Confluent Let-Floating

Clemens Grabmayer and Jan Rochel

Dept. of Philosophy
Dept. of Information & Computing Sciences
Utrecht University

IWC 2013 28 June 2013

Motivation

 $\lambda_{\mathsf{letrec}}$ as an abstraction & the core of functional languages

 supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)

lambda-lifting = parameter addition + let-floating

Motivation

 $\lambda_{\mathsf{letrec}}$ as an abstraction & the core of functional languages

supercombinator translations of functional programs
 (Hughes, Peyton–Jones, 1980ies)

lambda-lifting = parameter addition + let-floating

optimizations of supercombinator transl. (Danvy, Schulz, 1990ies): converse of lambda-lifting:

lambda-dropping = block-sinking + parameter dropping

Motivation

 $\lambda_{ ext{letrec}}$ as an abstraction & the core of functional languages

- supercombinator translations of functional programs
 (Hughes, Peyton–Jones, 1980ies)
 - lambda-lifting = parameter addition + let-floating
- optimizations of supercombinator transl. (Danvy, Schulz, 1990ies): converse of lambda-lifting:
 - lambda-dropping = block-sinking + parameter dropping
- ullet term graph interpretations of λ_{letrec} -terms (ignore let-bindings) for definition of a λ_{letrec} -term readback desirable: canonical representatives of let-floating/block-sinking equiv. classes

 supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

 $lambda-lifting = parameter\ addition\ +\ let-floating$

 supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)

lambda-lifting = parameter addition + let-floating $(\lambda x. (\lambda y. + y. x). x). 4$

 supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

$$lambda-lifting = parameter\ addition\ +\ let-floating$$

$$Y = \lambda xy + y x$$

$$X = \lambda x \cdot Y x x$$

$$X = 4$$

 $(\lambda x.(\lambda y. + yx)x)4$

supercombinator definition

(partial) supercombinator definition

 supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

$$lambda-lifting = {\color{red}parameter addition} + {\color{red}let-floating}$$

$$(\lambda x. (\lambda y. + yx)x)4$$

$Y = \lambda xy. + yx$
$(\lambda x. Yxx) 4$

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Yxx$$

(partial) supercombinator definition

 supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

 $lambda-lifting = parameter \ addition \ + \ let-floating$

$$(\lambda x. (\lambda y. + yx)x)4$$

 $(\lambda x. (let f = \lambda y. + yx in f)x)4$ (naming a subterm)

 $\frac{Y = \lambda xy. + yx}{(\lambda x. Yxx) 4}$

(partial) supercombinator definition

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Yxx$$
$$X = 4$$

 supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

 $lambda-lifting = parameter \ addition \ + \ let-floating$

$$(\lambda x. (\lambda y. + y x) x) 4$$

$$(\lambda x. (\mathbf{let} \ f = \lambda y. + y x \mathbf{in} \ f) x) 4 \qquad \text{(naming a subterm)}$$

$$(\lambda x. (\mathbf{let} \ Y = \lambda x' y. + y x' \mathbf{in} \ Y x) x) 4 \qquad \text{(parameter addition)}$$

$$Y = \lambda xy. + yx$$
$$(\lambda x. Y x x) 4$$

(partial) supercombinator definition

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Yxx$$
$$X = 4$$

 supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

 $lambda-lifting = parameter \ addition \ + \ let-floating$

$$\begin{array}{ll} (\lambda x. \, (\lambda y. + y\, x)\, x)\, 4 \\ (\lambda x. \, (\textbf{let}\,\, f = \lambda y. + y\, x\, \textbf{in}\,\, f)\, x)\, 4 & \text{(naming a subterm)} \\ (\lambda x. \, (\textbf{let}\,\, Y = \lambda x'\, y. + y\, x'\, \textbf{in}\,\, Y\, x)\, x)\, 4 & \text{(parameter addition)} \end{array}$$

let
$$Y = \lambda xy + yx$$
 in $(\lambda x. Yxx)$ 4

$Y = \lambda xy. + yx$	(partial) supercombinator definition
$(\lambda x. Yxx)4$	(partial) supercombinator definition

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Yxx$$
$$X = 0$$

 supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

 $lambda-lifting = parameter\ addition\ +\ let-floating$

$$(\lambda x. (\lambda y. + y x) x) 4$$

$$(\lambda x. (let f = \lambda y. + y x in f) x) 4 \qquad (naming a subterm)$$

$$(\lambda x. (let Y = \lambda x' y. + y x' in Y x) x) 4 \qquad (parameter addition)$$

let Y =
$$\lambda x' y$$
. + $y x'$ in $(\lambda x. Y x x)$ 4
= let Y = λxy . + $y x$ in $(\lambda x. Y x x)$ 4 $(\alpha$ -conversion)

$$Y = \lambda xy. + yx$$
$$(\lambda x. Y x x) 4$$

(partial) supercombinator definition

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Y x x$$

 supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)

 $lambda-lifting = parameter\ addition\ +\ let-floating$

$$(\lambda x. (\lambda y. + y x) x) 4$$

$$(\lambda x. (\mathbf{let} \ f = \lambda y. + y \times \mathbf{in} \ f) \times) 4 \qquad \text{(naming a subterm)}$$

$$(\lambda x. (\mathbf{let} \ Y = \lambda x' y. + y x' \ \mathbf{in} \ Y x) \times) 4 \qquad \text{(parameter addition)}$$

$$\mathbf{let} \nearrow (\lambda x. \mathbf{let} \ Y = \lambda x' y. + y x' \ \mathbf{in} \ Y x x) 4 \qquad \text{(let-lifting over application)}$$

let Y =
$$\lambda x' y$$
. + $y x'$ in $(\lambda x. Y x x)$ 4
= let Y = λxy . + $y x$ in $(\lambda x. Y x x)$ 4 $(\alpha$ -conversion)

$$Y = \lambda xy. + yx$$
$$(\lambda x. Yxx) 4$$

(partial) supercombinator definition

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Y x x$$
$$X = 4$$

supercombinator translations of functional programs (Hughes, Peyton–Jones, 1980ies)

lambda-lifting = parameter addition + let-floating

($\lambda x. (\lambda y. + y. x) x) 4$ ($\lambda x. (\text{let } f = \lambda y. + y. x \text{ in } f) x) 4$ (naming a subterm)

