高某人的代数拓扑随笔

Infty

二〇二三年九月二十六日

文章导航

1 基本群 3

前言

开坑时间:2023.9.17

在我看来,数学书(包括论文)是最晦涩难懂的读物。将一本几百页的数学书从头到尾读一遍更是难上加难。翻开数学书,定义、公理扑面而来,定理、证明接踵而至。数学这种东西,一旦理解则非常简单明了,所以我读数学书的时候,一般都只看定理,努力去理解定理,然后自己独立思考数学证明。不过,大多数情况下都是百思不得其解,最终只好参考书中的证明。然而,有时候反复阅读证明过程也难解其意,这种情况下,我便会尝试在笔记本中抄写这些数学证明。在抄写过程中,我会发现证明中有些地方不尽如人意,于是转而寻求是否存在更好的证明方法。如果能顺利找到还好,若一时难以觅得,则多会陷入苦思,至无路可走、油尽灯枯才会作罢。按照这种方法,读至一章末尾,已是月余,开篇的内容则早被忘到九霄云外。没办法,只好折返回去从头来过。之后,我又注意到书中整个章节的排列顺序不甚合理。比如,我会考虑将定理七的证明置于定理三的证明之前的话,是否更加合适。于是我又开始撰写调整章节顺序的笔记。完成这项工作后,我才有真正掌握第一章的感觉,终于送了一口气,同时又因太耗费精力而心生烦忧。从时间上来说,想要真正理解一本几百页的数学书,几乎是一件不可能完成的任务。真希望有人告诉我,如何才能快速阅读数学书。

1 基本群 第 3 页

1 基本群

定义 1.1: 同伦

 $\sigma, \tau: I \to X$ 是空间 X 的道路, 且拥有相同的起点和终点, $\sigma(0) = \tau(0) = x_0, \sigma(1) = \tau(1) = x_1$ 我们称 σ 和 τ 是同伦的.(记为 $\sigma \simeq \tau$ $rel\{0,1\}$) 当且仅当如果有一个连续映射满足

$$F: I \times I \to Xs.t. F(s,0) = \sigma(s), F(s,1) = \tau(s), \forall s \in I$$

$$F(0,t) = x_0, F(1,t) = x_1, \forall t \in I$$

F 被称作一个从 σ 到 τ 的同伦. 对于每个 $t,s \to F(s,t)$ 是一个从 x_0 到 x_1 的道路 F_t , 并且 $F_0 = \sigma, F_1 = \tau$ 我们也写做 $F_t: \sigma \simeq \tau$ $rel\{0,1\}$

定义 1.2: 零伦

尤其的, 如果 σ 是一个环路 ($\sigma(0) = \sigma(1) = x_0$), 而且 c_{x_0} 是一个连续的环 (实际上是退化成一个点) 对于所有的 $s \in I$ 都有 $c_{x_0}(s) = x_0$, 我们称 σ 是同伦平凡或零伦

注意 c_{x_0} 不是一个映射, 而是一个退化的道路 (一个点)

命题 1.1

道路的定端同伦 ~ rel{0,1} 是一种等价关系

- 1. 对于任意的道路 $\sigma, \sigma \simeq rel\{0,1\}$
- 2. $\sigma \simeq \tau \ rel\{0,1\} \Rightarrow \tau \simeq \sigma \ rel\{0,1\}$
- 3. $\sigma \simeq \tau \ rel\{0,1\}, \tau \simeq \rho \ rel\{0,1\} \Rightarrow \sigma \simeq \rho \ rel\{0,1\}$

说来想要证明这些, 最核心的部分就是找到这个存在的 F 映射就好.

