Naive Bayes Classifier - I

Classifier Based on Bayes' Theorem

Contents

- 1. Classification Methods
- 2. Introduction to Naive Bayes Classifier
- 3. Conditional Probability and Bayes' Theorem
- 4. Classification Rule
- 5. Expected Output
- 6. Advantages and Limitations of Naive Bayes Method

Classification Methods

Apart from logistic regression, several types of machine learning algorithms are effective in classification and prediction.

About Naive Bayes Classifier

- Simple probabilistic classifier based on Bayes Theorem.
- It can be used as an alternative method to logistic regression (Binary or Multinomial).
- It assumes conditional independence among the predictors.
- It is particularly suited when the dimensionality of the inputs is high.

Despite its simplicity, Naive Bayes can often outperform more sophisticated classification methods.

Conditional Probability

The conditional probability of an event B is the probability that event B will occur given the knowledge that an event A has already occurred.

This probability is written as P(B|A).

• If A and B are independent events then

$$P(B|A) = P(B)$$

An unbiased die, with numbers 1-6 is tossed

A: Getting a number greater than 1

B: Getting an even number

$$P(A) = 5/6$$

 $P(B) = 3/6$
 $P(B|A) = 3/5$

Here the sample space has 5 points given A has occurred.

Bayes Theorem

P(A): Prior probability or marginal probability of A

P(A | B): Conditional probability of A given B

P(B|A): Conditional probability of B given A

P(B): Prior or marginal probability of B

Naive Bayes Framework

Objective: To estimate Y given the values of X_i's or

To estimate $P(Y|X_1, X_2, ..., X_m)$ using the Naïve Bayes Classifier

Assumption: All X_i's are conditionally independent of each other

Naive Bayes Framework - Example

Consider a simple example where Y is binary (response to a certain question) with 2 independent categorical variables X_1 and X_2

We classify	Y = 1 "Buyer"	
	Y = 0 "Non-Buyer"	
Let X ₁ denote age of the	$X_1 = 0$ for age group 25-30 years	
individual	$X_1 = 1$ for age group 31-40 years	
Let X ₂ denote gender	$X_2 = 0$ if Gender=female	
	$X_2 = 1$ if Gender=male	

Classification Rule

For the given values of X_1 and X_2 we want to know if the individual will be a potential buyer or not. Using Naive Bayes classifier we estimate:

$$P(Y = 0|X_1 = a_1, X_2 = a_2)$$
 &
$$P(Y = 1|X_1 = a_1, X_2 = a_2)$$

where a₁ and a₂ are values of X₁ and X₂ for a particular respondent

We classify Y = 0 if
$$P(Y = 0 | X_1 = a_1, X_2 = a_2) > 0.5$$
 OR
Y = 1 if $P(Y = 1 | X_1 = a_1, X_2 = a_2) > 0.5$

In the general case i.e. when Y has more than 2 categories we compare $P(Y=y_k \mid X)$ for all values of y_k and classify $Y=y_k$ for which $P(Y=y_k \mid X)$ is the maximum

Expected Output

Once the classification rule is applied the output can be shown as follows:

Case#	X1	X2	P(Y=1/X ₁ ,X ₂)	P(Y=0/X ₁ ,X ₂)	Y classified as
1 2	1 1	0 1 .	0.44 0.7	0.56 0.3	0 1
240	0		0.2	0.8	0

Advantages of Naive Bayes Method

- Classification rule is simple to understand.
- •The method requires a small amount of training data to estimate the parameters necessary for classification.
- •The evaluation of the classifier is quick and easy.
- •The method can be a good alternative to logistic regression.

Limitations of Naive Bayes Method

- Assumption of conditional independence of the independent variables is highly impractical.
- In case of continuous independent variables the density function must be known or assumed to be normal.
- In case of categorical independent variables the probabilities cannot be calculated if the count in any conditional category is zero. For instance: If there are no respondents in the age group 25-30 yrs. then $P(X_1=0 \mid Y=1)=0$

Quick Recap

In this session, we learnt Naive Bayes Classification technique:

Conditional Probability and Bayes' Theorem

- The conditional probability of an event B is the probability that event B will occur given the knowledge that an event A has already occurred.
- P(B|A) = P(A|B) P(B) / P(A)

Naive Bayes Classifier

- To estimate Y given the values of X_i 's or $P(Y|X_1, X_2, ..., X_m)$ using the Naïve Bayes Classifier.
- Assumption: All X_i's are conditionally independent of each other.
- **Advantages:** Simple classification rule, requires a small amount of training data to estimate the parameters necessary for classification, Evaluation of the classifier is quick and easy, Good alternative to logistic regression.
- Major drawback: Assumption of conditional independence of the independent variables is highly impractical.