($\lambda x. (\text{let } Y = \lambda x' y. + y. x' \text{ in } Y. x) x) 4$ (parameter addition)

let
$$\forall$$
 (λx . let $Y = \lambda x'y + y x'$ in $Y \times x$) 4 (let-lifting over application)
let $Y = \lambda x'y + y x'$ in $\lambda x \cdot Y \times x$) 4 (let-lifting over abstraction)
let $Y = \lambda x'y + y x'$ in ($\lambda x \cdot Y \times x$) 4

= let Y =
$$\lambda xy$$
. + $y \times in(\lambda x. Y \times x)$ 4 (α -conversion)

 $\frac{Y = \lambda xy. + yx}{(\lambda x. Yxx)4}$ (partial) supercombinator definition

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Y x x$$
$$X = 4$$

 supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)

 $lambda-lifting = parameter\ addition\ +\ let-floating$

$$(\lambda x. (\lambda y. + yx) x) 4$$

$$(\lambda x. (\mathbf{let} \ f = \lambda y. + yx \mathbf{in} \ f) x) 4 \qquad \text{(naming a subterm)}$$

$$(\lambda x. (\mathbf{let} \ Y = \lambda x' y. + yx' \mathbf{in} \ Y x) x) 4 \qquad \text{(parameter addition)}$$

$$|\mathbf{t} \neq \lambda x. \mathbf{let} \ Y = \lambda x' y. + yx' \mathbf{in} \ Y x x) 4 \qquad \text{(let-lifting over application)}$$

$$|\mathbf{t} \neq \lambda x' y. + yx' \mathbf{in} \ \lambda x. Y x x) 4 \qquad \text{(let-lifting over abstraction)}$$

$$|\mathbf{t} \neq \lambda x' y. + yx' \mathbf{in} \ (\lambda x. Y x x) 4 \qquad \text{(let-lifting over application)}$$

$$|\mathbf{t} \neq \lambda x' y. + yx' \mathbf{in} \ (\lambda x. Y x x) 4 \qquad \text{(α-conversion)}$$

$$\frac{Y = \lambda xy + yx}{(\lambda x, Yxx)4}$$
 (partial) supercombinator definition

$$Y = \lambda xy. + yx$$
$$X = \lambda x. Y x x$$
$$X = 4$$

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let ^才
downward/inward	block-sinking	let-sinking		let 🗸

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let ^才
downward/inward	block-sinking	let-sinking		let 🗸

introduce let-floating HRSs:

- upward/outward: a let-lifting HRS R_{let} ↗
- ▶ downward/inward: a let-sinking HRS R^{let} \

so that these are terminating

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let ^才
downward/inward	block-sinking	let-sinking		let 🗸

introduce let-floating HRSs:

- upward/outward: a let-lifting HRS R_{let}

 ✓
- ▶ downward/inward: a let-sinking HRS R^{let} \

so that these are terminating

show their confluence by:

- critical pair analysis (⇒ local confluence)
- termination
- Newman's Lemma

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let ^才
downward/inward	block-sinking	let-sinking		let 🗸

introduce let-floating HRSs:

- upward/outward: a let-lifting HRS R_{let} ↗
- ▶ downward/inward: a let-sinking HRS R^{let} \

so that these are terminating

show their confluence by:

- critical pair analysis modulo (⇒ local confluence modulo)
- termination
- Newman's Lemma

$$(\lambda x. (\mathbf{let} \ f = \lambda y. + y \times \mathbf{in} \ f) \times) 4$$

let
$$Y = \lambda x' y + y x'$$
 in $(\lambda x, Y x x) 4$

$$(\lambda x. ($$
let $f = \lambda y. + y \times$ in $f) x) 4$
 $let^{\nearrow} (\lambda x.$ let $f = \lambda y. + y \times$ in $f \times) 4$ (let-lifting over application)

let
$$Y = \lambda x' y + y x'$$
 in $(\lambda x \cdot Y x x) 4$

$$(\lambda x. (\mathbf{let} \ f = \lambda y. + y \times \mathbf{in} \ f) x) 4$$

$$\mathbf{let} \nearrow (\lambda x. \mathbf{let} \ f = \lambda y. + y \times \mathbf{in} \ f x) 4 \qquad (\mathbf{let-lifting} \ over \ application)$$

$$(\lambda x. \mathbf{let} \ Y = \lambda x' y. + y x' \ \mathbf{in} \ Y \times x) 4 \qquad (\mathbf{parameter} \ \mathbf{addition})$$

let
$$Y = \lambda x' y + y x'$$
 in $(\lambda x \cdot Y x x) 4$

$$(\lambda x. (\textbf{let } f = \lambda y. + y \times \textbf{in } f) \times) 4$$

$$|_{\textbf{let}} \nearrow (\lambda x. \textbf{let } f = \lambda y. + y \times \textbf{in } f \times) 4 \qquad (\textbf{let-lifting over application})$$

$$(\lambda x. \textbf{let } Y = \lambda x' y. + y x' \textbf{in } Y \times x) 4 \qquad (\textbf{parameter addition})$$

$$|_{\textbf{let}} \nearrow (\textbf{let } Y = \lambda x' y. + y x' \textbf{in } \lambda x. Y \times x) 4 \qquad (\textbf{let-lifting over abstraction})$$

$$|_{\textbf{let}} Y = \lambda x' y. + y x' \textbf{in } (\lambda x. Y \times x) 4$$

$$(\lambda x. (\textbf{let } f = \lambda y. + y \times \textbf{in } f) \times) 4$$

$$|_{\textbf{let}} \nearrow (\lambda x. \textbf{let } f = \lambda y. + y \times \textbf{in } f \times) 4 \qquad (\textbf{let-lifting over application})$$

$$(\lambda x. \textbf{let } Y = \lambda x' y. + y x' \textbf{in } Y \times x) 4 \qquad (\textbf{parameter addition})$$

$$|_{\textbf{let}} \nearrow (\textbf{let } Y = \lambda x' y. + y x' \textbf{in } \lambda x. Y \times x) 4 \qquad (\textbf{let-lifting over abstraction})$$

$$|_{\textbf{let}} \nearrow \textbf{let } Y = \lambda x' y. + y x' \textbf{in } (\lambda x. Y \times x) 4 \qquad (\textbf{let-lifting over application})$$

