MT22-Fonctions de plusieurs variables et applications

Chapitre 8 : Théorèmes intégraux

ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES

UTC-UTT

Sommaire

IThéorè	mes intégraux	3
Théorèn	ne de Stokes-Ampère	4
Théorèn	ne de Gauss-Ostrogradski	6
Applica	tion à l'hydrostatique	ç
Exerci	ces	11
A.1	Exercices de cours	12
A 2	Exercices de TD	20
	Théorèn Théorèn Applica Exerció A.1	Théorèmes intégraux Théorème de Stokes-Ampère Théorème de Gauss-Ostrogradski Application à l'hydrostatique Exercices A.1 Exercices de cours A.2 Exercices de TD

Sommaire Concepts

Chapitre VIII Théorèmes intégraux

Théorème de Stokes-Ampère	4
Théorème de Gauss-Ostrogradski	6
Application à l'hydrostatique	9

Sommaire Concepts

Théorème de Stokes-Ampère

Exercices:

Exercice A.1.1

Exercice A.1.2

Exercice A.1.3

Exercice A.1.4

Théorème VIII.0.1 Soit S une surface de \mathbb{R}^3 orientée par le choix d'un champ de normales \vec{n} .

Le bord de S est une courbe fermée Γ .

La courbe Γ et la surface S sont orientées de façon cohérente en utilisant la règle du tire-bouchon de Maxwell ou la règle du bonhomme d'Ampère.

 \vec{V} est un champ de vecteurs dont les composantes V_1, V_2, V_3 sont continument différentiables.

Alors le flux du rotationnel de \vec{V} à travers la surface S est égal à la circulation de \vec{V} le long de la courbe Γ , c'est à dire

$$\iint_{S} \overrightarrow{rot} \vec{V} \cdot \vec{n} d\sigma = \int_{\Gamma} V_1 dx + V_2 dy + V_3 dz$$

Voir la démonstration de ce théorème en exercice.

Sommaire Concepts

Le théorème de Green-Riemann est un cas particulier du théorème de Stokes-Ampère. On peut démontrer cette proposition en exercice.

Théorème de Stokes-Ampère

> Sommaire Concepts

Théorème de Gauss-Ostrogradski

Exercices:

Exercice A 1.5

Exercice A.1.6

Exercice A.1.7

Exercice A.1.8

Théorème VIII.0.2 Soit V un domaine de \mathbb{R}^3 limité par une surface fermée S orientée vers l'extérieur de V et soit \vec{V} un champ de vecteurs dont la divergence est une fonction continue, alors l'intégrale de la divergence de \vec{V} dans V est égale au flux de \vec{V} à travers S, c'est à dire

$$\iiint_{\mathcal{V}} div \ \vec{V} dx dy dz = \iint_{S} \vec{V} \cdot \vec{n} d\sigma.$$

On peut démontrer ce théorème dans le cas où $\operatorname{div} \vec{V}(M) = 0$. On a vu dans le chapitre analyse vectorielle qu'alors $\vec{V}(M)$ dérive d'un potentiel vecteur \vec{W} c'est à dire qu'il existe \vec{W} vérifiant $\vec{V}(M) = \overrightarrow{\operatorname{rot}} \vec{W}$. On a donc

$$\iint_{S} \vec{V}.\vec{n}d\sigma = \iint_{S} \overrightarrow{\mathbf{rot}} \vec{W}.\vec{n}d\sigma.$$

Sommaire Concepts

Ecrivons $S = S_1 \bigcup S_2$, soit Γ la frontière commune de S_1 et S_2 : voir figure VIII.1 et remarquer dans chacun des cas l'orientation du bord Γ .

FIG. VIII.1:

Le Théorème de Stokes-Ampère permet d'écrire :

$$\iint_{S_1} \overrightarrow{\mathbf{rot}} \, \vec{W} . \vec{n} d\sigma = \int_{\Gamma^+} \vec{W} d\vec{l}$$

Théorème de Gauss-Ostrogradski

> Sommaire Concepts

Théorème de Gauss-Ostrogradski

$$\int\!\!\int_{S_2} \overrightarrow{\mathbf{rot}} \vec{W}. \vec{n} d\sigma = \int_{\Gamma^-} \vec{W} d\vec{l}$$

la somme de ces deux intégrales est donc nulle. On a donc bien dans ce cas :

$$\int\!\!\int\!\!\int_{\mathcal{V}}\, {\rm div}\; \vec{V} dx dy dz = \int\!\!\int_{S} \vec{V}.\vec{n} d\sigma = 0.$$

Sommaire Concepts

Exercices

Application à l'hydrostatique

Exercices:

Exercice A.1.9

Exercice A.1.10

Si S est une surface plane d'aire A qui est soumise à une pression p constante, alors une force de pression constante \vec{F} s'exerce sur S,

$$\vec{F} = pA\vec{n}^* \tag{VIII.1}$$

où \vec{n}^* est le vecteur normal unitaire à S dirigé "dans le bon sens" (dans le sens de la pression).

Si maintenant la pression n'est pas constante, si la surface S n'est pas plane, on a

$$\vec{F} = \int\!\!\int_S p\vec{n}^* d\sigma$$

Vérifier que dans le cas particulier d'une surface plane et d'une pression constante, on retrouve l'expression VIII.1.

