Минимизация в классе ДНФ

Будем рассматривать булевы функции, не равные тождественно нулю. Любую булеву функцию $f(x_1,...,x_n) \neq 0$ можно представить в СДНФ. Но формула в СДНФ часто очень громоздкая. Определим и построим более «компактную» ДНФ.

Минимизацию будем проводить по числу вхождений высказывательных переменных. Например, у ДНФ ($\neg x \& y$) \lor ($\neg y \& z$) число переменных -3, а число вхождений переменных -4.

Определение 1. *Минимальной ДНФ* для функции $f(x_1,...,x_n)$ будем называть ДНФ с наименьшим числом вхождений высказывательных переменных.

Минимальных ДНФ для одной функции может быть несколько.

Рассмотрим два способа нахождения тіп ДНФ.

- 1. Построение min ДНФ через сокращенную ДНФ.
- 2. Построение min ДНФ с помощью таблиц Карно (легко программировать).

Построение min ДНФ через сокращенную ДНФ

Сокращенная ДНФ — некоторое приближение к минимальной. Она представляется единственным образом также, как и СДНФ.

Пусть функцию $f(x_1,...,x_n)$ выражает формула F, находящаяся в СДНФ относительно списка переменных $< x_1,...,x_n >$.

Определение 2. Элементарную конъюнкцию C будем называть *допустимой* для функции $f(x_1, ..., x_n)$, если $C \lor F \equiv F$.

Определение 3. Допустимая конъюнкция называется *простой*, если при удалении из нее какой-либо её переменной x_i или ее отрицания $\neg x_i$ конъюнкция перестаёт быть допустимой.

Определение 4. Дизъюнкция всех простых допустимых конъюнкций для $f(x_1,...,x_n)$ называется **сокращенной ДНФ**.

Утверждение 1. Сокращенная ДНФ, выражающая функцию $f(x_1,...,x_n)$ определяется единственным образом с точностью до перестановки элементарных конъюнкций и переменных, в них входящих.

Алгоритм построения сокращенной ДНФ для функции $f(x_1,...,x_n)$

- 1. Для функции $f(x_1,...,x_n)$ находим выражающую её формулу F в СДНФ относительно списка переменных $< x_1,...,x_n >$.
- 2. Применяем к СДНФ F закон обобщенного расщепления до тех пор, пока это возможно:

$$(A\&B) \lor (A\&\neg B) \equiv (A\&B) \lor (A\&\neg B) \lor A.$$

Получаем формулу $F_1 \equiv F$.

3. Применяем закон поглощения:

$$(A\&B) \lor A \equiv A$$

Получаем формулу $F_2 \equiv F_1$.

 $F_2 = C_1 \vee ... \vee C_k$ — сокращенная ДНФ с учетом, что надо оставить только одно вхождение каждой элементарной конъюнкции: $A \vee A \equiv A$.

Обоснование алгоритма.

- 1. Из определения допустимой конъюнкции следует, что по закону обобщенного расщепления к СДНФ F добавляются только допустимые конъюнкции.
- 2. Поскольку процесс расщепления продолжается до тех пор, пока это возможно, то в F_1 будут присутствовать *все* допустимые конъюнкции для данной булевой функции.
- 3. По закону поглощения из двух конъюнкций, одна из которых является частью другой, остаётся конъюнкция с минимальным числом переменных, т.е. простые конъюнкции.

Доказательство единственности сокращенной ДНФ следует из определения – **ВСЕ** простые, допустимые для данной функции конъюнкции входят в сокращенную ДНФ.

Следующий пример показывает, почему нельзя применить к СДНФ обычный закон расщепления $(A\&B) \lor (A\&\neg B) \equiv A$.

