

Prof. Dr. Florian Künzner

Technical University of Applied Sciences Rosenheim, Computer Science

Start: 8:01

CA 2 – Data representation

The lecture is based on the work and the documents of Prof. Dr. Theodor Tempelmeier

Computer Science

Goal

Goal

Goal

Technische

CA::Data representation

- Important basics
- ASCII
- Unicode and UTF
- Data types: Numbers

Important basics - numeral systems

How much do you still know* about numeral systems?

low

current knowledge

high

^{*}Use a **stamp** for your estimate.

Computer Science

Important basics

Which numeral systems do you know?

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

BIN: 0, 1;

■ HEX: 0. 1. 9. A. B. F: e.g.: 0x123

Conversion between:

■ HEX <-> DEC

BIN <-> HEX

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

BIN: 0, 1;

_ _ _ ,

e.g.: 291

e.g.: 100100011

e.g.: 0x123

Conversion between:

HEX <-> DEC

BIN <-> HEX

Computer Science

e.g.: 100100011

e.g.: 291

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

■ HEX <-> DEC

BIN <-> HEX

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

e.g.: 291

e.g.: 100100011

HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

HEX <-> DEC

BIN <-> HEX

Computer Science

e.g.: 100100011

e.g.: 291

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

HEX <-> DEC

BIN <-> HEX

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

e.g.: 291

e.g.: 100100011

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

HEX <-> DEC

BIN <-> HEX

Computer Science

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

e.g.: 291

e.g.: 100100011

Conversion between:

- HEX <-> DEC
- BTN <-> HEX

Computer Science

e.g.: 100100011

e.g.: 291

Important basics

Numeral systems

■ DEC: 0, 1, ..., 9;

■ BIN: 0, 1;

DIN. 0, 1,

■ HEX: 0, 1, ..., 9, A, B, ..., F; e.g.: 0x123

Conversion between:

■ HEX <-> DEC

■ BIN <-> HEX

0000

1001 1010 1011

1100

1101

1111

CAMPUS Rosenheim

Computer Science

Important basics - hints

DEC	\rightarrow
0	→
\wedge	- /
•	
:	
g	
V P	
$\Lambda\Lambda$	
12	
13	
14	
15	

Important basics - short exercise 1/2

Convert HEX: OxCOFE to BIN.

1100 0000 1111 1110

Computer Science

Important basics - short exercise 2/2

Convert BIN: 1100 0000 1101 1110 to HEX.

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

V

Question? \Rightarrow

*

and use chat

speak after I ask you to

Computer Science

Binary system

Why is the binary (dual) system used in computer science?

Binary system for digits and characters

- Technically easy to realise (0/1)
- Well understood theoretical basis
 - Boolean algebra
 - Formal logic

Computer Science

Binary system

Why is the binary (dual) system used in computer science?

Binary system for digits and characters

- \blacksquare Technically easy to realise (0/1)
- Well understood theoretical basis
 - Boolean algebra
 - Formal logic

Prof. Dr. Florian Künzner. SoSe 2021

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011

2 6: -> 00110

3 complement of 6: 11001

4 + 1

5 -----

6 11010

7 addition of 11 + (-6):

8 11: 01011

9 -6: 11010

10 X00101 =
```

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011
2 6: -> 00110
3 complement of 6: 11001
4 + 1
5 -----
6 11010
7 addition of 11 + (-6):
8 11: 01011
9 -6: 11010
```

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011

2 6: -> 00110

3 complement of 6: 11001

4 + 1

5 -----

6 11010

7 addition of 11 + (-6):

8 11: 01011

9 -6: 11010
```

Computer Science

Subtraction is reduced to addition

Idea: Complementation and addition of the complement

```
1 11: -> 01011

2 6: -> 00110

3 complement of 6: 11001

4 + 1

5 -----

6 11010

7 addition of 11 + (-6):

