

GENERATION OF LONG TIME CREEP DATA ON REFRACTORY ALLOYS AT ELEVATED TEMPERATURES

NINE MONTH SUMMARY REPORT

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LEWIS RESEARCH CENTER
UNDER CONTRACT NAS 3-9439

TRW EQUIPMENT LABORATORIES

CLEVELAND, OHIO

NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee or such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Request for copies of this report should be referred to
National Aeronautics and Space Administration
Office of Scientific and Technical Information
Attention: AFSS-A
Washington, D. C. 20546

NAS-CR-72391

NINE MONTH SUMMARY REPORT

For

17 March 1967 to 14 December 1967

GENERATION OF LONG TIME CREEP DATA ON REFRACTORY ALLOYS AT ELEVATED TEMPERATURES

Prepared by:

K. D. Sheffler and E. A. Steigerwald

Prepared for:

National Aeronautics and Space Administration Contract No. NAS 3-9439

Technical Management:

Paul E. Moorhead

NASA - Lewis Research Center Space and Power Systems

14 December 1967

Materials Research and Development Department
TRW Equipment Laboratories
TRW Inc.
23555 Euclid Avenue
Cleveland, Ohio 44117

FOREWORD

The work described herein is being performed by TRW Inc. under the sponsorship of the National Aeronautics and Space Administration under Contract NAS 3-9439. The purpose of this study is to obtain design creep data on refractory metal alloys for use in advanced space power systems.

The program is administered for TRW Inc. by E. A. Steigerwald, Program Manager, K. D. Sheffler is the Principal Investigator, and R. R. Ebert contributed to the program. The NASA technical director is Paul E. Moorhead.

Prepared by: X. D. Sheffler

K. D. Sheffler

Engineer

Approved by: E. a. Sterg

Manager

Materials R&D

ABSTRACT

Molybdenum-base TZC and TZM alloys and tantalum-base T-111 and Astar 811C are being creep tested in a vacuum environment of <1 x 10^{-8} torr. Test temperatures range from 1600 to 2600° F (871-1427°C) and stresses from 0.5 to 65 Ksi (3.44 x 10^{6} to 4.48 x 10^{8} N/m²). Test parameters have been selected to provide 0.5-1.0% creep in 5000 to 15,000 hours.

Test results with molybdenum-base TZC and TZM show the effects of variations in composition and thermal-mechanical processing history on 1/2% creep life. Analysis of these data using the Larson-Miller parameter indicates that at higher stress levels and lower temperatures a specially processed lot of TZM having a somewhat higher than normal carbon content is superior to TZC in the stress relieved condition, whereas at higher temperatures and lower stresses, the behavior of the two materials is comparable.

A Larson-Miller plot for 1% creep of commercial purity tantalum tubing has been constructed based upon extrapolation of five short term creep tests performed sequentially upon two specimens. The Larson-Miller analysis shows a very sharp change in the creep resistance of the pure tantalum between $1183^{\circ}F$ (639°C) and $1350^{\circ}F$ (731°C).

The 1% creep data for tantalum-base T-111 alloy shows good agreement among results from five of six heats tested, with the sixth heat exhibiting significantly poorer creep resistance.

Tests designed to evaluate the creep behavior of T-111 subjected to continuously increasing loads exhibit progressively increasing creep rates. The experimental techniques involved in these tests and various methods for prediction of continuous load life from static creep test data are discussed.

Results of a single test in progresss on Astar 811C show this alloy to have significantly better creep resistance than T-111.

TABLE OF CONTENTS

		Page No.
I	INTRODUCTION	1
11	MATERIALS AND PROCEDURE	2
111	RESULTS AND DISCUSSION	10
	Molybdenum-Base Alloys TZC and TZM	10 16
IV	SUMMARY	60
V	BIBLIOGRAPHY	61

INTRODUCTION

Current design concepts for space electric power systems specify refractory metals and alloys in a variety of areas. Among these is the proposed use of molybdenum-base alloys as turbine components and tantalum-base alloys for tubing and capsule fabrication.

One of the most important properties of these materials in such applications is the long time creep strength at elevated temperature. Since the systems under consideration will operate either in the ultra-high vacuum of outer space or in environments such as metal vapor or liquid metals where the partial pressure of reactive gasses is extremely low, it is necessary to determine the creep properties of the proposed materials of construction in an ultra-high vacuum environment in order to generate representative design data.

Various refractory alloys are therefore being creep tested in a vacuum environment of $<1\times10^{-8}$ torr for times up to 15,000 hours on a continuation of an NASA program, (NAS-3-2545). Materials of current interest are the molybdenum-base alloys TZM and TZC, commercially pure tantalum, and the tantalum-base alloys T-111 and Astar 811C.

Application of radioactive isotope capsules as a prime energy source for space electric power systems provides another unique design problem, where an enclosed capsule may be subjected to continuously increasing helium gas pressure. Experimental techniques have therefore been developed to vacuum creep test refractory alloys with continuously increasing loads, and various methods to predict creep behavior under these test conditions from static creep test data are being evaluated.

1

II MATERIALS AND PROCEDURE

The composition of the various alloys discussed in this report are presented in Table 1 and a detailed review of the available processing histories is presented in Appendix I. Raw creep data from each of the tests are presented in Appendix II.

The general creep test program involves evaluation of the molybdenum-base alloys TZC and TZM at temperatures between 1600 and 2250°F (871 and 1235°C) at stresses chosen to provide 1/2% to 1% total creep in 5000 to 15,000 hours. The tantalum-base alloys are being evaluated at 1750 to 2600° F (954 to 1427° C while the commercially pure tantalum is being tested in the 1100 to 1350° F (593 to 732° C) range. In most cases, stresses for the tantalum base tests are also chosen to provide 1% total creep in 5000 to 15,000 hours.

The TZM alloy was obtained from two different sources. One lot of material, designated as Heat 7502, was purchased from Climax Molybdenum of Michigan in the form of 11 inch diameter disc forgings. A second lot of TZM, designated Heat No. 7463, was also obtained from Climax, but in the form of rolled and swaged bar. The third lot of this material (Heat KDTZM-1175 Disc No. 3) was a section of a forging obtained from AiResearch. The latter material was specially processed by Universal Cyclops to produce improved creep resistance (1)* through the development of a fine carbide dispersion. A carbon level above 0.02% is necessary in order to produce this effect.

Three different heats of TZC have been tested. Heats M-80 and M-91 were processed by the General Electric Co. M-80 was rolled with very small reductions on each pass and a high finishing temperature, while M-91 was processed by taking a relatively large reduction per pass and finishing at a lower temperature. TZC Heat 4345 was prepared by Climax Molybdenum of Michigan by broad forging 3-inch diameter extruded stock at 2400°F (1316°C).

Six heats of T-111 alloy were obtained from two different sources. Four heats were produced by Wah Chang Corporation (Heats 70616, 65079, 65080, and MCN02A065), and two were obtained from Fansteel Corporation (Heats D-1670 and D-1102). All heats are being evaluated after recrystallization at 3000° F (1649° C) for one hour.

A sample of Astar 811C, a relatively new tantalum-base alloy developed under Contract NAS 3-2542, was obtained from the Westinghouse Electric Corporation through NASA Lewis. This alloy was rolled to 0.030" thick sheet, delivered in the as-worked condition, and tested after a 1/2 hour anneal at $3600^{\circ}F$ (1982°C).

^{*} Numbers in parentheses refer to references listed in the bibliography.

Table 1

Chemical Composition of Alloys Being Evaluated in Creep Program (Weight %) (1)

N ₂ 0 ₂ H ₂	1 2 1(2) 100 20 7 43 34 9	41 37 19	20 55 6 50 130 4(2) 40 105 4(4) 20 100 3(2) 34 20 3(2) 20 72 <5(2)	(3)
' '	.08 .091 .120	_		
:-				
ی	.016 .010	. 127 (4) . 113 (4) . 075	.0044 .003 .0031 .004 .004	.250
HF			2.30 2.30 2.03 1.95 2.28 2.17-2.44	0.7
Ta			Bal. Bal. Bal. Bal. Bal.	Bal.
₩ O	Bal. Bal. Bal.	Bal. Bal. Bal.		
Re				1.0
3			88.5 6.9 6.7 6.9 6.7	8.0
Material	TZM (Heat 7463) (Heat 7502) (Heat KDTZM-1175)	TZC (Heat M-80) (Heat M-91) (Heat 4345)	T-111 (Heat 70616) 8.5 (Heat 65079) 8.7 (Heat 65080) 8.9 (Heat MCN02A065) 8.6 (Heat D-1102) 7.9 (Heat D-1670) 7.9	Astar 811C

3

TRW Analysis Vendor Analysis Nominal Composition Average of Several Analyses

£353 £353

Two specimens of commercially pure tantalum tubing were obtained from the Fansteel Metallurgical Corporation through NASA Lewis. These samples were annealed one hour at $1832^{\circ}F$ ($1000^{\circ}C$) prior to delivery and are being evaluated in this condition.

The static creep test procedure involved obtaining a chamber vacuum of 5×10^{-10} torr or better at room temperature, then heating the specimen at such a rate that the pressure never rose above $1 \times 10^{-6} torr$. After test heat treatments were performed in situ prior to load application. After heat treatment the specimens were cooled to $600^{\circ} F$ (316°C) or lower and then reheated to the test temperature which was maintained for two hours prior to loading in order to insure complete thermal equilibrium in the test specimen. During testing, the pressure was always less than 1×10^{-8} torr and decreased with test time. Specimen extension was determined over a two-inch gage length by using an optical extensometer to measure the distance between two scribed reference marks with an accuracy of 50 microinches. Temperature was initially recorded by a thermocouple attached to the specimen. An optical pyrometer having a precision of $\pm 1^{\circ} F$ was calibrated against the thermocouple and subsequently used as the prime temperature reference.

The continuous loading test procedure required replacement of the static loading weight pan with an aluminum container which collected lead shot from a feeder driven by a continuous-duty DC motor. The loading rate was regulated by controlling the speed of the feeder drive motor. A typical record of load as a function of time is shown in Figure 1.

The geometries of the sheet and bar specimens are shown in Figures 2 and 3. The orientation of the specimens with respect to the working direction is given below:

Material Form	Specimen Axis Parallel To
Disc forging	Radius
Plate	Extruding direction
Sheet	Rolling direction (except where indicated)

A special specimen and grip were developed for testing the tantalum tubing. A specimen machined according to this design is shown in Figure 4. The axes of the loading pins are perpendicular to the flats that are centered in the tube to insure equal loading of each gage section. The grips were hollow heavywalled cylinders which slide over the ends of the tubing to receive the loading pins. Five sequential tests have been performed in the temperature range between 1100 and 1350° F (593 and 732° C) on two of these specimens cut from one of the asreceived tubes. A fifteen-minute anneal at 1832° F (1000° C) was applied between each test sequence.

Figure 1. Load on specimen S-51 as a function of test time.

Figure 2. Creep specimen used for sheet stock.

NOTE: ANY TAPER IN GAUGE SECTION MUST BE TOWARDS CENTER

ALL TOLERANCES ± OIO" UNLESS OTHERWISE NOTED

Figure 3. Creep specimen used for plate stock.

Figure 4. Creep specimen used for commercially pure tantalum tubing.

8

In addition to the long time creep tests in progress on T-111, a series of short time tests were performed sequentially upon two specimens of this alloy to evaluate the ability of such tests to predict long time data. A preliminary test was conducted at 2000° F (1093° C) in order to establish base-line data. This was followed by a second test consisting of four individual sequences at 2172, 2391, 2000, and 1800° F (1189, 1299, 1093, and 980° C), conducted in that order. The specimen was given the customary pre-test anneal at 3000° F for one hour, and was provided with a 15 minute anneal at the same temperature between each test sequence. The stress was adjusted for each sequence to provide a nominal 1000 hour 1% creep life.

III RESULTS AND DISCUSSION

Molybdenum-Base Alloys

Creep curves for the tests on TZC Heat M-91 (Figure 5) show that the specimens stress relieved at 2500°F (1371°C) achieved steady state creep rates after about 2000 hours, while the specimen recrystallized at 3092°F (1700°C) exhibited a steadily decreasing strain rate throughout the test. This behavior indicates a time and/or strain dependent strengthening process occurring simultaneously with creep. The strengthening may represent either classical work hardening or some form of precipitation hardening mechanism. Post creep tension tests show an increase of strength consistent with this observed hardening during creep (2).

Tests were conducted on two samples from TZC Heat 4345, one stress relieved at $2400^{\circ}F$ ($1316^{\circ}C$), and the other at $2500^{\circ}F$ ($1371^{\circ}C$) to evaluate the influence of the different stress relief temperatures on creep behavior. Results of these tests (Figure 6) indicate that the lower stress relief temperature produced slightly improved creep properties.

A summary of the creep tests conducted on TZC, including previously obtained results (3), is presented in Table 2 along with Larson-Miller parameters based on the time for 1/2% creep. Correlation of the Larson-Miller parameters with stress (Figure 7) indicates that in the annealed condition (one hour at 3092° F (1700° C)) TZC Heat M-80 is superior to Heat M-91. Figure 8 shows that M-91 has been fully recrystallized by the annealing treatment, whereas M-80 retains strong remnants of the cold worked structure. Mechanical properties presented in Table 3 indicate that the M-80 material has significantly higher hardness, higher yield strength and lower ductility than M-91.

TABLE 3

Room Temperature Mechanical Properties

Heat No.	Ultimate	Streng 0.2% Yield	th, Ksi % Elongation	% Reduction of Area	DPH <u>Hardness</u>
M-80	68.6	68.5	.05	0	268
M-91	85	49	7	7	240

The higher creep strength of the M-80 material may be associated with the more complex substructure implied by the higher yield strength.

Table 2 - Summary of TZC Ultra-High Vacuum Creep Test Results

103			
Larson-Miller Parameter for 0.5% Creep T ^O R (15 + logt) x 10	48.3 48.9 46.8 46.0	45.7 46.6 41.1 44.4 45.9 44.6	46.2 46.3
Time to 0.5% Creep Hours	Heat No. M-80 1,100 2,500 10,408 75,000* (14,405) 35,000* (14,239)	Heat No. M-91 3,650 329 1,075 1,100 70 14,400* 7,720	Heat No. 4345 5,940 8,000
Stress 2 N/m	1.24 × 108 1.17 × 108 1.38 × 108 1.72 × 108 1.31 × 10	1.38 × 107 9.65 × 107 3.03 × 108 1.93 × 108 1.52 × 108 1.52 × 108	1.52×10^{8} 1.52×10^{8}
.is	18 17 20 25 19	20 14 22 22 22 22	22
Temperature	1204 1204 1093 1013	1093 1204 982 1093 1204 1057	1093 1093
Test T	2200 2200 2000 1856 2056	2000 2200 1800 2000 2200 1935	2000
Condition	1 hour 3092°F (1700°C) 1 hour 3092°F (1700°C) 1 hour 3092°F (1700°C) 1 hour 3092°F (1700°C) 1 hour 3092°F (1700°C)	1 hour 3092°F (1700°C) 1 hour 3092°F (1700°C) 1 hour 2300°F (1260°C) 1 hour 2500°F (1371°C) 1 hour 2500°F (1371°C) 1 hour 2500°F (1371°C)	1 hour 2500 ^o F (1371 ^o C) 1 hour 2400 ^o F (1316 ^o C)
Specimen No.	B-8A B-10 B-9 B-11	B-20 B-31 B-19 B-28 B-30 B-32	B-36 B-37

Extrapolated - Numbers in parentheses indicate actual test time *

Creep test data, TZC Heat No. M-91 tested in a vacuum environment of $<1~\times~10^{-8}$ torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 5.

Creep test data, TZC Heat No. 4345 tested at 2000°F (1093°C) and 22 ksi (1.52 \times 108 N/m²) in a vacuum environment of $<1~\times$ 10-8 torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 6.

Figure 7. Parametric representation of TZC 0.5% creep test results.

Heat M-91

Heat M-80

Figure 8. Microstructures of TZC plates after annealing at 3092°F (1700°C) one hour. 100X.

The Larson-Miller plot of the TZC data also shows that at identical stress levels stress relief at 2500°F and annealing at 3092°F provide essentially the same creep resistance in Heat M-91. However, results at several stress levels should be available in order to verify such a comparison.

Creep curves for the tests in progress or completed on TZM during the current reporting period are presented in Figure 9 while a summary of the available creep data is presented in Table 4 and Figure 10. The Larson-Miller plot shows the superiority of Heat KDTZM 1175, which has received the special processing noted earlier in the report.

Comparison of the TZC and TZM results (Figures 7 and 10) indicates that at higher stress levels and lower temperatures, stress relieved TZM is superior to TZC, while at the lower stress levels the behavior of the two materials is comparable. The room temperature strength properties of TZM Heat 1175 (Table 5) are also higher than the annealed TZC alloys and this factor is believed to contribute to the improved creep strength at the lower test temperatures.

Tensile Properties of TZM Heat KDTZM 1175 Stress Relieved
One Hour at 2300°F (1260°C)

Temperature	Ultimate Strength Ksi	0.2% Offset Yield Strength, Ksi	% Elongation	% Reduction of Area
Room Temperature	122	110.9	17.4	29.1
2000°F (1095°C)	78.6	74.1	19.1	50.8

Tantalum and Tantalum-Base Alloys

Commercially Pure Tantalum Tubing

Creep curves for each of the five test sequences performed upon two specimens of commercially pure tantalum tubing obtained from the Fansteel Metallurgical Corporation through NASA Lewis are presented in Figure 11. Results of these sequential tests, summarized in Table 6, show significant variability of the results which cannot be explained at the present time. The creep properties observed are below those previously reported for pure Ta (4), and probably reflect the higher purity of the present samples.

Table 4 - Summary of TZM Ultra-High Vacuum Creep Test Results

Specimen No.	Condition	Test Temperature		ks:	Stress N/m	Time to 0.5% Creep Hours	Larson-Miller Parameter for 0.5% Creep T^{O}_R (15 + logt)x 10^3
8-1	Stress relieve 2200°F	2130	1165	12.55	8.65 × 10 ⁷	Heat No. 7502 605	46.1
B-3	Stress relieve 2200°F	2000	1095	10	6.89×10^{7}	14,200* (10,048)	47.1
B-29	Stress relieve 2200°F	2000	1095	41	2.82×10^{8}	100	41.8
B-35	Stress relieve 2200°F	1800	982	44	3.03 × 10 ⁸	7,000	42.6
B-4	(1204 L) Stress relieve 2200° F Plus I hour 2850° F (1566 $^{\circ}$ C)	2000	1095	01	6.89×10^{7}	25,000* (10,012)	47.7
8-16	1 hour 2300 ⁰ F (1260 ⁰ C)	1855	1013	23.4	¥	Heat KDTZM-1175 62,500* (4,376)	45.8
8-13	1 hour 2300°F (1260°C)	1600		55 65	3.79×10^{8}	60,000* (2,159) 9,600* (1,630)	40.7 39.1
B-25 B-38	1 hour 2300°F (1260°C) 1 hour 2300°F (1260°C)	1800	982 1093	44 22	3.03 × 108 1.51 × 10	50,000* (10,152) 8,500*	44.5 46.5
8-34	1/2 hour 2250 ⁰ F (1232 ⁰ C)	2000	1093	141	2.82 × 10 ⁸	Heat No. 7463 790	0.44

Extrapolated - Numbers in parenthesis indicate actual test time

Table 6

Summary of Sequential Creep Test Results on Pure Tantalum Tubing, Specimen Annealed I Hour at 1832°F (1000°C) Prior to Test Initiation, and Between Each Sequence 15 Minutes at

<pre>1% Creep Larson-Miller</pre>	2 K C C C C C C C C C C C C C C C C C C	41.3	43.4	4.5.4	47.0	52.2
<pre>1% Creep Larson-Miller</pre>	10 K 1 2 1 1 0 9 C/	25.8	27.8	29.0	28.9	34.0
Total Extension	%	1.02	0.542	0.635	1.00	0.275
Actual Testing	Hours	31.8	264.3	282.4	6	1220
Extrapolated 1% Creep Life	Hours	31	603	462.5	6	0099
88	$N/m^2 \times 10^{-1}$	9.37	7.99	6.95	4.82	3.37
Stre	Ksi N/m ²	13.6	11.6	10.1	7	4.9
ature	ပ	969	969	639	731	731 4.9
Temper	٠ ٢	1100	1100	1183	1350	1350
	Test No.	B-39A	B-39B	B-39C	B-40A	B-40B

Creep test data, TZM, tested in a vacuum environment of $<1~\rm x~10^{-8}$ torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 9.

Figure 10. Parametric representation of TZM 0.5% creep test results.

curves indicate chamber pressure at various intervals during Creep test data, Pure Ta, tested in sequential test program in a vacuum environment of <1 x 10^{-8} torr. Arrows on the the test. Figure 11.

8-1902

Figure 12. Parametric representation of 1% creep life data for sequential tests on tantalum tubing.

Tantalum Base T-111 Alloy

Creep curves for tests completed or in progress on tantalum base T-111 alloy during the current reporting period are presented in Figures 13 through 25. The behavior of T-111 is significantly different than pure tantalum in that the curves generally show little or no first stage creep and the rate often increases with test time. Such behavior, when observed previously in other metals and alloys (5, 6, 7, 8) has generally been attributed to some form of mechanism which provides thermal and/or strain activated recovery at a faster rate than the strain hardening from creep deformation.

Figure 18 shows the significant influence of temperature and stress on the tendency for strain softening in T-111. Test S-28 at $2600^{\circ}F$ and 0.5 Ks; provides a classical creep curve with a first stage characterized by a steadily decreasing strain rate followed by a second stage during which the strain rate stays very nearly constant over a long period of time. By comparison, Test S-26 which is being conducted at $1800^{\circ}F$ and 17 Ks;, shows a steadily increasing strain rate for almost the entire 10,000 hours of testing. The T-111 creep curves from tests at temperatures between 1800 and $2600^{\circ}F$ exhibit behaviors intermediate between these two extremes.

The results of two tests made under identical conditions to evaluate the relative creep resistance of T-lll parallel and perpendicular to the rolling direction are shown in Figure 21. Although the material appears slightly stronger in creep perpendicular to the rolling direction the difference is small enough so that it could represent a statistical variation of test results.

A summary of all of the T-111 creep data generated under static load on the present and previous creep contract is presented in Table 7, and a Larson-Miller plot of these data is shown in Figure 26. Five of the six heats had comparable creep properties while Heat No. 65080 had a significantly lower creep resistance. No differences appear to exist among the chemical compositions and tensile properties of the heats which might account for the wide variation in creep strength. More detailed comparison based on electron microscope and microprobe studies and discussed later in the report. The ASTAR 811C data points shown will be discussed subsequently.

T-111 Sequential Tests

Results of the sequential test program designed to establish a tentative Larson-Miller plot from successive short time tests on a single sample are presented in Table 8 and are included with the complete T-lll results in Figure 26. All of the sequential test data fell within the scatter band of long time tests. However, examination of the creep curves for sequences S-44C and S-44D (Figure 13) shows that the behavior of these two tests was somewhat irregular and it was necessary to run the test for a period of approximately 500 hours before a reliable extrapolation could be made. This result emphasizes the necessity to initiate sequential tests at the lowest temperature in the range of interest and to always progress upward in temperature.

Creep test data, T-111 Heat No. 65079 tested in sequential test program in a vacuum environment of ${\rm <1~x~10^{-8}~torr.}$ Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 13.

Creep test data, T-111 Heat No. 65080 annealed 1 hour at $3000^{\circ}F$ (1649°C), tested in progressive stress program in a vacuum environment of <1 x 10^8 torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 14.

curves indicate chamber pressure at various intervals during per hour, Test No. S-46 in progress stress program, tested in a vacuum environment of ${\rm <1~\times~10^{-8}}$ torr. Arrows on the Creep test data, T-111 Heat No. 65079 annealed 1 hour at $3000^{\circ}F$ (1649°C), tested at $2200^{\circ}F$ (1204°C) and 0.016 KSI the test. Figure 15.

2101-8

on the curves indicate chamber pressure at various intervals Creep test data, T-111 Heat No. 65079 annealed 1 hour at 3000°F (1649°C), tested at 1800°F (982°C) and 0.020 KS1 per hour, Test No. S-49 in progressive stress program, tested in a vacuum environment of <1 x 10⁻⁸ torr. Arrows during the test. Figure 16.

hour, Test No. S-51 in progressige stress program, tested in a vacuum environment of <1 x 10^{-8} torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Creep test data, T-111 Heat No. D-1183 annealed 1 hour at $3000^{\circ}F$ (1649°C), tested at $2200^{\circ}F$ (1204°C) and 0.016 KS1 per Figure 17.

on the curves indicate chamber pressure at various intervals during Creep test data, T-111 Heat No. D-1670 annealed 1 hour at 3000° F (1649°C) tested in a vacuum environment of <1 x 10-8 torr. Arrows the test, Figure 18.

Creep test data, T-111 Heat No. D-1102 annealed 1 hgur at 3000°F (1649°C) tested in a vacuum environment of <1 x 10^{-8} torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 19.

Creep test data, T-111 Heat No. MCN02A065 annealed 1 hour at 3000°F (1649°C), tested in a vacuum environment of $<1~\times~10^{-8}$ torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 20.

Creep test data, T-111 Heat No. 65079 annealed 1 hour at $3000^\circ F$ (1649°C), tested at $200^\circ F$ (1204°C) and 5_8 KSI (3.44 x 10⁷ N/m²) in a vacuum environment of <1 x 10⁻⁸ torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 21.

2102-8

Creep test data, T-111 Heat No. 65079 annealed 1 hour at 3000°F (1649°C), tested at 2300PF (1263°C) and 3.5 KSI (2.4 \times 10⁷ N/m²), Test No. S-42, tested in a vacuum environment of <1 \times 10⁻⁸ torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 22.

Creep test data, T-111 Heat No. 65079 annealed 1 hour at 3000°F (1649°C), tested in a vacuum environment of <1 \times 10^8 torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 23.

Creep test data, T-111 Heat No. 65080 annealed 1 hour at $_{-8}$ 3000°F (1649°C) tested in a vacuum environment of <1 x 10 $^{-8}$ torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 24.

Creep test data, T-111 Heat No. 65080A annealed 1 hour at $3000^\circ F$ (1649°C), tested at $2200^\circ F$ (1204°C) and 3 KSI (2.07 x 10^7 N/m²), Test No. S-45, tested in a vacuum environment of <1 x 10^{-8} Arrows on the curves indicate chamber pressure at various intervals during the test. torr. Figure 25.

2103-8

Table 7

1% Creep Test Data and Larson-Miller Parameter for T-111 Tantalum-Base Alloy Recrystallized 1 Hour 3000°F (1649°C)

Specimen No.	Temper °F	ature <u>°C</u>	Str <u>ksi</u>	ess <u>N/m²×10⁸</u>	Hours for 1.0% Creep	Larson-Miller Parameter $T^{\circ}R$ (15 + logt 1%) x 10 ⁻³
Heat 7061 S-19 S-21 S-23 S-22 S-24	2200 2200 2120 2000 1860	1204 1204 1160 1093 1016	8 12 12 20 20	0.551 0.826 0.826 1.380 1.380	2,000 1,140 3,150 670 4,730	48.7 48.0 47.7 43.8 43.3
Heat D-16 S-25 S-26 S-25A S-28	2000 1800 2600 2600	1093 982 1427 1427	15 17 1.5 0.5	1.030 1.170 0.103 0.0344	1,340 9,540 1,100* (482) 55,100* (10,9	
Heat 1102 S-27 S-32 S-40	2000 2200 1800	1093 1204 982	13 5 17	0.895 0.344 1.170	1,880 4,050 9,015* (4511	45.0 49.5) 42.8
Heat 6507 S-30** S-31** S-35 S-42	2400 2200 2200 2200 2300	1316 1204 1204 1263	3.5 5 5 3.5	0.241 0.344 0.344 0.241	860 6,160 5,400 3,900* (3448	51.3 50.0 49.9 51.3
Heat 6507 S-47 S-48 S-50	79A 1750 2350 2000	954 1288 1093	24 2.4 8.5	1.650 .165 .722	38,000* (1645 7,270* (1148 Insufficien	
Heat MCNO S-33 S-34	2200 2000	1204 1093	8 11	0.551 0.758	2,850 10,750* (786	49.1 7) 46.9
Heat 6508 S-37 S-39	1800	1204 982	8 13	0.551 0.895	260 8,345* (457	46.3 42.7
Heat 6508 S-45	2200	1204	3	0.207	554	47.1

^{*} Extrapolated Data - numbers in parenthesis indicate actual test time.

^{**} Specimen Axis perpendicular to rolling direction.

Figure 26. Larson-Miller plot of 1% creep test results on T-111 recrystallized 1 hour at 3000°F (1649°C), plus two data points for ASTAR 811C. High stress ASTAR 811C test recrystallized 1 hour at 3000°F (1649°C), low stress test recrystallized 1/2 hour at 3600°F (2038°C).

Table 8 - Summary of Sequential Creep Test Data on T-111 Alloy Annealed 1 Hour at 3000°F (1649°C) Prior to Test, and 15 Minutes at 3000°F (1649°C) Between Each Sequence

l% Creep Larson-Miller Parameter on T _{oR} (15+log t)x10 ⁻³	7.44	48.7	51.9	8.44	43.3
Total Extension	0.108	0.152	0.168	0.095	0.090
Actual Testing Hours	361	194	335	9411	406
Extrapolated 1% Creep Life Hours	1500	3250	2030	1670	14 650
Stress N/m ²	1.24×10 ⁸	6.55×10 ⁷	2.27×10 ⁷	1.24×10 ⁸	701713
Str	18	9.5	3.3	18	ç
ature °C	1093	1189	1299	1093	000
Temperature °F °C	2000	2172	2371 1299	2000	000
Test No.	S-43	S-44A	S-44B	2-44C	4

Continuous Loading Tests

Creep curves from the continuous loading tests (Figures 14 through 17) show strain rates which progressively increase with time. The creep life data from these tests (see Table 9) have been analyzed using a method similar to that employed by McCoy (9) and Nichols and Winkler (10). The technique is similar to Minor's law of accumulating fatigue damage, which assumes that the percentage of a specimen's useful life "used up" under any given set of test conditions is directly proportional to the period of time which the specimen spends there divided by the life which could be achieved in a static test at those conditions. When the sum of these "life fractions" reaches unity the usefulness of the material is considered exhausted. Stated mathematically this concept takes the form:

$$\sum_{t=0}^{L} \frac{\Delta t_i}{\lambda_i} = 1 \tag{1}$$

where t is time, λ_i is the specimen life at the ith set of conditions, t_i is the period of time spent under these conditions, and L is the "dynamic" test life of the specimen. The underlying assumption which permits such a statement is that the life λ_i at the ith set of conditions is not influenced by previous testing of the same specimen under other conditions. As applied to creep testing the meaning of this assumption is that the creep life at any temperature and stress is not influenced by previous creep strain imposed at other temperatures and stresses.

To further modify this analysis to creep testing it is necessary to have some form of equation which analytically relates creep life (λ) to temperature and stress. The Larson-Miller correlation presented earlier for T-lll alloy provides an empirical relationship between these variables from which such a function can be generated. To a first approximation the Larson-Miller parameters plotted in Figure 26 show a linear relationship to log stress; i.e.,

$$\log \sigma = A' \{T(C' + \log t)\} + B'$$
 (2)

where A' is the slope of the straight line, B' is the intercept on the stress axis, T is absolute temperature (°R), C' is the Larson-Miller constant, and t is the 1% creep life. Taking t to be equivalent to λ in Equation (1), converting to natural logs, and rearranging Equation (2) to solve for life,

$$\ln \lambda = \frac{\ln \sigma - B}{AT} - C$$

Summary of Continuous Loading Tests on T-111

Annealed | Hour at 3000°F

Test No.	Heat No.	Temperature (°F)	Loading Rate psi/hour	1% Creep <u>Life</u>
S-36	65080	2200	16	600
s-38	65080	2200	1	3830
S-46	65079	2200	16	1000*
S-49	65079	1800	20	-
S-51	D-1183	2200	16	-

^{*} EXTRAPOLATED

or
$$\lambda = \sigma^{1/AT} \frac{-(B/AT+C)}{e}$$
 (3)

In the case at hand, stress increases linearly with time; i.e.,

$$\sigma = \dot{\sigma}t \tag{4}$$

and

$$\lambda = (\dot{\sigma}t)^{1/AT} e^{-(B/AT+C)}$$
(5)

Incorporating this relationship into Equation 1,

$$\sum_{t=0}^{L} \frac{\Delta t}{(\dot{\sigma}t)^{1/AT} e^{-(B/AT+C)}} = 1$$
 (6)

Since stress is a continuous function of time the limit of Equation 6 as Δt approaches zero is equal to:

$$\int_0^L \frac{dt}{(\dot{\sigma}t)^{1/AT} e^{-(B/AT+C)}} = 1$$
 (7)

Rearranging this expression to take all constants outside the integral,

$$\frac{e^{(B/AT+C)}}{\frac{1}{\sigma} I/AT} \qquad \int_{0}^{L} (t)^{-\frac{1}{AT}} dt = 1$$
 (8)

assuming that $1/AT \neq 1$, analytical integration of this expression is straight forward, and results in the relationship:

$$\frac{e^{(B/AT+C)}}{\frac{1}{\sigma}} \frac{t^{(1-\overline{AT})}}{\frac{1-\overline{1}}{AT}} \begin{vmatrix} L \\ -\overline{AT} \end{vmatrix} = 1$$
 (9)

or
$$\left(\frac{AT}{AT-1}\right) = e^{\left(B/AT+C\right)} = \frac{\left(AT-1\right)}{AT} = \frac{1}{\sigma}$$
 (10)

Taking the log of this equation,

$$\ln\left(\frac{AT}{AT-1}\right) + B/AT+C + \left(\frac{AT-1}{AT}\right)\ln L = \frac{\ln\sigma}{AT}$$
 (11)

which can be solved for either L or $\dot{\sigma}$, as indicated below:

$$\ln \dot{\sigma} = (AT-1) \ln L + AT \ln \{\frac{AT}{AT-1}\} + B+AT(C)$$
 (12)

or

$$\ln L = \left\{ \frac{\ln \sigma}{AT} - \ln \frac{AT}{AT-1} - B/AT-C \right\} \frac{AT}{AT-1}$$
 (]3)

By manually fitting a straight line to the data in Figure 26 and adjusting for the use of natural logs in the theoretical development, the values A, B, and C can be determined as:

$$A = -1.04 \times 10^{-4}$$
 $B = 13.67$
 $C = 34.54$

The validity of this technique for predicting creep life under continuously increasing load from static creep data can be evaluated by using data obtained on T-111, Heat 65080. In this case the value for the slope A was determined from the general Larson-Miller curve for T-111 in Figure 26 while the constant B was obtained by fitting the Larson-Miller curve through the data for Heat 65080. On this basis $A = 1.04 \times 10^{-4}$ and B = 12.91. Predictions made using these constants, presented below, show reasonably good agreement with the experimentally determined results:

Comparison of Predicted and Observed Creep for T-111 Under Continuous Load Conditions

	1% Creep Life,	Hours
Test No.	Experimental	Predicted
s-36	600	485
s-38	3830	4261

Several interesting implications arise from an analysis of the relationship defined by Equation (11). The most important of these involves the existence of a critical stress rate σ_{max} above which specimen life is limited by the rate of approach to the yield stress rather than by the rate of creep deformation. The yield stress for T-111 in the temperature range of interest (1800 to 2400°F)

'(982 to 1316°C) is approximately 32 Ksi. Assuming that specimen extension will become dominated by short term plastic deformation rather than by creep as σ approaches 3/4 of the yield stress (as evidenced by the tendency for the Larson-Miller plot to deviate from linearity at roughly this stress), σ_{max} can be established through Equation (4) in combination with Equation (12):

$$\ln \dot{\sigma}_{\text{max}} = (AT-1) \ln \left(\frac{24}{\dot{\sigma}_{\text{max}}}\right) + AT \ln \frac{AT}{AT-1} + B + AT (C)$$

or rearranging to solve for $\overset{\bullet}{\sigma}_{max}$,

$$\ln \dot{\sigma}_{\text{max}} = \frac{AT-1}{AT} \ln 24 + \ln \frac{AT}{AT-1} + B/AT+C$$
 (14)

Solution of Equation (14) at several temperatures in the range of interest provides the following results:

Tempe:	rature °C	Maximum Stress Rate Ksi/Hour	Predicted Time to 1% Strain, Hours
1800	982	0.0002	120,000
2000	1093	0.008	3,000
2200	1204	0.166	144
2400	1316	2.78	. 8

The times listed above are the minimum test times at each temperature for specimens to be strained to 1% in pure creep. Shorter tests could be run at higher strain rates but the strain incurred would be predominantly short term plastic deformation and would be concentrated during the latter stages of the test when applied stress approaches the yield point. In this case the 1% creep life would be limited essentially by the time required to approach the yield stress at the applied stress rate.

Specimen S-49 which is currently in progress at $1800^{\circ}F$ ($982^{\circ}C$) and 0.020 Ksi/hour stress rate provides a critical evaluation of possibility of a σ_{max} value. Direct application of Equation (13) leads to a predicted 1% creep life of 2900 hours; however the stress at this time would be 58 Ksi, which is well over the yield stress and is approaching the ultimate strength at this temperature. At the applied stress rate the stress will reach 24 Ksi in 1200 hours and the yield in 1700 hours. This specimen should reach 1% strain at some time intermediate between these two limits and will presumably sustain the bulk of the deformation in the last few hundred hours of test. The results of this test will allow a appraisal of the above predictions.

Post Test Analysis

The effect of creep exposure on the structure, properties, and composition of T-III is shown in Table 10 and Figures 27 through 31. Little change was apparent in the microstructure as a result of the 1% creep extension. Only minor variations occurred in composition except for oxygen, which showed a significant and consistent decrease as a result of creep testing. Mechanical test data show a consistent decrease in strength and hardness and in most cases an increase in elongation, all of which are consistent with the previously discussed strain and/or thermally activated softening which results from the imposed creep deformation. The post-creep tension tests from specimens S-31 and S-46 were conducted with tensile specimens having a reduced width/thickness ratio which may account for the decrease in ductility. On this basis of previous work which indicates that the hardness of tantalum is strongly dependent upon oxygen concentration (11), the change of material properties during the creep tests may be associated with the change of oxygen concentration.

Analysis of Heat No. 65080

Chemical analyses, tensile tests, microstructural and microprobe examinations were used to detect possible differences between T-111 Heat 65080 and more representative samples of the T-111 alloys. No significant variations were observed in chemical composition (see Table 11) and tensile properties (2).

A variation in the grain growth characteristics of 65080 which may bear upon the poor creep behavior has been observed. When heat treated for one hour at temperatures up to 3000°F (1640°C), the microstructure of 65080 and other heats of T-111 appear essentailly identical. Above this temperature, however, 65080 has much less tendency for grain growth than Heat No. 70616, for example (see Figure 32). Examination of the microstructure of 65080 at higher magnification in the optical microscope suggested the presence of a precipitate which may be acting to pin the grain boundaries. Electron micrographs were obtained from a two-stage carbon replica of the specimen heat treated one hour at 3500°F (1929°C). The results shown in Figure 33 reveal three distinct features. A light colored, blocky, triangular shaped feature was observed within the center grain in the 5000x print, together with a coarse grain boundary precipitate. The blocky appearance of and the triangular shaped structure and the lack of a clearly defined boundary seen in the 11,500x print suggest that they may be either relatively flat coherent precipitate or etch pits. The third precipitate, shown as small clusters among the triangular structures in Figure 33, has an appearance similar to that previously identified in other tantalum alloys as a tantalum base di-metal carbide.

Effect of creep exposure on room temperatures mechanical properties and composition of T-111 annealed one hour at 3000⁰F (1649^oC prior to creep testing. Table 10

1	ł	7	rv rv	**	-3	3 24	4 5	30	4 22	4 31	4 9	* *
į	E	전 전 전	10	**	20 3	20 10 2	130	105	105 10 2	130 10 3	105 10	* * * * * *
COMPOSITION T		0 2	20 30	* * * *	20 1 30	34 30	30 1	30	1 0† 00 0†	50 1 40	40 1 30	* **
	l	ZI Ol	.001 2	**		003	003	0031 4	0031 4	003	8400	* * *
	Percent	O ₁		*	. 004 400.	• •	• •	• •		• •	•	*
ľ	1	Ŧ	2.17	* * *	1.95	2.28	2.30	2.03	2.03	2.30	1.95	*
	Diamond	Hardness	* * *	**	247 228	**	275 257	255 229	255 226	11		** ** *
	4	Elongation	* * *	35.0 8.2+	31.0 39.0	***		31.8	31.8 40.0			35.0 15.4+
	Ultimate Tensile	KSI	* * *	94.0 85.3	93.1 85.7	* * *		95.9 91.2	95.9 90.5	; ;		94.0 91.7
	Before After	rreep Testing	Before After	Before After	Before After	Before After	Before After	Before After	Before After	Before After	Before After	Before After
	Test	Hours	1624	6602	2976	4322	5522	624	274	361	697	761
T10N	Temperature	46°	1800 982	2200 1204	2200 1204	$\frac{2200}{1204}$	2200 1204	$\frac{2200}{1204}$	2200 1204	2000 1093	2200 1204	2200 1204
CREEP TEST CONDITION	Stress	N/m2 x 10-8	177	5 0.344	8 0.551	5 0.344	5.344	.016 KSI/hr.	8 0.551	18	$\frac{3}{0.207}$.016 KS1/hr.
CR		Heat No.	0-1670	65079	MCN-02A 065	D-1102	65079	65080	65080	62029	65080A	62079
		Test No.	s-26	S-31*	S-33	s-32	s-35	S-36**	\$-37	S-43	S-45	××9ħ-S

Reduced Gauge Width Perpendicular to rolling direction Continuous loading test Measurements in Progress * * * * + * * *

Table 11. Comparison of Chemical Analysis Between T-111 Heats No. 65080 and 65079

	Heat No.	Heat No.
Element	65080	65079
W	7.79	8.77
Hf	2.03	2.09
С	0.0019	.0021
02	0.001	.001
N_2	0.003	.004
H ₂	0.0004	.0005
-	SPECTROGRAPHIC SURVEY	
Mn	<.005	<.005
Si	<.005	<.005
Cr	<.0025	<.0025
Ni	<.005	<.005
Mo	<.010	<.010
Αl	<.010	<.005
Cu	<.0025	<.0025
Sn	<.010	<.010
Fe	<.005	<.005
٧	<.005	<.005
Mg	<.0025	<.0025
ΤĬ	<.010	<.010
Co	<.0025	<.0025
Pb	<.005	<.005
Nb	<.010	<.010
Y	None Detected	None Detected

BEFORE CREEP TESTING

Figure 27. Microstructure of T-111 specimen \$-33 before and after creep testing 2976 hours at 2200 $^{\circ}$ F (1204 $^{\circ}$ C) and 8 Ksi (5.51 x 107 N/m 2).

BEFORE CREEP TESTING

AFTER CREEP TESTING

100X

Figure 28. Microstructure of T-111 specimen S-35 before and after creep testing 5522 hours at 2200° F (1204° C) and 5 Ksi (3.44×10^{7} N/m²).

BEFORE CREEP TESTING

AFTER CREEP TESTING

100X

Figure 29. Microstructure of T-111 specimen S-36 before and after creep testing 624 hours at 2200°F (1204°C) and .016 Ksi/hour continuous loading rate.

BEFORE CREEP TESTING

AFTER CREEP TESTING

100X

Figure 30. Microstructure of T-111 specimen S-37 before and after creep testing 274 hours at 2200 F (1204 C) and 8 Ksi (5.51 \times 10 N/m²).

BEFORE CREEP TESTING

Figure 31. Microstructure of T-111 specimen S-45 before and after creep testing 697 hours at $2200^{\circ}F$ ($1204^{\circ}C$) and 3 Ksi (2.07 N/m^2).

Heat No. 70616 Grain Size ASTM No. 2.5 Diameter 0.151 mm Heat No. 65080 Grain Size ASTM No. 9 Diameter 0.015 mm

Figure 32. Comparison of samples from T-111 Heats No. 70616 and 65080 annealed 1 hour at 3500 $^{\rm OF}$. 100X

5000X

11,500X

Figure 33. Electron micrographs of T-111 Heat No. 65080 recrystallized 1 hour at 3500°F(1929°C).

The presence of the coarse grain boundary precipitate provides an explanation for the lack of grain growth in the sample heat treated at 3500°F (1929°C). However the present data are not sufficient to definitely establish the nature of the precipitates observed in this sample.

In an attempt to detect a difference in the Heat 65080 material, electron microprobe analyses were conducted on all of the heats in the as received condition. No elements other than Ta, W, and Hf could be detected in a comprehensive scan of emitted wavelengths between 13.5 A and 0.86 A, which covers either the K or L series radiation of the elements between Na and Pb in the periodic table. This range includes yttrium, which has been suggested as a potential impurity that might restrict grain growth in T-lll. However, the significant advantage of the probe lies not in its sensitivity to trace impurities but in its ability to resolve local variations of material composition. Measurement of the average alloy content of each heat indicated that 65080 was within the range of the other heats, thereby confirming previous chemical analyses. However, successive scans of the Ta. W. and Hf levels across the thickness of each sheet showed greater random variations of Hf content in 65080 (see Figure 34). nium is known to decrease the creep resistance of this type of tantalum alloy (12), but the influence of this apparent segregation upon creep behavior is not known and additional specimens will be examined in the electron microscope in an effort to answer this question.

Although no conclusive reason has been established for the poor creep behavior of Heat 65080, microprobe analysis has revealed the presence of Hf rich precipitates in the Ta-W-Hf solid solution matrix in all of the T-lll heats. In order to better define the nature of these Hf rich areas, photographs of oscilloscope traces representing beam current absorption and Hf X-ray emission were made in areas containing the suspected Hf precipitates. An example of each type of photograph is shown in Figure 35. The absorbed current image shows the presence of non-conducting areas in the sample, although the Hf X-ray image is not very sensitive at this magnification it does show a strong Hf indication. Higher magnification views in the same region (Figure 36) definitely confirm the Hf rich nature of the non-conducting areas. Correllary scans in search of other elements suggest that the precipitate is probably an oxide rather than a carbide of nitride.

Astar 8110

One specimen of the tantalum-base alloy Astar 811C is currently being tested at 2600°F (1427°C) and 2 Ksi (1.38 x 10′ N/m²) after annealing 1/2 hour at 3600°F (1982°C) (Figure 37). This specimen has elongated to .418% in 9978 hours. Extrapolation of the creep curve predicts a 1% creep life of 16,650 hours, indicating that the alloy is significantly stronger than T-111. A 1% creep life of 750 hours at 12.5 Ksi (8.62 x 10′ N/m²) and 2400°F (1316°C) has been reported for the same material annealed 1 hour at 3000°F (1649°C) by Buckman and Goodspeed (12). The 1% creep life Larson-Miller parameter for these two tests, when plotted simultaneously with the T-111 data (Figure 26) further emphasizes the advantage of Astar 811C over T-111.

Comparison of Ta, Hf, and W X-ray emission intensities across the thickness of 65079 and 65080 sheet samples. The two Ta scans were recorded simultaneously with the W and Hf scans respectively. Figure 34.

ABSORBED CURRENT IMAGE

Hf X-RAY IMAGE

Figure 35. Absorbed current and Hf X-ray images of T-111 Heat No. 65079A, taken in identical areas on the electron probe microanalyzer.

800X

ABSORBED CURRENT IMAGE

Hf X-RAY IMAGE

Figure 36. Absorbed current and Hf X-ray images of T-111 Heat No. 65079A, taken in identical areas on the electron probe microanalyzer. 2600X

Creep test data, ASTAR-811C Heat No. NAS V-20-WS annealed 1/2 hour at $3600^\circ F$ (1982°C), tested at $2600^\circ F$ (1427°C) and 2 KSI (1.38 x 10^7 N/m²), Test No. S-29, tested in a vacuum environment of <1 x 10^{-8} torr. Arrows on the curves indicate chamber pressure at various intervals during the test. Figure 37.

IV SUMMARY

Larson-Miller analysis of creep test results on molybdenum-base TZC and TZM alloys indicated that at higher stress levels and low temperatures a specially processed lot of TZM having a somewhat higher than normal carbon content is superior to TZC in the stress relieved condition, whereas at higher temperatures and lower stresses, the behavior of the two materials tended to converge.

The creep behavior of commercially pure tantalum tubing has been found to be very sensitive to temperature in the 1183 to 1350°F (639 to 731°C) range.

Creep test results for tantalum base T-III alloy showed excellent reproducibility among five of six heats from two different suppliers, while a sixth heat showed significantly poorer creep resistance.

Experimental techniques have been developed to creep test specimens with Continuously increasing stress levels, and methods have been employed to predict the creep behavior of continuously loaded specimens from static creep test data. Limited comparison of predicted 1% creep lives with experimental results provided good agreement.

A single test on a relatively new tantalum alloy, Astar 811C, has shown this material to have significantly better creep resistance than T-111.

V BIBLIOGRAPHY

- 1. R. L. Salley and E. A. Kovacevich, 'Materials Investigation, Snap 50/SPUR Program, Mechanical Properties of TZM," Technical Report, AF-APL-TR-65-51, (June 25, 1965).
- 2. J. C. Sawyer, et al., "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," NAS-CR-72319, Contract NAS 3-9439, (August, 1967).
- 3. J. C. Sawyer, et al., "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Final Report, Contract NAS 3-2545, (6 June 1967).
- 4. F. F. Schmidt, et al., WADD Report No. 59-13, (December 13, 1959).
- 5. E. M. Howard, et al., "On the Thermally Activated Mechanism of Prismatic Slip in the Silver-Aluminum Hexagonal Intermediate Phase," Trans. AIME, Vol. 227, p. 1061, (1963).
- 6. H. Conrad and W. D. Robertson, "Creep Characteristics of Magnesium Single Crystals from 78° to 364°K," Trans. AIME, Vol. 212, p. 536, (1958).
- 7. A. H. Cottrell and V. Aytekin, "The Flow of Zinc Under Constant Stress, J. Inst. Met., Vol. 72, p. 389, (1950).
- 8. H. L. Burghoff and C. H. Mathewson, "Time and Temperature Effects in the Deformation of Brass Crystals," Trans. AIME, Vol. 143, p. 45 (1941).
- 9. H. E. McCoy, "Creep-Rupture Properties Under Conditions of Constant and Varying Stresses," Nuclear Applications, Vol. 2, p. 481, (1966).
- 10. J. P. Nichols and D. R. Winkler, "A Program for Calculating Optimum Dimensions of Alpha Radioisotope Capsules Exposed to Varying Stress and Temperature," ORNL-TM-1735, NASA CR-72172, (April, 1967).
- 11. R. H. Perkins, "Tantalum Annealing and Degassing and Effects of Dissolved Gasses," Los Alamos Scientific Laboratory Report LA-2136, written under AEC Contract W-7405-ENG-36, (May 15, 1957).
- 12. R. W. Buckman, and R. C. Goodspeed, "Development of Dispersion Strengthened Tantalum Base Alloy," Seventh Quarterly Report, NASA Contract NAS-3-2542, NAS-CR-54894, (August, 1965).
- 13. R. W. Buckman, and R. C. Goodspeed, "Development of Dispersion Strengthened Tantalum Base Alloy," Eighth Quarterly Report, NASA Contract, NAS-3-2542, NAS-CR-54953, (November, 1965).

