Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра теоретической и прикладной информатики

Лабораторная работа № 4 по дисциплине «Численные методы»

РЕШЕНИЕ СНУ МЕТОДОМ НЬЮТОНА

Факультет: ПМИ

Группа: ПМ-81

Бригада: 14

Студенты: Редут Анатолий

Ефремов Артур

Преподаватели: Патрушев Илья Игоревич

Задорожный Александр Геннадьевич

Новосибирск

2020

1. Цель работы

Разработать программу решения системы нелинейных уравнений (СНУ) методом Ньютона. Провести исследования метода для нескольких систем размерности от 2 до 10.

2. Анализ

Вариант № 1

 $m \le n$. Для нахождения Δx^k , являющегося решением системы (4.2), фиксировать как нулевые те ее (n-m) компонентов с номерами j, для которых

$$\max_i \left(abs \left(rac{\partial \left(F_i \left(x^k \,
ight)
ight)}{\partial x_j}
ight)
ight)$$
 минимальны. Производные при формировании матрицы

Якоби считать аналитически.

Вариант № 2

 $m \ge n$. Для нахождения Δx^k из системы (4.2) те ее (m-n) уравнений, для которых абсолютные значения $F_i(x^k)$ минимальны, исключаются из системы. При вычислении нормы вектора F^k в процессе подбора параметра β^k учитывать все уравнения системы. Производные при формировании матрицы Якоби вычислять аналитически.

Вариант № 6

В задании 2 при формировании матрицы Якоби вычислять численно.

Теоретическая часть

Пусть дана СНУ в виде:

$$F_{1}(x_{1}, x_{2}, ..., x_{n}) = 0;$$

$$F_{2}(x_{1}, x_{2}, ..., x_{n}) = 0;$$

$$...$$

$$F_{m}(x_{1}, x_{2}, ..., x_{n}) = 0.$$
(4.1)

Обозначим через x^k решение, полученное на k-й итерации процесса Ньютона (для первой итерации x^0 — начальное приближение). Запишем исходную систему в виде $F_i \Big(x^k + \Delta x \Big) = 0$, i = 1...m, где $\Delta x^k = \overline{x} - x^k$, \overline{x} — искомое решение. Выполним линеаризацию i-го уравнения системы (4.1) с использованием его разложения в ряд Тейлора в окрестности точки x^k :

$$F_i(x) \approx F_i(x^k) + \sum_{j=1}^n \frac{\partial (F_i(x))}{\partial x_j} \bigg|_{x=x^k} \Delta x_j^k, \ i=1...m,$$

или в матричном виде:

$$A^k \Delta x^k = -F^k, \tag{4.2}$$

где F^k — значение вектор-функции F при $x=x^k$; A^k — матрица Якоби $\left(A_{ij}^k=\frac{\partial \left(F_i\left(x\right)\right)}{\partial x_j}\bigg|_{x=x^k}\right).$

Это система уравнений, линейных относительно приращений Δx_j^k . Решив эту систему, найдем направление Δx^k поиска решения.

Для поиска следующего приближения x^{k+1} вдоль направления Δx^k организуем итерационный процесс:

$$x_{v}^{k+1} = x^k + \beta_{v}^k \Delta x^k,$$

где β_{ν}^k — параметр итерационного процесса поиска x^{k+1} , ($0 < \beta^k < 1$), ν — номер итерации поиска оптимального значения β^k . Параметр β^k будем искать следующим образом: сначала (т. е. после нахождения направления Δx^k) β^k принимается равным 1 и вычисляется значение $F_{\nu}^k = F(x^k + \beta_{\nu}^k \Delta x^k)$; далее, пока норма F_{ν}^k больше, чем норма F_{ν}^{k-1} , β_{ν}^k уменьшается вдвое.