8 11: 01011

9 -6: 11010

10 ------

11 X00101 => 5
```

Computer Science

Codes

Which codes for characters do you know?

Computer Science

ASCII (American Standard Code for Information Interchange)

<u>Dec</u>	H	x Oct	Char	,	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	<u>1r</u>
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	۵#64;	0	96	60	140	`	8
1	1	001	SOH	(start of heading)	33	21	041	¢#33;	1	65	41	101	A ;	A	97	61	141	@#97;	a
2				(start of text)	34	22	042	a#34;	**	66	42	102	B	В	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	a#35;	#	67	43	103	a#67;	С	99	63	143	6#99;	C
4	4	004	EOT	(end of transmission)	36	24	044	4#36;	ş	68	44	104	4#68;	D	100	64	144	@#100;	d
5	5	005	ENQ	(enquiry)	37	25	045	6#37;	*	69	45	105	4#69;	E	101	65	145	e	e
6	6	006	ACK	(acknowledge)	38	26	046	6#38;	6	70	46	106	a#70;	F	102	66	146	6#102;	f
7	- 7	007	BEL	(bell)	39	27	047	4#39;	1	71	47	107	@#71;	G	103	67	147	a#103;	g
8	8	010	BS	(backspace)	40	28	050	¢#40;	(72	48	110	6#72;	H	104	68	150	a#104;	h
9	9	011	TAB	(horizontal tab)	41	29	051	@#41;)	73	49	111	6#73;	I	105	69	151	i	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*				a#74;					@#106;	
11	В	013	VT	(vertical tab)	43	2B	053	a#43;	+	75	4B	113	G#75;	K	107	6B	153	a#107;	k
12	С	014	FF	(NP form feed, new page)				a#44;		76	40	114	a#76;	L	108	6C	154	@#108;	1
13	D	015	CR	(carriage return)	45	2D	055	a#45;	F 1	77	4D	115	G#77;	M	109	6D	155	@#109;	m
14	E	016	SO	(shift out)	46	2E	056	a#46;	-	78	4E	116	a#78;	N	110	6E	156	@#110;	n
15	F	017	SI	(shift in)	47	2F	057	6#47;	/	79	4F	117	a#79;	0	111	6F	157	o	0
16	10	020	DLE	(data link escape)	48	30	060	a#48;	0				4#80;					@#112;	
17	11	021	DC1	(device control 1)	49	31	061	a#49;	1	81	51	121	Q	Q	113	71	161	q	q
18	12	022	DC2	(device control 2)	50	32	062	a#50;	2	82	52	122	4#82;	R	114	72	162	@#114;	r
19	13	023	DC3	(device control 3)	51	33	063	3	3	83	53	123	4#83;	S	115	73	163	s	8
20	14	024	DC4	(device control 4)				a#52;		84	54	124	a#84;	Т	116	74	164	@#116;	t
21	15	025	NAK	(negative acknowledge)	53	35	065	4#53;	5	85	55	125	6#85 ;	U	117	75	165	u	u
22	16	026	SYN	(synchronous idle)				¢#54;		86	56	126	4#86 ;	٧	118	76	166	@#118;	V
23	17	027	ETB	(end of trans. block)	55	37	067	<u>@</u> #55;	7	87	57	127	a#87;	W	119	77	167	@#119;	\mathbf{w}
24	18	030	CAN	(cancel)	56	38	070	4#56;	8	88	58	130	6#88;	Х				@#120;	
25	19	031	EM	(end of medium)	57	39	071	<u>6#57;</u>	9	89	59	131	6#89 ;	Y	121	79	171	@#121;	Y
26	1A	032	SUB	(substitute)	58	ЗА	072	4#58;	:	90	5A	132	a#90;	Z	122	7A	172	@#122;	Z
27	1B	033	ESC	(escape)	59	ЗВ	073	<u>@</u> #59;	3	91	5B	133	@#91;	[123	7B	173	@#123;	-{
28	10	034	FS	(file separator)	60	3С	074	4#60;	<	92	5C	134	@#92;	A.	124	7C	174	@#124;	
29	1D	035	GS	(group separator)	61	ЗD	075	=	=	93	5D	135	@#93;]	125	7D	175	}	}
30	1E	036	RS	(record separator)	62	ЗE	076	>	>	94	5E	136	a#94;					4#126;	
31	1F	037	US	(unit separator)				4#63;	2	95	5F	137	@#95;	_	127	7F	177		DEI
