Podrobná uživatelská dokumentace

Tato dokumentace obsahuje podrobný návod ke všem programům, které obsahuje příloha práce. Stručnou ukázku obsahuje dokument Uživatelská dokumentace.pdf.

Všechny cesty uvedené v tomto souboru jsou relativní k cestě složky, která obsahuje PDF soubor této dokumentace.

Systémové požadavky

- 64bitový operační systém Linux nebo Windows 10
- Docker
- Internetové připojení
- Překladač C++17
- Python 3.9

Programátorská dokumentace

C++ kód nového indexu naleznete ve složce src/index/chm. Webovou stránku s programátorskou dokumentací nového indexu HNSW zobrazíte pomocí skriptu docs/openDocs.py. Spustíte jej pomocí následujícího příkazu.

OS Windows

```
1 py .\docs\openDocs.py
```

OS Linux

```
python docs/openDocs.py
```

Dokumentaci můžete také zobrazit otevřením souboru docs/html/index.html v internetovém prohlížeči.

Virtuální prostředí

Pokud není uvedeno jinak, skripty uvnitř složky src/scripts vždy spouštějte pomocí vygenerovaného virtuální prostředí. Prostředí aktivujete pomocí aktivačního skriptu ve složce .venv/scripts. Výběr skriptu závisí na použitém OS a interpretu.

os	INTERPRET CESTA K AKTIVAČNÍMU SKRIPTU		
Linux		./.venv/Scripts/activate	
Windows	Batch	.\.venv\Scripts\activate.bat	
Windows	Powershell	.\.venv\Scripts\Activate.ps1	

Seznam skriptů

Následuje seznam skriptů ve složce src/scripts.

NÁZEV SKRIPTU	STRUČNÝ POPIS SKRIPTU	
buildProject	Vytvoří virtuální prostředí, nativní C++ řešení a jeho Python rozhraní.	
clean	Odstraní vygenerované soubory a vrátí projekt do původního stavu.	
datasetGenerator	Vygeneruje datové soubory pro debugování.	
datasetToText	Převede datový soubor do textového formátu.	
formatCMakeTemplates	Vygeneruje CMakeLists.txt.	
generateTables	Vygeneruje LaTeX tabulky podobné těm, které jsou v bakalářské práci.	
latexTable	Vygeneruje LaTeX tabulku na základě výsledků srovnání.	
runBenchmarks	Spustí srovnání, vygeneruje a otevře webovou stránku s výsledky.	
runRecallTable	Postaví nový index a zobrazí tabulku závislosti přesnosti na parametru vyhledávání ef _{search} .	
SIMDCapability	Zobrazí SIMD rozšíření instrukční sady procesoru, která jsou k dispozici.	

Podrobný popis skriptů

U každého skriptu je uveden jeho účel, parametry a příklad spuštění. Pokud skript obsahuje alespoň jeden parametr, pak použitím parametru --help nebo -h zobrazíte nápovědu v anglickém jazyce.

buildProject

Tento skript lze spustit bez virtuálního prostředí.

Vytvoří virtuální prostředí interpretu Python, stáhne potřebné softwarové balíčky, vygeneruje nativní C++ řešení pro knihovnu nového indexu, vytvoří rozhraní v jazyce Python pro nový index a otestuje funkčnost tohoto indexu spuštěním skriptu runRecallTable.

PARAMETR, ZKRATKA	VÝZNAM
clean, -c	Vrátí projekt do původního stavu před jeho opětovným sestavením.
cleanResults, -r	Pokud jeclean nastaven, odstraní naměřené výsledky.
ignorePythonVersion, -i	Umožňuje spustit skript s libovolnou verzí interpretu Python. Skript poté nemusí fungovat správně.

Příklad spuštění:

```
1 py -3.9 buildProject.py --clean --cleanResults
```

clean

Tento skript lze spustit bez virtuálního prostředí.

Odstraní datové soubory pro debugování, C++ nativní řešení a Python rozhraní. Pokud je spuštěn mimo virtuální prostředí, pak odstraní toto prostředí. Naměřené výsledky odstraněny nebudou, pokud o to uživatel nepožádá.

PARAMETR, ZKRATKA	VÝZNAM
results, -r	Odstraní naměřené výsledky srovnání, vygenerované grafy a tabulky.

Příklad spuštění:

```
1 py clean.py --results
```

datasetGenerator

Vygeneruje datové soubory pro debugování uvedené v konfiguračním souboru src/config/debugDatasets.json. O konfiguraci tohoto skriptu se více dočtete v kapitole Datové soubory pro debugování níže v této dokumentaci.

