5. Vector Space Model

Outline

- The Basic Idea
- The Basic Formulas of the Vector Space Model
- 3 A Variant of the tf · idf Formula
- Relevance Feedback
- Implementation of the Vector Space Model

Overview

- Most frequently used model
- Documents and query represented by t-dimensional vectors
- t is number of terms of the indexing vocabulary
- i-th vector component is term weight (non-negative real number)
- High weight ⇒ corresponding term represents document/query well

5.1 The Basic Idea

- Let N be number of documents
- Let n_k be the number of documents containing term k
- Let tf_{dk} be the frequency of occurrence of term k in document D
- Document D is represented by vector $V_D = (w_{d1}; ...; w_{dt})$
- Analog: query Q by $V_Q = (w_{q1}; ...; w_{qt})$
- w_{qk} and w_{dk} are relevance of document D and query Q for term k, respectively
- Similarity calculation using scalar product: $\langle V_Q, V_D \rangle$

$$similarity(V_Q, V_D) = \langle V_Q, V_D \rangle = \sum_{k=1}^t w_{qk} w_{dk}$$

Basic assumption

- Vector dimensions are independent of each other
- Cluster hypothesis
 - documents and query lie compactly together in a high-dimensional vector space (similar documents show similar directions)

Example

- Selected index terms: 'Houses', 'Italy', 'Gardens', 'France'
- First approach: $w_{dk} = tf_{dk}$ (no consideration of document lengths)
- $D_1 = \text{'Houses in Italy'} \Rightarrow V_{D1} = (1; 1; 0; 0)$
- D_2 = 'Houses in Italy and around Italy' $\Rightarrow V_{D2} = (1; 2; 0; 0)$
- $D_3 =$ 'Gardens and Houses in Italy' $\Rightarrow V_{D3} = (1; 1; 1; 0)$
- $D_4 = \text{`Gardens in Italy'} \Rightarrow V_{D4} = (0; 1; 1; 0)$
- $D_5 = \text{'Gardens and Houses in France'} \Rightarrow V_{D5} = (1; 0; 1; 1)$
- $Q = \text{'Houses in Italy'} \Rightarrow V_Q = (1; 1; 0; 0)$
- Similarity(V_Q , V_{D1})=2, Similarity(V_Q , V_{D2})=3, Similarity $(V_O, V_{D3})=2$, Similarity $(V_O, V_{D4})=1$, Similarity $(V_O, V_{D5})=1$

5.2 The Basic Formulas of the Vector Space Model

Calculation of term weights w_{dk}

- Many very similar formulas available here the most common formula
- 2 factors
 - frequency of occurrence of a term in the document
 - discriminatory power of a term related to document collection

Frequency of occurrence of a term in a document

- The higher the frequency of occurrence tf_{dk} , the better the term describes the document
- Problem: absolute frequency of occurrence tends to be higher for long documents
- Consequence: long documents are preferred during search
- Example: $V_{D1} = (50; 5; 0; 0), V_{D2} = (0; 2; 2; 0), V_Q = (0; 1; 1; 0)$ $\Rightarrow V_{D1}$ is unfairly preferred: $\langle V_Q, V_{D1} \rangle = 5$ and $\langle V_Q, V_{D2} \rangle = 4$

Frequency of occurrence of a term in a document

Independence from document length by normalization of document vectors:

$$w_{dk} = \frac{tf_{dk}}{\sqrt{\sum_{i=1}^{t} tf_{di}^2}}$$

Example

Absolute frequency:

$$V_{D1} = (50; 5; 0; 0), V_{D2} = (0; 2; 2; 0), V_{Q} = (0; 1; 1; 0)$$

- Relative frequency by vector normalization: $V_{D1} = (0.995; 0.0995; 0; 0), V_{D2} = (0; 0.707; 0.707; 0)$
- Query vector unchanged: $V_Q = (0; 1; 1; 0)$ $\Rightarrow \langle V_Q, V_{D1} \rangle = 0.0995$ and $\langle V_Q, V_{D2} \rangle = 1.41$
- Before: $\langle V_Q, V_{D1} \rangle = 5$ and $\langle V_Q, V_{D2} \rangle = 4$

