Topologia Diferencial

Índice

1	Aul	a $oldsymbol{1}$	
	1.1	Plano do curso, bibliografia	
	1.2	Resumo da aula 1	
2		" 	
	2.1	Lembre	
	2.2	Fórmula de mudança de bases	
	2.3	Fibrado tangente	
	2.4	Imersões e mergulhos	
		2.4.1 Valores regulares	
	2.5	Fibrados vetoriais	
	2.6	Seções 6	
3	Aula 3: Teorema de Sard 7		
	3.1	Transversalidade: Teorema de Sard	
4	Aul		
	4.1	Teorema de Sard	
		Espaço de jatos	
		4.2.1 Estrutura diferenciável no espaço de jatos	

1 Aula 1

1.1 Plano do curso, bibliografia

Cronograma

- 0. Revisão de variedades.
- 1. Transversalidade: Sard, top. forte, fraca, aproximação.
- 2. Teoria da interseção e indice.
- 3. Teoria de Morse.
- 4. Tópicos adicionais (possiveis): h-cobordismo, top. de baixa dimensão, Poincaré $n\geqslant 5.$

Bibliografía: [Mil65] (intuição), [GP10] (tranqui, tem muito), [Hir12] (pesado, tem tudo, e importante ler, usa Análise Funcional).

1.2 Resumo da aula 1

- 1. Revisão de vriedades, espaço topológico, 2-enumerável, 2-contável, Hausdorff, loc. euclidiano, dimensão é fixa nas componentes conexas, def. de carta, atlas, atlas C^k, atlas maximal. **Obs.** Existem atlas que não contém sub atlas C^k.
- 2. **Teorema.** $k = 1, ..., +\infty$ tuda C^k -variedade é C^k -difeomorfa a uma C^∞ -variedade.
- 3. **Teorema.** $1 \le \ell \le k \le +\infty$, se M, N são C^k-variedades, C^{ℓ}-difeomorfas, então M e N são C^k-difeomorfas. No será ℓ ?
- 4. **Partições da unidade**. Definição. **Exercício:** toda variedade topológica é paracompacta. **Teorema:** M variedade C^{∞} e $\{U_i\}$ cobertura, então existe C^{∞} partição da unidade subordinada.

2 Aula 2

2.1 Lembre

Dada uma variedade suave M. Definimos como velocidades de curvas ou como derivações: T_pM é um espaço vetorial de dimensão n, onde para $p \in U$, (U, ϕ) carta, $\phi = (x^1, \dots, x^n \text{ com base } \left\{ \frac{\partial}{\partial x_1} \bigg|_{p}, \dots, \frac{\partial}{\partial x^n} \bigg|_{p} \right\}$. O *espaço cotangente* é

$$T_p^*M=(T_pM)^*=\text{Hom}(T_pM,\mathbb{R}).$$

A base dual é $\{dx^1|_p, \dots, dx^n|_p\}$ dada por

$$dx^{i}|_{p} = \left(\frac{\partial}{\partial x^{j}}\right)\Big|_{p} = \delta^{j}_{i} = \begin{cases} 1 & \text{se } i = j\\ 0 & \text{se não} \end{cases}$$

e ai extendemos por linearidade a todos os demais covetores.

Observação Note que mudando de carta a gente muda de base—não tem uma base canônica do espaço cotantente.

2.2 Fórmula de mudança de bases

Fórmula de mudança de bases (Exercício) $(U, \phi), (V, \psi), p \in U \cap V, \phi = (x^1, ..., x^n, \psi(y^1, ..., y^n \text{ com bases})$

$$\left\{ \frac{\partial}{\partial x_1} \Big|_{\mathfrak{p}}, \dots, \frac{\partial}{\partial x^n} \Big|_{\mathfrak{p}} \right\}, \qquad \left\{ \frac{\partial}{\partial y_1} \Big|_{\mathfrak{p}}, \dots, \frac{\partial}{\partial y^n} \Big|_{\mathfrak{p}} \right\},$$

mostre que

$$\frac{\partial}{\partial x^{j}} = \sum_{i=1}^{n} \frac{\partial y^{i}}{\partial x^{j}} \frac{\partial}{\partial y^{i}}$$

2.3 Fibrado tangente

M variedade,

$$TM := \bigsqcup_{p \in M} T_p M.$$

Note que para toda carta (U, φ) existe uma bijeção

$$\phi^{-1}: \mathbf{U} \times \mathbb{R}^n \longrightarrow \pi^{-1}(\mathbf{U})$$
$$\left(p, (\nu_1, \dots, \nu_n)\right) \longmapsto \sum_{i=1}^n \nu_i \frac{\partial}{\partial x^i}$$

usando essa bijeção, topologizamos TM. Mas ainda, induz uma estrutura de variedade topológica com cartas dadas pelas φ. Mas exatamente, as cartas são

$$\begin{split} \varphi_{(U,\phi)} : \pi^{-1}(U) &\longrightarrow \phi(U) \times \mathbb{R}^n \subset \mathbb{R}^{2n} \\ & \sum \nu_i \frac{\partial}{\partial x^i} \bigg|_p &\longmapsto \Big(\phi(p), (\nu_i)\Big) \end{split}$$

e a mudança de coordenadas também é C^{∞} , i.e. esa estrutura é diferenciável.