Let-lifting HRS \mathbf{R}_{let} with rewrite relation $_{let}$?

$$(\operatorname{let} \nearrow \mathbb{Q}_0) \quad (\operatorname{let} \vec{f} = \vec{F}(\vec{f}) \text{ in } E_0(\vec{f})) E_1 \quad \rightarrow \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \text{ in } E_0(\vec{f}) E_1$$

 $(_{let} \nearrow \mathbb{Q}_1)$ E_0 (let $\vec{f} = \vec{F}(\vec{f})$ in $E_1(\vec{f})$) \rightarrow let $\vec{f} = \vec{F}(\vec{f})$ in E_0 $E_1(\vec{f})$

$$(_{\mathsf{let}} \, \nearrow \, \lambda) \quad \lambda x. \, \mathsf{let} \, \vec{f} = \vec{F}(\vec{f}), \, \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \, \mathsf{in} \, E(\vec{f}, \vec{g}, x)$$

$$\Rightarrow \begin{cases} \mathsf{let} \, \vec{f} = \vec{F}(\vec{f}) \, \mathsf{in} \, \lambda x. \, E(\vec{f}, x) & \text{if} \, \vec{g} \, \mathsf{is} \, \mathsf{empty} \end{cases}$$

$$\Rightarrow \begin{cases} \mathsf{let} \, \vec{f} = \vec{F}(\vec{f}) \, \mathsf{in} \, \lambda x. \, E(\vec{f}, x) & \text{if} \, \vec{g} \, \mathsf{is} \, \mathsf{empty} \end{cases}$$

$$\mathsf{let} \, \vec{f} = \vec{F}(\vec{f}) \, \mathsf{in} \, \mathsf{let} \, \vec{g} = \vec{G}(\vec{f}, \vec{g}) \, \mathsf{in} \, E(\vec{f}, \vec{g}, x)$$

$$(\mathsf{let}\text{-}\mathsf{iet} \, \nearrow) \quad \mathsf{let} \, \vec{f} = \vec{F}(\vec{f}) \, \mathsf{in} \, \mathsf{let} \, \vec{g} = \vec{G}(\vec{f}, \vec{g}) \, \mathsf{in} \, E(\vec{f}, \vec{g})$$

$$\Rightarrow \, \mathsf{let} \, \vec{f} = \vec{F}(\vec{f}, g), \, g = \mathsf{let} \, \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \, \mathsf{in} \, G(\vec{f}, g, \vec{h}) \, \mathsf{in} \, E(\vec{f}, g)$$

$$\Rightarrow \, \mathsf{let} \, \vec{f} = \vec{F}(\vec{f}, g), \, g = \mathsf{G}(\vec{f}, g, \vec{h}), \, \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \, \mathsf{in} \, E(\vec{f}, g)$$

Let-lifting HRS \mathbf{R}_{let} with rewrite relation $_{let}$?

$$(_{let} \nearrow @_0) \quad (\textbf{let } \vec{f} = \vec{F}(\vec{f}) \textbf{ in } E_0(\vec{f})) E_1 \rightarrow \textbf{let } \vec{f} = \vec{F}(\vec{f}) \textbf{ in } E_0(\vec{f}) E_1$$

$$app((let_{n-}in(\vec{y}.(x_1(\vec{y}), \dots, x_n(\vec{y}), z_0(\vec{y})))), z_1)$$

$$\rightarrow let_{n-}in(\vec{y}.(x_1(\vec{y}), \dots, x_n(\vec{y}), app(z_0(\vec{y}), z_1)))$$

$$(_{let} \nearrow @_1) \quad E_0(\textbf{let } \vec{f} = \vec{F}(\vec{f}) \textbf{ in } E_1(\vec{f})) \rightarrow \textbf{let } \vec{f} = \vec{F}(\vec{f}) \textbf{ in } E_0 E_1(\vec{f})$$

$$(_{let} \nearrow \lambda) \quad \lambda x. \textbf{ let } \vec{f} = \vec{F}(\vec{f}), \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \textbf{ in } E(\vec{f}, \vec{g}, x)$$

$$f = \vec{f} = \vec{f}(\vec{f}) \textbf{ in } \lambda x. E(\vec{f}, x) \qquad \text{if } \vec{g} \textbf{ is empty}$$

$$(\textbf{let } \vec{f} = \vec{F}(\vec{f}) \textbf{ in } \lambda x. \textbf{ let } \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \textbf{ in } E(\vec{f}, \vec{g}, x)$$

$$(\textbf{let-in-}_{let} \nearrow) \quad \textbf{let } \vec{f} = \vec{F}(\vec{f}) \textbf{ in } \textbf{let } \vec{g} = \vec{G}(\vec{f}, \vec{g}) \textbf{ in } E(\vec{f}, \vec{g})$$

$$\rightarrow \textbf{let } \vec{f} = \vec{F}(\vec{f}, g), g = \textbf{let } \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \textbf{ in } G(\vec{f}, g, \vec{h}) \textbf{ in } E(\vec{f}, g)$$

$$\rightarrow \textbf{let } \vec{f} = \vec{F}(\vec{f}, g), g = G(\vec{f}, g, \vec{h}), \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \textbf{ in } E(\vec{f}, g)$$

$$\rightarrow \textbf{let } \vec{f} = \vec{F}(\vec{f}, g), g = G(\vec{f}, g, \vec{h}), \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \textbf{ in } E(\vec{f}, g)$$