3. Программа

Файл main.cpp

```
#include <iostream>
  #include <fstream>
  #include <vector>
  #include "Vector.h"
  #include "Newton.h"
  using namespace std;
  typedef double real;
  int main()
  {
     Test2 2 test;
     Newton newtonSolver = Newton(test);
     newtonSolver.read_info("tests/info1.txt");
     newtonSolver.solve(1, "results/result_1.txt");
     newtonSolver.read_info("tests/info1.txt");
     newtonSolver.solve(2, "results/result_2.txt");
     newtonSolver.read_info("tests/info1.txt");
     newtonSolver.solve(6, "results/result_6.txt");
     cout << newtonSolver.xk[0] << " " << newtonSolver.xk[1] << endl;</pre>
     cout << "bl";</pre>
  }
}
                                  Файл Newton.h
  #pragma once
  #include <stdlib.h>
  #include <algorithm>
  #include <numeric>
  #include "Tests.h"
  #include "Vector.h"
  typedef double real;
  using namespace std;
  class Newton
  {
  public:
     Test2_2 test;
                                         // Информация о СНУ
     int max_iter_k;
                                         // Максимальное число итераций цикла k
     int max iter v;
                                         // Максимальное число итераций цикла v
     real eps0 = 10;
                                         // Шаг для численного вычисления произ-
  водной
```

```
real eps1;
                                      // Условие малости для выхода из цикла
   real eps2;
                                      // Условие малости для выхода из цикла
k
                                      // Норма вектор-функции F при x=x0
  real norm_F0;
  vector<vector<real>> A;
                                      // Матрица Якоби
   vector<real> Fk;
                                      // Значение вектор-функции F при x=xk
   vector<real> Fvk;
                                      // Значение вектор-функции F при x=xk
                                      // на v-той итерации
  vector<real> xk;
                                      // Вектор х на k-той итерации
                                     // Вектор x на k+1-той итерации
   vector<real> xk1;
   vector<real> dxk;
                                      // Вектор направления поиска решения
                                      // на k-той итерации
  Newton(Test2_2 _test)
   {
      test = _test;
      A.resize(test.n_func());
      for (int i = 0; i < test.n_func(); i++)</pre>
         A[i].resize(test.n_var());
      Fk.resize(test.n_var());
      Fvk.resize(test.n_var());
      xk.resize(test.n_var());
      xk1.resize(test.n_var());
      dxk.resize(test.n_var());
   }
   Newton() {};
   // Считываем необходимую для решения информацию из файла file name
   void read_info(string file_name)
   {
      ifstream fin;
      fin.open(file_name);
      string fict;
      fin >> fict;
      fin >> eps1;
      fin >> fict;
      fin >> eps2;
      fin >> fict;
      fin >> max_iter_k;
      fin >> fict;
      fin >> max_iter_v;
      fin >> fict;
      for(int i = 0; i < test.n_var(); i++)</pre>
         fin >> xk[i];
```

```
get_Fk(xk, Fk);
   norm F0 = norm(Fk);
   fin.close();
}
// Получаем значение вектор-функции F при x=xk
void get_Fk(vector<real>& xs, vector<real>& res)
   res = test.Fk(xs);
}
// Получаем индексы наибольших элементов матрицы Якоби на удаление
vector<int> best indices(vector<real>& vec, const int& n)
{
   vector<int> indices(vec.size());
   iota(indices.begin(), indices.end(), 0);
   partial_sort(indices.begin(), indices.begin() + n, indices.end(),
      [&vec](int i, int j) {return abs(vec[i]) < abs(vec[j]); });
   return vector<int>(indices.begin(), indices.begin() + n);
}
// Получаем индексы наименьших элементов матрицы Якоби на удаление
vector<int> worst indices(vector<real>& vec, const int& n)
{
   vector<int> indices(vec.size());
   iota(indices.begin(), indices.end(), 0);
   partial_sort(indices.begin(), indices.begin() + n, indices.end(),
      [&vec](int i, int j) {return abs(vec[i]) > abs(vec[j]); });
   return vector<int>(indices.begin(), indices.begin() + n);
}
// Построение матрицы Якоби согласно 1 варианту
void build jacobi 1(vector<real>& xs)
   A = test.Jacobi(xs);
   get_Fk(xs, Fk);
   for(int i = 0; i < test.n_func(); i++)</pre>
      A[i].push_back(-Fk[i]);
   vector<real> max_abs(test.n_var() + 1);
   for(int i = 0; i < test.n_func(); i++)</pre>
      \max_{abs[i]} = 0;
      for(int j = 0; j < test.n_var(); j++)</pre>
         if(abs(A[i][j]) > abs(max_abs[i]))
            max_abs[i] = abs(A[i][j]);
   }
```

```
vector<int> indexes = worst_indices(max_abs, test.n_func() -
test.n_var());
      sort(indexes.begin(), indexes.end());
      for(int i = indexes.size() - 1; i >= 0; i--)
         A.erase(A.begin() + indexes[i]);
   }
   // Построение матрицы Якоби согласно 2 варианту
   void build jacobi 2(vector<real>& xs)
      A = test.Jacobi(xs);
      get_Fk(xs, Fk);
      for(int i = 0; i < test.n_func(); i++)</pre>
         A[i].push_back(- Fk[i]);
      vector<int> indexes = best_indices(Fk, test.n_func() - test.n_var());
      sort(indexes.begin(), indexes.end());
      for(int i = indexes.size() - 1; i >= 0; i--)
         A.erase(A.begin() + indexes[i]);
   }
   // Построение матрицы Якоби согласно 6 варианту
   void build jacobi 6(vector<real>& xs)
   {
      A.resize(test.n_func());
      for(int i = 0; i < test.n_func(); i++)</pre>
      {
         A[i].resize(test.n_var());
         for(int j = 0; j < test.n_var(); j++)</pre>
         {
            vector<real> eps(test.n_var());
            eps[j] = xs[j] + eps0;
            A[i][j] = test.Fk(eps)[i];
            eps[j] = xs[j] - eps0;
            A[i][j] -= test.Fk(eps)[i];
            A[i][j] /= 2 * eps0;
         }
      }
      get_Fk(xs, Fk);
      for(int i = 0; i < test.n_func(); i++)</pre>
         A[i].push_back(-Fk[i]);
      vector<int> indexes = best_indices(Fk, test.n_func() - test.n_var());
```

```
sort(indexes.begin(), indexes.end());
   for(int i = indexes.size() - 1; i >= 0; i--)
      A.erase(A.begin() + indexes[i]);
}
// Прямой ход решателя методом Гаусса
void forward_gauss(vector<vector<real>>& mat)
   int n = mat.size() + 1;
   int rowWithMaxElem = 0;
   vector<real> rowAdress(n);
   real maxElem = 0;
   for (int j = 0; j < n - 2; j++)
   {
      int rowNumber = j;
      for (int currentCol = j; currentCol < n - 1; currentCol++)</pre>
         if (fabs(mat[currentCol][j]) > maxElem)
            maxElem = fabs(mat[currentCol][j]);
            rowWithMaxElem = currentCol;
         }
      }
      maxElem = 0;
      rowAdress = mat[rowWithMaxElem];
      mat[rowWithMaxElem] = mat[rowNumber];
      mat[rowNumber] = rowAdress;
      for (int k = 1 + j; k < n - 1; k++)
         real factor = mat[k][rowNumber] / mat[rowNumber][rowNumber];
         if (factor != 0)
            for (int i = rowNumber; i < n; i++)</pre>
               real tmp = mat[rowNumber][i] * factor;
               mat[k][i] -= tmp;
        }
      }
   }
}
// Обратный ход решателя методом Гаусса
