MT2213 - Group Theory

Nachiketa Kulkarni

Contents

1	Defi	initions	\mathbf{S}	1
	1.1	Group	S	1
		1.1.1	Examples:	1
		1.1.2	Abelian Groups	2
		1.1.3	Conjugate	2
		1.1.4	Order of a Group	3
		1.1.5	Cyclic Group	3
		1.1.6	Sub-groups	3
		1.1.7	Cosets	4
	1.2	Homo	morphisms and Normal Subgroups	5
		1.2.1	Properties of Homomorphisms	6
		1.2.2	Normal Subgroups	6

Chapter 1

Definitions

1.1 Groups

A non-empty set G is a group, is considered to be a group with an operation \star if to every pair $(x,y) \in G \times G$ and element $x \star y \in G$ is assigned, satisfying the following axioms:

- 1. Associativity: $\forall x, y, z \in G, x \star (y \star z) = (x \star y) \star z = x \star y \star z$
- 2. Existence of Identity: There exists an element $e \in G$ such that $e \star g = g \star e = g$
- 3. **Existence of Inverse:** For every element $x \in G$ there exists an element $x^{-1} \in G$ such that $x \star x^{-1} = e = x^{-1} \star x$, where $e \in G$ is the identity element of the group.

It is represented as (G, \star) . Some properties of groups:

- 1. Uniqueness of Identity: The identity element of a group is unique. Consider $e_1, e_2 \in G$, $e_1 \neq e_2$ and both are identity elements. Let $x \in G$, then $e_1 \star x = e_2 \star x = x$. This also implies that $e_1 = e_2$, hence the identity element is unique.
- 2. Uniqueness of Inverse: The inverse of an element in a group is unique. Consider $x \in G$, and $y_1, y_2 \in G$ are inverses of x. Then, $x \star y_1 = e = y_1 \star x$ and $x \star y_2 = e = y_2 \star x$. Now, $y_1 = y_1 \star e = y_1 \star (x \star y_2) = (y_1 \star x) \star y_2 = e \star y_2 = y_2$. Hence, the inverse of an element is unique.

1.1.1 Examples:

- 1. $(\mathbb{Z}, +)$ is a group:
 - (a) Associativity: Addition is associative.
 - (b) Identity: 0 is the identity. Let $x \in Z$. Now 0 + x = x + 0 = x. Hence, it is an identity.
 - (c) Inverse: Let $x \in \mathbb{Z}$. Now, x + (-x) = (-x) + x = 0, where 0 is the additive identity.
- 2. (\mathbb{Q}^+, \times) is a group:
 - (a) Associativity: Multiplication is associative.
 - (b) Identity: 1 is the identity: Let $x \in \mathbb{Q}^+$. Now, $1 \times x = x \times 1 = x$. Hence, it is an identity.
 - (c) Inverse: Let $x \in \mathbb{Q}^+$, Now, $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$, where 1 is the multiplicative identity.

- 2
- 3. $(GL(n,\mathbb{R}),\times)$ is a group, where \times is matrix multiplication (or combination of linear transformations):
 - (a) Associativity: Matrix multiplication is associative.
 - (b) Identity: I_n is the identity matrix.
 - (c) Inverse: Let $A \in GL(n, \mathbb{R})$, then $A \times A^{-1} = A^{-1} \times A = I_n$.

Check if:

- 1. (\mathbb{R}, \times) is a group or not.
 - $0 \in \mathbb{R}$, 0 does not have an inverse. Hence, it is not a group.
- 2. (\mathbb{C}, \times) is a group or not.
 - $0 \in \mathbb{C}$, 0 does not have an inverse. Hence, it is not a group.
- 3. $(\mathbb{R}/\{0\}, \times)$ is a group or not.

Yes its a group:

- (a) Associativity: Multiplication is associative.
- (b) Identity: 1 is an identity: Let $x \in \mathbb{R}/\{0\}$. Now, $1 \times x = x \times 1 = x$. Hence, it is an identity.
- (c) Inverse: Let $x \in \mathbb{R}/\{0\}$, Now, $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$, where 1 is the multiplicative inverse.
- 4. $(\mathbb{C}/\{0\}, \times)$ is a group or not.

