Institute of Information Technology (IIT)

Jahangirnagar University

Lab Report: 07

Submitted by:

Name: MD Zuleyenine Ibne Noman

Roll No: 2002

Lab Date: 4 September, 2023

Submission Date: 28 August, 2023

Dataset related information:

- filename : survey lung cancer.csv
- Link of dataset: https://www.kaggle.com/code/kelvinfoo123/predicting-lung-cancer-with-knn/input (https://www.kaggle.com/code/kelvinfoo123/predicting-lung-cancer-with-knn/input (https://www.kaggle.com/code/kelvinfoo123/predicting-lung-cancer-with-knn/input (https://www.kaggle.com/code/kelvinfoo123/predicting-lung-cancer-with-knn/input (https://www.kaggle.com/code/kelvinfoo123/predicting-lung-cancer-with-knn/input)
- following are the Dataset characterizations:
 - Total no. of attributes:16
 - No .of instances:284 Attribute information: 1. Gender: M(male), F(female) 2. Age: Age of the patient 3. Smoking: YES=2, NO=1. 4. Yellow fingers: YES=2, NO=1. 5. Anxiety: YES=2, NO=1. 6. Peer_pressure: YES=2, NO=1. 7. Chronic Disease: YES=2, NO=1. 8. Fatigue: YES=2, NO=1. 9. Allergy: YES=2, NO=1. 10. Wheezing: YES=2, NO=1. 11. Alcohol: YES=2, NO=1. 12. Coughing: YES=2, NO=1. 13. Shortness of Breath: YES=2, NO=1. 14. Swallowing Difficulty: YES=2, NO=1. 15. Chest pain: YES=2, NO=1. 16. Lung Cancer: YES, NO.

All needed installations:

Import Libraries

```
In [7]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

Read the file /dataset

```
In [8]: cancer=pd.read_csv("survey lung cancer.csv")
```

15 ଏଶ 1

In [9]:	cancer

Out[9]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE
0	М	69	1	2	2	1	1
1	М	74	2	1	1	1	2
2	F	59	1	1	1	2	1
3	М	63	2	2	2	1	1
4	F	63	1	2	1	1	1
•••							
304	F	56	1	1	1	2	2
305	М	70	2	1	1	1	1
306	М	58	2	1	1	1	1
307	М	67	2	1	2	1	1
308	М	62	1	1	1	2	1

309 rows × 16 columns

Exploring the dataset

In[10]: cancer.head()

Out[10]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	F/
0	М	69	1	2	2	1	1	
1	М	74	2	1	1	1	2	
2	F	59	1	1	1	2	1	
3	М	63	2	2	2	1	1	
4	F	63	1	2	1	1	1	

In [11]: cancer.shape

Out[11]: (309, 16)

```
In[12]: | cancer.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 309 entries, 0 to 308
        Data columns (total 16 columns):
        # Column
                         Non-Null Count Dtype
        O GENDER
                         309 non-null object
        1 AGE
                       309 non-null int64
        2 SMOKING
                         309 non-null int64
        3 YELLOW FINGERS
                              309 non-null int64
        4 ANXIETY
                    309 non-null int64
        5 PEER PRESSURE
                             309 non-null int64
        6 CHRONIC DISEASE
                             309 non-null int64
        7 FATIGUE
                         309 non-null int64
        8 ALLERGY
                         309 non-null int64
        9 WHEEZING
                         309 non-null int64
        10 ALCOHOL CONSUMING
                               309 non-null int64
        11 COUGHING
                          309 non-null int64
        12 SHORTNESS OF BREATH 309 non-null int64
        13 SWALLOWING DIFFICULTY 309 non-null int64
        14 CHEST PAIN
                           309 non-null int64
        15 LUNG CANCER
                            309 non-null object
        dtypes: int64(14), object(2)
        memory usage: 38.8+ KB
```

In[13]: cancer.describe()

0ut[13]:

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000
mean	62.673139	1.563107	1.569579	1.498382	1.501618	1.504854
std	8.210301	0.496806	0.495938	0.500808	0.500808	0.500787
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	57.000000	1.000000	1.000000	1.000000	1.000000	1.000000
50%	62.000000	2.000000	2.000000	1.000000	2.000000	2.000000
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.000000
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.000000

Dataset preprocessing

!pip install sklearn !pip install scikit-learn

```
In [16]: cancer["LUNG_CANCER"].value_counts()
Out[16]: LUNG_CANCER
          1 270
             39
          Name: count, dtype: int64
In [17]: plt.hist(cancer["AGE"],bins=30)
         plt.xlabel("AGE")
plt.ylabel("Count")
         plt.show()
              40
              35
              30
              25
              20
              15
              10
               5
                                                50
                                                          60
                                                                    70
                             30
                                       40
                                                                             80
                                                                                       90
                   20
                                                   AGE
```

In [18]: cancer=cancer[cancer.AGE>30]