Příklad spuštění:

```
py datasetGenerator.py
```

datasetToText

Převede vybraný datový soubor ze složky src/data do textového formátu. Výstupní textový soubor zapíše pod jménem datového souboru do stejné složky.

PARAMETR, ZKRATKA	VÝZNAM
name, -n	Název datového souboru bez přípony. Pokud není uveden, výchozím souborem je angular-small.

Příklad spuštění:

```
py datasetToText --name euclidean-medium
```

formatCMakeTemplates

Vygeneruje soubor src/index/CMakeLists.txt a doplní do něj správnou definici maker tak, aby došlo pouze ke kompilaci těch funkcí, pro které je k dispozici vhodné SIMD rozšíření instrukční sady procesoru.

Příklad spuštění:

```
py formatCMakeTemplates.py
```

generateTables

Vygeneruje LaTeX tabulky podobné těm, které jsou v bakalářské práci, ale pouze v případě, že jsou pro ně dostupné naměřené výsledky. Tyto výsledky lze získat spuštěním následujících příkazů. Avšak tato měření mohou trvat více než 12 hodin.

```
py runBenchmarks.py -a ..\config\heuristic.yaml
   ..\config\naive.yaml -d lastfm-64-dot -r 5

py runBenchmarks.py -a ..\config\heuristic.yaml
   ..\config\prefetch.yaml -d glove-50-angular -r 5

py runBenchmarks.py -a ..\config\original.yaml
   ..\config\prefetch.yaml -d sift-128-euclidean -r 5

py generateTables.py
```

Vygenerované tabulky jsou dostupné ve složce src/figures.

latexTable

Vygeneruje jednu LaTeX tabulku na základě výsledků srovnání implementací.

PARAMETR, ZKRATKA	VÝZNAM
algorithms, -a	Vyžadován. Seznam implementací oddělený mezerami.
dataset, -d	Vyžadován. Název datového souboru.
label, -la	Identifikátor tabulky.
legend, -le	Názvy implementací v tabulce. Pokud není uveden, budou použity původní názvy.
output, -o	Vyžadován. Cesta k výstupnímu souboru.
percent, -p	Přidá do tabulky sloupec s procentuálním rozdílem časů stavby.
recompute, -r	Znovu vypočítá výkonnostní metriky z naměřených výsledků. Tato operace může trvat více než 10 minut.

Příklad spuštění:

```
1 py latexTable.py -a new-prefetch original -d sift-128-euclidean - le "Nová impl." "Původní impl." -o ..\figures\table.tex -p
```

runBenchmarks

Před spuštěním se ujistěte, že je služba Docker zapnutá.

Spustí srovnání implementací v jednom nebo více Docker kontejnerech, vypočítá výkonnostní metrika, vygeneruje webovou stránku s výsledky a otevře ji v nové kartě internetového prohlížeče. Kód vygenerované stránky lze poté najít ve složce src/website a můžete ji opětovně zobrazit otevřením souboru index.html.

PARAMETR, ZKRATKA	VÝZNAM
algoDefPaths, -a	Vyžadován. Seznam cest ke konfiguračním souborům oddělených mezerami. O konfiguraci se více dočtete v kapitole Konfigurace srovnání.
datasets, -d	Vyžadován*. Seznam datových souborů oddělených mezerami.
datasetsPath, -p	Vyžadován*. Cesta k textovému souboru se seznamem datových souborů.
force, -f	Spustí již provedená měření znovu
runs, -r	Počet opakování měření. Výchozí hodnota je 1.
workers, -w	Počet paralelně spuštěných Docker kontejnerů. Výchozí hodnota je 1.

Datové soubory využité ke srovnání nejsou ty samé, které jsou využívány k debugování. Jejich seznam najdete v kapitole Testované datové soubory.

Příklad spuštění:

```
1 py runBenchmarks.py -a ..\config\noBit.yaml -f -p
    ..\config\datasets.txt -r 5 -w 2
```

runRecallTable

Postaví index nové implementace a vyhledá v něm nejbližší sousedy s různými hodnotami parametru vyhledávání ef_{search}. Poté vypíše tabulku závislosti přesnosti vyhledávání na tomto parametru. Konfigurace tohoto skriptu se nachází v souboru src/config/recallTable.json a více se o ní dočtete v kapitole Konfigurace programů recallTable.

Příklad spuštění:

```
1 py runRecallTable.py
```

^{*} Pouze jeden z parametrů označených hvězdičkou by měl být uveden.

