Exercícios de Matrizes e Determinantes

- 1. Seja $C = (c_{ij})_{3\times 3}$ tal que C = A + B sendo $A = (a_{ij})_{3\times 3}$ e $B = (b_{ij})_{3\times 3}$, com $a_{ij} = i^2 + j^2$ e $b_{ij} = 2ij, \forall i, j \in \{1, 2, 3\}$. Determine o elemento $c_{12} + c_{23} + c_{32}$.
- 2. Determinar α , β , γ e $\delta \in \mathbb{R}$ de modo que se tenha:

$$\left(\begin{array}{cc} \alpha & 1 \\ 1 & 2 \end{array}\right) + \left(\begin{array}{cc} 2 & \beta \\ 0 & -1 \end{array}\right) = \left(\begin{array}{cc} 3 & 2 \\ \gamma & \delta \end{array}\right).$$

- 3. Determinar uma matriz A quadrada de ordem 2 tal que $A \neq 0$ e $A^2 = 0$.
- 4. Obter todas as matrizes B que comutam com a matriz $A = \begin{pmatrix} 1 & -1 \\ 3 & 0 \end{pmatrix}$, ou seja, AB = BA.
- 5. Mostrar que se A e B são matrizes que comutam com a matriz $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ então AB = BA.
- 6. Dada a matriz $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, calcule A^2, A^3, \dots, A^n .
- 7. Se A e B são matrizes invertíveis, então a matriz AB também é invertível e $(AB)^{-1} = B^{-1}A^{-1}$.
- 8. Considere as matrizes $A = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & -1 \\ x & y \end{pmatrix}$. Se B é a inversa de A, calcule o valor de x + y.
- 9. Sendo $A = \begin{pmatrix} 2 & 1 \\ x & x \end{pmatrix}$ uma matriz invertível, determine os valores de x para os quais $A + A^{-1} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.
- 10. Verificar se a matriz $A=\begin{pmatrix}1&2&1\\0&1&2\\1&1&1\end{pmatrix}$ é invertível e, se o for, determinar sua inversa.
- 11. Uma matriz quadrada A é ortogonal se A é invertível e $A^{-1}=A^t$. Mostre que a matriz $A=\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$ é ortogonal.
- 12. Verificar se as matrizes abaixo são invertíveis e, quando for o caso, determinar a inversa.

1

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$$
, (b) $B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$, (c) $C = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 0 & 2 & 0 & 3 \end{pmatrix}$.

13. Existe alguma matriz invertível A tal que $A^2 = 0$? Justifique.

- 14. Considere a matriz $A = (a_{ij})_{3\times 3}$, definida por $a_{ij} = -1 + 2i + j$, para $1 \le 1 \le 2$, $1 \le j \le 2$. Calcule o determinante de A.
- 15. Sejam A e B matrizes quadradas de ordem 3. Se $A=\begin{pmatrix}1&2&3\\0&-1&1\\1&0&2\end{pmatrix}$ e B é tal que $B^{-1}=2A$, calcule o determinante de B.