University of Cambridge Mathematical Tripos Part II

Linear Analysis

Lecturer

András Zsák a.zsak@dpmms.cam.ac.uk

Course schedule

Normed and Banach spaces. Linear mappings, continuity, boundedness, and norms. Finite-dimensional normed spaces. [4]

The Baire category theorem. The principle of uniform boundedness, the closed graph theorem and the inversion theorem; other applications. [5]

The normality of compact Hausdorff spaces. Urysohn's lemma and Tiezte's extension theorem. Spaces of continuous functions. The Stone–Weierstrass theorem and applications. Equicontinuity: the Ascoli–Arzelá theorem. [5]

Inner product spaces and Hilbert spaces; examples and elementary properties. Orthonormal systems, and the orthogonalization process. Bessel's inequality, the Parseval equation, and the Riesz–Fischer theorem. Duality; the self duality of Hilbert space. [5]

Bounded linear operations, invariant subspaces, eigenvectors; the spectrum and resolvent set. Compact operators on Hilbert space; discreteness of spectrum. Spectral theorem for compact Hermitian operators. [5]

Recommended books

- B. Bollobas *Linear Analysis*. Cambridge University Press 1999.
- G.J.O. Jameson Topology and Normed Spaces. Chapman and Hall 1974.
- G. Allan Introduction to Banach Spaces and Algebras. Oxford University Press 2010.
- W. Rudin Real and Complex Analysis. McGraw-Hill International Edition 1987.

Contents

1 Normed spaces and bounded linear maps		3	
	1.1	Definitions and examples	3
	1.2	Inequalities of Minkowski and Hölder	5
	1.3	More examples: function spaces	7
	1.4	More on the normed topology	7
	1.5	Bounded linear maps	8
2	Dual spaces		12
	2.1	Basics	12
	2.2	Dual space of ℓ_p	12
	2.3	Bidual	14
	2.4	Dual operators	14
3	Fini	ite-dimensional normed spaces	16
4	The	e Baire category theorem and its applications	19

1 Normed spaces and bounded linear maps

1.1 Definitions and examples

Let X be a vector space over \mathbb{R} or \mathbb{C} . For ease of notation and discussion, we will sometimes just take our scalars to be in \mathbb{R} , although the statement may be easily generalised to \mathbb{C} -vector spaces.

Definition Norm

A norm on X is a function $||\cdot||: X \to \mathbb{R}$ such that

- (i) $||x|| \ge 0$ for all $x \in X$, with ||x|| = 0 iff x = 0
- (ii) $||\lambda x|| = |\lambda|||x||$ for all $x \in X$ and any scalar λ
- (iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$

Definition Normed space

A normed space is a pair $(X, ||\cdot||)$ where X is a vector space and $||\cdot||$ is a norm on X.

Example Some finite-dimensional normed spaces

(1) $\ell_2^n = (\mathbb{R}^n, ||\cdot||_2)$ or $(\mathbb{C}^n, ||\cdot||_2)$, where the norm is given by

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}, \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

This is called the ℓ_2 -norm or euclidean norm.

(i),(ii) are easy to check, whereas (iii) follows from Cauchy-Schwarz.

(2)
$$\ell_1^n = (\mathbb{R}^n, ||\cdot||_1)$$
 where $||x||_1 = \sum_{i=1}^n |x_i|$ (called the ℓ_1 -norm)

(3)
$$\ell_{\infty}^n = (\mathbb{R}^n, ||\cdot||_{\infty})$$
 where $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$ (called the ℓ_{∞} -norm or the sup-norm)

Given a normed space X, its norm $||\cdot||$ induces a metric on X:

$$d(x,y) = ||x - y||$$

Indeed, d is a metric:

- $d(x,y) \ge 0$ for all $x,y \in X$, with $d(x,y) = 0 \iff x-y=0 \iff x=y$
- d(x,y) = ||x y|| = ||y x|| = d(y,x)
- $d(x,z) = ||x-z|| \le ||x-y|| + ||y-z|| = d(x,y) + d(y,z)$

This metric, in turn, induces a topology on X, called the *norm topology*. This allows us talk about open/closed sets, convergence, and continuity, as we illustrate in the following examples.

Example

The algebraic operations are continuous:

- if $x_n \to x$ and $y_n \to y$ in X, then $x_n + y_n \to x + y$
- if $x_n \to x$ in X and $\lambda_n \to \lambda$ in \mathbb{R} , then $\lambda_n x_n \to \lambda x$

Example

The norm $||\cdot||: X \to \mathbb{R}$ is continuous: by the triangle inequality, we have

$$|||x|| - ||y||| \le ||x - y||$$

so $||\cdot||$ is, in fact, Lipschitz.

Definition Banach space

A Banach space is a complete normed space, i.e., a normed space that is complete in its norm topology.

Example

 $\ell_2^n, \ell_1^n, \ell_\infty^n$ are complete: for any of these spaces,

- $x^{(k)} \to x \iff x_i^{(k)} \to x_i \text{ for all } 1 \le i \le n$
- $(x^{(k)})_{k\in\mathbb{N}}$ is Cauchy $\iff (x_i^{(k)})_{k\in\mathbb{N}}$ is Cauchy for all $1\leq i\leq n$

In a normed space, a useful object is the unit ball

$$B_X := \{x \in X : ||x|| \le 1\}$$

Remarks

• B_X defines a norm on X:

$$||x|| = \inf\{t \ge 0 \colon x \in tB_X\}$$

- B_X is symmetric $(x \in B_X \Longrightarrow -x \in B_X)$, convex, and closed
- If $B \subset \mathbb{R}^n$ is a closed, convex, symmetric, bounded neighbourhood of 0, then B is the unit ball of $(\mathbb{R}^n, ||\cdot||)$ for some norm $||\cdot||$
- 'Geometry of Banach spaces'

Previously, we gave $\ell_2, \ell_1, \ell_{\infty}$ as examples of finite-dimensional normed spaces. More generally, we have the following family of examples

Example

(4)
$$\ell_p^n = (\mathbb{R}^n, ||\cdot||_p)$$
 for $1 \le p < \infty$, where $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ (called the ℓ_p -norm) Again, (i) and (ii) are easy to check, whereas (iii) is not obvious.¹

Now, let S denote the set of all scalar sequences. This is a vector spaces under the coordinate operations $(x_n) + (y_n) = (x_n + y_n)$ and $\lambda(x_n) = (\lambda x_n)$.

Example Sequence spaces

(5)
$$\ell_1 = \left\{ (x_n) \in S \colon \sum_{n=1}^{\infty} |x_n| < \infty \right\}, \quad ||(x_n)||_1 = \sum_{n=1}^{\infty} |x_n| \quad (\ell_1\text{-norm})$$

(i) and (ii): easy to check.

(iii): Given $(x_n), (y_n) \in \ell_1$, we have $|x_n + y_n| \le |x_n| + |y_n|$ for all $n \in \mathbb{N}$. Summing over all $n \in \mathbb{N}$, we deduce that $(x_n) + (y_n) \in \ell_1$ and $||(x_n) + (y_n)||_1 \le ||(x_n)||_1 + ||(y_n)||_1$. Hence, ℓ_1 is a subspace of S and $||\cdot||_1$ is a norm on ℓ_1 .

(6)
$$\ell_2 = \left\{ (x_n) \in S : \sum_{n=1}^{\infty} |x_n|^2 < \infty \right\}, \quad ||(x_n)||_2 = \left(\sum_{n=1}^{\infty} |x_n|^2 \right)^{1/2} \quad (\ell_2\text{-norm})$$

(i) and (ii): easy to check.

(iii): Given $(x_n), (y_n) \in \ell_2$, the triangle inequality in ℓ_2^N gives us

$$\left(\sum_{k=1}^{N} |x_k + y_k|^2\right)^{1/2} \le \left(\sum_{k=1}^{N} |x_k|^2\right)^{1/2} + \left(\sum_{k=1}^{N} |y_k|^2\right)^{1/2}.$$

Taking $N \to \infty$, we get $(x_n) + (y_n) \in \ell_2$ and $||(x_n) + (y_n)||_2 \le ||(x_n)||_2 + ||(y_n)||_2$

¹We will return to this later in the next subsection.

