Carrier Zone-Mizer Modular Multizone Heating/Cooling Units

Electric Cooling 180,000 to 360,000 Btuh Electric Heating 180,000 to 540,000 Btuh Hot Water/Glycol Heating 160,000 to 800,000 Btuh Gas Heating 480,000 to 720,000 Btuh

Roofton installations for

- **Schools**
- Office buildings
- Commercial buildings

No hot decks. . .no cold decks. . . no zoning dampers. . .no energy waste!

It's what you **don't** get with Carrier's Zone-Mizer Modular Multizone unit that sets it apart from all the others.

You don't get hot decks or cold decks because the Carrier design gives each zone module its own cooling coil and heating section. Each zone module operates independently. One unit can heat, cool, dehumidify, reheat, and ventilate up to 12 different zones simultaneously. All this means real energy savings. . .there's no wasteful duplication of effort as in hot deck/cold deck units. For still more energy savings, Zone-Mizer provides up to 3 steps of electric heat or gas heat with an intermittent pilot ignition in every zone.

Something else you don't get. . . zoning dampers. Since the Carrier design doesn't have hot and cold decks, it doesn't need zoning dampers. By eliminating them from the picture, you eliminate the adjustments, service, and operating problems that go along with zoning dampers.

Five sizes, offering capacities to 37 tons, provide equipment flexibility and economy. One large unit may serve where 2 units were required before; or units of different sizes may be mix/matched to deliver the heating/cooling capacity required in a specific application. And the choice of gas, electric or hot water/glycol coils allows you to select a unit that can deliver maximum operating economy and convenience by taking advantage of an already available heating plant or favorable area fuel rates.

When specifying a multizone unit, choose the one that makes a point of doing something about installation problems. . .the Carrier Zone-Mizer Modular Multizone. It's a sturdy, one-piece unit — factory-wired, piped, and charged. It arrives ready to be set in place on the specially designed roof curb. Make the power and control connections and that's it. Initial adjustments are trouble free — you won't even need a factory engineer at start-up. The total package carries the UL label or is design certified by AGA.

Zone-Mizer™ Modular Multizone standard features

- I Etched solid copper circuit panels have interchangeable plug-in relays to minimize parts stocking Circuit breakers that may be used as disconnect switches, terminal boards to simplify installation of accessories, a control circuit shutoff switch and 24-volt controls are all standard.
- Motorized outdoor air inlet damper — A simple rheostat adjustment on the unit (or on the optional remote control panel) sets the damper to control the amount of outdoor air admitted.

- 3 Fused 115-volt convenience outlet in the control box provides power at the unit for work lights and small power tools.
- 4 Motormaster® solid-state condenser fan speed control permits year-round operation of refrigeration system down to -20 F ambient.

- 5 **Dependable cooling** Each serviceable hermetic compressor system has cylinder unloaders for capacity control and electric power savings. Crankcase heaters, accumulators, filter driers and low-ambient starting controls are also standard.
- Time Guard® electrical circuit prevents rapid cycling of the compressor if occupant tampers with the thermostat. Compressor cannot short-cycle on a safety device, such as the low-pressure switch, should someone forget to clean the air filters.

Capacity control permits a wide operating range. During light loads the compressor automatically unloads to reduce operating costs and maintain steady compressor operation. When the load drops below the minimum unloader stage, the hot gas bypass control provides continuous cooling operation.

Built-in safety controls prevent damage to unit components. Included are high- and low-pressure switches, overtemperature limit switches and overload protection for all motors.

6 Polyurethane foam sandwich access panels are of Weather Armor galvanneal steel. Their thermal resistance prevents sweating at outdoor conditions up to 77 F dew point And they are strong enough to support a 250-pound man.

"Rugged extruded aluminum frames and protective grilles provide strength and good looks. Unit will not sag during rigging.

Low silhouette — The cabinet has no vents or hoods to break up the clean appearance. The curb-mounted unit seldom requires a parapet to hide it from street level view.

- Humidry® coil This separate cooling coil dehumidifies the outdoor air before it is mixed with the return air to prevent high indoor relative humidities in humid weather and during partial load operation.
- Large filter area Over 41 square feet of standard filter area is factory supplied. Filter tracks will accept one-in. or 2-in., high- or low-velocity, permanent or throwaway, standard or high-efficiency filters.

10 Electric heater section (50ME)

— Each zone module has its own 2- or 3-stage electric heater assembly or hot water/glycol heating coil. Electric heaters have 24-volt relays and 115-volt contactors. Each heating element has circuit breakers and automatic thermal reset. Each leg has its own heat limiter (fusible link).

Each hot water/glycol heating coil has its own solenoid operated shutoff valve and balancing valve. All heating coils are prepiped to supply and return manifolds which also include a bleed valve.

Gas heating (48MA) — Each zone module has stainless steel burners, Porcelon™ heat exchangers and its own redundant gas valve. Natural gas units also have a regulator for each gas valve. Intermittent pilot ignition and forced draft combustion are standard on all units.

Zone-Mizer™ Modular Multizone concept. How it works. . .

Outdoor air entering the unit thru the side louvers is filtered and then cooled and dehumidified by the Humidry® cooling coil when mechanical cooling is operating. Return air entering the unit from below is mixed with this conditioned air The mixture is then filtered. After passing thru the indoor air fans, the air is discharged into the individual zone modules. The air passing thru each zone module is either cooled or

heated in response to a signal from the thermostat controlling that module. This treated air then continues to the individual zone duct systems, thus providing a constant air pattern and volume on each cooling coil and heating assembly

Each zone module cooling coil has its own solenoid valve to admit refrigerant when needed. When 2 or more mod-

ules are grouped for a larger zone requirement, 2-stage cooling can be provided. . .and controlled by one simple 24-volt mercury bulb thermostat

This condenser end view of unit (034 and 040) shows the 3 outdoor air fans and the side condenser air inlet grilles. The 2 end panels may be easily removed for control box and compressor accessibility.

SPLITS AIRSTREAM INTO ZONES

ADDS SEPARATE OR SEPARATE TO INTERIOR ZONES

COOLING HEATING TO INTERIOR ZONES

and why it's best.

Low operating costs

On partial load, the Carrier compressors unload cylinders to match compressor output to cooling needed with up to 6 steps of reduction. To maintain balanced operation, the hot gas bypass system diverts hot refrigerant to the outdoor air cooling coil as needed.

There is no mixing of warm and cold airstreams in the modular design. Just that amount of energy required to heat or cool a given zone is used — and no more.

Heating is available 3 ways. . . Electric heating, provided by 2- or 3-stage electric heaters in each module, gives up to 36 steps of capacity, again using the minimum amount of energy.

Hot water/glycol heat may be specified to utilize an already available heating plant.

Gas heating models utilize intermittent pilot ignition in each module designed to consume a minimum amount of energy.

Low-temperature operating capability. . . You can use the economizer cycle with outdoor air for "free cooling," as with competing units. However, with Carrier's head pressure controlled refrigeration system, you can often save money by using refrigeration to cool the space instead. So-called "free cooling" is expensive if a large quantity of cool outdoor air must be heated for the zones which do not require cooling. The Carrier refrigeration system can operate at outdoor temperatures down to -20 F. The Carrier modular design, therefore, is not dependent on an economizer cycle for cooling at low outdoor temperatures.

Superior humidity control

One of the major concerns in multizone applications has been the control of humidity, especially in schools where moisture comes from large groups of people as well as from outdoor ventilation air. The basic Carrier design eliminates this problem. During mechanical cooling, all outdoor air that passes thru the Humidry® outdoor air cooling coil is dehumidified whenever any zones require cooling. The air is then further dehumidified when it passes thru the zone module cooling coil.

If further dehumidification should be required for any or all zones, reheat can be added easily. A humidistat, installed in the conditioned space to override the thermostat, energizes the cooling coil for that zone.

Ease of service

The Zone-Mizer™ Modular Multizone uses simple, familiar, commercial, thermostatic controls for each module, eliminating the need for factory experts and complex start-up and service procedures. The printed control circuit board has clearly marked terminals for easy connection of standard 2-stage heating and one- or 2-stage cooling thermostats, which are located in each zone.

Identical relays plug into the circuit board. Modules can be easily combined to serve larger spaces by placing factory-supplied jumper wires on the premarked terminals.

The entire control system is neatly organized in one location. For excellent accessibility, all circuit breakers project outside so that any motor can be disconnected without opening the high-voltage box. This often eliminates the need for separate field-supplied disconnects.

The handsome Carrier mercury bulb type thermostats control heating and cooling modes. They are available with a locking device which requires an Allen wrench for access, or you can allow the zone occupant to set his own temperature.

Access to the Zone-Mizer Modular Multizone is thru removable side panels held in place with simple fasteners. Top panels may also be removed for complete access to unit interior.

In short, the local installing dealer or contractor can handle all service and will have available, from the nearest Carrier distributor, any parts required.

Accessories and factory-installed options

Hot water/glycol heating (50ME) — Often, such as when renovating existing buildings, a heating plant is available. For these applications, Carrier's hot water/glycol heating unit may be ideally suited Each zone module has its own high-capacity heating coil All controls, solenoid operated shutoff valves and balancing valves are included. No internal piping or wiring required.

Heaters are designed for and intended to be operated with a glycol/water solution of 20% minimum glycol concentration for freeze-up protection. (Factory-Installed Option).

Roof curb supports unit and frames roof openings to provide a strong, watertight interface between unit and roof. Galvanized, 14-gage steel, 2-piece construction minimizes installation time and costs. (Accessory)

Modulating outdoor air control provides year-round ventilation with outdoor air. An outdoor air thermostat locks out compressors to permit "free cooling" with outdoor air. (Factory-Installed Option)

Roll filter package includes 65 ft of 2-in. thick filter media, automatic media advance switch and a motor. The runout switch turns on the filter light in the remote control center to show when the media needs replacing (Factory-Installed Option)

Powered exhaust damper has controls to operate outdoor air fans to

exhaust return air when unit is in "free cooling" mode. (Factory-Installed Option)

Cooling only unit (50ME) — Unit is available with all heating controls but without heater assemblies. Included are 24-volt control circuits and 115-volt power terminals for 2-stage control of steam heating coils field installed in the unit or in the zone ductwork.

Electric heat (50ME) — Each zone module is equipped with its own independent heater assembly. Two- and 3-stage heat is available to provide close air temperature control without wide temperature swings associated with rapid-cycle, full-on, full-off systems.

Three heat-to-cool ratios are available: .75.1, 1.1 and 1.5:1 to match almost any heating load requirement. (Factory-Installed Option)

Zone thermostat (24 volts) provides 2-stage heating and one- or 2-stage cooling for control of individual modules. Matching subbases are available with or without tamperproof switches and automatic changeover. (Accessory)

Remote control panel (24 volts) — This decorative central control for the entire unit has switches for HEAT, COOL, AUTOMATIC CHANGEOVER, OFF and DAY/NIGHT settings; dial to adjust outdoor air damper to rapidly ventilate conditioned spaces. A dirty filter warning light and knockouts for additional warning lights are also provided. (Accessory)

Physical data

31. Art 36. Annualizationomy initial international programs. Ann. Os 4	Son on Administrational control of the control of t	CONTRACTOR OF THE PARTY OF THE	00000000000000000000000000000000000000	200 makestania Joseff Schauser augustania (1888) errore de l'architecture de l'archi	processor and the second secon	TS ATTE, ANY 2006 GREATENESSEE BLOCK CONSTRUCTION SHOULD AND	CAA
UNIT 48MA/50ME	THEORETICAL THE TOTAL THE ANSIGNATURE TRANSPORTED THE TOTAL THE T	016	024	028	03 0	034	040
Zone Modules Nominal Cooling Cap	armound the court beautiful to come beautiful to	15	8 20	10 25	28	30	37
OPERATING WEIGHT Base Unit 48MA Base Unit 50ME (with		3385 2985	3805 3405 506	4075 3665 506	4080 3670 506	4800 4400 630	5700 5250 630
Roof Curb	D 22)	506 28	506 32	43	43	57	66 1
COMPRESSOR No. 1 Type Cylinders. Unload No. 2 Type Cylinders (has no e	ers unloaders)	06DE537 6 2 — — 11	06DE824 6 . 2 06DA824 6 22	Reciprocating Her 06DE537 62 06DA824 6 22		06DE537 6 . 2 06DA537 6 21	06EE250 4 . 1 06EA250 4 31
System Oil Charge (Unloader Settings (p	MA MATTER CONTRACTOR C	E 2000 V A	40 30 30 MILL 201 MINISTER 1	CONTRACTOR OF THE AMERICAN AS CONTRACT TO SERVICE THE	No 1 Only		20000000000000000000000000000000000000
Left Bank	Loads Unloads Loads			710 ± 15 575 ± 25 760 ± 15			75 5 ± 1 5
Right Bank	Unloads	Sagricummane permiterature	100.02.67	62 5 ± 2 5 100,80,60	100,80,60	100,83,67	58 0 ± 2 5 100,75,
Capacity Steps (%)	AM	100,67,33	100,83,67 50,33,17	40,20	40,20 Direct Drive	50,33,17	50,25
OUTDOOR AIR FANS Motor Hp .RpmF	rame (NEMA) No 1 No. 2			1 1075 5	56 (1-phase) 56 (3-phase)		
Nominal Cfm	No 3	16,500	15,000	15,000	15,000	1 1140 E 24,000	66 (3-phase) 23,000
INDOOR AIR FANS NoSize (in.) Cfm (Nom) Motor Hp .Rpm	Std Opt	2 15 x 15 6000 5 1725	2 15 x 15 8000 7-1/2 1725	Centrifuga 2 15 x 15 10,000 10 1725	l; Belt Drive 2 . 15 x 15 10,000 10 1725	315 x 9 12,000 15 1725 20 1725	315 x 9 12,000 15 1725 20 1725
Fan Pulley Outside Diameter Bore (in.) Fan Belt NoSize		10 6 1-3/16 1 3V630	10 6 1-3/16 1 3V630	8 0 1-3/16 2 3V560	8 0 1-3/16 2 3V560	8.0 1-11/16 2 3V630 3 3V670	8 0 1-11/16 2 3V630 3 3V670
Motor Pulley A Outside Diam (in.)	w/Std Mtr	5 3	60	Factory 5 0	Installed 5 0	5.0	5 0 6.0
Bore (in.) Resulting Fan Rpn	w/Opt Mtr n w/Std Mtr w/Opt Mtr	1-1/8 880	1-3/8 995	1-3/8 1095 —	1-3/8 1095	1-5/8 1095 1320	1-5/8 1095 1320
Motor Pulley B	manacionami proteinorenegamigamicanoscopias en v	60	69	Shipped 5 6	With Unit 5 6	5 6	5 6
Outside Diam (in.) Resulting Fan Rpr	w/Opt Mtr	995	1145	1230	1230	6 5 1230 1425	6 5 1230 1425
OUTDOOR AIR COO Face Area (sq ft) Corrugated Fins/in	LING COIL	6 8 13 2	6 8 13 2	6 8 13 2	on Valve, Hot Gas By	10 2	10 2
EVAPORATOR COIL NoFace Area (so Corrugated Fins/	q ft, ea)	82 12 13 3	82 12 13 3	Solenoid Valve and (10 . 2 12 13 3	Capillary Tube for ea 10 . 2 12 13 3	12.201 12.3	12.201 15 3
HEATING SECTION	Several Security Security of the security of t	and approximation to	The second contract of	Furnace Assembly	in Each Zone Modu 0 75 in wg ESP	le	
Rise Range Input (1000 Btuh) Bonnet Cap (1000	Total Each Module Btuh) Total Full Rate	432 54 324 40 5	432 54 324 40 5	540 54 405 40 5	540 54 405 40 5	648 54 486 40 5	648 54 486 40 5
HEATING SECTION Electric Heaters		8 2 or 3	2- or 3-Stage, Nich 8 2 or 3	nrome, Open-Wire R	lesistance Elements	in Each Zone Mod	lule 12 2 or:
NoElements (HEATING SECTION Max Allowable Inle Max Allowable Flo Solution Mixture	(50ME Glycol)		NO THE SECOND OF THE PROPERTY.	One Heating Coll 2 6 20%	in Each Zone Modul 200 F Gpm 5 Glycol	en in consumeration en in constitution e	All new new sames need a see h
Max Allowable Wo Total Internal Volu	me (gallons)	2 61	2 61	3 15	Psig 3 15	3 76	3 76
PRESSURE SWITCH Low-Pressure	Cutout Cut-in			39	± 5 Psig ± 5 Psig		
High-Pressure Cutout Cut-in Indoor Airflow Switch (AFS 1)		400 ± 5 Psig 300 ± 5 Psig					
Factory Setting (Adjustment Ran	(cfm)	War bin on a benderstanding		6000 00-600	NUTY ASSESSMENT NEE AND 16 OUR NE.		9000 10-9000
INDOOR AIR FILTERS Std NoSize (in) High Efficiency (optional) No Size (in)		3	Samo	e but with 36 5% eff	0 x 25 x 2 ficiency (NBS Dust S 2-in media	Spot Test)	
Roll Media (option OUTDOOR AIR FILT No . Size (in)	MARKET MICH. M	•	2 2	O x 25 x 1	access qualities and disks	2 3	2 x 35 x 1
rand treatments restricted within		E processore woman control	Description of John was not not well	MILITARY OF THE SELECT MANAGEMENT AND ASSESSMENT OF THE SELECT MANAGEMENT OF THE SELECT MANAGEME			

Roof curb dimensions (48MA)

Certified dimension drawings available on request:

UNIT				DIM	ENSIONS (ft	-in.)			
48MA	A	В	С	D	E	F	G	Н	1
016,024,028,030	18-21/8	7- 3	11-9	5-61/4	7-2%	1-10%	2-2%	6-03/4	0- 7%
034,040	21-11%	7-11%	14-1%	6-71/16	8-43/16	2- 9%	3-1	6-81/2	0-10%

Base unit dimensions (48MA)

Certified dimension drawings available on request.

UNIT		DIMENSIONS (ft-in.)									
48MA	A	В	С	D	Ε	۶	G	н	1	K	L
016,024, 028,030	7- 2%	3-0%	17-11%	2-21%6	13-51/2	0- 91/16	2-10	7-3%	0-31/8	0-31/4	0-31/8
034,040	7-11		21- 91/16	1 -	13-51/2	0-111/46	3- 45/16	8-6%	0-31/32	0-21%	0-71/4

^{*}Overall height; includes 1 3/4-in for fan guards (48MA034 and 040)

Base unit dimensions (50ME)

Certified dimension drawings available on request.

UNIT				DIMENS	IONS (ft-in	.)			
50ME	Α	В	С	D	E	F	G	H	J
016,024,028,030	7- 23/4	3-0%	17-11%6	2-215/26	13-51/2	3-71/16	7-33/16	0-31/4	0-31/8
034,040	7-11	3-915/16*	21-9%	4-2%	13-51/2	4-4	8-63/4	0-225/6	0-71/4

^{*}Overall height, includes 1 3/4 in for fan guards (50ME034 and 040):

Roof curb dimensions (50ME)

Certified dimension drawings available on request

TINU				DIME	ENSIONS (ft.	-in.)			*****
48MA	A	В	С	D	E	F	G	Н	<u></u>
016,024,028,030	18- 21/8	7- 3	11-9	5-6%	7-2%	1-10%6	2-2%6	6-0%	0- 71/2
034,040	21-11%	7-11%	14-13/4	6-7%	8-43/16	2- 91/8	3-1	6-81/2	0-10%

Selection procedure (with example)

Refer to Carrier's Engineering Guide for Multizone Unit Systems and contents of this booklet for typical multizone design considerations. Using the Engineering Guide, calculate cooling and heating load estimates for the areas to be served by the multizone unit. Divide each area into zones based on the peak load and control requirements within the area.

The resulting loads calculated for a typical building are: Cooling

h
11
h
h
0
b
0

Zone No.	Room Total Load* (RTL)/Zone	Room Sensible Load (RSL)/Zone
1	19,000 Btuh	16,935 Btuh
2	25,000 Btuh	22,505 Btuh
3	25,000 Btuh	22,505 Btuh
4	70,000 Btuh	59,160 Btuh
5	22,000 Btuh	19,720 Btuh
6	25,000 Btuh	22,505 Btuh
7	40,000 Btuh	33,870 Btuh
Total	226,000 Btuh	197,200 Btuh

^{*}Loads are peak loads

Heating (Electric Resistance Heat required)

Zone No.	Heating Load/Zone	Electric Resistance/Zone
1	34,000 Btuh	10 0 kw
2	44,000 Btuh	12 9 kw
3	44,000 Btuh	12 9 kw
4	111,000 Btuh	32 5 kw
5	42,000 Btuh	12.3 kw
6	44,000 Btuh	12 9 kw
7	81,000 Btuh	23 7 kw
Total*	400,000 Btuh	117.2 kw

^{*}Zone Peak Capacities

Selection:

Base the multizone unit selection on cooling load requirements. Enter the 48MA/50ME rating tables in the Performance Data Section and select the unit that meets or exceeds the grand total load at the specified conditions. (Interpolation may be necessary to obtain unit rating at certain conditions; extrapolations are not advised. Contact Carrier Application Engineering for performance data at points beyond the range of published tables.) The 024 size unit does not have sufficient capacity to meet load requirements at any cfm. The 028 size exceeds load requirements; however, it is the smallest unit that meets specifications. Thus, the 48MA/50ME028 at: 9000 cfm; 1000 cfm OA: 95 F/75 OA temperature; and 75 F/50% Rh room design has a Total Capacity (TC) of 282,000 Btuh, Sensible Heat Capacity (SHC) of 219,000 Btuh and a compressor kw of 27.5. Calculate the Room Total Capacity (RTC) and the Room Sensible Heat Capacity (RSHC) by deducting the outdoor air load from the unit capacity. The outdoor air load with respect to room conditions is:

Total Heat (OATH) =
$$4.5 (h_{Oa} - h_{room})$$
 (OA cfm)
= $4.5 (38.61 - 28.29)$ (1000)
= $46,440$ Btuh

Sensible Heat (OASH) =
$$1.09 (t_{Oa} - t_{room})$$
 (OA cfm)
= $1.09 (95 - 75) (1000)$
= $21,800$ Btuh

The unit capacity available to offset room loads is:

For comparison.

Actual Load	Actual Unit Capacity
GTL = 272,440 Btuh	TC = 282,000 Btuh
SL = 219,000 Btuh	SHC = 219,000 Btuh
RTL = 226,000 Btuh	RTC = 235,560 Btuh
RSL = 197,200 Btuh	RSHC = 197,200 Btuh

The 48MA/50ME size meets or exceeds the total and zone load requirements at the specified conditions. The excess RTC decreases space average relative humidity slightly below the room design of 50%. By increasing air quantity above 9000 cfm, this excess latent capacity can be converted to additional sensible capacity if desired.

