Topología

Definición de espacio topológico @definición	;
a Definición de continuidad @definición, continuidad	4
a1 Definición de homeomorfismo @definición, homeomorfismo	į
a1a Proyección estereográfica @homeomorfismo explícito, proyección estereográfica	(
b Definición de función abierta y cerrada @definición, abierta, cerrada	-
b1 Criterio para homeomorfismos @criterio, abierta, cerrada	8
c Definición de topología de identificación @generación, definición	9
c1 Más fina para continuidad @comparación	10
c2 Caracterización de identificaciones @caracterización, identificación	1
c3 Propiedades de las identificaciones @propiedades, composición, identificación	1:
c4 Criterio para identificaciones @criterio, sección	14
c4a Propiedades de una sección @propiedades, sección	1
c5 Criterio para identificaciones @criterio, abierta, identificación	10
c6 Producto de identificaciones @producto, abierta, identificación	1
c7 Identificación es casi homeomorfismo @homeomorfismo, identificación	18

1c9 Propiedad universal de las identificaciones @propiedad universal, identificación	20
1c10 Definición de espacio cociente @cociente, topología	22
1c10a Propiedades de saturación @definición, saturación, identificación	23
1c10b Espacios cocientes Hausdorff @espacio cociente, Hausdorff, T2	24
1c11 Homeomorfismo inducido por una identificación	25

19

26

27

1c8 Restricción de identificaciones @restricción, identificación, criterio

1c13 Criterio para identificaciones @compacto, Hausdorff, identificación

1c12 Caracterización de identificaciones @caracterización, compatibilidad, identificación

Definición de espacio topológico

I

DEFINICIÓN 1. Sea X un conjunto. Una **topología** sobre X es una familia \mathcal{T} de subconjuntos de X con las siguientes propiedades:

definición

- (I) $\emptyset, X \in \mathcal{T}$.
- (II) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ entonces $\bigcup_{i\in I} U_i \in \mathcal{T}$.

(III) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ y I es finito, entonces $\bigcap_{i\in I} U_i \in \mathcal{T}$.

A la pareja (X, \mathcal{T}) se le llama **espacio topológico**.

Definición de continuidad

1a

DEFINICIÓN 2. Dados espacios topológicos X y Y, una función $f: X \longrightarrow Y$ se dice **continua** en X, si U abierto en Y implica que $f^{-1}(U)$ es abierto en X.

definición, continuidad

Definición de homeomorfismo

1a1

DEFINICIÓN 3. Un **homeomorfismo** es una función $f: X \longrightarrow Y$ continua y biyectiva, cuya inversa también es continua. En este caso, se dice que los espacios X y Y son **homeomorfos**.

definición, homeomorfismo

Proyección estereográfica

TEOREMA 1. La función

$$p: S^{n} - \{N\} \longrightarrow \mathbb{R}^{n}$$

$$(x_{1}, \dots, x_{n+1}) \longmapsto \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right),$$

donde N = (0, ..., 0, 1), es un homeomorfismo con las topologías usuales y su inversa está dada por

$$p^{-1}: \mathbb{R}^n \longrightarrow S^n - \{N\}$$

$$y = (y_1, \dots, y_n) \longmapsto \left(\frac{2y_1}{|y|^2 + 1}, \dots, \frac{2y_n}{|y|^2 + 1}, \frac{|y|^2 - 1}{|y|^2 + 1}\right).$$

A este homeomorfismo se le llama proyección estereográfica.

Demostración. Es rutinario verificar que $p \circ p^{-1} = \mathrm{id}_{\mathbb{R}^n}$ y que $p^{-1} \circ p = \mathrm{id}_{S^n - \{N\}}$. Además, p es continua por ser sus componentes funciones racionales en las variables x_1, \ldots, x_{n+1} tales que su denominador no se anula. De forma similar, p^{-1} es continua por ser sus funciones componentes productos de las variables y_1, \ldots, y_n , con la función $1/(|y|^2 + 1)$, la cuál es continua pues el denominador no se anula y la función norma |y| es continua. □

1a1a

homeomorfismo explícito, proyección estereográfica

Definición de función abierta y cerrada

1b

Definición 4. Una función $f: X \longrightarrow Y$ se dice **abierta** si U abierto en X implica que f(U) es abierto en Y.

