Matemáticas Financieras

Eduardo Selim Martinez Mayorga

2022-03-01

Contents

1	Teo	ría del interés	5
	1.1	Ayudantía	11
	1.2	Clase	15
	1.3	Ayudantía	24
	1.4	Clase	25
	1.5	Ayudantía	28
	1.6	Clase	31
2	Anı	nalidades	33

4 CONTENTS

Chapter 1

Teoría del interés

Definición 1.1 (Definición de Interés). El interés se puede definir como una compensación/beneficio que una parte A le da a una parte B por dejar de satisfacer una necesidad para que el otro satisfaga la propia.

Solo pensando en términos monetarios... ¿Por qué las inversiones (en teoría) crecen? Algunos factores que intervienen en una inversión:

- Dinero (¿cuánto tiempo?)
- ¿En qué se invierte?
- ¿Cuánto tiempo lo invierto?
- Inflación
- Bajo que condiciones contractuales lo invierto (¿cómo crece el dinero?)
- Oferta y demanda
- ¿Cuándo lo invierto?

Por un momento(grande) pensemos que el nivel de inversión depende solo del tiempo.

Teorema 1.1. Se dice que una función $a:[0,\infty) \to \mathbb{R}$ es una función de acumulación si cumple:

- 1. a(0) = 1
- 2. $a(\cdot)$ es no-decreciente
- 3. $a(\cdot)$ es continua por la derecha y con límite por la izquierda.

a(t) representa el valor acumulado de 1 que hay durante un lapso de tiempo t.

Ejemplo 1.1. .

- 1. a(t) = 1 + ct, c > 0, c constante (interés simple)
- 2. $a(t) = e^{\alpha t}$, $\alpha > 0$ (interés compuesto)
- 3. $a(t) = ct^2 + 1, c > 0$
- 4. a(t) = 1
- 5. $a(t) = (1+t)^c$, \$c>0
- 6. a(t) = 1 + arctang(t)
- 7. $a(t) = \sqrt{t+1}$
- 8. $a(t) = \sqrt{t} + 1$
- 9. a(t) = 1 + c[t]
- 10. $a(t) = e^{[t]}$

Definición 1.2. Se define la función de monto correspondiente a a(t) como un capital inicial k > 0, como

$$A_{k}\left(t\right):=k\cdot a\left(t\right)$$

Observaci'on . Se cumple (1) y (3), pero $A_k(0) = k \cdot a(0) = k \cdot 1 = k$

 $A_k(t)$ representa el valor acumulado de una inversión de un lapso de tiempo t.

Representación gráfica

 $\ensuremath{\mathcal{C}}$ Cómo medimos el performance de una función de acumulación o función de monto?

Estudiaremos 3 indicadores:

- 1. Tasa efectiva de interés al tiempo t
- 2. Tasa de descuento al tiempo t
- 3. Fuerza de interés

Definición 1.3. Para una función de acumulación $a(\cdot)$ se define la tasa efectiva de **interés al tiempo t** como:

$$i_{t}:=\frac{a\left(t\right)-a\left(t-1\right)}{a\left(t-1\right)}$$

Interpretación: Por cada peso invertida al tiempo t-1 hay i_t unidades de ganancia. "Lo que yo gané por cada peso que invertí".

Ejemplo 1.2..

- 1. Para a(t)=1+ct $i_t=\frac{a(t)-a(t-1)}{a(t-1)}=\frac{1+ct-[1+c(t-1)]}{1+c(t-1)}=\frac{c}{1+c(t-1)}$ Obsérvese que la aplicación $t\longmapsto i_t=\frac{c}{1+c(t-1)}$ es **decreciente**. Con la función a(t)=1+ct ganamos, pero cada vez menos conforme el tiempo avanza.
- 2. Para $a(t)=e^{\alpha t},\,\alpha>0$ $i_t=\frac{a(t)-a(t-1)}{a(t-1)}=\frac{e^{\alpha t}-e^{\alpha(t-1)}}{e^{\alpha(t-1)}}=\frac{e^{\alpha(t-1)}[e^{\alpha}-1]}{e^{\alpha(t-1)}}=e^{\alpha}-1$ Obsérvese que la aplicación $t\longmapsto i_t=e^{\alpha}-1$ es **constante**.

tarea

Para $a(t)=e^{t^2}$ calcular i_t y ver si $t\longmapsto i_t$ es creciente o decreciente

3.
$$a(t)=(1+c)^t,\ c>0$$
 $i_t=\frac{a(t)-a(t-1)}{a(t-1)}=\frac{(1+c)^t-(1+c)^{t-1}}{(1+c)^{t-1}}=\frac{(1+c)^{t-1}[(1+c)-1]}{(1+c)^{t-1}}=1+c-1=c$ Obsérvese que la aplicación $t\longmapsto i_t=e^\alpha-1$ es **constante**.

Observación . Los ejemplos 2 y 3 son los mismos $(1+c)^t=e^{log((1+c)^t)}=e^{tlog(1+c)}=e^{\alpha t}$, con $\alpha=log(1+c)$.

En el mundo financiero preferimos escribir a la función exponencial como $(1+c)^t$.

Notación

En realidad preferimos escribir a la función exponencial como $a(t)=(1+i)^t$. Bajo esta notación $i_t=c=i$, es decir, $i_t=i$.

Al número "i" le llamamos tasa efectiva de interés, y al modelo $a(t)=(1+i)^t$ se le conoce como el modelo de interés compuesto..

Observación .
$$\frac{A_k(t) - A_k(t-1)}{A_k(t-1)} = \frac{ka(t) - ka(t-1)}{ka(t-1)} = \frac{a(t) - a(t-1)}{a(t-1)} = i_t$$

Definición 1.4. Para una función de acumulación a(t) diferenciable, se define la fuerza de interés correspondiente a $a(\cdot)$ como

$$\delta_t := \frac{\frac{\partial}{\partial t} a(t)}{a(t)}$$

¿De dónde viene esa definición?

$$\frac{\frac{\partial}{\partial t}a(t)}{a(t)} \stackrel{h}{\approx} \frac{0}{a(t)} \frac{\frac{a(t+h)-a(t)}{h}}{a(t)} = \frac{a(t+h)-a(t)}{ha(t)}$$

Observaci'on . δ_t también se puede obtener como $\frac{\partial}{\partial t}log(a(t))=\frac{a'(t)}{a(t)}=\delta_t$

Ejemplo 1.3. .

1.
$$a(t) = e^{\alpha t}$$

$$\delta_t = \frac{a'(t)}{a(t)} = \frac{\left(e^{\alpha t}\right)'}{e^{\alpha t}} = \frac{\alpha e^{\alpha t}}{e^{\alpha t}} = \alpha$$

 $:: \delta_t = \alpha$, con α constante

2.
$$a(t) = 1 + ct$$

$$\delta_t = \frac{a'(t)}{a(t)} = \frac{(1+ct)'}{1+ct} = \frac{c}{1+ct}$$

 $:: t \longmapsto \delta_t$ es decreciente

Definición 1.5. Para una función de acumulación $a(\cdot)$ se define la tasa efectiva de descuento al tiempo t como:

$$\boxed{d_t := \frac{a(t) - a(t-1)}{a(t)}}$$

También se conoce como tasa efectiva de descuento en el intervalo [t-1,t]. ¿Cómo se interpreta d_t ?

