Pattern Classification and Machine Learning Linear Classification	For b: keep residual only ! (i.e $\mathbf{x} = 1$) Momentum learning	Bayes under Loss function Risk: $R(f) = E[L(f(\mathbf{x}), t)]$ Opt. Classifier:	$y_k^*(\mathbf{x}) = -\frac{1}{2} \mathbf{x} - \mu_k ^2 + \log P(t = k) + C$
Perceptron Alg. ! Work for linearly separable D! Terminates after no more	$\Delta \mathbf{w}_k = \mathbf{w}_{k+1} - \mathbf{w}_k$	$f^*(\mathbf{x}) = \underset{j \in \tau}{\operatorname{argmin}} \sum_{k \in \tau} L(j, k) P(t = k \mathbf{x})$	Naive Bayes Classifier $P(\mathbf{x} N,t=k) = \prod_{k=0}^{M} \left(p_m^{(k)}\right)^{\phi_m(\mathbf{x})}$
than $1/\gamma^2$ updates, where $\gamma = \min_{i=1,,n} t_i \mathbf{w}_i^T \tilde{\phi}_i$ Normalize features $\phi_i \to \tilde{\phi_i}$!	$\Delta \mathbf{w}_k = -\eta (1-\mu) \nabla_{\mathbf{w}_k} E + \mu \Delta \mathbf{w}_{k-1}$ $\eta = \text{learning rate e.g. } 1/k, \mu = \text{momen-}$	$R^* = E\left[\min_{j \in \tau} \sum_{k \in \tau} L(j, k) P(t = k \mathbf{x})\right]$	$ \begin{aligned} & P(\mathbf{x} N, t-\kappa) = \prod_{m=1}^{N} \binom{p_m}{m} \\ & \text{with } \phi_m(\mathbf{x}) = \sum_{j=1}^{N} I_{\{x_j = m\}} \end{aligned} $
Update rule (when misclassified $t_i \mathbf{w}^T \tilde{\phi}_i \leq 0$): $\mathbf{w} \leftarrow \mathbf{w} + t_i \tilde{\phi}_i$	Linear Regression. LSE	Probab. Models. Max. Likelihood	Generalization. Regularization
$ \begin{array}{ll} \textbf{Stochastic} & \textbf{Gradient} & \textbf{Descent} \\ \textbf{w}_{k+1} = \textbf{w}_k - \eta \nabla_{\textbf{w}} E_i(\textbf{w}_k) \\ \textbf{Least square estimation} \end{array} $	Univariate Linear Regression $\langle x \rangle = n^{-1} \sum_i x_i$. Similar for t, tx, x^2	MLE $\hat{p}_1 = \operatorname{argmax}_{p_1 \in [0,1]} P(D p_1)$ Maximize $\log P(D p_1) : \frac{d \log P(D p_1)}{dp_1} = 0$ or minimize $-\log P(D p_1)$	Training error: $\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n I_{\{(f(\mathbf{x_i}) \neq t_i)\}}$ Generalization error: $R(f) = E^*[I_{\{(f(\mathbf{x}) \neq t\}\}}]$
$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y(\mathbf{x}_i) - t_i)^2$	$y_i = wx_i + b$ $\rightarrow w = \frac{Cov(x, t)}{Var(x)}, b = \langle t \rangle - w \langle x \rangle$	Gaussian	Tikhonov Regularization term $\frac{\nu}{2} \mathbf{w} ^2$ $\rightarrow (\mathbf{\Phi}^T\mathbf{\Phi} + \nu\mathbf{I})\mathbf{w} = \mathbf{\Phi}^T\mathbf{t}$
