Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil C: Berechenbarkeit und Entscheidbarkeit

14: Unentscheidbare Probleme 1

Version von: 12. Juni 2018 (12:12)

Einleitung

- Wir beschäftigen uns in diesem Kapitel mit
 - algorithmischen Problemen, die nicht entscheidbar sind, und
 - mit dem Beweis dieser Tatsache
- Dabei lernen wir zwei Beweismethoden kennen:
 - Diagonalisierung
 - Reduktion
- Wir illustrieren das Prinzip zuerst an einem informellen Beispiel, bevor wir uns den "richtigen" Sätzen und Beweisen zuwenden

Inhalt

- > 14.1 Hello, world!-Programme
 - 14.2 Ein erstes unentscheidbares Problem
 - 14.3 Reduktionen und weitere unentscheidbare Probleme

Automatische Verifikation allgemeiner Programme?

- In Teil A haben wir gesehen, dass endliche Automaten automatisch verifiziert werden können
- Gegeben ein Automat und eine Spezifikation lässt sich automatisch testen, ob der Automat die Spezifikation erfüllt
- ullet Genauer: Gegeben ein Automat ${\cal A}$ und ein regulärer Ausdruck lpha lässt sich automatisch testen, ob $L({\cal A})=L(lpha)$
- Gilt dies auch für allgemeinere Programme?
- Diese Frage beantworten wir zunächst informell anhand einer sehr einfachen Spezifikation

"hello, world"-Programme: Einleitung (1/3)

```
Beispiel: "hello, world"-Programm in Java

class HelloWorld {
    static public void main( String args[]) {
        System.out.println( "Hello World!" );
    }
}
```

 "hello, world"-Programme werden oft als erstes Beispiel beim Lehren einer Programmiersprache verwendet "hello, world"-Programme in Hunderten von Programmiersprachen finden sich auf helloworldcollection.de

```
Beispiel: "hello, world"-Programm in C++ (ISO)
#include <iostream>
int main()
{
    std::cout << "Hello World!' << std::endl;
}</pre>
```

```
Beispiel: "hello, world"-Programm in Oz

functor
import

System

Application
define

{System.showInfo "Hello World!"}
{Application.exit 0}
```

end

"hello, world"-Programme: Einleitung (2/3)

- Für unsere Zwecke sind die syntaktischen Details konkreter Programmiersprachen nicht so wichtig
- Wir beschreiben Programme deshalb in Pseudocode

Beispiel: "hello, world"-Programm in Pseudocode

BEGIN
PRINT("hello, world")
END

"Definition" ("hello, world"-Programm)

- Ein "hello, world"-Programm sei ein Programm, das keine Eingabe erwartet und als erstes "hello, world" ausgibt
- Wie schwierig ist es, einem Programm anzusehen, ob es ein "hello, world"-Programm ist?
- Was könnte daran schwierig sein???

"hello, world"-Programme: Einleitung (3/3)

Beispiel: "hello, world"-Programm?

```
1: m := 3

2: while TRUE do

3: for n := 3 TO m do

4: for x := 1 TO m do

5: for y := 1 TO m do

6: for z := 1 TO m do

7: if x^n + y^n = z^n then

8: PRINT("hello, world")

9: m := m + 1
```

ullet Dieses Programm sucht systematisch natürliche Zahlen n,x,y,z mit

–
$$n\geqslant 3$$
 und $x^n+y^n=z^n$

- Wenn es solche Zahlen gibt, wird irgendwann "hello, world" ausgegeben
- Zur Erinnerung: Natürliche Zahlen in dieser Vorlesung: 1, 2, 3, . . .

Satz von Fermat [Wiles 95]

ullet Es gibt keine natürlichen Zahlen $x,y,z\in\mathbb{N}$ und $n\geqslant 3$ mit

$$x^n + y^n = z^n$$

Der Beweis dieses Satzes hat 350 Jahre gedauert...

