λ-bound variables in ML cannot be used polymorphically within a function abstraction

For example, $\lambda f((f \text{true}) :: (f \text{nil}))$ and $\lambda f(f f)$ are not typeable in the Mini-ML type system.

λ-bound variables in ML cannot be used polymorphically within a function abstraction

For example, $\lambda f((f \text{ true}) :: (f \text{ nil}))$ and $\lambda f(f f)$ are not typeable in the Mini-ML type system.

Syntactically, because in rule

$$(\mathsf{fn}) \frac{\Gamma_{,} x : \tau_{1} \vdash M : \tau_{2}}{\Gamma \vdash \lambda x \, (M) : \tau_{1} \rightarrow \tau_{2}}$$

the abstracted variable has to be assigned a *trivial* type scheme (recall $x : \tau_1$ stands for $x : \forall \{ \} (\tau_1)$).

 $\frac{1}{\{f:\forall\{\}\S\}\vdash f:\tau_{4}}(var))}{\{f:\forall\{\}\S\}\vdash f:\tau_{5}\}}$ $\frac{\{f\colon \forall \{\}\tau_2\}\vdash ff\colon \tau_3}{(lam)}$

 $\{\} \vdash \lambda f(ff) : \tau,$

$$\frac{1}{3} \{f: \forall \{\} \{\} \} \vdash f: \tau_{4}$$

$$(vor) = \{f: \forall \{\} \{\} \} \vdash f: \tau_{5}$$

$$(app)$$

$$\frac{\{f: \forall f\} \tau_2 \} \vdash ff: \tau_3}{\{\} \vdash \lambda f(ff): \tau_1}$$

- (1) \d\(\frac{1}{2}\) \tag{74}
- 2 Y(352> 75

$$0 = (var >) 2$$

$$\{f: \forall \{\} \xi\} \vdash f: \tau_{\xi}$$

$$\frac{0}{\{f: \forall \{\} \xi\} \vdash f: \tau_{4}} (var) = \frac{0}{\{f: \forall \{\} \xi\} \vdash f: \tau_{5}} (var)}$$

$$\frac{0}{\{f: \forall \{\} \xi\} \vdash f: \tau_{5}} (var) = \frac{0}{\{f$$

$$\frac{\{f: \forall \{\}\tau_2\} \vdash ff: \tau_3}{\{\} \vdash \lambda f(ff): \tau_1}(lam)}$$

$$\mathcal{G} = \mathcal{C}_2 \rightarrow \mathcal{C}_3$$

$$\frac{1}{2} \{f : \forall \{\} \xi\} \vdash f : \tau_{4}$$

$$\{f : \forall \{\} \xi\} \vdash f : \tau_{5}$$

$$3$$
 $(app$

$$\frac{\{f: \forall \{\} \tau_2 \} \vdash ff: \tau_3}{\{\} \vdash \lambda f(ff): \tau_1}(lam)}$$

$$2) \forall \{ \} \zeta_2 > \zeta_5 \qquad \zeta_2 = \zeta_5$$

$$(3) (\tau_4 = \tau_5 \rightarrow \tau_3)$$

No such
$$72873$$
 can exist (by counting \rightarrow symbols on LHS& RHS of the equation).

λ-bound variables in ML cannot be used polymorphically within a function abstraction

For example, $\lambda f((f \text{true}) :: (f \text{nil}))$ and $\lambda f(f f)$ are not typeable in the Mini-ML type system.

Syntactically, because in rule

$$(\mathsf{fn})\frac{\Gamma, x: \tau_1 \vdash M: \tau_2}{\Gamma \vdash \lambda x \, (M): \tau_1 \to \tau_2}$$

the abstracted variable has to be assigned a *trivial* type scheme (recall $x : \tau_1$ stands for $x : \forall \{ \} (\tau_1)$).

Semantically, because $\forall A (\tau_1) \rightarrow \tau_2$ is not semantically equivalent to an ML type when $A \neq \{\}$.

