CHEAT SHEET: COMPUTATIONAL MODELS (20604) REC. P NP REGCFL DEC NPC $L_1 \cup L_2$ ✓ ✓ no no √ ✓ $L_1 \cap L_2$ ✓ no no ✓ √ ? \overline{L} no no s 1 1 $L_1 \cdot L_2$ nο nο L^* ✓ ✓ no no $L^{\mathcal{R}}$ ✓ √ ? $L_1 \setminus L_2$ no no no $L \cap R$ √

- (**DFA**) $M = (Q, \Sigma, \delta, q_0, F), \delta : Q \times \Sigma \rightarrow Q.$
- (NFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma_{arepsilon} o\mathcal{P}(Q).$
- (GNFA) $(Q, \Sigma, \delta, q_0, q_{
 m a}), \delta: Q\setminus \{q_{
 m a}\} imes Q\setminus \{q_0\} o {
 m Rex}_\Sigma$
- (DFAs D_1, D_2) \exists DFA D s.t. $|Q| = |Q_1| \cdot |Q_2|$, $L(D) = L(D_1)\Delta L(D_2).$

0	(DFA D) If $L(D) \neq \emptyset$ then $\exists \ s \in L(D)$ s.t. $ s < Q $.
0	∀ NFA ∃ an equivalent NFA with 1 accept state.

(DFA → GNFA → Regex)

If $A = L(N_{\mathsf{NFA}}), B = (L(M_{\mathsf{DFA}}))^{\complement}$ then $A \cdot B \in \mathsf{REG}$.

https://github.com/adielbm/20604

Regular Expressions: Examples

 $\{a^nwb^n:w\in\Sigma^*\}\equiv a(a\cup b)^*b$

 $\{w: \#_w(\mathtt{0}) \geq 2 \lor \#_w(\mathtt{1}) \leq 1\} \equiv (\Sigma^* 0 \Sigma^* 0 \Sigma^*) \cup (0^* (\varepsilon \cup 1) 0^*)$

 $\{w: |w| \bmod n = m\} \equiv (a \cup b)^m ((a \cup b)^n)^*$

 $\{w: \#_b(w) \bmod n = m\} \equiv (a^*ba^*)^m \cdot ((a^*ba^*)^n)^*$

 $\{w: |w| \text{ is odd}\} \equiv (a \cup b)^*((a \cup b)(a \cup b)^*)^*$

 $\{w: \#_a(w) \text{ is odd}\} \equiv b^*a(ab^*a \cup b)^*$

 $\{w:\#_{ab}(w)=\#_{ba}(w)\}\equiv arepsilon\cup a\cup b\cup a\Sigma^*a\cup b\Sigma^*b$

 $\{a^m b^n \mid m + n \text{ is odd}\} \equiv a(aa)^* (bb)^* \cup (aa)^* b(bb)^*$

 $\{aw: aba \nsubseteq w\} \equiv a(a \cup bb \cup bbb)^*(b \cup \varepsilon)$

$\textbf{Pumping lemma for regular languages:} \ A \in \text{REG} \implies \exists p : \forall s \in \textit{A} \text{, } |s| \geq p \text{, } s = xyz \text{, } \text{(i)} \ \forall i \geq 0, xy^iz \in \textit{A} \text{, } \text{(ii)} \ |y| > 0 \ \text{and (iii)} \ |xy| \leq p \text{.}$

- (the following are non-reuglar but CFL)
- $\{w=w^{\mathcal{R}}\}; s=0^p10^p=xyz. \text{ but } xy^2z=0^{p+|y|}10^p \notin L.$
- $\{a^nb^n\}; s = a^pb^p = xyz, xy^2z = a^{p+|y|}b^p \notin L.$
- $\{w:\#_a(w)>\#_b(w)\};\, s=a^pb^{p+1},\, |s|=2p+1\geq p,$ $xy^2z=a^{p+|y|}b^{p+1}\not\in L.$
- $\{w: \#_a(w) = \#_b(w)\}; s = a^p b^p = xyz$ but $xy^2z=a^{p+|y|}b^p
 otin L.$
- $\{w: \#_w(a) \neq \#_w(b)\}; (pf. by 'complement-closure',$ $\overline{L} = \{w : \#_w(a) = \#_w(b)\}$
- $\{a^i b^j c^k : i < j \lor i > k\}; s = a^p b^{p+1} c^{2p} = xyz$, but $xy^2z=a^{p+|y|}b^{p+1}c^{2p},\, p+|y|\geq p+1,\, p+|y|\leq 2p.$
- (the following are both non-CFL and non-reuglar)
- $\{w = a^{2^k}\}; \quad k = \lfloor \log_2 |w| \rfloor, s = a^{2^k} = xyz.$ $2^k = |xyz| < |xy^2z| \le |xyz| + |xy| \le 2^k + p < 2^{k+1}.$
- $\{a^p : p \text{ is prime}\}; \quad s = a^t = xyz \text{ for prime } t \ge p.$ r := |y| > 0
- $\{www:w\in\Sigma^*\};\,s=a^pba^pba^p=xyz=a^{|x|+|y|+m}ba^pba^pb$, $m\geq 0$, but $xy^2z=a^{|x|+2|y|+m}ba^pba^pb\notin L$.
- $\{a^{2n}b^{3n}a^n\}; s=a^{2p}b^{3p}a^p=xyz=a^{|x|+|y|+m+p}b^{3p}a^p,$ $m\geq 0$, but $xy^2z=a^{2p+|y|}b^{3p}a^p
 otin L.$