Korollar

- Das Beispielprogramm ist kein "hello, world"-Programm
- Warum ist es so schwierig herauszufinden, ob dieses Programm ein "hello, world"-Programm ist?
- Intuitive Schwierigkeit: Im Beispiel-Programm gibt es unendlich viele Wertekombinationen für x,y,z,n
- Diese k\u00f6nnen nicht in endlicher Zeit ausprobiert werden

"hello, world"-Tester: Definition

- Herauszufinden, ob ein gegebenes Programm ein "hello, world"-Programm ist, ist also nicht ganz so leicht
- Aber wir haben ja Computer!
- Programme sind Zeichenketten (Strings) und können von anderen Programmen als Eingabe eingelesen werden
- Schreiben wir also einfach ein Programm, das automatisch testet, ob ein gegebenes Programm ein "hello, world"-Programm ist

"Definition" ("hello, world"-Problem)

Gegeben: Programm P

Frage: Ist P ein "hello, world"-Programm?

- Wir nennen ein Programm für das "hello, world"-Problem einen "hello, world"-Tester
 - Ein "hello, world"-Tester gibt also bei Eingabe eines Programmes $m{P}$ die Antwort
 - st "ja", falls $oldsymbol{P}$ ein "hello, world"-Programm ist
 - st "nein", falls $oldsymbol{P}$ kein "hello, world"-Programm ist
- Ein "hello, world"-Tester würde also herausfinden, dass das zweite Beispiel-Programm kein "hello, world"-Programm ist
 - "hello, world"-Tester müssen ziemlich clever programmiert sein
- Gibt es überhaupt "hello, world"-Tester?
- Falls es keine "hello, world"-Tester gibt, *lässt* sich das beweisen?

"hello, world"-Tester: Theorem (1/5)

"Theorem"

- Es gibt keine "hello, world"-Tester
- Wir beweisen zuerst, dass es keine Tester für das folgende (scheinbar etwas schwierigere)
 Problem für Programme mit Eingaben gibt
- Danach zeigen wir, dass es dann auch keine "hello, world"-Tester gibt

"Definition" (hw-Problem mit Eingabe)

Gegeben: Programm P, Eingabe I

Frage: Gibt $oldsymbol{P}$ bei Eingabe $oldsymbol{I}$ "hello, world" aus?

- Vereinbarung:
 - Programme lesen ihre Eingabe mit Anweisungen der Art " $s := \mathsf{READ}$ "
 - Jede solche Anweisung liest den jeweils nächsten String der Eingabe

- Wir beweisen also jetzt zuerst, dass es keinen Tester für das "hello, world"-Problem mit Eingabe gibt
- Wir führen einen Beweis durch Widerspruch
 - Wir nehmen an, es g\u00e4be einen solchen Tester
 - Wir zeigen, dass sich daraus ein Widerspruch ergibt
 - Wir schließen daraus, dass die Annahme, es g\u00e4be einen solchen Tester, falsch ist

"hello, world"-Tester: Theorem (2/5)

"Beweis"

ullet Annahme: es gibt einen Tester $oldsymbol{H}$ für das "hello, world"-Problem mit Eingabe:

ullet Wir können H in ein Programm H_1 ändern, das wie \boldsymbol{H} arbeitet, aber "hello, world" anstelle von "nein" ausgibt:

$$P \rightarrow H_1 \rightarrow \text{"ja"}$$
 $\downarrow \text{~,hello, world"}$

ullet Wir können H_1 in ein Programm H_2 ändern, das sich bei Eingabe eines Programmes P' so verhält wie H_1 bei Eingabe $m{P}'$ (für $m{P}$) und $m{P}'$ (für $m{I}$):

"Beweis" (Forts.)

ullet Wie verhält sich H_2 bei Eingabe H_2 ?

- Notation: $H(P,I) \stackrel{\text{def}}{=}$ Ausgabe von $oldsymbol{H}$ bei Eingabe $oldsymbol{P}$ und $oldsymbol{I}$
- 1. Fall: $H_2(H_2) =$ "ja"
 - $ightharpoonup H_1(H_2,H_2)=$ "ja"
 - $lacktriangledown H(H_2,H_2)=$ "ja"
 - $ightharpoonup H(H_2, H_2)$ gibt die falsche Antwort, denn:
 - st H_2 gibt bei Eingabe H_2 nicht "hello, world" aus
 - lacktriangle Widerspruch zur Annahme, dass Hein Tester für das "hello, world"-Problem mit Eingabe ist
- Der erste Fall kann also nicht eintreten

"hello, world"-Tester: Theorem (3/5)

"Beweis" (Forts.)