Observação Se variedade é C^k , o fibrado tangente é C^{k-1} .

A gente vai fazer isso mesmo com o fibrado cotangente:

$$T^*M = \bigsqcup_{p \in M} T_p^*M.$$

O mesmo procedimento mostra que T^*M é uma C^{∞} -variedade de dimensão 2n.

Observação Para todo $p \in M$ existe $U \ni p$ vizinhança tal que $\pi_1(U) \cong U \times \mathbb{R}^n$. Mas $TM \not\cong M \times \mathbb{R}^n$ em geral; nesse caso dizemos que M é *paralelizável*.

Casos onde $TM \cong M \times \mathbb{R}^n$

- 1. $M \cong \mathbb{R}^n$, $TM \cong \mathbb{R}^n \times \mathbb{R}^n$.
- 2. $M = S^1$, $TS^1 \cong S^1 \times \mathbb{R}$.
- 3. M 3-variedade orientável, então TM \cong M \times \mathbb{R}^3 . (Difícil mas verdadeiro.) **Hint.** Usando quaternios não é difícil obter uma base global.

2.4 Imersões e mergulhos

Até agora definimos funções suaves, mas não o que é a diferencial delas.

Definição M, N variedades suaves e f : $M \rightarrow N$ suave. A *derivada de* f é

$$Df_{\mathfrak{p}}: T_{\mathfrak{p}}M \to T_{f(\mathfrak{p})}N$$
,

uma aplicacão linear que pode ser definida usando a definição do espaço tangente de curvas ou de derivações. Se pensamos que ν é uma clase de equivalência de curvas, $Df_p[\gamma] = [f \circ \gamma]$. Se $\nu : C^\infty(M) \to \mathbb{R}$ é uma derivação, a definição é o pus rward

$$\begin{aligned} Df_p\nu : C^\infty(N) &\longrightarrow \mathbb{R} \\ (Df_p\nu)g &\longmapsto \nu(g\circ f). \end{aligned}$$

Tem outra forma de definir, que usando cartas coordenadas, onde Df_p está dada como uma matriz em termos das bases locais: em cartas $(U,\phi),(V,\psi)$ de p e f(p), $\phi=(x^1,\ldots,x^n)$ e $\psi=(y^1,\ldots,y^n)$. A notação fica

$$\mathrm{Df}_{\mathrm{p}}\left(\frac{\partial}{\partial x^{\mathrm{j}}}|_{\mathrm{p}}\right) = \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial f_{\mathrm{i}}}{\partial x^{\mathrm{j}}}|_{\mathrm{p}} \frac{\partial}{\partial y^{\mathrm{i}}}|_{\mathrm{f(p)}}$$

onde $\frac{\partial f_i}{\partial x^j}$ é definida como

$$D(\psi \circ f \circ \phi^{-1})_{ij} = \frac{\partial}{\partial x^j} (\psi \circ \phi \circ \phi^{-1})$$

Definição Seja $f: M \to N$ uma função suave. f é uma *imersão em* p se a derivada Df_p é injetiva. f é uma *submersão em* p se Df_p é sobrejetiva. f é um *mergulho* se é uma imersão injetiva tom inversa $g: f(M) \to M$ contínua.

Exemplo O exemplo mas fácil é o caso das incusões em variedades produto:

$$M \longrightarrow M \times N$$
$$p \longmapsto (p,q)$$

E as projecões:

$$M \times N \longrightarrow M$$
 $(p,q) \longmapsto p$

Outros exemplos de submersões são as projeções dos fibrados tangente e cotangente.

Para ver por que na definição de mergulho pedimos que a inversa seja contínua, considere o seguinte contraexemplo: $\mathbb{R} \to \mathbb{R}^2$ uma curva que tem um ponto límite demais: a topologia no domínio é uma linha, mas a topologia no contradomínio e de um outro espaço, mas f é um mergulho injetivo! A inversa de f não é contínua (não manda limites em limites).

Observação Se $f: M \to N$ é um mergulho, então f(M) herda uma estrutura de variedade diferenciável e f é um difeomorfismo entre M e f(M).

Upshot Merhulo são as treis condições que precisamos para que a imagem de f(M) tenha estrutura diferenciável e f um difeomorphismo entre M e f(M). O lance é usar o teorema da função inversa. f(M) é chamada de uma *subvariedade* de N.

