PadhAl: Batch Normalization and Dropout

One Fourth Labs

Why should we normalize inputs

Why does normalizing inputs help?

1. Let's compare the before-after of normalization of inputs

Let's compare the before-after of normalization of inputs	
Before Normalization	After Normalization
10.0 7.5 5.0 C 2.5 0.0 C', -2.5 -5.0 -7.5 -10.0 -200 -150 -100 -50 0 50 100 150 200 x_1 (feature 1)	6 4 (7) 2
Here, we observe that x_1 has a much larger range of values than x_2	Here, x_1 and x_2 have both been brought into a comparable range of values.
When optimising the Loss function, one set of weights corresponding to the smaller feature x ₂ will end up being very large. This leads to oscillations about the local minima during gradient descent as much larger updates are made due to large weights.	Here, since weights end up being smaller, we see a good reduction in the oscillation about the local minima during optimization.
Another point to note is that in Gradient Descent, our updates would be very biased to the feature corresponding to the larger weights. Thus we may see the model becoming very sensitive to that particular feature	Here, the weights are brought in a comparable range. This reduces the chance of updates biased to any particular feature