Problem 2.3.3

Suppose that P(x), Q(y) and R(x, y, z) are propositional functions. Compute the negation of the following quantified propositions:

- (a) $\forall x, \exists y, P(x) \land Q(y)$
- (b) $\forall x, \exists y, \forall z, R(x, y, z)$

Solution

- (a) $\exists x, \forall y, \neg P(x) \lor \neg Q(y)$
- (b) $\exists x, \forall y, \exists z, \neg R(x, y, z)$

Problem 2.3.10

Consider the propositional function $P(x, y, z) : (x - 3)^2 + (y - 2)^2 + (z - 7)^2 > 0$ where the domain of each of the variables x, y and z is \mathbb{R} .

- (a) Express the quantified statement $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{R}, P(x, y, z)$ in words.
- (b) Is the quantified statement in (a) true or false? Explain.
- (c) Express the negation of the quantified statement in (a) in symbols.
- (d) Express the negation of the quantified statement in (a) in words.
- (e) Is the negation of the quantified statement in (a) true or false? Explain.

Solution

- (a) For all real numbers x, y and z, $(x-3)^2 + (y-2)^2 + (z-7)^2$ is strictly greater than o.
- (b) The quantified statement is false. Consider the case where x = 3, y = 2, z = 7. Therefore $(x-3)^2 + (y-2)^2 + (z-7)^2 \implies 0 > 0$ which is false.
- (c) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, \exists z \in \mathbb{R}, \neg P(x, y, z)$
- (d) There exists 3 real numbers x, y, z such that $(x-3)^2 + (y-2)^2 + (z-7)^2$ is less than or equal to o.
- (e) The negation of the quantified statement in a is true. Consider the same case as in (b). That is, x = 3, y = 2, z = 7. Therefore $(x-3)^2 + (y-2)^2 + (z-7)^2 \implies 0 \le 0$ which is true.

Problem 2.3.11

The following statements are about positive real numbers. Which one is true? Explain your answer.

- (a) $\forall x, \exists y \text{ such that } xy < y^2$.
- (b) $\exists x \text{ such that } \forall y, xy < y^2$.

Solution

A is true since it can be simplified to for any positive real number x there exists a positive real number y such that x < y. Since the positive real numbers are unbounded, for any real number there is another larger real number. Therefore for every positive real number x, there exists a larger real number $y \implies x < y$.

Problem 2.3.16

You are given the following definition (you do not have to know what is meant by a field).

Let x be an element of a field \mathbb{F} . An inverse of x is an element y in \mathbb{F} such that xy = 1.

Consider the following proposition:

All non-zero elements in a field have an inverse.

- (a) Restate the proposition using both of the quantifiers \forall and \exists .
- (b) Find the negation of the proposition, again using quantifiers.

Solution

- (a) $\forall x \neq 0, \exists y \text{ such that } xy = 1.$
- (b) $\exists x \neq 0, \forall y \text{ we have } xy \neq 1$

Problem 2.3.19

Recall from calculus the definitions of the limit of a sequence $(x_n) = (x_1, x_2, x_3, \ldots)$.

```
x_n diverges to \infty means: \forall M>0, \exists N\in\mathbb{N} \text{ such that } n>N \Longrightarrow x_n>M. x_n converges to L' means: \forall \varepsilon>0, \exists N\in\mathbb{N} \text{ such that } n>N \Longrightarrow |x_n-L|<\varepsilon.
```

Here we assume that all elements of (x_n) are real numbers.

• State what it means for a sequence x_n not to converge at all.

Solution

In symbols: $\forall L, \exists \epsilon > 0, \forall N \in \mathbb{N}, (n > N) \land (|x_n - L| \ge \epsilon)$. Or in words, there exists an $\epsilon > 0$ such that for all natural numbers N, there exists a natural number n larger than N with $|x_n - L| \ge \epsilon$.

Problem 3.1.13

If $a \mid b$ and $b \mid c$, prove that $a \mid c$.

Solution

Proof. Let $a,b,c\in\mathbb{Z}$. Assume that $a\mid b$ and $b\mid c$. By definition a and b are non zero and there exists $m,n\in\mathbb{Z}$ such that b=ma and c=nb. It follows that $b=\frac{c}{n}$. Therefore

$$b = ma$$

$$\frac{c}{n} = ma$$

$$c = nma$$

Since $nm \in \mathbb{Z}$, by definition $a \mid c$.

Problem 3.1.15

Here are two conjectures. Decide whether each conjecture is true or false and prove/dis-

Conjecture 1:
$$a \mid b$$
 and $a \mid c \implies a \mid bc$
Conjecture 2: $a \mid c$ and $b \mid c \implies ab \mid c$

prove your assertions.

Solution

Proof that conjecture 1 is true.

Proof. Let $a, b, c \in \mathbb{Z}$. Assume that $a \mid b$ and $a \mid c$. By definition there exists $m, n \in \mathbb{Z}$ such that b = ma and c = na. It follows then

$$bc = (ma)(na)$$
$$= (mna)a$$

Since $mna \in \mathbb{Z}$, then by definition $a \mid bc$.

Proof that conjecture 2 is false by counterexample.

Proof. Let a=3,b=6 and c=12. It is true that $a\mid c\Longleftrightarrow 3\mid 12$ and that $b\mid c\Longleftrightarrow 6\mid 12$. However, it is not true that $ab\mid c$ since $ab=18\Longrightarrow 18\nmid 12$.