```
In [19]: | cancer without age = cancer.drop(["AGE"], axis = 1)
        for i in cancer without age.columns:
          print(cancer without age[i].value counts())
        GENDER
        1 162
        0 146
        Name: count, dtype: int64
        SMOKING
        2 173
           135
        1
        Name: count, dtype: int64
        YELLOW FINGERS
        2 176
          132
        1
        Name: count, dtype: int64
        ANXIETY
        2 154
        1 154
        Name: count, dtype: int64
        PEER PRESSURE
        2 155
           153
        1
        Name: count, dtype: int64
        CHRONIC DISEASE
        2 155
          153
        1
        Name: count, dtype: int64
        FATIGUE
        2 207
        1
           101
        Name: count, dtype: int64
        ALLERGY
        2 171
        1
          137
        Name: count, dtype: int64
        WHEEZING
        2 172
        1
           136
        Name: count, dtype: int64
        ALCOHOL CONSUMING
        2 172
        1
           136
        Name: count, dtype: int64
        COUGHING
        2 179
           129
        Name: count, dtype: int64
        SHORTNESS OF BREATH
        2 197
          111
        Name: count, dtype: int64
        SWALLOWING DIFFICULTY
        1 163
        2 145
        Name: count, dtype: int64
```

CHEST PAIN 2 172

136

Name: count, dtype: int64

LUNG CANCER

1 270 0 38

Name count dtype inter

In [20]: plt.figure(figsize=(16,16))

sns.heatmap(cancer.corr(),annot=True,cmap="viridis")

Out[20]: <AxesSubplot: >


```
In [22]: sns.boxplot(x="AGE",y="LUNG_CANCER",data=cancer)
Out[22]: <AxesSubplot: xlabel='AGE', ylabel='LUNG_CANCER'>
```



```
In [23]: sns.countplot(x="CHRONIC DISEASE",data=cancer)
Out[23]: <AxesSubplot: xlabel='CHRONIC DISEASE', ylabel='count'>
```



```
In [25]: sns.histplot(cancer["CHRONIC DISEASE"],bins=10,kde=True)
Out[25]: <AxesSubplot: xlabel='CHRONIC DISEASE', ylabel='Count'>
```



```
In [26]: [sns.histplot(cancer["SMOKING"],bins=10,kde=True)
Out[26]: <AxesSubplot: xlabel='SMOKING', ylabel='Count'>
```



```
In [27]: sns.histplot(cancer["AGE"],bins=10,kde=True)
Out[27]: <AxesSubplot: xlabel='AGE', ylabel='Count'>
```


SVM model Training and Evaluation

In [29]: from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_sco
from sklearn.metrics import confusion_matrix, classification_report

In [30]: x_train, x_test, y_train, y_test = train_test_split(cancer.drop('LUNG_

```
In [31]: from sklearn.svm import SVC
        model=SVC()
        model.fit(x train,y train)
Out[31]:
        ▼ SVC
         SV¢()
In [32]: predictions=model.predict(x test)
In [33]: | print(confusion matrix(y test,predictions))
In [34]: |print(accuracy_score(y_test,predictions))
        0.8817204301075269
In [35]: | print(classification report(y test, predictions))
               precision recall f1-score support
                  0.00
                         0.00
                               0.00
                                       11
                  0.88
                         1.00
                               0.94
                                       82
                                0.88
          accuracy
                                     93
                      0.44
                             0.50
                                   0.47
                                           93
          macro avg
        weighted avg
                              0.88
                      0.78
                                     0.83
                                             93
         /home/eyenine/.local/lib/python3.10/site-packages/sklearn/metrics/
          classification.py:1469: UndefinedMetricWarning: Precision and F-score
         are ill-defined and being set to 0.0 in labels with no predicted samples. U
         se 'zero division' parameter to control this behavior.
           warn prf(average, modifier, msg start, len(result))
         /home/eyenine/.local/lib/python3.10/site-packages/sklearn/metrics/
          classification.py:1469: UndefinedMetricWarning: Precision and F-score
         are ill-defined and being set to 0.0 in labels with no predicted samples. U
         se 'zero division' parameter to control this behavior.
           warn prf(average, modifier, msg start, len(result))
         /home/eyenine/.local/lib/python3.10/site-packages/sklearn/metrics/
          classification.py:1469: UndefinedMetricWarning: Precision and F-score
         are ill-defined and being set to 0.0 in labels with no predicted samples. U
         se `zero division` parameter to control this behavior.
          warn prf(average, modifier, msg start, len(result))
In [36]: | print(precision score(y test, predictions))
         0.8817204301075269
In [37]: | print(recall_score(y_test, predictions))
         1.0
```

15 ଏଶ 14

