CPEN 400Q Lecture 14 QFT and quantum phase estimation

Wednesday 28 February 2024

Announcements

- Quiz 6 on Monday
- Assignment 3 coming on Monday (QPE and Shor)
- Fill out peer review survey by Friday (link in Piazza)

Last time

We introduced the quantum Fourier transform, and saw how it is the analog of the classical inverse discrete Fourier transform.

$$QFT|x\rangle = rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k
angle$$

$$QFT = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{N-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

where for *n* qubits, $N=2^n$, and $\omega=e^{2\pi i/N}$

Last time

We saw the circuits for some special cases.

Image credit: Xanadu Quantum Codebook node F.2, F.3

Last time

The general form of the circuit is:

$$R_{k} = \begin{pmatrix} 1 & 6 & 10 \\ 0 & e^{2\pi i/2^{k}} \end{pmatrix}$$

Image credit: Xanadu Quantum Codebook node F.3

Learning outcomes

- Implement the quantum Fourier transform in PennyLane
- Outline the steps of the quantum phase estimation (QPE) subroutine
- Use the QFT to implement QPE

0. k, k, ... kn = 2 ke/21 We will reexpress k/N in fractional binary notation, then reshuffle

We will reexpress
$$k/N$$
 in fractional binary notation, then reshuffle and factor the output state to uncover the circuit structure.

and factor the output state to uncover the circuit structure.

101
$$|x\rangle \rightarrow \frac{1}{N}\sum_{k=0}^{N-1}w^{xk}|k\rangle$$
 $|x\rangle = |101\rangle$
 $|x\rangle \rightarrow \frac{1}{N}\sum_{k=0}^{N-1}w^{xk}|k\rangle$
 $|x\rangle = 2\pi i/N$
 $|x\rangle = 2\pi i/N$
 $|x\rangle = 2\pi i/N$

$$= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i \times k} |k\rangle = \frac{1}{\sqrt{2}} |k\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i \times k} |k\rangle = \frac{1}{\sqrt{N}} |k\rangle =$$

(keeping the last equation from the previous slide)

$$= \frac{1}{\sqrt{N}} \sum_{k_{1}=0}^{\infty} \sum_{k_{1}=0}^{\infty} \frac{2\pi i \times \frac{k_{1}}{2}}{k_{1}} \frac{2\pi i \times \frac{k_{2}}{2}}{2^{2}} |k_{1} \times k_{2} - k_{n} \rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{k_{1}=0}^{\infty} \sum_{k_{1}=0}^{\infty} \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{1} \rangle \right) \otimes \left(e^{2\pi i \times \frac{k_{2}}{2}} |k_{2} \rangle \right) \otimes ... \otimes \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{2} \rangle \right)$$

$$= \frac{1}{\sqrt{N}} \sum_{k_{1}=0}^{\infty} \sum_{k_{1}=0}^{\infty} \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{2} \rangle \right) \otimes ... \otimes \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{2} \rangle \right)$$

$$= \frac{1}{\sqrt{N}} \sum_{k_{1}=0}^{\infty} \sum_{k_{1}=0}^{\infty} \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{2} \rangle \right) \otimes ... \otimes \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{2} \rangle \right)$$

$$= \frac{1}{\sqrt{N}} \sum_{k_{1}=0}^{\infty} \sum_{k_{1}=0}^{\infty} \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{2} \rangle \right)$$

$$= \frac{1}{\sqrt{N}} \sum_{k_{1}=0}^{\infty} \sum_{k_{1}=0}^{\infty} \left(e^{2\pi i \times \frac{k_{1}}{2}} |k_{2} \rangle \right)$$

(keeping the last equation fro

$$= \int_{10}^{10} \int_{10}^{10} \left(\sum_{k=0}^{1} e^{2\pi i x} \frac{kg}{2^{k}} \right)$$

$$= \sqrt{N} \bigotimes_{k=1}^{\infty} \left(\sum_{k=1}^{\infty} e^{2\pi i \lambda} \frac{2^{2}}{2^{2}} | k_{2} \rangle \right)$$

$$= \frac{1}{N} \bigotimes_{k=1}^{\infty} \left(| \lambda_{k} \rangle + e^{2\pi i \lambda} \frac{2^{2}}{2^{2}} | k_{2} \rangle \right)$$

(keeping the last equation

$$= \int_{N}^{1} \int_{0.5}^{1} \left(\sum_{k=0}^{1} e^{2\pi i \lambda} \right)$$

So...

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Believe it or not, this form reveals to us how we can design a circuit that creates this state!

Starting with the state

$$|x\rangle = |x_1 \cdots x_n\rangle, \qquad |x_2\rangle = |x_3\rangle$$
 apply a Hadamard to qubit 1:

$$\frac{1}{\sqrt{2}}\left(10\right) + e^{2\pi i \cdot 0.X_{1}} |1\rangle |x_{2} \cdots x_{n}\rangle |x_{n-1}\rangle = \frac{1}{|x_{n}\rangle}$$

$$\frac{1}{\sqrt{2}}\left(10\right) + e^{2\pi i \cdot 0.X_{1}} |1\rangle |x_{2} \cdots x_{n}\rangle |x_{n-1}\rangle = \frac{1}{|x_{n}\rangle}$$

$$\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2\pi i 0.x_1}|1\rangle\right)|x_2\cdots x_n\rangle \qquad |x_1\rangle-\underline{H}-\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2\pi i 0.x_1}|1\rangle\right)|x_2\cdots x_n\rangle \qquad |x_2\rangle-\frac{1}{\sqrt{2}}$$
If $x_1=0$, $e^0=1$ and we get $|+\rangle$.
$$\vdots \qquad |x_{n-1}\rangle-\frac{1}{\sqrt{2}}$$
and we get $|-\rangle$.

