Wortschatz Zeitgeist

Wolfgang Otto, Thomas Döring, Max Kießling

Seminar Anwendungen der linguistischen Informatik

16. Juni 2015

Motivation

Algorithmen

Vergleich und Auswertung

Motivation

Wortschatzprojekt

- Bla
- Foobar
- Batz

Definition

Definition

Example

Beispiel

Algorithmen

Relative Häufigkeit

Idee: Tokens, deren relatives Auftreten am gewählten Tag im Verhältnis zum relativen Auftreten im Referenzzeitaum (2014) besonders groß ist, sind interessante Wörter.

Formel:

$$sig_{freqratio}(w) = \frac{\frac{k_{day}}{n_{day}}}{\frac{k_{2014}}{n_{2014}}} \tag{1}$$

 k_{day} : Frequenz des Tokens an einem Tag

n_{dav}: Summe der Frequenzen aller Tokens eines Tages

k₂₀₁₄: Frequenz des Tokens im Referenz Zeitrahmen (2014)

 n_{day} : Summe der Frequenzen aller Tokens im Referenzzeitrahmen (2014)

Relative Häufigkeit

Relative Häufigkeiten - Bemerkungen

- Erster Ansatz
- Einfache Implementierung
- Selten Auftretende Wörter werden gegenüber anderen interessanten Wörtern bevorteilt
- Positiv: Hochfrequente Worte werden selten hoch gerankt

TF/IDF

Idee: Wir gewichten die Auftretensfrequenz eines Token an einem Tag mit dem Inversen einer Maßzahl, die Angibt an wie vielen Tagen im Referenzjahr das Wort erwähnt wurde.

Modifikationen:

- Relativierung der Frequenz auf Frequenz des häufigsten Tokens am Tag (Vergleichbarkeit)
- Logarithmieren des IDF-Wertes

Formel:

$$sig_{tfidf}(w) = \frac{k}{\max(K)} \cdot \log(\frac{365}{documentdays(w)})$$
 (2)

k: Frequenz eines Tokens an einem Tag K: Alle Frequenzen an einem Tag

TF-IDF Beispiel

Poisson als Maß

Idee: Modellierung der Wahrscheinlichkeit eine bestimmte Frequenz eines Tokens zu sehen. Wenn die Tagesfrequenz eines Tokens sehr unwahrschilich ist, ist das Token interessant.

Annahme: Diese Wahrscheinlichkeiten sind Poisson-Verteilt.

Formel der Poisson-Verteilung allgemein:

$$P_{\lambda}(k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda} \tag{3}$$

 λ : Welche Frequenz wird erwartet (relativer Anteil im Referenzkorpus \cdot Umfang des Tageskorpus)

k: tatsächliches Auftreten von einem Wort k

 $P_{\lambda}(k)$: Erwartete Wahrscheinlichkeit meine Beobachtung k

Poisson Verteilung

Poisson Verteilung II

Poisson als Maß: Implementierung

- Problem: Berechnung der Fakultät
- Vergleichtbarkeit der Werte einzelner Tage untereinander
- Ziel: Hoher Rang soll einen hohen Wert haben (-log-Methode)
- Wenn die Frequenz unterdurchschnittlich ist, soll kein hoher Wert erzeugt werden

Formel:

$$sig_{poisson}(w) = \frac{k(\log(k) - \log(n \cdot p) - 1)}{\log(n)}$$
(4)

Poisson-Verteilung

Einschub: Wortzahl vs. Satzzahl zur Berechnung relativer Verhältnisse

- Bei der Referenz wird mit Satzzahlen gearbeitet
- ullet Jeder Satz hat im Schnitt gleiche Anzahl von Wörtern (pprox 10)

$$\frac{Satz_{heute}}{Satz_{jahr}} \approx \frac{Token_{heute}}{Token_{Jahr}}$$
 (5)

Zur Überprüfung später mehr

Z-Score

Something about Z-score

Zeitreihenanalyse

Definition (Zeitreihenanalyse)

Unter einer Zeitreihe versteht man die Entwicklung einer bestimmten Größe, deren Werte im Zeitablauf zu bestimmten Zeitpunkten oder für bestimmte Zeitintervalle erfasst und dargestellt werden

Maß: gleitender Mittelwert

- Glättet Zeit oder Datenreihen
- Erfolgt durch glätten hoher Frequenzanteile
- Es gibt ein Raster der größe n
- Es werden n Tage zusammenaddiert und dann durch n geteilt

Wie hilft uns das weiter?

 Tritt ein Wort häufiger als sein Durchschnittswert an dem Tag auf kann das interessant sein.

