UNIVERSITY OF BRISTOL

August/September 2019 Examination Period

FACULTY OF ENGINEERING

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

COMS30009R Types and Lambda Calculus

TIME ALLOWED: 2 Hours

This paper contains *two* questions, answer *both*.

Credit will be given for partial or partially correct answers.

The maximum for this paper is *50 marks*.

Other Instructions:

You may use any result that you can recall from the lecture notes, as long as it is labelled clearly in your answer.

YOU MAY START IMMEDIATELY

Page 1 of 3

Q1. (a) State the rules defining Λ , the set of λ -terms (the names of the rules are not important).

[3 marks]

- (b) Write each of the following terms with all λ and parentheses made explicit.
 - i. $\lambda xyz.xz(yz)$
 - ii. $(\lambda xy.x)(\lambda x.xx)$
 - iii. $x(\lambda xy.x(\lambda z.z))y$

[3 marks]

- (c) For each of the following, give an example of a closed term M that satisfies the equation.
 - i. $M(\lambda x. xz) =_{\beta} zz$.
 - ii. $M =_{\beta} M M$
 - iii. $\lambda x. M =_{\beta} M$
 - iv. $Mx =_{\beta} x Mx Mx$

[4 marks]

(d) Prove, by induction on M, that: if $M[P/x] \neq M[Q/x]$ then $x \in FV(M)$.

[6 marks]

(e) Prove that there cannot be a term M with the property, for all terms N and P:

$$MNP =_{\beta} \begin{cases} \lceil 0 \rceil & \text{if } N = P \\ \lceil 1 \rceil & \text{otherwise} \end{cases}$$

[3 marks]

(f) Let us say that a term M is *solvable* just if for all terms $P \in \Lambda$, one can find a sequence of terms N_1, \ldots, N_k such that $(\lambda x_1 \ldots x_m, M) N_1 \cdots N_k =_{\beta} P$, where $\mathsf{FV}(M) = \{x_1, \ldots, x_m\}$. Is the membership of following set decidable? Either prove it is not or sketch and justify an algorithm.

 $\{M \mid M \text{ does not have a } \beta\text{-normal form or } M \text{ is solvable}\}$

[6 marks]

Q2. (a) State the rules of the type system (the rule names are not important).

[3 marks]

- (b) For each of the following terms, state whether or not it is typable. No justification is necessary.
 - i. $\lambda x. yz$
 - ii. $\lambda x. xx$
 - iii. $\lambda x. x(\lambda y. y)x$

[3 marks]

(c) Recall that the subterm relation can be defined inductively by the following rules:

$$\frac{}{M \sqsubseteq M} (SubRefl) \qquad \frac{P \sqsubseteq M}{P \sqsubseteq (\lambda x. M)} (SubAbs)$$

$$\frac{P \sqsubseteq M}{P \sqsubseteq (MN)} (SubAppL) \qquad \frac{P \sqsubseteq N}{P \sqsubseteq (MN)} (SubAppR)$$

Prove, by induction on $\Gamma \vdash M : A$, that, in the type system:

If $\Gamma \vdash M : A$ and $N \sqsubseteq M$, then there is some Γ' and A' such that $\Gamma' \vdash N : A'$.

[6 marks]

(d) We say that a function $f: \mathbb{N} \to \mathbb{N}$ is *linear* just if f(x) = a * x + b for some natural numbers a and b.

Let us say that a function $f: \mathbb{N} \to \mathbb{N}$ is simply-definable just if there is some closed term M which is typable and $M \lceil n \rceil =_{\beta} \lceil f(n) \rceil$.

Prove that every linear function is simply-definable.

[7 marks]

(e) Suppose $M =_{\beta} xM$. Show that M cannot have a β -normal form.

[3 marks]

(f) Define \exp_k as a tower of 2nd-power exponentials of height k:

$$exp_1 = 2$$
 $exp_{i+1} = 2^{exp_i}$

So, for example, $\exp_3 = 2^{2^2} = 16$. Define a term M such that the k-fold application

$$\underbrace{M\cdots M}_{k\text{-times}}$$

is typable and β -convertible with $\lceil \exp_k \rceil$. Justify your answer.

[3 marks]