Appendix I PROCESSING HISTORY OF MATERIALS

TABLE I

PROCESSING HISTORY OF TZC PLATE

Vendor:

General Electric Company Refractory Metals Plant Cleveland, Ohio Heat M-80

Processing History:

- 1. Vacuum arc melt ingot 5.88" diameter
- 2. Machine to 5" diameter
- 3. Extrude 2.30:1 ratio at $3092^{\circ}F$ (1700°C) to $4-1/8'' \times 2.22''$ plate
- 4. Cross-roll on small mill (12" diameter) at $2925^{\circ}F$ (1585°C) in 4-1/8" direction to 0.740", hydrogen atmosphere, 4% reduction per pass.
- 5. Grit blast and cut to final length with abrasive saw.

Hardness:

308 DPH (29 Rc)

TABLE II

PROCESSING HISTORY OF TZC PLATE

Vendor:

General Electric Company Refractory Metals Plant Cleveland, Ohio Heat M-91

Processing History:

- 1. Vacuum arc melt ingot 5.88" diameter
- 2. Machine to 5" diameter
- 3. Extrude 2.30:1 at 3092°F (1700°C) to 4-1/8" x 2.22" plate
- 4. Cross-roll on large mill (28" diameter) to produce relatively large degree of deformation per pass and a finishing temperature as low as 2372°F (1300°C)
- 5. Grit blast and cut to final length with abrasive saw.

Hardness:

335 DPH (34 Rc)

TABLE III

PROCESSING HISTORY OF TZC PLATE

Vendor:

Climax Molybdenum Company of Michigan Coldwater, Michigan Heat 4345

Processing History:

- 1. Machine vacuum arc melted ingot to 5.85" diameter
- 2. Extrude to 3" diameter
- 3. Heat treat in vacuum 3000°F (1649°C)
- 4. Machine to 2.4-2.8" diameter
- 5. Upset forge 40% at 2400°F (1316°C)
- 6. Broad forge to 0.825" at 2400°F (1316°C)
- 7. Heat treat in vacuum 2400°F (1316°C), 1 hour
- 8. Machine to 0.70"

Hardness:

319-373 DPH (28-36 Rc)

TABLE IV

PROCESSING HISTORY OF TZM FORGED DISC

Vendor:

Climax Molybdenum Company of Michigan Coldwater, Michigan Heat 7502

Processing History:

- Vacuum arc melt ingot 11-1/2" diameter 1.
- Machine to 10-3/4" diameter Extrude to 6-1/4" diameter 2.
- 3.
- Heat treat at 2700°F (1482°C) 4.
- 5. Upset forge at 2200°F (1204°C)
- Stress relieve at 2200°F (1204°C)

Hardness:

266-342 DPH (25-35 Rc)

TABLE V

PROCESSING HISTORY OF TZM FORGED DISC

Vendor:

AiResearch (Universal Cyclops) Disc No. 3 Heat KDTZM-1175

Processing History:

- 1. 11-3/4" diameter ingot, machine to 10-3/4" diameter
- Extrude to 6-1/2" diameter at 2250°F (1232°C) 2.
- Recrystallize at 2800°F (1538°C) for 4 hours 3.
- Forge to 4" diameter billet 3400°F to 2800°F (1871 to 1538°C) 4.
- 5.
- Recrystallize at 2950°F (1621°C) for 2 hours Forge to flat disc 3/4" thick, 2800°F(1538°C) starting temperature 6. 11 blows, finish temperature 2160°F (1182°C)
- Stress relieve at 2300°F (1260°C) for 1 hour 7.

Hardness:

297-335 DPH (29-34 Rc)

TABLE VI

PROCESSING HISTORY OF TZM BAR

Vendor:

Climax Molybdenum Company of Michigan Coldwater, Michigan Heat 7463

Processing History:

- Extrude 11-1/2" diameter ingots to 6-7" diameter
- 2. Recrystallize
- 3. Roll to 2" diameter
- Recrystallize 4.
- 5.
- Roll to 1" diameter Swage to 5/8" diameter (75-85% cold work)
- Stress relieve 2250°F (1232°C), 1/2 hour 7.

Hardness:

300-330 DPH (30-40 Rc)

TABLE VII

PROCESSING HISTORY OF T-111 SHEET

Vendor:

Wah Chang Corporation Albany, Oregon Heat No. 70616

Processing History:

- 1. Electron beam melt
- 2. Arc-cast 5-1/2" ingot
- 3. Forge to 1-1/2" thick sheet bar 2200°F (1204°C)
- 4. Vacuum anneal 2400°F (1316°C)
- 5. Warm roll 800°F (427°C) to 200 mil thick
- 6. Vacuum anneal 2400°F (1216°C)
- 7. Cold roll to final thickness
- 8. Vacuum anneal 2400°F (1316°C)

Hardness:

216-368 DPH $(95R_B - 37 Rc)$

TABLE VIII

PROCESSING HISTORY OF T-111 SHEET

Vendor:

Wah Chang Corporation Albany, Oregon Heat 65076 (MCN02A065)

Processing History:

- Forge 6-1/2" diameter arc-melted ingot to 1-1/2" sheet 1. bar at 2200°F (1204°C)
- 2. Vacuum anneal 3000°F (1649°C)
- 3. Warm roll 800°F (427°C) to 1/4" thick
- 4. Vacuum anneal 3000°F (1649°C)
- 5.
- Cold roll to final thickness
 Vacuum anneal (1 x 10⁻⁴ torr) 3000°F (1649°C), 1 hour

Hardness:

262 DPH (25 Rc)

TABLE IX

PROCESSING HISTORY OF T-111 SHEET

Vendor:

Wah Chang Corporation Albany, Oregon Heat 65079

Processing History:

- Forge 6-1/2" diameter arc-melted ingot to 1-1/2" sheet 1. bar at 2200°F (1204°C)
- Vacuum anneal 2800°F (1358°C) 2.
- Warm roll 800°F (427°C) to 1/4" thick 3.
- Vacuum anneal 2800°F (1538°C)
- 5.
- Cold roll to final thickness Vacuum anneal (1 x 10^{-4} torr) 2800°F (1538°C), 1 hour

Hardness:

236 DPH (20 Rc)

TABLE X

PROCESSING HISTORY OF T-111 SHEET

Vendor:

Wah Chang Corporation Albany, Oregon Heat 65080

Processing History:

- Forge 6-1/2" diameter arc-melted ingot to 1-1/2" sheet bar at 2200°F (1204°C)
- 2. Vacuum anneal 2800°F (1538°C)
- 3. Warm roll 800°F (427°C) to .260 or 0.060" thick
- 4. Vacuum anneal 2800°F (1538°C), 2 hours
- 5. Cold roll to final thickness
- 6. Vacuum anneal (1 x 10^{-4} torr) 2800°F (1538°C), 2 hours

Hardness:

248 DPH (22 Rc)

TABLE XI

PROCESSING HISTORY OF T-111 SHEET

Vendor:

Wah Chang Corporation Albany, Oregon Heat 65080A

Processing History:

- l. Forge 6-1/2" diameter arc-melted ingot to 1-1/2" sheet bar at 2200°F (1204°C)
- 2. Vacuum anneal 2800°F (1204°C)
- 3. Warm roll 800°F (427°C) to .260" thick
- 4. Vacuum anneal 3000°F (1649°C) 1 hour
- 5. Cold roll to final thickness
- 6. Material received in the as-worked condition

Hardness:

355 DPH (35 Rc)

TABLE XII

PROCESSING HISTORY OF T-111 SHEET

Vendor:

Fansteel Metallurgical Corporation North Chicago, Illinois Heat D-1102

Processing History:

- 1. Extrude 3.25:1 at 2200°F (1204°C) from 8.44" diameter arc melted ingot
- 2. Rod roll and flat roll to finish gage from 4.25" diameter billet
- 3. Deliver in as-worked condition

TABLE XIII

PROCESSING HISTORY OF T-111 SHEET

Vendor:

Fansteel Metallurgical Corporation North Chicago, Illinois Heat D-1670

Processing History:

- 1. Extrude 3.25:1 at 2300°F (1260°C) from 8.44" diameter arc melted ingot
- Rod roll and flat roll to finish gage from 4.5" diameter billet
- 3. Deliver in as-worked condition

Hardness:

333 DPH (34 Rc)

APPENDIX II

Summary of Ultra-High Vacuum Creep Test
Results Generated on the Refractory
Alloy Creep Program

TABLE !!-1

Summary of Arc-Melted W Ultra-High Vacuum Creep Test Results

1% CREEP LARSON-MILLER PARAMETER	ToR (15 + logt)×10 ⁻³	57.8	***	4.59	53.1	55.8
TEST TIME AT TERMINATION	• •	32	714	3886	218	806
1% CREEP LIFE	HOURS	9	**	675	20	125
ATURE	ပါ	1760	1760	1760	1538	1538 125
TEST	° F	3200	3200	3200	2800	2800
STRESS	×10-7	1760 3.0 2.07	0.28	69.0	2.80	1538 3.0 2.07
1	KSI	3.0	1760 0.4	1760 1.0	1538 4.0	3.0
TAIL TAIL	0	1760	1760	1760	1538	1538
REATMEN TEMDER		3200	3200	3200	2800	2800
HEAT T	HOURS F C	24	2	7	2	2
	HEAT NO.	KC-1357	KC-1357	KC-1357	KC-1357	KC-1357
+	NO.	S-5	2-7	s-9	2-17	8-18

*** Insufficient creep to extrapolate

TABLE 11-2

Summary of Vapor-Deposited W Ultra-High Vacuum Creep Test Results

6.	LER	:R 3	ogt)×10				
1% CREE	LARSON-MILLER	PARAMEIE	Top (15 + 10		0.99		59.2
TEST	TIME AT	TERMINATION	HOURS		2671	;	6812
%	CREEP	<u> </u>	HOURS		1140		1500
		ATURE	ပ		3200 1760 1140	•	1538 1500
	TEST	TEMPER	J _o J _o		3200	•	2800
ر	522	14/M ² 7	KS1 ×10		1760 1.0 0.69	,	1538 2.0 1.38
, .	2		KSI		0.1	,	2.0
	<u>_</u>	TURE	ပ		1 760		1538
	FREATME	TEMPER/	HOURS °F		3200		2800
	HEAT	무	HOURS		_	•	_
			HEAT NO.		ı		1
		TEST	NO.		8-17	•	B-24

TABLE 11-3

Summary of W-25%Re Ultra-High Vacuum Creep Test Results

1% CREEP	LARSON-MILLER	τ (15 + logt)×10 ⁻³	100 do	58.9	0.09	**	0.49
TEST	TIME AT	I E KM I NA I I OIN	200	45	26	253	1306
%	CREEP	LIFE	HOOKS	12	25	* * *	315
	!	ATURE	اد	1760	1760	1760	1760
	TEST	TEMPERATURE	+	3200 1760	3200	3200	3200
	ESS 2	11/M_7	0 ×	3.44	2.07	0.5 0.34	760 1.5 1.03
	STRESS	,	<u>s</u>	1760 5.0 3.44	3.0 2	0.5	1.5
	LΝ	ATURE	ပ	1760	1760	1760	1760
	REATME	TIME TEMPERAT	ш °	48 3200	3200	3200	3200
	HEAT 1	H.H.	HOURS	84	45 3	-	_
			HEAT NO.	3.5-75002	3.5-75002	3.5-75002	3.5-75002
		TEST	N N	S-3	S-4	9-s	8-8

*** Insufficient creep to extrapolate

TABLE 11-4

Summary of Sylvania A Ultra-High Vacuum Creep Test Results

					O T D	202			~	TEST	1% CREEP
		HEAT 1	TREATME!		2	500	TEST		CREEP	TIME AT	LARSON-MILLER
TEST		THE	TEMPER	湿		11/M ² 7	TEMPER/		LIFE	TERMINATION	PARAMETER
NO.	HEAT NO.	HOURS	J.	ပ	KSI	×10_/	L O		HOURS	HOURS	$T_{ob}(15 + logt) \times 10^{-3}$
S-12	ı	2	2 3200 1)9/	5.0	5.0 3.44	3200 1760		35	170	9.09
S-15	ı	7	3200	1760	3.0	2.07	3200	1760	250	206	63.7

TABLE 11-5

Summary of AS-30 Ultra-High Vacuum Creep Test Results

		HEAT TREATMENT	STR	ESS		ы - -	1/2% CREEP	TEST TIME AT	1/2%CREEP LARSON-MILLER PARAMFTER
NO.	HEAT NO.	HOURS F C	KSI	KS1 x10-7	OF OF	0 0 0	HOURS	HOURS	$T_{oR}(15 + 10gt) \times 10^{-3}$
B-2	53	As-Rolled	12.0	12.0 8.27	2000 1093	1093	390	908	43.3
8- 6	53	As-Rolled	11.0	11.0 7.58	2000 1093 450	1093	450	1192	43.5
B-7	c5	As-Rolled	8.0	8.0 5.51	2200	1204 115	115	230	45.4

TABLE 11-6

Summary of Cb-132M Ultra-High Vacuum Creep Test Results

		HEAT	TREATME	F	STR	ESS	TEST		1/2% CREEP	TEST TIME AT	1/2% CREEP LARSON-MILLER
TEST NO.	HEAT NO.	TIME	TIME TEMPERATI	ATURE °C	KS	11/M ² / KSI x10 ⁻⁷	TEMPERATURE °C	ATURE °C	LIFE HOURS	TERMINATION HOURS	PARAMETER $T_{oR}(15 + \log t) \times 10^{-3}$
B-13	KC-1454	_	3092	1 700	20.0	13.80	20.0 13.80 2056 1125 275	1125	275	568	43.8
B-14	KC-1454	_	3092	1 700	16.3	8.23	700 16.3 8.23 2056 1125 340	1125	340	169	44.0
8-15	KC-1454	-	3092	1700	7.4	5.10	700 7.4 5.10 2256 1236 250	1236	250	965	47.2

TABLE 11-7

Summary of TZM Ultra-High Vacuum Creep Test Results

		HEAT	HEAT TREATMENT	Þ	STRESS	<u>:</u> SS	TEST		1/2% CREEP	TEST TIME AT	1/2% CREEP LARSON-MILLER
TEST NO.	HEAT NO.	TIME HOURS	TEMPERATURE	ATURE °C	KSI	14/M ² 7 ×10-7	TEMPERATURE	ATURE °C	L I FE HOURS	TERMINATION HOURS	PARAMETER $T_{op}(15 + \log t) \times 10^{-3}$
B-1	7502	_	2200	1204	12.6	8.65	2130	1165	909	949	46.1
B-3	7502	_	2200	1204	10.0	68.9	2000	1095	1095 14,200*	10,048	47.1
B-29	7502	_	2200	1204	41.0	28.20	2000	1095	100	199	41.8
B-35	7502	_	2200	1204	0.44	30.30	1800	982	2000	7659	42.6
8-4	7502	ت	2200	1204	10.0	68.9	2000	1095	25,000*	10,012	47.7
	Plus	<u>-</u>	2850	1566							
B-16	KDTZM-1175	_	2300	1260	23.4	16.10	1855	1013	1013 62,500*	4376	45.8
B-18	KDTZ.M-1175	-	2300	1260	55.0	37.90	1600	871	871 60,000*	2159	40.7
B-21	KDT2M-1175		2300	1260	65.0	44.80	1600	871	*0096	1630	39.1
B-25	KDTZM-1175	-	2300	1260	0,44	30.30	1800	982	\$0°,000	10,152	44.5
B-38	KDTZM-1175	_	2300	1260	22.0	15.10	2000	1093	8500*	*	46.5
B-34	7463	1/2	2250	1232	41.0	28.20	2000	1093	790	1440	0.44

* Extrapolated data

^{**} Test in progress

TABLE 11-8

Summary of Cb Modified TZM Ultra-High Vacuum Creep Test Results

1/2% CREEP LARSON-MILLER PARAMETER _ 3	$T_{oR}(15 + \log t) \times 10^{\circ}$	47.5	46.7	43.8	42.0	46.1	44.5
TEST TIME AT TERMINATION	HOURS	989	307	185	403	329	1584
1/2% CREEP LIFE	HOURS	2000 1093 20,000*	1093 10,000*	630*	*000 †	1000*	1090
TURE	ပ	1093	1093	1093	982	1149	1093
TEST TEMPERA	3 ₀ 3 ₀	2000	2000	2000	1800	2100	2000
IN/M2	×10 /	1371 20.0 13.80	28.0 19.30	40.0 27.60	46.0 31.70	34.0 23.40	1371 41.0 28.20
STRESS	KSI	20.0	28.0	40.0	0.94	34.0	41.0
NT ATURE	ပ	1371	1	r	ı	ı	1371
HEAT TREATMENT TIME TEMPERATURE	님	2500	ı	í	r	ı	2500
HEAT TIME	HOURS	-	ı	ı	ı	r	-
	HEAT NO.	4305-4	4305-4	4305-4	4305-4	4305-4	4305-4
TEST	NO.	B-23A	B-23B	B-23C	B-23D	B-23E	B-27

Extrapolated

TABLE 11-9

Summary of TZC Ultra-High Vacuum Creep Test Results

1/2% CREEP LARSON-MILLER PARAMETER To (15 + 10qt)×10-3	A CONTRACTOR OF THE CONTRACTOR	48.3	48.9	8.94	46.0	49.2	45.7	9.94	41.1	ተ	8.44	45.9	9.44	46.2	46.3	
TEST TIME AT TERMINATION HOURS	CVOCI	2128	2749	16,002	904,41	14,239	12,795	912	4094	4214	259	* *	2696	8563	* *	
1/2% CREEP LIFE HOURS	SAUDE	1100	2500	10,408	75,000*	75,000*	3650	329	1075	1100	70	14,400	7720	5940	*0008	
TURE	اد	1204	1204	1093	1013	1125	1093	1204	982	1093	1204	1057	1038	1093	1093	
TEST TEMPERATURE	-	2200	2200	2000	1856	2056	2000	2200	1800	2000	2200	1935	1900	2000	2000	
N/M ²		12.40	11.70	13.80	17.20	13.10	13,80	9.65	30.30	19,30	15.20	13.80	15.20	15.20	15.20	
URE		1700 18.0	1700 17.0	1700 20.0	1700 25.0	1700 19.0	1700 20,0	1700 14.0	1260 44,0	1260 28,0	1371 22,0	1371 20.0	1371 22.0	1371 22.0	1316 22,0	
HEAT TREATMENT	2	3092	3092	3092	3092	3092	3092	3092	2300	2300	2500	2500	2500	2500	2400	
HEAT T	HOURS	-	_	-	_	-		-	-		-	_		, -	-	
	HEAT NO.	M-80	M-80	M-80	M-80	M-80	M-91	M-91	M-91	M-91	16-M	M-91	M-91	4345	4345	
TEST	No	B-8A	B-10	B-9	8-11	B-12	B-20	B-31	B-19	B-28	B-30	B-32	B-33	B-36	B-37	

^{*} Extrapolated

^{**} Test in progress

TABLE 11-10

Summary of T-222 Ultra-High Vacuum Creep Test Results

					gTS	204			%	TEST	1% CREEP
		HEAT	TREATME	F		1,533			CREEP	TIME AT	LARSON-MILLER
TEST		11 AE	TEMPER	ATURE		N/M ²		ATURE	LIFE	TERM INAT I ON	PARAMETER3
NO.	HEAT NO.	HOURS	HOURS °F	اد	KS	KS1 ×10 ⁻⁷	つ。 <u> </u>	၁	HOURS	HOURS	Top (15 + logt) x10
S-13	AL-TA-43	-	3000	1649	12.0	1649 12.0 8.27	2200 1204	1204	260	1890	47.2
8-14	AL-TA-43		3000	1649	19.2	1649 19,2 13.20 2056 1124 890	2056	1124	890	1314	45.1
S-20	AL-TA-43	_	2800	1538	12.0	1538 12.0 18.27	2200 1204 405	1204	405	1389	46.9

TABLE | | - | |

Summary of ASTAR 811C Ultra-High Vacuum Creep Test Results

1 % CREEP LARSON-MILLER	$T_{op}(15 + logt) \times 10^{-3}$	59.3
TEST TIME AT	HOURS	* *
1 % CREEP		*
	o C	1427
TEST	PEMPEKAIUKE PF °C	2600
STRESS	KSI x10-7	1.38
⊨l	=	0
S	¥	2.
	a K	982
	a K	3600 1982
		3600 1982
	a K	1/2 3600 1982

* Extrapolated
** Test in progress

TABLE 11-12

Summary of T-111 Ultra-High Vacuum Creep Test Results

														_		
1% CREEP LARSON-MILLER	PARAMETER $T_{\circ R}(15 + \log t) \times 10^{-3}$	47.5	48.7	48.0	47.7	43.8	43.3	9.44	42.9	55.2	0.09	45.0	49.5	42.8	49.1	6.94
TEST TIME AT	TERMINATION HOURS	1675	4870	3840	3698	1099	9464	1584	9624	482	* *	3459	4322	* *	2976	*
1% CREEP	L I FE HOURS	725	2000	1140	3150	0/9	4730	1340	9540	1100*	55,000*	1880	4050	9015*	2850	1093 10,750*
	TURE	1204	1204	1204	1160	1093	1016	1093	982	1427	1427	1093	1204	982	1204	1093
TEST	TEMPERATURE	2200	2200	2200	2120	2000	1860	2000	1800	2600	2600	2000	2200	1800	2200	2000
STRESS	N/M ² ×10 ⁻ 7	5.51	5.51	8.26	8.26	13.80	13.80	10.30	11.70	1.03	0.34	8.95	3.44	11.70	5.51	7.58
STR	KS1	8.0	8.0	12.0	12.0	20.0	20.0	1649 15.0	1649 17.0	1.5	0.5	13.0	5.0	17.0	8.0	649 11.0
⊢	ATURE	1427	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649
HFAT TREATMENT	TEMPERATURE °F °C	2600	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	2000	3000	3000
HFAT	TIME HOURS	-	_	_	- -	_	_	_	_	_	-	_	puna	_	_	_
	HEAT NO.	91902	91902	70616	91902	9190/	70616	0-1670	D-1670	0-1670	0-1670	D-1102	0-1102	D-1102	MCN02A065	MCN02N065
	TEST NO.	91-8	8-19	S-21	S-23	5-22	5-24	S-25	s-26	S-25A	5-28	S-27	s-32	8-40	s-33	8-34

TABLE II-12 (Continued)

Summary of T-111 Ultra-High Vacuum Creep Test Results

										_							_
1 % CREEP LARSON-MILLER	PARAMETER $T_{o,g}(15 + logt) \times 10^{-3}$	46.3	42.7	47.1	51.3	50.0	6.64	51.3	43.3	53.0	47.7	44.7	48.7	51.9	8.44	43.3	
TEST TIME AT	TERMINATION	274	**	697	2137	6594	5522	* *	* *	* *	* *	361	467	335	1146	* *	
1 % CREEP	L I FE HOURS	260	8345*	554	860	6160	2400	3900*	38,000*	7270*	24,000*	1500 *	3250*	2030*	1670*	982 14,650*	
	ATURE C	1204	982	1204	1316	1204	1204	1263	954	1288	1093	1093	1189	1299	1093	982	
TEST	TEMPERATURE	2200	1800	2200	2400	2200	2200	2300	1750	2350	2000	2000	2172	2371	2000	1800	
STRESS	N/M ² ×10 ⁻ 7	5.51	8.95	2.07	2.41	3.44	3.44	2.41	16.50	1.65	7.22	12.40	6.55	2.27	12.40	15.80	
STR	KS1	8.0	13.0	3.0	3.5	5.0	5.0	3.5	24.0	2.4	8.5	18.0	9.5	3.3	18.0	23.0	
F	ATURE °C	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649	1649 18.0	1649	
HFAT TRFATMFNT	TEMPERATURE °F °C	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	
HEAT.	TIME	_	_	_	_	_	_		_	_	_	1/4	_	1/4	1/4	1/4	
	HEAT NO.	65080	65080	65080A	62029	62029	62029	62059	62079	62029	62029	62059	62029	62059	62029	62079	* Extranolated
	TEST NO.	5-37	8-39	S-45	s-30	5-31	S-35	S-42	2-47	84-8	s-50	8-43	S-44A	S-44B	2-44C	044-S	**

^{*} Extrapolated
** Test in progress

TABLE 11-13

Summary of T-111 Progressive Stress Ultra-High Vacuum Creep Test Results

TEST TIME AT TERMINATION	HOURS	624	989†	19/	*	*
1% CREEP LIFE		009	3830	*0001	***	* * *
TEST TEMPERATURE	<u>၁</u>	1204	1204	1204	982	1204
TES1 TEMPER	<u>+</u>	2200	2200	2200	1800	2200
STRESS RATE	PS1/HR	91	_	91	20	91
NT ATURE	J _e	1649	1649	1649	1649	1649
HEAT TREATMENT TIME TEMPERATURE	H	3000	3000	3000	3000	3000
HEAT	HOURS	-	-	-	~	-
	HEAT NO.	65080	65080	62029	62029	D-1183
TEST	NO.	8-36	s-38	9 1 -8	8-49	19-8

* Test in progress
** Insufficient data to extrapolate

TABLE 11-14

Summary of Pure Ta Ultra-High Vacuum Creep Test Results

1% CREEP LARSON-MILLER	PARAMETER $T_{op}(15 + logt) \times 10^{-3}$	25.8	27.8	29.0	28.9	34.0
TEST TIME AT	TERMINATION HOURS	32	797	282	σ	1220
1% CREEP	L I FE HOURS	31	£09*	463*	9	*00 9 9
	TEMPERATURE °F °C	965	596	639	720	720
TEST	TEMPER °F	1100	1100	1183	1350	1350
SS	N/M ² /x10-7	13.6 9.37	11.6 7.99	6.95	4.83	4.9 3.38 1350
STRESS	KSI	13.6		10.1	7.0	4.9
H	ATURE °C	1000	1000	1000	1000	1000
IREATME	TIME TEMPERA HOURS °F	1832	1832	1/4 1832	1832	1/4 1832
HEAT 1	TIME HOURS	_	1/4	1/4	•	1/4
	HEAT NO.	ŧ	ı	ı	ı	ı
	NO.	B-39A	B-39B	B-39C	B-40A	B-40B

* Extrapolated
** Test in progress

APPENDIX III

PREVIOUSLY PUBLISHED REPORTS

ON THE REFRACTORY ALLOY CREEP PROGRAM

- J. C. Sawyer and E. B. Evans, "Generation of Valid Long Time Creep Data on Refractory Alloys at Elevated Temperature," First Quarterly Report, Contract NAS-3-2545, October 20, 1963.
- J. C. Sawyer and E. B. Evans, "Generation of Valid Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Second Quarterly Report, Contract NAS-3-2545, January 15, 1964.
- J. C. Sawyer and E. B. Evans, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Third Quarterly Report, Contract NAS-3-2545, CR-54048, April 20, 1964.
- J. C. Sawyer and C. H. Philleo, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Fourth Quarterly Report, Contract NAS-3-2545, CR54123, July 1, 1964.
- J. C. Sawyer and C. H. Philleo, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Fifth Quarterly Report, Contract NAS-3-2545, CR 54228, November 9, 1964.
- J. C. Sawyer and C. H. Philleo, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Sixth Quarterly Report, Contract NAS-3-2545, CR54287, January 15, 1965.
- J. C. Sawyer and C. H. Philleo, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Seventh Quarterly Report, Contract NAS-3-2545, CR54394, April 28, 1965.
- J. C. Sawyer and E. A. Steigerwald, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Eighth Quarterly Report, Contract NAS-3-2545, NAS-CR54457, July 7, 1965.
- J. C. Sawyer and E. A. Steigerwald, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Ninth Quarterly Report, Contract NAS-3-2545, NAS-CR54773, October 8, 1965.
- J. C. Sawyer and E. A. Steigerwald, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Tenth Quarterly Report, Contract NAS-3-2545, NAS-CR54895, January 8, 1966.
- J. C. Sawyer and E. A. Steigerwald, ''Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures,'' Eleventh Quarterly Report, Contract NAS-3-2545, NAS-CR54973, April 15, 1966.
- J. C. Sawyer and E. A. Steigerwald, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Twelfth Quarterly Report, Contract NAS-3-2545, NAS-CR72044, July 15, 1966.

- J. C. Sawyer and E. A. Steigerwald, 'Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures,' Thirteenth Quarterly Report, Contract NAS-3-2545, October 14, 1966.
- J. C. Sawyer and E. A. Steigerwald, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Fourteenth Quarterly Report, Contract NAS-3-2545, NAS-CR72185, January 17, 1967.
- J. C. Sawyer and E. A. Steigerwald, ''Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures,'' Final Report, Contract NAS-3-2545, June 6, 1967.
- J. C. Sawyer and E. A. Steigerwald, "Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures," Supplement to Final Report, "Numerical Creep Data", June 26, 1963 to March 17, 1967, Contract NAS-3-2545, August 15, 1967.
- J. C. Sawyer and K. D. Sheffler, ''Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures,'' Mid-Contract Report, Contract NAS-3-9439, NAS-CR72319, August 1967.

APPENDIX IV

Numerical Creep Data

Table of Contents

Material	Heat No.	Ksi	Stress N/m2x108	Tempe:	°C_	Test No.	Table No.
		Mo Lui	bdenum Base Allo				
TZC	ห-91	20.0	1.380	2000	1093	8-20	1
TZC	M-91	20.0	1.380	193 5	1057	B-20	2
TZC	M-91	22.0	1.520	1900	1038	B-33	
TZC	4345	22.0	1.520	2000	1093	B-36	3 4
TZC	4345	22.0	1.520	2000	1093	B-37	5
TZM	KDTZM-1175	44.0	3.030	1800	982	B-25	5 6
TZM	KDTZM-1175	22.0	1.520	2000	1093	B-38	7
TZM	7502	44.0	3.030	1800	982	B-35	3
		Tan	talum Base Alloy	S			
							
Pure Ta		13.6	0.937	1100	596	B-39A	9
Pure Ta		11.6	0.799	1100	596	B-39B	10
Pure Ta		10.1	0.695	1183	639	B-39C	11
Pure Ta		7.0	0.483	1350	720	B-40A	12
Pure Ta	_	4.9	0.338	1350	720	B-40B	13
Astar 811		2.0	0.138	2600	1427	S-29	14
T-111	D-1670	17.0	1.170	1800	982	S-26	15
T-111	D-1670	0.5	0.034	2600	1427	S-28	16
T-111 T-111	D-1102 D-1102	5.0 17.0	0.344	2200 1800	1204 982	S-32 S-40	17 18
T-111	MCN-02A-065	8.0	1.1 70 0.551	2200	1204	5-40 5-33	19
T-111	MCN-02A-065	11.0	0.758	2000	1093	s-34	20
r-111	65079	5.0	0.344	2200	1204	S-31	21
T-111	65079	5.0	0.344	2200	1204	S-35	22
T-111	65079	3.5	0.241	2300	1263	S-42	23
T-111	65079	24.0	1.650	1750	954	S-47	24
T-111	65079	2.4	0.165	2350	1288	s-48	25
T-111	65079	8.5	0.722	2000	1093	S-50	26
T-111	65080	8.0	0.551	2200	1204	s-37	27
T-111	65080	13.0	0.895	1800	982	s-39	28
T-111	65080A	3.0	0.207	2200	1204	S-45	29
T-111	65079	18.0	1.240	2000	1093	s-43	30
T-111	65079	9.5	0.655	2172	1189	S-44A	31

APPENDIX IV (continued)

Tantalum Base Alloys

Material	Heat No.	Str <u>Ksi</u>	$\frac{\text{ess}}{\text{N/m}^2 \times 10^{-8}}$	Temper F	ature OC	Test No.	Table No.
T-111 T-111 T-111 T-111 T-111	65079 65079 65079 65080 65080 65079	3.3 18.0 23.0 0.016 Ksi/Hr. 0.001 Ksi/Hr.	0.227 1.240 1.580 *	2371 2000 1800 2200 2200 2200	1299 1093 982 1204 1204	S-44B S-44C S-44D S-36 S-38 S-46	32 33 34 35 36 37

^{*} Continuous Loading Tests

TABLE .1 Creep Test Data, TZC Plate Heat M-91, Recrystallized $3092^{\circ}F$ (1700°C) 1 Hour, Tested at 2000°F (1093°C), and 20,000 PSI (1.38 x $10^{8}N/m^{2}$)

Length Change		
_	Creep	Pressure
· ·		(Torr)
<u>(3 G. 2.7</u>		
.00000	.000	8.2×10^{-9}
		8.2×10^{-9}
	.012	8.2×10^{-9}
	.010	8.2×10^{-9}
	.012	8.2×10^{-9}
.00025	.012	8.2×10^{-9}
.00020	.010	8.2×10^{-9}
.00030	.015	8.2×10^{-9}
.00075	.038	8.4×10^{-9}
.00100	.050	7.2×10^{-9}
.00155	.078	4.0×10^{-9}
.00185	.092	3.2×10^{-9}
.00210		2.6×10^{-9}
		2.4×10^{-9}
		2.1×10^{-9}
		1.4×10^{-9}
		1.2×10^{-9}
		1.1×10^{-3}
		$9.7 \times 10_{-10}$
		$9.6 \times 10_{-10}$
		$7.9 \times 10_{-10}$
		$6.7 \times 10_{-10}$
		6.1×10^{-10}
		$9.2 \times 10_{-10}$
		$6.3 \times 10_{-10}$
		8.1 X 10_10
.00365	. 182	8.2 × 10
	.00020 .00030 .00075 .00100 .00155 .00185	Δ L (inch) (7%) .00000 .000 .00005 .002 .00010 .005 .00015 .008 .00020 .010 .00020 .010 .00020 .010 .00025 .012 .00025 .012 .00025 .012 .00025 .012 .00025 .012 .00025 .015 .00030 .016 .0005 .00055 .015 .00020 .010 .00025 .015 .00025 .015 .00025 .015 .00025 .015 .00020 .010 .00030 .015 .00075 .038 .00100 .050 .00155 .078 .00185 .092 .00210 .105 .00220 .110 .00240 .120 .00270 .135 .00290 .145 .00300 .150 .00295 .148 .00300 .155 .00355 .178 .00355 .178 .00365 .182

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2'' G. L.)	(%)	(Torr)
· · · · · · · · · · · · · · · · · · ·			
715.5 Hours	.00375	. 188	7.8×10^{-10}
787.7	.00410	. 205	7 h v 10 10
811.6	.00420	.210	7.4×10^{-10} 7.1×10^{-10}
835.3	.00435	.218	7 2 v 10
859.2	.00440	.220	7.0×10^{-10}
883.2	.00445	. 222	7.0×10^{-10}
956.3	.00460	.230	6.6×10^{-10}
980.0	.00470	. 235	6.4×10^{-10}
1,003.4	.00455	.228	6.4×10^{-10}
1,027.2	. 00465	.232	6 2 x 10 °°
1,123.7	.00485	. 242	6.0×10^{-10}
1,195.5	.00490	. 245	5 7 x 10 10
1,294.7	.00515	. 258	6.0×10^{-10}
1,367.4	.00525	. 262	E 8 × 10 ⁻¹⁰
1,459.1	.00560	.280	5.6 x 10 10
1,531.7	.00585	.292	5 h × 10 ⁻¹⁰
1,627.9	.00600	. 300	5.4 x 10 10
1,699.2	.00620	.310	5.4×10^{-10}
1,795.3	.00640	. 320	5.4×10^{-10}
1,867.8	.00655	.328	5.1×10^{-10}
1,963.9	.00665	.332	5.1×10^{-10}
2,035.6	.00695	. 348	4.7×10^{-10}
2,131.6	.00720	. 360	4.8×10^{-10}
2,203.3	.00740	. 370	4.9×10^{-10}
2,299.8	.00745	. 372	4.9 x 10 ₋₁₀
2,371.4	.00755	.378	4.8×10^{-10}
2,467.3	.00760	.380	3.6×10^{-10}
2,539.5	.00770	. 385	2.6 x 10 ₋₁₀
2,635.2	.00800	. 400	$3.8 \times 10_{-10}$
2,707.6	.00820	.410	$3.4 \times 10_{-10}$
2,803.4	.00880	. 440	3.4 × 10 ₋₁₀
2,875.1	.00900	. 4 50	3.4×10^{-10}
2,971.0	.00910	. 455	3.1 × 10 ₋₁₀
3,043.1	.00920	.460	3.6×10^{-10}
3,139.0	.00935	. 468	3.3 × 10 ₋₁₀
3,211.3	.00930	. 465	3.4×10^{-10}

	Length Change		
	Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
	 		
3,307.3 Hours	.00960	. 480	3.3×10^{-10}
3,379.2	.00965	.482	10-10
3,547.4	.00990	. 495	$\frac{3.2 \times 10^{-10}}{3.2 \times 10^{-10}}$
3,643.8	.00995	. 498	3.2×10^{-10}
3,718.6	.01020	.510	2 1 × 10 10
3,811.5	.01050	.525	3 1 × 10 - 10
3,884.2	.01070	.535	3.4×10^{-10}
3,979.7	.01440	.570	3.1×30^{-10}
4,051.3	.01145	.572	2.9×10^{-10}
4,147.1	.01145	.572	2.9×10^{-10}
4,218.3	.01145	.572	3 2 × 10 ⁻¹⁰
4,314.4	.01160	.580	3 1 ~ 10 -10
4,386.5	.01165	. 582	3.0×10^{-10}
4,482.2	.01230	.615	2.9×10^{-10}
4,554.1	.01225	.611	3.0×10^{-10}
4,650.5	.01235	.618	3.2×10^{-10}
4,724.0	.01240	.620	3.0×10^{-10}
4,818.5	.01270	.635	3 3 × 10 10
4,890.2	.01290	.645	3.0×10^{-10}
5,010.6	.01290	. 645	3.2×10^{-10}
5,058.3	.01300	. 650	4.4×10^{-10}
5,157.1	.01310	. 655	3.0×10^{-10}
5,226.0	.01340	.670	$2.9 \times 10_{-10}$
5,250.1	.01370	.685	$2.8 \times 10_{-10}$
5,324.2	.01375	. 688	2.8 x 10 10
5,394.5	.01380	. 690	2.8 x 10 ₋₁₀
5,490.3	.01395	.698	2./ X IU_10
5,562.2	.01405	. 702	2.8×10^{-10}
5,658.7	.01420	.710	2.8 X IU_10
5,730.2	.01420	.710	2.8×10^{-10}
5,850.2	.01460	. 730	2.7×10^{-10}
5,899.1	.01460	.730	$2.7 \times 10_{-10}$
5,994.6	.01500	. 750	2.8 x 10_10
6,075.3	.01480	.740	$2.5 \times 10_{-10}$
6,162.3	.01480	. 740	2.6×10^{-10}

	Length Change		
	Δ L (inch)	${\tt Creep}$	${\tt Pressure}$
Time	(2" G. L.)	(%)	(Torr)
			10
6,237.3 Hours	.01480	. 740	2.6×10^{-10}
6,333.6	.01480	. 740	$2.8 \times 10_{-10}$
6,402.7	.01490	. 745	$2.8 \times 10_{-10}$
6,499.1	.01495	. 748	$2.7 \times 10_{-10}$
6,571.2	.01505	. 752	$2.7 \times 10_{-10}$
6,666.5	.01520	. 760	$2.6 \times 10_{-10}$
6,738.0	.01520	. 760	$2.5 \times 10_{-10}$
6,834.3	.01525	. 762	$2.7 \times 10_{-10}$
6,906.0	.01535	. 766	$2.7 \times 10_{-10}$
7,004.4	.01550	. 775	$3.3 \times 10_{-10}$
7,074.3	.01560	.780	2.6 x 10 ₋₁₀
7,170.1	.01595	. 798	$2.6 \times 10_{-10}$
7,242.3	.01600	.800	$2.5 \times 10_{-10}$
7,362.8	.01605	. 807	$2.6 \times 10_{-10}$
7,410.0	.01610	.805	2.6 x 10 ₋₁₀
7,506.6	.01620	.810	2.6×10^{-10}
7,578.0	.01630	.815	2.5 x 10 ₋₁₀
7,674.8	.01650	.825	$2.6 \times 10_{-10}$
7,746.4	.01640	.820	2.6 x 10 ₋₁₀
7,842.2	.01670	. 835	$2.5 \times 10_{-10}$
7,914.5	.01700	.850	$2.6 \times 10_{-10}$
8,010.4	.01710	. 855	2./ x 10 ₋₁₀
8,084.2	.01710	. 855	$2.6 \times 10_{-10}$
8,178.2	.01715	.858	2.8 x 10 ₋₁₀
8,250.3	.01715	.858	2.6 x 10 ₋₁₀
8,346.2	.01720	.860	2.6 x 10 ₋₁₀
8,418.3	.01725	. 862	2.6 x 10 ₋₁₀
8,514.2	.01735	.868	2.6 x 10 ₋₁₀
3,586.7	.01745	.872	2./ x 10 ₋₁₀
8,683.2	.01750	. 875	$2.6 \times 10_{-10}$
8,755.5	.01760	. 880	$2.6 \times 10_{-10}$
8,851.2	.01765	.882	2.6 x 10 ₋₁₀
8,923.1	.01765	.882	$2.4 \times 10_{-10}$
9.013.3	.01770	.885	2.6 x 10 ₋₁₀
9,091.4	.01775	.888	2.8×10^{-10}

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2'' G. L.)	(%)	(Torr)
9,187.3	.01790	. 895	2.6×10^{-10}
9,283.1	.01785	.892	2.6×10^{-10}
9,355.3	.01790	. 895	2.6×10^{-10}
9,427.7	.01800	.900	1.8×10^{-10}
9,523.8	.01810	.905	1.9×10^{-10}
9,595.3	.01820	.910	2.2×10^{-10}
9,691.6	.01825	.912	2.3×10^{-10}
9,763.4	.01835	.918	2.4×10^{-10}
9,860.0	.01840	.920	2.6×10^{-10}
9,931.7	.01845	.922	2.1×10^{-10}
10,051.8	.01855	.928	2.0×10^{-10}
10,099.4	.01860	.930	2.0×10^{-10}
10,219.5	:01870	÷935	2.3×10^{-10}
10,267.7	.01880	. 940	2.1×10^{-10}
10,364.6	.01880	. 940	1.8×10^{-10}
10,435.3	.01895	. 948	2.4×10^{-10}
10,532.7	.01900	. 950	2.4×10^{-10}
10,603.7	.01905	.952	2.4×10^{-10}
10,699.5	.01910	. 955	2.2×10^{-10}
10,771.9	.01920	.960	2.3×10^{-10}
10,867.7	.01925	.962	2.0×10^{-10}
10,940.0	.01930	. 965	2.0×10^{-10}
11,037.5	.01930	.965	2.0×10^{-10}
11,108.0	.01935	.968	2.4 x 10_10
11,203.4	.01935	. 963	2.0×10^{-10}
11,275.5	.01940	.970	2.1 x 10_10
11,371.9	.01950	.975	2.0×10^{-10}
11,444.1	.01950	.975	2.4 x 10_10
11,539.9 11,611.3	.01960	.980	2.1 x 10_10
	.01960	.980	$2.3 \times 10_{-10}$
11,707.3 11,779.1	.01965	.982	$2.5 \times 10_{-10}$
11,875.1	.01970	.985	2.1 x 10 ₋₁₀
11,947.2	.01970	.985	2.0×10^{-10}
11,34/.4	.01975	. 988	2.4×10^{-10}

Time	Length Change A L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
12,043.2	.01980	.990	2.4×10^{-10}
12,115.5	.01985	. 992	2.1×10^{-10}
12,211.8	.01990	.995	2.2×10^{-10}
12,283.3	.01990	.995	2.1×10^{-10}
12,451.1	.02000	1.000	2.1×10^{-10}
12,548.8	.02000	1.000	2.3×10^{-10}
12,619.5	.02000	1.000	2.6×10^{-10}
12,715.4	.02010	1.005	2.4×10^{-10}
12,787.4	.02015	1.008	2 2 × 10
12,794.5	.02015	1.008	$2.x \times 10^{-10}$

Test terminated - Sufficient data obtained Specimen B-20

TABLE 2

Creep Test Data, TZC Plate Heat M-91, Stress Relieved at 2500° F (1371 $^{\circ}$ C) 1 Hour, Tested at 1935 $^{\circ}$ F (1057 $^{\circ}$ C), and 20,000 PSI (1.38 x 10^{8} N/m 2)

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
l Minute	.00000	.000	2.0×10^{-8}
2	00005	002	2.0×10^{-8} 2.0×10^{-8}
3	00010	005	2.0×10^{-8}
3 4	00010	005	2.0×10^{-8}
5	00010	005	2.0×10^{-8}
5 6	00015	008	2.0×10^{-8}
7	00015	008	2.0×10^{-8}
8	00020	010	2.0×10^{-8}
9	00015	008	2.0×10^{-8}
10	00015	008	2.0×10^{-8}
15	00010	005	2.0×10^{-0}
45	00030	015	2.0×10^{-6}
60	00025	012	2.0×10^{-6}
16.8 Hours	.00015	.008	1.1×10^{-6}
91.2	.00080	.040	2.7×10^{-9}
113.1	.00100	.050	2.2×10^{-9}
136.1	.00105	.052	2.0×10^{-9}
160.9	.00105	.052	1.7×10^{-3}
184.9	.00115	.058	1.6×10^{-3}
281.3	.00120	.060	5.2×10^{-10}
305.1	.00120	.060	$5.1 \times 10_{-10}^{-10}$
328.9	.00125	.067	5.1 x 10 ₋₁₀
353.0	.00130	.065	5.3×10^{-10}
428.0	.00170	.085	4.8 x 10_10
448.9	.00180	.090	4.6 x 10 ₋₉
472.8	.00185	.092	$\frac{1.2 \times 10^{-10}}{10^{-10}}$
496.7	.00185	.092	4./ × 10 ₋₁₀
520.7	.00185	.092	1.1 x 10 ₋₁₀
592.9	.00190	.095	9.5×10^{-10}
616.8	.00190	.095	9.8 x 10_10
640.9	.00190	.095	$9.5 \times 10_{-10}$
665.2	.00195	.098	$9.8 \times 10_{-10}$
688.8	.00190	.095	9.8 x 10 ₋₁₀
761.0	.00200	.100	$9.2 \times 10_{-10}$
784.8	.00195	.098	9.2 x 10_10
808.9	.00195	.098	9.8 x 10 ⁻¹⁰
833.0	.00200	.100	1.1 x 10 ⁹

	Length Change		
	ΔL (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
			9
857.1 Hours	.00195	.098	$1.4 \times 10_{-10}$
929.2	.00210	. 105	9.0×10^{-10}
953.1	.00210	. 105	7.8×10^{-10}
976.7	.00220	.110	8.3×10^{-10}
1,000.9	.00215	.108	8.8×10^{-10}
1,024.9	.00230	.115	7.9×10^{-10}
1,120.9	.00235	.118	8.1×10^{-10}
1,145.0	.00235	.118	/.4 × 10-10
1,169.6	.00230	.115	$7.2 \times 10_{-10}$
1,192.8	.00230	.115	/.I X IU_10
1,265.2	.00235	.118	8.0 x 10_10
1,346.1	.00250	. 125	$7.2 \times 10_{-10}$
1,432.9	.00255	.128	$5.6 \times 10_{-10}$
1,508.1	.00260	.130	$5.5 \times 10_{-10}$
1,604.4	.00250	.125	$7.2 \times 10_{-10}$
1,673.4	.00270	. 135	$6.3 \times 10_{-10}$
1,769.5	.00280	. 140	4.7×10^{-10}
1,841.8	.00280	. 140	$4.7 \times 10_{-10}$
1,937.1	.00290	. 145	4.6×10^{-10}
2,008.7	.00300	. 150	$4.5 \times 10_{-10}$
2,105.0	.00300	. 150	$5.2 \times 10_{-10}$
2,176.6	.00300	.150	4.2×10^{-10}
2,274.3	.00340	. 170	4./ x 10 ₋₁₀
2,345.0	.00385	. 192	$4.2 \times 10_{-10}$
2,440.8	.00380	. 190	$4.0 \times 10_{-10}$
2,513.0	.00385	. 192	$4.4 \times 10_{-10}$
2,633.5	.00380	.190	3.6×10^{-10}
2,680.6	.00380	. 190	$3.8 \times 10_{-10}$
2,777.3	.00385	.192	$4.2 \times 10_{-10}$
2,848.7	.00385	.192	3.5×10^{-10}
2,945.4	.00385	. 192	$3.3 \times 10_{-10}$
3,017.1	.00390	. 195	3.6×10^{-10}
3,112.9	.00395	. 198	$3.4 \times 10_{-10}$
3,185.2	.00400	.200	3.2 x 10 ₋₁₀
3,281.1	.00410	.205	3.8×10^{-10}
3,354.9	.00410	.205	2 9 v 10 ' '
3,448.9	.00415	.208	3.0×10^{-10}
3,521.0	.00425	.212	3.0 x 10-10
J, J2110		• - • =	

