Preresumption tutorials (Math Assignment 1)

Pearl Kuuridong

August 2, 2025

1 Propositional Logic

Question 1.1

Let p, q, and r be propositions.

a) Suppose you have a compound statement

$$S: [(p \vee q) \wedge (r \vee \neg q)] \Rightarrow (p \vee r)$$

Then the truth table for S is given below:

p	q	r	$p \lor q$	$\neg q$	$r \lor q$	$(p \lor q) \land (r \lor \neg q)$	$p \vee r$	$[(p \lor q) \land (r \lor \neg q)] \Rightarrow (p \lor r)$
T	T	T	T	F	T	T	T	T
T	T	F	T	F	T	T	T	T
T	F	T	T	T	T	T	T	T
T	F	F	T	T	F	F	T	F
F	T	T	T	F	T	T	T	T
F	T	F	T	F	T	T	F	F
F	F	T	F	T	T	F	T	F
F	F	F	F	T	F	F	F	F

Notice that the statement S is always true thus S is a tautology.

b) Suppose you have a compound statement

$$S: [(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$$

Then the truth table for S is given below:

p	a	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \land (q \Rightarrow r)$	$n \Rightarrow r$	$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$
T	T	T	T	T	$(P \rightarrow q) \land (q \rightarrow r)$	T	
1	1	_	_	1		1 <u>1</u>	
T	$\mid T \mid$	$\mid F \mid$	T	F	F'	F'	F
T	F	T	F	T	F	T	F
T	F	F	F	T	F	F	F
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	F
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Likewise, since the compound statement S is always true then S is a tautology.

c) Let S be the compound statement

$$S: [\neg q \land (p \Rightarrow q)] \Rightarrow \neg p.$$

Then the truth table for S is given below:

p	q	$\neg p$	$\neg q$	$p \Rightarrow q$	$\neg q \land (p \Rightarrow q)$	$[\neg q \land (p \Rightarrow q)] \Rightarrow \neg p$
T	T	F	F	T	F	F
$\mid T \mid$	F	F	T	F	F	F
F	T	T	F	T	F	F
F	F	T	T	T	T	T

Hence since the compound statement S is always true then S is a tautology.

d) Given the compound statement

$$S: \neg q \wedge [(p \Rightarrow q) \Leftrightarrow (\neg p \vee r)].$$

Then the truth table for S is given below:

p	q	r	$\neg q$	$\neg p$	$q \vee r$	$p \Rightarrow q$	$(\neg p \Rightarrow q) \Rightarrow (q \lor r)$	$\neg q \land [(p \Rightarrow q) \Leftrightarrow (\neg p \lor r)]$
T	T	T	F	F	T	T	T	F
T	T	F	F	F	T	T	T	F
T	F	T	T	F	T	F	T	T
T	F	F	T	F	F	F	F	F
F	T	T	F	T	T	T	T	T
F	T	F	F	T	T	T	T	T
F	F	T	T	T	T	T	T	T
F	F	F	T	T	F	T	F	F

In this case, the truth values for S change with changing input of p,q, and r. Hence S is a contingency.

Question 1.2

a) Let p be the statement

p: The number of elements in $\{0\}is0$.

Then p is a false statement since the cardinality of $\{0\}$ is 1. That is the set contains a single element (the number 0).

b) Consider the statement

$$p: \forall x \in \mathbb{Q}, x^2 - 4 = 0.$$

This statement is false. This is because there exists a number $2 \in \mathbb{Q}$ for which

$$x^2 - 4 = 2^2 - 4 = 4 - 4 = 0$$

Hence p is a false statement. The negation of p is given by the statement

$$\neg p: \exists x \in \mathbb{Q}, x^2 - 4 = 0.$$

c) Let p and q be the statements:

p: Today is sunny

q: It is a good day for walking on the beach

and consider the conditional statement $S: p \Rightarrow q$. Then

- (a) The converse of S is given by the statement $q \Rightarrow p$. That is the statement If it is a good day for walking on the beach then today is sunny)
- (b) The inverse of S is given by the statement $\neg p \Rightarrow \neg q$. That is the statement If today is not sunny then it is not a good day for walking on the beach)
- (c) The contrapositive of S is given by $\neg q \Rightarrow \neg p$. That is the statement If it is not a good day for walking on the beach then today is not sunny)