void backward_gauss(vector<vector<real>>& mat, vector<real>& res)
{
   int n = mat.size() + 1;
   res.resize(n - 1);
   for (int i = n - 2; i >= 0; i--)
   {
      real sum = 0;
```

```
for (int j = i + 1; j < n - 1; j++)
         sum += res[j] * mat[i][j];
      }
      res[i] = (mat[i][n - 1] - sum) / mat[i][i];
   }
}
// Функция решения СНУ
void solve(int var, string file_name)
{
   ofstream fout;
   fout.open(file_name);
   fout << "k\tbeta\tx\ty\tnorm" << endl;</pre>
   for(int k = 0; k < max_iter_k && norm(Fk) / norm_F0 > eps2; k++)
      switch(var)
      {
      case 1:
      {
         build_jacobi_1(xk);
         break;
      }
      case 2:
      {
         build_jacobi_2(xk);
         break;
      }
      case 6:
      {
         build_jacobi_6(xk);
         break;
      }
      forward_gauss(A);
      backward_gauss(A, dxk);
      for(int i = 0; i < test.n_var(); i++)</pre>
         if(abs(dxk[i]) == INFINITY)
         {
             cout << "Cant solve!" << endl;</pre>
             return;
         }
      real beta = 1;
      for(int v = 0; v < max_iter_v; v++)</pre>
         xk1 = xk + beta * dxk;
         get_Fk(xk1, Fvk);
         if(norm(Fvk) < norm(Fk) || beta < eps1)</pre>
             break;
```

```
else
                beta /= 2;
         }
         xk = xk1;
         // Блок вывода информации о текущей итерации в консоль(для двумер-
ного случая)
         fout << k << "\t" << beta << "\t" << xk[0] << "\t" << xk[1] << "\t"
<< norm(Fk) << endl;</pre>
      fout.close();
   }
};
                                  Файл Tests.h
#pragma once
#include <math.h>
using namespace std;
typedef double real;
real alpha = 1000;
// Квадрат числа
real sq(real val)
   return val * val;
}
// Две окружности не пересекаются
class Test1_1
{
public:
   virtual int n_func() { return 2; };
   virtual int n_var() { return 2; };
   Test1_1()
   {
   }
   real F1(vector\langle real \rangle \& xs) { return sq(xs[0] - 2) + sq(xs[1] - 2) - 4; }
   real F2(vector\langle real \rangle \& xs) { return sq(xs[0] + 2) + sq(xs[1] + 2) - 4; }
   real F1dx(vector<real>& xs) { return 2 * xs[0] - 4; }
   real F1dy(vector<real>& xs) { return 2 * xs[1] - 4; }
   real F2dx(vector<real>& xs) { return 2 * xs[0] + 4; }
   real F2dy(vector<real>& xs) { return 2 * xs[1] + 4; }
```

```
vector<vector<real>> Jacobi(vector<real>& xs) { return { { F1dx(xs),
F1dy(xs) }, { F2dx(xs), F2dy(xs) } }; }
   vector<real> Fk(vector<real>& xs) { return { F1(xs), F2(xs) }; }
};
// Две окружности пересекаются в 1 точке
class Test1_2
{
public:
   virtual int n_func() { return 2; };
   virtual int n_var() { return 2; };
   Test1_2()
   {
   }
   real F1(vector\langle real \rangle \& xs) { return sq(xs[0] - 2) + sq(xs[1] - 4) - 4; }
   real F2(vector\langle real \rangle \& xs) { return sq(xs[0] + 2) + sq(xs[1] - 4) - 4; }
   real F1dx(vector<real>& xs) { return 2 * xs[0] - 4; }
   real F1dy(vector<real>& xs) { return 2 * xs[1] - 8; }
   real F2dx(vector<real>& xs) { return 2 * xs[0] + 4; }
   real F2dy(vector<real>& xs) { return 2 * xs[1] - 8; }
   vector<vector<real>> Jacobi(vector<real>& xs) { return { { F1dx(xs),
F1dy(xs) }, { F2dx(xs), F2dy(xs) } }; }
   vector<real> Fk(vector<real>& xs) { return { F1(xs), F2(xs) }; }
};
// Две окружности пересекаются в 2 точках
class Test1_3
{
public:
   virtual int n_func() { return 2; };
   virtual int n_var() { return 2; };
  Test1_3()
   {
   }
   real F1(vector<real>& xs) { return sq(xs[0] - 2) + sq(xs[1] - 4) - 9; }
   real F2(vector<real>& xs) { return sq(xs[0] + 2) + sq(xs[1] - 4) - 9; }
   real F1dx(vector<real>& xs) { return 2 * xs[0] - 4; }
   real F1dy(vector<real>& xs) { return 2 * xs[1] - 8; }
```

```
real F2dx(vector<real>& xs) { return 2 * xs[0] + 4; }
   real F2dy(vector<real>& xs) { return 2 * xs[1] - 8; }
   vector<vector<real>> Jacobi(vector<real>& xs) { return { { F1dx(xs),
F1dy(xs) \}, { F2dx(xs), F2dy(xs) \} \}; \}
   vector<real> Fk(vector<real>& xs) { return { F1(xs), F2(xs) }; }
};
// Две окружности и прямая не пересекаются
class Test2 1
public:
   virtual int n_func() { return 3; };
   virtual int n_var() { return 2; };
  Test2_1()
   {
   }
   real F1(vector\langle real \rangle \& xs) { return sq(xs[0] - 2) + sq(xs[1] - 2) - 4; }
   real F2(vector\langle real \rangle \& xs) { return sq(xs[0] + 2) + sq(xs[1] + 2) - 4; }
   real F3(vector<real>& xs) { return xs[0] + xs[1]; }
   real F1dx(vector<real>& xs) { return 2 * xs[0] - 4; }
   real F1dy(vector<real>& xs) { return 2 * xs[1] - 4; }
   real F2dx(vector<real>& xs) { return 2 * xs[0] + 4; }
   real F2dy(vector<real>& xs) { return 2 * xs[1] + 4; }
   real F3dx(vector<real>& xs) { return 1; }
   real F3dy(vector<real>& xs) { return 1; }
   vector<vector<real>> Jacobi(vector<real>& xs) { return { { F1dx(xs),
F1dy(xs) \}, { F2dx(xs), F2dy(xs) \}, { F3dx(xs), F3dy(xs) \} \}; \}
   vector<real> Fk(vector<real>& xs) { return { F1(xs), F2(xs), F3(xs) }; }
};
// Две окружности и прямая пересекаются
class Test2_2
{
public:
   virtual int n_func() { return 2; };
   virtual int n_var() { return 2; };
   Test2 2()
```

```
}
   real F1(vector<real>& xs) { return sin(xs[0]) - xs[1]; }
   real F2(vector<real>& xs) { return 4*xs[0] - xs[1] - 20; }
   real F1dx(vector<real>& xs) { return cos(xs[0]); }
   real F1dy(vector<real>& xs) { return -1; }
   real F2dx(vector<real>& xs) { return 4; }
   real F2dy(vector<real>& xs) { return -1; }
   vector<vector<real>> Jacobi(vector<real>& xs) { return { { F1dx(xs),
F1dy(xs) }, { F2dx(xs), F2dy(xs) }}; }
   vector<real> Fk(vector<real>& xs) { return { F1(xs), F2(xs)}; }
};
                                Файл Vector.h
#pragma once
#include <vector>
#include <iomanip>
#include <fstream>
using namespace std;
typedef double real;
// Умножение вектора на число
vector<real> operator * (real val, const vector<real>& vec)
   vector<real> res(vec.size());
   for (size_t i = 0; i < vec.size(); ++i)</pre>
      res[i] = val * vec[i];
   return res;
}
// Сложение векторов
vector<real> operator + (const vector<real>& vec1, const vector<real>& vec2)
   if (vec1.size() != vec2.size())
      throw("a.size() != b.size()");
   vector<real> res(vec1.size());
   for (size_t i = 0; i < vec1.size(); ++i)</pre>
      res[i] = vec1[i] + vec2[i];
   return res;
}
```

```
// Вычитание векторов
vector<real> operator - (const vector<real>& vec1, const vector<real>& vec2)
   if (vec1.size() != vec2.size())
     throw("a.size() != b.size()");
   vector<real> res(vec1.size());
   for (size_t i = 0; i < vec1.size(); ++i)</pre>
      res[i] = vec1[i] - vec2[i];
   return res;
}
// Скалярное произведение векторов
real operator *(const vector<real>& vec1, const vector<real>& vec2)
{
   if (vec1.size() != vec2.size())
      throw("vec1.size() != vec2.size()");
   int n = vec1.size();
   real res = 0;
   for (int i = 0; i < n; i++)</pre>
      res += vec1[i] * vec2[i];
   return res;
}
// Норма вектора
real norm(const vector<real>& vec)
   return sqrt(vec * vec);
```

