University of Maine – School of Economics

Economic Freedom and Growth

ECO 530: ECONOMETRICS

Antonio Jurlina 12-3-2018

Contents:

I.	Topic and Motivation	- 2
II.	Literature Review	3
III.	Econometric Model	. 4
IV.	Preliminary Estimates	7
V.	Testing	8
VI.	Revised Estimates	- 13
VII.	Conclusion	16
VIII.	Bibliography	18
IX.	Appendices:	
	1. Index Area Components	20
	2. Summary Statistics	21
	3. Summary Graphs	25
	4. Residuals Plots (before)	29
	5. Residuals Plots (after)	30
	6. EViews Code	31

Economic Freedom and Growth

I. Topic and Motivation

Going through an undergraduate career in economics, one starts off by learning the classical assumptions governing the thinking process. They should sound familiar to most – people face tradeoffs, respond to incentives and think at the margin, societies face a tradeoff between inflation and unemployment in the short run and trade can make everyone better off, among others. These assumptions get challenged along the way, thereby structuring a solid reasoning foundation. The most useful way to challenge them has been observing the real world and finding the fault in the simplicity of the assumptions.

Observing real world data, it soon becomes obvious that individuals are not always rational thinkers operating at the margin (Kahneman & Tversky, 1979) and that markets might not always be the best way to organize economic activity. Having an education with an emphasis on micro processes, macroeconomics sometimes takes a back seat and the ability to study real world interactions gives place to perusing (neo)classical theory. This leaves students with having to just accept at face value all about comparative advantage (Ricardo, 1817), the ability of markets to allocate resources and foster growth (Smith, 1776) and much more.

Without any individual econometric experience in dealing with country level data (prior to this semester) it seemed that pushing against the knowledge ceiling in this particular direction, would be an interesting project. I had decided to pursue this, hoping I could cross the adaptive valley along the way. Therefore, this research paper is going to examine if economic freedom is conducive to growth. Specifically, it will attempt to do so by deconstructing an index of economic freedom and testing the effect of all its elements on growth. This should provide an insight into macroeconomic econometrics dealing with panel data, all the parameter identification issues that usually come along with it and possibly prove (or disprove) some theoretical assumptions. The goal is to increase my econometric toolkit, with all the results that come from it as an added knowledge bonus.

II. Literature Review

Adam Smith (1776), with the publication of the *Wealth of the Nations*, instigated a debate around the causes of economic growth. Although mercantilism had dominated the period of late Renaissance in Europe and powerful merchants had built routes based on the belief that trade would benefit them greatly (McCusker & Morgan, 2001), it wasn't until Smith's work had been published that attention turned towards free trade, production advantage, economies of scale and institutions (or lack thereof) intended to orchestrate this in unison. This work was further expanded by Ricardo (1817), who ushered the realization that benefits can be acquired even by those countries that are not the most efficient suppliers around. Eventually, economic growth was taken up by the likes of Solow (1956), who had expanded the Harrod-Domar model (Domar, 1946; Harrod, 1939) so that growth is represented as function of capital, labor and technology (with more optimistic limitations).

Following Solow's work, Kuznets (1973) argued that, while necessary, technology itself wouldn't suffice in producing measurable growth. He claimed that growth would induce change along the way (something along the lines of Schumpeter, 1942), and all the conflict would have to be resolved cost-effectively through institutions designed to do so. Only then, with conflict resolution costs smaller than benefits of growth, would long-term economic progress occur. Finally, there is Milton Friedman (1962), crafting institutional approach along more libertarian lines, arguing for a government that is there to promote safety, monopolize violence and influence the economy through the money supply. He also argued for the removal of major trade barriers as the only way to introduce stable equilibria.

More recent work had found that property rights, monetary stability, and freedom to trade internationally all have visible impact on growth (Ayal & Karras, 1998; Barro, 1991; Easterly, 1992; Knack & Keefer, 1995; Torstensson, 1994). Additionally, previously underdeveloped, closed-off, and/or countries with centralized economies had all undergone drastic economic changes (in the positive direction) upon loosening institutional grips, opening towards the world and openly stifling hierarchical corruption. This can be observed in the economies of Taiwan, Singapore and Hong Kong, with China following closely upon realizing its neighbors had adopted a slightly more laissez-faire approach and experienced significant growth (Naughton, 2007).

Market equilibria inside closed economies adjust themselves according to supply and demand interactions and institutional involvement. With constraints effectively placed to incorporate the costs of most inefficiencies, effective resource allocation is determined on aggregate, through interactions of all the individual participants. With current levels of globalization and economic interconnectedness, eliminating quotas and barriers results in a world-wide market place with freer price points. This, much like on a single-country level, is an amalgamation of countless interactions producing an inherent equilibrium. Depending on the institutional restrictions imposed by all the individual players (and their size), this equilibrium will inch towards comparative efficiency, fostering more growth. With the readjustment of the production possibility frontiers to accommodate the new demand and supply pressures, Mundell and Fleming (Mundell, 1963; Fleming, 1962) identify certain factors affecting GDP levels of openeconomies: fiscal policy, monetary policy, and foreign trade shifts. Even if Leonteif's (1953) observations (the failure of H-O theorem) hold across countries, there is still an adjustment shift according to the world market.

Finally, (Gwartney, Lawson, & Block, 1996), have created an index consisting of all these factors influencing growth. The index rates the economic freedom of countries on a scale of 1 to 10, with 10 indicating a country that is completely free economically. The Economic Freedom Index (from here on referred to as EFI), is comprised of separate indices for the size of the government, legal system and property rights, freedom to trade internationally, stability of the monetary policy, and the number of regulatory obstacles. This index, and similar ones (such as the one produced by the Heritage Foundation) have been used in several ways in order to determine a possible causal link between economic freedom and economic growth (Berggren, 2003; Carlsson & Lundström, 2002; de Haan & Sturm, 2000; Gwartney, Lawson, & Holcombe, 1999; Nelson & Singh, 1998).

III. Econometric Model

The EFI is published yearly by the Fraser Institute. Latest edition (Gwartney et al., 2015) is comprised of five areas used to construct a scale of economic freedom, with each area rated on a scale of 1 to 10. *Size of Government* focuses on individual choice-making through market interactions, as opposed to relying on policy making. Countries with low levels of government

spending, a smaller government enterprise sector, and lower tax rates earn the highest ratings in this area. *Legal System and Property Rights* focuses on unbiased judiciary systems, effective protection of private property and impartial enforcement of the law. Countries that satisfy these categories the best, score the highest in this area. *Sound Money* refers to money with a stable purchasing power over time. Countries that score high in this area, must follow policies and adopt institutions that lead to low rates of inflation and avoid regulations that limit the ability to use alternative currencies. *Freedom to Trade Internationally* focuses on the level and ease of interactions across the borders. To score high in this area, a country must have "low tariffs, easy clearance and efficient administration of customs, a freely convertible currency, and few controls on the movement of physical and human capital" (Gwartney, Lawson, & Block, 2015). *Regulation* measures the access into markets and restrictions around economic interactions. To score high in this area, countries need to relax regulatory constraints around labor, product and credit markets. For more detail on the construction of each of these areas, see Appendix 1.

The model under consideration uses these areas as explanatory variables. This should help in determining the causal link, or at least, the sign of the relationship, between economic growth and factors determining classical assumptions around economic freedom. The model is as follows

$$GROWTH_{i,(t-5 to t)} = \beta_0 + \beta_1 GOV_{i,t-5} + \beta_2 LEGAL_{i,t-5} + \beta_3 MONEY_{i,t-5} + \beta_4 TRADE_{i,t-5} + \beta_5 REGULATION_{i,t-5} + \beta_6 log(GDP)_{i,t-5} + \varepsilon_{i,t}$$
 (Equation 1)

where the dependent variable represents growth of log GDP per capita over a 5-year period, β_1 through β_5 represent the five areas of EFI at the beginning of each 5-year period, β_6 represents the log of GDP per capita at the beginning of each 5-year period and ε represents the error term. Each of these variables is defined across countries (*i*) and time (*t*, *t*-5), making this a fixed effects model. Country-level heterogeneity carries a lot of unobservable variables, so with fixed effects, the remaining variation can be used to causally identify the relationships of interest. The null hypotheses are that there is no significant effect between the five areas of EFI and growth of GDP per capita. The alternative hypotheses are that the higher a country scores in all five areas of EFI, the higher the log growth of GDP per capita, in accordance with classical assumptions.

Data

The data set used for this project was created using three different sources. The EFI was obtained from the Fraser Institute ("Economic Freedom of the World," 2016), data on GDP per capita was obtained from the World Bank Group ("GDP per capita (current US\$) | Data," 2018), recorded in 2018 US dollars. GDP was chosen to be per capita specifically to avoid any issues with population size differences among countries. Finally, a dummy variable on whether nations are members of the OECD was created using the list of member nations from the OECD website ("OECD - Members and partners," 2018). These variables are organized as panel data with 52 countries, ranging from 1970 to 2015. Countries were selected based on data availability, to avoid missing values that would result in omitted observations during estimation. Summary statistics (minimum, maximum, mean, and standard deviation) for all variables can be seen in Appendix 2 and graphs representing these variables, faceted by country, can be seen in Appendix 3.

In the 2015 EFI, Hong Kong and Singapore were the top two countries, United States was 16th, Japan (26th), Germany (29th), South Korea (39th), Italy (68th), France (70th), Mexico (93rd), Russia (99th), China (111th), India (114th), and Brazil (118th). The 10 lowest-rated countries were Angola, Central African Republic, Zimbabwe, Algeria, Argentina, Syria, Chad, Libya, the Republic of Congo, and, in last place, Venezuela.

Figure 1. Economic Freedom of the World 2015 Report (The Fraser Institute) (Gwartney, Lawson, & Block, 2015).

IV. Preliminary Estimates

The first step of the analysis revolved around estimating an OLS version of the model in Equation 1. Results were estimated in three different ways – by grouping all countries together, by using only OECD member countries and by using only non-member countries. This dummy variable was introduced due to the special economic relationships fostered by OECD member nations, to stabilize unobservable heterogeneity between members and non-members. The use of the dummy variable was also inspired by previous research, especially that of Mankiw, Romer and Weil (1992). Detailed results are presented in Figure 2.

Figure 2. Panel Least Squares Regressions

Dependent varial	ble: log growth of G	DP per capita	(1975 - 2015)
	Pooled	non-OECD	OECD
latarant	0.441	0.372	0.526
Intercept	(0.034)	(0.054)	(0.046)
log GDP per	-0.071***	-0.072***	-0.072***
capita	(0.005)	(0.009)	(0.007)
Size of	0.005	0.006	0.002
Government	(0.004)	(0.006)	(0.005)
Legal System &	-0.003	-0.005	-0.002
Property Rights	(0.003)	(0.005)	(0.004)
Council Manage	-0.004	-0.006**	0.000
Sound Money	(0.002)	(0.003)	(0.004)
Daniel ation	0.024***	0.024***	0.025***
Regulation	(0.005)	(0.008)	(0.007)
Freedom to Trade	0.013***	0.017***	0.008*
Internationally	(0.003)	(0.004)	(0.004)
Observations	430	189	241
Cross-sections	52	24	28
(periods)	(9)	(9)	(9)
R ²	0.44	0.41	0.46
F-statistic	5.03	3.88	5.4
(p value)	(0.000)	(0.000)	(0.000)
Durbin-Watson statistic	2.67	2.41	2.92

^{* - 90 %} significance / ** - 95 % significance / *** - 99 % significance

As Figure 2 shows, *Freedom to Trade Internationally* and *Regulation* have a significant effect across three model runs, and *Sound Money* has a significant effect for non-OECD countries only. Any one-point increase in the *Freedom to Trade Internationally* index is correlated with a 1.3 % (pooled), 1.7 % (non-OECD) and 0.8% (OECD) increase in the growth rate of GDP per capita, on average. Any one-point increase in the *Regulation* index is correlated with a 2.4 % (pooled), 2.4 % (non-OECD) and 2.5% (OECD) increase in the growth rate of GDP per capita, on average. Finally, any one-point increase in the *Sound Money* index for non-OECD countries is correlated with a 0.6 % decrease in the growth rate of GDP per capita, on average. To reiterate, an increase in index score across all three of the variables mentioned indicates an increase in economic freedom, as per EFI design.