Since the modular multizone is a constant volume machine, proportion the selected supply cfm per zone to satisfy each zone's peak load condition.

Divide room sensible capacities (RSC) equally among the modules if an equal cfm is going to each. In this example, the 48MA/50ME028 has 10 modules and the nominal cfm is 900 cfm per module and equal cfm's are not going to each.

Vary the cfm to each zone (with field-supplied manual dampers in zone ducts) to match different zone requirements. Since the original rating was based on 9000 cfm supply air, all variations must total 9000 cfm. When the cfm is changed (by some percent) from the nominal in a specific module, use the room capacity multipliers in the Zone Cooling Capacity Multiplier Table to correct room TC and room SHC for that zone. Capacity versus cfm changes for the example is given in the Capacity vs Cfm Change table.

By analyzing each zone's ratio of deviation from equal sensible heat allocation, determine the proper cfm change. In the example, if building room SHC is 197,200 Btuh and 10 zones are used, each zone's normal room SHC is 19,720 Btuh. But if Zone 3 has 22,505 Btuh room SHC, then by ratio of 22,505: 19,720 or 1.14, the cfm change is +20%. Correspondingly, if Zone 1 had 16,935 Btuh room SHC, the cfm change is -20%.

In applications where the zone selection is not an increment of the number of unit modules (i.e. one zone requiring 500 cfm in a 48MA/50ME028 with 10,000 cfm), refer to Module Cfm Limits (page 36), Application Data section for details on using cfm's below 600 cfm/module.

Formulas required to use ratings are:

Outdoor Air Total Heat (OATH) OATH = 4.5 (OA cfm) ($h_{oa} - h_{room}$)

CAPACITY VS CFM CHANGES

Miller	ZONE NO.	NO. OF MODULES	RSL/ZONE PEAK LOAD	% DEVIATION (RSL/NOM UNIT RSHC)	% CFM CHANGE FROM NOMINAL	CFM	UNIT TOTAL CAPACITY MULTIPLIER	x	RTC/ZONE	ADJUSTED UNIT RTC
60 000	1	, , , , , , , , ,	16.935	16.935/19.720 = .86	-20	720	9	X	23,556	21,200
	2	i i		22,505/19,720 = 1.14	+20	1080	11	×	23,556	25,912
	2	1		22,505/19,720 = 1.14	+20	1080	1 1 1	×	23,556	25,912
	4	3		59,160/3 × 19,720 = 1 00	0	2700	10	×	$3 \times 23,556$	70,668
	4	1	19,720	19,720/19,720 = 1.00	0	900	1.0	×	23,556	23,556
	2	1	22,505	22.505/19,720 = 1.14	+20	1080	11	×	23,556	25,912
	7	2		$33,870/2 \times 19,720 = 86$	-20	1440	.9	×	2 × 23,556	42,400
100	au	10	197,200	ON MARKET TO AND	Transcent process (C.O. Jaja Jacobs Common Assessment Common Commo	9000			COMMUNICATION AND AND AND AND AND AND AND AND AND AN	235,560

RSHC - Room Sensible Heat Capacity

RSL - Room Sensible Load

RTC - Room Total Capacity

ZONE COOLING CAPACITY MULTIPLIERS

% CFM CHANGE*	ROOM TOTAL CAPACITY (RTC)	ROOM SENSIBLE HEAT CAPACITY (RSHC)
+35	1.15	1 21†
+20	1.10	1.14†
+10	1.05	1 07†
0	1.00	1.00
-10	0 95	0 93
-20	0 90	0.86
-35	0 85	0.79

*Must not be greater than 1200 cfm nor less than 600 cfm per module.
† If resulting RSHC is greater than RTC, then RSHC equals RTC

Outdoor Air Sensible Heat (OASH) OASH = 1.09 (OA cfm) ($t_{oa} - t_{room}$)

Room Total Capacity (RTC) RTC = Unit TC - OATH

Room Sensible Heat Capacity (RSHC) RSHC = Unit SHC - OASH

Leaving Air Temperature (LAT)

LAT = room temperature $-\frac{RSHC}{1.09 \text{ cfm}}$

Determine Heating Capacity:

The specified requirement for electric heat dictates the selection of a 50ME028 unit with a kw option that meets or exceeds the heating load.

The Electric Resistance Heater Data table (page 30) indicates that the 028 unit has heating capacity options of 66, 88 and 132 kw. The 132 kw option is selected as it provides adequate heat for this application. The kw/zone and number of heat stages available are:

Zone No.	Load	Zone Heating Capacity	Stages of Heat
1	10.0 kw	13 2 kw	3
$\hat{2}$	129 kw	13 2 kw	3
3	129 kw	13 2 kw	3
4	32 5 kw	39 6 kw	9
5	12 3 kw	13.2 kw	3
6	12 9 kw	31 2 kw	3
7	23 7 kw	26.4 kw	6
Total	117 2 kw	132 0 kw	30

Stages of heat are controlled individually in the small zones or collectively in large zones to provide flexible and continuous control for each zone.

Determine fan requirements

For 48MA/50ME operation, cfm range per module is 600 to 1200 cfm. Lower flow volumes are permissible if only first stage of heat is operated. Volumes above 1200 cfm may cause water blow-off during cooling.

Since the various unit zones operate at different air quantities and different external resistances, identify the zone having the highest static pressure requirement for the supply duct and supply outlet.

Usually, the longest duct run to the last outlet, with the greatest number of offsets and elbows, has the greatest static pressure requirement. Assume a duct friction analysis has been made and the cfm and static pressure are:

Zone No.	CFM	ESP (in. wg)	No. Modules	CFM/Module
1	720	6	1	720
$\hat{2}$	1080	8	1	1080
3	1080	5	1	1080
4	2700	6	3	900
5	900	4	1	900
6	1080	4	1	1080
7	1440	5	2	720
Totals	9000		10	

The total unit (028 or 030) cfm is 9000. Zones 4 and 7 have 3 and 2 modules, respectively, "ganged" together to comply with the limitation of 1200 cfm per module

The cfm for Zone 2 is 1080 with an ESP of 0.8 in. wg. This module appears to possess the highest friction loss. Therefore, the main fan static pressure is established at 8 in. wg ESP.

Enter Fan Performance table at 9000 cfm, .8 in. wg ESP and read: 1020 rpm and 5.4 bhp. The 028 indoor fan motor data shows the standard 10 hp motor with a maximum bhp of 11.5. Therefore, 5 4 bhp for this selection is satisfactory. In the Physical Data table, 2 pulley selections are available with the 028: Pulley A, shipped mounted; Pulley B, shipped in the blower compartment. Pulley A has a fixed pitch and at 1095 rpm is close enough to the required cfm and should be used. Pulley B at 1230 rpm allows selection of the unit at higher cfm's and static pressures.

COOLING CAPACITIES 48MA/50ME016

OUTD	00R			4,000 TOTAL UNIT CFM																					**-		•	
Al	R					4,000)								5,000					1	TATALAN .			6,000				
TE	AP.			(Outdo		r Cfm				İ		(Outdo	or A	r Cfm				Ì		(Outdo	or Ai	r Cfm			
			0			750	- North Constant		1500			0			750			1500		i	0			750		******	1500	
Db	Wb												Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
85	65 70	5 168 118 14 8 174 126 15 1 177 134 15 2 1										130 130	15 2 15.2	181 184	139 134	15 4 15 6	184 190	146 137	15 6 15 9	181 181	142 142	15 4 15.4	186 189	150 146	15 7 15 8	188 194	158 149	15 8
90	65 70 73 75	164 164 164 164	116 116 116	15 4 15 4 15 4 15 4	169 173 176	129 124 121 119	15 7 15 9 16 0 16 1	172 179 183 186	140 131 125	15 8 16 2 16 4 16 5	and the second second	128 128 128 128	15.2 15.8 15.8 15.8	176 179 182 183	141 136 133 131	16 0 16 2 16 3	179 185 188 191	152 143 137 133	16 2 16 4 16 6 16 8	176 176 176 176	140 140 140 140	16 0 16 0 16 0 16 0	181 184	152 148 145 143	16 3 16 4 16 5	183 189 192	164 155 149	16 1 16 4 16.6 16 8
95	65 70 75 78 80	160 160 160 160 160	114 114 114 114 114	16 0 16 0 16 0 16 0 16 0 16.0	165 169 173 175 177	131 126 121 118 116	16 2 16 4 16 6 16 8 16 9	168 174 182 186 189	146 137 127 121 116	16 4 16 7 17 1 17 4 17 5	167 167 167 167 167	126 126 126 126 126	16 3 16 3 16 3 16 3	172 175 178 180 182	143 138 133 130 128	16 6 16 8 16 9	174 180 186 190	158 149 139 133	16 7 17 0 17 4 17 6	172 172 172 172 172 172	138 138 138 138 138	16 6 16 6 16 6 16 6	176 179	155 150 145 142 140	16.8 17.0 17.1 17.2 17.3	183	145 170 161 151	16 9 17,0 17 2 17 5
100	70 75 78 70 75	156 156 156 152 152	112 112 112 110 110	16 5 16 5 16 5 17 0 17.0	164 168 171 160 164	128 123 120 130 125	17 0 17 2 17.4 17 5 17 8	170 177 181 165 172	143 133 127 149 139	17 3 17 7 18 0 17 9 18 3	163 163 163 158 158	124 124 124 123 123	16 9 16 9 16 9 17 4 17 4	170 173 175 165 168	141 136 132 143 138	17 3 17 5 17 6 17 9 18 1	175 181 - 170 175	155 146 - 162 152	17 6 17 9 - 18 2 18 5	167 167 167 162 162 162	136 136 136 134 134	17 2 17 2 17 2 17 7 17 7	174 177 179 169 172	152 147 144 154 149	17 5 17 7 17 8 18 1 18 3	178 - - 173 -	167 - - 173	17 8 - - 18 4
110 115	78 75	148 144	109	17 5 18 0	161 155	124	18 5 18 8	171 162	139	19 1 19 4	154 149	121	17 9 18 4	166 159	137 142	18 7 19 1			_	158 153	132 130	18 2 18 7	169 162		18 9 19 3			

48MA/50ME024

OUTD	00R			· ·				_			,		TO	TAL	UNIT	CF	VI.											
Al	R					5,000									6,500)								8,000				
TEN	4P				Outde	oor A	ir Cfr	n						Outdo	or Ai	r Cfn	n						Outdo	or Ai	r Cfm	1		
			0		L	750			1500			0			750			1500)	1	0			750			1500	
ДЬ	Wb	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
85											215	161	18 6			190		179			178		229	188	19 4	233	196	<u> 19</u> 6
	1.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									215	161	18 6	226	167	19 2	233	170	19 5	222	178	190	232	183	19 5	239	187	199
	65	200	200 141 18 8 208 155 19 2 212 167 19 200 141 18 8 212 151 19 5 219 158 19									159	193		173	198		185	20 0	217	176	197		190		228	202	20 4
90	70 73	200	141		212	148	196		158	19 9	210	159 159		221		20 0		176	20 3	217	176	197	227			233		20 6
	75	200	141		216	146	19 7	227	148	20 3	210	159	19 3	223		20 1 20 2	231	170 166	20 6	217	176 176	19 7 19 7	231			237 239	1	20 8 21 0
-	65	196	140	19.5	203	157		208	173		206	157		213		20 5		191	20 8	217	174	20.5	210		20 9		2.7	
	70	196	140		207	153	1 ' '	214	164	20 6		157		216		20 7	222	182	21 1	212	174	20 5	- ' /	187	20 9	223		21 2 21 4
95	75	196	140		212	148	20 5	222	154	21 1	206	157		220	166	21 0	229	172	21 5	212	174	20 5		182	21 3	233		21.8
	78	196	140		214	145	20 6	227	1		206			222		21.1	233	166	21.7	212	174	20 5		179	21 4		-	_
	80	196	J.		216	143	20 8		!		206	157		224		21 2	236	162	21 9	212	174	20 5	229	177	21 5	-	_	_
100	70 75	192 192			202 207	155 150		209	170		201	155	20 8	211		21 5	217	188	21 8	207	172	21 2	216	189	21 8	222		22 2
100	78	192		20 2 I		147		216 221	1		201 201	155 155	20 8 20 8		168 164	21 /	223 227	178 172	22 2 22 5	207	172	21 2	220		22 0 22 2	227	195	22 5
_	70	187		20 9		157		204		22 1	196		21.5					193	22 6	1 1			I I			_	-	
105	75	187			201	152	21 9	211		22 6		1	21 5			22 4		184	23 0			21 9 21 9	211 214		22 5 22 8			22 9 23 3
110	78	183	133	21 6	199	150	22 8	210	!	23 6		151	*****	France 10			215	1	24 0			22 6	! !		23 6	221	201	23 3
115	75	178		22 3	191		23 3			24 0			22 9		173			l	24 4	1 :		23 3	!			-	-	_
	!				' '	.55	200	-50				17/		[''']		200	200	173	24 4	1 7 1	105	23 3	202	189	24 1		-	_

48MA/50ME028

OUTD	OOR TOTAL UNIT CFM																											
AI						7,000)								9,000)				1 -				11,00	Õ			
TEA		Outdoor Air Cfm Outdoor Air Cfm																	0	utdoo	r Air	Cfm			-			
		ļ ,	0		ļ ,	1000)		2000			0]	1000			2000			0		[1000]	2000	
DP	Wb	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Κw	TC	SHC	Kw	TC	SHC	Кw	TC	SHC	Кw	TC	SHC	Kw
85	65	265	190		275		24 6	280	213	24 8		213			226	25 2	291	236	25 4	285	234	25 1	294	248	25 6	298	258	25 8
	70	265	190		280	197	24 8		201	25 3	277	213	24 6	291	220	25 4	298	224	25 8	285	234	25 1	298	242	25 8	305	246	26 1
	65	259	188		269	206	25 5	273	221	25 7		210		280		26 1	284	244	26 3	278	232	26 0	287	250	26 5	291	266	26 7
90	70 73	259 259	188 188	24 9 24 9	274 277	200 196	25 8	282	209	26 2	271	210		284	223	26 3		232	26 7	278	232	26 0		244	26 7	297	254	27 1
	75	259	188	24 9		193	25 9 26 1	287 291	201 196	26 5 26 7	271	210 210			219 216	26 5 26 6		225	27 0		232	26 0		241	26 9	302	246	27 3
d - aporto	65	254	185	25 8		208	26 4	267	229	26 6		-					299	219	27 2	278	232	26.0		238	27 0	304	241	2/5
	70	254	185	25 8	267	202	26.7	275	217		264	208 208	26 5 26 5		231 225	27 0 27 3	277 284	252 240	27 2 27 7	272	229	26 9 26 9		252 247	27 4 27 7	283	273	27 6
95	75	254	185	25 8	273	196	27 0		204	27 7	264	208	26 5		219	27 5	292	227	28 1	272	229	26 9		240	27 9	290	202	28 0
	78	254	185	25 8	276	192	27 2	290	196	28 0	1 (208			214	27 7	297		28 4	272	229	26 9		236	28 1	_	_	_
	80	254	185	25 8	279	189	27.3	294	190	28 3	264	208	26.5	287	212	27.8	-	_		272	229	26.9	292	233	28 2	_	- 1	_
	70	248	182	26 7	261	205	27 6	1 1	225	28 0	258	205	27 4	270	228	28 2	276	248	28 6	265	226	27 8	276	249	28 6	282	269	28 9
100	75	248	182	26 7	266	198	27 9		212	28 6		205		275	221	28 5	284	235	29 1	265	226	27 8		243	28 8	-	_	_
	78	248	182	26.7	269	194	28.1	283	203			205	27.4		217	28.6				265	226	27 8	283	239	29 0	_		_
105	70	242	180	27 6		207	28 4	261	233	28 9		202	28 3		230	29 0		255	29 5	258	223	28.7	269	252	29 5	274	274	29 8
110	75	242	180			201	28 8			29 5	l		-	<u> </u>	224	29 3	276	243	30 0		223	28 7	273		29 7		_	_
110	78	236	177	28 4	256		29 9		219					263	222	30 4	_			251	221	29 6			30 8	-	-	. —
115	75	230	174	29 2	246	206	30 4	256	236	31 2	239	197	29 9	253	229	31 0	262	258	31 7	245	218	30 3	258	250	31 4	-	- 1	
		washington.	Z														L!				J		!!		W1 100 a	١ (- !	w

COOLING CAPACITIES 48MA/50ME030

	· · · i											TOT	AL U	NIT (CFM										
OUTD	00R						8,0	00											10,0	000					
AI.	₹					0	tdoor		fm	-					_			Ou	tdoor	Air C	fm				
TEA	1P			- 1		1000			2000		1	2500			0		1	1000			2000		٠.	2500	
, DI	WЬ	اعتا	SHC	Kw	тс	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	тс	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
Db	MD		901 1 1 1	2212-	60.2						010			309	238	30 4	322	252	31 2	328	263	31 6	330	267	31 7
85	65	298	215	29 7	311	229	30 5	317	240		319	245	31 0 31.7	309	238	30.4	327	246	31.5	335	251	32.1	339	253	32.3
05	70	298	215	29.7	317	223	30.9	326	228	31.5	329	230									270	32 7	322	277	32 8
-	65	292	212	30 7	304	231	316	309	247	319	312	254	32 1	303	235		315	254	32 3	320	258	32 /	331	263	33.3
90	70	292	212	30 7	309	225	319	318	235	32 5	322	240	32 8	303	235	31.5	320	248 245	32 6 32.8	332	251	33 5	336	253	33.7
90	73	292	212	30 7	313	222	32 2	324	228	32 9	328	230	33 2	303	235	31.5		243	33.0	336	245	33.7	340	246	34.0
	75	292	212_	30.7	315	219	32.3	328	222	33.2	333	234	33.5	303	235	31.5	325					****			
-	65	285	209	318	297	234	32 6	303	255	33 0	305	264	33 2	296	232	32 5	307	256	33 3	314	277	33.8	316	286	33 9
	70	285	209	31.8	302	228	33 0	311	243	33 6	314	250	33 8	296	232	32 5	312	251	33 7	319	266	34 2	322	273	34.4
95	75	285	209	31.8	308	222	33 4	320	230	34 2	325	234	34 6	296	232	32 5	317	244	34 0	328	253	34 8	332	257	35 1
	78	285	209	318	311	217	33 6	326	222	34 7	332	223	35 1	296	232	32.5	320	240	34 2	333	244	35.1	-	_	
	80	285	209	31.8	314	215	33.8	330	216	34.9	337	216	35.4	296	232	32.5	322	237	34.4	336	238	35.4	-	- E	
	70	279	207	32 8	295	230	34 0	303	250	34 6	307	260	34 9	289	229	33 5	304	253	34 7	312	273	35 2	315	282	35 5
100	75	279	207	32 8	300	224	34 4	312	237	35 3	317	244	35 6	289	229	33 5	304	246	35 0	319	260	35.8	324	267	36 1
100	78	279	207	32.8	303	220	34.7	318	229	35.7	324	234	<u>36.</u> 1	289	229_	33.5	312	242	35.3	324	252	36.2	=	=-	
	70	273	204	33 7	288	232	34 9	297	258	35 7	300	269	35 9	282	226	34 5	296	255	35 6	305	280	36 3	308	291	36 6
105	75	273	204	33.7	293	226	35.4	304	245	36.3	309	254	36.6	282	226	34.5	301	249	36.0	311	268	36.8	315	276	37.1
	-								127 "	37.7	308	254	38.1	276	223	35.4	297	247	37.2	_	! _	_	-	_	_
110	78	266	201	34.6	289	224	36.6	303	244		-	234		070		36.3	287	253	37.8	297	282	38.7	302	296	39 1
115	75	261	199	35.5	279	231	37.1	29 1	260	38.2	296	2/4	38 6	15/0	220	30 3	1507	[233	(3/.0	1271	202	120.7	1002	1 2/0	10, 1

*	- 1											TOT	'AL U	NIT (CFM					_					
OUTD	00 R			-			11,0	00	-								_		12,0	000		-	-	-	
All	₹				-	Ou	tdoor		fm									Ou	tdoor	Air C	fm			-	
TEN	P					1000		/	2000			2500		-	0			1000			2000			2500	
D.	Wь	тс	SHC	Kw	тс	SHC	Kw	тс	SHC	Κw	тс	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw_	TC	SHC	Κw
DЬ		10	10		1 1						224	278	31.9	317	259	30 9	1330	273	31.7	335	284	32 0	337	289	32.1
85	65	314	248	30 7	326	263	315	332			334				259	30.9	334	268	32.0	342	272	32.5	345	274	32.7
65	70	314	248	30.7	331	257	318	339	262	32.3	312	26.4	32.5	317_	i		1	1				i		i i	
	65	307	245	31.8	319	265	32 5	324	281	32 9	326	288	33 1	310	256	32 0	322	275	32 8	328	291	33 1	330	298	33 3
	70	307	245	31.8	323	259	32 9	331	269	33 4	334	274	33 6	310	256	320	327	270	33 1	334	280	33 6	337	284	33 8
90	73	307	245	318	326	256	33 1	336	261	33 7	339	264	33 9	310	256	32 0	329	266	33 3	338	272		342	275	34 1
		307	245	31.8	328	253	33.2	339	256	33.9	343	257	34.2	310	256	32.0	331	263	33 4	341	267	34.1	345	268	34 3
	75		i :-	7 22 5					287	34 1	319	297	34 2	303	253	33 0	314	277	33 9	321	298	34 3	323	307	34 4
	65	300	242	32 8	311	267	33 9	317			325	283	34 6	303	253		319	272	34 1	326	287	34.6	328	294	34 8
	70	300	242	32.8	315	261	33 9	323	276	34 4							323	265	34.5	333	274	35 1			_
95	75	300	242	32 8	321	255	34 3	330	263	35 0	334	267	35 2	303	253	1	326	261	34.7	1555	2/4	00	_	_	l _
	78	300	242	32 8	323	251	34 5	335	255	35 3	-		-	303	253	33 0				_	1	1 -			
	80	300	242	32.8	325	249	34.6			l _=	1	<u> </u>	-	303	253	33.0	328	258	34.8		-	T			
	70	293	240	33 8	307	263	34.9	315	283	35 5	3 18	292	35 7	296	250	34 1	310	274	35 2	318	294	35 7	321	303	35 9
100	75	293	240	33 8	312	257	35 3	322	271	36 0	326	277	36 3	296	250	34 1	315	268	35.5	324	281	36 2	-	-	-
100					315	253	35.5	327	263	36.4		_	_	296	250	34.1	318	263	35.7	-	-	-	-	-	-
-	78	293	240_	33.8	-	1	1	1		1		302	24.0	289	247	35 1	303	276	36 1	311	300	36 8	314	312	37 0
105	70	286	237	34 8	300	266	35 9	309	290	36.6	311	302	36 8			35.1	367	270	36.5	316	289	37.2		_	_
105	75	286	237	34.8	304	259	36.3	313	278	37.0	.		ļ. —	289	247		i	i		1310	202	197.2	_		
110	78	279	234	35.7	300	257	37.4	_	-		-		-	282	244	36.0	302	268	37 6	-	1 -	ļ -	-	-	-
	2	i -		1		1 -	1	300	293	38 9	ĺ.	1 _	l _	276	241	36 8	292	275	38.3	-	-		_		-
115	75	1273	231	36.6	289	264	38.0	1200	1273	100 2	1 -	1 =	1 -	12,0	1-4.	1000	1-1-	1	1	1		•	•	•	•