 Annahme: es gibt einen Tester *H* für das "hello, world"-Problem mit Eingabe:

ullet Wir können H in ein Programm H_1 ändern, das wie H arbeitet, aber "hello, world" anstelle von "nein" ausgibt:

ullet Wir können H_1 in ein Programm H_2 ändern, das sich bei Eingabe eines Programmes P' so verhält wie H_1 bei Eingabe P' (für P) und P' (für I):

"Beweis" (Forts.)

ullet Wie verhält sich H_2 bei Eingabe H_2 ?

- ullet 2. Fall: $H_{f 2}(H_{f 2})=$ "hello, world"
 - $ightharpoonup H_1(H_2,H_2)=$ "hello, world"
 - $ightharpoonup H(H_{f 2},H_{f 2})=$ "nein"
 - $igspace{}{igspace{}{+}} H(H_2,H_2)$ ist auch falsch, denn: $*H_2$ gibt bei Eingabe H_2 "hello, world" aus
 - ightharpoonup Widerspruch zur Annahme, dass H ein Tester H für das "hello, world"-Problem mit Eingabe ist
- Der zweite Fall kann also auch nicht eintreten
- ullet Die Annahme der Existenz eines Testers $oldsymbol{H}$ führt also zu einem Widerspruch
- Ein solcher Tester existiert nicht

"hello, world"-Tester: Theorem (4/5)

"Beweis" (Forts.)

- Es gibt also keine Tester für hw-Programme mit Eingabe
- Dass es auch keine "hello, world"-Tester (für Programme ohne Eingabe) gibt, beweisen wir durch eine Reduktion
- Wir zeigen:
 - Wenn es einen "hello, world"-Tester $m{H}'$ (für Programme ohne Eingabe) gäbe, dann auch einen Tester $m{H}$ für das "hello, world"-Problem mit Eingabe

"Beweis" (Forts.)

- ullet Denn um zu testen, ob ein Programm P mit Eingabe I "hello, world" ausgibt, könnte H wie folgt vorgehen
- ullet Konstruiere aus P ein Programm P_I ohne Eingabe:
 - Ersetze dazu die Anweisung " $s := \mathsf{READ}$ " durch "s := I"
- ullet Teste mit Hilfe von $oldsymbol{H}'$, ob $oldsymbol{P_I}$ "hello, world" ausgibt
- Falls "ja": Ausgabe "ja"
- Falls "nein": Ausgabe "nein"
- Da wir aber schon bewiesen haben, dass es keinen Tester für das "hello, world"-Problem mit Eingabe gibt, gibt es auch keinen Tester für das "hello, world"-Problem

"hello, world"-Tester: "Theorem" (5/5)

- Die Begriffe "Theorem" und "beweisen" stehen auf den vorhergehenden Folien in Anführungszeichen:
 - Um aus den Überlegungen der letzten Folien wirklich ein Theorem und einen Beweis zu erhalten, müssten die verwendeten Begriffe präzise mathematische Definitionen haben
- Die Beweisidee lässt sich jedoch auf unsere formal definierten Berechnungsmodelle übertragen
- Denn der Beweis verwendet im Wesentlichen, dass Programme sich auf einfache Weisen modifizieren lassen
- Z.B.:
 - Modifikation der Ausgabe
 - Initialisierung des Programms mit einer Eingabe (statt Lesen der Eingabe)
- Wir werden nun zeigen, dass ein konkretes algorithmisches Problem, das auf Turingmaschinen basiert, unentscheidbar ist, und danach mit Hilfe von Reduktionen die Unentscheidbarkeit (vieler) anderer Probleme nachweisen

Inhalt

14.1 Hello, world!-Programme

> 14.2 Ein erstes unentscheidbares Problem

14.3 Reduktionen und weitere unentscheidbare Probleme

Die "Diagonalsprache" TM-DIAG (1/2)