Soit un solide V limité par une surface S, complètement immergé dans un liquide de masse volumique ρ .

La surface du liquide est le plan z = 0, l'axe Oz est dirigé vers le haut.

Sommaire Concepts

Exercices

La pression dans le liquide dépend de z par la relation

$$p(z) = p_0 - \rho g z,$$

 p_0 est la pression atmosphérique à la surface du liquide, g est l'accélération de la pesanteur.

 \vec{n} représente le champ de normales unitaires à S dirigé vers l'extérieur de V, alors la force de pression exercée par le liquide sur le solide vaut

$$\vec{F} = \iint_{S} -p\vec{n}d\sigma$$

en effet la pression s'exerce vers l'intérieur de V (pression exercée par le liquide sur le solide).

On note F_1, F_2, F_3 les 3 composantes de \vec{F} :

$$\vec{F} = F_1 \vec{\imath} + F_2 \vec{\jmath} + F_3 \vec{k}$$

$$F_1 = \vec{F} \cdot \vec{\imath}, \quad F_2 = \vec{F} \cdot \vec{\jmath}, \quad F_3 = \vec{F} \cdot \vec{k}$$

d'où:

$$F_1 = \iint_S -p\vec{r} \cdot \vec{n} d\sigma, \quad F_2 = \iint_S -p\vec{j} \cdot \vec{n} d\sigma, \quad F_3 = \iint_S -p\vec{k} \cdot \vec{n} d\sigma$$
 (VIII.2)

Appliquer le théorème de Gauss-Ostrogradsky aux intégrales VIII.2, en déduire que :

$$\vec{F} = \rho g \text{ vol } (V)\vec{k}$$

On retrouve la poussée d'Archimède bien connue : la force de pression \vec{F} s'exerce verticalement "vers le haut" et sa norme est égale au poids du liquide déplacé.

Application à l'hydrostatique

Sommaire Concepts

Exemples
Exercices
Documents

→ précédent

Annexe A Exercices

A.1	Exercices de cours	 	12
A.2	Exercices de TD	 	29

Sommaire Concepts

A.1 Exercices de cours

A.1.1	Ch8-Exercice1												13
A.1.2	Ch8-Exercice2												17
A.1.3	Ch8-Exercice3												18
A.1.4	Ch8-Exercice4										•		20
A.1.5	Ch8-Exercice5												21
A.1.6	Ch8-Exercice6												
A.1.7	Ch8-Exercice7										•		25
A.1.8	Ch8-Exercice8										•		26
A.1.9	Ch8-Exercice9										•		27
A.1.10	Ch8-Exercice10										•		28

Sommaire Concepts

Exemples Exercices Documents

Exercice A.1.1 Ch8-Exercice1

On va démontrer le théorème de Stokes Ampère dans le cas où la surface S a une équation explicite : $z=\phi(x,y),(x,y)\in D$.

On note $\vec{V} = (V_1, V_2, V_3)$.

FIG. A.1.1:

Sommaire Concepts

- 1. (a) Calculer $\overrightarrow{rot} \overrightarrow{V}$.
 - (b) On appelle C le bord de D orienté dans le sens trigonométrique, on suppose qu'une paramétrisation de C est

$$\begin{cases} x = a(t) \\ y = b(t) \end{cases} t: t_0 \to t_1$$

On choisit pour Γ l'orientation correspondant à l'orientation de C conformément à la figure A.1.1. Quelle est alors l'orientation de la surface?

- (c) Donner l'expression du flux de $\overrightarrow{\mathrm{rot}} \vec{V}$ à travers S.
- 2. (a) Utiliser la paramétrisation de C pour en déduire une paramétrisation de Γ de la forme $\begin{cases} x=a(t) \\ y=b(t) \\ z=c(t) \end{cases}$. Donner l'expression de c(t)?
 - (b) On note

$$\widetilde{V}_1(x,y) = V_1(x,y,\phi(x,y)), \widetilde{V}_2(x,y) = V_2(x,y,\phi(x,y))$$

Montrer que

$$\int_{\Gamma} V_1 dx + V_2 dy$$

$$= \int_{C} \widetilde{V}_1 dx + \widetilde{V}_2 dy$$

Exercice A.1.1 Ch8-Exercice1

Sommaire Concepts

- (c) Utiliser le théorème de Green-Riemann pour calculer $\int_C \widetilde{V}_1 dx + \widetilde{V}_2 dy$.
- (d) En déduire :

$$\int_{\Gamma} V_1 dx + V_2 dy = \int_{D} \frac{\partial \phi}{\partial x} (x, y) \frac{\partial V_2}{\partial z} (x, y, \phi(x, y))
- \frac{\partial \phi}{\partial y} (x, y) \frac{\partial V_1}{\partial z} (x, y, \phi(x, y))
+ \frac{\partial V_2}{\partial x} (x, y, \phi(x, y)) - \frac{\partial V_1}{\partial y} (x, y, \phi(x, y)) dx dy$$
(A.1.1)