Monomorphic types ...

$$\tau := \alpha \mid bool \mid \tau \rightarrow \tau \mid \tau list$$

...and type schemes

$$\sigma := \tau \mid \forall \alpha (\sigma)$$

Monomorphic types . . .

$$\tau := \alpha \mid bool \mid \tau \rightarrow \tau \mid \tau list$$

...and *type schemes*

$$\sigma ::= \tau \mid \forall \alpha (\sigma)$$

Polymorphic types

$$\pi := \alpha \mid bool \mid \pi \rightarrow \pi \mid \pi list \mid \forall \alpha (\pi)$$

Monomorphic types

$$\tau := \alpha \mid bool \mid \tau \rightarrow \tau \mid \tau list$$

...and *type schemes*

$$\sigma ::= \tau \mid \forall \alpha \ (\sigma)$$

Polymorphic types

$$\pi ::= \alpha \mid bool \mid \pi \rightarrow \pi \mid \pi list \mid \forall \alpha (\pi)$$

E.g. $\alpha \to \alpha'$ is a type, $\forall \alpha \ (\alpha \to \alpha')$ is a type scheme and a polymorphic type (but not a monomorphic type), $\forall \alpha \ (\alpha) \to \alpha'$ is a polymorphic type, but not a type scheme.

Identity, Generalisation and Specialisation

$$(gen) \frac{\Gamma \vdash M : \pi}{\Gamma \vdash M : \forall \alpha \ (\pi)} \text{ if } \alpha \notin ftv(\Gamma)$$

$$(\operatorname{spec}) \frac{\Gamma \vdash M : \forall \alpha \ (\pi)}{\Gamma \vdash M : \pi [\pi'/\alpha]}$$

Identity, Generalisation and Specialisation

(id)
$$\Gamma \vdash x : \pi$$
 if $(x : \pi) \in \Gamma$

$$(gen) \frac{\Gamma \vdash M : \pi}{\Gamma \vdash M : \forall \alpha \ (\pi)} \text{ if } \alpha \notin ftv(\Gamma)$$

$$(\operatorname{spec}) \frac{\Gamma \vdash M : \forall \alpha \ (\pi)}{\Gamma \vdash M : \pi [\pi'/\alpha]}$$

(id)
$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$

(id)
$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$

(id)
$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$
(Spec)
$$f: \forall \alpha(\alpha) \vdash f: \alpha \rightarrow \alpha$$

(id)
$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$
(Spec)
$$f: \forall \alpha(\alpha) \vdash f: \alpha$$

(id)
$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$

$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$

$$f: \forall \alpha(\alpha) \vdash f: \alpha \rightarrow \alpha$$

$$f: \forall \alpha(\alpha) \vdash f: \alpha \rightarrow \alpha$$

$$(app)$$

$$f: \forall \alpha(\alpha) \vdash f: \alpha \rightarrow \alpha$$

$$f: \forall \alpha(\alpha) \vdash f: \alpha \rightarrow \alpha$$

(id)
$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$

$$f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)$$

$$(spec)$$

$$f: \forall \alpha(\alpha) \vdash f: \alpha \rightarrow \alpha$$

$$(opp)$$

$$f: \forall \alpha(\alpha) \vdash f: \alpha$$

$$(opp)$$

$$f: \forall \alpha(\alpha) \vdash f: \alpha$$

$$(fm)$$

$$f: \forall \alpha(\alpha) \vdash \beta : \forall \alpha(\alpha)$$

ML + full polymorphic types has undecidable type-checking

Fact (Wells, 1994). For the modified Mini-ML type system with

- full polymorphic types replacing types and type schemes
- ▶ (id) + (gen) + (spec) replacing $(var \succ)$

the type checking and typeability problems are undecidable.

Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program phrases and typings have to be inferred, ideally, entirely at compile-time. (E.g. Standard ML.)

Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program phrases and typings have to be inferred, ideally, entirely at compile-time. (E.g. Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the syntax. (E.g. Java.)

Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program phrases and typings have to be inferred, ideally, entirely at compile-time. (E.g. Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the syntax. (E.g. Java.)

```
E.g. self application function of type \forall \alpha \ (\alpha) \rightarrow \forall \alpha \ (\alpha) (cf. Example 7) Implicitly typed version: \lambda f \ (f \ f) Explicitly type version: \lambda f : \forall \alpha_1 \ (\alpha_1) \ (\Lambda \alpha_2 \ (f \ (\alpha_2 \rightarrow \alpha_2) \ (f \ \alpha_2)))
```

PLC syntax

Polymorphic Lambda Calculus

Types

$$au$$
 ::= α type variable $au au au au$ function type $au au au au$ $au au au$ $au au$ -type

PLC syntax

Expressions

PLC syntax

Expressions

(α and x range over fixed, countably infinite sets **TyVar** and **Var** respectively.)