Definición 5. Similarmente, una función $f:X\longrightarrow Y$ se dice **cerrada** si F cerrado en X implica que f(F) es cerrado en Y.

definición, abierta, cerrada

Criterio para homeomorfismos

Teorema 2. Si una función $f: X \longrightarrow Y$ es biyectiva, continua y abierta o cerrada, entonces f es un homeomorfismo.

Demostración. Como f es biyectiva, existe su inversa $g: Y \longrightarrow X$ tal que $g \circ f = \mathrm{id}_X$. Sea U un abierto en X y notemos que $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U) = \mathrm{id}_X^{-1}(U) = U$ y aplicando f a ambos lados obtenemos $g^{-1}(U) = f(U)$ por suprayectividad de f. Como f(U) es abierto por ser f una funcion abierta, entonces $g^{-1}(U)$ es abierto. Dado que U fue un abierto arbitrario, entones g es continua y en consecuencia f es un homeomorfismo. Si f es cerrada la demostración es similar.

TEOREMA 3. Si f es un homeomorfismo, entonces f es abierta y cerrada.

Demostración. Sea g la inversa de f. Si U es abierto en X, entonces $g^{-1}(U)$ es abierto en X por ser g continua, pero, de manera similar al teorema anterior, se tiene que $g^{-1}(U) = f(U)$, luego f(U) es abierto y se sigue que f es una función abierta. Similarmente se prueba que f es cerrada.

criterio, abierta, cerrada

Definición de topología de identificación

1c

DEFINICIÓN 6. Dados un espacio topológico X, un conjunto Y y una función $f: X \longrightarrow Y$, se puede dotar a Y con una topología, a saber, $\{U \subset Y \mid f^{-1}(U) \text{ es abierto en } X\}$. A esta topología se le llamará **topología de identificación** o **topología coinducida** en Y por X a través de f.

generación, definición

DEFINICIÓN 7. Si X y Y son espacios topológicos y $f:X\longrightarrow Y$ es una función, se dice que f es una **identificación** si la topología de Y es la topología coinducida por f.

PROPOSICIÓN 1. Sea X un espacio topológico $y f: X \longrightarrow Y$ una función. La topología de identificación en Y coinducida por f hace continua a f. Más aún, de entre todas las topologías que hacen continua a f, esta es la más fina.

comparación

Demostración. Sea \mathcal{T}_f la topología de identificación en Y. Si $U \in \mathcal{T}$, entonces $f^{-1}(U)$ es abierto en X, por definición. Como U fue arbitrario, entonces f debe ser continua, por definición de continuidad.

Sea \mathcal{T} una topología que hace continua a f. Si $U \in \mathcal{T}$, entonces $U \subset Y$ y $f^{-1}(U)$ es abierto en X por definición de continuidad, pero esto implica que $U \in \mathcal{T}_f$ por definición de \mathcal{T}_f . Como U fue arbitrario, entonces $\mathcal{T} \subset \mathcal{T}_f$, y a su vez como \mathcal{T} fue una topología arbitraria que hace continua a f, entonces \mathcal{T}_f debe ser la más fina entre ellas. \square

caracterización, identificación

Teorema 4. Si $f: X \longrightarrow Y$ es una función, son equivalentes

- (I) f es identificación.
- (II) U es abierto en Y si y sólo si $f^{-1}(U)$ es abierto en X.
- (III) F es cerrado en Y si y sólo si $f^{-1}(F)$ es cerrado en X.

Demostración. (I) \Longrightarrow (II). Si f es identificación entonces f es, en particular, continua, y por tanto U abierto en Y implica $f^{-1}(U)$ abierto en X. Supogase ahora que $f^{-1}(U)$ es abierto en X con $U \subset Y$. Entonces U es abierto en X por definición de topología de identificación. Como U fue arbitrario se tiene el resultado.

 $(II) \implies (III)$. Se tiene que

$$F$$
 es cerrado en $Y \iff X - F$ es abierto en $Y \iff f^{-1}(X - F) = Y - f^{-1}(F)$ es abierto en X , por hipótesis $\iff f^{-1}(F)$ es cerrado en X .

