OpenBuildingControl

Team meeting

Michael Wetter
Philip Haves
Jianjun Hu
Milica Grahovac

November 15, 2018

Lawrence Berkeley National Laboratory

Upcoming deadlines

By Q6, demonstrate with an actual measured control response that the controls verification can signal satisfied, undecided, and violated test results.

By Q7, release a version of the control library for primary systems, facade and lighting in Modelica on http://github.org/lbl-srg/modelica-buildings.

By Q7, release first version of the controls verification test module.

By Q8, release case study report.

By Q8, demonstrate importing and exporting CDL in the control design tool. Todo: Render connections that overlap or connect to the same input/output.

By Q8, write first version of commercialization and market transformation plan with the goal to show value and obtain commitment from large owners and design firms for the process.

Verification test with a measured control response - Sequence specification

We validated a **trended output** of a control sequence that defines the **cooling coil valve** position.

The cooling coil valve sequence is a part of the ALC EIKON control logic implemented in building 33 at LBNL.

CDL specification

ALC EIKON specification

Verification test with a measured control response - ALC EIKON parameter collection

We recorded ALC EIKON sequence parameters and input trends with a 5s interval:

- Supply air temperature [F]
- Supply air temperature setpoint [F]
- Outdoor air temperature [F]
- VFD fan enable status [0/1]
- VFD fan feedback [%]

ALC outdoor air temperature hysteresis to enable/disable the controller

ALC PI controller parameters

Verification test with a measured control response - Conducting the verification

Verification test with a measured control response -Verification results

Verification test with a measured control response - Verification results using the funnel tool

Primary sequence implementation I

- Developed a typical plant control schematics and sequences based on "ASHRAE Fundamentals of Chilled Water Plant Design and Control SDL, Chapter 7. Controls":
 - 2 chillers, 2 CT, 2 CHWP, 2 CWP

Included water side economizer in the package

Primary sequence implementation II

Next steps:

- Comply with latest ASHRAE RP-1711 primary sequences document
- Create top level user facing controllers
- Review the package and include in the library

Case study I

Chiller plant in a commercial office building in Hacienda Business Park in Pleasanton, California

Control design by Taylor Engineering

Plant consists of:

- 2 x 310 ton screw chillers
- 2 x CWP, CHP
- 2 x CT
- 1 x WS economizer HE

Chiller plant specifics:

2 identical scroll chillers, cooling towers and chilled water pumps Water side economizer

Trend data specs

- ~50 data points
- 1 minute interval data for Jun 22 July 10 2018
- 5 minute interval data for Mar 11 Jun 2 2018
- multiple operation stages

Eikon equipment view

Case study II

Plant schematics with a WSE

Case study III

Only one sequence or whole plant control?

Approach

- Introduce case study specific edits to primary sequences
- Pick a sequence for conducting the verification test (e.g. WSE control)
- Implement sequence verification with trended data. The method is the same as used for the cooling valve verification example

ALC EIKON implementation of the WSE sequence

Sequence translation tool

"modelica-json": parse control sequences written in Modelica to JSON, and from JSON to other format, such as html, to graphical rendering

- different parsing modes:
 - "cdl": ensure models following cdl syntax
 - "modelica": general modelica syntax
- graphical annotation
 - provide graphical layout for display in block diagram editors (Modelica or actual control platforms)
 - generate graphical diagram for inclusion in documentation (in svg format)
 - render both icon and diagram layer

Update about commercialization plan (separate slides)