

Statystyczna analiza danych SAD-2020/2021

Wykład 6

$$X: S \to (-\infty, \infty), \qquad Y: S \to (-\infty, \infty)$$

- (X,Y) para zmiennych losowych (dwuwymiarowa zmienna losowa, wektor losowy 2-wymiarowy)
- Zmienną losową X nazywamy brzegową zmienną losową, podobnie Y nazywamy brzegową zmienną losową

Przykłady:

Wzrost, Waga losowo wybranej osoby z pewnej populacji

- Miesięczny dochód pracownika, Miesięczny dochód firmy
- ➤ Temperatura, Zużycie energii na klimatyzację Problemy:
 - Wyznaczenie rozkładu prawdopodobieństwa łącznego zmiennej I. (X, Y)
 - Wyznaczenie rozkładów prawdopodobieństwa brzegowych zmiennych losowych na podstawie rozkładu łącznego

- Charakterystyki liczbowe określające stopień współzależności między zmiennymi X, Y
- Określenie niezależności zmiennych losowych
- Warunkowe rozkłady prawdopodobieństwa jednej ze zmiennych pod warunkiem, że druga przyjęła konkretną wartość

Przykład. Wyznaczyć funkcję prawdopodobieństwa łącznego pary (X, Y), gdzie X przyjmuje wartość 1 (0) jeśli wypadł orzeł (reszka) w pierwszym rzucie monetą, a Y jest liczbą orłów w pierwszym i drugim rzucie monetą.

Dwuwymiarowy wektor losowy

Niech 1 – wyrzucenie orła, 0 – wyrzucenie reszki

S	X(s)	Y(s)
(0,0)	0	0
(0,1)	0	1
(1,0)	1	1
(1,1)	1	2

Dwuwymiarowy wektor losowy

Funkcja prawdopodobieństwa łącznego:

$$f(x,y) \coloneqq P(X=x,Y=y)$$

określona jest tablicą kontyngencyjną

y	0	1	2
x			
0	1/4	1/4	0
1	0	1/4	1/4

Rozkład łączny pary zmiennych losowych (X,Y) określonych na tej samej przestrzeni zdarzeń elementarnych:

 $P((X,Y) \in A)$, A - dowolny podzbiór zbioru par wartości zmiennych X, Y.

$$F(x, y) = P(X \le x, Y \le y),$$

gdzie $-\infty < x < \infty, -\infty < y < \infty$.

Twierdzenie. Łączny rozkład prawdopodobieństwa zmiennej losowej (X,Y) określony jest jednoznacznie przez jej dystrybuantę.

Dyskretne zmienne losowe

Funkcja prawdopodobieństwa (łącznego)

dwuwymiarowej zmiennej losowej dyskretnej:

$$f(x, y) = P(X = x, Y = y)$$
.

Własności:

- \Box $f(x,y) \ge 0$, dla dowolnej pary wartości (x,y),

Notacja.

Niech $x_1, x_2, ..., x_r$ będą wartościami zmiennej losowej X, a $y_1, y_2, ..., y_s$ będą wartościami zmiennej losowej Y

$$p_{ij} := P(X = x_i, Y = y_i), i = 1, ..., r, j = 1, ..., s$$

Tablica kontyngencyjna

j	1 2	S
i		
1	$p_{11} p_{12} \dots \dots$	p_{1s}
2	p_{21} p_{22}	p_{2s}
•		
r	$p_{r1} p_{r2} \dots \dots$	p_{rs}

Całka podwójna

$$D \coloneqq \{(x,y) \colon a \le x \le b, c \le y \le d\}$$
 – prostokąt $D = [a,b] \times [c,d]$

$$\iint_{D} f(x,y)dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx$$

Obliczanie całki podwójnej

Przykład. Niech $D = [0,1] \times [2,3]$

$$\iint_{D} xydxdy = \int_{0}^{1} \left(\int_{2}^{3} xydy \right) dx =$$

$$= \int_{0}^{1} x \left(\int_{2}^{3} y \, dy \right) dx = \int_{0}^{1} x \left(\frac{y^{2}}{2} \Big|_{2}^{3} \right) dx =$$

$$= \left(\frac{3^2}{2} - \frac{2^2}{2}\right) \int_0^1 x dx = \frac{5}{2} \frac{x^2}{2} \Big|_0^1 = \frac{5}{4}$$