SIMDCapability

Zobrazí SIMD rozšíření instrukční sady procesoru, která jsou k dispozici. Využívána ostatními skripty pro vygenerování správných maker v jazyce C++.

Příklad spuštění:

```
1 py SIMDCapability.py
```

Nativní knihovna

C++ řešení vygenerujete pomocí skriptu RUNME.py nebo src/scripts/buildProject.py. Řešení bude vytvořeno ve složce src/cmakeBuild. V každém systému vypadají soubory řešení jinak. Např. při použití Windows s Visual Studiem je řešením .sln soubor a projekty jsou .vcxproj soubory. Pro spuštění projektů je doporučena konfigurace Release. Řešení obsahuje dva projekty.

- *datasetToText* Vypíše textový popis datové kolekce do souboru. Slouží pro ověření konzistence mezi binárními a HDF5 soubory. Název datového souboru je prvním parametrem programu. Výchozí hodnotou je angular-small.
- recallTable Postaví HNSW index a vypíše tabulku závislosti přesnosti na parametru vyhledávání ef_{search}. Konfigurace programu se nachází v souboru src/config/recallTable.json a více se o ní dočtete v kapitole Konfigurace programů recallTable.

Datové soubory pro debugování

Pro vygenerování jiných datových souborů pro debugování změňte konfiguraci v souboru src/config/debugDatasets.json a spusťte skript src/scripts/datasetGenerator.py. Konfigurace je JSON soubor s polem objektů, kde každý objekt popisuje jeden datový soubor.

```
1
   {
2
       "name": "angular-small",
       "angular": true,
3
       "dim": 25,
4
       "k": 10,
5
6
       "testCount": 200,
7
       "trainCount": 20000,
       "seed": 104
8
9 }
```

KLÍČ	TYP HODNOTY	VÝZNAM		
name	string	Unikátní název souboru sloužící k identifikaci.		
angular	boolean	Pokud je nastaven na true, využívá soubor kosinusové podobnosti. Jinak využívá Eukleidovské vzdálenosti.		
dim	int	Počet dimenzí prostoru.		
k	int	Počet hledaných nejbližších sousedů dotazovaného prvku.		
testCount	int	Počet dotazů.		
trainCount	int	Počet prvků použitých k sestavení indexu.		
seed	int	Nastavení generátoru náhodných čísel.		

Konfigurace programů recallTable

Pro změnu datového souboru nebo nastavení indexu v programech recallTable.cpp a recallTable.py upravte soubor src/config/recallTable.json. Konfigurace je JSON soubor s jediným objektem.

```
1 {
2    "dataset": "angular-small",
3    "efConstruction": 200,
4    "efSearch": [10, 15, 20, 40, 80, 120, 200],
5    "mMax": 16,
6    "seed": 200,
7    "SIMD": "best",
8    "template": "prefetching"
9 }
```

KLÍČ	TYP HODNOTY	VÝZNAM
dataset	string	Identifikace datového souboru. Odpovídá klíči name v souboru src/config/debugDatasets.json.
efConstruction	int	Počet uvažovaných sousedů při vytváření nových hran v indexu.
efSearch	array	Pole hodnot parametru vyhledávání ef _{search} .
mMax	int	Maximální povolený počet sousedů jednoho prvku v indexu na vrstvě vyšší než vrstva 0.

KLÍČ	TYP HODNOTY	VÝZNAM
seed	int	Nastavení generátoru náhodných úrovní v indexu.
SIMD	string	Upřednostňovaný typ SIMD instrukcí. Možnosti jsou avx, avx512, best, null, a sse.*
template	string	Šablona indexu. Možnosti jsou Heuristic, Naive, NoBitArray a Prefetching.

^{*} Zvolením hodnoty best zvolíte nejmodernější dostupné SIMD rozšíření. Hodnotou null zakážete použití SIMD instrukcí.

Šablony nové implementace

ŠABLONA	METODA VÝBĚRU SOUSEDŮ	SEZNAM NAVŠTÍVENÝCH VRCHOLŮ	ASYNCHRONNÍ PŘÍSTUP DO PAMĚTI
Heuristic	Heuristika	Bitové pole	Ne
Naive	Naivní algoritmus	Bitové pole	Ne
NoBitArray	Heuristika	Obyčejné pole	Při výpočtu vzdáleností Při načítání dat seznamu navštívených vrcholů
Prefetching	Heuristika	Bitové pole	Při výpočtu vzdáleností

Testované datové soubory

Pro srovnání implementací je možno využít následujících datových souborů.

