LISTA DE EXERCÍCIOS 3 MAC0427 PROGRAMAÇÃO NÃO LINEAR OTIMIZAÇÃO COM RESTRIÇÕES

Entrega: somente dos exercícios 2, 5, 8 e 15, nos primeiros 15 minutos da aula de 23/06.

Exercícios adaptados dos livros listados como "Material para estudo" no PACA.

Exercício 1. Um programa quadrático é um PNL cuja função objetivo é quadrática e cujas restrições são funções afins; ou seja, toda restrição é da forma $a^{\mathsf{T}}x \geq \beta$ para algum $a \in \mathbb{R}^n$ e $\beta \in \mathbb{R}$. Dado um programa quadrático

Minimizar
$$\frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$$

sujeito a $b - Ax < 0$,

em que $Q \succ 0$, escreva seu dual Lagrangeano como um programa quadrático (note que será um problema de maximização).

Exercício 2. Uma função $g: \mathbb{R}^n \to (-\infty, +\infty]$ é dita convexa se $X := \{x \in \mathbb{R}^n : g(x) < \infty\}$ é um conjunto convexo e a função g, restrita a X, é convexa. Mostre que, se $\{f_i : i \in I\}$ é uma coleção de funções convexas de \mathbb{R}^n para $(-\infty, +\infty]$, então a função $f: \mathbb{R}^n \to (-\infty, +\infty]$ dada por

$$f(x) = \sup_{i \in I} f_i(x)$$

é convexa. (Para facilitar, você pode supor que o sup é, na verdade, um max; ou seja, para todo $x \in \mathbb{R}^n$, existe um $i \in I$ tal que $f(x) = f_i(x)$.)

Exercício 3. Considere um PNL com Lagrangeano $L(x,y) = f(x) + y^{\mathsf{T}}g(x)$. Prove que o dual Lagrangeano

$$\sup_{y>0} \underline{L}(y)$$

é um problema convexo; ou seja, mostre que a função $-\underline{L}(y)$ é convexa.

Dica: use o exercício anterior.

Exercício 4. Considere um PNL

Minimizar
$$f(x)$$

sujeito a $g(x) \le 0$,

cujo Lagrangeano é $L(x,y)=f(x)+y^{\mathsf{T}}g(x)$. Um ponto $(\bar{x},\bar{y})\in\mathbb{R}^n\times\mathbb{R}^m$ com $\bar{y}\geq 0$ é chamado de ponto de cela de L se, para todo $(x,y)\in\mathbb{R}^n\times\mathbb{R}^m$ com $y\geq 0$, vale que

$$L(\bar{x}, y) \le L(\bar{x}, \bar{y}) \le L(x, \bar{y}).$$

Mostre que, se (\bar{x}, \bar{y}) é um ponto de cela de L, então \bar{x} é solução ótima global do PNL e \bar{y} é solução ótima global do dual Lagrangeano.

Exercício 5. Calcule o valor ótimo do PNL

Minimizar
$$e^{x_1}$$
 sujeito a $\frac{x_1^2}{e^{x_2}} \le 0$

e de seu dual Lagrangeano.

Data: 31 de maio de 2016.

Exercício 6. Escreva as condições de otimalidade KKT para o problema

Minimizar
$$x_1x_2 + x_1x_3 + x_2x_3$$

sujeito a $x_1 + x_2 + x_3 = 1$.

Encontre todas as soluções para o sistema de equações obtido.

Exercício 7. Mostre que o triângulo com ângulos internos dados por $x_1, x_2, x_3 > 0$ minimizam

$$-\sin(x_1)\cdot\sin(x_2)\cdot\sin(x_3)$$

se, e somente se, o triângulo é equilátero.

Roteiro:

- (i) Formule como um PNL com uma restrição de igualdade sobre $x_1 + x_2 + x_3$ e com as inequações $x_1, x_2, x_3 \ge 0$.
- (ii) Defina $x_1^* := x_2^* := x_3^* := \pi/3$.
- (iii) Argumente porque podemos usar $x_i \ge 0$ no lugar de $x_i > 0$.
- (iv) Prove que existe uma solução ótima global \bar{x} .
- (v) Mostre que nenhuma das restrições de desigualdade é ativa em \bar{x} .
- (vi) Escreva as condições de otimalidade KKT para o ponto \bar{x} , simplificando-as usando as propriedades já deduzidas sobre \bar{x} .
- (vii) Conclua que $\cot(\bar{x}_1) = \cot(\bar{x}_2) = \cot(\bar{x}_3)$.
- (viii) Finalize usando o fato de que o período de cot é π .

Exercício 8. Denote o vetor formado só de 1's por $\mathbbm{1}$. Mostre que, se $Q \succ 0$, então existe uma única solução ótima para o PNL

e ela é dada por

$$x^* \coloneqq -\frac{2Q^{-1}\mathbb{1}}{\sqrt{\mathbb{1}^\mathsf{T}Q^{-1}\mathbb{1}}}.$$

Exercício 9. Escreva as condições de otimalidade KKT para o PNL

Minimizar
$$x_1$$

sujeito a $x_1^2 + (x_2 - 1)^2 \le 1$,
 $x_2 \le 0$,

e mostre elas não identificam a única solução ótima do problema.