Uma definição alternativa de *subvariedade* é que para cada ponto $p \in Q \subset M$, Q subespaço topológico, existe uma carta de N tal que $\phi(U \cap Q) = \mathbb{R}^k$. (Misha's). Tem uma terceira definição: Q é a imagem de um mergulho; para isso pode usar a inclusão como o mergulho. In Misha's handouts:

Exercise 2.23 Let N_1 , N_2 be two manifolds and let $\varphi_i : N_i \to M$ be smooth embeddings. Suppose that the image of N_1 coincides with that of N_2 . Show that N_1 and N_2 are isomorphic.

Remark 2.10 By the above problem, in order to define a smooth structure on N, it sufficies to embed N into \mathbb{R}^n . As it will be clear in the next handout, every manifold is embeddable into \mathbb{R}^n (assuming it admits partition of unity). Therefore, in place of a smooth manifold, we can use "manifolds that are smoothly embedded into \mathbb{R}^n ".

Notação Se f : $M \to N$ é uma imersão escrevemos $M \xrightarrow{\circ} N$, se é mergulho $M \hookrightarrow N$ e se é submersão f : $M \to N$.

Uma subvariedade imersa é a imagem de uma imersão (que pode nem ser variedade...)

Observação $Q \subset M$ subvariedade, então existe uma inclusão natural $T_qQ \subset T_qM$ (linear injetiva) para todo $q \in Q$. Claro, a derivada da inclusão $\iota: Q \to M$, i.e. $D\iota_q: T_qQ \to T_qM$.

kj Dado $q \in Q$, existe (U, ϕ) carta de M tal que $\phi|_{U \cap Q}$ é uma carta de Q, é só botar a base $\left\{\frac{\partial}{\partial x_1}\Big|_p, \ldots, \frac{\partial}{\partial x^n}\Big|_p\right\}$ dentro da base de M.

2.4.1 Valores regulares

Definição Seja $f: M \to N$ C^{∞} , um ponto $y \in N$ é dito *valor regular* se f é uma submersão em x para todo $x \in f^{-1}(y)$ i.e. Df_x é sobrejetiva para todo $x \in f^{-1}(y)$.

Teorema (Do valor regular) Se y é um valor regular de f, então $f^{-1}(y)$ é uma subvariedade de M de dimensão dim M – dim N. (Se $f^{-1}(y) \neq \emptyset$.)

Observação Isso é só outra encarnação do teorema da função implícita.

Demostração. $x \in f^{-1}(y) := Q$. Pega cartas ϕ de x e ψ de y. Supondo que $f(U) \subset V$, e que x,y tem coordenadas 0.

$$U \subset M \xrightarrow{f} V \subset N$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{R}^{m} \xrightarrow{\Phi: \psi \circ f \circ \varphi^{-1}} \mathbb{R}^{n}$$

Note que $\Phi(0) = 0$ e que $\Phi^{-1}(0) = \varphi(f^{-1}(y) \cap U)$.

Afirmação $\Phi^{-1}(0)$ é uma subvariedade.

Para tudo ficar claro vamos reescrever o teorema de função implícita. $\Phi'(0)$ é sobrejetiva. Temos que

$$: \mathbb{R}^m \longrightarrow \mathbb{R}^n \times \mathbb{R}^{m-n}$$
$$z \longmapsto \Phi(z)$$

A ideia é que existe uma vizinhança W de $0 \in \mathbb{R}^m$ e um difeomorfismo $\eta: W \to W^\smile$ tal que

$$\phi \circ \eta : W \subset \mathbb{R}^n \times \mathbb{R}^{m-n} \longrightarrow \mathbb{R}^n$$
$$(x_1, x_2) \longmapsto x_1$$

2.5 Fibrados vetoriais

Um fibrado vetorial é uma coisa que generaliza os fibrados tangente e cotangente.

Definição Sejam E, M variedades e $\pi: E \to M$ submersão sobrejetiva. Dizemos que π é um *fibrado vetorial* se para todo $p \in M$, $\pi^{-1}(p) = E_p$ possui uma estrutura de espaço vetorial tal que para todo $p \in M$ existe $U \ni p$ aberto e um difeomorfismo $\phi: \pi^{-1}(U) \to U \times \mathbb{R}^n$ tal que o seguinte diagrama comuta

e

$$\phi|_{E_\mathfrak{p}}:E_\mathfrak{p}\to\{\mathfrak{p}\}\times\mathbb{R}^n$$

é um isomorfismo.

Exemplo $TM, T^*M, TM \oplus TM, TM \otimes TM, \Lambda^k(TM), \Lambda^k(T^*M), Sym^k(TM).$

2.6 Seções

Definição Uma *seção* de π : $E \rightarrow M$ é s : $M \rightarrow E$ suave tal que $\pi \circ s = id$

$$E \\ \pi \downarrow \hat{j} s \\ M$$

Uma seção de TM é uma função $X : M \to TM$ tal que $X(p) \in T_pM$, um *campo vetorial*.

