多変量解析

北海道大学大学院農学研究院

(兼) 数理・データサイエンス 教育研究センター

佐藤昌直

RNA-seq解析における 多変量解析の位置付け

有意差検定

多変量解析

モチベーション: 多次元データを人間が解釈できるよう補助する

3遺伝子測定データ → RNA-seq: 数千-数万次元

モチベーション: 多次元データを人間が解釈できるよう補助する

- → 高次元データを<u>低次元</u>で表現し 可視化する
- → 高次元データを<u>統計量</u>で表現し 特徴を選択する/ 優先順位をつける

高次元(多パラメーター) データの 認識における問題をどう扱うか?

クラスタリングによる分類

データの確認:目視

Sato_A_thaliana-P_syringae_avrRpt2_6h_expRatio_small.txt

をエクセルで開いて見てみます。

データの確認:Rでの可視化

ex601-0

Rは簡単に「何か」を出力してくれる!

統計の基礎知識とRへの正しい命令が必要

高次元(多パラメーター) データの 認識における問題をどう扱うか?

クラスタリングによる分類

人間は低次元データだと パターン認識するのは得意

コンピューターにどうデータを渡せば この問題をどう扱えるか?

人間

遺伝子発現プロファイルの比較

問題定義の変換

(生物学の問題を数学の問題に置き換える)

計算機

ベクトル等の 数学で扱える 特徴量を 用いた計算

7次元の遺伝子発現データセット

7遺伝子の発現プロファイル間の類似性は 7次元空間での距離によって決まる

距離の基準を何にするか 距離尺度

ユークリッド距離

Uncentered Pearson correlation coefficient = $\cos \theta$

相関係数 Pearson correlation coefficient

距離尺度の違い→解析視点の違い:

遺伝子発現プロファイルの**形と大きさ**

- **形**:ベクトルの方向
- 大きさ:ベクトルのサイズ

解析視点の決め方:

どの距離尺度を使うか?

- どんなプロファイルを同じプロファイルと定義するか?比較したいのは
 - ●発現変動の大きさ → ユークリッド距離
 - ●発現パターン → コサイン係・相関係数

距離尺度計算の基本要素:

・Centering: 平均値をゼロにする

• Scaling: ベクトルの大きさをIにする

Centering

これらはcentering後は

全く同じプロファイルになる

Scaling

これらはscaling後は 全く同じプロファイルになる

これらはcentering, scaling後は 全く同じプロファイルになる

アルゴリズムに注目:相関係数の場合

$$\frac{(a_{1} - \overline{a})(b_{1} - \overline{b}) + (a_{2} - \overline{a})(b_{2} - \overline{b}) + (a_{3} - \overline{a})(b_{3} - \overline{b})}{\sqrt{(a_{1} - \overline{a})^{2} + (a_{2} - \overline{a})^{2} + (a_{3} - \overline{a})^{2}}\sqrt{(b_{1} - \overline{b})^{2} + (b_{2} - \overline{b})^{2} + (b_{3} - \overline{b})^{2}}}$$

センタリング

スケーリング

距離尺度選択における注意点

方法依存的に抽出される特徴: どのような特徴を認識したいのか/ しているのか意識すること

- 処理間の変動の大きさ: ユークリッド距離
- 処理間のパターンの違い: コサイン係数
- パターンを比較
 - 基準サンプルあり: コサイン係数
 - 基準サンプルなし: 相関係数

多変量解析の実際

教師有りか無しか

(supervised or unsupervised)?

- 事前情報、前提はあるか?
- ある場合はk-means法などの利用を検討

どのような距離行列を使うか?

多変量解析の実際

階層クラスタリング

Agglomerative hierarchical clustering

クラスター定義手法

Average linkage

Complete linkage

Single linkage

階層クラスタリングの利点・欠点

利点

- 簡便・直感的な可視化
- デンドログラム長でのクラス ター比較

欠点

- サンプル・手順依存的
- 1つの距離を指標

主成分分析

Principal component analysis

主成分分析とは?

モチベーション:

多次元データ(多数の遺伝子もしくは多数の サンプル)に含まれる特徴を

- 大きなものから抽出して新たな軸を作り
- ・情報量の大きな低次元でデータを可視化する
 - → 人間が新たな解釈を与える

階層クラスタリング:

プロファイル間の類似性は空間での1つの距離によって決まる

PCAは何をするのか?

PCAは何をするのか?

PCAは何をするのか?

