ML Exercise 1

Classification

Group 8:

Alexander Leitner, 01525882 Mario Hiti, 01327428 Peter Holzner, 01426733

Datasets

Classifiers

- Heart disease
- Amazon
- Congressional voting
- Polish company bankruptcy

- K-Nearest Neighbors (KNN)
- Random Forest (RF or RFC)
- Multilayer Perceptron (MLP)

Dataset	samples	dimensions	Nominal/ordinal	# of classes	missing values
Heart Disease	303	14	mixed	5	very few
Amazon	750	10000	ordinal	40	no
Companies	6k	64	ordinal	binary	~1,5%
Congress	218	17	nominal/binary	binary	

Heart Disease

Heart Disease

Small + low dimensional:

- Samples: 303
- Features: 13 + 1 target
- Target (5 classes):
 - o 0... no disease
 - 1,2,3,4... different diseases
 - Uneven target distribution
- Evaluation: Accuracy + F1-score (balanced model)
 - Custom cost matrix: domain expert needed

Data preparation

	1	
HO	11	Iroc
TC	$au\iota$	ires

	numerical		categorical	
	name	range	name	range
	age	29 - 77	sex	0, 1
	trestbps	94 - 200	cp	0,1,2,3
	chol	126 - 564	fbs	0, 1, 2
Features:	thalach	71 - 202	restecg	0,1,2
	oldpeak	0 - 6.2	exang	0, 1
	-	-	slope	0,1,2
 o different ranges → scale 	-	-	ca	0,1,2,3,4
 8 categorical 	-	-	thal	$3, 6, 7 \rightarrow 0, 2, 1$

- 2 5 encoded categories per feature
- 5 samples with missing values in "ca" or "thal" (entry "?" in csv → hard to spot)
 - 1.5% of samples: no gain if imputed → simply drop samples

KNN Classifier

- Unscaled: BAD
 - o CM: only guesses 0
- Scaled: OKAY
- norm:
 - Manhattan (p=1) > Euclidean (p=2)
- weights:
 - distance > uniform

KNN Classifier - Confusion Matrices (BONUS)

RF Classifier (BONUS)

- scaled, unscaled: no difference
- n_estimators:
 - o 10 20 best
- criterion:
 - o entropy > gini
- max features (per split):
 - no difference

MLP Classifier

- scaled > unscaled data
 - right side: scaled
- Regularization alpha:
 - 1e-5 best (even smaller?)
- activation:
 - o mostly relu > tanh
 - BUT: tanh has best
- hidden layers:
 - o bigger = better

Final decision

MLP F1=0.847

VS

Amazon

Amazon

Class: 50 different names

features: numeric values

Preparation:

feature selection: kBest or PCA

Feature Selection

Results

parameter:

KNN n_neighbors = 8; weights = distance; algorithm = auto
RFC n_estimators = 1000; max_features = sqart; criterion = gini
MLP alpha = 0.01; layers = (100,100); solver = lbfgs; activation = tanh

Classifier	score	F1 score	recall	precision	train-time
Knn	0.477	0.453	0.489	0.537	0.059s
RFC	0.593	0.572	0.612	0.627	6.558s
MLP	0.616	0.608	0.636	0.622	10.969s

Congressional Voting

Congressional Voting

Description:

Class: Republicans or Democrats

features: nominal values "y", "n" and "unknown"

Preparation:

write "n" -> -1; "y" -> 1; "unknown" -> 0

even distributed -> prevent scaling

Distribution of classes

Results KNN

parameter:

auto/ball_free or uniform/distance

results:

very short time a good score

score	F1 score	precision	recall	runtime
0.915909	0.915368	0.916842	0.914155	2.082ms

Results RM

sqrt/log2 or gini/entropy

results:

better score than the KNN

score	F1 score	precision	recall	runtime
0.9476	0.9296	0.9276	0.92445	4.402ms

Results MLP

sqrt/log2 or gini/entropy

results:

best score

200 times more intensive

score	F1 score	precision	recall	runtime
0.965	0.9653	0.9641	0.9668	487.08ms

Polish Company Bankruptcy

Polish company bankruptcy

- 5 data sets
- 5k-10k samples / year
- 64 dimensions
- 2 different classes
- high imbalance of class distribution ~15:1

Preprocessing

-> Normalization expected to have a positive impact

Rating classifiers / Cost Matrix

- FP is much worse than FN
- Rating based on normalized cost
 - 1: perfect prediction
 - o 0 -1: good model
 - < 0: bad model

Cost Matrix		actual			
		solvent	bankrupt		
	solvent	-1 (TP)	100 (FP)		
pred.	bankrupt	1 (FN)	0 (TN)		

Findings - KNN

Findings - RFC and MLP

Findings - Conclusion

- KNN reached the highest score consistently
- Classifiers with few FP are favored due to cost matrix
- No model with high recall AND precision was found
- => best models have low recall / high precision

	accuracy	score	F1 score	precision	recall	runtime
k-nearest neighbors	0.9362	0,9303	0,1374	0.9000	0.0743	0,142s
random forest	0.9334	0.6864	0.1060	0.6363	0.0578	0,664s
multi-layer perceptron	0.9328	0.8674	0.0480	0.7500	0.0247	3,811s

Cost Matrix		actual		
		solvent	bankrupt	
pred.	solvent	-1 (TP)	100 (FP)	
p.od.	bankrupt	1 (FN)	0 (TN)	

Scores

$$ACC := \frac{TP + TN}{n_samples}$$

$$F1 := \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Recall :=
$$\frac{TP}{TP + FN}$$

punishes false negatives ability to find all positive samples

Precision :=
$$\frac{TP}{TP + FP}$$

punishes false positives ability to not mislable negative samples