. 1/			C C	0001		$\sim \Lambda$	\cap I	D - 1		Land 1			_		-				

Computer Science

Extended ASCII codes

128	Ç	144	É	160	á	176		192	L	208	Ш	224	α	240	=
129	ü	145	æ	161	í	177	•••••	193	Т.	209	₹	225	ß	241	±
130	é	146	Æ	162	ó	178		194	т	210	π	226	Γ	242	≥
131	â	147	ô	163	ú	179	1	195	F	211	Ш	227	π	243	≤
132	ä	148	ö	164	ñ	180	4	196	- (212	F	228	Σ	244	ſ
133	à	149	ò	165	Ñ	181	4	197	+	213	F	229	σ	245	J
134	å	150	û	166	•	182	1	198	F	214	П	230	μ	246	÷
135	ç	151	ù	167	•	183	П	199	╟	215	#	231	τ	247	æ
136	ê	152	Ÿ	168	3	184	7	200	L	216	+	232	Φ	248	۰
137	ë	153	Ö	169	-	185	4	201	F	217	J	233	•	249	
138	è	154	Ü	170	4	186		202	<u>JL</u>	218	Г	234	Ω	250	
139	ï	155	¢	171	1/2	187	ล	203	ī	219		235	δ	251	V
140	î	156	£	172	1/4	188	ī	204	ŀ	220		236	00	252	n
141	ì	157	¥	173	i	189	Ш	205	=	221	1	237	ф	253	2
142	Ä	158	R.	174	«	190	4	206	#	222	1	238	ε	254	
143	Å	159	f	175	»	191	7	207	<u>_</u>	223	•	239	\Diamond	255	

Source: www.LookupTables.com

[source: asciitable.com]

ASCII

ASCII - American Standard Code for Information Interchange

Any problems with ASCII?

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

Unicode

International standard (ISO 10646)

Binary system

- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

Computer Science

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

Technische Hochschule Rosenheim

Technical University of Applied Sciences

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

Technische Hochschule Rosenheim Technical University of Applied Sciences

- International standard (ISO 10646)
- For every character one code
- In the long term: A digital code is defined for each meaningful character or text element of all known cultures, countries/languages, and character systems.
- Is constantly extended
- http://www.unicode.org

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets Name Unit

Calculation #chars first

ast

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets
Name Unit

Calculation #chars first

ast

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets Name Unit

Calculation #chars first

last

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets Name Unit

UCS-2 16 Bit

 2^{16}

Calculation #chars first

65536

U+0000

last

U+FFFF

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Characte	r sots
Characte	1 3613

Calculation #chars first last Unit Name 2^{16} UCS-2 16 Bit U+0000 65536 U+FFFF UCS-4 17 Planes $17 * 2^{16}$ 1114112 U+00 0000 U+10 FFFF

Computer Science

Unicode

Character range:

first code U+00 0000 last code U+10 FFFF

Character sets

Name Unit		n #chars	first	last
UCS-2 16 Bit	2^{16}	65536	U+0000	U+FFFF
UCS-4 17 Plan	nes $17 * 2^{16}$	1114112	U+00 000	00 U+10 FFFF

Examples:

Unicode Full number Character

Computer Science

Unicode

Character range:

first code U+00 0000

last code U+10 FFFF

Character sets

Name Unit Calculation #chars first last

