Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 098 003 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 09.05.2001 Bulletin 2001/19

- (51) Int. Cl.7: C12Q 1/68
- (21) Application number: 00106325.4
- (22) Date of filing: 23.03.2000
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 02.11.1999 JP 31252599
- (71) Applicant:
 MARINE BIOTECHNOLOGY INSTITUTE CO.,
 LTD.
 Bunkyo-ku, Tokyo 113-0033 (JP)
- (72) Inventors:
 - Kasal, Hiroakl Co., Ltd c/o Marine Biotech.inst.Co Kamalshi-shi; Iwate 026-0001 (JP)
 - Harayama, Shigeaki, Ltd c/o Marine Biotech.inst.Co Kamaishi-shi; Iwate 026-0001 (JP)
 - Ezaki, Takayuki c/o Gifu University Gifu 500-8705 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)
- (54) Identification method and specific detection method of slow growing mycobacteria utilizing DNA gyrase gene
- (57) A method for identification and detection of slow growing mycobacteria, especially tubercle bacilli group bacteria, utilizing characteristic nucleotide sequences which are present in the *gyrB* gene. It renders possible accurate identification and detection of slow growing mycobacteria which are difficult by the conventional methods.

EP 1 098 003 A2

Description

FIELD OF THE INVENTION

[0001] The present invention relates to a method for identification or detection of slow growing mycobacteria having a large number of clinical cases as causative microorganisms of tuberculosis and atypical mycobacterial disease (especially, tubercle bacilli group bacteria), which utilizing a nucleotide sequence of a DNA coding for DNA gyrase β subunit (to be referred to as "gyrB" gene" or "gyrB" hereinafter). The identification and detection methods of the present invention are useful in various industrial fields, such as medical science, immunology and veterinary science.

BACKGROUND ART

10

[0002] A plurality of species belonging to slow growing mycobacteria are known as acid-fast bacterial species which cause tuberculosis and diseases analogous to tuberculosis in human. Among all, *Mycobacterium tuberculosis* complex, *Mycobacterium avium* complex and *Mycobacterium kansasii* occupy the most part of clinical cases. Recently, these bacteria are causing a serious problem for the prognosis of patients of acquired immunodeficiency syndrome (AIDS), because they induce systemic disseminated infection in AIDS patients.

[0003] Conventionally, identification and detection of these bacterial species have been carried out by physiological and biochemical methods based on the culturing. For example, identification and detection have been carried out using such differences in color development because (1) since there are three groups in the slow growing mycobacteria, namely a group which develops yellow color only when it is cultured in the dark after irradiation with light (photochromogen), (2) a group which develops color even when cultured without irradiation of light (scotochromogen) and (3) a group which does not develop color even when light is irradiated (achromogen). Known methods include identification and detection based on the ability of cultured bacteria to produce catalase or show urease activity, Tween hydrolyzing activity or nitrate reducing activity.

[0004] Tuberculosis is a most important infectious disease, because ninety million people in the world newly contract the disease every year and thirty million people of them die every year, but its countermeasure is not sufficient. Tubercle bacilli as its causative agents are classified into four strains, namely a tubercle strain (*Mycobacterium tuberculosis*), a bovine type strain (*Mycobacterium bovis*) and an Africa strain (*Mycobacterium africanum*) which are pathogenic for human and a rat type strain (*Mycobacterium microti*) which is not pathogenic for human. Conventionally, tests of acid-fast bacteria including these mycobacteria were mainly carried out by smear staining by the Ziehl-Neelsen method, isolation culturing method using Ogawa medium and a drug-sensitivity test. With the development of techniques thereafter, BACTEC 460 TB System, Septi-Check AFB, MGIT (Mycobacteria Growth Indicator Tube) and the like novel culture techniques have been developed.

[0005] However, these tests require pure culture. In addition, because phenotype to be compared is liable to change, the judgment often becomes subjective. As a result, not only a prolonged period of time is required but also accurate judgment of the species is extremely difficult. In order to solve such problems, certain identification and detection methods have recently been considered and put into use, e.g., a method for judging the presence of a specific nucleotide sequence of a gene utilizing the polymerase chain reaction (to be referred to as "PCR" hereinafter) or the like, sub-classification of mycobacteria using an insertion sequence IS6110, and the like. The PCR method is suited for identifying and detecting slow growing mycobacteria from the viewpoint that quick and objective judgment is possible without requiring culturing.

In that case, the gene to be used is a rRNA gene in most cases. T. Rogall et al. (1990, J. Gen. Microbiol., 136, 1915 - 1920) have proposed a method for the identification of mycobacteria species based on PCR using 16S 45 rRNA sequences. However, these primers could not distinguish between Mycobacterium gastri and Mycobacterium kansasii, which show different phenotype characteristics. On the other hand, B. Boddinghaus et al. (1990, J. Clin. Microbiol., 28: 1751 - 1759) have reported an oligonucleotide derived from 16S rRNA sequence, which is specific for human type mycobacterium group, avian type mycobacterium-paramycobacterium and Mycobacterium intracellulare group. Even the use of this oligonucleotide could not give necessary resolution for carrying out identification at species level. An identification method using these rRNA gene sequences is now on the market and available from Nippon Roche as a gene diagnosis kit under a trade name of "Amplicore Mycobacterium". In addition to this, detection or identification methods using rRNA sequences have been disclosed by Toyobo (JP-A-10-323189; the term "JP-A" as used herein means an "unexamined published Japanese patent application") and Becton, Dickinson and CO, (JP-A-10-057098). In order to solve the aforementioned problem of not being able to distinguish two species, an identification or detection method using the sequence of a region between 16S rRNA and 23S rRNA has been proposed by A. Roth et al. (1998, J. Clin. Microbiol., 36: 139 - 147). However, since the region between 16S rRNA and 23S rRNA has only about 200 base pairs, it is difficult to carry out high accuracy molecular phylogenic analysis by such a short sequence, and, when a new strain having an intermediate sequence which does not coincide with any one of the sequences of two

strains is generated, it is not able to judge its closeness to which of them.

On the other hand, it was shown that more minute and accurate classification and identification of many bacteria including those of the genus Pseudomonas and the genus Acinetobacter is possible by using a gene which encodes a protein having high evolution rate, particularly a 1,200 bp sequence of gyrB gene (Yamamoto, S. and S. Harayama, 1995, Appl. Environ. Microbiol., 61: 1104 - 1109, Yamamoto, S. and S. Harayama, 1996, Int. J. Syst. Bacteriol., 46: 506 - 511, Harayama, S. and S. Yamamoto, 1996, pp. 250 - 258 in Molecular Biology of Pseudomonas, T. Nakazawa, K. Fukuda, D. Haas, S. Silver (eds), ASM Press, Washington, D.C., S. Yamamoto and S. Harayama, Kagaku-to-Seibutsu (Chemistry and Biology, Japan), 1996, vol. 34, no. 3, pp. 149 - 151, S. Yamamoto and S. Harayama, Nippon Nogei Kagaku Kaishi (Journal of Agricultural Chemistry, Japan), 1997, vol. 71, no. 9, pp. 894 - 897). Attempts have been made to carry out identification of slow growing mycobacteria using genes coding for proteins other than the gyrB gene. For example, C.T. Shivannvar et al. have discussed on the phylogenic relationship among slow growing mycobacteria and their relationship to antigenicity using superoxide dismutase gene (1994, J. Clin. Microbiol., 32: 2801 - 2812), and D.S. Swanson et al. have attempted to carry out minute classification of avian type mycobacterium-paramycobacterium and Mycobacterium Intracellulare group using a 65 kD heat shock protein gene (1997, Int. J. Syst. Bacteriol., 47: 414 - 419). In addition to the rRNA gene, Abbott Laboratories, USA, has disclosed a detection method which uses a gene coding for a protein antigen B of Mycobacterium tuberculosis, gene sequences of 65 kD heat shock protein, 10-kD heat shock proteins and the like of Mycobacterium tuberculosis and sequences related to insertion sequences IS987 and IS6110, in JP-W-10-500567 (the term "JP-W" as used herein means an "Japanese national publication of a PCT application") (International Publication No. WO 95/31571). In addition, Becton, Dickinson and Co. has disclosed in JP-A-06-319560 a detection or identification probe derived from a gene which encodes a 70 kD heat shock protein of Mycobacterium paratuberculosis. However, among these genes, only the gyrB gene shows no contradiction when molecular phylogenical data are compared with the identification of species by the conventional taxonomic means (Yamamoto and Harayama, 1998, Int. J. Syst. Bacteriol., 48: 813 - 819, Yamamoto et al., 199, Int. J. Syst. Bacteriol., 49: 87 - 95, Suzuki et al., Int. J. Syst. Bacteriol., in press, Kasai et al., Int. J. Syst. Bacteriol., in press). A patent application relating to a method for the identification or detection of bacteria using the gyrB gene has already been filed by the present applicant (JP-A-11-16917). However, this document does not disclose identification and detection of slow growing mycobacteria and also does not teach or suggest which region of the gyrB gene can be used in carrying out identification and detection of slow growing mycobacteria.

[0010] Because the slow growing mycobacteria include the bacteria that cause tuberculosis and the like serious diseases, great concern has been directed toward the development of a method for accurately identifying and detecting this bacterial group. On the other hand, because the growth rate of slow growing mycobacteria is lower than that of general bacteria, it is difficult to identify or detect them by physiological and blochemical methods which essentially require culturing of bacteria.

[0011] The present invention has been accomplished under such technical background to provide a method for the identification or detection of slow growing mycobacteria, especially tubercle bacilli group bacteria, utilizing the *gyrB* gene.

[0012] With the aim of solving the aforementioned problems, the present inventors have conducted extensive studies and, as a result, found that at least a part of the nucleotide sequence of *gyrB* DNA is different among the slow growing mycobacteria.

[0013] The present inventors further determined *gyrB* gene sequences of standard strains of the slow growing mycobacteria. Taxonomic positioning of strains isolated from clinical cases was carried out based on these sequences. Then, the resulting taxonomic positioning was checked by the DNA-DNA hybridization method, which is a standard method for identifying species of bacteria. As a result, it was unexpectedly found that the taxonomic positioning determined by using *gyrB* gene sequences shows good agreement with the result of the conventional classification method.

[0014] In addition, nucleotide sequences of *gyrB* fragments were determined by the PCR method by amplifying them from DNA samples of standard strains of atypical mycobacteria, *Mycobacterium gastri* and *Mycobacterium kansasii*, which cannot be distinguished by the nucleotide sequence of 16S rRNA gene which is the most generally used gene sequence-aided detection method of bacteria. When the resulting sequences were compared, it was found that the 16S rRNA gene sequence was identical in both strains, but 66 positions in the 1,257 base *gyrB* gene nucleotide sequence were different in both strains (Figs. 1-11). The present inventors further found that the taxonomically near bacteria belonging to the slow growing mycobacteria can be distinguished by designing primers based on such difference in their sequences, which renders possible the PCR amplification specific for each of these strains. Thus, the present inventors found that it can determine accurate molecular phylogenic position of even a newly isolated strain and also can distinguish related species which cannot be distinguished by other genes, so that it is a method superior to methods by other genes.

[0015] The present invention has been accomplished based on the above knowledge.

SUMMARY OF THE INVENTION

[0016] Thus, the present invention relates to a method for identifying slow growing mycobacteria, especially tubercle bacilli group bacteria, which comprises carrying out identification of bacteria using *gyrB* DNA as a marker. Also, the present invention relates to a method for detecting slow growing mycobacteria, especially tubercle bacilli group bacteria, which comprises carrying out detection of bacteria using *gyrB* DNA as a marker.

[0017] The present invention further relates to a method for identifying slow growing mycobacteria, which comprises amplifying the regions corresponding to SEQUENCE NO. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 in the *gyrB* of slow growing mycobacteria, comparing nucleotide sequences of the amplified fragments with the nucleotide sequences described in SEQUENCE NO. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39, thereby calculating genetic distance from each sequence, and carrying out identification of the aforementioned slow growing mycobacteria based on the genetic distance.

[0018] Also the present invention relates to a method for detecting a specific bacterium belonging to the slow growing mycobacteria using a specific sequence in the *gyrB*. In particular, the present invention relates to a method for detecting *Mycobacterium kansasii*, which comprises detecting *Mycobacterium kansasii* using, as a primer or probe, an oligonucleotide that contains a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 4, or its complementary sequence, and also substantially functions as a primer or probe, and to a *Mycobacterium kansasii* detection kit which comprises the just described oligonucleotide.

[0019] The present invention also relates to a method for detecting *Mycobacterium gastri*, which comprises detecting *Mycobacterium gastri* using, as a primer or probe, an oligonucleotide that contains a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 6, or its complementary sequence, and also substantially functions as a primer or probe, and to a *Mycobacterium gastri* detection kit which comprises the just described oligonucleotide.

25 BRIEF DESCRIPTION OF THE DRAWINGS

[0020]

30

50

55

Figs. 1 through 11 show alignment of the nucleotide sequences of various slow growing mycobacteria. The symbols at the left side in the figure indicate the organisms shown below.

	KPM1403	Mycobacterium simiae
	KPM1201	Mycobacterium marinum
	KPM2201	Mycobacterium gordonae
35	ATCC25274	Mycobacterium asiaticum
	KPM2027	Mycobacterium scrofulaceum
	KPM2403	Mycobacterium szulgai
	KPM3012	Mycobacterium avium
	Bovine10	Mycobacterium paratuberculo
40	KPM3101	Mycobacterium intracellular
	KPM3401	Mycobacterium malmoense
	ATCC51789	Mycobacterium branderi
	T801	Mycobacterium africanum
	T901	Mycobacterium microtl
45	T704	Mycobacterium bovis
	T021	Mycobacterium tuberculosis
	KPM3504	Mycobacterium gastri
	KPM1001	Mycobacterium kansasii

Fig. 12 shows a result of the identification using the primers based on SEQUENCE No. 1, SEQUENCE NO. 3, and SEQUENCE No. 5. Panel A shows amplified results using *Mycobacterium kansasil*-specific primers (SEQUENCE NO. 1 and SEQUENCE NO. 3), and panel B using *Mycobacterium gastri*-specific primers (SEQUENCE NO. 1 and SEQUENCE NO. 5). Lanes 1 and 12 are molecular weight markers. Lanes 2: strain KPM 1001T, 3: strain KPM 1004, 4: strain KPM 1007, 5: strain KPM KY256, 6: strain KPM KY761, 7: strain KPM KY798, 8: strain KPM 1998-1, 9: strain KPM 3504T, 10: strain KPM 3502 and 11: strain KPM 3503.

Fig. 13 shows a phylogenetic tree of slow glowing mycobacteria prepared by the molecular phylogenic analysis. This figure shows an example in which the presence of new species of slow growing mycobacteria was shown by gyrB sequence analysis. By carrying out molecular phylogenetic analysis and comparing the thus obtained gyrB

sequences with already known gyrB sequences, it was shown that a group of strains KPM 2212, 2014, 1988-5, 2209 and 2013 are new species.

Fig. 14 is an electrophoresis photograph of products amplified by PCR using primers specific for bacteria which constitute the tubercle bacilil.

Fig. 15 is an electrophoresis photograph of products amplified by PCR using primers specific for each bacterium which constitutes the tubercle bacilli.

Fig. 16 is an electrophoresis photograph of fragments prepared by digesting PCR products with restriction enzymes.

10 DETAILED DESCRIPTION OF THE INVENTION

[0021] The following describes the present invention in detail.

[0022] As the first step for the detection or identification of the slow growing mycobacteria (especially tubercle bacilli group bacteria), a sample for detection or identification is collected. Examples of the sample include a sample collected from organisms (human, animals, etc.) showing tuberculosis or tuberculosis-analogous symptoms as well as a strain isolated from the sample. Examples of tuberculosis or tuberculosis-analogous symptoms include pneumonla, empyema, cystitis, pyelonephritis, prostatitis, peritonitis, pericarditis, meningitis, encephalitis, etc. (Pocket guide to clinical microbiology 2nd edition, Oatrick R. Murray, ASM press). The collected sample may be cultured or the microorganism in the sample may be isolated and cultured for the use in the following steps. However, the present invention is advantageous in that the sample as it is can be used.

[0023] Then, a sample or isolated microorganism is usually subjected to a treatment to destroy the cell to extract DNA from the cell. The method for this treatment is not particularly limited and includes physically destroying method, chemically destroying method, etc.

Examples of the method for determining the DNA sequence include the dideoxy terminator method (Molecular Cloning: a laboratory manual 2nd edition, J. Sambrook, E. F. Rritsch, T. Maniatis, CSH press). The sequence determined is compared with the sequences of the DNA gyrase β subunit of the slow growing mycobacteria (Sequence No. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39) to determine whether the microorganism in the sample belongs to the one of these slow growing mycobacteria or is a new species. For the determination, 85% to 100% homology with respect to the 1200 bp sequence of the DNA gyrase β subunit means the same species, while the homology less than 85% means a new species. As a surprising matter, the identification of the slow glowing mycobacteria based on the DNA gyrase β subunit well matches with the identification of the slow glowing mycobacteria by the conventional method. Thus, the present invention makes it possible to identify the slow growing mycobacterial in an accurate way and also makes it possible to distinguish the related species, which are not possible by the conventional way.

Without determining the whole sequence of the DNA gyrase β subunit, identification and detection of the slow growing mycobacteria according to the present invention can be carried out by utilizing one or more unique partial sequence in the DNA gyrase β subunit which is characteristic to one or more of the microorganisms belonging to the slow growing mycobacteria or related species thereof. Example of the unique sequence is a sequence having 0 or more, preferably at least 1, more preferably at least 2, and most preferably at least 3 unique bases in the sequence having a length of 5-mer to 50-mer, preferably 10-mer to 40-mer, more preferably 15-mer to 30-mer. When the unique sequence does not have a unique base, at least one unique base should exist at the 3'-side or 5'-side nearest neighbor base to the unique sequence. The complementary sequence to the unique sequence can be also used.

The unique base means a base which can be found in only one or only several related species among the slow growing mycobacteria. The unique base may be located at arbitrary position in the unique sequence. When the unique sequence is utilized as a primer for the PCR, a unique base located near the 3'-end is preferable for the 5'-end primer and a unique base located near the 5'-end is preferable for the 3'-end primer. For the method utilizing the gel electrophoresis described below, the unique sequence may be designed so that the 3'-side or 5'-side nearest neighbor base to the unique sequence is the unique base (i.e., the unique base is not contained in the unique sequence). Even if a unique sequence which is unique to a certain one species among the slow growing mycobacteria is not found, identification or detection of the certain species is possible by using in combination two or more unique sequences which are respectively unique to several species among the slow growing mycobacteria. For example, four tubercle bacilli group bacteria can be identified or detected by using Sequence 41 shown in Fig. 1. By using Sequence 55 in combination of Sequence 41, it is possible to identify or detect Mycobacterium microtl. Mycobacterium kansasii and Mycobacterium gastri can be identified or detected by using Sequence 1 shown in Fig. 1. By using Sequence 3 in combination of Sequence 1, it is possible to identify or detect Mycobacterium kansasii. According to the present invention, a sample obtained from human or animals showing tuberculosis or tuberculosis-analogous symptoms is used. Accordingly, it is possible to avoid pseudo positive reaction even if there are microorganisms other than slow growing mycobacteria that have the same unique sequence in the DNA gyrase $\boldsymbol{\beta}$ subunit.

Examples of the concrete methods for identifying or detecting the slow growing mycobacteria, which utilizes the unique sequence, a partial sequence in the unique sequence, or a sequence having a unique sequence, in the DNA gyrase β subunit include (1) DNA chip (DNA microarray) (Gingeras et al., 1998, Genome Res. 8: 435-448; Troesch et al. 1999 J. Clin. Microbiol. 37: 49-55), (2) PCR using the same as primers (Kasai, H., Ezaki, T., Harayama, S. 2000. J. Clin. Microbiol. 38: 301-308), (3) hybridization using the same as a probe (de los Reyes et al. 1997. Appl. Environ. Microbiol. 63: 11007-1117), (4) cleavage by the restriction enzyme that recognizes the unique sequence (Kasai H., Ezaki, T., Harayama, S. 2000. J. Clin. Microbiol. 38: 301-308), and the like. Examples of the method to confirm the result of these methods include a method to confirm the existence of the amplified or cleaved fragments by the gel electrophoresis, a method using DNA chip (DNA microarray), etc. The above-described methods can be carried out by the known way (cf. Molecular Cloning: a laboratory manual 2nd edition, J. Sambrook, E. F. Fritssh, T. Maniatis, CSH press; Current protocols of molecular biology edited by Ausubel et al. Wiley; PCR primer - A laboratory manual. edited by Diffenbach & Dveksler. SCH press, all herein incorporated by reference) The identification method and the detection method according to the present invention are further described below.

(1) Identification method

35

40

45

50

55

[0028] The method of the present invention for identifying slow growing mycobacteria is characterized in that the regions corresponding to SEQUENCE NOS. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 in the *gyrB* of slow growing mycobacteria are amplified by PCR, nucleotide sequences of the amplified fragments are compared with the nucleotide sequences described in SEQUENCE NOS. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39, thereby calculating genetic distance from each sequence, and then identification of the aforementioned slow growing mycobacteria is carried out based on the genetic distance.

[0029] The term "identification" as used herein means that taxonomic positions of bacteria are determined by a molecular phylogenic or the like means.

[0030] Though not particularly limited, the primers represented by SEQUENCE NO. 59 and SEQUENCE NO. 60 can be exemplified as the primers to be used in the amplification of the regions corresponding to SEQUENCE NOS. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 in the *gyrB*.

[0031] Relationship between the nucleotide sequences of SEQUENCE NOS. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 and their corresponding amino acid sequences and names of original microorganisms is shown in the following table.

TARLE 1

	IABLE 1	
Nucleotide sequence	Amino acid sequence	Name of original microorganisms
SEQUENCE NO. 7	SEQUENCE NO. 8	Mycobacterium simiae
SEQUENCE NO. 9	SEQUENCE NO. 10	Mycobacterium bovis
SEQUENCE NO. 11	SEQUENCE NO. 12	Mycobacterium szulgai
SEQUENCE NO. 13	SEQUENCE NO. 14	Mycobacterium malmoense
SEQUENCE NO. 15	SEQUENCE No. 16	Mycobacterium intracellulare
SEQUENCE NO. 17	SEQUENCE NO. 18	Mycobacterium avium
SEQUENCE NO. 19	SEQUENCE NO. 20	Mycobacterium gordonae
SEQUENCE NO. 21	SEQUENCE NO. 22	Mycobacterium africanum
SEQUENCE NO. 23	SEQUENCE NO. 24	Mycobacterium tuberculosis
SEQUENCE NO. 25	SEQUENCE NO. 26	Mycobacterium gastri
SEQUENCE NO. 27	SEQUENCE NO. 28	Mycobacterium marinum
SEQUENCE NO. 29	SEQUENCE NO. 30	Mycobacterium microti
SEQUENCE NO. 31	SEQUENCE NO. 32	Mycobacterium asiaticum
SEQUENCE NO. 33	SEQUENCE NO. 34	Mycobacterium scrofulaceum
SEQUENCE NO. 35	SEQUENCE NO. 36	Mycobacterium branderi
SEQUENCE NO. 37	SEQUENCE NO. 38	Mycobacterium paratuberculosis

TABLE 1 (continued)

Nucleotide sequence	Amino acid sequence	Name of original microorganisms
SEQUENCE NO. 39	SEQUENCE NO. 40	Mycobacterium kansasii

[0032] The genetic distance can be calculated in accordance, for example, with the method described by Felsenstein in the Phylip program (Felsenstein, J., 1993 PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author, Department of Genetics, University of Washington, Seattle, U.S.A.).

(2) Specific detection

[0033] The method of the present invention for detecting *Mycobacterium kansasii* is characterized by the use, as a primer or probe, of an oligonucleotide which contains a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 4, or its complementary sequence, and functions substantially as a primer or probe. Also, the *Mycobacterium kansasii* detection kit of the present invention is characterized in that it contains the just described oligonucleotide.

[0034] The method of the present invention for detecting *Mycobacterium gastri* is characterized by the use, as a primer or probe, of an oligonucleotide which contains a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 6, or its complementary sequence, and also functions substantially as a primer or probe. Also, the *Mycobacterium gastri* detection kit of the present invention is characterized in that it contains the just described oligonucleotide.

[0035] In this connection, the term "substantially functions as a primer or probe" means that the oligonucleotide has such a length that a specific annealing or hybridization can be effected, and its gist is to exclude the oligonucleotide which has a sequence that can anneal to or hybridize with the DNA to be detected but cannot be used in specific detection, because it frequently causes nonspecific annealing or hybridization due to its short length. In order to confirm that a certain oligonucleotide can substantially functions as a primer for PCR, the PCR is carried out at a 3°C higher annealing temperature and a 3°C lower annealing temperature than the usually employed temperature for the PCR. If the PCR product is observed only at 3°C lower annealing temperature, there is a possibility of false-positive. In such a case, the nucleotide sequence of the amplified fragment is determined by the conventional way and compared with the known sequence to confirm whether the oligonucleotide used can substantially work as a primer. In order to confirm that a certain oligonucleotide can substantially function as a primer for PCR, it is preferable to perform PCR by using DNA of already known strain (for example, type strain) as a template for positive and negative controls.

[0036] Though not particularly limited, the oligonucleotide represented by SEQUENCE NO. 3 can be exemplified as an oligonucleotide which can be used in the detection of *Mycobacterium kansasii*, and the oligonucleotide represented by SEQUENCE NO. 5 can be exemplified as an oligonucleotide which can be used in the detection of *Mycobacterium gastri*.

[0037] Preparation of DNA to be tested, preparation of primers and PCR using the same, and preparation of probes and hybridization using the same can be carried out in the usual way without requiring special techniques.

[0038] Regarding the primers to be used in PCR, it is not always necessary that both of them can perform specific annealing, and one of them may perform nonspecific annealing. The primer represented by SEQUENCE NO. 1 can be cited as an example of such a primer which performs nonspecific annealing.

[0039] The methods of the present invention for identifying and detecting the slow growing mycobacteria (especially, tubercle bacilli group bacteria) are characterized in that *gyrB* DNA is used as a marker. Examples of the slow growing mycobacteria include those shown in Table 1. Examples of the tubercle bacilli group bacteria include *Mycobacterium tuberculosis*, *Mycobacterium bovis*, *Mycobacterium africanum* and *Mycobacterium microti*.

[0040] The following four methods can be exemplified as the identification and detection methods which use gyrB DNA as a marker.

A) A method which employs PCR

50

55

[0041] This method is carried out as follows.

(1) An oligonucleotide which contains a region of *gyrB* DNA, a region that has different nucleotide sequence among tubercle bacilli group bacteria, is synthesized. Since the nucleotide sequence of *gyrB* DNA corresponding to each bacterium is already determined as shown in Figs. 1-11, the just described oligonucleotide can be synthesized based on these drawings. As the oligonucleotide, an oligonucleotide which encodes the amino acid sequence described in SEQUENCE NO. 46, SEQUENCE NO. 48, SEQUENCE NO. 50, SEQUENCE NO. 52, SEQUENCE NO. 54, SEQUENCE NO. 56 or SEQUENCE NO. 58 can be exemplified as a preferable oligonucleotide, and an oli-

gonucleotide represented by SEQUENCE NO. 45, SEQUENCE NO. 47, SEQUENCE NO. 49, SEQUENCE NO. 51, SEQUENCE NO. 53, SEQUENCE NO. 55 or SEQUENCE NO. 57 can be exemplified as a particularly preferable oligonucleotide.

- (2) A solution which contains the oligonucleotide synthesized in the above step, dNTP, DNA polymerase and a bacterial DNA to be used as a sample is prepared. Concentration of each component contained in the solution may be the same as that in the reaction solution used in general PCR. It is not necessary to purify the bacterial DNA to be used as a sample, and disrupted cells may be used as such for example.
- (3) The solution prepared in the above step is repeatedly heated under such conditions that PCR can be generated. The heating temperature, cycle and the like conditions are not particularly limited, with the proviso that they are within such ranges that PCR can be effected, but, since the homology of *gyrB* DNA among tubercle bacilli group bacteria is high as shown in Figs. 1-11, it is desirable to set the temperature at the time of annealing to a fairly high level. Illustratively, it is desirable to set at 68°C or more. When the synthesized oligonucleotide can be hybridized with the added bacterial DNA, PCR occurs by the repetition of heating and amplified product is formed thereby. On the other hand, when the synthesized oligonucleotide cannot be hybridized with the added bacterial DNA, PCR does not occur and amplified product is not formed.
- (4) Electrophoresis of the solution after the above treatment is carried out. When the amplified product is contained in the solution, its corresponding band is formed on the electrophoresis gel. In consequence, identification and detection of the bacterium of interest can be made based on the electrophoresis pattern.

20 B) A method which uses restriction enzyme digestion fragments

[0042] This method is carried out as follows.

10

15

25

30

35

40

- (1) An oligonucleotide which is identical to a part of *gyrB* DNA of tubercle bacilli group bacteria and a complementary oligonucleotide of the aforementioned part of DNA are synthesized. Since the nucleotide sequence of *gyrB* DNA corresponding to each bacterium is already determined as shown in Figs. 1-11, the bust described oligonucleotides can be synthesized based on these drawings. As preferred oligonucleotides, an oligonucleotide which encodes the amino acid sequence described in SEQUENCE NO. 42 and an oligonucleotide which encodes the amino acid sequence described in SEQUENCE NO. 44 can be exemplified, and the oligonucleotide represented by SEQUENCE NO. 41 and the oligonucleotide represented by SEQUENCE NO. 43 can be exemplified as particularly preferred oligonucleotide.
- (2) PCR is carried out using the two oligonucleotides synthesized in the above step as primers, and a bacterial DNA sample as a template. It is not necessary to purify the bacterial DNA to be used as a sample, and disrupted cells may be used as such for example. PCR can be carried out in the usual way.
- (3) The DNA fragment amplified in the above step is digested with restriction enzymes. The restriction enzymes to be used are not particularly limited, with the proviso that they can generate different fragments among corresponding bacteria which constitute tubercle bacilli. For example, *Rsa* I and *Taq* I can be exemplified as such restriction enzymes.
- (4) Electrophoresis of the fragments digested in the above step is carried out. The digested DNA fragments appear at positions corresponding to their length. In consequence, identification and detection of the bacterium of interest can be made based on the electrophoresis pattern.

[0043] The aforementioned two methods can be cited as typical examples of the Identification or detection method of the present invention, but other methods are also included in the Identification or detection method of the present invention, with the proviso that they use *gyrB* DNA as a marker. Examples of these other identification or detection methods include a method in which *gyrB* DNA is amplified by PCR, and identification or detection of the bacterium of interest is carried out by determining nucleotide sequence of the amplified fragment and a method in which an oligonucleotide which contains a region of *gyrB* DNA, a region that has different nucleotide sequence among tubercle bacilli group bacteria, is synthesized, and the bacterium of interest is identified or detected by carrying out Southern blotting using the oligonucleotide as a probe.

C) Method which employs the gel electrophoresis

[0044] According to this method, easy and qualitative analysis as well as a certain degree of quantitative analysis are possible for *M. tuberculosis*, *M. bovis*, *M. africanum*, *M. microti*, *M. kansasil*, *M. avium*, *M. intracellulare* and for the multiple infection found in the patient having lowered immunological competence.

[0045] Dideoxy nucleotides and primers that are unique to one or more of these species are used for this method. The oligonucleotide used as a primer is designed so that the 3'-side nearest neighbor base in DNA gyrase ß subunit

sequence to the primer is the unique base. The sequence of the primer itself may be common in all of the slow growing mycobacteria or may be common in one or more slow growing mycobacteria. In the latter case, an oligonucleotide mixture is preferably used in order to assure the reaction.

[0046] All of the 4 types of dideoxy nucleotides is labeled with a fluorescent substance or radioactive substance. By labeling each of the 4 dideoxy nucleotides with different types of substances, it is possible to obtain the necessary information from only one lane of the sequence gel. Labeling the 4 dideoxy nucleotides with the same fluorescent substance or radioactive substance requires to carry out electrophoresis using 4 different lanes.

The reaction mixture used for this method is the same with the reaction mixture for the usual sequence reaction except that dATP, dTTP, dGTP, and dCTP are not contained. In other words, the reaction mixture contains, as essential components, an appropriate buffer, a DNA polymerase, a labeled ddNTP, and the primer. A sample collected from the patient is mixed with this reaction mixture and then subjected to the reaction at an appropriate temperature at which the reaction can occur (for example, at 95°C for 10 seconds, 50°C for 5 seconds, and 60°C for 4 minutes; 25 cycles). Then, existence of the labeled primer is checked, for example, by subjecting the reaction product to the gel electrophoresis by the conventional way, or the like. The pattern which appears on the gel differs depending on the length of the primer used and the type of the 3'-side nearest neighbor based to the primer. The location of the primer sequence is not particularly limited as long as the length of the primer sequence is the same. However, for the quantitative analysis, primers having a quite high Δ Tm (about 5°C or more) is not preferable. Examples of the primers include the nucleotides represented by Sequence 61 (5'-gacgcstaygcgatatc-3') based on the $\it M.~tuberculosis$ complex and $\it M.~tuberculosis$ kansasii and Sequence 62 (5'-agcggytacaacgtcag) based on M. avium and M. intracellulare in Fig. 1. At the position corresponding to the 18-base length, a signal of "T" is found in the case of M. tuberculosis complex, "G" for M. kansasii, and "C" for M. intracellulare. Detection of a plural number of signals at the position corresponding to the 18-base length means the multiple infection. Moreover, approximate amount of existence of each species can be estimated from the signal intensity detected. The sequence that is unique to 4 species of the tubercle bacilli group bacteria and the sequence which can distinguish M. gastri (a species which is near to M. kansasii but has only a few number of clinical cases of human infection) have been explained in the above-described methods. By combining this method which uses gel electophoresis with the above-described methods, further detailed identification or detection is possible.

D) Method which employs the DNA chip

[0048] The detection or identification of the slow growing mycobacteria is also possible by utilizing the DNA chip. Examples of the method which employs the DNA chip is described below. First, the region in the DNA gyrase β subunit in one or more standard strains of the slow growing mycobacteria is amplified, for example, by the PCR. Then, the amplified product is labeled by Cy5 or the like, and the synthesized DNA oligo probe is fixed on a plate such as slide grass. A DNA in a sample is obtained and subjected to a hybridization reaction on the plate having a solid phrased probe, which is then subjected to washing and detection in the conventional way. The size of the region in the DNA gyrase β subunit is preferably 250 bp or less, more preferably 180 bp or less, and still more preferably 125 bp or less. The oligo probe size is preferably from 14 to 17 mer.

[0049] Known protocols for the method which employs the DNA chip can be employed for the above-described method (cf. Lemieux, B., Aharoni, A., and M. Schena (1998), Overview of DNA Chip Technology, Molecular Breeding, 4, 277-289; Schena, M., Heller, R.A., Theriault, T.P., Konrad, K., Lachenmeier, E., and R.W. Davis (1998), Microarrays: biotechnology's discovery platform and functional genomics, Trends in Biotechnology, 16, 301-306; and Heller, R.A., Schema, M., Chai, A., Shalom, D., Bedilion, T., Glimore, J., Woolley, D.E., and Davis, R.W. (1997), Discovery and analysis of inflammatory disease-related genes using cDNA microarrays, Proceedings of the National Academy of Sciences USA, 94, 2150-2155), all herein incorporated by reference).

45 [0050] Illustrative but non-limiting example of the protocol for the DNA chip method is described below.

(1) Labeling

[0051] PCR amplification product (125 bp) is obtained by 40-cycles treatment (each cycle: at 96°C for 1 minute, 55°C for 30 seconds, and 72°C, 2 minutes). The product is then subjected to the ethanol precipitation. Then, 10 µM Cy5-dCTP/100 µl is added instead of dCTP/100 µl and the 40-cycles treatment was carried out again (each cycle: at 96°C for 1 minute, 55°C for 30 seconds, and 72°C, 2 minutes). Then, the product is subjected to the ethanol precipitation.

