Neural network

A gentle introduction: Neural network for supervised learning

Khiem Nguyen

Email	khiem.nguyen@glasgow.ac.uk	
MS Teams	khiem.nguyen@glasgow.ac.uk	
Whatsapp	+44 7729 532071 (Emergency only)	

May 18, 2025

Table of Contents

Introduction

2 Neural network

Introduction to neural network: Revisit linear regression

Simplest neural network:

Hypothesis function:

$$h_{w,b} = \text{ReLU}(wx + b),$$

with

$$\operatorname{ReLU}(z) = \begin{cases} z & \forall z \ge 0 \\ 0 & \forall z < 0 \end{cases}$$

Introduction to neural network: Revisit linear regression

Introduction to neural network: Hidden layer with abstract features

Introduction to neural network: More abstraction

A typical neural network

Supervised learning with Neural Networks

Input (x)	Output (y)	Application
Home features	Price	Real Estate (standard NN)
Ads, user info	Click on ad? $(0/1)$	Online Advertising (standard NN)
Image	Object (1,, 1000)	Photo tagging (CNN)
Audio	Text transcript	Speech recognition (RNN)
English	Chinese	Machine translation (RNN)
Image, Radar Info	Position of other cards	Autonomous driving (RNN)

What we will learn

A quite deep Artificial Neural Network (ANN)

What we will learn

A Convolution Neural Network

What we will learn

A Recurrent Neural Network (RNN)

Motivation problem: Handwritten digits

We motivate ourselves by solving the classical problem: Classify handwritten digits

Figure: MNIST digits

• Grayscale image: value of

• Size of one image: 28×28

Motivation problem: Binary classification between 0 and 1

Let us start simple by a binary classification problem: classify handwritten digits 0 and 1.

Figure: Classify 0 versus 1

Image representation

Figure: Pixels with their values - Flatten an image into a vector

In NumPy, we flatten a two-dimensional array into a vector using A.flatten()

Notation: Input features and label

- ightharpoonup One training example: (\mathbf{x},y) $\mathbf{x} \in \mathbb{R}^d$, $y \in \{0,1\}$
- ightharpoonup Data set: m training examples $\left\{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \cdots, (\mathbf{x}^{(m)}, y^{(m)}) \right\}$
- ightharpoonup Training set vs test set: $m=m_{\rm train}, m_{\rm test}=\#$ test examples

$$\mathbf{X} = \begin{bmatrix} \hline{---\mathbf{x}^{(1)}} \\ \hline{---\mathbf{x}^{(2)}} \\ \vdots \\ \hline{---\mathbf{x}^{(m)}} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$\mathbf{X} \in \mathbb{R}^{d \times m}, \quad \mathbf{Y} \in \mathbb{R}^{1 \times m}$$

Remark

- ullet In many textbooks, the column vector is used to denote one training input data ${f x}.$
- In this course, we try to use the notations that can reflect the PyTorch code as directly as possible.

Table of Contents

Introduction

2 Neural network

Logistic regression model

Recall that

$$\mathbf{x} = (x_1, x_2, \dots x_d)$$
 input features

$$a = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$
 output

$$\mathbf{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots x_d^{(i)})$$
 a training example

$$y^{(i)} \in \{0,1\}$$
 true label

15 / 29

Logistic regression model

 \succ The bias b is interpreted and implicitly applied to simplify the drawing.

Recall that

$$\mathbf{x} = (x_1, x_2, \dots x_d)$$
 input features

$$a = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$
 output

$$\mathbf{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots x_d^{(i)})$$
 a training example

$$y^{(i)} \in \{0,1\}$$
 true label

Logistic regression model

> Recall:

$$\begin{aligned} \mathbf{x} &= (x_1, x_2, \dots x_d) & \text{input features} \\ a &= \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{1}{1 + \mathrm{e}^{-(\mathbf{w} \cdot \mathbf{x} + b)}} & \text{output} \\ \mathbf{x}^{(i)} &= (x_1^{(i)}, x_2^{(i)}, \dots x_d^{(i)}) & \text{a training example} \\ y^{(i)} &\in \{0, 1\} & \text{true label} \end{aligned}$$

Minimize the binary cross-entropy loss function L:

$$\min_{\mathbf{w},b} L(\mathbf{w},b)$$

$$L = \frac{1}{m} \sum_{i=1}^{m} \left(-y^{(i)} \log[a(\mathbf{x}^{(i)})] - (1-y^{(i)}) \log[1-a(\mathbf{x}^{(i)})] \right)$$

Easily done with scikit-learn.