Kw - Compressor Motor Power Input
 SHC - Sensible Heat Capacity (1000 Btuh)
 TC - Total Capacity (1000 Btuh)

NOTES: 1. No values are given where unit cannot maintain the assumed room design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content

2. Ratings are gross and do not include fan motor heat deduction.

COOLING CAPACITIES 48MA/50ME034

	Section 1.																						, _	01-11	_004
OUTE	nnp										4 100.0	TO:	TAL L	JNIT	CFM							-	26 E		588 C
Al							9,0	000		100 - mar 1				ľ "'""		-			10,	ÕÕÕ	105 10.3	73-			
TE						0	utdoor	Air (fm				~					0	ıtdoor	Àir (2fm				
			0	A		1000)		2000)	1	2500			0		1	1000)	ľ	2000		Ĭ	2500)
DP	WЬ	TC	SHC	Kw	TC	SHC	Κw	TC	SHC	Kw	TC	SHC	Kw	İτc	SHC	Kw									
85	65	314	231	28 6		246	29 2	333	257	29 6	336	262	29 7	320	243	28 9	331	257	29 5	338	268	29.8	341	273	30.0
	70	314	231	28.6	332	240	29.5	342	245	30.0	347	247	30.3	320	243	28.9	337	251	29.8	348	257	30.3	352	259	30.5
	65	307	228	29 6	318	248	30 3	325	264	30 6	327	272	30 8		240	29 9	324	259	30 6	330	276	30 9	338	288	31 3
90	70 73	307 307	228 228	29 6	324	242	30 6		253	31 1	339	257	31 4	313	240	29 9	329	253	30 9	340	264	31 4	343	269	31 6
	75	307	228	29 6 29.6	328 330	239 236	30 8 30.9	341 345	245 240	31.5 31.7	346 351	248 242	31 7	313	240 240	29 9 29 9	333	250 247	31 0	345	257	31.7	350	260	32 0
	65	300	225	30 7	311	250	31 3	322	275	32 0	325					`	335		31.2	349	251	31.9	355	253	32.2
	70	300	225	30 7	316	244	31.6	326	260	32 2	330	286 267	32 2 32 4	305	237 237	31 0	319 321	264 256	31.8	328 331	287 271	32 3	331	297	32 5
95	75	300	225	30 7	322	238	32 0	336	247	32 8	342	252	33 1	305	237	31 0	327	249	32 3		259	32 5 33 0	335	279 263	32.7
	78	300	225	30 7	326	234	32 2	343	239	33 2	350	241	33 6		237	31 0	330	245	32 5	347	250	33 4	353	253	33.3
	80	300	225	30 7	329	231	32.4	348	233	33.4	356	234	33 9	305	237	31.0	333	242	32.6	351	245	33.6	_		-
	70	293	222	31 8	308	246	32.7	318	267	33 3	321	277	33 5	298	233	32 1	313	257	33 0	322	279	33 6	326	289	33 8
100	75	293	222	31 8	314	240	33 1	328	254		333	261	34 2	298	233	32 1	318	251	33 3	331	266	34.1	337	273	34 4
	80	293	222	31.8	318	236	33.3	-	246	34.3	:	251	34.7	298	233	32.1	322	247	33.6	338	258	34.5	344	263	34.9
105	70 75	285	219	32 8	300	248	33 8	314	278	34 7	319	291	35 0	290	230	33 1	304	259	34 1	318	290	35 0	323	302	35 2
110		285	219	32 8	306	242	34 1	319	262	35 0	324	271	35 3	290	230	33.1	310	253	34.4	322	273	35 2	328	283	35.5
110	78	278	215	33.8		240	35 4		261	36 4	_	_	_	283	227	34 1	305	251	35 7	319	272	36 6	-	_	_
115	75	271	212	34 7	290	246	36 1	306	280	37 3	312	295	37 8	275	224	35 1	293	257	36 4	309	292	37 6	315	307	38 0

		1			-				-		_		20							-	-	Adm.			
OUTE) O O P				-		_					TO	TAL L	TINU	CFM										
Al				_			11,0	000		-									12,	000				- 44	,
		1		_		0	utdoor	Air (Cfm		_			İ				Ōı	ıtdoor	Air C	fm				-
TE	MP		0			1000)		2000)	Ì	2500)	İ	Ò		1	1000	w	1	2000	700 %	ľ	2500	_
DЬ	₩Ь	тс	SHC	Kw	TC	SHC	Kw	тс	SHC	Kw	тс	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	İTCI	SHC	Kw	ΤĊ	SHC	Kw
85	65	325	254	29 1	336	268	29 7	343	279	30 1	345	285	30.2	329	264	29 3	340	279	29.9	347	290	30.3	349	295	30 4
	70	325	254	29 1	341	262	30 0	352	268	30.5	355	270	30 7	329	264	29 3	345	273	30 2	355	279	30.3	359	281	30.9
	65	318	251	30 2	328	270	30 8	335	287	31 1	342	299	31 5	322	261	30.4	332	281	31 0	339	297	31 3	346	310	31.7
90	70	318	251	30 2	334	264	31 1	343	275	31 6	347	280	31 8	322	261		337	275	31 3	347	286	31 8	350	291	32.0
	73	318	251	30 2	337	261	313	,	268	31 9	354	271	32 1	322	261	30.4	341	272	31 4	352	279	32 0	357	282	32 3
-	75	318	251	30 2	339	258	31 4	353	262	32.1	358	264	32.4	322	261	30.4	343	269	31.6	355	273	32.2	361	275	32.5
	65	310	247	31 3	324	275	32 1	332	298	32 5	335	308	32.7	314	258	31.5	328	286	32 3	336	309	32.8	338	319	32.9
95	70	310	247	31.3	325	267	32 2	334	282	32 7	338	290	32 9	314	258	31.5	329	277	32 4	338	293	32.9	341	301	33 1
75	75 78	310 310	247 247	31 3 31 3	331 334	260 256	32 5		270	33.2	349	274	33 5	314	258	31 5	334	271	32 7	347	280	33 4	351	285	33,6
	80	310	247	31 3	337	253	32.7 32.8	350 354	262 256	33,5 33 8	-	_	-	314 314	258	31.5	337	267	32 9	352	272	33 7	-	-	_
	70	302	244	32 4	317	!					224	-			258	31.5	340	264	33.0	_		g =			-
100	75	302	244	32 4	322	268 262	33.2 33.6	326 335	290 277	33 8 34 3	334 340	304 284	34 3 34 6	306	255	32 6	320	279	33 5	329	300	34 0	337	315	34 4
	78	302	244	32 4	325	258	33 8		269	34.7	340	204	34 0	306 306	255 255	32 6 32.6	325 328	273 269	33 8 34.0	337	288	34 5	342	295	34 8
-	70	294	241	33 4	308	270	34 3		301	35 2	326	313	35 4	298	251	33 6	311	- <u>207</u> 281	- 1.	205	210	- i			
105	75	294	241	33.4	313	264	34.6	325	284	35.4	330	294	35.7	298	251	33.6	316	275	34 5 34.8	325 328	312 295	35.4 35.6	329	324	35.6
110	78	287	238	34 4	308	262	35.9	020	20.7		000	- 2/7	35.7	290	248					320	293	33.0	¦		_ =
115	75	279	234	35 4	296			212	202	27.0		_	_			34 6	311	273	36.1	-	-	_	-		. –
113	13	[2/9]	234	JJ 4	290	268	36 6	312	303	37 8	-		_	282	245	35 6	299	279	36 8	-	-	_	-	_	-

COOLING CAPACITIES 48MA/50ME040

-		Ì							-			TOT	AL U	NIT (CFM										
OUTD	OOR						11,0	00											12,0	000	4.				
All	₹	1			~	Õu	tdoor		fm	_				-				Ou	tdoor	Air C	fm				
TEN	(P	-	0		l	1000	•	1	2000	-		3000	_		0		Ĭ	1000			2000] .	3000	
Db	WЬ	Ιтс	SHC	Kw	тс	SHC	Кw	TC	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw		SHC	Kw		SHC	Kw
	65	367	262	36 8	402	294	39 0	416	311	40 2	420	322	40 8	368	268	36 8	406	302		423	323	40 4	427	335	410
85	70	367	262		410	290	39.5	426	300	40.8	434	305	41.6	368	268	36.8	4]4	300	39 7	432	312	41 0	441		419
	65	364	263	38 3	394	297	40 4	403	316	416	404	330		366	270		399	307	40 6	410	328	41 8	411		42 5 43 3
00	70	364	263	38 3	401	293	40 9	412	304	42 3	418	314	43 1	366	270		406	303	41 1 41.7	418 426	317 310	42 5 43 0	434	326 315	43 9
90	73	364	263	38 3	408	291	41 4	419	298	42 8	427	303 295	43 7 44 1	366 366	270 270	38 4 38.4	413	302	41.8	431	305	43 4	440	308	44 2
	75	364	263		413	290	41.5	425	293	43 1	434	339	1	364	272	39 9	1392	312	42.0	397	334	43 3	398	351	44 1
	65	361	264	39.8	386	300	41.8	390 398	321 309	43 1 43 8	388 402	323	43 8 44 6	364	272	39 9	398	307	42.6	404	322	44 0	409	335	44 8
	70	361	264	39.8 39.8	392 398	295 289	42 3	408	296		416	304		364	272	39 9	404	301	43.3	414	308	44 9	423	316	45 8
95	75 78	361 361	264	39 8	402	285	43 4	413	287	45 2	427	292	46 3	364	272	39 9	408	297	43 8	419	299		433	305	46 4
	80	361	264	39.8	405	282	43 6	418	281	45 6	433	284	46 7	364	272	39 9	411	294	43 8	423	293	45 8	438	296	46 9
	70	355	264	41.3	397	294	43 9	381	313	45 4	384	331	46 3	359	273	415	384	306	44 2	387	325	45 6	390	342	46 5
100	75	355	264	41 3	383	288	44 6	390	300	46 2	399	313	47 2	359	273	41 5	389	300	44 8	396	311	46 5	404	325	47 4 48 0
	78	355	264	413	387	284	44.9	397	291	46 7	410	302	47 8	359	273	41 5	393	296	45 1	402	303		414	1	
.05	70	351	263	42 8	365	294	45 5	364	316	46 9	366	338	48 0	354	271	43 0	371	306	45 7	370	327	47 1 48 0	371 385	349	48 3 49 0
105	75	351	263	42.8	368	287	46.1	373	303	47.8	381	322	48.8	354	271	43.0	374	299	46.3	ì			1	330	515
110	78	342	260	44.3	354	280	48.2	360	298	50.1	373	319	51.4	347	269	44.6	359	291	48 4	366	309	50 3	376	!	
115	75	334	257	45.8	336	283	49 4	338	309	51.3	347	336	52 9	339	269	46 1	342	295	49 7	343	320	51 6	353	347	53 1 .

	- 1	1										TOT	AL U	NIT (CFM										
OUTD							13,0	000											14,0	000					
All						Qυ	tdoor	Air C	fm		_					_		Οu	tdoor	Air C	fm				
TEN	AP		0			1000	1		2000			3000	İ		0		1	1000			2000			3000	7
DЬ	Wb	тс	SHC	Kw	тс	SHC	Ķw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	ТС	SHC	Kw	ТС	SHC	Kw		SHC	Kw
85	65 70	371 371	273 273	36 9 36.9	409 417	310 307	39 2 39 8		333 322	40 5 41 2	432 446	345 329	41 1 42 0	374 374	279 279	37.1 37.1		318 315	39 4 39.9	429 442	342 333	40 6 41 4	438 451	356 340	41 3 42 2
90	65 70 73 75	369 369 369 369	276 276 276 276	38 5 38.5	402 409 416 423	315 312 311 312	41.8		339 328 321 316	42 0 42 6 43 2 43.4	417 430 439 445	354 338 327 319	42 7 43 5 44 0 44.3	371 371	282 282 282 282	38 6 38 6 38 6 38 6	419 427	323 321 320 322	40 8 41 4 41 8 41 9	419 429 439 440	349 339 332 328	42 1 42 8 43 3 43 5	443 449	338	42 8 43 6 44.2 44 5 44 4
95	65 70 75 78 80	367 367 367 367 367	279 279 279 279 279 279	40 0 40 0 40.0 40 0 40.0	395 401 408 412 415	320 316 311 307 304	42 1 42 7 43 4 43 7 44.0		345 333 319 310 304	43 4 44 1 45 0 45 5 45 9	401 414 427 436 442	362 347 328 315 307	44 2 45 0 46 0 46 6 47 0	369 369	286 286 286 286 286	40 1 40 1 40 1 40 1 40 1	397 405 412 416 419	328 326 321 317 315	42 2 42 9 43 5 43 8 44 1	428 431	356 345 330 321 315	43 5 44 2 45.2 45 7 46.0	418 431 438 445	358 339 326 317	45 1 46.1 46 7 47 1
100	70 75 78	362 362 362	280 280 280	41 6 41 6 41 6	394	317 310 307	44 3 45 0 45 3	400	336 322 314	45 7 46 6 47.1	395 408 417	353 336 324	46 7 47 6 48 2	364 364	287 287 287	41 7 41 7 41.7	402	321 318	44 5 45 1 45 4	405 410	347 333 325	45 9 46 8 47 2	413 420	364 347 334	46 9 47 7 48 3
105	70 75	357 357	281 281	43 1 43.1	376 379	317 310	45 9 46.5		338 325	47 3 48.2	376 390	359 344	48 4 49 2		289 289	43.2 43.2	384	321	46.7	380 388	349 335	47 5 48 4	395	i	:
110 115	78 75	349 342	279 278	44 7 46 3	364 347	302 305	48 6 49 9	i	320 331	50 5 51.7	380 359	341 354	51 7 53.3	352 345	288	44 8 46 4		313	48.8 50 1	377 357	330	50 7 51.8	:	351 362	51.8 53.6

Kw - Compressor Motor Power InputSHC - Sensible Heat Capacity (1000 Btuh)

TC - Total Capacity (1000 Btuh)

NOTES: 1. No values are given where unit cannot maintain the assumed room design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content

2. Ratings are gross and do not include fan motor heat deduction

COOLING CAPACITIES 48MA/50ME016

		1				_							-	-						,		-						,
OUTD	OOR		TOTAL UNIT CFM 5,000 6.000																									
AI]																				7,000		•		- '		
TE		Outdoor Air Cfm Outdoor Air Cfm																	(Dutdo	or Ai	r Cfm	_		-			
			0			750			1500			0]	750		Ĭ	1500			0		Ĭ	750	- ×	l	1500	•
Db	WЬ	TC	SHC	Kw	TC	SHC	Kw	тс	SHC	Kw	тc	sнс	Kw	TC	SHC	ĸw.	TC	SHC	Kw	דר	SHC	K	TC	SHC	Κw	Tel	1 * * * 1	v
`	65	1183	132	15 5	1000 A /-		* - :	188	148	15 8		144	i — - ···			16 0			16.0			16 0	, .	2 00 00 00 12		197	SHC 171	
85	70	183	132	15.5	190	136		194	139		188	144	15.8			16.1			16.3		156	16.0			16.3	1.,,		16.2 16.4
11	65	178	131	16 1	182	143		183	154		183	143		187		a.			~				i ·			i i	37.7	
	70	178	131	16 1	185	138	16.5		145		183	143	16 4		155 150	16 5 16 7	188	166 157	16 6 16 9	187 187	154 154	16 6 16 6	190	166	16 7	192		16 8
90	73	178	131	16 1	187	136	16 6		139	16 9		143	16 4		148		196	151	17.0		154	16 6	194	162 159	16 9 16 9			17 0 17 2
	75	178	131	16.1	188	134	16.6	195	135		183	143	16 4		146	16.9	198	148	17 2	187	154	16.6	196	157	17 0	201	159	17 2
-	65	174	129	16 7	177	145	16 9	179	160	17 0	178	141	17 0	182	157	17 1	183	172	17.2	182	152	17 1	185	168	17.0	186		17 4
	70	174	129	16 7	180	140	17 0	184	151	17.3	178	141	17 0		152	17 3	188	163	17 5	182	152	17 1	188	164	17.5	1.00		17 4
95	75	174	129	16 7	183	136	17 2	190	141	17 6	178	141	17 0	187	148		193	154	., .	182	152	17 1	190	159	17.6	195		17.0
	78	174	129	16 7	186	133	17 4	194	135	177	178	141	17 0	189	145	17 6		_	_	182	152	17 1	192	156	17 7		-	17 7
	80	174	129	16.7	187	130	17.4	196	131	17.8	178	141	17.0	191	142	17,6	-			182	152	17.1	193	154	17.8	_		_
	70	169	127	17 3	175	143	17 6	179	157	17.8	174	139	17.5	179	155	17 9	183	169	18 1	177	150	17 7	182	166	18 0	185	181	18 2
100	75	169	127	17 3	178	138	17.8	185	148	18 2	174	139	17.5	182	150	18 0	188	160	18.3	177	150	17 7	185	161	18 2	_	_ [_
	78	169	127	17.3	181	135	17.9	188	141	18 4	174	139	17.5	184	147	18 1	-	-		177	150	17 7	187	158	18.3	_		_
105	70	165	125	178	170	145	18 2	174	163	18 4	169	137	18 1	174	157	18 4	177	175	18 6	172	148	18 3	177	168	18 6	1180 l	180	18 8
	75	165	125	17.8	173	140	18.4	179	154	18.8	169	137	18 1	177	152	18 6	182	166	18 9	172	148	18.3	179	163	18 8		-	_
110	78	160	123	18.4	170	139	19.1	178	154	19.5	164	135	18 6	174	151	19.3	_	_	·_	167	146	18.8	176	162	19.4	_	_ i	_
115	75	156	121	189	164	144	19 5	169	166	19 9	159	133	19 2	167	156	19.7	i _ i	_ j		162	144	19 4	169	168	19 9	i _ i	_ i	_
	•	•				- 1		'		,			'	1 1			ı İ	ı	'				1.07	1.50	'' '	1		_

48MA/50ME024

OUTD	006		TOTAL UNIT CFM																				•					
Al		`	6,000 7,500																			9,000			•			
TEA		Outdoor Air Cfm Outdoor Air Cfm																	(Dutdo	or Ai	r Cfm						
	٠ -	0 750 1500 0 750 1500															ļ	0			750		1	1500				
DЬ	МP	Į TC	SHC	Kw	ŢÇ	SHC	Kw	TC	SHC	Κw	TC	SHC	Kw	тс	SHC	Κw	TC	SHC	Kw	TC	SHC	Kw	тс	SHC	Κw	тс	SHC	Kw
85	65 70	220 220	158 158	18 9 18 9		167 163	19 2 19 4		175 167				19.3 19.3		185 181				19 8 20.1	234 234	192 192	19 6 19 6		202 198		243 248	210	20 1 20 3
90	65 70 73 75	216 216 216 216	156 156 156 156			169 165 163 161	20 0 20 2 20 4 20 5			20 2 20 5 20 8 20.9	223	174 174 174 174	20 1 20 1 20 1 20 1	229 233 235 236	187 183 180 178	20 4 20 6 20 7 20 8	241	i		229 229 229 229	190 190 190 190	20 4 20 4 20 4	234 238	204 200	20 7 20 9 21 0	238 242	215 207 202	20 9 21 2 21 3
95	65 70 75 78 80	211 211 211 211 211 211	154 154 154 154 154	20 4	217 220 224 227 229	171 167 163 160 157	20 8 21 0 21 2 21 4 21 5	i e	187 178 169	21 0 21 3 21 7	218 218 218	172 172 172 172 172	20 9 20 9 20 9 20 9 20 9 20.9	224 227 231 233	189 185 180	21 2 21 4 21 6	228 232	204 196 187 181 176	21 4 21 7	223 223 223 223	188 188 188 188 188	21 2 21 2 21 2	230 232 235 237 239	206 201 197	21 5 21 7 21 9 22 0 22 1	233 236	221 213 204 -	21 8 22 0 22 3
100		206 206 206	152 152 152	21 2 21 2 21 2	215 219 221	169 164 161	21 7 22 0 22 2	220 227 231	184 175 169	22.5	213 213 213	170 170 170	21 6 21 6 21 6	225	187 182 179	22 2 22 4 22 5		202 193 187	22 5 22 8 23 1		186 186 186		226 229 231		22 5 22 7 22 8	231 236 -	218 209 –	22 8 23 1 -
105		201 201	1150	21 9 21 9	210 213		22 5 22 7	215 221		22 9 23 2			22 4 22 4			22 9 23 1	221 226		23 3 23 6	213 213	184 184	22.7 22.7	221 223		23 2 23 4	226 229	224 215	23 6 23 8
110	1000	196	148	22 6	210	165	23.6	219	181	24 2	203	165	23.1	216	183	24 0	223	198	24 6	207	182	23 4	219	199	24 3	_	_	_
115	75	191	146	23 3	202	170	24 1	210	192	24 7	197	163	23 8	207	187	24 5	214	209	25 1	202	180	24 1	211	204	24 8	-	-	-