55 (2) Spotting

[0052] Spotting is carried out under the following conditions.

Slide: Silylated Slides

Spotting: Spotting by SPBIO (manufactured by HITACHI) using a 4 Pin head with a pitch of 1.0 mm. A 20 μ l sample (10 μ l of 200 μ M probe + 10 μ l of \times 2 Spotting Solution (ArrayltTM)) is used for each well of the plate (about 4 to 5 nl per 1 spot).

Time: about 10 minutes/slide (96 spots)

Oligo probe size: conc. probe 14 - 17 mer, final conc. 100 µM

(3) Hybridization

5

15

25

30

10 [0053] Hybridization is carried out using UniHyb™ (Arraylt™). The labeled product is dissolved in 4 μl of sterilized water and 16 μl of ×1.25 UniHyb™ was added.

[0054] Then, 9.6 μ l of the resulting mixture was dropped onto a cover slip (24 × 32 mm; 1.25 μ l/cm²) and the cover slip was placed onto the microarray such that bubbles are not included between the cover slip and the microarray. Then, the microarray is incubated at 46°C for 4 hours.

(4) Washing

[0055] Washing is carried out with $2 \times SSC$ (+ 0.2% SDS) for 5 minutes at room temperature, with 0.1 $\times SSC$ (+ 0.2% SDS) for 5 minutes at room temperature, and then with 0.1 $\times SSC$ (+ 0.2% SDS) for 5 minutes at room temperature. The microarray is centrifuged and dried. At least 1 week storage at 4°C is possible.

(5) Scanning

[0056] Scanning is carried out by using ScanArray 1000 (ScanArray Lite) manufactured by GSI LUMONICS.

Scanning software: ScanArray Analyzing software: QuantArray

EXAMPLE 1

Using the oligonucleotides represented by the nucleotide sequences described in SEQUENCE NO. 39 and SEQUENCE NO. 40, gyrB gene sequences of B acid-fast bacterial strains (KPM 2201T, KPM 2202, KPM 2203, KPM 2013, KPM 2014, KPM 1988-5, KPM 2209 and KPM 2212) isolated from clinical cases were determined. Using the thus obtained gyrB sequences and a gyrB sequence set (SEQUENCE NO. 7 to SEQUENCE NO. 40) for slow growing mycobacteria identification use, their phylogenic relationship was estimated by a molecular phylogenic analysis. The molecular phylogenic analysis was carried out in the following manner using general-purpose molecular phylogenic analysis programs Clustal W (Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994, Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice., Nucleic Acids Res., 22: 4673 - 4680) or Phylip (Felsenstein, J., 1993 PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author, Department of Genetics, University of Washington, Seattle, U.S.A.), in accordance with the instructions for use of both programs. A multiple alignment file is prepared by the Clustal W program from the gyrB gene sequences obtained using the oligonucleotides represented by the nucleotide sequences described in SEQUENCE NO. 59 and SEQUENCE NO. 60 and the slow growing mycobacteria identification gyrB sequence set of SEQUENCE NO. 7 to SEQUENCE NO. 40. An example of the parameters to be used in making the multiple alignment is "Gap Open Penalty: 15.00; Gap Extension Penalty: 6.66; DNA weight matrix: IUB; DNA transition weight: 0.5°. The thus obtained multiple alignment is compared with a multiple alignment file obtained from amino acid sequences, and questionable points are corrected. Next, the genetic distance between respective sequences is calculated based on the multiple alignment file. The dnadist program of Phylip is used for the calculation. The calculation is carried out in accordance with the Kimura 2-parameter model. A phylogenetic tree is prepared from the thus obtained 50 genetic distances by a neighboring sequences binding method. Correctness of the phylogenetic tree is checked by calculating the bootstrap probability.

[0058] On the other hand, the aforementioned 8 strains were also identified by a 16S rRNA gene-aided method and a biochemical method. The above results are shown in Table 2.

TABLE 2

Strain name	Biological test	16S rRNA gene	DNA homology test
KPM 2201T	M. gordonae	M. gordonae	M. gordonae
KPM 2202	M. gastri	M. gordonae	M. gordonae
KPM 2203	M. gastri	M. gordonae	M. gordonae
KPM 2013	M. scrofulaceum	M. gordonae	new species
KPM 2014	M. scrofulaceum	M. gordonae	new species
KPM 1988-5	M. scrofulaceum	M. gordonae	new species
KPM 2209	M. scrofulaceum	M. gordonae	new species
KPM 2212	no data	M. gordonae	new species

[0059] As shown in the table, 3 of the above 8 strains, namely KPM 2201T, KPM 2202 and KPM 2203, were identified as strains belonging to *Mycobacterium gordonae*, but the other 5 strains, KPM 2013, KPM 2014, KPM 1988-5, KPM 2209 and KPM 2212, were suggested to be sibling species of *Mycobacterium gordonae* but different species (new species) (Fig. 13). When a DNA-DNA hybridization test (Ezaki, T., Hashimoto, Y., Takeuchi, T., Yamamoto, H, Shu-Lin Liu, Matsui, K. & Yabuuchi, E (1988), *J. Clin. Microbiol.*, 26, 1708 - 1713; Ezaki, T., Hashimoto, Y., Takeuchi & Yabuuchi, E (1989), *Int. J. Syst. Bacteriol.*, 39, 224 - 229) was carried out in order to inspect this result, it was supported that they are new species. This result suggests that the *gyrB* sequence set for slow growing mycobacteria identification use gives highly reliable results for not only known strains but also strains of new species.

EXAMPLE 2

10

15

40

55

[0060] Nucleotide sequences of the gyrB gene of Mycobacterium kansasil and Mycobacterium gastri (Figs. 1-11) were compared to prepare a primer which specifically anneals to the gyrB gene of Mycobacterium kansasil (SEQUENCE NO. 3) and a primer which specifically anneals to that of Mycobacterium gastri (SEQUENCE NO. 5). A primer which anneals to the gyrB gene of both strains (SEQUENCE NO. 1) was also prepared.

[0061] Using these primers, PCR was carried out on disrupted cell suspensions of strains KPM 1004, KPM 1007, KPM KY256, KPM KY761, KPM KY768, KPM 1998-1, KPM 3502 and KPM 3503 isolated from clinical cases.

[0062] The PCR amplification conditions are as follows.

At 95°C for 10 minutes; 1 cycle
At 95°C for 1 minute and 68°C for 1 minute and 30 seconds; 30 cycles
At 72°C for 10 minutes; 1 cycle

Primer concentration; 1 µM for each

dNTP: 100 μM for each

Ampli Taq GOLD™ and PCR buffer I attached thereto (Perkin Elmer, USA) were used.

[0063] When the thus amplified DNA fragments were analyzed by an electrophoresis, amplified fragments were observed only by the combination of SEQUENCE NO. 1 and SEQUENCE NO. 3 in the case of KPM 1004, KPM 1007, KPM KY256, KPM KY761, KPM KY768 and KPM 1998-1 (Table 3), so that these strains were identified as *Mycobacterium kansasii*. In the case of KPM 3502 and KPM 3503, amplified fragments were observed only by the combination of SEQUENCE NO. 1 and SEQUENCE NO. 5 (Table 3), so that these strains were identified as *Mycobacterium gastri*. The electrophoresis patterns used in the judgment are as shown in Fig. 12. These identification results coincided with the identification results of the DNA-DNA hybridization method.

TABLE 3

	M. kansasii	M. gastri
SEQUENCE NO. 1	amplification was possible	No amplification
SEQUENCE NO. 3		•

TABLE 3 (continued)

	M. kansasii	M. gastri
SEQUENCE NO. 1	No amplification	amplification was possible
SEQUENCE NO. 5		

EXAMPLE 3

10 [0064] A 10 ng portion of purified DNA was prepared from each of 9 bacterial species including 4 tubercle bacilil group bacterial species and 5 other bacterial species belonging the genus Mycobacterium. PCR was carried out using these DNA samples as templates, and the oligonucleotides described in SEQUENCE NO. 41 and SEQUENCE NO. 43 as primers. The PCR amplification conditions are as follows.

15 At 95°C for 10 minutes; 1 cycle

At 95°C for 1 minute, 68°C for 1 minute and 72°C for 1 minute; 30 cycles

At 72°C for 10 minutes; 1 cycle Primer concentration; 1 µM for each

dNTP: 100 μM for each

Ampli Tag GOLD™ and PCR buffer 1 attached thereto (Perkin Elmer, USA) were used.

[0065] The products amplified by PCR were analyzed by an agarose gel electrophoresis. The results are shown in Fig. 14. In this connection, the relationship between lanes and bacterial species is as follows.

25 Lane 1: Mycobacterium tuberculosis

Lane 2: Mycobacterium bovis

Lane 3: Mycobacterium africanum

Lane 4: Mycobacterium microti

Lane 5: Mycobacterium kansasii

Lane 6: Mycobacterium gastri

Lane 7: Mycobacterium abscessus
Lane 8: Mycobacterium chelonae

Lane 8: Mycobacterium chelonae Lane 9: Mycobacterium trviale

35 EXAMPLE 4

20

[0066] A 10 ng portion of purified DNA was prepared from each of 4 tubercle bacilli group bacterial species. PCR was carried out using these DNA samples as templates, and the oligonucleotides represented by SEQUENCE NO. 45, SEQUENCE NO. 47, SEQUENCE NO. 49, SEQUENCE NO. 51, SEQUENCE NO. 53, SEQUENCE NO. 55 and SEQUENCE NO. 57 as primers. The PCR amplification conditions are as described in Example 3. The products amplified by PCR were analyzed by an agarose gel electrophoresis. The results are shown in Fig. 15. In this case, the relationship between lanes and bacterial species is as follows.

Lane 1: Mycobacterium tuberculosis

45 Lane 2: Mycobacterium bovis

Lane 3: Mycobacterium africanum

Lane 4: Mycobacterium microti

[0067] As shown in Fig. 15, the amplified product was observed only by *Mycobacterium tuberculosis* when the oligonucleotides represented by SEQUENCE NO. 45 and SEQUENCE NO. 47 were used as primers, the amplified product was observed only by *Mycobacterium bovis* when the oligonucleotides represented by SEQUENCE NO. 49 and SEQUENCE NO. 51 were used as primers, the amplified product was observed by *Mycobacterium africanum* and *Mycobacterium microti* when the oligonucleotides represented by SEQUENCE NO. 45 and SEQUENCE NO. 53 were used as primers and the amplified product was observed by only *Mycobacterium microti* when the oligonucleotides represented by SEQUENCE NO. 55 and SEQUENCE NO. 57 were used as primers. Based on the above results, relationship between primers and bacterial species can be summarized as follows.

TABLE 4

5	SEQUENCE No.	Mycobacterium tuber- culosis	Mycobacterium bovis	Mycobacterium afri- canum	Mycobacterium microti
	SEQ. NO. 41	Amplification possible	Amplification possible	Amplification possible	Amplification possible
	SEQ. NO. 43			_	
	SEQ. NO. 45	Amplification possible	No amplification	No amplification	No amplification
10	SEQ. NO. 47				
	SEQ. NO. 49	No amplification	Amplification possible	No amplification	No amplification
	SEQ. NO. 51		_		
15	SEQ. NO. 45	No amplification	No amplification	Amplification possible	Amplification possible
	SEQ. NO. 53				
	SEQ. NO. 55	No amplification	no amplification	no amplification	Amplification possible
20	SEQ. NO. 57			l	

EXAMPLE 5

[0068] A 10 ng portion of purified DNA was prepared from each of 4 tubercle bacilli group bacterial species. PCR was carried out using these DNA samples as templates, and the oligonucleotides represented by SEQUENCE NO. 41 and SEQUENCE NO. 43 as primers. The PCR amplification conditions are as described in Example 3. The products amplified by PCR were digested with restriction enzymes Rsa I and Taq 1, and the thus formed DNA fragments were analyzed by an agarose gel electrophoresis. The results are shown in Fig. 16. In this connection, the relationship between lanes and bacterial species is as follows.

Lane 1: Mycobacterium tuberculosis

Lane 2:

Mycobacterium bovis

Lane 3: Lane 4: Mycobacterium africanum Mycobacterium microti

EXAMPLE 6

[0069] Using the oligonucleotides represented by SEQUENCE NO. 1, SEQUENCE NO. 43, SEQUENCE NO. 45, SEQUENCE NO. 47, SEQUENCE NO. 49, SEQUENCE NO. 51, SEQUENCE NO. 53, SEQUENCE NO. 55 and SEQUENCE NO. 57 as primers, PCR was carried out on a solution of disrupted cells of a strain KPM KY631 isolated from a clinical patient of tuberculosis. When the product amplified by PCR was analyzed by an agarose gel electrophoresis, the amplified product was observed only by the combination of SEQUENCE NO. 1 and SEQUENCE NO. 43 and of SEQUENCE NO. 45 and SEQUENCE NO. 47, so that the strain KPM KY631 was identified as the tubercle Mycobacterium tuberculosis (Table 4 and Fig. 15).

EXAMPLE 7

[0070] Using the oligonucleotides represented by SEQUENCE NO. 41 and SEQUENCE NO. 43 as primers, PCR was carried out on a solution of disrupted cells of a strain KPM KY590 isolated from a clinical patient of tuberculosis. When nucleotide sequence of the thus amplified DNA fragment was determined, the thus obtained nucleotide sequence coincided with the nucleotide sequence of the tubercle *Mycobacterium tuberculosis*, so that the strain KPM KY590 was identified as the tubercle *Mycobacterium tuberculosis* (Figs. 1-11).

EXAMPLE 8

55

[0071] Using the oligonucleotides represented by SEQUENCE NO. 41 and SEQUENCE NO. 43 as primers, PCR was carried out on a solution of disrupted cells of a strain isolated from a bovine patient of tuberculosis. When the product amplified by PCR was digested with restriction enzymes Rsa I and Taq I and the thus formed DNA fragments were

analyzed by an agarose gel electrophoresis, the result coincided with the pattern obtained from *Mycobacterium bovis*, so that this strain was identified as *Mycobacterium bovis* (Fig. 16).

[0072] The present invention realizes accurate classification and identification of slow growing mycobacteria which are difficult to identify by conventional methods. It also renders possible quick identification of certain species of atypical mycobacteria, such as *Mycobacterium kansasii* and *Mycobacterium gastri*, which are difficult to distinguish by the identification method based on 16S rRNA gene sequence. The present invention is useful in the fields of medical science, immunology, veterinary science, etc.

SEQUENCE LISTING

_	<110> MARINE BIOTECHNOLOGY INSTITUTE CO., LTD.	
5	<120> IDENTIFICATION METHOD AND SPECIFIC DETECTION METHOD OF SLOW GROWING MYCOBACTERIA UTILIZING DNA GYRASE GENE	
	<130> K4C-120036C/KI	
10	<140> <141>	
	<150> JP 11-312525 <151> 1999-11-02	
15	<160> 62	
•	<170> PatentIn Ver. 2.1	
20	<210> 1 <211> 20 <212> DNA <213> Artificial Sequence	
25	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<400> 1 ggtgtctcgg tggtcaacgc	20
30	<210> 2 <211> 6 <212> PRT <213> Artificial Sequence	
35	<220> <223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
	<400> 2 Gly Val Ser Val Val Asn	
40	<210> 3 <211> 20 <212> DNA	
	<213> Artificial Sequence	
45	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<400> 3 gaccttgtgc ggggcggcgg	20
50	<210> 4 <211> 6 <212> PRT	

	(213) Artificial Sequence	
5	<220><223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
	<400> 4 . Ala Ala Pro His Lys Val	
10	<210> 5 <211> 20 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<400> 5 caccttgtgg ggggcggtga	20
20	<210> 6 <211> 6 <212> PRT <213> Artificial Sequence	
25	<220> <223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
30	<400> 6 Thr Ala Pro His Lys Val	
	<210> 7 <211> 1263 <212> DNA <213> Mycobacterium simiae	
35	<220> <221> CDS <222> (1)(1263)	
40	<400> 1 ggg gag aac agt ggc tac acc gtc agc ggc ggg ttg cac ggg gtc gga Gly Glu Asn Ser Gly Tyr Thr Val Ser Gly Gly Leu His Gly Val Gly 1 5 10 15	48
45	gtg tcg gtg gtc aac gcc ctg tcc acc cgc ctg gaa gtc aac gtc aag Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asn Val Lys 20 25 30	96
50	cgt gac ggc tat gag tgg ttc cag tac tac gac cgg gcg gtg ccc ggc Arg Asp Gly Tyr Glu Trp Phe Gln Tyr Tyr Asp Arg Ala Val Pro Gly 35	144
	acc ctc aag caa ggc gag gcg acc aag aag acc ggc acc ac	192

		50					55				•	60					
5	ttc Phe 65	tgg Trp	gcc Ala	gat Asp	cct Pro	gag Glu 70	atc Ile	ttc Phe	gaa Glu	acc Thr	acc Thr 75	cag Gln	tac Tyr	gac Asp	ttc Phe	gag 61u 80	240
	acg Thr	gtg Val	gcg Ala	cgc Arg	cgg Arg 85	ttg Leu	cag Gln	gaa Glu	atg Met	gcg Ala 90	ttc Phe	ctc Leu	aac Asn	aag Lys	ggc Gly 95	ctg Leu	288
10	acc Thr	atc]le	aac Asn	ctc Leu 100	acc Thr	gac Asp	gaa Glu	cgt Arg	gtc Val 105	gag Glu	cag Gln	gac Asp	gag 61u	gtg Val 110	gtc Val	gat Asp	336
15	gag Glu	gtg Val	gtt Val 115	agc Ser	gac Asp	acc Thr	gcc Ala	gag Glu 120	gcg Ala	ccg Pro	aag Lys	tca Ser	gcc Ala 125	gag Glu	gag Glu	cag Gln	384
20	gcg Ala	gcc Ala 130	gaa Glu	tcg Ser	gcc Ala	aag Lys	ccg Pro 135	cac His	aag Lys	gtc Val	aag Lys	cac His 140	cgc Arg	acg Thr	ttc Phe	cac His	432
	tac Tyr 145	ccg Pro	ggt Gly	999 Gly	ttg Leu	gtg Val 150	gat Asp	ttc Phe	gtc Val	aag Lys	cac His 155	atc Ile	aat Asn	cgc Arg	acc Thr	aaa Lys 160	480
25	aac Asn	ccg Pro	atc Ile	cag Gln	cag Gln 165	agc Ser	stc Val	atc Ile	gac Asp	ttc Phe 170	gac Asp	ggc Gly	aaa Lys	gga Gly	acc Thr 175	999 61y	528
30	cac His	gaa Glu	gtc Val	gag 61u 180	atc Ile	gcg Ala	atg Met	cag Gln	tgg Trp 185	aac Asn	ggt Gly	ggt Gly	tat Tyr	tcg Ser 190	gag Glu	tcg Ser	576
35	gtg Val	cac Kis	acc Thr 195	ttc Phe	gcc Ala	aac Asn	acc Thr	atc Ile 200	aac Asn	acc Thr	cat His	gag Glu	ggc Gly 205	ggc Gly	acc Thr	cac His	624 _.
	gag Glu	gag Glu 210	ggc Gly	ttc Phe	cgc	agc Ser	gcg Ala 215	ctg Leu	acc Thr	tcg Ser	gtg Val	gtg Val 220	aac Asn	aag Lys	tac Tyr	gcc Ala	672
40	aaa Lys 225	gac Asp	aag Lys	aag Lys	ctg Leu	ctc Leu 230	aag Lys	gac Asp	aag Lys	gat Asp	ecc Pro 235	aac Asn	ctc Leu	acc Thr	ggc Gly	gac Asp 240	720
45	gac Asp	atc Ile	cga Arg	gaa Glu	999 61y 245	Leu	gcc	gcg Ala	gtg Val	atc Ile 250	Ser	gtg Val	aag Lys	gtc Val	gcc Ala 255	gag Glu	768
	ccg Pro	cag Gln	ttc Phe	gag Glu 260	Gly	cag Gln	act Thr	aag Lys	acg Thr 265	aaa Lys	ctc Leu	ggc Gly	aac Asn	acc Thr 270	Glu	gtc Val	816
50	aag Lys	tcg Ser	ttt Phe	gto	cag Gln	aaa Lys	gtc Val	tgt Cys	aac Asn	gaa Glu	caa G1n	ctc Leu	act Thr	cac	tgg Trp	ttc Phe	864

	275	280	285
5	gas gcg aac ccg tcg Glu Ala Asn Pro Ser 290	gaa gct aaa acc gtt gta aac Glu Ala Lys Thr Val Val Asn 295 300	aag gcg gtt tcg 912 Lys Ala Val Ser
10	Ser Ala Gin Ala Arg	att gcg gcg cgt aag gcg cgg Ile Ala Ala Arg Lys Ala Arg 310 315	gag ttg gtg cgg 960 Glu Leu Val Arg 320
	cgt aag agt gct acg Arg Lys Ser Ala Thr 325	gat ttg ggt ggg ttg ccg ggc Åsp Leu Gly Gly Leu Pro Gly 330	aag ttg gct gat 1008 Lys Leu Ala Asp 335
15	tgc cgc tcg acg gat Cys Arg Ser Thr Asp 340	ccg cgg aag tct gag ctg tat Pro Arg Lys Ser Glu Leu Tyr 345	gtg gtg. gaa ggt 1056 Val Val 61u 61y 350
20		tcg gcg aaa agt ggg cgt gat Ser Ala Lys Ser Gly Arg Asp 360	
	gcg atc ttg ccg ctg Ala Ile Leu Pro Leu 370	cgc ggc aag atc atc aac gtc Arg Gly Lys Ile Ile Asn Val 375	gaa aag gcc cgc 1152 Glu Lys Ala Arg
25	Ile Asp Arg Val Leu	aaa aac acc gaa gtc cag gcc Lys Asn Thr Glu Val Gln Ala 390 395	atc atc acc gcg 1200 Ile Ile Thr Ala 400
30	ctg ggc acc ggc atc Leu Gly Thr Gly Ile 405	cac gac gaa ttc gac atc acc His Asp Glu Phe Asp Ile Thr 410	aaa ctg cgt tac 1248 Lys Leu Arg Tyr 415
35	cac aag atc gtg ttg His Lys Ile Val Leu 420		1263
40	<210> 8 <211> 421 <212> PRT <213> Mycobacterium	simi ae	
	<400> 8 Gly Glu Asn Ser Gly 1 5	Tyr Thr Val Ser Gly Gly Leu 10	His Gly Val Gly
45	Val Ser Val Val Asn 20	Ala Leu Ser Thr Arg Leu Glu 25 ·	Val Asn Val Lys 30.
	Arg Asp Gly Tyr Glu	Trp Phe Gln Tyr Tyr Asp Arg	Ala Val Pro Gly 45
50	Thr Leu Lys Gln Gly 50	61u Ala Thr Lys Lys Thr Gly 55 60	

10

15

20

25

30

35

40

45

50

55

Phe Trp Ala Asp Pro Glu Ile Phe Glu Thr Thr Gln Tyr Asp Phe Glu 65 70 : 75 80 Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95 Thr Ile Asn Leu Thr Asp Glu Arg Val Glu Gln Asp Glu Val Val Asp 100 105 Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Gln 115 120 125 Ala Ala Glu Ser Ala Lys Pro His Lys Val Lys His Arg Thr Phe His 130 140 Tyr Pro 6ly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 155 160 Asn Pro Ile Gln Gln Ser Val Ile Asp Phe Asp Gly Lys Gly Thr Gly 165 170 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 185 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 220 Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp 225 230 235 240 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ala Glu 245 250 255 Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val 260 265 270 Lys Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe 275 280 285 Glu Ala Asn Pro Ser Glu Ala Lys Thr Val Val Asn Lys Ala Val Ser 290 295 300 Ser Ala 61n Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg 305 310 320 Arg Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp 325 330 335 Cys Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly 340 350 Asp Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln

			355					360	•	•			305				
	Ala	Ile 370	Leu	Pro	Leu	Arg	G1·y 375	Lys	lle	ΙÌο	Asn	Va1 380	61 u	Lys	Ala	'Arg	
	Ile 385	Asp	Arg	Val	Leu	199 190	Asn	Thr	GTu	Val	G1n 395	Ala	Ile	Ile	Thr	Ala 400	
o .	Leu	G1 y	Thr	6 1y	11e 405	His	Asp	Glu	Phe	Asp 410	Ile	Thr	Lys	Leu	Arg 415	Tyr	
	His	Lys	Ile	Va7 420	Leu		•						٠.				
5		> 1; > 0!	NA .	acte	rium	bov	is										
o	<220 <221 <222	> C	DS 1)((125)	7)												
5 .	<400 tcg Ser 1		gcg Ala	tat Tyr	gcg Ala 5	ata Ile	tct Ser	ggt Gly	ggt Gly	ctg Leu 10	cac His	ggc Gly	gtc Val	ggc Gly	gtg Val 15	tcg Ser	48
o .	gtg Val	gtt Val	aac Asn	gcg Ala 20	cta Leu	tcc Ser	acc Thr	cgg Arg	ctc Leu 25	gaa Glu	gtc Val	gag Glu	atc Ile	aag Lys 30	cgc Arg	gac Asp	96
_	ggg Gly	tac Tyr	gag Glu 35	tgg Trp	tct Ser	cag 61n	gtt Val	tat Tyr 40	6Jn 848	aag Lys	tcg Ser	gaa Glu	ccc Pro 45	ctg Leu	ggc Gly	ctc Leu	144
5	aag Lys	caa Gln 50	61 y 999	gcg Ala	ccg Pro	acc Thr	aag Lys 55	aag Lys	acg Thr	999 Gly	tca Ser	acg Thr 60	gta Val	cgg Årg	ttc Phe	tgg Trp	192
0	gcc Ala 65	gac Asp	ccc Pro	gct Ala	gtt Val	ttc Phe 70	gaa 61u	acc Thr	acg Thr	gaa Glu	tac Tyr 75	gac Asp	ttc Phe	gaa Glu	acc Thr	gtc Val 80	240
5	gcc Ala	cgc Arg	cgg Årg	ctg Leu	caa Gln 85	gag Glu	atg Net	gcg Ala	ttc Phe	ctc Leu 90	aac Asn	aag Lys	999 Gly	ctg Leu	acc Thr 95	atc Ile	288
	aac Asn	ctg Leu	acc Thr	gac Asp 100	gag Glu	agg Arg	gtg Val	acc Thr	caa 61n 105	gac Asp	gag Glu	gtc Val	gtc Val	gac Asp 110	gaa Glu	gtg Val	336
•	gtc Val	agc Ser	gac Asp 115	gtc Val	gcc Ala	gag Glu	gcg Ala	ccg Pro 120	aag Lys	tcg Ser	gca Ala	agt Ser	98a 61u 125	cgc Arg	gca Ala	gcc Ala	384

_	gaa 61u	tcc Ser 130	act Thr	gca Ala	ccg Pro	cac His	aaa Lys 135	gtt Val	aag Lys	agc Ser	cgc Arg	acc Thr 140	ttt Phe	cac His	tat Tyr	ccg Pro	432
5	ggt Gly 145	ggc Gly	ctg Leu	gtg Val	gac Asp	ttc Phe 150	gtg Val	aaa Lys	cac His	atc Ile	aac Asn 155	cgc Arg	acc Thr	aag Lys	aac Asn	gcg Åla 160	480
10	att Ile	cat His	agc Ser	agc Ser	atc Ile 165	gtg Val	gac Asp	ttt Phe	tcc Ser	99c Gly 170	aag Lys	ggc Gly	acc Thr	ggg Gly	cac His 175	gag 61u	528
15	gtg Val	gag 61u	atc Ile	gcg Ala 180	atg Met	caa Gln	tgg Trp	aac Asn	gcc Ala 185	999 Gly	tat Tyr	tcg Ser	gag Glu	tcg Ser 190	gtg Val	cac ' His	576
	acc Thr	ttc Phe	gcc Ala 195	aac Asn	acc Thr	atc .Ile	aac Asn	acc Thr 200	cac His	gag Glu	ggc Gly	ggc	acc Thr 205	cac His	gaa Glu	gag Glu	624
20	ggc	ttc Phe 210	cgc Årg	agc Ser	gcg	ctg Leu	acg Thr 215	tcg Ser	gtg Val	gtg Val	aac Asn	aag Lys 220	tac Tyr	gcc Ala	aag Lys	gac Asp	672
25	cgc Arg 225	aag Lys	cta Leu	ctg Leu	aag Lys	gac Asp 230	aag Lys	gac Asp	ccc Pro	aac Asn	ctc Leu 235	acc Thr	ggt Gly	gac Asp	gat Asp	atc Ile 240	720
30	cgg	gaa Glu	ggc Gly	ctg Leu	gcc Ala 245	gct Ala	gtg Val	atc Ile	tcg Ser	gtg Val 250	aag Lys	gtc Val	agc Ser	gaa Glu	ecg Pro 255	cag Gln	768
	ttc Phe	gag Glu	ggc 61y	cag Gln 260	acc Thr	aag Lys	acc Thr	aag Lys	ttg Leu 265	ggc Gly	aac Asn	acc Thr	gag Glu	gtc Val 270	aaa Lys	tcg Ser	816
35	ttt Phe	gtg Val	cag Gln 275	aag Lys	gtc Val	tgt Cys	aat Asn	gaa Glu 280	cag Gln	ctg Leu	acc Thr	cac His	tgg Trp 285	ttt Phe	gaa Glu	gcc Ala	864
40	aac Asn	ecc Pro 290	acc Thr	gac Asp	tcg Ser	aaa Lys	gtc Val 295	gtt Val	gtg Val	aac Asn	aag Lys	gct Ala 300	gtg Val	tcc Ser	tcg Ser	gcg Ala	912
45		gcc Ala															960
	agc Ser	gcc Ala	acc Thr	gac Asp	atc Ile 325	ggt 61y	gga Gly	ttg Leu	ccc Pro	99c Gly 330	Lys	ctg Leu	gcc Ala	gat Asp	tgc Cys 335	cgt. Arg	1008
50	tcc Ser	acg Thr	gat Asp	ccg Pro 340	Arg	aag Lys	tcc Ser	gaa Glu	ctg Leu 345	tat Tyr	gtc Val	gta Val	gaa Glu	99t Gly 350	gac Asp	tcg Ser	1056

5	gcc Ala	ggc Gly	99t 61y 355	tct Ser	gca Ala	aaa Lys	agc Ser	ggt 61y 360	cgc Arg	gat Asp	tcg Ser	atg Ket.	ttc Phe 365	cag Gln	gcg Ala	ata Ile	1104
	ctt Leu	ccg Pro 370	ctg Leu	cgc Arg	ggc Gly	aag Lys	atc Ile 375	atc Ile	aat Asn	gtg Val	gag Glu	aaa Lys 380	gcg Ala	cgc Arg	atc Ile	gac Asp	1152
10	cgg Arg 385	gtg Val	cta Leu	aag Lys	aac Asn	acc Thr 390	gaa Glu	gtt Val	cag 61n	gcg Ala	atc Ile 395	atc Ile	acg Thr	gcg Ala	ctg Leu	ggc Gly 400	1200
15	acc Thr	61y 61y	atc Ile	cac His	gac Asp 405	gag Glu	ttc Phe	gat Asp	atc Ile	99c 61y 410	aag Lys	ctg Leu	cgc Arg	tac Tyr	cac His 415	aag Lys	1248
	atc Ile	gtg Val	ctg Leu									•					1257
20	<210 <211 <212 <213	> 41 > PF	19 ?T	icter	rium	bovi	is										
25	<400 Ser 1			Туг	Ala 5	Ile	Ser	61 y	Gly	Leu 10	.His	Gly	Val	Gly	Va1 15	Ser	
30	Val	Val	Asn	A]a 20	Leu	Ser	Thr	Arg	Leu 25	61 u	Va1	G1u	Ile	Lys 30	Arg	Asp	•
	G1y	Tyr	G1u 35	Trp	Ser	61n	Val	Tyr 40	61u	Lys	Ser	Glu	Pro 45	Leu	Gly	Leu	
35	Lys	6] n 50	Gly	Ala	Pro	Thr	Lys 55	Lys	Thr	€1 y	Ser	Thr 60	Val	Arg	Phe	Trp	
	Ala 65	Asp	Pro	Ala	Val	Phe 70	Glu	Thr	Thr	61 u	Tyr 75	Asp	Phe	Glu	Thr	Val 80	
40	Ala	Arg	Arg	Leu	Gln 85	Glu	Met	Ala	Phe	Leu 90	Asn	Lys	Gly	Leu	Thr 95	Ile	
	Asn	Leu	Thr	Asp 100	G1 u	Arg	Val	Thr	61n 105	Asp	Glu	Val	Va1	Asp 110	Glu	Val	
45	Val	Ser	Asp 115	Val	Ala	Glu	Ala	Pro 120	Lys	Ser	Ala	Ser	G]u 125	Arg	Ala	Ala	
50	Glu	Ser 130	Thr	Ala	Pro	His	Lys 135	Val	Lys	Ser	Arg	Thr 140	Phe	His	Tyr	Pro	
	61y 145	Gly	Leu	Val	Asp	Phe 150	Val	Lys	His		Asn 155	Arg	Thr	Lys	Asn	Ala 160	

· 55

Ile His Ser Ser Ile Val Asp Phe Ser Gly Lys Gly Thr Gly His Glu 165 170 175 Val Glu Ile Ala Het Gln Trp Asn Ala Gly Tyr Ser Glu Ser Val His 185 190 Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His Glu Glu 195 200 205 Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala Lys Asp 210 220 Arg Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp Asp Ile 225 230 235 Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu Pro Gln 245 250 255 Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val Lys Ser 260 265 270 Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe Glu Ala 275 280 285 Asn Pro Thr Asp Ser Lys Val Val Val Asn Lys Ala Val Ser Ser Ala 290 295 300 Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg Arg Lys 305 310 315 Ser Ala Thr Asp Ile Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys Arg 325 330 335 Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp Ser 340 345 350 Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala Ile 355 360 365 Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile Asp 370 380 Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala Leu Gly 385 390 395 400 Thr Gly Ile His Asp Glu Phe Asp Ile Gly Lys Leu Arg Tyr His Lys
405
410
415 Ila Val Leu

> <210> 11 <211> 1263 <212> DNA

10

15

20

25

30

35

40

45

50

	<213> Mycobacterium szulgai .
5	<220> <221> CDS <222> (1)(1263)
10	<400> 11 ggc gag aac agt ggc tac aac gtc agt ggt ggt ctg cac ggc gtc ggg Gly Glu Asn Ser Gly Tyr Asn Val Ser Gly Gly Leu His Gly Val Gly 1 5 10 15
	gtg tcg gtg gtg aac gcg ctg tcg acc cgg ctc gag gtc gac atc aag 96 Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asp Ile Lys 20 25 30
15	cgt gac ggc cac aag tgg tcg cag ttc tac aac aag gcc gtg ccg ggc 144 Arg Asp Gly His Lys Trp Ser Gln Phe Tyr Asn Lys Ala Val Pro Gly 35 40 45
20	acg ctc aaa cag ggt gaa gcc act aag aaa acc gga acg aca att agg 192 Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Ile Arg 50 55 60
<i>25</i>	tte tgg gcc gac ccg gac atc ttc gag acc acc gaa tac gac ttc gag Phe Trp Ala Asp Pro Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 70 75 80
	acc gtg gca cgc cgg ctg cag gaa atg gca ttc ctg aac aag ggc ttg Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95
<i>30</i>	ace ate aac etc ace gae gag ega gtt gee eag gae gag gtt gte gae 336 Thr Ile Asn Leu Thr Asp Glu Arg Val Ala Gln Asp Glu Val Val Asp 100 105 110
35	gag stc stc agc sac acc scc sag sca ccc aas tcc scc saa saa aas 384 Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Lys 125
	gcg gcc gaa tcc aaa ggg ccg cat aag gtt aag cac cgc act ttc cat Ala Ala Glu Ser Lys Gly Pro His Lys Val Lys His Arg Thr Phe His 130 135 140
40	tac ccc ggc ggg ctg atc gac ttc gtc aag cac atc aac cgg acc aag Tyr Pro Gly Gly Leu Ile Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 155 160
4 5	ago cog ato cag cag agt gto gto gco tto gao ggo aag ggt gaa ggg 528 Ser Pro Ile Gln Gin Ser Val Val Ala Phe Asp Gly Lys Gly Glu Gly 165 170 175
50	cac gag gtc gag atc gcg atg cag tgg aac ggc ggc tat tcg gag tcg 576 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 185 190
	gtg cac acc ttc gcc aac acc atc aac acc cac gag ggc ggc acc cac 624