Obliczanie całki podwójnej

Niech
$$D = (-\infty, x] \times (-\infty, y]$$

$$\iint_{D} f(x,y)dxdy = \int_{-\infty}^{x} \left(\int_{-\infty}^{y} f(x,y)dy \right) dx =$$

$$= \lim_{a \to \infty, c \to \infty} \int_{a}^{x} \left(\int_{c}^{y} f(x, y) dy \right) dx$$

Wektor losowy typu ciągłego

Dwuwymiarowa zmienna losowa (X,Y) jest ciągłą zmienną losową, jeśli jej łączny rozkład prawdopodobieństwa określony jest przez funkcję gęstości (łączną gęstość prawdopodobieństwa):

$$P((X,Y) \in A) = \iint_A f(x,y) dx dy$$

Dla $A = (-\infty, x] \times (-\infty, y]$:

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t)dtds.$$

Własności gęstości

$$\Box f(x,y) \ge 0$$

$$\Box f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y), -\infty < x < \infty, -\infty < y < \infty.$$

Przykład

$$f(x,y) = \begin{cases} Cx & \text{dla } (x,y) \in [0,1] \times [0,2] \\ 0 & \text{dla } (x,y) \notin [0,1] \times [0,2] \end{cases}$$

Wyznaczyć: a) stałą C, $F\left(\frac{1}{2}, \frac{1}{2}\right)$, $F\left(\frac{3}{2}, 1\right)$

b)
$$P(X > \frac{1}{2}, Y \le \frac{3}{4})$$

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dxdy = \iint_{[0,1] \times [0,2]} Cxdxdy$$

$$\iint_{[0,1]\times[0,2]} Cx dx dy = \int_{0}^{1} \left(\int_{0}^{2} Cx dy\right) dx = \int_{0}^{1} Cx \left(\int_{0}^{2} dy\right) dx$$

$$= C \cdot 2 \cdot \frac{x^2}{2} \Big|_0^1 = 2C \left(\frac{1^2}{2} - \frac{0^2}{2} \right) = C \implies C = 1$$

$$F\left(\frac{1}{2}, \frac{3}{2}\right) = P\left(X \le \frac{1}{2}, Y \le \frac{3}{2}\right) = \int_{-\infty}^{\frac{1}{2}} \left(\int_{-\infty}^{\frac{3}{2}} f(x, y) dy\right) dx =$$

$$F\left(\frac{1}{2}, \frac{3}{2}\right) = \int_{0}^{\frac{1}{2}} \left(\int_{0}^{\frac{3}{2}} x \, dy\right) dx = \int_{0}^{\frac{1}{2}} x \cdot \frac{3}{2} \, dx = \frac{3}{2} \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{3}{4}$$

$$F\left(\frac{3}{2},1\right) = \int_{0}^{1} \left(\int_{0}^{1} x dy\right) dx = \int_{0}^{1} x \left(\int_{0}^{1} dy\right) dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$$

$$P\left(X > \frac{1}{2}, Y \le \frac{3}{4}\right) = \int_{\frac{1}{2}}^{1} \left(\int_{0}^{\frac{3}{4}} x \, dy\right) dx = \int_{\frac{1}{2}}^{1} x \cdot \frac{3}{4} \, dx =$$
$$= \frac{3}{4} \frac{x^{2}}{2} \Big|_{\frac{1}{2}}^{1} = \frac{3}{4} \left(\frac{1^{2}}{2} - \frac{\left(\frac{1}{2}\right)^{2}}{2}\right) = \frac{9}{32}$$

Brzegowe rozkłady prawdopodobieństwa

Niech (X,Y) będzie dwuwymiarową zmienną losową o rozkładzie prawdopodobieństwa określonym przez funkcję f(x,y) (funkcja prawdopodobieństwa lub gęstość).

Rozkład brzegowy = rozkład prawdopodobieństwa

zmiennej losowej X lub zmiennej losowej Y.

