Example 1.1 Assume that we have a large, randomly mixed batch of n "good" and "bad" observations x_i of the same quantity μ . Each single observation with probability $1-\varepsilon$ is a "good" one, with probability ε a "bad" one, where ε is a small number. In the former case x_i is $\Re(\mu, \sigma^2)$, in the latter $\Re(\mu, 9\sigma^2)$. In other words all observations have the same mean, but the errors of some are increased by a factor of 3.

Equivalently, we could say that the x_i are independent, identically distributed with the common underlying distribution

$$F(x) = (1 - \epsilon)\Phi\left(\frac{x - \mu}{\sigma}\right) + \epsilon\Phi\left(\frac{x - \mu}{3\sigma}\right),\tag{1.1}$$

where

$$(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$$
 (1.2)

is the standard normal cumulative.

Two time-honored measures of scatter are the mean absolute deviation

$$d_n = \frac{1}{n} \sum |x_i - \vec{x}| \tag{1.3}$$

and the mean square deviation

$$s_n = \left[\frac{1}{n} \sum (x_i - \bar{x})^2 \right]^{1/2}. \tag{1.4}$$

There was a dispute between Eddington (1914, p. 147) and Fisher (1920, footnote on p. 762) about the relative merits of d, and s,. Eddington advocated the use of the former: "This is contrary to the advice of most textbooks; but it can be shown to be true." Fisher seemingly settled the matter by pointing out that for normal observations s, is about 12% more efficient than d,.

Of course, the two statistics measure different characteristics of the error distribution. For instance, if the errors are exactly normal, s_n converges to σ , while d_n converges to $\sqrt{2/\pi}$ $\sigma {\approx} 0.80\sigma$. So we must be precise about how their performances are to be compared; we use the asymptotic relative

WHY ROBUST PROCEDURES? efficiency (ARE) of d, relative to s,, defined as follows:

$$ARE(\varepsilon) = \lim_{n \to \infty} \frac{\operatorname{var}(s_n)/(Es_n)^2}{\operatorname{var}(d_n)/(Ed_n)^2}$$

$$[3(1+80\varepsilon)]$$

$$\frac{\left[\frac{3(1+80e)}{(1+8e)^2} - 1\right]/4}{\pi(1+8e)}$$

The results are summarized in the Exhibit 1.1.1.

The result is disquieting; just 2 bad observations in 1000 suffice to offset the 12% advantage of the mean square error, and ARE(e) reaches a maximum value greater than 2 at about e=0.05.

This is particularly unfortunate since in the physical sciences typical "good data" samples appear to be well modeled by an error law of the form (1.1) with e in the range between 0.01 and 0.1. (This does not imply that these samples contain between 1% and 10% gross errors, although this is very often true; the above law (1.1) may just be a convenient description of a slightly longer-tailed than normal distribution.) Thus it becomes painfully clar that the naturally occurring deviations from the idealized model are large enough to render meaningless the traditional asymptotic optimality theory: in practice we should certainly prefer d_n to s_n, since it is better for all e between 0.002 and 0.5.

٠	ARE(e)	TKO MI MODE
	0.876	B+D # 357
0.00	0.948	
0.002	1.016	
0.005	1.198	7
0.01	1.439	とっしい/
0.02	1.752	
50.0	2.035	
0.10	1.903	か、シベシ、マ
0.15	1.689	
0.25	1.371	
0.5	1.017	Exhibit 1.1.1 Asymptotic efficiency of mean absolute
0.1	0.876	relative to mean square deviation.