Модели данных

В3. Универсальные модели Generic

Московский государственный технический университет имени Н.Э. Баумана

Факультет ИБМ

ноя 2024 года Москва

Артемьев Валерий Иванович © 2024

10. Обобщённые модели данных Generic

Что такое обобщённая модель данных Generic?

Актуализировать, когда устоится

- Попытка вернуть нормализацию
- Сценарии применения (проектирование ХД, отраслевые модели ХД)
- Пример: Отраслевая модель ХД IBM BDW
- Обобщённые базовые сущности предметной области
- Таблицы «заплатки» (patch) для расширения сущностей
- «Заплатки» для добавления атрибутов
- Перекрёстные сущности для обобщения связей (добавление признаков классификации)
- Обобщение простых линейных справочников
- Рекурсии для иерархических справочников
- Достоинства и недостатки модели Generic

Что такое обобщённая модель данных Generic?

Универсальная реляционная модель данных, нормализованная до 3 NF, с возможностью настройки содержания и структуры данных на конкретное применение в одной или нескольких близких предметных областях, а также адаптации модели для отражения особенности ведения бизнеса.

Два основных подхода к созданию и расширению БД:

- 1. Параметризация моделей данных добавление новых записей в существующие таблицы без изменения их структуры.
- 2. Компоновка и генерация моделей данных разных уровней на основе типовых элементов по определённым правилам.

Возвращение нормализации

Если подход EVA строился с нарушением основных реляционных принципов однотипности и однозначности значений, при наличии избыточности и аномалий изменений, то подход Generic строится с соблюдением нормализации.

Основные приёмы, которые рассмотрим подробнее:

- Абстрактные модели базовых концептов
- Таблицы «заплатки» для расширения сущностей
- «Заплатки» для добавления атрибутов
- Перекрёстные сущности для обобщения связей (добавление признаков классификации)
- Обобщение простых линейных справочников
- Рекурсии для иерархических справочников.

Сценарии применения моделей данных Generic

Обобщённые модели данных учётно-операционной деятельности

Корпоративные информационные системы ERP

Система планирования потребностей в материалах MRP

Системы управления жизненным циклом продуктов PLM

Обобщённые модели данных при взаимодействиях С2В, В2В

Системы взаимоотношения с клиентами CRM

Системы управления цепочками поставок SCM

Обобщённые модели реестровых данных

Системы управления мастер-данными МDM

Системы управления информацией о товарах РІМ

Системы управления данными об изделиях PDM

Канонические модели сервисов / обмена данными

Сервис-ориентированная архитектура SOA

Корпоративная сервисная шина ESB

Web-сервисы

Обобщённые модели хранилища данных

отраслевые модели ХД

Модели предметных областей

Ключевые аспекты ERP

■ ERP (Enterprise Resource Planning) — система управления предприятием,

охватывает финансовую, хозяйственную, производственную и прочие направления деятельности.

- *Единая транзакционная система* для операций и бизнес-процессов
- Универсальность применения в различных отраслях и организациях
- Адаптивность к отраслевой специфике путём настройки и расширения.
- *Единая БД* для консолидации и обработки операций, планирования:
- централизованный доступ к данным в реальном времени
- территориальная распределённость организации
- нескольких орг. единиц (юрлиц, предприятий, филиалов)
- различные планы счетов, учётные политики, схемы налогообложения
- множество валют и языков.

Известные ERP-системы

Зарубежные системы

- SAP/R3,
- Oracle Applications,
- Microsoft Dynamix,
- Infor

Отечественные системы

- 1C: ERP,
- Галактика,
- Компас,
- ТУРБО,
- Парус

Open Source

- ADEmpiere,
- ERPNext,
- Dolibarr,
- ERP5
- Axelor

Схема Common Data Model в Microsoft Dynamix 365

Взаимодействие с клиентами и поставщиками

CRM (Customer Relationship Management) —

для управления процессами взаимодействия с клиентами и упрощения работы сотрудников компании:

- собирает клиентскую базу данные по клиентам и сделкам.
- *выстраивает коммуникации с клиентами* по телефону, почте, с помощью мессенджеров, соцсетей, сайтов и чатов.
- управляет процессами в продажах.

SCM (Supply chain management) – система управления поставками, предназначенная для автоматизации и управления этапами снабжения предприятия и для контроля всего товародвижения:

- закупки сырья и материалов,
- производства,
- распространения продукции.

Управление продуктами

PLM (product lifecycle management) — система управления жизненным циклом продукта:

- определение потребности в изделии у потребителей
- момент изготовления изделия
- утилизация изделия после использования или эксплуатации.

PDM (Product Data Management) — управления данными об изделии. В качестве изделий могут выступать самые разнообразные *товары и объекты*: от микрочипов до автомобилей и от мостов до компьютерных сетей. PDM-системы являются неотъемлимой частью PLM-систем.