Brzegowe rozkłady prawdopodobieństwa

dla dyskretnej zmiennej (X, Y), brzegowe funkcje prawdopodobieństwa są postaci

$$f_X(x) = P(X = x) = \sum_{y} f(x, y)$$

$$f_Y(y) = P(Y = y) = \sum_{\mathcal{X}} f(x, y)$$

□ dla **ciągłej** zmiennej (X,Y), **brzegowe gęstości** są postaci

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy, \qquad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx.$$

Brzegowa funkcja prawdopodobieństwa

Przykład. (c.d. str. 4-6)

у	0	1	2	$f_X(x) =$
x				P(X=x)
0	1/4	1/4	0	1/2
1	0	1/4	1/4	1/2
$f_Y(y) =$	1/4	2/4	1/4	1
P(Y=y)				

np

$$f_X(0) = f(0,0) + f(0,1) + f(0,2) = 1/2$$

 $f_Y(1) = f(0,1) + f(1,1) = 2/4$

Rozkłady brzegowe w tablicy kontyngencyjnej

$$p_{ij} := P(X = x_i, Y = y_j), \quad i = 1, ..., r, j = 1, ..., s$$

$$p_{i.} := P(X = x_i)$$

$$p_{\cdot j} := P(Y = y_j)$$

$$p_{i.} = p_{i1} + p_{i2} + \dots + p_{is}, \quad i = 1, 2, ..., r$$

$$p_{\cdot j} = p_{1j} + p_{2j} + \dots + p_{rj}, j = 1, 2, ..., s$$

Rozkłady brzegowe w tablicy kontyngencyjnej

$$p_{ij} := P(X = x_i, Y = y_j), i = 1, ..., r, j = 1, ..., s$$

j	1 2	S	p_i .
i			
1	$p_{11} p_{12} \dots \dots$	p_{1s}	p_1 .
2	p_{21} p_{22}	p_{2s}	p_2 .
r	$p_{r1} p_{r2} \dots \dots$	p_{rs}	p_r .
$p_{\cdot j}$	$p_{\cdot 1}$ $p_{\cdot 2}$	$p_{\cdot_{\mathcal{S}}}$	1

Brzegowe gęstości prawdopodobieństwa

Przykład.
$$f(x,y) = \begin{cases} x & \text{dla } (x,y) \in [0,1] \times [0,2] \\ 0 & \text{dla } (x,y) \notin [0,1] \times [0,2] \end{cases}$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Należy rozważyć 2 przypadki

1)
$$x \notin [0,1] \implies f_X(x) = \int_{-\infty}^{\infty} 0 dy = 0$$

2)
$$x \in [0,1] \implies f_X(x) = \int_0^2 x dy = 2x$$

Brzegowe gęstości prawdopodobieństwa

Przykład.
$$f(x,y) = \begin{cases} x & \text{dla } (x,y) \in [0,1] \times [0,2] \\ 0 & \text{dla } (x,y) \notin [0,1] \times [0,2] \end{cases}$$
 $f_X(x) = \begin{cases} 2x & dla & x \in [0,1] \\ 0 & dla & x \notin [0,1] \end{cases}$

Podobnie znajdziemy gęstość zmiennej brzegowej Y.

$$f_Y(y) = \begin{cases} 1/2 & dla \ y \in [0,2] \\ 0 & dla \ y \notin [0,2] \end{cases}$$
$$Y \sim U(0,2)$$

Warunkowe rozkłady prawdopodobieństwa

□ Niech f(x,y) funkcja prawdopodobieństwa **dyskretnej** zmiennej losowej (X,Y), y – ustalone, $f_Y(y) > 0$. Rozkład **warunkowy** zmiennej losowej X pod warunkiem, że

Y = y określa warunkowa funkcja prawdopodobieństwa:

$$f(x|y) = \frac{f(x,y)}{f_V(y)}$$
, $x - \text{dowolna wartość zmiennej } X$.

$$f(x|y) = \frac{P(X=x,Y=y)}{P(Y=y)} = P(X=x|Y=y)$$

Warunkowe rozkłady prawdopodobieństwa

Analogicznie:

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = P(Y=y|X=x)$$
, gdzie $f_X(x) > 0$, y - dowolna wartość Y

Notacja:

$$f(x|y) = f_{X|Y}(x|y)$$

$$f(y|x) = f_{Y|X}(y|x)$$

Warunkowa funkcja prawdopodobieństwa

Przykład. (kontynuacja, SADW06) Zmienne losowe *X*, *Y* oznaczają liczby punktów uzyskane w etapie I i II, odpowiednio, przez losowo wybranego uczestnika teleturnieju.

