Edge-magicness of the composition of a cycle with a null graph¹

Wai Chee Shiu², Peter Che Bor Lam²

Department of Mathematics,

Hong Kong Baptist University

Kowloon, Hong Kong.

Sin-Min Lee
Department of Mathematics and Computer Science,
San Jose State University,
San Jose, CA 95192, U.S.A.

Abstract

Given two graphs G and H. The composition of G with H is the graph with vertex set $V(G) \times V(H)$ in which (u_1, v_1) is adjacent to (u_2, v_2) if and only if $u_1u_2 \in E(G)$ or $u_1 = u_2$ and $v_1v_2 \in E(H)$. In this paper, we prove by construction that the composition of a cycle with a null graph is edge-magic.

Key words and phrases : Edge-magic, composition of graphs, Cayley graph
Latin square, group matrix, magic square.

AMS 1991 subject classification : 05C78, 05C25

1. Introduction

The study of edge-magic graphs was initiated by the third author, Seah and Tan.¹ Let G = (V, E) be a (p, q)-graph, i.e., |V| = p and |E| = q. If there exists a bijection

$$f: E \to \{k, k+1, \dots, q-1+k\}$$

for some $k \in \mathbb{Z}$ such that the map $f^+(u) = \sum_{v \in N(u)} f(uv)$ induces a constant map from V to \mathbb{Z}_p , then G is called k-edge-magic and f is called a k-edge-magic labeling of G. If k = 1, then G is simply called edge-magic and f an edge-magic labeling of G. It was shown that a (p,q)-graph is edge-magic only if p divides q(q+1).

The concept of magic graphs was introduced by Sedláček in 1963,^{2,3} and was further developed by several researchers, see [4–7].

The notion of edge-magic graphs can be viewed as the dual concept of edge-graceful graphs which was introduced by Lo in $1985.^8$ G is said to be edge-graceful if there exists a bijection

$$f: E \to \{1, 2, \dots, q\}$$

such that the induce map f^+ (defined above) is a bijection from V onto \mathbb{Z}_p . There exist extensive literature on edge-graceful graphs [8–18].

¹In memory of Prof. Jaromir V. Abrham

 $^{^2}$ Partially supported by Research Grant Council, Hong Kong; and Faculty Research Grant, Hong Kong Baptist University

Given two graphs G and H. The composition of G with H, denoted as $G \circ H$ or (G[H]), is the graph with vertex set $V(G) \times V(H)$ in which (u_1, v_1) is adjacent to (u_2, v_2) if and only if either $u_1u_2 \in E(G)$ or $u_1 = u_2$ and $v_1v_2 \in E(H)$. For example, $C_3 \circ K_2$ is shown in Figure 1.

Figure 1

In this paper, we shall prove that for most values of m and n, $C_m \circ N_n$, where C_m is the m-cycle and N_n is the null graph on n vertices, is edge-magic.

The corresponding problem, edge-gracefulness of $C_m \circ N_n$, was considered by Seah and the third author in 1991¹⁴ when m is odd. For other classes of edge-magic graphs, the reader is referred to [19] and [20].

2. Edge-Magicness of Regular Graphs

If G=(V,E) is an r-regular (p,q)-graph, then 2q=pr. Suppose $f:E\to\{1,\ 2,\ \cdots,\ q\}$ is a bijection. For any integer k, we can define a bijection $g:E\to\{k,\ k+1,\ \cdots,\ k+q-1\}$ by g(e)=f(e)+k-1 for any $e\in E$. Then $g^+(u)=f^+(u)+r(k-1)$ and $\sum_{u\in V}g^+(u)=2\sum_{e\in E}g(e)=q(q-1+2k)$. If f is edge-magic, then there is a c such that $f^+(u)\equiv c\pmod p$ for each $u\in V$, and

$$\sum_{u \in V} g^{+}(u) = \sum_{u \in V} [f^{+}(u) + r(k-1)] \equiv \sum_{u \in V} [c + r(k-1)] \equiv 0 \pmod{p}.$$

Therefore a regular graph is k-edge-magic for any $k \in \mathbb{Z}$ if and only if it is edge-magic. Moreover, p|q(q+2k-1) for any $k \in \mathbb{Z}$. So we have:

Proposition 2.1: Suppose G is a regular (p,q)-graph. If g is even then p|q.