Time	Length Change Δ L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
3,616.9 3,689.0 3,784.9 3,857.4 3,953.9 4,026.2 4,121.9 4,193.0 4,362.1 4,4553.8 4,698.4 4,553.8 4,698.4 4,866.3 4,794.1 4,866.3 5,130.5 5,320.0	A L (inch) (2" G. L.) .00445 .00460 .00470 .00475 .00480 .00490 .00500 .00505 .00510 .00515 .00520 .00530 .00535 .00540 .00545 .00550 .00560 .00560 .00570 .00575 .00575 .00585 .00585 .00585 .00590 .00595	.222 .230 .235 .238 .240 .240 .245 .250 .252 .255 .258 .260 .265 .265 .268 .270 .272 .275 .280 .280 .285 .280 .285 .288 .288 .292 .292 .292 .295 .298 .300	(Torr) 2.4 × 10-10 2.5 × 10-10 2.6 × 10-10 2.5 × 10-10 2.6 × 10-10 2.5 × 10-10 2.2 × 10-10 2.2 × 10-10 2.4 × 10-10 2.4 × 10-10 2.2 × 10-10 2.2 × 10-10 2.1 × 10-10 2.2 × 10-10 2.2 × 10-10 1.9 × 10-10
6,138.5 6,210.1 6,308.2 6,378.7 6,474.2 6,546.2	.00600 .00605 .00610 .00615 .00620 .00625	.300 .302 .305 .308 .310	1.9 × 10-10 1.8 × 10-10 1.8 × 10-10 1.7 × 10-10 1.4 × 10-10 1.7 × 10

	Length Change		
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
(() 0 ()	00(25	210	1.7×10^{-10}
6,642.6 Hours	.00635	.318 .318	1 6 4 10 10
6,714.9	.00635	.318	1.8 x 10 10
6,810.6	.00635		1.6 x 10-10
6,882.0	.00640 .00640	.320	1.6 x 10-10 1.6 x 10-10
6,978.0	.00640	.320	1 0 4 10 10
7,049.8	.00640	.320	1.9×10^{-10} 1.6×10^{-10}
7,145.9		. 320	10
7,217.9	.00650	. 325	1 8 2 10 10
7,313.9	.00655	. 328	1 6 1 10 10
7,386.2	.00660	. 330	1.5×10^{-10}
7,482.6	.00665	.332	1.6 x 10 10
7,554.1	.00675	. 338	1.7×10^{-10}
7,650.4	.00680	. 340	1.6 × 10-10
7,721.8	.00685	. 342	16 × 10 ⁻¹⁰
7,819.5	.00690 .00659	. 345 . 348	· · · · · · · · · · · · · · · · · · ·
7,890.3	.00700		1 6 4 10 10
7,986.1	•	.350	1.6×10^{-10}
8,058.2	.00705 .00710	.352 .355	1 7 ~ 10 -10
8,154.1		. 360	1.8×10^{-10}
8,226.1	.00720	.362	1.6×10^{-10}
8,393.4	.00725 .00735	.368	1.5×10^{-10}
8,538.5	.00735	.368	1.6×10^{-10}
8,563.1		.370	1.9×10^{-10}
8,657.5	.00740 .00750	.375	1 5 ~ 10 10
8,728.9		.375	1.6×10^{-10}
8,825.0	.00750	.378	1.6×10^{-10}
8,897.6	.00755 .00755	.378	1.6×10^{-10}
8,995.4	.00760	.380	1.5 × 10 - 10
9,064.9	.00765	.382	1.4 × 10-10
9,168.9	.00770	.385	1.4×10^{-10}
9,235.1		. 385	1 4 × 10-10
9,328.8	.00770 .00775	.388	1.6 × 10-10
9,401.9	.007/5	. 390	1.6 × 10-10
9,497.4	.00780		1.4×10^{-10}
9,569.2	.00/30	.395	1.7 % 10

Time	Length Change • L (inch) (2" G. L.)	Creep _(%)	Pressure (Torr)
9,666.4 Hours 9,736.7 9,832.8 9,904.8 10,001.3 10,193.0 10,240.9 10,338.7 10,408.7 10,506.8 10,577.0 10,673.2 10,745.0 10,913.0 11,009.4 11,080.8 11,177.0 11,249.3 11,369.8 11,177.0 11,249.3 11,369.8 11,1752.9 11,681.2 11,752.9 11,851.0 11,920.8 12,017.1 12,088.9 12,184.9	, ,	-	(Torr) 1.5 × 10-10 1.4 × 10-10 1.5 × 10-10 1.5 × 10-10 1.6 × 10-10 1.6 × 10-10 1.6 × 10-10 1.5 × 10-10 1.6 × 10-10 1.6 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.4 × 10-10 1.5 × 10-10 1.4 × 10-10 1.5 × 10-10 1.5 × 10-10 1.6 × 10-10 1.7 × 10-10 1.8 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10 1.9 × 10-10
12,257.0 12,353.8 12,425.9 12,521.4	.00890 .00895 .00900 .00895	. 445 . 448 . 450 . 448	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
12,593.4	.00900	. 450	1.2 × 10 ⁻¹⁰

	Length Change		
	Δ L (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			10
12,690.3 Hours	.00910	. 455	$1.2 \times 10_{-10}$
12,762.5	.00920	. 460	1.2×10^{-10}
12,858.6	.00925	. 462	$1.2 \times 10_{-10}$
12,929.8	.00925	. 462	$1.4 \times 10_{-10}$
13,026.3	.00935	. 468	1.2×10^{-10}
13,098.0	.00935	. 468	1.1 × 10 ₋₁₀
13,194.2	.00935	. 468	$1.3 \times 10_{-10}$
13,242.3	.00945	. 472	$1.1 \times 10_{-10}$
13,362.0	.00950	. 475	$1.1 \times 10_{-10}$
13,434.6	.00955	. 478	$1.2 \times 10_{-10}$
13,098.0	.00935	. 468	1.1 × 10 ₋₁₀
13,194.2	.00935	. 468	1.3×10^{-10}
13,242.3	.00945	. 472	1.1×10^{-10}
13,362.0	.00950	.475	1.1 × 10 ₋₁₀
13,434.6	.00955	. 478	$1.2 \times 10_{-10}$
13,530.0	.00965	.482	1.3 × 10 ₋₁₀
13,602.5	.00965	.482	$1.1 \times 10_{-10}$
13,698.0	.00970	. 485	$1.3 \times 10_{-10}$
13,769.9	.00980	. 490	1.2 × 10 ₋₁₀
13,865.9	.00990	. 495	1.2 × 10 ₋₁₀
13,938.0	.00990	. 495	1.2 × 10 ₋₁₀
14,106.4	.00995	. 498	1.3 x 10 '

Test in progress Specimen B-32

TABLE 3

Creep Test Data, TZC Plate Heat M-91, Stress Relieved 2500° F (1371 $^{\circ}$ C) 1 Hour, Tested at 1900 $^{\circ}$ F (1038 $^{\circ}$ C), and 22,000 PSI (1.52 x 10^{8} N/m²)

Time	Length Change A L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
Time 1 Minute 2 3 4 5 6 7 8 9 10 15 30 45 60 17.2 Hours 41.3 44.2 70.1 98.5 116.1 137.2 161.1 137.2 161.1 184.9 209.0 305.0 329.2 353.4 377.0 449.1 473.0 497.1		_	
521.9 546.8 617.7 641.3 664.8	.00310 .00310 .00315 .00320 .00325	.155 .155 .158 .160 .162	1.3 x 10-9 1.5 x 10-9 1.4 x 10-9 1.2 x 10-9 1.2 x 10-9

	Length Change		
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
689.1 Hours	.00335	. 168	1.2×10^{-9}
713.0	.00340	.170	$6.4 \times 10_{-10}$
809.1	.00350	. 175	$9.6 \times 10_{-10}$
833.4	.00355	.178	9./ × 10_10
858.0	.00360	.180	$9.5 \times 10_{-10}$
881.1	.00365	.182	$9.2 \times 10_{-10}$
953.4	.00375	. 188	$8.3 \times 10_{-10}$
977.3	.00380	.190	$9.2 \times 10_{-10}$
1,003.2	.00380	.190	9.1×10^{-10}
1,034.2	.00380	. 190	8.8 x 10 ₋₁₀
1,049.2	.00375	.188	8.5 x 10 ₋₁₀
1,121.2	.00390	. 195	$7.9 \times 10_{-10}$
1,145.0	.00385	.192	$8.2 \times 10_{-10}$
1,169.1	.00390	.195	$7.8 \times 10_{-10}$
1,195.4	.00390	.195	7.5 × 10 ₋₁₀
1,218.0	.00400	.200	3.5 x 10 ₋₁₀
1,289.8	.00425	.212	6.6 x 10 ₋₁₀
1,314.0	.00430	.215	$7.3 \times 10_{-10}$
1,337.9	.00430	.215	$6.9 \times 10_{-10}$
1,361.8	.00435	.218	4.1 X 10_10
1,385.7	.00445	.222	6.4 x 10_10
1,458.1	.00460	.230	$3.2 \times 10_{-10}$
1,481.5	.00470	.235	$3.5 \times 10_{-10}$
1,505.8	.00470	.235	$7.1 \times 10_{-10}$
1,531.0	.00475	. 238	7.0 x 10 ₋₁₀
1,554.2	.00480	.240	6.6 x 10 ₋₁₀
1,625.3	.00470	.235	6.9 x 10 ₋₁₀
1,649.5	.00470	. 235	$3.1 \times 10_{-10}$
1,673.1	.00485	. 242	6.6 x 10_10
1,696.3	.00490	. 245	6.6×10^{-10}
1,720.9	.00490	. 245	6.4×10^{-10}
1,793.2	.00480	. 240	6.6 X 10_10
1,817.0	.00495	. 246	3.0 × 10 ₋₁₀
1,840.8	.00510	. 255	6.4 x 10_10
1,864.9	.00520	. 260	$6.3 \times 10_{-10}$
1,888.7	.00520	. 260	6.2×10^{-10}

Length Change		
ΔL (inch)	Creep	Pressure
	(%)	(Torr)
		 _
.00525	.262	6.5×10^{-10}
.00535	. 268	2.6×10^{-10}
.00535	. 268	6.0×10^{-10}
.00540	.270	6.4×10^{-10}
.00555	.278	6.7×10^{-10}
.00570	. 285	7.2 x 10 ₋₁₀
.00565	.282	6.8×10^{-10}
.00570	. 285	7.0×10^{-10}
		$7.0 \times 10_{-10}$
		5.8 x 10_10
		6.4 × 10 ₋₁₀
		$6.4 \times 10_{-10}$
		$5.7 \times 10_{-10}$
		6.8×10^{-10}
		6.6 x 10 ₋₁₀
		6.8×10^{-10}
		$6.4 \times 10_{-10}$
		6.6 x 10 ₋₁₀
		6.4×10^{-10}
	_	6.1×10^{-10}
		6.2×10^{-10}
		6.2×10^{-10}
		6.4×10^{-10}
		6.3 × 10 ₋₁₀
		6.3×10^{-10}
		6.2×10^{-10}
		6.2×10^{-10}
		6.1×10^{-10}
		6.1 X 10_10
_		4.6×10^{-10}
		5.0×10^{-10}
		5.0×10^{-10}
		5.8 x 10 ₋₁₀
		6.2×10^{-10}
.00650	. 325	5.0 x 10 10
	Δ L (inch) (2" G. L.) .00525 .00535 .00535 .00540 .00555 .00570 .00565	Δ L (inch) (7%) (2" G. L.) (7%) .00525

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
			10
3,161.2 Hours	.00660	.330	4.6×10^{-10}
3,185.1	.00660	. 330	4.7×10^{-10}
3,209.2	.00660	. 330	6.0×10^{-10}
3,233.1	.00665	.332	5.2×10^{-10}
3,305.0	.00670	.335	5.9×10^{-10}
3,329.0	.00675	. 338	5.9×10^{-10}
3,353.4	.00675	. 338	5.6×10^{-10}
3,377.2	.00675	. 338	6.0×10^{-10}
3,401.0	.00675	. 338	4.6×10^{-10}
3,473.0	. 00675	. 338	4.5×10^{-10}
3,500.0	.00680	. 340	5.7×10^{-10}
3,521.1	.00685	.342	5.8×10^{-10}
3,545.6	.00685	.342	5.8×10^{-10}
3,569.2	.00680	. 340	5.8×10^{-10}
3,642.0	.00695	.348	E E V 10
3,666.0	.00690	.345	5 6 × 10 ⁻¹⁰
3,690.2	.00695	. 348	5.8×10^{-10}
3,714.4	.00695	.348	5.4×10^{-10}
3,738.1	.00695	.348	5.7×10^{-10}
3,810.1	.00695	. 348	5.7×10^{-10}
3,834.2	.00700	.350	5.6×10^{-10}
3,858.5	.00705	. 352	5.5×10^{-10}
3,882.0	.00705	. 352	5.6×10^{-10}
3,906.0	.00705	. 352	5 O V 10
3,978.2	.00710	. 355	5.2×10^{-10}
4,002.1	.00710	. 355	3.6×10^{-10}
4,026.7	.00715	. 358	4.9×10^{-10}
4,050.3	.00720	.360	4.6×10^{-10}
4,074.0	.00720	. 360	4.5×10^{-10}
4,146.2	.00730	.365	5.1×10^{-10}
4,170.1	.00725	. 362	5.3×10^{-10}
4,194.5	.00730	. 365	5 5 V 10
4,242.0	.00730	. 365	5.2×10^{-10}
4,314.2	.00735	. 368	5.2×10^{-10}
4,338.1	.00735	. 368	5.0×10^{-10}
4,362.1	.00735	. 368	5.1×10^{-10}

Time	Length Change L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
4,386.6 Hours	.00735	.368	5.1×10^{-10}
4,410.5	.00735	.368	h 8 × 10 ⁻¹⁰
4,482.7	.00735	.368	5.0×10^{-10}
4,506.3	.00740	.370	$h \circ 10^{-10}$
4,530.2	.00740	.370	5.0×10^{-10}
4,554.2	.00745	.372	4.8×10^{-10}
4,578.2	.00745	. 372	4.4×10^{-10}
4,650.5	.00750	.375	4.9×10^{-10}
4,674.1	.00750	.375	4.9×10^{-10}
4,698.2	.00750	.375	49 × 10 ⁻¹⁰
4,722.3	.00750	.375	49 × 10 ⁻¹⁰
4,746.2	.00755	.378	4 9 × 10 ⁻¹⁰
4,818.9	.00755	.378	4 8 × 10 ⁻¹⁰
4,842.3	.00760	. 380	4.9×10^{-10}
4,866.6	.00760	.380	46 × 10 ⁻¹⁰
4,890.6	.00765	.382	5.0×10^{-10}
5,010.7	.00775	. 388	1. 7 × 10 ⁻¹⁰
5,034.4	.00780	. 390	47 × 10 10
5,058.3	.00780	. 390	4.6×10^{-10}
5,082.7	.00780	.390	4.6×10^{-10}
5,178.4	.00795	. 398	4.6×10^{-10}
5,203.2	.00795	.398	4.5×10^{-10}
5,226.6	.00800	. 400	4.3×10^{-10}
5,250.4	.00800	. 400	4.6×10^{-10}
5,324.5	.00810	. 405	3.8×10^{-10}
5,348.4	.00815	. 408	4.1×10^{-10}
5.370.7	.00820	.410	4.4 X IU_10
5,394.2	.00820	.410	4.4 X IU_10
5,418.5	.00820	.410	4.6 x 10_10
5,491.6	.00825	.412	4.1 X:10_10
5,514.2	.00825	.412	4.3 × 10_10
5,538.6	.00830	.415	$4.0 \times 10_{-10}$
5,562.6	.00835	.418	4.6 X 10_10
5,586.4	.00835	.418	4.0 X 10_10
5,658.4	.00840	.420	4.5 X 10_10
5,682.3	.00840	.420	$4.3 \times 10_{-10}$
5,706.6	.00845	. 422	4.6 x 10_10
5,730.8	.00850	.425	4.1×10^{-10}

Time	Length Change • L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
5,754.7 5,826.6 5,850.2 5,874.3 5,898.8 5,922.6 5,996.3 6,018.5 6,042.4 6,066.8 6,162.3 6,186.6 6,258.4 6,258.4 6,3354.4 6,258.8 6,379.0 6,426.7 6,498.8 6,546.3 6,546.3 6,546.3 6,546.3 6,546.3 6,570.3 6,666.3 6,714.0 6,737.9 6,761.9	(2" G. L.) .00850 .00855 .00860 .00865 .00865 .00870 .00870 .00870 .00875 .00885 .00895 .00895 .00895 .00900 .00900 .00905 .00905 .00905 .00910 .00925 .00925 .00925 .00925 .00930 .00935	. 425 . 428 . 430 . 432 . 435 . 435 . 435 . 435 . 435 . 438 . 448 . 448 . 448 . 448 . 448 . 448 . 450 . 450 . 452 . 452 . 462 . 462 . 462 . 462 . 465 . 465 . 468	(Torr) 4.2 × 10-10 4.1 × 10-10 3.7 × 10-10 4.3 × 10-10 4.5 × 10-10 4.5 × 10-10 4.6 × 10-10 4.7 × 10-10 4.4 × 10-10 4.4 × 10-10 4.5 × 10-10 4.6 × 10-10 4.7 × 10-10 4.7 × 10-10 4.8 × 10-10 4.9 × 10-10 4.0 × 10-10 4.0 × 10-10 3.8 × 10-10 4.1 × 10-10 3.8 × 10-10 4.1 × 10-10 3.8 × 10-10 4.1 × 10-10 3.8 × 10-10 4.1 × 10-10 3.8 × 10-10 4.1 × 10-10 3.8 × 10-10 3.8 × 10-10 4.1 × 10-10 3.8 × 10-10 3.8 × 10-10 4.1 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10 4.0 × 10-10 3.8 × 10-10
6,834.0 6,858.1 6,882.6 6,906.0	.00945 .00940 .00940 .00940	. 472 . 470 . 470 . 470	4.0 × 10 10 4.0 × 10 10 4.2 × 10 10 4.1 × 10 10 4.2 × 10
6,930.2	. 00940	. 470	4.2 X IU

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
7,002.0 Hours	.00940	.470	3.8×10^{-10}
7,002.0 Hours	.00940	.470	3.0 x 10-10
7,050.3	.00945	. 472	4.0 x 10-10
7,074.3	.00945	.472	4.2×10^{-10} 4.0×10^{-10}
7,170.7	.00950	.475	h 1 × 10 ⁻¹⁰
7,194.5	.00960	. 480	/L 1 × 10 ^{7 10}
7,218.2	.00960	. 480	h 1 × 10 ²¹⁰
7,242.1	.00960	. 480	3.7×10^{-10}
7,266.6	.00960	. 480	h 0 × 10 ⁻¹⁰
7,338.5	.00965	. 482	4.0 × 10 ⁻¹⁰
7,362.2	.00965	.482	4.0×10^{-10}
7,386.2	.00960	. 480	2.0×10^{-10}
7,410.0	.00965	. 482	3.9×10^{-10}
7,434.0	.00965	. 482	2 9 ~ 10 10
7,507.7	.00965	.482	3.8×10^{-10}
7,530.1	.00970	. 485	3.8×10^{-10}
7,554.2	.00975	. 488	3 9 × 10 ⁻¹⁰
7,578.4	.00970	. 485	3.6×10^{-10}
7,674.4	.00990	. 495	3.8×10^{-10}
7,698.1	.00990	. 495	3.9×10^{-10}
7,722.0	.01000	. 500	3.9×10^{-10}
7,746.3	.01005	. 502	4.0 X 10_10
7,770.1	.01010	. 505	4.1 X 10_10
7,842.2	.01015	.508	4.1 X 10 ₋₁₀
7,866.6	.01015	.508	3.8 x 10_10
7,890.2	.01010	. 505	$3.4 \times 10_{-10}$
7,914.3	.01010	.505	3.5 x 10 ₋₁₀
7,938.3	.01010	.505	$3.5 \times 10_{-10}$
8,009.5	.01015	.508	$3.8 \times 10_{-10}$
8,033.4	.01020	.510	$3.8 \times 10_{-10}$
8,058.1	.01020	.510	3./ x 10_10
8,081.6	.01025	.512	3.8 X 10_10
8,105.1	.01020	.510	3.6 × 10 ₋₁₀
8,226.7	.01035	.518	3./ x 10 ₋₁₀
8,251.3	.01035	.518	3.6 x 10 ₋₁₀
8,273.0	.01040	.520	$3.6 \times 10_{-10}$
8,345.6	.01060	.530	3.4×10^{-10}

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
8,369.4 Hours	.01060	.530	3.5×10^{-10}
8,393.5	.01065	.532	3.6×10^{-10}
8,417.1	.01075	.538	3.6 x 10 ₋₁₀
8,443.4	.01080	. 540	$3.6 \times 10_{-10}$
8,513.1	.01080	.540	3.6 x 10 10
8,561.0	.01085	.542	$3.7 \times 10_{-10}$
8,585.9	.01085	. 542	3.6 × 10 ₋₁₀
8,609.8	.01090	. 545	2.2 A 10_10
8,683.5	.01100	.550	3.5 x 10 ₋₁₀
8,730.0	.01100	. 550	$3.5 \times 10_{-10}$
8,753.4	.01100	.550	3.4 X 10_10
8,777.4	.01100	. 550	$3.4 \times 10_{-10}$
8,849.1	.01100	. 550	$3.5 \times 10_{-10}$
8,897.7	.01105	. 552	$3.5 \times 10_{-10}$
8,873.2	.01100	.550	3.5 X 10_10
8,923.4	.01105	. 552	3.6 X 10_10
8,945.2	.01110	. 555	3./ × 10 ₋₁₀
9,016.9	.01120	. 560	3.6 x 10 ₋₁₀
9,041.6	.01130	. 565	$3.5 \times 10_{-10}$
9,065.5	.01125	.562	$3./ \times 10_{-10}$
9,090.1	.01130	. 565	$3.8 \times 10_{-10}$
9,113.2	.01125	. 562	$3.8 \times 10_{-10}$
9,185.6	.01135	. 568	4.0 X 10_10
9,209.1	.01135	.568	$4.0 \times 10_{-10}$
9,233.0	.01135	. 568	4.1 X 10_10
9,257.3	.01135	. 568	4.0 × 10 ₋₁₀
9,280.9	.01135	.568	$4.0 \times 10_{-10}$
9,354.5	.01145	.572	$4.0 \times 10_{-10}$
9,377.4	.01145	.572	4.0×10^{-10}
9,400.9	.01145	.572	$4.1 \times 10_{-10}$
9,424.9	.01150	.575	4.1 X.10_10
9,448.9	<i>,</i> ′01160	<i>.</i> ′580	4.0×10^{-10}
9,520.9	.01170	. 585	$4.0 \times 10_{-10}$
9,568.9	.01170	.585	4.0 x:10 ₋₁₀
9,593.0	.01170	.585	$4.0 \times 10_{-10}$
9,617.1	.01170	.585	3.8 X 10_10
9,689.4	.01170	. 585	4.2 x 10 ₋₁₀
9,697.3	.01170	. 585	4.1×10^{-10}

Test terminated - sufficient data obtained Specimen B-33

 $\frac{\text{TABLE 4}}{\text{Creep Test Data, TZC Plate Heat 4345, Stress Relieved 2500}^{\text{O}}\text{F (1371}^{\text{O}}\text{C) 1 Hour,}}{\text{Tested at 2000}^{\text{O}}\text{F (1093}^{\text{O}}\text{C), and 2200 PSI (1.52 x <math>10^{\text{N}}\text{N}^{\text{M}}\text{Z})}}$

Time	Length Change • L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
1 Minute 2 3 4 5 6 7 8 9 10 15 30 45 60 67.1 Hours 91.1 115.0 139.1 163.2 235.0 259.0 283.3 307.2 331.0 403.0 475.5 499.1 572.0 596.0 620.1 644.3 668.1	.00000 .00005 .00000 .00005 .00000 .00005 .00010 .00005 .00005 .00005 .00010 .00010 .00010 .00110 .00110 .00130 .00140 .00150 .00165 .00200 .00210 .00215 .00220 .00220 .00230 .00240 .00260 .00270 .00275 .00280 .00290 .00310	.000 .002 .000 .002 .000 .002 .005 .002 .002	(Torr) 2.2 × 10-8 2.2 × 10-8 2.2 × 10-8 2.2 × 10-8 2.2 × 10-8 2.2 × 10-8 2.2 × 10-8 2.2 × 10-8 2.2 × 10-8 2.2 × 10-9 3.6 × 10-9 3.6 × 10-9 3.6 × 10-9 3.6 × 10-9 3.6 × 10-9 1.7 × 10-9 1.4 × 10-9 1.4 × 10-9 1.4 × 10-9 1.5 × 10-9 1.1 × 10-9 1.1 × 10-9 1.2 × 10-9 1.3 × 10-9 1.1 × 10-9 1.2 × 10-9 1.3 × 10-10 8.7 × 10-10 8.7 × 10-10 8.9 × 10-10 8.7 × 10-10 7.9 × 10-10
740.0 764.2 788.5	.00325 .00330 .00340	.162 .165 .170	7.7×10^{-10} 8.0×10^{-10} 7.0×10^{-10}

Time (2" G. L.) (%) (76) (Torr) 812.0 Hours		Length Change		
Time (2" G. L.) (%) (Torr) 812.0 Hours .00340 .170 7.2 × 10-10 835.9 .00340 .170 6.9 × 10-10 908.2 .00345 .172 6.6 × 10-10 932.1 .00350 .175 7.0 × 10-10 980.2 .00350 .175 6.8 × 10-10 980.2 .00350 .175 7.0 × 10-10 1,004.0 .00355 .178 6.6 × 10-10 1,006.2 .00365 .182 5.7 × 10-10 1,090.1 .00365 .182 5.7 × 10-10 1,114.5 .00370 .185 6.4 × 10-10 1,162.0 .00370 .185 6.4 × 10-10 1,253.1 .00385 .190 5.0 × 10-10 1,253.1 .00386 .190 5.0 × 10-10 1,253.1 .00385 .192 5.5 × 10-10 1,306.6 .00390 .195 5.1 × 10-10 1,330.5 .00400 .200 4.9 × 10-10 1,426.3 <th></th> <th>ΔL (inch)</th> <th>${\sf Creep}$</th> <th>Pressure</th>		ΔL (inch)	${\sf Creep}$	Pressure
812.0 Hours 835.9 .00340 .170 .170 .9 × 10 - 10 .908.2 .00345 .172 .6.6 × 10 - 10 .932.1 .00350 .175 .175 .00 × 10 - 10 .980.2 .00350 .175 .178 .6.8 × 10 - 10 .004.0 .00355 .178 .6.6 × 10 - 10 .004.0 .00355 .178 .6.6 × 10 - 10 .004.0 .00355 .178 .6.6 × 10 - 10 .006.2 .00365 .182 .5.7 × 10 - 10 .1, 090.1 .00365 .182 .5.9 × 10 - 10 .1, 162.0 .00370 .185 .6.4 × 10 - 10 .1, 234.2 .00370 .185 .188 .5.6 × 10 - 10 .1, 234.2 .00375 .188 .190 .5.0 × 10 - 10 .1, 253.1 .00380 .190 .19.5 .1, 282.1 .00385 .192 .5.5 × 10 - 10 .1, 330.5 .00400 .200 .195 .1 × 10 - 10 .1, 402.7 .00420 .210 .4.6 × 10 - 10 .1, 426.3 .00430 .215 .00430 .215 .00430 .215 .4.9 × 10 - 10 .1, 498.2 .00440 .220 .210 .4.6 × 10 - 10 .1, 498.2 .00440 .220 .215 .4.9 × 10 - 10 .1, 498.2 .00440 .220 .216 .4.6 × 10 - 10 .1, 570.5 .00440 .220 .216 .4.6 × 10 - 10 .1, 594.1 .00445 .222 .4.6 × 10 - 10 .1, 618.1 .00445 .222 .238 .4.8 × 10 - 10 .1, 762.3 .00460 .230 .238 .4.7 × 10 - 10 .788.5 .00465 .232 .4.7 × 10 - 10 .788.5 .00465 .232 .238 .4.7 × 10 - 10 .4.7 × 10	Time		_(%)	(Torr)
835.9				10
908.2				
932.1				
956.6		- -		
956.6				
1,004.0 .00355 .178 6.6 × 10-10 1,066.2 .00365 .182 5.7 × 10-10 1,090.1 .00365 .182 5.9 × 10-10 1,114.5 .00370 .185 6.4 × 10-10 1,162.0 .00370 .185 5.6 × 10-10 1,234.2 .00375 .188 5.6 × 10-10 1,253.1 .00380 .190 5.0 × 10-10 1,282.1 .00385 .192 5.5 × 10-10 1,306.6 .00390 .195 5.1 × 10-10 1,330.5 .00400 .200 4.9 × 10-10 1,402.7 .00420 .210 4.6 × 10-10 1,450.2 .00430 .215 5.0 × 10-10 1,474.2 .00430 .215 5.4 × 10-10 1,498.2 .00440 .220 5.3 × 10-10 1,594.1 .00440 .220 4.6 × 10-10 1,594.1 .00440 .220 4.8 × 10-10 1,666.2 .00455 .228 4.8 × 10-10 1,738.9 .00460 .230 5.0 × 10-10 1,786.5				6.8 x 10 ₋₁₀
1,004.0 .00355 .178 6.6 x 10 - 10 1,066.2 .00365 .182 5.7 x 10 - 10 1,090.1 .00365 .182 5.9 x 10 - 10 1,114.5 .00370 .185 6.4 x 10 - 10 1,162.0 .00370 .185 5.6 x 10 - 10 1,234.2 .00375 .188 5.6 x 10 - 10 1,258.1 .00380 .190 5.0 x 10 - 10 1,306.6 .00390 .195 5.1 x 10 - 10 1,330.5 .00400 .200 4.9 x 10 - 10 1,402.7 .00420 .210 4.6 x 10 - 10 1,426.3 .00430 .215 5.0 x 10 - 10 1,474.2 .00430 .215 5.4 x 10 - 10 1,498.2 .00440 .220 5.3 x 10 - 10 1,594.1 .00440 .220 4.8 x 10 - 10 1,594.1 .00440 .220 4.8 x 10 - 10 1,666.2 .00455 .222 4.6 x 10 - 10 1,738.9 .00460 .230 5.0 x 10 - 10 1,786.5 .00465 .232 4.7 x 10 - 10				$7.0 \times 10_{-10}$
1,066.2 .00365 .182 5.7 x 10_10 1,090:1 .00365 .182 5.9 x 10_10 1,114.5 .00370 .185 6.4 x 10_10 1,162.0 .00375 .188 5.6 x 10_10 1,234.2 .00375 .188 5.6 x 10_10 1,253.1 .00380 .190 5.0 x 10_10 1,366.6 .00390 .195 5.1 x 10_10 1,330.5 .00400 .200 4.9 x 10_10 1,402.7 .00420 .210 4.6 x 10_10 1,426.3 .00430 .215 5.0 x 10_10 1,474.2 .00430 .215 5.4 x 10_10 1,498.2 .00440 .220 5.3 x 10_10 1,570.5 .00440 .220 5.3 x 10_10 1,594.1 .00440 .220 4.6 x 10_10 1,682.3 .00455 .228 4.8 x 10_10 1,738.9 .00460 .230 5.0 x 10_10 1,762.3 .00460 .230 4.6 x 10_10 1,786.5 .00465 .232 4.7 x 10_10 1,786.5				$6.6 \times 10_{-10}$
1,090.1 .00365 .182 5.9 x 10_10 1,114.5 .00370 .185 6.4 x 10_10 1,162.0 .00370 .185 5.6 x 10_10 1,234.2 .00375 .188 5.6 x 10_10 1,258.1 .00380 .190 5.0 x 10_10 1,306.6 .00390 .195 5.1 x 10_10 1,330.5 .00400 .200 4.9 x 10_10 1,402.7 .00420 .210 4.6 x 10_10 1,450.2 .00430 .215 5.4 x 10_10 1,474.2 .00430 .215 5.4 x 10_10 1,498.2 .00440 .220 5.3 x 10_10 1,570.5 .00440 .220 5.3 x 10_10 1,594.1 .00440 .220 4.6 x 10_10 1,68.1 .00445 .222 4.8 x 10_10 1,642.3 .00445 .222 4.8 x 10_10 1,738.9 .00460 .230 5.0 x 10_10 1,762.3 .00465 .232 4.7 x 10_10 1,786.5 .00465 .232 4.7 x 10_10				$5.7 \times 10_{-10}$
1,114.5 .00370 .185 6.4 x 10 - 10 1,162.0 .00375 .188 5.6 x 10 - 10 1,234.2 .00380 .190 5.0 x 10 - 10 1,253.1 .00385 .192 5.5 x 10 - 10 1,306.6 .00390 .195 5.1 x 10 - 10 1,330.5 .00400 .200 4.9 x 10 - 10 1,402.7 .00420 .210 4.6 x 10 - 10 1,450.2 .00430 .215 5.4 x 10 - 10 1,474.2 .00430 .215 5.4 x 10 - 10 1,498.2 .00440 .220 5.3 x 10 - 10 1,570.5 .00440 .220 4.6 x 10 - 10 1,594.1 .00440 .220 4.8 x 10 - 10 1,618.1 .00445 .222 4.8 x 10 - 10 1,642.3 .00455 .228 4.8 x 10 - 10 1,738.9 .00460 .230 5.0 x 10 - 10 1,762.3 .00465 .232 4.7 x 10 - 10 1,786.5 .00465 .232 4.7 x 10 - 10 1,786.5 .00465 .232 4.7 x 10 - 10				$5.9 \times 10_{-10}$
1,162.0 .00370 .185 5.6 × 10 - 10 1,234.2 .00375 .188 5.6 × 10 - 10 1,258.1 .00380 .190 5.0 × 10 - 10 1,382.1 .00385 .192 5.5 × 10 - 10 1,306.6 .00390 .195 5.1 × 10 - 10 1,330.5 .00400 .200 4.9 × 10 - 10 1,402.7 .00420 .210 4.6 × 10 - 10 1,426.3 .00430 .215 5.0 × 10 - 10 1,450.2 .00430 .215 5.4 × 10 - 10 1,498.2 .00440 .220 5.3 × 10 - 10 1,570.5 .00440 .220 4.6 × 10 - 10 1,594.1 .00440 .220 4.8 × 10 - 10 1,618.1 .00445 .222 4.6 × 10 - 10 1,642.3 .00455 .228 4.8 × 10 - 10 1,738.9 .00460 .230 5.0 × 10 - 10 1,762.3 .00460 .230 4.6 × 10 - 10 1,786.5 .00465 .232 4.7 × 10 - 10 1,786.5 .00465 .232 4.7 × 10 - 10	1,114.5			$6.4 \times 10_{-10}$
1,234.2 .00375 .188 5.6 × 10 10 1,253.1 .00380 .190 5.0 × 10 10 1,282.1 .00385 .192 5.5 × 10 10 1,306.6 .00390 .195 5.1 × 10 10 1,330.5 .00400 .200 4.9 × 10 10 1,402.7 .00420 .210 4.6 × 10 10 1,426.3 .00430 .215 5.0 × 10 10 1,450.2 .00430 .215 5.4 × 10 10 1,474.2 .00430 .215 4.9 × 10 10 1,498.2 .00440 .220 5.3 × 10 10 1,570.5 .00440 .220 4.6 × 10 10 1,594.1 .00445 .222 4.8 × 10 10 1,682.3 .00445 .222 4.8 × 10 10 1,666.2 .00455 .228 4.8 × 10 10 1,738.9 .00460 .230 5.0 × 10 10 1,786.5 .00465 .232 4.7 × 10 10 1,786.5 .00465 .232 4.7 × 10 10	1,162.0	.00370		5.6 x 10 ₋₁₀
1,258.1 .00380 .190 5.0 × 10 - 10 1,282.1 .00385 .192 5.5 × 10 - 10 1,306.6 .00390 .195 5.1 × 10 - 10 1,330.5 .00400 .200 4.9 × 10 - 10 1,402.7 .00420 .210 4.6 × 10 - 10 1,426.3 .00430 .215 5.0 × 10 - 10 1,450.2 .00430 .215 5.4 × 10 - 10 1,474.2 .00430 .215 4.9 × 10 - 10 1,498.2 .00440 .220 5.3 × 10 - 10 1,570.5 .00440 .220 4.6 × 10 - 10 1,594.1 .00440 .220 4.8 × 10 - 10 1,618.1 .00445 .222 4.8 × 10 - 10 1,666.2 .00455 .228 4.8 × 10 - 10 1,738.9 .00460 .230 5.0 × 10 - 10 1,786.5 .00465 .232 4.7 × 10 - 10 1,786.5 .00465 .232 4.7 × 10 - 10		.00375		5.6 x 10 ₋₁₀
1,282:1 .00385 .192 5.5 × 10 - 10 1,306.6 .00390 .195 5.1 × 10 - 10 1,330.5 .00400 .200 4.9 × 10 - 10 1,402.7 .00420 .210 4.6 × 10 - 10 1,426.3 .00430 .215 5.0 × 10 - 10 1,450.2 .00430 .215 5.4 × 10 - 10 1,474.2 .00430 .215 4.9 × 10 - 10 1,498.2 .00440 .220 5.3 × 10 - 10 1,570.5 .00440 .220 4.6 × 10 - 10 1,594.1 .00440 .220 4.8 × 10 - 10 1,618.1 .00445 .222 4.8 × 10 - 10 1,642.3 .00445 .222 4.6 × 10 - 10 1,738.9 .00460 .230 5.0 × 10 - 10 1,762.3 .00460 .230 4.6 × 10 - 10 1,786.5 .00465 .232 4.7 × 10 - 10 1,786.5 .00465 .232 4.7 × 10 - 10	1,258.1	.00380		5.0 x 10 ₋₁₀
1,306.6 .00390 .195 5.1 × 10 10 1,330.5 .00400 .200 4.9 × 10 10 1,402.7 .00420 .210 4.6 × 10 10 1,426.3 .00430 .215 5.0 × 10 10 1,450.2 .00430 .215 5.4 × 10 10 1,474.2 .00430 .215 4.9 × 10 10 1,498.2 .00440 .220 5.3 × 10 10 1,570.5 .00440 .220 4.6 × 10 10 1,594.1 .00440 .220 4.9 × 10 10 1,618.1 .00445 .222 4.8 × 10 10 1,642.3 .00445 .222 4.6 × 10 10 1,738.9 .00460 .230 5.0 × 10 10 1,762.3 .00460 .230 4.6 × 10 10 1,786.5 .00465 .232 4.7 × 10 10 1,810.7 .00475 .238 4.8 × 10	1,28211	.00385		5.5 × 10 ₋₁₀
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,306.6	.00390	. 195	5.1 x 10 ₋₁₀
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,330.5	.00400		4.9 x 10 ₋₁₀
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,402.7	.00420	.210	11 6 V 1()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,426.3	.00430	.215	5.0 x 10_10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,450.2	.00430	.215	5.4 x 10 ₋₁₀
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,474.2	.00430	.215	4.9 x 10_10
$1,570.5$.00440 .220 $4.6 \times 10_{-10}$ $1,594.1$.00440 .220 $4.9 \times 10_{-10}$ $1,618.1$.00445 .222 $4.8 \times 10_{-10}$ $1,642.3$.00445 .222 $4.6 \times 10_{-10}$ $1,666.2$.00455 .228 $4.8 \times 10_{-10}$ $1,738.9$.00460 .230 $5.0 \times 10_{-10}$ $1,762.3$.00460 .230 $4.6 \times 10_{-10}$ $1,786.5$.00465 .232 $4.7 \times 10_{-10}$ $1,810.7$.00475 .238 $4.8 \times 10_{-10}$.00440	.220	5.3 x 10 ₋₁₀
1,594.1 .00440 .220 $4.9 \times 10_{-10}$ 1,618.1 .00445 .222 $4.8 \times 10_{-10}$ 1,642.3 .00445 .222 $4.6 \times 10_{-10}$ 1,666.2 .00455 .228 $4.8 \times 10_{-10}$ 1,738.9 .00460 .230 $5.0 \times 10_{-10}$ 1,762.3 .00460 .230 $4.6 \times 10_{-10}$ 1,786.5 .00465 .232 $4.7 \times 10_{-10}$ 1,810.7 .00475 .238 $4.8 \times 10_{-10}$.00440	.220	4 6 V 10
1,618.1 .00445 .222 $4.8 \times 10_{-10}^{-10}$ 1,642.3 .00445 .222 $4.6 \times 10_{-10}^{-10}$ 1,666.2 .00455 .228 $4.8 \times 10_{-10}^{-10}$ 1,738.9 .00460 .230 $5.0 \times 10_{-10}^{-10}$ 1,762.3 .00460 .230 $4.6 \times 10_{-10}^{-10}$ 1,786.5 .00465 .232 $4.7 \times 10_{-10}^{-10}$ 1,810.7 .00475 .238 $4.8 \times 10_{-10}^{-10}$.00440	.220	$4.9 \times 10_{-10}$
$1,642.3$.00445 .222 $4.6 \times 10_{-10}$ $1,666.2$.00455 .228 $4.8 \times 10_{-10}$ $1,738.9$.00460 .230 $5.0 \times 10_{-10}$ $1,762.3$.00460 .230 $4.6 \times 10_{-10}$ $1,786.5$.00465 .232 $4.7 \times 10_{-10}$ $1,810.7$.00475 .238 $4.8 \times 10_{-10}$	1,618.1	.00445	. 222	7 X X 10
1,666.2 .00455 .228 4.8 x 10_10 1,738.9 .00460 .230 5.0 x 10_10 1,762.3 .00460 .230 4.6 x 10_10 1,786.5 .00465 .232 4.7 x 10_10 1,810.7 .00475 .238 4.8 x 10_10		.00445	.222	4.6 x 10_10
1,738.9 .00460 .230 5.0 × 10 ₋₁₀ 1,762.3 .00460 .230 4.6 × 10 ₋₁₀ 1,786.5 .00465 .232 4.7 × 10 ₋₁₀ 1,810.7 .00475 .238 4.8 × 10	1,666.2	.00455	.228	$n \times \sqrt{10}$
$1,762.3$.00460 .230 $4.6 \times 10_{-10}$ $1,786.5$.00465 .232 $4.7 \times 10_{-10}$ $1,810.7$.238 $4.8 \times 10_{-10}$	•	.00460	.230	5 () V ()
1,786.5 .00465 .232 4.7 × 10 10		.00460	.230	46 2 10
$1^{\circ}810^{\circ}7$ 00075 238 4.8×10^{-10}		.00465	.232	4 / V IO
		.00475		4 X Y II)
1 020 7 00400 245 4 1 × 10 10				n + v + v
1 05 1 00490 245 4.2 × 10 10				4 7 x 1()
1 079 3 00500 250 4 3 × 10 10				43 × 10 ⁻¹⁰
2.002.6 00500 250 4.3 x 10 10		The state of the s		4.3×10^{-10}
2,000 2 00515 258 4.2 × 10 10	•	The state of the s		42 × 10 10
2,123.2 .00520 .260 4.2 x 10 ⁻¹⁰				

	Length Change		
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			
2,146.6 Hours	.00530	.265	3.8×10^{-10}
2,170.4	.00535	.268	4.2×10^{-10}
2,243.5	.00540	.270	3.5×10^{-10}
2,268.4	.00550	.275	3.5×10^{-10}
2,290.5	.00555	.278	3.6×10^{-10}
2,314.2	.00555	.278	4.() x (()
2,338.4	.00560	. 280	4.1×10^{-10}
2,411.6	.00560	. 280	3.4×10^{-10}
2,434.2	.00565	. 282	3.6×10^{-10}
2,458.4	.00570	.285	3.4×10^{-10}
2,482.6	.00575	.288	3.7×10^{-10}
2,506.4	.00580	.290	3.7×10^{-10}
2,578.4	.00585	. 292	3.8×10^{-10}
2,602.3	.00590	. 295	3.5×10^{-10}
2,626.5	.00595	. 298	3.7×10^{-10}
2,650.7	.00595	.298	3.4×10^{-10}
2,674.7	.00605	. 302	3.4×10^{-10}
2,746.6	.00615	. 308	3.4×10^{-10}
2,770.1	.00620	.310	3.2×10^{-10}
2,794.3	.00625	.312	4.9×10^{-10}
2,818.8	.00630	.315	3.0×10^{-10}
2,842.5	.00635	.318	3.6×10^{-10}
2,916.3	.00640	.320	3.4×10^{-10}
2,938.5	.00645	. 322	1.4×10^{-10}
2,962.4	.00650	.325	3.1×10^{-10}
2,986.8	.00650	. 325	$3.4 \times 10_{-10}$
3,013.1	. 00655	. 328	2.8×10^{-10}
3,082.3	.00665	.332	1.7×10^{-10}
3,106.6	:00670	:335	2.8×10^{-10}
3,130.0	.00680	. 340	3.1×10^{-10}
3,154.3	.00680	. 340	1.5 x 10 10
3,178.3	.00680	. 340	1.8×10^{-10}
3,250.7	.00690	. 345	2.6×10^{-10}
3,274.4	.00695	. 348	3.2 x 10 ₋₁₀
3,299.0	.00695	. 348	2.6×10^{-10}

	Length Change		
	ΔL(inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
3,323.0 Hours	.00700	.350	2.9×10^{-10}
3,346.7	.00700	. 350	2.9×10^{-10}
3,418.7	.00700	. 350	3.0×10^{-10}
3,442.8	.00700	. 350	1.8×10^{-10}
3,466.4	.00700	. 350	$1.8 \times 10_{-10}$
3,490.2	.00695	. 348	1.6×10^{-10}
3,514.2	.00700	. 350	3.0×10^{-10}
3,586.1	.00710	. 355	1.8×10^{-10}
3,610.4	.00720	. 360	1.7×10^{-10}
3,634.0	.00725	. 362	$1.7 \times 10_{-10}$
3,657.9	.00730	. 365	1.6 x 10 ₋₁₀
3,681.9	.00740	. 370	$3.0 \times 10_{-10}$
3,754.0	.00735	. 368	1.6 x 10 ₋₁₀
3,778.1	.00740	.370	1.6×10^{-10}
3,802.6	.00755	. 378	1./ x 10 ₋₁₀
3,826.0	.00755	. 378	1.6 × 10 ₋₁₀
3,850.2	.00750	. 375	1.5 X 10_10
3,922.0	.00750	. 375	1.6 X 10 ₋₁₀
3,802.6	.00755	. 378	1.7×10^{-10}
3,826.0	.00755	. 378	1.6 x 10 ₋₁₀
3,850.2	.00750	.375	1.5×10^{-10}
3,922.0	.00750	.375	1.6×10^{-10}
3,946.3	.00760	. 380	1.5×10^{-10}
3,970.3	.00755	. 378	1.6×10^{-10}
3,994.3	.00765	. 382	1.4×10^{-10}
4,090.7	.00775	. 388	2.0×10^{-10}
4,114.5	.00775	. 388	1.6×10^{-10}
4,138.2	.00780	.390	1.7×10^{-10}
4,162.1	.00790	. 395	1.3×10^{-10}
4,186.6	.00785	. 392	1.5×10^{-10}
4,258.5	.00795	. 398	1.5 x 10 ₋₁₀
4,282.2	.00800	. 400	1.5×10^{-10}
4,306.2	.00810	. 405	1.6×10^{-10}
4,330.0	.00810	.405	1.4×10^{-10}
4,354.0	.00815	. 408	1.4×10^{-10}

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
4,427.7 Hours	.00825	.412	1.4×10^{-10}
4,450.1	.00825	.412	2.6×10^{-10}
4,474.2	.00825	.412	1.6×10^{-10}
4,498.4	.00825	.412	1.4 x 10-10
4,522.4	.00830	.415	1 5 × 10 10
4,594.4	. 00840	.420	1.5×10^{-10}
4,618.1	.00850	.425	2.8×10^{-10}
4,642.0	.00850	. 425	2.8×10^{-10}
4,666.3	.00860	.430	1.7×10^{-10}
4,690.1	.00870	. 435	1. / x 10
4,762.2	.00870	. 435	2.9×10^{-10}
4,786.5	.00875	.438	1.4×10^{-10}
4,810.2	. 00875	. 438	1.3 x 10-10
4,834.3	. 00875	.438	1.4×10^{-10}
4,929.5	.00890	. 445	1.4×10^{-10}
4,953.4	.00900	. 450	1.6×10^{-10}
4,978.1	.00895	. 448	2.9×10^{-10}
5,001.5	.00895	. 448	1.8 x 10 .*
5,025.1	.00895	. 448	1.6×10^{-10}
5,146.7	.00900	. 450	2.9×10^{-10}
5,171.2	.00900	. 450	$2./ \times 10_{-10}$
5,193.0	.00905	. 452	2.8 x 10_10
5,265.6	.00910	. 455	2.8×10^{-10}
5,289.4	.00910	. 455	1.4×10^{-10}
5,313.5	.00920	.460	1.6 x 10_10
5,337.1	.00925	.462	1.6 x 10 ₋₁₀
5,363.3	.00925	.462	1.5 X 10 10
5,433.1	.00925	. 462	$2.8 \times 10_{-10}$
5,457.1	.00930	.465	2.4 x 10 ₋₁₀
5,481.0	.00935	. 468	2.8 x 10_10
5,505.9	.00940	. 470	2.8 x 10 ₋₁₀
5,529.8	.00945	. 472	1.6 x 10_10
5,603.5	.00950	. 475	1.3 x 10 ₋₁₀
5,650.0	.00960	. 480	1.4 x 10_10
5,673.4	.00970	. 485	2.8×10^{-10}

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			-10
5,697.4 Hours	.00970	. 485	2.6×10^{-10}
5,769.0	.00970	. 485	$1.3 \times 10_{-10}$
5,793.2	.00980	.490	$2.3 \times 10_{-10}$
5,817.7	.00990	. 495	1.4 × 10 ₋₁₀
5,843.4	.00990	. 495	$1.6 \times 10_{-10}$
5,865.1	.00990	. 495	$1.7 \times 10_{-10}$
5,936.9	.01000	.500	1.5 × 10 ₋₁₀
5,961.5	.01000	. 500	$2.5 \times 10_{-10}$
5,985.5	.01000	. 500	2.8×10^{-10}
6,010.1	.01010	. 505	1.8 x 10_10
6,033.1	.01015	.508	2.8×10^{-10}
6,105.6	.01015	.508	1.3×10^{-10}
6,129.1	.01015	.508	$1.3 \times 10^{+0}$
6,152.9	.01020	.510	2.8×10^{-10}
6,177.3	.01030	.515	1.3×10^{-10}
6,200.9	.01035	.518	2.6×10^{-10}
6,274.5	.01040	.520	2.6×10^{-10}
6,297.3	.01050	.525	1.5×10^{-10}
6,320.9	.01070	.535	1.4×10^{-10}
6,344.9	.01075	.538	1.4×10^{-10}
6,368.9	.01075	.538	2.5×10^{-10}
6,440.9	.01075	.538	1.3×10^{-10}
6,488.9	.01075	.538	$1.3 \times 10_{-10}$
6,513.0	.01070	.535	1.4×10^{-10}
6,537.1	.01070	.535	$1.3 \times 10_{-10}$
6,609.4	.01070	, 535	$2.6 \times 10_{-10}$
6,633.0	.01070	.535	2.4×10^{-10}
6,657.7	.01070.	.535	1.4 x 10_10
6,681.8	.01075	.538	2.4×10^{-10}
6,706.0	.01080	. 540	2.2×10^{-10}
6,777.7	.01095	.548	1.7×10^{-10}
6,801.1	.01095	. 548	1.3 x 10_10
6,825.3	.01090	.545	$1.3 \times 10_{-10}$
6,849.0	.01100	.550	$1.3 \times 10_{-10}$
6,873.2	.01100	. 550	$1.4 \times 10_{-10}$
6,946.8	.01110	. 555	2.6×10^{-10}

