Say you want to transfer 1Kbyte (i.e. 8000 bits) frames over a 0.5 Mbps channel with a one-way delay of 32 ms, using the sliding window algorithm, with SWS = RWS.

- (a) compute the value of SWS that will ensure high channel utilization.
 - b) Suppose the sender will time-out at 1.5*RTT, and an ACK frame is sent for each correctly received, in-order frame (Ignore the transmission time of the ACK frame but do not ignore the propagation delay). Sketch a timeline diagram for the following case, labeling each data frame and ACK as F_1 , F_2 , ... and ACK₁, ACK₂, ... etc. (assume that there are enough bits in the sequence field in the header of the frame such that there is no need to wrap-around sequence numbers). Clearly label the time axis assuming the first frame F_1 is transmitted at t = 0. No ACKs are sent for out-of-order frames.

CASE: F_2 and F_4 are lost (remember, frame lost means it did not reach the receiver)

We want to continuously be able to send frames in order to keep the link utilization 100% (i.e. keeping the pipe full)

(BW x Delay) product =
$$0.5$$
 Mbps ($2x32$ msec) = 32 Kbits = 4 Kbyte

Hence SWS = 4 KB/1KB = 4

b) The sequence of events are as follows:

Time (msec)	Event	Comments
0	F_1 is transmitted	
16	F_2 is transmitted	This frame is lost
32	F_3 is transmitted	This frame is received and buffered (but not acknowledged)
48	F_4 is transmitted	The sender window has closed after transmitting this frame This frame is lost
64	ACK_1 is received F_5 is transmitted	The RTT is 64 msec. The Sender window size opened up one frame \Rightarrow Sender send F_5 and stops.
112	Timeout of F_2 has expired. Sender send F_2 again	This is just an assumption. The timeout is set at the time the frame is transmitted. You could assume that the time out starts from the end of the transmission of the frame
128	Timeout of F_3 has expired. Sender send F_4 again	
144	Timeout of F_4 has expired. Sender send F_4 again	
160	Timeout of F ₅	

	has expired. Sender	
	send F_5 again	
176	Sender receives ACK ₃	Receiver has acknowledged both F_2 and F_3 . Sender window
	Send frame F ₆	Will open by two frames
192	Send frame F ₇	
208	Sender receives ACK ₅	Receiver has acknowledged both F_4 and F_5 . Sender window
		Will open by two frames and so on