

UNIVERSITI TEKNOLOGI MALAYSIA

FLIGHT DELAY PREDICTION MODEL USING MACHINE LEARNING

Name: Siti Nur Elisya Aqmar Binti Mohamad Kamal

Matric No: MCS241056

Faculty of Computing, UTM

Date: June 2025

Innovating Solutions

INTRODUCTION

Accurate delay prediction = improves airline efficiency

Machine Learning (ML) is ideal for handling complex aviation data.

PROBLEM BACKGROUND

PROBLEM STATEMENT

- Current systems are reactive, not predictive.
- Need for data-driven solutions using ML.
- Goal: Forecast delays proactively for better decision-making.

Traditional methods lack of accuracy and adaptability

RESEARCH GOAL & OBJECTIVE

To build and compare machine learning models to predict flight delays

Collect and preprocess flight/weather data

Apply and compare Random Forest, XGBoost, ATT-BI-LSTM.

Identify best model via evaluation metrics.

SCOPE OF RESEARCH

Focus on historical structured data (Nov 2019–Dec 2020).

Excludes real-time or unscheduled flight data.

Supervised ML techniques only

REPORT STRUCTURE

Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 3: Research Methodology

Chapter 4: Results & Discussion

Chapter 5: Conclusion & Recommendation

ww.utm.

LITERATURE REVIEW

Author	Research Title	Year	Research Focus	Methods
Yazdi, M., et al.	Flight Delay Prediction Based on Deep Learning and Levenberg-Marquardt Algorithm	2020	U.S. flight data (5 years of historical flight schedules) from the Bureau of Transportation Statistics. Includes 27 attributes (e.g., flight dates, delays, weather, airports, taxi times).	Deep Learning and Levenberg-Marquardt Algorithm
Zhe Zheng, Wenbin Wei, Minghua Hu	A Comparative Analysis of Delay Propagation on Departure and Arrival Flights for a Chinese Case Study		Flight-level records (2016) from the Air Traffic Management Bureau of CAAC, covering 1,469,909 flights between top 30 Chinese airports. METAR weather reports(temperature, wind speed, visibility, convective weather) for these airports.	Econometric models: Ordinary Least Squares (OLS) regression with clustered
Zhan Shu	Analysis of Flight Delay and Cancellation Prediction Based on Machine Learning Model		Kaggle dataset (2018 U.S. domestic flights): Includes 27 attributes (e.g., flight dates, delays, weather, airline IDs, airports, taxi times). Focus on 2018 data (subset of 2009–2018 dataset).	Random Forest Classifier, Logistic Regression, Naive Bayes. Regression (delay prediction): Random Forest Regressor, Linear Regression. Evaluated via ROC-AUC and MSE.

www.utm.r

LITERATURE REVIEW

Author	Research Title	Year	Research Focus	Methods
Gui, G., et al. (School of Electronic and Information Engineering, Beihang University, China)	Flight Delay Prediction Based on Aviation Big Data and Machine Learning	2019	flight schedules, and airport information. Timeframe: December 2018–May 2019. Size: 5,761 flight records (3,368 no-delay, 2,393 delayed). Coversall routes/airports	LSTM-based architectures: Standard LSTM, LSTM with fully connected layers, LSTM with dropout layers. Random Forest classifier.
Mamdouh, M., Ezzat, M., Hefny, H., et al. (Department of Computer Science, Helwan University, Egypt)	Improving Flight Delays Prediction by Developing Attention-Based Bidirectional LSTM Network	2024	US flight data (2019–2020) integrated with weather features (wind, temperature, precipitation.	Primary model:Attention- based Bidirectional LSTM (ATT-BI-LSTM). Comparative models: GRU, RNN, LSTM, ATT-LSTM, Deep LSTM, and hybrid models (PSO+LSTM, ACO+LSTM, etc.).
Ahmad Adib Baihaqi Shukri, Svarifah Adilah	Machine Learning Approach of Predicting Airline Flight Delay Using Naive Bayes Algorithm	2024	land /3 attributes (e.g. departure/arrival	Naive Bayes algorithm for classification.

This research framework includes the following steps:

1.Problem Definition and

- 1.Problem Definition and Literature Review
- 2. Data Collection: Gather flight and weather data specific to Malaysia.
- 3. Data Pre-processing: Clean, balance, and prepare data for modelling
- 4. Model Development: Clean, balance, and prepare data for modelling
- 5. Model Evaluation: Compare performance and validate models.