48MA/50ME028

OUTD	OOR	R											T	O TAI	ואַטַ -	T CF	М											
All	₹	8,000 Outdoor Air Cfm									!				10,00	0							•	12,000)			
TEN	P		_	(Quida			1						Outdo	or Ai	r Cfm				ļ	_	(Dutdo	or Ai	r Cfm	1		
	١-	0 1000 2000 b TC SHC Kw TC SHC Kw TC SHC Kw										, 0		ļ	1000			2000	1	ļ	. 0			1000			2000	
DЬ	МÞ					SHC			SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	ТС	SHC	Kw	TC	SHC	Kw	ΤÇ	SHC	Kw	тс	SHC	Kw
85	65	282	205	24 9	290	218	25 4	294	227	25 6	292	228	25 4	300	241	25 9	303	251	26 0	298	250	25 8	306	262	26 2	309	272	26 4
	70	282	205	24 9	295	212	25 6	302	216	26 0	292	228	25.4	304	235	26 1	310	239	26.4	298	250	25.8	310	257	26 4	316	261	26 7
	65 70			25 9		220	26 3	287	235	26 5	285	225	26 4						27 0			26 8	299	265	27 2	302	280	27 3
90	73		203	25 9 25 9	288	215	26 6			26 9			26 4		238		302			292	247	26 8			27 4	1	269	27 7
	75			25.9			26 9		l .	27 4			26.4 26.4		234	27 2 27 3	301	240	27 6 27.8		247	26 8 26.8			27 5 27 6	312	262	27 9
	65	270		26 8		223	27 2		243	i	279	223	27.3	i •	246	27.8			27.0	i	245	27.7		1	28 1	1314	i i	28 0
		270		26 8			27.5	12.00	- * "	27 9		223	27 3			28 0		1-00	28 3		245	27 7			28 3	200		28 3 28 6
95	75	270		26 8	286	211	27 8	295	219	28 4	279	223	27 3		234	28 3		242	28 7	285	245	1		256				29 0
		270		26 8				1		28 7			27 3			28 4	306	234	29 0	285	245	27 7	302		28 7	_	_	_
		270		26.8	i .		i	304		28.9	i	1	27.3	i	227	28 5	_		-	285	245	27.7	303	249	28.8	ļ - ļ	_ J	_
100		263		27 7			28 4	1		28 8			28 3		243	28 9			29 3	277	242	28 7	287		29 3	292	284	29 6
100		263 263	197 197	27 7 27.7	1	213	28 7 28 9		l .	29 3		220	28 3			29 2		250		277	242		291		29 5	-	-	
	7	257	i .	28 6		222	29 3	i	1			1	28,3			29.4				277	242	227 72-7	294	XV ZABAL	29 7	-	-	
105	1 -	257		28.6			29 7			29 7 30 2			29 2 29 2				286		30 2 30 6	270	239 239	29 6 29.6			30 2	284	284	30 5
110	i	251		29.5	1		i			1	1	1	30 1	1				720		i	i · · · -		i	261_	[-	-	_
115		244	** **		i			1.00										-			236		278		31.5	-	-	_
	1,3	[244]	193	150.3	1238	221	1314	1200	F31	J32 U	Z5 I	[212	J30 9	204	244	उ। ४	271	[2/]	32 4	256	[234	31.3	268 .	266	32 2	-	. – I	_

COOLING CAPACITIES 48MA/50ME030

	1											TOT	AL U	NIT (CFM										
OUTD						-	8,0	00											10,0	000					
Al			-			Ou	tdoor	Air C	fm									Ou	tdoor	Air C	fm				
TEA	ΑP		Õ			1000			2000			2500			0			1000			2000			2500	
Db	Wb	тс	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
	-2444	310	217	30 5	321	231	31 2	325	MARKS OF STREET		327	246	31 5	321	241	31 2	333	254	31.9	337	265	32 2	338	269	32 2
85	65 70	310	217	30 5	327	226	31.5	1334	230	32.0	337	232	32 2	321	241	31.2	338	249	32.2	345	253	32.6	347	255	32.8
				L	314	234	32 2	318	249	32 5	320	256	32 6	315	238	32 3	325	257	33 0	329	272	33 3	331	279	33 4
	65	304	215 215	31.5	319	228	32 6	327	237	33 1	329	242	33 3	315	238	32 3	330	251	33 3	336	261	33 7	339	265	33 9
90	70 73	304 304	215	31.5	323	224	32 8	332	230	33 5	336	232	33 7	315	238	32 3	333	248	33.5	341	253	34 1	344	256	34 3
	75	304	215	31.5	325	222	33.0	336	225	33.7	340	226	34.0	315	238	32.3	335	245	33.6	345	248	34.3	348	250	34.5
			212	32 6	307	236	33 3	312	256	33 7	313	266	33 8	308	235	33 4	318	259	34 1	323	279	34 4	324	288	34 5
	65 70	297 297	212	32.6	312	230	33 7	319	245	34.2	321	252	34 3	308	235	33 4	322	253	34 4	328	268	34 8	330	275	35 0
95	75	297	212	32.6	317	224	34 1	328	232	34 8	332	236	35 1	308	235	33 4	327	247	34 7	336	256	35 4	340	260	35 6
7.3	78	297	212	32 6	321	220	34 3	334	224	35 2	339	226	35 6	308	235	33 4	330	243	34 9	341	248	35 7	346	250	36 0
	80	297	212	32 6	324	217	34 5	338	218	35.5	344	219	35.9	308	235	33.4	332	241	35,1	345	242	36.0	350	243	36.3
	70	291	209	33 7	304	233	34 7	311	252	35 2	314	262	35 4	301	232	34 4	314	256	35,4	321	275	35 9	323	284	36 1
100	75	291	209	33 7	310	226	35 1	320	240	35 9	324	246	36 2	301	232	34 4	319	250	35.8	328	263	36 4	331	270	36 7
100	78	291	209	33 7	313	222	35.4	326	232	36.3	331	236	36.7	301	232	34.4	322	246	36.0	333	255	36.8	337	260	37.1
	70	284	206	34 7	297	235	35 7	305	260	36 3	308	271	36 5	294	229	35 4	306	258	36 4	314	283	37 0	316	294	37.2
105	75	284	206	34 7	302	229	36 1	312	248	36 9	316	256	37.2	294	229	35.4	311	252	36.8	320	271	37.5	323	279	37.7
			1		298	227	37 3	310	247	38 3	315	257	38 7	287	226	36 4	306	250	38.0	316	271	38.8	320	280	39.1
110	78	278	204	35 6												37 3	296	257	38.6	305	285	39.5	309	299	39.8
115	75	272	201	36 5	288	234	37 9	298	263	38_8	303	277	39 2	280	224	13/3	1290	[257	150.0	1303	1200	127.2	1007	12//	153.77

			~ .								TOT	AL U	NIT (CFM											
OUTD							11,0	000											12,0	000					
All		2	-		~- ~	Qυ	tdoor	Air C	fm									Qu	tdoor	Air C	fm				_
TΕλ	4P		õ			1000			2000	·		2500			0			1000			2000			2500	
Ďb	Wb	TC	SHC	Ŕw	TC	SHC	Ξ̈̈́Kw İ	TC	SHC	Kw	TC	SHC	Kw	тс	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
00		arrage.	ne = .1 -2	314	337	265	32 1	341	276	32 4	342	280	32 5	329	262	317	340	276	32.4	344	287	32 6	346	291	32 7
85	65	326	252		342	260	32 4	348	265	32.9	351	266	33.0	329	262	31.7	345	271	32.7	351	275	33.1	354	277	33.2
	70	326	252														332	279	33 5	337	294	33 8	339	301	33 9
	65	319	249	32 6	329	267	33 2	334	283	33 5	335	290	33 6	322	260 260	32.8 32.8	337	273	33.7	343	283	34 2	345	287	34 3
90	70	319	249	32 6	333	262	33.5	340	272	34 0	342	276	34 1	322	260	32 8	339	269	33 9	397	276	34 5	350	278	34 7
,,	73	319	249	32 6	336	259	33 7	345	265	34 3	348	267	34 5	322	260	32.8	341	267	34.1	351	271	34.7	354	271	34.9
	75	319	249	32 6	338	256_	33 9	348	260	34.5	351	261	34.7	322								****			
	65	312	246	33 6	322	270	34 4	327	290	34 7	328	299	34 8	315	257	33.9	325	281	34 6	330	301	34 9	332	309 297	35 0
	70	312	246	33.6	325	264	34 6	332	279	35 1	334	286	35 2	315	257	33.9	328	275	34.8	335	290	35 3	337		35 4
95	75	312	246	33 6	330	258	35 0	339	267	35 6	343	271	35.8	315	257	33 9	333	269	35 2	342	278	35 8	345	282	36 0
	78	312	246	33 6	333	254	35 2	344	259	35 9	348	261	36 2	315	257	33 9	336	265	35 4	346	270	36 1	-	ı –	_
	80	312	246	33 6	335	252	35.3	347	253	36.2	-			315	257	33.9	338	262	35.5	349	264	36.3		_=_	
	70	304	243	34 7	317	267	35 7	324	286	36 2	327	295	36 3	308	254	34 9	320	277	35 9	327	297	36 4	329	306	36 6
100	75	304	243	34 7	322	261	36 0	331	274	36 7	334	281	36 9	308	254	34 9	325	271	36 2	333	285	36 8	336	292	37 1
100	78	304	243	34.7	325	257	36.7	335	266	37.0	339	271	37.3	308	254	34.9	328	267	36.4	338	277	37.2			
_				35 7	310	269	36 7	317	294	37.3	320	305	37.5	301	251	36 0	313	280	36 9	320	304	37 5	322	315	37 7
105	70	297	240	35 7	314	263	37.0	322	282	37.7	325	290	37.9	30 i	251	36.0	317	274	37.2	325	203	37.9	327	301	38.1
	75	297	240								1925	1270	27:1				/* ~~~	272	38.4	321	292	39.2		i	
110	78	290	238	36 7	309	261	38 2	319	282	39 0]			294	248	36.9	312						1074	1000	40.0
115	75	284	235	37 6	299	268	38 9	308	296	39 7	312	310	40 0	287	246	37 8	J301	279	39 1	310	307	39.9	314	314	40.2

Kw - Compressor Motor Power InputSHC - Sensible Heat Capacity (1000 Btuh)

TC - Total Capacity (1000 Btuh)

NOTES: 1. No values are given where unit cannot maintain the assumed room design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content.

2. Ratings are gross and do not include fan motor heat deduction.

COOLING CAPACITIES 48MA/50ME034

		I	TOT.																						
OUT	ann											TO:	TALL	TINL	CFM										
							10,	000						T					11,	000					
Al		ĺ	-			Ö	ıtdoor	Air (Cfm	-					-	*			utdoor		- 6m				
TE	MP		0		Γ.	1000		<u> </u>	2000		ı	2500					1	-		<u> </u>			1		
	1 3.4		-	1.34	_ =						VI	2500			,			1000			2000			2500	· ·
DЬ	Wb	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
85	65	333	246	29 6	343	260	30 1	349	271	30 3	350	276	30 4	338	258	29 8	348	271	30 3	353	282	30 6	355	287	30 7
05	70	333	246	29.6	349	254	30.4	357	260	30.8	361	262	31.0	338	258	29.8	353	266	30.6	362	271	31.0	365	273	31.2
	65	326	243	30.7	335	262	31 2	340	278	31.4	347	290	31.8	331	255	30 9	340	273	31 4	349	293	31.9	351	301	32 0
	70	326	243	30 7	341	257	31 5	349	267	319	352	272	32 1	331	255	30 9	345	268	31 7	353	279	32 1	356	283	
90	73	326	243	30.7	344	253	31 6	355	260	32 2	359	263	32 4	331	255	30 9	349	265	31 9	359	271	32 4	363	274	32 3 32 6
	75	326	243	30.7	346	251	318	359	255	32 4	364	256	32 7	331	255	30 9	351	262	32 0	363	266	32.6	367	268	32.8
	65	319	240	31.8	331	267	32 5	337	289	32 9	340	299	33.0	323	252	32 1	336	278	32 7	342					
	70	319	240	31.8	333	259	32 6	341	274	33 0		282	33.0	323	252	32 1	337	270	32 8	342 345	301		345	311	33 2
95	75	319	240	31.8	338	253	32 9	350	262	33 5	354	266		323	252	32 1	342	264	33 1	353	286 273	33 2	347	293	33.4
	78	319	240	31.8	342	249	33 î	356	254	33 9	362	256	34 2	323	252	32 1	346	260	33 3	359			358	278	34 0
	80	319	240	31.8	344	246	33.2	360	249	34.1	367	250	34.5	323	252	32.1	348	258	33.4	363	266 260		365	268	34 4
	70	311	237	32 9	324	261	33.7					-								i i		34.3	370	261	34.6
100	70	311	237	32 9	329			331	282	34 1	339	296		315	248	33 2	328	272	33 9	335	293	34 4	343	307	34 8
100	73 78	311	237	32.9	333	255 251	34 0	341 347	269	34 7	345	276	34 9	315	248	33 2	333	266	34 2	344	281	34 9	348	288	35 1
									261	35 0	352	266		315	248	33 2	336	262	34 4	350	273	35 2	355	278	35.5
105	70	303	234		315	263	34 8	328	293	35 6	331	305	35 8	307	245	34 2	322	277	35 2	331	304	35 8	335	316	36 0
	75	303	234	34 0	321	257	35 1	331	277	35 8	335	286	36 1	307	245	34 2	324	268	35 3	334	288	36 0	339	297	36.3
110	78	295	231	35.0	315	255	36.4	328	276	37.2	333	286	37.6	299	242	35.3	319	266	36.6	330	287	37.4	1		
115	75	287	228	36 0	304	261	37.1	318	295	38.2	323	310	38 6	291	239	36 3	307	272		321	307	38 4	225	221	20.0
	. •		0	0	-5,			[0 10]	2/0	00.2	023	510	55 0	[2/1]	237	1000	100/	2/2	57 4	1221	307	36 4	325	[321]	38 8

отт								-				TO.	TAL L	ТІИ	CFM										1
Al				-			12,	000											13,	000					
TE			-	-			ıtdoor	Air (2					!				0.	ıtdoor	Air (Cfm				
			0.		ļ,	1000			2000			2500	1		. 0		ļ,	1000		ļ	2000			2500	4
DЬ	WЬ	ТС	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Κw	TC	SHC	Kw
85	65	343	269	30 1	352	282	30 5	357	293	30 8	359	298	30 9	346	280	30 2		293	30 7	361	304	31 0	363	309	31 1
•	70	343	269	30 1	358	277	30 8	366	282	31.2	369	284	31 4	346	280	30 2	361	288	31 0	369	293	31 4	372	295	31.5
	65	335	266	31 2	344	284	31 6	354	305	32 1	356	312	32 3	339	277	31.3	1	295	31.8	357	316	32 3	359	323	32 4
90	70	335	266	31 2 31 2	349	279	31 9	357	290	32 3	360	294	32 5	339	277	31 3	352	290	32 1	360	300	32 5	363	305	32 6
	73 75	335	266 266	31.2	352 354	276 273	32 1 32.2	362 366	282 278	32 6 32.8	366 370	285 279	32 8 33 0	339 339	277	31 3	355	286	32 2	365	293	32 7	369	296	32 9
	65	327	263	32.3	339	289	33.0	346	312	33.3				!		31 3	357	284	32 3	368	288	32.9	373	290	33.1
	70	327	263	32 3	340	289	33 0	348	297	33 4	348 350	322 304	33 5 33 6	331 331	273	32 5 32 5	343 344	300 292	33 2	349	323		352	333	33 7
95	75	327	263	32 3	345	275	33 3	356	285	33 9	361	289	34 1	331	273	32 5	349	286	33 2 33 5		308 295	33 6 34 1	354 363	315 300	33 8 34 3
	78	327	263	32 3	349	271	33 5	362	277	34 2	367	279	34 5	331	273	32 5	352	282	33 6	364	288	34 3	303	300	34 3
	80	327	263	32 3	351	269	33 6	366	271	34 4		-	_	331	273	32 5	354	279	33 8	368	282	34 5		_	
	70	319	259	33 4	332	283	34 1	343	308	34 8	346	318	35 0	322	270	33 6	334	294	343	346	319	35 0	349	329	35 2
100	75	319	259	33 4	336	277	34 4	347	292	35 0	351	299	35 3	322	270	33 6	339	288	34 6	349	303	35 2	353	310	35 4
	78	319	259	33.4	339	273	34 6	352	284	35 4	357	289	35 7	322	270	33 6	342	284	34 8	354	295	35 5	-	- 1	_
105	70	311	256	34 5	326	288	35 4	335	315	36 0	338	328	36 2	314	267		329	299	35 6	337	326	36 2	341	338	36 4
	75	311	256	34 5	327	279	35.5	337	299	36 2	341	309_	36 4	314	267	34 7	330	290	35 7	340	310	36.3	343	319	36,5
110	78	302	253	35.5	321	277	36.8	333	298	37 6				305	264	35.7	323	288	37.0	-	-	_	- 1	- 1	_
115	75	295	250	36 5	310	283	37 6	323	318	38_6	328	328	38 9	297	260	36 7	312	294	37 8	325	325	38 8	_		_

COOLING CAPACITIES 48MA/50ME040

		TOTAL UNIT CFM																							
OUT						*****	11,0	000									12,0	000							
_A1						Ou	tdoor	Air C	fm						-			Ou	tdoor	Air (Cfm				
TE	MP		0		Γ	1000			2000		<u> </u>	3000		VT CHARGE	0			1000			2000		[3000	
Db	Wb	and a second sec														Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
0.5	65	372	262	37 9	410	298	39 3	425	318	40 4	431	329	411	375	268	37 0		307	39 5	431	329	40 7	438	342	413
85	70	372	262	37.9	417	295	39 8	438	307	412	445	312	419	375	268	37 0	421	304	39.9	443	320	414	452	325	42 1
- 3	65	371	266	38 5	403	302	40 8	415	324	419	417	339	42 6	374	273	38 7	407	312	40 9	421	337	42 2	424	352	42 9
90	70	371	266	38 5	411	299	413	426	314	42 7	431	323	43 4	374	273		415 422	310 308	41 5 41 9	432 439	327 320	42 9 43 4	437 448	336 326	43 6 44 2
,,	73 75	371 371	266 266	38 5 38 5	417 423	298 298	41 7	433 439	307 303	43 2 43 5	441	313 305	44 0 ¹ 44 4	374 374	273 273	38 7	422	306	41 9	439	316	43 4	455	319	44 6
-,				40 2	396	306	42 2	405	331	43 4	402	348	44 2	374	277	40 4	400	317	42 4	411	344	43 6	411	361	44.5
	65 70	370 370	269 269	40 2	404	303	42 8	414	320	44 2	416	333	44 9	374	277	40 4	409	315	43 1	420	334	44 4	423	346	45 2
95	75	370	269	40 2	411	298	43 4	423	307	45 1	431	315	46 0	374	277	40 4	417	310	43 7	429	320	45 3	438	328	46.2
	78	370	269	40 2	416	295	43 8	429	299	45 6	442	306	46 7	374	277	40 4	421	307	44 0	435	311	45 9	447	316	46.9
	80	370	269	40 2	420	292	44 0	434	293	46 0	448	295	47 2	374	277	40 4	424	304	44 3		306	46 2	454	308	47 3
	70	364	269	417	393	304	44 4	398	324	45 8	398	340	46 7	368	277	419	398	317	44 6	404	337	46 0	404	353	47 0
100	75	364	269	417	399	299	45 0	407	311	46 7	414	324	47 7	368	277	41 9	405	311	45 2	414	325	46 9	420	337	47 9
	78	364	269	417	404	295	45 4	412	303	47 2	425	312	48 3	368	277	419	410	308	45 6	417	315	47 5	429	325	48 5
105	70	359	268	43 2	383	306	46 0	381	328	47 4	381	347	48 5		278	43 4	388	319	46 2	388	341	47 7 48 4	387 402	360 345	48 7 49 5
come Williams at	75	359	268	43 2	386	299	46 6	391	315	48 3	397	333	49 3	362	278	43 4	393	312	46 8	399	329				
110	78	352	267	44 8	372	293	48 8	379	311	50 6	387	330	51 9	355	277	45 0	378	306	49 0		324	50 8	392	342	52 1
115	75	345	265	46 4	358	298	49 9	356	322	519	363	347	53 4	348	275	46 6	363	311	50 2	363	334	52 1	369	358	53 6

NAC STATES SALES		TOTAL																				-	75 V		
	DOOR						13,	000											14,0	000					
	AIR					Õ	tdoor	Air C	fm	-								0 1	tdoor	Air C	fm			LICENSE U.	4 62 1824
Т	EMP	-	Ö	-		1000	₁		2000	1		3000			0			1000	1		2000	A CAROLINE	100. 4.00	3000	w
DЬ	Wb	TC	SHC	Kw	тс	SHC	Kw	τcl	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
	45	378	276	37 2	416	314	39.5	434	337	40 8	442	352	414	382	283	37 4	418	321	39 6	437	346	40 9	445	363	41.5
8.	70	378	276	37.2	424	312	40.0	446	328	41.5	456	336	42.2	382	283	37.4	428	319	40.2		337	41.6	459	347	42.4
	65	377	280	38 8	409	320	41 0	425	346	42 3	429	363	43 1	379	287	39 0	412	327	41 1	429	356	42 4	434	374	43 2
	70	377	280	38 8	418	318	41 6	436	336	43 0	442	347	438	379	287	39 0	421	326	41 7	439	346	43 1	448	359	43 9
90	73	377	280	38 8	424	317	42 0	444	331	43 6	453	338	44 4	379	287	39 0	427	325	42 1	448	342	43 7	457	349	44 5
	75	377	280	38.8	431	317	42.2	450	328	43 9	460	331	44.7	379	287	39.0	434	326	42.4	454	339	44.0	465	344	44.8
*	65	375	284	40 4	403	325	42 5	416	355	43 8	417	373	44 7	377	291	40 5	405	334	42 6		365	43 9	424	385	44 8
	70	375	284	40 4	411	323	43 2	425	345	44 5	429	359	45 3	377	291	40 5	414	332	43 3		356	447	436	371	45 5
9.	5 75	375	284	40 4	420	319	43 8	434	332	45 4	442	340	46 4	377	291	40 5	423	328	43 9	439	344	45.6	447	352	46 5
	78	375	284	40 4	423	316	44 1	439	323	46 0	451	327	47 0	377	291	40 5	426	324	44 2	444	336	46 1	454	339	47 2
	80	375	284	40.4	427	314	44.4	443	318	46.3	457	319	47.5	377	291	40.5	430	323	44.5	448	330	46.4	459	331	47.6
	70	370	285	420	402	326	44 8		348	46 2	411	365	47 1	372	292	42 1	406	336	44 9	414	360	46 4	417	377	47 3
10		370	285	42 0	408	321	45 4	419	336	47 0	424	348	48 0	372	292	42 1	412	331	45 5		348	47 2	429	360	48 1
	78	370	285	42.0	413	319	45.7	423	328	47.5	432	336	48.7	372	292	42.1	417	329	45.9		340	47.6	435	348	48.8
10	5 70	364	285	43 5	392	330	46 3	393	352	47 8	394	371	48 9	367	293	43 6		340	46 5		364	480	399		49 1
- 10	75	364	285	43.5	397	323	46.9	403	341	48.6		357	49.6	-	293	43.6		334	47.1	407	352	48.8	411	369	49.8
_ 11	78	358	285	45.1	384	318	49.2	389	334	51.1	397	353	52.2	361	293	45.3		329	49.3		345	51.3	40.2	364	52.4
11	5 75	351	285	46 7	368	322	50 4	368	345	52 3	375	368	53 9	354	294	46 9	373	333	50 5	374	357	525	381	377	54 1