Пример 1. Пусть задана булева функция f(x, y) следующим образом: функция принимает значение 0 только на оценке < 0, 0 >. В этом случае СДНФ имеет вид:

$$(x\&\neg y) \lor (x\&y) \lor (\neg x\&y).$$

Возможны два случая применения закона расщепления, причем получим разные формулы:

- 1) $(x\&\neg y) \lor (x\&y) \lor (\neg x\&y) \equiv x \lor (\neg x\&y)$;
- 2) $(x\&\neg y) \lor (x\&y) \lor (\neg x\&y) \equiv (x\&\neg y) \lor y$.

Делаем по алгоритму построения сокращенной ДНФ:

$$(x\&\neg y)\lor(x\&y)\lor(\neg x\&y)\equiv(x\&\neg y)\lor(x\&y)\lor(\neg x\&y)\lor\underset{(x\land of \kappa u)}{x}\lor\underset{(x\land of \kappa u)}{y}\equiv x\lor y.$$

 $x \lor y -$ сокращенная ДНФ.

Утверждение 2. Минимальная ДНФ, выражающая данную функцию, состоит из элементарных конъюнкций, входящих в сокращенную ДНФ.

Для построения минимальной ДНФ из сокращенной надо выписать все возможные ДНФ из конъюнкций сокращенной, а затем определить ДНФ с минимальным числом простых конъюнкций, выражающие данную функцию. Так, если сокращенная ДНФ состоит из k конъюнкций, то получим ($2^k - 1$) ДНФ (хотя бы одна конъюнкция входит).

Как сократить перебор?

Определение 5. Назовем элементарную конъюнкцию сокращенной ДНФ C_i **несократимой**, если \exists оценка $\langle s_1, ..., s_n \rangle$ на которой $C_i|_{\langle s_1, ..., s_n \rangle} = 1$ $(i \in \{1, ..., k\})$, а остальные конъюнкции $C_j|_{\langle s_1, ..., s_n \rangle} = 0$, $j = \{1, ..., k\} \setminus \{i\}$.

Очевидно, что все несократимые конъюнкции должны входить в минимальную ДНФ, иначе ДНФ не будет выражать заданную функцию. Если дизъюнкция всех несократимых конъюнкций не будет выражать функцию, то остальные конъюнкции добавляем перебором, но уже с меньшим числом вариантов.

x	y	Z	f(x, y, z)	СДНФ	x & y	$\neg Z$	Простые
							конъюнк.
1	1	1	1*	x & y & z	1	0	1- несокр
1	1	0	1*	$x \& y \& \neg z$	1	1	2
1	0	1	0		0	0	
1	0	0	1*	$x \& \neg y \& \neg z$	0	1	1- несокр
0	1	1	0		0	0	
0	1	0	1*	$\neg x \& y \& \neg z$	0	1	1- несокр
0	0	1	0		0	0	
0	0	0	1*	$\neg x \& \neg y \& \neg z$	0	1	1- несокр

Пример 2. Рассмотрим следующую функцию, заданную таблицей.

СДНФ:
$$(x\&y\&z) \lor (x\&y\&\neg z) \lor (x\&\neg y\&\neg z) \lor (\neg x\&y\&\neg z) \lor (\neg x\&\neg y\&\neg z) \lor (\neg x\&\neg y\&\neg z) \lor (\neg x\&\neg y\&\neg z) \lor (\neg x\&\neg z) \lor (\neg x\&\neg z) \lor \neg z$$
 \equiv

$$\equiv (x \& y) \lor \neg z$$
 — сокращенная и минимальная ДНФ.

Применим алгоритм нахождения сокращенной ДНФ. По закону обобщенного расщепления добавлены выделенные желтым конъюнкции, конъюнкции, содержащие, как часть $\neg z$ и (x & y) сократятся по закону поглощения.

Выделены строки таблицы, указывающие на то, что обе конъюнкции сокращенной ДНФ несократимые — $\neg z$ и (x&y) (одна 1 среди всех конъюнкций сокращенной ДНФ). И сокращенная ДНФ является минимальной.

