Homework 3

1. **Analyzing a new MAC.** Suppose $\{F_1, \ldots, F_{\alpha}\}$ is family of pseudorandom functions from $\{0,1\}^n$ to $\{0,1\}^{n/100}$.

Consider the following MAC Scheme for message $m \in \{0,1\}^{tn}$, for some constant natural number $t \ge 2$.

- (a) Gen(): Return $\mathsf{sk} \xleftarrow{\$} \{1, 2, \dots, \alpha\}$
- (b) $\mathsf{Mac}_{\mathsf{sk}}(m)$: Interpret the message $m = (m_1, m_2, \dots, m_t)$, where each $m_i \in \{0, 1\}^n$ and $1 \leq i \leq t$. Define $\tau_i = F_{\mathsf{sk}}(m_i)$, for each $1 \leq i \leq t$. Return $\tau = (\tau_1, \tau_2, \dots, \tau_t)$.
- (c) $\operatorname{Ver}_{\mathsf{sk}}(m,\tau)$: Interpret $m=(m_1,\ldots,m_t)$ and $\tau=(\tau_1,\ldots,\tau_t)$, where each $m_i \in \{0,1\}^n$ and $\tau_i \in \{0,1\}^{n/100}$. Return true if and only if $F_{\mathsf{sk}}(m_i)=\tau_i$, for all $1 \leq i \leq t$.
- (a) Prove that the above MAC scheme is not secure for $m \in \{0, 1\}^{tn}$.
- (b) Prove that the above MAC scheme preserves message integrity for $m \in \{0,1\}^{tn}$.

2. **Designing a New MAC Scheme.** We shall work over the field $(\mathbb{Z}_p, +, \times)$, where p is a prime number. Consider the MAC scheme defined by the (Gen, Mac, ver) algorithms below for message \mathbb{Z}_p^{ℓ} , where $\ell \geqslant 1$ is a constant integer.

Gen():

- (a) Sample $k_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and $k_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- (b) Return $sk = (k_1, k_2)$

 $\mathsf{Mac}_{\mathsf{sk}=(k_1,k_2)}(m)$:

- (a) Interpret $m = (m_1, m_2, \dots, m_\ell)$, where each $m_i \in \mathbb{Z}_p$
- (b) Let $\tau = k_1 + m_1 k_2 + m_2 k_2^2 + \dots + m_\ell k_2^\ell$
- (c) Return τ as the tag for the message m

 $\operatorname{Ver}_{\mathsf{sk}=(k_1,k_2)}(m)$:

- (a) Interpret $m = (m_1, m_2, \dots, m_\ell)$, where each $m_i \in \mathbb{Z}_p$
- (b) Return whether τ is identical to $k_1 + m_1 k_2 + m_2 k_2^2 + \cdots + m_\ell k^\ell$
- (a) Given a message $m = (m_1, m_2, ..., m_\ell)$ and its tag τ what is the maximum probability that a different message $m' = (m'_1, m'_2, ..., m'_\ell)$ that has the same tag τ ?
- (b) Given a message $m=(m_1,m_2,\ldots,m_\ell)$ and its tag τ what is the maximum probability that a different message $m'=(m'_1,m'_2,\ldots,m'_\ell)$ and τ' as its valid tag?

(Remark: You will need to use Schwartz-Zippel Lemma to compute the probability.)

3. New Pseudorandom Function Family. In the lectures, we saw the following GGM construction for pseudorandom functions. Given a length-doubling PRG $G: \{0,1\}^B \to \{0,1\}^{2B}$, the GGM construction produces a family of pseudorandom functions $\{F_1,\ldots,F_{\alpha}\}$ from the domain $\{0,1\}^n$ to the range $\{0,1\}^B$.

In this problem, we shall generalize the GGM PRF construction in two ways.

