CAPíTULO 1

El Sistema Coordenado Esférico

1. El Sistema

El sistema de coordenadas esfrérico, forma también parte de los llamados sistemas de coordenadas curvilíneos Puede considerarse como otra extensión del sistema de coordenadas polares para \mathbb{R}^3 . El punto se produce por la intersección de tres superficies (una superficie esférica, una superficie cónica y una superficie plana). Ver Figuras 1 y 2

FIGURA 1. Superficie esférica r=3, en intersección con superficie cónica $\phi=\frac{\pi}{3}$

2. Elementos

- El origen. es un punto desde el cual se miden el radio de la superficie esférica. Es la superficie esférica degenerada ($\rho = 0$). Se hace coincidir con la intersección de tres rectas perpendiculares entre sí tal como en el sistema de coordenadas cartesianas.
- El Semiplano π_{+xz} que contiene al eje z y que es el plano desde el cual se miden el ángulo theta (θ)

FIGURA 2. $\mathbb{C}_{ircunferencia}: \mathbf{SE}_{sf\acute{e}rica} \cap \mathbf{SC}_{\acute{o}nica}$ Intersección de la Circunferencia con el semiplano $\perp \pi_{xy}$ Barrido del semiplano $\perp \pi_{xy}$ de $[0, 2\pi]$

- El eje coordenado +z, que es la semirecta desde la cual se mide el ángulo phi (ϕ)
- El espacio (contiene todos los elementos del producto cartesiano $\mathbb{R}x\mathbb{R}x\mathbb{R}$) se designa con \mathbb{R}^3 (se lee erre tres). Los elementos de ese conjunto son las tuplas o puntos que tienen la estructura $P(\rho, \theta, \phi)$ con $\rho \in \mathbb{R}$, $\theta \in \mathbb{R}$ y $\phi \in \mathbb{R}$. El significado geométrico de estas coordenadas es r: radio de la superficie esférica que pasa por el punto P, y el significado para la segunda coordenada θ (que se lee theta) es el ángulo o apertura medida desde semiplano π_{+xz} hasta el semiplano compuesto por el eje z., y el segmento que va del origen al punto P Este ángulo se mide en dirección contraria a las agujas del reloj.
- Reglas para establecer una relación biunívoca entre la representación gráfica y los valores numéricos. Aquí se hace necesario establecer ciertas restricciones ya que los puntos de \mathbb{R}^3 tendrán denominaciones redundantes, como en el caso de las coordenadas polares.
- \blacksquare Advierta que la referencia aquí es la terna: origen, el Semiplano $\pi_{+xz}~$ y el eje coordenado z
- Si $\rho < 0$ entonces sume o reste π al ángulo theta $\theta_i = \theta \pm \pi$ y calcule el suplementario de phi $\varphi_i = \pi \varphi$
- Si $\varphi \in (\pi, 2\pi]$ entonces sume o reste π al ángulo theta $\theta_i = \theta \pm \pi$ y calcule phi $\varphi_i = 2\pi \varphi$

3. REGLAS 3

FIGURA 3. Sistema Coordenado Esférico

3. Reglas

1. El punto se escribe $P(\rho, \theta, \phi)$ Tanto ρ , θ y ϕ , pertenecen a los números reales con significado geométrico (Ver Figura 3):

```
\begin{cases} \rho: \text{Radio de la superficie esférica que pasa por } P\left(\rho,\theta,\phi\right) \\ \theta: \text{Medida del ángulo entre semiplano } \pi_{+xz} \\ \text{y el plano } \bot \pi_{xy} \text{ (que contiene a } \overline{OP} \text{ y al eje } z \text{)} \\ \phi: \text{Medida del ángulo de apertura entre la superficie} \\ \text{cónica que pasa por } P\left(\rho,\theta,\phi\right) \text{ con respecto al eje } +z \end{cases}
```

2. Las restricciones que se imponen a las coordenadas son

(Restrictiones)
$$\begin{cases} \rho: \rho \geq 0 \\ \theta: \theta \in [0, 2\pi) \\ \phi: \phi \in [0, \pi] \end{cases}$$

- 3. Para el trazado de un punto se *lee primero* la primera componente (el radio) y nos ubicamos en una superficie esférica con ese radio en el espacio
- 4. Seguidamente se lee la tercera componente (ϕ) lo cual nos da la apertura de la superficie cónica. La intersección de ambas superficies da lugar a una circunferencia en el espacio. Si la medida de (ϕ) supera $\frac{\pi}{2}$ el punto está por debajo del plano coordenado π_{xy} .

5. Por último se lee la segunda componente (θ) que nos indicará la apertura angular del plano perpendicular al xy con respecto al semiplano constituido por el eje z y el eje positivo de las x.