- Wir beweisen jetzt für ein erstes konkretes Problem, dass es unentscheidbar ist
- Der Beweis verläuft ähnlich wie der informelle Beweis, dass es kein Programm zur Lösung des "hello, world"-Problems gibt
- ullet Statt für Programme mit Eingabe zu fragen, ob sie "hello, world" ausgeben, werden wir für Turingmaschinen M fragen, ob sie ihre eigene Kodierung durch einen String akzeptieren
- ullet Im Folgenden betrachten wir Turingmaschinen ausschließlich über dem Ein-/Ausgabealphabet $oldsymbol{\Sigma} = \{ oldsymbol{0}, oldsymbol{1} \}$
 - Die Resultate gelten aber entsprechend auch für jedes andere feste Alphabet

Die "Diagonalsprache" TM-DIAG (2/2)

- Wir nehmen im Folgenden an, dass wir eine Kodierung von Turingmaschinen zur Verfügung haben, die die folgenden Eigenschaften hat
- ullet Für jede TM M gibt es einen String $\mathrm{enc}(M)$, der sie kodiert
- ullet Jeder String w kodiert eine TM M_w
 - Syntaktisch sinnlose Strings kodieren die TM, die immer sofort anhält und ablehnt
- Wie eine solche Kodierung konkret aussehen kann, betrachten wir in Kapitel 16

Definition (TM-DIAG)

Gegeben: Turingmaschine M

Frage: Akzeptiert M die Eingabe enc(M)?

Satz 14.1

- TM-DIAG ist nicht entscheidbar
- Der Beweis verwendet die Methode der Diagonalisierung
- TM-DIAG scheint kein besonders interessantes algorithmisches Problem zu sein
 - Warum sollte es uns interessieren, ob eine TM "sich selbst" akzeptiert?
- Das Resultat, dass TM-DIAG unentscheidbar ist, ist nur Mittel zum Zweck:
 - Alle weiteren Unentscheidbarkeitsresultate beruhen letztlich auf dem Beweis der Unentscheidbarkeit von TM-DIAG

TM-DIAG ist unentscheidbar (1/3)

ullet Im Beweis, dass TM-DIAG unentscheidbar ist, verwenden wir die folgende Aufzählung aller Strings über Σ^*

$$-v_1=\epsilon, v_2=0, v_3=1, v_4=00, \ldots$$

- ullet Statt M_{v_i} schreiben wir M_i
 - M_1, M_2, M_3, \ldots ist also eine Aufzählung aller Turingmaschinen und für jedes i mit $M_i \neq M_-$ gilt: enc $(M_i) = v_i$
- $lacktriangleq L_{\mathsf{TM-DIAG}} = \{ oldsymbol{v_i} \mid oldsymbol{M_i} \ \mathsf{akzeptiert} \ \mathsf{die} \ \mathsf{Eingabe} \ oldsymbol{v_i} \}$

TM-DIAG ist unentscheidbar (2/3)

Illustration der Beweisidee

ullet Wir betrachten das Akzeptier- und Terminations-Verhalten von M_i bei Eingabe v_j für alle Kombinationen von i und j:

	$\mid v_1 \mid$	$\mid v_{2} \mid$	v_3	v_4	v_5	
$\overline{M'}$		+		+		
\overline{M}	+		+	_	+	
$\overline{M_1}$	+	_		+	_	• • •
$\overline{M_2}$	+		+	T	_	• • •
$\overline{M_3}$	上	_	+	_	+	• • •
$\overline{M_4}$	_	+	+	1	_	
$\overline{M_5}$	+	_	+	_	+	• • •
:	:	:	:	:	:	٠

- ullet $+: M_i$ akzeptiert v_i
- ullet $-: M_i$ lehnt v_j ab
- ullet \perp : M_i läuft bei Eingabe v_i endlos

Illustration der Beweisidee (Forts.)

ullet Annahme: es gibt eine TM M für TM-DIAG:

- M hält immer an und akzeptiert v_i genaudann, wenn v_i von M_i akzeptiert wird
- ullet Wir modifizieren M zu M' durch Umkehr des Akzeptierverhaltens:

ullet Dann gibt es ℓ mit $M_\ell=M'$

$$\mathbb{F} = M_{-}$$

 $\mathbb{R} M' = M_{\ell}$

- → Dann sind äquivalent:
 - M_ℓ akzeptiert v_ℓ
 - M' akzeptiert v_ℓ
 - M akzeptiert v_ℓ nicht
- → Widerspruch
- → TM-DIAG ist nicht entscheidbar!