(1). 自反性的证明是显然的

$$\sigma \stackrel{F}{\simeq} \sigma, F: I \times I \to X, F(s,t) = \sigma(s), \forall (s,t) \in I \times I$$

(2). 互反性的证明也并不难, 道路正着走一遍, 反着走一遍就好了.

$$\sigma \stackrel{F}{\simeq} \tau \{0,1\}, G(s,t) = F(s,1-t)$$

(3). 传递性构造 F 似乎要稍微复杂一点.

$$H:I\times I\to X, H(s,t)=\left\{\begin{array}{ll}F(s,2t)&0\leq t\leq\frac{1}{2}\\G(s,2t-1)&\frac{1}{2}\leq t\leq1\end{array}\right.$$

因为 $F(s,1) = \tau(s) = G(s,0)$, 根据粘接引理,H 是连续的, 验证之后得到 H 满足顶端同伦的条件, 传递性证明完毕.

我们一直是为了构造一个群,因此定义良好的乘积运算是必须的.

定义 1.3: 道路乘积

 σ 是一个从 x_0 到 x_1 的道路, τ 是一个从 x_1 到 x_2 的道路, 定义两个道路的乘法为:

$$\sigma * \tau(s) = \begin{cases} \sigma(2s) & 0 \le s \le \frac{1}{2} \\ \tau(2s-1) & \frac{1}{2} \le s \le 1 \end{cases}$$

此时 $\sigma * \tau(0) = \sigma(0), \sigma * \tau(1) = \tau(1)$ 文个相当于把两条道路拼接起来.

命题 1.2

假设 $\sigma \stackrel{F}{\simeq} \sigma' \ rel\{0,1\}, \tau \stackrel{G}{\simeq} \tau' \ rel\{0,1\},$ 有

$$\sigma * \tau \overset{H}{\simeq} \sigma' * \tau' \ rel\{0,1\}, where \ H(s,t) = \left\{ \begin{array}{ll} F(2s,t) & 0 \leq s \leq \frac{1}{2} \\ G(2s-1,t) & \frac{1}{2} \leq s \leq 1 \end{array} \right.$$

粘接引理 H 是连续的.

展开说明一下为什么在这个映射下同伦.

$$F(s,0) = \sigma, F(s,1) = \sigma', F(0,t) = x_0, F(1,t) = x_1$$

$$G(s,0) = \tau, G(s,1) = \tau', G(0,t) = x_1, G(1,t) = x_2$$

 $H(s,0) = \sigma * \tau$, 这个在前半段 $0 \le s \le \frac{1}{2}$ 是 σ , 后半段是 τ

$$H(s,1) = \sigma' * \tau'$$

$$H(0,t) = F(0,t) = x_0$$

$$H(1,t) = G(1,t) = x_2$$

故同伦.

这个乘法的定义是良好的, 因为有 $[\sigma][\tau] = [\sigma * \tau]$

定理 1.1: 基本群

假设 $\pi_1(X,x_0)=\{[\sigma]|\sigma$ 是环路 $\}$ 是一个在 x_0 点的同伦类. 乘积定义如上, 单位元的定义为 $[c_{x_0}]$, 逆元的定义为

$$\sigma^{-1}(t) = \sigma(1-t), 0 \le t \le 1$$

那么, 这是一个群

验证群的话, 需要验证三条性质, 结合律, 单位元, 逆元.

首先是结合律

 $\forall [\sigma], [\tau], [\omega] \in \pi_1(X, x_0)$,则需要证明 $([\sigma][\tau])[\omega] = [\sigma]([\tau][\omega])$ 也就是说证明 $[\sigma * \tau][\omega] = [\sigma][\tau * \omega]$ 而如果我记作 $A = \sigma * \tau \simeq \omega \ rel\{0,1\}, B = \tau * \omega \simeq \sigma \ rel\{0,1\},$ 那么就相当于证明 $A * \omega \simeq \sigma * B \ rel\{0,1\},$ 而这在验证乘法良好定义的时候已经证明过了.

单位元也是同样的道理: $[\sigma][c_{x_0}] = [\sigma] = [c_{x_0}][\sigma]$, 这很容易验证.