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
6,969.4 Hours	.01120	. 560	1.4×10^{-10}	
6,998.4	.01150	.575	$2.4 \times 10_{-10}$	
7,016.7	.01160	.580	$2.6 \times 10_{-10}$	
7,041.0	.01160	. 580	$2.4 \times 10_{-10}$	
7,115.3	.01160	. 580	2.3×10^{10}	
7,137.1	.01165	. 582	2.7 7 10-10	
7,161.1	.01170	. 585	2.7 ^ 10_10	
7,185.1	.01170	. 585	2.6×10^{-10}	
7,209.0	.01180	.590	1.5×10^{-10}	
7,281.3	.01190	.595	1./ × 10 ₋₁₀	
7,305.0	.01190	.595	1.2 x 10 ₋₁₀	
7,329.1	.01190	. 595	2.2×10	
7,353.0	.01190	. 595	1.4 × 10 ₋₁₀	
7,377.0	.01190	. 595	2.0 x 10 ₋₁₀	
7,449.2	.01190	. 595	1.5 X 10 ₋₁₀	
7,472.9	.01190	.595	$1.3 \times 10_{-10}$	
7,497.3	.01195	. 598	$1.3 \times 10_{-10}$	
7,521.1	.01190	. 595	1.2 x 10_10	
7,545.1	.01195	. 598	1.6×10^{-10}	
7,617.5	.01195	. 598	1.2 x 10 ₋₁₀	
7,641.0	.01190	. 595	1.5 x 10 ₋₁₀	
7,665.0	.01190	. 595	$1.2 \times 10_{-10}$	
7,688.9	.01195	. 598	1.3 × 10 ₋₁₀	
7,713.2	.01195	. 598	1.4 × 10 ₋₁₀	
7,785.1	.01200	.600	1.5 x 10 ₋₁₀	
7,810.1	.01200	.600	1.3 × 10_10	
7,833.0	.01205	.602	1.4 × 10 ₋₁₀	
7,857.5	.01205	.602	2.1 × 10 ₋₁₀	
7,881.9	.01205	.602	1.3 × 10 ₋₁₀	
7,978.0	.01205	.602	1.6 x 10 ₋₁₀	
8,001.1	.01210	.605	1.4 x 10 ₋₁₀	
8,025.0	.01215	.608	1./ × 10 ₋₁₀	
8,049.5	.01220	.610	1.2 × 10 ₋₁₀	
8,121.6	.01230	.615	1.3 × 10 ₋₁₀	
8,145.7	.01230	.615	1.1 × 10	

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
8,169.4 Hours	.01230	.615	1.1×10^{-10}
8,193.1	.01240	.620	1.3×10^{-10}
8,217.2	.01250	.625	1.3 x 10 ₋₁₀
8,289.3	.01265	.632	1.2×10^{-10}
8,313.2	.01265	.632	1.2×10^{-10}
8,337.0	.01265	. 632	1.2×10^{-10}
8,361.0	.01270	.635	1.2×10^{-10}
8,385.1	.01270	.635	1.3×10^{-10}
8,459.1	.01270	.635	1.3×10^{-10}
8,480.9	.01270	.635	1.3×10^{-10}
8,505.7	.01275	.638	1.2×10^{-10}
8,528.9	.01280	.640	1.3×10^{-10}
8.536.5	.01280	. 640	1.3 x 10 '°

Test terminated - sufficient data obtained Specimen B-36

 $\frac{\text{TABLE 5}}{\text{Creep test data, TZC, Heat No. 4345, Stress Relieved at 2400}^{\text{O}}\text{F (1315}^{\text{O}}\text{C) 1 Hour,}}{\text{Tested at 2000}^{\text{F}}\text{ (10930C), 22,000 psi (1.52 x <math>10^{8}\text{N/m}^{2}\text{)}}}$

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
l Minute	.00000	.000	1.2×10^{-7}
2	.00000	.000	112 × 10
3	.00005	.002	
Ĺ	.00005	.002	
5	.00005	.002	
3 4 5 6	.00005	.002	
7	.00010	.005	
8	.00010	.005	
9	.00015	.008	
10	.00015	.008	
15	.00020	.010	
30	.00015	.008	
45	.00015	.008	
60	.00015	.008	-7
1.0 Hours	.00015	.008	1.2×10^{-7}
70.5	.00080	.040	3.9×10^{-9}
93.0	.00110	.055	3.1×10^{-9}
117.1	.00125	.062	2.5×10^{-9}
141.3	.00135	.068	2.5×10^{-9}
165.3	.00155	.078	1.8×10^{-9}
237.3	.00180	.090	1.7×10^{-9}
261.0	.00190	.095	$1.6 \times 10_{-9}^{9}$
284.8	.00195	.098	$1.5 \times 10_{-9}$
309.3	.00205	.102	1.6×10^{-9}
333.0	.00220	.110	1.5×10^{-9}
405.0	.00255	.128	1.3×10^{-9}
429.4	.00255	.128	1.2×10^{-9}
453.0	.00260	.130	1.2×10^{-9}
477.1	.00260	.130	1.2×10^{-9}
502.9	.00260	.130	1.1×10^{-10}
572.4	.00265	.132	8.2×10^{-10}
596.3	.00265	.132	9.0×10^{-10}
620.9	.00270	. 135	9.2×10^{-10}
644.4	.00275	.138	9.1×10^{-10}
668.0	.00280	.140	9.2 x 10-10
789.6	.00305	. 152	8.0 x 10 10

	Length Change		T
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
011, 2 11,000	.00305	.152	7.8×10^{-10}
814.2 Hours 835.8	.00315	.158	8.0×10^{-10}
908.5	.00320	.160	7 0 2 10 1
932.2	.00325	.162	7.0 10 10
956.4	.00335	.168	7.0×10^{-10}
980.0	.00345	.172	60 × 10 - 10
1,006.2	.00350	.175	7 1 ~ 10 10
1,006.2	.00355	.178	68 × 10 - 10
1,100.0	.00360	.180	7.2×10^{-10}
1,100.0	.00365	.182	8.0×10^{-10}
1,148.7	.00375	.188	6.9×10^{-10}
1,172.7	.00380	.190	6.5×10^{-10}
1,246.4	.00405	.202	6.0×10^{-10}
1,292.8	.00410	.205	6.4×10^{-10}
1,316.2	.00410	.205	6.8×10^{-10}
1,340.3	.00410	.205	6.3×10^{-10}
1,412.1	.00410	.205	$6.5 \times 10_{-10}$
1,436.1	.00420	.210	6.6 x 10 ₋₁₀
1,460.7	.00415	.208	6.0 x 10 ₋₁₀
1,486.3	.00415	. 208	$6.9 \times 10_{-10}$
1,508.0	.00425	.212	$6.5 \times 10_{-10}$
1,579.0	.00425	.212	$5.5 \times 10_{-10}$
1,604.4	.00430	.215	5.4×10^{-10}
1,628.4	.00430	.215	$6.0 \times 10_{-10}$
1,652.9	.00430	.215	6.4 x 10 ₋₁₀
1,676.0	.00435	.218	6.2×10^{-10}
1,748.5	.00435	.218	5.7×10^{-10}
1,772.0	.00435	.218	5.6×10^{-10}
1,795.9	.00435	.218	5.9×10^{-10}
1,820.2	.00440	.220	5.5×10^{-10}
1,843.8	.00450	. 225	5.6 × 10-10
1,917.4	. 00455	.228	5.3 × 10 10 5.2 × 10 10
1,940.3	.00455	.228	
1,963.9	.00455	.228	5.2 × 10 10 5.2 × 10 10
1,987.9	.00465	.232	
2,011.8	.00465	.232	5.3 × 10 10 5.0 × 10
2,083.8	.00470	.235	2.0 X 10

Time	Length Change • L (inch) (2" G. L.)	Creep _(%)	Pressure (Torr)
2,131.8 Hours	.00475	.238	5.0×10^{-10}
2,155.9	.00480	.240	5.1×10^{-10}
2,180.0	.00480	.240	6.2×10^{-10}
2,252.3	.00490	.245	5.0×10^{-10}
2,275.9	.00490	.245	5.2×10^{-10}
2,300.5	.00490	.245	5.0×10^{-10}
2,324.7	.00495	.248	6.2×10^{-10}
2,348.9	.00500	.250	3.9×10^{-10}
2,420.6	.00505	.252	4 8 × 10 ⁻¹⁰
2,444.0	.00505	.252	48 × 10 ⁻¹⁰
2,468.2	.00515	.258	4 9 × 10 ⁻¹⁰
2,492.0	.00515	.258	5.0×10^{-10}
2,516.1	.00520	.260	6.0×10^{-9}
2,590.0	.00520	.260	3.3×10^{-10}
2,612.3	.00530	.265	4.0×10^{-10}
2,641.2	.00540	.270	6.1×10^{-10}
2,660.2	.00550	.275	6.0×10^{-10}
2,683.9	.00560	.280	4.7×10^{-10}
2,758.3	.00565	.282	4.6×10^{-10}
2,780.0	.00565	.282	3.2×10^{-10}
2,804.1	.00570	.285	3.2×10^{-10}
2,828.0	.00575	.288	4.8×10^{-10}
2,851.9	.00575	.288	4.4×10^{-10}
2,924.2	.00575	.288	6.0×10^{-10}
2,947.8	.00575	.288	4.0×10^{-10}
2,972.1	.00575	.288	6.0×10^{-10}
2,995.9	.00580	.290	4.5×10^{-10}
3,019.9	.00580	.290	5.0×10^{-10}
3,092.2	.00585	.292	3.7×10^{-10}
3,115.8	.00590	.295	$\frac{1}{4} \cdot 0 \times 10^{-10}$
3,140.2	.00600	.300	2.7×10^{-10}
3,164.0	.00600	.300	4.2×10^{-10}
3,188.0	.00600	.300	4.6 × 10-10
3,260.4	.00600	.300	
3,283.9	.00600	.300	3.5×10^{-10}
3,307.9	.00600	.300	2.4×10^{-10}
3,331.8	.00600	.300	4 0 × 10 ⁻¹⁰
3,356.1	.00600	.300	28 × 10 - 10
3,428.0	.00605	. 302	28 2 10 10
3,453.1	.00605	. 302	3.9×10^{-10}
ファマファ・ロ	.000,	. , 502	J.J A 10

	Length Change		
	Δ L (inch)	${\sf Creep}$	Pressure
Time	(2'' G. L.)	<u>(%)</u>	(Torr)
2 175 0 Hours	.00605	. 302	5.0×10^{-10}
3,475.9 Hours	.00605	. 302	3 6 × 10 ⁻¹⁰
3,500.5 3,524.8	.00605	. 302	2 8 × 10 10
3,620.9	.00615	. 308	43×10 ⁻¹⁰
3,643.9	.00615	. 308	43 x 10 10
3,667.9	.00615	. 308	3.4×10^{-10}
3,692.4	.00620	.310	5 6 × 10 ⁻¹⁰
3,764.5	.00620	.310	5 2 × 10 ⁻¹⁰
3,788.7	.00625	.312	26 × 10 10
3,812.3	.00625	.312	2.7×10^{-10}
3,836.0	.00630	.315	2.8×10^{-10}
3,860.1	.00635	.318	2.4×10^{-10}
3,932.2	.00635	.318	26 × 10-10
3,956.0	.00635	.318	/r 0 × 10 ⁻¹⁰
3,979.8	.00640	.320	1. 8 × 10 ⁻¹⁰
4,003.9	.00640	. 320	28 × 10 10
4,028.2	.00645	. 322	2 4 × 10 - 10
4,102.0	.00650	. 325	2 (10 10
4,123.8	.00655	.328	2 E . 10 ⁻¹⁰
4,148.6	.00660	.330	$2 h \times 10^{-10}$
4,171.8	.00665	.332	1.6 × 10 ⁻¹⁰
4,195.7	.00660	.330	2 5 4 10 10
4,268.0	.00670	.335	2 5 ~ 10 - 10
4,291.9	.00670	.335	2 5 4 10 10
4,316.7	.00695	.338	2 0 4 10 10
4,339.9	.00680	. 340	2 5 ~ 10 - 10
4,364.0	.00685	. 342	4.2 × 10-10
4,435.9	.00685	. 342	2.3×10^{-10}
4,459.9	.00685	. 342	2 4 × 10
4,484.1	.00690	. 345	3.2×10^{-10}
4,508.5	.00690	. 345	3.6×10^{-10}
4,532.6	.00695	. 348	3.0×10
4,604.8	.00695	. 348	4.5×10^{-10}
4,628.1	.00700	. 350	4.1×10^{-10}
4,651.8	.00700	. 350	3.4×10^{-10}
4,676.1	.00700	. 350	3.5×10^{-10}

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2'' G. L.)	(%)	(Torr)
			
4,700.0 Hours	.00700	. 350	4.5×10^{-10}
4,772.4	.00700	.350	5.6×10^{-10}
4,797.0	.00700	. 350	3.7×10^{-10}
4,820.7	.00705	.352	3.2×10^{-10}
4,844.8	.00710	.355	4.1 x 10_10
4,869.0	.00705	.352	$3.2 \times 10_{-10}$
4,941.3	.00710	.355	$3.8 \times 10_{-10}$
4,988.9	.00720	. 360	3.4 × 10 ₋₁₀
5,013.5	.00720	.360	$3.0 \times 10_{-10}$
5,036.8	.00720	. 360	$3.0 \times 10_{-10}$
5,111.2	.00720	. 360	4.6 × 10 ₋₁₀
5,132.8	.00725	.362	$4.0 \times 10_{-10}$
5,157.5	.00730	. 365	3.2×10^{-10}
5,180.7	.00735	. 368	$3.3 \times 10_{-10}$
5,205.5	.00735.	. 368	3.2 x 10 ₋₁₀
5,300.9	.00740	. 370	$3.2 \times 10_{-10}$
5,325.6	.00745	.372	$2.9 \times 10_{-10}$
5,349.1	.00745	. 372	$3.2 \times 10_{-10}$
5,373.2	.00750	. 375	3.2 × 10 ₋₁₀
5,445.2	.00765	. 382	3.0 x 10 ₋₁₀
5,469.0	.00765	. 382	3.2 × 10 ₋₁₀
5,493.3	.00770	. 385	3.1×10^{-10}
5,612.9	.00775	. 388	3.0×10^{-10}
5,636.8	.00775	. 388	3.0×10^{-10}
5,661.4	.00780	. 390	3.2×10^{-10}
5,685.6	.00780	. 390	2.7×10^{-10}
5,708.9	.00785	. 392	2.8×10^{-10} 4.1×10^{-10}
5,781.1 5,804.9	.00795	. 398 . 395	
5,829.0	.00790 .00800	. 400	2.9 x 10 10 4.0 x 10 10
	.00800	.400	$\frac{4.0 \times 10^{-10}}{3.8 \times 10^{-10}}$
5,853.6 5,877.1	.00805	.400	$\frac{3.6 \times 10}{4.0 \times 10}$ - 10
5,949.0	.00815	. 402	2.8×10^{-10}
5,949.0 5,973.0	.00815	.408	2.8×10^{-10}
2,2/2.0	.00015	.400	4.7 X 10

	Length Change Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
	00015	100	10-10
5,996.9	.00815	. 408	3.4×10^{-10}
6,020.9	.00815	. 408	3.0 x 10 10
6,045.0	.00820	.410	$3.0 \times 10_{-10}$
6,116.9	.00825	.412	3.1×10^{-10}
6,141.0	.00820	.410	3.0×10^{-10}
6,164.8	.00825	.412	2.8×10^{-10}
6,188.9	.00830	.415	2.8×10^{-10}
6,213.1	.00840	.420	2.6×10^{-10}
6,333.3	.00840	.420	3.5×10^{-10}

Test in progress Specimen B-37

TABLE 6

Creep Test Data, TZM Forged Disc Heat KDTZM 1175, Stress Relieved 2300°F (1260°C) 1 Hour, Tested at 1800°F (982°C) and 44,000 psi (3.03 x 108N/m²)

Time	Length Change • L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
l Minute(s)	.00000	.000	4.8×10^{-7}
2	. 00010	.005	4.8×10^{-7}
3	.00020	.010	4.8×10^{-7}
4	.00025	.012	4.8×10^{-7}
5	.00015	.008	4.8×10^{-7}
6	. 00015	.008	4.8×10^{-7}
7	.00010	.005	4.8×10^{-7}
8	. 00015	.008	4.8×10^{-7}
9	. 00020	.010	4.8×10^{-7}
10	.00020	.010	4.8×10^{-7}
15	.00020	.010	4.8×10^{-7}
30	. 00025	.012	4.8×10^{-7}
45	.00025	.012	4.8×10^{-7}
60	.00030	.015	4.8×10^{-7}
65.5 Hours	.00055	.028	3.0×10^{-7}
89.1	.00070	.035	2.8×10^{-7}
113.1	. 00095	.048	1.1×10^{-6}
137.1	.00100	. 050	2.1×10^{-8}
161.1	.00100	. 050	1.7×10^{-9}
233.0	.00100	.050	1.0×10^{-9}
257.3	.00105	.052	8.4×10^{-10}
280.9	.00105	.052	1.3×10^{-9}
305.2	.00100	. 055	1.6 x 10 ⁻⁹
329.4	.00110	. 055	1.4×10^{-9}
401.0	.00115	. 058	1.4×10^{-9}
426.7	.00115	. 058	4.0×10^{-10}
449.2	.00120	.060	5.8×10^{-10}
473.4	.00130	.065	7.6×10^{-10}
497.0	.00135	.068	3.8×10^{-10}
569.2	.00145	.072	3.9×10^{-10}
593.1	.00140	.070	5.5×10^{-10}
616.9	.00145	. 072	8.4×10^{-10}
640.8	.00140	.070	7.8×10^{-10}
664.8	. 00150	. 075	5.0×10^{-10}

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	_(%)	(Torr)
			10
736.8 Hours	.00150	. 075	8.8×10^{-10}
761.7	.00150	.075	8.6×10^{-10}
785.0	.00150	.075	5.0×10^{-10}
808.8	.00155	.078	9.0×10^{-10}
833.8	.00155	.078	5.0×10^{-10}
904.7	.00160	.080	8.4×10^{-10}
928.8	. 00160	.080	8.9×10^{-10}
953.1	.00160	. 080	7.0×10^{-10}
977.0	.00165	.082	6.0×10^{-10}
1001.0	.00180	.090	9.2×10^{-10}
1073.0	.00180	.090	9.1×10^{-10}
1144.9	.00175	.088	8.2×10^{-10}
1240.7	.00175	.088	7.5×10^{-10}
1313.2	.00180	.090	9.0×10^{-10}
1409.5	.00180	.090	5.8×10^{-10}
1484.2	.00180	.090	4.4×10^{-10}
1577.2	.00185	.092	4.0×10^{-10}
1650. 2	.00185	.092	3.5×10^{-10}
1746.9	.00190	. 095	4.5×10^{-10}
1822.5	.00200	. 100	4.0×10^{-10}
1913.6	.00215	. 108	4.9×10^{-10}
1984.0	.00210	. 105	3.5×10^{-10}
2080.1	.00215	. 108	3.0×10^{-10}
2152.2	.00215	. 108	4.0×10^{-10}
2247.9	.00220	. 110	3.5×10^{-10}
2319.8	.00225	. 112	2.8×10^{-10}
2416.7	.00235	. 118	3.5×10^{-10}
2489.7	.00230	. 115	2.4×10^{-10}
2584.3	.00235	. 118	2.2×10^{-10}
2655.9	.00240	. 120	2.4×10^{-10}
2776.3	.00250	. 125	3.8×10^{-10}
2824.0	. 00250	. 125	4.6×10^{-10}
2922.9	.00250	. 125	4.4×10^{-10}
2991.8	.00245	. 122	4.0×10^{-10}
•			

	Length Change		
	∆ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			3.0
3015.8 Hours	. 00245	.122	4.0×10^{-10}
3088.0	. 00245	. 122	3.7×10^{-10}
3160.4	.00245	. 122	4.0×10^{-10}
3256.0	.00250	. 125	4.4×10^{-10}
3328.7	.00255	. 128	4.1×10^{-10}
3424.5	.00255	. 128	3.4×10^{-10}
3496.0	.00255	. 128	4.5×10^{-10}
3615.9	.00260	. 130	4.0×10^{-10}
3664.8	.00255	. 128	3.5×10^{-10}
3760.4	.00255	. 128	4.2×10^{-10}
3831.9	. 00255	. 128	3.5×10^{-10}
3928.0	.00255	. 128	3.4×10^{-10}
4002.1	.00260	. 130	3.9×10^{-10}
4096.6	.00260	. 130	3.4×10^{-10}
4168.7	.00255	. 128	4.0×10^{-10}
4265.1	.00265	. 132	3.6×10^{-10}
4338.1	.00270	. 135	3.1×10^{-10}
4432.3	. 00260	. 130	3.2×10^{-10}
4503.7	.00270	. 135	3.5×10^{-10}
4600.0	.00290	. 145	2.6×10^{-10}
4671.7	. 00270	. 135	3.5×10^{-10}
4770.2	.00270	. 135	3.6×10^{-10}
4840.1	.00275	. 138	3.5×10^{-10}
4936.8	.00275	. 138	3.9×10^{-10}
5008.0	.00280	. 140	3.8×10^{-10}
5128.5	.00285	. 142	3.2×10^{-10}
5175.7	.00290	. 145	3.0×10^{-10}
5272.4	.00290	. 145	3.0×10^{-10}
5343.8	.00290	. 145	3.5×10^{-10}
5440.5	. 00290	. 145	3.0×10^{-10}
5512.1	.00295	. 148	3.0×10^{-10}
5607.9	. 00295	. 148	3.2×10^{-10}
5680.2	.00300	. 150	3.0×10^{-10}
5776.1	. 00300	. 150	3.0×10^{-10}
5849.9	. 00300	. 150	2.5×10^{-10}
5943.9	.00300	. 150	4.1×10^{-10}
,	· · · · · ·	· -	- ·

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2'' G. L.)	_(%)	(Torr)
6016.0 Hours	.00300	. 150	3.0×10^{-10}
6111.9	. 00300	. 150	3.0×10^{-10}
6184.0	.00300	. 150	3.0×10^{-10}
6279.9	.00300	. 150	3.0×10^{-10}
6352.4	.00300	. 150	3.0×10^{-10}
6448.9	.00305	. 152	3.0×10^{-10}
6521.2	.00305	. 152	3.0×10^{-10}
6616.9	.00305	. 152	3.0×10^{-10}
6688.8	.00310	. 155	3.5×10^{-10}
6785.0	.00310	. 155	3.0×10^{-10}
6857.1	.00315	. 158	3.4×10^{-10}
6953.1	.00315	. 158	3.0×10^{-10}
7048.9	.00315	. 158	3.0×10^{-10}
7121.0	.00315	. 158	3.0×10^{-10}
7193.4	.00320	. 160	3.0×10^{-10}
7289.5	.00320	. 160	3.0×10^{-10}
7361.0	.00320	. 160	3.0×10^{-10}
7457.3	.00320	. 160	3.0×10^{-10}
7529.1	. 00325	. 162	3.0×10^{-10}
7625.7	.00325	. 162	3.9×10^{-10}
7697.4	.00320	. 160	4.0×10^{-10}
7817.5	.00330	. 165	3.0×10^{-10}
7865.1	.00330	. 165	3.8×10^{-10}
7985.2	.00330	. 165	3.7×10^{-10}
8033.4	.00330	. 165	3.0×10^{-10}
8130.3	.00330	. 165	3.8×10^{-10}
8201.2	.00335	. 168	3.5×10^{-10}
8298.4	.00335	. 168	3.0×10^{-10}
8369.5	.00335	. 168	3.0×10^{-10}
8465.2	.00335	. 168	3.7×10^{-10}
8537.6	. 00335	. 168	3.6×10^{-10}
8633.4	. 00340	. 170	3.7×10^{-10}

	Length Change		
	Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
			1.0
8705.7 Hours	.00340	. 170	3.0×10^{-10}
8803.1	.00340	. 170	3.0×10^{-10}
8873.7	.00340	. 170	3.2×10^{-10}
8969.4	.00350	. 175	3.0×10^{-10}
9041.2	.00345	. 172	3.2×10^{-10}
9137.6	.00345	. 172	3.2×10^{-10}
9209.8	.00350	. 175	3.3×10^{-10}
9305.6	.00355	. 178	3.4×10^{-10}
9377.0	.00355	. 178	3.4×10^{-10}
9473.0	.00355	. 178	3.0×10^{-10}
9544.8	.00360	. 180	3.4×10^{-10}
9640.8	.00360	. 180	3.3×10^{-10}
9712.9	.00360	, 180	3.3×10^{-10}
9808.9	.00350	. 175	3.2×10^{-10}
9881.2	.00355	.178	3.4×10^{-10}
9977.5	.00365	. 182	3.2×10^{-10}
10048.9	.00365	. 182	3.3 x 10-10
10145.3	. 00365	. 182	3.5 x 10 10
10151.7	.00365	. 182	3.5×10^{-10}

Test terminated - sufficient data obtained Specimen B-25

TABLE 7

Creep Test Data, TZM , Heat No. KDTZM-1175, Stress Relieved at 2300° F (1260°C) for 1 hour, Tested at 2000°F (1093°C), 22,000 psi (1.52 x 10^{2} N/m²)

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2'' G. L.)	(%)	(Torr)
			0.710-8
l Minute	00005	002	9.7×10^{-6}
2	00005	002	
3	.00005	002	
4	.00010	.005	
5	.00010	.005	
6	.00010	.005	
7	.00010	.005	
8	.00005	.002	
2 3 4 5 6 7 8 9	.00015	.008	
	.00020	.010	
15	.00015	.008	
30 45	.00020	.010	
60	.00015 .00015	.008	
19.0 Hours	.00015	.008	1 2 4 10-8
91.4	.00025	.012 .028	1.2×10^{-9} 5.5 × 10 ₋₉
114.8	.00075	.038	5.0 x 10 -9
139.0	.00125	.062	4.6 × 10 -9
162.8	.00140	.070	4.3 × 10 -9
186.9	.00150	.075	4.1 × 10 ⁻⁹
260.8	:00150	.075	3.7×10^{-9}
283.1	.00150	.075	3.6×10^{-9}
312.0	.00150	.075	3.8×10^{-9}
330.4	.00150	.075	3.6×10^{-9}
354.7	.00150	.075	3.4×10^{-9}
429.0	.00155	.078	$3.3 \times 10_{-9}^{-9}$
450.8	.00150	.075	3.2×10^{-9}
474.8	.00150	.075	3.2×10^{-9}
498.8	.00150	.075	3.2×10^{-9}
522.7	.00155	.078	3.2×10^{-9}
595.0	.00160	.080	5.2×10^{-9}
618.6	.00155	.078	3.2×10^{-9}
642.8	.00155	.078	3.2×10^{-9}
666.7 690.7	.00155	.078	3.2×10^{-9} 3.2×10^{-9}
763.0	.00155 .00155	.078	3.2×10^{-9} 3.5×10^{-9}
786.6	.00155	.078 .078	3.0×10^{-9}
811.0	.00160	.080	3.3×10^{-9}
834.8	.080	.00160	3.1×10^{-9}
858.8	.00160	.080	3 3 × 10 ⁻⁹
931.2	.00165	.082	3.1×10^{-9}
J J		.002	3:

Length Change		
Δ L (inch)	Creep	Pressure
· · · · · · · · · · · · · · · · · · ·	(%)	(Torr)
.00165	.082	2.9×10^{-9}
		3.1×10^{-9}
		3.0×10^{-9}
		3.3×10^{-9}
		3.4×10^{-9}
		3.4×10^{-9}
-		3.3×10^{-9}
		3.4×10^{-9}
		3.2×10^{-9}
		3.4×10^{-9}
		3.2×10^{-9}
		3.0×10^{-9}
		3.1×10^{-9}
		3.1×10^{-9}
		3.0×10^{-9}
.00205	.102	3.0×10^{-9}
.00210	. 105	3.1×10^{-9}
.00210	. 105	3.1×10^{-9}
.00210	. 105	3.1×10^{-9}
.00215	.108	3.2×10^{-9}
.00220	.110	2.9×10^{-9}
.00215	.108	2.8×10^{-9}
.00220	.110	2.8×10^{-9}
.00220	.110	2.8×10^{-9}
.00225	.112	3.0×10^{-9}
		2.8×10^{-9}
.00225		2.7×10^{-3}
.00225		2.4×10^{-9}
.00235	.118	1.2×10^{-9}
.00245	.122	2.9×10^{-3}
.00245	.122	2.9×10^{-9}
.00245	.122	3.0×10^{-9}
.00250	.125	2.8×10^{-9}
.00250	.125	2.9×10^{-9}
.00245	.122	2.9×10^{-9}
.00250	.125	2.8×10^{-9}
	A L (inch) (2" G. L.) .00165 .00170 .00175 .00185 .00190 .00200 .00200 .00205 .00205 .00205 .00205 .00205 .00210 .00210 .00210 .00215 .00220 .00225 .00225 .00225 .00225 .00225 .00225 .00225 .00225 .00225 .00225 .00225 .00225 .00225 .00245 .00245 .00245 .00250 .00250 .00250	Δ L (inch) (2" G. L.) (%) .00165 .082 .00170 .085 .00170 .085 .00175 .088 .00185 .092 .00190 .095 .00200 .100 .00200 .100 .00205 .102 .00205 .102 .00205 .102 .00205 .102 .00205 .102 .00205 .102 .00205 .102 .00205 .102 .00205 .102 .00205 .102 .00210 .105 .00210 .105 .00210 .105 .00210 .105 .00215 .108 .00220 .110 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00225 .112 .00245 .122 .00245 .122 .00245 .122 .00245 .122

	Length Change		
	Δ L (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			
2,178.7 Hours	.00250	.125	2.9×10^{-9}
2,203.4	.00245	.122	2.3×10^{-9}
2,275.6	.00245	.122	2.8×10^{-9}
2,298.9	.00245	.122	2.9×10^{-9}
2,322.6	.00250	.125	2.7×10^{-9}
2,346.9	.00255	.128	2.8×10^{-9}
2,370.8	.00255	.128	2.8×10^{-9}
2,443.1	.00255	.128	$2.9 \times 10_{-9}^{-9}$
2,467.8	.00255	.128	3.0×10^{-9}
2,491.5	.00245	.122	$2.8 \times 10_{-9}^{3}$
2,515.5	.00250	.125	$2.9 \times 10_{-9}^{-9}$
2,539.8	.00255	.128	$2.8 \times 10_{-9}^{-9}$
2,612.1	.00260	.130	$3.0 \times 10_{-9}$
2,636.5	.00260	.130	$2.5 \times 10_{-9}^{-9}$
2,659.7	.00265	.132	2.6×10^{-9}
2,684.3	.00265	.132	$2.6 \times 10_{-9}$
2,707.6	.00260	.130	2.6×10^{-9}
2,782.0	.00265	.132	2.8×10^{-9}
2,803.5	.00260	.130	2.7×10^{-9}
2,828.3	.00265	.132	2.8×10^{-9}
2,851.5	.00265	.132	3.0×10^{-9}
2,876.3	.00275	.138	2.9×10^{-9}
2,948.0	.00295	. 148	2.9×10^{-9}
2,971.6	.00290	. 145	3.0×10^{-9}
2,996.4	.00295	. 148	2.6×10^{-9}
3,019.8	.00295	. 148	3.1×10^{-9}
3,043.9	.00295	. 148	2.6 x 10_9
3,116.0	.00295	. 148	3.0×10^{-9}
3,139.7	.00305	.152	3.1×10^{-9}
3,164.0	.00310	.155	2.5×10^{-9}
3,283.7	.00315	.158	$2.5 \times 10_{-9}$ $2.6 \times 10_{-9}$
3,307.6	.00320	. 160	- 4
3,332.2	.00320	.160	2.9×10^{-9}
3,356.4	.00325	.162	2.8 x 10 -9 2.8 x 10 -9
3,379.7	.00315	.158	2.8×10^{-9}
3,451.9	.00325	.162	2.0 × 10-9
3,475.7	.00330	.165	2.8×10^{-9}
3,499.8	.00335	.168	2.9 x 10-9 2.8 x 10-9
3,524.4	.00340	.170	2.0 X 10

	Length Change		
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
3,547.9 Hours	.00340	.170	2.9×10^{-9}
3,619.8	.00345	.172	2.6×10^{-9}
3,643.9	.00345	. 172	2.7×10^{-9}
3,667.7	.00340	.170	2.5×10^{-9}
3,691.7	.00340	.170	2.6×10^{-9}
3,715.7	.00345	.172	2.6×10^{-9}

Test in progress Specimen B-38

TABLE 8

Creep Test Data, TZM Forged Disc, Heat 7502, Stress Relieved 2200°F (1204°C)

Tested at 1800°F (982°C), and 44,000 psi (3.03 x 108 N/m²)

Time	Length Change A L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
l Minute(s)	.00005	.002	1.2×10^{-8}
2	 00005	002	1.2×10^{-8}
3	. 00000	.000	1.2×10^{-8}
4	.00005	.002	1.2×10^{-8}
5	.00015	.008	1.2×10^{-8}
6	.00015	.008	1.2×10^{-8}
7	. 00025	.012	1.2×10^{-8}
8	.00025	.012	1.2×10^{-8}
9	.00020	.010	1.2×10^{-8}
10	. 00030	.015	1.2×10^{-8}
15	.00030	.015	1.2×10^{-8}
30	.00030	.015	1.2×10^{-8}
45	.00030	.015	1.2×10^{-8}
60	.00025	.012	1.2×10^{-8}
1.4 Hours	.00030	.015	1.3×10^{-8}
25. 6	.00135	. 068	3.6×10^{-9}
53.2	.00145	.072	3.0×10^{-9}
64.4	.00150	. 075	3.1×10^{-9}
87.6	.00155	.078	3.1×10^{-9}
111.9	.00155	.078	2.8×10^{-9}
135.7	.00165	.082	2.9×10^{-9}
159.6	.00170	.085	2.8×10^{-9}
256.2	.00185	.092	2.8×10^{-9}
279.9	.00190	. 095	3.0×10^{-9}
303.4	.00200	. 100	3.1×10^{-9}
327.6	.00200	. 100	3.1×10^{-9}
400.0	.00230	. 115	2.7×10^{-9}
423.7	.00230	. 115	2.7×10^{-9}
447.8	.00235	.118	2.7×10^{-9}
471.5	.00235	.118	3.0×10^{-9}
496.1	. 00245	.122	2.8×10^{-9}
568. 2	. 00265	. 132	2.6×10^{-9}
591.8	. 00270	. 135	2.6×10^{-9}

Time	Length Change A L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
615.7 Hours	. 00275	. 138	2.6×10^{-9}
639.8	. 00280	. 140	2.7×10^{-9}
663.6	.00290	. 145	2.6×10^{-9}
735.6	. 00300	. 150	2.6×10^{-9}
759.8	. 00305	. 152	2.8×10^{-9}
783.6	. 00310	. 155	2.8×10^{-9}
807.9	.00310	. 155	2.6×10^{-9}
831.8	. 00310	. 155	2.6×10^{-9}
903.8	.00335	. 168	2.6×10^{-9}
927.6	.00345	. 172	2.6×10^{-9}
951.6	.00360	. 180	2.6×10^{-9}
977.6	. 00375	. 188	2.6×10^{-9}
999.8	. 00385	. 192	2.6×10^{-9}
1071.6	. 00390	. 195	2.7×10^{-9}
1143.7	. 00400	. 200	2.6×10^{-9}
1239.6	.00410	. 205	2.5×10^{-9}
1263.5	. 00435	. 218	2.4×10^{-9}
1287.9	. 00435	. 218	2.5×10^{-9}
1311.7	. 00440	. 220	2.5×10^{-9}
1335.6	. 00445	. 222	2.5×10^{-9}
1407.6	. 00450	. 225	2.5×10^{-9}
1434.6	. 00455	. 228	2.4×10^{-9}
1455.6	. 00465	. 232	2.4×10^{-9}
1480.1	. 00465	. 232	2.4×10^{-9}
1503.7	. 00465	. 232	2.4×10^{-9}
1576.6	. 00465	. 232	2.4×10^{-9}
1600.6	. 00470	. 235	2.4×10^{-9}
1624.7	.00470	. 235	2.4×10^{-9}
1648.9	. 00475	. 238	2.6×10^{-9}
1672.6	. 00485	. 242	2.6×10^{-9}
1744.6	. 00480	. 240	2.4×10^{-9}
1768.7	. 00480	. 240	2.4×10^{-9}
1793.0	.00480	. 240	2.5×10^{-9}

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2'' G. L.)	(%)	(Torr)	
1816.5 Hours	.00485	. 242	2.4×10^{-9}	
1840.5	.00485	. 242	2.4×10^{-9}	
1912.7	.00495	. 248	2.5×10^{-9}	
1936.7	.00495	. 248	2.7×10^{-9}	
1961. 2	.00495	. 248	2.5×10^{-9}	
1984.7	. 00500	. 250	2.5×10^{-9}	
2008.6	.00505	. 252	2.6×10^{-9}	
2080.8	.00510	. 255	2.6×10^{-9}	
2104.6	.00510	. 255	2.6×10^{-9}	
2129.0	.00515	. 258	2.5×10^{-9}	
2176.0	.00525	. 262	2.5×10^{-9}	
2248.7	.00530	. 265	2.4×10^{-9}	
2272.6	.00535	. 268	2.4×10^{-9}	
2296.6	.00540	. 270	2.5×10^{-9}	
2321.2	.00540	. 270	2.4×10^{-9}	
2345.0	. 00545	. 272	2.2×10^{-9}	
2417.2	.00550	. 275	2.4×10^{-9}	
2440.8	.00545	. 272	2.6×10^{-9}	
2464.7	.00545	. 272	2.4×10^{-9}	
2488.7	.00550	. 275	2.5×10^{-9}	
2512.7	. 00550	. 275	2.6×10^{-9}	
2585.0	. 00555	. 278	2.4×10^{-9}	
2608.6	.00565	. 282	2.4×10^{-9}	
2632.8	.00560	. 280	2.7×10^{-9}	
2656.8	. 00560	. 280	2.8×10^{-9}	
2680.7	. 00565	. 282	2.8×10^{-9}	
2753.4	.00565	. 282	2.9×10^{-7}	
2776.8	.00570	. 285	2.9×10^{-9}	
2801.1	. 00570	. 285	2.9×10^{-9}	
2825.1	.00575	. 288	3.0×10^{-9}	
2945.2	.00585	. 292	2.6 x 10 ⁻⁹	

Time	Length Change \$\textstyle L\ (\text{inch})\ (2" \text{ G. L.})	Creep <u>(%)</u>	Pressure (Torr)
2969.0 Hours	.00585	. 292	2.6×10^{-9}
2992.8	. 00585	. 292	2.7×10^{-9}
3017.2	.00590	. 295	2.7×10^{-9}
3112.9	.00605	. 302	2.6×10^{-9}
3137.8	.00600		2.6×10^{-9}
3161.4	.00600	. 300	2.6×10^{-9} 2.5×10^{-9}
3185.0	. 00600	. 300	
3257.9		. 300	2.6×10^{-9}
	.00605	. 302	2.7×10^{-9}
3282.9	. 00610	. 305	2.6×10^{-9}
3305. 2	. 00615	. 308	2.5×10^{-9}
3328.8	. 00620	. 310	2.7×10^{-9}
3353.0	. 00620	. 310	2.6×10^{-9}
3426. 1	. 00640	. 320	2.3×10^{-9}
3448.7	. 00645	. 322	2.4×10^{-9}
3473.1	. 00645	. 322	2.5×10^{-9}
3497.1	. 00655	. 328	2.6×10^{-9}
3521.0	. 00655	. 328	2.2×10^{-9}
3592.9	. 00665	. 332	2.6×10^{-9}
3616.9	. 00660	. 330	2.6×10^{-9}
3641.1	. 00665	. 332	2.6×10^{-9}
3665.3	. 00675	. 338	2.4×10^{-9}
3689. 2	. 00685	. 342	2.4×10^{-9}
3761.1	. 00695	. 348	2.4×10^{-9}
3784.7	. 00695	. 348	2.0×10^{-9}
3808.8	. 00690	. 345	2.8×10^{-9}
3833.4	. 00695	. 348	2.1×10^{-9}
3857. 1	. 00695	. 348	2.6×10^{-9}
3930.8	. 00695	. 348	2.5×10^{-9}
3953.0	. 00690	. 345	2.0×10^{-9}
3977.0	.00700	. 350	2.3×10^{-9}

	Length Change		
	Δ L (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			
4001.4 Hours	. 00700	. 350	2.6×10^{-9}
4027.6	.00700	. 350	2.0×10^{-9}
4097.0	.00705	. 352	2.3×10^{-9}
4121.1	. 00705	. 352	2.1×10^{-9}
4144.5	.00710	. 355	2.4×10^{-9}
4168.9	.00705	. 352	2.1×10^{-9}
4192.9	.00710	. 355	2.4×10^{-9}
4265.3	.00710	. 355	2.0×10^{-9}
4289.0	. 00715	. 358	2.4×10^{-9}
4313.5	.00715	. 358	2.1×10^{-9}
4337.5	.00720	. 360	2.2×10^{-9}
4361.2	. 00730	. 265	2.2×10^{-9}
4433.3	. 007 35	. 368	2.2×10^{-9}
4457.4	.00740	. 370	2.2×10^{-9}
4481.0	.00760	. 380	2.4×10^{-9}
4504.7	.00755	. 378	2.3×10^{-9}
4528.7	.00755	. 378	2.3×10^{-9}
4600.7	.00760	. 380	2.3×10^{-9}
4625.0	.00760	. 380	2.3×10^{-9}
4648.5	.00765	. 382	2.4×10^{-9}
4672.5	.00770	. 385	2.2×10^{-9}
4696.4	.00770	. 385	2.2×10^{-9}
4768.5	. 00775	. 388	2.2×10^{-9}
4792.6	.00785	. 392	2.1×10^{-9}
4817.1	.00790	. 395	2.3×10^{-9}
4840.6	.00790	. 395	2.2×10^{-9}
4864.7	.00800	. 400	2.2×10^{-9}

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
4,936.6 Hours	.00810	. 405	2.3×10^{-9}	
4,960.9	.00815	.408	2.3×10^{-9}	
5,008.9	.00810	. 405	2.3×10^{-9}	
5,105.2	.00820	.410	2.3×10^{-9}	
5,129.0	.00820	.410	2.2×10^{-9}	
5,152.7	.00825	.412	2.2×10^{-9}	
5,176.6	.00825	.412	2.2×10^{-9}	
5,201.2	.00825	.412	2.2×10^{-9}	
5,273.0	.00825	.412	2.2×10^{-9}	
5,296.7	.00830	.415	2.5×10^{-9}	
5,320.7	.00830	.415	2.4×10^{-9}	
5,344.5	.00835	.418.	2.1×10^{-9}	
5,368.5	.00845	.422	2.2×10^{-9}	
5,442.2	.00850	. 425	2.2×10^{-9}	
5,464.6	.00850	. 425	2.1×10^{-9}	
5,488.7	.00855	. 428	2.2×10^{-9}	
5,513.0	.00855	.428	2.1×10^{-9}	
5,536.9	.00860	. 430	2.3×10^{-9}	
5,608.9	.00860	. 430	2.2×10^{-10}	
5,632.6	.00865	. 432	2.3×10^{-9}	
5,656.5	.00865	. 432	2.3×10^{-9}	
5,680.9	.00870	. 435	2.4×10^{-9}	
5,704.6	.00875	. 438	2.1×10^{-9}	
5,776.7	.00890	. 445	2.5×10^{-9}	
5,801.0	.00900	. 450	2.1×10^{-9}	
5,824.7	.00900	. 450	2.0×10^{-9}	
5,848.8	.00905	. 452	2.0×10^{-9}	
5,872.9	.00905	. 452	2.0×10^{-9}	
5,944.0	.00910	. 455	2.4×10^{-9}	
5,968.0	.00910	. 455	2.2×10^{-9}	
5,992.6	.00905	. 452	2.2×10^{-9}	
6,016.1	.00905	. 452	2.3×10^{-9}	
6,039.7	.00900	. 450	2.1×10^{-9}	
6,161.3	.00915	. 458	2.3×10^{-9}	
6,185.8	.00920	. 460	2.2×10^{-9}	
6,207.5	.00925	. 462	2.3×10^{-9}	

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
			·	
6,280.2 Hours	.00935	. 468	2.1×10^{-9}	
6,303.9	.00940	.470	2.0×10^{-9}	
6,328.0	.00945	.472	2.0×10^{-9}	
6,351.6	.00950	.475	2.1×10^{-9}	
6,377.9	.00950	.475	2.2×10^{-9}	
6,447.7	.00955	. 478	2.3×10^{-9}	
6,471.7	.00960	. 480	2.2×10^{-9}	
6,495.5	.00965	.482	2.4×10^{-9}	
6,520.4	.00965	.482	2.2×10^{-9}	
6,544.3	.00965	. 482	2.0×10^{-9}	
6,618.1	.00965	. 482	2.0×10^{-9}	
6,664.5	.00970	. 485	2.0×10^{-9}	
6,687.9	.00970	. 485	2.3×10^{-9}	
6,711.9	.00975	.488	2.1×10^{-9}	
6,783.7	.00980	. 490	2.4×10^{-9}	
6,807.7	.00980	. 490	2.3×10^{-9}	
6,832.4	.00980	. 490	2.0×10^{-9}	
6,857.9	.00985	. 492	2.3×10^{-9}	
6,879.7	.00995	. 498	2.2×10^{-9}	
6,951.4	. 00995	. 498	2.0×10^{-9}	
6,976.0	.01005	.502	2.0×10^{-9}	
7,000.0	.01000	.500	2.1×10^{-9}	
7,024.6	.01000	.500	2.2×10^{-9}	
7,047.7	.01000	. 500	2.3×10^{-9}	
7,120.1	.01010	. 505	2.0×10^{-9}	
7,143.6	.01005	. 502	2.1×10^{-9}	
7,167.5	.01015	.608	3.3×10^{-3}	
7,191.9	.01025	.512	2.1×10^{-9}	
7,215.5	.01025	.512	2.3×10^{-9}	
7,289.0	.01035	.518	2.2×10^{-9}	
7,311.9	.01045	.522	2.2×10^{-9}	
7,335.4	.01045	.522	2.2×10^{-9}	
7,359.5	.01050	. 525	2.1×10^{-9}	
7,383.4	.01050	.525	2.1×10^{-9}	
7,455.4	.01060	. 530	2.3×10^{-9}	
7,503.4	.01065	.532	2.1×10^{-9}	

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
7,527.5 Hours 7,551.6 7,623.9 7,647.5 7,659.5	.01075 .01075 .01070 .01070 .01070	.538 .538 .535 .535 .535	2.2×10^{-9} 2.1×10^{-9} 2.3×10^{-9} 2.2×10^{-9}

Test terminated ~ sufficient data obtained Specimen B-35

TABLE 9

Creep Test Data, Pure Ta, Annealed at 1832° F (1000° C) for 1 hour, Tested at 1100° F (596° C), 13,600 psi (9.37×10^{7} N/m²)

Time	Length Change Δ L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
	(2 (3 - 2)		
1 Minutes 2 3 4 5 6 7 8 9 10 15	.00010 .00005 .00005 .00015 .00015 .00020 .00015 .00020 .00030 .00030	.005 .002 .002 .008 .008 .010 .008 .010 .015 .015 .015	1.0 × 10-7 1.0 × 10-7
45 60	.00050 .00080	.040	1.0 × 10-7
1.0 Hours 18.6 20.0 20.9 22.9 25.1 26.5 31.8	.00080 .01440 .01470 .01505 .01575 .01720 .01810	.040 .720 .735 .752 .788 .860 .905	9.0×10^{-8} 1.9×10^{-8} 2.2×10^{-8}

Test terminated - sufficient data obtained Specimen B-39A

TABLE 10

Creep Test Data, Pure Ta, Annealed at 1832° F (1000° C) for 1/4 hour, Tested at 1100° F (596° C), H,600 psi (7.99×10^{7} N/m²)

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
l Minutes	.00005	.002	9.2×10^{-9}
	.00005	.002	9.2 × 10 -9
3	.00005	.002	9.2×10^{-9}
$\tilde{4}$.00005	.002	9.2×10^{-9}
5	.00010	.005	3.2×10^{-9}
2 3 4 5 6 7 8	.00005	.002	9.2×10^{-9}
7	.00010	.005	9.2×10^{-9}
8	.00005	.002	9.2×10^{-9}
9	.00005	.002	9.2×10^{-9}
10	.00005	.002	9.2 x 10 9
15	.00010	.005	9.2×10^{-9}
30	.00010	.005	9.2×10^{-9}
45	، 00015	.008	9.2×10^{-9}
60	.00015	.008	9.2×10^{-9}
1.0 Hours	. 00015	.008	
16.4	.00028	.014	4.4×10^{-9}
28.1	.00126	.063	
41.9	.00167	.084	
53.3	.00285	. 143	-0
65.1	.00365	.182	6.1×10^{-9}
72.8	.00470	. 235	5.5 x 10 ⁻⁹
77.9	.00510	. 255	9
89.1	.00560	. 280	4.8×10^{-9}
96.8	.00615	. 308	4.6×10^{-9}
102.2 113.3	.00640	.320	9
121.3	.00675	. 338	4.3×10^{-9}
126.1	.00690 .00715	. 345	3.1×10^{-9}
137.2	.00740	.357	2.0×10^{-9}
148.4	.00765	. 370 . 382	3.6×10^{-9}
161.8	.00800.	. 400	3.4×10^{-9} 2.7×10^{-9}
186.4	.00900	.450	· - u
210.5	.00900	.460	2.3×10^{-9} 3.4×10^{-9}
234.0	.01010	.505	$3.4 \times 10_{-9}$ $3.1 \times 10_{-9}$
241.1	.01030	.515	3.0×10^{-9}
257.3	.01070	.535	2.9 x 10 ⁻⁹
264.3	.01085	.542	4.7 X 10
· · · •		•) 14	

