Strong Normalization Proof with CPS-Translation for Second Order Classical Natural Deduction

Koji Nakazawa¹, Makoto Tatsuta²

¹ Graduate School of Informatics, Kyoto University e-mail: knak@kuis.kyoto-u.ac.jp ² National Institute of Informatics e-mail: tatsuta@nii.ac.jp

Abstract

This paper points out an error of Parigot's proof of strong normalization of second order classical natural deduction by the CPS-translation, discusses erasing-continuation of the CPS-translation, and corrects that proof by using the notion of augmentations.

1 Introduction

In [7], Parigot gave the typing system $\lambda\mu$ -calculus which corresponds to second order classical natural deduction by Curry-Howard isomorphism. He proved strong normalization of that deduction system by proving strong normalization of $\lambda\mu$ -calculus. In [7], he proves strong normalization of $\lambda\mu$ -calculus in two ways; one uses reducibility method and the other uses the CPS-translation.

Actually his proof by the CPS-translation does not work. He used the property that if $u \rhd_{\lambda}^{1} v$ then $u^* \rhd_{\lambda}^{+} v^*$, which is Proposition 5.1 (i) of [7] and the key of the proof. But that proposition has a counterexample $u = (\mu \alpha.[\beta]x)((\lambda y.y)y)$ and $v = (\mu \alpha.[\beta]x)y$. This is caused by erasing-continuation of the CPS-translation: by the CPS-translation the β -redex $(\lambda y.y)y$ in u is transferred to $\mu \alpha.[\beta]x$ through the continuation, but this continuation is erased in $\mu \alpha.[\beta]x$ since α does not occur in $[\beta]x$. By the same kind of errors by erasing-continuation, the strong normalization proof of $\lambda_{exn}^{\rightarrow}$ in [4] and the strong normalization proof of call-by-value symmetric $\lambda \mu$ -calculus in [1] do not work either.

In this paper we point out the error of the strong normalization proof of [7], discuss erasing-continuation and preservation of reductions by the CPS-translation, and give a correct proof of strong normalization of $\lambda\mu$ -calculus by the CPS-translation. In that proof, we use the notion of augmentations, which translates each $\lambda\mu$ -term into a $\lambda\mu$ -term of the same meaning in which α necessarily occurs in t for every subterm $\mu\alpha.t$.

2 $\lambda \mu$ -calculus

In this section, we define the $\lambda\mu$ -calculus, presented in [7]. The $\lambda\mu$ -calculus is an extension of the λ -calculus and its type system corresponds to the second-order classical natural deduction.

Definition 2.1. ($\lambda\mu$ -calculus)

Terms and reductions of $\lambda\mu$ -calculus are defined as follows.

(1) The $\lambda\mu$ -calculus has two sorts of variables, which are the λ -variables $x, y \dots$ and the μ -variables $\alpha, \beta \dots$ The terms (denoted by $t, u \dots$) and named-terms (denoted by $e \dots$) of the $\lambda\mu$ -calculus are defined as follows.

```
t ::= x \mid (\lambda x.t) \mid (tt) \mid (\mu \alpha.e),
e ::= ([\alpha]t).
```

We call $\lambda x.t$ a λ -abstraction, t_1t_2 an application, $\mu\alpha.e$ a μ -abstraction and $[\alpha]t$ an α -named term. In $\mu\alpha.e$, we consider that the occurrences of α in e are bound. The bound variables may be

renamed as usual when required. FV(t) denotes the set of λ -variables and μ -variables which occur freely in t. We often abbreviate the outermost parentheses and use the following notations,

$$\lambda x_1 x_2 \dots x_n \cdot t \equiv (\lambda x_1 \cdot (\lambda x_2 \dots (\lambda x_n \cdot t) \dots)),$$

$$t_1 t_2 t_3 \dots t_n \equiv ((\dots (t_1 t_2) t_3 \dots) t_n).$$

- (2) The reduction rules of the $\lambda\mu$ -calculus are the following.
 - (R_1) $(\lambda x.t)u \rhd^c t[u/x],$
 - (R_2) $(\mu\alpha.e)u \rhd^c \mu\alpha.e[u/^*\alpha],$