$$\textbf{(PDA)}\ M = (Q, \underset{\text{input, stack}}{\Sigma}, \underset{\text{stack}}{\Gamma}, \delta, q_0 \in Q, \underset{\text{accepts}}{F} \subseteq Q).\ \delta: Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \longrightarrow \mathcal{P}(Q \times \Gamma_\varepsilon). \quad L \in \mathbf{CFL} \Leftrightarrow \exists G_{\mathsf{CFG}} : L = L(G) \Leftrightarrow \exists P_{\mathsf{PDA}} : L = L(P)$$

- (CFG \rightsquigarrow CNF) (1.) Add a new start variable S_0 and a rule $S_0 \to S$. (2.) Remove ε -rules of the form $A \to \varepsilon$ (except for $S_0 \to \varepsilon$), and remove A's occurrences on the RH of a rule (e.g.: R o uAvAw becomes $R
 ightarrow u AvAw \mid u Avw \mid u v Aw \mid u v w$. where $u, v, w \in (V \cup \Sigma)^*$). (3.) Remove unit rules $A \to B$ then whenever $B \to u$ appears, add $A \to u$, unless this was a unit rule previously removed. ($u \in (V \cup \Sigma)^*$). (4.) Replace each rule $A \to u_1 u_2 \cdots u_k$ where $k \ge 3$ and $u_i \in (V \cup \Sigma)$, with the rules $A \to u_1 A_1, A_1 \to u_2 A_2, ...,$
- $A_{k-2}
 ightarrow u_{k-1}u_k$, where A_i are new variables. Replace terminals u_i with $U_i \to u_i$.
- If $G \in \mathsf{CNF}$, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where his the height of the parse tree for w.
- $\forall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
- (derivation) $S \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n = w$, where each u_i is in $(V \cup \Sigma)^*$. (in this case, G generates w (or S derives w), $S \stackrel{*}{\Rightarrow} w$)
- M accepts $w \in \Sigma^*$ if there is a seq. $r_0, r_1, \ldots, r_m \in Q$ and $s_0, s_1, \ldots, s_m \in \Gamma^*$ s.t.: (1.) $r_0 = q_0$ and $s_0 = \varepsilon$; (2.)
- For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{arepsilon}$ and $t \in \Gamma^*$; (3.) $r_m \in F$.
- (PDA transition) " $a,b \rightarrow c$ ": reads a from the input (or read nothing if $a = \varepsilon$). **pops** b from the stack (or pops nothing if $b = \varepsilon$). **pushes** c onto the stack (or pushes nothing if $c = \varepsilon$)
- $R \in \operatorname{REG} \wedge C \in \operatorname{CFL} \implies R \cap C \in \operatorname{CFL}$. (pf. construct PDA $P' = P_C \times D_R$.)

(CFG) $G = (V, \Sigma, R, S), A \rightarrow w, (A \in V, w \in (V \cup \Sigma)^*);$ (CNF) $A \rightarrow BC, A \rightarrow a, S \rightarrow \varepsilon, (A, B, C \in V, a \in \Sigma, B, C \neq S).$

- (the following are CFL but non-reuglar)
- $\{w: w=w^{\mathcal{R}}\}; S \rightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon$
- $\{w: w
 eq w^{\mathcal{R}}\}; S
 ightarrow aSa \mid bSb \mid aXb \mid bXa; X
 ightarrow aX \mid bX\mid arepsilon$
- $\{ww^{\mathcal{R}}\} = \{w: w = w^{\mathcal{R}} \land |w| \text{ is even}\}; S \rightarrow aSa \mid bSb \mid \varepsilon$
- $\{wa^nw^{\mathcal{R}}\};\,S o aSa\mid bSb\mid M;M o aM\mid arepsilon$
- $\{w\#x: w^{\mathcal{R}}\subseteq x\}; S\rightarrow AX; A\rightarrow 0A0\mid 1A1\mid \#X;$ $X
 ightarrow 0X \mid 1X \mid arepsilon$
- $\{w:\#_w(a)>\#_w(b)\};S o JaJ;J o JJ\mid aJb\mid bJa\mid a\mid c$

