This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT COOPERATION TREATY

	From the INTERNATIONAL BUREAU
PCT	То:
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year) 05 April 2000 (05.04.00)	BASF AKTIENGESELLSCHAFT D-67056 Ludwigshafen ALLEMAGNE
Applicant's or agent's file reference	WARRANT MOTIFICATION
0050/049365	IMPORTANT NOTIFICATION
International application No. PCT/EP99/06322	International filing date (day/month/year) 27 August 1999 (27.08.99)
The following indications appeared on record concerning: X the applicant X the inventor	the agent the common representative
Name and Address	State of Nationality State of Residence DE DE
WESTPHALEN, Karl-Otto Mausbergweg 58 D-67346 Speyer Germany	Telephone No.
Germany ·:	Facsimile No.
e e e e e e e e e e e e e e e e e e e	Teleprinter No.
The International Bureau hereby notifies the applicant that the the person	
Name and Address	State of Nationality State of Residence DE DE
WESTPHALEN, Karl-Otto Zum Pfauenturm 17 D-67346 Speyer	Telephone No.
Germany	Facsimile No.
	Teleprinter No.
3. Further observations, if necessary:	,
4. A copy of this notification has been sent to:	
X the receiving Office	the designated Offices concerned
the International Searching Authority	X the elected Offices concerned
X the International Preliminary Examining Authority	other:
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer G. Bähr
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38

-PATENT COOPERATION TR TY

	From the INTERNATIONAL BUREAU			
PCT	То:			
NOTIFICATION OF ELECTION (PCT Rule 61.2)	Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ÉTATS-UNIS D'AMÉRIQUE			
Date of mailing:	1			
16 March 2000 (16.03.00)	in its capacity as elected Office			
International application No.: PCT/EP99/06322	Applicant's or agent's file reference: - 0050/049365			
International filing date:	Priority date:			
27 August 1999 (27.08.99)	08 September 1998 (08.09.98)			
Applicant: WITSCHEL, Matthias et al				
1. The designated Office is hereby notified of its election made: X in the demand filed with the International preliminary Examining Authority on: 22 January 2000 (22.01.00)				
34, chemin des Colombettes 1211 Geneva 20, Switzerland	J. Zahra			
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38			

PCT

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

(Artikel 36 und Regel 70 PCT)

			(Altikei 30 uliu	neger 70 1 O	'/		
Aktenzeicher		Anmelders oder Anwalts	WEITERES VORGE		lung über die Übersendung des internationalen Prüfungsbericht (Formblatt PCT/IPEA/416)		
		tannaiahan	Internationales Anmelded	atum/Tag/Monat/ lahr)	Prioritätsdatum (Tag/Monat/Tag)		
			27/08/1999	atum (rag/Monavoam)	08/09/1998		
			nationale Klassifikation und	on und IPK			
C07D215/		entiklassilication (IFK) oder i	Tauonale Nassiikauon uno	IF K			
Anmelder							
BASF AK	TIEN	IGESELLSCHAFT et a	al.				
			fungsbericht wurde von elder gemäß Artikel 36 ü		onale vorläufigen Prüfung beauftragt		
2. Dieser	BEF	RICHT umfaßt insgesam	t 4 Blätter einschließlich	dieses Deckblatts.			
un Be	Außerdem liegen dem Bericht ANLAGEN bei; dabei handelt es sich um Blätter mit Beschreibungen, Ansprüchen und/oder Zeichnungen, die geändert wurden und diesem Bericht zugrunde liegen, und/oder Blätter mit vor di ser Behörde vorgenommenen Berichtigungen (siehe Regel 70.16 und Abschnitt 607 der Verwaltungsrichtlinien zum PCT). Diese Anlagen umfassen insgesamt Blätter.						
3. Dieser	Beri	cht enthält Angaben zu t	folgenden Punkten:				
į į	\boxtimes	Grundlage des Berichts	s				
l II		Priorität	,				
111		Keine Erstellung eines	Gutachtens über Neuhe	it, erfinderische Täti	gkeit und gewerbliche Anwendbark it		
IV		Mangelnde Einheitlichk	keit der Erfindung		,		
V	Ø	Begründete Feststellur gewerbliche Anwendba	ng nach Artikel 35(2) hins arkeit; Unterlagen und Ei	sichtlich der Neuheit rklärungen zur Stütz	, der erfinderische Tätigkeit und d r ung dieser Feststellung		
VI							
VII		Bestimmte Mängel der	internationalen Anmeldi	ung			
VIII		Bestimmte Bemerkung	jen zur internationalen A	nmeldung			
Datum der E	Einrei	chung des Antrags		Datum der Fertigstell	ung dieses Berichts		
22/01/200	00			09.10.2000			
	auftra	nschrift der mit der internatio gten Behörde:	onalen vorläufigen	Bevollmächtigter Bed	iensteter		
	D-8	opäisches Patentamt 0298 München +49 89 2399 - 0 Tx: 52365	6 epmu d	Cortés, J			
		: +49 89 2399 - 4465	- : -	Tel. Nr. +49 89 2399	8206		

I. Grundlag d s Berichts

1. Dieser Bericht wurde erstellt auf der Grundlage (Ersatzblätter, die dem Anmeldeamt auf eine Aufforderung nach

Artikel 14 hin vorgelegt wurden, gelten im Rahmen dieses Berichts als "ursprünglich eingereicht" und sir nicht beigefügt, weil sie keine Änderungen enthalten.):					und sind ihm		
	Beschreibung, Seiter	n:					
	1-84	ursprüngliche F	assung				
	Patentansprüche, Nr	.:					
	1-13	ursprüngliche f	Fassung				
2.	Aufgrund der Änderun	gen sind folgend	de Unterlagen fort	gefallen:			·
	☐ Beschreibung,	Seiten:					
	☐ Ansprüche,	Nr.:					
	☐ Zeichnungen,	Blatt:					
3.	Dieser Bericht ist angegebenen Greingereichten Fas	ünden nach Auff	assung der Behö	rde über den	erungen erstel Offenbarungs	llt worden, da d sgehalt in der u	liese aus den ırsprünglich
4.	Etwaige zusätzliche E	Bemerkungen:					
V.	. Begründete Feststel gewerblichen Anwei	llung nach Artik ndbarkeit; Unte	kel 35(2) hinsicht rlagen und Erklä	lich der Neu rungen zur 9	heit, der erfir Stützung die:	nderischen Tä ser Feststellur	itigkeit und dei ng
1.	Feststellung						
	Neuheit (N)		Ja: Ansprüche Nein: Ansprüche	1-13			
	Erfinderische Tätigke		Ja: Ansprüche Nein: Ansprüche	1-13			
	Gewerbliche Anwend	barkeit (GA)	Ja: Ansprüche Nein: Ansprüche	1-13			
2	Unterlagen und Erklä	rungen					

si h B iblatt

Zu Punkt V

Begründete Feststellung nach Regel 66.2(a)(ii) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

Es wird auf folgendes Dokument verwiesen:

D1: WO 98 12180 A (BASF AG) 26. März 1998 (1998-03-26) in der Anmeldung erwähnt

D2: EP-A-0 283 261 (IMPERIAL CHEMICAL INDUSTRIES PLC) 21. September 1988 (1988-09-21) in der Anmeldung erwähnt

Neuheit

Der Gegenstand des vorliegenden Patentantrages unterscheidet sich von D1 darin, daß R5 keine Hydroxy- sondern eine Alkoxygruppe oder andere Substituenten wie Halogen-, Alkylthio- usw. sein kann (D1: z.B. Formel I und Definitionen der Substituenten auf Seiten 1-3).

Vorliegende Verbindungen unterscheiden sich von den in D2 beschriebenen in der Verknüpfung des Chinolins mit dem Cyclohexan-1,3-dion. In den beanspruchten Verbindungen sind beide Gruppen über die 5-Stellung des Chinolins verknüpft, während sie in D1 über die 2-Stellung verbunden sind (D2: z.B. Verbindungen 33 und 34 auf Seite 21).

Erfinderische Tätigkeit

Dieser Unterschied zu D1 ist unzureichend um einen erfinderischen Schritt zu begründen, da es für den Fachmann unter Kenntnis von D1 naheliegend ist, o.g. Substituenten zu verändern um Verbindungen mit voraussichtlich vergleichbaren Eigenschaften zu erhalten.

Eine erfinderische Tätigkeit könnte anerkannt werden, wenn belegt wird, daß die Verbindungen des vorliegenden Antrages unerwartete Eigenschaften oder Vorteile gegenüber den in D1 beschriebenen, strukturell am nächsten verwandten Verbindungen haben.

Im vorliegenden Antrag wird lediglich die Wirksamkeit von drei Verbindungen des Typs Ila mit den Beurteilungen "sehr gut" und "hervorragend" unter Angabe der jeweiligen Schadpflanze beurteilt, wobei ein Vergleich mit dem nächsten Stand der Technik fehlt.

Im übrigen wird darauf hingewiesen, daß Patentbegründendes (so z.B. Ergebnisse von Versuchen die eine erfinderische Tätigkeit belegen) den gesamten beanspruchten Bereich abdecken sollten.

Dies gilt insbesondere für die Gruppe IIb sowie für die große Zahl an beanspruchten Gruppen R⁵ und R⁶ sowie auch für die weiteren Substitutionsmöglichkeiten für R⁵ mit R⁷ bis R¹².

Bei den o.g. drei Verbindungen für die bisher Ergebnisse von Untersuchungen vorgelegt wurden, ist R⁵ eine -OCOC(CH₃)₃ oder eine -OCOSCH₃-Gruppe.

Der Gegenstand des vorliegenden Antrages erfüllt daher nicht die Anforderungen nach Art. 33(3) PCT.

AD

PCT

INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regein 43 und 44 PCT)

Aktenzeichen des Anmelders oder Anwalts			ile Übermittiung des internationalen	
0050/049365		Recherchenberichts (Formblatt PCT/ISA/220) sowie, soweit zutreffend, nachstehender Punkt 5		
Internationales Aktenzeichen	Internationales Anmeldeda (Tag/Monat/Jahr)	remationales Anmeldedatum (Frühestes) Prioritätsdatum (Tag/Nac/Nonat/Jahr)		
PCT/EP 99/06322	27/08/1999	9	08/09/1998	
Anmelder				
DACE AVITENCECCI I COUACT of	-1			
BASF AKTIENGESELLSCHAFT et	al.			
Dieser internationale Recherchenbericht wurd	la von der Internationalen Re	ahamhanhahilada a	mtolit und udud dom Anmelder com 80	
Artikel 18 übermittelt. Eine Kople wird dem int	emationalen Büro übermitteli	t	istent and wind dem Annieder Gemas	
Dissou intermedian als Deskamb sub substitution	. Ou hannan	Distance		
Dieser internationale Recherchenbericht umfa Darüber hinaus liegt ihm jew	•	Blätter. n Bericht genannten	Unterlagen zum Stand der Technik bei.	
1. Grundlage des Berichts				
 a. Hinsichtlich der Sprache ist die inter durchgeführt worden, in der sie eing 	mationale Recherche auf der ereicht wurde, sofern unter d	r Grundlage der inter liesem Punkt nichts	mationalen Anmeldung in der Sprache anderes angegeben ist.	
Die internationale Recherche	e ist auf der Grundlage einer	bei der Behörde ein	ngereichten Übersetzung der Internationalen	
Anmeldung (Regel 23.1 b)) o			Aminosāuresequenz ist die internationale	
Recherche auf der Grundlage des S	equenzprotokolls durchgefüh	nt worden, das	Aminosauresequenz at die imemationale	
= :	dung in Schrifticher Form ent	-		
	nalen Anmeldung in compute n in schriftlicher Form eingere	`	gereicht worden ist.	
	n in computerlesbarer Form e	•	st.	
Die Erklärung, daß das nach	· · · · · · · · · · · · · · · · · · ·	che Sequenzprotoko	oll nicht über den Offenbarungsgehalt der	
	•		r. n schriftlichen Sequenzprotokoll entsprechen,	
wurde vorgelegt.	•		, , , , , , , , , , , , , , , , , , , ,	
2. Bestimmte Ansprüche hab	en sich als nicht recherchi	erbar erwiesen (sle	ehe Feld I).	
3. Mangelnde Einheitlichkeit	der Erfindung (siehe Feld II)).		
4. Hinsichtlich der Bezeichnung der Erfind	tuna			
wird der vom Anmelder einge	-			
<u> </u>	Behörde wie folgt festgesetzt:			
CYCLOHEXENONCHINOLINOYL			EL	
5. Hinsichtlich der Zusammenfassung				
wtrd der vom Anmelder einge				
wurde der Wortlaut nach Reg	innerhalb eines Monats nach	gegebenen Fassung n dem Datum der Ab	g von der Behörde festgesetzt. Der sendung dieses internationalen	
6. Folgende Abbildung der Zeichnungen is	t mit der Zusammenfassung	zu veröffentlichen: /	Abb. Nr	
wie vom Anmelder vorgeschi	agen		kelne der Abb.	
well der Anmelder selbst keir	• • •	hat.		
well diese Abbildung die Erftr	ndung besser kennzelchnet.		•	

THIS PAGE BLANK (198710)

INTERNATIONALER RECHERCHENBERICHT

CT/EP 99/06322

A. KLASSIFIZIERUNG DES ANMEL IPK 7 CO7D215/18 ONGSGEGENSTANDES A01N43/42 C07D215/14 C07D215/36 C07D405/12 C07D401/06 C07F9/60 C07D401/08 Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) CO7D AO1N CO7F IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegitfle) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle Betr. Anspruch Nr. WO 98 12180 A (BASF AG) 1,10 Α 26. März 1998 (1998-03-26) in der Anmeldung erwähnt Ansprüche 1,16 EP 0 283 261 A (IMPERIAL CHEMICAL A 1.10 INDUSTRIES PLC) 21. September 1988 (1988-09-21) **Ansprüche** Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu X Siehe Anhang Patentfamille Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Enfinding zugrundellegenden Prinzipe oder der ihr zugrundellegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkelt beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist soil oder die aus einem anderen besonderen Grund angegeben ist (wie ausaeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der Internationalen Recherche Absendedatum des Internationalen Recherchenberichts 11/01/2000 20. Dezember 1999 Name und Postanschrift der Internationalen Recherchenbehörde Bevolimächtigter Bediensteter Europäischee Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax (+31–70) 340–3016 Van Bijlen, H

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/EP 99/06322

	tent document in search report		Publication dat		Patent familia member(s)	Publication dat
WO	9812180	Α	26-03-1998	DE	19638486 A	26-03-1998
				AU	4383397 A	14-04-1998
				EP	0931070 A	28-07-1999
				PL	332212 A	30-08-1999
EP	283261		21-09-1988	AT	110067 T	15-09-1994
				AU	603648 B	22-11-1990
				AU	1311388 A	22-09-1988
				AU	1328088 A	24-11-1988
				CA	1340284 A	22-12-1998
				DE	3851073 D	22-09-1994
				DE	3851073 T	02-03-1995
				EP	0283152 A	21-09-1988
				ES	2058257 T	01-11-1994
				HU	46881 A	28-12-1988
				JP	63264542 A	01-11-1988
				JP	1006256 A	10-01-1989
				JP	2579663 B	05-02-1997
				US	5958839 A	28-09-1999
				US	5426091 A	20-06-1995
				US	4912262 A	27-03-1990
			•	US	5563115 A	08-10-1996
				US	5041681 A	20-08-1991
					5098464 A	24-03-1992
			The second of the second	US	5744610 A	28-04-1998
			, , , , , , , , , , , , , , , , , , , ,	US	5210312 A	11-05-1993
				US	5250501 A	05-10-1993
				YU	53988 A	28-02-1990
				YÜ	165289 A	31-12-1990

1000 704 on Translation

PATENT COOPERATION TREATY

RECEIVED

PCT

JUN72[9 2001

INTERNATIONAL PRELIMINARY EXAMINATION REPORT TECH CENTER 1600/2900

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference 0050/049365	FOR FURTHER ACT	ACTION See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)				
International application No. PCT/EP99/06322		ing date (day/month/year) st 1999 (27.08.99) Priority date (day/month/year) 08 September 1998 (08.09.98)				
International Patent Classification (IPC) or n C07D 215/18, A01N 43/42, C07	national classification and ZD 215/14, 215/36, 405	IPC /12, 401/08, 401/0	96, C07F 9/60			
Applicant	BASF AKTIENGE	SELLSCHAFT				
This international preliminary exa Authority and is transmitted to the a	mination report has been applicant according to Arti	n prepared by this icle 36.	International Preliminary Examining			
2. This REPORT consists of a total of	4 sheets, in	ncluding this cover	sheet.			
This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).						
These annexes consist of a total of sheets.						
3. This report contains indications relating to the following items:						
I Basis of the report	t					
II Priority						
III Non-establishmen	t of opinion with regard to	o novelty, inventive	step and industrial applicability			
IV Lack of unity of i	IV Lack of unity of invention					
V Reasoned stateme citations and explain	nt under Article 35(2) wit anations supporting such s	h regard to novelty, statement	inventive step or industrial applicability;			
VI Certain document	s cited					
VII Certain defects in	the international applicati	on				
VIII Certain observation	ons on the international ap	plication				
			· · · · · · · · · · · · · · · · · · ·			
Date of submission of the demand		Date of completion	of this report			
22 January 2000 (22.0)1.00)	09 (October 2000 (09.10.2000)			
Name and mailing address of the IPEA/EP		Authorized officer				
Facsimile No. Telephone No.						

International application No.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

PCT/EP99/06322

I. Basis of the report		
This report has been drawn under Article 14 are referred to	on the basis of (Replacement sheets o in this report as "originally filed"	s which have been furnished to the receiving Office in response to an invitation and are not annexed to the report since they do not contain amendments.):
the internationa	al application as originally filed.	
the description,	pages1-84	_, as originally filed,
	pages	_, filed with the demand,
	· ·	_, filed with the letter of
	pages	_, filed with the letter of
the claims,	Nos. 1-13	_
	Nos	, as amended under Article 19,
	Nos	_ , filed with the demand,
	Nos.	_ , filed with the letter of ,
	Nos.	_ , filed with the letter of
the drawings,	sheets/fig	_ , as originally filed,
	sheets/fig	
	sheets/fig	_ , filed with the letter of ,
	sheets/fig	_ , filed with the letter of
2. The amendments have resul	Ited in the cancellation of:	
the description,	, pages	
the claims,	Nos	
the drawings,	sheets/fig	
3. This report has been to go beyond the disc	established as if (some of) the am closure as filed, as indicated in the	nendments had not been made, since they have been considered e Supplemental Box (Rule 70.2(c)).
4. Additional observations, if	necessary:	
		•
		·
I		

THIS PAGE BLANK (METO)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.
PCT/EP 99/06322

/ .	Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
	citations and explanations supporting such statement

1.	Statement			
	Novelty (N)	Claims	1-13	YES
		Claims —		NO
	Inventive step (IS)	Claims		YES
		Claims	1-13	NO NO
	Industrial applicability (IA)	Claims	1-13	YES
		Claims		NO

2. Citations and explanations

Reference is made to the following documents:

- D1 = WO-A-98/12180 (BASF), 26 March 1998 (1998-03-26), mentioned in the application
- D2 = EP-A-0 283 261 (IMPERIAL CHEMICAL INDUSTRIES PLC), 21 September 1988 (1988-09-21), mentioned in the application.

Novelty

The subject matter of the present patent application differs from D1 in that R^5 cannot be a hydroxy- but rather can be an alkoxy group or other substituent such as halogen, alkylthio, etc. (D1: e.g., Formula 1 and definitions of the substituents on pages 1-3).

The present compounds differ from those described in D2 in the linking of quinoline with cyclohexane-1,3-dione. Both groups in the claimed compounds are linked via the 5-position of the quinoline, whereas in D1, they are linked via the 2-position (D2: e.g., compounds (33) and (34) on page 21).

Inventive Step

This difference from D1 is insufficient to substantiate an inventive step because it would be obvious to a person skilled in the art with knowledge of D1 to change the above-mentioned substituents to obtain compounds likely having comparable properties.

An inventive step could be established if it can be documented that the compounds of the present application have unexpected characteristic features or advantages over the compounds described in D1 most closely related structurally.

The present application assesses only the effectiveness of the three compounds of type IIa rated as "very good" and "outstanding" with reference to the particular harmful plant, but a comparison with the prior art is missing.

In addition, it should be noted that material substantiating the patent (e.g., results of experiments documenting an inventive step) should cover the entire area claimed.

This is particularly true for Group IIb and for the large number of claimed groups R^5 and R^6 , as well as for the additional possible substitutions of R^5 by R^7-R^{12} .

In the above cited three compounds for which results of studies were presented, R^5 is an $-OCOC(CH_3)_3$ or an $-OCOSCH_3$ group.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/EP 99/06322

Consequently, the subject mater of the present application does not satisfy the requirements of PCT Article 33(3).

PCT WELTORGANISATION FÜR GEISTIGES EIGH Internationales Büro INTERNATIONAL ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07D 215/18, A01N 43/42, C07D 215/14, 215/36, 405/12, 401/08, 401/06, C07F 9/60

A1 (43) Int

(43) Internationales Veröffentlichungsdatum:

(11) Internationale Veröffentlichungsnummer:

16. März 2000 (16.03.00)

WO 00/14069

(21) Internationales Aktenzeichen:

PCT/EP99/06322

(22) Internationales Anmeldedatum: 27. August 1999 (27.08.99)

(30) Prioritätsdaten:

198 40 799.8

8. September 1998 (08.09.98) DE

(71) Anmelder (für alle Bestimmungsstaaten husser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): WITSCHEL, Matthias [DE/DE]; Wittelsbachstrasse 81, D-67061 Ludwigshafen (DE). MISSLITZ, Ulf [DE/DE]; Mandelring 74, D-67433 Neustadt (DE). BAUMANN, Ernst [DE/DE]; Falkenstrasse 6a, D-67373 Dudenhofen (DE). VON DEYN, Wolfgang [DE/DE]; An der Bleiche 24, D-67435 Neustadt (DE). LANGEMANN, Klaus [DE/DE]; Goldbergstrasse 18, D-67551 Worms (DE). MAYER, Guido [DE/DE]; Gutleuthausstrasse 8, D-67433 Neustadt (DE). NEIDLEIN, Ulf [DE/DE]; Bråhmsstrasse 3, D-68165 Mannheim (DE). GÖTZ, Roland [DE/DE]; Langebrücker Strasse 25, D-68809 Neulußheim (DE). GÖTZ, Norbert [DE/DE]; Schöfferstrasse 25, D-67547 Worms (DE). RACK, Michael

[DE/DE]; Sandwingert 67, D-69123 Heidelberg (DE). ENGEL, Stefan [DE/DE]; Königsberger Strasse 103a, D-55268 Nieder-Olm (DE). OTTEN, Martina [DE/DE]; Gunterstrasse 28, D-67069 Ludwigshafen (DE). WEST-PHALEN, Karl-Otto [DE/DE]; Mausbergweg 58, D-67346 Speyer (DE). WALTER, Helmut [DE/DE]; Grünstadter Strasse 82, D-67283 Obrigheim (DE).

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HR, HU, ID, IL, IN, JP, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, VN, ZA, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: CYCLOHEXENONQUINOLINOYL-DERIVATIVES AS HERBICIDAL AGENTS

(54) Bezeichnung: CYCLOHEXENONCHINOLINOYL-DERIVATE ALS HERBIZIDE MITTEL

(57) Abstract

The invention relates to cyclohexenonquinolinoyl derivatives of formula (I), wherein the variables have the following meanings: R¹ means hydrogen, nitro, halogen, cyano, alkyl, halogenalkyl, alkoxyiminomethyl, alkoxy, halogenalkoxy, alkylthio, C¹-C6-halogenalkylthio, alkylsulfinyl, halogenalkylsulfinyl, alkylsulfonyl, halogenalkylsulfonyl, optionally substituted

 $\mathbb{R}^4 \longrightarrow \mathbb{N} \mathbb{R}^2$ $\mathbb{R}^4 \longrightarrow \mathbb{N} \mathbb{R}^2$

aminosulfonyl, optionally substituted sulfonylamino, optionally substituted phenoxy, optionally substituted heterocyclyloxy, optionally substituted phenylthio or optionally substituted heterocyclylthio; R², R³ mean hydrogen, alkyl, halogenalkyl or halogen; and R⁴ means substituted (3-oxo-1-cyclohexen-2-yl)-carbonyl or substituted (1,3-dioxo-2-cyclohexyl)-methylidene. The invention also relates to the agriculturally useable salts of said derivatives, to a method for producing the derivatives, to agents containing them and to the use of the derivatives or agents containing them for combating undesirable plants.

