NUMCALC A NUMERICAL CALCULATOR APP

Students:

Felipe Henao Gómez Isabella Echeverri Villa Juan Andrés Montoya Galeano Thomas Martinod Saldarriaga

Professor: Edwar Samir Posada Murillo

EAFIT University

Informatics and Systems Department

Numerical Analysis

2022

FINAL PROJECT Second report

Objective: To specify the methods used for solving roots of polynomials and linear system of equations through their pseudocodes, and to show the preliminary results for the test functions.

Numerical Methods

1. Incremental search

```
read function, x0, dx, n
xprev=x0
xact=x0+dx
rootCount=0
for i=1 to n do
  if f(xact)*f(xprev)<0
    There is a root for the function in xprev, xact
  end
end
if rootcount==0
  No roots were found for the given number of n iterations and step size
end
end</pre>
```

```
There's a root for the function in [-2.5, -2] There's a root for the function in [0.5, 1] There's a root for the function in [0.5, 1] There's a root for the function in [2, 2.5] There's a root for the function in [4, 4.5] There's a root for the function in [5, 5.5] There's a root for the function in [7, 7.5] There's a root for the function in [8, 8.5] There's a root for the function in [10, 10.5] There's a root for the function in [11.5, 12] There's a root for the function in [13.5, 14] There's a root for the function in [14.5, 15] There's a root for the function in [16.5, 17] There's a root for the function in [17.5, 18] There's a root for the function in [19.5, 20]
```



```
There's a root for the function in [21, 21.5]
There's a root for the function in [22.5, 23]
There's a root for the function in [24, 24.5]
There's a root for the function in [26, 26.5]
There's a root for the function in [27, 27.5]
There's a root for the function in [29, 29.5]
There's a root for the function in [30, 30.5]
There's a root for the function in [32, 32.5]
There's a root for the function in [33.5, 34]
There's a root for the function in [35, 35.5]
There's a root for the function in [36.5, 37]
There's a root for the function in [38.5, 39]
There's a root for the function in [39.5, 40]
There's a root for the function in [41.5, 42]
There's a root for the function in [43, 43.5]
There's a root for the function in [44.5, 45]
There's a root for the function in [46, 46.5]
```

2. Metodo de la biseccion

```
read function, xi, xs, tolerance, niter
xm = (xi + xs)/2
fxm = f(xm)
error = absolute value of xm
while error > tolerance and i<niter and fxm different to 0
   if f(a)*fxm<0
      b=xm
      xm=(a+b)/2
      error=absolute value of xm-a
    else if f(b)*fxm<0
      a=xm
      xm=(a+b)/2
      error=absolute value of xm-a
    end
    fxm=f(xm)
    i++
end
if fxm==0 then
    the root was found with a value of xm
end
else if error<=tolerance then
    an approximation of the root was found
    with a value of xm
```



```
end
if i==n
   The root was not found in the number
   of iterations given
end
```

Results

Iteration	a	xn	b	f(xn)	E
22	0.936404	0.936404466	0.9364047	-6.616005e-08	2.3841857e-07
23	0.9364044	0.936404585	0.9364047	2.8715108e-09	1.192092e-07
24	0.9364044	0.93640452	0.93640458	-3.1644283e-08	5.9604644e-08

An approximation of the root was found with a value of 0.9364 and an error of 5.9605e-08

3. False position

```
read function, a, b, tolerance, n
i = 1
E = inifnite
fxn = 1
while E>tolerance and i<n and fxn different from 0
   xn=b-f(b)*((b-a)/(f(b)-f(a)))
   fxn=f(xn)
   if f(a)*fxn>0
     E=absolute value of xn-a
     a=xn
   else if f(b)*fxn>0
     E=absolute value of xn-b
     b=xn
   end
   i=i+1
end
if fxn==0
  The root was found with a value of xn
if E<= tolerance
  An aproximation of the root was found with a value of xn
end
if i==n
  The root was not found in the number of iterations given
```


end end

Results

Iteration	a	xn	b	f(xn)	E
3	0.933940380	0.9364047	0.9365060	8.6782541e-08	0.000101320922984094
4	0.933940	0.9364045	0.936404	1.2815393e-10	1.49641e-07
5	0.933940	0.936404	0.9364045	1.8918200e-13	2.209796e-10

An approximation of the root was found with a value of 0.9364 and an error of 2.2098e-10

