测量金属丝的杨氏模量实验

一、实验安全

- 1. 卷尺边缘锋利
- 2. 电器电路检查过后通电, 用后关闭电源
- 3. 金属丝拉力过大小心拉断弹到人

二、实验目的

- 1. 学会用拉伸法测量金属丝的杨氏模量;
- 2. 掌握光杠杆法测量微小伸长量的原理;
- 3. 掌握各种测量工具的正确使用方法;
- 4. 学会用最小二乘法处理实验数据。

三、实验原理

1. 杨氏模量的定义

设金属丝的原长为L,横截面积为S,沿长度方向施力F后,其长度改变 Δ L,则金属丝单位面积上受到的垂直作用力 σ =F/S称为正应力,金属丝的相对伸长量 ϵ = Δ L/L称为线应变。实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即:

$$\sigma = E \cdot \varepsilon \tag{1}$$

或
$$\frac{F}{S} = E \cdot \frac{\Delta L}{L}$$
 (2)

比例系数E即为金属丝的杨氏模量(单位: Pa或N/m²), 它表征材料本身的性质, E越大的材料, 要使它发生一定的相对形变所需要的单位横截面

积上的作用力也越大。

由式 (2) 可知:

$$E = \frac{F/S}{\Delta L/L} \tag{3}$$

对于直径为d的圆柱形金属丝, 其杨氏模量为:

$$E = \frac{F/S}{\Delta L/L} = \frac{mg/\left(\frac{1}{4}\pi d^2\right)}{\Delta L/L} = \frac{4mgL}{\pi d^2 \Delta L}$$
(4)

式中L(金属丝原长)可由米尺测量,d(金属丝直径)可用螺旋测微器测量,F(外力)可由实验中数字拉力计上显示的质量m求出,即F=mg(g为重力加速度),而 Δ L是一个微小长度变化(mm级)。本实验利用光杠杆的光学放大作用实现对金属丝微小伸长量 Δ L的间接测量。

2. 光杠杆光学放大原理

如图 1 所示, 光杠杆由反射镜、反射镜转轴支座和与反射镜镜固定连动的动足等组成。

图 1 光杠杆放大原理图

开始时,光杠杆的反射镜法线与水平方向成一夹角,在望远镜中恰能看到标尺刻度 x_1 的像。当金属丝受力后,产生微小伸长 ΔL ,动足尖下降,从而带动反射镜转动相应的角度 θ ,根据光的反射定律可知,在出射光线(即进入望远镜的光线)不变的情况下,入射光线转动了 2θ ,此时望远镜中看到标尺刻度为 x_2 。

实验中 $D>>\Delta L$,所以 θ 甚至 2θ 会很小。从图 1 的几何关系中我们可以看出, 2θ 很小时有:

 $\Delta L \approx D \cdot \theta$, $\Delta x \approx H \cdot 2 \theta$

故有:
$$\Delta x = \frac{2H}{D} \cdot \Delta L \tag{5}$$

其中 2H/D称作光杠杆的放大倍数, H是反射镜转轴与标尺的垂直距离。

仪器中H>>D,这样一来,便能把一微小位移 Δ L放大成较大的容易测量的位移 Δ x。将式(5)代入式(4)得到:

$$E = \frac{8mgLH}{\pi d^2 D} \cdot \frac{1}{\Delta x} \tag{6}$$

如此,可以通过测量式(6)右边的各参量得到被测金属丝的杨氏模量, 式(6)中各物理量的单位取国际单位(SI制)。

四、实验仪器

杨氏模量实验架	一套	含待测金属丝, 顶部刻度线背光电源, 拉力感
		应装置数据线
望远镜	一套	支架, 镜体
数字拉力计	一台	
尺子	三把	游标卡尺,千分尺,卷尺

(图2) 杨氏模量系统示意图

(图3) 实验仪器

(图 4) 实验仪器顶视图

(图5) 反射镜背部细节

(图 6) 杨氏模量主要结构细节

1. 实验架

实验架是待测金属丝杨氏模量测量的主要平台。金属丝通过一夹头与拉力传感器相连,采用螺母旋转加力方式,加力简单、直观、稳定。拉力

传感器输出拉力信号通过数字拉力计显示金属丝受到的拉力值。光杠杆的 反射镜转轴支座被固定在一台板上,动足尖自由放置在夹头表面。反射镜 转轴支座的一边有水平卡座和垂直卡座。水平卡座的长度等于反射镜转轴 与动足尖的初始水平距离(即小型测微器的微分筒压到 0 刻线时的初始光 杠杆常数),该距离在出厂时已严格校准,使用时勿随意调整动足与反射镜框之间的位置。旋转小型测微器上的微分筒可改变光杠杆常数。实验架含有最大加力限制功能、实验中最大实际加力不应超过 13.00kg。

2. 望远镜系统

望远镜系统包括望远镜支架和望远镜。望远镜支架通过调节螺钉可以 微调望远镜。望远镜放大倍数 12 倍,最近视距 0.3m,含有目镜十字分划 线(纵线和横线)。望远镜如图 7 所示。