Место MDM-системы

Каноническая модель сервисов

Canonical Schema – промежуточная модель данных (шаблон проектирования, общая унифицированная схема), используемая в сервис-ориентированной архитектуре SOA для приведения всех данных, участвующих в процессе обмена, к единому формату для уменьшения преобразований.

Отраслевые модели данных

Наименование модели / Разработчик	Назначение	Основные компоненты	Нотации / инструменты
BIAN (Banking industry Architecture Network)/ Bian.org	ИТ-сервисы в банковском секторе (SOA)	Ландшафт сервисов, метамодель, бизнес- сценарии, бизнес-словарь, объектная модель бизнеса. 10 основных концептов, 38 областей бизнеса, 1433 бизнес-объектов, 1736 атрибутов объектов.	Archimate UML (Class diagram, Sequence diagram) / Sparx EA
FIBO (Financial Industry Business Ontology), стандарт OMG/ EDMCouncil	Финансовая сфера	Словарь, онтология (классы, свойства данных и объектов). 16 основных концептов.	OWL (язык онтологии), RDF / FIBO Viewer SPARSQL
FIB-DM (Financial Industry Business Data Model)/ Jazed Data Models Inc.	Банки, инвестиционные компании и их регуляторы	Преобразование онтологии FIBO в привычные нотации ER-диаграмм: концептуальные модели данных. 2626 сущностей (2022 г.)	ER-диаграммы / Sparx EA, CA Erwin, SAP Power Designer
BFMDW (Banking and Financial Markets Data Warehouse)/ IBM	Бизнес-аналитика для банков и финансовых рынков	Бизнес-термины — концепты, аналитические требования, модель реляционного ХД, модель многомерного ХД. 9 основных концептов. 1260 сущностей, 7770+ атрибутов.	Таксономии концептов и многомерных моделей, ER-диаграммы/ IBM Information Governance Catalog, Data Architect, Генерация витрин.
FSDM (Financial Services Data Model) / Teradata	Финансовые сервисы	Корпоративная модель предметной области, концепты и бизнес-правила; Корпоративная КМД; ЛМД и ФМД интеграции. 10 основных концептов, 3,2 тыс. сущностей; 13,2 тыс. атрибутов; 6,5 тыс. связей (2017 г.)	ER-диаграммы / CA ERwin

Пример: Отраслевая модель хранилища данных IBM BFMDW

Обобщённые базовые сущности предметной области IBM BFMDW

Таксономия вовлечённой стороны в IBM BDW

вовлечённая сторона

Вид легальности

Юридическое лицо Неюридическое лицо

Вид вовлечённой стороны

Организация

Вид структуры организации

Корпорация Партнёрство Траст

Синдикат

Совместное предприятие

Кооператив

Единоличное владение

Назначение организации

Бизнес

Ассоциация
Правительство
Учебное заведение
Религиозная организация
Публичные услуги

Состояние ЖЦ организации

Действующая Приостановленная Недействующая Бывшая

Экономическая ориентация

Коммерческая

Закрытая

Некоммерческая организация

Индивид

Род индивида

Мужской Женский

Состояние ЖЦ индивида

Живущий Пропавший Умерший

Состояние здоровья

Здоровый Инвалид

Состояние занятости

Работающий Безработный

Род занятий

Семейное положение

Замужем/женат Овдовевший Разведённый Гражданский брак

Модель предметных областей Teradata FSDM

Корпоративная модель данных Сбербанка на основе FSDM Teradata

Отраслевая модель данных **BIAN** уровень **BOM**

BIAN Business Object Model Diagrams version 11.0

UML-диаграмма объекта Location (местоположение) в BIAN

Таблицы «заплатки» (patch) для расширения сущностей

Обобщение связей сущностей

Обобщение справочников

Пример обобщённой модели данных

Достоинства и недостатки модели данных Generic

Заложены основные сущности характерные для предметной области

Стандартизация операций и бизнес-процессов

Гибкость добавления новых связей и атрибутов

Широкий спектр справочных и реестровых данных

Готовые БД для операций и проведения анализа

Генерация форм ввода данных и витрин данных.

Трудности внедрения систем с обобщёнными моделями данных Требуются консультанты для приведение бизнеса к правилам и процессам, заложенным в этих системах Более сложные системы по сравнению с заказными и специализированными системами Повышенные требования к производительности и памяти Для крупных и средних предьприятий и организаций

Основные тренды моделирования данных в 2024 году

- 1. Широкое распространение *отраслевых моделей*
- 2. Рост и влияние *Концептуального моделирования*
- 3. Рост популярности графов знаний
- 4. Улучшение возможностей самообслуживания
- 5. Моделирование «на лету»
- 6. Совместное моделирование

Терпения и удачи всем, кто связан с моделированием данных

Спасибо за внимание!

Валерий Иванович Артемьев

МГТУ имени Н.Э. Баумана, кафедра ИУ-5

Банк России Департамент данных, проектов и процессов

> Тел.: +7(495) 753-96-25 e-mail: viart@bmstu.ru