W2D3 Solution C: Compression inverted index using **Elias-**y method

Inverted index	(964, 17)), (1488,	63), (<mark>2</mark>	240 , 24)	, (3168,	32)			
d-gaps	(964, 17)	, (524,	63), (7	52 , 24)	, (928,	32)			
Binary of d-gaps	$964 \equiv 11 \ 1100 \ 0100$ $17 \equiv 1 \ 0001$ $524 \equiv 10 \ 0000 \ 1100$ $63 \equiv 11 \ 1111$ $752 \equiv 10 \ 1111 \ 0000$ $24 \equiv 1 \ 1000$ $928 \equiv 11 \ 1010 \ 0000$ $32 \equiv 10 \ 0000$								
Find the highest degree of 2 for each d-gap	964	4 17 524 63 752		24	928	32			
	9	4	9	5	9	4	9	5	
Generate bit sequence	964 1 1111 1111 0 1 1100 0100 524 1 1111 1111 0 0 0000 1100 752 1 1111 1111 0 0 1111 0000 928 1 1111 1111 0 1 1010 0000			63 00 1 24 00 11	1111 0 1				
Calculate the size after compression:	(9+4+9+5+9+4+9+5)*2 + 8 = 116 bits $[116 bits/8] = 15 Bytes$								
Add extra bits to the end of the bit sequence	15 * 8 = 120 bits 120 bits - 116 bits = 4 extra bits 4 extra bits 1111								