(e) On note

$$P(x,y) = V_3(x,y,\phi(x,y)) \frac{\partial \phi}{\partial x}(x,y), Q(x,y) = V_3(x,y,\phi(x,y)) \frac{\partial \phi}{\partial y}(x,y).$$

Montrer que

$$\int_{C} P dx + Q dy = \int_{\Gamma} V_{3} dz.$$

- (f) Utiliser le théorème de Green-Riemann pour calculer $\int_C P dx + Q dy$.
- (g) En déduire :

$$\int_{\Gamma} V_3 dz = \int_{D} \int_{D} -\frac{\partial \phi}{\partial x}(x, y) \frac{\partial V_3}{\partial y}(x, y, \phi(x, y)) + \frac{\partial \phi}{\partial y}(x, y) \frac{\partial V_3}{\partial x}(x, y, \phi(x, y)) dx dy$$
(A.1.2)

Exercice A.1.1 Ch8-Exercice1

Sommaire Concepts

Exemples Exercices

3. Utiliser les équations A.1.1 et A.1.2 pour conclure :

$$\iint_{S} \overrightarrow{\mathbf{rot}} \vec{V} \cdot \vec{n} d\sigma = \int_{\Gamma} V_1 dx + V_2 dy + V_3 dz$$

Solution

Exercice A.1.1 Ch8-Exercice1

Sommaire Concepts

Exercice A.1.2 Ch8-Exercice2

On définit la surface S par $\{z=0,(x,y)\in D\}$, on appelle Γ le bord de D orienté dans le sens trigonométrique.

On définit le champ de vecteurs $\vec{V} = (P(x, y), Q(x, y), 0)$.

- 1. Calculer $\overrightarrow{rot} \vec{V}$.
- 2. Déterminer la normale unitaire à S dont l'orientation est cohérente avec l'orientation de Γ .
- 3. Calculer le flux du champ de vecteurs $\overrightarrow{\mathrm{rot}} \, \overrightarrow{V}$ à travers la surface S ainsi orientée.
- 4. Retrouver l'égalité de Green-Riemann :

$$\iint_{D} \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) dx dy = \int_{\Gamma} P dx + Q dy$$

Solution

Sommaire Concepts

Exercice A.1.3 Ch8-Exercice3

- 1. On définit $S = \{(x, y, z) \in \mathbb{R}^3, y^2 + (z 1)^2 = 1, z \ge 1, 0 \le x \le 1\}$. On oriente S par les normales qui font un angle aigu avec Oz. On appelle Γ le bord de S orienté de façon cohérente avec S.
 - (a) Faire une figure représentant S et Γ , présicer sur la figure l'orientation de Γ .
 - (b) Paramétrer Γ .
 - (c) Calculer la circulation le long de Γ du champ de vecteurs

$$\vec{U} = \left(\frac{z^2}{2}, \frac{x^2}{2}, \frac{y^2}{2}\right).$$

Réponse: 1

- (d) Utiliser le théorème de Stokes-Ampère pour retrouver le résultat précédent.
- 2. On définit la surface S d'équation $z=x^2+y^2, z\leq 1$. On oriente S par les normales qui font un angle aigu avec Oz. On appelle Γ le bord de S orienté de façon cohérente avec S.
 - (a) Faire une figure représentant S et Γ , présicer sur la figure l'orientation de Γ .
 - (b) Paramétrer Γ .

Sommaire Concepts

Exemples Exercices

Document

(c) Calculer la circulation le long de Γ du champ de vecteurs

$$\vec{U} = \left(\frac{z^2(y-1)}{2}, 1, xyz\right).$$

Réponse : $-\frac{\pi}{2}$

(d) Retrouver le résultat précédent en utilisant le théorème de Stokes-Ampère .

Solution

Exercice A.1.3 Ch8-Exercice3

Sommaire Concepts

Exercice A.1.4 Ch8-Exercice4

 ${\cal B}$ est la boule de centre O et de rayon R, S est la sphère de centre O et de rayon R orientée vers l'extérieur de ${\cal B}$.

$$\vec{V} = (x, y, z).$$

1. Quel est le volume de B? En déduire

$$\iiint_{\mathcal{B}} \mathbf{div} \ \vec{V} dx dy dz$$

2. Quelle est l'aire de S? En déduire

$$\iint_{S} \vec{V} . \vec{n} d\sigma$$

Comparer.

Solution

Sommaire Concepts

Exercice A.1.5 Ch8-Exercice5

Soit

$$\vec{V}(M) = \begin{pmatrix} V_1(x, y, z) \\ V_2(x, y, z) \\ V_3(x, y, z) \end{pmatrix} = \begin{pmatrix} V_1(x, y, z) \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ V_2(x, y, z) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ V_3(x, y, z) \end{pmatrix}$$

On note
$$\vec{U}_3(M)=\left(egin{array}{c} 0 \\ 0 \\ V_3(x,y,z) \end{array}
ight)$$

On suppose que $\mathcal{V} = \{(x,y,z) \in \mathbb{R}^3, (x,y) \in D_3, \varepsilon(x,y) \leq z \leq \phi(x,y)\}$ conformément à la figure A.1.2.