The above proposition follows from the facts p|2q and p|q(q+1). This proposition gives a necessary condition for regular (p,q)-graphs with even q to be edge-magic. We have as examples in Figure 2 two graphs which are not edge-magic. When q is odd, the condition p|q is not necessary. For example, the third graph in Figure 2 is a 3-regular graph which is

edge-magic.

Figure 2

In this paper we shall only consider simple regular graphs, and we shall label the edges of graphs by numbers $0, 1, \dots, q-1$.

Definition: Let G = (V, E) be a graph and S be a set. Suppose $f : E \to S$ is a mapping. A labeling matrix for a labeling f of G is a matrix whose rows and columns are named by the vertices of G and the (u, v)-entry is f(uv) if $uv \in E$, and is * otherwise. The label f(uv) is sometimes written as f(u, v).

Thus a regular (p,q)-graph G=(V,E) is edge-magic if and only if there exists a bijection $f:E\to\{0,\ 1,\ \cdots,\ q-1\}$ such that the row sums and the column sums modulo p of the labeling matrix of G associated with f are all equal. For purposes of these sums, entries with label * are treated as 0.

3. Edge-Magic Labeling of $C_m \circ N_n$

In this section, we shall prove that $C_m \circ N_n$ is edge-magic (we identify C_2 as P_2). For ease of illustration we shall consider $C_m \circ N_n$ as a Cayley graph which is described below.

Let $\mathfrak{C}_m = \langle g \rangle$ be the (multiplicative) cyclic group of order $m \ (\geq 2)$ generated by g. Let $H = \{h_0 = e, h_1, \dots, h_{n-1}\}$ be any group of order n, where $n \geq 2$ and e is the identity of H. Throughout this paper we shall use e to denote the identity of a group. Let $\mathfrak{C}_m\{H\}$ denote the Cayley graph of $\mathfrak{C}_m \times H$ generated by $\{g, g^{-1}\} \times H$ (for m = 2, the generating set is $\{g\} \times H$).

For $m \geq 3$, $\mathfrak{C}_m\{H\}$ is an (mn, mn^2) -graph; and $\mathfrak{C}_2\{H\}$ is an $(2n, n^2)$ -graph. Moreover, $\mathfrak{C}_m\{H\}$ is isomorphic to $C_m \circ N_n$ for $m \geq 2$. Note that we may view $\mathfrak{C}_m\{H\}$ as a (simple) graph. For simplicity, we identify $(g^i, x) \in \mathfrak{C}_m \times H$ with $g^i x$ and choose $H = \mathfrak{C}_n = \langle h \rangle$.

When m=2 and $n\geq 2$, $\mathfrak{C}_2\{\mathfrak{C}_n\}\cong K_{n,n}$. We can verify that $K_{2,2}$ is not edge-magic. Since magic square of any order higher than 2 always exists (see [21] and [22]), $K_{n,n}$ is edge-magic for $n\geq 3$. So we may assume that $m\geq 3$ and $n\geq 2$. We list the elements of \mathfrak{C}_n in the following order $\{e=h^0,\ h^1,\ h^2,\ \cdots,\ h^{n-1}\}$, and list the elements of $\mathfrak{C}_m \times \mathfrak{C}_n$ in the following order: $\{e\mathfrak{C}_n = g^0\mathfrak{C}_n,\ g^1\mathfrak{C}_n,\ \cdots,\ g^{m-1}\mathfrak{C}_n\}$. If $f: E \to S$ is a mapping, then the labeling matrix of f is

$$\begin{pmatrix}
* & A_0 & * & \ddots & * & A_{m-1}^T \\
A_0^T & * & A_1 & \ddots & \ddots & \ddots \\
* & A_1^T & * & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
* & * & * & * & \ddots & * & A_{m-2} \\
A_{m-1} & * & * & * & \ddots & A_{m-2}^T & *
\end{pmatrix}.$$
(3.1)

This matrix is visualized as an $m \times m$ matrix $X = (x_{ij})$, each entry of which is occupied by an $n \times n$ matrix. For $i = 1, 2, \dots, m$, the entry $x_{i,i+1}$ is the $n \times n$ matrix A_{i-1} and the entry $x_{i+1,i}$ is A_{i-1}^T , where i+1 is taken to be 1 if i = m and $A_i = \left(a_{i'j'}^{(i)}\right)$. For $1 \leq i'$, $j' \leq n$, the entry $a_{i'j'}^{(i)}$ of A_i corresponds to the $(g^i h^{i'-1}, g^i h^{j'-1})$ -entry of the labeling matrix, and has the label $f(g^i h^{i'-1}, g^i h^{j'-1})$. Each remaining entry of X is occupied by an $n \times n$ matrix of *'s, meaning that no edge connects the corresponding vertices.