Kw - Compressor Motor Power Input

SHC - Sensible Heat Capacity (1000 Btuh)

TC - Total Capacity (1000 Btuh)

NOTES: 1 No values are given where unit cannot maintain the assumed room design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content

2. Ratings are gross and do not include fan motor heat deduction

COOLING CAPACITIES 48MA/50ME016

OUTD	OOR	R ==								7. 7			Т	ОТА	L UN	IT C	FM	-			7 5		-		FW	*		
IIA	₹	5,000													6,000)				Ĭ-				7,000		-	ww	
TEA	(P	Outdoor Air Cfm												Outdo	ог А	ir Cfn	1]			Outdo	or A	r Cfm	1		-
			ا التعددات			750		,	1500			. 0	, .,	MARKET A.	750		ļ,	1500			0			750			1500	
DΡ̈́	₩Ь	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	Тс	SHC	Kw
85	65 70	188 188	133 133	15.8 15.8	191 194	141 137	15 9 16.1	192 1 97	148 139	16 0 16.2	193 193	146 146	16 0 16.0		153 149	16.2 16.3		160 152	16 2 16.4	197 197	157 157	16.2 16.2	199 202	165 16 1	16 3		172	16 4
90	65 70 73	183 183 183	131 131 131	16 4 16 4 16 4	186 189 191	143 139 136	16 5		154 146 140	16 6 16 8 17 0	188	144 144 144	16.6 16.6 16.6	191 194	156 151 149	16.8 16.9	192	167 158 152	16 8	********	155 155 155	16 8 16 8	194	167 163 160	16.5 16 9 17 1		164 178 170	17 0 17 2
•	75 65 70	183 179	131	16 4 17 0	192 181	134 145	16.8 17 1	182	136 160	17. 1 17.1	188 183	144 142	16 6 17 2	197 186	147 158	17.1 17.3	202 186	149 173	17 3 17 4	192 187	155 153	16.8	200	159	17 2 17 2 17 5	204	164 161 184	17 4 17.5 17 6
95	75 78	179 179 179	130 130 130	17 0 17 0 17 0	184 187 189	141 137 134	17 3 17 4 17 6	187 193 197	152 142 136	17 7 17 9	183 183 183	142 142 142	17 2 17 2 17 2	188 191 193	153 149 146	17 5 17 7 17 8	191 196 199	164 155 149	17 7 17 9 18 1	187 187 187	153 153 153	17 4 17 4 17 4	191 194 196	165 161 158	17 7 17 8	194 199	176 167	17 8 18 1
_	80	179	130	17.0	191	131	17.6	199	132	18.1	183	142		195	144	17.8	-	-	-	187	153	17.4	197	155	17 9 18.0	_	_	
100	70 75 78	174 174 174	128 128 128	17 5 17 5 17 5	179 182 184	143 139 136	17 8 18 0 18 1	182 188 191	158 149 142	18 0 18 3 18 6	178	140 140 140	17 8 17 8 17 8	183 186 188	156 151 148	18 1 18 2 18 4	186 191 194	170 161 155	18 2 18 5 18 7	182 182 182	151 151 151	18 0 18 0 18 0	186 189 190	167 163 160	18 3 18 4 18 5	189 193	182 173	18 4 18 7
105	70 75	169 169	126 126	18 1 18 1	174 177	145 141	18 4 18 6	177 182		18 6 18 9	173 173	138 138	18 4 18 4	178 181	158 153	18 7 18 8	180 185	176 167	18 8 19 1	176 176	150	18 6	181 183	169 165	18 8 19.0	183 187	183 179	19 0 19.3
1 10	78	165	124	18 7	174	140	19 3	180	155	19 7	168	136	18 9	177	152	Î9 5		_	_	171	148	19 1	179	164	19 7	-		-
115	75	160	122	19 2	167	145	19 7	172	167	20 1	164	134	19 5	170	157	19 9	175	175	20 2	167	146	ĩ9 7	173	169	20 1	-		-

48MA/50ME024

OUTD	OOR	OR.											T	OTA	L UN	IT C	FM					-	-		***			•
Al		6,000												-	7,50					1				9,00	0		-	
TEA		Outdoor Air Cfm												Outd	oor A	ir Cfr	n						Outd		ir Cfn	n		
	r-		0		١.	750		ļ.,	1500	, ,]		0			750			1500)	ĺ	0		1	750			1500	
. DP	Wb	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Κw	тс	SHC	Kw	TC	SHC	Kw	тсі	SHC	Kw	тс	SHC	Kw	TC	SHC	1 1 1
85	65 70	227 227	159 159	19 2 19 2	232 236	168 164	19 5 19 7		176 167	19 6 20 0			19 6 19 6	240 243		19 9 20 1	242 248		20 0 20 3		194 194	19 9 19.9	245	203	20 2 20 4	248	211	20 3
90	65 70 73 75	222 222 222 222 222	157 157 157 157 157	20 0 20 0 20 0 20 0 20 0	231 233	170 166 164 162	20 3 20 5 20 6 20 7	229 235 239		20 4 20 8	229 229 229	175 175 175	20 4 20 4 20 4 20 4 20 4	235 238 240	188	20 7 20 9 21 0 21 1	237 242	200 191	20 9 21 2 21 4	: :	192 192 192	20 7 20 7 20 7	240 243	205 201 199	21 0 21 2 21 3 21 4	243 247	209 203	20 6 21 2 21 4 21 6 21 7
95	65 70 75 78 80	217 217 217 217 217 217	155 155 155	20 8 20 8 20 8 20 8 20 8 20.8	225 229 232	172 168 164 161 159	21 1 21 3 21 5 21 7 21.8	225 230 237 241 244	187 179 170 164 160	21 3 21 6 22 0 22 2 22.4	224 224 224	173 173 173 173 173	21 2		190 186 182 179 177	21 7 21 9 22 1	233 236 242 246 249	197 188	2i 7 22 0 22 3 22 5 22.7	229 229 229 229 229	190 190 190 190	21 5 21 5 21 5	235 237 241 243	207 203 199 196 194	21 9 22 0 22 2 22 3 22.4	238 241 247	222 214 205	22 0 22 2 22 6 22 8
100	70 75 78	212 212 212	153	21 6 21 6 21 6	1 1	170 166 163	22 1 22 3 22 5		176	22 3 22 7 23 0	219	171 171 171	22 0 22 0 22 0	227 230 232	188 183 181	22 5 22 7 22 9	236	203 194 188		224 224	188 188	22.3 22.3 22.3	231 234	205	22 8 23 0			23 1 23 3 23 6
105	70 75	207 207		223 223	215 218	172 167	22 8 23 1	219 225	191 182	23 1 23 5	214 214	169 169	22 8 22 8		190	23 3 23 5	226	208	23 6 23 9	218	rm= 1	23 1	226 228		23 6 23 7	230	225	23 9 24 1
110	78	202	149	23 0	215	166	23 9	223	182	24.5	208	167	23.5	220		24.3	4.4		24.9		!	23.8		!	24.6			
115	75	197	147	23 7	207	171	24 5	214	193	25.0	203	165	24 2	212	189	24 9			25.4	207		24 5	: :	100	25.2	222	222	<u>2</u> 5 6 .

48MA/50ME028

OUTD						ã,ōo)				1	•	Ţ		L UN	IT C	FM			ı				-	•	•		-
Ali Te <i>n</i>							ir Cfm	1	-			-			e telline e	ir Cfm	 1		-		-			12,00 or A				
		Į	0		ļ.,	1000			2000			0		1	1000			2000		ĺ	0		1	1000		1	2000	
DЬ	Wb	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	тс	SHC	Κw	İtci	SHC	
85	65 70	290 290	207 207	25 4 25 4		218 213	25 7 26 0	299 307	228 217	25 8 26 3		230 230	25 9 25.9	306	111	26 2 26 4		WE	26 3 26 7	306	252 252	26 2	313		26 6 26 8	315	274 263	26 7
90	65 70 73 75	284 284 284 284	204 204	26 3 26 3 26 3 26 3	290 295 298		26 7 26 9	292 300 305	236 225 218 212	26 8 27 2 27 5 27.7	293 293 293	227 227 227 227 227	26 8 26 8 26 8 26 8	299 303 306	244	27 2 27 4 27 6 27 7	301 308	260	27.3 27.7 27 9 28 1	299 299	249 249 249 249	27 2 27 2	305 309 312	267 261 258 255	27 5 27 7 27 9 28 0	308 314 318	282 271 264 259	27 7 28 0 28 2 28 4
95	65 70 75 78 80	277 277 277 277 277	201 201 201	27 3 27 3 27 3 27 3 27.3	288 292 295	224 218 212 208 206	27 6 27 9 28 2 28 4 28 5	292 301 306	244 233 220 212 207	27 7 28 2 28 7 29 0 29 2	286 286 286	225 225 225 225 225 225	27 8 27 8 27 8 27 8 27 8 27 8	296 300	247 242 236 232 229	28 1 28 4 28 6 28 8 28 9	307	267 256 244 236 231	28 3 28 6 29 1 29 3 29 5	292 292 292	247 247 247 247 247	28 2 28 2 28 2 28 2 28 2	298 301 305 308	269 264 258 254 251	28 5 28 7 29 0 29 1 29 2	300 306	289 279	28 6 29 0 29 4
100	70 75 78	271 199 28 2 280 221 28 8 285 241 29 271 199 28 2 285 215 29 1 293 228 294 271 199 28 2 288 211 29.3 298 220 30 0									279 279	222 222 222	28 7 28 7	288 292 295	244 238 234	29 3 29 6 29 8	292 299	264 252 244	29 6 30 0 30 3	285 285	244 244 244	29 1 29 1 29 1	294 298 300	266 260 257	29 7	298 304 –		29 9 30 3
105	70 75	264 196 29 1 273 224 29 7 277 248 30 0										219 219	29 7 29 7	281 285	241	30 3 30 5	285 291		30 5 31 0	278 278	241 241	30 1 30 1	286 290	269 263	30 6 30 9			30 9 31 3
110 115	78 75	258 251		30.0 30.8	- }	100	31.2 31.8			31 8 32 3		217 214	30.6 31.4	280 270			288		32.2	270	239	31 0	284	262	32 0			
		1201	21	500	203	. 223	310	[2/0]	252	JZ 3	256	214	514	2/0	240	32.3	276	275	32 8	263	236	31.8	2/4	268	32 6			_

COOLING CAPACITIES 48MA/50ME030

		TOTAL													CFM										
OUT			10-L FT 44				8,0	00				****	, , , , , , , , , , , , , , , , , , ,						10,0	00	-	inh SSMent Ter	We scale on	por 1 200 A	
Al						Out	door A	Air C	fm									Ou	tdoor	Air C	:fm				
TE	MP		0			1000		1	2000		l .	2500			0			1000	-AGT 800 01 1		2000	A1. 1		2500	144 - 559
DЬ	Wb	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw ,
85	65	319	218	31 0	329	231	31.6	332	241	31 8	332	246	319	330	241	31 7	340	255	32.4	343	265	32 6	344	269	32.6
	70	319	218	31.0	334	226	32.0	341	230	32.4	343	232	32 5	330	241	31.7	345	249	32 7	351	254	33 1	353	256	33.2
	65	312	215	32 1	321	233	32.7	325	249	33.0	326	256	330	323	238	32 9	332	257	33 5	336	272	33 7	337	279	33 8
90	70	312	215	32.1	327	228	33 1	333	238	33 5	335	242	33 6	323	238	32 9	337	25 2 248	33.8	343 348	261 254	34.2 34.5	345	266 257	34.3 34.7
	73	312	215	32.1 32.1	330	225 222	33.3	338	230 225	33 9 34 1	341 346	233	34 1 34 4	323 323	238 238	32.9	340	246	34.0 34.1	351	249		354	250	34.9
45 8070.7			Amendment of	EPERMANEN TO	range debug				-			THEORY IN CO.	34 2	316	236	34.0	325	259	34.6	329	279		1330	289	35 0
	65 70	306	212	33 2 33 2	315 319	236	33.8 34.2	318	256 245	34.1	319	257 252	34 2	316	236	34.0	329	254	34.9	335	269	35.3	336	275	35 4
95	75	306	212	33.2	325	225	34.2	334	233	35 2	338	237	35 5	316	236	34 0	334	248	35.2	342	257	35 8	346	261	36 0
7.5	78	306	212	33.2	328	221	34 8	340	225	35 6	344	227	35.9	316	236	34 0	337	244		348	249	36 2	351	251	36.4
	80	306	212	33 2	331	218	35.0	344	219	35 9	349	220	36.3	316	236	34 0	339	241	35 6	351	243	36.4	356	244	36 7
	70	299	210	34 3	311	233	35 2	318	253	35 7	320	262	35.8	309	233	35 0	321	256	35 9	327	276	36.4	329	285	36.5
100	75	299	210	34 3	317	227	35 6	326	241	36 3	329	247	36 6	309	233	35 0	326	250	36.3	334	264	36 9	337	271	37 1
	78	299	210	34.3	320	223	35 9	332	233	36.7	336	237	37 0	309	233	35 0	329	246	36.5	339	256	37.3	343	261	37 6
105	70	292	207	35 3	304	235	36.2	311	260	36.8	313	272	37 0	302	230	36.1	314	258	37.0	320	283	37 5	322	295	37 7
103	75	292	207	35.3	309	229	36 6	3 18	248	37.3	321	257	37 6	302	230	36 1	318	253	37.3	326	272	37 9	328	280	38.2
110	78	266	201	35.6	305	228	37 9	316	248	38 8	319	258	39 1	295	227	37 1	313	251	38 6	322	272	39 3	326	281	39 6
115	75	261	198	35.5	295	234	38 5	304	263	39 3	308	277	39 7	288	225	38 0	303	258	39 2	311	286	40.0	315	300	40 3

												TOT	TAL U	NIT (CFM										
OUTD		~				4	11,0	000								-	•	-	12,0	000	-				
Al		ľ				Ou	tdoor	Air C	fm.									Οu	tdoor	Air C	fm				
TE	AP.		Õ		i	1000			2000		1	2500			0			1000			2000			2500	
Db	Wb	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Κŵ	TC	SHC	Kw	TC	SHC	Κw	TC	SHC	Kw
85	65 70	335 335	252 252	32 0 32 0	344 349	266 260	32.6 32.9	348 355	276 265	32.8 33 3	348 357	280 267	32 9 33 4	338 338	263 263	32 2 32 2	348 352	277 271	32.8 33 1	35 1 358	287 276	33 1 33.5	352 360	291 278	33 1 33.6
90	65 70 73 75	327 327 327 327 327	249 249 249 249	33 ī 33 ī	336 341 344 346	268 263 259 257	33 7	340 347 351 354	283 273 265 260	34 0 34 4 34.7 34 9	342 348 354 357	290 277 268 262	34 1 34 5 34.9 35 1	331 331 331 331	260 260 260 260	33 4 33 4 33 4 33 4	340 344 347 349	279 274 270 268	34.0 34.2 34.4 34.6	344 350 354 357	294 284 276 272	34.6	345 352 357 360	301 288 279 273	34.3 34.7 35 1 35 3
95	65 70 75 78 80	320 320 320 320 320 320	247 247 247 247 247 247	34 2 34 2 34 2 34 2 34.2	329 333 338 341 343	270 265 259 255 253	35 7	334 338 346 350 354	290 280 268 260 255	35 2 35 5 36 0 36.4 36.6	335 340 349 354 358	299 286 272 262 255	35 3 35 6 36.2 36.6 36.9	323 323 323 323 323 323	257 257 257 257 257 257	34 5 34 5 34 5 34 5 34 5 34.5	333 336 340 343 345	281 276 270 266 264	35.1 35.4 35.7 35.9 36.0	337 341 348 353 356	301 291 279 271 266	35.7 36.2	338 343 351 356 -	310 298 283 273	35 5 35 8 36 4 36.8
100	70 75 78	313 313 313	244 244 244	35 3 35 3 35 3	325 329 332	267 261 258	36.2 36.5 36.8	331 337 342	287 275 268	36 6 37 1 37.5	333 340 345	296 282 272	36 8 37 3 37 7	316 316 316	255 255 255	35.6 35.6 35.6	328 332 335	278 272 269	36.4 36 8 37 0	334 340 344	298 286 279	36.9 37 3 37 6	336 342 347	307 293 283	37.0 37.5 3 7 .9
105	70 75	306 306	241 241	36 4 36 4	317 321	270 264	37 3 37 6	323 329	294 283	37 8 38.2	326 331	306 291	37.9 38.4	309 309	252 252	36 6 36 6	320 324	280 275	37.5 37 8	326 331	306 2 94		328 334	316 302	38.2 38.6
110	78	298	238	37.3	316	262	38 8	325	282	39 5	328	292	39 8	301	249	37.6	319	273	39.0	327	294	39 7	-		
115	75	292	236	38 3	306	269	39.5	314	297	40 2	317	311	40 5	295	247	38.5	309	280	39 7	316	308	40 5	319	319	40 7

Kw - Compressor Motor Power Input
 SHC - Sensible Heat Capacity (1000 Btuh)
 TC - Total Capacity (1000 Btuh)

NOTES: 1. No values are given where unit cannot maintain the assumed room design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content.

2. Ratings are gross and do not include fan motor heat deduction.

COOLING CAPACITIES 48MA/50ME034

OUT	OOD											ТО	TAL	TINU	CFM										
Al							10,	000						Ţ					11,	000					
TE						0.	ıtdoor	Air C	Cfm .					1				0.	tdoor	Air (Cfm				
			0		1	1000			2000)		3000)	j	0]	1000		γ	2000)	7	3000)
DЬ	ΜP	TC	SHC	Kw	ТС	SHC	Kw	TC	Kw.																
85	65	343	247	30 1	352	260	30 5	356	271	30 9	358	281	30 8	349	259	30 4	357	272	30 8	361	283	31 0	363	292	31 1
0.5	70	343	247	30, 1	357	255	30.8	365	260	31.2	370	264	31.4	349	259	30 4	362	267	31 0	369	272	31.4	374	276	31.6
	65	336	244	31 2	344	262	31 6	352	282	32 1	355	297	32 2	341	256	31.5	349	274	31 0	357	294	32 3	360	309	32.5
90	70	336	244	31.2	349	257	31 9	357	268	32 3	361	277	32 5	341	256	31.5	354	269	32 1	361	279	32 5	365	289	32 8
	73	336	244	31 2	352	254	32 1	362	261	32 6	369	266	32 9	341	256	31.5	357	266	32.3	366	272	32 8	372	278	33 1
	75	336	244	31 2	355	252	32 2	366	256	32.8	374	259	33 2	341	256	31.5	359	263	32 4	370	267	33 0	377	271	33 4
	65	328	241	32 3	339	267	32 9	345	289	33 3	348	309	33 4	333	253	32 6	344	279	33 2	350	301	33 5	353	321	33 7
95	70 75	328 328	241	32 3	341	259	33 0	348	275	33 4	352	290	33 7	333	253	32 6	345	271	33 3	352	287	33 7	356	301	33 9
73	78	328	241 241	32 3 32 3	346 350	254 250	33 3 33 5	357 363	263	33 9	365	272	34 4	333	253	32 6	350	265	33 6	360	275	34 1	368	283	34 6
	80	328	241	32.3	352	247	33 5 33 7	367	255 250	34 3 34 5	373 378	260 252	34 8 35 1	333	253 253	32 6	354	261	33 8	366	267	34 4	376	272	35 0
'	70	320	238	33.5	332	261	34 2	342				***				32 6	356	259	33 9	370	261	34 7	381	264	35 3
100	75	320	238	33.5	337	256	34 2	348	286 270	34 8 35 1	348 355	305 284	35 1 35 5	325 325	250 250	33 7 33 7	336 341	273	34 4	347	298	35 0	352	317	35 4
	78	320	238	33.5	341	252	34.7	353	263	35.4	363	273	36.0	325	250	33 7	341	267 263	34 7 34 9	351 356	282 274	,	358	296	35 7
	70	312	235	34 6	326	266	35 5	335	293	36 0	340	318	36 4	317	246	34 8	t					35 6	365	284	36 2
105	75	312	235	34.6	328	258	35 6	338	278	36 2	345	297	36 7	317	246	34 8	330 332	278 269	35 7 35 8	338 341	305 289	36 2 36 4	344	329	36 6
110	78	304	232	35 6	323	256	36 9	334	777	37 7	343	298	38 3										348	308	36 9
115	75	296	229		323 311						m				243	35 9	326	268	37 1	337	289	37 9	345	309	38 4
113	/5	240	229	36 6	İaml	262	37 7	325	296	38 7	332	325	39 3	300	240	36 9	314	273	37 9	327	308	38 9	335	335	39 5

		1									_							Aur							
OUT	MAD	1			_							TO.	TAL U	INIT	CFM										
A							12,0	000						Ĭ			-		13,	000					
TE						Ö	ıtdoor	Air C	Cfm .					i	_			O	itdoor	Ăir (Cfm	-			-
1 =	MI I]	Ö	/	1	1000)	ĺ	2000	,		3000		-	0		ı -	1000		1	2000			2500	 -
DЬ	WЬ	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	İŤĊ	SHC	Kw	ŤĊ	SHC	Kw	ΤĊ	SHC	Ŕw	ΤĈ	SHC	ľĸw	To	SHC	l Kw
85	65	353	270	30 6	361	283	310	365	294	31 2	367	304	31 3	357	281	30 8	365	294	31.2	369	305	31 4	370	310	31.4
85	70	353	270	30.6	366	278	31.2	373	283	31 6		287	ľ	357	281	30 8	370	289	31 4	377	294	31.7	379	296	31 4
•	65	345	267	317	353	285	32 1	361	305	32 5	365	320	32 7	349	278	31 9	356	296	32 3		316	32 7	367	- 1	4 (4.2
90	70	345	267	31.7	358	280	32 3	365	291	32 7	369	300	32 9	349	278	31 9	361	291	32 5	368	302	32 9	370	324	32 8 33 0
70	73	345	267	31 7	361	277	32.5	370	283	33 0	376	289	33.3	349	278	31 9	364	287	32 7	373	295	33 1	376	298	33 3
	75	345	267	31.7	363	274	32 ი	373	279	33 2	381	282	33.5	349	278	31 9	366	285	32 8	376	290	33 3	380	291	33 5
	65	337	264	32 8	348	290	33 4	354	312	33 8	357	332	33 9	340	275	33 0	352	301	33 6	357	323		359	333	34 1
	70	337	264	32 8	349	282	33 5	355	298	33 9	359	312	34 1	340	275	33 0	352	293	33 7	358	309	34 0	360	316	34 1
95	75	337	264	32 8	354	276	33 8	363	286	34 3	371	295	34 7	340	275	33 0	357	287	33 9	366	297	34 5	370	301	34 7
	78	337	264	32 8	357	272	34 0	369	278	34 6	378	283	35 1	340	275	33 0	360	283	34 1	371	289	34 7	376	292	35 0
	80	337	264	32 8	359	270	34.1	373	273	34 8				340	275	33 0	362	281	34 2	375	283	34 9	-		_
100	70	329	261	34 0	340	284	34 6	350	309	35 2	356	328	35 6	332	271	34 2	343	295	34 8	353	320	35 4	356	330	35 6
100	75 78	329 329	261 261	34 0	345	278		354	293	35 5	361	307	35 9	332	271	34 2	347	289	35 1	356	304		360	311	35 8
				134.0	348	274		359	285	35.8	368	295	36.3	332	271	34.2	350	285	35.3	361	296	35.9	365	302	35 2
105	70 75	320	257	35 1	334	289	35 9	342	316	36 5		340		323	268	35 3	337	300	36 1	345	327		348	339	36 8
		320	257	35 1	335	280	10 to 00	344	300	36.6		319	37 0	323	268	35 3	338	291	36 2	346	311	36 7	350	321	37 0
110	78	312	254	36 1	329	278	37 3	339	300	38 0	-			315	265	36 4	332	289	37 5	341	311	38 2	_		
115	75	304	251	37 2	317	284	38 1	330	319	39 1	337	337	39 6	306	262	37 4	319	295	38 3	332	333	39 3	336	336	39.5
		,		•	•	. ,				•	, ,						,	. I		J			l		

