Lógica de primer orden. Interpretaciones, distinguibilidad, expresabilidad, y definibilidad.

Sergio Abriola

25 de octubre de 2017

Definición. Un lenguaje de primer orden \mathcal{L} está dado por un conjunto de símbolos de constantes C, un conjunto F de símbolos de funciones (cada una con cierta aridad fija), y un conjunto P no vacío de símbolos de predicados (cada uno con cierta aridad). A veces consideramos que P contiene al símbolo de relación binaria =, el cual es siempre es interpretado como la igualdad usual.

Decimos que \mathcal{M} es una \mathcal{L} -estructura (o una interpretación de \mathcal{L}) si consiste de un conjunto no vacío M provisto de interpretaciones para todos los símbolos de \mathcal{L} . Es decir:

- Para cada símbolo de constante $c \in C$, hay un $c_{\mathcal{M}} \in M$.
- Para cada símbolo de función $f \in F$ de aridad n, hay una función (total) $f_{\mathcal{M}}: M^n \to M$.
- Para cada símbolo de predicado $p \in P$ de aridad n, hay una relación n-aria $p_{\mathcal{M}} \subseteq M^n$.

Ejercicio 1. Sea \mathcal{L} el lenguaje con igualdad $\{c, f, R, =\}$, donde c es un símbolo de constante, f es un símbolo de función 1-aria, y R un símbolo de predicado (o relación) 2-aria. Decidir si son \mathcal{L} -estructuras las siguientes estructuras:

- 1. $\mathcal{M}_1 = \{\mathbb{Z}, -3, s, <\}$. Donde s es la función 'sucesor' (s(x) = x + 1) y < es el 'menor' usual.
- 2. $\mathcal{M}_2 = \{\mathbb{N}, 1, +, <\}$. Donde + es la función 'suma' (+(x, y) = x + y) y < es el 'menor' usual.
- 3. $\mathcal{M}_3 = \{\mathbb{Z}, 0, r, p\}$. Donde $r(x) = \sqrt{x}$, y $x \in p \text{ sii } x > 0$.
- 4. $\mathcal{M}_4 = \{T, r, id, \downarrow\}$. Donde T es un árbol maximal de altura 2 y ramificación 2, r es la raíz de T, $\mathrm{id}(x) = x$, y $x \downarrow y$ sii y es hijo de x.

Resolución. 1. Sí. Acá, $c_{\mathcal{M}_1} = -3$, $f_{\mathcal{M}_1} = s$, $R_{\mathcal{M}_1} = <$.

- 2. No. La suma + no es una interpretación válida para f, porque f es un símbolo de función 1-aria y la suma es 2-aria.
- 3. No. La raíz cuadrada no es una función total (y además el resultado no siempre está en \mathbb{Z}). Ademas, p es relación unaria en vez de binaria.

4. Sí. Acá,
$$c_{\mathcal{M}_4} = r, f_{\mathcal{M}_4} = id, R_{\mathcal{M}_4} = \downarrow$$
.

Definición. Una \mathcal{L} -fórmula φ se dice *universalmente válida* si para toda \mathcal{L} -estructura \mathcal{M} y toda valuación v de \mathcal{M} , $\mathcal{M} \models \varphi[v]$.

Una \mathcal{L} -fórmula φ se dice *válida o verdadera* en una \mathcal{L} -estructura \mathcal{M} si para toda valuación v de \mathcal{M} , $\mathcal{M} \models \varphi[v]$.

Una \mathcal{L} -fórmula φ se dice satisfacible si existe alguna \mathcal{L} -estructura \mathcal{M} y una valuación v tales que $\mathcal{M} \models \varphi[v]$.

Ejercicio 2. Decidir si las siguientes \mathcal{L} -fórmulas son universalmente válidas, válidas en \mathcal{M}_1 o \mathcal{M}_4 , satisfacibles, o insatisfacibles.

$$\varphi_1 : x = x$$

$$\varphi_2 : \forall x (\exists y (f(y) = x))$$

$$\varphi_3 : \forall x (xRf(x))$$

$$\varphi_4 : \forall x (x = c) \lor \forall x (f(x) \neq x \land f(f(x)) = x)$$

$$\varphi_5 : \forall x (x \neq c)$$

Resolución.

 φ_1 : Universalmente válida

 φ_2 : No es universalmente válida. Vale en \mathcal{M}_1 y en \mathcal{M}_4

 φ_3 : No es universalmente válida. Vale en \mathcal{M}_1 y no en \mathcal{M}_4

 φ_4 : No vale ni en \mathcal{M}_1 ni en \mathcal{M}_4 , pero es verdadera en una estructura de un solo elemento

 φ_5 : Insatisfacible

Definición. Decimos que un elemento e del universo de una \mathcal{L} -estructura \mathcal{M} es distinguible si existe una \mathcal{L} -fórmula φ con una sola variable libre x tal que $\mathcal{M} \models \varphi[v]$ si y sólo si v(x) = e.