Let-lifting HRS \mathbf{R}_{let} with rewrite relation $_{let}$.

$$\left(_{\mathsf{let}} \nearrow @_0 \right) \quad \left(\mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_0(\vec{f}) \right) E_1 \quad \rightarrow \quad \mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_0(\vec{f}) \; E_1$$

$$(_{\text{let}} \nearrow @_1) \quad E_0 \text{ (let } \vec{f} = \vec{F}(\vec{f}) \text{ in } E_1(\vec{f})) \rightarrow \text{ let } \vec{f} = \vec{F}(\vec{f}) \text{ in } E_0 E_1(\vec{f})$$

$$(_{\text{let}} \nearrow \lambda) \quad \lambda x. \text{ let } \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \text{ in } E(\vec{f}, \vec{g}, x)$$

$$\rightarrow \begin{cases} \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } \lambda x. E(\vec{f}, x) & \text{if } \vec{g} \text{ is empty} \end{cases}$$

$$(\text{let-in-let} \nearrow) \quad \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in let } \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E(\vec{f}, \vec{g})$$

$$\rightarrow \text{ let } \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E(\vec{f}, \vec{g})$$

$$(\text{let-let} \nearrow) \quad \text{let } \vec{f} = \vec{F}(\vec{f}, g), \ g = \text{let } \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \text{ in } G(\vec{f}, g, \vec{h}) \text{ in } E(\vec{f}, g)$$

$$\rightarrow \text{ let } \vec{f} = \vec{F}(\vec{f}, g), \ g = G(\vec{f}, g, \vec{h}), \ \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \text{ in } E(\vec{f}, g)$$

Let-lifting HRS \mathbf{R}_{let} with rewrite relation $_{let}$.

$$\left(_{\mathsf{let}} \nearrow @_{0} \right) \quad \left(\mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_{0}(\vec{f}) \right) E_{1} \; \rightarrow \; \mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_{0}(\vec{f}) \; E_{1}$$

$$\begin{array}{ll} (_{\operatorname{let}} \nearrow @_1) & E_0 \left(\operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} E_1(\vec{f}) \right) \ \to \ \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} E_0 E_1(\vec{f}) \\ & (_{\operatorname{let}} \nearrow \lambda) & \lambda x. \operatorname{let} \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \operatorname{in} E(\vec{f}, \vec{g}, x) \\ & \to \begin{cases} \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} \lambda x. E(\vec{f}, x) & \text{if } \vec{g} \operatorname{ is empty} \\ \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} \lambda x. \operatorname{let} \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \operatorname{in} E(\vec{f}, \vec{g}, x) \end{cases}$$

$$(\operatorname{let-in_{-let}} \nearrow) \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} \operatorname{let} \vec{g} = \vec{G}(\vec{f}, \vec{g}) \operatorname{in} E(\vec{f}, \vec{g}) \\ & \to \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}) \operatorname{in} E(\vec{f}, \vec{g}) \\ & (\operatorname{let_{-let}} \nearrow) \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}, g), \ g = \operatorname{let} \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \operatorname{in} G(\vec{f}, g, \vec{h}) \operatorname{in} E(\vec{f}, g) \\ \end{aligned}$$

 \rightarrow let $\vec{f} = \vec{F}(\vec{f}, g), g = G(\vec{f}, g, \vec{h}), \vec{h} = \vec{H}(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

Let-lifting HRS \mathbf{R}_{let} with rewrite relation $_{let}$.

$$(_{\operatorname{let}} \nearrow @_0) \quad (\operatorname{let} \vec{f} = \vec{F}(\vec{f}) \text{ in } E_0(\vec{f})) E_1 \quad \rightarrow \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \text{ in } E_0(\vec{f}) E_1$$

$$(_{\text{let}} \nearrow @_1) \quad E_0 (\text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } E_1(\vec{f})) \rightarrow \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } E_0 E_1(\vec{f})$$

$$(_{\text{let}} \nearrow \lambda) \quad \lambda x. \text{ let } \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \text{ in } E(\vec{f}, \vec{g}, x)$$

$$\rightarrow \begin{cases} \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } \lambda x. E(\vec{f}, x) & \text{if } \vec{g} \text{ is empty} \end{cases}$$

$$\rightarrow \begin{cases} \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } \lambda x. \text{ let } \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \text{ in } E(\vec{f}, \vec{g}, x) \end{cases}$$

$$(\text{let-in-let} \nearrow) \quad \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in let } \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E(\vec{f}, \vec{g})$$

$$\rightarrow \quad \text{let } \vec{f} = \vec{F}(\vec{f}, g), \ g = \text{let } \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \text{ in } G(\vec{f}, g, \vec{h}) \text{ in } E(\vec{f}, g)$$

$$\rightarrow \quad \text{let } \vec{f} = \vec{F}(\vec{f}, g), \ g = G(\vec{f}, g, \vec{h}), \ \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \text{ in } E(\vec{f}, g)$$

Let-lifting HRS \mathbf{R}_{let} with rewrite relation $_{let}$?

