NATURAL TRANSFORMATIONS, DUALITY, & EQUIVALENCES

ISHAN LEVY

1. What is a natural transformation?

Let's introduce the final essential categorical concept, the natural transformation. This is an extremely important concept, I believe Mac Lane has said that he defined the notion of category so that he could make precise a functor, and he defined a functor to make precise the notion of a natural transformation.

Definition 1.1. Given two functors F and G from C to D, a **natural transformation** η from F to G is for each object x of C, an arrow η_x from Fx to Gx such that the following diagram commutes for all x, y, f:

$$Fx \xrightarrow{Ff} Fy$$

$$\downarrow^{\eta_x} \qquad \downarrow^{\eta_y}$$

$$Gx \xrightarrow{Gf} Gy$$

We write $\eta: F \Rightarrow G$ to denote a natural transformation.

Natural transformation is a wonderful way of formalizing an intuitive sense of natural. For example, if V is a vector space over a field F, there is a dual vector space V^* which is the vector space of linear maps from V to F. Perhaps you know that if V is finite dimensional, it is isomorphic to its dual. However these aren't canonically isomorphic: in order to make an isomorphism, you have to **choose** a basis and then identify them. Natural transformation makes precise when this is canonical. For example, if Vect_F is the category of F-vector spaces, then $(-)^*$, the dual, is a contravariant functor from Vect_F to itself. On arrows, $(-)^*$ does the same thing as the Hom functor C(-,F). We can compose $(-)^*$ with itself to get the covariant double dual functor $(-)^{**}$. If f is a map from V to W, then the double dual makes a map from V^{**} to W^{**} as follows: given a map f that takes maps f from f to f to f, we get the map $f^{**}(g)$ that takes maps f to the double dual f transformation f from f to the double dual f transformation f from f to the double dual f. This is an isomorphism if the vector space is finite dimension, and note that

Date: 7/23/2017.

it is canonical: there was no need to make any choices. Then, we should expect this collection of maps $\eta_V, V \in \mathrm{Vect}_F$ to be a natural transformation. And indeed it is, as one can check by following an element around the diagram that we want to commute:

$$V \xrightarrow{1_{\text{Vect}_F} f = f} W$$

$$\downarrow^{\eta_V} \qquad \downarrow^{\eta_W}$$

$$V^{**} \xrightarrow{f^{**}} W^{**}$$

Lets follow around an element $v \in V$:

$$v \xrightarrow{f} f(v)$$

$$\downarrow^{\eta_V} \qquad \qquad \downarrow^{\eta_W}$$

$$h: h(g) = g(v) \xrightarrow{f^{**}} k: k(g) = h(g \circ f), k: k(g) = g(f(v))$$

Another example is the abelianization. Given a group G, we can define a subgroup called the commutator subgroup $[G,G]=\{aba^{-1}b^{-1}|a,b\in G\}$. The abelianization of G is the group G/[G,G]. This is a functor as if $f:G\to H$ is a homomorphism, we can compose with the projection $H\to H/[H,H]$ to get a map $G\to H/[H,H]$. [G,G] is in the kernel of this map, so we get then a map $G/[G,G]\to H/[H,H]$. This is the map that the abelianization sends f to. Now the projection $\pi_G:G\to G/[G,G]$ is a natural transformation as the diagram below commutes (by definition):

$$G \xrightarrow{\pi_G} G/[G,G]$$

$$\downarrow \qquad \qquad \downarrow$$

$$H \xrightarrow{\pi_H} H/[H,H]$$

As a third example, consider the category ω which is the poset category of N with the usual ordering. Consider a diagram consisting of a sequence of sets S_n with injective maps from $S_n \to S_{n+1}$. This can be thought of as a sequence of sets increasing in size (each containing the previous). Recall that diagrams are just functors, and in this case, ω is the category for which this is a functor (we can call this functor F. Let $\widehat{\cup S_i}$ be the constant functor taking ω to $\bigcup S_i$, and all the arrows to the identity. Then consider the natural transformation $\eta: F \Rightarrow \widehat{\cup S_i}$ that sends each S_i with the subset it corresponds to in the union. I leave this as an easy exercise to check that this is a natural transformation (draw it!). This kind of natural transformation is called a **cocone** (this will be discussed in more depth when we do (co)limits).

