ЛАБОРАТОРНА РОБОТА 2. МЕРЕЖІ ХЕМІНГА. РОЗПІЗНАВАННЯ ПРОСТИХ ОБРАЗІВ.

Мета

Вивчення моделі мережі Хемінга для розпізнавання простих (бінарних) образів.

Теоретична довідка

Мережа Хемінга це нейронна мережа, яку використовують для класифікації бінарних векторів. Робота мережі полягає у співставленні бінарного вектора $\vec{x}=(x_1,x_2,...,x_N), x_i=\{-1,1\}$, який подається на вхід із одним із еталонних векторів $\vec{e}_1,\vec{e}_2,...,\vec{e}_M$ та визначенні, чи вектор \vec{x} відповідає одному з еталонів. Основним критерієм співставлення вхідного вектора із еталонним є відстань Хемінга.

Мережа Хеммінга - це тришарова нейронна мережа зі зворотним зв'язком. Кількість нейронів у другому і третьому шарах дорівнює кількості класів класифікації (еталонних векторів). Синапси нейронів другого шару з'єднані з кожним входом мережі, нейрони третього шару пов'язані між собою негативними зв'язками, крім синапсу, пов'язаного з власним аксоном кожного нейрона - він має позитивний зворотний зв'язок.

Алгоритм навчання та класифікації вхідного вектора \vec{x} для мережі складається з таких кроків:

1. Задаємо матрицю ваг та зміщення

$$w_{ij} = \frac{1}{2}e_i^j, i = 1..N, j = 1..M,$$

 $T = \frac{1}{2}N.$

- 2. Встановлюється максимально допустиме значення E_{max} норми різниці вихідних векторів на двох послідовних ітераціях, потрібний для оцінки стабілізації рішення.
- 3. Задаємо функцію активації

$$f = \begin{cases} 0, & s \le 0; \\ s, 0 < s \le T, \\ T, & s > T. \end{cases}$$

- 4. Для вхідного вектора \vec{x} повторюємо кроки
 - а. Для кожного j = 1..M обчислюємо вхід

$$y_{1,j} = f\left(\sum_{i=1}^{N} x_i w_{ij}\right).$$

b. Задаємо значення синапсів нейронів другого шару мережі $\varepsilon_{jk} = \left\{ \begin{matrix} 1, & j=k \\ -\varepsilon, & j\neq k \end{matrix} \right. ,$

$$\varepsilon_{jk} = \begin{cases} 1, & j = k \\ -\varepsilon, & j \neq k \end{cases}$$

$$\varepsilon \in (0, 1/N].$$

с. Виходам нейронів другого шару початково присвоюємо значення виходів нейронів першого шару \vec{y}_1

$$y_2^{(0)} = y_1$$

d. Розраховуємо нові значення станів та входів нейронів другого шару

$$y_{2j}^{(l+1)} = f\left(y_{2j}^{(l)} - \varepsilon \sum_{i=1, i \neq j}^{N} y_{2i}^{(l)}\right).$$

Після кожної ітерації l перевіряємо умову стабілізації вихідного вектора

$$||y_2^{(l+1)} - y_2^{(l)}|| \le E_{max}$$

Індивідуальне завдання

- 1. Для заданого викладачем варіанту розробити структурну схему нейронної мережі Хемінга.
- 2. Розробити алгоритм створення та симуляції (відповідно до заданого варіанту) нейронної мережі Хемінга.
- 3. Реалізувати розроблений алгоритм.

Зміст звіту

- Структурна схема нейронної мережі;
- алгоритм, текст програми та результати роботи програми;
- висновки.

Варіанти завдань. Зображення для навчання.