Por cada unidad de a(t) hay d_t unidades de a(t)-a(t-1). "Por cada peso obtenido hay d_t pesos de ganancia obtenida".

Ejemplo 1.4. .

1.
$$a(t) = (1+i)^t$$

$$d_t = \tfrac{a(t) - a(t-1)}{a(t)} = \tfrac{(1+i)^t - (1+i)^{t-1}}{(1+i)^t} = 1 - (1+i)^{-1} = \tfrac{1+i-1}{1+i} = \tfrac{i}{1+i} = c$$

donde c es una constante

2.
$$a(t) = 1 + it$$

$$d_t = \frac{a(t) - a(t-1)}{a(t)} = \frac{1 + it - (1 + i(t-1))}{i + it} = \frac{i}{1 + it}$$

Observaci'on . La aplicaci\'on $t\longmapsto d_t=\frac{i}{1+it}$ es decreciente.

1) Supongamos que un banco le ofrece darte un porcentaje c por cada cada peso invertido al final de cada periodo, **sin** posibilidad de reinvertir las ganancias.

¿Cuánto dinero tendré al final de n periodos? Supongamos que hoy invertimos K.

→ ¿Cuánto dinero tendré al final de 1 periodo?

$$\underbrace{K}_{\text{Inicial}} + \underbrace{Kc}_{\text{Ganancia}} = K(1+c)$$

 \longrightarrow ¿Cuánto dinero tendrá al final de 2 periodos?

$$\underbrace{K(1+c)}_{\text{Ya lo tenía}} + \underbrace{Kc}_{\text{Ganancia}} = K(1+2c)$$

Inductivamente, el dinero al final de n periodos es $K(1 + n \cdot c)$, $n \in \mathbb{N}_+$.

2) Ahora, con la posibilidad de reinvertir las ganancias:

Supóngase que un banco le ofrece darle un porcentaje por cada peso invertido al final de cada periodo **con** posibilidad de reinvertir las ganancias.

→ ¿Cuánto dinero tendré al final de 2 periodos?

$$\underbrace{K(1+c)}_{\text{Ya lo tenía}} + \underbrace{K(1+c) \cdot c}_{\text{Ganancia}} = K(1+c)(1+c) = K(1+c)^2$$

→ ¿Cuánto dinero tendré al final de 3 periodos?

$$\underbrace{K(1+c)^2}_{\text{Ya lo tenía}} + \underbrace{[K(1+c)^2]c}_{\text{Ganancia}} = K(1+c)^2(1+c) = K(1+c)^3$$

Inductivamente el dinero al final de n periodos es $k(1+c)^n$, $n \in \mathbb{N}_+$.

- \longrightarrow A 1. se le conoce como la **génesis económica del interés simple**, a(n) = 1 + cn, y nos gusta escribirla como a(n) = 1 + in, donde a i se le llama tasa efectiva de interés simple.
- \rightarrow A 2. se le conoce como **génesis económica del interés compuesto**, $a(n) = (1+c)^n$, y nos gusta escribirla como $a(n) = (1+i)^n$, donde a i se le conoce como tasa efectiva de interés.

Definición 1.6. Se dice que una función de acumulación $a(\cdot)$ es un **modelo** de interés simple si cumple las siguientes características:

- 1. a(1) = 1 + i, para i constante
- 2. $a(\cdot)$ es diferenciable
- 3. $\forall s, t \in [0, \infty)$ $a(t+s) + 1 = a(t) + a(s) \dots ()$

Proposición 1.1. Si $a(\cdot)$ es una función de acumulación que es un modelo de interés simple, entonces $a(t) = 1 + it \quad \forall t \in [0, \infty)$

Proof.

$$\begin{split} a'(u) &= \lim_{h \to 0} \frac{a(u+h) - a(u)}{h} \longleftarrow \text{ Existe por (2)} \\ &\stackrel{()}{=} \lim_{h \to 0} \frac{(a(u) + a(h) - 1) - a(u)}{h} \\ &= \lim_{h \to 0} \frac{a(h) - 1}{h} \\ &= \lim_{h \to 0} \frac{a(h) - a(0)}{h} \text{ , pues } a(\cdot) \text{ es función de acumulación} \\ &= a'(0) = \text{cte con respecto a t.} \end{split}$$

Es decir,
$$a'(u) = a'(0) \Longrightarrow \int_0^t a'(u) \, du = \int_0^t a'(0) \, du$$

$$\stackrel{TFC}{\Longrightarrow} a(t) - a(0) = a'(0) \cdot t$$

$$\Longrightarrow a(t) - 1 = a'(0) \cdot t$$

$$\Longrightarrow a(t) = 1 + a'(0)t \dots (*)$$
Pero por $(1) \Longrightarrow a(1) = 1 + i = 1 + a'(0) \cdot 1$

$$\Longrightarrow a'(0) = i$$

Sustituimos en (*)

$$\therefore a(t) = 1 + it$$

Definición 1.7. Se dice que una función de acumulación $a(\cdot)$ es un **modelo** de interés compuesto si cumple las siguientes características:

- (1) a(1) = 1 + i, para i constante
- (2) $a(\cdot)$ es diferenciable
- (3) $\forall s, t \in [0, \infty)$ $a(t+s) = a(t) \cdot a(s) \dots (\ddot{\smile})$

Proposición 1.2. Si $a(\cdot)$ es una función de acumulación que es un modelo de interés compuesto, entonces $a(t) = (1+i)^t \quad \forall t \in [0,\infty)$

Proof.

Pero por (1), a(1) = 1 + i

Sustituimos en (°)

$$\begin{split} 1+i &= \exp\{a'(0)\cdot 1\}\\ \Longrightarrow \log(1+i) = a'(0)\dots(\#)\\ \text{Sustituyendo}\,(\#) & \text{en}\,(^\circ)\\ \Longrightarrow a(t) &= \exp\{\log(1+i)\cdot t\}\\ \Longrightarrow a(t) &= \exp\{\log(1+i)^t\}\\ \therefore a(t) &= (1+i)^t \end{split}$$

1.1 Ayudantía

$$\tfrac{d}{dt}(1+i)^t = \tfrac{d}{dt} \left(e^{t \log(1+i)} \right) = e^{t \log(1+i)} \left(\log(1+i) \right) = (1+i)^t \left(\log(1+i) \right)$$

Teorema 1.2 (Teorema de Taylor). Sea f una función, supongamos que existen $f', \dots f^{(n+1)}$ en $[a, x], a \in \mathbb{R}$. Sea $n \in \mathbb{N}$, se define como:

$$f(x) = \frac{f(a)}{0!} + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_{n,a(x)}$$

Entonces $R_{n,a(x)} = \frac{f^{(n+1)}(a)}{(n+1)!}(x-a)^n$ y si f es integrable $R_{n,a(x)} = \int \frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^n$ $t)^n dt$.