Discriminatory power of a term

- If term occurs in fewer documents, it is more specific
- More specific terms have higher discriminatory power and should be weighted higher
- Approach: discriminatory power as quotient: $\frac{N}{n_i}$

$$w_{dk} = \frac{tf_{dk} \cdot \frac{N}{n_k}}{\sqrt{\sum_{i=1}^{t} (tf_{di} \frac{N}{n_i})^2}}$$

Discriminatory power as a quotient

- Problem with $\frac{N}{n_i}$: very rare terms dominate vectors
- Example: N = 100000, $n_i = 5$ and $n_j = 50$

Discriminatory power using logarithm

- Natural logarithm mitigates effect
- $log(\frac{N}{n_k})$ instead of $\frac{N}{n_k}$

The $tf \cdot idf$ formula

$$w_{dk} = \frac{tf_{dk} \cdot \log \frac{N}{n_k}}{\sqrt{\sum_{i=1}^{t} (tf_{di} \cdot \log \frac{N}{n_i})^2}}$$

- tf stands for term frequency
- idf stands for inverse document frequency
- tf · idf formula is a heuristic formula

Query representation

- Query Q represented by $V_Q = (w_{q1}; ...; w_{qt})$
- Do not determine W_{qk} values using $tf \cdot idf$ formula, since
 - each term in query has its own base weight 0.5
 - normalization not necessary, since factor is the same for all documents
- Proposal by Salton and Buckley:

$$w_{qk} = \begin{cases} (0.5 + \frac{0.5 \cdot tf_{qk}}{\max\limits_{1 \le i \le t} tf_{qi}}) \cdot \log \frac{N}{n_k} & \text{if } tf_{qk} > 0\\ 0 & \text{if } tf_{qk} = 0 \end{cases}$$

Query representation

Similarity between documents and query

Calculation via scalar product:

$$similarity(V_Q, V_D) = \langle V_Q, V_D \rangle = \sum_{k=1}^{l} w_{qk} w_{dk}$$

Law from linear algebra:

$$\langle V_Q, V_D \rangle = \sqrt{\langle V_Q, V_Q \rangle} \cdot \sqrt{\langle V_D, V_D \rangle} \cdot \cos \alpha$$

• Cosine measure is cosine of the angle enclosed by V_Q and V_D :

$$sim_{cos}(V_Q, V_D) = \frac{\displaystyle\sum_{k=1}^t w_{qk} \cdot w_{dk}}{\sqrt{\displaystyle\sum_{i=1}^t w_{qi}^2 \cdot \sqrt{\displaystyle\sum_{j=1}^t w_{dj}^2}}}$$

 Generated document order for cosine measure and scalar product is the same

5.3 A Variant of the tf · idf Formula

- Many improvements of the $tf \cdot idf$ formula are proposed
- The following is one example of many variants
- Normalization of vectors should avoid disadvantage of short documents
- Side effect: short documents have few components with $w_{dk} > 0$
- Normalization of a few components generates relatively high values
- Consequence for short queries: preference for short documents
- Normalization is therefore "too much of a good thing" ⇒ compensation

Test on concrete data set

CDs 1 and 2 of the TREC collection with 741856 documents and Topics $151\ \text{to}\ 200$

Normalization adjustment

Normalization factor

$$\sqrt{\sum_{i=1}^{t} (tf_{di} \cdot log \frac{N}{n_i})^2} = \sqrt{\sum_{i=1}^{t} w_{di}^2}$$

- Long documents should become stronger
- Short documents should become weaker
- Use $kf_d \cdot w_{dk}$ instead of w_{dk} when normalizing:

$$\textit{kf}_d = (1 - \textit{slope}) + \textit{slope} \cdot \frac{\textit{old_normalization}}{\textit{average_old_normalization}}$$

Example

• slope = 0.75 and average_old_normalization = 40

Document	Old normalization	kf _d	New normalization	Vector length
D ₁	20	0,625	32	0,625
D ₂	40	1,0	40	1,0
D ₃	80	1,75	45,71	1,75