$$\left(_{\mathsf{let}} \nearrow @_0 \right) \quad \left(\mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_0(\vec{f}) \right) E_1 \; \; \rightarrow \; \; \mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_0(\vec{f}) \; E_1$$

$$\begin{array}{ll} (_{\operatorname{let}} \nearrow @_1) & E_0 \left(\operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} E_1(\vec{f}) \right) \ \to \ \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} E_0 E_1(\vec{f}) \\ & (_{\operatorname{let}} \nearrow \lambda) & \lambda x. \operatorname{let} \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \operatorname{in} E(\vec{f}, \vec{g}, x) \\ & \to \begin{cases} \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} \lambda x. E(\vec{f}, x) & \text{if } \vec{g} \text{ is empty} \\ \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} \lambda x. \operatorname{let} \vec{g} = \vec{G}(\vec{f}, \vec{g}, x) \operatorname{in} E(\vec{f}, \vec{g}, x) \end{cases}$$

$$(\operatorname{let-in_-}_{\operatorname{let}} \nearrow) \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}) \operatorname{in} \operatorname{let} \vec{g} = \vec{G}(\vec{f}, \vec{g}) \operatorname{in} E(\vec{f}, \vec{g}) \\ & \to \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}) \operatorname{in} E(\vec{f}, \vec{g}) \\ & (\operatorname{let-}_{\operatorname{let}} \nearrow) \quad \operatorname{let} \vec{f} = \vec{F}(\vec{f}, g), \ g = \operatorname{let} \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \operatorname{in} G(\vec{f}, g, \vec{h}) \operatorname{in} E(\vec{f}, g) \\ \end{aligned}$$

 \rightarrow let $\vec{f} = \vec{F}(\vec{f}, g), g = G(\vec{f}, g, \vec{h}), \vec{h} = \vec{H}(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

Let-lifting HRS \mathbf{R}_{let} with rewrite relation $_{let}$.

$$\left(_{\mathsf{let}} \nearrow @_0 \right) \quad \left(\mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_0(\vec{f}) \right) E_1 \; \; \rightarrow \; \; \mathsf{let} \; \vec{f} = \vec{F}(\vec{f}) \; \mathsf{in} \; E_0(\vec{f}) \; E_1$$

 $(_{let} \nearrow \mathbb{Q}_1)$ E_0 (let $\vec{f} = \vec{F}(\vec{f})$ in $E_1(\vec{f})$) \rightarrow let $\vec{f} = \vec{F}(\vec{f})$ in E_0 $E_1(\vec{f})$

Needed: conversion $=_{ex}$ induced by rule:

(exchange) let
$$B_0$$
, $f_i = F_i(\vec{f})$, $f_{i+1} = F_{i+1}(\vec{f})$, B_1 in $E(\vec{f})$
 \rightarrow let B_0 , $f_{i+1} = F_{i+1}(\vec{f})$, $f_i = F_i(\vec{f})$, B_1 in $E(\vec{f})$

Needed: conversion $=_{ex}$ induced by rule:

(exchange) **let**
$$B_0$$
, $f_i = F_i(\vec{f})$, $f_{i+1} = F_{i+1}(\vec{f})$, B_1 **in** $E(\vec{f})$
 \rightarrow **let** B_0 , $f_{i+1} = F_{i+1}(\vec{f})$, $f_i = F_i(\vec{f})$, B_1 **in** $E(\vec{f})$

Define:

$$L_{\text{let}} \nearrow L' :\iff L =_{\text{ex}} \cdot_{\text{let}} \nearrow \cdot =_{\text{ex}} L' \quad (\text{let} \nearrow \text{ modulo} =_{\text{ex}})$$

Needed: conversion $=_{ex}$ induced by rule:

(exchange) let
$$B_0$$
, $f_i = F_i(\vec{f})$, $f_{i+1} = F_{i+1}(\vec{f})$, B_1 in $E(\vec{f})$
 \rightarrow let B_0 , $f_{i+1} = F_{i+1}(\vec{f})$, $f_i = F_i(\vec{f})$, B_1 in $E(\vec{f})$

Define:

Needed: conversion =_{ex} induced by rule:

(exchange) let
$$B_0$$
, $f_i = F_i(\vec{f})$, $f_{i+1} = F_{i+1}(\vec{f})$, B_1 in $E(\vec{f})$
 \rightarrow let B_0 , $f_{i+1} = F_{i+1}(\vec{f})$, $f_i = F_i(\vec{f})$, B_1 in $E(\vec{f})$

Define:

$$L_{\text{let}} \nearrow L' :\iff L =_{\text{ex}} \cdot_{\text{let}} \nearrow \cdot =_{\text{ex}} L' \quad \text{(let} \nearrow \text{ modulo } =_{\text{ex}} \text{)}$$

$$[L]_{=_{\text{ex}}} [\text{let}] \nearrow [L']_{=_{\text{ex}}} :\iff L_{\text{let}} \nearrow L' \quad \text{(on } =_{\text{ex}} \text{-equivalence classes)}$$

 \rightarrow is called locally confluent modulo \sim if $\leftarrow \cdot \rightarrow \subseteq \twoheadrightarrow \cdot \sim \cdot \twoheadleftarrow$.

Lemma

- (i) let → is locally confluent modulo =ex.
- (ii) [let] → is locally confluent.

Critical pair example

Proof.

(i) define HRS $\mathbf{R}_{\mathsf{let}} \nearrow_{\mathsf{ex}}$ with rewrite rel. $=_{\mathsf{ex}} \hookrightarrow_{\mathsf{let}} \nearrow^{\mathsf{g}}$ [Peterson, Stickel, '81] \rightarrow rule scheme (σ) of $\mathbf{R}_{\mathsf{let}} \nearrow^{\mathsf{g}}$ \longmapsto rule scheme $(\sigma)_{=_{\mathsf{ex}}}$ of $\mathbf{R}_{\mathsf{let}} \nearrow_{\mathsf{ex}}$

Proof.

- (i) define HRS $\mathbf{R}_{\mathsf{let}} \mathcal{I}_{\mathsf{ex}}$ with rewrite rel. $=_{\mathsf{ex}} \hookrightarrow_{\mathsf{let}} \mathcal{I}$ [Peterson, Stickel,'81] \rightarrow rule scheme (σ) of $\mathbf{R}_{\mathsf{let}} \mathcal{I}_{\mathsf{ex}}$ rule scheme $(\sigma)_{=_{\mathsf{ex}}}$ of $\mathbf{R}_{\mathsf{let}} \mathcal{I}_{\mathsf{ex}}$
- (ii) carry out a critical pair analysis

Proof.

