

Matrix Model Symmetries

Jimmy Lee & Peter Stuckey

Lit Lamps on Each Row

7

Lit Lamps on Each Column

8

Lit Lamps on Each Column

9

Lit Lamps on Each Column

10

Lit Lamps on Each Column

11

Lit Lamps on Each Column

12

Lit Lamps on Each Column

13

Common Lit Lamps Between 2 Rows

14

The Tao of Peace

$$v = 7$$
, $b = 56$, $r = 24$, $k = 3$, $\lambda = 8$

17

The Lamp Lighting Problem

- In order to stop the rain before the Chibi war, Zhuge Liang decided to lit the Lamps of the Big Dipper with the following requirements:
 - the lamps are arranged in a v x b matrix
 - each row has exactly r lit lamps
 - each column has exactly k lit lamps
 - $_{\text{\tiny{0}}}$ between any two distinct rows, the number of columns containing two lit lamps is λ

18

The Lamp Model (lamp.mzn)

■ Data

```
int: v;
set of int: ROW = 1..v;
int: b;
set of int: COL = 1..b;
int: r;
int: k;
int: lambda;
```

■ Decisions: which lamps are lit

```
array[ROW,COL] of var bool: m;
solve satisfy;
```

19

The Lamp Model (lamp.mzn)

■ Every row has r lit lamps

```
forall(i in ROW)(sum(j in COL)(m[i,j]) = r);
```

```
forall(j in COL)(sum(i in ROW)(m[i,j]) = k);
```

The number of common lit lamp positions in any two rows is λ

20

Running the Lamp Model

■ With the data file

```
v = 7;
b = 56;
r = 24;
k = 3;
lambda = 8;
```

- No solution in 10 minutes!
- What's the problem?
 - Too many symmetries!

21

Matrix Symmetries

- Interchangeable rows
 - swapping any number of rows in a lamp solution gives another solution

22

Matrix Symmetries

- Interchangeable columns
 - swapping any number of columns in a lamp solution gives another solution

23

Matrix Symmetries

- Composition of symmetries
 - swapping any number of columns, then swapping any number of rows, is also a solution

24

LexLeader Symmetry Breaking

■ One lex leader constraint per symmetry

- 1. ABCDEF ≤_{lex} ABCDEF
- 2. ABCDEF \leq_{lex} ACBDFE
- 3. ABCDEF ≤_{lex} BACEDF
- 4. ABCDEF \leq_{lex} CBAFED
- 5. ABCDEF \leq_{lex} BCAEFD
- 6. ABCDEF ≤_{lex} CABFDE
- 7. ABCDEF ≤ lex DEFABC
- 8. ABODEF ≤_{lex} DFEACB
- 9. ABCDEF ≤_{1ex} EDFBAC 10.ABCDEF ≤_{1ex} FEDCBA
- 11.ABCDEF ≤_{lex} EFDBCA
- 12.ABCDEF ≤_{lex} FDECAB

25

LexLeader Symmetry Breaking

- ★ Totally n!m! number of symmetries for a nxm matrix
- Breaking all symmetries requires an exponential number (n!m!) of LexLeader constraints
- Too many constraints to add and handle!
- We can choose only a subset of symmetries to break

26

LexLeader Symmetry Breaking

■ One lex leader constraint per symmetry

- 1. ABCDEF ≤_{lex} ABCDEF
- 2. ABCDEF ≤_{lex} ACBDFE
- 3. ABCDEF ≤_{lex} BACEDF
- 4. ABCDEF ≤_{lex} CBAFED
- 6. ABCDEF ≤_{lex} CABFDE
- 5. ABCDEF ≤_{lex} BCAEFD
- 7. ABCDEF ≤_{lex} DEFABC
- 8. ABCDEF ≤_{lex} DFEACB
- 9. ABCDEF ≤_{lex} EDFBAC
- 10.ABCDEF ≤_{lex} FEDCBA
- 11.ABCDEF ≤_{lex} EFDBCA
- 12.ABCDEF ≤_{lex} FDECAB.

27

Partial LexLeader Symmetry Breaking

One lex leader constraint per selected symmetry

- **# ABCDEF** ≤_{lex} **DEFABC**
- **# ABCDEF** ≤_{lex} **ACBDFE**
- **# ABCDEF** ≤_{lex} BACEDF
- Simplify the constraints, e.g.
 - ABCDEF ≤_{lex} ACBDFE
 - BCEF ≤_{lex} CBFE removing same positions
 - $XY \leq_{lex} YX \Rightarrow X \leq Y$ BE ≤_{lex} CF

28

Partial LexLeader Symmetry Breaking

- ****** ABCDEF \leq_{lex} DEFABC \iff ABC \leq_{lex} DEF
- **#** ABCDEF ≤_{lex} ACBDFE ⇔ BE ≤_{lex} CF
- **■** ABCDEF ≤_{lex} BACEDF ⇔ AD ≤_{lex} BE
- Does not break all symmetries, e.g.
 - ABCDEF = 011100
 - Now 011 \leq_{lex} 100, 10 \leq_{lex} 10, 01 \leq_{lex} 10
 - but not ≤_{lex} 001110 = FEDCBA

29

DoubleLex Symmetry Breaking

- Simply require
 - adjacent rows to be in lexicographic order

adjacent columns to be in lexicographic order

- **#** ABCDEF ≤_{lex} DEFABC ⇔ ABC ≤_{lex} DEF
- **#** ABCDEF ≤_{lex} ACBDFE ⇔ BE ≤_{lex} CF
- $_{ t H}$ ABCDEF $\leq_{ t lex}$ BACEDF \iff AD $\leq_{ t lex}$ BE

30

DoubleLex Symmetry Breaking

Add the symmetry breaking to the model

Or use a global (lamp-dl.mzn)

```
include "double_lex.mzn";
double_lex(m);
```

(lamp-sym.mzn)

31

DoubleLex Symmetry Breaking

- Does not break all v! × b! symmetries
 - but breaks sufficiently many
- ₩ With the same data file as before
- Solution in 7s

$$v = 7$$
, $b = 56$, $r = 24$, $k = 3$, $\lambda = 8$

32

DoubleLex Symmetry Breaking

- Does not break all v! × b! symmetries
 - but breaks sufficiently many
- With the same data file as before
- Solution in 7s

 $v=7,\,b=56,\,r=24,\,k=3,\,\lambda=8$

33

Summary

- Matrix problems
 - where the answer is a 2D matrix of values
- Often have row and column symmetries
- Usually too expensive to break all
- **Global constraint** double lex
 - is efficient and breaks many symmetries
- ★ The Lamp model is actually the Balanced Incomplete Block Design (BIBD) in disguise
 - an important problem in experiment design

34

Summary

- Symmetry breaking is a double edge sword
 - Pros: can drastically reduce search space
 - Cons: symmetry breaking constraints can become overheads to slow down computations
- Especially in the case when we want only one solution
 - solving might be slower with symmetry breaking
 - search strategy becomes more important than size of search space in deciding the solving efficiency
 - the important topic of "search strategy" will be discussed in detail in the future

35

Image Credits

All graphics by Marti Wong, ©The Chinese University of Hong Kong and the University of Melbourne 2016

36