ТЕМА 3. СОПРЯЖЕННОЕ ПРОСТРАНСТВО

Пусть X — нормированное векторное пространство.

Определение 1. Линейный оператор $f: X \to \mathbb{R}(\mathbb{C})$ называется линейным функционалом. Обозначим его как f(x), $x \in X$. Линейность f означает, что $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), x, y \in X$, $\alpha, \beta \in \mathbb{R}(\mathbb{C})$. Линейный функционал f называется ограниченным, если для некоторой константы C > 0 выполнено неравенство $|f(x)| \leq C ||x||_X$ сразу для всех $x \in X$. Наименьшая из констант C, совпадающая с числом $\sup |f(x)|$, где \sup берется по всем $x \in ||x|| = 1$, называется нормой функционала и обозначается ||f||. Ограниченность функционала эквивалентна его непрерывности.

Рассмотрим множество линейных ограниченных функционалов, определенных на нормированном пространстве X, $\mathscr{B}(X,\mathbb{R})(\mathbb{C}^n)$. Это банахово пространство, так как пространство $\mathbb{R}^n(\mathbb{C}^n)$ банахово. Оно называется conpяженным пространством к пространству X и обозначается X^* .

В банаховом пространстве X^* можно рассматривать два типа схо-

Определение 2. Последовательность $(f_n)_{n=1}^{\infty} \subset X^*$ сходится к

- cunbho, если $||f_n f|| \xrightarrow[n \to \infty]{} 0$;
- слабо, если $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ для любого $x \in X$.

Примеры линейных ограниченных функционалов

 $\Pi p u m e p 1$. Пусть $X = \mathbb{R}^n$ с базисом e_1, \ldots, e_n . Возьмем $x \in$ \mathbb{R}^n и разложим его по базису $x=\sum\limits_{k=1}^n x_k e_k$. Рассмотрим линейный функционал f на элементе x, тогда

$$f(x) = f\left(\sum_{k=1}^{n} x_k e_k\right) = \sum_{k=1}^{n} x_k f(e_k) = \sum_{k=1}^{n} x_k y_k = (x, y)_{\mathbb{R}^n},$$

где $y_k = f(e_k)$. $|f(x)| = |(x,y)| \leqslant ||y|| \cdot ||x||$. Значит $||f|| \leqslant ||y||$. Таким образом, в пространстве \mathbb{R}^n каждый линейный функционал ограничен.

 $\prod p \, u \, m \, e \, p \, 2$. Пусть $X \in C[a,b]$. Рассмотрим функционал $f(x) = \sum_{k=1}^n C_k x(t_k)$, где t_k – система точек на отрезке [a,b]. Примером такого функционала являются конечные разности функции $x(t) \in C[a,b]$. Данный функционал ограничен. Действительно,

$$|f(x)| \le \sum_{k=1}^{n} |C_k||x(t_k)| \le \sum_{k=1}^{n} |C_k| \max_{a \le t \le b} |x(t)|, \quad ||f|| \le \sum_{k=1}^{n} |C_k|.$$

 $\Pi p u \, \mathsf{M} \, e \, p \, 3$. Определим на пространстве C[a,b] функционал вида

$$f(x) = \int_{a}^{b} a(t)x(t) dt,$$

где a(t) — непрерывная либо суммируемая на отрезке [a,b] функция. Примером такого функционала служат коэффициенты Фурье. Данный функционал линеен и ограничим, причем $\|f\| \leqslant \int\limits_a^b a(t) \,\mathrm{d}t.$

Множество линейных ограниченных функционалов, определенных на нормированном пространстве X называется conps женным пространством и обозначается X^* .

В банаховом пространстве X^* можно рассматривать два типа сходимости. Последовательность $(f_n) \subset X^*$ сходится к $f \in X^*$ сильно, если $||f_n - f|| \longrightarrow_{n \to \infty} 0$; слабо, если $f_n(x) \to f(x)$ для любого $x \in X$.

С помощью сопряженного пространства в пространстве X можно ввести новый тип сходимости. Говорят, что последовательность $(x_n) \subset X$ сходится к $x \in X^*$ справедливо $f(x_n) \to f(x)$ при $n \to \infty$.

