Copyrighted Materials
Copyright © 1999; 2005 John Wiley & Sons Retrieved from www.knovel.com

SECTION V

PHYSICAL CONSTANTS OF SOME IMPORTANT POLYMERS

Physical Constants of Rubbery Polymers

Isao Furuta, Shin-Ichi Kimura, Masamichi Iwama

Yokkaichi Research Laboratories, Japan Synthetic Rubber Co. Ltd., Yokkaichi Mie, Japan

A.	Introduct	ion	V-1
В.	Tables		V-1
	Table 1.	1,4-cis(96-98%)Poly(butadiene)	V-1
	Table 2.	Poly(butadiene-co-acrylonitrile)	V-2
	Table 3.	Poly(butadiene-co-styrene)	V-3
	Table 4.	Poly(chloroprene)(CR Neoprene)	V-3
	Table 5.	Poly(isobutene)- <i>co</i> -isoprene)Butyl Rubber (IIR)	V-4
	Table 6.	Polyisoprene, Natural Rubber	V-5
	Table 7.	Ethylene-Propylene-Diene-	
		Terpolymer (ÉPDM)	V-6
C.	Referenc	es	V-6

A. INTRODUCTION

Where a range is given, there are available several observations which differ. In most cases the differences are thought to be real, arising from differences in the rubber rather than from errors of observation. Where a single value

is given, it is either because no other observations are available or because there seems to be no significant disagreement among values within the errors of observation. Where values are not given, data have not been found. Where dashes are shown, either the physical measurement is impossible or the constant in question is not adequately defined under the given conditions. The values shown refer to specific vulcanizates cited in the corresponding references. Other vulcanizates may yield a broader range of values.

The values are expressed in the International System of Units (SI), the modern metric system, described in National Bureau of Standards Special Publication 330, 1981 edition, and in American Society for Testing and Materials Metric Practice Guide E380–85.

Values are given for constants at a temperature of 25°C (273.15 K) and a pressure of 1 normal atmosphere = 101.325 kPa.

B. TABLES

TABLE 1. 1.4-cis(96-98%)POLY(BUTADIENE)

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Density	kg/m ³			1.01	1
Coefficient of expansion	$K^{-1} (\times 10^6)$	669	2		
Glass transition temperature	°C			-110 to -95	3
Specific heat	$J/kg/K (\times 10^3)$	1.96	4	1.960 - 1.970	1
Thermal conductivity	$W/m/K (\times 10^{-3})$			200	5
Thermal diffusivity	$m^2/s \ (\times 10^{-9})$				
Solubility parameter	$MPa^{1/2}$	17.0	6		
Polymer-solvent interaction					
parameter (25-30°C)	Solvent				
	n-Heptane	0.51	7		
	n-Hexane	0.53	7		
	Cyclohexane	0.45	8		
	Benzene	0.44	7		
	Toluene	0.36	7		

TABLE 1. cont'd

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Equilibrium melting temperature	K (°C)	1.0	10		· · · -
		0	11		
Temperature of most rapid crystallization	K (°C)	-52 to -57	3		
Heat of fusion of crystal	$J/kg (\times 10^3)$	47	11		
·	•	169	10		
Refractive index	N_{D}	1.526	12		
Molar polarizability	$cm^3 (\times 10^{-25})$	71.4	12		
Dielectric constant (50 Hz)		2.3	3		
Dielectric loss factor (50 Hz)		0.8	3		
Compressibility	$Pa^{-1} (\times 10^{-12})$	500	2		
Young's modulus	Pa $(\times 10^6)$			1.3	9
Shear modulus	Pa ($\times 10^{6}$)			0.96	9
Storage modulus (1 Hz)	log Pa			5.98	9
Loss modulus	log Pa			4.79	9
Loss tangent	-			0.065	9

 TABLE 2.
 POLY(BUTADIENE-co-ACRYLONITRILE)

