Scilab Textbook Companion for Solid State Physics by P. K. Palanisamy¹

Created by
Ankush Kumar Bedyal
Solid State Physics
Physics
Shri Mata Vaishno Devi University
College Teacher
Dr. Vinay Kumar
Cross-Checked by
Lavitha Pereira

November 8, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Physics

Author: P. K. Palanisamy

Publisher: Scitech Publication (India) Pvt. Ltd., Chennei

Edition: 1

Year: 2004

ISBN: 8188429279

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Bonding in Solids	7
2	Crystal Structure	10
3	Crystal Planes and Defects	15
4	Line Defects and Crystal Structure Determination	24
5	Principles of Quantum Mechanics	30
6	Electron Theory of Metals	38
7	Dielectric Properties	45
8	Magnetic Properties	50
9	Semiconductors	56
10	Superconductivity	69
11	Lasers	71
12	Fibre Optics	73

List of Scilab Codes

Exa 1.1	Stability of gaseous molecules	7
Exa 1.2	Energy and separation in KCl ion pair	8
Exa 1.3	Bond energy of NaCl molecule	8
Exa 2.1	Maximum radius of interstitial sphere in BCC	10
Exa 2.2	Volume Phase change BCC to FCC	10
Exa 2.3	Calculation of volume and density of Zinc	11
Exa 2.4	Maximum radius of interstitial sphere in FCC	12
Exa 2.5	Density of diamond	12
Exa 2.6	Distance between two adjacent atoms in NaCl	13
Exa 2.7	Density of copper crystal	13
Exa 3.1	Number of atoms per square mm in SC	15
Exa 3.2	Maximum radius of sphere in BCC lattice	16
Exa 3.3	Volume change during BCC to FCC	16
Exa 3.4	Volume and density of unit cell in HCP Zn structure .	17
Exa 3.5	Interplanar spacing in 110 and 212 planes in FCC lattice	18
Exa 3.6	Ratio of interplanar spacing in SC lattice	19
Exa 3.7	Miller indices of a plane in SC lattice	19
Exa 3.8	Ratio of vacancies in metal	20
Exa 3.9	Fraction of vacancy sites in metal	21
Exa 3.10	Average energy required to create Schottky defect	21
Exa 3.11	Ratio of vacancies in metal to create Frenkel defect	22
Exa 4.1	Wavelength of X ray and order of diffraction	24
Exa 4.2	Ratio of interplanar spacing in simple cube	25
Exa 4.3	Wavelength of X ray from Bragg Law	25
Exa 4.4	Interatomic spacing	26
Exa 4.5	Glancing angle for second order diffraction	27
Exa 4.6	Distance between two adjacent atoms in NaCl	27
Exa 4.7	Distance between 110 plane	28

	5	
LAG 0.0	Calculation of temperature using classical statistics	, ()
Exa 8.5		53
Exa 8.4	·	52
Exa 8.3		51
Exa 8.1 Exa 8.2	1	60
Exa 7.7 Exa 8.1		69 60
Exa 7.0 Exa 7.7		ŧс [9
Exa 7.6	ı v	18 18
Exa 7.4 Exa 7.5		ŧ1 [7
Exa 7.3 Exa 7.4		10 17
Exa 7.2 Exa 7.3	1	ьо 16
Exa 7.1 Exa 7.2	1	ьэ 15
Exa 0.12 Exa 7.1		14 15
Exa 6.11		ьо [4
Exa 6.10	1	⊧о [3
Exa 6.10	1	ι2 [3
Exa 6.9	1	₽1 ₽2
Exa 6.7	Energy level for electron confinement and equivalent	11
Exa 6.5		1
Exa 6.4	v e	10 11
Exa 6.3		
	<i>y</i> 0	39 39
Exa 6.1 Exa 6.2	v v	88
Exa 5.14	v v v v v v v v v v v v v v v v v v v	37
Exa 5.13		36
Exa 5.12	v 90	36
Exa 5.11		35 6
Exa 5.10	St.	35 •=
Exa 5.9		34
Exa 5.8	\sim	3
Exa 5.7		33
Exa 5.6	y	32
Exa 5.5		32
Exa 5.4	$^{\circ}$	31
Exa 5.3		31
Exa 5.2		80
Exa 5.1	0 1	80
Exa 4.8		82

Exa 8.6	Saturation magnetization 5	3
Exa 8.7	Magnetic moment of nickel in Bohr Magneton 5	4
Exa 9.1	Resistivity	6
Exa 9.2	Determination of Fermi level	6
Exa 9.3	Number of intrinsic carriers at 300K 5	7
Exa 9.4	Resistivity of Ge sample	8
Exa 9.5		8
Exa 9.6		9
Exa 9.7	Electron and hole concentration in silicon 6	0
Exa 9.8	Temperature that shift the fermi level 6	60
Exa 9.9	Conductivity of intrinsic silicon at 300 K 6	1
Exa 9.10	Conductivity and Position of Ef above the intrinsic level 6	2
Exa 9.11	Intrinsic carrier concentration and conductivity in ger-	
	manium	3
Exa 9.12	Forbidden energy band gap 6	64
Exa 9.13	Hall Voltage of a semiconductor 6	5
Exa 9.14	Hall coefficient of a semiconductor 6	5
Exa 9.15	Mobility density and nature of semiconductor 6	6
Exa 9.16	Hall Voltage	7
Exa 9.17	Mobility and number of Charge carrier 6	7
Exa 10.1	Critical field	9
Exa 10.2	Critical current and Critical field 6	9
Exa 11.1	Ratio of relative population	1
Exa 11.2	Energy of excited state of laser system	2
Exa 12.1		3
Exa 12.2	V and mode of optical fibre	4
Exa 12.3	Loss in signal	4

Chapter 1

Bonding in Solids

Scilab code Exa 1.1 Stability of gaseous molecules

```
1 // Scilab Code Ex1.1 : Page -1.8 (2004)
2 clc; clear;
                       // Avogadro Number; /mol
3 N = 6.022e + 23;
4 E_A = 502;
                       // First ionization energy of A
     atom, kJ/mol
5 E_B = -335;
                  // Electron affinity for B atom,
     kJ
6 r = 3e-10;
                   // Velocity of the particle at the
      mean position, angstrom
7 E_o = 8.85e-12; // Permittivity of free space, C/N^2
     m^2
8 e = 1.6e-19; // Electronic charge, C
9 E_C = N*(-e^2)/(4*\%pi*E_o*r)*1e-03; // The
     coulombic electrostatic attaction energy, kJ/mol
10 E = E_A + E_B + E_C; // Net change in energy per
     mol, kJ/mol
11 printf("\nNet change in energy per mol = %3d kJ/mol"
12 disp("Since net change in energy is negative, the
     molecule A+B- is stable.");
13
```

```
14 // Result
15 // Net change in energy per mol = -295 \, \mathrm{kJ/mol}
16 // Since net change in energy is negative, the
molecule A+B— is stable.
```

Scilab code Exa 1.2 Energy and separation in KCl ion pair

```
1 // Scilab Code Ex1.2 : Page -1.8 (2004)
2 clc; clear;
               // Ionization energy of K, eV
3 A = 4.1;
              // Electron affinity of Cl, eV
4 B = 3.6;
5 C = A - B; // Net energy to produce the ion pair,
      eV
          // Coulomb energy, eV
6 E = C;
7 e = 1.6e-19; // Electronic charge, C
8 E_o = 8.85e-12; // Permittivity of free space, C/N^2
     m^2
9 R = e/(4*\%pi*E_o*C); // R is the separation
     between K and Cl , nm
10 printf("\nThe coulomb energy E = \%3.1 \text{ f eV}", E);
11 printf("\nSeparation between K and Cl, R = \%4.2 f \text{ nm}"
      , R/1e-09);
12
13 // Result
14 // The coulomb energy E = 0.5 \text{ eV}
15 // Separation between K and Cl, R = 2.88 nm
```

Scilab code Exa 1.3 Bond energy of NaCl molecule

```
1 // Scilab Code Ex1.3 : Bond energy of NaCl molecule
    Page-1.9 (2004)
2 clc; clear;
3 A = 5.14; // Ionization energy of Na, eV
```

Chapter 2

Crystal Structure

Scilab code Exa 2.1 Maximum radius of interstitial sphere in BCC

```
1 // Scilab Code Ex2.1 Page-2.21 (2004)
2 clc; clear;
3 r = 1; // For simplicity assume radius of atom to
        be unity, unit
4 a = 4*r/sqrt(3); // Lattice constant, unit
5 R = (a-2*r)/2; // R be the radius of
        interstitial sphere that can fit into void, unit
6
7 printf ("\nRadius of interstitial sphere that can
        fit into void R = %5.3 fr", R);
8
9 // Result
10 // Radius of interstitial sphere that can fit into
        void R = 0.155 r
```

Scilab code Exa 2.2 Volume Phase change BCC to FCC

```
1 // Scilab Code Ex2.2 : Page -2.22 (2004)
```

```
2 clc; clear;
3 \text{ r1} = 1.258e-10; // Radius of atom for BCC, m
4 = 4*r1/(3^{(0.5)}); // Lattice constant for BCC
     atom, m
5 V_bcc = a^3; // Volume of unit cell of BCC, in m^3
6 V_one = V_bcc/2; // Volume occupied by one atom in
     BCC, in m<sup>3</sup>
7 \text{ r2} = 1.292 \text{e} - 10; // Radius of atom for FCC, m
8 b = 2*(sqrt(2))*r2 // Lattice constant for FCC
     atom
9 V_fcc = b^3; // Volume of unit cell of FCC, in m^3
10 V_two = V_bcc/4; // Volume occupied by one atom in
     FCC, in m<sup>3</sup>
11 DV = (V_one-V_two)/V_one; // Change in volume ,
      percentage
12
13 printf("\nChange in volume DV = \%3.1 f percentage.",
     DV);
14
15 // Result
16 // Change in volume DV =0.5 percentage.
```

