The Fourier Transform: Examples, Properties, Common Pairs

CS 450: Introduction to Digital Signal and Image Processing

Bryan Morse BYU Computer Science

Magnitude and Phase

Remember: complex numbers can be thought of as (real,imaginary) or (magnitude,phase).

Magnitude: $|F| = \left[\Re(F)^2 + \Im(F)^2\right]^{1/2}$ Phase: $\phi(F) = \tan^{-1} \frac{\Im(F)}{\Re(F)}$

Real part	How much of a cosine of that frequency you need
Imaginary part	How much of a sine of that frequency you need
Magnitude	Amplitude of combined cosine and sine
Phase	Relative proportions of sine and cosine

The Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs

Example: Fourier Transform of a Cosine

$f(t) = \cos(2\pi st)$ $F(u) = \int_{-\infty}^{\infty} f(t) e^{-i2\pi ut} dt$ $= \int_{-\infty}^{\infty} \cos(2\pi st) e^{-i2\pi ut} dt$ $= \int_{-\infty}^{\infty} \cos(2\pi st) \left[\cos(-2\pi ut) + i\sin(-2\pi ut)\right] dt$ $= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(-2\pi ut) dt + i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(-2\pi ut) dt$ $= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$ $0 \text{ except when } u = \pm s \qquad 0 \text{ for all } u$ $= \frac{1}{2} \delta(u - s) + \frac{1}{2} \delta(u + s)$

Example: Fourier Transform of a Cosine

 $\cos(2\pi st)$

Spatial Domain

 $\frac{1}{2}\delta(u-s) + \frac{1}{2}\delta(u+s)$

Frequency Domain

The Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs

Odd and Even Functions

Even	Odd		
f(-t) = f(t)	f(-t) = -f(t)		
Symmetric	Anti-symmetric		
Cosines	Sines		
Transform is real*	Transform is imaginary*		

^{*} for real-valued signals

Sinusoids

Spatial Domain $f(t)$	Frequency Domain $F(u)$	
$\cos(2\pi st)$	$\frac{1}{2}\left[\delta(u+s)+\delta(u-s)\right]$	
$\sin(2\pi st)$	$\frac{1}{2}i\left[\delta(u+s)-\delta(u-s)\right]$	

Constant Functions

Spatial Domain $f(t)$	Frequency Domain $F(u)$	
1	$\delta(u)$	
а	a $\delta(u)$	

Delta Functions

Spatial Domain	Frequency Domain	
f(t)	F(u)	
$\delta(t)$	1	
O(t)		

The Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs

Square Pulse

Square Pulse

The Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs

Triangle

Spatial Domain Frequency Domain f(t) F(u) F(u) $\begin{cases} 1-|t| & \text{if } -a \leq t \leq a \\ 0 & \text{otherwise} \end{cases} \quad \text{sinc}^2(a\pi u)$

Comb

Spatial Domain $f(t)$	Frequency Domain $F(u)$	
$\delta(t \bmod k)$	$\delta(u \bmod 1/k)$	

Gaussian

Spatial Domain f(t) Frequency Domain F(u) $e^{-\pi t^2}$ $e^{-\pi u^2}$

Differentiation

Spatial Domain	Frequency Domain		
f(t)	F(u)		
d	o :		
<u>d</u> dt	$2\pi iu$		

The Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs

Some Common Fourier Transform Pairs

Spatial Domain		Frequency Domain		
f(t)		F(u)		
Cosine	$\cos(2\pi st)$	Deltas	$\frac{1}{2}\left[\delta(u+s)+\delta(u-s)\right]$	
Sine	$sin(2\pi st)$	Deltas	$\frac{1}{2}i\left[\delta(u+s)-\delta(u-s)\right]$	
Unit	1	Delta	$\delta(u)$	
Constant	а	Delta	$a\delta(u)$	
Delta	$\delta(t)$	Unit	1	
Comb	$\delta(t \bmod k)$	Comb	$\delta(u \mod 1/k)$	

More Common Fourier Transform Pairs

Sp	atial Domain $f(t)$	Frequency Domain $F(u)$	
Square	1 if $-a/2 \le t \le a/2$ 0 otherwise	Sinc	sinc(aπu)
Triangle	$1 - t $ if $-a \le t \le a$ 0 otherwise	Sinc ²	$sinc^2(a\pi u)$
Gaussian	$e^{-\pi t^2}$	Gaussian	$e^{-\pi u^2}$
Differentiation	<u>d</u> dt	Ramp	2πiu

The Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs

Properties: Notation

Let $\mathcal F$ denote the Fourier Transform:

$$F = \mathcal{F}(f)$$

Let \mathcal{F}^{-1} denote the Inverse Fourier Transform:

$$f = \mathcal{F}^{-1}(F)$$

Properties: Linearity

 $\label{prop:continuous} \mbox{Adding two functions together adds their Fourier Transforms together:} \\$

$$\mathcal{F}(f+g) = \mathcal{F}(f) + \mathcal{F}(g)$$

Multiplying a function by a scalar constant multiplies its Fourier Transform by the same constant:

$$\mathcal{F}(af) = a \mathcal{F}(f)$$

Properties: Translation

Translating a function leaves the magnitude unchanged and adds a constant to the phase.

lf

$$f_2 = f_1(t-a)$$

 $F_1 = \mathcal{F}(f_1)$
 $F_2 = \mathcal{F}(f_2)$

then

$$|F_2| = |F_1|$$

 $\phi(F_2) = \phi(F_1) - 2\pi ua$

Intuition: magnitude tells you "how much", phase tells you "where".

The Fourier Transform: Examples, Properties, Common Pairs

Rayleigh's Theorem

Total "energy" (sum of squares) is the same in either domain:

$$\int_{-\infty}^{\infty} \left| f(t) \right|^2 dt = \int_{-\infty}^{\infty} \left| F(u) \right|^2 du$$

Change of Scale: Square Pulse Revisited