Series geométricas

$$1 + (1+i) + (1+i)^{2} + \dots + (1+i)^{n}$$

$$1 + a + a^{2} + \dots + a^{n-1} = S$$

$$a + a^{2} + a^{3} + \dots + a^{n} = aS$$

$$S - aS \Longrightarrow 1 + a - a + a^{2} - a^{2} + \dots - a^{n}$$

$$S - aS = 1 - a^{n} \Longrightarrow S = \frac{1 - a^{n}}{1 - a}$$

$$\begin{aligned} -aS &= 1 - a^n \Longrightarrow S = \frac{1}{1 - a} \\ \text{demás} \end{aligned}$$

$$* \text{ Si } a &= 1 \Longrightarrow S_{n=1} = n \\ * \text{ Si } a &\neq 1 \Longrightarrow S_n = \frac{1 - a^n}{1 - a} = \frac{a^n - 1}{a - 1} \\ |a| &< 1 \text{ Converge } = \frac{1}{1 - a} \end{aligned}$$

$$= 1 - \frac{1}{N+1} \\ \text{Ahora si } N \longrightarrow \infty$$

$$\sum_{n=1}^{N} \left(\frac{1}{n(n+1)}\right) \longrightarrow 1$$

$$\begin{array}{l} \underline{\text{Series geométricas}} \\ 1+(1+i)+(1+i)^2+\ldots+(1+i)^n \\ 1+a+a^2+\ldots a^{n-1}=S \\ a+a^2+a^3+\ldots+a^n=aS \\ S-aS\Longrightarrow 1+a-a+a^2-a^2+\ldots-a^n \\ S-aS=1-a^n\Longrightarrow S=\frac{1-a^n}{1-a} \\ \text{Además} \end{array} \qquad \begin{array}{l} \underline{\text{Telescópicas}} \\ \sum_{n=1}^N \frac{1}{n(n-1)} = \sum_{n=1}^N \left(\frac{1}{n}-\frac{1}{n+1}\right) \\ = \left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{N}-\frac{1}{N+1}\right) \\ = 1-\frac{1}{N+1} \\ \text{Ahora si } N\longrightarrow \infty \end{array}$$

$$\sum_{n=1}^{N} \left(\frac{1}{n(n+1)} \right) \longrightarrow 1$$

Observación .

$$\begin{split} \int v^t \, dt &= 1 \cdot \int v^t \, dt = \frac{\log(v)}{\log(v)} \int v^t \, dt & u = v^t \quad du = v^t \log(v) \\ \Longrightarrow \frac{1}{\log(v)} \int v^t \log(v) \, dt &= \frac{v^t}{\log(v)} + C & \Longrightarrow \int du = \int v^t \log(u) = v^t \end{split}$$

En general:

$$\int u' \cdot e^u \, du = e^u + C$$
$$\int u' a^u \, du = \frac{a^u}{\log(a)} + C$$

Ejercicios (interés simple) 1.1.1

1. ¿Cuánto interés se gana en el cuarto año si se invierten \$3000 bajo interés simple a una tasa anual del 5% ¿Cuál es el saldo al final del cuarto año?

Saldo final:

$$A(t) = 3,000(1 + 0.05(4)) = \underline{3,600}$$

1.1. AYUDANTÍA 13

2. ¿En cuántos años se acumularán \$500 a \$800 con un interés del 6%?

$$\begin{array}{l} A(1) = 500, \ A(t) = 800, \ i = 6\% \\ A(t) = 500(1 + 0.06(t)) = 800 \\ \frac{800}{500} = 1 + 0.06(t) \implies \frac{8}{5} - 1 = 0.06(t) \implies \frac{\frac{8}{5} - 1}{0.06} = t \quad \because \underline{t = 10 \, \text{a} \tilde{\text{nos}}} \end{array}$$

3. Encuentre la tasa de interés simple anual para que \$1,000 invertido a tiempo t = 0 crezca a \$1,700 en 8 años.

$$\begin{array}{l} A(0)=1,000,\; A(8)=1,700,\; t=8\, {\rm a \tilde{n}os} \\ A(8)=1,000(1+i(8))=1,700 \implies \frac{1,700}{1,000}=(1+i(8)) \\ \implies \frac{(1.7-1)}{8}=i=0.087 \\ \therefore \, \underline{{\rm La}} \,\, {\rm tasa} \,\, {\rm anual} \,\, {\rm debe} \,\, {\rm ser} \,\, {\rm de} \,\, 8.7\% \end{array}$$

4. A una tasa de interés simple, \$1,200 invertidos en el tiempo t=0 acumula \$1,320 en t años. Encuentre el valor acumulado de \$500 invertido a la misma tasa de interés simple y a t=0, pero esta vez para 2t

$$A(0) = 1,200, A(t) = 1,320$$

a)
$$A(t) = 1200(1+it) = 1320 \implies t = \frac{\frac{1320}{1200}-1}{i}$$

b)
$$A(2t) = 500(1 + i2t)$$

 $500\left(1 + i2\left(\frac{\frac{1320}{1200} - 1}{i}\right)\right) = 500\left(1 + 2\left(\frac{1320}{1200} - 1\right)\right) = \underline{600\,\mathrm{acum}}$

1.1.2 Ejercicios (interés compuesto)

1. Alice invierte \$2,200, Su inversión crece de acuerdo al interés compuesto con una tasa de interés anual de 4% por t años en el cual acumuló \$8,000. Encuentre t.

$$A(0) = 2,200, i = 4\%, A(t) = \$8,000$$

$$A(t) = 2,200(1+0.04)^t = 8,000 \implies (1+0.04)^t = \frac{8,000}{2,200}$$

$$\implies t \ln(1+0.04) = \ln\left(\frac{8,000}{2,200}\right)$$

$$\implies t = \frac{\ln\left(\frac{8,000}{2,200}\right)}{\ln(1.04)}$$

$$\therefore t = 32.91$$

2. Eliot recibe la herencia de su tía Ruth, cuando ella murió en su cumpleaños número 5. En su cumpleaños 18, la herencia creció a \$32,168. Si el dinero ha estado creciendo a una tasa de interés compuesto anual de 6.2% encuentre la cantidad que le heredó la tía Ruth a Eliot.

$$\begin{array}{l} A(0) = M, \ i = 6.2\%, \ A(13) = 32,168 \\ A(0) = M(1.062)^{13} = 32,168 \implies M_{\overline{(1.062)^{13}}}^{32,168} = \underline{14,716.52} \end{array}$$

3. ¿Cuánto interés se gana en el cuarto año de una inversión de \$1,000 invertida a una tasa compuesta anual efectiva de 5%?

$$t=4$$
años, $M=1,000,\,i=5\%$ $A(4)=1,000(1+0.05)^4=1,215.5 \implies 1,215.5−1,000=215.5$ ∴ El interés ganado es \$215.5

4. A una cierta tasa de interés compuesta, el dinero se duplicará en α años, se triplicará en β años y se multiplicará por 10 en γ años. Al mismo tiempo con una tasa de interés compuesta, \$5 incrementa a \$12 en n años. Encuentre el interés a, b, c tal que $n = a\alpha + b\beta + c\gamma$

$$A(\alpha)=M(1+i)^\alpha=2M$$

$$A(\beta)=M(1+i)^\beta=3M$$

$$A(\gamma)=M(1+i)^\gamma=10M$$
 Tarea $A(n)=5(1+i)^n=12$

5. Eduardo depositó \$826 en una cuenta de ahorros que genera intereses a una tasa de incremento del banco. Durante los primeros 3 años del depósito la tasa de interés anual es del 2.6%. Para los próximos 2 años la tasa efectiva anual es del 4.5% y los siguientes 5 años la tasa de interés efectiva anual es del 6%, ¿Cuál es el acumulado al final de 10 años?

