

What is Claimed is:

- 1 1. A method comprising:
 - 2 dividing a data word into data sub-words onto sub-word paths;
 - 3 allowing communication between the sub-word paths; and
 - 4 encoding the data sub-words into encoded data sub-words;
 - 5 such that an information content of the data word is spread between the encoded
 - 6 data sub-words and the weight of the encoded data sub-words.
- 1 2. A method comprising:
 - 2 allowing communication between sub-word paths; and
 - 3 decoding encoded data sub-words into data sub-words;
 - 4 such that the data sub-words form a data word whereby an information
 - 5 content of the data word is concentrated back into the data word.
- 1 3. An encoder module, to encode a data word, whose data elements occupy
 - 2 at least a first logic state and a second logic state, said encoder module
 - 3 comprising:
 - 4 at least two sub-word paths, each of said at least two sub-word paths to
 - 5 receive a data sub-word, comprising a set of data elements of the
 - 6 data word; and
 - 7 an encoder coupled with said at least two sub-word paths, said encoder to
 - 8 encode the data sub-word into an encoded data sub-word;
 - 9 such that encoded data sub-words form an encoded data word wherein an
 - 10 information content of the data word is spread between the encoded data sub-
 - 11 words and the weight of the encoded data sub-words.

1 4. An encoder module, as in claim 3, wherein said encoder module allows
2 communication of a group of data elements from the data word, such that
3 information is shared between said at least two sub-word paths.

1 5. An encoder module, as in claim 4, wherein the information is a data sub-
2 word weight.

1 6. An encoder module, as in claim 4, wherein the information is at least one
2 data element from the data sub-word.

1 7. An encoder module, as in claim 4, wherein the information is at least one
2 data element from the data word.

1 8. An encoder as recited in claim 4, wherein said encoder inverts all the data
2 elements, within the data sub-word, whose significance is less than or equal to
3 the significance of a particular data element within the data sub-word.

1 9. An encoder as recited in claim 4, wherein said encoder inverts all encoded
2 data elements, within the encoded data sub-word, whose significance is less than
3 or equal to the significance of a particular encoded data element within the
4 encoded data sub-word.

1 10. An encoder as recited in claim 4, wherein the number of elements in the
2 encoded data sub-word is at least one greater than the number of elements in the
3 data sub-word.

1 11. An encoder module, as in claim 4, further comprising encoding logic for
2 encoding values represented by the data words that are not encoded by said
3 encoder.

1 12. An encoder module, as in claim 4, further comprising a code governor,
2 wherein said code governor sets a logic state of at least one particular data
3 element location in the encoded data word such that the number of data
4 elements in each logic state is constant for each encoded data word.

1 13. A code governor, as recited in claim 12, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set
3 the logic state of at least one particular data element in the encoded data word.

1 14. An encoder module, as in claim 12, further comprising a parity line to
2 change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 15. A parity line, as recited in claim 14, wherein said parity line, uses in part,
2 the information shared between said at least two sub-word paths to set the logic
3 state of the element output onto said parity line.

1 16. An encoder as recited in claim 4, wherein said encoder encodes the data
2 word by associating the data word with an encoded data word which is selected
3 from a set of encoded data words where the encoded data word is of length z
4 elements with a fixed number of data elements in each logic state.

1 17. An encoder as recited in claim 4, wherein said encoder encodes the data
2 sub-word by associating the data sub-word with the encoded data sub-word in a
3 user defined way.

1 18. An encoder as recited in claim 4, wherein said encoder is a binomial
2 encoder.

1 19. An encoder module as recited in claim 4, wherein said encoder module is
2 disposed on an integrated circuit die.

1 20. An encoder module, as in claim 4, further comprising a *Vdd* power rail
2 wherein a sum of the current flowing in said *Vdd* power rail is substantially
3 constant.

1 21. An encoder module, as in claim 4, further comprising:
2 a code governor; and
3 a *Vdd* power rail;
4 wherein said code governor sets the logic state of at least one particular data
5 element location in the encoded data word, such that a sum of the current
6 flowing in said *Vdd* power rail is substantially constant.