Ejemplo 1.1. Graficar los puntos cuyas coordenadas esféricas son: $P_1(3, \frac{\pi}{3}, \frac{\pi}{6})$ y $P_2(-2, \frac{\pi}{6}, \frac{\pi}{3})$

Solución:

 $P_1(3, \frac{\pi}{3}, \frac{\pi}{6})$: se lee la primera coordenada, es positiva con valor de 3, se traza una superficie esférica con centro en el origen y radio valor absoluto de esa primera componente $radio = |\rho| = 3$. Se lee la tercera coordenada, positiva con valor de $\phi = \frac{\pi}{6}$. Supone entonces la intersección del la superficie cónica con la esfera y eso nos ubica en una circunferencia. Resta ver el ángulo θ : se lee la segunda coordenada $\theta = \frac{\pi}{3}$ giramos un semiplano imaginario desde el plano π_{+xz} un ángulo de $\frac{\pi}{3}$ hasta llegar al punto. Ver Figura 4

 $P_2(-2, \frac{\pi}{6}, -3)$: se lee la primera coordenada , es negativa con valor absoluto de 2 (recuerde el caso para coordenadas polares llevamos en mente sumar o restar π).se traza una superficie esférica con centro en el origen y radio valor absoluto de esa primera componente $radio = |\rho| = 2$.. Se lee la tercera coordenada, positiva con valor de $\phi = \frac{\pi}{3}$: 1. 047 2 Tenga en cuenta que un $\rho < 0$ (que es el caso) significa un punto que es simétrico respecto al origen del ρ positivo. Ello conduce a que el ángulo para la superficie cónica no es $\frac{\pi}{3}$ sino el suplementario $\pi - \frac{\pi}{3} = \frac{2}{3}\pi$. Con la circunferencia intersección en mente se lee la segunda coordenada $\theta = \frac{\pi}{6}$ que desplazamos la cantidad de π para satisfacer la simetría respecto al origen. $\theta = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$

4. Paso del Sistema Cartesiano al Sistema Esférico y Viceversa

Vamos a deducir la ecuaciones para la conversión de un sistema coordenado a otro. A partir de la Figura 5

(x,y,z)	Sistema Coordenado Esférico
	$\rho = +\sqrt{x^2 + y^2 + z^2}$
	$\theta = \arctan \frac{y}{z}$
	x
	$\varphi = \arccos \frac{z}{+\sqrt{x^2 + y^2 + z^2}}$

(r, θ, z)	Sistema Coordenado Cartesiano
	$x = \rho \cos \theta \sin \varphi$
	$y = \rho \sin \theta \sin \varphi$
	$z = \rho \cos \varphi$

FIGURA 4. Graficación de P_1 y P_2

Ejemplo 1.2. Convertir los puntos que en coordenadas esféricas son $P_1\left(4, \frac{\pi}{3}, \frac{2\pi}{3}\right), y$ $P_2\left(3, \frac{5\pi}{6}, \frac{\pi}{2}\right)$ a coordenadas cartesianas

Solución: Se verifica primeramente que las coordenadas esféricas satisfagan las restricciones. Luego se procede a aplicar las ecuaciones de conversión

(r, θ, z)	Sistema Coordenado Cartesiano $x = 4\cos\frac{\pi}{3}\sin\frac{2\pi}{3} = \sqrt{3}$ $y = 4\sin\frac{\pi}{3}\sin\frac{2\pi}{3} = 3$	\implies	$P_{1Cart}\left(\sqrt{3},3,-2\right)$
(r, θ, z)	$z = 4\cos\frac{2\pi}{3} = -2$ Sistema Coordenado Cartesiano $x = 3\cos\frac{5\pi}{6}\sin\frac{\pi}{2} = -\frac{3}{2}\sqrt{3}$	\Rightarrow	$P_{2Cart}\left(-\frac{3}{2}\sqrt{3}\;,\;\frac{3}{2}\;,\;0\right)$
	$y = 3\sin\frac{5\pi}{6}\sin\frac{\pi}{2} = \frac{3}{2}$ $z = 3\cos\frac{\pi}{2} = 0$		(2 2)

FIGURA 5. Sistema Coordenado Esférico conjuntamente con el esquema cilíndrico

5. Paso del Sistema Cilíndrico al Sistema Esférico y Viceversa

(r, θ, z)	Sistema Coordenado Esférico		
	$\rho = \sqrt{r^2 + z^2}$		
	heta = heta		
	$\phi = \arctan\left(\frac{r}{z}\right) \; ; \; \phi = \arcsin\left(\frac{r}{\rho}\right)$		

$(ho, heta, \phi)$	Sistema Coordenado Cilíndrico
	$r = \rho \sin \theta$
	$\theta = \theta$
	$z = \rho \cos \phi$

CAPíTULO 2

Ejercicios Propuestos

Ejercicio 2.1. Si a, b, c, d y e son números reales y se verifica que a < b < 0; d > 0 y e > 0. Ubique esos puntos en la recta real.

