

SAYISAL TÜREV

TÜREV NEDİR?

- Mühendislikte bir çok yasa ve genelleştirme, fiziksel dünyada karşılıkları olan değişimlerin tahmin edilmesi esasına dayanmaktadır.
- Newton'un ikinci yasası temel bir örnek olup, bir cismin hızı, konumunun zamana göre değişimiyle ilgilenmektedir

$$V = \frac{dX}{dt}$$

- Isı geçişleri, sıcaklık farkındaki değişime bağlı olarak ifade edilir.
- Bir bobinin uçlarındaki gerilim farkı, üzerinden geçen akımın değişimine gör bir kondansatörün üzerinden geçen akım ise uçları arasındaki gerilim değişimi göre ifade edilir.

$$V_L = L \frac{di_L}{dt} \qquad i_c = C \frac{dv_c}{dt}$$

- ☐ Türev, bağımlı bir değişkenin bağımsız bir değişkene göre değişme miktarıdır.
- Analitik olarak türev ya da integral almanın mümkün olmadığı yerlerde sayısal türev veya sayısal integral işlemleri kullanılmalıdır. Birçok olayda değişim oranları kullanılır.
- Geometrik olarak Türev, bir fonksiyona ait eğrinin her hangi bir x noktasındaki yatayla yaptığı açı yada diğer bir ifadeyle x noktasındaki teğetinin eğimi olarak görülebilir.

$$f(x)' = \frac{\partial f(x)}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$$

$$\frac{\Delta f(x)}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Sayısal türev, bir fonksiyonun bağlı olduğu değişkenlere göre değişim hızının bir ölçüsüdür.

Geri Farklar İle Sayısal Türev

$$f(x_i)' = \frac{\nabla f(x)}{\nabla x} = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

$$f(x_i)' = \frac{\nabla f(x)}{\nabla x} = \frac{f(x_i) - f(x_i - h)}{h}$$

İleri Farklar İle Sayısal Türev

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_i + h) - f(x_i)}{h}$$

Merkezi Farklar İle Sayısal Türev

$$f(x_i)' = \frac{\delta f(x)}{\delta x} = \frac{f(x_{i+1}) - f(x_{i-1})}{x_{i+1} - x_{i-1}}$$

$$f(x_i)' = \frac{\delta f(x)}{\delta x} = \frac{f(x_i + h) - f(x_i - h)}{2h}$$

Sayısal Türev Çeşitlerinde Adım Aralığı

$$f(x) = x^3$$

 \Box f(x) = e^x fonksiyonunun x=1 noktasındaki türevini h=0,1 kullanarak her üç yöntem ile hesaplayınız.

- 🖵 Çözüm:
 - ☐ Geri farklar

☐ İleri farklar

■ Merkezi farklar

■ Analitik Çözüm

$$f(x) = e^x$$

Heri Feirk ile
$$y'(x_0) = \frac{dy}{dx} = \frac{\Delta y_0}{\Delta y} = \frac{f(x_0 + f_0) - f(x_0)}{\Delta x}$$

 $y'(x_0) = \frac{f(x_0 + f_0) - f(0)}{O(1)} = \frac{f(x_0 + f_0) - f(x_0)}{O(1)} = \frac{2.86}{O(1)}$

Gen Fark ile
$$y'(x_0) = \frac{dy}{dx} = \frac{\sqrt{y_0}}{\sqrt{x_0}} = \frac{f(x_0) - f(x_0 - h)}{\sqrt{x_0}}$$

 $y'(x_0) = f(1) - f(1 - 0.1) = e^{1 - e^{0.9}} = 2.59$

 $\int f(x) = x^2$ fonksiyonunun x = 1 noktasındaki türevini h = 0.1 kullanarak her üç yöntemle hesaplayınız?

🖵 Çözüm:

■ Geri farklar

☐ İleri farklar

☐ Analitik Çözüm

Taylor Serisi İle Sayısal Türev

- Bir f(x) fonksiyonun x_i noktasındaki türevi $f'(x_i)$ Taylor Serisi yardımıyla elde edilebilir.
- Bir fonksiyonun $x_i + \Delta x$ civarındaki değeri x_i civarındaki değerinin kuvvetleri cinsinden, Taylor Serisine açılarak bulunabilir.

$$f(x_i + \Delta x) = f(x_i) + \frac{\Delta x}{1!} f'(x_i) + \frac{\Delta x^2}{2!} f''(x_i) + \frac{\Delta x^3}{3!} f'''(x_i) + \dots + \frac{\Delta x^n}{n!} f^n(x_i)$$

- Taylor serisinde serinin kesilen noktadan sonraki hatanın mertebesi, kesilen noktadaki Δx ' in mertebesine eşit olur.
- Taylor Serisi ile çok noktalı türev yaklaşımı gerçekleştirilir.