- $\{w: \#_w(a) \geq \#_w(b)\}; S \rightarrow SS \mid aSb \mid bSa \mid a \mid \varepsilon$
- $\{w:\#_w(a)=\#_w(b)\};\,S o SS\mid aSb\mid bSa\mid arepsilon$
 - $\{w: \#_w(a) \neq \#_w(b)\} = \{\#_w(a) > \#_w(b)\} \cup \{\#_w(a) < \#_w(b)\}$
- $\overline{\{a^nb^n\}}$; $S \to XbXaX \mid A \mid B$; $A \to aAb \mid Ab \mid b$; $B
 ightarrow aBb \mid aB \mid a$; $X
 ightarrow aX \mid bX \mid arepsilon$.
- $\{a^nb^m\mid n
 eq m\};S
 ightarrow aSb|A|B;A
 ightarrow aA|a;B
 ightarrow bB|b|$
- $\{a^ib^jc^k\mid i\leq j\vee j\leq k\};\,S\rightarrow S_1C\mid AS_2;A\rightarrow Aa\mid \varepsilon;$ $S_1 \rightarrow aS_1b \mid S_1b \mid \varepsilon; S_2 \rightarrow bS_2c \mid S_2c \mid \varepsilon; C \rightarrow Cc \mid \varepsilon$ $\{x \mid x \neq ww\}; S \rightarrow A \mid B \mid AB \mid BA; A \rightarrow CAC \mid 0;$
 - $B
 ightarrow CBC \mid \mathbf{1}:C
 ightarrow 0 \mid 1$

- $\{a^nb^m \mid m \leq n \leq 3m\}; S \rightarrow aSb \mid aaSb \mid aaaSb \mid \varepsilon;$
- $\{a^nb^n\};S o aSb\mid arepsilon$
- $\{a^nb^m\mid n>m\};S o aSb\mid aS\mid a$
- $\{a^nb^m\mid n\geq m\geq 0\};\,S
 ightarrow aSb\mid aS\mid a\mid arepsilon$
- $\{a^ib^jc^k\mid i+j=k\}; S\to aSc\mid X; X\to bXc\mid \varepsilon$
- $\{xy:|x|=|y|,x\neq y\};\,S\rightarrow AB\mid BA;$
- $A
 ightarrow a \mid aAa \mid aAb \mid bAa \mid bAb;$
- $B \rightarrow b \mid aBa \mid aBb \mid bBa \mid bBb;$

 $\{a^*b^*c^*\} \cap L = \{a^nb^nc^n\} \notin CFL$

- (the following are both CFL and regular) $\{w: \#_w(a) \geq 3\}; S \rightarrow XaXaXaX; X \rightarrow aX \mid bX \mid \varepsilon$

$\textbf{Pumping lemma for context-free languages: } L \in \text{CFL} \implies \exists p: \forall s \in L, |s| \geq p, \ s = uvxyz, \textbf{(i)} \ \forall i \geq 0, uv^i xy^i z \in L, \textbf{(ii)} \ |vxy| \leq p, \ \textbf{and (iii)} \ |vy| > 0.$ $\{ww : w \in \{a, b\}^*\};$

- $\{w=a^nb^nc^n\}; s=a^pb^pb^p=uvxyz.\ vxy\ {\sf can't\ contain\ all\ }$ of a, b, c thus uv^2xy^2z must pump one of them less than the others.
- (more example of not CFL)
 - ${a^i b^j c^k \mid 0 \le i \le j \le k}, {a^n b^n c^n \mid n \in \mathbb{N}},$ $\{ww \mid w \in \{a,b\}^*\}, \{a^{n^2} \mid n \ge 0\}, \{a^p \mid p \text{ is prime}\},$
- $L = \{ww^{\mathcal{R}}w : w \in \{a, b\}^*\}$ $\{w \mid \#_w(a) = \#_w(b) = \#_w(c)\}$: (pf. since Regular \cap CFL \in CFL, but

$L \in \mathrm{DECIDABLE} \iff (L \in \mathrm{REC.} \ \mathrm{and} \ L \in \mathrm{co\text{-}REC.}) \iff \exists \ M_{\mathsf{TM}} \ \mathrm{decides} \ L_{ullet}$