More generally, for $1 \le p < \infty$, the set

$$\ell_p = \left\{ (x_n) \in S \colon \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$$

is a subspace of S, and

$$||(x_n)||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \qquad (\ell_p\text{-norm})$$

is a norm on ℓ_p . [(iii) follows from the triangle inequality on ℓ_p^n , which we will see later.]

Example More sequence spaces

$$(7) \ \ell_{\infty} = \{(x_n) \in S \colon \exists M \ge 0 \ \forall n \in \mathbb{N} \ |x_n| \le M \}, \quad ||(x_n)||_{\infty} = \sup_{n \in \mathbb{N}} |x_n| \quad (\ell_{\infty}\text{-norm})$$

- (i) and (ii): easy to check.
- (iii): Given $x = (x_n), y = (y_n) \in \ell_{\infty}$

$$|x_n + y_n| \le |x_n| + |y_n| \le ||x||_{\infty} + ||y||_{\infty} \quad \forall n \in \mathbb{N}$$

so $x + y \in \ell_{\infty}$ and $||x + y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$.

(8)
$$c_0 = \{(x_n) \in S \colon x_n \to 0 \text{ as } n \to \infty\}$$

 $c = \{(x_n) \in S \colon \lim_{n \to \infty} x_n \text{ exists}\}$

Both c_0 and c are subspaces of ℓ_{∞} and are hence normed spaces in the ℓ_{∞} -norm.

1.2 Inequalities of Minkowski and Hölder

Recall that a function $f:(0,\infty)\to\mathbb{R}$ is convex if

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$
 $\forall x, y \in (0, \infty) \ \forall t \in [0, 1]$

and *concave* if the above holds with \leq replaced by \geq .

Lemma 1.1

Let $1 \le p < \infty$. Then the map

$$(0,\infty) \to \mathbb{R}$$

 $x \mapsto x^p$

is convex.

Proof. Fix $y > 0, t \in [0, 1]$, and define

$$g(x) = [(1-t)x + ty]^p - [(1-t)x^p + ty^p], \qquad x > 0.$$

Differentiating, we get

$$g'(x) = p(1-t)[(1-t)x + ty]^{p-1} - p(1-t)x^{p-1}.$$

Observe that $0 < x < y \Longrightarrow g'(x) \ge 0$ and that $x > y \Longrightarrow g'(x) \le 0$. By the MVT, we deduce that $g(x) \le g(y) = 0$ for all $x \in (0, \infty)$.

Theorem 1.2 Minkowski's inequality

Let $1 \leq p < \infty$, $n \in \mathbb{N}$. For $x, y \in \mathbb{R}^n$,

$$||x+y||_p \le ||x||_p + ||y||_p.$$

Remark. This shows that ℓ_p^n and ℓ_p are normed spaces.

Exercise. Show that $\ell_p, 1 \leq p \leq \infty$, is complete.²

Proof of Theorem 1.2. Let $B = \{x \in \mathbb{R}^n \colon ||x||_p \le 1\}$. We first show that B is convex. Let $x, y \in B$ and $t \in [0, 1]$. For $1 \le k \le n$,

$$|(1-t)x_k + ty_k|^p \le ((1-t)|x_k| + t|y_k|)^p \le (1-t)|x_k|^p + t|y_k|^p$$

by Lemma 1.1 for $x_k \neq 0, y_k \neq 0$; the inequality holds trivially if $x_k = 0$ or $y_k = 0$. Summing over k, we then get

$$||(1-t)x+ty||_p^p \le (1-t)||x||_p^p + t||y||_p^p \le 1,$$

so
$$(1-t)x + ty \in B$$
.

We then complete the proof as follows. Let $x, y \in \mathbb{R}^n$. WLOG, x, y, x + y are nonzero. By convexity of B, we have

$$\frac{x+y}{||x||_p + ||y||_p} = \frac{||x||_p}{||x||_p + ||y||_p} \cdot \underbrace{\frac{x}{||x||_p}}_{\in B} + \frac{||y||_p}{||x||_p + ||y||_p} \cdot \underbrace{\frac{y}{||y||_p}}_{\in B} \in B.$$

Thus, it follows that

$$\left| \left| \frac{x+y}{||x||_p + ||y||_p} \right| \right| \le 1 \Longrightarrow ||x+y||_p \le ||x||_p + ||y||_p,$$

as required.

Let $x = (x_n) \in \ell_1$ and $y = (y_n) \in \ell_\infty$. We then write $x \cdot y = (x_n y_n)$. Note that, for all $n \in \mathbb{N}$, $|x_n y_n| = |x_n| |y_n| \le |x_n| ||y||_\infty$. Thus, $x \cdot y \in \ell_1$ and $||x \cdot y||_1 \le ||x||_1 ||y||_\infty$.

Definition Conjugate index

Let $p \in (1, \infty)$. The conjugate index of p is the unique $q \in (1, \infty)$ such that $\frac{1}{p} + \frac{1}{q} = 1$.

Lemma 1.3

Let $1 < p, q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then, for $a, b \ge 0$, we have

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Proof. The inequality holds trivially if a = 0 or b = 0, so it remains to consider the case a, b > 0. A proof similar to that of Lemma 1.1 shows that $\log: (0, \infty) \to \mathbb{R}$ is concave. Hence,

$$\log\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\log(a^p) + \frac{1}{q}\log(b^q) = \log(ab).$$

We then apply exp to get the required result.

Theorem 1.4 Hölder's inequality

Let $1 < p, q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$. If $x \in \ell_p$ and $y \in \ell_q$, then $x \cdot y \in \ell_1$ and

$$||x \cdot y||_1 \le ||x||_p ||y||_q$$
.

Remark. As discussed above, $p=1, q=\infty$ also works. Moreover, setting p=q=2, we recover Cauchy-Schwarz.

Exercise. Deduce Minkowski's inequality from Hölder's inequality.

²A slick proof of this will be provided later.

Proof of Theorem 1.4. WLOG, $x \neq 0$ and $y \neq 0$. By homogeneity, we may also take $||x||_p = ||y||_q = 1$ WLOG. Now, by Lemma 1.3, we have $|x_n y_n| \leq |x_n|^p/p + |y_n|^q/q$ for all $n \in \mathbb{N}$. Summing over n, we have

$$\sum_{n=1}^{\infty} |x_n y_n| \le \frac{||x||_p^p}{p} + \frac{||y||_q^q}{q} = \frac{1}{p} + \frac{1}{q} = 1 = ||x||_p ||y||_q,$$

as required.

1.3 More examples: function spaces

Example

- (9) $C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ cts}\}, \quad ||f||_{\infty} = \sup_{[0,1]} |f| \quad \text{(sup norm or uniform norm)}$ By the uniform limit theorem, this is a Banach space.
- (10) More generally, given a compact, Hausdorff topological space K,

$$C(K) = \{ f \colon K \to \mathbb{R} \mid f \text{ cts} \}$$

is a Banach space in the sup norm $||f||_{\infty} = \sup_{K} |f|$.

(11)
$$(C[0,1], ||\cdot||_1), \quad ||\cdot||_1 = \int_0^1 |f(t)| dt \quad (L_1\text{-norm})$$

This is an *incomplete* normed space — see Example Sheet 1.

More generally, C[0,1] is incomplete in the L_p -norm, $1 \le p < \infty$, given by

$$||f||_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}.$$

In II Probability and Measure, you will encounter the completion of $(C[0,1], ||\cdot||_p)$, which is the Lebesgue space $L_p[0,1]$.