(57) Zusammenfassung

Cyclohexenonchinolinoyl–Derivate der Formel (I), in der die Variablen folgende Bedeutungen haben: R¹: Wasserstoff, Nitro, Halogen, Cyano, Alkyl, Halogenalkyl, Alkoxyiminomethyl, Alkoxy, Halogenalkoxy, Alkylthio, C₁–C₆–Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Halogenalkylsulfinyl, ggf. sub. Sulfonylamino, ggf. sub. Phenoxy, ggf. sub. Heterocyclyloxy, ggf. sub. Phenylthio oder ggf. sub. Heterocyclylthio; R², R³: Wasserstoff, Alkyl, Halogenalkyl oder Halogen; R⁴: substituiertes (3–Oxo-1–cyclohexen-2–yl)–carbonyl oder substituiertes (1,3–dioxo-2–cyclohexyl)–methyliden; sowie deren landwirtschaftlich brauchbaren Salze; Verfahren zur Herstellung der Cyclohexenonchinolinoyl–Derivate; Mittel, welche diese enthalten, sowie die Verwendung dieser Derivate oder diese enthaltende Mittel zur Bekämpfung unerwünschter Pflanzen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM Agranian DT Discussion and a second	wenien wakei
AM Armenien FI Finnland LT Literach CV CV	wakei
21 Chauch 3r 310	
AT Österreich FR Frankreich LU Luxemburg SN Sen	egal
AU Australien GA Gabun LV Lettland SZ Sw.	asiland
AZ Aserbaidschan GB Vereinigtes Königreich MC Monaco TD Tsc	
BA Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Tog	70
DD Destroyer CH CH	lschikistan
DP D-1-1-	kmenistan
BF Burkina Faso GR Griechenland Republik Mazedonien TR Tür	
PC Dulassian IIII II.	nidad und Tobago
Df Domin fro Table 4	raine
DD Descrition II I I1	anda
DV Dolomo IC Taland	einigte Staaten von
CA Vanada III I. I. I.	erika
CE Zantania Addresia de Danastillo ID torre	ekistan
CC Vanas VP V	tnam
CU Soburaira VC Vinciaira	oslawien
CI Câte d'Uneire VD Develors' 1 17 h 110	ıbabwe
CM Kamerun Korea PL Polen	101101110
CN China KR Republik Korea PT Portugal	
CU Kuba KZ Kasachstan RO Rumānien	
CZ Tschechische Republik LC St. Lucia RU Russische Föderation	
DE Deutschland LI Liechtenstein SD Sudan	
DK Dänemark LK Sri Lanka SE Schweden	
EE Estland LR Liberia SG Singapur	

WO 00/14069 PCT/EP99/06322

CYCLOHEXENONCHINOLINOYL-DERIVATE ALS HERBIZIDE MITTEL

Beschreibung

5

Die vorliegende Erfindung betrifft neue Cyclohexanonchinolinoyl-Derivate der Formel I,

10

$$\mathbb{R}^4$$
 \mathbb{R}^2
 \mathbb{R}^1

15

in der die Variablen folgende Bedeutung haben:

 \mathbb{R}^1 Wasserstoff, Nitro, Halogen, Cyano, C1-C6-Alkyl, C_1-C_6 -Halogenalkyl, C_1-C_6 -Alkoxyiminomethyl, 20 $C_1-C_6-Alkoxy$, $C_1-C_6-Halogenalkoxy$, $C_1-C_6-Alkylthio$, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C_1 - C_6 -Halogenalkylsulfonyl, Aminosulfonyl, $N-(C_1-C_6-Alkyl)$ -aminosulfonyl, $N,N-Di-(C_1-C_6-alkyl)$ -25 aminosulfonyl, N-(C1-C6-Alkylsulfonyl)-amino, N-(C₁-C₆-Halogenalkylsulfonyl)-amino, N-(C₁-C₆-Alkyl)- $N-(C_1-C_6-alkylsulfonyl)-amino, N-(C_1-C_6-Alky)-N-$ (C₁-C₆-halogenalkylsulfonyl) -amino, Phenoxy, Heterocyclyloxy, Phenylthio oder Heterocyclylthio, wobei die 30 vier letztgenannten Reste partiell oder vollständig halogeniert sein können und/oder einen bis drei der

nachfolgend genannten Substituenten tragen können: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl,

gen;

 C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkyoxy;

Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl oder Halo-

 \mathbb{R}^4

 \mathbb{R}^2 , \mathbb{R}^3

eine Verbindung IIa oder IIb

40

35

$$(\mathbb{R}^6)_1$$
 $(\mathbb{R}^6)_1$ $(\mathbb{R}^6)_1$

45

IIa IIb

wobei

R5 Halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , POR^8R^9 , OPR^8R^9 , OPOR8R9, OPSR8R9, NR10R11, ONR11R12, N-gebundenes Hetero-5 cyclyl oder O-(N-gebundenes Heterocyclyl), wobei der Heterocyclyl-Rest der beiden letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen 10 Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, $C_1-C_4-Alkoxy$ oder $C_1-C_4-Halogenalkoxy$; R6 Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, $Di-(C_1-C_6-alkoxy)-methyl$, $Di-(C_1-C_6-alkylthio)-methyl$, $(C_1-C_6-Alkoxy)$ $(C_1-C_6-alkylthio)$ -methyl, Hydroxy, 15 $C_1-C_6-Alkoxy$, $C_1-C_6-Halogenalkoxy$, $C_1-C_6-Alkoxycarbonyl$ oxy, C1-C6-Alkylthio, C1-C6-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, $C_1-C_6-Alkylsulfonyl$, $C_1-C_6-Halogenalkylsulfonyl$, 20 C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, $C_1-C_6-Alkoxycarbonyl$ oder $C_1-C_6-Halogenalkoxycarbonyl;$

oder

25 zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine $-O^-(CH_2)_m-O^-$, $-O^-(CH_2)_m-S^-$, $-S^-(CH_2)_m-S^-$, $-O^-(CH_2)_n$ oder $-S^-(CH_2)_n$ -Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl oder C_1-C_4 -Alkoxycarbonyl;

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden

gemeinsam eine - (CH₂)_p-Kette, die durch Sauerstoff oder
Schwefel unterbrochen sein kann und/oder durch einen
bis vier Reste aus folgender Gruppe substituiert sein
kann:
Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder
C₁-C₄-Alkoxycarbonyl;

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden 45 gemeinsam eine Methylidengruppe, die durch einen bis zwei Reste aus folgender Gruppe substituiert sein kann: Halogen, Hydroxy, Formyl, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkylthio, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfonyl oder C_1 - C_6 -Halogenalkylsulfonyl;

oder

5

20

45

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden 10 gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus;

oder

15 zwei Reste R^6 , die an verschiedenen Kohlenstoffen gebunden sind, bilden gemeinsam eine $-(CH_2)_n$ -Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann:

Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Hydroxy oder

 $C_1-C_6-Alkoxycarbonyl;$

 \mathbb{R}^7 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, $C_1-C_{20}-Alkylcarbonyl$, $C_2-C_6-Alkenylcarbonyl$, $C_2-C_6-Alki-C_{20}-Alkylcarbonyl$ 25 nylcarbonyl, C3-C6-Cycloalkylcarbonyl, C1-C6-Alkoxycarbonyl, C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkinyloxycarbonyl, (C₁-C₂₀-Alkylthio) carbonyl, C₁-C₆-Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl, C₃-C₆-Alkinylaminocarbonyl, N,N-Di-(C1-C6-alkyl)-aminocarbonyl, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl$, 30 $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $Di-(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-alkylcarbo$

N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl,

Di-(C₁-C₆-alkyl)-aminothiocarbonyl, C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl,
N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl oder
N,N-Di-(C₁-C₆-alkylamino)-imino-C₁-C₆-alkyl, wobei die
genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell
oder vollständig halogeniert sein können und/oder eine

bis drei der folgenden Gruppen tragen können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di- $(C_1$ - C_4 -alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkoxy-and C_1 - C_4 -alkoxy- C_1 - C_4 -alky- C_1 - C_4 -alky- C_1 - C_4 - C_4 -alky- C_1 - C_4 -C

amino-C1-C4-alkoxycarbonyl, Hydroxycarbonyl,

 $C_1-C_4-Alkylaminocarbonyl$, Di- $(C_1-C_4-alkyl)$ -amino-

carbonyl, Aminocarbonyl, C_1 - C_4 -Alkylcarbonyloxy oder C_3 - C_6 -Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocy-5 clyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocy $clylcarbonyl-C_1-C_6-alkyl$, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxy-C₁-C₆-alkylcarbonyl, Heterocyclyloxy-C₁-C₆-alkyl-10 carbonyl, Phenylaminocarbonyl, $N-(C_1-C_6-Alkyl)-N-$ (phenyl) -aminocarbonyl, Heterocyclylaminocarbonyl, $N-(C_1-C_6-Alkyl)-N-(heterocyclyl)-aminocarbonyl, Phe$ $nyl-C_2-C_6-alkenylcarbonyl$ oder Heterocyclyl- $C_2-C_6-alkenylcarbonyl$ alkenylcarbonyl, wobei der Phenyl- und der Heterocy-15 clyl-Rest der 20 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;

20

R⁸, R⁹ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, Hydroxy, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Halogenalkylamino, Di-(C₁-C₆-alkyl)amino, Di-(C₁-C₆-Halogenalkyl)amino, wobei die genannten

Di-(C1-C6-Halogenalkyl)amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, $Di-(C_1-C_4$ -alkyl)-amino, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, C_1-C_4 -Alkoxy- C_1-C_4 -alkoxycarbonyl, $Di-(C_1-C_4$ -alkyl)-amino- C_1-C_4 -alkoxycarbonyl, Hydroxycarbonyl, C_1-C_4 -Alkyl-aminocarbonyl, $Di-(C_1-C_4$ -alkyl)-aminocarbonyl, Aminocarbonyl, C_1-C_4 -Alkylcarbonyloxy oder C_3-C_6 -Cycloalkyl;

35

40

30

Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

45 R¹⁰ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, Hydroxy, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyl-

WO 00/14069 PCT/EP99/06322

5

oxy, Amino, C₁-C₆-Alkylamino, Di-(C₁-C₆-Alkyl)-amino oder C₁-C₆-Alkylcarbonylamino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen bis drei Reste der folgenden Gruppe tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxycarbonyl, Di-(C₁-C₄-alkyl)-amino-C₁-C₄-alkoxycarbonyl, Hydroxycarbonyl, C₁-C₄-Alkyl-aminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, Aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

20 $R^{11}, R^{12} \qquad C_1 \cdot C_6 \cdot Alkyl, C_3 \cdot C_6 \cdot Alkenyl, C_3 \cdot C_6 \cdot Alkinyl oder \\ C_1 \cdot C_6 \cdot Alkylcarbonyl;$

1 0 bis 6;

25

5

10

15

m 2 bis 4;

n 1 bis 5;

30 p 2 bis 5;

sowie deren landwirtschaftlich brauchbaren Salze.

Außerdem betrifft die Erfindung Verfahren zur Herstellung von 35 Verbindungen der Formel I, Mittel welche diese enthalten sowie die Verwendung dieser Derivate oder diese enthaltende Mittel zur Schadpflanzenbekämpfung.

Aus der Literatur, beispielsweise aus WO 98/12 180 und EP-A 283
40 261 sind Chinolinoyl- bzw. anellierte Phenyl-Derivate, die mit
einem gegebenenfalls substituierten (1-Hydroxy-3-oxo-cyclohex-1-en-2-yl)carbonyl-Rest verknüpft sind, bekannt. Die
herbiziden Eigenschaften der bisher bekannten Verbindungen sowie
die Verträglichkeiten gegenüber Kulturpflanzen können jedoch nur
45 bedingt befriedigen. Es lag daher dieser Erfindung die Aufgabe

zugrunde, weitere, biologisch, insbesondere herbizid wirksame, Verbindungen zu finden.

Demgemäß wurden die Cyclohexenonchinolinoyl-Derivate der Formel I 5 sowie deren herbizide Wirkung gefunden.

Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur 10 Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als 15 Enantiomeren oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

Die Verbindungen der Formel I können auch in Form ihrer landwirt20 schaftlich brauchbaren Salze vorliegen, wobei es auf die Art des
Salzes in der Regel nicht ankommt. Im allgemeinen kommen die
Salze derjenigen Kationen oder die Säureadditionssalze derjenigen
Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die
herbizide Wirkung der Verbindungen I nicht negativ beeinträchti25 gen.

Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, 30 vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium, wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C1-C4-Alkyl, Hydroxy-C1-C4-alkyl, C1-C4-Alkoxy-C1-C4-alkyl, Hydroxy-C1-C4-alkyl, Phenyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetrabutylammonium, 2-(2-Hydroxyeth-1-oxy)eth-1-ylammonium, Di(2-hydroxyeth-1-yl)ammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen,

vorzugsweise Tri $(C_1-C_4-alkyl)$ sulfonium und Sulfoxoniumionen,

vorzugsweise Tri $(C_1-C_4-alkyl)$ sulfoxonium, in Betracht.

40

Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

Die für die Substituenten $R^{1}-R^{12}$ oder als Reste an Phenyl- und Heterocyclyl-Resten genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also 5 alle Alkyl-, Halogenalkyl-, Alkoxy-, Halogenalkoxy-, Alkylthio-, Halogenalkylthio-, Alkylsulfinyl-, Halogenalkylsulfinyl-, Alkylsulfonyl-, Halogenalkylsulfonyl-, N-Alkylaminosulfonyl-, N,N-Dialkylaminosulfonyl-, N-Alkylamino-, N,N-Dialkylamino-, N-Halogenalkylamino-, N-Alkoxyamino-, N-Alkoxy-N-alkylamino-, N-Alkyl-10 carbonylamino-, N-Alkylsulfonylamino-, N-Halogenalkylsulfonylamino-, N-Alkyl-N-alkylsulfonylamino-, N-Alkyl-N-halogenalkylsulfonylamino-, Alkylcarbonyl-, Halogenalkylcarbonyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Alkylthiocarbonyl-, Alkylcarbonyloxy-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Dial-15 kylaminothiocarbonyl-, Alkoxyalkyl-, Dialkoxymethyl-, Dialkylthiomethyl-, (Alkoxy) (alkylthio) methyl-, Alkylcarbonylalkyl-, Alkoxyiminomethyl, Alkoxyiminoalkyl-, N-(Alkylamino)-iminoalkyl-, N-(Dialkylamino)-iminoalkyl-, Phenylalkenylcarbonyl-, Heterocyclylalkenylcarbonyl-, Phenoxyalkylcarbonyl, Heterocyclyloxyalkyl-20 carbonyl, N-Alkoxy-N-alkylaminocarbonyl-, N-Alkyl-N-phenylaminocarbonyl-, N-Alkyl-N-heterocyclylaminocarbonyl-, Alkoxycarbonyloxy, Phenylalkyl-, Heterocyclylalkyl-, Phenylcarbonylalkyl-, Heterocyclylcarbonylalkyl-, Dialkylaminoalkoxycarbonyl-, Alkoxyalkoxycarbonyl-, Alkenylcarbonyl-, Alkenyloxycarbonyl-, Alkenylami-25 nocarbonyl-, N-Alkenyl-N-alkylaminocarbonyl-, N-Alkenyl-N-alkoxyaminocarbonyl-, Alkinylcarbonyl-, Alkinyloxycarbonyl-, Alkinylaminocarbonyl-, N-Alkinyl-N-alkylaminocarbonyl-, N-Alkinyl-N-alkoxyaminocarbonyl-, Alkenyl-, Alkinyl-, Halogenalkenyl-, Halogenalkinyl-, Alkenyloxy, Alkinyloxy und Alkoxyalkoxy-Teile 30 können geradkettig oder verzweigt sein. Sofern nicht anders angegeben tragen halogenierte Substituenten vorzugsweise ein bis fünf

35 Ferner bedeuten beispielsweise:

- C₁-C₄-Alkyl: z.B. Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1,1-Dimethylethyl;

gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen

steht jeweils für Fluor, Chlor, Brom oder Iod.

- 40 C_1-C_6 -Alkyl, sowie die Alkylteile von C_1-C_6 -Alkoxyimino- C_1-C_6 -alkyl, N- $(C_1-C_6$ -Alkylamino)-imino- C_1-C_6 -alkyl, N- $(D_1-C_1-C_6$ -alkylamino)-imino- C_1-C_6 -alkyl, N- $(C_1-C_6$ -Alkoxy)-N- $(C_1-C_6$ -alkyl)-aminocarbonyl, N- $(C_3-C_6$ -Alkenyl)-N- $(C_1-C_6$ -alkyl)-aminocarbonyl, $(C_3-C_6$ -Alkinyl)-N- $(C_1-C_6$ -alkyl)-aminocarbonyl,
- 45 N- $(C_1-C_6-Alkyl)$ -N-phenylaminocarbonyl, N- $(C_1-C_6-Alkyl)$ -N-heterocyclylaminocarbonyl, Phenyl- C_1-C_6 -alkyl, N- $(C_1-C_6-Alkyl)$ -N- $(C_1-C_6-Alkyl)$ -N-

35

(C₁-C₆-halogenalkylsulfonyl)-amino, Heterocyclyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocyclylcarbonyl-C₁-C₆-alkyl: C₁-C₄-Alkyl, wie voranstehend genannt, sowie z.B. Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Tri-

- methylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-3-methylpropyl;
- C₁-C₄-Halogenalkyl: einen C₁-C₄-Alkylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl,
- 20 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl,
 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl,
 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl,
- 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl,
 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl;
- 30 C₁-C₆-Halogenalkyl, sowie die Halogenalkylteile von N-C₁-C₆-Halogenalkylamino: C₁-C₄-Halogenalkyl, wie voranstehend genannt, sowie z.B. 5-Fluorpentyl, 5-Chlorpentyl, 5-Brompentyl, 5-Iodpentyl, Undecafluorpentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl, 6-Iodhexyl oder Dodecafluorhexyl;
 - C₁-C₄-Alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy;
- 40 C₁-C₆-Alkoxy, sowie die Alkoxyteile von N-C₁-C₆-Alkoxyamino, Di-(C₁-C₆-alkoxy)methyl, (C₁-C₆-Alkoxy) (C₁-C₆-alkylthio) methyl, C₁-C₆-Alkoxyiminomethyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl und N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl: C₁-C₄-Alk-
- N- $(C_3-C_6-Alkinyl)$ -N- $(C_1-C_6-alkoxy)$ -aminocarbonyl: C_1-C_4-Alk oxy, wie voranstehend genannt, sowie z.B. Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1-Dimethylpropoxy,

5

30

1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy,
Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy,
4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy,
1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy,
3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder 1-Ethyl-2-methylpropoxy;

- C_1-C_4 -Halogenalkoxy: einen C_1-C_4 -Alkoxyrest, wie voranstehend 10 genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Brommethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 15 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2,3-Dichlorpropoxy, 3,3,3-Trifluor-20 propoxy, 3,3,3-Trichlorpropoxy, 2,2,3,3,3-Pentafluorpropoxy, Heptafluorpropoxy, 1-(Fluormethyl)-2-fluorethoxy, 1-(Chlormethyl)-2-chlorethoxy, 1-(Brommethyl)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy;
- 25 C₁-C₆-Halogenalkoxy: C₁-C₄-Halogenalkoxy, wie voranstehend genannt, sowie z.B. 5-Fluorpentoxy, 5-Chlorpentoxy, 5-Brompentoxy, 5-Iodpentoxy, Undecafluorpentoxy, 6-Fluorhexoxy, 6-Chlorhexoxy, 6-Bromhexoxy, 6-Iodhexoxy oder Dodecafluorhexoxy;
 - C₁-C₄-Alkylthio: z.B. Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthio;
- 35 C₁-C₆-Alkylthio, sowie die Alkylthioteile von (C₁-C₆-Alkylthio) carbonyl, Di·(C₁-C₆-alkylthio) methyl und (C₁-C₆-Alkoxy) (C₁-C₆-alkylthio) methyl: C₁-C₄-Alkylthio, wie voranstehend genannt, sowie z.B. Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Dimethylpropylthio, 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentyl-
- 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio,
 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Tri-

methylpropylthio, 1,2,2-Trimethylpropylthio,
1-Ethyl-1-methylpropylthio oder 1-Ethyl-2-methylpropylthio;

- C₁-C₂₀-Alkylthio als Alkylthiorest von (C₁-C₂₀-Alkyl thio)carbonyl: C₁-C₆-Alkylthio wie voranstehend genannt, sowie
 z.B. Heptylthio, Octylthio, Hexadecylthio oder Octadecylthio;
- C1-C4-Halogenalkylthio: einen C1-C4-Alkylthiorest, wie voranstehend genannt, der partiell oder vollständig durch Fluor,
 Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlordifluormethylthio, Bromdifluormethylthio, 2-Fluorethylthio, 2-Chlorethylthio, 2-Bromethylthio, 2-Iodethylthio, 2,2,2-Trifluorethylthio, 2,2,2-Trifluorethylthio, 2,2,2-Trifluorethylthio, 2,2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2 2-dischlorethylthio
- chlorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2,2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio, Pentafluorethylthio, 2-Fluorpropylthio, 3-Fluorpropylthio, 2-Chlorpropylthio, 3-Chlorpropylthio, 2-Brompropylthio, 3-Brompropylthio, 2,2-Difluorpropylthio, 2,3-Difluorpropylthio,
- 20 2,3-Dichlorpropylthio, 3,3,3-Trifluorpropylthio, 3,3,3-Trichlorpropylthio, 2,2,3,3,3-Pentafluorpropylthio, Heptafluorpropylthio, 1-(Fluormethyl)-2-fluorethylthio, 1-(Chlormethyl)-2-chlorethylthio, 1-(Brommethyl)-2-bromethylthio,
 4-Fluorbutylthio, 4-Chlorbutylthio, 4-Brombutylthio oder
 Nonafluorbutylthio;
- C₁-C₆-Halogenalkylthio: C₁-C₄-Halogenalkylthio, wie voranstehend genannt, sowie z.B. 5-Fluorpentylthio, 5-Chlorpentylthio, 5-Brompentylthio, 5-Iodpentylthio, Undecafluorpentylthio, 6-Fluorhexylthio, 6-Chlorhexylthio, 6-Bromhexylthio, 6-Iodhexylthio oder Dodecafluorhexylthio;
- C1-C6-Alkylsulfinyl (C1-C6-Alkyl-S(=0)-): z.B. Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl, Butylsulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl, 1,1-Dimethylethylsulfinyl, Pentylsulfinyl, 1-Methylbutylsulfinyl, 2-Methylbutylsulfinyl, 3-Methylbutylsulfinyl, 2,2-Dimethylpropylsulfinyl, 1-Ethylpropylsulfinyl, 1,1-Dimethylpropylsulfinyl, 1,2-Dimethylpropylsulfinyl, Hexylsulfinyl, 1-Methylpentylsulfinyl, 2-Methylpentylsulfinyl, 3-Methylpen-
- 1-Methylpentylsulfinyl, 2-Methylpentylsulfinyl, 3-Methylpentylsulfinyl, 4-Methylpentylsulfinyl, 1,1-Dimethylbutylsulfinyl, nyl, 1,2-Dimethylbutylsulfinyl, 1,3-Dimethylbutylsulfinyl, 2,2-Dimethylbutylsulfinyl, 2,3-Dimethylbutylsulfinyl, 3,3-Dimethylbutylsulfinyl, 1-Ethylbutylsulfinyl, 2-Ethylbutylsulfinyl, nyl, 1,1,2-Trimethylpropylsulfinyl, 1,2,2-Trimethylpropylsulfinyl, 1,2,2-Trimethylpropylsulfinyl,

finyl, 1-Ethyl-1-methylpropylsulfinyl oder 1-Ethyl-2-methylpropylsulfinyl;

 $C_1-C_6-Halogenalkylsulfinyl: C_1-C_6-Alkylsulfinylrest, wie$ 5 voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylsulfinyl, Difluormethylsulfinyl, Trifluormethylsulfinyl, Chlordifluormethylsulfinyl, Bromdifluormethylsulfinyl, 2-Fluorethylsulfinyl, 2-Chlorethylsulfinyl, 2-Bromethyl-10 sulfinyl, 2-Iodethylsulfinyl, 2,2-Difluorethylsulfinyl, 2,2,2-Trifluorethylsulfinyl, 2,2,2-Trichlorethylsulfinyl, 2-Chlor-2-fluorethylsulfinyl, 2-Chlor-2,2-difluorethylsulfinyl, 2,2-Dichlor-2-fluorethylsulfinyl, Pentafluorethylsulfinyl, 2-Fluorpropylsulfinyl, 3-Fluorpropylsulfinyl, 2-Chlorpropylsulfinyl, 3-Chlorpropylsulfinyl, 2-Brompropylsulfinyl, 15 3-Brompropylsulfinyl, 2,2-Difluorpropylsulfinyl, 2,3-Difluorpropylsulfinyl, 2,3-Dichlorpropylsulfinyl, 3,3,3-Trifluorpropylsulfinyl, 3,3,3-Trichlorpropylsulfinyl, 2,2,3,3,3-Pentafluorpropylsulfinyl, Heptafluorpropylsulfinyl, 1-(Fluor-20 methy1)-2-fluorethylsulfinyl, 1-(Chlormethy1)-2-chlorethylsulfinyl, 1-(Brommethyl)-2-bromethylsulfinyl, 4-Fluorbutylsulfinyl, 4-Chlorbutylsulfinyl, 4-Brombutylsulfinyl, Nonafluorbutylsulfinyl, 5-Fluorpentylsulfinyl, 5-Chlorpentylsulfinyl, 5-Brompentylsulfinyl, 5-Iodpentylsulfinyl, Undeca-25 fluorpentylsulfinyl, 6-Fluorhexylsulfinyl, 6-Chlorhexylsulfinyl, 6-Bromhexylsulfinyl, 6-Iodhexylsulfinyl oder Dodecafluorhexylsulfinyl;

