SONGCHEN TAN

Academic Homepage: tansongchen.com/academic

- tansongchen@pku.edu.cn 5 Yiheyuan Road, Peking University, Beijing, China
- **(+86)** 135 0138 2788
- tansongchen

EDUCATION

Undergraduate Student Chemistry Major & Physics Double Major **Peking University**

Sep 2017 - Jul 2021

Beijing

3.87 / 4.00 (Rank: 1/139) First Year GPA Second Year GPA 3.88 / 4.00 (Rank: 3/139) Third Year GPA 3.93 / 4.00 (Rank: 1/139)

Exchange Student

University of California, Los Angeles

Sep 2019 - Dec 2019

Los Angeles

Quarter GPA 4.00 / 4.00

AWARDS

2020 University Scholarship & Merit Student

Peking University, Top 1%

National 2nd Prize

Mathematical Contest in Modeling

2019 National Scholarship & Merit Student

Peking University, Top 1%

Exchange Student Scholarship

Peking University Education Aboard Program

2018 National Scholarship & Merit Student

Peking University, Top 1%

SKILLS

Scientific Computing

Example Projects:

- C++ ExtendedLagrangian (Contributing to the molecular simulation library LAMMPS)
- Python FlowMM
- Fortran HubbardModel
- Julia | PIMD.jl

English Proficiency

- GRE Verbal 159 Quantitative 170 Analytical Writing 4.0
- TOEFL 112 (Reading 30, Listening 28, Speaking 26, Writing 28)

RESEARCH

Deep Generative Modeling for CG Force Fields

Supervisor: Bin Zhang

Massachusetts Institute of Technology

Jun 2020 - Oct 2020

Working Remotely

Method Combined normalizing flows and contrastive learning for constructing coarse-grained force fields from atomistic

Result Obtained an efficient and systematic machine learning scheme, outperforming force-mapping schemes

Extended Lagrangian for Charge Equilibration

Supervisor: Teresa Head-Gordon University of California, Berkeley

Dec 2019 - Mar 2020

Berkeley

Method Developed an extended Lagrangian scheme together with Langevin thermostat for fluctuating charges Result Eliminated the iterative charge determination, the main bottleneck in reactive force fields like ReaxFF, and accurately reproduced statistic and dynamic properties

Dynamic Effect in Bethe-Salpeter Equation

Supervisor: Daniel Neuhauser **University of California, Los Angeles**

Sep 2019 - Dec 2019

Los Angeles

Method Introduced a screened potential correction within the framework of time-dependent Bethe-Salpeter equation **Result** Improved the accuracy of optical properties

Efficient Integrators for Path Integral MD

Supervisor: Jian Liu **Peking University**

Jul 2019 - Current

Beijing

Method Analyzed integrators in path-integral molecular dynamics with symplectic geometry and discrete-time Lyapunov equations

Result Designed a novel sampling scheme that can obtain more accurate statistics

PUBLICATIONS

(1) Tan, S.; Leven, I.; An, D.; Lin, L.; Head-Gordon, T. Journal of Chemical Theory and Computation 2020, DOI: 10.1021/ acs.jctc.0c00514.