СПРЯЖЕН"СТЬ КУСКОВО-Л"Н"ЙНИХ СФЕРИЧНО-ТРАНЗИТИВНИХ АВТОМОРФ"ЗМ"В КОРЕНЕВОГО Б"НАРНОГО ДЕРЕВА.

к.ф.-м.н. Морозов Денис Иванович

Анотація. Дана стаття дає відповідь на питання скінченно-станової спряженості лінійних сферично-транзитивних автоморфізмів бінарного дерева.

1

Definition 1. Назвемо автоморфізм кореневого бінарного дерева сферично-транзитивним, якщо його дерево типу є ланцюгом.

Множину сферично-транзитивних автоморфізмів позначимо як $STAutZ_2$

Definition 2. Означимо функцію $\varphi: STAutZ_2 \to STAutZ_2$ наступним чином $\varphi(x) = x_1 \circ x_2$, де x_1, x_2 визначаються співвідношеням $x = (x_1, x_2) \circ \sigma$

Функція визначена корректно, оскільки, якщо $x=(x_1,x_2)\circ\sigma$ є сферичнотранзитивним автоморфізмом кільця Z_2 , то і $x_1\circ x_2$ є сферично-транзитивним автоморфізмом кільця Z_2 .

Definition 3. Означимо функцію $\pi_L : Aut Z_2 \to Aut Z_2$ наступним чином $\pi_L(x) = x_1$, де x_1 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Definition 4. Означимо функцію $\pi_R : AutZ_2 \to AutZ_2$ наступним чином $\pi_R(x) = x_2$, де x_2 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Очевидно, що для сферично-транзитивного автоморфізма a має місце рівність $a = (\pi_L(a), \pi_R(a)) \circ \sigma$ і значення $\pi_L(a), \pi_R(a)$ та $\varphi(a)$ зв'язані наступним співвідношенням:

$$\varphi(a) = \pi_L(a) \circ \pi_R(a)$$

Крім того, для автоморфізмів $a=(a_1,a_2),\ b=(b_1,b_2)\circ\sigma$ мають місце наступні співвідношення:

$$\pi_L(a^{-1}) = (\pi_L(a))^{-1}, \ \pi_R(a^{-1}) = (\pi_R(a))^{-1}$$

$$\pi_L(b^{-1}) = (\pi_R(b))^{-1}, \ \pi_R(b^{-1}) = (\pi_L(b))^{-1}$$

$$\pi_L(a \circ b) = \pi_L(a) \circ \pi_L(b), \ \pi_R(a \circ b) = \pi_R(a) \circ \pi_R(b)$$

$$\pi_L(b \circ a) = \pi_L(b) \circ \pi_R(a), \ \pi_R(b \circ a) = \pi_R(b) \circ \pi_L(a)$$

Theorem 1. Нехай a, b - сферично-транзитивні скінченно-станові ізометрії кільця Z_2 , а χ_0 - θ -розв'язок рівняння спряженості $a^{\chi_0} = b$. Тоді $\forall n \in \mathbb{N}$ має місце рівність

$$\varphi^n(a)^{\pi_L^n(\chi_0)} = \varphi^n(b)$$

Доведення. Дійсно, оскільки $a^{\chi_0}=b$, то $\varphi^n(a^{\chi_0})=\varphi^n(b)\ \forall n\in\mathbb{N}.$ Далі,

$$\pi_L(a^{\chi_0}) = \pi_L(\chi_0^{-1} \circ a \circ \chi_0) = \pi_L(\chi_0^{-1}) \circ \pi_L(a) \circ \pi_R(\chi_0) = (\pi_L(\chi_0))^{-1} \circ \pi_L(a) \circ \pi_R(\chi_0)$$

$$\pi_R(a^{\chi_0}) = \pi_R(\chi_0^{-1} \circ a \circ \chi_0) = \pi_R(\chi_0^{-1}) \circ \pi_R(a) \circ \pi_L(\chi_0) = (\pi_R(\chi_0))^{-1} \circ \pi_R(a) \circ \pi_L(\chi_0)$$

Скористаємось методом математичної індукції:

1) Для n=0 маємо рівність $a^{\chi_0}=b$ і тверження виконується. 2) Нехай для n=k твердження теореми виконується, тобто $\varphi^k(a)^{\pi_L^k(\chi_0)}=\varphi^k(b)$. Покажемо, що воно також має місце для n=k+1.

