

Nombre de la práctica	DISEÑO ALGORÍTMICO (UNIDAD 1)		No.	1	
Asignatura:	FUNDAMENTOS DE PROGRAMACIÓN	Carrera:	INGENIERÍA EN SISTEMAS COMPUTACIONALES	Duración de la práctica (Hrs)	5 horas

NOMBRE DEL ALUMNO: Gabriela de Jesús Rueda

GRUPO: 3101.

I. Competencia(s) específica(s):

Comprende y aplica los conceptos básicos, nomenclatura y herramientas para el diseño de algoritmos orientado a la resolución de problemas.

Encuadre con CACEI: Registra el (los) atributo(s) de egreso y los criterios de desempeño que se evaluarán en esta práctica.

No. atributo	Atributos de egreso del PE que impactan en la asignatura	No. Criterio	Criterios de desempeño	No. Indicador	Indicadores
		CD1	Identifica problemas	11	Análisis de problemas y/o necesidades
El estudiante identificará		relacionados con aplicación de la ingeniería	12	Empleo herramientas para el análisis	
1	los principios de las	CD2	Propone alternativas de	11	Diseño algorítmico
	ciencias básicas para la resolución de problemas prácticos de ingeniería		solución	13	Modelado de programas
				14	Uso de metodologías
		CD3	Analiza y comprueba los	11	Comprobación de resultados
			resultados generados	12	Toma de decisiones
3	El estudiante plantea soluciones basadas en tecnologías empleando su	CD1	Emplea los conocimientos adquiridos para el desarrollar soluciones	11	Elección de metodologías, técnicas y/o herramientas para el desarrollo de soluciones
juicio ingenieril para valorar necesidades.		soluciones	12	Uso de metodologías adecuadas para el desarrollo de proyectos	
	recursos y resultados			13	Generación de productos y/o proyectos
	esperados.		Analiza y comprueba resultados	11	Realizar pruebas a los productos obtenidos
				12	Documentar información de las pruebas realizadas y los resultados

II. Lugar de realización de la práctica (laboratorio, taller, aula u otro):

Equipo de cómputo personal.

III. Material empleado:

- Equipo de cómputo personal.
- DFD para diagramas de flujo.
- Word.

IV. Desarrollo de la práctica:

GOBIERNO DEL ESTADO DE MÉXICO

MANUAL DE PRACTICAS

UNIDAD 1

EJERCICIO 1:

A) Descripción del problema:

1-13.-Solicita tres valores desde teclado, evalúa quien de ellos es el mayor y menor e imprímelos en orden descendente:

B) Pseudocódigo:

```
Algoritmo valor_mas_grande
               Definir n1, n2, n3 Como Entero
               Imprimir "Ingrese el primer número: "
               Leer n1
               Imprimir "Ingrese el segundo número: "
               Leer n2
               Imprimir "Ingrese el tercer número: "
               Leer n3
               Si n1 == n2 Entonces
                      si n2 == n3 Entonces
                              Imprimir n1, "/ ", n2, "/ ", n3
                      SiNo
                              si n1 > n3 Entonces
                                     Imprimir n1, "/ ", n2 ,"/ ", n3
                              SiNo
                                     Imprimir n3,'/',n1,'/',n2
                              FinSi
                      FinSi
               SiNo
                      si n1 > n2 Entonces
                              si n1 > n3 Entonces
                                     si n2 > n3 Entonces
                                             Imprimir n1, '/', n2, '/', n3
                                     SiNo
                                             Imprimir n1,'/', n3, '/', n2
                                     FinSi
                              SiNo
                                     Imprimir n3, '/', n1, '/', n2
                              FinSi
                      SiNo
                              si n2 > n3 Entonces
                                     si n1 > n3 Entonces
                                             Imprimir n2, '/', n1, '/', n3
```


SiNo

Imprimir n2, '/', n3, '/', n1

FinSi

SiNo

Imprimir n3, '/', n2,'/', n1

FinSi

FinSi

FinSi

FinAlgoritmo

C) Diagrama de Flujo:

D) Prueba de Escritorio:

Entrada	Proceso	Salida
 Sabemos que tenemos 	 Las pruebas que 	 Nos podrá mostrar
que solicitar tres	tendríamos son:	distintos resultados, el

números, que se guardarán en las variables en x,y,z.	1. X= 5 Y=5 Z=5	primero es que todos los valores son iguales.
 Estos números pueden ser o todos desiguales o similares. 	2. X=7 Y=5 Z=3	 El segundo es que uno de los tres es mayor que los otros evaluando una condición
	Y se jugara con las posiciones de este ultimo ejemplo.	

EJERCICIO 2:

A) Descripción del problema:

1-16.- Nadando con delfines es una atracción de Six Flags México, que tiene un costo de \$1800.00 adulto y \$1200.00 niño, si es adulto mayor se descuenta el 40%, si el promedio del niño de su último ciclo escolar es 9 o más le hacen un descuento del 50% y le regalan una foto abrazando una foca.

B) Pseudocódigo:

```
Algoritmo foca y sixFlax
       Definir e,p,pf Como Real
              pa = 1800
              pn = 1200
              Imprimir 'Podrias colocar tu edad por favor'
              Leer e
              si e \ge 6 y e \ge 0 Entonces
                     Imprimir '¿Podria ingresar tu promedio'
                     Leer p
                     si p >= 9 Entonces
                            sip >= 9
                                   pf = (pn / 2)
                                   Imprimir 'Excelente, ahora tiene un 50% de descuento, por lo
tanto solo paga $ ', pf
                            SiNo
                                   Imprimir 'Usted debe pagar $', pn
                            FinSi
                     SiNo
                            si e > 23 y e <=59 Entonces
                                   Imprimir 'Usted tiene que pagar $ ', pa
                            SiNo
                                   si e >= 60 Entonces
```


pf=(pa*60)/100 Imprimir 'Su descucento es de 60%, entonces debe pagar

\$', pf

FinSi

FinSi

FinSi

SiNo

Imprimir 'Usted debe pagar \$', pn

FinSi

FinAlgoritmo

C) Diagrama de Flujo:

D) Prueba de Escritorio

Entrada	Proceso	Salida
 Necesitaremos saber si: Es niño. Es adulto. 	 Si 12 >= 6(es la edad promedio de un estudiante). 	Para el primer caso el resultado serio hacer un descuento de 50% en caso

Es adulto mayor.

y en caso que sea niño saber su promedio.

p

• Si 9.5 >= 9

En caso que tenga una edad mayor será:

• Si 26>=23

R= \$1800

Otro caso sería:

• Si 65>= 60 R= (1800*.40)

 $R = (1800^{\circ}.40^{\circ})$ = 1800 - R que sean estudiantes promedio.

 Solo pagara 600 y la foto con una foca.

En el caso dos, se evalúa si es mayor de edad o es adulto mayor y los resultados que podremos obtener serian:

- Debera pagar los 1800.
- Pagara 1080 debido al 40%.

EJERCICIO 3:

A) Descripción del problema:

1-19.- Realice un algoritmo que permita determinar el sueldo semanal de un trabajador con base en las horas trabajadas y el pago por hora, considerando que a partir de la hora número 41 y hasta la 45, cada hora se le paga el doble, de la hora 46 a la 50, el triple, y que trabajar más de 50 horas no está permitido.

B) Pseudocódigo

```
Algoritmo salarios_de_trabajadores
```

Definir h, p, pf, hd, ht Como Entero

Imprimir 'Podría ingresar la cantidad de horas que usted a trabajado en la semana'

Leer h Imprimir '¿Cuál es el precio por hora, de tu trabajo?'

Leer p

pf = h * p

si h >= 0 & h < 41 Entonces

Imprimir 'El pago que tienes que recibir es de \$', pf, ' pesos.'

SiNo

si h >= 41 & h <= 45 Entonces hd = h - 40;pf = (40 * p) + (hd * 2 * p)

Imprimir 'Por laborar más horas se le pagará el doble, por lo que se le dará:

\$', pf, ' pesos.'

SiNo

si h >=46 & h <=50 Entonces

hd = 5

ht = h-45

pf = (p * 40) + (hd * 2 * p) + (ht * 3 * p)

Imprimir 'Ah conseguid un aumento del tiple, entoces se le va a

pagar: \$', pf , ' pesos.'

SiNo

Imprimir 'No, no es posible laborar más de 50 horas a la semana. '

FinSi

FinSi

FinSi

FinAlgoritmo

C) Diagrama de Flujo

1 deba de Escritorio				
Entrada	Proceso	Salida		
Tendremos que se pueden trabajar: De 41 a 45 paga el doble De 46 a 50 paga el triple Mas de 50 horas no se pueden trabajar	 h= horas p=pago d1= h pf= 5 * 15 caso 2: pf + (h * .(caso que se de dentro del porcentaje obtenido) 	Se darán tres posibles resultados: 1. 75 2. (del primer porcentaje) 75* 2 = 150 3. (del segundo porcentaje) 75*3=225 4. (del tercer porcentaje) NO es posible trabajar mas de 50 horas.		

GOBIERNO DEL ESTADO DE MÉXICO

MANUAL DE PRACTICAS

EJERCICIO 4:

A) Descripción del problema:

costo total es de:\$',t

1-22.- Un videoclub ofrece la promoción de llevarse 3 películas por el precio de las 2 más baratas. Haga un algoritmo que dados los tres precios determine la cantidad a pagar.