- (TM) $M=(Q,\sum\limits_{\mathrm{input}}\subseteq\Gamma,\sum\limits_{\mathrm{tane}},\delta,q_0,q_{igotimes},q_{\overline{\mathbb{R}}}),$ where $\sqcup\in\Gamma,$
- $\sqcup \not \in \Sigma, \, q_{\mathbb{R}} \neq q_{\textcircled{\scriptsize o}}, \, \delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{\mathrm{L},\mathrm{R}\}$
- (recognizable) \triangle if $w \in L$, \mathbb{R} /loops if $w \notin L$; A is co**recognizable** if \overline{A} is recognizable.
- $L \in \text{RECOGNIZABLE} \iff L \leq_{\text{m}} A_{\mathsf{TM}}.$
- Every inf. recognizable lang. has an inf. dec. subset.
- (decidable) \triangle if $w \in L$, \mathbb{R} if $w \notin L$.
- $L \in \text{DECIDABLE} \iff L \leq_{\text{m}} 0^*1^*.$

- $L \in \text{DECIDABLE} \iff L^{\mathcal{R}} \in \text{DECIDABLE}.$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have
- $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$
- Then P is undecidable. (e.g. $INFINITE_{TM}$, ALL_{TM} , E_{TM} , $\{\langle M_{\mathsf{TM}} \rangle : 1 \in L(M)\}$)
- $\{all\ TMs\}\ is\ count.;\ \Sigma^*\ is\ count.\ (finite\ \Sigma);\ \{all\ lang.\}\ is$ uncount.; {all infinite bin. seq.} is uncount.

- $\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{GNFA} \equiv \mathsf{REG} \subset \mathsf{NPDA} \equiv \mathsf{CFG} \subset \mathsf{DTM} \equiv \mathsf{NTM}$
- $f: \Sigma^* \to \Sigma^*$ is **computable** if $\exists M_{\mathsf{TM}} : \forall w \in \Sigma^*, M$ halts
- on w and outputs f(w) on its tape. If $A \leq_m B$ and B is decidable, then A is dec.
- If $A \leq_m B$ and A is undecidable, then B is undec.
- If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is unrec.
- (transitivity) If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B} \text{ (esp. } A \leq_{\mathrm{m}} \overline{A} \iff \overline{A} \leq_{\mathrm{m}} A \text{)}$
- If $A \leq_{\mathrm{m}} \overline{A}$ and $A \in \text{RECOGNIZABLE}$, then $A \in \text{DEC}$.

$FINITE \subset REGULAR \subset CFL \subset CSL \subset DECIDABLE \subset RECOGNIZABLE$

```
(unrecognizable) \overline{A_{\rm TM}}, \ \overline{EQ_{\rm TM}}, \ EQ_{\rm CFG}, \ \overline{HALT_{\rm TM}},
REG_{TM}, E_{TM}, EQ_{TM}, ALL_{CFG}, EQ_{CFG}
```

- (recognizable but undecidable) A_{TM} , $HALT_{TM}$,
- $\overline{EQ_{\mathsf{CFG}}}, \overline{E_{\mathsf{TM}}}, \{\langle M, k \rangle \mid \exists x \ (M(x) \ \mathsf{halts in} \ \geq k \ \mathsf{steps})\}$
- (decidable) $A_{\mathrm{DFA}},\,A_{\mathrm{NFA}},\,A_{\mathrm{REX}},\,E_{\mathrm{DFA}},\,EQ_{\mathrm{DFA}},\,A_{\mathrm{CFG}},$ $E_{\mathsf{CFG}},\,A_{\mathsf{LBA}},\,ALL_{\mathsf{DFA}}=\{\langle D \rangle \mid L(D)=\Sigma^*\},$ $A\varepsilon_{\mathsf{CFG}} = \{\langle G \rangle \mid \varepsilon \in L(G)\}$
- **Examples of Deciders:**
- INFINITE_{DEA}: "On n-state DFA $\langle A \rangle$: const. DFA B s.t. $L(B) = \Sigma^{\geq n}$; const. DFA C s.t. $L(C) = L(A) \cap L(B)$; if