Yes it is a group:

- (a) Associativity: Multiplication is associative.
- (b) Identity: 1 is an identity: Let $x \in \mathbb{C}/\{0\}$. Now, $1 \times x = x \times 1 = x$. Hence, it is an identity.
- (c) Inverse: Let $x \in \mathbb{C}/\{0\}$, Now, $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$, where 1 is the multiplicative inverse.

1.1.2 Abelian Groups

A group (G, \star) is said to be abelian if the operation \star is commutative, i.e., $x \star y = y \star x, \forall x, y \in G$.

1.1.3 Conjugate

Consider a group (G, \star) . For $x, y \in G$, y is said to be conjugate of x if there exists an element $a \in G$ such that:

$$y = a \star x \star a^{-1}$$

Note: For a given a, the conjugate of x is unique. i.e., if we consider conjugate to be a function f_a , then f_a is a bijection.

1.1.4 Order of a Group

The order of a group G is the number of elements in the group. It is denoted by |G|. A group G is said to be finite if the number of elements in it is finite. Otherwise, it is said to be infinite.

1.1.5 Cyclic Group

A group (G, \star) is said to be cyclic if there exists an element $a \in G$ such that every element of G can be written as a power of a. Let, $G = \langle g \rangle$ by a cyclic group of order n. Then, $G = \{e, g, g^2, \dots, g^{n-1}\}$.

Properties of Cyclic Groups

- 1. All cyclic groups are abelian.
- 2. $n = \min \{ m \in \mathbb{N} | g^m = 1 \}$.

Proof: As the order of G is finite, there exists $a, b \in \mathbb{N}$ such that $g^a = g^b$. This implies: $g^{a-b} = 1$.

$$\therefore \exists n := \min \{ m \in \mathbb{N} | g^m = 1 \}$$

3.

1.1.6 Sub-groups

Consider a group (G, \star) . A non-empty subset H is a subgroup of G if H is a group with the same operation \star as G. It is represented as $H \leq G$.

A few properties of subgroups:

- 1. **Identity:** The identity element of G is also the identity element of H.
- 2. Inverse: If $x \in H$, then $x^{-1} \in H$.

Minimal and Maximal Subgroups

The Minimal subgroup $U \neq 1$ is known as a minimal subgroup of group G if no other non-trivial subgroup of G is contained in U.

The Maximal subgroup $U \neq G$ is known as the maximal subgroup of group G if U is not contained in any other subgroup of G.

Theorem

Let A and B be subgroups of G. Then AB is a subgroup of G if and only if AB = BA.

Proof: From $AB \leq G$ we get:

$$(AB) = (AB)^{-1} = B^{-1}A^{-1} = BA$$

If BA = AB:

$$(AB)(AB) = A(BA)B = A(AB)B = AABB = AB$$

and

$$(AB)^{-1} = B^{-1}A^{-1} = BA = AB$$

Therefore, AB < G

Theorem

Let A and B be finite subgroups of G. Then,

$$|AB| = \frac{|A|\,|B|}{|A \cap B|}$$

Proof: If we consider an equivalence relation on the Cartesian Product $A \times B$:

$$(a_1, b_1) \sim (a_2, b_2) \Leftrightarrow a_1 b_1 = a_2 b_2$$

Then |AB| is the number of equivalence classes in $A \times B$. Let $(a_1, b_1) \in A \times B$. The equivalence class:

$$\{(a_2, b_2) \mid a_1b_1 = a_2b_2\}$$

which contains exactly $|A \cap B|$ elements:

$$a_2b_2 = a_1b_1 \Leftrightarrow a_1^{-1}a_2 = b_1b_2^{-1}$$

 $\Leftrightarrow a_2 = a_1d \text{ and } b_2 = db_1 \text{ for some } d \in A \cap B$

1.1.7 Cosets

Let (G, \star) be a group. Consider H be a subgroup of G and $a \in G$. The subset $aH = \{ah \mid h \in H\}$ is known as the left coset of H containing a. Similarly, the subset $Ha = \{ah \mid h \in H\}$ is known as the right coset of H containing a.

Properties of Cosets

- 1. The application $Hx \to (Hx)^{-1} = x^{-1}H$ defines a bijective relation from the set of Right Cosets of H to the set of Left Cosets of H.
- 2. If the set of Right Cosets of H in G is finite, then the number of Right Cosets of H in G is called the inedex of H in G.
- 3. One of the cosets is the subgroup H itself. eH = He = H, where e is the identity element of the group G.
- 4. For all $x \in G$, as $x = ex \in Hx$, the right cosets of H cover the set G.