(图 7) 望远镜示意图

3. 数字拉力计

电源: AC220V±10%, 50Hz

显示范围: 0~±19.99kg (三位半数码显示)

最小分辨力: 0.001kg

含有显示清零功能 (短按清零按钮显示清零)。

含有直流电源输出接口:输出直流电,用于给背光源供电。

数字拉力计面板图:

(图 8) 数字拉力计面板图

五、实验内容

1. 调节实验架

实验前应保证上下夹头均夹紧金属丝,防止金属丝在受力过程中与夹头发生相对滑移,且反射镜转动灵活。

- 1)将拉力传感器信号线接入数字拉力计信号接口,用 DC 连接线连接数字拉力计电源输出孔和背光源电源插孔。
- 2) 打开数字拉力计电源开关, 预热 10min。背光源应被点亮, 标尺 刻度清晰可见。数字拉力计面板上显示此时加到金属丝上的力。
- 3) 旋转施力螺母, 给金属丝施加一定的预拉力 m₀ (1.00-1.50kg), 将金属丝原本存在弯折的地方拉直。

2. 调节望远镜

- 1) 将望远镜移近并正对实验架平台板(望远镜前沿与平台板边缘的 距离在 0~30cm 范围内均可)。调节望远镜使从实验架侧面目视时 反射镜转轴大致在镜筒中心线上(如图 7),同时调节支架上的 三个螺钉,直到从目镜中看去能看到背光源发出的明亮的光。
- 调节目镜视度调节手轮,使得十字分划线清晰可见。调节调焦手轮,使得视野中标尺的像清晰可见。
- 3) 调节支架螺钉(也可配合调节平面镜角度),使十字分划线横线与标尺刻度线平行,并对齐≤2.0cm的刻度线(避免实验做到最后超出标尺量程)。水平移动支架,使十字分划线纵线对齐标尺中心。

图 9 望远镜位置示意图

3. 数据测量

1) 测量 L、H、D、d

<mark>用钢卷尺测量金属丝的原长L</mark>,钢卷尺的始端放在金属丝上

夹头的下表面 (即横梁上表面), 另一端对齐平台板的上表面。

用钢卷尺测量反射镜转轴到标尺的垂直距离H, 钢卷尺的始端放在标尺板上表面, 另一端对齐垂直卡座的上表面(该表面与转轴等高)。

用游标卡尺测量光杠杆常数D, 游标卡尺测量水平卡座长度。 以上各物理量为一次测量值,记录实验数据。

用螺旋测微器测量不同位置、不同方向的金属丝直径视值d $_{n_i}$ (至少 6 处),注意测量前记下螺旋测微器的零差 $_{n_i}$ (2 包 $_{n_i}$),注意测量前记下螺旋测微器的零差 $_{n_i}$ 也不为值 $_{n_i}$ 是一个 $_{n_i}$ 是一

2) 测量标尺刻度 x 与拉力 m

点击数字拉力计上的"清零"按钮,记录此时对齐十字分划 线横线的刻度值 x₁。

缓慢旋转施力螺母加力,逐渐增加金属丝的拉力,每隔 1.00 (±0.01) kg 记录一次标尺的刻度 x;[†],加力至 10.00kg,数据记录后再加 0.5kg 左右(不超过 1.0kg,且不记录数据)。

然后,反向旋转施力螺母至 10.00 kg 并记录数据,同样地,逐渐减小金属丝的拉力,每隔 1.00 (± 0.01) kg 记录一次标尺的刻度 x_i^- ,直到拉力为 0.00 (± 0.01) kg。

分别将逐渐加力和逐渐减力时的数据做线性拟合, 根据公式

求出金属丝的杨氏模量值,并比较分析误差来源。

注:

实验中不能再调整望远镜,并尽量保证实验桌不要有震动,以保证望远镜稳定。

加力和减力过程, 施力螺母不能回旋。

3) 实验完成后, 旋松施力螺母, 使金属丝自由伸长, 并关闭数字拉力计。

六、注意事项

- 1) 该实验是测量微小量,实验时应避免实验台震动。
- 2) 初始光杠杆常数与水平卡座的长度在出厂时已校为相等,实验时勿调整动足与反射镜框之间的连接件。
- 3) 加力勿超过实验规定的最大加力值。
- 4) 严禁改变限位螺母位置, 避免最大拉力限制功能失效。
- 5) 光学零件表面应使用软毛刷、镜头纸擦拭, 切勿用手指触摸镜片。
- 6) 严禁使用测装置观察强光源,如太阳等,避免人眼灼伤。
- 7) 实验完毕后, 应旋松施力螺母, 使金属丝自由伸长, 并关闭数字拉力计。

【思考题】

- 1. 本实验中,各个长度量用不同的仪器来测定,是怎么样考虑的,为什么?
- 2. 如何简要说明材料杨氏模量的物理意义?