PNV 3321 – MÉTODOS DE OTIMIZAÇÃO APLICADOS A SISTEMAS DE ENGENHARIA

PROBLEMAS DE MODELAGEM - 2024

Questão 14 - Um conjunto de estações de geração de energia é utilizado para fornecer a demanda de eletricidade em uma região, cuja demanda ao longo do dia é:

0h00 - 6h00	15000 MW
6h00 – 9h00	30000 MW
9h00 – 15h00	25000 MW
15h00 – 18h00	40000 MW
18h00 - 24h00	27000 MW

Há 3 tipos de geradores disponíveis: 12 do tipo 1; 10 do tipo 2; 5 do tipo 3. Cada gerador deverá operar entre um nível mínimo (para justificar o seu acionamento) e um nível máximo. Há um custo para ligar cada gerador, um custo horário de operar cada gerador no nível mínimo de energia, e um adicional por hora para cada megawatt fornecido. Todos estes valores estão indicados na tabela abaixo.

Gerador	Nível Mínimo (MW)	Nível Máximo (MW)	Custo para Ligar (\$)	Custo Horário Nível Mínimo (\$)	Custo Horário por MW adicional (\$)
Tipo 1	850	2000	2.000,00	1.000,00	2,0
Tipo 2	1250	1750	1.000,00	2.600,00	1,3
Tipo 3	1500	4000	500,00	3.000,00	3,0

Elabore um modelo de programação matemática deste problema.

Conjuntos e Índices

$$I = \{1,2,3\} - indice\ i$$

 $T = \{1,2,3,4,5\} - indice\ t$

Parâmetros

 q_i quantidade de geradores por tipo i

 d_t demanda por faixa horária t

 h_t número de horas de cada faixa horária t

 α_i nível mínimo de potência do gerador tipo i

 eta_i nível máximo de potência do gerador tipo i

 c_i^L custo para ligar um gerador do tipo i

 c_i^H custo horário de um gerador do tipo i operando no nível mínimo

 c_i^I custo horário incremental de um gerador do tipo i

Variáveis de Decisão

 $x_{it} \geq 0$, inteiro – quantidade de geradores do tipo i ligados no período t

 $y_{it} \geq 0$, inteiro – quantidade de geradores do tipo i desligados ao final do período t

 $z_{it} \geq 0$, inteiro – quantidade de geradores do tipo i em operação no período t

 $w_{it} \ge 0$ – nível médio de potência dos geradores do tipo i no período t

Restrições

Limite de geradores disponíveis

$$z_{it} \le q_i \quad \forall i, \forall t$$

Geradores em Operação

$$\begin{aligned} z_{i1} &= x_{i1} \quad \forall i \\ \\ z_{i2} &= z_{i1} - y_{i1} + x_{i2} \quad \forall i \\ \\ z_{i3} &= z_{i2} - y_{i2} + x_{i3} \quad \forall i \\ \\ z_{it} &= z_{it-1} - y_{it-1} + x_{it} \quad \forall i, \forall t \colon 2 \dots 5 \end{aligned}$$

Nível de Potência dos Geradores

$$w_{it} \ge \alpha_i z_{it}$$
 $\forall i, \forall t$
 $w_{it} \le \beta_i z_{it}$ $\forall i, \forall t$

Atendimento da Demanda

$$\sum_{i=1}^{3} w_{it} \ge d_t \qquad \forall t$$

Função Objetivo

$$\min C = \sum_{i=1}^{3} \sum_{t=1}^{5} c_i^L x_{it} + c_i^H h_t z_{it} + c_i^I h_t (w_{it} - \alpha_i z_{it})$$