Scilab code Exa 2.3 Calculation of volume and density of Zinc

```
1  // Scilab Code Ex2.3 : Page-2.23 (2004)
2  clc; clear;
3  a = 0.27e-9; // Nearest neighbour distance, m
4  c = 0.494e-9; // Height of unit cell, m
5  V = 3*(sqrt(3))*(a^2)*c/2; // Volume of unit cell
      of HCP, in metre cube
6  N = 6.023e+26; // Avodagro number, per k-mol
7  M = 65.37; // Atomic weight of zinc,
8  rho = 6*M/(V*N); // Density of zinc, kg per
      metre cube
9  printf("\nVolume = %4.3e metre cube", V);
```

Scilab code Exa 2.4 Maximum radius of interstitial sphere in FCC

```
// Scilab Code Ex2.4 : Page-2.23 (2004)
clc;clear;
r = 1; // For simplicity assume radius of atom to
    be unity, unit

a = 4*r/sqrt(2); // Lattice constant, unit
R = (a/2)-r; // R be the radius of interstitial
    sphere that can fit into void, unit

printf ("\nMaximum Radius of interstitial sphere
    that can fit into FCC = %5.3 fr", R);

Result
// Maximum Radius of interstitial sphere that can
    fit into FCC = 0.414r
```

Scilab code Exa 2.5 Density of diamond

Scilab code Exa 2.6 Distance between two adjacent atoms in NaCl

```
1 // Scilab Code Ex2.6 : Page -2.25 (2004)
2 clc; clear;
3 M = 58.5; // Molecular weight of Carbon, g per mol
4 N = 6.023e+23; // Avagadro number, per mol
             // Mass of one NaCl molecule, g
5 m = M/N;
6 n = 2.18/m; // Number of NaCl molecules per unit
     volume, molecules per cm cube
7 n1 = 2*n; // Since NaCl is a diatomic, number of
     atoms per unit volume is twice
8 a = 1/n1^{(1/3)}; // Distance between two adjacent
     atoms in NaCl, angstrom
9
10 printf("\nDistance between two adjacent atoms in
     NaCl = \%4.2 f angstrom, a/1e-8);
11
12 // Result
13 // Distance between two adjacent atoms in NaCl =
     2.81 angstrom
```

Scilab code Exa 2.7 Density of copper crystal

```
1 // Scilab Code Ex2.7: Page -2.25 (2004)
```

```
2 clc; clear;
3 M = 63.5; // Atomic weight of Copper, g per mol
4 N = 6.023e+23; // Avagadro number, per mol
5 r = 1.278e-8; // Atomic radius of copper, cm
6 m = M/N; // Mass of one Cu atom, kg
7 a = (4*r)/sqrt(2); // Distance between two adjacent
     atom in Cu, angstrom
8 n1 = 4*m; // Since number of atom per unit cell is
      4
9 d = n1/a^3; // Density of copper, kg per metre
     cube
10
11 printf("\nDensity of copper = \%4.2 \,\mathrm{f} g per cm cube",
     d);
12
13 // Result
14 //  Density of copper = 8.93 g per cm cube
```

Chapter 3

Crystal Planes and Defects

Scilab code Exa 3.1 Number of atoms per square mm in SC

```
1 // Scilab Code Ex3.1 : Page -3.4 (2004)
2 // In a SC structure number of planes are having
       three arrangement (100), (110) and (111)
3 clc; clear;
4 \ a = 1;
               // For simplicity lattice constant is
     taken to be unity
5 \text{ A}_{100} = \text{a}^2; // Area of the plane (100), mm<sup>2</sup>
6 N_100 = 1/A_100; // Number of atoms along (100)
       plane, atoms per square mm
7 \text{ A}_{110} = \text{sqrt}(2)*a^2; // Area of the plane (110),
     mm^2
8 N_{110} = 1/A_{110}; // // Number of atoms along
     (110) plane, atoms per square mm
9 A_{111} = 1/2*a*sqrt(2)*sqrt(2)*a^2*cosd(30);
     Area of the plane (110), mm<sup>2</sup>
10 A_111t = 0.5; // Total no of atoms in (111)
     plane
11 N_111 = A_111t/A_111; // Number of atoms
      along (110) plane, atoms per square mm
12 printf("\nNumber of atoms along (100) plane= %d /a^2
      atoms per square mm", N_100);
```

```
printf("\nNumber of atoms along (110) plane= %f
    atoms per square mm", N_110);
printf("\nNumber of atoms along (111) plane= %5.3 f /
    a^2 atoms per square mm", N_111);
// Result
// Number of atoms along (100) plane= 1 /a^2 atoms
    per square mm
// Number of atoms along (110) plane= 0.707107
    atoms per square mm
// Number of atoms along (111) plane= 0.577 /a^2
    atoms per square mm
```

Scilab code Exa 3.2 Maximum radius of sphere in BCC lattice

```
1 // Scilab Code Ex3.2 : Page-3.5(2004)
2 clc;clear;
3 r = 1; // For simplicity assume radius of atom to
    be unity, unit
4 a = 4*r/sqrt(3); // Lattice constant, unit
5 R = (a/2)-r; // R be the radius of interstitial
    sphere that can fit into void, unit
6 printf ("\nMaximum Radius of sphere that can fit
    into BCC = %5.3 fr", R);
7
8 // Result
9 // Maximum Radius of sphere that can fit into BCC =
    0.155 r
```

Scilab code Exa 3.3 Volume change during BCC to FCC

```
1 // Scilab Code Ex3.3 : Page-3.6 (2010)
2 clc; clear;
3 r1 = 1.258e-10; // Atomic radius in BCC, metre
```

```
4 a1 = 4*r1/sqrt(3); // Lattice constant for BCC,
     metre
5 V1 = a1^3; // Volume of unit cell in BCC, metre
     cube
6 Vpa = V1/2; // Volume occupied by one atom in BCC,
     metre cube
7 r2 = 1.292e-10; // Atomic radius in FCC, metre
8 a2 = 2*r2*sqrt(2); // Lattice constant for F CC,
      cube
9 V2 = a2^3; // Volume of unit cell in FCC, meter
     cube
10 Vpa1 = V2/4; // Volume occupied by one atom in FCC,
     metre cube
11 dV = (Vpa-Vpa1)/Vpa*100; // Change in volume,
     percentage
12 printf("\nChange in volume in percentage = \%4.3 \,\mathrm{f}
     percentage", dV);
13
14 // Result
15 // Change in volume in percentage = 0.493 percentage
```

Scilab code Exa 3.4 Volume and density of unit cell in HCP Zn structure

```
1 // Scilab Code Ex3.4 : Page-3.7 (2010)
2 clc;clear;
3 a = 0.27e-9; // Lattice constant for BCC, metre
4 c = 0.494e-9; // Height of the unit cell, metre
5 M = 65.37; // Atomic weight of zn, kg
6 N = 6.02e+26; // Avogadro number per k mol
7 m = 6*M/N; // Mass per unit cell in HCP structure, kg
8 V = 3*sqrt(3)*a^2*c/2; // Volume of unit cell in HCP, metre cube
9 rho = m/V; // Density of HCP Zn structure, kg per metrecube
```

Scilab code Exa 3.5 Interplanar spacing in 110 and 212 planes in FCC lattice

```
1 ///  Scilab Code Ex3.5 : Page -3.5 (2004)
2 clc; clear;
3 r = 0.1278; // Atomic radius, nm
4 a = 4*r/sqrt(2); // Lattice constant, nm
5 h1 = 1, k1 = 1, l1 = 0; // Miller Indices of
     (110) planes
6 d_110 = a/sqrt(h1^2 + k1^2 + 11^2);
     Interplanar spacing for (110) planes, nm
7 h2 = 2, k2 = 1, 12 = 2; // Indices of third set
     of parallel planes
8 d_212 = a/sqrt(h2^2 + k2^2 + 12^2);
     Interplanar spacing for (111) planes, nm
9 printf("\nInterplanar spacing for (110) planes = \%6
      .4 f nm", d_110);
10 printf ("\nInterplanar spacing for (212) planes = \%6
     .4 f nm, d_212);
11
12 // Result
13 // Interplanar spacing for (110) planes = 0.2556 nm
14 // Interplanar spacing for (212) planes = 0.1205 nm
```

Scilab code Exa 3.6 Ratio of interplanar spacing in SC lattice

```
1 // Scilab Code Ex3.6 : Page -3.8 (2004)
2 clc; clear;
3 a = 1; // For simplicity we assume a to be unity,
     unit
4 \text{ h1} = 1, \text{ k1} = 0, \text{ l1} = 0; // Indices of first set
      of parallel planes
5 d_{100} = a/sqrt(h1^2 + k1^2 + l1^2);
      Interplanar spacing for (100) planes, unit
6 \text{ h2} = 1, \text{ k2} = 1, \text{ 12} = 0; // Indices of second set
      of parallel planes
7 d_{110} = a/sqrt(h2^2 + k2^2 + 12^2);
      Interplanar spacing for (110) planes, unit
8 h3 = 1, k3 = 1, l3 = 1; // Indices of third set
      of parallel planes
9 d_111 = a/sqrt(h3^2 + k3^2 + 13^2);
      Interplanar spacing for (111) planes, unit
10 printf("\nd_100 : d_110 : d_111 = %1d : %4.2 f : %4.2
      f", d_100, d_110, d_111);
11
12 // Result
13 // d_{-}100 : d_{-}110 : d_{-}111 = 1 : 0.71 : 0.58
```