- (12) $C^1[0,1] = \{f \in C[0,1] \mid f \text{ continuously differentiable}\}\$ is a subspace of C[0,1], so it is a normed space in $||\cdot||_{\infty}$ but incomplete, i.e. not closed in C[0,1]. However, it is complete in the norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ —see Example Sheet 1.
- (13) Let $\triangle = \{z \in \mathbb{C} \mid |z| \le 1\}$. The set

$$A(\triangle) = \{ f \in C(\triangle) \mid f \text{ analytic on int } \triangle \}$$

is a subspace of $C(\Delta)$. In fact, it is closed in $C(\Delta)$ and hence a Banach space in $||\cdot||_{\infty}$.

1.4 More on the normed topology

Let X be a normed space and $A \subset C$. Recall that the *closure* of A in X is

$$\overline{A} = \{ x \in X \mid \exists (a_n) \text{ in } X \text{ s.t. } a_n \to x \text{ as } n \to \infty \}.$$

We then say that A is dense in X if $\overline{A} = X$. Moreover, A is separable if it has a countable dense subset.

If $Y \subset X$ is a subspace, then so is \overline{Y} : if $x, y \in \overline{Y}$, then there exists (x_n) , (y_n) in Y such that $x_n \to x$ and $y_n \to y$. So $\lambda x_n + \mu y_n \to \lambda x + \mu y \in \overline{Y}$. Similarly, if $A \subset X$ is convex, then so is \overline{A} .

For a subset $A \subset X$, the closed linear span of A, denoted by $\overline{\operatorname{span}} A$, is the closure of span A.

Remarks

- If A is countable, then $\overline{\text{span}} A$ is separable.
- The set of all rational linear combinations of elements of A is countable and dense in $\overline{\text{span}} A$.

Example

- $\overline{\mathbb{Q}} = \mathbb{R}$, so \mathbb{R} is separable.
- $\ell_p, 1 \leq p < \infty$, is separable.

Let
$$e_n = (0, \dots, 0, \frac{1}{n}, 0, \dots), n \in \mathbb{N}$$
 (unit vector basis)

Let
$$c_{00} = \operatorname{span}\{e_n \colon n \in \mathbb{N}\} = \{(x_n) \in S \colon \exists N \in \mathbb{N} \ \forall n > Nx_n = 0\}$$

We then show that $\ell_p = \overline{\operatorname{span}}\{e_n \colon n \in \mathbb{N}\}$: if $x = (x_n) \in \ell_p$, then

$$\left\| \left| x - \sum_{i=1}^{N} x_i e_i \right| \right\|_p = \left(\sum_{i>n} |x_i|^p \right)^{1/p} \to 0 \text{ as } N \to \infty$$

• Similarly, in ℓ_{∞} , we have $\overline{\operatorname{span}}\{e_n : n \in \mathbb{N}\} = c_0$. Moreover, c is separable, whereas ℓ_{∞} is not.

Exercise. Prove the claims in the last example above.

1.5 Bounded linear maps

Theorem 1.5

Let X,Y be normed spaces and $T:X\to Y$ be a linear map. The following are equivalent:

- (i) T is continuous at 0
- (ii) T is continuous
- (iii) T is Lipschitz
- (iv) T is bounded, i.e., $\exists C \geq 0 \ \forall x \in X \ ||Tx|| \leq C||x||$.

Proof. (iv) \Longrightarrow (iii): Observe that

$$d(Tx, Ty) = ||Tx - Ty|| = ||T(x - y)|| \le C||x - y|| = Cd(x, y)$$

- iii) \Longrightarrow (ii): Given $\varepsilon > 0$ take $\delta = \varepsilon/(C+1)$.
- (ii) \Longrightarrow (i): Trivial.

(i)
$$\Longrightarrow$$
 (iv): $\exists \ \delta > 0 \ \forall x \in X \ d(x,0) = ||x|| \le \delta \Longrightarrow d(Tx,T0) = ||Tx|| \le 1$. For $x \ne 0$, $||\delta x/||x|||| = \delta$, so $||T(\delta x/||x||)|| \le 1$. Hence, $||Tx|| \le \delta^{-1}||x||$.

For normed spaces X, Y, let $\mathcal{B}(X, Y) = \{T : X \to Y \mid T \text{ linear and bounded}\}$. For $T \in \mathcal{B}(X, Y)$, its operator norm is

$$||T|| = \sup\{||Tx|| : x \in B_X\}.$$

Remark. Since $T \in \mathcal{B}(X,Y)$, we have $C \geq 0$ such that $||Tx|| \leq C||x||$ for all $x \in X$. So if $||x|| \leq 1$, then $||Tx|| \leq C$. Thus, by definition, $||T|| \leq C$. Conversely, for all $x \in B_X$, we have $||Tx|| \leq ||T||$, so by homogeneity, $||Tx|| \leq ||T|| ||x||$. Hence, ||T|| is the least C such that (iv) in Theorem 1.5 above holds.

The operator norm is a norm on $\mathcal{B}(X,Y)$: given $S,T\in\mathcal{B}(X,Y)$, we have, for all $x\in X$,

$$||(S+T)x|| = ||Sx+Tx|| \le ||Sx|| + ||Tx|| \le ||S|| + ||T|| + |$$

from which it follows that $S + T \in \mathcal{B}(X, Y)$ and $||S + T|| \le ||S|| + ||T||$.

Notation. We write $\mathcal{B}(X)$ for $\mathcal{B}(X,X)$.

Proposition 1.6

Let X, Y, Z be normed spaces, $S \in \mathcal{B}(X, Y)$, $T \in \mathcal{B}(Y, Z)$. Then $TS \in \mathcal{B}(X, Z)$ and $||TS|| \leq ||T||||S||$.

Proof. For all $x \in X$, we have $||TSx|| \le ||T|| ||Sx|| \le ||T|| ||S|| ||x||$.

Example

(1) $T: \ell_2^n \to \ell_2^n, (x_1, \dots, x_n) \mapsto (x_1, \dots, x_r, 0, \dots, 0)$

$$||Tx||_2 = \left(\sum_{i=1}^r |x_i|^2\right)^{1/2} \le ||x||_2 \Longrightarrow ||T|| \le 1$$

But $Te_1 = e_1$ so ||T|| = 1.

More generally, if T is represented by a matrix A wrt the standard basis, then Cauchy-Schwarz gives us

$$||T|| \le \left(\sum_{i,j=1}^{n} |a_{ij}|^2\right)^{1/2}$$

- (2) Let $1 \leq p < \infty$; $R: \ell_p \to \ell_p, (x_1, x_2, x_3, \cdots) \mapsto (0, x_1, x_2, \cdots)$ (right shift) For all $x \in \ell_p$, $||Rx||_p = ||x||_p$, so R is isometric and ||R|| = 1. Note that R is injective but not surjective.
- (3) Let $1 \leq p < \infty$; $L: \ell_p \to \ell_p, (x_1, x_2, x_3, \cdots) \mapsto (x_2, x_3, x_4, \cdots)$ (left shift) For all $x \in \ell_p$, $||Lx||_p \leq ||x||_p$, so $L \in \mathcal{B}(\ell_p)$ with $||L|| \leq 1$. Since $Le_2 = e_1$ and $||e_1||_p = ||e_2||_p = 1$, we in fact have ||L|| = 1. Note that L is surjective but not injective.
- (4) $T: \ell_1 \to \ell_2, x \mapsto x$
 - ▶ Claim. $\ell_1 \subset \ell_2$, and $\forall x \in \ell_2 \ ||x||_2 \le ||x||_1$ Proof. WLOG assume $||x||_1 = 1$ by homogeneity. Since $\sum_{n=1}^{\infty} |x_i| = 1$, we have $|x_i| \le 1$ for all i. Thus,

$$|x_i|^2 \le |x_i| \ \forall i \Longrightarrow ||x||_2^2 \le ||x||_1 = 1 \Longrightarrow ||x||_2 = 1 = ||x||_1$$

as claimed.

Using the above claim, we have $T \in \mathcal{B}(\ell_1, \ell_2)$ and ||T|| = 1.

