Modal Logic

kankanray

Contents

1 Basic Concepts		ic Concepts	1
	1.1	Relational Structures	1
	1.2	Modal Languages	2
	1.3	Models and Satisfaction	3
	1.4	General Frames	4

1 Basic Concepts

1.1 Relational Structures

Definition 1.1. A relational structure \mathfrak{F} is a tuple, where the first component is a non-empty set W called *universe*, and remaining components are relations on W. We assume there is at least one relation on W.

In the following 2 definitions, we assume W be a non-empty set and R a binary relation on W.

Definition 1.2. $R^+ := \bigcap \{R' | R' \text{ is a transitive binary relation on } W \text{ and } R \subseteq R'\}$, is called the *transitive closure* of R.

Definition 1.3. $R^* := \bigcap \{R' | R' \text{ is a reflexive transitive binary relation on } W$ and $R \subseteq R'\}$, is called the *reflexive transitive closure* of R.

Note that transitive closure of a binary relation has nice *finite steps* property, see Exercise 1.1.3.

Definition 1.4. A tree \mathfrak{T} is a structural structure (T,S) where:

- (i) T, the set of nodes, contains a unique $r \in T$ (root), such that $\forall t \in TS^*rt$.
- (ii) For every $t \neq r$, there is a unique $t' \in T$, such that St't
- (iii) $\forall t \neg S^+tt$, so S is acyclic.

Question 1.1. Why we define tree like that?

1.2 Modal Languages

Definition 1.5. Basic modal language:

-A set of proposition letters(or proposition symbols or propositional variables) Φ , whose elements are usually denoted p, q, r, and so on.

-A unary modal operator \Diamond .

Then the well-formed $formulas \phi$ of the basic modal language are given by the rule:

```
\phi ::= p|\bot|\neg\phi|\psi \lor \phi|\Diamond\phi,
```

where p ranges over elements pf Φ .

There is also a dual operator \square which is defined by $\square \phi := \neg \lozenge \neg \phi$.

Moreover, we can define conjunction, implication, bi-implication, and the constant true as usual:

```
\begin{split} \phi \wedge \psi &:= \neg (\neg \phi \vee \neg \psi), \\ \phi \to \psi &:= \neg \phi \vee \psi, \\ \phi \leftrightarrow \psi &:= (\phi \to \psi) \wedge (\psi \to \phi), \text{ and } \\ \top &:= \neg \bot. \end{split}
```

The following 3 definitions generalize the concept of basic modal language.

Definition 1.6. A modal similarity type is a pair $\tau = (O, \rho)$ where O is a non-empty set, and ρ is a function $O \to \mathbb{N}$. The elements of O are called modal operators; we use \triangle , \triangle_0 , \triangle_1 ,..., to denote elements of O. The function ρ assigns to each operator $\triangle \in O$ a finite arity indicating the number of arguments \triangle can be applied to.

So we often refer to *unary* triangles as *diamonds*, and denote them by \Diamond_a or $\langle a \rangle$, where a is taken from some index set.

Definition 1.7. A modal language $ML(\tau, \Phi)$, with modal similarity type $\tau = (O, \rho)$ and a set of proposition letters Φ . The well-formed formulas are given by the rule:

```
\phi := p|\bot|\neg\phi|\phi_1 \lor \phi_2|\triangle(\phi_1,...,\phi_{\rho(\triangle)}),
where p ranges over elements of \Phi.
```

Definition 1.8. Dual operators for non-nullary triangles. For each $\triangle \in O$ the dual ∇ is defined as $\nabla(\phi_0, ..., \phi_n) = \neg \triangle(\neg \phi_0, ..., \neg \phi_n)$. The dual of a triangle of arity at least 2 is called a nabla. A box(unary triangle-down) is written \square_a or [a].

Definition 1.9. A substitution is a map $\sigma : \Phi \to Form(\tau.\Phi)$ (formulas).