COOLING CAPACITIES 48MA/50ME040

												TOT	AL U	NIT	CFM						_				
OUTD							11,0	000											12,0	00	-				,
Al						Qυ	tdoor	Air C	fm									Οu	tdoor	Air C	fm				1
TE	AP '		0		[1000		ſ <i>-</i>	2000		1	3000		[0			1000			2000			3000	
DЬ	WЬ	тс	SHC	Kw	Tc	SHC	Kw	тс	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw		SHC	Kw
	65	378	256	37 1	417	292	39 5	434	314	40 8	440	327	413	381	263	_,	421	300	39 7	438	324	41 0	445	338	41 5
85	70	378	256	37 1	424	288	40 0	446	304	41.5	456	312	42 3	381	263	37 4	427	296	40 1	451	314	41 7	462	324	42 5
	65	377	259	38 8	411	297	41 1	425	322	42.3	429	338	43 0	380	266	-	415	305	41 2	431	334	42.5	436	351 336	43 1 44 0
90	70	377	259	38 8	419	293	41 6	436	312	43 0	444	323	43 8	380	266	39 0 39 0	422 429	302 302	41 7	442 449	323	43.2	450 460	326	44.6
,,	73	377	259	38 8	425	292	42 0	445 453	306 303	43 5	454 460	313	44 4	380 380	266 266	39 0	433	302	42 3	459	317		469	320	45 0
	75	377	259	38 8	431	292	42 2						44 6	379	269	40 6	409	311	42 8	423	343	44 1	428	364	44 8
	65	376	262	40 5	405	302 298	42 6	416 427	330 319	43 8 44 5	418	350	45 3		269	40 6	417	308	43 3	433	332	44 7	438	348	45 5
95	70 75	376 376	262 262	40 5 40 5	413 421	298	43 8	438	308	45 5	444	316	46 5		269	40 6	425	305	44 0	444	322	45 7	452	330	46 7
93	78	376	262	40 5	426	292	44 2	446	301	46.1	455	305	47 2	379	269	40 6	430	302	44 4	452	314	46 2	462	318	47 3
	80	376	262	40 5	1 1	290	44 4	450	295	46 3	463	297	47 6	379	269	40 6	434	300	44 6	456	308	46 5	468	310	47 8
	70	372	263	42 1	404	301	44 7	413	325	46.2	414	343	47.1	375	270	42 3	408	312	44 9	419	338	46 4	421	356	47 4
100	75	372	263	42 1	412	297	45 4	423	313	47 1	429	326	48 1	375	270	42 3	416	309	45 6	429	327	47.4	435	339	48 3
,	78	372	263	42 1	418	295	45.9	431	306	47 6	438	315	48 8	375	270	42 3	424	307	46.2	437	319	47 8	I	328	49 0
	70	368	263	43 7	395	304	46 3	399	331	47 9	399	352	48 9	371	272	43 9	399	316	46 4		344	48.1	406	364	49 2
105	75	368	263	43 7	402	300	47.1	408	319	48 8	413	336	49 8	371	272	43.9	407	312	47.3	414	332	49.0	418	349	50 0
110	78	361	262	45 3	394	297	49.3	399	315	511	406	335	52 3	365	271	45 5	399	310	49 5	404	328	514	410	347	52 5
115	75	354	261	46.9	377	301	50.5	376	327	52 4	377	351	53 9	358	270	47 1	384	314	50 7	384	340	52 7	384	363	54 1
110	L	1		1	Ţ		J	L		l	J		£ .	1			ı			٠.,	ļ				

												TOT	TAL U	NIT (CFM										
OUTD							13,0	000											14,0	****					
Al				-		0.	tdoor	Air C	fm									Ou	tdoor	Air C	fm				
TE	AP	- `	- 0			1000			2000			3000			0			1000			2000			3000	<u></u>
DЬ	Wb	TC	SHC	Kw	TC	SHC	Ќw	TC	SHC	Κw	ΤĊ	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw	TC	SHC	Kw
	65	384	268	37 5	422	305	39 7	441	332	41 1	448	347	41.6	387	278	37 6	422	311	39 7	444	340	41 2	452	356	41 7
85	70	384	268	37.5	431	304	40.3	454	323	41.8	465	333	42.6	387	278	37.6	435	310	40.5	457	331	41.9	468	342	42.7
	65	382	271	39 0	417	312	41 3	434	342	42 7	440	360	43 3	383	275		418	320	413	437	351	42 8	444	370	43 4
90	70	382	271	39 0	425	311	41.9	445	332	43 3	454	346		383	275	39.0	429	320	42 1	448	342	43 4	458	356	44 2
70	73	382	271	39 0	432	310	42 3	453	328	43 8	464	337	44 7	383	275	39 0	435	320	42.5	456	337	43 9 44 2	467 478	348 344	44 9 45 2
	75	382	271	39 0	436	309	42 4	462	326_	44]	474	332	45 1	383	275		439	316	42.5	464	336		* ***		
	65	380	274	40 6	412	318	42 9	427	352	44 3	432	374	45 0	380	278		414	327	42 9 43 7	430 440	362 352	44 4 45 0	437 448	385 370	45 1 45 8
	70	380	274	40 6	420	317	43 5	436	342	448	443	359 342	45 7 46 8	380 380	278 278	40 5 40 5	423 431	326 321	44 2		343	45 9	46 1	354	46 9
95	75	380	274	40 6	428	313	44 1	448 455	332	45 8 46 3	457	330	40 8	380	278	40 5	437	320	44 7		335	46 4	470	342	47 5
	78 80	380	274 274	40 6 40 6	433	309	44.7	461	319	46.7	472	322	47 9	380	278	40 5	440	318	44 8	465	331	47 0	476	334	48 0
	70	377	277	42.4	411	321	45 0	424	349	46 6	426	367	47 5	379	284	42 5	414	330	45 2	429	359	46 7	432	379	47 7
100	75	377	277	42.4	419	317	45 7	433	338	47 5		351	48 5	379	284	42 5	422	326	45 9	438	349	47 6	444	363	48 6
100	78	377	277	42.4	427	316	46.3	441	331	47.9	449	340	49.1	379	284	42.5	429	325	46.4	446	342	48.1	454	352	49.2
	70	375	280	44 2	402	324	46 6	412	356	48 3	412	376	49 4	378	289	44 4	405	333	46.7	418	367	48.3		387	49 6
105	75	375	280	44 2	410	322	47 4	419	344	49 2	423	361	50 2	378	289	44 4	413	331	47 5	425	355	49 3	428	373	50 3
110	78	368	279	45 7	403	321	49.6	408	339	515	415	359	52 6	371	287	45 9	408	332	49 7	413	351	517	419	370	52 7
115	75	360	278	47 2	389	325	50 9	389	352	52 8	390	374	54 3	363	286	47 4	394	337	510	394	363	52 9	396	385	54 5
113	1.0	1.200	-/-	l.'' ~	1007		1-2,	1]	1	1	1	,	1	i	ļ		ı		١	l .	Į.		•	

Kw - Compressor Motor Power Input
 SHC - Sensible Heat Capacity (1000 Btuh)
 TC - Total Capacity (1000 Btuh)

NOTES: 1. No values are given where unit cannot maintain the assumed room design relative humidity since the moisture content of the air leaving the unit is higher than the assumed room moisture content.

2. Ratings are gross and do not include fan motor heat deduction.

Performance data

FAN PERFORMANCE

UNIT					EXTE	RNAL ST	ATIC PRI	ESSURE (in. wg)			
48MA/	CFM	0.2	0.4	0.6	0.8	1.0	1.2	ï.4	1.6	1.8	2.0	2.2
50ME	Ci m						Fan Rpm					
				,a==aaa===		~~~~	Bhp					
	5,000	-	! -	740	810	880	945	1005	1060	1100	11160	1 1215
							3.0	3.4	3.8	4.2	4.7	5.0
	6,000	I -	710	790	865	935	1 1000	1 1050	1 1100	1155	1 1215	1 1255
			-	-	3.0	3.3	3.9	4.3	4.7	5.1	5.8	6.2
016	7,000	700	780	• • • •	920	i 975	1045	1100	1 1150	1205	1270	l _
and	·		3.0	3.5	4.0	4.4	4.9	5.3	5.9	6.7	7.4	
024	8,000	765	830	7.0	990	I 1040	1100	, , , , ,		1260	<u>-</u>	<u> </u>
		3.6	4.0	4.5	5.0	5.5	6.3	7.0	7.7	8.2		<u>.</u>
	9,000	000	900	,,,	1050	1100	1150	1200	1 1260	· –	ļ —	J
		4.9	5.5	6.1	7.0	7.4	8.0	8.7	9.3		:	
	9,600	870	1 950	1020 1	1075	1 1130	1 1190	I 1240	1290	1 –	_	! -
	~	6.0	6.6	7.4	7.9	8.5	ييك	2.8	10.2	<u>.</u>	<u> </u>	<u> </u>
	7,000	l _	_	!	900	l 955	1040	1060	1110	1160	1200	1250
,		~	·	~	_			5.0	5.9	6.3	6.9	7.5
	8,000	-		920	950	1 1010	1060	11115	1 1160	1210	1250	_
	-,,,,,,,			_		5.0	5.5	6.0	6.6	6.9	6.2	
028	9,000	· –	910	960	1020	l 1065	1120	l 1165	1210	1250	l <u> </u>	_
and	7,000	~	-	~	5.4	6.0	6.5	7.0	0.8	9.0	10.0	
030	10,000	910	970	1030	1075	1125	1075	1220	1270	<u> </u>		
030	10,000	_	5.4	6.0	6.4	7.0	7.7	8.6	10.0	-		_
Ì	11,000	ı 980	1040	1090	1145	1 1190	l 1235	I 1280	l –	i _	ï _	
	11,000	6.0	6.5	7.0	7.6	8.6	9.8	11.0	-	-		
	12,000	1 1050	1105	1160 -	1200	1260	i –	Ī _	Ī _	_	_	
	12,000	7.0	7.7	8.8	10.0	11.0	-	<u> </u>	-			<u> </u>
	8,000	l _	_	900	940	975	1 1010	1040	1070	!!!10	l 1155	1 1200
	8,000	~	****			~			-		<u> </u>	: -
	9,000	900	930	960	1 000	1 1030	1 1070	1 1105	1145	1190	1220	1 1250
4.0	9,000		_	· ~			_	~	~	9.9	10.8	11.8
034	10,000	970	1 1000	1030	1070	1105	l 1145	1 1180	1210	1250	1280	1320
and	10,000	~	~~		_	- `	9.8	10.5	11.2	12.1	13.0	14.0
040	11,000	1045	1 1080	1115	1150	1180	1220	1250	1280	1320	1 1350	1380
	11,000		~	9.9	10.6	11.3	12.1	13.0	13.8	14.5	15.3	16.5
	12,000	1 1130	1 1160	1195	1230	1260	1295	1330	1360	1 1390	I 1420	I 1445
	12,000	11.2	11.9	12.6	13.2	14.0	14.7	15.3	16.2	17.3	18.2	19.0
	13,000	1210	1250	1280	1325	1350	1380	1400		1460	1480	
	13,000	14.0	14.5	15.2	16.0	17.0	17.8	18.5	19.2	20.1	21.0	_
	14.000	1315	1345	1370	1400	1435	1460	1485	Ţ	_		<u>-</u>
	14,000	17.1	18.1	18.8	19.5	20.3	21.0	21.8				

NOTES:

028 and 030 are interchangeable to permit fan operation above or below standard fan speeds

- 2 Maximum fan motor bhp is based on conditions of minimum voltage and 80 F air across motor
- 3 Fan performance has deductions for unit casing, wet coils, heaters and clean filters

INDOOR AIR FAN MOTOR DATA

TINU	мот	OR		FAN SPE	ED (Rpm)	
48MA/	MAX	BHP	Std M	otor	Opt A	Aotor
50ME	Std	Opt	Pulley A	Pulley B	Pulley A	Pulley B
016	5.75	*	880	995	_	_
024	8 60	*	995	1145	_	_
028	11.50		1095	1230	****	_
030	11.50		1095	1230	_	_
034	17.25	22.8	1095	1230	1320	1425
040	17.25	22.2	1095	1230	1320	1425

^{*}Field Supplied

¹ Italics indicate higher than standard horsepower motor is required Units 016 and 024 are shown in the same table Underlined italicized values apply to 024 only Units 016 and 024 may use 10-hp 215T (NEMA frame size) motor A larger motor may not be installed in units 028 and 030 Optional 20-hp motor for units 034 and 040 has 256T frame Motor drives on units 024,

Performance data

FILTER RESISTANCE (in. wg)

TYPE	1	rs 50M 4 AND		-	S 50ME 4 AND 0	
FILTER		CFM			CFM	
	6000	8000	10,000	10,000	12,000	14,000
Standard	.025	044	069	069	099	150
Hi Efficiency	.024	043	069	069	099	150
Roll Filter	120	220	020	110	015	280

ELECTRIC HEATER PERFORMANCE

UNIT 50ME	HEAT-TO- COOL RATIO	TOTAL HEATER KW	STEPS OF HEAT PER MODULE	KW/STEP PER MODULE
016	75:1	53	2	3 3
&	1:1	70	2	44
024	151	106	3	4 4
028	75 1	66	2	3 3
&	1:1	88	2	4 4
030	151	132	3	4 4
034	75 1	79	2	3 3
&	1:1	106	2	4 4
040	151	158	3	4 4

GAS HEATING CAPACITIES (1000 Btuh)

		IN.	IPUT	ВО	NNET CAPACITY
\rightarrow	UNIT 48MA	Total	Each Zone	Total	Each Zone Module
			Module		Full
	016	432		324	
	024	432		324	
	028	540	54	405	40 5
	030	540	54	405	40.5
	034	648		486	
	040	648		486	

- 1 Ratings are approved for altitudes to 2000 feet. At altitudes over 2000 ft, ratings are 4% less for each 1000 ft above sea level.
 2 At altitudes up to 2000 ft, the following formula may be used to
- calculate air temperature rise

$$\Delta t = \frac{\text{bonnet capacity}}{1.09 \text{ x air quantity}}$$

3 At altitudes above 2000 ft, the following formula may be used

$$\Delta t = \frac{\text{bonnet capacity}}{\text{(24 x specific weight of air x 60) (air quantity)}}$$

4 Maximum allowable gas pressure is 10 5 in wg Minimum allowable gas pressure for full rated input is 50 in wg

5 Unit design is AGA certified

Electrical data

ELECTRICAL DATA, 48MA

UNIT MODEL	V/PH/HZ	_	rage	СО	MPRE	SSOR 1	CON	MPRE:	SSOR 2	_	UTDOC N MOT FLA		COMBUST FAN MOTOR	FA	OOR AN TOR	POV SUP Min	
_		Min	NGE Max	RLA	LRA	CB MTA	RLA	LRA	CB MTA	No. 1	No. 2	No. 3	FLA	Нр	FLA	Ckt Amps	Fuse Amps
48MA016	200/3/60 230/3/60 460/3/60 575/3/60	180 207 414 518	229 264 528 660	63 6 57 2 28 6 22 8	266 266 120 96	89 0* 80 0* 40 0 32 0		_ _ _	- - -	6 2 6.2 6 2 6 2	6 6 6 0 3 0 2.4		-	5.0 5.0 5.0 5.0	16 2 13 2 6.6 5 6	109 6 99.5 49 8 39.8	125 110 60 45
48MA024	200/3/60 230/3/60 460/3/60 575/3/60	180 207 414 518	229 264 528 660	44.4 40.0 19.9 15.7	170 170 77 62	63 0 56 0 27 8 22.0	44 4 40 0 19 9 15 7	170 170 77 62	62 0 56 0 27 8 22.0	6 2 6 2 6.2 6.2	6 6 6 0 3 0 2.4			7 5 7 5 7 5 7 5	24 0 22 0 11 0 9.0	137 5 124 8 62 2 49.4	150 150 70 60
48MA028	200/3/60 230/3/60 460/3/60 575/3/60	180 207 414 518	229 264 528 660	63.6 57 2 28 6 22.8	266 266 120 96	89 0 80 0 40 0 32 0	44 4 40 0 19 9 15.7	170 170 77 62	62 0 56 0 27 8 22.0	6 2 6 2 6 2 6.2	6 6 6 0 3.0 2.4	_ _ _ _		10 0 10 0 10 0 10.0	29 0 25 0 12 5 9.5	168 1 152 3 76 1 60.4	200 175 90 70
48MA030	200/3/60 230/3/60 460/3/60 575/3/60	180 207 414 518	229 264 528 660	63 6 57 2 28 6 22 8	266 266 120 96	89 0 80 0 41 0 33 0	63 6 57 2 28 6 22 8	266 266 120 96	89 0 80 0 41 0 33.0	6 2 6.2 6.2 6.2	6 6 6 0 3 0 2.4			10 0 10 0 10 0 10.0	29 0 25 0 12 5 9.5	187.3 169 5 84 2 67.5	200 200 100 90
	200/3/60	180	229	63.6	266	89 0	63 6	266	89 0	6 2	6.6	66	1 8	15.0 20.0	46 2 61.0	210 8 224 6	225 250
48MA034	230/3/60	207	264	57 2	266	800	57 2	266	80 0	62	60	60		15 0 20 0	46 2 59.4	188 9 200.9	200 250
40WA034	460/3/60	414	528	28 6	120	40 0	28 6	120	40 0	6 2	30	30		15 0 20.0	21 0 26 6	94.5 100.5	100 125
	575/3/60	518	660	228	96	32 0	228	96	32 0	6 2	2 4	2 4		15 0 20 0	15.4 20 0	75.6 80 6	90 100
	200/3/60	180	229	800	332	1120	80 0	332	1120	6 2	66	6.6		15.0 20.0	46 2 61 0	247 7 261 5	300 300
48MA040	230/3/60	207	264	77 0	300	106 0	77 0	300	106 0	6 2	60	60		15 0 20.0	46 2 59.4	233 5 245.5	300 300
	460/3/60	414	528	37 3	150	54 0	38 5	150	54 0	6 2	30	30		15.0 20.0	21.0 26.6	116 7 122 7	150 150
	575/3/60	518	660	31 4	120	44 0	31 4	120	44 5	6 2	2 4	2 4		15 0 20 0	15 4 20 0	95 0 100 0	125 125

CBMTA — Circuit Breaker Must Trip Amps FLA — Full Load Amps LRA — Locked Rotor Amps RLA — Rated Load Amps

*Unit has 2 mechanically interlocked circuit breakers Values are for each.