Scilab code Exa 3.7 Miller indices of a plane in SC lattice

Scilab code Exa 3.8 Ratio of vacancies in metal

```
1 // Scilab Code Ex3.8 : Page -3.13 (2004)
2 clc; clear;
3 N = 1; // For simplicity assume total number of
     metal ions to be unity
4 e = 1.6e-019; // Electronic charge, C
5 k = 1.38e-023/e; // Boltzmann constant, eV/K
6 T1 = 500; // First temperature for metal, K
7 T2 = 1000; // Second temperature for metal, K
8 E_v = 1; // Average energy required to create a
     vacancy in metal, eV
9 n_500 = N*exp(-E_v/(k*T1)); // Number of vacancies
     at 500 K
10 n_1000 = N*exp(-E_v/(k*T2)); // Number of vacancies
      at 500 K
11 n_{ratio} = n_{1000/n_{500}}; // Ratio of vacancies in
      metal
12 printf("\nThe ratio of vacancies in metal = \%5.3e",
     n_ratio);
```

```
13  
14 // Result  
15 // The ratio of vacancies in metal = 1.085\,\mathrm{e}{+05}
```

Scilab code Exa 3.9 Fraction of vacancy sites in metal

```
1 // Scilab Code Ex3.9 : Page -3.14 (2004)
2 clc; clear;
3 T1 = 500+273; // First temperature for metal, K
4 T2 = 1000+273; // Second temperature for metal, K
5 frac_vac = 1e-010; // n1/N, the fraction of vacancy
      sites at 500 degree celsius
6 e = 1.6e-019; // Electronic charge, C
7 k = 1.38e-023/e; // Boltzmann constant, eV/K
8 // n1 = N*exp(-E_f/(k*T1)); // Number of vacancies
     at 500 K
9 // n2 = N*exp(-E_f/(k*T2)); // Number of vacancies
     at 500 K, solving for n2/N = x
10 x = \exp((T1/T2)*\log(frac_vac));
11 printf("\nThe fraction of vacancy sites in metal =
     \%6.4e", x);
12
13 // Result
14 // The fraction of vacancy sites in metal = 8.4670e
     -07
```

Scilab code Exa 3.10 Average energy required to create Schottky defect

```
1 // Scilab Code Ex3.10 : Page -3.16 (2004)
2 T = 273+25; // Temperature , K
3 r = 2.82e-10; // Interionic distance , m
4 N = 4/((2*r)^3); // Density of ion pairs , ion pairs
```

Scilab code Exa 3.11 Ratio of vacancies in metal to create Frenkel defect

```
1 // Scilab Code Ex3.11 : Ratio of vacancies in metal
     to create Frenkel defect: Page -3.18 (2004)
2 N = 1; // For simplicity assume total number of
     metal ions to be unity
3 Ni = 1; // For simplicity assume total number of
     metal ions to be unity
4 k = 8.625e-5; // Boltzmann constant, J/K
5 T1 = 273+20; // First temperature for metal, K
6 T2 = 300+273; // Second temperature for metal, K
7 E_v = 1.4; // Average energy required to create a
     vacancy in metal, eV
8 \text{ n}_{293} = N*\exp(-E_v/(2*k*T1)); // Number of
      vacancies at 500 K
9 \text{ n}_{573} = \text{N*exp}(-\text{E}_v/(2*k*T2)); // \text{Number of}
      vacancies at 500 K
10 n_{\text{ratio1}} = n_{573}/n_{293}; // Ratio of vacancies in
      metal
11 n_{\text{ratio2}} = n_{293}/n_{573}; // Ratio of vacancies in
      metal
12
13 printf("\nThe ratio 1 of vacancies in metal to
```

```
create Frenkel defect = %5.3e", n_ratio1);
14 printf("\nThe ratio 2 of vacancies in metal to create Frenkel defect = %5.3e", n_ratio2);
15
16 // Result
17 // The ratio 1 of vacancies in metal to create Frenkel defect = 7.558e+05
18 // The ratio 2 of vacancies in metal to create Frenkel defect = 1.323e-06
```

Chapter 4

Line Defects and Crystal Structure Determination

Scilab code Exa 4.1 Wavelength of X ray and order of diffraction

```
1 // Scilab Code Ex4.1 : Page -4.13 (2004)
2 clc; clear;
3 function thet = degree_minute (d, m)
       thet = d + m/60;
5 endfunction
6 deg = 8, minutes = 35; // Given glancing angle,
     degrees-minutes
7 theta = degree_minute (deg, minutes); // Convert
     degree-minutes to degrees
8 d = 0.282; // lattice spacing for NaCl crystal,
     nm
         // Order of diffraction
10 lambda = 2*d*sind(theta)/n; // Wavelength from
     Bragg's law, nm
11 printf("\nWavelength of X rays = \%6.4 \, \text{f} nm ", lambda)
12 theta = 90; // maximum possible value for theta for
     maximum order of diffraction
13 n = 2*d*sind(theta)/lambda; // order of diffraction
```

```
from Bragg's law

14 printf("\nMaximum possible order of diffraction = %1d", n);

15

16 // Result

17 // Wavelength of X rays = 0.0842 nm

18 // Maximum possible order of diffraction = 6
```

Scilab code Exa 4.2 Ratio of interplanar spacing in simple cube

```
1 // Scilab Code Ex4.2 : Page -4.13 (2004)
2 clc; clear;
3 a = 1; // For simplicity we assume a to be unity,
     unit
4 h1 = 1, k1 = 0, l1 = 0; // Indices of first set
     of parallel planes
5 d_100 = a/sqrt(h1^2 + k1^2 + l1^2);
     Interplanar spacing for (100) planes, unit
6 h2 = 1, k2 = 1, 12 = 0; // Indices of second set
     of parallel planes
7 d_110 = a/sqrt(h2^2 + k2^2 + 12^2);
     Interplanar spacing for (110) planes, unit
8 h3 = 1, k3 = 1, 13 = 1; // Indices of third set
     of parallel planes
9 	 d_111 = a/sqrt(h3^2 + k3^2 + 13^2);
     Interplanar spacing for (111) planes, unit
10 printf("\nd_100 : \d_110 : \d_111 = %1d : %4.2 f : %4.2
     f", d_100, d_110, d_111);
11
12 // Result
13 // d_{-}100 : d_{-}110 : d_{-}111 = 1 : 0.71 : 0.58
```

Scilab code Exa 4.3 Wavelength of X ray from Bragg Law

```
1 // Scilab Code Ex4.3 : Page -4.14 (2004)
2 clc; clear;
3 function thet = degree_minute (d, m)
      thet = d + m/60;
5 endfunction
7 degr = 8, minutes = 35; // Given glancing angle,
     degrees-minutes
8 theta = degree_minute (degr, minutes); // Convert
     degree-minutes to degrees
9 d = 0.282; // lattice spacing for NaCl crystal,
10 n = 1; // Order of diffraction
11 lambda = 2*d*sind(theta)/n; // Wavelength from
     Bragg's law, nm
12
13 printf("\nWavelength of X rays = \%6.4 \text{ f nm}", lambda)
14
15 // Result
16 // Wavelength of X rays = 0.0842 nm
```

Scilab code Exa 4.4 Interatomic spacing

```
10 printf("\nInteratomic spacing = %5.3f angstrom", a/1
        e-10);
11
12 // Result
13 // Wavelength of X rays = 1.5418e-10 m
14 // Interatomic spacing = 2.670 angstrom
```

Scilab code Exa 4.5 Glancing angle for second order diffraction

```
1 // Scilab Code Ex4.5 : Page -4.14 (2004)
2 clc; clear;
3 lambda = 0.071; // X-ray wavelength, nm
4 n = 2; // Second order of diffraction
5 d_100 = 0.28; // Interplanar spacing for (100)
     plane, nm
6 d_110 = d_100/sqrt(2); // Interplanar spacing for
     (110) plane, nm
7 x = n*lambda/(2*d_110); // sine of angle , degree
8 theta = asind(x); // Glancing angle for second
     order diffraction
10 printf("\nGlancing angle for second order
     diffraction = %d degree ", round(theta));
11
12 // Result
13 // Glancing angle for second order diffraction = 21
      degree
```

Scilab code Exa 4.6 Distance between two adjacent atoms in NaCl

```
1 // Scilab Code Ex4.6 : Page -4.15 (2004)
2 clc; clear;
3 n = 4; // Second order of diffraction
```

```
4 M = 58.5; // Molecular weight of crystal
5 d = 2180; // Density of crystal, kg per cm cube
6 N = 6.02e + 26; // Avogadro number , k / mol
7 a = ((n*M)/(d*N))^(1/3); // Distance between two
      adjacent atoms of same kind, nm
8 b = a/2;
              // Distance between two adjacent atoms
     of different kind, nm
9 printf("\nDistance between two adjacent atoms of
     same kind = \%5.3 \, \text{f} nm ", a/1e-9);
10 printf("\nDistance between two adjacent atoms of
      different kind = \%5.3 \,\mathrm{f} nm ", b/1e-9);
11 // Result
12
13 // Distance between two adjacent atoms of same kind
      = 0.563 \text{ nm}
14 // Distance between two adjacent atoms of different
       kind = 0.281 \text{ nm}
```

