I Mots qui commutent

Soient u et v deux mots. Montrer que les deux conditions suivantes sont équivalentes :

- 1. uv = vu
- 2. Il existe un mot w et des entiers $n, p \ge 1$ tels que $u = w^n$ et $v = w^p$.

II Règles opératives

Pour chacune des propositions suivantes sur des expressions régulières quelconques, donner une preuve ou un contre-exemple :

- 1. $(e^*)^* \equiv e^*$
- 2. $(e_1|e_2)^* \equiv e_1^*|e_2^*|$

- 3. $(e_1e_2)^* \equiv e_1^*e_2^*$
- 4. $(e_1|e_2)^* \equiv (e_1^*e_2^*)$

III Hauteur d'étoile

La hauteur d'étoile h d'une expression régulière est définie récursivement de la manière suivante :

- h(e) = 0 si e est \emptyset , ε ou une lettre.
- $h(e_1 + e_2) = \max(h(e_1), h(e_2)).$
- $h(e_1e_2) = \max(h(e_1), h(e_2)).$
- $h(e^*) = h(e) + 1$.
- 1. Quelle est la hauteur d'étoile de $(ba^*b)^*$?
- 2. Écrire la fonction h: 'a regexp \rightarrow int en OCaml. On utilisera le type suivant :

```
type 'a regexp =
| Vide | Epsilon | L of 'a (* L a est la lettre a *)
| Union of 'a regexp * 'a regexp
| Concat of 'a regexp * 'a regexp
| Etoile of 'a regexp
```

La hauteur d'étoile d'un langage L est la plus petite hauteur d'étoile d'une expression rationnelle e de langage L.

3. Que peut-on dire des langages de hauteur d'étoile 0 ?

IV Petites questions

- 1. Écrire une expression rationnelle dont le langage est l'ensemble des mots sur $\{a, b, c\}$ contenant exactement un a et un b (et un nombre quelconque de c).
- 2. Écrire une expression rationnelle dont le langage est l'ensemble des mots sur $\{a, b, c\}$ ne contenant pas de a consécutifs (aa ne doit pas apparaître).
- 3. Écrire une expression rationnelle dont le langage est l'ensemble des mots sur $\{a,b,c\}$ contenant exactement deux a et tels que tout c est précédé d'un b.
- 4. Si $x \in \mathbb{R}$, on note L(x) l'ensemble des préfixes des chiffres de x après la virgule. Par exemple, $L(\pi) = \{\varepsilon, 1, 14, 141, 1415...\}$. En sachant que $\frac{1}{6} = 0.1666...$ et $\frac{1}{7} = 0.142857142857...$, montrer que $L(\frac{1}{6})$ et $L(\frac{1}{7})$ sont rationnels.
- 5. Montrer plus généralement que L(x) est régulier si $x \in \mathbb{Q}$ (on montrera plus tard que c'est en fait une équivalence).

V Distance de Hamming

Si $u = u_1...u_n$ et $v = v_1...v_n$ sont deux mots de même longueur sur un alphabet Σ , leur distance de Hamming est :

$$d(u, v) = |\{i \mid u_i \neq v_i\}|$$

1. Montrer que la distance de Hamming est une distance sur Σ^* .

Étant donné un langage L sur Σ , on définit son voisinage de Hamming $\mathcal{H}(L) = \{u \in \Sigma^* \mid \exists v \in L, \ d(u,v) \leq 1\}.$

- 2. Donner une expression rationnelle pour $\mathcal{H}(L(0^*1^*))$.
- 3. Montrer que si L est un langage régulier alors $\mathcal{H}(L)$ est un langage régulier.
- 4. Écrire une fonction f : 'a regexp -> 'a regexp renvoyant une expression rationnelle pour le voisinage de Hamming d'un langage, en utilisant le type suivant :

```
type 'a regexp =
| Vide | Epsilon | L of 'a (* L a est la lettre a *)
| Union of 'a regexp * 'a regexp
| Concat of 'a regexp * 'a regexp
| Etoile of 'a regexp
```

VI Lemme d'Arden

Théorème: Lemme d'Arden

Soient A et B deux langages sur un même alphabet Σ .

On considère l'équation $X = AX \cup B$ d'inconnue un langage $X \subseteq \Sigma^*$. Alors :

- Le langage $X = A^*B$ est la plus petite solution de cette équation (au sens de l'inclusion).
- Si $\varepsilon \notin A$ alors $X = A^*B$ est l'unique solution de l'équation.
- 1. En admettant le lemme d'Arden, résoudre le système d'équations

$$X = aX + bY + a$$
$$Y = bX + aY + \varepsilon$$

2. Démontrer le lemme d'Arden.

VII Clôture par sous-mot (oral ENS info)

On fixe un alphabet Σ . Étant donné deux mots $w, w' \in \Sigma^*$, on dit que w' est un sur-mot de w, noté $w \preccurlyeq w'$, s'il existe une fonction strictement croissante ϕ de $\{1, \ldots, |w'|\}$ dans $\{1, \ldots, |w'|\}$ telle que $w_i = w'_{\phi(i)}$ pour tout $1 \le i \le |w|$, où |w| dénote la longueur de w et w_i dénote la i-ème lettre de w. Étant donné un langage L, on note \overline{L} le langage des sur-mots de mots de L, c'est-à-dire $\overline{L} := \{w' \in \Sigma^* \mid \exists w \in L, w \preccurlyeq w'\}$.

- 1. On pose L_0 le langage défini par l'expression rationnelle ab^*a , et L_1 le langage défini par l'expression rationnelle $(ab)^*$. Donner une expression rationnelle pour $\overline{L_0}$ et pour $\overline{L_1}$.
- 2. Montrer que, pour tout langage L, on a $\overline{\overline{L}} = \overline{L}$.
- 3. Existe-t-il des langages L' pour lesquels il n'existe aucun langage L tel que $\overline{L} = L'$?
- 4. Montrer que, pour tout langage régulier L, le langage \overline{L} est également régulier.
- 5. On admettra pour cette question le résultat suivant : pour toute suite $(w_n)_{n\in\mathbb{N}}$ de mots de Σ^* , il existe i < j tels que $w_i \leq w_j$.

Montrer que, pour tout langage L (non nécessairement régulier), il existe un langage fini $F \subseteq L$ tel que $\overline{F} = \overline{L}$.

- 6. Un langage L est clos par sur-mots si, pour tout $u \in L$ et $v \in \Sigma^*$ tel que $u \leq v$, on a $v \in L$. Déduire de la question précédente que tout langage clos par sur-mots est régulier.
- 7. On considère un langage L arbitraire, non nécessairement régulier, et on souhaite construire effectivement un automate pour reconnaitre \overline{L} . Comment peut-on procéder, et de quelles opérations sur L a-t-on besoin? Discuter de l'efficacité de cette procédure.
- 8. Un langage L est clos par sous-mots si, pour tout $u \in L$ et $v \in \Sigma^*$ tel que $v \preccurlyeq u$, on a $v \in L$. Montrer que tout langage clos par sous-mots est régulier.
- 9. Démontrer le résultat admis à la question 5.