1 22. A code governor, as recited in claim 21, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set a
3 logic state of at least one particular data element in the encoded data word.

1 23. An encoder module, as in claim 21, further comprising a parity line to
2 change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 24. A parity line, as recited in claim 23, wherein the information shared
2 between the data sub-words is used, in part, to set a logic state of the element
3 output onto said parity line.

1 25. An encoder module, as in claim 4, further comprising a V_{ss} power rail
2 wherein a sum of a current flowing in said V_{ss} power rail is substantially
3 constant.

1 26. An encoder module, as in claim 4, further comprising:
2 a code governor; and
3 a V_{ss} power rail;
4 wherein said code governor sets the logic state of at least one particular data
5 element location in the encoded data word, such that a sum of the current
6 flowing in said V_{ss} power rail is substantially constant.

1 27. A code governor, as recited in claim 26, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set a
3 logic state of at least one particular data element in the encoded data word.

1 28. An encoder module, as in claim 26, further comprising a parity line to
2 change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 29. A parity line, as recited in claim 28, wherein the information shared
2 between the data sub-words is used, in part, to set a logic state of the element
3 output onto said parity line.

1 30. An encoder module, as in claim 4, further comprising encoded data lines
2 wherein a sum of the current flowing, in said encoded data lines, is substantially
3 constant.

1 31. An encoder module, as in claim 4, further comprising:
2 a code governor, wherein said code governor sets the logic state of at least one
3 particular data element location in the encoded data word; and
4 encoded data lines, connected with said encoder;
5 such that a sum of the current flowing in said encoded data lines, connected with
6 said encoder is substantially constant.

1 32. A code governor, as recited in claim 31, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set a
3 logic state of at least one particular data element in the encoded data word.

1 33. An encoder module, as in claim 31, further comprising a parity line to
2 change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 34. A parity line, as recited in claim 33, wherein the information shared
2 between the data sub-words is used, in part, to set a logic state of the element
3 output onto said parity line.

1 35. A method of encoding a data word, whose data elements occupy at least a
2 first logic state and a second logic state, said method comprising:
3 receiving data sub-words onto sub-word paths, the data sub-words
4 comprising sets of data elements of the data word; and
5 encoding the data sub-words into encoded data sub-words;
6 such that the encoded data sub-words form an encoded data word wherein an
7 information content of the data word is spread between the encoded data
8 sub-words and the weight of the encoded data sub-words.

1 36. A method, as in claim 35, further comprising allowing communication of a
2 group of data elements from the data word, between the sub-word paths, such
3 that information may be shared between the sub-word paths.

1 37. A method, as in claim 36, wherein the information in said allowing
2 communication is a data sub-word weight.

1 38. A method, as in claim 36, wherein the information in said allowing
2 communication is at least one data element from the data sub-word.

1 39. A method, as in claim 36, wherein the information is at least one data
2 element from a data word.

1 40. A method, as in claim 36, wherein said method further comprises
2 inverting all data elements, within a data sub-word, whose significance is less
3 than or equal to the significance of a particular data element within the data sub-
4 word.

1 41. A method, as in claim 36, wherein said method further comprises
2 inverting all encoded data elements, within an encoded data sub-word, whose
3 significance is less than or equal to the significance of a particular encoded data
4 element within the encoded data sub-word.

1 42. A method, as in claim 36, wherein said encoding encodes a data word by
2 associating the data word with an encoded data word which is selected from a
3 set of encoded data words where the encoded data word is of length z elements
4 with a fixed number of data elements in each logic state.

1 43. A method, as in claim 36, wherein said encoding encodes a data sub-word
2 by associating the data sub-word with the encoded data sub-word in a user
3 defined way.

1 44. A method, as in claim 36; wherein the encoded data word is balanced.

1 45. A method, as in claim 36, wherein the encoded data word is substantially
2 balanced.

1 46. A method, as in claim 36, further comprising using a code governor to
2 change the weight of the encoded data word.