Then a substitution σ induces a map $(\cdot)^{\sigma}: Form(\tau, \Phi) \to Form(\tau, \Phi)$, which can be recursively defined as follows:

```
\begin{split} & \bot^{\sigma} = \bot, \\ & p^{\sigma} = \sigma(p), \\ & (\neg \psi)^{\sigma} = \neg \psi^{\sigma}, \\ & (\psi \lor \theta)^{\sigma} = \psi^{\sigma} \lor \theta^{\sigma}, \\ & (\triangle(\psi_1, ..., \psi_n))^{\sigma} = \triangle(\psi_1^{\sigma}, ..., \psi_n^{\sigma}) \end{split}
```

1.3 Models and Satisfaction

Definition 1.10. A frame for basic modal language is a pair $\mathfrak{F} = (W, R)$ such that

- (i) W is a non-empty set.
- (ii) R is a binary relation on W.

Definition 1.11. A model for the basic modal language is a pair $\mathfrak{M} = (\mathfrak{F}, V)$, where \mathfrak{F} is a frame for the basic modal language, and V is a function assigning to each proposition letter p in Φ a subset V(p) of W

Given a model $\mathfrak{M} = (\mathfrak{F}, V)$, we say that \mathfrak{M} is based on the frame \mathfrak{F} , or that \mathfrak{F} is the frame underlying \mathfrak{M} .

Now we discuss the semantics in basic modal language.

Definition 1.12. Suppose w is a state in a model $\mathfrak{M} = (W, R, V)$ (i.e. w is an element of W). Then we inductively define the notion of a formula ϕ being satisfied (or true) in \mathfrak{M} at state w as follows:

```
\mathfrak{M}, w \Vdash p \text{ iff } w \in V(p), \text{ where } p \in \Phi,
```

 $\mathfrak{M}, w \Vdash \bot \text{ never},$

 $\mathfrak{M}, w \Vdash \neg \phi \text{ iff not } \mathfrak{M}, w \Vdash \phi,$

 $\mathfrak{M}, w \Vdash \phi \land \psi \text{ iff } \mathfrak{M}, w \Vdash \phi \text{ or } \mathfrak{M}, w \Vdash \psi,$

 $\mathfrak{M}, w \Vdash \Diamond \phi$ iff for some $v \in W$ with Rwv we have $\mathfrak{M}, v \Vdash \phi$.

Then follows the definition, $\mathfrak{M}, w \Vdash \Box \phi$ iff for every $v \in W$ with Rwv we have $\mathfrak{M}, v \Vdash \phi$.

Finally we say a set of formulas is true at state w iff every formula in it is true at such state.

When \mathfrak{M} is clear from the context, we write $w \Vdash \phi$ instead of $\mathfrak{M}, w \Vdash \phi$.

If it's not $\mathfrak{M}, w \Vdash \phi$, we may write $\mathfrak{M}, w \not\models \phi$ or simply $w \not\models \phi$.

Also, we may extend the valuation V from proposition letters to arbitrary formula ϕ :

$$V(\phi) = \{w | \mathfrak{M}, w \Vdash \phi\}.$$

There are some special concepts:

Definition 1.13. A formula ϕ is said to be *globally* or *universally true* in a model \mathfrak{M} iff it is satisfied at all points in \mathfrak{M} .

A formula ϕ is satisfiable in a model $\mathfrak M$ iff there is some state in $\mathfrak M$ at which ϕ is true.

A formula ϕ is falsifiable or refutable in a model iff its negation is satisfiable.

A set Σ is globally true(satisfiable, respectively) in a model \mathfrak{M} iff $\mathfrak{M}, w \Vdash \Sigma$ for all states w in \mathfrak{M} (some state w in \mathfrak{M} ,respectively).

Now we discuss frames, models and satisfaction for modal languages of arbitrary similarity type.

Definition 1.14. Let τ be a modal similarity type. A τ -frame is a tuple \mathfrak{F} consisting of the following ingredients:

- (i) a non-empty set W,
- (ii) for each $n \geq 0$ and each n-ary modal operator \triangle in the similarity type τ and (n+1)-ary relation R_{\triangle} .

Definition 1.15. A τ -model is a pair $\mathfrak{M} = (\mathfrak{F}, V)$ where \mathfrak{F} is a τ -frame and V is a valuation, with domain Φ and range $\mathcal{P}(W)$. We call W the universe of \mathfrak{F} .

