\LaTeX Notes on 2017-03-02-lec05

The building blocks of statistical regression are estimates and standard errors.

The estimated variance model is detailed in the Analysis of Variance Table (ANOVA table)

The basic structure of ANOVA table in R consists of columns of Source (of variability), degree of freedom (df), sum of squares (SS), mean square, F-statistics, p-value.

And rows of Model/Regression, Error/Residual, Total. At the same time we have

$$Model + Error = Total$$

Note that the total degree of freedom is always n-1 (the number of free information).

Source (of variability)	df	SS	MS	F	Pr
Model/Regression/Treatment	1	$SS_{Reg} = SS_{Total} - SS_{Error}$	$\frac{SST}{1}$	$\frac{MST}{MSE}$	
Error/Residual	n-2	$SS_{Error} = \sum e_i^2$	$MS_{Error} = \frac{SSE}{n-2}$		
Total(corrected)	n-1	$SS_{yy} = SS_{Total}$			

Table 1: ANOVA table

The **Total** row is equivalent to the Null model $Y = \beta_0 + \epsilon$.

The **Model/Regression/Treatment** row is equivalent to the SLR model $Y = \beta_0 + \beta_1 X + \epsilon, \epsilon \stackrel{iid}{\sim} N(0, \sigma^2)$.

$$MS_{Error} = \frac{SS_{Error}}{n-2}$$
, $\hat{\sigma}^2$ is the estimate of σ^2

We could calculate
$$MS_{Total} = \frac{SS_{Total}}{n-1} = s_y^2$$
.

Our key estimate of the error variance σ^2 is the MS_{error} . To calculate this:

- 1. find $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ for all i = 1, 2, ..., n (the sample)
- 2. find $e_i = Y_i \hat{Y}_i$ (the residual)
- 3. find $\sum e_i^2=SS_{error}$ and "average" over the df=n-2 (for SLR) to get $s^2=\hat{\sigma}^2=\frac{\sum e_i^2}{n-2}$.

In our current example,

Type I and Type II errors

Source	df	SS	MS	F	Pr
Regression (Year)	1	10.8685	10.8685	419.53	2.2×10^{-16}
Residual (Error)	136	3.5232	0.0259		
Total	137	14.3917	0.1050		

Table 2: ANOVA table of our global warming example

	H_0 valid	H_0 not valid	
Do not reject H_0	correct	False negative Type II error	
Reject H_0	False positive Type I error	correct	

- $P(\text{Type I error}) = \alpha \text{ (significant level)}$
- 1α is called the confidence
- $P(\text{Type II error}) = \beta$
- 1β is called the power

A powerful test is one in which we are more likely to correctly reject a false null hypothesis.

Note: about the only way we can reduce both α, β at the same time is to increase the sample size.

Note 2: a one-tailed hypothesis test is more powerful than the equivalent two-tailed test (for the same sample size).