 $C_1-C_6-Alkylsulfonyl (C_1-C_6-Alkyl-S(=0)_2-)$, sowie die Alkylsulfonylreste von N-(C_1 - C_6 -Alkylsulfonyl)-amino und N-(C_1 - C_6 -30 $Alkyl)-N-(C_1-C_6-alkylsulfonyl)-amino: z.B. Methylsulfonyl,$ Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl, 1,1-Dimethylethylsulfonyl, Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 35 1,1-Dimethylpropylsulfonyl, 1,2-Dimethylpropylsulfonyl, 2,2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, Hexylsulfonyl, 1-Methylpentylsulfonyl, 2-Methylpentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1,3-Dimethylbutyl-40 sulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutylsulfonyl, 3,3-Dimethylbutylsulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl, 1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl 45 oder 1-Ethyl-2-methylpropylsulfonyl;

- C₁-C₆-Halogenalkylsulfonyl, sowie die Halogenalkylsulfonylreste von N-(C₁-C₆-Halogenalkylsulfonyl)-amino und N-(C₁-C₆-Alkyl)-N-(C₁-C₆-halogenalkylsulfonyl)-amino: einen C₁-C₆-Alkylsulfonylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylsulfonyl, Difluormethylsulfonyl, Trifluormethylsulfonyl, Chlordifluormethylsulfonyl, Bromdifluormethylsulfonyl, 2-Fluorethylsulfonyl, 2-Chlorethylsulfonyl, 2-Bromethylsulfonyl, 2-Iodethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl,
- nyl, 2,2-Difluorethylsulfonyl, 2,2,2-Trifluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2,2-difluorethylsulfonyl, 2,2-Dichlor-2-fluorethylsulfonyl, 2,2,2-Trichlorethylsulfonyl, Pentafluorethylsulfonyl, 2-Fluorpropylsulfonyl, 3-Fluorpropylsulfonyl, 2-Chlorpropylsulfonyl, 3-Chlorpropyl-
- sulfonyl, 2-Brompropylsulfonyl, 3-Brompropylsulfonyl, 2,2-Difluorpropylsulfonyl, 2,3-Difluorpropylsulfonyl, 2,3-Dichlorpropylsulfonyl, 3,3,3-Trifluorpropylsulfonyl, 3,3,3-Trichlorpropylsulfonyl, 2,2,3,3,3-Pentafluorpropylsulfonyl, Heptafluorpropylsulfonyl, 1-(Fluormethyl)-2-fluorethylsulfonyl,
- 1-(Chlormethyl)-2-chlorethylsulfonyl, 1-(Brommethyl)-2-bromethylsulfonyl, 4-Fluorbutylsulfonyl, 4-Chlorbutylsulfonyl,
 4-Brombutylsulfonyl, Nonafluorbutylsulfonyl, 5-Fluorpentylsulfonyl, 5-Chlorpentylsulfonyl, 5-Brompentylsulfonyl, 5-Iodpentylsulfonyl, 6-Fluorhexylsulfonyl, 6-Bromhexylsulfonyl,
 6-Iodhexylsulfonyl oder Dodecafluorhexylsulfonyl;
 - C_1 - C_6 -Alkylamino, sowie die Alkylaminoreste von N- $(C_1$ - C_6 -Alkylamino)-imino- C_1 - C_6 -alkyl, also z.B. Methylamino, Ethyl-
- amino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino,
 Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino,
 3-Methylbutylamino, 2,2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino, 1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino, 1-Methylpentylamino, 2-Methylpentylamino,
- 3-Methylpentylamino, 4-Methylpentylamino, 1,1-Dimethylbutylamino, 1,2-Dimethylbutylamino, 1,3-Dimethylbutylamino, 2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino, 1-Ethylbutylamino, 2-Ethylbutylamino, 1,1,2-Trimethylpropylamino, 1,2,2-Trimethylpropylamino,
- 40 1-Ethyl-1-methylpropylamino oder 1-Ethyl-2-methylpropylamino;
 - $(C_1-C_4-Alkylamino)$ sulfonyl: z.B. Methylaminosulfonyl, Ethylaminosulfonyl, Propylaminosulfonyl, 1-Methylethylaminosulfonyl, sulfonyl, Butylaminosulfonyl, 1-Methylpropylaminosulfonyl,
- 2-Methylpropylaminosulfonyl oder 1,1-Dimethylethylaminosulfonyl;

WO 00/14069

- (C₁-C₆-Alkylamino) sulfonyl: (C₁-C₄-Alkylamino) sulfonyl, wie vorstehend genannt, sowie z.B. Pentylaminosulfonyl, 1-Methylbutylaminosulfonyl, 2-Methylbutylaminosulfonyl, 3-Methylbutylaminosulfonyl, 2-Dimethylpropylaminosulfonyl, 1-Ethylbutylaminosulfonyl, 1-Ethylbutylaminosulfonyl, 1-Dimethylpropylaminosulfonyl, 1-Dimethylpropyla
- propylaminosulfonyl, Hexylaminosulfonyl, 1,1-Dimethylpropylaminosulfonyl, 1,2-Dimethylpropylaminosulfonyl, 1-Methylpentylaminosulfonyl, 2-Methylpentylaminosulfonyl, 3-Methylpentylaminosulfonyl, 4-Methylpentylaminosulfonyl, 1,1-Dimethylbutylaminosulfonyl, 1,2-Dimethylbutylaminosulfonyl, 1,3-Di-
- 10 methylbutylaminosulfonyl, 2,2-Dimethylbutylaminosulfonyl,
 2,3-Dimethylbutylaminosulfonyl, 3,3-Dimethylbutylaminosulfonyl, 1-Ethylbutylaminosulfonyl, 2-Ethylbutylaminosulfonyl,
 1,1,2-Trimethylpropylaminosulfonyl, 1,2,2-Trimethylpropylaminosulfonyl, 1-Ethyl-1-methylpropylaminosulfonyl oder
 1-Ethyl-2-methylpropylaminosulfonyl;
 - Di-(C₁-C₄-alkyl)-aminosulfonyl: z.B. N,N-Dimethylaminosulfonyl, N,N-Diethylaminosulfonyl, N,N-Di-(1-methylethyl)aminosulfonyl, N,N-Dipropylaminosulfonyl, N,N-Dibutylaminosulfonyl, N,N-Dibutylam
- nyl, N,N-Di-(1-methylpropyl)-aminosulfonyl, N,N-Di-(2-methylpropyl)-aminosulfonyl, N,N-Di-(1,1-dimethylethyl)-aminosulfonyl, N-Ethyl-N-methylaminosulfonyl, N-Methyl-N-propylaminosulfonyl, N-Methyl-N-(1-methylethyl)-aminosulfonyl, N-Butyl-N-methylaminosulfonyl, N-Methyl-N-(1-methyl-
- propyl) -aminosulfonyl, N-Methyl-N-(2-methylpropyl) -amino-sulfonyl, N-(1,1-Dimethylethyl)-N-methylaminosulfonyl, N-Ethyl-N-propylaminosulfonyl, N-Ethyl-N-(1-methyl-ethyl) -aminosulfonyl, N-Butyl-N-ethylaminosulfonyl, N-Ethyl-N-(1-methylpropyl) -aminosulfonyl, N-Ethyl-N-(2-methyl-n
- propyl) -aminosulfonyl, N-Ethyl-N-(1,1-dimethylethyl) -aminosulfonyl, N-(1-Methylethyl) -N-propylaminosulfonyl, N-Butyl-N-propylaminosulfonyl, N-(1-Methylpropyl) -N-propylaminosulfonyl, N-(2-Methylpropyl) -N-propylaminosulfonyl, N-(1,1-Dimethylethyl) -N-propylaminosulfonyl, N-Butyl-N-
- (1-methylethyl)-aminosulfonyl, N-(1-Methylethyl)-N-(1-methyl-propyl)-aminosulfonyl, N-(1-Methylethyl)-N-(2-methyl-propyl)-aminosulfonyl, N-(1,1-Dimethylethyl)-N-(1-methyl-ethyl)-aminosulfonyl, N-Butyl-N-(1-methylpropyl)-aminosulfonyl, N-Butyl-N-(2-methylpropyl)-aminosulfonyl, N-
- Butyl-N-(1,1-dimethylethyl)-aminosulfonyl, N-(1-Methyl-propyl)-N-(2-methylpropyl)-aminosulfonyl, N-(1,1-Dimethyl-ethyl)-N-(1-methylpropyl)-aminosulfonyl oder N-(1,1-Dimethyl-ethyl)-N-(2-methylpropyl)-aminosulfonyl;
- 45 Di- $(C_1-C_6-alkyl)$ -aminosulfonyl: Di- $(C_1-C_4-alkyl)$ -aminosulfonyl, wie voranstehend genannt, sowie z.B. N-Methyl-N-pentylaminosulfonyl, N-Methyl-N-(1-methylbutyl)-amino-

- sulfonyl, N-Methyl-N-(2-methylbutyl)-aminosulfonyl, N-Methyl-N-(3-methylbutyl)-aminosulfonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1-ethylpropyl) -aminosulfonyl, N-Methyl-N-hexylaminosulfonyl, N-5 Methyl-N-(1,1-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1-methylpentyl)-aminosulfonyl, N-Methyl-N-(2-methylpentyl)-aminosulfonyl, N-Methyl-N-(3-methylpentyl)-aminosulfonyl, N-Methyl-N-(4-methylpentyl)-aminosulfonyl, N-Methyl-N-10 (1,1-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(1,2-dimethylbutyl) -aminosulfonyl, N-Methyl-N-(1,3-dimethylbutyl) -aminosulfonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(2,3-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(1-ethyl-15 butyl)-aminosulfonyl, N-Methyl-N-(2-ethylbutyl)-aminosulfonyl, N-Methyl-N-(1,1,2-trimethylpropyl)-aminosulfonyl, N-Methyl-N-(1,2,2-trimethylpropyl)-aminosulfonyl, N-Methyl-N-(1-ethyl-1-methylpropyl)-aminosulfonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminosulfonyl, N-Ethyl-N-pentyla-20 minosulfonyl, N-Ethyl-N-(1-methylbutyl)-aminosulfonyl, N-Ethyl-N-(2-methylbutyl)-aminosulfonyl, N-Ethyl-N-(3-methylbutyl)-aminosulfonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminosulfonyl, N-Ethyl-N-(1-ethylpropyl)-aminosulfonyl, N-Ethyl-N-hexylaminosulfonyl, N-Ethyl-N-(1,1-dimethylpropyl)-amino-25 sulfonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminosulfonyl, N-Ethyl-N-(1-methylpentyl)-aminosulfonyl, N-Ethyl-N-(2-methylpentyl) -aminosulfonyl, N-Ethyl-N-(3-methylpentyl) -aminosulfonyl, N-Ethyl-N-(4-methylpentyl)-aminosulfonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminosulfonyl, N-30 Ethyl-N-(1,2-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(2,2-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(2,3-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminosulfonyl, N-35 Ethyl-N-(1-ethylbutyl)-aminosulfonyl, N-Ethyl-N-(2-ethylbutyl) -aminosulfonyl, N-Ethyl-N-(1,1,2-trimethylpropyl) -aminosulfonyl, N-Ethyl-N-(1,2,2-trimethylpropyl) -aminosulfonyl, N-Ethyl-N-(1-ethyl-1-methylpropyl)-aminosulfonyl, N-Ethyl-N-(1-ethyl-2-methyl-40 propyl) -aminosulfonyl, N-Propyl-N-pentylaminosulfonyl, N-Butyl-N-pentylaminosulfonyl, N, N-Dipentylaminosulfonyl, N-Propyl-N-hexylaminosulfonyl, N-Butyl-N-hexylaminosulfonyl, N-Pentyl-N-hexylaminosulfonyl oder N, N-Dihexylaminosulfonyl;
- 45 Di- $(C_1-C_4-alkyl)$ amino, sowie die Dialkylaminoreste von Di- $(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkyl)$ amino- $C_1-C_4-alkyl$, also z.B. N,N-Dimethylamino,

N, N-Diethylamino, N, N-Dipropylamino, N, N-Di-(1-methylethyl) amino, N, N-Dibutylamino, N, N-Di-(1-methylpropyl) amino, N, N-Di-(2-methylpropyl)amino, N, N-Di-(1, 1-dimethylethyl)amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino, 5 N-Methyl-N-(1-methylpropyl)amino, N-Methyl-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-methylamino, N-Ethyl-Npropylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethylamino, N-Ethyl-N-(1-methylpropyl)amino, N-Ethyl-N-(2-methylpropyl) amino, N-Ethyl-N-(1,1-dimethylethyl) amino, N-(1-Me-10 thylethyl)-N-propylamino, N-Butyl-N-propylamino, N-(1-Methylpropyl) -N-propylamino, N-(2-Methylpropyl) -N-propylamino, N-(1,1-Dimethylethyl)-N-propylamino, N-Butyl-N-(1-methylethyl)amino, N-(1-Methylethyl)-N-(1-methylpropyl)amino, N-(1-Methylethyl)-N-(2-methylpropyl)amino, N-(1,1-Dimethyl-15 ethyl)-N-(1-methylethyl)amino, N-Butyl-N-(1-methylpropyl)amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N-(1,1-dime-

- amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N-(1,1-dimethylethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)-amino,
 N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-amino oder
 N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;
 - Di-(C₁-C₆-alkyl)amino, sowie die Dialkylaminoreste von Di-(C₁-C₆-alkyl)amino-imino-C₁-C₆-alkyl: Di-(C₁-C₄-alkyl)amino wie voranstehend genannt, sowie N,N-Dipentylamino, N,N-Dihexylamino, N-Methyl-N-pentylamino, N-Ethyl-N-pentylamino, N-Methyl-N-hexylamino oder N-Ethyl-N-hexylamino.
- C₁-C₄-Alkylcarbonyl: z.B. Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl,
 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl oder
 1,1-Dimethylethylcarbonyl;

25

C1-C6-Alkylcarbonyl, sowie die Alkylcarbonylreste von Phenoxy-C1-C6-alkylcarbonyl, Heterocyclyloxy-C1-C6-alkylcarbonyl, $C_1-C_6-Alkylcarbonylamino$, $C_1-C_6-Alkylcarbonyl-C_1-C_6-alkyl$: 35 C₁-C₄-Alkylcarbonyl, wie voranstehend genannt, sowie z.B. Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, Hexylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl, 1-Methylpentylcarbonyl, 2-Methyl-40 pentylcarbonyl, 3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2,-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl, 45 1,1,2-Trimethylpropylcarbonyl, 1,2,2-Trimethylpropylcarbonyl,

- 1-Ethyl-1-methylpropylcarbonyl oder 1-Ethyl-2-methylpropyl-carbonyl;
- C₁-C₂₀-Alkylcarbonyl: C₁-C₆-Alkylcarbonyl, wie voranstehend
 genannt, sowie Heptylcarbonyl, Octylcarbonyl, Pentadecylcarbonyl oder Heptadecylcarbonyl;
 - C_1 - C_6 -Halogenalkylcarbonyl: einen C_1 - C_6 -Alkylcarbonylrest, wie vorstehend genannt, der partiell oder vollständig durch
- 10 Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chloracetyl, Dichloracetyl, Trichloracetyl, Fluoracetyl, Difluoracetyl, Trifluoracetyl, Chlorfluoracetyl, Dichlorfluoracetyl, Chlordifluoracetyl, 2-Fluorethylcarbonyl, 2-Chlorethylcarbonyl, 2-Bromethylcarbonyl, 2-Iodethylcarbo-
- nyl, 2,2-Difluorethylcarbonyl, 2,2,2-Trifluorethylcarbonyl, 2-Chlor-2-fluorethylcarbonyl, 2-Chlor-2,2-difluorethylcarbonyl, 2,2-Dichlor-2-fluorethylcarbonyl, 2,2,2-Trichlorethylcarbonyl, 2,2-Trichlorethylcarbonyl, 2-Fluorpropylcarbonyl, 3-Fluorpropylcarbonyl, 2,2-Difluorpropylcarbonyl, 2,3-Di-
- fluorpropylcarbonyl, 2-Chlorpropylcarbonyl, 3-Chlorpropylcarbonyl, 2,3-Dichlorpropylcarbonyl, 2-Brompropylcarbonyl, 3-Brompropylcarbonyl, 3,3,3-Trifluorpropylcarbonyl, 3,3,3-Trichlorpropylcarbonyl, 2,2,3,3,3-Pentafluorpropylcarbonyl, Heptafluorpropylcarbonyl, 1-(Fluormethyl)-2-fluor-
- ethylcarbonyl, 1-(Chlormethyl)-2-chlorethylcarbonyl, 1-(Brommethyl)-2-bromethylcarbonyl, 4-Fluorbutylcarbonyl, 4-Chlorbutylcarbonyl, 4-Brombutylcarbonyl, Nonafluorbutylcarbonyl, 5-Fluorpentylcarbonyl, 5-Chlorpentylcarbonyl, 5-Brompentylcarbonyl, Perfluorpentylcarbonyl, 6-Fluorhexylcarbonyl,
- 6-Chlorhexylcarbonyl, 6-Bromhexylcarbonyl oder Perfluorhexylcarbonyl;
- C₁-C₄-Alkoxycarbonyl, sowie die Alkoxycarbonylteile von Di-(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbonyl, also z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1-Methylethoxycarbonyl, Butoxycarbonyl, 1-Methylpropoxycarbonyl, 2-Methylpropoxycarbonyl oder 1,1-Dimethylethoxycarbonyl;
- (C₁-C₆-Alkoxy) carbonyl; sowie die Alkoxycarbonylteile von
 C₁-C₆-Alkoxycarbonyloxy: (C₁-C₄-Alkoxy) carbonyl, wie vorstehend genannt, sowie z.B. Pentoxycarbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxycarbonyl,
 2,2-Dimethylpropoxycarbonyl, 1-Ethylpropoxycarbonyl, Hexoxycarbonyl, 1,1-Dimethylpropoxycarbonyl, 1,2-Dimethylpropoxycarbonyl,
 carbonyl, 1-Methylpentoxycarbonyl, 2-Methylpentoxycarbonyl,
 3-Methylpentoxycarbonyl, 4-Methylpentoxycarbonyl, 1,1-Dimethylpentoxycarbonyl,

thylbutoxycarbonyl, 1,2-Dimethylbutoxycarbonyl, 1,3-Dimethyl-

WO 00/14069 PCT/EP99/06322

17

butoxycarbonyl, 2,2-Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl, 3,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1,2-Trimethylpropoxycarbonyl, 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-1-methyl-propoxycarbonyl oder 1-Ethyl-2-methyl-propoxycarbonyl;

- C_1 - C_6 -Halogenalkoxycarbonyl: einen C_1 - C_6 -Alkoxycarbonylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B.
- 10 Fluormethoxycarbonyl, Difluormethoxycarbonyl, Trifluormethoxycarbonyl, Chlordifluormethoxycarbonyl, Bromdifluormethoxycarbonyl, 2-Fluorethoxycarbonyl, 2-Chlorethoxycarbonyl, 2-Bromethoxycarbonyl, 2-Iodethoxycarbonyl, 2,2-Difluorethoxycarbonyl, 2,2,2-Trifluorethoxycarbonyl, 2-Chlor-
- 2-fluorethoxycarbonyl, 2-Chlor-2,2-difluorethoxycarbonyl, 2,2-Dichlor-2-fluorethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, Pentafluorethoxycarbonyl, 2-Fluorpropoxycarbonyl, 3-Fluorpropoxycarbonyl, 2-Chlorpropoxycarbonyl, 3-Chlorpropoxycarbonyl, 2-Brompropoxycarbonyl, 3-Brompropoxycarbonyl,
- 20 2,2-Difluorpropoxycarbonyl, 2,3-Difluorpropoxycarbonyl,
 2,3-Dichlorpropoxycarbonyl, 3,3,3-Trifluorpropoxycarbonyl,
 3,3,3-Trichlorpropoxycarbonyl, 2,2,3,3,3-Pentafluorpropoxycarbonyl, Heptafluorpropoxycarbonyl, 1-(Fluormethyl)-2-fluorethoxycarbonyl, 1-(Chlormethyl)-2-chlorethoxycarbonyl,
- 1-(Brommethyl)-2-bromethoxycarbonyl, 4-Fluorbutoxycarbonyl, 4-Chlorbutoxycarbonyl, 4-Brombutoxycarbonyl, 4-Iodbutoxycarbonyl, 5-Fluorpentoxycarbonyl, 5-Chlorpentoxycarbonyl, 5-Brompentoxycarbonyl, 6-Fluorhexoxycarbonyl, 6-Chlorhexoxycarbonyl oder 6-Bromhexoxycarbonyl;

30

5

- (C₁-C₄-Alkyl)carbonyloxy: Acetyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, 1-Methylethylcarbonyloxy, Butylcarbonyloxy, 1-Methylpropylcarbonyloxy, 2-Methylpropylcarbonyloxy oder 1,1-Dimethylethylcarbonyloxy;

35

- (C₁-C₄-Alkylamino) carbonyl: z.B. Methylaminocarbonyl, Ethyl-aminocarbonyl, Propylaminocarbonyl, 1-Methylethylaminocarbonyl, Butylaminocarbonyl, 1-Methylpropylaminocarbonyl, 2-Methylpropylaminocarbonyl oder 1,1-Dimethylethylaminocarbonyl:
- 40 carbonyl;
 - $(C_1-C_6-Alkylamino)$ carbonyl: $(C_1-C_4-Alkylamino)$ carbonyl, wie vorstehend genannt, sowie z.B. Pentylaminocarbonyl, 1-Methylbutylaminocarbonyl, 2-Methylbutylaminocarbonyl, 3-Methyl-
- butylaminocarbonyl, 2,2-Dimethylpropylaminocarbonyl, 1-Ethylpropylaminocarbonyl, Hexylaminocarbonyl, 1,1-Dimethylpropylaminocarbonyl, 1,2-Dimethylpropylaminocarbonyl, 1-Methylpen-

tylaminocarbonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methylpentylaminocarbonyl, 1,1-Dimethylbutylaminocarbonyl, 1,2-Dimethylbutylaminocarbonyl, 1,3-Dimethylbutylaminocarbonyl, 2,2-Dimethylbutylaminocarbonyl, 2,3-Dimethylbutylaminocarbonyl, 3,3-Dimethylbutylaminocarbonyl, 3,3-Dimethylbutylaminocarbonyl, 1-Ethylbutylaminocarbonyl, 2-Ethylbutylaminocarbonyl, 1,1,2-Trimethylpropylaminocarbonyl, 1,2,2-Trimethylpropylaminocarbonyl, 1-Ethyl-1-methylpropylaminocarbonyl, 1-Ethyl-1-methylpropylaminocarbonyl, 1-Ethyl-2-methylpropylaminocarbonyl;

10

5

- Di-(C₁-C₄-alkyl)-aminocarbonyl: z.B. N,N-Dimethylaminocarbonyl, N,N-Diethylaminocarbonyl, N,N-Di-(1-methylethyl)aminocarbonyl, N,N-Dipropylaminocarbonyl, N,N-Dibutylaminocarbonyl, N,N-Di-(1-methylpropyl)-aminocarbonyl, N,N-Di-(2-methylpropyl)-aminocarbonyl, N,N-Di-(1.1-dimethylethyl)-aminocarbonyl
- propyl)-aminocarbonyl, N,N-Di-(1,1-dimethylethyl)-aminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-propylaminocarbonyl, N-Methyl-N-(1-methylethyl)-aminocarbonyl, N-Butyl-N-methylaminocarbonyl, N-Methyl-N-(1-methylpropyl)-aminocarbonyl, N-Methyl-N-(2-methylpropyl)-aminocarbonyl,
- N-(1,1-Dimethylethyl)-N-methylaminocarbonyl, N-Ethyl-N-propylaminocarbonyl, N-Ethyl-N-(1-methylethyl)-aminocarbonyl, N-Butyl-N-ethylaminocarbonyl, N-Ethyl-N-(1-methylpropyl)-aminocarbonyl, N-Ethyl-N-(2-methylpropyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-
- ethyl)-N-propylaminocarbonyl, N-Butyl-N-propylaminocarbonyl, N-(1-Methylpropyl)-N-propylaminocarbonyl, N-(2-Methyl-propyl)-N-propylaminocarbonyl, N-(1,1-Dimethylethyl)-N-propylaminocarbonyl, N-Butyl-N-(1-methylethyl)-aminocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminocarbonyl,
- N-(1-Methylethyl)-N-(2-methylpropyl)-aminocarbonyl,
 N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminocarbonyl, N-Butyl-N-(1-methylpropyl)-aminocarbonyl, N-Butyl-N-(2-methylpropyl)-aminocarbonyl, N-Butyl-N-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methylpropyl)-N-(2-methylpropyl)-amino-
- carbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminocarbonyl oder N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminocarbonyl;
- Di-(C₁-C₆-alkyl)-aminocarbonyl: Di-(C₁-C₄-alkyl)-aminocarbonyl, wie voranstehend genannt, sowie z.B. N-MethylN-pentylaminocarbonyl, N-Methyl-N-(1-methylbutyl)-aminocarbonyl, N-Methyl-N-(2-methylbutyl)-aminocarbonyl,
 N-Methyl-N-(3-methylbutyl)-aminocarbonyl, N-Methyl-N(2,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethylpropyl)-aminocarbonyl, N-Methyl-N-hexylaminocarbonyl,
 N-Methyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Methyl-N-