$$A(10) = 826(1+i)^{10}$$

$$= 826(1+0.026)^{3}(1+0.04)^{2}(1+0.06)^{5} = \underline{1,303.71}$$

$$\delta$$

$$A(3) = 826(1+0.026)^{3} = X$$

$$A(5) = X(1+0.04)^{2} = Y$$

$$\therefore A(10) = Y(1+0.06)^{5}$$

1.2. CLASE 15

1.2 Clase

Resumen

Interés simple
$$a(t) = 1 + it$$
 Interés compuesto $a(t) = (1 + i)^t$
$$i_t = \frac{i}{1 + i(t - 1)} \quad \delta_t = \frac{i}{1 + it} \qquad i_t = i \quad \delta_t = \log(1 + i)$$

$$d_t = \frac{i}{1 + it} \qquad d_t = \frac{i}{1 + i}$$

Ejemplo 1.5.
$$a(t) = (1-d)^{-t}, t \ge 0, d \in (0,1)$$

¿Es función de acumulación?

i)
$$a(0) = (1-d)^{-0} = 1$$

ii) $a(\cdot)$ continua

iii)
$$a'(t) = ((1-d)^{-t})' = \left(e^{-tlog(1-d)}\right)' = e^{-tlog(1-d)}(-1)log(1-d) = \underbrace{-\left(1-d\right)^{-t}}_{\geq 0}\underbrace{log(1-d)}_{\geq 0} \geq 0$$

 \bullet i_t

$$\begin{split} i_t &= \frac{a(t) - a(t-1)}{a(t-1)} = \frac{(1-d)^{-t} - (1-d)^{-(t-1)}}{(1-d)^{-(t-1)}} = \frac{(1-d)^{-(t-1)}}{(1-d)^{-(t-1)}} \left[(1-d)^{-1} - 1 \right] \\ &= \frac{1}{1-d} - 1 = \frac{1 - (1-d)}{1-d} = \boxed{\frac{d}{1-d} \text{ cte.}} \end{split}$$

d_t

$$d_t = \frac{a(t) - a(t-1)}{a(t)} = \frac{(1-d)^{-t} - (1-d)^{-(t-1)}}{(1-d)^{-t}} = 1 - (1-d) = \boxed{d \, \mathrm{cte.}}$$

δ_t

$$\begin{split} \delta_t &= \frac{a'(t)}{a(t)} = \frac{\partial}{\partial t} log(a(t)) = \frac{\partial}{\partial t} log\left((1-d)^{-t}\right) = \frac{\partial}{\partial t} (-t \cdot log(1-d)) \\ &= \boxed{-log(1-d) \operatorname{cte.}} \end{split}$$

A $a(t) = (1-d)^t$ se le conoce como modelo de descuento compuesto, y a d se le conoce como tasa efectiva de descuento.

Ejemplo 1.6.
$$a(t) = \frac{1}{1-td}, t \in [0, \frac{1}{d}), d \in (0,1)$$

¿Es función de acumulación?

- i) $a(0) = \frac{1}{1-0d} = \frac{1}{1} = 1$
- ii) Es continua
- iii) $\frac{\partial}{\partial t}a(t)=\frac{\partial}{\partial t}(1-td)^{-1}=(-1)(1-td)^{-2}(-d)=\frac{d}{(1-td)^2}>0,$ $a(\cdot)$ es creciente.

Tarea: $i_t,\,d_t,\,\delta_t$

A a(t) = 1/(1-td), $t \in [0,1/d)$ se le conoce como **modelo de descuento** simple y a \underline{d} se le conoce como tasa efectiva de descuento simple.

1.2.1 Ejercicios de Clase

- 1. Se requiere conocer el monto (valor acumulado) de \$2,770 colocados a las tasas de interés simple que se indican a continuación:
- 17.65% anual, después de cinco años y ocho meses.
- 0.14% diario, después de un mes y medio.
- 4.85% trimestral, después de diez meses.

La tasa manda

a)
$$A_k(t) = k \cdot a(t)$$

$$A_{2770}(t)=2770(1+0.1765t)$$
donde t se mide en
años

$$\begin{split} &A_{2770}(\text{5 años, 8 meses}) = A_{2770}\left(5+\tfrac{9}{12}\right) = A_{2770}\left(5+\tfrac{2}{3}\right) \\ &= A_{2770}\left(\tfrac{17}{3}\right) = 2770\left(1+0.1765\left(\tfrac{17}{3}\right)\right) \end{split}$$

b)
$$A_{2770}(t) = 2770(1 + 0.0014t)$$
, t se mide en días.

$$A_{2770}(1~{\rm mes~y~medio}) = A_{2770}(45~{\rm dias}) = 2770(1+0.0014(45))$$

c)
$$A_{2770}(t) = 2770(1 + 0.0485t)$$
, t se mide en trimestres

$$A_{2770}(10 \text{ meses}) = A \left(3t + \frac{1}{3} \text{trimestres}\right)$$

$$A_{2770}\left(\frac{10}{3}\right) = 2770\left(1 + 0.0485\left(\frac{10}{3}\right)\right)$$

1.2. CLASE 17

2. Calcule el monto de \$1,500 al 3% de interés simple efectivo mensual después de los tiempos que se indican:

- \bullet 15 días
- Seis meses
- Un año y medio
- Tres años
- Un siglo
- $A_{1500}(t) = 1500(1 + 0.03t)$, t se mide en **meses**
- $A_{1500}(15 \text{ días}) = A_{1500}\left(\frac{1}{2} \text{ mes}\right) = \underline{1500\left(1 + 0.03\left(\frac{1}{2}\right)\right)}$

$$\bullet \ \ A_{1500}(1 \ \text{siglo}) = A_{1500} \left(100 \cdot 12 \atop \text{día} \cdot \text{mes} \right) = A_{1500}(1200) = \underline{1500(1 + 0.03(1200))}$$

3. Dados los siguientes capitales (iniciales), montos y plazos, calcule la tasa de interés simple efectiva anual correspondiente:

Inciso	Capital(Principal)	Monto(Valor Acumulado)	Tiempo
a)	2,787,458.50	2, 788, 625.63	Tres días
b)	1,000	1,500	Seis meses
c)	3,250	8,900	Un año
d)	1	2	Una década
e)	127, 380	4,000,000	Doce años

a)
$$M = 2,787,458.50$$

$$2787458.50 \left(1 + \underbrace{i}_{i \text{ anual}} \cdot \frac{3}{365}\right) = 2788625.63. \text{ Despejar } i \dots$$

- d. $1(1+i\cdot 10) = 2$. Despejar i ...
- 11. Un inversionista se encuentra ante la opción de elegir una de las siguientes alternativas:
 - Compra hoy una bodega en \$20,500,000, con la posibilidad de venderla en \$40,500,000 dentro de dos años y medio.
 - Prestar dicho dinero a una tasa del 2.3% mensual simple.