Теорема 1. (Хана-Банаха). Пусть X – нормированное векторное пространство, X_0 – его подпространство, $f_0: X_0 \to \mathbb{C}$ – линейный ограниченный функционал. Тогда существует ограниченный функционал $f: X \to \mathbb{C}$, продолжающий f_0 , и при том такой, что

$$||f|| = ||f_0||.$$

Следствие 1 (об отделимости точек в X). Пусть X – нормированное пространство и $x_0 \in X$, $x_0 \neq 0$. Тогда существует такой линейный ограниченный функционал в пространстве X, что

- 1. ||f|| = 1;
- 2. $f(x_0) = ||x_0||$.

Следствие 2 (об отделимости точки от пространства). Пусть в нормированном пространстве X задано подпространство X_0 и элемент x_0 такой, что $\rho(x_0, X_0) = d > 0$. Тогда существует линейный ограниченный функционал $f \in X^*$, что

- 1. $f(x_0) = 1$;
- 2. f(x) = 0 для всех $x \in X_0$;
- 3. $||f|| = \frac{1}{d}$.

Следствие 3. Множество M всюду плотно в нормированном пространстве X тогда и только тогда, когда для любого функционала $f \in X^*$ такого, что f(x) = 0 для всех $x \in M$ следует, что f = 0, т. е. f(x) = 0, $x \in X$.

Следствие 4. Пусть $\{x_k\}_{k=1}^n$ – линейно-независимая система элементов в нормированном пространстве X. Тогда найдется система $\{f_e\}_{e=1}^n$ – линейных ограниченных функционалов на X такая, что

$$f_l(x_k) = \begin{cases} 1, k = l, \\ 0, k \neq l, k, l = 1, 2, \dots, n. \end{cases}$$

Определение 3. Система $\{x_k\}_{k=1}^n \subset X$ и система функционалов $\{f_l\}_{l=1}^n \subset X^*$ называется биортогональными, если

$$f_e(x_k) = \begin{cases} 1, l = k, 0, l \neq k, \\ k, l = 1, 2, \dots, n. \end{cases}$$

Следствие 5. Пусть $\{f_k\}_{k=1}^n \subset X^*$ – линейно независимая система линейных ограниченных функционалов. Тогда в X найдется система элементов $\{x_l\}_{l=1}^n$, биортогональная к ней.

Сопряженное пространство и его структура.

Теорема 2. (Ф. Рисса). Пусть H – гильбертово пространство. Для любого линейного ограниченного функционала $f \in H^*$ существует единственный элемент $y \in H$ такой, что для всех $x \in H$

$$f(x) = (x,y)_H, \quad ||f||_{H^*} = ||y||_H.$$
 (2.1)

Замечание 1. В силу теоремы Рисса существует сохраняющее норму взаимно однозначное соответствие между H^* и H. Это позволяет отождествить пространства H и H^* .

Теорема 3. (Ф. Рисса). Каждый линейный ограниченный функционал в пространстве C[a,b] задается формулой

$$f(x) = \int_{a}^{b} x(t) \, \mathrm{d}g(t), \tag{2.2}$$

где $g(t) \in \bigvee [a,b]$. При этом

$$||f|| = \bigvee_{a}^{b} (g).$$
 (2.3)

Замечание 2. Функция g по функционалу f определяется неоднозначно. Если же потребовать от g непрерывности слева и задать значение g(a) = 0, то g по f будет определяться однозначно.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u m e p 4$. Доказать, что функционал

$$f(x) = \int_{-1}^{1} x(t) dt - x(0), \quad x(t) \in C[-1,1],$$

является ограниченным, найти его норму.

Решение. В соответствии с определением функционал f является ограниченным, если существует постоянная C>0 такая, что:

$$|f(x)| \le C \cdot ||x||_{C[-1,1]}, \quad \forall x(t) \in C[-1,1].$$

Оценим норму |f(x)|.

$$|f(x)| = \left| \int_{-1}^{1} x(t) dt - x(0) \right| \le \int_{-1}^{1} |x(t)| dt + |x(0)| \le$$

$$\le 2 \max_{t \in [-1,1]} |x(t)| + \max_{t \in [-1,1]} |x(t)| = 3 ||x||.$$