Ejercicio 3. Sea \mathcal{L} el lenguaje con igualdad que consiste únicamente de un predicado binario R. Sea \mathcal{M} una \mathcal{L} -interpretación que consiste en un árbol ($R_{\mathcal{M}}$ es la relación de accesibilidad: $xR_{\mathcal{M}}y$ sii y es hijo de x). Demostrar que la raíz de \mathcal{M} es un elemento distinguible.

Resolución. En efecto, se puede distinguir a la raíz con la fórmula: $\varphi: \forall y(\neg(yRx))$.

Ejercicio 4. Sea \mathcal{L} el lenguaje de primer orden con igualdad, con una relación binaria <. Considerar la siguiente \mathcal{L} -interpretación \mathcal{M} con universo $\omega^2 = \{(x,y) \mid x,y \in \mathbb{N}\}.$

$$(x,y) <_{\mathcal{M}} (x',y')$$
 iff $(x < x' \text{ o } x = x' \text{ y } y < y')$

Demostrar que son distinguibles todos los elemento de la forma (i,0) con $i \in \mathbb{N}$.

Resolución. Vamos a construir inductivamente predicados φ_i , tales que cada uno tiene una única variable libre y y cada φ_i es válido únicamente en valuaciones v tales que v(y) = (i, 0).

Para el caso base, definimos

$$\varphi_0 : \neg (\exists x (x < y))$$

Efectivamente tiene como única variable libre a y, y solo se satisface en \mathcal{M} cuando v(y) = (0,0). Ahora, supongamos que tenemos a φ_i construida para todo $i \leq n$. Veamos que podemos construir a φ_{n+1} . Para eso, primero construimos otra fórmula con variable libre z que dice que z es de la forma (i,0) para algún i.

$$\psi: \forall x (x < z \to \exists x_2 (x < x_2 \land x_2 < z))$$

Ahora definimos

$$\varphi_{n+1}: \psi(y) \land \neg(\varphi_0(y)) \land \cdots \land \neg(\varphi_n(y)) \land \forall x((\psi(x) \land x < y) \rightarrow (\varphi_0(x) \lor \varphi_1(x) \cdots \lor \varphi_n(x)))$$

Observar que φ_{n+1} distingue a (n+1,0), como queríamos.

Entonces, probamos que todos los elementos de \mathcal{M} de la forma (i,0) son distinguibles.

Definición. Dada una \mathcal{L} -interpretación \mathcal{M} con universo A, decimos que una relación $R \subseteq A^n$ es expresable si existe una \mathcal{L} -fórmula φ con n variables libres x_1, \ldots, x_n tal que para toda valuación v, vale que $\mathcal{M} \models \varphi[v]$ sii $(v(x_1), \ldots, v(x_n)) \in R_{\mathcal{M}}$.

Ejercicio 5. Sea $\mathcal{L} = \langle +, = \rangle$, con + un símbolo de función binario. Sea, con cierto abuso de notación, $\mathcal{M} = \langle \mathbb{N}, +, = \rangle$, donde + es la suma de naturales usual. Demostrar que son expresables las relaciones $R_{\leq} = \{(x_1, x_2) \mid x_1 \leq x_2\}$ y $R_{\leq} = \{(x_1, x_2) \mid x_1 \leq x_2\}$.

Resolución. La siguiente fórmula, de variables libres x_1, x_2 expresa R < :

$$\varphi_{<}: \exists x (+(x_1, x) = x_2)$$

Por otro lado, la siguiente fórmula expresa $R_{<}$ al poner la condición que el nuevo sumando no sea el 0:

$$\varphi_{<}: \exists x (\neg(+(x,x) = x) \land +(x_1,x) = x_2)$$

Definición. Decimos que una clase de \mathcal{L} -estructuras \mathcal{K} es definible si existe una sentencia φ tal que para toda \mathcal{L} -interpretación \mathcal{M} , vale que $\mathcal{M} \models \varphi$ sii $\mathcal{M} \in \mathcal{K}$.

Ejercicio 6. Sea $\mathcal{L} = \langle R, = \rangle$, donde R es un símbolo de relación binaria. Demostrar que es definible la clase de \mathcal{L} -modelos donde R es una relación irreflexiva, transitiva, y con al menos un mínimo.

Resolución. Una sentencia que sirve es:

$$\varphi: \forall x (\neg (xRx)) \land \forall x (\forall y (\forall z (xRy \land yRz \rightarrow xRz))) \land \exists x (\forall y (x \neq y \rightarrow \neg (yRx)))$$

Si se quiere, se puede acortar a otra sentencia equivalente (usando irreflexividad al final):

$$\varphi': \forall x (\forall y (\forall z (\neg (xRx) \land (xRy \land yRz \rightarrow xRz)))) \land \exists x (\forall y (\neg (yRx)))$$