Algorithme pour l'Investigation Numérique des Régimes Dynamiques du Modèle de Lorenz pour une Particule Active à Mémoire (F=0)

Objectif Global:

Explorer numériquement le comportement dynamique du système d'équations différentielles suivant :

$$\dot{X} = Y - X$$

$$\dot{Y} = -(1/\tau)Y + XZ$$

$$\dot{Z} = R - (1/\tau)Z - XY$$

en étudiant l'influence du paramètre R (amplitude de l'onde) sur la vitesse moyenne asymptotique <x> , la sensibilité aux conditions initiales, et la multistabilité. Les résultats seront présentés sous forme de diagrammes de bifurcation, histogrammes, et visualisations d'attracteurs.

Étape 1 : Initialisation des Paramètres

- **Description**: Définition des paramètres fixes et variables du système pour l'ensemble des simulations.
- Paramètres Fixes :
 - Taux de décroissance de l'onde (τ): τ = 10
 - Justification : Permet d'explorer la Région IV de la Fig. 3a de [1], zone d'intérêt pour la multistabilité et les oscillations avec dérive nette.
 - o Pas de temps (dt): dt = 0.01
 - Justification: Assure une précision suffisante dans les régimes potentiellement chaotiques. Ce choix devra être validé par des tests de convergence (voir Étape 8).
 - Durée totale de simulation (T_simulation): 5000 unités de temps
 - Justification : Permet au système d'atteindre son régime asymptotique de manière fiable, conformément à [1].
 - Durée transitoire (T_transient): 2500 unités de temps (T_simulation / 2)
 - Justification : Élimination des effets initiaux pour l'analyse des propriétés asymptotiques, suivant la méthodologie de [1].
 - Nombre de conditions initiales par R (N_IC): 50
 - Justification : Nombre suffisant pour évaluer la sensibilité aux CI et détecter la multistabilité, en accord avec la Fig. 4 de [1].
 - Intervalle pour X(0) : [-5, 5]
 - Justification : Couvre une plage représentative des vitesses initiales, basée sur [1].
- Paramètre Variable :

- Amplitude de l'onde (R): Intervalle [0.5, 3.0] avec NR = 100 points.
 - Justification : Couvre les régions dynamiques I à IV identifiées dans la Fig. 3a de [1].
 L'incrément (≈ 0.025) permet une bonne résolution pour observer les transitions.

Étape 2 : Génération des Conditions Initiales (CI)

- Description: Pour chaque valeur de R à étudier, générer un ensemble de N_IC conditions initiales distinctes.
- Procédure :
 - i. Fixer Y(0)_j = 0 pour toutes les conditions initiales (j = 1 à N_IC).
 - ii. Fixer $Z(0)_j = 0$ pour toutes les conditions initiales (j = 1 à N_IC).
 - iii. Générer les $N_{IC} = 50$ valeurs de $X(0)_{j}$ linéairement espacées dans l'intervalle [-5, 5] à l'aide de la formule : $X(0)_{j} = -5 + (10 / (N_{IC} 1)) * (j 1)$ pour j = 1, 2, ..., 50.
- **Note**: La position initiale x_d(0) n'intervient pas dans la dynamique de X, Y, Z pour F=0 et n'est donc pas requise comme condition initiale pour ces équations.
- **Justification**: Cette méthode systématique et reproductible suit celle utilisée dans [1] (Fig. 4), permettant une comparaison directe et une exploration standard de la sensibilité aux CI et de la multistabilité.

Étape 3 : Intégration Numérique avec Runge-Kutta 4 (RK4)

- **Description**: Résoudre numériquement le système d'équations différentielles pour chaque couple (R, CI j).
- Procédure pour chaque simulation :
 - i. Initialisation: Définir l'état initial du système (X, Y, Z) à (X(0)_j, 0, 0) et le tempst = 0.
 - ii. Boucle temporelle : Itérer de t = 0 jusqu'à t = T_simulation par pas de dt . À chaque pas :
 - Calculer les dérivées (x, y, z) à l'état (x, y, z) courant en utilisant les équations du système.
 - Appliquer une étape de l'algorithme RK4 pour calculer le nouvel état (x, y, z) au temps t + dt.
 - Stockage / Calcul partiel: Si t > T_transient, accumuler la valeur de X et incrémenter un compteur pour le calcul de la moyenne (voir optimisation ci-dessous).
 - Mettre à jour le temps : t = t + dt .

• **Optimisation :** Pour économiser la mémoire, ne pas stocker l'intégralité de la trajectoire X(t) . Calculer directement la somme des valeurs de X et le nombre de points après T_transient au fur et à mesure de l'intégration.

Étape 4 : Calcul de la Moyenne Temporelle <x>_j

- Description: Calculer la vitesse moyenne asymptotique pour chaque simulation individuelle
 (R, CI_j).
- Procédure :
 - i. Utiliser la somme des X (Somme_j) accumulée pendant l'intégration pour t allant de T transient + dt à T simulation.
 - ii. Calculer le nombre total de points temporels utilisés pour la moyenne :

```
N_{points} = (T_{simulation} - T_{transient}) / dt = 2500 / 0.01 = 250 000.
```

- iii. Calculer la moyenne temporelle : <X>_j = Somme_j / N_points .
- Résultat: <X>_j représente la vitesse moyenne asymptotique pour la condition initiale j à la valeur de R donnée.

