SVM-1

Support Vector Machines

s pam/Non Spam

* Theoretically it is most powerful algorithm.

* Plactically => NOT frequently used those day

* 1900's, 2000's

* Mathematically heavy

Which hyperblane is best? Choose T with highest Margin "d MARGIN MAXIMISING CLASSIFIERS

 $T W^T \chi + b = 0$ $\pi^{+}: W^{T}x+b=k W^{T}x+b-k=0$ 77 : WT2+b=-kWT2+b+k=0 Margin = d(T+1) $d(n^+, n^-) = \frac{|b+k-(b-k)|}{||\omega||}$ $d\left(\pi^{\dagger}, \pi^{-}\right) = \frac{2k}{1000}$

d= 2k / MAXIMISE k= Court.

Case 1

$$k=1$$
 $d = \frac{2x1}{1|w|1} = \frac{2}{1|w|1}$

Case 2

 $k = 10$
 $d = \frac{2x10}{1|w|1} = \frac{20}{1|w|1}$

arg max $\frac{2}{|W|}$ arg max $\frac{20}{|W|}$

By default, we will take k=1 for simplicity of Calculation.

GOAL = Manimise Margin =) 2 |WII

St. all points are lying in Correct region

This is known as HARD MARGIN CLASSIFIER

A when the data is non linally separable Hard Margin Classifier will fail

GOAL: Marinise Margin. St. all points are arrectly clarified.

Orgman 2 | WII 2 | W 2

$$\chi_{1} \cdot (w^{T}x + b)y = 0.5 \\
(0.5) (+1) | -0.5 \\
\chi_{2} = (w^{T}x + b)y = -0.5 \\
(-0.5) (+1) | -1.5 \\
\chi_{3} : (w^{T}x + b)y = -7.5 \\
(-2.5) (+1) | -3.5 \\
\chi_{4} \cdot (w^{T}x + b)y = +1.5$$

$$\chi_{4} \cdot (w^{T}x + b)y = +1.5 \\
(+1.5) (+1) | -(-0.5)$$

$$\chi_{5} = 0 \text{ for correctly claimful point } \xi_{7} = 0$$

H Margin Clashfier arg man 2 => arg min [wll Regularisation Const MSt + > SIWI + > Reg Overfitting Under fithing 1111/2

arg min
$$\frac{||w||}{2} + \frac{C}{n} \stackrel{\mathcal{S}}{\underset{i=1}{\overset{}{=}}} \mathcal{E}_{i}$$

 $S.+ (w^{T}x + b)y \ge 1 - \mathcal{E}_{i}$

2a = Query print (W'n+b) - tvc - +vc lass signed -ve class. Ht inforena.

y log y + (1-y) log (1-y)

achol predicted.

(555.
$$\sum_{i=1}^{\infty} \log(1+e_{xy}(-y_{i}(w_{x}+b)))$$

$$(\omega^{1}x+b)y$$

$$(\omega^{1}x+b)y$$

Primal Duel form

dual arg max
$$\underset{i=1}{\overset{\infty}{\sum}} x_i - \frac{1}{2} \underset{i=1}{\overset{\infty}{\sum}} \underset{j=1}{\overset{\infty}{\sum}} x_i x_j^i y_j x_i^{-1} x_j^i$$

S.t. $0 \le k \le c$ $\underset{i=1}{\overset{\infty}{\sum}} x_i^i y_j = 0$

 $\bigcirc \mathcal{N} : \longrightarrow \mathcal{N} : \qquad \text{earlier} \qquad \text{f's} \longrightarrow \mathcal{W'} \preceq$ (2) All ris occur in the form of ritz; 3) f(2) = = X', y', xe, xe, xe X=0 for all now support vectors

Quiz time!

What do you mean by generalization in terms of SVM?

18 users have participated

O	A	How far the hyperplane is from the training datapoints	33%
	В	How accurately the SVM can predict outcomes for unseen data	50%
	С	How accurately the SVM classifies training datapoints	17%

Quiz time!

If,

w1216 = k 1012+6= (k)

90		
	96	
	90	
	11 w 11	
	110, 11	

A	10/ w	32%
В	40/ w	5%
С	50/ w	9%
D	90/ w	55%

Quiz time!

What do you mean by a hard margin?

22 users have participated

$ \bigcirc $	Α	The SVM allows no error in classification.	82%
	В	The SVM allows some error in classification.	5%
	С	The SVM allows high error in classification.	14%