Property	Units	Unvul	canized		Refs.	Pure-gum vulcanizate	Refs.
Density	kg/m ³					0.95 ^a (20%)	3
Glass transition temperature	°C					$ \begin{array}{r} 1.02 (45\%) \\ -85 + A(20-40\%) \\ (A = AN\%) \end{array} $	3
Specific heat	$J/kg/K (\times 10^3)$					1.970(40%)	3
Thermal conductivity	$W/m/K (\times 10^{-3})$					250 (18–35%)	3
Thermal diffusivity Solubility parameter	${ m m}^2 { m s} \; (imes 10^{-9}) \ { m MPa}^{1/2}$		-21.0 -39%)		6		
Polymer-solvent interaction parameter (25-30°C)		(· ·	,				
			AN%				
	Solvent	18	30	39			
	n-Heptane	0.96	1.88	3.6	9		
	n-Hexane	0.99		2.8	9		
	Dichloromethane	0.39	0.31	0.32	9		
	Cyclohexane	0.70	1.42	2.6	9		
	Benzene	0.39	0.31	0.32	9		
	Toluene	0.43	0.8	0.6	8		
Refractive index	$N_{ m D}$					1.519 (20%)	3
Dielectric constant (10 ⁶ Hz)						1.521 (45%) 5.5 (27%)	3
Dielectic constant (10 112)						4.8 (40%)	3
Dielectric loss factor (10 ⁶ Hz)						35 (27%)	3
a Dound complemitable content (AN(7/1)						42 (40%)	3

 $[\]overline{{}^{a}$ Bound acrylonitrile content (= AN%)).

TABLE 3. POLY(BUTADIENE-co-STYRENE) (23.5–25% BOUND STYRENE CONTENT)

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Density	kg/m ³	933	43	980	17
•	5	(932.5-933.5)	43	940-1000	17
Coefficient of expansion	$K^{-1} (\times 10^6)$	660	43	660	17,18,44
Glass transition temperature	°C	-64 to -59	43	- 52	21
Specific heat	$J/kg/K (\times 10^3)$	1.89	45	1.83	24
Thermal conductivity	$W/m/K (\times 10^{-3})$			190-250	46,47
Thermal diffusivity	$m^2/s \ (\times 10^{-9})$			90	48
Solubility parameter Polymer-solvent interaction parameter (25-30°C)	MPa ^{1/2}	17.0	6		
parameter (23–30°C)	Solvent				
	n-Heptane	0.59	9		
	n-Hexane	0.66	9		
	Dichloromethane	0.47	9		
	Cyclohexane	0.48	9		
	Benzene	0.40	9		
	Toluene	0.31	13		
Heat of combustion	$J/kg~(\times 10^6)$	56.5	43		
Refractive index	$N_{ m D}$	1.5345	43		
		(1.534-1.535)	43		
Molar polarizability	$cm^3 (\times 10^{-25})$				
Dielectric constant (1 kHz)		2.5	33	2.66	33
Dielectric loss factor	1 15	0.0009	33	0.0009	33
Electric conductivity	$Sm^{-1} (\times 10^{-15})$				
Compressibility	$Pa^{-1} (\times 10^{-12})$	530	49	510	50
Bulk modulus (isothermal)	$Pa (\times 10^6)$	1890	49	1960	49
Young's modulus	Pa $(\times 10^6)$			1.6	21,35
a	D / 106			1.0-2.0	35
Shear modulus	Pa $(\times 10^6)$			0.53	21
Olement P	$Pa^{-1} (\times 10^{-6})$			0.3-0.7	35
Shear compliance	Pa · (× 10 °)			7 3–10	21,35
Stance medulus	log Do	5.82	40	5.88	21,35 64
Storage modulus	log Pa	(5.82–5.85)	40 40	5.64-6,20	64 64
Loss modulus	log Pa	(3.82–3.83) 4.94	40 40	3.64-6.20 4.92	64
Loss modulus	log Pa	(4.56-4.94)	40 40	4.73-5.04	64
Loss tangent		0.13	40	0.11	64
2000 migent		(0.05-0.13)	40	0.11	04
Tensile strength	MPa	(0.05-0.15)	40	1.4-3.0	19,42
Ultimate elongation	%			400-600	19,42

TABLE 4. POLY(CHLOROPRENE) (CR NEOPRENE)

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Density	kg/m ³	1230	43,51,58	1320	17
Coefficient of expansion	$K^{-1} (\times 10^6)$	600	46,58	610-720	17,58,59
Glass transition temperature	°C	-45	60	-45	21,59,60,61
Specific heat	$J/kg/K (\times 10^3)$	2.2 - 2.2	46	2.1 - 2.2	46
Thermal conductivity	$W/m/K (\times 10^{-3})$	192	58	192	58
Thermal diffusivity	m ² /s	10-9			
Solubility parameter	MPa ^{1/2}	18.5	6		