- $(III) \implies (II)$. Es similar al punto anterior.
- (II) \Longrightarrow (I). Sea \mathcal{T} la topología de Y. Si se verifica (II), entonces la \mathcal{T} hace continua a f. Más aún, si hay otra topología \mathcal{T}' que hace continua a f, entonces $U \in \mathcal{T}$ implica que $f^{-1}(U)$ es abierto en X, y por tanto $U \in \mathcal{T}$ por

identificación. Luego, $\mathcal T$ es la topología de identificación coinducida por f, es decir, f es una identificación. \Box

hipótesis. Luego $\mathcal{T}' \subset \mathcal{T}$ y como \mathcal{T}' fue arbitraria, entonces \mathcal{T} es de hecho más fina en Y que cualquier otra que haga continua a f. Es fácil verificar que sólo existe una topología sobre Y con esta propiedad y es la topología de

propiedades, composición, identificación

- Proposición 2. Sean $f: X \longrightarrow Y$ y $g: Y \longrightarrow Z$ funciones. Se verifican las siguientes afirmaciones
 - (I) $id_X : X \longrightarrow X$ es identificación.
- (II) Si f y g son identificaciones, entonces $g \circ f$ es identificación.
- (III) $Si\ f\ y\ g\circ f$ son identificaciones, necesariamente g es identificación.

Demostración. (I) Se sigue de que U es abierto en X si y sólo si $\mathrm{id}_X(U) = U$ es abierto en X.

(II) Como f y g son identificaciones, entonces, por 1c2,

$$U$$
 es abierto en $Z \iff g^{-1}(U)$ es abierto en Y $\iff f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ es abierto en X .

Luego $g \circ f$ es identificación.

(III) Se tiene que

$$U$$
 es abierto en $Z \iff (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ es abierto en $X \iff g^{-1}(U)$ es abierto en Y ,

luego g es identificación.

Criterio para identificaciones

1c4

TEOREMA 5. Sea $p: X \longrightarrow Y$ continua. Si existe una función continua $s: Y \longrightarrow X$ tal que $p \circ s = \mathrm{id}_Y$, entonces p es una identificación.

criterio, sección

Demostración. Si $U \subset Y$ es tal que $p^{-1}(U)$ es abierto en X, entonces $s^{-1}(p^{-1}(U)) = (p \circ s)^{-1}(U) = \mathrm{id}_Y(U) = U$ es abierto, por ser s continua. Como p es también continua por hipótesis, se tiene que U es abierto en Y si Y sólo si $P^{-1}(U)$ es abierto en Y, luego P es identificación.

Definición 8. A $s: Y \longrightarrow X$ en el teorema anterior se le llama **sección** de p.

propiedades, sección

- TEOREMA 6. Si $s: Y \longrightarrow X$ es una sección de $p: X \longrightarrow Y$, entonces
 - (I) s es inyectiva,
- (II) s es un encaje, es decir, $Y \cong s(Y)$.

Demostración. (I) Si $y_1, y_2 \in Y$ son tales que $s(y_1) = s(y_2)$, entonces $p(s(y_1)) = p(s(y_2))$, pero $p \circ s = id_Y$, en consecuencia $y_1 = y_2$. Luego s es inyectiva.

(II) Sea $r: Y \longrightarrow s(Y)$ la restricción de s al contradominio s(Y). Claro que r es biyectiva, pues es suprayectiva por construcción e inyectiva por ser s inyectiva. Más aún, r es continua, pues s es continua y $s(Y) \subset X$. Sea U un abierto en Y. Como p es continua, entonces $p^{-1}(U)$ debe ser abierto en X, además

$$r^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U)) \cap s^{-1}(s(Y))$$

$$= (p \circ s)^{-1}(U) \cap Y, \text{ por inyectividad de } s$$

$$= id_Y^{-1}(U) \cap Y$$

$$= U \cap Y = U.$$

Tomando la imagen bajo r a ambos lados, se tiene que $p^{-1}(U) \cap s(Y) = r(U)$, por ser r suprayectiva. Se sigue que r(U) es un abierto en s(Y). Como U fue un abierto arbitrario de Y, entonces r es una función abierta. Luego, como r es biyectiva, continua y abierta, entonces r es un homeomorfismo por 1b1 y por tanto s es un encaje.