¿Qué le recomendaría usted al inversionista?

a)

$$\begin{split} A(2.5\,\text{a}\tilde{\text{n}}\text{os}) &= A(30\,\text{meses}); i = 2.5\,\%\,\text{mensual simple} \\ &= 20,500,000(1+0.023(30)) = 34,645,000 < 40,500,000 \\ &\therefore \text{Conviene comprar la bodega} \end{split}$$

• Si nos dan a(t) ¿podrían obtener δ_t ? Sí

Mediante la definición.

$$\delta_t = \frac{a'(t)}{a(t)} = \frac{\partial}{\partial t} \log(a(t))$$

• Si nos dan δ_t ¿Podrían obtener a(t)? Sí

$$\begin{split} & \delta_s = \frac{\partial}{\partial s} \log(a(s)) \\ & \Longrightarrow \int_0^t \delta_s \, ds = \int_0^t \frac{\partial}{\partial s} \log(a(s)) \, ds \\ & \overset{\mathrm{TFC}}{\Longrightarrow} \int_0^t \delta_s \, ds = \log(a(t)) - \log(a(0)) \Longrightarrow \int_0^t \delta_s \, ds = \log(a(t)) - \log(1) \\ & \Longrightarrow \exp \left\{ \int_0^t \delta_s \, ds \right\} = a(t) \, \dots \, (\ddot{\smile}) \end{split}$$

• Si nos dan a(t), i_t ? Sí

$$i_n = \frac{a(n) - a(n-1)}{a(n-1)}$$

1.2. CLASE 19

• Si nos dan i_n , $\xi a(t)$? Sí, parcialmente

$$\begin{split} i_n &= \frac{a(n) - a(n-1)}{a(n-1)} \ (i_n \cdot a(n-1) = a(n) - a(n-1)) \\ & \Longrightarrow i_n \cdot a(n-1) + a(n-1) = a(n) \\ & \Longrightarrow a(n) = \underbrace{a(n-1)}_{\text{Recursivamente}} \ [1+i_n] \\ & \downarrow \\ a(n) &= a(n-2) \ (1+i_{n-1}) \ [1+i_n] \\ \text{Recursivamente} \\ & a(n) = (1+i_1) \ (1+i_2) \ \cdots \ (1+i_n) = \prod_{k=1}^n \ (1+i_k) \\ \hline & \vdots \ a(n) = \prod_{k=1}^n \ (1+i_k) \end{split}$$

• Si nos dan a(t), ξd_n ? Sí

$$d_n = \frac{a(n) - a(n-1)}{a(n)}$$

• d_n , $\zeta a(t)$? Sí, parcialmente Tarea

Ejemplo 1.7. Considere la función $\left(1+\frac{i^{(m)}}{m}\right)^{mt},\;m\in\mathbb{N}_+,\;i^{(m)}>0$

Nota: i^m es notación, no exponenciación.

¿Es $a(\cdot)$ función de acumulación?

i)
$$a(0) = \left(1 + \frac{i^{(m)}}{m}\right)^{m \cdot 0} = 1$$

ii) , iii)

 $a(t) = \left[\left(1 + \frac{i^{(m)}}{m}\right)^m\right]^t \text{ es una función del tipo exponencial, por tanto es continua, y como }\left(1 + \frac{i^{(m)}}{m}\right)^m > 0, \text{ también es creciente.}$

 $\mathbf{A} \underbrace{\left(1 + \frac{i^{(m)}}{m}\right)^{mt}}_{\mathbf{veces.}} \mathbf{se} \ \mathbf{le} \ \mathbf{conoce} \ \mathbf{como} \ \mathbf{modelo} \ \mathbf{de} \ \mathbf{interés} \ \mathbf{nominal} \ \mathbf{convertible}$

$$i_{t} = \frac{\left(1 + \frac{i^{(m)}}{m}\right)^{mt} - \left(1 + \frac{i^{(m)}}{m}\right)^{m(t-1)}}{\left(1 + \frac{i^{(m)}}{m}\right)^{m(t-1)}}$$

$$= \frac{\left(1 + \frac{i^{(m)}}{m}\right)^{m(t-1)}}{\left(1 + \frac{i^{(m)}}{m}\right)^{m(t-1)}} \left[\left(\left(1 + \frac{i^{(m)}}{m}\right)^{m}\right) - 1\right]$$

$$= \frac{\left(1 + \frac{i^{(m)}}{m}\right)^{m} - 1 = \text{cte.}$$

$$\begin{split} \delta_t &= \frac{\partial}{\partial t} \log(a(t)) = \frac{\partial}{\partial t} \log \left[\left(1 + \frac{i^{(m)}}{m} \right)^{mt} \right] = \frac{\partial}{\partial t} mt \log \left(1 + \frac{i^{(m)}}{m} \right) \\ &= m \cdot \log \left(1 + \frac{i^{(m)}}{m} \right) = \text{cte (con respecto a t)} \end{split}$$

A $\underline{i^{(m)}}$ se le conoce como de interés por periodo capitalizable m veces por periodo o tasa de interés por periodo convertible veces por periodo y establece que el interés que se nos paga por $\underline{m-\text{\'esimo}}$ de periodo es $\frac{i^{(m)}}{m}$.

.

- 1. Si el periodo es anual e $i^{(3)}=10\%$ significa que nos paga $\frac{10\%}{3}$ cada **tercio** de año, i.e, se nos paga 3.33% cada cuatrimestre.
- 2. Si el periodo es anual e $i^{(4)}=10\%$ significa que se nos pagó $\frac{10\%}{4}$ cada cuarto de año, i.e, se nos paga 2.5% cada trimestre.
- 3. Si el periodo es anual e $i^{(12)}=10\%$ significa que ... $\frac{10\%}{12}$ cada **doceavo** de año, ... $\frac{10\%}{12}$ cada mes.
- 4. ... es semestral e $i^{(3)}=10\%$... $\frac{10\%}{3}$ cada tercio de semestres, i.e, ... 3.33% cada bimestre.
- 5. ... bianual e $i^{(2)}=10\%$... $\frac{10\%}{2}$ cada **mitad de bi-año**, ... 5% cada **año**.

1.2. CLASE 21

6. ... es quinquenal e $i^{(2)}=30\%$... $\frac{30\%}{60}$ cada sesentavo de quinquenio 0.5% cada mes.

7. ... anual e
$$i^{(365)}=5\%$$
 ... $\frac{5\%}{365}$ cada $\underline{365-avo}$ de año}, ... , $\frac{5\%}{365}$ cada día.

Observación . Si se da una $i^{(m)}$ y **no** se especifica el periodo se supone anual.

1.2.2 Ejercicios

12. Daniel decide prestarle \$2,000,000 a su amiga Adriana (él es un acaudalado ayudante de profesor). Adriana le pagará \$3,600,000 dentro de tres años. ¿Qué tasa de interés simple semestral debería ofrecer un banco para que Daniel no le prestara el dinero a Adriana y mejor decidiera invertirlo de dicho banco (y convertirse en el peor de los amigos)?

$$a(t) = 1 + it$$

$$3,600,000 = 2,000,000(1 + i \cdot {\overset{3 \text{ años} = 6 \text{ semestres}}{6}}) \Longrightarrow i = \frac{\frac{36}{10} - 1}{6} = 13.33^{-}\%$$

Si un banco le ofrece una tasa de interés simple semestral mayor que $13.33^-\%$, Daniel preferirá invertir en el banco.

=: le da igual.

<: a la amiga.

