pomegranate

fast and flexible probabilistic modelling in python

Jacob Schreiber
Paul G. Allen School of Computer Science
University of Washington

jmschreiber91

@jmschrei

@jmschreiber91

Acknowledgements

Overview

pomegranate is more flexible than other packages, faster, is intuitive to use, and can do it all in parallel

Overview: supported models

Six Main Models:

- 1. Probability Distributions
- 2. General Mixture Models
- 3. Markov Chains
- 4. Hidden Markov Models
- 5. Bayes Classifiers / Naive Bayes
- 6. Bayesian Networks

Two Helper Models:

- 1. k-means++/kmeans||
- 2. Factor Graphs

pomegranate supports many distributions

Univariate Distributions

- 1. UniformDistribution
- 2. BernoulliDistribution
- 3. NormalDistribution
- 4. LogNormalDistribution
- 5. Exponential Distribution
- 6. BetaDistribution
- 7. GammaDistribution
- 8. Discrete Distribution
- 9. PoissonDistribution

Kernel Densities

- 1. GaussianKernelDensity
- 2. UniformKernelDensity
- 3. TriangleKernelDensity

Multivariate Distributions

- 1. IndependentComponentsDistribution
- MultivariateGaussianDistribution
- 3. DirichletDistribution
- 4. ConditionalProbabilityTable
- 5. JointProbabilityTable

Models can be made in two ways...

...from known values
d = NormalDistribution(5, 2.3)

Models can be made in two ways...

...from data

d = BayesianNetwork.from_samples(X)

...from known values

```
n1 = Node(...)
n2 = Node(...)
model = BayesianNetwork()
model.add_nodes(n1, n2...)
model.add_edges(...)
```


The API is common to all models

model.log probability(X) / model.probability(X)

model.sample()

model.fit(X, weights, inertia)

model.summarize(X, weights)

model.from_summaries(inertia)

Model.from samples(X, weights)

model.predict(X)

model.predict_proba(X)

model.predict_log_proba(X)

All models have these methods!

All models composed of distributions (like GMM, HMM...) have these methods too!

Overview: model stacking in pomegranate

```
GeneralMixtureModel.from samples(NormalDistribution, n components=3, X=X)
GeneralMixtureModel.from samples(ExponentialDistribution, n components=3,
X=X
BayesClassifier.from samples(MultivariateGaussianDistribution, X, y)
   = GeneralMixtureModel.from samples...
d2 = GeneralMixtureModel.from samples...
model = BayesClassifier([d1, d2])
```


pomegranate can be faster than numpy

Fitting Multivariate Gaussian to 10,000,000 samples of 10 dimensions

```
data = numpy.random.randn(100000000, 10)
print "numpy time:"
%timeit -n 10 data.mean(axis=0), numpy.cov(data, rowvar=False, bias=True)
print "\n" "pomegranate time:"
%timeit -n 10 MultivariateGaussianDistribution.from samples(data)
numpy time:
10 loops, best of 3: 3.52 s per loop
pomegranate time:
10 loops, best of 3: 2.87 s per loop
```


pomegranate uses additive summarization

pomegranate reduces data to sufficient statistics for updates and so only has to go datasets once (for all models).

Here is an example of the Normal Distribution sufficient statistics

$$\sum_{i=1}^{n} w_i \qquad \sum_{i=1}^{n} w_i x_i \qquad \sum_{i=1}^{n} w_i x_i^2 \qquad \longrightarrow$$

$$\sigma^{2} = \frac{\sum_{i=1}^{n} w_{i} x_{i}^{2}}{\sum_{i=1}^{n} w_{i}} - \frac{\left(\sum_{i=1}^{n} w_{i} x_{i}\right)^{2}}{\left(\sum_{i=1}^{n} w_{i}\right)^{2}}$$

pomegranate supports out-of-core learning

Batches from a dataset can be reduced to additive summary statistics, enabling exact updates from data that can't fit in memory.

pomegranate supports mini-batching

Instead of going through the full dataset before updating parameters, one could update parameters at each step.