Teorema (da bola cabeluda) $M = S^n$, n par, $X : M \to TM$ campo vetorial, então existe $p \in M$ tal que $X(p) = 0 \in T_pM$.

Notação $\Gamma(E) = \{\text{seções de } \pi : E \to M\}, \Gamma(TM) = \mathfrak{X}(M), \Gamma(T^*M) = \Omega^1(M), \Gamma(\Lambda^k(T^*M)) = \Omega^k(M).$

Para qualquer espaço vetorial V,

$$Sym^2(V^*) = \{f : V \times V \to \mathbb{R}, \text{ bilinear, } f(x,y) = f(y,x)\} \subset V^* \otimes V^*.$$

E para fibrado vetorial E,

$$Sym^2(E) = \bigsqcup_{p \in M} Sym^2(E_p^*).$$

Definição Uma *métrica Riemanniana* em E é uma seção s : $M \to Sym^2(E)$ tal que $s(p) : E_p \times E_p \to \mathbb{R}$ é positiva definida, i.e. s(p)(x,x) > 0 se $x \ne 0$.

Observação (Aprox.) Todo fibrado vetorial tem uma métrica Riemanniana: usando a métrica euclidiana dada em cada carta, usamos uma partição da unidade para extender a uma seção global, somar e notar que fica positiva definida.

É muito fácil construir seções do fibrado cotangente: para $f \in C^{\infty}(M)$, a diferencial $df : M \to T^*M$ é uma seção do fibrado cotangente, i.e. $df \in \Gamma(T^*M)$ porque

$$df_{\mathfrak{p}} = Df_{\mathfrak{p}} : T_{\mathfrak{p}}M \to T_{f(\mathfrak{p})}\mathbb{R}$$

Exercício Qualquer seção é um mergulho de M em E.

Mais uma g uma métrica Riemanniana em TM.

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

$$g_p^{\sharp}: T_pM \longrightarrow T_p^*M$$
 $v \longmapsto g(v, \cdot)$

Então o gradiente de f é

$$(g_p^\sharp)^{-1}(df_p) := grad_p f$$

3 Aula 3: Teorema de Sard

Teorema da função implícita (aula pasada)

Uma função $f: \mathbb{R}^n \to \mathbb{R}^m$ suave tal que f(0) = 0 e f'(0) é sobrejetiva ($\implies n \geqslant m$). Então existe uma vizinhança de $0 \in \mathbb{R}^n$ U e \tilde{U} e um difeomorfismo $\phi: U \to \tilde{U}$ tal que

$$f \circ \phi : \mathbb{R}^m \times \mathbb{R}^{n-m} \longrightarrow \mathbb{R}^m$$
$$(x, y) \longmapsto x$$

Demostração. Parecido como a prova de [Tu10] no teorema do valor regular, usando uma matrix com um ∗, a identidade, e uma matriz invertível.

3.1 Transversalidade: Teorema de Sard

A prova do teorema de Sard é muito técnica. Porém, a parte difícil é só análise em \mathbb{R}^n .

Pegue $a = (a_1, ..., a_n), b = (b_1, ..., b_n) \in \mathbb{R}^n$, defina um *cubo* como sendo

$$c(a,b) = \prod_{i=1}^{n}]a_i, b_i [\subset \mathbb{R}^n.$$

Note que $Vol(a, b) = \prod_{i=1}^{n} (b_i - a_i)$.

What [Lee13] does

- 1. A compact subset whose intersection with every hyperplane has measure zero has measure zero.
- 2. Graph of continuous function has measure zero.
- 3. Affine subspaces of \mathbb{R}^n have measure zero.
- 4. Smooth map maps measure zero to measure zero.
- 5. A set in a manifold has *measure zero* if it(s intersection with the respective domain) is mapped to a set of measure zero by any chart.
- 6. Confusing lemma.
- 7. Complement of zero measure is dense (in manifolds).
- 8. Smooth map of manifolds maps measure zero to measure zero.
- 9. Sard's theorem (heavy proof): critical value set of smooth map has measure zero.
- 10. Corollary (minisard): image of smaller dimension manifolds under smooth map has measure zero. Corollary 2: smaller dimension immersed submanifolds have measure zero.
- 11. Up next: Whitney embedding theorem.

Definição

 $S \subset \mathbb{R}^n$ possui *medida nula* se $\forall \epsilon > 0$ existe $\{c_i\}_{i=1}^\infty$ cubos (ou bolas) tais que

$$S \subset \bigcup_{i=1}^{\infty} Vol(c_i) < \epsilon$$

Proposição

- 1. Uma união enumerável de conjuntos de medida nula tem medida nula.
- 2. $f: \mathbb{R}^n \to \mathbb{R}^n$ C^1 e $S \subset \mathbb{R}^n$ tem medida nula, então f(S) tem medida nula.

