Recommendation System

Agata FILIANA

May 28, 2014

Recommenders vs Search Engines

Kategori recommendation system

Input recommendation system

Collaborative Filtering

Content-based

Evaluasi recommendation system

Masalah dalam recommendation system

Recommenders vs Search Engines

Kategori recommendation system

Input recommendation system

Collaborative Filtering

Content-based

Evaluasi recommendation system

Masalah dalam recommendation system

Apa recommendation system (sistem rekomendasi)? Contoh?

Apa recommendation system (sistem rekomendasi)? Contoh?

Les Confidents : Et Philippe Claudel ****** (1) EUR-3:89 EUR 3.61 Pourquoi est-ce recommandé ? Voir toutes les recommandations dans Livres

L'immoraliste André Gide

strategical (2) EUR-5:60 EUR 5.32 Pourquoi est-ce recommandé ?

André Gide ###### (13) EUR-6-20 EUR 5.89 Pourquoi est-ce recommandé ?

Oscar Wilde ************* (7) EUR-9-99 EUR 1.90 Pourquoi est-ce recommandé ?

Lindsey Kelk 金融金融金(4) EUR-9-69 EUR 9.12 Pourquoi est-ce recommandé ?

Jean-Michel Daube EUR 18 50 FUR 17 58 Pourquoi est-ce recommandé ?

La couleur des Kathryn Stockett ###### (297) EUR-9-79 EUR 9.22 Pourquoi est-ce recommandé ?

Page 1 sur 4

Introduction Recommenders vs Search Engines Kategori recommendation system Input recommendation system Collaborative Filt

Introduction

Voir une image plus grande (avec un zoom)
Partagez vos propres images client

The Fault in Our Stars [Format Kindle]
John Green

(Auteur)

draftrafratry (41 commentaires client)

Prix éditeur - format imprimé : EUR 7 80

Prix Kindle: EUR 5,49 TTC & envol gratuit via réseau sans fil par Amazon Whispernet Économises: EUR 2,11 (28%)

- Longueur : 337 pages (Contient les vrais numéros de page)
 □
- Langue : Anglais
- Vous n'avez pas encore de Kindle ? <u>Achtez-le io</u> Ou commencez à lire dès maintenant avec l'une de nos <u>applications de lecture Kindle</u> gratuites.

Formats	Prix Amazon	Neuf a partir de	Occasion a partir de
Format Kindle	EUR 5,49	-	-
Rellé	EUR 11,99	EUR 8,85	EUR 7,87
Broche	EUR 6,89	EUR 4,22	EUR 5,53
MP3 CD, Livre audio	EUR 7,70	EUR 4,64	-

Essayez grabultement pendant 30 jours Amazon Premium et bénéficiez de la livraison en 1 jour ouvré grabulte et illimitée sur des millions d'articles, et d'autres avantages.
Fête des Mères : découvrez toutes nos idées cadeaux, promotions et sélections

Les clients ayant acheté cet article ont également acheté

Looking For Alaska > John Green 大文文文 (12) Format Kindle EUR 4.92

The Rosie Project Graeme Simplen ********(5) Format Kindle EUR 3.99

Insurgent (Divergent Trilogy, Book 2) > Veronica Roth 本文文文 (20) Format Kindle EUR 6 50

The Husband's Secret > Liane Moriarty 文文文章(5) Format Kindle EUR 3,99

Paper Towns
> John Green
★本本本章 (4)
Format Kindle
EUR 4.84

Memberikan rekomendasi, biasanya barang, kepada orang (user) Misalnya :

Memberikan rekomendasi, biasanya barang, kepada orang (user) Misalnya :

Kamera digital mana yang harus saya beli?

Memberikan rekomendasi, biasanya barang, kepada orang (user) Misalnya :

- Kamera digital mana yang harus saya beli?
- Akun twitter mana yang akan harus saya follow?

Memberikan rekomendasi, biasanya barang, kepada orang (user) Misalnya :

- Kamera digital mana yang harus saya beli?
- Akun twitter mana yang akan harus saya follow?
- Universitas mana yang tepat bagi saya?

Kegunaan recommender system :

Mempersempit information overload

Kegunaan recommender system :

- Mempersempit information overload
- Kegunaan bagi user : mendapatkan hal yang menarik, mempersempit pilihan, menemukan hal yang baru

Kegunaan recommender system :

- Mempersempit information overload
- Kegunaan bagi user : mendapatkan hal yang menarik, mempersempit pilihan, menemukan hal yang baru
- Kegunaan bagi provider: memberikan rekomendasi yang lebih personal kepada user-nya, meningkatkan loyalitas user, meningkatkan pembelian, peluang untuk promosi, mendapatkan pengetahuan tentang user-nya

Recommenders vs Search Engines

Kategori recommendation system

Input recommendation system

Collaborative Filtering

Content-based

Evaluasi recommendation system

Masalah dalam recommendation system

Recommenders vs Search Engines

Search engines bukan sebuah sistem rekomendasi

Recommenders vs Search Engines

- Search engines bukan sebuah sistem rekomendasi
- Query untuk mencari rekomendasi pada search engine menghasilkan kumpulan sistem rekomendasi

Recommenders vs Search Engines

Kategori recommendation system

Content based filtering: "Rekomendasikan buku yang sesuai dengan tipe buku yang saya suka". Biasanya menggunakan fitur barang.

Kategori Recommendation System

Content based filtering: "Rekomendasikan buku yang sesuai dengan tipe buku yang saya suka". Biasanya menggunakan fitur barang.

