III.2 Simulasi

Berikutnya merupakan pembuatan desain antena dengan menyesuaikan hasil perhitungan dan disimulasikan pada *software* Ansoft HFSS 15.0. Dilakukannya simulasi ini bertujuan untuk mengetahui apakah dimensi hasil perhitungan akan menghasilkan antena yang sesuai dengan karakteristik awal.

III.2.1 Perancangan Antena Mikrostrip Konvensional Satu Elemen

Untuk antena mikrostrip konvensional tahap perancangan di *software* Ansoft HFSS 15.0 tidak menggunakan tambahan kawat konduktor, dibiarkan natural terlihat pada Gambar III-3.

Tabel III-5 Perbandingan Dimensi Antena Mikrostrip Konvensional Satu Elemen

Parameter	Sebelum Optimasi (mm)	Setelah Optimasi (mm)
W	38.84	38
L	34.62	42
\mathbf{W}_{m}	6.122	5
L_{m}	23.04	13.19
W_{g}	58.04	57
L_{g}	53.82	61
\mathbf{W}_{s}	6.122	6.122
$L_{\rm s}$	13.68	10

Gambar III-3 Antena Konvensional satu Elemen

Jika dimensi antena yang sebelumnya sudah dihitung menggunakan rumus hasilnya tidak sesuai spesifikasi, maka diharuskan adanya pengoptimasian agar hasil grafik sesuai dengan spesifikasi awal yang sudah ditentukan, seperti yang ditunjukan pada Gambar III-4.

Gambar III-4 Grafik Antena Konvensional satu Elemen

Grafik diatas menunjukan frekuensi yang sesuai dengan spesifikasi awal yaitu 2350 MH dan *return loss* 11,2446 dB. Nilai *return loss* sudah sesuai dengan batas yang diinginkan yaitu lebih dari dB.

III.2.2 Perancangan Antena Mikrostrip Artifisial Satu Elemen

Pada antena mikrostrip artifisial ditambahkan kawat konduktor yang ditancapkan pada substrat dengan mode gelombang yang sudah ditentukan yaitu TM₁₁ (pola crepes) untuk memperbesar permitivitas material FR4. Tentunya penambahan kawat konduktor ini perlu adanya titik koordinat yang sudah dihitung sebelumnya. Perancangan antena mikrostrip artifisial 1 elemen terlihat pada Gambar III-5.

Tabel III-6 Perbandingan Dimensi Antena Mikrostrip Artifisial Satu Elemen

Parameter	Sebelum Optimasi (mm)	Setelah Optimasi (mm)
W	30.29	23
L	25.132	26
\mathbf{W}_{m}	3.787	3.787
L_{m}	13.88	10.625
W_{g}	49.49	42
L_{g}	44.332	44
\mathbf{W}_{s}	3.787	3.787
$L_{\rm s}$	10.53	9

Gambar III-5 Perancangan Antena Artifisial 1 Elemen

Sama hal nya dengan antena konvensional, jika antena artifisial hasil grafiknya tidak sesuai dengan spesifikasi awal maka optimasi dibutuhkan dalam mendesain antena tersebut. Selain mengurangi dan menambah kawat konduktor yang disisipkan, dimensi *patch*, *ground plane*, dan substrat pun harus di optimasi nilainya agar hasil grafik sesuai dengan spesifikasi.

Gambar III-6 Grafik Antena Artifisial Satu Elemen (a) *bandwidth* dan *return loss* (b) SWR

Grafik (a) diatas menunjukan hasil frekuensi dan *return loss* sudah sesuai dengan yang diinginkan. Yaitu frekuensi kerja sebesar 2350 MHz dan *return loss* 18,2473 dB. Serta pada grafik (b) ditunjukan bahwa nilai SWR sesuai dengan spesifikasi yaitu kurang dari 2 sebesar 1,27.

III.2.3 Perancangan Antena Mikrostrip Konvensional Empat Elemen

Jika antena satu elemen sudah mendapatkan frekuensi kerja, *return loss* dan *bandwidth* yang sesuai dengan spesifikasi awal maka silanjutkan dengan pembuatan antena MIMO 4x4 yang didapat dari *trail and error*.

Tabel III-7 Dimensi antena konvensional empat elemen

Parameter	Nilai (mm)
W	33
L	28
\mathbf{W}_{m}	3.787
$L_{\rm m}$	13
\mathbf{W}_{g}	100
L_{g}	105
\mathbf{W}_{s}	-
$L_{\rm s}$	5

Gambar III-7 Antena Konvensional MIMO 4x4

Gambar III-8 Grafik Antena Konvensional Empat Elemen (a) *bandwidth* dan *return loss* (b) SWR

Grafik (a) diatas menunjukan hasil frekuensi dan *return loss* sudah sesuai dengan yang diinginkan. Yaitu frekuensi kerja sebesar 2350 MHz dan *return loss* 23,764 dB. Serta pada grafik (b) ditunjukan bahwa SWR sudah sesuai dengan spesifikasi yaitu kurang dari 2 sebesar 1,13.

III.2.4 Perancangan Antena Mikrostrip Artifisial Empat Elemen

Tabel III-8 Dimensi antena artifisial empat elemen

Parameter	Nilai Antena Artifisial		
	(mm)		
W	32		
L	26		
\mathbf{W}_{m}	3.787		
L _m	13		
W_g	95		
L_{g}	100		
W_s	-		
L_{s}	5		

Gambar III-9 Antena MIMO 4x4 Artifisial

Gambar III-10 Grafik Atena MIMO 4x4 Artifisial (a) *bandwidth* dan *return loss* (b) SWR

Grafik (a) diatas menunjukan hasil frekuensi dan *return loss* sudah sesuai dengan yang diinginkan. Yaitu frekuensi kerja sebesar 2350 MHz dan *return loss* 28,214 dB. Serta pada grafik (b) ditunjukan bahwa SWR yang sudah sesuai dengan spesifikasi yaitu kurang dari 2 yaitu sebesar 0,67.

Tabel III-9 Perbandingan dimensi antena

Parameter	Antena Konvensional Satu Elemen (mm)	Antena Artifisial Satu Elemen (mm)	Antena Konvensional Empat Elemen (mm)	Antena Artifisial Empat Elemen (mm)
W	38	23	33	32
L	42	26	28	26
W _m	5	3.787	3.787	3.787
L _m	13.19	10.625	13	13
Wg	57	42	100	95
Lg	61	44	105	100
W_s	6.122	3,787	4	2
L_{s}	10	9	5	5

Dapat dilihat bahwa antena artifisial sangat berpengaruh pada bentuk dimensi antena, menjadikan dimensi antena relatif lebih kecil.

Tabel III-10 Perbandingan hasil antena

Spesifikasi	Antena Konvensional Satu Elemen	Antena Artifisial Satu Elemen	Antena Konvensional Empat Elemen	Antena Artifisial Empat Elemen
Frekuensi Kerja	2300 MHz	2300 MHz	2300 MHz	2400 MHz
Return Loss	11,244 dB	18,247 dB	23,764 dB	28,214 dB
Bandwidth	-	51,4 MHz	156,3 MHz	173,3 MHz
SWR	-	1.278	1,138	0,675

Dapat terlihat perbedaan antena konvensional dan antena artifisial. Antena artifisial menghasilkan *return loss* yang lebih tinggi dan *bandwidth* lebih lebar, maka kawat konduktor yang disisipkan pada substrat sangat berpengaruh terhadap respon frekuensi.