V. Testing

Although the results seem significant at first glance, there are many causes for concern regarding the validity of parameter identification in a simple OLS approach to this data set. This section is dedicated to discovering possible violations of Gauss-Markovian assumptions and checking the validity of model design.

Multicollinearity

One of the primary issues with deconstructing an index is the causal relationships between some of the subcomponents. It seems reasonable to assume that size of the government, amount of regulation and property rights are correlated with one another. This can result in multicollinearity among explanatory variables, affecting the robustness of the estimates. The correlation matrix in Figure 3 indicates strong correlation (over 0.5) between the five areas of the EFI. This serves as a rough estimate of multicollinearity present in the model, indicating that estimates need to be interpreted conservatively. For future reference, multicollinearity should be further confirmed by estimating the model and changing the data slightly, many times over, seeing how the estimates react. Also, dependent variables should be dropped, and model estimated without some, to see the effect on estimates. Significant estimate changes in both these approaches would indicate a presence of multicollinearity. Finally, a variance inflation factor should be calculated, as it gives an exact numeric value for evaluation. Since multicollinearity doesn't change the BLUE properties of the model, and due to time limitations, the model will be left as is.

Figure 3. Correlation Matrix

	log growth of GDP per capita	GDP per capita	Size of Government	Legal System & Property Rights	Sound Money	Regulation	Freedom to Trade Internationally
log growth of GDP per capita	1.000						
GDP per capita	-0.089	1.000					
Size of Government	0.042	-0.162	1.000				
Legal System & Property Rights	-0.007	0.686	-0.185	1.000			
Sound Money	-0.029	0.533	0.043	0.583	1.000		
Regulation	-0.035	0.590	0.239	0.626	0.649	1.000	
Freedom to Trade Internationally	0.030	0.495	0.079	0.722	0.644	0.668	1.000

Autocorrelation

Since the primary statistical software used in estimation doesn't allow for direct autocorrelation testing, several indirect ways shall be explored, to detect any potential autocorrelation. First, simply observing graphs of residuals from the three OLS approaches, can be very indicative of any potential autocorrelation. Indeed, by looking at the attached graphs (see Appendix 4), it seems highly possible that autocorrelation is present. The order is harder to discern. Furthermore, Durbin-Watson statistic can be used for identification of first-order autocorrelation. The autocorrelation coefficient, ρ , (with stable errors) is located on the interval $-1 < \rho < 1$, and the Durbin-Watson test statistic is approximately equal to 4, 2 and 0, for the ρ values of -1, 0, and 1, respectively. Therefore, the d-statistic serves as a rough guide of first order autocorrelation. In the first (pooled) OLS estimate, d is 2.7. Being further from 2 (in the positive direction), indicates that autocorrelation is more likely. The same can be said for the d values of the second (non-OECD) and third (OECD) OLS estimates, for which d values are 2.4 and 2.9, respectively (see Figure 2). Finally, a feasible GLS model is estimated, with the addition of autocorrelation parameters. These are added individually, starting with a parameter for first order autocorrelation, up to the point where their p-values start to become insignificant at conventional confidence levels (see Figure 4). The results indicate a presence of first and second order autocorrelation, with any

subsequent level added failing to pass as significant or reducing the number of observations past the optimal point.

Figure 4. FGLS Regression - Sensitivity Testing for Autocorrelation

	De	ependent van	iable: log gro	owth of GDP p	per capita (19	75 - 2015)			
	Pooled	non-OECD	OECD	Pooled	non-OECD	OECD	Pooled	non-OECD	OECD
Intercept	0.365	0.320	0.430	0.239	0.225	0.286	0.164	0.112	0.240
	(0.032)	(0.059)	(0.038)	(0.024)	(0.049)	(0.022)	(0.062)	(0.092)	(0.106)
log GDP per	-0.063***	-0.065***	-0.064***	-0.037***	-0.048***	-0.031***	-0.023***	0.016	-0.032***
capita	(0.006)	(0.011)	(0.007)	(0.004)	(0.010)	(0.004)	(0.009)	(0.017)	(0.009)
Size of	0.008	0.006	0.009	0.005*	0.006	0.005**	0.000	-0.002	0.003
Government	(0.003)	(0.006)	(0.004)	(0.003)	(0.005)	(0.002)	(0.005)	(0.008)	(0.005)
Legal System &	0.001	-0.004	0.006	-0.001	-0.004	0.000	0.000	0.000*	0.000
Property Rights	(0.003)	(0.006)	(0.004)	(0.003)	(0.005)	(0.003)	(0.005)	(0.007)	(0.008)
Sound Money	-0.004**	-0.007**	-0.001	-0.009***	-0.010***	-0.006***	-0.008***	-0.006	-0.008*
	(0.002)	(0.003)	(0.003)	(0.002)	(0.003)	(0.002)	(0.003)	(0.004)	(0.004)
Regulation	0.019***	0.024***	0.014**	0.009**	0.019**	0.003	0.003	0.012	0.005
	(0.005)	(0.009)	(0.006)	(0.004)	(0.009)	(0.003)	(0.007)	(0.016)	(0.006)
Freedom to Trade	0.013***	0.016***	0.008**	0.017***	0.018***	0.009***	0.022***	0.017*	0.009
Internationally	(0.003)	(0.005)	(0.003)	(0.002)	(0.004)	(0.002)	(0.005)	(0.009)	(0.006)
AR(1)	-0.351***	-0.226**	-0.478***	-0.590***	-0.406***	-0.821***	-0.517***	-0.498***	-0.586***
	(0.053)	(0.089)	(0.065)	(0.050)	(0.089)	(0.054)	(0.073)	(0.121)	(0.009)
AR(2)				-0.469*** (0.049)	-0.447*** (0.089)	-0.607*** (0.051)	-0.513*** (0.064)	-0.585*** (0.095)	-0.552*** (0.079)
AR(5)							-0.089* (0.049)	-0.262** (0.100)	0.008 (0.055)
Observations	377	165	212	325	141	184	169	69	100
Cross-sections	52	24	28	52	24	28	50	22	28
(periods)	(8)	(8)	(8)	(7)	(7)	(7)	(4)	(4)	(4)
R²	0.44	0.37	0.54	0.53	0.38	0.74	0.71	0.73	0.78
F-statistic	4.3	2.66	6.03	5.03	2.17	11.79	4.72	3.49	6.18
(p value)	(0.000)	(0.000)	(0.000)	(0.000)	(0.002)	(0.000)	(0.000)	(0.000)	(0.000)
Durbin-Watson statistic	2.32	2.22	2.56	1.80	2.06	1.60	2.41	2.61	2.24

Note: This approach assumes there might be first, second and fifth order autocorrelation. The fifth order autocorrelation is assumed because growth is studied through 5-year periods. Sensitivity analysis is looking for AR terms that are significant at standard confidence levels and that produce d-statistics closest to 2. Significance levels are as follows: * - 90 % significance / ** - 95 % significance / *** - 99 % significance.

Heteroskedasticity

After scouring EViews help pages and related forums and blogposts, I have concluded that the current version of the statistical software just doesn't provide support when it comes to testing for heteroskedasticity in panel data through direct tests. With that in mind, there were two options left for attempting to detect possible heteroskedasticity in the data. First approach is a commonsense (backed by econometrics textbooks - Guajarati, 1987; Wooldridge, 2016) approach, that

assumes there is high probability of heteroskedastic errors occurring in cross-sectional data. This seems intuitively reasonable as well – countries vary greatly in GDP per capita and economic freedom measures, indicating a strong possibility of errors having varying degrees of statistical dispersion. Furthermore, Figure 5 plots residuals against fitted values, for the three OLS estimates (pooled, non-OECD, and OECD). These graphs indicate that errors are indeed not uniformly dispersed and that heteroskedasticity is likely present between cross-sections (i.e. countries). Finally, plots showing within-country fitted values and residuals aren't feasible since there are only 10 periods under consideration meaning that there aren't enough points to visually estimate the shape of error dispersion.

Redundant Fixed Effects

Figure 6 shows the results of redundant fixed effects tests, performed on the three OLS models. With future revised estimation in mind, the tests were completed for fixed cross-sectional effects, fixed period effects, and both. In each case, across all the model version, tests confirm that all model specifications are supported, with significant p-values across multiple tests.

Figure 6. Redundant Fixed Effects Test

Effects Test							
	Pooled	non-OECD	OECD				
Cross-Section F	3.039***	3.057***	2.782***				
	(0.000)	(0.000)	(0.000)				
Cross-Section Chi-	152.544***	72.255***	77.188***				
Square	(0.000)	(0.000)	(0.000)				
Period F	38.593***	13.747***	54.386***				
	(0.000)	(0.000)	(0.000)				
Period Chi-Square	264.110***	103.413***	279.292***				
	(0.000)	(0.000)	(0.000)				
Cross-Section/Period	10.400***	6.794***	16.360***				
F	(0.000)	(0.000)	(0.000)				
Cross-Section/Period	424.806***	165.049***	326.592***				
Chi-Square	(0.000)	(0.000)	(0.000)				

Note: * - 90 % significance / ** - 95 % significance / *** - 99 % significance
Null: Cross-Section/Period/Both Effects specifications are redundant,
Alternative: Cross-Section/Period/Both Effects specifications are valid

Hausman Test

Hausman Test null hypothesis states that there is no correlation between unique errors and regressors (meaning that the random effects model is preferred) against an alternative that there is correlation between unique errors and regressors (meaning that the fixed effects model is preferred). This test could only be performed on cross-sectional fixed effects and not two-way fixed effects since EViews doesn't estimate two-way random effects tests on unbalanced data for the purposes of further testing. Hausman test results (see Figure 7) reject the null hypothesis and the alternative is accepted – fixed effects model is appropriate.

Figure 7. Random versus Fixed Effects Test

Test Summary								
	Pooled	non-OECD	OECD					
Chi-Square Statistic	146.276*** (0.000)	52.771*** (0.000)	37.882*** (0.000)					
df	6	6	6					

Note: * - 90 % significance / ** - 95 % significance / *** - 99 % significance.

VI. Revised Estimates

Following all the tests performed, I have decided to reformulate the previous cross-section fixed effects OLS model. For more precise parameter identification and robust standard errors, cross-sectional heteroskedasticity and first (and possibly second) order autocorrelation need to be addressed. Therefore, the revised model is structured as a cross-section fixed effects GLS model, with two terms for autocorrelation and cross-section weights which assume the presence of heteroskedasticity in the relevant dimension. Estimates for this model are presented in Figure 8, split up between estimates for all countries, only non-OECD countries, and only OECD countries.

As Figure 8 shows, *Freedom to Trade Internationally* and *Sound Money* have a significant effect across three model runs, and *Regulation* has a significant effect for non-OECD countries only. Any one-point increase in the *Freedom to Trade Internationally* index is correlated with a 1.3 % (pooled), 1.7 % (non-OECD) and 1% (OECD) increase in the growth rate of GDP per capita, on average. Any one-point increase in the *Sound Money* index is correlated with a 0.7 % (pooled), 0.9 % (non-OECD) and 0.6% (OECD) increase in the growth rate of GDP per capita, on average. Any one-point increase in the *Regulation* index for non-OECD countries is correlated with a 1.3

% increase in the growth rate of GDP per capita, on average. Finally, any one-point increase in the *Size of Government* index for pooled countries is correlated with a 0.5 % increase in the growth rate of GDP per capita, on average. To reiterate, an increase in index scores across all three of the variables mentioned indicates an increase in economic freedom, as per EFI design.