Collaborative filtering: "Rekomendasikan buku yang disukai oleh teman-teman saya". Menggunakan preferensi komunitas

Kategori Recommendation System

- Content based filtering: "Rekomendasikan buku yang sesuai dengan tipe buku yang saya suka". Biasanya menggunakan fitur barang.
- Collaborative filtering: "Rekomendasikan buku yang disukai oleh teman-teman saya". Menggunakan preferensi komunitas
 - Hybrid: Kombinasi dari CF dan content-based

Input recommendation system

(Vozalis & Margaritis, 2003) menyatakan input sistem rekomendasi ada tiga:

Input Recommendation System

(Vozalis & Margaritis, 2003) menyatakan input sistem rekomendasi ada tiga:

Demographic data : umur, jenis kelamin, dll

(Vozalis & Margaritis, 2003) menyatakan input sistem rekomendasi ada tiga:

- Demographic data : umur, jenis kelamin, dll
- ► Content data: analisis tekstual dari barang-barang yg pernah dibeli oleh user

(Vozalis & Margaritis, 2003) menyatakan input sistem rekomendasi ada tiga:

- Demographic data : umur, jenis kelamin, dll
- ► Content data: analisis tekstual dari barang-barang yg pernah dibeli oleh user
- Ratings: scalar, binary, unary. Selain itu ada juga rating implisit dan eksplisit.

Collaborative Filtering

Collaborative Filtering

"wisdom of crowd"

(Melville et al., 2002) menyebutkan dua keuntungan CF:

bisa digunakan pada domains dimana di dalamnya terdapat content yangx tidak berhubungan dengan items

CF: Keuntungan

(Melville et al., 2002) menyebutkan dua keuntungan CF:

- bisa digunakan pada domains dimana di dalamnya terdapat content yangx tidak berhubungan dengan items
- serendipitious recommendations

Input dari CF: matriks user-item ratings

Output dari CF: top-N list, prediksi rating score

CF: Metode

Nearest Neighbour

user-to-user

CF: Metode

Nearest Neighbour

- user-to-user
- ▶ item-to-item

CF: User-to-user

Terdapat sebuah matriks berisi rating. Kira-kira berapa rating Alice untuk item5?

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Bagaimana caranya mengukur kesamaan antar user? Solusi:

Pearson correlation coefficient

$$sim(a, b) =$$

$$\frac{\sum_{p \in P} (r_{a,p} - \overline{r}_a)(r_{b,p} - \overline{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \overline{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \overline{r}_b)^2}}$$

Variables

- a, b: users
- P: items, yang sudah dirating oleh a dan b
- rating dari user a untuk item p

CF User-to-user: Menentukan prediksi

Weighted normalized adjusted average

$$pred(a, b) =$$

$$\overline{r_a} + \frac{\sum_{b \in N} sim(a, b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a, b)}$$

Lainnya:

- Simple average
- Weighted average

CF User-to-user: Menentukan prediksi

Jika kita ambil 2-Nearest-Neighbour

	Item1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sim :
User2	4	3	4	3	5	sim :
User3	3	3	1	5	4	sim :
User4	1	5	5	2	1	sim :

= 0.85= 0.00= 0.70= -0.79

$$P_{Alice, item5} = \frac{3+4}{2} = 3.5$$

CF: Item-to-item

Memberikan prediksi berdasarkan kesamaan antar barang (items)

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

CF Item-to-item: Cosine similarity

Kesamaan dihitung dengan cosine similarity (yang paling sering digunakan), dimana ratings dianggap sebagai vektor

Cosine similarity
$$sim(\overrightarrow{a}, \overrightarrow{b}) = \frac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}|*|\overrightarrow{b}|}$$

Opsi lain adalah adjusted cosine similarity yang menggunakan rata-rata ratings dari user untuk mengubah rating awal

Adjusted Cosine similarity

$$sim(\overrightarrow{a}, \overrightarrow{b}) =$$

$$\frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2}} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}$$

Variables

▶ U: satu set users yang sudah melakukan rating terhadap items a dan b

Prediction function

$$pred(u, p) =$$

$$\frac{\sum_{i \in ratedItems(u)} sim(i, p) * r_{u,i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

CF Item-to-item: Menentukan prediksi

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

e.g. P(Alice, item5) =(5+4)/2=4.5

 Membutuhkan informasi barang, tidak perlu informasi komunitas

- Membutuhkan informasi barang, tidak perlu informasi komunitas
- ▶ Dibutuhkan : informasi tentangg konten barang informasi tentang apa yg disukai oleh user

- Membutuhkan informasi barang, tidak perlu informasi komunitas
- ► Dibutuhkan : informasi tentangg konten barang informasi tentang apa yg disukai oleh user
- Biasanya dipakai untuk text-based, misalnya berita ¿¿ text classification

Content-based: Keuntungan

Keuntungan dari content-based:

Content-based: Keuntungan

Keuntungan dari content-based:

komunitas tidak diperlukan

Content-based: Keuntungan

Keuntungan dari content-based:

- komunitas tidak diperlukan
- lebih mudah daripada CF?

Content-based: tf-idf

Karena merupakan text classification maka digunakan tf-idf dan classifiers klasik seperti Naive Bayes dan SVM

Evaluasi recommendation system

Statistical accuracy metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)

Evaluasi Recommendation System

Statistical accuracy metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)

Decision support accuracy: biasanya untuk data binary, menunjukkan kualitas dari barang yang direkomendasi : Precision, Recall, ROC

Masalah dalam recommendation system

Masalah dalam Recommendation System

Data sparsity Solusi? SVD (Singular Value Decomposition)

Masalah dalam Recommendation System

Data sparsity Solusi? SVD (Singular Value Decomposition) Cold start First rater problem

Masalah dalam Recommendation System

Data sparsity Solusi? SVD (Singular Value Decomposition)
Cold start First rater problem
Shilling attacks Biased ratings