Introduction to Information Security 14-741/18-631 Fall 2021 Unit 4: Lecture 2: TCP/IP Vulnerabilities

Limin Jia

liminjia@andrew

This lecture's agenda

Outline

- **▼** Brief networking review
- **▼** TCP attacks
- **▼** Routing attacks
- **▼** Vulnerable applications
- **▼** Defenses

Objective

■ Examine some of the key vulnerabilities in the widely used TCP/IP and related protocols

Origins of the Internet

- **■** U.S. military
 - **▼**(D)ARPAnet
 - Most research done in the mid-60s through late 70s
- Objective
 - Have a network capable of withstand massive failures
 - ▼ e.g., nuclear war
- TCP/IP designed with reliability and fault-tolerance in mind
- Does this automatically provide security?

TCP/IP

- TCP/IP protocol suite overwhelmingly used on the Internet
- Layered architecture
 - **▼** Different from 7-layer OSI model
 - Essentially no session or presentation layers
 - ▼ Physical and data link layer basically merged

Layered architecture

- Each layer provides service to layer above and relies on services from layer below
 - **▼** Why?
- Different functions at each layer
 - Data link: physical (local) connectivity
 - Network: end-to-end reachability
 - Relies on physical connectivity
 - Transport: reliability, ordering, ...
 - Relies on end-to-end reachability
- In general, layer n only talks with layers n-1 and n+1
 - Exceptions (aberrations?): HTTP over IP, QUIC,...

TCP/IP protocol stack

TCP/IP protocol stack

Data link layer: Local connectivity

Example: 802.11b

Network layer: Global connectivity

- Routing: How does the packet get from A to B?
- Fragmentation
 - Making sure each local medium (e.g., 802.11b, Ethernet, SONET) can accommodate all packets
 - Find smallest MTU and break up application layer packets accordingly

More on routing

- Forwarding tables at each router populated by routing protocols
 - RIP, OSPF, BGP, ...
- Originally (a long time ago), manually updated
 - Humans still (too much?) in the loop
 - BGP misconfigurations are a serious problem
- Routing protocols update tables based on cost of each route
 - Exchange tables with neighbors, or everyone (depends on protocol)
 - Use neighbor leading to the shortest path

IP packet format

Transport layer: Reliability

Connection-oriented service

■ Network layer only provides connectionless service

Provides resilience to

- Data corruption
 - Payload checksum
- **▼** Data loss
 - Sequence numbers, timeouts + retransmits
- Out-of-order delivery
 - **▼** Sequence numbers
- Congestion
 - Flow control, AIMD

■ Wait... What about UDP?

Simple (de)multiplexing primitive over IP

Application

Application

Transport

Naming/Identification

■ IP addresses vs. readable host names

- Humans are not good at remembering numbers, use E.g., <u>www.cmu.edu</u>
- Globally unique (but can correspond to multiple hosts, e.g., www.google.com)

Naming system translates readable host names to physical address

- DNS translates name to IP address (e.g.,128.2.42.52)
- Address reflects location in the network

A Common authentication problem

■ IP-based authentication/identification can be defeated by IP address spoofing

Network security issues

- Message authentication?
- How can S know that the packet really originated from A?
- Can B impersonate A to S?
- Can C impersonate A to S?
- Shared networks are easy to eavesdrop on
 - E.g., just set interface in promiscuous mode tcpdump, ethereal
 - B can easily eavesdrop on the packet A sent to S
- Note: eavesdropping or injection of arbitrary packets easy in today's networks

Security problems in the TCP/IP protocol suite

- By Steven M. Bellovin, 1989
- Classic network security paper
- Wakeup call for networking researchers
- Paper lists many security vulnerabilities
- Attacks studied in this lecture
 - ▼ IP-based authentication
 - ▼ TCP level attacks
 - **▼** Routing attacks
 - Application-level attacks
- More next time, and even more next semester

Review: TCP 3-way handshake

TCP initial sequence number (ISN) prediction attack

- Objective of the attack: Impersonation of a communication participant
 - E.g., Alice may talk to Bob
 - Mallory can pose as Alice, even though Mallory cannot intercept traffic between Alice and Bob
- Risk: severe, particularly when authentication is based on IP address
 - ▼ e.g., rsh: arbitrary execution of commands possible

Abusing the TCP 3-way handshake

(Mallory can send commands to Bob as Alice)

Predicting ISN_{Bob}

- For the attack to be successful, Mallory needs to be able to predict ISN_{Bob}
 - Easy on a LAN (just eavesdrop)
 - But not much harder on a WAN...