(1,2-dimethylpropyl) -aminocarbonyl, N-Methyl-N-(1-methyl-

pentyl) -aminocarbonyl, N-Methyl-N-(2-methylpentyl) -aminocarbonyl, N-Methyl-N-(3-methylpentyl)-aminocarbonyl, N-Methyl-N-(4-methylpentyl)-aminocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethyl-

butyl)-aminocarbonyl, N-Methyl-N-(1,3-dimethylbutyl)-amino-5 carbonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1-ethylbutyl) -aminocarbonyl, N-Methyl-N-(2-ethylbutyl) -amino-

carbonyl, N-Methyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, 10 N-Methyl-N-(1,2,2-trimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Methyl-N-(1ethyl-2-methylpropyl)-aminocarbonyl, N-Ethyl-N-pentylamino-

15

35

carbonyl, N-Ethyl-N-(1-methylbutyl)-aminocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminocarbonyl, N-Ethyl-N-(3-methylbutyl)aminocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminocarbonyl,

N-Ethyl-N-(1-ethylpropyl)-aminocarbonyl, N-Ethyl-N-hexylaminocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-

(1-methylpentyl)-aminocarbonyl, N-Ethyl-N-(2-methylpentyl)-20 aminocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminocarbonyl, N-Ethyl-N-(4-methylpentyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylbutyl)aminocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminocarbonyl,

25 N-Ethyl-N-(2,2-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,3dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl)aminocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(2-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2,2-trimethyl-

propyl) -aminocarbonyl, N-Ethyl-N-(1-ethyl-1-methyl-30 propyl) -aminocarbonyl, N-Ethyl-N-(1-ethyl-2-methylpropyl) -aminocarbonyl, N-Propyl-N-pentylaminocarbonyl, N-Butyl-N-pentylaminocarbonyl, N,N-Dipentylaminocarbonyl, N-Propyl-N-hexylaminocarbonyl, N-Butyl-N-hexylaminocarbonyl, N-Pentyl-N-hexylaminocarbonyl oder N, N-Dihexylaminocarbonyl;

- $Di-(C_1-C_6-alkyl)$ -aminothiocarbonyl: z.B. N, N-Dimethylaminothiocarbonyl, N, N-Diethylaminothiocarbonyl, N, N-Di-(1-methylethyl)aminothiocarbonyl, N,N-Dipropylaminothiocarbonyl,
- 40 N, N-Dibutylaminothiocarbonyl, N, N-Di-(1-methylpropyl)-aminothiocarbonyl, N, N-Di-(2-methylpropyl)-aminothiocarbonyl, N. N-Di-(1,1-dimethylethyl) -aminothiocarbonyl, N-Ethyl-N-methylaminothiocarbonyl, N-Methyl-N-propylaminothiocarbonyl, N-Methyl-N-(1-methylethyl)-aminothiocarbonyl,
- N-Butyl-N-methylaminothiocarbonyl, N-Methyl-N-(1-methyl-45 propyl) -aminothiocarbonyl, N-Methyl-N-(2-methylpropyl) -aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminothio-

carbonyl, N-Ethyl-N-propylaminothiocarbonyl, N-Ethyl-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-ethylaminothiocarbonyl, N-Ethyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-5 (1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-propylaminothiocarbonyl, N-(1-Methylpropyl)-N-propylaminothiocarbonyl, N-(2-Methylpropyl)-N-propylaminothiocarbonyl, N-(1,1-Dimethylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-(1-methylethyl)-amino-10 thiocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Butyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Butyl-N-15 (1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylpropyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl) -N-(1-methylpropyl) -aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-Methyl-N-pentylaminothiocarbonyl, N-Methyl-N-(1-methylbutyl)-aminothio-20 carbonyl, N-Methyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(3-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylpropyl)-aminothiocarbonyl, N-Methyl-N-hexylaminothiocarbonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl, N-Methyl-25 N-(1,2-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-methylpentyl) -aminothiocarbonyl, N-Methyl-N-(2-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl, N-Methyl-30 N-(1,2-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,3dimethylbutyl) -aminothiocarbonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)aminothiocarbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-35 Methyl-N-(2-ethylbutyl)-aminothiocarbonyl, N-Methyl-N-ethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1,2,2-trimethylpropyl) -aminothiocarbonyl, N-Methyl-N-(1ethyl-1-methylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-pentylaminothio-40 carbonyl, N-Ethyl-N-(1-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(3methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethylpropyl)-aminothiocarbonyl, N-Ethyl-N-hexylaminothiocarbonyl, N-Ethyl-N-45 (1,1-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1,2dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpentyl)-amino-

thiocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,2dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl) -aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl) -5 aminothiocarbonyl, N-Ethyl-N-(2,3-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,1,2-trimethylpropyl) -aminothiocarbonyl, N-Ethyl-N-(1,2,2-trimethyl-10 propyl) -aminothiocarbonyl, N-Ethyl-N-(1-ethyl-1-methylpropy1) -aminothiocarbonyl, N-Ethyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl, N-Propyl-N-pentylaminothiocarbonvl, N-Butyl-N-pentylaminothiocarbonyl, N,N-Dipentylaminothiocarbonyl, N-Propyl-N-hexylaminothiocarbonyl, N-Butyl-15 N-hexylaminothiocarbonyl, N-Pentyl-N-hexylaminothiocarbonyl

oder N, N-Dihexylaminothiocarbonyl;

oder 4-(1,1-Dimethylethoxy)butyl;

- $C_1-C_4-Alkoxy-C_1-C_4-alkyl$: durch $C_1-C_4-Alkoxy$, wie vorstehend genannt, substituiertes C1-C4-Alkyl, also z.B. für Methoxy-20 methyl, Ethoxymethyl, Propoxymethyl, (1-Methylethoxy)methyl, Butoxymethyl, (1-Methylpropoxy) methyl, (2-Methylpropoxy) methyl, (1,1-Dimethylethoxy) methyl, 2-(Methoxy) ethyl, 2-(Ethoxy)ethyl, 2-(Propoxy)ethyl, 2-(1-Methylethoxy)ethyl, 2-(Butoxy)ethyl, 2-(1-Methylpropoxy)ethyl, 2-(2-Methyl-25 propoxy) ethyl, 2-(1,1-Dimethylethoxy) ethyl, 2-(Methoxy) propyl, 2-(Ethoxy)propyl, 2-(Propoxy)propyl, 2-(1-Methylethoxy)-propyl, 2-(Butoxy)propyl, 2-(1-Methylpropoxy)propyl, 2-(2-Methylpropoxy)propyl, 2-(1,1-Dimethylethoxy)propyl, 3-(Methoxy)propy1, 3-(Ethoxy)-propy1, 3-(Propoxy)propy1, 30 3-(1-Methylethoxy)propyl, 3-(Butoxy)propyl, 3-(1-Methylpropoxy)propyl, 3-(2-Methylpropoxy)propyl, 3-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)butyl, 2-(Ethoxy)butyl, 2-(Propoxy)butyl, 2-(1-Methylethoxy)butyl, 2-(Butoxy)butyl, 2-(1-Methylpropoxy) butyl, 2-(2-Methylpropoxy) butyl, 35 2-(1,1-Dimethylethoxy)butyl, 3-(Methoxy)butyl, 3-(Ethoxy)butyl, 3-(Propoxy)butyl, 3-(1-Methylethoxy)butyl, 3-(Butoxy)butyl, 3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl, 3-(1,1-Dimethylethoxy)butyl, 4-(Methoxy)butyl, 4-(Ethoxy)butyl, 4-(Propoxy)butyl, 4-(1-Methylethoxy)butyl, 4-(Butoxy)-40 butyl, 4-(1-Methylpropoxy)butyl, 4-(2-Methylpropoxy)butyl
- C₁-C₄-Alkoxy-C₁-C₄-alkoxy, sowie die Alkoxyalkoxyteile von
 C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl: durch C₁-C₄-Alkoxy, wie vorstehend genannt, substituiertes C₁-C₄-Alkoxy, also z.B. für Methoxymethoxy, Ethoxymethoxy, Propoxymethoxy, (1-Methyl-

```
ethoxy) methoxy, Butoxymethoxy, (1-Methylpropoxy) methoxy,
        (2-Methylpropoxy) methoxy, (1,1-Dimethylethoxy) methoxy,
        2-(Methoxy) ethoxy, 2-(Ethoxy) ethoxy, 2-(Propoxy) ethoxy,
        2-(1-Methylethoxy) ethoxy, 2-(Butoxy) ethoxy, 2-(1-Methyl-
       propoxy) ethoxy, 2-(2-Methylpropoxy) ethoxy, 2-(1,1-Dimethyl-
 5
        ethoxy) ethoxy, 2-(Methoxy) propoxy, 2-(Ethoxy) propoxy,
        2-(Propoxy) propoxy, 2-(1-Methylethoxy) propoxy, 2-(Butoxy)-
       propoxy, 2-(1-Methylpropoxy) propoxy, 2-(2-Methylpropoxy) -
       propoxy, 2-(1,1-Dimethylethoxy) propoxy, 3-(Methoxy)-propoxy,
10
        3-(Ethoxy)propoxy, 3-(Propoxy)propoxy, 3-(1-Methylethoxy)-
       propoxy, 3-(Butoxy) propoxy, 3-(1-Methylpropoxy) -propoxy,
        3-(2-Methylpropoxy) propoxy, 3-(1,1-Dimethylethoxy) propoxy,
        2-(Methoxy) butoxy, 2-(Ethoxy) butoxy, 2-(Propoxy) butoxy,
        2-(1-Methylethoxy) butoxy, 2-(Butoxy) -butoxy, 2-(1-Methyl-
       propoxy) butoxy, 2-(2-Methylpropoxy) butoxy, 2-(1,1-Dimethyl-
15
        ethoxy) butoxy, 3-(Methoxy) butoxy, 3-(Ethoxy)-butoxy,
        3-(Propoxy) butoxy, 3-(1-Methylethoxy) butoxy, 3-(Butoxy) -
       butoxy, 3-(1-Methylpropoxy)butoxy, 3-(2-Methylpropoxy)butoxy,
       3-(1,1-Dimethylethoxy) butoxy, 4-(Methoxy)-butoxy, 4-(Ethoxy)-
20
       butoxy, 4-(Propoxy) butoxy, 4-(1-Methylethoxy) butoxy,
        4-(Butoxy) butoxy, 4-(1-Methylpropoxy) butoxy, 4-(2-Methyl-
       propoxy) butoxy oder 4-(1,1-Dimethylethoxy) butoxy;
       C<sub>3</sub>-C<sub>6</sub>-Alkenyl, sowie die Alkenylteile von C<sub>3</sub>-C<sub>6</sub>-Alkenyl-
25
       carbonyl, C<sub>3</sub>-C<sub>6</sub>-Alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-Alkenyloxycarbonyl,
       C_3-C_6-Alkenylaminocarbonyl, N-(C_3-C_6-Alkenyl)-N-(C_1-C_6)alkyl-
       aminocarbonyl, N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy) amino-
       carbonyl: z.B. Prop-2-en-1-yl, But-1-en-4-yl, 1-Methyl-
       prop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl, 2-Buten-1-yl,
30
        1-Penten-3-yl, 1-Penten-4-yl, 2-Penten-4-yl, 1-Methyl-
       but-2-en-1-yl, 2-Methyl-but-2-en-1-yl, 3-Methyl-
       but-2-en-1-yl, 1-Methyl-but-3-en-1-yl, 2-Methyl-
       but-3-en-1-yl, 3-Methyl-but-3-en-1-yl, 1,1-Dimethyl-
       prop-2-en-1-yl, 1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-
35
       prop-2-en-1-y1, Hex-3-en-1-y1, Hex-4-en-1-y1, Hex-5-en-1-y1,
       1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl, 3-Methyl-
       pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl, 1-Methyl-
       pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl, 3-Methyl-
       pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl, 1,1-Dimethyl-
40
       but-2-en-1-yl, 1,1-Dimethyl-but-3-en-1-yl, 1,2-Dimethyl-
       but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl, 1,3-Dimethyl-
       but-2-en-1-yl, 1,3-Dimethyl-but-3-en-1-yl, 2,2-Dimethyl-
       but-3-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl, 2,3-Dimethyl-
       but-3-en-1-yl, 3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-but-2-
45
        en-1-yl, 1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-2-en-1-yl,
       2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl,
```

1-Ethyl-1-methyl-prop-2-en-1-yl oder 1-Ethyl-2-methyl-prop-2-en-1-yl;

- C₂-C₆-Alkenyl, sowie die Alkenylteile von C₂-C₆-Alkenyl carbonyl, Phenyl-C₂-C₆-alkenylcarbonyl und Heterocyclyl C₂-C₆-alkenylcarbonyl: C₃-C₆-Alkenyl, wie voranstehend genannt, sowie Ethenyl;
- C₃-C₆-Halogenalkenyl: einen C₃-C₆-Alkenylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl, 2,3,3-Trichlorallyl, 2,3-Dichlorbut-2-enyl, 2-Bromallyl, 3-Bromallyl, 2,3-Dibromallyl, 3,3-Dibromallyl, 2,3,3-Tribromallyl oder 2,3-Dibrombut-2-enyl;
- C₃-C₆-Alkinyl, sowie die Alkinylteile von C₃-C₆-Alkinylcarbonyl, C₃-C₆-Alkinyloxy, C₃-C₆-Alkinyloxycarbony,
 C₃-C₆-Alkinylaminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆20 alkyl)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxyaminocarbonyl: z.B. Propargyl, But-1-in-3-yl, But-1-in-4-yl,
 But-2-in-1-yl, Pent-1-in-3-yl, Pent-1-in-4-yl, Pent-1-in5-yl, Pent-2-in-1-yl, Pent-2-in-4-yl, Pent-2-in-5-yl,
 3-Methyl-but-1-in-3-yl, 3-Methyl-but-1-in-4-yl, Hex-1-in-3yl, Hex-1-in-4-yl, Hex-1-in-5-yl, Hex-1-in-6-yl, Hex-2-in-1yl, Hex-3-in-2-yl, 3-Methyl-pent-1-in-3-yl, 3-Methyl-pent1-in-4-yl, 3-Methyl-pent-1-in-5-yl, 4-Methyl-pent-2-in-4-yl
 oder 4-Methyl-pent-2-in-5-yl;
 - C₂-C₆-Alkinyl, sowie die Alkinylteile von C₂-C₆-Alkinylcarbonyl: C₃-C₆-Alkinyl, wie voranstehend genannt, sowie Ethinyl;
- C₃-C₆-Cycloalkyl, sowie die Cycloalkylteile von C₃-C₆-Cyclo-alkylcarbonyl: z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder
 Cyclohexyl;

- Heterocyclyl, sowie Heterocyclylteile von Heterocyclylcarbonyl, Heterocyclyl-C₁-C₆-alkyl, Heterocyclyloxy, Heterocyclylthio, Heterocyclyloxyalkylcarbonyl, Heterocyclyloxycarbonyl, Heterocyclyloxythiocarbonyl, Heterocyclylcarbonyl-C₁-C₆-alkyl,
- N-(C₁-C₆-Alkyl)-N-(heterocyclyl)-aminocarbonyl, Heterocyclyl-aminocarbonyl: ein gesättigter, partiell gesättigter oder ungesättiger 5- oder 6-gliedriger, C-gebundener, heterocyclischer Ring, der ein bis vier gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff,
- Schwefel oder Stickstoff, enthält, also z.B. 5-gliedrige Ringe, mit einem Heteroatom wie z.B.

Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothien-2-yl, Tetrahydrothien-3-yl, Tetrahydropyrrol-2-yl, Tetrahydro-

- pyrrol-3-yl, 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,5-Dihydrofuran-2-yl, 2,5-Dihydrofuran-3-yl, 4,5-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 4,5-Dihydrothien-3-yl,
- 20 2,3-Dihydro-1H-pyrrol-2-yl, 2,3-Dihydro-1H-pyrrol-3-yl, 2,5-Dihydro-1H-pyrrol-2-yl, 2,5-Dihydro-1H-pyrrol-3-yl, 4,5-Dihydro-1H-pyrrol-2-yl, 4,5-Dihydro-1H-pyrrol-3-yl, 3,4-Dihydro-2H-pyrrol-2-yl, 3,4-Dihydro-2H-pyrrol-3-yl, 3,4-Dihydro-5H-pyrrol-3-yl,
- 25 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, Pyrrol-2-yl oder Pyrrol-3-yl;

5-gliedrige Ringe mit zwei Heteroatomen wie z.B. Tetrahydropyrazol-3-yl, Tetrahydropyrazol-4-yl, Tetrahydroisoxa-

- zol-3-yl, Tetrahydroisoxazol-4-yl, Tetrahydroisoxazol-5-yl,
 1,2-Oxathiolan-3-yl, 1,2-Oxathiolan-4-yl, 1,2-Oxathiolan-5-yl, Tetrahydroisothiazol-3-yl, Tetrahydroisothiazol-4-yl, Tetrahydroisothiazol-5-yl, 1,2-Dithiolan-3yl, 1,2-Dithiolan-4-yl, Tetrahydroimidazol-2-yl, Tetrahydro-
- imidazol-4-yl, Tetrahydrooxazol-2-yl, Tetrahydrooxazol-4-yl,
 Tetrahydrooxazol-5-yl, Tetrahydrothiazol-2-yl, Tetrahydrothiazol-4-yl, Tetrahydrothiazol-5-yl, 1,3-Dioxolan-2-yl,
 1,3-Dioxolan-4-yl, 1,3-Oxathiolan-2-yl, 1,3-Oxathiolan-4-yl,
- 1,3-Oxathiolan-5-yl, 1,3-Dithiolan-2-yl, 1,3-Dithiolan-4-yl,
 4,5-Dihydro-1H-pyrazol-3-yl, 4,5-Dihydro-1H-pyrazol-4-yl,
 4,5-Dihydro-1H-pyrazol-5-yl, 2,5-Dihydro-1H-pyrazol-3-yl,
 2,5-Dihydro-1H-pyrazol-4-yl, 2,5-Dihydro-1H-pyrazol-5-yl,
 4,5-Dihydroisoxazol-3-yl, 4,5-Dihydroisoxazol-4-yl, 4,5-Dihy-
- droisoxazol-5-yl, 2,5-Dihydroisoxazol-3-yl, 2,5-Dihydroisoxazol-4-yl, 2,5-Dihydroisoxazol-5-yl, 2,3-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-4-yl, 2,3-Dihydroisoxazol-5-yl, 4,5-Dihydroisothiazol-3-yl, 4,5-Dihydroisothiazol-4-yl, 4,5-Dihydro-

isothiazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydroisothiazol-3-y1, 2,3-Dihydroisothiazol-4-y1, 2,3-Dihydroisothiazol-5-yl, Δ^3 -1,2-Dithiol-3-yl, Δ^3 -1,2-Dithiol-4-yl, Δ^3 -1,2-Dithiol-5-yl, 4,5-Dihydro-1H-imidazol-2-yl, 4,5-Dihydro-1H-imi-5 dazol-4-yl, 4,5-Dihydro-1H-imidazol-5-yl, 2,5-Dihydro-1H-imidazol-2-yl, 2,5-Dihydro-1H-imidazol-4-yl, 2,5-Dihydro-1H-imidazol-5-yl, 2,3-Dihydro-1H-imidazol-2-yl, 2,3-Dihydro-1H-imidazol-4-yl, 4,5-Dihydrooxazol-2-yl, 4,5-Dihydrooxazol-4-yl, 4,5-Dihydrooxazol-5-yl, 2,5-Dihydrooxazol-2-yl, 2,5-Dihydro-10 oxazol-4-y1, 2,5-Dihydrooxazol-5-yl, 2,3-Dihydrooxazol-2-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 4,5-Dihydrothiazol-2-yl, 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothiazol-5-yl, 2,5-Dihydrothiazol-2-yl, 2,5-Dihydrothiazol-4-yl, 2,5-Dihydrothiazol-5-yl, 2,3-Dihydrothiazol-2-yl, 2,3-Dihy-15 drothiazol-4-yl, 2,3-Dihydrothiazol-5-yl, 1,3-Dioxol-2-yl, 1,3-Dioxol-4-yl, 1,3-Dithiol-2-yl, 1,3-Dithiol-4-yl, 1,3-Oxathiol-2-yl, 1,3-Oxathiol-4-yl, 1,3-Oxathiol-5-yl, Pyrazol-3yl, Pyrazol-4-yl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5yl, Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl, 20 Imidazol-2-yl, Imidazol-4-yl, Oxazol-2-yl, Oxazol-4-yl, Oxazol-5-yl, Thiazol-2-yl, Thiazol-4-yl oder Thiazol-5-yl; 5-gliedrige Ringe mit 3 Heteroatomen wie z.B. $1,2,3-\Delta^2-0$ xadiazolin-4-yl, 1,2,3- Δ^2 -Oxadiazolin-5-yl, 1,2,4- Δ^4 -Oxadiazo-25 lin-3-yl, 1,2,4- Δ^4 -Oxadiazolin-5-yl, 1,2,4- Δ^2 -Oxadiazolin-3-yl, 1,2,4- Δ^2 -Oxadiazolin-5-yl, 1,2,4- Δ^3 -Oxadiazolin-3-yl, 1,2,4- Δ^3 -Oxadiazolin-5-yl, 1,3,4- Δ^2 -Oxadiazolin-2-yl, 1,3,4- Δ^2 -Oxadiazolin-5-yl, 1,3,4- Δ^3 -Oxadiazolin-2-yl, 1,3,4-Oxadiazolin-2-yl, 1,2,4- Δ 4-Thiadiazolin-3-yl, 30 1,2,4- Δ^4 -Thiadiazolin-5-yl, 1,2,4- Δ^3 -Thiadiazolin-3-yl, 1,2,4- Δ^3 -Thiadiazolin-5-yl, 1,2,4- Δ^2 -Thiadiazolin-3-yl, 1,2,4- Δ^2 -Thiadiazolin-5-yl, 1,3,4- Δ^2 -Thiadiazolin-2-yl, 1,3,4- Δ^2 -Thiadiazolin-5-yl, 1,3,4- Δ^3 -Thiadiazolin-2-yl, 1,3,4-Thiadiazolin-2-yl, 1,3,2-Dioxathiolan-4-yl, 35 1,2,3- Δ^2 -Triazolin-4-yl, 1,2,3- Δ^2 -Triazolin-5-yl, 1.2.4- Δ^2 -Triazolin-3-yl, 1.2.4- Δ^2 -Triazolin-5-yl, 1,2,4- Δ^3 -Triazolin-3-yl, 1,2,4- Δ^3 -Triazolin-5-yl, 1,2,4- Δ^1 -Triazolin-2-yl, 1,2,4-Triazolin-3-yl, 3H-1,2,4-Di-40 thiazol-5-yl, 2H-1,3,4-Dithiazol-5yl, 2H-1,3,4-Oxathiazol-5-yl, 1,2,3-Oxadiazol-4-yl, 1,2,3-Oxadiazol-5-yl, 1,2,4-Oxadiazol-3-yl, 1,2,4,-0xadiazol-5-yl, 1,3,4-0xadiazol-2-yl, 1.2.3-Thiadiazol-4-yl, 1,2,3-Thiadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,3,4-Thia-45 diazolyl-2-yl, 1,2,3-Triazol-4-yl oder 1,2,4-Triazol-3-yl;

5-gliedrige Ringe mit 4 Heteroatomen wie z.B.

Tetrazol-5-yl,

5 6-gliedrige Ringe mit 1 Heteroatome wie z.B.

Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl, Tetrahydrothiopyran-2-yl, Tetrahydrothiopyran-3-yl, Tetra-

- hydrothiopyran-4-yl, 2H-3,4-Dihydropyran-6-yl,
 2H-3,4-Dihydropyran-5-yl, 2H-3,4-Dihydropyran-4-yl,
 2H-3,4-Dihydropyran-3-yl, 2H-3,4-Dihydropyran-2-yl,
 - 2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydrothiopyran-5-yl, 2H-3,4-Dihydrothiopyran-4-yl, 2H-3,4-Dihydropyran-3-yl,
- 2H-3,4-Dihydropyran-2-yl, 1,2,3,4-Tetrahydropyridin-6-yl, 1,2,3,4-Tetrahydropyridin-5-yl, 1,2,3,4-Tetrahydropyridin-4-yl, 1,2,3,4-Tetrahydropyridin-3-yl, 1,2,3,4-Tetrahydropyridin-3-yl, 2H-5,6-Dihydropyran-2-yl, 2H-5,6-Dihydropyran-3-yl, 2H-5,6-Dihydropyran-4-yl, 2H-5,6-Dihydropyran-5-yl,
- 20 2H-5,6-Dihydropyran-6-yl, 2H-5,6-Dihydrothiopyran-2-yl, 2H-5,6-Dihydrothiopyran-3-yl, 2H-5,6-Dihydrothiopyran-4-yl, 2H-5,6-Dihydrothiopyran-5-yl, 2H-5,6-Dihydrothiopyran-6-yl, 1,2,5,6-Tetrahydropyridin-2-yl, 1,2,5,6-Tetrahydropyridin-3-yl, 1,2,5,6-Tetrahydropyridin-4-yl, 1,2,5,6-Tetrahydropyri-
- din-5-yl, 1,2,5,6-Tetrahydropyridin-6-yl, 2,3,4,5-Tetrahydropyridin-2-yl, 2,3,4,5-Tetrahydropyridin-3-yl, 2,3,4,5-Tetrahydropyridin-5-yl, 2,3,4,5-Tetrahydropyridin-5-yl, 2,3,4,5-Tetrahydropyridin-6-yl, 4H-Pyran-2-yl, 4H-Pyran-3-yl, 4H-Pyran-4-yl, 4H-Thiopyran-2-yl, 4H-Thiopyran-3-yl,
- 4H-Thiopyran-4-yl, 1,4-Dihydropyridin-2-yl, 1,4-Dihydropyridin-3-yl, 1,4-Dihydropyridin-4-yl, 2H-Pyran-2-yl, 2H-Pyran-3-yl, 2H-Pyran-4-yl, 2H-Pyran-5-yl, 2H-Pyran-6-yl, 2H-Thiopyran-2-yl, 2H-Thiopyran-3-yl, 2H-Thiopyran-4-yl, 2H-Thiopyran-5-yl, 2H-Thiopyran-6-yl, 1,2-Dihydropyridin-2-yl,
- 35 1,2-Dihydropyridin-3-yl, 1,2-Dihydropyridin-4-yl,
 - 1,2-Dihydropyridin-5-yl, 1,2-Dihydropyridin-6-yl,
 - 3,4-Dihydropyridin-2-yl, 3,4-Dihydropyridin-3-yl,
 - 3,4-Dihydropyridin-4-yl, 3,4-Dihydropyridin-5-yl,
 - 3,4-Dihydropyridin-6-yl, 2,5-Dihydropyridin-2-yl,
- 2,5-Dihydropyridin-3-yl, 2,5-Dihydropyridin-4-yl,
 - 2,5-Dihydropyridin-5-yl, 2,5-Dihydropyridin-6-yl,
 2,3-Dihydropyridin-2-yl, 2,3-Dihydropyridin-3-yl,
 - 2,3-Dihydropyridin-4-yl, 2,3-Dihydropyridin-5-yl,
 - 2,3-Dihydropyridin-6-yl, Pyridin-2-yl, Pyridin-3-yl oder
- 45 Pyridin-4-yl;

6-gliedrige Ringe mit 2 Heteroatomen wie z.B.