Минимальная ДНФ — дизъюнкция всех или несколько простых конъюнкций функции $f(x_1,...,x_n)$, т.е. конъюнкций из сокращенной ДНФ $F_2 = C_1 \lor ... \lor C_k$. В минимальную ДНФ обязательно входят несократимые конъюнкции.

Пример 3. Рассмотрим функцию, заданную таблицей.

x	y	Z	f(x, y, z)	СДНФ	<i>x</i> & <i>y</i>	y&z	$x \& \neg z$	$\neg x \& z$	Простые
									конъюнк.
1	1	1	1*	x & y & z	1	1	0	0	2
1	1	0	1*	$x \& y \& \neg z$	1	0	1	0	2
1	0	1	0		0	0	0	0	
1	0	0	1*	$x \& \neg y \& \neg z$	0	0	1	0	1-несокр
0	1	1	1*	$\neg x \& y \& z$	0	1	0	1	
0	1	0	0		0	0	0	0	
0	0	1	1*	$\neg x \& \neg y \& z$	0	0	0	1	1-несокр
0	0	0	0		0	0	0	0	

СДНФ:
$$(x\&y\&z) \lor (x\&y\&\neg z) \lor (x\&\neg y\&\neg z) \lor (\neg x\&y\&z) \lor (\neg x\&\neg y\&z) \lor \underbrace{(x\&y) \lor (x\&y) \lor (x\&z) \lor (x\&z)$$

Применим алгоритм нахождения сокращенной ДНФ. По закону обобщенного расщепления добавлены выделенные желтым конъюнкции, конъюнкции СДНФ сократятся по закону поглощения.

Выделены строки таблицы, указывающие на несократимые конъюнкции $(x\&\neg z)$ и $(\neg x\&z)$ (одна 1 среди всех конъюнкций сокращенной ДНФ).

Для того, чтобы получить min ДНФ, добавим к несократимым конъюнкциям перебором еще конъюнкцию. min ДНФ должна выражать функцию. Получим две минимальных ДНФ.

$$min \ \mathcal{L}H\Phi$$
: $(x\&\neg z) \lor (\neg x\&z) \lor (x\&y)$ и
$$(x\&\neg z) \lor (\neg x\&z) \lor (y\&z).$$

Нахождение min ДНФ через таблицу Карно

Приведем алгоритм построения минимальной ДНФ с помощью таблицы Карно и продемонстрируем работу алгоритма на примере (пример 3).

1. Строим всевозможные элементарные конъюнкции переменных, входящих в функцию и их отрицаний в виде таблицы. В последнем столбце – значения функции.

							f(x,y,z)
х	y	Z	xy	χz	yz	xyz	1
х	у	Z	xy	$\chi \overline{z}$	yz	ху z	1
х	\overline{y}	Z	$x\overline{y}$	χz	$\overline{y}z$	$x\overline{y}z$	0
х	\overline{y}	Z	$x\overline{y}$	$\chi \overline{z}$	$\overline{y}\overline{z}$	$x\overline{y}\overline{z}$	1
\overline{x}	у	Z	$\overline{x}y$	$\overline{x}z$	yz	$\overline{x}yz$	1
\overline{x}	у	Z	$\overline{x}y$	$\overline{x}\overline{z}$	yz	$\overline{x}y\overline{z}$	0
\overline{x}	\overline{y}	Z	$\overline{x}\overline{y}$	$\overline{x}z$	$\overline{y}z$	$\overline{xy}z$	1
\overline{x}	\overline{y}	\overline{Z}	$\overline{x}\overline{y}$	$\overline{x}\overline{z}$	$\overline{y}\overline{z}$	$\overline{x}\overline{y}\overline{z}$	0

2. Вычеркиваем строки, которые соответствуют нулевым значениям функции.