Finally, consider the determinant of a (invertible) matrix, \det^n . I claim this is a natural transformation. Consider the two functors from CRing to Grp: one taking K to $GL_n(K)$, and the other taking it to K^* (check that these are functors). Then \det_K^n is for each element of CRing a map from $GL_n(K)$ to K^* sending a linear transformation to its determinant. The diagram is the same as always:

$$GL_nF \xrightarrow{\det_F^n} F^*$$

$$\downarrow_{GL_nf} \qquad \downarrow_{f^*}$$

$$GL_nK \xrightarrow{\det_K^n} K^*$$

Given two categories C, D, we can form the **product category**, $C \times D$ where the objects are pairs of objects, the arrows are pairs of arrows, and composition is defined as usual.

Now consider the contravariant powerset Set(-,2) (2 is a set with two elements, we can view this functor as $2^{(-)}$). As an exercise, try to find all the natural transformations from this functor to itself (this will come up again in a later lecture).

Definition 1.2. Suppose F, G, H are functors in Cat(C, D). Then if $\eta : F \Rightarrow G$ and $\nu : G \Rightarrow H$ are natural transformations, then we can form the **vertical composite**, $\nu \cdot \eta$, a natural transformation from F to H, defined by $\nu \cdot \eta_a = \nu_a \circ \eta_a$.

We can check this is a natural transformation via the following diagram:

$$Fa \xrightarrow{\eta_a} Ga \xrightarrow{\nu_a} Ha$$

$$\downarrow_{Ff} \qquad \downarrow_{Gf} \qquad \downarrow_{Hf}$$

$$Fb \xrightarrow{\eta_b} Gb \xrightarrow{\nu_b} Hb$$

This turns Cat(C, D) into a category, which we call the functor category. We can write this as D^C . An isomorphism in Cat(C, D) is called a natural isomorphism. Alternatively, it is a natural transformation η where each η_a is an isomorphism.

I use the word vertical composite, because there is also a horizontal composite. It can be seen as follows:

Given the diagram below, we would like to create a natural transformation $\nu\eta$: $F' \circ F \Rightarrow G' \circ G$ sometimes written $\nu \circ \eta$.

We can do this by considering the following diagram:

$$F'Fa \xrightarrow{F'\eta_a} F'Ga$$

$$\downarrow_{\nu_{Fa}} \qquad \downarrow_{\nu_{Ga}}$$

$$G'Fa \xrightarrow{G'\eta_a} G'Ga$$

This commutes as ν is natural for η_a . This suggests the following definition:

Definition 1.3. Suppose F, G, F', G', η, ν are as above, we can form the **horizontal** composite $\nu \eta : F' \circ F \to G' \circ G$ so that $(\nu \eta)_a = \nu_{Ga} \circ F' \eta_a = G' \eta_a \circ \nu_{Fa}$.

It remains to check this is a natural transformation, but this should be obvious if you draw the appropriate diagram (for a natural transformation). If $F: C \to D$, $G, H: D \to E$ are functors and $\eta: G \Rightarrow H$ a natural transformation then the natural transformation ηF denotes the horizontal composite $\eta 1_F$, and similarly if $J: E \to X$ is a functor, then $J\eta$ denotes $1_J\eta$.

Horizontal composites and vertical composites are related through the interchange law, which says $(\tau \eta) \cdot (\tau' \eta') = (\tau \cdot \tau')(\eta \cdot \eta')$. It can be described as the diagram below:

$$C \xrightarrow{\boxed{\eta'}} D \circ D \xrightarrow{\boxed{\tau'}} E = C \xrightarrow{\boxed{\eta'}} D \xrightarrow{\boxed{\tau'}} E$$

$$C \xrightarrow{\boxed{\eta'}} D \xrightarrow{\boxed{\tau'}} E$$

$$C \xrightarrow{\boxed{\eta'}} D \xrightarrow{\boxed{\tau'}} E$$

We can prove it using the diagram below. Let $\eta': F \Rightarrow G, \eta: G \Rightarrow H, \tau': F' \Rightarrow G', \tau: G' \Rightarrow H'$ in the figure above.