4. Newton method

```
read function, df, x0, tolerance, n
if f(x0) == 0
  The inital point given is root
end
xn=x0
fxn=f(xn)
i=1
E=infinite
while E>tolerance and i<n and fxn different from 0
  xprev = xn
  xn=xprev-(f(xprev))/df(xprev))
 E=absolute value of xn-xprev
  fxn=f(xn)
  i++
end
if fxn==0
  The root was found with a value of xn
end
if E<= tolerance
  An aproximation of the root was found with a value of xn
end
if i==n
  The root was not found in the number of iterations given
end
end
```


Iteration	xn	f(xn)	Е
2	0.936366741267331	-2.19126198827135e-05	0.00797475135475945
3	0.93640458001899	-4.98339092214195e-10	3.78387516588585e-05
4	0.936404580879562	-1.11022302462516e-16	8.60571947036703e-10

An approximation of the root was found with a value of 0.9364 and an error of 8.6057e-10

5. Fixed point

```
read function, g, x0, tolerance, n
if f(x0) == 0
 The initial point given is the root
end
xn=x0
fxn=f(xn)
gxn=g(xn)
i=1
E=infinite
while E>tolerance and i<n and fxn different from 0
  xprev=xn
  xn=gxn
  E=absolute value of xn-xprev
  fxn=f(xn)
  gxn=g(xn)
  i++
end
if fxn==0
  The root was found with a value of xn
end
if E<= tolerance
 An aproximation of the root was found with a value of xn
end
if i==n
  The root was not found in the number of iterations given
end
end
```


Iteration	xn	g(xn)	f(xn)	Е
28	-0.3744451043623	-0.3744449757003	1.286620382457e-07	2.142604523803e-07
29	-0.3744449757003	-0.3744450529611	-7.726074024994e-08	1.286620382456e-07
30	-0.3744450529611	-0.3744450065665	4.639458395239e-08	7.726074024994e-08

An approximation of the root was found with a value of -0.37445 and an error of 7.7261e-08

6. Secant method

```
read function, x0, x1, tolerance,
if f(x0)==0
The initial point x0 given is the root
end
if f(x1) == 0
The initial point x1 given is the root
end
xn=x0
xnext=x1
fxn=f(xnext)
i=2
e=infinite
while e>tolerance and i<n and fxn different from 0
  xprev=xn
  xn=xnext
  xnext=xn-(f(xn)/((f(xn)-f(xprev))/(xn-xprev)))
  e=absolute value of xnext-xn
  fxn=f(xnext)
  i++
end
if fxn==0
 The root was found with a value of xn
end
if E<= tolerance
 An aproximation of the root was found with a value of xn
end
if i==n
  The root was not found in the number of iterations given
end
end
```


Iteration	xn	f(xn)	E
4	0.936407002376704	1.40223589106814e-06	0.000410421585531284
5	0.93640458147312	3.43716499706659e-10	2.42090358437697e-06
6	0.936404580879561	-4.9960036108132e-16	5.93558091566138e-10

An aproximation of the root was found with a value of 0.9364 and an error of 5.9356e-10

7. Simple Gauss Elimination

```
read A,b Ab=[A\ b] [f,c]=size of Ab for j=1 to c-2 for i=j to f-1 Ab(i+1,j) to c)=Ab(i+1,j) to c)=Ab(i+1,j) to c)=Ab(i+1,j) to c) end end end
```

Regresive Sustitution function

```
read A,b
[f,c]<-size of A
x(f)<-b(f)/A(f,f)
for i=f-1 reducing 1 each step to 1
    sum=0
    for j=i+1 to f
        sum=sum+A(i,j)*x(j)
    end
    x(i)=(b(i)-sum)/A(i,i)
end
end
\\\
\\\</pre>
```

Main function

```
read A,b
[U,B]<-Elimination with parameters A,b
x<-Regresive sustitution function with parameters U,B
The solution of the equation is x</pre>
```


Results

```
Stage 2:
2.0000 -1.0000
                      0
                              3.0000
                                         1.0000
   0
         1.0000
                    3.0000
                              6.5000
                                         0.5000
   0
            0
                  -41.0000 -73.5000 -5.5000
   0
            0
                   -38.000
                             -96.0000 -12.0000
Stage 3:
2.0000 -1.0000
                      0
                                    3.0000
                                                           1.0000
   0
         1.0000
                    3.0000
                                    6.5000
                                                           0.5000
   0
                                   -73.5000
            0
                  -41.0000
                                                          -5.5000
   0
            0
                      0
                             -27.878048780487802 -6.902439024390244
Solution:
0.038495188101487 \quad -0.180227471566054 \quad -0.309711286089239 \quad 0.247594050743657
```