Test terminated - sufficient data obtained Specimen B-39B

TABLE 11

Creep Test Data, Pure Ta, Annealed at 1832° F (1000°C) for 1/4 hour, Tested at 1183° F (639°C), 10,100 psi (6.95 x 10^{7} N/m²)

	Length Change	Creep	Pressure
	ΔL(inch)	•	(Torr)
<u>Time</u>	_(2" G. L.)	<u>(%)</u>	(1011)
			10-9
l Minutes	.00005	.002	$2.9 \times 10_{-9}$
2	.00000	.000	$2.9 \times 10_{-9}$
3	.00000	.000	2.9×10^{-9}
2 3 4	.00000	.000	$2.9 \times 10_{-9}$
	.00000	.000	$2.9 \times 10_{-9}^{9}$
5 6	00005	002	2.9×10^{-9}
	.00000	.000	$2.9 \times 10_{-9}^{9}$
7 8	.00000	.000	$2.9 \times 10_{-9}^{9}$
9	.00005	.002	$2.9 \times 10_{-9}^{9}$
10	.00000	.000	$2.9 \times 10_{-9}^{9}$
15	.00005	.002	2.9×10^{-9}
30	.00005	.002	2.9×10^{-9}
45	.00005	.002	2.9×10^{-9}
60	.00005	.002	2.9×10^{-9}
1.0 Hours	.00005	.002	2.6×10^{-9}
17.5	.00455	.078	3.4×10^{-9}
24.8	.00215	.108	2.7×10^{-9}
41.3	.00310	.155	3.1×10^{-9}
48.9	.00350	.175	2.7×10^{-9}
68.0	.00400	.200	2.6×10^{-9}
91.9	.00500	.250	2.2×10^{-9}
	.00610	. 305	3.0×10^{-9}
113.7	.00650	.325	2.2×10^{-9}
123.6		.355	2.0×10^{-9}
138.4	.00710	.368	2.0×10^{-9}
146.3	.00735	. 300 . 402	=9
162.0	.00805		- 2 9
186.1	.00890	. 445	
210.3	.01010	.505	2.8×10^{-9}
282.4	.01270	.635	2.3×10^{-5}

Test terminated - sufficient data obtained Specimen B-39C

 $\frac{\text{TABLE 12}}{\text{Creep Test Data, Pure Ta, Annealed at 1832}^{\text{O}}\text{F (1000}^{\text{O}}\text{C) for 1 hour, Tested at}}{\frac{1350^{\text{O}}\text{F (720}^{\text{O}}\text{C), 7,000 psi (4.83} \times 10^{7}\text{N/m}^{2})}{\text{Constant Note of the second s$

Time	Length Change Δ L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
1 Minutes 2 3 4 5 6 8 9 10 15 30 45 60 1.25 1.50 1.75 2.0 2.25 2.50 2.75 3.25	(2" G. L.) .00050 .00125 .00170 .00210 .00225 .00235 .00260 .00300 .00330 .00370 .00490 .00615 .00680 .00815 .00905 .00950 .01040 .01095 .01175 .01220 .01305	_	
3.75 5.83 6.5 7.0 7.5 8.0 8.5 9.0	.01395 .01655 .01740 .01780 .01835 .01905 .01935 .0200	.698 .828 .870 .890 .918 .953 .968	7.0 × 10 -8 7.0 × 10 -8

Test terminated - sufficient data obtained Specimen B-40A

TABLE 13

Creep Test Data, Pure Ta, Annealed at $1832^{\circ}F$ ($1000^{\circ}C$) for 1/4 hour, Tested at $1350^{\circ}F$ ($720^{\circ}C$), 4,900 psi ($3.38 \times 10^{7}N/m^{2}$)

	Length Change		
	Δ L (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
l Minutes	.00000	.000	7.6×10^{-9}
2	.00005	.002	7.6×10^{-9}
	.00005	.002	7.6×10^{-9}
3 4	.00005	.002	7.6×10^{-9}
5	.00010	.005	7.6×10^{-9}
6	.00005	.002	7.6×10^{-9}
5 6 7 8	.00005	.002	7.6×10^{-9}
8	.00000	.000	7.6×10^{-9}
9	.00000	.000	7.6×10^{-9}
9 10	.00005	.002	7.6×10^{-9}
15	.00005	.002	7.6×10^{-9}
30	.00010	.005	7.6×10^{-9}
45	.00010	.005	7.6×10^{-9}
60	.00010	.005	7.6×10^{-9}
1.0 Hours	.00010	.005	7.6×10^{-9}
19.0	.00020	.010	5.8×10^{-9}
43.1	.00025	.012	4.6×10^{-9}
115.1	.00055	.028	3.4×10^{-9}
138.9	.00075	.038	3.0×10^{-9}
163.2	.00085	.042	3.0×10^{-9}
282.9	.00125	.062	2.6×10^{-9}
306.7	.00135	.068	2.5×10^{-9}
331.3	.00140	.070	2.1×10^{-9}
355.5	.00145	.072	2.0×10^{-9}
378.8	.00155	.078	2.0×10^{-9}
451.0	.00170	.085	1.6×10^{-9}
474.8	.00180	.090	$1.6 \times 10_{-9}^{-9}$
498.9	.00190	.095	$1.6 \times 10_{-9}^{-9}$
523.5	.00195	.098	2.1×10^{-9}
547.1	.00200	.100	$2.1 \times 10_{-9}^{-9}$
618.9	.00225	.112	1.3×10^{-9}
643.0	.00235	.118	$1.3 \times 10_{-9}$
666.8	.00245	.122	1.4×10^{-9}
690.8	.00255	.128	1.2×10^{-9}
714.9	.00260	.130	1.3×10^{-9}
786.9	.00340	.170	1.2×10^{-9}
811.0	.00365	.182	1.2×10^{-9}

	Length Change Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
834.6 Hours	.00390	. 195	9.4×10^{-10}
858.9	.00390	.195	1.2×10^{-9}
883.0	.00390	.195	1.2×10^{-9}
1,003.2	.00405	.202	1.2×10^{-9}
1,027.3	.00455	.228	8.3×10^{-10}
1,051.1	.00460	.230	9.6×10^{-10}
1,147.0	.00525	.262	9.2×10^{-10}
1,171.0	.00535	.268	9.3×10^{-10}
1,195.1	.00555	.278	8.0×10^{-10}
1,219.1	.00545	.272	7.3×10^{-10}
1,291.2	.00595	.298	9.4×10^{-10}
1,315.5	.00575	.288	8.6×10^{-10}
1,339.7	.00580	.290	7.0×10^{-10}
1,363.2	.00595	. 298	8.1×10^{-10}
1,386.1	.00600	.300	8.2×10^{-10}

Test terminated - sufficient data obtained Specimen B-40B

TABLE 14 Creep Test Data, ASTAR 811C Sheet, Recrystallized 3600° F (1982°C) 0.5 Hour, Tested at 2600°F (1427°C), and 2000 PSI (1.38 x 10° N/m²)

Time	Length Change • L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
1 Minute 2 3 4 5 6 7 8 9 10 15 30 45 60 2.9 Hours 18.9 43.0 90.7 163.7 186.9 210.9 235.4 259.3 331.3 355.0 379.0 403.0 427.0 499.2 522.9 546.9 570.9 594.9 667.6	.00005 .00010 .00010 .00010 .00010 .00010 .00010 .00010 .00010 .00015 .00015 .00015 .00015 .00015 .00030 .00030 .00030 .00035 .00035 .00035 .00035 .00035 .00035 .00035 .00035 .00040 .00040 .00040 .00040 .00040 .00045 .00045	.002 .005 .008 .005 .005 .005 .005 .005 .005	-8 1.1 × 10 -9 1.1 × 10 -9 1.2 × 10 -9 1.3 × 10 -9 1.4 × 10 -9 1.5 × 10 -9 1.6 × 10 -9 1.7 × 10 -9 1.8 × 10 -9
691.0	.00050	.025	1.6 x 10 ⁻⁹

Length Change		
Δ L (inch)	${\tt Creep}$	Pressure
•	(%)	(Torr)
.00050	.025	1.7×10^{-9}
		1.5×10^{-9}
		1.4×10^{-9}
		1.4×10^{-9}
		1.3×10^{-9}
		1.4×10^{-9}
		1.4×10^{-9}
	.038	1.4×10^{-9}
	.040	1.3×10^{-9}
.00080	.040	1.2×10^{-9}
.00085	.042	1.4×10^{-9}
.00085	.042	1.4×10^{-3}
.00085	.042	1.4×10^{-3}
.00085	.042	1.4×10^{-9}
.00090	.045	1.2×10^{-3}
.00095	.048	1.2×10^{-9}
.00100	.050	1.2×10^{-9}
.00100	.050	1.2×10^{-9}
.00100	.050	1.0×10^{-9}
.00100	.050	1.2×10^{-9}
.00110	.055	$1.2 \times 10_{-9}^{3}$
.00110	.055	$1.3 \times 10_{-9}$
.00115	.058	1.2×10^{-9}
.00120	.060	$1.3 \times 10_{-9}^{-3}$
.00125	.062	1.2×10^{-9}
.00125	.062	$1.1 \times 10_{-9}$
.00130	.065	1.0×10^{-9}
.00130	.065	$1.1 \times 10_{-9}^{-2}$
.00130	.065	$1.1 \times 10_{-9}$
.00140	.070	$1.0 \times 10_{-9}^{-3}$
.00145	.072	$1.0 \times 10_{-9}^{-3}$
.00150	.075	$1.0 \times 10_{-9}$
.00150	.075	1.0×10^{-7}
.00155	.078	$1.0 \times 10_{-9}^{7}$
.00160	.080	1.0×10^{-9}
.00170	.085	1.0 x 10 ⁷
	Δ L (inch) (2" G. L.) .00050 .00050 .00065 .00065 .00075 .00075 .00080 .00080 .00085 .00085 .00085 .00095 .00100 .00100 .00110 .00110 .00110 .00115 .00120 .00125 .00125 .00130 .00130 .00140 .00145 .00150 .00155 .00150 .00155 .00160	Δ L (inch) (7%) .00050 .025 .00050 .025 .00060 .030 .00065 .032 .00065 .032 .00075 .038 .00075 .038 .00075 .038 .00080 .040 .00080 .040 .00085 .042 .00085 .042 .00085 .042 .00085 .042 .00095 .048 .00100 .050 .00100 .050 .00100 .050 .00110 .055 .00110 .055 .00115 .058 .00120 .060 .00125 .062 .00130 .065 .00130 .065 .00130 .065 .00130 .065 .00140 .070 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00150 .075 .00155 .078 .00155 .078 .00155 .078 .00155 .078 .00155 .078

Time	Length Change	Creep (%)	Pressure (Torr)
2,035.2 Hours 2,058.6 2,083.0 2,107.0 2,179.3 2,203.1 2,227.7 2,251.7 2,275.3 2,374.4 2,371.6 2,395.0 2,418.7 2,442.8 2,514.8 2,538.9 2,562.5 2,586.5 2,754.6 2,778.8 2,850.6 2,874.8 2,898.9 2,923.0 3,019.3 3,043.1 3,066.8 3,081.8 3,115.1 3,187.1 3,210.8 3,234.8	.00175 .00175 .00175 .00180 .00195 .00195 .00195 .00195 .00195 .00200 .00200 .00205 .00210 .00210 .00210 .00210 .00215 .00220 .00220 .00220 .00220 .00220 .00225 .00230 .00235 .00235 .00235 .00235 .00235 .00240 .00245	(%) .088 .088 .088 .090 .098 .098 .098 .09	(Torr) 1.0 x 10 -9 1.1 x 10 -9 1.0 x 10 -10 1.0 x 10 -10 9.1 x 10 -10 9.2 x 10 -10 8.2 x 10 -10 8.2 x 10 -10 8.2 x 10 -10 9.6 x 10 -10
3,258.6 3,282.7 3,355.7 3,378.7 3,402.8	.00250 .00255 .00255 .00260 .00265	.125 .128 .128 .130 .132	8.2 × 10 10 9.0 × 10 10 8.0 × 10 10 9.0 × 10 10 9.0 × 10

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
			-10
3,427.0 Hours	.00270	.135	9.0×10^{-10}
3,451.0	.00270	.135	$9.1 \times 10_{-10}$
3,522.8	.00270	.135	$9.7 \times 10_{-10}$
3,546.7	.00265	.132	9.5×10^{-10}
3,570.6	.00265	.132	9.8 x 10 ₋₁₀
3,594.9	.00270	. 135	$9.4 \times 10_{-10}$
3,618.6	.00280	. 140	9.3 x 10 10
3,690.8	.00285	.142	$9.8 \times 10_{-10}$
3,715.1	.00285	.142	$9.3 \times 10_{-10}$
3,738.8	.00285	.142	$8.9 \times 10_{-0}^{-1}$
3,762.8	.00280	. 140	1.3×10^{-9}
3,786.8	.00285	. 142	1.2×10^{-10}
3,858.1	.00280	. 140	$9.9 \times 10_{a}^{-1}$
3,881.7	.00290	. 145	1.2×10^{-9}
3,906.8	.00290	. 145	1.1×10^{-3}
3,930.1	.00290	. 145	1.0×10^{-9}
3,953.7	.00295	. 148	1.0×10^{-3}
4,074.5	.00305	.152	1.2×10^{-9}
4,099.8	.00305	. 152	1.2×10^{-9}
4,121.5	.00310	.155	1.2×10^{-9}
4,194.2	.00320	. 160	1.1×10^{-9}
4,217.9	.00320	.160	1.2×10^{-9}
4,241.6	.00320	. 160	1.2×10^{-9}
4,265.6	.00315	. 158	1.1×10^{-9}
4,291.9	.00320	.160	1.0×10^{-9}
4,361.7	.00330	. 165	$1.1 \times 10_{-9}$
4,385.7	.00335	.168	1.1×10^{-3}
4,409.6	.00340	.170	1.1×10^{-9}
4,434.4	.00340	.170	1.0×10^{-9}
4,458.2	.00350	.175	$9.8 \times 10_{-10}$
4,532.1	.00350	.175	8./ x 10 ₋₁₀
4,578.5	.00360	.180	$9.2 \times 10_{-9}^{-1}$
4,601.6	.00360	.180	1.1×10^{-9}
4,626.0	.00365	.182	1.1×10^{-9}
4,697.7	.00365	.182	9.2 x 10 ₋₁₀
4,721.8	.00360	.180	1.0×10^{-10}

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
4,746.2 Hours 4,746.2 Hours 4,771.8 4,793.7 4,865.5 4,889.9 4,914.0 4,938.7 5,034.0 5,057.5 5,105.8 5,129.5 5,225.6 5,249.3 5,225.6 5,249.3 5,297.4 5,441.4 5,465.9 5,561.6 5,634.1 5,465.9 5,7777.5 5,801.4 5,926.9 5,7777.5 5,801.4 5,926.9 5,7777.5 5,801.4 5,926.9 5,945.3 6,065.6 6,089.6	.00370 .00375 .00380 .00380 .00385 .00385 .00390 .00390 .00390 .00395 .00425 .00405 .00420 .00420 .00420 .00420 .00450 .00450 .00450 .00450 .00450 .00450 .00460 .00460 .00460 .00460 .00460 .00460 .00460 .00480 .00480	. 185 . 188 . 190 . 190 . 192 . 192 . 195 . 195 . 195 . 195 . 198 . 212 . 202 . 208 . 210 . 210 . 212 . 215 . 215 . 215 . 225 . 225 . 225 . 225 . 225 . 225 . 225 . 228 . 230 . 230 . 230 . 230 . 230 . 230 . 240 . 240	1.0 × 10-9 1.1 × 10-9 1.1 × 10-9 1.3 × 10-9 1.4 × 10-9 1.2 × 10-9 1.1 × 10-9 1.2 × 10-9 1.1 × 10-9 1.1 × 10-9 1.1 × 10-9 1.1 × 10-9 1.1 × 10-9 1.1 × 10-9 1.1 × 10-10 1.0 × 10
6,065.5 6,089.6 6,113.6 6,137.4	.00480 .00480 .00480 .00475	.240 .240 .240 .238	9.2 x 10-10 8.4 x 10-10 8.8 x 10-10 9.0 x 10

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
			10
6,209.6 Hours	.00475	.238	7.7×10^{-10}
6,233.6	.00480	. 240	7.8×10^{-10}
6,257.6	.00475	.238	8.5×10^{-10}
6,281.6	.00475	.238	8.2×10^{-10}
6,305.5	.00475	. 238	9 6 y 10
6,377.6	.00480	. 240	9.4×10^{-10}
6,401.5	.00485	. 242	9.0×10^{-10}
6,425.9	.00490	.245	8.2×10^{-10}
6,449.6	.00490	. 245	9.4×10^{-10}
6,473.6	.00490	.245	9.8×10^{-10}
6,546.1	.00495	.248	7.8×10^{-10}
6,569.5	.00500	.250	8.6×10^{-10}
6,593.5	.00500	.250	8.6×10^{-10}
6,617.4	.00500	.250	9 4 x 10 1
6,641.7	.00505	. 252	9.3×10^{-10}
6,713.5	.00510	.255	9 6 x 1()
6,738.6	.00505	.252	8.0×10^{-10}
6,761.5	.00505	.252	9.0×10^{-10}
6,786.0	.00505	.252	8.0×10^{-10}
6,810.4	.00510	. 255	8.4×10^{-10}
6,906.5	.00510	. 255	9.8×10^{-10}
6,929.6	.00515	. 258	9.7×10^{-10}
6,953.4	.00515	.258	8.3×10^{-10}
6,978.0	.00515	.258	8.0×10^{-10}
7,049.8	.00520	. 260	$9.1 \times 10_{-10}$
7,074.1	.00520	.260	8.8 × 10 ₋₁₀
7,097.6	.00525	. 262	8.0 x 10 ₋₁₀
7,121.5	.00525	. 262	8./ x 10_10
7,145.4	.00535	.268	$9.3 \times 10_{-10}$
7,217.7	.00540	.270	$9.2 \times 10_{-10}$
7,241.5	.00545	.272	8.9 x 10_10
7,265.4	.00545	.272	8.8 X IU_10
7,289.4	.00545	.272	
7,313.5	.00550	. 275	8.4 × 10-10
7,386.4	.00555	.278	0.4 X IU_10
7,409.4	.00555	. 278	9.4 x 10
7,434.0	.00555	. 278	8.2 x 10 ₋₁₀
7,457.4	.00555	.278	0.1 X 10_10
7,481.3	.00555	.278	8.0×10^{-10}

	Length Change		
	Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
7,553.6 Hours	.00565	.282	8.4×10^{-10}
7,577.4	.00560	.280	8 1 x 10 - 10
7,602.3	.00565	.282	7.5×10^{-10}
7,625.4	.00-65	. 282	7.6×10^{-10}
7,649.5	.00565	.282	80 × 10-10
7,721.4	.00570	.285	8 4 × 10 - 10
7,745.4	.00570	.285	8 2 ~ 10 - 10
7,769.5	.00575	.288	78 × 10 10
7,793.4	.00575	.288	8 1 ~ 10 - 10
7,818.0	.00585	. 292	6.5 × 10 ⁻¹⁰
7,890.3	.00585	.292	8.6×10^{-10}
7,913.5	.00595	.298	85 × 10 - 10
7,937.4	.00595	. 298	7.6 x 10 ⁻¹⁰
7,961.6	.00600	. 300	7.5×10^{-10}
7,985.6	.00600	.300	75 × 10-10
8,057.8	.00595	.298	6.0×10^{-10}
8,082.5	.00605	.302	9.2×10^{-10}
8,106.2	.00615	.308	7.6×10^{-10}
8,129.8	.00615	.308	88 × 10 10
8,154.0	.00620	.310	9.5×10^{-10}
8,226.8	.00620	.310	7.6×10^{-10}
8,250.1	.00625	.312	8.0×10^{-10}
8,274.2	.00625	.312	7.8×10^{-10}
8,298.9	.00625	.312	8.0×10^{-10}
8,322.3	.00635	.318	8 0 × 10 - 10
8,394.7	.00630	.315	7.5×10^{-10}
8,418.2	.00630	.315	7.4×10^{-10}
8,442.9	.00630	.315	9 0 × 10 10
8,466.2	.00630	.315	9.4×10^{-10}
8,490.3	.00635	.318	99 × 10 10
8,562.7	.00640	.320	7.2×10^{-10}
8,586.2	.00640	.320	98 × 10 - 10
8,610.5	.00640	.320	7.7×10^{-10}
8,634.4	.00645	.322	9 5 × 10 ⁻¹⁰
8,658.5	.00655	.328	1 1 4 10-9
8,730.7	.00655	.328	9.8×10^{-10}
		~	-

	Length Change		
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
0 751 1 11	00//0	220	7 7 10-10
8,754.4 Hours	.00660	. 330	7.7×10^{-10}
8,778.7	.00665	. 332	$7.6 \times 10_{-10}$
8,898.4	.00695	. 348	9.8×10^{-10}
8,922.2	.00700	.350	9.7×10^{-10}
8,946.8	.00695	. 348	9.2×10^{-10}
8,970.9	.00705	. 352	9.2 x 10_9
8,994.3	.00720	. 360	1.1×10^{-3}
9,066.5	.00730	. 365	$7.6 \times 10_{-10}$
9,090.3	.00720	. 360	9.2×10^{-10}
9,114.2	.00720	. 360	8.0×10^{-10}
9,138.7	.00730	. 365	1.0×10^{-10}
9,162.6	.00735	. 368	8.5×10^{-10}
9,234.4	.00740	.370	$7.6 \times 10_{-9}^{-10}$
9,258.3	.00750	.375	$1.0 \times 10_{-10}$
9,282.3	.00750	.375	$9.2 \times 10_{-9}^{-10}$
9,306.4	.00750	.375	1.1×10^{-3}
9,330.3	.00755	. 378	9.8×10^{-10}
9,402.3	.00755	. 378	1.2×10^{-9}

Test in progress Specimen S-29

TABLE 15

Creep Test Data, T-111 Sheet Heat D-1670, Recrystallized 3000° F (1649 $^{\circ}$ C) 1 Hour, Tested at 1800 $^{\circ}$ F (982 $^{\circ}$ C), and 17,000 PSI (1.17 x 10^{8} N/m 2)

Time	Length Change • L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
l Minute 2	.00010 .00015	. 005 . 008	5.2×10^{-8} 5.2 × 10 ₋₈
3	.00015	, 008	5.2×10^{-8} 5.2×10^{-8}
3 4	.00015	.008	F 2 × 10 ⁻⁰
5 6	. 00015	.003	E 2 × 10 0
6	.00015	. 008	5 2 x 10 -8 5 2 x 10 -8
7	.00015	, 008	5.2×10^{-8}
8	.00015	. 008	5.2×10^{-6}
9	.00020	, 0 ; 0	5.2×10^{-8}
10	J 000 15	, 008	5.2×10^{-6}
15	00015	. 008	5.2×10^{-6}
30	.00015	800	5.2×10^{-6}
45	。00020	.010	5.2×10^{-6}
60	.00020	.010	5.2×10^{-6}
27.1 Hours	.00050	، 025	1.5×10^{-8}
49.6	٠ 00065	.032	1.2×10^{-0}
65.0	, 00055	۰ 028	6.4×10^{-9}
88.7	.00055	. 028	4.6×10^{-9}
114.7	, 00060	: 030	3.0×10^{-9}
145.8	. 00070	.035	2.4×10^{-9}
160.7	. 000 70	.035	2.0×10^{-9}
232.7	.00070	035	1.7×10^{-9}
256.6	. 00065	.032	1.6×10^{-9}
280.6	. 00075	، 038	1.4×10^{-9}
307.8	, 00075	.038	1.4×10^{-9}
329.5	.00080	. 040	1.3×10^{-9}
404.1	. 00075	-038	1.5×10^{-9}
425.4	. 00080	040	1.4×10^{-9}
448.8	.00085	042	1.4×10^{-9}
473.1	.00085	.042	1.3×10^{-9}
497.2	. 00085	. 042	1.1×10^{-9}
569.3	. 00080	.040	9.4×10^{-9}
592.9	.00080	040	$9.2 \times 10_{-10}$
617.1	.00085	. 042	8.8×10^{-10}
617.1	.00085	. 042	8.8×10^{-10}
641.6	. 00090	° 045	8.8 x 10_10
665.7	.00095	.048	8.6×10^{-10}

	Length Change		
	ΔL (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
736.9 Hours	.00110	.055	8.2×10^{-10}
761.0	.00110	.055	0 2 4 10 10
784.5	.00110	.055	79 × 10 10
808.5	.00110	.055	7 Q v 10 10
832.5	.00110	.055	7 7 × 10 ⁻¹⁰
904.7	.00110	.055	7.7×10^{-10}
904.7	.00110	.055	7 5 × 10 10
952.4	.00110	.055	7.5×10^{-10} 7.5×10^{-10}
	.00110	.055	7.2×10^{-10}
976.4	.00110	.055	7.0×10^{-10}
1,000.2	.00110	.055	7.3×10^{-10}
1,074.0		.060	7.5 0 10-10
1,096.5	.00120	.060	6.8×10^{-10} 6.8×10^{-10}
1,120.7	.00120	.060	
1,144.7	.00120		
1,168.5	.00115	.058	6.9×10^{-10}
1,240.5	.00120	.060	6.6×10^{-10}
1,264.7	.00115	.058	6.5×10^{-10}
1,288.7	.00125	.062	6.5×10^{-10}
1,312.7	.00125	.062	6.4×10^{-10}
1,336.6	.00130	.065	6.2×10^{-10}
1,433.2	.00145	.072	5.9×10^{-10}
1,456.7	.00155	.078	6.1 × 10 ₋₁₀
1,480.4	.00155	.078	6.1×10^{-10}
1,504.5	.00155	.078	6.0 x 10 ₋₁₀
1,577.0	.00160	.080	6.0 x 10 ₋₁₀
1,600.6	.00165	.082	$7.1 \times 10_{-10}$
1,624.6	.00165	.082	/.2 × 10 ₋₁₀
1,648.4	.00165	.082	/.0 × 10 ₋₁₀
1,673.1	.00170	.085	6.9 x 10_10
1,745.2	.00175	.088	5.4 × 10 ₋₁₀
1,768.7	.00180	.090	5.4 × 10_10
1,792.7	.00175	.038	5.4 × 10_10
1,316.8	.00190	.095	5.4×10^{-10}
1,840.5	.00195	.098	5.4 x 10_10
1,912.6	.00200	. 100	5.4×10^{-10}
1,936.8	.00205	.102	5.3×10^{-10}

	Length Change		
	Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
1,960.6 Hours	.00210	. 105	5.6×10^{-10}
1,985.0	.00205	.102	5.2×10^{-10}
2,008.8	.00210	. 105	5.3×10^{-10}
2,104.5	.00210	.105	5.0×10^{-10}
2,128.6	.00220	. 110	5.0×10^{-10}
2,154.6	00225 ،	.112	5.4×10^{-10}
2,176.9	.00230	.115	5.0×10^{-10}
2,248.6	، 00235	, 118	7.0×10^{-10}
2,272,7	.00230	.115	5.1×10^{-10}
2,296.6	. 00240	.120	5.2×10^{-10}
2,320.7	.00245	. 122	5.0×10^{-10}
2,344.8	。00245	.122	5.1×10^{-10}
2,416.6	، 00255	.128	4.9×10^{-10}
2,440.6	.00260	. 130	4.9×10^{-10}
2,464.9	۵00260	. 130	4.8×10^{-10}
2,488.7	، 00265	. 132	5.0×10^{-10}
2,512.6	.00265	، 132	5.0×10^{-10}
2,584.6	.00270	. 135	5.0×10^{-10}
2,611.7	.00275	. 138	5.2×10^{-10}
2,632.7	.00275	.138	5.1×10^{-10}
2,657.1	۵0280 .	, 140	4.9×10^{-10}
2,680.7	. 00285	. 142	5.0×10^{-10}
2,753.6	。00290	. 145	4.8×10^{-10}
2,777.6	.00300	. 150	4.9×10^{-10}
2,801.7	.00305	.152	4.8×10^{-10}
2,825.9	.00310	. 155	4.9×10^{-10}
2,349.7	.00320	. 160	5.0×10^{-10}
2,921.6	.00335	. 163	4.7×10^{-10}
2,945.7	.00340	. 170	4.6×10^{-10}
2,970.1	.00350	.175	4.6×10^{-10}
2,993.6	. 00350	.175	4.7×10^{-10}
3,017.5	.00360	. 130	4.7×10^{-10}
3,089.7	.00365	. 182	4.8×10^{-10}
3,114.1	.00370	.185	4.8×10^{-10}
3,138.2	.00390	. 195	4.7×10^{-10}
3,161.8	.00390	. 195	4.8×10^{-10}
			· · · · · · · · · · · ·

Length Change			
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
3,185.6 Hours	.00400	.200	4.7×10^{-10}
3,257.8	. 00430	.215	1. 7 × 10 ⁻¹⁰
3,281.6	.00435	.218	1, 7 × 10 ⁻¹⁰
3,305.8	.00445	.222	$h = 7 \times 10^{-10}$
3,353.6	.00445	.222	ル 6 × 10 ⁻¹⁰
3,425.7	.00450	.225	1. 1. × 10 ⁻¹⁰
3,449.6	.00455	.228	k 2 10 ⁻¹⁰
3,473.7	.00460	.230	4.2×10^{-10} 4.2×10^{-10}
3,498.2	.00470	.235	1, 2 × 10 ⁻¹⁰
3,522.1	.00465	.232	4.5×10^{-10}
3,594.1	.00475	.238	4.4 × 10-10
3,617.8	.00475	.238	4 4 X IU
3,641.7	.00490	. 245	$h_{1} h_{2} \sim 10^{-10}$
3,665.8	.00490	. 245	h 2 10 ⁻¹⁰
3,689.7	.00500	. 250	4.2×10^{-10} 4.1×10^{-10}
3,762.0	.00505	. 252	4.1×10^{-10}
3,785.7	.00515	.257	h 2 × 10 ⁻¹⁰
3,809.7	.00530	.265	$h \sim 10^{-10}$
3,833.9	.00530	. 265	4.3×10^{-10}
3,857.7	.00540	.270	h 2 × 10 - 10
3,930.4	.00540	.270	$\frac{4.3 \times 10^{-10}}{4.3 \times 10^{-10}}$
3,953.9	.00545	.272	10 × 10 ⁻⁴⁰
3,978.1	.00545	.272	1.2 × 10 ⁻¹⁰
4,002.2	.00550	.275	1, 2 × 10 ⁻¹⁰
4,122.1	.00565	. 282	1. 1 × 10 ⁻¹⁰
4,146.0	.00580	.290	1, 2 × 10 ⁻¹⁰
4,169.7	.00590	. 295	4.0×10^{-10}
4,194.0	.00590	. 295	h 1 × 10 ⁻¹⁰
4,289.9	.00605	. 302	4 2 × 10 ⁻¹⁰
4,314.5	.00610	. 305	h 2 × 10 ⁻¹⁰
4,338.2	.00620	.310	$h \cdot h \times 10^{-10}$
4,361.9	.00640	.320	/1 2 × 10 ^{−10}
4,434.5	.00665	. 332	1, 2 × 10 ^{−10}
4,458.1	.00670	. 335	$h = 2 \times 10^{-10}$
4,482.1	.00680	. 340	1. 0 × 10 ⁻¹⁰
4,505.8	.00700	. 350	4.2×10^{-10}
.,,,,,,,	· , - -	• 77 •	

Time	Length Change • L (inch) (2" G. L.)	Creep _(%)	Pressure (Torr)
Time 4,529.9 Hours 4,602.5 4,602.5 4,625.8 4,649.9 4,674.2 4,698.0 4,770.0 4,793.9 4,842.3 4,866.3 4,985.8 5,009.8 5,108.0 5,128.4 5,204.7 5,273.9 5,298.2 5,345.9 5,345.9 5,345.9 5,349.6 5,514.6 5,538.3 5,610.3 5,681.7 5,681.7 5,681.7 5,681.7 5,705.8 5,777.7 5,802.0		~	(Torr) 4.0 x 10 - 10 4.0 x 10 - 10 4.2 x 10 - 10 3.9 x 10 - 10 3.8 x 10 - 10
5,825.5 5,849.5 5,873.5	. 00975 . 00985 . 00985	. 488 . 492 . 492	3.9×10^{-10} 3.8×10^{-10} 4.1×10^{-10}

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
			10	
5,945.6 Hours	.00985	. 492	3.6×10^{-10}	
5,969.6	.01000	. 500	3.9×10^{-10}	
5,994.2	.01005	. 502	3.7×10^{-10}	
6,017.6	.01020	.510	4.0×10^{-10}	
6,041.8	.01035	.518	3.6×10^{-10}	
6,113.6	.01060	.530	4.0×10^{-10}	
6,137.8	.01065	.532	3 6 x 10	
6,161.9	.01075	.538	4.0×10^{-10}	
6,185.9	.01090	.545	3.6×10^{-10}	
6,282.3	.01100	.550	3.6 X 10 ₋₁₀	
6,306.1	.01115	.558	$3.9 \times 10_{-10}$	
6,329.8	.01110	. 555	3.8×10^{-10}	
6,353.8	.01120	. 560	3.9×10^{-10}	
6,378.2	.01120	. 560	3.6×10^{-10}	
6,450.1	.01125	. 562	3.9×10^{-10}	
6,473.8	.01150	. 575	3.7×10^{-10}	
6,497.8	.01160	.580	$3.9 \times 10_{-10}$	
6,521.5	.01160	. 580	$3.5 \times 10_{-10}$	
6,545.6	.01170	. 585	3.6 x 10 ₋₁₀	
6,619.3	.01170	. 585	3.5 x 10 ₋₁₀	
6,641.7	.01195	. 598	$3.8 \times 10_{-10}$	
6,665.8	.01205	.602	3.6 x 10 ₋₁₀	
6,690.0	.01215	.608	$3.8 \times 10_{-10}$	
6,714.0	.01225	.612	3.8 x 10 ₋₁₀	
6,785.8	.01235	.618	3.8 x 10 ₋₁₀	
6,809.7	.01235	.618	3.6 x 10 ₋₁₀	
6,833.5	.01240	.620	3.8 x 10 ₋₁₀	
6,857.9	.01250	.625	3.6 x 10 ₋₁₀	
6,881.7	.01260	.630	3./ x 10 ₋₁₀	
6,953.8	.01275	. 638	$3.8 \times 10_{-10}$	
6,978.1	.01285	.642	3.9 x 10 10	
7,001.8	.01290	. 645	3.8 X 10 ,	
7,025.8	.01290	.645	3.9 x 10 ₋₁₀	
7,049.8	.01300	.650	110 /1 10 10	
7,121.0	.01300	.650	3.5 X 10 10	
7,144.8	.01320	.660	3./ X IU 10	
7,169.7	.01325	.662	3.9 X 10_10	
7,193.1	.01325	.662	3./ X 10_10	
7,216.7	.01335	.668	3./ X 10_10	
7,338.2	.01375	.688	3./ X 10_10	
7,362.8	.01390	. 695	4.0 X 10 10	
7,384.5	.01410	. 705	3.8×10^{-10}	

Δ L (inch) Creep	Ъ
= 1 (111011) O100P	Pressure
Time (2" G. L.) (%)	(Torr)
	
7,457.2 .01415 .708	4.0×10^{-10}
7,480.9 .01415 .708	3 6 × 10 ⁻¹⁰
7,504.6 .01415 .708	3.7×10^{-10}
7,528.6 .01425 .712	2.7×10^{-10}
7,554.9 .01445 .722	3.7×10^{-10}
7,624.7 .01455 .728	39 × 10 10
7,648.7 .01465 .732	3.8×10^{-10}
7,672.5 .01465 .732	3.7×10^{-10}
7,697.3 .01495 .748	3 9 × 10 10
7,721.2 .01505 .752	3 8 × 10 ⁻¹⁰
7,795.1 .01515 .752	3.8×10^{-10}
7,841.6 .01520 .760	3.6×10^{-10}
7,864.6 .01540 .770	3 8 × 10 ⁻¹⁰
7,889.0 .01545 .772	3.4×10^{-10}
7,960.7 .01555 .778	3.6×10^{-10}
7,984.8 .01560 .780	3 6 × 10 ⁻¹⁰
8,009.3 .01570 .785	3 5 × 10 ⁻¹⁰
8,034.8 .01580 .790	3.6×10^{-10}
8,056.7 .01585 .795	3.6×10^{-10}
8,128.5 .01600 .800	3.6×10^{-10}
8,153.1 .01605 .802	3.4×10^{-10}
8,177.1 .01615 .808	3.9×10^{-10}
8,201.7 .01620 .810	3.7×10^{-10}
8,224.7 .01625 .812	3.8 × 10-10
8,297.2 .01640 .812	3.8×10^{-10}
8,320.6 .01650 .825	3.8×10^{-10}
8,344.5 .01655 .828	3.8 X 10_10
8,368.9 .01660 .830	3.6×10^{-10}
8,392.5 .01675 .838	3./ x 10 ₋₁₀
8,466.1 .01685 .842	3.8×10^{-10}
8,488.9 .01695 .848	3.8 x 10 ₋₁₀
8,512.4 .01695 .848	3.6 X 10_10
8,536.4 .01710 .855	3.6 X 10_10
8,560.5 .01725 .862	3.6×10^{-10}
8,632.5 .01730 .865	3.7×10^{-10}
8,680.5 .01770 .885	3.7×10^{-10}

Time	Length Change Δ L (inch) (2" G. L.)	Creep _(%)_	Pressure (Torr)
8,704.6 8,728.7 8,801.0 8,824.6 8,849.3 8,873.4 8,897.7 8,969.2 8,992.7 9,017.0 9,040.6 9,064.8 9,138.4 9,161.0 9,189.9 9,232.6 9,306.5 9,328.7 9,352.8 9,352.8 9,376.7 9,400.6 9,472.9	(2" G. L.) .01770 .01775 .01780 .01775 .01780 .01790 .01795 .01820 .01835 .01850 .01860 .01875 .01875 .01890 .01905 .01905 .01930 .01935 .01950 .01960 .01970	.885 .888 .890 .888 .890 .895 .898 .910 .918 .925 .930 .938 .942 .945 .952 .952 .952 .965 .968 .975 .980 .985 .992	(Torr) 3.6 × 10-10 3.5 × 10-10 3.5 × 10-10 3.6 × 10-10 3.6 × 10-10 3.7 × 10-10 3.6 × 10-10 3.6 × 10-10 3.7 × 10-10 3.6 × 10-10 3.7 × 10-10 3.7 × 10-10 3.7 × 10-10 3.7 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10 3.8 × 10-10
9,496.6 9,520.7 9,544.7 9,568.6	.01985 .01995 .02005 .02010	.992 .998 1.002 1.005	$\begin{array}{c} 4.0 \times 10_{-10} \\ 3.6 \times 10_{-10} \\ 3.5 \times 10_{-10} \\ 3.6 \times 10_{-10} \end{array}$
9,624.2	.02060	1.030	3.5×10^{-10}

Test terminated - sufficient data obtained Specimen S-26

TABLE 16

Creep Test Data, T-III Sheet Heat D-1670, Recrystallized $3000^{\circ}F$ (1649°C) 1 Hour, Tested at 2600°F (1427°C), and 500 PSI (3.45 x $10^{\circ}N/m^2$)

Time	Length Change • L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
Time 1 Minute 2 3 4 5 6 7 8 9 10 15 30 45 60 16.4 Hours 40.4 64.4 83.3 160.3 184.5 208.3 232.7 256.5 328.5 352.3 376.4 402.4 424.5 496.4 520.4 544.3 568.4	ΔL (inch)	-	
592.5 664.3 683.3 712.6 736.4	.00385 .00395 .00395 .00400 .00405	.192 .198 .198 .200	3.7 × 10-9 4.2 × 10-9 4.0 × 10-9 3.2 × 10-9 3.8 × 10

	Length Change	Length Change		
	ΔL (inch)	Creep	Pressure	
Time	(2'' G. L.)	_(%)	(Torr)	
		- 	-9	
760.3 Hours	.00410	.205	$3.1 \times 10_{-9}$	
832.3	.00430	.215	$3.0 \times 10_{-9}$	
859.4	.00435	.218	$4.0 \times 10_{-9}$	
880.4	.00435	.218	$5.4 \times 10_{-9}$	
904.7	.00445	.222	$5.4 \times 10_{-9}$	
928.5	.00460	.230	$5.2 \times 10_{-9}^{-9}$	
1,001.3	.00465	.232	$5.0 \times 10_{-9}^{-3}$	
1,025.4	.00465	.232	$4.9 \times 10_{-9}^{-3}$	
1,049.5	.00475	.238	$5.2 \times 10_{-9}^{-9}$	
1,073.6	.00490	.245	5.6×10^{-9}	
1,097.4	.00505	.252	$5.3 \times 10_{-9}^{-3}$	
1,169.4	.00535	. 268	$4.9 \times 10_{-9}^{-9}$	
1,193.4	.00550	.275	$4.9 \times 10_{-9}^{-3}$	
1,217.8	.00555	.278	4.8×10^{-9}	
1,241.3	.00565	.282	$4.0 \times 10_{-9}^{2}$	
1,265.3	.00570	.285	$4.9 \times 10_{-9}^{-9}$	
1,337.5	.00585	.292	5.0×10^{-9}	
1,361.4	.00590	.295	2.8×10^{-9}	
1,385.9	.00590	.295	4.5×10^{-9}	
1,409.5	.00595	.298	2.9×10^{-9}	
1,433.3	.00600	.300	$4.5 \times 10_{-9}^{-9}$	
1,505.5	.00605	. 302	4.9×10^{-9}	
1,529.4	.00615	. 308	$5.0 \times 10_{-9}^{-3}$	
1,553.5	.00620	.310	4.6×10^{-9}	
1,601.2	.00615	. 308	$4.7 \times 10_{-9}$	
1,673.5	.00625	.312	$4.6 \times 10_{-9}^{-3}$	
1,697.4	.00625	.312	$4.4 \times 10_{-9}^{3}$	
1,721.4	.00625	.312	$4.1 \times 10_{-9}^{2}$	
1,745.9	.00625	.312	4.6×10^{-9}	
1,769.8	.00635	.318	4.5×10^{-9}	
1,841.8	.00635	.318	2.9×10^{-9}	
1,865.6	.00640	.320	4.3×10^{-9}	
1,889.5	.00645	.322	4.1×10^{-9}	
1,913.5	. 00645	.322	4.1×10^{-9}	
1,937.5	.00650	. 325	2.4×10^{-9}	
2,009.7	.00660	. 330	4.4×10^{-9}	
• •				

Time	Length Change Δ L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
2,033.4 Hours	.00665	.332	4.1×10^{-9}
2,057.5	.006 6 5	. 332	4.0×10^{-9}
2,081.4	.00675	. 338	4.2×10^{-9}
2,105.4	.00675	. 338	4.1×10^{-9}
2,178.2	.00680	. 340	4.9×10^{-9}
2,201.6	.00685	. 342	2.8×10^{-9}
2,225.8	.00685	. 342	3.0×10^{-9}
2,249.9	.00690	. 345	3.8×10^{-9}
2,369.8	.00695	. 348	3.6×10^{-9}
2,369.8	.00695	. 348	3.6×10^{-9}
2,393.6	.00695	. 348	4.0×10^{-9}
2,417.5	.00695	. 348	3.8×10^{-9}
2,441.8	.00705	.352	4.1×10^{-9}
2,537.6	.00705	.352	4.1×10^{-9}
2,562.2	.00705	. 352	3.8×10^{-9}
2,585.9	.00710	.355	4.0×10^{-9}
2,609.7	.00710	.355	4.0×10^{-9}
2,682.1	.00705	.352	2.0×10^{-9}
2,705.9	.00705	.352	3.7×10^{-9}
2,729.8	.00705	.352	2.2×10^{-9}
2,753.5	.00705	.352	3.6×10^{-9}
2,777.6	.00710	. 355	3.7×10^{-9}
2,850.2	.00685	. 342	3.8×10^{-9}
2,873.5	.00685	. 342	4.1×10^{-9}
2,897.7	.00695	. 348	3.8×10^{-9}
2,921.5	.00705	.352	3.6×10^{-9}
2,945.7	.00705	.352	3.9×10^{-9}
3,017.7	.00705	.352	3.5×10^{-9}
3,041.6	.00700	. 350	4.6×10^{-9}
3,065.9	.00710	. 355	3.8×10^{-9}
3,090.1	.00710	.355	4.0×10^{-9}
3,114.0	.00715	. 358	3.6×10^{-9}
3,185.6	.00710	. 355	3.9×10^{-9}
3,209.5	.00710	.355	4.0×10^{-9}
3,233.6	.00710	.355	4.0×10^{-9}
3,257.6	.00715	. 358	3.8×10^{-9}

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2'' G. L.)	(%)	(Torr)
			9
3,281.8 Hours	.00715	. 358	$3.8 \times 10_{-9}$
3,355.7	.00720	. 360	$3.3 \times 10_{-9}$
3,377.8	.00720	. 360	4.0×10^{-9}
3,401.7	.00710	. 355	4.0×10^{-9}
3,426.2	.00710	.355	3.7×10^{-9}
3,452.5	.00715	. 358	3.7×10^{-9}
3,521.6	.00715	. 358	3.2×10^{-9}
3,545.9	.00710	. 355	$3.9 \times 10_{-9}$
3,569.3	.00715	. 358	3.4×10^{-9}
3,593.7	.00710	. 355	3.9×10^{-9}
3,617.7	.00710	. 355	3.6×10^{-9}
3,690.0	.00720	. 360	$3.7 \times 10_{-9}$
3,713.8	.00715	. 358	$3.4 \times 10_{-9}$
3,738.3	.00725	. 362	$3.6 \times 10_{-9}$
3,762.4	.00720	. 360	$3.6 \times 10_{-9}$
3,786.0	.00720	. 360	$3.5 \times 10_{-9}$
3,858.1	.00725	. 362	$3.4 \times 10_{-9}$
3,882.2	.00725	. 362	$3.4 \times 10_{-9}$
3,905.7	.00725	. 362	$3.5 \times 10_{-9}$
3,929.4	.00725	. 362	3.8×10^{-9}
3,953.5	.00725	. 362	3.2 x 10_9
4,025.5	.00725	. 362	$3.4 \times 10_{-9}$
4,049.6	.00715	. 358	3.1×10^{-9}
4,073.2	.00725	. 362	3.8×10^{-3}
4,097.3	.00715	. 358	$3.7 \times 10_{-9}$
4,121.2	.00720	. 360	$4.0 \times 10_{-9}$
4,193.3	.00730	. 365	$3.0 \times 10_{-9}$
4,217.3	.00725	. 362	$3.2 \times 10_{-9}$
4,241.9	.00720	. 360	$3.5 \times 10_{-9}$
4,265.3	.00720	. 360	$3.6 \times 10_{-9}$
4,289.5	.00730	. 365	3.8×10^{-9}

Time	Length Change L(inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
4,361.3	.00730	. 365	4.0×10^{-9}
4,385.6	.00735	. 368	3.6×10^{-9}
4,409.6	.00735	. 368	$3.7 \times 10_{-9}^{-3}$
4,433.7	.00730	. 365	$3.6 \times 10_{-9}^{9}$
4,530.0	.00735	.368	$3.3 \times 10_{-9}$
4,553.8	.00735	. 368	$3.6 \times 10_{-9}$
4,577.5	.00730	. 365	3.4×10^{-9}
4,601.5	.00730	. 365	3.7×10^{-9}
4,625.9	.00740	. 370	3.5×10^{-9}
4,697.8	.00745	.372	3.6×10^{-9}
4,721.5	.00755	. 378	3.3×10^{-9}
4,745.5	.00755	.378	3.5×10^{-9}
4,769.3	.00755	. 378	3.0×10^{-9}
4,793.4	.00750	. 375	3.5×10^{-9}
4,867.0	.00765	.382	3.7×10^{-9}
4,913.5	.00760	380	3.4×10^{-9}
4,889.4	.00760	. 380 . 382	3.7×10^{-9}
4,937.7	.00765	.388	3.5×10^{-9} 3.4×10^{-9}
4,961.7	.00775	.385	$3.4 \times 10_{-9}$ $3.4 \times 10_{-9}$
5,033.5	.00770 .00770	.385	3.4 × 10-9
5,057.4	.00780	. 390	3.4×10^{-9}
5,081.3 5,105.6	.00775	. 388	3.9×10^{-9}
5,129.5	.00780	. 390	3.1×10^{-9}
5,201.5	.00775	.358	3.0×10^{-9}
5,225.8	.00785	.392	3.4×10^{-9}
5,249.5	.00785	.392	3.5×10^{-9}
5,273.5	.00785	.392	3.8×10^{-9}
5,297.5	.00785	.392	3.7×10^{-9}
5,368.8	.00785	.392	3.5×10^{-9}
5,392.6	.00795	.398	3.3×10^{-9}
5,417.5	.00805	.402	3.5×10^{-9}
5,440.8	.00800	. 400	3.4×10^{-9}
5,464.4	.00800	.400	3.7×10^{-9}
5,585.2	.00800	. 400	2.0×10^{-9}

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
5,610.5 Hours	.00805	.402	2.0×10^{-9}	
5,632.2	.00810	. 405	3.3×10^{-9}	
5,705.0	.00800	.400	3.1×10^{-9}	
5,752.3	.00790	.395	3.3×10^{-9}	
5,776.3	.00800	.400	3.1×10^{-9}	
5,802.7	.00800	. 400	3.0×10^{-3}	
5,872.5	.00800	.400	3.1×10^{-9}	
5,896.5	.00800	.400	3.2×10^{-3}	
5,920.3	.00795	. 398	3.2×10^{-9}	
5,945.1	.00800	. 400	3.2×10^{-9}	
5,968.9	.00805	.402	2.9×10^{-9}	
6,042.8	.00825	.412	2.7×10^{-9}	
6,089.2	.00825	.412	3.2×10^{-9}	
6,112.3	.00825	.412	2.0×10^{-9}	
6,136.7	.00825	.412	3.1×10^{-9}	
6,208.4	.00815	.408	3.0×10^{-9}	
6,232.5	.00825	.412	3.2×10^{-9}	
6,257.0	.00815	. 408	3.1×10^{-9}	
6,282.5	.00815	. 408	3.3×10^{-9}	
6,304.5	.00805	.402	3.1×10^{-9}	
6,376.2	.00815	.408	3.0×10^{-9}	
6,400.8	.00815	.408	3.0×10^{-9}	
6,424.8	.00820	.410	$3.1 \times 10_{-9}^{3}$	
6,449.4	.00820	.410	3.2×10^{-9}	
6,472.3	.00815	.408	$3.2 \times 10_{-9}^{3}$	
6,544.9	.00815	.408	$3.3 \times 10_{-9}^{3}$	
6,568.4	.00805	. 402	$2.4 \times 10_{-9}$	
6,592.3	.00805	.402	2.0×10^{-9}	
6,616.7	.00815	. 408	$3.0 \times 10_{-9}^{3}$	
6,640.3	.00816	.408	$1.9 \times 10_{-9}^{3}$	
6,713.8	.00795	. 398	3.2×10^{-9}	
6,736.5	.00815	.408	3.3×10^{-9}	
6,760.1	.00820	.410	3.6×10^{-9}	
6,784.1	.00805	.402	3.2×10^{-9}	
6,808.2	.00815	.408	3.9×10^{-9}	

