

电子电荷的测定-密立根油滴法

IN THIS Z. IN THIS Z. IN THE TAX THE T

01 实验概述

- 实验背景
- 实验目的
- 02 实验原理
- 03 实验内容
 - 实验设备
 - 实验步骤
 - 数据处理
 - 注意事项

实验概述

实验背景

基本电荷 (元电荷): e=1.602 176 634×10-19 C (ISO 2019年5月20日设定)。

油滴实验:密立根 (Robert A. Millikan)于1909年到1917年设计完成。

- 证明了电荷的不连续性: 带电油滴所带的电荷量都是基本电荷的整数倍。
- 测出了基本电荷值: e=1.5924(17)×10⁻¹⁹C。
- 构思和方法非常巧妙: 采用宏观的力学方法研究微观世界的量子特性。

密立根因为测量电子电荷和研究光电效应的杰出成就而荣获1923年度 诺贝尔物理学奖。

实验目的

- 掌握密立根油滴法测定电子电荷的基本原理,观察带电油滴在电场中运动规律。
- 2. 测定电子电荷,验证电荷是量子化的。
- 3. 学习密立根油滴实验简明巧妙的设计思想,培养严肃认真、一丝不苟的科学实验方法和态度。

实验原理工作深圳研究工程工术。

平衡法测定电子电荷的原理

油滴经喷雾器喷出进入平行极板之间,由于摩擦会带电。

油滴质量为m, 半径为a, 带电量为q; 极板电压为U、间距为d。

静止平衡状态下,油滴受mg、Uq/d、 $F_{\mathbb{F}}=4\pi\rho_{\mathbb{F}$

 $U \sim 10^2~V$, $d \sim 10^{-3}~m$, $q \sim 10^{-19}~\mathrm{C}$, $\rho_{\Xi = 10^{-10}} \sim 10^{-10}~\mathrm{kg/m^3}$, $a \sim 10^{-6}~m$, 电场力 $\sim 10^{-14}~N$, $F_{\Xi} \sim 10^{-17}~N$; $\rho_{\Xi} = 10^{-10}~\mathrm{kg/m^3}$, $a \sim 10^{-6}~\mathrm{m}$,

 $F_{\mathbb{F}}$ 与mg、Uq/d 均相差3个数量级,可忽略不计。

已知油的密度 ρ 、极板间距 d ,测出平衡电压 Un、油滴半径 a,即可得到油滴所带电荷量 q 。

带电油滴半径的测量

撤掉极板电压,油滴开始下落,受重力 mg、空气的黏滞力 f 作用。

斯托克斯 (Stokes) 定律

 $f = 6\pi a\eta v$ (v:油滴下落速度, η :空气黏度,a:油滴半径)

v 增加到某一值 v_s 时,油滴所受外力平衡

$$6\pi a\eta v_s = \frac{4}{3}\pi \rho g a^3 \qquad \Rightarrow \qquad a = \sqrt{\frac{9\eta v_s}{2\rho g}}$$

油滴非常小, 空气不能看作连续、均匀的介质, 斯托克斯定律修正为

$$f = \frac{6\pi a\eta v_S}{1 + \frac{b}{pa}} \qquad \qquad a = \sqrt{\frac{9\eta v_S}{2g\rho \left(1 + \frac{b}{pa}\right)}}$$

说明: 修正项中的a 仍用 $\sqrt{\frac{9\eta v_s}{2\rho g}}$ 计算,p 为当地大气压强,修正常数 $b=8.22\times 10^{-3}~m\cdot Pa$ 。

油滴匀速下落速度的测量及电荷量计算

 v_s 的测量:测出油滴匀速下落给定距离 L 所用的时间 t,则 $v_s = L/t$ 。

何时达到匀速下落?

$$ma' = mg - f \longrightarrow \frac{dv}{dt} = g - \frac{6\pi a\eta v}{\left(1 + \frac{b}{pa}\right) \cdot \frac{4\pi a^3}{3}\rho} \longrightarrow v(t) = \frac{2\rho g a^2 \left(1 + \frac{b}{pa}\right) \left(1 - e^{\frac{-9\eta t}{2\rho a^2 \left(1 + \frac{b}{pa}\right)}}\right)}{9\eta} \longrightarrow v_s = v(\infty) = \frac{2\rho g a^2 \left(1 + \frac{b}{pa}\right)}{9\eta}$$