(5) $T: \ell_2 \to \ell_1, (x_n) \mapsto (x_n/n)$

By Cauchy-Schwarz,

$$\sum_{n=1}^{\infty} \left| \frac{x_i}{n} \right| \le \left(\sum_{n=1}^{\infty} x_i^2 \right)^{1/2} \left(\sum_{n=1}^{\infty} \frac{1}{n^2} \right)^{1/2}$$

so $T \in \mathcal{B}(\ell_2, \ell_1)$ with $||T|| \leq \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2}$. In fact, we can replace \leq with =.

(6) $D \colon (C^1[0,1], ||\cdot||) \to (C[0,1], ||\cdot||_{\infty}), f \mapsto f'$

Note that $||Df||_{\infty} = ||f'||_{\infty} \le ||f||_{\infty} + ||f'||_{\infty} = ||f||$, so $||D|| \le 1$. But taking $f(x) = \sin(n\pi x)$, we have

$$||Df||_{\infty} = n\pi, \qquad ||f|| = n\pi + 1,$$

so in fact ||D|| = 1. Note also that, for $f \neq 0$, $||Df||_{\infty} < ||f||$, so ||D|| is not attained.

- (7) On a normed space X, the identity $x \mapsto x$ is denoted by Id, I, Id $_X$ or I_X . This map is isometric, i.e., $||\operatorname{Id}(x)|| = ||x|| \ \forall x \in X$.
- (8) For normed spaces X, Y, we let

$$X \oplus Y = \{(x, y) \colon x \in X, y \in Y\}$$

with norm $||(x,y)||_1 = ||x|| + ||y||$. The corresponding norm topology is the product topology.

Define $P: X \oplus Y \to X, (x, y) \mapsto x$ (projection onto X). Note that $P \in \mathcal{B}(X \oplus Y, X)$ with ||P|| = 1.

Let X, Y be normed spaces. We introduce some terminology:

• An isomorphism $X \to Y$ is a linear homeomorphism $T: X \to Y$, i.e., T is a linear bijection such that T and T^{-1} are bounded. Equivalently, T is a linear bijection³ such that

$$\exists a, b > 0 \ \forall x \in X \ a||x|| \le ||Tx|| \le b||x||$$

If such T exists, we say that X and Y are isomorphic, and we write $X \sim Y$.

• An isometric isomorphism is a linear bijection $T: X \to Y$ such that

$$\forall x \in X ||Tx|| = ||x||$$

If such T exists, we say that X and Y are isometrically isomorphic, and we write $X \cong Y$.

The Banach-Mazur distance is defined as

$$d(X,Y) = \begin{cases} \infty, & \text{if } X \not\sim Y \\ \inf\{||T||||T^{-1}|| \mid T \colon X \to Y \text{ is an isomorphism}\}, & \text{otherwise} \end{cases}$$

Note that $||T||||T^{-1}|| \ge ||TT^{-1}|| = 1$. If $X \cong Y$, then d(X,Y) = 1. Does the converse hold?

• An isomorphic embedding $X \to Y$ is a linear map $T: X \to Y$ such that $T: X \to TX = \operatorname{im} T$ is an isomorphism. If such T exists, we say that X (isomorphically) embeds into Y, and we write $X \hookrightarrow Y$.

Definition Equivalent norms

Let X be a normed space. Two norms $||\cdot||, ||\cdot||'$ are equivalent if

$$\operatorname{Id}: (X, ||\cdot||) \to (X, ||\cdot||')$$
 is an isomorphism

 \iff $||\cdot||, ||\cdot||'$ induce the same norm topology on X

$$\iff \exists a, b > 0 \ \forall x \in Xa||x|| \le ||x||' \le b||x||$$

$$\iff \exists a, b > 0 \ aB'_X \subset B_X \subset bB'_X$$

Remarks

If X ~ Y, then X is complete iff Y is complete.
 If ||·||, ||·||' are equivalent norms on a vector space X, then (X, ||·||) is complete iff (X, ||·||') is complete.

³We can actually replace 'bijection' with 'surjection'.

- Let X and Y be normed spaces. On $X \oplus Y$, the norm $||(x,y)||_1 = ||x|| + ||y||$ is equivalent to $||(x,y)||_p = (||x||^p + ||y||^p)^{1/p}$ for all $1 \le p < \infty$ and to $||(x,y)||_{\infty} = \max\{||x||, ||y||\}.$
- $(C[0,1],||\cdot||_{\infty})$ is complete whereas $(C[0,1],||\cdot||_1)$ is incomplete. Thus, we can use the first remark above to deduce that $||\cdot||_{\infty} \not\sim ||\cdot||_1$ (but this can easily be proven directly as well). However, $||f||_1 = \int_0^1 |f(t)| dt \leq ||f||_{\infty}$, so

Id:
$$(C[0,1], ||\cdot||_{\infty}) \to (C[0,1], ||\cdot||_{1})$$

is a continuous linear bijection but its inverse is not continuous.

• On c_{00} , $||\cdot||_1 \not\sim ||\cdot||_2$. To see why, consider $x = (\underbrace{1, \dots, 1}_{n}, 0, 0, \dots)$ and note that $||x||_1 = n$, $||x||_2 = \sqrt{n}$.

Finally, we discuss convergence and completeness. Let X,Y be normed spaces. In $\mathcal{B}(X,Y)$, convergence implies pointwise convergence, i.e., if $T_n \to T$ in $\mathcal{B}(X,Y)$, then, for all $x \in X$, $T_n x \to T x$ in Y. To see why, note that, for fixed $x \in X$, we have $||T_n x - T x|| \le ||T_n - T|| ||x|| \to 0$. However, the converse is false in general, e.g., $T_n \colon \ell_1 \to \mathbb{R}, x \mapsto x_n$. We have $T_n \to 0$ pointwise, but $||T_n|| = 1$ for all $n \in \mathbb{N}$.

Theorem 1.7

Let X, Y be normed spaces. If Y is complete, then $\mathcal{B}(X,Y)$ is complete.

Proof. Let (T_n) be a Cauchy sequence in $\mathcal{B}(X,Y)$. Fix $x \in X$. Then

$$||T_m x - T_n x|| \le ||T_m - T_n|| ||x|| \to 0 \text{ as } m, n \to \infty$$

So $(T_n x)$ is Cauchy in Y and thus convergent. Now, define $T: X \to Y$ by $x \mapsto \lim_{n \to \infty} T_n x$. Observe that

• T is linear

 $n \to \infty$, we obtain $||Tx|| \le M||x||$.

$$T(\lambda x + \mu y) = \lim_{n \to \infty} T_n(\lambda x + \mu y) = \lim_{n \to \infty} [\lambda T_n x + \mu T_n y] = \lambda T x + \mu T y$$

- T is bounded (T_n) is Cauchy implies (T_n) is bounded, i.e., there exists $M \ge 0$ such that $||T_n|| \le M$ for all $n \in \mathbb{N}$. Fix $x \in X$. Then, for all $n \in \mathbb{N}$, we have $||T_n x|| \le ||T_n|| ||x|| \le M||x||$. Letting
- $T_n \to T$ in $\mathcal{B}(X,Y)$ Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $||T_m - T_n|| \le \varepsilon$ for all $m, n \ge N$. Fix $x \in X$. Note that, for all $m, n \ge N$, we have

$$||T_m x - T_n x|| \le ||T_m - T_n|| ||x|| \le \varepsilon ||x||$$

Letting $n \to \infty$ with $m \ge N$ fixed yields $||T_m x - Tx|| \le \varepsilon ||x||$. Hence, $||T_m - T|| \le \varepsilon$ for all $m \ge N$.

2 Dual spaces

2.1 Basics

Let X be a normed space. A functional on X is a map $X \to \mathbb{R}$. The dual space X^* of X is the space of all bounded linear functionals on X, i.e., $X^* = \mathcal{B}(X, \mathbb{R})$ equipped with the operator norm. Since \mathbb{R} is complete, Theorem 1.7 gives us the following result.

Theorem 2.1

For any normed space X, its dual X^* is a Banach space.

Notation. For $x \in X$ and $f \in X^*$, we let $\langle x, f \rangle = f(x)$.

