PROJECT REPORT

Soil Moisture Prediction System

PROBLEM STATEMENT

You are required to build a machine-learning model that can predict soil moisture levels for March 2023, based on the previous 8 months of data. Your model should take in daily soil moisture measurements from July 2022 to March 10, 2023, and output predicted soil moisture measurements for March 2023.

Objective

To build a machine learning model to predict the soil moisture level for the month of March 2023 based on the data of July 2022 to 10th March 2023.

Software Used

- Google Colab
- Python
- Sklearn
- Seaborn
- Matplotlib
- Numpy
- Pandas
- Jupyter

Project Working

Data Visualization

Finding a correlation between the features and soil moisture.

• Data Preprocessing

To extract Day, Month, Year, Hour and Minute(in intervals of 5 minutes) from 'ttime' into features on both datasets /user1_data.csv/ and /user2_data.csv/.

Plotting the scatterplots of all the features Vs soil moisture.

Storing these new obtained datasets in /data1.csv/ and /data2.csv/ for further use.

/Data1/

	pm1	pm2	pm3	am	sm	st	lum	day	Month	year	hour	min
0	3.63	0.00	0.00	3.2	7813.0	25.65	15001.0	18	7	2022	15	9
1	4.19	0.00	0.00	4.8	7692.0	25.66	13863.0	18	7	2022	15	10
2	4.74	0.00	0.00	4.0	7813.0	25.67	13788.0	18	7	2022	15	11
3	5.30	0.00	0.00	4.8	7813.0	25.68	14383.0	18	7	2022	15	12
4	0.55	5.30	5.30	3.2	7813.0	25.69	14621.0	18	7	2022	16	1
19336	1.11	1.11	28.49	3.2	291.0	29.40	384.0	10	3	2023	8	10
19337	0.55	1.11	28.49	3.2	292.0	29.32	384.0	10	3	2023	9	3
19338	1.11	1.11	28.49	2.4	291.0	29.24	384.0	10	3	2023	9	8
19339	0.55	1.11	28.49	1.6	291.0	29.17	384.0	10	3	2023	10	2
19340	0.55	1.11	28.49	8.8	292.0	29.06	384.0	10	3	2023	11	1
19341 rd	ws × 1	2 colu	mns									

/Data2/

	pn	n1	pm2	pm3	am	sm	lum	temp	humd	pres	day	Month	year	hour	min
0	3.0	33	0.00	0.00	0.0	7463.0	6547.0	23.02	90.57	92849.25	18	7	2022	15	8

1	1 30	0.00	0.00	0.0	7576 O	10249.0	23.47	88 37	92848.31	18	7	2022	15	9	
2	1.95	0.00	0.00	0.0	7576.0	12636.0	23.64	85.26	92844.82	18	7	2022	15	10	
3	2.51	0.00	0.00	0.0	7463.0	8318.0	23.62	85.93	92834.94	18	7	2022	15	11	
4	0.55	2.51	2.51	0.0	7463.0	4149.0	23.82	86.06	92815.25	18	7	2022	15	12	
20161	0.55	1.11	27.38	3.2	327.0	6352.0	27.04	32.24	93560.72	10	3	2023	8	12	
20162	1.11	1.11	27.38	3.2	327.0	7057.0	28.53	28.69	93574.12	10	3	2023	9	6	
20163	1.67	1.11	27.38	4.8	327.0	7661.0	30.07	24.39	93571.75	10	3	2023	9	12	
20164	0.55	1.67	27.93	4.0	327.0	8386.0	31.55	22.99	93558.36	10	3	2023	10	5	
20165	1.11	1.67	27.93	2.4	328.0	8954.0	32.68	20.85	93541.99	10	3	2023	10	11	
20166 ro	ws × 1	4 colu	mns												

Combine Data

Performing an outer join on /data1.csv/ and /data2.csv/ with common factors Day, Month, Year, Hour and Minute(in intervals of 5 minutes).