- 1. (a) Calculer div $\vec{U}_3(M)$
 - (b) Montrer que:

$$\iiint_{\mathcal{V}} \operatorname{div} \vec{U}_3(M) dx dy dz = \iint_{D_3} V_3(x, y, \phi(x, y)) - V_3(x, y, \varepsilon(x, y)) dx dy.$$

2. (a) On appelle S^+ la surface d'équation $\{z=\phi(x,y),(x,y)\in D_3\}$, on oriente cette surface "vers le haut".

Calculer
$$\Phi_{S^+}(\vec{U_3})$$
.

Sommaire Concepts

FIG. A.1.2:

- (b) On appelle S^- la surface d'équation $\{z=\varepsilon(x,y),(x,y)\in D_3\}$, on oriente cette surface "vers le bas". Calculer $\Phi_{S^-}(\vec{U_3})$.
- (c) En déduire que

$$\iiint_{\mathcal{V}} \ \mathbf{div} \ \vec{U_3} dx dy dz = \Phi_S(\vec{U_3}).$$

3. Des calculs similaires pour V_2 et V_3 permettraient de terminer la démonstration du théorème de Gauss-Ostrogradski.

Exercice A.1.5 Ch8-Exercice5

Sommaire Concepts

Exemples Exercices

Exercice A.1.6 Ch8-Exercice6

Soit $\mathcal V$ un volume de $\mathbb R^3$ dont la frontière est S. Ce volume contient des charges électriques dont la densité est σ . La quantité de charges contenues dans $\mathcal V$ est donc :

$$q = \iiint_{\mathcal{V}} \sigma(x, y, z) dx dy dz$$

 $ec{E}$ est le champ électrique. La forme locale de la loi de Gauss est :

$$\mathrm{div}\ ec{E} = rac{\sigma}{\epsilon_0}, \ \ \epsilon_0 \ \mathrm{constante}$$

En déduire la loi de Gauss :

$$\iint_{S} \vec{E} \cdot \vec{n} d\sigma = \frac{q}{\epsilon_0}$$

Solution

Sommaire Concepts

Exercice A.1.7 Ch8-Exercice7

On définit le volume $\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 + z^2 \leq R^2\},$

Le champ de vecteurs $\vec{V} = (z, x, y)$.

Que vaut $\iiint_{\mathcal{V}} \operatorname{div} \vec{V} dx dy dz$?

Retrouver ce résultat en utilisant le théorème de Gauss-Ostrogradski.

Solution

Sommaire Concepts

Exercice A.1.8 Ch8-Exercice8

 $\mathcal{V}=\{(x,y,z)\in\mathbb{R}^3, x^2+y^2\leq z\leq 1\}$. On appelle S la surface qui limite $\mathcal{V}.$ On oriente S vers l'extérieur de $\mathcal{V}.$

- 1. Faire une figure représentant V et les différentes parties de S.
- 2. Paramétrer chacune des parties de S et déterminer pour chacune d'elles les vecteurs normaux unitaires correctement orientés.
- 3. On définit $\vec{V} = (xz, z, -\frac{z^2}{2})$
 - (a) Calculer le flux du champ de vecteurs \vec{V} à travers S.
 - (b) Calculer div \vec{V} , comparer.
- 4. On définit $\vec{V} = (-xz, x, zx^2)$
 - (a) Calculer le flux du champ de vecteurs \vec{V} à travers S. Réponse : $-\frac{\pi}{4}$
 - (b) Retrouver le résultat précédent en utilisant le théorème de Gauss-Ostrogradski.

Solution

Sommaire Concepts

Exercice A.1.9 Ch8-Exercice9

S est une surface plane, \vec{n} est un vecteur normal unitaire à S, p est la pression supposée constante. Donner l'expression de la force de pression

$$\vec{F} = \iint_{S} p\vec{n}d\sigma$$

Solution

Sommaire Concepts

Exercice A.1.10 Ch8-Exercice10

L'espace est muni du repère orthonormé $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$.

S est une surface fermée qui limite un volume V, on note \vec{n} le champ de vecteurs normaux unitaires dirigés vers l'extérieur de V.

La fonction p est définie par : $p(z) = p_0 - \rho gz$, p_0, ρ, g sont des constantes.

On définit les champs de vecteurs $\vec{v}_1 = -p\vec{\imath}, \ \vec{v}_2 = -p\vec{\jmath}, \ \vec{v}_3 = -p\vec{k}.$

Utiliser le théorème de Gauss-Ostrogradski pour calculer :

$$\iint_{S} \vec{v}_{1} \cdot \vec{n} d\sigma, \quad \iint_{S} \vec{v}_{2} \cdot \vec{n} d\sigma, \quad \iint_{S} \vec{v}_{3} \cdot \vec{n} d\sigma$$

Solution

Sommaire Concepts

A.2 Exercices de TD

A.2.1	reprise d'exo du chapitre 7	30
A.2.2	TD8-Exercice2	32
A.2.3	TD8-Exercice3	33

Sommaire Concepts

Exercice A.2.1 reprise d'exo du chapitre 7

1. On considère la surface S qui limite le volume

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \quad x - 2y + 2z \le 0, \ x \ge 0, \ z \ge 0, \ y \le 1\}$$

et orientée par la normale intérieure. On a déjà calculé que le flux à travers \mathcal{S} du champ de vecteurs $\vec{V}(x^2+1,y^2,z^2)$ vaut -1. Retrouver ce résultat en utilisant un théorème intégral.