PLC typing judgement

takes the form $\Gamma \vdash M : au$ where

- ▶ the *typing environment* Γ is a finite function from variables to PLC types.
 - (We write $\Gamma = \{x_1 : \tau_1, \dots, x_n : \tau_n\}$ to indicate that Γ has domain of definition $dom(\Gamma) = \{x_1, \dots, x_n\}$ and maps each x_i to the PLC type τ_i for $i = 1 \dots n$.)
- ► *M* is a PLC expression
- ightharpoonup au is a PLC type.

$$(\text{var}) \frac{}{\Gamma \vdash x : \tau} \text{ if } (x : \tau) \in \Gamma$$

$$(\text{var}) \frac{}{\Gamma \vdash x : \tau} \text{ if } (x : \tau) \in \Gamma$$

$$(\operatorname{fn}) \frac{\Gamma, x : \tau_1 \vdash M : \tau_2}{\Gamma \vdash \lambda x : \tau_1 \left(M\right) : \tau_1 \rightarrow \tau_2} \text{ if } x \notin dom(\Gamma)$$

$$(\mathsf{app}) rac{\Gamma dash M : au_1
ightarrow au_2 \qquad \Gamma dash M' : au_1}{\Gamma dash M M' : au_2}$$

$$(\text{var}) \frac{}{\Gamma \vdash x : \tau} \text{ if } (x : \tau) \in \Gamma$$

$$(\operatorname{fn}) \frac{\Gamma, x : \tau_1 \vdash M : \tau_2}{\Gamma \vdash \lambda x : \tau_1 \left(M\right) : \tau_1 \rightarrow \tau_2} \text{ if } x \notin dom(\Gamma)$$

$$(\mathsf{app}) rac{\Gamma dash M : au_1
ightarrow au_2 \qquad \Gamma dash M' : au_1}{\Gamma dash M M' : au_2}$$

$$(gen) \frac{\Gamma \vdash M : \tau}{\Gamma \vdash \Lambda \alpha (M) : \forall \alpha (\tau)} \text{ if } \alpha \notin ftv(\Gamma)$$

$$(\operatorname{spec}) rac{\Gamma dash M : orall lpha \left(au_1
ight)}{\Gamma dash M \, au_2 : au_1 \left[au_2/lpha
ight]}$$

 $(spec) \frac{\Gamma \vdash M : \forall \alpha \ (\tau_1)}{\Gamma \vdash M \ \tau_2 : \tau_1[\tau_2/\alpha]}$ $(apture - avoiding Substitution of \ \tau_2 \text{ for all free occurrenus } f$

PLC binding forms $\forall \alpha(-) \quad \lambda x: \tau(-) \quad \Lambda \alpha(-)$

Eg.

 $\lambda x : \forall \alpha(\beta) \left(\Lambda \alpha \left(\alpha(\alpha \rightarrow \beta) \right) \right)$

PLC binding forms
$$\forall \alpha(-) \quad \lambda x: \tau(-) \quad \Lambda \alpha()$$

Eg.
$$\lambda x : \forall \beta(\alpha) \left(\Lambda \alpha \left(x(\alpha \rightarrow \beta) \right) \right)$$
free

free

$$\text{from } f(\Gamma) = \left\{ \chi_{1} : \tau_{1}, \ldots, \chi_{N} : \tau_{N} \right\}$$

$$\text{from } f(\Gamma) = \text{from } \tau_{N} : \tau_{$$

An incorrect proof

```
(\text{wrong!}) \frac{(\text{fn}) \frac{}{x_1 : \alpha, x_2 : \alpha \vdash x_2 : \alpha}}{x_1 : \alpha \vdash \lambda x_2 : \alpha (x_2) : \alpha \rightarrow \alpha}}{x_1 : \alpha \vdash \Lambda \alpha (\lambda x_2 : \alpha (x_2)) : \forall \alpha (\alpha \rightarrow \alpha)}
```

Amin correct proof

$$(\frac{\text{yen}}{\text{wrong!}}) \frac{(\text{var}) \frac{}{x_1 : \alpha, x_2 : \alpha' \vdash x_2 : \alpha'}}{x_1 : \alpha \vdash \lambda x_2 : \alpha'(x_2) : \alpha' \rightarrow \alpha'}}{x_1 : \alpha \vdash \Lambda \alpha'(\lambda x_2 : \alpha'(x_2)) : \forall \alpha'(\alpha' \rightarrow \alpha')}$$

$$\wedge \alpha \left(\lambda \mathcal{I}_2 : \alpha(\chi_2) \right) \qquad \forall \alpha (\alpha \rightarrow \alpha)$$