8. Gauss elimination with partial pivot

Function of Gaussian elimination with partial pivot (ElimPivPar)

```
read A,b
[f,c]<-size of Ab
for j=1 to c-2
  col<-absolute value of j to f, j
  m<- find maximum in col
  temp<- Ab in row j
  Ab in row j <- Ab in row m+j-1
  Ab in rom m+j-1<- temp
  for i=j to f-1
    Ab in row i+1 and column j to c<-Ab(i+1,j:c)-(Ab(i+1,j)/Ab(j,j))*Ab(j,j:c)
  end
end
end</pre>
```

Regresive Sustitution function

```
read A,b
[f,c]<-size of A
x(f)<-b(f)/A(f,f)
for i=f-1 reducing 1 each step to 1
    sum=0
    for j=i+1 to f
        sum=sum+A(i,j)*x(j)
    end
    x(i)=(b(i)-sum)/A(i,i)</pre>
```


end end

Main function

```
read A,b [\text{U,B}] < -\text{function ElimPivPar with parameters A,b} \\ \text{x} < -\text{Regresive sustitution function with parameters U,B} \\ \text{The solution of the equation is x}
```

Results

Solution:

Stage 2:				
14.000	5.000	-2.000	3.000	1.000
0	13.000	-2.000	11.000	1.000
0	0	3.164835164835165	7.664835164835164	0.917582417582418
0	0	0.021978021978022	4.021978021978022	0.989010989010989
Stage 3:				
14.000	5.000	-2.000	3.000	1.000
0	13.000	-2.000	11.000	1.000
0	0	2 164025164025165	7.664835164835164	0.917582417582418
O	U	3.164835164835165	1.004033104033104	0.911362411362416

 $0.038495188101487 \quad -0.180227471566054 \quad -0.309711286089239 \quad 0.247594050743657$

9. Gauss method with total pivot

Elimination Gauss method with total pivot (ElimPivTot)

```
read A,b
A,b=[A b]
[f c]= size of Ab
tags<-1 to c-1
for j=1 to c-2
    subm <- submatrix of Ab(j to f,j to c-1)
    [mi,mj]<-find maximum between subm,[]
    temp<-Ab(j,j to end)
    Ab(j, j to end)<-Ab(mi+j,j to end)
    Ab(mi+j-1,j to end)<-temp
    temp<-Ab in column j
    Ab in column mj+j-1<-temp
    temp<-tags(j)
    tags(j)<-tags(mj+j-1)
    tags(mj+j-1)=temp</pre>
```

Stage 3:


```
for i=j to f-1
            Ab(i+1,j) to c)=Ab(i+1,j) to c)-(Ab(i+1,j)/Ab(j,j))*Ab(j,j) to c)
        end
    end
Regresive Sustitution function (solve)
    read A,b
    [f,c]<-size of A
    x(f) < -b(f)/A(f,f)
    for i=f-1 reducing 1 each step to 1
        sum=0
        for j=i+1 to f
           sum=sum+A(i,j)*x(j)
        end
        x(i)=(b(i)-sum)/A(i,i)
    end
    end
    //
    //
Main function
 read A,b
    [U,B,tags]<-ElimPivTot(A,b)</pre>
    x<-solve(U,B)
    f < -size of x, 2
    xtemp<-[]</pre>
    for i=1 to f
      ind<-tags in position i
      xtemp(ind)<-x(i)</pre>
    end
    x=xtemp
end
Results
Stage 2:
14.0000
         5.0000 \quad -2.0000 \quad 3.0000 \quad 1.0000
   0
         13.0000 -2.0000 11.0000 1.0000
    0
                   3.1648
                            7.6648 0.9176
            0
    0
          0.0000
                   0.0220
                            4.0220 \quad 0.9890
```



```
14.0000 5.0000
                      3.0000 -2.0000 1.0000
             13.0000 \quad 11.0000 \quad -2.0000 \quad 1.0000
       0
       0
                      7.6648
                              3.1648
                0
                                      0.9176
       0
             0.0000
                        0
                              -1.6387 \quad 0.5075
   Solution:
    0.0385 \quad -0.1802 \quad -0.3097 \quad 0.2476
10. Multiple roots
        read f, df, d2f, x0, tolerance, n
        if f(x0)==0
        The initial point given is the root
        xn=x0
        Fxn=f(xn)
        i=1;
        E=infinite
        while E>tolerance and i<N and Fxn different from O
            xprev<-xn
            F<-f(xprev);
            dF<-df(xprev)
            d2F<-d2f(xprev)
            xn<-xprev-(F*dF)/((dF^2)-F*d2F)
            Fxn < -f(xn)
            E=absolute value of xn-xant
            i=i++;
        end
        if Fxn==0
            The root was found with a value of xn
            return
        end
        if E<=Tol
            An aproximation of the root was found with a value of xn and an error of E
            return
        end
        if i==N
            disp("The root was not found in the number of iterations given")
            return
        end
    end
```