- 2. Soit Σ la sphère de centre 0 et de rayon R, orientée par la normale extérieure. On a déjà calculé que le flux à travers Σ du champ de vecteurs $\vec{V}(x,y,0)$ vaut $\frac{8\pi R^3}{3}$. Retrouver ce résultat en utilisant un théorème intégral.
- 3. Soit \mathcal{C} le bord de la surface

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3; \quad x^2 + y^2 = R^2, \ h_1 \le z \le h_2, \ y \ge 0\}$$

La circulation de $\vec{V}(-y,-z,-x)$ le long de cette courbe vaut $2R(h_2-h_1)$. Retrouver ce résultat en utilisant un théorème intégral.

4. On considère la surface

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3; \quad x^2 + y^2 = z, \ z + 2y \le 3\}$$

et le champ de vecteurs $\vec{V}(1,\frac{x^3}{3},1)$. Calculer le flux de rot \vec{V} à travers Σ . Préciser sur une figure l'orientation choisie. Retrouver le résultat en utilisant un théorème intégral.

Sommaire Concepts

Exemples
Exercices
Documents

5. On considère la surface

$$\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3; \quad 1 + \sqrt{x^2 + y^2} = z, \ z \le 3, \ x \ge 0 \right\}$$

et le champ de vecteurs $\vec{V}((z-1)^2,x,y)$. Calculer la circulation de \vec{V} le long du bord de Σ . Préciser sur une figure l'orientation choisie. Retrouver le résultat en utilisant un théorème intégral.

6. On considère le volume

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \quad 0 \le z \le 1 - x^2 - y^2\}$$

et le champ de vecteurs $\vec{V}(z,x,y)$. Calculer de 2 façons différentes $\int\int\int_{\mathcal{V}}\mathrm{div}\vec{V}dxdydz$.

7. On considère le volume (où a > 0)

$$V = \{(x, y, z) \in \mathbb{R}^3; \quad 0 \le z \le \sqrt{a^2 - x^2 - y^2} \}$$

et le champ de vecteurs $\vec{V}(xz^2,-z^2,y^2z)$. Calculer de 2 façons différentes $\int\int\int_{\mathcal{V}}{\rm div}\vec{V}dxdydz$.

Exercice A.2.1 reprise d'exo du chapitre 7

Sommaire Concepts

Exemples Exercices Documents

Exercice A.2.2 TD8-Exercice2

1. On considère le bord \mathcal{C} du domaine de \mathbb{R}^2

$$\mathcal{D} = \left\{ (y, z) \in \mathbb{R}^2; \quad (y^2 + z^2) \le 1, \ y \ge 0, \ \frac{-1}{2} \le z \le \frac{1}{2} \right\}$$

- (a) Faire une figure.
- (b) Calculer l'aire de \mathcal{D} à l'aide du théorème de Green-Riemann.
- 2. Soit Γ le bord de la surface

$$\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3; \quad x^2 + y^2 + z^2 = 1, \ \frac{-1}{2} \le z \le \frac{1}{2}, \ x \ge 0, \ y \ge 0 \right\}$$

- (a) i. Faire une figure.
 - ii. Donner les composantes d'une normale unitaire à Σ .
- (b) Soit une fonction $f: \mathbb{R}^3 \to \mathbb{R}$ continue.
 - i. Exprimer l'intégrale de surface $\int \int_{\Sigma} f d\sigma$ à l'aide des coordonnées sphériques, puis à l'aide des coordonnées cartésiennes (y, z).
 - ii. En déduire l'aire de Σ .
- (c) Soit le champ de vecteurs $\vec{V}(\frac{-z^2}{2}, xy, y)$. Calculer directement le flux de $\operatorname{rot} \vec{V}$ à travers la surface Σ , puis retrouver ce résultat en utilisant un théorème intégral.

Sommaire Concepts

Exemples
Exercices
Documents

Exercice A.2.3 TD8-Exercice3

1. On considère le bord C_1 du domaine de \mathbb{R}^2

$$\Sigma_1 = \{(x, y) \in \mathbb{R}^2; \quad x \ge 0, \ -2 \le y \le 2, \ x + 2y \le 6\}$$

- (a) Faire une figure.
- (b) En supposant que la densité surfacique est $\mu(x,y)=1$, calculer le moment d'inertie de Σ_1 par rapport à l'axe Ox.
- (c) On oriente C_1 dans le sens trigonométrique. Calculer l'intégrale curviligne $\int_{C_1} dx + xy^2 dy$. Retrouver ce résultat à l'aide du théorème de Green-Riemann.
- 2. On considère

$$\Sigma_2 = \{(x, y, z) \in \mathbb{R}^3; \quad y^2 + z^2 = 4, \ x \ge 0, \ z \ge 0, \ x + 2y \le 6\}$$

- (a) Faire une figure représentant Σ_2 et sa projection sur le plan z=0.
- (b) Donner les composantes de \vec{n}_2 , normale unitaire à Σ_2 . Préciser l'orientation choisie sur la figure.
- (c) Soit le champ de vecteurs $\vec{V}(1,zy,0)$. Déterminer le flux de \vec{V} à travers Σ_2 .

