8^a lista de exercícios — MTM 1020

- 1. Calcule a integral tripla.
- a) $\iiint_E 6xy \, dV$, onde $E = \{(x, y, z); 0 \le y \le 2, 0 \le x \le \sqrt{4 y^2}, 0 \le z \le y\}$.
- b) $\iint_E 2xdV$, onde E está abaixo do plano z=1+x+y e acima da região do plano xy limitada pelas curvas $y=\sqrt{x}, y=0$ e x=1.
- c) $\iiint_T x^2 dV$, onde T é o tetraedro sólido com vértices (0,0,0), (1,0,0), (0,1,0) e (0,0,1).
- d) $\iiint_E x \, dV$, onde E é limitado pelo parabolóide $x = 4y^2 + 4z^2$ e pelo plano x = 4.
- 2. Use a integral tripla para determinar o volume do sólido dado.
- a) O tetraedro limitado pelos planos coordenados e o plano 2x + y + z = 4.
- b) O sólido delimitado pelo cilindro $x=y^2$ e pelos planos z=0 e x+z=1.
- 3. Utilize coordenadas cilíndricas.
- a) Calcule $\iiint_E \sqrt{x^2+y^2}\,dV$, onde E é a região que está dentro do cilindro $x^2+y^2=16$ e entre os planos z=4 e z=-5.
- b) Calcule $\iiint_E y\,dV$, onde E é o sólido que está entre os cilindros $x^2+y^2=1$ e $x^2+y^2=4$, acima do plano xy e abaixo do plano z=x+2.
- c) Calcule $\iiint_E x^2 dV$, onde E é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano z=0 e abaixo do cone $z^2 = 4x^2 + 4y^2$.
- 4. Utilize coordenadas esféricas.
- a) Calcule $\iiint_B (x^2 + y^2 + z^2)^2 dV$, onde B é a esfera com centro na origem e raio 5.
- b) Calcule $\iiint_E z\,dV$, onde E está entre as esferas $x^2+y^2+z^2=1$ e $x^2+y^2+z^2=4$, no primeiro octante.

- c) Calcule $\iiint_E x^2 dV$, onde E é limitado pelos planos xz e pelos hemisférios $y = \sqrt{9 x^2 z^2}$ e $y = \sqrt{16 x^2 z^2}$.
- d) Encontre o volume da bola $\rho \leq a$ que está entre os cones $\phi = \frac{\pi}{6}$ e $\phi = \frac{\pi}{3}$.
- 5. Encontre a massa e o centro de gravidade da lâmina.
- a) Uma lâmina com densidade $\delta(x,y)=x+y$, limitada pelo eixo x, a reta x=1e a curva $y=\sqrt{x}.$
- b) Uma lâmina com densidade $\delta(x,y)=xy$, localizada no primeiro quadrante e limitada pelo círculo $x^2+y^2=a^2$ e os eixos de coordenadas.
- 6. Encontre o centróide do sólido dado.
- a) O tetraedro do primeiro octante compreendido pelos planos coordenados e o plano x + y + z = 1.
- b) O sólido limitado pela superfície $z=y^2$ e os planos $x=0,\,x=1$ e z=1.
- 7. Encontre a massa e o centro de gravidade do sólido.
- a) O cubo com densidade $\delta(x,y)=a-x,$ definido pelas desigualdades $0\le x\le a,$ $0\le y\le a,$ $0\le z\le a.$
- **b)** O sólido com densidade $\delta(x,y)=yz$, envolvido por $z=1-y^2$ (para $y\geq 0$), $z=0,\ x=-1$ e x=1.

Gabarito 8^a lista

1.a) 4 b)
$$\frac{65}{28}$$
 c) $\frac{1}{60}$ d) $\frac{16\pi}{3}$.

2.a)
$$\frac{16}{3}$$
 b) $\frac{8}{15}$.

3.a)
$$384\pi$$
 b) 0 **c)** $\frac{2\pi}{5}$.

4.a)
$$\frac{312500\pi}{7}$$
 b) $\frac{15\pi}{16}$ **c**) $\frac{1562\pi}{15}$ **d**) $\frac{(\sqrt{3}-1)\pi a^3}{3}$.

- **5.a)** $M = \frac{13}{20}$, centro de gravidade $(\frac{190}{273}, \frac{6}{13})$ **b)** $M = \frac{a^4}{8}$, centro de gravidade $(\frac{8a}{15}, \frac{8a}{15})$.
- **6.a)** $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ **b)** $(\frac{1}{2}, 0, \frac{3}{5})$.
- **7.a)** $M = \frac{a^4}{2}$, centro de gravidade $(\frac{a}{3}, \frac{a}{2}, \frac{a}{2})$ **b)** $M = \frac{1}{6}$, centro de gravidade $(0, \frac{16}{35}, \frac{1}{2})$.