Tema 4. Dispositivos Electrónicos

4.1.- Conceptos básicos de semiconductores. Unión PN

4.2.- El Diodo

4.3.- El Transistor MOSFET

Estructura del Si enlaces covalentes

A temperatura ambiente

n = p n: concentración de electrones

p: concentración de huecos

Si dopado con impurezas donadoras

P: Fosforo

As: Arsenico

Sb: Antimonio

N_D: concentración de impurezas donadoras

Si dopado con impurezas aceptadoras

B: Boro

Al: Aluminio

Ga: Galio

Unión PN

Equilibrio

Directa

Inversa

4.2 Diodo y transistor BJT

4.2.1 Diodo

Un diodo de unión es una unión P-N con dos contactos óhmicos exteriores. — +

Su símbolo es:

Su característica, en primera aproximación:

$$I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right)$$

$$V_T = \frac{kT}{q} = 26 \text{mV} (300 \text{K})$$

 $I_s = 10^{-14} \text{ A}$

V_⊤: tensión térmica

k: Cte. de Bolztman

T: temperatura absoluta

q: carga del electrón

I_s: corriente inversa de saturación

Vamos a trabajar con modelos más sencillos, modelos lineales.

 V_D

Modelos lineales

Los modelos que se suelen utilizar son:

Modelo 1

si
$$V_D < 0 => I_D = 0$$

si
$$V_D > 0 => I_D > 0$$

Es un buen modelo si $V_{\scriptscriptstyle D} >> V_{\scriptscriptstyle \gamma}$

Modelo 2

Tensión constante entre los extremos del diodo:

$$si V_D < V_{\gamma} \implies I_D = 0$$

$$si V_D > V_{\gamma} \implies I_D > 0$$

Modelo 3

Tensión variable entre los extremos del diodo:

$$si V_D < V_{\gamma} \implies I_D = 0$$

$$si V_D > V_{\gamma} \implies I_D > 0$$

$$\begin{split} V_D &= V_\gamma + I_D \cdot r_d \\ I_D &= \frac{\left(V_D - V_\gamma\right)}{r_d} \end{split}$$

Según estos modelos en inversa es capaz de aguantar cualquier tensión, sin embargo, en directa el valor que aguanta el diodo es como mucho, un poco superior a $V_D\left(V_\gamma\right)$, ya que con intensidades provocadas por tensiones mayores el dispositivo se fundiría.

Métodos de resolución

Vamos a ver 3 métodos, dos de ellos con el diodo real y el último (el más utilizado) con los modelos lineales.

Para ello vamos a resolver el siguiente problema:

Nota: en todos los circuitos

$$\boldsymbol{I}$$
 (mA) y \boldsymbol{R} (K Ω)

Datos:
$$V_{DD} = 5 \text{ V}$$

$$R = 1 \text{ K}\Omega$$

$$I_S = 10^{-11} \text{mA}$$

$$V_T = 26 \,\mathrm{mV}$$

Método analítico (diodo real)

Circuito:
$$5 \text{ V} = I_D \cdot 1 K + V_D$$
 $\Rightarrow 5 = I_S \left(e^{V_D/V_T} - 1 \right) + V_D$ Dispositivo: $I_D = I_S \left(e^{V_D/V_T} - 1 \right)$

$$V_D = 5 - I_S \left(e^{V_D/V_T} - 1 \right)$$
 diodo real

Sustituimos V_D=0.65 V en la exponencial y calculamos V_D. Repetimos hasta obtener la precisión requerida. Si lo hacemos en este ejemplo nos queda:

$$V_D = 0.696 \,\text{V}$$

$$I_D = 4.3 \,\text{mA}$$

Método gráfico (diodo real)

Consiste en colocar las dos ecuaciones de la recta en una gráfica y

Método lineal (modelo 3)

En nuestro circuito, supongamos que **D OFF**:

$$I_D = 0 \implies V_R = I \cdot R = 0 \implies V_D = 5 \text{ V} > V \gamma \implies D \text{ ON}$$

Así que la suposición D OFF era falsa.

D ON, por lo tanto según nuestro modelo:

Tomando los valores:

$$V_{\gamma} = 0.65 \text{ V}$$
 \Rightarrow $I_D = 4.307 \text{ mA}$
 $r_d = 10 \Omega$ \Rightarrow $V_D = 0.693 \text{ V}$

Aplicaciones del diodo

Limitador

Para que **D ON** $V_o \approx 7.65 \,\mathrm{V}$

a) Supongamos que V_i es baja de modo que **D OFF**

$$\begin{vmatrix} V_i = I(100+1) \\ I = V_o \cdot 100 \end{vmatrix} \Rightarrow V_o = \frac{100}{101} V_i$$

b) Supongamos que V_i aumenta $\rightarrow V_o$ aumenta (todavía D OFF)

Esta situación sigue así hasta que
$$V_o = 7.65 \text{ V} \implies V_i = \frac{101}{100} V_o = 7.73 \text{ V}$$

c) Para $V_i > 7.73 \text{ V}$ **D ON**

$$\frac{V_{i} - V_{o}}{1} = \frac{V_{o} - 7.65}{r_{d}} + \frac{V_{o}}{100}$$

$$V_{o} = \frac{7.65}{100 + 101r_{d}} 100 + \frac{V_{i}r_{d}}{100 + 101r_{d}} 100$$

$$V_{i} + \frac{V_{o} - 7.65}{100 + 101r_{d}} 100$$

$$V_{i} + \frac{V_{o} - 7.65}{7} = \frac{V_{o} - 7.65}{100 + 101r_{d}} + \frac{V_{o} - 7.65}{100 + 101r_{d}} = \frac{V_{o} - 7.65}{100 + 101r_{d}} + \frac{V_{o} - 7.65}{100 + 101r_{d}} = \frac{V_{o} - 7.65}{100 + 101r_{d}} + \frac{V_{o} - 7.65}{100 + 101r_{d}} = \frac{V_{o} - 7.65}{100 + 101r_{d$$