Exercício 10. Mostre que, dentre todos os paralelepípedos com lados $x_1, x_2, x_3 > 0$ e diagonal $x_1^2 + x_2^2 + x_3^2 = 1$, o cubo é o que maximiza a área de superfície.

Roteiro:

- (i) Formule como um PNL com restrições $x_1, x_2, x_3 \ge 0$.
- (ii) Argumente que existe uma solução ótima global \bar{x} .
- (iii) Mostre que, se restringirmos $x_3 = 0$, a solução ótima tem $x_1 = x_2$; use a inequação $(x_1 x_2)^2 \ge 0$ para provar otimalidade.
- (iv) Conclua, usando uma solução viável "favorável", que nenhuma restrição de desigualdade é ativa em \bar{x} .
- (v) Escreva as condições de otimalidade KKT para o ponto \bar{x} , simplificando-as usando as propriedades já deduzidas sobre \bar{x} .
- (vi) Denote o vetor formado só de 1's por $\mathbb{1}$ e conclua que $(\mathbb{1}\mathbb{1}^{\mathsf{T}}-I)x=z_1x$.
- (vii) Um dos autovetores de $\mathbb{1}\mathbb{1}^\mathsf{T} I$ é $\mathbb{1}$; os demais são ortogonais a $\mathbb{1}$. Conclua que \bar{x} são os lados de um cubo.

Exercício 11. Considere um PNL na forma

Minimizar
$$f(x)$$

sujeito a $Ax = b$,
 $g(x) \le 0$,

onde $A \in \mathbb{R}^{m \times n}$ e $g : \mathbb{R}^n \to \mathbb{R}^k$. Justifique a seguinte afirmação: para resolver o PNL, podemos supor que as linhas de A são linearmente independentes.

Exercício 12. Resolva o PNL

Minimizar
$$(x - y)^2 + e^z + e^{-z}$$

sujeito a $xz = 0$,
 $yz = 0$.

Dica: use alguma forma de eliminação de variáveis, talvez múltiplas vezes.

Exercício 13. Seja $a \in \mathbb{R}^n$ tal que $a_i > 0$ para todo $i \in \{1, \dots, n\}$ e $a_1 + \dots + a_n = 1$. Resolva o PNL

Minimizar
$$a^{\mathsf{T}}x$$

sujeito a $x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}=1,$
 $x_1>0,\ldots,x_n>0.$

Você pode supor que existe uma solução ótima global.

Dica: use as condições de otimalidade KKT após reformular com a mudança de variáveis $u_i = \ln x_i$.

Exercício 14. Seja $L \subseteq \mathbb{R}^n$ um subespaço linear. Um projetor ortogonal sobre L é uma matriz simétrica e idempotente P que tem L como imagem (ou seja, $P = P^2 = P^{\mathsf{T}}$ e $\mathrm{Im}(P) = L$). Mostre que existe um único projetor ortogonal sobre L.

Roteiro:

- (i) Existência: seja $\{x_1,\ldots,x_k\}$ uma base ortonormal para L e considere a matriz $x_1x_1^\mathsf{T}+\cdots+x_kx_k^\mathsf{T}$.
- (ii) Unicidade: se P,Q são projetores ortogonais, mostre que PQ=Q (note que $Qe_i\in L$). Conclua que P=Q usando simetria.

Exercício 15. Considere o programa quadrático com restrições lineares

$$\begin{array}{ll} \text{Minimizar} & \frac{1}{2}x^\mathsf{T}Qx - c^\mathsf{T}x \\ \text{sujeito a} & Ax = b. \end{array}$$

em que $Q\succ 0$ e A tem linhas linearmente independentes. Parte das condições KKT para o problema podem ser escritas como:

$$\begin{bmatrix} Q & A^{\mathsf{T}} \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c \\ b \end{bmatrix}.$$

Mostre que a matriz desse sistema é inversível.

Exercício 16. Formule o problema

como um programa linear.

Exercício 17. Prove que, se $A \in \mathbb{R}^{m \times n}$ tem linhas linearmente independentes, então AA^{T} é inversível.

Dica: Se acertar a matriz à direita com um vetor não for suficiente, acerte-a também pela esquerda.

Exercício 18. Seja $A \in \mathbb{R}^{m \times n}$ uma matriz com linhas linearmente independentes. Mostre que o projetor ortogonal sobre o subespaço $\text{Im}(A^{\mathsf{T}})$ é dado por

$$P = A^{\mathsf{T}} [AA^{\mathsf{T}}]^{-1} A.$$

Dicas:

- (i) Use a definição de projetor ortogonal, vista em outro exercício.
- (ii) Lembre-se que $\operatorname{Im}(XY) \subseteq \operatorname{Im}(X)$ para matrizes X, Y.