Criterio para identificaciones

Proposición 3. Si $f: X \longrightarrow Y$ es continua, suprayectiva y abierta o cerrada, entonces f es identificación.

Demostración. Si $U \subset Y$ es tal que $f^{-1}(U)$ es abierto en X, entonces $U = f(f^{-1}(U))$ debe ser abierto en Y por ser f suprayectiva y abierta. Como f también es continua, entonces f debe ser identificación por 1c2. Si f es cerrada, la demostración es similar usando nuevamente 1c2.

1c5

criterio, abierta, identificación

Producto de identificaciones

1c6

Proposición 4. Si $f_1: X_1 \longrightarrow Y_1$ y $f_2: X_2 \longrightarrow Y_2$ son continuas, suprayectivas y abiertas, entonces $f: X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ definida como $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$ es identificación.

producto, abierta, identificación

Demostración. Se tiene que f es continua (munkres 1975, p. 112, pendiente de agregar topología producto aquí con etiqueta generación) y también suprayectiva. Más aún, f es abierta. Se sigue de 1c5 que f es identificación. \Box

Proposición 5. Sea $f: X \longrightarrow Y$ una función biyectiva. Entonces f es identificación si y sólo si f es homeomorfismo.

nuevamente por 1b1 y como f es continua y suprayectiva, entonces f es identificación por 1c5.

Demostración. Supongamos que f es identificación. Si U es abierto en X, entonces $f^{-1}(f(U)) = U$ es abierto en X, luego f(U) debe de ser abierto en Y por ser f identificación. Luego f es una función abierta y como es continua y biyectiva, por 1b1 f debe ser homeomorfismo. Recíprocamente, si f es homeomorfismo, entonces f es abierta

homeomorfismo, identificación TEOREMA 7. Si $f: X \longrightarrow Y$ es identificación, B es abierto o cerrado en Y y $A = f^{-1}(B)$, entonces $f|_A: A \longrightarrow B$ es identificación.

restricción, identificación, criterio

Demostración. Como f es continua, entonces $f|_A:A\longrightarrow Y$ es continua. Más aún, como $B\subset Y$ y $f(A)=f(f^{-1}(B))\subset B$, entonces $f|_A:A\longrightarrow B$ es continua. Sea $U\subset B$ tal que $f|_A^{-1}(U)$ es abierto en A. Como B es abierto en Y, entonces $f^{-1}(B)=A$ es abierto en X, por ser f continua y por tanto $f|_A^{-1}(U)$ es abierto en X. Pero

$$f|_A^{-1}(U) = f^{-1}(U) \cap A = f^{-1}(U) \cap f^{-1}(B) = f^{-1}(U \cap B) = f^{-1}(U),$$

por ser $U \subset B$, así que $f^{-1}(U)$ es abierto en X. Como f es identificación, esto implica que U es abierto en Y y por tanto U es también abierto en B, pues $U = U \cap B$. Como U fue arbitrario, entonces $f|_A$ es identificación. Si B es cerrado la demostración es similar.

propiedad universal, identificación

TEOREMA 8. Sea $f: X \longrightarrow Y$ una función. Entonces f es identificación si y sólo si se cumplen las siguientes condiciones:

- (I) f es continua.
- (II) Una función $g: Y \longrightarrow Z$ es continua si y sólo si $g \circ f$ es continua.

Demostración. Supóngase primero que f es identificación. Entonces f es continua y se tiene (I). Sea $g: Y \longrightarrow Z$ una función. Si g es continua, entonces $g \circ f$ es continua por ser composición de funciones continuas. Si $g \circ f$ es continua y U es un abierto en Z, se tiene que $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ es abierto en X y por tanto $g^{-1}(U)$ es abierto en Y por ser f identificación. Como U fue arbitrario, entonces g es continua y hemos probado (II).

