Python For Data Science Cheat Sheet

Pandas

Learn Python for Data Science Interactively at www.DataCamp.com

Reshaping Data

>>> df3= df2.pivot(index='Date', columns='Type', values='Value')

Date Type Value

Spread rows into columns

_	Date	турс	value	!				
0	2016-03-01	а	11.432		Туре	a	b	С
1	2016-03-02	ь	13.031		Date			
2	2016-03-01	С	20.784		2016-03-01	11.432	NaN	20.784
3	2016-03-03	а	99.906		2016-03-02	1.303	13.031	NaN
4	2016-03-02	a	1.303		2016-03-03	99.906	NaN	20.784
5	2016-03-03	С	20.784					

Pivot Table

>>> df4 = pd.pivot table(df2, values='Value' index='Date', columns='Type'])

Spread rows into columns

Stack / Unstack

>>> stacked = df5.stack() Pivot a level of column labels >>> stacked.unstack() Pivot a level of index labels

Melt

Gather columns into rows >>> pd.melt(df2, id vars=["Date"], value_vars=["Type", "Value"], value name="observations")

Iteration

(Column-index, Series) pairs >>> df.iteritems() (Row-index, Series) pairs >>> df.iterrows()

Advanced Indexing

Selecting >>> df3.loc[:,(df3>1).any()] >>> df3.loc[:,(df3>1).all()] >>> df3.loc[:,df3.isnull().any()] >>> df3.loc[:,df3.notnull().all()]

Indexing With isin

>>> df[(df.Country.isin(df2.Type))] >>> df3.filter(items="a","b"]) >>> df.select(lambda x: not x%5)

Where >>> s.where(s > 0)

Query >>> df6.query('second > first')

Also see NumPy Arrays

Select cols with NaN Select cols without NaN Find same elements

Select cols with vals > 1

Select cols with any vals >1

Filter on values Select specific elements

Subset the data

Query DataFrame

Setting/Resetting Index

<pre>>>> df.set_index('Country') >>> df4 = df.reset_index() >>> df = df.rename(index=str,</pre>	Set the index Reset the index Rename DataFrame
--	--

Reindexing

>>> s2 = s.reindex(['a','c','d','e','b'])

Forward Filling

Backward Filling >>> s3 = s.reindex(range(5), >>> df.reindex(range(4), method='ffill') method='bfill' Capital Population Country 0 Belgium Brussels 11190846 1303171035 India New Delhi Brazil Brasília 207847528 3 Brasília 207847528

Multilndexing

```
>>> arrays = [np.array([1,2,3]),
              np.array([5,4,3])]
>>> df5 = pd.DataFrame(np.random.rand(3, 2), index=arrays)
>>> tuples = list(zip(*arravs))
>>> index = pd.MultiIndex.from_tuples(tuples,
                                      names=['first', 'second'])
>>> df6 = pd.DataFrame(np.random.rand(3, 2), index=index)
>>> df2.set index(["Date", "Type"])
```

Duplicate Data

>>>	s3.unique() df2.duplicated('Type')	Return unique values Check duplicates
	<pre>df2.drop_duplicates('Type', keep='last') df.index.duplicated()</pre>	Drop duplicates Check index duplicates

Grouping Data

Aggregation >>> df2.groupby(by=['Date','Type']).mean() >>> df4.groupby(level=0).sum() >>> df4.groupby(level=0).agg({'a':lambda x:sum(x)/len(x), 'b': np.sum}) Transformation >>> customSum = lambda x: (x+x%2) >>> df4.groupby(level=0).transform(customSum)

Missing Data

>>> df.dropna() Drop NaN values >>> df3.fillna(df3.mean()) Fill NaN values with a predetermined value >>> df2.replace("a", "f") Replace values with others

Combining Data

Merge

>>>	pd.merge(data1,
	data2,
	how='outer',
	on='X1')

X1	X2	Х3	
а	11.432	20.784	
Ъ	1.303	NaN	
С	99.906	NaN	
X1	X2	Х3	ı
_			l
a	11.432	20.784	
Ь	1.303	NaN	
d	NaN	20.784	
X1	X2	Х3	

Join

>>> data1.join(data2, how='right')

Concatenate

Vertical

```
>>> s.append(s2)
| Horizontal/Vertical
```

>>> pd.concat([s,s2],axis=1, keys=['One','Two']) >>> pd.concat([data1, data2], axis=1, join='inner')

Dates

```
>>> df2['Date']= pd.to datetime(df2['Date'])
>>> df2['Date']= pd.date range('2000-1-1',
                               periods=6,
                               freq='M')
>>> dates = [datetime(2012,5,1), datetime(2012,5,2)]
>>> index = pd.DatetimeIndex(dates)
>>> index = pd.date range(datetime(2012,2,1), end, freg='BM')
```

Visualization

Also see Matplotlib

DataCamp Learn Python for Data Science Interactively

