

PRICE, 5 CENTS

DEPARTMENT OF COMMERCE

BUREAU OF STANDARDS George K. Burgess, Director

(Supersedes M 78) No. 82

of the Bureau of Standards Miscellaneous Publication

Standard Atmosphere Chart

Officially adopted by all interested United States Government organizations for aeronautics and related purposes.

Miscellaneous Publication of the Bureau of Standarda No. 82 (Supersedes M 78)

Standard Atmosphere Chart

STANDARD AIMOSPHERE

By W. G. BROMBACHER, Physicist

air density. The results of wind-tunnel investigacalibrated to indicate true air speed at a standard of a standard atmosphere. Air-speed indicators are of altitude according to the altitude-pressure relation stated in terms of altitudes which correspond to the altitude-temperature relation. A standard atmosdefined by an altitude-temperature-pressure relation. The chief difference among the various atmospheres tions are also reduced to a standard density of air. pressure-measuring instruments graduated in terms pressure, and density. Further, altimeters are same standard conditions of air temperature, airplane, such as its rate of climb or ceiling, in order instruments. For example, the performance of an phere is an aeronautic necessity in evaluating the which have been proposed lies in the selection of the assumed condition of the atmosphere which is to be comparable with that of other machines is performance of airplanes and for the calibration of In aeronautics a standard atmosphere is

ards, National Advisory Committee for Aeronautics, Navy Bureau of Acronautics, and the Weather Bureau. This atmosphere is now in aeronautic purposes by the following Government organizations: Army Air Corps, Bureau of Stand-States standard is a slight modification of that standard atmosphere is the basis of comparison case the Fédération Aéronautique Internationale nautics except in the evaluation of the altitude of general use throughout the United States in aero-The altitude-temperature assumption of the United flights made to break international records, in which for use in the United States for the above and other A standard atmosphere has been officially adopted

(b) Up to the isothermal layer (below 10,769 m)

$$T = 288 - aZ \tag{3}$$

$$T_{\rm m} = \frac{aZ}{\log_{\rm e} \frac{T_{\rm o}}{T_{\rm o} - aZ}} \tag{4}$$

a = 0.0065000 for Z in meters. = 0.0019812 for Z in feet.

(10,769 m) (c) At the lower limit of the isothermal layer

$$T = 218^{\circ} \text{ absolute} = -55^{\circ} \text{ C}.$$

 $T_{\text{m55}} = 251.378^{\circ} \text{ absolute}$ $Z_{55} = 35,332$ feet = 10,769 meters

(d) In the isothermal layer (above 10,769 m) $T=218^{\circ}$ absolute $=-55^{\circ}$ C.

$$T_{\rm m} = \frac{Z_{\rm 55}}{T_{\rm m55}} + \frac{Z - Z_{\rm 55}}{218} \tag{5}$$

In the above formulas

Z = Standard altitude

 Z_{55} = Altitude at the lower limit of the isothermal layer.

T=Absolute temperature of the air at altitude Z.

 $T_{\rm o}$ = Standard sea-level temperature in degrees absolute

T_m = Mean temperature of the air column lute. below altitude Z in degrees abso-

By W. G. BROMBACHER, Physicist

In aeronauties a standard atmosphere is an assumed condition of the atmosphere which is defined by an altitude-temperature-pressure relation. The chief difference among the various atmospheres which have been proposed lies in the selection of the altitude-temperature relation. A standard atmosphere is an aeronautic necessity in evaluating the performance of airplanes and for the calibration of instruments. For example, the performance of an airplane, such as its rate of climb or ceiling, in order to be comparable with that of other machines is stated in terms of altitudes which correspond to the same standard conditions of air temperature. same standard conditions of air temperature, pressure, and density. Further, altimeters are pressure-measuring instruments graduated in terms of altitude according to the altitude-pressure relation of a standard atmosphere. Air-speed indicators are calibrated to indicate true air speed at a standard air density. The results of wind-tunnel investigations are also reduced to a standard density of air.

A standard atmosphero has been officially adopted for use in the United States for the above and other aeronautic purposes by the following Government organizations: Army Air Corps, Bureau of Standards, National Advisory Committee for Aeronautics, Navy Bureau of Aeronautics, and the Weather Bureau. This atmosphere is now in general use throughout the United States in aeronautics except in the evaluation of the altitude of flights made to break international records, in which easo the Fédération Aéronautique Internationale standard atmosphere is the basis of comparison. staudard atmosphere is the basis of comparison. The altitude-temperature assumption of the United States standard is a slight modification of that proposed by Toussaint and closely approximates the average observed values of air temperature at all altitudes at latitude 40° in the United States. The formulas defining the United States standard

atmosphore are given below.

(a) For all standard altitudes

$$Z = K \frac{T_{\rm m}}{T_{\rm c}} \log_{10} \frac{p_{\rm o}}{n} \tag{1}$$

$$Z = K \frac{T_{\rm m}}{T_{\rm o}} \log_{10} \frac{p_{\rm o}}{p}$$

$$\rho = \rho_{\rm o} \frac{p}{p_{\rm o}} \frac{T_{\rm o}}{T}$$

$$(2)$$

 $T_0 = 288^{\circ}$ absolute = 15° C.

