ($\sqrt{0.55}$ | 0>+ $\sqrt{0.45}$ | 1>)

Вентиль RX отвечает за вращение на угол θ относительно состояния $|0\rangle$. Необходимо рассмотреть оператор матрицы поворота и заметить, что в общем случае

$$\hat{RX} = exp(-i\frac{\theta}{2}\hat{X}) = cos\frac{\theta}{2}\hat{I} - isin\frac{\theta}{2}\hat{X}$$

$$\hat{RX} = ((cos\frac{\theta}{2}; -isin\frac{\theta}{2})^T; (-isin\frac{\theta}{2}; cos\frac{\theta}{2})^T)$$

Тогда очевидно, что для удовлетворения условия варианта необходимо взять угол

$$\theta = 2 \arccos(\sqrt{0.55}) \approx 1.47063$$

Необходимо также применить квантиль $P(\frac{\pi}{2}) \equiv S$ для компенсации по фазе φ .

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
2048	928	1120	0.4531	0.5469

6.5. С помощью RY получить кубит в состоянии ($\sqrt{0.55}$ | 0>+ $\sqrt{0.45}$ | 1>)

Вентиль RY отвечает за вращение на угол θ относительно состояния оси Y. Необходимо рассмотреть оператор матрицы поворота и заметить, что в общем случае

$$\hat{RY} = exp(-i\frac{\theta}{2}\hat{Y}) = cos\frac{\theta}{2}\hat{I} - isin\frac{\theta}{2}\hat{Y}$$

$$\hat{RY} = ((cos\frac{\theta}{2}; sin\frac{\theta}{2})^T; (-sin\frac{\theta}{2}; cos\frac{\theta}{2})^T)$$

Тогда очевидно, что для удовлетворения условия варианта необходимо взять угол

$$\theta = 2 \arccos(\sqrt{0.55}) \approx 1.47063$$

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
2048	924	1124	0.4512	0.5488

6.6. С помощью U получить кубит в состоянии ($\sqrt{0.55}$ | 0>+ $\sqrt{0.45}$ | 1>)

Вентиль U отвечает за вращение на углы (θ, ϕ, λ) относительно любого состояния. Необходимо рассмотреть оператор матрицы поворота и заметить, что в общем случае

$$\hat{U}(\theta, -\frac{\pi}{2}, \frac{\pi}{2}) = \hat{RX}(\theta)$$

$$\hat{U}(\theta, 0, 0) = \hat{RY}(\theta)$$

$$\hat{U} = ((\cos\frac{\theta}{2}; e^{i\varphi}\sin\frac{\theta}{2})^T; (-e^{i\lambda}\sin\frac{\theta}{2}; e^{i(\varphi+\lambda)}\cos\frac{\theta}{2})^T)$$

Тогда очевидно, что для удовлетворения условия варианта необходимо взять угол $\theta = 2 arccos(\sqrt{0.55}) \approx 1.47063$

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
2048	921	1127	0.4497	0.5503

6.7. С помощью RX получить кубит в состоянии ($\sqrt{0.55}$ | 0> - $\sqrt{0.45}$ | 1>)

Для получения состояния относительно данных в варианте значений необходимо применить оператор Паули (отображающий $|0\rangle \rightarrow |0\rangle$ и $|1\rangle \rightarrow -|1\rangle$).

$$Z = ((1; 0)^T; (0; -1)^T)$$

P-gate для компенсации фазы состояния ($cos\frac{1.47063}{2}|0>+sin\frac{1.47063}{2}e^{i\frac{\pi}{2}}|1>$)

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
2048	948	1100	0.4629	0.5371

6.8. С помощью RY получить кубит в состоянии ($\sqrt{0.55}$ | 0> - $\sqrt{0.45}$ | 1>)

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
2048	949	1099	0.4634	0.5366

6.9. С помощью U получить кубит в состоянии $(-\sqrt{0.55} | 0>+\sqrt{0.45} | 1>)$

В этот раз подробнее распишем принцип построения с математической точки зрения. Ранее мы получали состояние ($\sqrt{0.55}$ | 0>+ $\sqrt{0.45}$ | 1>), а в этом задании необходимо найти такую цепочку гейтов, которые бы преобразовали в состояние суперпозиции $(-\sqrt{0.55} | 0 > + \sqrt{0.45} | 1 >)$

