Plan du cours

III. Forces Interparticulaires et Stabilité Colloïdales

- a. Introduction, définitions
- b. Interaction de van der Waals
- c. Interaction électrostatique
- d. Energie totale d'interaction
- e. Concentration critique de coagulation
- f. Limites de la théorie DLVO
- g. Interactions de solvatation
 - Solvatation des ions
 - Forces répulsives d'hydratation
 - Forces attractives hydrophobes
- h. Interactions stériques

Forces Interparticulaires et Stabilité Colloïdale

a. Stabilité des systèmes colloïdaux: Introduction, définitions

Stabilité d'une dispersion de particules colloïdales par rapport à quoi? : par rapport à leur propension a s'agglomérer ou a coaguler.

Dispersion stable: les particules restent des entités individuelles Dispersion instable: les particules forment des entités plus grosses appelées

agglomérats ou aggrégats.

Objectif: comprendre les facteurs qui déterminent la stabilité d'une suspension de

Forces Répulsives

Interaction électrostatique

Forces d'hydratation Interaction stérique

Forces Attractives

Interaction de van der Waals

Forces hydrophobes

Théorie

Dipole Moments

The polarity of a molecule is described by its dipole moment, *u*, given as:

$$\vec{u} = q\vec{\ell}$$

where charges of +q and -q are separated by a distance ℓ .

Typically, **q** is the charge of the electron:1.602 x10⁻¹⁹ C and the magnitude of ℓ is on the order of $1\text{Å}=10^{-10}$ m, giving **u** = 1.602 x 10^{-29} Cm.

A "convenient" (and conventional) unit for polarity is called a Debye:

$$1 D = 3.336 \times 10^{-30} Cm$$

Polarisability

All molecules can have a dipole induced by an external electromagnetic field, *Ē*

The strength of the **induced** dipole moment, $|u_{ind}|$, is determined by the polarizability, α , of the molecule:

$$\alpha = \frac{\vec{u}_{ind}}{\vec{E}}$$

Units: $C^2 m^2 / J$

An electric field will shift the **electron** cloud of a molecule.

The extent of polarisation is determined by its **electronic** polarizability, α_0 .

Simple Illustration of e⁻ Polarizability

Interaction permanent dipole-induced dipole

The dispersive energy is quantum-mechanical in origin, but we can treat it with electrostatics.

An **instantaneous** dipole, resulting from fluctuations in the electronic distribution, creates an electric field that can polarise a neighbouring molecule.

Interaction permanent dipole-induced dipole

The field produced by the instantaneous dipole is:

$$\vec{E} = \frac{\vec{u}_1}{4\pi\varepsilon_0 r^3} (1 + 3\cos^2\theta)^{1/2}$$

So the induced dipole moment in the neighbour is:

$$\vec{u}_{ind} = \vec{u}_2 = \alpha_0 \vec{E} = \frac{\alpha_0 u_1}{4\pi \varepsilon_0 r^3} f(\theta)$$

We can now calculate the interaction energy between the two dipoles (using equations for permanent dipoles):

$$w(r) = \frac{\vec{u}_1 \vec{u}_2}{4\pi\varepsilon_o r^3} f(\theta_1, \theta_2, \phi) = \frac{\vec{u}_1(\frac{\alpha_o \vec{u}_1}{4\pi\varepsilon_o r^3})}{4\pi\varepsilon_o r^3} = \frac{\alpha_o \vec{u}_1^2}{(4\pi\varepsilon_o)^2 r^6}$$

van der Waals Forces

The three components that constitute van der Waals Forces

Interaction Component	Origin of Interactions	Equation
Keesom	Dipole-dipole	$w(r) = -\frac{u_1^2 u_2^2}{3(4\pi\epsilon_o \epsilon_r)^2 k_B T} \frac{1}{r^6}$
Debye	Dipole – induced dipole	$w(r) = -\frac{u^2 \alpha_o}{(4\pi \epsilon_o \epsilon_r)^2} \frac{1}{r^6}$
London (Dispersion)	Induced Dipole – Induced Dipole	$w(r) = -\frac{3}{2} \frac{\alpha_{o1} \alpha_{o2}}{(4\pi\epsilon_{o})^{2}} \frac{I_{1}I_{2}}{(I_{1} + I_{2})} \frac{1}{r^{6}}$

The London component is the most dominant. n = 6 indicates van der Waals forces are short range

Interactions between Surfaces and Particles - Microscopic Approach -

1937: Hamaker calculated the total interaction between two spherical particles by adding contributions for each atom in

the solid

F = van der Waals Force

 $F(H) = -\frac{AR}{12H^2}$ R = particle radii H = separation distance

A = Hamaker Constant (Material property)

