UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION

APRIL 2001 EXAM TYPE: A First Year Programs: CIV, LME, MEC, IND, CHE, MMS

Q1	/25
Q2	/25
Q3	/25
Q4	/25
Total	/100

ECE 110S: ELECTRICAL FUNDAMENTALS

EXAMINERS: N.P. Kherani, B. Wang, S. Zukotynski (Co-ordinator)

NAME:			
	Last	First	
STUDENT NO.:			

INSTRUCTIONS:

- This is a Type A examination; no aids are allowed.
- Only non-programmable calculators are allowed.
- Answer all parts of all four questions.
- All four questions are of equal weight.
- The weight of each of the individual parts of each question is stated in the margins.
- All work is to be done on these pages.
- Place your final answers in the provided boxes unless instructed otherwise.
- When answering the questions include all the steps of your work on these pages. For additional space, you may use the back of the preceding page.
- Do not unstaple this exam.

CONSTANTS:

$$e = 1.6 \times 10^{-19} \text{C}$$
 $_{o} = 8.85 \times 10^{-12} \text{F/m}$ $\mu_{o} = 4 \times 10^{-7} \text{H/m}$

Answer the f	following	questions.
--------------	-----------	------------

[1]	(i)	Electric and magnetic phenomena stem from a property of matter known as charge. What is the distinguishing condition of charges that gives rise to a magnetic field?
[1]	(ii)	The electric field is a <i>conservative</i> field. Explain this property of the electric field.
[1]	(iii)	When we speak of electrical current, the picture that comes to mind is that of electrons drifting down a copper wire. The average velocity or the drift velocity of electrons required to support a current of 1 ampere in a copper wire of 1 mm² in cross-section is about (circle the correct answer) (a) 1000 km/s (b) 3 x 10 ⁸ m/s (c) 1/3 m/h (d) none of the above.
[1]	(iv)	The Lorentz force is used, for example, to steer electrons in a cathode ray tube (CRT) or a television tube. Clearly write the Lorentz force expression and define all the terms.

PART B: Coulomb's Law & Electric Field

Consider the two stationary point charges shown in the figure below. Point charge Q_I has a charge of 50 μ C and is located at $x_I = y_I = 0.1$ m, while point charge Q_2 has a charge of 150 μ C and is located at $x_2 = y_2 = 0.3$ m

[5] (i) Determine the electric force (magnitude and direction) on charge 2 due to charge 1.

_			
$\mathbf{F}_{21} =$			

[1] (ii) Determine the electric force (magnitude and direction) on charge 1 due to charge 2.

\mathbf{F}_{12}			

PART C: Electric Field, Potential, and Capacitance

[4] (i) The magnitude of the electric field due to an infinite sheet of charge, of charge density σ , is given by the expression $|E| = \frac{\sigma}{2_o}$. For $= 8.85 \times 10^{-8}$ C/m², compute the magnitude of the electric field and the electric potential for all x>0 and all x<0. Assume that the potential at the origin is zero. On the figures below clearly show the direction of the field lines and

plot the potential for all x>0 and all x<0.

$$|E| = V(x) =$$

[3] (ii) Find the capacitance of a parallel plate capacitor (in vacuum) having a spacing of 0.01 m and plate area of 0.01 m². Assuming a potential difference of 12 V find the strength of the electric field inside the capacitor.

PART D: Electromagnetic Induction

A thin copper wire is wound into an essentially flat coil of 100 turns. The coil has a diameter of 0.05 m. The coil is placed in a magnetic field which varies with time, t[s], according to the relation $B(t) = 0.1\cos(120 \ t)$ T. The magnetic field is normal to the surface of the coil. The ends of the coil are connected with heavy gauge copper wire to a true rms voltmeter which has a high input impedance.

[3]	(i)	What is the induced EMF in the coil?	V(t) =

[1] (iii) What is the voltage reading displayed on the voltmeter?

$$V_{
m rms}$$
 =

[2] (iv) If the resistance of the coil is 1, what is the current?

$$I(t) =$$

[2] (v) What is the power dissipation in the coil, P(t)?

$$P(t) =$$

Question 2: DC Circuits

Consider the circuit shown below.

[7] (i) Using nodal analysis, find the Thévenin's equivalent voltage to the left of terminals a	[7]	(i)	Using nodal	l analysis, find the	e Thévenin	's equivalent	voltage to th	ne left of termina	als a an	d b
---	-----	-----	-------------	----------------------	------------	---------------	---------------	--------------------	-----------------	-----

$V_{ m Th} =$			

[3] (ii) Determine the Thévenin's equivalent resistance of this circuit to the left of terminals **a** and **b**.

$R_{\rm eq} =$			

Question 2: DC Circuits

[2]	(iii)	Draw the Norton equivalent circuit to the left of terminals a and b .
		Norton equivalent circuit:
[3]	(iv)	What is the maximum power that can be transferred to the load, R?
		$P_{\max} =$
[3]	(v)	Assuming R is 2° , what is the actual power delivered to the load?
		$P_{ m R}=$

Question 2: DC Circuits

[7] (vi) Use the principle of superposition to determine the current flowing downward in the 3 resistor. (The circuit has been reproduced above for your convenience.)

$$I_1$$
 (due to 6 V) =
 I_2 (due to 3 V) =
 I_3 (due to 7 A) =
 $I = I_3 = I_3$

Question 3: Transient Analysis

A. The switch is closed at time t=0 in the circuit shown below. Assume that the switch was open for a long time prior to time zero.

[4] (i) Find v(t) for $t = 0^-$ and $t = 0^+$.

$v(t=0^{-})=$		
$v(t=0^{+})=$		

[6] (ii) Find v(t) as a function of time for t > 0.

v(t) for $t > 0$:		

[5] (iii) Sketch v(t) for all time; clearly label the axes.

Question 3: Transient Analysis

- **B.** For the circuit shown below, the switch is closed at time t = 0. Prior to time t = 0, you may assume that the switch has been open for a long time.
- [8] (i) Derive the differential equation for $v_{c_I}(t)$ for t>0.

 HINT: Begin by writing the node equation (i.e., applying KCL) at node **A**.

Differential equation for $v_{c_{l}}(t)$ for t>0

[2] (ii) Find the time constant for the above circuit and the value of $v_{c_I}(t)$ a long time after the switching action.

$$= v_{c_I}() =$$

Question 4: AC Circuits

A 1000 watt electric motor is connected to a source of 120 V_{rms} at 60 Hz, which results in a lagging power factor (PF) of 0.8. (Note: lagging power factor means the current in the motor lags the voltage across the motor.)

[5] (i) Calculate the current (*rms* value) drawn from the source.

$i_{Motor(rms)} =$		

[5] (ii) The PF is increased to 0.95 lagging by placing a capacitor in parallel with the motor. Calculate the new current (*rms* value) drawn from the source **with** the capacitor connected.

$i_{Total(rms)} =$		

Question 4: AC Circuits

[10]	(iii)	Determine the value of the capacitor required to make the correction.	
		C =	
[5]	(iv)	The motor can be modeled with a resistor R and an inductor L in series, determine the values of R and L .	
		R = L =	