WAKISSHA JOINT MOCK EXAMINATIONS 2015 UGANDA ADVANCED CERTIFICATE OF EDUCATION MARKING GUIDE

S475/1 SUBSIDIARY MATHEMATICS PAPER 1

JULY/AUGUST 2015

1.

$$log_{2}x + log_{2}x^{2} + log_{2}x^{2} = 24$$

$$log_{2}(x.x^{2}.x^{3}) = 24$$

$$log_{2}(x^{6}) = 24$$

$$log_{2}x = \frac{24}{6}$$

$$M_{1}$$

$$6log_{2}x = 24$$

$$M_{1}$$

$$log_{2}x = 4$$

$$x = 2^{4}$$

$$x = 16$$

$$A_{1}$$

$$05$$

2. For independent events

$$P(AuB) = P(A).P(B)$$

But
$$P(AuB) = P(A) + P(B) - P(AnB)$$

i)
$$p(AuB) = 0.3 + 0.2 - 0.3 \times 0.2$$

$$= 0.44$$

ii)
$$p\overline{(AuB)} = 1 - P(AnB)$$

= $1 - p(A) \cdot p(B)$
= $1 - 0.3 \times 0.2$
= 0.94

$$3. \qquad M = p^2 + 3Q - R$$

$$M = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}^{2} + 3 \begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 4 & 6 \\ 10 & 15 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} + \begin{pmatrix} -3 & 3 \\ 9 & 6 \end{pmatrix} - \begin{pmatrix} 4 & 6 \\ 10 & 15 \end{pmatrix}$$

B1

$$M1 \\ 0.5 - 0.6$$

$$= 1 - 0.06$$
A1

05

M1

substituting M the subject

Squaring

Multiply matrix

$$= \begin{pmatrix} 1+8 & 2+10 \\ 4+20 & 8+25 \end{pmatrix} + \begin{pmatrix} -3 & 3 \\ 9 & 6 \end{pmatrix} - \begin{pmatrix} 4 & 6 \\ 10 & 15 \end{pmatrix}$$

$$= \begin{pmatrix} 9 & 12 \\ 24 & 33 \end{pmatrix} + \begin{pmatrix} -3 & 3 \\ 9 & 6 \end{pmatrix} - \begin{pmatrix} 4 & 6 \\ 10 & 15 \end{pmatrix}$$

$$= \begin{pmatrix} 9+7-4 & 12+3-6 \\ 24+9-10 & 33+6-15 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 9 \\ 23 & 24 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 9 \\ 23 & 24 \end{pmatrix}$$

$$= \begin{pmatrix} 5n+13 \\ n+1 \\ 6n+6=5n+13 \\ 6n-5n=13-6 \\ n=7 \end{pmatrix}$$

$$= \begin{pmatrix} 3n+13 \\ 6n-5n=13-6 \\ n=7 \end{pmatrix}$$

$$= \begin{pmatrix} 3n+13 \\ 6n+6=5n+13 \\ 6n+6=5n+13 \\ 6n-5n=13-6 \\ n=7 \end{pmatrix}$$

$$= \begin{pmatrix} 5n+13 \\ 6n+6=5n+13 \\ 6n$$

4.

6.

Month	Price	Moving	4pt moving			
		totals	average			
Jan	4500					
Feb	5000			B1		
Mar	5200	20200	5050	B1		
Apr	5500	21200	2300	B1		
May	6000	23200	5800	B1		
Jun	6500	23700	5925	B1		
Jul	5700	25200 6300		B1		
Aug	7000					
05						

7. $\sin(x + 60) + \sin(x - 120) = 0$ $\sin x \cos 60 + \cos x \sin 60 + \sin x \cos 120 - \cos x \sin 120$ B₁B₁

$$cos60 = -cos120
(sinxcos60 - sinx cos60) + (cosxsin60) - cosxsin60) = 0$$

B1

8.

sin60 = sin120

using
$$s = ut + \frac{1}{2}at^2$$

consider motion between AB

$$40 = 12u + \frac{1}{2}a(12)^2$$

$$40 = 12u + 72a$$

$$10 = 34 + 18a \dots (i)$$

consider montion between AC

$$60 = 20u + \frac{1}{2}a(20)^2$$

$$60 = 20u + 200a$$

$$3 = u + 10a \dots \dots (ii)$$

$$(i) - 3(ii)$$

$$1 = -72a$$

$$a = \frac{-1}{72} or - 0.0139 ms^{-2}$$

$$from(ii)$$

$$a = 3 - 10a$$

$$3 - \frac{10}{72}$$
 $\frac{103}{36}$ or 2.8611 ms^{-1}

A1 _____

SECTION B

9.

