# Vortex ring models for studying the fuel injection and computations with FreeFem++

#### Y. ZHANG I. DANAILA

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie-Paris VI

Third Workshop on Freefem++, Paris, December 5-7, 2011.



- Vortex Rings in Automotive Engines
  - Experimental Investigation of Vortex Rings
  - Mathematical Problem
- Mathematical Modeling
  - Modeling as an Optimal Control Type Problem
  - Variational Problems & Discretization
  - Algorithm
- Numerical Tests
- Conclusion and Future Work



- Vortex Rings in Automotive Engines
  - Experimental Investigation of Vortex Rings
  - Mathematical Problem
- Mathematical Modeling
  - Modeling as an Optimal Control Type Problem
  - Variational Problems & Discretization
  - Algorithm
- Numerical Tests
- Conclusion and Future Work



## Vortex structures in internal combustion engines

#### A vortex ring forms ahead of the injected fuel spray.

New types of gasoline injectors

Diesel injectors



3 ms (b)

(courtesy of Continental Automotive)

(courtesy of IFP)

## Measurements in An Automotive Engine

- Experimental measurements of spray flows by PIV (Particle Image Velocimetry) offer a low resolution in the vortex ring region because of high fuel droplet concentration.
- The missing information needs to be reconstructed.



(courtesy of Continental Automotive)

- Vortex Rings in Automotive Engines
  - Experimental Investigation of Vortex Rings
  - Mathematical Problem
- Mathematical Modeling
  - Modeling as an Optimal Control Type Problem
  - Variational Problems & Discretization
  - Algorithm
- 3 Numerical Tests
- Conclusion and Future Work



## Mathematical Description of the Problem

• Vortex rings in an elliptic domain  $\Omega(\supset \Omega_c = \{x : \psi(x) \ge \kappa\})$ 

$$\mathcal{L}\psi = -\left(\frac{\partial}{\partial z}\left(\frac{1}{r}\frac{\partial \psi}{\partial z}\right) + \frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial \psi}{\partial r}\right)\right) = \begin{cases} rf(\psi), & \text{if } \psi \geq \kappa \\ 0, & \text{otherwise} \end{cases}$$



 $\psi$  stream function,  $\kappa$  constant,  $f(\psi)$  arbitrary function  $rf(\psi)$  vorticity distribution.

# Vortex ring models

Formulations for  $rf(\psi)$  (vorticity distribution) :

- Discontinuous form:  $f(\psi) := C\chi_{\Omega_c} = C\{\psi \ge k\}.$
- Parameterized 2D Gaussian form:  $F(x, \psi, \Theta, X)$ ( $\Theta$  = magnitude, X = undetermined parameter set).

Multiple solutions for discontinuous vorticity (different C and k)



- Vortex Rings in Automotive Engines
  - Experimental Investigation of Vortex Rings
  - Mathematical Problem
- Mathematical Modeling
  - Modeling as an Optimal Control Type Problem
  - Variational Problems & Discretization
  - Algorithm
- Numerical Tests
- Conclusion and Future Work



## Optimal Control Problem (1)

• Minimization problem in the (reconstruction) domain  $\Omega_R$ 

$$\operatorname{Min}_{X} J(\psi) = \int_{\partial\Omega_{R}} \left| \frac{1}{r} \left( \frac{\partial \psi}{\partial \vec{n}} - \frac{\partial \psi_{\exp}}{\partial \vec{n}} \right) \right|^{2} dS \tag{1}$$

subject to

$$\begin{cases} \mathcal{L}\psi = F(\mathbf{x}, \psi, \Theta, \mathbf{X}), & \text{in } \Omega_{\mathbf{R}}, \\ \psi = \psi_{\text{exp}}, & \text{on } \partial\Omega_{\mathbf{R}}. \end{cases}$$
 (2)

 $\vec{n}$  is the unit outer normal vector of  $\partial\Omega_R$ ,  $\psi_{\rm exp}$  is provided by experimental results.



## Optimal Control Problem (2)

- Explanation of the cost function  $J(\psi)$ : Minimizing  $J(\psi)$  indicates that the first order derivatives of  $\psi$  and  $\psi_{\rm exp}$  should match (with a fixed error bound) on the boundary  $\partial\Omega_{\rm R}$ .
- Supplementary constraint: conserve the circulation  $\Gamma_{exp}$

$$\Gamma_{\rm exp} = \int_{\partial\Omega_{R}} \frac{1}{r} \frac{\partial \psi_{\rm exp}}{\partial \vec{\mathbf{n}}} \mathrm{d}S, \tag{3}$$

This allows to compute the magnitude  $\Theta$  from

$$\Gamma_{\rm exp} = \int_{\partial\Omega_R} F(\mathbf{x}, \psi, \Theta, \mathbf{X}) d\mathbf{x} = \Theta \int_{\partial\Omega_R} F'(\mathbf{x}, \psi, \mathbf{X}) d\mathbf{x}.$$
 (4)