pomegranate supports parallelization

Multiple batches can be loaded at the same time and processed by different threads using n_jobs in either fitting or prediction methods

Training a mixture of HMMs in parallel

pomegranate supports semisupervised learning

For many tasks, there is limited labeled data but a deluge of unlabeled data, and one wants to utilize both.

pomegranate supports semisupervised learning

Summaries from MLE on the labeled data can be added to summaries from EM on the unlabeled data

0

-10

pomegranate supports semisupervised learning

10

-10

10

pomegranate will soon support missing data

Many real world tasks involve data sets with missing data. The next version of pomegranate will include handling for all models by ignoring missing data, mean imputation, and EM imputation.

pomegranate uses Cupy for GPU support

pomegranate can be faster than scipy

```
mu, cov = numpy.random.randn(2000), numpy.eye(2000)
d = MultivariateGaussianDistribution(mu, cov)
X = \text{numpy.random.randn}(2000, 2000)
print "scipy time: ",
%timeit multivariate normal.logpdf(X, mu, cov)
print "pomegranate time: ",
%timeit MultivariateGaussianDistribution(mu, cov).log probability(X)
print "pomegranate time (w/ precreated object): ",
%timeit d.log probability(X)
scipy time: 1 loop, best of 3: [1.67 s]per loop
pomegranate time: 1 loop, best of 3: 801 ms per loop
 pomegranate time (w/ precreated object): 1 loop, best of 3: 216 ms per loop
```


pomegranate uses aggressive caching

$$P(X|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$log P(X|\mu,\sigma) = -\log\left(\sqrt{2\pi}\sigma\right) - \frac{(x-\mu)^2}{2\sigma^2}$$
$$log P(X|\mu,\sigma) = \alpha - \frac{(x-\mu)^2}{\beta}$$

Example 'blast' from Gossip Girl

Spotted: Lonely Boy. Can't believe the love of his life has returned. If only she knew who he was. But everyone knows Serena. And everyone is talking. Wonder what Blair Waldorf thinks. Sure, they're BFF's, but we always thought Blair's boyfriend Nate had a thing for Serena.

Example 'blast' from Gossip Girl

Why'd she leave? Why'd she return? Send me all the deets. And who am I? That's the secret I'll never tell. The only one. —XOXO. Gossip Girl.

How do we encode these 'blasts'?

Better lock it down with Nate, B. Clock's ticking.

- +1 Nate
- -1 Blair

How do we encode these 'blasts'?

This just in: S and B committing a crime of fashion. Who doesn't love a five-finger discount. Especially if it's the middle one.

- -1 Blair
- -1 Serena

Simple summations don't work well

Beta distributions can model uncertainty

Beta distributions can model uncertainty

Beta distributions can model uncertainty

Overview: this talk

Overview

Major Models/Model Stacks

- 1. Hidden Markov Models
- 2. Bayes Classifiers
- 3. Bayesian Networks

CG enrichment detection HMM

GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA

CG enrichment detection HMM

GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA

```
d1 = DiscreteDistribution(\{'A': 0.25, 'C': 0.25, 'G': 0.25, 'T': 0.25\})
d2 = DiscreteDistribution(\{'A': 0.10, 'C': 0.40, 'G': 0.40, 'T': 0.10\})
s1 = State(d1, name="background")
s2 = State(d2, name="CG island")
hmm = HiddenMarkovModel("CG-detector")
hmm.add states(s1, s2)
hmm.add transition(hmm.start, s1, 0.5)
hmm.add transition(hmm.start, s2, 0.5)
hmm.add transition(s1, s1, 0.9)
hmm.add transition(s1, s2, 0.1)
hmm.add transition(s2, s1, 0.1)
hmm.add transition(s2, s2, 0.9)
hmm.bake()
```


pomegranate HMMs are feature rich

eature pomegranate		hmmlearn
Graph Structure	3	
Silent States	✓	
Optional Explicit End State	✓	
Sparse Implementation	✓	
Arbitrary Emissions Allowed on States	✓	
Discrete/Gaussian/GMM Emissions	✓	✓
Large Library of Other Emissions	✓	
Build Model from Matrices	✓	✓
Build Model Node-by-Node	1	
Serialize to JSON	1	
Serialize using Pickle/Joblib	✓	✓