9. Encontrar la tasa de interés mensual simple que se obtiene cuando se invierten \$210,000 y al cabo de diez meses se puede retirar \$311,650.

$$\begin{aligned} &210,000(1+i\cdot 10) = 311,650\\ &i\frac{\frac{311,650}{210,000}-1}{10} = \underline{4.84\%\,\mathrm{mensual}} \end{aligned}$$

Considere la función
$$\boxed{a(t) = \left(1 - \frac{d^{(p)}}{p}\right)^{-pt}}, \, d^{(p)} \in (0,1).$$

 $\xi a(t)$ es función de acumulación?

i)
$$a(0) = \left(1 - \frac{d^{(p)}}{p}\right)^{-p \cdot 0} = 1$$

ii) , iii) $a(t) = \left(\left(1 - \frac{d^{(p)}}{p}\right)^{-p}\right)^t$ es de tipo exponencial, por lo tanto es continua y es creciente pues $\left(1 - \frac{d^{(p)}}{p}\right)^{-p} > 0$.

 $\stackrel{.}{.} a(t) = \left(1 - \frac{d^{(p)}}{p}\right)^{-pt}$ es función de acumulación.

$$\begin{split} \cdot i_t &= \frac{\left(1 - \frac{d^{(p)}}{p}\right)^{-pt} - \left(1 - \frac{d^{(p)}}{p}\right)^{-p(t-1)}}{\left(1 - \frac{d^{(p)}}{p}\right)^{-p(t-1)}} = \frac{\left(1 - \frac{d^{(p)}}{p}\right)^{-p(t-1)}}{\left(1 - \frac{d^{(p)}}{p}\right)^{-p(t-1)}} \left[\left(1 - \frac{d^{(p)}}{p}\right)^{-p} - 1 \right] \\ &= \underbrace{\left(1 - \frac{d^{(p)}}{p}\right)^{-p}}_{-1, \text{ es cte con respecto a t.} \\ \cdot d_t &= \frac{a(t) - a(t-1)}{a(t)} = 1 - \frac{a(t-1)}{a(t)} = 1 - \frac{\left(1 - \frac{d^{(p)}}{p}\right)^{-p(t-1)}}{\left(1 - \frac{d^{(p)}}{p}\right)^{-pt}} \\ &= \underbrace{1 - \left(1 - \frac{d^{(p)}}{p}\right)^p \text{ es constante con respecto a t.} }_{-p \log \left(1 - \frac{d^{(p)}}{p}\right)} = \underbrace{\frac{\partial}{\partial t} \left(-pt \cdot \log \left(1 - \frac{d^{(p)}}{p}\right)\right)}_{-p \log \left(1 - \frac{d^{(p)}}{p}\right) \text{ es constante con respecto a t.} \end{split}$$

A $d^{(p)}$ se le conoce como "tasa de descuento por periodo convertible p veces por periodo" ó "tasa de descuento nominal por periodo capitalizable p veces por periodo".

Dadas 2 funciones de acumulación $a_1(\cdot)$ y $a_2(\cdot)$ son equivalentes al tiempo t^* si $a_1(t^*)=a_2(t^*)$, y se denota como $a_1\underset{t^*}{\sim}a_2$.

Dadas 2 funciones de acumulación $a_1(\cdot)$ y $a_2(\cdot)$ se dice que $a_1(\cdot)$ y $a_2(\cdot)$ son equivalentes si $\forall \, t \in [0,\infty) \; a_1(t) = a_2(t)$ y se denota como $a_1 \sim a_2$

Claramente si $a_1 \sim a_2,$ entonces $a_1 \underset{t}{\sim} a_2$ para cualquier $t \in [0, \infty)$

$$\ \ \, \mathop{\natural} a_1 \underset{t^*}{\sim} a_2 \implies a_1 \sim a_2?$$

No necesariamente, contraejemplo: dibujo

1.2. CLASE 23

Proposición 1.3. Sean a_1 , a_2 funciones de acumulación, si

- 1) $a_1 \underset{t^*}{\sim} a_2$ para algún $t^* \in [0,\infty)$
- 2) a_1 y a_2 tienen fuerza de interés constante,

entonces $a_1 \sim a_2$

Proof. Sean $\delta_{1,t}$ y $\delta_{2,t}$ las fuerzas de interés de las funciones $a_1(\cdot)$ y $a_2(\cdot)$ respectivamente.

Por una observación que hicimos ayer

$$\begin{split} a_1(t) &= e^{\int_0^t \delta_{1,s} \, ds} & a_2(t) = e^{\int_0^t \delta_{2,s} \, ds} \\ &= e^{\int_0^t \delta^{(1)} \, ds} &= e^{\int_0^t \delta^{(2)} \, ds} \\ &= e^{\delta^{(1)} \cdot t} &= e^{\delta^{(2)} \cdot t} \end{split}$$

pues $\delta_{1,t} = \delta^{(1)}$ cte y $\delta_{2,t} = \delta^{(2)}$ cte.

pero por (1) $a_1(t^*) = a_2(t^*)$ entonces $e^{\delta^{(1)}t^*} = e^{\delta^{(2)}t^*} \implies \left(e^{\delta^{(1)}}\right)^{t^*} = \left(e^{\delta^{(2)}}\right)^{t^*} \implies e^{\delta^{(1)}} = e^{\delta^{(2)}} \dots$ (*)

Entonces para cualquier $t\in[0,\infty)\quad a_1(t)=e^{\delta^{(1)}t}\stackrel{\left(*\right)}{=}e^{\delta^{(2)}t}=a_2(t)$

$$\therefore a_1(t) = a_2(t)$$

$$a_1 \sim a_2$$

24

Tarea:

1. Demostrar que $a_1 \sim a_2$ es relación de equivalencia

2. Demostrar que $a_1 \underset{t^*}{\sim} a_2$ es relación de equivalencia

Esta proposición nos pide que las funciones de acumulación tengan fuerza de interés constante.

Ya vimos muchas funciones de acumulación con fuerza de interés constante.

$$a(t)$$
 δ_t

1.
$$(1+i)^t \longrightarrow \log(1+i)$$

$$2. \ (1-d)^{-t} \longrightarrow -\log(1-d)$$

3.
$$\left(1 - \frac{d^{(p)}}{p}\right)^{-pt} \longrightarrow -p\log\left(1 - \frac{d^{(p)}}{p}\right)$$

$$4. \ \left(1 + \frac{i^{(m)}}{m}\right)^{mt} \ \longrightarrow \ m \log\left(1 + \frac{i^{(m)}}{m}\right)$$

Según la proposición, 1., 2., 3. y 4. son equivalentes y se escribe:

$$(1+i) = (1-d)^{-1} = \left(1 + \frac{i^{(m)}}{m}\right)^m = \left(1 - \frac{d^{(p)}}{p}\right)^{-p} = e^{\delta}$$
 y se escribe $i \sim d \sim i^{(m)} \sim d^{(p)}$

Esto significa que por ejemplo si $i \sim d^{(p)}$, entonces $(1+i) = \left(1-\frac{d^{(p)}}{p}\right)^{-p}$ ó también $i \sim d$ entonces $(1+i) = (1-d)^{-1}$ ó también $i^{(m)} \sim d^{(p)}$ entonces $\left(1+\frac{i^{(m)}}{m}\right)^m = \left(1-\frac{d^{(p)}}{p}\right)^{-p}$.

Importante: cuando se hable de tasas de interés i se supone el modelo compuesto.

1.3 Ayudantía

De la tarea

1.4. CLASE 25

(16) Juliana r

Ricardo %5 = Juliana

Ricardo r simple

 $k(1+r)^{8}$ Jul.

