Problemas sobre Interpolación y Regresión

- En la siguiente tabla se enlista la concentración de saturación de oxígeno disuelto en agua como función de la temperatura y la concentración de cloruro. Empleando estos datos, responda a las siguientes preguntas:
 - a) Utilice la interpolación de diferencias divididas para estimar el nivel de oxígeno disuelto para T = $18^{\circ}C$ con cloruro = 10~g/L.
 - b) Utilice la interpolación de Lagrange para estimar el nivel de oxígeno disuelto para $T=29^{\circ}C$ con cloruro =20~g/L.
 - c) Emplee regresión polinomial para obtener una ecuación predictiva de tercer orden para la concentración del oxígeno. Considere el caso en que la concentración de cloruro es igual a 0 g/L. Finalmente, utilice la ecuación hallada para estimar la concentración de oxígeno disuelto para T = $8^{\circ}C$.

	Oxíger	no disuelto (mg/ L) para la temperatu y la concentración de cloruro (g/ L)	ra (°C)
T, °C	c = 0 g/L	c = 10 g/ L	c = 20 g/L
0	14.6	12.9	11.4
5	12.8	11.3	10.3
10	11.3	10.1	8.96
15	10.1	9.03	8.08
20	9.09	8.17	7.35
25	8.26	7.46	6.73
30	7.56	6.85	6.20

2. Se sabe que el esfuerzo a la tensión de un plástico se incrementa como función del tiempo que recibe tratamiento a base de calor. Empleando los valores de la siguiente tabla, utilizar el método de regresión lineal para calcular la recta que mejor se aproxime a la nube de datos.

Tiempo	10	15	20	25	40	50	55	60	75
Esfuerzo a la tensión	5	20	18	40	33	54	70	60	78

3. En promedio, el área superficial de los seres humanos (A) se relaciona con el peso (W) y la estatura (H). En la tabla siguiente se presentan los valores de A que se obtuvo con mediciones de cierto número de individuos:

H(cm)									
W(kg)	74	88	94	78	84	98	76	86	96
$A (m^2)$	1.92	2.11	2.15	2.02	2.09	2.31	2.02	2.16	2.31

Desarrolle una ecuación para estimar el área como función de la estatura y el peso. Utilícela para aproximar el valor del área superficial de una persona de 187 cm y 78 kg.

4. Se realizó un estudio de ingeniería del transporte para determinar el diseño apropiado de pistas para bicicletas. Se recabaron datos del ancho de las pistas y la distancia promedio entre las bicicletas y los autos en circulación, los cuales son mostrados en la siguiente tabla:

Distancia (m)	2.4	1.5	2.4	1.8	1.8	2.9	1.2	3	1.2
Ancho de la pista (m)	2.9	2.1	2.3	2.1	1.8	2.7	1.5	2.9	1.5

Si se considera que la distancia promedio mínima de seguridad entre las bicicletas y los autos en circulación es de 2 m, determine el ancho de pista mínimo correspondiente.

5. La aceleración debida a la gravedad a una altitud y por encima de la superficie de la Tierra está dada por

$$y(m)$$
 0 30000 60000 90000 120000 $g(m/s^2)$ 9.8100 9.7487 9.6879 9.6278 9.5682

Calcule el valor de la gravedad al considerar y = 52300 m.

6. De un procedimiento de prueba se obtuvieron la tasa de arrastre, la cual es la tasa de tiempo a que aumenta la tensión, y de esfuerzos. Con el uso de una ley de curva de potencias, ajuste los siguientes datos:

Tasa de arrastre (min^{-1})	0.0004	0.0011	0.0021	0.0031
Esfuerzo (MPa)	5.775	8.577	10.874	12.555

7. La relación entre el esfuerzo (τ) y la tasa de tensión cortante (γ) para un fluido seudoplástico puede expresarse a través de la ecuación $\tau = \mu \gamma^n$. Empleando los datos de la tabla siguiente, los cuales provienen de hidroxietilcelulosa en una solución de agua, haga el mejor ajuste de datos.

Tasa de tensión cortante
$$(1/s)$$
 | 50 | 70 | 90 | 110 | 130 | Esfuerzo (N/m^2) | 6.01 | 7.48 | 8.59 | 9.19 | 10.21

8. Un estudio en ingeniería mecánica indica que el flujo de un líquido a través de una tubería está relacionado con el diámetro y la pendiente de la tubería. Empleando los datos de la siguiente tabla y la ecuación

$$Q = a_0 D^{a_1} S^{a_2},$$

haga el ajuste de los datos. Note que Q es el flujo (ft^3/s) , S es la pendiente, y D es el diámetro de la tubería (ft).

Diámetro	Pendiente	Flujo
1	0.001	2.4
2	0.001	7.3
3	0.001	24.2
1	0.01	4.7
2	0.01	28.9
3	0.01	85.0
1	0.05	11.1
2	0.05	69.0
3	0.05	202.0

Finalmente, calcule el flujo en una tubería de 2.5 ft de diámetro y pendiente igual a 0.025.