- Znaleźć rozkład brzegowy zmiennej Y, liczby punktów uzyskanych w II etapie teleturnieju, przez losowo wybranego uczestnika.
- Wyznaczyć rozkład warunkowy Y pod warunkiem,
 że w I etapie uzyskano 2 punkty, tzn. X = 2.

Warunkowa funkcja prawdopodobieństwa

Y	0	1	2
X			
0	0,50	0,05	0,01
1	0,20	0,10	0,06
2	0,02	0,03	0,03

$$\Box f_Y(y) = f(0,y) + f(1,y) + f(2,y)$$
. Stąd

У	0	1	2
$f_Y(y)$	0,72	0,18	0,1

$$\Box f(y|2) = f_{Y|X}(y|2) = \frac{f(2,y)}{f_X(2)} = \frac{f(2,y)}{0.08} = ?$$

y	0	1	2
$f(y 2) \qquad \frac{0,02}{0,08} = 2/8$		0,03	0,03
	$\frac{1}{0.08} = 2/8$	$\frac{3}{0.08} = 3/8$	$\frac{0.08}{0.08} = 3/8$

Warunkowa gęstość prawdopodobieństwa

Niech f(x,y) - łączna gęstość **ciągłej** zmiennej losowej (X,Y), y – ustalone: $f_Y(y) > 0$ **Warunkową gęstością prawdopodobieństwa** zmiennej losowej X pod warunkiem, że Y = y nazywamy funkcję

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}, \qquad x \in (-\infty,\infty)$$

Notacja: $f(x|y) = f_{X|Y}(x|y)$

🦫 Warunkowa gęstość prawdopodobieństwa

Niech f(x,y) - łączna gęstość **ciągłej** zmiennej losowej (X,Y), x – ustalone: $f_X(x) > 0$ **Warunkową gęstością prawdopodobieństwa** zmiennej losowej Y pod warunkiem, że X = x nazywamy funkcję

$$f(y|x) = \frac{f(x,y)}{f_X(x)}, \qquad y \in (-\infty,\infty)$$

Notacja: $f(y|x) = f_{Y|X}(y|x)$

Niezależne zmienne losowe

<u>Definicja.</u> Niech (X,Y) będzie dwuwymiarową zmienna losową o dystrybuancie F(x,y) oraz dystrybuantach brzegowych $F_X(x), F_Y(y), x,y \in (-\infty,\infty)$.

Zmienne losowe X, Y są niezależne, jeśli

$$F(x, y) = F_X(x)F_Y(y),$$

dla wszystkich wartości x, y.

Niezależne zmienne losowe

Zmienne losowe X,Y są niezależne \Leftrightarrow dla dowolnych $x \in (-\infty,\infty), \ y \in (-\infty,\infty)$ zdarzenia

 $\{X \le x\}, \ \{Y \le y\}$ są niezależne

Zmienne losowe są zależne, jeśli nie są niezależne

Niezależne zmienne losowe

Twierdzenie.

Zmienne losowe *X*, *Y* są niezależne wtedy i tylko wtedy gdy dla wszystkich wartości *x*, *y*.

$$f(x,y) = f_X(x)f_Y(y)$$

Wniosek. Poniższe warunki są równoważne:

- Zmienne losowe X, Y są niezależne.
- Rozkłady warunkowe są takie jak rozkłady

brzegowe

Niezależne zmienne losowe

Wniosek. Poniższe warunki są równoważne:

- Zmienne losowe X, Y są niezależne.
- $f_{X|Y}(x|y) = f_X(x)$, x downline, y -takie że $f_Y(y) > 0$.
- $f_{Y|X}(y|x) = f_Y(y)$, y dowolne, x- takie że $f_X(x) > 0$.

