

Here

 $R_{0-c} = \frac{g+l_1}{l_1!} \frac{g+l_2}{l_2!} + \frac{g+l_3}{l_2!}$

$$= \frac{9 \times 2}{9 + 2} + \frac{9 \times 2}{9 + 2}$$

$$= \frac{36}{11}$$

source to a single ownert source.

$$|1.1| = 10 - 6$$

= 4A (1)

$$R^{n'} = R_1 R_2$$
 $R_1 + R_2$
 $= 6 \times 3 = 2 \cdot 2$
 $= 6 + 3$

Then,

(Num. No.34): Find the current through each branch of the network in figure.

Given, $R_1 = 1 \Omega$ $R_2 = 6 \Omega$ $R_3 = 2 \Omega$

Applying KVL in loop 1, $+E_1 - \bar{I}_1R_1 - R_2(\bar{I}_1 - \bar{I}_2) - E_2 = 0$ or, $5 - \bar{I}_1 \times 1 - 6(\bar{I}_1 - \bar{I}_2) - 10 = 0$ or, $5 - \bar{I}_1 - 6\bar{I}_1 + 6\bar{I}_2 - 10 = 0$ or, $-7\bar{I}_1 + 6\bar{I}_2 = 5$ — (i)

Applying KVL in loop 2, $+F_2 - R_2(I_2-I_1) - R_3I_2 = 0$ or, $10 - 6(I_2-I_1) - 2I_2 = 0$ or, $3I_1 - 4I_2 = -5$ — (ii) Solving (i) and (ii), we get.

$$T_1 = 1A$$

$$T_2 = 2A$$

Now

$$I_{R3} = 1 A (\uparrow)$$
 $I_{R3} = 2 A (\downarrow)$
 $I_{R2} = I_2 - I_1 = 1 A (\uparrow) \sqrt{fr} I_2 J$

(Num: No:35): Find the branch current.

Qiven, $R_1 = 22$ $R_2 = 42$ $R_3 = 62$.

Applying KUL in loop 1,

 $-\epsilon_1 - I_1R_1 - \epsilon_2 - R_2(I_1 - I_2) = 0$

Applying KUL in loop 2,

 $-f_3 - R_2(I_2-I_1) + f_2 - R_3I_2 = 0$ or, $-3 - 4 I_2 + 4I_1 + 4 - 6I_2 = 0$ or, $4I_1 - 10I_2 = -1 - (ii)$

Solving egn (i) and (ii), we get.

|I| = -2.18 A(T)|I| = -0.77 A(T)

Now

(Num. No. 36): find the current through the

Applysing KVL at loop 1, $+ E_1 - 8(I_1 - I_3) - 3(I_1 - I_2) = 0$ or, $15 - 8I_1 + 8I_3 - 3I_1 + 3I_2 = 0$ or, $-11I_1 + 3I_2 + 8I_3 = -15 - (i)$

Fipplysing KVL at luop 2, $-2I_2-3(I_2-I_1)-5(I_2-I_3)=0$ or, $-2I_2-3I_2+3I_1-5I_2+5I_3=0$ or, $3I_1-10I_2+5I_3=0$ —(ii)

1) plying $(VL \ at \ loop 3, -5(I_3-I_2) - 8(I_3-I_1) - 10I_3 = 0$ or, $-5I_3+5I_2-8I_3+8I_1-10I_3=0$ or, $8I_1+5I_2-23I_3=0-(iii)$ Solving (i), (ii), (iii)

 $I_1 = 2.63 A$ $I_2 = 1.39 A$ $I_3 = 1.22 A$

Now

1. IRAD = I3 = 1.22 A.

KNum. No 377: find all the branch current.
8010:

Given,

Rq = 7.5 KSZ

R2 = 3.8 KSZ

R3 = 6.8 KSZ

Ry = 7.5 KSL R5 = 2.210.9Applying KVL in loop 1, $+E_1 - R_3 I_1 - R_1 (I_1 - I_2) = 0$ or, $18 - 6800 I_1 - 7500 (I_2 - I_2) = 0$ or, $18 - 6800 I_1 - 7500 I_1 + 7500 I_2 = 0$

Applying KVL in loop 2,

 $-G_1 - R_1(I_2-I_1) - R_4I_2 - R_5(I_2-I_3) = 0$ or, $-18 - 7500(I_2-I_1) - 7500I_2 - 2200(I_2-I_3) = 0$ or, $-18 - 7500I_2 + 7500I_1 - 7500I_2 - 2200I_2 + 2200I_3 = 0$ or, $7500I_1 - 17200I_2 + 2200I_3 = 18 - (11)$

Applying KVL in loop 3, $-E_2 - 13300 \, I_3 - 2200 \, (I_3 - I_2) = 0$ or, $-3 - 3300 \, I_3 - 2200 \, I_3 + 2200 \, I_2 = 0$ or $2200 \, I_2 - 5500 \, I_3 = 3 - (iii)$

Solving (i), (ii) and (iii), $I_1 = g \cdot 85 \times 10^{-4} = 0.985 \text{ mA}$ $I_2 = -5 \cdot 20 \times 10^{-4} = -0.520 \text{ mA}$ $I_3 = 7.535 \times 10^{-4} = 0.753 \text{ mA}$.

Now

$$I_{R3} = I_1 = 0.985 \, \text{mA} \, (1)$$

$$I_{L1} = I_1 - I_2 = 0.580 + 0.520 = 1.5 \, \text{mA}$$

$$IRY = IZ = -0.520 \text{ mA} (\rightarrow)$$

$$IRS = 12 - 13 = -0.520 + 0.753 = 0.233 (4)$$

$$I_{R2} = I_3 = 0.753 \, \text{mA} \, (\downarrow)$$