TM-DIAG ist unentscheidbar (3/3)

 Wir beschreiben den Beweis nun noch einmal etwas ausführlicher

Beweisskizze zu Satz 14.1

- ullet Um einen Widerspruch zu erreichen, nehmen wir an, M wäre eine Turingmaschine, die TM-DIAG entscheidet
 - Zur Erinnerung: M müsste für alle Eingaben w anhalten und die richtige Antwort geben
- ullet Sei M' die Turing-Maschine, die bei Eingabe w zuerst M bei Eingabe w simuliert und dann
 - akzeptiert, falls $oldsymbol{M}$ ablehnt, aber
 - ablehnt, falls $oldsymbol{M}$ akzeptiert
- ullet Da M für jede Eingabe anhält (und akzeptiert oder ablehnt), gilt dies auch für M'

Beweisskizze (Forts.)

- ullet 1. Fall: $M'\in\mathsf{TM} ext{-}\mathsf{DIAG}$
 - lacktriangledown M akzeptiert $\operatorname{enc}(M')$

 oxtimes nach Annahme über M

lacktriangledown M' lehnt $\operatorname{enc}(M')$ ab

 oxtimes nach Konstruktion von M'

ightharpoonup M'
otin TM-DIAG

nach Definition von TM-DIAG

- ➡ Widerspruch
- ullet 2. Fall: $M'
 otin \mathsf{TM}$ -DIAG
 - lacktriangledown M akzeptiert $\operatorname{enc}(M')$ nicht

 lacktreethtarpoons nach Annahme über M

lacktriangledown M' akzeptiert $\operatorname{enc}(M')$

 $ightharpoonup M' \in \mathsf{TM} ext{-}\mathsf{DIAG}$

nach Definition von TM-DIAG

- ➡ Widerspruch
- In beiden Fällen ergibt sich ein Widerspruch
- TM-DIAG ist nicht entscheidbar

Bedeutung des Begriffs Unentscheidbarkeit

Wichtiger Hinweis

- ullet Dass TM-DIAG unentscheidbar ist, bedeutet nur, dass es kein *allgemeines Verfahren* gibt, das für alle Eingaben M terminiert und entscheidet, ob M die Eingabe enc(M) akzeptiert
- ullet Für viele konkrete Turingmaschinen M lässt es sich durchaus herausfinden, ob sie "sich selbst akzeptieren"

Inhalt

- 14.1 Hello, world!-Programme
- 14.2 Ein erstes unentscheidbares Problem
- > 14.3 Reduktionen und weitere unentscheidbare Probleme

Weiteres Vorgehen

- Wie gesagt: die Unentscheidbarkeit von TM-DIAG ist erst der Anfang
- Unser Ziel ist jetzt, für interessantere Probleme zu zeigen, dass sie unentscheidbar sind
- Dafür werden wir als Zwischenschritt zunächst für zwei zu TM-DIAG ähnliche Probleme zeigen, dass sie unentscheidbar sind:
 - das Halteproblem für Turingmaschinen und
 - das Halteproblem für Turingmaschinen mit leerer Eingabe

Definition (TM-HALT)

Gegeben: Turingmaschine $oldsymbol{M}$, Eingabe $oldsymbol{x}$ für $oldsymbol{M}$

Frage: Hält M bei Eingabe x an?

Definition (TM-E-HALT)

Gegeben: Turingmaschine $oldsymbol{M}$

Frage: Hält M bei Eingabe ϵ an?

- Wir verwenden zum Nachweis der Unentscheidbarkeit zukünftig eine einfachere Methode als die "direkte Diagonalisierung": Reduktionen
- ullet Die Grundidee von Reduktionen ist, die Entscheidbarkeit eines Problems A auf die Entscheidbarkeit eines anderen Problems A' zurückzuführen
- Sie sollen uns Aussagen der folgenden Art ermöglichen:
 - wenn $oldsymbol{A}'$ entscheidbar ist, dann ist auch $oldsymbol{A}$ entscheidbar
- Daraus können wir dann folgern:
 - wenn $m{A}$ nicht entscheidbar ist, dann ist auch $m{A}'$ nicht entscheidbar

Reduktionen

- Wir geben die formale Definition von Reduktionen für Sprachen
 - und erlauben uns dann, sie auch auf andere algorithmische Entscheidungsprobleme zu übertragen

