

Computer Science Fundamentals

Cryptography – Classical Methods

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Fakultät für Informatik J. Schmidt CSF – Cryptography – Classical 1

Overview/Motivation

- What is a cryptosystem?
- Some classical methods of cryptography

Encrypted transmission of messages is of great interest

- not only for the military and secret services
- but also for companies (e.g., transmission of confidential information on new products)
- and individuals (e.g., Online-Banking → https)

Principle

Process

- Encryption of the message (called plaintext) into a ciphertext
 - Use of encryption algorithm
 - and key parameters
- Sender sends ciphertext to the recipient
- Decryption of the ciphertext by recipient
 - Use of a suitable decryption algorithm
 - and the same key parameters
- Recipient gets the plaintext of the message

Main Classes of Encryption Methods

Symmetric Encryption

- same secret key for encryption & decryption
- key exchange via secure channel

Asymmetric Encryption

- encryption using public key of recipient
- decryption using private (secret) key of recipient

Kerckhoff's Principle

- Formulated 1883
- Principle of all modern cryptographic methods
- Security of a method
 - must not be based on secrecy of the algorithm
 - but on secrecy of the key
- This means
 - No "Security through Obscurity"
 - Algorithms are public

Classical Ciphers

- classical = developed before 1950
- presented here to illustrate the basic encryption principles: substitution ciphers
- classical methods in pure form are no longer in use today
 - but they are a part of modern ciphers like AES

Substitution Ciphers

- Idea: Replace ("substitute") units of plaintext by corresponding units of ciphertext
- Types of substitution ciphers:
 - **simple** substitution: replace each letter of the plaintext alphabet by (always the same) corresponding letter of the ciphertext alphabet (bijective mapping).
 - **homophonic** substitution: replace each letter of the plaintext alphabet by one of the corresponding symbols of the ciphertext alphabet; one plaintext letter can be mapped to many different ciphertext symbols (homophones).
 - **polyalphabetic** substitution: like "simple", but different mappings are used for each position in the plaintext using a defined algorithm, e.g., periodically.
 - polygram substitution: instead of single letters, replace whole blocks of letters.
- Breakthrough of these methods with the availability of electromechanical encryption machines (like the Enigma, which uses polyalphabetic substitution)

Enigma

© Bob Lord, Enigma-rotor-stack-cropped, CC BY-SA 3.0

© Enigma Verkehrshaus Luzern.jpg: cropped by OS derivative work: OS (talk), Enigma Verkehrshaus Luzern cropped, CC BY-SA 3.0

Simple Substitution Ciphers

- Example: Use an affine transformation
 - Symbols x_i of an alphabet A containing a total of n symbols are mapped to the same alphabet using

$$X_i \longrightarrow X_{(k \cdot i + d) \mod n}$$

- **k** is the multiplicative key
- d is the additive key
- Special cases
 - $k = 1 \rightarrow Caesar Code$
 - $d = 0 \rightarrow Product Ciphers$

Simple (Affine) Substitution Ciphers

- Alphabet A with n symbols
- symbol in ciphertext =
 - Multiply the position i of a symbol in the alphabet by key k,
 - add d,
 - and reduce mod n.
- Arbitrary combination of key parameters not possible for unambiguous mapping
- Example: k = 4, n = 26, d = 0

Repetitions occur – unsuitable!

Simple (Affine) Substitution Ciphers

- For a suitable combination (k, n):
 - k and n must be relatively prime: gcd(k, n) = 1
 - Only these keys k are suitable, as they have a modular inverse k^{-1} with $k \cdot k^{-1}$ mod $n \equiv 1$
 - For computing the modular inverse use
 - extended Euclidean algorithm
 - Euler's/Fermat's theorem
 - details see appendix/maths course
- Example: relatively prime to n = 26 are {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
 - Therefore: k = 7 is suitable
 - Inverse mod 26: $7^{-1} \equiv 15$
 - Test: $7 \cdot 15 \mod 26 \equiv 105 \mod 26 \equiv 1$

Simple (Affine) Substitution Ciphers – Example

Encryption of plaintext COMPUTER

• with multiplicative key k=7

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	H	0	V	C	J	Q	X	E	L	S	Z	G	N	U	В	I	P	W	D	K	R	Y	F	M	T

• and additive key d=5

Encryption

• plaintext: C O M P U T E F

multiplication (k=7):
 U G B K D C B

• shift (d=5): **T Z L G P I H U**

Decryption with inverse operations

• ciphertext: T Z L G P I H

• shift (-d = -5): O U G B K D C I

• multiplication ($k^{-1}=15$): C O M P U T E R

Vigenère Ciphers

- This is a polyalphabetic substitution cipher
- Generalization of Caesar cipher: use multiple substitution tables (with different shifts)
- Define a key that is built from letters of the plaintext alphabet
 - The key defines the parameter d that is used as offset for shifting each letter
- To obtain the letter index of the ciphertext
 - 1. match positions of repeated key and plaintext
 - 2. for each position:
 - the index of the plaintext letter is added to
 - the index of the letter in the key

Example:

Latin alphabet (0-25), mod 26, key = BCD

• plaintext : SECRETTEXT

• key (shift): BCDBCDBCDB

• ciphertext: TGFSGWUGAU

From Vigenère Ciphers to One-time Pads

- Breaking the Vigenère cipher is getting harder the longer the key
- If the key
 - has the same length as the plaintext,
 - is completely random,
 - and never reused.