We shall use $S \times n$ to denote the multi-set which is an n-copies of a set S. Note that S may be a multi-set itself. Thus $f: E \to \{0, 1, \dots, mn-1\} \times n$ is an edge-magic labeling of $\mathfrak{C}_m\{\mathfrak{C}_n\}$ if and only if row sums modulo mn and column sums modulo mn of the above matrix are constant, and the problem is reduced to determining whether we can assign $\{0, 1, \dots, mn-1\} \times n$ into entries of m matrices A_i such that row sums modulo mn and column sums modulo mn of the above matrix are constant.

Let S be a multi-set whose elements are numbers. For $m, n \ge 2$, if there is a partition of S containing m classes such that each class has n elements and whose sum in each class is the same, then we call S has an (m, n)-balance partition.

Lemma 3.1: If n is even, then $\{0, 1, \dots, mn-1\}$ has an (m, n)-balance partition. **Proof**: Put $A_{\uparrow} = (0, 1, \dots, m-1)$ and $A_{\downarrow} = (m-1, m-2, \dots, 1, 0)$. Let

$$S_j = \begin{cases} A_{\uparrow} + mj\vec{1} & \text{if } j \text{ is even,} \\ A_{\downarrow} + mj\vec{1} & \text{if } j \text{ is odd,} \end{cases}$$

for $0 \le j \le n-1$, where $\vec{\mathbf{1}} = (1, 1, \dots, 1)$. Construct an $n \times m$ matrix whose rows are S_0, S_1, \dots, S_{n-1} respectively. Then each column of this matrix is a required class.

Lemma 3.2: If m is odd, then $\{0, 1, \dots, m-1\} \times 3$ has an (m, 3)-balance partition.

Proof: Define three row vectors as follows: $A_{\uparrow} = (0, 1, \dots, m-1), B = (b_0, b_1, \dots, b_{n-1})$ and $C = (c_0, c_1, \dots, c_{n-1}),$ where $b_i = i + \frac{m-1}{2}, c_i = m-1-2i,$ $0 \le i \le m-1$, and the arithmetic are taken in $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$. Columns of the $3 \times m$ matrix whose rows are A_{\uparrow} , B and C respectively are the required classes.

Lemma 3.3: If both n and m are odd, then $\{0, 1, \dots, mn-1\}$ has an (m, n)-balance partition.

Proof: From the proof of Lemma 3.1, we get S_0 , S_1 , \cdots , S_{n-4} (omit this process if n=3). Define A_{\uparrow} , B and C as in Lemma 3.2. Let $S_{n-i}=A_i+(n-i)m\vec{1}$, where $1\leq i\leq 3$, $A_3=A_{\uparrow}$, $A_2=B$, $A_1=C$ and $\vec{1}=(1,\ 1,\ \cdots,\ 1)$. Columns of the $n\times m$ -matrix whose rows are S_0 , S_1 , \cdots , S_{n-1} respectively are the required classes.

Theorem 3.4: Suppose $m \geq 3$ and $n \geq 2$. If n is even or both m and n are odd, then $\mathfrak{C}_m\{\mathfrak{C}_n\}$ is edge-magic.

Proof: Use the m classes of $\{0, 1, \dots, mn-1\}$ constructed from Lemma 3.1 or 3.3 to construct m Latin squares with entries in the corresponding classes. Let these Latin squares be A_0, A_1, \dots, A_{m-1} . Substituting into (3.1), we obtain a labeling matrix of $\mathfrak{C}_m\{\mathfrak{C}_n\}$ and an edge-magic labeling of $\mathfrak{C}_m\{\mathfrak{C}_n\}$.

A Latin square is a square matrix in which each row and each column consists of the same set of entries without repetition.²³ A Latin square can be constructed from a group matrix or a submatrix of a group matrix whose rows and columns are named by elements of two cosets. The following definition of group matrix can be found in [24] and [25].

Let $\alpha: G \to S$ be a mapping from a finite group $G = \{g_1 = e, g_2, \dots, g_n\}$ to a set S. A group matrix of G associated with α is an $n \times n$ matrix whose (i, j)-th entry (or (g_i, g_j) -entry) is $\alpha(g_i^{-1}g_j)$. This group matrix is in effect formed by renaming entries of the multiplication table of G under α .