Scilab code Exa 4.7 Distance between 110 plane

Scilab code Exa 4.8 Density of Iron

Chapter 5

Principles of Quantum Mechanics

Scilab code Exa 5.1 de Broglie wavelength of proton

```
// Scilab Code Ex5.1 : Page-5.7 (2004)
clc;clear;
h = 6.626e-34; // Planck's const in Js
m = 1.67e-27; // Mass of the proton in kg
c = 3e+8; // Charge of electron in C
v = c/10; // Proton velocity 1/10th of c
E = 0.025; // Kinetic energy of the neutron in J
lam = h/(m*v); // de Broglie wavelength in m
printf("\nde Broglie wavelength = %5.3e m", lam);
// Result
// de Broglie wavelength = 1.323e-14 m
```

Scilab code Exa 5.2 de Broglie wavelength of electron

```
1 // Scilab Code Ex5.2 : de Broglie wavelength of electron: Page -5.8 (2004)
```

Scilab code Exa 5.3 de Broglie wavelength of neutron

```
1 // Scilab Code Ex5.3 : Page-5.8 (2004)
2 clc;clear;
3 h = 6.626e-34; // Planck's const in Js
4 m = 1.67e-27; // Mass of the neutron in kg
5 e = 1.6e-19; // charge of electron in C
6 E = 0.025; // kinetic energy of the neutron in J
7 lam = h/(sqrt(2*m*E*e)); // de Broglie wavelength in m
8 printf("\nde Broglie wavelength = %5.3 f nm", lam/1e -9);
9
10 // Result
11 // de Broglie wavelength = 0.181 nm
```

Scilab code Exa 5.4 Uncertainty in momentum of electron

```
1 // Scilab Code Ex5.4 : Uncertainty in momentum of
        electron: Page-5.13 (2004)
2 clc; clear;
3 h = 6.62e-34 // Planck's const, Js
4 delx = 4e-10 // Uncertainty in position, m
```

Scilab code Exa 5.5 Uncertainty in velocity of electron

```
// Scilab Code Ex5.5 : Page-5.13 (2004)
clc;clear;
h = 6.62e-34; // Planck's const, Js
me = 9.1e-31; //Mass of electron, kg
delx = 1e-9; // Uncertainty in position, m
delp = h/(delx); // Uncertainty principle
delv = (delp/me); // Uncertainty in velocity, m/sec

printf ("\nUncertainty in velocity = %4.2e m/sec",
delv)

Result
// Result
// Uncertainty in velocity=7.2747e+05 m/sec
```

Scilab code Exa 5.6 Uncertainty in time

Scilab code Exa 5.7 Lowest Energy for electron confinement

```
1 // Scilab Code Ex 5.7 : Lowest Energy for electron
      confinement: Page -5.22 (2004)
2 clc; clear;
3 h = 6.62e-34; // Planck's const, Js
4 m = 9.1e-31; // Mass of electron in kg 5 L = 0.1e-9; // Side of the box in m
6 n1 = 1; // nx box lowest quantum number
7 n2 = 1; // ny box lowest quantum number
8 n3 = 1; // nz box lowest quantum number
9 = 1.6e-19; // Charge on electron in C
10 E = (h^2)/(8*e*m*L^2)*((n1)^2+(n2)^2+(n3)^2);
      Lowest Energy for electron confinement, in eV
11 printf("\nLowest Energy for electron confinement =
      \%5.1 \text{ f eV}", E);
12
13
14 // Results
15 // Lowest Energy for electron confinement = 112.9 eV
```

Scilab code Exa 5.8 Next Lowest Energy level for electron confinement

```
1 // Scilab Code Ex 5.8: Page -5.22 (2004)
2 clc; clear;
3 h = 6.62e-34; // Planck's constant, Js
4 m = 9.1e-31; // Mass of electron, kg
5 L = 0.1e-9; // Side of the box, m
               nx box lowest quantum number
6 \text{ n1} = 1; //
7 n2 = 1; // ny box lowest quantum number
8 n3 = 2; // nz box lowest quantum number
9 e = 1.6e-19; // Charge on electron, C
10 E = (h^2)/(8*e*m*L^2)*((n1)^2+(n2)^2+(n3)^2);
     Lowest Energy level for electron confinement, in
      eV
11
12 printf("\nLowest Energy level for electron
     confinement = \%6.2 \, \text{f eV}", E);
13
14 // Result
15 // Lowest Energy level for electron confinement =
     225.74 \text{ eV}
```

Scilab code Exa 5.9 de Broglie wavelength from energy

```
// Scilab Code Ex5.9 : Page-5.23 (2004)
clc;clear;
h = 6.626e-34; // Planck's const in Js
m = 9.1e-31; // Mass of the neutron in kg
e = 1.6e-19; // Charge of electron in C
E = 2000; // Kinetic energy of the neutron in eV
lam = h/(sqrt(2*m*E*e)); // de Broglie wavelength in m
printf("\nde Broglie wavelength of electron = %6.4f nm", lam/1e-9);
// Result
// de Broglie wavelength of electron = 0.0275 nm
```

Scilab code Exa 5.10 Minimum Energy

```
1 // Scilab Code Ex 5.10 : Page-5.24 (2004)
2 clc; clear;
3 h = 6.626e-34; // Planck's const , Js
4 m = 9.1e-31; // Mass of electron , kg
5 L = 4e-10; // Side of the box, m
6 n1 = 1; // nx box lowest quantum number
7 E = (h^2)/(8*m*(L^2))*((n1)^2); //Lowest Energy level for electron confinement , in eV
8 printf("\nMinimum Energy = %2.3e joule", E);
9
10 // Results
11 // Minimum Energy = 3.769e-19 joule
```

Scilab code Exa 5.11 Energy of ground and first and second state

```
13
14 printf("\nGround state Energy = %2.3e joule", E1);
15 printf("\nFirst state Energy = %2.3e joule", E2);
16 printf("\nSecond state Energy = %2.3e joule", E3);
17
18
19 // Results
20 // Ground state Energy = 6.031e-18 joule
21 // First state Energy = 2.412e-17 joule
22 // Second state Energy = 5.428e-17 joule
```

Scilab code Exa 5.12 Velocity and energy of electron

```
1 // Scilab Code Ex5.12 : Page -5.25 (2004)
2 clc; clear;
3 h = 6.626e-34; // Planck's const in Js
4 m = 9.1e-31; // Mass of the electron in kg
5 lam = 1.66e-10; // de Broglie wavelength, m
6 e = 1.6e-19; // Charge on electron, C
7 v = h/(m*lam); // Velocity of electron, m/s
8 E = (m*v^2)/(2*e); // Kinetic energy of the
     electron in eV
9
10 printf("\nVelocity of electron = \%d \text{ km/s}", v/1000);
11 printf("\nKinetic energy of the electron = \%5.2 \,\mathrm{f} eV"
      , E);
12
13 // Result
14 // Velocity of electron = 4386 km/s
15 // Kinetic energy of the electron = 54.71 \text{ eV}
```

Scilab code Exa 5.13 Wavelength of electron waves

Scilab code Exa 5.14 Uncertainty in momentum of electron

```
// Scilab Code Ex5.14 : Page-5.26 (2004)
clc;clear;
h = 6.62e-34 // Planck's const, Js
delx = 1e-8 // Uncertainity in position, m
m = 9.1e-31; // Mass of electron, kg
delv = h/(m*delx); // Uncertainty in velocity, km/s
printf("\nUncertainty in velocity = %3.2 f km/sec", delv/1000);
// Results
// Uncertainty in velocity = 72.75 km/sec
```

Chapter 6

Electron Theory of Metals

Scilab code Exa 6.1 Electron Density and mobility in silver

```
1 // Scilab Code Ex6.1 : Page -6.8 (2004)
2 clc; clear;
3 M = 107.9; // Molecular weight of silver, 4 d = 10.5e+03; // Density of of silver, kg per
                     // Molecular weight of silver, kg
     metrecube
5 N = 6.023D+26; // Avogadro's Number., atoms/k-mol
6 \ a = 6.8e + 07;
                    // conductivity of silver, per ohm
     per sec
7 e = 1.6e-19; // charge of electron, C
8 n = d*N/M; // Density of electron
9 mu = a/(n*e); // Mobility of electron
10 printf("\nDensity of electron = \%4.2e", n);
11 printf("\nMobility of electron = \%5.3e metersquare
      per volt per sec", mu);
12
13 // Result
14 // Density of electron = 5.86e+28
15 // Mobility of electron = 7.251e-03 metersquare per
      volt per sec
```