参数	数值	单位
油滴密度 $ ho$	0.981×10^{3}	kg·m⁻³
重力加速度 g	9.78	$m \cdot s^{-2}$
空气黏度 η	1.83×10^{-5}	kg·m ⁻¹ ·s ⁻¹
匀速下落距离 L	1.60×10 ⁻³	m
修正常数 b	8.22×10^{-3}	m·Pa
大气压强 p	1.0098×10^{5}	Pa
平行极板距离 d	5.00×10^{-3}	m

半径为 1µm 的油滴下落速度

$$v = \frac{18\pi}{\sqrt{2\rho g}} \cdot \frac{d}{U_n} \left[\frac{\eta L}{t \left(1 + \frac{b}{p} \sqrt{\frac{2\rho g t}{9\eta L}} \right)} \right]^{\frac{3}{2}}$$

基本电荷量 e 的计算

• **倒推法**: 用公认的元电荷值 $e_{\text{公认}} = 1.602 \times 10^{-19} \text{ C 去除 } q$,即 $n = q/e_{\text{公认}}$,若实验是成功的,则 n 将非常接近某个整数值 N,可认为 N 就是油滴所带的元电荷数目。则 $e_{\text{测}} = q/N$ 。

实验内容和对称对称

实验设备: 密立根油滴仪 & 实验界面

显示器

密立根油滴仪

实验设备:油滴盒结构

可左右移动,测试过程中应遮 挡油雾孔,以免空气流动影响 油滴的运动状态。

实验步骤一: 仪器调整

- **1. 水平调整:** 调整调平螺钉旋钮, 使水平仪的气泡处于中心, 保证电场方向与重力方向平行。
- 2. 联机:将密立根油滴仪和显示器连接,打开电源,连续按"确认"键,出现实验界面。
- 3. 显微镜调整: 移动挡板, 打开油雾孔, 从喷雾口喷入油雾, 调整显微镜的调焦旋钮, 使显示器上出现大量运动油滴的像。

实验步骤二: 挑选合适的油滴

・挑选原则:

- 1. 油滴过小,布朗运动影响明显,平衡电压不易调整,时间误差会增加;
- 2. 油滴过大,下落太快,时间相对误差增大,油滴带电量大的几率增加,合适的油滴带电量 <10e。

・操作方法:

- 1. 参数设置按键: "结束"、"工作"、"平衡",平衡 电压预设为150~250V。
- 2. 喷入油滴,调节调焦旋钮,使屏幕上显示大部分油滴。
- 3. 约 10s 后油滴减少。选择上升缓慢的油滴作为暂时的目标油滴。
- 4. 切换 "0V/工作"键至 "0V"状态,在暂时的目标油滴中选择下落速度为 2~5s/格的作为最终的目标油滴,调节调焦旋钮使该油滴最小最亮。

实验步骤三: 确认平衡电压

- 1. 仔细调整"电压调节"旋钮, 使油滴平衡在某一格线处。
- 2. 等待约 2 min, 观察油滴是否飘离格线。
- 3. 若油滴始终向同一方向飘离,需重新调整平衡电压。
- 4. 若油滴基本稳定在格线或只在格线上下做轻微的布朗运动,则认为油滴达到了力学平衡,此时的电压即为平衡电压 U_n 。

实验步骤四:测量匀速下落时间

- 1. "平衡/提升"键切换至"提升",将油滴提升到第一条格线。
- 2. "0V、工作"键切换至 "0V",油滴开始下落。
- 3. 油滴下落到第二条格线时, 按下"计时"键开始计时。
- 4. 油滴下落至倒数第二条格线时,再次按下"计时"键停止计时, 此时仪器自动切换到平衡状态,油滴停止下落。
- 5. 按"确认"键将此次测量数据记录到屏幕上。
- 6. 将油滴提升至第一条格线, 重复测量, 每颗油滴测量5次。
- 7. 重复步骤二~四,测量3颗油滴。