2

2 Proof, Sets and Functions

Question 2.1

- a) Let A and B be any two sets, and \emptyset be the empty set. Suppose that $A \times B = \emptyset$ and that $A \neq \emptyset$ and $B \neq \emptyset$. Then by definition, there exists at least one element $a_1 \in A$ and another element $b_1 \in B$. Also from the definition of the cross product of sets, we know that $(a_1, b_1) \in A \times B$ and so $A \times B \neq \emptyset$. But this conclusion contradicts our assumption that $A \times B = \emptyset$. Hence our assumption that $A \neq \emptyset$ and $B \neq \emptyset$ is false and so either $A = \emptyset$ or $B = \emptyset$.
- b) Let a be an integer, and consider the following consecutive integers: a, a+1, a+2. Without loss of generality, suppose, also, that a is non-negative. That is $a \ge 0$. Consider the case where a = 0. Then we have that

$$0^3 + 1^3 + 2^3 = 9 = 9 \cdot 1$$

That is, the sum, S, of the cubes of three consecutive integers 0, 1, 2 can be written as a multiple of 9. Hence S is divisible by 9.

Now assume that for some a = k the following is true:

$$k^3 + (k+1)^3 + (k+2)^3$$

is divisible by 9. This means that there exists some $t \in \mathbb{Z}$ such that

$$k^{3} + (k+1)^{3} + (k+2)^{3} = 9t$$
(1)

Now consider the case where a = (k + 1). Consider the sum

$$(k+1)^3 + ((k+1)+1)^3 + ((k+1)+2)^3 = (k+1)^3 + (k+2)^3 + (k+3)^3$$
 (2)

From 1 we have that $(k+1)^3 + (k+2)^3 = 9t - k^3$ for $t \in \mathbb{Z}$ hence 2 becomes

$$(k+1)^3 + ((k+1)+1)^3 + ((k+1)+2)^3 = (k+1)^3 + (k+2)^3 + (k+3)^3$$

$$= 9t - k^3 + (k+3)^3$$

$$= 9t - k^3 + k^3 + 9k^2 + 27k + 27$$

$$= 9t + 9k^2 + 27k + 27$$

$$= 9(t+k^2+3k+3)$$

Now since \mathbb{Z} is closed under the usual operations of multiplication and addition, then $(t+k^2+3k+3)\in\mathbb{Z}$ and so $9(t+k^2+3k+3)=9\cdot t_0$ for $t_0=(t+k^2+3k+3)\in\mathbb{Z}$. So the sum $(k+1)^3+((k+1)+1)^3+((k+1)+2)^3=(k+1)^3+(k+2)^3+(k+3)^3$ is divisible by 9.

Hence, by the principle of mathematical induction, the sum of the cubes of 3 consecutive non negative integers is divisible by 9. Notice that for a < 0 the same argument holds since choosing $a \ge 0$ does not impose any restrictions on a so that a < 0 fails at any point in the argument.

Thus the sum of the cubes of 3 consecutive integers is always divisible by 9.

- c) Let a be an arbitrary rational number and b be an arbitrary irrational number.
 - Suppose that the sum of a and b is a rational number. Then there exists some integers $x, y \in \mathbb{Z}$ with $y \neq 0$ such that

$$a+b=\frac{x}{y}$$
.

This would mean that we can write b as

$$b = \frac{x}{y} - a = \frac{x - ay}{y}$$

since \mathbb{Z} is closed under the operations of the usual multiplication and subtraction (inverse of addition), then $x - ay \in \mathbb{Z}$. That is to say, there exists integers t_0 and y such that $b = \frac{t_0}{y}$. But this conclusion contradicts our assumption that b is an irrational number and so the sum a + b must be irrational.

- Now, in addition, assume that $a \neq 0$ and that the product $a \cdot b$ is rational. Then there exists some $x,y \in \mathbb{Z}$ with $y \neq 0$ such that $a \cdot b = \frac{x}{y}$. That is to say b can be written as $b = \frac{x}{ay}$. Again $ay \in \mathbb{Z}$ since \mathbb{Z} is closed under the operation of integer multiplication. That is there exist integers $x, t_0 = ay, t_0 \neq 0$ such that $b = \frac{x}{t_0}$. But this contradicts our assumption that b is an irrational number. Hence the product $a \cdot b$ must be irrational.

Question 2.2

- a) star
- b) We want to show that

$$\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}, \text{ for any integer } n \ge 1$$