Algorithms		
Priors		✓
Sampling	✓	✓
Log Probability Scoring	✓ ·	√
Forward-Backward Emissions	1	√
Forward-Backward Transitions	✓·	
Viterbi Decoding	√	√
MAP Decoding	✓	1
Baum-Welch Training	✓	1
Viterbi Training	✓	:
Labeled Training	✓	
Tied Emissions	✓	
Tied Transitions	1	
Emission Inertia	✓ ·	
Transition Inertia	√	
Emission Freezing	✓	✓
Transition Freezing	✓	1
Multi-threaded Training	✓	

GMM-HMM easy to define

```
d1 = GeneralMixtureModel([NormalDistribution(5, 2), NormalDistribution(5, 4)])
d2 = GeneralMixtureModel([NormalDistribution(15, 1), NormalDistribution(15, 5)])
s1 = State(d1, name="GMM1")
s2 = State(d2, name="GMM2")
model = HiddenMarkovModel()
model.add states(s1, s2)
model.add transition(model.start, s1, 0.75)
model.add transition(model.start, s2, 0.25)
model.add transition(s1, s1, 0.85)
model.add_transition(s1, s2, 0.15)
model.add transition(s2, s2, 0.90)
model.add transition(s2, s1, 0.10)
model.bake()
```


HMMs are faster than hmmlearn

Overview: this talk

Overview

Major Models/Model Stacks

- 1. Hidden Markov Models
- 2. Bayes Classifiers
- 3. Bayesian Networks

Naive Bayes produces ellipsoid boundaries

model = NaiveBayes.from_samples(NormalDistribution, X, y)

Naive Bayes assumes independent features

$$Posterior = \frac{Likelihood * Prior}{Normalization}$$

$$P(M|D) = \frac{\prod_{i=1}^{a} P(D_i|M)P(M)}{\sum_{M} \prod_{i=1}^{d} P(D_i|M)P(M)}$$

Data can fall under different distributions

Data can fall under different distributions

Data can fall under different distributions

Using appropriate distributions is better

```
dists = [LogNormalDistribution, PoissonDistribution,
ExponentialDistribution, PoissonDistribution]
model1 = NaiveBayes.from samples(NormalDistribution, X, y)
model2 = NaiveBayes.from samples(dists, X, y)
model3 = GaussianNB().fit(X, y)
Gaussian Naive Bayes: 0.711
sklearn Gaussian Naive Bayes: 0.711
Heterogeneous Naive Bayes: 0.726
```


This additional flexibility is just as fast

Bayes classifiers don't require independence

naive accuracy: 0.929

bayes classifier accuracy: 0.966

Gaussian mixture model Bayes classifier

Overview: this talk

Overview

Major Models/Model Stacks

- 1. Hidden Markov Models
- 2. Bayes Classifiers
- 3. Bayesian Networks

Bayesian networks

Bayesian networks are powerful inference tools which define a dependency structure between variables.

Bayesian networks

Two main difficult tasks:

- (1) Inference given incomplete information
- (2) Learning the dependency structure from data

Bayesian network structure learning

Three primary ways:

- "Search and score" / Exact
- "Constraint Learning" / PC
- Heuristics

Bayesian network structure learning

pomegranate supports:

- "Search and score" / Exact
- "Constraint Learning" / PC
- Heuristics

pomegranate supports four algorithms

BNSL is hard due to acyclicity requirement

Easy! Tractable!

Global Parameter Independence: The parents of some variable A are independent of the parents of some variable B given that they don't form a cycle in the resulting graph

Hard! Exponential Time!

