1 Information Theory

1.1 Entropy

Definition 1.1 (Entropy). Let X be a discrete random variable taking values in a finite set \mathcal{X} with probability mass function p(x) = P(X = x). The *entropy* of X, denoted H(X), is defined as:

$$H(X) \coloneqq -\sum_{x \in \mathcal{X}} p(x) \log p(x),$$

where the logarithm is typically taken base 2 (bits) or base e (nats).

Remark 1.1. If p(x) = 0, we set $p(x) \log p(x) := 0$. This ensures that $p(x) \log p(x)$ is continuous on [0, 1].

Figure 1: Plot of the function $y = -x \ln(x)$.

Remark 1.2. Entropy measures the uncertainty or information content of a random variable. Higher entropy indicates more unpredictability.

Proposition 1.1 (Non-Negativity of Entropy). For any discrete random variable X, we have $H(X) \geq 0$.

Proof. Since $0 \le p(x) \le 1$ and $-\log p(x) \ge 0$, each term in the sum is nonnegative, so their total sum is nonnegative.

Lemma 1.1 (Jensen's Inequality). Let $X \in \mathcal{X}$ be a random variable over a finite set \mathcal{X} , and let ϕ be a convex function defined for all X. Then:

$$\phi(E[X]) \le E[\phi(X)]$$
.

Proof. We use induction over $n = |\mathcal{X}|$. The base case n = 1 is trivial. Hence, assume that the claim holds for some n. We now prove the claim for n + 1. Clearly, for n > 1, we must have $P(X = x_k) < 1$ for some $x_k \in \mathcal{X}$. Without loss of generality, we assume k = n + 1. Hence:

$$\phi(E[X]) = \phi\left(\sum_{i=1}^{n+1} p(x_i)x_i\right)$$

$$= \phi\left(\left[(1 - p(x_{n+1}))\sum_{i=1}^{n} \frac{p(x_i)}{1 - p(x_{n+1})}x_i\right] + p(x_{n+1})x_{n+1}\right)$$

$$\leq (1 - p(x_{n+1}))\phi\left(\sum_{i=1}^{n} \frac{p(x_i)}{1 - p(x_{n+1})}x_i\right) + p(x_{n+1})\phi(x_{n+1})$$

$$\leq (1 - p(x_{n+1}))\sum_{i=1}^{n} \frac{p(x_i)}{1 - p(x_{n+1})}\phi(x_i) + p(x_{n+1})\phi(x_{n+1})$$

$$= \sum_{i=1}^{n+1} p(x_i)\phi(x_i) = E[\phi(X)] .$$

Remark 1.3. For strictly convex ϕ , it can be shown that

 $\phi(E[X]) = E[\phi(X)] \iff X \text{ is sampled from a uniform distribution}$

Proposition 1.2 (Maximum Entropy). For a discrete random variable X over n outcomes, entropy is maximized when X is uniform:

$$H(X) \le \log n$$
 .

Proof. We have:

$$\begin{split} -H(X) &= -E[-\log(p(X))] \\ &= E\left[-\log\left(\frac{1}{p(X)}\right)\right] \\ &\underset{\text{Jensen's Inequality}}{\geq} -\log\left(E\left[\frac{1}{p(X)}\right]\right) \\ &= -\log n \quad , \end{split}$$

where we assumed p(X) > 0. Of course, the cases where p(X) = 0 follow directly, since $p(X) \log p(X) = 0$.

 $H(X) \leq \log n$ follows directly. Note that we have equality iff X has uniform distribution (since $-\log(x)$ is strictly convex).

1.1.1 Joint, Conditional, and Cross Entropy

Definition 1.2 (Joint Entropy). For a pair of discrete random variables X and Y, the joint entropy is:

$$H(X,Y) := -\sum_{x,y} p(x,y) \log p(x,y)$$
.

Definition 1.3 (Conditional Entropy). The conditional entropy of Y given X is defined as:

$$H(Y\mid X) \coloneqq \sum_{x} p(x)H(Y\mid X=x) = -\sum_{x,y} p(x,y)\log p(y\mid x).$$

Corollary 1.1. We immediately see from the first equation that $H(Y \mid X) \geq 0$.