TABLE 4. cont'd

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Polymer-solvent interaction parameter (25-30°C)				,	
parameter (25° 50° C)	Solvent				
	n-Heptane	0.85	9		
	n-Hexane	0.89	9		
	Dicyclomethan	e 0.53	9		
	Cyclohexane	0.69	9		
	Benzene	0.26	9		
	Toluene	0.70	13		
Equilibrium melting temperature	K (°C)	328-351 (55-78)	62,63		
Temperature of most rapid crystallization	K (°C)	268 (-5)	65	261 (-12)	65,66
Heat of fusion of crystal	$J/kg (\times 10^3)$	95	63		
Refractive index	$N_{ m D}$	1.558	20		
Dielectric constant				6.5-8.1	33
Dielectric loss factor				0.03/0.86	33
Electric conductivity	$Sm^{-1} (\times 10^{-15})$			3-1400	33
Compressibility	$Pa^{-1} (\times 10^{-12})$		49,50	440	49,50
Bulk modulus (isothermal)	Pa ($\times 10^{6}$)	2080	50	2270	50
Young's modulus	Pa $(\times 10^6)$			1.6	21,35
Shear modulus	Pa $(\times 10^6)$			0.52	21
Shear compliance	$Pa^{-1} (\times 10^{-6})$			2.0	19,21,35
Poisson's ratio				0.49974	38
Storage modulus	log Pa			5.81	57,59
Loss modulus	log Pa			5.04	57,59
Loss tangent				0.17	57,59
Tensile strength	MPa			25-38	19,42
Ultimate elongation	%			800-1000	19,42

TABLE 5. POLY(ISOBUTENE-co-ISOPRENE) BUTYL RUBBER (IIR)

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Density	kg/m ⁻³	917	51	933	52
				930-970	17
Coefficient of expansion	$K^{-1} (\times 10^6)$	750	53	560	52,54
Glass transition temperature	°C	– 71	53	-63	21
Specific heat	$J/kg/K (\times 10^3)$	1.95	23,24,29	1.85	24
Thermal conductivity	$W/m/K (\times 10^{-3})$			130	47
Thermal diffusivity	$m^2/s (\times 10^{-9})$			70	55
Solubility parameter Polymer-solvent interaction parameter	MPa ^{1/2}	16.0	6		
interaction parameter	Solvent				
	n-Heptane	0.48	14		
	n-Hexane	0.52	14		
	Dicyclomethane	0.58	14		
	Cyclohexane	0.44	14		
	Benzene	0.66	14		
	Toluene	0.56	14		
Equilibrium melting temperature	K (°C)	275 (1.5)	53		
Temperature of most rapid crystallization	K (°C)	239 (- 34)	53		
Refractive index	$N_{\rm D}$	1.5081	43		
Dielectric constant (1 kHz)		2.38	33	2.42	33
Dielectric loss factor		0.003	33	0.0054	33

TABLE 5. cont'd

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Compressibility	$Pa^{-1} (\times 10^{12})$			508	54
Bulk modulus (isothermal)	Pa $(\times 10^6)$			1970	54
Young's modulus	Pa $(\times 10^6)$			1.0	21,35
Shear modulus	Pa ($\times 10^{6}$)			0.33	21,35
				0.2 - 0.5	19,21,35
Shear compliance	$Pa^{-1} (\times 10^{-6})$			3.1	21
Strage modulus	log Pa	6.50	56	5.64	57
Loss modulus	log Pa	5.98	56	5.48	57
Loss tangent	_	0.3	56	0.7	57
Tensile strength	MPa			18-21	19,42
Ultimate elongation	%			750-950	19,42