	Va1	His	Thr 195	Phe	Ala	Asn 	Thr	Ile 200	Asn	Thr	His	Glu	61 y 205	Gly	Thr	His	
5 .	gaa Glu	gaa Glu 210	999 Gly	ttc Phe	cgc Arg	agc Ser	gca Ala 215	ctg Leu	aca Thr	tcg Ser	gtg Val	gtg Vai 220	aac Asn	aag Lys	tac Tyr	gcc Ala	672
10	8aa Lys 225	gac Asp	aag Lys	aag. Lys	ctg Leu	ctc Leu 230	aag Lys	gag Glu	aag Lys	gac Asp	gcc Ala 235	aac Asn	ctc Leu	acc Thr	ggc Gly	gac Asp 240	720
	gac Asp	att Ile	cgc Arg	gag Glu	ggc Gly 245	ctg Leu	gcc Ala	gcg Ala	gtc Val	atc Ile 250	tcg Ser	gtg Val	aaa Lys	gtt Val	gcc Ala 255	gaa Glu	768
15	ccg Pro	cag Gln	ttc Phe	gag 61u 260	ggc 61 y	cag Gln	acc Thr	aag Lys	acc Thr 265	aaa Lys	ctg Leu	ggt Gly	aac Asn	acc Thr 270	gju gag	gtc Val	816
20	aag Lys	tcg Ser	ttc Phe 275	gta Val	cag G1n	aag Lys	gtc Val	tgc Cys 280	aac Asn	gaa Glu	cag Gìn	ctg Leu	acc Thr 285	cac His	tgg Trp	ttc Phe	864
25	gag Glu	gcc Ala 290	aac Asn	ccg Pro	tcg Ser	gaa Glu	gcc Ala 295	aaa Lys	acc Thr	gtc Val	gtg Val	aac Asn 300	aag Lys	gcg Ala	gtc Val	tcg Ser	912
	tcg Ser 305	gca Ala	cag Gln	gcg Ala	cgt Arg	atc Ile 310	gcc Ala	gcc	cgc Arg	aag Lys	gca Ala 315	cga Arg	gag Glu	ttg Leu	gtg Val	cgt Arg 320	960
30	cgc Arg	aag Lys	agc Ser	gct Ala	acc Thr 325	gat Asp	ctc Leu	ggt Gly	999 Gly	ctg Leu 330	ccc Pro	ggc Gly	aag Lys	ctg Leu	gcc Ala 335	gac Asp	1008
35	tgc Cys	cgc Arg	tcc Ser	acc Thr 340	gat Asp	ccg Pro	cgc Arg	aag Lys	tcg Ser 345	gaa Glu	ttg Leu	tat Tyr	gtg Val	gtg Val 350	gaa Glu	999 61y	1056
	gac Asp	tcg Ser	gcc Ala 355	ggc 61y	ggc Gly	tcc Ser	gcc Ala	aag Lys 360	agc Ser	ggc Gly	cgc Arg	gac Asp	tcg Ser 365	atg Met	ttt Phe	cag Gln	1104
40	gcg Ala	ata Ile 370	ctt Leu	ccg Pro	ttg Leu	cgc Arg	99c Gly 375	aag Lys	atc Ile	atc Ile	aac Asn	gtc Val 380	gag Glu	aag Lys	gcc Ala	cgc Arg	1152
45	atc Ile 385	gac Asp	cgg Arg	gtg Val	ctg Leu	aag Lys 390	Asn	acc Thr	gaa Glu	Val	cag Gln 395	gcg Ala	atc Ile	atc Ile	acc Thr	gcg Ala 400	1200
50	ctg Leu	ggt Gly	acc Thr	gga Gly	att 11e 405	cac His	gac Asp	gag 61u	ttc Phe	gac Asp 410	ctc Leu	gcc Ala	aaa Lys	ctg Leu	cgc Arg 415	tac Tyr	1248
	cac	aag	atc	gtg	ctg												1263

His Lys Ile Val Leu 420

10

15

20

25

30

35

40

45

50

55

<210> 12 <211> 421 <213> Mycobacterium szulgai <400> Gly Glu Asn Ser Gly Tyr Asn Val Ser Gly Gly Leu His Gly Val Gly 1 10 15 Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asp Ile Lys 20 25 30 Arg Asp Gly His Lys Trp Ser Gln Phe Tyr Asn Lys Ala Val Pro Gly
35 40 45 Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Île Arg 50 60 Phe Trp Ala Asp Pro Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 70 75 80 Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95 Thr Ile Asn Leu Thr Asp Glu Arg Val Ala Gln Asp Glu Val Val Asp 100 105 110 Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Lys 115 120 125 Ala Ala Glu Ser Lys Gly Pro His Lys Val Lys His Arg Thr Phe His 130 135 140 Tyr Pro Gly Gly Leu Ile Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 155 160 Ser Pro Ile Gin Gin Ser Val Val Ala Phe Asp Gly Lys Gly Glu Gly 165 170 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 185 190 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 215 220 Lys Asp Lys Lys Leu Leu Lys Glu Lys Asp Ala Asn Leu Thr Gly Asp 225 230 240 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ala Glu

	:	245	250	255
5	Pro 61n Phe Glu 260	Gly Gln Thr Lys Thr 265	Lys Leu Gly Asn Thr 270	Glu Val
	Lys Ser Phe Val 275	Gln Lys Val Cys Asn 280	Glu Gln Leu Thr His 285	Trp Phe
10	Glu Ala Asn Pro 290	Ser Glu Ala Lys Thr 295	Val Val Asn Lys Ala 300	Val Ser
	Ser Ala Gln Ala 305	a Arg Ile Ala Ala Arg 310	Lys Ala Arg Glu Leu 315	Val Arg 320
15	Arg Lys Ser Ala	Thr Asp Leu Gly Gly 325	Leu Pro Gly Lys Leu 330	Ala Asp 335
	Cys Arg Ser Thr 340	Asp Pro Arg Lys Ser	Glu Leu Tyr Val Val 350	Glu Gly
20	Asp Ser Ala Gly 355	Gly Ser Ala Lys Ser 360	Gly Arg Asp Ser Met 365	Phe Gln
	Ala Ile Leu Pro 370	leu Arg Gly Lys Ile 375	Ile Asn Val Glu Lys 380	Ala Arg
25	Ile Asp Arg Val 385	Leu Lys Asn Thr Glu 390	Val Gln Ala Ile Ile 395	Thr Ala 400
<i>30</i>	Leu Gly Thr Gly	/ Ile His Asp Glu Phe 405	Asp Leu Ala Lys Leu 410	Arg Tyr 415
	His Lys Ile Val	l Leu)		
35	<210> 13 <211> 1263		·	
	<212> DNA <213> Mycobacte	erium malmoense		
40	<220> <221> CDS <222> (1)(128	53)		
	<400> 13 ggc gag aac ago	gga tac aac gtc agt	gge ggt ttg cac ggt	gtc ggc 48
45	GIY GIU ASN SEI	r Gly Tyr Asn Val Ser 5	10	val bly
	gtg tcg gtg gtc Val Ser Val Val 20	c aac gcg ttg tcg acc l Asn Ala Leu Ser Thr 25	cgg ctc gag gtg gat Arg Leu Glu Val Asp 30	gtc gcc 96 Val Ala
50	cgc gac ggc tac Arg Asp Gly Tyr	c atg tgg tca cag ttc r Met Trp Ser Gln Phe	tac gat cac gcc gag Tyr Asp His Ala Glu	ccg gga 144 Pro Gly
,				

			35					40					45				
5	acc Thr	ctc Leu 50	aaa Lys	cag Gln	ggc Gly	gag Glu	gcc Ala 55	acc Thr	aag Lys	acg Thr	acg Thr	gga Gly 60	acc Thr	acc Thr	atc Ile	agg Arg	192
10	ttc Phe 65	tgg Trp	gcc Ala	gat Asp	ccc Pro	gac Asp .70	atc Ile	ttç Phe	gag Glu	acc Thr	acc Thr 75	61u	tac Tyr	gac Asp	ttc Phe	gag Glu 80	240
	acg Thr	gtg Val	gcg Ala	cgc Arg	cga Arg 85	ctg Leu	cag Gln	gaa Glu	atg Met	gcg Ala 90	ttc Phe	ctg Leu	aac Asn	aag Lys	ggt Gly 95	ttg Leu	288
15	acg Thr	atc Ile	aac Asn	ctc Leu 100	acc Thr	gac Asp	gag Glu	cgg Arg	gtc Val 105	agt Ser	gaa Glu	gag Glu	gag Glu	gtc Val 110	gtc Val	gac Asp	336
20	gat Asp	gtc Val	gtc Val 115	agc Ser	gac Asp	acc Thr	gcc Ala	gag Glu 120	gca Ala	ccc Pro	aag Lys	tcc Ser	gcc Ala 125	gta Val	gaa Glu	aaa Lys	384
	9c9 Ala	9cc Åla 130	gaa Glu	tcg Ser	act Thr	ggc Gly	cca Pro 135	cac His	aag Lys	gtt Val	aag Lys	cac His 140	cgc Arg	acg Thr	ttc Phe	cac His	432
25	tac Tyr 145	ccg Pro	ggc Gly	ggc Gly	ttg Leu	gtg Val 150	gac Asp	ttc Phe	gtc Val	aag Lys	cac His 155	atc Ile	aat Asn	cgg Arg	acc Thr	aag Lys 160	480
30	aac Asn	ccg Pro	att Ile	cac His	aac Asn 165	agc Ser	atc Ile	gtg Val	gat Asp	ttc Phe 170	tcc Ser	gg¢ Gly	aag Lys	gga Gly	ccg Pro 175	ggc Gly	528
<i>3</i> 5	cac His	gag Glu	gtc Val	gaa 61u 180	atc Ile	gcg Ala	atg Met	cag Gln	tgg Trp 185	aat Asn	gcc Ala	ggc Gly	tac Tyr	tcg Ser 190	gag Glu	tcg Ser	576
	gtg Val	cac His	acc Thr 195	ttc Phe	gcc Ala	aac Asn	acc Thr	atc Ile 200	aac Asn	acc Thr	cac His	gag G]u	ggc Gly 205	ggc Gly	acc Thr	cac His	624
40	gaa 61u	gag Glu 210	ggc Gly	ttc Phe	cgc Arg	agc Ser	gcg Ala 215	ttg Leu	acg Thr	tcg Ser	gtg Val	gtc Val 220	aac Asn	aaa Lys	tac Tyr	gcc Ala	672
45	aag Lys 225	ASD	cgc Arg	aaa Lys	ctc Leu	Leu	Lys	gac Asp	aaa Lys	Asp	ccc Pro 235	Asn	ctc Leu	acc Thr	ggc 61y	gac Asp 240	720
50	gac Asp	atc Ile	cgg Arg	gaa Glu	99c 61y 245	ctg Leu	gca Ala	gcg Ala	gtc Val	att Ile 250	tcc Ser	gtc Val	aag Lys	gtc Val	agc Ser 255	gaa Glu	768
50	ccg Pro	caa Gln	ttc Phe	gag Glu	ggc Gly	cag Gln	acc Thr	aaa Lys	acc Thr	aag Lys	ctg Leu	ggc Gly	aac Asn	acc Thr	g Ju gag	gtc Val	816

		260	265 .	270 :
5	aag tog tto Lys Ser Phe 275	Val Gin Lys Val	tgc aac gaa cag ctc Cys Asn Glu Gln Leu 280	acg cac tgg ttc 854 Thr His Trp Phe 285
10	gaa gcc aac Glu Ala Asn 290 .	ccg gcg gat gcc Pro Ala Asp Ala 295	aaa act gtt gta aac Lys Thr Val Val Asn 300	aag gcg gtt tcg 912 Lys Ala Val Ser
	tcg gcc cag Ser Ala Gln 305.	gcc cga atc gca Ala Arg Ile Ala 310	gcg cgc aag gcg cga Ala Arg Lys Ala Arg 315	gaa ctg gtg cgc 960 Glu Leu Val Arg 320
15	cgc aag agc Arg Lys Ser	gcc acc gac ctc Ala Thr Asp Leu 325	ggt ggg ctg ccg ggt Gly Gly Leu Pro Gly 330	aag ctc gca gac · 1008 Lys Leu Ala Asp 335
20	tgc cgc tcc Cys Arg Ser	acc gac ccg cga Thr Asp Pro Arg 340	aag teg gaa etg tat Lys Ser Glu Leu Tyr · 345	gtg gtg gag ggt . 1056 Val Val Glu Gly 350
	gac tcg gcc Asp Ser Ala 355	ggc ggc tcg gcc Gly Gly Ser Ala	aag agc ggc cgc gac Lys Ser Gly Arg Asp 360	tcg atg ttc cag 1104 Ser Met Phe Gln 365
25	gcg atc ctc Ala Ile Leu 370	ccg ctg cgt ggc Pro Leu Arg Gly 375	aag atc atc aac gtc Lys Ile Ile Asn Val 380	gag aag gcg cgc 1152 Glu Lys Ala Arg
30	atc gac cgg Ile Asp Arg 385	gtg ctg aag aac Val Leu Lys Asn 390	acc gaa gtt cag gcg Thr Glu Val Gln Ala 395	atc atc acc gcg 1200 Ile Ile Thr Ala 400
35	ctg ggc acg Leu Gly Thr	ggg att cac gac Gly Ile His Asp 405	gag ttc gac atc acc Glu Phe Asp Ile Thr 410	aag ctc cgg tac 1248 Lys Leu Arg Tyr 415
	cac aag atc His Lys Ile	gtg ctg Val Leu 420		1263
40	<210> 14 <211> 421 <212> PRT <213> Mycob	acterium malmoens	e	
45	<400> 14 Gly Glu Asn 1	Ser Gly Tyr Asn	Val Ser Gly Gly Leu 10	His Gly Val Gly
50	Val Ser Val	Val Asn Ala Leu 20	Ser Thr Arg Leu Glu 25	Val Asp Val Ala 30
	Arg Asp Gly	Tyr Met Trp Ser	Gln Phe Tyr Asp His	Ala Glu Pro Gly

35 45 Thr Leu Lys Gln Gly Glu Ala Thr Lys Thr Thr Gly Thr Thr Ile Arg 50 60 Phe Trp Ala Asp Pro Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 70 75 80 Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95 Thr Ile Asn Leu Thr Asp Glu Arg Val Ser Glu Glu Glu Val Val Asp 100 105 110 Asp Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Val Glu Lys 115 120 125 Ala Ala Glu Ser Thr Gly Pro His Lys Val Lys His Arg Thr Phe His 130 140 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 155 160 Asn Pro Ile His Asn Ser Ile Val Asp Phe Ser. Gly Lys Gly Pro Gly 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Ala Gly Tyr Ser Glu Ser 180 190 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 220 Lys Asp Arg Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp 225 235 240 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu 245 250 Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val 260 270 Lys Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe 275 280 285 Glu Ala Asn Pro Ala Asp Ala Lys Thr Val Val Asn Lys Ala Val Ser 290 . 295 300 Ser Ala Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg 305 310 315 Arg Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp 325 330 335

10

15

20

25

30

35

40

45

50

	Cys Arg S	Ser Thr Asp 340	Pro Arg Lys	Ser Glu Leu 345	Tyr Val Val 350	Glu Gly
5		la Gly Gly 155	Ser Ala Lys 360	Ser Gly Arg	Asp Ser Met 365	Phe Gln
	Ala Ile L 370	.eu Pro Leu	Arg Gly Lys 375	Ile Ile Asn	Val Glu Lys 380	Ala Arg
10	Ile Asp A 385	lrg Val Leu	Lys Asn Thr 390	Glu Val Gln 395	Ala Ile Ile	Thr Ala 400
	Leu Gly T	Thr Gly Ile 405	His Asp Glu	Phe Asp Ile 410	Thr Lys Leu	Arg Tyr 415
15		lle Val Leu 420	·			
20	<210> 15 <211> 126 <212> DNA <213> Myc	1	intracellul	are		
25	<220> <221> CDS <222> (1)) (1263)				
30	<400> 15 ggt gag a Gly Glu A	aac agc ggt Asn Ser Gly 5	tac aac gto Tyr Asn Val	agc ggt ggc Ser Gly Gly 10	ctg cac ggo Leu His Gly	stg ggc 48 Val Gly 15
	gtc tcg g Val Ser V	tg gtc aac /al Val Asn 20	gcg ctg tcg Ala Leu Ser	acc cgg ctc Thr Arg Leu 25	gag gtg gad Glu Val Asp 30	lle Ala
<i>35</i>	cgc gat g Arg Asp G	gc tac gaa Sly Tyr Glu 35	tgg tcg cag Trp Ser Glr	ttc tac gac Phe Tyr Asp	cac gcc gta His Ala Val	ccc gga 144 Pro Gly
40	acg ctc a Thr Leu L 50	aaa cag ggt .ys Gln Gly	gag gcc acc Glu Ala Thr 55	aag cgg acg Lys Arg Thr	ggc acc acg Gly Thr Thr 60	atc agg 192 The Arg
45	ttc tgg g Phe Trp A 65	gee gae eee Ala Asp Pro	gac atc tto Asp Ile Phe 70	gag acc acc Glu Thr Thr 75	gag tac gad Glu Tyr Asp	ttc gag 240 Phe Glu 80
	acg gtg g Thr Val A	gcg cgc cgg Ala Arg Arg 85	ctg cag gas Leu 61n 61u	atg gcg ttc Met Ala Phe 90	ctc aac aac Leu Asn Lys	ggg ttg 288 Gly Leu 95
50				g gtg agc aac g Val Ser Asn 105		Val Asp

5	gag gto Glu Val	gtc agc Val Ser 115	gat acc Asp Thr	gcc	gac Asp 120	gca Ala	ccc Pro	aag Lys	tcg Ser	gcc Ala 125	cag Gln	gaa Glu	aag Lys	384
•	gcg gcg Ala Ala 130	gaa tcg Glu Ser	act gcg Thr Ala	Pro 135	cat His	aag Lys	gtt Val	aag Lys	cac His 140	cgc Arg	acc Thr	ttc Phe	cac His	432
10	tac ccc Tyr Pro 145	ggc ggt Gly Gly	ctg gtc Leu Val 150	Asp	ttc Phe	gtc Val	aag Lys	cac His 155	atc Ile	aac Asn	ege Arg	acc Thr	aag Lys 160	480
15	agc ccg Ser Pro	atc cag lle 61n	cag ago Gln Ser 165	atc Ile	atc Ile	Asp	ttc Phe 170	gac Asp	ggc Gly	aaa Lys	ggt Gly	ccc Pro 175	ggc Gly	528
20	cac gag His Glu	gtc gag Val Glu 180	atc gcg Ile Ala	atg Met	Gin	tgg Trp 185	aac Asn	ggc Gly	ggc Gly	tac Tyr	tcg Ser 190	gaa Glu	tcc Ser	576
20	Val His	acc ttc Thr Phe 195	Ala Asn	Thr	11e 200	Asn	Thr	His	61v	Gly 205	Gly	Thr	His '	624
25	gaa gag Glu Glu 210	ggc ttc Gly Phe	cgc agc Arg Ser	gcg Ala 215	ctg Leu	acg Thr	tcg Ser	gtg Val	gtg Val 220	aac Asn	aag Lys	tac Tyr	gcc Ala	672
30	aaa gac Lys Asp 225	aag aag Lys Lys	ttg ctg Leu Leu 230	aaa Lys	gac : Asp i	aag g Lys /	Asp	ccg Pro 235	aac Asn	ctc Leu	acc Thr	ggc Gly	gac Asp 240	720
	gac att Asp Ile	cgc gaa Arg Glu	ggc ctg Gly Leu 245	gcc (Ala	gcg g Ala V	gtg Val	atc Ile 250	tcg Ser	gtc Val	aag Lys	gtc Val	agc Ser 255	gaa Glu	768
35	ccg cag Pro Gln	ttc gag Phe Glu 260	ggt cag Gly Gln	acc : Thr	aag a Lys]	acc a Thr I 265	aag Lys	ctg Leu	ggc Gly		acc Thr 270	gaa Glu	gtg Val	816
40	aag tcg Lys Ser	ttc gtg Phe Val 275	cag aag Gln Lys	Va].	tgc a Cys / 280	aac g Asn (gaa Glu	cag Gln	Leu	acc Thr 285	cac His	tgg Trp	ttc Phe	864
45	gag gcc Glu Ala 290	aac ccc Asn Pro	gcg gac Ala Asp	gcc a Ala 295	aag g Lys V	gtg g Val \	gtg Val	Val	aac Asn 300	aag Lys	gcg Ala	gtg Val	tcg Ser	912
	tcg gcg Ser Ala 305	cag gcc Gln Ala	cgg atc Arg Ile 310	gcc g	gcg c	ogo a Arg (Lys	gcg Ala 315	cga Arg	gag Glu	ttg Leu	gtg Val	cgt Arg 320	960
50	cgc aag Arg Lys	agc gcc Ser Ala	acc gat Thr Asp 325	ctg g Leu (ggc g Gly G	aly [ctg Leu 330	ccc Pro	ggc Gly	aag Lys	ctc Leu	gcc Ala 335	gac Asp	1008

02	tgc Cys	cgc Arg	tcg Ser	acg Thr 340	gat Asp	ccg Pro	cgc Arg	aag Lys	tcg Ser 345	gaa Glu	ctg Leu	tat Tyr	gtg Val	gtg Val 350	gag Glu	ggt Gly	1056 [°]
5	gat : Asp :	tcg Ser	gcc Ala 355	ggc Gly	ggc Gly	tcg Ser	gcg Ala	aag Lys 360	agc Ser	ggc Gly	cgc Arg	gac Asp	tcg Ser 365	atg Met	ttc Phe	cag Gln	1104
10	gcc Ala	atc Ile 370	ctg Leu	ccg Pro	ctg Leu	cgc Arg	ggc 61y 375	aag Lys	atc Ile	atc Ile	aac Asn	gtc Val 380	gag Glu	aag Lys	gcc Ala	cgc Arg	1152
15	atc ! Ile : 385	gac Asp	cgg Arg	gtg Val	ttg Leu	aag Lys 390	aac Asn	acc Thr	gag Glu	gtg Val	cag Gln 395	gcc Ala	atc Île	atc Ile	acc Thr	gcc Ala 400	1200
20	ctg (Leu (ggc Gly	acc Thr	ggc 61y	atc Ile 405	cac His	gac Asp	gag Glu	ttc Phe	gac Asp 410	atc Ile	acc Thr	aag Lys	ctg Leu	cgc Arg 415	tat Tyr	1248
	cac a His																1263
25	<210: <211: <212: <213:	> 42 > PR	11 11	ıcter	rium	intr	acel	lula	are								
30	<4002 Gly (\$er	G1 y 5	Tyr	Asn	Val	Ser	Gly 10	G1 y	Leu	His	G1y	Va1 15	G1y	
35	Val :	Ser	Val	Va1 20	Asn	Ala	Leu	Ser	Thr 25	Arg	Leu	Glu	Val	Asp 30	lle	Ala	
	Arg /	Asp	G1 y 35	Tyr	Glu	Trp	Ser	Gln 40	Phe	Tyr	Asp	His	Ala 45	Val	Pro	G1y	
40	Thr 1	Leu 50	Lys	Gln	61 y	61 u	A7a 55	Thr	Lys	Arg	Thr	Gly 60	Thr	Thr	Ile	Arg	
	Phe 65	Тгр	Ala	Asp	Pro	Asp 70	Ile	Phe	Glu	Thr	Thr 75	Glu	Туг	Asp	Phe	G1u 80	
45	Thr \	Val	Ala	Arg	Arg 85	Leu	G1n	Glu	Met	Ala 90	Phe	Leu	Asn	Lys	61 y 95	Leu	
50	Thr :	Ile	Asn	Leu 100	Thr	Asp	Glu	Arg	Va1 105	Ser	Asn	Glu	Glu	Val 110	Val.	Asp	
55				_		_				_					G1 u		

5

10

15

20

25

30

35

Ala Ala Glu Ser Thr Ala Pro His Lys Val Lys His Arg Thr Phe His 130 140 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 160 Ser Pro Ile Gln Gln Ser Ile Ile Asp Phe Asp Gly Lys Gly Pro Gly 165 170 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 190 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 215 220 Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp 225 230 235 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu 245 250 255. Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val 260 270 Lys Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe 275 280 285 Glu Ala Asn Pro Ala Asp Ala Lys Val Val Val Asn Lys Ala Val Ser 290 300 Ser Ala 61n Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg 305 310 315 Arg Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp 325 330 335 Cys Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly 340 350 Asp Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln 355 360 Ala Ile Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg 370 375 380 Leu Gly Thr Gly Ile His Asp Glu Phe Asp Ile Thr Lys Leu Arg Tyr 405 415 His Lys Ile Val Leu 420

5	<210> 17 <211> 1263 <212> DNA <213> Mycobacterium avium
	<220> <221> CDS <222> (1)(1263)
10	<pre><400> 17 ggc gag aac agc ggc tac aac gtc agc ggc ggt ctg cac ggc gtc ggc Gly Glu Asn Ser Gly Tyr Asn Val Ser Gly Gly Leu His Gly Val Gly 1</pre>
15	gtc tcg gtg gtc aac gcg ctg tcc act cgg ctc gag gtc aac atc gcc Val Ser Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asn Ile Ala 20 25 30
20	cgc gac ggc tac gag tgg tcg cag tac tac gac cac gcc gtg ccc ggc. 144 Arg Asp Gly Tyr Glu Trp Ser Gln Tyr Tyr Asp His Ala Val Pro Gly 35 40 45
25	acc ctc aag cag ggc gag gcc acc aag cgc acc ggc acc ac
	ttc tgg gcc gac ccc gac atc ttc gag acc acc gag tac gac ttc gaa 240 Phe Trp Ala Asp Pro Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 70 80
30	acg gtg gcc cgg cgg ctg cag gaa atg gcg ttc ctc aac aag ggc ctg Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95
35	acc atc aac ctc acc gac gag cgg gtg acc aac gaa gag gtc gtc gac 336 Thr Ile Asn Leu Thr Asp Glu Arg Val Thr Asn Glu Glu Val Val Asp 100 105 110
40	gag gtg gtc agc gac acc gcc gac gca ccc aag tcg gcg cag gag aag Glu Val Val Ser Asp Thr Ala Asp Ala Pro Lys Ser Ala Gln Glu Lys 115 120 125
45	gcg gcg gaa tcg gct gcg ccg cat aag gtc aag cac cgc acc ttc cac Ala Ala Glu Ser Ala Ala Pro His Lys Val Lys His Arg Thr Phe His 130 135 140
	tac ccc ggc ggc ctg gtc gac ttc gtc aaa cac atc aat cgc acc aaa 480 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 155 160
50	aac ccc atc cac cag agc atc atc gat ttc ggt ggg aag ggc ccc ggc 528 Asn Pro Ile His Gln Ser Ile Ile Asp Phe Gly Gly Lys Gly Pro Gly 165 170 175

5	cac gag His Glu	gtc gag a Val Glu I 180	tc gcg at le Ala Me	g cag tgg t Gln Tri 18	aac ggc Asn Gly	ggc tac Gly Tyr	tcc gaa Ser Glu 190	tcg Ser	57.6
•	gtg cac Val His	acc ttc g Thr Phe A 195	cc aac ac la Asn Th	c atc aad r Ile Ast 200	acg cac Thr His	gag ggc Glu Gly 205	ggc acc Gly Thr	cac His	624
10	gagʻgag Glu Glu 210	ggc ttc c Gly Phe A	gc agc gc rg Ser Ala 21	a Leu Thi	tcc gtg Ser Val	gtc aac Val Asn 220	aag tac Lys Tyr	gcc Ala	672
15	aag gac Lys Asp 225	aag aag c Lys Lys L	tg ctc aag eu Leu Lys 230	g gac aag s Asp Lys	gac ccc Asp Pro 235	aac ctg Asn Leu	acc ggc Thr Gly	gac Asp 240	720 ·
	gac atc Asp Ile	cgc gag g Arg Glu G	gt ttg gcd ly Leu Ala 45	gcg gtg a Ala Val	atc tcg Ile Ser 250	gtc aag Val Lys	gtg agc Val Ser 255	gaa Glu ·	768
20	ccg cag Pro Gln	ttc gag g Phe Glu G 260	gc cag acc ly Gln Thi	t Lys Thr 265	' Lys Leu.	ggc aac Gly Asn	acc gag Thr Glu 270	gtg Val	816
. 25	aag tcg Lys Ser	ttc gtg ca Phe Val G 275	ag aag gte In Lys Val	tgc aad Cys Asn 280	gaa cag Glu Gln	ctc acc Leu Thr 285	cac tgg His Trp	ttc Phe	864
30	gaa gcc Glu Ala 290	aac ccc go Asn Pro A	ca gac gco la Asp Ala 295	Lys Val	att gtc Ile Val	aac aag Asn Lys 300	gcg gtt Ala Val	tca Ser	912
	tca gcg Ser Ala 305	cag gcg cg Gln Ala Ai	gc atc gcd rg Ile Ala 310	geg ege Ala Arg	aag gcg Lys Ala 315	cga gag Arg Glu	ttg gtg Leu Val	cgc Arg 320	960
35	cgc aag Arg Lys	agc gca ac Ser Ala Ti 32	cc gac cts nr Asp Lei 25	ggc ggg Gly Gly	ctg ccc Leu Pro 330	ggc aag Gly Lys	ctc gcc Leu Ala 335	gac Asp	1008
40	tgc cgg Cys Arg	tcg acc ga Ser Thr As 340	ec cog cgo p Pro Arg	aag tcg Lys Ser 345		tat gtg Tyr Val	gtc gag Val Glu 350	ggt Gly	1056
45	gac tcg Asp Ser	gcc ggc gg Ala Gly Gl 355	oc tog gog ly Ser Ala	aaa agc Lys Ser 360	ggc cgg 6ly Arg	gac tcg Asp Ser 365	atg ttc Met Phe	cag 61n	1104
	gcc atc Ala Ile 370	ctt ccg ct Leu Pro Le	e cgc ggc u Arg Gly 375	Lys Ile	atc aac Ile Asn	gtc gaa Val Glu 380	aag gcc Lys Ala	cgc '	1152
50	atc gac Ile Asp 385	cgg gtg ct Arg Val Le	g aag aad u Lys Asn 390	acc gag Thr Glu	gtg cag Val Gln 395	gcg atc Ala Ile	atc acc Ile Thŗ	gcg Ala 400	1200

1248

ctg ggc acc ggg att cac gac gag ttc gac atc acc aag ctg cgc tac Leu Gly Thr Gly Ile His Asp Glu Phe Asp Ile Thr Lys Leu Arg Tyr 405 415 1263 cac aag atc gtg ttg His Lys Ile Val Leu 420 10 <210> 18 <211> 421 <212> PRT <213> Mycobacterium avium 15 Gly Glu Asn Ser Gly Tyr Asn Val Ser Gly Gly Leu His Gly Val Gly 1 10 15 Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asn Ile Ala 20 25 30 Arg Asp Gly Tyr Glu Trp Ser Gln Tyr Tyr Asp His Ala Val Pro Gly 35 40 45 Thr Leu Lys Gln Gly Glu Ala Thr Lys Arg Thr Gly Thr Thr Ile Arg 25 Phe Trp Ala Asp Pro Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 75 80 Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95 30 Thr Ile Asn Leu Thr Asp Glu Arg Val Thr Asn Glu Glu Val Val Asp 100 105 110 Glu Val Val Ser Asp Thr Ala Asp Ala Pro Lys Ser Ala Gln Glu Lys 115 120 125 Ala Ala Glu Ser Ala Ala Pro His Lys Val Lys His Arg Thr Phe His 130 135 140 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 150 160 Asn Pro Ile His Gln Ser Ile Ile Asp Phe Gly Gly Lys Gly Pro Gly 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 185 190 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 215 220

	Lys 225	Asp	Lys	Lys	Leu	Leu 230		Asp	Lys	Asp	Pro 235	Asn	Leu	Thr	Gly	Asp 240	
5	Asp	He	Arg	Glu	61 y 245	Leu	Ala	Ala	Val	Ile 250	Ser	Val	Lys	Val	Ser 255	Glu	
	Pro	61 n	Phe	G1 u 260	G1 y	Gln	Thr	Lys	Thr 265	Lys	Leu	Gly	Asn	Thr 270	Glu	Va1	
10	Lys	Ser	Phe 275	Val	G1 n	Lys	Va1	Cys 280	Asn	Gใบ	Gln	Leu	Thr 285	His	Тгр	Phe	
15	G1u	A1a 290	Asn	Pro	Ala	Asp	Ala 295	Lys	Val	Ile	Val	Asn 300	Lys	Ala	Val	Ser	
	Ser 305	Ala	61 n	Ala	Arg	Ile 310	Aļa	Ala	Arg	Lys	A7a 315	Arg	G1 u	Leu	Val	Arg 320	
20	Arg	Lys	Ser	Ala	Thr 325	Asp	Leu	Gly	Gly	330 Leu	Pro	Gly	Lys	Leu	Ala 335	Asp	
	Cys	Arg	Ser	Thr 340	Asp	Pro	Arg	Lys	Ser 345	Glu	Leu	Tyr	Val	Va1 350	G1u	Gly .	
25	Asp	Ser	A1a 355	G1y	61 y	Ser	Ala	Lys 360	Ser	Gly	Arg.	Asp	Ser 365	Met	Phe	Gln	
	Ala	11e 370	Leu	Pro	Leu	Arg	G1y 375	Lys	Ile	Ile	Asn	Va1 380	Glu	Lys	Ala	Arg	
30	11e 385	Asp	Årg	Val	Leu	Lys 390	Asn	Thr	Glu	Val	61n 395	Ala	Ile	Ile	Thr	Ala 400	
	Leu	Gly	Thr	Gly	Ile 405	His	Asp	Glu	Phe	Asp 410	Ile	Thr	Lys	Leu	Arg 415	Tyr	
35	His	Lys	Ile	Val 420	Leu												
40	<211 <212)> 19 > 12 !> DN > My	63 A	cter	ium	gord	lonae)									
45	<220 <221 <222	> ÇD)s)(1263)												
50)> 19 gag Glu		agc Ser	ggc 61 y 5	tac Tyr	acg Thr	gtc Val	agc Ser	ggt Gly 10	999 Gly	ttg Leu	cac His	ggc Gly	gtg Val 15	ggc Gly	48
	gtg	tcg	gtg	gtt	aac	aca	ttg	tcg	acg	cgg	ttg	gaa	gtc	gac	atc	aaa	96

