A function that is not one-to-one is **many-to-one**.

► Implied domains

If the domain of a function is not specified, then the domain is the largest subset of \mathbb{R} for which the rule is defined; this is called the **implied domain** or the **maximal domain**.

Thus, for the function $f(x) = \sqrt{x}$, the implied domain is $[0, \infty)$. We write:

$$f: [0, \infty) \to \mathbb{R}, \ f(x) = \sqrt{x}$$

Example 12

Find the implied domain and the corresponding range for the functions with rules:

a
$$f(x) = 2x - 3$$

a
$$f(x) = 2x - 3$$
 b $f(x) = \frac{1}{(x - 2)^2}$ **c** $f(x) = \sqrt{x + 6}$ **d** $f(x) = \sqrt{4 - x^2}$

$$f(x) = \sqrt{x+6}$$

$$\mathbf{d} \ f(x) = \sqrt{4 - x^2}$$

Solution

- **a** f(x) = 2x 3 is defined for all x. The implied domain is \mathbb{R} . The range is \mathbb{R} .
- **b** $f(x) = \frac{1}{(x-2)^2}$ is defined for $x \neq 2$. The implied domain is $\mathbb{R} \setminus \{2\}$. The range is \mathbb{R}^+ .
- c $f(x) = \sqrt{x+6}$ is defined for $x+6 \ge 0$, i.e. for $x \ge -6$. Thus the implied domain is $[-6, \infty)$. The range is $\mathbb{R}^+ \cup \{0\}$.
- d $f(x) = \sqrt{4 x^2}$ is defined for $4 x^2 \ge 0$, i.e. for $x^2 \le 4$. Thus the implied domain is [-2, 2]. The range is [0, 2].

Example 13

Find the implied domain of the functions with the following rules:

a
$$f(x) = \frac{2}{2x-3}$$

b
$$g(x) = \sqrt{5 - x}$$

$$h(x) = \sqrt{x-5} + \sqrt{8-x}$$

d
$$f(x) = \sqrt{x^2 - 7x + 12}$$

Solution

- **a** f(x) is defined when $2x-3\neq 0$, i.e. when $x\neq \frac{3}{2}$. Thus the implied domain is $\mathbb{R}\setminus\{\frac{3}{2}\}$.
- **b** g(x) is defined when $5 x \ge 0$, i.e. when $x \le 5$. Thus the implied domain is $(-\infty, 5]$.
- h(x) is defined when $x-5 \ge 0$ and $8-x \ge 0$, i.e. when $x \ge 5$ and $x \le 8$. Thus the implied domain is [5, 8].
- **d** f(x) is defined when

$$x^2 - 7x + 12 \ge 0$$

which is equivalent to

$$(x-3)(x-4) \ge 0$$

Thus f(x) is defined when $x \ge 4$ or $x \le 3$. The implied domain is $(-\infty, 3] \cup [4, \infty)$.