Figure 8. Panel EGLS Regression (Cross-Section Weights)

Dep	pendent variable: l	og growth o	f GDP per ca	pita (1975 -	2015)	
	EGLS	OLS	EGLS	OLS	EGLS	OLS
	Pod	oled	non-0	OECD	OE	CD
Intercept	0.228***	0.441***	0.217***	0.372***	0.280***	0.526***
тиетсері	(0.014)	(0.034)	(0.028)	(0.054)	(0.016)	(0.046)
log GDP per	-0.032***	-0.071***	-0.044***	-0.072***	-0.027***	-0.072***
capita	(0.003)	(0.005)	(0.007)	(0.009)	(0.003)	(0.007)
Size of	0.005***	0.005	0.005	0.006	0.002	0.002
Government	(0.003)	(0.004)	(0.003)	(0.006)	(0.001)	(0.005)
Legal System &	0.001	-0.003	0.001	-0.005	-0.002	-0.002
Property Rights	(0.002)	(0.003)	(0.003)	(0.005)	(0.002)	(0.004)
Cound Manay	-0.007***	-0.004	-0.009***	-0.006**	-0.006***	0.000
Sound Money	(0.001)	(0.002)	(0.002)	(0.003)	(0.001)	(0.004)
Danulatian	0.003	0.024***	0.013**	0.024***	0.001	0.025***
Regulation	(0.003)	(0.005)	(0.006)	(0.008)	(0.002)	(0.007)
Freedom to Trade	0.014***	0.013***	0.017***	0.017***	0.010***	0.008*
Internationally	(0.002)	(0.003)	(0.006)	(0.004)	(0.002)	(0.004)
AD(1)	-0.669***		-0.498***		-0.862***	
AR(1)	(0.038)		(0.072)		(0.039)	
40/2)	-0.538***		-0.530***		-0.663***	
AR(2)	(0.033)		(0.071)		(0.034)	
Observations	325	430	141	189	184	241
Cross-sections	52	52	24	24	28	28
(periods)	(7)	(9)	(7)	(9)	(7)	(9)
R ²	0.71	0.44	0.56	0.41	0.85	0.46
F-statistic	10.83	5.03	4.42	3.88	24.64	5.4
(p value)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Durbin-Watson statistic	1.84	2.67	2.08	2.41	1.74	2.92

Note: * - 90 % significance / ** - 95 % significance / *** - 99 % significance.

Moreover, to confirm that the revised model significantly diminishes heteroskedasticity and autocorrelation detected previously, Figure 8 reports the Durbin-Watson statistic and Figure 9 shows the residual plots. The Durbin-Watson (d) statistic went from 2.7 to 1.8 (pooled), 2.4 to 2.1 (non-OECD), and 2.9 to 1.7 (OECD). Since a d value of 2 indicates that ρ is 0, this indicates a reduction in residual trend correlation. Additionally, Appendix 5 reports the trend of residuals across periods (compared with the OLS estimated ones), indicating a smoothening. Finally, Figure 9 reports the error dispersion (compared with the OLS estimated ones), indicating more uniform dispersion (homoskedasticity).

VII. Conclusion

This paper finds a significant relationship between freedom to trade internationally and economic growth. This freedom is reflected in lower tariffs, few regulations on movement of human and physical capital, easily convertible currency and simple customs clearance operations. This finding mirrors that of Gwartney and Torstensson (1999; 1994), and contradicts the findings of Ayal and Karras (1998), who find a negative relationship between freedom to trade and economic growth. This finding holds for all countries pooled together, only non-OECD countries, as well as OECD member nations. Furthermore, this research finds that pursuing low inflation and allowing free access to alternative currency use has a small negative impact on economic growth (between 0.6% and 0.9% for each EFI area unit increase). This result directly contradicts that of Ayal and Karras (1998) and Barro (1996). There is also significant evidence that less stringent regulation positively affects economic growth for non-OECD countries only. This reflects the findings of Barro, Torstensson and Knack & Keefer (Barro, 1996; Knack & Keefer, 1995; Torstensson, 1994). Finally, there is significant evidence that smaller governments, that intervene economically less often, are positively correlated with economic growth. This has only been observed for the pooled data set and the effect was only 0.05%. This finding is mirrored in a more robust way in other research (Barro, 1991; Gwartney et al., 1999; Knack & Keefer, 1995).

Across all model formulations, freedom to trade internationally remained very robust. These results support classical economic theory (Ricardo, 1817; Smith, 1776), as well as more modern assumptions (Friedman, 1962). Monetary stability through low inflation and the freedom to use alternate currencies seemed likely to be correlated with economic growth. However, research did not support this hypothesis. There are a few reasons that might explain this finding. Subcomponents of this area of the index might be constructed out of elements with opposite effects. Also, most countries in the data set do not wield the economic power of the United States and are economically tied to the fluctuations of more influential currencies. Therefore, they are unable to produce sound monetary policy and often attempt to restrict the power of foreign currencies in the domestic marketplace. If these countries experience increased growth rates, this area of the index does not predict development as assumed. Free movement into markets, as pictured through the regulation variable, is only significant for non-OECD countries, most of which are underdeveloped. This could indicate that lax regulation fosters growth on the way to the status of a first-world country. However, countries that had already reached these levels of development are not experiencing such growth rates and often begin introducing new regulation when they become appropriately placed on the Kuznets curve to do so. This is often regulation that deals with various market inefficiencies (externalities, informational asymmetry, etc.).

Limitations and future research

This data set was somewhat unbalanced (missing periods for a few cross-sections), resulting in the omission of those observations. Along with balanced panel data, the set needs to extend over a longer time frame, given that in the process of correcting for autocorrelation, the number of observations got further reduced. It would also be useful to detect breakpoints in the time series, centered around significant economic events (like the Great Recession), and perform the estimation around them. Much like a longer time frame, more countries included in the set would be useful. The issue lies in procuring the necessary data, especially further into the past, given that some countries do not provide any data or provide data that is highly questionable.

VIII. Bibliography

- 1. Ayal, E. B., & Karras, G. (1998). Components of Economic Freedom and Growth: An Empirical Study. *The Journal of Developing Areas*, *32*(3), 327–338.
- 2. Barro, R. J. (1991). Economic Growth in a Cross Section of Countries. *The Quarterly Journal of Economics*, 106(2), 407–443. https://doi.org/10.2307/2937943
- 3. Barro, R. J. (1996). Democracy and Growth. *Journal of Economic Growth*, 1(1), 1–27.
- 4. Berggren, N. (2003). The Benefits of Economic Freedom: A Survey. *The Independent Review*, 8(2), 193–211.
- 5. Carlsson, F., & Lundström, S. (2002). Economic freedom and growth: Decomposing the effects. *Public Choice*, *112*, 335–344. https://doi.org/10.1023/a:1019968525415
- 6. de Haan, J., & Sturm, J.-E. (2000). On the relationship between economic freedom and economic growth. *European Journal of Political Economy*, 16(2), 215–241. https://doi.org/10.1016/S0176-2680(99)00065-8
- 7. Domar, E. D. (1946). Capital Expansion, Rate of Growth, and Employment. *Econometrica*, *14*(2), 137–147. https://doi.org/10.2307/1905364
- 8. Easterly, W. (1992). *Marginal income tax rates and economic growth in developing countries* (No. WPS1050) (p. 1). The World Bank. Retrieved from http://documents.worldbank.org/curated/en/432391468766196026/Marginal-income-tax-rates-and-economic-growth-in-developing-countries
- 9. Economic Freedom of the World. (2016, December 22). Retrieved October 9, 2018, from http://bit.ly/2h5xBVI
- 10. Friedman, M. (1962). *Capitalism and Freedom* (1st ed.). University of Chicago Press. Retrieved from https://www.goodreads.com/work/best_book/1534488-capitalism-and-freedom
- 11. GDP per capita (current US\$) | Data. (2018). Retrieved October 9, 2018, from https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
- 12. Guajarati, D. N. (1987). Basic Econometrics (4th ed.).
- 13. Gwartney, J. D., Lawson, R. A., & Block, W. (1996). *Economic Freedom of the World:* 1975-1995 (p. 342). The Fraser Institute. Retrieved from http://bit.ly/2jUkBGR
- 14. Gwartney, J. D., Lawson, R. A., & Holcombe, R. G. (1999). Economic Freedom and the Environment for Economic Growth. *Journal of Institutional and Theoretical Economics*, 155(4), 643–663.
- 15. Harrod, R. F. (1939). An Essay in Dynamic Theory. *The Economic Journal*, 49(193), 14–33. https://doi.org/10.2307/2225181
- 16. J. M. Fleming, "Domestic Financial Policies under Fixed and Floating Exchange Rates," IMF Staff Papers, Vol. 9, 1962, pp. 369-379. doi:10.2307/3866091
- 17. Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. *Econometrica*, 47(2), 263–291. https://doi.org/10.2307/1914185
- 18. Knack, S., & Keefer, P. (1995). Institutions and Economic Performance: Cross-Country Tests Using Alternative Institutional Measures. *Economics & Politics*, 7(3), 207–227. https://doi.org/10.1111/j.1468-0343.1995.tb00111.x
- 19. Kuznets, S. (1973). Modern Economic Growth: Findings and Reflections. *The American Economic Review*, 63(3), 247–258.

- 20. Leontief, W. (1953). Domestic Production and Foreign Trade; The American Capital Position Re-Examined. *Proceedings of the American Philosophical Society*, 97(4), 332–349.
- 21. Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A Contribution to the Empirics of Economic Growth. *The Quarterly Journal of Economics*, 407–437. https://doi.org/10.3386/w3541
- 22. McCusker, J., & Morgan, K. (Eds.). (2001). The Early Modern Atlantic Economy. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511523878
- 23. Mundell, R. A. (1963). Capital Mobility and Stabilization Policy under Fixed and Flexible Exchange Rates. *The Canadian Journal of Economics and Political Science / Revue Canadienne d'Economique et de Science Politique*, 29(4), 475–485. https://doi.org/10.2307/139336
- 24. Naughton, B. (2007). *The Chinese economy: transitions and growth.* Cambridge, Mass: MIT Press.
- 25. Nelson, M. A., & Singh, R. D. (1998). Democracy, Economic Freedom, Fiscal Policy, and Growth in LDCs: A Fresh Look. *Economic Development and Cultural Change*, 46(4), 677–696. https://doi.org/10.1086/452369
- 26. OECD Members and partners. (2018, July). Retrieved December 12, 2018, from http://www.oecd.org/about/membersandpartners/
- 27. Ricardo, D. (2004). *On the Principles of Political Economy and Taxation*. London: Dover Publications.
- 28. Schumpeter, J. (1942). *Capitalism, Socialism and Democracy* (Vol. 1). Routledge. Retrieved from https://www.goodreads.com/work/best_book/129884-capitalism-socialism-and-democracy
- 29. Smith, A. (2003). *An Inquiry into the Nature and Causes of the Wealth of Nations*. Bantam Classics.
- 30. Solow, R. M. (1956). A Contribution to the Theory of Economic Growth. *The Quarterly Journal of Economics*, 70(1), 65. https://doi.org/10.2307/1884513
- 31. Torstensson, J. (1994). Property Rights and Economic Growth: An Empirical Study. *Kyklos*, 47(2), 231–247.
- 32. Wooldridge, J. M. (2016). *Introductory Econometrics: A Modern Approach* (6th ed.). Thomson South-Western.