	Val	Ser	Val	Va1 20	Asn	Ala	Leu	Ser	Thr 25	Arg	Leu	Glu	Val	Asp 30	Ile	Lys	
5	cgc Arg	gac Asp	999 Gly 35	cac His	gag Glu	tgg Trp	tcg Ser	cag 61n 40	tat Tyr	tac Tyr	aag Lys	cgc Arg	gcg Ala 45	gtg Val	ccg Pro	ggc	144
10	acc Thr	ctc Leu 50	aa g Lys	cag Gln	ggt Gly	gag Glu	acg Thr 55	acc Thr	cgc Arg	aag Lys	acc Thr	ggc 61y 60	acc Thr	aca Thr	atc Ile	Ara cgg	192
	ttc Phe 65	tgg Trp	gcg Ala	gat Asp	ccg Pro	gag 61u 70	atc Ile	ttc Phe	gag Glu	acc Thr	acc Thr 75	caa Gln	tac Tyr	gac Asp	ttc Phe	gag Glu 80	240
15	acg Thr	gtg Val	gcg	cgc Arg	cgg Årg 85	ctg Leu	cag 61n	gag Glu	atg Met	gcg Ala 90	ttc Phe	ctg Leu	aac Asn	aag Lys	ggt Gly 95	ctg Leu	288
20	acg Thr	atc Ile	aat Asn	ctg Leu 100	acc Thr	gac Asp	gaa Glu	cgc Årg	gtc Val 105	gag Glu	cag Gln	gac Asp	gag Glu	gtt Val 110	gtc Val	gac Asp	336
25	gag Glu	gtc Val	gtc Val 115	agc Ser	gac Asp	acc Thr	gcc Ala	gaa Glu 120	gcg Ala	ccc Pro	aaa Lys	tcc Ser	gcc Ala 125	gaa Glu	gag Glu	Lys ·	384
		gcc Ala 130															432
30	tat Tyr 145	ccc Pro	ggt Gly	ggt 61y	ctg Leu	gtc Val 150	gac Asp	ttc Phe	gtc Val	aaa Lys	cac His 155	atc Ile	aac Asn	cgc Arg	acc Thr	aaa Lys 160	480
35	agc Ser	ccg Pro	atc Ile	cag Gln	cag Gln 165	agc Ser	gtç Val	atc Ile	gac Asp	ttc Phe 170	gaa Glu	ggc Gly	aaa Lys	ggc Gly	acc Thr 175	ggc Gly	528
40	cac His	gag Glu	gtc Val	gaa Glu 180	atc Ile	gcg Ala	atg Met	cag Gln	tgg Trp 185	aac Asn	ggc Gly	ggc Gly	tac Tyr	tcc Ser 190	gaa Glu	tcg Ser	576
40	gtg Val	cac His	acc Thr 195	ttc Phe	gcc Ala	aac Asn	acc Thr	atc Ile 200	aac Asn	acc Thr	cac His	gag Glu	99¢ G1y 205	ggc Gly	acc Thr	cac His	624
45	gaa Glu	gag Glu 210	ggc Gly	ttc Phe	cgc Arg	agt Ser	gcg Ala 215	ctg Leu	acc Thr	tcg Ser	gtg Val	gtc Val 220	aac Asn	aag Lys	tac Tyr	gcc Ala	672
50		gac Asp															720
	gac	atc	cgg	gag	999	ttg	gcc	gcg	gtg	atc	tcg	gtg	aag	gtc	gcc	gaa	768

	Asp	Ne	Arg	Glu	Gly 245	Leu	Ala 	Ala	Val	Ile 250	Ser	Val	Lys	Val	Ala 255	Glu	
5	ccg Pro	cag G1n	ttc Phe	gag G1u 260	GIY	cag Gln	acc	aag Lys	acc Thr 265	Lys	ctg Leu	ggc Gly	aac Asn	acc Thr 270	gag Glu	gtc Val	816
10	aag Lys	tcg Ser	ttc Phe 275	Val	cag Gln :	aag Lys	gtg Val	tgc Cys 280	aac Asn	gaa Glu	cag Gln	ctc Leu	acc Thr 285	cac His	tgg Trp	ttc Phe	864
15	gag Glu	gcc Ala 290	ASN	ccg Pro	tcg Ser	gaa Glu	gct Ala 295	aaa Lys	acc Thr	gtt Val	gtg Val	aac Asn 300	aaa Lys	gcg Ala	gtg Val	tcg Ser	912
13	tcc Ser 305	gcc Ala	cag Gln	gcg Ala	cgg Arg	atc Ile 310	gcc Ala	gcg Ala	cgc Arg	aaa Lys	gcg Ala 315	cga Arg	gag Glu	ctg Leu	gtg Val	cgc Arg 320	960
20	cgc Arg	aag Lys	agc Ser	gca Ala	acc Thr 325	gac Asp	ctc Leu	ggc Gly	ggc 61y	ctg Leu 330	ccg Pro	ggc Gly	aag Lys	ctc Leu	gcc Ala 335	gac Asp	1008
25	tgc Cys	cgt Arg	tcg Ser	acg Thr 340	gat Asp	ccc Pro	cgc Arg	aaa Lys	tcc Ser 345	gaa Glu	ctg Leu	tat Tyr	gtg Val	gtg Val 350	gag Glu	999 G1 y	1056
	gac Asp	tcc Ser	gcc Ala 355	ggc Gly	ggc Gly	tcg Ser	gcc Ala	aag Lys 360	agc Ser	ggt Gly	cgg Arg	gat Asp	tcg Ser 365	atg Met	ttc Phe	cag Gln	1104
30	gcg Ala	att Ile 370	ctt Leu	ccg Pro	ttg Leu	cgc Arg	ggc Gly 375	aag Lys	atc Ile	atc Ile	aac Asn	gtc Val 380	gag Glu	aag Lys	gcc Ala	cgc Arg	1152
35	atc Ile 385	gac Asp	cgg Arg	gtg Val	ren	aag Lys 390	aac Asn	acc Thr	gaa Glu	gtc Val	cag Gln 395	gcc Ala	atc Ile	atc Ile	acc Thr	gcg Ala 400	1200
40	ctg Leu	ggc Gly	acc Thr	uly	atc 11e 405	cac His	gac Asp	gag Glu	Phe	gac Asp 410	atc Ile	acc Thr	aaa Lys	ctg Leu	cgc Arg 415	tac Tyr	1248
	cac His	aag Lys	atc Ile	gta Val 420	ttg Leu										-		1263
45	<211 <212	> 20 > 42 > PR > My	1 T	cter	ium	gord	onae										
· 50		> 20 G lu		Ser	G1 y 5	Tyr	Thr	Val	Ser	Gly 10	G] y	Leu	His	G1 y	Va1 15	G1y	

10

15

20

25

30

35

50

55

Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asp Ile Lys 25 30 Arg Asp Gly His Glu Trp Ser Gln Tyr Tyr Lys Arg Ala Val Pro Gly 35 40 Thr Leu Lys Gln Gly Glu Thr Thr Arg Lys Thr Gly Thr Thr Ile Arg Phe Trp Ala Asp Pro Glu Ile Phe Glu Thr Thr Gln Tyr Asp Phe Glu 65 70 75 80 Thr Val Ala Arg Arg Leu Gln Glu Het Ala Phe Leu Asn Lys Gly Leu 85 90 95 Thr Ile Asn Leu Thr Asp 6lu Arg Val 6lu Gln Asp Glu Val Val Asp 100 105 110 Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Lys 115 120 125 Ala Ala Glu Ser Lys Ala Pro His Lys Val Lys 6ln Arg Thr Phe His 130 140 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 155 160 Ser Pro Ile Gln Gln Ser Val Ile Asp Phe Glu Gly Lys Gly Thr Gly 165 170 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 185 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 220 Lys Asp Lys Lys Leu Leu Lys Glu Lys Asp Pro Asn Leu Thr Gly Asp 225 230 235 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ala Glu 245 250 255 Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val 260 265 270 Lys Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe 275 280 285 Glu Ala Asn Pro Ser Glu Ala Lys Thr Val Val Asn Lys Ala Val Ser 290 295 300 Ser Ala Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg

	305	310		315	320
5	Arg Lys Ser	Ala Thr Asp 325	Leu Gly Gly Let 330	ı Pṛo Gly Lys Leu A 3	la Asp 35
	Cys Arg Ser	Thr Asp Pro 340	Arg Lys Ser Glu 345	J Leu Tyr Val Val G · 350	Tu Gly
10	Asp Ser Ala 355	Gly Gly Ser	Ala Lys Ser Gly 360	y Arg Asp Ser Met P 365	he Gln
	Ala Ile Leu 370	Pro Leu Arg	Gly Lys Ile Ile 375	a Asn Val Glu Lys A 380	la Arg
15	Ile Asp Arg 385	Val Leu Lys 390	Asn Thr Glu Val	l Gln Ala Ile Ile T 395	hr Ala 400
	Leu Gly Thr	Gly Ile His 405	Asp Glu Phe Asp 410	o Ile Thr. Lys Leu A 4	rg Tyr 15
20	His Lys Ile	Val Leu 420	•		
25	<210> 21 <211> 1257 <212> DNA <213> Mycoba	cterium afri	icanum		
30	<220> <221> CDS				
30	<222> (1)(1257)			
35	<400> 21	•	tct ggt ggt ctg Ser Gly Gly Leu 10	g cac ggc gtc ggc g y His Gly Val Gly V	tg tcg 48 al Ser 15
	<400> 21 tcg gac gcg Ser Asp Ala 1 gtg gtt aac	tat gcg ata Tyr Ala Ile 5 gcg cta tcc	acc egg ete gaa	g cac ggc gtc ggc g y His Gly Val Gly V) a gtc gag atc aag c y Val Glu Ile Lys A 30	15 gc gac 96
	<400> 21 tcg gac gcg Ser Asp Ala 1 gtg gtt aac Val Val Asn ggg tac gag	tat gcg ata Tyr Ala Ile 5 gcg cta tcc Ala Leu Ser 20 tgg tct cag	acc cgg ctc gas Thr Arg Leu 610 25 gtt tat gag aag) a gtc gag atc aag c	15 gc gac 96 rg Asp gc ctc 144
35	c400> 21 tcg gac gcg Ser Asp Ala 1 gtg gtt aac Val Val Asn ggg tac gag Gly Tyr Glu 35 aag caa ggg	tat gcg ata Tyr Ala Ile 5 gcg cta tcc Ala Leu Ser 20 tgg tct cag Trp Ser Gln gcg ccg acc	acc cgg ctc gas Thr Arg Leu Glu 25 gtt tat gag aag Val Tyr Glu Lys 40 aag aag acg ggg	a stc gas atc aas c u Val Glu Ile Lys A 30 g tcg gaa ccc ctg g s Ser Glu Pro Leu G	gc gac 96 rg Asp gc ctc 144 ly Leu tc tgg 192
35 40	c400> 21 tcg gac gcg Ser Asp Ala 1 gtg gtt aac Val Val Asn ggg tac gag Gly Tyr Glu 35 aag caa ggg Lys Gln Gly 50 gcc gac ccc	tat gcg ata Tyr Ala Ile 5 gcg cta tcc Ala Leu Ser 20 tgg tct cag Trp Ser Gln gcg ccg acc Ala Pro Thr	acc cgg ctc gas Thr Arg Leu 610 25 gtt tat gag aag Val Tyr Glu Lys 40 aag aag acg ggg Lys Lys Thr Gly 55	a gtc gag atc aag c u Val Glu Ile Lys A 30 g tcg gaa ccc ctg g s Ser Glu Pro Leu G 45 g tca acg gtg cgg t y Ser Thr Val Arg P	gc gac 96 rg Asp gc ctc 144 ly Leu tc tgg 192 he Trp

					85					90					95		
5	aac Asn	ctg Leu	acc Thr	gac Asp 100	gag Ģlu	agg Arg	gtg Val	acc Thr	caa 61n 105	gac Asp	gag Glu	gtc Val	gtc Val	gac Asp 110	gaa Glu	gtg Val	336
10	gtc Val	agc Ser	gac Asp 115	gtc Val	gcc Ala	gag Glu	Ala	ccg Pro 120	aag lys	tcg Ser	gca Ala	agt Ser	g aa Glu 125	cgc Årg	gca Ala	gcc Ala	384
	ga a Glu	tcc Ser 130	act Thr	gca Ala	ccg Pro	cac His	aaa Lys 135	gtt Val	aag Lys	agc Ser	cgc Arg	acc Thr 140	ttt Phe	cac His	tat Tyr	ccg Pro	432
15	ggt Gly 145	ggc Gly	ctg Leu	gtg Val	gac Asp	ttc Phe 150	gtg Val	aaa Lys	cac His	atc Ile	aac Asn 155	cgc Arg	acc Thr	aag Lys	aac Asn	9cg Ala 160	480
20	att Ile	cat His	agc Ser	agc Ser	atc Ile 165	gtg Val	gac Asp	ttt Phe	tcc Ser	ggc Gly 170	aag Lys	ggc 61y	acc Thr	999 Gly	cac His 175	gag Glu	528
	gtg Val	gag Glu	atc Ile	9cg Ala 180	atg Met	caa Gln	tgg Trp	aac Asn	gcc Ala 185	999 Gly	tat Tyr	tcg Ser	gag Ğlu	tcg Ser 190	gtg Val	cac · His	576
25	acc Thr	ttc Phe	gcc Ala 195	aac Asn	acc Thr	atc Ile	aac Asn	acc Thr 200	cac His	gag Glu	ggc Gly	ggc Gly	acc Thr 205	cac His	gaa Glu	gag Glu	624
30	ggc Gly	ttc Phe 210	cgc Arg	agc Ser	gcg Ala	ctg Leu	acg Thr 215	tcg Ser	gtg Val	gtg Val	aac Asn	aag Lys 220	tac Tyr	gcc Ala	aag Lys	gac Asp	672 ·
35	cgc Arg 225	aag Lys	cta Leu	ctg Leu	aag Lys	gac Asp 230	aag Lys	gac Asp	ccc Pro	aac Asn	ctc Leu 235	acc Thr	ggt 61y	gac Asp	gat Asp	atc Ile 240	720
	cgg	gaa Glu	ggc Gly	ctg Leu	gcc Ala 245	gct Ala	gtg Val	atc Ile	tcg Ser	gtg Val 250	aag Lys	gtc Val	agc Ser	gaa Glu	ecg Pro 255	cag Gln	768
40	ttc Phe	gag Glu	ggc Gly	cag Gln 260	acc Thr	aag Lys	acc Thr	aag Lys	ttg Leu 265	ggc Gly	aac Asn	acc Thr	gag Glu	gtc Val 270	aaa Lys	tcg Ser	816
45	ttt Phe	gtg Val	cag Gln 275	aag Lys	gtc Val	tgt Cys	aac Asn	gaa Glu 280	cag 61n	ctg Leu	acc Thr	cac His	tgg Trp 285	ttt Phe	gaa Glu	gcc Ala	864
	aac Asn	ccc Pro 290	acc Thr	gac Asp	tcg Ser	aaa Lys	gtc Val 295	gtt Val	gtg Val	aac Asn	aag Lys	gct Ala 300	gtg Val	tcc Ser	tcg Ser	gcg Ala	912
50			cgt Arg														960

	305 .			310					315					320	
5	agc gcc Ser Ala	acc gad Thr Asp	atc Ile 325	ggt Gly	gga ' Gly	ttg Leu	ccc Pro	ggc Gly 330	aag Lys	ctg Leu	gcc Ala	gat Asp	tgc Cys 335	cgt Arg	1008
10	tcc acg Ser Thr	gat ccg Asp Pro 340	cgc Arg	aag Lys	tcc (Ser (gaa 61u	ctg Leu 345	tat Tyr	gtc Val	gta Val	gaa 61u	ggt 61y 350	gac Asp	tcg Ser	1056
	gec ggc Ala 61y	ggt tct 61y Ser 355	gca	aaa Lys	agc Ser	ggt Gly 360	cgc Arg	gat Asp	tcg Ser	atg Met	ttc Phe 365	cag 61n	gcg Ala	ata Ile	1104
15	ctt ccg Leu Pro 370	ctg cgc Leu Arg	ggc	Lys	atc a Ile : 375	atc Ile	aat Asn	gtg Val	gag Glu	aaa Lys 380	gcg Ala	cgc Arg	atc Ile	gac Asp	1152
20	cgg gtg Arg Val 385	cte aag Leu Lys	aac Asn	acc thr 390	gaa g Glu l	gtt Val	cag G1n	gcg Ala	atc Ile 395	atc 11e	acg Thr	gcg Ala	ctg Leu	ggc Gly 400	1200
·	acc agg	atc cac Ile His	gac Asp 405	gag i	ttc s Phe /	gat Asp	atc Ile	ggc Gly 410	aag Lys	.ctg Leu	cgc Arg	tac Tyr	cac His 415	aag Lys	1248
25	atc gtg Ile Val								•						1257
	<210> 2	2													
30	<211> 4 <212> P	19	rium	afric	canun	n.									
35	<211> 4 <212> P <213> M <400> 2	19 RT ycobacte -					6 1 y	Leu 10	His	Gly	Va]	Gly	Va1 15	Ser	
	<211> 4 <212> P <213> M <400> 2 Ser Asp 1	19 RT ycobacte 2	A7a 5	Ile :	Ser G	Sly (10					15		
	<211> 4 <212> P <213> M <400> 2 Ser Asp 1 Val Val	19 RT ycobacte 2 Ala Tyr Asn Ala	Ala 5 Leu	Ile S	Ser G	Gly (Leu 25	10 Glu	Val	61u	Ile	Lys 30	15 Arg	Asp	
. 35	<211> 4 <212> P <213> M <400> 2 Ser Asp 1 Val Val Gly Tyr	19 RT ycobacte 2 Ala Tyr Asn Ala 20 Glu Trp 35 Gly Ala	Ala 5 Leu Ser	Ile : Ser :	Ser 6 Thr A	Gly Arg	Leu 25 Glu	10 Glu Lys	Val Ser	61u G1u	Ile Pro 45	Lys 30 Leu	Arg 61y	Asp Leu	
. 35	<211> 4 <212> P <213> M <400> 2 Ser Asp 1 Val Val Gly Tyr Lys Gln 50	19 RT ycobacte 2 Ala Tyr Asn Ala 20 Glu Trp 35 Gly Ala	Ala 5 Leu Ser Pro	Ile Ser I	Ser G Thr A Val 1 Lys 1	Gly Arg	Leu 25 Glu Thr	10 Glu Lys Gly	Val Ser Ser	Glu Glu Thr 60	Ile Pro 45 Val	Lys 30 Leu Arg	Arg Arg 61y Phe	Asp Leu Trp	
35 40	<211> 4 <212> P <213> M <400> 2 Ser Asp 1 Val Val Gly Tyr Lys Gln 50 Ala Asp 65	19 RT ycobacte 2 Ala Tyr Asn Ala 20 Glu Trp 35 Gly Ala	Ala 5 Leu Ser Pro	Ile Ser To Ser Thr I	Ser G Thr A Val 1 Lys 1 55 Glu 1	Gly Garage	Leu 25 Glu Thr	10 Glu Lys Gly	Val Ser Ser Tyr 75	Glu Glu Thr 60 Asp	Pro 45 Val	Lys 30 Leu Arg Glu	15 Arg Ely Phe Thr	Asp Leu Trp Val 80	•

Val Ser Asp Val Ala Glu Ala Pro Lys Ser Ala Ser Glu Arg Ala Ala 115 125 Glu Ser Thr Ala Pro His Lys Val Lys Ser Arg Thr Phe His Tyr Pro 130 135 140 Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys Asn Ala 145 150 155 160 Ile His Ser Ser Ile Val Asp Phe Ser Gly Lys Gly Thr Gly His Glu 170 175 Val Glu Ile Ala Met Gln Trp Asn Ala Gly Tyr Ser Glu Ser Val His 180 185 190 Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His Glu Glu 195 200 205 Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala Lys Asp 210 215 Arg Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr 6ly Asp Asp Ile 225 230 235 240 Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu Pro Gln 245 250 255 Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val Lys Ser 260 270 Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe Glu Ala 275 280 285 Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg Arg Lys 305 310 315 320 Ser Ala Thr Asp Ile Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys Arg 325 330 335 Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp Ser 340 345 350 Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala Ile 355 360 Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile Asp 370 380 Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala Leu Gly 385 390 400 Thr Gly Ile His Asp Glu Phe Asp Ile Gly Lys Leu Arg Tyr His Lys

15

25

50

		405	410	. 415
5	Ile Val Leu	• • • • • • • • • • • • • • • • • • • •	•	
10	<210> 23 <211> 1257 <212> DNA <213> Mycobacte	rium tuberculosi	s	
15	<220> <221> CDS <222> (1)(125	7)		
	<pre><400> 23 tcg gac gcg tat Ser Asp Ala Tyr 1</pre>	gcg ata tct ggt Ala Ile Ser Gly 5	ggt ctg cac ggc Gly Leu His Gly 10	gtc ggc gtg tcg 48 Val Gly Val Ser 15
20	gtg gtt aac gcg Val Val Asn Ala . 20	Leu Ser Ihr Arg	ctc gaa gtc gag Leu Glu Val Glu 25	atc aag cgc gac 96 Ile Lys Arg Asp 30
25	ggg tac gag tgg Gly Tyr Glu Trp 35	tct cag gtt tat Ser Gin Val Tyr 40	gag aag tog gaa (Glu Lys Ser Glu l	ccc ctg ggc ctc 144 Pro Leu Gly Leu 45
30	aag caa ggg gcg Lys Gln Gly Ala 50	ccg acc aag aag Pro Thr Lys Lys 55	acg ggg tca acg Thr Gly Ser Thr 60	gtg cgg ttc tgg 192 Val Arg Phe Trp
	gcc gac ccc gct Ala Asp Pro Ala 65	gtt ttc gaa acc Val Phe Glu Thr 70	acg gaa tac gac t Thr 6lu Tyr Asp I 75	ttc gaa acc gtc 240 Phe Glu Thr Val 80
35	gcc cgc cgg ctg Ala Arg Arg Leu	caa gag atg gcg Gln Glu Met Ala 85	ttc ctc aac aag g Phe Leu Asn Lys 6 90	ggg ctg acc atc 288 Gly Leu Thr Ile 95
40	aac ctg acc gac Asn Leu Thr Asp 100	gag agg gtg acc Glu Arg Val Thr	caa gac gag gtc g Gln Asp Glu Val \ 105	gtc gac gaa gtg 336 /al Asp Glu Yal 110
45	gtc agc gac gtc Val Ser Asp Val 115	gcc gag gcg ccg Ala Glu Ala Pro 120	aag tog gca agt g Lys Ser Ala Ser 6	gaa cgc gca gcc 384 ilu Arg Ala Ala 25
	gaa too act goa Glu Ser Thr Ala 130	ccg cac aaa gtt Pro His Lys Val 135	aag agc cgc acc t Lys Ser Arg Thr P 140	tt cac tat ccg 432 The His Tyr Pro
50	ggt ggc ctg gtg Gly Gly Leu Val 145	gac ttc gtg aaa Asp Phe Val Lys 150	cac atc aac cgc a His Ile Asn Arg T 155	hr Lys Asn Ala 160

	att Ile	cat His	agc Ser	agc Ser	atc Ile 165	gtg Val	gac Asp	ttt Phe	tcc Ser	ggc Gly 170	aag Lys	ggc Gly	acc Thr	999 G1y	cac His 175	g a g Glu	528
5	gtg Val	gag Glu	atc Ile	gcg Ala 180	atg Met	caa Gln	tgg Trp	aac Asn	gcc Ala 185	999 Gly	tat Tyr	tcg Ser	gag Glu	tcg Ser 190	gtg Val	cac His	576
10	acc Thr	ttc Phe	gcc Ala 195	aac Asn	acc Thr	atc Ile	aac Asn	acc Thr 200	cac His	gag Glu	ggc Gly	ggc Gly	acc Thr 205	cac His	gaa Glu	G) u	624
15	ggc Gly	ttc Phe 210	cgc Arg	agc Ser	gcg Ala	ctg Leu	acg Thr 215	tcg Ser	gtg Val	gtg Val	aac Asn	aag Lys 220	tac Tyr	gcc Ala	aag Lys	gac Asp	672
	cgc Arg 225	aag Lys	cta Leu	ctg Leu	aag Lys	gac Asp 230	aag Lys	gac Asp	ccc Pro	aac Asn	ctc Leu 235	acc Thr	ggt Gly	gac Asp	gat Asp	atc Ile 240	720
20	cgg	gaa Glu	ggc Gly	ctg Leu	gcc Ala 245	gct Ala	gtg Val	atc Ile	tcg Ser	gtg Val 250	Lys	gtc Val	agc Ser	gaa Glu	ccg Pro 255	cag Gln	768
25	ttc Phe	gag Glu	ggc Gly	cag Gln 260	acc Thr	aag Lys	acc Thr	aag Lys	ttg Leu 265	ggc Gly	aac Asn	acc Thr	gag Glu	gtc Val 270	aaa Lys	tcg Ser	816
30	ttt Phe	gtg Val	cag Gln 275	aag Lys	gtc Val	tgt Cys	aac Asn	gaa 61u 280	cag Gln	ctg Leu	acc Thr	cac His	tgg Trp 285	ttt Phe	gaa Glu	gcc Ala	864
	aac Asn	ccc Pro 290	acc Thr	gac Asp	gcg Ala	aaa Lys	gtc Val 295	gtt Val	gtg Val	aac Asn	aag Lys	gct Ala 300	gtg Val	tcc Ser	tcg Ser	gcg Ala	912
35	caa Gln 305		cgt Arg	atc Ile	gcg Ala	gca Ala 310	cgt Arg	aag Lys	gca Ala	cga Arg	gag Glu 315	ttg Leu	gtg Val	cgg Arg	cgt Arg	aag Lys 320	960
40	agc Ser	gcc Ala	acc Thr	gac Asp	atc Ile 325	61 y	gga Gly	ttg Leu	ccc Pro	99c 61y 330	Lys	ctg Leu	gcc Ala	gat Asp	tgc Cys 335	cgt Arg	1008
45	tcc Ser	acg Thr	gat Asp	ccg Pro 340	cgc Arg	aag Lys	tcc Ser	gaa Glu	ctg Leu 345	tat Tyr	gtc Val	gta Val	gaa Glu	ggt Gly 350	gac Asp	tcg Ser	1056
	. Vja	ggc Gly	ggt Gly 355	Ser	gca	aaa Lys	agc Ser	ggt Gly 360	Arg	gat Asp	tcg Ser	atg Ket	ttc Phe 365	Gin	gcg	ata Ile	1104
50	ctt leu	ccg Pro 370	Leu	cgc Arg	ggc	aag Lys	atc Ile 375	Ile	aat Asn	gtg Val	gag Glu	aaa Lys 380	Ala	cgc Arg	atc Ile	gac	1152

	cgg Arg 385	gtg Val	cta Leu	aag Lys	aac Asn	acc Thr 390	Glu	gtt Val	cag Gln	gcg Ala	atc Ile 395	atc Ile	acg Thr	gcg Ala	ctg Leu	ggc Gly 400	1200
5	acc Thr	61 y	atc Ile	cac His	gac Asp 405	gag Glu	ttc Phe	gat Åsp	atc Ile	ggc Gly 410	aag Lys	ctg Leu	cgc Arg	tac Tyr	cac His 415	aag Lys	1248
10		gtg Val				•											1257
1 5 .	<211 <212)> 24 > 41 > P 3> M;	19 RT	cter	-ium	tube	ercul	losis	3								
 20	<400 Ser 1)> 24 Asp	Ala	Туг	-Ala 5	Ile	Ser	Gly	Gly	Leu 10	Kis	61 y	Val	Gly	Va1 15	Ser	
	Val	Val	Asn	Ala 20	Leu	Ser	Thr	Arg	Leu 25	61u	Val	6 1u	He	Lys 30	Arg	Asp	
25	G1 y	Tyr	G] u 35	Trp	Ser	61 n	Val	Tyr 40	Glu	Lys	Ser	61 u	Pro 45	Leu	Gly	Leu	
	Lys	G]n 50	G1y	Ala	Pro	Thr	Lys 55	Lys	Thr	Gly	Ser	Thr 60	Val	Arg	Phe	Trp	
30	Ala 65	Asp	Pro	Ala	Val	Phe 70	G] u	Thr	Thr	G7u	Tyr 75	Asp	Phe	G 1u	Thr	Val 80	
	Ala	Arg	Arg	Leu	G]n 85	G1u	Met	Ala	Phe	Leu 90	Asn	Lys	Gly	Leu	Thr 95	Ile	
35	Asn	Leu	Thr	Asp 100	6 1 u	Arg	Val	Thr	G1 n 105	Asp	Glu	Val	Val	Asp 110	67 u	Val	
	Val	Ser	Asp 115	Va1	Ala	Glu	Ala	Pro 120	Lys	Ser	Ala	Ser	G] u 125	Arg	Ala	Ala	
40	G] u	Ser 130	Thr	Ala	Pro	His	Lys 135	Val	Lys	Ser	Arg	Thr 140	Phe	His	Tyr	Pro	
	61y 145	Gly	Leu	Val	Asp	Phe 150	Val	Lys	His	Πe	Asn 155	Arg	Thr	Lys	Asn	Ala 160	
45	Πe	His	Ser	Ser	Ile 165	Val	Asp	Phe	Ser	Gly 170	Lys	Gly	Thr	Gly	His 175.	Glu	
	Val	Glu	Ile	Ala 180	Met	Gln	Trp	Asn	Ala 185	Gly	Tyr	Ser	Glu	Ser 190	۷a۱	His	
50	Thr	Phe	Ala 195	Asn	Thr	Ile	Asn	Thr 200	His	61u	G1 y	61 y	Thr 205	His	G7u	Glu	

Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala Lys Asp 210 215 220

10

15

20

25

30

35

40

45

50

55

Arg Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp Asp Ile. 225 235 240 Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu Pro Gln 245 250 255 Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val Lys Ser 260 270 Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe Glu Ala 275 280 285 Asn Pro Thr Asp Ala Lys Val Val Val Asn Lys Ala Val Ser Ser Ala 290 295 300 Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg Arg Lys 305 310 315 Ser Ala Thr Asp Ile Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys Arg 325 330 335 Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp Ser 340 350 Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala Ile 355 360 365 Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile Asp 370 380 Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala Leu Gly 385 390 400 Thr Gly Ile His Asp Glu Phe Asp Ile Gly Lys Leu Arg Tyr His Lys
405
410
415 Ile Val Leu <210> 25 <211> 1257 <212> DNA <213> Mycobacterium gastri <220> . <221> CĎS <222> (1)..(1257) <400> 25 tcc gac gcc tat gcg ata tcg ggt gga ctg cac ggt gtg ggt gtc tcg Ser Asp Ala Tyr Ala Ile Ser Gly Gly Leu His Gly Val Gly Val Ser 48

	1	:			5		•			10					15		
5	gtg Val	gtc Val	aac Asn	gcg Ala 20	ctg Leu	tcc Ser	atc Ile	cgg Arg	ctg Leu 25	gag Glu	gtg Val	gag Glu	atc Ile	aag Lys 30	cgc Arg	gac Asp	96
10	ggc Gly	cat His	gag Glu 35	tgg Trp	tcg Ser	caa Gln	gtt Val	tat Tyr 40	gag Glu	aag Lys	tcc Ser	gag Glu	ccg Pro 45	atg Met	gga Gly	ctc Leu	144
	aag Lys	caa Gln 50	ggc	gcg Ala	ccg Pro	acg Thr	aag Lys 55	aag Lys	acc Thr	ggc 61y	acg Thr	acg Thr 60	gtg Val	Arg Cgg	ttc Phe	tgg Trp	192
15	gcc Ala 65	gac Asp	ccc Pro	aac Asn	gtt Val	ttt Phe 70	gaa Glu	acc Thr	acc Thr	gag Glu	tac Tyr 75	gac Asp	ttc Phe	gaa Glu	acc Thr	gtc Val 80	240
20	gcg Ala	cga Arg	cgg Arg	ttg Leu	cag 61n 85	gag Glu	.atg Met	gcg Ala	ttt Phe	ctc Leu 90	aac Asn	aag Lys	999 61y	·ctc Leu	acc Thr 95	atc Ile	288
	aac Asn	ctg Leu	acc Thr	gat Asp 100	cag Gln	cgg Arg	gta Val	acc Thr	cag Gln 105	gac Asp	gaa Glu	gtg Val	gtc Val	gac Asp 110	gag Glu	gtg Val	336
25	gtc Val	agc Ser	gac Asp 115	gtc Val	gcc Ala	gag Glu	gcc Ala	ccg Pro 120	aag Lys	tcg Ser	gcc Ala	agt Ser	gag Glu 125	aag Lys	gcg Ala	gcc Ala	384
30	gaa Glu	ttc Phe 130	acc Thr	gcc Ala	ccc Pro	cac His	aag Lys 135	gtg Val	aag Lys	aag Lys	cgt Arg	acc Thr 140	ttt Phe	cac His	tat Tyr	ccc Pro	432
35	ggt Gly 145	ggc Gly	ttg Leu	gtt Val	gac Asp	ttc Phe 150	gtc Val	aag Lys	cac His	atc Ile	aac Asn 155	cgc Arg	acc Thr	aag Lys	aac Asn	gcc Ala 160	480
	atc Ile	cac His	agc Ser	agc Ser	atc Ile 165	gtc Val	gac Asp	ttc Phe	tcc Ser	gga Gly 170	aag Lys	999 61y	acc Thr	ggc Gly	cac His 175	gaa 61u	528
40	gtg Val	gag Glu	atc Ile	gcg Ala 180	atg Met	cag Gln	tgg Trp	aat Asn	gcc Ala 185	ggc Gly	tat Tyr	tcg Ser	gag Glu	tcg Ser 190	gtg Val	cac His	576
45	acc Thr	ttc Phe	900 Ala 195	aac Asn	acc Thr	atc Ile	aac Asn	acc Thr 200	cat His	gag Glu	ggc Gly	999 Gly	acc Thr 205	cat His	gaa Glu	gaa Glu	624
50	999 G1 y	ttc Phe 210	cgc Arg	agc Ser	gcg Ala	ctc Leu	acg Thr 215	tcc Ser	gtg Val	gtg Val	aac Asn	aag Lys 220	tac Tyr	gcc Ala	aag Lys	gac Asp	672
.50	cgc Årg	aaa Lys	ctg Leu	ctc Leu	aaa Lys	gac Asp	aag Lys	gac Asp	ccc Pro	aac Asn	ctc Leu	acc Thr	ggc	gac Asp	gac Asp	atc Ile	720

	225	230	235	240
5	cgg gaa ggg ttg gcc Arg Glu Gly Leu Ala 245	gcg gtg att tcg gtc Ala Val Ile Ser Val 250	aaa gtc agc gaa ccg Lys Val Ser Glu Pro 255	cag 768 Gln
10	ttc gag ggc cag acc Phe Glu Gly Gln Thr 260	aag acg aaa cta ggc Lys Thr Lys Leu 6ly 265	aac acc gag gtg aag Asn Thr Glu Val Lys 270	tcg 816 Ser
	ttc gtg cag aag gtg Phe Val Gln Lys Val 275	tgc aat gaa cag ctc Cys Asn Glu Gln Leu 280	acc cat tgg ttc gag Thr His Trp Phe Glu 285	gcc 864 Ala
15	aac ccc gct gat gct Asn Pro Ala Asp Ala 290	aaa acc gtt gtc aac Lys Thr Val Val Asn 295	aag gca gtt tca tcg Lys Ala Val Ser Ser 300	gcg 912 Ala
20	cag gcc agg att gcg Gln Ala Arg Ile Ala 305	gcc cgc aag gcg cgc Ala Arg Lys Ala Arg 310	gas ttg gtg cgc cgc Glu Leu Val Arg Arg 315	aag 960 Lys 320
	agc gca acc gat ctg Ser Ala Thr Asp Leu 325	ggc gga cta ccg ggc Gly Gly Leu Pro Gly 330	aag ttg gcc gac tgc Lys Leu Ala Asp Cys 335	cgc 1008 Arg
25	tog acc gac ccc cgt Ser Thr Asp Pro Arg 340	aag too gaa tta tat Lys Ser Glu Leu Tyr 345	gtg gtg gag ggt gat Val Val Glu Gly Asp 350	tca 1056 Ser
30	gcc ggc ggc tcg gcg Ala Gly Gly Ser Ala 355	aag agc ggc cgc gac Lys Ser Gly Arg Asp 360	tcg atg ttt caa gcg Ser Met Phe Gln Ala 365	atc 1104 Ile
35	ttg ccg ttg cgc ggc Leu Pro Leu Arg Gly 370	aag atc atc aac gtc Lys Ile Ile Asn Val 375	gag aag gcc cgc atc Glu Lys Ala Arg Ile 380	gac 1152 Asp
	cgg gtg ctg aag aac Arg Val Leu Lys Asn 385	acc gaa gtc cag gcg Thr Glu Val Gln Ala 390	atc atc acc gcg ttg Ile Ile Thr Ala Leu 395	ggc 1200 Gly 400
40	acc ggt att cac gac Thr Gly Ile His Asp 405	gaa ttc gac atc gcg Glu Phe Asp Ile Ala 410	aga ctg cgt tac cac Arg Leu Arg Tyr His 415	aag 1248 Lys
45	atc gtg ctg Ile Val Leu			1257
50	<210> 26 <211> 419 <212> PRT <213> Mycobacterium	gastri	•	
•	<400> 26			•

Ser Asp Ala Tyr Ala Ile Ser Gly Gly Leu His Gly Val Gly Val Ser 1 10 15 Val Val Asn Ala Leu Ser Ile Arg Leu Glu Val Glu Ile Lys Arg Asp 20 25 30 Gly His Glu Trp Ser Gln Val Tyr Glu Lys Ser Glu Pro Met Gly Leu
35 40 45 Lys Gln Gly Ala Pro Thr Lys Lys Thr Gly Thr Thr Val Arg Phe Trp 50 60 Ala Asp Pro Asn Val Phe Glu Thr Thr Glu Tyr Asp Phe Glu Thr Val 65 76 80 Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu Thr Ile 85 90 95 Asn Leu Thr Asp Gln Arg Val .Thr Gln Asp Glu Val Val Asp Glu Val 100 110 Val Ser Asp Val Ala Glu Ala Pro Lys Ser Ala Ser Glu Lys Ala Ala 115 120 125 Glu Phe Thr Ala Pro His Lys Val Lys Lys Arg Thr Phe His Tyr Pro 130 135 140 Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys Asn Ala 145 150 155 Ile His Ser Ser Ile Val Asp Phe Ser Gly Lys Gly Thr Gly His Glu 165 170 175 Val Glu Ile Ala Met Gln Trp Asn Ala Gly Tyr Ser Glu Ser Val His 180 190 Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His Glu Glu 195 205 Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala Lys Asp 210 215 220 Arg Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp Asp Ile 225 230 235 240 Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu Pro Gln 245 250 255 Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val Lys Ser 260 270 Phe Val Gin Lys Val Cys Asn Glu Gin Leu Thr His Trp Phe Glu Ala 275 280 285 Asn Pro Ala Asp Ala Lys Thr Val Val Asn Lys Ala Val Ser Ser Ala 290 295 300 .

