Vol. 63 No. 1 JUCHE106(2017).

(자연과학)

주체106(2017)년 제63권 제1호

(NATURAL SCIENCE)

동기전동기 력률조절을 위한 내부모형 조종기설계의 한가지 방법

김명철, 김철식

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《전사회적으로 절약투쟁을 강화하여 한W의 전기, 한g의 석탄, 한방울의 물도 극력 아 껴쓰도록 하며 모두가 높은 애국심과 주인다운 래도를 가지고 나라살림살이를 깐지게 해나가는 기품을 세워야 합니다.》

선행연구[1]에서는 동기전동기의 력률을 모호조종에 의하여 실현하는 방법을 제안하였으며 선행연구[2]에서는 블로크지향비선형체계의 증폭도계획화조종기설계에 대한 리론적연구를 진행하였지만 실용적인 결과를 주지 못하였다.

론문에서는 입출력측정자료로부터 동정한 동기전동기의 력률모형[3]에 기초하여 내부 모형조종기를 설계하는 한가지 방법을 제기한다.

동기전동기 력률조종체계는 회전자의 려자전압에 의하여 려자전류를 변화시켜 력률을 조절하는 체계이다.(그림 1)

그림 1에서 M은 동기전동기, u는 SCR 식정류기의 임풀스위상조종전압, $U_{\rm d}$, $I_{\rm d}$ 는 각각 고정자전압, 고정자전류, 려자전압, 려자전류이다.

체계의 한소편처리기 PIC16F877에서 는 고정자전압과 전류의 위상차와 주파수 로부터 전동기의 력률(cosφ)을 측정하고 려자전압을 조절하며 상태측정자료를 상 위콤퓨터로 전송한다.

그림 1. 동기전동기 력률조종체계

조종대상은 전형적인 MIMO체계이지만 력률조종목적에 맞게 고정자전압과 주파수의 변동은 외란으로 취급하며 입력이 SCR조종전압 u(t), 출력이 전동기의 고정자전압과 전류의 위상차 y인 SISO체계로 본다. 력률은 $\cos y$ 이지만 출력을 그대로 력률로 하면 전류와 전압의 위상관계를 일의적으로 측정할수 없으므로 출력을 위상차로 선택하였다.

측정된 입출력자료의 u-y그라프해석에 의하면 대상의 동작특성이 비선형이라는것을 알수 있다. 따라서 대상의 모형은 조종기설계에 적합한 블로크지향모형형태의 모형구조로서 다음과 같은 함머스테인체계로 선택한다.[1]

$$y(t) = G(q)f(u(t)) + e(t)$$
(1)

여기서 q는 이동연산자이고 G(q)와 $f(\cdot)$ 은 각각 대상의 동적선형부분의 전달함수와 정적비선형부분의 다항식이며 e(t)는 령평균가우스백색잡음이다.

문제는 대상에 전압, 주파수변동과 부하변화를 비롯한 외란이 가해지는 속에서 력률의 안정화조종을 실현하는것인데 이것은 내부모형조종방법을 적용하여 실현할수 있다.

1. 동기전동기력률조종을 위한 증폭도계획화된 내부모형조종기설계

체계 (1)에 대한 내부모형조종기를 설계하기 위하여 대상의 입력 u(t)가 조종기의 한부분인 어떤 정적비선형요소 $g(\cdot)$ 의 출력이라고 가정한다. 이때 $g(\cdot)$ 의 입력 x(t) 로부터 대상의 출력 v(t) 까지의 입출력관계는 다음과 같이 표시된다.

$$u(t) = g(x(t))$$

$$w(t) = f(u(t))$$

$$y(t) = G(q)w(t) + e(t)$$
(2)

만일 $g(\cdot)$ 을 $f(\cdot)$ 의 거꿀함수 $f^{-1}(\cdot)$ 과 일치하도록 조종기를 설계한다면 즉 $g(\cdot)=f^{-1}(\cdot)$ 이라면 체계 (2)는 y(t)=G(q)x(t)+e(t)와 같은 LTI체계로 표시된다.

실제대상에 대한 조종기설계문제는 체계 (2)에 대한 조종기설계와 등가이며 따라서 내부모형조종기(IMC)는 다음과 같이 구성할수 있다.

그림 2. 증폭도계획화된 IMC에 의한 동기 전동기력률조종체계의 구성도

$$x(t) = G_{\text{IMC}}(q)e(t)$$

$$u(t) = \hat{f}^{-1}(x(t))$$
(3)

u(t) - y u(t) - y v(t) - y

표량, y는 출력, Δy는 대상의 출력과 모형출력의 오차이다.

조종기 (3)에서 $G_{\mathrm{IMC}}(q)$ 는 공칭내부모형조종기 $G_{\mathrm{IMC}_n}(q)$ 와 려파기F(q)에 의하여 다음과 같이 구성한다.

$$G_{\text{IMC}}(q) = G_{\text{IMC}_n}(q)F(q) \tag{4}$$

이때 $G_{\mathrm{IMC}_n}(q)$ 와 F(q)는 다음과 같이 결정한다.

우선 대상의 모형화오차를 무시하면 $G_{\mathrm{IMC}_n}(q)$ 는 다음과 같이 얻을수 있다.

$$G_{\text{IMC}_n}(q) = \hat{G}_+^{-1}(q)H(q)$$
 (5)

여기서 H(q)는 $H(1)=\hat{G}_{-}^{-1}(1)$ 이 만족되는 려파기이며 $\hat{G}_{+}(q)$ 는 \hat{G} 의 최소위상부분이다.