The substitution t[u/x] is defined as usual, and the substitution $e[u/^*\alpha]$ is obtained from e by replacing inductively each subterm of the form $[\alpha]v$ by $[\alpha]vu$. The one-step reduction relation $u \rhd^1 v$ holds if and only if v is obtained from u by replacing a subterm u_1 by v_1 with $u_1 \rhd^c v_1$ using (R_1) or (R_2) . The one-step λ -reduction \rhd^1_{λ} and the one-step μ -reduction \rhd^1_{μ} are similarly defined by only (R_1) and only (R_2) respectively. The strict reduction relations \rhd^+ , \rhd^+_{λ} and \rhd^+_{μ} are the transitive closure of \rhd^1 , \rhd^1_{λ} and \rhd^1_{μ} respectively. The reduction relations \rhd , \rhd_{λ} and \rhd_{μ} are the reflexive closure of \rhd^+ , \rhd^+_{λ} and \rhd^+_{μ} respectively.

(3) A term u is strongly normalizable if there is no infinite sequence $(u_i)_{i<\omega}$ such that $u\equiv u_0$ and $u_i \triangleright^1 u_{i+1}$ for $i<\omega$.

The type assignment system for $\lambda \mu$ -calculus is defined as follows.

Definition 2.2. (Second-order type assignment for $\lambda\mu$ -calculus)

- (1) We use X, Y... for the propositional variables. Types (denoted by A, B...) are formulas of second order propositional logic defined as follows.
 - $A ::= X \mid (A \rightarrow A) \mid (\forall X.A).$
- FV(A) denotes the set of free propositional variables in A. We often abbreviate the outermost parentheses.
- (2) A λ -context Γ is a finite set of types indexed with λ -variables such that if A^x and B^x are elements of Γ then $A \equiv B$. (Γ, A^x) denotes the union of Γ and $\{A^x\}$. A μ -context Δ is a finite set of types indexed with μ -variables such that if A^{α} and B^{α} are elements of Δ then $A \equiv B$. (Δ, A^{α}) denotes the union of Δ and $\{A^{\alpha}\}$. A judgement has the form of $t: \Gamma \vdash A, \Delta$, where t is a $\lambda\mu$ -term, A is a type, Γ is a λ -context and Δ is a μ -context.
 - (3) The axioms and rules for the second-order type assignment for $\lambda\mu$ -calculus are the following.

$$\begin{split} x:\Gamma,A^x\vdash A,\Delta &\quad (ax) \\ \frac{t:\Gamma\vdash B,\Delta}{\lambda x.t:\Gamma-\{A^x\}\vdash A\to B,\Delta} &\quad (\to I) &\quad \frac{t:\Gamma\vdash A\to B,\Delta}{tu:\Gamma\vdash B,\Delta} &\quad (\to E) \\ \frac{t:\Gamma\vdash A,\Delta}{t:\Gamma\vdash \forall X.A,\Delta} &\quad (\forall I) &\quad \frac{t:\Gamma\vdash A,\Delta}{t:\Gamma\vdash A[B/X],\Delta} &\quad (\forall E) \\ \frac{t:\Gamma\vdash A,\Delta}{\mu\beta.[\alpha]t:\Gamma\vdash B,(\Delta,A^\alpha)-\{B^\beta\}} &\quad (\mu) \end{split}$$

In the rule $(\forall I)$, neither Γ nor Δ contains free X. In the rule (μ) , if $C^{\alpha} \in \Delta$, then $A \equiv C$. A $\lambda \mu$ -term t is typable if there exist contexts Γ , Δ and a type A such that $t : \Gamma \vdash A$, Δ is provable by the axioms and the rules above.

In [7], the following properties of $\lambda \mu$ -calculus were proved.

Proposition 2.3. (Subject Reduction Property)

If $t : \Gamma \vdash A, \Delta$ is provable and $t \triangleright u$, then $u : \Gamma \vdash A, \Delta$ is provable.

Proposition 2.4. (Strong Normalization for μ -reduction)

For any $\lambda \mu$ -term t_0 , there is no infinite sequence $(t_i)_{i<\omega}$ such that $t_i \triangleright_{\mu}^1 t_{i+1}$ for all $i<\omega$.

The $\lambda\mu$ -calculus enjoys the strong normalization property. In [7], two proofs of the strong normalization were given, one was the reducibility method, and the other used the CPS-translation. The CPS-translation is a map from the $\lambda\mu$ -calculus to the λ -calculus, and, from logical point of view, it corresponds to a Kolmogorov translation, which is a map from classical logic to intuitionistic logic.