20

30

35

	Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg Arg Lys 305 310 320
5	Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys Arg 325 330 335
	Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp Ser 340 345 350
10	Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala Ile 355 360 365
15	Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile Asp 370 375 380
	Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala Leu Gly 385 390 400
20	Thr Gly Ile His Asp Glu Phe Asp Ile Ala Arg Leu Arg Tyr His Lys 405 410 415
	Ile Val Leu
25	<210> 27 <211> 1263 <212> DNA <213> Mycobacterium marinum
30	<220> <221> CDS <222> (1)(1263)
35	<pre><400> 27 ggc gag aac agt ggt tac aac gtc agt ggt ggt ctg cac ggc gtg ggt Gly Glu Asn Ser Gly Tyr Asn Val Ser Gly Gly Leu His Gly Val Gly 1</pre>
40	gtg tcg gtg gtc aac gcg ctg tcc acc cga ctg gaa gtc gac atc aag Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asp Ile Lys 25 30
45	cgc gac gga tac gag tgg tcg cag ttc tac gac cgc gcc cag ccg ggc 144 Arg Asp Gly Tyr Glu Trp Ser Gln Phe Tyr Asp Arg Ala Gln Pro Gly 35 40 45
	acc ctc aaa cag ggc gag gca acc aag aag acc gga acc acc
50	ttc tgg gcc gac tcg gac atc ttt gag acc acc gaa tac gac ttc gag Phe Trp Ala Asp Ser Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 70 75 80

5	acg Thr	gtg Val	gçg Ala	cgg Arg	egc Arg 85	ctg Leu	cag Gln	gag Glu	atg Met	gcg Ala 90	ttc Phe	ctc Leu	aac Asn	aag Lys	ggc Gly 95	ctg Leu	288
J							gag Glu										336
10	gac Asp	gtc Val	gtc Val 115	agt Ser	gat Asp	acc Thr	gcc Ala	gaa Glu 120	gca Ala	cca Pro	aag Lys	tcc Ser	gcc Ala 125	cag Gln	gju Gju	aag Lys	384
15	gcc Ala	gcc Ala 130	gaa Glu	tcg Ser	acc Thr	gcg Ala	ccg Pro 135	cac His	aag Lys	gtc Val	aag Lys	agc Ser 140	cgc Arg	acc Thr	ttc Phe	cac His	432
	tat Tyr 145	ccc Pro	ggc Gly	ggt. Gly	ttg Leu	gtc Val 150	gat Asp	ttc Phe	gtc Val	aag Lys	cac His 155	atc Ile	aac Asn	cgc Arg	acc Thr	aag Lys 160	480
20	agt Ser	ccg Pro	att Ile	cag Gln	cag Gln 165	agc Ser	atc Ile	gtç Val	gac Asp	ttc Phe 170	gag Glu	ggc Gly	aag Lys	ggc Gly	tcc Ser 175	ggç 61 y	528
25	cac His	gaa Glu	gtc Val	gaa 61u 180	atc Ile	gcg Ala	atg Net	cag Gln	tgg Trp 185	aac Asn	ggc Gly	ggc Gly	tac Tyr	tcg Ser 190	gag Glu	tcg Ser	576
30	gtg Val	cac His	Thr 195	ttc Phe	gcc Ala	aac Asn	acc Thr	atc Ile 200	aac Asn	acc Thr	cat His	gag Glu	99t Gly 205	gga Gly	acg Thr	cac His	624
	.gaa Glu	9ag Glu 210	ggc Gly	ttc Phe	cgc Arg	agt Ser	gcg Ala 215	ttg Leu	acc Thr	tcg Ser	gtg Val	gtg Val 220	aac Asn	aag Lys	tac Tyr	gcc Ala	672
35	aaa Lys 225	gac Asp	aag Lys	aag Lys	ctg Leu	ctc Leu 230	aag Lys	gac Asp	aag Lys	gac Asp	Pro 235	aac Asn	ctc Leu	acc Thr	ggt Gly	gac Asp 240	720
40	gac Asp	atc Ile	cgc Arg	gag Glu	999 61 y 245	ttg Leu	gcc Ala	gcg Ala	gtc Val	atc Ile 250	tcg Ser	gtg Val	cgg Arg	gtg Val	gca Ala 255	g a g 61u	768
45	ccg Pro	cag Gln	ttc Phe	gag Glu 260	ggt Gly	cag Gln	acg Thr	aag Lys	acc Thr 265	aag Lys	ctg Leu	ggc Gly	aac Asn	acc Thr 270	gag Glu	gtc Val	816
	aag Lys	tcg Ser	ttt Phe 275	gtc Val	cag Gln	aag Lys	gtt Val	tgt Cys 280	aac Asn	gag Glu	cag G]n	ctc Leu	acc Thr 285	cac His	tgg Trp	ttc Phe	864
50	Glu	gcc Ala 290	aat Asn	cct Pro	tcg Ser	gaa Glu	gcc Ala 295	aaa Lys	acc Thr	att Ile	gtg Val	aac Asn 300	aag Lys	gcg Ala	gta Val	tcc Ser	912

_	teg geg cag gea egt ete gee geg ege aag geg ega gag ttg gtg egt Ser Ala Gln Ala Arg Leu Ala Ala Arg Lys Ala Arg Glu Leu Val Arg 305 310 320
5	cgc aag agc gca acc gat ctc ggt ggg ctg ccc ggc aag ttg gcc gac 1008 Arg Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp 325 330 335
10	tgc cgc tcg aca gat ccg cgt aag tcg gaa ctg tat gtg gtg gag ggt 1056 Cys Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly 340 345 350
15	gac tcg gcc ggc ggc tcg gca aag agt ggc cgc gat tcg atg ttc cag Asp Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Het Phe Gln 355 360 365
	gcg atc ctg ccg ctg cgc ggc aag atc atc aat gtc gaa aag gca cgc 1152 Ala Ile Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg 370 375 380
20	atc gac cga gtc ctg aaa aac act gaa gtc cag gcg atc atc acc gcg lle Asp Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala 385 390 395 400
25	ttg ggt acc ggt att cac gac gaa ttc gac ctc tcg aag ctg cgc tat Leu Gly Thr Gly Ile His Asp Glu Phe Asp Leu Ser Lys Leu Arg Tyr 405 415
30	cac aag atc gtc ttg . 1263 His Lys Ile Val Leu 420
35	<210> 28 <211> 421 <212> PRT <213> Mycobacterium marinum
~	<400> 28 Gly Glu Asn Ser Gly Tyr Asn Val Ser Gly Gly Leu His Gly Val Gly 1 10 15
40	Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asp Ile Lys 20 25 30
	Arg Asp Gly Tyr Glu Trp Ser Gln Phe Tyr Asp Arg Ala Gln Pro Gly 35 40 45
45	Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Ile Arg 50 60
50	Phe Trp Ala Asp Ser Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 70 75 80
<i>50</i>	Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95

5

10

15

20

25

30

35

40

45

50

55

Thr Ile Asn Leu Thr Asp Glu Arg Val Thr Pro Asp Glu Val Val Asp 100 105 Asp Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Lys 115 120 125 Ala Ala Glu Ser Thr Ala Pro His Lys Val Lys Ser Arg Thr Phe His 130 140 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 155 160 Ser Pro Ile Gln Gln Ser Ile Val Asp Phe Glu Gly Lys Gly Ser Gly 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 185 190 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 215 220 Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp 225 230 235 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Arg Val Ala Glu 245 250 255 Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val 260 270 Lys Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe 275 280 285 Glu Ala Asn Pro Ser Glu Ala Lys Thr Ile Val Asn Lys Ala Val Ser 290 295 300 Ser Ala Gln Ala Arg Leu Ala Ala Arg Lys Ala Arg Glu Leu Val Arg 305 310 315 320 Arg Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp 325 330 335 Cys Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly 340 345 Asp Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln 355 Ala Ile Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg 370 380 Ile Asp Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala

	385 :	390	39	5	400
5	Leu Gly Thr Gly	/ Ile His Asp 405	Glu Phe Asp Le 410	u Ser Lys Leu A 4	rg Tyr 15
	His Lys Ile Val 420				•
10	<210> 29 <211> 1257 <212> DNA <213> Mycobacte	erium microti			·
15	<220> <221> CDS <222> (1). (125	57)	·		
20	<pre><400> 29 tcg gac gcg tai Ser Asp Ala Tyr 1</pre>	geg ata tet Ala Ile Ser 5	ggt ggt ctg ca Gly Gly Leu Hi 10	c ggc gtc ggc g s Gly Val Gly V	tg tcg 48 al Ser 15
25	gtg gtt aac gcg Val Val Asn Ala 20	Leu Ser Thr	cgg ctc gaa gt Arg Leu Glu Va 25	c gag atc aag c 1 61u Ile Lys A 30	gc gac 96 rg Asp
	ggg tat gag tgg Gly Tyr Glu Trp 35	tct cag gtt Ser Gln Val	tat gag aag to Tyr Glu Lys Se 40	g gaa ccc ctg g r Glu Pro Leu G 45	gc ctc 144 Ty Leu
30	aag caa ggg gcg Lys Gln Gly Ala 50	ccg acc aag Pro Thr Lys 55	Lys Thr Gly Se	a acg gtg cgg t r Thr Val Arg P 60	tc tgg 192 he Trp
35	gcc gac ccc gct Ala Asp Pro Ala 65	gtt ttc gaa Val Phe Glu 70	acc acg gaa ta Thr Thr Glu Ty	c gac ttc gaa a r Asp Phe Glu T 5	cc gtc 240 hr Val 80
40	gcc cgc cgg ctg Ala Arg Arg Leu	caa gag atg Glin Glu Met 85	gcg ttc ctc aad Ala Phe Leu Ass 90		cc atc 288 hr Ile 95
***	aac ctg acc gad Asn Leu Thr Asp 100	Glu Arg Val	acc caa gac ga Thr Gln Asp Gli 105	g gtc gtc gac g u Val Val Asp G 110	aa gtg 336 lu Val
45	gtc agc gac gtc Val Ser Asp Val	gec gag geg Ala Glu Ala	ccg aag tcg gca Pro Lys Ser Ala 120	a agt gaa cgc g a Ser Glu Arg A 125	ca gcc 384 la Ala
50	gaa too act goa Glu Ser Thr Ala 130	ccg cac aaa Pro His Lys 135	Val Lys Ser Arg	c acc ttt cac t g Thr Phe His T 140	at ccg 432 yr Pro
	ggt ggc ctg gtg	gac ttc gtg	aaa cac atc aa	c cgc acc aag a	ac gcg 480

	G1 y 145	61 <i>y</i>	Leu	Val	Asp	Phe 150	Val	Lys	His	Ile	Asn 155		Thr	Lys	Asn	Ala 160	
5	att Ile	cat His	agc Ser	agc Ser	atc Ile 165	gtg Val	gac Asp	ttt Phe	tcc Ser	-ggc Gly 170	aag Lys	ggc Gly	acc Thr	ggg Gly	cac His 175	gag Glu	528
10	gtg Val	gag Glu	atc	gcg Ala 180	atg Met	caa Gln	tgg Trp	aac Asn	gcc Ala 185	999 Gly	tat Tyr	tcg Ser	gag Glu	tcg Ser 190	gtg Val	cac His	576
15	acc Thr	ttc Phe	gcc Ala 195	aac Asn	acc Thr	atc Ile	aac Asn	acc Thr 200	cac His	gag Glu	ggc Gly	ggc Gly	acc Thr 205	cac His	gaa Glu	gag Glu	624
,5	ggc Gly	ttc Phe 210	Arg	agc Ser	gcg Ala	ctg Leu	acg Thr 215	tcg Ser	gtg Val	gtg Val	aac Asn	aag Lys 220	tac Tyr	gcc Ala	aag Lys	gac Asp	672
20	cgc Arg 225	aag Lys	cta Leu	ctg Leu	aag Lys	gac Asp 230	aag Lys	gac Asp	ccc Pro	aac Asn	ctc Leu 235	acc Thr	ggt Gly	gac Asp	gat Asp	atc Ile 240	720
25	cgg Arg	gaa Glu	ggc Gly	ctg Leu	gcc Ala 245	gct Ala	gtg Val	atc Ile	tcg Ser	gtg Val 250	aag Lys	gtç Val	agc Ser	gaa Glu	ccg Pro 255	cag Gln	768
	ttc Phe	gag Glu	ggc Gly	cag Gln 260	acc Thr	aag Lys	acc Thr	aag Lys	ttg Leu 265	ggc Gly	aac Asn	acc Thr	gag Glu	gtc Val 270	aaa Lys	tcg Ser	816
30	ttt Phe	gtg Val	cag Gln 275	aag Lys	gtc Val	tgt Cys	aac Asn	gaa G1u 280	cag Gln	ctg Leu	acc Thr	cac His	tgg Trp 285	ttt Phe	gaa Glu	gcc Ala	864
35	aac Asn	ccc Pro 290	acc Thr	gac Asp	tcg Ser	aaa Lys	gtc Val 295	gtt Val	gtg Vai	aac Asn	aag Lys	gct Ala 300	gtg Val	tcc Ser	tcg Ser	gcg Ala	912
40	caa Gln 305	gcc Ala	cgt Arg	atc Ile	gcg Ala	gca Ala 310	cgt Arg	aag Lys	gca Ala	cga Arg	gag Glu 315	ttg Leu	gtg Val	cgg Arg	cgt Arg	aag Lys 320	960
	agc Ser	gcc Ala	acc Thr	gac Asp	atc Ile 325	ggt Gly	gga Gly	ttg Leu	ccc Pro	99C 61y 330	aag Lys	ctg Leu	gcc Ala	gat Asp	tgc Cys 335	cgt Arg	1008
45	tcc Ser	acg Thr	gat Asp	ccg Pro 340	Arg	aag Lys	tcc Ser	gaa Glu	ctg Leu 345	tat Tyr •	gtc Val	gta Val	gaa Glu	ggt Gly 350	gac Asp	tcg Ser	1056
50	gcc Ala	ggc Gly	ggt Gly 355	tct Ser	gça Ala	aaa Lys	agc Ser	ggt Gly 360	cgc Arg	gat Asp	tcg Ser	atg Ket	ttc Phe 365	cag Gln	gcg Ala	ata Ile	1104
	ctt	ccg	ctg	cgc	ggc	aag	atc	atc	aat	gtg	gag	aaa	gcg	cgc	atc	gac	1152

		Leu Arg	Gly Lys	Ile 375	Ile A	sn Val			Ąŗg	Ile	Asp	
5	cgg gtg Arg Val 385	cta aag Leu Lys	aac acc Asn Thr 390	gaa Glu	gtt c Val G	ag gcg iln Ala	atc a	seu atc acg [le Thr	gcg Ala	Leu	99C 61y 400	1200
10	acc ggg Thr Gly	atc cac Ile His	gac gag Asp Glu 405	ttc Phe	gat a Asp I	tc ggc le Gly 410	aag d Lys i	ctg cgc Leu Arg	tac Tyr	cac His 415	aag Lys	1248 ·
	atc gtg Ile Val											1257
15	<210> 3(<211> 4(<212> P)(<213> M)	19	rium mic	roti			•					
20	<400> 30 Ser Asp 1	0 Ala Tyr	Ala Ile	Ser	61y 6	ily Leu 10	His (Gly Val	Gly	Val 15	Ser	
25	Val Val	Asn Ala 20	Leu Ser	Thr		eu Glu 25	Val (Slu Ile	Lys 30	Arg	Asp	
	Gly Tyr	Glu Trp 35	Ser Gln	Val	Tyr G 40	ilu Lys	Ser (Glu Pro 45	Leu	61 y	Leu	
30	Lys Gln 50	Gly Ala	Pro Thr	Lys 55	Lys T	hr 6ly	Ser 1	Thr Val	Arg	Phe	Trp	
	Ala Asp	Pro Ala	Val Phe 70	Glu	Thr T	hr Glu	Tyr /	Asp Phe	61u	Thr	Va1 80	
35	Ala Arg	Arg Leu	61n 61u 85	Met	Ala P	he Leu 90	Asn I	Lys 61y	Leu	Thr 95	Ile	
	Asn Leu	Thr Asp 100	Glu Arg	Val		ln Asp 05	Glu \	Val Val	Asp 110	Glu	Val	
40	Val Ser	Asp Val 115	'Ala Glu		Pro L 120	ys Ser	Ala S	Ser Glu 125	Arg	Ala	Ala	
	Glu Ser 130	Thr Ala	Pro His	Lys 135	Va] L	ys Ser		Thr Phe 140	His	Tyr	Pro	
45 .	Gly Gly 145	Leu Val	Asp Phe 150		Lys H	is Ile	Asn / 155	Arg Thr	Lys	Asn	Ala 160	
50	Ile His	Ser Ser	Ile Val 165	Asp	Phe S	er Gly 170	Lys (Gly Thr	Gly	His 175	Glu	
	Val Glu	lle Ala 180	Met Gln	Trp		la Gly 85	Tyr :	Ser Glu	Ser 190	Va1	His	

Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His Glu Glu 195 200 205 Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala Lys Asp 210 215 220 Arg Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp Asp Ile 225 230 240 10 Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu Pro Gln 245 250 Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val Lys Ser 260 265 270 15 Phe Val 6ln Lys Val Cys Asn Glu 6ln Leu Thr His Trp Phe 6lu Ala 275 280 285 Asn Pro Thr Asp Ser Lys Val Val Val Ash Lys Ala Val Ser Ser Ala 290 295 300 20 Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg Arg Lys 305 310 315 320 Ser Ala Thr Asp Ile Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys Arg 325 330 25 Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp Ser 340 350 30 Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala Ile 355 Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile Asp 370 380 35 Arg Val Leu Lys Asn Thr Glu Val Gin Ala Ile Ile Thr Ala Leu Gly 385 390 395 400 Thr Gly Ile His Asp Glu Phe Asp Ile Gly Lys Leu Arg Tyr His Lys 405 415 Ile Val Leu

<210> 31

40

45

50

55

<211> 1263

<213> Mycobacterium asiaticum

<220>

<221> CDS

<222> (1)..(1263)

	<400	> 31															
	ggt Gly	gag Glu	aac Asn	agc Ser	ggc Gly 5	tac Tyr	acc Thr	gtc Val	agc Ser	ggt Gly 10	999 61y	ctg Leu	cac His	ggt Gly	gtc Val 15	ggt 61y	48
	gtg Val	tca Ser	gtg Val	gtc Val 20	Asn	gcg Ala	ttg Leu	tcg Ser	acc Thr 25	cga. Arg	ctc Leu	9 29 61u	gtc Val	gac Asp 30	atc Ile	aag Lys	96
	cgc Arg	gac Asp	ggg Gly 35	cac His	gag Glu	tgg Trp	tcc Ser	cag Gln 40	tat Tyr	tac Tyr	gag Glu	cgc Arg	gcc Ala 45	gtt Val	cct Pro	ggc Gly	144
ī	acg Thr	ctc Leu 50	eag Lys	cag Gln	ggc Gly	gag Glu	gcg Åla 55	acc Thr	aag Lys	aag Lys	acc Thr	ggc Gly 60	acc Thr	acc Thr	atc Ile	cgg Arg	192
	ttc Phe 65	tgg Trp	gcg Ala	gac Asp	ccg Pro	gac Asp 70	atc Ile	ttc Phe	gag Glu	acc Thr	acc Thr 75	cag Gln	tac Tyr	gac Asp	ttc Phe	gag Glu 80	240
	acg Thr	gtg Val	gcg Ala	c gc Arg	cgg Arg 85	ctc Leu	caa Gln	gag Glu	atg Met	90 Ala 90	ttc Phe	ctg Leu	aac Asn	aag Lys	ggc Gly 95	ttg Leu	288
;	acc Thr	atc Ile	aac Asn	ttg Leu 100	acc Thr	gac Asp	gag Glu	cgg Arg	gtg Val 105	gac Asp	cag Gln	gac Asp	gag Glu	gtc Val 110	gtc Val	gat Asp	336
)	gaa Glu	gtc Val	gtc Val 115	agc Ser	gac Asp	acc Thr	gcc Ala	gat Asp 120	gcg Ala	ccc Pro	aag Lys	tcc Ser	gcc Ala 125	gaa Glu	gag Glu	aag Lys	384
	gcg Ala	gcc Ala 130	gaa 61u	tcc Ser	aaa Lys	gcg Ala	ccg Pro 135	cac His	aag Lys	gtt Val	aag Lys	cac His 140	cgc Arg	acc Thr	ttc Phe	cac His	432
•	tac Tyr 145	ccc Pro	ggc Gly	ggc Gly	ttg Leu	gtc Val 150	gac Asp	ttc Phe	gtc Val	aag Lys	cac His 155	atc Ile	aac Asn	cgg Arg	acc Thr	aag Lys 160	480
,	agc Ser	ccg Pro	atc Ile	caa G1n	cag Gin 165	agc Ser	gtc Val	atc Ile	gac Asp	ttc Phe 170	gag Glu	ggc Gly	aaa Lys	ggc Gly	acc Thr 175	ggc Gly	528
; .	cac His	gag Glu	gtc Val	gag Glu 180	atc Ile	gcg Ala	atg Met	cag Gln	tgg Trp 185	aac Asn	ggt Gly	ggc Gly	tac Tyr	tcg Ser 190	gag Glu	tcg Ser	576
	gtg Val	cac His	acc Thr 195	ttc Phe	gcc Ala	aac Asn	acg Thr	atc Ile 200	aac Asn	acc Thr	cac His	gag Glu	ggc 61 y 205	ggt 6ly	acg Thr	cac His	624
	gaa Glu	gaa Glu 210	999 Gly	ttc Phe	ege Arg	agt Ser	gcg Ala 215	ctg Leu	acg Thr	tcg Ser	gtg Val	gtg Val 220	aac Asn	aaa Lys	tac Tyr	gcc Ala	672

5	aaa Lys 225	gac Asp	aag Lys	aag Lys	ctg Leu	ctg Leu 230	aaa tys	gac Asp	aag Lys	gac Asp	ccg Pro 235	aac Asn	ctc Leu	acc Thr	ggt Gly	gac Asp 240	720
,	gac Asp	atc Ile	cgc Arg	gag Glu	gga Gly 245	ctg Leu	gcc Ala	gcg Ala	gtg Val	atc Ile 250	tcg Ser	gtc Val	aag Lys	gtç Val	gcc Ala 255	gaa Glu	. 768
10	ccc Pro	cag Gln	ttc Phe	gag Glu 260	ggc Gly	cag G1n	aca Thr	aag Lys	acc Thr 265	aag Lys	ctg Leu	ggc Gly	aac Asn	acc Thr 270	gag Glu	gtc Val	816
15	aag Lys	tcg Ser	ttc Phe 275	gtg Val	cag Gln	aag Lys	gtg Val	tgc Cys 280	aac Asn	gaa Elu	cag Gln	ctc Leu	acc Thr 285	cac His	tgg Trp	ttc Phe	864
	gag 61u	gcc Ala 290	aat Asn	ccg Pro	tcg Ser	gaa Glu	gcc Ala 295	aaa Lys	acc Thr	gtt Val	gtc Val	aac Asn 300	aag Lys	gcg Ala	gtt Val	tcg Ser	912
20	tcc Ser 305	gca Ala	cag Gln	gcc Ala	cgg Arg	atc Ile 310	gcg Ala	gcg Ala	cgg Arg	aag Lys	gcc Ala 315	cga Arg	gag Glu	ttg Leu	gtg Vai	cgg Arg 320	960
25	cgc Årg	aag Lys	agc Ser	gcg Ala	acc Thr 325	gat Asp	ttg Leu	ggc Gly	999 Gly	ctg Leu 330	ccc Pro	ggc Gly	aag Lys	ctg Leu	gcc Ala 335	gac Asp	1008
<i>30</i>	tgc Cys	cgt Arg	tcc Ser	acc Thr 340	gac Asp	ccg Pro	cgc Arg	aa g Lys	tcc [.] Ser 345	gaa Glu	ctg Leu	tat Tyr	gtg Val	gtg Val 350	gag Glu	ggt Gly	1056
	gac Asp	tcg Ser	gca Ala 355	ggt Gly	ggc Gly	tcg Ser	gcc Ala	aag Lys 360	agc Ser	ggc Gly	cgt Arg	gac Asp	teg Ser 365	atg Met	ttc Phe	cag Gln	1104
35	gcc Ala	atc Ile 370	ctg Leu	ccg Pro	ctg Leu	Arg	99c 61y 375	aag Lys	atc Ile	atc Ile	aac Asn	gtc Val 380	gag Glu	aag Lys	gcc Ala	cgc Årg	1152
40	atc Ile 385	gac Asp	cgg Arg	gtc Val	Leu	aag Lys 390	aac Asn	acc Thr	gaa Glu	Val	cag 61n 395	gcg Ala	atc Ile	atc Ile	acc Thr	gcg Ala 400	1200
45	ctg Leu	ggt Gly	acc Thr	Gly	att Ile 405	cac His	gac Asp	gag Glu	Phe	gac Asp 410	att Ile	tct Ser	aaa Lys	ctg Leu	cgt Arg 415	tac Tyr	1248
		aag Lys	lle														1263

<210> 32 <211> 421

<212> PRT <213> Mycobacterium asiaticum

10

15

25

50

55

Gly Glu Asn Ser Gly Tyr Thr Val Ser Gly Gly Leu His Gly Val Gly Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asp Ile Lys 20 25 30 Arg Asp Gly His Glu Trp Ser Gln Tyr Tyr Glu Arg Ala Val Pro Gly
35 40 45 Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Ile Arg Phe Trp Ala Asp Pro Asp Ile Phe Glu Thr Thr Gln Tyr Asp Phe Glu 65 70 75 80 Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95 Thr Ile Asn Leu Thr Asp Glu Arg Val Asp Gln Asp Glu Val Val Asp 100 105 110 Glu Val Val Ser Asp Thr Ala Asp Ala Pro Lys Ser Ala Glu Glu Lys 115 120 125 Ala Ala Glu Ser Lys Ala Pro His Lys Val Lys His Arg Thr Phe His 130 135 140 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 155 Ser Pro Ile Gln Gln Ser Val Ile Asp Phe Glu Gly Lys Gly Thr Gly 165 170 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 185 190 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 215 220 Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp 225 230 240 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val. Ala Glu 245 250 255 Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val 260 265 270 Lys Ser Phe Val Gin Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe

		275			280					285				
5	Glu Ala 290	Asn I	Pro Ser		la Lys 95	Thr	Va]	ΫaΊ	Asn 300	Lys	Ala	Val	Ser	
	Ser Ala 305	Gln	Ala Arg	Ile A 310	la Ala	Arg	Lys	Ala 315	Arg	Glu	Leu	Val	Arg 320	
10	Arg Lys	Ser /	Ala Thr 325	Asp L	eu Gly	61y	Leu 330	Pro	G]y	Lys	Leu	A1a 335	Asp	
	Cys Arg		Thr Asp 340	Pro A	rg Lys	Ser 345	6 1u	Leu	Tyr	Val	Va1 350	G1u	Gly	
15	Asp Ser	Ala (Gly Gly	Ser A	la Lys 360	Ser	G]y	Arg	Asp	Ser 365	Met	Phe	Gîn	
	Ala Ile 370	Leu i	Pro Leu		ly Lys 75	Ile	Ile	Asn	Va] 380	Gl∪	Lys	Ala	Arg	•
20	Ile Asp 385	Arg \	Val Leu	Lys A 390	sn Thr	Glu	Val	61n 395	Ala	Ile	Ile	Thr	Ala 400	
25	Leu Gly	Thr (Gly Ile 405	His A	sp Glu		Asp 410	Ile	Ser	Lys	Leu	Arg 415	Туг	
	His Lys		Val Leu 420											
30	<210> 3: <211> 1: <212> D: <213> M:	263 NA	cterium	scrof	ulceum				•					
35	<220>. <221> C <222> (DS 1)(1	1263)											
40	<400> 3: ggc gag Gly Glu 1	aac a	agc ggc Ser Gly 5	tac a Tyr Ti	cc gtc hr Val	agc Ser	ggt Gly 10	999 Gly	ttg Leu	cac His	gga Gly	gtg Val 15	ggc Gly	48
45	gtg tcg Val Ser	gtg s Val V	etc aac Val Asn 20	gcg c	tg tcc eu Ser	acc Thr 25	cgc Arg	ctg Leu	gag Glu	gtc Val	acc Thr 30	atc Ile	aag Lys	96
	cgc gac Arg Asp	999 G Gly H 35	cac gag His Glu	tgg t Trp P	tt cag he Gln 40	tac Tyr	tac Tyr	gac Asp	cgc Arg	gcc Ala 45	gtg Val	ccc Pro	gga Gly	144
50	acc ctc Thr Leu 50	aag (Lys (cag ggc Sin Gly	Glu A	cc acc la Thr 55	aag Lys	aag Lys	acc Thr	gga Gly 60	acc Thr	acg Thr	atc Ile	agg Arg	192

	ttc Phe 65	tgg Trp	gcg Ala	gac Asp	ccc Pro	g aa G1u 70	Ile	ttc Phe	gaa Glu	acc Thr	aca Thr 75	cag Gln	tac Tyr	gac Asp	ttc Phe	gag Glu 80	240
	acc Thr	gtg Val	gcg Ala	cgg Arg	cgg Arg 85	ctg Leu	cag Gln	gag Glu	atg Met	gcc Ala 90	ttc Phe	ctc Leu	aac Asn	aag Lys	ggc Gly 95	ctc Leu	288
	acc Thr	atc Ile	aac Asn	ctc Leu 100	acc Thr	gac Asp	gaa Glu	cga Arg	gtg Val 105	gag Glu	cag Gln	gac Asp	gag Glu	gtc Val 110	gtc Val	gac Asp	336
	gag Glu	gtc Val	gtc Val 115	agc Ser	gac Asp	acc Thr	gcc Ala	9ag Glu 120	gca Ala	ccg Pro	aag Lys	tcc Ser	gcc Ala 125	gaa Glu	gag Glu	aag Lys	384
		gcg Ala 130															432
	tac Tyr 145	ccc Pro	ggc Gly	ggt Gly	ctg Leu	gtc Val 150	gac Asp	ttc Phe	gtc Val	aag Lys	cac His 155	atc Ile	aac Asn	cgc Arg	acc Thr	aag Lys 160	480
	agc Ser	ccg Pro	atc Ile	cag 61n	cag 61n 165	agc Ser	gtc Val	atc Ile	gat Asp	ttc Phe 170	gac Åsp	ggc Gly	aag Lys	ggc Gly	acc Thr 175	ggc Gly	528
,	caç His	gag Glu	gtc Val	gag 61u 180	atc Ile	gcc Ala	atg Met	cag Gln	tgg Trp 185	aac Asn	ggc Gly	ggc Gly	tac Tyr	tcg Ser 190	gag Glu	tcc Ser	576
	gtc Val	cac His	acc Thr 195	ttc Phe	gcc Ala	aac Asn	acc Thr	atc Ile 200	aac Asn	acg Thr	cac His	gag Glu	ggc Gly 205	ggc Gly	acc Thr	cac His	_. 624
	gag Glu	gag Ğlu 210	ggc Gly	ttc Phe	cgc Arg	agc Ser	gcg Ala 215	ctg Leu	acg Thr	tcg Ser	gtg Val	gtg Val 220	aac Asn	aag Lys	tac Tyr	gcc Ala	672
	aaa Lys 225	gac Asp	aag Lys	aaa Lys	ctg Leu	ctg Leu 230	aag Lys	gac Asp	aaa Lys	gat Asp	ccc Pro 235	aac Asn	ctc Leu	acc Thr	ggt Gly	gac Asp 240	720
	gac Asp	atc Ile	cgt Arg	gag Glu	990 61y 245	ttg Leu	gcc Ala	gcg Ala	gtc Val	atc Ile 250	tcg Ser	gtg Val	aag Lys	gtc Val	gcc Ala 255	gag Glu	768
	cca Pro	cag Gln	ttc Phe	gaa Glu 260	ggc 61y	cag Gln	acc Thr	aag Lys	aca Thr 265	aag Lys	ctg Leu	ggc Gly	aac Asn	acc Thr 270	gag Glu	gtg Val	816
	aag Lys	tcg Ser	ttc Phe 275	gtg Val	cag 61n	aag Lys	gtg Val	tgc Cys 280	aac Asn	gag Glu	cag Gln	ctc Leu	acc Thr 285	cac His	tgg Trp	ttc Phe	864