1 基本群 第 5 页

逆元也是一样的, $[\sigma][\sigma^{-1}] = [c_{x_0}] = [\sigma^{-1}][\sigma]$, 这个相当于证明 $\sigma * \sigma^{-1} \simeq c_{x_0} \simeq \sigma^{-1} \ rel\{0,1\}$, 看成是证明 $\sigma * \sigma^{-1} \simeq c_{x_0} c_{x_0} \simeq \sigma^{-1} \ rel\{0,1\}$ 就和上面是一样的了

为什么基本群都是环路类,因为如果不是环路类,那么乘法的定义会不好,也就是可能两条道路拼接不上.那么如果我只把能拼接上的纳入群,也会导致单位元找不到,因此基本群总是环路类.

命题 1.3

 α 是一个从 x_0 到 x_1 的道路, 这个映射 $[\sigma] \to [\alpha^{-1} * \sigma * \alpha]$ 是一个同构, 记为 $\alpha_\#: \pi_1(X,x_0) \to \pi_1(X,x_1)$

这个证明是容易的,首先证明这个映射的定义是良好的.

 $\forall [\sigma] \in \pi_1(X, x_0)$, 如果有 $[\sigma] = [\sigma'] \Leftrightarrow \sigma \simeq \sigma' \ rel\{0, 1\}$, 我们有 $\alpha^{-1} * \sigma * \alpha \simeq \alpha^{-1} * \sigma' * \alpha \ rel\{0, 1\} \Leftrightarrow \alpha_\#[\sigma] = \alpha_\#[\sigma']$. 这个用乘法定义良好去证明就好了,像脱式运算一样脱.

之后证明

$$\alpha_{\#}([\sigma_{1}][\sigma_{2}]) = \alpha_{\#}([\sigma_{1}*\sigma_{2}]) = [\alpha^{-1}*\sigma_{1}*\sigma_{2}*\alpha] = [\alpha^{-1}*\sigma_{1}*\alpha*\alpha^{-1}*\sigma_{2}*\alpha] = [\alpha^{-1}*\sigma_{1}*\alpha][\alpha^{-1}*\sigma_{2}*\alpha] = \alpha_{\#}([\sigma_{1}])\alpha_{\#}([\sigma_{2}])$$
所以这是个同态映射.
可以证明:

- 1. $(c_{x_0})_{\#} = 1_{\pi_1}(X, x_0) : \pi_1(X, x_0) \to \pi_1(X, x_0)$
- 2. 如果 β 是从 x_1 到 x_2 的道路, 那么 $(\alpha * \beta)_{\#} = \beta_{\#}\alpha_{\#}$
- 3. 如果 $\alpha \simeq \alpha' \ rel\{0,1\}$, 那么 $\alpha_\# = \alpha'_\#$

显然会有 $(\alpha^{-1})_{\#}$ 是 $\alpha_{\#}$ 的逆映射, 因此 $\alpha_{\#}$ 是同构

推论 1.1

如果 X 是道路连通的,那么群 $\pi_1(X,x_0)$ 在同构意义下独立于点 x_0 。在这种情况下,我们通常简单地用 $\pi_1(X)$ 来代替 $\pi_1(X,x_0)$,并称其为 X 的基本群。

1 基本群 第 6 页

定义 1.4: 范畴

范畴 € 满足以下条件:

- 1. 存在一类对象 X, Y, \cdots (例如拓扑空间、群等)。
- 2. 对于每一对对象 X,Y,存在态射集合 hom(X,Y)。如果 $f:X\to Y$ 和 $g:Y\to Z$ 是态射,那么存在一个元素 $g\circ f\in hom(X,Z)$,满足以下条件:
 - (a) 结合律: $(h \circ g) \circ f = h \circ (g \circ f)$ 。
 - (b) 单位元: 对于每个对象 Y,存在一个态射 $1_Y \in \text{hom}(Y,Y)$ 使得,对于任何态射 $f: X \to Y$ 和 $g: Y \to Z$,都有 $1_Y \circ f = f$ 且 $g \circ 1_Y = g$ 。

