近似算法作业

学号: SA17011142 姓名: 姜贵平

1. 证明: G 中最大团的 size 为 α 当且仅当 G^m 里最大团的 size 是 $m\alpha$ 解:

1 充分性: 即证当 G^m 里最大团的 size 是 **m** α 时,G 中的最大团的 size 为 α 假设 G 中最大团 C 的 size 为 β ,且 β 不等于 α :

如果 β > α,因为 G^m 是取 G 的 m 个拷贝,并且连接每个拷贝中的任意两点构成,所以每个拷贝中的最大团 C 中的任意一点一定和其他拷贝中的 C 的任意一点相连,所以能够形成 size 为 mβ 的团,又因为 β>α,所以 G 中的最大团的 size 一定不是 mα,这和条件矛盾,所以 C 的 size β 不大于 α。

如果 $\beta < \alpha$,因为 G^m 里最大团的 size 是 mα,由鸽巢原理,必定有一个 G 的拷贝 G',使得 G^m 最大团中的结点在 G'中的数量大于等于 α 。这些结点构成的完全子图同样为 G'的完全子图,又因为假设 $\beta < \alpha$,这与 G 中最大团的 size 为 β 相矛盾。所以 C 的 size β 不小于 α 。 综上,当 G^m 里最大团的 size 是 m α 时,G 中的最大团的 size 为 α 。

2 必要性:即证 G 中最大团的 size 为 α ,则 G^m 里最大团的 size 是 $m\alpha$ 因为 G^m 中的不同拷贝之间的结点相互连接,所以每个拷贝中的最大团之间同样相互连接,构成的子图仍然为完全子图,由充分性的证明可知,不存在 size 大于 $m\alpha$ 的子团,所以 G^m 的最大子团的 size 为 $m\alpha$ 。

综上, G 中最大团的 size 为 α 当且仅当 G^m 里最大团的 size 是 $m\alpha$ 。

2. 完善证明 Th1.9LPT 算法的近似性能比 $R_{lpt} = \frac{4}{3} - \frac{1}{3m}$

课件中给出了近似比的上界,定理中为紧致界,所以需要证明在一定条件下等号成立。 考虑输入实力*I*′,使得以下条件成立:

$$P_i = 2m - \left[\frac{i}{2}\right], i = 1, 2, ..., 2m$$

 $P_{2m+1} = m$

P_1	P_{2m}	P_{2m+1}
P_2	P_{2m+1}	
P_{m-1}	P_{m+2}	
P_m	P_{m+1}	

LPT 运行结果

D	D	,	
r_1	Γ	2m-2	

P_2	P_{2m-3}	
P_{m-1}	P_m	
P_{2m-1}	P_{2m}	P_{2m+1}

OPT 结果

所以
$$A(I') = 4m - 1$$
, $OPT(I') = 3m$, 近似比为 $R_{lpt} = \frac{4}{3} - \frac{1}{3m}$