Przykład. (kontynuacja) Czy liczby punktów uzyskane w I i II etapie teleturnieju przez losowo wybranego uczestnika są niezależnymi zmiennymi losowymi?

Y	0	1	2
X			
0	0,50	0,05	0,01
1	0,20	0,10	0,06
2	0,02	0,03	0,03

$$f_X(0) = f(0,0) + f(0,1) + f(0,2) = 0.5 + 0.05 + 0.01 = 0.56.$$

 $f_Y(0) = f(0,0) + f(1,0) + f(2,0) = 0.5 + 0.2 + 0.02 = 0.72.$
 $f(0,0) = 0.5 \neq 0.56 \times 0.72 = f_X(0) f_Y(0)$

Zmienne losowe X,Y są zależne.

Przykład. Czy X, Y są niezależnymi zmiennymi losowymi, jeśli ich łączna gęstość ma postać:

$$f(x,y) = \begin{cases} 3(x-y)^2 / 8 & \text{gdy} \\ 0 & przeciwnie \end{cases}$$

Dla $x, y \in [-1,1]$:

$$f_X(x) = (3x^2 + 1)/4$$
 oraz $f_Y(y) = (3y^2 + 1)/4$.

$$f(x, y) \neq f_X(x) f_Y(y)$$
.

X, Y są zależne.

Przykład. Czasy poprawnej pracy dwu podzespołów są **niezależnymi** zmiennymi losowymi **X**, **Y** o rozkładach **wykładniczych** z parametrami λ_1, λ_2 , odpowiednio. Średnie czasy pracy podzespołów wynoszą 1000 (godzin) i 1200 (godzin). Obliczyć prawdopodobieństwo zdarzenia takiego, że żaden podzespół nie ulegnie awarii przed upływem 1500 godzin.

$$E(X) = 1/\lambda_1 = 1000$$
 (godz.), $E(Y) = 1/\lambda_2 = 1200$ (godz.)
Stąd $\lambda_1 = 1/1000$ (1/godz.) $\lambda_2 = 1/1200$ (1/godz.).
 $P(X \ge 1500, Y \ge 1500) = P(X \ge 1500) P(Y \ge 1500) =$
 $e^{-\lambda_1 1500} \times e^{-\lambda_2 1500} = e^{-1500/1000} \times e^{-1500/1200} =$
 $= 0.2231 \times 0.2865 = 0.0639$.

Wartość oczekiwana. Kowariancja.

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y),$$

$$gdy (X, Y) - dyskretna,$$

$$E[g(X,Y)] = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y)dxdy,$$
gdy (X, Y) - ciągła.

Uwaga. Dla g(X,Y) = X lub g(X,Y) = Y otrzymujemy wartości oczekiwane brzegowych zmiennych losowych X lub Y, gdyż

Wartość oczekiwana

Przykład.

у	0	1	2
x			
0	1/4	1/4	0
1	0	1/4	1/4

$$E(XY) = \sum_{x} \sum_{y} xyf(x,y) = 0 \cdot 0 \cdot \frac{1}{4} + 0 \cdot 1 \cdot \frac{1}{4} + 0 \cdot 2 \cdot 0 + 0 \cdot \frac{1}{4} \cdot \frac$$

$$+1 \cdot 0 \cdot 0 + 1 \cdot 1 \cdot \frac{1}{4} + 1 \cdot 2 \cdot \frac{1}{4} = \frac{3}{4}$$

w przypadku dyskretnym:

$$E(X) = \sum_{x} \sum_{y} x f(x, y) = \sum_{x} x \sum_{y} f(x, y) = \sum_{x} x f_{X}(x) = \mu_{X}.$$

$$E(Y) = \sum_{x} \sum_{y} y f(x, y) = \sum_{y} y \sum_{x} f(x, y) = \sum_{y} y f_{Y}(y) = \mu_{Y}$$

w przypadku ciągłym:

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y) dx dy =$$

$$\int_{-\infty}^{\infty} x \left(\int_{-\infty}^{\infty} f(x, y) dy \right) dx = \int_{-\infty}^{\infty} x f_X(x) dx = \mu_X.$$

Analogicznie:

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy = \int_{-\infty}^{\infty} y f_Y(y) dy = \mu_Y.$$

Stwierdzenie. Niech c będzie dowolną stałą, a g(X,Y), $g_1(X,Y)$, $g_2(X,Y)$ zmiennymi losowymi jednowymiarowymi.

$$E[g_1(X,Y) + g_2(X,Y)] = E[g_1(X,Y)] + E[g_2(X,Y)]$$

Stwierdzenie.