两个对象 X,Y 被称为等价的(或同构的),如果存在态射 $f \in \text{hom}(X,Y)$ 和 $g \in \text{hom}(Y,X)$ 使得 $g \circ f = 1_X$ 且 $f \circ g = 1_Y$ 。f 和 g 被称为等价态射或同构。

定义 1.5: 函子

一个函子 F 从范畴 \mathcal{C} 到范畴 \mathcal{D} 是一个映射,满足:

- 1. 对于 \mathcal{C} 中的每一个对象 X,都有一个 \mathcal{D} 中的对象 F(X)。
- 2. 对于 \mathcal{C} 中的每一对对象 X,Y 和每一个态射 $f:X\to Y$,都有一个 \mathcal{D} 中的态射 $F(f):F(X)\to F(Y)$,并且满足:
 - (a) $F(1_X) = 1_{F(X)}$
 - (b) $F(g \circ f) = F(g) \circ F(f)$

定义 1.6: 协变函子

如果 \mathscr{C} 和 \mathscr{D} 是两个范畴,那么函子 $T:\mathscr{C}\to\mathscr{D}$ 是一个函数,满足:

- 1. 对于每个 \mathscr{C} 中的对象 X, 都有 $T(X) \in \mathscr{D}$ 。
- 2. 对于每个态射 $f: X \to Y$,都有一个态射 $T(f): T(X) \to T(Y)$,满足:
 - (a) $T(1_Y) = 1_{T(Y)}$
 - (b) $T(g \circ f) = T(g) \circ T(f)$

1 基本群 第7页

定义 1.7: 反变函子

一个函子 K 被称为反变函子,如果对于所有的对象 X,Y 和态射 $f:X\to Y$,都有态射 $K(f):K(Y)\to K(X)$,满足:

- 1. $K(1_Y) = 1_{K(Y)}$
- 2. $K(g \circ f) = K(f) \circ K(g)$

定义 1.8: 诱导映射 f_* 的定义

设 $f:(X,x_0)\to (Y,y_0)$ 是一个基点保持的连续映射,即 $f(x_0)=y_0$ 。该映射 f 诱导出一个群同态

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

定义为

$$f_*([\sigma]) = [f \circ \sigma]$$

其中 $[\sigma]$ 是 X 中以 x_0 为基点的路径的同伦等价类,

$$f \circ \sigma$$

是 Y 中以 y_0 为基点的路径。

这个定义确保了如果 $\sigma \simeq \sigma' \operatorname{rel} \{0,1\}$, 那么 $f \circ \sigma \simeq f \circ \sigma' \operatorname{rel} \{0,1\}$, 从而确保 f_* 是良定义的。

定理 1.2: 诱导同态的性质

设 $f:(X,x_0)\to (Y,y_0)$ 是一个基点保持的连续映射。则 f 诱导出一个群同态 $f_*:\pi_1(X,x_0)\to \pi_1(Y,y_0)$,满足以下性质:

- 1. (常值映射) 如果 $c: X \to Y$ 是一个常值映射,即 $c(x) = y_0$ 对于所有 $x \in X$,则由 c 诱导的同态 $c_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ 是平凡的(即将所有元素映射到单位元)。
- 2. (恒等映射)对于 X 上的恒等映射 $\mathrm{id}_X: X \to X$, 由 id_X 诱导的同态 $(\mathrm{id}_X)_*: \pi_1(X,x_0) \to \pi_1(X,x_0)$ 是恒等映射。
- 3. (复合映射)设 $g:(Y,y_0)\to (Z,z_0)$ 是另一个基点保持的连续映射,则 $(g\circ f)_*=g_*\circ f_*:\pi_1(X,x_0)\to\pi_1(Z,z_0)$ 。

推论 1.2

 $\pi_1()$ 是拓扑不变量, 如果 $(X, x_0) \cong (Y, y_0), \pi_1(X, x_0) \cong \pi_1(Y, y_0)$ 也就是说, 如果拓扑空间是同胚的, 那么诱导出的基本群是同构的.

