

Enriching Network Security Analysis with Time Travel

Gregor Maier gregor.maier@tu-berlin.de TU Berlin / DT Labs

Robin Sommer ISCI / LBNL

Holger Dreger Siemens AG, CT

Anja Feldmann TU Berlin / DT Labs

Vern Paxson ICSI / UC Berkeley

Fabian Schneider
TU Berlin / DT Labs

SIGCOMM 08

-

Enriching Network Security Analysis with Time Travel: Motivation

Motivation

- Goal:
 - Enable analysis of network activity that becomes interesting in retrospect
- How:
 - o Archive raw network packet data
 - o Full packets, not aggregation
- Problem:
 - Wholesale recording not feasible using commodity hardware
 - o Gigabit Networks ⇒ several TB / day

Motivation: Why?

- □ Network Intrusion Detection System (NIDS):
 - O Suspicious activity ⇒
 Also analyze offender's traffic from past in-depth
 - o Without archive: traffic is gone
- □ Forensics:
 - o E.g., break-in happened days ago: How? Who?

SIGCOMM 08

^

Enriching Network Security Analysis with Time Travel: Motivation

Motivation: Proposal

- Common practice at Lawrence Berkeley National Laboratory (LBNL):
 Bulk recording (tcpdump)
 - o Omits key services (HTTP, FTP, etc.)
 - o Manual analysis of traces after incident
- Our solution:
 - "Time Machine" (TM) for "Time Travel"
 - Design driven by continuous feedback and live deployments, e.g., at LBNL

Outline

- □ Time Machine Design
- Performance Evaluation
- Coupling TM with Network Intrusion Detection System (NIDS)
- Conclusion

SIGCOMM 08

5

Enriching Network Security Analysis with Time Travel: TM Design

Time Machine Design

Key Insight: Heavy-Tails

- Minority of connections carry most of volume
 - o Bulk data transfer (Video, Audio, etc.)
- Majority of connections is small
 - o 91% of connections < 10 KB
 - o 94% of connections < 20 KB
- Relevant/interesting data mostly at beginning
 - o Application protocol headers
 - o Handshakes

[1] PAXSON, V., AND FLOYD, S. Wide-Area Traffic: The Failure of Poisson Modeling. *IEEE/ACM Transactions on Networking* 3, 3 (1995).

SIGCOMM 08

7

Enriching Network Security Analysis with Time Travel: TM Design

TM: exploits Heavy-Tails

Cutoff heuristic:

Only store the first **N** bytes per connection

- ⇒ record most connections entirely
- ⇒ record beginning of remainder of conns, 90% reduction in volume
- Observation:
 - o After 10--20KB mostly bulk data
- Evasion risk (future work)

TM Design

- Capture operation
 - o Captures packets from network tap
 - Checks per connection cutoff and determines storage class
 - o Updates packet indexes
- Query operation
 - o Index lookup
 - o Packet retrieval
- Storage management and bookkeeping
 - o Memory and disk buffer and indexes

SIGCOMM 08

^

Enriching Network Security Analysis with Time Travel: TM Design

Experiences → Design

- Multi-threaded design
- Most queries triggered by NIDS
 - >Automated query interface
 - Feed historic data back to NIDS for analysis
- □ Some traffic more important than other
 - ➤ Multiple storage/traffic classes
 - Tune parameters dynamically via NIDS

Performance Evaluation

SIGCOMM 08

11

Enriching Network Security Analysis with Time Travel: Perf. Evaluation

Setup

- LBNL: Lawrence Berkeley National Laboratory
 - o 10 Gbps uplink, 1-2 TB/day
 - o 15 KB cutoff, 150 MB mem buffer, 500 GB disk buffer
 - o Two dual-core Intel Pentium D, 3.7 GHz, Neterion NIC
- MWN: Munich Scientific Network
 - o Two major universities + research institutes
 - o 10 Gbps uplink, 3-6 TB/day
 - 1 Gbps monitoring port
 - o 15 KB cutoff, 750 MB mem buffer, 2.1 TB disk buffer
 - o Dual AMD-Opteron 1.8GHz, 4 GB RAM, Endace NIC

Enriching Network Security Analysis with Time Travel: Coupling TM + NIDS

Coupling TM with a Network Intrusion Detection System (NIDS)

Setup

- □ NIDS: Open-source Bro
- □ Deployed at LBNL (10 Gbps site) for months
 - o 15KB cutoff, 150 MB mem buffer, 500GB disk buffer

SIGCOMM 08

1 =

Enriching Network Security Analysis with Time Travel: Coupling TM + NIDS

Improved Forensics Support

- NIDS: changes TM's parameters dynamically
- Example:
 - o For every NIDS reported incident:Change to more conservative storage class
 - Scanners: 50KB cutoff, 75MB mem, 50GB disk
 - Alarms: no cutoff, 75MB mem, 50GB disk
 - o Results: total of 12,532 IPs in scanners, 592 in alarms

Improved Forensics Support

- NIDS: Preserves incident related data
 - o Stores in separate file
 - o Not subject to TM's eviction
- Example:
 - o Every major non-scan incident (alarm)
 - Store connection's packets on disk
 - Store packets of offending host (last hour)
 - TCP: NIDS reassembles application stream

SIGCOMM 08

17

Enriching Network Security Analysis with Time Travel: Coupling TM + NID

Retrospective Analysis

- NIDS: analyses traffic from past
- Addresses resource/analysis trade-offs
- □ Broadens analysis context
 - Suspicious activity⇒ more expensive, in-depth analysis
- Example: HTTP
 - o Only analyze requests
 - o Suspicious request: retrieve reply from TM
 - o 1% retrieved, CPU util: $40\% \rightarrow 27\%$

Conclusion

SIGCOMM 08

10

Enriching Network Security Analysis with Time Travel: Conclusion

Conclusion

- We build and evaluated efficient Time Machine
 - Commodity hardware for gigabit environments
 - Used operationally
- □ Cutoff heuristic: keep first x KB of every connection
 - o Reduce volume typically by more than 90%
 - o Retain days / weeks of full payload traces on disk
 - o Retain minutes in memory
- Coupled Time Machine with NIDS
 - o Improved forensic support
 - o Automatic queries for deeper inspection

Future Work

- Mitigate evasion risk
 - O Use randomized cutoff
 - o Keep some packets even after cutoff hit
 - o Use NIDS to disable cutoff
- Cutoff processing in hardware
 - o e.g., NetFPGA (Shunt)
- Aggregation instead of direct eviction

SIGCOMM 08

21

Enriching Network Security Analysis with Time Travel

Questions?

Get your own Time Machine: http://www.net.t-labs.tu-berlin.de/research/tm

BACKUP SLIDES

SIGCOMM 08

23

