

Felipe Figueiredo

de dados numéricos

Aprofundamen

Variabilidade

Incertezas de dados numéricos

Felipe Figueiredo

Sumário

Variabilidade

Felipe Figueiredo

de dados numéricos

Aprofundamen

- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- Aprofundamento
 - Aprofundamento

Discussão da aula passada

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Aprofundamento

Discussão da leitura obrigatória da aula passada

Feline

HHS Public Access

Author manuscript

Clin Neurophysiol. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:

Clin Neurophysiol. 2015 September; 126(9): 1790-1796. doi:10.1016/j.clinph.2014.11.017.

Inter-session reliability of electrical impedance myography in children in a clinical trial setting

Tom R. Geisbush, BA¹, Nicole Visyak, BA², Lavanya Madabusi, BA², Seward B. Rutkove, MD¹, and Basil T. Darras, MD²

¹Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

²Department of Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

Felipe Figueiredo

Variabilidado

Abstract

Objective—High reliability is a prerequisite for any test to be useful as a biomarker in a clinical trial. Here we assessed the reproducibility of electrical impedance myography (EIM) in children by comparing data obtained by different evaluators on separate days.

Methods—Healthy boys and boys with Duchenne muscular dystrophy (DMD) aged 2-14 years underwent EIM of multiple muscles performed by two evaluators on two visits separated by 3-7 days. Single and multifrequency data were analyzed. Reliability was assessed via calculation of the percent relative standard deviation (% RSD), Bland-Altman analysis, and the intraclass correlation coefficient (ICC).

Desvio padrão?

RESULTS

Subjects

A total of 22 healthy boys and 14 boys with DMD and underwent repeated measurements 3 - 7 days after the first measurement. The age ranges for the DMD and healthy groups were 2.2 - 13.2 and 2.1 - 12.4 years, respectively. The mean age \pm the standard deviations were 7.7 \pm 3.0 for the DMD group and 7.1 \pm 3.2 for the healthy group.

A idade média \pm desvio padrão do grupo DMD é 7.7 \pm 3.0.

- O que significa este 3.0?
- Como estas descrições se comparam com as do grupo controle?
- Os grupos têm medidas médias diferentes?
- Os grupos têm variabilidades diferentes?
- Que outras informações você precisa para responder?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com

Média e a mediana Quantificando com percentis

Quantificando com variância e DP

terpretação do DF

Aprofundamento

Felipe Figueiredo

Variabilidade de dados numéricos

- Medidas sumárias resumem a informação contida nos dados em um pequeno conjunto de números.
- Medidas sumárias de populações se chamam parâmetros, e são
- Medidas sumárias de amostras se chamam estatísticas e são
- Geralmente trabalhamos com estatísticas descritivas.

Medidas Sumárias

 Medidas sumárias resumem a informação contida nos dados em um pequeno conjunto de números

- Medidas sumárias de populações se chamam parâmetros, e são representadas por letras gregas (μ, σ², σ, etc).
- Medidas sumárias de amostras se chamam estatísticas e são representadas por letras comuns (x̄, s², s, etc).
- Geralmente trabalhamos com estatísticas descritivas.

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com

Média e a mediana Quantificando com percentis

variância e DP N ou N-1?

Interpretação do DF

Aprofundament

Medidas Sumárias

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Medidas sumárias resumem a informação contida nos dados em

- Medidas sumárias de populações se chamam parâmetros, e são representadas por letras gregas (μ , σ^2 , σ , etc).
- Medidas sumárias de amostras se chamam estatísticas e são representadas por letras comuns $(\bar{x}, s^2, s, \text{ etc})$.
- Geralmente trabalhamos com estatísticas descritivas.

Medidas sumárias resumem a informação contida nos dados em

 Medidas sumárias de populações se chamam parâmetros, e são representadas por letras gregas (μ, σ², σ, etc).

 Medidas sumárias de amostras se chamam estatísticas e são representadas por letras comuns (x̄, s², s, etc).

Geralmente trabalhamos com estatísticas descritivas.

um pequeno conjunto de números.

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

variância e DP N ou N-1?

Interpretação do DI

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

Quantificando con percentis Quantificando con

N ou N-1?