- $L(C) \neq \emptyset$ (by E_{DFA}) **(A)**; O/W, \mathbb{R} "
- $\{\langle D \rangle \mid \not\exists w \in L(D) : \#_1(w) \text{ is odd}\}$: "On $\langle D \rangle$: const. DFA A s.t. $L(A) = \{w \mid \#_1(w) \text{ is odd}\}$; const. DFA B s.t. $L(B) = L(D) \cap L(A)$; if $L(B) = \emptyset$ (E_{DFA}) \triangle ; O/W \mathbb{R} "
- $\{\langle R,S\rangle\mid R,S \text{ are regex}, L(R)\subseteq L(S)\}$: "On $\langle R,S\rangle$: const. DFA D s.t. $L(D) = L(R) \cap \overline{L(S)}$; if $L(D) = \emptyset$ (by E_{DFA}), \triangle ; O/W, \mathbb{R} "
- $\{\langle D_{\mathsf{DFA}}, R_{\mathsf{REX}}\rangle \mid L(D) = L(R)\} \text{: "On } \langle D, R\rangle \text{: convert } R$ to DFA D_R ; if $L(D) = L(D_R)$ (by EQ_{DFA}), lacktriangle; O/W, \mathbb{R} "
- $\{\langle D_{\mathsf{DFA}}\rangle \mid L(D) = (L(D))^{\mathcal{R}}\}$: "On $\langle D\rangle$: const. DFA $D^{\mathcal{R}}$ s.t. $L(D^{\mathcal{R}}) = (L(D))^{\mathcal{R}}$; if $L(D) = L(D^{\mathcal{R}})$ (by EQ_{DFA}),

$\{\langle M, k \rangle \mid \exists x \ (M(x) \text{ runs for } \geq k \text{ steps})\}$: "On $\langle M, k \rangle$:

(foreach $w \in \Sigma^{\leq k+1}$: if M(w) not halt within k steps, $oldsymbol{\Phi}$); O/W R"

- $\{\langle M, k \rangle \mid \exists x \ (M(x) \ \text{halts in} \leq k \ \text{steps})\}$: "On $\langle M, k \rangle$: (foreach $w \in \Sigma^{\leq k+1}$: run M(w) for $\leq k$ steps, if halts, ♠); O/W, ℝ"
- $\{\langle M_{\mathsf{DFA}}
 angle \mid L(M) = \Sigma^*\}$: "On $\langle M
 angle$: const. DFA $M^{\complement} = (L(M))^{\complement}$; if $L(M^{\complement}) = \emptyset$ (by E_{DFA}), **A**; O/W \mathbb{R} ."
- $\{\langle R_{\mathsf{REX}} \rangle \mid \exists s,t \in \Sigma^* : w = s111t \in L(R)\} : \mathsf{"On} \ \langle R \rangle :$ const. DFA D s.t. $L(D) = \Sigma^* 111 \Sigma^*$; const. DFA C s.t. $L(C) = L(R) \cap L(D)$; if $L(C) \neq \emptyset$ (E_{DFA}) \triangle ; O/W \mathbb{R} "

Mapping Reduction: $A \leq_{\mathrm{m}} B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, w \in A \iff f(w) \in B$ and f is computable.

- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle \mid L(M) = (L(M))^{\mathcal{R}} \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x, if $x \notin \{01, 10\}$, \mathbb{R} ; if x = 01, return M(x); if x = 10, \triangle ;"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} L = \{\langle \underbrace{M}, \underbrace{D}_{\mathsf{DEA}} \rangle \mid L(M) = L(D)\};$
 - $f(\langle M, w \rangle) = \langle M', D \rangle$, where M' ="On x: if x = w return M(x); O/W, \mathbb{R} ;" D is DFA s.t. $L(D) = \{w\}$.
- $A \leq_{\mathrm{m}} HALT_{\mathsf{TM}}; f(w) = \langle M, \varepsilon \rangle$, where $M = \mathsf{"On } x$: if $w \in A$, halt; if $w \notin A$, loop;"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} CFL_{\mathsf{TM}} = \{ \langle M \rangle \mid L(M) \text{ is CFL} \};$ $f(\langle M, w \rangle) = \langle N \rangle$, where N ="On x: if $x = a^n b^n c^n$, \triangle ; O/W, return M(w);"
- $A \leq_{\mathrm{m}} B = \{0w : w \in A\} \cup \{1w : w
 otin A\}; f(w) = 0w.$
- $E_{\mathsf{TM}} \leq_{\mathsf{m}} USELESS_{\mathsf{TM}}; \ f(\langle M \rangle) = \langle M, q \mathbf{a} \rangle$
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \mathit{REGULAR}_{\mathsf{TM}}; \, f(\langle M, w \rangle) = \langle M'
 angle, \, M' = \mathsf{"On}$

