Prime Numbers

Definition: -----

An integer p > 1 is a prime number if and only if its only divisors are ± 1 and $\pm p$, and we define P the set of all primes.

Property:

any integer a > 1, it exist p repectively in P, for which p|a

Proof:

any integer a > 1, we take the set of dividor of a $D = \{d | a, 1 < d \le a\}$ the set is not empty it contains a. because D is bounded and include in \mathbb{Z} , the minimum of D exist, and we take $d = \min D$, d cant be divisible by anything else rather then $\pm d$ and ± 1 because if it is suppose that it exist c < d for which $c \mid d$ that will implie that $c \mid a$ which contradict the fact that d is the minimum of D, so d is divisible just by $\pm d$ and ± 1 , hence d is prime.

Property:

any integer a > 1, a can be writen as $a = p_1 \times p_2 \times ... \times p_t$ with $p_t \leq ... \leq p_1$

Proof :

any integer a > 1, if a is prime we are done, if not we use the previous property, it exist p_1 in P and $m_1 > 1$, with $a = m_1 \times p_1$, that give us $m_1 < a$ and p_1 , if m_1 is prime we are done if not we do the same thing, it exist p_2 in P and $m_2 > 1$, with $m_1 = m_2 \times p_2$, that give us $m_2 < m_1 < a$ and $p_2 \le p_1$, if we continue like this we have two scenarios stoping at m_k that is prime or have the following result

 $m_{k-1} = m_k \times p_k$ with $1 < m_k < \dots < m_2 < m_1 < a$ and $p_k \leq \dots \leq p_2 \leq p_1$

this sequence can't continue for ever beacuse its bounded and decrementing, meaning that it exist t for which m_t is the limit of this sequence, and second the limit must be prime because $m_t > 1$ and it will have no other divider becaus if it has we still need to go to t+1 which contradict the fact that t is the limit hence we will have

 $m_t = p_t$ with $1 < m_t < ... < m_2 < m_1 < a$ and $p_t \le ... \le p_2 \le p_1$ after a rearengement of the multiplication we donne until we got m_t

a can be expressed as $a = p_1 \times p_2 \times ... \times p_t$ with $p_t \leq ... \leq p_2 \leq p_1$

Property:

any integer a>1, a can be uniquely written as $a=p_1^{\alpha_{p_1}}\times p_2^{\alpha_{p_2}}\times ...\times p_t^{\alpha_{p_t}}$ with $p_t<...< p_1$

Proof:

any integer a > 1, can be written as $a = p_1^{(0)} \times p_2^{(0)} \times ... \times p_n^{(0)}$ with $p_n \le ... \le p_1$, let have the

