SIGN: Scalable Inception Graph Neural Networks

Fabrizio Frasca et al.

February 28, 2025

Twitter, Imperial College London

Presented by: George Giapitzakis

Graph Neural Networks: A Brief Overview

- → Graph Neural Networks (GNNs) extend deep learning methods to graph-structured data.
- → Applications: social networks, chemistry, physics, recommender systems, etc.
- → Standard GNNs often face scalability challenges when dealing with large graphs.

Scaling Challenges in GNNs

- → Many GNNs rely on neighbor sampling or multi-layer message passing.
- → Deep architectures can suffer from over-smoothing and high computational cost.
- → Sampling may introduce bias and inefficiency in both training and inference.

Motivation: How can we design a GNN that scales to web-scale graphs without these drawbacks?

Motivation for a Sampling-Free Approach

- → **Scalability:** Web-scale graphs (e.g., billions of edges) require methods whose cost is independent of the graph structure during training/inference.
- → Expressiveness: Retaining performance without sacrificing the ability to capture local graph structure.
- → Efficiency: Avoiding iterative neighborhood sampling can greatly reduce both runtime and memory usage.

Inspiration from Inception Modules

- → In CNNs, Inception modules combine filters of various sizes to capture multi-scale features.
- → SIGN adapts this idea for graphs: using multiple precomputed diffusion operators as "filters" to capture different scales of neighborhood information.
- → This approach bypasses the need for deep stacking of convolutional layers.

The SIGN Architecture

- → SIGN stands for **S**calable **IN**ception **G**raph **N**eural network.
- → Core idea: precompute multiple graph diffusion operators and combine their outputs.
- → The model is defined as:

$$m{Z} = \sigma \Big([m{X} m{\Theta}_0, \ m{A}_1 m{X} m{\Theta}_1, \ \dots, \ m{A}_r m{X} m{\Theta}_r] \Big)$$
 $m{Y} = \xi(m{Z} m{\Omega})$

→ X: Input node features; A_i : Diffusion operators; Θ_i , Ω : Learnable parameters.

Precomputation of Diffusion Operators

- → Diffusion operators $A_1, ..., A_r$ can be based on:
 - Normalized adjacency (GCN-style)
 - Personalized PageRank (PPR)
 - Triangle-induced (motif-based)
- → These operators are computed **once** before training.

Figure 1: The SIGN architecture for *r* generic graph filtering operators. denotes the concatenation operation.

Relation to Inception Modules in CNNs

- → Similar to using multiple kernel sizes in CNNs, SIGN uses different operators to capture various scales.
- → Each operator acts like a convolution filter with a different receptive field.
- → This multi-scale feature extraction is key to handling heterogeneous graph structures.

Computational Complexity

- → **Preprocessing:** O(r|E|d), where r is the number of operators, |E| is the number of edges, and d the feature dimension.
- → Training/Inference: Complexity becomes $O(rL_{ff}Nd^2)$ (similar to an MLP), independent of the graph structure.
- → Key advantage: Avoids repeated neighborhood expansion and reduces redundant computations.

Experimental Setup

→ Datasets:

- → Inductive: Reddit, Flickr, Yelp, PPI.
- → *Transductive:* ogbn-products, ogbn-papers100M.
- → Scalability: Wikipedia links (with synthetic features).
- → Baselines: GCN, GraphSAGE, ClusterGCN, GraphSAINT, S-GCN.
- → Metrics: F1 scores, accuracy, and runtimes (preprocessing, training, and inference).

Key results: Accuracy

- → SIGN achieves state-of-the-art results on ogbn-papers100M (over 110M nodes, 1.6B edges).
- → Outperforms sampling-based methods in both accuracy and speed on several benchmarks.

	Reddit	Flickr	PPI	Yelp
GCN [34]	0.933 ± 0.000	0.492 ± 0.003	0.515 ± 0.006	0.378 ± 0.001
FastGCN [11]	0.924 ± 0.001	0.504 ± 0.001	0.513 ± 0.032	0.265 ± 0.053
Stochastic-GCN [12]	0.964 ± 0.001	0.482 ± 0.003	0.963 ± 0.010	0.640 ± 0.002
AS-GCN [30]	0.958 ± 0.001	0.504 ± 0.002	0.687 ± 0.012	_
GraphSAGE [24]	0.953 ± 0.001	0.501 ± 0.013	0.637 ± 0.006	0.634 ± 0.006
ClusterGCN [13]	0.954 ± 0.001	0.481 ± 0.005	0.875 ± 0.004	0.609 ± 0.005
GraphSAINT [64]	0.966 ± 0.001	0.511 ± 0.001	0.981 ± 0.004	0.653 ± 0.003
S-GCN [59]	0.949 ± 0.000	0.502 ± 0.001	0.892 ± 0.015	0.358 ± 0.006
SIGN	0.968 ± 0.000	0.514 ± 0.001	0.970 ± 0.003	0.631 ± 0.003
(p,s,t)	(4, 2, 0)	(4, 0, 1)	(2, 0, 1)	(2, 0, 1)

Figure 2: Micro-averaged *F*1 scores. For SIGN, only the best performing configuration is shown. The top three performance scores are highlighted as: **First**, **Second**, **Third**.