Definition 2.5.

In the λ -calculus, we fix a λ -variable f and suppose that $\underline{\alpha}$ is a fresh λ -variable for each μ -variable α . The CPS-translation is defined as follows.

```
(i) x^* \equiv xf,

(ii) (\lambda x.t)^* \equiv f(\lambda xf.t^*),

(iii) (tu)^* \equiv t^* [\lambda z.z(\lambda f.u^*)f/f],

(iv) ([\alpha]t)^* \equiv t^* [\underline{\alpha}/f],

(v) (\mu \alpha.e)^* \equiv e^* [f/\underline{\alpha}],

where each z is a fresh variable.
```

The CPS-translation preserves the typability as proved in [7].

Definition 2.6.

Let O be a fixed propositional variable. $\neg_O A$ denotes the type $A \to O$. For any type A, the type A^* is defined as follows.

```
 \begin{array}{l} \text{(i)} \ X^* \equiv X, \\ \text{(ii)} \ (A \to B)^* \equiv \neg_O \neg_O A^* \to \neg_O \neg_O B^*, \\ \text{(iii)} \ (\forall X.A)^* \equiv \forall X. \neg_O \neg_O A^*. \end{array}
```

For any λ -context $\Gamma = \{A_i^{x_i}; 0 \leq i \leq n\}$, we define $\neg_O \neg_O \Gamma^* = \{(x_i : \neg_O \neg_O A_i^*); 0 \leq i \leq n\}$. For any μ -context $\Delta = \{A_i^{\alpha_i}; 0 \leq i \leq n\}$, we define $\neg_O \Delta^* = \{(\underline{\alpha}_i : \neg_O A_i^*); 0 \leq i \leq n\}$.

Proposition 2.7.

If $t: \Gamma \vdash A, \Delta$ is provable in the second-order type assignment for $\lambda \mu$ -calculus then $t^*: \neg_O \neg_O \Gamma^*, \neg_O \Delta^*, (f: \neg_O A^*) \vdash O$ is provable in the second-order λ -calculus.

3 Counterexamples

The CPS-translation preserves also the reduction relation. By this, we can reduce the strong normalization of $\lambda\mu$ -calculus to that of the second-order λ -calculus, which has been proved by Girard and whose detailed proof is found in, for example, [2].

However, the proof of [7] does not work for the following reason. The Proposition 5.1 (i) of [7] claims that if $u \rhd_{\lambda}^{1} v$ then $u^{*} \rhd_{\lambda}^{+} v^{*}$, but it does not hold because $u \rhd_{\lambda}^{1} v$ and $u^{*} \equiv v^{*}$ hold if we take $u \equiv (\mu \alpha.[\beta]x)(Iy)$ and $v \equiv (\mu \alpha.[\beta]x)y$, where I is the term $\lambda x.x$. The difficulty of this method lies in the fact that the CPS-translation does not necessarily preserve the strictness of reductions. For example, as the Proposition 5.1 (ii) of [7], we have $u^{*} \equiv v^{*}$ when $u \rhd_{\mu} v$ even if it is more than one steps. So if t is a μ -abstraction $\mu \alpha.e$ in which e contains no free α , say $t \equiv \mu \alpha.[\beta]x$, then $(tu)^{*} \equiv t^{*}$ holds for any term u since $tu \rhd_{\mu} t$. Therefore, even if $u \rhd_{\lambda}^{+} v$, we have $((\mu \alpha.[\beta]x)u)^{*} \equiv (\mu \alpha.[\beta]x)^{*} \equiv ((\mu \alpha.[\beta]x)v)^{*}$ as the above counterexample. This is caused by erasing-continuation of the CPS-translation: the β -redex in u is transferred to $\mu \alpha.[\beta]x$ through the continuation, but this continuation is erased in $\mu \alpha.[\beta]x$ since α does not occur in $[\beta]x$. Moreover, if we take $(\lambda x.xx)(\lambda x.xx)$ as u, the term $(\mu \alpha.[\beta]x)u$ is not strongly normalizable, while its CPS-translation, identical with $(\mu \alpha.[\beta]x)^{*}$, is strongly normalizable. Hence, the Proposition 5.4 of [7], which essentially claims the strong normalization, does not hold, so the strong normalization proof with the CPS-translation is not finished.