1 Combustion air fan — 115 volts

2 Outdoor fan motor is a 200/230-1-60 motor on all units

ELECTRICAL DATA, 50ME

UNIT	AND ADDRESS OF THE PARTY OF THE			COI	MPRES	SOR	CON	MPRES	SOR	-	UTDOO N MOTO		INDO		POV SUP	
MODEL	V/PH/HZ	VOLT RAI		RLA	NO. 1	СВ	RLA	NO. 2	СВ		FLA		МОТ		Min Ckt	Max Fuse
		Min	Max			MTA			MTA	No. 1	No. 2	No. 3	Нр	FLA	Amps	Amps
	200/3/60	180	229	63 6	266	89 0*		_	-	62	66		50	162	109 8 98 9	125 110
50ME016	230/3/60 460/3/60	207 414	264 528	57 2 28 6	266 120	80 0* 40 0	_		_	62	60 30	_	5 O 5 O	13 2 6 6	49 5	60
	575/3/60	518	660	22.8	96	32.0	_		_	6.2	2.4		5.0	5.6	39.6	45
	200/3/60	180	229	44 4	170	63 0*	44.4	170	62 0	6.2	66		75	24 0	138 0	150
	230/3/60	207	264	40.0	170	56 0	40 0	170	56 0	62	60		75	22 0	124 2	150
50ME024	460/3/60	414	528	199	77	27.8	199	77	278	6 2	30	-	75	110	619	70
	575/3/60	518	660	15.7	62	22.0	15.7	62	22.0	6.2	2.4		7.5	9.0	49.2	60
	200/3/60	180	229	63 6	266	89 0	44 4	170	62 0	6 2	66		10.0	29 5 26 0	168 9 151 7	200 175
50ME028	230/3/60 460/3/60	207 414	264 528	57 2 28 6	266 120	80 0 40 0	40 0 19 9	170 77	56 O 27 8	62	6 O 3 O	_	100	130	75.8	90
	575/3/60	518	660	22.0	96	32 0	15 7	62	220	62	2 4		100	10.5	60 2	70
	200/3/60	180	229	636	266	89 0	63 6	266	89 0	62	66		100	29 6	188 0	200
50ME030	230/3/60	207	264	57 2	266	80 0	57 2	266	80 0	6 2	60	_	100	260	168 9	200
SUMEOSO	460/3/60	414	528	28 6	120	41 0	28 6	120	410	6 2	30	- 1	100	130	84 5	100
	575/3/60	518	660	22 8	96	33.0	22 8	228	330	62	2.4		10.0	10.5	67.3	90
	200/3/60	180	229	63 6	266	89 0	636	266	89 0	6 2	66	66	15 0	46.2 61 0	210 8 224 6	225 250
	-		-					-					150	46 2	188 9	200
	230/3/60	207	264	572	266	80 0	57 2	266	80 0	62	60	60	200	59 4	200 9	250
50ME034						-	-						150	210	94 5	100
	460/3/60	414	528	28 6	120	40 0	28 6	120	40 0	62	30	30	200	26 6	100 5	125
			-				000		200				150	160	75.6	90
	575/3/60	518	660	228	96	32 0	22 8	96	320	6 2	24	2.4	200	21 3	806	100
	200/3/60	180	229	80 0	332	1120	80.0	332	1120	6.2	6 6	66	150	46 2	247 7	300
	200/3/00	180	223	300		1120		332	1120	. 02			200	61 0	261 5	300
	230/3/60	207	264	770	300	106 0	77 0	300	106 0	62	60	66	150	46 2	233 5	300
50ME040]	-				ļ		200	59 4	245 5	300
	460/3/60	414	582	39 3	150	54 0	39 3	150	54 0	6 2	30	30	150	21 0	116 7 122 7	150 150
	· –			-				-			-		150	16.0	95 0	125
	575/3/60	518	660	31 4	120	44 0	31 4	120	44 0	6 2	2 4	2 4	200	21 3	100 0	125
	F	1	I	1	I	1	I	I	1.	1 -	I	1	1 -	1.		1

CBMTA — Circuit Breaker Must Trip Amps FLA — Full Load Amps LRA — Locked Rotor Amps RLA — Rated Load Amps

*Unit has 2 mechanically interlocked circuit breakers Values are for each NOTE Outdoor air fan motor is a 200/230-1-60 motor on all units

Electrical data (cont)

ELECTRIC RESISTANCE HEATER DATA

UNIT 50ME	VOLTS (3-Ph 60-Hz)	ELEC HEAT KW (Unit Total)	HEATING ELEMENTS PER ZONE MODULE	FULL LOAD AMPS PER HEATING ELEMENT	CB MTA EACH ZONE MODULE	MAX FUSE AMPS EACH CIRCUIT	MIN WIRE AMPS EACH CIRCUIT
	200 230 460	53 53 53	2	16 5 14 4 7 2	52 52 45	200 175 90	190 5 165 6 82 9
016 and 024	200 230 460	70 70 70	2	22.0 19 2 9 6	52 52 45	300 225 125	254 0 220 9 110.5
024	200 230 460 575	106 106 106 106	3	22 0 19 2 9 6 7 7	52 52 45 45	200 175 175 150	190 5 165.8 165 8 132 5
	200 230 460	66 66 66	2	16 5 14 4 7 2	52 52 45	250 225 110	238 1 207.1 102.8
028 and 030	200 230 460	88 88 88	2	22 0 19 2 9 6	52 52 45	350 300 150	317.3 276 1 138 0
	200 230 460 575	132 132 132 132	3	22 0 19 2 9 6 7 7	52 52 52 45 45	250 225 225 225 175	238.3 207.1 207.1 165.6
	200 230 460	79 79 79	2	16 5 14 4 7 2	52 52 45	300 250 125	285 9 248 5 124 3
034 and 040	200 230 460	106 106 106	2	22 0 19 2 9 6	52 52 45	200 175 175	190.5 165 1 165 6
04 0	200 230 460 575	158 158 158 158	3	22 0 19 2 9 6 7 7	52 52 45 45	300 250 250 200	285 9 248 5 248 5 198 8

CB MTA - Circuit Breaker Must Trip Amps

NOTE: Terminal boards provided for heater power wire connections are suitable for use with copper or aluminum wire.

POWER WIRING DATA

UNIT	VOLTS (Nom)	KW (Unit Total)	MINIMUM CKT AMP				•			KW	MINIMUM CKT AMP			
			Cooling	Heating Gircuit		Common	TINU		VOLTS (Nom)	(Unit Total)	Cooling	Heating Circuit		Common
			Cooling									1 1	2	
50ME016	200 230 460	53 53 53	109 8 98 9 49 5	190.5 165.6 82.9	- - -	206 7 181 7 90.9		15 Hp IFM	200 230 460	79 79 79	210 8 188 9 94 5	285 9 248 5 124.3		353.8 313.2 156.7
	200 230 460	70 70 70	109.8 98.9 49.5	254.0 220.9 110 5	-	270.2 234 l 117.1		20 Hp IFM	200 230 460	79 79 79	224 6 200 9 100 5	285.9 248 5 124.3		367.6 325 2 162.7
	200 230 460	106 106 106	109 8 98 9 49.5	165 8 165 8	190.5 165.8 —	397.2 344 8 172.4		15 H _P IFM	200 230 460	106 106 106	210 8 188 9 94.5	190 5 165.1 165.6	190.5 165 1 –	427.0 369.8 185.4
50ME024	575 200 230	53 53	39.6 138 0 124 2	132.5 190.5 165.6	_ _ _	138 1 233.3 207.0		20 Hp IFM	200 230 460	106 106 106	224 6 200 9 100.5	190.5 165 1 165.6	1	442 0 383.2 192.2
	200 230 460	53 70 70 70	138 0 124 2 61 9	254 0 220.9 110 5	- -	103 4 278 0 242.9 121 5		15 Hp IFM	200 230 460 575	158 158 158 158	210.9 188.9 94.5 75.6	285 9 248 5 248.5 198.8	285 9 248.5 — —	617 8 536.6 268 3 214 8
	200 230 460 575	106 106 106 106	138 0 124 2 61 9 49 2	190.5 165.8 165.8 132.5	190 5 165.8 — —	405.0 353 6 176.8 141.5		20 Hp IFM	200 230 460 575	158 158 158 158	224 6 200 9 100 5 80 6	285 9 248.5 248 5 198.8	285.9 248.5 —	632 8 550 0 275 1 220.1
50ME 028	200 230 460	66 66 66	168 9 151.7 75.8	238.1 207.1 102 8		288.0 255.2 127.2	50ME040	15 H _P IFM	200 230 460	79 79 79	247 7 233 5 116 7	285.9 248.5 124.3	- - -	390 7 357 8 178 9
	200 230 460	88 88 88	168 9 151 7 75 8	317.3 276.1 138.0		346.8 302 1 151.0		20 Hp IFM	200 230 460	79 79 79	261 5 245 5 122 7	285.9 248.5 124.3	- - -	404.5 369 8 184 9
	200 230 460	132 132 132	168 9 151 7 75 8	238.3 207.1 207.1 165.6	238 3 207 1 —	506 1 440.2 220 1 176 1		15 H _P	460	106 106 106	247 7 233.5 116 7	190 5 165 1 165 6	190 5 165 1 -	438.2 398.6 199.5
50ME030	575 200 230 460	132 66 66 66	60 2 188 0 168 9 84 5	238 1 207.1 102.8	 - -	307.1 272.5 135.9		20 Hp IFM	460	106 106 106	261 5 245 5 122 7	190.5 165 1 165.6	165.1	452 0 410.3 205.5
	200 230 460	88 88 88	188 0 168 9 84 5	317.1 276.1 138.0		346 6 307 0 153.5		15 Hp IFM	200 230 460 575	158 158 158 158	247 7 233 7 116 7 95 0	248.5 248.5 198.8	_	628.9 565 0 282.4 227 5
	200 230 460 575	132 132 132 132	188 0 168 9 84 5 67 3	238.3 207 1 207.1 165.6	238 3 207.1 - -	506.1 445.0 222 6 177 7		20 Hp IFM	200 230 460 575	158 158 158 158	261 5 245.5 122.7 100 0	1		642.7 576 8 288 4 232.5

IFM - Indoor Air Fan Motor

General information

Where a single feeder is to be used, the cooling power tap may be sized according to the Cooling Minimum Wire Amps shown in the Power Wiring Data table provided the tap is 10 ft or less in length and enclosed in a raceway.

Similarly, the heating power tap may be sized according to the Heating Minimum Wire Amps shown in the table provided the tap is 25 ft or less in length and enclosed in a raceway.

If reheat is necessary for humidity control in all or part of the modules, use caution in sizing common feeder as heating and cooling can occur simultaneously in each reheat module.

For 200/230-volt units, line protection is internal to the unit. For 460/575-volt units, overcurrent protection must be provided in each power tap per NEC.

Electrical data (cont)

Operating sequence

When unit power is on and no zone thermostat is calling for cooling or heating, the indoor air fan and crankcase heaters are on. The outdoor air dampers are at the preset position, the burner pilots are lit and the forced-draft fan is on.

Cooling — On call for cooling from a zone, compressor no. 1 with 2 unloaders starts; a liquid line solenoid for that zone evaporator coil(s) opens and outdoor air fan motor no. 1 starts. Compressor will load or unload in response to suction pressure as required. If additional cooling is required (i.e. more zones call for cooling), compressor no. 2 (no unloaders) will be energized and cycle as required.

If the heat load is not sufficient to maintain operation of compressor no. 1 in an unloaded condition, the hot gas bypass valve will meter hot gas to the outdoor air evaporator coil to supply additional load. The Motormaster® head pressure control will vary speed of outdoor air fan motor no. 1 to regulate the airflow across the condenser coil.

As required, outdoor air fan no. 2 (and no. 3 on 034 and 040) will cycle on and off in response to head pressure via a fan cycling switch.

→ **Gas heating** — On call for heating from a zone, the gas valve is energized. The heat exchanger for that zone will be at full-rate firing. Reheat humidity control can be achieved by wiring a humidistat in parallel with the cooling thermostat. If zone temperature drops below setting of heating thermostat because humidistat is closed, heating mode will be energized to maintain zone space temperature.

Electric heating — On call for heating from a zone, the first-stage heating relay activates the first-stage contactor which energizes the first-stage heating element. On call for additional heating, the second stage of the thermostat activates the second-stage relay, contactor and heating element. If unit has 3-stage heat, the third (last) stage of heat can be energized only if the outdoor air temperature is below the outdoor air thermostat setting (adjustable). If the outdoor air temperature is above the outdoor air thermostat setting, the last stage of heat is locked out on all zone modules. The heating elements are connected so that the load on the 3-phase power supply is always nearly balanced.

Electric heat lockout — If any zone module is operating on mechanical cooling (compressor is operating as described previously) one heating element in each zone module is locked out and cannot be energized.

Hot water/glycol heating — On call for heat from a zone thermostat, the heating relay and heating coil solenoid valve for that zone are energized. If 2 or more zone modules are joined to serve a common zone, stage 2 of the heating thermostat may be used to provide staged heating capacity control.

Reheat humidity control can be achieved by wiring a humidistat in parallel with the cooling thermostat. If the zone temperature drops below setting of heating thermostat because humidistat is closed, heating mode will be energized to maintain zone space temperature.

Modulating outdoor air control (economizer) — When outdoor air temperature drops to outdoor thermostat setting (55 F adjustable), the compressors are locked out. When a zone calls for cooling, the mixed air thermostat (58 F adjustable) modulates the outdoor air dampers to permit cooling with outdoor air.

Exhaust air dampers — When unit is in economizer mode, the exhaust relay energizes the outdoor air fans at full speed. As the outdoor air dampers open and the return air dampers close in response to the mixed air thermostat, the exhaust air dampers open to permit power exhaust of returning indoor air.

Roll filter — As filter media becomes clogged, an air pressure switch activates a drive motor to automatically advance clean filter media into the return airstream. A filter light can be used to indicate that filter media roll has been expended.

Remote control panel — This central station control will operate the unit or override zone thermostat settings to lock out heating or cooling. Panel has a DAY/NIGHT switch and a damper position knob for in-space central control of these functions, and a FILTER light to indicate reduced airflow and need for clean filters.

Application data

Refrigeration system

Psychrometrics — The 48MA/50ME units differ psychrometrically from the conventional multizones due to the operation of the outdoor air coil. The coil in the Carrier units cools and dehumidifies the outdoor air entering the unit thus assuring that raw outdoor air is not passed along to the zones. This air treatment by the outdoor air coil (and also by the zone module evaporator coils) provides excellent low load performance and precise temperature control to the conditioned space. The only large load variation occurs on the outdoor air coil where a thermal expansion valve is used. This allows the use of simple capillary tube expansion devices on the zone coils. The zone coils cool and dehumidify a mixture of return air and outdoor air — outdoor air at the approximate dew point temperature of the return air.

The Psychrometric Chart illustrates this air treatment for a typical set of conditions. As an example: 1000 cfm of outdoor air at 95 F/75 F having 99 grains moisture content enters the outdoor air coil and is cooled and treated so that the air leaving the coil has 68 grains of moisture content. The outdoor air coil under these conditions has a capacity of 60,000 Btuh of which 39,000 Btuh is sensible. This is a coil sensible heat factor of 0.65. By examining the room conditions, it is evident that the outdoor air coil is very effective in removing the latent load. At 75 F/50%, the room content is 64 grains of moisture. The percent moisture removed with respect to room conditions is:

% removed
$$\frac{99 - 68}{99 - 64}$$
 x $100 = \frac{31}{35} = 88.5$ %

The 1000 cfm of outdoor air at 68 grains is mixed with 8000 cfm of return air at 75 F/50% room conditions (64 grains). This mixture then enters the zone modules and is cooled and dehumidified by the zone coil.

Heating

Gas heating system — In special applications where natural gas supply is limited, modify units to operate under derated input/output conditions. Derate the modular multizone by changing the zone module burner spuds as follows:

A A MANAGEMENT CONTRACTOR OF THE PARTY OF TH	The second sets described to the second set of the second second set of the second second second set of the second s
TOTAL MODULE DERATED INPUT (%) HIGH FIRE	SPUD SIZE ←
100	No 38
90	No 41
80	No 43
CONTRACTOR SHAPE IN THE PERSON SHAPE	es, appe ex transconneces est, spagnos, est, scolinio, o comingent establishment o

Contact Carrier Service Department before derating to the above limits.

Hot water/glycol heating system — Multizone hot water/glycol heating systems are ideal for renovation of existing buildings where a hot water heating plant is usually available. Each zone module has its own high-capacity

PSYCHROMETRIC CHART - EXAMPLE

Application data (cont)

heating coil. One connection is required for supply and return hot water/glycol. Connect external piping to the unit in accordance with existing codes. Include proper relief for water flow (the maximum allowable hot water/glycol system working pressure is 30 psi) or a modulating control to compensate for decrease in water flow rate to zone coils under partial load conditions when some coils are cycled closed. System heater coils operate with a water/glycol solution of 20% minimum glycol for proper freeze-up protection. Select and rate hot water/glycol using Hot Water/Glycol Heating Capacities graphs.

Do not install hot water/glycol on a steam system. Where steam is the only heating medium available, use a steam-to-water converter or a steam-to-water interchanger.

Field-fabricated ductwork

To simplify supply air connection, field fabricate and install a zone duct plenum. Duct plenum may be installed prior to unit positioning if desired. Zone supply air duct openings on base unit are fitted with a tab slot connection similar to those on plenum except for end partitions which are hemmed. This hem is positioned so that the 1-in. flange at the entering end of the field-fabricated plenum will force-fit between it and adjacent unit frame member.

Use standard flexible duct connections between duct plenum and duct system. Follow applicable codes.

Insulate supply air ducts passing thru unconditioned spaces and cover with vapor barrier. Separate parallel duct runs of longer than 5 ft by insulation to prevent heat transfer between zone ducts.

Return air duct connection consists of 4 sheet metal flanges.

Balancing dampers — Provide suitable balancing dampers in each zone duct run. Normally, a 2-bladed damper is preferred to a single blade. Adjust the balancing dampers to give the desired airflow and static pressures in each module. Ready access to balancing dampers is necessary in a multizone system.

Low cfm, long run zones — If possible, avoid small zones with long runs. As the cfm decreases at a given duct

HOT WATER/GLYCOL HEATING CAPACITIES (Hot Water with 20% Ethylene Glycol Solution)

- Determine zone module air quantity as described in the Selection Procedure (1000 cfm)
- 2 Enter curve at determined zone module air quantity Project left to intersect with entering air temperature curve (70 F)
- From this intersection, project up to intersect with entering water temperature (180 F)
- From this intersection, project right to intersect with Water Flow Rate (4 gpm).
- From this intersection, project down to read Zone Module Heating Capacity (49,500 Btuh)
- % GLYCOL CONCENTRATION
 When using solution mixtures above 20% glycol concentration, reduce the capacity using the correction factor

30 40

ie If 30% glycol concentration applies to the example,

0 96

Corrected Zone Module Heating Capacity

- = Zone Module Heating Capacity x Correction Factor
- $= 49,500 \times 0985$
- = 48,750 Btuh
- 7 See Module Pressure Drop graph. The Δp at 4 gpm is 8.2 psig.

MODULE PRESSURE DROP

NOTE: Greatest module pressure drop represents entire coil pressure drop.

velocity, the friction loss per 100 ft increases significantly. Also, seam and joint leakage in a small duct of long length can prevent delivery of required cfm at the outlet grille. If long runs with low cfm are inevitable, oversize the ducts to give lower velocities, lower friction rates and reduced leakage rates.

Diversity

The size, shape and orientation of the building, as well as the application and location of zones, influence the degree of diversity applied to a multizone system.

Since the normal application of multizone units involves zones where loads are shifting due to solar energy, people, equipment and lights, diversity will exist.

The Carrier modular multizones will be affected by building diversity only on refrigeration system operation. When a particular zone (or zones) thermostats are satisfied, a solenoid shuts off the zone evaporator coil. This enables more refrigerant to flow to other operating zone coils, creating a larger capacity for that zone. However, the diversity will lower the selected unit total capacities.

The 48MA/50ME ratings do not reflect diversity but can be converted to diversity ratings by using the capacity

FIELD-FABRICATED ZONE DUCT PLENUM DETAIL

Application data (cont)

correction factors and formulas in the Capacity Correction Factor table.

CAPACITY CORRECTION FACTOR (CCF)

1045	DIVERSITY FACTOR						
LOAD	1.0	90	80				
TC (Unit)	10	97	94				
SHC (Unit)	10	94	89				
CF # \$15,7000 MM	٠ ا	••••	£				
RTC (with diversity) = $\frac{[TC (CCF) - OATH]}{Diversity Factor}$							
RSHC (with diversity) = $\frac{[SHC (CCF) - OASH]}{Diversity Factor}$							

This is accomplished by rating the unit assuming that no more than 9 or 10 zones would be on at one time, 90% diversity. The same logic applies to other diversity factors on an average basis, such as 85 or 95%.

A rating with a diversity factor results in a lower room SHF, therefore, a reselection at a higher total unit cfm is advisable to take full advantage of the building diversity.

Limitations

Module cfm limits and fan performance — The cfm limits per zone are 1200 cfm maximum and 600 cfm minimum. The outboard zones in the 8-, 10- and 12-module units are limited to a maximum of 1000 cfm. The limitations are necessary to prevent blow-off to the heat exchangers and into the ductwork. The minimum limit prevents burner cycling on limit switches and prevents electric heater cycling. At reduced cfm's, zone evaporator coils overfeed refrigerant, but there is no liquid flood-back to the compressor as it is protected by a suction line accumulator.

For applications below 600 cfm, modify heating controls as follows:

Gas fired (300 to 599 cfm) — Derate burners as shown on page 33.

Electric Resistance (450 to 599 cfm) — Use first- and second-stage heat on 3-stage units.

Electric Resistance (300 to 449 cfm) — Use first-stage heat on 2- or 3-stage heat units.

Design the duct system so that differences between adjacent zones is kept to a minimum. This reduces internal air leakage between zones in the evaporator section.

Optimum performance is delivered in the 800 to 1000 cfm range. Extremely low cfm requirements reduce unit cooling capacity. For low zone cfm applications, size the zone for a higher cfm (to increase unit efficiency) and divert the extra air into the return air system or a larger interior space. Do not divert extra air into spaces with different perimeter wall orientations.

Fan performance data are based on 15% outdoor air. When the outdoor air dampers are closed and there is no outdoor ventilation air into the unit, unit cfm is reduced by 2% to 6%. This reduction is due to the static pressure drops existing in the separate airflows thru the unit. This reduction is significant in special applications where little or no ventilation is required and cfm requirements are critically designed.

Maximum ventilation limits — Under normal mechanical cooling, the amount of ventilation air that can be introduced

is a function of the outdoor air damper setting and negative static pressure at the return air intake of the unit. The Ventilation Air Charts show ventilation air versus negative static pressure at various settings of the outdoor air damper. A 5.5 setting of the ventilation control dial is the maximum opening of the dampers. The ventilation dial can be set in any position from 0 to 5.5 to obtain the desired cfm of outdoor air. The ventilation dial is located on the control panel adjacent to the heating section. NOTE: Outdoor air at other unit cfm values is proportional.

Dehumidification applications

A space with a high latent load and a very low sensible load may require tempering capability for dehumidification. Typical spaces of this type are conference rooms or visual aids rooms where people congregate with the lights out.

Dehumidification control is achieved on the 48MA/50ME unit by wiring a humidistat in parallel with the cooling thermostat on any zone requiring dehumidification. This may be done on one module or all modules. When using dehumidification control on electric resistance heat units, use extreme care with power wiring as heating and cooling can operate simultaneously in each module.

When the zone's humidity level reaches the setpoint of the humidistat, mechanical refrigeration is activated for that zone module and the air is dehumidified and then tempered on room thermostat demand before being discharged to the zoned space.

The 48MA/50ME economizer

The 48MA/50ME units can be equipped with an economizer control. The control functions as follows. with ambient temperatures above the economizer changeover point, the outdoor air damper is set at the ventilation position, cooling is accomplished by the compressors when the room thermostat calls for cooling. If the zone is not calling for cooling, the mixed air is circulated thru the space. When the ambient temperature drops below the economizer changeover point, the compressors are locked out and the damper motor is under control of a mixed air thermostat to maintain a mixed air temperature low enough to provide cooling when the room thermostat demands it. NOTE: If a non-critical zone opens the unit economizer when most other zones are in the heating mode, to save energy, disconnect the wire at spade terminal number 4 of non-critical zone cooling relay. This will prevent the non-critical zone from energizing the economizer. Mechanical cooling and heating are not affected.

If a zone thermostat calls for cooling while in economizer mode, a set of cooling relay contacts close, energizing the economizer relay as shown on the Economizer Condensing Schematic.

For economizer damper control, the economizer relay locks out the outside air damper adjustable potentiometer and shifts the damper control to a Mixed Air Thermostat (MAT.). The MAT. sensor, located in the fan section, adjusts the outside air damper to maintain a preset mixed air temperature as shown on the Economizer Damper Control Schematic.