Interpretação do D

Aprofundament

Tipos de medidas sumárias

Os dois principais tipos de medidas sumárias utilizadas na literatura são:

- Medidas de Tendência Central
- Medidas de Variabilidade (ou Dispersão)

Veremos hoje ambas, com foco na Variabilidade

Sumário

- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- - Aprofundamento

Variabilidade

Felipe Figueiredo

Fontes de Variabilidade

Figura: Variabilidade da medição de uma esfera metálica de 1000g. Balança A, "imprecisão" de 50g, balança B, "imprecisão" de 100g (Fonte: Reis, Reis, 2002)

Felipe Figueiredo

Fontes de Variabilidade

Média e a mediana percentis

Felipe Figueiredo

Fontes de Variabilidade

- Imprecisão ou erro experimental
- Variabilidade biológica
- "Mancadas" experimentais

Conceito de Erro na Estatística

No contexto acadêmico, **erro** não tem o mesmo significado do cotidiano.

Erro se refere a todas as fontes de variabilidade acima.

Outro nome comum é dispersão (scatter).

Sumário

Variabilidade de dados numéricos

- Fontes de Variabilidade
- Visualizando a variabilidade com histogramas
- Média e a mediana
- Quantificando com percentis
- Quantificando com variância e DP
- N ou N-1?
- Interpretação do DP
- 2 Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

percentis
Quantificando con

l ou N-1?

Interpretação do DP

Aprofundamen

Felipe Figueiredo

Visualizando a variabilidade com

histogramas

Exemplo

100 estudantes de [insira aqui um curso da área da saúde] trabalharam em pares, e mediram a pressão sistólica de seu parceiro(a). Ao final do exercício, a turma obteve 100 valores de pressão sistólica.

Pergunta

Como "entender" essa listagem de 100 números?

Quantas barras?

Variabilidade

Felipe Figueiredo

Visualizando a variabilidade com histogramas

Média e a mediana percentis

variância e DP

Sumário

Variabilidade de dados numéricos

- Fontes de Variabilidade
- Visualizando a variabilidade com histogramas
- Média e a mediana
- Quantificando com percentis
- Quantificando com variância e DP
- N ou N-1?
- Interpretação do DP

Aprofundamento

Aprofundamento

Variabilidade

Felipe Figueiredo

de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana

Quantificando com percentis

> variancia e DP N ou N-1?

nterpretação do DP

Aprofundament

Felipe Figueiredo

de dados numéricos

> Fontes de Variabilidade Visualizando a variabilidade con

Média e a mediana

Quantificando co percentis

variância e DP N ou N-1?

Interpretação do D

Aprofundament

Exemplo 1

Foram observados os seguintes níveis de colesterol de uma amostra de pacientes. Qual é o nível médio de colesterol nestes pacientes?

<i>X</i> ₁	=	144
X2	=	146
<i>X</i> ₃	=	139
<i>x</i> ₄	=	155
X ₅	=	144
<i>x</i> ₆	=	148

$$\bar{x} = \frac{876}{6} = 146$$

Percentis e a Mediana

A mediana é o dado que ocupa o percentil de 50% dados (posição central).

- Para se calcular a mediana, deve-se ordenar os dados.
- Encontrar o valor do meio se *n* for ímpar.
- Encontrar a média dos dois valores do meio se *n* for par.

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com
histogramas

Média e a mediana

Quantificando com percentis

variância e DP N ou N-1?

in ou in-i ? Interpretação do DI

interpretação do DP

Aprofundamento

Felipe Figueiredo

Média e a mediana

percentis

variabilidade com

Exemplo 1

Conforme no exemplo (colesterol)

139 144 144 146 148 155

$$M_d = \frac{144 + 146}{2} = 145$$

Felipe Figueiredo

Variabilidade de dados numéricos Fontes de

Variabilidade
Visualizando a
variabilidade com
histogramas

Média e a mediana

Quantificando com percentis

variância e DP N ou N-1?

Interpretação do DF

Aprofundament

O que acontece...

... na presença de valores extremos?

Qual é a diferença?

O que acontece com a média, na presença de um valor extremo (muito grande, ou muito pequeno em relação aos outros)?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana

percentis

Quantificando com
variância e DP

N ou N-1? Interpretação do DP

. .

Qual é a diferença?

O que acontece com a média, na presença de um valor extremo (muito grande, ou muito pequeno em relação aos outros)?