Sommaire Concepts

3. On considère le domaine de \mathbb{R}^3 suivant

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \quad y^2 + z^2 \le 4, \ x \ge 0, \ z \ge 0, \ x + 2y \le 6\}$$

Faire une figure et calculer l'intégrale $\int \int \int_{\mathcal{V}} z dx dy dz$.

- 4. On note Σ la surface limitant \mathcal{V} , orientée par la normale sortant de \mathcal{V} . On considère le champ de vecteurs $\vec{V}(1,zy,0)$.
 - (a) Calculer div \vec{V} et calculer le flux de \vec{V} à travers Σ à l'aide de théorèmes intégraux.
 - (b) Décrire les différentes parties de Σ . Donner leurs normales unitaires respectives.
 - (c) On définit

$$\Sigma_3 = \{(x, y, z) \in \mathbb{R}^3; \quad y^2 + z^2 = 4, \ z \ge 0, \ x + 2y = 6\}$$

Calculer le flux de \vec{V} à travers Σ_3 . Utiliser les questions précédentes pour retrouver ce résultat.

Exercice A.2.3 TD8-Exercice3

Sommaire Concepts

Index des concepts

Le gras indique un grain où le concept est défini; l'italique indique un renvoi à un exercice ou un exemple, le gras italique à un document, et le romain à un grain où le concept est mentionné.

G Gauss-Ostrogradski	6
H Hydrostatique	9
S Stokes-Ampère	4

Sommaire Concepts

Exemples Exercices

Document

Solution de l'exercice A.1.1

1. (a)

$$\overrightarrow{\mathbf{rot}} \overrightarrow{V} = \begin{pmatrix} \frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z} \\ \frac{\partial V_1}{\partial z} - \frac{\partial V_3}{\partial x} \\ \frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \end{pmatrix}.$$

- (b) On utilise la règle du tire-bouchon de Maxwell pour montrer qu'alors la surface est orientée "vers le haut".
- (c) $\varepsilon = 1$, on obtient :

$$\Phi_{S}(\overrightarrow{\mathbf{rot}} \vec{V}) = \iint_{D} -\frac{\partial \phi}{\partial x}(x,y) \left(\frac{\partial V_{3}}{\partial y}(x,y,\phi(x,y)) - \frac{\partial V_{2}}{\partial z}(x,y,\phi(x,y)) \right) \\
-\frac{\partial \phi}{\partial y}(x,y) \left(\frac{\partial V_{1}}{\partial z}(x,y,\phi(x,y)) - \frac{\partial V_{3}}{\partial x}(x,y,\phi(x,y)) \right) \\
+\frac{\partial V_{2}}{\partial x}(x,y,\phi(x,y)) - \frac{\partial V_{1}}{\partial y}(x,y,\phi(x,y)) dxdy$$
(A.2.3)

2. (a)

$$\begin{cases} x = a(t) \\ y = b(t) \\ z = c(t) = \phi(a(t), b(t)) \end{cases} t : t_0 \to t_1.$$

(b)

$$\int_{\Gamma} V_1 dx + V_2 dy = \int_{t_0}^{t_1} V_1(a(t), b(t), c(t)) a'(t) + V_2(a(t), b(t), c(t)) b'(t) dt$$

$$= \int_{t_0}^{t_1} V_1(a(t), b(t), \phi(a(t), b(t))) a'(t) + V_2(a(t), b(t), \phi(a(t), b(t))) b'(t) dt.$$

$$= \int_{t_0}^{t_1} \widetilde{V}_1(a(t), b(t))a'(t) + \widetilde{V}_2(a(t), b(t))b'(t)dt$$
$$= \int_C \widetilde{V}_1 dx + \widetilde{V}_2 dy$$

(c)

$$\int_{\mathbb{R}} \widetilde{V}_1 dx + \widetilde{V}_2 dy = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\partial \widetilde{V}_2}{\partial x} (x, y) - \frac{\partial \widetilde{V}_1}{\partial y} (x, y).$$

On calcule les dérivées partielles de \widetilde{V}_1 et \widetilde{V}_2

$$\frac{\partial \widetilde{V}_2}{\partial x}(x,y) = \frac{\partial V_2}{\partial x}(x,y,\phi(x,y)) + \frac{\partial V_2}{\partial z}(x,y,\phi(x,y)) \frac{\partial \phi}{\partial x}(x,y)$$
$$\frac{\partial \widetilde{V}_1}{\partial y}(x,y) = \frac{\partial V_1}{\partial y}(x,y,\phi(x,y)) + \frac{\partial V_1}{\partial z}(x,y,\phi(x,y)) \frac{\partial \phi}{\partial y}(x,y)$$

(d) Il suffit de recoller les morceaux.

