Mouvement RR 3D ★★

B2-14

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r\overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- ▶ $G_1 = B$ désigne le centre d'inertie de **1**, on note m_1 la masse de **1** et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;
- ► G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}$.

Un moteur électrique positionné entre $\bf 0$ et $\bf 1$ permet d'actionner le solide $\bf 1$. Un moteur électrique positionné entre $\bf 1$ et $\bf 2$ permet d'actionner le solide $\bf 2$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique au solide **2** au point A en projection sur $\overline{i_1}$.

Question 2 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{k_0}$.

Corrigé voir .