$=\frac{1}{2}{\ \mathbf{\Phi}\mathbf{w}-\mathbf{t}\ }^2$	$Var(x)$, $v = \langle t \rangle$ $w(x)$ Normal Equations $(\Phi^T \Phi) \mathbf{w} = \Phi^T \mathbf{t}$	$N(x \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\begin{array}{ccc} \mathbf{MAP} & \hat{p_1} &= \operatorname{argmax}_{p_1} p(p_1 D) &= \\ \operatorname{argmax}_{p_1} P(D p_1) p(p_1) \end{array}$
Gradient for Squared Error (yields normal equation for least squares if set to 0)	$\hat{\mathbf{w}} = \operatorname*{argmin}_{w} E(\mathbf{w}) = (\mathbf{\Phi}^{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} \mathbf{t}$	Multivariate $N(\mathbf{x} \mu, \mathbf{\Sigma}) =$ $ 2\pi\mathbf{\Sigma} ^{-1/2}e^{-\frac{1}{2}(\mathbf{x}-\mu)^T\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)}$	Cond. Likelihood. Logistic Reg. Maximize Conditional Likelihood
$\nabla_{\mathbf{w}} E = \sum_{i=1}^{n} \frac{\partial E}{\partial y_i} \nabla_{\mathbf{w}} y_i = \mathbf{\Phi}^T (\mathbf{\underline{\Phi} \mathbf{w} - \mathbf{t}})$	Probability. Decision Theory	Covariance	$p(\mathbf{t} \mathbf{w}) = \prod_{i=1}^{n} p(t_i y_i)$ Conditional Likelihood Bridge
residual	Probability $E[X] = E[E[X Y]]$ Sum rule: $P(X) = \sum_{Y} P(X, Y)$	$Cov(\mathbf{x}, \mathbf{y}) = E[\mathbf{x}\mathbf{y}^T] - E[\mathbf{x}]E[\mathbf{y}]$ $Cov[\mathbf{A}\mathbf{x}] = \mathbf{A}Cov[\mathbf{x}]\mathbf{A}^T$	Likelihood $p(\mathbf{t} \theta) \xrightarrow{\text{tog}} E(t,\theta)$ Loss function
Multi-Layer Perceptron Forward pass	Product rule: $P(X, Y) = P(X Y)P(Y)$ Bayes $P(B F) = \frac{P(F B)P(B)}{P(F)}$	Sample	Logistic regression $P(t y) = \sigma(ty)$
$a_q^l = (\mathbf{w}_q^{(l)})^T \mathbf{z}^{(l-1)} + b_q^{(l)}$	Var(t) = E[Var(t x)] + Var(E[t x]) Bayes-Optimal Classifier	$\mathbf{S} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x_i} - \bar{\mathbf{x}}) (\mathbf{x_i} - \bar{\mathbf{x}})^T = \frac{1}{n} \mathbf{X}^T \mathbf{X}$	$E_{log}(\mathbf{w}) = -\log P(\mathbf{t} \mathbf{w})$ $= \sum_{i=1}^{n} \log \left(1 + e^{-t_i y_i}\right)$
$z_q^{(l)} = g(a_q^{(l)}), q = 1,, h_l$	$f^*(\mathbf{x}) = \underset{t \in \tau}{\operatorname{argmax}} \ P(t \mathbf{x})$	if $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0$ Correlation	$= \sum_{i=1}^{n} -\log \sigma(t_i y_i)$
Backward pass $a^{(L)} = \partial E_i \qquad \begin{cases} a^L - t_i & for \ E_{sq} \end{cases}$	$p(\mathbf{x} t)P(t)$ Bayes error: $R = P\{f(x) \neq t\}$	$\frac{Cov(x_j, x_k)}{\sqrt{Var(x_j)Var(x_k)}} \in [-1, 1]$	Generative Modeling $p(\mathbf{x}, t \theta) = p(\mathbf{x} t, \theta)P(t \theta)$