The simplest way to construct a Latin square is by putting $G = \{e = g^0, g^1, \dots, g^{n-1}\}$, obtaining a cyclic Latin square (see [26]).

Example 3.1: Consider $\mathfrak{C}_3\{\mathfrak{C}_6\}$, i.e. m=3 and n=6. We have a matrix

$$\begin{pmatrix} 0 & 1 & 2 \\ 5 & 4 & 3 \\ 6 & 7 & 8 \\ 11 & 10 & 9 \\ 12 & 13 & 14 \\ 17 & 16 & 15 \end{pmatrix}.$$

and three classes {0, 5, 6, 11, 12, 17}, {1, 4, 7, 10, 13, 16}, and {2, 3, 8, 9, 14, 15}. A

labeling matrix for an edge-magic labeling of $\mathfrak{C}_3\{\mathfrak{C}_6\}$ is:

where the first column gives names of rows, and names of columns follow the same order. Note that Latin squares in the above matrix are obtained from a group matrix of the dihedral group $D = \langle x,y | \ x^3 = y^2 = e, \ xyx = y \rangle = \{e, \ x, \ x^2, \ y,yx, \ yx^2\}.$

Example 3.2: Consider $\mathfrak{C}_4\{\mathfrak{C}_4\}$, i.e. m=4 and n=4. We have a matrix

$$\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 \\
7 & 6 & 5 & 4 \\
8 & 9 & 10 & 11 \\
15 & 14 & 13 & 12
\end{array}\right).$$

and four classes $\{0, 7, 8, 15\}$, $\{1, 6, 9, 14\}$, $\{2, 5, 10, 13\}$ and $\{3, 4, 11, 12\}$. A labeling matrix for an edge-magic labeling of $\mathfrak{C}_4\{\mathfrak{C}_4\}$ is:

,	$^{\prime}$ e	*	*	*	*	0	7	8	15	*	*	*	*	3	12	11	4 \	١
- [h	*	*	*	*	15	0	7	8	*	*	*	*	4	3	12	11	1
	h^2	*	*	*	*	8	15	0	7	*	*	*	*	11	4	3	12	
	h^3	*	*	*	*	7	8	15	0	*	*	*	*	12	11	4	3	
	\overline{g}	0	15	8	7	*	*	*	*	1	6	9	14	*	*	*	*	
	gh	7	0	15	8	*	*	*	*	14	1	6	9	*	*	*	*	
	$g \\ gh \\ gh^2$	8	7	0	15	*	*	*	*	9	14	1	6	*	*	*	*	
	qh^3	15	8	7	0	*	*	*	*	6	9	14	1	*	*	*	*	
	$ \begin{array}{c} g^2 \\ g^2 h \\ g^2 h^2 \end{array} $	*	*	*	*	1	14	9	6	*	*	*	*	2	5	10	13	
	g^2h	*	*	*	*	6	1	14	9	*	*	*	*	13	2	5	10	
	g^2h^2	*	*	*	*	9	6	1	14	*	*	*	*	10	13	2	5	
	$a^{2}h^{3}$	*	*	*	*	14	9	6	1	*	*	*	*	5	10	13	2	
	g^3	3	4	11	12	*	*	*	*	2	13	10	5	*	*	*	*	
	g^3h	12	3	4	11	*	*	*	*	5	2	13	10	*	*	*	*	
l	$ \begin{array}{c} g^3 \\ g^3 h \\ g^3 h^2 \end{array} $	11	12	3	4	*	*	*	*	10	5	2	13	*	*	*	*	
1	$\int_{0}^{\infty} g^{3}h^{3}$	4	11	12	3	*	*	*	*	13	10	5	2	*	*	*	* /	/

Example 3.3: Consider $\mathfrak{C}_5\{\mathfrak{C}_3\}$, i.e. m=5 and n=3. We have a matrix

$$\left(\begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 \\ 7 & 8 & 9 & 5 & 6 \\ 14 & 12 & 10 & 13 & 11 \end{array}\right).$$

and five classes $\{0, 7, 14\}$, $\{1, 8, 10\}$, $\{2, 9, 10\}$, $\{3, 5, 13\}$, and $\{4, 6, 11\}$. We may use these classes to construct 5 Latin squares and get a labeling matrix for an edge-magic labeling of $\mathfrak{C}_5\{\mathfrak{C}_3\}$ as in the previous two examples.