4. Тестирование и исследования

Окружности не пересекаются 1.

- $(x-2)^2 + (y-2)^2 = 4$
- $(x+2)^2 + (y+2)^2 = 4$
- (-2,4)

 ✓ Имя: Начальное приближение

1 вариант

k	beta	х	У	norm
0	1	-1.33333	1.33333	35.7771
1	1	0.0833333	-0.0833333	10.6852
2	0.0078125	-0.0107422	0.0107422	5.6765
3	0.00012207	0.000622105	-0.000622105	5.65718
•	•	•	•	•
98	2.27374e-13	-2.31288e-07	2.31288e-07	5.65685
99	5.68434e-14	1.44817e-08	-1.44817e-08	5.65685

2 вариант

k	beta	x	у	norm
0	1	-1.33333	1.33333	35.7771
1	1	0.0833333	-0.0833333	10.6852
2	0.0078125	-0.0107422	0.0107422	5.6765
3	0.00012207	0.000622105	-0.000622105	5.65718
•	•	•	•	•
98	2.27374e-13	-2.31288e-07	2.31288e-07	5.65685
99	5.68434e-14	1.44817e-08	-1.44817e-08	5.65685

k	beta	х	У	norm
0	1	-1.33333	1.33333	35.7771
1	1	0.0833333	-0.0833333	10.6852
2	0.0078125	-0.0107422	0.0107422	5.6765
3	0.00012207	0.000622105	-0.000622105	5.65718
•	•	•	•	•
98	9.09495e-13	-1.83996e-07	1.83996e-07	5.65685
99	5.68434e-14	1.24942e-07	-1.24941e-07	5.65685

Окружности не пересекаются 2.

- $(x-2)^2 + (y-2)^2 = 4$
- $(x+2)^2 + (y+2)^2 = 4$
- (0,0)

Имя: Начальное приближение

1 вариант

Cant solve!

2 вариант

Cant solve!

6 вариант

Cant solve!

X

Окружности не пересекаются 3.

1 вариант

(-2,2)

k	beta	х	У	norm
0	1	-0.5	0.5	16.9706
1	0.25	0.0625	-0.0625	6.36396
2	0.00390625	-0.00012207	0.00012207	5.6679
3	1.49012e-08	9.09189e-13	-9.09189e-13	5.65685
	•			
98	9.09495e-13	-1.04023e-07	1.04023e-07	5.65685
99	5.68434e-14	4.42426e-07	-4.42426e-07	5.65685

2 вариант

k	beta	X	у	norm
0	1	-0.5	0.5	16.9706
1	0.25	0.0625	-0.0625	6.36396
2	0.00390625	-0.00012207	0.00012207	5.6679
3	1.49012e-08	9.09189e-13	-9.09189e-13	5.65685
	•			•
98	9.09495e-13	-1.04023e-07	1.04023e-07	5.65685
99	5.68434e-14	4.42426e-07	-4.42426e-07	5.65685

k	beta	х	У	norm
0	1	-0.5	0.5	16.9706
1	0.25	0.0625	-0.0625	6.36396
2	0.00390625	-0.00012207	0.00012207	5.6679
3	1.49012e-08	5.29974e-12	-5.2892e-12	5.65685
•	•	•	•	•
98	4.54747e-13	-1.27425e-07	1.27425e-07	5.65685
99	5.68434e-14	3.18669e-07	-3.18669e-07	5.65685

Окружности не пересекаются 4.

Начальное приближение

$$(x-2)^2 + (y-2)^2 = 4$$

$$(x-2)^{2} + (y-2)^{2} = 4$$

$$(x+2)^{2} + (y+2)^{2} = 4$$

$$(-2,-2)$$

Имя: Начальное приближение

1 вариант

Cant solve!

2 вариант

Cant solve!

6 вариант

Cant solve!

Окружности пересекаются в одной точке 1.