Appendix 1 – Index Area Components

- 1. Size of Government
 - A. Government consumption
 - B. Transfers and subsidies
 - C. Government enterprises and investment
 - D. Top marginal tax rate
 - (i) Top marginal income tax rate
 - (ii) Top marginal income and payroll tax

rate

- 2. Legal System and Property Rights
 - A. Judicial independence
 - B. Impartial courts
 - C. Protection of property rights
 - D. Military interference in rule of law and politics
 - E. Integrity of the legal system
 - F. Legal enforcement of contracts
 - G. Regulatory costs of the sale of real property
 - H. Reliability of police
 - I. Business costs of crime
- 3. Sound Money
 - A. Money growth
 - B. Standard deviation of inflation
 - C. Inflation: most recent year
- D. Freedom to own foreign currency bank accounts
- 4. Freedom to Trade Internationally
 - A. Tariffs
 - (i) Revenue from trade taxes (% of trade sector)
 - (ii) Mean tariff rate
 - (iii) Standard deviation of tariff rates
 - B. Regulatory trade barriers

- (i) Non-tariff trade barriers
- (ii) Compliance costs of importing and exporting
- C. Black-market exchange rates
- D. Controls of the movement of capital and people
- (i) Foreign ownership/investment restrictions
 - (ii) Capital controls
 - (iii) Freedom of foreigners to visit
- 5. Regulation
 - A. Credit market regulations
 - (i) Ownership of banks
 - (ii) Private sector credit
 - (iii) Interest rate controls/negative real interest rates
 - B. Labor market regulations
 - (i) Hiring regulations and minimum wage
 - (ii) Hiring and firing regulations
 - (iii) Centralized collective bargaining
 - (iv) Hours regulations
 - (v) Mandated cost of worker dismissal
 - (vi) Conscription
 - C. Business regulations
 - (i) Administrative requirements
 - (ii) Bureaucracy costs
 - (iii) Starting a business
 - (iv) Extra payments /bribes /favoritism
 - (v) Licensing restrictions
 - (vi) Cost of tax compliance

Appendix 2 – Summary Statistics

Descriptive Statistics for GDP Categorized by values of COUNTRIES Date: 12/13/18 Time: 13:34 Sample: 1970 2015 Included observations: 511

COUNTRIES Max Min. Std. Dev. Obs. Argentina 5738 989 13698.29 1317.488 3989 468 10 Australia 23458.21 56561.41 3299.037 18426.40 10 23342.53 46858.04 2058.769 16342.06 Austria 10 Belgium 22544.10 44380.18 2780.696 14772.88 Brazil 4149.343 11224.15 444.0263 3450.127 10 10 10 Canada 23004 32 47447 48 4121.933 14982.75 5266.681 13736.64 730,4099 4755.834 Chile Colombia 2498.397 6250.655 326.2903 2143.511 10 Congo, D.. 333.9315 546.1424 135.6735 134.6768 10 Denmark 29044.12 58041.41 3464.457 19612.70 10 10 2462.319 6150.156 471.3860 Ecuador 1731.232 46202.42 2467.476 15564.98 10 23786.89 Finland France 21487.20 40638.33 2853.004 13269.90 10 Germany 22592.39 41785.56 2750.720 14518.54 10 Greece 11749.77 26917.76 1494.388 8526.764 10 1588.325 3923.573 338.6820 1099.041 10 Guatemala 17982.68 42431.89 960.0320 14201.35 10 Hong Kong Iceland 26798.70 56250.68 2538.188 18520.21 10 India 565.6714 1606.038 111 2576 510.4577 10 79.68566 10 Indonesia 1142.135 3334.549 1151.401 2829.169 6531.927 384.9422 1822.843 10 Iran Ireland 23769.35 61807.67 1488.295 22285.67 Israel 15822.50 35690.96 2369.088 11395.73 10 Italy 18198.04 35849.37 2099.914 12103.73 10 44507.68 2037.560 16689.28 10 Japan 25137.15 1355.046 10 Kenya 508.6221 Korea, South 10368.45 27105.08 279.1252 9670.180 10 Luxembourg 46640.75 104965.3 4449.540 37902 55 10 10 4002.459 9648.553 357.6619 3255.634 Malaysia 4757.737 9290.761 682.6849 3254.921 10 Mexico Morocco 1416.078 2864.093 246.0880 907.2497 10 Netherlands 24603.36 50338.25 2889.715 16672.77 10 New Zealand 16649.59 38649.38 2356.540 12650.55 10 863.8361 2655.158 888.1993 10 224.1075 Nigeria 3306.219 10 Norway 37334.51 Pakistan 556.2923 1428.638 169.7912 403.5977 10 Peru 2281.149 6053.112 557.0935 1859.932 10 10 Philippines 1081.596 2878.338 186.7688 831.3087 10088.27 22538.65 934.1740 7966.437 10 Portugal Singapore 20731.12 54940.86 925.2874 18828.47 10 South Africa 3515.285 7275.382 806.4131 2027.307 10 Spain 14219.96 30736.63 1208.997 10570.54 10 Sweden 28030.85 52076.26 4669.439 16806.11 10 16655.34 8 Switzerland 46502.64 82016.02 Syria 1098.067 1577.457 337.0396 428.4369 8 Tanzania 445.8978 872.2955 172.0448 287.0657 6 1967.361 10 Thailand 2215.055 5846.395 192.1257 4140.152 284.4121 10 2041.993 1300.397 Tunisia Turkey 4360.920 10984.81 489.9308 3938.508 10 United Kin. 22035.41 44305.55 2347.544 15770.72 10 United States 28224.77 56443.82 5246.884 17747.86 10 13545.26 3642.872 Venezuela 4514.852 1108.821 79.68566 17303.58 511

Descriptive Statistics for GROWTH
Categorized by values of COUNTRIES
Date: 12/13/18 Time: 13:34
Sample (adjusted): 1975 2015
Included observations: 459 after adjustments

COUNTRIES	Mean	Max	Min.	Std. Dev.	Obs.
Argentina	0.052034	0.141028	-0.082505	0.065666	9
Australia	0.063149	0.150243	0.012863	0.047155	9
Austria	0.068150	0.188576	-0.042140	0.087532	9
Belgium	0.059448	0.176990	-0.077057	0.092207	9
Brazil	0.066243	0.190255	-0.049798	0.092491	9
Canada	0.052378	0.119448	-0.017256	0.044630	9
Chile	0.059264	0.252180	-0.114581	0.110717	9
Colombia	0.064869	0.164475	-0.013563	0.070629	9
Congo, D	0.015859	0.218959	-0.163807	0.130941	9
Denmark	0.060622	0.167355	-0.027931	0.076056	9
Ecuador	0.057079	0.170659	-0.077262	0.091097	9
Finland	0.063212	0.186203	-0.017063	0.084089	9
France	0.056712	0.169278	-0.052652	0.084519	9
Germany	0.060213	0.172183	-0.058197	0.086240	9
Greece	0.055391	0.149342	-0.079698	0.085294	9
Guatemala	0.054438	0.129302	-0.071348	0.059823	9
Hong Kong	0.084193	0.185734	0.006817	0.069456	9
Iceland	0.066768	0.183670	-0.059137	0.088778	9
India	0.059326	0.128736	0.003344	0.042281	9
Indonesia	0.082978	0.214623	-0.054855	0.090012	9
Iran	0.056359	0.282657	-0.107826	0.124496	9
Ireland	0.082809	0.169515	-0.011654	0.068309	9
Israel	0.060275	0.133452	-0.004672	0.048624	9
Italy	0.059229	0.191583	-0.034427	0.082452	9
Japan	0.062915	0.165415	-0.050548	0.082209	9
Kenya	0.050050	0.124223	-0.071595	0.065551	9
Korea, South	0.101685	0.203812	-0.006350	0.074095	9
Luxembourg	0.069483	0.197246	-0.056192	0.083109	9
Malaysia	0.073222	0.168423	-0.013516	0.063610	9
Mexico	0.058016	0.150056	-0.032261	0.062238	9
Morocco	0.054540	0.152495	-0.098035	0.081983	9
Netherlands	0.060886	0.183745	-0.065782	0.086184	9
New Zealand	0.062163	0.142037	-0.048681	0.063334	9
Nigeria	0.054936	0.211608	-0.185708	0.122338	9
Norway	0.069222	0.181774	-0.032790	0.070126	9
Pakistan	0.046965	0.116129	-0.003294	0.037147	9
Peru	0.053013	0.137544	-0.042015	0.066818	9
Philippines	0.060780	0.131619	-0.038148	0.059357	9
Portugal	0.067239	0.213948	-0.043851	0.087304	9
Singapore	0.090754	0.197969	-0.009394	0.064216	9
South Africa	0.043640	0.130219	-0.061347	0.076322	9
Spain	0.068004	0.215507	-0.055689	0.099980	9
Sweden	0.053047	0.161164	-0.044796	0.074295	9
Switzerland	0.042038	0.167213	-0.050159	0.071394	7
Syria	0.044096	0.197757	-0.088636	0.095019	7
Tanzania	0.064935	0.106082	0.009556	0.038839	5
Thailand	0.075898	0.140401	-0.069757	0.070869	9
Tunisia	0.057771	0.198097	-0.035699	0.069693	9
Turkey	0.069111	0.168267	-0.026752	0.065106	9
United Kin	0.065283	0.169446	-0.029594	0.071710	9
United States	0.052791	0.095364	0.017566	0.025518	9
Venezuela All	0.062568	0.182721	-0.066947	0.091085	8 459
All	0.061590	0.282657	-0.185708	0.075486	459

Descriptive Statistics for MONEY
Categorized by values of COUNTRIES
Date: 12/13/18 Time: 13:34
Sample: 1970 2015
Included observations: 520

COUNTRIES	Mean	Max	Min.	Std. Dev.	Obs.
Argentina	5.264000	9.710000	2.500000	2.625563	10
Australia	9.266000	9.620000	8.470000	0.327760	10
Austria	9.075000	9.640000	8.040000	0.689497	10
Belgium	9.578000	9.740000	9.010000	0.210597	10
Brazil	4.137000	7.970000	0.000000	3.441560	10
Canada	9.402000	9.690000	8.750000	0.347397	10
Chile	6.854000	9.340000	0.000000	3.246147	10
Colombia	6.349000	8.200000	4.860000	1.308098	10
Congo, D	3.714000	7.990000	0.000000	3.256949	10
Denmark	8.391000	9.770000	6.240000	1.578948	10
Ecuador	6.357000	8.150000	3.980000	1.420298	10
Finland	8.768000	9.620000	6.800000	1.037763	10
France	8.452000	9.830000	6.260000	1.610161	10
Germany	9.544000	9.760000	9.320000	0.129203	10
Greece	8.047000	9.670000	6.890000	1.149860	10
Guatemala	8.152000	9.630000	6.830000	1.077299	10
Hong Kong	9.172000	9.510000	8.510000	0.315165	10
Iceland	6.200000	9.450000	2.620000	2.598273	10
India	6.741000	8.100000	6.290000	0.515675	10
Indonesia	7.649000	9.360000	4.320000	1.709688	10
Iran	7.490000	8.990000	3.870000	1.481433	10
Ireland	7.941000	9.650000	5.700000	1.716291	10
Israel	6.228000	9.490000	1.250000	3.000929	10
Italy	8.119000	9.740000	5.550000	1.857510	10
Japan	8.962000	9.890000	6.930000	1.074780	10
Kenya	7.333000	9.100000	5.730000	1.322448	10
Korea, South	7.322000	9.660000	4.560000	1.948326	10
Luxembourg	9.326000	9.750000	8.340000	0.427270	10
Malaysia	7.826000	9.110000	6.520000	1.030967	10
Mexico	6.891000	9.180000	3.590000	1.972052	10
Morocco	6.772000	7.290000	6.090000	0.386028	10
Netherlands	9.517000	9.750000	9.140000	0.172501	10
New Zealand	8.130000	9.750000	5.900000	1.742514	10
Nigeria	5.003000	7.940000	1.270000	2.070228	10
Norway	8.079000	9.510000	6.250000	1.477411	10
Pakistan	6.544000	7.870000	5.210000	0.789700	10
Peru	5.611000	9.680000	0.000000	3.696306	10
Philippines	7.349000	9.440000	4.590000	1.803777	10
Portugal	7.766000	9.750000	5.580000	1.920273	10
Singapore	8.571000	9.840000	6.510000	1.302855	10
South Africa	6.863000	8.180000	5.290000	1.115408	10
Spain	7.975000	9.760000	5.730000	1.754621	10
Sweden	8.568000	9.840000	6.130000	1.295572	10
Switzerland	9.622000	9.810000	9.390000	0.114969	10
Syria	6.673000	8.180000	4.870000	0.997587	10
Tanzania	6.067000	8.060000	4.110000	1.531579	10
Thailand	7.265000	9.460000	6.290000	1.035860	10
Tunisia	6.787000	7.300000	6.050000	0.408929	10
Turkey	4.579000	9.080000	0.780000	2.589554	10
United Kin	8.364000	9.840000	5.080000	1.876067	10
United States	9.585000	9.780000	9.220000	0.220467	10
Venezuela	5.656000	9.710000	1.930000	2.550574	10
All	7.498000	9.890000	0.000000	2.194067	520