- $a_1^{[1]}$ is a function of (x_1,x_2,x_3)
- $a_2^{[1]}$ is a function of (x_1,x_2,x_3)
- $a_3^{\left[1\right]}$ is a function of (x_1,x_2,x_3)
- $a_4^{[1]}$ is a function of (x_1,x_2,x_3)
- $a^{[2]}$ is a function of $(a_1^{[1]},a_2^{[1]},a_3^{[1]},a_4^{[1]})$
- $\quad \Longrightarrow \ a^{[2]}$ is a function of (x_1,x_2,x_3)
- That's the whole point of hypothesis function/model function!

- One layer l comprises all the nodes (neurons) in one vertical column.
- One (circle) node represents a neuron in a layer.
- > Superscript [l] in $\mathbf{a}^{[0]}$ and $\mathbf{a}^{[l]}$ denote the layer number.
- Subscript i in a_i^[l] denote the index of the neuron in the layer.

$$z = \mathbf{w} \cdot \mathbf{x} + b$$
$$a = \sigma(z)$$

$$\begin{aligned} \mathbf{w}_{1}^{[1]} &= (w_{11}^{[1]}, w_{12}^{[1]}, w_{13}^{[1]}) \\ z_{1}^{[1]} &= \mathbf{w}_{1}^{[1]} \cdot \mathbf{x} + b_{1}^{[1]} \\ a_{1}^{[1]} &= \sigma(z_{1}^{1}) \end{aligned}$$

$$\begin{split} \mathbf{w}_2^{[1]} &= (w_{21}^{[1]}, w_{22}^{[1]}, w_{23}^{[1]}) \\ z_2^{[1]} &= \mathbf{w}_2^{[1]} \cdot \mathbf{x} + b_2^{[1]} \\ a_2^{[1]} &= \sigma(z_1^1) \end{split}$$

$$\begin{split} \mathbf{w}_3^{[1]} &= (w_{31}^{[1]}, w_{32}^{[1]}, w_{33}^{[1]}) \\ z_3^{[1]} &= \mathbf{w}_3^{[1]} \cdot \mathbf{x} + b_3^{[1]} \\ a_3^{[1]} &= \sigma(z_3^1) \end{split}$$

$$\begin{split} \mathbf{w}_4^{[1]} &= (w_{41}^{[1]}, w_{42}^{[1]}, w_{43}^{[1]}) \\ z_4^{[1]} &= \mathbf{w}_4^{[1]} \cdot \mathbf{x} + b_3^{[1]} \\ a_4^{[1]} &= \sigma(z_1^1) \end{split}$$

By introducing the "activation" in the input layer with

$$\mathbf{a}^{[0]} = \mathbf{x} \quad \Leftrightarrow \quad \mathbf{a}^{[0]} = (a_1^{[0]}, a_2^{[0]}, a_3^{[0]}) = (x_1, x_2, x_3),$$

we can write

$$\begin{split} z_1^{[1]} &= \mathbf{w}_1^{[1]} \cdot \mathbf{a}^{[0]} + b_1^{[1]}, \qquad a_1^{[1]} = \sigma(z_1^{[1]}) \\ z_2^{[1]} &= \mathbf{w}_2^{[1]} \cdot \mathbf{a}^{[0]} + b_2^{[1]}, \qquad a_2^{[1]} = \sigma(z_2^{[1]}) \\ z_3^{[1]} &= \mathbf{w}_3^{[1]} \cdot \mathbf{a}^{[0]} + b_3^{[1]}, \qquad a_3^{[1]} = \sigma(z_3^{[1]}) \\ z_4^{[1]} &= \mathbf{w}_4^{[1]} \cdot \mathbf{a}^{[0]} + b_4^{[1]}, \qquad a_4^{[1]} = \sigma(z_4^{[1]}) \end{split}$$

