Politechnika Poznańska, Instytut Automatyki i Inżynierii Informatycznej

Podstawy techniki mikroprocesorowej

Ćwiczenie laboratoryjne 4b - EXTI

1. Wstęp teoretyczny.

Na płytce ewaluacyjnej Discovery zamieszczono dwa przyciski: RESET oraz USER. Ten pierwszy powoduje wywołanie przerwania o najwyższym priorytecie: restart procesora. Ten drugi przycisk może być dowolnie wykorzystany przez użytkownika po napisaniu odpowiedniego programu. Zgodnie z dokumentacją płytki Discovery (additional_files -> dokumentacja_discovery.pdf) fragment schematu podłączenia przycisku do procesora wygląda następująco:

Dokładny port mikrokontrolera STM32 można również odnaleźć w dokumentacji: additional_files -> dokumentacja_discovery.pdf , tabela 5 MCU pin description versus board function. Fragment tej tabeli zamieszczono poniżej:

Table 5. MCU pin description versus board function

MCU pin				Board function													
Main function	Alternate functions	LQFP100	CS43L22	MP45DT02	LIS302DL or LIS3DSH	Pushbutton	LED	SWD	USB	osc	Free I/O	Power supply	CN5	CN2	P1	P2	
воото	VPP	94	-	-	-	-	-	-	-	-	-	-	-	-	-	21	
NRST	-	14	-	-	1	RESE	-	NRST	1	-	-	1	-	5	6	-	
PA0- WKUP	USART2_CTS/ USART4_TX/ ETH_MII_CRS/ TIM2_CH1_ETR/ TIM5_CH1/ TIM8_ETR/ ADC123_IN0/ WKUP	23	-	-	-	USER	-	-	10	-	¥	- I	ī	-	12	-	
PA1	USART2_RTS/ USART4_RX/ ETH_RMII_REF_CLK/ ETH_MII_RX_CLK/ TIM5_CH2/ TIMM2_CH2/ ADC123_IN1	24	-	,_,	-	-	-	-	-	-	•	-	-	-	11	-	
PA2	USART2_TX/ TIM5_CH3/ TIM9_CH1/ TIM2_CH3/ ETH_MDIO/ ADC123_IN2	25	-	i	ji	-	1	-	ī	-	ä	ı	î	1	14	-	

Istnieje możliwość wygenerowania przerwania zewnętrznego pochodzącego od pinu podłączonego do przycisku. Zaznaczono to na poniższym obrazku (który został odnaleziony w podrozdziale: 9.2.5 External interrupt/event line mapping z additional_files -> dokumentacja_STM32F407VGT6.pdf):

Figure 27. External interrupt/event GPIO mapping

Jak widać dany pin danego portu po właściwej konfiguracji może generować przerwanie EXTI. Należy pamiętać, aby pin podłączony do przycisku skonfigurować jako wejście.

2. Przebieg ćwiczenia.

a. Konfiguracja przerwań - przerwania zewnętrzne.

W pierwszej kolejności należy uruchomić zasilanie systemu przerwań:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);

Przykład konfiguracji kontrolera przerwań do obsługi przerwania zewnętrznego z kanału 1 (wykonując zadania należy wybrać właściwy kanał).

```
NVIC_InitTypeDef NVIC_InitStructure;
// numer przerwania
NVIC_InitStructure.NVIC_IRQChannel = EXTI1_IRQn;
// priorytet główny
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00;
// subpriorytet
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00;
// uruchom dany kanał
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
// zapisz wypełnioną strukturę do rejestrów
NVIC_Init(&NVIC_InitStructure);
```

W konfiguracji pinu procesora, oprócz standardowych funkcji konfiguracyjnych należy dodać konfigurację modułu przerwań zewnętrznych (wykonując zadania należy wybrać właściwy numer linii):

```
EXTI_InitTypeDef EXTI_InitStructure;
// wybór numeru aktualnie konfigurowanej linii przerwań
EXTI_InitStructure.EXTI_Line = EXTI_Line1;
// wybór trybu - przerwanie bądź zdarzenie
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
// wybór zbocza, na które zareaguje przerwanie
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
// uruchom daną linię przerwań
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
// zapisz strukturę konfiguracyjną przerwań zewnętrznych do rejestrów
EXTI_Init(&EXTI_InitStructure);
```

