Logic II — Richard Zach

Phil 379 Lo1 — Winter 2016

Problem Set #5

This assignment is due on **Tuesday**, **March 29**, **at 12:30 pm**. You can turn it in class or in the dropbox labelled "Logic II (379 Lo1)—Richard Zach" in the Philosophy Department. The dropbox is cleared at 4 pm daily.

- 1. Problem 8.1: Complete the proof of Proposition 8.2.
- 2. Complete cases (3) and (6) of Lemma 8.9. Note that $M(\Gamma^*)$ in the book is what I've called M^* in lecture. Case (6) is the hard part, especially the direction from $M(\Gamma^*) \models \forall x \, B(x)$ to $\forall x \, B(x) \in \Gamma^*$.
- 3. Problem 8.4: Use Corollary 8.17 to prove Theorem 8.16.
- 4. Use the compactness theorem to show that any set of sentences in the language of arithmetic which are true in the standard model of arithmetic N are also true in a structure N' that contains an element greater than all natural numbers $\overline{n}^{N'}$ (\overline{n} is 0'...' with n 's). (Hint: add a new constant c to the language and consider the sentences $\overline{n} < c$ for all n.)
- 5. Problem 10.4: Design a Turing-machine with alphabet $\{\sqcup, A, B\}$ that takes as input any string α of As and Bs and duplicates them to produce an output of the form $\alpha\alpha$. (E.g. input ABBA should result in output ABBAABBA).

Remember: this is not a test. You are allowed—indeed, encouraged—to work together, and to ask questions on the website and in office hours.