SYDE 556/750

Simulating Neurobiological Systems Lecture 8: Learning

Chris Eliasmith

October 23, 28, & 30

- ► Slide design: Andreas Stöckel
- Content: Terry Stewart, Andreas Stöckel, Chris Eliasmith

Learning

Definition

Learning is a directed change in synaptic weights W while the network is active.

Learning is important because:

- 1. We might not know the function we want to compute at the beginning of a task.
- 2. The desired function might change over time.
- 3. The "optimal weights" we are solving for are not optimal.
- 4. We want to answer scientific questions about learning in nervous systems.

Supervised Learning

 $\mathbf{x}_{17} =$

 $x_{18} =$

 $\mathbf{t}_{17} = (0, 0, 1)$

 $\mathbf{t}_{18} = (0, 1, 0)$

 $\mathbf{t}_{20} = (0, 1, 0)$

 $\mathbf{t}_{21} = (0, 0, 1)$ $\mathbf{t}_{22} = (0, 0, 1)$ $\mathbf{t}_{23} = (1, 0, 0)$

Supervised Learning – Training

Supervised Learning – Inference

Gradient Descent – Example

Supervised Learning – Generalisation

Learning Decoders and Learning Weights

$$\Delta d_i = -\eta a_i(\mathbf{x}) \underbrace{\left(y(t) - y^{\mathrm{d}}(t)\right)}_{arepsilon(t)}$$

Learning Weights (PES Rule)

$$\Delta w_{ij} = -\eta a_i(\mathbf{x}) \Big(\alpha_j \langle \mathbf{e}_j, \varepsilon(t) \rangle \Big)$$

Example: Learning Functions (I)

Example: Learning Functions (II)

Communication Channel f(x) = x

Example: Learning Functions (III)

Square
$$f(x) = x^2$$

Example: Classical Conditioning (I)

Before conditioning:

After conditioning:

Example: Classical Conditioning (II)

Example: Classical Conditioning (III)

Example: Adaptive Controller

Unsupervised Learning

Unsupervised Learning – Training

Unsupervised Learning – Inference

Dimensionality Reduction Example: Faces

Face Database

- ▶ 84 images of 12 women with 7 different expressions
- ► Normalised eye location
- ► 45×60 pixels (2700 dimensions)
- ► Greyscale

Autoencoder

PCA in Python


```
def PCA(X): # X: N x d matrix
    N, d = X.shape
    X_cen = X - np.mean(X, axis=0)
    C = (X_cen.T @ X_cen) / (N - 1)
    L, V = np.linalg.eigh(C) # "eigh" faster than "eig" for symmetric matrices
    return V.T[::-1, :] # d x d matrix
```



```
def PCA_SVD(X): # X: N x d matrix
    return np.linalg.svd(X - np.mean(X, axis=0))[2]
```

PCA Example: Source Images

Face Database

- ▶ 84 images of 12 women with 7 different expressions
- ► Normalised eye location
- ► 45×60 pixels (2700 dimensions)
- Greyscale

PCA Example: Eigenfaces Identity Basis

Principal Components

PCA Example: Face Spaces

PCA Example: Sparse Vectors

PCA Example: Modifying the Latent Space

Limitations of PCA: Classifying Two Groups

Limitations of PCA: Metaphorical Illustration

Hebbian Learning

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased.

— Donald O. Hebb, "The Organization of Behaviour", 1949

Hebbian Learning

$$\Delta w_{ij} = \eta a_i a_j$$

Example: Normalised Hebbian Learning

Learning an encoder e, with $\|\mathbf{e}\|=1$, 10000 steps, $\eta=0.2\times10^{-4}$, $\Delta\mathbf{e}=\eta(\mathbf{x}\circ\mathbf{e})$

Spike-Time Dependent Plasticity

Conclusion

Supervised Learning

- ► Find w such that $f(\mathbf{x}_k; \mathbf{w}) \approx \mathbf{t}_k$
- ▶ Hope: $f(\mathbf{x}_k; \mathbf{w}) \approx f_{\text{GT}}(\mathbf{x}_k)$
- ► Use gradient descent to find w
- Delta, PES learning rules
- Modulatory synapses in the brain

Unsupervised Learning

- lacksquare Dimensionality reduction $f(\mathbf{x}_k) = \lambda_k$
- Hope: latent dimensions λ are "meaningful"
- Autoencoders (nonlinear), PCA (linear)
- ▶ Hebbian learning ⇒ learns PCA

Image sources

Title slide

From Wikimedia

Page from "Liber ethicorum des Henricus de Alemannia". Title: "Henricus de Alemannia con i suoi studenti" (Henricus of Germany with his students), second half of 14th century.