

Optimizing the Grid

Presented by: Aasna, Abdul, Angel, Mahrukh, and Tashfeen

Agenda

- Understanding the Problem
- Base Model Formulation
- 03 Model Results
- Goal Programming Extension
- Recommendations & Takeaways

Unchecked, the crisis presents heightened risks of

Unchecked, the crisis presents heightened risks of

Water & Food Insecurity **Extreme Weather Events Mass Displacement Competition for Resources**

United Nations

Framework Convention on Climate Change

broad-based changes across our economy

broad-based changes across our economy

Cornerstone energy source

for a net-zero energy system, as per Energy Regulator's 2023 Energy Futures Report

Cornerstone energy source

for a net-zero energy system, as per Energy Regulator's 2023 Energy Futures Report

Broader low-carbon transition

through electrification of technologies currently reliant on non-renewables

Accounting for disruptive tech

with X-times the energy-intensity of incumbent tech

The Grid as a Portfolio

Hydro

57.9% of 2022 generation

Coal

4.3% of 2022 generation

Nuclear

13.4% of 2022 generation

Solar

1.8% of 2022 generation

Natural Gas

13.1% of 2022 generation

Geothermal

1.7% of 2022 generation

Wind

7.7% of 2022 generation

Oil

0.1% of 2022 generation

Minimize total deviation from emissions targets

Minimize total cost

Objective Function

Primary

$$\min \sum_{t \in T} Dev_t$$

Secondary

$$\min Total_Cost = \sum_{g \in G} \sum_{t \in T} C_{g,t} \cdot Gen_{g,t} + \sum_{g \in \{\text{Wind,Solar,Nuclear}\}} \sum_{t \in \{2030,2035\}} (Increase_Cost_{g,t} \cdot B_{g,t}^{(1)} + Increase_Cost_{g,t} \cdot B_{g,t}^{(2)})$$

Constraints

• Emission Calculation

$$\begin{split} \sum_{g \in G} Emissions_{g,t} &\leq Goal_t + Dev_t \quad \forall t \in T, \forall g \in G \\ Emissions_{g,t} &= E_{g,t} \cdot Gen_{g,t} \quad \forall t \in T, \forall g \in G \end{split}$$

Demand Satisfaction

$$\sum_{g \in G} Gen_{g,t} \ge D_t \quad \forall t \in T$$

Phase Out Non-Renewable Energy Sources

$$Gen_{Coal \& Coke, 2030} = 0, \quad Gen_{Oil, 2035} = 0$$

Constraints

Maximum Generation and Capacity Decision Added Constraints

```
\begin{array}{ll} \text{In 2025:} & \text{Gen}_{g,2025} \leq F_{g,2025} & \forall g \in G \\ \\ \text{In 2030:} & \text{Gen}_{g,2030} \leq F_{g,2025} + I_{g,2030} & \forall g \in \{Wind,Solar,Nuclear\} \\ \\ & \text{Gen}_{g,2030} \leq F_{g,2025} & \forall g \in G \setminus \{Wind,Solar,Nuclear\} \\ \\ \text{In 2035:} & \text{Gen}_{g,2035} \leq F_{g,2025} + I_{g,2030} + I_{g,2035} & \forall g \in \{Wind,Solar,Nuclear\} \\ \\ & \text{Gen}_{g,2035} \leq F_{g,2025} & \forall g \in G \setminus \{Wind,Solar,Nuclear\} \\ \end{array}
```

 $I_{g,t} \leq B_{g,t}^{(1)} \cdot \text{Capacity_Added}_{g,t} + B_{g,t}^{(2)} \cdot \text{Capacity_Added}_{g,t} \quad \forall g \in \{Wind, Solar, Nuclear\}, \forall t \in \{2030, 2035\}$

Constraints

Continued

$$\begin{split} Gen_{g,t} &- \text{Utilization_Threshold} \cdot \left(F_{g,2025} + \sum_{\tau < t} I_{g,\tau} \right) \\ &\leq M \cdot (1 - y_{g,t}) \quad \forall g \in \{ \text{Wind, Solar, Nuclear} \}, \forall t \in T \end{split}$$