1 基本群 第 8 页

定义 1.9

考虑一个路径 $\sigma: I \to X$, 其中 I 是单位区间 [0,1], X 是一个拓扑空间。

一个重新参数化 $\sigma \phi$ 是通过一个连续函数 $\phi: I \to I$ 来定义的,满足 $\phi(0) = 0$ 和 $\phi(1) = 1$ 。

重新参数化一个路径不会改变其同伦类。这意味着,如果你有一个路径 σ ,并对其进行重新参数化得到 $\sigma\phi$,那么 σ 和 $\sigma\phi$ 是同伦等价的。

定义 1.10: 同伦映射

给定映射 $f,g:Y\to X,A\subset Y$, 满足 $f_A=g_A$, 我们说 f 和 g 是关于 A 同伦的, 记作 $f\simeq g$ rel A, 如果存在 $F:Y\times I\to X$ 满足:

- 1. $F(y,0) = f(y), F(y,1) = g(y), \forall y \in Y$
- 2. $F(y,t) = f(y) = g(y), \forall y \in A, t \in I$

如果 A 是空集, 那么我简单写成 $f \simeq g, f, g$ 是同伦的

定义 1.11: 可缩空间

一个空间 X 是可缩的, 当且 X 上的单位映射在 X 上的一些点上同伦于常值映射. $1_x \simeq c_{x_0}$

推论 1.3

可缩空间被称为单连通的.

命题 1.4

给定 $F:I\times I\to X$. 给定 $\alpha(t)=F(0,t), \beta(t)=F(1,t), \gamma(s)=F(s,0), \delta(s)=F(s,1), \forall s\in I, t\in I$ 那么 $\gamma\stackrel{H}{\simeq}\alpha*\delta*\beta^{-1}\ rel\ \{0,1\}$

讲义中给了一个简短的证明, 现在先不写呢

1 基本群 第 9 页

推论 1.4

让 $f,g:Y\to X$ 是同伦的映射,那么存在 $F:Y\times I\to X$,其中 $y_0\in Y, x_0=f(y_0), x_1=g(y_0)$,如 果 $\alpha:I\to X$ 是 $\alpha(t)=F(y_0,t), t\in I$,那么有 $\alpha_\# f_*=g_*$,使得下面的这个交换图成立

这个条件下, f_* 是同构当且仅当 g_* 是一个同构. 此外, 如果 $f \simeq g$ rel $\{y_0\}: Y \to X$, 那么 $f_* = g_*: \pi_1(Y \to y_0) \to \pi_1(X, x_0)$

定义 1.12

一个映射 $f: Y \to X$ 被称为一个同伦等价, 当且存在一个映射 $f': X \to Y$ 满足:

$$ff' \simeq 1_X, f'f \simeq 1_Y$$

如果这样的 f 存在, 我们称 X 和 Y 是同伦等价空间: $X \simeq Y$

推论 1.5

如果 $f:Y\to X$ 是一个同伦等价, 那么 $f_*:\pi_1(Y,y_0)\to\pi_1(X,f(y_0))$ 是一个同构, 对于所有的 $y_0\in Y$

定义 $S^1 = \{e^{it} \mid t \in \mathbb{R}\} = \{z \in \mathbb{C} \mid |z|^2 = 1\}$. 那么有一个同态映射 $\phi : \mathbb{R} \to S^1, \phi(x) = e^{i2\pi x}, x \in \mathbb{R}, \phi$ 是一个开的映射 $\phi^{-1}(1) = \mathbb{Z} \subset \mathbb{R}$ 并且

$$\phi:(-\frac{1}{2},\frac{1}{2})\stackrel{\simeq}{\to} S^1\backslash\{-1\}$$

命题 1.5

如果 σ 是一条 S^1 中的道路, 初始点为 1, 那么会有唯一一条道路 $\sigma' \in \mathbb{R}$ 初始点为 0, 使得 $\phi(\sigma') = \sigma(\sigma')$ 被称为 σ 的提升)