 2^{16} UCS-2 16 Bit U+0000 65536 U+FFFF

UCS-4 17 Planes $17 * 2^{16}$ 1114112 U+00 0000 U+10 FFFF

Examples:

Unicode Full number Character

00 0041 U+0041

Computer Science

Unicode

Character range:

first code U+00 0000

last code U+10 FFFF

Character sets

Name Unit Calculation #chars first last

UCS-2 16 Bit 2¹⁶ 65536 U+0000 U+FFFF

UCS-4 17 Planes $17 * 2^{16}$ 1114112 U+00 0000 U+10 FFFF

Examples:

Unicode Full number Character

U+0041 00 0041

U+1F600 01 F600

Computer Science

Prof. Dr. Florian Künzner, SoSe 2021

Unicode 10.0 - Planes

Plane 0 00 0000-00 FFFF BMP Basic Multilungual Plane	Plane 1 01 0000-01 FFFF SMP Supplementary Multilungual Plane	Plane 2 02 0000-02 FFFF SIP Supplementary Ideographic Plane	Plane 3 03 0000-03 FFFF unassigned	Plane 4 04 0000-04 FFFF unassigned
Plane 5 05 0000-05 FFFF unassigned	Plane 6 06 0000-06 FFFF unassigned	Plane 7 07 0000-07 FFFF unassigned	Plane 8 08 0000-08 FFFF unassigned	Plane 9 09 0000-09 FFFF unassigned
Plane 10 OA 0000-0A FFFF unassigned	Plane 11 OB 0000-0B FFFF unassigned	Plane 12 oc 0000-oc FFFF unassigned	Plane 13 OD 0000-0D FFFF unassigned	Plane 14 OE 0000-0E FFFF SSP Supplementary Special-purpose Plane
Plane 15 OF 0000-OF FFFF SPUA-A Supplementary Private Use Area planes	Plane 16 10 0000-10 FFFF SPUA-A Supplementary Private Use Area planes			

Unicode

Enter unicode characters

OS Program

Keyboard shortcut

More shortcuts: wikipedia.org

*must be enabled as input source

Computer Science

Unicode

Enter unicode characters

OS Program

Linux Terminal, xed, LibreOffice

Keyboard shortcut

CTRL+SHIFT+U + HEX Number

More shortcuts: wikipedia.org

^{*}must be enabled as input source

Computer Science

Unicode

Enter unicode characters

OS Program Keyboard shortcut
Linux Terminal, xed, LibreOffice CTRL+SHIFT+U + HEX Number
Windows Microsoft Word, Excel, WordPad HEX Number + ALT+C

More shortcuts: wikipedia.org

^{*}must be enabled as input source

Computer Science

Unicode

Enter unicode characters

OS	Program	Key	board
Linux	Terminal, xed, LibreOffice	CTRI	L+SHI
Windows	Microsoft Word, Excel, WordPad	HEX	Numb
macOS*	Console, Text	ALT	+ HE

More shortcuts: wikipedia.org

Keyboard shortcut

CTRL+SHIFT+U + HEX Number
HEX Number + ALT+C ((() ord)
ALT + HEX Number → ALT+×

^{*}must be enabled as input source

Computer Science

Unicode usage

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

V

Question? \Rightarrow

*

and use chat

speak after I ask you to

Unicode

Character set vs. character encoding?

Unicode vs UTF

Technische Hochschule Rosenheim Technical University of Applied Sciences

Unicode

Character set vs. character encoding?

Unicode vs UTF

Computer Science

UTF - Unicode Transformation Format

UTF maps all unicode code points to a unique sequence of bytes.

Used for

- Store information into files, databases, ...
- Transfer data (websites, e-mail, ...)

Choice depends on

