Chapitre 24: Familles sommables

Familles de nombres positifs

Généralités

Définition 1.1. Soit $x = (x_i)_{i \in I}$ une famille de réels ≥ 0 indexés par une ensemble JOn définit

$$\sum_{j \in J} x_j = \sup \left\{ \sum_{j \in J_0} x_j \mid J_0 \in \mathcal{P}_f(J) \right\} \in [0, +\infty]$$

Avec la convention que la forme supérieure vaut $+\infty$ si l'ensemble n'est pas majoré. (Ici, \mathcal{P}_f désigne l'ensemble des parties finies de J)

Proposition 1.2. Soit $x, y \in \mathbb{R}^J_+$, des familles indexées par J

On a:

* Restriction : Si $K \subseteq J$, $\sum_{j \in K} x_j \le \sum_{j \in J} x_j$ * Linéarité : $\forall \lambda \in \mathbb{R}_+^*$, $\sum_{j \in J} (x_j + \lambda y_j) = \sum_{j \in J} x_j + \lambda \sum_{j \in J} y_j$ * Croissance : Si $\forall j \in J$, $x_j \le y_j$, alors $\sum_{j \in J} x_j \le \sum_{j \in J} y_j$

Corollaire 1.3. Supposons $J = \bigsqcup_{k=1}^{n} J_k$

Alors, pour toute famille $x \in \mathbb{R}_+^J$, on a

$$\sum_{j \in J} x_j = \sum_{k=1}^n \sum_{j \in J_k} x_j$$

1.2 Commutativité

Proposition 1.4.

* Soit $\sigma: I \to J$ une bijection et $x \in \mathbb{R}^J_+$ Alors

$$\sum_{i\in I} x_{\sigma(I)} = \sum_{j\in J} x_j$$

* En particulier, si $\sigma: J \to I$ est bijective

$$\sum_{j\in J} x_j = \sum_{j\in J} x_{\sigma(j)}$$

Sommation par paquets

Théorème 1.5 (Sommation par paquets). Soit $x \in \mathbb{R}^J_+$ et un recouvrement disjoint $J = \bigsqcup_{\lambda \in \Lambda} J_{\lambda}$ Alors

$$\sum_{j \in I} x_j = \sum_{\lambda \in \Lambda} \sum_{j \in I_\lambda} x_j$$

Corollaire 1.6 (Théorème de Fubini). Soit $(x_{i,j})_{(i,j)\in I\times J}$ une famille de réels positifs. Alors

$$\sum_{i \in I} \sum_{j \in J} x_{i,j} = \sum_{(i,j) \in I \times J} x_{i,j} = \sum_{j \in J} \sum_{i \in I} x_{i,j}$$

1

Familles sommables de nombres complexes

2.1 Généralités

Définition 2.1.

- * Une famille $x = (x_j)_{j \in J} \in \mathbb{C}^J$ est dite <u>sommable</u> si $\sum_{j \in J} |x_j| < +\infty$
- * On note $l^1(J;\mathbb{C})$ l'ensemble des familles sommables indexées par J
- * Si $x \in \mathbb{R}^J$ est sommable, on définit sa $\underline{\text{somme}} \sum\limits_{j \in J} x_j = \sum\limits_{j \in J} x_j^+ \sum\limits_{j \in J} x_j^-$ * Si $x \in \mathbb{C}^J$ est sommable, on définit sa $\underline{\text{somme}} \sum\limits_{j \in J} x_j = \sum\limits_{j \in J} \text{Re}(x_j) + i \sum\limits_{j \in J} \text{Im}(x_j)$

Lemme 2.2. Soit $x \in l^1(J; \mathbb{C})$. Pour tout $\varepsilon > 0$, il existe une partie $J_0 \subseteq J$ finie telle que

$$\forall K \in \mathcal{P}_f(J), J_0 \in K \implies \left| \sum_{j \in J} x_j - \sum_{j \in K} x_j \right| \le \varepsilon$$

Corollaire 2.3.

- * En appliquant le lemme à $\varepsilon=2^{-n}$, on peut trouver une suite $(J_n)_{n\in\mathbb{N}}$ de parties finies de J telles que $\sum_{j \in I} x_j \xrightarrow[n \to +\infty]{} \sum_{j \in I} x_j \text{ (en remplaçant } J_n \text{ par } J_0 \cup ... \cup J_n \text{ on peut même imposer qu'elle soit croissante)}$
- * Étant donné $x,y \in l^1(J;\mathbb{C})$ et $\varepsilon > 0$, on peut trouver J_0 et K_0 comme dans le lemme et l'ensemble fini $L_0 = J_0 \cup K_0$ vérifie

$$\left| \sum_{j \in J} x_j - \sum_{j \in L_0} x_j \right| \le \varepsilon \quad \text{et} \quad \left| \sum_{j \in J} y_j - \sum_{j \in L_0} y_j \right| \le \varepsilon$$

Naturellement, cela s'étend à Γ familles sommables.