a)

<i>i)</i>				
Masses (kg)	Tally	Freq (f)	C.f	C.b
85-89	IIII	4	4	84.5-89.5
90-94	IIII II	6	10	89.5-94.5
95-99	IIIII II	7	17	94.5-99.5
100-104		13	30	99.5-104.5
105-109	11111 11111	10	40	104.5-109.5
110-114	IIII I	5	45	109.5-119.5
115-119	IIII I	5	50	114.5-119.5
		$\sum f = 50$		

b)
$$L_1 = 99.5$$

$$D_{1} = 13 - 7 = 6$$

$$D_{2} = 13 - 10 = 3$$

$$mode = 99.5 + (\frac{6}{6+3})^{5}$$

$$= 99.5 + \frac{30}{9}$$

$$= 102.833kg$$
A1

10.

a)
$$2x^{2} - 3x - 5 = 0$$

$$x^{2} - \frac{3}{2}x - \frac{5}{2}$$

$$(x^{2} - \frac{3}{2}x + (-\frac{3}{4})^{2} - \frac{5}{2} - (-\frac{3}{4})^{2} \qquad M1$$

$$(x - \frac{3}{4})^{2} = \frac{49}{16}$$

$$x - \frac{3}{2} = \pm \frac{7}{4}$$

$$x = \frac{3}{2} \pm \frac{7}{4}$$
 M1

$$x = \frac{3}{2} - \frac{7}{4}$$
 M1

$$=\frac{1}{4}$$
 A1 $x = \frac{3}{4} + \frac{7}{4}$ M1 $=\frac{13}{4}$ A1

b) Rots;
$$sum\ of\ roots = \frac{3}{2} + \frac{1}{2}$$

$$= 2$$

$$product\ of\ roots = \left(\frac{3}{2}\right)\left(\frac{1}{2}\right)$$

$$= \frac{3}{4}$$

$$x^2 - (2)x + \frac{3}{4} = 0$$

$$or\ 4x^2 - 8x + 3 = 0$$
M1A1

c)
$$3x^2 + 2x - 4 = 0$$
 Roots a and b .
$$x^2 + \frac{2}{3}x - \frac{4}{3} = 0$$

$$sum \ of \ roots = a + b = \frac{-2}{3}$$

$$product \ of \ roots = ab = \frac{-4}{3}$$

$$Roots; \frac{1}{a} \ and \frac{1}{b}$$

$$sum = \frac{1}{a} + \frac{1}{b}$$

$$= \frac{a+b}{ab}$$

$$= \frac{-2/3}{-4/3} = \frac{1}{2}$$
B1

$$product = \frac{1}{a}x\frac{1}{b}$$
$$= \frac{1}{ab}$$

$$= \frac{1}{(-4/3)}$$

$$= -3/4$$
B1

$$from x^2 - (sum)x + (product) = 0$$

$$x^2 - \frac{1}{2}x + \frac{-3}{4} = 0$$

M1A1

or
$$4x^2 - 2x - 3 = 0$$

15

11. let *x* be no. of stdts offering submaths.

$$x \sim B(n, p)$$

(ii) - (i)

a)
$$E(x) = s$$

 $np = s (i)$

$$var(x) = 2.5$$

 $npQ = 2.5 \dots (ii)$

В1

$$\frac{npQ}{np} = \frac{2.5}{5}$$

M1

$$but Q = 1 - p \text{ or } p = 1 - Q$$

$$p = 1 - 0.5$$

= 0.5

M1 A1

$$from | np = 5$$

$$0.5 \times n = 5$$

$$n = \frac{5}{0.5}$$

n = 10students

b)

i)
$$p(x = 5) = 10c_5(0.5)^5(0.5)^5$$

M1

= 0.2461

Α1

ii)
$$p(x = 0) = 10c_0(0.5)^0(0.5)^{10}$$

M1

$$= 0.0010$$

Α1

iii)
$$p(x \ge 8) = p(x = 8) + p(x = 9) + p(x = 0)$$

M1

$$10c_8(0.5)^8(0.5)^2 + 10c_9(0.5)^9(0.5)^1 + 10c_{10}(0.5)^{10}(0.5)^0$$

0.0439 + 0.0098 + 0.0010

В1

$$= 0.0547$$

A1

15

12.