Exemplo 1 (colesterol)

X ₁	=	144
X2	=	146
<i>X</i> ₃	=	$\frac{139}{13} = 13$
X ₄	=	155
<i>X</i> 5	=	144
Xe	=	148

O que acontece se você digitar 13 ao invés de 139?

$$\bar{x} = 146, M_d = 145$$

$$\bar{x} = 125, M_d = 145$$

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com

Média e a mediana

Quantificando c percentis

percentis Quantificando c

N ou N-1?

Interpretação do DP

Aprofundamento

Qual é a diferença?

O que acontece com a média, na presença de um valor extremo (muito grande, ou muito pequeno em relação aos outros)?

Exemplo 1 (colesterol)

 $X_1 = 144$ $X_2 = 146$ $X_3 = 139 = 13$ $X_4 = 155$ $X_5 = 144$ $X_6 = 148$

O que acontece se você digitar 13 ao invés de 139?

- $\bar{x} = 146, M_d = 145$
- $\bar{x} = 125, M_d = 145$

Pense...

Qual é a implicação disso em seu projeto?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com

Média e a mediana

Quantificando co percentis

percentis Quantificando ci

N ou N-1? nterpretação do DP

Aprofundamento

Dados corretos vs dados com outlier

$$\bar{x} = 146; M_d = 145$$

 $\bar{x} = 125; M_d = 145$

Variabilidade

Felipe Figueiredo

Variabilidad de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

Quantificando com variância e DP N ou N-1?

Interpretação do DP

Sumário

Variabilidade de dados numéricos

- Fontes de Variabilidade
- Visualizando a variabilidade com histogramas
- Média e a mediana
- Quantificando com percentis
- Quantificando com variância e DP
- N ou N-1?
- Interpretação do DP
- Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade Visualizando a variabilidade com histogramas

Quantificando com percentis

variância e DP N ou N-1?

in ou in-i ? Interpretação do DI

intorprotagao do Di

Aprolundament

RESEARCH ARTICLE

Physical Fitness Percentiles of German Children Aged 9–12 Years: Findings from a Longitudinal Study

Kathleen Golle^{1*}, Thomas Muehlbauer¹, Ditmar Wick², Urs Granacher¹

1 Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany, 2 University of Applied Science in Sport and Management, Potsdam, Germany

* kathleen.golle@uni-potsdam.de

Background

Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values.

Methods

Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test

Citation: Golle K, Muehlbauer T, Wick D, Granacher U (2015) Physical Fitness Percentiles of German Children Aged 9-12 Years: Find ngs from a Longitudinal Study. PLoS ONE: 10(11): e0142393. doi:10.1371/journal.pone.0142393

Editor: Jennifer L. Baker, Institute of Preventive Medicine, DENMARK

Received: April 17, 2015

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com

Média e a mediana Quantificando com

percentis Quantificando com

N ou N-1?

nterpretação do DF

A so we for used a second

Exemplo

Table 2. Smoothed age- and sex-specific percentile values for the 50-m-sprint (s), ball push test (m), and triple hop test (m).