$$(\text{var}) \frac{}{\Gamma \vdash x : \tau} \text{ if } (x : \tau) \in \Gamma$$

$$(\operatorname{fn}) \frac{\Gamma, x : \tau_1 \vdash M : \tau_2}{\Gamma \vdash \lambda x : \tau_1 \left(M\right) : \tau_1 \rightarrow \tau_2} \text{ if } x \notin dom(\Gamma)$$

$$(\mathsf{app}) rac{\Gamma dash M : au_1
ightarrow au_2 \qquad \Gamma dash M' : au_1}{\Gamma dash M M' : au_2}$$

$$(\text{gen}) \frac{\Gamma \vdash M : \tau}{\Gamma \vdash \Lambda \alpha \ (M) : \forall \alpha \ (\tau)} \text{ if } \alpha \notin ftv(\Gamma)$$

$$(\operatorname{spec}) \frac{\Gamma \vdash M : \forall \alpha \ (\tau_1)}{\Gamma \vdash M \ \tau_2 : \tau_1[\tau_2/\alpha]}$$

[Example 12, p41]

 $\{\} \vdash \lambda f : \forall \alpha(x) (\Lambda \alpha (f(\alpha \cap \alpha)(f\alpha))) : ?$

```
[Example 12, p41]
(var) f: 7a(a) + f: 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (vnr) f: 7 a(a) + f: 7
(spec) = \frac{f \cdot \forall \alpha(\alpha) + f(\alpha - 3\alpha)}{f \cdot \forall \alpha(\alpha) + f(\alpha - 3\alpha)} \cdot \frac{f \cdot \forall \alpha(\alpha) + f(\alpha - 3\alpha)}{f \cdot \forall \alpha(\alpha) + f(\alpha - 3\alpha)} \cdot \frac{f(\alpha - 3\alpha)}{f(\alpha - 3\alpha)} \cdot \frac{f(\alpha -
(gen) f: Va(a) - Na(f(a)):?
\frac{f(n)}{\{\} \vdash \lambda f : \forall \alpha(x) (\Lambda \alpha (f(\alpha n \alpha)(f \alpha))) : ?}
```

```
[Example 12, p41]
(var) f: Ya(a) + f: Ya(a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (Vnr) f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)
(spec) = \frac{f \cdot \forall \alpha(\alpha) + f(\alpha - n\alpha)}{f \cdot \forall \alpha(\alpha) + f(\alpha - n\alpha)} \cdot \frac{f \cdot \forall \alpha(\alpha) + f(\alpha - n\alpha)}{f \cdot \forall \alpha(\alpha) + f(\alpha - n\alpha)} \cdot \frac{f(\alpha - n\alpha)}{f(\alpha - n\alpha)} \cdot \frac{f(\alpha -
(gen) f: Va(a) + Na(f(a,a)(fa)):?
\frac{f(n)}{\{\} \vdash \lambda f : \forall \alpha(x) (\Lambda \alpha (f(\alpha n \alpha)(f \alpha))) : ?}
```

```
(vor) f: Ya(a) + f: Ya(a)
                                                                        (vor) f: Ya(a) + f: Ya(a)
(spec) = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha \neg \alpha} = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f\alpha : \alpha}
(spec) = \frac{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \gamma}{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \gamma}
(gen) f: Va(a) + Na (f(a, a) (fa)):?
\frac{f(n)}{\{\} \vdash \lambda f : \forall \alpha(x) (\Lambda \alpha (f(\alpha - \alpha)(f \alpha))) : ?}
```