Theorem 1.1 (Chain Rule for Entropy).

$$H(X,Y) = H(X) + H(Y \mid X) \quad .$$

Proof. We have:

$$\begin{split} H(X,Y) &= -\sum_{x,y} p(x,y) \log p(x,y) \\ &= -\sum_{x,y} p(x,y) \log \left(p(x) p(y \mid x) \right) \\ &= -\sum_{x,y} p(x,y) \log p(x) - \sum_{x,y} p(x,y) \log p(y \mid x) \\ &= H(X) + H(Y \mid X) \quad . \end{split}$$

Corollary 1.2. $H(X,Y) \geq 0$ follows directly.

Definition 1.4 (Cross-Entropy). Let p and q be two probability distributions over a finite set \mathcal{X} , with $p(x) > 0 \Rightarrow q(x) > 0$. The *cross-entropy* of p relative to q is defined as:

$$H_q(p) := -\sum_{x \in \mathcal{X}} p(x) \log q(x)$$
.

Remark 1.4. Cross-entropy measures the expected number of bits required to encode samples from p using a code optimized for the distribution q.

Remark 1.5. Cross-entropy is non-negative (see section 1.2).

1.1.2 Properties of Entropy

Proposition 1.3. Conditional entropy satisfies:

$$H(Y \mid X) \le H(Y)$$
 ,

with equality if and only if X and Y are independent.

Proof. From the chain rule:

$$H(X,Y) = H(Y) + H(X | Y) = H(X) + H(Y | X)$$
,

which implies:

$$H(Y \mid X) = H(Y) + H(X \mid Y) - H(X) = H(Y) - I(X;Y)$$
,

with mutual information $I(X;Y) \ge 0$ (see section 1.3). Equality holds if and only if I(X;Y) = 0, i.e., X and Y are independent.

Corollary 1.3 (Subadditivity of Entropy). For any two random variables X and Y,

$$H(X,Y) \le H(X) + H(Y),$$

with equality if and only if X and Y are independent.

Proof. From the chain rule:

$$H(X,Y) = H(X) + H(Y \mid X) \le H(X) + H(Y)$$
,

since $H(Y \mid X) \leq H(Y)$ based on proposition 1.3. Equality holds if and only if $H(Y \mid X) = H(Y)$, i.e., X and Y are independent.

Theorem 1.2 (Concavity of Entropy). The entropy function H(p), where p is a probability vector, is concave on the probability simplex.

Proof. This follows from the fact that $f(x) = -x \log x$ is concave for x > 0, and entropy is the sum of such terms. Therefore, for convex combinations $p = \lambda p_1 + (1 - \lambda)p_2$,

$$H(p) \ge \lambda H(p_1) + (1 - \lambda)H(p_2).$$

Summary of Key Properties

• Non-negativity: $H(X) \ge 0$

• Maximum entropy: $H(X) \leq \log |\mathcal{X}|$

• Chain rule: $H(X,Y) = H(X) + H(Y \mid X)$

• Subadditivity: $H(X,Y) \leq H(X) + H(Y)$

• Conditioning reduces entropy: $H(Y \mid X) \leq H(Y)$

• Concavity: H(p) is concave in the distribution p

1.2 Kullback-Leibler Divergence

Definition 1.5 (KL Divergence). Let P and Q be two discrete probability distributions over the same finite set \mathcal{X} , with $P(x) > 0 \Rightarrow Q(x) > 0$. The Kullback-Leibler divergence (or relative entropy) from P to Q is defined as:

$$\begin{split} D_{\mathrm{KL}}(P\|Q) &\coloneqq \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)} \\ &= -\sum_{x} P(x) \log Q(x) + \sum_{x} P(x) \log P(x) \\ &= H_{Q}(P) - H(P) \quad . \end{split}$$

Remark 1.6. If P(x) = Q(x) = 0, we set $P(x) \log \frac{P(x)}{Q(x)} := 0$.

Remark 1.7. KL divergence measures the inefficiency of assuming that the distribution is Q when the true distribution is P. It is not a metric: it is not symmetric and does not satisfy the triangle inequality.

Lemma 1.2 (Gibb's Inequality). Suppose that $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$ are discrete probability distributions. Then:

$$-\sum_{i=1}^n p_i \log p_i \le -\sum_{i=1}^n p_i \log q_i \quad .$$

Proof. The claim is equivalent to $\sum_{i=1}^{n} p_i \log p_i - \sum_{i=1}^{n} p_i \log q_i \ge 0$. We have:

$$\begin{split} \sum_{i=1}^n p_i \log p_i - \sum_{i=1}^n p_i \log q_i &= \sum_{i=1}^n p_i \log \frac{p_i}{q_i} \\ &= \sum_{i=1}^n p_i \left(-\log \frac{q_i}{p_i} \right) \\ &\underset{\text{Jensen's Inequality}}{\geq} -\log \left(\sum_{i=1}^n p_i \frac{q_i}{p_i} \right) \\ &= -\log(1) = 0 \quad . \end{split}$$

Corollary 1.4. It directly follows from the proof that $D_{\mathrm{KL}}(P||Q) \geq 0$ and $0 \leq H(P) \leq H_Q(P)$.

