

LMAPR2020: Project 2 Material Selection of a fire hose

Presented by Group L:

Gad Omar

Vansnick François

Introduction

- Essential safety equipment for firefighting
- Use in crisis and in hostile environments
- Must be reliable and durable and easy to deploy under stress situation
- Focus on Type 3 fire hose (the most advanced, design for outdoor operations)

Specifications

- Function: Carry water or fire retardant under high pressure to extinguish a fire
- Objective:
 - Minimize the mass to make it easily handled and transported by firefighters
 - o Maximize the flexibility for easy storage and deployment
- Constraints:
 - Must withstand a continuous operating pressure of 15 bars without leakage or deformation
 - O The hose must withstand a pressure of 45 bars without rupture
 - Working temperature range of -30°C to +80°C
 - Resistant to abrasion, chemicals and UV rays
 - O Standardized internal diameter (45mm or 70mm) for compatibility with intervention equipment
- Free variables:
 - Material selection
 - Thickness

Material Index

• Pressure constraint :

$$\rightarrow$$
 $dF = p \times (R L d\theta)$

$$> dF_x = dF\cos(\theta) = pRL\cos(\theta)d\theta$$

$$F_{x} = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} p R L \cos(\theta) d\theta = p R L \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos(\theta) d\theta = p R L 2$$

$$\sigma = \frac{p R}{t}$$

Material Index

Objectives:

$$\rightarrow m = \rho V = \rho \pi L [(R + t)^2 - R^2] \approx \rho 2\pi L R t$$

>
$$S = \frac{1}{EI} = \frac{1}{E\pi R^3 t}$$
 $(I \approx \pi R^3 t ; if t \ll R)$

Reminders : t (thickness) is a free variable

$$ightharpoonup t = rac{pR}{\sigma_y}$$

$$> S_1 = \frac{\sigma_y}{E\pi R^4 p} \Rightarrow M_2 = \frac{E}{\sigma_y}$$

$$Z = \alpha_1 \left(\frac{\rho}{\sigma_y} \right) + \alpha_2 \left(\frac{E}{\sigma_y} \right)$$

Material Selection

Effective Properties of current fire hose

Polyester:

$$\rho = 1105 \left[\frac{kg}{m^3} \right]$$

$$E = 0.3005 [GPa]$$

$$\sigma_{v} = 12,2 [MPa]$$

Nitrile:

$$\rho = 1115 \left[\frac{kg}{m^3} \right]$$

$$E = 0.00645 [GPa]$$

$$\sigma_{\rm v} = 20 \, [MPa]$$

• We suppose f = 0.4

$$\rho = f \cdot \rho_f + (1 - f)\rho_m = 0.4 \cdot 1105 + 0.6 \cdot 1115 = 1111 \left[\frac{kg}{m^3} \right]$$

$$E_V = f \cdot E_f + (1 - f) E_m = 0.4 \cdot 0.3005 + 0.6 \cdot 0.00645 = 0.1241 [GPa]$$

$$\frac{1}{E_R} = \frac{f}{E_f} + \frac{(1-f)}{E_m} = \frac{0.4}{0.3005} + \frac{0.6}{0.00645} = 94.354 \implies E_R = 0.0106 [GPa]$$

$$E_{average} = \frac{E_V + E_R}{2} = 0.0674 \, [GPa]$$

$$\sigma_y = f \cdot \sigma_{y,f} + (1 - f) \sigma_{y,m} = 0.4 \cdot 12.2 + 0.6 \cdot 20 = 16.88 [MPa]$$

Comparison with current fire hose

Relative penalty function comparison with current fire hose:

$$\frac{m}{m_0} = \left(\frac{\rho}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{\rho_0}\right) \quad \& \quad \frac{S_0}{S} = \left(\frac{E}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{E_0}\right) \qquad \qquad Z^* = \alpha_m^* \left(\frac{m}{m_0}\right) + \alpha_S^* \left(\frac{S_0}{S}\right)$$

Potential Material Candidates

- Nitrile rubber:
 - Very high resistive pressure
 - Not very flexible
 - Very good abrasion and chemical resistance
 - Good candidate for matrix material
- VE (Vinyl Ester flexible):
 - Not very resistive
 - Not very flexible
 - Not resistive to acid
 - Can't be use for our application
- Polyester
 - High-pressure resistance
 - Not resistive to acid and UV
 - Good candidate for fiber material

- Polyurethane rubber (unfilled):
 - Bad resistance pressure
 - Very high flexibility
 - Bad UV resistance
 - Good candidate for matrix material
- Stainless Steel:
 - High pressure resistance
 - Very heavy
 - Potentially use as fiber but is difficult to braid

- Alumina (Ceramics):
 - High pressure resistance
 - No flexibility
 - Brittle
 - Can't be use for our application
- TPU (30% Glass Fiber)
 - High pressure resistance
 - Not very flexible
 - May be a good compromise

- Thanks to this analysis we understand why current fire hoses are made of Nitrile and Polyester.
- However, we can try to use Polyurethane with Polyester.