Age (yrs)	P ₁₀	P ₂₀	P ₃₀	P ₄₀	P ₅₀	P ₆₀	P ₇₀	P ₈₀	P ₉₀
				50-m s	print (s)				
Boys [1/2/10]									
9	10.8	10.3	10.0	9.8	9.5	9.3	9.1	9.0	8.6
10	10.4	10.0	9.7	9.5	9.3	9.1	8.9	8.7	8.3
11	10.1	9.7	9.4	9.2	9.0	8.8	8.6	8.5	8.1
12	9.8	9.4	9.1	8.9	8.7	8.5	8.3	8.2	7.8
Girls [1/2/10]									
9	11.1	10.6	10.2	10.0	9.8	9.6	9.4	9.1	8.8
10	10.7	10.2	9.9	9.7	9.5	9.3	9.1	8.8	8.5
11	10.3	9.9	9.6	9.3	9.1	8.9	8.7	8.5	8.3
12	10.0	9.5	9.2	9.0	8.8	8.6	8.4	8.2	8.0
				ball pu	ish (m)				
Boys [4/2/10]									
9	5.93	6.51	6.67	6.98	7.29	7.63	8.03	8.55	9.39
10	6.67	7.52	7.74	8.13	8.51	8.89	9.31	9.81	10.52
11	7.72	8.63	8.86	9.30	9.73	10.17	10.67	11.27	12.15
12	8.79	9.74	9.99	10.47	10.95	11.45	12.03	12.74	13.83
Girls [0/4/1r]									
9	4.85	5.37	5.74	6.06	6.35	6.65	6.97	7.34	7.86
10	5.42	5.99	6.41	6.76	7.09	7.42	7.78	8.19	8.77
11	6.45	7.13	7.63	8.05	8.44	8.84	9.26	9.75	10.44
12	7.23	7.99	8.55	9.02	9.46	9.91	10.38	10.93	11.70
				triple h	iop (m)				
Boys [0/2/10]									
9	6.06	6.73	6.89	7.19	7.47	7.75	8.04	8.39	8.88
10	6.61	7.34	7.52	7.84	8.15	8.45	8.78	9.16	9.69
11	7.16	7.95	8.15	8.50	8.83	9.16	9.51	9.92	10.49
12	7.71	8.56	8.77	9.15	9.51	9.86	10.24	10.69	11.30
Girls [0/2/2o]									
9	5.65	6.16	6.53	6.85	7.14	7.44	7.75	8.12	8.63
10	6.26	6.79	7.17	7.50	7.81	8.11	8.44	8.82	9.36
11	6.89	7.43	7.82	8.16	8.47	8.79	9.12	9.52	10.06
12	7.53	8.08	8.48	8.82	9.14	9.46	9.80	10.20	10.75

Variabilidade

Felipe Figueiredo

variabilidade com Média e a mediana

Quantificando com percentis

Notes. P = percentile; in square parentheses: equivalent degrees of freedom (edf) for the chosen model of L/M/S method; L = skew; M = median; S = coefficient of variation; o = original age; r = rescaled age.

Uma criança (9 anos) faz o sprint de 50m em 10s.

- Qual é o percentil de um menino com este tempo?
- 2 Qual é o percentil de uma menina com este tempo?
- 3 O que isto significa?

Variabilidade

Felipe Figueiredo

de dados numéricos Fontes de

ariabilidade isualizando a ariabilidade com stogramas

Table 2. Smoothed age- and sex-specific percentile values for the 50-m-sprint (s), ball push test (m), and triple hop test (m).

Age (yrs)	P ₁₀	P ₂₀	P ₃₀	P ₄₀	P ₅₀	P ₆₀	P ₇₀	P ₈₀	P ₉₀
				50-m s	print (s)				
Boys [1/2/10]									
9	10.8	10.3	10.0	9.8	9.5	9.3	9.1	9.0	8.6
10	10.4	10.0	9.7	9.5	9.3	9.1	8.9	8.7	8.3
11	10.1	9.7	9.4	9.2	9.0	8.8	8.6	8.5	8.1
12	9.8	9.4	9.1	8.9	8.7	8.5	8.3	8.2	7.8
Girls [1/2/10]									
9	11.1	10.6	10.2	10.0	9.8	9.6	9.4	9.1	8.8
10	10.7	10.2	9.9	9.7	9.5	9.3	9.1	8.8	8.5
11	10.3	9.9	9.6	9.3	9.1	8.9	8.7	8.5	8.3
12	10.0	9.5	9.2	9.0	8.8	8.6	8.4	8.2	8.0

O boxplot

- "Caixa e bigodes"
- A caixa representa os percentis de 25% e 75%
- Barra interna que representa a mediana (percentil 50%)
- Barras verticais indicam a amplitude dos dados
 - Mínimo e Máximo
 - Regras para "a maioria"

Variabilidade

Felipe Figueiredo

Média e a mediana

Quantificando com percentis

variância e DP

Figura: Boxplots para dois grupos de dados (Fonte: Reis, Reis, 2002)

Sumário

Variabilidade de dados numéricos

- Fontes de Variabilidade
- Visualizando a variabilidade com histogramas
- Média e a mediana
- Quantificando com percentis
- Quantificando com variância e DP
- N ou N-1?
- Interpretação do DP
- Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

Quantificando com variância e DP

N ou N-1? Interpretação do DI

Interpretação do D

Aprofundament

A seguir, você verá...

Variabilidade

Felipe Figueiredo

variabilidade com

Média e a mediana

percentis Quantificando com

variância e DP

 uma cadência de ideias (todas relacionadas)

- o que uma significa... ... em relação à próxima.
- prós e contras de cada uma
- do mais simples... ... ao mais aplicado.