NÁZEV	DIMENZE	POČET PRVKŮ PŘI STAVBĚ	DOTAZY	METRIKA
deep-image-96-angular	96	9 990 000	10 000	Kosinusová podobnost
fashion-mnist-784-euclidean	784	60 000	10 000	Eukleidovská vzdálenost
gist-960-euclidean	960	1 000 000	1 000	Eukleidovská vzdálenost
glove-25-angular	25	1 183 514	10 000	Kosinusová podobnost

NÁZEV	DIMENZE	POČET PRVKŮ PŘI STAVBĚ	DOTAZY	METRIKA
glove-50-angular	50	1 183 514	10 000	Kosinusová podobnost
glove-100-angular	100	1 183 514	10 000	Kosinusová podobnost
glove-200-angular	200	1 183 514	10 000	Kosinusová podobnost
lastfm-64-dot	64	292 385	50 000	Kosinusová podobnost
mnist-784-euclidean	784	60 000	10 000	Eukleidovská vzdálenost
nytimes-16-angular	16	290 000	10 000	Kosinusová podobnost
nytimes-256-angular	256	290 000	10 000	Kosinusová podobnost
random-s-100-angular	100	100 000	10 000	Kosinusová podobnost
random-s-100-euclidean	100	100 000	10 000	Eukleidovská vzdálenost
random-xs-20-angular	20	10 000	10 000	Kosinusová podobnost
random-xs-20-euclidean	20	10 000	10 000	Eukleidovská vzdálenost
sift-128-euclidean	128	1 000 000	10 000	Eukleidovská vzdálenost

Pro spuštění srovnání nad více soubory lze využít textového formátu, kde každý řádek reprezentuje jeden datový soubor. Řádky, které začínají znakem # jsou ignorovány. Příklad:

```
1 # deep-image-96-angular
2 glove-25-angular
3 sift-128-euclidean
```

Konfigurace srovnání

Výběr implementací ke srovnání a jejich parametrů zprostředkovávají konfigurační soubory ve formátu YAML. Příklad takového souboru je src/config/algos.yaml. Ve složce src/config se nacházejí předem vytvořené konfigurace. Jejich význam popisuje následující tabulka.

NÁZEV SOUBORU	VÝZNAM
100k-large.yaml	12 stejných konfigurací pro novou a původní implementaci. Vhodné pro malé datové soubory.
100k-small.yaml	4 stejné konfigurace pro novou a původní implementaci. Vhodné pro malé datové soubory.
algos.yaml	1 konfigurace pro každou šablonu nové a původní implementace.
heuristic.yaml	12 konfigurací pro šablonu <i>Heuristic</i> nové implementace.*
naive.yaml	12 konfigurací pro šablonu <i>Naive</i> nové implementace.*
noBit.yaml	12 konfigurací pro šablonu <i>NoBitArray</i> nové implementace.*
original.yaml	12 konfigurací pro původní implementaci.
prefetch.yaml	12 konfigurací pro šablonu <i>Prefetching</i> nové implementace.*

^{*} Popis šablon obsahuje kapitola šablony nové implementace.

Následuje příklad konfigurace. Komentáře označené znakem # popisují jednotlivé klíče.

```
1 algos: # Povinný klíč.
    # Povinné pole názvů porovnávaných implementací.
   - original
 3
    new-prefetch
 5 build: # Povinný klíč.
     # Povinné pole objektů konfigurace stavby.
     # Pro každou konfiguraci musí být uvedeny hodnoty parametrů
   efConstruction a mMax.
    - efConstruction: 50
      mMax: 4
     - efConstruction: 100
10
11
       mMax: 8
12 efSearch: [10, 12, 14, 16, 18, 20, 25, 30, 40, 80] # Povinné
   pole hodnot parametru vyhledávání efSearch.
```

Definované implementace popisuje následující tabulka.

NÁZEV IMPLEMENTACE	DRUH IMPLEMENTACE	ŠABLONA	SIMD ROZŠÍŘENÍ
original	Původní hnswlib		Nejmodernější dostupné
new-avx	Nová	Heuristic	AVX
new-heuristic	Nová	Heuristic	Nejmodernější dostupné
new-naive	Nová	Naive	Nejmodernější dostupné
new-no-bit	Nová	NoBitArray	Nejmodernější dostupné
new-no-simd	Nová	Heuristic	Žádné
new-prefetch	Nová	Prefetching	Nejmodernější dostupné
new-sse	Nová	Heuristic	SSE