Week 3

Neural Network Notation

Forward Propagation \swarrow

Backward Propagation

Hyperparameters

Universal Approximation Theorem

- Shallow neural networks is a term used to describe NN that usually have only one hidden layer while the term deep neural networks is used to describe NN that have several hidden layers.
- The deep NN with the right architectures achieve better results than shallow ones that have the same computational power.

Forward Propagation

Backward Propagation

Backward Propagation

Forwar Prip Input: 19 CL-1)

Duylid: 19 CL-1

Duylid: 19 CL-1

Duylid: 19 CL-1

Cache (t)

Coulous: 10 CL-1

Output: 10 CL-1

Backward Propagation

d = d + (1) = d + (1) d = d + (1)

Backward Propagation
$$\begin{bmatrix}
 \left(\alpha^{(x)} \right) = -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha^{(x)})}{\log (1-\alpha) \log (1-\alpha) \log (1-\alpha)} \right) = \frac{d \frac{C(x)}{d x} = c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha) \log (1-\alpha)} \right) = c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x} = c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha)}{\log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log (\alpha^{(x)}) + (1-\gamma) \log (1-\alpha)}{\log (1-\alpha) \log (1-\alpha)} \right) + c^{(x)} \frac{d c^{(x)}}{d x}$$

$$= -\left(\frac{1}{2} \frac{\log ($$

4C2) $\frac{\Im(\mathfrak{z}_{(2,j)})}{\Im(\mathfrak{Z}_{(2,j)})^{2}} = \mathfrak{C}_{i}(\mathfrak{z}_{(2)})$ £02)) (g (t (3)) Z(V) $dw^{(3)} = \frac{JL}{Jw^{(3)}} = \frac{JL}{J\mu^{(3)}} \cdot \frac{J\mu^{(3)}}{J\mu^{(3)}} \cdot \frac{Jz^{(3)}}{Jw^{(3)}} \cdot \frac{Jz^{(3)}}{Jw^{(3)}}$ n co 5002 1000 400 74 CH

9 (2 (L)

d7(27)

6(4)

Hyperparameters

Hyperparameters

Hyperparameters effect parameters

Hyperparameter examples:

- Learning Rate
- #Units
- #Iterations /
- #Layers
- Batch size */

tepoch -

Schola 300 . both = 500 . sore = 2.50 . both = 100 l itenth : lepan 2 itens: lepan 5 itensia: lepan

We can select hyperparameters using several methods

Hyperparameter Tuning

Universal Approximation Theorem

The Universal Approximation Theorem means that regardless of what function we are trying to learn, we know that a large MLP will be able to represent this function

$$f: N_N \longrightarrow \mathbb{R}^n \Rightarrow f \mapsto 0$$
040

inzva: *brings the AI fellows

together*

inzva:

