

Report No. : EED32I00268701 Page 63 of 109

Appendix E): Power Spectral Density

Result Table

Result I	abie	(6,1)		(6)	
Mode	Antenna	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	Ant1	LCH	-9.772	8	PASS
11B	Ant2	LCH	-9.042	8	PASS
11B	Ant1	MCH	-9.480	8	PASS
11B	Ant2	MCH	-9.272	8	PASS
11B	Ant1	HCH	-9.116	8	PASS
11B	Ant2	HCH	-9.650	8	PASS
11G	Ant1	LCH	-18.316	8	PASS
11G	Ant2	LCH	-16.993	8	PASS
11G	Ant1	MCH	-17.279	8	PASS
11G	Ant2	MCH	-17.302	8	PASS
11G	Ant1	HCH	-16.630	8	PASS
11G	Ant2	HCH	-17.528	8	PASS
11N20SISO	Ant1	LCH	-18.562	8	PASS
11N20SISO	Ant2	LCH	-17.524	8	PASS
11N20SISO	Ant1	MCH	-17.180	8	PASS
11N20SISO	Ant2	MCH	-16.989	8	PASS
11N20SISO	Ant1	HCH	-16.452	8	PASS
11N20SISO	Ant2	HCH	-17.408	8	PASS
11N20MIMO	Ant1	LCH	-18.924	8	PASS
11N20MIMO	Ant2	LCH	-18.776	8	PASS
11N20MIMO	Ant1+2	LCH	-15.84	8	PASS
11N20MIMO	Ant1	MCH	-18.447	8	PASS
11N20MIMO	Ant2	MCH	-19.238	8	PASS
11N20MIMO	Ant1+2	MCH	-15.81	8	PASS
11N20MIMO	Ant1	HCH	-17.192	8	PASS
11N20MIMO	Ant2	HCH	-18.446	8	PASS
11N20MIMO	Ant1+2	HCH	-14.76	8	PASS
11N40SISO	Ant1	LCH	-20.278	8	PASS
11N40SISO	Ant2	LCH	-21.124	8	PASS
11N40SISO	Ant1	MCH	-20.156	8	PASS
11N40SISO	Ant2	MCH	21 262	8	PASS
11N40SISO	Ant1	HCH	-19.568	8	PASS
11N40SISO	Ant2	HCH	-20.852	8	PASS
11N40MIMO	Ant1	LCH	-22.438	8	PASS
11N40MIMO	Ant2	LCH	-22.011	8	PASS
11N40MIMO	Ant1+2	LCH	-19.21	8	PASS
11N40MIMO	Ant1	MCH	-21.537	8	PASS
11N40MIMO	Ant2	MCH	-22.329	8	PASS
11N40MIMO	Ant1+2	MCH	-18.90	8	PASS
11N40MIMO	Ant1	HCH	-21.394	8	PASS
11N40MIMO	Ant2	HCH	-21.394	8	PASS
11N40MIMO	Ant1+2	HCH	-19.14	8	PASS

Test Graph

Page 65 of 109

Page 66 of 109

Report No. : EED32I00268701 Page 67 of 109

Page 69 of 109

Page 71 of 109

Report No.: EED32I00268701 Page 73 of 109

Report No. : EED32I00268701 Page 74 of 109

Report No. : EED32I00268701 Page 76 of 109

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3Bi.

Report No. : EED32I00268701 Page 77 of 109

Appendix G): AC Power Line Conducted Emission

120.00				
est Procedure:	Test frequency range :1	50KHz-30MHz		
	1)The mains terminal dis	sturbance voltage test was	conducted in a shielde	ed room.
	Stabilization Networ power cables of all which was bonded to the unit being measu power cables to a sin	ected to AC power source rk) which provides a 50Ω/ other units of the EUT woo the ground reference plarured. A multiple socket outlingle LISN provided the ratio	50μH + 5Ω linear im ere connected to a se ne in the same way as et strip was used to co	pedance. econd LIS the LISN onnect mu
		as placed upon a non-me		
	4) The test was perform shall be 0.4 m from	ned with a vertical ground ref m the vertical ground ref s bonded to the horizontal	erence plane. The v	ertical gro
	was placed 0.8 m from reference plane for distance was between of the EUT and asso	om the boundary of the unit LISNs mounted on top of the closest points of the ociated equipment was at leaximum emission, the relation	t under test and bond of the ground reference LISN 1 and the EUT. ast 0.8 m from the LIS	ed to a groce plane. All other N 2.
		s must be changed accord		
imit:	(6,2)	(0,1)	(6,)	_
	Fra 2:	Limit	(dBµV)	
	Frequency range (MI	Hz) Quasi-peak	Average	
			1	1
	0.15-0.5	66 to 56*	56 to 46*	°
	0.15-0.5 0.5-5	66 to 56* 56	56 to 46* 46	(3
		/ 436)	/ 4/1	C.
	0.5-5 5-30 * The limit decreases lint to 0.50 MHz.	56	46 50 the frequency in the ra	ange 0.15
 ∋asurement Data	0.5-5 5-30 * The limit decreases lint to 0.50 MHz.	56 60 nearly with the logarithm of	46 50 the frequency in the ra	ange 0.15
	0.5-5 5-30 * The limit decreases limit to 0.50 MHz. NOTE: The lower limit in	56 60 nearly with the logarithm of is applicable at the transitio	46 50 the frequency in the rain frequency	ange 0.15
n initial pre-scan was	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transitio	46 50 the frequency in the range of the frequency	
n initial pre-scan was	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
n initial pre-scan was uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
n initial pre-scan was uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
n initial pre-scan was uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
n initial pre-scan was uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
n initial pre-scan was uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
n initial pre-scan was uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	
n initial pre-scan was uasi-Peak and Avera	0.5-5 5-30 * The limit decreases lin to 0.50 MHz. NOTE : The lower limit is performed on the live an	56 60 nearly with the logarithm of is applicable at the transition of the neutral lines with peak decorated to the second of the neutral lines with peak decorated to the neutral lines with lines with peak decorated to the neutral lines with	46 50 the frequency in the range of the frequency	

cil

Report No. : EED32I00268701 Page 78 of 109

AC 120V, 60Hz

Live line:

No.	Freq.		ding_Le (dBuV)	vel	Correct Factor	М	(dBuV)		Lin (dB		Mai (d	rgin B)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1620		44.76	14.74	9.80		54.56	24.54	65.36	55.36	-10.80	-30.82	Р	
2	0.1844		44.76	14.74	9.80		54.56	24.54	64.28	54.28	-9.72	-29.74	Р	
3	0.2580		38.51	20.01	9.80		48.31	29.81	61.49	51.49	-13.18	-21.68	Р	
4	0.3620		32.28	7.86	9.86		42.14	17.72	58.68	48.68	-16.54	-30.96	Р	
5	3.2540		30.39	10.85	10.00		40.39	20.85	56.00	46.00	-15.61	-25.15	Р	
6	26.2660		30.68	17.18	9.80		40.48	26.98	60.00	50.00	-19.52	-23.02	Р	

Neutral line: 80.0 dB dV Limit: AVG: 30 0.150 0.5 (MHz) 5 30.000

	No.	Freq.		ding_Le (dBuV)	vel	Correct Factor	M	(dBuV)	ent	Lin (dB	nit uV)		rgin dB)		
Ī		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.1740		48.00	24.25	9.80		57.80	34.05	64.76	54.76	-6.96	-20.71	Р	
	2	0.2580		38.00	12.22	9.80		47.80	22.02	61.49	51.49	-13.69	-29.47	Р	
9	3	0.3620		31.64	8.50	9.86		41.50	18.36	58.68	48.68	-17.18	-30.32	Р	
	4	0.9620		21.45	3.26	9.70		31.15	12.96	56.00	46.00	-24.85	-33.04	Р	
	5	2.2940	·	27.30	9.99	10.00	·	37.30	19.99	56.00	46.00	-18.70	-26.01	Р	
	6	14.4580		25.57	11.70	10.09		35.66	21.79	60.00	50.00	-24.34	-28.21	Р	

AC 240V, 50Hz

Live line:

No	. Freq.		ding_Le (dBuV)	vel	Correct Factor	IV	(dBuV)		Lir (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2140		41.22	21.59	9.80		51.02	31.39	63.04	53.04	-12.02	-21.65	Р	
2	0.3300		33.36	17.77	9.83		43.19	27.60	59.45	49.45	-16.26	-21.85	Р	
3	0.4380		27.98	1.52	9.90		37.88	11.42	57.10	47.10	-19.22	-35.68	Р	
4	0.5540		25.28	10.55	9.90		35.18	20.45	56.00	46.00	-20.82	-25.55	Р	
5	2.1260		27.38	5.90	10.00		37.38	15.90	56.00	46.00	-18.62	-30.10	Р	
6	3.6300		27.25	12.90	10.00	·	37.25	22.90	56.00	46.00	-18.75	-23.10	Р	

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	(dBuV)	ent	Lin (dB			rgin ß)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2180		41.14	23.34	9.80		50.94	33.14	62.89	52.89	-11.95	-19.75	Р	
	2	0.3180		34.94	16.04	9.82		44.76	25.86	59.76	49.76	-15.00	-23.90	Р	
3	3	0.4300		28.30	7.95	9.90		38.20	17.85	57.25	47.25	-19.05	-29.40	Р	
	4	0.5540		24.44	6.55	9.90		34.34	16.45	56.00	46.00	-21.66	-29.55	Р	
	5	2.3140		29.36	12.63	10.00		39.36	22.63	56.00	46.00	-16.64	-23.37	Р	
Ī	6	3.1860		27.46	10.23	10.00		37.46	20.23	56.00	46.00	-18.54	-25.77	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Naulaleu)	(6)	(6)	li .	\	53.7	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	<
	AL 40U	Peak	1MHz	3MHz	Peak	-07
	Above 1GHz	Peak	1MHz	10Hz	Average	(23)
Test Procedure:	Below 1GHz test procedu	re as below:	6			6
	a. The EUT was placed of at a 3 meter semi-anec determine the position of the EUT was set 3 meters was mounted on the top of the antenna height is was determine the maximum polarizations of the antenna was turned was turned from 0 degree. The test-receiver system	n the top of a rota hoic camber. The of the highest rad ters away from the p of a variable-he varied from one man value of the fielenna are set to maission, the EUT varies to 360 degre	e table was diation. he interfere eight anten heter to found d strength hake the manake the manake the manake the manake the manake to find	ence-receina tower. ur meters a Both hor neasureme ged to its v 4 meters a the maxim	of the grade of th	to a, which cound yertica nd the able
	f. Place a marker at the e frequency to show combands. Save the spectr for lowest and highest of	um Hold Mode. and of the restricte pliance. Also mea um analyzer plot. channel	ed band cl asure any	osest to the	in the restri	icted
	f. Place a marker at the e frequency to show combands. Save the spectr	um Hold Mode. and of the restricted pliance. Also measum analyzer plot. are as below: are as below: ber change form and meter and table west channel, the ments are perform to found the X axis	ed band cl asure any . Repeat for change from table 0.8 re e is 1.5 me e Highest of med in X, N s positionir	osest to the emissions or each poor semi-meter to 1 octaon of the control of the	Anechoic Ch.5 meter(Ab	icted dulation nambe ove
Limit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamman 18GHz the distance is specifically in the lowest field. The radiation measurer than the lowest field in the lowest field	um Hold Mode. and of the restricted pliance. Also measum analyzer plot. are as below: are as below: ber change form and meter and table west channel, the ments are perform to found the X axis	change from table 0.8 release Highest of the table 1.5 med in X, New positioning the table med in X, New positioning the table table 1.5 med in X, New positioning the X, New positioning	osest to the emissions or each posent on Semi-meter to 1 oter). Channel Y, Z axis pong which it asured wasured	Anechoic Ch.5 meter(Ab	icted dulation nambe ove
_imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammand 18GHz the distance is the first the EUT in the lowest	um Hold Mode. and of the restricted pliance. Also measum analyzer plot. In the channel was below: the is the test site, ber change form 1 meter and table west channel, the ments are performed found the X axis tes until all frequents.	change from table 0.8 release Highest of the table 1.5 med in X, New positioning the table med in X, New positioning the table table 1.5 med in X, New positioning the X, New positioning	osest to the emissions or each poor semi-meter to 1 other). The channel of the ch	Anechoic Ch.5 meter(Ab	icted dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest of lowest and highest of the standard for the standard frequency frequency. Bandwidth with Maximum for the spectra frequency freque	um Hold Mode. Ind of the restricted pliance. Also measum analyzer plot. In the channel In the as below: It is the test site, ber change form and table west channel, the ments are performed found the X axis res until all frequents. Limit (dBµV/m)	change from table 0.8 release Highest of the table 1.5 med in X, New positioning the table med in X, New positioning the table table 1.5 med in X, New positioning the X, New positioning	osest to the emissions or each poor semi-meter to 1 ochannel of, Z axis poor g which it asured wared wared wared Quasi-pe	Anechoic Characteristics and modern and mode	icted dulation nambe ove
Limit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamand 18GHz the distance is the first the EUT in the lowest l	um Hold Mode. and of the restricted pliance. Also measure analyzer plot. In the channel are as below: the is the test site, ber change form 1 meter and table west channel, the ments are perform 1 found the X axis are until all frequents are until (dBµV/m 40.0)	change from table 0.8 release Highest of the table 1.5 med in X, New positioning the table med in X, New positioning the table table 1.5 med in X, New positioning the X, New positioning	osest to the emissions or each posest to the common Semi-meter to 1 oter). The channel of the common Semi-meter to 1 oter). The channel of the common Semi-meter to 1 oter). The channel of the common Semi-meter to 1 oter). The common Semi-meter to 1 oter of the	Anechoic Ch.5 meter(Abecositioning for is worse case complete.	icted dulation nambe ove
_imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the lowest and highest of the following specific street between above to fully Anechoic Chamal 18GHz the distance is the EUT in the lower in the radiation measurer than the following specific street above procedured in the lower specific street above procedured the frequency specific street above procedured the same street above procedured the same specific street and street above procedured the same specific street above specific street above procedured the same specific street above specific street a	um Hold Mode. Ind of the restricted pliance. Also measum analyzer plot. In as below: In the interest site, ber change form and table west channel, the ments are performed found the X axis res until all frequency. Limit (dBµV/m 40.0 43.5	change from table 0.8 release Highest of the table 1.5 med in X, New positioning the table med in X, New positioning the table table 1.5 med in X, New positioning the X, New positioning	osest to the emissions or each poor semi-meter to 1 other). Iter). Iter). Iter), Z axis peng which it asured wared wared wared wared Quasi-peng Quasi-peng Quasi-peng Quasi-peng Quasi-peng Quasi-peng Quasi-peng Quasi-peng	Anechoic Ch.5 meter(Abecositioning for is worse cast complete. mark eak Value	icted dulation nambe ove
Limit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the lowest of the lowest and highest of the lowest of the lowest and highest of the lowest of	um Hold Mode. and of the restricted pliance. Also measure analyzer plot. In the channel are as below: The as below	change from table 0.8 release Highest of the table 1.5 med in X, New positioning the table med in X, New positioning the table table 1.5 med in X, New positioning the X, New positioning	osest to the emissions or each poor	Anechoic Characteristics and modern and mark mark mark mark mark mark mark mark	icted dulation nambe ove

Report No. : EED32I00268701 Page 83 of 109

Test plot as follows: Antenna 1

Worse case mode:	802.11b (11Mbps)	(0,)	(0,
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode: 802.11b (11Mbps)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak

2 pp 2411.131 32.58 3.17 34.39 92.57 93.93 74.00 19.93 Vertical

Report No. : EED32I00268701 Page 84 of 109

Worse case mode:	802.11b (11Mbps)	(6.12)	(%)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Page 85 of 109

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)	(%)	(6,72)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mbps)	(27)	(2)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode: 802.11n(HT20) (6.5Mbps)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak

Page 88 of 109

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	(67)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Report No. : EED32I00268701 Page 89 of 109

Worse case mode:	802.11n(HT40) (135Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT40) (135Mbps		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Report No.: EED32I00268701 Page 90 of 109

Worse case mode:	802.11n(HT40) (135Mbps)		
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT40) (135Mbps)		
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Vertical	Remark: Peak

Note:

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, and the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) All modes and antenna are tested, and found the antenna 1 which is worst case, so only the worst case mode is recorded in the report.

Appendix I): Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 4011-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

ı	ш	it:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-	(4-)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Antenna 1

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

	Frea					Limit		Pol/Phase	Remark	
-	MHz					dBuV/m				_
1								Horizontal		
2	175.037	10.72	1.92	15.30	27.94	43.50	-15.56	Horizontal		
3 4								Horizontal Horizontal		
5 pp								Horizontal		

Test mode: Transmitting Vertical

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
					,				
1	76.781	9.15	1.53	18.36	29.04	40.00	-10.96	Vertical	
2	172.599	10.63	1.89	18.71	31.23	43.50	-12.27	Vertical	
3	283.979	13.17	2.37	20.88	36.42	46.00	-9.58	Vertical	
4 pp	483.910	18.00	3.09	20.48	41.57	46.00	-4.43	Vertical	
5	552.883	18.61	3.23	18.13	39.97	46.00	-6.03	Vertical	
6	900.147	22.40	4.34	11.64	38.38	46.00	-7.62	Vertical	

Note

1) All modes and antenna are tested, and found the antenna 1 which is worst case, so only the worst case mode is recorded in the report.

Report No. : EED32I00268701 Page 95 of 109

Transmitter Emission above 1GHz Antenna 1

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.40	34.97	47.18	44.83	74.00	-29.17	Pass	Horizontal
1367.659	30.60	2.52	34.79	48.18	46.51	74.00	-27.49	Pass	Horizontal
4824.000	34.73	6.72	34.35	43.10	50.20	74.00	-23.80	Pass	Horizontal
5865.832	35.80	6.07	34.30	41.49	49.06	74.00	-24.94	Pass	Horizontal
7236.000	36.42	8.38	34.90	40.57	50.47	74.00	-23.53	Pass	Horizontal
9648.000	37.93	7.63	35.07	36.94	47.43	74.00	-26.57	Pass	Horizontal
1198.095	30.22	2.40	34.97	48.66	46.31	74.00	-27.69	Pass	Vertical
1498.912	30.87	2.60	34.67	50.32	49.12	74.00	-24.88	Pass	Vertical
4824.000	34.73	6.72	34.35	43.42	50.52	74.00	-23.48	Pass	Vertical
6267.190	36.04	6.59	34.47	42.73	50.89	74.00	-23.11	Pass	Vertical
7236.000	36.42	8.38	34.90	40.71	50.61	74.00	-23.39	Pass	Vertical
9648.000	37.93	7.63	35.07	39.00	49.49	74.00	-24.51	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	50.39	48.15	74.00	-25.85	Pass	Horizontal
1392.247	30.65	2.72	34.77	50.99	49.59	74.00	-24.41	Pass	Horizontal
4874.000	34.84	5.09	34.33	43.82	49.42	74.00	-24.58	Pass	Horizontal
5895.771	35.82	7.20	34.30	41.63	50.35	74.00	-23.65	Pass	Horizontal
7311.000	36.43	6.76	34.90	40.59	48.88	74.00	-25.12	Pass	Horizontal
9748.000	38.03	7.61	35.05	38.18	48.77	74.00	-25.23	Pass	Horizontal
1360.714	30.59	2.52	34.80	49.87	48.18	74.00	-25.82	Pass	Vertical
1993.395	31.69	2.86	34.30	47.35	47.60	74.00	-26.40	Pass	Vertical
4874.000	34.84	6.73	34.33	42.66	49.90	74.00	-24.10	Pass	Vertical
5880.782	35.81	6.06	34.30	40.70	48.27	74.00	-25.73	Pass	Vertical
7311.000	36.43	8.44	34.90	37.93	47.90	74.00	-26.10	Pass	Vertical
9748.000	38.03	7.55	35.05	39.32	49.85	74.00	-24.15	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	juency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1273.572	30.40	2.60	34.89	50.25	48.36	74.00	-25.64	Pass	Horizontal
1918.716	31.58	3.17	34.35	48.54	48.94	74.00	-25.06	Pass	Horizontal
4924.000	34.94	5.07	34.32	44.41	50.10	74.00	-23.90	Pass	Horizontal
5806.408	35.76	7.00	34.30	42.05	50.51	74.00	-23.49	Pass	Horizontal
7386.000	36.44	6.83	34.90	41.28	49.65	74.00	-24.35	Pass	Horizontal
9848.000	38.14	7.53	35.03	38.43	49.07	74.00	-24.93	Pass	Horizontal
1374.639	30.62	2.71	34.79	46.61	45.15	74.00	-28.85	Pass	Vertical
1968.184	31.65	3.21	34.32	45.31	45.85	74.00	-28.15	Pass	Vertical
4924.000	34.94	5.07	34.32	41.52	47.21	74.00	-26.79	Pass	Vertical
6001.768	35.90	7.43	34.30	41.64	50.67	74.00	-23.33	Pass	Vertical
7386.000	36.44	6.83	34.90	42.07	50.44	74.00	-23.56	Pass	Vertical
9848.000	38.14	7.53	35.03	39.25	49.89	74.00	-24.11	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1198.095	30.22	2.51	34.97	48.92	46.68	74.00	-27.32	Pass	Horizontal	
1597.401	31.05	2.92	34.59	46.19	45.57	74.00	-28.43	Pass	Horizontal	
4824.000	34.73	5.10	34.35	41.74	47.22	74.00	-26.78	Pass	Horizontal	
5910.798	35.83	7.23	34.30	41.07	49.83	74.00	-24.17	Pass	Horizontal	
7236.000	36.42	6.69	34.90	39.79	48.00	74.00	-26.00	Pass	Horizontal	
9648.000	37.93	7.70	35.07	37.01	47.57	74.00	-26.43	Pass	Horizontal	
1198.095	30.22	2.51	34.97	52.83	50.59	74.00	-23.41	Pass	Vertical	
1938.352	31.61	3.19	34.34	49.29	49.75	74.00	-24.25	Pass	Vertical	
4824.000	34.73	5.10	34.35	41.86	47.34	74.00	-26.66	Pass	Vertical	
5895.771	35.82	7.20	34.30	41.59	50.31	74.00	-23.69	Pass	Vertical	
7236.000	36.42	6.69	34.90	38.43	46.64	74.00	-27.36	Pass	Vertical	
9648.000	37.93	7.70	35.07	36.98	47.54	74.00	-26.46	Pass	Vertical	

Report No.: EED32I00268701 Page 97 of 109

Test mode:	802.11g(6M	1bps)	Test Fred	quency: 24	37MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	level Limit Lim		Over Limit (dB)	Result	Antenna Polaxis
1098.763	29.97	2.39	35.08	47.33	44.61	74.00	-29.39	Pass	Horizontal
1498.912	30.87	2.83	34.67	47.00	46.03	74.00	-27.97	Pass	Horizontal
4874.000	34.84	5.09	34.33	41.46	47.06	74.00	-26.94	Pass	Horizontal
6494.564	36.16	6.94	34.61	42.04	50.53	74.00	-23.47	Pass	Horizontal
7311.000	36.43	6.76	34.90	39.99	48.28	74.00	-25.72	Pass	Horizontal
9748.000	38.03	7.61	35.05	39.70	50.29	74.00	-23.71	Pass	Horizontal
1182.943	30.18	2.50	34.98	47.72	45.42	74.00	-28.58	Pass	Vertical
3700.260	33.02	5.49	34.57	45.22	49.16	74.00	-24.84	Pass	Vertical
4874.000	34.84	5.09	34.33	43.16	48.76	74.00	-25.24	Pass	Vertical
5865.832	35.80	7.13	34.30	41.58	50.21	74.00	-23.79	Pass	Vertical
7311.000	36.43	6.76	34.90	39.65	47.94	74.00	-26.06	Pass	Vertical
9748.000	38.03	7.61	35.05	36.81	47.40	74.00	-26.60	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Frequency: 2462MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	r Loss Gain Level level (dRu)//m		Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1204.210	30.24	2.52	34.96	46.75	44.55	74.00	-29.45	Pass	Horizontal
1832.785	31.45	3.11	34.41	45.02	45.17	74.00	-28.83	Pass	Horizontal
4924.000	34.94	5.07	34.32	41.49	47.18	74.00	-26.82	Pass	Horizontal
5747.586	35.71	6.87	34.30	42.22	50.50	74.00	-23.50	Pass	Horizontal
7386.000	36.44	6.83	34.90	40.40	48.77	74.00	-25.23	Pass	Horizontal
9848.000	38.14	7.53	35.03	39.29	49.93	74.00	-24.07	Pass	Horizontal
1144.437	30.09	2.45	35.02	48.88	46.40	74.00	-27.60	Pass	Vertical
1593.340	31.04	2.91	34.60	46.35	45.70	74.00	-28.30	Pass	Vertical
4924.000	34.94	5.07	34.32	40.97	46.66	74.00	-27.34	Pass	Vertical
5747.586	35.71	6.87	34.30	42.24	50.52	74.00	-23.48	Pass	Vertical
7386.000	36.44	6.83	34.90	39.15	47.52	74.00	-26.48	Pass	Vertical
9848.000	38.14	7.53	35.03	37.30	47.94	74.00	-26.06	Pass	Vertical