(e)

$$\int_{\Gamma} V_3 dz = \int_{t_0}^{t_1} V_3(a(t), b(t), c(t)) c'(t) dt$$

$$= \int_{t_0}^{t_1} V_3(a(t), b(t), \phi(a(t), b(t))) \frac{\partial \phi}{\partial x} (a(t), b(t)) a'(t) + V_3(a(t), b(t), \phi(a(t), b(t))) \frac{\partial \phi}{\partial y} (a(t), b(t)) b'(t) dt.$$

$$= \int_{t_0}^{t_1} P(a(t), b(t))a'(t) + Q(a(t), b(t))b'(t)dt$$
$$= \int_{C} Pdx + Qdy$$

(f)

$$\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) = \frac{\partial V_3}{\partial x}(x,y,\phi(x,y)) \frac{\partial \phi}{\partial y}(x,y) - \frac{\partial V_3}{\partial y}(x,y,\phi(x,y)) \frac{\partial \phi}{\partial x}(x,y)$$

ďoù

$$\int_{C} Pdx + Qdy = \iint_{D} \frac{\partial V_{3}}{\partial x}(x, y, \phi(x, y)) \frac{\partial \phi}{\partial y}(x, y) - \frac{\partial V_{3}}{\partial y}(x, y, \phi(x, y)) \frac{\partial \phi}{\partial x}(x, y)$$

- (g) On recolle les morceaux.
- 3. On a calculé le flux de $\overrightarrow{rot} \vec{V}$ à travers S dans la première question, la deuxième question nous permet d'obtenir la circulation de \vec{V} le long de Γ . On constate l'égalité.

$$\overrightarrow{rot} \vec{V} = \left(0, 0, \frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y)\right).$$

$$\vec{n} = (0, 0, 1).$$

$$\vec{n} \cdot \overrightarrow{rot} \vec{V} = \frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y).$$

$$\Phi_S(\overrightarrow{rot} \vec{V}) = \int \int_{D} \frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y) dx dy$$

- 1. (a)
 - (b) Γ est constituée de quatre morceaux.

Le segment AB est paramétré par :

$$\begin{cases} x = t \\ y = 1 \\ z = 1 \end{cases} \quad t: 1 \to 0$$

Le demi-cercle BC est paramétré par :

$$\begin{cases} x = 0 \\ y = \cos \theta \\ z = 1 + \sin \theta \end{cases} \quad \theta : 0 \to \pi$$

Le segment CD est paramétré par :

$$\begin{cases} x = t \\ y = -1 \\ z = 1 \end{cases} \quad t: 0 \to 1$$

Le demi-cercle DA est paramétré par :

$$\begin{cases} x = 1 \\ y = \cos \theta \\ z = 1 + \sin \theta \end{cases} \quad \theta : \pi \to 0$$

- (c) La circulation vaut $-\frac{1}{2} + 0 + \frac{1}{2} + 1$.
- (d) On calcule $\overrightarrow{rot} \vec{U} = \vec{V}$, le flux de \vec{V} a déjà été calculé dans le chapitre précédent, on peut reprendre le résultat.

(b)

$$\begin{cases} x = \cos \theta \\ y = \sin \theta \\ z = 1 \end{cases} \quad t: 0 \to 2\pi$$

(c) La circulation vaut:

$$\int_0^{2\pi} \frac{1}{2} (-\sin\theta)(\sin\theta - 1) + \cos\theta d\theta = -\frac{\pi}{2}$$

Entraînez-vous à calculer les intégrales trigonométriques le plus rapidement possible.

(d) On calcule $\overrightarrow{\rm rot}\, \vec{U}=\vec{V}$, le flux de \vec{V} a déjà été calculé dans le chapitre précédent, reprendre le résultat.

$$\label{eq:div} \begin{split} \operatorname{div} \vec{V} &= 3, \quad \operatorname{vol} \left(\mathcal{B} \right) = \frac{4\pi R^3}{3} \ \operatorname{d'où} \ \iint_{\mathcal{B}} \operatorname{div} \vec{V} = 4\pi R^3 \\ \vec{V}.\vec{n} &= \frac{x^2 + y^2 + z^2}{R} = R \\ \iint_{S} \vec{V}.\vec{n} d\sigma &= R \ \mathrm{aire} \ S = 4\pi R^3 \end{split}$$

1. (a) On a

$$\operatorname{div} \vec{U}_3(M) = \frac{\partial V_3}{\partial z}(x, y, z).$$

(b) En utilisant l'expression de l'intégrale triple, on a :

$$\iiint_{\mathcal{V}} \frac{\partial V_3}{\partial z}(x,y,z) dx dy dz = \iint_{D_3} V_3(x,y,\phi(x,y)) - V_3(x,y,\varepsilon(x,y)) dx dy.$$

2. (a) On utilise la proposition ?? pour montrer que

$$\Phi_{S^{+}}(\vec{U_3}) = \iint_{D_3} V_3(x, y, \phi(x, y)) dx dy$$

(b) On utilise la proposition ?? pour montrer que

$$\Phi_{S^{-}}(\vec{U_3}) = \iint_{D_3} -V_3(x, y, \varepsilon(x, y)) dx dy$$

(c) On en déduit que

$$\iiint_{\mathcal{V}} \mathbf{div} \ \vec{U_3} dx dy dz = \Phi_S(\vec{U_3}).$$

$$\iint_{S} \vec{E}.\vec{n}d\sigma = \iiint_{\mathcal{V}} \ \text{div} \ \vec{E}dxdydz = \frac{1}{\epsilon_{0}} \iiint_{\mathcal{V}} \sigma(x,y,z)dxdydz = \frac{q}{\epsilon_{0}}$$

div $\vec{V} = 0$, donc l'intégrale est nulle.