Scilab code Exa 6.2 Mobility and average time of collision in copper

```
1 // Scilab Code Ex6.2 : Page -6.9 (2004)
2 clc; clear;
3 M = 63.5;
                   // Molecular weight of copper, kg
3 M = 63.5; // Molecular weight of copper, 4 d = 8.92e+03; // Density of of copper, kg per
     metrecube
5 rho = 1.73e-8; // Resistivity of copper, ohm m
6 \text{ m} = 9.1\text{e}-31; // Mass of electron, kg
                   // Avogadro's No., atoms/k-mol
7 N = 6.023D+26;
                   // Charge of electron, C
8 e = 1.6e - 19;
9 n = d*N/M; // Density of electron
10 mu = 1/(rho*n*e); // Mobility of electron
11 t = m/(n*(e^2)*rho); // Average time of collision
      , sec
12 printf("\nNumber Density of electron = \%4.2e", n);
13 printf("\nMobility of electron = \%3.3e meter per
      volt per sec", mu);
14 printf("\naverage time of collision = \%3.2e sec", t)
15
16 // Result
17 // Number Density of electron = 8.46e+28
18 // Mobility of electron = 4.270e-03 meter per volt
     per sec
19 // average time of collision = 2.429e-14 sec
```

Scilab code Exa 6.3 Electrical resistivity in Sodium metal

```
1 // Scilab Code Ex6.3 : Page-6.10 (2004)
2 clc; clear;
3 t = 3e-14; // Mean free time, sec
```

Scilab code Exa 6.4 Resistivity of sodium at zero degree Celsius

```
1 // Scilab Code Ex6.4: Page-6.11 (2004)
2 clc;clear;
3 t = 3.1e-14; // Mean free time, sec
4 m = 9.1e-31; // Mass of electron, kg
5 e = 1.6e-19; // Charge of electron, C
6 r = 0.429e-9; // Side of the unit cell. m
7 n = 2/(r^3); // Number of electron per unit cubemetre
8 rho = m/(n*(e^2)*t); // Electrical resistivity, ohm m
9 printf("\n Electrical resistivity of sodium at zero degree Celsius = %2.3e ohm m", rho);
10
11 // Result
12 // Electrical resistivity of sodium at zero degree Celsius = 4.527e-08 ohm m
```

Scilab code Exa 6.5 Next Lowest Energy level for electron confinement

```
1 // Scilab Code Ex 6.5 : Page -6.15 (2004)
2 clc; clear;
3 h = 6.62e-34; // Planck's const, Js
4 m = 9.1e-31; // Mass of electron in kg 5 L = 0.1e-9; // Side of the box in m
               // nx box lowest quantum number
6 n1 = 1;
                // ny box lowest quantum number
7 n2 = 1;
               // nz box lowest quantum number
8 n3 = 1;
9 = 1.6e-19; // Charge on electron, C
10 E = (h^2)/(8*e*m*L^2)*((n1)^2+(n2)^2+(n3)^2);
      Lowest Energy level for electron confinement, in
       eV
11 printf("\nLowest Energy level for electron
      confinement = \%2.1 \, \text{f eV}", E);
12
13 // Results
14 // Lowest Energy level for electron confinement =
      112.9 \text{ eV}
```

Scilab code Exa 6.7 Energy level for electron confinement and equivalent temperature

```
11 E = (h^2)/(8*m*L^2)*((n1)^2+(n2)^2+(n3)^2); //
    Lowest Energy level for electron confinement , in
    joule
12 T = 2*E/(3*k); // Equivalent temperature of the
    molecules , kelvin
13
14 printf("\nEnergy for electron confinement = %5.3e
    joule", E);
15 printf("\nEquivalent temperature of the molecules =
    %5.3e kelvin", T);
16
17 // Results
18 // Energy for electron confinement = 3.61e-19 joule
19 // Equivalent temperature of the molecules = 1.74e
    +04 kelvin
```

Scilab code Exa 6.9 Temperature from Fermi function

```
1 // Scilab Code Ex 6.9: Page -6.18 (2004)
2 clc; clear;
3 k = 1.38e-23;
                       // Boltzmann constant, joule
     per kelvin
4 T = 300;
             // For simplicity room temperature is
     taken, kelvin
5 e = 1.6e - 19;
                   // Charge on electron, C
6 E = k*T; // Given Energy, eV
7 F_E = 1/(1+\exp(E/(k*T))); //Fermi function,
     unitless
8 T = 300;
               // For simplicity room temperature is
     taken, kelvin
9 printf("\nFermi fucntion = \%5.3 \, \text{f} ", F_E);
10
11 // Results
12 // Fermi fucntion = 0.269
```

Scilab code Exa 6.10 Temperature for occupation of a state above Fermi level

```
1 // Scilab Code Ex 6.10: Page -6.18 (2004)
2 clc; clear;
3 k = 1.38e-23;
                        // Boltzmann constant, joule
     per kelvin
4 T = 300;
             // For simplicity room temperature is
     taken, kelvin
5 e = 1.6e-19; // Charge on electron , C 
6 EF = 5.5; // Fermi Energy , eV
7 E = EF+(EF/100); // New energy, eV
8 F_E = 0.1; // Fermi function, unitless
9 T = e*(E-EF)/(k*log((1-F_E)/F_E)); //Temperature
      for 10% probabilty that electron in silver have
      an energy 1% above the fermi energy, kelvin
10
11 printf("\nTemperature = \%5.1 f kelvin", T);
12
13 // Results
14 // Temperature = 290.2 kelvin
```

Scilab code Exa 6.11 Number of energy state in unit volume

```
1  // Scilab Code Ex 6.11: Page-6.22 (2004)
2  clc; clear;
3  h = 6.62e-34;  // Planck's constant, Js
4  m = 9.14e-31;  // Mass of the electron, kg
5  e = 1.6e-19;  // Charge on electron, C
6  E1=3.22*e;  // First state energy, joules
7  E2=3.24*e;  // Second state energy, joules
```

Scilab code Exa 6.12 Temperature needed to fill a state above Fermi level

```
1 // Scilab Code Ex 6.12: Page -6.22 (2004)
2 clc; clear;
3 k = 1.38e-23;
                        // Boltzmann constant, joule
     per kelvin
4 T = 300;
             // For simplicity room temperature is
     taken, kelvin
5 e = 1.6e-19; // Charge on electron, C
6 EF = 1; // For simplicity Fermi Energy is taken
      as unity, eV
7 E = EF+0.5; // New energy, eV 
8 F_E = 0.01; // Fermi function, unitless
9 T = e*(E-EF)/(k*log((1-F_E)/F_E)); //Temperature
      for 1% probabilty that electron have an energy
      0.5eV above the fermi energy, kelvin
10
11 printf("\nTemperature = %d kelvin", round(T));
12
13 // Results
14 // Temperature = 1262 kelvin
```

Chapter 7

Dielectric Properties

Scilab code Exa 7.1 Net energy stored in capacitor

```
// Scilab Code Ex7.1: Page-7.23 (2004)
clc;clear;
Clear;
Cle
```

Scilab code Exa 7.2 Ratio of polarization

```
1 // Scilab Code Ex7.2: Page -7.24 (2004)
2 clc; clear;
              //Electric permittivity
3 \text{ er} = 4.94;
4 n = sqrt(2.69); // Index of refration, unitless
5 a = (n^2-1)/(n^2+2); // Variable 1
6 b = (er-1)/(er+2); // Variable 2
7 alpha = (b/a)-1; // Ratio between ionic and
      electrical polarization
8 alp = 1/alpha; //Ratio between electrical and
     ionic polarization
10 printf("\nRatio between ionic and electrical
     polarization = \%3.3 \,\mathrm{f} ", alpha);
11 printf("\nRatio between electrical and ionic
     polarization = \%3.3 \,\mathrm{f} ", alp);
12
13 // Result
14 // Ratio between ionic and electrical polarization
     = 0.576
15 // Ratio between electrical and ionic polarization
      = 1.738
```

Scilab code Exa 7.3 Parallel loss resistance and capacitance

```
1 // Scilab Code Ex7.3: Page-7.25 (2004)
2 clear; clc;
3 er = 2.56; // Relative permittivity
4 tan_deta = 0.7e-4; // Loss tangent
5 f = 1e+6; // frequency, Hz
6 er2 = er*tan_deta; // Imaginary part of relative permittivity
7 A = 8e-4; // Area between plates, squaremetre
8 eo = 8.854e-12; // Permittivity of the free space, farad per metre
9 w = 2*%pi*f; // angular frequency, Hz
```

```
10 d = 0.08e-3;  // Distance between plates, m
11 Rp = d/(w*eo*er2*A);  // Parallel loss resistance,
        ohm
12 Cp = A*eo*er/d;  // Capacitance , farad
13
14 printf("\nParallel loss resistance = %3.3e ohm", Rp)
    ;
15 printf("\nCapacitance = %3.3e farad", Cp);
16
17 // Result
18 // Parallel loss resistance = 1.003e+07 ohm
19 // Capacitance = 2.267e-10 farad
```

Scilab code Exa 7.4 Dielectric constant of the material

```
// Scilab Code Ex7.4: Page-7.26 (2004)
clc;clear;
N = 3e+28; // Number density, atoms per metrecube
eo = 8.854e-12; // Permittivity of the free space,
    farad per metre
alpha = 10e-40; // Electrical polarization, farad
    metresquare
er = 1+(N*alpha/eo); // Dielectric constant of
    the material
printf("\nDielectric constant of the material = %3.3
    f ", er);

// Result
// Dielectric constant of the material = 4.388
```

