1 第三章 手法

1.1 Maple との通信手法

Maple は一般的に,グラフや数式の綺麗な出力や,数式の入力を初心者が直感的におこなえるように Java で作られた GUI を使って実行する.それとは別に command line で実行される計算エンジン部が用意されている.そこで,開発する Ruby ライブラリでは,このエンジンに直接働きかけて操作する.Ruby で外部コマンドを実行する gem library の systemu を使って,出力を得るようにしている.Ruby code で要求コードを受け取った場合,そのコードを tmp.mw に書き込む.それを Maple で実行し,結果をテキストファイルで受けとることで出力を得る.

1.2 Maple 関数の類型化

今回,数多く存在する Maple の数

関数名	振る舞い	入力型	出力型
nextprime	次の素数を求める	int	int
lcm	最小公倍数	int, int	int
gcd	最大公約数	int, int	int
rand	乱数生成	int	int
isprime	素数判定	int	boolean
ifactor	素因数分解	int	string
mod	剰余	int, int	int

Figure 1: 🛭

関数名	振る舞い	入力型	出力型
importmatrix	textファイルから 行列を読み込む	string, stiring	int
matrix	行列生成	int, int, int	array
matrixinverse	逆行列	array	string
determinant	行列式の解	array	float
trancepose	転置行列	array	string
eigenvectors	固有値, 固有ベクトル	array	string

Figure 2: 図 2-2 実装した行列に関する関数の役割と入出力

1.3 出力の切り替え

Maple から受け取ったままの出力は,値の前にスペースがたくさん入っていることや,出力が String 型であることから,その数値を使って計算をするようにプログラミングしていた場合に支障をきたす.このた

め,関数ごとに正しい型で出力できるように wrapper を作る.例えば,int 型で出力が欲しいものは exec を exec_i から呼び出すことで対応する.このように boolean や float といった出力型に応じて,exec_b,exec_f のように関数を増やしていく.