The 48MA/50ME economizer operation provides economic use of outdoor air for low-cost cooling. When all

VENTILATION AIR CHART, 48MA/50ME016

VENTILATION AIR CHART, 48MA/50ME024

VENTILATION AIR CHART,

VENTILATION AIR CHART, 48MA/50ME034,040

37

Application data (cont)

zone cooling thermostats are satisfied, economizer controls are bypassed and the outdoor dampers are modulated to the minimum ventilation position.

Refer to Economizer Economics to determine if the addition of an economizer is justified.

Economizer and exhaust performance

An economizer can be factory installed on the 48MA/50ME since the damper motor and outdoor air damper are standard equipment. The economizer package consists of a return air damper, linkage, plug-in relays, MAT. wiring, and mixed air thermostat.

When the 48MA/50ME unit is on full economizer control, the supply cfm to the space drops off slightly since the resistance of the outdoor air intake is generally greater than that of the return air ductwork. To partially offset this, the return air dampers have a built-in bypass.

When the outdoor air dampers are fully open and the return air dampers fully closed, the total cfm drops 15%. The total cfm consists of 70% outdoor air and 30% return air thru the built-in bypass. If, for example, the unit normally operates at 10,000 cfm supply air, the minimum supply cfm

when the economizer is operational is 8500. This 8500 cfm consists of 6000 cfm outdoor air and 2500 cfm return air. As the ambient temperature drops from 48 F (recommended economizer setpoint), the proportion of outdoor air to the supply air required to maintain mixed air temperature is less, the outdoor air damper begins to close, and return air damper begins to open. As this happens, total supply cfm progressively increases from 8500 cfm to 10,000 cfm (design).

An exhaust damper is also available for use with the economizer. It is located between the return air plenum and the condenser fans. The exhaust damper consists of a plugin relay, an exhaust damper, and a plug-in jumper. The damper provides a forced exhaust of indoor air during the economizer operation. The exhaust damper opens when the return air damper is 25% closed. With the damper installed, exhaust relay and economizer relay are energized simultaneously. The exhaust relay locks out the outdoor fan motor controls. Outdoor (condensing) fan motors operate at full speed, discharging excess return air to the atmosphere thru the open exhaust damper as shown in Exhaust Damper Operation.

ECONOMIZER OPERATION

- 1 Ambient temperature decreases.
- 2 Compressor is locked out by economizer control thermostat
- 3 Outside air damper is regulated by mixed air thermostat to maintain fixed mixed air temperature.

ECONOMIZER CONDENSING SCHEMATIC

LEGEND

C - Compressor Contactor - Capacity Control Pressurestat

CHR - Crankcase Heater Relay

CR - Cooling Relay
DLT - Discharge Line Thermostat

ECR — Economizer Relay
ECT — Economizer Thermostat

ECT — Economizer Thermostat
 EXC — Exhaust Motor Contactor

EXR - Exhaust Relay

FCPS — Fan Cycling Pressurestat HPS — High Pressure Switch

HR - Holding Relay

IT - Internal Thermostat

LPS - Low-Pressure Switch MCR - Master Cooling Relay

MHR - Master Heating Relay
OFC - Outdoor Fan Contactor

TM - Timer Motor

The 48MA/50ME exhaust operation is similar in performance to a relief damper except that the exhaust dampers are mechanically linked to the return air dampers and the condenser fans operate to produce a pressure differential which aids the exhaust cycle. At approximately 0 in. wg at the return air opening, the 48MA/50ME units exhaust between 150 to 200 cfm/ton. With positive return static, more air is exhausted. At -0.40 in. wg (.25 in. wg on the 016 unit) return air static, exhaust capabilities of the units drop to zero.

In the previous example, the 4000 cfm exhausted at 0 in. return static accounts for all but 1100 cfm outdoor air introduced by the economizer outside air section. In practice, this excess cfm is considered a nominal ventilation rate, slightly pressurizing a building to eliminate drafts and unwanted air seepage. This excess air filters out of the building thru doors and window spaces. The slight positive pressurization of the building aids the exhaust fans in removing air. If, however, the balance between the building static and exhaust system leaves the building with unacceptably high positive static pressures, a relief ventilator or roof power exhauster may be used. For extensive or complicated return air duct systems with static pressure greater than -0.2 in. wg at the return air plenum, duct mounted return air exhaust fans can be installed.

Return air systems

If the ceiling plenum on a top floor is used as a return air plenum, the return air is heated from the time it leaves the room and enters the unit. This added plenum heat is due to roof load or heat from lighting. The roof load does not raise the return air temperature significantly and its effect is negligible when selecting a unit.

Return air light troffers, however, can add considerable heat to the return air. A 48MA/50ME unit with a return air light troffer system can impose various design problems since the purpose of the system is to reduce the supply cfm to the space by reducing the space load. With the 48MA/50ME this may result in a very low supply cfm — much lower than the unit was designed for. If the supply cfm is raised to satisfy the unit, the purpose of the return air light troffers is defeated. As a general rule, a return air

ECONOMIZER DAMPER CONTROL SCHEMATIC

LEGEND

CHR - Crankcase Heater Relay
ECR - Economizer Relay

LAT - Low Ambient Thermostat

MUR - Master Unit Relay

PLG - Plug

EXHAUST DAMPER OPERATION

- 1 -- Return damper closes 25%
- 2 The exhaust damper opens
- 3 The OFM (condensing fans) speed controls are bypassed and fans run full speed, exhausting return air to atmosphere

Application data (cont)

temperature rise of 5 to 10 F does not cause a problem, and special ratings can be made available.

In addition, when the supply cfm is reduced, as above, the outdoor air quantity remains constant. This results in a higher than normal percentage of outdoor air which the 48MA/50ME unit may not be capable of introducing For return air light troffer systems, exercise care when using the light manufacturer's data concerning the amount of heat actually returned to the unit because with the higher return air temperature, a portion of the heat is transmitted back to the space thru the ceiling.

Economizer economics

Economizer control on a multizone unit does not necessarily reduce operating cost as it would on a single zone unit. A single zone unit either heats or cools; a multizone unit can do both simultaneously. Therefore, in a multizone, the economizer operates to maintain a mixed air temperature low enough to cool a zone with a high internal load. The remaining zones requiring less cooling or heating must have heat added to offset cooling capacity available but not needed. This is true of any multizone with any type of control system.

The amount of heat required to neutralize the overcooling capacity is dependent on.

- 1. The percent cooling capacity required from the unit, and
- 2. The mixed air temperature required to satisfy the zone with the highest internal load.

As the ambient temperature drops, the percent of outdoor air needed to maintain a mixed air temperature is less Since the reheat or wasted heat added is a function of the difference between outdoor air introduced and ventilation rate, operating cost is reduced at lower ambients. A high ventilation rate also reduces the reheat requirement and associated cost. The following example illustrates the need for a careful analysis of job requirements before arbitrarily selecting economizer control

Example.

A 48MA/50ME unit is operating with economizer control and supplying 10,000 cfm of 55 F mixed air. The normal ventilation rate is 2000 cfm. Assuming a realistic cooling load of 50%, 5000 cfm of the 55 F air is used for cooling. Since the ventilation rate is 2000 cfm, half is sent to the cooling zones leaving 4000 cfm of low-cost cooling. The remaining 5000 cfm of 55 F air, including 1000 cfm of ventilation air, is going to zones with either no load or a heating load and must be neutralized.

Although 4000 cfm of low-cost cooling is obtained, an extra 4000 cfm of air must be heated to some degree above that of a unit without economizer controls

For an identical unit without economizer control, only 4000 cfm of the 5000 cfm needed for cooling requires mechanical cooling, since the 1000 cfm of ventilation air is already cooled. Of the other 5000 cfm, 4000 cfm is return air and is neutral, and 1000 cfm is ventilation air to be heated. In the final analysis, it must be determined if it is more economical to heat 4000 cfm from 55 F to 75 F, or to cool it from 75 F to 55 F. The answer depends on the efficiency of the cooling and heating source.

As an example of economizer economics, the Economizer Break-Even Point graph plots percent cooling load versus relative energy cost (electricity to gas) and is based on the following typical assumptions:

48MA028 — 10,000 cfm, 15% outdoor air 48 F outdoor changeover temperature

75 F room design

55 F supply air temperature

Compressor C.O P. of 3.3 (100 F condensing temperature and unloaded compressor were used to obtain this value)

The relative cost figures are in \$/Btu input for gas and \$/kwh electric cost converted to Btu

Example:

\$.25/100,000 Btu (input) — gas cost \$.031/kwh — electric cost

Convert electric cost:

 $0.031/\text{kwh} \times \text{kwh}/3413 \,\text{Btu} \times \frac{100,000 \,\text{Btu}}{100,000 \,\text{Btu}} = 0.91/100,000 \,\text{Btu}$

Cost Ratio.

$$\frac{\$.91/100,000\,\mathrm{Btu}}{.25/100,000\,\mathrm{Btu}} = 3.64$$

For 48MA units, the cooling load must be greater than 48% to justify use of economizer.

For 50ME electric heat units, the cooling load break-even point is 70%; the internal load must be greater than 70% to justify economizer control.

The cooling load for this comparison is the internal load (lights and people) minus the negative transmission at the changeover temperature (48 F). To determine the percent cooling load, compare this value to the unit design cooling capacity

48MA/50ME ECONOMIZER BREAK-EVEN POINT

Night setback

Night setback control can be added to a 48MA/50ME unit using field-supplied components. There are 3 sets of terminals on the accessory section as shown in Zone Control Board. Terminal sets are: cooling lockout (CL), night setback (NS) and "Short To Close Dampers." Red jumpers are factory wired across CL and NS; "Short To Close Dampers" are bare. If the circuit between CL terminals is broken, 115-v power to the compressor control circuit liquid line solenoids and economizer thermostat (if used) is shut off. If the circuit between NS terminals is broken, 115-v power to the zone control transformers is shut off. By replacing both jumpers with appropriate switches and connecting proper switch across "Short To Close Dampers," NS control is attained. The 3 most common methods of Night Setback are described below.

For details of actual Night Setback wiring connections, refer to 48MA/50ME wiring booklets.

Method no. 1 — heating night setback cooling locked out, and continuous indoor fan operation — This NS system requires a 7-day timer, a night setback relay and a thermostat (heating type) 24-v service. In this system, when timer reaches the "Night" position, CL opens, dampers close and NS opens. The fan continues to operate.

As the temperature falls, the NS thermostat located in the average temperature space energizes the NS relay which in turn energizes the zone control transformers. The individual zones then heat until the NS thermostat is satisfied. The dampers remain closed and cooling is still locked out. If a day/night switch is used, the NS thermostat is overridden and heating is controlled by the normal thermostats.

Method no. 2 — heating night setback, cooling locked out and cycling indoor fans — This system requires a remote control panel, a 7-day timer, a night setback relay and a thermostat (cooling type). This system requires a master unit relay (MUR) and a master cooling relay (MCR) (24-v wiring). Install the timer and the NS relay in proximity to the remote control panel. This places all wiring inside the building in one area.

In this system, the MUR is energized by the NS controls. This opens a set of normally closed contacts and shuts down the unit, including indoor fans. The outdoor air dampers are also closed by the MUR. Cooling lockout is attained by energizing the MCR. Energizing these 2 relays turns the unit off and the NS system seems to work in reverse.

A cooling thermostat is used on heating NS. When temperature rises, the thermostat, in series with the night switch, energizes the NS relay. Its contacts close and, in series with the time clock contacts, energize the MUR. As the space temperature lowers to the NS setting, the NS thermostat de-energizes the NS relay which de-energizes the MUR, turning on the unit. The day/night switch overricles the NS clock and heating occurs because the NS relay is de-energized. The factory jumpers remain across CL and NS terminals. The dampers close when the indoor fans start. To keep them closed, short across the W-R terminals on the remote control panel or the "Short To Close Dampers" terminals during the NS period.

Method no. 3 — heating and cooling night setback and indoor fan cycling — This system requires a remote control panel, a heating and cooling thermostat with subbase, a night setback relay and a 7-day timer.

Because cooling is not locked out, the clock switches that close at night close the outdoor air dampers by connecting across R and W on the remote panel accessory. The MUR shuts down the unit (including the indoor fans). When the NS thermostats reach their settings, the NS relay is energized, opening the NC contacts and de-energizing the MUR.

However, if a "wild" zone exists, it is allowed to cool on heating NS or vice versa. This may be an advantage on some applications between zones. When the day/night is switched to "Day," the NS is overridden and the unit operates normally except the dampers remain closed at night. The 2 jumper wires have to be removed from the back of the remote panel to isolate the day/night switch.

Morning start-up — To conserve energy and lower total operating costs, the outdoor dampers may be closed when starting the system in the morning. During a warm-up period, when the system is opeated for one or 2 hours before occupancy, heat only building return air. The extra load of cold outdoor air introduced uses extra heat energy. Ventilation is unnecessary until space is occupied, so the air introduced produces unnecessary heat waste.

This principle holds true on a cooling day, when outside air transmits heat and moisture to the evaporator coil. This extra load above the return air only load is an unnecessary expense.

To offset this, wire a heating or cooling thermostat across the "Short To Close Dampers" terminals on the zone control board. The thermostat senses return air temperature and the outdoor air damper does not open until the building is at the required temperature.

A time clock can also be used and set as follows:

- 1. Occupied cycle: 8 a.m. to 6 p.m. Outdoor air damper is open and the system is controlled by individual zone thermostats.
- 2. Night setback cycle: 6 p.m. to 6 a.m. Individual zone thermostats are on night setback (NS) cycle. The outdoor air damper is closed, the unit is reset down and controlled by NS thermostat.
- 3. Warm-up (or cool-down) cycle: 6 a.m. to 8 a.m. Outside air damper is closed by time clock and the system is controlled by indoor zone thermostats.

Using any method, increased economy is achieved and building requirements are satisfied.

Sound and vibration

For maximum sound attenuation, locate roof-mounted multizone units over unoccupied space (i.e. storage areas, utility rooms, corridors) where slightly higher sound levels are not objectionable. Line supply and return duct systems with acoustic material to prevent sound transmission into occupied space. If open plenum return air systems are used, install an acoustical trap or fiberglass-lined chamber to attenuate sound. Use simple return duct elbows and tees with 5-ft minimum fiberglass-lined legs and low static pressure on open plenum return air systems. A method of forming an acoustical trap using the roof curb area under a multizone unit is shown on Acoustical Trap Installation.

Special vibration isolating bases and curbs designed for rooftop applications are available from some vibration isolator manufacturers. This equipment virtually eliminates vibration transmission on critical applications. However,

ACOUSTICAL TRAP INSTALLATION

NOTES:

- 1. Dimension A is approximately 7 in, for optimum performance.
- 2. Acoustical lining is 1-in, 1-lb density, neoprene-coated fiberglass.
- 3. Return air grille should be located at least 15 ft from return air opening.

Application data (cont)

exercise care when selecting this equipment for use with a multizone. The design and installation of vibration rails on a Carrier 48MA/50ME should ensure that the interfacing of the vibration isolator and the curb maintain watertight integrity.

Thermostat usage and control

Usage — The thermostats used with the 48MA/50ME units are either a 2-step heat/1-step cool or 2-step heat/2-step cool. A single module can have only one step of cooling and heating. When 2 or more modules are grouped together, use the 2-step heat/2-step cool thermostat.

Modules are grouped together by the installation of factory-supplied jumpers on the unit zone control board.

The thermostats are automatic changeover with a 3 F dead spot between heating and cooling. There is a 1 F differential between the first and second steps of heating or cooling. Two subbases are available for use with the thermostats; one with off-heat-auto.-cool switch and one without switches for tamperproof installation. The tamperproof subbase has provisions for locking the thermostat cover and temperature selectors. Refer to 48MA/50ME wiring booklet for thermostat wiring connections.

Typical piping and wiring

Typical schematic (50ME shown)

LEGEND

AFS — Air Flow Sensor APS — Air Pressure Switch

C – CompressorCCP – Capacity Control Pressurestat

CH - Crankcase Heater
CHR - Crankcase Heater Relay

CO - Convenience Outlet
CR - Cooling Relay
CT - Cooling Thermostat
DLT - Discharge Line Thermostat

ECR – Economizer RelayECT – Economizer Thermostat

EXR — Exhaust Relay

FCPS - Fan Cycling Pressure Switch

Fu - Fuse

HC — Heating Contactor
HPS — High-Pressure Switch
HR — Heating Relay
HT — Heating Thermostat

IFC - Indoor Fan Contactor
IP - Internal Protector

J – Jumper

LAT – Low-Ambient Thermostat
LLS – Liquid Line Thermostat
LPS – Low Pressurestat
MCR – Master Cooling Relay

MHR — Master Cooling Relay

MHR — Master Heating Relay

MUR — Master Unit Relay

OAT. — Outdoor Air Thermostat

OFC — Outdoor Fan Contactor

Sw — Switch
TM — Timer Motor
— Factory Wiring
— — Field or Option Wiring

Guide specifications

Base unit

__self-contained electric cooling, General — Install ___ natural or propane gas heating or electric cooling/electric heating (hot water glycol heating) multizone unit(s) specifically designed for rooftop installation mounted on a curb supplied by unit manufacturer. There shall be ____zones, each having capability to heat or cool independently of requirements of other zones. Compressor(s) shall be capable of unloading in steps of approximately 5 tons to follow variations in cooling loads. Hot gas bypass shall be used to maintain a correct minimum suction temperature at loads below minimum compressor capacity step or between capacity steps. Individual zone control shall not require mixing of heated and cooled air to maintain desired space conditions. All outdoor air for ventilation must pass thru a cooling coil and be cooled and dehumidified whenever mechanical cooling is operating. Unit design shall be tested and certified by AGA. All electrical components shall be UL listed.

Cabinet — The unit frame shall be constructed of 6000 series aluminum extrusions. Panels shall be constructed of galvanneal steel, bonderized and finished with a baked enamel finish. All panels requiring insulation shall be constructed of 2 separate panels filled with polyurethane foam insulation. All side panels shall be fastened by quickrelease compression fasteners and shall be sealed against weather and air leakage by the use of refrigerator door type gaskets. All top panels are to be easily and individually removable for complete access of all components from top as well as sides of unit and shall be fully gasketed to prevent air and water leakage and be able to support the weight of a 250-lb man walking on top of unit. Unit shall not be over (3 ft, 016,024,028,030) (4 ft, 034,040) above the curb height or weigh over (4000 lbs, 016,024; 4500 lbs, 028,030; 6000 lbs, 034,040).

All utility connection openings shall be provided within the curb enclosure. Alternate heating connection openings shall be provided in cabinet front panel to permit installation of shutoff device where required by local codes (48MA).

Alternate electric heating connection openings shall be provided in cabinet front panel (50ME)

Cooling — Unit shall have a total capacity of ______ Btuh with a sensible capacity of _____ Btuh while operating at inside conditions of _____ F db and _____ F wb with a total air quantity of _____ cfm and _____ cfm of outdoor air for ventilation. Compressor power shall not exceed ____ kw at these conditions. The refrigerant circuit shall include an accumulator, shutoff valves for compressor suction and discharge, liquid line, and hot gas line. Filter drier and crankcase heater(s) shall be furnished. Unit shall have serviceable hermetic compressor(s) (one on 016, 2 on 024, 028,030,034 and 040).

Heating (48MA) — Unit shall have a heating input of _____Btuh. Gas furnace heat exchangers shall be manufactured of Porcelon™. Burners shall be constructed of stainless steel. Forced-draft combustion shall be standard. The following safety devices shall be part of the gas heating control circuit; main blower airflow switch, combustion air blower flow switch, combustion chamber access door switch, flame sensor, and heating limit switch(es). Each of

these devices must be closed, indicating a safe condition, before gas valve can be energized. Unit shall include a redundant gas valve with intermittent pilot ignition.

Heating (50ME) — Electric heat unit shall have a heating capacity of ______ Btuh Each zone module shall have a 2- or 3-stage electric resistance heater assembly and include circuit breakers, automatic resetting switches for primary thermal protection and heat limiters (fusible links) for secondary thermal protection. Last stage of heat shall be controlled by an adjustable outdoor air thermostat. A lock-out circuit to keep one stage of heaters off if any module is in cooling mode shall be provided. Hot water/glycol heat unit shall have a heating capacity of ______ Btuh. Each zone module shall have its own heating coil. Each heating coil shall include an electric solenoid control valve and a balancing valve. Bleed valves shall be provided. All zone module heating coils shall be factory piped in parallel and shall require no internal field piping or wiring.

Reheat humidity control in zone(s) ____shall be included by installing a humidistat in parallel with the cooling thermostat.

Electrical controls — Unit shall be equipped with a time-delay device to prevent short cycling of compressors and ensure staged starting of dual compressor units. Head pressure control down to -20 F with low-ambient starting capabilities shall be furnished. All internal control wiring shall be 115 volts. All external control wiring shall be 24 volts. Factory-installed circuit breakers for power and control circuits shall be suitable for use as disconnect switches. A 350-va, 115-volt convenience outlet shall be part of the main control panel. All relays shall be the plug-in type for reliability and ease of maintenance. In the event of a main blower failure, the complete unit shall be shut down electrically.

Filters — 41.6 sq ft of 2-in. low-velocity (optional, high-velocity) filters shall be used. (An optional roll filter with 65 ft of 2-in. media shall be used.)

Outdoor air damper — Unit shall be equipped with a modulating outdoor air damper controlled by an electric motor and shall be adjusted by setting a rheostat on the control panel.

Indoor air fans shall consist of (2) (3) 15-in. wheels capable of moving ____ cfm of air against an external static pressure of ____ in. wg utilizing ____ bhp. A ____ hp motor shall be installed.

Accessories and options

Roof curb — Install a 2-piece galvanized steel roof curb. Condenser section shall incorporate a pitched panel for water drainoff and a main power electrical opening. A seal strip shall be included to seal space between unit and curb and provide vibration isolation.

Economizer — An economizer control shall be included which shuts off mechanical refrigeration at _____F outdoor air temperature and modulates outdoor air and return air damper to maintain a mixed air temperature of _____F.

Guide specifications (cont)

Exhaust feature — Provision shall be made for positive exhaust of room air when unit is operating on economizer cycle.

Remote control panel — Furnish a remote control panel which contains a ventilation position adjustment, SYSTEM switch, DAY/NIGHT switch, HEAT-COOL-AUTO.-OFF switch and a clogged filter indicator light. Panel must have provision for 3 additional indicator lights

High-efficiency filters - Furnish and install filters with 36.5% efficiency (NBS Dust Spot Test).

Roll filter — Install a motorized roll filter with 65 ft x 2-in. of media, a runout switch and automatic advancing switch. Cooling only — Unit shall have no heaters but shall have 24-volt heating controls and 115-volt power terminals suitable for operation of field-installed steam, hot water or electric heat.

Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations.

