SYSTÈMES ET COMMANDE LINÉAIRES

GEL-19963

Professeur: André Desbiens

Troisième examen (30% de la note finale)

Mardi 24 avril 2001, 13h30-15h20

Une feuille 8.5 X 11 pouces est autorisée

- Une bonne réponse sans justification ne vaut *aucun* point.
- Dans les questions suivantes, les notations des fonctions de transfert et signaux sont définies à la figure 1. Les cinq questions demeurent toutefois indépendantes.

QUESTION 1 - Analyse des systèmes asservis 1 $(6 \times 4\% = 24\%)$

La figure 2 est le lieu de Black de G(s).

- a) Quelle est la fréquence de résonance du système en boucle ouverte?
- b) Quelle est le facteur de surtension du système en boucle fermée?
- c) Quelle serait la durée du retard qu'il faudrait ajouter au procédé $G_P(s)$ pour que H(s) devienne à la limite de la stabilité?
- d) Si la réponse en fréquences du système en boucle ouverte était tracée sur un diagramme de Bode, quelle serait la pente du rapport d'amplitude aux basses fréquences?
- e) Quelle serait approximativement l'amplitude du signal de sortie en régime permanent de H(s) (et non G(s)) si, à son entrée, était appliqué le signal $3\sin(0.36t 2)$?
- f) Quel est le gain du système en boucle fermée?

Figure 2

QUESTION 2 - Analyse des systèmes asservis 2 (4% + 4% + 4% + 8% = 20%)

La figure 3 illustre la réponse à un échelon de consigne d'un système asservi, initialement au repos et sans perturbation. Le régulateur utilisé est un PI.

- a) Le procédé $G_P(s)$ a-t-il une intégration?
- b) Quel est le gain statique du procédé $G_P(s)$?
- c) Quel est le gain K_C du régulateur PI?
- d) Expliquez clairement pourquoi la sortie du régulateur $G_C(s)$ est une rampe entre les temps t = 10 s et t = 20 s.

QUESTION 3 - Conception de régulateurs 1 (23%)

À l'aide d'un régulateur avance de phase, on désire asservir la position d'un moteur dont la fonction de transfert est $G_P(s) = \frac{100e^{-0.15s}}{s(1+10s)}$. Les spécifications sont:

- erreur statique nulle pour un échelon de consigne,
- amplification minimale des hautes fréquences,
- $\omega_{co} = 0.9 \text{ rad/s, et}$
- marge de phase $\geq 50^{\circ}$.

Donnez la fonction de transfert du régulateur.

Si vous utilisez des diagramme de Bode, prenez les échelles suivantes : de 0.001 rad/s à 10 rad/s pour les fréquences et de -70 dB à +80 dB pour le rapport d'amplitude (5 dB par marque). N'oubliez pas d'inscrire votre nom sur les feuilles semi-logarithmiques et de les insérer dans votre cahier d'examen.

QUESTION 4 - Conception de régulateurs 2 (18%)

La réponse d'un procédé à un échelon unitaire appliqué à t=0 est illustrée à la figure 4. Faites la conception d'un régulateur PI afin d'obtenir la réponse à un échelon de consigne la plus rapide possible tout en ayant un dépassement d'environ 8.5%. Si vous avez besoin de calculer la fréquence ω_{co} , écrivez seulement l'équation permettant de la déduire; ne solutionnez pas l'équation et supposez $\omega_{co}=0.043$ rad/s pour la suite des calculs.

Figure 4

QUESTION 5 - Représentation d'état (11% + 4% = 15%)

La fonction de transfert du système étudié est $G(s) = \frac{9s^2 + 6}{12 + 6s + 12s^2}$.

- a) En utilisant la méthode de simulation duelle, quelle est la représentation matricielle d'état du système?
- b) Si à l'instant t = 0 on applique à son entrée un échelon d'amplitude 2, que vaut sa sortie à l'instant $t = 0^+$?

Bonne chance!

FORMULES:

1. Transformation de Laplace

y(t) pour $t > 0$	Y(s)	Seuil de définition	Pôles de Y(s)	
1	1	Re $s > 0$	0	
	S			
$\delta(t)$	1	Re $s > -\infty$	-	
t	1	$\operatorname{Re} s > 0$	0, double	
	$\overline{s^2}$			
e^{-at}	1	Re $s > -a$	-a	
	${s+a}$			
te^{-at}	1	Re $s > -a$	-a, double	
	$\overline{(s+a)^2}$			
cos wt	S	Re $s > 0$	± jω	
	$\overline{s^2 + \omega^2}$			
sin ωt	ω	$\operatorname{Re} s > 0$	± jω	
	$\overline{s^2 + \omega^2}$			
$e^{-at}\cos \omega t$	s+a	Re $s > -a$	$-a \pm j\omega$	
	$\sqrt{(s+a)^2+\omega^2}$			
$e^{-at} \sin \omega t$	ω	Re $s > -a$	$-a \pm j\omega$	
	$\overline{(s+a)^2+\omega^2}$			

2. Réseau avance de phase :

3. Relation entre M_r et M_p pour un système du second ordre:

M_r [dB]	0	0.25	0.5	0.75	1	2	3	4
M_p [%]	4.32	8.47	10.75	12.73	14.57	21.17	27.16	32.75