The strong normalization proof of $\lambda_{exn}^{\rightarrow}$, which is an extension of λ -calculus featuring an exception handling mechanism and was presented by de Groote in [4], contains the same kind of error with erasing-continuation. The Proposition 8.3 (a) of [4] claims that, for any expressions M and M' of $\lambda_{exn}^{\rightarrow}$, if M is reduced to M' by the rule (β_V) of the modified operational semantics in [4], then we have $M: K \xrightarrow{+}_{\beta} M': K$ for any expression K, but it does not hold. For example, $M \equiv (\text{let } y: \neg \tau \text{ in } z \text{ handle } (y x) \Rightarrow Ix \text{ end})$ is reduced to $M' \equiv (\text{let } y: \neg \tau \text{ in } z \text{ handle})$

 $(y\ x) \Rightarrow x$ end) by the rule (β_V) . On the other hand, M:K and M':K are the same expression Kz. This is caused by erasing-continuation of the CPS-translation: by the CPS-translation the β -redex Ix is transferred to z through the continuation, but this continuation is erased in z since the exception variable y does not occur in z. Furthermore, there is a simpler counterexample (raise M) $(Ix) \to (raise\ M)x$. For any N, (raise M)N:K is identical with M:I. Therefore, the proof of strong normalization of λ_{exn}^{\to} is not finished either.

By erasing-continuation of the CPS-translation, the strong normalization proof of call-by-value symmetric $\lambda\mu$ -calculus in [1] does not work either.

4 Strong Normalization Proof with CPS-translation

In this section, we give the correct proof of the strong normalization of $\lambda\mu$ -calculus with the CPS-translation. We use the notion of augmentations borrowed from [5] to prevent erasing-continuation of the CPS-translation. By using the notion of augmentations, we translate each $\lambda\mu$ -term into a $\lambda\mu$ -term of the same meaning in which any μ -abstraction subterm $\mu\alpha$.e contains a variable α in e.

In the following, we consider the slight extension of the $\lambda\mu$ -calculus, in which the named terms are treated as $\lambda\mu$ -terms and we can abstract by μ not only named terms but $\lambda\mu$ -terms.

Definition 4.1. (Extended $\lambda\mu$ -calculus)

Terms of extended $\lambda \mu$ -calculus are defined as follows.

$$t ::= x | (\lambda x.t) | (tt) | (\mu \alpha.t) | ([\alpha]t).$$

Substitutions and reduction relations of extended $\lambda\mu$ -calculus are extended from those of $\lambda\mu$ -calculus in a straightforward way. Types of extended $\lambda\mu$ -calculus are defined as follows.

$$A ::= X \mid \bot \mid (A \to A) \mid (\forall X.A).$$

Typing axioms and rules of extended $\lambda\mu$ -calculus are (ax) and four rules for \rightarrow and \forall of $\lambda\mu$ -calculus and the following two rules.

$$\frac{t:\Gamma\vdash A,\Delta}{[\alpha]t:\Gamma\vdash\bot,\Delta,A^{\alpha}}\ (\bot I) \qquad \frac{t:\Gamma\vdash\bot,\Delta}{\mu\alpha.t:\Gamma\vdash A,\Delta-\{A^{\alpha}\}}\ (\bot E)$$

In the rule $(\bot I)$, if $B^{\alpha} \in \Delta$, then $A \equiv B$.

Note that, for any $\lambda\mu$ -term of the original system t and any type A which contains no \bot , if the judgement $t:\Gamma\vdash A,\Delta$ provable in the extended $\lambda\mu$ -calculus, then it is provable in original system since the successive application of $(\bot I)$ and $(\bot E)$ is equivalent to the application of (μ) . Furthermore, if u is a term of the original system and $u \rhd v$ holds in this extension, then v is a term of the original system and $u \rhd v$ holds in the original system. Therefore, this extension is conservative. The subject reduction property and the strong normalization of μ -reduction for the extended $\lambda\mu$ -calculus are proved in a similar way to [7].

Proposition 4.2. (Subject Reduction Property)

If $t : \Gamma \vdash A, \Delta$ is provable in the extended $\lambda \mu$ -calculus and $t \triangleright u$, then $u : \Gamma \vdash A, \Delta$ is provable in the extended $\lambda \mu$ -calculus.