1,3-Dioxan-2-yl, 1,3-Dioxan-4-yl, 1,3-Dioxan-5-yl, 1,4-Dioxan-2-yl, 1,3-Dithian-2-yl, 1,3-Dithian-4-yl, 1,3-Dithian-5-yl, 1,4-Dithian-2-yl, 1,3-Oxathian-2-yl, 5 1,3-Oxathian-4-yl, 1,3-Oxathian-5-yl, 1,3-Oxathian-6-yl, 1,4-Oxathian-2-yl, 1,4-Oxathian-3-yl, 1,2-Dithian-3-yl, 1,2-Dithian-4-yl, Hexahydropyrimidin-2-yl, Hexahydropyrimidin-4-yl, Hexahydropyrimidin-5-yl, Hexahydropyrazin-2-yl, 10 Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl, Tetrahydro-1,3-oxazin-2-yl, Tetrahydro-1,3-oxazin-4-yl, Tetrahydro-1,3-oxazin-5-yl, Tetrahydro-1,3-oxazin-6-yl, Tetrahydro-1,3-thiazin-2-yl, Tetrahydro-1,3-thiazin-4-yl, Tetrahydro-1,3-thiazin-5-yl, Tetrahydro-1,3-thiazin-6-yl, Tetra-15 hydro-1,4-thiazin-2-yl, Tetrahydro-1,4-thiazin-3-yl, Tetrahydro-1,4-oxazin-2-yl, Tetrahydro-1,4-oxazin-3-yl, Tetrahydro-1,2-oxazin-3-yl, Tetrahydro-1,2-oxazin-4-yl, Tetrahydro-1,2-oxazin-5-yl, Tetrahydro-1,2-oxazin-6-yl, 2H-5,6-Dihydro-1,2-oxazin-3-yl, 2H-5,6-Dihydro-1,2-oxazin-4-yl, 20 2H-5,6-Dihydro-1,2-oxazin-5-y1, 2H-5,6-Dihydro-1,2-oxazin-6-yl, 2H-5,6-Dihydro-1,2-thiazin-3-yl, 2H-5,6-Dihydro-1,2-thiazin-4-yl, 2H-5,6-Dihydro-1,2-thiazin-5-yl, 2H-5,6-Dihydro-1,2-thiazin-6-yl, 4H-5,6-Dihydro-1,2-oxazin-3-yl, 4H-5,6-Dihydro-1,2-oxazin-4-yl, 4H-5,6-Dihydro-25 1,2-oxazin-5-yl, 4H-5,6-Dihydro-1,2-oxazin-6-yl, 4H-5,6-Dihydro-1,2-thiazin-3-yl, 4H-5,6-Dihydro-1,2-thiazin-4-yl, 4H-5,6-Dihydro-1,2-thiazin-5-yl, 4H-5,6-Dihydro-1,2-thiazin-6-y1, 2H-3,6-Dihydro-1,2-oxazin-3-y1, 2H-3,6-Dihydro-1,2-oxazin-4-y1, 2H-3,6-Dihydro-1,2-oxazin-5-y1, 2H-3,6-Di-30 hydro-1,2-oxazin-6-yl, 2H-3,6-Dihydro-1,2-thiazin-3-yl, 2H-3,6-Dihydro-1,2-thiazin-4-yl, 2H-3,6-Dihydro-1,2-thiazin-5-yl, 2H-3,6-Dihydro-1,2-thiazin-6-yl, 2H-3,4-Dihydro-1,2-oxazin-3-yl, 2H-3,4-Dihydro-1,2-oxazin-4-yl, 2H-3,4-Dihydro-1,2-oxazin-5-yl, 2H-3,4-Dihydro-1,2-oxazin-6-yl, 35 2H-3,4-Dihydro-1,2-thiazin-3-yl, 2H-3,4-Dihydro-1,2-thiazin-4-yl, 2H-3,4-Dihydro-1,2-thiazin-5-yl, 2H-3,4-Dihydro-1,2-thiazin-6-yl, 2,3,4,5-Tetrahydropyridazin-3-yl, 2,3,4,5-Tetrahydropyridazin-4-yl, 2,3,4,5-Tetrahydropyridazin-5-yl, 2,3,4,5-Tetrahydropyridazin-6-yl, 3,4,5,6-Tetrahy-40 dropyridazin-3-yl, 3,4,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-Tetrahydropyridazin-3-y1, 1,2,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-Tetrahydropyridazin-5-yl, 1,2,5,6-Tetrahydropyridazin-6-yl, 1,2,3,6-Tetrahydropyridazin-3-yl, 1,2,3,6-Tetrahydropyridazin-4-yl, 4H-5,6-Dihydro-1,3-oxa-45 zin-2-yl, 4H-5,6-Dihydro-1,3-oxazin-4-yl, 4H-5,6-Dihydro-1,3-oxazin-5-yl, 4H-5,6-Dihydro-1,3-oxazin-6-yl, 4H-5,6-Dihydro-1,3-thiazin-2-yl, 4H-5,6-Dihydro-1,3-thia-

zin-4-yl, 4H-5,6-Dihydro-1,3-thiazin-5-yl, 4H-5,6-Dihydro-1,3-thiazin-6-yl, 3,4,5-6-Tetrahydropyrimidin-2-yl, 3,4,5,6-Tetrahydropyrimidin-4-yl, 3,4,5,6-Tetrahydropyrimidin-5-yl, 3,4,5,6-Tetrahydropyrimidin-6-yl, 1,2,3,4-Te-5 trahydropyrazin-2-yl, 1,2,3,4-Tetrahydropyrazin-5-yl, 1,2,3,4-Tetrahydropyrimidin-2-yl, 1,2,3,4-Tetrahydropyrimidin-4-yl, 1,2,3,4-Tetrahydropyrimidin-5-yl, 1,2,3,4-Tetrahydropyrimidin-6-yl, 2,3-Dihydro-1,4-thiazin-2-yl, 2,3-Dihydro-1,4-thiazin-3-yl, 2,3-Dihydro-1,4-thiazin-5-yl, 2,3-Di-10 hydro-1,4-thiazin-6-yl, 2H-1,2-Oxazin-3-yl, 2H-1,2-Oxazin-4yl, 2H-1,2-Oxazin-5-yl, 2H-1,2-Oxazin-6-yl, 2H-1,2-Thiazin-3yl, 2H-1,2-Thiazin-4-yl, 2H-1,2-Thiazin-5-yl, 2H-1,2-Thiazin-6-yl, 4H-1,2-Oxazin-3-yl, 4H-1,2-Oxazin-4-yl, 4H-1,2-Oxazin-5-yl, 4H-1,2-Oxazin-6-yl, 4H-1,2-Thiazin-3-yl, 4H-1,2-Thia-15 zin-4-yl, 4H-1, 2-Thiazin-5-yl, 4H-1, 2-Thiazin-6-yl, 6H-1,2-0xazin-3-y1, 6H-1,2-0xazin-4-y1, 6H-1,2-0xazin-5-y1, 6H-1,2-Oxazin-6-yl, 6H-1,2-Thiazin-3-yl, 6H-1,2-Thiazin-4-yl, 6H-1,2-Thiazin-5-yl, 6H-1,2-Thiazin-6-yl, 2H-1,3-Oxazin-2-yl, 2H-1,3-0xazin-4-y1, 2H-1,3-0xazin-5-y1, 2H-1,3-0xazin-6-y1,20 2H-1,3-Thiazin-2-yl, 2H-1,3-Thiazin-4-yl, 2H-1,3-Thiazin-5yl, 2H-1,3-Thiazin-6-yl, 4H-1,3-Oxazin-2-yl, 4H-1,3-Oxazin-4-yl, 4H-1,3-Oxazin-5-yl, 4H-1,3-Oxazin-6-yl, 4H-1,3-Thiazin-2-yl, 4H-1,3-Thiazin-4-yl, 4H-1,3-Thiazin-5-yl, 4H-1,3-Thiazin-6-yl, 6H-1,3-0xazin-2-yl, 6H-1,3-0xazin-4-yl, 6H-1,3-0xa-25 zin-5-yl, 6H-1,3-Oxazin-6-yl, 6H-1,3-Thiazin-2-yl, 6H-1,3-Oxazin-4-yl, 6H-1,3-Oxazin-5-yl, 6H-1,3-Thiazin-6-yl, 2H-1,4-Oxazin-2-yl, 2H-1,4-Oxazin-3-yl, 2H-1,4-Oxazin-5-yl, 2H-1,4-0xazin-6-yl, 2H-1,4-Thiazin-2-yl, 2H-1,4-Thiazin-3-yl, 2H-1,4-Thiazin-5-y1, 2H-1,4-Thiazin-6-y1, 4H-1,4-Oxazin-2-y1,30 4H-1,4-Oxazin-3-yl, 4H-1,4-Thiazin-2-yl, 4H-1,4-Thiazin-3-yl, 1,4-Dihydropyridazin-3-yl, 1,4-Dihydropyridazin-4-yl, 1,4-Dihydropyridazin-5-yl, 1,4-Dihydropyridazin-6-yl, 1,4-Dihydropyrazin-2-yl, 1,2-Dihydropyrazin-2-yl, 1,2-Dihydropyrazin-3-yl, 1,2-Dihydropyrazin-5-yl, 1,2-Dihydropyrazin-6-yl, 35 1,4-Dihydropyrimidin-2-yl, 1,4-Dihydropyrimidin-4-yl, 1,4-Dihydropyrimidin-5-yl, 1,4-Dihydropyrimidin-6-yl, 3,4-Dihydropyrimidin-2-yl, 3,4-Dihydropyrimidin-4-yl, 3,4-Dihydropyrimidin-5-yl oder 3,4-Dihydropyrimidin-6-yl, Pyridazin-3-yl, Pyridazin-4-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-40 yl oder Pyrazin-2-yl;

6-gliedrige Ringe mit 3 Heteroatomen wie z.B.

1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl oder 1,2,4-Triazin-6-yl;

WO 00/14069 PCT/EP99/06322

29

6-gliedrige Ringe mit 4 Heteroatomen wie z.B.

1,2,4,5-Tetrazin-3-yl;

5 wobei ggf. der Schwefel der genannten Heterocyclen zu S=O oder S(=0)₂ oxidiert sein kann;

und wobei mit einem ankondensierten Phenylring oder mit einem C3-C6-Carbocyclus oder mit einem weiteren 5- bis 6-gliedrigen Heterocyclus ein bicyclisches Ringsystem ausgebildet werden kann.

N-gebundenes Heterocyclyl: ein gesättigter, partiell gesättigter oder ungesättigter 5- oder 6-gliedriger N-gebundener
 heterocyclischer Ring, der mindestens einen Stickstoff und gegebenenfalls ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff enthält, also z.B.

20 N-gebundene 5-gliedrige Ringe mit 1 Heteroatom wie z.B.

Tetrahydropyrrol-1-yl, 2,3-Dihydro-1H-pyrrol-1-yl, 2,5-Di-hydro-1H-pyrrol-1-yl oder Pyrrol-1-yl;

25 N-gebundene 5-gliedrige Ringe mit 2 Heteroatomen wie z.B.

Tetrahydropyrazol-1-yl, Tetrahydroisoxazol-2-yl, Tetrahydroisothiazol-2-yl, Tetrahydroimidazol-1-yl, Tetrahydrooxa-zol-3-yl, Tetrahydrothiazol-3-yl, 4,5-Dihydro-1H-pyra-

- zol-1-yl, 2,5-Dihydro-1H-pyrazol-1-yl, 2,3-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydroisoxazol2-yl, 2,3-Dihydroisoxazol-2-yl, 2,5-Dihydroisothiazol-2-yl,
 - 2,3-Dihydroisoxazol-2-yl, 4,5-Dihydro-1H-imidazol-1-yl, 2,5-Dihydro-1H-imidazol-1-yl, 2,3-Dihydro-1H-imidazol-1-yl,
- 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrothiazol-3-yl, Pyrazol-1yl oder Imidazol-1-yl;

N-gebundene 5-gliedrige Ringe mit 3 Heteroatomen wie z.B.

- 40 1,2,4- Δ^4 -Oxadiazolin-2-yl, 1,2,4- Δ^2 -Oxadiazolin-4-yl, 1,2,4- Δ^3 -Oxadiazolin-2-yl, 1,3,4- Δ^2 -Oxadiazolin-4-yl, 1,2,4- Δ^5 -Thiadiazolin-2-yl, 1,2,4- Δ^3 -Thiadiazolin-2-yl, 1,2,4- Δ^2 -Thiadiazolin-4-yl, 1,3,4- Δ^2 -Thiadiazolin-4-yl, 1,2,3- Δ^2 -Triazolin-1-yl, 1,2,4- Δ^2 -Triazolin-1-yl,
- 45 1,2,4- Δ^2 -Triazolin-4-yl, 1,2,4- Δ^3 -Triazolin-1-yl, 1,2,4- Δ^1 -Triazolin-4-yl, 1,2,3-Triazol-1-yl oder 1,2,4-Triazol-1-yl;

N-gebundene 5-gliedrige Ringe mit 4 Heteroatomen wie z.B.

Tetrazol-1-yl;

pyridin-1-yl;

sowie N-gebundene 6-gliedrige Ringe mit 1 Heteroatome wie z.B.

Piperidin-1-yl, 1,2,3,4-Tetrahydropyridin-1-yl, 1,2,5,6-Tetrahydropyridin-1-yl, 1,4-Dihydropyridin-1-yl oder 1,2-Dihydropyridin-1-yl;

N-gebundene 6-gliedrige Ringe mit 2 Heteroatomen wie z.B.

- Hexahydropyrimidin-1-yl, Hexahydropyrazin-1-yl, Hexahydropy-15 ridazin-1-yl, Tetrahydro-1,3-oxazin-3-yl, Tetrahydro-1,3-thiazin-3-yl, Tetrahydro-1,4-thiazin-4-yl, Tetrahydro-1,4-oxazin-4-yl, Tetrahydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-thiazin-2-yl, 2H-3,6-Dihydro-1,2-oxazin-2-yl, 2H-3,6-Dihydro-1,2-thiazinoxazin-2-y1, 2H-3,4-Dihydro-1,2-thiazin-2-y1, 2,3,4,5-Tetra-20 hydropyridazin-2-yl, 1,2,5,6-Tetrahydropyridazin-1-yl, 1,2,5,6-Tetrahydropyridazin-2-yl, 1,2,3,6-Tetrahydropyridazin-1-yl, 3,4,5,6-Tetrahydropyrimidin-3-yl, 1,2,3,4-Tetrahydropyrazin-1-yl, 1,2,3,4-Tetrahydropyrimidin-1-yl, 1,2,3,4-Tetrahydropyrimidin-3-yl, 2,3-Dihydro-1,4-thiazin-25 4-y1, 2H-1,2-0xazin-2-y1, 2H-1,2-Thiazin-2-y1, 4H-1,4-0xazin-4-yl, 4H-1,4-Thiazin-4-yl, 1,4-Dihydropyridazin-1-yl, 1,4-Dihydropyrazin-1-yl, 1,2-Dihydropyrazin-1-yl, 1,4-Dihydropyrimidin-1-yl oder 3,4-Dihydropyrimidin-3-yl, sowie N-ge-30 bundene cyclische Imide wie: Phthalsäureimid, Tetrahydrophthalsäureimid, Succinimid, Ma-
- 35 Alle Phenylringe bzw. Heterocyclylreste sowie alle Phenylkomponenten in Phenyl-C1-C6-alkyl, Phenylcarbonyl-C1-C6-alkyl, Phenoxy, Phenylthio, Phenylcarbonyl, Phenylalkenylcarbonyl, Phenoxycarbonyl, Phenoxyalkylcarbonyl, Phenylaminocarbonyl und N-(C1-C6-Alkyl)-N-phenylaminocarbonyl bzw. Heterocyclylkomponenten in Heterocyclyl-C1-C6-alkyl, Heterocyclylcarbonyl-C1-C6-alkyl, Heterocyclyoxy, Heterocyclylthio, Heterocyclylcarbonyl, Heterocyclylakenylcarbonyl, Heterocycloxyalkylcarbonyl, Heterocyclyloxycarbonyl, Heterocyclylaminocarbonyl und N(C1-C6-Alkyl)-N-heterocyclylaminocarbonyl sind, soweit nicht anders angegeben, vorzugsweise unsubstituiert oder tragen ein bis drei Halogenatome und/

oder eine Nitrogruppe, einen Cyanorest und/oder einen oder zwei

leinimid oder Glutarimid, sowie 4-0xo-1,4-dihydro-

45

Methyl-, Trifluormethyl-, Methoxy- oder Trifluormethoxysubstituenten.

Die erfindungsgemäßen Verbindungen der Formel I mit R^4 = IIa wer-5 den als Verbindungen der Formel Ia sowie Verbindungen der Formel I mit R^4 = IIb als Ib bezeichnet.

Besonders zu betonen sind die Verbindungen der Formel I, wobei

10 R ⁷	$C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$,
	$C_3-C_6-Alkinyl$, $C_3-C_6-Halogenalkinyl$, $C_3-C_6-Cycloalkyl$,
	C ₁ -C ₂₀ -Alkylcarbonyl, C ₂ -C ₆ -Alkenylcarbonyl, C ₂ -C ₆ -Alki-
	nylcarbonyl, C3-C6-Cycloalkylcarbonyl, C1-C6-Alkoxy-
	carbonyl, C ₃ -C ₆ -Alkenyloxycarbonyl, C ₃ -C ₆ -Alkinyloxy-
15	carbonyl, C ₁ -C ₆ -Alkylthiocarbonyl, C ₁ -C ₆ -Alkylamino-
	carbonyl, C ₃ -C ₆ -Alkenylaminocarbonyl, C ₃ -C ₆ -Alkinylami-
	nocarbonyl, N,N-Di-(C ₁ -C ₆ -alkyl)-aminocarbonyl,
	$N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$
	$N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$
20	$N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl$,
	$N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$
	$N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$
	Di-(C ₁ -C ₆ -alkyl)-aminothiocarbonyl, C ₁ -C ₆ -Alkylcarbo-
	$nyl-C_1-C_6-alkyl$, $C_1-C_6-Alkoxyimino-C_1-C_6-alkyl$,
25	N-(C ₁ -C ₆ -Alkylamino)-imino-C ₁ -C ₆ -alkyl oder
	N, N-Di-(C ₁ -C ₆ -alkylamino)-imino-C ₁ -C ₆ -alkyl, wobei die
	genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell
	oder vollständig halogeniert sein können und/oder eine
	bis drei der folgenden Gruppen tragen können:
30	Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylthio, Di-(C ₁ -C ₄ -alkyl)-
30	amino, C ₁ -C ₄ -Alkylcarbonyl, C ₁ -C ₄ -Alkoxycarbonyl,
	$C_1-C_4-Alkoxy-C_1-C_4-alkoxy-carbonyl$, $Di-(C_1-C_4-alkyl)-$
	amino-C ₁ -C ₄ -alkoxycarbonyl, Hydroxycarbonyl,
	C ₁ -C ₄ -Alkylaminocarbonyl, Di-(C ₁ -C ₄ -alkyl)-amino-
35	carbonyl, Aminocarbonyl, C ₁ -C ₄ -Alkylcarbonyloxy oder
33	C ₃ -C ₆ -Cycloalkyl;
	os os osocialist,
	Phenyl, Heterocyclyl, Phenyl-C1-C6-alkyl, Heterocy-
	richit, incorpolatit, richit of of arist, montant

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocy-clyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocy-clylcarbonyl-C₁-C₆-alkyl, Phenylcarbonyl, Heterocyclyl-carbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxy-C₁-C₆-alkylcarbonyl, Heterocyclyloxy-C₁-C₆-alkyl-carbonyl, Phenylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-(phenyl)-aminocarbonyl, Heterocyclylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-(heterocyclyl)-aminocarbonyl, Phenyl-C₂-C₆-alkenylcarbonyl oder Heterocyclyl-C₂-C₆-

alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 20 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

In Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen der Formel I als Herbizide haben die Variablen vorzugsweise folgende Bedeutungen, und zwar jeweils für sich allein oder in Kombination:

Nitro, Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfonyl oder C₁-C₆-Halogenalkylsulfonyl;

R², R³ Wasserstoff, C₁-C₆-Alkyl oder Halogen;

20 R⁴ eine Verbindung IIa oder IIb

30 wobei

Halogen, OR⁷, SR⁷, SO₂R⁸, OSO₂R⁸, OPOR⁸R⁹, OPR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-gebundenes Heterocyclyl oder O-(N-gebundenes Heterocyclyl), wobei der Heterocyclyl-Rest der beiden letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

R6 Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl,
(C₁-C₆-Alkoxy)(C₁-C₆-alkylthio)-methyl, Hydroxy,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy,
C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio,
C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl,

 C_1-C_6 -Alkylcarbonyl, C_1-C_6 -Halogenalkylcarbonyl, C_1-C_6 -Alkoxycarbonyl oder C_1-C_6 -Halogenalkoxycarbonyl;

oder

5

10

zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine $-O - (CH_2)_m - O - , -O - (CH_2)_m - S - , -S - (CH_2)_m - S - , -O - (CH_2)_n - oder <math>-S - (CH_2)_n$ -Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl oder $C_1 - C_4$ -Alkoxycarbonyl;

oder

15 zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine - (CH₂)_p-Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/oder durch einen bis vier Reste aus folgender Gruppe substituiert sein kann:

20 Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Alkoxycarbonyl;

oder

25 zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus;

oder

30

zwei Reste R^6 , die an verschiedenen Kohlenstoffen gebunden sind, bilden gemeinsam eine $-(CH_2)_n$ -Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann:

Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Hydroxy oder C₁-C₆-Alkoxycarbonyl;

R⁷ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C₁-C₂₀-Alkylcarbonyl, C₂-C₆-Alkenyl40 carbonyl, C₃-C₆-Cycloalkylcarbonyl, C₁-C₆-Alkoxy-carbonyl, C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkinyloxy-carbonyl, (C₁-C₂₀-Alkylthio)carbonyl (besonders bevorzugt (C₁-C₆-Alkylthio)carbonyl), C₁-C₆-Alkylamino-carbonyl, C₃-C₆-Alkenylaminocarbonyl, C₃-C₆-Alkinylaminocarbonyl, N,N-Di-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkyl)-aminocarbonyl,

 $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$, $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$, $Di-(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-alkylcarbo$ -5 $nyl-C_1-C_6-alkyl$, $C_1-C_6-Alkoxyimino-C_1-C_6-alkyl$, $N-(C_1-C_6-Alkylamino)-imino-C_1-C_6-alkyl$ oder N, N-Di-(C₁-C₆-alkylamino)-imino-C₁-C₆-alkyl, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine 10 bis drei der folgenden Gruppen tragen können: Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, Hydroxycarbonyl, $Di-(C_1-C_4-alkyl)$ -aminocarbonyl, $C_1-C_4-alkylcarbonyloxy$ oder C₃-C₆-Cycloalkyl;

15

20

25

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocyclylcarbonyl-C1-C6-alkyl, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxy-C₁-C₆-alkylcarbonyl, Heterocyclyloxy-C₁-C₆-alkylcarbonyl, Phenyl-C2-C6-alkenylcarbonyl oder Heterocyclyl-C2-C6-alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 16 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/ oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, $C_1-C_4-Alkoxy$ oder $C_1-C_4-Halogenalkoxy$;

30 R8, R9

C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, $C_3-C_6-Cycloalkyl$, Hydroxy, $C_1-C_6-Alkoxy$, $Di-C_1-C_6-alkyl$ amino, oder Di-(C1-C6-Halogenalkyl)amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, Hydroxycarbonyl, $Di-(C_1-C_4-alkyl)$ -aminocarbonyl, $C_1-C_4-alkyl$ carbonyloxy oder C₃-C₆-Cycloalkyl;