- (a) Given a length-doubling PRG $G: \{0,1\}^B \to \{0,1\}^{2B}$, construct a family of pseudorandom function from the domain $\{0,1\}^n$ to the range $\{0,1\}^{100B}$.
- (b) Why is the GGM construction not a pseudorandom function family from the domain $\{0,1\}^*$ to the range $\{0,1\}^B$?
- (c) Consider the following function family $\{H_1, \ldots, H_{\alpha}\}$ from the domain $\{0, 1\}^*$ to the range $\{0, 1\}^B$. We define $H_k(x) = F_k(x, ||x||_2)$, for $k \in \{1, 2, \ldots, \alpha\}$. Show that $\{H_1, \ldots, H_{\alpha}\}$ is not a secure PRF from $\{0, 1\}^*$ to the range $\{0, 1\}^B$. (Recall: The expression $||x||_2$ represents the length of x in n-bit binary expression.)

4. Variant of ElGamal Encryption. Let (G, \circ) is a group where the DDH assumption holds and g is a generator for this group.

Recall that in the ElGamal Encryption scheme encrypts a message $m \in G$ as follows.

 $\mathsf{Enc}_{\mathsf{pk}}(m)$:

- (a) Sample $a \stackrel{\$}{\leftarrow} \{0, 1, \dots, |G| 1\}$
- (b) Compute $A = g^a$
- (c) Output the cipher-test $(A, m \circ pk^a)$.

Consider the following alternate encryption scheme for $m \in \{0, 1, \dots, |G| - 1\}$.

 $\mathsf{Enc}_{\mathsf{pk}}(m)$:

- (a) Sample $a \stackrel{\$}{\leftarrow} \{0, 1, \dots, |G| 1\}$
- (b) Compute $A = g^a$
- (c) Output the cipher-test $(A, g^m \circ \mathsf{pk}^a)$.

Why can't this encryption scheme be used?

5. Understanding Asymptotics. Suppose we have a cryptographic protocol P_n that is implemented using αn^2 CPU instructions, where α is some constant. The protocol is expected to be broken using $\beta 2^{n/10}$ CPU instructions.

Suppose, today, everyone in the world uses the primitive P_n using $n = n_0$, a constant value such that even if the entire computing resources of the world were put together for 8 years we cannot compute $\beta 2^{n_0/10}$ CPU instructions.

Assume Moore's law that the every two years, the amount of CPU instructions we can run per second doubles.

- (a) Assuming Moore's law, how much faster will be the CPUs 8 years into the future as compared to the CPUs now?
- (b) At the end of 8 years, what choice of n_1 will ensure that setting $n = n_1$ will ensure that the protocol P_n for $n = n_1$ cannot be broken for another 8 years?
- (c) What will be the run-time of the protocol P_n using $n = n_1$ on the new computers as compared to the run-time of the protocol P_n using $n = n_0$ on today's computers?
- (d) What will be the run-time of the protocol P_n using $n = n_1$ on today's computers as compared to the run-time of the protocol P_n using $n = n_0$ on today's computers?

(Remark: This problem explains why we demand that our cryptographic algorithms run in polynomial time and it is exponentially difficult for the adversaries to break the cryptographic protocols.)

6. **CRHF from Discrete Log Assumption.** We shall work over the group (\mathbb{Z}_p^*, \times) , where p is a prime number. Let g be a generator of this group.

Let us define the hash function $h_y(b,x) = y^b g^x$, where $y \in \mathbb{Z}_p^*$, $b \in \{0,1\}$, and $x \in \{0,1,\ldots,p-1\}$. Note that the domain is of size 2(p-1) and the range is of size (p-1). So, this hash function family compresses its input.

Consider the hash function family $\mathcal{H} = \{h_1, h_2, \dots, h_{p-1}\}.$

Suppose, we sample $y \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$. Once h_y was announced to the world, a hacker releases two <u>distinct</u> inputs (b,x) and (b',x') such that $h_y(b,x) = h_y(b',x')$.

- (a) Prove that b = b' is not possible.
- (b) If $b \neq b'$, then calculate $t \in \{0, 1, \dots, p-1\}$ such that $g^t = y$.

(Remark: This is a secure CRHF construction based on the Discrete-Log Hardness Assumption. Discrete-Log Hardness Assumption states that given $y \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$ it is computationally hard to find t such that $g^t = y$. Based on this computational hardness assumption the CRHF construction presented above is secure.

Why? Suppose some hacker can indeed break the CRHF, i.e., find two distinct pre-images that collide. Then following your algorithm, we can find t such that $g^t = y$, which was assumed to be a computationally hard task! Hence, contradiction.)