(durée : 2 heures)

Place: B1

Exercice 1

Soit $G: \{0, 1\}^s \to \{0, 1\}^n$ un générateur pseudo-aléatoire (PRG) sécurisé.

Question 1

Quels sont les PRG sécurisés parmi les suivants ? Dans tous les cas, précisez l'avantage de l'adversaire A.

- 1. $G'(k) = G(k) \oplus G(k)$
- 2. G'(k) = reverse(G(k))

Question 2

Quelles sont les propositions incorrectes, parmi les suivantes?

- 1. k est la graine du générateur
- 2. k est la clé publique
- 3. k est de taille n bits
- 4. *k* est utilisée pour le déchiffrement

Exercice 2

On considère le réseau S-P suivant : la taille de bloc est de 1 octet, avec une S-box de 4 bits pour chaque moitié du bloc. La P-box est décrite par une permutation sous la forme (a, b, c, ..., p), où le bit a de l'entrée devient le bit b de la sortie, le bit b en entrée devient le bit b en sortie et ainsi de suite, jusqu'à ce que le bit b en entrée devienne le bit b en sortie.

S-Box:

į	n	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	out	В	8	7	Α	С	Е	1	3	4	0	F	6	9	5	D	2

P-Box: (0, 2, 4, 7, 3, 5, 1, 6), les positions étant numérotées de gauche à droite

Question 1

Quelles sont les propositions incorrectes, parmi les suivantes ?

- 1. Les P-boxes introduisent de la confusion
- 2. AES est un réseau S-P
- 3. Rijndael est un réseau S-P
- 4. Les S-boxes introduisent de la linéarité

Exercice 3

On considère la courbe elliptique suivante : $y^2 \equiv x^3 + x + 3 \mod 7$ La table d'addition des points de la courbe est donnée ci-dessous :

+	8	(4,1)	(4,6)	(5,0)	(6,1)	(6,6)
8	8	(4,1)	(4,6)	(5,0)	(6,1)	(6,6)
(4,1)	(4,1)	(6,6)	8	(6,1)	(4,6)	(5,0)
(4,6)	(4,6)	8	(6,1)	(6,6)	(5,0)	(4,1)
(5,0)	(5,0)	(6,1)	(6,6)	8	(4,1)	(4,6)
(6,1)	(6,1)	(4,6)	(5,0)	(4,1)	(6,6)	8
(6,6)	(6,6)	(5,0)	(4,1)	(4,6)	8	(6,1)

Question 1

Quel est l'ordre de la courbe elliptique?

Question 2

Quels sont les éléments générateurs ? Formulez votre réponse sous la forme :

$$(x_g, y_g) \rightarrow (x_{2g}, y_{2g}) \rightarrow \ldots \rightarrow 0$$

Question 3

Alice et Bob cherchent à établir un secret partagé via le protocole Diffie-Hellman. Ils utilisent cette courbe elliptique, avec comme générateur G le point de coordonnées (4,1). Le scalaire privé d'Alice est a=4 et celui de Bob est b=1.

Quelle est la valeur du secret partagé par Alice et Bob?

(durée : 2 heures)

Place: B2

Exercice 1

Soit $G: \{0, 1\}^s \to \{0, 1\}^n$ un générateur pseudo-aléatoire (PRG) sécurisé.

Question 1

Quels sont les PRG sécurisés parmi les suivants ? Dans tous les cas, précisez l'avantage de l'adversaire A.

- 1. G'(k) = G(k)[0, ..., n-2] (c.-à-d., les deux derniers bits sont tronqués)
- 2. $G'(k) = G(k) \oplus G(k)$

Question 2

Quelles sont les propositions incorrectes, parmi les suivantes ?

- 1. k est la clé secrète
- 2. k est la graine du générateur
- 3. k est de taille n bits
- 4. k n'est utilisée que pour le chiffrement

Exercice 2

On considère le réseau S-P suivant : la taille de bloc est de 1 octet, avec une S-box de 4 bits pour chaque moitié du bloc. La P-box est décrite par une permutation sous la forme (a, b, c, ..., p), où le bit a de l'entrée devient le bit b de la sortie, le bit b en entrée devient le bit b en sortie et ainsi de suite, jusqu'à ce que le bit b en entrée devienne le bit b en sortie.