40

45

35

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl-C1-C6-alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

R¹⁰ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl,

C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder

Di-(C₁-C₆-Alkyl)-amino, wobei die genannten Alkyl-,

Cycloalkyl- und Alkoxyreste partiell oder vollständig

halogeniert sein können und/oder einen bis drei Reste

der folgenden Gruppe tragen können:

Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkyl-carbonyl, C₁-C₄-Alkoxycarbonyl, Hydroxycarbonyl,
Di-(C₁-C₄-alkyl)-aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

 R^{11} , R^{12} C_1 - C_6 -Alkyl oder C_3 - C_6 -Alkenyl;

25 1 0 bis 6;

m 2 bis 4;

n 1 bis 5;

30

p 2 bis 5;

Besonders bevorzugt sind Verbindungen der Formel I, wobei die Variablen folgende Bedeutungen haben, und zwar für sich allein oder 35 in Kombination:

R1 Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkylsulfonyl; insbesondere Halogen wie Fluor oder Chlor, C₁-C₆-Alkyl wie Methyl oder Ethyl oder C₁-C₆-Halogenalkyl wie Difluormethyl oder Trifluormethyl; besonders bevorzugt Fluor, Chlor, Methyl, Difluormethyl oder Trifluormethyl;

Wasserstoff oder C₁-C₆-Alkyl, wie Methyl oder Ethyl; insbesondere Wasserstoff oder Methyl;

R³ Wasserstoff oder C₁-C₆-Alkyl; insbesondere Wasserstoff;

R4 eine Verbindung IIa oder IIb

5

10

$$(R^6)_1$$
 R^5

IIa

IIb

wobei

Halogen, OR7, SR7, SO₂R⁸, OSO₂R⁸, NR¹⁰R¹¹, ONR¹¹R¹², N-gebundenes Heterocyclyl oder O-(N-gebundenes Heterocyclyl), wobei der Heterocyclyl-Rest der beiden letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoyy oder C₁-C₄-Halogenalkoxy;

 $\begin{array}{lll} R^6 & \text{Halogen, Cyano, } C_1-C_6-\text{Alkyl, } C_1-C_6-\text{Halogenalkyl,} \\ \textbf{25} & \text{Di-}(C_1-C_6-\text{alkoxy})\text{-methyl, } \text{Di-}(C_1-C_6-\text{alkylthio})\text{-methyl,} \\ & (C_1-C_6-\text{Alkoxy}) (C_1-C_6-\text{alkylthio})\text{-methyl, } \text{Hydroxy,} \\ & C_1-C_6-\text{Alkoxy, } C_1-C_6-\text{Halogenalkoxy, } C_1-C_6-\text{Alkoxycarbonyl-} \\ & \text{oxy, } C_1-C_6-\text{Alkylthio oder } C_1-C_6-\text{Halogenalkylthio;} \\ \end{array}$

30 oder

zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus;

35

R⁷

C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl,
C₃-C₆-Alkinyl, C₁-C₂₀-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, C₁-C₆-Alkoxycarbonyl, C₃-C₆-Alkenyloxycarbonyl, C₁-C₆-Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl, N,N-Di-(C₁-C₆-alkyl)-aminocarbonyl,
N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)-aminocarbonyl,
N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl,
N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl,
Di-(C₁-C₆-alkyl)-aminothiocarbonyl oder C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, wobei die genannten Alkyl-, Cyclo-

10

15

20

25

30

35

40

R8

alkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkyl-

Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, Hydroxycarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenylcarbonyl- C_1 - C_6 -alkyl, Heterocyclylcarbonyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxythiocarbonyl, Heterocyclyloxy- C_1 - C_6 -alkylcarbonyl oder Heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 14 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, $C_3-C_6-Cycloalkyl$, Hydroxy, $C_1-C_6-Alkoxy$, $Di-C_1-C_6-alkyl-amino$ oder $Di-(C_1-C_6-Halogenalkyl)$ amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $C_1-C_4-Alkyl-carbonyl$, $C_1-C_4-Alkoxycarbonyl$, $C_1-C_4-Alkyl-carbonyl$, C_1-C_4-Al

Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

R¹⁰ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder Di-(C₁-C₆-Alkyl)-amino, wobei die genannten Alkyl-,

Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen bis drei Reste der folgenden Gruppe tragen können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkyl-

carbonyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, Hydroxycarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

15 C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

 R^{11} , R^{12} C_1 - C_6 -Alkyl oder C_3 - C_6 -Alkenyl;

1 0 bis 6;

20

5

10

Ebenso besonders bevorzugt sind die Verbindungen der Formel I, wobei die Variablen folgende Bedeutung haben, und zwar für sich allein oder in Kombination:

25 R¹ Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Heterocyclyloxy oder Phenylthio, wobei die zwei letztgenannten Reste partiell oder vollständig halogeniert sein können und/oder einen bis drei der nachfolgend genannten Substituenten tragen können:

Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy; besonders bevorzugt Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkylthio;

35 R² Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl; besonders bevorzugt Wasserstoff;

R³ Wasserstoff;

40 R^5 Halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , OPR^8R^9 ,

45 C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy; besonders bevorzugt Halogen, OR^7 , $NR^{10}R^{11}$ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halo-

39 geniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy; insbesondere bevorzugt Fluor, OR7, NR10R11 oder N-gebun-5 denes Heterocyclyl ausgewählt aus der Gruppe: 4-Morpholinyl oder 4-0xo-1,4-dihydropyrid-1-yl; Rб $C_1 - C_6 - Alkyl$ 10 oder zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus; $C_1-C_6-Alkyl$, $C_1-C_{20}-Alkylcarbonyl$, $C_1-C_6-Alkoxycarbonyl$, \mathbb{R}^7 $(C_1-C_{20}-Alkylthio)$ carbonyl, N,N-Di $(C_1-C_6-alkyl)$ amino-15 carbonyl, Phenyl, Phenylcarbonyl oder Phenoxy-C1-C6-alkylcarbonyl, wobei der Phenylrest der drei letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der fol-20 genden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, $C_1-C_4-Alkoxy$ oder $C_1-C_4-Halogenalkoxy$; besonders bevorzugt C₁-C₆-Alkyl, C₁-C₂₀-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, (C₁-C₆-Alkylthio) carbonyl, $N, N-Di(C_1-C_6-alkyl)$ aminocarbonyl, Phenyl, Phenyl-25 carbonyl oder Phenoxy-C1-C6-alkylcarbonyl, wobei der Phenylrest der drei letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: 30 Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy; insbesondere bevorzugt C₁-C₂₀-Alkylthiocarbonyl; außerordentlich bevorzugt C1-C6-Alkylthiocarbonyl; 35 R8, R9 $C_1-C_6-Alkyl$, $C_1-C_6-Alkoxy$, $Di(C_1-C_6-alkyl)$ amino oder Phenyl, wobei der letztgenannten Reste partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, 40 C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;

 R^{10} $C_1-C_6-Alkyl$ oder $C_1-C_6-Alkoxy$;

R¹¹ $C_1-C_6-Alkyl;$

45

1 0 bis 6; besonders bevorzugt 4 bis 6; insbesondere 6;

5 Ebenso besonders bevorzugt sind Verbindungen der Formel I, wobei

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl,

(C₁-C₆-Alkoxy) (C₁-C₆-alkylthio)-methyl, Hydroxy,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylcarbonyl,

C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl oder
C₁-C₆-Halogenalkoxycarbonyl;

bedeutet

20 oder

30 oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden eine -(CH₂)_p-Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/oder durch einen bis vier Reste aus folgender Gruppe substituiert sein kann:
Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxycarbonyl;

oder

40

zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus.

45 Insbesondere bevorzugt sind Verbindungen der Formel I, wobei

41

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl,
(C₁-C₆-Alkoxy) (C₁-C₆-alkylthio)-methyl, Hydroxy,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy,
C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylcarbonyl,
C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl oder
C₁-C₆-Halogenalkoxycarbonyl;

10

bedeutet

oder

15 zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus.

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel I, 20 wobei

R⁵ Halogen oder $(C_1-C_{20}-Alkylthio)$ carbonyloxy; besonders bevorzugt Fluor oder $(C_1-C_6-Alkyl-thio)$ carbonyloxy;

25

bedeutet.

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel I, wobei

30

NR¹⁰R¹¹ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

bedeutet.

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel I, 40 wobei \mathbb{R}^4 folgende Bedeutung hat:

IIa1

IIb1

10

15

5

IIa2

20

IIa3

25

30

IIa4

35

IIa5

40

IIb5

5

IIa6

IIb6

10

$$R^5$$

IIa7

IIb7

20

 R^5
 R^5

IIa8

IIb8

25

 R^5

IIa9

IIb9

35

Insbesonderst bevorzugt sind die Verbindungen der Formel I, wobei

R⁵ NR¹⁰R¹¹ oder Tetrahydropyrrol-1-yl, 2,3-Dihydro-1H-pyr-rol-1-yl, 2,5-Dihydro-1H-pyrrol-1-yl, Pyrrol-1-yl, Tetrahydropyrazol-1-yl, Tetrahydroisoxazol-2-yl, Tetrahydroimidazol-1-yl, Tetrahydro-oxazol-3-yl, Tetrahydrothiazol-3-yl, Pyrazol-1-yl, Imi-

10

25

dazol-1-yl, 1,2,4-Triazol-1-yl, Tetrazol-1-yl, Piperidin-1-yl, 4-Oxo-1,4-dihydro-1-pyridyl, Hexahydropyrimidin-1-yl, Hexahydropyrazin-1-yl, Tetrahydro-1,4-oxazin-4-yl, Tetrahydro-1,2-oxazin-2-yl, Succinimid, Maleinimid oder Glutarimid, wobei die genannten Heterocyclen partiell oder vollständig halogeniert sein können und/oder einen bis drei der folgenden Reste tragen können:

Nitro, Cyano, C_1 - C_4 -Alkyl, wie Methyl oder Ethyl, C_1 - C_4 -Halogenalkyl wie Chlormethyl, Difluormethyl oder Trifluormethyl, C_1 - C_4 -Alkoxy wie Methoxy oder Ethoxy oder C_1 - C_4 -Halogenalkoxy wie Difluormethoxy oder Trifluormethoxy;

15 R¹⁰ C₁-C₆-Alkoxy;

bedeuten.

Außerordentlich bevorzugt sind die Verbindungen der Formel Ia1
20 und Ib1 (= I mit l = 0), insbesondere die Verbindungen Ia1.1 bis
Ia1.456 und die Verbindungen Ib1.1 bis Ib1.456, wobei die Restedefinitionen R¹ bis R⁵ und l nicht nur in Kombination miteinander,
sondern auch jeweils für sich allein betrachtet für die
erfindungsgemäßen Verbindungen eine bevorzugte Bedeutung haben.

Tabelle 1:

		Nr.	R ¹	R ²	R ³	R ⁵
40	Ia1.1	bzw. Ib1.1	CH ₃	H	H	F
	Ia1.2	bzw. Ib1.2	CH ₃	Н	Н	Cl
	Ia1.3	bzw. Ib1.3	CH ₃	Н	Н	Br
	Ia1.4	bzw. Ibl.4	CH ₃	Н	н	I
45	Ia1.5	bzw. Ib1.5	CH ₃	H	Н	SCH ₃
43	Ia1.6	bzw. Ib1.6	CH ₃	Н	н	SCH ₂ CH ₃
	Ia1.7	bzw. Ib1.7	CH ₃	H	Н	SCO (N (CH ₃) ₂) ₂

1		Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.8		Ib1.8		H	H	
- 1	Ia1.9		Ib1.9	CH ₃	Н	н	SO ₂ CH ₃ SO ₂ CH ₂ CH ₃
			Ib1.10	CH ₃	н		
5	Ia1.10		Ib1.10	CH ₃	Н	H H	SC ₆ H ₅
	Ia1.11		Ib1.11	CH ₃			S (4 - CH ₃ - C ₆ H ₄)
	Ia1.12			CH ₃	H	H	S(4-C1-C ₆ H ₄)
	Ia1.13		Ib1.13	CH ₃	H	H	SO ₂ C ₆ H ₅
	Ia1.14		Ib1.14	CH ₃	H	H	SO ₂ (4 - CH ₃ - C ₆ H ₄)
10	Ia1.15		Ib1.15	CH ₃	H	H	SO ₂ (4-C1-C ₆ H ₄)
ļ	Ia1.16		Ib1.16	CH ₃	Н	H	4-Morpholinyl
	Ia1.17		Ib1.17	CH ₃	H	Н	1-Pyrrolidinyl
	Ia1.18		Ib1.18	CH ₃	H	H	1-(1,2,4-Triazoly1)
15	Ia1.19		Ib1.19	CH ₃	Н	H	1-Imidazolyl
13	Ia1.20	bzw.	Ib1.20	CH ₃	H	Н	1-Pyrazolyl
	Ia1.21	bzw.	Ib1.21	CH ₃	н	н	4-0xo-1,4-dihydro-1-
- 1	T-1 00		Th 1 00	CII		7.7	pyridyl
	Ia1.22		Ib1.22	CH ₃	H	H	N (OCH ₃) CH ₃
20	Ia1.23		Ib1.23	CH ₃	H	H	2-Tetrahydroisoxazolyl
ļ	Ia1.24		Ib1.24	CH ₃	H	<u>н</u>	N(CH ₃)N(CH ₃) ₂
	Ia1.25		Ib1.25	CH ₃	H	H	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ia1.26		Ib1.26	CH ₃	H	Н	OPO (OCH ₃) ₂
	Ia1.27		Ib1.27	CH ₃	H	Н	OPO (OCH ₂ CH ₃) ₂
25	Ia1.28		Ib1.28	CH ₃	н	Н	OPO (N (CH ₃) ₂) ₂
	Ia1.29		Ib1.29	CH ₃	н	H	OPO (OC ₆ H ₅) ₂
	Ia1.30		Ib1.30	CH ₃	н	H	OPO (CH ₃) ₂
	Ia1.31		Ib1.31	CH ₃	н	н	OPO (CH ₂ CH ₃) ₂
30	Ia1.32		Ib1.32	CH ₃	H	H	OPO (C ₆ H ₅) ₂
30	Ia1.33		Ib1.33	CH ₃	H	H	OPS (OCH ₃) ₂
	Ia1.34	bzw.	Ib1.34	CH ₃	H	Н	OPS (OCH ₂ CH ₃) ₂
	Ia1.35	bzw.	Ib1.35	CH ₃	H	Н	OP (OCH ₃) ₂
	Ia1.36	bzw.	Ib1.36	CH ₃	н	Н	OP (OCH ₂ CH ₃) ₂
35	Ia1.37	bzw.	Ib1.37	CH ₃	Н	н	PO (OCH ₃) ₂
	Ia1.38	bzw.	Ib1.38	CH ₃	Н	H	PO (OCH ₂ CH ₃) ₂
	Ia1.39	bzw.	Ib1.39	CH ₃	H	Н	PO (C ₆ H ₅) ₂
Î	Ia1.40	bzw.	Ib1.40	CH ₃	Н	н	OCH ₃
	Ia1.41	bzw.	Ib1.41	CH ₃	H	H	OCH ₂ CH ₃
40	Ia1.42	bzw.	Ib1.42	CH ₃	H	н	OCH ₂ C ₆ H ₅
	Ia1.43	bzw.	Ib1.43	CH ₃	H	Ħ	OCH ₂ (2-furyl)
	Ia1.44	bzw.	Ib1.44	CH ₃	н	н	OCH ₂ (3-furyl)
	Ia1.45	bzw.	Ib1.45	CH ₃	н	H	OCOOCH3
45	Ia1.46	bzw.	Ib1.46	СН3	H	Н	OCOOCH ₂ CH ₃
	Ia1.47	bzw.	Ib1.47	CH ₃	H	н	OCOOCH (CH ₃) ₂
	Ia1.48	bzw.	Ib1.48	CH ₃	н	н	OCOOC ₆ H ₅

					,
	Nr.		R ²	R ³	R ⁵
	bzw. Ib1.49	CH ₃	H	H	OCOOC (CH ₃) ₃
Ia1.50	bzw. Ib1.50	CH ₃	H	H	OCSOC ₆ H ₅
Ia1.51	bzw. Ib1.51	CH ₃	H	н	OCSN (CH ₃) ₂
Ia1.52	bzw. Ib1.52	CH ₃	H	Н	OCON (CH ₃) ₂
Ia1.53	bzw. Ib1.53	CH ₃	H	Н	OCOSCH ₃
Ia1.54	bzw. Ib1.54	CH ₃	Н	Н	ON (CH ₃) ₂
Ia1.55	bzw. Ib1.55	CH ₃	H	Н	0-1-piperidyl
Ia1.56	bzw. Ib1.56	CH ₃	H	н	OCOCH ₃
Ia1.57	bzw. Ib1.57	CH ₃	Н	Н	OCOCH ₂ CH ₃
Ia1.58	bzw. Ib1.58	CH ₃	H	н	OCOCH (CH ₃) ₂
Ia1.59	bzw. Ib1.59	CH ₃	H	Н	OCOC (CH ₃) ₃
Ia1.60	bzw. Ib1.60	CH ₃	Н	Н	OCO (CH ₂) ₆ CH ₃
Ia1.61	bzw. Ib1.61	CH ₃	H	н	OCO (CH ₂) ₇ CH ₃
Ia1.62	bzw. Ib1.62	CH ₃	Н	н	OCO (CH ₂) ₁₆ CH ₃
Ia1.63	bzw. Ib1.63	CH ₃	Н	H	OCO (CH ₂) ₁₄ CH ₃
Ia1.64	bzw. Ib1.64	CH ₃	H	Н	OCOCH ₂ CH ₂ CH=CH ₂
Ia1.65	bzw. Ib1.65	CH ₃	H	н	OCO(CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
Ia1.66	bzw. Ib1.66	CH ₃	Н	Н	OCOCH (CH ₃) O - (2-CH ₃ -4-Cl-C ₆ H ₃)
Ia1.67	bzw. Ib1.67	CH ₃	Н	Н	OCOcyclopropyl
Ia1.68	bzw. Ib1.68	CH ₃	Н	Н	OCOcyclopentyl
Ia1.69	bzw. Ib1.69	CH ₃	Н	H	OCOcyclohexyl
Ia1.70	bzw. Ib1.70	CH ₃	H	H	OCOC ₆ H ₅
Ia1.71	bzw. Ib1.71	CH ₃	Н	Н	OCO(2-tetrahydrofuryl)
Ia1.72	bzw. Ib1.72	CH ₃	Н	Н	OCO(2-furyl)
Ia1.73	bzw. Ib1.73	CH ₃	Н	Н	OCO(2-thienyl)
Ia1.74	bzw. Ib1.74	CH ₃	Н	Н	OCO(3-pyridyl)
Ia1.75	bzw. Ib1.75	CH ₃	Н	Н	OSO ₂ CH ₃
Ia1.76	bzw. Ib1.76	CH ₃	Н	Н	OSO ₂ CH ₂ CH ₃
Ia1.77	bzw. Ib1.77	F	Н	Н	F
Ia1.78	bzw. Ib1.78	F	Н	Н	Cl
Ia1.79	bzw. Ib1.79	F	Н	н	Br
Ia1.80	bzw. Ib1.80	F	H	Н	I
Ia1.81	bzw. Ib1.81	F	Н	Н	SCH ₃
Ia1.82	bzw. Ib1.82	F	H	н	SCH ₂ CH ₃
Ia1.83	bzw. Ib1.83	F	H	н	SCO(N(CH ₃) ₂) ₂
Ia1.84	bzw. Ib1.84	F	Н	н	SO ₂ CH ₃
Ia1.85	bzw. Ib1.85	F	Н	H	SO ₂ CH ₂ CH ₃
Ia1.86	bzw. Ib1.86	F	Н	Н	SC ₆ H ₅
Ia1.87	bzw. Ib1.87	F	Н	Н	S(4-CH ₃ -C ₆ H ₄)
Ia1.88	bzw. Ib1.88	F	Н	Н	S(4-C1-C ₆ H ₄)
Ia1.89	bzw. Ib1.89	F	H	H	SO ₂ C ₆ H ₅
	Ia1.52 Ia1.53 Ia1.54 Ia1.55 Ia1.56 Ia1.57 Ia1.58 Ia1.59 Ia1.60 Ia1.61 Ia1.62 Ia1.63 Ia1.64 Ia1.65 Ia1.66 Ia1.67 Ia1.68 Ia1.69 Ia1.70 Ia1.71 Ia1.72 Ia1.73 Ia1.74 Ia1.75 Ia1.77 Ia1.78 Ia1.78 Ia1.79 Ia1.80 Ia1.81 Ia1.82 Ia1.83 Ia1.84 Ia1.85 Ia1.86	Ia1.50 bzw. Ib1.50 Ia1.51 bzw. Ib1.51 Ia1.52 bzw. Ib1.52 Ia1.53 bzw. Ib1.53 Ia1.54 bzw. Ib1.54 Ia1.55 bzw. Ib1.55 Ia1.56 bzw. Ib1.56 Ia1.57 bzw. Ib1.57 Ia1.58 bzw. Ib1.59 Ia1.59 bzw. Ib1.60 Ia1.60 bzw. Ib1.60 Ia1.61 bzw. Ib1.61 Ia1.62 bzw. Ib1.62 Ia1.63 bzw. Ib1.63 Ia1.64 bzw. Ib1.63 Ia1.65 bzw. Ib1.65 Ia1.66 bzw. Ib1.65 Ia1.67 bzw. Ib1.67 Ia1.68 bzw. Ib1.69 Ia1.70 bzw. Ib1.70 Ia1.71 bzw. Ib1.72 Ia1.72 bzw. Ib1.73 Ia1.73 bzw. Ib1.74 Ia1.74 bzw. Ib1.75 Ia1.75 bzw. Ib1.76 Ia1.76 bzw. Ib1.77 Ia1.78 bzw. Ib1.79 Ia1.80 bzw. Ib1.81 Ia1.81 bzw. Ib1.82 Ia1.83 bzw. Ib1.84	Ia1.49 bzw. Ib1.49 CH3 Ia1.50 bzw. Ib1.50 CH3 Ia1.51 bzw. Ib1.51 CH3 Ia1.52 bzw. Ib1.52 CH3 Ia1.53 bzw. Ib1.52 CH3 Ia1.53 bzw. Ib1.53 CH3 Ia1.54 bzw. Ib1.55 CH3 Ia1.55 bzw. Ib1.55 CH3 Ia1.56 bzw. Ib1.57 CH3 Ia1.57 bzw. Ib1.57 CH3 Ia1.58 bzw. Ib1.59 CH3 Ia1.59 bzw. Ib1.59 CH3 Ia1.60 bzw. Ib1.60 CH3 Ia1.61 bzw. Ib1.60 CH3 Ia1.62 bzw. Ib1.62 CH3 Ia1.63 bzw. Ib1.62 CH3 Ia1.64 bzw. Ib1.65 CH3 Ia1.65 bzw. Ib1.66 CH3 Ia1.66 bzw. Ib1.67 CH3 Ia1.67 bzw. Ib1.67 CH3 Ia1.69 bzw. Ib1.70 CH3 Ia1.70 bzw. Ib1.70 CH3 <td>Ia1.49 bzw. Ib1.49 CH3 H Ia1.50 bzw. Ib1.50 CH3 H Ia1.51 bzw. Ib1.51 CH3 H Ia1.52 bzw. Ib1.52 CH3 H Ia1.53 bzw. Ib1.53 CH3 H Ia1.54 bzw. Ib1.55 CH3 H Ia1.55 bzw. Ib1.55 CH3 H Ia1.56 bzw. Ib1.57 CH3 H Ia1.57 bzw. Ib1.58 CH3 H Ia1.58 bzw. Ib1.59 CH3 H Ia1.59 bzw. Ib1.59 CH3 H Ia1.59 bzw. Ib1.60 CH3 H Ia1.60 bzw. Ib1.60 CH3 H Ia1.61 bzw. Ib1.62 CH3 H Ia1.62 bzw. Ib1.63 CH3 H Ia1.63 bzw. Ib1.64 CH3 H Ia1.65 bzw. Ib1.65 CH3 H Ia1.66 bzw. Ib1.67 CH3 H Ia1.69<</td> <td>Ia1.49 bzw. Ib1.49 CH3 H H Ia1.50 bzw. Ib1.50 CH3 H H Ia1.51 bzw. Ib1.51 CH3 H H Ia1.52 bzw. Ib1.52 CH3 H H Ia1.53 bzw. Ib1.53 CH3 H H Ia1.54 bzw. Ib1.55 CH3 H H Ia1.55 bzw. Ib1.55 CH3 H H Ia1.56 bzw. Ib1.56 CH3 H H Ia1.57 bzw. Ib1.57 CH3 H H Ia1.58 bzw. Ib1.58 CH3 H H Ia1.59 bzw. Ib1.59 CH3 H H Ia1.60 bzw. Ib1.60 CH3 H H Ia1.61 bzw. Ib1.62 CH3 H H Ia1.62 bzw. Ib1.63 CH3 H H Ia1.65 bzw. Ib1.66 CH3 H H Ia1.65 bzw. Ib1.67 CH3<!--</td--></td>	Ia1.49 bzw. Ib1.49 CH3 H Ia1.50 bzw. Ib1.50 CH3 H Ia1.51 bzw. Ib1.51 CH3 H Ia1.52 bzw. Ib1.52 CH3 H Ia1.53 bzw. Ib1.53 CH3 H Ia1.54 bzw. Ib1.55 CH3 H Ia1.55 bzw. Ib1.55 CH3 H Ia1.56 bzw. Ib1.57 CH3 H Ia1.57 bzw. Ib1.58 CH3 H Ia1.58 bzw. Ib1.59 CH3 H Ia1.59 bzw. Ib1.59 CH3 H Ia1.59 bzw. Ib1.60 CH3 H Ia1.60 bzw. Ib1.60 CH3 H Ia1.61 bzw. Ib1.62 CH3 H Ia1.62 bzw. Ib1.63 CH3 H Ia1.63 bzw. Ib1.64 CH3 H Ia1.65 bzw. Ib1.65 CH3 H Ia1.66 bzw. Ib1.67 CH3 H Ia1.69<	Ia1.49 bzw. Ib1.49 CH3 H H Ia1.50 bzw. Ib1.50 CH3 H H Ia1.51 bzw. Ib1.51 CH3 H H Ia1.52 bzw. Ib1.52 CH3 H H Ia1.53 bzw. Ib1.53 CH3 H H Ia1.54 bzw. Ib1.55 CH3 H H Ia1.55 bzw. Ib1.55 CH3 H H Ia1.56 bzw. Ib1.56 CH3 H H Ia1.57 bzw. Ib1.57 CH3 H H Ia1.58 bzw. Ib1.58 CH3 H H Ia1.59 bzw. Ib1.59 CH3 H H Ia1.60 bzw. Ib1.60 CH3 H H Ia1.61 bzw. Ib1.62 CH3 H H Ia1.62 bzw. Ib1.63 CH3 H H Ia1.65 bzw. Ib1.66 CH3 H H Ia1.65 bzw. Ib1.67 CH3 </td

