142.351, 260032: Statistische Methoden der Datenanalyse

W. Waltenberger, R. Frühwirth

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften A-1050 Wien, Nikolsdorfer Gasse 18

Wintersemester 2018/2019

Übung 1

Fällig bis: 9. November 2018

Beispiel 1.1

A und B seien zwei Ereignisse mit W(A)=3/4, W(B)=2/3. Wie groß muß $W(A\cap B)$ mindestens sein? Wie groß ist $W(A\cap B)$ unter der Annahme der Unabhängigkeit von A und B? Berechnen Sie für diesen Fall die Wahrscheinlichkeiten der folgenden Ereignisse:

- a) Keines der beiden Ereignisse tritt ein
- b) Genau eines der beiden Ereignisse tritt ein
- c) Beide Ereignisse treten ein
- d) Mindestens eines der beiden Ereignisse tritt ein
- e) Höchstens eines der beiden Ereignisse tritt ein

Beispiel 1.2

Beim Bau eines Gerätes werden 5 Widerstände und 4 Kondensatoren verwendet. Die Fehlerwahrscheinlichkeit der Widerstände sei 2%, die der Kondensatoren 3%. Berechnen Sie unter geeigneten Unabhängigkeitsannahmen die Wahrscheinlichkeit, dass mindestens zwei Bauteile fehlerhaft sind.

Beispiel 1.3

Ein Experiment verwendet ein große Zahl von ICs. Es bezieht diese von drei verschiedenen Herstellern A, B und C, und zwar von A und B je 25%, und von C 50%. Die Wahrscheinlichkeit, dass ein IC mindestens 40000 Stunden fehlerfrei arbeitet, beträgt für die drei Hersteller 0.92, 0.95 und 0.97.

- a) Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter IC mindestens 40000 Stunden arbeitet?
- b) Ein IC fällt vor Ablauf der 40000 Stunden aus. Mit welcher Wahrscheinlichkeit stammt er von A, B oder C?

Beispiel 1.4

Sie werfen eine symmetrische Münze 2n mal. Wie groß ist die Wahrscheinlichkeit, genau n mal "Kopf" zu werfen? Wie verhält sich die Wahrscheinlichkeit für große n?

Beispiel 1.5

Verpflichtend nur für Studierende der TU!

Sie wiederholen ein Bernoulli-Experiment n mal und beobachten k Erfolge. Berechnen Sie die a-posteriori-Dichte g(p|k) der Erfolgswahrscheinlichkeit p mit der a-priori-Dichte

$$f(p) \propto \frac{1}{p(1-p)}$$

- a) Unter welchen Voraussetzungen ist g(p|k) integrierbar?
- b) Wie lautet in diesem Fall der Bayes-Schätzer von p, und wie groß ist die a-posteriori-Varianz?

Beispiel 1.6 (Prog)

Sie wiederholen ein Bernoulli-Experiment n=1000 mal und beobachten k=343 Erfolge. Berechnen Sie die a-posteriori-Dichte g(p|k) mit den folgenden a-priori-Dichten:

- a) $f(p) \propto p^2 (1-p)^3$
- b) $f(p) \propto \sin^2(\pi p)$

Stellen Sie die a-posteriori-Dichten graphisch dar. Geben Sie in beiden Fällen den Bayes-Schätzer und die a-posteriori-Varianz von p an.