書いてる途中です

ADK互換モジュールで遊ぶAndroid

第4回名古屋Android勉強会 2012/2/18 愛知工業大学 本山キャンパス @magoroku15 最底辺活動家

最新リソース

- このドキュメントを含む、最新のリソースは以下で管理 しています
 - https://github.com/magoroku15/OpenAccessoryDemo

• App Source CodeAndroid アプリのソースコード

• Doc ドキュメント類

• Firmware マイコンのソース・バイナリ

- 紹介するMicrochip Technology Inc作成のアンドロイド アプリはAndroid Marketからインストールできます
 - Microchipで検索
 - 基本的なアクセサリデモ3.x
 - 基本的なアクセサリデモ2.3.x以降

このコースの目的と内容

<u>目的</u>

AndroidアプリケーションデベロッパがAndroid Open Accessory を理解する。同時にHWを理解する事が広げる世界を体感する。

<u>内容</u>

- 1. 互換モジュールの組み立て
- 2. Androidとの接続と動作確認
- 3. 互換モジュールの仕組み
- 4. Android側の仕組み

必要なもの

- ・レベル1 手ぶらコース
 - 特に準備は不要です
- ・レベル2 実機に接続して動かす
 - ADKに対応したAndroid実機とACアダプタ
- ・レベル2 Androidアプリのビルドまで
 - Android SDKをインストールしたPC
- レベル3 マイコン実行イメージのビルドまで
 - MPLABXのインストール

ソースコード・ドキュメント

• Githubで管理

https://github.com/magoroku15/OpenAccessoryDemo

- ・2つの方法
 - A) Githubにアカウントを作ってfork
 - Linux/Macで開発する人にお勧め
 - 改変してcommit & push
 - B) ZIPアーカイブをダウンロード
 - Windowsで開発する人向け

OpenAccessoryDemoの内容

- App Source Code
 - Androidアプリのソース
- Doc
 - ドキュメント
- Firmware
 - PIC24Fのソース
 - コンパイルは専用のIDE MPLABXで行う

Android SDKのインストール

MPLABXのインストール

- PIC用のIDE
 - 従来のMPLABはWindows専用だった
 - MPLABXはNetBeansベースでマルチプラットフォーム
 - PIC24シリーズ向けはコンパイラも無償/最適化に制限
- http://ww1.microchip.com/downloads/mplab/X/から
 - 1. Platformを選択
 - 2. 以下をチェックして[Download Now]
 - MPLAB IDE X v1.00
 - MPLAB X IDE Release Notes/User' Guide (supersedes info in installer)
 - MPLAB C30 Lite Compiler for dsPIC DSCs and PIC24 MCUs
 - 3. [Download Now]

MPLABXのインストール

PART1 互換モジュールの組み立て

配布部品

BOM/購入元

poorman's ADK 30台分の発注部品

			購入単位			1台単位		
購入先	通販型番	発注量	個数	価格	単価	個数	小計	
秋月	C-05223	30	1	130	130	1	130	USBケーブル(AーmicroB)
秋月	P-02315	30	1	250	250	1	250	ブレッドボード・ジャンパーワイヤ
秋月	P-00315	30	1	250	250	1	250	ブレッドボード EIC-801
秋月	I-03421	15	2	100	50	1	50	三端子レギュレーター[3.3V] XC6202P332TB
秋月	P-05105	60	1	15	15	2	30	積層セラミックコンデンサー1μ F50V
秋月	P-05103	30	1	30	30	1	30	積層セラミックコンデンサー10μ F25V
秋月	I-00562	1	100	350	3.5	2	7	赤色LED 3mm
秋月	R-25103	2	100	100	1	4	4	カーボン抵抗 1/4W1OkΩ
秋月	C-01627	10	5	20	4	1	4	Lピンヘッダ1x20
秋月	P-02470	4	10	200	20	1	20	半固定抵抗10kΩ
秋月	P-04089	1	100	500	5	1	5	チャック袋
秋月	送料2回分	1	30	1000	33	2	67	送料500円x2回
digikey	703-7602	1	30	9821	327	1	327	PIC24FJ64GB002

ブレッドボード

内部の配線

ジャンパ

• ブレッドボードに刺して回路を構成する線

マイコン PIC24FJ64GB002

- Microchip社の16bitマイコン max 32MHz
 - 64Kbyte Program Memory (Flash), 64Kbyte RAM
 - I²C, IrDA, SPI, UART/USART, USB OTG
- プログラムは書き込み済

抵抗

- ・電流の流れを抑止する
 - 抵抗の値が小さいと導体
 - 抵抗の値が大きいと絶縁体に近づく
- 極性なし

コンデンサ

- Capacitor(キャパシタ)とも言う
- ・ 微量の電気を蓄える
 - 直流は流れない
 - 交流は流れやすい
- ・ 極性の有無に注意

積層セラミックコンデンサー10μF25V

- 今回の積層セラミックコンデンサは極性なし

積層セラミックコンデンサー1μF25V

回路図

3端子レギュレータ

・電圧を一定に保つ機能を備えたIC

Vss

5V(充電用ACアダプタ)から3.3Vを生成

回路図(周辺込み)