Now, we know that $0 \in X^*$. Are there other elements?

Theorem 2.2 Hanh-Banach theorem

Let X be a normed space, $Y \subset X$ be a subspace and $g \in Y^*$. Then $f \in X^*$ such that $f|_Y = g$ and ||f|| = ||g||.

Proof. See II Analysis of Functions.

Corollary 2.3

Let X be a normed space, $x_0 \in X \setminus \{0\}$. Then there exists $f \in S_{X^*} = \{f \in X^* : ||f|| = 1\}$ such that $f(x_0) = ||x_0||$.

Remarks

• For any $g \in B_{X^*}$, $|g(x_0)| \le ||g||||x_0|| \le ||x_0||$. Corollary 2.3 says that there exists $f \in B_{X^*}$ such that $f(x_0) = ||x_0||$, so

$$||x_0|| = \sup\{g(x_0) \colon g \in B_{X^*}\} = \max\{g(x_0) \colon g \in B_{X^*}\}.$$

We call f a norming functional at x_0 .

• Given $x \neq y$ in X, we can set $x_0 = x - y$ and Corollary 2.3 implies that there exists $f \in X^*$ such that $f(x) \neq f(y)$. Thus, X^* separates the points of X.

Proof of Corollary 2.3. Set $Y = \text{span}\{x_0\}$ and define $g(\lambda x_0) = \lambda ||x_0||$. Then $g \in S_{Y^*}$ with $g(x_0) = ||x_0||$. Finally, apply Theorem 2.2.

2.2 Dual space of ℓ_p

Motivation: Recall that, for $1 \le p < \infty$, we have $\ell_p = \overline{\operatorname{span}}\{e_n \colon n \in \mathbb{N}\} = \overline{c_{00}}$. Given $\varphi \in \ell_p^*$ and $x = (x_n) \in \ell_p$,

$$\varphi(x) = \varphi\left(\lim_{n \to \infty} \sum_{k=1}^{n} x_k e_k\right) = \sum_{k=1}^{\infty} x_k \varphi(e_k)$$

so φ corresponds to the sequence $y = (\varphi(e_n))_{n \in \mathbb{N}}$. We may then ask: is $\ell_p^* \cong \ell_q$ for some q?

Fix $1 , and let q be the conjugate index of p. Fix <math>y = (y_n) \in \ell_q$. Define

$$\varphi_y \colon \ell_p \to \mathbb{R}$$

$$x \mapsto \sum_{n=1}^{\infty} x_n y_n$$

By Holder's inequality (Theorem 1.4), this is well-defined and $|\varphi_y(x)| \leq ||x||_p ||y||_q$. So φ_y is linear and bounded: $||\varepsilon_y|| \leq ||y||_q$. Thus, $\varphi_y \in \ell_p^*$, which means that we have a map

$$\varphi \colon \ell_q \to \ell_p^*$$
$$y \mapsto \varphi_y$$

Note that φ is linear and bounded with $||\varphi|| \leq 1$.

Theorem 2.4

Let p, q, φ be as above. Then φ is an isometric isomorphism $\ell_q \to \ell_p^*$.

Proof. It remains to check that φ is isometric and surjective:

• φ is isometric

Fix $y \in \ell_q$. WLOG $y \neq 0$. Define

$$x_n = \begin{cases} \frac{|y_n|^q}{y_n}, & y_n \neq 0\\ 0, & y_n = 0 \end{cases}$$

Observe that $\sum_{n=1}^{\infty} |x_n|^p = \sum_{n=1}^{\infty} |y_n|^{(q-1)p} = \sum_{n=1}^{\infty} |y_n|^q = ||y||_q^q < \infty$, so $x \in \ell_p$ with $||x||_p^p = ||y||_q^q$.

Since $y \neq 0$, we have $x \neq 0$, so $x/||x||_p \in B_{\ell_p}$. Note that

$$||\varphi_y|| \ge \varphi_y\left(\frac{x}{||x||_p}\right) = \frac{1}{||x||_p} \sum_{n=1}^{\infty} x_n y_n = \frac{||y||_q^q}{||y||_q^{q/p}} = ||y||_q.$$

Hence, $||\varphi_y|| = ||y||_q$.

• φ is surjective

Fix $f \in \ell_p^*$. Define $y_n = f(e_n), n \in \mathbb{N}$. Let $y = (y_n)$. For some fixed $N \in \mathbb{N}$, set

$$x_n = \begin{cases} \frac{|y_n|^q}{y_n}, & y_n \neq 0, n \leq N \\ 0, & \text{otherwise} \end{cases}$$

Then $x = (x_n) \in \ell_p$, so

$$f(x) = \sum_{n=1}^{N} x_n f(x_n) = \sum_{n=1}^{N} x_n y_n = \sum_{n=1}^{N} |y_n|^2 \le ||f|| ||x||_p$$
$$||x||_p = \left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p} = \left(\sum_{n=1}^{N} |y_n|^{(q-1)p}\right)^{1/p} = \left(\sum_{n=1}^{N} |y_n|^q\right)^{1/p}$$

Hence,
$$\sum_{n=1}^{N} |y_n|^q \le ||f|| \left(\sum_{n=1}^{N} |y_n|^q\right)^{1/p}$$
, i.e.

$$\left(\sum_{n=1}^{N} |y_n|^q\right)^{1/q} \le ||f||$$

Let $N \to \infty$ to deduce that $y \in \ell_q$. Finally, observe that

$$f(e_n) = y_n = \varphi_y(e_n) \ \forall n \in \mathbb{N}$$

$$\implies f(x) = \varphi_y(x) \ \forall x \in \text{span}\{e_n : n \in \mathbb{N}\} = c_{00}$$
 by linearity

$$\implies f(x) = \varphi_u(x) \ \forall x \in \overline{\operatorname{span}}\{e_n : n \in \mathbb{N}\} = \ell_p$$
 by continuity

Thus, $f = \varphi_y$, so φ is surjective.

Remarks

- We also have $\ell_1^* \cong \ell_\infty$ and $c_0^* \cong \ell_1$. The proof also shows that $\ell_1 \hookrightarrow \ell_\infty^*$ isometrically. However, the proof of surjectivity breaks down since $\overline{\text{span}}\{e_n : n \in \mathbb{N}\}$ in ℓ_∞ in $c_0 \subsetneq \ell_\infty$.
- From the proof, we can show Corollary 2.3 holds for ℓ_p .
- We've shown that $\ell_p, 1 \leq p \leq \infty$, is complete as they are dual spaces. For c_0 , one simply has to show that c_0 is closed in ℓ_{∞} .

2.3 Bidual

Let X be a normed space. Then $X^{**} = (X^*)^* = \mathcal{B}(X^*, \mathbb{R})$ is the bidual or second dual of X.

For each $x \in X$, define the map

$$\hat{x} \colon X^* \to \mathbb{R}$$

$$f \mapsto f(x)$$

Note that \hat{x} is linear and bounded: $|\hat{x}(f)| = |f(x)| \le ||f|| ||x||$. So $\hat{x} \in X^{**}$ with $||\hat{x}|| \le ||x||$. Thus, we have

$$\hat{}: X \to X^{**}$$

$$x \mapsto \hat{x}$$

This is linear: $\widehat{\lambda x + \mu y}(f) = f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = (\lambda \hat{x} + \mu \hat{y})(f)$.

For $x \neq 0$, let $f \in X^*$ be a norming functional at x. Then

$$\hat{x}(f) = f(x) = ||x|| \Longrightarrow ||\hat{x}|| = ||x||$$

so the canonical map $X \to X^{**}, x \mapsto \hat{x}$ is an isometric embedding into X^{**} . If f is surjective, we say that X is reflexive.

2.4 Dual operators

Let X, Y be normed spaces and $T \in \mathcal{B}(X,Y)$. The dual operator T^* of T is the map

$$T^* \colon Y^* \to X^*$$
$$q \mapsto q \circ T$$

By Proposition 1.6, $T^*(g) = g \circ T \in X^*$ and $||T^*(g)|| \le ||g||||T||$, so T^* is well-defined. Moreover, it is clearly linear and bounded with $||T^*|| \le ||T||$.