Note that the Hamaker constant may be defined as

$$A = \pi^2 C \rho_1 \rho_2$$

Where ρ_1 and ρ_2 are the number of atoms per unit volume in the two bodies.

van der Waals Interaction Potential for various configurations

Configuration	Schematic	Expression for van der Waals force potentials
Molecule - Molecule		$V_A = -\frac{C}{r^6}$
Plate – Plate		$V_{A} = -\frac{A}{12\pi H^{2}}$
Sphere - Plate		$V_A = -\frac{AR}{6H}$
Sphere - Sphere		$V_A = -\frac{AR}{12H}$

c. Electrostatic Interaction

To keep the plates at distance H in mechanical equilibrium upon an infinitesimal displacement, the change in pressure dp plus the change in the electrical pressure, written as $\rho d\psi$, must be zero. Therefore we have :

$$dp = - \rho d\psi$$

We define the disjoining pressure Π_{el} by $\Pi_{el} = p(h)-p(\infty)$ and obtain $\Pi_{el}(H) = 4cRTsinh^2(zy_m/2)$ with $y_m = F\Psi_{1/2}RT$ (N m⁻²)

The mid-way potential may be obtained by LSA and we have

$$zy_m = 8 \tanh(zy^d/4)e^{-\kappa H/2}$$
 (valid for low y_m)

Thus, it comes

$$\Pi_{\rm el}(H) = 64 {\rm cRT} (\tanh(zy^{\rm d}/4))^2 {\rm e}^{-\kappa H} \quad ({\rm N \ m}^{-2})$$

The energy associated to the double layer interactions is

$$V_{R}(H) = -\int_{\infty}^{H} \Pi_{el}(H) dH$$

After calculation we get

$$V_R(H) = 64cRT\kappa^{-1}(tanh(zy^d/4))^2 e^{-\kappa H}$$
 (J m⁻²) (limit weak double layer overlap)

Limit low
$$y^d$$
: $V_R(H) = 2\epsilon \kappa (\Psi^d)^2 e^{-\kappa H} (J m^{-2})$

Following the same methodology, one can show that the interaction NRJ between two spheres is given by

$$V_{R}(H) = 64\pi cRTa\kappa^{-2}(\tanh(zy^{d}/4))^{2} e^{-\kappa H} \quad (J)$$

and for low potentials yd

$$V_R(H) = 2\pi \epsilon a(\Psi^d)^2 e^{-\kappa H}$$
 (J)

d. Total Interaction Energy

$$V_t = V_A + V_R$$

Figure 7-6. The total free energy of interaction for a) a stable sol, b) a sol on the verge of stability, c) an instable sol.

 $V_{\text{max}} > 5-10 \text{ kT} \iff \text{Stable Dispersion}$

(to compensate for the thermal NRJ of two approaching particles, figure a)

e. Critical concentration coagulation c_c (or n_c)

C_c is defined as the electrolyte concentration at which the dispersion is about to coagulate, that is when:

$$V_t = V_A + V_R = 0$$
$$dV_t/dH = dV_A/dH + dV_R/dH$$

(conditions of figure b, previous slide)

After computation, one obtains

$$n_c = 2.13 \times 10^5 \,\epsilon^3 \,(kT)^5 \,(tanh(zy^d/4))^4 \,(A)^{-2} \,(ze)^{-6}$$
 (m⁻³)

(valid for weak overlap and the interaction between two plates)

Application: water purification by flotation delta formation paint industry ...

f. Limites de la théorie DLVO

Formes géométriques définies

Objets « dures » non perméables aux ions

Potentiel constant lors du rapprochement des objets

Potentiel = somme des potentiels de chaque objet (LSA)

Milieu continu

Adsorption de molécules et nature du solvant non pris en compte

Particules de latex amphotères (-COOH et -NH₃⁺)

g. Interactions de solvatation

Solvatation des ions

• Notion de surfaces hydrophobes / hydrophiles Mesure de l'angle de contact

Forces répulsives d'hydratation

Force répulsive additionnelle à la force décrite par DLVO

<u>Origine:</u> présence de molécules d'eau fortement liées à la surface

=> interaction à faible portée

Forces attractives hydrophobes

Interaction à longue portée entre particules / surfaces non polaires (hydrophobes) Forte attraction des deux objets hydrophobes avec expulsion d'eau

h. Interactions Stériques

Macromolécules liées à la surface => Encombrement stérique

Forces stériques répulsives + pression osmotique

