KNN - Examples

School Connect: Intro to DS & AI

A Aniruddha Indian Institute of Technology, Madras Observe the dataset

Observe the dataset

Consider the following dataset where blue points have class +1 and green points have class -1

Observe the dataset

Consider the following dataset where blue points have class +1 and green points have class -1

Point		Class
x_1	(2,3)	+1
x_2	(1, 2)	+1
x_3	(2, 1)	+1
x_4	(3, 2)	+1
x_5	(4, 3)	-1
x_6	(5, 3)	-1
x_7	(5, 2)	-1
x_8	(4, 1)	-1

Consider a test point $x_t\,=\,(2,2)$ and assign a label for different values of K

Consider a test point $x_t\,=\,(2,2)$ and assign a label for different values of K

Consider a test point $x_t = (2,2)$ and assign a label for different values of K

To assign a label to a test point,

- 1. Compute its distance from every other point in the dataset
- 2. Depending on the value of K, we choose the K closest points and assign the label corresponding to the majority of the points

Consider a test point $x_t = (2,2)$ and assign a label for different values of K

To assign a label to a test point,

- 1. Compute its distance from every other point in the dataset
- 2. Depending on the value of K, we choose the K closest points and assign the label corresponding to the majority of the points

The distance of the point x_t from x_1 is given by, $\label{eq:distance} \text{Distance} = \sqrt{(2-2)^2 + (2-3)^2}$

The distance of the test data point from each training data point is,

Poir	nt	Class	Distance
x_1	(2,3)	+1	1
x_2	(1,2)	+1	1
x_3	(2,1)	+1	1
x_4	(3,2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

The distance of the test data point from each training data point is,

We now consider different values of K and assign the label accordingly

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 3, we take the three closest points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 3, we take the three closest points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 3, we take the three closest points and assign the class corresponding to the majority

Here, we see that the three closest points have a label of +1 and so we will assign the test point with the same label

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5, 2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 6, we take the six closest points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2, 1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 6, we take the six closest points and assign the class corresponding to the majority

Here, we see that four points have a label of +1 and two points have a label of -1. Since the majority has label +1, we assign the same to x_t

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5, 2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 8, we take all the points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1,2)	+1	1
x_3	(2,1)	+1	1
x_4	(3,2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 8, we take all the points and assign the class corresponding to the majority

Here, we see that four points have a label of +1 and four points have a label of -1. Since there is no clear majority, we can assign any label

Poir	nt	Class	Distance
x_1	(2,3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5, 2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

Consider a test point $x_t = (4,2)$ and assign a label for different values of K

The distance of the test data point from each training data point is,

Poir	nt	Class	Distance
x_1	(2, 3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5,2)	-1	1
x_8	(4, 1)	-1	1

The distance of the test data point from each training data point is,

We now consider different values of K and assign the label accordingly

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

For K = 1, we take one of the closest points and assign its class to the test point

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

For K = 1, we take one of the closest points and assign its class to the test point Point

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4,1)	-1	1

For K = 1, we take one of the closest points and assign its class to the test point

Here, we see that the point x_4 has a label of +1 and so we assign the same label to the test point

Poir	Point		Distance	
x_1	(2,3)	+1	$\sqrt{5}$	
x_2	(1, 2)	+1	3	
x_3	(2,1)	+1	$\sqrt{5}$	
x_4	(3, 2)	+1	1	
x_5	(4, 3)	-1	1	
x_6	(5,3)	-1	$\sqrt{2}$	
x_7	(5, 2)	-1	1	
x_8	(4, 1)	-1	1	

For K = 5, we take the five closest points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

Train	CAT	and	$T \triangle c +$	cat
ттатп	らせし	ana	IESU	らせし

Training	Data	

Test	Data	

Train set and Test set

Train set and Test set

Try out different models and use the best one on Test data

 Test	Data	

Thank you