	Readings: Chapter 6
BRACKETING VS O	PEN METHODS

FIXED-POINT ITERATION

Transform equation to: x = g(x)

$$e^{-x} - x = 0$$

$$x = e^{-x}$$

$$\sin x = 0$$

$$x = x + \sin x$$

FIXED-POINT ITERATION

FIXED-POINT ITERATION

HOW FIXED-POINT ITERATION CAN FAIL

$$E_{i+1} = g'(\xi) E_i$$

NEWTON-RAPHSON METHOD

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

HOW
NEWTONRAPHSON
CAN
FAIL

ERROR ANALYSIS

FIXED POINT

$$E_{i+1} = g'(\xi) E_i$$

NEWTON-RAPHSON ALGORITHM

• newtonRaph.m

SECANT METHOD

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

FALSE POSITION VS SECANT

MODIFIED SECANT METHOD

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$f'(x_i) \cong \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

Generally faster than secant