- $x \in \{0,1\}^*$: if $x = 0^n 1^n$, **A**; O/W, return M(w);" $A_{\mathsf{TM}} \leq_{\mathrm{m}} EQ_{\mathsf{TM}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "**A** all"; $M_2 =$ "On x: return M(w);"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{EQ_{\mathsf{TM}}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "R all"; M_2 ="On x: return M(w);"
- $ALL_{\mathrm{CFG}} \leq_{\mathrm{m}} EQ_{\mathrm{CFG}}; f(\langle G \rangle) = \langle G, H \rangle, \text{ s.t. } L(H) = \Sigma^*.$
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{\langle M_{\mathsf{TM}} \rangle : |L(M)| = 1\}; f(\langle M, w \rangle) = \langle M' \rangle,$ where M' = "On x: if $x = x_0$, return M(w); O/W, \mathbb{R} ;" (where $x_0 \in \Sigma^*$ is fixed).
- $\overline{A_{\mathsf{TM}}} \leq_{\mathrm{m}} E_{\mathsf{TM}}; f(\langle M, w \rangle) = \langle M' \rangle$, where $M' = \mathsf{"On} \ x$: if $x \neq w$, \mathbb{R} ; O/W, return M(w);"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{\langle M_{\mathsf{TM}} \rangle : |L(M)| = 1\};$
- $\overline{\mathit{HALT}_\mathsf{TM}} \leq_{\mathrm{m}} \{\, \langle M_\mathsf{TM} \rangle : |L(M)| \leq 3\}; \, f(\langle M, w \rangle) = \langle M' \rangle, \, |$ where M' = "On x: \triangle if M(w) halts"
- $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : |L(M)| \geq 3 \}; f(\langle M, w \rangle) = \langle M' \rangle,$

- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : M \ \triangle \ \text{all even num.} \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: \mathbb{R} if M(w) halts within |x|. O/W, \blacksquare "
- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : L(M) \text{ is finite} \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' = "On x: **A** if M(w) halts"
- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : L(M) \text{ is infinite} \};$
 - $f(\langle M,w
 angle)=\langle M'
 angle$, where M'= "On x: $\hbox{$\Bbb R$}$ if M(w) halts within |x| steps. O/W, \blacksquare "
- $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_1, M_2 \rangle : \varepsilon \in L(M_1) \cup L(M_2) \};$ $f(\langle M, w \rangle) = \langle M', M' \rangle$, M' = "On x: \triangle if M(w) halts"
- $\mathit{HALT}_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{E_{\mathsf{TM}}}; f(\langle M, w \rangle) = \langle M'
 angle, ext{ where } M' = ext{"On}$ x: if $x \neq w \mathbb{R}$; else, \triangle if M(w) halts"
 - $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle \mid \exists x : M(x) \text{ halts in } > |\langle M \rangle| \text{ steps} \}$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: if M(w) halts, make $|\langle M \rangle| + 1$ steps and then halt; O/W, loop"

$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k) \subseteq \mathbf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k) = \{L \mid L \text{ is decidable by a PT verifier}\} \supseteq \mathbf{NP\text{-complete}} = \{B \mid B \in \mathsf{NP}, \forall A \in \mathsf{NP}, A \leq_{\mathsf{P}} B\}.$

- ((Running time) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any *n*-length input. resp.).
- (verifier for L) TM V s.t. $L = \{w \mid \exists c : V(\langle w, c \rangle) = \mathbf{A}\};$ (certificate for $w \in L$) str. c s.t. $V(\langle w, c \rangle) = \triangle$.
- $f:\Sigma^* o \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w) on its tape.
- If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_{\mathbf{P}} B$ and $B \leq_{\mathbf{P}} A$, then A and B are **PT equivalent**, denoted $A \equiv_P B$. \equiv_P is an equiv. relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equiv. class of \equiv_P .
- ALL_{DFA} , CONNECTED, TRIANGLE, $L(G_{CFG})$,

RELPRIME, $PATH \in P$

 $\mathit{CNF}_2 \in \mathrm{P}$: (algo. $\forall x \in \phi$: (1) If x occurs 1-2 times in same clause \rightarrow remove cl.; (2) If x is twice in 2 cl. \rightarrow

- remove both cl.; (3) Similar to (2) for \overline{x} ; (4) Replace any $(x \vee y)$, $(\neg x \vee z)$ with $(y \vee z)$; $(y, z \text{ may be } \varepsilon)$; (5) If $(x) \wedge (\neg x)$ found, \mathbb{R} . (6) If $\phi = \varepsilon$, (x)CLIQUE, SUBSET-SUM, SAT, 3SAT, COVER, HAMPATH, UHAMATH, $3COLOR \in NP$ -complete.
- If $B \in \mathrm{NP\text{-}complete}$ and $B \in \mathrm{P}$, then $\mathrm{P} = \mathrm{NP}.$

 $\emptyset, \Sigma^* \notin NP$ -complete.

- If $B \in \text{NPC}$ and $C \in \text{NP}$ s.t. $B \leq_{\text{P}} C$, then $C \in \text{NPC}$.
- If P = NP, then $\forall A \in P \setminus \{\emptyset, \Sigma^*\}, A \in NP$ -complete.

