SIMETRÍAS EN ESPACIOS VECTORIALES

ÁLGEBRA LINEAL Y GEOMETRÍA

RESUMEN. Esto es para que tengáis una prueba por escrito del ejercicio 5 de la hoja 3 que el martes 24 de octubre comentamos por encima en claso.

Sea V un \mathbb{K} -espacio vectorial de dimensión n. Se dice que una aplicación lineal $S\colon V\to V$ es una simetría si $S^2=\mathrm{Id}_V$, donde se entiende que S^2 es la composición de S consigo misma.

- (a) S es diagonalizable. Notad que $S^2 = \operatorname{Id}_V$ implica que el polinomio mínimo de S divide a $x^2 1 = (x 1)(x + 1)$. Hay tres posibilidades: el polinomio mínimo de S es x-1 si, y sólo si, $S = \operatorname{Id}_V$; el polinomio mínimo de S es x+1 si, y sólo si, $S = -\operatorname{Id}_V$; y el polinomio mínimo x^2-1 factoriza como producto de factores simples. En el último caso, S es diagonalizable porque una aplicación lineales es diagonalizable si, y sólo si, su polinomio mínimo factoriza como producto de factores simples (esto debe estar en vuestros apuntes de Álgebra Lineal de primero). Además, las raíces del polinimio mínimo de S son los valores propios de S.
- (b) Demuestra que $V = \ker(S + \operatorname{Id}_V) \oplus \ker(S \operatorname{Id}_V)$. Este apartado es consecuencia directa del anterior. Podemos suponer que nuestra simetría S no es ni Id_V ni $-\operatorname{Id}_V$ pues en ambos casos el resultado es obvio. Por tanto, como el polinomio mínimo es $x^2 1$ sabemos que los valores propios de S son ± 1 y también sabemos que V se descompone como suma directa del subespacio propio $\ker(S + \operatorname{Id}_V)$ asociado al valor propio -1 y del subespacio propio $\ker(S \operatorname{Id}_V)$ asociado al valor propio 1. El espacio $W_1 = \ker(S + \operatorname{Id}_V)$ es la dirección de la simetría y el espacio $W_2 = \ker(S \operatorname{Id}_V)$ es el espacio sobre el que se realiza la simetría.
- (c) Observa que cada $u \in V$ se escribe de manera única como la suma de un vector en W_1 y otro en W_2 , es decir, $u = w_1 + w_2$ donde $w_1 \in W_1$ y $w_2 \in W_2$. Concluye que $S(u) = w_2 w_1$. Notad que $w_1 = \frac{u S(u)}{2}$ y $w_2 = \frac{u + S(u)}{2}$ cumplen que $u = w_1 + w_2$. Además, como

$$(S + \mathrm{Id}_V)(\frac{u - S(u)}{2}) = \frac{S(u) - u}{2} + \frac{u - S(u)}{2} = 0$$

У

$$(S - \mathrm{Id}_V)(\frac{u + S(u)}{2}) = \frac{S(u) + u}{2} - \frac{u + S(u)}{2} = 0,$$

tenemos que $w_1 \in W_1$ y $w_2 \in W_2$ como queríamos. (La unicidad se sigue de $V = W_1 \oplus W_2$.) La conclusión $S(u) = w_2 - w_1$ se puede obtener directamente aplicando S a $u = w_1 + w_2$ o también notando que S restringida a W_1 actúa como menos la identidad y S restringida a W_2 actúa como la identidad.

(d) Supongamos que es V un espacio vectorial euclídeo o unitario. Demuestra que una simetría es autoadjunta si, y sólo si, $W_1 \perp W_2$. En este caso nuestro espacio vectorial V es real y complejo con producto escalar ϕ . Recordad que una aplicación lineal S es autoadjunta si, y sólo si, $\phi(S(u),v)=\phi(u,S(v))$ para todo $u,v\in V$. Sean $u,v\in V$, escribimos $u=u_1+u_2$ y $v=v_1+v_2$ como en el apartado anterior. Entonces $\phi(u_2-u_1,v_1+v_2)=\phi(u_1+u_2,v_2-v_1)$ si, y sólo si (desarrollando y simplificando)

$$2(\phi(u_2, v_1) - \phi(u_1, v_2)) = 0.$$

Si $W_1 \perp W_2$ la anterior relación siempre se tiene porque el producto escalar de un vector de W_1 y de W_2 siempre es cero. Inversamente, si la relación anterior se tiene para todo $u, v \in V$, en particular se tiene que $\phi(u_2, v_1) = 0$ para todo $u_2 \in W_2$ y $v_1 \in W_1$ (tomando $u_1 = 0 = v_2$).

Lo importante es que si una aplicación lineal S cumple $S^2 = \mathrm{Id}_V$, entonces S es una simetría. Además el espacio sobre que el que se realiza la simetría es $W_2 = \ker(S - \mathrm{Id}_V)$. Se dice que la simetría es ortogonal si $W_1 \perp W_2$, es decir, si la dirección de la isometría es ortogonal al espacio sobre el que se realiza la simetría. Podéis probar que una simetría es una aplicación ortogonal si, y sólo si, la simetría es ortogonal en el sentido anterior. (De hecho, este es el ejercicio 15 de la hoja 4.)