- (i) define HRS R_{let} \nearrow_{ex} with rewrite rel. $=_{ex} \hookrightarrow_{let} \nearrow$ [Peterson, Stickel, '81]
 - rule scheme (σ) of $\mathbf{R}_{\mathsf{let}}$ \longrightarrow rule scheme $(\sigma)_{=_{\mathsf{ex}}}$ of $\mathbf{R}_{\mathsf{let}}$ $\mathcal{P}_{\mathsf{ex}}$

(ii) carry out a critical pair analysis

$$\frac{\left(\left|\operatorname{let}\mathcal{A}\right. \mathbb{Q}_{0}\right)_{=_{\operatorname{ex}}} / \left(\left|\operatorname{let}\mathcal{A}\right. \mathbb{Q}_{1}\right)_{=_{\operatorname{ex}}}:}{\left(\operatorname{let}\vec{f} = F(\vec{f}) \text{ in } E_{0}(\vec{f})\right) \left(\operatorname{let}\vec{g} = G(\vec{f})\right)}$$

$$(\operatorname{let} \vec{f} = F(\vec{f}) \operatorname{in} E_0(\vec{f})) (\operatorname{let} \vec{g} = G(\vec{g}) \operatorname{in} E_1(\vec{g})) \xrightarrow[(\operatorname{let}^{\nearrow} \mathbb{Q}_0)]{} \operatorname{let} \vec{f} = F(\vec{f}) \operatorname{in} E_0(\vec{f}) \operatorname{let} \vec{g} = G(\vec{g}) \operatorname{in} E_1(\vec{g})$$

$$(\operatorname{let}^{\nearrow} \mathbb{Q}_1) \downarrow \qquad \qquad (\operatorname{let}^{\nearrow} \mathbb{Q}_1) \downarrow$$

let
$$\vec{g} = G(\vec{g})$$
 in (let $\vec{f} = F(\vec{f})$ in $E_0(\vec{f})$) $E_1(\vec{g})$ let $\vec{f} = F(\vec{f})$ in let $\vec{g} = G(\vec{g})$ in $E_0(\vec{f})$ $E_1(\vec{g})$ (let in $E_0(\vec{f})$) $E_1(\vec{g})$

Proof.

- (i) define HRS R_{let} \nearrow_{ex} with rewrite rel. $=_{ex} \hookrightarrow_{let} \nearrow$ [Peterson, Stickel, '81]
 - rule scheme (σ) of $\mathbf{R}_{\mathsf{let}}$ \longrightarrow rule scheme $(\sigma)_{=_{\mathsf{ex}}}$ of $\mathbf{R}_{\mathsf{let}}$
- (ii) carry out a critical pair analysis
- (iii) Critical Pair Theorem for HRS [Mayr, Nipkow, '96] implies local confluence of =_{ex} →_{let} [¬]

$$\begin{array}{c|c} \left(\left(\operatorname{let} \nearrow \ \mathbb{Q}_{0} \right)_{=_{\operatorname{ex}}} \ / \ \left(\operatorname{let} \nearrow \ \mathbb{Q}_{1} \right)_{=_{\operatorname{ex}}} : \right) \\ \left(\operatorname{let} \vec{f} = F(\vec{f}) \text{ in } E_{0}(\vec{f}) \right) \left(\operatorname{let} \vec{g} = G(\vec{g}) \text{ in } E_{1}(\vec{g}) \right) \xrightarrow[\left(\operatorname{let} \nearrow \ \mathbb{Q}_{0} \right)]{} & \operatorname{let} \vec{f} = F(\vec{f}) \text{ in } E_{0}(\vec{f}) \text{ let } \vec{g} = G(\vec{g}) \text{ in } E_{1}(\vec{g}) \\ & \left(\operatorname{let} \nearrow \ \mathbb{Q}_{1} \right) \downarrow \\ \end{array}$$

 $(\text{let} \nearrow @1) \downarrow \qquad \qquad (\text{let} \nearrow @1) \downarrow$ $\text{let } \vec{g} = G(\vec{g}) \text{ in } (\text{let } \vec{f} = F(\vec{f}) \text{ in } E_0(\vec{f})) E_1(\vec{g}) \qquad \qquad (\text{let } \vec{f} = F(\vec{f}) \text{ in let } \vec{g} = G(\vec{g}) \text{ in } E_0(\vec{f}) E_1(\vec{g})$ $(\text{let-in}_{-\text{let}} \nearrow) =_{\text{ex}}$

 $\operatorname{let} \vec{g} = G(\vec{g}) \text{ in let } \vec{f} = F(\vec{f}) \text{ in } E_0(\vec{f}) E_1(\vec{g}) \xrightarrow{(\operatorname{let-in}_{-\operatorname{let}}\nearrow)} \operatorname{let} \vec{g} = G(\vec{g}), \ \vec{f} = F(\vec{f}) \text{ in } E_0(\vec{f}) E_1(\vec{g})$

Proof.

- (i) define HRS $R_{let} \nearrow_{ex}$ with rewrite rel. $=_{ex} \hookrightarrow_{let} \nearrow^{\pi}$ [Peterson, Stickel, '81] \rightarrow rule scheme (σ) of $R_{let} \nearrow^{\pi}$ \longmapsto rule scheme $(\sigma)_{=\infty}$ of $R_{let} \nearrow_{ex}$
- (ii) carry out a critical pair analysis
- (iii) Critical Pair Theorem for HRS [Mayr, Nipkow, '96] implies local confluence of =ex →let ✓
- (iv) let √*-steps and =ex-steps at different positions commute

```
(_{\text{let}}\nearrow @_0)_{_{\text{ex}}} / (_{\text{let}}\nearrow @_1)_{_{\text{ex}}}:
```

