G-06 (ANSYS)

Формулировка задачи:

Дано: Шарнирно опёртая по краям балка постоянной жёсткости нагружена распределённой нагрузкой q и моментом $q \cdot l^2/2$.

E — модуль упругости материала; I_z — изгибный момент инерции.

Найти: Эпюру внутреннего изгибающего момента $M_{\rm Z}$;

Форму упругой оси нагруженной балки;

$$v_A=?$$
, $\Theta_B=?$

В конспекте <u>G-06</u> аналитически вычисляется эпюра внутреннего изгибающего момента, линейное и угловое перемещения соответствующих точек. Примерный вид изогнутой оси также изобразить нетрудно:

$$v_{A} = \frac{25}{384} \cdot \frac{q \cdot l^{4}}{E \cdot I_{Z}} = 0,0651 \cdot \frac{q \cdot l^{4}}{E \cdot I_{Z}} - \text{вниз};$$

$$\theta_{\rm B} = \frac{1}{16} \cdot \frac{q \cdot l^3}{E \cdot I_{\rm Z}} = 0,0625 \cdot \frac{q \cdot l^3}{E \cdot I_{\rm Z}} -$$
по часовой стрелке. ∂)

Рис. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же эпюры методом конечных элементов.

http://www.tychina.pro/библиотека-задач-1/

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Оставить в меню только пункты, относящиеся к прочностным расчётам:

 ${\tt M_M} > {\tt Preferences} > {\tt Otmetute}$ "Structural" > OK

Нумеровать точки и линии твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers" > OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

Приравняв E, I_z , q и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > q=1 > Accept > l=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Add. Options Delete Add. Options Delete Close Help
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота = $l/100$. С_P> R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help

№	Действие	Результат
4	Cвойства материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».	Add Temperature Dollets Temperature Count Ma
	Твердотельное моделирование	
5	Ключевые точки — границы участков: $O \to I$, $A \to 2$, $B \to 3$ и $D \to 4$: М_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X, Y, Z пишем 0, 0, 0 > Apply > NPT пишем 2 X, Y, Z пишем $l/2$, 0, 0 > Apply > NPT пишем 3 X, Y, Z пишем l , 0, 0 > Apply > NPT пишем 4 X, Y, Z пишем $2 \to l$, 0, 0 > OK Прорисовываем всё, что есть: l M > Plot > Multi-Plots	Y 2 3 .4
6	Tpu yчастка — mpu линии: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 2 и 3 3 и 4 > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	Y K X L1 2 L2 3 L3 _4

№	Действие	Результат
7	Onopы: Левая: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "UX" и "UY" > OK Правая: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 4 ключевую точку > OK > Lab2 установить "UY" > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	X I 2 I 2 3 I 3 4
8	Cocpedomoченный внешний момент: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 3 ключевую точку > OK > Lab установить "MZ" VALUE установить "-q*1**2/2" > OK	X L1 2 L2 3 L3 4

№	Действие	Результат
9	Изометрия: До сих пор модели мы рассматривали, используя фронтальный вид («сбоку»). Вектор изгибающего момента при этом виден плохо, а его направление не определяется вовсе. Меняем угол зрения: справа от рабочего поля нажимаем кнопки - изометрия; автоформат (размер изображения по размеру окна рабочего поля).	L-K PLOT NO. 1
	Конечноэлементная модель	
10	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" ТҮРЕ установить "1 BEAM3" > OK	
11	Pasmep конечных элементов: M_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > All Lines > SIZE пишем L/20 > OK Обновляем изображение: U_M > Plot > Multi-Plots	L-K PLOT NO. 1

№	Действие	Результат
12	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > OK > Появляется второе окно Multi-Plotting, оставляем в нём отметки только напротив Nodes и Elements > OK	
13	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение:U_M > Plot > Multi-PlotsБирюзовым цветом изображены балочные элементы. Чёрные точки - это их узлы.	E-N PLOT NO. 1
14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK	E-N PLOT NO. 1

№	Действие	Результат
	Просмотр результатов	
18	Cunobas cxema: U_M > PlotCtrls > Symbols > [/PBC] устанавливаем в положение "For Individual" Убираем галочку с "Miscellaneous" Surface Load Symbols устанавливаем Pressures Show pres and convect as устанавливаем Arrows > OK > B окне "Applied Boundary Conditions" U установить "Off" Rot установить "Off" F установить "Symbol+Value" M установить "Symbol+Value" > OK > B окне "Reactions" NFOR установить "Off" RFOR установить "Off" RFOR установить "Symbol+Value" > OK Oбновляем изображение: U_M > Plot > Elements Получаем тот же результат, что и на puc. Ia .(числа, выделенные синим цветом). В рабочем поле видим следующее: - Красным цветом начерчена распределённая нагрузка; - Синим цветом начерчена вектор внешнего момента; - Малиновым цветом начерчена распределённая нагрузка; - Синим цветом начерчена распределённая нагрузка; - Синим цветом начерчена распределённая нагрузка; - Малиновым цветом наресованы реактивные силы.	1 E-N M RFOR PRES-NORM 1

No	Действие	Результат
19	<pre>U_ветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK</pre>	
20	Фронтальный вид: - вид спереди; - автоформат (размер изображения по размеру окна рабочего поля).	.5
21	Cocmaвление эпюры внутреннего изгибающего момента: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close	A Current Defined Data and Status: Label Nem Comp Time Stamp Status
22	Прорисовка эпюры внутреннего изгибающего момента: М_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "SMIS6" LabJ установить "SMIS12" Fact пишем 1 > ОК Получаем тот же результат, что и на рис. 1в. (только числа, выделенные синим цветом). Значения показывает цветовая шкала. Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 4.	1 LINE STRESS PLOT NO. 1 STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN = .336E-14 ELEM=1 MAX = .5 ELEM=21

```
Форма упругой оси нагруженной балки:
                                                                                           DISPLACEMENT
M M > General Postproc > Plot Results >
                                                                                                                       PLOT NO.
> Deformed Shape >
KUND установить Def + undeformed
> OK
Это точная форма изогнутой оси. Сравните с приближённой на рис. 1в.
U M > PlotCtrls > Style > Displacement Scaling >
DMULT устанавливаем "User specified"
User specified factor увеличиваем в
пять с половиной раз с 0.9 до 5
> OK
Выделяем мышью узел конечноэлементной модели, соответствующий точке А:
U M > Select > Entities... >
                                                                    ↑ Select Entities
В окошке Select Entities установить
"Nodes"
                                                                                                                                  X
                                                                     By Location ▼

∧ NLIST Command

"By Location"

    X coordinates

                                                                     ○ Y coordinates
Точку верхнего селектора установить на

    Z coordinates

                                                                                     LIST ALL SELECTED NODES. DSYS=
SORT TABLE ON NODE NODE NODE
«X coordinates»
В окне Min, Max пишем координату X точки A: "L/2"
                                                                                                  0.0000
                                                                                                        0.0000
                                                                                                                    0.00

    From Full

Точку нижнего селектора установить на «From Full»
                                                                     Reselect
> OK
                                                                     Also Select
                                                                     Unselect
                                                                     Sele All
                                                                           Invert
Проверяем, действительно ли выделен узел с координатой X=L/2=0,5
                                                                     Sele None | Sele Belo
U M > List > Nodes... > OK
                                                                         Apply
                                                                     Plot
                                                                         Replot
Видим, кстати, что это узел №2.
Закрываем окно NLIST Command
```


Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.