Consider the case where n = 1. Then we have

$$\sum_{r=1}^{1} r^3 = 1^3 = 1 = \frac{1^2(1+1)^2}{4}$$

And so the statement holds true for n = 1. Assume that, for n = k, the statement holds true. That is

$$\sum_{r=1}^{k} r^3 = \frac{k^2(k+1)^2}{4} \tag{3}$$

and consider the case where n = (k + 1). Then we have that

$$\sum_{r=1}^{k+1} r^3 = \sum_{r=1}^k r^3 + (k+1)^3$$

$$= \frac{k^2(k+1)^2}{4} + (k+1)^3 \text{ (from 3)}$$

$$= (k+1)^2 \left[\frac{k^2}{4} + (k+1) \right]$$

$$= (k+1)^2 \left[\frac{k^2 + 4k + 4}{4} \right]$$

$$= \frac{(k+1)^2(k+2)^2}{4}$$

$$= \frac{(k+1)^2((k+1) + 1)^2}{4}$$

That is

$$\sum_{r=1}^{k+1} r^3 = \frac{(k+1)^2((k+1)+1)^2}{4}$$

for some n = k + 1 given that the statement

$$\sum_{r=1}^{k} r^3 = \frac{k^2(k+1)^2}{4}$$

is true for some $k \in \mathbb{N}$. And so by the principle of mathematical induction, we have that the statement

$$\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$$

holds true for any integer $n \geq 1$

c) Let n be a positive integer. Consider the statement

 $S:11^{n+1}+12^{2n-1}$ is divisible by 133 for all positive integers n.

We want to show that S is true.

Consider the case where n = 1 then we have that $S(1) : 11^2 + 12 = 133(1)$. So for $n = 1, 11^{1+1} + 12^{2(1)-1}$ is divisible by 133.

Assume that for some $n = k \in \mathbb{N}$

$$S(k): 11^{k+1} + 12^{2k-1}$$
 is divisible by 133 (4)

is true. This means that there exists some $t \in \mathbb{Z}$ such that $11^{k+1} + 12^{2k-1} = 133t$ which is equivalent to $11^k = \frac{133(12t) - 12^{2k}}{132}$

Now consider the case where n=(k+1). We want to check that S(k+1) is true. Notice that

$$\begin{aligned} 11^{(k+1)+1} + 12^{2(k+1)-1} &= 11^{k+2} + 12^{2k+1} \\ &= 11^2 (11^k) + 12(12^{2k}) \\ &= 11^2 \left(\frac{133(12t) - 12^{2k}}{132} \right) + 12(12^{2k}) \\ &= 11 \left(\frac{133(12t) - 12^{2k}}{12} \right) + 12(12^{2k}) \\ &= \frac{11(133(12t) - 12^{2k}) + 144(12^{2k})}{12} \\ &= \frac{133(132t) - 11(12^{2k}) + 144(12^{2k})}{12} \\ &= \frac{133(132t) + 12^{2k}(144 - 11)}{12} \\ &= \frac{133(132t) + 133(12^{2k})}{12} \\ &= 133 \left(\frac{132t + 12^{2k}}{12} \right) \end{aligned}$$

$$= 133(11t + 12^{2k-1}) = 133t_0 \qquad (t_0 = 11t + 12^{2k-1})$$

since $k \in \mathbb{Z}$ and k > 0 then $t_0 = 11t + 12^{2k-1} \in \mathbb{Z}$. Thus by the principle of mathematical induction the statement S is true for all positive integers n.

Question 2.3

a) Let n be an odd integer. Then there exists an integer $k \in \mathbb{Z}$ such that n = 2k + 1. Consider the expression $n^2 + n$. Then since n = 2k + 1 this expression becomes

$$n^{2} + n = (2k + 1)^{2} + (2k + 1)$$

$$= 4k^{2} + 4k + 1 + 2k + 1$$

$$= 4k^{2} + 6k + 2$$

$$= 2(2k^{2} + 3k + 1)$$

$$= 2t_{0} (t_{0} = 2k^{2} + 3k + 1)$$

Now since $k \in \mathbb{Z}$ then $t_0 = 2k^2 + 3k + 1 \in \mathbb{Z}$. Now since there exists an integer, t_0 for which $n^2 + n = 2t_0$ then $n^2 + n$ is an even integer.

b) Let $a, b, c \in \mathbb{Z}$. Suppose that $a \mid b$ then there exists some $t_1 \in \mathbb{Z}$ such that $b = at_1$. Suppose also that $b \mid c$ then there exists some $t_2 \in \mathbb{Z}$ such that $c = bt_2$. That means

$$c = (at_1)t_2$$

= $a(t_1t_2)$ (integer multiplication is associative)
= at_0 ($t_0 = t_1t_2$)

Since both $t_1, t_2 \in \mathbb{Z}$ then $t_0 = t_1 t_2 \in \mathbb{Z}$. That is there exists some integer such that $c = at_0$ hence $a \mid c$.

c) Consider the following statement:

for all integers
$$a, b, c \in \mathbb{Z}$$
 if $a \mid bc$ then $a \mid b$ or $a \mid c$

Consider the following example a=4,b=2,c=6. Notice that $4\mid (6\cdot 2)$ but $4\nmid 2$ and $4\nmid 6$ hence the statement

for all integers
$$a, b, c \in \mathbb{Z}$$
 if $a \mid bc$ then $a \mid b$ or $a \mid c$

is false. We can rephrase the statement as

for all integers
$$a, b, c \in \mathbb{Z}$$
 with a prime if $a \mid bc$ then $a \mid b$ or $a \mid c$

Which makes the statement true.

