

Warning

This version of the presentation is automatically machinetranslated. Please use it with caution and always refer to the original English version for accuracy.

Spotify Musik Genre Analyse

Quantitative Finanzierung und ÖkonomieBonn

Einführung

- Datensatz:Spotify Musik vonKaggleUndHugging Face
- Ziel:Reinigen Sie unordentliche Textdaten, um sich auf die Analyse vorzubereiten
- Warum die Reinigung von Bedeutung: schmutzige Daten ->fehlerhaftErkenntnisse

EinstellungHoch

- Wir werden benutzenKaggleUm direkt auf Daten zuzugreifen und Code live auszuführen
- Sie müssen:
 - Melden Sie sich anKaggle.com
 - Erstellen Sie ein neues Notizbuch
 - Fügen Sie diesen Datensatz in Ihre Eingabe hinzu: kaggle.com/datasets/thedev astator/spotify-tracks-genredataset

DatenInspektion

- Verwendenhead(), shape, describe(), info(), nunique() einen kurzen Blick auf die Daten zu werfen
- Überprüfen Sie, ob es Duplikate gibt oder ob eine der Spalte fehlende Werte hat
- Versuchen Sie herauszufinden, welche Dateneinträge fehlende Werte haben
- Verwendenfillna() Fehlende Werte ersetzen(e.g. "or 'Unknown')
- Finden Sie heraus, welche Säulen nicht numerisch sind ('object')
- Finden Sie heraus, welcher Künstler die meisten Tracks hat

DatenVisualisierung

- Verwendenplt and sns.histplot() um die zu zeichnenVerteilung der Popularität der Spur
- Verwendengroupby() um die Top 10 Genres mit den höchsten zu findenbedeutenvonPopularität
- Verwendensns.boxplot() um die zu zeichnenVerteilung der Popularität durch Genre (Top 10 Genre)

DatenReinigung

- Erstellen wir eine neue Spalte'clus_att' kurz fürClustering -Attribute
- Wir konzentrieren uns jetzt auf die Reinigung dieser neuen Spalte:
 - Interpunktion entfernen
 - Entfernen Sie Non -ASCII -Zeichen
 - Stoppwörter entfernen
 - Duplikate entfernen
 - Wörter tokenisieren
 - Lemmatisieren Verben

Nicht-ASCII-Zeichen und Stoppen Sie Wörter

X Examples of Non-ASCII Characters

These characters are **not** part of the basic ASCII set:

Character	Description
é	Latin small e with acute
ñ	Latin small n with tilde
Ω	Greek capital omega
£	British pound sign
тм	Trademark symbol
©	Smiling face emoji
_	Em dash (long dash)

What Are Stop Words?

Stop words are common words in a language that are often ignored in text analysis or search engines.

Examples (in English):

Why are they ignored?

They don't add much meaning and are used frequently, so removing them helps:

- Speed up processing
- Focus on important words

Tokenize und Wörter lemmatisieren

What is Word Tokenization?

Word tokenization is the process of splitting text into individual words, called tokens.

Example:

Text:

sql	
I love natural language processing.	

Tokens:

CSS	ර Copy	∜ Edit
["I", "love", "natural", "language", "processing", "."]		

Lemmatization is the process of reducing a word to its base or dictionary form, called a lemma.

Example:

Word	Lemma
running	run
better	good
studies	study
mice	mouse

GemeinsamMusikgenresder1. Cluster

Berechnet von**K-Means Clustering** (K = 6)

detroit techno breakbeat techno techno latin

GemeinsamMusikgenresder2. Cluster
Berechnet von**K-Means Clustering** (K = 6)

GemeinsamMusikgenresder3. Cluster
Berechnet von**K-Means Clustering** (K = 6)

GemeinsamMusikgenresder4. Cluster
Berechnet von**K-Means Clustering** (K = 6)

GemeinsamMusikgenresder5. Cluster
Berechnet von**K-Means Clustering** (K = 6)

GemeinsamMusikgenresder6. Cluster
Berechnet von**K-Means Clustering** (K = 6)

Spotify Música Género Análisis

Finanzas cuantitativas y economíaBonn

Introducción

- Conjunto de datos:Música de Spotify deKaggleyHugging Face
- Meta:Limpiar datos de texto desordenados para prepararse para el análisis
- Por qué la limpieza es importante: datos sucios ->flawedperspectivas

ConfiguraciónArriba

- Estaremos usados Kaggle Para acceder directamente a los datos y ejecutar el código en vivo
- Necesitará:
 - Registrarse en Kaggle.com
 - Crea un nuevo cuaderno
 - Agregue este conjunto de datos en su entrada: <u>kaggle.com/datasets/t</u> <u>hedevastator/spotify-tracks-</u> genre-dataset

DatosInspección

- Usarhead(), shape, describe(), info(), nunique() Dar un vistazo rápido a los datos
- Compruebe si hay duplicados o si alguno de la columna tiene valores faltantes
- Intente averiguar qué entradas de datos tiene valores faltantes
- Usarfillna() Para reemplazar los valores faltantes(e.g. " or 'Unknown')
- Descubra qué columnas no son numéricas ('object')
- Descubra qué artista tiene la mayoría de las pistas