Retrouvons ce résultat en calculant le flux de \vec{V} à travers la sphère S de centre O et de rayon R.

Une paramétrisation de S est :

$$\begin{cases} x = R\cos\theta\cos\phi \\ y = R\sin\theta\cos\phi \\ z = R\sin\phi \end{cases}, \quad \begin{aligned} 0 &\leq \theta < 2\pi \\ -\frac{\pi}{2} &\leq \phi \leq \frac{\pi}{2} \end{aligned}.$$

On a : $\sigma(\theta, \phi) = R^2 \cos \phi$.

Un vecteur normal est $\vec{n} = (\frac{x}{R}, \frac{y}{R}, \frac{z}{R})$

On a donc

$$\vec{V} \cdot \vec{n} = \frac{xz + xy + zy}{R} = R(\cos\theta\sin\phi\cos\phi + \cos^2\phi\sin\theta\cos\theta + \sin\theta\cos\phi\sin\phi)$$

D'où:

$$\Phi_S(\vec{V}) = R^3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\pi} (\cos\theta \sin\phi \cos\phi + \cos^2\phi \sin\theta \cos\theta + \sin\theta \cos\phi \sin\phi) \cos\phi d\theta d\phi$$

or

$$\int_0^{2\pi} \cos\theta d\theta = \int_0^{2\pi} \cos\theta \sin\theta d\theta = \int_0^{2\pi} \sin\theta d\theta = 0,$$

on retrouve bien que le flux de \vec{V} à travers S est nul.

- 1. S se compose de 2 parties, un morceau de paraboloïde S_1 que l'on a déjà étudié dans le chapitre précédent et un disque S_2 qui se trouve dans le plan z = 1.
- 2. La normale à S_1 doit être dirigée vers le bas, la normale à S_2 doit être dirigée vers le haut.

$$\vec{n}_1 = \begin{pmatrix} \frac{2x}{\sqrt{1+4x^2+4y^2}} \\ \frac{2y}{\sqrt{1+4x^2+4y^2}} \\ -\frac{1}{\sqrt{1+4x^2+4y^2}} \end{pmatrix}, \quad \vec{n}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

La paramétrisation de S_1 est :

$$\left\{\begin{array}{ll} x=x\\ y=y\\ z=x^2+y^2 \end{array}\right. (x,y)\in D \text{ où } D \text{ est le disque de centre } O \text{ et de rayon } 1$$

La paramétrisation de S_2 est :

$$\begin{cases} x = x \\ y = y \quad (x, y) \in D \\ z = 1 \end{cases}$$

3. (a) Il faut calculer le flux à travers S_1 et S_2 correctement orientées.

$$\Phi_{S_2}(ec{V})=\int\!\!\int_{S_2}ec{V}.ec{n}_2d\sigma=-rac{1}{2}$$
 aire $S_2=-rac{\pi}{2}$

Pour le flux à travers S_1 , on l'a déjà calculé dans le chapitre précédent. Est-ce la même orientation?

- (b) Le flux est nul, c'est normal puisque div $\vec{V} = 0$.
- 4. (a)

$$\Phi_{S_1}(\vec{V}) = -\iint_D -2x(-x(x^2+y^2)) - 2xy + x^2(x^2+y^2)dxdy = -\iint_D 3x^2(x^2+y^2)dxdy = -\frac{\pi}{2}$$

$$\Phi_{S_2}(\vec{V}) = + \iint_D x^2 dx dy = \frac{\pi}{4}.$$

On a calculé les deux intégrales sur D en utilisant les coordonnées polaires.

(b) div $\vec{V} = -z + x^2$

$$\iiint_{\mathcal{V}} \operatorname{div} \vec{V} dx dy dz = \iint_{D} \left(\int_{x^2 + y^2}^{1} -z + x^2 dz \right) dx dy \\
= \iint_{D} x^2 - x^2 (x^2 + y^2) + \frac{1}{2} (x^2 + y^2)^2 dx dy - \frac{1}{2} \text{ aire } D \\
= -\frac{\pi}{2}$$

On a calculé cette intégrale en utilisant les coordonnées polaires.

 \vec{n} est un vecteur constant puisque S est plane, donc

$$\vec{F} = p \left(\iint_S d\sigma \right) \vec{n} = pA\vec{n}$$

où A est l'aire de S.

$$\mathbf{div} \ \vec{v_1} = 0, \ \mathbf{div} \ \vec{v_2} = 0, \ \mathbf{div} \ \vec{v_3} = \rho g$$

Les deux premières intégrales sont donc nulles.

$$\iint_{S} \vec{v}_{3} \cdot \vec{n} d\sigma = \rho g \iiint_{V} dx dy dz = \rho g \text{ vol } (V)$$