$r^{(L)} = \frac{\partial E_i}{\partial a^{(L)}} = \begin{cases} a^L - t_i & for \ E_{sq} \\ \sigma(a^L) - \tilde{t_i} & for \ E_{log} \end{cases}$	$R^* = R(f^*) = 1 - E\left[\max_{k \in \tau} P(t = k \mathbf{x})\right]$	$\sqrt{Var(x_j)Var(x_k)}$ ML plugin discriminant	joint max. likeli. $max_{\theta} \prod_{i=1}^{n} p(\mathbf{x_i}, t_i \theta)$
$r_q^{(l)} = g'(a_q^{(l)}) \sum_{i=1}^{h_{l+1}} w_{jq}^{(l+1)} r_j^{(l+1)}$	Optimal discriminant:	$\hat{y}(\mathbf{x}) = \hat{\mathbf{w}}^T \mathbf{x} - \frac{1}{2} (\hat{\mu}_{+1} ^2 - \hat{\mu}_{-1} ^2)$	Discriminative Modeling
Gradient computation	$y^*(x) = \log \frac{p(\mathbf{x} t=1)}{p(\mathbf{x} t=0)} + \log \frac{P(t=1)}{P(t=0)} > 0$	<u> </u>	$P(t \mathbf{x}, \theta) \to max_{\theta} \prod_{i=1}^{n} P(t_i \mathbf{x_i}, \theta)$
$\nabla_{w(l)} E_i = r^{(l+1)} \mathbf{z}^{(l)}, \ \nabla_{w_q^{(1)}} E_i = r_q^{(1)} \mathbf{x}$	$p(\mathbf{x} t=0) \qquad P(t=0)$	$\hat{\mathbf{w}} = \hat{\mu}_{+1} - \hat{\mu}_{-1}$	conditional maximum likelihood

Multiway logistic Regression	Maximize Criterion for dual:	$S_W = n^{-1} \sum_{i=1}^{n} (\mathbf{x_i} - \hat{\mu}_{t_i}) (\mathbf{x_i} - \hat{\mu}_{t_i})^T$	Perfect for missing data ! Hint:
$P(t = k \mathbf{x}) = \frac{e^{y_k^*(\mathbf{x})}}{\sum_{\tilde{k}} e^{y_{\tilde{k}}^*(\mathbf{x})}} = \sigma_k(\mathbf{y}^*(\mathbf{x}))$	$\phi_D(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i t_i K_{ij} t_j \alpha_j$ subj. to $\alpha_i \in [0,C], \sum_i \alpha_i t_i = 0$	$\hat{\mu}_{FLD} = \frac{S_W^{-1} \mathbf{d}}{ S_W^{-1} \mathbf{d} }, \ \mathbf{d} = \hat{\mu}_1 - \hat{\mu}_0$	$\frac{\partial \log p(x_i)}{\partial h_k} = \frac{1}{p(x_i)} \frac{\partial p(x_i h_k)P(h_k)}{\partial h_k}$ $= \frac{p(x_i h_k)P(h_k)}{p(x_i)} \frac{\partial \log p(x_i h_k)}{\partial h_k}$
Soft-max mapping $\sigma_k(\nu) = e^{\nu_k - lsexp(\nu)}$ with $lsexp(\nu) = \log \sum_{\tilde{k}} e^{\nu_{\tilde{k}}}$ $\nabla_v lsexp(\mathbf{v}) = \sigma(\mathbf{v})$	Discriminant $y^*(\mathbf{x}) = \mathbf{w}_*^T \phi(\mathbf{x}) = \sum_{i=1}^n \alpha_{*,i} t_i K(\mathbf{x}, \mathbf{x}_i) + b_*$ $b = \frac{1}{ S } \sum_{i \in S} (t_i - \tilde{y}_i), S = \text{essential support vectors}$	Total covariance $S = S_W + \alpha(1-\alpha)\mathbf{dd}^T$ with $\alpha = \frac{n_1}{n}$ LDA Generalization for multiple	$= p(x_i) \frac{\partial h_k}{\partial h_k}$ $= P(h_k x_i) \frac{\partial \log p(x_i h_k)}{\partial h_k}$
Support Vector Machines	Support vectors	classes: $S = S_W + S_B$, $S_B = n^{-1} \sum_k n_k \mathbf{d}_k \mathbf{d}_k^T$, $\mathbf{d}_k = \hat{\mu}_k - \hat{\mu}$	Beautiful Maths
