

Legislative Requirements

Security: The software shouldn't have ill effects on data / hardware. Proper measures should be taken to keep data secure from external threats.

Safety: The software should not be hazardous to the environment/life.

Product Requirements

Usability: Time required to learn how to use the software should be less.

Efficiency: This characteristic relates to the way software uses the available resources. The software should make effective use of the storage space and execute command as per desired timing requirements.

Reliability: The software product should not have any defects. Not only this, it shouldn't fail while execution.

Or

Reliability is how system will operate without failure for a defined duration.

Transactions

Atomicity:

Consistency: The system ensures that the payment is consistent with the user's account balance and updates the payment records accurately.

Isolation: The transaction is isolated from other transactions, ensuring that it operates independently.

Durability: Once the payment is confirmed, the changes are permanent and will not be lost even in the event of a system failure.

Responce Time

Responce Time: After heavy calculation how long to responce.

Screen Refresh Time

Screen Refresh Time: computer games, graphic oriented use this more

Size

K byte: to measure size in kilo bytes of executable source or source code

No. of function point: Count of function points, which can then be used for estimating project effort, cost and other metrices.

Ease of use

Training time: to use a system

No. of function point: how much help build in the product

Reliability

Mean time to failure: average life time of product before it fails.

formula = Total Opeating Time / No. of Failures

Mean time to repair: average time it takes to repair a failed system.

formula = Total DownTime / No. of Repairs

Mean time b/w failure:

formula = Total opeating time / (No. of Failures-1)

Rate of failure: Rate at which failure occur in system. formula = No of Failures / Total Opeating Time

Availability: Probability of product for being unavailable. The remaing time is availability time.

Availability depends on performance, speed and responce time

Robustness

(Cope up with faults that occurred)

Time to restart after failure: how long a product take to response after failure has occurred

Percentage of events causing failure: minimize the percentage to 0 of failure occurrence.

Probability of data corruption on failures:

Types of faults

Hardware faults(disk fail, device timeout)

Software faults(bugs, error, defects)

User faults(entering data in different format)

Kinds of Requirements

Domain Requirements: Requirements that come from the application domain eg. Banking domain has its own specific constraints, for example, most banks do not allow over-draw on most accounts, however, most banks allow some accounts to be overdrawn

Inverse Requirements: These requirements indicate the indecisive nature of customers.e.g. The system shall not use red color in the user interface, whenever it is asking for inputs from the end-user