Tropical Climate Variability and Teleconnections: past, present and future

Variability of the Atmospheric General Circulation and the Connection to ENSO

Joakim Kjellsson Kristofer Döös

Department of Meteorology
Bolin Centre for Climate Research
Stockholm University

In short...

- Method

The Atmospheric General Circulation in Thermodynamic Coordinates J. Kjellsson, K. Döös, F. Laliberté, J. Zika

- Results

A single thermodynamic circulation.

Variability on annual & inter-annual time scales.

- Summary

Thermodynamic representation that combines zonal and meridional overturning circulations.

Connected to ENSO.

Hydrothermal stream function

- ERA-Interim 1979-2009. Global u,v,T, q,z,p. 428 Sv anti-clockwise circulation.
- Moist convection following moist adiabats.
 - 2. Radiative cooling at latent heat ≈ 0 .
 - 3. Moistening & heating following Clausius-Clapeyron
- Hydrothermal circulation lets us diagnose the general circulation in one picture!

Conceptual picture

Conceptual picture

Maximum transport

 Average max(psi)min(psi) between DSE 310 and 330 kJ/kg.

- Calculate the hydrothermal stream function for every season (black) and year (blue).
- Two highest amplitudes 1989 and 2008 (La Nina years) and amplitude 1998 (El Nino year).

- Calculate the hydrothermal stream function for every season (black) and year (blue).
- Two highest amplitudes 1989 and 2008 (La Nina years) and amplitude 1998 (El Nino year).

- Subtract
 climatologies for each
 season. Gives
 seasonal anomalies.
- ENSO indicated by
 SOI. Linear fit so that:
 amp. = k * SOI + m
- SOI explains 16% of the seasonal anomalies. 30% for annual data. 99% significance.

Southern Oscillation Index (SOI)
Standardized pressure difference between
Darwin and Tahiti Islands (eq. Pacific).
SOI = ±1 means ±1 std above mean

- Subtract climatologies for each season. Gives seasonal anomalies.
- ENSO indicated by SOI. Linear fit so that: amp. = k * SOI + m
- SOI explains 16% of the seasonal anomalies. 30% for annual data. 99% significance.

ENSO composites

- 5 consecutive months (Trenberth, BAMS 1997)
- SOI < -1 (El Niño)
 Weaker and wider
- SOI > 1 (La Niña)
 Stronger and narrower
- Stream lines shift towards a higher/lower moist adiabat (~1-2 kJ/kg).

- The hydrothermal circulation combines the Hadley and Walker cells and midlatitude eddies into a single circulation.
- Amplitude of 428 Sv. Moist convection, radiative damping and warming and moistening of near-surface air.
- El Niño: wide and weak.

La Niña: narrow and strong.

- ENSO explains
 - ~16% of the seasonal variability,
 - ~30% of the inter-annual variability of the general circulation.

Joakim Kjellsson

Email: joakim@misu.su.se

Twitter: @joakimkjellsson

Web: http://people.su.se/~jokj7135/joakim-misu

The End

Joakim Kjellsson joakim@misu.su.se

Department of Meteorology Svante Arrhenius vag 16C 106 91 Stockholm Sweden

In spatial coordinates

- Projecting the 100-400 Sv stream function on time-averaged LH and DSE.
- Meridional overturning similar to isentropic mean.
 Large zonal asymmetries -Walker circulation.
- Thus, the hydrothermal circulation combines the mass fluxes in both zonal and meridional overturning circulations.

Correlating ENSO and hydrothermal circulation

Correlating ENSO and hydrothermal circulation

Meridional overturning

- Indications that the meridional overturning strengthens (weakens) in positive (negative) ENSO phases.

