Central Forces Homework 9

Due 6/6/18, 4 pm

Sensemaking: For every problem, before you start the problem, make a brief statement of the form that a correct solution should have, clearly indicating what quantities you need to solve for. This statement will be graded.

REQUIRED:

1. Show that the angular momentum operators L^2 and L_z commute with the central force Hamiltonian H, where

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

$$L_{z} = -i\hbar \frac{\partial}{\partial \phi}$$

$$H = -\frac{\hbar^{2}}{2\mu} \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right] + V(r)$$

Show that
$$[H, L^2] = 0$$

$$H = -\frac{\hbar^2}{2\mu} \left(\frac{1}{r^2} \frac{1}{\sigma r} \left(\frac{1}{r^2} \frac{1}{\sigma r} \right) + \frac{1}{shoodo} \left(\frac{1}{shoodo} \frac{1}{shoodo} \right) + \frac{1}{shoodo} \left(\frac{1}{sho$$

Thus The orders of L^2 with $\frac{2}{3r^2}$, $\frac{2}{r}$ and $\frac{2}{3}$ and

show that [H, L&]=0 To show that [H, Lz]=0, Let us show [[2, [2]=0 $\begin{bmatrix} \begin{bmatrix} 2 \\ L \end{bmatrix} = \begin{bmatrix} L_{x}^{2} + L_{y}^{2} + L_{z}^{2} \\ - \begin{bmatrix} L_{x} \\ L \end{bmatrix} + \begin{bmatrix} L_{y} \\ L_{y} \end{bmatrix} + \begin{bmatrix} L_{z} \\ L_{z} \end{bmatrix}$ = Lx[Lx, Lz] + [Lx, Lz] Lx+Ly[Ly, Lz] + [Ly, Lz]Ly = Lx(-ih) Ly+Gih) LyLx+Ly(ih) Lx+ih LxLy = -italxly - italylx + italylx + italxly $H = -\frac{t^2}{2\mu} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{L^2}{2\mu r^2} + V(r)$ [H, [z] = [-1/3] + [-1/2] + [-1/2] + [-1/2] + [-1/2] + [-1/2] Because L'only depends Q and P., and Lz only depends on P.

The Last two terms are both equal to Zero

Theis [H, [8] = [-\frac{t}{2\mu} \frac{2}{2\mu}, [2] + [-\frac{t}{2\mu} \frac{2}{2\mu}, [2] = - \frac{\frac{1}{24} \frac{2}{24} \langle \frac{1}{24} \langle \frac{1 $= -\frac{1}{2\mu} \frac{1}{2\mu} \left(-i\hbar \frac{1}{2\mu} \right) + \frac{1}{2\mu} \left(-i\hbar \frac{1}{2\mu} \frac{1}{2\mu} \right)$ $=\frac{i\hbar^2}{2\mu}\frac{2^2}{3r^3}\frac{2}{3p}-\frac{i\hbar^2}{2\mu}\frac{2^2}{3p}\frac{2^2}{3r^2}$

Because the orders of these portral derivatives are interchangeable, [H, LZ]=0

2. Write out the first 9 terms in the sum:

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} c_{\ell,m} Y_{\ell,m}$$

Describe the energy degeneracy of the rigid rotor system, i.e. give the number of eigenstates that all have the same energy.

Solution:

The form of our answer here should be a list of terms in the sum, each with a coefficient and a spherical harmonic. Specifically, we want the terms with the lowest values of ℓ :

$$\approx c_{0,0}Y_0^0 + c_{1,-1}Y_1^{-1} + c_{1,0}Y_1^0 + c_{1,1}Y_1^1 + c_{2,-2}Y_2^{-2} + c_{2,-1}Y_2^{-1} + c_{2,0}Y_2^0 + c_{2,1}Y_1^1 + c_{2,2}Y_2^2$$

Since m runs in integer steps from $-\ell$ to ℓ , the total number of states with the same value of ℓ is ℓ positive values, ℓ negative values, and one value corresponding to m=0, which overall is $2\ell+1$.

