

Résumé de cours

Synthèse étude statique

Réalisé par : FATHI Ismail

Application du Principe Fondamental de la Statique (PFS) : _o

Le Principe Fondamental de la Statique s'applique uniquement dans les situations suivantes :

- Le système étudié est en état de repos.
- Le système étudié est en mouvement, mais avec une vitesse constante :
 - o en translation, sans accélération.
 - o en rotation, sans accélération angulaire.

Démarche de résolution d'un problème de statique :

- Isoler le système matériel S en traçant une frontière imaginaire qui le sépare de son environnement extérieur.
- Identifier toutes les actions mécaniques externes qui agissent sur le système S isolé, que ce soit par contact direct ou à distance.
- Représenter chaque action mécanique par un vecteur force.
- Compléter un tableau récapitulatif en indiquant les caractéristiques de chaque vecteur force (comme le point d'application, la direction, le sens et la norme/intensité), qu'elles soient connues ou inconnues.

Exemple: Une remorque

Bilan des Actions Mécaniques (B.A.M)

Force	Point d'application	Direction	Sens	Intensité/Norme
\overrightarrow{P}	G	vertical	de haut en bas	$\ \overrightarrow{F}\ = 100 \mathrm{daN}$
$\overrightarrow{F}_{\text{animale} \to \text{s}}$	M	vertical	de bas en haut	75 daN
$\overrightarrow{R}_{\mathrm{sol} ightarrow \mathrm{s}}$	В	vertical	de bas en haut	?

Enoncé du principe fondamental de la statique :

Si un système de solides indéformables est en équilibre, alors la somme des actions mécaniques extérieures à ce solide ou ce système est nulle.

* La somme vectorielle de toutes les forces extérieures est nulle :

$$\sum \overrightarrow{F_{ext/S}} = \overrightarrow{\mathbf{0}}$$

$$\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + \dots + \overrightarrow{F_n} = \overrightarrow{O}$$

* La somme des moments en n'importe quel point I de toutes les forces extérieures est nulle :

$$\sum \overrightarrow{M(\overrightarrow{F_{\rm ext/S}})} = \overrightarrow{O}$$

$$\overrightarrow{M(F_1)} + \overrightarrow{M(F_2)} + \dots + \overrightarrow{M(F_n)} = \overrightarrow{O}$$

-Si toutes les forces se situent dans un même plan (on dit qu'elles sont coplanaires), le moment peut être exprimé sous forme algébrique :

$$M(\overrightarrow{F_1}) + M(\overrightarrow{F_2}) + \dots + M(\overrightarrow{F_n}) = \overrightarrow{O}$$

Généralités:

Solide soumis à l'action de deux forces :

Si le solide (S) est en équilibre sous l'action de deux forces (\overrightarrow{A} et \overrightarrow{B}); ces deux forces ont même intensité, même support mais sens opposé : $\overrightarrow{A} = -\overrightarrow{B}$, $|\overrightarrow{A}| = |\overrightarrow{B}|$

Force	Point d'application	Direction	Sens	Norme
\vec{A}	А	(AB)	de B vers A	$ \overrightarrow{A} = \overrightarrow{B} $
\overrightarrow{B}	В	(AB)	de A vers B	$\left\ \overrightarrow{B} \right\ = \left\ \overrightarrow{A} \right\ $

Solide soumis à l'action de trois forces :

Un solide soumis à l'action de trois forces extérieures (non parallèles) reste en équilibre si :

- Les trois forces ont des supports concourants (elles se rejoignent en un même point).
- La somme vectorielle des trois forces est nulle. Dans ce cas, on parle de dynamique des forces, où ces trois vecteurs forment un triangle fermé.

Force	Point d'application	Direction	Sens	Norme
\vec{A}	А	(AI)	De B vers A	?
\overrightarrow{B}	В	(BI)	De A vers B	?
\vec{P}	G	Verticale	Vers le bas	?

Méthode de résolution graphique "polygone fermé" (3 forces non parallèles) :

Hypothéses

- le point d'application, direction, sens et la norme de la lèreforce (force entièrement connue).
- le point d'application et la direction de la 2ème force .
- le point d'application de la 3ème force
- échelle des forces.

lère étape : Isolement de (S) :

Forces	Point d'application	Direction	Sens	Intensité
$\overrightarrow{F_1}$	Α			2600 N
$\overrightarrow{F_2}$	В	χa	?	?
$\overrightarrow{F_3}$	С	?	?	?

2éme étape : Prolonger les deux directions connues et trouver le point de concourt I

3éme étape : Les trois forces étant concourantes en I tracer (CI) direction de Force F3

4éme étape:

- Tracer vecteur de force Fl à l'échelle souhaitée et fermer le triangle des forces avec les parallèles de vecteur de force F2 et F3 (Exemple d'échelle : 1 mm pour 50 N)
- Fermer le triangle des vecteurs de forces (F1+ F2+ F3= 0)

