概统第四次作业参考题解

2023.03.26

Q1. $P(X=2)\approx 0.2009$. 对 $\lambda=1$, 其 Poisson 近似值为 $P(X=2)\approx 0.1839$.

Q2. 0.3233, 0.3233.

Q3. 记 X 为产卵个数, Y 为虫卵发育成虫的个数.

$$P(Y = k) = \sum_{n=k}^{\infty} P(Y = k | X = n) P(X = n) = \sum_{n=k}^{\infty} \binom{n}{k} p^k (1 - p)^{n-k} \frac{\lambda^n}{n!} e^{-\lambda}$$
$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{n=k}^{\infty} \frac{(\lambda (1 - p))^{n-k}}{(n - k)!} = \frac{(\lambda p)^k}{k!} e^{-\lambda p}.$$

Q4. a = 1/3, b = 2.

Q5. (1)1/3. (2)1/3.

Q6. 记怀孕期天数 X, $P(\{X \ge \mu + 2\sigma\} \bigcup \{X \le \mu - 3\sigma\}) \approx 0.0241$.

Q7. 记报废公里数 X, $P(X > 2.5|X > 1.5) = <math>\frac{1 - F(2.5)}{1 - F(1.5)} \approx 0.7165$. 这里体现指数分布的无记忆性.

Q8. (1) 令冤枉无罪的人的概率 $P(X > c | \mu = 1) = e^{-c} = 1 - 95\%$ 即得 $c = \log(20) \approx 2.9957$.

(2)
$$P(X > c | \mu = 2) = e^{-c/2} \approx 0.2236$$
.

Q9.
$$f_Y(y) = f_X(\log y) \left| \frac{\mathrm{d}}{\mathrm{d}y} \log y \right| = \frac{1}{\sqrt{2\pi}\sigma y} \exp\left(-\frac{(\log y - \mu)^2}{2\sigma^2}\right), \ y > 0.$$

Q10. (1) $|(g^{-1}(z))'|f(g^{-1}(z))$.

(2) 用定义证:
$$P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = F(F^{-1}(y)) = y$$
 \circ

因此分布为U(0,1).

- (3) 用定义证: $P(Z \le z) = P(F^{-1}(Y) \le z) = P(Y \le F(z)) = F(z)$
- (4) Inverse CDF Sampling
- (5)定义 $f^{-1}(y)=\sup\{x|F(x)\leq y\}$,可验证(2)证明过程中此定义下等号依然成立。

Q11. (1) $P(Y = i) = P(X \in I_i) = p_i$.

(2)给定任一离散型分布, 记其取值 $\{y_i\}_{i=1}^{\infty}$ 及对应概率 $\{p_i\}_{i=1}^{\infty}$,令 $a_0=0, a_i=a_{i-1}+p_i(i>1)$,取 $I_i=(a_{i-1},a_i), X\sim \mathrm{U}(0,1)$,构造 $Y=\sum_{i=1}^{\infty}y_i1_{I_i}(X)+y_11_{(0,1)\setminus \cup_i I_i}(X)$ 即满足前述离散型分布.

Q12. 记断点 $X \sim U(0,1)$, l(x) = 1 - x, if $x \leq p_0$; x, otherwise. 期望为 $E(l(x)) = p_0 - p_0^2 + 1/2$.

Q13. f(x) = 1/2, if $x \in (0,1) \cup (3,4)$; 0, otherwise. EX = 2, Var(X) = 7/3.

作业总结:

- 1. Poisson 分布近似 Binomial 分布.
- 2. 指数分布的无记忆性.
- 3. 随机变量的函数及其分布 (Q9, Q10, Q12).