MAWLANA BHASHANI SCIENCE AND TECHNOLOGY UNIVERSITY SANTOSH, TANGAIL-1902

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

Lab Report No: 03

Course Title: Communication Engineering Lab

Course Code: ICT-2206

Lab Report on: Frequency Modulation and Demodulation

Submitted By	Submitted To
Name: Kuldip Saha Mugdha	Dr.Monir Morshed
ID: IT-22018	Professor
2nd Year, 2nd Semester	Department of Information and
Session: 2021-2022	Communication Technology
Dept. of ICT, MBSTU	Mawlana Bhashani Science and Technology University

Date of Performance: 10/03/2025 Date of Submission: 12/03/2025

Introduction:

Frequency Modulation (FM) is a technique where the frequency of a carrier wave is varied according to the amplitude of the message signal. FM is widely used in radio broadcasting, two-way radio communication, and TV audio transmission due to its high noise resistance and improved sound quality compared to Amplitude Modulation (AM).

Equipments:

- 1. Signal Oscillator
- 2.MATLAB
- 3.Oscilloscope
- 4. Function generator
- 5. Connecting wires
- 6. Power supply

Theory:

In Frequency Modulation (FM), the frequency of the carrier wave changes in proportion to the instantaneous amplitude of the message signal. The FM signal is given by:

$$s(t) = A_c \cos \left(2\pi f_c t + k_f \int m(t) dt
ight)$$

where:

- A_c = Carrier amplitude
- f_c = Carrier frequency
- k_f = Frequency deviation constant
- m(t) = Message signal

The modulation index (β) determines how much the frequency deviates from its center frequency and is given by:

$$eta = rac{\Delta f}{f_m}$$

where Δf is the frequency deviation and f_m is the message frequency.

Demodulation can be performed using a frequency discriminator or a Phase-Locked Loop (PLL) to recover the original message signal.

Procedure:

Generate Signals

- Create a message signal (low-frequency sine wave).
- Generate a carrier signal (high-frequency cosine wave).

2. Apply Frequency Modulation

- Vary the frequency of the carrier in proportion to the amplitude of the message signal.
- Observe the effect of different modulation indices on the FM signal.

3. Visualize the Signals

- Plot the message signal, carrier signal, and FM signal.
- Analyze frequency variation in the FM waveform.

4. Transmission of FM Signal

• Simulate the transmission process in MATLAB.

5. Demodulation Process

- Use a frequency discriminator or a Phase-Locked Loop (PLL) to extract the message signal.
- Compare the demodulated signal with the original message.

6. MATLAB Implementation

- Implement frequency modulation and demodulation using MATLAB.
- Display the output waveforms for analysis.

MATLAB code:

% Demodulation using differentiation

demodulated_signal = [diff(unwrap(angle(hilbert(modulated_signal)))) 0];

figure;

subplot(3,1,1), plot(t, message_signal), title('Message Signal');
subplot(3,1,2), plot(t, modulated_signal), title('Frequency Modulated Signal');
subplot(3,1,3), plot(t, demodulated_signal), title('Demodulated Signal');

Output:

Discussion:

This lab successfully demonstrated Frequency Modulation (FM) and its demodulation using MATLAB. The results showed how frequency varies with the message signal and how PLL-based demodulation accurately recovers the original signal. FM is widely used in radio and communication systems due to its robustness against noise and interference.