- Vortex Rings in Automotive Engines
  - Experimental Investigation of Vortex Rings
  - Mathematical Problem
- Mathematical Modeling
  - Modeling as an Optimal Control Type Problem
  - Variational Problems & Discretization
  - Algorithm
- 3 Numerical Tests
- Conclusion and Future Work



## Variational Problems

Functional space

$$H_0(\Omega) = \left\{ u \in L^2(\Omega) : \frac{1}{r} |\nabla u|^2 \in L^1(\Omega) \mid u = 0 \text{ on } \Gamma = \partial \Omega \right\}.$$
(5)

• Inner product  $(\forall u \in H_0(\Omega), v \in H_0(\Omega))$ 

$$< u, v> = \int_{\Omega} \frac{1}{r} \nabla u \nabla v \, dx = \int_{\Omega} v \mathcal{L} u \, dx.$$
 (6)

Variational form

$$\begin{cases} \text{ Find: } \psi \in H_0(\Omega) \text{ such that} \\ < \psi, \phi >= (F(\mathbf{x}, \psi, \Theta, \mathbf{X}), \phi), \ \forall \phi \in H_0(\Omega). \end{cases}$$
 (7)

## Discretization

• Variational derivatives of  $J(\cdot)$  ( $X_i \in X$ )

$$\frac{\delta J}{\delta X_{i}} = \frac{\delta J}{\delta \psi} \frac{\delta \psi}{\delta X_{i}} = 2 \int_{\partial \Omega_{R}} \frac{1}{r^{2}} \left( \frac{\partial \psi}{\partial \vec{n}} - \frac{\partial \psi_{\text{exp}}}{\partial \vec{n}} \right) \frac{\partial}{\partial \vec{n}} \left( \frac{\delta \psi}{\delta X_{i}} \right) dS$$
(8)

• Calculations of  $\delta \psi / \delta X_i$ 

$$\begin{cases}
\mathcal{L}\left(\frac{\delta\psi}{\delta X_{i}}\right) = \frac{\delta F(\mathbf{x}, \psi, \Theta, \mathbf{X})}{\delta X_{i}}, & \text{in } \Omega_{\mathbf{R}}, \\
\frac{\delta\psi}{\delta X_{i}} = 0, & \text{on } \partial\Omega_{\mathbf{R}}.
\end{cases} \tag{9}$$

The vanishing of  $\delta\psi/\delta X_i$  on  $\partial\Omega_R$  is natural for  $\Omega_R\supset\Omega_c$ .

- Vortex Rings in Automotive Engines
  - Experimental Investigation of Vortex Rings
  - Mathematical Problem
- Mathematical Modeling
  - Modeling as an Optimal Control Type Problem
  - Variational Problems & Discretization
  - Algorithm
- Numerical Tests
- Conclusion and Future Work



# Particular formulation of the reconstruction problem Gaussian vorticity distribution

Minimization problem

$$\operatorname{Min}_{\alpha, Rc, Zc} J(\psi) = \int_{\partial \Omega_{\mathbf{R}}} \left| \frac{1}{r} \left( \frac{\partial \psi}{\partial \vec{\mathbf{n}}} - \frac{\partial \psi_{\exp}}{\partial \vec{\mathbf{n}}} \right) \right|^{2} dS \qquad (10)$$

subject to:

$$\begin{cases} \mathcal{L}\psi = f\left(\Theta,X\right), & \text{in } \Omega_{R}, \\ \psi = \psi_{\text{exp}}, & \text{on } \partial\Omega_{R}. \end{cases}$$
 (11)

where 
$$f(\Theta, X) = \Theta \cdot \exp\left[-\alpha^2\left((r - Rc)^2 + (z - Zc)^2\right)\right]$$
.



- Set the initial guess  $X^{(0)} = \left\{ \alpha^{(0)}, R_c^{(0)}, Z_c^{(0)} \right\}$ . Initialize tolerances  $\operatorname{eps_J}$ ,  $\operatorname{eps_X}$  and the max iteration steps N.
- ② Using the experimental data on  $\partial\Omega_R$ , calculate  $\Gamma_{\rm exp}$  and get  $\Theta^{(n)}$  by the following formula

$$\begin{split} \Gamma &= \Gamma_{\rm exp} \\ \Gamma &= \int_{\Omega_R} \Theta^{(n)} \cdot \exp \left[ -\alpha^2 \left( \left( r - R_c^{(n)} \right)^2 + \left( z - Z_c^{(n)} \right)^2 \right) \right] {\rm d}z {\rm d}r. \\ \Gamma_{\rm exp} &= \int_{\partial \Omega_R} \frac{1}{r} \nabla \psi_{\rm exp} \cdot \vec{\rm n} {\rm d}S. \end{split}$$