1 вариант

k	beta	х	У	norm
0	1	0	6.5	30.4631
1	1	0	5.25	8.83883
2	1	0	4.625	2.20971
3	1	0	4.3125	0.552427
	•			
21	1	0	4	8.03887e-12
22	1	0	4	2.00972e-12

2 вариант

k	beta	х	У	norm
0	1	0	6.5	30.4631
1	1	0	5.25	8.83883
2	1	0	4.625	2.20971
3	1	0	4.3125	0.552427
	•	•		•
21	1	0	4	8.03887e-12
22	1	0	4	2.00972e-12

k	beta	х	у	norm
0	1	1.10845e-12	6.5	30.4631
1	1	3.70171e-25	5.25	8.83883
2	1	3.70171e-25	4.625	2.20971
3	1	-1.38778e-17	4.3125	0.552427
•	•	•	•	•
21	1	-1.47451e-17	4	8.03887e-12
22	1	-1.47451e-17	4	2.00972e-12

Окружности пересекаются в одной точке 2.

$$(x-2)^2 + (y-4)^2 = 4$$

$$(x+2)^2 + (y-4)^2 = 4$$

$$(-6,4)$$

1 вариант

Cant solve!

2 вариант

Cant solve!

6 вариант

Cant solve!

Окружности пересекаются в одной точке 3.

1 вариант

k	beta	x	у	norm
0	1	0	2	22.6274
1	1	0	3	5.65685
2	1	0	3.5	1.41421
3	1	0	3.75	0.353553
		•		•
21	1	0	4	5.14488e-12
22	1	0	4	1.28622e-12

2 вариант

k	beta	х	У	norm
0	1	0	2	22.6274
1	1	0	3	5.65685
2	1	0	3.5	1.41421
3	1	0	3.75	0.353553
•	•			
21	1	0	4	5.14488e-12
22	1	0	4	1.28622e-12

k	beta	х	У	norm
0	1	0	2	22.6274
1	1	0	3	5.65685
2	1	0	3.5	1.41421
3	1	0	3.75	0.353553
•	•	•		•
21	1	0	4	5.14488e-12
22	1	0	4	1.28622e-12

Окружности пересекаются в одной точке 4.

1 вариант

Cant solve!

2 вариант

Cant solve!

6 вариант

Cant solve!

Окружности пересекаются в двух точках 1.

₩	$(x-2)^2$	+	$(y-4)^2=9$
----------	-----------	---	-------------

$$(x+2)^2 + (y-4)^2 = 9$$

(2,0)

✓ Имя: Начальное приближение

1 вариант

k	beta	х	у	norm
0	1	0	0.875	24.0416
1	1	0	1.6375	6.73961
2	1	0	1.76055	0.822233
3	1	0	1.76393	0.0214127
4	1	0	1.76393	1.61616e-05
5	1	0	1.76393	9.23466e-12
6	5.68434e-14	0	1.76393	0

2 вариант

k	beta	х	у	norm
0	1	0	0.875	24.0416
1	1	0	1.6375	6.73961
2	1	0	1.76055	0.822233
3	1	0	1.76393	0.0214127
4	1	0	1.76393	1.61616e-05
5	1	0	1.76393	9.23466e-12
6	5.68434e-14	0	1.76393	0

k	beta	х	У	norm
0	1	-1.10845e-12	0.875	24.0416
1	1	-3.70171e-25	1.6375	6.73961
2	1	-3.70171e-25	1.76055	0.822233
3	1	-3.70171e-25	1.76393	0.0214127
4	1	-3.70171e-25	1.76393	1.61616e-05
5	1	-3.70171e-25	1.76393	9.23466e-12
6	5.68434e-14	-3.70171e-25	1.76393	0

Окружности пересекаются в двух точках 2.

$$(x-2)^2 + (y-4)^2 = 9$$

$$(x-2)^2 + (y-4)^2 = 9$$

$$(x+2)^2 + (y-4)^2 = 9$$

(-2.8)

Имя: Начальное приближение

1 вариант

k	beta	х	У	norm
0	1	0	7.125	24.0416
1	1	0	6.3625	6.73961
2	1	0	6.23945	0.822233
3	1	0	6.23607	0.0214127
4	1	0	6.23607	1.61616e-05
5	1	0	6.23607	9.23466e-12
6	5.68434e-14	0	6.23607	0

2 вариант

k	beta	х	У	norm
0	1	0	7.125	24.0416
1	1	0	6.3625	6.73961
2	1	0	6.23945	0.822233
3	1	0	6.23607	0.0214127
4	1	0	6.23607	1.61616e-05
5	1	0	6.23607	9.23466e-12
6	5.68434e-14	0	6.23607	0

k	beta	х	У	norm
0	1	1.10845e-12	7.125	24.0416
1	1	3.70171e-25	6.3625	6.73961
2	1	3.70171e-25	6.23945	0.822233
3	1	3.70171e-25	6.23607	0.0214127
4	1	3.70171e-25	6.23607	1.61616e-05
5	1	3.70171e-25	6.23607	9.23466e-12
6	5.68434e-14	3.70171e-25	6.23607	0

Окружности пересекаются в двух точках 3.

$$(x-2)^{2} + (y-4)^{2} = 9$$

$$(x+2)^{2} + (y-4)^{2} = 9$$

$$(x+2)^2 + (y-4)^2 = 9$$

(0,0)

Имя: Начальное приближение

1 вариант

k	beta	х	У	norm
0	1	0	1.375	15.5563
1	1	0	1.73512	2.67375
2	1	0	1.76375	0.183403
3	1	-2.71051e-20	1.76393	0.00115917
4	1	-2.71034e-20	1.76393	4.74986e-08
5	5.68434e-14	-2.71034e-20	1.76393	0

2 вариант

k	beta	х	У	norm
0	1	0	1.375	15.5563
1	1	0	1.73512	2.67375
2	1	0	1.76375	0.183403
3	1	-2.71051e-20	1.76393	0.00115917
4	1	-2.71034e-20	1.76393	4.74986e-08
5	5.68434e-14	-2.71034e-20	1.76393	0

k	beta	х	У	norm
0	1	0	1.375	15.5563
1	1	0	1.73512	2.67375
2	1	0	1.76375	0.183403
3	1	0	1.76393	0.00115917
4	1	1.65436e-24	1.76393	4.74986e-08
5	5.68434e-14	1.65436e-24	1.76393	0

Окружности пересекаются в двух точках 4.

$$(x-2)^{2} + (y-4)^{2} = 9$$

$$(x+2)^{2} + (y-4)^{2} = 9$$

$$(x+2)^2 + (y-4)^2 = 9$$

$$(-6,4)$$

Имя: Начальное приближение

Cant solve!