Descriptive Statistics for TRADE
Categorized by values of COUNTRIES
Date: 12/13/18 Time: 13:34
Sample: 1970 2015
Included observations: 518

COUNTRIES	Mean	Max	Min.	Std. Dev.	Obs.
Argentina	4.894444	8.540000	0.900000	2.561065	9
Australia	7.381000	8.330000	6.210000	0.763041	10
Austria	7.696000	9.110000	6.630000	0.883455	10
Belgium	9.157000	9.910000	8.190000	0.674669	10
Brazil	4.920000	7.150000	0.940000	2.275322	10
Canada	8.374000	8.970000	7.770000	0.476310	10
Chile	6.571000	8.450000	2.270000	2.049257	10
Colombia	5.319000	6.980000	3.090000	1.636395	10
Congo, D	4.101000	6.320000	0.670000	1.753203	10
Denmark	8.337000	9.400000	7.830000	0.556937	10
Ecuador	5.481000	7.420000	2.190000	1.871051	10
Finland	7.736000	9.250000	6.650000	1.016467	10
France	7.729000	8.990000	6.770000	0.771873	10
Germany	8.891000	9.690000	7.890000	0.648579	10
Greece	7.062000	9.050000	5.340000	1.093169	10
Guatemala	6.606000	8.450000	2.500000	1.819439	10
Hong Kong	9.553000	9.970000	8.330000	0.501687	10
Iceland	6.099000	8.240000	2.200000	1.825002	10
India	4.304444	6.250000	2.400000	1.592727	9
Indonesia	5.819000	7.150000	4.000000	1.120600	10
Iran	4.033000	7.400000	0.980000	2.228188	10
Ireland	8.163000	9.180000	6.800000	0.833734	10
Israel	6.518000	8.700000	2.220000	2.184246	10
Italy	8.092000	9.010000	7.330000	0.436547	10
Japan	7.551000	8.740000	6.640000	0.705856	10
Kenya	5.513000	7.440000	3.360000	1.551945	10
Korea, South	6.500000	7.600000	4.780000	1.156162	10
Luxembourg	9.243000	9.960000	8.300000	0.625407	10
Malaysia	7.199000	7.510000	6.490000	0.315927	10
Mexico	6.145000	7.720000	1.300000	2.040960	10
Morocco	5.443000	6.840000	4.400000	0.946491	10
Netherlands	8.624000	9.570000	6.960000	0.744986	10
New Zealand	8.213000	9.320000	7.000000	0.860879	10
Nigeria	3.474000	6.390000	1.300000	2.083561	10
Norway	7.684000	8.970000	6.310000	0.891805	10
Pakistan	3.749000	6.110000	0.780000	1.749650	10
Peru	5.548000	8.630000	1.300000	2.949417	10
Philippines	5.592000	7.310000	1.580000	1.856890	10
Portugal	7.357000	8.950000	3.510000	1.585210	10
Singapore	9.293000	9.960000	7.980000	0.538352	10
South Africa	6.578000	7.350000	5.310000	0.558745	10
Spain	7.707000	8.980000	5.440000	1.099889	10
Sweden	8.031000	9.650000	6.060000	1.160292	10
Switzerland	8.242000	9.760000	6.470000	1.288503	10
Syria	3.792000	5.980000	1.550000	1.691008	10
Tanzania	3.893000	6.660000	1.510000	2.182898	10
Thailand	5.942000	7.030000	5.070000	0.776170	10
Tunisia	4.888000	6.810000	2.510000	1.489040	10
Turkey	5.342000	7.750000	0.000000	2.618926	10
United Kin	8.483000	9.680000	4.690000	1.556949	10
United States	8.500000	8.970000	7.540000	0.524065	10
Venezuela	6.230000	8.690000	3.320000	2.113785	10
All	6.692529	9.970000	0.000000	2.178159	518

Descriptive Statistics for GOV Categorized by values of COUNTRIES

Date: 12/13/18 Time: 13:34 Sample: 1970 2015 Included observations: 517

COUNTRIES Mean 6.333000 Max 8.220000 Min. 4.870000 Std. Dev. Obs. 1.131558 10 Argentina 5.618000 4.420000 0.810265 Australia 6.670000 10 Austria 4.178000 5.760000 2.820000 1.091348 10 Belgium 4.170000 5.430000 3.600000 0.531622 10 5.898000 6.990000 5.080000 0.650842 10 Brazil Canada 5.648000 6.380000 4.890000 0.447854 10 Chile 6.290000 7.910000 3.960000 1.358627 10 Colombia 5.992000 7.230000 4.450000 0.936575 10 7.450000 3.600000 1.129810 Congo. D., 5.496000 10 3.545556 4.230000 3.060000 0.450281 9 Denmark Ecuador 6.507000 8.930000 5.000000 1.618717 10 Finland 4.528000 6.390000 2.690000 0.924852 10 0.727621 4.071000 5.450000 3.130000 10 France 4.803000 5.740000 3.790000 0.655626 10 Germany Greece 5.523000 8.040000 3.420000 1.418717 10 7.070000 8.550000 0.754383 0.368512 Guatemala 8.366000 9.490000 10 10 9.207000 9.750000 Hong Kong 5.895000 6.920000 0.788152 4.830000 10 Iceland 5.900000 7.820000 4.230000 1.344511 10 India Indonesia 7.076000 7.960000 5.270000 0.854767 10 5 272000 6 680000 4 330000 Iran 0.744413 10 Ireland 5.408000 6.640000 3.660000 0.991181 10 Israel 4.100000 6.300000 1.820000 1.589235 10 Italy 4.761000 6.140000 2.960000 1.131650 10 Japan 5 966000 9 270000 4 710000 1 252475 10 5.849000 8.570000 3.790000 1.794779 10 Kenya 6.650000 8.110000 5.970000 0.586686 Korea, South 10 Luxembourg 5.237778 7.390000 4.030000 1.283557 9 Malaysia 5.991000 6.930000 4.840000 0.656767 10 7.960000 5.690000 0.779704 Mexico 7.026000 10 Morocco 5.773000 6.710000 4.630000 0.708630 10 Netherlands 4.325000 4.950000 3.360000 0.498670 10 New Zealand 5.419000 7.460000 9.650000 3.540000 1.286455 10 2.190000 5.800000 2.191184 10 Nigeria 3.801000 5.690000 2.870000 0.982519 10 Norway Pakistan 6.426000 8.680000 4.700000 1.529300 10 Peru 7.170000 8.210000 5.420000 0.873957 10 Philippines 7.795000 8.790000 6.490000 0.903010 10 4.736000 5.610000 3.630000 0.759125 10 Portugal Singapore 7.602000 8.390000 6.590000 0.645390 10 South Africa 5.846000 6.450000 4.560000 0.597889 10 Spain 5.712000 8.200000 4.160000 1.272939 10 10 2.834000 3.670000 1.630000 0.765204 Sweden 7.130000 7.880000 6.370000 0.615630 9 Switzerland Syria 4.662000 6.520000 1.950000 1.345047 10 Tanzania 5.491000 7.310000 3.580000 1.405667 10 10 7.890000 0.718498 6.932000 5.580000 Thailand 5.139000 6.280000 3.860000 Tunisia 0.791629 10 Turkey 6.113000 7.840000 4.400000 1.144660 10 United Kin 5 003000 6.630000 3 000000 1 195548 10 5.090000 0.806033 United States 6.240000 7.130000 10 Venezuela 6.123000 7.810000 4.910000 1.022449 10 5.721199 9.750000 1.630000 1.562079 517 Descriptive Statistics for LEGAL Categorized by values of COUNTRIES Date: 12/13/18 Time: 13:34

Sample: 1970 2015 Included observations: 510

COUNTRIES	Mean	Max	Min.	Std. Dev.	Obs.
Argentina	4.169000	5.700000	1.500000	1.161785	10
Australia	7.849000	8.960000	5.070000	1.098306	10
Austria	8.332500	8.850000	7.880000	0.382352	8
Belgium	7.216000	8.350000	5.730000	0.750529	10
Brazil	4.980000	6.190000	4.200000	0.666217	10
Canada	7.924000	8.950000	5.840000	0.872840	10
Chile	5.131000	6.800000	1.020000	1.743237	10
Colombia	3.615000	4.420000	2.660000	0.586236	10
Congo, D	1.743750	2.650000	0.990000	0.580048	8
Denmark	8.178000	9.090000	6.160000	0.916282	10
Ecuador	4.092000	5.530000	2.660000	0.838793	10
Finland	8.030000	9.280000	4.960000	1.377550	10
France	6.949000	7.730000	4.590000	0.896133	10
Germany	8.041000	9.130000	6.600000	0.753163	10
Greece	5.917000	6.760000	5.380000	0.584543	10
Guatemala	3.445000	4.680000	1.770000	1.181537	8
Hong Kong	7.464000	8.200000	5.940000	0.873425	10
Iceland	7.795000	9.050000	4.960000	1.209373	10
India	4.736000	6.510000	2.090000	1.274931	10
Indonesia	3.413000	4.520000	2.760000	0.629180	10
Iran	3.551000	4.850000	1.370000	1.405240	10
Ireland	7.674000	9.090000	6.380000	0.798877	10
Israel	5.943000	6.850000	3.980000	0.995814	10
Italy	6.145000	7.730000	3.870000	1.054538	10
Japan	7.602000	8.130000	6.160000	0.578596	10
Kenya	4.365000	5.010000	3.430000	0.538336	10 10
Korea, South Luxemboura	5.635000 8.368000	6.900000 9.090000	3.700000 7.830000	1.020438 0.326422	10
Malaysia	5.509000	6.210000	4.120000	0.606565	10
Mexico	5.104000	6.760000	4.090000	0.859938	10
Morocco	4.033000	5.720000	1.610000	1.660027	10
Netherlands	8.094000	9.110000	6.380000	0.745359	10
New Zealand	8.166000	9.170000	5.070000	1.169589	10
Nigeria	3.290000	4.520000	2.370000	0.621271	10
Norway	8.097000	9.190000	5.400000	1.142114	10
Pakistan	3.084000	4.670000	1.410000	1.070495	10
Peru	3.420000	5.100000	0.960000	1.571312	10
Philippines	3.704000	4.660000	2.190000	0.974226	10
Portugal	6.445000	8.040000	1.060000	2.056406	10
Singapore	7.885000	8.580000	6.600000	0.654697	10
South Africa	3.974000	6.060000	1.460000	1.716704	10
Spain	6.055000	7.460000	3.100000	1.490557	10
Sweden	7.538000	8.850000	4.420000	1.357316	10
Switzerland	7.980000	9.140000	6.320000	1.092225	10
Syria	3.290000	4.360000	1.370000	1.097686	8
Tanzania	5.545000	6.250000	4.890000	0.386966	8
Thailand	5.715000	6.520000	4.640000	0.688819	10
Tunisia	4.342000	5.820000	2.770000	1.294336	10
Turkey	4.633000	6.390000	2.470000	1.052194	10
United Kin	7.950000	8.840000	6.650000	0.679722	10
United States	8.099000	9.010000	7.140000	0.627330	10
Venezuela	3.995000	6.220000	2.050000	1.448956	10
All	5.878020	9.280000	0.960000	2.119051	510