What about the satisfaction? Similar to the case for basic modal language, we define the following:

Definition 1.16. When ϕ is satisfied in a state w in the model \mathfrak{M} , we write $\mathfrak{M}, w \Vdash \phi$. We define such relations inductively:

The clauses for atomic and boolean cases are the same for the basic modal language.

As for the modal case, when $n = \rho(\Delta) > 0$ we define

 $\mathfrak{M}, w \Vdash \triangle(\phi_1, ..., \phi_n)$ iff for some $v_1, ..., v_n \in W$ with $R_{\triangle}wv_1v_2...v_n$ we have, for each i, $\mathfrak{M}, w \Vdash \phi_i$.

With this definition, we know when $\nabla(\phi_1,...,\phi_n)$ is satisfied:

 $\mathfrak{M}, w \Vdash \nabla(\phi_1, ..., \phi_n)$ iff for every $v_1, ..., v_n \in W$ with $R_{\triangle}wv_1..., v_n$, there exists an $i \in \{1, 2, ..., n\}$ such that $\mathfrak{M}, v_i \Vdash \phi_i$.

Finally, if $\rho(\triangle) = 0$, then R_{\triangle} is an unary relation, so we define: $\mathfrak{M}, w \Vdash \triangle$ iff $w \in R_{\triangle}$.

The concepts of globally true and so on are defined similarly.

Then it follows several examples, and I really hate them.

Now we discuss the concept of validity, which describe the situations when a formula ϕ is true in any valuation.

Definition 1.17. A formula ϕ is valid in a state w in a frame $\mathfrak{F}(\text{notation:} \mathfrak{F}, w \Vdash \phi)$ iff ϕ is true in every model (\mathfrak{F}, V) based on \mathfrak{F} .

 ϕ is valid in a frame $\mathfrak{F}(\text{notation: }\mathfrak{F} \Vdash \phi)$ iff ϕ is valid at every state in W.

 ϕ is valid on a class of frames $\mathsf{F}(\mathsf{notation} \colon \mathsf{F} \Vdash \phi)$ iff it is valid on every frame \mathfrak{F} in F .

Finally, we say ϕ is *valid* iff it is valid on the class of all frames.

By the way, the set of all formulas that are valid in a class of frames F is called the logic of $F(notation: \Lambda_F)$.

1.4 General Frames

Definition 1.18. Given an (n+1)-ary relation R on a set W, we define the following n-ary operation m_R on the power set $\mathcal{P}(W)$ of W:

 $m_R(X_1,...,X_n) = \{w \in W | Rww_1...w_n \text{ for some } w_1 \in X_1,...,w_n \in X_n\}.$

Definition 1.19. General Frame

Let τ be a modal similarity type. Ageneral τ -frame is pair (\mathfrak{F}, A) , where $\mathfrak{F} = (W, R_{\triangle})_{\triangle \in \tau}$ is a τ -frame, and A is a non-empty collection of admissible subsets of W closed under the following operations:

- (i) union: if $X, Y \in A$, then $X \cup Y \in A$.
- (ii) relative complement: if $X \in A$, then W

 $X \in A$.

(iii) modal operations: if $X_1,...,X_n \in A$, then $m_{R_{\triangle}}(X_1,...,X_n) \in A$ for all $\triangle \in \tau$.

A modal based on a general frame is a triple (\mathfrak{F}, A, V) where (\mathfrak{F}, A) is a general frame and V is a valuation satisfying the constraint that for each proposition letter p, V(p) is an element of A. Valuations satisfying this constraint are called admissible for (\mathfrak{F}, A) .

Definition 1.20. Validity

A formula ϕ is valid at a state w in a general frame (\mathfrak{F}, A) (notation: $(\mathfrak{F}, A), w \Vdash \phi$) iff ϕ is true at w in every admissible model.

- ϕ is valid (notation: $(\mathfrak{F}, A) \Vdash \phi$) iff ϕ is valid in every state.
- ϕ is valid in a class of general frames $\mathsf{G}(\mathrm{notation}\colon\,\mathsf{G}\Vdash\phi)$ iff it's valid in every general frame in G .

Finally, we say ϕ is g-valid iff it's valid in all general frames. We will see that ϕ is valid iff it's g-valid.