Report No. : EED32I00268701 Page 98 of 109

			/°>		/ 07				/°~	
Test mode:	802.11n(H	Γ20)(6.5N	(lbps)	Test Freque	ency: 2412M	lHz l	Rema	nark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limi (dBµV	-	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	48.15	45.91	74.0	0	-28.09	Pass	Horizontal
1597.401	31.05	2.92	34.59	46.21	45.59	74.0	0	-28.41	Pass	Horizontal
4824.000	34.73	5.10	34.35	42.43	47.91	74.0	0	-26.09	Pass	Horizontal
6267.190	36.04	7.16	34.47	40.48	49.21	74.0	0	-24.79	Pass	Horizontal
7236.000	36.42	6.69	34.90	40.11	48.32	74.0	0	-25.68	Pass	Horizontal
9648.000	37.93	7.70	35.07	38.21	48.77	74.0	0	-25.23	Pass	Horizontal
1238.405	30.32	2.56	34.92	49.21	47.17	74.0	0	-26.83	Pass	Vertical
4223.950	33.36	5.34	34.53	43.80	47.97	74.0	0	-26.03	Pass	Vertical
4824.000	34.73	5.10	34.35	42.62	48.10	74.0	0	-25.90	Pass	Vertical
5718.399	35.69	6.80	34.30	41.67	49.86	74.0	0	-24.14	Pass	Vertical
7236.000	36.42	6.69	34.90	37.86	46.07	74.0	0	-27.93	Pass	Vertical
9648.000	37.93	7.70	35.07	36.64	47.20	74.0	0	-26.80	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2437MHz Remark: Peak						
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)		mit ıV/m)	Over Limit (dB)	Result	Antenna Polaxis
1296.469	30.45	2.62	34.86	46.51	44.72	74	.00	-29.28	Pass	Horizontal
1593.340	31.04	2.91	34.60	45.38	44.73	74	.00	-29.27	Pass	Horizontal
4874.000	34.84	5.09	34.33	41.66	47.26	74	.00	-26.74	Pass	Horizontal
6001.768	35.90	7.43	34.30	40.95	49.98	74	.00	-24.02	Pass	Horizontal
7311.000	36.43	6.76	34.90	41.00	49.29	74	.00	-24.71	Pass	Horizontal
9748.000	38.03	7.61	35.05	39.16	49.75	74	.00	-24.25	Pass	Horizontal
1198.095	30.22	2.51	34.97	51.74	49.50	74	.00	-24.50	Pass	Vertical
4191.816	33.28	5.36	34.54	43.68	47.78	74	.00	-26.22	Pass	Vertical
4874.000	34.84	5.09	34.33	41.82	47.42	74	.00	-26.58	Pass	Vertical
5895.771	35.82	7.20	34.30	41.55	50.27	74	.00	-23.73	Pass	Vertical
7311.000	36.43	6.76	34.90	39.35	47.64	74	.00	-26.36	Pass	Vertical
9748.000	38.03	7.61	35.05	38.60	49.19	74	.00	-24.81	Pass	Vertical

Report No. : EED32I00268701 Page 99 of 109

_°>		/°>			_ o			· ·			
Test mode:	T20)(6.5N	(lbps)	Test Frequ	ency: 2462M	IHz Re	emark: Peak					
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/n	Over Limit (dB)	Result	Antenna Polaxis		
1289.885	30.43	2.62	34.87	46.98	45.16	74.00	-28.84	Pass	Horizontal		
1746.251	31.31	3.04	34.48	45.05	44.92	74.00	-29.08	Pass	Horizontal		
4924.000	34.94	5.07	34.32	42.11	47.80	74.00	-26.20	Pass	Horizontal		
6494.564	36.16	6.94	34.61	41.90	50.39	74.00	-23.61	Pass	Horizontal		
7386.000	36.44	6.83	34.90	40.14	48.51	74.00	-25.49	Pass	Horizontal		
9848.000	38.14	7.53	35.03	37.72	48.36	74.00	-25.64	Pass	Horizontal		
1198.095	30.22	2.51	34.97	48.72	46.48	74.00	-27.52	Pass	Vertical		
1884.829	31.53	3.15	34.38	46.35	46.65	74.00	-27.35	Pass	Vertical		
4924.000	34.94	5.07	34.32	42.00	47.69	74.00	-26.31	Pass	Vertical		
6156.505	35.98	7.27	34.40	40.17	49.02	74.00	-24.98	Pass	Vertical		
7386.000	36.44	6.83	34.90	39.35	47.72	74.00	-26.28	Pass	Vertical		
9848.000	38.14	7.53	35.03	37.03	47.67	74.00	-26.33	Pass	Vertical		

