Universidad de los Andes

DEPARTAMENTO DE FÍSICA BIOLOGÍA SINTÉTICA

Proyecto

Autores:

Manuela Vanegas Ferro Juan David Estupiñán Méndez Luis Alberto Gutiérrez López

Profesor:
Juan Manuel Pedraza Leal

Mayo 21 de 2015

Índice

1. Introducción			2	
	Mod		•	
	2.1.	Ecuaciones de Hill		
	2.2.	Comments		
	2.3.	Tables and Figures		
	2.4.	Mathematics		
	2.5.	Lists		

Figura 1: This is a figure caption.

Resumen

Your abstract[8] [2] [10] [9] [7] [6] [5] [3] [4] [1].

1. Introducción

Your introduction goes here! Some examples of commonly used commands and features are listed below, to help you get started.

If you have a question, please use the support box in the bottom right of the screen to get in touch.

2. Modelo

2.1. Ecuaciones de Hill

Para la parte de ... consideramos que el ADN total D_T es constante, es decir

$$[Z] + [A] \xrightarrow{\hat{k}_{+}} [ZA] \xrightarrow{\hat{k}_{cat}} [Z]^{+}[F]$$

$$(1)$$

$$[E] + [F] \xrightarrow{k_{+}} [ZA] \xrightarrow{k_{cat}} [Z]^{+}[F]$$
 (2)

Según las ecuaciones químicas, las ecuaciones diferenciales para [B], [F], [ZA] y [EF] so

$$[\dot{B}] = k_{\text{cat}}[E][F] - \gamma_B B \tag{3}$$

$$[\dot{Z}A] = \hat{k}_{+}[Z][A] - \hat{k}_{-}[ZA] - \hat{k}_{cat}[ZA]$$
 (4)

$$[EF] = k_{+}[E][F] - k_{-}[EF] - k_{cat}[EF]$$
 (5)

$$[\dot{F}] = -k_{+}[E][F] + k_{-}[EF] + \hat{k}_{cat}[ZA]$$
 (6)

Asumiendo que los complejos enzima-sustrato están en equilibrio, es decir, $[\dot{Z}A]=0$ y $[\dot{E}F]=0$ obtenemos de las ecuaciones [?] y [?]

Donde a la ecuación para B se le puso un término de degradamiento, pues en las demás como las tasas de reacciones enzimáticas son mucho mayores a las de degradamiento blabla

$$[D_T] = [D] + [DS] + [DI] + [DIS]$$

donde [D] representa el ADN libre, [DIS] el ADN unido al represor I y al activador S, [DS] el unido al activador y [DI] el unido al represor.

En equilibrio y utilizando balance detallado obtenemos las siguientes ecuaciones diferenciales para la concentración de la enzima Z y su ARN r_Z , y de igual manera para la enzima E:

$$\dot{r_{Z}}(t) = \alpha_{IS} + \frac{\beta_{IS_{I}}}{\left(\frac{K_{I}}{I}\right)^{n_{I}} + 1 + \left(\frac{S}{K_{S}}\right)^{n_{S}} \left(\frac{K_{I}}{I}\right)^{n_{I}} + \left(\frac{S}{K_{S}}\right)^{n_{S}} + \left(\frac{I}{K_{I}}\right)^{n_{I}} \left(\frac{K_{S}}{S}\right)^{n_{S}} + 1 + \left(\frac{I}{K_{I}}\right)^{n_{I}}}{\left(\frac{K_{I}}{I}\right)^{n_{I}} \left(\frac{K_{S}}{S}\right)^{n_{S}} + \left(\frac{K_{I}}{I}\right)^{n_{I}} + 1} - \gamma_{r_{Z}} r_{Z}} + \frac{\beta_{IS_{IS}}}{\left(\frac{K_{I}}{I}\right)^{n_{I}} \left(\frac{K_{S}}{S}\right)^{n_{S}} + \left(\frac{K_{S}}{S}\right)^{n_{S}} + \left(\frac{K_{I}}{I}\right)^{n_{I}} + 1} - \gamma_{r_{Z}} r_{Z}}$$
(7)