Flawed TCP ISN choices

- Always start at same ISN
- After each connection, ISN++
- ISN = $(c1+c2*(time in ms)) mod 2^{32}$

Better ISN choices

- ISN is should be unpredictable!
- ISN = rand() function of C library?
 - How random is rand()?
 - **▼** Especially at boot time?
- current ISN = H(previous ISN)?
- ISN = AES_K (counter++)?

Doesn't Alice reset the connection?

Abusing the TCP 3-way handshake (revised)

(Mallory can send commands to Bob as Alice)

TCP SYN flood

TCP SYN flood

SYN flood details

■ Why does server exhaust resources?

- Need to store requests for 511 seconds
- Server has finite-size queue for incomplete connections, usually 1024 entries

Memory is cheap, why not store all requests?

- **▼** 736 bytes per connection...
- Why store any information at all?
 - If SYN ACK dropped by network, server re-sends SYN ACK until timeout or client sends ACK, otherwise legitimate clients will wait
 - ▼ TCP options (performance enhancements) need to be stored, otherwise slow connection

Defense against SYN flood: TCP SYN cookie

Approach

- Server computes server ISN (SYN cookie) based on connection state, reply to client, server keeps no state after SYN
- Client sends ACK with cookie
- Server verifies cookie, if correct, allocates connection state, reconstruct the connection state (with some information loss such as special TCP options)
- What about: Cookie = H(SIP, CIP, Sport, Cport)?
- Better: Cookie = H(SIP, CIP, Sport, Cport, skey)

Question

- Connection state is much larger than incomplete (half-open) connection state
- Why does client not follow up with ACK packet in TCP SYN flooding?
 - No IP source address spoofing
 - Server can easily identify attacker, since it has thousands of open connections
 - Server can block all connections from attacker IP
 - IP source address spoofing
 - Attacker does not receive SYN ACK, does not know server ISN, cannot send ACK

TCP SYN cache

- Best strategy: keep efficient SYN cache for incomplete connections, only if too many requests send SYN cookies
- SYN cache design
 - Efficient hash table
 - Each hash table entry has linked list with all incomplete connections
 - Limit number of entries on linked list per bucket
 - **▼** Compute hash with a secret

Results

Figure 3: Time needed to connect() to remote system.

Tampering routing tables

- Routing tables updated from information received from topological neighbors
- Checks are non-existent or casual (IP address-based authentication)
- Possibility to route all traffic through a malicious host

Defending against routing attacks

- Authentication of all packets
 - ▼ is difficult for broadcast protocols (e.g., RIP)
- Do not accept new routes to your own networks

Application problems

- Finger service gives out information useful for password cracking
- User name and password are often sent in the clear
 - ▼ POP email retrieval protocol
 - **▼** FTP
 - **▼** Telnet
- TFTP causes many weaknesses
 - ▼ e.g., home routers, remote booting
- DNS insecurity

Defenses

- Authenticated communication prevents packet injection attacks
- Encrypted communication protects clear text
- IPsec, SSH, TLS/SSL provide secrecy and authentication

1989... That's old, isn't it?

■ Aren't most of the attacks listed in the paper defeated by now?

- **▼** You wish...
 - A number of network appliances (cheap, or less cheap) still have predictable TCP ISNs
 - Some servers still run unencrypted POP/SMTP/IMAP or services like fingerd, r-services (rarer, but still)
- Even for attacks that have been addressed, we need to learn from our mistakes
 - Source routing is evil, we disable it
 - Great, but then we advocate MPLS, which may use source routing, overlay source routing, ...

Take away slide

- **■** TCP/IP remarkable at fault-tolerance...
- ... but not built with malicious attackers in mind
 - To their credit, the designers of TCP/IP **did** foresee most of these problems
 - But crypto-based solutions couldn't easily make it into open standards back then
- Be careful with what you assume from a protocol
 - ▼ TCP and IP do not provide any authentication
 - An IP address is just that: an address, **not** an identity
 - Host-based authentication is an heresy
 - Need additional mechanisms (Kerberos, ...)
- Relatively easy to abuse application-layer services
 - Information services (SNMP, ...) are covert channels leaking information