Definition (Reduktion, reduzierbar, ≤)

- ullet Seien $L,L'\subseteq \Sigma^*$
- ullet Eine totale, berechenbare Funktion $f:\Sigma^* o\Sigma^*$ heißt $\hbox{\bf Reduktion}$ von L auf L', wenn sie die folgende $\hbox{\bf Reduktionseigenschaft}$ hat:
 - für alle $x \in \Sigma^*$ gilt: $x \in L \iff f(x) \in L'$
- ullet L heißt auf L' <u>reduzierbar</u>, falls es eine Reduktion von L auf L' gibt
 - Notation: $\underline{L} \leqslant \underline{L}'$
- ullet Die Eigenschaft $x\in L\Longleftrightarrow f(x)\in L'$ lässt sich auch anders (aber äquivalent) formulieren:
 - Wenn $oldsymbol{x} \in oldsymbol{L}$ dann $oldsymbol{f}(oldsymbol{x}) \in oldsymbol{L}'$ und
 - wenn $x \notin L$ dann $f(x) \notin L'$

Reduktionen: Erstes Beispiel (1/2)

- Wie gesagt: wir werden Reduktionen auch auf der Ebene algorithmischer Entscheidungsprobleme verwenden:
 - Sind A,A' zwei solche Probleme, so schreiben wir $A\leqslant A',$ falls $L_A\leqslant L_{A'}$
- In Teil A der Vorlesung haben wir gesehen, dass sich das Nichtleerheitsproblem für endliche Automaten im Grunde wie das Erreichbarkeitsproblem für Graphen lösen lässt
- Diesen Zusammenhang präzisieren wir jetzt, indem wir zeigen, dass das Nichtleerheitsproblem auf das Erreichbarkeitsproblem reduzierbar ist

Definition (DFA-NonEmpty)

Gegeben: DFA ${\cal A}$

Frage: Ist $L(A) \neq \emptyset$?

Beispiel

 Wir definieren eine Reduktionsfunktion um zu zeigen, dass DFA-NonEmpty ≤ Reach gilt:

- Für
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 sei $f(\mathcal{A}) \stackrel{\mathsf{def}}{=} (G_{\mathcal{A}}, s, t)$, wobei: $*G_{\mathcal{A}} \stackrel{\mathsf{def}}{=} (V_{\mathcal{A}}, E_{\mathcal{A}})$ $*V_{\mathcal{A}} \stackrel{\mathsf{def}}{=} Q \cup \{s, t\}$ $*E_{\mathcal{A}} \stackrel{\mathsf{def}}{=} \{(s, q_0)\} \cup \{(q, t) \mid q \in F\} \cup \{(q, q') \mid \delta(q, \sigma) = q', \sigma \in \Sigma\}$

• Dann gilt:

$$\mathcal{A}\in\mathsf{DFA} ext{-}\mathsf{NonEmpty}\Longleftrightarrow f(\mathcal{A})\in\mathsf{Reach}$$

ullet Und natürlich ist f berechenbar

Reduktionen: Erstes Beispiel (2/2)

Reduktionen: Zweites Beispiel (1/2)

Satz 14.2

PCP ≤ CFG-Schnitt

Beweisskizze

- ullet Sei $(u_1,v_1),\ldots,(u_k,v_k)$ eine Eingabe für PCP
 - (OBdA: $\$ \notin \Sigma$)
- ullet Idee: Wir konstruieren Grammatiken G_1 und G_2 so, dass gilt:
 - $-L(G_1)$ enthält alle Strings der Form

$$u_{i_1}\cdots u_{i_n}\$i_n\cdots i_1$$
, mit $n\geqslant 1$

 $-L(G_2)$ enthält alle Strings der Form

$$v_{i_1}\cdots v_{i_n}\$i_n\cdots i_1$$
, mit $n\geqslant 1$

- ullet $G_1:S_1
 ightarrow u_1S_11\mid \cdots \mid u_kS_1k\mid u_1\$1\mid \cdots \mid u_k\$k$
- ullet G_2 : $S_2
 ightarrow v_1 S_2 \overline{1} \mid \cdots \mid v_k S_2 \overline{k} \mid v_1 \$ \overline{1} \mid \cdots \mid v_k \$ \overline{k}$
- Dann sind äquivalent:
 - $(u_1,v_1),\ldots,(u_k,v_k)$ hat eine PCP-Lösung
 - $L(G_1) \cap L(G_2) \neq \emptyset$