Jeśli zmienne losowe X, Y są niezależne, to

$$E(XY) = E(X)E(Y)$$
.

D. Niezależność zmiennych jest równoważna

 $f(x,y) = f_X(x)f_Y(y)$. Stąd i z definicji wartości średniej:

(zmienne dyskretne)

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y).$$

$$E(XY) = \sum_{x} \sum_{y} xyf(x, y) = \sum_{x} \sum_{y} xyf_X(x)f_Y(y) =$$

$$\sum_{x} xf_X(x)\sum_{y} yf_Y(y) = \sum_{y} yf_Y(y) \times \sum_{x} xf_X(x) =$$

$$E(Y)E(X) = E(X)E(Y).$$

 (zmienne ciągłe) Dowód analogiczny - sumowanie należy zastąpić całkowaniem. **<u>Definicja.</u>** Niech X i Y będą zmiennymi losowymi o łącznej funkcji prawdopodobieństwa (gęstości) f(x, y).

Kowariancją zmiennych X i Y nazywamy liczbę $\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)].$

Uwaga. Z definicji σ_{XY} oraz E[g(X,Y)], przyjmując $g(x,y) = (x - \mu_X)(y - \mu_Y)$, otrzymujemy:

$$\sigma_{XY} = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f(x, y)$$
, gdy (X, Y) - dyskretna

$$\sigma_{XY} = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f(x, y) dx dy \text{ , gdy (X, Y) - ciągła}$$

Interpretacja. Kowariancja określa pewną
współzależność między zmiennymi losowymi:

- Jeśli "dużym" wartościom zmiennej X przewyższającym μ_X towarzyszą zwykle "duże" wartości zmiennej Y przewyższające μ_Y , a wartościom X mniejszym od μ_X towarzyszą zwykle wartości Y mniejsze od μ_Y , to $\sigma_{XY} > 0$
- □ Jeśli wartościom zmiennej X większym od μ_X towarzyszą zwykle wartości Y mniejsze od μ_Y wartościom X mniejszym od μ_X towarzyszą zwykle wartości Y większe od od μ_Y , to $\sigma_{XY} < 0$

Notacja: Zamiast σ_{XY} często piszemy **Cov** (**X**, **Y**).

Stwierdzenie.

$$Cov(X,Y) = E(XY) - \mu_X \mu_Y.$$

D.
$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] =$$

$$E(XY - X\mu_Y - Y\mu_X + \mu_X \mu_Y) =$$

$$E(XY) - E(X\mu_Y) - E(Y\mu_X) + \mu_X \mu_Y =$$

$$E(XY) - \mu_X \mu_Y$$

Twierdzenie.

Jeśli zmienne losowe
$$X$$
 i Y są niezależne, to $Cov(X,Y) = 0$

D. Dla niezależnych zmiennych losowych

E(XY) = E(X)E(Y). Stąd oraz wzoru na kowariancję mamy:

Cov(X,Y) =
$$E(XY) - \mu_X \mu_Y =$$

= $E(X)E(Y) - \mu_X \mu_Y = 0$.

Uwaga. Twierdzenie odwrotne nie jest na ogół prawdziwe.

Przykład

Miech zmienna losowa X ma rozkład jednostajny na zbiorze $\{-1,0,1\}$, tzn

$$f_X(-1) = f_X(0) = f_X(1) = \frac{1}{3}$$

Niech $Y = X^2$. Między zmiennymi istnieje deterministyczna zależność, ale Cov(X,Y) = 0, ponieważ

$$Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0 = E(X) - 0$$

= 0

$$X, Y$$
 – niezależne $\implies Cov(X, Y) = 0$

 $Cov(X,Y) = 0 \implies X,Y$ – niezależne, w przykładzie są zależne mimo że Cov(X,Y) = 0

