《 高等数学 A (一) 》期末考试试卷(A 卷)

(闭卷 时间 120 分钟) 考场登记表序号

、选择题(每小题3分,共15分)

1. 函数
$$f(x) = \begin{cases} \frac{e^x - 1}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 在 $x = 0$ 处 ().

(A) 不连续

小船

- (B) 连续但不可导
- (C) 可导且导数为0 (D) 可导且导数不为0

2. 设函数
$$f(x) = \frac{e^x - e^3}{(x-3)(x-e)}$$
, 则 ().

- (A) x=3 及 x=e 都是 f(x) 的第一类间断点
- (B) x=3 及 x=e 都是 f(x) 的第二类间断点
- (C) x=3是 f(x) 的第一类间断点, x=e 是 f(x) 的第二类间断点
- (D) x=3是 f(x) 的第二类间断点, x=e 是 f(x) 的第一类间断点

a 3. 若
$$f(x)$$
 的一个原函数是 e^{-x^2} ,则 $\int x f'(x) dx = ($).

(A)
$$(1+2x^2)e^{-x^2}+C$$

(B)
$$-(1+2x^2)e^{-x^2}+C$$

(C)
$$(1-2x^2)e^{-x^2}+C$$

(A)
$$(1+2x^2)e^{-x^2} + C$$
 (B) $-(1+2x^2)e^{-x^2} + C$ (C) $(1-2x^2)e^{-x^2} + C$ (D) $-(1-2x^2)e^{-x^2} + C$

4. 若
$$\lim_{x\to 0} \frac{f(x)}{x^2} = 4$$
,则 $\lim_{x\to 0} (1 + \frac{f(x)}{x})^{\frac{1}{x}} = ($).

(A) e (B) e^2 (C) e^3 (D) e^4

(A)
$$e$$
 (B) e^2 (C) e^3 (D) e^4 5. 若广义积分 $\int_0^{+\infty} e^{(1-p)x} dx$ 与 $\int_1^e \frac{dx}{x \ln^{p-1} x}$ 均收敛,则常数 p 的取值范围是 (A) $p > 1$ (B) $p < 1$ (C) $1 (D) $p > 2$$

二、填空题(每小题3分,共15分)

6. 数列极限
$$\lim_{n\to\infty} \frac{1+2^3+3^3+\cdots+n^3}{n^4} = \underline{\hspace{1cm}}$$
.

7. 曲线
$$y = xe^{-x}$$
 的拐点坐标是 _____.

8. 曲线
$$y = x^2$$
 在点 $(0,0)$ 处的曲率为_____

9. 摆线第一拱
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases} (0 \le t \le 2\pi) 的弧长为____.$$

10.
$$\int_{-1}^{1} (2 + \sin x) \sqrt{1 - x^2} dx =$$
______.

三、计算题(每小题10分,共50分)

- 11. 求极限 $\lim_{x\to 0} \frac{\int_0^{x^2} \ln(1+t)dt}{\sqrt{1+x^4}-1}$.
- 12. 求函数 $y = \frac{2x^2}{(1-x)^2}$ 的单调区间与极值.
- 13. 设函数 y(x) 是微分方程 $y'+\frac{1}{2\sqrt{x}}y=2+\sqrt{x}$ 满足 y(1)=3 的解,求曲线 y=y(x) 的斜渐近线方程.
- 14. 计算不定积分 $\int \frac{x^2}{(1+x^2)^2} dx$.

四、应用题(每小题10分,共10分)

16. 已知曲线 $y = x^2$,过点(1,1)作曲线的切线,该切线与曲线以及 x 轴所围图形为 D (1) 求 D 的面积; (2) 求 D 绕 x 轴旋转一周所成旋转体的体积.

五、证明题(每小题5分,共10分)

17.
$$f(x)$$
在 $\left[0,\frac{\pi}{2}\right]$ 上连续,在 $\left(0,\frac{\pi}{2}\right)$ 内可导, $f(0)=0$,

证明: $\exists \xi \in (0, \frac{\pi}{2})$, 使得 $f'(\xi)\cos \xi = f(\xi)\sin \xi$.

18. 设
$$\lambda$$
 为任意实数,证明: $\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\lambda}} dx = \int_0^{\frac{\pi}{2}} \frac{1}{1 + (\cot x)^{\lambda}} dx$.