- Storage space
- Source code compatibility
- Interoperability with other systems
- Runtime for encoding/decoding

Computer Science

UTF - Unicode Transformation Format

UTF maps all unicode code points to a unique sequence of bytes.

Used for

- Store information into files, databases, ...
- Transfer data (websites, e-mail, ...)

Choice depends on

- Storage space
- Source code compatibility
- Interoperability with other systems
- Runtime for encoding/decoding

UTF - Unicode Transformation Format

UTF maps all unicode code points to a unique sequence of bytes.

Used for

- Store information into files, databases, ...
- Transfer data (websites, e-mail, ...)

Choice depends on

- Storage space
- Source code compatibility
- Interoperability with other systems
- Runtime for encoding/decoding

Computer Science

UTF - Unicode Transformation Format

Overview of UTF encodings

Encoding Bits Length

Common use

UTF-8 8-bit Variable length: 1 to 4 bytes Internet, Linux

16-bit Variable length: 2 or 4 bytes Qt, Java, Tcl UTF-16

UTF-32 32-bit Fixed length: 4 bytes

Computer Science

UTF-8

UTF-8 length

Number	Bits for					
of bytes	code point		Unicode rai	nge	Comment	
1	7		0 - 00	007F	Compatible with ASCII	Plan 6
2	11		80 - 00	O7FF)
3	16		800 - 00	FFFF)
4	21	1	0000 - 10	FFFF	} F	1(au 1 - 16

UTF-8 encoding details

Unicode range					
			007F		
			O7FF		

Computer Science

UTF-8

UTF-8 length

	Bits for code point		Unicod	e rai	nge	Comment
	_				0	
1	7		0 -	00	007F	Compatible with ASCII
2	11		80 -	00	O7FF	
3	16		800 -	00	FFFF	
4	21	1	0000 -	10	FFFF	

UTF-8 encoding details

	Unicode range			Byte 1	Byte 2	Byte 3	Byte 4
	0 -	00	007F	0xxxxxxx			
	80 -	00	O7FF	110xxxxx	10xxxxxx		
	800 -	00	FFFF	1110xxxx	10xxxxxx	10xxxxxx	
1	0000 -	10	FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Computer Science

UTF-8 - example

Encode the "ü" into UTF-8!

Computer Science

UTF-8 - example

Encode the "ü" into UTF-8!

Computer Science

UTF-8 - example

Encode the "ü" into UTF-8!

Computer Science

Summary

UTF-8 - example

Encode the "ü" into UTF-8!

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

V

Question? \Rightarrow

*

and use chat

speak after I ask you to

Computer Science

UTF-16

UTF-16 length

Number Bits for of bytes code point

16

20

Unicode range

0 - 00 FFFF

01 0000 - 10 FFFF subtraction required:

Comment

U+XXXXXXX - 0x10000

Computer Science

UTF-16

UTF-16 length

Number Bits for of bytes code point Unicode range Comment

2 16 0 - 00 FFFF

4 20 01 0000 - 10 FFFF subtraction required:
U+XXXXXXX - 0x10000

UTF-16 encoding details

Unicode range Byte 1 Byte 2 Byte 3 Byte 4

0 - 00 FFFF xxxxxxxxx xxxxxxxx

High surrogate Low surrogate

01 0000 - 10 FFFF 110110xx xxxxxxxx 110111xx xxxxxxxx

Computer Science

UTF-16 - example

Encode the "(U+1F600) into UTF-16!

Computer Science

UTF-16 - example

Encode the "—" (U+1F600) into UTF-16!