Descriptive Statistics for REGULATION Categorized by values of COUNTRIES Date: 12/13/18 Time: 13:34 Sample: 1970 2015 Included observations: 503

Argentina 5.176000 6.340000 3.580000 1.013774 10 Australia 7.364000 8.550000 5.390000 1.167697 10 Austria 6.453000 7.620000 5.160000 0.965793 10 Belgium 6.739000 8.120000 5.330000 1.168241 10 Canada 8.365000 8.700000 7.670000 0.302554 10 Canada 8.365000 8.700000 7.670000 0.302554 10 Colmbia 6.071250 7.170000 5.160000 0.840109 9 Colombia 6.071250 7.1770000 5.160000 0.840109 9 Compan 4.702000 5.800000 3.940000 0.986990 10 Denmark 7.381000 8.600000 6.280000 0.925712 10 Ecuador 5.192500 6.240000 3.880000 0.892488 8 Finland 7.089000 7.880000 5.950000 0.682773 10 Germany	COUNTRIES	Mean	Max	Min.	Std. Dev.	Obs.
Austria 6.453000 7.620000 5.160000 0.965793 10	Argentina	5.176000	6.340000	3.580000	1.013774	10
Belgium 6.739000 8.120000 5.330000 1.168241 10 Brazil 4.887000 5.510000 4.300000 0.409147 10 Canada 8.365000 8.700000 7.670000 0.302554 10 Chile 6.580000 7.550000 4.570000 1.024451 19 Colombia 6.071250 7.170000 5.160000 0.840109 8 Congo, D 4.702000 5.800000 3.940000 0.696990 10 Denmark 7.381000 8.600000 6.280000 0.925712 10 Ecuador 5.192500 6.240000 3.880000 0.892488 8 Finace 6.793000 7.820000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.681701 10 Greece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.584846 10 India <td>Australia</td> <td>7.364000</td> <td>8.550000</td> <td>5.390000</td> <td>1.167697</td> <td>10</td>	Australia	7.364000	8.550000	5.390000	1.167697	10
Brazil 4.887000 5.510000 4.300000 0.409147 10 Canada 8.365000 8.700000 7.670000 0.302554 10 Chile 6.580000 7.550000 4.570000 0.840109 8 Colombia 6.071250 7.170000 5.160000 0.840109 8 Congo, D 4.702000 5.800000 3.940000 0.969690 10 Denmark 7.381000 8.600000 6.280000 0.925712 10 Ecuador 5.192500 6.240000 3.880000 0.892488 8 France 6.793000 7.880000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.861701 10 Gerace 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.254769 9 India </td <td>Austria</td> <td>6.453000</td> <td>7.620000</td> <td>5.160000</td> <td>0.965793</td> <td>10</td>	Austria	6.453000	7.620000	5.160000	0.965793	10
Canada Chile 8.365000 8.700000 7.670000 0.302554 10 Chile Colombia 6.571250 7.170000 1.024451 9 Colombia 6.071250 7.170000 5.160000 0.840109 8 Congo, D 4.702000 5.800000 3.940000 0.696990 10 Denmark 7.381000 8.600000 0.2825712 10 Ecuador 5.192500 6.240000 3.880000 0.892188 8 Finland 7.089000 7.880000 5.950000 0.682773 10 Germany 6.088000 7.850000 5.150000 0.681701 10 Greece 4.942000 6.400000 3.580000 1.0537700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Icaland 6.321000 6.340000 5.240000 0.50484 10 India 6.08202	Belgium	6.739000	8.120000	5.330000	1.168241	10
Chile 6.580000 7.550000 4.570000 1.024451 9 Colombia 6.071250 7.170000 5.160000 0.840109 8 Congo, D 4.702000 5.800000 3.940000 0.696990 10 Denmark 7.381000 8.600000 6.280000 0.925712 10 Ecuador 5.192500 6.240000 3.880000 0.892488 8 Finland 7.089000 7.820000 5.950000 0.592123 10 France 6.793000 7.820000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.861701 10 Greace 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.244000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.254769 9 Icland 6.852222 8.840000 5.240000 1.254769 9 Irland </td <td>Brazil</td> <td>4.887000</td> <td>5.510000</td> <td>4.300000</td> <td>0.409147</td> <td>10</td>	Brazil	4.887000	5.510000	4.300000	0.409147	10
Colombia 6.071250 7.170000 5.160000 0.840109 8 Congo, D 4.702000 5.800000 3.940000 0.996990 10 Denmark 7.381000 8.600000 6.280000 0.925712 10 Ecuador 5.192500 6.240000 3.880000 0.892488 8 Finland 7.089000 7.880000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.861701 10 Gerece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.008000 6.740000 5.240000 0.50484 10 Indonesia 1.018 6.02000 7.380000 3.340000 0.812473 10	Canada	8.365000	8.700000	7.670000	0.302554	10
Congo, D 4.702000 5.800000 3.940000 0.696990 10 Denmark 7.381000 8.600000 6.280000 0.925712 10 Ecuador 5.192500 6.240000 3.880000 0.892488 8 Finland 7.089000 7.880000 6.380000 0.592123 10 France 6.793000 7.850000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.861701 10 Greece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.008000 6.740000 5.240000 0.500484 10 Indonesia 5.018000 6.340000 3.310000 1.210030 10 Ira	Chile	6.580000	7.550000	4.570000	1.024451	9
Denmark 7.381000 8.600000 6.280000 0.925712 10 Ecuador 5.192500 6.240000 3.880000 0.892488 8 Finland 7.089000 7.880000 6.380000 0.592123 10 France 6.793000 7.820000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.861701 10 Greece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.584866 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.085000 6.740000 5.240000 0.500484 10 Indonesia 5.01800 6.340000 3.310000 1.210330 10 Iran 4.311250 5.730000 3.340000 0.812288 8 Ireland	Colombia	6.071250	7.170000	5.160000	0.840109	8
Ecuador Finland 5.192500 6.240000 3.880000 0.892488 8 Finland 7.089000 7.880000 6.380000 0.592123 10 France 6.793000 7.820000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.881701 10 Gerece 4.942000 6.400000 3.580000 1.053700 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.088000 6.740000 5.240000 0.500484 10 Indonesia 5.018000 6.340000 3.310000 1.210030 10 Ireland 7.396000 8.620000 5.49000 0.890421 10 Israel 5.062000 7.380000 3.340000 1.621473 10 Italy 5.849000 7.470000 4.570000 1.150840 10 Kenya	Congo, D	4.702000	5.800000	3.940000	0.696990	10
Finland France 6.793000 7.820000 5.950000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.682773 10 Germany 6.068000 7.850000 5.150000 0.861701 10 Greece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.008000 6.740000 5.240000 0.500484 10 Indonesia 5.018000 6.340000 3.310000 1.210030 Iran 4.311250 5.730000 3.380000 0.812288 8 Ireland 7.396000 8.620000 7.380000 3.340000 0.890421 10 Israel 15.062000 7.380000 3.340000 0.890421 10 Israel 15.062000 7.370000 3.340000 0.890421 10 Israel 15.062000 7.370000 4.570000 1.150840 10 Idaly Japan 7.711000 8.220000 6.830000 0.406050 10 Kenya 6.696000 7.800000 5.470000 0.794749 10 Korea, South 6.058889 7.210000 4.580000 0.935661 9 Luxembourg 7.432000 8.310000 6.900000 0.572748 10 Malaysia 7.344000 8.650000 6.180000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.686037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 7.790000 5.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 0.906252 10 Peru 5.836250 7.670000 3.390000 0.906252 10 Peru 5.836250 7.670000 3.390000 0.906252 10 Singapore 7.449000 8.970000 5.300000 0.0712011 10 Sweden 6.747000 8.240000 5.900000 0.718100 10 Tunisia 5.773000 7.300000 4.700000 0.7748100 0.0764953 9 United Kin Venezuela 4.815000 5.580000 0.680000 0.683360 10	Denmark	7.381000	8.600000	6.280000	0.925712	10
France Germany 6.793000 7.820000 5.950000 0.682773 10 Germany Greece 4.942000 6.400000 3.580000 1.053700 10 Greece 4.942000 6.400000 3.580000 1.053700 10 Gueland Gueland 6.214000 6.950000 5.410000 0.588486 10 Hong Kong India 6.008000 9.430000 7.160000 1.031975 10 India 6.008000 6.740000 5.290000 1.254769 9 India 6.008000 6.740000 5.240000 0.500484 10 India 6.052022 8.840000 3.310000 1.210030 10 Iran 4.311250 5.730000 3.380000 0.812288 8 Ireland 7.396000 8.620000 5.490000 0.890421 10 Israel 5.062000 7.380000 3.340000 1.621473 10 Israel 5.062000 7.470000 4.570000 1.150840 10	Ecuador	5.192500	6.240000	3.880000	0.892488	8
Germany Greece 4.942000 6.400000 5.150000 0.861701 10 Greece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 India 6.085000 6.740000 5.290000 1.254769 9 India 6.085000 6.340000 3.310000 0.500484 10 Indonesia 5.018000 6.340000 3.380000 0.812288 8 Ireland 7.396000 8.620000 5.490000 0.890421 10 Israel 5.062000 7.380000 3.340000 1.621473 10 Italy 5.849000 7.470000 4.570000 1.150840 10 Kenya 6.696000 7.800000 5.470000 0.794749 10 Korea, South 6.058889 7.210000 4.580000 0.935661 9 Lu	Finland	7.089000	7.880000	6.380000	0.592123	10
Greece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.008000 6.740000 5.240000 0.500484 10 Indonesia 5.018000 6.340000 3.310000 1.210030 10 Iran 4.311250 5.730000 3.380000 0.890421 10 Israel 5.062000 7.380000 3.340000 1.621473 10 Kenya 6.696000 7.800000 5.470000 0.794749 10 Koras, South </td <td>France</td> <td>6.793000</td> <td>7.820000</td> <td>5.950000</td> <td>0.682773</td> <td>10</td>	France	6.793000	7.820000	5.950000	0.682773	10
Greece 4.942000 6.400000 3.580000 1.053700 10 Guatemala 6.214000 6.950000 5.410000 0.588486 10 Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.008000 6.740000 5.240000 0.500484 10 Indonesia 5.018000 6.340000 3.310000 1.210030 10 Iran 4.311250 5.730000 3.380000 0.812288 8 Ireland 7.396000 8.620000 5.490000 0.890421 10 Israel 5.062000 7.380000 3.340000 1.621473 10 Italy 5.849000 7.470000 4.570000 1.150840 10 Japan 7.711000 8.220000 6.830000 0.466050 10 Kerya 6.696000 7.800000 5.470000 0.794749 10 Korea, South <td>Germany</td> <td>6.068000</td> <td>7.850000</td> <td>5.150000</td> <td>0.861701</td> <td>10</td>	Germany	6.068000	7.850000	5.150000	0.861701	10
Hong Kong 8.408000 9.430000 7.160000 1.031975 10 Iceland 6.852222 8.840000 5.290000 1.254769 9 India 6.008000 6.740000 5.240000 0.500484 10 Indonesia 5.018000 6.340000 3.310000 1.210030 10 Iran 4.311250 5.730000 3.380000 0.812288 8 Ireland 7.396000 8.620000 5.490000 0.890421 10 Israel 5.062000 7.380000 3.340000 1.621473 10 Israel 5.849000 7.470000 4.570000 1.150840 10 Japan 7.711000 8.220000 6.830000 0.406050 10 Kenya 6.696000 7.800000 5.470000 0.794749 10 Korea, South 6.058889 7.210000 4.580000 0.935661 9 10 10 10 10 10 10 10		4.942000	6.400000	3.580000	1.053700	10
Iceland	Guatemala	6.214000	6.950000	5.410000	0.588486	10
India	Hong Kong	8.408000	9.430000	7.160000	1.031975	10
Indonesia	Iceland	6.852222	8.840000	5.290000	1.254769	9
Iran 4.311250 5.730000 3.380000 0.812288 8 Ireland 7.396000 8.620000 5.490000 0.890421 10 Israel 5.062000 7.380000 3.340000 1.621473 10 Italy 5.849000 7.470000 4.570000 1.150840 10 Japan 7.711000 8.220000 6.830000 0.406050 10 Kenya 6.696000 7.800000 5.470000 0.794749 10 Korea, South 6.058889 7.210000 4.580000 0.935661 9 Luxembourg 7.432000 8.310000 6.900000 0.572748 10 Malaysia 7.344000 8.650000 6.180000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zeala	India	6.008000	6.740000	5.240000	0.500484	10
Ireland	Indonesia	5.018000	6.340000	3.310000	1.210030	10
Israel 5.062000	Iran	4.311250	5.730000	3.380000	0.812288	8
Italy	Ireland	7.396000	8.620000	5.490000	0.890421	10
Japan 7.711000 8.220000 6.830000 0.406050 10 Kenya 6.696000 7.800000 5.470000 0.794749 10 Korea, South 6.058889 7.210000 4.580000 0.935661 9 Luxembourg 7.432000 8.310000 6.900000 0.572748 10 Malaysia 7.344000 8.650000 6.180000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pair 5.836250 7.670000 3.390000 1.901473 8 Phil	Israel	5.062000	7.380000	3.340000	1.621473	10
Kenya 6.696000 7.800000 5.470000 0.794749 10 Korea, South 6.058889 7.210000 4.580000 0.935661 9 Luxembourg 7.432000 8.310000 6.900000 0.572748 10 Malaysia 7.344000 8.650000 6.180000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 New Zealand 7.809000 9.110000 6.350000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 <	Italy	5.849000	7.470000	4.570000	1.150840	10
Korea, South 6.058889 7.210000 4.580000 0.935661 9 Luxembourg 7.432000 8.310000 6.900000 0.572748 10 Malaysia 7.344000 8.650000 6.180000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Portugal 5.287000 7.060000 4.100000 1.055547 10 <t< td=""><td>Japan</td><td>7.711000</td><td>8.220000</td><td>6.830000</td><td>0.406050</td><td>10</td></t<>	Japan	7.711000	8.220000	6.830000	0.406050	10
Luxembourg 7.432000 8.310000 6.900000 0.572748 10 Malaysia 7.344000 8.650000 6.180000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10	Kenya	6.696000	7.800000	5.470000	0.794749	10
Malaysia 7.344000 8.650000 6.180000 0.883543 10 Mexico 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 <	Korea, South	6.058889	7.210000	4.580000	0.935661	9
Mexico Morocco 5.844444 7.120000 3.740000 1.178814 9 Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.90000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.340000 5.300000 0.712011 10	Luxembourg	7.432000	8.310000	6.900000	0.572748	10
Morocco 5.358750 6.210000 4.550000 0.656037 8 Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.340000 0.902330 9 Portugal 5.287000 7.960000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.340000 0.801044 10 Sweden 6.747000 8.240000 5.300000 0.801044 10 S	Malaysia	7.344000	8.650000	6.180000	0.883543	10
Netherlands 6.782000 8.190000 5.280000 1.129019 10 New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Sweden 6.747000 8.240000 5.300000 0.712011 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10	Mexico	5.844444	7.120000	3.740000	1.178814	9
New Zealand 7.809000 9.110000 6.350000 1.201697 10 Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Spain 6.364000 7.340000 5.300000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Ta	Morocco	5.358750	6.210000	4.550000	0.656037	8
Nigeria 5.905556 7.310000 4.820000 1.051072 9 Norway 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Swain 6.364000 7.340000 5.300000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 7.270000 2.690000 1.519621 10 Ta	Netherlands	6.782000	8.190000	5.280000	1.129019	10
Norway Pakistan 6.669000 7.790000 5.350000 0.805336 10 Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Sweden 6.747000 8.240000 5.300000 0.712011 10 Switzerland 7.265000 8.580000 5.850000 1.054494 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 0.718100 10 Tunisia 5.773000 7.300000 4.700000 0.970327 10	New Zealand	7.809000	9.110000	6.350000	1.201697	10
Pakistan 5.636000 6.600000 3.350000 0.906252 10 Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Spain 6.364000 7.340000 5.460000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 0.718100 10 Turisia 5.773000 7.300000 4.700000 0.970327 10 <td< td=""><td>Nigeria</td><td>5.905556</td><td>7.310000</td><td>4.820000</td><td>1.051072</td><td>9</td></td<>	Nigeria	5.905556	7.310000	4.820000	1.051072	9
Peru 5.836250 7.670000 3.390000 1.901473 8 Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.955547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Spain 6.364000 7.340000 5.460000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.054494 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Turkey 5.534444 6.490000 4.700000 0.976953 9 U	Norway	6.669000	7.790000	5.350000	0.805336	10
Philippines 6.663333 7.900000 5.340000 0.902330 9 Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Spain 6.364000 7.340000 5.300000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.557735 10	Pakistan	5.636000	6.600000	3.350000	0.906252	10
Portugal 5.287000 7.060000 4.100000 1.055547 10 Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Spain 6.364000 7.340000 5.300000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Peru	5.836250	7.670000	3.390000	1.901473	8
Singapore 7.449000 8.970000 5.140000 1.457833 10 South Africa 6.675000 7.490000 5.300000 0.801044 10 Spain 6.364000 7.340000 5.460000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 0.718100 10 Tunisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Philippines	6.663333	7.900000	5.340000	0.902330	9
South Africa 6.675000 7.490000 5.300000 0.801044 10 Spain 6.364000 7.340000 5.460000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Turisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Portugal	5.287000	7.060000	4.100000	1.055547	10
Spain 6.364000 7.340000 5.460000 0.712011 10 Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Turisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Singapore	7.449000	8.970000	5.140000	1.457833	10
Sweden 6.747000 8.240000 5.300000 1.054494 10 Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Tunisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	South Africa	6.675000	7.490000	5.300000	0.801044	10
Switzerland 7.265000 8.580000 5.850000 1.015253 10 Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Tunisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Spain	6.364000	7.340000	5.460000	0.712011	10
Syria 4.034000 6.010000 2.720000 1.563566 10 Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Turisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Sweden	6.747000	8.240000	5.300000	1.054494	10
Tanzania 4.846000 7.270000 2.690000 1.519621 10 Thailand 6.303000 7.090000 5.090000 0.718100 10 Tunisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Switzerland	7.265000	8.580000	5.850000	1.015253	10
Thailand 6.303000 7.090000 5.090000 0.718100 10 Tunisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Syria	4.034000	6.010000	2.720000	1.563566	10
Tunisia 5.773000 7.300000 4.700000 0.970327 10 Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Tanzania	4.846000	7.270000	2.690000	1.519621	10
Turkey 5.534444 6.490000 4.410000 0.764953 9 United Kin 7.943000 8.590000 6.920000 0.634316 10 United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Thailand	6.303000	7.090000	5.090000	0.718100	10
United Kin 7.943000 8.590000 6.920000 0.634316 10 United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Tunisia	5.773000	7.300000	4.700000	0.970327	10
United States 8.337000 8.710000 6.840000 0.557735 10 Venezuela 4.815000 5.580000 2.560000 0.889360 10	Turkey	5.534444	6.490000	4.410000	0.764953	9
Venezuela 4.815000 5.580000 2.560000 0.889360 10	United Kin	7.943000	8.590000	6.920000	0.634316	10
	United States	8.337000	8.710000	6.840000	0.557735	10
All 6.328867 9.430000 2.560000 1.428200 503	Venezuela	4.815000	5.580000	2.560000	0.889360	10
	All	6.328867	9.430000	2.560000	1.428200	503