2 вариант

Cant solve!

6 вариант

Cant solve!

Две окружности и прямая 1.

$$(x-2)^{2} + (y-2)^{2} = 4$$

$$(x+2)^{2} + (y+2)^{2} = 4$$

$$(x+2)^2 + (y+2)^2 = 4$$

$$x + y = 0$$

$$(-2,1)$$

Имя: Начальное приближение

1 вариант

k	beta	х	У	norm
0	1	-0.166667	0.166667	13.9642
1	0.03125	0.0234375	-0.0234375	5.73542
2	0.000976563	-0.0182406	0.0182406	5.65841
3	0.000488281	0.00853275	-0.00853275	5.6578
•	•			
98	2.27374e-13	-1.28835e-08	1.28835e-08	5.65685
99	5.68434e-14	4.39921e-06	-4.39921e-06	5.65685

2 вариант

k	beta	х	У	norm
0	1	-0.166667	0.166667	13.9642
1	0.03125	0.0234375	-0.0234375	5.73542
2	0.000976563	-0.0182406	0.0182406	5.65841
3	0.000488281	0.00853275	-0.00853275	5.6578
•	•	•		•
98	1.13687e-13	-5.40388e-08	5.40388e-08	5.65685
99	5.68434e-14	9.97862e-07	-9.97862e-07	5.65685

k	beta	х	У	norm
0	1	-0.166667	0.166667	13.9642
1	0.03125	0.0234375	-0.0234375	5.73542
2	0.000976563	-0.0182406	0.0182406	5.65841
3	0.000488281	0.00853275	-0.00853275	5.6578
•	•	•		
98	5.68434e-14	-1.02281e-06	1.02281e-06	5.65685
99	1.81899e-12	7.55624e-07	-7.55624e-07	5.65685

Две окружности и прямая 2.

Начальное приближение

$$(x-2)^2 + (y-2)^2 = 4$$

$$(x+2)^2 + (y+2)^2 = 4$$

$$(x+2)^2 + (y+2)^2 = 4$$

$$x + y = 0$$

$$(-2,-2)$$

Имя: Начальное приближение

1 вариант

Cant solve!

2 вариант

Cant solve!

6 вариант

Cant solve!

Две окружности и прямая 3.

$$(x-2)^2 + (y-2)^2 = 4$$

$$(x+2)^2 + (y+2)^2 = 4$$

$$x + y = 0$$

(-2,2)

✓ Имя: Начальное приближение

1 вариант

k	beta	х	у	norm
0	1	-0.166667	0.166667	5.73542
1	0.03125	0.0234375	-0.0234375	5.65841
2	0.000976563	-0.0182406	0.0182406	5.6578
3	0.000488281	0.00853275	-0.00853275	5.65706
•	•	•	•	•
98	2.27374e-13	-1.28835e-08	1.28835e-08	5.65685
99	5.68434e-14	4.39921e-06	-4.39921e-06	5.65685

2 вариант

	1	1	1	T
k	beta	x	у	norm
0	1	-0.166667	0.166667	5.73542
1	0.03125	0.0234375	-0.0234375	5.65841
2	0.000976563	-0.0182406	0.0182406	5.6578
3	0.000488281	0.00853275	-0.00853275	5.65706
•	•	•	•	•
98	1.13687e-13	-5.40388e-08	5.40388e-08	5.65685
99	5.68434e-14	9.97862e-07	-9.97862e-07	5.65685

k	beta	x	у	norm
0	1	-0.166667	0.166667	5.73542
1	0.03125	0.0234375	-0.0234375	5.65841
2	0.000976563	-0.0182406	0.0182406	5.6578
3	0.000488281	0.00853275	-0.00853275	5.65706
•		•	•	
98	5.68434e-14	-1.02281e-06	1.02281e-06	5.65685
99	1.81899e-12	7.55624e-07	-7.55624e-07	5.65685

Две окружности и прямая 4.

1 вариант

k	beta	х	У	norm
0	1	-2.16667	4.16667	22.1585
1	1	-2.0119	4.0119	18.07
2	1	-2.00007	4.00007	16.1432
3	1	-2	4	16.0008
4	1	-2	4	16
5	5.68434e-14	-2	4	16

2 вариант

k	beta	х	У	norm
0	0.125	2.5625	3.8125	22.1585
1	1	1.79119	0.208807	20.576
2	1	2.22045e-16	0.208807	13.6021
3	1	3.33067e-16	1.1044	4.87808
4	1	0.138502	1.8615	1.44527
5	1	2.77556e-17	1.8615	0.785363
6	1	0.00448512	1.99551	0.141134
7	1	1.82146e-17	1.99551	0.0253717
8	1	5.01782e-06	1.99999	0.00448521
9	1	5.08321e-17	1.99999	2.83851e-05
10	1	6.29475e-12	2	5.01786e-06
11	5.68434e-14	6.29475e-12	2	3.56091e-11

k	beta	x	у	norm
0	0.125	2.5625	3.8125	22.1585
1	1	1.79119	0.208807	20.576
2	1	-4.95382e-13	0.208807	13.6021
3	1	1.11022e-16	1.1044	4.87808
4	1	0.138502	1.8615	1.44527
5	1	5.55112e-17	1.8615	0.785363
6	1	0.00448512	1.99551	0.141134

7	1	-5.03937e-16	1.99551	0.0253717
8	1	-5.04038e-06	2.00001	0.00448521
9	1	7.87571e-18	2.00001	2.85127e-05
10	1	6.35128e-12	2	5.04032e-06
11	1	-8.8273e-17	2	3.59287e-11
12	1	-8.82729e-17	2	1.28162e-11
13	5.68434e-14	-8.82729e-17	2	0

Две окружности и прямая 5.