The features obtained are as follows: Pm1_x, pm2_x, pm3_x, am_x, sm_x, st, lum_x, day, Month,year, hour, min, pm1_y,pm2_y, pm3_y, am_y, sm_y, lum_y, temp,humd,pres

	pm1_x	pm2_x	pm3_x	am_x	sm_x	st	lum_x	day	Month	year	 min	pm1_y	pm2_y	pm3_y	am_y	sm_y	lum_y	temp	humd	pres
0	3.63	0.0	0.0	3.2	7813.0	25.65	15001.0	18		2022		1.39	0.00	0.00	0.0	7576.0	10249.0	23.47	88.37	92848.31
1	4.19	0.0	0.0	4.8	7692.0	25.66	13863.0	18		2022	10	1.95	0.00	0.00	0.0	7576.0	12636.0	23.64	85.26	92844.82
2	4.74	0.0	0.0	4.0	7813.0	25.67	13788.0	18		2022	11	2.51	0.00	0.00	0.0	7463.0	8318.0	23.62	85.93	92834.94
3	5.30	0.0	0.0	4.8	7813.0	25.68	14383.0	18		2022	12	0.55	2.51	2.51	0.0	7463.0	4149.0	23.82	86.06	92815.25
4	0.55	5.3	5.3	3.2	7813.0	25.69	14621.0	18		2022		1.11	2.51	2.51	0.0	7463.0	3238.0	24.27	82.98	92820.05
33033	NaN	NaN	NaN	NaN	NaN	NaN	NaN	10		2023	12	0.55	1.11	27.38	3.2	327.0	6352.0	27.04	32.24	93560.72
33034	NaN	NaN	NaN	NaN	NaN	NaN	NaN	10		2023	6	1.11	1.11	27.38	3.2	327.0	7057.0	28.53	28.69	93574.12
33035	NaN	NaN	NaN	NaN	NaN	NaN	NaN	10		2023	12	1.67	1.11	27.38	4.8	327.0	7661.0	30.07	24.39	93571.75
33036	NaN	NaN	NaN	NaN	NaN	NaN	NaN	10		2023	5	0.55	1.67	27.93	4.0	327.0	8386.0	31.55	22.99	93558.36
33037	NaN	NaN	NaN	NaN	NaN	NaN	NaN	10		2023	11	1.11	1.67	27.93	2.4	328.0	8954.0	32.68	20.85	93541.99
3038 rc	ws × 21	columns																		

Now all the similar values from the above obtained features are averaged out.

The resulting dataset obtained has features Pm1, pm2, pm3, am, sm, st, lum, day, Month, year, hour, min, temp, humd, pres.

This dataset is stored in /data_comb.csv/.

st	13697
day	0
Month	0
year	0
hour	0
min	0

• Model Data Preparation

Dividing features(Pm1, pm2, pm3, am, st, lum, day, Month, year, hour, min, temp, humd, pres) and labels (sm).

- Model Testing
- Best Model Selection

Models Tested

Random Forest Regressor								
RFR Imputation	MAE : 32.106408898305084							
	score: 0.9995056557239824							
RFR An Extension to Imputation	MAE : 31.790357067191284							
	score: 0.99951847418523							
RFR Pipeline								
RFR Pipeline Imputation	MAE: 32.094662076271185							
	score: 0.999506668112011							
RFR Pipeline An Extension to	MAE: 31.739522397094426							
Imputation	score: 0.9995207551616186							
XG Boost								
XG Boost Imputation	MAE: 40.77477760407307							

	score: 0.9992572415266866
XG Boost An Extension to Imputation	MAE: 43.111823557652805
imputation	score: 0.9992541126453306

Best Model Selected

Project By:

Denslin Nunes

Email: crce.9390.aids@gmail.com

Nigel Misquitta

Email: crce.9273.cs@gmail.com.com

• Dillon Gonsalves

Email: crce.9259.cs@gmail.com

Preeti Vasaikar

Email: crce.9299.cs@gmail.com

• Shoydon Alphonso

Email: crce.9240.cs@gmail.com.com

Thank you!