

Asset Returns: Stylized Facts and ARCH/GARCH models

Loriano Mancini

USI Lugano and Swiss Finance Institute

Financial Econometrics course

Asset Returns

- ► Many asset classes
 - ▶ Equities, bonds, commodities, currencies, etc.
 - ▶ Significantly different *economic* features

Figure: Merton's view of the firm.

Asset Returns

- ► Many asset classes
 - ▶ Equities, bonds, commodities, currencies, etc.
 - ► Significantly different *economic* features
- ► Empirical regularities of asset returns or stylized facts
 - Surprisingly similar across all asset classes!
 - ► Model-free phenomena (essentially)
 - ▶ Impose constraints on models of asset returns
 - ▶ Relevant for asset and risk management, derivative pricing, etc.

Market Index: S&P500

Figure: Daily closing prices of the S&P500 index S_t from 1980 to 2020.

Market Returns: S&P500 Index

Figure: Daily log-returns, $\log(S_t/S_{t-1})$, of the S&P500 index S_t . Note: Stochastic volatility, volatility clustering and large movements of market returns are evident.

Asset Returns: Stylized facts

- ▶ Time variation of asset returns or volatility
 - ► Stochastic (i.e., changes randomly over time)
 - Persistent (i.e., temporal dependence or volatility clustering)
- ▶ Price discontinuities (i.e., jumps)
- ▶ Heavy tails of return distributions
- \blacktriangleright Leverage effect, i.e., Cov[asset returns, volatility changes] <0
- **.** . . .

Temporal Dependence of Market Returns

Figure: Upper graph: Sample autocorrelations of daily S&P500 log-returns. Lower graph: Sample autocorrelations of daily squared S&P500 log-returns. Note: Market returns do not exhibit any temporal dependence, squared returns do (volatility clustering).

Sample Autocorrelation

Given T observations of a time series process, $y_t, t = 1, ..., T$, suppose, for simplicity $\mathbb{E}[y_t] = 0$ and $\mathbb{V}[y_t] = 1$, the sample autocorrelation function at lag ℓ is

$$ACF(\ell) = \frac{1}{T - \ell} \sum_{t=1}^{T - \ell} y_t y_{t+\ell}$$

which is the sample covariance between y_t and $y_{t+\ell}$.

For example, ACF(0) is just the sample variance of y_t , and

$$ACF(1) = \frac{1}{T-1} \sum_{t=1}^{T-1} y_t y_{t+1}$$

which is the sample covariance between y_t and y_{t+1} .

Heavy Tails of Market Return Distribution

Figure: Histogram of standardized daily S&P500 log-returns (bars). Standard normal pdf (green line). Note: Empirical market return distribution has more probability mass in the tails (and around zero) relative to a normal distribution. 1987 market crash (standardized -20.5) not in the figure.

Leverage Effect: Cov[market returns, volatility changes]<0

Figure: Scatter plot of changes in annualized daily market volatility (y-axis) versus daily market returns (x-axis). Note: Correlation between market return and volatility change is -0.63. Strong asymmetric impact of market returns on volatility changes: slopes are -2.25 versus 0.24. 1987 market crash (-0.23) not in the figure.

ARCH/GARCH Models for Asset Returns

- ▶ Primarily models for (daily) stochastic volatility
 - ► Engle (1982), Bollerslev (1986)
- Very popular
- Easy to use
- ▶ Reproduce (at least qualitatively, many) return stylized facts

ARCH model (for teaching purposes)

• Asset, daily log-return $r_t = \log(S_t/S_{t-1})$

$$r_t = \sigma_t z_t$$

where z_t is an i.i.d. shock $\mathcal{D}(0,1)$. Note $\mathbb{E}[r_t] = 0$

▶ ARCH(1) conditional variance $\sigma_t^2 = \mathbb{V}[r_t | \mathcal{F}_{t-1}]$

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2$$

where \mathcal{F}_{t-1} is the information set at time t-1

- ▶ Plus other conditions to ensure $\sigma_t^2 > 0$, stationary, etc.
- $\Rightarrow \sigma_t^2$ is stochastic, exhibits (some) persistence when $\alpha_1 > 0$, known at time t-1

GARCH model (largely used in practice)

• Asset, daily log-return $r_t = \log(S_t/S_{t-1})$

$$r_t = \sigma_t z_t$$

where z_t is an i.i.d. shock $\mathcal{D}(0,1)$. Note $\mathbb{E}[r_t] = 0$

▶ GARCH(1,1) conditional variance $\sigma_t^2 = \mathbb{V}[r_t | \mathcal{F}_{t-1}]$

$$\sigma_t^2 = \beta_0 + \beta_1 \sigma_{t-1}^2 + \beta_2 r_{t-1}^2$$

where \mathcal{F}_{t-1} is the information set at time t-1

- ▶ Plus other conditions to ensure $\sigma_t^2 > 0$, stationary, etc.
- $\Rightarrow \sigma_t^2$ is stochastic, can be quite persistent when $\beta_1 \approx 0.9$, known at time t-1