PCAの概略(2次元)

1. 各サンプル(1..n)の観察値(x_n, y_n)を

$$u_n = a_1 x_n + b_1 y_n$$
$$v_n = a_2 x_n + b_2 y_n$$

とおく

足し算→線形

2. $a^2 + b^2 = 1$, $u \ge v$ の相関係数0という制約の下でこれを解いて a_n , b_n を求める。

PCAで得られる重要な統計量

- 寄与率
- 因子負荷量
- 主成分得点

寄与率

• 各主成分が説明する分散の割合

負荷量 loadings

- 得られた主成分と元 データのパラメー ターの相関
- 各パラメーターがも とのデータの情報を どれだけ有するか

主成分得点 scores

各パラメーター (遺伝子)の値 を各主成分につ いて標準化した 統計量

標準化: 平均0, SD=1

biplot:

因子負荷量と 主成分得点を 同時に可視化

source("~/Desktop/gitc/data/MS/dataset/multivariate_analysis_source.R")
PCAresults <- PCA(inputMatrix)</pre>

ex601-3で着 目するPCを決めて可 視化してください

主成分分析(まとめ)

- ・主成分分析は**データの分散を説明** する新たな軸を計算する方法
 - 寄与率
 - 因子負荷量
 - 主成分得点

多次元尺度構成法

Multi-dimensional scaling(MDS), Principal coordinate analysis

多次元尺度構成法とは?

モチベーション:

多次元での各サンプル間の距離を保持して 低次元で表現する (多様体学習の1つ)

⇒ 高次元の距離を低次元に圧縮するため 軸に意味がない

PCAが考慮する距離

MDSが考慮する距離

サンプル間の距離をまず計算する

この定理はサンプルi,jに対し、どこを原 点(点k)としても成り立つ

この定理はサンプルi,jに対し、どこを原 点(点k)としても成り立つ

サンプルj 。 サンプルi 点k

$$d_{ij}^2 = d_{ik}^2 + d_{jk}^2 - 2d_{ik}d_{jk}\cos\theta$$

MDSとPCAの違い

Raw data (3 genes)

MDS (2D)

PCA (2 PCs)

多次元尺度構成法とは?

モチベーション:

多次元での各サンプル間の距離を保持して 低次元で表現する

⇒ 高次元の距離を低次元に圧縮するため 軸に意味がない

PCA/MDSのまとめ

データがもつ類似性を低次元で表現し、評価・可視化する

	PCA	MDS
軸に意味がある	Yes	No
データ全体におけるサンプルの総体的な位置関係を 保持するか?		
データが線形である場合	Yes	Yes/No
データが非線形である場合	No	Yes/No データが非線形であると きに局所的な類似関係を うまく表現しうる

・重心の置き方に違い: 入力データをどのように前処理するか

多様体学習: 非線形データの多変量解析

モチベーション:

非線形のデータ構造を低次元に圧縮して表現する

- Locally linear embedding
- Isomap
- t-SNE
- UMAP

} NGS解析にあまり使われないので

割愛するが、IsomapはMDSの

延長として勉強するのに有用

注意点:局所(サンプル間)の距離・関係を重視し、 全体の距離は犠牲にしている

t-SNE, UMAP

モチベーション:

非線形のデータ構造を低次元に圧縮して表現する

- 多様な状態のサンプル間の関係性、クラスターを特定する
- single cell omicsデータ解析におけるMDSの立ち位置

t-SNE, UMAPアルゴリズム概略

- Ⅰ. サンプル間の距離を計算
- 2. 高次元でのサンプル間距離が低次元でも同様 になるよう調整(embedding, 埋め込み)
 - I. t-SNE: t-分布を使って距離を調整
 - 2. UMAP: グラフ解析を利用

Step 1: Compute a graphical representation of the dataset

Step 2 (non-parametric): Learn an embedding that preserves the structure of the graph

Sainberg et al. (2009) arXiv:2009.12981

人工非線形データの多変量解析

- 時間で変化する細胞集団2つ
- ランダムな状態の細胞集団1つ

- 分布: 2次元ではスイスロール
- 残りの 1 次元: 初めは多様性が低い

PCA, MDS, t-SNE, UMAP

t-SNE/UMAPの特徴

t-SNE/UMAPの特徴

- 近傍のサンプルの クラスター化
- 実空間での距離・サンプル分布は反映しない
 - クラスターサイズは関係ない

t-SNE/UMAPの違い

- クラスターの分離: UMAP > t-SNE
- 速度: UMAP < t-SNE
- t-SNEは結果が必ず同じ結果になるとは限 らない(収束していない可能性がある)

多様体学習: 非線形データの多変量解析

- t-SNE
- UMAP
 - : 非線形高次元データのクラスタリングが可能

注意点:局所(サンプル間)の距離・関係を重視し、 全体の距離は犠牲にしていることを念頭に 入れて結果を解釈する必要性あり

多変量解析をもう一歩進めて: 入力データは何を使うか?

有意差検定 ………… ▶ 次元圧縮

多変量解析をもう一歩進めて:

人間の解釈をアシストするデータ取得を心がける

多変量解析の枠組み

多次元(例: 多パラメーター)を

より少ない指標を使って理解する

N個のサンプルをM個(M < N)の

グループに分類する

→ 人間が新たな解釈を与える

コントロール、 指標サンプルは 含められるか?

今回の内容で扱わなかった重要項目

- 教師あり多変量解析
 - k-means法
- 非線形多変量解析・次元圧縮の詳細

連絡:コピーライト

コピーライトは佐藤にあります。 資料内容の使用については下記連絡先までご 連絡ください。

satox@agr.hokudai.ac.jp