

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 MECHANICAL SCIENCES

SEMESTER - 1

Time: 3 Hours]

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

1.	Choose the	correct	alternatives	for	the	following
----	------------	---------	--------------	-----	-----	-----------

 $10 \times 1 = 10$

- 1) Free body diagram can be applied only in
 - dynamic equilibrium problem a)
 - static equilibrium problem **b**)
 - c) both dynamic and static equilibrium problems
 - d) none of these.

- The conditions of equilibrium for coplanar non-concurrent forces are . ii)
 - a) $\sum F_X = 0$; $\sum F_Y = 0$
- b) $\sum F_X = 0$; $\sum M = 0$
- c) $\sum F_Y = 0$; $\sum M = 0$ d) $\sum F_X = 0$; $\sum F_Y = 0$; $\sum M = 0$.

The centre of gravity of solid hemisphere of radius R is iii)

3R/8a)

b) R/2

3R / 4

d) none of these.

Equation of motion of a particle is $s = 2t^3 - t^2 - 2$ where s is displacement in iv) metre and t is time in second. Acceleration of the particle after 1 second will be

 8 m/sec^2 a)

b) 9 m/sec²

c) 10 m/sec²

d) 5 m/sec^2 .

v)	Wh	en a body slides down an ir	clined su	face of inclination θ , the accelera	atior.
	of t	he body is given by			
	a)	f = g	b)	$f = g \sin \theta$	
	c)	$f = g \cos \theta$	d)	$f = g/\sin \theta$.	

vi) The maximum strain energy that can be stored in a body is known as

a) impact energy **b**) resilience c) proof resilience d) modulus of resilience.

vii) When two ships are moving along inclined directions, then the time when the two ships will be closest together depends upon

- a) velocity of one of the ships
- b) velocity of both the ships
- c) angle between the two directions
- d) all of these.

viii) The maximum height of a projectile on a horizontal range is

a)
$$\frac{\left(u^2 \sin 2\alpha\right)}{2g}$$

b)
$$\frac{\left(u^2 \sin \alpha\right)}{2g}$$

c)
$$\frac{\left(u^2\sin^22\alpha\right)}{2g}$$

d)
$$\frac{\left(u^2\sin^2\alpha\right)}{2g}.$$

The differential equation of falling body under gravity is (xi

a)
$$\ddot{x} = 0$$
, $\ddot{y} = 0$

b)
$$\ddot{x} = 0$$
, $\ddot{y} = -g$

c)
$$\ddot{x} = c$$
, $\ddot{y} = -g$

d)
$$\ddot{x} = 0$$
, $\ddot{y} = 0$

none of these.

If a momentum of a body is doubled, its kinetic energy will X)

- a) increase by two times
- b) increase by four times

c) remain same

- get halved d)
- reduce to four times. e)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

. What do you mean by a Free Body Diagram ? Draw the Free Body Diagrams of the following as shown below : 1+2+2

Determine the force P required to intend the motion of the block B shown in the figure below. Take $\mu = 0.3$ for all surfaces of contact, where $\mu = \text{coefficient}$ of friction 5

- 4. A force $\vec{F} = 3i 4j + 12k$ acts at a point A whose coordinates are (1, -2, 3) m. Compute,
 - a) moment of force about origin

3

b) moment of force about the point B(2, 1, 2) m.

2

11901 (16/12)

5. If the string AB is horizontal, find the angle that the string AC makes with the horizontal when the ball is in a position of equilibrium. Also find the pressure R between the ball and the plane.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

6. a) A short semi-circular right cylinder of radius r and weight W rests on a horizontal surface and is pulled at right angles to its geometric axis by a horizontal force P applied at the middle B of the front edge as shown. Find the angle α that the flat face will make with the horizontal plane just before sliding begins if the coefficient of friction at the line of contact A is μ. The gravity force W must be considered as acting at the centre of gravity C as shown in the figure.

b) Determine the coordinates of the centroid C of the area of the circular sector OBD of radius r and central angle α .

8 + 7

7. a) The following details refer to the bar as shown:

Portion	Lenngth	Cross-Section	
AB	600 mm	40 × 40 mm	
BC	800 mm	30 × 30 mm	
CD	1000 mm	20 × 20 mm	

If the load P_4 = 80 kN, P_2 = 60 kN and P_3 = 40 kN, find the extension of the bar, where $E = 2 \times 10^5$ N/mm².

11901 (16/12)

b) Calculate the increase in stress for each segment of the compound bar shown in figure, if the temperature increases by 100°F. Assume that the supports are unyielding and that the bar is suitably braced against buckling.

$$E = 10 \times 10^{6} \text{ psi}$$

 $A = 2.0 \text{ in.}^{2}$
 $\alpha = 12.8 \times 10^{-6} / ^{\circ}\text{F}$ $A = 1.5 \text{ in.}^{2}$
 $\alpha = 6.5 \times 10^{-6} / ^{\circ}\text{F}$
Aluminum Steel

A spring normally 150 mm long is connected to the two masses as shown in figure and compressed 50 mm. If the system is released on a smooth horizontal plane, what will be the speed of each block when the spring is again in is normal length? The spring constant is 2100 N/m.

A projectile is aimed at a mark on the horizontal plane through the point of projection and falls 12 m short when the angle of projection is 15°, while it overshoots the mark by 24 m when the same angle is 45°. Find the angle of projection to hit the mark. Assume no air resistance. Consider the velocities of projections are constant in all cases.

Two inclined rollers, each of weight Q = 100 kgf are supported by an inclined plane and a vertical wall as shown below. Assuming smooth surfaces, find the reactions induced at the points A, B and C.

b) Two blocks of weight W_1 and W_2 rest as shown. If the angle of friction of each block is φ , find the magnitude and direction of the least force P applied to the upper block that will induce sliding.

END

11901 (16/12)