Time	Length Change • L (inch) (2" G. L.)	Creep _(%)	Pressure (Torr)
6,880.2 Hours	.00810	.405	3.8×10^{-9}
6,929.2	.00805	.402	3.2×10^{-9}
6,952.2	.00815	.408	3.4×10^{-9}
6,976.4	.00815	.408	3.3×10^{-9}
7,048.8	.00815	.408	4.0×10^{-9}
7,072.4	.00815	.408	2.9×10^{-9}
7,097.0	.00815	.408	2.9×10^{-9}
7,121.0	.00815	.408	3.3×10^{-9}
7,145.4	.00815	.408	3.3×10^{-9}
7,216.9	.00820	.410	3.5×10^{-9}
7,240.4	.00805	.402	3.0×10^{-9}
7,264.7	.00810	. 405	3.0×10^{-9}
7,288.4	.00815	.408	3.1×10^{-9}
7,312.5	.00815	. 408	3.3×10^{-9}
7,386.1	.00835	.418	2.7×10^{-9}
7,408.2	.00835	.418	2.9×10^{-9}
7,437.7	.00835	.418	3.1×10^{-9}
7,456.1	.00840	.420	3.3×10^{-9}
7,480.3	.00840	. 420	3.3×10^{-9}
7,554.3	.00845	.422	2.9×10^{-9}
7,576.4	.00845	.422	2.9×10^{-9}
7,600.5	.00850	. 425	2.9×10^{-9}
7,624.4	.00855	.428	2.9×10^{-9}
7,648.3	.00860	.430	2.9×10^{-3}
7,720.6	.00860	.430	3.4×10^{-9}
7,744.4	.00860	.430	3.0×10^{-3}
7,768.4	.00860	. 430	3.4×10^{-9}
7,792.4	.00860	.430	3.0×10^{-9}
7,816.3	.00860	.430	3.0×10^{-9}
7,888.5	. 00860	. 430	3.0×10^{-9}
7,912.3	.00860	.430	2.8×10^{-9}
7,936.7	.00860	.430	3.0×10^{-9}
7,960.4	.00860	. 430	2.8×10^{-9}
7,984.5	.00865	.432	2.4×10^{-9}
8,056.9	.00860	. 430	3.2×10^{-9}
8,080.3	.00865	. 432	3.0×10^{-9}

	Length Change			
	Δ L (inch)	${\sf Creep}$	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
			-9	
8,104.4 Hours	.00865	. 432	$3.1 \times 10_{-9}$	
8,128.3	.00865	.432	$3.0 \times 10_{-9}^{2}$	
8,152.5	.00865	. 432	$2.8 \times 10_{-9}^{-9}$	
8,224.4	.00860	.430	$3.0 \times 10_{-9}^{3}$	
8,249.5	.00855	.428	2.8×10^{-9}	
8,272.4	.00855	.428	$3.9 \times 10_{-9}^{3}$	
8,296.8	.00850	.425	3.4×10^{-9}	
8,321.2	.00845	.422	2.8×10^{-9}	
8,417.3	.00855	.428	$3.1 \times 10_{-9}^{3}$	
8,440.4	.00855	.428	$3.0 \times 10_{-9}^{3}$	
8,464.2	.00860	.430	$2.8 \times 10_{-9}^{9}$	
8,488.9	.00855	.428	$3.3 \times 10_{-9}^{-3}$	
8,560.8	.00845	.422	$3.3 \times 10_{-9}^{3}$	
8,585.0	.00850	. 425	$2.9 \times 10_{-9}^{-3}$	
8,608.5	.00865	.432	$3.0 \times 10_{-9}^{3}$	
8,632.4	.00875	. 438	$2.9 \times 10_{-9}^{-3}$	
8,656.4	.00875	.438	$2.9 \times 10_{-9}^{-9}$	
8,728.6	.00860	. 430	$2.7 \times 10_{-9}^{3}$	
8,752.5	.00865	.432	2.9×10^{-9}	
8,776.3	.00875	. 438	2.8×10^{-9}	
8,800.3	.00870	. 435	2.8×10^{-9}	
8,824.5	.00875	. 438	3.2×10^{-9}	
8,898.4	.00865	. 452	3.0×10^{-9}	
8,920.3	.00865	. 432	3.0×10^{-9}	
8,944.9	.00875	.438	2.8×10^{-3}	
8,968.3	.00885	. 442	$2.9 \times 10_{-9}^{3}$	
8,992.2	.00880	. 440	2.8×10^{-9}	
9,064.5	.00885	. 442	2.8×10^{-9}	
9,088.3	.00875	.438	2.8×10^{-3}	
9,113.2	.00875	.438	3.2×10^{-9}	
9,136.3	.00880	. 440	3.2×10^{-9}	
9,160.4	.00880	.440	3.0×10^{-9}	
9,232.3	.00885	. 442	2.7×10^{-9}	
9,256.3	.00885	. 442	2.6×10^{-9}	
9,280.4	.00885	. 442	3.3×10^{-9}	
9,304.5	.00895	. 448	3.2×10^{-9}	
- , - : : -	<u> </u>			

Time	Length Change	Creep (%)	Pressure (Torr)
9,328.9 Hours 9,401.2 9,424.5 9,448.3 9,472.5 9,496.5 9,568.8 9,593.5 9,617.2 9,640.8 9,665.1 9,737.8 9,761.1 9,785.2 9,810.0 9,833.3 9,906.0 9,929.2 9,954.0 9,977.2 10,001.3 10,073.7 10,097.3 10,121.5 10,145.4 10,169.5 10,241.7 10,265.5 10,289.7 10,409.4 10,433.2 10,457.8		~	
10,457.6 10,482.0 10,505.4 10,577.5 10,601.3	.00695 .00900 .00895 .00900 .00895	. 450 . 448 . 450 . 448	3.1 × 10-9 3.1 × 10-9 3.1 × 10-9 3.2 × 10-9 3.3 × 10

	Length Change				
	ΔL(inch)	${\tt Creep}$	Pressure		
Time	(2" G. L.)	(%)	(Torr)		
10,625.2 Hours	.00900	. 450	2.8×10^{-9}		
10,649.8	.00895	. 448	2.1 × 10_9		
10,673.6	.00895	. 448	2.8×10^{-9}		
10,745.5	.00905	.452	2.9 x 10_a		
10,769.4	.00900	. 450	3.0×10^{-9} 2.8×10^{-9}		
10,793.4	.00905	.452	$2.8 \times 10_{-9}^{-3}$		
10,817.4	.00905	. 452	$3.0 \times 10_{-9}^{-3}$		
10,841.4	.00900	. 450	3.0×10^{-9} 2.8×10^{-9}		
10.913.4	.00915	.458	3.0×10^{-9}		

Test in progress Specimen S-28

 $\frac{\text{TABLE 17}}{\text{Creep Test Data, T-III Sheet Heat D-II02, Recrystallized } 3000^{\text{O}}\text{F (1649}^{\text{O}}\text{C) 1 Hour,}}{\text{Tested at 2200}^{\text{O}}\text{F (1204}^{\text{O}}\text{C), and 5,000 psi (3.45 x 107N/m}^2)}$

	Length Change		
	Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
			
l Minute	00005	002	5.8×10^{-8}
2	.00000	.000	5.8×10^{-6}
3 4	+.00005	+.002	5.8×10^{-6}
4	.00010	.005	5.8×10^{-6}
5 6	.00005	.002	5.8×10^{-6}
6	.00005	.002	5.8×10^{-6}
7	.00005	.002	5.8×10^{-6}
8	.00010	.005	5.8×10^{-6}
9	.00005	.002	5.8×10^{-6}
10	.00010	.005	5.8×10^{-6}
15	.00005	.002	5.8×10^{-6}
30	.00005	.002	5.8×10^{-6}
45	.00010	.005	5.8×10^{-6}
60	.00010	.005	5.8×10^{-6}
19.1 Hours	.00030	.015	2.3×10^{-6}
91.0	.00100	.050	8.1×10^{-9}
115.2	.00115	.058	4.6×10^{-9}
139.5	.00130	.065	3.9×10^{-9}
163.5	.00145	.072	3.3×10^{-9}
283.6	.00160	.080	2.7×10^{-9}
307.4	.00165	.082	2.4×10^{-9}
331.2	.00175	.088	2.3×10^{-9}
355.6	.00190	.095	2.2×10^{-3}
451.3	.00320	.160	2.0×10^{-9}
476.2	.00315	.158	1.9×10^{-9}
499.5	.00315	.158	$1.9 \times 10_{-9}^{9}$
523.4	.00350	. 175	2.0×10^{-3}
596.4	.00365	. 182	1.9×10^{-9}
621.3	.00370	. 185	1.8×10^{-9}
643.6	.00420	.210	1.6×10^{-3}
667.3	.00425	.212	1.8×10^{-3}
691.4	.00425	.212	1.8×10^{-9}
764.5	.00480	.240	1.8×10^{-9}
787.2	.00490	. 245	1.9×10^{-9}
811.5	.00495	.248	1.8×10^{-9}
835 .6	.00500	.250	1.8×10^{-9}

Time (2" G. L.) (%) (Torr) 859.4 Hours .00510 .255 1.6 × 10-9 931.3 .00555 .278 1.7 × 10-9 955.3 .00565 .282 1.6 × 10-9 1,003.7 .00580 .290 1.5 × 10-9 1,027.6 .00585 .292 1.8 × 10-9 1,027.6 .00585 .292 1.8 × 10-9 1,123.1 .00625 .312 1.5 × 10-9 1,147.2 .00630 .315 1.9 × 10-9 1,147.2 .00630 .315 1.9 × 10-9 1,195.5 .00665 .328 1.6 × 10-9 1,291.4 .00725 .362 1.4 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,485.5 .00805 .402 1.4 × 10-9 1,482.9 .00830 .415 1.5 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,651.9 .00955 .475 1.4 × 10-9 1,651.9 .00956 .475 1.4 × 10-9 1,651.9 .00956 .475 1.4 × 10-9 1,651.9 .00956 .482 1.4 × 10-9 1,651.9 .00956 .482 1.4 × 10-9 1,651.9 .00956 .482 1.4 × 10-9 1,651.9 .00956 .482 1.4 × 10-9 1,651.9 .00956 .482 1.4 × 10-9 1,651.9 .00956 .482 1.4 × 10-9 1,699.6 .00965 .482 1.4 × 10-9 1,699.6 .00965 .482 1.4 × 10-9 1,771.7 .01000 .500 1.5 × 10-9 1,819.4 .01030 .515 1.6 × 10-9 1,843.1 .01035 .518 1.6 × 10-9		Length Change			
Time (2" G. L.) (%) (Torr) 859.4 Hours .00510 .255 1.6 × 10-9 931.3 .00555 .278 1.7 × 10-9 955.3 .00565 .282 1.6 × 10-9 979.5 .00575 .288 1.6 × 10-9 1,003.7 .00580 .290 1.5 × 10-9 1,027.6 .00585 .292 1.8 × 10-9 1,099.5 .00610 .305 1.7 × 10-9 1,123.1 .00625 .312 1.5 × 10-9 1,147.2 .00630 .315 1.9 × 10-9 1,195.5 .00665 .332 1.6 × 10-9 1,269.2 .00710 .355 1.5 × 10-9 1,291.4 .00725 .362 1.4 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,459.5 .00805 .402 1.4 × 10-9 1,459.5 .00806 .402 1.4 × 10-9 1,482.9 <t< th=""><th></th><th>ΔL (inch)</th><th>${\sf Creep}$</th><th>Pressure</th></t<>		ΔL (inch)	${\sf Creep}$	Pressure	
859.4 Hours 931.3 00555 931.3 00555 1.6 × 10-9 931.3 00555 1.278 1.7 × 10-9 979.5 1.003.7 00580 1.003.7 0.00585 1.290 1.027.6 0.00585 1.292 1.8 × 10-9 1.027.6 0.00585 1.292 1.8 × 10-9 1.099.5 0.0610 1.305 1.7 × 10-9 1.123.1 0.0625 1.124.1 0.0625 1.147.2 0.0630 0.315 1.9 × 10-9 1.171.8 0.0655 0.328 1.4 × 10-9 1.195.5 0.0665 0.332 1.6 × 10-9 1.195.5 0.0665 0.332 1.6 × 10-9 1.291.4 0.00725 0.362 1.4 × 10-9 1.315.4 0.00735 0.368 1.5 × 10-9 1.339.8 0.00745 0.372 1.5 × 10-9 1.345.5 0.00805 0.378 1.345.5 0.00805 0.402 1.4 × 10-9 1.459.5 0.00805 0.402 1.4 × 10-9 1.459.5 0.00805 0.402 1.4 × 10-9 1.459.5 0.00805 0.402 1.4 × 10-9 1.459.5 0.00805 0.402 1.4 × 10-9 1.459.5 0.00805 0.402 1.4 × 10-9 1.459.5 0.00805 0.415 0.5 × 10-9 1.507.3 0.00840 0.420 0.13 × 10-9 1.531.3 0.00860 0.430 0.16 × 10-9 1.651.9 0.00950 0.475 0.175.0 0.0945 0.472 0.15 × 10-9 1.655.9 0.00955 0.475 0.478 0.4 × 10-9 1.675.9 0.00955 0.475 0.478 0.4 × 10-9 1.675.9 0.00955 0.475 0.4 × 10-9 1.699.6 0.00965 0.475 0.4 × 10-9 1.699.6 0.00965 0.475 0.4 × 10-9 1.795.8 0.1015 0.508 0.14 × 10-9 1.795.8 0.1015 0.508 0.14 × 10-9 1.795.8 0.1015 0.508 0.14 × 10-9 1.795.8 0.1015 0.508 0.14 × 10-9 1.795.8 0.1015 0.508 0.515	Time		(%)	(Torr)	
931.3				_ <u></u>	
931.3	859.4 Hours	.00510	. 255	1.6×10^{-9}	
955.3				9	
979.5				· -u	
1,003.7 .00580 .290 1.5 × 10-9 1,027.6 .00585 .292 1.8 × 10-9 1,099.5 .00610 .305 1.7 × 10-9 1,123.1 .00625 .312 1.5 × 10-9 1,147.2 .00630 .315 1.9 × 10-9 1,171.8 .00655 .328 1.4 × 10-9 1,195.5 .00665 .332 1.6 × 10-9 1,269.2 .00710 .355 1.5 × 10-9 1,291.4 .00725 .362 1.4 × 10-9 1,315.4 .00735 .368 1.5 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,435.5 .00795 .398 1.6 × 10-9 1,459.5 .00805 .402 1.4 × 10-9 1,459.5 .00806 .415 1.5 × 10-9 1,531.3 .00860 .415 1.5 × 10-9 1,531.3 .00860 .430 1.6 × 10-9 1,651.9 .00945 .472 1.5 × 10-9 1,675.9 .00950				- 4	
1,027.6 .00585 .292 1.8 × 10-9 1,099.5 .00610 .305 1.7 × 10-9 1,123.1 .00625 .312 1.5 × 10-9 1,147.2 .00630 .315 1.9 × 10-9 1,171.8 .00655 .328 1.4 × 10-9 1,195.5 .00665 .332 1.6 × 10-9 1,269.2 .00710 .355 1.5 × 10-9 1,291.4 .00725 .362 1.4 × 10-9 1,315.4 .00735 .368 1.5 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,366.0 .00755 .378 1.3 × 10-9 1,455.5 .00795 .398 1.6 × 10-9 1,459.5 .00805 .402 1.4 × 10-9 1,482.9 .00830 .415 1.5 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,603.7 .00920 .460 1.3 × 10-9 1,651.9 .00955 .472 1.5 × 10-9 1,675.9 .00955				-4	
1,099.5 .00610 .305 1.7 × 10-9 1,123.1 .00625 .312 1.5 × 10-9 1,147.2 .00630 .315 1.9 × 10-9 1,171.8 .00655 .328 1.4 × 10-9 1,195.5 .00665 .332 1.6 × 10-9 1,269.2 .00710 .355 1.5 × 10-9 1,291.4 .00725 .362 1.4 × 10-9 1,315.4 .00735 .368 1.5 × 10-9 1,339.8 .00745 .372 1.5 × 10-9 1,366.0 .00755 .378 1.3 × 10-9 1,435.5 .00795 .398 1.6 × 10-9 1,459.5 .00805 .402 1.4 × 10-9 1,482.9 .00830 .415 1.5 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,531.3 .00860 .430 1.6 × 10-9 1,603.7 .00920 .460 1.3 × 10-9 1,651.9 .00945 .472 1.5 × 10-9 1,675.9 .00955 .478 1.4 × 10-9 1,699.6 .00965					
1,123.1 .00625 .312 1.5 × 10 -9 1,147.2 .00630 .315 1.9 × 10 -9 1,171.8 .00655 .328 1.4 × 10 -9 1,195.5 .00665 .332 1.6 × 10 -9 1,269.2 .00710 .355 1.5 × 10 -9 1,291.4 .00725 .362 1.4 × 10 -9 1,315.4 .00735 .368 1.5 × 10 -9 1,339.8 .00745 .372 1.5 × 10 -9 1,366.0 .00755 .378 1.3 × 10 -9 1,459.5 .00795 .398 1.6 × 10 -9 1,459.5 .00805 .402 1.4 × 10 -9 1,482.9 .00830 .415 1.5 × 10 -9 1,507.3 .00840 .420 1.3 × 10 -9 1,531.3 .00860 .430 1.6 × 10 -9 1,603.7 .00920 .460 1.3 × 10 -9 1,651.9 .00945 .472 1.5 × 10 -9 1,651.9 .00950 .478 1.4 × 10 -9 1,699.6 .00965 .482 1.4 × 10 -9 1,795.8				-4	
1,147.2 .00630 .315 1.9 x 10 -9 9 1,171.8 1,171.8 .00655 .328 1.4 x 10 -9 1,195.5 1,269.2 .00710 .355 1.5 x 10 -9 1,291.4 1,291.4 .00725 .362 1.4 x 10 -9 1,315.4 1,339.8 .00745 .372 1.5 x 10 -9 1,366.0 1,339.8 .00745 .372 1.5 x 10 -9 1,59 1,55 10 -9 1,59 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50				-9	
1,171.8 .00655 .328 1.4 x 10 -9 1,195.5 .00665 .332 1.6 x 10 -9 1,269.2 .00710 .355 1.5 x 10 -9 1,291.4 .00725 .362 1.4 x 10 -9 1,315.4 .00735 .368 1.5 x 10 -9 1,339.8 .00745 .372 1.5 x 10 -9 1,366.0 .00755 .378 1.3 x 10 -9 1,435.5 .00795 .398 1.6 x 10 -9 1,459.5 .00805 .402 1.4 x 10 -9 1,482.9 .00830 .415 1.5 x 10 -9 1,507.3 .00840 .420 1.3 x 10 -9 1,531.3 .00860 .430 1.6 x 10 -9 1,603.7 .00920 .460 1.3 x 10 -9 1,651.9 .00945 .472 1.5 x 10 -9 1,675.9 .00955 .478 1.4 x 10 -9 1,699.6 .00965 .482 1.4 x 10 -9 1,771.7 .01000 .500 1.5 x 10 -9 1,795.8 .01015 .508 1.4 x 10 -9 1,819.4				u	
1,195.5 .00665 .332 1.6 x 10 -9 1,269.2 .00710 .355 1.5 x 10 -9 1,291.4 .00725 .362 1.4 x 10 -9 1,315.4 .00735 .368 1.5 x 10 -9 1,339.8 .00745 .372 1.5 x 10 -9 1,366.0 .00755 .378 1.3 x 10 -9 1,435.5 .00795 .398 1.6 x 10 -9 1,459.5 .00805 .402 1.4 x 10 -9 1,482.9 .00830 .415 1.5 x 10 -9 1,507.3 .00840 .420 1.3 x 10 -9 1,531.3 .00860 .430 1.6 x 10 -9 1,603.7 .00920 .460 1.3 x 10 -9 1,651.9 .00945 .472 1.5 x 10 -9 1,651.9 .00950 .475 1.4 x 10 -9 1,699.6 .00955 .482 1.4 x 10 -9 1,771.7 .01000 .500 1.5 x 10 -9 1,795.8 .01015 .508 1.4 x 10 -9 1,819.4 .01030 .515 1.6 x 10 -9					
1,269.2 .00710 .355 1.5 x 10 -9 1,291.4 .00725 .362 1.4 x 10 -9 1,315.4 .00735 .368 1.5 x 10 -9 1,339.8 .00745 .372 1.5 x 10 -9 1,366.0 .00755 .378 1.3 x 10 -9 1,435.5 .00795 .398 1.6 x 10 -9 1,459.5 .00805 .402 1.4 x 10 -9 1,482.9 .00830 .415 1.5 x 10 -9 1,507.3 .00840 .420 1.3 x 10 -9 1,531.3 .00860 .430 1.6 x 10 -9 1,603.7 .00920 .460 1.3 x 10 -9 1,651.9 .00945 .472 1.5 x 10 -9 1,651.9 .00955 .478 1.4 x 10 -9 1,699.6 .00965 .482 1.4 x 10 -9 1,771.7 .01000 .500 1.5 x 10 -9 1,795.8 .01015 .508 1.4 x 10 -9 1,819.4 .01030 .515 1.6 x 10 -9				- 4	
$1,291.4$ $.00725$ $.362$ 1.4×10^{-9} $1,315.4$ $.00735$ $.368$ 1.5×10^{-9} $1,339.8$ $.00745$ $.372$ 1.5×10^{-9} $1,366.0$ $.00755$ $.378$ 1.3×10^{-9} $1,435.5$ $.00795$ $.398$ 1.6×10^{-9} $1,459.5$ $.00805$ $.402$ 1.4×10^{-9} $1,482.9$ $.00830$ $.415$ 1.5×10^{-9} $1,507.3$ $.00840$ $.420$ 1.3×10^{-9} $1,531.3$ $.00860$ $.430$ 1.6×10^{-9} $1,603.7$ $.00920$ $.460$ 1.3×10^{-9} $1,627.4$ $.00945$ $.472$ 1.5×10^{-9} $1,651.9$ $.00950$ $.475$ 1.4×10^{-9} $1,699.6$ $.00965$ $.482$ 1.4×10^{-9} $1,795.8$ $.01015$ $.508$ 1.4×10^{-9} $1,819.4$ $.01030$ $.515$ 1.6×10^{-9}				-9	
1,315.4 .00735 .368 1.5 x 10-9 1,339.8 .00745 .372 1.5 x 10-9 1,366.0 .00755 .378 1.3 x 10-9 1,435.5 .00795 .398 1.6 x 10-9 1,459.5 .00805 .402 1.4 x 10-9 1,482.9 .00830 .415 1.5 x 10-9 1,507.3 .00840 .420 1.3 x 10-9 1,531.3 .00860 .430 1.6 x 10-9 1,603.7 .00920 .460 1.3 x 10-9 1,627.4 .00945 .472 1.5 x 10-9 1,651.9 .00950 .475 1.4 x 10-9 1,699.6 .00955 .482 1.4 x 10-9 1,771.7 .01000 .500 1.5 x 10-9 1,795.8 .01015 .508 1.4 x 10-9 1,819.4 .01030 .515 1.6 x 10-9					
1,339.8 .00745 .372 1.5 × 10-9 1,366.0 .00755 .378 1.3 × 10-9 1,435.5 .00795 .398 1.6 × 10-9 1,459.5 .00805 .402 1.4 × 10-9 1,482.9 .00830 .415 1.5 × 10-9 1,507.3 .00840 .420 1.3 × 10-9 1,531.3 .00860 .430 1.6 × 10-9 1,603.7 .00920 .460 1.3 × 10-9 1,627.4 .00945 .472 1.5 × 10-9 1,651.9 .00950 .475 1.4 × 10-9 1,675.9 .00955 .478 1.4 × 10-9 1,699.6 .00965 .482 1.4 × 10-9 1,795.8 .01015 .500 1.5 × 10-9 1,819.4 .01030 .515 1.6 × 10-9				-u	
1,366.0 .00755 .378 1.3 x 10-9 1,435.5 .00795 .398 1.6 x 10-9 1,459.5 .00805 .402 1.4 x 10-9 1,482.9 .00830 .415 1.5 x 10-9 1,507.3 .00840 .420 1.3 x 10-9 1,531.3 .00860 .430 1.6 x 10-9 1,603.7 .00920 .460 1.3 x 10-9 1,627.4 .00945 .472 1.5 x 10-9 1,651.9 .00950 .475 1.4 x 10-9 1,675.9 .00955 .478 1.4 x 10-9 1,699.6 .00965 .482 1.4 x 10-9 1,795.8 .01015 .508 1.4 x 10-9 1,819.4 .01030 .515 1.6 x 10-9					
1,435.5 .00795 .398 1.6 × 10 -9 1,459.5 .00805 .402 1.4 × 10 -9 1,482.9 .00830 .415 1.5 × 10 -9 1,507.3 .00840 .420 1.3 × 10 -9 1,531.3 .00860 .430 1.6 × 10 -9 1,603.7 .00920 .460 1.3 × 10 -9 1,627.4 .00945 .472 1.5 × 10 -9 1,651.9 .00950 .475 1.4 × 10 -9 1,675.9 .00955 .478 1.4 × 10 -9 1,699.6 .00965 .482 1.4 × 10 -9 1,771.7 .01000 .500 1.5 × 10 -9 1,795.8 .01015 .508 1.4 × 10 -9 1,819.4 .01030 .515 1.6 × 10 -9					
1,459.5 .00805 .402 1.4 x 10-9 1,482.9 .00830 .415 1.5 x 10-9 1,507.3 .00840 .420 1.3 x 10-9 1,531.3 .00860 .430 1.6 x 10-9 1,603.7 .00920 .460 1.3 x 10-9 1,627.4 .00945 .472 1.5 x 10-9 1,651.9 .00950 .475 1.4 x 10-9 1,675.9 .00955 .478 1.4 x 10-9 1,699.6 .00965 .482 1.4 x 10-9 1,771.7 .01000 .500 1.5 x 10-9 1,795.8 .01015 .508 1.4 x 10-9 1,819.4 .01030 .515 1.6 x 10-9					
1,482.9 .00830 .415 1.5 x 10-9 1,507.3 .00840 .420 1.3 x 10-9 1,531.3 .00860 .430 1.6 x 10-9 1,603.7 .00920 .460 1.3 x 10-9 1,627.4 .00945 .472 1.5 x 10-9 1,651.9 .00950 .475 1.4 x 10-9 1,675.9 .00955 .478 1.4 x 10-9 1,699.6 .00965 .482 1.4 x 10-9 1,771.7 .01000 .500 1.5 x 10-9 1,795.8 .01015 .508 1.4 x 10-9 1,819.4 .01030 .515 1.6 x 10-9					
1,507.3 .00840 .420 1.3 x 10 -9 1,531.3 .00860 .430 1.6 x 10 -9 1,603.7 .00920 .460 1.3 x 10 -9 1,627.4 .00945 .472 1.5 x 10 -9 1,651.9 .00950 .475 1.4 x 10 -9 1,675.9 .00955 .478 1.4 x 10 -9 1,699.6 .00965 .482 1.4 x 10 -9 1,771.7 .01000 .500 1.5 x 10 -9 1,795.8 .01015 .508 1.4 x 10 -9 1,819.4 .01030 .515 1.6 x 10 -9					
1,531.3 .00860 .430 1.6 × 10 -9 1,603.7 .00920 .460 1.3 × 10 -9 1,627.4 .00945 .472 1.5 × 10 -9 1,651.9 .00950 .475 1.4 × 10 -9 1,675.9 .00955 .478 1.4 × 10 -9 1,699.6 .00965 .482 1.4 × 10 -9 1,771.7 .01000 .500 1.5 × 10 -9 1,795.8 .01015 .508 1.4 × 10 -9 1,819.4 .01030 .515 1.6 × 10 -9					
1,603.7 .00920 .460 1.3 x 10 - 9 1,627.4 .00945 .472 1.5 x 10 - 9 1,651.9 .00950 .475 1.4 x 10 - 9 1,675.9 .00955 .478 1.4 x 10 - 9 1,699.6 .00965 .482 1.4 x 10 - 9 1,771.7 .01000 .500 1.5 x 10 - 9 1,795.8 .01015 .508 1.4 x 10 - 9 1,819.4 .01030 .515 1.6 x 10 - 9					
$1,627.4$ $.00945$ $.472$ 1.5×10^{-9} $1,651.9$ $.00950$ $.475$ 1.4×10^{-9} $1,675.9$ $.00955$ $.478$ 1.4×10^{-9} $1,699.6$ $.00965$ $.482$ 1.4×10^{-9} $1,771.7$ $.01000$ $.500$ 1.5×10^{-9} $1,795.8$ $.01015$ $.508$ 1.4×10^{-9} $1,819.4$ $.01030$ $.515$ 1.6×10^{-9}					
$1,651.9$ $.00950$ $.475$ 1.4×10^{-9} $1,675.9$ $.00955$ $.478$ 1.4×10^{-9} $1,699.6$ $.00965$ $.482$ 1.4×10^{-9} $1,771.7$ $.01000$ $.500$ 1.5×10^{-9} $1,795.8$ $.01015$ $.508$ 1.4×10^{-9} $1,819.4$ $.01030$ $.515$ 1.6×10^{-9}					
$1,675.9$ $.00955$ $.478$ 1.4×10^{-9} $1,699.6$ $.00965$ $.482$ 1.4×10^{-9} $1,771.7$ $.01000$ $.500$ 1.5×10^{-9} $1,795.8$ $.01015$ $.508$ 1.4×10^{-9} $1,819.4$ $.01030$ $.515$ 1.6×10^{-9}				u	
$1,699.6$ $.00965$ $.482$ 1.4×10^{-9} $1,771.7$ $.01000$ $.500$ 1.5×10^{-9} $1,795.8$ $.01015$ $.508$ 1.4×10^{-9} $1,819.4$ $.01030$ $.515$ 1.6×10^{-9}				1.4×10^{-9}	
1,771.7.01000.500 1.5×10^{-9} 1,795.8.01015.508 1.4×10^{-9} 1,819.4.01030.515 1.6×10^{-9}				1.4×10^{-9}	
$1,795.8$.01015 .508 1.4×10^{-9} $1,819.4$.01030 .515 1.6×10^{-9}				1.5×10^{-9}	
$1,819.4$.01030 .515 1.6×10^{-9}	• • • •				
, , , , , , , , , , , , , , , , , , ,				1.6×10^{-9}	
		_			
$1,867.2$.01040 .520 1.4×10^{-9}		- -			
$1,939.2$.01080 .540 1.5×10^{-9}					
$1,963.4$.01080 .540 1.5×10^{-9}					
$1,987.0$.01090 .545 1.4×10^{-9}					
$2,010.9$.01100 .550 1.4×10^{-9}				1.4×10^{-9}	

Time	Length Change • L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
Time 2,034.8 Hours 2,106.9 2,131.0 2,155.5 2,178.9 2,203.3 2,274.9 2,299.3 2,323.3 2,347.3 2,443.6 2,467.4 2,491.1 2,515.0 2,539.6 2,611.4 2,635.1 2,659.1 2,682.9 2,706.9 2,780.6 2,803.0 2,827.1 2,851.4 2,875.3 2,947.3 2,947.3 2,971.0 2,994.9 3,019.3 3,043.0 3,115.1 3,139.5 3,163.1 3,187.2 3,213.0	Δ L (inch)	•	(Torr) 1.4 × 100 - 999999999999999999999999999999999
3,282.4 3,306.4 3,331.0 3,354.5 3,378.1	.01675 .01690 .01710 .01705 .01710	. 325 . 383 . 845 . 855 . 852 . 855	1.6 × 10 -9 1.7 × 10 -9 1.5 × 10 -9 1.5 × 10 -9 1.4 × 10 -9 1.5 × 10

	Length Change		
	Δ L (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	_(%)	(Torr)
3,499. 7 Hours	.01830	.915	1.4×10^{-9}
3,524.2	.01835	.918	1.4×10^{-9}
3,545.9	.01840	.920	1.4×10^{-9}
3,618.6	.01850	.925	1.4×10^{-9}
3,642.3	.01855	.928	1.3×10^{-9}
3,666.4	.01870	.935	1.4×10^{-9}
3,690.0	.01875	.938	1.4×10^{-9}
3,716.3	.01875	.938	1.3×10^{-3}
3,786.1	.01890	.945	1.4×10^{-3}
3,810.1	.01895	.948	$1.4 \times 10_{-9}^{3}$
3,833.9	.01900	.950	$1.4 \times 10_{-9}^{-3}$
3,858.8	.01915	. 958	$1.4 \times 10_{-9}$
3,882.8	.01930	.965	$1.4 \times 10_{-9}$
3,956. 5	.01960	.980	$1.3 \times 10_{-9}^{3}$
4,002.9	.01970	. 985	$1.3 \times 10_{-9}^{-9}$
4,026.3	.019 9 0	.995	$1.3 \times 10_{-9}$
4,050.3	.02000	1.000	$1.3 \times 10_{-9}$
4,127.1	.02015	1.008	$1.6 \times 10_{-9}$
4,146.1	.02025	1.012	1.3×10^{-9}
4,170.8	1.02040	1.020	1.3×10^{-9}
4,196.4	.02065	1.032	1.4×10^{-9}
4,218.1	.02070	1.035	1.4×10^{-9}
4,289.8	.02080	1.040	1.2×10^{-9}
4,321.8	.02085	1.042	1.3 x 10 ³

Test terminated - sufficient data obtained Specimen S-31

TABLE 18

Creep Test Data, T-111, Heat No. D-1102, Annealed at 3000°F (1649°C) for 1

hour, Tested at 1800°F (1982°C), 17,000 psi (1.17 x 108N/m²)

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2'' G. L.)	(%)	(Torr)	
l Minutes	.00005	.002	3.4×10^{-9}	
2	.00005	.002	3.4×10^{-9}	
2 3 4	.00000	.000	3.4×10^{-9}	
4	.00005	.002	3.4×10^{-9}	
5	.00010	.005	3.4×10^{-9}	
6	.00010	.005	3.4×10^{-9}	
5 6 7 8 9	.00010	.005	3.4×10^{-9}	
8	.00010	.005	3.4×10^{-9}	
9	.00010	.005	3.4×10^{-3}	
10	.00015	.008	3.4×10^{-3}	
15	.00010	.005	3.4×10^{-9}	
30	.00005	.002	3.4×10^{-9}	
45	.00005	.002	3.4×10^{-9}	
60	.00010	.005	3.4×10^{-9}	
69.9 Hours	.00035	.017	2.1×10^{-9}	
93.7	.00045	.022	2.0×10^{-9}	
117.6	.00060	.030	1.8×10^{-9}	
141.9	.00070	.035	1.7×10^{-3}	
165.6	.00070	.035	1.6×10^{-9}	
239.1	.00075	.038	1.6×10^{-9}	
262.0	.00080	.040	1.6×10^{-9}	
285.6	.00090	.045	1.4×10^{-9}	
309.5	.00095	.048	1.4×10^{-9}	
333.5	.00100	.050	1.3×10^{-9}	
405.5	.00105	.052	1.4×10^{-9}	
453.5	.00105	.052	1.3×10^{-9}	
477.6	.00115	.058	1.4×10^{-9}	
501.7	.00120	.060	1.4×10^{-9}	
574.0	.00125	.062	1.4×10^{-9}	
597.6	.00120	.060	1.4×10^{-9}	
622.3	.00125	.062	1.4×10^{-9}	
646.4	.00125	.062	1.3×10^{-9}	
670.6	.00130	.065	2.0×10^{-9}	
742.3	.00140	.070	1.2 X 10_0	
765.7	.00140	.070	1.2×10^{-9}	
790.0	.00150	.075	1.2×10^{-9}	
813.6	.00150	.075	1.2×10^{-9}	
837.8	.00150	.075	1.2×10^{-9}	
911.8	·. 00150	.075	1.2×10^{-9}	
934.0	.00150	.075	1.2×10^{-9}	
963.0	.00160	.080	1.2×10^{-9}	

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2'' G. L.)	(%)	(Torr)
982.0 Hours	.00160	.080	1.3×10^{-9}
1,005.6	.00160	.080	1.2×10^{-9}
1,080.0	.00180	.090	1.2 × 10 -9
1,101.8	.00180	.090	1.2 × 10 -9
1,125.8	.00190	.095	1.2×10^{-9}
1,149.8	.00195	.098	1.3 × 10-9
1,173.6	.00195	.098	1.2×10^{-9}
1,246.0	.00200	.100	1.2×10^{-9}
1,269.6	.00200	.100	1.1 × 10 ⁻⁹
1,293.8	.00200	.100	1.1 × 10-9
1,317.7	.00210	.105	1.2 × 10 -9
1,341.6	.00210	.105	1.2 × 10-9
1,413.9	.00210	. 105	1.1 x 10-9
1,437.5	.00220	.110	1.3 × 10 -9
1,461.9	.00225	.112	1.2 × 10 -9
1,485.7	.00230	.115	1.2 x 10-9
1,509.8	.00235	.118	1.2 x 10-9
1,582.2	.00240	.120	1.2 x 10-9
1,605.6	.00245	.122	1.1 x 10 -9
1,629.6	.00245		1.1 × 10-9
1,653.6	.00270	.130	9
1,677.8	.00270	.135 .138	
1,749.7		.142	- 9
• • • •	.00285		
1,774.8	.00285	.142	1.3×10^{-9}
1,797.6	.00290	. 145	1.2×10^{-9}
1,822.2	.00295	.148	1.2×10^{-9}
1,846.5	.00295	.148	1.2×10^{-9}
1,942.6	.00295	. 148	1.3×10^{-9}
1,965.7	.00305	.152	1.2×10^{-9}
1,989.7	.00315	.158	1.1×10^{-9}
2,014.2	.00320	.160	1.2×10^{-9}
2,086.2	.00335	.168	1.3×10^{-9}
2,110.4	.00345	.172	1.2×10^{-9}
2,134.0	.00370	.185	1.3×10^{-9}
2,157.7	.00370	. 185	1.2×10^{-9}
2,181.8	.00370	. 185	1.3×10^{-9}

	Length Change		
	ΔL(inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			
2,253.9 Hours	.00380	.190	1.2×10^{-9}
2,277.8	.00380	.190	1.2×10^{-9}
2,301.6	.00385	. 192	1.2×10^{-9}
2,325.6	.00385	. 192	1.1×10^{-9}
2,349.9	.00395	.198	1.2×10^{-9}
2,423.7	.00405	.202	1.2×10^{-9}
2,445.6	.00410	.205	1.2×10^{-9}
2,470.3	.00420	.210	1.1×10^{-9}
2,493.5	.00425	.212	$1.1 \times 10_{-9}^{3}$
2,517.5	.00435	.218	1.2×10^{-9}
2,589.8	.00455	.228	1.2×10^{-9}
2,613.6	.00460	.230	1.2×10^{-9}
2,638.5	.00460	.230	1.2×10^{-9}
2,661.6	.00470	.235	1.3×10^{-9}
2,685.8	. 00470	. 235	1.2×10^{-9}
2,757.6	.00485	. 242	$1.1 \times 10_{-9}$
2,781.6	.00495	. 248	$1.2 \times 10_{-9}^{-9}$
2,805.8	. 00490	. 245	1.2×10^{-9}
2,829.7	.00490	. 245	1.3×10^{-3}
2,854.3	.00505	. 252	7.8×10^{-10}
2,926.5	.00510	. 255	1.2×10^{-9}
2,949.9	.00515	.258	1.1×10^{-9}
2,973.5	.00530	. 265	1.2×10^{-9}
2,997.9	.00540	.270	1.3×10^{-9}
3,021.7	. 00545	.272	1.4×10^{-9}
3,094.1	.00550	.275	1.2×10^{-9}
3,118.7	.00570	.285	2.2×10^{-9}
3,142.4	.00580	. 290	1.1×10^{-9}
3,166.5	.00585	. 292	1.2×10^{-9}
3,190.7	.00585	.292	1.2×10^{-9}
3,263.0	.00595	.298	2.0×10^{-9}
3,287.4	.00595	.298	1.0×10^{-9}
3,310.6	.00605	.302	1.2×10^{-9}
3,335.2	.00610	.305	1.0×10^{-9}
3,358.5	.00630	.315	1.1×10^{-9}
3,432.9	.00635	.318	1.1 x 10 ⁹

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	<u>(%)</u>	(Torr)
2 1.51. 5 112	.00640	.320	1.1×10^{-9}
3,454.5 Hours	.00640	. 320	1.9 x 10_9
3,479.3	.00645	.322	1.8 x 10_9
3,502.5	.00655	. 328	2.7×10^{-9}
3,527.3	.00655	.328	2.7×10^{-9}
3,599.0		. 330	2.8×10^{-9}
3,622.6	.00660		1.1×10^{-9}
3,647.4	.00675	.338	9
3,670.8	.00690	.345	
3,694.9	.00695	. 348	<u> </u>
3,767.0	.00700	.350	
3,790.7	.00720	. 360	2.2×10^{-9}
3,815.0	.00750	.375	1.1×10^{-10}
3,934.7	.00765	.382	9.9×10^{-9}
3,958.5	.00765	. 382	1.1×10^{-9}
3,983.2	. 00765	. 382	1.8×10^{-9}
4,007.4	.00780	. 390	2.4×10^{-9}
4,030.6	.00785	. 392	$1.9 \times 10_{-9}$
4,102.9	.00865	.412	$1.0 \times 10_{-9}$
4,126.6	.00830	.415	$1.9 \times 10_{-9}^{-3}$
4,150.7	.00830	.415	$1.1 \times 10_{-10}$
4,175.4	.00840	.420	$9.8 \times 10_{-10}$
4,198.9	.00850	.425	$9.8 \times 10_{-9}$
4,270.7	.00870	.435	1.8×10^{-9}
4,294.8	.00880	.440	1.9×10^{-9}
4,318.6	.00800	.440	1.0×10^{-9}
4,342.6	.00885	. 442	2.6×10^{-9}
4,366.7			

Test in progress Specimen S-40

TABLE 19

Creep Test Data, T-111, Heat No. MCN-02A-065, Annealed at $3000^{\circ}F$ (1649°C) for 1 hour, Tested at $2200^{\circ}F$ (1204°C), 8,000 psi (5.51 x $10^{\circ}N/m^2$)

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
1 Minutes 2 3 4 5 6 7 8 9 10 15 30 45 60 1.0 Hours 17.2	.00000 .00000 .00005 .00000 .00005 .00005 .00005 .00005 .00000 .00000 .00000 .00000	-	
41.3 65.4 138.0 161.3 185.5 209.3 233.4 305.4 329.4 353.7 377.9 401.8 473.4 497.3 521.4 545.6 643.5 665.5 689.5 713.9 740.3	.00010 .00020 .00030 .00070 .00090 .00100 .00130 .00145 .00200 .00215 .00220 .00225 .00240 .00250 .00310 .00330 .00380 .00390 .00440 .00435 .00445 .00455	.005 .010 .015 .035 .045 .050 .065 .072 .100 .108 .110 .112 .120 .125 .155 .165 .190 .195 .220 .218 .222	4.0 x 10 -8 1.6 x 10 -9 7.0 x 10 -9 7.0 x 10 -9 5.4 x 10 -9 5.4 x 10 -9 6.2 x 10 -9 6.2 x 10 -9 6.2 x 10 -9 4.8 x 10 -9 4.8 x 10 -9 4.8 x 10 -9 4.0 x 10 -9 3.6 x 10 -9 3.6 x 10 -9 3.7 x 10 -9 3.8 x 10 -9 3.9 x 10 -9 3.0 x

	Length Change		
	ΔL (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
881.5 Hours	.00570	.285	2.4×10^{-9}
905.5	.00575	.288	2.4×10^{-9}
977.8	.00600	.300	2.2×10^{-9}
1,001.5	.00605	. 302	2.1 × 10 0
1,001.5	.00615	.308	2.2×10^{-9}
1,050.2	.00620	.310	2.1 x 10_9
1,073.8	.00640	.320	2.1 × 10 g
1,145.9	.00730	.365	1.8×10^{-9}
1,170.0	.00745	. 372	2.0×10^{-9}
1,193.5	.00765	.382	2.0×10^{-9}
1,217.2	.00780	. 390	2.0×10^{-9}
1,241.3	.00800	. 400	1.9×10^{-9}
1,313.3	.00820	.410	2.0×10^{-9}
1,337.4	.00835	.418	2.0×10^{-9}
1,361.0	.00845	.422	2.0×10^{-9}
1,385.0	.00855	. 428	2.0×10^{-9}
1,409.0	.00870	.435	2.1×10^{-9}
1,481.1	.00930	. 465	1.9×10^{-9}
1,505.1	.00945	. 472	2.0×10^{-9}
1,529.7	.00955	. 478	2.6×10^{-9}
1,553.1	.00970	. 485	$2.0 \times 10_{-9}^{9}$
1,553.1	.00970	. 485	$2.0 \times 10_{-9}^{-9}$
1,577.3	.00985	. 492	$1.9 \times 10_{-9}^{3}$
1,649.1	.01040	.520	$1.9 \times 10_{-9}$
1,673.3	.01060	.530	1.8×10^{-9}
1,697.4	.01080	.540	1.8×10^{-9}
1,721.4	.01095	. 548	1.8×10^{-9}
1,817.8	.01180	.590	1.8×10^{-9}
1,841.6	.01195	. 598	1.8×10^{-9}
1,865.3	.01220	.610	1.8×10^{-9}
1,889.3	.01230	.615	1.7×10^{-9}
1,913.7	.01240	.620	1.8×10^{-9}
1,985.6	.01315	.658	1.9×10^{-9} 1.8×10^{-9}
2,009.3	.01320	.660	
2,033.3	.01335	.668	1.8×10^{-9}
2,057.1	.01345	.672	1.7×10^{-9}
2,081.1	.01360	. 680	1.7 x 10 ⁹

	Length Change		
	△ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
			
2,154.8 Hours	.01420	.710	1.6×10^{-9}
2,177.2	.01430	.715	1.7×10^{-9}
2,201.3	.01455	.728	1.7×10^{-9}
2,225.5	.01470	.735	1.8×10^{-9}
2,249.5	.01510	.755	1.8×10^{-9}
2,321.3	.01570	.785	1.7×10^{-9}
2,345.2	.01590	.795	1.6×10^{-9}
2,369.1	.01615	.808	1.6×10^{-9}
2,393.4	.01635	.818	1.7×10^{-9}
2,417.3	.01635	.818	1.7×10^{-9}
2,489.3	.01715	.858	1.6×10^{-9}
2,513.6	.01735	.868	1.8×10^{-9}
2,537.3	.01745	.872	1.7×10^{-9}
2,561.3	.01780	.890	1.9×10^{-9}
2,585.3	.01800	.900	1.9×10^{-9}
2,656.6	.01840	.920	1.7×10^{-9}
2,680.2	.01860	.930	1.8×10^{-9}
2,705.3	.01885	.942	1.8×10^{-9}
2,728.6	.01895	.948	1.7×10^{-9}
2,752.2	.01905	.952	1.7×10^{-9}
2,873.0	.02020	1.010	1.4×10^{-9}
2,898.3	.02030	1.015	1.3×10^{-9}
2,920.0	.02060	1.030	1.4×10^{-9}
2,975.9	.02095	1.048	1.4×10^{-9}

Test terminated - sufficient data obtained Specimen S-33

TABLE 20

Creep Test Data, T-111, Heat No. MCN-02A-065, Annealed at 3000° F (1649°C) for 1 hour, Tested at 2000° F (1093°C), 11,000 psi (7.58 x 10^{7} N/m²)

Time	Length Change • L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
1 Minutes	.00000	.000	2.0×10^{-8}
l Minutes	.00005	.002	2.0×10^{-8}
2 3 4	.00010	.005	2.0×10^{-8}
)],	.00015	.005	2.0×10^{-8}
	.00025	.012	2.0×10^{-8}
5 6	.00020	.010	2.0×10^{-8}
7	.00020	.010	2.0×10^{-8}
7 8	.00020	.010	2.0×10^{-8}
9	.00020	.010	2.0×10^{-8}
10	.00025	.012	2.0×10^{-8}
15	.00020	.010	2.0×10^{-6}
30	.00025	.012	2.0×10^{-8}
45	.00020	.010	2.0×10^{-6}
60	.00020	.010	2.0×10^{-6}
3.3 Hours	.00020	.010	1.8×10^{-6}
26.7	.00025	.012	8.4×10^{-9}
52.0	.00025	.012	6.0×10^{-9}
67.6	.00030	.015	4.8×10^{-9}
91.4	.00045	.022	4.1×10^{-9}
115.5	.00050	.025	3.9×10^{-9}
139.5	:00060	.030	3.7×10^{-9}
163.8	.00065	.032	3.3×10^{-9}
237.7	.00100	.050	3.0×10^{-9}
259.7	.00105	.052	$2.9 \times 10_{-9}^{-3}$
283.7	.00115	.058	3.0×10^{-9}
308.1	.00115	.058	2.8×10^{-9}
334.4	.00115	.058	$2.6 \times 10_{-9}^{-9}$
403.6	.00115	.058	2.3×10^{-9}
427.9	.00115	.058	$2.4 \times 10_{-9}^{3}$
451.3	.00120	.060	$2.4 \times 10_{-9}^{-3}$
475.6	.00130	.065	2.4×10^{-9}
499.6	.00130	.065	2.3 X IU a
572.0	.00135	.068	2.3 × 10 ⁻⁹ 2.3 × 10 ₋₉
595.7	.00145	.072	$2.3 \times 10_{-9}^{-3}$
620.3	.00145	.072	2.1×10^{-9}
644.4	.00155	.078	2.2 X 10_0
668.0	.00165	.082	2.2 X 10_0
740.1	.00165	.082	2.0 X 10_a
764.2	.00170	.085	2.1 X 10_a
787.7	.00170	.085	2.1 X 10_0
811.4	.00170	.085	2.1×10^{-9}