Appendix 3 – Summary Graphs

Appendix 4 – Residuals Plots (before)

Appendix 5 – Residuals Plots (after)

Appendix 6 – EViews Code

regulation.statby(max, min, nov, noa, p) countries

```
'Antonio Jurlina
                                                                       close regulation
'ECO 530
                                                                       graph gregulation.line(m, ab = histogram, panel = individual)
'Final Project Program
                                                                       regulation
'11/6/2018
                                                                       gregulation.options connect
                                                                       results.insert gregulation
cd "E:\UMaine\Fall (2018)\ECO 530\economicfreedom"
                                                                       group variables growth gdp gov legal money regulation trade
                                                                       matrix x = @cor(variables)
wfopen "gdp_data"
                                                                       x.setcollabels growth gdp gov legal money regulation trade
                                                                       x.setrowlabels growth gdp gov legal money regulation trade x.displayname Correlation Matrix
spool results
output(s) results
                                                                       x.label
'creating variables necessary to introduce growth to the
                                                                       results.insert x
series pp = log(gdp)
                                                                       delete ggdp ggov glegal gtrade gmoney gregulation ggrowth
series growth = (pp - pp(-1)) / 5
                                                                       world_gdp usd
                                                                       delete variables rank economic_freedom_summary_index x
""" Creating summary statistics, graphs and a covariance
                                                                       results.displayname untitled01 "Data Set"
                                                                       results.displayname untitled02 "GDP per capita"
                                                                       results.displayname untitled03 "GDP per capita"
alpha country = countries
                                                                       results.displayname untitled04 "Growth rate"
                                                                       results.displayname untitled05 "Growth rate"
group dataset country year gdp gov growth*100 legal money
                                                                       results.displayname untitled06 "Size of Government"
oecd pp regulation trade
results.insert dataset
                                                                       results.displayname untitled07 "Size of Government"
                                                                       results.displayname untitled08 "Legal System & Property
delete country
                                                                       Rights"
gdp.statby(max, min, nov, noa, p) countries
                                                                       results.displayname untitled09 "Legal System & Property
close adp
                                                                       Rights"
                                                                       results.displayname untitled10 "Sound Money"
graph ggdp.line(m, ab = histogram, panel = individual) gdp
ggdp.options connect
                                                                       results.displayname untitled11 "Sound Money"
                                                                       results.displayname untitled12 "Freedom to trade
results.insert ggdp
                                                                       internationally
growth.statby(max, min, nov, noa, p) countries
                                                                       results.displayname untitled13 "Freedom to trade
close growth
                                                                       internationally"
graph ggrowth.line(m, ab = histogram, panel = individual)
                                                                       results.displayname untitled14 "Regulation"
growth
                                                                       results.displayname untitled15 "Regulation"
                                                                       results.displayname untitled16 "Correlation Matrix"
ggrowth.options connect
results.insert ggrowth
gov.statby(max, min, nov, noa, p) countries
                                                                       """ end of summary statistics
close gov
graph ggov.line(m, ab = histogram, panel = individual) gov
ggov.options connect
results.insert ggov
                                                                       """ Fixed effects OLS models
legal.statby(max, min, nov, noa, p) countries
close legal
graph glegal.line(m, ab = histogram, panel = individual) legal
glegal options connect
                                                                       equation eq_a.ls(cx=f) growth c gov(-1) legal(-1) money(-1)
results.insert glegal
                                                                       trade(-1) regulation(-1) pp(-1)
                                                                       results.insert eq_a
                                                                       results.displayname untitled17 "OLS (pooled)"
money.statby(max, min, nov, noa, p) countries
close money
graph gmoney.line(m, ab = histogram, panel = individual)
                                                                       smpl if oecd = 0
money
                                                                       equation eq_b.ls(cx=f) growth c gov(-1) legal(-1) money(-1)
gmoney.options connect
                                                                       trade(-1) regulation(-1) pp(-1)
results.insert gmoney
                                                                       results.insert eq_b
                                                                       results.displayname untitled18 "OLS (non-OECD)"
trade.statby(max, min, nov, noa, p) countries
close trade
                                                                       smpl if oecd = 1
graph gtrade.line(m, ab = histogram, panel = individual)
                                                                       equation eq_c.ls(cx=f) growth c gov(-1) legal(-1) money(-1)
                                                                       trade(-1) regulation(-1) pp(-1)
trade
gtrade.options connect
                                                                       results.insert eq_c
results.insert gtrade
                                                                       results.displayname untitled19 "OLS (OECD)"
```

