# Boolean Combinations of Weighted Voting Games

Juan Pablo Royo Sales

Universitat Politècnica de Catalunya

January 2020

- Introduction
- 2 Preliminary Definitions
- Second Second
- Representational Complexity
- Shapley Value
- 6 The Core

- Introduction
- 2 Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- Shapley Value
- 6 The Core

#### Introduction

#### **Basic Notions**

- Based on Boolean Combinations of Weighted Voting Games paper BWVG<sup>1</sup>
- It is a natural Generalization over Weighted Voting Games
- Intuitively is a decision making process via multiple committees
- Each committee has the authority to decide the outcome "yes" or "no" about an issue.
- And each committee is a WVG
- Individuals can appear in multiple committees
- Different committees can have different Threshold values

<sup>&</sup>lt;sup>1</sup> Piotr Faliszewski, Edith Elkind, and Michael Wooldridge. 2009. Boolean combinations of weighted voting games. In Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems - Volume 1 (AAMAS '09). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 185–192.

#### Introduction

#### Questions to be answered?

- Which coalitions might be able to bring the goal about?
- How important is a particular individual with respect to the achievement of the goal?

#### Introduction

### Goals of the Paper

- Formal Definition of BWVG
- Investigate Computational Properties of BWVG

- Introduction
- 2 Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- Shapley Value
- 6 The Core

### Propositional Logic

- Let  $\Phi = \{p, q, \dots\}$  be a fixed non-empty vocabulary of Boolean variables
- $\bullet$  Let  ${\cal L}$  denote the set of formulas of propositional logic over  $\Phi$
- If " $\vee$ " and " $\wedge$ " are the only operators appearing in formula  $\varphi$ , se say that  $\varphi$  is **monotone**
- If  $\xi \subseteq \Phi$ , we write  $\xi \models \varphi$  mean that  $\varphi$  is true satisfied by valuation  $\xi$

### Simple Games

- A coalitional game is Simple if  $v(C) \in \{0,1\} \forall C \subseteq N$
- C wins if v(C) = 1 and C losses otherwise.
- A Simple Game is **monotone** if  $v(C) = 1 \implies v(C') = 1$  for any  $C \subseteq C'$ .
- In this paper authors consider both monotone and non-monotone Simple Games.
- They assume games with finite numbers of players |N| = n,  $N = \{1, ..., n\}$

### Weighted Voting Games

- Given  $N = \{1, \dots, n\}$  players
- A list of n weights  $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$
- A threshold  $T \in \mathbb{R}$
- When N is clear from the context  $q = (T; w_1, ..., w_n)$  to denote a WVG g
- w(C) total weight of coalition C,  $w(C) = \sum_{i \in C} w_i$
- Characteristic function given by v(C) = 1 if  $w(C) \ge T$  and v(C) = 0 otherwise.
- If all Weights are non-negative the game is monotone.

### Computational Complexity

- P, NP, coNP,  $\Sigma_2^p$ ,  $\Pi_2^p$
- $D^p$ : A Language  $L \in D^p$  if  $L = L_1 \cap L_2$ , for some language  $L_1 \in NP$  and  $L_2 \in coNP$
- $D_2^p$ : A Language  $L \in D_2^p$  if  $L = L_1 \cap L_2$ , for some language  $L_1 \in \Sigma_2^p$  and  $L_2 \in \Pi_2^p$
- A Language  $L \in UP$  if its Characteristic Function is in #P

- Introduction
- 2 Preliminary Definitions
- Second Second
- 4 Representational Complexity
- Shapley Value
- 6 The Core

# Boolean Weighted Voting Games

#### Definition

A **BWVG** is a tuple  $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ , where:

- $N = \{1, ..., n\}$  is a set of players;
- $\mathcal{G} = \{g^1, \dots, g^n\}$  is a Set of **WVG** over N, where jth game,  $g^j$ , is given by a vector of weights  $w^j = (w_1^j, \dots, w_n^j)$  and a Threshold  $T^j$ .  $\mathcal{G}$  is called the **component games** of G;
- $\Phi = \{p^1, \dots, p^n\}$  Set of Propositional Variables, in which each  $p^j$  correspond with the **component**  $g^j$ ;
- $\varphi$  is a propositional formula over  $\Phi$ .

#### Shorthand Definition

#### Example:

 $\bullet \ g^1 \wedge g^2 \equiv \langle \textit{N}, \{g^1, g^2\}, \{p^1, p^2\}, p^1 \wedge p^2 \rangle$ 

# Boolean Weighted Voting Games

### Winning Coalition

We say that C is a wins G if:

$$\exists \xi_1 \subseteq \Phi_C : \forall \xi_2 \subseteq (\Phi \setminus \Phi_C) : \xi_1 \cup \xi_2 \models \varphi$$
 (1)

### Intuitively 1

A coalition C wins if it is able to fix variables under its control in such a way that the goal formula  $\varphi$  is guaranteed to be **True**.

#### **Notes**

It is allowed BWVG to contain negative weights

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- Shapley Value
- 6 The Core

### Representational Complexity

#### **Preliminaries**

- Any Simple Game with n players can be represented as a K-Vector Weighted Voting Game for  $k = O(2^n)$ , and therefore as a **BWVG** with  $O(2^n)$  component games  $\mathcal{G}$ .
- That worst-case can be improved in BWVG

# Representational Complexity

### Proposition 1

The total number of Boolean weighted voting games with |N| = n and  $|\varphi| = s$  is most  $2^{O(sn^2 \log(sn))}$ 

#### Proof.

- Any weighted voting game<sup>2</sup> can be represented using Integer weights whose absolute values do not exceed  $2^{O(n \log n)}$
- w.l.g. we assumed that  $|\mathcal{G}| = |\Phi|$  and  $|\Phi| \leq |\varphi| = s$
- Given a **BWVG** G with n players and  $|\varphi| = s$ , we can find a equivalent representation using  $O(sn^2 \log n)$  bits to represent all weights in ALL components, plus another  $O(s \log s)$  bits to represent  $\mathcal{G}, \Phi$  and  $\varphi$ .
- Therefore, the total number of distinct games can be represented as **BWVG** with |N| = n and  $|\varphi| = s$  is  $2^{O(sn^2 \log(sn))}$





- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- Shapley Value
- 6 The Core

# Shapley Value

as d fas fs d

- Introduction
- 2 Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- Shapley Value
- 6 The Core

### The Core

as d fas fs d

# Thank you!!