

Aggregation & Analysis of IPv6 Prefixes at Internet-Scale

by Philipp Nowak

066.937 Software Engineering & Internet Computing June 2024

~\$ Synopsis

- Empirical measurement with custom software
- **Goal:** Network structure on the IPv6 internet
- Challenges:
 - > large search space / scale
 - > no direct access to targets + no global ground truth
 - > measurement artefacts in real-world networks

~# Background

~\$ Internet Measurements

- Collect data from other real-world networks
- Why? Empirical evidence (e.g. InfoSec)
- Feasibility in Practice:
 - > **IPv4 solved:** exhaustive, minutes-hours
 - > **IPv6 unsolved:** non-exhaustive due to 128-bit search space

~\$ Existing methods for IPv6

- None provide results similar to IPv4 methods (yet)
- Various approaches
 - > focus on specific subsets (routers, edge networks)
 - > side channels (DNS, NTP) + address prediction
 - > combine existing sources (hitlist)
 - > awareness of structure

~# Goals & Contributions

~\$ Synopsis of Research Questions

- > Can prefixes be **meaningfully aggregated** with this data?
- > Is it possible to predict **more valuable scanning regions** from results of previous rounds in practice? **How well?**
- > How can we **store** & **update** this data in a distributed system?

~\$ Novelty

- Combination of existing ideas
 - > **feedback** mechanism (reuse results from previous rounds)
 - > more granular measurement of **interesting** areas
 - > prefix **aggregation** using routing **topology** (Hobbit)
 - > focus on **networks**, not single addresses
- Dynamic probing focus on variable-size subnets

~\$ Scientific Methods

- **▶** Literature Review
- Experiment Design
- Execution of Experiments
- Quantitative & Qualitative Evaluation of results

~# Proposed Method

~\$ Key Ideas

- Design for entire internet
- Operate on networks ("big picture")
- Feedback from past measurements
- Prioritise more interesting regions

~\$ Why are regions meaningful?

- Network hierarchy organised by address prefix
 - > e.g. address **2001:db8:cafe**:0::701
- Parameter: **prefix length** (bits) e.g. /48
 - > cannot be directly observed from address or public traffic

~\$ How do we identify candidate regions?

~\$ What is identical behaviour?

- Determine (last) router responsible for network [1]
 - > ICMP error responses (e.g. network unreachable)
 - > **fallback:** Traceroute
- Compare across halves
 - > **one router:** trivial
 - > multiple routers & weird responses: difficult / heuristics

~\$ Split Logic

-> Thresholds

~\$ Process Overview

~\$ Architecture

~\$ Split Decision

Split down if analysis suggests so

~# Does this work?

~\$ Measurements

- U-*: university network (23 days)
- ◆ AT-10: most Austrian networks (1.5 months)
- ◆ **AT-11:** repeated for evaluation (10 days)

~\$ Evaluation Overview

- A) Discovery comparison to linear probing
- B) **Stability** analysis across AT-* measurements
- C) Qualitative metrics interpretation

~\$ Evaluation A

/48 in use?	yes (linear)	no (linear)		
yes (true)	5 <u>(+1)</u>	19 <u>(-1)</u>		
no (true)	0 <u>(±0)</u>	131 048 <u>(±0)</u>		

- Benchmark against linear
 - > 16 probes to each prefix half (linear: /48)
- Outcome: not worse, one additional true positive
 - > **same total probe**# overall
 - > more granular structure found

~\$ Evaluation Results

- Tree **stability** (AT-10 vs. AT-11)
 - > university

~\$ Evaluation B (Excerpt)

◆ Tree stability (AT-10 vs. AT-11) - overall

~\$ Evaluation B (Excerpt)

Tree stability (AT-10 vs. AT-11) *excl.* multiple routers tiny fraction of data set!

~\$ Evaluation C (Excerpt)

Priority Class vs. # changes over prefix lifetime

Last Priority Class	AT-10				AT-11			
	Nodes	0	1	+	Nodes	0	1	+
High – Overlapping	77%	95	3	1	70%	97	1	0
High – Disjoint	2%	99	0	0	5%	99	0	0
Medium – Same, single	4%	99	1	0	8%	99	0	0
Medium – Same, multiple	0%	19	29	51	0%	56	42	2
Medium – Same, ratio	12%	75	19	6	14%	89	9	2
Medium – Same, many	5%	59	34	7	3%	56	42	2
Medium – Same, multi-weird	0%	0	100	0	0%	0	100	0
Low – Weird	0%	89	8	3	0%	88	12	0
Low - Unknown	0%	100	0	0	_			

~\$ Evaluation C (Excerpt)

(a) Number of prefixes available for probing, attributed to priority classes. The horizontal line indicates the per-round prefix budget of 1620 for reference.

~\$ Interpretation

- Measurement artefacts & weird setups problematic
 - > some networks degraded mostly to /64s -> large % of budget
- Results at high granularity mixed
 - > **limiting** depth (e.g. /56) might allow greater breadth & quality

~\$ Interpretation

- Good performance with single router on both halves
 - > **not** very commonly observed
- Method not worse than linear
 - > clear potential to **reveal more** with same probe budget

~# In Summary

- idea seems promising
- further work needed

~# Questions?

~# In Summary

