Digital Image & Video Processing

Lecture 9 (cont)
Image Segmentation

9.2. Method

9.2.3. HAC (Hierarchical Agglomerative Clustering)

Suppose that

 $X = \{x_i, i = 1..N\}$ is the set of l dimensional feature vectors should be clustered.

 $R = \{C_j, j = 1..M\}, C_j$ is cluster of feature vectors, M is the number of clusters.

9.2.3. HAC

*Image Segmentation

Generalized Agglomerative Scheme

Step 1. Suppose
$$R_0 = \{C_i = \{x_i\}, i = 1..N\}$$
, N is the number of feature vectors.

Step 2.
$$t = 0$$
,

Step 4.
$$t = t + 1$$

Step 5. Select cluster pair (C_i, C_j) in R_{t-1} such that

$$d_N(C_i, C_j) = \min_{r,s=1..N; r\neq s} d_N(C_r, C_s), d_Nis \ dissimilarity \ distance \ between the \ clusters.$$

Step 6. Suppose C_q is the cluster created by merging cluster pair (C_i, C_j) ,

$$C_q = C_i \cup C_j$$

Create new cluster partition $R_t = (R_{t-1} - \{C_i, C_j\}) \cup \{C_q\}$

Step 7. Until
$$t = N-1$$

*Image Segmentation

Tree Generative Scheme (inherited from Generalized Agglomerative Scheme)

Step 1. Suppose $T_0 = \{n_i = \{x_i\}, i = 1..N\}$, N is the number of feature vectors.

Step 2. t = 0,

Step 3. Re peat

Step 4. t = t + 1

Step 5. Select node pair (n_i, n_j) in T_{t-1} such that

 $d_N(n_i, n_j) = \min_{r,s=1..N; r\neq s} d_N(n_r, n_s), d_Nis dissimilarity distance between the nodes.$

Step 6. Suppose n_q is the node created by merging node pair (n_i, n_j) , $n_q = n_i \cup n_j$,

Create new tree $T_t = (T_{t-1} - \{n_i, n_j\}) \cup \{n_q\}$

Step 7. Until t = N-1

*Image Segmentation

Cluster Generative Scheme

Step 1. Reduce hierarchical tree based on DM between parent node and child node

Step 2. The leafnodes with the same parent node will be put to one cluster.

The criteria to remove the nodes based on DM between the child nodes and their parent.

Suppose a,b are two nodes (not be leaf modes),

$$d_{\min}(a,b) = \min \{d(l_a, l_b)\}$$

$$d_{\max}(a,b) = \max\{d(l_a,l_b)\}$$

 l_a, l_b are the leaf nodes.

9.2.3. HAC

Cluster Generative Scheme

During the hierarchical tree generating process, we have:

Node p_l *is created and linked two values:*

$$d_{\min}(n_l, n_r), d_{\max}(n_l, n_r),$$

 n_l, n_r are the left child and right child of node p_l .

Node n_l is created and linked two values:

$$d_{\min}(c_l, c_r), d_{\max}(c_l, c_r),$$

 c_1, c_r are the left child and right child of node n_l .

9.2.3. HAC

Image Segmentation

Suppose node n is the child of node p, consider the following quantities

$$\Delta_{\min}(p,n) = \frac{d_{\min}^p - d_{\min}^n}{d_{\min}^n}$$
 The relative difference of d_{min} at node n and p

$$\Delta_{\max}(p,n) = \frac{d_{\max}^p - d_{\max}^n}{d_{\max}^n}$$

 $\Delta_{\max}(p,n) = \frac{d_{\max}^p - d_{\max}^n}{d^n}$ The relative difference of d_{\max} at node n and p

Node n will be removed if

$$\Delta_{\min} < \varepsilon \ \ \mathrm{Va} \ \left| \Delta_{\max} \right| < \varepsilon$$

After node n is removed, the child of node n is node c is not lost but it is linked to node p.