Time	Length Change	Creep _(%)	Pressure (Torr)
835.5 Hours 907.5 931.7 955.2 979.2 1,003.2 1,075.3 1,099.3 1,123.9 1,147.3 1,171.5 1,243.3 1,267.5 1,291.6 1,315.6 1,412.0 1,435.8 1,459.5 1,459.5 1,483.5 1,507.9 1,579.8 1,603.5 1,675.3 1,749.0 1,771.4 1,795.5 1,819.7 1,843.7 1,915.5 1,987.6	.00175 .00185 .00190 .00200 .00205 .00210 .00225 .00230 .00235 .00235 .00240 .00245 .00250 .00260 .00280 .00280 .00305 .00300 .00305 .00310 .00310 .00320 .00325 .00325 .00345 .00355 .00345 .00355 .00360 .00365 .00375 .00380 .00380 .00380 .00385	.088 .092 .095 .100 .102 .105 .112 .115 .118 .118 .120 .122 .125 .130 .140 .140 .142 .150 .155 .155 .160 .160 .162 .168 .172 .178 .188 .190 .182	2.0 x 10-9 2.0 x 10-9 2.1 x 10-9 2.1 x 10-9 2.1 x 10-9 2.1 x 10-9 2.1 x 10-9 2.0 x 10-9 2.0 x 10-9 1.9 x 10-9 1.8 x 10-9 1.9 x 10-9 1.8 x 10-9
2,011.5 2,083.5	.00385 .00410	.192 .205	1.8 × 10 ⁻⁹ 1.3 × 10

	Length Change		
	L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
			2 2 10-9
2,107.8 Hours	.00410	. 205	2.0×10^{-9}
2,131.5	.00410	.205	2.0×10^{-9}
2,155.5	.00420	.210	1.8×10^{-9}
2,179.5	.00425	.212	1.9×10^{-9}
2,250.7	.00425	.212	1.7×10^{-9}
2,274.5	.00435	.218	1.8×10^{-9}
2,299.4	.00435	.218	2.0×10^{-9}
2,322.8	.00445	.222	1.9×10^{-9} 1.8×10^{-9}
2,346.4	.00450	.225	$1.8 \times 10_{-9}$
2,467.9	.00475	. 238	1.9×10^{-9}
2,492.5	.00480	. 240	1.9×10^{-9}
2,514.2	.00480	. 240	$1.9 \times 10_{-9}^{-9}$
2,586.9	.00490	. 245	2.0×10^{-9}
2,610.4	. 00490	. 245	1.8×10^{-9}
2,634.3	.00495	.248	2.0×10^{-9}
2,658.3	.00505	.252	1.9×10^{-9}
2,684.6	.00515	.258	1.8×10^{-9}
2,754.4	.00520	.260	2.0×10^{-9}
2,778.4	.00520	.260	1.9×10^{-9}
2,802.3	.00520	. 262	1.9×10^{-9}
2,827.0	.00525	. 262	1.8×10^{-9}
2,850.9	.00535	.268	1.9×10^{-9}
	.00570	.285	1.7×10^{-9}
2,924.8	.00570	.285	1.9×10^{-9}
2,971.2	.00575	.288	2.0×10^{-9}
2,994.3	.00575	.288	2.0×10^{-9}
3,018.7	.00580	. 290	1.8 x 10_9
3,090.4	.00580	. 290	1.7 x 10_9
3,114.5		.295	1.8×10^{-9}
3,139.0	.00590	.300	1.8×10^{-9}
3,164.5	.00600		1.8 × 10 -9
3,186.5	.00610	. 305	1.8 × 10 -9
3,258.2	.00610	. 305	1.7 × 10 -9
3,282.8	.00615	.308	2.0 × 10-9
3,306.7	.00625	.312	1 0 4 10 7
3,331.4	.00625	.312	$1.9 \times 10_{-9}$ $1.8 \times 10_{-9}$
3,354.4	.00630	.315	1.8 x 10 ²

	Length Change		
	L (inch)	Creep	Pressure
Time	(2 ¹¹ G. L.)	_(%)	(Torr)
2 1.26 0 11-	20(1.2		9
3,426.9 Hours	.00640	. 320	2.0×10^{-9}
3,450.3	.00645	. 322	$1.9 \times 10_{-9}^{-9}$
3,474.2	.00650	. 325	2.0×10^{-9}
3,498.6	.00655	. 328	1.8×10^{-9}
3,522.3	. 00655	.328	2.0×10^{-9}
3,595.8	.00665	. 332	1.9×10^{-9}
3,618.4	.00675	. 338	2.0×10^{-9}
3,642.1	.00685	. 342	1.8×10^{-9}
3,666.1	.00705	. 352	1.8×10^{-9}
3,690.2	.00710	. 355	1.8×10^{-9}
3,762.2	.00725	. 362	1.9×10^{-9}
3,810.2	.00735	. 368	1.7×10^{-3}
3,834.2	.00735	. 368	1.8×10^{-9}
3,858.4	.00740	.370	1.8×10^{-9}
3,930.7	. 00750	.375	1.8×10^{-9}
3,954.3	.00750	. 375	1.8×10^{-9}
3,979.0	.00755	. 378	1.7×10^{-3}
4,003.1	.00760	. 380	1.7×10^{-9}
4,027.4	.00760	. 380	1.6×10^{-9}
4,098.9	.00760	. 380	1.8×10^{-9}
4,122.4	.00765	. 382	1.7×10^{-9}
4,146.7	.00775	. 388	1.7×10^{-9}
4,170.3	.00775	. 388	1.7×10^{-9}
4,194.5	.00775	. 388	1.8×10^{-9}
4,268.1	.00790	. 395	1.8×10^{-9}
4,290.8	.00790	. 395	1.7×10^{-9}
4,319.7	.00790	. 395	1.7×10^{-9}
4,338.1	.00800	.400	1.7×10^{-9}
4,362.3	.00805	.402	1.8×10^{-9}
4,436.2	.00810	. 405	1.8×10^{-9}
4,436.2	.00810	. 405	1.8×10^{-9}
4,458.4	.00815	.408	1.7×10^{-9}
4,482.5	.00835	.418	1.8×10^{-9}
4,506.4	.00835	.418	1.8×10^{-9}
4,530.3	.00825	.412	1.7 x 10 9
4,602.5	.00825	.412	1.7 x 10 9
4,626.3	.00840	.420	1.7×10^{-9}
· . ·		· - -	,

	Length Change		
	Δ L (inch)	Creep	${\tt Pressure}$
Time	(2" G. L.)	(%)	(Torr)
4,650.4 Hours	.00855	.428	1.6×10^{-9}
4,674.4	.00855	.428	1.6×10^{-9}
4,698.3	.00860	.430	1.7×10^{-9}
4,770.5	.00360	. 430	1.7×10^{-9}
4,794.3	.00365	.432	1.7×10^{-9}
4,818.8	.00870	.435	1.8×10^{-9}
4,842.4	.00875	.438	1.8×10^{-9}
4,866.4	.00875	. 438	1.9×10^{-9}
4,938.9	.00885	. 442	1.6×10^{-9}
4,962.3	.00890	. 445	1.8×10^{-9}
4,986.4	.00895	. 448	1.7×10^{-9}
5,010.2	.00905	. 452	1.6×10^{-9}
5,034.5	.00915	. 458	1.7×10^{-9}
5,106.4	.00925	. 462	1.7×10^{-9}
5,131.4	.00935	.468	1.8×10^{-9}
5,154.3	.00940	.470	1.9×10^{-9}
5,178.8	.00955	. 478	2.0×10^{-9}
5,203.2	.00955	. 478	1.8×10^{-9}
5,299.3	.00965	.482	1.9×10^{-9}
5,322.4	. 00975	.488	2.0×10^{-9}
5,346.1	.00985	.492	1.8×10^{-9}
5,370.9	.00990	. 495	2.0×10^{-9}
5,442.8	.01000	. 500	1.8×10^{-9}
5,467.0	.01000	. 500	1.8×10^{-9}
5,490.5	.01010	. 505	$1.9 \times 10_{-9}^{-9}$
5,514.4	.01010	. 505	$1.9 \times 10_{-9}^{9}$
5,538.4	.01015	. 508	2.0×10^{-9}
5,610.6	.01035	.518	1.8×10^{-9}
5,634.4	.01040	. 520	$1.9 \times 10_{-9}^{-9}$
5,658.3	.01040	. 520	1.8×10^{-9}
5,682.3	.01050	. 525	1.8×10^{-9}
5,706.5	.01050	. 525	1.8×10^{-9}
5,780.4	.01065	.532	1.8×10^{-9}
5,802.3	.01075	. 538	$1.9 \times 10_{-9}^{-9}$
5,826.9	.01090	. 545	1.6×10^{-9}

	Length Change			
	Δ L (inch)	Creep	Pressure	
Time	(2" G. L.)	_(%)	_(Torr)	
C 950 3 Hamas	01105	= = =	-9	
5,850.3 Hours	.01105	.552	1.8×10^{-9}	
5,874.3	.01100	.550	1.8×10^{-9}	
5,946.5	.01105	. 552	1.6×10^{-9}	
5,970.4	.01100	.550	1.6×10^{-9}	
5,995.2	.01110	. 555	1.5×10^{-9}	
6,018.3	.01120	.560	1.5×10^{-9}	
6,042.5	.01135	.568	$1.7 \times 10_{-9}^{9}$	
6,114.2	.01145	.572	1.5×10^{-9}	
6,138.3	.01145	. 572	1.4×10^{-9}	
6,162.3	.01150	.575	1.7×10^{-9}	
6,186.4	.01155	.578	1.6×10^{-9}	
6,211.1 6,283.2	.01160	.580	1.3×10^{-9}	
	.01160	.580	1.6×10^{-9}	
6,306.5	.01170	. 585	1.7×10^{-9}	
6,330.3	.01180	. 590	1.6×10^{-9}	
6,354.5	.01190	.595	1.6×10^{-9}	
6,378.4	.01190	. 595	1.6×10^{-9}	
6,450.8	.01190	. 595	1.7×10^{-9}	
6,475.5	.01190	.595	1.5×10^{-9}	
6,499.2	.01205	.602	1.8×10^{-9}	
6,522.8	.01210	.605	1.5×10^{-9}	
6,547.1	.01210	.605	1.6×10^{-9}	
6,619.8 6,643.1	.01210	.605	1.6×10^{-9}	
	.01220	.610	1.6×10^{-9}	
6,691.9	.01235	.618	1.6×10^{-9}	
6,715.3	.01255	.628	1.7×10^{-9}	
6,788.0	.01275	.638	1.7×10^{-9}	
6,811.2	.01280	.640	1.8×10^{-9}	
6,836.0	.01275	.638	1.6×10^{-9}	
6,859.2	.01285	.642	1.6×10^{-9}	
6,883.3	.01280	.640	1.6×10^{-9}	
6,955.7	.01300	.650	1.6×10^{-9}	
6,979.3	.01300	.650	1.4×10^{-9}	
7,003.9	.01300	.650	1.6×10^{-9}	
7,027.4	.01310	. 655	1.4×10^{-9}	

	Length Change		_
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2'' G. L.)	(%)	(Torr)
			-0
7,051.5 Hours	.01325	.662	1.4×10^{-9}
7,123.7	.01315	.658	$1.5 \times 10_{-9}^{5}$
7,147.4	.01330	.665	$1.6 \times 10_{-9}^{-9}$
7,171.7	.01340	.670	$1.5 \times 10_{-9}$
7,291.4	.01380	.690	1.8×10^{-9}
7,315.2	.01390	.695	$1.7 \times 10_{-9}$
7,339.8	.01395	.698	1.8×10^{-9}
7,364.0	.01390	. 695	$1.6 \times 10_{-9}$
7,387.3	.01395	.698	$1.5 \times 10_{-9}$
7,459.4	.01415	. 708	$1.6 \times 10_{-9}^{-3}$
7,483.3	.01410	. 705	1.8×10^{-9}
7,507.5	.01415	.708	$1.6 \times 10_{-9}^{-3}$
7,531.7	.01410	.705	$1.8 \times 10_{-9}$
7,555.6	.01410	.705	1.7×10^{-9}
7,627.4	.01450	. 725	1.8×10^{-9}
7,651.3	.01450	.725	1.5×10^{-9}
7,675.3	.01465	.732	15. $\times 10^{-9}$
7,699.4	.01465	.732	1.4×10^{-9}
7,723.3	.01455	.728	$1.7 \times 10_{-9}$
7,795.3	.01460	.730	$1.4 \times 10_{-9}$
7,819.5	.01460	. 730	$1.4 \times 10_{-9}$
7,819.5	.01455	.728	$1.4 \times 10_{-9}$
7,843.2	.01465	.732	$1.1 \times 10_{-9}$
7,867.4	.01475	. 738	$1.3 \times 10_{-9}$
7,891.5	.01490	. 745	$1.3 \times 10_{-9}$
8,011.8	.01485	. 742	$1.5 \times 10_{-9}$
8,035.8	.01490	. 745	$1.5 \times 10_{-9}^{-9}$
8,059.5	.01495	.748	1.5 × 10

Test in progress Specimen S-34

 $\frac{\text{TABLE 21}}{\text{Creep Test Data, T-111 Sheet Heat 65079, Recrystallized } 3000^{\text{O}}\text{F (1649}^{\text{O}}\text{C) 1 Hour,}}{\text{Tested at 2200}^{\text{F}}\text{ (1204}^{\text{O}}\text{C), and 5000 psi (3.45 x <math>10^{\text{F}}\text{N/m2})}}$

Time	Length Change A L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
l Minute	.00020	.010	3.0×10^{-8}
2	.00020	.010	$3.0 \times 10_{-8}^{-6}$
3	.00015	.008	$3.0 \times 10^{-6}_{-8}$
3 4 5 6 7 8	.00015	.008	3.0×10^{-8}
5	.00020	.010	$3.0 \times 10_{-8}$
о 7	.00020	.010	$3.0 \times 10_{-8}$
γ ο	.00020 .00025	.010	3.0×10^{-8}
9	.00025	.012 .012	3.0×10^{-8}
10	.00025	.012	3.0×10^{-8}
15	.00025	.012	3.0×10^{-8} 3.0×10^{-8}
30	.00029	.010	o
45	.00025	.012	5 8
60	.00020	.010	$3.0 \times 10_{-8}$ $3.0 \times 10_{-8}$
19.1 Hours	.00045	.022	5.4×10^{-8}
43.0	.00055	.028	2.2×10^{-8}
67.0	.00065	.032	$\frac{2.2 \times 10^{-8}}{4.4 \times 10^{-8}}$
91.0	.00075	.038	2.7×10^{-8}
163.3	.00105	.052	7.7×10^{-9}
186.9	.00105	.052	8.3×10^{-9}
211.0	.00120	.060	7.3×10^{-9}
235.1	.00135	.068	7.2×10^{-9}
259.0	.00145	.072	7.0×10^{-9}
331.7	.00175	.088	6.0×10^{-9}
355.1	.00180	.090	5.8×10^{-9}
379.3	.00185	.092	5.9×10^{-9}
403.4	.00190	.095	3.4×10^{-9}
523.5	.00210	. 105	4.2×10^{-9}
547.3	.00215	.108	4.4×10^{-9}
571.1	.00220	.110	2.8×10^{-9}
595.4	.00230	.115	2.9×10^{-9}
691.2	.00260	.130	3.3×10^{-9}
715.7	.00260	.130	2.7×10^{-9}
739.4	.00270	.135	5.4×10^{-9}
763.2	.00275	.138	3.7 x 10 ³

Time	Length Change A L (inch) (2" G. L.)	Creep _(%)	Pressure (Torr)
836.3 Hours	.00290	. 145	3.0×10^{-9}
859.4	.00300	. 150	8.6×10^{-9}
883.4	.00310	.155	2.4×10^{-9}
907.0	.00320	. 160	2.4×10^{-9}
931.3	.00325	.162	3.6×10^{-9}
1,004.4	.00340	، 170	5.5×10^{-9}
1,027.0	.00350	. 175	5.2×10^{-9}
1,051.2	.00355	.178	3.4×10^{-9}
1,075.4	.00360	.180	3.5×10^{-9}
1,099.3	.00370	. 185	3.6×10^{-3}
1,171.2	.00395	. 198	$2.2 \times 10_{-9}^{9}$
1,195.1	. 00400	。200	$2.3 \times 10_{-9}^{-9}$
1,219.4	.00405	. 202	$3.4 \times 10_{-9}^{-9}$
1,243.6	。00410	. 205	$2.1 \times 10_{-9}^{2}$
1,267.5	.00420	.210	$2.1 \times 10_{-9}$
1,339.4	.00435	.218	4.4×10^{-9}
1,363.0	.00450	. 22 5	3.0×10^{-9}
1,387.1	。00455	. 228	2.8×10^{-9}
1,411.6	。00475	.238	4.4×10^{-9}
1,435.4	。00475	. 238	3.0×10^{-9}
1,509.2	. 00485	۰ 242	3.5×10^{-9}
1,531.3	.00490	.245	4.6×10^{-9}
1,555.2	.00500	.250	$3.5 \times 10_{-9}$
1,579.7	.00510	. 255	3.4×10^{-9}
1,605.9	.00525	، 262	4.6×10^{-9}
1,675.1	.00540	۰ 270	4.3×10^{-9}
1,675.1	. 00540	، 270	4.3×10^{-9}
1,699.4	.00545	. 272	4.4×10^{-9}
1,722.8	.00560	. 280	4.3×10^{-9}
1,747.2	.00570	. 285	3.6×10^{-9}
1,771.2	.00590	.295	4.0×10^{-9}
1,843.6	.00630	.315	4.1×10^{-9}
1,867.3	.00630	.315	3.2×10^{-9}
1,891.8	.00635	.318	$\frac{4.1 \times 10^{-9}}{2.9 \times 10^{-9}}$
1,915.8	.00645	. 322	3.8×10^{-9}
1,939.5	.00650	، 325	3.6 x 10

	Length Change			
	Δ L (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
			_(1011)	
2,011.6 Hours	.00655	.328	3.6×10^{-9}	
2,035.7	.00660	.330	3.8×10^{-9}	
2,059.3	.00660	. 330	3.7×10^{-9}	
2,083.0	.00670	.335	3.8×10^{-9}	
2,107.1	.00680	. 340	3.0×10^{-9}	
2,179.0	.00685	. 342	3.7×10^{-9}	
2,203.2	.00685	. 342	3.6×10^{-9}	
2,226.8	.00695	. 348	3.8×10^{-9}	
2,250.8	.00705	. 352	3.8×10^{-9}	
2,274.7	.00715	. 358	3.9×10^{-9}	
2,346.9	. 00735	. 368	3.8×10^{-9}	
2,370.9	.00740	. 370	3.9×10^{-9}	
2,395.4	.00750	. 375	2.8×10^{-9}	
2,418.9	.00755	. 378	3.2×10^{-9}	
2,443.0	.00770	. 385	3.0×10^{-9}	
2,514.8	.00780	. 390	2.1×10^{-3}	
2,539.1	.00800	.400	2.8×10^{-9}	
2,563.1	.00830	.415	3.9×10^{-3}	
2,587.2	.00830	· 4 1 5	3.6×10^{-9}	
2,683.5	.00840	.420	2.8×10^{-9}	
2,707.3	.00850	. 425	2.9×10^{-9}	
2,731.0	.00845	.422	2.9×10^{-9}	
2,755.0	.00860	.430	3.0×10^{-9}	
2,779.4	.00860	.430	2.8×10^{-9}	
2,851.3	.00875	. 438	$3.0 \times 10_{-9}^{-9}$	
2,875.0	.00885	. 442	$2.9 \times 10_{-9}^{9}$	
2,899.0	.00890	445	3.0×10^{-9}	
2,922.8 2,946.9	.00905	. 452	2.8×10^{-9}	
3,020.5	.00915	.458	2.8×10^{-9}	
3,042.9	.00935	.468	2.7×10^{-9}	
3,067.0	.00945	. 472	2.9×10^{-9}	
3,007.0	.00955	. 478	2.7×10^{-9}	
3,115.2	.00960	. 480	2.9×10^{-9}	
フゥリコ・ム	.00970	. 485 🖺	2.7 x 10 ⁻³	

	Length Change			
	Δ L (inch)	${\sf Creep}$	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
3,187.1 Hours	.00975	. 488	2.9×10^{-9}	
3,210.9	.00990	. 495	2.6×10^{-9}	
3,234.8	.01000	.500	2.8×10^{-9}	
3,259.1	.01020	.510	2.8×10^{-9}	
3,283.0	.01025	.512	2.6×10^{-9}	
3,355.0	.01050	.5∱5	1.9×10^{-9}	
3,379.4	.01055	.528	2.8×10^{-9}	
3,403.0	.01065	.532	2.7×10^{-9}	
3,427.1	.01075	.538	2.8×10^{-3}	
3,451.1	.01075	.538	2.8×10^{-9}	
3,522.3	.01095	.548	2.8×10^{-3}	
3,546.1	.01100	.550	2.7×10^{-9}	
3,570.9	.01105	. 5 5 0	2.6×10^{-9}	
3,594.4	.01105	.552	2.6×10^{-9}	
3,618.0	.01105	.552	2.0×10^{-9}	
3,739.5	.01160	. 580	$2.5 \times 10_{-9}^{-3}$	
3,764.1	.01170	. 585	$2.6 \times 10_{-9}^{-9}$	
3,785.8	.01180	. 590	$2.6 \times 10_{-9}^{-3}$	
3,858.5	.01190	. 595	$2.6 \times 10_{-9}^{-9}$	
3,882.2	.01205	.602	$2.5 \times 10_{-9}^{-3}$	
3,906.3	.01215	.608	$2.5 \times 10_{-9}$	
3,929.9	.01220	.610	$2.6 \times 10_{-9}$	
3,956.2	.01230	.615	$2.6 \times 10_{-9}^{9}$	
5,026.0	.01240	.620	$1.1 \times 10_{-9}$	
4,050.0	.01255	.628	2.7×10^{-9}	
4,073.8	.01265	.632	$2.6 \times 10_{-9}$	
4,098.7	.01270	.635	2.8×10^{-9}	
4,122.7	.01285	.642	2.4×10^{-9}	
4,196.3	.01320	.660	2.5×10^{-9}	
4,242.8	.01330	.665	2.6×10^{-9}	
4,266.2	.01350	.675	1.5×10^{-9}	
4,290.2	.01355	.678	1.4×10^{-9}	
4,361.9	.01375	.688	$2.7 \times 10_{-9}$	
4,386.0	.01375	.688	2.4×10^{-9}	
4,410.5	.01375	.688	2.4×10^{-9}	

	Length Change			
	Δ L (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
4,436.1 Hours	.01380	. 690	2.6×10^{-9}	
4,458.0	.01400	. 700	2.5 x 10 ⁻⁹	
4,529.7	.01415	، 708	2.6×10^{-9}	
4,554.4	.01425	.712	2.4×10^{-9}	
4,578.3	.01430	.715	2.5×10^{-9}	
4,602.9	.01440	.720	2.5×10^{-9}	
4,625.9	.01455	.728	2.6×10^{-9}	
4,698.4	.01480	. 740	2.6 × 10 -9	
4,721.9	.01490	. 745	2.5 x 10 9	
4,745.8	.01500	. 750	2.0×10^{-9}	
4,770.2	.01505	.752	2.6×10^{-9}	
4,793.8	.01520	. 760	2.4×10^{-9}	
4,867.3	.01550	.775	2.4×10^{-9}	
4,890.1	.01570	. 785	2.5×10^{-9}	
4,913.7	.01575	. 788	2.6×10^{-9}	
4,937.7	.01580	. 790	2.6×10^{-9}	
4,961.7	.01595	. 798	1.0×10^{-9}	
5,033.7	.01605	.802	2.3×10^{-9}	
5,081.7	.01610	.805	2.6×10^{-9}	
5,105.8	.01625	.812	2.8×10^{-9}	
5,129.9	.01640	.820	2.6×10^{-9}	
5,202.2	.01650	.825	1.6×10^{-9}	
5,225.9	.01670	.835	1.1×10^{-9}	
5,250.5	.01675	.838	2.6×10^{-9}	
5,274.6	.01680	.840	1.8×10^{-9}	
5,298.9	.01680	.840	1.6×10^{-9}	
5,370.4	.01705	.852	2.7×10^{-9}	
5,393.9	.01730	.865	2.6×10^{-9}	
5,418.2	.01720	.860	2.6×10^{-9}	
5,441.9	.01730	.865	2.6×10^{-9}	
5,466.0	.01745	.872	2.5×10^{-9}	
5,539.6	.01770	.885	2.4×10^{-9}	
5,562.3	.01780	.890	2.6×10^{-9}	
5,591.2	.01780	.890	2.5×10^{-9}	
5,609.6	.01810	.905	2.6×10^{-9}	
5,633.8	.01810	.905	2.6×10^{-9}	

	Length Change		
	△ L (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
5,707.8 Hours	.01835	.918	2.6×10^{-9}
5,730.0	.01840	.920	$3.6 \times 10_{-9}^{3}$
5,754.0	.01850	. 925	2.6×10^{-9}
5,777.9	.01855	.928	2.6×10^{-9}
5,801.8	.01870	.935	2.5×10^{-9}
5,874.1	.01895	.948	2.6×10^{-9}
5,897.8	.01905	.952	2.6×10^{-9}
5,922.0	.01915	. 958	2.6×10^{-9}
5,945.9	.01935	. 968	2.5×10^{-9}
5,969.8	.01950	.975	2.5×10^{-9}
6,042.0	.01970	. 985	2.7×10^{-9}
6,065.7	.01970	.985	$2.6 \times 10_{-9}$
6,0 90 .1	.01975	.988	$2.6 \times 10_{-9}^{-3}$
6,113.9	.01980	.990	$2.4 \times 10_{-9}^{3}$
6,137.9	.01985	.992	$2.4 \times 10_{-9}^{-9}$
6,210.4	.02005	1.002	2.6×10^{-9}
6,233.8	.02010	1.005	$2.6 \times 10_{-9}$
6,257.9	.02025	1.012	$2.6 \times 10_{-9}^{5}$
6,281.8	.02035	1.018	$2.3 \times 10_{-9}^{-3}$
6,306.0	.02010	1.020	$2.6 \times 10_{-9}^{-9}$
6,377.9	.02060	1.030	2.6×10^{-9}
6,403.0	.02075	1.038	2.6×10^{-9}
6,425.8	.02085	1.042	$2.5 \times 10_{-9}^{-3}$
6,450.4	.02105	1.052	1.7×10^{-9}
6,474.7	.02125	1.062	2.5×10^{-9}
6,570.8	.02170	1.085	1.0×10^{-9}
6,593.9	.02185	1.092	2.4×10^{-9}

Test terminated - sufficient data obtained Specimen S-31

TABLE 22

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649°C) for 1 hours, Tested at 2200°F (1204°C), 5,000 psi $(3.44 \times 10^{7} \text{N/m}^2)$

Time	Length Change Δ L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
Time Minutes 2 3 4 5 6 6 7 7 8 9 10 15 30 45 60 19.5 Hours 91.6 115.8 139.3 163.0 187.1 259.0 283.3 306.8	△ L (inch)	-	
330.8 354.8 426.9 450.8 475.5 498.9 523.1 594.9 619.1 643.2 667.2 763.6 787.4 811.1 835.1 859.5 931.4	.00175 .00190 .00200 .00205 .00215 .00230 .00250 .00290 .00295 .00305 .00350 .00350 .00370 .00370	.088 .095 .100 .102 .108 .115 .125 .145 .145 .145 .145 .152 .175 .175 .180 .185	1.7 × 10-9 1.6 × 10-9 1.5 × 10-9 1.6 × 10-9 1.7 × 10-9 1.7 × 10-9 1.8 × 10-9 1.9 × 10-9 1.10 × 10-9

	Length Change		
	Δ L (inch)	${\sf Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			-9
95 5.1 Hours	.00405	.202	1.4×10^{-9}
979.1	.00420	.210	1.5×10^{-2}
1,002.9	.00425	.212	1.3×10^{-3}
1,026.9	.00425	.212	$1.3 \times 10_{-9}^{-3}$
1,100.5	.00450	.225	1.3×10^{-9}
1,122.9	.00450	.225	1.4×10^{-9}
1,147.1	.00455	.228	1.2×10^{-9}
1,171.3	. 00455	. 235	1.4×10^{-9}
1,195.3	.00485	.242	1.4×10^{-9}
1,267.1	.00495	.248	$1.4 \times 10_{-9}^{-9}$
1,290.9	.00510	. 255	$1.3 \times 10_{-9}^{-3}$
1,314.8	.00520	.260	1.3×10^{-9}
1,339.2	.00525	.262	1.2×10^{-9}
1,363.0	.00530	. 265	1.4×10^{-9}
1,435.1	.00555	.278	1.3×10^{-9}
1,459.4	.00560	. 280	1.4×10^{-9}
1,483.0	.00565	.282	1.3×10^{-9}
1,507.1	.00570	.285	1.2×10^{-9}
1,531.1	.00575	.288	1.2×10^{-9}
1,602.3	.00590	. 295	1.2×10^{-9}
1,626.1	.00615	. 308	1.4×10^{-9}
1,651.0	.00620	.310	1.3×10^{-9}
1,674.4	.00625	.312	1.2×10^{-9}
1,696.9	.00630	.315	1.3×10^{-9}
1,819.5	.00670	. 335	1.3×10^{-9}
1,844.1	.00690	. 345	1.3×10^{-9}
1,865.8	.00695	. 348	1.2×10^{-9}
1,938.5	.00740	.370	1.3×10^{-9}
1,962.2	.00740	.370	1.2×10^{-9}
1,985.9	.00745	.372	1.3×10^{-9}
2,009.9	.00750	.375	1.2×10^{-9}
2,036.2	.00760	. 380	1.2×10^{-9}
2,106.0	.00780	. 390	1.2×10^{-9}
2,130.0	.00785	. 392	1.2×10^{-9}
2,153.8	.00785	. 392	$1.1 \times 10_{-9}$
2,178.6	.00810	. 405	1.2×10^{-9}
2,202.5	.00830	.415	1.2 x 10 ⁻³

	Length Change		
	Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
		(707	
2,276.4 Hours	.00870	. 435	1.2×10^{-9}
2,322.7	.00895	. 448	1.2×10^{-9}
2,345.9	.00895	. 448	1.2 x 10 9
2,370.2	.00900	. 450	1.2×10^{-9}
2,442.0	.00900	. 450	1.2×10^{-9}
2,466.1	.00905	. 452	1.1×10^{-9}
2,490.6	.00905	. 452	1.3×10^{-9}
2,516.1	.00910	. 455	1.3×10^{-9}
2,538.0	.00920	. 460	1.2×10^{-9}
2,609.8	.00955	. 478	1.3×10^{-9}
2,634.4	.00960	.480	1.3×10^{-9}
2,658.3	.00970	. 485	1.3×10^{-9}
2,705.9	.00985	. 492	1.2×10^{-9}
2,778.4	.01005	. 502	1.2×10^{-9}
2,801.9	.01015	. 508	1.2×10^{-9}
2,825.8	.01025	.512	1.3×10^{-9}
2,850.2	.01040	.520	1.2×10^{-9}
2,873.8	.01050	. 525	1.2×10^{-9}
2,947.4	.01095	.548	1.1×10^{-9}
2,970.0	.01095	. 548	1.1×10^{-9}
2,993.7	.01100	. 550	1.0×10^{-9}
3,017.7	.01115	. 558	1.0×10^{-9}
3,113.8	.01130	. 565	9.7×10^{-10}
3,161.8	.01165	. 582	1.0×10^{-9}
3,185.8	.01165	. 582	1.1×10^{-9}
3,210.0	.01175	.588	1.1×10^{-9}
3,282.3	.01200	.600	1.1 x 10 ⁻⁹
3,305.9	.01205	. 602	1.2×10^{-9}
3,330.6	.01210	. 605	1.2×10^{-9}
3,354.6	.01215	.608	1.2×10^{-9}
3,378.9	.01215	.608	1.1×10^{-9}
3,450.5	.01225	.612	1.1×10^{-9}
3,474.0	.01250	.625	1.1 x 10 ⁻⁹

	Length Change			
	ΔL (inch)	${\tt Creep}$	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
			-0	
3,498.2 Hours	.01270	.635	1.0×10^{-9}	
3,521.9	.01275	.638	1.0×10^{-9}	
3,546.1	.01275	.638	$1.0 \times 10_{-9}$	
3,619.6	.01280	.640	1.2×10^{-9}	
3,642.3	.01290	.645	$1.1 \times 10_{-9}^{-7}$	
3,671.2	.01315	.658	$1.1 \times 10_{-9}^{-7}$	
3,689.7	.01315	.658	1.2×10^{-9}	
3,713.9	.01330	.665	1.2×10^{-9}	
3,787.8	.01360	.680	1.2×10^{-9}	
3,810.0	.01370	.6 85	1.1×10^{-9}	
3,834.1	.01395	.698	$1.1 \times 10_{-9}^{-2}$	
3,858.0	.01395	.698	$1.1 \times 10_{-9}^{-2}$	
3,881.9	.01395	.698	$1.1 \times 10_{-9}$	
3,954.1	.01400	. 700	1.1×10^{-2}	
3,977.9	.01415	. 708	1.1×10^{-2}	
4,002.0	.01430	.715	$1.1 \times 10_{-9}^{-9}$	
4,025.9	.01450	. 725	1.0×10^{-3}	
4,049.9	.01455	.728	$1.0 \times 10_{-9}$	
4,122.1	.01480	. 740	$1.1 \times 10_{-9}^{-3}$	
4,145.8	.01495	. 748	$1.1 \times 10_{-9}^{-2}$	
4,170.2	.01500	. 750	$1.2 \times 10_{-10}$	
4,194.0	.01510	. 755	$9.6 \times 10_{-9}^{-1}$	
4,218.0	.01515	. 758	$1.0 \times 10_{-9}$	
4,290.4	.01530	.765	$1.1 \times 10_{-9}$	
4,313.9	.01540	.770	$1.1 \times 10_{-9}^{-3}$	
4,337.9	.01550	.775	$1.0 \times 10_{-9}$	
4,361.8	.01560	.780	$1.1 \times 10_{-9}$	
4,386.1	.01570	. 785	1.1×10^{-9}	
4,458.0	.01600	.800	1.1×10^{-9}	
4,483.0	.01615	.808	1.2×10^{-9}	
4,505.9	.01620	.810	$1.1 \times 10_{-9}^{-9}$	
4,530.3	.01630	.815	$1.1 \times 10_{-9}^{2}$	
4,554.8	.01645	.822	1.1×10^{-9}	
4,650.8	.01645	.822	$1.1 \times 10_{-9}^{2}$	
4,674.0	.01700	.850	1.0×10^{-10}	
4,697.7	.01715	.858	9.8×10^{-10}	

	Length Change		
	△ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	<u>(%)</u>	_(Torr)
4,722.4 Hours	.01730	.865	1.1×10^{-9}
4,794.4	.01745	.872	1.2×10^{-9}
4,818.7	.01755	.878	1.0×10^{-9}
4,842.1	.01775	.882	1.2×10^{-9}
4,866.0	.01785	.892	1.1×10^{-9}
4,890.0	.01795	. 898	1.2×10^{-9}
4,962.2	.01830	.915	1.0×10^{-9}
4,986.0	.01840	.920	1.0×10^{-9}
5,009.9	.01860	.930	1.1×10^{-9}
5,033.9	.01875	.938	9.7×10^{-10}
5,058.0	.01885	.942	1.2×10^{-9}
5,132.0	.01895	.948	9.4×10^{-10}
5,153.9	.01895	.948	9.5×10^{-10}
5,178.5	.01910	.955	9.8×10^{-10}
5,201.8	.01925	.962	1.1×10^{-9}
5,225.8	.01935	.968	1.0×10^{-9}
5,298.1	.01955	.978	1.0×10^{-9}
5,321.9	.01965	.982	9.5×10^{-10}
5,346.7	.01975	.988	9.6×10^{-10}
5,369.9	.01995	.998	9.6×10^{-10}
5,394.0	.02015	1.008	1.0×10^{-9}
5,465.8	.02065	1.032	9.7×10^{-11}
5,489.9	.02075	1.038	9.4×10^{-10}
5,513.9	.02090	1.045	1.1×10^{-9}
5,522.1	.02095	1.048	1.1 x\10 ⁻⁹

Test terminated - sufficient data obtained Specimen S-35

TABLE 23

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649°C) for 1 hour, Tested at 2300°F (1263°C), 3500 psi (2.41 x 10^{7} N/m²)

Time	Length Change A L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
l Minutes	.00010	.005	7.8×10^{-8}
	.00010	.005	$7.8 \times 10_{-8}^{0}$
3	.00025	.013	$7.8 \times 10_{-8}^{-0}$
4	.00030	.015	$7.8 \times 10_{-8}^{-6}$
2 3 4 5 6 7 8 9	.00030	.015	$7.8 \times 10_{-8}^{-8}$
6	.00025	.013	$7.8 \times 10_{-8}^{-9}$
7	.00030	.015	$7.8 \times 10_{-8}$
8	.00040	.020	$7.8 \times 10_{-8}$
9	.00035	.018	7.8×10^{-8}
	.00035	.018	7.8×10^{-8}
15	.00030	.015	7.8×10^{-8}
30	.00020	.010	7.8×10^{-6}
45	.00025	.013	7.8×10^{-8}
60	.00025	.013	7.8×10^{-8}
19.1 Hours	.00040	.020	$2.0 \times 10_{-8}$
43.2	.00070	.035	$1.4 \times 10_{-8}$
67.1	.00075	.035	1.2×10^{-9}
91.0	.00075	.038	8.3×10^{-9}
163.3	.00115	.058	5.5×10^{-9}
187.0	.00115	.058	4.9×10^{-9}
211.1	.00130	.065	4.7×10^{-9}
235.0	.00145	.072	4.2×10^{-9}
259.0	.00150	.075	4.0×10^{-9}
331.2	.00180	.090	3.6×10^{-9}
354.9	.00205	.102	2.2×10^{-9}
379.3	.00210	.105	3.2×10^{-9}
403.1	.00215	.108	3.0×10^{-9}
427.1	.00220	.110	$3.0 \times 10_{-9}$ $2.6 \times 10_{-9}$
499.5	.00240	.120	9
522.0	.00250	.125	
547.0	.00255	.128	1.6 x 10_9 1.6 x 10
570.9	.00265	.132	1.0 X 10

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
595.2 Hours	.00265	.132	2.6×10^{-9}
667.1	.00290	.145	1.6×10^{-9}
692.1	.00305	.152	1.5×10^{-9}
715.0	.00310	. 155	2.2×10^{-9}
739.5	.00310	. 155	2.1×10^{-9}
763.9	.00380	.190	1.4×10^{-9}
859.9	.00415	.208	2.1×10^{-9}
883.1	.00425	.212	1.2×10^{-9}
907.0	.00440	.220	1.6×10^{-9}
431.5	. 00445	.222	1.9×10^{-9}
1,003.6	.00450	.225	1.8×10^{-9}
1,027.8	.00450	.225	1.2×10^{-9}
1,051.3	.00465	.232	1.2×10^{-9}
1,075.1	.00470	.235	1.2×10^{-9}
1,099.2	.00475	.238	1.2×10^{-9}
1,171.3	. 00475	.238	1.2×10^{-9}
1,195.1	.00485	. 242	1.2×10^{-9}
1,219.0	.00525	. 262	1.6×10^{-9}
1,243.0	.00540	.270	1.4×10^{-9}
1,267.1	.00555	.278	1.5×10^{-9}
1,341.0	.00625	.312	1.4×10^{-9}
1,362.9	. 00645	.322	1.2×10^{-9}
1,387.7	.00660	.330	1.6×10^{-9}
1,410.9	.00670	.335	1.4×10^{-9}
1,434.8	.00685	. 342	1.2×10^{-9}
1,507.1	.00735	. 368	1.2×10^{-9}
1,531.0	.00740	.370	1.4×10^{-9}
1,555.8	.00745	.372	1.4×10^{-9}
1,579.0	.00755	. 378	1.4×10^{-9}
1,603.1	. 00765	. 382	1.2×10^{-9}
1,675.0	.00745	. 398	1.1×10^{-9}
1,699.0	.00800	. 400	1.3×10^{-9}
1,723.2	.00810	. 405	1.3×10^{-9}
1,747.0	.00815	. 408	1.4×10^{-9}
1,771.7	.00830	.415	9.5×10^{-13}
1,843.9	.00875	. 438	1.4×10^{-9}

TABLE 23 (Continued)

m:	Length Change \$\textit{\Delta} L \text{(inch)} (2" G. L.)	Creep (%)	Pressure (Torr)
Time	(2 G. L.)		
1,867.2 Hours	.00895	.448	1.1×10^{-9}
1,890.9	.00915	. 458	1.3×10^{-9}
1,915.2	.00930	. 465	1.3×10^{-9}
1,939.1	.00935	. 468	1.4×10^{-9}
2,011.5	. 00940	. 470	1.4×10^{-9}
2,036.1	. 00950	.475	1.2×10^{-9}
2,059.8	.00985	.492	1.1×10^{-9}
2,083.9	.00995	. 498	1.1×10^{-9}
2,108.1	.01015	. 508	1.1×10^{-9}
2,180.4	.01045	. 522	1.2×10^{-9}
2,204.8	.01045	.522	1.2×10^{-9}
2,228.0	.01055	.528	1.2×10^{-9}
2,252.6	.01070	. 535	1.4×10^{-9}
2,275.9	.01090	. 545	1.2×10^{-9}
2,348.7	.01125	. 562	1.2×10^{-9}
2,371.8	.01155	.578	1.2×10^{-9}
2,396.7	.011 7 5	.588	1.1×10^{-3}
2,419.8	.01235	.618	9.2×10^{-10}
2,444.6	.01275	.638	9.8×10^{-10}
2,516.3	.01295	.648	9.6×10^{-10}
2,539.9	.01305	.652	9.3×10^{-10}
2,564.5	.01315	.658	1.1×10^{-9}
2,588.1	.01320	.660	1.2×10^{-3}
2,612.3	.01320	. 660	8.2×10^{-10}
2,684.3	.01330	.665	8.2 x 10 9
2,708.1	.01340	.670	1.2×10^{-9}
2,732.3	.01350	.675	1.1×10^{-9}
2,852.0	.01415	. 708	1.0×10^{-9}
2,875.9	.01440	.720	1.1×10^{-9}
2,900.5	.01445	.722	$\frac{1.1 \times 10^{-3}}{1.0 \times 10^{-10}}$
2,924.7	.01470	. 735	8.8×10^{-10}
2,948.0	.01485	. 742	1.0×10^{-9}
3,020.2	.01545	.772	1.1×10^{-10}
3,044.0	.01565	. 782	9.0×10^{-10}
3,068.1	.01570	. 785	$9.8 \times 10_{-10}$
3,102.6	.01585	. 792	7.6×10^{-10}

TABLE 23 (Continued)

	Length Change		
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
3,126.2 Hours	.01605	.802	7.8×10^{-10}
3,208.1	.01655	.822	× 6 ∨ 10
3,232.2	.01650	.825	8.2 × 10-10
3,256.0	.01660	.830	8 2 v In ' '
3,280.0	.01665	.832	8.6×10^{-10}
3,304.0	.01685	.842	9.8×10^{-10}
3,376.0	.01755	.878	8.2 × 10-10
3,400.2	.01775	.888	8.4 × 10 10
3,423.8	.01770	.885	7.4×10^{-10}

Test in progress Specimen S-42

TABLE 24

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649°C), for 1 hour, Tested at 1750°F (954°C), 24,000 psi (1.65 x 10° N/m²)

	Length Change		
	Δ L (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
l Minutes	.00000	.000	2.0×10^{-8}
	.00000	.000	2.0×10^{-6}
3	.00005	.002	2.0×10^{-6}
2 3 4	.00000	.000	2.0×10^{-6}
	.00005	.002	2.0×10^{-6}
6	.00005	.002	2.0×10^{-6}
5 6 7	.00000	.000	2.0×10^{-6}
8	.00000	.000	2.0×10^{-6}
9	.00000	.000	2.0×10^{-6}
10	.00005	.002	2.0×10^{-6}
15	.00005	.002	2.0×10^{-6}
30	.00010	.005	2.0×10^{-6}
45	.00005	.002	2.0×10^{-6}
60	.00005	.002	2.0×10^{-6}
1.0 Hours	.00005	.002	5.1 x 10 ₋₉
13.6	.00030	.015	4.2×10^{-9}
37.9	.00030	.015	2.8×10^{-9}
61.1	.00015	.008	$2.5 \times 10_{-9}^{-9}$
84.4	.00015	.008	$2.3 \times 10_{-9}^{5}$
108.2	.00015	.008	$2.0 \times 10_{-9}^{-9}$
132.4	.00015	.008	2.0×10^{-9}
156.3	.00020	.010	1.8×10^{-9}
228.7	.00030	.015	2.0×10^{-9}
253.4	.00030	.015	1.4×10^{-9}
277.1	.00030	.015	1.6×10^{-9}
300.7	.00030	.015	$1.5 \times 10_{-9}$
325.0	.00035	.018	1.6×10^{-9}
397.7	.00040	.020	1.5×10^{-9}
421.1	.00040	.020	1.4×10^{-9}
445.1	.00040	.020	1.6×10^{-9}
469.9	.00045	.022	1.4×10^{-9}
493.2	.00045	.022	1.4×10^{-9}
566.0	.00045	.022	1.4×10^{-9}
589.1	.00045	.022	1.5 x 10 -9
613.9	.00045	.022	1.4×10^{-9}
637.1	.00045	.022	1.4 x 10-9
661.2	.00050	.025	1.4 x 10-9
733.6	.00045	.022	1.3 × 10

TABLE 24 (Continued)

Time	Length Change ▲ L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
757.2 Hours 781.9 805.3 829.5 901.6 925.3 949.6 1,069.3 1,117.7 1,141.9 1,165.3 1,237.3 1,261.3 1,285.4 1,309.8 1,333.5 1,405.3 1,405.3 1,429.3 1,453.2 1,477.3 1,501.3 1,597.5 1,621.1 1,645.3 1,669.4 1,789.7	.00045 .00050 .00055 .00060 .00055 .00060 .00090 .00080 .00080 .00080 .00075 .00075 .00075 .00075 .00080 .00085 .00085 .00085 .00090 .00095 .00090	.022 .025 .028 .028 .030 .028 .030 .045 .040 .040 .040 .035 .038 .035 .038 .040 .040 .040 .042 .040 .042	1.3 × 10-9 1.4 × 10-9 1.2 × 10-9 1.3 × 10-9 1.4 × 10-9 1.4 × 10-9 1.4 × 10-9 1.1 × 10-9 1.4 × 10-9 1.1 × 10-9 1.2 × 10-9 1.2 × 10-9 1.2 × 10-9 1.2 × 10-9 1.2 × 10-9 1.3 × 10-9 1.4 × 10-9 1.5 × 10-9 1.7 × 10-9 1.8 × 10-9 1.8 × 10-9 1.8 × 10-9 1.9 × 10-9 1.1 × 10-9 1.3 × 10-9 1.3 × 10-9 1.3 × 10-9 1.3 × 10-9 1.3 × 10-9 1.3 × 10-9 1.3 × 10-9
1,813.7 1,837.4	.00100 .00100	.050 .050	1.2×10^{-9} 1.1×10^{-9}

Test in progress Specimen S-47

TABLE 25

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649°C) for 1 hour, Tested at 2350° F (1288°C), 2400 psi (1.65 x 10^{7} N/m²)

	Length Change	e		
	ΔL (inch)	${\tt Creep}$	Pressure	
Time	(2" G. L.)	<u>(%)</u>	(Torr)	
••	2225		8	
l Minutes	00005	002	1.0×10^{-8}	
2	.00000	.000	$1.0 \times 10_{-8}$	
3 !	.00000	.000	$1.0 \times 10_{-8}$	
2 3 4 5 6 7 8 9	.00005	.002	1.0×10^{-8}	
5	.00005	.002	1.0×10^{-8}	
6	.00010	.005	$1.0 \times 10_{-8}$	
/	.00005	.002	1.0×10^{-8}	
0	.00005	.002	1.0 x 10_8	
9	.00005	.002	$1.0 \times 10_{-8}$	
	.00010	.005	1.0×10^{-8}	
15	00015	008	$1.0 \times 10_{-8}$	
30 h.c	00015	008	$1.0 \times 10_{-8}$	
45 60	.00005 .00010	.002	$1.0 \times 10_{-8}$ $1.0 \times 10_{-8}$	
1.0 Hours		.005		
21.4	.00010 .00010	.005 .005		
55.0	.00010	.008	$2.0 \times 10_{-9}$ $7.0 \times 10_{-9}$	
66.5	.00015	.010	, - 10-9	
90.3	.00020	.010	6.5 × 10-9 6.0 × 10	
140.9	.00015	.008	6.3×10^{-9}	
163.3	.00015	.008	4.7 × 10 -9	
234.8	.00015	.012	5.3 x 10-9	
258.4	.00025	.012	3.6×10^{-9}	
282.4	.00075	.038	3.4×10^{-9}	
306.5	.00050	.025	3.1×10^{-9}	
331.0	.00055	.028	3.1×10^{-9}	
403.2	.00085	.042	3.0×10^{-9}	
426.3	.00085	.042	2.6×10^{-9}	
450.5	.00085	.042	3.1×10^{-9}	
570.6	.00135	.068	2.5 × 10 -9	
594.6	.00135	.068	2.4×10^{-9}	
618.6	.00135	.068	2 2 4 10-9	
642.3	.00145	.072	2.3 × 10-9	
667.1	.00150	.075	2.2 × 10 ⁻⁹ 2.2 × 10 ₋₉	
738.6	.00155	.078	20 4 10 7	
768.0	.00175	.088	1 0 4 10 7	
786.3	.00180	.090	1 0 4 10 7	
810.1	.00210	.105	1 0 4 10 7	
835.3	.00210	.105	1.9 x 10-9	
906.9	.00210	.105	1.9×10^{-9} 1.8×10^{-9}	
J J	• =	,		

TABLE 25 (Continued)

Length C	Change
----------	--------

Time	Δ L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
930.3 Hours 954.4 981.7 1,075.1 1,100.5 1,124.0 1,148.0	.00240 .00255 .00265 .00270 .00275 .00275	.120 .128 .132 .135 .138	1.7 × 10 ⁻⁹ 1.7 × 10 ⁻⁹ 1.6 × 10 ⁻⁹ 1.5 × 10 ⁻⁹ 1.4 × 10 ⁻⁹ 1.4 × 10 ⁻⁹
1,170.7	.00290	. 140 . 145	1.5 x 10 ⁻⁹ 1.5 x 10 ⁻⁹