Effective properties of our new hybrid

Polyester:

$$\rho = 1105 \left[\frac{kg}{m^3} \right]$$

$$E = 0.3005 [GPa]$$

$$\sigma_{v} = 12,2 [MPa]$$

Polyurethane rubber:

$$\rho = 1200 \left[\frac{kg}{m^3} \right]$$

$$E = 0.00275 [GPa]$$

$$\sigma_{v} = 45.5 [MPa]$$

• We suppose f = 0.4

$$\rho = f \cdot \rho_f + (1 - f)\rho_m = 0.4 \cdot 1105 + 0.6 \cdot 1200 = 1162 \left[\frac{kg}{m^3} \right]$$

$$E_V = f \cdot E_f + (1 - f) E_m = 0.4 \cdot 0.3005 + 0.6 \cdot 0.00275 = 0.12185 [GPa]$$

$$\frac{1}{E_R} = \frac{f}{E_f} + \frac{(1-f)}{E_m} = \frac{0.4}{0.3005} + \frac{0.6}{0.00275} = 219.51 \implies E_R = 0.00455 [GPa]$$

$$E_{average} = \frac{E_V + E_R}{2} = 0,0632 \, [GPa]$$

$$\sigma_y = f \cdot \sigma_{y,f} + (1 - f) \sigma_{y,m} = 0.4 \cdot 12.2 + 0.6 \cdot 45.5 = 32.18 [MPa]$$

Comparison

Material	Density [kg/m^3]	Young's Modulus [GPa]	Yield Strength [MPa]	Price [euros/kg]
Nitrile + Polyester	1111	0,0674	16,88	2,585
Polyurethane rubber + Polyester	1162	0,0632	32,18	2,325

- Our new composite seems to be better: slightly heavier but more flexible with better yield's strength and cheaper
- So why is this composite not used now?
 - Nitrile is **more resistant** to oils, fuels and chemicals than Polyurethane rubber
 - Nitrile has also a **better UV and high temperature resistance** than Polyurethane
 - Nitrile bonds better with polyester during manufacturing and easier to manufacture

Nitrile + Polyester are therefore the best choice for this type of application

Eco Audit

Hose	Materials	Recycle content	Expected life cycle
Hose 1:	NBR	Virgin	12 years
	PET	Virgin	
Hose 2:	TPU	Virgin	10 years
	PET	Virgin	
Hose 3:	TPU & Fiber Glass 30%	Virgin	10 years

End of life expectations

Material	Recycling	Down-cycle	Combustion	Landfill
NBR	-	100 %	-	-
PET	100%	-	-	-
TPU	95%	-	-	5%
TPU + 30 % glass- fiber	-	-	60	40

Transportation & suppliers

Material	Mean of trasportation	Distance	Supplier	Location
NBR	Truck/pipeline	≈250 km +	LANXESS AG	Dormagen, Germany
Acrylonitrile &Butadiene		≈1000Km		
PET	Truck/pipeline	≈100 Km +	Beaulieu Fibres International	Wielsbeke, Belgium
PTA & MEG		≈1000Km		
TPU	Truck/pipeline	≈50 Km +	Nexeo Plastics	Antwerp, Belgium
MDI & Polyether polyol		≈600Km		

Climate change

Energy

- Function: Carry water or fire retardant under high pressure to extinguish a fire
- Objective:
 - Minimize embodied energy (or CO_2 footprint)
 - o Maximize the flexibility for easy storage and deployment
- Constraints:
 - Must withstand a continuous operating pressure of 15 bars without leakage or deformation
 - O The hose must withstand a pressure of 45 bars without rupture
 - Working temperature range of -30°C to +80°C
 - Resistant to abrasion, chemicals and UV rays
 - O Standardized internal diameter (45mm or 70mm) for compatibility with intervention equipment
- Free variables:
 - Material selection
 - Thickness

> Objectives:

$$\rightarrow$$
 $H_m m = H_m \rho V = H_m \rho \pi L [(R + t)^2 - R^2] \approx H_m \rho 2\pi L R t$

>
$$S = \frac{1}{EI} = \frac{1}{E\pi R^3 t}$$
 $(I \approx \pi R^3 t ; if t \ll R)$