 $p_0 = 760 \text{ mm of Hg} = 29.921 \text{ in. of Hg}.$

K=19,413.3 for Z in meters. = 63,691.8 for Z in feet.

 $\rho_0 = 1.2255$ for ρ in kg/m³ = 0.07651 for ρ in lbs./ ft.3 (b) Up to the isothermal layer (below 10,769 m)

$$T_{\rm m} = \frac{aZ}{\log_{\rm o} \frac{T_{\rm o}}{T_{\rm o} - aZ}} \tag{4}$$

a = 0.0065000 for Z in meters. = 0.0019812 for Z in feet.

(c) At the lower limit of the isothermal layer (10,769 m)

 $T=218^{\circ}$ absolute = -55° C. $Z_{55} = 35,332$ feet = 10,769 meters.

 $T_{m55} = 251.378^{\circ}$ absolute.

(d) In the isothermal layer (above 10,769 m) $T\!=\!218^{\circ}$ absolute = -55° C.

$$T_{\rm m} = \frac{Z}{T_{\rm m55}} + \frac{Z - Z_{55}}{218} \tag{5}$$

In the above formulas

Z = Standard altitude.

 Z_{55} =Altitude at the lower limit of the isothermal layor.

 $T = \Lambda$ bsolute temperature of the air at altitude Z.

To=Standard sea-level temperature in degrees absolute.

 $T_{\rm m}$ = Mean temperature of the air column below altitude Z in degrees abso-

T_{m55} = Mean temperature in degrees absolute for Z_{55} .

p =Pressure of the air at altitude Z. p_o = Standard sea-level pressure.

 $\rho = \text{Density of the air at altitude } Z.$

 ρ_0 = Standard density at sea level.

Absolute temperatures are equal to centigrado temperatures plus 273. p is in the same unit of pressure as p_o .

The chart on the reverse of this card gives the temperature, pressure, and density for standard altitudes up to 50,000 feet. A brief table of the values of these quantities is given below. See National Advisory Committee for Aeronauties Technical Reports Nos. 147, 218, and 246 of the committee for further data and complete tables.

Standard Atmosphere Table

Altitude		Pressure		Density		Temper-	Mean
Meters	Feet	mm Hg	in Hg	kg/m³	Lbs./ft.3	ature °C	tempera- ture °C
0 1000 2000 3000 4000 5000	0 3281 6562 9842 13123 16404	760. 0 674. 1 596. 2 525. 8 462. 3 405. 1	29, 921 26, 54 23, 47 20, 70 18, 20 15, 95	1. 2255 1. 1120 1. 0068 . 9094 . 8193 . 7363	0. 07650 . 06942 . 06286 . 05678 . 05115	15. 0 8. 5 +2. 0 -4. 5 -11. 0 -17. 5	15. 0 11. 7 8. 4 5. 1 +1. 8 -1. 6
6000 7000 8000 9000 10000	19685 22966 26247 29528 32808	353. 8 307. 9 266. 9 230. 4 198. 2	13. 93 12. 12 10. 51 9. 07 7. 80	. 6598 . 5896 . 5252 . 4664 . 4127	. 04119 . 03681 . 03279 . 02912 . 02577	-24. 0 -30. 5 -37. 0 -43. 5 -50. 0	-5. 0 -8. 4 -11. 9 -15. 4 -18. 9
11000 12000 13000 14000 15000	36089 39370 42651 45932 49212	169. 7 145. 0 124. 0 106. 0 90. 6	6. 68 5. 71 4. 88 4. 17 3. 57	. 3614 . 3090 . 2642 . 2259 . 1931	. 02256 . 01929 . 01649 . 01410 . 01206	-55.0 -55.0 -55.0 -55.0 -55.0	-22. 4 -25. 5 -28. 1 -30. 2 -32. 0
0 1524 3048 4572 6096 7620	5000 10000 15000 20000 25000	760. 0 632. 3 522. 6 428. 8 349. 1 281. 9	29. 921 24. 89 20. 58 16. 88 13. 75 11. 10	1. 2255 1. 0559 . 9048 . 7711 . 6527 . 5489	. 07651 . 06592 . 05649 . 04814 . 04075 . 03427	15. 0 +5. 1 -4. 8 -14. 7 -24. 6 -34. 5	15. 0 10. 0 +5. 0 -0. 1 -5. 3 -10. 5
9144 10668 12192 13716 15240	30000 35000 40000 45000 50000	225. 6 178. 7 140. 7 110. 8 87. 3	8. 88 7. 04 5. 54 4. 36 3. 44	. 4583 . 3795 . 2998 . 2361 . 1860	. 02861 . 02369 . 01872 . 01474 . 01161	-44. 4 -54. 3 -55. 0 -55. 0 -55. 0	-15.9 -21.3 -26.0 -29.6 -32.4