Ablation Study: Operator Combinations

- → Evaluated different configurations of simple, PPR-based, and triangle-based operators.
- → Results indicate that dataset-specific operator selection is crucial:

1	${\tt Reddit}$	${ t Flickr}$	PPI	Yelp
SIGN(2,0,0) (0.966 ± 0.003	0.503 ± 0.003	0.965 ± 0.002	0.623 ± 0.005
SIGN(2,0,1) (0.966 ± 0.000	0.510 ± 0.001	0.970 ± 0.003	0.631 ± 0.003
SIGN(2,2,0)	0.967 ± 0.000	0.495 ± 0.002	0.964 ± 0.003	0.617 ± 0.005
SIGN(4,0,0)	0.967 ± 0.000	0.508 ± 0.001	0.959 ± 0.002	0.623 ± 0.004
SIGN(4,0,1)	0.967 ± 0.000	0.514 ± 0.001	0.965 ± 0.003	0.623 ± 0.004
SIGN(4,2,0)	$0.968 {\pm} 0.000$	0.500 ± 0.001	0.930 ± 0.010	0.618 ± 0.004
SIGN(4,2,1)	0.967 ± 0.000	0.508 ± 0.002	0.969 ± 0.001	0.620 ± 0.004

Figure 3: Impact of various operator combinations on inductive datasets. Best results are in bold.

Ablation Study: Operator Combinations

	Training	Validation	Test
MLP	84.03 ± 0.93	75.54 ± 0.14	61.06 ± 0.08
Node2Vec	93.39 ± 0.10	90.32 ± 0.06	72.49 ± 0.10
S- $GCN(L=5)$	92.54 ± 0.09	91.38 ± 0.07	74.87 ± 0.25
ClusterGCN	93.75 ± 0.13	92.12 ± 0.09	78.97±0.33
GraphSAINT	92.71 ± 0.14	91.62 ± 0.08	79.08±0.24
SIGN(3,0,0)	96.21 ± 0.31	92.99 ± 0.05	76.52 ± 0.14
<i>SIGN</i> (3,0,1)	96.46±0.29	92.93 ± 0.04	75.73 ± 0.20
<i>SIGN</i> (3,3,0)	96.87 ± 0.23	93.02 ± 0.04	77.13 ± 0.10
<i>SIGN</i> (5,0,0)	95.99 ± 0.69	92.98 ± 0.18	76.83 ± 0.39
<i>SIGN</i> (5,3,0)	96.92±0.46	93.10±0.08	77.60±0.13

Figure 4: Results on ogbn-papers100M. The top three performance scores are highlighted as: **First**, **Second**, **Third**.

Runtime Analysis

- → SIGN's preprocessing takes longer than some sampling methods but is executed only once.
- → Training and inference times are drastically reduced.
- → Convergence is faster, leading to overall time savings on large graphs.

	ogbn-products		Wikipedia			
	Preprocessing	Training	Inference	Preprocessing	Training	Inference
ClusterGCN	36.93 ± 0.52	13.34 ± 0.16	93.00 ± 0.68	_	_	183.76 ± 3.01
GraphSAINT	52.06 ± 0.54	2.89 ± 0.05	94.76 ± 0.81	123.60 ± 1.60	135.73 ± 0.06	209.86 ± 4.73
SIGN-2	88.21 ± 1.33	1.04 ± 0.10	2.86 ± 0.10	192.88 ± 0.12	62.37 ± 0.17	13.40 ± 0.15
SIGN-4	160.16 ± 1.20	1.54 ± 0.04	3.79 ± 0.08	326.21 ± 1.14	93.84 ± 0.08	18.15 ± 0.05
SIGN-6	226.48 ± 1.43	2.05 ± 0.00	4.84 ± 0.08	459.24 ± 0.14	125.24 ± 0.03	22.94 ± 0.02
SIGN-8	297.92 ± 2.92	2.53 ± 0.04	5.88 ± 0.09	598.67 ± 0.82	154.73 ± 0.12	27.69 ± 0.11

Figure 5: Preprocessing, Training, and Inference times.

Conclusion

- → Scalability: SIGN scales to web-scale graphs without relying on sampling.
- → **Efficiency:** Precomputing diffusion operators shifts the heavy computation offline.
- → **Performance:** Competitive or state-of-the-art accuracy across a range of benchmarks.
- → **Simplicity vs. Expressiveness:** A single graph convolutional layer with multiple diffusion operators can outperform deeper, sampling-based architectures.

Discussion and Future Directions

→ **Depth vs. Width:** Results suggest that wide (multi-operator) shallow architectures are effective.

→ Extensions:

- Incorporating more expressive local operators (e.g., attention mechanisms).
- Exploring higher-order network motifs and temporal motifs.
- Further optimization of precomputation for distributed systems.

Questions?

Thank you! Any Questions?