1 вариант

k	beta	х	У	norm
0	1	0.5	1.5	6
1	1	-0.25	2.25	2.91548
2	1	0.0416667	1.95833	1.42522
3	1	-0.000905797	2.00091	0.235753
4	1	4.10606e-07	2	0.00512396
5	1	-8.41259e-14	2	2.32274e-06
6	1	2.89769e-17	2	4.75425e-13

2 вариант

k	beta	х	У	norm
0	1	0	1	6
1	1	0.166667	1.83333	1.73205
2	1	2.77556e-17	1.83333	0.946077
3	1	0.00641026	1.99359	0.171234
4	1	1.44849e-16	1.99359	0.0362621
5	1	1.024e-05	1.99999	0.00641052
6	1	-8.89317e-17	1.99999	5.79263e-05
7	1	2.62143e-11	2	1.024e-05
8	5.68434e-14	2.62143e-11	2	1.4829e-10

	k	beta	х	у	norm
(0	1	0	1	6

1	1	0.166667	1.83333	1.73205
2	1	5.55112e-17	1.83333	0.946077
3	1	0.00641026	1.99359	0.171234
4	1	-3.2873e-16	1.99359	0.0362621
5	1	-1.03059e-05	2.00001	0.00641052
6	1	8.73443e-17	2.00001	5.82989e-05
7	1	2.65529e-11	2	1.03059e-05
8	1	-8.45827e-17	2	1.50206e-10
9	1	-8.45813e-17	2	5.31057e-11
10	5.68434e-14	-8.45813e-17	2	0

Две окружности и прямая 6.

1 вариант

k	beta	х	У	norm
0	0.5	-4.58333	4.08333	45.5522
1	1	-2.71577	4.71577	44.3107
2	1	-2.1493	4.1493	25.9073
3	1	-2.0097	4.0097	17.8477
4	1	-2.00005	4.00005	16.1166
5	1	-2	4	16.0006
6	1	-2	4	16
7	5.68434e-14	-2	4	16

k	beta	х	У	norm
0	1	-1.78571	3.78571	45.5522
1	1	-2.22045e-16	3.78571	13.5421
2	1	0	2.89286	4.85029
3	0.5	0.180012	2.26642	1.43813
4	1	5.55112e-17	2.19402	1.12143
5	1	0.0104223	1.98958	0.201195
6	1	-8.67362e-18	1.98958	0.0589585
7	1	2.70155e-05	1.99997	0.0104235
8	1	8.40595e-18	1.99997	0.000152823
9	1	1.82457e-10	2	2.70155e-05
10	1	-1.03915e-16	2	1.03213e-09
11	1	-1.03849e-16	2	3.64914e-10
12	5.68434e-14	-1.03849e-16	2	0

6 вариант

k	beta	х	у	norm
0	1	-1.78571	3.78571	45.5522
1	1	9.72555e-14	3.78571	13.5421
2	1	1.088e-26	2.89286	4.85029
3	0.5	0.180012	2.26642	1.43813
4	1	-2.98928e-14	2.19402	1.12143
5	1	-0.00857899	2.00858	0.201195
6	1	-9.95731e-16	2.00858	0.0485306
7	1	-1.83212e-05	2.00002	0.00857962
8	1	3.90109e-17	2.00002	0.00010364
9	1	8.39174e-11	2	1.83212e-05
10	1	7.6334e-17	2	4.74708e-10
11	1	7.6348e-17	2	1.67724e-10
12	5.68434e-14	7.6348e-17	2	0

Две окружности и прямая 7.

$$(x-2)^2 + (y-2)^2 = 4$$

$$(x+2)^2 + (y-2)^2 = 4$$

$$x + y - 2 = 0$$

$$(-2,2)$$

1 вариант

Cant solve!

2 вариант

Cant solve!

6 вариант

Cant solve!

5. Даны три попарно прямые. Исследовать сходимость метода в зависимости от начальных приближений

График

Вариант 1

Начальное приближение (1,0)

k	beta	х	у	norm
0	5.68434e-14	1	-9.4739e-14	3.31662
1	5.68434e-14	1	-1.89478e-13	3.31662

Начальное приближение (10,0)

k	beta	х	у	norm
0	1	1.66667	-1.66667	20.6155
1	1	1.66667	-1.66667	18.3333

Начальное приближение (-1,6)

k	beta	х	у	norm
0	1	1.66667	-1.66667	62.57
1	1	1.66667	-1.66667	18.3333

Вариант 2

Начальное приближение (1,0)

k	beta	х	у	norm
0	5.68434e-14	1	-9.4739e-14	3.31662
1	1	2.63158	0.263158	3.31662
2	0.5	1.31579	0.131579	2.89474
3	0.03125	1.32675	0.0753838	2.88875

Начальное приближение (10,0)

k	beta	x	y	norm
0	1	1.66667	-1.66667	20.6155
1	1	2.63158	0.263158	18.3333
2	0.5	1.31579	0.131579	2.89474
3	0.03125	1.32675	0.0753838	2.88875

Начальное приближение (-1,6)

k	beta	X	у	norm
0	1	2.63158	0.263158	62.57
1	0.5	1.31579	0.131579	2.89474
2	0.03125	1.32675	0.0753838	2.88875

Вариант 6

Начальное приближение (1,0)

k	beta	x	у	norm
0	5.68434e-14	1	-9.4739e-14	3.31662
1	1	2.63158	0.263158	3.31662
2	0.5	1.31579	0.131579	2.89474
3	0.03125	1.32675	0.0753838	2.88875

Начальное приближение (10,0)

k	beta	x	у	norm
0	1	1.66667	-1.66667	20.6155
1	1	2.63158	0.263158	18.3333
2	0.5	1.31579	0.131579	2.89474
3	0.03125	1.32675	0.0753838	2.88875

Начальное приближение (-1,6)

k	beta	х	у	norm
0	1	2.63158	0.263158	62.57
1	0.5	1.31579	0.131579	2.89474
2	0.03125	1.32675	0.0753838	2.88875

6. Исследовать влияние взвешивания уравнений СНУ (умножения уравнений СНУ на некоторые веса).

