OPTIMAL BOUNDS FOR OPEN ADDRESSING WITHOUT REORDERING

MARTIN FARACH-COLTON , ANDREW KRAPIVIN , WILLIAM KUSZMAUL

Presented by - Amit Roy

March 27, 2025

Hash Table

- Support dictionary operations INSERT, SEARCH and DELETE
- Uses a hash function $h:[u] \to [m]$ to index keys

Collision Resolutions

- Chaining Each slot in the table is a pointer to a linked list which stores the keys
- Open Addressing All elements occupy the hash table itself

Chaining vs Open-Addressing

Figure: Chaining

Figure: Open Addressing

Definitions

Probe Complexity

- The number of probes that an algorithm has to make to insert/search the key is called the probe complexity of the key.
- For example, for a key k, if an algorithm probes $h_1(k), h_2(k), \ldots, h_t(k)$ to find an empty slot to insert the key, then the probe complexity of k is t.

Uniform Probing

For a given key k, the probe sequence - $h_1(k), h_2(k), \ldots, h_t(k)$ is a random permutation of $\{1, 2, \ldots, n\}$

Greedy and Non-greedy Open-Addressing

- **Greedy**: Any algorithm in which each element uses the first unoccupied position in its probe sequence.
- Non-greedy: May probe further before inserting the element in the hash table

Previous Work

Worst Case Expected

► Yao (1985): $\delta^{-1} + o(1)$ conjectured optimal

Amortized Expected

- ► Ullman (1972): conjectured optimal
- ► Yao (1985): proof

Results

- Greedy
 - ▶ Amortized expected probe complexity $\mathcal{O}(\log \delta^{-1})$
 - ▶ Worst-case expected probe complexity $\mathcal{O}(\log^2 \delta^{-1})$
 - ★ Yao's conjecture of bound $\theta(\delta^{-1})$ proven false.
 - ▶ High-probability worst-case probe complexity $\mathcal{O}(\log^2 \delta^{-1} + \log \log n)$
 - Matching lower bound

- Non-Greedy
 - Amortized probe complexity O(1)
 - Worst-case expected probe complexity $\mathcal{O}(\log \delta^{-1})$
 - ★ Matching lower bound

Theorem - Greedy Open-Addressing

Let $n \in \mathbb{N}$ and $\delta \in (0,1)$ be parameters such that $\delta > \mathcal{O}(1/n^{o(1)})$. There exists a **greedy** open-addressing strategy that supports $n - \lfloor \delta n \rfloor$ insertions that has

- worst-case expected probe complexity (and insertion time) $\mathcal{O}(\log^2 \delta^{-1})$
- worst-case probe complexity over all insertions $\mathcal{O}(\log^2 \delta^{-1} + \log \log n)$, with prob 1 1/poly(n),
- amortized expected probe complexity $\mathcal{O}(\log \delta^{-1})$

Funnel Hashing

Funnel Hashing

Algorithm 1: Insert key k into the hash table

```
for i=1 to \alpha do

| if Insertion\_Attempt(i,k) is successful then
| return;
| end
end
Insert into special array A_{\alpha+1}
```

Funnel Hashing

```
Algorithm 2: Insertion Attempt of key k in A_i

Hash k to obtain a subarray index j \in \left[\frac{|A_i|}{\beta}\right];

for each slot in A_{i,j} do

| if slot is empty then
| Insert key and return success;
| end
end
Return fail;
```

Analysis

- ▶ $k = O(\log \delta^{-1})$ levels
- ▶ Level cutoff $c = O(\log \delta^{-1})$
- ► Worst case (expected) probe complexity: $ck = O(\log^2 \delta^{-1})$

Algorithm for special array $A_{\alpha+1}$

- **①** Split $A_{\alpha+1}$ into two subarrays B and C of equal size.
- ② First, try to insert in B. Upon failure insert into C (insertion to C is guaranteed to succeed with high probability)
- $oldsymbol{0}$ B is implemented as a uniform probing table, and we give up searching through B after log log n attempts.
- ullet C is implemented as a two-choice table with buckets of size $2 \log \log n$.

Proof

Lemma 1

For a given $i \in \alpha$, we have with probability $1 - \frac{1}{n^{\omega(1)}}$ that, after $2|A_i|$ insertion attempts have been made in A_i , fewer than $\frac{\delta}{64}|A_i|$ slots in A_i remain unfilled.

Lemma 2

The number of keys inserted into $A_{\alpha+1}$ is fewer than $\frac{\delta}{8}n$, with probability $1-\frac{1}{n^{\omega(1)}}$.

Probe Complexity of $A_{\alpha+1}$

Complexity of inserting into B -

- **1** B has size $A_{\alpha+1}/2 \ge \delta n/4$, so load factor never exceeds 1/2.
- ② Each insertion makes $\log \log n$, each of which has success probability of 1/2.
- lacksquare Thus, expected number of probles is $\mathcal{O}(1)$
- **9** Probability that insertion fails after all attempts is $1/2^{\log\log n} \le 1/\log n$.

Proof - Insertion into C of $A_{\alpha+1}$

Lemma: Power of two choices

If m balls are placed into n bins by choosing two bins uniformly at random for each ball and placing the ball into the emptier of the two bins, then the maximum load of any bin is $m/n + \log\log n + \mathcal{O}(1)$ with high probability in n.

Probe Complexity of $A_{\alpha+1}$

Complexity of inserting into C -

- Recall, C is implemented as a two choice table with buckets of size 2 log log n
- From Lemma we have that, with high probability, no bucket in C overflows.
- **3** Expected time of each insertion in C is at most o(1).

Analysis

- ▶ $k = O(\log \delta^{-1})$ levels
- ▶ Level cutoff $c = O(\log \delta^{-1})$
- ► Worst case (expected) probe complexity: $ck = O(\log^2 \delta^{-1})$

Proof

- ullet Total lpha arrays , and cutoff probes eta in each A_i
- Probe complexity of each insertion $\beta \alpha + f(A_{\alpha+1})$
- Assume $\delta \leq \frac{1}{8}$. Let $\alpha = \lceil 4\log\delta^{-1} + 10 \rceil$ and $\beta = \lceil 2\log\delta^{-1} \rceil$
- ullet Probe Complexity $\mathcal{O}(\log^2\delta^{-1}) + f(A_{lpha+1})$
- Hence, $\mathcal{O}(\log^2 \delta^{-1})$ in worst-case expected probe complexity and a high-probability worst-case probe complexity of $\mathcal{O}(\log^2 \delta^{-1} + \log\log n)$.

Other Results

1. Elastic Hashing

Theorem - Non-greedy Open-Addressing

Let $n\in\mathbb{N}$ and $\delta\in(0,1)$ be parameters such that $\delta>\mathcal{O}(1/n)$. There exists an open-addressing hash table that supports $n-\lfloor\delta n\rfloor$ insertions in an array of size n, that does not reorder items after they are inserted, and that offers -

- amortized expected probe complexity O(1)
- ullet worst-case expected probe complexity $\mathcal{O}(\log\delta^{-1})$, and
- worst-case expected insertion time $\mathcal{O}(\log \delta^{-1})$.

Other Results

2. Lower Bounds

Theorem - Lower Bound for Greedy Algorithms

Let $n \in \mathbb{N}$ and $\delta \in (0,1)$ be parameters such that δ is an inverse power of two. Consider any greedy open-addressed hash table with capacity n. If $(1-\delta)n$ elements are inserted into the hash table, then the final insertion must take expected time $\Omega(\log^2\delta^{-1})$.

More Proofs

Lemma 2

The number of keys inserted into $A_{\alpha+1}$ is fewer than $\frac{\delta}{8}n$, with probability $1-\frac{1}{n^{\omega(1)}}$.

- From **Lemma 1**, every *fully-explored* A_i is at least $(1 \delta/64)$ full, where *fully-explored* means at least $2|A_i|$ insertion attempts made to A_i .
- Let $\lambda \in [\alpha]$ be largest index s.t. A_{λ} receives fewer than $2|A_{\lambda}|$ insertion attempts.
- Case 1: $\lambda \le \alpha 10$
 - ▶ For $i > \lambda$, A_i contains at least $|A_i|(1 \delta/64)$ keys.
 - ▶ Total keys in $i \ge \lambda$: $(1 \delta/64) \sum_{i=\lambda+1}^{\alpha} |A_i| \ge 2.5(1 \delta/64)|A_{\lambda}|$
 - ▶ This contradicts that A_{λ} received at most $2|A_{\lambda}|$ insertion attempts.

Lemma 2 Proof Contd

- Case 2 : $\alpha 10 < \lambda \le \alpha$
 - Fewer than $A_{\alpha-10} < n\delta/8$ keys are attempted to be inserted in A_i with $i \ge \lambda$. Hence, we are good.
- Case 3: $\lambda = null$
 - ▶ Each A_i has at most $\delta |A_i|/64$ empty slots.
 - ► Total empty slots at the end of insertion : $|A_{\alpha+1}| + \sum_{i=1}^{\alpha} \frac{\delta |A_i|}{64} < n\delta$
 - ▶ This contradicts that after $n(1 \delta)$ insertions, there are at least $n\delta$ slots empty.

Proof of Lemma 1

Lemma 1

For a given $i \in \alpha$, we have with probability $1 - \frac{1}{n^{\omega(1)}}$ that, after $2|A_i|$ insertion attempts have been made in A_i , fewer than $\frac{\delta}{64}|A_i|$ slots in A_i remain unfilled.

THOUGHTS AND QUESTIONS?

THANKS