Determination of the slope value

- Must be determined empirically
- Example CDs 1 and 2 of TREC: $average_old_normalization = 13.36$
- Optimal is slope = 0.75

	tf · idf	modified approach				
slope	-	0.60	0.65	0.70	0.75	0.80
found	6526	6342	6458	6574	6629	6671
precision	0.284	0.302	0.310	0.314	0.317	0.316
improvement	-	+6.5%	+9.0%	+10.7%	+11.7%	+11.3%

Summary: variant of tf · idf formula

- Modified normalization: relevance and retrieval probability get closer
 higher precision
- Attention: $w_{df} \le 1$ does no longer hold \Rightarrow adaptation of algorithms that rely on normalization
- Slope value must be determined empirically

5.4 Relevance Feedback

- Vector space model expects information need from user as query
- Goal: user interactions as additional sources of information for clarification
- User evaluates individual results after first run (relevant, not relevant)
- Relevance feedback uses evaluation to reformulate new query
- Evaluations lead to shift of the query vector

Shifting the query vector

- 2 terms
- Changing the 'search angle' in the direction of the document evaluated as relevant

Query shifting methods

- Starting point is decomposition of the feedback set into
 - ▶ F⁺ (documents considered relevant) and
 - ▶ F⁻ (documents considered irrelevant)
 - ▶ Possibly also F? (neither considered relevant nor irrelevant)
- Methods
 - Ide (dec hi)
 - Ide (regular)
 - Rocchio

Ide (dec hi)

- Documents from F^+ are added
- D^{-rel} from F^- with highest rank in result is subtracted

$$V_Q^{new} = V_Q^{old} + (\sum_{D \in F^+} D) - D^{-rel}$$

Ide (regular)

- Documents from F⁺ are added
- Documents from F⁻ are subtracted

$$V_Q^{new} = V_Q^{old} + (\sum_{D \in F^+} D) - (\sum_{D \in F^-} D)$$

Rocchio

- Documents from F^+ are averaged and added
- Documents from F⁻ are averaged and subtracted
- Influence of F^+ and F^- is weighted by α and β ($\alpha + \beta = 1$), respectively
- Typical assignment: $\alpha = 0.25$ and $\beta = 0.75$

$$V_Q^{new} = V_Q^{old} + \beta \cdot \frac{1}{|F^+|} \sum_{D \in F^+} D - \alpha \cdot \frac{1}{|F^-|} \cdot \sum_{D \in F^-} D$$

Experimental results

- Precision values as mean values over recall levels 0.25, 0.5 and 0.75
- Results under selected terms: only terms in many relevant documents are considered
 - → advantage: accelerated query processing
- Significant improvements in precision values are achieved
- Ide (dec hi) performs best
- Reason: heterogeneous set F^- does not give a clear direction

Experimental results

used		3204 Doc. 64	1460 Doc. 112	1397 Doc.	12684 Doc.	1033	age
		64			Doc	_	
			112		DUC.	Doc.	
1			112	225	84	30	
		queries	queries	queries	queries	queries	
initial query							
	Precision	0,1459	0,1184	0,1156	0,1368	0,3346	
Ide (dec hi)							
with all	Precision	0,2704	0,1742	0,3011	0,2140	0,6305	
terms	improvement	+86%	+47%	+160%	+56%	+88%	+87%
selected	Precision	0,2479	0,1924	0,2498	0,1976	0,6218	
terms	improvement	+70%	+63%	+116%	+44%	+86%	+76%
Ide (regular	Ide (regular)						
with all	Precision	0,2241	0,1550	0,2508	0,1936	0,6228	
terms	improvement	+66%	+31%	+117%	+42%	+86%	+68%
selected	Precision	0,2179	0,1704	0,2217	0,1808	0,5980	
terms	improvement	+49%	+44%	+92%	+32%	+79%	+59%
Rocchio (standard $\beta=0,75$; $\alpha=0,25$)							
with all	Precision	0,2552	0,1404	0,2955	0,1821	0,5630	
terms	improvement	+75%	+19%	+156%	+33%	+68%	+70%
selected	Precision	0,2491	0,1623	0,2534	0,1861	0,5297	
terms	improvement	+71%	+37%	+119%	+36%	+55%	+64%

Pseudo relevance feedback

- First elements of the ranking are used for relevance feedback
 - query expansion improves recall
 - works well only if top n precision is already good