Функции как в исследовании 5, взвешиваем «зеленую» прямую

Начальное приближение (-5, 6)

Вариант 1

Alpha	Result		Number of iteration
0.25	1.66667	-1.66667	3
2	1.66667	-1.66667	2
10	0	0	2
1000	0	0	2

Вариант 2

Alpha	Result		Number of iteration
0.25	0.66766	0.0560238	6
2	2.28276	0.170984	4
10	2.59126	0.202058	3
1000	2.60142	0.202851	3

Вариант 6

Alpha	Result		Number of iteration
0.25	0.66766	0.0560238	5
2	2.28276	0.170984	4
10	2.59126	0.202058	3
1000	2.60142	0.202851	2

7. Исследовать сходимость метода Ньютона для СНУ с локальными минимумами в зависимости от начальных приближений (например, на СНУ, состоящей из синусоиды и прямой с некоторым наклоном, которая пересекает синусоиду).

График

Вариант 1Начальное приближение (0,0)

k	beta	х	у	norm
0	1	1.66667	1.66667	5
1	1	1.50277	1.0111	0.671259
2	1	1.49936	0.997456	0.013409
3	1	1.49936	0.99745	5.80079e-06

4	1	1.49936	0.99745	1.08735e-12
5	5.68434e-14	1.49936	0.99745	0

Начальное приближение (1,0)

k	beta	х	у	norm
0	1	5.8679	3.47161	16.0221
1	1	4.6118	-1.55278	3.87506
2	1	4.74785	-1.00861	0.557835
3	1	4.75018	-0.999289	0.00923507
4	1	4.75018	-0.999286	2.7113e-06
5	1	4.75018	-0.999286	2.33951e-13

Начальное приближение (3*РІ/2,1)

k	beta	x	у	norm
0	1	4.75	-1	2.93673
1	1	4.75018	-0.999286	0.000707211
2	1	4.75018	-0.999286	1.59164e-08
3	5.68434e-14	4.75018	-0.999286	0

Вариант 2

Начальное приближение (0,0)

k	beta	х	у	norm
0	1	1.66667	1.66667	5
1	1	1.50277	1.0111	0.671259
2	1	1.49936	0.997456	0.013409
3	1	1.49936	0.99745	5.80079e-06
4	1	1.49936	0.99745	1.08735e-12
5	5.68434e-14	1.49936	0.99745	0

Начальное приближение (1,0)

k	beta	x	y	norm
0	1	5.8679	3.47161	16.0221
1	1	4.6118	-1.55278	3.87506
2	1	4.74785	-1.00861	0.557835
3	1	4.75018	-0.999289	0.00923507
4	1	4.75018	-0.999286	2.7113e-06
5	1	4.75018	-0.999286	2.33951e-13

k	beta	x	у	norm
0	1	4.75	-1	2.93673
1	1	4.75018	-0.999286	0.000707211
2	1	4.75018	-0.999286	1.59164e-08
3	5.68434e-14	4.75018	-0.999286	0

Вариант 6

Начальное приближение (0,0)

k	beta	x	y	norm
0	1	1.66667	1.66667	5
1	1	1.50277	1.0111	0.671258
2	1	1.49936	0.997456	0.0134089
3	1	1.49936	0.99745	5.80081e-06
4	1	1.49936	0.99745	1.10489e-12
5	5.68434e-14	1.49936	0.99745	0

Начальное приближение (1,0)

k	beta	X	у	norm
0	1	5.8679	3.47161	16.0221
1	1	4.6118	-1.55278	3.87506
2	1	4.74785	-1.00861	0.557835
3	1	4.75018	-0.999289	0.00923506
4	1	4.75018	-0.999286	2.71131e-06
5	1	4.75018	-0.999286	2.3828e-13

Начальное приближение (3*РІ/2,1)

k	beta	х	у	norm
0	1	4.75	-1	2.93673
1	1	4.75018	-0.999286	0.000707211
2	1	4.75018	-0.999286	1.59175e-08
3	5.68434e-14	4.75018	-0.999286	0

8. Исследовать влияние размера шага при численном вычислении производных на сходимость метода Ньютона. Используется следующая разностная схема:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Функция как в исследовании 7

Начальное приближение (0,1)

Ерѕ(шаг)	Iterations	Result
1e-13	9	(4.75018; -0.999286)
1e-11	7	(4.75018; -0.999286)
1e-9	6	(4.75018; -0.999286)
•	•	•
0,001	6	(4.75018; -0.999286)
0,1	7	(4.75018; -0.999286)
1	8	(4.75018; -0.999286)
10	9	(4.75018; -0.999286)

9. Выводы

Артур: при расположении начального приближения на прямой, соединяющей центры окружностей в ходе прямого хода методом гаусса последняя строка матрицы состоит целиком из нулей, в результате чего при обратном ходе получаются бесконечные значения компонент искомого вектора, что приводит к аварийному выходу программы с сообщением "Cant solve!".

При нахождении начального приближения на оси, перпендикулярной, оси соединяющей центры окружностей и пересекающей ее на равных расстояниях от центров окружностей метод не может сойтись и совершает колебания равной амплитуды на этой оси.

Для окружностей с двумя пересечениями видно как находится ближайшее к начальному приближению решение.

Стоит отметить, что на тестах, для которых программа может найти решение, первый шаг всегда приводит к линии симметрии.

При взвешивании прямых метод не только начинает сходиться к одному из пересечений прямых, но еще и делает это за меньшее число итераций.

При размещении начального приближения у локального минимума, рядом с которым находится решение, решение находится за меньшее число итераций.

Увеличение шага при численном вычислении производной положительно сказывается на количество итераций, но только до определённого момента.

Анатолий: Сходимость метода Ньютона зависит от начального приближения.

Если задать начальное приближение на прямой центров окружностей, то получаем вырожденную СЛАУ и решение найти невозможно. Взвешивание уравнений заставляет решение сходиться к уравнению с большим весом, причём чем больше вес, тем быстрее.

Сходимость в системе из трёх прямых не зависит от начального приближения и сходится к некоторой точке.

В СНУ с локальными минимумами решение может не сходиться к ближайшему пересечению графиков функций.

При численном вычислении элементов матрицы Якоби с уменьшением шага уменьшается количество итераций, соответственно, увеличивается скорость схождения к решению системы.