6a. Show that if $\omega = \infty$, $\overrightarrow{AB} \cup \overrightarrow{BA} = \overleftarrow{AB}$

Proof. Assume A, B are distinct collinear, and $\omega = \infty$. Since $\omega = \infty$, $\overrightarrow{AB} < \omega$. Thus, \overrightarrow{AB} and \overrightarrow{BA} are well defined. Further, A, B are together in a unique line. Namely, the line \overrightarrow{AB} .

Let X exist on the line \overrightarrow{AB} . If X = A, then $X \in \overrightarrow{AB}$ and $X \in \overrightarrow{BA}$ by definition of \overrightarrow{AB} and \overrightarrow{BA} . Similarly, if X = B, then $X \in \overrightarrow{AB}$ and $X \in \overrightarrow{BA}$. For the following argument, we can therefore assume that $X \neq A$ or B.

Since $\omega = \infty$, it is guaranteed that $AB + BX \leq \omega = \infty$. Thus, by Ax.BP, there exists a betweenness relation among A, B, X, and exactly one of the following must be satisfied

$$A-X-B \tag{1}$$

$$A-B-X (2)$$

$$B-A-X (3)$$

We examine these cases separately. If A-X-B, then $X \in \overrightarrow{AB}$ and $X \in \overrightarrow{BA}$. If A-B-X, then $X \in \overrightarrow{AB}$. Lastly, if B-A-X, then $X \in \overrightarrow{BA}$

In any case, $X \in \overrightarrow{AB}$ implies X is either in \overrightarrow{AB} or \overrightarrow{BA} or both.

Therefore,
$$\overrightarrow{AB} = \overrightarrow{AB} \cup \overrightarrow{BA}$$

12. Suppose that A, B, C are three distinct, collinear points such that $AC \leq \frac{1}{2}AB$ and $BC \leq \frac{1}{2}AB$. Prove that A-C-B and $AC = BC = \frac{1}{2}AB$

Proof. Assume A, B, C are three distinct, collinear points such that $AC \leq \frac{1}{2}AB$, and $BC \leq \frac{1}{2}AB$

By the definition of ω , $AC, BC, AB \leq \omega$. Since $AC \leq \frac{1}{2}AB$, and $BC \leq \frac{1}{2}AB$, we have

$$AC + BC \leqslant \frac{1}{2}AB + \frac{1}{2}AB \leqslant AB \leqslant \omega$$

Observe that since $AC + BC \le AB$, both AC and BC = CB must be less than AB. That is, AC, BC < AB since by Ax.D2, $AC, BC, AB \ne 0$.

Since $AC + BC \leq \omega$, by Ax.BP, there is a betweenness relation among A, B, C. One of the following must hold

$$A$$
- B - C
 B - A - C - B

Assume the relation is A-B-C. Then, we have AB + BC = AC which implies AB, BC < AC. But this contradicts the fact that AC < AB. Thus, the relation is not A-B-C.

Assume the relation is B-A-C. Then, BA + AC = BC, or equivalently AB + AC = BC. This contradicts the fact that BC < AB. Thus, this must also not be the relation.

Therefore, the relation we have is A-C-B.

Next, we aim to show that $AC = BC = \frac{1}{2}AB$. Since A-C-B was established, we have AC + BC = AB, solving for BC, we get

$$BC = AB - AC$$

Since AC is bounded above by $\frac{1}{2}AB$. That is, $AC \leq \frac{1}{2}AB$, it must be that $AB - AC \geqslant AB - \frac{1}{2}AB$. Thus,

$$BC = AB - AC \geqslant AB - \frac{1}{2}AB$$
$$\therefore BC \geqslant \frac{1}{2}AB$$

But, since we know that $BC \leq \frac{1}{2}AB$, the only way both $BC \leq \frac{1}{2}AB$ and $BC \geq \frac{1}{2}AB$ can be satisfied is if $BC = \frac{1}{2}AB$. Now, since $BC = \frac{1}{2}AB$, we have

$$AC + BC = AB \implies AC + \frac{1}{2}AB = AB$$

$$\therefore AC = AB - \frac{1}{2}AB = \frac{1}{2}AB$$

Thus, we conclude that $AC = BC = \frac{1}{2}AB$