Test mode:	802.11n(HT	Mbps)	Test Frequency: 2422MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1167.982	30.15	2.48	35.00	46.83	44.46	74.00		-29.54	Pass	Horizontal
1795.839	31.39	3.08	34.44	44.97	45.00	74.00		-29.00	Pass	Horizontal
4844.000	34.77	5.10	34.34	41.37	46.90	74.00		-27.10	Pass	Horizontal
6187.929	36.00	7.24	34.42	39.90	48.72	74.00		-25.28	Pass	Horizontal
7266.000	36.43	6.72	34.90	38.63	46.88	74.00		-27.12	Pass	Horizontal
9688.000	37.97	7.66	35.06	37.51	48.08	74.00		-25.92	Pass	Horizontal
1167.982	30.15	2.48	35.00	49.22	46.85	74.00		-27.15	Pass	Vertical
1818.842	31.43	3.10	34.42	46.70	46.81	74.00		-27.19	Pass	Vertical
4844.000	34.77	5.10	34.34	41.60	47.13	74.00		-26.87	Pass	Vertical
5971.290	35.88	7.37	34.30	40.45	49.40	74.00		-24.60	Pass	Vertical
7266.000	36.43	6.72	34.90	38.58	46.83	74.00		-27.17	Pass	Vertical
9688.000	37.97	7.66	35.06	36.55	47.12	74.00		-26.88	Pass	Vertical

Report No.: EED32I00268701 Page 100 of 109

20%			20%		20%			70			
Test mode: 802.11n(HT40)(13.5Mb			Mbps)	Test Frequency: 2437MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1360.714	30.59	2.69	34.80	46.73	45.21	74.00		-28.79	Pass	Horizontal	
1958.189	31.64	3.20	34.33	45.85	46.36	74.00		-27.64	Pass	Horizontal	
4874.000	34.84	5.09	34.33	41.91	47.51	74.00		-26.49	Pass	Horizontal	
5776.922	35.73	6.93	34.30	41.76	50.12	74.00		-23.88	Pass	Horizontal	
7311.000	36.43	6.76	34.90	38.81	47.10	74.00		-26.90	Pass	Horizontal	
9748.000	38.03	7.61	35.05	37.07	47.66	74.00		-26.34	Pass	Horizontal	
1198.095	30.22	2.51	34.97	51.03	48.79	74.00		-25.21	Pass	Vertical	
1933.424	31.60	3.18	34.34	47.10	47.54	74.00		-26.46	Pass	Vertical	
4874.000	34.84	5.09	34.33	41.49	47.09	74.00		-26.91	Pass	Vertical	
6235.364	36.02	7.19	34.45	41.09	49.85	74.00		-24.15	Pass	Vertical	
7311.000	36.43	6.76	34.90	40.06	48.35	74.00	U.	-25.65	Pass	Vertical	
9748.000	38.03	7.61	35.05	37.96	48.55	74.00		-25.45	Pass	Vertical	

Test mode:	802.11n(HT	40)(13.5	Mbps) T	Test Frequency: 2452MHz			Rema	rk: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	2.50	34.98	47.24	44.95	74.00		-29.05	Pass	Horizontal
1755.164	31.32	3.05	34.47	45.45	45.35	74.00		-28.65	Pass	Horizontal
4904.000	34.90	5.07	34.33	41.40	47.04	74.00		-26.96	Pass	Horizontal
5910.798	35.83	7.23	34.30	41.27	50.03	74.00		-23.97	Pass	Horizontal
7356.000	36.44	6.80	34.90	39.44	47.78	74.00		-26.22	Pass	Horizontal
9808.000	38.10	7.56	35.04	38.99	49.61	74.00		-24.39	Pass	Horizontal
1195.049	30.21	2.51	34.97	48.40	46.15	74.00		-27.85	Pass	Vertical
1889.633	31.54	3.15	34.37	49.73	50.05	74.00		-23.95	Pass	Vertical
4904.000	34.90	5.07	34.33	41.27	46.91	74.00		-27.09	Pass	Vertical
6347.466	36.08	7.08	34.52	41.68	50.32	74.00		-23.68	Pass	Vertical
7356.000	36.44	6.80	34.90	38.54	46.88	74.00		-27.12	Pass	Vertical
9808.000	38.10	7.56	35.04	36.91	47.53	74	1.00	-26.47	Pass	Vertical

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 101 of 109

- 3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) All modes and antenna are tested, and found the antenna 1 which is worst case, so only the worst case mode is recorded in the report.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: DC29

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Report No. : EED32I00268701 Page 103 of 109

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32I00268701 Page 104 of 109

PHOTOGRAPHS OF EUT Constructional Details

Test Model No.: DC29

View of Product-1

CII

Report No.: EED32I00268701

View of Product-3

View of Product-4

Page 106 of 109

View of Product-5

View of Product-9

View of Product-10

Report No. : EED32I00268701 Page 109 of 109

View of Product-11

View of Product-12

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.