Exploratory Analysis of Global Biogas Production Dataset

INTRODUCTION

Biogas, a renewable energy source generated from organic materials such as agricultural waste, food scraps, and sewage, holds significant promise as a sustainable alternative to fossil fuels. Analyzing datasets related to biogas production provides valuable insights into optimizing its efficiency and environmental benefits. This report presents an analysis of a biogas production dataset, exploring key variables and patterns to understand factors influencing biogas yield and quality. By shedding light on the dynamics of biogas production processes, this analysis aims to inform decision-making for renewable energy strategies and contribute to global sustainability efforts.

MATERIALS

- **1. Python :** Used as the primary programming language for data processing and analysis.
- **2. Pandas**: Utilized for data cleaning, transformation, and exploratory analysis due to its efficient data structures and functionalities.
- **3. Jupyter**: Employed for interactive data analysis and report generation, facilitating collaboration and documentation of analysis workflows.
- **4. CSV File :** The dataset was provided in CSV format, containing raw data on biogas production, which was loaded and analyzed using Python and Pandas.

1. Biogas production from cow manure

This dataset was granted by professor **Jackson Milano**, from Universidade Positivo, as part of his essay with BGS domestic biodigesters, in a ranch, for 14 months, experimenting 4 different biodigestor configurations to obtain continuous biogas production from cow manure all over the year in south of Brazil.

2021 Data Analysis

Monthly data over 2021

	tempSubst	tempSolo	umidAmb	tempAmb	umidGas	tempGas	decDeBiogas	volumeTotal
Data								
1899- 12	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2021- 05	18.739791	19.000816	78.521592	18.150846	70.405085	19.335463	0.000229	0.026289
2021- 06	15.993154	16.297194	87.809091	13.713518	86.493304	14.042885	0.000000	0.000000
2021- 07	15.054787	15.169759	83.152048	13.228996	90.339598	13.045430	0.000000	0.000000
2021- 08	15.469959	15.458460	86.802282	15.661288	83.150204	15.319910	0.000008	0.001557
2021- 09	18.894286	18.655934	87.372527	18.768132	82.245165	19.667857	0.000000	0.000000
2021- 10	18.502378	18.712865	92.589189	16.842703	83.987514	17.591946	0.000000	0.000000
2021- 11	19.731682	-14.675628	77.753935	21.854079	80.419755	23.942758	0.000087	0.010440
2021- 12	21.739521	22.396669	78.167607	22.772295	803.897779	787.789031	0.000123	0.000000

Annual average

•

	tempSubst	tempSolo	umidAmb	tempAmb	umidGas	tempGas	decDeBiogas
Data							
1899	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2021	18.663255	10.301185	81.496427	18.901011	266.994729	215.391367	0.000075

2022 Data Analysis

Monthly data over 2022

	tempGasB2	tempAmb	tempGas	umidGasB2	TempSoloB2	umidGas	tempSubst	umidAmb
Data								
1899- 12	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2022- 01	947.209589	23.306350	924.410527	950.476235	21.682611	928.340209	22.301797	84.494808
2022- 02	998.000000	24.022617	654.147924	998.000000	22.206638	674.702713	23.126129	80.238248
2022- 03	998.000000	22.548078	171.047005	998.000000	22.704936	222.904446	23.459299	88.310762
2022- 04	998.000000	18.774207	984.769973	998.000000	21.025854	985.633558	20.584159	90.051992
2022- 05	998.117709	15.069671	856.368643	998.111877	18.719417	867.845567	17.988499	87.953128
2022- 06	998.122075	13.977609	838.043896	998.116382	16.297306	840.004377	15.604206	91.120304
2022- 07	998.000000	15.821315	998.000000	998.000000	15.895319	998.000000	15.567371	83.403785

Annual average

	tempGasB2	tempAmb	tempGas	umidGasB2	TempSoloB2	umidGas	tempSubst	umidAmb	VolumeTotalB2	dec De Biogas B2	decDeBiogas	volumeTotal
Data												
1899	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2022	988.205858	20.324834	693.862138	988.836263	20.71215	712.048563	20.936283	86.341951	0.002678	0.001321	0.000548	0.000432

REFERENCES

1. Biogas production by Jackson Milano

Other public dataset on biogas production

	contributor / author	link
1	Madhumita Jaganmohad	Production of biogas worldwide from 2000 to 2020
2	Gustavo Mockaitis, Guillaume Bruant,Serge R. Guiot,Eugenio Foresti,and Marcelo Zaiat	Biogas production and metagenomic data
3	Anthony Onokwai	Data on Biogas Production using Domestic Waste and Weed
4	Heike Sträuber	https://zenodo.org/records/3461520
5	Lucia fernandez	Leading biogas producing countries in 2014
6	Daniel Slota	Energy generated from biogas in China from 2010 to 2021
7	Fabio Monforti Ferrario Nicolae Scarlat Fernando Fahl Jean-François Dallemand	Potential of biogas production from livestock manure in Europe
8	IVAN DAUDT	Biogas production from cow manure
9	United nations Statistics division	https://data.un.org/Data.aspx?d=EDATA&f=c mID%3ABI%3BtrID%3A0914