A seguir, você verá...

- uma cadência de ideias (todas relacionadas)
- o que uma significa...... em relação à próxima.
- prós e contras de cada uma
- do mais simples...... ao mais aplicado.

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

> Quantificando com variância e DP N ou N-1?

N ou N-1? nterpretação do D

Aprofundament

Tenha em mente...

Nosso objetivo é entender...

... uma medida que descreva a variabilidade de uma amostra

Variabilidade

Felipe Figueiredo

variabilidade com

Média e a mediana

percentis

Quantificando com variância e DP

Variabilidade

Felipe Figueiredo

Média e a mediana

percentis Quantificando com

- Uma maneira de entender a variabilidade do dataset é analisar os desvios em relação à média.
- Cada desvio é a diferença entre o valor do dado e a média.

Colesterol (N = 6, média 146)

144 146 139 155 144 148

Variabilidade

Felipe Figueiredo

Fontes de variabilidade com

Média e a mediana

percentis Quantificando com

Exemplo

{144, 146, 139, 155, 144, 148}

•
$$\bar{x} = 146$$

$$D_2 = 146 - 146 = 0$$

$$\begin{array}{c} \textbf{2} \quad D_2 = 146 - 146 = 0 \\ \textbf{3} \quad D_3 = 139 - 146 = -7 \end{array}$$

$$D_4 = 155 - 146 = 9$$

$$O_6 = 148 - 146 = 2$$

Variabilidade

Felipe Figueiredo

Média e a mediana

percentis Quantificando com

Variabilidade

Felipe Figueiredo

Média e a mediana

percentis

Quantificando com variância e DP

Colesterol (N = 6, média 146)

144 146 139 155 144 148

Desvios em relação à média

 $0 - 7 \quad 9 - 2 \quad 2$

Mas os desvios...

- 1 são tão numerosos quanto os dados
- 2 têm sinal (direção do desvio)
- 3 SEMPRE têm soma nula, portanto o desvio médio é sempre 0

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com
histogramas

Média e a mediana Quantificando com

percentis Quantificando com

variância e DP N ou N-1?

Interpretação do DF

Exemplo

Somando tudo:

$$\sum D = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 =$$

$$(-2) + 0 + (-7) + 9 + (-2) + 2 = 0$$

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

Quantificando com percentis Quantificando com

variância e DP N ou N-1?

Interpretação do DP

Como proceder?

- Como extrair alguma informação útil (e sumária!) dos desvios?
- Problema: sinais

Pergunta

Como tirar os sinais dos desvios?

Variabilidade

Felipe Figueiredo

Variabilidad de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

percentis

Quantificando com

variância e DP N ou N-1?

Interpretação do DI

Como proceder?

- Como extrair alguma informação útil (e sumária!) dos desvios?
- Problema: sinais

Pergunta

Como tirar os sinais dos desvios?

- Tirar o módulo (valor absoluto)
- 2 Elevar ao quadrado

Variabilidade

Felipe Figueiredo

Variabilidad de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

Quantificando com percentis

Quantificando com variância e DP

N ou N-1?

nterpretação do DP

Desvios absolutos

Tomando-se o módulo dos desvios temos:

Definição

Desvio médio absoluto (MAD) é a média dos desvios absolutos

- É uma medida de dispersão robusta (pouco influenciada por outliers)
- Módulo não tem boas propriedades matemáticas (analíticas e algébricas).
- Pouco usado para inferência (apesar da robustez)

Variabilidade

Felipe Figueiredo

Quantificando com

Desvio médio absoluto (MAD)

Exemplo

 $\{144, 146, 139, 155, 144, 148\}, \bar{x} = 146$

$$|D_1| = |144 - 146| = 2$$

$$|D_2| = |146 - 146| = 0$$

$$|D_3| = |139 - 146| = 7$$

$$|D_5| = |144 - 146| = 2$$

$$|D_6| = |148 - 146| = 2$$

$$MAD = \frac{\sum |D_i|}{6} = 3.7$$

Variabilidade

Felipe Figueiredo

Média e a mediana

percentis

Quantificando com variância e DP

Uma proposta "melhor"

 Uma outra maneira de eliminar os sinais é elevar ao quadrado cada desvio.