Kernel function: $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$ Gaussian: $e^{-\frac{\tau}{2} \mathbf{x} - \mathbf{x}' ^2}$, $\tau > 0$ Polynomial: $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^T$	$\begin{cases} \alpha_i = 0 & 1 - t_i y_i \le 0 \text{ not} \\ \alpha_i \in (0, C) & 1 - t_i y_i = 0 \text{ essential} \\ \alpha_i = C & 1 - t_i y_i > 0 \text{ bound} \end{cases}$	$\max_{U \in \Re^{d \times M}} tr(U^T S_B U) \ s.t. \ U^T S_W U = I$	Cauchy-Schwarz $ \mathbf{a}^T\mathbf{b} \le \ \mathbf{a}\ \ \mathbf{b}\ $ Logistic function $\sigma(v) = \frac{1}{1+e^{-v}}$
Max margin perceptron		Unsupervised Learning	
$t_i(\mathbf{w}^T\phi(\mathbf{x}_i)+b)$	Model Selection and Evaluation	Kmeans Iterate until assignment no	$\sigma'(v) = \sigma(v)\sigma(-v) = \sigma(v)(1 - \sigma(v))$
$\max_{w,b} \left\{ \gamma_D(\mathbf{w}, b) = \min_{i=1n} \frac{t_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b)}{ \mathbf{w} } \right\}$	Bias-Variance Decomposition	longer change. Assignment step: $ \mathbf{x}_i - \mu_{t_i} = \min_{k=1K} \mathbf{x}_i - \mu_k $	tanh $g(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$
! D linearly separable !	$E[(\hat{y}(\mathbf{x} D) - E[t x])^2 \mathbf{x}] =$	Update prototypes: $\mu_k = n_k^{-1} \sum_{i=1}^n I_{\{t_i = k\}} \mathbf{x_i}$	$g(a)' = 1 - g(a)^2$
Hard margin (convex optimization problem): $\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w} ^2$ subj. to	$(E[\hat{y}(\mathbf{x} D) \mathbf{x}] - E[t \mathbf{x}])^{2} + Var(\hat{y}(x D) \mathbf{x})$	$\mu_k - n_k \angle_{i=1} = \{t_i = k\} X_1$	Trace $tr(\mathbf{A}) = \sum_{j=1}^d a_{jj} = \sum_{j=1}^d \lambda_j$
$t_i(\mathbf{w}^T \phi(\mathbf{x_i}) + b) \ge 1, i = 1n$	Bias ² Variance	$\phi(\mathbf{t}, \mu) = \sum_{i=1}^{n} \sum_{k=1}^{K} I_{\{t_i = k\}} \mathbf{x_i} - \mu_k ^2$	$\mathbf{x}^{T}\mathbf{A}\mathbf{x} = tr(\mathbf{x}^{T}\mathbf{A}\mathbf{x}) = tr(\mathbf{A}\mathbf{x}\mathbf{x}^{T})$
Soft margin SVM	Ens. meth. $\hat{y}_{ens}(\mathbf{x}) = \frac{1}{L} \sum_{l=1}^{L} \hat{y}_{l}(\mathbf{x})$ $\mathbf{CV} \ \hat{R}_{CV}^{(M)}(D) = \frac{1}{n} \sum_{i=1}^{n} L(\hat{y}_{\nu}^{-m(i)}, t_{i})$	Gaussian Mixture Model	Eigs $A\mathbf{v} = \lambda \mathbf{v}, \ \mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$
$\min_{w,b,\xi} \frac{1}{2} \mathbf{w} ^2 + C \sum_{i=1}^n \xi_i$	$\frac{1}{\text{Dimensionality Reduction}}$	K	$ A = \prod_{j=1}^d \lambda_j$
