

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 11 Learning Outcome

Develop the expression for Torsional Shearing Stress

Circular Bar Torsion

Torsional Shear Strain at Outer Surface

$$\gamma_{MAX} = \frac{r\phi}{L} = \frac{r\,d\phi}{dx} = r\theta$$

Shear Strains vary linearly with ρ

Note: So far we haven't specified any material properties:

material could be in elastic or inelastic region material could homogeneous or heterogeneous we have specified small angles: $\tan \gamma \approx \gamma = \frac{s}{r}$

Recall Pure Shear Shear Strain, γ

Change in the angle between perpendicular reference axes; Angular Distortion (Shear Distortion)

$$\gamma \equiv Shear \ Strain \ [dimensionless]$$

$$\gamma = \gamma_1 + \gamma_2 = \frac{\pi}{2} - \beta$$

Hooke's Law in Shear

(valid for linear elastic region):

G = Modulus of Rigidity (Shear Modulus)

$$\gamma_{MAX} = \frac{r\phi}{L} = \frac{r\,d\phi}{dx} = r\theta$$

$$\gamma = \rho \theta = \frac{\rho}{r} \gamma_{MAX}$$

$$\tau_{M\!A\!X} = G\gamma_{M\!A\!X}$$

$$\tau_{MAX} = Gr\theta$$

$$\theta = \frac{\tau_{MAX}}{Gr}$$

$$\tau = G\rho\theta$$

$$\tau = \frac{\rho}{r}\tau_{MAX}$$

Shear Stresses also vary linearly with p