油滴序号	测量次数 i	平衡电压 U_n (V)	下落时间 <i>t</i> (s)	油滴电荷量 q_i (C)	_{qi} /e _{公认} (近似整数 N)	基本电荷量 测量值q _i /N (C)
	1					
	2					
1	3					
	4					
	5					
Z	P均值					

参数	数值	单位
油滴密度 $ ho$	0.981×10^{3}	kg·m⁻³
重力加速度 (深圳) g	9.78	$m \cdot s^{-2}$
空气黏度η	1.83×10 ⁻⁵	kg·m ⁻¹ ·s ⁻¹
匀速下落距离 L	1.60×10 ⁻³	m
修正常数 b	8.22×10 ⁻³	m·Pa
大气压强 (深圳) <i>p</i>	1.0098×10 ⁵	Ра
平行极板距离 d	5.00×10 ⁻³	m

 $e_{\text{公认}}$ 取 1.602×10^{-19} C,对3颗油滴的电荷量测量结果分别计算不确定度。

$$q = \frac{18\pi}{\sqrt{2\rho g}} \cdot \frac{d}{U_n} \left[\frac{\eta L}{t \left(1 + \frac{b}{p} \sqrt{\frac{2\rho g t}{9\eta L}} \right)} \right]^{\frac{3}{2}} = \frac{1.023 \times 10^{-14}}{U_n \cdot \left[t \left(1 + 0.022 \sqrt{t} \right) \right]^{\frac{3}{2}}}$$

$$q = \frac{18\pi}{\sqrt{2\rho g}} \cdot \frac{d}{U_n} \left[\frac{\eta L}{t \left(1 + \frac{b}{p} \sqrt{\frac{2\rho g t}{9\eta L}} \right)} \right]^{\frac{3}{2}} = \frac{1.023 \times 10^{-14}}{U_n \cdot \left[t \left(1 + 0.022 \sqrt{t} \right) \right]^{\frac{3}{2}}}$$

$$Eq = \frac{Uq}{\overline{q}} = \sqrt{\left(\frac{\partial lnq}{\partial U_n} \right)^2 \cdot (U_{U_n})^2 + \left(\frac{\partial lnq}{\partial t} \right)^2 \cdot (U_t)^2} = \sqrt{\left(\frac{1}{U_n} \right)^2 \cdot (U_{U_n})^2 + \frac{9}{4} \left[\frac{1}{t} + \frac{1}{\sqrt{t} \left(\sqrt{t} + \frac{p}{b} \sqrt{\frac{9\eta L}{2\rho g}} \right)} \right]^2 \cdot (U_t)^2} = \sqrt{\left(\frac{1}{U_n} \right)^2 \cdot (U_{U_n})^2 + \frac{9}{4} \left[\frac{1}{t} + \frac{1}{\sqrt{t} \left(\sqrt{t} + \frac{p}{b} \sqrt{\frac{9\eta L}{2\rho g}} \right)} \right]^2 \cdot (U_t)^2} = \sqrt{\left(\frac{1}{U_n} \right)^2 \cdot (U_{U_n})^2 + \frac{9}{4} \left[\frac{1}{t} + \frac{1}{\sqrt{t} \left(\sqrt{t} + \frac{p}{b} \sqrt{\frac{9\eta L}{2\rho g}} \right)} \right]^2 \cdot (U_t)^2} = \sqrt{\left(\frac{1}{U_n} \right)^2 \cdot (U_{U_n})^2 + \frac{9}{4} \left[\frac{1}{t} + \frac{1}{\sqrt{t} \left(\sqrt{t} + \frac{p}{b} \sqrt{\frac{9\eta L}{2\rho g}} \right)} \right]^2 \cdot (U_t)^2} = \sqrt{\left(\frac{1}{U_n} \right)^2 \cdot \left(\frac$$

注意事项

- 1. 仪器内有高压,注意安全,避免用手接触电极。
- 2. 测量时关闭油雾孔开关,避免外界空气流动的影响。
- 3. 实验前须调节极板水平,保证电场力与重力平行。
- 4. 最佳油滴: 平衡电压在 150~250V 左右、下落时间16~40s。
- 5. 测量前可以先反复练习控制油滴运动(平衡、下落、提升),掌握规律。

IST IN HITSZ MATACIAN HITSZ MATACIAN