Preserva boas propriedades matemáticas

 Calculando a média dos quadrados dos desvios (desvios quadráticos) temos ...

Variabilidade

Felipe Figueiredo

Média e a mediana

percentis Quantificando com

Definição

A variância é a média dos desvios quadráticos.

Variância populacional

$$\sigma^2 = \frac{\sum (x_j - \mu)^2}{N}$$

Variância amostral

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

- Conveniente do ponto de vista matemático (boas propriedades algébricas e analíticas).
- Unidade quadrática, pouco intuitiva para interpretação de resultados.

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com
histogramas

Média e a mediana Quantificando com

Quantificando com percentis Quantificando com

variância e DP N ou N-1?

Interpretação do DF

Variabilidade Felipe

Figueiredo

Exemplo

$$\{144, 146, 139, 155, 144, 148\}, \bar{x} = 146$$

$$(D_2)^2 = (146 - 146)^2 = 0^2 = 0$$

$$(D_5)^2 = (144 - 146)^2 = (-2)^2 = 4$$

$$(D_6)^2 = (148 - 146)^2 = 2^2 = 4$$

Quantificando com variância e DP

No exemplo do paper

VAR = 18.14

 $s^2 = \frac{\sum D_i^2}{5} = 28.4$

Definição

O desvio padrão é a raiz quadrada da variância.

Desvio padrão populacional

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Desvio padrão amostral

$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

Quantificando com percentis Quantificando com

variância e DP N ou N-1?

Interpretação do DF

Desvio Padrão

 É a medida mais usada, por estar na mesma escala (unidade) dos dados.

Boas propriedades matemáticas

Boas propriedades como estimador (Inferência)

Variabilidade

Felipe Figueiredo

Média e a mediana

percentis

Quantificando com variância e DP

Desvio Padrão

Exemplo

$$\{144, 146, 139, 155, 144, 148\}, \bar{x} = 146$$

$$s^2 = 28.4$$

$$s = \sqrt{s^2} = \sqrt{28.4} = 5.3$$

No exemplo do paper

$$s = 4.26$$

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

percentis Quantificando com variância e DP

l ou N-1?

nterpretação do DF

Lembre-se

Você não precisa saber fazer esses cálculos!

Eles são feitos instantaneamente por máquinas!

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

percentis

Quantificando com
variância e DP

N ou N-1?

Interpretação do D

Tenha em mente...

Nosso objetivo é entender...

... uma medida que descreva a variabilidade de uma amostra

Variabilidade

Felipe Figueiredo

variabilidade com

Média e a mediana

percentis

Quantificando com variância e DP

Como comparar o DP de dois grupos?

Variabilidade

Felipe Figueiredo

variabilidade com

Média e a mediana

percentis Quantificando com

variância e DP

Não podemos comparar diretamente o valor do DP de dois grupos.

Por que?

Desvio Padrão Relativo

O desvio padrão relativo é uma medida de dispersão normalizada.

Ela ignora a escala da mensuração.

$$DPR = \frac{s}{\bar{x}} \times 100$$

Sinônimos

- Desvio padrão relativo (DPR)
- Coeficiente de Variação (CV)
- Relative Standard Deviation (RSD)

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com

Média e a mediana Quantificando com

percentis

Quantificando com

variância e DP N ou N-1?

terpretação do DF

O Desvio Padrão Relativo

	50/200 kHz						
	Phase		Reactance		Resistance		
	ICC	% RSD	ICC	% RSD	ICC	% RSD	N
Trans. 6-Muscle	0.88	3.1 ± 2.5	0.92	3.6 ± 2.7	0.97	0.9 ± 1.0	28
Long. 6-Muscle	0.93	2.5 ± 1.9	0.96	2.8 ± 2.0	0.99	0.6 ± 0.5	31
Trans. Upper Extremity	0.80	3.8 ± 3.8	0.89	4.4 ± 3.8	0.98	1.1 ± 0.9	31
Long. Upper Extremity	0.90	3.1 ± 2.2	0.94	3.3 ± 2.3	0.98	0.8 ± 0.7	29
Trans. Lower Extremity	0.89	3.1 ± 2.7	0.91	3.9 ± 2.6	0.94	1.2 ± 1.1	32
Long. Lower Extremity	0.88	3.2 ± 2.8	0.92	3.5 ± 2.9	0.97	0.8 ± 0.7	33

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com
histogramas

Média e a mediana Quantificando com

Quantificando com percentis Quantificando com variância e DP

ou N-1?

erpretação do DF

Aprofundament

Dos nossos dados

CV = 4%

Sumário

Variabilidade de dados numéricos

- Fontes de Variabilidade
- Visualizando a variabilidade com histogramas
- Média e a mediana
- Quantificando com percentis
- Quantificando com variância e DP
- N ou N-1?
- Interpretação do DP

Aprofundamento

Variabilidade

Felipe Figueiredo

N ou N-1?