a)
$$y = 6 - x - x^2$$

turning point

$$\frac{dy}{dx} = 0 - 1 - 2x$$

$$for turning point \frac{dy}{dx} = 0$$

$$0 = -1 - 2x$$

$$x = -1/2 \text{ or } -0.5$$

$$y = 6 - \left(-1/2\right) - \left(-1/2\right)^2$$

$$= \frac{25}{4} \text{ or } 6.25$$

turning point is
$$(-1/2, 25/4)$$
 or $(-0.5, 6.25)$ A1

Nature of the turning point

$$\frac{dy}{dx^2} = -1 - 2x$$

$$\frac{d^2y}{dx^2} = 0 - 2$$

M1

$$= -2$$

since
$$\frac{d^2y}{dx^2} < 0$$
, its a maximum point.

B1

intercepts

$$for y-intercept, x=0.$$

$$y = 6-0-0^2$$

= 6

$$for\ intecept, y = 0$$

$$0 = 6 - x - x^{2}$$
$$x^{2} + x - 6 = 0$$

$$x^2 + x - 6 = 0$$

$$\begin{vmatrix} x + 3x - 2x - 6 \\ (x + 3)(x - 2) = 0 \end{vmatrix} = 0$$

$$either x + 3 = 0$$

$$x = -$$

$$x = -3$$

$$or \ x - 2 = 0$$

$$x = 2$$

$$x = 2$$

$$ie(-3,0)$$
 and $(2,0)$

B1

B1 - labelling

Α1 - shape

Page **7** of **10**

b)
$$A = \int_{-3}^{2} y dx$$

 $= \int_{-3}^{2} 6 - x - x^{2} dx$ M1
 $[6x - \frac{x^{2}}{2} - \frac{x^{3}}{3}]_{-3}^{2}$ M1
 $= \left[6(2) - (\frac{2}{2})^{2} - (\frac{2}{3})^{3}\right] - \left[6(-3) - (\frac{3}{2})^{2} - (\frac{-3}{3})^{3}\right]$ B1B1
 $= \left(\frac{22}{3}\right) - (\frac{-27}{3})$
 $= \frac{125}{6}$ or 20.833 A1

13.

a)

Physics(x)	Mtc	Rx	Ry	d(Rx-Ry)	d^2
55	57	5	3	2	4
54	60	4	4	0	0
35	47	1	1	0	0
62	65	6	6	0	0
87	83	8	8	0	0
53	56	3	2	1	1
71	74	7	7	0	0
50	63	2	5	-3	9
					$\sum d^2 = 14$

В1

B1 B1
$$n = 8$$

$$\int = 1 - \frac{6|\sum d^2|}{n(n^2 - 1)}$$

$$1 - \frac{6x14}{8(8^2 - 1)}$$

$$1 - \frac{84}{504}$$

$$= 0.833$$
A1

There is a very high positive relationship betweenphy and mtc.

b)

- i) See the graph on the graph paper.
- ii) Y=64

14.

B1

Page **8** of **10**

Resolving for 4kg mam;

$$\therefore a = 1.66ms^{-2}$$
 A1

ii) from i

$$4g - T = 4a$$
 $4x9.8 - T = 4x1.66$
A1
 $39.2 - T = 6.64$

$$T = 39.2 - 6.64$$

 $T = 32.56N$ A1

leth₂ be the distance fallen by the particle

at the time, t = 25.

v be the velocity obtained in falling through distance, h from

$$v = u + at$$

$$v = 0 + 9.8 \times 2$$

$$= 19.6ms^{-1}$$

$$E1$$

$$K.E = \frac{1}{2}mv^{2}$$

$$1/_{2}x0.1x(19.6)^{2}$$

$$E1$$

$$= 19.208J$$

$$P.E = mgh_{2}$$

$$but h_{2} = 25 - h_{1}$$

$$using h_{1} = ut + \frac{1}{2}at^{2}$$

$$= 0 + \frac{1}{2}X9.8X2^{2}$$

$$M1$$

$$h_{1} = 19.6m$$

$$h_{2} = 25 - 19.6$$

$$h_{2} = 5.4m$$

$$E1$$

$$\therefore P.E = mgh_{2}$$

$$= 0.1x9.8x5.4$$

$$P.E = 5.292J$$

$$E1$$

$$Total Energy = P.E + K.E$$

$$= 5.292 + 19.208$$

$$E1$$

$$Total Energy = P.E + K.E$$

$$= 5.292 + 19.208$$

$$E24.5J$$

$$E3$$

END