

DETECCIÓN DE LESIONES DERMATOLÓGICAS EN IMÁGENES MÉDICAS

FERRANDO HUERTAS, JAIME MARTÍNEZ BERNIA, JAVIER

ÍNDICE

- Introducción
- Estado del Arte
- Análisis Exploratorio de los Datos
- Solución Propuesta

- Experimentación
- Resultados
- Conclusiones

INTRODUCCIÓN

- Melanoma
- ACS estima +100.000 casos nuevos en 2021
- Detección temprana
- SIIM-ISIC Melanoma Classification 2020
- Construir clasificadores

ESTADO DEL ARTE

- Modelos distintos de Efficient Net preentrenados con ImageNet
- Diferentes tamaños de entrada
- Entrada: Imagen / Imagen + Metadatos
- Data Augmentation
- Ampliación del conjunto de datos
- Clasificador multiclase
- "Identifying Melanoma Images using EfficientNet Ensemble" [Ha, Liu. 2020]

ANÁLISIS EXPLORATORIO DE LOS DATOS

- 33.126 entrenamiento / 10.982 test
- Tamaños variables
- Metadatos
 - Edad, Sexo, Parte del cuerpo,

Diagnóstico (melanoma, nevus, seborrheic keratosis ...)

Distribución de clases

SOLUCIÓN PROPUESTA

Preparación de los datos

- Partición (80% entrenamiento 20% validación)
- Ampliación del conjunto de datos (2019 + 2020) ~7% clase melanoma
- Dos aproximaciones:
 - Clasificación binaria (maligno / benigno)
 - Clasificación multiclase (9 clases)
- Entrada: Imagen / Imagen + Metadatos

Construcción de Modelos

■ Efficient Nets (B3 – B7) con los pesos de ImageNet

EXPERIMENTACIÓN

- Experimentos con la topología EfficientNet B3 / Ensamblado con distintos modelos
- Data Augmentation: Rotaciones, Escalados, Desenfoque, Distorsiones
- Optimizador Adam con factor de aprendizaje bajo (~1e-5)
- Learning Rate Scheduler
- 20 epochs máximo, Early Stopping con precisión de clase "melanoma"
- Función de pérdida: Entropía Cruzada con pesos asignados a las clases
- Distinto tamaño de imagen

RESULTADOS

Modelo	Metadatos	Clasificación	Tamaño entrada	Scheduler	Precision "melanoma" %	AUC Test Kaggle %
B3 – Base	No	Binaria	224×224	No	81.22*	76.10
B3 - I	Si	Binaria	224×224	No	88.24*	78.60
B3 - 2	No	Multiclase	224×224	No	86.51	89.89
B3 - 3	Si	Multiclase	224×224	No	89.51	91.51
B3 - 4	Si	Multiclase	224×224	Si	90.95	91.38
B3 - 5	Si	Multiclase	512×512	Si	92.32	87.97

Ensamblado: B3-2 + B3-3 + B3-4 + B5	92.02
Equipo Ganador Kaggle	94.90

CONCLUSIONES Y FUTUROS TRABAJOS

- Resultados cercanos al equipo ganador
- Gran número de técnicas de procesado de imagen
- Buenos resultados pese al desbalanceo de clases
- Experimentación con EfficientNet y PyTorch Lightning
- Probar ensamblado de las distintas variantes
- Probar con todas las técnicas de Data Augmentation
- K-Fold Cross-Validation

GRACIAS POR SU ATENCIÓN

FERRANDO HUERTAS, JAIME MARTÍNEZ BERNIA, JAVIER