Test in progress Specimen S-48

TABLE 26

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649°C) for 1 hour, Tested at 2000° F (1093°C), 8500 psi (7.22 x $10/N/m^2$)

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
l Minutes	.00000	.000	2.8×10^{-7}
2	.00005	.002	2.8×10^{-7}
	.00005	.002	2.8×10^{-7}
3 4	.00005	.002	2.8×10^{-7}
	.00010	.005	2.8×10^{-7}
6	.00010	.005	2.8×10^{-7}
5 6 7 8	.00015	.008	2.8×10^{-7}
8	.00015	.008	2.8×10^{-7}
9	.00015	.008	2.8×10^{-7}
10	.00015	.008	2.8×10^{-7}
15	.00015	.008	2.8×10^{-7}
30	.00015	.008	2.8×10^{-7}
45	.00010	.005	2.8×10^{-7}
60	.00005	.002	2.8×10^{-7}
1.0 Hours	.00005	.002	$2.7 \times 10_{-8}$
17.7	.00005	.002	$6.1 \times 10_{-8}^{-8}$
42.8	.00015	.008	$3.6 \times 10_{-8}$
114.3	.00015	.008	$1.8 \times 10_{-8}$
137.9	.00015	.008	$1.4 \times 10_{-8}$
162.0	.00020	.010	$1.3 \times 10_{-8}$
189.3	.00020	.010	$1.1 \times 10_{-8}$
210.0	.00020	.010	1.0×10^{-9}
282.7	.00035	.018	8.8×10^{-9}
308.1	.00040	.020	8.5 x 10_9
331.6	.00030	.015	7.4×10^{-9}
355.7	.00035	.018	7.2×10^{-9}
378.2	.00035	.018	6.6×10^{-9}
503. <u>7</u>	.00040	.020	5.3×10^{-9}
522.7	.00040	.020	4.9×10^{-9}
546.0	.00045	.022	4.8×10^{-9}
642.3	.00060	.030	4.2×10^{-9}
665.8	.00060	.030	4.0×10^{-5}

Test in progress Specimen S-50

 $\frac{\text{TABLE 27}}{\text{Creep Test Data, T-111, Heat No. 65080, Annealed at } 3000^{\text{O}}\text{F (}\underline{1649}^{\text{O}}\text{C) for 1 hour,}}{\frac{\text{Tested at } 2200^{\text{O}}\text{F (}1204^{\text{O}}\text{C), }8000 \text{ psi (}5.51 \times 10^{7}\text{N/m}^{2}\text{)}}{}$

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
1 Minutes	.00005	.002	1.2×10^{-8}
2	.00005	.002	1.2 x 10 8
3	.00015	.008	1.2×10^{-8}
3	.00015	.008	1.2×10^{-8}
5	.00020	.010	1.2×10^{-8}
6	.00025	.012	1.2×10^{-8}
7	.00025	.012	1.2×10^{-8}
5 6 7 8 9	.00030	.015	1.2×10^{-8}
9	.00035	.018	1.2×10^{-8}
10	.00045	.022	1.2×10^{-8}
15	.00040	.020	1.2×10^{-6}
30	.00035	.018	1.2×10^{-6}
45	.00035	.018	1.2×10^{-6}
60	.00040	.020	1.2×10^{-6}
1.0 Hours	.00040	.020	1.1×10^{-6}
2.8	.00055	.028	1.1×10^{-6}
21.2	.00245	.122	1.0×10^{-6}
29.5	.00285	. 142	9.2×10^{-9}
47.6	.00425	.212	6.7×10^{-9}
117.4	.00930	. 465	4.0×10^{-9}
141.4	.01075	. 538	3.9×10^{-9}
165.2	.01225	.612	3.4×10^{-9}
190.0	.01425	.712	3.1×10^{-9}
213.8	.01570	. 785	2.8×10^{-9}
250.4	.01820	.910	2.110-9
274.2	.02560	1.230	3.1×10^{-9}

Test terminated - sufficient data obtained Specimen S-37

TABLE 28

Creep Test Data, T-111, Heat No. 65080, Annealed at 3000° F (1649°C) for 1 hour, Tested at 1800° F (982°C), 13,000 psi (8.95 x 10^{7} N/m²)

Time	Length Change	Creep (%)	Pressure (Torr)
1 Minutes 2 3 4 5 6 7 8 9 10 15 30 45 60 7.0 Hours 17.0 41.6 64.6 137.1 160.6 184.5 208.9 232.5 306.0 328.7 352.4 376.4 400.5	A L (inch) (2" G. L.) .00000 .00005 .00000 .00005 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00005 .00005 .00005 .00005 .00005 .00005 .00015 .00015 .00020 .00025 .00025 .00030 .00050 .00065 .00065	.000 .000 .000 .000 .000 .000 .000 .00	(Torr) -9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-9 4.0 × 10-10 1.5 × 10-10 1.5 × 10-10 1.6 × 10-10 1.7 × 10-10 1.8 × 10-10 1.1
472.5 520.5 544.4 568.6 641.0	.00065 .00070 .00070 .00070 .00075	.032 .035 .035 .035 .038	6.3×10^{-10} 6.1×10^{-10} 5.9×10^{-10}
			5.9 × 10-10 6.4 × 10-10 6.0 × 10-10 6.0 × 10-10 5.2 × 10-10 4.9 × 10-10 5.4 × 10-10 5.3 × 10-10
856.9 880.6	.00110 .00120	.055 .060	5.1 x 10 ⁻¹⁰ 5.0 x 10

TABLE 28 (Continued)

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2'' G. L.)	(%)	(Torr)
904.8 Hours	.00125	.062	5.5×10^{-10}
978.3	.00120	.060	5.4×10^{-10}
1,000.4	.00135	.068	49 × 10-10
1,029.9	.00135	.068	5.1×10^{-10}
1,048.3	.00140	.070	5.1×10^{-10}
1,072.5	.00140	.070	5.1×10^{-10}
1,146.3	.00140	.070	4.8×10^{-10}
1,168.6	.00155	.078	5.0×10^{-10}
1,192.7	.00175	.088	4.6×10^{-10}
1,216.6	.00190	.095	4.9×10^{-10}
1,240.5	.00210	.105	4.7×10^{-10}
1,312.6	.00215	.108	4.6×10^{-10}
1,336.6	.00210	.105	4.6×10^{-10}
1,360.6	.00210	. 105	4.9×10^{-10}
1,384.6	.00205	.102	4.7×10^{-10}
1,408.6	.00205	.102	4.8×10^{-10}
1,480.7	.00215	.108	4.7×10^{-10}
1,504.5	.00215	.108	4.6×10^{-10}
1,528.9	.00220	.110	4.6×10^{-10}
1,552.6	.00220	.110	4.7×10^{-10}
1,576.7	.00225	.112	4.6×10^{-10}
1,649.1	.00225	.112	4.2×10^{-10}
1,672.5	.00235	.118	4.6×10^{-10}
1,696.6	.00230	.115	4.5×10^{-10}
1,720.5	.00235	.118	4.6×10^{-10}
1,744.7	.00235	.118	4.7×10^{-10}
1,816.6	.00245	.122	4.5×10^{-10}
1,841.7	.00250	.125	4.5 x 10 ₋₁₀
1,864.6	.00260	.130	4.4 x 10_10
1,889.0	.00275	.138	4.3 × 10 ₋₁₀
1,913.4	.00275	.138	4.3 × 10 ₋₁₀
2,009.5	.00300	.150	4.5 X IU 10
2,032.6	.00305	.152	4.5×10^{-10}
2,056.4	.00305	. 152	$3.9 \times 10_{-10}$
2,081.0	. 00305	. 152	4.6 x 10_10
2,153.0	.00325	. 162	4.4×10^{-10}

TABLE 28 (Continued)

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2" G. L.)	(%)	(Torr)	
		***************************************	-10	
2,177.3 Hours	.00335	.168	4.7×10^{-10}	
2,200.8	. 00345	.172	$4.4 \times 10_{-10}$	
2,224.6	.00355	.178	$4.4 \times 10_{-10}$	
2,248.6	.00360	.180	4.8×10^{-10}	
2,320.8	.00380	.190	$4.7 \times 10_{-10}$	
2,344.7	.00385	.192	$4.4 \times 10_{-10}^{-10}$	
2,368.5	.00395	.198	4.4×10^{-10}	
2,392.6	.00395	.198	$\frac{4.2 \times 10^{-10}}{100}$	
2,416.7	.00400	.200	4.2×10^{-10}	
2,490.6	.00410	.205	4.3×10^{-10}	
2,512.5	.00415	.208	4.6×10^{-10}	
2,537.1	.00430	.215	$4.2 \times 10_{-10}$	
2,560.5	.00440	.220	4.2×10^{-10}	
2,584.4	.00440	.220	4.3×10^{-10}	
2,656.8	.00475	.238	4.1×10^{-10}	
2,680.6	.00490	. 245	4.0×10^{-10}	
2,705.4	.00495	. 248	4.0×10^{-10}	
2,728.6	.00505	.252	4.0×10^{-10}	
2,752.6	.00510	. 255	4.1×10^{-10}	
2,824.5	.00530	.265	4.0×10^{-10}	
2,848.6	.00535	. 268	3.9×10^{-10}	
2,872.6	.00550	.275	4.0×10^{-10}	
2,896.7	.00550	.275	4.0×10^{-10}	
2,921.0	.00560	. 280	2.6×10^{-10}	
2,993.5	.00580	.290	5.9×10^{-10}	
3,016.7	.00585	. 292	4.6 x 10	
3,040.5	.00585	.292	4.1×10^{-10}	
3,064.7	.00590	.295	4.1×10^{-10}	
3,088.7	.00590	. 295	4.0×10^{-10}	
3,161.0	.00615	.308	5.0×10^{-10}	
3,185.7	.00620	.310	$h = 0 \times 10^{-10}$	
3,209.4	.00625	.312	4.0 × 10-10	
3,233.1	.00635	.318	$h \cdot 1 \times 10^{-10}$	
3,257.3	.00635	.318	Ji 1 ∨ 10 ⁻¹⁰	
3,330.0	.00655	.328	4.0 × 10-10	
3,353.4	.00660	.330	4.0 × 10-10	
-,		• • • •		

TABLE 28 (Continued)

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
		 _	1.0
3,377.4 Hours	.00675	.338	3.9×10^{-10}
3,402.2	.00680	. 340	4.0×10^{-10}
3,425.5	.00680	. 340	3.6×10^{-10}
3,498.1	.00680	. 340	3.8×10^{-10}
3,521.4	.00690	. 345	3.2×10^{-10}
3,546.1	.00690	. 345	4.0×10^{-10}
3,569.4	.00705	.352	3.8×10^{-10}
3,593.5	.00710	. 355	3.9×10^{-10}
3,666.0	.00725	. 362	3.7×10^{-10}
3,689.5	.00725	. 362	3.7×10^{-10}
3,713.7	.00725	. 362	3.8×10^{-10}
3,737.6	.00750	. 368	3.5×10^{-10}
3,761.8	.00750	. 375	3.4 × 10
3,833.9	.00765	. 382	3.9×10^{-10}
3,857.7	.00780	. 390	4.3 × 10-10
3,881.9	.00795	. 398	3.8 X 10
4,001.7	.00845	.422	3.9×10^{-10}
4,025.4	.00840	.420	4.4×10^{-10}
4,050.0	.00840	.420	4.3 x (0)
4,074.2	. 00850	. 425	4.2×10^{-10}
4,097.6	.00865	.432	3.7×10^{-10}
4,169.7	.00885	. 442	$4.0 \times 10_{-10}$
4,193.6	.00890	. 445	4.0×10^{-10}
4,217.4	.00905	.452	$3.9 \times 10_{-10}$
4,242.0	.00915	. 458	4.0×10^{-10}
4,265.9	.00925	.462	4.1×10^{-10}
4,337.7	. 00940	.470	4.0 X 10_10
4,361.6	.00955	.478	3.8 x 10 ₋₁₀
4,385.6	.00960	.480	4.4×10^{-10}
4,409.6	.00970	. 485	3.9×10^{-10}
4,433.6	.00970	.485	$4.3 \times 10_{-10}$
4,505.6	.00980	. 490	3.8×10^{-10}
4,529.7	.00985	. 492	3.8 x 10 .
4,553.4	.00980	. 490	2.9×10^{-10}
4,577.6	.00985	. 492	3.7×10^{-10}
4,601.7	.00995	. 498	3.6×10^{-10}

Test in progress Specimen S-39

TABLE 29

Creep Test Data, T-111, Heat No. 65080A, Annealed at 3000° F (1649°C) for 1 hour, Tested at 2200° F (1204°C), 3000 psi (2.07 x 10^{7} N/m²)

Time	Length Change	Creep (%)	Pressure (Torr)
			•
2 Minutes	.00020	.010	3.4×10^{-8}
	.00030	.015	3.4×10^{-6}
3 4	.00035	.018	3.4×10^{-6}
5	.00040	.020	3.4×10^{-6}
5 6 7 8	.00065	.033	3.4×10^{-6}
7	.00065	.033	$3.4 \times 10_{0}^{0}$
8	.00065	.033	3.4×10^{-6}
9	.00060	.030	3.4×10^{-6}
10	.00070	.035	3.4×10^{-6}
15	.00075	.038	$3.4 \times 10_{-8}^{-6}$
30	.00065	.033	$3.4 \times 10_{-8}$
45	.00030	.015	$3.4 \times 10_{-8}^{-6}$
60	.00040	.020	3.4×10^{-9}
17.4 Hours	.00080	.040	2.2×10^{-6}
41.2	.00190	.095	6.4 x 10 g
46.2	.00200	.100	6.3×10^{-9}
65.2	.00305	.152	4.0×10^{-9}
137.3	.00580	.290	$3.9 \times 10_{-9}^{-9}$
161.2	.00755	.378	$3.9 \times 10_{-9}$
185.0	.00780	، 390	4.4×10^{-9}
209.0	.00890	.445	4.2×10^{-9}
233.2	.01010	.505	4.6×10^{-9}
307.1	.01280	. 640	3.7×10^{-3}
329.0	.01350	.675	3.2×10^{-5}
353.6	.01420	.710	3.8×10^{-9}
377.0	.01495	. 748	$2.9 \times 10_{-9}$
400.9	.01560	. 780	3.1×10^{-9}
473.2	.01720	. 860	2.8×10^{-9}
497.1	.01850	.925	2.4×10^{-9}
521.9	.01925	.962	1.8×10^{-9}
545.1	.01980	.990	2.4×10^{-9}
569.2	.02020	1.010	$1.7 \times 10_{-9}$
641.0	.02175	1.088	2.5×10^{-9}
665.1	.02240	1.120	2.4×10^{-9}
689.2	.02300	1.150	2.4 x 10_a
697.2	.02330	1.165	1.4×10^{-9}

Test terminated - sufficient data obtained Specimen S-45

TABLE 30

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649° C) for 1/4 hour, Tested at 2000° F (1093° C), 18,000 psi (1.24×10^{8} N/m²)

Time	Length Change A L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
1	.00000	.000	1.1×10^{-8}
2	.00005	.002	1.1 x 10 8
3	.00000	.000	1.1 × 10 8
3 4	.00005	.002	1.1 x 10 8
5 6	.00010	.005	1.1 x 10_0
6	.00010	.005	1.1 x 10 8
7 8	.00015	.008	1.1×10^{-8}
8	.00015	.008	1.1×10^{-8}
9	.00010	.005	1.1×10^{-8}
10	.00015	.008	1.1×10^{-8}
15	.00020	.010	1.1×10^{-8}
30	.00020	.010	1.1×10^{-8}
45	.00020	.010	1.1×10^{-8}
60	.00020	.010	1.1×10^{-8}
3.0 Hours	.00020	.010	1.3×10^{-8}
19.3	.00025	.012	8.1×10^{-9}
43.4	.00025	.012	5.1×10^{-9}
115.8	.00035	.018	2.4×10^{-9}
139.2	.00035	.018	2.3×10^{-9}
163.3	.00045	.022	1.8×10^{-9}
187.2	.00060	.030	1.6×10^{-9}
211.4	.00070	.035	1.5×10^{-9}
283.4	.00115	.058	1.4×10^{-9}
308.4	.00130	.065	1.4×10^{-9}
331.3	.00170	.085	1.1×10^{-9}
355.7	.00210	.105	1.2×10^{-9}
360.6	.00215	.108	1.2×10^{-9}

Test Terminated - Sufficient Data Obtained Specimen S-43

TABLE 31

Creep Test Data, T-111, Heat No. 61079, Annealed at $3000^{\circ}F$ (1649°C) for 1 hour, Tested at 2172°F (1189°C), 9500 psi (6.55 x $10^{7}N/m^{2}$)

Time	Length Change A L (inch) (2" G. L.)	Creep <u>(%)</u>	Pressure (Torr)
1 Minutes 2 3 4 5 6 7 8 9 10 15	· · · · · · · · · · · · · · · · · · ·	<u>-</u>	
45 60 1.0 Hours 7.0 33.2 56.6 79.0 102.1 125.9 154.0 222.6 246.9 270.3 294.1 318.3 414.2 438.0 462.1 467.3	.00015 .00015 .00030 .00040 .00050 .00060 .00075 .00090 .00110 .00140 .00155 .00170 .00185 .00205 .00275 .00295	.008 .008 .015 .020 .025 .030 .038 .045 .055 .070 .078 .085 .092 .128 .138 .148	2.6 x 10-8 3.2 x 10-8 2.0 x 10-8 1.1 x 10-9 7.2 x 10-9 5.0 x 10-9 2.8 x 10-9 2.5 x 10-9 2.5 x 10-9 2.2 x 10-9 1.4 x 10-9 1.3 x 10-9 1.2 x 10-9 1.2 x 10-9 1.2 x 10-9

Test terminated - sufficient data obtained Specimen S-44A

TABLE 32

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649°C) for 44 hours, Tested at 2371°F (1299°C), 3300 psi (2.27 x 10° N/m²)

Time	Length Change	Creep _(%)	Pressure (Torr)
l Minutes	00005	002	4.0×10^{-8}
	00005	002	4.0×10^{-8}
_ 3	.00000	.000	$\frac{4.0 \times 10^{-8}}{4.0 \times 10^{-8}}$
2 3 4 5 6 7 8	.00005	.002	$\frac{4.0 \times 10^{-8}}{4.0 \times 10^{-8}}$
5	.00005	.002	4.0×10^{-8}
6	.00010	.005	$\frac{1.0 \times 10^{-8}}{4.0 \times 10^{-8}}$
7	.00010	.005	4.0×10^{-8}
8	.00015	.008	$\frac{1.0 \times 10^{-8}}{4.0 \times 10^{-8}}$
9	.00010	.005	4.0×10^{-8}
10	.00010	.005	4.0×10^{-8}
15	.00005	.002	4.0×10^{-8}
30	.00005	.002	4.0×10^{-8}
45	.00005	.002	4.0×10^{-8}
60	.00010	.005	4.0×10^{-8}
1.0 Hours	.00010	.005	3.3×10^{-8}
16.9	.00020	.010	1.0×10^{-8}
41.5	.00030	.015	4.0×10^{-9}
64.9	.00055	.028	3.2×10^{-9}
88.8	.00095	.048	$\frac{1}{3.1} \times 10^{-9}$
161.1	.00175	.088	2.1×10^{-9}
185.0	.00185	.092	1.8×10^{-9}
209.8	.00200	.100	1.8×10^{-9}
232.9	.00215	. 108	1.6×10^{-9}
257.1	.00255	.128	1.6×10^{-9}
328.9	.00295	. 148	1.3×10^{-9}
334.6	.00335	.168	1.3×10^{-9}

Test terminated - sufficient data obtained Specimen S-44B

TABLE 33

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000° F (1649° C) for 1/4 hour, Tested at 2000° F (1093° C), 18,000 psi ($1.24 \times 10^{\circ}$ N/m²)

Time	Length Change	Creep <u>(%)</u>	Pressure (Torr)
1 Minutes	.00000	.000	2.8×10^{-9}
	.00000	.000	2.8 x 10 -9 2.8 x 10 0
2	.00005	.002	2.8 x 10 -9
3 4	.00010	.002	2.8 x 10 ⁻⁹
4 E	.00010	.005	2.8×10^{-9}
2 6	.00010	.005	2.8×10^{-9}
7	.00015	.008	2.8×10^{-9}
5 6 7 8	.00015	.008	2.8×10^{-9}
9	.00015	.008	2.8×10^{-9}
10	.00015	.008	2.8×10^{-9}
15	.00015	.008	2.8×10^{-9}
30	.00010	.005	2.8×10^{-9}
45	.00015	.008	2.8×10^{-9}
60	.00015	.008	2.8×10^{-9}
2.0 Hours	.00015	.008	3.2×10^{-9}
3.9	.00020	.010	3.8×10^{-9}
17.6	.00135	.068	2.6×10^{-9}
41.8	.00155	.078	3.2×10^{-9}
65 .4	.00095	.048	2.6×10^{-9}
88.7	.00130	.065	2.5×10^{-9}
112.4	. 00145	.072	2.0×10^{-9}
136.6	.00155	.078	1.9×10^{-9}
160.6	.00160	.080	1.8×10^{-9}
233.0	.00175	.088	2.1×10^{-9}
257.6	.00175	.088	1.6×10^{-9}
281.3	.00185	.092	1.6×10^{-9}
305.0	.00190	.095	1.5×10^{-9}
329.2	.00210	.105	$1.3 \times 10_{-9}^{3}$
401.9	.00255	.128	$1.0 \times 10_{-9}^{2}$
426.3	.00270	. 135	$1.1 \times 10_{-9}$
449.4	.00295	. 148	$1.2 \times 10_{-9}$
474.1	.00315	.158	1.2×10^{-9}
497.4	.00345	. 172	1.3 x 10 2
570.2	.00380	. 190	1.0 \ 10_q
593.3	.00420	.210	1.1 × 10 ₋₁₀
618.1	.00435	.218	9./ x 10_10
641.3	.00470	.235	8.6×10^{-10}
665.4	.00510	.255	9.1×10^{-10}
737.9	.00595	. 298	8.3 x 10 10
761.4	.00605	. 302	8.1 X 10_10
786.1	.00640	. 320	8.0 × 10

TABLE 33 (Continued)

Length Change		
ΔL (inch)	${\tt Creep}$	Pressure
(2" G. L.)		(Torr)
.00675	.338	7.4×10^{-10}
.00710		7.8 × 10 - 10
.00795		83 × 10 ⁻¹⁰
.00840	.420	8.2×10^{-10}
.00865	. 432	1.0×10^{-9}
.01175	.588	8.0×10^{-10}
.01120	.560	10
.01180	. 590	8.0×10^{-10}
.01200	.600	7.8×10^{-10}
.01245	.622	7.4×10^{-10}
.01265	.632	7.4×10^{-10}
.01375	.688	7.0×10^{-10}
	Δ L (inch) (2" G. L.) .00675 .00710 .00795 .00840 .00865 .01175 .01120 .01180 .01200 .01245 .01265	Δ L (inch) Creep (2" G. L.) (%) .00675 .338 .00710 .355 .00795 .398 .00840 .420 .00865 .432 .01175 .588 .01120 .560 .01180 .590 .01200 .600 .01245 .622 .01265 .632

Test terminated - sufficient data obtained Specimen S-44C

TABLE 34

Creep Test Data, T-111. Heat No. 65079, Annealed at 3000°F (1649°C) for 1/4 hour,

Tested at 1800°F (982°C), 23,000 psi (1.58 x 10°N/m²)

	Length Change		
	Δ L (inch)	${\tt Creep}$	Pressure
Time	(2" G. L.)	(%)	(Torr)
			10
1 Minutes	.00000	.000	7.1×10^{-10}
2	.00000	.000	$7.1 \times 10_{-10}^{-10}$
	.00000	.000	$7.1 \times 10_{-10}^{-10}$
3 4	.00005	.002	$7.1 \times 10_{-10}^{-10}$
	.00005	.002	$7.1 \times 10_{-10}$
6	.00010	.005	$7.1 \times 10_{-10}^{-10}$
5 6 7 8 9	.00010	.005	$7.1 \times 10_{-10}$
8	.00015	.008	$7.1 \times 10_{-10}$
9	.00010	.005	7.1×10^{-10}
10	.00015	.008	7.1 x 10 ₋₁₀
15	.00010	.005	$7.1 \times 10_{-10}$
30	.00010	.005	$7.1 \times 10_{-10}$
45	.00015	.008	$7.1 \times 10_{-10}$
60	.00010	.005	$7.1 \times 10_{-10}$
15.5 Hours	.00015	.008	6.9 x 10 ₋₁₀
39.6	.00015	.008	6.9 x 10 ₋₁₀
64.1	.00035	.018	$7.0 \times 10_{-10}$
87.8	.00045	.022	$6.8 \times 10_{-10}$
159.6	.00035	.018	6.9 x 10 ₋₁₀
183.5	.00055	.028	6.8 x 10 ₋₁₀
207.5	.00065	.032	7.2×10^{-10}
231.5	.00065	.032	6.4 × 10-10
255.6	.00070	.035	6.4 × 10-10
327.5	.00070	.035	6.4×10^{-10}
351.7	.00065	.032	6.3×10^{-10}
375.4	.00060	.030	5.3×10^{-10}
399.6	.00075	.038	6.2 x 10 ₋₁₀
423.7	.00085	.042	6.0 x 10-10
568.0	.00070	.035	6.3×10^{-10}
591.8	.00065	.032	6.2×10^{-10}
687.7	.00095	.048	6.2×10^{-10}
711.3	.00095	.048	6.1×10^{-10}
735.8	.00125	.062	6.4×10^{-10}
759.8	.00135	.068	0.2 \ .0_10
831.9	.00160	.080	6.3 X 10_10
856.2	.00160	.080	5.4 x 10-10
880.3	.00165	.082	0.1 X 10_10
903.9	.00180	.090	5./ X IV 10
927.2	.00185	.092	5.8×10^{-10} 5.8×10
1.002.6	.00200	.100	2.0 X 10

Test in progress Specimen S-44D

TABLE 35

Creep Test Data, T-111, Heat No. 65080, Annealed at 3000°F (1649°C) for 1 hour, Tested at 2200°F (1204°C), 16 psi/hr. continuous loading rate

Time	Length Change • L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
1.0 Hours	.00000	.000	9.6×10^{-9}
17.3	.00010	.005	8.9×10^{-9}
41.3	.00080	.040	3.6×10^{-9}
112.6	.00140	.070	5.8×10^{-9}
136.5	.00190	. 095	$5.4 \times 10_{-9}$
161.2	.00220	.110	$5.3 \times 10_{-9}^{3}$
184.6	.00255	.128	$5.0 \times 10_{-9}$
208.2	.00300	. 150	4.6×10^{-9}
231.9	.00390	. 195	4.2×10^{-9}
258.4	.00460	.230	4.0×10^{-9}
297.4	.00540	.270	3.3×10^{-9}
319.9	.00610	. 305	2.8×10^{-9}
328.5	.00655	.328	3.4×10^{-9}
354.3	.00750	.375	3.4×10^{-9}
376.0	.00855	.428	3.4×10^{-9}
399.9	.00955	. 478	•
431.7	.01055	.528	3.1×10^{-9}
448.7	.01135	. 568	2.8×10^{-9}
472.4	.01250	.625	2.6×10^{-9}
496.6	.01365	.682	2.8×10^{-9}
520.2	.01510	. 755	2.8×10^{-9}
546.4	.01695	. 848	2.8×10^{-9}
575.6	.01850	.925	2.7×10^{-9}
605.7	2.02140	1.070	2.6×10^{-9}
616.2	.02200	1.100	2.8×10^{-9}
623.8	.02240	1.120	2.8×10^{-9}

Test terminated - sufficient data obtained Specimen S-36

TABLE 36

Creep Test Data, T-111, Heat No. 65080, Annealed at 3000°F (1649°C) for 1 hour, Tested at 2200°F (1204°C), 1 psi/hr. - continuous loading rate

Time	Length Change A L (inch) (2" G. L.)	Creep (%)	Pressure (Torr)
h 0 Harra	.00000	.000	2.0×10^{-8}
4.0 Hours 20.4	.00000	.000	1.0 x 10 8
92.1	.00000	.000	5.3 x 10 -9
116.2	.00000	.000	4.4×10^{-9}
140.8	.00000	.000	3.7×10^{-9}
166.4	.00000	.000	4.1×10^{-9}
188.2	.00005	.002	3.8×10^{-9}
259.9	.00000	.000	3.1×10^{-9}
284.6	.00000	.000	2.8×10^{-9}
308.5	.00000	.000	2.7×10^{-9}
333.1	.00005	.002	2.8×10^{-9}
356.2	.00000	.000	2.8×10^{-9}
428.6	.00010	.005	2.0×10^{-9}
452.1	.00005	.002	2.1×10^{-9}
476.0	.00010	.005	2.2×10^{-9}
500.4	.00015	.008	2.0×10^{-9}
524.0	.00015	.008	1.9×10^{-9}
597.4	.00010	.005	1.7×10^{-3}
621.4	.00005	.002	1.7×10^{-3}
645.4	.00005	.002	$1.6 \times 10_{-9}^{9}$
669.4	.00005	.002	$1.5 \times 10_{-9}^{-3}$
691.9	.00010	.005	$1.6 \times 10_{-9}^{-3}$
764.0	.00010	.005	$1.6 \times 10_{-9}$
812.0	.00010	.005	$1.4 \times 10_{-9}^{-3}$
836.0	.00015	.008	$1.3 \times 10_{-9}$
860.1	.00015	.008	1.4×10^{-9}
932.4	.00020	.010	$1.6 \times 10_{-9}^{-9}$
956.1	.00015	.008	1.4×10^{-9}
980.6	.00015	.008	1.5×10^{-9}
1,004.8	.00025	.012	1.3×10^{-9}
1,029.1	.00025	.012	1.2×10^{-9}
1,100.7	.00050	.025	1.2×10^{-9}
1,124.2	.00060	.030	1.3×10^{-9}
1,148.4	.00065	.032	1.2×10^{-9}
1,172.1	.00070	.035	1.2 x 10 ⁹

TABLE 36 (Continued)

	Length Change		
	ΔL (inch)	Creep	Pressure
Time	(2" G. L.)	(%)	(Torr)
1,196.3 Hours	.00080	.040	1.2×10^{-9}
1,269.8	.00115	.058	1.3×10^{-9}
1,292.5	.00145	.072	1.2×10^{-9}
1,321.4	.00170	.085	1.2×10^{-9}
1,339.8	.00170	.085	1.2×10^{-9}
1,364.0	.00180	.090	1.1 × 10 -9
1,438.4	.00195	.098	1.1 × 10-9
1,460.2	.00195	.098	1.1 × 10-9
1,484.2	.00210	.105	1.0×10^{-9}
1,508.1	.00225	.112	1.2×10^{-9}
1,532.0	.00220	.110	1.1×10^{-9}
1,604.3	.00240	.120	1.1×10^{-9}
1,630.4	.00240	.120	1.1×10^{-9}
1,654.4	.00250	.125	9.6×10^{-10}
1,678.4	.00260	.130	9.6×10^{-10}
1,702.4	.00285	.142	9.6×10^{-10}
1,774.4	.00305	.152	9.3×10^{-10}
1,798.4	.00320	.160	9.0×10^{-10}
1,822.4	.00320	.160	9.2×10^{-10}
1,846.4	.00325	.162	8.8×10^{-10}
1,870.4	.00325	.162	1.0×10^{-9}
1,942.4	.00355	.178	9.0×10^{-10}
1,966.4	.00385	.192	8.4×10^{-10}
1,990.4	.00430	.125	8.9×10^{-10}
2,014.4	.00440	.220	8.8×10^{-10}
2,038.4	. 00450	.225	9.2×10^{-10}
2,110.4	.00480	. 240	9.0×10^{-10}
2,134.4	.00490	.245	8.8×10^{-10}
2,158.4	.00530	.265	9.0×10^{-10}
2,182.4	.00545	. 272	8.3×10^{-10}
2,206.4	.00565	.282	8.3×10^{-10}
2,302.4	.00615	.308	8.5×10^{-10}
2,326.4	.00645	.322	8.1 × 10 10
2,350.4	.00665	. 332	7.7×10^{-10}
2,374.4	.00675	.338	8 2 × 10 10
2,447.9	.00695	. 348	7.6×10^{-10}
			7.0 X 10

TABLE 36 (Continued)

	Length Change		
Time	∆ L (inch) (2" G. L.)	${\tt Creep}$	Pressure
		<u>(%)</u>	(Torr)
2,470.4 Hours	.00715	. 358	7.8×10^{-10}
2,494.4	.00725	. 362	8.0×10^{-10}
2,518.4	.00745	. 372	7.9×10^{-10}
2,542.4	.00760	. 380	$8.6 \times 10_{-10}$
2,614.4	.00815	. 408	7.8×10^{-10}
2,638.4	.00840	.420	8.2×10^{-10}
2,662.4	.00855	.428	8.0×10^{-10}
2,686.4	.00870	.435	8.0×10^{-10}
2,710.4	.00895	. 448	/.5 X IU_10
2,782.4	.00940	. 470	7.4×10^{-10}
2,806.4	.00955	. 478	$7.5 \times 10_{-10}$
2,830.4	.00995	.498	7.8×10^{-10}
2,854.4	.01010	.505	7.2×10^{-10}
2,878.4	.01020	.510	$7.2 \times 10_{-10}^{-10}$
2,950.4	.01065	.532	7.0×10^{-10}
2,974.4	.01085	. 542	$7.2 \times 10_{-10}$
2,998.4	.01115	.558	$7.2 \times 10_{-10}$
3,022.4	.01125	. 562	$6.9 \times 10_{-10}$
3,046.4	.01150	. 575	6.4 × 10 ₋₁₀
3,118.4	.01195	_~ 598	7.1 x 10 ₋₁₀
3,142.4	.01235	.618	6.6 x 10 ₋₁₀
3,166.4	.01-70	.635	6.8 x 10_10
3,190.4	.01285	.642	6.8 x 10 ₋₁₀
3,214.4	.01310	.655	$4.8 \times 10_{-10}$
3,286.4	.01365	.682	6. / x 10 ₋₁₀
3,310.4	.01385	.692	$6.9 \times 10_{-10}$
3,334.4	.01410	. 705	6.6 x 10 ₋₁₀
3,358.4	.01425	.712	$6.4 \times 10_{-10}$
3,382.4	.01450	. 725	6.6 x 10 ₋₁₀
3,454.4	.01505	. 752	6.8 x 10 ₋₁₀
3,478.4	.01645	.822	6.2×10^{-10}
3,502.4	.01620	.810	6.8×10^{-10}
3,526.4	.01615	.808	6.8×10^{-10}
3,550.4	.01655	.828	6.8×10^{-10}
3,622.4	.01765	.882	6.5×10^{-10}
3,646.4	.01795	.898	6.5×10^{-10}
3,670.4	.01835	.918	6.9 x 10 1°

TABLE 36 (Continued)

	Length Change		
	Δ L (inch)	${\tt Creep}$	${\tt Pressure}$
Time	(2" G. L.)	(%)	(Torr)
			
3,694.4 Hours	.01880	. 940	6.8×10^{-10}
3,718.4	.01895	. 948	6.8×10^{-10}
3,790.4	.01965	. 982	6.6×10^{-10}
3,814.4	.01980	.990	6.6×10^{-10}
3,838.4	.02005	1.002	6.4×10^{-10}
3,862.4	.02020	1.010	6.1×10^{-10}
3,886.4	.02055	1.028	6.4×10^{-10}
3,958.4	.02115	1.058	6.0×10^{-10}
3,982.4	.02140	1.070	5.9×10^{-10}
4,006.4	.02175	1.088	5 6 x 10 ⁻¹⁰
4,030.4	.02230	1.115	5.4×10^{-10}
4,054.4	.02265	1.132	4.8×10^{-10}
4,126.4	.02330	1.165	5.8 x 10 10
4,150.4	.02395	1.198	6.0×10^{-10}
4,174.4	.02455	1.228	6.0×10^{-10}
4,294.4	.02590	1.295	6.4×10^{-10}
4,318.4	.02615	1.308	6.0×10^{-10}
4,342.4	.02635	1.318	6.0×10^{-10}
4,366.4	.02655	1.328	5.0×10^{-10}
4,390.4	.02685	1.342	5.4×10^{-10}
4,462.4	.02745	1.372	6.1×10^{-10}
4,486.4	.02785	1.392	5.8×10^{-10}
4,510.4	.02855	1.428	6.1×10^{-10}
4,534.4	.02870	1.435	7.0×10^{-10}
4,558.4	.02905	1.452	7.1×10^{-10}
4,630.4	.03005	1.502	6.1×10^{-10}
4,654.4	.03065	1.532	6.4×10^{-10}
4,678.4	.03105	1.552	6.9×10^{-10}
4,685.9	.03125	1.562	6.1×10^{-10}

Test terminated - sufficient data obtained Specimen S-38

TABLE 37

Creep Test Data, T-111, Heat No. 65079, Annealed at 3000°F (1649°C) for 1 hour,

Tested at 2200°F (1204°C), 16 psi/hr. continuous loading rate.

	Length Change			
	ΔL (inch)	Creep	Pressure	
Time	(2" G. L.)	<u>(%)</u>	(Torr)	
			-8	
2.4 Hours	.00000	. 000	$1.6 \times 10_{-8}$	
15.2	.00010	.005	$1.8 \times 10_{-9}^{-9}$	
39.4	.00005	.002	$3.8 \times 10_{-9}^{-9}$	
64.5	.00005	.002	$5.2 \times 10_{-9}$	
88.5	.00000	.000	$4.6 \times 10_{-9}$	
112.5	.00000	.000	$2.0 \times 10_{-9}$	
136.5	.00000	.000	$4.2 \times 10_{-9}^{-9}$	
160.5	.00005	.002	$1.6 \times 10_{-9}^{-9}$	
232.5	.00005	.002	$4.0 \times 10_{-9}^{-9}$	
256.5	.00015	.008	$1.6 \times 10_{-9}^{-3}$	
280.5	.00020	.010	3.4×10^{-9}	
304.5	.00040	.020	$2.1 \times 10_{-9}^{-3}$	
328.5	.00035	.018	$2.0 \times 10_{-9}^{-9}$	
400.5	.00040	.020	$3.1 \times 10_{-9}$	
424.5	.00050	.025	$3.0 \times 10_{-9}$	
448.5	.00040	.020	$1.4 \times 10_{-9}^{-3}$	
472.5	.00050	.025	3.0×10^{-3}	
496.5	.00050	.025	$2.4 \times 10_{-9}$	
568.5	.00160	.080	2.8×10^{-9}	
592.5	.00250	.125	$3.1 \times 10_{-9}$	
616.5	.00330	.165	$1.5 \times 10_{-9}$	
640.5	.00330	.165	$1.6 \times 10_{-9}$	
663.1	.00415	.208	$1.5 \times 10_{-9}^{-3}$	
736.5	.00425	.212	$1.5 \times 10_{-9}$	
760.5	.00450	.225	1.4×10^{-5}	

Test terminated - sufficient data obtained Specimen S-46

EXTERNAL DISTRIBUTION

National Aeronautics and Space Administration Washington, D. C. 20546 Attn: George C. Deutsch (RR-1) S. V. Manson (RNP)

National Aeronautics and Space Administration Scientific and Technical Information Facility P. 0. Box 33 College Park, Maryland 20740 Attn: NASA Representative - 2 copies and reproducible

National Aeronautics and Space Administration Ames Research Center Moffet Field, California 94035 Attn: Librarian

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Librarian

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23365 Attn: Librarian

National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas 77001 Attn: Librarian

National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Librarian

National Aeronautics and Space Administration Jet Propulsion Laboratory 4800 Oak Grobe Drive Pasadena, California 91103 Attn: Librarian

Wah Chang Corporation Albany, Oregon Attn: Librarian Attn: S. Worcester

Westinghouse Electric Corporation Astronuclear Laboratory P. O. Box 10864 Pittsburgh, Pennsylvania 15236 Attn: R. Begley

Westinghouse Electric Corporation Materials Manufacturing Division RD No. 2 Box 25 Blairsville, Pennsylvania Attn: Librarian

Wolverine Tube Division Calumet and Hecla, Inc. 17200 Southfield Road Allen Park, Michigan Attn: Mr. Eugene F. Hill

Wyman-Gordon Company North Grafton, Massachusetts Attn: Librarian

Westinghouse Electric Aerospace Electrical Division Lima, Ohio Attn: Paul Kueser

Air Force Materials Laboratory
Research and Technology Division
Wright-Patterson Air Force Base, Ohio 4543²
Attn: C. L. Harmsworth

Johns Hopkins University Applied Physics Laboratory 8621 Sergia Avenue Silver Spring, Maryland Attn: Librarian

General Dynamics/Fort Worth
P. O. Box 748
Fort Worth, Texas
Attn: Librarian

General Motors Corporation Allison Division Indianapolis 6, Indiana Attn: Librarian

Hamilton Standard
Division of United Aircraft Corporation
Windsor Locks, Connecticut
Attn: Librarian

Hughes Aircraft Company Engineering Division Culver City, California Attn: Librarian

Lockheed Missiles and Space Division Lockheed Aircraft Corporation Sunnyvale, California Attn: Librarian

Marquardt Aircraft Company P. O. Box 2013 Van Nuys, California Attn: Librarian

The Martin Company
Baltimore 3, Maryland
Attn: Librarian

The Martin Company
Nuclear Division
P. O. Box 5042
Baltimore 20, Maryland
Attn: Librarian

Chance Vought Aircraft Inc. P. O. Box 5907 Dallas 22, Texas Attn: Librarian

Clevite Corporation
Mechanical Research Division
540 East 105th Street
Cleveland 8, Ohio
Attn: Mr. N. C. Beerli,
Project Administrator

Climax Molybdenum Company of Michigan Detroit, Michigan Attn: Librarian

Convair Astronautics 5001 Kerrny Villa Road San Diego 11, California Attn: Librarian

Curtiss-Wright Corporation Research Division Tuehanna, Pennsylvania Attn: Librarian

E.I. DuPont de Nemours & Co., Inc. Wilmington, Delaware 19898
Attn: W. E. Lusby, Jr.
Defense Contracts Supervisor

Electro-Optical Systems, Incorporated Advanced Power Systems Division Pasadena, California Attn: Librarian

Fansteel Metallurgical Corporation North Chicago, Illinois Attn: Librarian

Ford Motor Company Aeronutronics Newport Beach, California Attn: Librarian

General Atomic
John Jay Hopkins Laboratory
P. O. Box 608
San Diego 12, California
Attn: Librarian

General Electric Company Atomic Power Equipment Division P. O. Box 1131 San Jose, California

General Electric Company Missile and Space Vehicle Dept. 3198 Chestnut Street Philadelphia 4, Pennsylvania

General Electric Company Vallecitos Atomic Laboratory Pleasanton, California Attn: Librarian

General Electric Company Evendale, Ohio 45215 FPD Technical Information Center Bldg. 100, Mail Drop F-22

General Electric Company Reentry Systems Dept. Cinncinati, Ohio 45215 Attn: Dr. J. W. Semmel E. E. Hoffman

Mr. R. M. Hanschka Materials Engineering Hamilton Standard Windsor Locks, Connecticut 2 copies

Bureau of Ships
Department of the Navy
Washington 25, D. C.
Attn: Librarian

Bureau of Weapons Research and Engineering Material Division Washington 25, D. C. Attn: Librarian

U. S. Naval Research Laboratory Washington 25, D. C. Attn: Librarian

Advanced Technology Laboratories Division of American Standard 369 Whisman Road Mountain View, California Attn: Librarian

Aerojet General Nucleonics P. O. Box 77 San Ramon, California Attn: Librarian

AiResearch Manufacturing Company
Sky Harbor Airport
402 South 36th Street
Pheonix, Arizona
Attn: Librarian
E. A. Kovacevich

AiResearch Manufacturing Company 9851-9951 Sepulveda Boulevard Los Angeles 45, California Attn: Librarian

Martin Marietta Corporation Metals Technology Laboratory Wheeling, Illinois

Massachusetts Institute of Technology Cambridge 39, Massachusetts Attn: Librarian

Materials Research and Development Manlabs, Inc. 21 Erie Street Cambridge 39, Massachusetts

Materials Research Corporation Orangeburg, New York Attn: Librarian

McDonnell Aircraft St. Louis, Missouri Attn: Librarian

MSA Research Corporation Callery, Pennsylvania Attn: Librarian

National Research Corporation 70 Memorial Drive Cambridge 42, Massachusetts Attn: Librarian

North American Aviation Los Angeles Division Los Angeles 9, California Attn: Librarian

Norton Company Worcester, Massachusetts Attn: Librarian

The Library United Aircraft Corporation 400 Main Street East Hartford, Connecticut 06108

Republic Aviation Corporation Farmingdale, Long Island, New York Attn: Librarian

Solar 2200 Pacific Highway San Diego 12, California Attn: Frank Hill Manager Aerospace Sales

Southwest Research Institute 8500 Culebra Road San Antonio 6, Texas Attn: Librarian

North American Aviation, Inc. Rocketdyne Division Canoga Park, California 91304 Attn: Librarian

Superior Tube Company Norristown, Pennsylvania Attn: Mr. A. Bound

Sylvania Electric Products, Inc. Chemical and Metallurgical Towanda, Pennsylvania Attn: Librarian

Temescal Metallurgical Berkeley, California Attn: Librarian

Union Carbide Corporation Parma Research Center Technical Information Service P. O. Box 6116 Cleveland, Ohio 44101

Pratt & Whitney Aircraft
Materials Development Laboratory
P.O. Box 611
Middletown, Connecticut
Attn: Librarian

R.C.A.

Defense Electronics Products Astro-Electronics Division Princeton, New Jersey Attn: S. H. Winkler

Lawrence Radiation Lab
Technical Information Division
Livermore, California 94550
Attn: W. Blake Myers

General Electric Company
Nuclear Materials & Propulsion Operation
P. O. Box 132
Cincinnati, Ohio 45215
Attn: J. W. Stephenson (2 copies)

Dr. James Hadley
Head, Reactor Division
Lawrence Radiation Laboratory
P. O. Box 808
Livermore, California

H. F. Conrad
Process and Materials Division
Chemistry Department
Lawrence Radiation Laboratory
P. O. Box 808
Livermore, California

Matthew King TRW SYSTEMS INC. 1 Space Park Redondo Beach, California

ATTN: Nuclear Technology Dept.

Ultek Corporation Kingston Building, Rm. 211 1373 Grandview Avenue Columbus, Ohio Attn: Bruce Weber

General Electric Company
Materials Applied Research
Materials Development Laboratory
Mail Zone M78
Evendale, Ohio
Attn: W. H. Chang

R. C. A.
Astron-Electronics Division
Post Office Box 500
Princeton, New Jersey
Attn: Librarian, Mr. Fred Meigs

Dr. Alan Lawley Franklin Institute Philadelphia 3, Pennsylvania

L. J. Goetz General Electric Co. Refractory Metals Plant 21801 Tungsten Road Cleveland, Ohio 44117

Union Carbide Metals Niagara Falls, New York Attn: Librarian

Union Carbide Stellite Corporation Kokomo, Indiana Attn: Librarian

Union Carbide Nuclear Company
P. O. Box X
Oak Ridge, Tennessee
Attn: X-10 Laboratory Records Department

2 copies

United Nuclear Corporation 5 New Street White Plains, New York Attn: Librarian Attn: Mr. Albert Weinstein,

Sr. Engineer

Universal Cyclops Steel Corporation Refractomet Division Bridgeville, Pennsylvania

Attn: C. P. Mueller

University of Michigan
Department of Chemical and Metallurgical Eng.
Ann Arbor, Michigan
Attn: Librarian

U. S. Atomic Energy Commission Technical Reports Library Washington 25, D. C. Attn: J. M. O'Leary

University of California Lawrence Radiation Laboratory Technical Information Division P. O. Box 808 Livermore, California 94551

U. S. Atomic Energy Commission

Germantown, Maryland

Attn: Col. E. L. Douthett

SNAP 50/SPUR Project Office

Attn: H. Rochen

SNAP 50/SPUR Project Office

Attn: Socrates Christofer

Attn: Major Gordon Dicker

SNAP 50/SPUR Project Office

U. S. Atomic Energy Commission

Technical Information Service Extension

P. O. Box 62

Oak Ridge, Tennessee

3 copies

U. S. Atomic Energy Commission Washington 25, D. C. Attn: M. J. Whitman

Argonne National Laboratory 9700 South Cross Avenue

Argonne, Illinois Attn: Librarian

Brookhaven National Laboratory Upton Long Island, New York

Attn: Librarian

Oak Ridge National Laboratory

Oak Ridge, Tennessee

Attn: Dr. W.O. Harms

Attn: Dr. A. J. Miller

Attn: Librarian

Office of Naval Research Power Division Washington 25, D. C.

Attn: Librarian

Vought Astronautics

P. O. Box 5907

Dallas 22, Texas

Attn: Librarian

National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Librarian Dr. Bernard Lubarsky (SPSD) MS 500-201 G. M. Ault MS 105-1 Joe Joyce (NPTB) MS 500-201 P. E. Moorhead MS 500-201 10 Copies John Creagh MS 500-201 J. E. Dilley (SPSPS) MS 500-309 Thomas Strom MS 5-8 T. A. Moss MS 500-201 Dr. L. Rosenblum (MSD) MS 106-1 R. Titran MS 105-1 R. Hall MS 105-1 George Tulisiak MS 14-1 R. L. Davies MS 500-201 J. J. Ward MS 500-309 V. F. Hlavin MS 3-14 (Final Only) Technology Utilization Office MS 3-19

National Aeronautics and Space Administration Western Operations Office 150 Pico Boulevard Santa Monica, California 90406 Attn: Mr. John Keeler

National Bureau of Standards Washington 25, D. C. Attn: Librarian

Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio
Attn: Charles Armbruster (ASRPP-10)
T. Cooper

Librarian

John L. Morris

H J. Middendorp ASNRG 33143

Army Ordnance Frankford Arsenal Bridesburg Station Philadelphia 37, Pennsylvania Attn: Librarian

Thermo Electron Engineering Corp. 85 First Avenue Waltham, Massachusetts Attn: George Hatsopoulos

Sandia Corporation
Division 9333
P. O. Box 5800
Albuquerque, New Mexico 87115
Attn: James Jacobs

RCA
Electron Tube Division
New Holland Avenue
Lancaster, Pennsylvania
Attn: Fred Black

Atomics International 8900 DeSoto Avenue Canoga Park, California Attn: W. V. Botts