

Why Aerospace Needs Power Electronics?

Prof Pat Wheeler
University of Nottingham, Nottingham, UK

Tel. +44 (0) 115 951 5591 Email. Pat.wheeler@Nottingham.ac.uk

- Motivations
 - Reliability
 - Fuel burn/efficiency
 - Weight and volume [maybe at system level?]
 - Availability
 - Maintainability
 - Running costs
 - Dispachability
 - Passenger comfort and facilities

Introduction

- Power Sources
 - Engine used for thrust
 - » Needed to allow the plane to fly ☺
 - Engine power also used for onboard systems
 - » Taken from the engine
 - Bleed air, examples:
 - » Hydraulics
 - » Pneumatics
 - Auxiliary gearbox on engine shaft, examples:
 - » Electrical system
 - » Pumps

Power Sources "Conventional" Aircraft

Total "non-thrust" power ≈ 1.7MW

Power Sources "Conventional" Aircraft

Electrical

- » Avionics
- » Cabin (lights, galley, in-flight entertainment etc)
- » Lights, pumps, fans
- » 115V, 400Hz AC

Pneumatic

- » Cabin pressurisation
- » Air conditioning
- » Icing protection

• Hydraulic

- » Flight control surface actuation
- » Landing gear extension/retraction and steering
- » Braking
- » Doors

Mechanical

» Fuel and oil pumps local to engine

"More Electric Aircraft" Concept

New electrical loads

Electrical system power ≈ 1MW

"More Electric Aircraft" Some Motivations

- Removal of hydraulic system
 - reduced system weight
 - ease maintenance
- "Bleedless" engine
 - improved efficiency
- Desirable characteristics of electrical systems
 - controllability
 - » power on demand
 - re-configurability
 - » maintain functionality during faults
 - advanced diagnostics and prognostics
 - » more intelligent maintenance
 - » increased aircraft availability
- OVERALL
 - Reduced operating costs
 - Reduced fuel burn
 - Reduced environmental impact

Airbus A380

- 4 x 150kVA Wideband VF on turbofan engines
- Flight Control Power 2 H + 2 E
- Actuator Configuration
 - Combination of Hydraulic and Electrical Actuation

Vickers VC10

- Electrical System 4 x 40kVA Generators
- Flight Control Power 2 H + 2 E
- Actuator Configuration
 - Combination of Hydraulic and Electrical Actuation
- Built 50 Years before the Airbus A380

Boeing 787

- 4 x 250kVA Primary Channel Starter Generators
 - » 500kVA per channel
- 230VAC VF Primary Power Generation
- Electrical Starter/Generators rated at 250/225kVA
- Electric ECS, pressurisation and wing anti-Icing
- Removes need for bleed air from engines

Joint Strike Fighter

- 270V DC Power System
- Electric actuation systems
- 80kW, 2 channel, switched reluctance generator
- Reduces cost, size and weight of whole aircraft
- Relies on Power Conversion technologies
 - » Harsh environment
 - » Efficiency
 - » Reliability

A Possible MEA DC Power System Layout

Source: Virginia Polytechnic

Typical Power Levels for Electrical Loads

Power User	Comments	Typical Power level
Air Conditioning	ECS	4 x 70kW+
Flight Controls	Primary and secondary	3 kW to 40kW often short duration at high loads
Fuel pumps		about 10kW
Wing Ice Protection	Thermal mats or similar	250kW+
Landing Gear	Retraction, steering and braking	25kW to 70kW short duration
Engine starting	May be used for additional applications	200kW+ short duration

AC or DC Systems

- DC Bus Systems
 - Energy storage requirements within DC Bus
 - » Distributed energy storage possible
 - Circuit Breakers
 - » Traditional solutions are larger than AC breakers
 - » Hybrid or solid state solutions are possible
 - Two power conversion stages
 - » Rectifier in critical path to all loads
 - Fewer conductors required
 - » Better utilization of conductors

AC or DC Systems

- AC Bus Systems
 - Variable frequency, constant voltage systems are possible
 - Circuit Breakers
 - » AC breakers are small and cheaper than DC breakers
 - Only one power conversion stage required
 - Power stages more complex
 - » Internal energy storage often required
 - » Efficiency of each converter can be lower

AC Power Generation

Mechanical Constant Frequency Generation

- Mechanical gearbox creates a constant speed shaft from a variable speed input
- Constant speed shaft drives the Generator
 - » Voltage control used for the generator
 - » 400Hz voltage supply fixed frequency
- Expensive to purchase and maintain
 - » Single source due to patents