_	gag Glu	gcc Ala 290	aac Asn	cca Pro	tcc Ser	gag Ģlu	909 Ala 295	aaa Lys	acg Thr	gtg Val	gtg Val	aac Asn 300	aaa Lys	gcg Ala	gtg Val	tcg Ser	912
5			cag Gln														960
10	cgc Arg	aag Lys	agc Ser	gcc Åla	acc Thr 325	gac Asp	ctc Leu	ggc Gly	ggt Gly	ctg Leu 330	ccc Pro	999 Gly	aag Lys	ctg Leu	9cc Ala 335	gac Asp	1008
15			tcc Ser														1056
	gat Asp	tcg Ser	gcc Ala 355	ggc Gly	ggc Gly	tcg Ser	gcc Ala	aag Lys 360	agc Ser	ggg	cgc Arg	gac Asp	tcg Ser 365	atg Met	ttc Phe	cag Gln	1104
20	gcg Ala	atc Ile 370	ctg Leu	ccg Pro	ctg Leu	cgc Arg	ggc Gly 375	aag Lys	atc Ile	atc Ile	aat Asn	gtc Val 380	gag Glu	aag Lys	gcc Ala	cgc Arg	1152
25	atc Ile 385	gac Asp	cgg Arg	gtg Val	ctg Leu	aag Lys 390	aac Asn	acc Thr	gaa Glu	gtt Val	cag 61n 395	gcg Ala	atc Ile	atc Ile	acc Thr	gcg Ala 400	1200
30			acc Thr														1248
30			atc Ile											•			1263
35	<211 <212	> 34 > 42 > PR > My	1 .	cter	ium	scro	ofulc	eum								•	
40		> 34 Glu	Asn	Ser	6 1 y 5	Tyr	Thr	Val	Ser	€1y 10	G1 y	Leu	His	Gly	Val 15	Gly	
45			Val	20					25					30			
	Arg	Asp	G1 y 35	His	Glu	Trp	Phe	Gln 40	Tyr	Tyr	Asp	Arg	Ala 45	Va]	Pro	Gly.	
50	Thr	Leu 50	Lys	Gln	G] y	Glu	Ala 55	Thr	Lys	Lys	Thr	Gly 60	Thr	Thr	Ile.	Arg	
	Phe	Trp	Ala	Asp	Pro	GÌu	Ile	Phe	Glu	Thr	Thr	61n	Tyr	Asp	Phe	Glu	

65					70					75					80
Thr	Val	Ala	Arg	Arg 85	Leui	G1n	Glu	Met	AÌa. 90	Phe	Leu	Asn	Lys	Gly 95	Leu
Thr	Ile	Asn	Leu 100	Thr	Asp	G1 u	Arg	Va] 105	61u	61n	Asp	GTu	Val 110	Val	Asp
Glu	Val	Va1 115	Ser	Asp	Thr	Ala	Glu 120	Ala	Pro	Lys	Ser	A1a 125	Glu	GTu	Lys
Ala	Ala 130	Glu	Ser	Thr	Ala	Pro 135	His	Lys	Va1	Lys	His 140	Årg	Thr	Phe	His
Tyr 145	Pro	61 y	G] y	Leu	Val 150	Asp	Phe	Val	Lys	His 155	Ile	Asn '	Arg	Thr	Lys 160
Ser	Pro	Ile	Gln	G1n 165	Ser	Val	Ile	Asp	Phe 170	Asp	Gly	Lys	Gly	Thr 175	Ģ1 y
His	61u	Va1	G] u 180	Ile	Ala	Met	Gln	Trp 185	Asn	Gly	Gly	Tyr	Ser 190	G7u	Ser
Va1	His	Thr 195	Phe	Ala	Asn	Thr	11e 200	Asn	Thr	His	Glu	Gly 205	61 y	Thr	His
Glu	Glu 210	Gly	Phe	Arg	Ser	A1a 215	Leu	Thr	Ser	Val	Va1 220	Asn	Lys	Tyr	Ala
Lys 225	Asp	Lys	Lys	Leu	Leu 230	Lys	Asp	Lys	Asp	Pro 235	Asn	Leu	Thr	Gly	Asp 240
Asp	Ile	Arg	G] u	G1 y 245	Leu	Ala	Ala	Va1	Ile 250	Ser	Va1	Lys	Val	Ala 255	G1u
Pro	Gln	Phe	Glu 260	Gly	Gln	Thr	Lys	Thr 265	Lys	Leu.	Gly	Asn	Thr 270	Glu	·Va1
Lys	Ser	Phe 275	Va]	67 n	Lys	Va1	Cys 280	Asn	6 1u	Gln	Leu	Thr 285	His	Тгр	Phe
Glu	Ala 290	Asn	Pro	Ser	G1 u	Ala 295	Lys	Thr	Val	Val	Asn 300	Lys	Ala	Val	Ser
Ser 305	Ala	Gln	Ala	Arg	Ile 310	Ala	Ala	Arg	Lys	Ala 315	Arg	Glu	Leu	Val	Arg 320
Arg	Lys	Ser	Ala	Thr 325	Asp	Leu	Gly	Gly	Leu 330	Pro	Gly	Lys	Leu	Ala 335	Asp
Cys	Årg	Ser	Thr 340	Asp	Pro	Arg	Lys	Ser 345	G] u	Leu	Tyr	Val-	Val 350	Glu	61y
Asp	Ser	Ala 355	G1 y	Gly	Ser	Ala	Lys 360	Ser	61y	Arg	Asp	Ser 365	Met	Phe	G 1n

	Ala	Ile 370	Leu	Pro	Leu	Arg 	Gly 375	Lys	Ile	Ile	Asn	Val 380	Glu	Lys	Ala	Arg	
5	Ile 385	Asp	Arg	Va1	Leu	Lys 390	Asn	Thr	Glu	Val	61n 395	Ala	Ile	Ile	Thr	Ala 400	
	Leu	61 y	Thr	61 y	Ile 405	His	Asp	6 1u	Phe	Asp 410	Ile	Thr	Lys	Leu	Arg 415	Tyr	
	His	Lys	Ile	Va7 420	Leu												
15	<211 <212)> 35 > 12 > DN > My	260 IA	ıcter	ium:	bran	nderi	İ		٠							
20		> Ç[1260))								•			٠	
<i>25</i>	990)> 35 gat Asp	gac	agc Ser	gcc Ala 5	tac Tyr	gcg Ala	gtc Val	tcg Ser	ggt Gly 10	ggt Gly	ctg Leu	cac His	gja aac	gtg Val 15	ggc Gly	48 ·
				gtc Val 20													96
30	acc Thr	gac Asp	999 Gly 35	tac Tyr	gag Glu	tgg Trp	ttt Phe	cag 61n 40	cat His	tac Tyr	gac Asp	.cgc Arg	tct Ser 45	gtc Val	ccc Pro	ggc Gly	144
35	acg Thr	ctc Leu 50	aag Lys	caa Gln	ggc Gly	gag Glu	aaa Lys 55	acc Thr	aaa Lys	aag Lys	acc Thr	ggc Gly 60	acc Thr	acg Thr	gtç Val	ege Arg	192
-	ttc Phe 65	tgg Trp	gcc Ala	gac Asp	ccg Pro	gac Asp 70	atc Ile	ttc Phe	gag Glu	acg Thr	acg Thr 75	gat Asp	tac Tyr	gac Asp	ttc. Phe	80 80	240
40	acg Thr	gtc Val	gca Ala	cgc Arg	cgg Arg 85	ctg Leu	cag Gln	gaa Glu	atg Met	9c9 Ala 90	ttc Phe	ctc Leu	aac Asn	aaa Lys	999 61y 95	ctg Leu	288
45	acc Thr	atc Ile	aac Asn	ctg Leu 100	acc Thr	gac Asp	gag Glu	Arg	gtg Val 105	cga Arg	aac Asn	gaa Glu	gaa Glu	gtc Val 110	gtc Val	gac Asp	336
50	gag Glu	gtc Val	gtc Val 115	agc Ser	gac Asp	acc Thr	gcc Ala	gac Asp 120	gcg Ala	ccg Pro	aag Lys	tcg Ser	gcg Ala 125	cgc Arg	gaa Glu	gag Glu	384
	gcc	gaa	gaa	cgg	acc	acg	cag	aaa	gtc	aag	cac	cgc	acg	ttc	cat	tac	432

	Ala	Glu 130	Glu	Arg	Thr	Thr	61n 135	Lys	Val	Lys	His	Arg 140	Thr	Phe	His	Ţyr -	
5	ccc Pro 145	ggc	ggc Gly	ttg Leu	gtc Val	gat Asp 150	ttc Phe	gtc Val	aaa Lys	cac His	atc Ile 155	aac Asn	cgc Arg	aca Thr	aag Lys	aac Asn 160	480
10	ccc Pro	atc Ile	cat His	tcg Ser	agc Ser 165	atc Ile	gtc Val	gac Asp	ttc Phe	tcc Ser 170	ggc Gly	aag Lys	ggt Gly	ccc Pro	ggc Gly 175	cac His	528
	gag Glu	gtc Val	gag Glu	atc Ile 180	gca Ala	atg Met	cag 61n	tgg Trp	aac Asn 185	gcc Ala	ggc G1y	tat Tyr	tcg Ser	gag Glu 190	tcg Ser	gtg Val	576
15	cac His	acc Thr	ttc Phe 195	gcc Ala	aac Asn	acc Thr	atc Ile	aac Asn 200	acc Thr	cac His	gag Glu	ggc Gly	ggc Gly 205	acc Thr	cac His	gaa Glu	624
20	gaa Glu	999 Gly 210	ttc Phe	cgc Arg	gcg Ala	gça Ala	ctg Leu 215	acg Thr	tcc Ser	g t g V a l	gtg Val	aac Asn 220	aag Lys	tac Tyr	gcc Ala	aag Lys	672
25	gac Asp 225	cga Arg	aaa Lys	ctg Leu	ctg Leu	aag Lys 230	gac Asp	aag Lys	gac Asp	ccc Pro	aac Asn 235	ctc Leu	acc Thr	ggc Gly	gac Asp	gac Asp 240	720
	att Ile	cgt Årg	gag Glu	ggc Gly	ctg Leu 245	gcg Ala	gcg Ala	gtc Val	atc Ile	tcg Ser 250	gtc Val	aag Lys	gtc Val	agc Ser	gag Glu 255	ccg Pro	768
30	cag Gln	ttc Phe	gag Glu	99C Gly 260	Gln	acc Thr	aaa Lys	acc Thr	aaa Lys 265	ctc Leu	ggc Gly	aac Asn	acc Thr	gaa Glu 270	gtc Val	aag Lys	816
<i>35</i>	tcg Ser	ttt Phe	gtg Val 275	cag Gln	aag Lys	gtc Val	tgc Cys	aac Asn 280	gaa Glu	cag Gln	ctc Leu	acc Thr	cac His 285	tgg Trp	ttc Phe	gag Glu	864
	gcc Ala	aat Asn 290	ccc Pro	agc Ser	gac Asp	gcc Ala	aag Lys 295	acc Thr	gtc Val	gtc Val	aac Asn	aaa Lys 300	gcg Ala	gtg Val	tcg Ser	tcg Ser	912
40		cag Gln															960
45	aag Lys	agc Ser	gca Ala	acc Thr	gat Asp 325	ctt Leu	99c 61y	999 G1 y	ctg Leu	ccg Pro 330	ggc Gly	aag Lys	ctg Leu	gct Ala	gac Asp 335	tgc Cys	1008
50	cgc Arg	tcg Ser	acc Thr	gat Asp 340	cca Pro	cgc Arg	aag Lys	tcc Ser	gaa Glu 345	ttg Leu	tat Tyr	gtg Val	gtg Val	gag Glu 350	Gly	gat Asp	1056
	tcg	gcc	ggc	990	tcg	gcc	aag	agc	ggc	cgc	gac	tcg	atg	ttt	cag	gcg	1104

Ser	Ala	61 y 355	Gly.	Ser	Ala	Lys	Ser 360	Gly	Arg	Asp	Ser	Met 365	Phe	6 1n	Ala	
atc Ile	ctg Leu 370	ccg Pro	ttg Leu	cgg Arg	ggc	aag Lys 375	atc Ile	atc Ile	·aac Asn	gtg Val	gag 61u 380	aag Lys	gcc Ala	cgc Arg	atc Ile	1152
gac Asp 385	cgg Arg	gtg Val	ctg Leu	aag Lys	aac Asn 390	act Thr	gag 61u	gtg Val	cag Gln	909 Ala 395	atc Ile	atc Ile	acc Thr	gcg Ala	ctg Leu 400	1200
ggc Gly	acc Thr	ggg Gly	att Ile	cac His 405	gac Asp	gag Glu	ttc Phe	gac Asp	atc Ile 410	tcc Ser	aag Lys	ct9 Leu	cgc Arg	tac Tyr 415	cac His	1248
aag Lys	atc Ile	gtg Val	ctg Leu 420										_			1260
<21°	0> 30 1> 42 2> Pi 3> My	20 RT _	icte	rium	bran	nderi	i	٠								
)> 3 (Asp		Ser	· Ala 5	Туг	Ala	Val	Ser	61y 10	61 y	Leu	Kis	Gly	Val 15	Gly	
Val	Ser	Val	Va1 20	Asn	Ala	Leu	Ser	Thr 25	Arg	Leu	Glu	Vaī	G]u 30	Ile	Ala	
Thr	Asp	G] y 35	Tyr	Glu	Trp	Phe	G]n 40	His	Tyr	Asp	Arg	Ser 45	Val	Pro	Gly	
Thr	Leu 50	Lys	Gln	Gly	Glu	Lys 55	Thr	Lys	Lys	Thr	61 y 60	Thr	Thr	Val	Arg	
Phe 65	Trp	Ala	Asp	Pro	Asp 70	Ile	Phe	61 u	Thr	Thr 75	Asp	Tyr	Asp	Phe	Glu 80	
Thr	Val	Ala	Arg	Arg 85	Leu	G1n	G1u	Met	Ala 90	Phe	Leu	Asn	Lys	G]y 95	Leu	•
Thr	lle	Asn	Leu 100	Thr	Asp	Glu	Arg	Va1 105	Arg	Asn	Glu	Glu	Val 110	Val	Asp	
Glu	Val	Va] 115	Ser	Asp	Thr	Ala	Asp 120	Ala	Pro	Lys	Ser	Ala 125	Arg	Glu	Glu	
Ala	G] u 130	Glu	Arg	Thr	Thr	G]n 135	Lys	Val	Lys	His	Arg 140	Thr	Phe	His	Tyr	
Pro 145	Gly	G1 y	Leu	Val	Asp 150	Phe	Val	Lys	His	Ile 155	Asn	Arg	Thr	Lys	Asn 160	

Glu Val Glu Ile Ala Met Gln Trp Asn Ala Gly Tyr Ser Glu Ser Val 180 180 His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His Glu 195 200 Glu Gly Phe Arg Ala Ala Leu Thr Ser Val Val Asn Lys Tyr Ala Lys 210 220 Asp Arg Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp Asp 225 230 240 The Arg Glu Gly Leu Ala Ala Val The Ser Val Lys Val Ser Glu Pro 245 250 Gin Phe Glu Gly Gin Thr Lys Thr Lys Leu Gly Asn Thr Glu Val Lys 265 270 Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe Glu 275 280 285 Ala Asn Pro Ser Asp Ala Lys Thr Val Val Asn Lys Ala Val Ser Ser 290 295 300 Ala Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg Arg 305 310 320 Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys 325 Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp 340 350 Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala 355 360 365 Ile Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile 370 380 Asp Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala Leu 385 390 395 400 Gly Thr Gly Ile His Asp Glu Phe Asp Ile Ser Lys Leu Arg Tyr His 405 410 415 Lys Ile Val Leu

25

30

<210> 37 <211> 1263

<212> DNA

<213> Hycobacterium paratuberculosis

		0> 1> C! 2> (*		(126:	3)	• .	•••			٠.						•	
		0> 3 gag 61u		agc Ser	ggc Gly 5	tac Tyr	aac Asn	gtc Val	agc Ser	99c 61y 10	ggt Gly	ctg Leu	cac His	ggc Gly	gtc Val 15	ggc 61y	48
•	gtc Val	tcg Ser	gtg Val	gtc Val 20	aac Asn	gcg Ala	ctg Leu	tcc Ser	act Thr 25	cgg Arg	ctc Leu	gag Glu	gtc Val	aac Asn 30	atc Ile	gcc Ala	96
	cgc Arg	gac Asp	ggc Gly 35	tac Tyr	gag Glu	tgg Trp	tcg Ser	cag Gln 40	tac Tyr	tac Tyr	gac Asp	cac His	gcc Ala 45	gtg Val	ccc Pro	ggc Gly	144
	acc Thr	ctc Leu 50	aag Lys	cag Gln	ggc Gly	gag Glu	gcc Ala 55	acc Thr	aag Lys	cgc Arg	acc Thr	ggc Gly 60	acc Thr	acc Thr	atc 11e	cgg Arg	192
	ttc Phe 65	tgg Trp	gcc Ala	gac Asp	ccc Pro	gac Asp 70	atc Ile	ttc Phe	gag 6]u	acc Thr	acc Thr 75	gag Glu	tac Tyr	gac Asp	ttc Phe	gaa Glu 80	240
	acg Th <i>r</i>	gtg Val	gcc Ala	cgg Arg	cgg Arg 85	ctg Leu	cag Gln	gaa Glu	atg Met	gcg Ala 90	ttc Phe	ctc Leu	aac Asn	aag Lys	ggc Gly 95	ctg Leu	288
	acc Thr	atc Ile	aac Asn	ctc Leu 100	acc Thr	gac Asp	gag Glu	cgg Arg	gtg Val 105	acc Thr	aac Asn	gaa Glu	gag Glu	gtc Val 110	gtc Val	gac Asp	336
	gag Glu	gtg Val	gtc Val 115	agç Ser	gac Asp	acc Thr	gcc Ala	gac Asp 120	gca Ala	ccc Pro	aag Lys	tcg Ser	9¢9 Ala 125	cag Gln	gag 61u	aag Lys	384
	gcg Ala	gcg Ala 130	gaa Glu	tcg Ser	gct Ala	gcg Ala	ccg Pro 135	cat His	aag Lys	gtc Val	aag Lys	cac His 140	cgc Arg	acc Thr	ttc Phe	cac His	432
	tac Tyr 145	ccc Pro	ggc Gly	ggc Gly	ctg Leu	gtc Val 150	gac Asp	ttc Phe	gtc Val	aaa Lys	cac His 155	atc Ile	aat Asn	cgc Arg	acc Thr	aaa Lys 160	480
	aac Asn	ccc Pro	atc Ile	cac His	cag Gln 165	agc Ser	atc Ile	atc Ile	gat Asp	ttc Phe 170	ggt Gly	999 Gly	aag Lys	ggc 61y	ccc Pro 175	ggc	528
	cac His	gag 61u	gtc Val	gag Glu 180	atc Ile	gcg Ala	atg Met	cag Gln	tgg Trp 185	aac Asn	ggc Gly	ggc Gly	tac Tyr	tcc Ser 190	gaa Glu	tcg Ser	576
	gtg Val	cac His	acc Thr	ttc Phe	gcc Ala _.	aac Asn	acc Thr	atc Ile	aac Asn	acg Thr	cac His	gag Glu	ggc Gly	ggc Gly	acc Thr	cac His	624

		195					200			:		205				
5	gag ga Glu Gl .21	ūĠly	ttc Phe	cgc Arg	agc Ser	gcg Ala 215	Leu	acc Thr	tcc Ser	gtg Val	gtc Val 220	aac Asn	aag Lys	tac Tyr	gcc Ala	672
10	aag ga Lys As 225	c aag p Lys	aag Lys	ctg Leu	ctc Leu 230	aag Lys	gac Asp	aag Lys	gac Asp	ccc Pro 235	aac Asn	ctg Leu	acc Thr	ggt Gly	gac Asp 240	720
	gac at Asp Il	c cgc e Arg	gag Glu	ggt Gly 245	ttg Leu	gcc Ala	gcg Ala	gtg Val	atc Ile 250	tcg Ser	gtc Val	aag Lys	gtg Val	agc Ser 255	gaa Glu	768
15	ccg ca Pro 61	g ttc n Phe	gag Glu 260	ggc 61y	cag G1n	acc Thr	aag Lys	acc Thr 265	aaa Lys	ctg Leu	ggc Gly	aac Asn	acc Thr 270	Glu	gtg Val	· 816
20	aag to Lys Se	g ttc r Phe 275	gtg Val	cag Gln	aag Lys	gtg Val	tgc Cys 280	aac Asn	gaa Glu	çag Ģìn	ctc Leu	acc Thr 285	cac His	tgg. Trp	ttc Phe	864
	gaa gc Glu Al 29	a Asn														912
25	tca gc Ser Al 305															960
<i>30</i>	cgc aa Arg Ly															1008
<i>35</i>	tgc cg Cys Ar															1056
	gac to Asp Se	g gcc r Ala 355	ggc 61y	ggc Gly	tcg Ser	gcg Ala	aaa Lys 360	agc Ser	ggc Gly	cgg Arg	gac Asp	tcg Ser 365	atg Met	ttc Phe	cag Gln	1104
40	gcc at Ala Il 37	e Leu	ccg Pro	ctg Leu	egc	ggc Gly 375	aag Lys	atc Ile	atc Ile	aac Asn	gtc Val 380	gaa Glu	aag Lys	gcc Åla	cgc Arg	1152
45	atc ga Ile As 385	c cgg p Arg	gtg Val	ctg Leu	aag Lys 390	Asn	acc Thr	gag Glu	gtg Val	cag 61n 395	gcg Ala	atc Ile	atc Ile	acc Thr	gcg Ala 400	1200
50	ctg gg Leu 61	c acc y Thr	6 j y	att Ile 405	cac His	gac Asp	gag Glu	ttc Phe	gac Asp 410	atc Ile	acc Thr	aag Lys	ctg Leu	cgc Arg 415	tac Tyr	1248
50	cac aa His Ly	g atc s Ile	gtg Val	ttg Leu										;		1263

420

10

15

20

25

30

35

40

45

50

<211> 421 <212> PRT <213> Mycobacterium paratuberculosis Gly Glu Asn Ser Gly Tyr Asn Val Ser Gly Gly Leu His Gly Val Gly Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asn Ile Ala 20 30 Arg Asp Gly Tyr Glu Trp Ser Gln Tyr Tyr Asp His Ala Val Pro Gly
35
40
45 Thr Leu Lys Gln Gly Glu Ala Thr Lys Arg Thr Gly Thr Thr Ile Arg 50 60 Phe Trp Ala Asp Pro Asp Ile Phe Glu Thr Thr Glu Tyr Asp Phe Glu 65 70 75 80 Thr Val Ala Arg Arg Leu Gin Glu Met Ala Phe Leu Asn Lys Gly Leu 85 90 95 Thr Ile Asn Leu Thr Asp Glu Arg Yal Thr Asn Glu Glu Val Val Asp 100 110 Glu Val Val Ser Asp Thr Ala Asp Ala Pro Lys Ser Ala Gln Glu Lys 115 120 125 Ala Ala Glu Ser Ala Ala Pro His Lys Val Lys His Arg Thr Phe His 130 135 140 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys 145 150 160 Asn Pro Ile His Gln Ser Ile Ile Asp Phe Gly Gly Lys Gly Pro Gly 165 170 175 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser 180 185 190 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His 195 200 205 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala 210 215 220 Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp 225 230 235 240 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu 245 250 255

Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val 265 270 Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe 275 280 285 Glu Ala Asn Pro Ala Asp Ala Lys Val Ile Val Asn Lys Ala Val Ser 290 295 300 Ser Ala Gin Ala Arg Ile Ala Ala Arg Lys Ala Arg Giu Leu Val Arg 305 310 315 Arg Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp 325 330 Cys Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly 340 350 Asp Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln 355 360 365 Ala Ile Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg 370 380 Ile Asp Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala 385 390 395 400 Leu Gly Thr Gly Ile His Asp Glu Phe Asp Ile Thr Lys Leu Arg Tyr 405 410 415 His Lys Ile Val Leu 420 <210> 39 <211> 1257 <212> DNA <213> Mycobacterium kansasii <220> <221> CDS <222> (1)..(1257) <400> 39 tcc gac gcc tac gcg ata tcg ggc ggg ctg cac ggt gtg ggt gtc tcg Ser Asp Ala Tyr Ala Ile Ser Gly Gly Leu His Gly Val Gly Val Ser 1 5 10 48 gtg gtc aac gca ctg tcc acc cgg ctg gag gtg gag atc aag cgc gac Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Glu Ile Lys Arg Asp 25 30 96 ggc cat gag tgg tcg cag gtt tac gag aaa tcc gag ccg atg gga ctc Gly His Glu Trp Ser Gln Val Tyr Glu Lys Ser Glu Pro Met Gly Leu 35 40 144

10

20

30

5	aag Lys	caa Gln 50	ggc Gly	gcg	ccg Pro	act Thr	aag Lys 55	aag Lys	acc Thr	ggc Gly	acg Thr	acg Thr 60	gtg Val	Arg Cgg	ttc Phe	tgg Trp	192
	gcc Ala 65	Asp	Pro	eat Asn	gtt Val	ttt Phe 70	gag Glu	acc Thr	acc Thr	gag Glu	tac Tyr 75	gac Asp	ttc Phe	gaa Glu	acc	gtc Val 80	240
10	gca Ala	cga Arg	C99 Arg	ttg Leu	cag Gln 85	gag Glu	atg Met	gcg	ttt Phe	ctc Leu 90	aac Asn	aag Lys	Gly	ctc Leu	acc Thr 95		288
15	aat Asn	ctg Leu	acc Thr	gat Asp 100	cag Gln	cgg Arg	gtg Val	acc Thr	cag Gln 105	gac Asp	gag Glu	gtc Vai	gtc Val	gac Asp 110	gag Glu	gtg Val	336
20	gtc Val	agc Ser	gac Asp 115	gtc Val	gcc Ala	gag Glu	gcc Ala	cca Pro 120	aag Lys	tcg Ser	gcc Ala	agc Ser	gag Glu 125	aag Lys	gcg Ala	gcc Ala	384
	gaa Glu	tcc Ser 130	gcc Ala	gcc Ala	ccg Pro	cac His	aag Lys 135	gtc Val	aag Lys	aag Lys	cgt Arg	acc Thr 140	ttc Phe	cac His	tat Tyr	ccc Pro	432
25	61y 145	ggt Gly	Leu	Va 1	Asp	Phe 150	Val	Lys	His	Ile	Asn 155	Arg	Thr	Lys	Asn	Ala 160	480
30	atc Ile	cac His	agc Ser	agc Ser	atc Ile 165	gtc Val	gac Asp	ttc Phe	tcc Ser	ggt Gly 170	aag Lys	gga Gly	ecc Pro	ggc Gly	cac His 175	gaa Glu	528
35	Vai	gag Glu	119	180	Met	GIN	Trp	Asn	A1a 185	61y	Tyr	Ser	Glu	Ser 190	Val	His	576
	INT	ttc Phe	195	ASN	INT	Tie	ASN	200	HIS	GIU	61y	Gly	Thr 205	His	610	G1 _U	624
40	999 Gly	ttc Phe 210	c gc Arg	agc Ser	gcg Ala	ctg Leu	acc Thr 215	tcg Ser	gtg Val	gtg Val	aac Asn	aag Lys 220	tac Tyr	gcc Ala	aag Lys	gac Asp	672
45	cgc Arg 225	aaa Lys	ctg Leu	ctc Leu	Lys	gaa Glu 230	aag Lys	gac Asp	ccc Pro	aac Asn	ctc Leu 235	acc Thr	ggc	gac Asp	gac Asp	atc Ile 240	720
	cgg Arg	gaa Glu	999 Gly	Leu	gcc Ala 245	gcg Ala	gtg Val	att Ile	Ser	gtc Val 250	aag Lys	gtc Val	agc Ser	gag Glu	ccg Pro 255	cag 61n	768
50	ttc Phe	gag Glu	Gly	cag Gln 260	acc Thr	aag Lys	acg Thr	Lys	ctg Leu 265	ggc 61y	aac Asn	acc Thr	Glu	gtg Val 270.	Lys	tcg Ser	816

5	ttc gtg cag aag gtg tgc aac gaa cag ctc acc cat tgg ttc gag gcc Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe Glu Ala 275 280 285	
3	aac ccc gct gac gct aaa acc gtt gtc aac aag gcg gtt tca tcg gcg Asn Pro Ala Asp Ala Lys Thr Val Val Asn Lys Ala Val Ser Ser Ala 290 295 300	
10	caa gca cgc att gcg gcc cgc aag gcg cgc gag ttg gtg cgc cgc aag 960 Gln Ala Arg Ile Ala Arg Lys Ala Arg Glu Leu Val Arg Arg Lys 305 310 315	
15	agc gca acc gat ctg ggc gga cta ccc ggc aag ctc gcc gac tgc cgc 1008 Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys Arg 325 330 335	ţ
20	tcg acc gac ccg cgc aag tcc gaa ctg tat gtg gtg gag ggt gat tca 1056 Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp Ser 340 345 350	i
	gcc ggc ggc tcg gcg aag agc ggt cgc gac tcg atg ttc cag gcc atc 1104 Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala Ile 355 360 365	ř
25	ttg ccg ttg cgc ggc aag atc atc aac gtc gag aag gcc cgc atc gac 1152 Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile Asp 370 375 380	
30	cgg gtg ctg aag aac acc gaa gtc cag gcg atc atc acc gcg ttg ggt 1200 Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala Leu Gly 385 390 395 400	i
35	acc ggc atc cac gac gaa ttc gac atc gcg aga ctg cgt tac cac aag 1248 Thr Gly Ile His Asp Glu Phe Asp Ile Ala Arg Leu Arg Tyr His Lys 405 410 415	}
	atc gtg ctc 1257 Ile Val Leu	
40	<210> 40 <211> 419 <212> PRT <213> Mycobacterium kansasii	
45	<400> 40 Ser Asp Ala Tyr Ala Ile Ser Gly Gly Leu His Gly Val Gly Val Ser 1. 15	
	Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Glu Ile Lys Arg Asp 20 25 30	
50	Gly His Glu Trp Ser Gln Val Tyr Glu Lys Ser Glu Pro Met Gly Leu 35 40 45	

10

15

20

25

30

35

Lys Gln Gly Ala Pro Thr Lys Lys Thr Gly Thr Thr Val Arg Phe Trp 50 60 Ala Asp Pro Asn Val Phe Glu Thr Thr Glu Tyr Asp Phe Glu Thr Val 65 75 80 Ala Arg Arg Leu Glm Glu Met Ala Phe Leu Asn Lys Gly Leu Thr Ile 85 90 Asn Leu Thr Asp Gln Arg Val Thr Gln Asp Glu Val Val Asp Glu Val 100 110 Val Ser Asp Val Ala Glu Ala Pro Lys Ser Ala Ser Glu Lys Ala Ala 115 120 125 Glu Ser Ala Ala Pro His Lys Val Lys Lys Arg Thr Phe His Tyr Pro 130 135 140 Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys Asn Ala 145 150 160 Ile His Ser Ser Ile Val Asp Phe Ser Gly Lys Gly Pro Gly His Glu 165 170 175 Val Glu Ile Ala Met Gln Trp Asn Ala Gly Tyr Ser Glu Ser Val His 180 185 190 Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His Glu Glu 195 200 205 Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala Lys Asp 210 215 220 Arg Lys Leu Leu Lys Glu Lys Asp Pro Asn Leu Thr Gly Asp Asp Ile 225 230 240 Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ser Glu Pro Gln 245 250 255 Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val Lys Ser 260 265 270Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe Glu Ala 280 285 Asn Pro Ala Asp Ala Lys Thr Val Val Asn Lys Ala Val Ser Ser Ala 290 295 300 Gìn Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg Arg Lys 305 310 . 315 320 Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp Cys Arg 325 330 335 Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly Asp Ser 340 345 350

	Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln Ala Ile 355 360 365	
	Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg Ile Asp 370 380	
	Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala Leu Gly 385 400	
	Thr Gly Ile His Asp Glu Phe Asp Ile Ala Arg Leu Arg Tyr His Lys 405 410 415	
	Ile Val Leu	
	<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<400> 41 tcggacgcgt atgcgatatc	20
	<210> 42 <211> 7 <212> PRT <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
v.	<400> 42 Ser Asp Ala Tyr Ala Ile Ser	
	<210> 43 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<400> 43 acatacagtt cggacttgcg	20
	<210> 44 <211> 7	

55 ·

	<212> PRT <213> Artificial Sequence	
5	<220> <223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
10	<400> 44 Arg Lys Ser Glu Leu Tyr Val 1 5	
15	<210> 45 <211> 19 <212> DNA <213> Artificial Sequence	
eo	<220> <223> Description of Artificial Sequence: Synthetic DNA	
	<400> 45 gaagacgggg tcaacggtg	19
95	<210> 45 <211> 6 <212> PRT <213> Artificial Sequence	
o	<pre><220> <223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe</pre>	
	<400> 46 Lys Thr Gly Ser Thr Val 1 5	
5		
	<210> 47 <211> 22 <212> DNA <213> Artificial Sequence	
0	<220> <223> Description of Artificial Sequence: Synthetic DNA	
5	<400> 47 ccttgttcac aacgactttc gc	22
o	<210> 48 <211> 7 <212> PRT <213> Artificial Sequence	
	<220>	

	<223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
	<400> 48 Ala Lys Val Val Asn Lys 1 5	
o	<210> 49 <211> 19 <212> DNA <213> Artificial Sequence	
5	<220> <223> Description of Artificial Sequence: Synthetic DNA <400> 49	
	gaagacgggg tcaacggta	19
o	<210> 50 <211> 6 <212> PRT <213> Artificial Sequence	
.	<220> <223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
o	<400> 50 Lys Thr Gly Ser Thr Val 1 5	
5	<210> 51 <211> 19 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
o	<400> 51 ccagtgggtc agctgttca	19
5	<210> 52 <211> 6 <212> PRT <213> Artificial Sequence	
o	<220> <223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
	<400> 52	

5

35

```
Glu Gln Leu Thr His Trp
             <210> 53
<211> 22
<212> DNA
              <213> Artificial Sequence
10
             <220> <223> Description of Artificial Sequence: Synthetic DNA
             ccttgttcac aacgactttc ga
                                                                                         22
15
             <210> 54
<211> 7
             <212> PRT
<213> Artificial Sequence
20
             <223> Description of Artificial Sequence: Amino acid
                    sequence corresponding to primer or probe .
25
             <400> 54
             Ser Lys Val Val Val Asn Lys
             <210> 55
<211> 20
<212> DNA
             <213> Artificial Sequence
             <220>
<223> Description of Artificial Sequence: Synthetic DNA
             <400> 55
             agatcaagcg cgacgggtat
                                                                                         20
             <210> 56
<211> 6
             <212> PRT
             <213> Artificial Sequence
             <223> Description of Artificial Sequence: Amino acid
                   sequence corresponding to primer or probe
             <400> 56
             Ile Lys Arg Asp Gly Tyr
```

<210> 57 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 57 ccagtgggtc agctgttcg	19
<210> 58 <211> 6 <212> PRT <213> Artificial Sequence	
<220><223> Description of Artificial Sequence: Amino acid sequence corresponding to primer or probe	
<400> 58 Glu Gln Leu Thr His Trp 1 5	
<210> 59 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 59 tgtaaaacga cggccagtca ygcnggnggn aarttyga	38
<210> 60 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic DNA	
<400> 60 ctgcgttcgt atatgagcnc crtcnacrtc ngcrtc	36
<210> 61 <211> 17 <212> DNA <213> Artificial Sequence	
<220>	

	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
5	<400> 61 gacgcstayg cgatatc	17
10	<210> 62 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic DNA	
15	<400> 62 agcggytaca acgtcag	17

Claims

20

25

30

35

40

5

- 1. A method for identifying a slow growing mycobacteria species, which comprises amplifying the regions corresponding to SEQUENCE NO. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 in the DNA which encodes DNA gyrase β subunit of a slow growing mycobacteria in a sample, determining and comparing the nucleotide sequence of the amplified fragment with the nucleotide sequences described in SEQUENCE NO. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39, thereby calculating a genetic distance of the sequence of the amplified fragment from each sequence, and identifying the species of the slow growing mycobacteria in a sample based on the genetic distance.
- 2. A method for detecting Mycobacterium kansasii, which comprises detecting Mycobacterium kansasii using, as a primer or probe, an oligonucleotide which comprises a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 4, or a complementary sequence thereof, and substantially functions as a primer or probe.
- 3. A Mycobacterium kansasii detection kit which comprises an oligonucleotide which comprises a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 4, or a complementary sequence thereof, and substantially functions as a primer or probe.
- 4. A method for detecting Mycobacterium gastri, which comprises detecting Mycobacterium gastri using, as a primer or probe, an oligonucleotide which comprises a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 6, or a complementary sequence thereof, and substantially functions as a primer or probe.
- 5. A Mycobacterium gastri detection kit which comprises an oligonucleotide which comprises a sequence coding for a part of or the entire portion of the amino acid sequence described in SEQUENCE NO. 6, or its complementary sequence, and substantially functions as a primer or probe.
- A method for identifying a slow growing mycobacteria species, which comprises

checking, in DNA of a sample, the existence of a DNA comprising a unique region having a different nucleotide sequence in the DNA sequence coding for DNA gyrase β subunit among slow growing mycobacteria. identifying a bacterium in a sample based on the existence of said DNA as a marker.