Proposition 4.3. (Strong Normalization for μ -reduction)

For any term t_0 of the extended $\lambda \mu$ -calculus, there is no infinite sequence $(t_i)_{i<\omega}$ such that $t_i \triangleright_{\mu}^1 t_{i+1}$ for all $i < \omega$.

The CPS-translation is extended as follows.

Definition 4.4.

The CPS-translation for the extended $\lambda\mu$ -calculus is defined as follows.

- (i) $x^* \equiv xf$,
- (ii) $(\lambda x.t)^* \equiv f(\lambda x f.t^*),$
- (iii) $(tu)^* \equiv t^* [\lambda z.z(\lambda f.u^*)f/f],$
- (iv) $([\alpha]t)^* \equiv t^* [\alpha/f]$,
- (v) $(\mu \alpha.t)^* \equiv t^*[I/f][f/\underline{\alpha}],$

where each z is fresh and $I \equiv \lambda x.x.$

The only difference from the original system is the definition of $(\mu\alpha.t)^*$, but f does not occur freely in t^* if t is a named term, so the definition is the same for the original $\lambda\mu$ -terms. It is proved in a straightforward way that the CPS-translation preserves the typability of $\lambda\mu$ -terms of the extended system.

Definition 4.5.

```
\neg A denotes the type A \to \bot. For any type A, the type A^* is defined as follows.
```

- (i) $X^* \equiv X$,
- (ii) $\perp^* \equiv \perp$,
- $(iii) (A \to B)^* \equiv \neg \neg A^* \to \neg \neg B^*,$
- (iv) $(\forall X.A)^* \equiv \forall X. \neg \neg A^*$.

For any λ -context $\Gamma = \{A_i^{x_i}; 0 \leq i \leq n\}$, we define $\neg \neg \Gamma^* = \{(x_i : \neg \neg A_i^*); 0 \leq i \leq n\}$. For any μ -context $\Delta = \{A_i^{\alpha_i}; 0 \leq i \leq n\}$, we define $\neg \Delta^* = \{(\underline{\alpha}_i : \neg A_i^*); 0 \leq i \leq n\}$.

Proposition 4.6.

If $t: \Gamma \vdash A, \Delta$ is provable in the second-order type assignment for the extended $\lambda \mu$ -calculus then $t^*: \neg \neg \Gamma^*, \neg \Delta^*, (f: \neg A^*) \vdash \bot$ is provable in the second-order λ -calculus.

In the following, we consider only the extended system, since the strong normalization of the original system directly follows from that of the extended system.

We define the augmentations of $\lambda \mu$ -terms.

Definition 4.7.

We fix a λ -variable c. For any $\lambda\mu$ -term t, we define the set $\operatorname{Aug}(t)$ of terms as follows. We call elements of $\operatorname{Aug}(t)$ augmentations of t.

- (i) $Aug(x) = \{x\},\$
- (ii) $\operatorname{Aug}(\lambda x.t) = \{\lambda x.t^+; t^+ \in \operatorname{Aug}(t)\},\$
- (iii) $\text{Aug}(tu) = \{t^+u^+; t^+ \in \text{Aug}(t), u^+ \in \text{Aug}(u)\},\$
- (iv) $\operatorname{Aug}([\alpha]t) = \{ [\alpha]t^+; t^+ \in \operatorname{Aug}(t) \},$
- (v) Aug($\mu \alpha . t$) = { $\mu \alpha . (\lambda z . t^+)([\alpha] c \vec{u})$;

 $t^+ \in \text{Aug}(t)$, z is a fresh λ -variable and \vec{u} is a sequence of terms},

where $c\vec{u}$ is the application $cu_0u_1\ldots u_n$ for $\vec{u}\equiv u_0u_1\ldots u_n$, and \vec{u} may be empty.

Note that, if an augmentation contains a μ -abstraction $\mu\alpha.t$ as its subterm, t always contains an α , except for subterms in the sequence \vec{u} added freely by the definition (v).

Lemma 4.8.

If $t : \Gamma \vdash A, \Delta$ is provable, then there is an augmentation t^+ of t such that $t^+ : \Gamma, (\forall X.X)^c \vdash A, \Delta$.