3. Consider the normalized function:

$$f(\theta, \phi) = \begin{cases} N\left(\frac{\pi^2}{4} - \theta^2\right) & 0 < \theta < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < \theta < \pi \end{cases}$$

where

$$N = \frac{1}{\sqrt{\frac{\pi^5}{8} + 2\pi^3 - 24\pi^2 + 48\pi}}$$

- (a) Find the $|\ell, m\rangle = |0, 0\rangle$, $|1, -1\rangle$, $|1, 0\rangle$, and $|1, 1\rangle$ terms in a spherical harmonics expansion of $f(\theta, \phi)$.
- (b) If a quantum particle, confined to the surface of a sphere, is in the state above, what is the probability that a measurement of the square of the total angular momentum will yield $2\hbar^2$? $4\hbar^2$?
- (c) If a quantum particle, confined to the surface of a sphere, is in the state above, what is the probability that the particle can be found in the region $0 < \theta < \frac{\pi}{6}$ and $0 < \phi < \frac{\pi}{6}$? Repeat the question for the region $\frac{5\pi}{6} < \theta < \pi$ and $0 < \phi < \frac{\pi}{6}$. Plot your approximation from part (a) above and check to see if your answers seem reasonable.

Solution:

See attached Mathematica worksheet Sphere.nb.

Particle on a Ring

	Ket Representation	Wave Function Representation	Matrix Representation
Hamiltonian	Ĥ	$-\frac{\hbar^2}{2I}\frac{d^2}{d\phi^2}$	$ \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \dots & E_1 & 0 & 0 & \dots \\ \dots & 0 & E_0 & 0 & \dots \\ \dots & 0 & 0 & E_{-1} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \dots & \frac{\hbar^2}{2I} & 0 & 0 & \dots \\ \dots & 0 & 0 & 0 & \dots \\ \dots & 0 & 0 & \frac{\hbar^2}{2I} & \dots \\ \dots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} $
Eigenvalues of Hamiltonian	$E_m = \frac{\hbar^2}{2I}m^2$	$E_m = \frac{\hbar^2}{2I}m^2$	$E_m = \frac{\hbar^2}{2I}m^2$
Normalized Eigenstates of Hamiltonian	$ m\rangle$	$\Phi_{m}(\phi) = \sqrt{\frac{1}{2\pi r_{0}}} e^{im\phi}$	$\begin{bmatrix} \vdots \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix}, \begin{bmatrix} \vdots \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix}, \begin{bmatrix} \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \end{bmatrix}, \dots$
Coefficient of m^{th} energy eigenstate	$c_m = \langle m \Phi \rangle$	$c_{m} = \int_{0}^{2\pi} \sqrt{\frac{1}{2\pi r_{0}}} e^{-im\phi} \Phi(\phi) r_{0} d\phi$	$\left[\begin{array}{cccc} (\cdots & 1 & \cdots & 0 & \cdots \\ \end{array}\right] \left[\begin{array}{c} \vdots \\ c_m \\ \vdots \\ c_0 \\ \vdots \end{array}\right]$
Probability of measuring E_m	$P(E_m) = c_{+m} ^2 + c_{-m} ^2$ $= \langle +m \Phi\rangle ^2 + \langle -m \Phi\rangle ^2$	$P(E_m) = \left \int_0^{2\pi} \sqrt{\frac{1}{2\pi r_0}} e^{-im\phi} \Phi(\phi) r_0 d\phi \right ^2$ $+ \left \int_0^{2\pi} \sqrt{\frac{1}{2\pi r_0}} e^{im\phi} \Phi(\phi) r_0 d\phi \right ^2$	$P(E_m) = \begin{pmatrix} \cdots & 1 & \cdots & 0 & \cdots \end{pmatrix} \begin{pmatrix} \vdots \\ c_m \\ \vdots \\ c_0 \\ \vdots \end{pmatrix}^2 + \begin{pmatrix} \cdots & 0 & \cdots & 1 & \cdots \end{pmatrix} \begin{pmatrix} \vdots \\ c_0 \\ \vdots \\ c_{-m} \\ \vdots \end{pmatrix}^2$
Expectation value of Hamiltonian	$\langle \Phi H \Phi \rangle = \sum_{m} c_{m} ^{2} E_{m}$	$\langle \Phi H \Phi \rangle = \int_{0}^{2\pi} \Phi^{*}(\phi) \hat{H} \Phi(\phi) r_{0} d\phi$	$ \langle \Phi H \Phi \rangle = \left(\cdots c_{1}^{*} c_{0}^{*} c_{-1}^{*} \cdots \right) \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & E_{1} & 0 & 0 & \cdots \\ \cdots & 0 & E_{0} & 0 & \cdots \\ \cdots & 0 & 0 & E_{-1} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \vdots \\ c_{1} \\ c_{0} \\ \vdots \\ \vdots \end{pmatrix} $

