Nirma University

Institute of Technology

Semester End Examination (IR), December - 2022 B. Tech. in CL / CH / EE / IC / EC / CSE, Semester-VII 2CLOE03 Composite Materials

Roll / Exam No.		Supervisor's initial with date		
Time: 3 Hour	s		Max Marks: 100	
Instructions.		¥		
 Figures Use sect Draw ne 	all questions. to right indicate full mark tion-wise separate answer eat sketches wherever necessary	book. cessary.	e clearly.	
	SEC	TION – I		
CO4, B I BL4	(ii) Transformed redu	60° angle lamina of graced compliance matrix applied stresses are of a. Stress = 10.3 GPa, μ_{12} = 0.28	raphite/epoxy. Ix $x = 4$ MPa, $\sigma_y = -1$ S, $G_{12} = 7.17$	02
	The reduced stiffness m $\frac{E_1}{1-\mu_{21}\mu_{12}}; Q_{12} = \frac{\mu_{12}E_2}{1-\mu_{21}\mu_{12}}; Q_2$ The transformed reduce $\frac{C_{11}}{C_{12}} = C_{11}c^4 + (2C_{12} + C_{66})$ $\frac{C_{12}}{C_{12}} = C_{12}(s^4 + c^4) + (C_{11} + C_{66})$ $\frac{C_{12}}{C_{22}} = C_{11}s^4 + (2C_{12} + C_{66})s$ $\frac{C_{16}}{C_{26}} = (2C_{11} - 2C_{12} - C_{66})s$ $\frac{C_{26}}{C_{26}} = (2C_{11} - 2C_{12} - C_{66})s$	$c_{22} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{12} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{13} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{14} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$ $c_{15} = \frac{E_2}{1 - \mu_{21} \mu_{12}}; \ Q_{66} = G_{12}.$	elements are $ cs^3 $; $ sc^3 $;	
($\overline{C_{66}} = 2(2C_{11} + 2C_{22} - 4C_{12})$	2 - 66/3 6 + 666(3 +	J.	

 $\overline{\frac{Q_{11}}{Q_{12}}} = Q_{11}c^4 + 2(Q_{12} + 2Q_{66})s^2c^2 + Q_{22}s^4;$ $\overline{Q_{12}} = Q_{12}(s^4 + c^4) + (Q_{11} + Q_{22} - 4Q_{66})s^2c^2;$ $\overline{Q_{22}} = Q_{11}s^4 + 2(Q_{12} + 2Q_{66})s^2c^2 + Q_{22}c^4;$ $\overline{Q_{16}} = (Q_{11} - Q_{12} - 2Q_{66})sc^3 - (Q_{22} - Q_{12} - 2Q_{66})cs^3;$ $\overline{Q_{26}} = (Q_{11} - Q_{12} - 2Q_{66})cs^3 - (Q_{22} - Q_{12} - 2Q_{66})sc^3;$ $\overline{Q_{66}} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})s^2c^2 + Q_{66}(s^4 + c^4).$ Describe Tsai-Hill and Tsai-Wu failure theories in brief. Discuss observations made from comparison for the experimental results with all failure theories. Find the coefficients of thermal and moisture expansion for the 60° angle lamina of boron/epoxy. Also, determine strains under a temperature change of -100 °C and a moisture absorption of 0.02 kg/kg. Take properties of unidirectional glass/epoxy lamina $\alpha_1 = 6.1 \times 10^{-6} \, m/m \, / {}^{\circ}C, \alpha_2 = 30.3 \times 10^{-6} \, m/m \, / {}^{\circ}C,$ $\beta_1 = 0 \ m/m/kg/kg$, $\beta_2 = 0.6 \ m/m/kg/kg$. A glass/epoxy lamina consists of 70% fiber volume fraction. Determine (i) Density of lamina (ii) Mass fractions of the graphite and epoxy (iii) Volume of composite lamina if the mass of the lamina is 5 kg (iv) Volume and mass of glass and

epoxy in lamina. Take density of fiber is 2500 kg/m3 and

The transformed reduced stiffness matrix elements are

Q.3 Answer the following questions (Any Four)

density of matrix is 1200 kg/m³.

Q.2 CO3,

BL3

CO4,

CO4, B BL3

BL3

A

16

- BL3 [1] Why fiber is so strong as compared to bulk material? Justify your answer.
- BL3 [2] Enlist various forms of glass fiber. Explain any one form in details.
- BL3 [3] Differentiate the properties of PAN, Pitch and Rayon based carbon fibers.
- BL3 [4] Discuss ceramic fibers. Explain physical properties, advantages and limitations of ceramic fibers.
- BL3 [5] What are whiskers? Explain the importance of whiskers for manufacturing of composites.

SECTION - II

Q.4 CO1		Answer the following questions (Any Four)	20
BL3	[1]	Explain various physical properties and limitations of HPPE fibers.	
BL3	[2]	Explain various functions of matrix materials.	
BL3	[3]	Explain the various factors affecting selection of matrix materials	
BL4	[4]	Explain any one thermosetting polymeric matrix materials: its composition, properties, advantages and limitations.	
BL4	[5]	Classify various polymer matrix materials. Discuss the effect of temperature on properties of polymer matrix materials.	
Q.5 CO2		Answer the following questions (Any Four)	20
BL3	[1]	Discuss the advantages and limitations of metals as matrix materials.	
BL3	[2]	What are fillers? Explain any one type of filler used in polymer matrix composites.	
BL3	[3]	Explain the manufacturing of polymer matrix composite using wet layup method with neat sketch.	
BL3	[4]	Explain the manufacturing of polymer matrix composite using pultrusion process with neat sketch.	
BL3	[5]	Explain various advantages and limitations of resin transfer moulding process.	
Q.6 A CO2		Answer the following questions	06
BL3	[1]	Differentiate between metals and ceramics	
BL3	[2]	What are ceramic matrix composites? Enlist various types of ceramic matrix composites.	
Q.6 B CO2		Discuss various advantages and limitations of metal matrix composites.	04
BL3		OB	
7 6 P		OR Evaluin any one method of manufacturing of metal metrix	04
Q.6 B CO2 BL3		Explain any one method of manufacturing of metal matrix composites.	04