Leng Zhang SID 861209382

Programing Homework 1 Report

The program, nearest_neighbor.py, can calculate the distance between the closest pair of points in the input file which created by the program generate test.py.

The result will be output to an output file.

Input Files	Brute Force	Divide and Conquer
	Run-time (s)	Run-time (s)
input.txt	0.00005984	0.00004315
input10.txt	0.00005602	0.00003504
input15.txt	0.00010704	0.00006890
input100.txt	0.00352716	0.00169086
input1005.txt	0.34105300	0.17418098

For the theoretical run time of Brute Force,

$$T(n) = \frac{(n-1)(n-1+1)}{2} + \frac{(n-1)(n-1+1)}{2} = n(n-1) = n^2 - n = O(n^2)$$

For the theoretical run time of Divide and Conquer, in step 1, get the middle of x coordinate, x_{mid} , and split the points into two groups L and R is n = O(n). Step2, finding the smallest distance d of L and R is $\frac{\binom{n}{2}-1\binom{n}{2}-1+1}{2}+\frac{\binom{n}{2}-1\binom{n}{2}-1+1}{2}=O(n^2)$. Step 3 is n=O(n). And for step 4, let m to be the number of points in $(x_{mid}-d,x_{mid}+d)$, so the theoretical run time of step 4 is $\frac{(m-1)(m-1+1)}{2}=O(m)$. Therefore, for the theoretical run time of Divide and Conquer, $T(n)=O(n)+O(n^2)+O(n)+O(m)$. Since $m \le n$, $T(n)=O(n^2)$.