Minimização de Função: Função Ackley

Eduardo Barreto Daniel Carriço Juliana Damurie Matheus Casa Nova

Configurações & Algoritmos

- Representação (genótipo): array de 30 números reais
- Probabilidade de Recombinação: 90%
- Probabilidade de Mutação: 5%
- Tamanho da população: 100
- Inicialização: aleatória (sem repetição)

- Seleção: Melhores pais aleatórios com elitismo
- Cruzamento: Crossover modificado
- Mutação: Não Uniforme modificada
- Critério de parada: 10000 gerações ou fitness > 0.999
- Arredondamento dos números reais para 7 casas decimais

Seleção: Melhores pais aleatórios com elitismo

- Seleciona 5 indivíduos aleatoriamente;
- escolhe os 2 indivíduos com maior fitness;
- cruza os dois indivíduos escolhidos; e
 - o se o filho gerado tiver maior fitness que o pior da população, ele o substitui;
 - o caso contrário, o filho é descartado.

Cruzamento: Crossover modificado

- Tendo os pais:
 - o paia = [x1, x2, ..., xn]
 - \circ paib = [y1, y2, ..., yn]
- seleciona-se um ponto de corte (pc) aleatório entre 0 e o tamanho do indivíduo:
- seleciona-se um "fator de crossover" (fc) aleatório entre 0 e 1;
- cria-se dois genes resultantes de um crossover comum:
 - halfa = [x1, x2, ..., xpc, ypc+1, ..., yn]
 - halfb = [y1, y2, ..., ypc, xpc+1, ..., xn]
- multiplica-se cada gene pelo fator de crossover fc e divide-se por 2:
 - \circ halfa = halfa * fc * 0.5
 - \circ halfb = halfb * fc * 0.5
- gera-se um filho único como a soma das duas metades:
- filho = halfa + halfb

Mutação: Não Uniforme modificada

- Tendo o indivíduo:
 - o individuox = [x1, x2, ..., xn];
- gera-se um array de mesmo tamanho de floats aleatórios entre 0 e 1:
 - \circ z = [z1, z2, ..., zn]
- soma-se os dois arrays de forma que o novo indivíduo resulte em:
 - o individuoNovox = individuox + z = [x1 + z1, x2 + z2, ..., xn + zn]

Método de Avaliação de Algoritmo

- 10000 repetições de cada algoritmo (cada repetição com a mesma população)
- Mantivemos o tamanho da população e a representação
- Média de:
 - Quantidade de Passos (gerações) até chegar a resposta desejada
 - Média de Fitness dos indivíduos por geração
 - Média de Fitness dos melhores indivíduos por geração
 - Tempo de execução até achar a resposta
 - Soma de fitness dos indivíduos

Considerações Finais

- Outros algoritmos foram testados, mas esse foi o que trouxe melhores resultados. Justificativa:
 - Passos pequenos na exploração;
 - Mantém genes bons, mas ainda assim os varia um pouco, o que faz com que evite mínimos locais;
 - Mutações com baixa probabilidade e pouca variação, evitando a destruição do indivíduo
 - Só mantém o filho se ele for bom o suficiente, descartando caso tenha sido um filho ruim (evita levar a população toda para algum lugar não promissor)

Considerações Finais

- Os outros algoritmos, descritos no relatório, são:
 - Seleção:
 - Melhores pais / piores indivíduos
 - Matar metade da população
 - Sobrevivência dos mais fortes
 - Melhores pais aleatórios com elitismo*
 - Cruzamento:
 - Cruzamento Discreto
 - Cruzamento Intermediário
 - Cruzamento BLX-alpha
 - Crossover modificado*

A configuração escolhida foi retirada de um artigo:

"Algoritmo genético modificado para minimização de funções".

Joelan A. L. Santos, Márcio M. da Silva, José de A. da S. Júnior, André C. A. Firmo e Tiago A. E. Ferreira.

Publicado no 8º Encontro Regional de Matemática Aplicada e Computacional;

- Mutação:
 - Uniforme
 - Não Uniforme
 - Gaussiana
 - BLX-alpha
 - Não Uniforme Modificada*

Breve visualização de resultados