Remark. Note that $\langle \cdot, \cdot \rangle \colon X \times X^* \to \mathbb{R}$ is bilinear. Moreover, for $x \in X$ and $g \in Y^*$, we have $\langle x, T^*(g) \rangle = \langle T(x), g \rangle$.

It turns out that $||T^*|| = ||T||$:

$$||T^*|| = \sup_{g \in B_{Y^*}} ||T^*g|| = \sup_{g \in B_{Y^*}} \sup_{x \in B_X} |\langle x, T^*(g) \rangle| = \sup_{x \in B_X} \sup_{g \in B_{Y^*}} |\langle Tx, g \rangle| = \sup_{x \in B_X} ||Tx|| = ||T||,$$

where the penultimate equality follows from Corollary 2.3.

Example

Let $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Consider the right-shift map $R: \ell_p \to \ell_p$. What is $R^*: \ell_p^* \to \ell_p^*$? Recall that $\ell_p^* \cong \ell_q$. Thought of as a map $\ell_q \to \ell_q$, it turns out that $R^* = L$, the left-shift map.

Now, let's note some properties of dual operators:

- $(1) (\mathrm{Id}_X)^* = \mathrm{Id}_{X^*}$
- (2) $(\lambda S + \mu T)^* = \lambda S^* + \mu T^*$ for all $S, T \in \mathcal{B}(X, Y)$ and all scalars λ, μ Indeed, for $g \in Y^*, x \in X$,

$$\langle x, (\lambda S + \mu T)^* g \rangle = \langle (\lambda S + \mu T) x, g \rangle$$

$$= \langle \lambda S x + \mu T x, g \rangle$$

$$= \lambda \langle S x, g \rangle + \mu \langle T x, g \rangle$$

$$= \lambda \langle x, S^* g \rangle + \mu \langle x, T^* g \rangle$$

$$= \langle x, (\lambda S^* + \mu T^*) g \rangle$$

Since x is arbitrary, $(\lambda S + \mu T)^* g = (\lambda S^* + \mu T^*) g$ for all $g \in Y^*$, and we are done.

(3) $(ST)^* = T^*S^*$ for all $T \in \mathcal{B}(X,Y)$ and all $S \in \mathcal{B}(Y,Z)$

$$\langle x, (ST)^*g \rangle = \langle STx, g \rangle = \langle S(Tx), g \rangle = \langle Tx, S^*g \rangle = \langle x, T^*S^*g \rangle$$

(4) Let $T \in \mathcal{B}(X,Y)$. We have $T^* \in \mathcal{B}(Y^*,X^*)$ and $T^{**} \in \mathcal{B}(X^{**},Y^{**})$. The diagram

$$\begin{array}{ccc} X & \xrightarrow{T} & Y \\ \downarrow & & \downarrow \\ X^{**} & \xrightarrow{T^{**}} & Y^{**} \end{array}$$

commutes, i.e., $\hat{Tx} = T^{**}\hat{x}$ for all $x \in X$. For $x \in X, g \in Y^*$,

$$\langle q, T^{**}\hat{x}\rangle = \langle T^*q, \hat{x}\rangle = \langle x, T^*q\rangle = \langle Tx, q\rangle = \langle q, \widehat{Tx}\rangle$$

Remark. Properties (1) and (3) imply that $X \sim Y \Longrightarrow X^* \sim Y^*$.

3 Finite-dimensional normed spaces

Recall that norms $||\cdot||$ and $||\cdot||'$ on a vector space X are equivalent if $\mathrm{Id}:(X,||\cdot||)\to(X,||\cdot||')$ is an isomorphism or, equivalently, if $\exists a,b>0 \ \forall x\in X \ a||x||\leq ||x||'\leq b||x||$.

Example

On \mathbb{R}^n , the norms $||\cdot||_1$ and $||\cdot||_2$ are equivalent. We've already seen that $||x||_2 \leq ||x||_1$ for all $x \in \mathbb{R}^n$. Moreover, by Cauchy-Schwarz, we have

$$||x||_1 = \sum_{i=1}^n |x_i| \le \sqrt{n} \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \sqrt{n}||x||_2.$$

Theorem 3.1

Any two norms on a finite-dimensional vector space are equivalent.

Proof. Let X be a f.d. vector space. Fix a basis (e_1, \dots, e_n) of X. For $x = \sum_{i=1}^n x_k e_k \in X$, define $||x||_1 = \sum_{k=1}^n |x_k|$. Let $||\cdot||$ be an arbitrary norm on X.

We show that $||\cdot||$ is equivalent to $||\cdot||_1$. For $x=\sum_{k=1}^m x_k e_k \in X$, we have

$$||x|| \le \sum_{k=1}^{n} |x_k|||e_k|| \le M||x||_1$$

where $M = \max_{1 \le k \le n} ||e_k||$.

Now, let $S = \{x \in X : ||x||_1 = 1\}$, the unit sphere of $(X, ||\cdot||_1)$. We have the following result:

ightharpoonup Claim. S is compact.

Proof. Let $(x^{(r)})_{r \in \mathbb{N}}$ be a sequence in S. Write $x^{(r)} = \sum_{k=1}^n x_k^{(r)} e_k$. For each $1 \leq k \leq n$, $|x_k^{(r)}| \leq ||x^{(r)}|| = 1$ for all $r \in \mathbb{N}$. BY repeated application of Bolzano-Weierstrass, there exists $r_1 < r_2 < r_3 < \cdots$ in \mathbb{N} such that $(x_k^{(r_\ell)})_{\ell \in \mathbb{N}}$ is convergent for each $1 \leq k \leq n$. Let $x_k = \lim_{\ell \to \infty} x_k^{r_\ell}$ and $x = \sum_{k=1}^n x_k e_k$. Note that

$$||x||_1 = \sum_{k=1}^n |x_k| = \lim_{\ell \to \infty} \sum_{k=1}^n |x_k^{(r_\ell)}| = 1$$

so $x \in S$. Moreover,

$$||x^{(r_{\ell})} - x||_1 = \sum_{k=1}^{n} |x_k^{(r_{\ell})} - x_k| \to 0$$
 as $\ell \to \infty$

so $x^{(r_{\ell})} \to x$ in S. Thus, S is sequentially compact and hence compact.

For any $x, y \in S$, $|||x|| - ||y||| \le ||x - y|| \le M||x - y||_1$. So $||\cdot||$ is continuous on S with respect to $||\cdot||_1$. So $c = \inf\{||x||: x \in S\}$ is achieved: $\exists x \in S \ ||x|| = c$. Since $0 \notin S$ and c > 0, we have $||y|| \ge c = c||y||_1$ for all $y \in S$. By homogeneity, $||y|| \ge c||y||_1$ for all $y \in X$.

Corollary 3.2

Let $T: X \to Y$ be a linear map between two normed spaces. If X is f.d., then T is continuous.

Proof. Let $||\cdot||$ denote the norm on X and Y. Define ||x||' = ||Tx|| + ||x|| for all $x \in X$. It is easy to check that this is a norm on X. By Theorem 3.1, there exists b > 0 such that, for all $x \in X$, $||x||' \le b||x||$. In particular, $||Tx|| \le b||x||$ for all $x \in X$.

Corollary 3.3

If $\dim X = \dim Y < \infty$, then $X \sim Y$.

Proof. We have a linear bijection $T: X \to Y$. By Corollary 3.2, T and T^{-1} are continuous.

Remark. Corollary 3.3 does *not* imply that the theory of f.d. normed spaces is uninteresting.

Recall that, for X a metric space and $Y \subset X$, we have

- Y complete $\Longrightarrow Y$ is closed in X
- Y closed in X and X complete \Longrightarrow Y complete

Corollary 3.4

- (i) A f.d. normed space X is complete.
- (ii) A f.d. subspace X of a normed space Y is closed in Y.