Reminders: t (thickness) is a free variable

$$ightharpoonup t = rac{pR}{\sigma_y}$$

$$H = \frac{H_m \rho_2 \pi L R^2 p}{\sigma_y} \implies M1 = \frac{H_m \rho}{\sigma_y} \quad (or \quad M1 = \frac{[CO_2] \rho}{\sigma_y}) \qquad H_0 = \frac{H_m \rho_2 \pi L R^2 p}{\sigma_y} = C \frac{H_{m_0} \rho_0}{\sigma_{y,0}} = \dots$$

$$> S = \frac{\sigma_y}{E\pi R^4 p} \Rightarrow M_2 = \frac{E}{\sigma_y}$$

Relative penalty function comparison with current fire hose: $\frac{H}{H_0} = \left(\frac{H_m \rho}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{H_{m_0} \rho_0}\right) & & \frac{S_0}{S} = \left(\frac{E}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{E_0}\right)$

Relative penalty function comparison with current fire hose: $\frac{C}{C_0} = \left(\frac{C_{0_2} \rho}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{C_{0_{2_0}\rho_0}}\right) & \frac{S_0}{S} = \left(\frac{E}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{E_0}\right)$

$$\frac{c}{c_0} = \left(\frac{c_{0_2} \rho}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{c_{0_{2_0}\rho_0}}\right)$$

&
$$\frac{S_0}{S} = \left(\frac{E}{\sigma_y}\right) \cdot \left(\frac{\sigma_{y,0}}{E_0}\right)$$

Polyurethane rubber + Polyester (cast, flexible)

Material	Density [kg/m^3]	Young's Modulus [GPa]	Yield Strength [MPa]	Price [euros/kg]	Embodied Energy [MJ/kg]	Climate change [kgC02/kg]
Nitrile + Polyester	1111	0,0674	16,88	2,585	112,5	3,6
Polyurethane rubber + Polyester	1162	0,0632	32,18	2,325	83,58	3,74

- From an environmental point of view, Polyurethane matrix with polyester fibers is also the best compromise
- but as explained previously Nitrile and polyester is more widely used

Future recommendations

Future recommendations

Thank You ? Any questions

References

III Technical Data

Nominal Size		Working Pressure Burst Pressure		ressure	Average Weight		WallThickness		Certification	
inch	mm	psi	bar	psi	bar	lbs./ft	kg/m	inch	mm	ceraneadon
1 1/2	38	218	15	654	45	0.209	0.311	0.083	2.1	\sim
2	52	218	15	654	45	0.279	0.415	0.114	2.9	\triangle
2 1/2	65	218	15	654	45	0.383	0.570	0.118	3.0	A

Features

- Ribbed cover with great abrasion resistance, smooth liner for minimum friction loss;
- Resistant to weather, UV, oxidation and most chemicals or petroleum products;
- · Flexible to deploy and roll up, compact coil for storage;
- Temperature range from -4°F to 158°F (20°C to 70°C);
- Applicable to Brass/Alu NST/NPSH threaded couplings, other type on request;
- Standard length 50', 100', 200', up to 660';
- · Available with customized color, couplings and marking.

Size

2 1/2 inch , 65 mm

Working Pressure

218 psi , 15 bar

Burst Pressure

654 psi , 45 bar

Avg. Weight

0.383 lbs/ft , 0.57kg/m

Certificates

BS 6391 Type 3

References

- https://www.flowtech.co.uk/fire-hose-reel-guide/
- https://tpmcsteel.com/product/layflat-fire-hose-type-3/#:~:text=Layflat%20fire%20hose%20is%20typically,resistance%20to%20abrasion%20and%20heat.

Effective Properties

TPU:

$$\rho = 1360 \left[\frac{kg}{m^3} \right]$$

$$E = 0.0354 [GPa]$$

$$\sigma_{v} = 54.3 [MPa]$$

Polyamide fiber:

$$\rho = 1140 \left[\frac{kg}{m^3} \right]$$

$$E = 4.5 [GPa]$$

$$\sigma_{\rm v} = 802.5 \, [MPa]$$

• We suppose f = 0.4

$$\rho = f \cdot \rho_f + (1 - f)\rho_m = 0.2.1140 + 0.8.1360 = 1316 \left[\frac{kg}{m^3} \right]$$

$$E_V = f \cdot E_f + (1 - f) E_m = 0.2 \cdot 4.5 + 0.8 \cdot 0.0354 = 1.1832[GPa]$$

$$\frac{1}{E_R} = \frac{f}{E_f} + \frac{(1-f)}{E_m} = \frac{0.2}{4.5} + \frac{0.8}{0.0354} = 22.64 \implies E_R = 0.04416 [GPa]$$

$$E_{average} = \frac{E_V + E_R}{2} = 0,6136 \, [GPa]$$

$$\sigma_y = f \cdot \sigma_{y,f} + (1 - f) \sigma_{y,m} = 0.2 \cdot 802.5 + 0.8 \cdot 20 = 203.94 [MPa]$$

