PD -95454

IRLI540NPbF

International IOR Rectifier

- Logic-Level Gate Drive
- Advanced Process Technology
- Isolated Package
- High Voltage Isolation = 2.5KVRMS ⑤
- Sink to Lead Creepage Dist. = 4.8mm
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing.

$V_{DSS} = 100V$

 $R_{DS(on)} = 0.044\Omega$

$$I_D = 23A$$

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	23	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	16	A
I _{DM}	Pulsed Drain Current ① ©	120	
P _D @T _C = 25°C	Power Dissipation	54	W
	Linear Derating Factor	0.36	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy@6	310	mJ
I _{AR}	Avalanche Current①®	18	А
E _{AR}	Repetitive Avalanche Energy①	5.4	mJ
dv/dt	Peak Diode Recovery dv/dt 36	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	-
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		2.8	0000
$R_{\theta JA}$	Junction-to-Ambient		65	°C/W

IRLI540NPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

						<u> </u>
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA®
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.044	Ω	V _{GS} = 10V, I _D = 12A ④
				0.053		V _{GS} = 5.0V, I _D = 12A ④
				0.063		V _{GS} = 4.0V, I _D = 10A ⊕
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9 _{fs}	Forward Transconductance	14			S	V _{DS} = 25V, I _D = 18A©
				25		V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 80V, V _{GS} = 0V, T _J = 150°C
	Gate-to-Source Forward Leakage			100	^	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
Qg	Total Gate Charge			74		I _D = 18A
Q _{gs}	Gate-to-Source Charge			9.4	nC	V _{DS} = 80V
Q _{gd}	Gate-to-Drain ("Miller") Charge			38		V _{GS} = 5.0V, See Fig. 6 and 13 ⊕ ®
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 50V
t _r	Rise Time		81		no l	I _D = 18A
t _{d(off)}	Turn-Off Delay Time		39		ns	$R_G = 5.0\Omega, V_{GS} = 5.0V$
t _f	Fall Time		62			R _D = 2.7Ω, See Fig. 10 ⊕ ⊚
			4.5			Between lead,
L_D	Internal Drain Inductance		4.5			6mm (0.25in.)
L _S	Internal Source Inductance		7.5	_	nΗ	from package
						and center of die contact
C _{iss}	Input Capacitance		1800			V _{GS} = 0V
C _{oss}	Output Capacitance		350		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		170		PF	f = 1.0MHz, See Fig. 5®
С	Drain to Sink Capacitance		12			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			23		MOSFET symbol			
	(Body Diode)		- 23		A	showing the			
I _{SM}	Pulsed Source Current			400	400	400	100		integral reverse
	(Body Diode) ①⑥		120	۱ ر	p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 18A, V _{GS} = 0V ④			
t _{rr}	Reverse Recovery Time		190	290	ns	$T_J = 25^{\circ}C, I_F = 18A$			
Q _{rr}	Reverse RecoveryCharge		1.1	1.7	μC	di/dt = 100A/µs ④ ⑥			
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)							

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}C$, L = 1.9mH $R_G = 25\Omega$, $I_{AS} = 18A$. (See Figure 12)
- ③ I $_{SD}$ \leq 18A, di/dt \leq 180A/ μ s, V_{DD} \leq $V_{(BR)DSS}$, T_{J} \leq 175°C
- ④ Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ t=60s, f=60Hz
- © Uses IRL540N data and test conditions

IRLI540NPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

IRLI540NPbF

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

TO-220 Full-Pak Package Outline

Dimensions are shown in millimeters (inches)

TO-220 Full-Pak Part Marking Information

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.06/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/