(1)

Concept

This problem is a simple version of problem (2-1). There is only two major change. One is that the hidden layer is removed from the structure of problem (2-1). The other is that the problem gives "Y=1 when net>0, Y=0 when net \leq 0", which means that the activation function is a step function. Other concepts are the same. For further explanation please refer to problem (2-1).

Hand Writing

Code (Python)

import numpy as np

scipy.special for the sigmoid function expit() import scipy.special

```
import matplotlib.pyplot as plt
class neuralNetwork:
  def __init__(self, learningrate):
    # w_i_j, from node i to node j in the next layer
    # w11 w21
    # w12 w22 etc
    # theta 3 is the threshold with input -1
    # [W11, W12, W13=0], [W21, W22, W23=0], [theta 31, theta 32, theta 33=1]
    self.wio = np.array([1.0, -1.0, 0.0])
    # learning rate
    self.lr = learningrate
    # activation function: sigmoid function
    self.activation_function = lambda x: 1 if x>0 else 0
    pass
  def train(self, inputs list, target):
    # convert inputs list to 2d array
    inputs = np.array(inputs list, ndmin=1).T
    targets = np.array(target, ndmin=1).T # ndmin=1 changed from the
standard
    # calculate signals into hidden layer
    final inputs = np.dot(self.wio, inputs)
    # calculate the signals emerging from hidden layer
    final outputs = self.activation function(final inputs)
    # output layer error is the (target - actual)
    final_errors = targets - final_outputs
    # update the weights for the links between the input and hidden layers
    self.wio += self.lr * final_errors * np.transpose(inputs)
```

```
pass
  # query the neural network
  def query(self, inputs_list):
    # convert inputs list to 2d array
    inputs = np.array(inputs_list, ndmin=2).T
    # calculate signals into final output layer
    final_inputs = np.dot(self.wio, inputs)
    # calculate the signals emerging from final output layer
    final_outputs = self.activation_function(final_inputs)
    return final_outputs
def main():
  input_list = []
  target_list = []
  # Number of Epoch
  epoch = 1000
  # learning rate
  learing rate = 0.1
  # Inputs & Targets
  input list.append([-1, -1]); target list.append(0)
  input_list.append([-1, 1]); target_list.append(1)
  input list.append([1, -1]); target list.append(1)
  input list.append([1, 1]); target list.append(0)
  # Create an instance of neuralNetwork with the learning rate specified
  nn = neuralNetwork(learing_rate)
  # Add the threshold input
  for i in range(len(input_list)):
```

```
input_list[i].append(-1)
  # Plot the Sum-Squared Error - Epoch
  plt.axis([0, epoch+1, 0, 1.1])
  plt.title('Sum-Squared Error - Epoch\n Learing Rate = 0.1')
  plt.xlabel('Epoch')
  plt.ylabel('Sum-Squared Error')
  # Train & Plot
  for x in range(0, epoch):
    for i in range(len(input_list)):
      nn.train(input_list[i], target_list[i])
    sum_squared_errors = 0
    for i in range(len(input_list)):
      sum_squared_errors += (nn.query(input_list[i])-target_list[i])**2
    plt.scatter(x+1, sum_squared_errors)
  plt.show()
if __name__ == '__main___':
  main()
```

Results

The result shown below is not surprise because the XOR logic problem with no hidden layer and activation function being step function.

Figure 1

Step by step check with excel explains the same as shown below.