Erster Ansatz: R

- Der erste Ansatz war ein R Programm welches den gleitenden Mittelwert ausrechnen sollte
- Problem: R verarbeitet Wörter einzeln
- 3 Mio. Wörter \rightarrow 3 Mio. Transaktionen = MySQL Overkill
- Ausführungszeit würde mehrere Tage beanspruchen

Beispiel: Haus

Beispiel: Flugzeug

Zweiter Ansatz: MySQL

- Der Zweite Ansatz ist es direkt in MySQL zu berechnen
- Problem: Inner Join auf selbe Tabelle (ca. 20 Mio Zeilen)
- Jeder Eintrag muss geprüft werden ob die Join Tabelle den Eintrag in der Größe des Rasters hat
- Eine Datums Differenz Tabelle kann das ganze jedoch beschleunigen

Finaler Ansatz: R BigTable

- Diesmal reshape der Tabelle
- Spalten = Wörter, Zeilen = Datumfelder, Wert = freq
- Darüber kann man das effizent einzeln berechnen
- Danach überführung in alte Strucktur und Speicherung

Vergleich und Auswertung

Qualitative vs. Quantitative Auswertung

- Schwierigkeit einer quantifizierbaren qualitativen Evaluierung
- Quantitative vergleiche möglich, aber keine Aussage über Qualität
- Im Rahmen des Projektes möglich:
 - "Evaluierung durch draufschauen"
 - o Geeignetes Maß zum quantitativen Verlgeich nutzen

	poisson	tf_idf
1	Germanwings	Germanwings-Maschine
2	Absturz	Milke
3	Germanwings-Maschine	Germanwings-Airbus
4	A320	9525
5	Airbus	Germanwings-Flug
6	25. März	Germanwings
7	Haltern	Germanwings-Chef
8	Tsipras	Tsipras
9	Alpen	Barcelonnette
_10	Südfrankreich	A320

	freqratio	z_score
1	Barcelonnette	Haltern
2	Germanwings-Airbus	Aden
3	Germanwings-Chef	Südfrankreich
4	Rajana	Sinkflug
5	Germanwings-Maschine	Akte X
6	Dalkurd	A320
7	9525	Eierstöcke
8	Fire-TV-Stick	Hadi
9	ArtikelPolitik	10.53
10	18.03.2015	Ja Nein

	poisson	tf_idf
31	Germanwings-Flug	Eierstöcke entfernen
32	Unglück	Kolomoiski
33	abgestürzt	Flugschreiber
34	Germanwings-Airbus	Bürokratiebremse
35	Jemen	Sollecito
36	Flugschreiber	Dalkurd
37	2015	Haltern am See
38	4U	Akte X
39	KAC	Hadis
40	S6	Bloodborne

	freqratio	z_score
31	Eierstöcke entfernen	4Players.de
32	Germanwings-Flug	57,5
33	Germanwings-Flugzeug	Bassbariton
34	22.03.15	Alkoholiker
35	Feuerwehr-Leutnant	Debra
36	Gehenna	hervorragendem
37	Grabetz	XF
38	Höchstbefristungsdauer	25. März
39	Luciano Moggi	Angehörigen
40	Schultreppe	Crews

Quantitative Auswertung

Problemstellung: Vergleich von sortierten Listen mit potentiell unterschiedlichem Inhalt.

- Der Vergleich von Wortpaaren nicht sauber möglich.
- Schwierigkeit eines Mengenbasierter Ansatzes: Reihenfolge wird nicht beachtet

Quantitative Auswertung: Maximum Overlap

Idee: Es wird ein Mengenbasierter Ansatz für Teillisten genutzt und dann gemittelt.

Für jeden Rang der Listen wird eine Teilliste (Rang 1 bis betrachteter Rang) verglichen.

Beispiel: Tafelbild

Quantitative Auswertung: Maximum Overlap Ergebnisse

	List	List_to_compare	average_overlap
1	tf-idf	z-score	0.41
2	tf-idf	poisson	0.21
3	tf-idf	freqratio	0.33
4	z-score	poisson	0.35
5	z-score	freqratio	0.09
6	poisson	freqratio	0.00

Quantitative Auswertung: Maximum Overlap Ergebnisse

Einschub II: Wortzahl vs. Satzzahl zur Berechnung relativer Verhältnisse

	List	List_to_compare	average_overlap
3	poisson	poisson_old	0.99961
4	freqratio	freqratio_old	1.00000

Zusammenfassung

- Es wurden bestehende Verfahren untersucht
- Es wurden weitere Verfahren ausprobiert
- Es wurden die Ergebnisse quantitativ und qualitativ verglichen
- Es wurden MySQL und R Implementierungen umgesetzt.
- Es werden noch Musterbasierte Verfahren zum Cleaning der Listen implementiert
- Es wird noch ein weiteres Verlgleichsmaß mit Berücksichtigung der Anzahl der Quellen in denen ein Token erwähnt wird untersucht.

Quellen (1)