Law of Large numbers
X1 Xn independent identically distributed.
$\frac{\sqrt{\text{or} X_i} < + \infty}{\text{Then}}$
$\frac{X_1 + \dots + X_n}{N} \xrightarrow{P} \mathbb{E} X_1$
Ju other words; X,++Xn= n-EX1 +o(n)
Example Randow walk. $P[X_i = 1] = P[X_i = -1] = \frac{1}{2}$
$S_n = X_1 + \dots + X_n, S_0 = 0$
$S_i = S_{i-1} + X_i$
$\frac{3-2-1}{2} = 0 + 2 = 3 \left(-\frac{h}{100}, \frac{h}{100}\right) = S_{4}$
On step h we are in some range less than h.
1255 Than W.
Central limit theorem
X X n iid

0 War X, Z+00

$$\frac{X_{1}+...+X_{N}}{\sqrt{N}} = \frac{1}{N} \cdot \frac{1}{N}$$

$$S_{\nu} = \overline{O_{\rho}}(\nu)$$

$$CLT: \mathcal{N}(0,1)$$

$$S_{n} = \sqrt{N \cdot Y} + O_{p} \left(\sqrt{N} \right)$$

$$\sqrt{N \cdot Y} = \sqrt{N \cdot 3}$$

 $\rho_{i+-} + \rho_{i} = 1$ n trials 2 outcomes

P , |-|Binomial case P[m heads, n-m tails] Example (n=9)

k=6, $P_1=--=P_6=\frac{1}{h}$

fair dice we are tossing a dice

PMF is the probability of X1 ones Xz + wos X6 SixeS

What's the prob of PMP n exp 2 out comes $\frac{1}{6^9} = \frac{9!}{(12)} \approx 0.000167$ 112123333 Bad Groed outcome 121233321 216543641