Proof. This is proved by induction on the derivation of $t: \Gamma \vdash A, \Delta$. We show only the non-trivial case, where the last rule of the derivation is $(\bot E)$. Suppose that the derivation ends with $\frac{t: \Gamma \vdash \bot, \Delta, A^{\alpha}}{\mu \alpha. t: \Gamma \vdash A, \Delta}$. By the induction hypothesis, there is $t^+ \in \operatorname{Aug}(t)$ such that $t^+: \Gamma, (\forall X.X)^c \vdash \bot, \Delta, A^{\alpha}$ is provable, so we have $\lambda z.t^+: \Gamma, (\forall X.X)^c \vdash \neg \bot, \Delta, A^{\alpha}$. On the other hand, $c: \Gamma, (\forall X.X)^c \vdash A, \Delta$ is provable for any type A, so $[\alpha]c: \Gamma, (\forall X.X)^c \vdash \bot, \Delta, A^{\alpha}$ is provable. Therefore, we have $(\lambda z.t^+)([\alpha]c): \Gamma, (\forall X.X)^c \vdash \bot, \Delta, A^{\alpha}$. Hence $\mu \alpha.(\lambda z.t^+)([\alpha]c): \Gamma, (\forall X.X)^c \vdash A, \Delta$ is provable, and $\mu \alpha.(\lambda z.t^+)([\alpha]c)$ is an augmentation of $\mu \alpha.t$. \Box

Lemma 4.9.

- (1) For any sequence \vec{u} of terms, we have $f \in FV((c\vec{u})^*)$.
- (2) If t is a typable term and is not a named term, then $f \in FV(t^{+*})$ holds for any $t^+ \in Aug(t)$.

- **Proof.** (1) This is proved by induction on the length of \vec{u} . If \vec{u} is empty, then $c^* \equiv cf$ and it contains a free occurrence of f. Suppose that $\vec{u} \equiv \vec{v}w$. Since we have that $(c\vec{v})^*$ contains free f by the induction hypothesis, $(c\vec{v}w)^* \equiv (c\vec{v})^* [\lambda z.z(\lambda f.w^*)f/f]$ contains free f.
- (2) This is proved by induction on t. If $t \equiv x$, we have $(x^+)^* \equiv xf$. If $t \equiv \lambda x.u$, the augmentation t^+ of t has the form of $\lambda x.u^+$ for some augmentation u^+ of u. Then we have $t^{+*} \equiv f(\lambda x f. u^{+*})$. If $t \equiv uv$, u is not a named term since uv is typable, and we have $t^{+*} \equiv u^{+*}[\lambda z.z(\lambda f.v^{+*})f/f]$ for some $u^{+} \in \text{Aug}(u)$ and $v^{+} \in \text{Aug}(v)$. By the induction hypothesis, we have $f \in FV(u^{+*})$, then we have also $f \in FV(t^{+*})$. If $t \equiv \mu \alpha.u$, we may suppose $t^+ \equiv \mu \alpha.(\lambda z.u^+)([\alpha]c\vec{v})$ for some $u^+ \in \text{Aug}(u)$ and sequence \vec{v} . Then we have $t^{+*} \equiv (\mu \alpha.(\lambda z.u^+)([\alpha]c\vec{v}))^* \equiv ((\lambda z.z(\lambda f.(c\vec{v})^*[\underline{\alpha}/f])I)(\lambda zf.u^{+*}))[f/\underline{\alpha}],$ and it contains a free occurrence of f since we have $\underline{\alpha} \in FV((c\vec{v})^*[\underline{\alpha}/f])$ from (1). \Box

Lemma 4.10.

- (1) If t and u are $\lambda \mu$ -terms, $t^+ \in \operatorname{Aug}(t)$ and $u^+ \in \operatorname{Aug}(u)$, we have $t^+[u^+/x] \in \operatorname{Aug}(t[u/x])$.
- (2) If t and u are $\lambda \mu$ -terms, $t^+ \in \operatorname{Aug}(t)$ and $u^+ \in \operatorname{Aug}(u)$, we have $t^+[u^+/^*\alpha] \in \operatorname{Aug}(t[u/^*\alpha])$.

Proof. These are proved by induction on t. We show only the non-trivial case of (1) where t is a μ -abstraction $\mu\alpha.v$. By the induction hypothesis, we have $v^+[u^+/x] \in \text{Aug}(v[u/x])$, therefore, for any \vec{w} , $(\mu\alpha.(\lambda z.v^+)([\alpha]c\vec{w}))[u^+/x] \equiv \mu\alpha.(\lambda z.v^+[u^+/x])([\alpha](c\vec{w})[u^+/x])$, which is an augmentation of $\mu\alpha.v[u/x]$. Other cases and (2) are similarly proved. \Box

Lemma 4.11.