We are trying to make a state that looks like this:

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right) \left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right) \cdots \left(|0\rangle + e^{2\pi i 0.x_1 \cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Every qubit has a different *phase* on the $|1\rangle$ state. Define

$$R_{k} = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i \cdot \frac{1}{2k}} \end{pmatrix}$$

Apply controlled R_2 from qubit $2 \rightarrow 1$

$$R_2 = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{2\pi i}{2^2}} \end{pmatrix}$$

$$\begin{array}{c|c} |x_1\rangle & -H - R_2 - \\ |x_2\rangle & - \\ |x_3\rangle & \vdots \\ |x_{n-1}\rangle & - \\ |x_n\rangle & - \end{array}$$

First qubit picks up a phase:

First qubit picks up a phase:
$$\frac{1}{\sqrt{2}}(10) + e^{2\pi i \cdot 0. X_1} |1\rangle |1 \times 2 \cdots \times n\rangle$$

$$\rightarrow \frac{1}{\sqrt{2}}(10) + e^{2\pi i \cdot 0. X_1 \times 2} |1\rangle |1 \times 2 \cdots \times n\rangle$$

Apply controlled R_3 from qubit $3 \rightarrow 1$

First qubit picks up another phase:

Apply a controlled R_4 from $4 \rightarrow 1$, etc. up to the *n*-th qubit to get

$$\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i \cdot 0 \cdot x_1 - x_n}|1\rangle\right)|x_2 - x_n\rangle$$

Next, do the same thing with the second qubit: apply H, and then controlled rotations from every qubit from 3 to n to get

Do this for all qubits to get that big ugly state from earlier:

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

(though note that the order of the qubits is backwards - this is easily fixed with some SWAP gates)

Quantum Fourier transform

Gate counts:

- n Hadamard gates
- n(n-1)/2 controlled rotations
- | n/2 | SWAP gates if you care about the order

The number of gates is polynomial in n!

Reminder: where are we going?

Eigenvalues of unitary matrices

Fun fact: eigenvalues of unitaries are complex numbers with magnitude 1.

Proof:

$$U|k\rangle = \lambda_{k}|k\rangle$$

$$\langle k|U^{\dagger} = \langle k|\lambda_{k}^{\dagger}$$

$$\langle k|U^{\dagger}U|k\rangle = \langle k|\lambda_{k}^{\dagger}\lambda_{k}|k\rangle$$

$$\int_{1}^{\infty} |\lambda_{k}|^{2}$$

Eigenvalues of unitary matrices

So we can write

where θ_k is some phase angle such that $|\theta_k| \leq 1$.

What if we want to *learn* an unknown θ_k ?

Eigenvalues of unitary matrices

Idea: apply U to the relevant eigenvector, because that's "what makes the phase come out".

$$\frac{2\pi i \theta_k}{U(k)} = \lambda_k |k\rangle = e^{2\pi i \theta_k} |k\rangle$$

...but this is an unobservable global phase!

We have to do something different: eigenvalue estimation, or quantum phase estimation (QPE).

Quantum phase estimation

Given unitary U and eigenvector $|k\rangle$, estimate θ_k such that

$$U|k\rangle = e^{2\pi i\theta_k}|k\rangle$$

Must determine:

- lacktriangle How to design a circuit that extracts the θ_k
- To what precision can we estimate it
- What to do if we don't know a $|k\rangle$ in advance

(You will explore the last two in your homework!)

Quantum phase estimation

Let *U* be an *n*-qubit unitary; $|k\rangle$ is an *n*-qubit eigenstate.

Assume θ_k can be represented exactly using t bits:

We will stard here next time

Use phase kickback

What is happening in the exponent?

Check second-last qubit (ignore the others)

Again check the exponent...

Can show in the same way for the last qubit (ignore others)

After step 2, we have the state

$$\frac{1}{\sqrt{2}}(|0\rangle+e^{2\pi i0.\theta_{k_t}}|1\rangle)\cdots\frac{1}{\sqrt{2}}(|0\rangle+e^{2\pi i0.\theta_{k_2}\cdots\theta_{k_t}}|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle+e^{2\pi i0.\theta_{k_1}\cdots\theta_{k_t}}|1\rangle)|k\rangle$$

Should look familiar!

Measure to learn the bits of θ_k .

Let's implement it.

Next time

Content:

- Quiz 6 on Monday
- Moving towards Shor's algorithm

Action items:

- 1. Work on project; midterm checkpoint next week
- 2. Fill out weekly peer assessment survey by Friday

Recommended reading:

- Codebook nodes F.1-F.3, P.1-P.4
- Nielsen & Chuang 5.1, 5.2