Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

Experiment No.	1
Aim	To implement the various functions e.g. linear, non-linear, quadratic, exponential etc.
Name	Aarush Kinhikar
UID No.	2021300063
Class & Division	SE Comps A, Batch D

Program:

```
#include<stdio.h>
#include<math.h>
float function1(int), function2(int), function3(int), function4(int), function5(int),
function6(int), function7(int), function8(int), function9(int), function10(int),
function11(int);
int main(){
  int a=1;
  printf("\%f\n",function4(3));
  for(int i=1;i<=20;i++)
    %.2f\n",function1(i),function2(i),function3(i),function4(i),function5(i),function6(i)
,function7(i),function8(i),function9(i),function10(i));
    printf("\n%f ",function11(i));
  return 0;
float function 1(int n) \{ //n \}
  return n;
float function2(int n){//n^3}
  return n*n*n;
```

```
float function3(int n)\{//1.5^n
  return pow(1.5,n);
float function 4(int n) \frac{1}{2^n}
  return pow(2,n);
float function 5(int n) \frac{1}{2^n(2^n)}
  return pow(2,pow(2,n));
float function6(int n){\frac{1}{2}(2^{n+1})}
  return pow(2,pow(2,n+1));
float function7(int n){//n*(2^n)}
  return n*pow(2,n);
float function8(int n){\frac{1}{\log(n)}}
  return log(n);
float function 9(int n) { //n*log(n) }
  return n*log(n);
float function 10(int n) \{ \frac{1}{2}(log(n)) \}
  return pow(2,log(n));
float function11(int n){
  if(n==0){
     return 1;
  else{
     return n*function11(n-1);
   }
}
```

Observations:

n	N^3	1.5^n	2^n	2^(2^n)	2^(2^(n+1))	` '		n*log(n)	2^(log(n))	n!
	1 1	1.5	2	4	16	2	0	0	1	1
	2 8	3 2.25	4	16	256	8	0.69	1.39	1.62	2
	3 27	3.38	8	256	65536	24	1.1	3.3	2.14	6
	4 64	5.06	16	65536	4294967296	64	1.39	5.55	2.61	24
	5 125	7.59	32	4294967296	1.8447E+19	160	1.61	8.05	3.05	120
	6 216	11.39	64	1.8447E+19	inf	384	1.79	10.75	3.46	720
	7 343	17.09	128	inf	inf	896	1.95	13.62	3.85	5040
	8 512	25.63	256	inf	inf	2048	2.08	16.64	4.23	40320
	9 729	38.44	512	inf	inf	4608	2.2	19.78	4.59	362880
1	1000	57.67	1024	inf	inf	10240	2.3	23.03	4.93	3628800
1	11 133	1 86.5	2048	inf	inf	22528	2.4	26.38	5.27	39916800
1	12 1728	129.75	4096	inf	inf	49152	2.48	29.82	5.6	479001600
1	13 2197	7 194.62	8192	inf	inf	106496	2.56	33.34	5.92	6227020800
1	14 2744	1 291.93	16384	inf	inf	229376	2.64	36.95	6.23	8.7178E+10
	15 3375	437.89			inf	491520		40.62		1.3077E+12
	16 4096	656.84	65536	inf	inf	1048576	2.77	44.36	6.83	2.0923E+13
	17 4913				inf	2228224		48.16		3.5569E+14
	18 5832				inf	4718592		52.03		6.4024E+15
	19 6859				inf	9961472		55.94		1.2165E+17
	20 8000				inf	20971520		59.91		2.4329E+18
	21 9261				inf	44040192		63.93		
	22 10648				inf	92274688		68		
	23 12167				inf	192937984		72.12	8.79	
	24 13824				inf	402653184		76.27		
	25 15625				inf	838860800		80.47		
	26 17576				inf	1744830464		84.71	9.57	
	27 19683				inf	3623878656				
	28 21952				inf	7516192768				
	21332		536870912		inf	1.5569E+10				
	30 27000		1073741824		inf	3.2212E+10				
	30 27000		2147483648		inf	6.6572E+10				
	32768		4294967296		inf	1.3744E+11				
	35937		8589934592		inf	2.8347E+11				
	39304		1.718E+10		inf	5.8412E+11				
	42875		3.436E+10		inf	1.2026E+12				
	36 46656		6.8719E+10		inf	2.4739E+12				
	50653		1.3744E+11		inf	5.0852E+12				
	38 54872		2.7488E+11		inf	1.0445E+13				
	59319		5.4976E+11		inf	2.144E+13				
	64000		1.0995E+12		inf	4.398E+13				
	11 68921		2.199E+12		inf	9.016E+13				
	12 74088		4.398E+12		inf	1.8472E+14				
	13 79507		8.7961E+12		inf	3.7823E+14				
4	14 85184	55977744	1.7592E+13	inf	inf	7.7406E+14	3.78	166.5	13.78	3
	15 91125		3.5184E+13		inf	1.5833E+15				
4	97336		7.0369E+13		inf	3.237E+15				
4	103823	188924896	1.4074E+14	inf	inf	6.6147E+15	3.85	180.96	14.42	2
4	110592	283387328	2.8147E+14	inf	inf	1.3511E+16	3.87	185.82	14.60	3
4	117649	425080992	5.6295E+14	inf	inf	2.7585E+16	3.89	190.7	14.84	1
5	125000	637621504	1.1259E+15	inf	inf	5.6295E+16	3.91	195.6	15.0	5
5	132651	956432256	2.2518E+15	inf	inf	1.1484E+17	7 3.93	200.52	15.26	3
		1434648320	4.5036E+15	inf	inf	2.3419E+17				