- (1) For any terms u and v, $u^*[\lambda f.v^*/x] \triangleright (u[v/x])^*$.
- (2) For any terms u and v, $u^*[\lambda z.z(\lambda f.v^*)\underline{\alpha}/\underline{\alpha}] \equiv (u[v/^*\alpha])^*$.
- (3) If $t \rhd_{\mu}^{1} u$ then $t^{*} \equiv u^{*}$. (4) If $t \rhd_{\mu}^{1} u$ and $t^{+} \in \operatorname{Aug}(t)$, then there exists $u^{+} \in \operatorname{Aug}(u)$ such that $t^{+} \rhd_{\mu}^{1} u^{+}$.
- **Proof.** (1) This is proved by induction on u. When $u \equiv x$, we have LHS $\equiv (\lambda f.v^*)f \rhd^1 v^* \equiv$ $(x[v/x])^* \equiv \text{RHS}$. Other cases are proved from induction hypothesis in a straightforward way.
- (2) This is proved by induction on u. Suppose that u is an α -named term Then we have RHS $=([\alpha](t[v/*\alpha]v))^*$ $\equiv (t[v/^*\alpha])^*[\lambda z.z(\lambda f.v^*)f/f][\underline{\alpha}/f]$ $t^*[\lambda z.z(\lambda f.v^*)\alpha/\alpha][\lambda z.z(\lambda f.v^*)f/f][\alpha/f]$ by the induction hypothesis. Hence we have RHS= $t^*[\alpha/f][\lambda z.z(\lambda f.v^*)\alpha/\alpha] \equiv \text{LHS}$. Other cases are proved from induction hypothesis in a straightforward way.
- (3) This is proved by induction on $t \rhd^1_{\mu} u$. The induction steps are proved in a straightforward way, so we prove only the base case, where t is a redex $(\mu\alpha.v)w$ and $u \equiv \mu\alpha.v[w/\alpha]$. In this case, we have $t^* \equiv ((\mu \alpha. v)w)^* \equiv v^*[I/f][f/\underline{\alpha}][\lambda z. z(\lambda f. w^*)f/f]$. Since $FV(v^*[I/f])$ does not contain f, we have $t^* \equiv v^*[I/f][\lambda z.z(\lambda f.w^*)f/\underline{\alpha}]$. Hence we have $t^* \equiv v^*[\lambda z.z(\lambda f.w^*)\underline{\alpha}/\underline{\alpha}][I/f][f/\underline{\alpha}] \equiv$ $(\mu \alpha . v[w/^*\alpha])^* \equiv u^*$ by (2).
- (4) This is proved by induction on $t \triangleright_{\mu}^{1} u$. Similarly, we show only the base case, where $t \equiv (\mu \alpha. v) w$ and $u \equiv \mu \alpha. v [w/^* \alpha]$. In this case, we may suppose $t^+ \equiv (\mu \alpha. (\lambda z. v^+) ([\alpha] c \vec{s})) w^+$. Then t^+ is reduced by one-step μ -reduction to $\mu\alpha.(\lambda z.v^+[w^+/^*\alpha])([\alpha]c\bar{s}[w^+/^*\alpha])$, which is an augmentation of u from the lemma 4.10 (2). \Box

Proposition 4.12.

- (1) For any typable term t, if $t \rhd_{\lambda}^1 u$ holds and t^+ is an augmentation of t, then there exists an augmentation u^+ of u such that $t^{+*} \rhd^+ u^{+*}$ holds.
- (2) For any term t, if $t \triangleright_{\mu}^{1} u$ holds and t^{+} is an augmentation of t, then there exists an augmentation u^{+} of u such that $t^{+*} \equiv u^{+*}$ holds.
- **Proof.** (1) This is proved by induction on $t \triangleright_{\lambda}^{1} u$.
- (Case 1) $t \equiv (\lambda x.t_1)t_2$ and $u \equiv t_1[t_2/x]$. In this case, $t^{+*} \equiv (\lambda z.z(\lambda f.t_2^{+*})f)(\lambda x f.t_1^{+*})$ for some $t_1^+ \in \operatorname{Aug}(t_1)$ and $t_2^+ \in \operatorname{Aug}(t_2)$. Then t^{+*} is reduced to $t_1^{+*}[\lambda f.t_2^{+*}/x]$ by three-step β -reduction. Therefore, we have $t^{+*} \triangleright^+ (t_1^+[t_2^+/x])^*$ from the lemma 4.11 (1), and we have $t_1^+[t_2^+/x] \in \operatorname{Aug}(u)$ from the lemma 4.10(1).