Where y is a binary variable and M is a large number

$$B_{g,t}^{(1)} + M \cdot y_{g,t} \ge 1 \quad \forall g \in \{\text{Wind, Solar, Nuclear}\}, \forall t \in T$$
 (3)

$$\begin{split} Gen_{g,t} - \text{Utilization_Threshold} \cdot \left(F_{g,2025} + \sum_{\tau < t} I_{g,\tau} + \text{Capacity_Added}_{g,t} \right) \\ & \leq M \cdot (1 - y_{g,t}^{(2)}) \quad \forall g \in \{ \text{Wind, Solar, Nuclear} \}, \forall t \in T \\ & (4) \end{split}$$

$$B_{g,t}^{(2)} + M \cdot y_{g,t}^{(2)} \ge 1 \quad \forall g \in \{Wind, Solar, Nuclear\}, t \in T$$

Results

Results: 2025

- 0.001 MTCO2e deviation with total emission of 35.19 MTCO2e
- Results can inform the optimal pathway towards net-zero for Canada.
- Portfolio predominantly contains hydro, nuclear, and wind.

Energy Portfolio, Cost, and Emission Factors

Results: 2030

- Total emission of 14.49 MTCO2.
- Two wind plants and two nuclear plants were opened with a cost of \$27 billion.
- The energy mix geared more towards clean energy with nuclear, nuclear, and wind making up an even larger portion of it.

Energy Portfolio, Cost, and Emission Factors

Results: 2035

- Deviation of 13.50 MTCO2e.
- \$15 billion to reduce emission from 14.49 MTCO2e to 13.50 MTCO2

Energy Portfolio, Cost, and Emission Factors

Extension: Canada's Demand Satisfaction Leeway

How much leeway does Canada have in demand satisfaction?

Extension: Canada's Demand Satisfaction Leeway

How much leeway does Canada have in demand satisfaction?

Goal Programming Extension

Goal Programming Overview

- •An extension of multiobjective linear programming
- •Two basic models: lexicographic(hierarchical) model and the weighted-sum model.
- •Incorporates positive and negative deviation variables with bounds
- •The objective function of a goal programming model requires us to always minimize the deviations from the goals.
- •Goals are specified for a set of constraints, the non-achievement of these don't make the model unfeasible
- •No optimal solution, we want a solution that satisfies our criteria

Goal Programming Model

- •Our model spans the years 2025, 2030, and 2035
- •Prioritizes four main objectives with distinct targets in this order: minimizing emissions deviations (highest priority), generation output, generation capacity, and associated costs.
- •It incorporates decision variables and 5% deviation variables for measuring performance against predetermined targets.
- •Constraints ensure meeting forecasted demands, avoiding technology capacity exceedance, and staying within defined limits for all goals stated above

Goal Programming Model Results

- Shift towards renewable energies like wind, nuclear and hydro + hydroelectric power leading in generation and costs.
- 2030 increased generation for wind and solar and coal phases out
- 2035 renewable sources reach peak generation and higher costs, particularly for wind energy.
- Hydroelectric and nuclear power maintain high outputs, with geothermal showing potential for growth

Generation by Source

Goal Programming Model Results

- Critical deviations from the targets, in costs and capacities as
 we move towards renewable sources by 2035
- Wind energy shows a significant cost increase to CAD 26 billion,
 highlighting larger-than-expected financial investments.
- Hydroelectric power also sees rising costs, emphasizing the financial challenges in scaling renewables.
- Overall model indicates a transition towards cleaner energy, though not achieving net zero, due to lifecycle emissions and the absence of carbon capture technology in our model

Costs by Source

Recommendations

Recommendations

A grid dominated by hydroelectric, wind, and nuclear power

2035, Base Model

2035, Goal Programming Extension

2035, Canada Energy Futures Global Net Zero

Share of Generation by Source

Recommendations

Key Considerations

National Interties Public Acceptance

Summary & Takeaways

Project Summary, Takeaways, and Lessons Learned

Summary:

- •The project develops two models with a hierarchical approach to examine Canada's path to net-zero electricity by 2035 a MIP model minimizing emissions and costs and a GP model balancing emissions, generation, capacity, and cost.
- •MIP enables focused optimization, but GP allows flexibility for complex multi-objective scenarios.

Takeaways:

- •Achieving net-zero electricity will require major investments in wind, nuclear and hydro energy while phasing out fossil fuels.
- •Also, policy support for renewable sources is key to a viable transition path.

Lessons Learned:

- •No model can perfectly predict the future. Uncertainties around costs, technology, demand etc. mean outputs should be considered estimates.
- •Models support but don't dictate policy; they are one input for decision making.

Q&A