[Example 12, p41]

```
[Example 12, p41]
(vm) f: Ya(a) + f: Ya(a)
                                                                (vor) f: Ya(a) + f: Ya(a)
(spec) = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha \neg \alpha} = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f\alpha : \alpha}
(spec) = \frac{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha}{f : \forall \alpha(\alpha) \vdash f\alpha : \alpha}
(gen) f: Va(a) + Na(f(ana)(fa)):?
\frac{(fn)}{\{\} \vdash \lambda f : \forall \alpha(x) (\Lambda \alpha (f(\alpha n \alpha)(f\alpha))) : ?}
```

```
[Example 12, p41]
(vor) f: Ya(a) + f: Ya(a)
                                                                             (vor) f: Ya(a) + f: Ya(a)
(spec) = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha \neg \alpha} = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha \neg \alpha} = \frac{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha}{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha}
(gen) f: \forall \alpha(\alpha) \vdash \Lambda \alpha(f(\alpha \rightarrow \alpha)(f\alpha)): \forall \alpha(\alpha)
\frac{f(n)}{\{\} \vdash \lambda f : \forall \alpha(x) (\Lambda \alpha (f(\alpha - \alpha)(f \alpha))) : ?}
```

```
[Example 12, p 41]
(vnr) f: \forall \alpha(\alpha) \vdash f: \forall \alpha(\alpha)
                                                                                                  (vm) f: Ya(a) + f: Ya(a)
(spec) = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) : \alpha \neg \alpha} = \frac{(spec)}{f : \forall \alpha(\alpha) \vdash f\alpha : \alpha}
f : \forall \alpha(\alpha) \vdash f(\alpha \neg \alpha) (f\alpha) : \alpha

\frac{(gen)}{f: \forall \alpha(\alpha) \vdash \Lambda \alpha(f(\alpha \neg \alpha)(f\alpha)): \forall \alpha(\alpha)}{(fn)} + \frac{1}{2} \vdash \lambda f: \forall \alpha(\alpha) \vdash \Lambda \alpha(f(\alpha \neg \alpha)(f\alpha)): \forall \alpha(\alpha)}{\forall \alpha(\alpha)}
```

Decidability of the PLC typeability and type-checking problems

Theorem.

For each PLC typing problem, $\Gamma \vdash M : ?$, there is at most one PLC type τ for which $\Gamma \vdash M : \tau$ is provable. Moreover there is an algorithm, typ, which when given any $\Gamma \vdash M : ?$ as input, returns such a τ if it exists and FAILs otherwise.

Decidability of the PLC typeability and type-checking problems

Theorem.

For each PLC typing problem, $\Gamma \vdash M : ?$, there is at most one PLC type τ for which $\Gamma \vdash M : \tau$ is provable. Moreover there is an algorithm, typ, which when given any $\Gamma \vdash M : ?$ as input, returns such a τ if it exists and FAILs otherwise.

Corollary.

The PLC type checking problem is decidable: we can decide whether or not $\Gamma \vdash M : \tau$ is provable by checking whether $typ(\Gamma \vdash M : ?) = \tau$.

(N.B. equality of PLC types up to alpha-conversion is decidable.)

PLC type-checking algorithm, I

Variables

$$typ(\Gamma, x : \tau \vdash x : ?) \triangleq \tau$$

PLC type-checking algorithm, I

Variables

$$typ(\Gamma, x : \tau \vdash x : ?) \triangleq \tau$$

Function abstractions

```
typ(\Gamma \vdash \lambda x : \tau_1(M) : ?) \triangleq
let \tau_2 = typ(\Gamma, x : \tau_1 \vdash M : ?) in \tau_1 \rightarrow \tau_2
```

PLC type-checking algorithm, I

Variables

```
typ(\Gamma, x : \tau \vdash x : ?) \triangleq \tau
```

Function abstractions

```
typ(\Gamma \vdash \lambda x : \tau_1(M) : ?) \triangleq
let \tau_2 = typ(\Gamma, x : \tau_1 \vdash M : ?) in \tau_1 \rightarrow \tau_2
```

Function applications

```
typ(\Gamma \vdash M_1 M_2 : ?) \triangleq
let \ \tau_1 = typ(\Gamma \vdash M_1 : ?) \ in
let \ \tau_2 = typ(\Gamma \vdash M_2 : ?) \ in
case \ \tau_1 \ of \ \tau \rightarrow \tau' \ \mapsto \ if \ \tau = \tau_2 \ then \ \tau' \ else \ FAIL
\qquad \qquad \qquad \mapsto \ FAIL
```

PLC type-checking algorithm, II

Type generalisations

```
typ(\Gamma \vdash \Lambda\alpha (M) : ?) \triangleq 
let \tau = typ(\Gamma \vdash M : ?) in \forall \alpha (\tau)
```

PLC type-checking algorithm, II

Type generalisations

```
typ(\Gamma \vdash \Lambda\alpha (M) : ?) \triangleq 
let \tau = typ(\Gamma \vdash M : ?) in \forall \alpha (\tau)
```

Type specialisations

```
typ(\Gamma \vdash M \tau_2 : ?) \triangleq
let \tau = typ(\Gamma \vdash M : ?) in
case \tau of \forall \alpha (\tau_1) \mapsto \tau_1[\tau_2/\alpha]
| \qquad \qquad \vdash FAIL
```