Table 1

epoch	sum-squared-error	x1	x2	d	Y	err		delta W12	W11	W12
1	1.000	-1	-1	0	0.000	0.000	0.000	0.000	1.000	-1.000
		-1	1	1	0.000	1.000	-0.100	0.100	0.900	-0.900
		1	-1	1	1.000	0.000	0.000	0.000	0.900	-0.900
		1	1	0	0.000	0.000	0.000	0.000	0.900	-0.900
	2 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.900	-0.900
		-1	1	1	0.000	1.000	-0.100	0.100	0.800	-0.800
		1	-1	1	1.000	0.000	0.000	0.000	0.800	-0.800
		1	1	0	0.000	0.000	0.000	0.000	0.800	-0.800
3	3 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.800	-0.800
		-1	1	1	0.000	1.000	-0.100	0.100	0.700	-0.700
		1	-1	1	1.000	0.000	0.000	0.000	0.700	-0.700
		1	1	0	0.000	0.000	0.000	0.000	0.700	-0.700
2	4 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.700	-0.700
		-1	1	1	0.000	1.000	-0.100	0.100	0.600	-0.600
		1	-1	1	1.000	0.000	0.000	0.000	0.600	-0.600
		1	1	0	0.000	0.000	0.000	0.000	0.600	-0.600
	5 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.600	-0.600
		-1	1	1	0.000	1.000	-0.100	0.100	0.500	-0.500
		1	-1	1	1.000	0.000	0.000	0.000	0.500	-0.500
		1	1	0	0.000	0.000	0.000	0.000	0.500	-0.500
(5 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.500	-0.500
		-1	1	1	0.000	1.000	-0.100	0.100	0.400	-0.400
		1	-1	1	1.000	0.000	0.000	0.000	0.400	-0.400
		1	1	0	0.000	0.000	0.000	0.000	0.400	-0.400
7	7 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.400	-0.400
		-1	1	1	0.000	1.000	-0.100	0.100	0.300	-0.300
		1	-1	1	1.000	0.000	0.000	0.000	0.300	-0.300
		1	1	0	0.000	0.000	0.000	0.000	0.300	-0.300
8	8 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.300	-0.300
		-1	1	1	0.000	1.000	-0.100	0.100	0.200	-0.200
		1	-1	1	1.000	0.000	0.000	0.000	0.200	-0.200
		1	1	0	0.000	0.000	0.000	0.000	0.200	-0.200
ç	9 1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.200	-0.200
		-1	1	1	0.000	1.000	-0.100	0.100	0.100	-0.100
		1	-1	1	1.000	0.000	0.000	0.000	0.100	-0.100
		1	1	0	0.000	0.000	0.000	0.000	0.100	-0.100
10	1.000	-1	-1	0	0.000	0.000	0.000	0.000	0.100	-0.100
		-1	1	1	0.000	1.000	-0.100	0.100	0.000	0.000
		1	-1	1	1.000	0.000	0.000	0.000	0.000	0.000
		1	1	0	0.000	0.000	0.000	0.000	0.000	0.000

(2)

Hand Writing

(2-1) Structure 1

Concept

The basic concept of the code is to build a 3-layer back-propagation structure shown below. This is an expandable basic structure mentioned in the "Make Your Own Neural Network". Note that the indexing is different from which the problem gives. Figure 2

However, modification has to be made to satisfy this problem.

Figure 3

First, make the output layer only one node (one output).

Next, realize the thresholds in activation functions with input -1 and thresholds as weights.

Given $\delta_i = (d_i - Y_i) \cdot f'(\text{net})$ and $f(x) = 1/(1 + e^{-x})$

The activation function is a sigmoid function.

Code (Python)

The code utilizes the concept mentioned above to build an expandable 3-layer neural network structure.

import numpy as np

scipy.special for the sigmoid function expit()

import scipy.special

import matplotlib.pyplot as plt

class neuralNetwork:

```
def init (self, learningrate):
    # w i j, from node i to node j in the next layer
    # theta 3 is the threshold with input -1
    # [W11, W12, W13=0], [W21, W22, W23=0], [theta 31, theta 32, theta 33=1]
    self.wih = np.array([[0.2, -0.4, 0], [0.2, -0.2, 0], [0.8, -0.1, 1]])
    self.who = np.array([[0.1, -0.4, 0.3]])
    # learning rate
    self.lr = learningrate
    # activation function: sigmoid function
    self.activation_function = lambda x: scipy.special.expit(x)
    pass
  def train(self, inputs_list, target):
    # convert inputs list to 2d array
    inputs = np.array(inputs list, ndmin=2).T
    targets = np.array(target, ndmin=1).T # ndmin=1 changed from the
standard
    # calculate signals into hidden layer
    hidden inputs = np.dot(self.wih, inputs)
    # calculate the signals emerging from hidden layer
    hidden outputs = self.activation function(hidden inputs)
    # calculate signals into final output layer
    final inputs = np.dot(self.who, hidden outputs)
    # calculate the signals emerging from final output layer
    final outputs = self.activation function(final inputs)
    # output layer error is the (target - actual)
    output errors = targets - final outputs
    # hidden layer error is the output errors, split by weights, recombined at
hidden nodes
```

```
hidden_errors = np.dot(self.who.T, output_errors)
    # update the weights for the links between the hidden and output layers
    self.who += self.lr * np.dot((output_errors * final_outputs * (1.0 -
final_outputs)), np.transpose(hidden_outputs))
    # update the weights for the links between the input and hidden layers
    self.wih += self.lr * np.dot((hidden_errors * hidden_outputs * (1.0 -
hidden outputs)), np.transpose(inputs))
    pass
  # query the neural network
  def query(self, inputs_list):
    # convert inputs list to 2d array
    inputs = np.array(inputs_list, ndmin=2).T
    # calculate signals into hidden layer
    hidden_inputs = np.dot(self.wih, inputs)
    # calculate the signals emerging from hidden layer
    hidden_outputs = self.activation_function(hidden_inputs)
    # calculate signals into final output layer
    final inputs = np.dot(self.who, hidden outputs)
    # calculate the signals emerging from final output layer
    final outputs = self.activation function(final inputs)
    return final outputs
def main():
  input list = []
  target list = []
  # Number of Epoch
  epoch = 1000
  # learning rate
  learing_rate = 1
```

```
# Inputs & Targets
  input_list.append([-1, -1]); target_list.append(0)
  input_list.append([-1, 1]); target_list.append(1)
  input_list.append([1, -1]); target_list.append(1)
  input_list.append([1, 1]); target_list.append(0)
  # Create an instance of neuralNetwork with the learning rate specified
  nn = neuralNetwork(learing rate)
  # Add the threshold input
  for i in range(len(input list)):
    input_list[i].append(-1)
  # Plot the Sum-Squared Error - Epoch
  plt.axis([0, epoch+1, 0, 1.1])
  plt.title('Sum-Squared Error - Epoch\n Learing Rate = 0.1')
  plt.xlabel('Epoch')
  plt.ylabel('Sum-Squared Error')
  # Train & Plot
  for x in range(0, epoch):
    for i in range(len(input list)):
       nn.train(input_list[i], target_list[i])
    sum squared errors = 0
    for i in range(len(input list)):
      sum squared errors += (nn.query(input list[i])-target list[i])**2
    plt.scatter(x+1, sum squared errors)
  plt.show()
if __name__ == '__main___':
  main()
```