DATA PREPROCESSING

OVERVIEW OF DATASET

Source: M1_final.csv from Kaggle

Total records: 28821, with 23 features

Key attributes:
departure time,
airline, route,
weather, delay label

Delay label distribution: imbalanced dataset (e.g., 70% on-time, 30% delayed)

DATA EXPLORATION

M1_final																			
монтн	DAY_OF_MONTH	DAY_OF_WEEK OP_UNIQUE_CARRIER	TAIL_NUM	DEST	DEP_DELAY	CRS_ELAPSED_TIME	DISTANCE	CRS_DEP_M	DEP_TIME_M	CRS_ARR_M	Temperature	Dew Point	Humidity Wind	Wind Speed	Wind Gust	Pressure Condition	sch_dep	sch_arr	TAXI_OUT
11	1	5 B6	N828JB	CHS	-1	124	636	324	323	448	48	34	58 W	25	38	29.86 Fair / Windy	9	17	14
11	1	5 B6	N992JB	LAX	-7	371	2475	340	333	531	48	34	58 W	25	38	29.86 Fair / Windy	9	17	15
11	1	5 B6	N959JB	FLL	40	181	1069	301	341	482	48	34	58 W	25	38	29.86 Fair / Windy	9	17	22
11	1	5 B6	N999JQ	MCO	-2	168	944	345	343	513	48	34	58 W	25	38	29.86 Fair / Windy	9	17	12
11	1	5 DL	N880DN	ATL	-4	139	760	360	356	499	46	32	58 W	24	35	29.91 Fair / Windy	9	17	13
11	1	5 AA	N983NN	ORD	-1	161	740	359	358	460	46	32	58 W	24	35	29.91 Fair / Windy	9	17	21
11	1	5 AA	N107NN	LAX	-1	373	2475	360	359	553	46	32	58 W	24	35	29.91 Fair / Windy	9	17	26
11	1	5 B6	N274JB	BUF	-5	80	301	365	360	445	46	32	58 W	24	35	29.91 Fair / Windy	17	21	11
11	1	5 B6	N663JB	LGB	0	368	2465	365	365	553	46	32	58 W	24	35	29.91 Fair / Windy	17	21	25
11	1	5 B6	N283JB	FLL	3	184	1069	370	373	554	46	32	58 W	24	35	29.91 Fair / Windy	17	21	29
11	1	5 B6	N962JT	LAS	-5	343	2248	381	376	544	46	32	58 W	24	35	29.91 Fair / Windy	17	21	26
11	1	5 AA	N901AN	DCA	-5	95	213	384	379	479	46	32	58 W	24	35	29.91 Fair / Windy	17	21	30
11	1	5 AA	N157UW	PHX	-4	336	2153	390	386	546	46	32	58 W	24	35	29.91 Fair / Windy	17	21	24
11	1	5 B6	N967JT	SFO	-3	388	2586	410	407	618	46	32	58 W	24	35	29.91 Fair / Windy	17	21	17
11	1	5 B6	N998JE	SJU	108	222	1598	301	409	523	46	32	58 W	24	35	29.91 Fair / Windy	17	21	16
11	1	5 DL	N703TW	SFO	-6	391	2586	420	414	631	47	33	59 W	24	29	30 Fair / Windy	17	21	16
11	1	5 DL	N192DN	SLC	-5	321	1990	419	414	620	47	33	59 W	24	29	30 Fair / Windy	17	21	25
11	1	5 DL	N362NB	BOS	-5	82	187	420	415	502	47	33	59 W	24	29	30 Fair / Windy	17	21	15
11	1	5 AA	N115NN	SFO	-3	386	2586	420	417	626	47	33	59 W	24	29	30 Fair / Windy	17	21	18
11	1	5 B6	N638JB	SAV	-2	143	718	419	417	562	47	33	59 W	24	29	30 Fair / Windy	17	21	14
11	1	5 B6	N292JB	SYR	-3	73	209	420	417	493	47	33	59 W	24	29	30 Fair / Windy	17	21	21