1 47. A method, as in claim 36, wherein said using a code governor is based at
2 least in part on said allowing communication.

1 48. A method, as in claim 47, further comprising using a parity line to change
2 the weight of the encoded data word.

1 49. A method, as in claim 48, wherein said using a parity line is based at least
2 in part on said allowing communication.

1 50. A method, as in claim 36, wherein said encoding is a means for binomially
2 encoding the data word.

1 51. A method, as in claim 50, further comprising adding 1 to the largest
2 decimal number to be encoded.

1 52. A method, as in claim 50, wherein the encoded data word is balanced.

1 53. A method, as in claim 50, wherein the encoded data word is substantially
2 balanced.

1 54. A method, as in claim 50, further comprising using a code governor to
2 change the weight of the encoded data word.

1 55. A method, as in claim 54, wherein said using a code governor is based at
2 least in part on said allowing communication.

1 56. A method, as in claim 54, further comprising using a parity line to change
2 the weight of the encoded data word.

1 57. A method, as in claim 56, wherein said using a parity line is based at least
2 in part on said allowing communication.

1 58. A decoder module to decode an encoded data word, whose encoded data
2 elements occupy at least a first logic state and a second logic state, said decoder
3 module comprising:

4 at least two sub-word paths, each of said at least two sub-word paths to
5 receive an encoded data sub-word, comprising a set of data
6 elements of the encoded data word and to allow communication,
7 between said at least two sub-word paths, such that information is
8 shared between said at least two sub-word paths; and
9 a decoder coupled with said at least two sub-word paths, said decoder to
10 decode the encoded data sub-word into a data sub-word;
11 such that data sub-words form a data word.

1 59. A decoder as recited in claim 58, wherein said decoder inverts all data
2 elements, within the data sub-word, whose significance is less than or equal to
3 the significance of a particular data element within the data sub-word.

1 60. A decoder as recited in claim 58, wherein said decoder inverts all encoded
2 data elements, within the encoded data sub-word, whose significance is less than
3 or equal to the significance of a particular encoded data element within the
4 encoded data sub-word.

1 61. A decoder as recited in claim 58, wherein the number of elements in the
2 data sub-word is at least one less than the number of elements in the encoded
3 data sub-word.

1 62. A decoder module, as in claim 58, further comprising decoding logic for
2 decoding a value represented by the encoded data word that is not decoded by
3 said decoder.

1 63. A decoder as recited in claim 58, wherein said decoder decodes the
2 encoded data sub-word by associating the encoded data sub-word with the data
3 sub-word in a user-defined way.

1 64. A decoder as recited in claim 58, wherein said decoder is a binomial
2 decoder.

1 65. A decoder module, as in claim 58, wherein said decoder module is
2 disposed on an integrated circuit die.

1 66. A method of decoding an encoded data word, whose encoded data
2 elements occupy at least a first logic state and a second logic state, said method
3 comprising:

4 receiving encoded data sub-words onto sub-word paths, the encoded data
5 sub-words comprising sets of data elements of the encoded data
6 word;

7 allowing communication between the sub-word paths, such that
8 information may be shared between the sub-word paths; and
9 decoding the encoded data sub-words into data sub-words;

10 such that the data sub-words form a data word.

1 67. A method, as in claim 66, wherein the information, in said allowing
2 communication, is an encoded data sub-word weight.

1 68. A method, as in claim 66, wherein the information, in said allowing
2 communication, is at least one encoded data element from an encoded data sub-
3 word.

1 69. A method, as in claim 66, wherein the information, in said allowing
2 communication, is at least one encoded data element from the encoded data
3 word.

1 70. A method, as in claim 66, wherein said method further comprises
2 inverting all encoded data elements, within an encoded data sub-word, whose
3 significance is less than or equal to the significance of a particular encoded data
4 element within the encoded data sub-word.

1 71. A method, as in claim 66, wherein said method further comprises
2 inverting all encoded data elements, within an encoded data sub-word, whose
3 significance is less than or equal to the significance of a particular encoded data
4 element within the encoded data sub-word.