**3** Solve  $\mathcal{L}\psi = f(\Theta, X)$  and obtain  $\psi^{(n)}$ .

**9** Get  $\nabla J(\psi^{(n)})$  by the following equation

$$\nabla_{\psi} \mathbf{J} \cdot \delta \psi^{(n)} = 2 \cdot \int_{\partial \Omega_R} \frac{1}{r^2} \left( \frac{\partial \psi^{(n)}}{\partial \overrightarrow{n}} - \frac{\partial \psi_{\exp}}{\partial \overrightarrow{n}} \right) \cdot \frac{\partial (\delta \psi^{(n)})}{\partial \overrightarrow{n}} dz dr.$$
(12)

From Eq. (11), we have

$$\mathcal{L}\left(\frac{\partial \psi^{(n)}}{\partial X_i}\right) = \left.\frac{\partial f(\Omega^{(n)}, X)}{\partial X_i}\right|_{X = X^{(n)}} \cdot \left.\frac{\partial \psi^{(n)}}{\partial X_i}\right|_{\partial \Omega_R} = 0. \quad (13)$$

Then,  $\nabla_X J(\psi^{(n)})$  is calculated by Eq. (12)

$$\nabla_X J(\psi^{(n)}) = \left\{ \nabla_{\psi} J \cdot \left( \frac{\partial \psi^{(n)}}{\partial X_i} \right) \right\}_{i=0,\dots,2}.$$
 (14)

- **③** Calculate maximum acceptable Euclidean norm of the gradient  $\|\nabla_X J(\psi^n)\|$ . If  $\|\nabla_X J(\psi^n)\| \le \operatorname{eps}_J$ , the iteration is terminated. Otherwise, go to Step 6.
- lacktriangledown From Hessian matrix  $H\left(\psi^{(n)}\right)$  obtained by BFGS

$$\nabla_X J\left(\psi^{(n+1)}\right) \approx \nabla_X J\left(\psi^{(n)}\right) + H\left(\psi^{(n)}\right) \cdot \delta X^{(n+1)}.$$
 (15)

$$\delta X^{*,(n)} = -H^{-1}\left(\psi^{(n)}\right) \cdot \nabla_X J\left(\psi^{(n)}\right). \tag{16}$$

Update  $X^{(n+1)}$  by

$$X^{(n+1)} = X^{(n)} + \beta^{(n)} \delta X^{*,(n)}, \tag{17}$$

where  $\beta^{(n)}$  is an acceptable step size in the direction  $\delta X^{*,(n)}$ .

If  $\|X^{(n+1)} - X^{(n)}\| / \|X^{(n)}\| \le \operatorname{eps}_X \text{ or } n+1 > N$ , the iteration is terminated. Otherwise, go to Step 2.

For current computation tests,  $eps_J = eps_X = 10^{-6}$  and N = 50.

#### Remark on Step 2

The parameter  $\Theta$  appears as an extra constraint to guarantee the existence of the vortex core and the consistency of the circulation.

## Basic quantities

- The reconstruction domain has an elliptic shape.
   R<sub>c</sub> and Z<sub>c</sub> are initialized by the center coordinates of the computational domain.
  - $\alpha$  is set as the half-length inverse of semi-minor axis.

Table: Comparison between the fitting/reconstructed results and the DNS results. K-R: Kaplanski-Rudi.

| Methods          | Γ       | 1       | Е        | $R_c$   | $\overline{Z_c}$ |
|------------------|---------|---------|----------|---------|------------------|
| NSEs             | 1.17592 | 1.33698 | 0.216944 | 0.66194 | 3.51000          |
| K-R              | 1.12217 | 1.29092 | 0.224925 | 0.71384 | 3.51000          |
| $C	ext{-}\kappa$ | 1.17488 | 1.55884 | 0.217152 | 0.71384 | 3.49190          |
| Recon.           | 1.17592 | 1.73646 | 0.175927 | 0.65307 | 3.50953          |

## Streamline figures



Figure: Stream function contours: comparison between different vortex ring models, the reconstructed method and DNS data.

# Streamline profiles along $z = Z_c$



Figure: The profiles of  $\psi$  along the line  $z = Z_c$  and  $r \in (0, 1)$ .

#### Conclusion

- FreeFem++ is a powerful tool to handle this problem.
- The missing information can be reconstructed easily in FreeFem++.
- The reconstruction can provide the necessary vortex ring information for practical/engineering studies of fuel injectors.

#### Future Work with FreeFem++

- Validate our novel numerical scheme of Navier-Stokes equations and theoretical analysis.
- Implement a time-dependent two-phase flow model.



ortex Rings in Automotive Engines/ Mathematical Modeling Numerical Tests Conclusion and Future Work

Thanks for your attention.