TABLE 6. POLYISOPRENE, NATURAL RUBBER

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Density	kg/m ³	913	16	970	17,18
		906-916	16	(920-1000)	19
Coefficient of expansion	$K^{-1} (\times 10^6)$	670	16	660	16
Glass transition temperature	°C	−72	20	-63	21
		(-74 to -69)	20	(-72 to -61)	21
Specific heat	$J/kg/K (\times 10^3)$	1.905	22,23	1.828	24
Thermal conductivity	W/m/K (\times 10 ⁻³)	134	16	153	25,26
Thermal diffusivity	$\mathrm{m}^2/\mathrm{s}~(\times10)$			70	27
Solubility parameter Polymer-Solvent interaction	MPa ^{1/2}	1.7	6		
parameter (25-30°C)	Solvent				
	n-Heptane	0.43	9		
	n-Hexane	0.47	9		
	Dichloromethane	0.40	9		
	Cyclohexane	0.53	9		
	Benzene	0.44	9		
	Toluene	0.39	9		
Equilibrium melting temperature	K (°C)	308.6 (35.5)	28	313(40)	29
Temperature of most rapid crystallization	K (°C)	248 (-25)	30		
Heat of fusion of crystal	$J/kg (\times 10^3)$	67.3	31		
Heat of combustion	$J/kg (\times 10^6)$	45.2	16	44.4	16
Refractive index	$N_{\rm D} K^{-1}$	1.5191(25°C)	32	1.5264	16
Molar polarizability	$cm^3 (\times 10^{-25})$				
Dielectric constant (1 kHz)		2.37-2.45	16,33	2.68	33
Dielectric loss factor (1 kHz)	- 1 15.	0.001-0.003	33	0.002-0.04	33
Electric conductivity	$Sm^{-1} (\times 10^{-15})$	2.57	16,33	2-100	16,33
Compressibility	$Pa^{-1} (\times 10^{-12})$	515	34	514	34
Bulk modulus (isothermal)	Pa $(\times 10^6)$	1940	34	1950	34
Young's modulus	Pa $(\times 10^6)$			1.3	35,36
	D (106)			(1.0-2.0)	19,35
Shear modulus	Pa $(\times 10^6)$			0.43	21,36
Classic Paragraphic	n -1 (10 -6)			0.3-0.7	21,37
Shear compliance	$Pa^{-1} (\times 10^{-6})$			2.3	21,36
Data and a made				(1.5–3.5)	21,37
Poisson's ratio	1 D-	£ (1	40	0.49989	34,38,39
Storage modulus	log Pa	5.61	40	5.61	41
I are madeline	1 D-	5.53-5.75	40	5.49-5.78	4.1
Loss modulus	log Pa	4.46	40	3.80 3.72-4.48	41
		(4.43–4.65)		3.72-4.48	

TABLE 6. cont'd

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Loss tangent		0.09	40	0.016	41
•		0.07-0.13		0.01-0.05	
Tensile strength	MPa			17-25	19,42
Ultimate elongation	%			750-850	19,42

TABLE 7. ETHYLENE-PROPYLENE-DIENE-TERPOLYMER (EPDM)

Property	Units	Unvulcanized	Refs.	Pure-gum vulcanizate	Refs.
Density	kg/m ³			0.85	3
Glass transition temperature	°C			-60 to -69	1
Specific heat	$J/kg/K (\times 10^3)$			2340	3
Thermal conductivity	$W/m/K (\times 10^{-3})$				
Thermal diffusivity	$m^2/s (\times 10^{-9})$				
Solubility parameter	MPa ^{1/2}	16.0-16.5	6		
Polymer-Solvent interaction					
parameter (25-30°C)					
	Solvent				
	n-Heptane	0.44	15		
	n-Hexane	0.49	16		
	Dichloromethane	0.32	16		
	Cyclohexane	0.35	15		
	Benzene	0.58	15		
	Toluene	0.49	15		
Refractive index	N_{D}			1.48	3
Young's modulus	$Pa(\times 10^6)$			2.0	13
Shear modulus	$Pa \times 10^6$			1.59	13
Storage modulus (1 Hz)	MPa			1.59	13
Loss modulus (1 Hz)	MPa			0.12	13
Loss tangent (1 Hz)				0.077	13

C. REFERENCES

- J. Brandrup, E. H. Immergut, (eds.) "Polymer Handbook", 3rd Edition, 1989.
- 2. J. W. Barlow, Polym. Eng. Sci., 18 (3), 238 (1978).
- 3. W. J. Roff, J. R. Scott, Fibers, Films, Plastics and Rubbers (A Handbook of Common Polymer).
- J. Grebowicz, W. Aycock, B. Wunderlich, Polymer, 27 (4), 575 (1986).
- "Hikinzokuzairyou Data Book", Nihon Kensa Kikaku Kyoukai.
- "Kobunshi Data Handbook, Ouyouhen", Kobunnsi Gakkai ed. Baihukan.
- A. F. M. Barton, CRC Handbook of Polymer-Liquid Interaction Parameter and Solubility Parameters, CRC Press, Inc, Boca Raton, FL, 1983.
- 8. A. G. Shvart, Kolloid Zh., 18, 755 (1953).
- 9. C. Shibuya, K. Ogino, T. Nakagawa, Chemical composition dependence of a polymer-solvent interaction parameter.
- G. Natta, G. Moraglio, Makromol. Chem., 66, 218 (1963).