GARCH model: Maximum Likelihood Estimation

- ▶ Joint density of log-returns r_1, \ldots, r_T from p.d.f. $f(r_t | \mathcal{F}_{t-1})$
- ▶ Log-likelihood function, assume $r_t | \mathcal{F}_{t-1} \sim \mathcal{N}(0, \sigma_t^2)$

$$\log f(r_1, ..., r_T) = \sum_{t=1}^{T} \log f(r_t | \mathcal{F}_{t-1})$$
$$= -\frac{1}{2} \sum_{t=1}^{T} \left[\log(2\pi) + \log \sigma_t^2 + r_t^2 / \sigma_t^2 \right]$$

- Maximize log-likelihood w.r.t. $\beta_0, \beta_1, \beta_2$ that enters σ_t^2 , using a numerical search (no closed form solution of $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$, in general)
- Once $\beta_0, \beta_1, \beta_2$ are estimated, σ_t^2 can be computed recursively (using some starting values of σ_1^2 and r_1^2 such as sample variance of log-returns)

Market Returns and GARCH Volatility

Figure: Upper graph: Daily S&P500 log-returns. Lower graph: Estimated GARCH volatility $\hat{\sigma}_t$ annualized. Note: GARCH volatility tracks market return variability.

Market Returns and GARCH Innovations

Figure: Upper graph: Daily S&P500 log-returns. Lower graph: Estimated GARCH innovations $\hat{z}_t = r_t/\hat{\sigma}_t$. Note: GARCH innovations exhibit much less volatility clustering than market returns.

Temporal Dependence

Figure: Upper graph: Sample autocorrelations of squared daily S&P500 log-returns. Lower graph: Sample autocorrelations of squared GARCH innovations, \hat{z}_t^2 where $\hat{z}_t = r_t/\hat{\sigma}_t$.

Note: Squared market returns exhibit strong temporal dependence (volatility clustering), squared GARCH innovations do not.

Value-at-Risk: Application of GARCH Models

- ► Trading activity is subject to risk (and other) constraints¹
- ▶ Value-at-Risk (VaR) sets the risk constraint and is imposed by the regulator (Basel Committee, 1996)
- ▶ GARCH models are often used to compute VaR in banks, etc.

¹Such as leverage and liquidity constraints.

Value-at-Risk

- ► VaR is (essentially) a left-tail quantile at a given level of the profit and loss (P&L) distribution over a given time horizon
- At day t, in the daily P&L distribution below, the 1% level VaR is equal to 0.05, with $r_{t+1} = \log(S_{t+1}/S_t)$

$$0.01 = P(r_{t+1} < -\frac{VaR_{t,t+1}}{F_t}) = P(r_{t+1} < -\frac{0.05}{F_t})$$

Computing Value-at-Risk using GARCH-type models

- ▶ In GARCH models, $r_{t+1} = \sigma_{t+1} z_{t+1}$, where z is i.i.d. $\mathcal{D}(0,1)$
- ▶ At day t, because $\sigma_{t+1} \in \mathcal{F}_t$, the only random variable is z_{t+1}

$$0.01 = P(r_{t+1} < -VaR_{t,t+1}|\mathcal{F}_t)$$

= $P(\sigma_{t+1} z_{t+1} < -VaR_{t,t+1}|\mathcal{F}_t)$
= $P(z_{t+1} < -VaR_{t,t+1}/\sigma_{t+1}|\mathcal{F}_t)$

 $\Rightarrow -VaR_{t,t+1}/\sigma_{t+1} = z_{0.01}$, with $z_{0.01}$ the 1% quantile of the distribution of z. For e.g., if $z \sim \mathcal{N}(0,1)$, $z_{0.01} = -2.3$

▶ At day t, the 1% level VaR over the horizon [t, t+1] is

$$VaR_{t,t+1} = -\sigma_{t+1} z_{0.01}$$

▶ These calculations hold for any $\sigma_{t+1} \in \mathcal{F}_t$, not just GARCH models

Backtesting Value-at-Risk

Figure: Daily S&P500 log-returns (blue line), minus VaR at 1% level over one day (black line), $-VaR_{t,t+1} = \sigma_{t+1} z_{0.01}$, where σ_{t+1} follows a GARCH model, and $z_{0.01} = -2.6$ from empirical distribution of z. VaR violations, $r_{t+1} < -VaR_{t,t+1}$ (red circle). Note: VaR violations occurred 94 times out of 10,303 daily estimates, i.e., $94/10303 \times 100 = 0.9\%$ of the times, which is "close" to the expected 1% (by definition of quantile).