Ric. $k(1+8(\frac{1}{2})r)$

Recordatorio:

i: cantidad que dinero que ganamos por cada unidad invertida.

El dinero vale más ahora

(24) 10,000

$$t = 1 \longrightarrow i$$

$$A(t) = 10,000(1+i)$$

$$t=2\,\longrightarrow i-5\,\%$$

$$A(t) = 12,093.75$$

$$t = 3 \longrightarrow i - 9\%$$

$$= 10,000(1+i)(1+i-0.05)$$

$$a(t)$$
 $a(t) \cdot a(t)$

Despejar i ...

Clase 1.4

1.
$$a_1 \sim 1_2 \longrightarrow a_1(t^*) = a_2(t^*)$$

$$2. \ a_1 \sim a_2 \ \longrightarrow \ \forall \, t \; a_1(t) = a_2(t)$$

$$3. \sim \Longrightarrow \underset{t^*}{\sim} \quad \forall \, t^*$$

4.
$$\underset{t^*}{\sim} \Rightarrow \sim$$

5.
$$\delta_t^{(1)} = \delta^{(1)}$$
; $\delta_t^{(2)} = \delta^{(2)} \longrightarrow \underset{t^*}{\sim} \Longrightarrow \sim$

OJO: $i \sim d \implies i \neq d$

$$i \sim d \implies (1+i) = (1-d)^{-1}$$

$$\implies i = (1-d)^{-1} - 1 \qquad \qquad 6 \qquad d = \frac{i}{1+i}$$

$$= \frac{d}{1-d}$$

De hecho

Proposición 1.4. $Si~i \sim d \sim \delta \sim d^{(p)} \sim i^{(m)}~entonces$

- 1) $\lim_{m\to\infty} i^{(m)} = \delta$
- 2) $\lim_{p\to\infty} d^{(p)} = \delta$
- 3) $d < d^{(p)} < \ldots < d^{()} < \delta < i^{()} < \ldots < i$

Sea $a(\cdot)$ una función de acumulación. Se define la correspondiente función de descuento o función valor presente como:

$$\boxed{V_a(t) := \frac{1}{a(t)}}$$

 $V_a(t)$ representa la cantidad de \$ que hoy se tendría que invertir para que al final de t periodos se tuviera \$1, pues

$$V_a(t)\cdot a(t)=\frac{1}{a(t)}a(t)=1$$

OJO:

Alguno libros ocupan la notación $V_a(t) = a^{-1}(t)$ Observación . . 1.4. CLASE 27

1)
$$V_a(0) = \frac{1}{a(0)} = \frac{1}{1} = 1$$

- 2) $t \longmapsto V_a(t)$ es no-decreciente pues $t \longmapsto a(t)$ es no-decreciente
- 3) $V_a(\cdot)$ es también continua por pedazos.

¿Cómo me dirían qué tan buena es una función de valor presente?

Sea a(t)una función de acumulación. Se define la fuerza de descuento de $a(\cdot)$ como:

$$\boxed{ \delta_{t^*} := \frac{-\frac{\partial}{\partial t} V_a(t)}{V_a(t)} }$$

Proposición 1.5. Sea $a(\cdot)$ una función de acumulación y sean δ_t y δ_{t^*} sus correspondientes fuerzas de interés y descuento respectivamente. Entonces $\delta_t = \delta_{t^*}$

Proof.

$$\begin{split} \delta_{t^*} &= \frac{-\frac{\partial}{\partial t} V_a(t)}{V_a(t)} = -\frac{\frac{\partial}{\partial t} \frac{1}{a(t)}}{\frac{1}{a(t)}} = -\frac{\frac{a(t) \cdot 0 - 1 \cdot a'(t)}{\left(a(t)\right)^2}}{\frac{1}{a(t)}} \\ &= -\frac{-a'(t) a(t)}{\left(a(t)\right)^2} = \frac{a'(t)}{a(t)} = \delta_t \end{split}$$

Se dice que una función de acumulación es un modelo de descuento simple si:

(1) $a(\cdot)$ sea diferenciable, equivalente $V_a(\cdot)$ sea diferenciable.

(2)
$$V_a(1) = 1 - d$$

(3)
$$V_a(t+s) + 1 = V_a(t) + V_a(s) \ \forall s, t \in [0, 1/d).$$

Proposición 1.6. Si $a(\cdot)$ es un modelo de descuento simple, entonces $a(t) = \frac{1}{1-td}$, $t \in [0,1/d)$.

Proof.

$$\begin{split} &\frac{\partial}{\partial t}V_a(t) \stackrel{\text{\tiny def. derivada}}{=} \lim_{h \to 0} \frac{V_a(t+h) - V_a(t)}{h} \stackrel{\text{\tiny (3)}}{=} \lim_{h \to 0} \frac{V_a(t) + V_a(h) - 1 - V_a(t)}{h} \\ &= \lim_{h \to 0} \frac{V_a(h) - 1}{h} = \lim_{h \to 0} \frac{V_a(h) - V_a(0)}{h} = V_a'(0) \\ &\Longrightarrow V_a'(s) = V_a'(0) \\ &\Longrightarrow \int_0^t V_a'(s) \, ds = \int_0^t V_a'(0) \, ds \\ &\stackrel{\text{\tiny TFC}}{=} V_a(t) - V_a(0) = V_a'(0) \cdot t \Longrightarrow V_a(t) = 1 + V_a'(0) \cdot t \dots \ (\ddot{\smile}) \end{split}$$

$$\text{Pero por } (2) \qquad V_a(1) = 1 - d \stackrel{(\ddot{\smile})}{=} 1 + V_a'(0) \cdot 1 \\ &\Longrightarrow V_a'(0) = -d \dots \ (*) \end{split}$$

Sustituimos (*) en (¨)

$$\begin{split} V_a(t) &= 1 - dt \\ \Longrightarrow \frac{1}{a(t)} &= 1 - dt \\ \Longrightarrow a(t) &= \frac{1}{1 - td} \end{split}$$

Se dice que una función de acumulación $a(\cdot)$ es un modelo de descuento compuesto si:

- (1) $a(\cdot)$ es diferenciable
- (2) $V_a(1) = 1 d$

(3)
$$V_a(t+s) = V_a(t) \cdot V_a(s) \ \forall \ s, t.$$

Proposición 1.7. Si $a(\cdot)$ es un modelo de descuento compuesto entonces $a(t) = (1-d)^{-t}$

1.5 Ayudantía

Resolución de la tareita

1.5. AYUDANTÍA 29

$$\begin{split} 2 &= (1+i)^{\alpha}, \ 3 = (1+i)^{\beta}, \ 10 = (1+i)^{\gamma}, \ 5(1+i)^n = 12 \\ &\Longrightarrow (1+i)^n = \frac{12}{5} \cdot \frac{2}{2} = \frac{24}{10} = \frac{2^3 \cdot 3}{(1+i)^8} = \frac{\left((1+i)^2\right)^3 (1+i)^{\beta}}{(1+i)^8} \\ &= (1+i)^{3\alpha} (1+i)^{\beta} (1+i)^{-\gamma} = (1+i)^{3\alpha+\beta-\gamma} \\ &n = 3\alpha + \beta - \gamma = a\alpha + b\beta + c\gamma \\ &\therefore a = 3 \ ; b = 1 \ ; c = -1 \end{split}$$

