TD6: groupe linéaire, homographies, simplicité

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices $\star\star$: seront traités en classe en priorité.

Exercices $\star \star \star \star$: plus difficiles.

Exercice 1: *

- a) Soit K un corps et soit E un K-espace vectoriel de dimension finie. Rappeler pourquoi PGL(E) agit fidèlement sur $\mathbb{P}(E)$.
- b) Soit q une puissance d'un nombre premier et $n \geq 2$. Construire un morphisme de groupes injectif canonique $\operatorname{PGL}_n(\mathbb{F}_q) \to \mathfrak{S}_N$ avec $N := \frac{q^n-1}{q-1}$.
- c) Identifier les groupes $\operatorname{PGL}_n(\mathbb{F}_q)$ et $\operatorname{PSL}_n(\mathbb{F}_q)$ pour n=2 et q=2,3,4,5.
- d) Montrer que $PSL_2(\mathbb{F}_5)$ est isomorphe à $PGL_2(\mathbb{F}_4)$.

Exercice 2: *

- a) Soit p un nombre premier. Montrer que la réduction modulo p des coefficients d'une matrice induit un morphisme de groupes $\mathrm{SL}_n(\mathbb{Z}) \to \mathrm{SL}_n(\mathbb{Z}/p\mathbb{Z})$ qui est surjectif.
- b) Montrer que ce résultat reste vrai en remplaçant p par n'importe quel entier $N \geq 2$.
- c) Soit $N \geq 3$. Montrer que le noyau du morphisme de réduction $GL_n(\mathbb{Z}) \to GL_n(\mathbb{Z}/N\mathbb{Z})$ est sans torsion.

Exercice 3: *

On note $G := \mathrm{PSL}_3(\mathbb{F}_4)$ et $H := \mathrm{PSL}_4(\mathbb{F}_2)$.

- a) Montrer que G et H ont même cardinal.
- b) Montrer que H contient deux classes de conjugaison distinctes formées d'éléments d'ordre 2.
- c) Montrer que tout élément d'ordre 2 dans G est la classe d'une transvection de \mathbb{F}_4^3 .
- d) Montrer que G et H ne sont pas isomorphes.

Exercice 4: **

Soit K un corps et soit E un K-espace vectoriel de dimension 2. Soit \mathcal{T} l'ensemble des classes de conjugaisons sous SL(E) des transvections de E. On fixe une base de E et, pour $a \in K^*$, on note T_a la transvection de matrice $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ dans cette base.

- a) Montrer que T_a et T_b sont conjuguées si et seulement si ab^{-1} est un élément de K^{*2} .
- b) En déduire une bijection entre K^*/K^{*2} et \mathcal{T} .
- c) Que dire de plus si $K = \mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{F}_p$?

Exercice 5: **

Soit $n \geq 1$. On note $\operatorname{Int}(\mathfrak{S}_n)$ le sous-groupe des automorphismes intérieurs de $\operatorname{Aut}(\mathfrak{S}_n)$.

- a) Soit $\phi \in \operatorname{Aut}(\mathfrak{S}_n)$ tel que ϕ transforme toute transposition en une transposition. Montrer que ϕ est intérieur.
- b) Soit $\sigma \in \mathfrak{S}_n$. Déterminer le cardinal du commutant $Z(\sigma) := \{ \tau \in \mathfrak{S}_n \mid \tau \sigma \tau^{-1} = \sigma \}$ de σ .
- c) En déduire que si $n \neq 6$, on a $Int(\mathfrak{S}_n) = Aut(\mathfrak{S}_n)$.
- d) Soit $n \geq 5$ tel que $\operatorname{Int}(\mathfrak{S}_n) = \operatorname{Aut}(\mathfrak{S}_n)$. Montrer que tous les sous-groupes d'indice n de \mathfrak{S}_n sont conjugués.

- e) En utilisant les 5-Sylow de \mathfrak{S}_5 , montrer qu'il existe un sous-groupe H d'indice 6 de \mathfrak{S}_6 opérant transitivement sur $\{1, \ldots, 6\}$.
- f) Construire géométriquement un sous-groupe H' d'indice 6 dans \mathfrak{S}_6 vérifiant les mêmes propriétés que H.
- g) En déduire que $Aut(\mathfrak{S}_6) \neq Int(\mathfrak{S}_6)$.

Exercice 6: **

Soit K un corps.