LED

- 発光ダイオード
 - LED(エルイーディー: Light Emitting Diode)
 - 極性あり、一方向にしか電流を流さない

USBケーブル

- AオスマイクロBオスを改造(改造済で配布)
 - ACアダプタから5Vを取り、マイクロBオスに回す
 - マイクロBのデータ線を取りだす

互換モジュールの組み立て

- 利用する資料
 - 回路図(別紙)
 - 実体配線図(別紙)
 - 組み立て手順(本資料)
- 配布部品

Step1 電源

- 1. g1にレギュレータの1
- 2. g2にレギュレータの2
- 3. g3にレギュレータの3
- 4. **一**を4か所
- 5. **一**を2か所
- 6. 積層セラミックコンデンサー 1μF25V2個
 - h1-h2
 - h2-h3

Step2 マイコン

- 1. e10-e23-f10-f23'にマイ コン
- 2. **一**をf3-g23へ
- 3. **一**をj10-**一へ**
- 4. **一**をj11-**+へ**
- 5. **一**をi15-**一へ**
- 6. **一**をj19-**+へ**
- 7. 積層セラミックコンデン サー10μF25をj18-ー
- 8. 抵抗10kΩをa10- 十へ

Step2 LED/SW

- LED、足の長い方をa11,短い方を一へ
- LED、足の長い方をa12,短い方を一へ
- 抵抗10kΩ、a21-+へ
- 抵抗10kΩ、a23-+へ

Step3 可変抵抗

- 組み付け順注意
- d16-e28に抵抗を
- 一をc27-一に
- −をc29-+に
- 可変抵抗をc27-c29-e28へ

Step2 USBケーブル

- 電源、黒をj2,赤をj3
- データ白(D-)をh16, 緑(D+) をh17

完成写真

回路図

PART2 ANDROIDとの接続と動作確認

Step1 アプリのインストール

- Android Marketからインストール
 - Microchipで検索
 - 基本的なアクセサリデモ3.x
 - 基本的なアクセサリデモ2.3.x以降

Step2 ACアダプタに接続

Step3 Android に接続

LEDを点灯

スイッチを操作

ポテンションメータを操作

- 配布部品には含みません
- 講師によるデモのみです

PART3 USB LOPEN ACCESSORY

USB ホスト・ディバイス

- 基本は高速のシリアル通信
- 4線式
 - 通信はディファレンシャル D+,D-
 - 給電機能を持つ 5V, GND
- ホスト
 - 一般的にPC側
 - マスタとして動作
 - 複数のディバイスを収容・管理
 - 複雑なソフトウエアスタック
- ディバイス
 - 一般的に装置側、マウス、KBD、プリンタ、USBメモリ
 - スレーブとして動作
 - 単純な機能

USB コネクタ

• 4線式

1: + 2: D- 3: D+ 4: -

- ホスト側

Type A

- ディバイス側

Type B

• 5線式

1: + 2: D- 3: D+ 4: ID 5: -

- IDでホスト、ディバイスを判別

Wikipediaより

Androidでの利用例

・ホスト

- システム側での対応は限定的、マウス対応(ICS)など
- アプリ側でUSB manager連携してドライバ相当の動作をアプリとして記述・配布

・ディバイス

- Android側がディバイス
- ADB, Mass Storage
- Open Accessory
 - PCがホスト、Android側がディバイス
 - システムのみで利用していたエンドポイントをアプリに開放

ADBの仕組み

- ・ドライバレイヤ
 - ADB用のVid, Pidを登録してエンドポイントを作成
- ・アプリレイヤ
 - システム起動時にadbdコマンドを起動
- PCに接続すると
 - Vid, PidがXXXを示し
 - adb用のEndpointがみえるのでこれをadbコマンドが 握る
 - PC adbコマンド⇔PC バルク転送⇔Android バルク転送送⇔ /dev/adb ⇔ adbd
- adb (クライアント)⇔adbd(サーバ)の関係

Open Accessoryの仕組み

Open Accessory modeとは何か

- AdbなどのUSBガジェットの仕組みを流用
- 専用エンドポイントを提供
- フレームワークがアプリを起動し、エンドポイントを接続

PART4 マイコン側の仕組み

PICマイコン

- マイコンとしては老舗
- ライバルはAtmel AVR
- PIC16シリーズ
- PIC24シリーズ
- PIC32シリーズ
 - MIPS社からライセンスしたMIPS M4K

開発環境

- MPLAB.X
 - B版
 - MAC, Windows, Linuxの各プラットフォームで動作

ソース構成

Firmware

- CleanUp.bat
- main.c
- usb_host_android.c
- HardwareProfile PIC24FJ64GB002 PIM.h usb_config.c
- usb_host_android_protocol_v1.c
- HardwareProfile.h
- usb_config.h
- usb_host_android_protocol_v1_local.h
- Include
- usb_hal_local.h usb_host_local.h
- MPLAB.X // MPLAB.Xのプロジェクト定義
- usb_host.c

PART5 ANDROID側の仕組み

PART6 PICマイコンの開発環境

Pickit3 3900円 秋月 通販コード M-03608

おうわり