Scilab code Exa 7.5 Electric polarizability of He atoms

```
1 // Scilab Code Ex7.5: Page -7.26 (2004)
2 clc; clear;
3 N = 2.7e + 25;
                  // Number density, atoms per
     metrecube
4 eo = 8.854e-12; //Permittivity of the free space,
     farad per metre
  er = 1.0000684;
                    // Dielectric constant of the
     material
6 \text{ alpha} = eo*(er-1)/N;
                         // Electrical polarization,
     farad metresquare
8 printf("\nElectrical polarization = \%3.3e farad
     metresquare", alpha);
9
10 // Result
11 // Electrical polarization = 2.243e-41 farad
     metresquare
```

Scilab code Exa 7.6 Capacitance and charge on the plates

```
1 // Scilab Code Ex7.6: Page -7.27 (2004)
2 clc; clear;
3 A = 100e-4;
                   // Area of parallel plates,
     squaremetre
                   //
4 d = 1e-2;
                       Distance between plates, metre
5 eo = 8.854e-12; // Permittivity of the free space,
     farad per metre
6 V = 100;
                   // Potential, volt
7 C = eo*A/d; // Capacitance, farad
                 // Charge on the plates of capacitor
8 \quad Q = C * V;
9 printf("\nCapacitance = \%5.3e F", C);
10 printf("\nCharge on the plates of capacitor = \%3.3e
     C", Q);
11
```

```
12 // Result  
13 // Capacitance = 8.854e-12 F  
14 // Charge on the plates of capacitor = 8.854e-10 C
```

Scilab code Exa 7.7 Electric polarizability of sulphur atoms

```
// Scilab Code Ex7.7: Page-7.28 (2004)
clc;clear;
N = 385.66e+26; // Number density, atoms per metrecube
equation = 8.854e-12; // Permittivity of the free space, farad per metre
equation = 3.75; // Dielectric constant of the material alpha = 3*eo*(er-1)/(N*(er+2)); // Electric polarizability of sulphur atoms
printf("\nElectric polarizability of sulphur atoms = %3.3e farad metresquare", alpha);

// Result
// Electric polarizability of sulphur atoms = 3.294 e-40 farad metresquare
```

Chapter 8

Magnetic Properties

Scilab code Exa 8.1 Relative permeability

```
// Scilab Code Ex8.1: Page-8.33 (2004)
clc;clear;
M = 3300; // Magnetization of ferromagnetic
    material, amp/metre
H = 220; // Magnetic field strength, amp/metre
mu_r = M/H+1; // Relative permeability, unitless
printf("\nRelative permeability = %d", mu_r);

// Result
// Relative permeability = 16
```

Scilab code Exa 8.2 Magnetization and flux density of ferromagnetic material

```
1 // Scilab Code Ex8.2: Page-8.33 (2004)
2 clc; clear;
3 H = 10^6; // Magnetic field strength, amp/metre
4 ki = 1.5e-3; // Magnetic susceptibility, units
```

```
5 M = ki*H; // Magnetization of ferromagnetic
     material, amp/metre
6 muo = 4*%pi*1e-7; // Magnetic permeability, henry
     /metre
7 B = muo*(M+H); // Flux density, tesla
8 printf("\nMagnetization of ferromagnetic material, =
      \%3.1e \text{ amp/metre}, M);
9 printf("\nFlux density of ferromagnetic material, =
     \%5.3 f tesla", B);
10
11 // Result
12
13 // Magnetization of ferromagnetic material, = 1.5e
     +03 amp/metre
14 // Flux density of ferromagnetic material, = 1.259
     tesla
```

Scilab code Exa 8.3 Magnetization and flux density

```
1 // Scilab Code Ex8.3 : Page -8.34 (2004)
2 clc; clear;
3 H = 10^4;
               // Magnetic field strength, amp/metre
4 ki = 3.7e-3; // Magnetic susceptibility, units
5 M = ki*H;
               // Magnetization of ferromagnetic
     material, amp/metre
6 muo = 4*%pi*1e-7; // Magnetic perbeability, henry
     /metre
7 B = muo*(M+H); // Flux density, weber/square meter
8 printf("\nMagnetization of ferromagnetic material, =
      %d amp/metre", M);
9 printf("\nFlux density of ferromagnetic material, =
     \%3.4 \, \text{f} weber/squaremetre ", B);
10
11 // Result
12
```

```
13 // Magnetization of ferromagnetic material, = 37
    amp/metre
14 // Flux density of ferromagnetic material, = 0.0126
    weber/squaremetre
```

Scilab code Exa 8.4 Magnetic moment

```
1 // Scilab Code Ex8.4: Page -8.34 (2004)
2 clc; clear;
3 d = 8906;
               // Density of nickel, kg metrecube
4 An = 6.025e+26; // Avogadro number, per kmol
5 W = 58.7; // Atomic weight, kg
6 N = d*An/W; // Number of nickel atom, per cubemetre
7 Bs = 0.65; // Saturation magnetic, weber per
     squaremetre
  muo = (4*\%pi*1e-7); // Magnetic perbeability,
     henry/metre
  mum = Bs/(N*muo); // Magnetic moment, ampere per
     sqauremetre
10 X = mum/(9.27e-24); // magnetic moment, bohr
     magneton
11
12 printf("\nNumber of nickel atom per cubemetre = \%3.3
     e /cubemetre", N);
13 printf("\nMagnetic moment = \%1.2e bohr magneton", X)
14
15 // Result
16
17 // Number of nickel atom per cubemetre = 9.141e+28
    /cubemetre
18 // Magnetic moment = 6.10 e - 01 bohr magneton
```

Scilab code Exa 8.5 Calculation of temperature using classical statistics

```
// Scilab Code Ex8.5: Page-8.35 (2004)
clc;clear;
mu = 9.4e-24;  // Magnetic moment, ampere metre
    square
H = 2;  // Magnetic field , weber per squaremetre
k = 1.38e-23;  // Boltzmann Constant, joule per
    kelvin
T = (2*mu*H)/(log(2)*k);  //Temperature using
    classical statistics, K

printf("\nTemperature using classical statistics =
    %3.1f K", T);
// Result
// Temperature using classical statistics = 3.9 K
```

Scilab code Exa 8.6 Saturation magnetization

```
// Scilab Code Ex8.6: Page-8.36 (2004)
clc;clear;
A = 6.025e+26; // Avogadro number, per k mol
W = 157.26; // Atomic weight, kg
d = 7.8e+3; // Density of nickel, kg metrecube
N = d*A/(W*1000); // No of atoms, per gm metrecube
muo = 4*%pi*1e-7; // Magnetic perbeability, henry per m
mum = N*7.1*(9.27e-24); // Magnetic moment, ampere metersquare
Bs = mum*muo; // Saturation magnetization, weber/squaremetre
printf("\nMagnetic moment = %6.4e ampere meter square", mum);
printf("\nSaturation magnetization = %6.4e weber/
```

```
squaremetre", Bs);

12

13 // Result

14 // Magnetic moment = 1.9669e+03 ampere meter square

15 // Saturation magnetization = 2.4716e-03 weber/
squaremetre
```

Scilab code Exa 8.7 Magnetic moment of nickel in Bohr Magneton

```
1 // Scilab Code Ex8.7: Page -8.36 (2004)
2 clc; clear;
               // Density of nickel, kg per metrecube
3 d = 8906;
4 An = 6.025e+26; // Avogadro number, per k mol
5 W = 58.7; // Atomic weight, kg
6 N = d*An/W; // Number density of nickel atom, per
     cubemetre
              // Saturation magnetization, wb per
  Bs = 0.65;
     squaremetre
  muo = (4*\%pi*1e-7); // magnetic perbeability,
     henry/metre
  mum = Bs/(N*muo); // magnetic moment, ampere per
     squaremetre
10 X = mum/(9.27e-24); // magnetic moment, bohr
     magneton
11
12 printf("\nNumber density of nickel atom = \%3.3e /
     cubemetre", N);
13 printf("\nMagnetic moment = \%1.2 \, \text{f} bohr magneton", X)
14
15 // Result
16
17 // Number density of nickel atom per cubemetre =
     9.141e+28 /cubemetre
18 // Magnetic moment = 6.10e-01 bohr magneton
```

Chapter 9

Semiconductors

Scilab code Exa 9.1 Resistivity

```
1 // Scilab Code Ex9.1: Page -9.24; (2004)
2 clc; clear;
3 ni = 2.37e+19; // Carrier concentration at room
      temperature
4 mu_e = 0.38; // mobility of electron; m^2V^-1s
     ^{\hat{}}-1
5 e = 1.6e - 19;
                    // electronic charge, C
6 mu_h = 0.18; //
                         mobility of holes; m<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>
7 sigma = ni*e*(mu_e+mu_h); // conductivity, mho.m^-1
8 rho = 1/sigma; // Resistivity in Ge, ohm.m
9 printf("\nConductivity in Ge = \%4.2 f mho.per m",
      sigma);
10 printf("\nResistivity in Ge = \%5.3 f ohm.m", rho);
11
12 //Results
13 // Conductivity in Ge = 2.12 mho.per m
14 // \text{Resistivity in Ge} = 0.471 \text{ ohm.m}
```

Scilab code Exa 9.2 Determination of Fermi level

```
1 // Scilab Code Ex9.2: Page -9.24 (2004)
2 clc; clear;
               // Bandgap of silicon, eV
3 \text{ Eg} = 1.12;
4 me = 0.12*9.1e-031; // Effective Mass of the
     electron, kg
5 e = 1.6e-19; // Electronic charge, C
6 \text{ mh} = 0.28*9.1e-031; // Effective Mass of the hole
     , kg
7 k = 1.38e-23; // Boltzman constant, joule per
     kelvin
8 T = 300; // temperature, K
9 EF = (Eg/2)+3/4*k*T*(log(2.333))/e; // EF = E(Eg/2)
     +3/4*k*T*(log(2.333))/e; Formula
10
11 printf("\nThe position of Fermi Level = \%4.3 \,\mathrm{f} eV",
     EF);
12
13 // Result
14 // The position of Fermi Level = 0.576 eV
```