5. For $x, y \in G$,

$$Hx = Hy \Leftrightarrow yx^{-1} \in H \Leftrightarrow y \in Hx$$

Hence, any two right cosets are either disjoint or equal.

Lagrange's Theorem

Let H be a subgroup of the finite group G. Then,

$$|G| = |H| |G:H|$$

i.e., |H| and |G:H| are divisors of H.

As a consequence, we get the following:

For every finite G and every $g \in G$, the order of g divides |G|.

Transversal Set

Let H be a subgroup of G. A set S is considered as the transversal set of H in G if S contains exactly one element from each right coset of H in G. Similarly, the left transversal set of H in G contains exactly one element from each left coset of H in G.

Theorem: Let $S \subseteq G$. Then, S is a transversal set of H in G if and only if G = SH and $st^{-1} \notin H$ for all $s \neq t$ and $s, t \in S$.

Dedekind Identity

Let G = AB where $A, B \leq G$. Then every subgroup H of G, such that $A \leq H \leq G$ has the following property:

$$H = A (H \cap B)$$

1.2 Homomorphisms and Normal Subgroups

Let G and H be groups. A map $\phi: G \to H$ is said to be a homomorphism if:

$$\phi\left(x\star y\right)=\phi\left(x\right)\star\phi\left(y\right)$$

for all $x, y \in G$. Let $\phi : G \to H$. Let, $X \subseteq G$ and $Y \subseteq H$. Also, let e_G is the identity element of G and e_H is the identity element of H. Then, we define the following:

- $\bullet \ \phi\left(X\right):=\left\{ \phi\left(x\right)|\ x\in X\right\}$
- $\bullet \ \phi^{-1}\left(Y\right):=\left\{ x\in G\,|\,\phi\left(x\right)\in Y\right\}$
- $\ker \phi := \{x \in G \mid \phi(x) = e_H\}$
- Im $\phi := \phi(G)$

1.2.1 Properties of Homomorphisms

1. If the homomorphism ϕ is bijective, then the inverse map ϕ^{-1} is also a homomorphism.

Proof: Let $x, y \in H$.

$$\phi^{-1}(x) \star \phi^{-1}(y) = \phi^{-1}(x \star y)$$

$$\phi(\phi^{-1}(x) \star \phi^{-1}(y)) = \phi(\phi^{-1}(x)) \star \phi(\phi^{-1}(y)) = x \star y$$

- 2. $\phi(e_G) = e_H$
- 3. $\phi(x^{-1}) = (\phi(x))^{-1}$
- 4. $\phi(\langle X \rangle) = \langle \phi(X) \rangle$
- 5. Let $N = \ker \phi$. Then for all $x \in G$

$$Nx = \{y \in G \mid \phi(x) = \phi(y)\} = xN$$

Proof:

$$\phi(x) = \phi(y) \iff \phi(y) (\phi(x))^{-1} = 1 \iff \phi(y) \phi(x^{-1})$$
$$\iff \phi(yx^{-1}) = 1 \iff yx^{-1} \in N$$
$$\iff y \in Nx$$

1.2.2 Normal Subgroups

A subgroup N of a group G is said to be normal if for all $x \in G$, Nx = xN. We write $N \subseteq G$. If $N \subseteq G$, then the set of left cosets and right cosets of N in G are the same. Another way to define normal subgroups is, $\forall x \in G$:

$$Nx = xN \Longleftrightarrow N = x^{-1}Nx \Longleftrightarrow N = N^x$$

Trivial Normal Subgroups: G and $\{e\}$, where $\{e\}$ is the identity are the trivial normal subgroups.

Simple Normal: For a group, G if its only normal subgroups are trivial, then it is said to be trivial.

Properties of Normal Subgroups:

- For every homomorphism ϕ of G, the image of any normal subgroup of G is normal in $\phi(G)$.
- The product and intersection of two normal subgroups of G are also normal in G.
- Let H be a subgroup of G and N be a normal subgroup of G. Then $H \cap N$ is normal in H.
- If H is a subgroup of G. Then

$$U_G = \bigcap_{g \in G} U^g$$

• Let $X \subseteq G$. Then, $\langle X^G \rangle$ is the smallest normal subgroup of G containing X.