Paradox and Infinity

·

— Infinite Cardinalities — February 5, 2024

Where do theories begin?

- ▶ A theory that is neutral on everything is no theory at all.
- ▶ No assumptions, no conclusions.
- ► Assumptions are only as meaningful as their terms.

Where do meanings begin?

- Can't define everything.
- ► Intuitions and patterns of use.
- Principles encode theoretical roles.

Cardinal Numbers

- ► Provide answers to 'How many?'-questions.
- Which cardinality principles should we adopt?

Cardinality: (|A|)' reads 'The number of As'.

Proper Subset Principle: |A| < |B| *if* $A \subset B$.

- ▶ Subset: $A \subseteq B$ iff for every x, if $x \in A$, then $x \in B$.
- ▶ Extensionality: A = B iff for any x: $x \in A$ just in case $x \in B$.
- ▶ Proper Subset: $A \subset B$ iff $A \subseteq B$ and $A \neq B$.

Bijection Principle: |A| = |B| iff $A \simeq B$.

- ▶ Equinumerous: $A \simeq B$ iff there is a bijection $f : A \to B$.
- Bijection: "A one-to-one pairing with no remainder."
- Can be defined without recourse to the concepts of number.

Ordered Pair: $\langle a, b \rangle = \{\{a\}, \{a, b\}\}.$

Cartesian Product: $A \times B := \{ \langle a, b \rangle : a \in A, b \in B \}.$

Function: $f \subseteq A \times B$ is a function $f : A \rightarrow B$ iff every $a \in A$:

- 1. There is some $b \in B$ where $\langle a, b \rangle \in f$; and
- 2. For any $b, c \in B$, if $\langle a, b \rangle \in f$ and $\langle a, c \rangle \in f$, then b = c.

Abbreviation: 'f(a) = b' abbreviates ' $\langle a, b \rangle \in f$ ' if f is a function.

Injective: $f: A \rightarrow B$ is *injective iff* for any $a, b \in A$, if f(a) = f(b), then a = b.

Surjective: $f: A \rightarrow B$ is *surjective iff* for all $b \in B$ there is some $a \in A$ where f(a) = b.

Bijection: $f: A \rightarrow B$ is bijective iff f is injective and surjective.

Equinumerous: $A \simeq B$ iff there is a bijection $f: A \to B$.

Bijection Principle: |A| = |B| *iff* $A \simeq B$.

Paradox: There are equinumerous proper subsets of infinite sets.

- ▶ $\mathbb{N}_1 \subset \mathbb{N}$ where $\mathbb{N}_i := \{x \in \mathbb{N} : i \leq x\}$.
- ▶ The successor function x' = x + 1 is a bijection from \mathbb{N} to \mathbb{N}_1 .

Hilbert's Hotel: Always room for (countably many) more guests.

- $f_m(n) = n + m$ is a bijection from \mathbb{N} to \mathbb{N}_m .
- $g_m(n) = n \times m$ is a bijection where $\mathbb{N}_{(m)} = \{k \times m : k \in \mathbb{N}\}.$

Question: Can Hilbert's Hotel accommodate an infinite number of groups of infinitely many new guests?

Contradiction:

- 1. Both $|\mathbb{N}_1| < |\mathbb{N}|$ and $|\mathbb{N}_1| = |\mathbb{N}|$ by the principles.
- 2. Totality: x < y, x = y, or x > y (exclusive).
- 3. Thus $|\mathbb{N}_1| < |\mathbb{N}|$ entails $|\mathbb{N}_1| \neq |\mathbb{N}|$: contradiction.

Options:

- Accept contradictions?
- Give up totality?
- Give up one of the principles above?

Abductive Method: A good theory Γ ought to be...

- 1. Deductively Closed: $\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma$.
- 2. Consistent: $\Gamma \not\vdash \varphi \land \neg \varphi$.
- 3. Simple: finitely axiomatizable in intuitive terms.
- 4. Strong: says more rather than less.
- 5. Practical: has useful applications.

Metaphysical Aside: Is theory choice subjective?

Proper Subset Principle: |A| < |B| *if* $A \subset B$.

- 1. $|\mathbb{N}| > |\mathbb{N}_2| > |\mathbb{N}_3| > \dots$ and $|\mathbb{N}| > |\mathbb{N}_{(2)}| > |\mathbb{N}_{(4)}| > \dots$
- 2. How are we to compare $|\mathbb{N}_{(2)}|$ and $|\mathbb{N}_{(3)}|$ for size?
- 3. Could PSP be supplemented?
- 4. Example: |set of people| < |set of seats|.

Injection Principle: $|A| \leq |B|$ iff $A \simeq C$ for some $C \subseteq B$.

- 1. Reflexive: $|A| \leq |A|$.
 - 2. Transitive: if $|A| \leq |B|$ and $|B| \leq |C|$, then $|A| \leq |C|$.
 - 2. It ansative. If $|A| \leqslant |B|$ and $|B| \leqslant |C|$, then $|A| \leqslant |C|$.
 - 3. Anti-Symmetric: if $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.
 - 4. Total: $|A| \le |B|$ or $|B| \le |A|$.

Conclusion: The Proper Subset Principle must go!

The Infinite: A set *A* is *countably infinite iff* $|A| = |\mathbb{N}|$.

- $\blacktriangleright |\mathbb{N}| = |\mathbb{N}_m| = |\mathbb{N}_{(m)}|.$
- $\quad \bullet \ |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|.$

Next Time: We will show that there are different sizes of infinity.

- $ightharpoonup |\mathbb{N}| \neq |\mathbb{R}|.$
- ▶ $|A| \neq |\mathcal{P}(A)|$.