Remark 1.8 (Asymmetry). In general,

$$D_{\mathrm{KL}}(P||Q) \neq D_{\mathrm{KL}}(Q||P)$$
.

To see this, let $\mathcal{X} = \{0, 1\}, P = (0.9, 0.1), Q = (0.5, 0.5)$. Then:

$$D_{\mathrm{KL}}(P||Q) \neq D_{\mathrm{KL}}(Q||P)$$
.

Proposition 1.4 (Additivity). Let $P = P_1 \times P_2$, $Q = Q_1 \times Q_2$. Then:

$$D_{KL}(P||Q) = D_{KL}(P_1||Q_1) + D_{KL}(P_2||Q_2)$$
.

Proof.

$$\begin{split} D_{\mathrm{KL}}(P_1 \times P_2 \| Q_1 \times Q_2) &= \sum_{x,y} P_1(x) P_2(y) \log \frac{P_1(x) P_2(y)}{Q_1(x) Q_2(y)} \\ &= \sum_{x,y} P_1(x) P_2(y) \left(\log \frac{P_1(x)}{Q_1(x)} + \log \frac{P_2(y)}{Q_2(y)} \right) \\ &= \sum_x P_1(x) \log \frac{P_1(x)}{Q_1(x)} + \sum_y P_2(y) \log \frac{P_2(y)}{Q_2(y)} \\ &= D_{\mathrm{KL}}(P_1 \| Q_1) + D_{\mathrm{KL}}(P_2 \| Q_2) \quad . \end{split}$$

Proposition 1.5 (Entropy Representation via KL Divergence). Let U be the uniform distribution over \mathcal{X} , where $|\mathcal{X}| = n$. Then for any distribution P,

$$H(P) = \log n - D_{KL}(P||U)$$
.

Proof.

$$D_{KL}(P||U) = \sum_{x} P(x) \log \frac{P(x)}{1/n} = \sum_{x} P(x) \log P(x) + \sum_{x} P(x) \log n$$

= $-H(P) + \log n$.

Summary of Properties

• $D_{\mathrm{KL}}(P||Q) \geq 0$

• $D_{\mathrm{KL}}(P||Q) = 0 \iff P = Q$

• Asymmetric: $D_{\mathrm{KL}}(P||Q) \neq D_{\mathrm{KL}}(Q||P)$

• Additive over independent distributions

• Connects with entropy: $H(P) = \log n - D_{KL}(P||U)$

1.3 Mutual Information

Definition 1.6 (Mutual Information). Let X and Y be discrete random variables with joint distribution p(x,y) and marginals p(x), p(y). The mutual information between X and Y is defined as:

$$I(X;Y) := \sum_{x,y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$
.

Remark 1.9. Mutual information quantifies how much knowing X reduces uncertainty about Y, and vice versa. Per definition, it is symmetric: I(X;Y) = I(Y;X).

Proposition 1.6 (Equivalent Expressions). *Mutual information can also be expressed as:*

$$\begin{split} I(X;Y) &= D_{\mathrm{KL}}(p(x,y) \parallel p(x)p(y)) \\ &= H_{p(x)p(y)}(p(x,y)) - H(X,Y) \\ &= \left[-\sum_{x,y} p(x,y) \log(p(x)p(y)) \right] - H(X,Y) \\ &= H(X) + H(Y) - H(X,Y) \\ &= H(X) - H(X \mid Y) \\ &= H(Y) - H(Y \mid X) \end{split}$$

Proof. Each follows from basic entropy identities and the definition of KL divergence. $\hfill\Box$

Corollary 1.5. $I(X;Y) \ge 0$, since $I(X;Y) = D_{KL}(p(x,y)||p(x)p(y))$ and KL divergence is always non-negative.