Demostração.

- 1. $\{S_i\}$ enumerável de medida nula, para cada i você pode escolher cubos C_1^i, C_2^i, \ldots que cobren S_i e tal que a soma dos volumes deles é menor do que $\sum_j \text{Vol}(C_j^i) < \frac{\epsilon}{2^i}$. Vai ver que a soma dos volumeis variando tanto i como j da ϵ .
- 2. (Foto)

Definição X variedade diferenciável. $S \subset X$. Dizemos que S tem *medida nula* se $\exists \{U_i\}_{i=1}^{\infty}$ cobertura aberta de S, i.e. $\bigcup_{i=1}^{\infty} S_i \supset S$, e cartas $\phi_i: U_i \to \mathbb{R}$ e $S_i \subset U_i$ e $\phi(S)$ tem medida nula.

O más bien: sólo el chiste es que cada conjunto tiene medida en \mathbb{R}^n cuando proyectas con cualquier carta.

Corolário

- 1. $\{S_i\}_{i=1}^{\infty}.$ $S_i\subset X$ medida nula, entao $\bigcup_{i\in\mathbb{N}}S_i$ tem medida nula.
- 2. X^n, Y^n variedades, $f: X \to Y$ suave, $S \subset X$ medida nula. Então f(S) tem medida nula.

Proposição Y^n variedade, $X^m \subset Y^n$ subvariedade de dimensão m < n. Então X tem medida nula.

Demostração. É simplesmente levar para \mathbb{R}^n : considera X_i como a parte de X que está den'de cada U_i no atlas de Y e vai ver que ele tem dimensão menor. Daí é só provar que subespaços (acho que lineares) de dimensão menor em \mathbb{R}^n tem dimensão menor.

Corolário (Minisard) X^m, Y^n variedades m < n e $f: X \to Y$ suave. Então f(X) tem medida nula.

Demostração. Aqui se usa o corolário: usar a inclusão $\iota: X \to X \times \mathbb{R}^{n-m}, x \mapsto (x,0)$, compor com $\tilde{f}: X \times \mathbb{R}^{n-m} \to Y$, $(x,y) \mapsto f(x)$. Então $\tilde{f}(i(X)) = f(X)$. O lance é que $\iota(X)$ é uma subvariedade de codimensão positiva, então pela prop anterior tem medida nula. Daí f(X) também.

Corolário (Versão fácil do teorema de mergulho de Whitney) Se Xⁿ variedade diferenciável compacta, então existem

$$X \hookrightarrow \mathbb{R}^{2n+1}$$
, $X \stackrel{\circ}{\longrightarrow} \mathbb{R}^{2n}$

Teorema (Difícil de Sard)

$$X \hookrightarrow \mathbb{R}^{2n}, \qquad X \longrightarrow \mathbb{R}^{2n-1}$$

Demostração.

Step 1 Mergulhar a variedade num espaço euclidiano *grande*. Pegue um atlas finito $\{(U_i, \phi_i)_{i=1}^k\}$, note que $\phi_i : U_i \to \mathbb{R}^n$ são mergulhos.

Ideia

$$\begin{split} \Phi: X &\longrightarrow \mathbb{R}^n \times \mathbb{R}^n \times \ldots \times \mathbb{R}^n \subset \mathbb{R}^{nk} \\ p &\longmapsto (\phi_1(p), \phi_2(p), \ldots \end{split}$$

Isso não da. Para fazer bem precisamos de uma partição da unidade $\{\rho_i\}_{i=1}^k$ subordinada a $\{U_i\}_{i=1}^k$ sobertura. Defina $\rho_i\phi_i:X\to\mathbb{R}^n$ como sendo zero fora do conjunto bom; note que essa função não é mais um mergulho, mas tudo bem. Agora faça $X\to(\mathbb{R}^n)^k\times\mathbb{R}^k=\mathbb{R}^{nk+k}$

$$\begin{split} \Phi: X &\longrightarrow (\mathbb{R}^n)^k \times \mathbb{R}^k = \mathbb{R}^{nk+k} \\ p &\longmapsto \Big((\rho_1 \phi_1)(p), \dots, \Big(\rho_k \phi_k)(p) \Big) \end{split}$$

Exercício (Importante) Mostre que Φ é uma imersão injetiva.

Step 2 Afirmação:

$$X \hookrightarrow \mathbb{R}^n \implies \begin{cases} X \hookrightarrow \mathbb{R}^{N-1} & \text{se } N > 2n+1 \\ X \xrightarrow{\circ} \mathbb{R}^{N-1} & \text{se } N > 2n. \end{cases}$$

Prova da afirmação. Vamos projetar a variedade mergulhada em \mathbb{R}^n no plano ortogonal a algum vetor $\mathfrak{a} \in \mathbb{R}^n$. Resulta que

Exercício

$$g: X \times X \times \mathbb{R} \longrightarrow \mathbb{R}^{N}$$

 $(x, y, t) \longmapsto pr_{\alpha} \circ f$

é injetiva.

Step 3 Ideia: ver que em quase todo ponto podemos projetar.

Considere agora o mapa pusforward que pega um vetor tangente e manda mediante f:

$$h: TX \longrightarrow \mathbb{R}^{N}$$
$$(x, v) \longmapsto (Df)_{x}v$$

Agora note que

Afirmação $a \notin Im(h) \iff pr_{\alpha} \circ f \text{ \'e uma imersão} \iff D(pr_{\alpha} \circ f)_{\alpha} \text{ \'e injetiva para toda } x.$

Step 4 A prova termina usando minisard: as imagens de g e de h tem medida nula. Mesmo a união delas. Então existe um ponto fora dessa união.

Definição Sejam X^m , Y^k variedades, $f: X \to Y$ suave, dizemos que

- (a) x ∈ X é ponto crítico se o posto de Df_x é menor do que min(m,n). (← não é surjetiva I think) Aula 7: essa definição é que a derivada não é de posto máximo. Isso permete que o domínio tenha pontos regulares, así fez Sard e [GG74], mas não [Lee13], [GP10].
- (b) $x \in X$ é *ponto regular* se posto $Df_x = min(m, n)$.
- (c) $y \in Y \text{ \'e } valor \text{ cr\'etico}$ se existe um ponto cr\'etico tal que f(x) = y.
- (d) $y \in Y$ é *valor regular* se $\forall x \in f^{-1}(y)$, x é valor regular.

Teorema (Sard) $f: X \to Y$ suave. Então {valores críticos} tem medida nula.

Observação

1. Teorema vale se f é C^{ℓ} , onde $\ell > max(m-n,0)$.

Demostração.

Step 1 Redução para a versão local. Supomos que $X = \mathbb{R}^m$, $Y = \mathbb{R}^n$. $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$, U aberto.

Crit
$$f = \{x \in 0 : posto f'(x) < min(m, n)\}$$

Então f(Crit(f)) tem medida nula. Para isso fazemos **indução** em m. m = 0 trivial.

C_i vai ser o conjunto onde as derivadas parciais se anulam até i:

$$C_{\mathfrak{i}} = \left\{ \mathfrak{p} \in U : \frac{\partial^{(\alpha)}}{\partial x^{\alpha}} f_k(\mathfrak{p}) = 0 \forall \alpha, 0 < |\alpha| \leqslant 1, \forall k \right\}.$$

Note que $C_{\mathfrak{i}+1} \subset C_{\mathfrak{i}} \subset C_{\mathfrak{i}-1} \subset \dots C_1 \subset C := Crit\, f.$

Objetivo f(C) tem medida nula.

Paso 1 $f(C_N)$ tem medida nula para algum $N \gg 0$. Crucial

Paso 2 $f(C_i \setminus C_{i+1}$ tem medida nula para toda i.

Paso 3 $f(C \setminus C_i \text{ tem medida nula.}$

Paso 1 Podemos supor sem perda de generalidade que U ⊂cubo, a fórmula de Taylor diz que

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\|_{\infty} \leq \mathbf{K} \cdot \|\mathbf{x} - \mathbf{y}\|_{\infty}^{i+1}$$

para todo $x, y \in C_i$.

Tem que botar C_i den'de um cubo D_j que se divide em r^m cubos de lado b/r. Então $f(D_j)$ está contido num cubo em \mathbb{R}^n de lado $K \cdot \left(\frac{b}{r}\right)^{i+1} := R_j$. Também note que pontos den'de D_j são tq. $\|x-y\|_{\infty} \leqslant \frac{b}{r}$.

Agora

$$f(C_i) \subset f\left(\bigcup_{j=1}^{r^m} D_j\right) \subset \bigcup_{j=1}^{r^m} f(D_j) \subset \bigcup_{j=1}^{r^m} R_j.$$

Então

$$\begin{split} \sum_{j=1}^{r^m} Vol(R_j) &= r^m \cdot K^n \cdot \left(\frac{b}{r}\right)^{(i+1) \cdot n} \\ &= \frac{K^n \cdot b^{n(N+1)}}{r^{n(N+1)-m}} \end{split}$$

Step 2

4 Aula 4§

4.1 Teorema de Sard

Teorema (Sard) $f: \mathbb{R}^m \to \mathbb{R}^n$ C^ℓ , $\ell > max(m-n,0)$. Então {valores críticos} tem medida nula.

Demostração. **Note que** {valores críticos} = $f({ptos críticos})$.

Seja $C = \{ ptos \ críticos \ de \ f \}$. Então aproximamos a conjunto onde todas as derivadas parcias são zero com o conjunto C_i onde as derivadas parciais até i se anulam.

Passo 1 $f(C_N)$ tem medida nula se N > max(m - n, 0). (Feito na aula pasada.)

Passo 2 $f(C_i \setminus C_{i+1} \text{ tem medida nula})$

Passo 3 $f(C \setminus C_1 \text{ tem medida nula.}$

Concluimos porque f(C) é a união de treis conjuntos de medida nula: um por cada passo. Segundo e terceiro passos são com indução em m.

Prova:

Passo 1 Feito ontem.

Passo 2 A ideia é que podemos dar coordenadas de dimensão 1 menos usando que a derivada i + 1 não se anula. (Acho.)

Passo 3 É parecido só que um pouco mas dificil. No caso anterior os valores da função h são zero, aqui não (ver foto). Aqui usamos

Lemma A compact subset whose intersection with every hyperplane has measure zero has measure zero:

 $A \subset \mathbb{R}^n$ compacto tal que $X \cap \{x\} \times \mathbb{R}^{n-1}$ tem medida nula em \mathbb{R}^{n-1} para toda $x \in \mathbb{R}$. Então A tem medida nula.

Prova do lema. A ideia es pegar uma faixinha de altura x e cobrir esse pedaço de A com quadradinhos naquele plano C_j^x . Dai, "como A é compacto" podemos pegar um $I_x \subset \mathbb{R}$ intervalo tal que para todo $y \in I_x$ (y perto de x), a faixinha de altura y fique contida em $\bigcup I_x \times C_j^x$

Ideia. Como A é compacto podemos pegar um mini intervalo tal que todas as faixinhas muito pertinho (bom, a parte de A em cada faixinha) fica den'dos quadrados C_i^x multiplicados por esse mini-intervalo.

Agora calculamos os vulmeis. Lembre de análise na reta (ver [Lee13] lem 6.2, tem que shrink os intervalos) que a soma dos comprimentos dos intervalos I_{x_i} que conformam uma cobertura esencial (não pode tirar nenhum dos abertos da coberta) de um intervalo L **é menor do que duas vezes o tamanho do intervalo**: $\sum compr(I_{x_i}) < 2(2L) = 4L.$

Em fim, a soma dos comprimentos é um número finito. Então fica que

$$\sum_{i,j} Vol(I_{\kappa_i} \times C_j^{\kappa_i} = \sum_i \sum_j Vol_1(I_x) \, Vol_{n-1}(C_j^{\kappa_i}) < \epsilon \sum Vol_1(I_{\kappa_i}) < 4L\epsilon.$$

4.2 Espaço de jatos

Son como vectores de orden de diferenciabilidad más grande: a ideia é generalizar o espaço tangente e o espaço cotangente para derivadas de ordem maior.

Definição

Dos funciones $f, g: X \to Y$ suaves que mandan p al mismo punto son equivalentes si existem cartas tales que las derivadas parciales de sus representaciones en coordenadas coinciden hasta orden k.

Sejam X, Y variedades diferenciaveis suaves e f, g: X \rightarrow Y suaves. Dizmos que f \sim_k g em p \in X se, intuitivamente, as derivadas parciais de f e g coincidem até ordem k. Isso é inuitivo porque precisamos pegar cartas para isso ficar bem definido: precisamos que existam cartas (U, ϕ) , (V, ψ) aoredor de p e f(p) tais que

$$\frac{\partial^{|\alpha|}}{\partial x^\alpha}(\psi\circ f\circ \phi^{-1}(\phi(p))=\frac{\partial^{|\alpha|}}{\partial x^\alpha}($$

Los jatos son gérmenes:

$$J^k(X,Y)_{p,q} = \{f: X \to Y: f(p) = q\} \Big/ \sim_k.$$

Isso generaliza o espaço tangente do seguinte jeito:

$$J^1(\mathbb{R},Y)_{0,q} \cong T_q Y.$$

Exercício

$$J_1(X,\mathbb{R})_{\mathfrak{p},0}\cong T_{\mathfrak{p}}^*\cong T_{\mathfrak{p}}^*Y.$$

Daí definimos o *espaço de* k*-jatos*:

$$J^{k}(X,Y) := \bigsqcup_{\substack{p \in X \\ q \in Y}} J^{k}(X,Y)_{p,q}$$

Então pega um jato $\sigma \in J^k(X,Y)$. Isso cuspe um p e um q tais que $\sigma \in J^k(X,Y)_{p,q}$. Definamos as funções

Exemplo $X = U \subset \mathbb{R}^n$, $Y = V \subset \mathbb{R}^m$ abertos. O que é o espaço de jatos neste caso?

Tem uma bijeção

$$: J^{k}(U, V)_{x,y} \xrightarrow{\cong} B_{n,m}^{k}$$

$$f \longmapsto (f_{1}^{k}, \dots, f_{m}^{k})$$

Lance: pode pensar que esas funções são polinomias de grau maximo k.