The path on the top is the natural transformation $(\tau \cdot \tau')(\eta \cdot \eta')$, and the path on the bottom is $(\tau \eta) \cdot (\tau' \eta')$. The middle rectangle commutes as τ' is a natural transformation.

As a final note, there is an analogy between natural transformations and homotopies.

If X and Y are topological spaces, and f and g are maps (continuous, as always) from X to Y, a homotopy from f to g is a map from $X \times [0,1]$ to Y that at 0 restricts to f and at 1 restricts to g. The definition of a natural transformation can be presented analogously: Let 2 be the category with 2 objects, called 0 and 1 and one non identity arrow from 0 to 1 (we can say the arrow category, as this is the category that represents the diagram consisting of a generic arrow).

If C and D are categories, and F and G are functors from C to D, a natural transformation is a functor from F to G is a functor from $C \times 2$ to D that on 0 restricts to F and on 1 restricts to G.

Check that these two definitions of natural transformations are equivalent and note the similarity with homotopies. In a way, a natural transformation is categorification of homotopy.

Finally let's end with an interesting non-example. Let FinSet_g be the category of finite sets and bijections between them. Consider two functors to Set, the first, Aut, takes X to the set of bijections from X to itself, on maps, it takes $f: X \to Y$ to the function that takes $\phi: X \to X$ to $f \circ \phi \circ f^{-1}: Y \to Y$. The second, Ord, takes X to the set of total orders on X, and on maps takes f to the total order on Y induced by the bijection. These two functors send isomorphic objects to isomorphic sets, but are not naturally isomorphic: in fact, there isn't even a natural transformation between them! For, let's consider f, the nontrivial bijection from a set $\{a,b\}$ to itself. If there was a natural transformation, we would have

$$\begin{cases}
1, (a, b) \} & \xrightarrow{\text{Aut}(f)} \\
\downarrow^{\eta_b} & \downarrow^{\eta_c} \\
\{a < b, b < a\} & \xrightarrow{Ff} \\
\{a < b, b < a\}
\end{cases}$$

Aut(f) is the identity, but Ff is not, so this diagram cannot commute.

The fact that this bijection is not natural has an interesting interpretation in the context of a combinatorics problem. In particular, let's count the number of trees on a set of n elements, which we'll call T_n . Let $|\cdot|$ denote cardinality of a set. Consider the product $T_n \times n \times n$, consisting of a tree on the set n, as well as a head and a tail (shown in Fig 1).

Note that since there is a unique path between any two points in a tree, we can draw an arrow from the tail to the head, yielding a total ordering on a subset of 1 to n, ie. a skeleton, as well as trees coming out of each point. Note that the skeleton and the trees coming out of each point completely determine $T_n \times n \times n$. Then as total orders are in bijections with permutations, we can consider the set of permutations with trees coming out of them, a typical example in the figure below:

Fig. 1: a tree, on 11 elements, with a skeleton, indicated by the bold lines, is determined by the total ordering on the skeleton and the trees coming out of each point on the skeleton.

Fig. 2: A permutation on 2,3, and 5 with trees coming out of it.

These are in bijection with functions from the set of n elements to itself, as a function determines such a tree by writing where everything goes, which eventually (after applying the function enough times) determines the cycles and the trees coming out of them. Thus $T_n \times n \times n$ is in bijection with the set of functions from $\{1, ..., n\}$ to itself, which is n^n . Thus $|T_n| = n^{n-2}$ (This is known as Cayley's Theorem). Perhaps the reason this proof does something nontrivial is because it used this bijection which was unnatural.