							f(x,y,z)
х	y	Z	xy	χz	yz	xyz	1
х	y	\overline{Z}	xy	$\chi \overline{z}$	ȳz	ху z	1
х	\overline{y}	Z	$x\overline{y}$	χz	$\overline{y}z$	$x\overline{y}z$	0
х	\overline{y}	\overline{Z}	$x\overline{y}$	$\chi \overline{z}$	$\overline{y}\overline{z}$	$x\overline{y}\overline{z}$	1
\overline{x}	y	Z	$\overline{x}y$	$\overline{x}z$	yz	$\overline{x}yz$	1
\overline{x}	y	Z	$\overline{x}y$	$\overline{x}\overline{z}$	y₹	$\overline{x}y\overline{z}$	0
\overline{x}	\overline{y}	Z	$\overline{x}\overline{y}$	$\overline{x}z$	$\overline{y}z$	$\overline{x}\overline{y}z$	1
\overline{x}	\overline{y}	\overline{Z}	$\overline{x}\overline{y}$	$\overline{x}\overline{z}$	$\overline{y}\overline{z}$	$\overline{xy}\overline{z}$	0

3. В каждом столбце вычеркиваем те конъюнкции, которые были вычеркнуты в предыдущем пункте.

							f(x,y,z)
x	y	Z	xy	XZ	yz	xyz	1
x	y	Z	xy	$\chi \overline{z}$	ȳz̄	хӯz	1
x	\overline{y}	Z	$x\overline{y}$	XZ	$\overline{y}z$	$x\overline{y}z$	0
х	\overline{y}	\overline{Z}	$x\overline{y}$	$\chi \overline{z}$	$\overline{y}\overline{z}$	$x\overline{y}\overline{z}$	1
\overline{x}	y	Z	$\overline{x}y$	$\overline{x}z$	yz	$\overline{x}yz$	1
\overline{x}	y	Z	$\overline{x}y$	$\overline{x}\overline{z}$	ȳz̄	$\overline{x}y\overline{z}$	0
\overline{x}	\overline{y}	Z	$\overline{x}\overline{y}$	$\overline{x}z$	$\overline{y}z$	$\overline{x}\overline{y}z$	1
\overline{x}	\overline{y}	\overline{Z}	$\overline{x}\overline{y}$	$\overline{x}\overline{z}$	$\overline{y}\overline{z}$	$\overline{x}\overline{y}\overline{z}$	0

4. В каждой строке оставляем конъюнкции наименьшей длины, остальные вычеркиваем.

							f(x,y,z)
x	y	Z	xy	XZ	yz	xyz	1
х	y	\overline{Z}	xy	$\chi \overline{z}$	у 	ху z	1
х	\overline{y}	Z	$x\overline{y}$	χz	$\overline{y}z$	$x\overline{y}z$	0
х	\overline{y}	\overline{Z}	$x\overline{y}$	$\chi \overline{z}$	$\overline{y}\overline{z}$	$x\overline{y}\overline{z}$	1
\overline{x}	y	Z	$\overline{x}y$	$\overline{x}z$	yz	$\overline{x}yz$	1
\overline{x}	y	\overline{Z}	$\overline{x}y$	$\overline{x}\overline{z}$	у 	$\overline{x}y\overline{z}$	0
\overline{x}	\overline{y}	Z	$\overline{x}\overline{y}$	$\overline{x}z$	$\overline{y}z$	$\overline{xy}z$	1
\overline{x}	\overline{y}	\overline{Z}	$\overline{x}\overline{y}$	$\overline{x}\overline{z}$	$\overline{y}\overline{z}$	$\overline{xy}\overline{z}$	0

5. Выписываем ДНФ следующим образом: из каждой не вычеркнутой полностью строки берем хотя бы одну конъюнкцию. Из построенных ДНФ выбираем минимальные.

Например, из 1-й возьмем xy, из 2-й — $x\bar{z}$, из 4-й — $x\bar{z}$ (уже брали), из 5-й — yz, из 7-й — $\bar{x}z$. Получается ДНФ

$$xy \lor x\bar{z} \lor yz \lor \bar{x}z$$
 –

очевидно, не минимальная. Перебираем далее все возможные варианты...