Étape 5 : Stockage des Résultats

- Description : Sauvegarder de manière organisée les résultats calculés pour chaque valeur de R .
- Procédure pour chaque R :
 - i. **Collecter les résultats individuels :** Regrouper la liste des N_IC = 50 moyennes temporelles : [<X> 1, <X> 2, ..., <X> 50] .
 - ii. Calculer les statistiques d'ensemble :
 - Moyenne d'ensemble : $\langle x \rangle$ R = (1 / N IC) * Σ ($\langle x \rangle$ j) pour j de 1 à N IC.
 - \circ Écart-type d'ensemble : $\sigma_X(R)$ = sqrt[(1 / (N_IC 1)) * Σ (<X>_j <X>_R)^2] pour j de 1 à N_IC .
 - iii. Sauvegarder: Écrire la valeur de R, la liste complète des <x>-j, la moyenne <x>-R, et l'écart-type σ_X(R) dans un fichier de données structuré (par exemple, format CSV ou HDF5) pour analyse et visualisation ultérieures.

Étape 6 : Programme Principal (Structure Logique)

- **Description**: Séquence logique générale du code d'exécution.
- Structure :
 - i. **Initialisation Globale :** Définir tous les paramètres (τ, dt, T_simulation, etc.) et générer la séquence des N_R valeurs de R à explorer. Ouvrir le fichier de sortie.
 - ii. Boucle Principale (sur R): Pour chaque valeur R_i dans la séquence :
 - o Générer l'ensemble des N_IC conditions initiales (X(0)_j, 0, 0).
 - Initialiser une liste vide pour stocker les <X>_j pour ce R_i.
 - Boucle Interne (sur CI_j): Pour chaque condition initiale j de 1 à N_IC :
 - Exécuter l'intégration numérique (Étape 3).
 - Calculer la moyenne temporelle <x> j (Étape 4).
 - Ajouter <X>_j à la liste des résultats pour R_i.
 - Calculer <X> R et σ X(R) à partir de la liste des <X> j.
 - \circ Écrire la ligne de résultats pour R_i (incluant R_i , tous les $\langle X \rangle_j$, $\langle X \rangle_R$, $\sigma_X(R)$) dans le fichier de sortie.
 - iii. Fin : Fermer le fichier de sortie.

Étape 7 : Visualisation des Résultats

- **Description :** Utiliser les données sauvegardées pour générer des graphiques illustrant les résultats (par exemple, avec Python et Matplotlib/Seaborn).
- Types de Visualisations :
 - i. Diagramme de Bifurcation de la Vitesse Moyenne :
 - Objectif: Montrer comment les états asymptotiques possibles (<X>_j) évoluent avec R et révéler la multistabilité.
 - Méthode: Tracer un nuage de points avec R en abscisse et toutes les <x>_j
 correspondantes en ordonnée.
 - ii. Courbes de Moyenne et d'Écart-Type d'Ensemble :
 - Objectif: Fournir une vue synthétique du comportement moyen et de sa dispersion.
 - \circ *Méthode*: Tracer $\langle x \rangle_R$ en fonction de R et $\sigma_x(R)$ en fonction de R.
 - iii. Histogrammes de <x>_j :
 - Objectif: Montrer la distribution des vitesses moyennes obtenues pour des valeurs spécifiques de R, illustrant la nature de la (multi)stabilité.
 - Méthode: Sélectionner quelques valeurs clés de R (représentatives des différents régimes) et tracer l'histogramme des 50 valeurs <x>_j associées.

iv. Visualisation des Attracteurs :

 Objectif : Comprendre la géométrie de l'espace des phases sous-jacente aux comportements observés. Méthode: Pour quelques couples (R, CI_j) intéressants, relancer la simulation en stockant la trajectoire (X(t), Z(t)) après le transitoire, puis tracer la projection 2D de l'attracteur dans le plan (X, Z).

Étape 8 : Détails Supplémentaires et Bonnes Pratiques

• Tests de Convergence (dt):

- Action : Avant de lancer la production complète, effectuer des simulations tests pour quelques valeurs de R (ex: une en régime stable, une en régime chaotique/multistable) avec des pas de temps plus petits (dt/2 , dt/10).
- Critère: Valider dt = 0.01 si les valeurs de <X>_j obtenues ne varient pas significativement
 (ex: moins de 1%) par rapport à celles obtenues avec des pas plus fins.

• Gestion de la Mémoire :

 Action: Implémenter le calcul de la somme des X et du nombre de points pour la moyenne directement pendant la boucle d'intégration (après T_transient), au lieu de stocker des tableaux X(t) très longs.

• Parallélisation :

 Opportunité : Les N_IC simulations pour un R donné sont indépendantes. Utiliser des techniques de parallélisation (ex: OpenMP en Fortran, multiprocessing en Python si le solveur y est codé) pour distribuer le calcul de la boucle interne sur plusieurs cœurs de processeur et réduire le temps total d'exécution.