As $\mathbf{w}_j^{[1]} \in \mathbb{R}^3$, let us denote its components by the second subscript j as follows

$$\mathbf{w}_{j}^{[1]} = (w_{j1}^{[1]}, w_{j2}^{[1]}, w_{j3}^{[1]}).$$

Neural Network Representation: Mathematical formulation

By introducing

$$\begin{aligned} \mathbf{a}^{[0]} &= \begin{bmatrix} a_1^{[0]} \\ a_2^{[0]} \\ a_3^{[0]} \end{bmatrix}, \quad \mathbf{z}^{[1]} &= \begin{bmatrix} z_1^{[1]} \\ z_2^{[1]} \\ z_3^{[1]} \\ z_4^{[1]} \end{bmatrix}, \quad \mathbf{a}^{[1]} &= \begin{bmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \\ a_4^{[1]} \end{bmatrix}, \\ \mathbf{W}^{[1]} &= \begin{bmatrix} w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} \\ w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} \\ w_{31}^{[1]} & w_{32}^{[1]} & w_{33}^{[1]} \\ w_{41}^{[1]} & w_{42}^{[1]} & w_{43}^{[1]} \end{bmatrix} = \begin{bmatrix} -\mathbf{w}_1 - \\ -\mathbf{w}_2 - \\ -\mathbf{w}_3 - \\ -\mathbf{w}_4 - \end{bmatrix}, \quad \mathbf{b}^{[1]} &= \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ b_3^{[1]} \\ b_4^{[1]} \end{bmatrix} \end{aligned}$$

we can write the transformation from the input layer to the first hidden layer as

$$\begin{cases} \mathbf{z}^{[1]} = \mathbf{W}^{[1]} \mathbf{a}^{[0]} + \mathbf{b}^{[1]} \\ \mathbf{a}^{[1]} = \sigma(\mathbf{z}^{[1]}) \end{cases}$$

Neural Network Representation: Mathematical formulation

$$\begin{cases} z_1^{[1]} = \mathbf{w}_1^{[1]} \cdot \mathbf{a}^{[0]} + b_1^{[1]}, & a_1^{[1]} = \sigma(z_1^{[1]}) \\ z_2^{[1]} = \mathbf{w}_2^{[1]} \cdot \mathbf{a}^{[0]} + b_2^{[1]}, & a_2^{[1]} = \sigma(z_2^{[1]}) \\ z_3^{[1]} = \mathbf{w}_3^{[1]} \cdot \mathbf{a}^{[0]} + b_3^{[1]}, & a_3^{[1]} = \sigma(z_3^{[1]}) \\ z_4^{[1]} = \mathbf{w}_4^{[1]} \cdot \mathbf{a}^{[0]} + b_4^{[1]}, & a_4^{[1]} = \sigma(z_4^{[1]}) \end{cases} \Leftrightarrow \begin{cases} \mathbf{z}^{[1]} = \mathbf{W}^{[1]} \mathbf{a}^{[0]} + \mathbf{b}^{[1]} \\ \mathbf{a}^{[1]} = \sigma(\mathbf{z}^{[1]}) \end{cases}$$

Neural Network Representation: Mathematical formulation

Neural network representation: A quick generalization and quick note

$$\begin{pmatrix} a_1^{[1]} \\ a_2^{[1]} \\ \vdots \\ a_m^{[1]} \end{pmatrix} = \sigma \left[\begin{pmatrix} w_{11} & w_{12} & \dots & w_{1d} \\ w_{21} & w_{22} & \dots & w_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \dots & w_{nd} \end{pmatrix} \begin{pmatrix} a_1^{[0])} \\ a_2^{[0]} \\ \vdots \\ a_d^{[0]} \end{pmatrix} + \begin{pmatrix} b_1^{[1]} \\ b_2^{[1]} \\ \vdots \\ b_n^{[1]} \end{pmatrix} \right]$$

$$\mathbf{a}^{[1]} = \sigma \left(\mathbf{W}^{[1]} \mathbf{a}^{[0]} + \mathbf{b}^{[1]}
ight)$$

- ➤ This mathematical presentation makes it easy to write formulation.
- > It does not reflect PyTorch (also scikit-learn) implementation.
- > This matrix presentation has been widely used in literature.
- One example in PyTorch is represented as a one row vector.