The method for identifying a slow growing mycobacteria species according to claim 6, wherein the slow growing mycobacteria are Mycobacterium simiae, Mycobacterium bovis, Mycobacterium szuigai, Mycobacterium maimoense, Mycobacterium intracellulare, Mycobacterium avium, Mycobacterium gordonae, Mycobacterium africa-

num, Mycobacterium tuberculosis, Mycobacterium gastri, Mycobacterium marinum, Mycobacterium microti, Mycobacterium asiaticum, Mycobacterium scrofulaceum, Mycobacterium branderi, Mycobacterium paratuberculosis, and Mycobacterium kansasii.

5 8. The method for identifying a slow growing mycobacteria species according to claim 6, which comprises the following steps (1) to (4):

10

15

20

30

35

40

50

- (1) synthesizing an oligonucleotide which comprises a unique region having a different nucleotide sequence in the DNA sequence coding for DNA gyrase β subunit among slow growing mycobacteria,
- (2) preparing a solution which comprises the oligonucleotide synthesized in the step (1), dNTP, DNA polymerase and a bacterial DNA in a sample,
- (3) heating the solution prepared in the step (2) repeatedly under such conditions that polymerase chain reaction can occur, and
- (4) subjecting the solution obtained in the step (3) to electrophoresis to identify the species of the bacterium in a sample based on the electrophoresis pattern.
- The method for identifying a slow growing mycobacteria species according to claim 8, wherein the oligonucleotide is an oligonucleotide which encodes the amino acid sequence described in SEQUENCE NO. 46, SEQUENCE NO. 48, SEQUENCE NO. 50, SEQUENCE NO. 52, SEQUENCE NO. 54, SEQUENCE NO. 56 or SEQUENCE NO. 58.
- 10. The method for identifying a slow growing mycobacteria species according to claim 8, wherein the oligonucleotide is an oligonucleotide represented by SEQUENCE NO. 45, SEQUENCE NO. 47, SEQUENCE NO. 49, SEQUENCE NO. 51, SEQUENCE NO. 53, SEQUENCE NO. 55 or SEQUENCE NO. 57.
- 25 11. The method for identifying a slow growing mycobacteria species according to claim 6, which comprises the following steps (1) to (4):
 - (1) synthesizing a first oligonucleotide which is identical to a first partial sequence in the DNA sequence coding for the DNA gyrase β subunit of slow growing mycobacteria and a second oligonucleotide which is complementary to a second partial sequence in the DNA sequence coding for the DNA gyrase β subunit of slow growing mycobacteria, said first partial sequence and said second partial sequence being respectively conserved among slow growing mycobacteria,
 - (2) subjecting the two oligonucleotides synthesized in the step (1) as primers and a bacterial DNA sample as a template to the polymerase chain reaction,
 - (3) mixing the DNA fragment amplified in the step (2) with a restriction enzyme under the conditions at which the restriction enzyme is active, said restriction enzyme recognizing the sequence unique to one or more slow growing mycobacteria, and
 - (4) subjecting the mixture obtained in the step (3) to electrophoresis to identify the species of the bacterium in a sample based on the electrophoresis pattern.
 - 12. The method for identifying a slow growing mycobacteria species according to claim 11, wherein the two oligonucleotides to be used as primers are oligonucleotides represented by SEQUENCE NO. 1 and SEQUENCE NO. 3, and the restriction enzymes to be used are Rsa I and Taq I.
- 45 13. An identification kit for a slow growing mycobacteria species, which comprises an oligonucleotide containing a region of DNA coding for DNA gyrase β subunit, a region having different nucleotide sequence among slow growing mycobacteria.
 - 14. An identification kit for a slow growing mycobacteria species, which comprises
 - a first oligonucleotide which is identical to a first partial sequence in the DNA sequence coding for the DNA gyrase β subunit of slow growing mycobacteria,
 - a second oligonucleotide which is complementary to a second partial sequence in the DNA sequence coding for the DNA gyrase β subunit of slow growing mycobacteria, said first partial sequence and said second partial sequence being respectively conserved among slow growing mycobacteria, and
 - one or more restriction enzyme recognizing the sequence unique to one or more slow growing mycobacteria.
 - 15. A method for detecting a slow growing mycobacteria species, which comprises

checking, in DNA of a sample, the existence of a DNA comprising a unique region having a different nucleotide sequence in the DNA sequence coding for DNA gyrase β subunit among slow growing mycobacteria, detecting a bacterium in a sample based on the existence of said DNA as a marker.

- 16. The method for detecting a slow growing mycobacteria species according to claim 15, wherein the slow growing mycobacteria are Mycobacterium similae, Mycobacterium bovis, Mycobacterium szulgal, Mycobacterium malmoense, Mycobacterium intracellulare, Mycobacterium avium, Mycobacterium gordonae, Mycobacterium africanum, Mycobacterium tuberculosis, Mycobacterium gastri, Mycobacterium marinum, Mycobacterium microti, Mycobacterium aslaticum, Mycobacterium scrofulaceum, Mycobacterium branderi, Mycobacterium paratuberculosis, and Mycobacterium kansasii.
 - 17. The method for detecting a slow growing mycobacteria species according to claim 15, which comprises the following steps (1) to (4):

15

20

30

35

40

- (1) synthesizing an oligonucleotide which comprises a unique region having a different nucleotide sequence in the DNA sequence coding for DNA gyrase β subunit among slow growing mycobacteria,
- (2) preparing a solution which comprises the oligonucleotide synthesized in the step (1), dNTP, DNA polymerase and a bacterial DNA in a sample,
- (3) heating the solution prepared in the step (2) repeatedly under such conditions that polymerase chain reaction can occur, and
- (4) subjecting the solution obtained in the step (3) to electrophoresis to detecting the bacterium in a sample based on the electrophoresis pattern.
- 18. The method for detecting a slow growing mycobacteria species according to claim 17, wherein the oligonucleotide is an oligonucleotide which encodes the amino acid sequence described in SEQUENCE NO. 46, SEQUENCE NO. 48, SEQUENCE NO. 50, SEQUENCE NO. 52, SEQUENCE NO. 54, SEQUENCE NO. 56 or SEQUENCE NO. 58.
 - 19. The method for detecting a slow growing mycobacteria species according to claim 17, wherein the oligonucleotide is an oligonucleotide represented by SEQUENCE NO. 45, SEQUENCE NO. 47, SEQUENCE NO. 49, SEQUENCE NO. 51, SEQUENCE NO. 53, SEQUENCE NO. 55 or SEQUENCE NO. 57.
 - 20. The method for detecting a slow growing mycobacteria species according to claim 15, which comprises the following steps (1) to (4):
 - (1) synthesizing a first oligonucleotide which is identical to a first partial sequence in the DNA sequence coding for the DNA gyrase β subunit of slow growing mycobacteria and a second oligonucleotide which is complementary to a second partial sequence in the DNA sequence coding for the DNA gyrase β subunit of slow growing mycobacteria, said first partial sequence and said second partial sequence being respectively conserved among slow growing mycobacteria,
 - (2) subjecting the two oligonucleotides synthesized in the step (1) as primers and a bacterial DNA sample as a template to the polymerase chain reaction.
 - (3) mixing the DNA fragment amplified in the step (2) with a restriction enzyme under the conditions at which the restriction enzyme is active, said restriction enzyme recognizing the sequence unique to one or more slow growing mycobacteria, and
 - (4) subjecting the mixture obtained in the step (3) to electrophoresis to detect the bacterium in a sample based on the electrophoresis pattern.
- 21. The method for detecting a slow growing mycobacteria species according to claim 20, wherein the two oligonucleotides to be used as primers are oligonucleotides represented by SEQUENCE NO. 1 and SEQUENCE NO. 3, and the restriction enzymes to be used are Rsa I and Taq I.
 - 22. A detection kit for a slow growing mycobacteria species, which comprises an oligonucleotide containing a region of DNA coding for DNA gyrase β subunit, a region having different nucleotide sequence among slow growing mycobacteria.
 - 23. A detection kit for a slow growing mycobacteria species, which comprises
 - a first oligonucleotide which is identical to a first partial sequence in the DNA sequence coding for the DNA

gyrase β subunit of slow growing mycobacteria,

5

10

15

20

25

30

35

40

45

55

a second oligonucleotide which is complementary to a second partial sequence in the DNA sequence coding for the DNA gyrase β subunit of slow growing mycobacteria, said first partial sequence and said second partial sequence being respectively conserved among slow growing mycobacteria, and

one or more restriction enzyme recognizing the sequence unique to one or more slow growing mycobacteria.

- 24. A method for identifying a slow growing mycobacteria species, which comprises the following steps (1) to (4):
 - (1) synthesizing an oligonucleotide which comprises a sequence corresponding to a region in the DNA gyrase β subunit wherein the 3'-side nearest neighbor base to said region in the DNA gyrase β subunit is a unique base among the slow glowing mycobacteria,
 - (2) preparing a solution which comprises the oligonucleotide synthesized in the step (1), a labeled ddNTP, DNA polymerase, and a bacterial DNA in a sample,
 - (3) heating the solution prepared in the step (2) under such conditions that reaction between the labeled ddNTP and the oligonucleotide occurs,
 - (4) checking the existence of the labeled oligonucleotide, and
 - (5) identifying a bacterium in a sample based on the existence of the labeled oligonucleotide.
- 25. A method for detecting a slow growing mycobacteria species, which comprises the following steps (1) to (4):
 - (1) synthesizing an oligonucleotide which comprises a sequence corresponding to a region in the DNA gyrase β subunit wherein the 3'-side nearest neighbor base to said region in the DNA gyrase β subunit is a unique base among the slow glowing mycobacteria,
 - (2) preparing a solution which comprises the oligonucleotide synthesized in the step (1), a labeled ddNTP, DNA polymerase, and a bacterial DNA in a sample,
 - (3) heating the solution prepared in the step (2) under such conditions that reaction between the labeled ddNTP and the oligonucleotide occurs,
 - (4) checking the existence of the labeled oligonucleotide, and
 - (5) detecting a bacterium in a sample based on the existence of the labeled oligonucleotide.

Fig. 1	·
KPM2201	GGCGAGAACAGCGGCTACACGGTCAGCGGTGGGTTGCACGGCGTGGGCGTGTCGGTGGTT
ATCC25274	GGTGAGAACAGCGGCTACACCGTCAGCGGTGGGCTGCACGGTGTCGGTGTCAGTGGTC
KPM1403	GGGGAGAACAGTGGCTACACCGTCAGCGGCGGGTTGCACGGGGTCGGAGTGTCGGTGGTC
KPM2027	GGCGAGAACAGCGGCTACACCGTCAGCGGTGGGTTGCACGGAGTGGGCGTGTCGGTGGTC
KPM1201	GGCGAGAACAGTGGTTACAACGTCAGTGGTCGTCTCCACGCGTGGGTGTGTCGGTGGTC
KPM2403	GGCGAGAACAGTGGCTACAACGTCAGTGGTGGTCGCACGGCGTCGGGGTGTCGGTGGTG
KPM3012	GGCGAGAACAGCGGCTACAACGTCAGTGGTCGCACGCGCCGTCGGCGTCTCGGTGGTC
Bovine10	GGCGAGAACAGCGGCTACAACGTCAGCGGCGGCGTCTGCACGGCGTCGGCGTCTCGGTGGTC
KPM3101	GGTGAGAACAGCGGTTACAACGTCAGCGGTGGCCTGCACGGCGTGGGCGTCTCGGTGGTC
KPM3401	GGCGAGAACAGCGGATACAACGTCAGTGGCGGTTTGCACGGTGTCGGCGTGTCGGTGGTC
ATCC51789 ·	GCGGATGACAGCGCCTACGCGGTCTCGGGGGTGTCGGCGTGTCGGTGGTCGGTGGTC
T801	TCGGACGCGTATGCGATATCTGGTGGTCTGCACGGCGTCGGCGTGTCGGTGGTC
T901	TCGGACGCGTATCCGATATCTGGTGGTCTGCACGGCGTCGGCGTGTCGGTGGTT
T704	TCGGACGCGTATGCGATATCTGGTGGTCTGCACGGCGTCGGCGTGTCGGTGGTT
T021	TOGGACGCGTATGCGATATCTGGTGGTCTGCACGGCGTCGGCGTGTCGGTGGTT
KPM3504	TCCGACGCCTATGCGATATCGGGTGGACTGCACGGTGTGGGTGTCTCGGTGGTC
KPM1001	TCCGACGCCTACGCGATATCGGGCGGGCTGCACGGTGTGGGTGTCTCGGTGGTC 6 0
Sequence	No 41
	* 140· 41 *** ** ** ** ** *** *** *** *** ***
Sequence Sequence	No. 61
Sequence Sequence KPM2201	No. 61: Sequence No. 1
Sequence	No. 61: No. 62: Sequence No. 1 AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG
Sequence KPM2201	NO. 61: Sequence No. 1 AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCGTTGTCGACCCGACTCGAGGTCGACATCAAGCGCGACGGGCACGAGTGGTCCCAG
Sequence KPM2201 ATCC25274	AACGCCTGTCCACCCGCCTGGAAGTCAAACGTCAAGCGTGACGGCACGAGTGGTCCCAG AACGCCTTGTCGACCCCGACTCGAGGTCGACATCAAGCGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCTATGAGTGGTTCCAG
Sequence KPM2201 ATCC25274 KPM1403	No. 61: No. 62: No. 62
Sequence KPM2201 ATCC25274 KPM1403 KPM2027	AACGCGTTGTCCACCCGCCTGGAAGTCACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCGTTGTCGACCCCGCCTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCTATGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAAGTCACCATCAAGCGCGACGGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTTCCAG
Sequence KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201	No. 61: No. 62: No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCGTTGTCGACCCGACTCGAGGTCGACATCAAGCGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCTATGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAGGTCACCATCAAGCGCGACGGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTCGACATCAAGCGTGACGCCCACAAGTGGTCGCAG
Sequence KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403	No. 61: No. 62: No. 62: No. 62: No. 62: No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCCGTTGTCGACCCGACTCGAGGTCGACATCAAGCGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTCGACATCAAGCGTGACGCCACAAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCCCCCGCGACGGCTACGAGTGGTCGCAG
Sequence KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012	AACGCGCTGTCCACCCGGCTCGAGGTCAACATCACCGCGCGCCGCGCCACAGTGGTCGCAG AACGCGCTGTCCACCCGCCTGGAGGTCACATCAAACGCGGGCACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCTATGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAAGTCACCTCAAGCGCGACGGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTCGCAG AACGCGCTGTCCACCCGGCTCGAGGTCACATCAAGCGTGACGGCCACAAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG
Sequence KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10	No. 62: No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCCGTTGTCGACCCGACTCGAGGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAGGTCACCATCAAGCGCGACGGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTCGACATCAAGCGTGACGGCCACAAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGCTACGAGTGGTCGCAG AACGCGCTGTCCACCCGGCTCGAGGTCAACATCGCCCGCGATGGCTACGAATGGTCGCAG
KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101	No. 62: No. 62: No. 62: No. 62: No. 62: No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCCGTTGTCGACCCGACTCGAGGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGTGACGGCCACAAGTGGTCGCAG AACGCGCTGTCCACCCGGCTCGAGGTCAACATCACCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGATGGCTACGAATGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGCTACGAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGCTACCAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGATGTCGCCCGCGACGCTACATTGGTCACAG
Sequence KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401	No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCGTTGTCGACCCGACTCGAGGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGCGACGGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAAGTCACCTCAAGCGCGACGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGCACAAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTCAACATCAAGCGTGACGGCCACAAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGCTACGAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACCAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACCATGTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGAATGTCGCCCGCGACGGCTACCATGTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGAGATCGCCCGCGACGGTACGATGGTCACAG AACGCCATTGTCGACTCGAC
Sequence KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789	ACGCGTTGTCGACCCGGCTCGAGGTCGACATCAACGCGACGGCCACGAGTGGTCCCAG AACGCCTTGTCGACCCGCGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAGGTCACCATCAAGCGCGACGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTCGCAG AACGCGCTGTCCACCCGGCTCGAGGTCGACATCAAGCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACGAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACATTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGTACGATTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGATTCGCCCGCGACGGTACGAGTGGTTCACAG AACGCGTTGTCCACCCGGCTCGAGGTGGAGTCGACGGTACGAGTGGTCTCAG AACGCGTTATCCACCCGGCTCGAAGTCGAGGTGGACGACGGTACGAGTGGTCTCAG AACGCGTTATCCACCCGGCTCGAAGTCGAGATCGAGGTACGAGTGGTCTCAG
KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801	No. 62: No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCCGTTGTCGACCCGACTCGAGGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAGGTCACCATCAAGCGCGACGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGCACGAGTGGTTCGCAG AACGCGCTGTCCACCCGGCTCGAGGTCGACATCAAGCGTGACGGCCACAAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAATGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACGAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGATGTCGCCCGCGACGGCTACATGTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGATTCGCCCGCGACGGTACGAGTGGTTCACAG AACGCGTTATCCACCCGGCTCGAAGTCGAGATCGAGCGGGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG
KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801	ACGCGTTGTCGACCGGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCGTTGTCGACCCGACTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTCCCAG AACGCGCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGCGACGGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGGCTGGAAGTCGACATCAAGCGCGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGGCTCGAGGTCGACATCAAGCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACATGTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGAGTTGCCCCGCGACGGCTACATGTGGTCACAG AACGCGTTGTCCACCCGGCTCGAGGTGGAGTTGCGCCCGCGACGGTACGAGTGGTTCCAG AACGCGTTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG
Sequence KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901	No. 62: No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCCTTGTCGACCCGACTCGAGGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAGGTCACCATCAAGCGCGACGGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTCGCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACGAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGTACGAGTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGAATCGCCCGCGACGGTACGAGTGGTCTCAG AACGCGTTTGTCGACCCGGCTCGAAGTCGAGTTGAACGCGCGACGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG
KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901 T704 T021	No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCGTTGTCGACCCGACTCGAGGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAGGTCACCATCAAGCGCGACGGCCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGGCTCGAGGTCGACATCAAGCGTGACGGCCACAAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAATGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTGGACATCGCCCGCGACGGCTACGAATGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGAATCGCCCGCGACGGCTACAATGGTCCACG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGCTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGCTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGCTACGAGTGGTCCCAA
KPM2201 ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3401 ATCC51789 T801 T901 T704 T021 KPM3504	No. 62: No. 62: AACGCGTTGTCGACGCGGTTGGAAGTCGACATCAAACGCGACGGGCACGAGTGGTCGCAG AACGCCTTGTCGACCCGACTCGAGGTCGACATCAAACGCGACGGGCACGAGTGGTCCCAG AACGCCCTGTCCACCCGCCTGGAAGTCAACGTCAAGCGTGACGGCACGAGTGGTTCCAG AACGCGCTGTCCACCCGCCTGGAGGTCACCATCAAGCGCGACGGGCACGAGTGGTTTCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGATACGAGTGGTCGCAG AACGCGCTGTCCACCCGACTGGAAGTCGACATCAAGCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCCACTCGGCTCGAGGTCAACATCGCCCGCGACGGCTACGAGTGGTCGCAG AACGCGCTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGCTACGAATGGTCGCAG AACGCGTTGTCGACCCGGCTCGAGGTGGACATCGCCCGCGACGGTACGAGTGGTCACAG AACGCGTTGTCGACCCGGCTCGAGGTGGAATCGCCCGCGACGGTACGAGTGGTCTCAG AACGCGTTTGTCGACCCGGCTCGAAGTCGAGTTGAACGCGCGACGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG AACGCGCTATCCACCCGGCTCGAAGTCGAGATCAAGCGCGACGGGTACGAGTGGTCTCAG

Fig. 2	÷
KPM2201	TATTACAAGCECGCGGTGCCGGGCACCCTCAAGCAGGGTGAGACGACCCGCAAGACCGGC
ATCC25274	TATTACGAGCECGCCGTTCCTGGCACGCTCAAGCAGGGCGAGCGACCAAGAAGACCGGC
KPM1403	TACTACGACCEGGCGETGCCCGGCACCCTCAAGCAAGGCGAGGCG
KPM2027	TACTACGACCECGCCETGCCCGGAACCCTCAAGCAGGGCGAGGCCACCAAGAAGACCGGA
KPM1201	TTCTACGACCGCCCAGCCGGGCACCCTCAAACAGGGCGAGGCAACCAAGAAGACCGGA
KPM2403	TTCTACAACAAGGCCGTGCCGGGCACGCTCAAACAGGGTGAAGCCACTAAGAAAACCGGA
KPM3012	TACTACGACCACGCCGTGCCCGGCACCCTCAAGCAGGGCGAGGCCACCAAGCGCACCGGC
Bovine10	TACTACGACCACGCCGTGCCCGGCACCCTCAAGCAGGGCGAGGCCACCAAGCGCACCGGC
KPM3101	TTCTACGACCACGCCGTACCCGGAACGCTCAAACAGGGTGAGGCCACCAAGCGGACGGGC
KPM3401	TTCTACGATCACGCCGAGCCGGGAACCCTCAAACAGGGCGAGGCCACCAAGACGACGGGA
ATCC51789	CATTACGACCGCTCTGTCCCCGGCACGCTCAAGCAAGGCGAGAAAACCAAAAAGACCGGC
T801	GTTTATGAGAAGTCGGAACCCCTGGGCCTCAAGCAAGGGGCGCCGACCAA <u>GAAGACGGGG</u>
T901	GTTTATGAGAAGTCGGAACCCCTGGGCCTCAAGCAAGGGGCGCCGACCAA <u>GAAGACGGGG</u>
T704	GTTTATGAGAAGTCGGAACCCCTGGGCCTCAAGCAAGGGGCGCCGACCAA <u>GAAGACGGGG</u>
T021	GTTTATGAGAAGTCGGAACCCCTGGGCCTCAAGCAAGGGGCGCCGACCAA <u>GAAGACGGGG</u>
KPM3504	GTTTATGAGAAGTCCGAGCCGATGGGACTCAAGCAAGGCGCGCCGACGAAGAAGACCGGC
KPM1001	GTTTACGAGAAATCCGAGCCGATGGGACTCAAGCAAGGCGCGCCGACTAAGAAGACCGGC 180
	** * * ** ***
	Sequences No. 45, 49
KPM2201	ACCACAATCCGGTTCTGGGCGGATCCGGAGATCTTCGAGACCACCCAATACGACTTCGAG
ATCC25274	ACCACCATCCGGTTCTGGGCGGACCCGGACATCTTCGAGACCACCCAGTACGACTTCGAG
KPM1403	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG
KPM1403 KPM2027	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCGGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG
KPM1403 KPM2027 KPM1201	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCGGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACTCGGACATCTTTGAGACCACCGAATACGACTTCGAG
KPM1403 KPM2027 KPM1201 KPM2403	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACTCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCGGACATCTTCGAGACCACCGAATACGACTTCGAG
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCTCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAATACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCTCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCGGACATCTTCGAGACCACCGAATACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Boyine10 KPM3101 KPM3401	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCGGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCTCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAATACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACGATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAATACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACGATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGGTCCGCTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGGATTACGACTTCGAG TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGGTCCGCTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGGAATACGACTTCGAA TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAATACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGGTCCGCTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGGAATACGACTTCGAG TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901	ACCACGATCCGGTTCTGGGCCGACCCGAAATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAATACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGGTCCGCTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGGAATACGACTTCGAA TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA TCAACGGTACGGT
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901 T704 T021 KPM3504	ACCACGATCCGGTTCTGGGCCGATCCTGAGATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAATACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACGATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAGTACGACTTCGAG TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA
KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901	ACCACGATCCGGTTCTGGGCCGACCCGAAATCTTCGAAACCACCCAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGAAATCTTCGAAACCACACAGTACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCGGACATCTTTGAGACCACCGAATACGACTTCGAG ACGACAATTAGGTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGAATACGACTTCGAG ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAA ACCACCATCCGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACCATCAGGTTCTGGGCCGACCCCGACATCTTCGAGACCACCGAGTACGACTTCGAG ACCACGGTCCGCTTCTGGGCCGACCCCGGACATCTTCGAGACCACCGGAATACGACTTCGAA TCAACGGTGCGGTTCTGGGCCGACCCCGCTGTTTTCGAAACCACGGAATACGACTTCGAA TCAACGGTACGGT

Fig. 3	
KPM2201	ACGGTGGCGCGCCGGCTGCAGGAGATGGCGTTCCTGAACAAGGGTCTGACGATCAATCTB
ATCC25274	ACGGTGGCGCGCCCCAAGAGATGGCGTTCCTGAACAAGGGCTTGACCATCAACTTG
KPM1403	ACGGTGGCGCCGGTTGCAGGAAATGGCGTTCCTCAACAAGGGCCTGACCATCAACCTC
KPM2027	ACCOTOGCGGCGGCGGCTGCAGGAGATGGCCTTCCTCAACAAGGGCCTCACCATCAACCTC
KPM1201 .	ACGGTGGCGCGCCCTGCAGGAGATGGCGTTCCTCAACAAGGGCCTGACCATCAACCTC
KPH2403	ACCOTGGCACGCCGGCTGCAGGAAATGGCATTCCTGAACAAGGGCTTGACCATCAACCTC
KPM3012	ACGGTGGCCCGGCGGCTGCAGGAAATGGCGTTCCTCAACAAGGGCCTGACCATCAACCTC
Bovine10	ACGGTGGCCGGCGGCTGCAGGAAATGGCGTTCCTCAACAAGGGCCTGACCATCAACCTC
KP#3101	ACGGTGGCGCCGGCTGCAGGAAATGGCGTTCCTCAACAAGGGGTTGACCATCAACCTC
KPN3401 ·	ACGGTGGCGCCCGACTGCAGGAAATGGCGTTCCTGAACAAGGGTTTGACGATCAACCTC
ATCC51789	ACGETCGCACGCCGGCTGCAGGAAATGGCGTTCCTCAACAAAGGGCTEACCATCAACCTG
T801	ACCGTCGCCCGCCGGCTGCAAGAGATGGCGTTCCTCAACAAGGGGCTGACCATCAACCTG
T901	ACCGTCGCCCGCCGGCTGCAAGAGATGGCGTTCCTCAACAAGGGGCTGACCATCAACCTG
1704	ACCGTCGCCGGCCGGCTGCAAGAGATGGCGTTCCTCAACAAGGGGCTGACCATCAACCTG
T021	ACCET CECCCECCECCTECAAGAGATEGCETTCCTCAACAAGGGGCTGACCATCAACCTE
KPM3504	ACCGTCGCGACGGTTGCAGGAGATGGCGTTTCTCAACAAGGGGCTCACCATCAACCTG
KPM1001	ACCGTCGCACGACGGTTGCAGGAGATGGCGTTTCTCAACAAGGGGCTCACCATCAATCTG 300
	** ** ** ** ** * * * * ** ** ** ** *** *** *** *** *** *** ***
KPM2201	ACCGACGAACGCGTCGAGCAGGACGAGGTTGTCGACGAGGTCGTCAGCGACACCGCCGAA
ATCC25274	ACCGACGAGCGGGTGGACGAGGTCGTCGATGAAGTCGTCAGCGACACCGCCGAT
KP#1403	ACCGACGAACGTGTCGAGCAGGACGAGGTGGTCGATGAGGTGGTTAGCGACACCGCCGAG
KPM2027	ACCGACGAACGAGTGGAGCAGGACGAGGTCGTCGACGAGGTCGTCAGCGACACCGCCGAG
KPW1201	ACCGACGAGCGGGTCACCCCGGACGAGGTCGTCGACGACGTCGTCAGTGATACCGCCGAA
KPM2403	ACCGACGAGCGAGTTGCCCAGGACGAGGTTGTCGACGAGGTCGTCAGCGACACCGCCGAG
KPM3012	ACCGACGAGCGGGTGACCAACGAGGTCGTCGACGAGGTGGTCAGCGACACCGCCGAC
Bovine10	ACCEACGAGCGGTGACCAACEAAGAGGTCGTCGACGAGGTGGTCAGCGACACCGCCGAC
KPM3101	ACCGACGAGCGGTGAGCAACGAGGAGGTCGTCGACGAGGTCGTCAGCGATACCGCCGAC
KPM3401	ACCEACEAGCGGGTCAGTGAAGAGGAGGTCGTCGACGATGTCGTCAGCGACACCGCCGAG
ATCC51789	ACCGACGAGCGGGTGCGAAACGAAGAAGTCGTCGACGAGGTCGTCAGCGACACCGCCGAC
T801	ACCGACGAGAGGGTGACCCAAGACGAGGTCGTCGACGAAGTGGTCAGCGACGTCGCCGAG
T901	ACCGACGAGAGGGTGACCCAAGACGAGGTCGTCGACGAAGTGGTCAGCGACGTCGCCGAG
T704	ACCGACGAGAGGGTGACCCAAGACGAGGTCGTCGACGAAGTGGTCAGCGACGTCGCCGAG
T021	ACCGACGAGAGGGTGACCCAAGACGAGGTCGTCGACGAAGTGGTCAGCGACGTCGCCGAG
KPM3504	ACCEATCAGCGGGTAACCCAGGACGAAGTGGTCGACGAGGTGGTCAGCGACGTCGCCGAG
KPM1001	ACCGATCAGCGGGTGACCCAGGACGAGGTCGTCGACGAGGTGGTCAGCGACGTCGCCGAG 360
	***** * * ** ** ** ** ** *** ***** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Fig. 4 **GCGCCCAAATCCGCCGAAGAGAAGGCTGCCGAATCCAAGGCCCCGCACAAGGTCAAGCAG** KPM2201 **ECGCCCAAGTCCGCCGAAGAGAAGGCGCCGCAATCCAAAGCGCCGCACAAGGTTAAGCAC** ATCC25274 GCCCCGAAGTCACCCGAGGAGCAGGCGGCCGAATCGGCCAAAGCCCGCACAAGGTCAAGCAC KPM1403 **ECACCEAAGTCCECCEAAGAGAAGGCCGCGGAATCGACTGCGCCACACAAGGTCAAGCAC KPM2027 GCACCAAAGTCCGCCCAGGAGAAGGCCGCCGAATCGACCGCGCCGCACAAGGTCAAGAGC** KPH1201 **ECACCCAAGTCCECCGAAGAAAAGGCGGCCGAATCCAAAGGGCCGCATAAGGTTAAGCAC** KPM2403 GCACCCAAGTCEECECAGGAGAAGGCGGCGGAATCGGCTGCGCCGCATAAGGTCAAGCAC KP#3012 **GCACCCAAGTCGGCGGAGGAGGAGGCGGCGGAATCGGCTGCGCCGCATAAGGTCAAGCAC** Boy ine 10 **GCACCCAAGTCGGCCCAEGAAAAGGCGGCGGAATCGACTGCGCCACATAAGGTTAAGCAC** KPM3101 -**GCACCCAAGTCCGCCGTAGAAAAAGCGGCCGAATCGACTGGCCCACACAAGGTTAAGCAC KPM3401** GCGCCGAAGTCGGCGCGCAAGAGGCCGAAGAACGGACCA----CGCAGAAAGTCAAGCAC ATCC51789 T801 GCGCCGAAGTCGCCAAGTGAACGCGCAGCCGAATCCACTGCACCGCACAAAGTTAAGAGC **GCGCCGAAGTCGCAAGTGAACGCCCAGCCGAATCCACTGCACCGCACAAAGTTAAGAGC** T901 T704 GCGCCGAAGTCGCCAAGTGAACGCGCAGCCGAATCCACTGCACCGCACAAAGTTAAGAGC **GCGCCGAAGTCGGCAAGTGAACGCGCAGCCGAATCCACTGCACCGCACAAAGTTAAGAGC** T021 GCCCGAAGTCGGCCAGTGAGAAGGCGGCCGAATTCACCGCCCCCACAAGGTGAAGAAG KPM3504 GCCCCAAAGTCGGCCAGCGAGAAGGCGGCCGAATCCGCCGCCCCGCACAAGGTCAAGAAG 420 KPM1001 * ** ** ** Sequences No. 3, 5 CGCACCTTCCACTATCCCGGTGGTCTGGTCGACTTCGTCAAACACATCAACCGCACCAAA KPM2201 CGCACCTTCCACTACCCCGGCGCTTGGTCGACTTCGTCAAGCACATCAACCGGACCAAG ATCC25274 CGCACGTTCCACTACCCGGGTGGGTTGGTGGATTTCGTCAAGCACATCAATCGCACCAAA **KPM1403** CGCACCTTCCACTACCCCGGCGGTCTGGTCGACTTCGTCAAGCACATCAACCGCACCAAG KPM2027 **KPM1201** CGCACCTTCCACTATCCCGGCGGTTTGGTCGATTTCGTCAAGCACATCAACCGCACCAAG **KPM2403** CGCACTTTCCATTACCCCGGCGGGCTGATCGACTTCGTCAAGCACATCAACCGGACCAAG CGCACCTTCCACTACCCCGGCGGCCTGGTCGACTTCGTCAAACACATCAATCGCACCAAA KPM3012 CECACCTTCCACTACCCCGGCGGCCTGGTCGACTTCGTCAAACACATCAATCGCACCAAA Bov ine 10 KPM3101 CECACCTTCCACTACCCCGGCGGTCTGGTCGACTTCGTCAAGCACATCAACCGCACCAAG KPM3401 CGCACGTTCCACTACCCGGGCGGCTTGGTGGACTTCGTCAAGCACATCAATCGGACCAAG ATCC51789 CGCACGTTCCATTACCCCGGCGGCTTGGTCGATTTCGTCAAACACATCAACCGCACAAAG 1081 CGCACCTTTCACTATCCGGGTGGCCTGGTGGACTTCGTGAAACACATCAACCGCACCAAG T901 CGCACCTTTCACTATCCGGGTGGCCTGGTGGACTTCGTGAAACACATCAACCGCACCAAG T704 CGCACCTTTCACTATCCGGGTGGCCTGGTGGACTTCGTGAAACACATCAACCGCACCAAG T021 CGCACCTTTCACTATCCGGGTGGCCTGGTGGACTTCGTGAAACACATCAACCGCACCAAG KPM3504 CGTACCTTTCACTATCCCGGTGGCTTGGTTGACTTCGTCAAGCACATCAACCGCACCAAG CGTACCTTCCACTATCCCGGGGGTCTGGTTGACTTCGTCAAGCACATCAACCGGACCAAG 480 **KPM1001** ** ** ** ** ** ** ** ** ** ** ** **