1 72. A method, as in claim 66, wherein said decoding, decodes an encoded
2 data sub-word by associating the encoded data sub-word with a data sub-word
3 in a user defined way.

1 73. A method, as in claim 66, wherein said decoding is a means for binomially
2 decoding a data sub-word.

1 74. A method, as in claim 73, further comprising adding 1 to a decimal value
2 to be decoded.

1 75. A data processing system comprising:
2 at least two sub-word paths, each of said at least two sub-word paths to
3 receive a data sub-word, comprising a set of data elements of a data
4 word;
5 an encoder coupled with said at least two sub-word paths, said encoder to
6 encode the data sub-word into an encoded data sub-word; such
7 that encoded data sub-words form an encoded data word wherein
8 an information content of the data word is spread between the
9 encoded data sub-words and the weight of the encoded data sub-
10 words.
11 a parallel encoded data line bus coupled with said at least two sub-word
12 paths to receive the encoded data sub-words and to facilitate
13 transmission of the encoded data sub-words;
14 at least two sub-word paths coupled with said parallel encoded data line
15 bus, each of said at least two sub-word paths to receive an encoded
16 data sub-word, comprising a set of data elements of the encoded
17 data word and allowing communication, between said at least two
18 sub-word paths, such that information is shared between said at
19 least two sub-word paths; and
20 a decoder coupled with said at least two sub-word paths, said decoder to
21 decode the encoded data sub-word into the data sub-word;
22 such that data sub-words form the data word.

1 76. A data processing system, as in claim 75, wherein said data processing
2 system allows communication of a group of data elements from the data word,
3 such that information is shared between said at least two sub-word paths.

1 77. A data processing system, as in claim 76, wherein the information is a data
2 sub-word weight.

1 78. A data processing system, as in claim 76, wherein the information is at
2 least one data element from the data sub-word.

1 79. A data processing system, as in claim 76, wherein the information is at
2 least one data element from the data word.

1 80. An encoder as recited in claim 76, wherein said encoder inverts all the
2 data elements, within the data sub-word, whose significance is less than or equal
3 to the significance of a particular data element within the data sub-word.

1 81. An encoder as recited in claim 76, wherein said encoder inverts all
2 encoded data elements, within the encoded data sub-word, whose significance is
3 less than or equal to the significance of a particular encoded data element within
4 the encoded data sub-word.

1 82. An encoder as recited in claim 76, wherein the number of elements in the
2 encoded data sub-word is at least one greater than the number of elements in the
3 data sub-word.

1 83. A data processing system, as in claim 76, further comprising encoding
2 logic for encoding values represented by the data words that are not encoded by
3 said encoder.

1 84. A data processing system, as in claim 76, further comprising a code
2 governor, wherein said code governor sets a logic state of at least one particular
3 data element location in the encoded data word such that the number of data
4 elements in each logic state is constant for each encoded data word.
5

1 85. A code governor, as recited in claim 84, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set
3 the logic state of at least one particular data element in the encoded data word.

1 86. A data processing system, as in claim 84, further comprising a parity line
2 to change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 87. A parity line, as recited in claim 86, wherein said parity line, uses in part,
2 the information shared between said at least two sub-word paths to set the logic
3 state of the element output onto said parity line.

1 88. An encoder as recited in claim 76, wherein said encoder encodes the data
2 word by associating the data word with an encoded data word which is selected
3 from a set of encoded data words where the encoded data word is of length z
4 elements with a fixed number of data elements in each logic state.

1 89. An encoder as recited in claim 76, wherein said encoder encodes the data
2 sub-word by associating the data sub-word with the encoded data sub-word in a
3 user defined way.

1 90. An encoder as recited in claim 76, wherein said encoder is a binomial
2 encoder.

1 91. A data processing system as recited in claim 76, wherein said encoder
2 module is disposed on an integrated circuit die.

1 92. A data processing system, as in claim 76, further comprising a *Vdd* power
2 rail wherein a sum of the current flowing in said *Vdd* power rail is substantially
3 constant.