Очень жаль, что нет обратного гейта $Z^{-1} \equiv ((-1; 0)^T; (0; 1)^T)$

Составим такой вентиль самостоятельно, ведь это ни что иное, как ХХХ:

$$\hat{X}\hat{Z} = ((0;1)^T;(1;0)^T) \cdot ((1;0)^T;(0;-1)^T) = ((0;1)^T;(-1;0)^T)$$
 $\hat{X}\hat{Z}\hat{X} = ((0;1)^T;(-1;0)^T) \cdot ((0;1)^T;(1;0)^T) = ((-1;0)^T;(0;1)^T) = Z^{-1}$
Посмотрим, как такой вентиль будет действовать на состояния $|0\rangle$ и $|1\rangle$:

$$Z^{-1}|0\rangle = Z^{-1} \cdot (1; 0)^{T} = (-1; 0)^{T} \equiv -|0\rangle$$

 $Z^{-1}|1\rangle = Z^{-1} \cdot (0; 1)^{T} = (0; 1)^{T} \equiv |1\rangle$

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
2048	896	1152	0.4375	0.5625

6.10. Экспериментально показать унитарность гейта Адамара

	Frequency (quantity)		Frequency	(out of 1)
Shots	1>	0>	1>	0>
2048	0	2048	0	1

И это очевидно, ведь оператор Адамара унитарен. Докажем это:
$$\hat{H}\hat{H} = \left(\frac{1}{\sqrt{2}}\right)^2 (\left(1;\ 1\right)^T; \left(1;-\ 1\right)^T) \ \cdot \ \left(\left(1;\ 1\right)^T; \left(1;-\ 1\right)^T) = \left(\left(1;\ 0\right)^T; \left(0;\ 1\right)^T\right) = \hat{I}$$

6.11. С помощью RX получить кубит ($\sqrt{0.55}$ | 0>+ $\sqrt{0.45}$ | 1>) и составить схему

Результаты напоминают распределение вероятности при суперпозиции для оператора Адамара с равновероятными состояниями $|0\rangle$ и $|1\rangle$, однако стоит учесть, что от поворота $\stackrel{\wedge}{RX}(1.47063)$ останется фазовый сдвиг по ϕ .

	Frequency	(quantity)	Frequency (out of 1)		
Shots	1>	0>	1>	0>	
2048	1045	1003	0.5103	0.4897	

6.12. С помощью RX получить кубит ($\sqrt{0.55}$ | 0>+ $\sqrt{0.45}$ | 1>) и составить схему

Повторное последовательное включение в схему оператора Адамара не влияет на результаты симуляции, так как легко показывается, что \hat{H} унитарен.

	Frequency	(quantity)	Frequency (out of 1)		
Shots	1>	0>	1>	0>	
2048	924	1124	0.4512	0.5488	

6.13. Реализовать трехкубитную систему ($\sqrt{0.9}$ | 0>; $\sqrt{0.1}$ | 0>; $\sqrt{0.35}$ | 0>)

Можно заметить, что регистрируем достаточно интересное распределение по состояниям системы, где | abc> - совместное состояние q[2]q[1]q[0] соответственно. В системе с наибольшей вероятностью возникнет состояние | 110>, что можно было оценить по произведению вероятностей $p(110) = 0.65 \cdot 0.9 \cdot 0.9 = 0.5265$

	Frequency (quantity)								
Shots	000>	001>	010>	011>	100>	101>	110>	111>	
2048	58	5	594	64	120	13	1075	119	
	Frequency (out of 1)								
Shots	000>	001>	010>	011>	100>	101>	110>	111>	
2048	0.0283	0.0024	0.2900	0.0313	0.0586	0.0063	0.5249	0.0582	

7. Вывод:

В ходе выполнения лабораторной работы были разобраны особенности рабочего процесса в системе IBM Quantum и сделаны выводы о том, что кубитные системы – это что-то не из мира сего, а заниматься построением схем очень интересно, но опасно для психики. И это только однокубитные цепочки! Всё веселье впереди!