Optimization Problem min $f_0(x)$

s.t.
$$f_i(x) \leq b_i \cdot i = 1, ..., m$$

 $\star x = [x_1, \dots x_n]$ to: Rn → R Objective

fi: R"→R constraint

Optimal solution x* has smallest value among all.

[Least-squares

Linear programming => Solvable!

Convex optimization

& Analyable!

- · Least-squares minimize || Az - b||2
 - Analytical solution $x = (A^TA)^{-1}A^Tb$
 - Computation Complexity n^2k (A $\in \mathbb{R}^{k\times n}$)
- · Linear Programming

minimize ctx

S.t.
$$a_i^T x \leq b_i$$
, $i = 1, \dots m$

- No Analytical Solutions
- Computation Complexity n²m if m≥n

· Convex Optimization

minimize $f_0(x)$

s.t. $f(\alpha) \leq b_i$, i=1...m.

 $f(\alpha x + \beta y) \leq \alpha f(x) + \beta f(y)$ if $\alpha + \beta = 1$ for i=0,1,2,..., m

- No Analytical Solutions
- Computation Complexity max { n3. n3m, F} where F is cost of ti's & 1st 2nd derivative
- ·Nonlinear Programming
 - d. Local Optimization
 - -Find a near point that minimize to
 - -Fast & can handle large problems
 - Needs initial guess!
 - B. Global Optimization
 - Worst-cose complexity grows exponentially!