1 93. A data processing system, as in claim 76, further comprising:
2 a code governor; and
3 a *Vdd* power rail;
4 wherein said code governor sets the logic state of at least one particular data
5 element location in the encoded data word, such that a sum of the current
6 flowing in said *Vdd* power rail, is substantially constant.

1 94. A code governor, as recited in claim 93, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set a
3 logic state of at least one particular data element in the encoded data word.

1 95. A data processing system, as in claim 93, further comprising a parity line
2 to change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 96. A parity line, as recited in claim 95, wherein the information shared
2 between the data sub-words is used, in part, to set a logic state of the element
3 output onto said parity line.

1

1 97. A data processing system, as in claim 76, further comprising a Vss power
2 rail wherein a sum of a current flowing in said Vss power rail is substantially
3 constant.

1 98. A data processing system, as in claim 76, further comprising:
2 a code governor; and
3 a Vss power rail;
4 wherein said code governor sets the logic state of at least one particular data
5 element location in the encoded data word, such that a sum of the current
6 flowing in said Vss power rail is substantially constant.

1 99. A code governor, as recited in claim 98, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set a
3 logic state of at least one particular data element in the encoded data word.]

1 100. A data processing system, as in claim 98, further comprising a parity line
2 to change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 101. A parity line, as recited in claim 100, wherein the information shared
2 between the data sub-words is used, in part, to set a logic state of the element
3 output onto said parity line.

1 102. A data processing system, as in claim 76, further comprising encoded data
2 lines wherein a sum of the current flowing in said parallel encoded data line bus
3 is substantially constant.

1 103. A data processing system, as in claim 76, further comprising:
2 a code governor, wherein said code governor sets the logic state of at least one
3 particular data element location in the encoded data word;
4 such that a sum of the current flowing in said parallel encoded data line bus is
5 substantially constant.

1 104. A code governor, as recited in claim 103, wherein said code governor, uses
2 in part, the information shared between said at least two sub-word paths to set a
3 logic state of at least one particular data element in the encoded data word.

1 105. A data processing system, as in claim 103, further comprising a parity line
2 to change the weight of the encoded data word by adding an element to the
3 encoded data word.

1 106. A parity line, as recited in claim 105, wherein the information shared
2 between the data sub-words is used, in part, to set a logic state of the element
3 output onto said parity line.

1 107. A decoder as recited in claim 76, wherein said decoder inverts all data
2 elements, within the data sub-word, whose significance is less than or equal to
3 the significance of a particular data element within the data sub-word.

1 108. A decoder as recited in claim 76, wherein said decoder inverts all encoded
2 data elements, within the encoded data sub-word, whose significance is less than
3 or equal to the significance of a particular encoded data element within the
4 encoded data sub-word.

1 109. A decoder as recited in claim 76, wherein the number of elements in the
2 data sub-word is at least one less than the number of elements in the encoded
3 data sub-word.

1 110. A data processing system, as in claim 76, further comprising decoding
2 logic for decoding a value represented by the encoded data word that is not
3 decoded by said decoder.

1 111. A decoder as recited in claim 76, wherein said decoder decodes the
2 encoded data sub-word by associating the encoded data sub-word with the data
3 sub-word in a user-defined way.

1 112. A decoder as recited in claim 76, wherein said decoder is a binomial
2 decoder.

1 113. A data processing system, as in claim 76, wherein said data processing
2 system is disposed on an integrated circuit die.

1 114. A method for transmitting a data word in a data processing system, said
2 method comprising:
3 receiving data sub-words onto sub-word paths, the data sub-words
4 comprising sets of data elements of the data word;

5 encoding the data sub-words into encoded data sub-words, such that the
6 encoded data sub-words form an encoded data word wherein an
7 information content of the data word is spread between the
8 encoded data sub-words and the weight of the encoded data sub-
9 words;
10 transmitting the encoded data sub-words over a parallel encoded data line
11 bus;
12 receiving the encoded data sub-words onto the sub-word paths, the
13 encoded data sub-words comprising sets of data elements of the
14 encoded data word;
15 allowing communication, between the sub-word paths, such that
16 information may be shared between the sub-word paths; and
17 decoding the encoded data sub-words into the data sub-words,
18 such that the data sub-words form the data word.

