Sannolikhetsteori

Sannolikhetsläran kan se som teorin om slumpmässiga försök

Med ett *slumpmässigt försök* menas ett försök vars resultat inte säkert kan förutsägas Klassiska exempel: Slå en tärning, drag 5 kort ur en kortlek

Definitioner:

- Resultatet av ett slumpmässigt försök kallas ett utfall
- Mängden av alla möjliga utfall av ett slumpmässigt försök kallas **utfallsrum**, (betecknas med Ω)
- En samling utfall kallas händelse (A, B, C,....), delmängd av
- Om ett utfallsrum, Ω , är ändligt eller uppräkneligt sägs Ω vara ett diskret utfallsrum.
- Om Ω inte är ändligt eller uppräkneligt sägs Ω vara ett *kontinuerligt utfallsrum*.

Utfallsrum, händelse och komplement

Då man undersöker händelser kan man med fördel använda mängdlärans symboler.

Grundmängd

Utfallsrummet, Ω

Delmängd

Händelsen A

Komplementet till A

Komplementhändelse A^C

Händelsen A

Unions-, snitt- och disjunkta händelser

Unionshändelse, A∪B

Minst en av händelserna A och B inträffar,

A eller B inträffar

Snitthändelse, A∩B Disjunkta händelser både A och B inträffar

A och B kan ej inträffa samtidigt, $A \cap B = \emptyset$

 $(\emptyset = tomma mängden)$

Unionshändelse

Snitthändelse

Disjunkta händelser

Sannolikhet som relativ frekvens

Sannolikhetsteori - Sida 4

Definition av sannolikhet

Kolmogorovs axiomsystem

- En funktion P, som till varje händelse A i utfallsrummet Ω , ordnar ett reellt tal P(A), är ett sannolikhetsmått, (P(A) kallas sannolikheten för A), om P har följande egenskaper (sannolikhetsteorins axiomsystem):
 - 1. $0 \le P(A) \le 1$, för alla A
 - 2. $P(\Omega) = 1$
 - 3. $P(A \cup B) = P(A) + P(B)$, om A och B är disjunkta

Klassiska (sats 4)

- Det finns m möjliga utfall med lika sannolikhet. Om händelse A innefattar g av utfallen, så blir sannolikheten för händelsen A
 - P(A) = g/m

Räkneregler för sannolikheter

Sats 1 (Komplementsatsen)

•
$$P(A) = 1 - P(A^C) \leftrightarrow P(A^C) = 1 - P(A)$$

Sats 2 (Additionssatsen, 2 händelser)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Sats 3

■ $P(A \cup B) \le P(A) + P(B)$ (Booles olikhet)

Kombinatorik Multiplikationsprincipen

■ Totalt ska k stycken operationer (moment) utföras. Den första operationen kan utföras på n₁ sätt, den andra på n₂ sätt och den i:te på n_i sätt. Då antalet sätt de k operationerna kan utföras på

$$n_1 \times n_2 \times ... \times n_k$$

Operation 1 n_1 olika sätt

Operation 2 n₂ olika sätt

n_k olika sätt

Operation k

Urval utan/med återläggning och utan/med hänsyn till ordningen

- Dragning <u>med återlägg</u> av n element ur N <u>med hänsyn</u> <u>till ordningen</u> kan ske på Nⁿolika sätt.
- Dragning <u>med återlägg</u> av *n* element ur *N* <u>utan hänsyn</u> <u>till ordningen</u> kan ske på $\binom{N+n-1}{n}$ olika sätt.
- Dragning <u>utan återlägg</u> av n element ur N <u>med hänsyn</u> <u>till ordningen</u> kan ske på $N(N-1)....(N-n+1) = N_{(n)}$ olika sätt. (Permutationer)
- Dragning <u>utan återlägg</u> av *n* element ur *N* <u>utan hänsyn</u> <u>till ordningen</u> kan ske på $\binom{N}{n}$ sätt. (*Kombinationer*)

Betingad sannolikhet

Definition:

Med den betingade sannolikheten P(A|B) menas sannolikheten för händelsen A givet att händelsen B har inträffat:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

definitionen kan skrivas om som

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

Betingad sannolikhet

Satsen om total sannolikhet och Bayes sats (sats 5 & 6)

Om händelserna H_1, H_2, \dots, H_n är parvis oförenliga och

tillsammans fyller hela \varOmega

$$\operatorname{dvs} H_i \cap H_j = \Phi \operatorname{och} \bigcup_{i=1}^n H_i = \Omega$$

då gäller för varje händelse A att

$$P(A) = \sum_{i=1}^{n} P(H_i)P(A|H_i) \text{ (total sannolikhet)}$$

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{\sum_{j=1}^{n} P(H_j)P(A|H_j)}$$
 (Bayes sats)

Oberoende händelser

Definition

Två händelser är oberoende av varandra om

$$P(A \cap B) = P(A)P(B)$$

Exempel på oberoende händelser: flera kast med en tärning. Om B har inträffat påverkar detta inte sannolikheten för att A ska inträffa.

