1. (2.5 pts.) Estudiar la continuidad y la diferenciabilidad en (0,0) de la función f definida por:

$$f(0,0) = 0$$
 y $f(x,y) = \frac{x^3y^2}{x^4 + x^2y^2 + y^4}$ para $(x,y) \neq (0,0)$.

- 2. (2,5 pts.) Calcular mediante el método de los multiplicadores de Lagrange los valores máximo y mínimo de la función f(x, y, z) = 12 xyz restringida a la superficie $x^2 + 2y^2 + 3z^2 = 6$.
- 3. (2,5 pts.) Calcular el volumen de la región $z \geq \sqrt{x^2 + y^2}$ contenida en el interior del elipsoide $x^2 + y^2 + \frac{z^2}{4} = 1.$
- 4. (2,5 pts.) Sea S el trozo del plano x+y+z=1 con $x\geq 0, y\geq 0$ y $z\geq 0$, es decir contenido en el primer octante, orientado con el vector normal (1, 1, 1).
 - i) Encontrar parametrizaciones tanto de la superficie S como de la curva que compone su borde.
 - (ii) Dado el campo vectorial $F(x,y,z)=(x^2-y^2,y^2-z^2,z^2-x^2)$, calcular el valor de $\iint_S \operatorname{rot} F \cdot dS$ bien directamente o bien a través del teorema de Stokes.
- 5. (1 pt. Opcional.) Sea S la porción de la gráfica de $f(x,y)=(1-x^2-y^2)e^{x^2+y^2}$ con $z\geq 0$, orientada con la normal exterior. Calcular la integral de superficie

$$\iint_{S} F \cdot dS \qquad \text{con} \qquad F(x, y, z) = (e^{y} \cos z, \sqrt{x^{3} + 1} \sin z, x^{2} + y^{2} + 3).$$

Sugerencia: Usar el teorema de Gauss.

SOLUCIONES:

1. f es continua en (0,0) ya que

$$|f(x,y) - f(0,0)| = \frac{|x|^3 y^2}{x^4 + x^2 y^2 + y^4} \le \frac{|x|^3 y^2}{x^2 y^2} = |x|.$$

Por tanto, dado $\epsilon > 0$, eligiendo $\delta = \epsilon$ si $\sqrt{x^2 + y^2} < \delta$, se tiene

$$|f(x,y) - f(0,0)| \le |x| \le \sqrt{x^2 + y^2} < \delta = \epsilon.$$

Además,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - 0}{x} = 0; \qquad \frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - 0}{y} = 0.$$

Por tanto, si f fuera diferenciable su diferencial sería T(x,y)=0 (cuya gráfica es el plano z=0). Veamos si cumple la definición:

$$\left| \frac{f(x,y) - 0}{\sqrt{x^2 + y^2}} \right| = \frac{|x|^3 y^2}{(x^4 + x^2 y^2 + y^4)\sqrt{x^2 + y^2}}.$$

Pero la expresión resultante es una función homogénea de grado 0 y, por tanto, no tiene límite en (0,0). Por ejemplo a lo largo de la recta y=0 vale 0 mientras que a lo largo de la recta y=x vale $1/3\sqrt{2}$.

- 2. Como la superficie es un compacto, la función continua f alcanza sus valores extremos al restringirla a ella. Sea $g(x,y,z)=x^2+2y^2+3z^2-6$. Como $\nabla g\neq (0,0,0)$ en el conjunto de nivel g=0, el teorema de los multiplicadores de Lagrange no dice que esos extremos se encuentran entre los puntos en los que ∇f y ∇g son paralelos: $\nabla f = \lambda \nabla g$ para cierto $\lambda \neq 0$. Tenemos por tanto que resolver el sistema:
 - a) $12yz = 2\lambda x$, b) $12xz = 4\lambda y$, c) $12xy = 6\lambda z$, d) $x^2 + 2y^2 + 3z^2 = 6$.

Observamos que si x es 0 entonces de la ecuación **b)** deducimos que y=0 y de **c)** que z=0. Haciendo lo mismo con y y z vemos que si uno de los tres es 0 los otros dos también deben serlo. Pero el punto (0,0,0) no pertenece a la superficie, luego podemos suponer desde el principio que $x \neq 0, y \neq 0, z \neq 0$. Despejando λ queda

$$\lambda = 6 \frac{yz}{x} = 3 \frac{xz}{y} = 2 \frac{xy}{z}, \quad \text{y de aqui} \quad x^2 = 2y^2 = 3z^2.$$

Sustituyendo en **d**) resulta $3x^2 = 6$, es decir, $x^2 = 2$, $y^2 = 1$, $z^2 = 2/3$. Los candidatos a extremos son por tanto los puntos

$$\left(\pm\sqrt{2},\,\pm1,\,\pm\sqrt{\frac{2}{3}}\right).$$

El valor máximo de 12xyz es por tanto $8\sqrt{3}$ (en los puntos con un número par de coordenadas negativas) y el mínimo es $-8\sqrt{3}$ (en los puntos con un número impar de coordenadas negativas)

3. En primer lugar observamos que la variación de z es $\sqrt{x^2 + y^2} \le z \le \sqrt{4 - 4(x^2 + y^2)}$. Estudiamos donde se intersecan las dos figuras y obtenemos así la proyección del sólido sobre el plano XY:

$$x^{2} + y^{2} + \frac{1}{4}(x^{2} + y^{2}) = 1$$
 => $5(x^{2} + y^{2}) = 4$.