Proof. (i) Let $n = \dim X$. By Corollary 3.3, $X \sim \ell_2^n$ which is complete. (ii) follows from above properties of metric spaces.

Corollary 3.5

Let X be a f.d. normed space and $A \subset X$. Then

 $A \text{ is compact} \iff A \text{ is closed and bounded}$

Proof. If $X = \ell_2^n$, then this is simply Heine-Borel. For general X, the result follows by invoking Corollary 3.3 to deduce that $X \sim \ell_2^n$ and noting isomorphisms map compact subsets to compact subsets (ditto for closed and bounded subsets).

In particular, $B_X = \{x \in X : ||x|| = 1\}$ is compact. How about if dim $X = \infty$? Note that, in ℓ_p , $1 \le p < \infty$, $||e_n||_p = 1$ for all n and $||e_m - e_n|| = 2^{1/p}$ for all $m \ne n$, so (e_n) has no convergent subsequence. Hence, B_{ℓ_p} is not compact.

A similar obstruction does, in fact, hold for any infinite-dimensional normed space. To show this, we need the following lemma:

Proposition 3.6 Riesz's lemma

Let Y be a proper, closed subspace of a normed space X. Then

$$\forall \varepsilon > 0 \ \exists x \in B_X \ d(x, Y) = \inf\{||x - y|| : y \in Y\} > 1 - \varepsilon.$$

Proof. WLOG, $0 < \varepsilon < 1$. Fix $z \in X \setminus Y$. Since Y is closed, d = d(x, Y) > 0. Pick $y \in Y$ such that $d \le ||z - y|| < d/(1 - \varepsilon)$. Set $x = \frac{(z - y)}{||z - y||}$. Note that $d(x, Y) > 1 - \varepsilon$: for $y' \in Y$,

$$||x - y'|| = \left| \left| \frac{z - y - ||z - y||y'|}{||z - y||} \right| \ge \frac{d}{||z - y||} > 1 - \varepsilon$$

so $d(x, Y) \ge d/||z - y|| > 1 - \varepsilon$.

Theorem 3.7

Let X be a normed space. Then B_X is compact if and only if dim $X < \infty$.

Proof. (\Leftarrow) Corollary 3.5

 (\Longrightarrow) Similar to the ℓ_p case, we construct (x_n) in B_X such that $||x_m - x_n|| > 1/2$ for all $m \neq n$. As before, we then deduce that (x_n) has no convergent subsequence and so B_X is not compact.

Pick any $x_1 \in B_X$. Suppose we have already picked x_1, \dots, x_n for some $n \in \mathbb{N}$. We then set $Y = \text{span}\{x_1, \dots, x_n\}$. Then Y is a proper $(\dim X = \infty)$ and closed (Corollary 3.4) subspace of X. By Proposition 3.6, we can then pick $x_{n+1} \in B_X$ such that $d(x_{n+1}, Y) > 1/2$. In particular, $||x_{n+1} - x_m|| > 1/2$ for $1 \le m \le n$.

4 The Baire category theorem and its applications

Let (X, d) be a metric space. In this course, we will denote closed and open balls as

$$B_r(x) = \{ y \in X \colon d(x, y) \le r \}$$

$$D_r(x) = \{ y \in X \colon d(x, y) < r \}$$

Recall that, for $A \subset X$, the closure of A in X is

$$\overline{A} := \bigcap_{\substack{F \text{ closed in } X \\ A \subset F}} F$$

$$= \{ x \in X : \forall r > 0 \ D_r(x) \cap A \neq \emptyset \}$$

$$= \{ x \in X : \exists (a_n) \text{ in } A \text{ s.t. } a_n \to x \}$$

Note that $\overline{D_r(x)} \subset B_r(x)$. In general, this inclusion can be strict. But normed spaces are nice:

Exercise. Show that, in a normed space, $\overline{D_r(x)} = B_r(x)$.

Recall also that, for $A \subset X$, we say that A is dense in X if

$$\overline{A} = X$$

$$\iff \forall \, x \in X \, \, \forall \, r > 0 \, \, D_r(x) \cap A \neq \varnothing$$

$$\iff \forall \, \text{ non-empty open } U \subset X \, \, U \cap A \neq \varnothing$$

Example

 \mathbb{Q} is dense in \mathbb{R} and so is $\sqrt{2} + \mathbb{Q}$. But $\mathbb{Q} \cap (\sqrt{2} + \mathbb{Q}) = \emptyset$.

Theorem 4.1 Baire category theorem

Let (X,d) be a complete metric space and $U_n \subset X$ be open and dense in X for each $n \in \mathbb{N}$. Then $\bigcap_{n \in \mathbb{N}} U_n$ is dense in X.

Proof. Fix $x_0 \in X$ and $r_0 > 0$. Since U_1 is dense, $U_1 \cap D_{r_0}(x_0) \neq \emptyset$. Then we can pick $x_1 \in U_1 \cap D_{r_0}(x_0)$. Since $U_1 \cap D_{r_0}(x_0)$ is open, there exists $r_1 > 0$ such that $B_{r_1}(x_1) \subset U_1 \cap D_{r_0}(x_0)$. WLOG, we can pick $r_1 < 1$. We then continue inductively. At the n^{th} stage, density of U_n implies that $U_n \cap D_{r_{n-1}}(x_{n-1}) \neq \emptyset$, so we can pick $x_n \in U_n \cap D_{r_{n-1}}(x_{n-1})$. Since $U_n \cap D_{r_{n-1}}(x_{n-1})$ is open, there exists $r_n > 0$ such that $B_{r_n}(x_n) \subset U_n \cap D_{r_{n-1}}(x_{n-1})$. WLOG, $r_n < 1/n$.

We end up with $(x_n)_{n=0}^{\infty}$ in X and $(r_n)_{n=0}^{\infty}$ with $0 < r_n < 1/n$ for all $n \in \mathbb{N}$ and, for all $n > N \ge 0$,

$$B_{r_n}(x_n) \subset U_n \cap D_{r_{n-1}}(x_{n-1})$$

$$\subset U_n \cap U_{n-1} \cap D_{r_{n-2}}(x_{n-2})$$

$$\vdots$$

$$\subset U_n \cap U_{n-1} \cap \dots \cap U_{N+1} \cap D_{r_N}(x_N)$$

so, for all $m, n \geq N$, we have $d(x_m, x_n) \leq 2r_N < 2/N$. Thus, $(x_n)_{n=0}^{\infty}$ is Cauchy and thus convergent in X. Write $x = \lim_{n \to \infty} x_n$. Note that, for $n \geq m$, $x_n \in B_{r_m}(x_m)$ so $x \in B_{r_m}(x_m)$. By fixing N = 0 above and taking $n \to \infty$, we get

$$x \in \left(\bigcap_{n \in \mathbb{N}} U_n\right) \cap D_{r_0}(x_0)$$

as required.

Remark. A countable intersection of open sets is called a G_{δ} -set. Theorem 4.1 then says that a countable intersection of open dense sets in a complete metric space is a dense G_{δ} -set.

Application Uncountability of \mathbb{R}

Suppose, on the contrary, that \mathbb{R} is countable, so we can write $\mathbb{R} = \{r_1, r_2, r_3, \cdots\}$. Let $U_n = \mathbb{R} \setminus \{r_n\}$. Then U_n is open and dense in \mathbb{R} . Since \mathbb{R} is complete, Theorem 4.1 tells us that $\bigcap_{n \in \mathbb{N}} U_n$ is dense in \mathbb{R} . But $\bigcap_{n \in \mathbb{N}} U_n = \emptyset$ — a contradiction!

Observe that, if $U \subset X$ is open and dense in X, then $F = X \setminus U$ is closed in X and $\int F = \emptyset$.

Definition Nowhere dense

Let (X,d) be a topological space. We say that $A \subset X$ is nowhere dense in X if int $\overline{A} = \emptyset$.

Remarks

- For $A \subset Y \subset X$, it is possible that A is nowhere dense in X but not in Y (e.g. take $A = Y \neq \emptyset$)
- A is nowhere dense in X if and only if $U \not\subset \overline{U \cap A}$ for any nonempty open $U \subset X$. A is dense in X if and only if $U \subset \overline{U \cap A}$ for every open $U \subset X$.