Om A och B är oberoende gäller

$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

OBS!! Förväxla inte oberoende och disjunkta händelser!!

Sannolikhet oberoende upprepade försök

 Ett försök upprepas n oberoende gånger. A är en händelse som inträffar med sannolikheten p i ett försök.
 Sannolikheten att händelsen A inträffar k gånger under de n försöken är

P(A inträffar k gånger) = $\binom{n}{k} p^k (1-p)^{n-k}$

$$P(A) = p$$

$$P(A) = p$$

$$A$$

$$A$$

$$A$$

n A

P(A) = p

A inträffar k gånger vid de n försöken

Stokastiska variabler i en dimension

Definition ("mjuka varianten")

• Utfallet i ett slumpmässigt försök i form av ett reellt tal, betraktat <u>innan</u> försöket utförts, kallas för *stokastisk variabel* (ofta betecknad X, Y, Z osv). Resultatet sedan försöket utförts kallas *observerat värde* på en stokastiska variabeln (ofta betecknat x, y, z).

Definition (matematisk)

• En *stokastisk variabel*, X, är en reellvärd funktion definierad på ett utfallsrum (Ω) . $X: \Omega \to \mathbb{R}$

Det finns två typer av stokastiska variabler

- En *diskret* stokastisk variabel kan anta ett uppräkningsbart antal värden.
 - kan vara oändligt många

Samtliga möjliga utfall (utfallsrummet) för någon diskret stokastisk variabel.

- En *kontinuerlig* stokastisk variabel kan anta alla värden i ett intervall.
 - alla kontinuerliga utfallsrum är oändliga

Sannolikhetsfördelning,

sannolikhets- och fördelningsfunktion

Låt X vara en diskret stokastisk variabel som antar värdena:

$$x_1 < x_2 < \dots < x_k < \dots$$

Definitioner

• Med sannolikhetsfunktionen (frekvensfunktionen) till X, $p(x_k)$, menas

$$p(x_k) = P(X = x_k)$$

• Med fördelningsfunktionen till X, $F(x_k)$, menas

$$F(xk) = P(X \le x_k) = \sum_{i=1}^{k} P(X = x_k)$$

Det gäller också att: $P(X=x_k) = F(x_k) - F(x_{k-1})$

Likformig fördelning

 Det finns N stycken lika sannolika utfall av ett slumpmässigt försök, slumpvariabeln X betecknar utfallets ordningsnummer. X blir då likformigt fördelad

$$P(X=k) = 1/N, k=1,2,3,4,5,...,N$$

Ex: Kasta en symmetrisk tärning en gång.

Låt X = antal prickar, $\Omega = \{1,2,3,4,5,6\}$ och antag att alla utfall är lika sannolika.

Då blir X likformigt fördelad över Ω .

$$X \in U(N)$$

Hypergeometrisk fördelning

En mängd innehåller totalt N element, av vilka Np är av speciellt slag (andelen speciella är p). Välj slumpmässigt, <u>utan återlägg-ning</u>, ett urval av n element. Slumpvariabeln *X betecknar antalet speciella element i urvalet. X* blir då *hypergeometriskt fördelad*.

$$P(X = x) = \frac{\binom{Np}{x} \binom{N - Np}{n - x}}{\binom{N}{n}}$$

 $x \ddot{a}r \ ett \ heltal \ s \mathring{a}dant \ att \ 0 \le x \le Np$ och $0 \le n - x \le N - Np$

$$X \in Hyp(N, n, p)$$

Geometrisk fördelning eller ffg-fördelning

Ett försök består av n upprepningar av oberoende delförsök, (ex: dragning med återlägg). A är en speciell händelse som inträffar med sannolikheten p i varje delförsök. Slumpvariabeln X betecknar antalet genomförda delförsök tills händelsen A inträffar i för första gången,

X blir då geometriskt fördelad (eller ffg-fördelad.)

$$P(X = x) = p(1-p)^{x-1}, x = 1,2,3,4,...$$

$$X \in Geo(p)$$

Binomialfördelning

Ett försök består av *n* upprepningar av oberoende delförsök, (ex: dragning med återlägg). *A* är en speciell händelse som inträffar med samma sannolikhet, *p*, i varje delförsök. Slumpvariabeln *X betecknar antalet gånger händelsen A inträffar i hela försöket. X* blir då *binomialfördelad*

$$P(X = x) = {n \choose x} p^{x} (1-p)^{n-x}$$
 $x = 0, 1, 2, ..., n$

A inträffar x gånger vid de n försöken

$$X \in Bin(n,p)$$

Poissonfördelning

Betrakta händelser A som slumpmässig och oberoende av varandra inträffar i tiden. Slumpvariabeln X betecknar antalet gånger A inträffar under ett tidsintervall av fix längd. X blir då poissonfördelad

$$P(X = x) = e^{-\mu} \frac{\mu^x}{x!}$$
 $x = 0, 1, ...$

 μ – kallas intensitetsparameter μ anger genomsnittligt antal händelser A under tiden t

$$X \in Po(\mu)$$

Kontinuerliga stokastiska variabler

- En kontinuerlig stokastisk variabel kan anta alla värden i ett intervall. Tex: $\Omega = R$, eller $\Omega = \{x : 0 < x < 1\}$
- Utfallen ligger o\u00e4ndligt t\u00e4tt vilket medf\u00f6r att inget utfall kan antas med positiv sannolikhet.
- Fördelningsfunktionen får följande utseende $F_X(x) = \int_{-\infty}^{\lambda} f_X(t) dt^{(*)}$

Definition

• Om det finns en funktion f(x) så att (*) gäller sägs X vara en kontinuerlig stokastisk variabel och f(x) kallas täthetsfunktion (frekvensfunktion).

Frekvens- och fördelningsfunktion

• Frekvensfunktionen, f(x) (täthetsfunktionen)

Fördelningsfunktionen

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

f(x) kan ses som fördelning av sannolikhetsmassa.

Sannolikheten för utfall inom x och $x+\Delta x$ är ungefär $f(x)\Delta x$

Täthets-(Frekvens-), f(x) och fördelningsfunktion, F(x)

$$f(x) \ge 0 \text{ och } \int_{-\infty}^{\infty} f(x)dt = 1$$

$$0 \le P(A) \le 1$$

$$P(\Omega) = 1$$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt \text{ och } F'(x) = f(x)$$

$$P(a < X \le b) = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$P(X > x) = \int_{x}^{\infty} f(t)dt = 1 - F(x)$$

$$P(X = 0) = 0$$
, för alla x

Likformig fördelning

• Om frekvensfunktionen för en s.v. X är konstant i ett intervall, och noll utanför sägs X vara likformigtfördelad över intervallet

$$f_X(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & annars \end{cases}$$

$$f_X(x) = \begin{cases} 1/(b-a), a < x < b \\ 0, annars \end{cases} \quad F_X(x) = \begin{cases} 0 & x \le a \\ \frac{(x-a)}{(b-a)} & a < x < b \\ 1 & x \ge b \end{cases}$$

$$X \in U(a,b)$$

Exponentialfördelning

Om en s.v. X har täthetsfunktion enligt nedan sägs X vara $Exponential fördelad \lambda$, $\lambda > 0$.

$$f_{X}(x) = \begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & x \ge 0 \end{cases} \qquad F_{X}(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

$$X \in Exp(\lambda)$$

$$\lambda = 1$$

$$\lambda = 1$$

$$\lambda = 1$$

Radioaktivt sönderfall är typiskt exponentialfördelat Livslängder på elektronikkomponenter är ofta exponentialfördelade

Weibullfördelningen

• En s.v. sägs vara Weibullfördelad om den har frekvens- och fördelningsfunktion enligt nedan $(c > 0 \& \lambda > 0)$

Weibullfördelningen är vanlig inom tillförlitlighetsteori

Gammafördelning

• En s.v. X sägs vara gammafördelad om den har täthetsfunktion enligt nedan ($c > 0 & \lambda > 0$)

Normalfördelningen

■ En s.v. *X* sägs vara normalfördelad om den har täthetsfunktion Den bestäms av två parametrar:

Lägesparametern μ samt spridningsparametern σ

$$X \in N(\mu, \sigma)$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}$$

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-(t-\mu)^{2}/(2\sigma^{2})} dt$$

Normalfördelningen

 \square För normalfördelningen är F(x) bara möjlig att beräkna med numeriska metoder (den går inte att lösa algebraiskt)

Därför finns tabeller för N(0,1), vilken har fördelningsfunktionen

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$$

Om
$$X \in N(\mu, \sigma)$$
 så gäller att $P(X \le x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$

$$\frac{X-\mu}{\sigma} \in N(0,1)$$

$$\Phi(-x) = 1 - \Phi(x)$$

Stokastiska variabler i två dimensioner

Definition

□ En *stokastisk variabel*, (X,Y), är en reellvärd funktion definierad på ett utfallsrum (Ω) . (X,Y): $\Omega \rightarrow \mathcal{R}$

Definition

□ Funktionen

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

kallas fördelningsfunktionen för (X, Y).

 \square Om (X, Y) båda antar ett uppräkneligt antal värden sägs (X, Y) vara *diskret*.

Definition

Med den *simultana sannolikhetsfunktionen* för en diskret tvådimensionell stokastisk variabel (*X*, *Y*) menas

$$p_{X,Y}(j,k) = P(X = j, Y = k)$$
 , $j \in \Omega_X, k \in \Omega_Y$

Den marginella sannolikhetsfuktionen för X fås ur

$$p_X(j) = \sum_{k=0}^{\infty} p_{X,Y}(j,k)$$

Dessutom gäller

$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} p_{X,Y}(x,y) = 1$$