$$\dot{Z}(t) = k_Z r_Z - \gamma_Z Z \tag{8}$$

$$\dot{r_E}(t) = \alpha_S + \frac{\beta_S}{1 + \left(\frac{K_S}{S}\right)^{n_S}} - \gamma_{r_E} r_E \tag{9}$$

$$\dot{E}(t) = k_E r_E - \gamma_E E \tag{10}$$

2.2. Comments

Comments can be added to the margins of the document using the <u>todo command</u>, as shown in the example on the right. You can also add inline comments too:

This is an inline comment.

2.3. Tables and Figures

Use the table and tabular commands for basic tables — see Table 1, for example. You can upload a figure (JPEG, PNG or PDF) using the files menu. To include it in your document, use the includegraphics command as in the code for Figure 1 below.

Here's a comment in the margin!

Item	Quantity
Widgets	42
Gadgets	13

Cuadro 1: An example table.

2.4. Mathematics

LATEX is great at typesetting mathematics. Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathrm{E}[X_i] = \mu$ and $\mathrm{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

2.5. Lists

You can make lists with automatic numbering ...

- 1. Like this,
- 2. and like this.

... or bullet points ...

- Like this,
- and like this.

We hope you find write LATEX useful, and please let us know if you have any feedback using the help menu above.

Referencias

- [1] Uri Alon. An Introduction to Systems Biology. Design Principles of Biological Circuits. Chapman and Hall/CRC, 1 edition, 2006.
- [2] W.W. Cleland. The kinetics of enzyme-catalyzed reactions with two or more substrates or products: I. Nomenclature and rate equations. *Biochimica et Biophysica Acta (BBA)* Specialized Section on Enzymological Subjects, 67:104–137, 1963.
- [3] Robert L. Crocker and W. H. Whitcomb. Feeding Niches of the Big-Eyed Bugs Geocoris bullatus, G. punctipes, and G. uliginosus (Hemiptera: Lygaeidae: Geocorinae). Environmental Entomology, 9(5):508–513, 1980.

- [4] Hanna Engelberg-Kulka, Boaz Sat, Myriam Reches, Shahar Amitai, and Ronen Hazan. Bacterial programmed cell death systems as targets for antibiotics. *Trends in Microbiology*, 12(2):66–71, 2004.
- [5] Hisashi Harada and Norihiko Misawa. Novel approaches and achievements in biosynthesis of functional isoprenoids in *Escherichia coli. Applied Microbiology and Biotechnology*, 84(6):1021–1031, 2009.
- [6] Hisashi Harada, Fengnian Yu, Sho Okamoto, Tomohisa Kuzuyama, Ryutaro Utsumi, and Norihiko Misawa. Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Applied Microbiology and Biotechnology, 81(5):915–925, 2009.
- [7] James Kirby and Jay D. Keasling. Biosynthesis of Plant Isoprenoids: Perspectives for Microbial Engineering. *Annual Review of Plant Biology*, 60:335–355, 2009.
- [8] André Kressler and Ian T. Baldwin. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. *Science*, 291:2141–2144, 2001.
- [9] Christophe Sallaud, Denis Rontein, Sandrine Onillon, Françoise Jabès, Philippe Duffé, Cécile Giacalone, Samuel Thoraval, Camille Escoffier, Gaëtan Herbette, Nathalie Leonhardt, Mathilde Causse, and Alain Tissier. A Novel Pathway for Sesquiterpene Biosynthesis from Z,Z-Farnesyl Pyrophosphate in the Wild Tomato Solanum habrochaites. *The* Plant Cell, 21(1):301–317, 2009.
- [10] Ted C. J. Turlings, John H. Loughrin, Philip J. McCall, Ursula S. R. Röse, W. Joe Lewis, and James H. Tumlinson. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. *Proceedings of the National Academy of Sciences of the United States of America*, 92(10):4169–4174, 1995.