B) Pseudocódigo

```
Algoritmo peliculas_y_precios
       Definir p1 Como Entero
       Mostrar '¿Cual es el costo de la pelicula 1?'
       Leer p1
       Definir p2 Como Entero
       Mostrar '¿Cual es el costo de la pelicula 2? '
       Leer p2
       Definir p3 Como Entero
       Mostrar '¿Cual es el costo de la pelicula 3? '
       Leer p3
       SI p1=p2 Entonces
              Si P1=P3 Entonces
                     Mostrar 'Las pelliculas tienen el mismo precio usted debe pagar:$', t
              SiNo
                     Si p1>p3 Entonces
                            t=p1+p3
                            Mostrar 'Las peliculas de menor precio son ', p1 , 'Y' , p3 ,'entonces su
costo total es de:$', t
                     SiNo
                           t=p1+p2
                            Mostrar 'Las peliculas de menor precio son ', p1 ,'Y' , p2 , ' entonces su
costo total es de:$', t
                     Fin Si
              Fin Si
       SiNo
              Si p1>p2 Entonces
                     Si p1>p3 Entonces
                           t=p2+p3
                            Mostrar 'Las peliculas de menor precio son ', p2 ,' Y ', p3 ,' entonces su
costo total es de:$',t
                     SiNo
                           t=p1+p2
                            Mostrar 'Las peliculas de menor precio son ', p1 ,' Y ', p2 ,' entonces su
```


Fin Si

SiNo

Si p2>p3 Entonces

t=p1+p3

Mostrar 'Las peliculas de menor precio son ', p1 ,' Y ', p3 ,' entonces su

costo total es de:\$',t

SiNo

t=p1+p2

Mostrar 'Las peliculas de menor precio son ', p1 ,' Y ', p2 ,' entonces su

costo total es de:\$',t

Fin Si

Fin Si

FinSi

FinAlgoritmo

C) Diagrama de Flujo:

D) Prueba de Escritorio

Entrada	Proceso	Salida
Debemos obtener:	Tenemos distintos caminos a	Sustituimos casos:
• P1	tomar, los cuales serian:	• R= 7+6
• P2	• P1>p2	• R=13
• P3	P1>p3	Y se iran cambiando
Les daremos a p1=9, a p2=6 y a	P2 <p3< td=""><td>dependiendo de los valores que</td></p3<>	dependiendo de los valores que
p3=7	Entonces R=P3+p2	tengamos.

EJERCICIO 5:

A) Descripción del problema:

1-25.- Elabora un algoritmo que te pida usuario y contraseña, si ambos son correctos ingresas al sistema, si el usuario es incorrecto muestra la leyenda "captura nuevamente tu usuario" y si la contraseña es incorrecta manda el mensaje "usuario o contraseña incorrectos"

B) Pseudocódigo:

```
Algoritmo usuario_y_contraseña
             Definir usuario, contraseña, u, c Como Caracter
             usuario = "gabyy"
             contraseña = "1"
             Imprimir 'Bienvenido podría ser tan amable de ingresar su Usuario:'
             Leer u
             Imprimir 'Podria digitar su Contraseña'
             Leer c
             si u == usuario Entonces
                    si contraseña == c
                           Imprimir 'Bienvenido al Sistema'
                    SiNo
                           Imprimir 'Su usuario o contraseña es incorrecto'
                    FinSi
             SiNo
                    Imprimir 'Podria ser tan amable de capturar nuevamente tu usuario'
             FinSi
```

FinAlgoritmo

C) Diagrama de Flujo:

D) Prueba de Escritorio

Entrada	Proceso	Salida
Se va a solicitar en usuario ya establecido:	Si 'usuario' = gabyy	 Opción1: Usted esta dentro del
GabyyY la contraseña ya establecida:1234	Si 'contraseña'= 1234	sistema. Opcion2: Error en la contraseña o en el usuario. Opcion3. Su usuario es incorrecto.

GOBIERNO DEL ESTADO DE MÉXICO

MANUAL DE PRÁCTICAS

V. Conclusiones:

De la actividad aprendí que al hacer diagramas de flujo es necesario saber la lógica de cada problema, que muchas veces, aunque el problema este bien planteado lo que va a suceder es que no vamos a lograr un buen resultado si los datos que tenemos y el proceso que estamos realizando no tiene un orden cronológico. Cuando tenemos por fin una idea de cómo realizar el diagrama y no declaramos bien las condiciones entonces no se cumplirá con lo esperado del diagrama.

Mientras tanto cuando tenemos una buena lógica y primero se lee y se designan las variables es más sencillo, pues después de determinar que datos tenemos y que datos queremos se va creando una relación y el proceso solo seria ir desarrollando las operaciones necesarias que se van a hacer.

En mi caso encontré dificultades cuando en el espacio de los diagramas de flujo no encontraba la lógica para crear una condición y como es que se va desglosando, y así encontrar diferentes opciones para realizar un diagrama e ir encontrando la mas adecuada para nuestras necesidades y ante mi punto de vista el mas sencillo.

Y aprendiendo del tema es que un pseudocódigo es un análisis completo donde se encuentra compactado el diagrama de flujo.