Medical diagnosis Bayesian network

Global Parameter Independence: The parents of some variable A are independent of the parents of some variable B given that they don't form a cycle in the resulting graph

The parents of some variable A are independent of the parents of some variable B

Modeling the global stock market

Constraint graph published in PeerJ CS

Finding the optimal Bayesian network given a constraint graph

Jacob M. Schreiber¹ and William S. Noble²

ABSTRACT

Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior

Department of Computer Science, University of Washington, Seattle, WA, United States of America

² Department of Genome Science, University of Washington, Seattle, WA, United States of America

Overview

pomegranate is more flexible than other packages, faster, is intuitive to use, and can do it all in parallel

What's next?

Missing value support

Conversion from Cython to numba

Linear Gaussian Bayesian networks

Research in ancestral constraints for Bayesian network structure learning

Paper preprint available on arxiv!

pomegranate: fast and flexible probabilistic modeling in python

Jacob Schreiber

Paul G. Allen School of Computer Science University of Washington Seattle, WA 98195 jmschr@cs.washington.edu

Abstract

We present pomegranate, an open source machine learning package for probabilistic modeling in Python. Probabilistic modeling encompasses a wide range of methods that explicitly describe uncertainty using probability distributions. Three widely used probabilistic models implemented in pomegranate are general mixture models, hidden Markov models, and Bayesian networks. A primary focus of pomegranate is to abstract away the complexities of training models from their definition. This allows users to focus on specifying the correct model for their

pomegranate is now NumFOCUS affiliated

Home About v Open Source Projects v Community v Programs v Blog

pomegranate

pomegranate is a Python module for fast and flexible probabilistic modeling inspired by the design of scikit-learn. A primary focus of pomegranate is to abstract away the intricacies of a model from its definition, allowing users to easily prototype with complex models and training strategies. Its modular implementation allows for probability distributions to be swapped in or out for each other with ease and for models to be stacked within each other, yielding such delights as a mixture of Bayesian networks or a Gaussian mixture model Bayes classifier.

https://www.numfocus.org/open-source-projects/affiliated-projects/

Documentation available at Readthedocs

https://pomegranate.readthedocs.io/en/latest/

Tutorials available on github

Branch: master ▼ pomegranate / tutorials /		Create new file	Upload files	Find file	History
jmschrei ADD bayes backend		Latest commit 72451ød 10 hours ago			
☐ GGBlasts.xlsx	PyData Chicago 2016	8 months ag			
PyData_2016_Chicago_Tutorial.ipynb	FIX markov chain notebooks	3 months ago			
■ README.md	Update README.md			2 y	ears ago
Tutorial_0_pomegranate_overview.ipynb	Minor typos			3 moi	nths ago
☐ Tutorial_1_Distributions.ipynb	ENH tutorials			2 y	ears ago
☐ Tutorial_2_General_Mixture_Models.ipynb	FIX hmm dimensionality			11 moi	nths ago
■ Tutorial_3_Hidden_Markov_Models.ipynb	edit tutorial 3 to remove deprecated bake			7 moi	nths ago
☐ Tutorial_4_Bayesian_Networks.ipynb	ENH pomegranate vs libpgm tutorial			7 moi	nths ago
Tutorial_4b_Bayesian_Network_Structure_Learning.i	ENH a* search			28 0	days ago
■ Tutorial_5_Bayes_Classifiers.ipynb	ADD bayes backend	10 hours ago			
☐ Tutorial_6_Markov_Chain.ipynb	FIX markov chain notebooks	3 months ago			
☐ Tutorial_7_Parallelization.ipynb	ADD tutorial 7 parallelization			8 moi	nths ago

https://github.com/jmschrei/pomegranate/tree/master/tutorials

pomegranate

fast and flexible probabilistic modelling in python

Jacob Schreiber
Paul G. Allen School of Computer Science
University of Washington

jmschreiber91

@jmschrei

@jmschreiber91

PyMC3, Edward, PyStan?

Pomegranate implements probabilistic models that do not require samplers perform inference with, whereas these packages focus on the implementation of efficient samplers

Model hyperparameters in pomegranate are numbers, whereas they are typically distributions in these other packages. This allows uncertainty in model parameters to be explicitly captured.

Pomegranate focuses on discrete latent state (but discrete/continuous observed state) whereas these focus on continuous latent state