Exercício Calcule a dimensão de $B_{n,m}^k$.

$$J^{k}(U,V) \xrightarrow{\cong} U \times V \times B_{n,m}^{k}$$

Creo que: definimos f_i^k como as "partes sem constante dos polinómios de Taylor de ordem k das coordenadas de f",

$$B^k_{n,m}=\{p:\mathbb{R}^n\to\mathbb{R}^m: \text{ppolinomial de grau}\leqslant k \text{ tal que } p(0)=0\}.$$

CREO QUE la idea es que la clase de equivalencia [f] está determinada por los principios de los polinomios de Taylor de sus funciones coordenadas.

No entendí esto pero va:

$$p: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 polinomial

 $x_0 \in U, y_0 \in V$, entre aspas:

"f(x -
$$x_0$$
) = $y_0 + p(x - x_0)$,

 $f(U) \subset V$. En fim, temos que

- 2. $J^1(M,\mathbb{R}) \cong \mathbb{R} \times T^*M$.
- 3. $J^1(\mathbb{R}, M) \cong \mathbb{R} \times TM$.

Agora o pushforward e o pullback, que basicamente é precompor e poscompor:

Definição

1. $\phi: Y \to Z$ suave, X variedade suave. O *pushforward* \acute{e}

$$\phi_*:J^k(X,Y)\longrightarrow J^k(X,Z)$$

$$[f]_x\longmapsto [\phi\circ f]_x$$

2. O pullback é... mas aqui precisamos que ψ seja difeomorfismo

$$\psi^*: J^k(X,Y) \longrightarrow J^k(Z,Y)$$
$$[f]_x \longmapsto [f \circ \psi]_{\psi(x)}$$

Observação

1.
$$\sigma \in J^k(X,Y)_{x,y},\, \phi_*\sigma \in J^k(X,Z)_{x,\phi(y)}$$

$$2. \ \sigma \in J^k(X,Y), \psi^*\sigma \in J^k(Z,Y)_{\psi^{-1}(x),y}$$

4.2.1 Estrutura diferenciável no espaço de jatos

Pegue $\sigma \in J^k(X,Y)_{p,q}$ e cartas (U,ϕ) de p e (V,ψ) de q. Ideia: usar o pushforward e o pullback das cartas para levar o problema no \mathbb{R}^n .

Exercício Considere

$$J^k(U,V) = \bigsqcup_{\substack{p \in U \\ q \in V}} J^k(X,Y)_{p,q}.$$

Então

$$\begin{split} J^k(U,V) &\longrightarrow J^k(\phi(U),\psi(V)) \\ \sigma &\longmapsto \psi_*(\phi^{-1})^*\sigma \end{split}$$

é uma bijeção.

Então para dar uma estrutura de variedade topológica no espaço de jatos note que também

$$J^k(\phi(0), \phi(V)) \cong \phi(0) \times \phi(V) \times B_{n,m}^k \subset \mathbb{R}^{n+m+\dim B_{n,m}^k}$$

(lo bueno es que ya sabes cual es la dimension de $B_{n,m}^k$.) Mas não interessa qual é a dimensão: o importante é que o $B_{n,m}^k$ tem uma base, é um espaço vetorial.

Em fim, tudo isso da uma estrutura de variedade topologica. Para terminhar só temos que ver o que acontece com as mudanças de coordenadas.

$$\begin{split} \phi(U) \times \psi(V) \times B^k_{\mathfrak{n},\mathfrak{m}} &\longrightarrow \tilde{\phi}(\tilde{U}) \times \tilde{\psi}(\tilde{V}) \times B^k_{\mathfrak{n},\mathfrak{m}} \\ (\mathfrak{p},\mathfrak{q},\mathfrak{f}) &\longmapsto \left(\tilde{\phi} \circ \phi^{-1}(\mathfrak{p}),\tilde{\psi} \circ \psi^{-1}(\mathfrak{q})\right) \end{split}$$

Isso é suave! E isso implica que $J^k(X,Y)$ é uma C^{∞} variedade de dimensão $n+m+\dim B^k_{n,m}$.

E daí que α e β são submersoes sobrejetivas.

References

- [GG74] M. Golubitsky and V. Guillemin. *Stable Mappings and Their Singularities*. Graduate texts in mathematics. Springer, 1974.
- [GP10] V. Guillemin and A. Pollack. Differential Topology. AMS Chelsea Publishing. AMS Chelsea Pub., 2010.
- [Hir12] M.W. Hirsch. *Differential Topology*. Graduate Texts in Mathematics. Springer New York, 2012.
- [Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Springer, second edition edition, 2013.

[Mil65] John Milnor. *Topology from the Differentiable Viewpoint*. University Press of Virginia, 1965.

[Tu10] L.W. Tu. An Introduction to Manifolds. Universitext. Springer New York, 2010.