set of all prime that devid a, $K_1 = \{p \in P, p|a\}$, the set is not empty because a is decomposition of primes, and the set is bounded so maximum exist, we take $p_1 = \max K_1$ we do $p_1|a$, it will give us $b_1 = p_1 | a$ with $\alpha_{p_1} = 1$, if there is no p_1 we take the next step if not, we continue until we eliminate all p_1 we get $b_{k_1} = p_1^{(1)} \times ... \times p_{n-k_1}^{(1)}$ and $\alpha_{p_1} = k_1$, after this we get $K_2 = k_1 - \{p_1\}$ the set of prime devid a that doesn't contain p_1 , and $K_2 \subset K_1$, the set is also bounded so we take $p_2 = max K_2$ we can notice here that $p_2 < p_1$, and we will repeat the same process untill we have $K_{t+1} = \emptyset = K_1 - \{p_1, p_2, ..., p_t\}, \text{ with } p_t < ... < p_1 \text{ and } K_{t+1} \subset ... \subset K_2 \subset K_1, \text{ first we are shure}$ that K_{t+1} is empty because every k we take p_k from K_k the set is finit so we will eventually have an empty set, and second we alwas take $\max K_k$ so $\max K_{k+1} < \max K_k$, so that will give the set $\{(p_1,\alpha_{p_1}),(p_2,\alpha_{p_2}),...,(p_t,\alpha_{p_t})\}$, that conatin the accurence of each p_k so we can form a using the set in the following form $a = p_1^{\alpha_{p_1}} \times p_2^{\alpha_{p_2}} \times ... \times p_t^{\alpha_{p_t}}$ with $p_t < ... < p_1$. Next to prove the unicity, let assum that a can be written in two diffrent ways $a = p_1^{\alpha_{p_1}} \times p_2^{\alpha_{p_2}} \times ... \times p_t^{\alpha_{p_t}}$ and $a = q_1^{\alpha_{q_1}} \times q_2^{\alpha_{p_2}} \times ... \times q_t^{\alpha_{q_t}}$ that means $p_i^{\alpha_{p_i}} | a$ hence it exist j for which mean $p_i^{\alpha_{p_i}}|q_j^{a_{p_j}}$ so that implies $\alpha_{p_i} \leq a_{p_j}$, because q_j and q_i are primes and unique in a, it means that $p_i = q_i$, this statement can be shown first if $p_i|a$ it must exist q_i that equal p_i because we know that we can construct a from q_i 's wich will make p_i doesn't devid a wich contradict the fact $p_i|a$, and for the α_{p_i} if we have that q_j and $\alpha_{p_i} > \alpha_{q_i}$ we will get that $p_i^{\alpha_{p_i}}$ contradict the fact that $p_i^{\alpha_{p_i}}|a$, we have $q_i^{a_{p_i}}|a$ means that it must devid $p_i^{\alpha_{p_i}}$ so $a_{p_i} \leq \alpha_{p_i}$ which implies $\alpha_{p_i} = a_{p_j}$, beacuse we chose i and j to be arbitrery, hence a can be written in unique form $a = p_1^{\alpha_{p_1}} \times p_2^{\alpha_{p_2}} \times ... \times p_t^{\alpha_{p_t}}$ with $p_t < ... < p_1$

Theorem:

Fermat's Theorem states that, for p a prime number, any integer a relativly prime to p verify: $a^{p-1} \equiv 1 \mod p$

Proof:

for p a prime number, and a an integer relativly prime to p, lets consider the set $X = \{a \bmod p, 2a \bmod p, ..., (p-1)a \bmod p\}$, first we observe that all the element inside X are nonzero, because a is relativly prime to p and all the multiplicative k are in the set $\{1, ..., p-1\}$ so ak is always relativly prime to p, hence there is no zero element inside X, second we see that all element are unique, let assume that it exist $1 \le k < j < p$, for which $ak \equiv aj \bmod p$, because a is relativly prime to p, a has an inverse so we can remove a from both side, will give us $k \equiv j \bmod p$ which is imposible since k and j are strictly different and the both in the set $\{1, ..., X\}$ hence each element in X is unique, we can now say safely that X is the set $\{1, ..., p-1\}$ where element have diffrent order, because we have all X element is $ak \bmod p$ and ak is relatively prime to p, and each element is unique and we have p-1 element so its cover the full set $\{1, ..., p-1\}$, so we can have the next equality

 $(a \mod p \times 2a \mod p \times ... \times (p-1)a \mod p) \equiv (1 \times ... \times p-1) \mod p$ we will use mod arithmetics the result will be $a^{p-1}(p-1)! \equiv (p-1)! \mod p$, and because (p-1)! is relatively prime to p we can remove it from both side and obtain $a^{p-1} \equiv 1 \mod p$ which is the ferma theorem

Function:

Euler's Totient Function $\phi(n)$ defined as the number of positive integers less than n and relatively prime to n. By convention, $\phi(1) = 1$

Property:

if p is a prime number, $\phi(p) = p - 1$

Proof:

if p is a prime number, any integer 0 < k < p is relatively prime with p so

Property

if p and q are two prime number, then $\phi(p \times q) = \phi(p) \times \phi(q)$

