Representations of Celestial Coordinates in FI

Eric W. Greisen

National Radio Astronomy Observatory

Mark Calabretta

Australia Telescope National Facility

Initial (1979) FITS Coordinate Specification

Keywords

CTYPEn Coordinate type (8 characters)

CRPIXn Reference pixel location

CRVALn Coordinate value at reference pixel

CDELTn Coordinate increment at reference pixel

CROTAn Coordinate "rotation"

Problems with this

- Types inadequate for celestial coordinates, velociti
- Physical meaning of reference pixel undefined
- Rotation undefined, inadequate for general use
- No provision for skew in images

AIPS 1983 enhancements

- Types defined for some celestial coordinates, veloc
- Reference pixel defined as tangent point
- Rotation limited to celestial coordinates
- Still no skew or offset rotations
- Limited view of projective geometries

Proposed FITS Coordinate Specification New Keywords for All Coordinate Types

$\mathtt{CUNIT}n$ coordinate units string

- ullet the units used in CRVAL n and CDELT n
- simple SI units (and degrees) preferred
- allowed units and format of string to be discussed

PCnnnmmm Matrix

- \bullet Replaces CROTA n keywords
- Allows skew, offset and general rotations
- Allows dissimilar coordinates to be rotated together.
- Relative coordinates given by linear transform :

$$\begin{pmatrix} x \\ y \\ z \\ \vdots \end{pmatrix} = \begin{pmatrix} \text{CDELT1} & 0 & 0 & \dots \\ 0 & \text{CDELT2} & 0 & \dots \\ 0 & 0 & \text{CDELT3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \text{PC001001} & \text{PC001002} & \text{PC001003} \\ \text{PC002001} & \text{PC002002} & \text{PC002003} \\ \text{PC003001} & \text{PC003002} & \text{PC003003} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Proposed FITS Coordinate Specification New Keywords for All Coordinate Types

Secondary description(s) of coordinate axis n

- \bullet CmVALn coordinate value at reference pixel
- \bullet CmPIXn reference pixel array location
- ullet CmELTn coordinate increment at reference pixel
- CmYPEn axis type (8 characters)
- CmNITn units of CmVALn and CmELTn (character valued as CUNITm)

m = 2, 3, 4, 5, 6, 7, 8, or 9

Astrometry-related keywords added

- EQUINOX replaces EPOCH for the epoch of the mea equator and equinox in years
- MJD-OBS modified Julian date of observation in date
- RADECSYS frame of reference of equatorial coordin as FK4, FK4-NO-E, FK5, GAPPT

Proposed FITS Coordinate Specification Keywords for Celestial Coordinates

$\mathtt{CTYPE}n$ format defined

- First 4 characters give type of "standard coordinate synequatorial RA-- and DEC- galactic GLON and GLAT ecliptic ELON and ELAT
- Second 4 characters give type of projection as -ccc where ccc defined by convention, such as SIN, TAN, ARC, AIT

CRPIX n meaning defined by projection

- Each projection has "native coordinate system"
- Reference pixel is native north pole (0, 90°) for azimuthal and conical projections
- Reference pixel is native origin (0,0) for cylindrical and conventional projections

Proposed FITS Coordinate Specification Celestial Coordinates Continued

$\mathtt{CDELT}n$ clarified

- Increment in physical units per pixel of physical ax
- Applied after pixel rotation and skew
- This linear physical "coordinate" then converted by non-linear formulæ to true physical coordinates

CRVALn clarified

• Value at the reference pixel in the standard coordinates specified in CTYPEn

LONGPOLE keyword added for generality

- Native longitude of north pole of standard system
- Default value is 180°

PROJPj keywords added to define some projection

Proposed FITS Coordinate Specification Conventions and Matters of "Good Form"

- 1. The center of each pixel is its location.
- 2. Default viewing convention:
 - First pixel at lower left corner,
 - First axis displayed along horizontal,
 - Second axis displayed along vertical.
- 3. Diagonal elements of PCiiijjj should predominate.
 - Do not hide transpositions in the PC matrix.
- 4. Forbid rotation into axes which have only integral valu
- 5. NCP projection (of WSRT) changed to offset SIN proje
- 6. When possible, CROTAn should be written along with F
- 7. For longitude axis i and latitude axis j, the conversion

$$\begin{pmatrix} \text{PC}iiiii & \text{PC}iiijjj \\ \text{PC}jjjiii & \text{PC}jjjjjj \end{pmatrix} = \begin{pmatrix} \cos(\text{CROTA}j) & -\sin(\text{CROTA}j) \\ \sin(\text{CROTA}j) & \cos(\text{CROTA}j) \end{pmatrix}$$