S-Box:

in	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ш	F
out	В	8	7	Α	С	F	1	3	4	0	E	6	9	5	D	2

P-Box: (0, 2, 4, 7, 3, 5, 1, 6), les positions étant numérotées de gauche à droite

Question 1

Quelles sont les propositions incorrectes, parmi les suivantes?

- 1. Les P-boxes introduisent de la diffusion
- 2. DES est un réseau S-P
- 3. Rijndael est un réseau S-P
- 4. Les P-boxes introduisent de la non-linéarité

Exercice 3

On considère la courbe elliptique suivante : $y^2 \equiv x^3 + 2x + 1 \mod 5$ La table d'addition des points de la courbe est donnée ci-dessous :

+	∞	(0,1)	(0,4)	(1,2)	(1,3)	(3,2)	(3,3)
∞	8	(0,1)	(0,4)	(1,2)	(1,3)	(3,2)	(3,3)
(0,1)	(0,1)	(1,3)	8	(0,4)	(3,3)	(1,2)	(3,2)
(0,4)	(0,4)	8	(1,2)	(3,2)	(0,1)	(3,3)	(1,3)
(1,2)	(1,2)	(0,4)	(3,2)	(3,3)	8	(1,3)	(0,1)
(1,3)	(1,3)	(3,3)	(0,1)	8	(3,2)	(0,4)	(1,2)
(3,2)	(3,2)	(1,2)	(3,3)	(1,3)	(0,4)	(0,1)	8
(3,3)	(3,3)	(3,2)	(1,3)	(0,1)	(1,2)	8	(0,4)

Question 1

Quel est l'ordre de la courbe elliptique ?

Question 2

Quels sont les éléments générateurs ? Formulez votre réponse sous la forme :

$$(x_g, y_g) \rightarrow (x_{2g}, y_{2g}) \rightarrow \dots \rightarrow 0$$

Question 3

Alice et Bob cherchent à établir un secret partagé via le protocole Diffie-Hellman. Ils utilisent cette courbe elliptique, avec comme générateur G le point de coordonnées (1, 2). Le scalaire privé d'Alice est a = 2 et celui de Bob est b = 3. Quelle est la valeur du secret partagé par Alice et Bob ?

(durée : 2 heures)

Place: A1

Exercice 1

Soit $G: \{0, 1\}^s \to \{0, 1\}^n$ un générateur pseudo-aléatoire (PRG) sécurisé.

Question 1

Quels sont les PRG sécurisés parmi les suivants ? Dans tous les cas, précisez l'avantage de l'adversaire A.

- 1. $G'(k) = G(k) \parallel 0$ (\parallel est la concaténation)
- 2. G'(k) = reverse(G(k))

Question 2

Quelles sont les propositions correctes, parmi les suivantes ?

- 1. k est la graine du générateur
- 2. k est la clé publique
- 3. k est de taille n bits
- 4. k est utilisée pour le déchiffrement

Exercice 2

On considère le réseau S-P suivant : la taille de bloc est de 1 octet, avec une S-box de 4 bits pour chaque moitié du bloc. La P-box est décrite par une permutation sous la forme (a, b, c, ..., p), où le bit a de l'entrée devient le bit b de la sortie, le bit b en entrée devient le bit b en sortie et ainsi de suite, jusqu'à ce que le bit b en entrée devienne le bit b en sortie.

S-Box:

į	n	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	out	В	8	7	Α	С	Е	1	3	4	0	F	6	9	5	D	2

P-Box: (0, 2, 4, 7, 3, 1, 5, 6), les positions étant numérotées de gauche à droite

Question 1

Quelles sont les propositions correctes, parmi les suivantes?

- 1. Les P-boxes introduisent de la confusion
- 2. AES est un réseau S-P
- 3. Rijndael est un réseau S-P
- 4. Les S-boxes introduisent de la linéarité

Exercice 3

On considère la courbe elliptique suivante : $y^2 \equiv x^3 + x + 3 \mod 7$ La table d'addition des points de la courbe est donnée ci-dessous :

+	∞	(4,1)	(4,6)	(5,0)	(6,1)	(6,6)
∞	8	(4,1)	(4,6)	(5,0)	(6,1)	(6,6)
(4,1)	(4,1)	(6,6)	8	(6,1)	(4,6)	(5,0)
(4,6)	(4,6)	∞	(6,1)	(6,6)	(5,0)	(4,1)
(5,0)	(5,0)	(6,1)	(6,6)	8	(4,1)	(4,6)
(6,1)	(6,1)	(4,6)	(5,0)	(4,1)	(6,6)	∞
(6,6)	(6,6)	(5,0)	(4,1)	(4,6)	∞	(6,1)

Question 1

Quel est l'ordre du corps fini sur lequel la courbe est définie?