$$(\operatorname{let} \vec{f} = F(\vec{f}) \operatorname{in} E_0(\vec{f})) (\operatorname{let} \vec{g} = G(\vec{g}) \operatorname{in} E_1(\vec{g})) \xrightarrow[(\operatorname{let}^{\nearrow} \mathbb{Q}_0)]{} \operatorname{let} \vec{f} = F(\vec{f}) \operatorname{in} E_0(\vec{f}) \operatorname{let} \vec{g} = G(\vec{g}) \operatorname{in} E_1(\vec{g})$$

$$(\operatorname{let}^{\nearrow} \mathbb{Q}_1) \downarrow \qquad \qquad (\operatorname{let}^{\nearrow} \mathbb{Q}_1) \downarrow \qquad \qquad (\operatorname{let}^{\nearrow} \mathbb{Q}_1) \downarrow \qquad \qquad (\operatorname{let}^{\nearrow} \mathbb{Q}_1) \downarrow \qquad (\operatorname{let}$$

let
$$\vec{g} = G(\vec{g})$$
 in (let $\vec{f} = F(\vec{f})$ in $E_0(\vec{f})$) $E_1(\vec{g})$ let $\vec{f} = F(\vec{f})$ in let $\vec{g} = G(\vec{g})$ in $E_0(\vec{f})$ in $E_0(\vec{f})$ let $E_0(\vec{f})$ let $E_0(\vec{f})$ let $E_0(\vec{f})$ in let $E_0(\vec{f})$ let $E_0(\vec{f})$ in let $E_0(\vec{f})$ le

$$\mathbf{let}\ \vec{g} = G(\vec{g})\ \mathbf{in}\ \mathbf{let}\ \vec{f} = F(\vec{f})\ \mathbf{in}\ E_0(\vec{f})\ E_1(\vec{g}) \xrightarrow{\qquad \qquad } \mathbf{let}\ \vec{g} = G(\vec{g}),\ \vec{f} = F(\vec{f})\ \mathbf{in}\ E_0(\vec{f})\ E_1(\vec{g})$$

Let-lifting is confluent

Lemma

let [↑] and [let] [↑] are terminating.

Proposition

In every let ✓ or [let] ✓-normal form, let-subterms occur only:

- at the root;
- immediately below λ -abstractions.

Theorem

[let] [≯] is confluent, terminating, and uniquely normalizing.

Proof.

By using Newman's Lemma.

Applications may 'block' let -steps, but not abstractions:

let
$$f = \lambda y. y$$
 in $\lambda x. f f x$

Applications may 'block' let \u222-steps, but not abstractions:

```
let f = \lambda y. y in \lambda x. f f x

let \lambda x. let f = \lambda y. y in f f x (let-sinking over abstraction)
```

Applications may 'block' let \(-steps, but not abstractions: \)

```
let f = \lambda y. y in \lambda x. f f x

let \searrow \lambda x. let f = \lambda y. y in f f x (let-sinking over abstraction)

let \searrow \lambda x. (let f = \lambda y. y in f f)x (let-sinking over application)
```

Applications may 'block' let -steps, but not abstractions:

```
let f = \lambda y. y in \lambda x. f f x

let \lambda x. let f = \lambda y. y in f f x (let-sinking over abstraction)

let \lambda x. (let f = \lambda y. y in f f x) (let-sinking over application)
```

in the sense that further sinking needs duplication:

$$\lambda x. ($$
let $f = \lambda y. y in $f) ($ **let** $f = \lambda y. y in $f) x$ (unfolding)$$

which decreases (here looses) sharing (changes graph interpretation).

Let-sinking rules

Let-sinking HRS R^{let}, with rewrite relation let, :

$$(\operatorname{let} \nearrow @_0) \quad \text{let } \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E_0(\vec{f}, \vec{g}) E_1(\vec{f})$$

$$\rightarrow \begin{cases} \left(\text{let } \vec{g} = \vec{G}(\vec{g}) \text{ in } E_0(\vec{g})\right) E_1 & \text{if } \vec{f} \text{ is empty} \end{cases}$$

$$\left(\text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } \left(\text{let } \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E_0(\vec{f}, \vec{g})\right) E_1(\vec{f}) \end{cases}$$

$$(\operatorname{let} \nearrow @_1) \quad \text{let } \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E_0(\vec{f}) E_1(\vec{f}, \vec{g})$$

$$\rightarrow \begin{cases} E_0\left(\text{let } \vec{g} = \vec{G}(\vec{g}) \text{ in } E_1(\vec{g})\right) & \text{if } \vec{f} \text{ is empty} \end{cases}$$

$$\left(\text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } E_0(\vec{f}) \left(\text{let } \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E_1(\vec{f}, \vec{g})\right) \end{cases}$$

$$(\text{let } \searrow \lambda) \quad \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in } \lambda x. E(\vec{f}, x) \rightarrow \lambda x. \text{ let } \vec{f} = \vec{F}(\vec{f}) \text{ in } E(\vec{f}, x)$$

$$(\text{let } \searrow \text{let }) \quad \text{let } \vec{f} = \vec{F}(\vec{f}) \text{ in let } \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E(\vec{f}, \vec{g})$$

$$\rightarrow \quad \text{let } \vec{f} = \vec{F}(\vec{f}), \ \vec{g} = \vec{G}(\vec{f}, \vec{g}) \text{ in } E(\vec{f}, \vec{g})$$

$$(\text{let}_{\searrow}) \quad \text{let } \vec{f} = \vec{F}(\vec{f}, g), \ g = G(\vec{f}, g, \vec{h}), \ \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \text{ in } E(\vec{f}, g)$$

$$\rightarrow \quad \text{let } \vec{f} = \vec{F}(\vec{f}, g), \ g = \text{let } \vec{h} = \vec{H}(\vec{f}, g, \vec{h}) \text{ in } G(\vec{f}, g, \vec{h}) \text{ in } E(\vec{f}, g)$$

$$\lambda x. \lambda y. \mathbf{let} \ f = \lambda z. z \mathbf{in} \ x y$$

$$\lambda x. \, \lambda y. \, \mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, x \, y$$

$$\downarrow^{\mathsf{let}} \, \downarrow$$

$$\lambda x. \, \lambda y. \, \big(\mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, x \big) \, y$$

$$\lambda x. \, \lambda y. \, x \, \big(\mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, y \big)$$

$$\lambda x. \, \lambda y. \, \mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, x \, y$$

$$\lambda x. \, \lambda y. \, \big(\mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, x \big) \, y$$

$$\lambda x. \, \lambda y. \, x \, \big(\mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, y \big)$$