53	148877 2151972608 9.0072E+15 inf	inf	4.7738E+17	3.97	210.43	15.67
54	157464 3227958784 1.8014E+16 inf	inf	9.7278E+17	3.99	215.41	15.88
55	166375 4841938432 3.6029E+16 inf	inf	1.9816E+18	4.01	220.4	16.08
56	175616 7262907392 7.2058E+16 inf	inf	4.0352E+18	4.03	225.42	16.28
57	185193 1.0894E+10 1.4412E+17 inf	inf	8.2146E+18	4.04	230.45	16.48
58	195112 1.6342E+10 2.8823E+17 inf	inf	1.6717E+19	4.06	235.51	16.68
59	205379 2.4512E+10 5.7646E+17 inf	inf	3.4011E+19	4.08	240.57	16.88
60	216000 3.6768E+10 1.1529E+18 inf	inf	6.9175E+19	4.09	245.66	17.08
61	226981 5.5153E+10 2.3058E+18 inf	inf	1.4066E+20	4.11	250.76	17.28
62	238328 8.2729E+10 4.6117E+18 inf	inf	2.8592E+20	4.13	255.88	17.47
63	250047 1.2409E+11 9.2234E+18 inf	inf	5.8107E+20	4.14	261.02	17.67
64	262144 1.8614E+11 1.8447E+19 inf	inf	1.1806E+21	4.16	266.17	17.86
65	274625 2.7921E+11 3.6893E+19 inf	inf	2.3981E+21	4.17	271.34	18.06
66	287496 4.1882E+11 7.3787E+19 inf	inf	4.8699E+21	4.19	276.52	18.25
67	300763 6.2822E+11 1.4757E+20 inf	inf	9.8875E+21	4.2	281.71	18.44
68	314432 9.4234E+11 2.9515E+20 inf	inf	2.007E+22	4.22	286.93	18.63
69	328509 1.4135E+12 5.903E+20 inf	inf	4.073E+22	4.23	292.15	18.82
70	343000 2.1203E+12 1.1806E+21 inf	inf	8.2641E+22	4.25	297.39	19.01
71	357911 3.1804E+12 2.3612E+21 inf	inf	1.6764E+23	4.26	302.65	19.2
72	373248 4.7706E+12 4.7224E+21 inf	inf	3.4001E+23	4.28	307.92	19.38
73	389017 7.1559E+12 9.4447E+21 inf	inf	6.8947E+23	4.29	313.2	19.57
74	405224 1.0734E+13 1.8889E+22 inf	inf	1.3978E+24	4.3	318.5	19.75
75	421875 1.6101E+13 3.7779E+22 inf	inf	2.8334E+24	4.32	323.81	19.94
76	438976 2.4151E+13 7.5558E+22 inf	inf	5.7424E+24	4.33	329.14	20.12
77	456533 3.6227E+13 1.5112E+23 inf	inf	1.1636E+25	4.34	334.47	20.31
78	474552 5.434E+13 3.0223E+23 inf	inf	2.3574E+25	4.36	339.82	20.49
79	493039 8.151E+13 6.0446E+23 inf	inf	4.7753E+25	4.37	345.19	20.67
80	512000 1.2226E+14 1.2089E+24 inf	inf	9.6714E+25	4.38	350.56	20.85
81	531441 1.834E+14 2.4179E+24 inf	inf	1.9585E+26	4.39	355.95	21.03
82	551368 2.751E+14 4.8357E+24 inf	inf	3.9653E+26	4.41	361.35	21.21
83	571787 4.1264E+14 9.6714E+24 inf	inf	8.0273E+26	4.42	366.76	21.39