1.5.1 Ejercicios (Fuerza de Interés)

1. Suponga que tiene una tasa de descuento simple "d", encuentre la fuerza de interés.

$$\begin{split} \delta_t &= \frac{a'(t)}{a(t)} \\ a(t) &= (1 - dt)^{-1} \\ a'(t) &= -1(1 - dt)^{-2}(-d) \\ \delta_t &= \frac{(1 - dt)^{-2}d}{(1 - dt)^{-1}} = (1 - dt)^{-2+1}d = \frac{d}{(1 - dt)} \end{split}$$

2. Suponga la tasa de interés compuesta "i" encuentre la fuerza de interés

$$a(t) = (1+i)^{t}$$

$$a'(t) = (1+i)^{t} \ln(1+i)$$

$$\delta_{t} = \frac{(1+i)^{t} \ln(1+i)}{(1+i)^{t}} = \underline{\ln(1+i)}$$

3. Suponga que $a(t)=(1.07)^{t/2}(1.06)^{(t^2/3)}(1.05)^{(t^3/6)},$ encuentre $\delta_t.$

$$\begin{split} a(t) &= (1.07)^{t/2} (1.06)^{t^2/3} (1.05)^{t^3/6} \\ \delta_t &= \frac{d}{dt} \ln(1.07)^{t/2} (1.06)^{t^2/3} (1.05)^{t^3/6} = \frac{d}{dt} \left[\frac{t}{2} \ln(1.07) + \frac{t^2}{3} \ln(1.06) + \frac{t^3}{6} \ln(1.05) \right] \\ &= \frac{1}{2} \ln(1.07) + \frac{2t}{3} \ln(1.06) + \frac{t^2}{2} \ln(1.05) \\ &= \underline{\ln\left[(1.07)^{1/2} (1.06)^{2t/3} (1.05)^{t^2/2} \right]} \end{split}$$

4. Suponga $\delta_t = \frac{4}{1-4t}$. Encuentre su función de acumulación correspondiente.

$$\begin{split} a(t) &= e^{\int_0^t \frac{4}{1-4t} \, ds} & u = 1 - 4s \\ &\int_0^t \frac{4}{1-4s} \, ds = -\int u^{-1} \, du & du = -4ds \\ &= -\ln|1-4s||_0^t = -\ln(1-4t) - \ln(1)) \\ a(t) &= e^{\ln(1-4t)^{-1}} = (1-4t)^{-1} \end{split}$$

- 5. Se tiene una fuerza de interés $\delta_t=0.05+0.06t$. Encuentre el valor acumulado después de 3 años si se invirtió \$300 hacerlo para:
- a) t = 0
- b) t = 4

$$\begin{aligned} \mathbf{a}) \; a(t) &= e^{\int_0^t 0.05 + 0.06s \, ds} \\ \int_0^t 0.05 + 0.06s \, ds &= 0.05(s) \big|_0^t + \frac{0.06s^2}{2} \big|_0^t \\ a(t) &= e^{0.05 + 0.03t^2} \\ a(3) &= e^{0.05(3) + 0.03(3)^2} = (*) \\ & \therefore A(3) &= 300 \cdot (*) = \underline{456.58} \end{aligned}$$

b)
$$a(t) = e^{\int_4^7 0.05 + 0.06s} ds$$

6. Nos dan la siguiente fuerza de interés $\delta_t=\frac{2t}{1+t^2}$ encuentre la función de acumulación correspondiente.

$$a(t) = e^{\int_0^t \frac{2t}{1+t^2} ds}$$

$$u = 1 + s^2$$

$$\int_0^t \frac{25}{1+s^2} ds = -\int u^{-1} du = \ln(1+s^2) \Big|_0^t = \underline{\ln(1+t^2)}$$

$$du = 25ds$$

1.6. CLASE 31

7. Encuentra el valor acumulado de \$1,000 invertido durante 10 años a una tasa del 5%

$$\begin{split} a(10) &= e^{\delta_t(t)} = e^{10(0.05)} \\ A(10) &= 1000 e^{10(0.05)} \end{split}$$

8. Encuentre el valor acumulado de \$500 invertido durante 4 años a una tasa del 2%

$$A(4) = 500e^{4(0.02)} = \underline{541.6435}$$

9. (Mal redactado)

$$\begin{split} \delta_t &= 0.05 + 0.01t, \ 0 \leq t \leq 4 \\ \$100 &(\text{son dos pagos}) \end{split}$$

$$a(t) = e^{\int_0^t \delta_s \, ds} = e^{\int_0^4 0.05 + 0.01 s \, ds} = e^{0.05 s} \Big|_0^4 - \frac{0.01}{2} s^2 \Big|_0^4 = (*)$$

a)
$$\implies A(4) = 200(*)$$
 si los 2 pagos en t=0

b)
$$\implies A(4) = 100(*) + 100e^{\int_2^4 \delta_s \, ds}$$

c)
$$\implies A(4) = 100e^{\int_2^4 \delta_s \, ds} + 100$$

1.6 Clase

 $V_a(t) = \frac{1}{a(t)} \, \longrightarrow \,$ Función valor presente.

$$\underbrace{\delta_{t^*}}_{\text{Fuerza de descuento}} = \frac{-\frac{\partial}{\partial t}V_a(t)}{V_a(t)} \qquad \qquad \delta_t^* = \underbrace{\delta_t}_{\text{Fuerza de interés}}$$

Teorema 1.3. .

$$\begin{aligned} V_a(t) &= 1 - td \\ V_a(t) &= (1 - d)^t \end{aligned}$$

Lema 1.1. Para $\alpha \in \mathbb{R} \lim_{m \to \infty} \left(1 + \frac{\alpha}{m}\right)^m = e^{\alpha}$

Proof.

$$\lim_{m\to\infty}\left(1+\frac{\alpha}{m}\right)^m=\lim_{m\to\infty}e^{m\log(1+\frac{\alpha}{m})}\ \dots\ (1)$$
y además

$$\lim_{m \to \infty} m \log \left(1 + \frac{\alpha}{m} \right) = \lim_{m \to \infty} \frac{\log \left(1 + \frac{\alpha}{m} \right)}{\frac{1}{m}} \stackrel{\text{L'Hôpital}}{=} \lim_{m \to \infty} \frac{\frac{1}{1 + \frac{\alpha}{m}} \left(\frac{-\alpha}{m^2} \right)}{-\frac{1}{m^2}}$$

$$= \lim_{m \to \infty} \frac{\alpha}{1 + \frac{\alpha}{m}} = \frac{\alpha}{1} \implies \lim_{m \to \infty} m \log \left(1 + \frac{\alpha}{m} \right) = \alpha$$

$$\implies \exp \left\{ \lim_{m \to \infty} m \log \left(1 + \frac{\alpha}{m} \right) \right\} = e^{\alpha} \implies \lim_{m \to \infty} \exp \left\{ m \log \left(1 + \frac{\alpha}{m} \right) \right\} = e^{\alpha}$$
(pues e^t es absolutamente continua)

Proposición 1.8. Si $i^{(m)} \sim \delta \ entonces \lim_{m \to \infty} i^{(m)} = \delta$

Proof. Como $i^{(m)} \sim \delta$ entonces

Chapter 2

Anualidades