Mathematical formulation consistent with PyTorch

- \triangleright We consider one example $\mathbf{x}^{(i)}$ and denote it $\mathbf{a}^{[0]}$ without the superscript (i).
- We can write the relationship between $\mathbf{a}^{[0]}$ and $\mathbf{a}^{[1]}$ in row-oriented format for one training example:

$$\begin{bmatrix} z_1^{[1]} & z_2^{[1]} & z_3^{[1]} & z_4^{[1]} \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1^{[1]} \cdot \mathbf{a}^{[0]} + b_1^{[1]} & \mathbf{w}_2^{[1]} \cdot \mathbf{a}^{[0]} + b_2^{[2]} & \mathbf{w}_3^{[1]} \cdot \mathbf{a}^{[0]} + b_3^{[1]} & \mathbf{w}_4^{[1]} \cdot \mathbf{a}^{[0]} + b_4^{[1]} \end{bmatrix} \\ &= \begin{bmatrix} a_1^{[0]} & a_2^{[0]} & a_3^{[0]} \end{bmatrix} \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} & w_{31}^{[1]} & w_{41}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} & w_{32}^{[1]} & w_{43}^{[1]} \end{bmatrix} + \begin{bmatrix} b_1^{[1]} & b_2^{[1]} & b_3^{[1]} & b_4^{[1]} \end{bmatrix} \\ &= \mathbf{a}^{[0]} \begin{bmatrix} \mathbf{w}_1^T & \mathbf{w}_2^T & \mathbf{w}_3^T & \mathbf{w}_4^T \\ \mathbf{w}_1^T & \mathbf{w}_2^T & \mathbf{w}_3^T & \mathbf{w}_4^T \end{bmatrix} + \mathbf{b}^{[1]} = \mathbf{a}^{[0]} (\mathbf{W}^{[1]})^T + \mathbf{b}^{[1]} \\ \begin{bmatrix} a_1^{[1]} & a_2^{[1]} & a_3^{[1]} & a_3^{[1]} \end{bmatrix} = \sigma \left(\begin{bmatrix} z_1^{[1]} & z_2^{[1]} & z_3^{[1]} & z_4^{[1]} \end{bmatrix} \right) = \sigma(\mathbf{z}^{[1]})$$

Mathematical formulation consistent with PyTorch

- ightharpoonup We consider one example $\mathbf{x}^{(i)}$ and denote it $\mathbf{a}^{[0]}$ without the superscript (i).
- We can write the relationship between $\mathbf{a}^{[0]}$ and $\mathbf{a}^{[1]}$ in row-oriented format for one training example:

In row-oriented format for the training examples, the PyTorch consistent formulation reads

$$egin{cases} \mathbf{z}^{[1]} = \mathbf{a}^{[0]} (\mathbf{W}^{[1]})^T + \mathbf{b}^{[1]} \ \mathbf{a}^{[1]} = \sigma(\mathbf{z}^{[1]}) \ \mathbf{z}^{[2]} = \mathbf{a}^{[0]} (\mathbf{W}^{[2]})^T + \mathbf{b}^{[2]} \ \mathbf{a}^{[2]} = \sigma(\mathbf{z}^{[2]}) \end{cases}$$

This is commonly called 'forward propagation' in a neural network.

Figure: sigmoid activation

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Figure: tanh activation

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Figure: ReLU (Rectified Linear Unit) activation

$$ReLU(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Figure: Leaky ReLU activation

$$\operatorname{ReLU}(x) = \begin{cases} x & x \ge 0 \\ -\alpha x & x < 0 \end{cases}$$

with α being called 'negative' slope ($\alpha > 0$).