- W. S. Bahary, D. I. Sapper, J. H. Lane, Rubber Chem. Technol., 40, 1529 (1967).
- J. Furukawa, S. Yamasita, T. Kotani, M. Kawasima, J. Appl. Polym. Sci., 13, 2527 (1969).
- 13. "Gomu Kougyou Binran", Nihon Gomu Kyoukai, (1993).
- 14. G. M. Bristow, W. F. Watson, Trans. Faraday Soc., **59**, 1731 (1958).
- 15. A. G. Shvart, E. K. Chefranova, L. A. Itokovskaya, Solubility parameters of resins based on dimethylvinylethylphydroxyphenylmethane, Kolloidn Zh., 32, 603 (1970); Colloid J. USSR, 32, 506 (1970).
- L. A. Wood, "Values of the Physical Constants of Rubber", Proceedings of the Rubber Technology Conf. (Institution of the Rubber Industry, London), 1938, p. 933; Rubber Chem. Technol., 12, 130 (1939).
- 17. N. Bekkedahl, F. L. Roth, National Bureau of Standards, unpublished observations of density and expansivity, 1948.
- A. J. Wildschut, "Technological and Physical Investigations on Natural and Synthetic Rubbers", Elsevier, New York, 1946.

- 19. B. B. S. T. Boonstra, "Properties of Elastomers", Chapter 4 of Vol. III in R. Houwink (Ed.), "Elastomers. Their Chemistry, Physics, and Technology", Elsevier, New York, 1948.
- L. A. Wood, "Synthetic Rubbers: A Review of Their Compositions, Properties, and Uses," Natl. Bur. Std. Circ., C427 (1940); Rubber Chem. Tech., 13, 861 (1940); India Rubber World, 102, No. 433 (1940).
- L. A. Wood, F. L. Roth, Proc. 4th Rubber Technology Conference, London, 1962, p. 328, Institution of the Rubber Industry, London, 1963; Rubber Chem. Technol., 36, 611 (1963).
- 22. S. S. Chang, A. B. Bestul, J. Res. Nat. Bur. Std., **75A**, 113 (1971).
- L. A. Wood, N. Bekkedahl, J. Polym. Sci., Part B, Polym. Lett., 5, 169 (1967).
- W. H. Hamill, B. Mrowca, R. L. Anthony, Ind. Eng. Chem.,
 38, 106 (1946); Rubber Chem. Technol., 19, 622 (1946).
- L. C. Carwile, H. J. Hoge, "Thermal Conductivity of Soft Vulcanized Natural Rubber, Selected Values", in: "Advances in Thermophysical Properties at Extreme Temperatures and Pressures", American Society of Mechanical Engineers, New York, 1965; Rubber Chem. Technol., 39, 126 (1966).
- M. N. Pilsworth, Jr., H. J. Hoge, H. E. Robinson; J. Mater., 7 (4), 550 (1972).
- D. Hands, Rubber Chem. Technol. (Rubber Rev.), 50, 480 (1977).
- 28. E. N. Dalai, K. D. Taylor, P. J. Phillips, Polymer, **24**, 1623 (1983).
- 29. G. T. Furukawa, M. L. Reilly, J. Res. Nat. Bur. Std. **56**, 285 (1956); RP 2676.
- L. A. Wood, N. Bekkedahl, J. Res. Natl. Bur. Std., 36, 489 (1946); RP 1718; J. Appl. Phys., 17, 362 (1946); Rubber Chem. Technol., 19, 1145 (1946).
- 31. H. G. Kim, L. Mandelkern, J. Polym. Sci. A-2, **10**, 1125 (1972).
- L. A. Wood, L. W. Tilton, Proc. 2nd Rubber Technology Conference, London; 1948, p. 142, Institution of the Rubber Industry, London; J. Res. Natl. Bur. Std., 43, 57 (1949), RP 2004.
- A. T. McPherson, Rubber Chem. Technol. (Rubber Rev.), 36, 1230 (1963).
- 34. L. A. Wood, G. M. Martin, J. Res. Natl. Bur. Std., **68A**, 259 (1964); Rubber Chem. Technol., **37**, 850 (1964).
- G. M. Martin, F. L. Roth, R. D. Stieler, Trans. Inst, Rubber Ind., 32, 189 (1956); Rubber Chem. Technol., 30, 876 (1957).
- F. L. Roth, G. W. Bullman, L. A. Wood, J. Res. Natl. Bur. Std., 29A, 347 (1965); Rubber Chem. Technol., 39, 397 (1966).
- 37. W. Philipoff, J. Appl. Phys., 24, 685 (1953).
- 38. B. P. Holownia, J. Inst. Rubber Ind. **8**, 157 (1974); Rubber Chem. Technol., **48**, 246 (1975).
- G. K. Rightmire, Am. Soc. Mech. End. Trans. Series F, J. Lubrication Technol., 381. July 1970.