Polytime Reduction: $A \leq_P B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, w \in A \iff f(w) \in B$ and f is polytime computable. $E' = E \cup \{(s', a), (a, b), (b, s)\} \cup \{(s', b), (b, a), (a, s)\}$

- $SAT \leq_{\mathbf{P}} DOUBLE\text{-}SAT; \quad f(\phi) = \phi \wedge (x \vee \neg x)$
- $3SAT \leq_{\mathrm{P}} 4SAT$; $f(\phi) = \phi'$, where ϕ' is obtained from the CNF ϕ by adding a new var. x to each clause, and adding a new clause $(\neg x \lor \neg x \lor \neg x \lor \neg x)$.
- $3SAT \leq_{\mathrm{P}} CNF_3; f(\langle \phi \rangle) = \phi'.$ If $\#_{\phi}(x) = k > 3$, replace x with $x_1, \ldots x_k$, and add $(\overline{x_1} \vee x_2) \wedge \cdots \wedge (\overline{x_k} \vee x_1)$.
- $SUBSET\text{-}SUM \leq_{P} SET\text{-}PARTITION;$
- $f(\langle x_1,\ldots,x_m,t\rangle)=\langle x_1,\ldots,x_m,S-2t\rangle$, where S sum of x_1, \ldots, x_m , and t is the target subset-sum.
- $3COLOR \leq_{\operatorname{P}} 3COLOR; f(\langle G \rangle) = \langle G' \rangle, G' = G \cup K_4$
- (dir.) $HAM-PATH \leq_P 2HAM-PATH$; $f(\langle G,s,t
 angle)=\langle G',s',t'
 angle$, where $V'=V\cup\{s',t',a,b,c,d\},$

- $\cup \, \{(t,c), \, (c,d), \, (d,t')\} \cup \{(t,d), \, (d,c), \, (c,t')\}.$ (undir.) $CLIQUE_k \leq_P HALF-CLIQUE;$ $f(\langle G=(V,E),k\rangle)=\langle G'=(V',E')\rangle$, if $k=\frac{|V|}{2}$, E=E',
- V' = V. if $k > \frac{|V|}{2}$, $V' = V \cup \{j = 2k |V| \text{ new nodes}\}$. if $k < rac{|V|}{2}, \, V' = V \cup \{j = |V| - 2k ext{ new nodes}\}$ and $E' = E \cup \{ \text{edges for new nodes} \}$
- (dir.) HAM- $PATH \le_P HAM$ -CYCLE;
 - $f(\langle G,s,t \rangle) = \langle G',s,t \rangle$ where $V' = V \cup \{x\}$, $E'=E\cup\{(t,x),(x,s)\}$
- $\mathit{HAM-CYCLE} \leq_{\mathrm{P}} \mathit{UHAMCYCLE}; f(\langle G \rangle) = \langle G' \rangle. \ \mathsf{For}$ $\begin{array}{l} \textit{VERTEX} \\ \textit{COVER}_k \leq_{\mathrm{P}} \textit{WVC}; f(\langle G, k \rangle) = (G, w, k), \forall v \in V(G), w(v) = 1 \\ \text{each } u, v \in V \text{: } u \text{ is replaced by } u_{\text{in}}, u_{\text{mid}}, u_{\text{out}}, (v, u) \\ \end{array}$
 - replaced by $\{v_{\text{out}}, u_{\text{in}}\}, \{u_{\text{in}}, u_{\text{mid}}\};$ and (u, v) by $\{u_{\mathsf{out}}, v_{\mathsf{in}}\}, \{u_{\mathsf{mid}}, u_{\mathsf{out}}\}.$
- $UHAMPATH \leq_{P} PATH_{>k}$; $f(\langle G, a, b \rangle) = \langle G, a, b, k = |V(G)| - 1 \rangle$ $_{COVER_{k}}^{VERTEX} \leq_{\mathbf{p}} \mathit{CLIQUE}_{k};$ $f(\langle G, k \rangle) = \langle G^{\complement} = (V, E^{\complement}), |V| - k \rangle$ $CLIQUE_k \leq_{\mathbf{P}} \{\langle G, t \rangle : G \text{ has } 2t\text{-clique}\};$ $f(\langle G, k \rangle) = \langle G', t = \lceil k/2 \rceil \rangle, G' = G \text{ if } k \text{ is even;}$ $G' = G \cup \{v\}$ (v connected to all G nodes) if k is odd.
- $CLIQUE_k \leq_{\operatorname{P}} CLIQUE_k; f(\langle G, k \rangle) = \langle G', k+2 \rangle,$ $G'=G\cup\{v_{n+1},v_{n+2}\};\,v_{n+1},v_{n+2}$ are con. to all V
 - $VERTEX \\ COVER_k \le_P DOMINATING-SET_k;$
 - $f(\langle G,k
 angle)=\langle G',k
 angle$, where
 - $V' = \{ \text{non-isolated node in } V \} \cup \{ v_e : e \in E \},$
 - $E' = E \cup \{(v_e, u), (v_e, w) : e = (u, w) \in E\}.$
- $CLIQUE \leq_{P} INDEP\text{-}SET; SET\text{-}COVER \leq_{P} COVER;$ $3SAT \leq_{P} SET\text{-}SPLITTING; INDEP\text{-}SET \leq_{P} \stackrel{VERTEX}{COVER}$