(Case 2) $t \equiv t_1 t_2$, $u \equiv t_1 u_2$ and $t_2 \rhd_{\lambda}^1 u_2$. In this case, t^{+*} has the form of $t_1^{+*}[\lambda z.z(\lambda f.t_2^{+*})f/f]$, and we have $t_2^{+*} \rhd^+ u_2^{+*}$ by the induction hypothesis. Since $t_1 t_2$ is typable, t_1 is not a named term, therefore, t_1^{+*} has a free f from the lemma 4.9 (2). Hence we have $t_1^{+*}[\lambda z.z(\lambda f.t_2^{+*})f/f] \rhd^+ t_1^{+*}[\lambda z.z(\lambda f.u_2^{+*})f/f]$.

Other cases are similarly proved.

(2) This is directly proved from the lemma 4.11 (3) and (4). \Box

Proposition 4.13. (Strong Normalization of Extended $\lambda\mu$ -calculus)

In the extended $\lambda\mu$ -calculus, if t is typable term, then t is strongly normalizable.

Proof. Suppose that there exists an infinite sequence of $\lambda\mu$ -terms $\{t_i\}_{i<\omega}$ such that t_0 is typable and $t_i \rhd^1 t_{i+1}$ for all $i < \omega$. Note that there are infinitely many i such that $t_i \rhd^1_{\lambda} t_{i+1}$ from the proposition 4.3. We can find a typable augmentation t_0^+ of t_0 by the proposition 4.8, then t_0^{+*} is also typable by the proposition 4.6. Using the proposition 4.12, there is an infinite sequence of λ -terms $\{t_i^{+*}\}$ such that $t_i^{+*} \rhd t_{i+1}^{+*}$. Then there are infinitely many i such that $t_i^{+*} \rhd^+ t_{i+1}^{+*}$ from the proposition 4.12, but it contradicts the strong normalization of the second-order λ -calculus. \square

The strong normalization of the original $\lambda\mu$ -calculus directly follows from this proposition.

Theorem 4.14. (Strong Normalization of $\lambda\mu$ -calculus)

In the $\lambda\mu$ -calculus, if t is typable term, then t is strongly normalizable.

5 Concluding Remarks

The second-order type assignment system considered in this paper has the Curry-style. On the other hand, the Church-style typing system for $\lambda\mu$ -calculus was considered, which is the second-order typed $\lambda\mu$ -calculus in [7]. The strong normalization for that typed $\lambda\mu$ -calculus was also proved by the CPS-translation in [7], but it does not work either by the same error as the proof for the second-order type assignment system. The method of correcting the proof in this paper can be applied to that typed $\lambda\mu$ -calculus in a straightforward way.

References

- [1] K. Fujita, Domain-free $\lambda\mu$ -calculus, Theoretical Informatics and Applications 34 (2000) 433-466.
- [2] J.-Y. Girard, P. Taylor and Y. Lafont, Proofs And Types (Cambridge University Press 1989).
- [3] P. de Groote, A CPS-translation for the $\lambda\mu$ -calculus, Lecture Notes in Computer Science **787** (1994) 85-99.
- [4] P. de Groote, A Simple Calculus of Exception Handling, Lecture Notes in Computer Science 902 (1995) 201-215.
- [5] K. Nakazawa, Confluency and Strong Normalizability of Call-by-Value $\lambda\mu$ -Calculus, Theoretical Computer Science, to appear.
- [6] M. Parigot, λμ-Calculus: An Algorithmic Interpretation of Natural Deduction, Proceedings of the international conference on logic programming and automated reasoning, Lecture Notes in Computer Science 624 (1992) 190-201.
- [7] M. Parigot, Proofs of Strong Normalization for Second Order Classical Natural Deduction, Journal of Symbolic Logic 62 (4) (1997) 1461-1479.
- [8] G. D. Plotkin, Call-by-Name, Call-by-Value and the λ -calculus, Theoretical Computer Science 1 (1975) 125-159.