AC Power Generation

- VSCF Generation
 - Variable Speed/Constant Frequency

- Generator provides variable frequency supply
 - » Voltage control
- Power converter converts to a fixed frequency
 - » 400Hz voltage supply
- Reliability of the Power Electronics is a key driver
 - » Not yet a proven technology
 - » Power converter is a single point failure point

AC Power Generation

Variable Frequency Generation

- Generator provides variable frequency supply
 - » Voltage control around generator
- Direct connection between generator and power bus
 - » Simple and reliable generation
- Nearly all aircraft loads will require power converters for control
 - » Good News for Power Electronics Engineers!

Generator Control

- Exciter and generator on main shaft
 - Turn at speed of engine
- Low Power Generator Control Unit [GCU]
 - Voltage control
- High power generator output
 - 230V, Variable Frequency

Flight Control Actuation Systems (civil)

Flight Control - Civil

Primary Actuation

- Roll
 - » Ailerons on trailing edges of wings
- Pitch
 - Elevators on trailing edge of tailplane
- Yaw
 - » Rudder
- Flight critical

Secondary Actuation

- Flaps
 - > Trailing edge of wing
 - » Used for take off and landing increase lift at low speed
- Slats
 - » Leading edge of wing, used for same reason as Flaps
- Airbrakes
 - » Spoilers and lift dumpers on wings increase drag
- Not actually required for flight, but very useful!

Comparison of Electrically Driven Actuators

Electro Mechanical Actuator - EMA

- Actuator is moved as motor spins
 - Each turn of the motor moves the actuator a fixed amount
 - Direct connection between motor and actuator arm
- Hydraulic version uses a hydraulic motor
 - Conventional Mechanical Actuator

Comparison of Electrically Driven Actuators

Electro Hydrostatic Actuator - EHA

- Actuator is moved as motor spins
 - Each turn of the motor moves the actuator a fixed amount
 - No direct connection between motor and actuator arm
 - Local hydraulic system

Typical Electro-Hydrostatic Actuator

A320 Aileron EHA

■ Typical rate – 35mm/s

Max Force - 44500N

■ Frequency response – 2Hz

Source: Smiths Aerospace/University of Nottingham

Comparison of Electrically Driven Actuators

EMA

- Direct drive solution
- Any potential jamming failure modes must be addressed
- Potentially the most compact solution

EHA

- Benign failure modes
- Based on a familiar technology for aircraft component manufactures
- Hydraulic fluid may leak

A380 Actuation

- Mixed can fly the plane on either system
 - Electrical (x2) Red and Orange [backup system]
 - Hydraulic (x2) Green and Yellow

MOET

MOET – More Open Electrical Technologies

- 3-year, EU funded projectwith 63 partners and €67M
- MOET aims to develope the POWER-BY-WIRE concept of which POA has highlighted as having advantages over conventional solutions

TOP-LEVEL OBJECTIVES:

Objective 1: Define and validate new electrical networks up to 1MW

Objective 2: Resolve and validate transformation of users into all electrical solutions

Objective 3: Develop and validate power electronics enabler technology

Objective 4: Integration into aircraft

Objective 5: Develop a coherent design environment to support PbW design and validation

EXPECTED RESULTS

- 1 Fuel burn: 2% less,
- 2 Maintenance: 15\$ cheaper per flight hour,
- 3 Unexpected delays for systems: 50% less for power systems
- 4 Power electronics weight reduction: 50% less
- 5 System improvement: enhanced competitiveness, manufacturing improvement, technology validation & standard proposals

Clean Sky JTI

- Total project budget €1.6B
 - Duration 7 years
- Clean Sky JTI work is split into six "ITDs"
- Led by 12 companies [Members]
 - Thales, Liebherr, Airbus, Dassualt, Alenia, SAAB, Rolls Royce, Safran, EADS,
- Each ITD then has 5 or 6 other organisations [Associate Members]
- 25% of funding reserved for Calls for Proposals
 - See <u>www.cleansky.eu</u> now for first call and get involved

- The University of Nottingham is an Associate member
 - Systems for Green Operations ITD
 - We are the only University which is an Associate Member in our own right
 - Budget of about €10M

Other MAE Sessions

- Industrial Session on the More Electric Aircraft
 - 9.40 Today
- TOES III Forum
 - 9.40 Thursday
- MOET Forum
 - All day Friday
 - Exhibition is running in parallel with EPE Exhibition