Reduktionen: Zweites Beispiel (2/2)

Beispiel

- Steintypen:
- $egin{array}{c|c} a & ab & baa \ aba & bb \end{array}$
- \bullet G_1 :

$$egin{array}{c} -S_1
ightarrow aS_1 1 \mid abS_1 2 \mid baaS_1 3 \mid \ a\$1 \mid ab\$2 \mid baa\$3 \end{array}$$

- \bullet G_2 :
 - $egin{array}{c} extbf{-} S_2 o abaS_2 1 \mid bbS_2 2 \mid aaS_2 3 \mid \ aba\$1 \mid bb\$2 \mid aa\$3 \end{array}$
- Mögliche Lösung:
- $egin{array}{c|cccc} a & baa & ab & baa \ aba & ab & bb & aa \end{array}$
- ullet Zugehöriger String in $L(G_1) \cap L(G_2)$: abaaabbaa\$3231

Bemerkung

- ullet Bei beiden Beispielen ist f formal nur für Strings definiert, die "vernünftige" Eingaben für DFA-Nonempty bzw. PCP kodieren der Form $\mathrm{enc}(M) \# x$ definiert
- Wir können es aber zu einer totalen Funktion erweitern 14.1

Reduktionen und unentscheidbare Probleme

- Informelle Interpretation von Reduktionen:
 - Aus $A\leqslant A'$ folgt:
 - st Falls es ein "Unterprogramm" für A' gibt, so auch ein Programm für A
 - Falls $A\leqslant A'$ ist also in einem gewissen Sinne A nicht schwieriger ist als A'

Lemma 14.3

- ullet Sind L,L' Sprachen mit $L\leqslant L'$, so gilt:
 - (a) Ist $oldsymbol{L}'$ entscheidbar, dann auch $oldsymbol{L}$
 - (b) Ist $oldsymbol{L}$ unentscheidbar, dann auch $oldsymbol{L}'$
- ullet Um zu beweisen, dass ein Entscheidungsproblem A' unentscheidbar ist, genügt es also für ein schon als unentscheidbar bekanntes Problem A zu zeigen: $A \leqslant A'$
- $^{\circ}$ Vorsicht, sprachliche Fehlerquelle: wir führen die Unentscheidbarkeit von A' auf die Unentscheidbarkeit von A zurück, indem wir zeigen, dass A auf A' reduzierbar ist!

Beweisidee

- (a) Sei f eine Reduktion von L auf L^\prime
 - Entscheidungs-Algorithmus für $oldsymbol{L}$:
 - st Bei Eingabe $oldsymbol{w}$, berechne $oldsymbol{f}(oldsymbol{w})$
 - * Teste $oldsymbol{f}(oldsymbol{w}) \in oldsymbol{L}'$ mit Hilfe eines Entscheidungsalgorithmus für $oldsymbol{L}'$
 - * Akzeptiere, falls ja, lehne ab, falls nein
- (b) Kontraposition von (a)
 - Wir werden (unter anderem) zeigen:
 - TM-DIAG ≤ TM-HALT ≤ TM-E-HALT≤ PCP

Weitere unentscheidbare Probleme (1/2)

Satz 14.4

 TM-HALT ist nicht entscheidbar

Beweisskizze

• Wir zeigen:

TM-DIAG ≤ TM-HALT

- Dann folgt die Behauptung mit Lemma 14.3
- Prinzipielle Idee:

$$oldsymbol{M}\mapsto (oldsymbol{M},\operatorname{enc}(oldsymbol{M}))$$

- ullet Komplikation: $oldsymbol{M}$ könnte bei Eingabe enc $(oldsymbol{M})$ anhalten und $oldsymbol{ablehnen}$
- ullet Dann wäre $oldsymbol{M}
 otin \mathsf{TM-DIAG}$ aber $(oldsymbol{M}, \mathsf{enc}(oldsymbol{M})) \in \mathsf{TM-HALT}$
- ullet Deshalb modifizieren wir die TM M so, dass sie nie anhält und ablehnt

Beweisskizze (Forts.)