```
1 4 byte variant and therefore correction required:
```

```
2 \text{ } 0x1F600 - 0x10000 = 0xF600
```

```
4 F 6 0 0
5 1111 0110 0000 0000
```

```
7 In UTF-16
```

8 High surrogate Low surrogate 9 11011000 00111101 11011110 00000000

10 D 8 3 D D E 0

-> 0xD83DDE00

Computer Science

UTF-16 - example

Encode the "—" (U+1F600) into UTF-16!

Computer Science

UTF-16 - example

Encode the "—" (U+1F600) into UTF-16!

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Computer Science

UTF-32

UTF-32 length

Number Bits for

of bytes code point Unicode range Comment

4 21 00 0000 - 10 FFFF directly representable

UTF-32 encoding details

Unicode range Byte 1 Byte 2 Byte 3 Byte 4

0 - 10 FFFF 0000000 000xxxxx xxxxxxxx xxxxxxx

Computer Science

UTF-32

UTF-32 length

Number Bits for

of bytes code point Unicode range Comment

4 21 00 0000 - 10 FFFF directly representable

UTF-32 encoding details

Unicode range Byte 1 Byte 2 Byte 3 Byte 4

Computer Science

UTF-32 - example

Encode the "—" (U+1F600) into UTF-32!

```
2 0x1F600

3

4 1 F 6 0 0

5 0001 1111 0110 0000 0000

6

7 In UTF-32:
8 00000000 0000001 11110110 00000000
9 0 0 1 F 6 0 0
```

Computer Science

UTF-32 - example

Encode the "—" (U+1F600) into UTF-32!

- only the 4 byte variant exists
- 2 0x1F600

```
4 1 F 6 0 0
```

- 5 0001 1111 0110 0000 0000
- 7 In UTF-32
- 8 00000000 00000001 11110110 00000000
- 9 0 0 0 1 F 6 0 0

Computer Science

UTF-32 - example

Encode the "—" (U+1F600) into UTF-32!

```
1 Only the 4 byte variant exists
```

2 0x1F600

4 1 F 6 0 0

5 0001 1111 0110 0000 0000

7 In UTF-32

8 00000000 00000001 11110110 00000000

8 00000000 00000001 11110110 00000000

Computer Science

UTF-32 - example

Encode the "—" (U+1F600) into UTF-32!

-> 0x0001F600

CAMPUS Rosenheim Computer Science

Questions?

All right? \Rightarrow

Question? \Rightarrow

*

and use chat

speak after I ask you to

CAMPUS Rosenheim **Computer Science**

Technische Hochschule Rosenheim

Numbers

Type

Integer

Floating point – binary float, double, ...

Floating point – decimal decimal32, decimal64, ...

Fixed point – binary Fixed point – decimal Common data type

unsigned int, int, ...

Often not well integrated Mostly in software Often not well integrated Mostly in software

Realisation

Hardware: ALU

Hardware: FPU

Mostly in software

Computer Science

Integer (signed)

Example: short int

Positive number: The weight for position i is 2^i

Negative number: The sign is interpreted as -2^N

Example short int: Minimum: -32768; Maximum: 32767

imits: http://www.cplusplus.com/reference/climits

Computer Science

Integer (signed)

Example: short int

Positive number: The weight for position i is 2^{i}

Negative number: The sign is interpreted as -2^N

Example short int: Minimum: -32768; Maximum: 32767

limits: http://www.cplusplus.com/reference/climits

Floating point – binary

Usually scientific numbers with mantissa and exponent.

Requires hardware support (FPU - floating point unit).

Format: $x = m \cdot B^e$ (m = mantissa, B = basis, and e = exponent)

Examples:

C: float x;

Ada: x: float

Computer Science

Floating point – binary

Floating point binary formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

			Number		
	Name	Common name	of bits	Characteristic	Mantissa
	binary16	Half precision	16	5 bits; $c = e + 15$	10 bits
float	binary32	Single precision	32	8 bits; $c = e + 127$	23 bits
double	binary64	Double precision	64	11 bits; $c = e + 1023$	52 bits
Long	binary128	Quadruple precision	128	15 bits; $c = e + 16383$	112 bits
(Coes)	binary256	Octuple precision	256	19 bits; $c = e + 262143$	236 bits

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE_754

Floating point – binary

Example: float (single precision)

Exponent $-126, \ldots, +127$ Exponent is represented via the characteristic

Characteristic c = e + 127

Mantissa $1 \le m < B$ Is normalised in the binary system

1.MMM...M

Advantage: 1 doesn't have to be saved

Computer Science

Floating point – binary

Example: float (single precision)

Exponent $-126, \ldots, +127$ Exponent is represented via the characteristic

Characteristic c = e + 127

Mantissa $1 \le m < B$ Is normalised in the binary system:

1.MMM...M

Advantage: 1 doesn't have to be saved!

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