Оскільки $\varphi^{k+1}(b) = \varphi(\varphi^k(b))$, то, згідно з індуктивним припущенням,

$$\varphi^{k+1}(b) = \varphi(\varphi^k(a)^{\pi_L^k(\chi_0)}) = \pi_L(\varphi^k(a)^{\pi_L^k(\chi_0)}) \circ \pi_R(\varphi^k(a)^{\pi_L^k(\chi_0)})$$

і $\varphi(\varphi^k(a)^{\pi_L^k(\chi_0)}) = ((\pi_L(\pi_L^k(\chi_0)))^{-1} \circ \pi_L(\varphi^k(a)) \circ \pi_R(\pi_L^k(\chi_0))) \circ ((\pi_R(\pi_L^k(\chi_0)))^{-1} \circ \pi_R(\varphi^k(a)) \circ \pi_L(\pi_L^k(\chi_0))) = (\pi_L(\pi_L^k(\chi_0)))^{-1} \circ (\pi_L(\varphi^k(a)) \circ \pi_R(\varphi^k(a))) \circ \pi_L(\chi_0) = (\pi_L(\pi_L^k(\chi_0)))^{-1} \circ \varphi(\varphi^k(a)) \circ \pi_L(\pi_L^k(\chi_0)) = \varphi(\varphi^k(a))^{\pi_L(\pi_L^k(\chi_0))} = \varphi^{k+1}(a)^{\pi_L^{k+1}(\chi_0)},$ тому має місце рівність $\varphi^{k+1}(a)^{\pi_L^{k+1}(\chi_0)} = \varphi^{k+1}(b)$ і, згідно з методом математичної індукції, маємо твердження теореми.

Theorem 2. Нехай a, b - сферично-транзитивні скінченно-станові ізометрії кільця Z_2 . Тоді має місце твердження, що χ_0 - 0-розв'язок рівняння спряженості $a^{\chi_0} = b$ є скінченностановим тоді і тільки тоді, коли $\pi_L^n(\chi_0)$ є скінченностановим для деякого $n \in \mathbb{N}$.

Definition 5. Назвемо скінченно-станову ізометрію f 0-повною якщо образ 0 при дії на нього централізатором цього елементу співпадає з множиною квазіперіодичних елементів кільця Z_2

$$0 * C_{FAutT_2}(f) = Z_2 \cap \mathbb{Q}$$

Corollary 1. Нехай a, b - сферично-транзитивні скінченно-станові 0-повні ізометрії кільця Z_2 . Тоді a та b спряжені b $FAutT_2$ тоді, і тільки тоді, коли $\varphi^n(a)$ та $\varphi^n(b)$ спряжені b $FAutT_2$ для деякого b.

В статті [1] були доведені наступні теореми:

Theorem 3. Автоморфізми $f(x) = (4k+1)x + (2t+1)(k,t \in \mathbb{Z}_2)$ є сферичнотранзитивними.

Theorem 4. Ізометрії $f_1(x) = (4k_1 + 1)x + 1$ та $f_2(x) = (4k_2 + 1)x + 1$ $(k_1, k_2 \in \mathbb{Z}_2^{\mathbb{Q}})$ спряжені в $FAutT_2 \Leftrightarrow 4k_1 + 1 = 4k_2 + 1$.

Скористаємося ними далі.

Lemma 1. Скінченно-станова лінійна сферично-транзитивна ізометрія є 0-повною.

Lemma 2. Скінченно-станова кусково-лінійна сферично-транзитивна ізометрія ϵ θ -повною.

Theorem 5. Два скінченно-станові лінійні сферично-транзитивні автоморфізми спряжені в $FAutT_2$ тоді, і лише тоді, коли знайдеться рівень, для якого всі автоморфізми цього рівня є лінійними, та добутки всіх коефіцієнтів біля x рівні для обох автоморфізмів.

Доведення. За теоремою 4 автоморфізми ax + b та cx + d спряжені в $FAutT_2$ тоді, і лише тоді, коли a = c. Отже, за наслідком 1 та лемою 2 маємо твердження теореми.

Кусочно-лінійні сферично-транзитивні автоморфізми

$$f(x) = (3x + 1, 3x) \circ \sigma$$

та

$$g(x) = (9x + 2, x + 7) \circ \sigma$$

за теоремою 5 спряжені в $FAutT_2$, оскільки

$$3 \cdot 3 = 9 \cdot 1$$

ЛІТЕРАТУРА

[1] *Морозов Д.І.* Спряженість автоморфізмів, що задаються лінійними функціями в групі скінченностанових автоморфізмів кореневого сферично-однорідного дерева . Вісник Київського ун-ту. Серія: фізико-математичні науки. - 2008.− вип.№1 −С.40- 43.