Question 2

Quels sont les éléments générateurs ? Formulez votre réponse sous la forme :

$$(x_g, y_g) \rightarrow (x_{2g}, y_{2g}) \rightarrow \ldots \rightarrow 0$$

Question 3

Alice et Bob cherchent à établir un secret partagé via le protocole Diffie-Hellman. Ils utilisent cette courbe elliptique, avec comme générateur G le point de coordonnées (4,1). Le scalaire privé d'Alice est a=2 et celui de Bob est b=2.

Quelle est la valeur du secret partagé par Alice et Bob?

(durée : 2 heures)

Place: A2

Exercice 1

Soit $G: \{0, 1\}^s \to \{0, 1\}^n$ un générateur pseudo-aléatoire (PRG) sécurisé.

Question 1

Quels sont les PRG sécurisés parmi les suivants ? Dans tous les cas, précisez l'avantage de l'adversaire A.

- 1. G'(k) = G(k)[0, ..., n-2] (c.-à-d., les deux derniers bits sont tronqués)
- 2. $G'(k) = G(k) \parallel 0$ (\parallel est la concaténation)

Question 2

Quelles sont les propositions correctes, parmi les suivantes ?

- 1. *k* est la clé secrète
- 2. k est la graine du générateur
- 3. k est de taille n bits
- 4. k n'est utilisée que pour le chiffrement

Exercice 2

On considère le réseau S-P suivant : la taille de bloc est de 1 octet, avec une S-box de 4 bits pour chaque moitié du bloc. La P-box est décrite par une permutation sous la forme (a, b, c, ..., p), où le bit a de l'entrée devient le bit b de la sortie, le bit b en entrée devient le bit b en sortie et ainsi de suite, jusqu'à ce que le bit b en entrée devienne le bit b en sortie.

S-Box:

in		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Οl	Jt	В	8	7	Α	С	F	1	3	4	0	E	6	9	5	D	2

P-Box: (0, 2, 4, 7, 3, 1, 5, 6), les positions étant numérotées de gauche à droite

Question 1

Quelles sont les propositions correctes, parmi les suivantes?

- 1. Les P-boxes introduisent de la diffusion
- 2. DES est un réseau S-P
- 3. Rijndael est un réseau S-P
- 4. Les P-boxes introduisent de la non-linéarité

Exercice 3

On considère la courbe elliptique suivante : $y^2 \equiv x^3 + 2x + 1 \mod 5$ La table d'addition des points de la courbe est donnée ci-dessous :

+	80	(0,1)	(0,4)	(1,2)	(1,3)	(3,2)	(3,3)
8	8	(0,1)	(0,4)	(1,2)	(1,3)	(3,2)	(3,3)
(0,1)	(0,1)	(1,3)	8	(0,4)	(3,3)	(1,2)	(3,2)
(0,4)	(0,4)	8	(1,2)	(3,2)	(0,1)	(3,3)	(1,3)
(1,2)	(1,2)	(0,4)	(3,2)	(3,3)	8	(1,3)	(0,1)
(1,3)	(1,3)	(3,3)	(0,1)	8	(3,2)	(0,4)	(1,2)
(3,2)	(3,2)	(1,2)	(3,3)	(1,3)	(0,4)	(0,1)	8
(3,3)	(3,3)	(3,2)	(1,3)	(0,1)	(1,2)	× ×	(0,4)

Question 1

Quel est l'ordre du corps fini sur lequel la courbe est définie?

Question 2

Quels sont les éléments générateurs ? Formulez votre réponse sous la forme :

$$(x_g, y_g) \rightarrow (x_{2g}, y_{2g}) \rightarrow \dots \rightarrow 0$$

Question 3

Alice et Bob cherchent à établir un secret partagé via le protocole Diffie-Hellman. Ils utilisent cette courbe elliptique, avec comme générateur G le point de coordonnées (1, 2). Le scalaire privé d'Alice est a = 2 et celui de Bob est b = 2. Quelle est la valeur du secret partagé par Alice et Bob ?