Total No. of Questions:	4]
PA-6	

SEAT No.: [Total No. of Pages: 3

[5931]

S.E. (Electronics/Electronics & Telecommunication) **ELECTRICAL CIRCUITS**

(2019 Pattern) (Semester - I) (204183)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4.
- *2*) Neat diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks. *3*)
- Assume suitable data, if necessary. *4*)

Using KVL, find the value of R in the Fig.a **Q1**) a)

[5]

Using node analysis, find the node voltages V_1 and V_2 in the network of b) Fig.b

State and explain Maximum Power Transfer theorem with suitable c) example. [5]

OR

Q2) a) Using super mesh analysis, Find the current through 3Ω resistor in the network of Fig.c [5]

b) Using Thevenin's theorem, Find the current through the 2Ω resistor connected between terminals A and B in the Fig.d [5]

c) When to use superposition theorem? List out its applications and limitations.

Q3) a) In the given network of Fig.e, the switch is closed at t = 0. With zero current in the inductor, find the values of i, di/dt, and d^2i/dt^2 at $t = 0^+$. [6]

What is the significance of initial conditions? Explain initial condition for c) resistor, capacitor and inductor. [4]

OR

- Write short note on underdamped, overdamped and critical damped **Q4**) a) systems. **[6]**
 - b) The network of Fig.g is under steady state with switch at the position 1. At t = 0, switch is moved to position 2. Find i(t)[5]

For the network shown in Fig.h, the switch is open for a long time and closes at t = 0. Determine V(t)c) closes at t = 0. Determine $V_c(t)$. [4]

X