- ullet Für eine TM M sei M' die TM, in der alle Transitionen $\delta(q,\sigma)=(ext{nein},d, au)$ durch Transitionen $\delta(q,\sigma)=(q,\downarrow,\sigma)$ ersetzt werden
- Dadurch wird erreicht, dass
 - M^\prime anhält und akzeptiert, falls M akzeptiert, und
 - $-M^\prime$ nicht anhält, falls M ablehnt oder nicht anhält
- ullet Wir definieren die Funktion f durch:

$$m{f}(m{M}) \stackrel{ ext{ iny def}}{=} (m{M'}, ext{enc}(m{M}))$$

• Dann gilt:

$$M\in\mathsf{TM} ext{-}\mathsf{DIAG}$$

$$\Longleftrightarrow \!\! M$$
 akzeptiert $\mathsf{enc}(M)$

$$\Longleftrightarrow$$
 $oldsymbol{M}'$ hält bei Eingabe $\operatorname{enc}(oldsymbol{M})$ an

$$\Longleftrightarrow f(M) \in \mathsf{TM} ext{-Halt}$$

Weitere unentscheidbare Probleme (2/2)

Satz 14.5

TM-E-HALT ist nicht entscheidbar

Beweisskizze

- Wir zeigen: TM-HALT ≤ TM-E-HALT
- ullet Für jede TM M und jeden String $x\in \Sigma^*$ sei $M_{M,x}$ die TM, die
 - ihre eigentliche Eingabe löscht,
 - stattdessen x auf ihren String schreibt,
 - und dann $oldsymbol{M}$ bei Eingabe $oldsymbol{x}$ simuliert
- ullet f sei definiert durch:

$$oldsymbol{f}((oldsymbol{M},oldsymbol{x})) \stackrel{ ext{ iny def}}{=} oldsymbol{M}_{oldsymbol{M},oldsymbol{x}}$$

Beweisskizze (Forts.)

- f ist eine Reduktion von TM-HALT auf TM-E-HALT:
- ullet f ist total und berechenbar \checkmark
- Es gilt:

$$(oldsymbol{M},oldsymbol{x})\in\mathsf{TM} ext{-Halt}$$

$$\Longleftrightarrow M$$
 hält bei Eingabe x

$$\Longleftrightarrow M_{M,x}$$
 hält bei Eingabe ϵ

$$\Longleftrightarrow M_{M,x} \in \mathsf{TM} ext{-}\mathsf{E} ext{-}\mathsf{HALT}$$

$$\Longleftrightarrow f((M,x)) \in \mathsf{TM} ext{-}\mathsf{E} ext{-}\mathsf{HALT}$$

Zusammenfassung

- Definition der Begriffe entscheidbar und unentscheidbar
- Auf ähnliche Weise, wie wir uns von der algorithmischen Unlösbarkeit des "hello, world"-Problems überzeugt haben, lässt sich zeigen, dass das Halte-Problem für Turingmaschinen unentscheidbar ist
- Für viele andere Probleme lässt sich die Unentscheidbarkeit mit Hilfe von Reduktionen beweisen

Erläuterungen

Bemerkung 14.1

- ullet Wenn wir eine Reduktionsfunktion f von einem algorithmischen Problem A auf ein Problem A' angeben, spezifizieren wir f(x) nur für syntaktisch korrekte Eingaben x für A
 - Wenn z.B. $m{A}$ einen Graphen als Eingabe "erwartet", definieren wir $m{f}(m{G})$ also nur für Graphen $m{G}$
- Daraus können wir dann wie folgt eine totale Reduktionsfunktion $f': \Sigma^* \to \Sigma^*$ gewinnen:
 - Für syntaktisch korrekte Eingaben $m{w} = ext{enc}(m{G})$ ergibt sich dann $m{f}'(m{w}) \stackrel{ ext{def}}{=} ext{enc}(m{f}(m{G}))$
 - Für Strings $m{w}$, die keinen Graphen kodieren, setzen wir $m{f}(m{w}) \stackrel{ ext{def}}{=} m{y}$ für ein festes $m{y} \notin m{L}_{m{A}'}$