Ejercicio 2.2. Suponiendo que p,q y z son puntos sobre la recta real con coordenadas -2, $-\frac{5}{4}$ y 3 respectivamente encuentre las siguientes distancias: a.- d(p,q) b.- d(q,z) c.- d(z,q) b.- d(p,z)

Ejercicio 2.3. Ubique los siguientes conjuntos sobre la recta real:

a.-
$$A = [0,4)$$
 b.- $B = (-1,3)$ c.- $C = [3,2] \cup (-1,1]$ d- $D = [-1,3) \cap [0,3]$ e.- $F = \{x \in \mathbb{R} \diagup -3 \le x < 2\}$ f.- $\{(-\infty,-4) \cup [-1,3]\} \cap [-6,1]$

Ejercicio 2.4. Grafique la siguiente expresión matemáticamente sobre la recta real

$$a.-\left|\left(\frac{x}{4}-1\right)+2\right|<\frac{1}{6}$$
 y $b.-\left|x+4\right|<\frac{2}{3}$

Ejercicio 2.5. Representar el traiángulo de vértices A(0,0), B(3,0) y C(2,3), evaluar su área

Ejercicio 2.6. Trace el producto cartesiano de los conjuntos $A = \{-5, 1, 0, 3\}$ $B = \{2, 0, -1, -2\}$

Ejercicio 2.7. Grafique la región:

$$a.\text{-} \ R = \{[-2,4] \ X \ [-3,7] \ \cap \ [1,1] \ X \ [1,1] \wedge x < y\}$$

$$b - G = \{ [-2, 1] \ X \ [-1, 0] \ \cap \ x^2 + y^2 \le 4 \}$$

Ejercicio 2.8. El punto medio del segmento que une al punto P del punto (-4,3) es (1,1). Hallar el punto P

Ejercicio 2.9. Hallar el perímetro del cuadrilátero cuyos vértices son (-3,-1), (0,3), (3,4), (4,-1)

Ejercicio 2.10. Demostrar que los puntos (2,-2), (-8,4), (5,3) son los vértices de un triángulo rectángulo. Hallar su área

Ejercicio 2.11. Demostrar que los cuatro puntos (1,1), (3,5), (11,6), (9,2) son los vértices de un paralelogramo.

7

Ejercicio 2.12. Demostrar que los tres puntos (2,0,-1), (3,2,-2), (5,6,-4) son colineales

Ejercicio 2.13. Hallar la distancia del punto P(3, -4, 2) con cada uno de los ejes coordenados.

Ejercicio 2.14. Uno de los extremos de un segmento de longitud 3 es el punto (3,2,1). Si las coordenadas x y y del otro extremo son 5 y 3 respectivamente, halle la coordenada x

Ejercicio 2.15. El punto P está sobre el segmento cuyos extremos son (7,2,1) y (10,5,7). Si la coordenada y de P es 4, halle las coordenadas x y y

Ejercicio 2.16. Un hexágono regular tiene su centro el el polo y dos lados paralelos al eje polar. Si la longitud de un lado es igual a dos unidades hallar el par principal para cada uno de sus vértices. Al girar la figura en torno al polo una medida angular de $\frac{9\pi}{4}$ se generan nuevas posiciones para los vértices . Encuentre esas nuevas posiciones

Ejercicio 2.17. Represente el triángulo cuyos vértices en coordenadas cartesianas son $A\left(3\cos\frac{\pi}{3},\frac{3}{2}\sqrt{3}\right)$ $B\left(-2\sqrt{3},2\right)$ $C\left(0,0\right)$. A partir de esos puntos y dé la representación gráfica de ellos :

a.- Encuentre la representación polar de dichos puntos. Gráficamente y matemáticamente.

b.- Calcule el área y perímetro del triángulo.mediante la expresión de distancia en polares

c.- Si consideramos que esos puntos yacen sobre el plano coordenado π_{xy} y desplazamos a A tres unidades en el sentido positivo del eje de las z y a B lo desplazamos 4 unidades en el sentido positivo del eje de las z, obtenga la representación de los puntos en coordenadas cilíndricas y esféricas.

d.- Grafique en el espacio el triángulo resultante en c y su proyección sobre el plano π_{xy}

Ejercicio 2.18. Representar gráficamente la curva cuya expresión polar es $r=2(1+\sin\theta)$

Ejercicio 2.19. Convertir la ecuación polar $\sin^2 \theta - r \cos^3 \theta = 0$ a la forma rectangular

Ejercicio 2.20. Pasar la ecuación rectangular $x^2 + y^2 - 2y = 0$ a la forma polar