Q1. Compute the common-mode rejection ratio of the stage below. For simplicity, neglect channel-length modulation in M_1 and M_2 but not in other transistors. A half circuit concept can be applied for A_{DM} . $g_m = g_{m1} = g_{m2}$

Q2. Find W/L of M1 and M2 of the MOS differential pair for a voltage gain of 5 and a power dissipation of 1 mW if the equilibrium overdrive, $V_{GS} - V_{TH}$, must be 150 mV. Assume $\lambda = 0$, $\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$, $V_{DD} = 1.8\text{V}$, and $g_m = g_{m1} = g_{m2}$.

Q1. Compute the common-mode rejection ratio of the stage below. For simplicity, neglect channel-length modulation in M_1 and M_2 but not in other transistors. A half circuit concept can be applied for A_{DM} . $g_m = g_{m1} = g_{m2}$

Q2. Find W/L of M1 and M2 of the MOS differential pair for a voltage gain of 5 and a power dissipation of 1 mW if the equilibrium overdrive, $V_{GS} - V_{TH}$, must be 150 mV. Assume $\lambda = 0$, $\mu_n C_{ox} = 100 \, \mu \text{A/V}^2$, $V_{DD} = 1.8 \, \text{V}$, and $g_m = g_{m1} = g_{m2}$.