Example

- In \mathbb{R} , any finite set and the Cantor set are nowhere dense.
- Write $\mathbb{Q} = \{q_1, q_2, q_3, \dots\}$ and let $(\delta_n)_{n \in \mathbb{N}}$ in (0, 1). Then $U = \bigcup_{n \in \mathbb{N}} (q_n \delta_n, q_n + \delta_n)$ is open and dense in \mathbb{R} . So $\mathbb{R} \setminus U$ is closed and nowhere dense in \mathbb{R} .

Theorem 4.1'

Let (X,d) be a non-empty complete metric space. Suppose $X = \bigcup_{n \in \mathbb{N}} A_n$ for some $A_n \subset X$. Then there exists $N \in \mathbb{N}$ such that int $\overline{A_n} \neq \emptyset$.

Proof. Suppose, on the contrary, that int $\overline{A_n} = \emptyset$ for all $n \in \mathbb{N}$. Then $\forall x \in X \ \forall r > 0 \ D_r(x) \not\subset \overline{A_n}$ and thus $D_r(x) \cap U_n = \emptyset$. Thus, $U_n = X \setminus \overline{A_n}$ is open and dense in X. Hence, by Theorem 4.1, $\bigcap_{n \in \mathbb{N}} U_n$ is dense in X. But note that $\bigcap_{n \in \mathbb{N}} U_n = \left(\bigcup_{n \in \mathbb{N}} \overline{A_n}\right)^c = \emptyset$ — a contradiction!

Exercise. Deduce Theorem 4.1 from Theorem 4.1'.

Definition First and second category

Let X be a topological space and $A \subset X$.

- We say that A is meagre in X or is of first category in X if $A = \bigcup_{n \in \mathbb{N}} A_n$ where A_n is nowhere dense in X for all $n \in \mathbb{N}$.
- We say that A is of second category in X if A is not of first category.

Remarks

- Intuition: Think of meagre sets as 'small'.
- Typical Baire argument: Theorem 4.1' is useful as, to find some element $x \in X$ (in a non-empty complete metric space) with some property P, we just have to show that $A = \{x \in X : x \text{ fails } P\}$.

Application Existence of a nowhere differentiable function in C[0,1]Note that $(C[0,1], ||\cdot||_{\infty})$ is a nonempty complete metric space. Let

$$A = \{ f \in C[0,1] : \exists x \in [0,1] \text{ s.t. } f \text{ differentiable at } x \}$$

Observe that, if f'(x) exists, i.e. $[f(y) - f(x)]/(y - x) \to f'(x)$ as $y \to x$, then there exists $N \in \mathbb{N}$ such that, for all $y \in X$,

$$|y - x| < \frac{1}{N} \Longrightarrow \left| \frac{f(y) - f(x)}{y - x} \right| \le N$$

Thus, for $n \in \mathbb{N}$, consider the set

$$A_n = \left\{ f \in C[0,1] : \exists x \in [0,1] \ \forall y \in [0,1] \ |y - x| < \frac{1}{n} \Longrightarrow |f(y) - f(x)| \le n|y - x| \right\}$$

and note that $A \subset \bigcup_{n \in \mathbb{N}} A_n$.

It then remains to show that, for all $n \in \mathbb{N}$, A_n is closed and int $A_n = \emptyset$.

• A_n is closed: Consider $(f_k)_{k\in\mathbb{N}}$ in A_n with $f_k \to f$ in C[0,1]. For each $k \in \mathbb{N}$, we can pick $x_k \in [0,1]$ such that, for all $y \in [0,1]$, $|y-x_k| < 1/n \Longrightarrow |f_k(y)-f_k(x_k)| \le n|y-x_k|$. Passing to a subsequence if necessary, $x_k \to x$ in [0,1] WLOG. By IB Analysis and Topology Example Sheet 1 Q5 (2024), $f_k(x_k) \to f(x)$ and hence

$$\forall y \in [0,1] \ |y-x| < \frac{1}{n} \Longrightarrow |f(y) - f(x)| \le n|y-x|$$

as required.

• Fix $f \in A_n$ and r > 0. To get $D_r(f) \not\subset A_n$, the idea is to consider a small but rapidly oscillating perturbation of f. Let $0 < \varepsilon < r/4$. Pick $\delta > 0$ such that $|y - x| < \delta \Longrightarrow |f(y) - f(x)| < \varepsilon$. Choose h, w such that $4\varepsilon < h < r$ and $w = \min\{\varepsilon/n, \delta\}$. Set g to be the function

We can check that $f + g \in D_r(f) \backslash A_n$.

Direct proof: Take g_n similar to above with height h_n and width w_n , where $h_n \searrow 0$ fast and $h_n/w_n \to \infty$ fast. Then $\sum g_n$ is nowhere differentiable.

Theorem 4.2 Principle of uniform boundedness⁴

Let X be a Banach space, Y a normed space and $\mathcal{T} \subset \mathcal{B}(X,Y)$. If T is pointwise bounded (i.e., $\forall x \in X \ \sup_{T \in \mathcal{T}} ||Tx|| < \infty$), then T is uniformly bounded (i.e., $\sup_{T \in \mathcal{T}} ||T|| < \infty$).

Proof. Let $A_n = \{x \in X : \sup_{T \in \mathcal{T}} ||Tx|| \le n\}$. By hypothesis, $X = \bigcup_{n \in \mathbb{N}} A_n$. By Theorem 4.1', there exists $n \in \mathbb{N}$ such that int $\overline{A_n} \ne \emptyset$. Note that $A_n = \bigcap_{T \in \mathcal{T}} \{x \in X : ||Tx|| \le n\}$ is closed as the map $x \mapsto ||Tx||$ is continuous. Thus, there exists r > 0 and $x \in A_n$ such that $B_r(x) \subset A_n$. Given $y \in B_X$, $T \in \mathcal{T}$, we have x + ry, $x - ry \in B_r(x)$ and thus

$$||Ty|| = \left| \left| \frac{T(x+ry) - T(x-ry)}{2r} \right| \right| \le \frac{2n}{2r} = \frac{n}{r}$$

Hence, $||T|| \leq n/r$ for all $T \in \mathcal{T}$.

⁴This result is also known as the Banach-Steinhaus theorem.

Corollary 4.3

Let X be a Banach space, Y a normed space, and $(T_n)_{n\in\mathbb{N}}$ a sequence in $\mathcal{B}(X,Y)$ that pointwise converges to T. Then T is linear and bounded. Moreover, $\sup_n ||T_n|| < \infty$.

Proof. For all $x \in X$, $(T_n x)_{n \in \mathbb{N}}$ is convergent and thus bounded. So $\{T_n : n \in \mathbb{N}\}$ is pointwise bounded. Hence, by Theorem 4.2, there exists $M \geq 0$ such that, for all $n \in \mathbb{N}$, we have $||T_n|| \leq M$.

 \bullet T linear:

$$T(\lambda x + \mu y) = \lim_{n \to \infty} T_n(\lambda x + \mu y) = \lim_{n \to \infty} [\lambda T_n(x) + \mu T_n(y)] = \lambda T(x) + \mu T(y)$$

• T bounded: $\forall x \in B_X \ \forall n \in \mathbb{N} \ ||T_n x|| \le ||T_n|| \le M$, so $||Tx|| = \lim_{n \to \infty} ||T_n x|| \le M$ for all $x \in B_X$. Hence, T is bounded with $||T|| \le M$.

Exercise. Show that $||T|| \leq \liminf_{n \to \infty} ||T_n||$.

Definition δ -dense

Let A, B be subsets of a metric space (X, d) and $\delta > 0$. We say that A is δ -dense in B if $\forall b \in B \ \exists \ a \in A \ d(a, b) \le \delta$.

Remark. If $\overline{A} \supset B$, then A is δ -dense in B for all $\delta > 0$.