When n is odd and m is even, m does not divide $\frac{1}{2}mn(mn-1)$ and $\{0, 1, 2, \dots, mn-1\}$ does not have an (m, n)-balance partition. However, in this case, the existence of an (m, n)-balance partition for $\{0, 1, 2, \dots, mn-1\}$ is not necessary for constructing an edge-magic labeling of $\mathfrak{C}_m\{\mathfrak{C}_n\}$. It suffices to have two types of $\frac{m}{2}$ Latin squares, where row sums and column sums of the same type of Latin squares are all equal.

Let S be a multi-set whose elements are numbers, and $m, n \geq 2$. Suppose there is a partition of S into m classes with n elements in each class. If the sums of elements in $\frac{m}{2}$ of the classes are all equal to one value, and the sums of elements in the remaining classes are all equal to another value, then we call S has an (m, n)-semi-balance partition.

Lemma 3.5: If m is even, then $\{0, 1, \dots, m-1\} \times 3$ has an (m,3)-semi-balance partition.

Proof: Let $A_{\uparrow} = (a_0, \ a_1, \ \cdots, \ a_{m-1}) = (0, \ 1, \ \cdots, \ m-1)$. Put $D = (d_0, \ d_1, \ \cdots, \ d_{m-1})$, with $d_{2i} = m-1-i$ and $d_{2i+1} = \frac{m}{2}-1-i$ for $0 \le i \le \frac{m}{2}-1$. We have $\{d_0, \ d_1, \ \cdots, \ d_{m-1}\} = \{0, \ 1, \ \cdots, \ m-1\}$. Since $a_{2i} + 2d_{2i} = 2(m-1)$ and $a_{2i+1} + 2d_{2i+1} = m-1$, the required classes are the columns of the $3 \times m$ matrix whose rows are A_{\uparrow} , D and D.

Lemma 3.6: If n is odd and m is even, then $\{0, 1, \dots, mn-1\}$ has an (m, n)-semi-balance partition.

Proof: From the proof of Lemma 3.1, we get S_0 , S_1 , \cdots , S_{n-4} (omit this process if n=3). Let A_{\uparrow} and D be defined as in Lemma 3.5. Let $S_{n-3}=A_{\uparrow}+(n-3)m\vec{1}$, $S_{n-2}=D+(n-2)m\vec{1}$ and $S_{n-1}=D+(n-1)m\vec{1}$. Construct an $n\times m$ matrix whose rows are S_0 , S_1 , \cdots , S_{n-1} respectively. Then columns of this matrix are the required classes.

Theorem 3.7: Suppose $m \geq 3$ and $n \geq 2$. If n is odd and m is even, then $\mathfrak{C}_m\{\mathfrak{C}_n\}$ is edge-magic.

Proof: Suppose X is the matrix constructed from Lemma 3.6. Let A_j be a Latin squares with entries of the j-th column of X. Substituting A_j into (3.1), we obtain a labeling

The following main result of this paper follows from Theorems 3.4 and 3.7.

Theorem 3.8: If $m, n \ge 2$ and $(m, n) \ne (2, 2)$, then $C_m \circ N_n$ is edge-magic.

We conclude this paper with the following:

Example 3.4: Consider $\mathfrak{C}_4\{\mathfrak{C}_3\}$, i.e. m=4 and n=3. We have a matrix

$$\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
7 & 5 & 6 & 4 \\
11 & 9 & 10 & 8
\end{array}\right).$$

and four classes $\{0, 7, 11\}$, $\{1, 5, 9\}$, $\{2, 6, 10\}$, and $\{3, 4, 8\}$. An edge-magic labeling of $\mathfrak{C}_4\{\mathfrak{C}_3\}$ is represented by:

$$\begin{pmatrix} e & * & * & * & * & 0 & 7 & 11 & * & * & * & 3 & 8 & 4 \\ h & * & * & * & 11 & 0 & 7 & * & * & * & 4 & 3 & 8 \\ h^2 & * & * & * & * & 7 & 11 & 0 & * & * & * & 8 & 4 & 3 \\ \hline g & 0 & 11 & 7 & * & * & * & 1 & 5 & 9 & * & * & * \\ gh & 7 & 0 & 11 & * & * & * & 9 & 1 & 5 & * & * & * \\ gh^2 & 11 & 7 & 0 & * & * & * & 5 & 9 & 1 & * & * & * \\ \hline g^2 & * & * & * & 1 & 9 & 5 & * & * & * & 2 & 6 & 10 \\ g^2h & * & * & * & 5 & 1 & 9 & * & * & * & 10 & 2 & 6 \\ g^2h^2 & * & * & * & 9 & 5 & 1 & * & * & * & 6 & 10 & 2 \\ \hline g^3 & 3 & 4 & 8 & * & * & * & 2 & 10 & 6 & * & * & * \\ g^3h & 8 & 3 & 4 & * & * & * & 6 & 2 & 10 & * & * & * \\ g^3h^2 & 4 & 8 & 3 & * & * & * & 10 & 6 & 2 & * & * & * \end{pmatrix}$$

