

# **Central Limit Theorem**

Lecturer: Jie Fu

#### **Outlines**



- Functions of random variables.
- Central Limit Theorem
- Applications of C.L.T.

#### Expectation



The expectation of a continuous random variable X is defined by

$$\mathbf{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• The expectation of a discrete random variable X is defined by

$$\mathbf{E}[X] = \sum_{\mathbf{k}} x_{\mathbf{k}} P(X = x_{\mathbf{k}})$$

- As for discrete random variables, the expectation can be interpreted as
  - "center of gravity" of the PDF
  - anticipated average value of X in a large number of independent repetitions of the experiment.

#### Example



1. Let X be the outcome of rolling a **fair 6-sided die**. The probability mass function (PMF) is:

The expectation is calculated as:

2. Let X be an exponential distribution with pdf.

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0, \lambda > 0$$

The expectation is calculated as:

#### Function of random variable



- For any real-valued function g(.), Y = g(X) is also a random variable.
- The expectation of g(X) is

$$\mathbf{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

#### Example



- A company manufactures LED lightbulbs, and the lifespan (in years) of each bulb follows an Exponential distribution with average life space of 5 years. The company offers a warranty where if a lightbulb fails within 3 years, it is replaced for free. The replacement cost per bulb is \$10.
- What is the expected cost the company need to pay per light bulb under the warranty replacement?

#### Moments and variance



- The *n*th moment of *X* is defined by  $\mathbf{E}[X^n]$ .
- The variance of *X* is defined by

$$\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$$
$$= \int_{-\infty}^{\infty} (x - \mathbf{E}[X])^2 f_X(x) dx$$

Please verify the equality.

#### Property of variance



• 
$$0 \le Var[X] = E[X^2] - (E[X])^2$$

• If 
$$Y = aX + b$$
, then 
$$\mathbf{E}[Y] = a\mathbf{E}[X] + b, \qquad \mathbf{Var}[Y] = a^2\mathbf{Var}[X].$$

• If  $Y = a_1X_1 + a_2X_2$  and  $X_1, X_2$  are independent\*, then

$$\mathbf{E}[Y] = a_1 \mathbf{E}[X_1] + a_2 \mathbf{E}[X_2], \quad \mathbf{Var}[Y] = a_1^2 \mathbf{Var}[X_1] + a_2^2 \mathbf{Var}[X_2].$$

What do we mean two RVs are independent?

#### Example



- A company manufactures LED lightbulbs, and the lifespan (in years) of each bulb follows an Exponential distribution with average life space of 5 years. The company offers a warranty where if a lightbulb fails within 3 years, it is replaced for free. The replacement cost per bulb is \$10.
  - What is the variance of the lifespan of the lightbulb?
  - What is the variance of the cost of warranty replace for each lightbulb?

#### outline



- Expectation, moment, variance of a random variable:
  - Can be defined for both continuous and discrete RV.
- Important property of variance.

Next: Central limit theorem.

#### Motivating problem:



- A machine process parts, one at a time, in a time independently and uniformly distributed in [1,5].
- What is the probability the machine processes at least 100 parts in 320 time units?



• Let  $X_1, \dots, X_n$  be a sequence of independent identically distributed random variable with mean  $\mu$  and variance  $\sigma^2$ 

• Let 
$$S_n = X_1 + X_2 + \cdots + X_n$$

• What is the mean of  $S_n$ ?



• Let  $X_1, \dots, X_n$  be a sequence of independent identically distributed random variable with mean  $\mu$  and variance  $\sigma^2$ 

• Let 
$$S_n = X_1 + X_2 + \cdots + X_n$$

• What is the variance of  $S_n$ ?

## What is the variance of $S_n$





Because of independence, we have

$$var(S_n) = var(X_1) + \dots + var(X_n) = n\sigma^2$$

- The distribution of  $S_n$  spreads out as n increases
- $S_n$  cannot have a meaningful limit.
- But the situation is different if we consider the sample mean

$$M_n = \frac{X_1 + \dots + X_n}{n} = \frac{S_n}{n}.$$

The sample mean is itself a RV (why?) so we can compute its mean and variance



Given our calculation:

$$\mathbf{E}[M_n] = \mu, \ \operatorname{var}(M_n) = \frac{\sigma^2}{n}.$$

- The variance of  $M_n$  decreases to zero as n increases.
- Thus, the bulk of the distribution of  $M_n$  must be very close to the mean  $\mu$  as n increases.



- We will also consider a quantity which is intermediate between  $S_n$  and  $M_n$ .
- $Z_n$  is defined as follows.
- 1. subtract  $n\mu$  from  $S_n$ , to obtain the zero-mean random variable  $S_n n\mu$
- 2. then divide by  $\sigma\sqrt{n}$ , to form the random variable.

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$



• Let's compute the mean and variance of  $Z_n$ 

#### **Formally**



• Let  $X_1, \dots, X_n$  be a sequence of independent identically distributed random variable with mean  $\mu$  and variance  $\sigma^2$ 

Define

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$$

## The Central Limit Theorem



• Theorem (The Central Limit Theorem) The CDF of  $Z_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$  converges to standard normal CDF

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^{2}/2} dx$$

in the sense that

$$\lim_{n \to \infty} P(Z_n \le z) = \Phi(z)$$

# Generality



- The central limit theorem is surprisingly general.
- Besides independence, and the implicit assumption that the mean and variance are finite, it places no other requirement on the distribution of the  $X_i$ ,
  - which could be discrete, continuous, or mixed.

## Going back to our example



### Polling



- p: fraction of population that will vote "yes" in a referendum
- i-th random people polled: 1 : yes, 0: no
- Let  $X_i$  be the random variable.
- $M_n = \frac{X_1 + X_2 + ... + X_n}{n}$  the fraction of "yes" in our sample.
- We would like small error:

$$|M_n - p| \le 0.01$$

 How many samples to generate so that the probability of error greater than 0.01 is smaller than 0.05?

# Approximations example: Plane



- We load on a plane 100 packages whose weights are independent and uniform between 5 and 50.
- Question: What is the probability that the total weight exceeds 3000?

## Conclusion