Замечание. Для уменьшения перебора, аналогично первому способу, выбираем из строк в первую очередь несократимые конъюнкции (которые остались только по одной в строке).

min
$$\mathcal{L}H\Phi$$
: $(x\&\neg z) \lor (\neg x\&z) \lor (x\&y)$ и
$$(x\&\neg z) \lor (\neg x\&z) \lor (y\&z).$$

(Результат совпал с примером 3.)

Контактные (переключательные) схемы

Рассмотрим проводник, снабженный ключом. Состояние проводника описывает булева переменная x. Если ключ замкнут, то по проводнику идет ток, и в этом случае x = 1. Если ключ разомкнут, то ток не идет и x = 0.

Функции конъюнкция и дизъюнкция реализуют следующие схемы:

Операции конъюнкция соответствует последовательное соединение проводников; операции дизъюнкция – параллельное.

Для того чтобы реализовать любую булеву функцию система должна быть полной. Например, $\{\neg, \&, \lor\}$.

При реализации схемы операция отрицание определяется наличием переключателя: два проводника x и $\neg x$ должны располагаться так, чтобы если по одному из них идет ток, то по другому проводнику ток не идет.

Реализация переключателя (функция ¬)

Рассмотрим булеву функцию $f(x, y) = x \sim y = (x \& y) \lor (\neg x \& \neg y)$

x	y	<i>x</i> ~ <i>y</i>	СДНФ
1	1	1	<i>x</i> & <i>y</i>
1	0	0	
0	1	0	
0	0	1	$\neg x \& \neg y$

По функции находим СДНФ, а затем min ДНФ. В данном случае СДНФ является и минимальной ДНФ.

Контактная схема, соответствующая данной функции, имеет вид:

Необходимо различать контактную схему и её реализацию. Реализация данной схемы выглядит следующим образом.

Лампочка зажигается, если замкнуть два ключа по проводникам x и y или два ключа по проводникам $\neg x$ и $\neg y$.

https://xn--c1akah3c.xn--p1acf/uploads/posts/2018-04/1522741294_51-gifka-lampochka-migaet.gif

Пример 4. Изобразить контактную схему, реализующую голосование по правилу большинства для трёх выборщиков. Составим таблицу функции.

x	у	Z	f(x, y, z)	СДНФ
1	1	1	1*	<i>x</i> & <i>y</i> & <i>z</i>
1	1	0	1*	$x \& y \& \neg z$
1	0	1	1*	$x \& \neg y \& z$
1	0	0	0	
0	1	1	1*	$\neg x \& y \& z$
0	1	0	0	
0	0	1	0	
0	0	0	0	

СДНФ:
$$(x\&y\&z) \lor (x\&y\&\neg z) \lor (x\&\neg y\&z) \lor (\neg x\&y\&z) \lor (x\&y) \lor (x\&z) \lor (y\&z) \equiv (x\&y) \lor (x\&z) \lor (y\&z)$$
 — сокращенная ДНФ

x	y	Z	f(x, y, z)	<i>x</i> & <i>y</i>	x&z	<i>y</i> & <i>z</i>
1	1	1	1*	1	1	1
1	1	0	1*	1	0	0
1	0	1	1*	0	1	0
1	0	0	0	0	0	0
0	1	1	1*	0	0	1
0	1	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

Все дизъюнкции несократимые и, следовательно, сокращенная ДНФ является min ДН Φ : $F \equiv (x\&y) \lor (x\&z) \lor (y\&z)$ —минимальная ДН Φ .

Пример 5. Упростить контактную схему.

Пример 6 (для примера 3).

Контактная схема, соответствующая $min \ \mathcal{L}H\Phi$: $(x \otimes \neg z) \lor (\neg x \otimes z) \lor (x \otimes y)$ из примера 3 имеет вид:

