Chapitre

Séries numériques

3. Séries et sommes partielles

3.1. Vocabulaire

Définition 1.1

On appelle érie de terme général u_k la suite S_n définie par $S_n = \sum_{k=0} u_k$. On appelle S_n la somme partielle de la série.

π Définition 1.2

On dit que la série est convergente si sa somme partielle est une suite convergente. Dans ce cas, on appelle somme de la série la limite de S_n .

Convergence

La convergence d'une série ne dépend pas de ses premiers termes. Si on prend 2 séries qui différent d'un nombre fini de terme, elles auront la même nature. Autrement dit, àa convergen si et seulement si cela converge à partir d'un certain rang.

Si une série ne converge pas, elle est divergente.

Définition 1.3 : reste

On note le reste d'une série convergente $R_n=\sum_{k=n+1}^{+\infty}$. On a $S=S_n+R_n$. C'est ce qui manque pour que S_n vale la limite de la série, S.

Proposition 1.1

Si une série est convergente, alors $\lim_{+\infty}\,R_n=0$

Exemple

Une série géométrique est convergente si |q| < 1.

Série harmonique

On a $\frac{1}{k}\geq\frac{1}{t}$ si $t\in[k,k+1]$. Donc $\frac{1}{k}\geq\int_{k}^{k+1}\frac{1}{t}$ d'où $\sum_{k=1}^{n}\frac{1}{k}\geq\sum_{k=1}^{n}\int_{k}^{k+1}\frac{1}{t}=\int_{1}^{n+1}=\frac{1}{t}$ par la relation de Chasles. D'où $H_{n}=\sum_{k=1}^{n}\frac{1}{k}\geq\ln(n+1)\to+\infty$.

3.1. Premières propriétés

Proposition 1.2 : Somme telescopique

C'est une série de la forme $\sum_{k\geq 0}(a_{k+1}-a_k)$. Si la limite l de a_k existe, la limite vaut $l-a_0$.

Exemple

$$S_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)} = \sum_{k=0}^n (\frac{1}{k+1} - \frac{1}{k+2}) = 1 - \frac{1}{n+2} \to 1$$

Proposition 1.3

Si $\sum u_k$ est convergent, alors $U_k \to$.

Convergence

Une série dont le terme général ne tend pas vers o ne peut converger et est dite grossièrement divergente. La réciproque est fausse (série harmonique).

3. Séries à termes positifs

Tous les termes de la suite sont positifs. La suite est donc croissante.

Proposition 2.1

Une série à terme positif est convergente si et seulement si la suite est majorée.

π

Théorème 2.1: Théorème de comparaison

Si $u_k \leq v_k$, alors

- Si $\sum v_k$ converge, $\sum u_k$ converge
- · Si $\sum u_k$ diverge, $\sum v_k$ diverge

Preuve 2.1

Si $u_n \leq v_n$ à partir de n_0 , on a $\forall n \geq n_0$: $\sum_{k=0}^n u_k = \sum_{k=0}^{n_0-1} u_k + \sum_{k=n_0}^n u_k \leq \sum_{k=0}^{n_0-1} u_k + \sum_{k=n_0}^{+\infty} v_k$. La suite des des sommes partielles est majorée donc CV.

De la même façon, on a $\sum_{k=0}^n V_l \ge \sum_{k=0}^n U_k$ avec $\sum_{k=0}^n U_k \to +\infty$, donc $\sum_{k=0}^n v_k \to +\infty$

Convergence de puissance

Pour $\alpha \geq 2, \sum \frac{1}{k^{\alpha}}$ converge. À l'inverse, $\sum \frac{1}{k}$, $\sum \frac{\ln(k)}{k}$ et $\sum \frac{1}{\sqrt{k}}$ divergent

π

Théorème 2.2: Théorème des équivalents

Si $u_k \sim v_k$, alors $\sum u_k$ et $\sum v_k$ sont de même nature.

血

Preuve 2.2

On a alors $\frac{u_k}{v_k} o 1$. Il existe donc un rang k_0 à partir duquel on a $|\frac{u_k}{v_k}| \le 1/2$. On a donc pour $k \ge k_0: -1/2 \le \frac{u_k}{v_k} - 1 \le 1/2$ puis $\frac{1}{2}v_k \le u_k \le \frac{3}{2}v_k$.

Si $\sum v_k$ CV, alors par linéarité $\frac{3}{2}v_k$ converge et $\sum u_k$ converge par comparaison.

Si $\sum v_k$ DV, alors par linéarité $\frac{1}{2}v_k$ diverge et $\sum u_k$ diverge par comparaison.

$\widehat{\pi}$

Théorème 2.3 : Critère de Riemann

Si a>1, alors la série $\sum_{k=1}^n \frac{1}{k^a}$ converge. Si $0< a\leq 1$, elle diverge.

Nature

Ne pas confondre la nature de la suite avec la nature de la série

Û

Preuve 2.3

Soit $t\in[k,k+1]$. On a $k\le t\le k+1$ et $\frac{1}{(k+1)^\alpha}\le\frac{1}{k^\alpha}\le\frac{1}{k^\alpha}$ puis $\frac{1}{(k+1)^\alpha}\le\int_k^{k+1}\frac{1}{k^\alpha}\le\frac{1}{k^\alpha}$

Doù, on somme pour k allant de 1 à n. : $\sum_{k=1}^{n} \frac{1}{(k+1)^{\alpha}} \leq \frac{\mathrm{d}t}{t^{-\alpha}} \leq \sum_{k=1}^{n} \frac{1}{k^{\alpha}}$. De plus, $\sum_{k=1}^{n} \frac{1}{(k+1)^{\alpha}} = \sum_{k=1}^{n} \frac{1}{k^{\alpha}} + \frac{1}{(n+1)^{\alpha}} - 1$. Doù $\sum_{k=1}^{n} \frac{1}{k^{\alpha}} + \frac{1}{(n+1)^{\alpha}} - 1 \leq \int_{1}^{n+1} \frac{\mathrm{d}t}{t^{\alpha}}$.

Or,
$$\int_1^{n+1} \frac{1}{t^{\alpha}} \mathrm{d}t = \ln(n+1)ou \frac{(n+1)^{\alpha+1}}{-\alpha+1} - \frac{1}{-\alpha+1}$$

Si lpha > 1, la somme partielle est majorée, donc convergente. Dans

le cas contraire, on minore par un quelque chose qui diverge vers l'infini.

Soit la série $\sum_{k=2}^n \frac{1}{k^a(\ln(k))^b}$. Si 0 < a < 1, elle diverge, si a > 1 elle converge et si a = 1, avec b > 1, elle converge, avec $b \le 1$, elle diverge.

Preuve 2.4 : Critère de D'Alembert

Pour l<1

On applique la définition avec $\varepsilon=\frac{1-l}{2}$. Il existe un rang n_0 à partir duquel $|\frac{u_{n+1}}{u_n}-l|\leq \frac{1-l}{2}$ et $\frac{1-l}{2}\leq \frac{u_{n+1}}{u_n}-l\leq \frac{1-l}{2}$, d'où $\frac{u_{n+1}}{u_n}\leq \frac{1+l}{2}<1$. On a montré qu'il existe a et n_0 tel qye $u_{n+1}\leq au_n$. On a $\forall n\geq n_0, u_n\leq u_{n_0}a^{n-n_0}$ par récurrence.

Initialisation : à n_0 : $u_{n_0} \leq u_{n_0}$.

Hérédité : Si $U_n \leq U_{n_0} \times a^{n-n_0}$, alors $un+1 \leq aU_n \leq a^{n+1-n_0} \times U_{n_0}$.

Or, $\sum_{n=1} u_{n_0} imes a^{n-n_0}$ est convergente car série géométrique de raison $a=\frac{1+l}{2}<1$. Donc par comparaison, $\sum U_n$ converge.

Même raisonnement si l>1. En effet $U_{n+1} \geq \frac{1+l}{2}U_n$.

Le théorème se généralise avec l'hypothèse $|\frac{u_{n+1}}{u_n}| \leq q < 1$.

Exemple : $u_n=\frac{1}{n^{100}}$ et $\frac{u_{n+1}}{u_n}\to 1$. Le critère de D'Alembret ne permet pas de conclure.

Théorème 2.4 : Règle des racines de Cauchy

Soient une série à termes strictement positifs. Si il existe, on note $l = \lim_{n \to \infty} \sqrt[n]{u_n}$. Si l < 1, la série converge, si l > 1, la série diverge.

Théorème 2.5 : Comparaison par critère de Riemann

Si $n^a U_n \to 0$ avec a > 1, la série est convergente

MATHÉMATIQUES - ANALYSE 2 & Séries numériques , Séries à termes positifs

Si $n^a U_n
ightarrow \infty$ avec a < 1, la série converge. ×