Árvores M-Vias

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvores M-Vias

Métodos de Pesquisas de Dados

- Encontrar um dado em um conjunto de dados de forma eficiente
- Baseia-se na noção de uma chave (índice) de pesquisa
- Aplicação típica: SGBD
 - Busca de dados em disco
 - Busca de dados no buffer do SGBD

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvore N-ária de Pesquisa (ANP)

• Cada nodo possui várias chaves

• ANP contém m subárvores e n chaves, sendo:

delweiss e Luciana P. Nedel Estruturas de Dados - Àrvores

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Árvore N-ária de Pesquisa (ANP) VANTAGENS

Quanto maior o número de subárvores, maior é o número de chaves que se pode indexar, e conseqüentemente, encontra-se uma chave com menos acesso a árvore

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvore N-ária de Pesquisa (ANP) VANTAGENS

- Nodo pode ser equivalente ao fator de bloco do disco
 - torna-ser mais eficiente o número de acessos à disco para a carga de dados e busca de chave em um arquivo de índices em um BD
 - exemplo:
 - fator de bloco = x bytes ≈ nodos de ANP c/ 127 chaves
 - se N = 128 → cada acesso traz um nodo da ANP
 - 2o. acesso: 127² 1 chaves
 No. acesso: 127ⁿ- 1 chaves

Árvore N-ária de Pesquisa (ANP) OPERAÇÕES

- Pesquisa
 - pesquisa todos os nodos
 - pesquisa pelo valor da chave
- Incluir (chave, dado)
- Excluir (chave)

Árvore N-ária de Pesquisa (ANP) OPERAÇÕES

- Pesquisa todos os nodos
 - em profundidade
 - retorna ordenadamente todas as chaves

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvore N-ária de Pesquisa (ANP) OPERAÇÕES

- Pesquisa pelo valor da chave
 - chave < chave pesquisada
 - pesquisa esquerda
 - chave > chave pesquisada
 - · pesquisa direita
 - complexidade adicional
 - · varredura das chaves em cada nodo da árvore
 - Tipos de pesquisa
 - · sequencial ou binária

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvore N-ária de Pesquisa (ANP) OPERAÇÕES

- Inclusão
 - busca a posição na qual as chave deve ser inserida
 - nodo mais próximo com espaço para colocação da chave
 - no nodo em que a chave for inserida, o vetor deve ser rearranjado
 - · deslocamento de chaves, dados e subárvores

Árvore N-ária de Pesquisa (ANP) Exercício

Dada a árvore ANP abaixo, inserir 18 e 90

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Árvore N-ária de Pesquisa (ANP) OPERAÇÕES

- Exclusão
 - se a chave não possui subárvore a ESQ e DIR vazias, ela é removida e ocorre o deslocamento no vetor para ajustar as chaves e os dados restantes
 - se a chave possui subárvore a ESQ e/ou DIR com chaves, ela é trocada com a maior chave da subárvores ESQ ou a menor chave da subárvore DIR
 - processo recursivo até que a chave não contenha subárvore

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvore N-ária de Pesquisa (ANP) Exercício

Dada a árvore ANP abaixo, excluir 26 e 54

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvore N-ária de Pesquisa (ANP) Problemas

- A árvore pode ficar desbalanceada
 - Exemplo: inserir 20-60-90-12-7-18-5-4-6-1-3

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Árvores B-Tree

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

- Uma árvore B é uma árvore ANP com as seguintes características:
 - raiz com 2 <= GRAU <= N
 - outros nodos tem [N/2] <= GRAU <= N
 - · nodos vazios estão todos na mesma profundidade
 - informações nas folhas
 - · as folhas constituem o arquivo (ou tabela) propriamente dito, ou listas de endereços de registros

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-trees

Folhas:

> 1 só valor

345

> diversos valores, ordenados

45

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-trees

• em uma B-tree de ordem m, cada nodo possui k apontadores e k-1 chaves, sendo $k \le m$

Estruturas de Dados - Àrvores

B-Tree Exemplo N = 562 77/89 99 55 60 79 84 101 115 Estruturas de Dados - Àrvores

B-Tree Inserir

- Princípio
 - inserção sempre no nodo folha
 - se há espaço no nodo, ali será inserido
- Excede capacidade
 - divisão do nodo (split)
 - a chave central é enviada para o pai
 - o processo se repete até que não ocorram mais divisões ou seja criada uma nova raiz
 - · a árvore cresce para cima

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree Exercício

N = 5 (5 ponteiros – 4 chaves)

• Inserir passo a passo: 65, 35, 75, 80

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

N = 5

• Inserir passo a passo: 65, 35, 75, 80

Exercício

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Exercícios

Dado N = 5 (5 ponteiros – 4 chaves), mostre como fica uma árvore B após cada uma das seguintes inserções: 20, 10, 40, 50, 30, 55, 3, 11, 4, 28, 36, 33, 52, 17, 25, 13, 45, 9, 43, 8 e 48

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree

Excluir

- Princípio
 - pesquisa na árvore pela chave informada
 - se a chave não possui subárvore ESQ e DIR, então remove a chave e faz o deslocamento no vetor
 - senão troca a chave pela maior chave na subárvore ESQ ou pela menor chave na subárvore DIR e recursivamente exclui a chave na subárvore para qual ela foi enviada

B-Tree

Excluir

- Após remoção, é possível que o número de chaves em um nodo não raiz seja menor que o permitido
 - ROTAÇÃO DIREITA

Excluir

- Após remoção, é possível que o número de chaves em um nodo não raiz seja menor que o permitido
 - ROTAÇÃO DIREITA

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree

Excluir

- Após remoção, é possível que o número de chaves em um nodo não raiz seja menor que o permitido
 - ROTAÇÃO DIREITA

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree

Excluir

- Após remoção, é possível que o número de chaves em um nodo não raiz seja menor que o permitido
 - ROTAÇÃO ESQUERDA

B-Tree

Excluir

- Após remoção, é possível que o número de chaves em um nodo não raiz seja menor que o permitido
 - ROTAÇÃO ESQUERDA

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Excluir

- Após remoção, é possível que o número de chaves em um nodo não raiz seja menor que o permitido
 - ROTAÇÃO ESQUERDA

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree

Excluir

 Quando não existe nodo irmão, faz a unificação (merge) de nodos.

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree

Excluir

 Quando não existe nodo irmão, faz a unificação (merge) de nodos.

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree

Excluir

 Quando não existe nodo irmão, faz a unificação (merge) de nodos.

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Excluir

 Quando não existe nodo irmão, faz a unificação (merge) de nodos.

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

B-Tree

Excluir

 Quando não existe nodo irmão, faz a unificação (merge) de nodos.

Renata de Matos Galante, Clesio S. Santos, Nina Edelweiss e Luciana P. Nedel

Estruturas de Dados - Àrvores

Exercícios

 Agora mostre como fica a árvore após as seguintes exclusões: 20, 33, 4, 50, 30, 55, 11, 40, 28, 36, 10, 52, 17, 25, 13, 45, 9, 43, 8

Exercícios

http://slady.net/java/bt/view.php