subj. to $t_i(\mathbf{w}^T \phi(\mathbf{x_i}) + b) \ge 1 - \xi_i, \ \xi_i \ge 0$	PCA $\mathbf{z} = \mathbf{U}^{\mathbf{T}} \mathbf{x} \text{ with } U^{T} U = I_{M \times M}$	$p(\mathbf{x}) = \sum_{k=1}^{K} p(\mathbf{x} t=k)P(t=k)$	Positive semi-definite matrix $\mathbf{A} \in \Re^{d \times d}$ symmetric: $\mathbf{v}^T \mathbf{A} \mathbf{v} \geq 0 \ \forall \mathbf{v} \in \Re^d, \mathbf{v} \neq 0$
$\equiv \min_{w,b} \frac{1}{2C} \mathbf{w} ^2 + \sum_{i=1}^n [1 - t_i y_i]_+$	$\mathbf{u}_* = \operatorname*{argmax}_{\mathbf{u}: \mathbf{u} =1} \mathbf{u}^T Cov(\mathbf{x}) \mathbf{u}$	$= \sum_{k=1}^{N} N(\mathbf{x} \mu_{\mathbf{k}}, \Sigma_k) P(t=k)$	$\mathbf{Beta}(lpha,eta)$
$\underbrace{i=1}_{E_{SVm}(w,b)}$	PC directions = eigendirections of $Cov(\mathbf{x})$ Goals:maximize $Cov(z)$ / Min-	Compute: $n_k = \sum_{i=1}^n P(t_i = k \mathbf{x_i})$ Update: $\pi_k = \frac{n_k}{n}$	$p(p_1 \alpha,\beta) = \frac{1}{B(\alpha,\beta)} (p_1)^{\alpha-1} (1-p_1)^{\beta-1}$
Repr. Thm $\mathbf{w}_* = \sum_{i=1}^n \alpha_{*,i} \phi(x_i)$	imize $E[\hat{x} - x ^2]$ / decorrelate compo-	$\mu_k = \frac{1}{n_k} \sum_{i=1}^n P(t_i = k \mathbf{x_i}) \mathbf{x_i}$	With $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$. Mode $\frac{\alpha-1}{\alpha+\beta-2}$
$\mathbf{w}_* = \sum_{i=1}^{n} \alpha_{*,i} \varphi(x_i)$	nents of z ! PCA doesn't depends on labels t!	Expectation Maximization E-step:	Hinge function $[x]_+ = max(x,0)$
$\rightarrow y(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i K(\mathbf{x}, \mathbf{x_i}) + b$	Fischer	$Q_i(\mathbf{h_i}) \leftarrow P(\mathbf{h_i} \mathbf{x_i}, \theta)$ M-step: maximize surrogate criterion	Cross-entropy, divergence
$i=1$ Solution Primal/Dual: $p_* = \min_{\mathbf{w},b} \max_{0 < \alpha_i < C} L(\mathbf{w},b,\alpha)$	$J(\mathbf{u}) = \frac{(m_1 - m_0)^2}{s_0^2 + s_1^2} = \frac{\mathbf{u}^T S_B \mathbf{u}}{\mathbf{u}^T S_W \mathbf{u}}$	$E(\theta; \{Q_i\}) = \sum_{i=1}^{n} E_i(\theta; Q_i)$	$D(\mathbf{q} \mathbf{p}) = \sum_{l=1}^{L} q_l \log(\frac{q_l}{p_l}) \ge 0$
$\begin{array}{ll} d_* & \max, & \text{obs} \\ d_* & \max, & \text{otherwised} \end{array}. \text{Weak duality} \\ d_* \leq p_* \text{ (strong duality iff =)} \\ L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} ^2 + \sum_{i=1}^n \alpha_i (1 - t_i y_i) \end{array}$	with $m_k = \mu^T \mu_k$. Maximize ratio! $S_B = (\hat{\mu}_1 - \hat{\mu}_0)(\hat{\mu}_1 - \hat{\mu}_0)^T = \mathbf{dd}^T$	$= \sum_{i=1}^n E_{Q_i}[\log P(\mathbf{x_i}, \mathbf{h_i} \theta)]$	PCML2012 Cheat sheet kindly written by Christopher Chiche, Alex Chap, Tobias Schlatter, Florian Savoy, Marc Zimmerman and Julien Perrochet. Copyleft EPFL 2012