Rigid Rotor/Particle on a Sphere

	Ket Representation	Wave Function Representation	Matrix Representation
Hamiltonian	Ĥ	$\hat{H} = \frac{1}{2I}L^2 \doteq -\frac{\hbar^2}{2I} \left(\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{d^2}{d\phi^2} \right)$	$H \stackrel{.}{=} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
Eigenvalues of Hamiltonian	$E_{\ell} = \frac{\hbar^2}{2I} \ell(\ell+1)$	$E_{\ell} = \frac{\hbar^2}{2I} \ell(\ell+1)$	$E_{\ell} = \frac{\hbar^2}{2I} \ell(\ell+1)$
Normalized Eigenstates of Hamiltonian	$ig \ell mig angle$	$Y_{\ell}^{m}(\theta,\phi) = \left(-1\right)^{\left(m+ m \right)/2} \sqrt{\frac{\left(2\ell+1\right)\left(\ell- m \right)!}{4\pi}} \frac{P_{\ell}^{m}(\cos\theta)e^{im\phi}}{\left(\ell+ m \right)!}$	$\begin{vmatrix} 00\rangle \doteq \begin{pmatrix} 1\\0\\0\\0\\\vdots \end{pmatrix}, 11\rangle \doteq \begin{pmatrix} 0\\1\\0\\0\\\vdots \end{pmatrix}, 10\rangle \doteq \begin{pmatrix} 0\\0\\1\\0\\\vdots \end{pmatrix}, 1,-1\rangle \doteq \begin{pmatrix} 0\\0\\0\\1\\\vdots \end{pmatrix}, \dots$
Coefficient of the energy eigenstate with quantum numbers ℓ , m	$c_{\ell m} = \langle \ell m \psi \rangle$	$c_{\ell_m} = \int_0^{2\pi} \int_0^{\pi} Y_{\ell}^{m*} (\theta, \phi) \psi(\theta, \phi) \sin \theta d\theta d\phi$	$c_{\ell_m} = \left(\begin{array}{ccc} \dots & 1 & \dots \end{array} \right) \left(\begin{array}{c} \vdots \\ c_{\ell_m} \\ \vdots \end{array} \right)$
Probability of measuring $E_{\ell,m}$	$egin{aligned} \mathcal{P}_{E_{\ell}} &= \sum_{m=-\ell}^{\ell} \left \left< \ell m \middle oldsymbol{\psi} \right> ight ^2 \ &= \sum_{m=-\ell}^{\ell} \left oldsymbol{c}_{\ell m} ight ^2 \end{aligned}$	$\mathcal{P}_{E_{\ell}} = \sum_{m=-\ell}^{\ell} \left \int_{0}^{2\pi} \int_{0}^{\pi} Y_{\ell}^{m*} (\theta, \phi) \psi(\theta, \phi) \sin \theta d\theta d\phi \right ^{2}$	$\mathcal{P}_{E_{\ell}} = \sum_{m=-\ell}^{\ell} \left(\begin{array}{ccc} \dots & 1 & \dots \end{array} \right) \left(\begin{array}{c} \vdots \\ c_{\ell m} \\ \vdots \end{array} \right)^{2}$

