Analiza bazy Linie Lotnicze

Dawid Piskadło 30.05.2019

Wstępna uwaga:

W zadaniach 1,2,4,5,10 dane są zaokrąglone w dół do pełnych minut.

Zadanie 1:

Zapytanie:

```
SELECT (FLOOR(AVG(arr_delay_new))) AS średnie_opóźnienie FROM dbad_flights.dbo.Flight_delays
```

Wynik:

Średnie opóźnienie przylotu było równe 15 minut.

Zadanie 2:

Zapytanie:

```
SELECT FLOOR(MAX(arr_delay_new)) AS średnie_opóźnienie FROM dbad_flights.dbo.Flight_delays
```

Wynik:

Największe opóźnienie przylotu było równe 1895 minut.

Zadanie 3:

Zapytanie:

Wynik:

Największe opóźnienie przylotu miał następujący lot:

carrier	fl_num	origin_city_name	dest_city_name	fl_date	arr_delay_new
AA	58	Kona, HI	Los Angeles, CA	2017-07-26	1895

Zadanie 4:

Zapytanie:

```
SELECT weekday_name,
FLOOR(AVG(arr_delay_new)) AS avg_delay
FROM dbad_flights.dbo.Flight_delays AS F1
INNER JOIN dbad_flights.dbo.Weekdays AS W1
ON F1.day_of_week = W1.weekday_id
GROUP BY weekday_name,weekday_id
ORDER BY AVG(arr_delay_new) DESC
```

Wynik:

Tabela najgorszych dni do podróżowania pod względem opóźnień przylotu prezentuje się następująco:

weekday_name	avg_delay
Friday	20
Monday	18
Wednesday	16
Thursday	15
Saturday	15
Tuesday	12
Sunday	12

Zadanie 5:

Zapytanie:

```
SELECT airline_name,
    FLOOR(AVG(F1.arr_delay_new)) AS średnie_opóźnienie

FROM dbad_flights.dbo.Airlines AS A1

INNER JOIN dbad_flights.dbo.Flight_delays AS F1
    ON F1.airline_id = A1.airline_id

WHERE F1.airline_id IN (SELECT F2.airline_id
    FROM dbad_flights.dbo.Flight_delays AS F2
    WHERE F2.origin = 'SFO')

GROUP BY airline_name

ORDER BY FLOOR(AVG(arr_delay_new)) DESC
```

Wynik:

Linie latające z San Francisco posiadające najmniejsze opóźnienia to odpowiednio JetBlue Airways,American Airlines i Frontier Airlines. Tabela tych linii prezentuje się następująco:

airline_name	średnie_opóźnienie
JetBlue Airways: B6	28
Frontier Airlines Inc.: F9	18
American Airlines Inc.: AA	18
United Air Lines Inc.: UA	16
SkyWest Airlines Inc.: OO	16
Virgin America: VX	13
Southwest Airlines Co.: WN	13
Delta Air Lines Inc.: DL	12

airline_name	średnie_opóźnienie
Alaska Airlines Inc.: AS	7
Hawaiian Airlines Inc.: HA	4

Zadanie 6:

Zapytanie:

Wynik:

Stosunek liczby linii lotniczych posiadających regularne opóźnienia do liczby wszystkich linii lotniczych znajdujących się w tabeli Flight_delays wynosi 0.833.

Zadanie 7:

Zapytania:

```
SELECT arr_delay_new FROM dbad_flights.dbo.Flight_delay

R:
avg_arr_delay_conv <- as.vector(unlist(avg_arr_delay))

avg_dep_delay_conv <- as.vector(unlist(avg_dep_delay))

avg_dep_arr_temp_result <- cor.test(avg_dep_delay_conv,avg_arr_delay_conv, method = "pearson")

avg_dep_arr_correlation <- round(avg_dep_arr_temp_result$estimate,3)
```

Wynik:

Współczynnik korelacji Pearsona między opóźnieniami przylotów a opóźnieniami wylotów wynosi 0.976.

Zadanie 8:

FROM dbad_flights.dbo.Airlines AS A1

Zapytanie:

```
SELECT TOP 1 A1.airline_name,

(AVG(F1.arr_delay_new)-(SELECT AVG(F2.arr_delay_new)

FROM dbad_flights.dbo.Flight_delays AS F2

JOIN dbad_flights.dbo.Airlines AS A2

ON F2.airline_id = A2.airline_id

WHERE A2.airline_name = A1.airline_name AND F2.month = 7 AND F2.c

GROUP BY A2.airline_name)) AS 'delay_increase'
```

```
INNER JOIN dbad_flights.dbo.Flight_delays AS F1
            ON A1.airline_id = F1.airline_id
WHERE F1.month = 7 AND F1.day_of_month > 23
GROUP BY A1.airline_name
ORDER BY test DESC
```

Wynik:

Linią posiadającą najwyższy przyrost średniego opóźnienia między 01-23 lipca a 24-31 lipca była następująca linia lotnicza:

airline_name	delay_increase
Southwest Airlines Co.: WN	0.584763

Zadanie 9:

Zapytanie:

```
SELECT airline_name

FROM dbad_flights.dbo.Airlines AS A1

INNER JOIN dbad_flights.dbo.Flight_delays AS F1

ON F1.airline_id = A1.airline_id

INNER JOIN dbad_flights.dbo.Flight_delays AS F2

ON F1.airline_id = F2.airline_id

WHERE ((F1.origin = 'SF0' AND F1.dest = 'PDX') OR (F1.origin = 'SF0' AND F1.dest = 'EUG')) AND

(((F2.origin = 'SF0' AND F2.dest = 'PDX') OR (F2.origin = 'SF0' AND F2.dest = 'EUG')) AND F1.dest != F2

GROUP BY airline_name
```

Wynik:

Na trasach zarówno SFO->PDX jak i SFO->EUG latają poniższe linie lotnicze:

```
airline_name

SkyWest Airlines Inc.: OO
United Air Lines Inc.: UA
```

Zadanie 10:

Zapytanie:

Wynik:

Według danych statystycznych najszybszym sposobem na podróż z Chicago do Stanfordu przy założeniu wylotu po godzinie 14:00 będzie lot z Midway do Oakland. Tabela średnich opóźnień dla poszczegółnych tras lotu prezentuje się następująco:

origin	dest	avg_delay
ORD	SFO	22
MDW	SFO	19
MDW	SJC	17
ORD	SJC	14
MDW	OAK	12