1 115 A method, as in claim 114, further comprising allowing communication of
2 a group of data elements from the data word, between the sub-word paths, such
3 that information may be shared between the sub-word paths.

1 116. A method, as in claim 115, wherein the information in said allowing
2 communication is a data sub-word weight.

1 117. A method, as in claim 115, wherein the information in said allowing
2 communication is at least one data element from the data sub-word.

1 118. A method, as in claim 115, wherein the information is at least one data
2 element from a data word.

1 119. A method, as in claim 115, wherein said method further comprises
2 inverting all data elements, within a data sub-word, whose significance is less
3 than or equal to the significance of a particular data element within the data sub-
4 word.

1 120. A method, as in claim 115, wherein said method further comprises
2 inverting all encoded data elements, within an encoded data sub-word, whose
3 significance is less than or equal to the significance of a particular encoded data
4 element within the encoded data sub-word.

1 121. A method, as in claim 115, wherein said encoding encodes a data word by
2 associating the data word with an encoded data word which is selected from a
3 set of encoded data words where the encoded data word is of length z elements
4 with a fixed number of data elements in each logic state.

1 122. A method, as in claim 115, wherein said encoding encodes a data sub-
2 word by associating the data sub-word with the encoded data sub-word in a user
3 defined way.

1 123. A method, as in claim 115, wherein the encoded data word is balanced.

1 124. A method, as in claim 115, wherein the encoded data word is substantially
2 balanced.

1 125. A method, as in claim 115, further comprising using a code governor to
2 change the weight of the encoded data word.

1 126. A method, as in claim 125, wherein said using a code governor is based at
2 least in part on said allowing communication.

1 127. A method, as in claim 125, further comprising using a parity line to
2 change the weight of the encoded data word.

1 128. A method, as in claim 127, wherein said using a parity line is based at
2 least in part on said allowing communication.

1 129. A method, as in claim 115, wherein said encoding is a means for
2 binomially encoding the data word.

1 130. A method, as in claim 129, further comprising adding 1 to the largest
2 decimal number to be encoded

1 131. A method, as in claim 129, wherein the encoded data word is balanced.

1 132. A method, as in claim 129, wherein the encoded data word is substantially
2 balanced

1 133. A method, as in claim 129, further comprising using a code governor to
2 change the weight of the encoded data word.

1 134. A method, as in claim 133, wherein said using a code governor is based at
2 least in part on said allowing communication.

- 1 135. A method, as in claim 133, further comprising using a parity line to
- 2 change the weight of the encoded data word.

- 1 136. A method, as in claim 135, wherein said using a parity line is based at
- 2 least in part on said allowing communication.

- 1 137. A method, as in claim 115, wherein the information, in said allowing
- 2 communication, is an encoded data sub-word weight.

- 1 138. A method, as in claim 115, wherein the information, in said allowing
- 2 communication, is at least one encoded data element from an encoded data sub-
- 3 word.

- 1 139. A method, as in claim 115, wherein the information, in said allowing
- 2 communication, is at least one encoded data element from the encoded data
- 3 word.

- 1 140. A method, as in claim 115, wherein said method further comprises
- 2 inverting all encoded data elements, within an encoded data sub-word, whose
- 3 significance is less than or equal to the significance of a particular encoded data
- 4 element within the encoded data sub-word.

- 1 141. A method, as in claim 115, wherein said method further comprises
- 2 inverting all encoded data elements, within an encoded data sub-word, whose
- 3 significance is less than or equal to the significance of a particular encoded data
- 4 element within the encoded data sub-word.

- 1 142. A method, as in claim 115, wherein said decoding, decodes an encoded
 - 2 data sub-word by associating the encoded data sub-word with a data sub-word
 - 3 in a user defined way.
-
- 1 143. A method, as in claim 115, wherein said decoding is a means for
 - 2 binomially decoding a data sub-word.