Scilab code Exa 9.3 Number of intrinsic carriers at 300K

```
// Scilab Code Ex9.3: Number of intrinsic carriers
at 300K: Page-9.26; (2004)

clc; clear;
e = 1.6e-19; // Electronic charge, C
m = 9.1e-31; // Mass of electron, kg
T = 300; // Room temperature, K
k = 1.38e-23; // Boltzmann Constant, joule per kelvin
Eg = 0.7*e; // Energy band gap of silicon, J
h = 6.626e-34; // Plancks Constant, Js
C = 2*(2*%pi*m*k/h^2)^(3/2); // A constant
ni = C*T^(3/2)*exp((-Eg)/(2*k*T)); // formula for carrier concentration at room temperature
```

Scilab code Exa 9.4 Resistivity of Ge sample

```
1 // Scilab Code Ex9.4: Page -9.26; (2004)
2 clc; clear;
3 \text{ ni} = 2.4e+19;
                   // Carrier concentration at room
      temperature
4 \text{ mu_e} = 0.39;
                  // Mobility of electron; m<sup>2</sup>V<sup>-1s</sup>
      ^{\hat{}}-1
5 e = 1.6e-19; // Electronic charge, C
6 mu_h = 0.19; // Mobility of holes, m^2V^-1s^-1
7 sigma = ni*e*(mu_e+mu_h); // Conductivity, mho.m^-1
8 rho = 1/sigma; // Resistivity in Ge, ohm.m
9 printf("\nConductivity in Ge = \%4.4 f mho.per m",
      sigma);
10 printf("\nResistivity in Ge = \%5.3 f ohm.m", rho);
11
12
13 // Results
14 // Conductivity in Ge = 2.2272 mho.per m
15 // \text{Resistivity in Ge} = 0.449 \text{ ohm.m}
```

Scilab code Exa 9.5 Resistance of Ge rod

```
1 // Scilab Code Ex9.5: Page -9.26; (2004) 2 clc; clear;
```

```
3 ni = 2.5e+19;  // Carrier concentration at room
    temperature
4 mu_e = 0.39;  // Mobility of electron; m^2V^-1s
    ^-1
5 e = 1.6e-19;  // Electronic charge, C
6 l = 1e-2;  // length of Ge rod, m
7 w = 1e-3;  // width of Ge rod, m
8 t = 1e-3;  // thickness of Ge rod, m
9 A = w*t;  // Area of Ge rod, meter square
10 mu_h = 0.19;  // Mobility of holes, m^2V^-1s^-1
11 sigma = ni*e*(mu_e+mu_h);  // Conductivity, mho.m^-1
12 R = 1/(sigma*A);  // Resistivity in Ge, ohm.m
13 printf("\nResistance of Ge rod = %4.2e ohm", R);
14
15 // Results
16 // Resistance of Ge rod = 4.31e+03 ohm
```

Scilab code Exa 9.6 Conductivity of Si

```
1 // Scilab Code Ex9.6: Page -9.27; (2004)
2 clc; clear;
3 mu_e = 0.48; // Mobility of electron; m^2V^-1s
     ^{\hat{}}-1
4 e = 1.6e-19;
                  // Electronic charge, C
                  // Mass of electron , kg
5 m = 9.1e-31;
6 mu_h = 0.013; // Mobility of holes, m^2V^-1s^-1
7 T = 300; // Room temperature, K
8 k = 1.38e-23; // Boltzmann Constant, joule per
     kelvin
9 Eg = 1.1*e; // Energy band gap of silicon, J
10 h = 6.626e-34; // Plancks Constant, Js
11 C = 2*(2*\%pi*m*k/h^2)^(3/2); // A constant
12 ni = C*T^(3/2)*exp((-Eg)/(2*k*T)); // formula for
      carrier concentration at room temperature
13 sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per
```

Scilab code Exa 9.7 Electron and hole concentration in silicon

```
1 // Scilab Code Ex9.7: Page -9.27; (2004)
2 clc; clear;
3 Na = 5e+23; // Concentration of boron atoms, per
     metrecube
4 Nd = 3e+23; // Concentration of arsenic atoms, per
     metrecube
5 p = Na-Nd; // Hole concentration, per metrecube
6 ni = 2e+16; // Intrinsic concentration ,per
     metrecube
7 n = ni^2/p; // Electron concentration, per
     metrecube
9 printf("\nHole concentration = \%3.1e per metrecube"
     , p);
10 printf("\nElectron concentration = \%3.1e per
     metrecube ", n);
11
12 // Results
13 // Hole concentration = 2.0e+23 per metrecube
14 // Electron concentration = 2.0e+09 per metrecube
```

Scilab code Exa 9.8 Temperature that shift the fermi level

```
1 // Scilab Code Ex9.8: Page -9.28 (2004)
2 clc; clear;
3 Eg = 1; // Bandgap of silicon, eV
4 e = 1.6e-19; // Electronic charge, C
5 k = 1.38e-23; // Boltzman constant, joule per
     kelvin
6 E_F = (0.6-0.5)*e; // Fermi energy, joules
                                           // Ev & Ec=
7 // E_F = ((Ev+Ec)/2)+3/4*k*T1*(log(4));
      valance and conduction band energies (formula)
8 T = 4*E_F/(3*k*log(4)); //Temperature that shift the
      fermi level, K
10 printf("\nTemperature that shift the fermi level =
     \%4.3 \, d \, K", T);
11
12 // Result
13 // Temperature that shift the fermi level = 1115 \text{ K}
```

Scilab code Exa 9.9 Conductivity of intrinsic silicon at 300 K

```
1 // Scilab Code Ex9.9: Page -9.29; (2004)
2 clc; clear;
                  // Intrinsic Carrier concentration at
3 \text{ ni} = 1.5e+16;
      room temperature
4 mu_e = 0.13; // Mobility of electron; m^2V^-1s
     ^{\hat{}}-1
5 e = 1.6e-19; // Electronic charge, C
                   // Impurity atoms , per metrecube
6 \text{ Nd} = 4.99e+20;
                   // Mobility of holes, m^2V^-1s^-1
7 \text{ mu_h} = 0.05;
8 sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per
     meter
9 sigma_d = Nd*e*mu_e; // Conductivity with donor
     type impurities, mho per meter
10 sigma_a = Nd*e*mu_h; // Conductivity with acceptor
     type impurities, mho per meter
```

```
printf("\nConductivity of silicon = %3.2e mho per
    meter", sigma);
printf("\nConductivity with donor type impurities =
    %4.2f mho per meter", sigma_d);
printf("\nConductivity with acceptor type impurities
    = %4.2f mho per meter", sigma_a);

// Results
// Conductivity of silicon = 4.32e-04 mho per meter
// Conductivity with donor type impurities = 10.38
    mho per meter
// Conductivity with acceptor type impurities = 3.99
    mho per meter
```

Scilab code Exa 9.10 Conductivity and Position of Ef above the intrinsic level

```
1 // Scilab Code Ex9.10: Page -9.31; (2004)
2 clc; clear;
3 \text{ ni} = 1.5e+16;
                // Intrinsic Carrier concentration at
      room temperature
4 mu_e = 0.135; // Mobility of electron; m^2V^-1s
     ^{\hat{}}-1
5 e = 1.6e-19;
                 // Electronic charge, C
6 Nd = 1e+23; // Impurity atoms , per metrecube
7 T = 300; // Temperature, Kelvin
8 k = 1.38e-23; // Boltzman constant, joule per
     kelvin
9 mu_h = 0.048; // Mobility of holes, m^2V^-1s^-1
10 sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per
     meter
11 p = ni^2/Nd; // Hole concentration, per metrecube
12 sigma_ex = Nd*e*mu_e; // Conductivity with donor
     type impurities, mho per meter
13 E_F = (3/(4*e))*k*T*(log(0.135/0.048)); // Position
```

```
of fermi level above the intrinsic level, eV
14 // mu is inversely propotional to mass
15 printf("\nConductivity of silicon = \%3.2e mho per
      meter", sigma);
16 printf("\nHole concentration = \%4.2e per metrecube",
17 printf("\nConductivity with donor type impurities =
     \%4.2e mho per meter", sigma_ex);
18 printf("\nPosition of fermi level above the
      intrinsic level = \%4.2 \, \text{f eV}", E_F);
19
20 // Results
21 // Conductivity of silicon = 4.39e-04 mho per meter
22 // Hole concentration = 2.25\,\mathrm{e} + 09 per metrecube
23 // Conductivity with donor type impurities = 2.16e
     +03 mho per meter
         Position of fermi level above the intrinsic
     level = 0.02 eV
```