5.5 Implementation of the Vector Space Model

Variants:

- Inverted lists (standard approach)
- Multidimensional access structures (high dimensionality problem)
- Signatures

Basic algorithms with inverted lists

- ullet Querier usually wants to see only the γ best results
- Steps:
 - run through the inverted lists of the query terms in order of falling query term weights w_{qk}
 - ② for each pair (D, w_{dk}) in the inverted list just considered, add $w_{dk} \cdot w_{qk}$ to the previous weight of D
 - $\ \ \,$ after fully considering an inverted list, check if document with rank $\gamma+1$ can still reach rank γ if not, then abort

Example

- Vocabulary {Car, Bike, Cost, Motorcycle, Production, Quality}
- Query vector (0; 0; 8; 1; 10; 0)
- ullet $\gamma+1$ currently best documents are kept in the sorted array $\emph{TopDocs}$
- Additionally, each read document in auxiliary data structure
 - grows enormously under certain circumstances!

Example II

Example III

Realization of the auxiliary data structure

- Management of pairs (D, w), i.e. document ID and weight
- Operations
 - ▶ *IsInDS(D)* tests whether *D* is contained
 - ► InsertIntoDS(D, w) inserts new pair
 - ► AddToDSEntry(D, w) adds weight w to the document
 - ► GetWeightFromDS(D) determines weight

Necessary operations on inverted list

Operations on term k:

- InitList(k) initializes list for sequential iteration
- GetNextElementOfList(k) returns current pair (D, w_{dk})
- NotAtEndOfList(k) tests if end is not reached yet

Realization of the *TopDocs* array

- Contains $\gamma + 1$ documents
- Seen document is inserted at correct position (in sorted list)

The MaxRemainingWeight() operation

- Determines maximum possible gain of weight
- Assumes $w_{dk} \leq 1$

$$MaxRemainingWeight() = \sum_{all \ remaining \ query \ terms \ k'} w_{qk'}$$

Algorithm according to Buckley & Lewit

• Returns γ most relevant documents (but not necessarily in correct order)

```
for (all terms in the query vector with w_{qk} > 0) do
    Let k' be the previously not considered term with the highest value w_{ak}';
    InitList(k');
    while (NotAtEndOfList(k')) do
       (D, w_{dk'}) = GetNextElemOfList(k');
        if IsInDS(D) then
           AddToDSEntry(D, w_{ak'} \cdot w_{dk'});
        else
           InsertIntoDS(D, w_{ab'} \cdot w_{db'});
        end:
        Sort D in the TopDocs array according to the weight
        GetWeightFromDS(D):
   end:
        (TopDocs[\gamma] > TopDocs[\gamma+1] + MaxRemainingWeight())
         then FINISH:
end:
```

Performance increase

- Idea: let algorithm terminate earlier and accept inaccuracy
- \bullet Buckley & Lewit: termination when ${\it n} \leq \gamma$ documents have been reliably detected

```
if (TopDocs[n] > TopDocs[\gamma+1] + MaxRemainingWeight()) then FINISH:
```

Experiments with $\gamma = 10$

n	CPU time	# blocks read	Recall	
1	61.3	2833	0.1588	
2	68.2	3058	0.1566	
3	75.9	3255	0.1555	
4	83.1	3451	0.1538	
5	90.3	3630	0.1548	
6	93.6	3721	0.1543	
7	99.7	3863	0.1501	
8	104.5	3980	0.1505	
9	107.0	4033	0.1508	
10	109.2	41 baseline	0.1508	

better result despite early termination

Evaluation of the experiments

- The smaller *n* the better the recall value
- Possible reason:
 - highly weighted terms (high discriminatory power) are taken into account whereas for long queries the remaining terms 'dilute' the result
- Conclusion: exact calculation does not necessarily lead to better results

Evaluation vector space model

- Advantages:
 - simplicity
 - directly applicable to document collection in contrast to probabilistic model
 - very good empirical retrieval quality
 - efficient implementation as inverted lists
 - relevance feedback improves quality of results
- Disadvantages:
 - assumes independence of dimensions
 - no theoretical foundation of the model
 - adaptation to structured documents only possible with difficulty