Na koniec niezbędne jest połączenie wybranego pinu portu (w tym przypadku pin 1 z portu D) do modułu przerwań zewnętrznych:

```
// pod†aczenie danego pinu portu do kontrolera przerwań
SYSCFG_EXTILineConfig(GPIOD, EXTI_PinSource1);
```

Należy pamiętać, o załączeniu odpowiedniej biblioteki, odpowiedzialnej za zdefiniowanie nazw pinów dla kontrolera przerwań (#include "stm32f4xx_syscfg.h").

b. Obsługa przerwań - przerwania zewnętrzne.

Analogicznie do obsługi przerwań od timera należy stworzyć funkcję, która będzie wywoływana w momencie wystąpienia przerwania. Przykład dla **1** kanału przerwań zewnętrznych.

```
void EXTI1_IRQHandler(void)
{
    if(EXTI_GetITStatus(EXTI_Line1) != RESET)
    {
        // miejsce na kod wywoływany w momencie wystąpienia przerwania
        // wyzerowanie flagi wyzwolonego przerwania
        EXTI_ClearITPendingBit(EXTI_Line1);
    }
}
```

3. Zadania do samodzielnej realizacji.

Należy połączyć wyświetlacz LED z płytką Discovery. Można to zrobić zgodnie ze schematem podanym w poprzednim ćwiczeniem.

1. Zaraz po uruchomieniu programu wszystkie segmenty wyświetlacza LED nr 1 są zapalone. Zaprogramować przerwanie zewnętrzne tak, aby było ono wywoływane poprzez naciśnięcie przycisku USER na płytce Discovery. Niech przerwanie to powoduje wygaszenie wyświetlacza LED nr 1 i zapalenie wyświetlacza nr 2. Ponowne naciśnięcie przycisku powoduje sytuację odwrotną: wygaszenie wyświetlacza nr 2 i zapalenie wyświetlacza nr 1.

Podstawowe ćwiczenie dotyczące przerwania zewnętrznego. Problem drgania styków.

Film

- 2. Zmodyfikować zadanie nr 1. W celu niwelacji zakłóceń przycisku wykorzystać następujący algorytm:
 - a. skonfigurować dodatkowy timer który odmierza np 200ms, ale nie uruchamiać go! (TIM_Cmd(TIMx, DISABLE);),
 - b. skonfigurować przerwanie dla tego timera (NVIC),
 - c. w funkcji przerwania EXTI od przycisku uruchomić timer (TIM_Cmd(TIMx, ENABLE);)
 - d. w funkcji przerwania wybranego timera sprawdzamy stan przycisku, jeżeli jest wciśnięty, to zmieniamy stan diod LED,
 - e. zaraz po tym wyłączamy timer,

- f. ustawiamy wartość licznika na 0 (TIM_SetCounter(TIMx, 0);),
- g. resetujemy flagę przerwania od timera, timer jest gotowy do przyjęcia obsługi kolejnego zdarzenia debounce.

Wykorzystanie przerwań timera i przerwań zewnętrznych do zaawansowanej obsługi przycisku (bez zakłóceń).

Film

3. Segmenty wyświetlacza LED nr 1 zapalają się i gaszą tworząc efekt wirującego światła (zgodnie z zadaniem nr 3 z poprzednich ćwiczeń). Czas zapalenia jednego segmentu to 0,125 s zrealizowany poprzez generowanie przerwania timera 3. Zaprogramować również przerwanie zewnętrzne pochodzące od przycisku USER tak, aby każde jego naciśnięcie powodowało wywołanie procedury przerwania a w nim kolejno: zapalanie kropki (segmentu "h") wyświetlacza LED nr 1, odczekanie sekundy poprzez analizę wartości TIMX->CNT licznika 2 i zgaszenie kropki.

Praca "równoległa" dwóch wątków o różnych priorytetach - przerwanie zewnętrzne ma wyższy priorytet niż przerwanie timera.

<u>Film</u>