Fig. 5	:
KPM2201	AGCCCGATCCAGCAGAGCGTCATCGACTTCGAAGGCAAAGGCACCGGCCACGAGGTCGAA
ATCC25274	AGCCCGATCCAACAGAGCGTCATCGACTTCGAGGGCAAAGGCACCGGCCACGAGGTCGAG
KPM1403	AACCCGATCCAGCAGAGCGTCATCGACTTCGACGGCAAAGGAACCGGGCACGAAGTCGAG
KPM2027	AGCCCGATCCAGCAGAGCGTCATCGATTTCGACGGCAAGGGCACCGGCCACGAGGTCGAG
KPM1201	AGTCCGATTCAGCAGAGCATCGTCGACTTCGAGGGCCAAGGGCTCCGGCCACGAAGTCGAA
KPM2403	AGCCCGATCCAGCAGAGTGTCGTCGCCTTCGACGGCAAGGGTGAAGGGCACGAGGTCGAG
KPM3012	AACCCCATCCACCAGAGCATCATCGATTTCGGTGGGAAGGGCCCCGGCCACGAGGTCGAG
Bovine10	AACCCCATCCACCAGAGCATCATCGATTTCGGTGGGAAGGGCCCCGGCCACGAGGTCGAG
KPM3101	AGCCCGATCCAGCAGAGCATCATCGACTCGACGGCAAAGGTCCCGGCCACGAGGTCGAG
KPM3401	AACCCGATTCACAACAGCATCGTGGATTTCTCCGGCAAGGGACCGGGCCACGAGGTCGAA
ATCC51789	AACCCCATCCATTCGAGCATCGTCGACTTCTCCGGCAAGGGTCCGGCCACBAGGTCGAG
T801	AACGCGATTCATAGCAGCATCGTGGACTTTTCCGGCAAGGGCACCGGGCACGAGGTGGAG
T901 .	AACGCGATTCATAGCAGCATCGTGGACTTTTCCGGCAAGGGCACCGGGCACGAGGTGGAG
T704	AACGCGATTCATAGCAGCATCGTGGACTTTTCCGGCAAGGGCACCGGGCACGAGGTGGAG
T021	AACGCGATTCATAGCAGCATCGTGGACTTTTCCGGCAAGGGCACCGGGCACGAGGTGGAG
KPM3504	AACGCCATCCACAGCAGCATCGTCGACTTCTCCGGAAAGGGGACCGGCCACGAAGTGGAB
KPM1001	AACGCCATCCACAGCAGCATCGTCGACTTCTCCGGTAAGGGACCCGGCCACGAAGTGGAG 540
	* * ** ** ** ** ** ** ** ** ** ** **
KPM2201	ATCSCGATGCAGTGGAACGGCGGCTACTCCGAATCGGTGCACACCTTCGCCAACACCATC
ATCC25274	ATCGCGATGCAGTGGAACGGTGGCTACTCGGAGTCGGTGCACACCTTCGCCAACACGATC
KPM1403	ATCGCGATGCAGTGGAACGGTGGTTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
KPM2027	ATCGCCATGCAGTGGAACGGCGGCTACTCGGAGTCCGTCC
KP#1201	ATCGCGATGCAGTGGAACGGCGGCTACTCGGAGTCGGTGCACACCCTTCGCCAACACCATC
KPM2403	ATCGCGATGCAGTGGAACGGCGGCTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
KPM3012	ATCGCGATGCAGTGGAACGGCGGCTACTCCGAATCGGTGCACACCTTCGCCAACACCATC
Bovine10	ATCGCGATGCAGTGGAACGGCGGCTACTCCGAATCGGTGCACACCTTCGCCAACACCATC
KPM3101	ATCCCGATGCAGTGGAACGCCGCTACTCGGAATCCCTGCCACACCCTTCGCCAACACCATC
KPM3401	ATCGCGATGCAGTGGAATGCCGGCTACTCGGAGTCGGTGCACACCTTCGCCAACACCATC
ATCC51789	ATCGCAATGCAGTGGAACGCCGGCTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
T801	ATCGCGATGCAATGGAACGCCGGGTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
T901	ATCGCGATGCAATGGAACGCCGGGTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
T704	ATCGCGATGCAATGGAACGCCGGGTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
T021	ATCGCGATGCAATGGAACGCCGGGTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
KPM3504	ATCGCGATGCAGTGGAATGCCGGCTATTCGGAGTCGGTGCACACCTTCGCCAACACCATC
KPM1007	ATCGCGATGCAGTGGAATGCCGGCTATTCGGAGTCGGTGCATACCTTCGCCAACACCATC 600
•	***** ***** ***** * ** ** ** ** ** ** *

Fig. 6	
KPM2201	AACACCCACGAGGGCGCCACCCACGAAGAGGGCTTCCGCAGTGCGCTGACCTCGGTGGTC
ATCC25274	AACACCCACGAGGGCGGTACGCACGAAGAAGGGTTCCGCAGTGCGCTGACGTCGGTGGTG
KPM1403	AACACCCATGAGGGCGCACCCACGAGGAGGGCTTCCGCAGCGCGCTGACCTCGGTGGTG
KPM2027	AACACGCACGAGGGCGCCCCCACGAGGGGGCTTCCGCAGCGCGCTGACGTCGGTGGTG
KPM1201	AACACCCATGAGGGTGGAACGCACGAAGAGGGCTTCCGCAGTGCGTTGACCTCGGTGGTG
KPM2403	AACACCCACGAGGCCGCACCCACGAAGÁAGGETTCCGCAGCGCACTGACATCGGTGGTG
KPM3012	AACACGCACGAGGGCGCACCCACGAGGAGGGCTTCCGCAGCGCGCTGACCTCCGTGGTC
Bovine10	AACACGCACGAGGGCACCCACGAGGAGGGCTTCCGCAGCGCGCTGACCTCCGTGGTC
KPM3101	AACACCCACGAGGGCGCCACCCACGAAGAGGGCTTCCGCAGCGCGCTGACGTCGGTGGTG
KPM3401	AACACCCACGAGGGCGCACCCACGAAGAGGGCTTCCGCAGCGCGTTGACGTCGGTGGTC
ATCC51789	AACACCCACGAGGGCGCACCCACGAAGAAGGGTTCCGCGCGCACTGACGTCCGTGGTG
T801	AACACCCACGAGGGCGCACCCACGAAGAGGGCTTCCGCAGCGCGCTGACGTCGGTGGTG
T901	AACACCCACGAGGCCGCCACCCACGAAGAGGGCTTCCGCAGCGCGCTGACGTCGGTGGTG
T704	AACACCCACGAGGGCGCACCCACGAAGAGGGCTTCCGCAGCGCGCTGACGTCGGTGGTG
T021	AACACCCACGAGGGCGECACCCACGAAGAGGGCTTCCGCAGCGCGCTGACGTCGGTGGTG
KPM3504	AACACCCATGAGGGCGGGACCCATGAAGAAGGGTTCCGCAGCGCGCTCACGTCCGTGGTG
KPM1001	AACACCCACGAGGGTGGGACCCACGAAGAGGGGTTCCGCAGCGCGCTGACCTCGGTGGTG 660
	***** ** ***** ** ** ** ** ** ** ** **
KPM2201	AACAAGTACGCCAAAGACAAGAAGCTGCTCAAGGAGAAGGACCCGAATCTCACCGGTGAC
ATCC25274	AACAAATACGCCAAAGACAAGAAGCTGCTGAAAGACAAGGACCCGAACCTCACCGGTGAC
KPM1403	AACAAGTACGCCAAAGACAAGAAGCTGCTCAAGGACAAGGATCCCAACCTCACCGGCGAC
KPM2027	AACAAGTACGCCAAAGACAAGAAACTGCTGAAGGACAAAGATCCCAACCTCACCGGTGAC
KPM1201	AACAAGTACGCCAAAGACAAGAAGCTGCTCAAGGACAAGGACCCCAACCTCACCGGTGAC
KPM2403	AACAAGTACGCCAAAGACAAGAAGCTGCTCAAGGAGAAGGACGCCAACCTCACCGGCGAC
KPM3012	AACAAGTACGCCAAGGACAAGAAGCTGCTCAAGGACAAGGACCCCAACCTGACCGGCGAC
Boy ine 10	AACAAGTACGCCAAGGACAAGAAGCTGCTCAAGGACAAGGACCCCAACCTGACCGGTGAC
KPM3101	AACAAGTACGCCAAAGACAAGAAGTTGCTGAAAGACAAGGACCCGAACCTCACCGGCGAC
KPM3401	AACAAATACGCCAAGGACCGCAAACTCCTGAAGGACAAAGACCCCAACCTCACCGGCGAC
ATCC51789	AACAAGTACGCCAAGGACCGAAAACTGCTGAAGGACAAGGACCCCAACCTCACCGGCGAC
T801	AACAAGTACGCCAAGGACCGCAAGCTACTGAAGGACAAGGACCCCAACCTCACCGGTGAC
T901	AACAAGTACGCCAAGGACCGCAAGCTACTGAAGGACAAGGACCCCAACCTCACCGGTGAC
T704	AACAAETACGCCAAGGACCGCAAGCTACTBAAGGACAAGGACCCCAACCTCACCGGTGAC
T021	AACAAGTACGCCAAGGACCGCAAGCTACTGAAGGACAAGGACCCCAACCTCACCGGTGAC
KPM3504	AACAAGTACGCCAAGGACCGCAAACTGCTCAAAGACAAGGACCCCAACCTCACCGGCGAC
KPM1001	AACAAGTACGCCAAGGACCGCAAACTGCTCAAGGAAAAGGACCCCAACCTCACCGGCGAC 720

Fig. 7			
KPM2201	GACATCCGGGAGGGGTTGGCCGCGGTGATCTCGGTGAAGGTCGCCGAACCGCAGTTCGAG		
ATCC25274	GACATCCGCGAGGGACTGGCCGCGTGATCTCGGTCAAGGTCGCCGAACCCCAGTTCGAG		
KPM1403	GACATCCGAGAAGGCTGGCCGCGGTGATCTCCGTGAAGGTCGCCGAGCCGCAGTTCGAG		
KPM2027	GACATCCGTGAGGGCTTGGCCGCGGTCATCTCGGTGAAGGTCGCCGAGCCACAGTTCGAA		
KPM1201	GACATCCGCGAGGGGTTGGCCGCGGTCATCTCGGTECGGGTGGCAGAGCCGCAGTTCGAG		
KPM2403	GACATTCGCEAGGGCCTGGCCGCGGTCATCTCGGTGAAAGTTGCCGAACCGCAGTTCGAG		
KPM3012	GACATCCGCGAGGGTTTGGCCGCGGTGATCTCGGTCAAGGTGAGCGAACCGCAGTTCGAG		
Bovine10	BACATCCGCGAGGGTTTGGCCGCGGTGATCTCGGTCAAGGTGAGCGAACCGCAGTTCGAG		
KPM3101	GACATTCGCGAAGGCCTGGCCGCGGTGATCTCGGTCAAGGTCAGCGAACCGCAGTTCGAG		
KPN3401	GACATCCGGGAAGGCCTGGCAGCGGTCATTTCCGTCAAGGTCAGCGAACCGCAATTCGAG		
ATCC51789	GACATTCGTGAGGGCCTGGCGGCCGTCATCTCGGTCAAGGTCAGCGAGCCGCAGTTCGAG		
T801	GATATCCGGGAAGGCCTGGCCGCTGTGATCTCGGTGAAGGTCAGCGAACCGCAGTTCGAG		
T901	GATATCCGGGAAGGCCTGGCCGCTGTGATCTCGGTGAAGGTCAGCGAACCGCAGTTCGAG		
T704 .	GATATCCGGGAAGGCCTGGCCCCTGTGATCTCGGTGAAGGTCAGCGAACCGCAGTTCGAG		
T021	GATATCCGGGAAGGCCTGGCCGCTGTGATCTCGGTGAAGGTCAGCGAACCGCAGTTCGAG		
KPM3504	GACATCCGGGAAGGGTTGGCCGCGGTGATTTCGGTCAAAGTCAGCGAACCGCAGTTCGAG		
KPM1001	GACATCCGGGAAGGGTTGGCCGCGGTGATTTCGGTCAAGGTCAGCGAGCCGCAGTTCGAG 780		
	** ** ** ** ** *** ** ** ** ** ** ** **		
KPN2201	GGTCAGACCAAGACCAAGCTGGGCAACACCGAGGTCAAGTCGTTCGT		
ATCC25274	GGCCAGACAAAGACCAAGCTGGGCAACACCGAGGTCAAGTCGTTCGT		
KPM1403	GGCCAGACTAAGACGAAACTCGGCAACACCGAGGTCAAGTCGTTTGTCCAGAAAGTCTGT		
KPM2027	GGCCAGACCAAGACAAAGCTGGGCAACACCGAGGTGAAGTCGTTCGT		
KPM1201 .	GGTCAGACGAAGACCAAGCTGGGCAACACCGAGGTCAAGTCGTTTGTCCAGAAGGTTTGT		
KPM2403	GGCCAGACCAAGACCAAACTGGGTAACACCGAGGTCAAGTCGTTCGT		
KPN3012	GGCCAGACCAAGACCGAGCCAAACTGGGCAACACCGAGGTGAAGTCGTTCGT		
Bovine10	GGCCAGACCAAGACCAAACTGGGCAACACCGAGGTGAAGTCGTTCGT		
KP#3101	GGTCAGACCAAGACCAAGCTGGGCAACACCGAAGTGAAGTCGTTCGT		
KPM3401	GGCCAGACCAAAACCAAGCTGGGCAACACCGAGGTCAAGTCGTTCGT		
ATCC51789	GGCCAGACCAAAACCAAACTCGGCAACACCGAAGTCAAGTCGTTTGTGCAGAAGGTCTGC		
T801	GGCCAGACCAAGACCAAGTTGGGCAACACCGAGGTCAAATCGTTTGTGCAGAAGGTCTGT		
T901	GGCCAGACCAAGACCAAGTTGGGCAACACCGAGGTCAAATCGTTTGTGCAGAAGGTCTGT		
T704	GGCCAGACCAAGACCAAGTTGGGCAACACCGAGGTCAAATCGTTTGTGCAGAAGGTCTGT		
T021	GGCCAGACCAAGACCAAGTTGGGCAACACCGAGGTCAAATCGTTTGTGCAGAAGGTCTGT		
KPM3504	GGCCAGACCAAGACGAAACTAGGCAACACCGAGGTGAAGTCGTTCGT		

KPM1001

Fig. 8		•
KPM2201	AACGAACAGCTCACCCACTGGTTCGAGGCCAATCCGTCGGAAGCTAAAACCGTTG	TGAAC
ATCC25274	AACGAACAGCT CACCCACTGGTT CGAGGCCAATCCGT CGGAAGCCAAAACCGTTG	TCAAC
KPM1403	AACBAACAACTCACTCACTGGTTCGAGGCGAACCCGTCGGAAGCTAAAACCGTTG	TAAAC
KPM2027	AACGAGCAGCT CACCCACTGGTT CGAGGCCAACCCAT CCGAGGCBAAAACGGT GG	TGAAC .
KPM1201	AACGAGCAGCTCACCCACTGGTTCGAGGCCAATCCTTCGGAAGCCAAAACCATTG	TGAAC
KPM2403	* AACGAACAGCTGACCCACTGGTTCGAGGCCAACCCGTCGGAAGCCAAAACCGTCG	TGAAC
KPM3012 .	AACGAACAGCT CACCCACTGGTT CGAAGCCAACCCCGCAGACGCCAAAGT CATTG	TCAAC
Bovine10	AACGAACAGCTCACCCACTGGTTCGAAGCCAACCCCGCAGACGCCAAAGTCATTG	TCAAC .
KP#3101	AACGAACAGCTCACCCACTGGTTCGAGGCCAACCCCGCGGACGCCAAGGTGGTGG	TCAAC
KPM3401	AACGAACAGCTCACGCACTGGTTCGAAGCCAACCCGGCGGATGCCAAAACTGTTG	TAAAC
ATCC51789	AACGAACAGCTCACCCACTGGTTCGAGGCCAATCCCAGCGACGCCAAGACCGTCG	TCAAC
T801	AACGAACAGCTGACCCACTGGTTTGAAGCCAACCCCACCGACTCGAAAGTCGTTG	TGAAC
T901 ·	AACGAACAGCTGACCCACTGGTTTGAAGCCAACCCCACCGACTCGAAAGTCGTTG	TGAAC
T704	AA <u>TGAACAGCTGACCCACTGG</u> TTTGAAGCCAACCCCACCGAC <u>TCGAAAGTCGTTG</u>	TGAAC
T021	AACGAACAGCTGACCCACTGGTTTGAAGCCAACCCCACCGACGCGAAAGTCGTTG	TGAAC
KPM3504	AATGAACAGCTCACCCATTGGTTCGAGGCCAACCCCGCTGATGCTAAAACCGTTG	TCAAC
KPM1001	AACGAACAGCTCACCCATTGGTTCGAGGCCAACCCCGCTGACGCTAAAACCGTTG	TCAAC 900
	** ** ** ** ** ** ** ** ** ** ** ** **	* ***
	Sequences No. 51, 57 Sequences No. 51, 57	
KPM2201		. 47, 53
KPM2201 ATCC25274	Sequences No. 51, 57 Sequences No.	. 47, 53 . TGCGC
	Sequences No. 51, 57 Sequences No. AAAGCGGTGTCCGCCCAAGGCGCGAAAGCGCGAAAGCGCGAAAGCTGG	. 47, 53 TGCGC TGCGG
ATCC25274 KPM1403 KPM2027	Sequences No. 51, 57 AAAGCGGTGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCACAGGCCCGGATCGCGCGCGGAAGGCCCGAGAGTTGG	47, 53 TECEC TECEE TECEE
ATCC25274 KPH1403	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCACAGGCCCGGATCGCGCGCGGAAGGCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGGTAAGGCGCGGGAGTTGG	47, 53 TECEC TECEC TECEC TECEC
ATCC25274 KPM1403 KPM2027	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCACAGGCCCGGATCGCGCGCGGAAGGCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGTAAGGCGCGGAGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGTGAACTGG	TGCGG TGCGG TGCGG TGCGG TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCACAGGCCCGGATCGCGCGCGGAAGGCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGTAAGGCGCGGGAGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGTGAACTGG AAGGCGGTATCCTCGGCGCAGGCACGTCTCGCCGCCAAGGCGCGAAGGTTGG	47, 53 TGCGG TGCGG TGCGC TGCGC TGCGT
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCACAGGCCCGGATCGCGCGCGGAAGGCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGTAAGGCGCGGAGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGTGAACTGG AAGGCGGTATCCTCGGCGCAGGCACGTCTCGCCGCCAAGGCGCGCAAGGTTGG AAGGCGGTCTCGTCGGCACAGGCGCGTATCGCCGCCCGCAAGGCACAGAGTTGG	47, 53 TGCGG TGCGG TGCGC TGCGC TGCGT TGCGT TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCCACAGGCCCGGATCGCGCGCGGAAAGCCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAGGCCCGGAACTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGAACTTGG AAGGCGGTATCCTCGGCGCAGGCACGTCTCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTCTCGTCGGCACAGGCGCGCTATCGCCGCCCCCAAGGCACAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAAAGTTGG	47, 53 TGCGG TGCGG TGCGC TGCGT TGCGT TGCGC TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCACAGGCCCGGATCGCGCGCGCAAAGCGCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGCAAGGCCCGGAGGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCCCAAGGCGCGCTGAACTGG AAGGCGGTATCCTCGGCGCAGGCACGTCTCGCCGCGCAAGGCGCGCAAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCACGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAAGAGTTGG	47, 53 TGCGG TGCGG TGCGC TGCGT TGCGC TGCGC TGCGC TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCCCAGGCCCGGATCGCGCGCGCAAAGCGCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGCAAGGCCCGAGAGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGTAAACTGG AAGGCGGTATCCTCGGCCAGGCCA	47, 53 TGCGG TGCGG TGCGC TGCGT TGCGC TGCGC TGCGC TGCGC TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCCCAGGCCCGGATCGCGCGCGGAAAGCCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAAGCCGCGAGAGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGAAACTGG AAGGCGGTATCCTCGGCGCAGGCACGTCTCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCCCGGATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCCGCGCAAGGCGCGAGAACTGG	TGCGC TGCGC TGCGC TGCGC TGCGT TGCGC TGCGC TGCGC TGCGC TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCCCAGGCCCGGATCGCGCGCGCAAAGCGCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGCAAGGCCCGGAGAGTTGG AAGCCGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAGGCGCGCGAACTTGG AAGGCGGTATCCTCGGCCAGGCACGTCTCGCCGCCAAGGCGCGCAAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCCCGGATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCCCGCCAAGGCGCGAGAACTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCAATCGCCGCCCCAAGGCGCGAGAACTGG AAAGCGGTTTCGTCGGCCCAGGCCCCGCATTGCCCCCCCC	47, 53 TGCGG TGCGG TGCGC TGCGT TGCGC TGCGC TGCGC TGCGC TGCGC TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGTTGG AAGGCGGTTTCGTCCGCCCAGGCCCGGATCGCGCGCGCAAAGCGCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGCAAGGCCCGAGAGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGGAACTGG AAGGCGGTATCCTCGGCGCAGGCCACGTCTCGCCGCGCAAGGCGCGAAGGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGTATCGCCGCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCAGGCCCGGATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGAATCGCCGCGCAAGGCGCGAGAACTGG AAAGCGGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAAGCGCGCAGAACTGG AAAGCGGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAAGCGCGCAGAATTGG AAAGCGGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAAGCGCGCAGAATTGG AAAGCGGTTCCTCGGCGCAAGCCCCGCATTGCCGCCCGCAAAGCGCGCAGAATTGG AAAGCGGTTCCTCGGCGCAAGCCCCGTATCGCCGCCCGCAAAGCACAGAATTGG	TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCCCAGGCCCGGATCGCGCGCGGAAAGCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCGCGCGGAAAGCCCGAGAGTTGG AAAGCGGTGTCGTCGGCTCAGGCGCGCATTGCCGCCCGCAAGGCGCGGAACTGG AAGGCGGTATCCTCGGCGCAGGCACGTCTCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGTATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCCCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCCGCGCAAGGCGCGAGAACTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATCGCCGCCCCCAAAGCCGCAGAACTGG AAGGCGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAAGCCGCAGAATTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGCCCGCAAAGCCCGAGAATTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGCCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGCCACGTAAGGCACGAGAGTTGG	TGCGC TGCGC TGCGC TGCGC TGCGT TGCGC TGCGC TGCGC TGCGC TGCGC TGCGC TGCGC TGCGC
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGCTGG AAGGCGGTTTCGTCCGCCCAGGCCCGGATCGCGCGCGCAAAGCGCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCGGCGCGCAAAGCCCCGAGAGTTGG AAAGCGGTGTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAGGCCCGGAACTGG AAGGCGGTATCCTCGGCGCAGGCCCGCATTGCCGCCCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGTATCGCCGCGCAAGGCACGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCAAGGCCCGGATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATCGCCGCGCAAAGCCGCGAGAACTGG AAAGCGGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCCGCAAAGCGCGCAGAATTGG AAAGCGTTTCGTCGGCCCAAGCCCGTATCGCCGCCCCGCAAAGCGCAGAAATTGG AAAGCGTTTCCTCGGCGCAAGCCCGTATCGCGCCCCGTAAGGCACGAGAGTTGG AAGGCTGTTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG	47, 53 TGCGG TGCGG TGCGG TGCGT TGCGC TGCGC TGCGC TGCGC TGCGC TGCGC TGCGG TGCGG
ATCC25274 KPM1403 KPM2027 KPM1201 KPM2403 KPM3012 Bovine10 KPM3101 KPM3401 ATCC51789 T801 T901 T704	Sequences No. 51, 57 AAAGCGGTGTCGTCCGCCCAGGCGCGGATCGCCGCGCAAAGCGCGAGAGTTGG AAGGCGGTTTCGTCCGCCCAGGCCCGGATCGCGCGCGGAAGGCCCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCGCGCGGAAGGCCCGAGAGTTGG AAAGCGGTGTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAGGCGCGGAACTTGG AAAGCGGTTCCTCGGCGCAGGCCCGCATTGCCGCCCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGTATCGCCGCCGCAAGGCACGAGAGTTGG AAGGCGGTTTCATCAGCGCAGGCGCGCATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCCGCGCAAGGCGCGAGAGTTGG AAGGCGGTTTCGTCGGCCCAGGCCCGGATCGCCGCGCAAGGCGCGAGAATTGG AAGGCGGTTTCGTCGGCCCAGGCCCGCATTGCCGCCCGCAAAGCCGCGAGAATTGG AAGGCGTTTCGTCGGCGCAAGCCCGTATCGCGCCCGCAAAGCCGCAGAATTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGCCCCGCAAAGCCAGAGATTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG AAGGCTGTGTCCTCGGCGCAAGCCCGTATCGCGGCACGTAAGGCACGAGAGTTGG	TGCGC

Fig. 9 CGCAAGAGCGCAACCGACCTCGGCGGCCTGCCGGGCAAGCTCGCCGACTGCCGTTCGACG KPM2201 ATCC25274 CGCAAGAGCGCGACCGATTTGGGCGGGCTGCCCGGCAAGCTGGCCGACTGCCGTTCCACC CGTAAGAGTGCTACGGATTTGGGTGGGTTGCCGGGCAAGTTGGCTGATTGCCGCTCGACG **KPM1403** CGCAAGAGCGCCACCGACCTCGGCGGTCTGCCCGGGAAGCTGCCGACTGCCGCTCCACC KPM2027 CGCAAGAGCGCAACCGATCTCGGTGGGCTGCCCGGCAAGTTGGCCGACTGCCGCTCGACA KPM1201 CGCAAGAGCGCTACCGATCTCGGTGGGCTGCCCGGCAAGCTGGCCGACTGCCGCTCCACC **KPM2403** KPM3012 CGCAAGAGCGCAACCGACCTGGGCGGGCTGCCCGGCAAGCTCGCCGACTGCCGGTCGACC CGCAAGAGCGCAACCGACCTGGGCGGGCTGCCCGGCAAGCTCGCCGACTGCCGGTCGACC Bovine10 CGCAAGAGCECCACCGATCTGGGCGGGCTGCCCGGCAAGCTCCCCGACTGCCGCTCGACG KPM3101 CECAAGAGCGCCACCGACCTCGGTGGGCTECCGGGTAAGCTCGCAGACTGCCGCTCCACC KPM3401 ATCC51789 T801 CETAAGAGCGCCACCGACATCGGTGGATTGCCCGGCAAGCTGGCCGATTGCCGTTCCACG CGTAAGAGCGCCACCGACATCGGTGGATTGCCCGGCAAGCTGGCCGATTGCCGTTCCACG T901 T704 CETAAGAGCGCCACCEACATCGGTGGATTECCCGGCAAGCTGGCCGATTGCCGTTCCACG CGTAAGAGCGCCACCGACATCGGTGGATTGCCCGGCAAGCTGGCCGATTGCCGTTCCACG T021 CECAAGAGCGCAACCGATCTGGGCGGACTACCGGGCAAGTTGGCCGACTGCCGCTCGACC **KPM3504** KPM1001 CGCAAGAGCGCAACCGATCTGGGCGGACTACCCGGCAAGCTCGCCGACTGCCGCTCGACC 1020 GATCCCCGCAAATCCGAACTGTATGTGGTGGAGGGGGACTCCGCCGGCGGCTCGGCCAAG KPM2201 ATCC25274 GACCCGCGCAAGTCCGAACTGTATGTGGTGGAGGGTGACTCGGCAGGTGGCTCGGCCAAG **KPM1403** GACCCGCGGAAATCGGAACTGTATGTGGT6GAGGGCGATTCGGCCGGCGGCTCGGCCAAG KPM2027 KPM1201 **KPM2403** KPM3012 Bovine10 KPM3101 **KPM3401** ATCC51789 T801 T901 T704 T021

96

Caminaga Na 42

GACCCCCGTAAGTCCGAATTATATGTGGTGGAGGGTGATTCAGCCGGCGGCTCGGCGAAG

GACCCGCGCAAGTCCGAACTGTATGTGGTGGAGGGTGATTCAGCCGGCGGCTCGGCGAAG 1080

KPM3504

KPM1001

Fig. 10 AGCGGTCGGGATTCGATGTTCCAGGCGATTCTTCCGTTGCGCGGCAAGATCATCAACGTC KP#2201 AGCGGCCGTGACTCGATGTTCCAGGCCATCCTGCCGCTGCGCGGCAAGATCATCAACGTC ATCC25274 AGTGGGCGTGATTCGATGTTCCAGGCGATCTTGCCGCTGCGCGGCAAGATCATCAACGTC **KPM1403** AGCGGGCGCGACTCGATGTTCCAGGCGATCCTGCCGCTGCGCGGCAAGATCATCAATGTC KPM2027 AGTGGCCGCGATTCGATGTTCCAGGCGATCCTGCCGCTGCGCGGCAAGATCATCAATGTC KPM1201 AGCGGCCGCGACTCGATGTTTCAGGCGATACTTCCGTTGCGCGGCAAGATCATCAACGTC KPM2403 AGCGGCCGGGACTCGATGTTCCAGGCCATCCTTCCGCTGCGCGGCAAGATCATCAACGTC KPM3012 AGCGGCCGGGACTCGATGTTCCAGGCCATCCTTCCGCTGCGGCGAAGATCATCAACGTC Boyine 10 AGCGGCCGCGACTCGATGTTCCAGGCCATCCTGCCGCTGCGCGGCAAGATCATCAACGTC KPM3101 AGCGCCGCGACTCGATGTTCCAGGCGATCCTCCCGCTGCGTGGCAAGATCATCAACGTC KPM3401 AGCGGCCGCGACTCGATGTTTCAGGCGATCCTGCCGTTGCGGGGCAAGATCATCAACGTG ATCC51789 AGCGGTCGCGATTCGATGTTCCAGGCGATACTTCCGCTGCGCGGCAAGATCATCAATGTG T801 AGCEGTCGCGATTCGATGTTCCAGGCGATACTTCCGCTGCGCGGCAAGATCATCAATGTG T901 AGCGGTCGCGATTCGATGTTCCAGGCGATACTTCCGCTGCGCGGCAAGATCATCAATGTG **T704** AGCGGTCGCGATTCGATGTTCCAGGCGATACTTCCGCTGCGCGGCAAGATCATCAATGTG T021 AGCEGCCECGACTCGATGTTTCAAGCGATCTTGCCGTTGCGCEBCAAGATCATCAACGTC KPM3504 AGCGGTCGCGACTCGATGTTCCAGGCCATCTTGCCGTTGCGCGGCAAGATCATCAACGTC 1140 KPM1001 KPM2201 GAGAAGGCCCGCATCGACCGGGTGCTGAAGAACACCGAAGTCCAGGCCATCATCACCGCG GAGAAGGCCCGCATCGACCGGGTCCTGAAGAACACCGAAGTCCAGGCGATCATCACCGCG ATCC25274 GAAAAGGCCCGCATCGATCGGGTGCTGAAAAACACCGAAGTCCAGGCCATCATCACCGCG **KPM1403** GAGAAGGCCCGCATCGACCGGGTGCTGAAGAACACCGAAGTTCAGGCGATCATCACCGCG KPM2027 KPM1201 GAAAAGGCACGCATCGACCGAGTCCTGAAAAACACTGAAGTCCAGGCGATCATCACCGCG KPM2403 GAGAAGGCCCGCATCGACCGGGTGCTGAAGAACACCGAAGTCCAGGCGATCATCACCGCG GAAAAGGCCCGCATCGACCGGGTGCTGAAGAACACCGAGGTGCAGGCGATCATCACCGCG KPM3012 GAAAAGECCCGCATCGACCGGGTGCTGAAGAACACCGAGGTGCAGGCGATCATCACCGCG Bovine 10 GAGAAGGCCCGCATCGACCGGGTGTTGAAGAACACCGAGGTGCAGGCCATCATCACCGCC KPM3101 GAGAAGGCGCGCATCGACCGGGTGCTGAAGAACACCGAAGTTCAGGCGATCATCACCGCG KP#3401 ATCC51789 GAGAAGGCCCGCATCGACCGGGTGCTGAAGAACACTGAGGTGCAGGCGATCATCACCGCG **EAGAAAGCECECATCGACCGGGTGCTAAAGAACACCGAAGTTCAGGCGATCATCACGGCG** T801 GAGAAAGCGCGCATCGACCGGGTGCTAAAGAACACCGAAGTTCAGGCGATCATCACGGCG T901 T704 **GAGAAAGCGCGCATCGACCGGGTGCTAAAGAACACCGAAGTTCAGGCGATCATCACGGCG** GAGAAAGCGCGCATCGACCGGGTGCTAAAGAACACCGAAGTTCAGGCGATCATCACGGCG T021 **KPM3504** GAGAAGGCCCGCATCGACCGGGTGCTGAAGAACACCGAAGTCCAGGCGATCATCACCGCG KPM1001 GAGAAGGCCCGCATCGACCGGGTGCTGAAGAACACCGAAGTCCAGGCGATCATCACCGCG 1 2 0 0

Fig. 11	•			
KPM2201	CTGGGCACCGGGATCCACGACGAGTTCGACATCACCAAACTGCGCTACCACAAGATCGTA			
ATCC25274	CTGGGTACCGGTATTCACGACGAGTTCGACATTTCTAAACTGCGTTACCACAAGATCGTG			
KPM1403	CTGGGCACCGGCATCCACGACGAATTCG/	ACATCACCAAACTGCET	TACCACAAGATCGTG	
KPM2027	CTGGGTACCGGGATTCACGACGAGTTCGACATCACCAAGCTGCGCTATCACAAGATCGTG			
KPM1201	TTGGGTACCGGTATTCACGACGAATTCGACCTCTCGAAGCTGCGCTATCACAAGATCGTC			
KPM2403	CTEGGTACCGGAATTCACGACGAGTTCGACCTCGCCAAACTGCGCTACCACAAGATCGTG			
KPM3012	CTEGGCACCEGGATTCACGACGAGTTCGACATCACCAAGCTECECTACCACAAGATCGTG			
Bovine10	· CTGGGCACCGGGATTCACGACGAGTTCGACATCACCAAGCTGCGCTACCACAAGATCGTG			
KP#3101	CTGGGCACCGGCATCCACGACGAGTTCGACATCACCAAGCTGCGCTATCACAAGATCGTG			
KPM3401	CTGGGCACGGGGATTCACGACGAGTTCGACATCACCAAGCTCCGGTACCACAAGATCGTG			
ATCC51789	CTGGGCACCGGGATTCACGACGAGTTCGACATCTCCAAGCTBCGCTACCACAAGATCGTG			
T801	CTGGGCACCGGGATCCACGACGAGTTCGATATCGGCAAGCTGCGCTACCACAAGATCGTG			
T901	CTGGGCACCGGGATCCACGACGAGTTCGATATCGGCAAGCTGCGCTACCACAAGATCGTG			
T704	CTGGGCACCGGGATCCACGACGAGTTCGA	ATATOGGCAAGCTGCGC	TACCACAAGATCGTG	
T021	CTGGGCACCGGGATCCACGACGAGTTCGATATCGGCAAGCTGCGCTACCACAAGATCGTG			
KPM3504	TTGGGCACCGGTATTCACGACGAATTCGACATCGCGAGACTGCGTTACCACAAGATCGTG			
KPM1001	TTGGGTACCGGCATCCACGACGAATTCG/	ACATCGCGAGACTGCGT	TACCACAAGATCGTG 1260	
		* * * **		
KPM2201	TTG	KPM1403	M. simiae	
ATCC25274	TTG	. KPM1201	M. marinum	
KPM1403	TTG	KPM2201	M. gordonae	
KPM2027	CTG	ATCC25274	M. asiaticum	
KPM1201	TTG .	KPM2027	M. scrofulaceum	
KPM2403	CTG	KPM2403	M. szulgai	
KPM3012	TTG	KPM3012	M. avium	
Bovine10	TTG	Bovine10	M. paratuberculo	
KPM3101	CTG	KPM3101	M. intracellular	
KPM3401	CTG	KPM3401	M. malmoense	
ATCC51789	CTG	ATCC51789	M. branderi	
T801	CTG -	-T801	M. africanum	
T901	CTG	T901	M. microti	
T704	ста	T704	M. bovis	
T021	ств	T021	M. tuberculosis	
KPM3504	CTG	KPM3504	M. gastri	
KPM1001	СТС	KP#1001	M. kansasii	

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

C
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.