Question 2.4

1. Let f, g and h be real-valued functions on \mathbb{R} defined by:

$$f(x) := \frac{1}{1+x^2}, \ g(x) : |x|, \ \text{and} \ h(x) := x+1$$

6

- Then the function $f \circ g$ is given as $\frac{1}{1+x^2}$.
- $\circ\,$ The function $f\circ h$ is given as $\frac{1}{x^2+2x+2}$
- \circ The function $g \circ h$ is given as |x+1|
- \circ The function $g \circ f$ is given as $\left| \frac{1}{1+x^2} \right|$

- \circ The function $h \circ g$ is given as |x| + 1
- \circ The function $h \circ f$ is given as $\frac{2+x^2}{1+x^2}$

We will now check for injectivity and surjectivity for f, g, and h

Consider the function f and consider the real numbers 1, -1 notice that $f(1) = \frac{1}{2}$ and $f(-1) = \frac{1}{2}$. So f is not injective. Notice, also, that $1 + x^2 \ge 1$ for all x so $0 < \frac{1}{1+x^2} \le 1$ so f is not surjective when it has the codomain \mathbb{R} . Since f is not injective then f is not bijective.

Consider the function g. Notice that g(1) = g(-1) hence g is not injective. Similarly, notice that $g(x) \ge 0$ for all x. So g is not surjective. Since g is not injective then g is not bijective

Finally consider the function h. Consider some real numbers $a,b \in \mathbb{R}$ and assume that h(a) = h(b). Then $a+1=b+1 \Rightarrow a=b$. Hence h is an injective function. Also consider the number $y \in \mathbb{R}$ in the codomain of h. Then there is a number $y-1 \in \mathbb{R}$ in the domain of h so that h(y-1)=y-1+1=y. Hence h is also a surjective function. Since h is both injective and surjective then h is a bijective function.

Now since g is not injective then $f \circ g$ is also not injective. Since there exists some $-1, 1 \in \mathbb{R}$ for which $f \circ g(1) = f(1) = \frac{1}{2} = f(1) = f \circ g(-1)$. Since f is not surjective then $f \circ g$ is also not surjective. since there exists no real number $x \in \mathbb{R}$ for which $f \circ g(x) = -1$. Since $f \circ g$ is neither injective nor surjective then $f \circ g$ is not bijective

For the function $f \circ h$ consider the real numbers $0, -2 \in \mathbb{R}$. Notice that $f \circ h(0) = f(1) = \frac{1}{2} = f(-1) = f \circ h(-2)$. So $f \circ h$ is not injective. Now since f is not surjective then $f \circ h$ is not surjective since there exists a value $-1 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$ $f \circ h(x) \neq -1$. Hence $f \circ h$ is not bijective

For the function $g \circ h$ since g is not injective, even though h is injective, the composition $g \circ h$ is not injective. Again consider the real numbers 0, -2. Then $g \circ h(0) = g(1) = 1 = g(-1) = g \circ h(-2)$. Since g is not surjective then $g \circ h$ is also not surjective. That is for all $x \in \mathbb{R}$, $g \circ h(x) \neq -1$. So $g \circ h$ is not bijective.

For the function $g \circ f$ since f is not injective then $g \circ f$ is also not injective. Consider 1, -1 then $g \circ f(1) = g(1/2) = \frac{1}{2} = g(1/2) = g \circ f(-1)$. Similarly, since g is not surjective then $g \circ f$ is also not surjective. That is for all $x \in \mathbb{R}, g \circ f(x) \neq -1$. So $g \circ f$ is not bijective.

For the function $h \circ g$ since g is not injective then $h \circ g$ is also not injective. Consider 1, -1 then we have that $h \circ g(1) = h(1) = 2 = h(1) = h \circ g(-1)$. Consider $-1 \in \mathbb{R}$ then for all $x \in \mathbb{R}, h \circ g(x) \neq -1$ so $h \circ g$ is not surjective. Hence $h \circ g$ is not bijective.

For the function $h \circ f$ since f is not injective then $h \circ f$ is also not injective. Consider 1, -1 then $h \circ f(1) = h(1/2) = \frac{3}{2} = h(1/2) = h \circ f(-1)$. Consider the number $-1 \in \mathbb{R}$ since $h \circ f$ is a quotient of two positive values then $h \circ f(x) \neq -1$. So $h \circ f$ is not bijective.