DatosVisualización

- Usarplt and sns.histplot() Para trazar elDistribución de la popularidad de la pista
- Usargroupby() para encontrar los 10 principales géneros con los más altossignificardePopularidad
- Usarsns.boxplot() Para trazar elDistribución de popularidad por género (género 10 top)

DatosLimpieza

- Creemos una nueva columna'clus_att' inquietudAtributos de agrupación
- Nos centramos ahora en limpiar esta nueva columna:
 - Eliminar la puntuación
 - Eliminar caracteres no ascii
 - Eliminar las palabras de parar
 - Eliminar los duplicados
 - Tokenize Words
 - Lemmatizar verbos

Personajes no ascii y Detener las palabras

X Examples of Non-ASCII Characters

These characters are **not** part of the basic ASCII set:

Character	Description
é	Latin small e with acute
ñ	Latin small n with tilde
Ω	Greek capital omega
£	British pound sign
ТМ	Trademark symbol
©	Smiling face emoji
_	Em dash (long dash)

What Are Stop Words?

Stop words are common words in a language that are often ignored in text analysis or search engines.

Examples (in English):

Why are they ignored?

They don't add much meaning and are used frequently, so removing them helps:

- Speed up processing
- Focus on important words

Tokenizar yLemmatizar palabras

What is Word Tokenization?

Word tokenization is the process of splitting text into individual words, called tokens.

Example:

Text:

sql	∜ Edit
I love natural language processing.	

Tokens:

(css	ර Copy	₽ Edit
	["I", "love", "natural", "language", "processing", "."]		

Lemmatization is the process of reducing a word to its base or dictionary form, called a lemma.

Example:

Word	Lemma
running	run
better	good
studies	study
mice	mouse

Comúngéneros musicalesdel1st clúster

Comúngéneros musicalesdel2do grupo

Comúngéneros musicalesdel3er clúster

Comúngéneros musicalesdel4to grupo

Comúngéneros musicalesdelQuinto grupo

Comúngéneros musicalesdel6º grupo

Spotify 音乐 类型 分析

量化金融与经济学波恩

介绍

- 数据集:来自Spotify音乐 Kaggle和Hugging Face
- 目标: 清洁凌乱的文本数据以准备分析
- 为什么清洁很重要: 脏数据 - >**有缺陷**见解

环境向上

- 我们将使用Kaggle直接访问数据并实时运行代码
- 您将需要:
 - 注册Kaggle.com
 - 创建新笔记本
 - 将此数据集添加到您的输入中: kaggle.com/datasets/thedevast ator/spotify-tracks-genredataset

数据检查

- 使用head(), shape, describe(), info(), nunique() 快速查看数据
- 检查是否有重复或任何列缺少值
- 尝试找出哪些数据条目缺少值
- 使用fillna() 替换缺失值(e.g. "or 'Unknown')
- 找出哪些列不是数值('object')
- 找出哪个艺术家的曲目最多

数据可视化

- 使用plt and sns.histplot() 绘制轨道受欢迎程度的分布
- 使用groupby() 找到最高的十大流派意思是的受欢迎程度
- 使用sns.boxplot() 绘制流行的流行分布(前十种类型)

数据打扫

- · 让我们创建一个新专栏 'clus_att'缩写聚类属性
- 现在,我们专注于清洁此新专栏:
 - 删除标点符号
 - 删除非ASCII字符
 - 删除停止单词
 - 删除重复项
 - 令牌单词
 - lemmatize动词

非ASCII字符和停止文字

X Examples of Non-ASCII Characters

These characters are **not** part of the basic ASCII set:

Character	Description
é	Latin small e with acute
ñ	Latin small n with tilde
Ω	Greek capital omega
£	British pound sign
ТМ	Trademark symbol
©	Smiling face emoji
_	Em dash (long dash)

What Are Stop Words?

Stop words are common words in a language that are often ignored in text analysis or search engines.

Examples (in English):

Why are they ignored?

They don't add much meaning and are used frequently, so removing them helps:

- Speed up processing
- Focus on important words

令牌和诱人的单词

What is Word Tokenization?

Word tokenization is the process of splitting text into individual words, called tokens.

Example:

Text:

sql	Б Сору	₩ Edit
I love natural language processing.		

Tokens:

CSS	ර Copy	∜ Edit
["I", "love", "natural", "language", "processing", "."]		

What is Lemmatization?

Lemmatization is the process of reducing a word to its base or dictionary form, called a lemma.

Example:

Word	Lemma
running	run
better	good
studies	study
mice	mouse

常见的音乐流派的第一集群 由**K-均值聚类**(k = 6)

常见的音乐流派的第二集群 由K-均值聚类(k = 6)

常见的音乐流派的第三集群 由**K-均值聚类** (k=6)

常见的音乐流派的第四集群 由K-均值聚类(k = 6)

常见的音乐流派的第五集群 由K-均值聚类(k = 6)

常见的音乐流派的第六集群 由K-均值聚类(k = 6)

