## November 19

Composite sqstem
$$10)_{A} \otimes 10)_{B} = 100$$

$$10) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad 11) = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

$$|01\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$(10) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Bell states

$$|4^{+}\rangle = |4^{\circ\circ}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

$$|4^{-}\rangle = |4^{\circ\circ}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$

$$|4^{+}\rangle = |4^{\circ\circ}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$

$$|4^{+}\rangle = |4^{\circ\circ}\rangle = \frac{|00\rangle + |01\rangle}{\sqrt{2}}$$

$$|4\rangle = |4''\rangle = |10\rangle - |01\rangle$$

$$Dansity matrix for a composite system
$$SA = \sum_{i} P_{i} |4_{i}\rangle_{A} |4_{i}|$$

$$SAB = \sum_{i'} P_{i} |4_{i}\rangle_{A} |4_{i}| |4_{i}\rangle_{B} |4_{i}\rangle$$

$$P_{i} |4_{i}\rangle_{A} |4_{i}\rangle_{B} |4_{i}\rangle_{B} |4_{i}\rangle_{B}$$

$$P_{i} = 1$$

$$P_{i}|4_{i}\rangle_{A} |4_{i}\rangle_{B} |4_{i}\rangle_{B}$$

$$P_{i}|4_{i}\rangle_{A} |4_{i}\rangle_{B} |4_{i}\rangle_{B}$$

$$|4_{i}\rangle_{B} |4_{i}\rangle_{B} |4_{i}\rangle_{B}$$

$$|4_{i}\rangle_{B} |4_{i}\rangle_{B} |4_{i}\rangle_{B}$$$$

Two-que, 
$$f$$
 gates

NOT,  $X$ ,  $Y$ ,  $Z$ 
 $X = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ 
 $X = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ 
 $X = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ 
 $X = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ 
 $X = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ 
 $X = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ 

| × | 9 | cutput |                          |
|---|---|--------|--------------------------|
| 0 | B | G      | ine versible.            |
| 0 | 3 | J      | cannot tell              |
| 1 | 0 | 0      | × org from<br>the output |

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

| 1mput | cutput |
|-------|--------|
| × y   | × ×⊕y  |
| 0 0   | 0 0    |
| 0 1   | 0 1    |
| 1 0   | 1      |
| 1 (   | 1 0    |



=> all operations in compatation can be done with a NOT gate and a CNOT 9900,

Bell states



1i) and 1j) are either 10) or
11)

$$H(0i) = \frac{101}{\sqrt{2}}$$

$$CNOT\left(\frac{101)+111}{\sqrt{2}}\right)=\frac{101)+110}{\sqrt{2}}$$



 $(NOT (101) - 110)/\sqrt{2} = \frac{(01) - (117)}{\sqrt{2}}$   $(NOT (101) - 110)/\sqrt{2} = \frac{(01) - (117)}{\sqrt{2}}$ 

Entanglement

pure state; two separate systems share the twoquest (two-guest system) quantum state

= 10>A 10>B (Separable)

Bell states are superpositions of 10) and 11)

 $/4^{00}\rangle_{AB} = \frac{1}{VZ}(16)_{A}/0)_{B} + 111_{A}/17_{B})$ =  $\frac{1}{VZ}(100) + 111_{A}$ 

Cannot determine one maividual states of ACB. We say the states are en tangled, Think of mobalilities i'l ind  $\mathcal{D}(x,y) = p(x)p(y)$ Maxima ly en tangled dim ( g(4) = dim ( g/5 ) dim (fla) = d onthonormal basis sets /i/>A and /i/B Max entangled state 12>= 12/2 2 1i>A @ li>B  $= \frac{1}{\alpha} \sum_{i=1}^{\alpha} (\lambda_i \lambda_i^i)$ 

-> Schmidt decomposition

SAB -> SA

Sag whether system is
entagled a not.