Relational Database Design (Normalization part 2)

Chapter 8: Relational Database Design

- ☐ Features of Good Relational Design
- Atomic Domains and First Normal Form
- □ Decomposition Using Functional Dependencies
- ☐ Functional Dependency Theory
- □ Algorithms for Functional Dependencies
- ☐ Decomposition Using Multivalued Dependencies
- More Normal Form
- Database-Design Process

Multivalued Dependencies

- ☐ Suppose we record names of children, and phone numbers for instructors:
 - inst_child(ID, child_name)
 - inst_phone(ID, phone_number)
- ☐ If we combine these schemas we get
 - inst_info(ID, child_name, phone_number)
 - Example data:

```
(99999, David, 512-555-1234)
(99999, William, 512-555-4321)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
```

- This relation is in BCNF
 - Why?

Multivalued Dependencies (MVDs)

☐ Let *R* be a relation schema with attributes partitioned into 3 nonempty subsets.

☐ We say that $Y \rightarrow Z(Y \text{ multidetermines } Z)$ if and only if for all possible relations r(R)

$$< y_1, z_1, w_1 > \in r \text{ and } < y_1, z_2, w_2 > \in r$$

then

$$< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$$

<i>W</i> ₁	Z ₁	<i>y</i> ₁
W_2	z_2	<i>y</i> ₁
W_2	Z ₁	<i>y</i> ₁
W_1	Z_2	<i>y</i> ₁

(99999, David, 512-555-1234) (99999, William, 512-555-4321) (99999, David, 512-555-4321) (99999, William, 512-555-1234)

 \square Note that since the behavior of Z and W are identical it follows that

$$Y \rightarrow \rightarrow Z \text{ if } Y \rightarrow \rightarrow W$$

Example

☐ In our example:

$$ID \rightarrow \rightarrow child_name$$

 $ID \rightarrow \rightarrow phone_number$

The above formal definition is supposed to formalize the notion that given a particular value of Y(ID) it has associated with it a set of values of Z (child_name) and a set of values of W (phone_number), and these two sets are in some sense independent of each other.

(99999, David, 512-555-1234) (99999, William, 512-555-4321) (99999, David, 512-555-4321)

(99999, William, 512-555-1234)

■ Note:

- If
$$Y \rightarrow Z$$
 then $Y \rightarrow Z$

Use of Multivalued Dependencies

- ☐ We use multivalued dependencies in two ways:
 - 1. To test relations to **determine** whether they are **legal** under a given set of functional and multivalued dependencies
 - 2. To **specify constraints** on the set of legal relations. We shall thus concern ourselves *only* with relations that satisfy a given set of functional and multivalued dependencies.

Theory of MVDs

- ☐ From the definition of multivalued dependency, we can derive the following rule:
 - If $\alpha \rightarrow \beta$, then $\alpha \rightarrow \rightarrow \beta$

That is, every functional dependency is also a multivalued dependency

- ☐ The **closure** D⁺ of *D* is the set of all functional and multivalued dependencies logically implied by *D*.
 - We can compute D+ from D, using the formal definitions of functional dependencies and multivalued dependencies.
 - We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
 - For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules

Fourth Normal Form

- A relation schema R is in **4NF** with respect to a set D of functional and multivalued dependencies if for all multivalued dependencies in D^+ of the form $\alpha \to \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following hold:
 - $-\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
 - $-\alpha$ is a superkey for schema R
- ☐ If a relation is in 4NF it is in BCNF

compare BCNF

Restriction of Multivalued Dependencies

- ☐ The restriction of D to R_i is the set D_i consisting of
 - All functional dependencies in D+ that include only attributes of R_i
 - All multivalued dependencies of the form

$$\alpha \rightarrow \rightarrow (\beta \cap R_i)$$

where $\alpha \subseteq R_i$ and $\alpha \longrightarrow \beta$ is in D⁺

As restriction of Functional dependencies

4NF Decomposition Algorithm

```
result: = \{R\};
done := false;
compute D+;
Let D<sub>i</sub> denote the restriction of D<sup>+</sup> to R<sub>i</sub>
while (not done)
   if (there is a schema R<sub>i</sub> in result that is not in 4NF) then
     begin
        let \alpha \rightarrow \beta be a nontrivial multivalued dependency that holds
          on R_i such that \alpha \to R_i is not in D_i, and \alpha \cap \beta = \emptyset;
        result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
     end
   else done:= true:
Note: each R_i is in 4NF, and decomposition is lossless-join
```

Similar to BCNF algorithm (except for $\rightarrow \rightarrow$)

Example

```
\square R = (A, B, C, G, H, I)
   F = \{ A \rightarrow \rightarrow B \}
     B \rightarrow \rightarrow HI
     CG \rightarrow \rightarrow H
\square R is not in 4NF since A \longrightarrow B and A is not a superkey for R
Decomposition
       R = (A, B, C, G, H, I) (R is not in 4NF, decompose into R_1 and R_2)
                        (R_1 \text{ is in 4NF, })
    a) R_1 = (A, B)
    b) R_2 = (A, C, G, H, I) (R_2 is not in 4NF, decompose into R_3 and R_4)
   c) R_3 = (C, G, H) (R_3 is in 4NF)
    d) R_4 = (A, C, G, I) (R_4 is not in 4NF, decompose into R_5 and R_6)
     -A \rightarrow \rightarrow B and B \rightarrow \rightarrow HI \rightarrow A \rightarrow \rightarrow HI, (MVD transitivity), and
     - and hence A \rightarrow \rightarrow I (MVD restriction to R_{4})
    e) R_5 = (A, I)
                      (R_5 \text{ is in 4NF})
    f)R_6 = (A, C, G)
                                      (R_6 \text{ is in } 4\text{NF})
```

Further Normal Forms

- ☐ Join dependencies generalize multivalued dependencies
 - lead to project-join normal form (PJNF) (also called fifth normal form)
- ☐ A class of even more general constraints, leads to a normal form called **domain-key normal form**.
- ☐ Problem with these generalized constraints: are hard to reason with, and no set of sound and complete set of inference rules exists.
- ☐ Hence rarely used