1. MaxAbsInOut

กำหนด กราฟ G = (V, E) , V = เวอร์เท็กซ์, E = เอดจ์ จงเขียนหาค่า

 $max_{i \in V} | inde_i - outde_i |$

โดย $inde_i$ คือ ค่า In-degree ของ node ที่ i $outde_i$ คือ ค่า Out-degree ของ node ที่ i

ตัวอย่างเช่น G = (V, E) แสดงดังรูป

จากรูปจะได้ว่า $max_{i \in V}|in_i - out_i|$ มีค่าเท่ากับ 3

ข้อมูลนำเข้า

บรรทัดที่ 1 V E ค่า V และ E โดย V คือ จำนวน node ทั้งหมด E คือ จำนวน edgeทั้งหมด

1 <= V <= 100 , 1 <= E <= 1,000

บรรทัดที่ 2 จนถึง E+1 ค่าความสัมพันธ์ระหว่าง node i กับ node j

ข้อมูลส่งออก

ผลลัพธ์ $\max_{i \in V} |in_i - out_i|$ ให้ใช้วิธี การสำรวจกราฟ (Graph Traversal)

Input	output
5 7	3
1 2	
1 3	
1 5	
2 5	
2 4	
3 5	
4 3	

2. SearchOddNumber

กำหนด กราฟ G = (V, E) , V = เวอร์เท็กซ์, E = เอดจ์ จงเขียนโปรแกรมค้นหาว่ามี node ที่เป็นเลขคู่มีกี่ node ตัวอย่างเช่น G = (V, E) แสดงดังรูป

จากรูปจะได้ว่า Node ที่เป็นจำนวนคู่มีทั้งสิ้น 2 Node

ข้อมูลนำเข้า

บรรทัดที่ 1 V E ค่า V และ E โดย V คือ จำนวน node ทั้งหมด E คือ จำนวน edge ทั้งหมด

1 <= V <= 100 , 1 <= E <= 1,000

บรรทัดที่ 2 จนถึง E+1 ค่าความสัมพันธ์ระหว่าง node i กับ node j

ข้อมูลส่งออก

ผลลัพธ์จำนวน Node ที่เป็นเลขคู่ **ให้ใช้วิธี การสำรวจกราฟ (Graph Traversal)**

Input	output
5 7	2
1 2	
1 3	
1 5	
2 5	
2 4	
3 5	
4 3	