Underfitting and Overfitting

Example Application

Estimating the Combat Power (CP) of a Pokémon after evolution.

Step One: Model

w and b are parameters (can be any value)

$$f_1$$
: y = 10.0 + 9.0 · x_{cp}

$$f_2$$
: y = 9.8 + 9.2 · x_{cp}

$$f_3$$
: y = -0.8 - 1.2 · x_{cp}

..... infinite

 $(x) = \begin{cases} CP & after \\ evolution \end{cases}$

 $x_i: x_{cp}, x_{hp}, x_w, x_h \dots$

Linear model: $y = b + \sum_{i=1}^{n} w_i x_i$

feature

 w_i : weight, b: bias

Step Two: Goodness of Function: Part I

function function input: output (scalar): $\hat{y}^1 \Leftrightarrow \hat{y}^1 \Leftrightarrow \hat{y$

Step Two: Goodness of Function: Part II

Step Two: Goodness of Function: Part III

A set of function
$$f_1, f_2 \cdots$$
 Loss function $f_1, f_2 \cdots$ Loss function $f_2 \cdots$ Loss function $f_3 \cdots$ Loss function $f_4 \cdots$ Loss fu

Step Three: Best Function

How are the Results?

$$y = b + w \cdot x_{cp}$$

$$b = -188.4$$

$$w = 2.7$$

Average Error on Training Data

$$=\frac{1}{10}\sum_{n=1}^{10}e^n = 31.9$$

How are the Results? - Generalization

What we really care about is the error on new data (testing data)

$$y = b + w \cdot x_{cp}$$

$$b = -188.4$$

$$w = 2.7$$

Average Error on Testing Data

$$=\frac{1}{10}\sum_{n=1}^{10}e^n = 35.0$$

> Average Error on Training Data (31.9)

Selecting Another Model: Part I

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

Best Function

b = -10.3

 $W_1 = 1.0, W_2 = 2.7 \times 10^{-3}$

Average Error = 15.4

Testing:

Average Error = 18.4

Better! Could it be even better?

Selecting Another Model: Part II

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

Best Function

$$b = 6.4$$
, $w_1 = 0.66$

$$w_2 = 4.3 \times 10^{-3}$$

$$w_3 = -1.8 \times 10^{-6}$$

Average Error = 15.3

Testing:

Average Error = 18.1

Slightly better. How about more complex model?

Selecting Another Model: Part III

y = b +
$$w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

+ $w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$

Best Function

Average Error = 14.9

Testing:

Average Error = 28.8

The results become worse.

Selecting Another Model: Part IV

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$$

Best Function

Average Error = 12.8

Testing:

Average Error = 232.1

The results are so bad.

Model Selection

1.
$$y = b + w \cdot x_{cp}$$

2.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

3.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

4.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$
$$+ w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$$

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$$

A more complex model yields lower error on training data.

If we can truly find the best function.

Model Selection, Cont'd

	Training	Testing
1	31.9	35.0
2	15.4	18.4
3	15.3	18.1
4	14.9	28.2
5	12.8	232.1

A more complex model does not always lead to better performance on **testing data**.

This is **overfitting**

Select suitable model

Define Training Data

Fit Quadratic to Minimize RSS

House Price Versus Square Feet

Training Error Versus Model Complexity: Part I

Training Error Versus Model Complexity: Part II

Training Error Versus Model Complexity: Part III

Training Error Versus Model Complexity: Part IV

Generalization Error Versus Model Complexity: Part I

Generalization Error Versus Model Complexity: Part II

Generalization Error Versus Model Complexity: Part III

Generalization Error Versus Model Complexity: Part IV

Generalization Error Versus Model Complexity: Part V

Test Error

Bias-Complexity Trade-off

Model becomes complex (e.g. more features, more parameters)

References

- OpenIntro
 - o Pokémon data