84	592704 6.1896E+14 1.9343E+25 inf	inf	1.6248E+27	4.43	372.19	21.57
85	614125 9.2845E+14 3.8686E+25 inf	inf	3.2883E+27	4.44	377.63	21.75
86	636056 1.3927E+15 7.7371E+25 inf	inf	6.6539E+27	4.45	383.07	21.92
87	658503 2.089E+15 1.5474E+26 inf	inf	1.3463E+28	4.47	388.53	22.1
88	681472 3.1335E+15 3.0949E+26 inf	inf	2.7235E+28	4.48	394.01	22.27
89	704969 4.7003E+15 6.1897E+26 inf	inf	5.5088E+28	4.49	399.49	22.45
90	729000 7.0504E+15 1.2379E+27 inf	inf	1.1141E+29	4.5	404.98	22.62
91	753571 1.0576E+16 2.4759E+27 inf	inf	2.2531E+29	4.51	410.49	22.8
92	778688 1.5863E+16 4.9518E+27 inf	inf	4.5556E+29	4.52	416	22.97
93	804357 2.3795E+16 9.9035E+27 inf	inf	9.2103E+29	4.53	421.53	23.14
94	830584 3.5693E+16 1.9807E+28 inf	inf	1.8619E+30	4.54	427.07	23.32
95	857375 5.3539E+16 3.9614E+28 inf	inf	3.7633E+30	4.55	432.62	23.49
96	884736 8.0308E+16 7.9228E+28 inf	inf	7.6059E+30	4.56	438.18	23.66
97	912673 1.2046E+17 1.5846E+29 inf	inf	1.537E+31	4.57	443.75	23.83
98	941192 1.8069E+17 3.1691E+29 inf	inf	3.1057E+31	4.58	449.33	24
99	970299 2.7104E+17 6.3383E+29 inf	inf	6.2749E+31	4.6	454.92	24.17
100	1000000 4.0656E+17 1.2677E+30 inf	inf	1.2677E+32	4.61	460.52	24.34

1. nThe graph increases linearly and gradient remains constant.

2. n³
The graph increases non-linearly and gradient increases.

3. 1.5ⁿ

The graph increases exponentially and gradient increases.

4. 2ⁿ

The graph increases exponentially and gradient increases.

5. $2^{(2^n)}$

The graph increases non-linearly and gradient increases.

6. $2^{(2^{n+1})}$

The graph increases non-linearly and gradient increases.

7. n*2ⁿ

The graph increases non-linearly and gradient increases.

8. log(n)

The graph increases logarithmically and gradient decreases.

9. n*log(n)

The graph increases non-linearly and gradient increases slowly.

10. $2^{log(n)}$

The graph increases non-linearly and gradient decreases slowly.

11. n!

The graph increases non-linearly and gradient increases.

Conclusion:

I have learnt about various functions and their outputs and how to write a program for them. Also, plotting a graph for these functions and interpreting it.