21/27

Backtesting Value-at-Risk: Nov 2019 – Nov 2020

Figure: Daily S&P500 log-returns (blue bars), minus VaR at 1% level over one day (black line). VaR violations, $r_{t+1} < -VaR_{t,t+1}$ (red circle). Note: VaR violations occurred 5 times out of 258 daily estimates from Nov 2019 to Nov 2020, i.e., $5/258 \times 100 = 1.9\%$ of the times, which is "close" to the expected 1% (by definition of quantile).

Expected shortfall (ES) or conditional VaR

- ▶ There is one major problem with VaR. What is it?
- ▶ Other measure of risk required by regulators (e.g. SST)
- ▶ If $r_{t+1} < -VaR_{t,t+1}$, what is the expected loss?
- At day t, given that $VaR_{t,t+1} = -\sigma_{t+1} z_{0.01}$

$$\begin{aligned}
-ES_{t,t+1} &= \mathbb{E}[r_{t+1} \mid r_{t+1} < -VaR_{t,t+1}, \mathcal{F}_t] \\
&= \mathbb{E}[\sigma_{t+1} z_{t+1} \mid \sigma_{t+1} z_{t+1} < \sigma_{t+1} z_{0.01}] \\
&= \sigma_{t+1} \mathbb{E}[z_{t+1} \mid z_{t+1} < z_{0.01}]
\end{aligned}$$

where $\mathbb{E}[z_{t+1} | z_{t+1} < z_{0.01}]$ is the ES at 1% level of the shocks z (estimated via its empirical counterpart or models)

▶ Hold for any $\sigma_{t+1} \in \mathcal{F}_t$, not just GARCH models

Expected shortfall: Nov 2019 – Nov 2020

Figure: Daily S&P500 log-returns (blue line); minus VaR (black line) $-VaR_{t,t+1} = \sigma_{t+1} \, z_{0.01}; \text{ minus expected shortfall (dashed red line)} \\ -ES_{t,t+1} = \sigma_{t+1} \, \mathbb{E}[z_{t+1} \, | \, z_{t+1} < z_{0.01}] \text{ at } 1\% \text{ level over one day based on GARCH model and empirical distribution of } z.$

GARCH Models: Some Common Specifications

- ▶ Return innovation z_t (driving $r_t = \sigma_t z_t$) non-normal
 - e.g., Bollerslev (1987), Engle and Gonzalez-Rivera (1991)
- ► Asymmetric GARCH (to capture leverage effects)

$$\sigma_t^2 = \beta_0 + \beta_1 \sigma_{t-1}^2 + \beta_2 r_{t-1}^2 + \beta_3 I_{t-1} r_{t-1}^2$$

where $I_{t-1} = 1$ when $r_{t-1} < 0$, and $I_{t-1} = 0$ otherwise

- ▶ Glosten, Jagannathan, and Runkle (1993)
- ▶ Long-run and short-run component GARCH

$$\sigma_t^2 = q_t + \tilde{\beta}_1(\sigma_{t-1}^2 - q_{t-1}) + \tilde{\beta}_2 \eta_{1,t-1}
q_t = \gamma_0 + \gamma_1 q_{t-1} + \gamma_2 \eta_{2,t-1}$$

where $\eta_{1,t-1}$ and $\eta_{2,t-1}$ are zero-mean innovations

► Christoffersen et al. (2008)

GARCH Models Nowadays

- ▶ Widely used to estimate and forecast conditional variances
- ▶ Typically estimated with non-normal return innovations
- \blacktriangleright Largely applied for risk management and derivative pricing
 - $\,\blacktriangleright\,$ e.g., Barone-Adesi, Engle, and M. (2008)

References

- Barone-Adesi, Engle, and Mancini (2008), "A GARCH Option Pricing Model with Filtered Historical Simulation," Review of Financial Studies, 21, 1223–1258.
- Bollerslev (1986), "Generalized Autoregressive Conditional Heteroskedasticity," Journal of Econometrics, 31, 307–327.
- ▶ Bollerslev (1987), "A conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," *Review of Economics and Statistics*, 69, 542–547.
- Christoffersen, Jacobs, Ornthanalai, and Wang (2008), "Option Valuation with Long-Run and Short-Run Volatility Components," Journal of Financial Economics, 90, 272–297.
- Engle (1982), "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, 50, 987–1007.
- Engle and Gonzalez-Rivera (1991), "Semiparametric ARCH models," Journal of Business and Economic Statistics, 9, 345–359.
- ▶ Glosten, Jagannathan, and Runkle (1993), "On the Relation Between the Expected Value and the Volatility of the Nominal Excess Returns on Stocks," *Journal of Finance*, 48, 1779–1801.