References

- Sin-Min Lee, Eric Seah and S. K. Tan, On edge-magic graphs, Congressus Numerantium, 86, 179-191, 1992.
- [2] J. Sedláček, Some properties of interchange graphs, Theory of Graph Appl., Proc. Symposium, Smolence 1963, 145-150, 1964.
- [3] J. Sedláček, On magic graphs, Math. Slov., 26, 329-335, 1976.
- [4] M. Doob, On the construction of magic graphs, Proceedings of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing, 361-374, 1974.
- [5] M. Doob, Generalization of magic graphs, Journal of Combinatorial Theory, Series B, 17, 205-217, 1974.

- [6] R. H. Jeurissen, Pseudo magic graphs, Discrete Math., 43, 207-214, 1983.
- [7] Sin-Min Lee, F. Saba and G. C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium, 92, 177-184, 1993.
- [8] Sheng-Ping Lo, On edge-graceful labelings of graphs, Congressus Numerantium, 50, 231-241, 1985.
- [9] I. Q. Kuang, Sin-Min Lee, J. Mitchem and A.G. Wang, On edge-graceful unicyclic graphs, Congressus Numerantium, 61, 65-74, 1988.
- [10] Li-Min Lee, Sin-Min Lee and G. Murty, On edge-graceful labeling of complete graphs solutions of Lo's conjecture, *Congressus Numerantium*, **62**, 225-233, 1988.
- [11] Sin-Min Lee, A conjecture on edge-graceful trees, Scientia, 3, 45-57, 1989.
- [12] Sin-Min Lee and E. Seah, On edge-gracefulness of k-th power cycles, Congressus Numerantium, 71, 237-242, 1990.
- [13] Sin-Min Lee and E. Seah, Edge-graceful labelings of regular complete k-partite graphs, Congressus Numerantium, 75, 41-50, 1990.
- [14] Sin-Min Lee and E. Seah, On edge-gracefulness of the composition of step graphs with null graphs, *Combinatorics*, *Algorithms*, and *Applications in Society of Industrial and Applied Mathematics*, 326-330, 1991.
- [15] Sin-Min Lee and E. Seah, On edge-graceful (n, kn)-multigraphs conjecture, Journal of Combinatorial Mathematics and Combinatorial Computing, 9, 141-147, 1991.
- [16] Sin-Min Lee, E. Seah and S. P. Lo, On edge-graceful 2-regular graphs, *Journal of Combinatorial Mathematics and Combinatorial Computing*, **12**, 109-117, 1992.
- [17] Sin-Min Lee, E. Seah and P. C. Wang, On edge-gracefulness of k-th power graphs,

 Bulletin of the Institute of Mathematics Academia
- [18] D. Small, Regular (even) spider graphs are edge-graceful, Congressus Numerantium, 74, 247-254, 1990.
- [19] Y. S. Ho, Sin-Min Lee, and S. K. Tan, On edge-magic indices of one-point union of complete graphs, to appear.
- [20] Sin-Min Lee, W. M. Pigg and T. J. Cox, On edge-magic cubic graphs conjecture, Congressus Numerantium, 105, 214-222, 1994.

- [21] W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., Dover, 1987.
- [22] W. H. Benson and O. Jacoby, New Recreations with Magic Squares, Dover, 1976.
- [23] V. Bryant, Aspects of Combinatorics, Cambridge, 1993.
- [24] R. Chalkley, Information about group matrices, *Linear Algebra and Its Applications*, **38**, 121-133, 1981.
- [25] K. Wang, Resultant and group matrices, Linear Algebra and Its Applications, 33, 111-122, 1980.
- [26] W. C. Shiu, S. L. Ma and K. T. Fang, On the Rank of Cyclic Latin Squares, Linear and Multilinear Algebra, 40, 183-188, 1995.