NATIONAL UNIVERSITY OF SINGAPORE Department of Statistics and Applied Probability

(2020/21) Semester 2

ST2334 Probability and Statistics

Tutorial 7

1. Suppose that *X* and *Y* are random variables having the joint probability distribution below.

$f_{X,Y}(x,y)$		x	
		2	4
у	1	0.10	0.15
	3	0.20	0.30
	5	0.10	0.15

- (a) Determine whether or not X and Y are independent.
- (b) Find E(Y|X=2).
- (c) Find E(X|Y=3).
- (d) Find E(2X 3Y).
- (e) Find E(XY).
- (f) Find V(X) and V(Y).
- (g) Find $\sigma_{X,Y}$ and $\rho_{X,Y}$.
- 2. Consider a ferry that can carry both buses and cars on a trip across a waterway. Each trip costs the owner approximately \$10. The fee for cars is \$3 and the fee for buses is \$8. Let *X* and *Y* denote the number of buses and cars, respectively, carried on a given trip. The joint distribution of *X* and *Y* is given below.

$f_{X,Y}(x,y)$		х		
		0	1	2
у	0	0.01	0.01	0.03
	1	0.03	0.08	0.07
	2	0.03	0.06	0.06
	3	0.07	0.07	0.13
	4	0.12	0.04	0.03
	5	0.08	0.06	0.02

Compute the expected value and variance of profit for the ferry trip.

3. A store operates both a drive-in facility and a walk-in facility. On a randomly selected day, let *X* and *Y* respectively, be the proportions of times that the drive-in and walk-in facilities are in use, and suppose that the joint density function of these random variables is given below.

$$f_{X,Y}(x,y) = \begin{cases} \frac{2}{3}(x+2y), & 0 \le x \le 1, 0 \le y \le 1; \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Determine whether *X* and *Y* are independent.
- (b) Find σ_X^2
- (c) Find σ_v^2
- (d) Find $\sigma_{X,Y}$

4. A service facility operates with two service lines. On a randomly selected day, let X be the proportion of time that the first line is in use whereas Y is the proportion of time that the second line is in use. Suppose that the joint probability density function for (X, Y) is given below.

$$f_{X,Y}(x,y) = \begin{cases} \frac{3}{2}(x^2 + y^2), & 0 \le x \le 1, 0 \le y \le 1; \\ 0, & \text{otherwise} \end{cases}$$

- (a) Determine whether *X* and *Y* are independent.
- (b) Find the mean and variance of X.
- (c) Find the mean and variance of Y.
- (d) Find the covariance of X and Y.
- (e) Find the mean and variance of X + Y.
- 5. The random variables *X* and *Y* have the joint probability density function below.

$$f_{X,Y}(x,y) = \begin{cases} x+y, & 0 \le x \le 1, 0 \le y \le 1; \\ 0, & \text{otherwise} . \end{cases}$$

Find

- (a) $\sigma_{X,Y}$
- (b) E(Y|X=0.2)
- (c) E(X|Y=0.5)
- 6. Given that Var(X) = 5 and Var(Y) = 3, and Z is defined as Z = -2X + 4Y 3.
 - (a) Find the variance of Z if X and Y are independent.
 - (b) If Cov(X, Y) = 1, find the variance of Z.
 - (c) If Cov(X,Y) = 1, compute the correlation of X and Y.
- 7. An employee is selected from a staff of 10 to supervise a certain project by selecting a tag at random from a box containing 10 tags numbered from 1 to 10.
 - (a) Find the formula for the probability distribution of X representing the number on the tag that is drawn
 - (b) What is the probability that the number drawn is less than 4?
 - (c) Find the mean and variance of X.

Answers to selected problems

- 1. (a) $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all (x,y). X and Y are independent
 - (b) 3
 - (c) 3.2
 - (d) -2.6
 - (e) 9.6
 - (f) 0.96; 2
 - (g) 0; 0
- 2. 6.55; 44.4275
- 3. (a) $f_X(x) = \frac{2}{3}(x+1)$, $0 \le x \le 1$. $f_Y(y) = \frac{1}{3}(4y+1)$, $0 \le y \le 1$. $f_{X,Y}(x,y) \ne f_X(x)f_Y(y)$. Therefore, X and Y are dependent.
 - (b) 0.08024 = 13/162
 - (c) 0.07099 = 23/324
 - (d) -0.00617 = -1/162
- 4. (a) $f_X(x) = \frac{3}{2} \left(x^2 + \frac{1}{3}\right)$, $0 \le x \le 1$. $f_Y(y) = \frac{3}{2} \left(\frac{1}{3} + y^2\right)$, $0 \le y \le 1$. $f_{X,Y}(x,y) \ne f_X(x) f_Y(y)$. Therefore, X and Y are dependent.
 - (b) 0.625 = 5/8; 0.07604 = 73/960)
 - (c) 0.625 = 5/8; 0.07604 = 73/960)
 - (d) -0.01563 = -1/64
 - (e) E(X + Y) = 1.25 (= 5/4); V(X + Y) = V(X) + V(Y) + 2Cov(X, Y) = 0.12083 (= 29/240)
- 5. (a) $f_X(x) = x + 1/2$, for $0 \le x \le 1$, $f_Y(y) = y + 1/2$, for $0 \le y \le 1$. E(XY) = 1/3, Cov(X,Y) = -0.00694 (= -1/144)
 - (b) $f_{Y|X}(y|0.2) = (2+10y)/7$, for $0 \le y \le 1$. E(Y|X=0.2) = 0.61905 (= 13/21)
 - (c) $f_{X|Y}(x|0.5) = x + 1/2$, for $0 \le x \le 1$. E(X|Y = 0.5) = 0.58333 (= 7/12)
- 6. (a) 68
 - (b) 52
 - (c) 0.2582
- 7. (a) $f_{X,Y}(x,y) = \begin{cases} \frac{1}{10}, & x = 1, 2, \dots, 10; \\ 0, & \text{otherwise}. \end{cases}$
 - (b) 0.3
 - (c) E(X) = 5.5; V(X) = 8.25