Sejam U e W subespaços de um espaço vetorial V, se $U \cup W$ também é subespaço, mostrar que $U \subset W$ ou $W \subset U$.

Vamos supor que exista um $u \in U$ que não pertença a W, e que exista um $w \in W$ que não pertença a U.

$$U \cup W$$
 é subespaço, logo $k_1u + k_2w \in U \cup W$, ou seja, $\underbrace{k_1u + k_2w \in U}_p \vee \underbrace{k_1u + k_2w \in W}_q$.

Em p, tomando $k_1=0$ e $k_2=1$ chegamos a um absurdo. Igualmente para q tomando $k_1=1$ e $k_2=0$.

Quod Erat Demonstrandum.

Documento compilado em Thursday 13th March, 2025, 09:42, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

 $\label{lem:attribuição-NãoComercial-CompartilhaIgual (CC BY-NC-SA)}.$