```
1.75 -> binary:
2 01.11000...0 -> it has already the required form
                   of 1.MMM...M (=> e=0)
```

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

Prof. Dr. Florian Künzner, SoSe 2021

Computer Science

Floating point – binary

Convert the decimal number 1.75 into the binary32 (float) representation.

Computer Science

Floating point – binary

Computer Science

Floating point – binary

Nr.	Code	different	equal
1	36.2 != 36.2		

Computer Science

Floating point – binary

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		

Computer Science

Floating point – binary

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		

Computer Science

Summary

Floating point – binary

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		
4	(0.362 * 100.0) / 100.0 != 0.362		

CAMPUS Rosenheim Computer Science

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Computer Science

Floating point – decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

	decimal digits	Exponent min.	Exponent max.
decimal32			
decimal64			
decimal128			

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: _Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

More details on the format (on Wikipedia): https://en.wikipedia.org/wiki/Decimal32_floating-point_format_

Computer Science

Floating point - decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

	decimal digits	Exponent min.	Exponent max.
decimal32			
decimal64			
decimal128			

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

More details on the format (on Wikipedia): https://en.wikipedia.org/wiki/Decimal32_floating-point_format_

Computer Science

Floating point - decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

Name	decimal digits	Exponent min.	Exponent max.
decimal32	7	-95	+96
decimal64	16	-383	+384

decimal128 34 -6143 +6144

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE_754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: _Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

More details on the format (on Wikipedia): https://en.wikipedia.org/wiki/Decimal32_floating-point_format_

Computer Science

Floating point - decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

Name decimal digit	s Exponent min.	Exponent max.
--------------------	-----------------	---------------

decimal32	7	-95	+96
decimal64	16	-383	+384
decimal128	34	-6143	+6144

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: _Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal32, decimal64, and decimal128
- Example C++: std::decimal::decimal32 x(0.1);

More details on the format (on Wikipedia): https://en.wikipedia.org/wiki/Decimal32_floating-point_format,

Computer Science

Floating point – decimal

Floating point decimal formats are defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Format: $x = (-1)^{\text{signbit}} \times 10^{\text{exponentbits}_2 - 101_{10}} \times \text{truesignificand}_{10}$

Number of

Name decimal digits Exponent min. Exponent max	, L =
--	----------

decimal32	7	-95	+96
decimal64	16	-383	+384
decimal128	34	-6143	+6144

IEEE 754 on Wikipedia: https://en.wikipedia.org/wiki/IEEE 754

- Possible in gnu C with _Decimal32, _Decimal64, and _Decimal128
- Example C: _Decimal32 x = 0.1df;
- Possible in gnu C++ with decimal 32, decimal 64, and decimal 128
- Example C++: std::decimal::decimal32 x(0.1);

/ Jana: Big Deciral

More details on the format (on Wikipedia): https://en.wikipedia.org/wiki/Decimal32_floating-point_format

Computer Science

Floating point – decimal

Computer Science

Floating point - decimal

	Nr.	Code	different	equal
-	1	36.2 != 36.2		

Computer Science

Floating point - decimal

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		

Computer Science

Floating point - decimal

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		

Summary

Floating point – decimal

Nr.	Code	different	equal
1	36.2 != 36.2		
2	0.362 * 100.0 != 36.2		
3	0.362 * (100.0 / 100.0) != 0.362		
4	(0.362 * 100.0) / 100.0 != 0.362		

CAMPUS Rosenheim Computer Science

Questions?

All right? \Rightarrow

4

Question? \Rightarrow

and use chat

speak after I ask you to

Computer Science

Fixed point

Fixed point numbers have a fixed imaginary point that is not moved.

Usage:

- Areas where rounding errors must be avoided (e.g. commercial applications)
- If no floating point hardware (FPU) is available (e.g. in embedded systems)
- Devices use the numbers in this format anyway (e.g. analog/digital converter)

CAMPUS Rosenheim Computer Science

Fixed point

Fixed point numbers have a fixed imaginary point that is not moved.

Usage:

- Areas where rounding errors must be avoided (e.g. commercial applications)
- If no floating point hardware (FPU) is available (e.g. in embedded systems)
- Devices use the numbers in this format anyway (e.g. analog/digital converter)

Two variants:

Type Usage

Binary fixed point technical

Decimal fixed point economical