Homework 4

NE 795-001: Fall 2023

Arjun Earthperson

October 29th, 2023

Problem 1 - UQ with gPCE

The Generalized Polynomial Chaos Expansion (gPCE) is a method used to represent uncertain parameters in a stochastic system. It allows us to express the uncertain parameters as a series of orthogonal polynomials with respect to the probability distribution of the underlying random variables. Let's denote ω as the random variable with a known probability distribution, and $\alpha(\omega)$ and $\gamma(\omega)$ as the uncertain parameters in the Lotka-Volterra equations.

The Lotka-Volterra equations with stochastic parameters are:

$$\frac{dx}{dt} = \alpha(\omega)x - \beta xy$$

$$\frac{dy}{dt} = \delta xy - \gamma(\omega)y$$

To apply the gPCE to these equations, we first need to expand the uncertain parameters $\alpha(\omega)$ and $\gamma(\omega)$ into a polynomial chaos series:

$$\alpha(\omega) = \sum_{i=0}^{P} a_i \Psi_i(\omega)$$

$$\gamma(\omega) = \sum_{i=0}^{P} g_i \Psi_i(\omega)$$

where a_i and g_i are the deterministic coefficients of the expansion, $\Psi_i(\omega)$ are the orthogonal polynomials with respect to the probability distribution of ω , and P is the order of the expansion.

Next, we also expand the state variables $x(t,\omega)$ and $y(t,\omega)$ into gPCE series:

$$x(t,\omega) = \sum_{i=0}^{P} x_i(t)\Psi_i(\omega)$$

$$y(t,\omega) = \sum_{i=0}^{P} y_i(t)\Psi_i(\omega)$$

Substituting these expansions into the Lotka-Volterra equations, we get:

$$\frac{d}{dt} \left(\sum_{i=0}^{P} x_i(t) \Psi_i(\omega) \right) = \left(\sum_{i=0}^{P} a_i \Psi_i(\omega) \right) \left(\sum_{j=0}^{P} x_j(t) \Psi_j(\omega) \right) - \beta \left(\sum_{k=0}^{P} x_k(t) \Psi_k(\omega) \right) \left(\sum_{l=0}^{P} y_l(t) \Psi_l(\omega) \right)$$

$$\frac{d}{dt} \left(\sum_{i=0}^{P} y_i(t) \Psi_i(\omega) \right) = \delta \left(\sum_{k=0}^{P} x_k(t) \Psi_k(\omega) \right) \left(\sum_{l=0}^{P} y_l(t) \Psi_l(\omega) \right) - \left(\sum_{i=0}^{P} g_i \Psi_i(\omega) \right) \left(\sum_{j=0}^{P} y_j(t) \Psi_j(\omega) \right)$$

Now, we apply the Galerkin projection, which involves multiplying both sides of the equations by $\Psi_m(\omega)$ and integrating over the probability space of ω :

$$\int \Psi_m(\omega) \frac{d}{dt} \left(\sum_{i=0}^P x_i(t) \Psi_i(\omega) \right) d\mathbb{P}(\omega) = \int \Psi_m(\omega) \left[\left(\sum_{i=0}^P a_i \Psi_i(\omega) \right) \left(\sum_{j=0}^P x_j(t) \Psi_j(\omega) \right) - \beta \left(\sum_{k=0}^P x_k(t) \Psi_k(\omega) \right) \left(\sum_{l=0}^P y_l(t) \Psi_l(\omega) \right) \right] d\mathbb{P}(\omega)$$

$$\int \Psi_m(\omega) \frac{d}{dt} \left(\sum_{i=0}^P y_i(t) \Psi_i(\omega) \right) d\mathbb{P}(\omega) = \int \Psi_m(\omega) \left[\delta \left(\sum_{k=0}^P x_k(t) \Psi_k(\omega) \right) \left(\sum_{l=0}^P y_l(t) \Psi_l(\omega) \right) - \left(\sum_{i=0}^P g_i \Psi_i(\omega) \right) \left(\sum_{j=0}^P y_j(t) \Psi_j(\omega) \right) \right] d\mathbb{P}(\omega)$$

Since the polynomials $\Psi_i(\omega)$ are orthogonal with respect to the probability distribution of ω , the integrals of the products of different polynomials are zero, and the integral of the square of a polynomial is not zero. This property simplifies the above equations significantly.

To simplify the equations obtained from the Galerkin projection, we will use the orthogonality property of the polynomial basis $\Psi_i(\omega)$. The orthogonality condition states that:

$$\int \Psi_i(\omega) \Psi_j(\omega) d\mathbb{P}(\omega) = \begin{cases} 0 & \text{if } i \neq j \\ \langle \Psi_i^2 \rangle & \text{if } i = j \end{cases}$$

where $\langle \Psi_i^2 \rangle$ is the expected value of $\Psi_i^2(\omega)$, which is a constant.