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

percentis Quantificando com

variância e DP N ou N-1?

Interpretação do E

Aprofundament

Aprofundament

Fórmula com N

Usada apenas para cálculos com dados de toda a população.

Fórmula com N-1

Usada para cálculos com dados de uma amostra.

Pense...

Você tem acesso a toda a população, ou apenas a uma amostra?

Felipe Figueiredo

variabilidade com

Média e a mediana percentis

N ou N-12

Pergunta

O desvio dos dados em relação à média é uma medida de dispersão:

- Verdadeiro
- Falso

Felipe Figueiredo

de dados numéricos

numéricos Fontes de

Variabilidade Visualizando a variabilidade com

Média e a mediana

Quantificando com

Quantificando com percentis Quantificando com

Quantificando com ariância e DP

N ou N-1?

nterpretação do DP

Aprofundament

Pergunta

O desvio dos dados em relação à média é uma medida de dispersão:

- Verdadeiro
- 2 Falso

Felipe Figueiredo

variabilidade com

Média e a mediana

percentis

N ou N-12

Pergunta

São medidas adequadas para descrever o centro dos dados:

- Média (\bar{x})
- Variância (s²)
- Percentis
- Mediana

Felipe Figueiredo

de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

percentis Quantificando com

N ou N-1?

Interpretação do DF

Aprofundament

Pergunta

São medidas adequadas para descrever o centro dos dados:

- \bigcirc Média (\bar{x})
- 2 Variância (s²)
- 8 Percentis
- 4 Mediana

Felipe Figueiredo

de dados numérico

numérico Fontes de

Variabilidade Visualizando a variabilidade con

Média e a mediana Quantificando com

Quantificando com percentis Quantificando com

Quantificando cor variância e DP

N ou N-1?

nterpretação do DF

Aprofundament

Pergunta

A medida de dispersão mais utilizada na prática é:

- 1 Variância (s²)
- 2 Desvio Médio absoluto (MAD)
- 3 Desvio padrão (s)
- 4 Desvio padrão relativo (DPR)

Felipe Figueiredo

de dados numérico

Fontes de

Variabilidade Visualizando a variabilidade com

Média e a mediana Quantificando com

percentis

Quantificando com

Juantificando co variância e DP

N ou N-1?

nterpretação do DP

Aprofundament

Pergunta

A medida de dispersão mais utilizada na prática é:

- 1 Variância (s²)
- 2 Desvio Médio absoluto (MAD)
- 3 Desvio padrão (s)
 - Desvio padrão relativo (DPR)

Sumário

Variabilidade de dados numéricos

- Fontes de Variabilidade
- Visualizando a variabilidade com histogramas
- Média e a mediana
- Quantificando com percentis
- Quantificando com variância e DP
- N ou N-1?
- Interpretação do DP

2 Aprofundamento

Aprofundamento

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

Quantificando com rariância e DP V ou N-1?

Interpretação do DP

Interpretação do DP

"Um pouco mais da metade" dos valores está a 1 DP da média (considerando amdos os lados)

"Quase todos" os dados estão a 2 DP da média (considerando ambos os lados)

Cenas dos próximos capítulos

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com
histogramas

Média e a mediana
Quantificando com

percentis
Quantificando com

N ou N-1?

Interpretação do DP

Sumário

Variabilidade Felipe

Figueiredo

Variabilidade de dados numéricos

Aprofundamento

Aprofundamento

- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- 2 Aprofundamento
 - Aprofundamento

Aprofundamento

Variabilidade

Felipe Figueiredo

Aprofundamento

Leitura obrigatória

Capítulo 3. Pular as seções:

Calculando o DP numa calculadora

Leitura recomendada

Não há