Numbers & Sets - Definitions & Methods

Lectured by Prof Imre Leader

Michaelmas 2013

1 Elementary Number Theory

Method 1 (Strong Induction). If P(1), and for all n: $P(m) \forall m < n \implies P(n)$, then $P(n) \forall n$.

Definition 1 (Highest Common Factor). A natural number c is the *highest common factor* of a and b if:

- 1. $c \mid a \text{ and } c \mid b$
- 2. For any natural number d, if $d \mid a$ and $d \mid b$, then $d \mid c$.

1.1 Modular Arithmetic

Definition 2 (Integers Modulo n). Let $n \geq 2$ be a natural number. Then integers mod n, written \mathbb{Z}_n , consists of the integers, where two numbers a, b are regarded as the same if they differ by a multiple of n, and we say that $a \equiv b \pmod{n}$, or 'a is congruent to $b \pmod{n}$ '.

Definition 3 (Invertible). Say that an integer a is *invertible* (or a *unit*) mod n if there exists an integer b with $ab \equiv 1$ (n).

Method 2 (Solving Congruences). Use Euclid's algorithm, or spot an inverse. You can write in equation form (i.e. a + xn = b) to reduce if a, b, n share a common factor.

For multiple congruences, use the Chinese Remainder Theorem. For m, n coprime, $x \equiv a$ (m) and $x \equiv b$ (n), have ms + nt = 1, and so $x \equiv a(nt) + b(ms)$ (mn) is the solution.

Method 3 (RSA Encryption). Choose two primes p and q, and set n = pq. Choose an encoding exponent e. Encode a message x as x^e in \mathbb{Z}_n .

To decode this, need a decoding exponent d, such that $(x^e)^d = x$. Have $x^{\phi(n)} = 1$ by Fermat-Euler (assuming x coprime to n), so $x^{k\phi(n)} = 1$, so $x^{k\phi(n)+1} = x$. Thus sufficient to have d with de of form $k\phi(n) + 1$, i.e. $de \equiv 1$ $(\phi(n))$, which can be found by running Euclid on e and $\phi(n)$. (N.B. $\phi(n) = n - p - q + 1$.)

2 The Reals

Definition 4 (Bounded above). A set S is bounded above if $\exists x \in \mathbb{R}$ with $x \geq y \ \forall y \in S$. We call such an x an upper bound for S.

Definition 5 (Least Upper Bound). Say that x is a least upper bound, or supremum for a set S if x is an upper bound for S and no x' < x is an upper bound for S.

Definition 6 (Open / Closed Interval). The closed interval [a, b] consists of all reals x with a < x < b.

The open interval (a, b) consists of all reals x with a < x < b.

Definition 7 (Convergence). Say that (x_n) tends to c if $\forall \epsilon > 0$ $\exists N$ such that $\forall n \geq N$: $c - \epsilon < x_n < c + \epsilon$. We can also say that (a_n) converges to a, or a is the limit of (a_n) , and write $\lim_{n\to\infty} a_n = a$, or $a_n \to a$.

Definition 8 (Monotone). A sequence (x_n) is monotone if it is decreasing $(x_n \le x_{n-1} \ \forall n)$ or increasing $(x_n \ge x_{n-1} \ \forall n)$.

Definition 9 (Algebraic). Say $x \in \mathbb{R}$ is algebraic if it is a root of some (non-zero) integer polynomial. A non-algebraic number is known as transcendental.

3 Sets

Definition 10 (Set). A set is any (except Russel's paradox-like) collection of (mathematical) objects.

Definition 11 (Subset). For sets A, B, say A is a *subset* of B written $A \subset B$, if every member of A is a member of B.

For any set A, and any property p(x), we can form the subset $\{x \in A : p(x)\}$ - this is known as subset selection.

Definition 12 (Union and Intersection). For sets A, B can form the union $A \cup B = \{x : x \in A \text{ or } x \in B\}$, and the intersection $A \cap B = \{x : x \in A \text{ and } x \in B\}$.

Definition 13 (Disjoint). Say sets A, B are disjoint if $A \cap B = \emptyset$, where \emptyset is the empty set.

Method 4 (Identities about sets). To prove an identity relating different sets, either: Suppose $x \in LHS$ and show that $x \in RHS$, and vice versa. Use indicator functions.

Definition 14 (Power set). For any set A, the power set of A, written $\mathcal{P}(A)$ is $\{B : B \subset A\}$, the set of all subsets of A.

Definition 15 (Binomial Coefficient). For $N \in \mathbb{N}$ and $0 \le k \le n$, the binomial coefficient $\binom{n}{k}$ is the number of subsets of $\{1, \ldots, n\}$ of size k.

4 Functions

Definition 16 (Function). Let A, B be sets. A function f is a rule that assigns to each point $a \in A$ a unique point $f(a) \in B$. (More precisely, a function is a subset of $A \times B$ such that $\forall a \in A \exists$ unique $b \in B$ with $(a, b) \in f$.)

Definition 17 (Injective). Say $f: A \to B$ is injective if $\forall a, a' \in A, a \neq a' \Longrightarrow f(a) \neq f(a')$ ('different points stay different'). Equivalently, $f(a) = f(a') \Longrightarrow a = a'$.

Definition 18 (Surjective). Say $f: A \to B$ is surjective if $\forall b \in B \ \exists a \in A \ \text{with} \ f(a) = b$ ('everything in B is hit').

Definition 19 (Bijective). Say $f: A \to B$ is bijective if it is injective and surjective.

Definition 20 (Domain, Range and Image). For $f: A \to B$, the *domain* of f is A, the range of f is B, and the *image* of f is $\{f(a): a \in A\}$.

Definition 21 (Characteristic Function). For $A \subset X$, we have the *characteristic function* or *indicator function*

$$\chi_A: X \to \{0,1\}: x \mapsto \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Definition 22 (Relation). A relation R on a set X is a subset R of $X \times X$ (ordered pairs of X). We write aRb for $(a,b) \in R$.

Definition 23 (Equivalence Relation). We say that R is an equivalence relation if R is:

- Reflexive: $\forall x \in X : xRx$
- Symmetric: $\forall x, y \in X : xRy \implies yRx$
- Transitive: $\forall x, y, z \in X : xRy, yRz \implies xRz$

Definition 24 (Equivalence Class). Given an equivalence relation R on a set X and an element $x \in X$, the equivalence class of x is $[x] = \{y \in X : yRx\}$.

Definition 25 (Quotient). The set of equivalence classes of R is called the *quotient* of X by R, written X/R.

The function $q: X \to X/R: x \mapsto [x]$ is called the *quotient map*.

5 Countability

Definition 26 (Countable). Say X is *countable* if X bijects with \mathbb{N} , or X is finite. Equivalently, if we can list X as a_1, a_2, \ldots (might terminate).

If X is not countable, we say that it is *uncountable*.

Method 5 (Show set uncountable).

- 1. Copy diagonal argument
- 2. Inject your favourite uncountable set

Method 6 (Show set countable).

- 1. List it
- 2. Inject it into $\mathbb N$
- 3. Use 'countable union of countable sets is countable'
- 4. If in/near \mathbb{R} , try to use ' \mathbb{Q} is countable'