Scilab code Exa 9.11 Intrinsic carrier concentration and conductivity in germanium

```
1 // Scilab Code Ex9.11: Page -9.32; (2004)
2 clc; clear;
                 // Electronic charge, C
3 e = 1.6e-19;
4 Eg = 0.7*e; // Band gap energy, joules
5 mu_e = 0.4; // Mobility of electron; m^2V^-1s^-1
6 mu_h = 0.2; // Mobility of holes, m^2V^-1s^-1
7 m = 9.1e-31; // Mass of electron, kg
                 // Plancks Constant, Js
8 h = 6.63e - 34;
            // Temperature, Kelvin
9 T = 300;
10 k = 1.38e-23; // Boltzman constant, joule per
     kelvin
11 C = 2*(2*\%pi*T*m*k/h^2)^(3/2); // Constant parameter
12 ni = C*exp((-Eg)/(2*k*T)); // Carrier
```

Scilab code Exa 9.12 Forbidden energy band gap

```
1 // Scilab Code Ex9.12: Page -9.32; (2004)
2 clc; clear;
3 = 1.6e-19; // Electronic charge, C
4 mu_e = 0.36; // Mobility of electron; m^2V^-1s
     ^{\hat{}}-1
5 mu_h = 0.17; // Mobility of holes, m^2V^-1s^-1
6 rho = 2.12; // Resistivity of sample, ohm metre
7 sigma = 1/rho; // Conductivity of sample, mho per
     meter
8 m = 9.1e-31; // Mass of electron, kg
9 h = 6.63e-34; // Plancks Constant, Js
            // Temperature, Kelvin
10 T = 300;
11 k = 1.38e-23; // Boltzman constant, joule per
     kelvin
12 // But ni = C*exp((-Eg)/(2*k*T)); // Carrier
     concentration at room temperature, therefore
13 C = 2*(2*\%pi*T*m*k/h^2)^(3/2); // Constant parameter
14 ni = sigma/(e*(mu_e+mu_h)); // Carrier
     concentration, per metercube
```

```
15 b = C/ni; // Ratio for simplicity
16 Eg = 2/e*k*T*log(b); // Band gap energy, joules
17
18 printf("\nBand gap energy = %5.4 f eV", Eg);
19
20 // Result
21 // Band gap energy= 0.7927 eV
```

Scilab code Exa 9.13 Hall Voltage of a semiconductor

```
// Scilab Code Ex9.13: Page-9.45; (2004)
clc;clear;
RH = 3.66e-4; // Hall coefficent, meter cube/C
t = 1e-03; // thickness of the specimen, m
Bz = 0.5; // Magnetic flux density, wb per meter square
Ix = 1e-2; // Current, A
VH = RH*Ix*Bz/t; // Voltage across specimen, volt
printf("\nVoltage across specimen = %3.2f millivolt", VH/1e-3);
// Result
// Voltage across specimen = 1.83 millivolt
```

Scilab code Exa 9.14 Hall coefficient of a semiconductor

```
6 Ix = 20e-3; // Current , A
7 RH = Vy*t/(Ix*Bz); // Hall coefficient , meter cube
    /C
8 printf("\nHall coefficient , meter cube/C = %3.1e
    meter cube/C", RH);
9
10 // Result
11 // Hall coefficient , meter cube/C = 3.7e-06 meter
    cube/C
```

Scilab code Exa 9.15 Mobility density and nature of semiconductor

```
1 // Scilab Code Ex9.15: Page -9.46; (2004)
2 clc; clear;
3 e = 1.6e-19;
               // Electronic charge, C
4 RH = -7.35e-5; // Hall coefficent, meter cube/C
5 sigma = 200; // Conductivity of the Si specimen,
     per ohm per metre
6 n = -1/(RH*e); // Electron density, per metre cube
7 mu = sigma/(n*e); // Mobility of the charge
     carriers, square meter per voly per sec
8 printf("\nElectron density = \%3.3e per metre cube",
     n);
9 printf("\nMobility = \%3.3f square meter per volt per
      sec", mu);
10 printf("\nAs the RH is negative, so specimen is n-
     type");
11
12 // Result
13 // Electron density = 8.503e+22 per metre cube
14 // Mobility = 0.015 square meter per volt per sec
15 // As the RH is negative, so specimen is n-type
```

Scilab code Exa 9.16 Hall Voltage

```
1 // Scilab Code Ex9.16: Page -9.47; (2004)
2 clc; clear;
3 e = 1.6e-19;
                // Electronic charge, C
4 B = 1.5; // Magnetic field, tesla
5 I = 50; // Current, ampere
6 n = 8.4e+28; // Electron density, per metre cube
7 t = 0.5e-2; // thickness of slab, metre
8 RH = 1/(n*e); // Hall coefficent
9 V_H = RH*I*B/t;
                  // Hall voltage, volt
10 printf("\nHall Voltage = \%3.3f micro volt", V_H/1e
     -6);
11
12 // Result
13 // Hall Voltage = 1.116 micro volt
```

Scilab code Exa 9.17 Mobility and number of Charge carrier

```
1 // Scilab Code Ex9.17: Mobility and no of Charge
      carrier : Page -9.48 ; (2004)
2 clc; clear;
3 RH = 3.66e-4; // Hall Coefficient, metrcube/C
4 e = 1.6e-19; // Electronic charge, C
5 rho = 8.93e-3; // Resistivity of sample, ohm meter
6 n = 1/(RH*e); // Number of charge carrier, per
     metre cube
7 \text{ mu_e} = RH/rho;
                   // Mobility of electron, m<sup>2</sup> per
     volt per sec
8 printf("\nNumber of charge carrier = \%3.3e per metre
      cube", n);
9 printf("\nMobility of electron = \%4.5 f squaremetre
     per volt per sec", mu_e);
10
11 //Results
```

```
12 // Number of charge carrier = 1.708\,\mathrm{e} + 22 per metre cube
```

13 // Mobility of electron = $0.04099 \text{ m}^2 \text{ per volt per sec}$

Chapter 10

Superconductivity

Scilab code Exa 10.1 Critical field

Scilab code Exa 10.2 Critical current and Critical field

```
1 // Scilab Code Ex10.2: Page -10.5 (2004)
```

Chapter 11

Lasers

Scilab code Exa 11.1 Ratio of relative population

```
1 // Scilab Code Ex11.1: Page -11.5(2004)
2 clc; clear;
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3e+08; // Speed of light in free space, m/s 5 k = 8.61e-5; // Boltzmann constant, J/K
6 T = 300; // Temperature at absolute scale, K
7 lambda = 6943e-10; // Wavelength of visible light
8 E = h*c/(lambda*1.6e-19); // Energy in eV
9 rate_ratio = \exp(-E/(k*T)); // Ratio of
      spontaneous emission to stimulated emission
10
11 printf("\nThe ratio of relative population = \%3.2e",
       rate_ratio);
12 printf("\nEnergy = \%3.2 \text{ f eV}", E);
13
14 // Results
15 // The ratio of relative population = 8.20e-31
16 // \text{Energy} = 1.79 \text{ eV}
```

Scilab code Exa 11.2 Energy of excited state of laser system

```
1 // Scilab Code Ex11.2: Page -11.16 (2004)
2 clc; clear;
               diameter of laser beam for distance
3 \text{ a1} = 4; //
     first, m
4 	 a2 = 6; //
               diameter of laser beam from second
     distance
5 d1 = 1; // First distance from laser to output beam
      spot, m
6 	 d2 = 2; //
               Second distance from laser to output
     beam spot, m
7 Div = (a2-a1)/(2*(d2-d1));
8 printf("\nDivergence in radian = %d milliradian",
     Div);
10 // Result
11 // Divergence in radian = 1 milliradian
```

Chapter 12

Fibre Optics

Scilab code Exa 12.1 Numerical aperture and acceptance angle of optical fibre

```
1 // Scilab Code Ex12.1: Page -12.6 (2004)
2 clc; clear;
3 \text{ n1} = 1.54;
                 // Refractive index of fibre core
                 // Refractive index of fibre cladding
4 n2 = 1.50;
5 NA = sqrt(n1^2 - n2^2); // Numerical aperture for
      optical fibre
6 // As \sin(theta_a) = sqrt(n1^2 - n2^2), solving for
     theta_a
7 theta_a = asind(sqrt(n1^2 - n2^2));
      acceptance angle of optical fibre, degrees
8 printf("\nNumerical aperture for optical fibre = \%5
     .3 f", NA);
9 printf("\nThe acceptance angle of optical fibre = \%4
      .1f degrees", theta_a);
10
11 // Result
12 // Numerical aperture for optical fibre = 0.349
13 //
      The acceptance angle of optical fibre = 20.4
     degrees
```

Scilab code Exa 12.2 V and mode of optical fibre

```
// Scilab Code Ex12.2: Page-12.13 (2004)
clc;clear;
n1 = 1.53; // Refractive index of fibre core
n2 = 1.50; // Refractive index of fibre cladding
lamb = 1e-6; // absolute wavelength. m
d = 50e-6; // radius of core in m
V = 2*%pi/lamb*d*sqrt(n1^2 - n2^2); // volume of opical fibre
N = V^2/2; // no. of possible modes
printf("\nV of opical fibre = %6.2f", V);
printf("\nNo. of possible modes = %5.3f", N);
// Results
// Results
// V of opical fibre = 94.72
// No. of possible modes = 4485.735
```

Scilab code Exa 12.3 Loss in signal

```
// Scilab Code Ex12.3: Page-12.20 (2004)
clc;clear;
po = 40; // Refractive index of fibre core
pi = 100; // Refractive index of fibre cladding
p = po/pi; // ratio of powers
L = -10*(log(po/pi)); // Refractive index of medium

printf("\nLoss in dB = %f dB", L);
// Result
// Loss in dB = 9.162907 dB
```