Counterexamples

- $A \leq_{\mathrm{m}} B$ and $B \in \text{REG}$, but, $A \notin \text{REG}$: $A=\{0^n1^n \mid n \geq 0\},\, B=\{1\},\, f:A \to B,$ $f(w) = egin{cases} 1 & ext{if } w \in A \ 0 & ext{if } w
 otin A \end{cases}$
- $L \in \text{CFL} \text{ but } \overline{L} \notin \text{CFL}$: $L = \{x \mid \forall w \in \Sigma^*, x \neq ww\},\$ $\overline{L} = \{ww \mid w \in \Sigma^*\}.$
- $L_1,L_2\in ext{CFL}$ but $L_1\cap L_2
 otin ext{CFL}$: $L_1=\{a^nb^nc^m\}$, $L_2 = \{a^mb^nc^n\}, L_1 \cap L_2 = \{a^nb^nc^n\}.$
- $L_1 \in \mathrm{CFL}, \, L_2$ is infinite, but $L_1 \setminus L_2
 otin \mathrm{REG}: \quad L_1 = \Sigma^*$, $L_2 = \{a^n b^n \mid n \geq 0\}$, $L_1 \setminus L_2 = \{a^m b^n \mid m \neq n\}$.
- $L_1,L_2\in \mathrm{REG}$, $L_1\not\subset L_2$, $L_2\not\subset L_1$, but, $(L_1 \cup L_2)^* = L_1^* \cup L_2^* : L_1 = \{a,b,ab\}, \, L_2 = \{a,b,ba\}.$
- $L_1 \in \mathrm{REG},\, L_2
 otin \mathrm{REG},\, L_1 \cap L_2 \in \mathrm{REG}$, and
- $L_1 \cup L_2 \in \operatorname{REG}: \quad L_1 = L(\mathtt{a}^*\mathtt{b}^*), \, L_2 = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$ $L_1, L_2, L_3, \dots \in \text{REG}, \bigcup_{i=1}^{\infty} L_i \notin \text{REG}: \quad L_i = \{a^i b^i\},$ $\bigcup_{i=1}^{\infty} L_i = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$
- $L_1 \cdot L_2 \in \text{REG}, L_1 \notin \text{REG} : L_1 = \{a^n b^n\}, L_2 = \Sigma^*.$
- $L_2 \in \text{CFL}$, and $L_1 \subseteq L_2$, but $L_1 \notin \text{CFL}$: $\Sigma = \{a, b, c\}$ $L_1 = \{a^n b^n c^n \mid n \ge 0\}, L_2 = \Sigma^*.$
 - $L_1, L_2 \in \text{DECIDABLE}$, and $L_1 \subseteq L \subseteq L_2$, but $L \in \mathrm{UNDECIDABLE}: \quad L_1 = \emptyset, \, L_2 = \Sigma^*, \, L \, \mathsf{is} \, \mathsf{some}$

- undecidable language over Σ .
- $L_1 \in \operatorname{REG}, \, L_2 \not\in \operatorname{CFL}, \, \operatorname{but} \, L_1 \cap L_2 \in \operatorname{CFL}: \quad L_1 = \{\varepsilon\},$ $L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- $L^* \in \text{REG}$, but $L \notin \text{REG}$: $L = \{a^p \mid p \text{ is prime}\},$ $L^* = \Sigma^* \setminus \{a\}.$
- $A \nleq_m \overline{A} : A = A_{\mathsf{TM}} \in \mathsf{RECOGNIZABLE},$ $\overline{A} = \overline{A_{\mathsf{TM}}} \notin \mathrm{RECOG}.$
- $A \notin DEC., A \leq_m \overline{A}: f(0x) = 1x, f(1y) = 0y,$ $A = \{w \mid \exists x \in A_{\mathsf{TM}} : w = 0x \lor \exists y \in \overline{A_{\mathsf{TM}}} : w = 1y\}$
- $L \in \mathrm{CFL}, L \cap L^{\mathcal{R}} \notin \mathrm{CFL} : L = \{a^n b^n a^m\}.$