

CHEMISTRY Chapter 19

Principio de Le Chatelier

MOTIVATING STRATEGY

 $+4Cl^- + calor \rightleftharpoons CoCl_4^{2-} + H_2O$

(Derecha) el calentamiento favorece la formación del ión azul CoCl₄²⁻.

(Izquierda) el enfriamiento favorece la formación del ión rosa $Co(H_2O)_6^{2+}$.

PRINCIPIO DE LE CHATELIER

Si un sistema en equilibrio es perturbado por un factor externo (cambio de temperatura, presión, concentración), este reaccionará desplazándose en el sentido que contrarreste el efecto de la perturbación, de esta manera se alcanza nuevamente el equilibrio.

a) Cambios de concentración de un reactante o producto ([])

Sea la reacción:
$$A + B \longrightarrow C + D$$

Cambio de la concentración	Desplazamiento del equilibrio
[A] ↑	\rightarrow
[A] ↓	←
[C] ↑	←
[C] ↓	\rightarrow

b) Cambios en la temperatura (T)

K: constante de equilibrio

Sea la reacción exotérmica:

Sea la reacción endotérmica:

$$A + B + calor \longrightarrow C$$

(•)	<u> </u>
Cambio de la temperatura	Desplazamiento del equilibrio
T↑	← (disminuye K)
T↓	→ (aumenta K)
Cambio de la temperatura	Desplazamiento del equilibrio
T↑	→ (aumenta K)
T↓	← (disminuye K)

c. Cambios en la presión (P) o volumen (V)

n_R: mol de reactantes

n_p: mol de productos

Moles totales de gas	Aumenta la P Disminuye V	Disminuye P Aumenta V
$n_R > n_P$	\rightarrow	←
$n_R < n_P$	←	\rightarrow

Sea la reacción:

$$\underbrace{A + 2B} \Longrightarrow \underbrace{3C + 2D}$$
3 moles
5 moles

Cambio de la Presión y Volumen	Desplazamiento del equilibrio
$P \uparrow V \downarrow$	←
$P \downarrow V \uparrow$	\rightarrow

Resolución

Sea la reacción:

$$A + 3B \rightleftharpoons 2X + calor$$
4 moles 2 moles

"menos moles"

Si aumentamos la presión (P):

Rpta:

Por lo tanto, el equilibrio se desplaza hacia la derecha (→)

2. Para la reacción P + 2Q + Calor = 4M, ¿cómo se desplaza el equilibrio si aumentamos la temperatura?

Resolución

Sea la reacción: $P + 2Q + Calor \rightleftharpoons 4M$

Si aumentamos la temperatura (T) y como el sistema es endotérmico, por lo tanto:

Cambio de la	Desplazamiento
temperatura	del equilibrio
T ↑	→ (aumenta K)

Rpta:

El equilibrio se desplaza hacia la derecha (→)

3. Para la reacción: $2S_{(s)} + O_{2(g)} \rightleftharpoons SO_{3(g)}$, ¿cómo se desplaza el equilibrio si aumentamos la concentración de SO_3 ?

Resolución

Sea la reacción: $2S_{(s)} + O_{2(g)} \rightleftharpoons SO_{3(g)}$

Si adicionamos la concentración de SO₃ (producto):

Cambio de la	Desplazamiento
concentración	del equilibrio
[SO ₃] ↑	←

Rpta:

El equilibrio se desplaza hacia la izquierda (←)

4. Para la reacción: $N_{2(g)}+O_{2(g)}\rightleftharpoons NO_{(g)}$, ¿cómo se desplaza el equilibrio si se disminuye la concentración de NO?

Resolución

Sea la reacción:
$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$$

Si disminuye la concentración de NO (producto):

El equilibrio se desplaza hacia la derecha (-)

- 5. Para reacción $N_{2(g)} + H_{2(g)} \rightleftharpoons NH_{3(g)}$, si es exotérmica indique qué hacer para variar el equilibrio a la derecha.
- A. Aumento de NH₃.
- B. Disminución de la temperatura.
- C. Aumento de la presión.
- D. Agregar un catalizador

Resolución balanceamos:

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} + Calor$$
4 moles

2 moles

"menos moles"

A. Si aumenta la [NH₃] (producto):

Cambio de la	Desplazamiento del
concentración	equilibrio
[NH ₃] ↑	←

B. Si disminuye la temperatura y el sistema es exotérmico, por lo tanto:

Cambio de la temperatura	Desplazamiento del equilibrio
T↓	\rightarrow
	(aumenta K)

C. Si aumentamos la presión (P):

Cambio de la	Desplazamiento del
Presión y Volumen	equilibrio
$P\uparrowV\downarrow$	\rightarrow

D. La adición de un catalizador no altera el equilibrio químico.

6. Si la reacción química reversible.

$$1A + 2B \rightleftharpoons 2C$$

Es endotérmica, ¿cuál(es) de las afirmaciones dadas (son) correctas?

- I. El calentamiento aumenta el rendimiento.
- II. El incremento de la presión incrementa el valor de Kc.
- III. La variación de la presión no altera el equilibrio.

Resolución

Sea la reacción:

$$1A + 2B + Calor \rightleftharpoons 2C$$

3 moles

2 moles "menos moles"

I. Si aumenta la temperatura y el sistema es endotérmico, por lo tanto:

Cambio de la	Desplazamiento del
temperatura	equilibrio
T ↑	→ (aumenta K)

II. Si aumentamos la presión (P):

Cambio de la Presión y Volumen	Desplazamiento del equilibrio
$P \uparrow V \downarrow$	\rightarrow
	(aumenta K)
$P \downarrow V \uparrow$	←

III. Si aumentamos o disminuimos la presión (P) altera el equilibri Rota: I y II

7. En la siguiente tabla se muestran dos sistemas en equilibrio

SISTEMA 1 (endotérmico)	SISTEMA 2 (exotérmico)
$X_{(ac)}$ + Calor $\rightleftharpoons Y_{(ac)}$ (Café)	$W_{(ac)} \rightleftarrows Z_{(ac)} + Calor$ (Naranja) (Amarillo)

Resolución

A. F

B. Si disminuye la temperatura y el sistema 2 es exotérmico, por lo tanto:

Cambio de la temperatura	Desplazamiento del equilibrio
T↓	\rightarrow
	(Amarillo)

- C. F
- D. Si aumenta la temperatura y el sistema 1 es endotérmico, por lo tanto:

Cambio de la temperatura	Desplazamiento del equilibrio
T↑	\rightarrow
	(café)

Rpta: D