Math 76 Exercises – 6.4A Taylor and Maclaurin Series

1. Write the Maclaurin series for e^x , $\sin x$, $\cos x$, and $\tan^{-1}(x)$. What is the radius of convergence of each?

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 ; $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
; $R = \infty$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$
; $R = \infty$

$$\tan^{-1}x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \chi^{2n+1}$$
; $R = 1$ (interval of convergence is $[-1, 1]$)

2. Write the Maclaurin series for each function. What is the radius of convergence?

(a)
$$f(x) = 4e^{8x}$$

$$= 4 \sum_{N=0}^{\infty} \frac{(8x)^{N}}{N!} = \sum_{N=0}^{\infty} \frac{4 \cdot 8^{N} \times N}{N!}$$

$$\lim_{N\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{N\to\infty} \frac{A \cdot 8^{N} \times 8^{N}}{(N+1)!} = \lim_{N\to\infty} \frac{8}{N+1} |x| = 0 < 1$$
(b) $g(x) = 5x^2 \cos x$

$$\lim_{N\to\infty} \frac{a_{n+1}}{a_n} = \lim_{N\to\infty} \frac{8}{(N+1)!} = \lim_{N\to\infty} \frac{8}{(N+1)!} = 0 < 1$$

$$=5x^{2}\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n}=\sum_{n=0}^{\infty}\frac{5(-1)^{n}}{(2n)!}x^{2n+2}$$

$$\left| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{5}{(2(n+1))!} \cdot \frac{(2n)!}{8} \left| \frac{\chi^{2(n+1)+2}}{\chi^{2n+2}} \right| = \lim_{n \to \infty} \frac{2n!}{(2n+2)(2n+1)(2n+1)}$$

$$= 0 < 1 \text{ for all } x.$$
So $R = \infty$

(c)
$$h(x) = 2\sin(3x)$$

$$= 2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (3x)^{2n+1} = \sum_{n=0}^{\infty} \frac{2(-1)^n}{3^{2n+1}} x^{2n+1}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{2 \cdot 3^{2(n+1)+1}}{(2(n+1)+1)!} \cdot \frac{(2n+1)!}{x^{2n+1}} = \lim_{n\to\infty} \frac{3^2}{(2n+3)(2n+2)} |x^2| = 0 < 1$$

$$= \lim_{n\to\infty} \frac{3^2}{(2n+3)(2n+2)} |x^2| = 0 < 1$$

$$= x \tan^{-1}(x^3) + x \tan^{-1}(x^$$

Hint: Consider the Maclaurin series for k(x). The coefficient of the x^{22} term is $\frac{k^{(22)}(0)}{n!}$ (where n is what you have to plug in to get x^{22}).

We reach the
$$\chi^{22}$$
 term when $6n + 4 = 22$, i.e. $N=3$. So we have
$$\frac{k^{(22)}(0)}{3!} \chi^{22} = \frac{(-1)^3}{2 \cdot 3 + 1} \chi^{6 \cdot 3 + 4}$$
$$k^{(22)}(0) = \frac{(-1)^3}{2 \cdot 3 + 1} \cdot 3! = -\frac{1}{7} \cdot 6 = -\frac{6}{7}$$

4. Find a series solution to each of the following indefinite integrals:

(a)
$$\int e^{x^4} dx$$
 $e^{x^4} = \sum_{n=0}^{\infty} \frac{(x^4)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{4n}}{n!}$
So $\int e^{x^4} dx = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \frac{x^{4n+1}}{4n+1} + C = \sum_{n=0}^{\infty} \frac{1}{n! (4n+1)} \cdot x^{4n+1} + C$

(b)
$$\int \sin(x^2) dx$$
 $\int \sin(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n (\chi^2)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \times \frac{4n+2}{(2n+1)!}$
So $\int \sin(x^2) dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot \frac{1}{4n+3} \times \frac{4n+3}{n+2} + C$

5. Write the Taylor series for each function centered at the given a.

(a)
$$f(x) = \sin x$$
; $a = \frac{\pi}{4}$

From the work at right,

we get
$$f^{(n)}(\frac{\pi}{4}) = \sin \left(\frac{\pi}{4}(2n+1)\right),$$
So
$$\sin x = \sum_{n=0}^{\infty} \frac{\sin \left(\frac{\pi}{4}(2n+1)\right)}{n!} (x - \frac{\pi}{4})^n$$

n	$f^{(n)}(x)$	f (n)(II)
0	SINX	V2 2
1	cos X	<u>V2</u>
2	-SINX	VZ
3	-cosx	- \(\frac{1}{2} \)
4	SINX	$\frac{\sqrt{2}}{2}$
5	cosx	V2 2
	*	2
Hw	1加 {运,运,	$-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, $
	= { sin (#(2n+	1))}
	37	E .
	<u>5π</u> 4	<u>r</u>

	(b) $g(x) =$	$\frac{1}{x}$; $a=5$		'n	g(n)(x)	g ⁽ⁿ⁾ (5)
	From the	e work at r	right, we have	0	<u>1</u>	5
	g ⁽ⁿ⁾ (5)	$=\frac{(-1)^{h} n!}{S^{n+1}}$	- , 50	1	-1 X2	- <u>1</u> 52
	22			2	$\frac{2}{\chi^3}$	$\frac{2}{5^3}$
$\frac{1}{X}$	$=\sum_{n=0}^{\infty}$	-1) ht. 1	$(X-5)^r$		-3.2 X4	-3.2
	= \(\sum_{\infty} \)	$\frac{-1)^n}{5^{n+1}}$ (x-5))n	4	4.3.2 X5	4.3.2
	(c) $h(x) = 1$			5	-5.4.3.2 x6	- <u>5!</u> 56
-	h(n)(x)		For n>1 we have	6 (n) (a	$(-1)^n$	1-1 (n-1)!
0	lnx	In 2	101 11/1 40 14000	V1 (2		n! ·
1	$\frac{1}{\chi}$	$\frac{1}{2}$	S6 00 1	n-1	*	
2		$-\frac{1}{2^2}$	$lnx = ln2 + \sum_{n=1}^{\infty} $	2 ⁿ	n-1)! 1	$(x-2)^n$
3	$\frac{2}{\chi^3}$	$\frac{2!}{x^3}$	$= \ln 2 + \sum_{n=1}^{\infty} \frac{1}{n}$	(-1) ⁿ⁻¹	$(x-2)^n$	
4	-3.2 X4	$-\frac{3!}{x^4}$	- m 2	n. 2"	(\ 2)	
	(d) $k(x) =$	$\frac{x-1}{e^x}; \ a=1$	~~			
Foll	owing the	hint, let	$m(x) = e^{-x}$			
10	$ma^{(n)}(x)$	$m^{(n)}(1)$	We get m(n)(1) =	(-1) ⁿ	$\frac{1}{e}$. So	
0	e^{-x}	$\frac{1}{e}$	$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{e}$	1 (x-	1)"	
1	-e-x	-1e	n=o e	n!	<i>-</i> / .	è
2	e^{-x}	1 e 1 e 1 e	Therefore k(x)=	(X-1)	e-×	
3	$-e^{-x}$	-10-1		5 (-:	1)" (X-1	n+1
	e-x	1		n=o e.	n!	- /