Iteration	xn	f(xn)	E
2	-0.0084583	3.5671e-05	0.22575
3	-1.189e-05	7.0688e-11	0.0084464
4	-4.2186e-11	0	1.189e-05

The root was found with a value of -4.2186e-11

11. Müller's algorithm

```
read f, x0, x1, x2, tolerance, N
h1 = x1 - x0
h2 = x2 - x1
d1 = (f(x1) - f(x0))/h1
d2 = (f(x2) - f(x1))/h2
d = (d2 - d1)/(h2 + h1)
i = 2
while i < N:
    b = d2 + h2*d
    D = (b^2 - 4*f(x^2)*d)^1/2 ----- from the cuadratic formula
    if |b-D| < |b+D|:
       E = b + d
    else:
       E = b - d
    h = -2*f(x2)/E
    if |h| < tolerance:
        return p, E, i -----p is the x coordinate for the root and E the
                               i-th iteration error
        break
    else:
        x0 = x1
       x1 = x2
        x2 = p
       h1 = x1 - x0
        h2 = x2 - x1
        d1 = ((f(x1) - f(x2))/h1
        d2 = ((f(x2) - f(x1))/h2
        d = (d2 - d1)/(h2 + h1)
```



```
\label{eq:interpolation} \mbox{i = i + 1} end \mbox{print: "The method failed after " + N + " iterations"}
```

12. Steffensen's algorithm

13. Aitken's process for accelerating convergence

read f, g, x0, tolerance, N

```
% Initial assignments
xn=x0
Fxn=f(xn)
Gxn=g(xn)
i=1;
E=inf;

while E > tolerance and i < N and Fxn != 0
    AitkenMod = false
    xant = xn
    xn = Gxn

% Check mod3 families until we obtain a multiple of 3
if mod(i,3) == 1</pre>
```

aij = A(i,j);

else

if aij == 0

if aij != 0

return

return

if i == j or i-1 == j or i+1 == j


```
x1 = xn;
       else if mod(i,3) == 2
           x2 = xn;
       else if mod(i,3) == 0
           xn = xo - ((x1-xo)^2/(x2-2*x1+xo))
           xo = xn;
           AitkenMod = true
       E = abs(xn-xant)
       Fxn = f(xn)
       Gxn = g(xn)
       i=i+1
   end
   if Fxn == 0
       print: "The root was found with a value of " + xn
   if E <= tolerance
       print: "An aproximation of the root was found with a value of " + xn + " and
               an error of " + E
       return
   if i == N
       print: "The root was not found in the number of iterations given"
       return
14. Trisection Method
   read A,b ----- % Ax = b system
   n = length(b)
   % Check if matrix is tridiagonal
   for i=1:n
       for j=1:n
```

print: "The given matrix is not tridiagonal"

print: "The given matrix is not tridiagonal"


```
end
end
Ab = [A b] ----- % Augmented A|b matrix
diagp = zeros(n,1)
diagu = zeros(n-1,1)
diagl = zeros(n-1,1)
diagp(1) = A(1,1)
for i=2:n
    \mbox{\ensuremath{\mbox{\%}}} 
 Extract the elmenents from each diagonal
    diagl(i-1) = Ab(i,i-1)
    diagp(i) = Ab(i,i)
    diagu(i-1) = Ab(i-1,i)
    % Making the diagonal below zeros
    M = diagl(i-1)/diagp(i-1) ----- % Multiplier
    diagp(i) = diagp(i)-M*diagu(i-1)
    diagl(i-1) = diagl(i-1)-M*diagp(i-1)
    b(i) = b(i) - M*b(i-1)
    Ab(i,i-1:i+1) = [diagl(i-1) diagp(i) diagu(i-1)]
    Ab(i,end) = b(i)
end
% Substitution
x(n) = b(n)/diagp(n)
for i=n-1 : -1 : 1
    x(i) = (b(i)-diagu(i)*x(i+1))/diagp(i);
end
print: x
```