R documentation

of 'propagate_s.Rd'

December 12, 2012

propagate_s Propagate stochastic model forward over a series ot timesteps

Description

Essentially a wrapper to propagate_1step_S. Propagate determinstic model forward over a series of timesteps. The numerical scheme is supplied by the model (see original codes). A routine *Npropagate_s* should be provided in a forthcoming package version, to integrate simultaneously a bunch of initial conditions

Usage

```
propagate_s(model, times, init, par, Astro, seed=01425, deltat=.1,isum= 1)
```

Arguments

model	One of the deterministic models out of the packaged model list (data (models)) or user-supplied.
times	Vector of times. times[1] at which the model trajectory is being evaluated. Is used as the initial condition
init	State vector of initial conditions
par	Parameter vector
Astro	Astronomical forcing list, as supplied by routine read_astro
seed	Random number seed (is converted to an integer)
deltat	Time step used supplied to stochsatic propagator
isum	Every random number is obtained as the sum of isum random numbers, then divided by sqrt {isum}. See application in examples below.

propagate_s

Value

Matrix, with columns as follows:

- Column 1 .. n: States at specified times (n is the system dimension)
- Column n+1: precession according to the astronomical solution
- Column n+2: obliquity according to the astronomical solution

Author(s)

```
M. Crucifix (2012)
```

See Also

```
propagate_d (deterministic version)
```

Examples

```
## check convergence of time series
require (iceages)
data(models)
Astro <- read_astro(34,34)
times=seq(-80,0,0.1)
# test brownian bridge
bb <- function(spar, title='Brownian bridge: vdp mode')</pre>
 bs = c(1, 2, 5, 10, 20)
  for (j in seq(along=bs))
    print(bs[j])
    print(0.1/bs[j])
    STOCH <- propagate_s (models$cr12_s, init=c(0., 0.),
                       par=spar, times=times, Astro=Astro,
                       isum=bs[j], deltat=0.01*bs[j], seed=132);
    if (j==1)
       plot(times, STOCH[,1], type='l', main =title)
       lines(times, STOCH[,1], type='l', col=j)
  legend('topright', legend=bs, lty=1, col=seq(along=bs))
# van der pol mode
spar1 = c(alpha = 30., beta0 = 0.7, beta1 = 0,
         beta2 = 0., delta = 1.,
         gammapre = 0.7, gammaobl = 0.6,
```

propagate_s 3

Index

```
propagate_1step_S, I
propagate_d, 2
propagate_s, 1
read_astro, I
```