""""" End of OLS estimation	smpl @all
	eq_a.forecast(e, g) growthf
	graph hetero1.scat(panel = stack) growthf resid_a
	hetero1.axis(b) angle(auto)
""" Toete	hetero1.legend position(LEFT)
""" Tests	hetero1.setelem(1) symbol(CIRCLE) linepattern(none)
	linecolor(@rgb(57,106,177))
1111111	hetero1.setelem(1) legend(Fitted Values)
	hetero1.setelem(2) legend(Residuals)
smpl @all	hetero1.setelem(1) axis(b)
equation eq_d.ls(cx=f, per=f) growth c gov(-1) legal(-1)	results.insert hetero1
money(-1) trade(-1) regulation(-1) pp(-1)	results.displayname untitled29 "OLS (pooled) Residuals
eq_d.fixedtest(p) results.displayname untitled20 "Redundancy Test a"	Plot"
smpl if oecd = 0	amplif acad – 0
equation eq_e.ls(cx=f, per=f) growth c gov(-1) legal(-1)	smpl if oecd = 0 eq_b.forecast(e, g) growthf
money(-1) trade(-1) regulation(-1) pp(-1)	graph hetero2.scat(panel = stack) growthf resid_b
eq_e.fixedtest(p)	hetero2.axis(b) angle(auto)
results.displayname untitled21 "Redundancy Test b"	hetero2.legend position(LEFT)
smpl if oecd = 1	hetero2.setelem(1) symbol(CIRCLE) linepattern(none)
equation eq_f.ls(cx=f, per=f) growth c gov(-1) legal(-1)	linecolor(@rgb(57,106,177))
money(-1) trade(-1) regulation(-1) pp(-1)	hetero2.setelem(1) legend(Fitted Values)
eq_f.fixedtest(p)	hetero2.setelem(2) legend(Residuals)
results.displayname untitled22 "Redundancy Test c"	hetero2.setelem(1) axis(b)
close eq_d	results.insert hetero2
close eq_e	results.displayname untitled30 "OLS (non-OECD) Residuals
close eq_f	Plot"
_	
smpl @all	smpl if oecd = 1
equation eq_d.ls(cx=r) growth c gov(-1) legal(-1) money(-1)	eq_c.forecast(e, g) growthf
trade(-1) regulation(-1) pp(-1)	graph hetero3.scat(panel = stack) growthf resid_c
eq_d.ranhaus(p)	hetero3.axis(b) angle(auto)
close eq_d	hetero3.legend position(LEFT)
results.displayname untitled23 "RE vs FE Test a"	hetero3.setelem(1) symbol(CIRCLE) linepattern(none)
	linecolor(@rgb(57,106,177))
smpl if oecd = 0	hetero3.setelem(1) legend(Fitted Values)
equation eq_e.ls(cx=r) growth c gov(-1) legal(-1) money(-1)	hetero3.setelem(2) legend(Residuals)
trade(-1) regulation(-1) pp(-1)	hetero3.setelem(1) axis(b)
eq_e.ranhaus(p)	results.insert hetero3
close eq_e	results.displayname untitled31 "OLS (OECD) Residuals Plot"
results.displayname untitled24 "RE vs FE Test b"	
amplif acad – 1	delete res_a res_b res_c hetero1 hetero2 hetero3 resid_a
smpl if oecd = 1	resid_b resid_c growthf
equation eq_f.ls(cx=r) growth c gov(-1) legal(-1) money(-1) trade(-1) regulation(-1) pp(-1)	ampl @all
eq_f.ranhaus(p)	smpl @all equation eq_g.ls(cx=f) growth c gov(-1) legal(-1) money(-1)
close eq_f	trade(-1) regulation(-1) pp(-1) ar(1) ar(2)
results.displayname untitled25 "RE vs FE Test c"	results.insert eq_g
results.displayfiame untitled25 RE VSTE Test C	results.displayname untitled32 "OLS (pooled)"
smpl @all	Totalio. displaymante unulledoz OLO (publica)
EQ_A.makeresids resid_a	smpl if oecd = 0
graph res_a.spike(m, panel = combine) resid_a	equation eq_h.ls(cx=f) growth c gov(-1) legal(-1) money(-1)
res_a.options connect	trade(-1) regulation(-1) pp(-1) ar(1) ar(2)
results.insert res_a	results.insert eq h
results.displayname untitled26 "OLS (pooled) Residuals"	results.displayname untitled33 "OLS (non-OECD)"
(poolog) Notice	recurrence and an arrangement of the contract
smpl if oecd = 0	smpl if oecd = 1
EQ_B.makeresids resid_b	equation eq_i.ls(cx=f) growth c gov(-1) legal(-1) money(-1)
graph res_b.spike(m, panel = combine) resid_b	trade(-1) regulation(-1) pp(-1) ar(1) ar(2)
res_b.options connect	results.insert eq_i
results.insert res_b	results.displayname untitled34 "OLS (OECD)"
results.displayname untitled27 "OLS (non-OECD) Residuals"	
smpl if oecd = 1	11111111
EQ_C.makeresids resid_c	"" end of tests
graph res_c.spike(m, panel = combine) resid_c	
res_c.options connect	
results.insert res_c	smpl @all
results.displayname untitled28 "OLS (OECD) Residuals"	

```
equation eq_i.ls(cx=f, wgt=cxdiag, deriv=aa) growth c gov(-
                                                                       eq_l.makeresids resid_l
1) legal(-1) money(-1) trade(-1) regulation(-1) pp(-1) ar(1)
                                                                       graph res_l.spike(m, panel = combine) resid_l
                                                                       res_l.options connect
results.insert eq_i
                                                                       results.insert res_I
results.displayname untitled35 "OLS (pooled)"
                                                                       results.displayname untitled43 "OLS (OECD) Residuals"
smpl if oecd = 0
                                                                       smpl @all
                                                                       eq_j.forecast(e, g) growthf
equation eq_k.ls(cx=f, wgt=cxdiag, deriv=aa) growth c gov(-
1) legal(-1) money(-1) trade(-1) regulation(-1) pp(-1) ar(1)
                                                                       graph hetero1.scat(panel = stack) growthf resid_i
                                                                       hetero1.axis(b) angle(auto)
                                                                       hetero1.legend position(LEFT)
results.insert eg k
                                                                       hetero1.setelem(1) symbol(CIRCLE) linepattern(none)
results.displayname untitled36 "OLS (non-OECD)"
                                                                       linecolor(@rgb(57,106,177))
smpl if oecd = 1
                                                                       hetero1.setelem(1) legend(Fitted Values)
equation eq_I.ls(cx=f, wgt=cxdiag, deriv=aa) growth c gov(-
                                                                       hetero1.setelem(2) legend(Residuals)
1) legal(-1) money(-1) trade(-1) regulation(-1) pp(-1) ar(1)
                                                                       hetero1.setelem(1) axis(b)
                                                                       results.insert hetero1
results.insert eq 1
                                                                       results.displayname untitled44 "OLS (pooled) Residuals
results.displayname untitled37 "OLS (OECD)"
                                                                       Plot"
smpl @all
                                                                       smpl if oecd = 0
equation eq_m.ls(cx=f, per=f) growth c gov(-1) legal(-1)
                                                                       eq_k.forecast(e, g) growthf
money(-1) trade(-1) regulation(-1) pp(-1)
                                                                       graph hetero2.scat(panel = stack) growthf resid_k
                                                                       hetero2.axis(b) angle(auto)
results.insert ea m
results.displayname untitled38 "OLS (pooled)"
                                                                       hetero2.legend position(LEFT)
                                                                       hetero2.setelem(1) symbol(CIRCLE) linepattern(none)
                                                                       linecolor(@rgb(57,106,177))
smpl if oecd = 0
equation eq_n.ls(cx=f, per=f) growth c gov(-1) legal(-1)
                                                                       hetero2.setelem(1) legend(Fitted Values)
money(-1) trade(-1) regulation(-1) pp(-1)
                                                                       hetero2.setelem(2) legend(Residuals)
                                                                       hetero2.setelem(1) axis(b)
results.insert ea n
results.displayname untitled39 "OLS (non-OECD)"
                                                                       results.insert hetero2
                                                                       results.displayname untitled45 "OLS (non-OECD) Residuals
smpl if oecd = 1
                                                                       Plot"
equation eq_o.ls(cx=f, per=f) growth c gov(-1) legal(-1)
money(-1) trade(-1) regulation(-1) pp(-1)
                                                                       smpl if oecd = 1
results.insert eq o
                                                                       eq_l.forecast(e, g) growthf
results.displayname untitled40 "OLS (OECD)"
                                                                       graph hetero3.scat(panel = stack) growthf resid_l
                                                                       hetero3.axis(b) angle(auto)
                                                                       hetero3.legend position(LEFT)
smpl @all
eq_j.makeresids resid_j
                                                                       hetero3.setelem(1) symbol(CIRCLE) linepattern(none)
                                                                       linecolor(@rgb(57,106,177))
graph res_j.spike(m, panel = combine) resid_j
                                                                       hetero3.setelem(1) legend(Fitted Values)
res_j.options connect
                                                                       hetero3.setelem(2) legend(Residuals)
results.insert res_i
results.displayname untitled41 "OLS (pooled) Residuals"
                                                                       hetero3.setelem(1) axis(b)
                                                                       results.insert hetero3
smpl if oecd = 0
                                                                       results.displayname untitled46 "OLS (OECD) Residuals Plot"
eq_k.makeresids resid_k
graph res_k.spike(m, panel = combine) resid_k
                                                                       delete res_j res_k res_l hetero1 hetero2 hetero3 resid_j
res_k.options connect
                                                                       resid_k resid_l growthf
results.insert res_k
results.displayname untitled42 "OLS (non-OECD) Residuals"
                                                                       results.options displaynames
```

smpl if oecd = 1