- a) Montrer que l'action de $\operatorname{PGL}_2(K)$ sur $\mathbb{P}^1(K)$ est 3-transitive. Est-elle 4-transitive?
- b) Pour n = 1, 2, 3, décrire le quotient $\mathbb{P}^1(K)^{[n]}/\mathrm{PGL}_2(K)$ (i.e. l'ensemble des orbites) où $\mathbb{P}^1(K)^{[n]}$ désigne l'ensemble des n-uplets de points deux-à-deux distincts de $\mathbb{P}^1(K)$.
- c) Montrer que l'on a une bijection naturelle $(\mathbb{P}^1(K)^{[3]} \times \mathbb{P}^1(K))/\operatorname{PGL}_2(K) \to \mathbb{P}^1(K)$. Cette bijection est notée $(a,b,c,d) \mapsto [a,b,c,d]$ et [a,b,c,d] est appelé le birapport des points a,b,c,d.
- d) Expliciter la bijection précédente via l'identification $\mathbb{P}^1(K) \cong K \cup \{\infty\}$.

Exercice 7:

- a) Montrer que le groupe $\mathrm{PSL}_2(\mathbb{Z})$ agit naturellement sur le demi-plan de Poincaré $\mathcal{H} = \{z \in \mathbb{C} : \mathrm{Im}(z) > 0\}.$
- b) Montrer que cette action est fidèle. Identifier le stabilisateur de $i \in \mathcal{H}$.
- c) Soit G un groupe agissant sur un espace topologique X. Une partie F de X est appelée domaine fondamental pour l'action de G sur X si elle vérifie :

$$\text{(i) } \overline{F^{\circ}} = F, \quad \text{(ii) } X = \bigcup_{h \in G} hF, \quad \text{(iii) } \forall g \in G \setminus \{1\} \,, \, F^{\circ} \cap (gF)^{\circ} = \emptyset.$$

Soit
$$D = \{z \in \mathcal{H} : |\text{Re}(z)| \le \frac{1}{2}, |z| \ge 1\}.$$

- i) En maximisant la partie imaginaire des éléments d'une orbite $\mathrm{PSL}_2(\mathbb{Z}) \cdot z$, montrer que D vérifie la propriété (ii).
- ii) Montrer que D est un domaine fondamental pour l'action de $\mathrm{PSL}_2(\mathbb{Z})$ sur \mathcal{H} .
- iii) En déduire que les matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ engendrent $SL_2(\mathbb{Z})$.

Exercice 8:

Soit K un corps.

Montrer que les homographies sont exactement les K-automorphismes du corps K(T) (les automorphismes de K(T) dont la restriction à K est l'identité), i.e. que $\operatorname{Aut}_K(K(T)) \cong \operatorname{PGL}_2(K)$.

Exercice 9: $\star \star \star$

Soit G un groupe simple d'ordre 360.

- a) Montrer que G admet dix 3-Sylow.
- b) Montrer que G est isomorphe à un sous-groupe de \mathfrak{A}_{10} . On supposera désormais que G est un sous-groupe de \mathfrak{A}_{10} .
- c) Soit S un 3-Sylow de G. Montrer que S n'est pas cyclique, et que l'on peut supposer que $N_G(S)$ est le stabilisateur de 10 dans $G \subset \mathfrak{A}_{10}$.
- d) Montrer que tout élément non trivial de S ne fixe aucun point de $\{1, 2, \dots, 9\}$.
- e) Montrer que l'on peut supposer que S est engendré par les éléments $x=(1\,2\,3)(4\,5\,6)(7\,8\,9)$ et $y=(1\,4\,7)(2\,5\,8)(3\,6\,9)$.
- f) Montrer que le stabilisateur P de 1 dans $N_G(S)$ est cyclique d'ordre 4 et est un 2-Sylow de $N_G(S)$. On note z un générateur de P.

- g) Montrer qu'on peut supposer que $z=(2\,4\,3\,7)(5\,6\,9\,8).$
- h) Soit T un 2-Sylow de G contenant z. Montrer que $T=\langle z,t\rangle,$ avec t d'ordre 2.
- i) Montrer que l'on peut supposer que t = (110)(23)(56)(89).
- j) Montrer que $G = \langle x, y, z, t \rangle$.
- k) Que peut-on en conclure pour les groupes simples d'ordre 360?
- 1) Montrer que $PSL_2(\mathbb{F}_9) \cong \mathfrak{A}_6$.