WPROWADZENIE DO OPERATORÓW RÓŚNICZKOWYCH NA GRAFACH

KAMIL RESZKO

STRESZCZENIE.

Krótkie wprowadzenie do operatorów różniczkowych na grafach: laplasjan oraz operator prawdopodobieństwa

NOTIONS

 \mathbb{N} - zbiór liczb naturalnych

 \mathbb{R} - zbiór liczb rzeczywisty

 \mathbb{R}^+ - zbiór liczb rzeczywistych dodatnich

- ilość elementów w zbiorze.

1. GRAFY WAŻONE

Graf ważony (inaczej graf z wagami) jest parą (V,b), gdzie V jest zbiorem wierzchołków (tj. dowolnym zbiorem) oraz b: $V \times V \to \mathbb{R}$ spełnia następujące warunki:

 $b(x,y) \le 0$ any $x,y \in V$,

b(x,y)=b(y,x) for any $x,y \in V$,

b(x,x) = 0 for any $x \in V$.

Jeśli $(x,y) \neq 0$, to mówimy, że pomiędzy x,y jest krawędź i zapisujemy $x \sim y$. Trzeci warunek oznacza, że rozważamy grafy bez pętli.

Ścieżka w grafie to dowolny ciąg wierzchołków, taki że

$$x_1 \sim x_2 \sim \cdots \sim x_n$$

 $Sp\acute{ojny}\ graf$ - graf, w którym każdą parę wierzchołków łączy pewna ścieżka. $Graf\ sko\'nczony$ ma skończoną ilość wierzchołków (# $V<\infty$). W tym wprowadzeniu rozważamy wyłącznie skończone spójne grafy.

 $\mathit{Graf}\ pełny$ - graf w którym if $x\sim y$ dla każdego $x,y\in V.$ Inaczej graf nazywa się $\mathit{niepełnym}.$

Graf nazywa się dwudzielnym, jeżeli istnieje podział jego wierzchołków $V=V_1\cup V_2$ taki że z $x\sim y$ $(x,y\in V)$ wynika albo $x\in V_1,\ y\in V_2$, albo $x\in V_2,\ y\in V_1$. Będziemy też rozpatrywać wagi znormalizowane:

(1)
$$p(x,y) = \frac{b(x,y)}{b(x)},$$

gdzie $b(x) = \sum_{y} b(x, y)$. Trzeba uważać, że ogólnie $p(x, y) \neq p(y, x)$.

2. PODSTAWOWE OPERATORY RÓŻNICZKOWE

Rozważmy następujący zbiór funckji na wierzchołkach grafu ważonego

$$\mathfrak{F} = \{ f | f : V \to \mathbb{R} \}$$

Naszym głównym zainteresowaniem będzie znormalizowany operator Laplace'a

(laplasjan) oraz operator prawdopodobieństwa \Im . Operator Laplace'a (laplasjan) jest zdefiniowany jako

(2)
$$\mathcal{L}f(x) = \sum_{y \in V} (f(x) - f(y)) \frac{b(x,y)}{b(x)} = \sum_{y \in V} (f(x) - f(y)) p(x,y)$$

dla wszystkich $f \in \Im$.

Operator $\mathcal{P} = \mathcal{I} - \mathcal{L}$ dla $f \in \Im$ nazywa się operatorem prawdopodobieństwa.

Definition 1. Operator *różnicy* jest zdefiniowany jako

$$\nabla f = f(y) - f(x)$$

Operator różnicy jest dyskretnym analogiem pochodnej. Z(3) wynika, że Opróćz tego, wprowadzimy nastepujące oznaczenie:

Jeżeli, to jest zbiorem pustym, wiec ostatni wyraz w (5) znika i otrzymujemy **Theorem 2** (Formula Greena). Dla każdych dwóch fukcnji f,g:... i dla każdego... spełniają sie następujące tożsamości:

gdzie w ostatnim wierszu zmieniliśmy notację zmiennich x i y w pierwszej sumie. Dodając do siebie ostatnie dwa wiersze i dzieląc przez 2, otrzymujemy (5).

Corollary 3. Dla każdej funkcji f:

3. PROBLEM DIRICHLETA

nazywa sie *problemem Dirichleta*. Ten problem jest dyskretną wersją ciągłego problemu Dirichleta.

Theorem 4 Problem Dirichleta (8) zawsze ma dokładnie jedno rozwiazanie v: Punktem kluczowym dowodu twierdzenia 4 jest następna lemma. Lemma 5 (Zasada maksimuma i minimuma) $Niech \sum \int$