Ve492: Introduction to Artificial Intelligence Constraint Satisfaction Problems II and Local Search

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Today

Efficient Solution of CSPs

Local Search

Arc Consistency and Beyond

Arc Consistency of an Entire CSP

A simple form of propagation makes sure all arcs are simultaneously consistent:

Remember: Delete from the tail!

- Arc consistency detects failure earlier than forward checking
- Important: If X loses a value, neighbors of X need to be rechecked!
- Must rerun after each assignment!

Limitations of Arc Consistency

- * After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

* Arc consistency still runs inside a backtracking search!

What went wrong here?

K-Consistency

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - * K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

Higher k more expensive to compute

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- * Why?
 - Choose any assignment to any variable
 - * Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - * Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ***** ...
- Lots of middle ground between arc consistency and n-consistency!
 (e.g. k=3, called path consistency)

Structure

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - * Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - \bullet E.g., n = 80, d = 2, c = 20
 - * $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

WA

Tree-Structured CSPs

- * Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - ❖ Compare to general CSPs, where worst-case time is O(dⁿ)
- * This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- * Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- * Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i), X_i)
- * Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- * Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- * Proof: Each $X \rightarrow Y$ was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- * Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Nearly Tree-Structured CSPs

- * Conditioning: instantiate a variable, prune its neighbors' domains
- * Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- * Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Quiz: Cutset

* Find the smallest cutset for the graph below.

Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
 - Each mega-variable encodes part of the original CSP
 - Subproblems overlap to ensure consistent solutions

NT

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- * To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - * No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - * Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - * I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

- * States: 4 queens in 4 columns $(4^4 = 256 \text{ states})$
- Operators: move queen in column
- Goal test: no attacks
- * Evaluation: h(n) = number of attacks

Video of Demo Iterative Improvement – n Queens

Video of Demo Iterative Improvement – Coloring

Performance of Min-Conflicts

- * Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- * The same appears to be true for any randomly-generated CSP *except* in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary: CSPs

- * CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints
- Basic solution: backtracking search
- * Speed-ups:
 - Ordering
 - Filtering
 - Structure

* Iterative min-conflicts is often effective in practice

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- * Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
- * What's bad about this approach?
 - Complete? No
 - Optimal? No

* What's good about it?

Hill Climbing Algorithm

Hill Climbing Diagram

Quiz: Hill Climbing

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps current \leftarrow \text{MAKE-NODE}(\text{INITIAL-STATE}[problem]) for t \leftarrow 1 to \infty do T \leftarrow \text{schedule}[t] if T = 0 then return current next \leftarrow a randomly selected successor of current \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current] if \Delta E > 0 then current \leftarrow next else current \leftarrow next only with probability e^{\Delta E/T}
```

Simulated Annealing

- * Theoretical guarantee:
 - * Stationary distribution: $p(x) \propto e^{\frac{E(x)}{kT}}$
 - * If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?

- * Sounds like magic, but reality is reality:
 - * The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - "Slowly enough" may mean exponentially slowly
 - * Random restart hillclimbing also converges to optimal state...

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - * Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- * Why does crossover make sense here?
- * When wouldn't it make sense?
- * What would mutation be?
- What would a good fitness function be?