1. Let function f be defined by the polynomial below:

$$f(x) = -5x^5 + 8x^4 - 3x^3 - 9x^2 + 4x - 7$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(-x) •	
-f(x) •	
f(-x) •	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 4 9 2 2 7 4 6 3 5 6 4 4 6 7 8 5 1 2 1
3 5 6 4 4 6 7 8 5 1 2 1
4 6 7 8 5 1 2 1
5 1 2 1
6 8 1 7
7 3 3 9
8 9 5 3
9 2 8 5

3. Evaluate g(1).

4. Evaluate $f^{-1}(6)$.

5. By filling more rows of the table, it is possible to make function h even. If that were done, what would be the value of h(-7)?

6. By filling more rows of the table, it is possible to make function f **odd**. If that were done, what would be the value of f(-5)?

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + x$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 8x - 9$$

a. Evaluate f(6).

b. Evaluate $f^{-1}(47)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(4).

b. Evaluate $b^{-1}(2)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	-7			
-1	9			
0	0			
1	-9			
2	7			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?