3-32. Um avião a jato emprega um sistema para monitoração dos valores de rpm, pressão e temperatura dos motores utilizando sensores que operam como segue:

saída do sensor RPM=0 somente quando a velocidade < 4800 rpm saída do sensor P=0 somente quando a pressão < 1,5 × 10⁶ N/m² saída do sensor T=0 somente quando a temperatura < 95°C

Fig. 3-49

A Fig. 3-49 mostra o circuito lógico que controla a luz de alerta da cabine do piloto para certas combinações das condições do motor. Suponha que um nível ALTO na saída W ativa a luz de alerta.

(a) Determine que condições do motor darão um alerta para o piloto.

D

4-23. Um código BCD está sendo transmitido a um receptor remoto. Os bits são A₃A₂A₁A₀, onde A₃ é o MSB. Dentre os circuitos existentes no receptor existe um denominado detector de erros BCD. Este circuito verifica se o código recebido é um código BCD válido (isto é, ≤ 1001). Projete este circuito de modo a produzir um nível ALTO em uma situação de erro.

SEÇÃO 4-4

D

4-4. Projete um circuito lógico que corresponde à tabela-verdade mostrada na Tabela 4-8.

TABELA 4-8

A	B	\boldsymbol{C}	x	
0	0	0	1	
0	0	0 1		
0	1	1 0		
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

)

4-5. Projete um circuito lógico no qual a saída está em ALTO *apenas* quando a maioria das entradas *A*, *B* e *C* está em BAIXO.

D

- **4-6.** Uma fábrica necessita de uma sirene para indicar o fim do expediente. Esta sirene deve ser tocada em uma das seguintes condições:
 - 1. Já passa das cinco horas e todas as máquinas estão desligadas.
 - **2.** É sexta-feira, a produção do dia foi atingida e todas as máquinas estão desligadas.

Projete um circuito que controle a sirene. (*Sugestão*: Use quatro variáveis lógicas para representar as diversas condições. Por exemplo, a entrada *A* estará em ALTO somente quando já for mais de cinco horas.)

D

4-7. Um número binário de quatro bits é representado por $A_3A_2A_1A_0$ onde A_3 , A_2 , A_1 e A_0 representam cada um dos bits, sendo A_0 o LSB. Projete um circuito que produz uma saída em ALTO sempre que o número for maior do que 0010 e menor do que 1000.

- **4-14.** Simplifique a expressão do Problema 4-7 usando o mapa K.
- **4-15.** Determine a expressão mínima para cada mapa K da Fig. 4-43. Para o mapa do item (a), preste atenção especialmente no passo 5.

	ĒΒ	ĒD	CD	CD		ĒΒ	СD	CD	CD
ĀB	1	1	1	1	ĀĒ	1	0	1	1
ĀВ	1	1	0	0	ĀВ	1	0	0	1
AB	0	0	0	1	АВ	0	0	0	0
ΑĒ	0	0	1	1	ΑĒ	1	0	1	1
(a)					(1	b)			
				Ē	С				
			ĀB	1	1				
			ĀВ	0	0				
			АВ	1	0				
			ΑĒ	1	х				
			,	((c)	Fig.	4-43	Proble	ma 4-1

4) Escreva as expressões mínimas das funções abaixo, extraindo-as diretamente dos mapas de Karnaugh.

AB CD	00	01	11	10	AB CD	00	01	11	10
00	1	1	1	1	00	0	0	0	0
01	1	1	0	0	01	1	1	0	0
11	0	0	0	0	11	X	X	X	X
10	0	0	1	1	10	1	1	X	X
f1 =					f2 =				
AB CD	00	01	11	10	AB CD	00	01	11	10
00	0	0	0	0	00	1	1	0	0
01	0	0	0	0	01	1	1	0	0
11	1	1	1	1	11	X	x	X	X
10	1	0	0	0	10	0	0	X	X

AB CD	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	0	1	0	0
10	1	1	0	1
f5 =				

AB CD	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	X	0	0	X
f6 =				

AB CD	00	01	11	10
00	1	0	1	0
01	1	0	1	0
11	1	0	1	0
10	1	1	1	0
f7 =				

AB CD	00	01	11	10
00	0	1	0	0
01	0	1	1	0
11	0	1	1	0
10	1	0	0	1
f8 =				

Respostas: 3.32

T	P	R	W
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1
		1 0 1	0

4.23 E = A3A2 + A3A1

A3	A2	A1	A0	Е
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$$4.4$$

$$x = \bar{B}\bar{C} + BC + \bar{A}B$$

$$4.5$$

$$x = \bar{A}\bar{B} + \bar{A}\bar{C} + \bar{B}\bar{C}$$

$$4.6$$

$$x = \bar{A}\bar{B}CD + A\bar{B}$$

$$x = \overline{A3} (A2 + A1A0)$$

a)
$$x = \bar{A}\bar{C} + \bar{B}C + AC\bar{D}$$

b)
$$x = \bar{A}\bar{D} + \bar{B}C + \bar{B}\bar{D}$$

c)
$$x = A\bar{C} + \bar{B}$$

$$f1 = \bar{A}\bar{C} + \bar{B}C$$

$$f2 = A + B\bar{C}$$

$$f3 = AB + A\bar{C}\bar{D}$$