Se trata por tanto del círculo de radio $2/\sqrt{5}$: $x^2 + y^2 \le 4/5$. Nuestra región se describe como

$$\Omega = \left\{ (x,y,z) : x^2 + y^2 \le 4/5, \quad \sqrt{x^2 + y^2} \le z \le \sqrt{4 - 4(x^2 + y^2)} \right\}.$$

Su volumen es entonces

$$\begin{split} V &= \iiint_{\Omega} 1 \, dx \, dy \, dz = \iint_{x^2 + y^2 \le 4/5} \left(\sqrt{4 - 4(x^2 + y^2)} - \sqrt{x^2 + y^2} \right) \, dx \, dy \\ &= \int_{0}^{2\pi} \int_{0}^{2/\sqrt{5}} \left(2\sqrt{1 - r^2} - r \right) \, r \, dr \, d\theta = 2\pi \left[-\frac{2}{3} \left(1 - r^2 \right)^{3/2} - \frac{r^3}{3} \right]_{r=0}^{r=2/\sqrt{5}} = \\ &= \frac{4\pi}{3} \, \left(1 - \frac{1}{\sqrt{5}} \right). \end{split}$$

4i. S se corresponde con el triángulo en \mathbb{R}^3 de vértices A(1,0,0), B(0,1,0), C(0,0,1). Es por tanto la gráfica de f(x,y)=1-x-y con $(x,y)\in D$, siendo D el triángulo de \mathbb{R}^2 de vértices (0,0), (0,1), (1,0). La parametrización natural viene dada por

$$\Phi: D \longrightarrow \mathbb{R}, \quad \Phi(u,v) = (u,v,1-u-v).$$
 Para ella se tiene $T_u \times T_v = (1,1,1).$

Por otro lado, el borde (orientado) de S viene dado por la unión de las parametrizaciones:

Segmento
$$\vec{AB}$$
: $\sigma_1(t) = (1 - t, t, 0), \quad 0 \le t \le 1, \quad \sigma'_1(t) = (-1, 1, 0).$

Segmento
$$\vec{BC}$$
: $\sigma_2(t) = (0, 1 - t, t), \quad 0 \le t \le 1, \quad \sigma'_2(t) = (0, -1, 1).$

Segmento
$$\vec{CA}$$
: $\sigma_3(t) = (t, 0, 1 - t), \quad 0 \le t \le 1, \quad \sigma_3'(t) = (1, 0, -1).$

4ii. El teorema de Stokes nos dice que \iint_{Φ} rot $F = \int_{\sigma_1} F + \int_{\sigma_2} F + \int_{\sigma_3} F$. Como rot F = (2z, 2x, 2y), la parte izquierda queda

$$\iint_{\Phi} \operatorname{rot} F = \iint_{D} [2(1 - u - v) + 2u + 2v] du \, dv = \iint_{D} 2 \, du \, dv = 1,$$

mientras que las tres integrales de la parte derecha son

$$\int_{\sigma_1} F = \int_{\sigma_2} F = \int_{\sigma_3} F = \int_0^1 (t^2 + 2t - 1)dt = \frac{1}{3}.$$

5. Estudiamos como "cerrar" S para poder utilizar el teorema de Gauss y vemos que la intersección de la gráfica de f con el plano z=0 da $1-x^2-y^2=0$, así que la "tapa"

$$S_0 = \{(x, y, 0) : x^2 + y^2 \le 1\},\$$

encierra con nuestra superficie S a un cierto dominio Ω . Orientando S_0 hacia abajo (S_0^-) y aplicando Gauss, queda

$$\iint_{S \cup S_0} F = \iiint_{\Omega} \operatorname{div} F = 0,$$

ya que, como es fácil de calcular, divF=0. Por lo tanto

$$\iint_{S} F = -\iint_{S_{0}^{-}} F = \iint_{S_{0}^{+}} F,$$

donde S_0^+ viene dada por la orientación contraria hacia arriba. Usando la parametrización de S_0^+ , $\Phi_0(u,v)=(u,v,0)$, con $u^2+v^2\leq 1$, tenemos $T_u\times T_v=(0,0,1)$ como queremos. Finalmente,

$$\iint_{S_0^+} F = \iint_{u^2 + v^2 \le 1} (u^2 + v^2 + 3) \, du \, dv.$$

Usando polares,

$$\iint_{S_0^+} F = \int_0^{2\pi} \int_0^1 (r^2 + 3) \, r \, dr \, d\theta = \frac{7}{2} \pi.$$