No sotros usualmente tomamos $r_d = 0$

$$V_o = 7.65 \,\text{V} \ \text{fijo} \implies \text{Si} \ V_i \uparrow I_{1\text{K}} = \frac{V_i - V_o}{R} \uparrow$$

y como $I_{100K} = \frac{V_o}{100 \text{K}}$ es constante, pasa más corriente por D

Rectificador de media onda: modelo 2 para el diodo

- a) Supongamos que V_i es baja de modo que **D OFF** $I_D = 0 \Rightarrow V_o = 0$
- b) Supongamos que V_i aumenta ¿hasta cuando dura la situación anterior? Esta situación sigue así hasta que $V_i > 0.65 \text{ V}$

c) A partir de $V_i = 0.65 \text{ V}$ **D ON**

Para una señal alterna

Rectificador de media onda: modelo 1 (ideal) para el diodo

Rectificador de media onda: modelo 3 para el diodo

Diodo Zener

Es un caso particular del diodo. El Zener tiene la propiedad de conducir también bajo polarización inversa a partir de una cierta tensión V_z .

4.3. Transistor MOSFET

El transistor MOSFET se corresponde con el siguiente dispositivo:

SÍMBOLO DEL NMOS:

Símbolo de un transistor MOS de canal N de enriquecimiento $(V_t > 0)$.

Símbolo de un transistor MOS de canal P de enriquecimiento $(V_t < 0)$.

Símbolo de un transistor MOS de canal N de deplexión. Igual que el dispositivo de enriquecimiento pero con $V_t < 0$.

 k_n : transconductancia $k_n = \mu_n \cdot C_{ox} \frac{W}{L}$

 μ_n : movilidad

 C_{ox} : capacidad de óxido de puerta

W: anchura del canal

L: longitud del canal

MODOS DE OPERACIÓN DEL NMOS

1) NMOS OFF

$$V_{GS} < V_{Tn}$$
 NMOS OFF $\Rightarrow I_D = 0$

2) NMOS ON

$$V_{GS} > V_{Tn} \implies \text{NMOS ON} \implies I_D \neq 0 \implies \begin{cases} \text{a) lineal} \\ \text{b) saturación} \end{cases}$$

a) Triodo (lineal)

$$V_{DS} < (V_{GS} - V_{Tn})$$
 $I_{DS} = k_n [(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2]$

b) Saturación

$$V_{DS} \ge (V_{GS} - V_{Tn})$$
 $I_{DS} = \frac{k_n}{2} (V_{GS} - V_T)^2$

Característica I_D - V_{DS} para un MOSFET con V_t = 1V.

Característica I_D - V_{GS} para un MOSFET con V_t = 1V.

MODOS DE OPERACIÓN DEL PMOS

1) PMOS OFF

$$V_{GS} > V_{Tp}$$
 PMOS OFF $\Rightarrow I_D = 0$

2) PMOS ON

$$V_{GS} < V_{Tp} \implies \text{PMOS ON} \implies I_D \neq 0 \implies \begin{cases} \text{a) lineal} \\ \text{b) saturación} \end{cases}$$

a) Triodo (lineal)

$$V_{DS} > (V_{GS} - V_{Tp})$$
 $I_{SD} = k_p [(V_{GS} - V_{Tp})V_{DS} - \frac{1}{2}V_{DS}^2]$

b) Saturación

$$V_{DS} \le (V_{GS} - V_{Tp})$$
 $I_{SD} = \frac{k_p}{2} (V_{GS} - V_{Tp})^2$

Ejemplo:

Datos:

$$K = 40 \cdot 10^{-6} \frac{A}{V^2}$$

Vamos a calcular V_G

1) Suponemos NMOS OFF $\Rightarrow I_G = 0$

$$i_1 = \frac{15 \text{ V}}{150 \text{ K} + 100 \text{ K}}, \quad V_G = i_1 \cdot 100 \text{ K} = \frac{15 \text{ V}}{250 \text{ K}} \cdot 100 \text{ K} = 6 \text{ V} \implies \text{NMOS ON}$$

2) NMOS ON $\Rightarrow I_D = I_S$ Vamos a suponer saturación

$$V_{CC} = I_{D} \cdot R_{D} + V_{DS} + I_{D} \cdot R_{S}$$

$$V_{G} = V_{GS} + I_{D} \cdot R_{S}$$

$$I_{D} = \frac{k_{n}}{2} (V_{GS} - V_{T})^{2}$$

$$15 = I_{D} \cdot 45K + V_{DS}$$

$$6 = V_{GS} + I_{D} \cdot 5K$$

$$I_{D} = 20 \cdot 10^{-6} (V_{GS}^{2} + 4 - 4 \cdot V_{GS}) \quad (3)$$

despejando I_D de (2) e igualando con (3):

$$\frac{6 - V_{GS}}{R_S} = 20 \cdot 10^{-6} \left(V_{GS}^2 + 4 - 4 \cdot V_{GS} \right) \implies V_{GS}^2 + 6 \cdot V_{GS} - 56 = 0$$

$$V_{GS} = \begin{cases} 5.06 \, \text{V} \implies I_D = 0.1844 \, \text{mA} \implies \text{de (1)} \ V_{DS} = 6.54 \, \text{V} \\ \text{valor negativo} \end{cases}$$

vamos a comprobar si la suposición de saturación es correcta:

$$V_{DS} > V_{GS} - V_T \implies 6.54 > 5.06 - 2 = 3.06$$
 suposición correcta