

Algorithms: Design and Analysis, Part II

Local Search

Random Walks on a Line

Random Walks

Key to analyzing Papadimitriou's algorithm:

Random walks on the nonnegative integers (trust me!)

Setup: Initially (at time 0), at position 0.

At each time step, your position goes up or down by 1, with 50/50 probability.

[Except if at position 0, in which case you move to position 1 with 100% probability]

Quiz

Notation: For an integer $n \ge 0$, let $T_n =$ number of steps until random walk reaches position n.

[A random variable, sample space = coin flips at all time steps]

Question: What is $E[T_n]$? (your best guess)

- A) $\Theta(n)$
- B) $\Theta(n^2)$
- C) $\Theta(n^3)$
- D) $\Theta(2^n)$

Coming up: $E[T_n]=n^2$.

Analysis of T_n

Let Z_i = number of random walk steps to get to n from i. (Note $Z_0 = T_n$ Edge cases: $E[Z_n] = 0$, $E[Z_0] = 1 + E[Z_1]$ For $i \in \{1, 2, ..., n-1\}$ 1/2 $(1+E[Z_{i-1}])$ 1/2 $(1+E[Z_{i+1}])$ $E[Z_i] = Pr[go | left] E[Z_i | go | left] + Pr[go | right] E[Z_i | go | right]$ $= 1 + \frac{1}{2}E[Z_{i+1}] + \frac{1}{2}E[Z_{i-1}]$ Rearranging: $E[Z_i] - E[Z_{i+1}] = E[Z_{i-1}] - E[Z_i] + 2$

Finishing the Proof of Claim

So:

A Corollary

Corollary: $\Pr[T_n > 2n^2] \le \frac{1}{2}$. (Special case of Markov's inequality)

Proof: Let
$$p$$
 denote $\Pr[T_n > 2n^2]$. $\geq 0 \geq 2n^2$

We have $n^2 = E[T_n]$

by last claim $= \sum_{k=0}^{2n^2} k \Pr[T_n = k] + \sum_{k=2n^2+1}^{\infty} k \Pr[T_n = k]$
 $\geq 2n^2 \Pr[T_n > 2n^2]$
 $= 2n^2 p$.

 $\Rightarrow p \leq \frac{1}{2}$ QED!