Twierdzenie. Dla dowolnych stałych a, b

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

Wniosek. Jeśli zmienne losowe X i Y są niezależne, to

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y)$$

Definicja. Współczynnikiem korelacji między zmiennymi losowymi *X* i *Y* nazywamy liczbę:

$$\rho = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

Przykład. $\rho = ?$

Y	0	1	2
X			
0	0,50	0,05	0,01
1	0,20	0,10	0,06
2	0,02	0,03	0,03

$$E(X) = \sum_{x} \sum_{y} x f(x, y) = 0 \times (0,5 + 0,05 + 0,01) + 1 \times (0,2 + 0,1 + 0,06) + 2 \times (0,02 + 0,03 + 0,03) = 0,52$$

$$E(Y) = \sum_{x} \sum_{y} y f(x, y) = 0 \times (0.5 + 0.2 + 0.02) + 1 \times (0.05 + 0.1 + 0.03) + 2 \times (0.01 + 0.06 + 0.03) = 0.38$$

$$E(XY) = \sum_{x} \sum_{y} xyf(x,y) = 0 + 0 + 0 + 0 + 1 \times 1 \times 0,1 + 1 \times 2 \times 0,06 + 2 \times 1 \times 0,03 + 2 \times 2 \times 0,03 = 0,4$$

$$\square$$
 Cov(X, Y) = 0,4 - 0,52 x 0,38 = 0,2024

$$E(X^{2}) = 0 + 1^{2} \times (0.2 + 0.1 + 0.06) + 2^{2} \times (0.02 = 0.03 + 0.03) = 0.68$$

$$E(Y^2) = 1^2 \times (0.05 + 0.1 + 0.03) + 2^2 \times (0.01 + 0.06 + 0.03) = 0.58$$

$$\Box$$
 Var(X) = $E(X^2) - [E(X)]^2 = 0.68 - 0.52^2 = 0.4096$

$$\Box$$
 Var(Y) = $E(Y^2) - [E(Y)]^2 = 0.58 - 0.38^2 = 0.4356$

$$\rho = \frac{0,2024}{\sqrt{0,4096} \times \sqrt{0,4356}} = 0,47916$$

Własności współczynnika korelacji

$$-1 \le \rho \le 1$$

Jeśli a i b są stałymi, Y = a + bX,

to
$$\rho = \begin{cases} 1 & \text{gdy} \\ -1 & b < 0 \end{cases}$$

Jeśli $|\rho|=1$, to między zmiennymi losowymi X, Y

istnieje liniowa zależność funkcyjna

Jeśli zmienne losowe X i Y są niezależne, to

$$\rho = 0$$

Interpretacja.

Współczynnik korelacji jest miarą zależności liniowej między zmiennymi losowymi

Dwuwymiarowy rozkład normalny

Zmienna losowa (X,Y) ma dwuwymiarowy rozkład normalny, jeśli ma gęstość postaci:

$$\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}\exp\left\{-\frac{1}{2(1-\rho^2)}\times q(x,y)\right\}$$

gdzie

$$q(x,y) = \frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2},$$

 $-\infty < x < \infty$, $-\infty < y < \infty$, stałe σ_X , σ_Y , ρ spełniają warunki

$$\sigma_X > 0$$
 , $\sigma_Y > 0$, $-1 < \rho < 1$

Notacja:
$$(X,Y) \sim N(\mu_X, \mu_Y, \sigma_X, \sigma_Y, \rho)$$

Twierdzenie. Jeśli
$$(X,Y) \sim N(\mu_X, \mu_Y, \sigma_X, \sigma_Y, \rho)$$
, to

- $\mathbf{X} \sim N(\mu_{Y}, \sigma_{Y}), \quad \mathbf{Y} \sim N(\mu_{Y}, \sigma_{Y})$
- $Cov(X,Y) = \rho \times \sigma_X \times \sigma_Y$
- \square X, Y są niezależne wtedy i tylko wtedy gdy Cov(X, Y) = 0

Twierdzenie. Zmienna losowa (X,Y) ma dwuwymiarowy rozkład normalny wtedy i tylko wtedy gdy zmienna losowa aX + bY ma rozkład normalny, a, b są dowolnymi stałymi