we get the Vernam cipher or one-time pad

One-time Pads

- For one-time pads we typically use the alphabet {0, 1}
 - the plaintext is converted to binary,
 - the key is a random sequence of bits,
 - the mod 2 addition becomes a simple bitwise XOR of plaintext/ciphertext and key for en-/decryption

• Example:

Encryption

plaintext:
 1 0 0 1 1 0 0 1

• key: 0 1 1 1 0 0 1 1 XOR

ciphertext:
 1
 1
 0
 1
 0

Decryption

ciphertext:
 1
 1
 0
 1
 0

• key: 0 1 1 1 0 0 1 1 XOR

plaintext:
 1 0 0 1 1 0 0 1

One-time Pads

- One-Time-Pads offer perfect secrecy
 - The encrypted data do not allow any conclusions to be drawn about the plain text except for its length
 - One-time pads cannot be broken no matter how much computing power is invested
 - Proof by Shannon 1949
- Practical limitations
 - this only applies if the key is generated from real random numbers
 - pseudo-randomness is not sufficient
 - the key is as long as the data and has to be exchanged via a secure channel
 - → used very rarely

Appendix: Modular Inverse

Euclidean Algorithm for Greatest Common Divisor

- gcd(a, b) = gcd(b, a mod b)
 - for a >= b
 - Stop if b = 0
 - then a is the gcd

• Examples:

```
    gcd(26, 13) = gcd(13, 0) → gcd = 13
    gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = gcd(1, 0) → gcd = 1
```

Extended Euclidean Algorithm

For determining the modular inverse

- $gcd(a, b) = s \cdot a + t \cdot b$
 - s, t are integers
 - if $gcd(a, b) = 1 \Rightarrow t$ is the (multiplicative) modular inverse of b (mod a)
- Example: modular inverse of 7 mod 26

26 =
$$3 \cdot 7 + 5$$
 $\longrightarrow 5$ = $26 - 3 \cdot 7$
7 = $1 \cdot 5 + 2$ $\longrightarrow 2$ = $7 - 1 \cdot 5$ = $7 - (26 - 3 \cdot 7) = -26 + 4 \cdot 7$
5 = $2 \cdot 2 + 1$ $\longrightarrow 1$ = $5 - 2 \cdot 2$ = $26 - 3 \cdot 7 - 2 \cdot (-26 + 4 \cdot 7)$ = $3 \cdot 26 - 11 \cdot 7$
2 = $1 \cdot 2 + 0$ Inverse exists and equals $-11 = 15 \mod 26$

Euler's ϕ -Function

- The function's value is the number of natural numbers
 - that are smaller than n
 - and are relatively prime to n
 - $\phi(n) = |\{1 \le x \le n \mid \gcd(x, n) = 1\}|$
- Computation (p, q) are prime numbers $p \neq q$)
 - $\phi(p) = p 1$

all integers from 1 to p-1 are relatively prime to p

- $\phi(pq) = \phi(p)\phi(q) = (p-1)(q-1)$
- $\phi(p^i q^j) = \phi(p^i)\phi(q^j) = p^{i-1}(p-1) q^{j-1}(q-1)$
- Examples
 - $\phi(5) = 4$
 - there are four numbers < 5 that are relatively prime to 5, namely 1, 2, 3, 4
 - $\phi(15) = \phi(3 \cdot 5) = \phi(3)\phi(5) = 2 \cdot 4 = 8$
 - $\phi(27) = \phi(3^3) = 3^2 \cdot (3-1) = 9 \cdot 2 = 18$
 - the numbers that are relatively prime to 27 are: 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26
 - $\phi(72) = \phi(2^3 \cdot 3^2) = 2^2 \cdot (2-1) \cdot 3^1 \cdot (3-1) = 4 \cdot 3 \cdot 1 \cdot 2 = 24$

Euler's/Fermat's Theorem – Modular Inverse

• Euler's theorem: for all $x \in \mathbb{Z}$, $n \in \mathbb{N}$, ggT(x, n) = 1:

$$x^{\phi(n)} \mod n = 1$$

• Special case: n is a prime number $p \rightarrow \mathbf{Fermat's}$ little theorem:

$$x^{p-1} \bmod p = 1$$

• It holds:

 $x \cdot x^{\phi(n)-1} \bmod n = 1$

and therefore:

 $x^{-1} = x^{\phi(n)-1} \bmod n$

or, for a prime:

$$x^{-1} = x^{p-2} \bmod p$$

Modular Inverse/Euler – Example

- Using a prime number as module: p = 31
 - wanted: modular inverse for x = 2
 - it holds: $2^{-1} = 2^{31-2} \mod 31 = 2^{29} \mod 31 = 16$
 - Test: $2 \cdot 16 = 32 \mod 31 = 1$
- With n = 26
 - wanted: modular inverse for x = 7
 - determine $\phi(26)$, i.e., the **number** of positive integers that are relatively prime to 26.
 - Prime factorization:

$$26 = 13 \cdot 2$$

• therefore: $\phi(26) = \phi(13)\phi(2) = 12 \cdot 1 = 12$

• it holds: $7^{-1} = 7^{12-1} \mod 26 = 7^{11} \mod 26 = 15$

• Test: $7 \cdot 15 = 105 \mod 26 = 1$