11	1	5 B6	N806JB	ATL	0	154	760	418	418	572	47	33	59 W	24	29	30 Fair / Windy	17	21	16
11	1	5 DL	N119DU	MSP	-2	187	1029	420	418	547	47	33		24	29	30 Fair / Windy	17	21	34
11	1	5 B6	N968JT	LAX	-7		2475	425	418	624	47	33		24		30 Fair / Windy	17	21	15
11	1		N179DN	LAX	-1			420	419	605	47	33		24	29	30 Fair / Windy	17	21	23
11	1	5 DL	N722TW	SEA	-2		_	425	423	618	47	33		24		30 Fair / Windy	30	26	24
11	1		N585UW	MIA	4			420	424	604	47	33		24	29	30 Fair / Windy	_	26	24
11	1		N526AS	SEA	-6		_	430	424	630	47	33		24		30 Fair / Windy	30	26	19
11	1	5 AS	N557AS	PDX	-3			445	442	640	47	33		24		30 Fair / Windy	30	26	20
11	1		N584JB	TPA	-2		_	447	445	627	47	33		24		30 Fair / Windy	30	26	13
11	1	5 B6	N273JB	BTV	6			455	461	530	47	33		24		30 Fair / Windy	30	26	11
11	1		N324JB	ORD	-4				463	570	47	33		24		30 Fair / Windy	30	26	13
11	1	5 AA	N116AN	LAX	-6			480	474	676	50	33		21	30	30 Fair / Windy	30	26	20
11	1		N844NN	ORD	-3		_	479	474	585	50	33		21	30	30 Fair / Windy	30	26	
11	1		N774DE	IAH	-3		-	480	476	673	50	33		21	30	30 Fair / Windy	30	26	23
11	1	5 DL	N920DU	DEN	-2		1626	480	477	631	50	33		21	30	30 Fair / Windy	30	26	20
11	1		N661JB	RSW	29		1074	449	478	642	50	33		21	30	30 Fair / Windy	30	26	10
11	1	5 B6	N983JT	LAX	-1			480	479	676	50	33		21	30	30 Fair / Windy	30	26	12
11	1		N853AE	ORF	-6			480	479	573	50	33		21	30	30 Fair / Windy	30	26	25
	1		N923XJ	JAX	-5		828	485	480	641	50	33		21	30		46	19	24
11	1			-												30 Fair / Windy			
11		5 B6	N535JB	MCO	0		_	480	480	656	50	33		21	30	30 Fair / Windy	46	19	
11	1		N322US	MIA	-5		1089	485	480	666	50	33		21	30	30 Fair / Windy	46	19	36
11	1		N328NB	MSY	-4			485	481	614	50	33		21	30	30 Fair / Windy	46	19	
11	1		N181UW	CLT	-4		541	485	481	621	50	33		21		30 Fair / Windy	46	19	21
11	1	5 DL	N338DN	MCO	-3			485	482	655	50	33		21	30	30 Fair / Windy	46	19	15
11	1		N933XJ	BNA	-2		_	485	483	584	50	33		21	30	30 Fair / Windy	46	19	24
11	1		N349PQ	RDU	-2		427	485	483	596	50	33		21	30	30 Fair / Windy	46	19	12
11	1	5 DL	N712TW	SFO	-7			490	483	710	50	33		21	30	30 Fair / Windy	46	19	28
11	1		N789JB	FLL	4		1069	480	484	667	50	33		21	30	30 Fair / Windy	46	19	25
11	1	5 DL	N850DN	SJU	-1		1598	485	484	719	50	33		21	30	30 Fair / Windy	46	19	29
11	1		N706TW	SAN	0			485	485	664	50	33		21	30	30 Fair / Windy	46	19	25
- 11	1	5 DI	NAUUDII	SIC	-6	388	2569	495	489	703	50	33	52 W	21	30	30 Fair / Windy	46	19	

Peak delays observed during morning and late evening

Higher delays on specific weekdays

Certain airlines/routes show consistently higher delay rates

Weather variables show correlation with delay likelihood

DATA PREPROCESSING INSIGHTS

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
def clean_flight_data(filepath):
    # Load dataset
    df = pd.read csv(filepath)
    print("▼ Loaded data with shape:", df.shape)
    numeric_cols = ['Temperature', 'Dew Point', 'Humidity', 'Wind Speed', 'Wind Gust', 'Pressure', 'TAXI_OUT']
    for col in numeric cols:
       if col in df.columns:
            df[col] = pd.to_numeric(df[col], errors='coerce')
            df[col].fillna(df[col].mean(), inplace=True)
    # Fill missing values for 'Condition' (categorical)
    if 'Condition' in df.columns:
        df['Condition'].fillna('Unknown', inplace=True)
    # Optional: Drop high-cardinality or irrelevant columns
    drop cols = ['TAIL NUM', 'sch dep', 'sch arr']
    df.drop(columns=[col for col in drop_cols if col in df.columns], inplace=True)
     # Encode categorical columns
     cat_cols = ['OP_UNIQUE_CARRIER', 'DEST', 'Condition']
     for col in cat cols:
         if col in df.columns:
             le = LabelEncoder()
             df[col] = le.fit_transform(df[col].astype(str))
```

pandas: Used for loading, manipulating, and cleaning structured data (dataframes). **LabelEncoder**: Converts categorical string values into numerical values for machine learning.

Defines a reusable function called clean_flight_data that takes the path to a CSV file as input.

- •Loads the CSV into a DataFrame.
- •Prints the number of rows and columns (shape) to confirm successful loading.
- •Lists columns expected to contain numerical data.
- •Loops through these columns:
 - Converts values to numbers (coerce turns invalid values into NaNs).
 - Replaces any missing (NaN) values with the column's mean value.

Fills missing values in the 'Condition' column with the label 'Unknown'.

Defines a list of columns to remove:

- •TAIL NUM: Aircraft tail number often unique and not useful for prediction.
- •sch_dep, sch_arr: Scheduled departure/arrival time may be replaced by encoder versions elsewhere.

Drops them if present.

- Specifies columns with categorical string values to convert into numbers.
- For each listed column:
 - Converts the data to string (in case it's not).
 - Uses LabelEncoder to convert each category into a unique integer.

```
UTM
UNIVERSITI TEKNOLOGI MALAYSIA
```

```
# Create delay classification label
if 'DEP_DELAY' in df.columns:
    df['is_delayed'] = df['DEP_DELAY'].apply(lambda x: 1 if x > 15 else 0)

# Drop remaining rows with missing values (if any)
df.dropna(inplace=True)

# Final report
print(" Final cleaned shape:", df.shape)
print(" Missing values per column:\n", df.isnull().sum())
return df

# Usage
cleaned_df = clean_flight_data('M1_final.csv')
|
# Optional: Save to new CSV
cleaned_df.to_csv('cleaned_flight_data.csv', index=False)
print(" Cleaned_dataset saved as 'cleaned_flight_data.csv'")
```

Adds a new column is delayed:

- •If the departure delay is more than 15 minutes, it marks the flight as delayed (1), otherwise not delayed (0).
- •This column becomes the target label for classification.
- •Removes any rows that still contain missing values.
- •Displays the final dataset shape.
- •Shows the count of any remaining missing values by column (should be zero).

Calls the function and applies it to the 'M1_final.csv' file. Saves the cleaned DataFrame to a new CSV file. Confirms the file has been saved

MODEL-SPECIFIC OBSERVATION

Machine Learning	Observation
ATT-BI-LSTM	Strong recall and sequence learning
Random Forest	Good accuracy, interpretable, less effective on time data
XGBoost	Balanced performance, robust to noise, great AUC

COMPARATIVE PERFORMANCE TABLE

Metric	Random Forest	XGBoost	ATT-BI-LSTM
Accuracy	0.88	1.00	0.90
Precision (Class 1)	0.89	1.00	0.98
Recall (Class 1)	0.15	1.00	0.26
F1-Score (Class 1)	0.26	1.00	0.41
Precision (Class 0)	0.88	1.00	0.89
Recall (Class 0)	1.00	1.00	1.00
F1-Score (Class 0)	0.93	1.00	0.94
Macro Avg F1-Score	0.60	1.00	0.68
Weighted Avg F1	0.84	1.00	0.87
Support (Total Samples)	5764	5764	5764

CONFUSION MATRIX & ROC

RANDOM FOREST

XGBOOST

www.utm.my

ATT-BI-LSTM

KEY TAKEAWAYS

Machine Learning	Results
ATT-BI-LSTM	best for detecting delays in sequence-based data
Random Forest	suitable when model transparency is important
XGBoost	offers strong overall balance of performance and efficiency

CONCLUSION

ML improves delay prediction, especially XGBoost and ATT-BI-LSTM.

Data preprocessing is critical

Time and weather are key influencing factors.

ATT-BI-LSTM better at identifying delayed flights

RECOMMENDATIONS & FUTURE WORK

Add real-time data and multiple airport inputs.

Try transformer models like BERT, TFT.

Use Explainable AI (XAI) to improve trust and understanding

for dynamic predictions

THANK YOU

f in univteknologimalaysia V d utm.my outmofficial

Video Presentation Link:

https://youtu.be/KhbUoRJMH0Y