

Ch. 14 - IoT Security and Privacy Sec 1 – Introduction

COMPSCI 147 Internet-of-Things; Software and Systems

CONTENT

- Intro to Web and IoT Security and Privacy
- IoT Security Challenges
- IoT Security Requirements
- IoT Domain Architecture
 - Cloud Domain
 - Fog Domain
 - IoT Sensing Domain

Intro to IoT Security and Privacy

The benefits that IoT brings are associated with new security risks and

privacy issues

Intro to IoT Security and Privacy II

- The damage caused by cyber-attacks in the IoT era will have a direct impact on all the physical objects that you use in your daily life.
 - E.g., controlling the door lock, the brakes and the steering wheel of your car
 - E.g., controlling remotely the implantable and wearable health devices
 - Doctors disabled the wireless capability of Dick Cheney's <u>pacemaker</u>.

Intro to IoT Security and Privacy III

- Privacy in IoT is crucial
 - Learning about people's life by eavesdropping on the sensed data
 - E.g., from smart house appliances and wearable devices
 - Facial, speech, and human activity recognition amplify the amount of information that the sensed data can reveal
 - An outsider can even learn about your personal life when aggregating the metadata from multiple hacked objects
 - IoT Metadata aggregation examples projects:

IoT Security Challenges

Multiple Technologies

- IoT combine multiple technologies (e.g., RFID,WSN, cloud computing, virtualization).
- Each having its own vulnerabilities.
- The chain of all these technologies needs to be secured.
- Security is judged based on the weakest point (i.e., Achilles' heel)

Multiple Verticals

- Numerous applications (i.e., verticals).
 - eHealth, industrial, smart home gadgets, smart cities
- Security requirements of each vertical are quite different.

IoT Security Challenges II

Scalability

- Billion of devices
- Centralized defensive frameworks cannot work anymore

Big Data

- The generated data will be also enormous
- Each smart object will be supplied by numerous sensors
- Secure large streams of data

Availability

- Continuously operational for a desirably long period of time
- "five 9s" availability (99.999 % of the time in a given year)
- Network administrators hesitate to use needed threat response technology functions
- Add redundancy to systems may help

IoT Security Challenges III

Resource Limitations

- Recourse-constrained devices are low-hanging fruits for denial-of-service (DoS) Attacks
 - Overwhelming the limited resource capabilities of these devices or sending data to crash the system.
- Traditional cryptography techniques are computationally expensive

Remote Locations

- Some IoT devices may be installed in unmanned locations
- Cyber and physical security monitoring systems must be installed in safeguarded location

Mobility

- Extra difficulties when developing defensive mechanisms in dynamic environments
- Delay-Sensitive Service
 - Many IoT applications are expected to be delay-sensitive
 - Protection against degrading the service time

IoT Security Requirements I

- Confidentiality
 - The exchanged messages can be understood only by the intended entities
- Integrity
 - The exchanged messages were not altered/tampered by a third party
- Availability
 - The service is not interrupted. DoS attacks target this requirement
- Authentication
 - Entities involved in any operation are indeed who they claim to be
- Authorization
 - Entities have the required control permissions to perform the operation they request to perform

IoT Security Requirements II

Freshness

- The data is fresh.
- Replay attacks target this requirement where an old message is replayed in order to return an entity into an old state.

Non-repudiation

An entity cannot deny an action that it has performed.

Forward Secrecy

 When an object leaves the network, it will not understand the communications that are exchanged after its departure.

Backward Secrecy

 Any new object that joins the network will not be able to understand the communications exchanged prior to joining.

IoT Three-Domain Architecture

Cloud Domain

performing the heavy-computational processing operations.

Fog Domain

 performs operations on the collected data including aggregation, preprocessing, and storage.

IoT Sensing Domain

- smart objects that are expected to change their location over time.