Definition 1.7 (Conditional Mutual Information). Let X, Y, Z be discrete random variables. The *conditional mutual information* of X and Y given Z is defined as:

$$I(X;Y\mid Z) \coloneqq \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y\mid z)}{p(x\mid z)p(y\mid z)} .$$

Equivalently, in terms of entropy:

$$I(X; Y \mid Z) = H(X \mid Z) - H(X \mid (Y, Z))$$
.

Proof.

$$\begin{split} &H(X\mid Z) - H(X\mid (Y,Z)) \\ &= \sum_{z} p(z) H(X\mid Z=z) - \sum_{y,z} p(y,z) H(X\mid Y=y,Z=z) \\ &= -\sum_{z} p(z) \sum_{x} p(x\mid z) \log p(x\mid z) \; + \; \sum_{y,z} p(y,z) \sum_{x} p(x\mid y,z) \log p(x\mid y,z) \\ &= \sum_{x,y,z} p(x,y,z) \log \frac{p(x\mid y,z)}{p(x\mid z)} \\ &= \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y\mid z)}{p(x\mid z)p(y\mid z)} \\ &= I(X;Y\mid Z) \quad . \end{split}$$

Remark 1.10. Conditional mutual information measures how much knowing Y reduces the uncertainty of X, given that we already know Z.

Proposition 1.7 (Chain Rule for Mutual Information). Let X, Y, and Z be random variables. Then:

$$I(X;Y,Z) = I(X;Z) + I(X;Y \mid Z).$$

Proof. We use entropy-based expressions for mutual information:

$$\begin{split} I(X;Y,Z) &= H(X) - H(X \mid (Y,Z)) \\ &= I(X;Z) + H(X \mid Z) - H(X \mid (Y,Z)) \\ &= I(X;Z) + H(X \mid Z) - (H(X \mid Z) - I(X;Y \mid Z)) \\ &= I(X;Z) + I(X;Y \mid Z) \quad . \end{split}$$

1.3.1 Data Processing Inequality

Definition 1.8 (Markov Chain). Random variables $X \to Y \to Z$ form a *Markov chain* if:

П

$$p(z \mid x, y) = p(z \mid y),$$

or equivalently,

$$X \perp Z \mid Y$$
.

Theorem 1.3 (Data Processing Inequality). If $X \to Y \to Z$ is a Markov chain, then:

$$I(X;Z) < I(X;Y)$$
.

Proof. We use the chain rule and conditional independence:

$$I(X; Z) = I(X; Z, Y) - I(X; Y \mid Z)$$

= $I(X; Y) + I(X; Z \mid Y) - I(X; Y \mid Z)$.

Since $X \to Y \to Z$, we have $I(X; Z \mid Y) = 0$. Thus:

$$I(X; Z) = I(X; Y) - I(X; Y \mid Z) \le I(X; Y),$$

because $I(X; Y \mid Z) \geq 0$.

Corollary 1.6 (No Gain in Processing). Any function f(Y) of Y cannot increase information about X:

$$I(X; f(Y)) \le I(X; Y).$$

Proof. This follows by applying the DPI to the chain $X \to Y \to f(Y)$.

2 Summary of Key Properties

- $I(X;Y) \ge 0$
- I(X;Y) = 0 if and only if $X \perp Y$
- $I(X;Y) = H(X) H(X \mid Y) = H(Y) H(Y \mid X)$
- $I(X;Y) = D_{KL}(p(x,y)||p(x)p(y))$
- Chain rule: $I(X, Z; Y) = I(X; Y) + I(Z; Y \mid X)$
- Data Processing Inequality: $X \to Y \to Z \Rightarrow I(X;Z) \leq I(X;Y)$

3 Subadditivity of Mutual Information

Theorem 3.1 (Subadditivity over Pairwise Mutual Information). Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be discrete random variables. Then:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} I(X_i; Y_j) \le I(X_1, \dots, X_m; Y_1, \dots, Y_n).$$

Proof. Each $I(X_i; Y_j) = D_{\mathrm{KL}}(p_{X_i, Y_j} \parallel p_{X_i} p_{Y_j})$, and since KL divergence is jointly convex and marginalizing reduces information, we have:

$$\sum_{i,j} D_{\mathrm{KL}}(p_{X_i,Y_j} \parallel p_{X_i}p_{Y_j}) \leq D_{\mathrm{KL}}(p_{\mathbf{X},\mathbf{Y}} \parallel p_{\mathbf{X}}p_{\mathbf{Y}}) = I(\mathbf{X};\mathbf{Y}).$$