- L. J. Zapas, S. L. Shufler, T. W. deWitt, J. Polym. Sci., 18, 245 (1955); Rubber Chem. Technol., 29, 725 (1956).
- 41. J. D. Ferry, R. G. Mancke, E. Maekawa, Y. Oyanagi, R. A. Dickie; J. Phy. Chem., **68**, 3414 (1964).
- 42. J. M. Ball, G. C. Maassen, Symp. Applications of Synthetic Rubbers, American Society for Testing Materials, March 2, 1944, p. 27.
- 43. L. A. Wood, "Physical Chemistry of Synthetic Rubbers", Chapter 10 in: G. S. Whitby (Ed.), "Synthetic Rubbers", J Wiley, New York 1954.
- 44. I. B. Prettyman, "Physical Properties of Natural and Synthetic Rubber Stocks", Handbook of Chemistry and Physics, Chemical Rubber Pub. Co., Cleveland, in: 1962, p. 1564.
- 45. R. D. Rands, Jr., W. J. Ferguson, G. Allen, Polymer, 10, 495 (1964).
- 46. A. R. Payne, J. R. Scott, "Engineering Design with Rubber". Interscience, New York, 1960.
- 47. H. Shilling, Kautschuk Gummi, 16, 84 (1963).
- 48. J. Rehner, Jr., J. Polym. Sci., **2**, 263 (1947); Rubber Chem. Technol., **21**, 82 (1948).
- 49. W. H. S. Naunton et al., "Rubber in Engineering," Ministry of Supply, London, 1945, or Chemical Publishing Co., Brooklyn, NY., p. 30.
- 50. W. S. Cramer, I. Silver, NSVORD Report 1778, Feb. 1951, US Naval Ordnance Lab., White Oak, MD.
- L. A. Wood, N. Bekkedahl, F. L. Roth, J. Res. Natl. Bur. Std.,
 29, 391 (1942) RP 1507; Ind. Eng. Chem., 34, 1291 (1942);
 Rubber Chem. Technol., 16, 244 (1943).
- 52. N. Bekkdahl, J. Res. Natl. Bur. Std., 43, 145 (1949).
- 53. R. M. Kell, B. Bennett, P. B. Stickney; Rubber Chem. Technol., 31, 499 (1958).
- 54. C. Price, J. Padget, M. C. Kirkham, G. Allen; Polymer, **10**, 495 (1969).
- 55. D. R. MacRae, R. L. Zapp, Rubber Age, 82, 831 (1958).
- 56. L. Schmieder, K. Wolk, Kolloid-Z., 134, 149 (1953).
- 57. J. H. Dillon, I. B. Prettyman, G. L. Hall, J. Appl. Phys., 15, 309 (1944); Rubber Chem. Technol., 17, 597 (1944).
- 58. N. L. Catton, "The Neoprenes", Rubber Chemicals Division, E. I. DuPont de Numours and Company, Wilmington, DE, 1953.
- 59. T. P. Yin, R. Pariser, J. Appl. Polym. Sci., 7, 667 (1963).
- R. M. Kell, B. Bennett, P. B. Stickney, J. Appl. Polym. Sci.,
 2, 8 (1959).
- 61. A. N. Gent, J. Polym. Sci., A3, 3787 (1965).
- W. R. Krigbaum, J. V. Dawkins, G. H. Via, Y. I. Balta; J. Polym. Sci. A-2, 4, 475 (1966).
- 63. J. T. Maynard, W. E. Mochel, J. Polym. Sci., 13, 235 (1954).
- W. P. Fletcher, A. N. Gent, Brit. J. Appl. Phys., 8, 194 (1957).
- R. M. Murray, J. D. Detenber, Rubber Chem. Technol., 34, 668 (1961).
- P. R. Johnson, Rubber Chem. Technol., (Rubber Rev.), 49, 650 (1976).