5 (Challenge Problem) Let **J** be an angular momentum with a set of three observables J_x , J_y , and J_z that satisfy:

$$[J_x, J_y] = i\hbar J_z$$
$$[J_y, J_z] = i\hbar J_x$$
$$[J_z, J_x] = i\hbar J_y$$

 \mathbf{J}^2 , J_+ , and J_- are three operators that are defined as following:

$$\mathbf{J}^{2} = J_{x}^{2} + J_{y}^{2} + J_{z}^{2}$$

$$J_{+} = J_{x} + iJ_{y}$$

$$J_{-} = J_{x} - iJ_{y}$$

Show that the operators J_+ , J_- , J_z , and \mathbf{J}^2 satisfy the following commutation relations:

$$[\mathbf{J}^{2}, J_{z}] = [\mathbf{J}^{2}, J_{+}] = [\mathbf{J}^{2}, J_{-}] = 0$$

$$[J_{z}, J_{+}] = +\hbar J_{+}$$

$$[J_{z}, J_{-}] = -\hbar J_{-}$$

$$[J_{+}, J_{-}] = 2\hbar J_{z}$$

Show that
$$[H, L^2] = 0$$

$$H = -\frac{\hbar^2}{2\mu} \left(\frac{1}{r^2} \frac{1}{\sigma r} \left(\frac{1}{r^2} \frac{1}{\sigma r} \right) + \frac{1}{shoodo} \left(\frac{1}{shoodo} \frac{1}{shoodo} \right) + \frac{1}{shoodo} \left(\frac{1}{sho$$

Thus The orders of L^2 with $\frac{2}{3r^2}$, $\frac{2}{r}$ and $\frac{2}{3}$ and

show that [H, L&]=0 To show that [H, Lz]=0, Let us show [[2, [2]=0 $\begin{bmatrix} \begin{bmatrix} 2 \\ L \end{bmatrix} = \begin{bmatrix} L_{x}^{2} + L_{y}^{2} + L_{z}^{2} \\ - \begin{bmatrix} L_{x} \\ L \end{bmatrix} + \begin{bmatrix} L_{y} \\ L_{y} \end{bmatrix} + \begin{bmatrix} L_{z} \\ L_{z} \end{bmatrix}$ = Lx[Lx, Lz] + [Lx, Lz] Lx+Ly[Ly, Lz] + [Ly, Lz]Ly = Lx(-ih) Ly+Gih) LyLx+Ly(ih) Lx+ih LxLy = -italxly - italylx + italylx + italxly $H = -\frac{t^2}{2\mu} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{L^2}{2\mu r^2} + V(r)$ [H, [z] = [-1/3] + [-1/2] + [-1/2] + [-1/2] + [-1/2] + [-1/2] Because L'only depends Q and P., and Lz only depends on P.

The Last two terms are both equal to Zero

Theis [H, [8] = [-\frac{t}{2\mu} \frac{2}{2\mu}, [2] + [-\frac{t}{2\mu} \frac{2}{2\mu}, [2] = - \frac{\frac{1}{24} \frac{2}{24} \langle \frac{1}{24} \langle \frac{1 $= -\frac{1}{2\mu} \frac{1}{2\mu} \left(-i\hbar \frac{1}{2\mu} \right) + \frac{1}{2\mu} \left(-i\hbar \frac{1}{2\mu} \frac{1}{2\mu} \right)$ $=\frac{i\hbar^2}{2\mu}\frac{2^2}{3r^3}\frac{2}{3p}-\frac{i\hbar^2}{2\mu}\frac{2^2}{3p}\frac{2^2}{3r^2}$

Because the orders of these portral derivatives are interchangeable, [H, LZ]=0