(reduce) let
$$\vec{f} = \vec{F}(\vec{f})$$
, $\vec{g} = \vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow \text{let } \vec{f} = \vec{F}(\vec{f})$ in $E(\vec{f})$

$$\lambda x. \, \lambda y. \, \mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, x \, y$$

$$\downarrow^{\mathrm{let}} \quad \downarrow^{\mathrm{let}} \quad \downarrow$$

(reduce) let
$$\vec{f} = \vec{F}(\vec{f})$$
, $\vec{g} = \vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow \text{let } \vec{f} = \vec{F}(\vec{f})$ in $E(\vec{f})$

$$\lambda x. \, \lambda y. \, \mathbf{let} \, f = \lambda z. \, z \, \mathbf{in} \, x \, y$$

$$\downarrow^{\mathrm{let}} \quad \downarrow^{\mathrm{let}} \quad \downarrow$$

(reduce) let
$$\vec{f} = \vec{F}(\vec{f})$$
, $\vec{g} = \vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow$ let $\vec{f} = \vec{F}(\vec{f})$ in $E(\vec{f})$
(nil) let in $L \rightarrow L$

$$\lambda x. \lambda y. \operatorname{let} f = \lambda z. z \operatorname{in} x y$$

$$\downarrow^{\operatorname{let}} \qquad \qquad \downarrow^{\operatorname{let}} \downarrow$$

$$\lambda x. \lambda y. \left(\operatorname{let} f = \lambda z. z \operatorname{in} x \right) y \qquad \qquad \lambda x. \lambda y. x \left(\operatorname{let} f = \lambda z. z \operatorname{in} y \right)$$

$$\to^{\operatorname{gc}} \qquad \qquad \leftarrow^{\operatorname{gc}} \downarrow$$

$$\lambda x. \lambda y. \left(\operatorname{let} \operatorname{in} x \right) y \qquad \lambda x. \lambda y. x \left(\operatorname{let} \operatorname{in} y \right)$$

$$\to^{\operatorname{gc}} \qquad \leftarrow^{\operatorname{gc}} \downarrow$$

$$\lambda x. \lambda y. x y$$

(reduce) let
$$\vec{f} = \vec{F}(\vec{f})$$
, $\vec{g} = \vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow$ let $\vec{f} = \vec{F}(\vec{f})$ in $E(\vec{f})$
(nil) let in $L \rightarrow L$

Let-sinking is confluent

Lemma

 $^{\text{let}}\searrow^{\text{gc}}$ is locally confluent modulo $=_{\text{ex}}$, and $^{\text{[let]}}\searrow^{\text{[gc]}}$ is locally confluent.

Proposition

let

gc and [let]

[gc] are terminating.

Theorem

[let] [gc] is confluent, terminating, and uniquely normalizing.

Envisaged application: lambda-lifting

Extend \mathbf{R}_{let} with a parameter-addition rule:

$$\lambda \mathbf{x}. \mathbf{let} \ f = F(f, \vec{g}, \mathbf{x}), \vec{g} = \vec{G}(f, \vec{g}, \mathbf{x}) \mathbf{in} \ E(f, \vec{g}, \mathbf{x})$$

$$\rightarrow \lambda \mathbf{x}. \mathbf{let} \ \hat{f} = \lambda \mathbf{x}'. F(\hat{f} \ \mathbf{x}', \vec{g}, \mathbf{x}'), \vec{g} = \vec{G}(\hat{f} \ \mathbf{x}, \vec{g}, \mathbf{x}) \mathbf{in} \ E(\hat{f} \ \mathbf{x}, \vec{g}, \mathbf{x})$$

to enable further let-lifting.

Envisaged application: lambda-lifting

Extend \mathbf{R}_{let} with a parameter-addition rule:

$$\lambda x. \operatorname{let} f = F(f, \vec{g}, \mathbf{x}), \vec{g} = \vec{G}(f, \vec{g}, \mathbf{x}) \operatorname{in} E(f, \vec{g}, \mathbf{x})$$

$$\rightarrow \lambda x. \operatorname{let} \hat{f} = \lambda x'. F(\hat{f} x', \vec{g}, \mathbf{x}'), \vec{g} = \vec{G}(\hat{f} \mathbf{x}, \vec{g}, \mathbf{x}) \operatorname{in} E(\hat{f} \mathbf{x}, \vec{g}, \mathbf{x})$$

to enable further let-lifting.

Aim:

- enable to let-lift ('float out') all let-bindings to create a single outermost let-binding
- model a lambda-lifting translation into supercombinators
- show confluence modulo order of combinator arguments
- perhaps use normalized rewriting on let-floating equivalence classes

Summary

- Let-lifting
 - ▶ let-lifting HRS R_{let}, with rewrite relation let.
 - exchange conversion =ex
 - rewrite relation let → := (=ex · let → · =ex) is confluent modulo =ex
 - ► =_{ex}-class rewrite relation [let] is confluent and terminating
- ② Let-sinking rewrite relation [let]

 [gc]
 - ▶ let-sinking HRS R let with rewrite relation let w
 - rewrite relation $^{\text{let}} \searrow^{\text{gc}} := =_{\text{ex}} \cdot (_{\text{let}} \nearrow^{\pi} \cup \rightarrow_{\text{gc}}) \cdot =_{\text{ex}} \text{ is confluent modulo } =_{\text{ex}}$
 - =ex-class rewrite relation [let] [gc] and confluent and terminating