Propriétés 2.2

Proposition 2.4. Soit $x, y \in l^1(J; \mathbb{C})$

On a:

- * Restriction : Si $K \subseteq J$, $(x_k)_{k \in K}$ est sommable.
- * <u>Linéarité</u>: Pour toute $\lambda \in \mathbb{C}$, $(x_j + \lambda y_j)_{j \in J} \in l^1(J; \mathbb{C})$ et $\sum_{j \in J} (x_j + \lambda y_j) = \sum_{j \in J} + \sum_{j \in J} y_j$ * <u>Croissance</u>: Si x, y sont à valeurs réelles et que $\forall j \in J$, $x_j \leq y_j$, alors $\sum_{j \in J} \leq \sum_{j \in J} y_j$

Proposition 2.5 (Inégalité triangulaire). Soit $x \in l^1(J; \mathbb{C})$

On a

$$\left| \sum_{j \in J} x_j \right| \le \sum_{j \in J} |x_j|$$

Commutativité 2.3

Proposition 2.6. Soit $x \in l^1(J; \mathbb{C})$

- * Si $\sigma: I \to J$ est une bijection, $(x_{\sigma(i)})_{i \in I}$ est sommable et $\sum_{i \in I} x_{\sigma(i)} = \sum_{i \in J} x_i$
- * En particulier, si $\sigma: J \to J$, $(x_{\sigma(j)})_{j \in J}$ est sommable et $\sum\limits_{j \in J} x_{\sigma(j)} = \sum\limits_{j \in J} x_j$

Corollaire 2.7 (sur les séries). Si $\sum x_n$ est une série absolument convergente et que $\sigma : \mathbb{N} \to \mathbb{N}$ est une bijection,

2

alors $\sum_{n} x_{\sigma(n)}$ est encore absolument convergente et $\sum_{n=0}^{+\infty} = \sum_{n=0}^{+\infty} x_{\sigma(n)}$

2.4 Sommation par paquets

Théorème 2.8. Soit $(x_j)_{j\in J}\in\mathbb{C}^J$ et on considère un recouvrement disjoint $J=\bigsqcup_{\lambda\in\Lambda}$ Alors $(x_j)_{j\in J}$ est sommable ssi, pour tout $\lambda\in\Lambda$, $(x_j)_{j\in J_\lambda}$ est sommable et que $(\sum\limits_{j\in J_\lambda})_{\lambda\in\Lambda}$ est sommable.

Et, si c'est le cas, on a

$$\sum_{j \in I} x_j = \sum_{\lambda \in \Lambda} \sum_{j \in J_\lambda} x_j$$

Corollaire 2.9 (Théorème de Fubini). Soit $(x_{i,j})_{i,j} \in I \times J \in \mathbb{C}^{I \times J}$

Alors $(x_{i,j})_{(i,j)\in I\times J}$ est sommable ssi les familles $(x_{i,j})_{j\in J}$ $(i\in I)$ le sont et que $(\sum\limits_{j\in J}x_{i,j})_{i\in I}$ soit sommable.

Si c'est la cas, on a

$$\sum_{(i,j)\in I\times J} x_{i,j} = \sum_{i\in I} \sum_{j\in J} x_{i,j}$$

En particulier, si x est sommable

$$\sum_{i \in I} \sum_{j \in J} x_{i,j} = \sum_{j \in J} \sum_{i \in I} x_{i,j}$$

2.5 Produit

Théorème 2.10. Soit $a \in l^1(I; \mathbb{C})$ et $b \in l^1(J; \mathbb{C})$

Alors la famille $(a_ib_j)_{(i,j)\in I\times J}$ est sommable et

$$\sum_{(i,j)\in I\times J} a_i b_j = \left(\sum_{i\in\mathbb{N}} a_i\right) \left(\sum_{j\in J} b_j\right)$$

Définition 2.11. Soit $\sum_{n} a_n$ et $\sum_{n} b_n$ deux suites (à valeurs complexes).

Leur <u>produit de Cauchy</u> est la série $\sum_{n} c_n$ où, pour tout $t \in \mathbb{N}$, $c_n = \sum_{\substack{i,j \in \mathbb{N} \\ i+j=n}} a_i b_j = \sum_{k=0}^n a_k b_{n-k}$

Corollaire 2.12. Soit $\sum_{n} a_n$ et $\sum_{n} b_n$ deux séries absolument convergentes.

Alors leur produit de Cauchy $\sum_{n}^{\infty} c_n$ est une série absolument convergente et

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$