Proof :

for p and q two prime number, we take the set of all integer verify 0 < k < pq as $S = \{1,...,pq-1\}$, we notice that two major set that there element can devid pq, the first one $X = \{p,2p,...,(q-1)p\}$ and second $Y = \{q,2q,...,(p-1)q\}$, thoes two set represent all the integer that can devid pq because p and q are prime so p is divisble only by p and q only by q, the size of X is q-1 and the size of Y is p-1, where S is pq-1 so we substruct the sets that divise pq we will get all the number that relatively prime to pq so:

$$\phi(pq) = pq - 1 - ((q - 1) + (p - 1)) = pq - q - p + 1$$

$$= q \times (p - 1) - (p - 1)$$

$$= (q - 1) \times (p - 1) = \phi(q) \times \phi(p)$$

Property:

Any ingeter a relatively prime to n then a mod n is relatively prime to n

Proof:

for integer a relatively prime to n, by the euclidiant division, it exist positive integer q for which $a = qn + a \mod n$ with $0 \le a \mod n < n$, let $d = \gcd(a, n)$ and $e = \gcd(n, a \mod n)$, then $d|a - qn = a \mod n$ meaning that $d \le e$, e|n and $e|a \mod n$ then $e|qn + a \mod n = a$, mean $e \le d$, hence $\gcd(a, n) = \gcd(n, a \mod n) = 1$

Theorem:

Euler's theorem states that for every a and n that are relatively prime: $a^{\phi(n)} \equiv 1 \mod n$

Proof:

for any integer a relatively prime to n, we know that Euler's Totient Function $\phi(n)$ give the number of positive integers less than n and relatively prime to n, so we take the set of thoes integers as $X = \{x_1, ..., x_{\phi(n)}\}$, all are relatively prime to n, then we multiply x_i by a and take mod n of the result we defined the set, $S = \{ax_1 \mod n, ..., ax_{\phi(n)} \mod n\}$ we notice two things, first there are no zero elements, because a and x_i are both relatively prime to n so $\gcd(ax_i, n) = 1$, and second all the element are distinct, suppose that it exist, $1 \le i < j < \phi(n)$ for which $ax_i \mod n = ax_j \mod n$, because $\gcd(a, n) = 1$ we can remove a from both side, that give us $x_i \equiv x_j \mod n$ which is impossible because x_i and x_j are less then n and relatively prime with n, contradiction, meaning all the element are distinct inside S, we resume two thing S have no zero element, and all element are distinct prime to n and because S has $\phi(n)$ element that are distinct we can safely say that S is a purmutation of S, so we can have the following S and S are S and S are S and S are S and S are the following S are the following S are the following S and S are the following S and S are the

$$a^{\phi(n)} \times \left(\prod_{i=1}^{\phi(n)} x_i\right) \equiv \left(\prod_{i=1}^{\phi(n)} x_i\right) \mod n, \text{ the number } \left(\prod_{i=1}^{\phi(n)} x_i\right) \text{ is relatively prime to } n, \text{ because all } x_i$$

are relatively prime to n, $gcd\left(\left(\prod_{i=1}^{\phi(n)} x_i\right), n\right) = 1$ so we can eleminate it from both sides, hence

 $a^{\phi(n)} \equiv 1 \mod n$

1) for p a prime number, any integer a verify $a^p \equiv a \mod p$

Proof :

we state first the case where a = kp for $k \in \mathbb{Z}$ and this is always true, now for the case where $a \neq kp$, it means a is relatively prime to p so we can apply the ferma theorem $a^{p-1} \equiv 1 \mod p$, we multiply both side with a mod p, we obtain $a^{p-1} \times a \equiv (1 \times a) \mod p$, hence $a^p \equiv a \mod p$

2) for every a and n that are relatively prime: $a^{\phi(n)+1} \equiv a \mod n$

Proof:

we state first the case where a = kn for $k \in \mathbb{Z}$ and this is always true, now for the case where $a \neq kn$, it means a is relatively prime to n so we can apply the Euler theorem $a^{\phi(n)} \equiv 1 \mod n$, we multiply both side with a mod n, we obtain $a^{\phi(n)} \times a \equiv (1 \times a) \mod n$, hence $a^{\phi(n)+1} \equiv a \mod n$