1 基本群 第 10 页

命题 1.6: 覆盖同伦引理

如果 τ 是 S^1 的一条道路, 初始点为 1, 满足:

$$F: \sigma \simeq \tau \ rel \ \{0,1\}$$

那么有一个唯一的 $F': I \times I \to \mathbb{R}$ 满足:

$$F'\sigma' \simeq \tau' \ rel\{0,1\}, \phi(F') = F$$

推论 1.6

提升 σ' 的终点只取决于道路 σ 的同伦类

定理 1.3

这个映射 $\mathcal{X}: \pi_1(S^1, 1) \to \mathbb{Z}$ 是一个同构: $\pi_1(S^1, 1) \simeq \mathbb{Z}$

定义 1.13: 拓扑群

一个拓扑群 G 同时是拓扑空间当且满足如下映射是连续的:

$$G \times G \to G, (x, y) \mapsto xy$$

 $G \to G, x \mapsto x^{-1}$

定理 1.4

如果 G 是一个单连通的拓扑群,H 是一个离散的正规子群,那么 $\pi_1(G/H,eH) \cong H$

推论 1.7

环面 T 同胚于 $S^1 \times S^1$, 其中 S^1 是单位圆。因此,环面 T 的基本群是 $\pi_1(T) \cong \mathbb{Z} \times \mathbb{Z}$ 。这意味着,环面上的闭路径类可以由两个整数唯一标识,这两个整数分别对应于环面上的两个独立的环绕方向。此外,环面 T 可以被视为 \mathbb{R}^2 中的格点 $\mathbb{Z} \times \mathbb{Z}$ 对 \mathbb{R}^2 的商空间,即 $T \cong (\mathbb{R} \times \mathbb{R})/(\mathbb{Z} \times \mathbb{Z})$ 。

命题 1.7

给定两个带定点的空间 $(X, x_0), (Y, y_0),$ 我们有

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

1 基本群 第 11 页

定义 1.14: 收缩和收缩映射

 $A \not\in X$ 的一个子空间, $A \not\in X$ 的收缩当且存在一个收缩映射 $r: X \to A$, 满足 $ri = 1_A$ (等价于 $r|_{A}=1_A$), 其中 $i: A \to X$ 是一个含入映射.

A 是一个变形收缩, 当且存在一个收缩映射 $r: X \to A$, 满足 $ri = 1_A, ir \simeq 1_X$

A 是一个变形收缩, 当且存在一个收缩映射 $r: X \to A$, 满足 $ri = 1_A, ir \simeq 1_X rel A$

定理 1.5

 S^1 不是闭单位圆盘 D^2 的收缩.

定理 1.6

任何连续映射 $f: D^n \to D^n$ 都有一个定点, 即 $\exists x \in D^n$, 满足 f(x) = x

定理 1.7

U,V 是 X 的两个开子集,满足 $U\cap V\neq \varphi,U\cup V=X$ 并且 $U\cap V$ 都是道路联通的. 对于任意的 $x_0\in U\cap V$,我们有

$$\pi_1(X, x_0) \cong \pi_1(U, x_0) * \pi_1(V, x_0)/N$$

其中 N 是由 $(i_{1*}[\sigma])^{-1} \cdot i_{2*}[\sigma], \forall [\sigma] \in \pi_1(U \cap V, x_0)$ 生成的 $\pi_1(U, x_0) * \pi_1(V, x_0)$ 的正规子群

$$N = \langle (i_{1*}[\sigma])^{-1} \cdot i_{2*}[\sigma] \mid \forall [\sigma] \in \pi_1(U \cap V, x_0) \rangle$$