Results

For the learning rate 0.1 specified by the problem, as shown below, the sum-squared error is still 0.2 even when epoch goes to 1000.

Figure 4

To show the convergence, increase the epoch to 3000 as shown below.

Figure 5

Now increase the learning rate to 1. The sum-squared error converges much more rapidly as shown below compared to Figure 5.

Figure 6

(2-2) Structure 2

Concept

The Structure is not a basic type defined in Structure 1. The code will not build an expandable structure for simplicity.

Code (Python)

import numpy as np

scipy.special for the sigmoid function expit()

import scipy.special

import matplotlib.pyplot as plt

class neuralNetwork:

```
def __init__(self):
    self.w31 = 0.2
    self.w32 = -0.4
    self.w41 = 0.2
    self.w42 = -0.2
    self.w43 = -0.4
    self.w43 = -0.4
    self.theta3 = 0.8
    self.theta4 = 0.3
    self.learningRate = 0.1
    pass
  def train(self, x1, x2, target):
    net3 = x1*self.w31+x2*self.w32-self.theta3
    y3 = scipy.special.expit(net3)
    net4 = x1*self.w41+x2*self.w42+y3*self.w43-self.theta4
    Y = scipy.special.expit(net4)
    error4 = (target - Y)* scipy.special.expit(net4)* (1 - scipy.special.expit(net4))
    error3 = error4* self.w43* scipy.special.expit(net3)* (1 -
scipy.special.expit(net3))
    self.w43 += self.learningRate* error4* y3
    self.w41 += self.learningRate* error4* x1
    self.w42 += self.learningRate* error4* x2
    self.w31 += self.learningRate* error3* x1
    self.w32 += self.learningRate* error3* x2
    self.theta3 += -self.learningRate* error3
```

```
self.theta4 += -self.learningRate* error4
                pass
        def query(self, x1, x2):
                net3 = x1*self.w31+x2*self.w32-self.theta3
                y3 = scipy.special.expit(net3)
                net4 = x1*self.w41+x2*self.w42+y3*self.w43-self.theta4
                Y = scipy.special.expit(net4)
                return Y
def main():
        epoch = 10000
        plt.axis([0, epoch+1, 0, 1.5])
        plt.title('Sum-Squared Error - Epoch\n Learing Rate = 0.1')
        plt.xlabel('Epoch')
        plt.ylabel('Sum-Squared Error')
        for x in range(0, epoch):
                nn = neuralNetwork()
                nn.train(-1, -1, 0)
                nn.train(-1, 1, 1)
                nn.train(1, -1, 1)
                nn.train(1, 1, 0)
                sum_squared_errors = (0 - nn.query(-1,-1))**2+(1 - nn.query(-1,1))**2+(1 - n
nn.query(1,-1))**2+(0-nn.query(1,1))**2
                plt.scatter(x+1, sum_squared_errors)
        plt.show()
if __name__ == '__main___':
        main()
```

Result

The sum-squared error will not converge as shown below.

Figure 7