Taylor Serisi Kullanarak Birinci Türev Tespiti

 \Box f(x) fonksiyonun x_i+h civarındaki ve x_i+2h civarındaki değerlerini $f(x_i)$ nin kuvvetleri cinsinden 2. kuvvetine kadar açıp, $f'(x_i)$ yi çekelim.

$$-4 / f(x_i + h) = f(x_i) + \frac{h^1 f'(x_i)}{1!} + \frac{h^2 f''(x_i)}{2!}$$

$$f(x_i + 2h) = f(x_i) + \frac{(2h)^1 f'(x_i)}{1!} + \frac{(2h)^2 f''(x_i)}{2!}$$

$$-4f(x_i + h) = -4f(x_i) - 4h \cdot f'(x_i) - 2h^2 f''(x_i)$$

$$f(x_i + 2h) = f(x_i) + 2h \cdot f'(x_i) + 2h^2 f''(x_i)$$

$$f'(x_i) = \frac{1}{2h} \left[-3f(x_i) + 4f(x_i + h) - f(x_i + 2h) \right]$$

Taylor serisi; ileri fark formülü ile 🔀

$$f_{i}' = \frac{1}{2h} \left[-3f_{i} + 4f_{i+1} - f_{i+2} \right]$$

Taylor Serisi Kullanarak İkinci Türev Tespiti

 \Box f(x) fonksiyonun x_i+h civarındaki ve x_i+2h civarındaki değerlerini $f(x_i)$ nin kuvvetleri cinsinden 2. kuvvetine kadar açıp, $f''(x_i)$ yi çekelim.

$$-2 / f(x_i + h) = f(x_i) + \frac{h^1 f'(x_i)}{1!} + \frac{h^2 f''(x_i)}{2!}$$

$$f(x_i + 2h) = f(x_i) + \frac{(2h)^1 f'(x_i)}{1!} + \frac{(2h)^2 f''(x_i)}{2!}$$

$$-2f(x_i + h) = -2f(x_i) - 2h \cdot f'(x_i) - h^2 f''(x_i)$$

$$f(x_i + 2h) = f(x_i) + 2h \cdot f'(x_i) + 2h^2 f''(x_i)$$

$$f''(x_i) = \frac{1}{h^2} [f(x_i) - 2f(x_i + h) + f(x_i + 2h)]$$

Taylor serisi; ileri fark formülü ile 🖚

$$f_i'' = \frac{1}{h^2} [f_i - 2f_{i+1} + f_{i+2}]$$

Taylor Serisi İle Geri Fark Yöntemi

Ileri fark yöntemindeki işlemler f(x) fonksiyonun x_i -h civarındaki ve x_i -h civarındaki değerlerini $f(x_i)$ nin kuvvetleri cinsinden 2. kuvvetine kadar açıp, $f'(x_i)$ yi çekilmesi şeklinde tekrar edilerek elde edilir.

$$f(x_i - h) = f(x_i) + \frac{(-h)^1 f'(x_i)}{1!} + \frac{(-h)^2 f''(x_i)}{2!}$$

$$f(x_i - 2h) = f(x_i) + \frac{(-2h)^1 f'(x)}{1!} + \frac{(-2h)^2 f''(x)}{2!}$$

Taylor serisi; geri fark formülü ile

$$f_{i}' = \frac{1}{2h} [3f_{i} - 4f_{i-1} + f_{i-2}]$$

Homework

☐ Taylor serisinin 3. dereceden kuvvetlerine göre açılarak ileri fark yönteminin 3 noktalı türev yaklaşımlarının aşağıdaki gibi olduğunu ispatlayınız.

$$f_{i}' = \frac{1}{6h} \left[-11f_{i} + 18f_{i+1} - 9f_{i+2} + 2f_{i+3} \right]$$

$$f_i'' = \frac{1}{h^2} \left[2f_i - 5f_{i+1} + 4f_{i+2} - f_{i+3} \right]$$

$$f_i^{""} = \frac{1}{h^3} \left[-f_i + 3f_{i+1} - 3f_{i+2} + f_{i+3} \right]$$

- ☐ Örnek: f(x)=2x²+1 fonksiyonunun x=2 yaklaşık türevini gördüğünüz tüm yöntemlerle hesaplayınız. h=0.1 ve analitik çözüm f'(2)=8
- ☐ Çözüm:
- Basit ileri farkla çözüm

Taylor serisi ile iki noktalı ileri farkla çözüm

$$f_{i}' = \frac{1}{2h} \left[-3f_{i} + 4f_{i+1} - f_{i+2} \right]$$

KAYNAKLAR

- Cüneyt BAYILMIŞ, Sayısal Analiz Ders Notları, Sakarya Üniversitesi
- Mehmet YILDIRIM, Sayısal Analiz Ders Notları, Kocaeli Üniversitesi
- İlyas ÇANKAYA, Devrim AKGÜN, "MATLAB ile Meslek Matematiği",
 Seçkin Yayıncılık
- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- Yüksel YURTAY, Sayısal Analiz Ders Notları, Sakarya Üniversitesi