Let's simplify the first equation after applying the Galerkin projection:

$$\int \Psi_m(\omega) \frac{d}{dt} \left(\sum_{i=0}^P x_i(t) \Psi_i(\omega) \right) d\mathbb{P}(\omega) = \int \Psi_m(\omega) \left[\left(\sum_{i=0}^P a_i \Psi_i(\omega) \right) \left(\sum_{j=0}^P x_j(t) \Psi_j(\omega) \right) - \beta \left(\sum_{k=0}^P x_k(t) \Psi_k(\omega) \right) \left(\sum_{l=0}^P y_l(t) \Psi_l(\omega) \right) \right] d\mathbb{P}(\omega)$$

We can take the time derivative outside of the integral and the summation because it does not depend on ω :

$$\sum_{i=0}^{P} \frac{dx_i(t)}{dt} \int \Psi_m(\omega) \Psi_i(\omega) d\mathbb{P}(\omega) = \sum_{i=0}^{P} \sum_{j=0}^{P} a_i x_j(t) \int \Psi_m(\omega) \Psi_i(\omega) \Psi_j(\omega) d\mathbb{P}(\omega) - \beta \sum_{k=0}^{P} \sum_{l=0}^{P} x_k(t) y_l(t) \int \Psi_m(\omega) \Psi_k(\omega) d\mathbb{P}(\omega) d\mathbb{P}(\omega) d\mathbb{P}(\omega) d\mathbb{P}(\omega) + \beta \sum_{k=0}^{P} \sum_{l=0}^{P} x_k(t) y_l(t) \int \Psi_m(\omega) \Psi_k(\omega) d\mathbb{P}(\omega) d\mathbb{P}(\omega$$

Using the orthogonality condition, the integrals simplify to:

$$\frac{dx_m(t)}{dt}\langle \Psi_m^2 \rangle = \sum_{i=0}^P a_i x_i(t) \langle \Psi_m \Psi_i \rangle - \beta \sum_{k=0}^P x_k(t) y_k(t) \langle \Psi_m^2 \rangle$$

Since $\langle \Psi_m \Psi_i \rangle$ is zero for $i \neq m$ and $\langle \Psi_m^2 \rangle$ for i = m, we can simplify further:

$$\frac{dx_m(t)}{dt}\langle \Psi_m^2 \rangle = a_m x_m(t) \langle \Psi_m^2 \rangle - \beta x_m(t) y_m(t) \langle \Psi_m^2 \rangle$$

Dividing both sides by $\langle \Psi_m^2 \rangle$:

$$\frac{dx_m(t)}{dt} = a_m x_m(t) - \beta x_m(t) y_m(t)$$

We can perform a similar simplification for the second equation:

$$\frac{dy_m(t)}{dt} = \delta x_m(t)y_m(t) - g_m y_m(t)$$

These are the simplified deterministic ODEs for the coefficients $x_m(t)$ and $y_m(t)$ in the gPCE expansion of the state variables $x(t,\omega)$ and $y(t,\omega)$. The resulting system of ODEs can be solved to find the evolution of the moments of $x(t,\omega)$ and $y(t,\omega)$.

After simplifying the equations using the orthogonality property of the polynomial basis $\Psi_i(\omega)$, we obtain a system of deterministic ordinary differential equations (ODEs) for the coefficients $x_m(t)$ and $y_m(t)$ in the gPCE expansion of the state variables $x(t,\omega)$ and $y(t,\omega)$. The final form of these ODEs is:

For the prey population $x(t, \omega)$:

$$\frac{dx_m(t)}{dt} = a_m x_m(t) - \beta \sum_{k=0}^{P} \sum_{l=0}^{P} C_{mkl} x_k(t) y_l(t)$$

For the predator population $y(t, \omega)$:

$$\frac{dy_m(t)}{dt} = \delta \sum_{k=0}^{P} \sum_{l=0}^{P} C_{mkl} x_k(t) y_l(t) - g_m y_m(t)$$

where C_{mkl} are the triple product integrals of the polynomial basis:

$$C_{mkl} = \int \Psi_m(\omega) \Psi_k(\omega) \Psi_l(\omega) d\mathbb{P}(\omega)$$

These triple product integrals are typically nonzero only for certain combinations of indices m, k, and l, depending on the specific polynomial basis used and the probability distribution of ω . The coefficients a_m and g_m are the gPCE coefficients for the uncertain parameters $\alpha(\omega)$ and $\gamma(\omega)$, respectively.

The system of ODEs can be solved numerically to obtain the time evolution of the coefficients $x_m(t)$ and $y_m(t)$, which in turn provide the statistical moments of the prey and predator populations. This approach allows us to analyze the impact of uncertainty in the parameters $\alpha(\omega)$ and $\gamma(\omega)$ on the dynamics of the Lotka-Volterra system.