다음 닫긴체계가 로바스트성을 가지도록 F(q)를 선정한다. 이때 조종기의 설계를 간단히 하고 조종처리의 실시간성을 보장하기 위하여 F(q)를 저역려파기로서 1차형식으로 선정한다. 즉

$$F(q) = \frac{1 - \alpha_f}{1 - \alpha_f q^{-1}} \quad (0 < \alpha_f < 1)$$
 (6)

이와 같이 설계된 조종기 (4)에 의하여 내부모형조종체계의 목표량전달함수 $T_r(q)$ 와 외란억제전달함수 $T_d(q)$ 를 구하면 다음과 같다.

$$T_r(q) = \frac{G(q)F(q)}{\widetilde{G}_+(q) + [G(q) - \widetilde{G}(q)]F(q)}$$

$$\tag{7}$$

$$T_d(q) = \frac{\hat{G}_+(q)[1 - F(q)]}{\hat{G}_+(q) + [G(q) - \hat{G}(q)]F(q)}$$
(8)

리상적인 모형 즉 $\hat{G}(q) = G(q)$ 이고 대상이 최소위상체계 $(\hat{G}_+(q) = \hat{G}(q))$ 이라고 할 때 식 (7), (8)은

$$T_r(q) = F(q), \ T_d(q) = 1 - F(q)$$
 (9)

로 간단해진다. 이것은 내부모형조종방법으로 설계된 닫긴체계의 성능이 려파기동특성에 의하여 결정된다는것을 보여준다. 닫긴체계의 정상특성을 보면 $t\to\infty$ 일 때 즉 $q\to 1$ 일 때 려파기 (6)과 식 (9)에 의하여 $T_r(q)\to 1$, $T_d(q)\to 0$ 이다.

조종대상의 동적선형부분이 지연항 q^{-d} 와 최소위상체계 $G_m(q)$ 에 의하여 다음과 같이 구성된다고 하면 즉

$$\hat{G}(q) = q^{-d} G_m(q) \tag{10}$$

이면 내부모형조종기는

$$x(t) = G_m^{-1} F/(1-F)e(t)$$

$$u(t) = f^{-1}(x(t))$$
(11)

이며 식 (6)을 식 (11)에 대입하면

$$x(t) = G_m^{-1} \frac{1 - \alpha_f}{\alpha_f} \frac{1}{1 - q^{-1}} e(t)$$

$$u(t) = \hat{f}^{-1}(x(t))$$
(12)

이다.

2. 모의 및 현장실험결과분석

철극형3상동기전동기($U_{\rm D}=3~000\,{\rm [V]}$, $U_{\rm pl}=31\,{\rm [V]}$, $I_{\rm D}=254\,{\rm [A]}$, $I_{\rm pl}=252\,{\rm [A]}$, p=6, $P_m=1~120\,{\rm [kW]}$, $\cos\varphi=0.9$)에 대하여 열린고리상태에서 측정자료를 수집하고 선행연구[1]의 체계동정방법에 의하여 모형을 동정한 결과는 다음과 같다.

$$y_{M1}(t) = \frac{0.230 \ 3q^{-4} - 0.125 \ 3q^{-5} + 0.076q^{-6}}{1 - 1.086q^{-1} + 0.011 \ 8q^{-2} + 0.101 \ 9q^{-2}} (-28.83u(t) + 9.028u^{2}(t) - 0.414u^{3}(t)) (13)$$

모형 (13)의 정적비선형부분의 거꿀모형을 해석적으로 구한 다음 조종기 (3)을 설계하고 PI조종기와의 모의비교실험을 진행하였다. 조종기의 려파기시정수 α_f 는 조종체계의 안 정성과 실시간성을 고려하여 수값모의적인 방법으로 0.8로 정하였다.

대상이 변동될 때 대상의 입출력관계가 y(t) = kG(q)f(u(t)) + e(t)라고 하고 모의하였다. 여기서 $k \leftarrow$ 상대적리득이다.

모의결과는 k가 변화될 때 제안한 내부모형조종기의 목표량추종성이 강하며(그림 3 \neg)) 부하가 변할 때 PI조종기에 비하여 외란억제특성이 좋다는것을 보여준다.(그림 3 \cup))

그림 3. 수값모의결과

- ¬) 제안한 조종기의 목표값에 대한 출구응답: 1−3은 k가 각각 0.7, 1.0, 1.8일 때;
- L) 부하가 변하는 경우: 제안한 조종기의 출구응답(2)과 PI조종기의 출구응답(1)

또한 제안한 조종기의 현장실험결과는 전압, 주파수의 변화와 부하변동이 존재하는 조건에서 전동기의 력률을 0.3%의 정확도로 안정화시킨다는것을 보여주었다.

맺 는 말

입출력측정자료에 기초하여 동정한 동기전동기력률모형에 기초하여 증폭도계획화된 내 부모형조종기를 설계하는 한가지 방법을 제기하고 수값모의실험과 현장실험을 통하여 조 종기의 성능을 검증하였다.

참 고 문 헌

- [1] 김명철 등; 전기, 자동화공학, 2, 20, 주체104(2015).
- [2] Wen Xiao Zhao; IEEE Transaction on Industry Application, 55, 2, 474, 2010.
- [3] S. Elhaq et al.; Control Engineering Practice, 7, 8, 931, 1999.

주체105(2016)년 9월 5일 원고접수

A Method of Internal Model Control(IMC) based Controller Design for Power Factor Improvement of AC Synchronous Motor

Kim Myong Chol, Kim Chol Sik

In order to control the power factor of a AC synchronous motor, it suggested a design method of gain scheduling IMC on Hammerstein system and verified the performance of IMC using the identified model based on observed input-output data by means of simulation and application experiment.

Key words: AC synchronous motor, power factor, IMC