Suponga ahora que se verifican las condiciones y sean \mathcal{T} la topología en Y y \mathcal{T}_f la topología coinducida por f en Y. Defínase $f': X \longrightarrow (Y, \mathcal{T}_f)$ como f'(x) = f(x), $\forall x \in X$. Se tiene que f' es continua, pues si U es abierto en (Y, \mathcal{T}_f) , entonces $f'^{-1}(U) = f^{-1}(U)$, el cual es abierto en X, pues \mathcal{T}_f hace continua a f. Más aún, se tiene que $f' = \mathrm{id}_Y \circ f$,

donde $\mathrm{id}_Y:(Y,\mathcal{T})\longrightarrow (Y,\mathcal{T}_f)$, luego la condición (II) implica que id_Y es continua, así que $\mathcal{T}_f\subset\mathcal{T}$. Además, por la condición (I), la topología \mathcal{T} hace continua a f y en consecuencia $\mathcal{T}\subset\mathcal{T}_f$. Se sigue que $\mathcal{T}=\mathcal{T}_f$, es decir, f es una identificación.

Definición de espacio cociente

1c10

Definición 9. Si X es un espacio topológico y \sim es una relación de equivalencia en X, se le llamará **espacio cociente** a X/\sim con la topología de identificación coinducida por la proyección canónica $p:X\longrightarrow X/\sim$. Se dirá que X/\sim tiene la **topología cociente**.

cociente, topología

Definición 10. A la proyección canónica $p:X\longrightarrow X/\sim$ vista como identificación se le llamará **aplicación** cociente.

Propiedades de saturación

1c10a

DEFINICIÓN 11. Si $p: X \longrightarrow X/\sim$ es una aplicación cociente y $A \subset X$, se define la **saturación** de A como el conjunto $p^{-1}(p(A))$, que contiene a todos los puntos de A y a todos los puntos en X equivalentes a algún punto de A. Se dice que A es **saturado** si $A = p^{-1}(p(A))$.

definición, saturación, identificación

Proposición 6. Sea $A \subset X$ un conjunto saturado respecto a una relaión de equivalencia $\sim y$ sea p la respectiva aplicación cociente. Se tiene que

- (1) Si $A \subset X$ es abierto o cerrado, entonces $p|_A : A \longrightarrow p(A)$ es una identificación.
- (II) Si p es una función abierta o cerrada, entonces $p|_A:A\longrightarrow p(A)$ es una identificación.

Demostración. (I) Como A es saturado, entonces $A = p^{-1}(p(A))$ y dado que p es identificación y A es abierto, p(A) debe ser abierto en X/\sim . Y nuevamente, como $A = p^{-1}(p(A))$, entonces $p|_A : A \longrightarrow p(A)$ es una identificación por 1c8.

(II) Pendiente.

Espacios cocientes Hausdorff

1c10b

Teorema 9. Si X es un espacio de Hausdorff, $p: X \longrightarrow X/\sim$ es una aplicación cociente y cada elemento de X/\sim es cerrado en X, entonces X/\sim es un espacio de Hausdorff.

espacio cociente, Hausdorff, T2

Demostración. Pendiente.

Proposición 7. Sea $f: X \longrightarrow Y$ una identificación y suprayectiva. Si se define en X la relación de equivalencia $x_1 \sim x_2$ si y sólo si $f(x_1) = f(x_2)$, entonces X/\sim es homeomorfo a Y.

Demostración. Pendiente.

Observación. Si $x \in X$, entonces $p^{-1}(\{x\}) = [x]$.

Definición 12. Dada una función $p: X \longrightarrow \overline{X}$, se dice que otra función $f: X \longrightarrow Y$ es compatible con p si p(x) = p(x') implica que f(x) = f(x'), para cada $x, x' \in X$.

caracterización, compatibilidad, identificación

Teorema 10. Sea $p: X \longrightarrow \overline{X}$ continua y suprayectiva. Entonces p es identificación si y sólo si para cada función continua $f: X \longrightarrow Y$ compatible con p, existe una única función continua $\overline{f}: \overline{X} \longrightarrow Y$ tal que $\overline{f} \circ p = f$.

Definición 13. En la definición anterior, se dice que \overline{f} es el resultado de pasar f al cociente.

Criterio para identificaciones

1c13

Teorema 11. Si X es un espacio compacto, Y es un espacio de Hausdorff y $f: X \longrightarrow Y$ es continua y suprayectiva, entonces f es identificación.

compacto, Hausdorff, identificación

Demostración. Pendiente.