1		Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.90	bzw.	Ib1.90	F	Н	н	SO ₂ (4 - CH ₃ - C ₆ H ₄)
	Ia1.91	bzw.	Ib1.91	F	Н	Н	SO ₂ (4 - C1 - C ₆ H ₄)
_ 1	Ia1.92	bzw.	Ib1.92	F	Н	Н	4-Morpholinyl
5	Ia1.93	bzw.	Ib1.93	F	н	Н	1-Pyrrolidinyl
	Ia1.94	bzw.	Ib1.94	F	н	н	1-(1,2,4-Triazoly1)
	Ia1.95	bzw.	Ib1.95	F	Н	Н	1-Imidazolyl
	Ia1.96	bzw.	Ib1.96	F	H	Н	1-Pyrazolyl
10	Ia1.97	bzw.	Ib1.97	F	н	н	4-0xo-1,4-dihydro-1- pyridyl
	Ia1.98	bzw.	Ib1.98	F	Н	н	N(OCH ₃)CH ₃
	Ia1.99	bzw.	Ib1.99	F	Н	н	2-Tetrahydroisoxazolyl
	Ia1.100	bzw.	Ib1.100	F	Н	Н	N(CH ₃)N(CH ₃) ₂
15	Ia1.101	bzw.	Ib1.101	F	Н	Н	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ia1.102	bzw.	Ib1.102	F	H	Н	OPO (OCH ₃) ₂
	Ia1.103	bzw.	Ib1.103	F	Н	Н	OPO (N (CH ₃) ₂) ₂
	Ia1.104	bzw.	Ib1.104	F	Н	Н	OPO (OCH ₂ CH ₃) ₂
20	Ia1.105	bzw.	Ib1.105	F	Н	Н	OPO (OC ₆ H ₅) ₂
20	Ia1.106	bzw.	Ib1.106	F	н	Н	OPO(CH ₃) ₂
	Ia1.107	bzw.	Ib1.107	F	H	H	OPO (CH ₂ CH ₃) ₂
	Ia1.108	bzw.	Ib1.108	F	H	Н	OPO (C ₆ H ₅) ₂
	Ia1.109	bzw.	Ib1.109	F	Н	Н	OPS (OCH ₃) ₂
25	Ia1.110	bzw.	Ib1.110	F	H	H	OPS (OCH ₂ CH ₃) ₂
	Ia1.111	bzw.	Ib1.111	F	Н	H	OP (OCH ₃) ₂
	Ia1.112	bzw.	Ib1.112	F	Н	H	OP (OCH ₂ CH ₃) ₂
	Ia1.113	bzw.	Ib1.113	F	Н	Н	PO (OCH ₃) ₂
20	Ia1.114	bzw.	Ib1.114	F	Н	Н	PO (OCH ₂ CH ₃) ₂
30	Ial.115	bzw.	Ib1.115	F	H	H	PO (C ₆ H ₅) ₂
	Ia1.116	bzw.	Ib1.116	F	Н	H	OCH ₃
	Ia1.117	bzw.	Ib1.117	F	Н	Н	OCH ₂ CH ₃
	Ia1.118	bzw.	Ib1.118	F	H	Н	OCH ₂ C ₆ H ₅
35	Ia1.119	bzw.	Ib1.119	F	H	Н	OCH ₂ (2-fury1)
	Ia1.120	bzw.	Ib1.120	F	Н	Н	OCH ₂ (3-furyl)
	Ia1.121	bzw.	Ib1.121	F	Н	Н	осоосн3
	Ia1.122	bzw.	Ib1.122	F	Н	Н	OCOOCH ₂ CH ₃
	Ia1.123	bzw.	Ib1.123	F	H	Н	OCOOCH (CH ₃) ₂
40	Ia1.124	bzw.	Ib1.124	F	Н	H	OCOOC ₆ H ₅
	Ia1.125	bzw.	Ib1.125	F	Н	H	OCOOC (CH ₃) ₃
	Ia1.126	bzw.	Ib1.126	F	H	H	OCSOC ₆ H ₅
	Ia1.127	bzw.	Ib1.127	F	H	H	OCSN (CH ₃) ₂
45	Ia1.128	bzw.	Ib1.128	F	H	H	OCON (CH ₃) ₂
70	Ia1.129	bzw.	Ib1.129	F	H	H	OCOSCH ₃
	Ia1.130	bzw.	Ib1.130	F	H	Н	ON (CH ₃) ₂

		Nr.		R ¹	R ²	\mathbb{R}^3	R ⁵
	Ia1.131	bzw.	Ib1.131	F	Н	Н	O-1-Piperidyl
	Ia1.132	bzw.	Ib1.132	F	Н	H	ососн3
_	Ia1.133	bzw.	Ib1.133	F	Н	Н	OCOCH ₂ CH ₃
5	Ia1.134	bzw.	Ib1.134	F	Н	н	OCOCH (CH ₃) ₂
	Ia1.135	bzw.	Ib1.135	F	Н	Н	OCOC (CH ₃) ₃
	Ia1.136	bzw.	Ib1.136	F	Н	H	OCO (CH ₂) ₆ CH ₃
	Ia1.137	bzw.	Ib1.137	F	Н	н	OCO (CH ₂) ₇ CH ₃
10	Ia1.138	bzw.	Ib1.138	F	Н	н	OCO (CH ₂) ₁₆ CH ₃
	Ia1.139	bzw.	Ib1.139	F	Н	н	OCO (CH ₂) 14CH ₃
	Ia1.140	bzw.	Ib1.140	F	Н	н	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.141	bzw.	Ib1.141	F	Н	Н	OCO(CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
	Ia1.142	bzw.	Ib1.142	F	н	Н	OCOCH (CH ₃) O-
15							(2-CH ₃ -4-C1-C ₆ H ₃)
			Ib1.143	F	H	H	OCOcyclopropyl
	Ia1.144		Ib1.144	F	H	H	OCOcyclopentyl
	Ia1.145		Ib1.145	F	н	H	OCOcyclohexyl
20	Ia1.146		Ib1.146	F	H	H	OCOC ₆ H ₅
	Ia1.147		Ib1.147	F	H	H	OCO(2-tetrahydrofuryl)
	Ia1.148		Ib1.148	F	H	H	OCO(2-furyl)
	Ia1.149		Ib1.149	F	H	H	OCO(2-thienyl)
	Ia1.150		Ib1.150	F	H	H	OCO(3-pyridyl)
25	Ia1.151		Ib1.151	F	н	H	OSO ₂ CH ₃
	Ia1.152		Ib1.152	F	H	H	OSO ₂ CH ₂ CH ₃
	Ia1.153		Ib1.153	CF ₃	H	H	F
	Ia1.154		Ib1.154	CF ₃	H	H	Cl
30	Ia1.155			CF ₃	H	H	Br
	Ia1.156		Ib1.156	CF ₃	_ _	H	I
	Ia1.157		Ib1.157	CF ₃	Н	H	SCH ₃
	Ia1.158			CF ₃	H	H	SCH ₂ CH ₃
	Ia1.159			CF ₃	H	_ н	SCO(N(CH ₃) ₂) ₂
35	Ial.160		Ib1.160	CF ₃	H	H	SO ₂ CH ₃
	Ia1.161		Ib1.161	CF ₃	H	н	SO ₂ CH ₂ CH ₃
	Ial.162		Ib1.162	CF ₃	H	H	SC ₆ H ₅
	Ia1.163		Ib1.163	CF ₃	н	H	S(4-CH ₃ -C ₆ H ₄)
40	Ia1.164	bzw.	Ib1.164	CF ₃	H	H	S(4-C1-C ₆ H ₄)
	Ial.165	bzw.	Ib1.165	CF ₃	H	H	SO ₂ C ₆ H ₅
	Ia1.166	bzw.	Ib1.166	CF ₃	H	H	SO ₂ (4 - CH ₃ - C ₆ H ₄)
	Ia1.167	bzw.	Ib1.167	CF ₃	н	H	SO ₂ (4-C1-C ₆ H ₄)
	Ial.168	bzw.	Ib1.168	CF ₃	H	H	4-Morpholinyl
45	Ia1.169	bzw.	Ib1.169	CF ₃	H	H	1-Pyrrolidinyl
	Ial.170	bzw.	Ib1.170	CF ₃	H	H	1-(1,2,4-Triazolyl)
	Ial.171	bzw.	Ib1.171	CF ₃	н	H	1-Imidazolyl

			49		PC1/EP99/06322
1	NI-	R ¹	R2	T 73	75
	Nr. Ia1.172 bzw. Ib1.17		H H	R ³	R ⁵ 1-Pyrazolyl
	141.172 bzw. 151.17	Z CF3			4-0xo-1,4-dihydro-1-
	Ia1.173 bzw. Ib1.17	3 CF ₃	Н	н	pyridyl
5	Ia1.174 bzw. Ib1.17	4 CF ₃	Н	н	N (OCH ₃) CH ₃
	Ia1.175 bzw. Ib1.17		Н	Н	2-Tetrahydroisoxazolyl
	Ia1.176 bzw. Ib1.17	6 CF ₃	Н	Н	N(CH ₃)N(CH ₃) ₂
	Ia1.177 bzw. Ib1.17	7 CF ₃	н	Н	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ia1.178 bzw. Ib1.17	8 CF ₃	Н	н	OPO (OCH ₃) ₂
10	Ia1.179 bzw. Ib1.17	9 CF ₃	Н	н	OPO (OCH ₂ CH ₃) ₂
	Ia1.180 bzw. Ib1.18	0 CF ₃	Н	H	OPO (N (CH ₃) ₂) ₂
	Ia1.181 bzw. Ib1.18	1 CF ₃	Н	Н	OPO (OC ₆ H ₅) ₂
	Ia1.182 bzw. Ib1.18	2 CF ₃	Н	Н	OPO (CH ₃) ₂
15	Ia1.183 bzw. Ib1.18	3 CF ₃	Н	Н	OPO (CH ₂ CH ₃) ₂
	Ia1.184 bzw. Ib1.18	4 CF ₃	Н	Н	OPO (C ₆ H ₅) ₂
	Ia1.185 bzw. Ib1.18	5 CF ₃	Н	Н	OPS (OCH ₃) ₂
	Ia1.186 bzw. Ib1.18	6 CF ₃	н	Н	OPS (OCH ₂ CH ₃) ₂
20	Ia1.187 bzw. Ib1.18	7 CF ₃	н	H	OP (OCH ₃) ₂
20	Ia1.188 bzw. Ib1.18	8 CF ₃	Н	н	OP (OCH ₂ CH ₃) ₂
	Ia1.189 bzw. Ib1.18	9 CF ₃	Н	н	PO (OCH ₃) ₂
	Ia1.190 bzw. Ib1.19	0 CF ₃	н	Н	PO(OCH ₂ CH ₃) ₂
	Ia1.191 bzw. Ib1.19	1 CF ₃	Н	Н	PO (C ₆ H ₅) ₂
25	Ia1.192 bzw. Ib1.19	2 CF ₃	Н	Н	OCH ₃
	Ia1.193 bzw. Ib1.19	3 CF ₃	Н	Н	OCH ₂ CH ₃
	Ia1.194 bzw. Ib1.19		Н	H	OCH ₂ C ₆ H ₅
	Ia1.195 bzw. Ib1.19	5 CF ₃	н	Н	OCH ₂ (2-furyl)
30	Ia1.196 bzw. Ib1.19	6 CF ₃	н	H	OCH ₂ (3-furyl)
30	Ia1.197 bzw. Ib1.19		Н	н	осоосн3
1	Ia1.198 bzw. Ib1.19		Н	н	OCOOCH ₂ CH ₃
	Ia1.199 bzw. Ib1.19		Н	Н	OCOOCH (CH ₃) ₂
	Ia1.200 bzw. Ib1.20		Н	Н	OCOOC ₆ H ₅
35	Ia1.201 bzw. Ib1.20		Н	Н	OCOOC (CH ₃) ₃
	Ia1.202 bzw. Ib1.20		Н	H	OCSOC ₆ H ₅
	Ia1.203 bzw. Ib1.20		н	H	OCSN(CH ₃) ₂
	Ia1.204 bzw. Ib1.20		н	H	OCON (CH ₃) ₂
40	Ia1.205 bzw. Ib1.20		н	н	OCOSCH ₃
40	Ia1.206 bzw. Ib1.20		н	н	ON (CH ₃) ₂
	Ia1.207 bzw. Ib1.20		н	H	O-1-Piperidyl
	Ia1.208 bzw. Ib1.20		H	н	OCOCH ₃
	Ia1.209 bzw. Ib1.20		н	H	OCOCH ₂ CH ₃
45	Ia1.210 bzw. Ib1.21		Н	н	OCOCHC (CH ₃) ₂
	Ia1.211 bzw. Ib1.21		Н	н	OCOC (CH ₃) ₃
	Ia1.212 bzw. Ib1.21	2 CF ₃	н	н	OCO (CH ₂) ₆ CH ₃

					. 30		•
		Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.213	bzw.	Ib1.213	CF ₃	Н	н	OCO (CH ₂) 7CH ₃
	Ia1.214	bzw.	Ib1.214	CF ₃	Н	Н	OCO (CH ₂) ₁₆ CH ₃
_	Ia1.215	bzw.	Ib1.215	CF ₃	Н	H	OCO (CH ₂) 14CH ₃
5	Ia1.216	bzw.	Ib1.216	CF ₃	Н	Н	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.217	bzw.	Ib1.217	CF ₃	H	H	$OCO(CH_2)_{3}O(2,4-Cl_2-C_6H_3)$
	Ia1.218	bzw.	Ib1.218	CF ₃	Н	Н	OCOCH (CH ₃) O - (2 - CH ₃ - 4 - C1 - C ₆ H ₃)
10	Ia1.219	bzw.	Ib1.219	CF ₃	Н	Н	OCOcyclopropyl
10	Ia1.220	bzw.	Ib1.220	CF ₃	н	H	OCOcyclopentyl
	Ia1.221	bzw.	Ib1.221	CF ₃	Н	Н	OCOcyclohexyl
	Ia1.222	bzw.	Ib1.222	CF ₃	H	Н	OCOC ₆ H ₅
	Ia1.223	bzw.	Ib1.223	CF ₃	Н	Н	OCO(2-tetrahydrofuryl)
15	Ia1.224	bzw.	Ib1.224	CF ₃	Н	H	OCO(2-fury1)
	Ia1.225	bzw.	Ib1.225	CF ₃	Н	H	OCO(2-thienyl)
	Ia1.226	bzw.	Ib1.226	CF ₃	Н	Н	OCO(3-pyridyl)
	Ia1.227	bzw.	Ib1.227	CF ₃	Н	H	OSO ₂ CH ₃
20	Ia1.228	bzw.	Ib1.228	CF ₃	Н	Н	OSO ₂ CH ₂ CH ₃
20	Ia1.229	bzw.	Ib1.229	Cl	Н	Н	F
	Ia1.230	bzw.	Ib1.230	Cl	н	H	Cl
	Ia1.231	bzw.	Ib1.231	Cl	H	Н	Br
	Ia1.232	bzw.	Ib1.232	Cl	Н	Н	I
25	Ia1.233	bzw.	Ib1.233	Cl	Н	Н	SCH ₃
. '	Ia1.234	bzw.	Ib1.234	Cl	Н	Н	SCH ₂ CH ₃
	Ia1.235	bzw.	Ib1.235	Cl	Н	Н	SCO(N(CH ₃) ₂) ₂
	Ia1.236	bzw.	Ib1.236	Cl	Н	Н	SO ₂ CH ₃
20	Ia1.237	bzw.	Ib1.237	Cl	Н	Н	SO ₂ CH ₂ CH ₃
30	Ia1.238	bzw.	Ib1.238	Cl	H	Н	SC ₆ H ₅
	Ia1.239	bzw.	Ib1.239	Cl	Н	Н	S(4-CH ₃ -C ₆ H ₄)
	Ia1.240	bzw.	Ib1.240	Cl	Н	Н	S(4-C1-C ₆ H ₄)
	Ia1.241	bzw.	Ib1.241	Cl	H	H	SO ₂ C ₆ H ₅
35	Ia1.242	bzw.	Ib1.242	Cl	H	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)
	Ia1.243	bzw.	Ib1.243	Cl	H	Н	SO ₂ (4-Cl-C ₆ H ₄)
	Ia1.244	bzw.	Ib1.244	Cl	H	H	4-Morpholinyl
	Ia1.245	bzw.	Ib1.245	Cl	Н	Н	1-Pyrrolidinyl
	Ia1.246	bzw.	Ib1.246	Cl	Н	H	1-(1,2,4-Triazolyl)
40	Ia1.247	bzw.	Ib1.247	Cl	Н	Н	1-Imidazolyl
	Ia1.248	bzw.	Ib1.248	Cl	Н	Н	1-Pyrazolyl
	Ia1.249	bzw.	Ib1.249	Cl	н	Н	4-0xo-1,4-dihydro-1- pyridyl
45	Ia1.250	bzw.	Ib1.250	Cl	Н	Н	N (OCH ₃) CH ₃
45	Ia1.251	bzw.	Ib1.251	Cl	Н	Н	2-Tetrahydroisoxazolyl
	Ia1.252	bzw.	Ib1.252	C1	H	Н	N(CH ₃)N(CH ₃) ₂

•	

1	Nr.	R ¹	R ²	\mathbb{R}^3	R ⁵
	Ia1.253 bzw. Ib1.253	Cl	Н	н	$N(CH_2CH=CH_2)N(CH_3)_2$
l	Ia1.254 bzw. Ib1.254	Cl	Н	н	OPO (OCH ₃) ₂
	Ia1.255 bzw. Ib1.255	Cl	H	н	OPO (OCH ₂ CH ₃) ₂
5	Ia1.256 bzw. Ib1.256	Cl	Н	Н	OPO (N (CH ₃) ₂) ₂
	Ia1.257 bzw. Ib1.257	Cl	Н	Н	OPO (OC ₆ H ₅) ₂
	Ia1.258 bzw. Ib1.258	Cl	H	Н	OPO (CH ₃) ₂
	Ia1.259 bzw. Ib1.259	Cl	Н	Н	OPO (CH ₂ CH ₃) ₂
10	Ia1.260 bzw. Ib1.260	Cl	H	Н	OPO (C ₆ H ₅) ₂
	Ia1.261 bzw. Ib1.261	Cl	H	Н	OPS (OCH ₃) ₂
	Ia1.262 bzw. Ib1.262	Cl	H	Н	OPS (OCH ₂ CH ₃) ₂
	Ia1.263 bzw. Ib1.263	Cl	H	Н	OP (OCH ₃) ₂
	Ia1.264 bzw. Ib1.264	Cl	H	Н	OP (OCH ₂ CH ₃) ₂
15	Ia1.265 bzw. Ib1.265	Cl	H	Н	PO (OCH ₃) ₂
	Ia1.266 bzw. Ib1.266	Cl	H	H	PO (OCH ₂ CH ₃) ₂
	Ia1.267 bzw. Ib1.267	Cl	H	Н	PO (C ₆ H ₅) ₂
	Ia1.268 bzw. Ib1.268	Cl	H	Н	OCH ₃
20	Ia1.269 bzw. Ib1.269	Cl	H	Н	OCH ₂ CH ₃
	Ia1.270 bzw. Ib1.270	C1	H	Н	OCH ₂ C ₆ H ₅
	Ia1.271 bzw. Ib1.271	Cl	H	Н	OCH ₂ (2-furyl)
	Ia1.272 bzw. Ib1.272	Cl	H	Н	OCH ₂ (3-furyl)
	Ia1.273 bzw. Ib1.273	Cl	H	H	OCOOCH3
25	Ia1.274 bzw. Ib1.274	Cl	Н	H	OCOOCH ₂ CH ₃
	Ia1.275 bzw. Ib1.275	Cl	н	H	OCOOCH (CH ₃) ₂
	Ia1.276 bzw. Ib1.276	Cl	Н	H	OCOOC ₆ H ₅
	Ia1.277 bzw. Ib1.277	Cl	н	H	OCOOC (CH ₃) ₃
30	Ia1.278 bzw. Ib1.278	Cl	н	Н	OCSOC ₆ H ₅
	Ia1.279 bzw. Ib1.279	Cl	н	H	OCSN (CH ₃) ₂
	Ia1.280 bzw. Ib1.280	Cl	Н	H	OCON (CH ₃) ₂
	Ia1.281 bzw. Ib1.281	C1	н	H	OCOSCH ₃
	Ia1.282 bzw. Ib1.282	Cl	Н	Н	ON(CH ₃) ₂
35	Ia1.283 bzw. Ib1.283	Cl	H	Н	O-1-Piperidyl
	Ia1.284 bzw. Ib1.284	Cl	н	Н	OCOCH ₃
	Ia1.285 bzw. Ib1.285	C1	Н	H	OCOCH ₂ CH ₃
	Ia1.286 bzw. Ib1.286	C1	. H	H	OCOCH (CH ₃) ₂
40	Ia1.287 bzw. Ib1.287	Cl	Н	Н	OCOC (CH ₃) ₃
	Ia1.288 bzw. Ib1.288	Cl	Н	Н	OCO (CH ₂) ₆ CH ₃
	Ia1.289 bzw. Ib1.289	Cl	H	н	OCO (CH ₂) ₇ CH ₃
	Ia1.290 bzw. Ib1.290	Cl	Н	н	OCO (CH ₂) ₁₆ CH ₃
	Ia1.291 bzw. Ib1.291	Cl	H	Н	OCO (CH ₂) 14CH ₃
45	Ia1.292 bzw. Ib1.292	Cl	H	н	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.293 bzw. Ib1.293	Cl	H	Н	OCO (CH ₂) 30 (2,4-Cl ₂ -C ₆ H ₃)

					52		
		Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.294	bzw.	Ib1.294	Cl	Н	н	OCOCH (CH ₃) O - (2 - CH ₃ - 4 - C1 - C ₆ H ₃)
- 1	Ia1.295	bzw.	Ib1.295	Cl	Н	Н	OCOcyclopropyl
5	Ia1.296	bzw.	Ib1.296	Cl	Н	H	OCOcyclopentyl
	Ia1.297	bzw.	Ib1.297	Cl	Н	H	OCOcyclohexyl
	Ia1.298	bzw.	Ib1.298	Cl	Н	Н	OCOC ₆ H ₅
	Ia1.299	bzw.	Ib1.299	Cl	Н	Н	OCO(2-tetrahydrofuryl)
10	Ia1.300	bzw.	Ib1.300	Cl	Н	Н	OCO(2-furyl)
10	Ia1.301	bzw.	Ib1.301	Cl	Н	Н	OCO(2-thienyl)
	Ia1.302	bzw.	Ib1.302	Cl	H	Н	OCO(3-pyridyl)
	Ia1.303	bzw.	Ib1.303	Cl	Н	H	OSO ₂ CH ₃
	Ia1.304	bzw.	Ib1.304	Cl	H	H	OSO ₂ CH ₂ CH ₃
15	Ia1.305	bzw.	Ib1.305	CHF ₂	H	H	F
	Ia1.306		Ib1.306	CHF ₂	Н	H	Cl
	Ia1.307	bzw.	Ib1.307	CHF ₂	H	Н	Br
	Ia1.308	bzw.	Ib1.308	CHF ₂	H	H	I
20	Ia1.309		Ib1.309	CHF ₂	H	Н	SCH ₃
	Ia1.310		Ib1.310	CHF ₂	H	H	SCH ₂ CH ₃
	Ia1.311		Ib1.311	CHF ₂	H	Н	SCO(N(CH ₃) ₂) ₂
	Ia1.312	bzw.	Ib1.312	CHF ₂	H	H	SO ₂ CH ₃
	Ia1.313		Ib1.313	CHF ₂	H	H	SO ₂ CH ₂ CH ₃
25	Ia1.314		Ib1.314	CHF ₂	Н	H	SC ₆ H ₅
	Ia1.315		Ib1.315	CHF ₂	H	H	S(4-CH ₃ -C ₆ H ₄)
	Ia1.316		Ib1.316	CHF ₂	H	H	S(4-C1-C ₆ H ₄)
	Ia1.317		Ib1.317	CHF ₂	H	H	SO ₂ C ₆ H ₅
30	Ia1.318		Ib1.318	CHF ₂	H	H	SO ₂ (4 - CH ₃ - C ₆ H ₄)
	Ia1.319			CHF ₂	H	H	SO ₂ (4-Cl-C ₆ H ₄)
	Ia1.320			CHF ₂	H	H	4-Morpholinyl
	<u> </u>		Ib1.321	CHF ₂	H	H	1-Pyrrolidinyl
			Ib1.322	CHF ₂	H	H	1-(1,2,4-Triazolyl)
35			Ib1.323	CHF ₂	H	H	1-Imidazolyl
	Ia1.324	DZW.	Ib1.324	CHF ₂	н	H	1-Pyrazolyl 4-0xo-1,4-dihydro-1-
	Ia1.325	bzw.	Ib1.325	CHF ₂	Н	Н	pyridyl
	Ia1.326	bzw.	Ib1.326	CHF ₂	Н	H	N (OCH ₃) CH ₃
40	Ia1.327	bzw.	Ib1.327	CHF ₂	Н	H	2-Tetrahydroisoxazolyl
	Ia1.328	bzw.	Ib1.328	CHF ₂	H	Н	N (CH ₃) N (CH ₃) ₃
	Ia1.329	bzw.	Ib1.329	CHF ₂	Н	H	N (CH2CH=CH2) N (CH3)2
	Ia1.330			CHF ₂	Н	H	OPO (OCH ₃) ₂
45	Ia1.331	bzw.	Ib1.331	CHF ₂	H	H	OPO (OCH ₂ CH ₃) ₂
45			Ib1.332	CHF ₂	Н	н	OPO(N(CH ₃) ₂) ₂
	Ia1.333	bzw.	Ib1.333	CHF ₂	н	Н	OPO (OC ₆ H ₅) ₂

		Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.334	bzw.	Ib1.334	CHF ₂	н	H	OPO (CH ₃) ₂
	Ia1.335	bzw.	Ib1.335	CHF ₂	н	H	OPO (CH ₂ CH ₃) ₂
_	Ia1.336	bzw.	Ib1.336	CHF ₂	Н	H	OPO (C ₆ H ₅) ₂
5	Ia1.337	bzw.	Ib1.337	CHF ₂	н	Н	OPS (OCH ₃) ₂
	Ia1.338	bzw.	Ib1.338	CHF ₂	H	H	OPS (OCH ₂ CH ₃) ₂
10	Ia1.339	bzw.	Ib1.339	CHF ₂	Н	H	OP(OCH ₃) ₂
	Ia1.340	bzw.	Ib1.340	CHF ₂	н	Н	OP (OCH ₂ CH ₃) ₂
	Ia1.341	bzw.	Ib1.341	CHF ₂	Н	Н	PO (OCH ₃) ₂
	Ia1.342	bzw.	Ib1.342	CHF ₂	Н	Н	PO(OCH ₂ CH ₃) ₂
	Ia1.343	bzw.	Ib1.343	CHF ₂	H	H	PO(C ₆ H ₅) ₂
	Ia1.344	bzw.	Ib1.344	CHF ₂	H	Н	OCH ₃
	Ia1.345	bzw.	Ib1.345	CHF ₂	н	H	OCH ₂ CH ₃
15	Ia1.346	bzw.	Ib1.346	CHF ₂	Н	Н	OCH ₂ C ₆ H ₅
	Ia1.347	bzw.	Ib1.347	CHF ₂	н	Н	OCH ₂ (2-furyl)
	Ia1.348	bzw.	Ib1.348	CHF ₂	Н	Н	OCH ₂ (3-furyl)
	Ia1.349	bzw.	Ib1.349	CHF ₂	Н	H	осоосн3
20	Ia1.350	bzw.	Ib1.350	CHF ₂	Н	Н	OCOOCH ₂ CH ₃
	Ia1.351	bzw.	Ib1.351	CHF ₂	Н	н	OCOOCH (CH ₃) ₂
	Ia1.352	bzw.	Ib1.352	CHF ₂	Н	Н	OCOOC ₆ H ₅
	Ia1.353	bzw.	Ib1.353	CHF ₂	Н	Н	OCOOC (CH ₃) ₃
	Ia1.354	bzw.	Ib1.354	CHF ₂	H	н	OCSOC ₆ H ₅
25	Ia1.355	bzw.	Ib1.355	CHF ₂	H	Н	OCSN (CH ₃) ₂
	Ia1.356	bzw.	Ib1.356	CHF ₂	H	Н	OCON (CH ₃) ₂
	Ia1.357	bzw.	Ib1.357	CHF ₂	H	H	OCOSCH ₃
	Ia1.358		Ib1.358	CHF ₂	Н	Н	ON (CH ₃) ₂
30	Ia1.359	bzw.	Ib1.359	CHF ₂	H	H	O-1-Piperidyl
	Ia1.360	bzw.	Ib1.360	CHF ₂	H	H	OCOCH3
	Ia1.361	bzw.	Ib1.361	CHF ₂	Н	Н	OCOCH ₂ CH ₃
	Ia1.362	bzw.		CHF ₂	H	Н	OCOCH (CH ₃) ₂
	Ia1.363		Ib1.363	CHF ₂	H	Н	OCOC (CH ₃) ₃
35	Ia1.364		Ib1.364	CHF ₂	H	н	OCO (CH ₂) ₆ CH ₃
	Ia1.365		Ib1.365	CHF ₂	Н	н	OCO (CH ₂) ₇ CH ₃
	Ia1.366		Ib1.366	CHF ₂	н	Н	OCO (CH ₂) ₁₆ CH ₃
	Ia1.367		Ib1.367	CHF ₂	H	H	OCO (CH ₂) ₁₄ CH ₃
40	Ia1.368		Ib1.368	CHF ₂	Н	Н	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.369	bzw.	Ib1.369	CHF ₂	н	H	OCO (CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
	Ia1.370	bzw.	Ib1.370	CHF ₂	н	н	OCOCH (CH ₃) O - (2 - CH ₃ - 4 - Cl - C ₆ H ₃)
	Ia1.371	bzw.	Ib1.371	CHF ₂	Н	н	OCOcyclopropyl
45	Ia1.372	bzw.	Ib1.372	CHF ₂	н	Н	OCOcyclopentyl
	Ia1.373	bzw.	Ib1.373	CHF ₂	H	н	OCOcyclohexyl
	Ia1.374	bzw.	Ib1.374	CHF ₂	Н	Н	OCOC ₆ H ₅

					34		
		Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.375	bzw.	Ib1.375	CHF ₂	H	Н	OCO(2-tetrahydrofuryl)
	Ia1.376		Ib1.376	CHF ₂	Н	Н	OCO(2-furyl)
_	Ia1.377	bzw.	Ib1.377	CHF ₂	Н	Н	OCO(2-thienyl)
5	Ia1.378		Ib1.378	CHF ₂	Н	Н	OCO(3-pyridyl)
	Ia1.379	bzw.	Ib1.379	CHF ₂	Н	Н	OSO ₂ CH ₅
	Ia1.380	bzw.	Ib1.380	CHF ₂	H	Н	OSO ₂ CH ₂ CH ₃
	Ia1.381	bzw.	Ib1.381	Cl	CH ₃	Н	F
10	Ia1.382	bzw.	Ib1.382	C1	CH ₃	Н	Cl
	Ia1.383	bzw.	Ib1.383	Cl	CH ₃	H	Br
	Ia1.384	bzw.	Ib1.384	Cl	CH ₃	H	I
	Ia1.385	bzw.	Ib1.385	C1	CH ₃	H	SCH ₃
	Ia1.386	bzw.	Ib1.386	Cl	CH ₃	Н	SCH ₂ CH ₃
15	Ia1.387	bzw.	Ib1.387	Cl	CH ₃	H	$SCO(N(CH_3)_2)_2$
	Ia1.388	bzw.	Ib1.388	Cl	CH ₃	Н	SO ₂ CH ₃
	Ia1.389	bzw.	Ib1.389	Cl	CH ₃	H	SO ₂ CH ₂ CH ₃
	Ia1.390	bzw.	Ib1.390	Cl	CH ₃	H	SC ₆ H ₅
20	Ia1.391	bzw.	Ib1.391	Cl	CH ₃	H	S(4-CH ₃ -C ₆ H ₄)
	Ia1.392	bzw.	Ib1.392	Cl	CH ₃	н	S(4-C1-C ₆ H ₄)
	Ia1.393	bzw.	Ib1.393	Cl	CH ₃	н	SO ₂ C ₆ H ₅
	Ia1.394	bzw.	Ib1.394	Cl	CH ₃	Н	SO ₂ (4 - CH ₃ - C ₆ H ₄)
	Ia1.395	bzw.	Ib1.395	Cl	CH ₃	н	SO ₂ (4-Cl-C ₆ H ₄)
25	Ia1.396	bzw.	Ib1.396	Cl	CH ₃	н	4-Morpholinyl
	Ia1.397	bzw.	Ib1.397	Cl	CH ₃	Н	1-Pyrrolidinyl
	Ia1.398	bzw.	Ib1.398	Cl	CH ₃	н	1-(1,2,4-Triazolyl)
	Ia1.399	bzw.	Ib1.399	C1	CH ₃	Н	1-Imidazolyl
30	Ia1.400	bzw.	Ib1.400	Cl	CH ₃	Н	1-Pyrazolyl
	Ia1.401	bzw.	Ib1.401	Cl	CH ₃	н	4-0xo-1,4-dihydro-1- pyridyl
	Ia1.402	bzw.	Ib1.402	Cl	CH ₃	Н	N (OCH ₃) CH ₃
	Ia1.403	bzw.	Ib1.403	Cl	CH ₃	Н	2-Tetrahydroisoxazolyl
35	Ia1.404	bzw.	Ib1.404	C1	CH ₃	Н	N(CH ₃)N(CH ₃) ₂
	Ia1.405	bzw.	Ib1.405	Cl	CH ₃	н	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ia1.406	bzw.	Ib1.406	Cl	CH ₃	Н	OPO (OCH ₃) ₂
	Ia1.407	bzw.	Ib1.407	Cl	CH ₃	н	OPO (OCH ₂ CH ₃) ₂
	Ia1.408	bzw.	Ib1.408	Cl	CH ₃	Н	OPO (N (CH ₃) ₂) ₂
40	Ia1.409	bzw.	Ib1.409	Cl	CH ₃	Н	OPO (OC ₆ H ₅) ₂
	Ia1.410	bzw.	Ib1.410	Cl	CH ₃	Н	OPO (CH ₃) ₂
	Ia1.411	bzw.	Ib1.411	C1	CH ₃	Н	OPO (CH ₂ CH ₃) ₂
	Ia1.412	bzw.	Ib1.412	Cl	CH ₃	Н	OPO (C ₆ H ₅) ₂
45	Ia1.413	bzw.	Ib1.413	C1	CH ₃	Н	OPS (OCH ₃) ₂
40	Ia1.414	bzw.	Ib1.414	Cl	CH ₃	Н	OPS (OCH ₂ CH ₃) ₂
	Ia1.415	bzw.	Ib1.415	Cl	CH ₃	Н	OP (OCH ₃) ₂
						•	

			33		
	Nr.	\mathbb{R}^1	R ²	R ³	R ⁵
	Ial.416 bzw. Ibl.416	Cl	CH ₃	Н	OP (OCH ₂ CH ₃) ₂
	Ial.417 bzw. Ibl.417	C1	CH ₃	Н	PO(OCH ₃) ₂
	Ia1.418 bzw. Ib1.418	Cl	CH ₃	н	PO(OCH ₂ CH ₃) ₂
5	Ia1.419 bzw. Ib1.419	Cl	CH ₃	Н	PO(C ₆ H ₅) ₂
	Ia1.420 bzw. Ib1.420	C1	CH ₃	Н	OCH ₃
	Ia1.421 bzw. Ib1.421	Cl	CH ₃	Н	OCH ₂ CH ₃
	Ia1.422 bzw. Ib1.422	Cl	CH ₃	Н	OCH ₂ C ₆ H ₅
10	Ial.423 bzw. Ibl.423	Cl	CH ₃	Н	OCH ₂ (2-furyl)
	Ia1.424 bzw. Ib1.424	Cl	CH ₃	Н	OCH ₂ (3-furyl)
	Ial.425 bzw. Ib1.425	Cl	CH ₃	Н	OCOOCH ₃
	Ia1.426 bzw. Ib1.426	Cl	CH ₃	Н	OCOOCH ₂ CH ₃
	Ia1.427 bzw. Ib1.427	C1	CH ₃	H	OCOOCH (CH ₃) ₂
15	Ia1.428 bzw. Ib1.428	Cl	CH ₃	Н	OCOOC ₆ H ₅
	Ia1.429 bzw. Ib1.429	Cl	CH ₃	Н	OCOOC (CH ₃) ₃
	Ia1.430 bzw. Ib1.430	Cl	CH ₃	Н	OCSOC ₆ H ₅
	Ia1.431 bzw. Ib1.431	Cl	CH ₃	Н	OCSN (CH ₃) ₂
20	Ia1.432 bzw. Ib1.432	Cl	CH ₃	н	OCON (CH ₃) ₂
	Ia1.433 bzw. Ib1.433	Cl	CH ₃	H	OCOSCH ₃
	Ia1.434 bzw. Ib1.434	Cl	CH ₃	Н	ON(CH ₃) ₂
	Ia1.435 bzw. Ib1.435	Cl	CH ₃	Н	O-1-piperidyl
	Ial.436 bzw. Ib1.436	Cl	CH ₃	H	OCOCH3
25	Ia1.437 bzw. Ib1.437	Cl	CH ₃	H	OCOCH ₂ CH ₃
	Ia1.438 bzw. Ib1.438	Cl	CH ₃	H	OCOCH (CH ₃) ₂
	Ia1.439 bzw. Ib1.439	Cl	CH ₃	H	OCOC (CH ₃) ₃
	Ia1.440 bzw. Ib1.440	Cl	CH ₃	H	OCO (CH ₂) ₆ CH ₃
30	Ia1.441 bzw. Ib1.441	Cl	CH ₃	H	OCO (CH ₂) ₇ CH ₃
30	Ia1.442 bzw. Ib1.442	C1	CH ₃	Н	OCO (CH ₂) 16CH ₃
	Ia1.443 bzw. Ib1.443	Cl	CH ₃	H	OCO (CH ₂) 14CH ₃
	Ia1.444 bzw. Ib1.444	Cl	CH ₃	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.445 bzw. Ib1.445	Cl	CH ₃	H	OCO (CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
35	Ial.446 bzw. Ibl.446	Cl	CH ₃	н	OCOCH (CH ₃) O - (2 - CH ₃ - 4 - Cl - C ₆ H ₃)
	Ial.447 bzw. Ib1.447	Cl	CH ₃	Н	OCOcyclopropyl
	Ial.448 bzw. Ibl.448	ļ	CH ₃	Н	OCOcyclopentyl
	Ial.449 bzw. Ibl.449		CH ₃	Н	OCOcyclohexyl
40	Ia1.450 bzw. Ib1.450	- 	CH ₃	Н	OCOC ₆ H ₅
	Ia1.451 bzw. Ib1.451		CH ₃	Н	OCO(2-tetrahydrofuryl)
	Ia1.452 bzw. Ib1.452		CH ₃	н	OCO(2-furyl)
	Ia1.453 bzw. Ib1.453		CH ₃	н	OCO(2-thienyl)
	Ia1.454 bzw. Ib1.454		CH ₃	H	OCO(3-pyridyl)
45	Ia1.455 bzw. Ib1.455		CH ₃	H	OSO ₂ CH ₃
	Ia1.456 bzw. Ib1.456		CH ₃	Н	OSO ₂ CH ₂ CH ₃
	-ur. 200 Dan. 101. 200				

Desweiteren sind folgende Cyclohexenonchinolinoyl-Derivate der Formel I außerordentlich bevorzugt:

Die Verbindungen der Formel Ia2 und Ib2, insbesondere die Verbindungen Ia2.1 bis Ia2.456 und die Verbindungen Ib2.1 bis Ib2.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "5,5-Dimethyl" bedeutet.

10

20

15

Die Verbindungen der Formel Ia3 und Ib3, insbesondere die Verbindungen Ia3.1 bis Ia3.456 und die Verbindungen Ib3.1 bis Ib3.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "5-Methyl" bedeutet.

30

25

35

45

Die Verbindungen der Formel Ia4 und Ib4, insbesondere die Verbindungen Ia4.1 bis Ia4.456 und die Verbindungen Ib4.1 bis Ib4.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "4,4-Dimethyl" bedeutet.

15

Die Verbindungen der Formel Ia5 und Ib5, insbesondere die Verbindungen Ia5.1 bis Ia5.456 und die Verbindungen Ib5.1 bis Ib5.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "6,6-Dimethyl" bedeutet.

Die Verbindungen der Formel Ia6 und Ib6, insbesondere die Verbindungen Ia6.1 bis Ia6.456 und die Verbindungen Ib6.1 bis Ib6.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁
"4,4,6,6-Tetramethyl-5-oxo" bedeutet.

35

40

$$R^3$$
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

Die Verbindungen der Formel Ia7 und Ib7, insbesondere die Verbindungen Ia7.1 bis Ia7.456 und die Verbindungen Ib7.1 bis Ib7.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "6-Methyl" bedeutet.

10
$$\bigcap_{R^5 \longrightarrow R^1} \mathbb{R}^2$$

$$\bigcap_{R^5 \longrightarrow R^1} \mathbb{R}^2$$

Die Verbindungen der Formel Ia8 und Ib8, insbesondere die Verbindungen Ia8.1 bis Ia8.456 und die Verbindungen Ib8.1 bis Ib8.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "5-Hydroxy-4,4,6,6-tetramethyl" bedeutet.

25

$$R^3$$
 R^2
 R^3
 R^2

35

40

Die Cyclohexenonchinolinoyl-Derivate der Formel I sind auf verschiedene Art und Weise erhältlich, beispielsweise nach folgenden Verfahren:

5

Darstellung von Verbindungen der Formel I mit R⁵ = Halogen durch Umsetzung von Cyclohexandion-Derivaten der Formel III mit Halogenierungsmitteln:

10

15
$$(R^6)_1$$

Halogenierungs-
 R^3

Halogenierungs-
 R^5

Halogenierungs-
 R^5

Halogenierungs-
 R^5

III

20 Als Halogenierungsmittel eignen sich beispielsweise Phosgen, Diphosgen, Triphosgen, Thionylchlorid, Oxalylchlorid, Phosphoroxychlorid, Phosphorpentachlorid, Mesylchlorid, Chlormethylen-N, N-dimethylammoniumchlorid, Oxaylylbromid, Phosphoroxybromid etc.

25

Darstellung von Verbindungen der Formel I mit $R^5 = OR^7$, В. OSO2R8, OPR8R9, OPOR8R9 oder OPSR8R9 durch Umsetzung von Cyclohexandion-Derivaten der Formel III mit Alkylierungs-, Sulfonylierungs- bzw. Phosphonylierungsmitteln IV α , IV β , IV γ , IV δ 30 bzw. IVE.

$$15 \qquad \qquad \begin{array}{c} R^3 \\ R^2 \\ (R^6)_1 \end{array} \qquad \begin{array}{c} L^1-R^7 \ (IV\alpha) \ oder \\ L^1-SO_2R^8 \ (IV\beta) \ oder \\ + \ L^1-PR^8R^9 \ (IV\gamma) \ oder \\ L^1-POR^8R^9 \ (IV\delta) \ oder \\ L^1-PSR^8R^9 \ (IV\epsilon) \end{array}$$

 ${\tt L}^1$ steht für eine nucleophil verdrängbare Abgangsgruppe, wie Halogen, z. B. Chlor oder Brom, Hetaryl, z. B. Imidazolyl, Carboxylat, z. B. Acetat, oder Sulfonat, z. B. Mesylat oder Triflat etc.

5

10

15

Die Verbindungen der Formel IV α , IV β , IV γ , IV δ oder IV ϵ können direkt eingesetzt werden wie z. B. im Fall der Carbonsäurehalogenide oder in situ erzeugt werden, z. B. aktivierte Carbonsäuren (mit Carbonsäure und Dicyclohexylcarbodiimid etc.).

C. Darstellung von Verbindungen der Formel I mit $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-gebundenes Heterocyclyl oder O-(N-gebundenes Heterocyclyl) durch Umsetzung von Verbindungen der Formel I mit $R^5 = Halogen$, OSO_2R^8 (I α) mit Verbindungen der Formel V α , V β , V γ , V δ , V ϵ , V γ oder V δ , gegebenenfalls in Gegenwart einer Base oder unter vorangehender Salzbildung.

20

 HOR^7 (V_{α}) oder

 HSR^7 (V β) oder

HPOR⁸R⁹ (Vγ) oder

Ia und/oder Ib + 25

 ${\tt HNR^{10}R^{11}}$ (V δ) oder

 $(mit R^5 = Halogen, OSO_2R^8)$

 $HONR^{11}R^{12}$ (V ϵ) oder

H(N-gebundenes

Heterocyclyl) (Vη) oder

H (ON-gebundenes Heterocyclyl) ($V\vartheta$)

30

Ia und/oder Ib

(mit R⁵ = OR⁷, SR⁷,
POR⁸R⁹, NR¹⁰R¹¹,
ONR¹¹R¹²,
N-gebundenes
Heterocyclyl oder
ON-gebundenes

Heterocyclyl)

35

40 D. Darstellung von Verbindungen der Formel I mit $R^5 = SOR^8$, SO_2R^8 durch Umsetzung von Verbindungen der Formel I mit $R^5 = SR^8$ (I β) mit einem Oxidationsmittel.

61

Ia und/oder Ib Oxidationsmittel Ia und/oder Ib $(mit R^5 = SR^8) \qquad (mit R^5 = SOR^8 oder SO_2R^8)$

- Als Oxidationsmittel kommen beispielsweise m-Chlorperbenzoesäure, Peroxyessigsäure, Trifluorperoxyessigsäure, Wasserstoffperoxid, ggf. in Gegenwart eines Katalysators wie Wolframat, in Betracht.
- Für die oben genannten Reaktionen gelten folgende Bedingungen:
 Die Ausgangsverbindungen werden in der Regel im äquimolaren
 Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, die
 eine oder andere Komponente im Überschuß einzusetzen.
- Gegebenenfalls kann es von Vorteil sein, die Umsetzungen in Gegenwart einer Base durchzuführen. Die Reaktanden und die Base werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt. Ein Überschuß der Base z.B. 1,5 bis 3 Moläquivalente, bezogen auf Ia und/oder Ib (mit R⁵ = Halogen oder OSO₂R⁸) oder III, kann unter Umständen vorteilhaft sein.

Als Basen eignen sich tertiäre Alkylamine, wie Triethylamin, aromatische Amine, wie Pyridin, Alkalimetallcarbonate, z.B. Natriumcarbonat oder Kaliumcarbonat, Alkalimetallhydrogencarbonate, wie
Natriumhydrogencarbonat und Kaliumhydrogencarbonat, Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kalium-tert.butanolat oder Alkalimetallhydride, z.B. Natriumhydrid. Bevorzugt
verwendet werden Triethylamin oder Pyridin.

Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester, wie Essigsäureethylester, oder Gemische hiervon in Betracht.

In der Regel liegt die Reaktionstemperatur im Bereich von 0°C bis zur Höhe des Siedepunktes des Reaktionsgemisches.

Die Aufarbeitung kann in an sich bekannter Weise zum Produkt hin erfolgen.

In Abhängigkeit von den Reaktionsbedinungen können die Verbindungen Ia, Ib oder Gemische hiervon gebildet werden. Letztere können durch klassische Trennmethoden, wie z.B. Kristallisation, Chromatographie etc., getrennt werden.

Die Cyclohexandion-Derivate der Formel III sind bekannt oder können nach an sich bekannten Verfahren hergestellt werden (z.B. DE-A 19 532 311). Beispielsweise durch Umsetzung von Cyclohexanonen der Formel VI mit einer aktivierten Benzoesäure VIIa oder 10 einer Benzoesäure VIIb, die vorzugsweise in situ aktiviert wird, zu dem Acylierungsprodukt und anschließende Umlagerung.

15 VIIb 20 25 VI VIIa 30 35 III

40

45

L² steht für eine nucleophil verdrängbare Abgangsgruppe, wie Halogen z.B. Brom oder Chlor, Hetaryl, z.B. Imidazolyl oder Pyridyl, Carboxylat, z.B. Acetat oder Trifluoracetat etc.

Die aktivierte Benzoesäure VIIa kann direkt eingesetzt werden, wie im Fall der Benzoylhalogenide oder in situ erzeugt werden, z.B. mit Dicyclohexylcarbodiimid, Triphenylphosphin/Azodicarbonsäureester, 2-Pyridindisulfid/Triphenylphosphin, Carbonyldisimidzol etc.

Gegebenenfalls kann es von Vorteil sein, die Acylierungsreaktion in Gegenwart einer Base auszuführen. Die Reaktanden und die Hilfsbase werden dabei zweckmäßigerweise in äquimolaren Mengen 10 eingesetzt. Ein geringer Überschuß der Hilfsbase z.B. 1,2 bis 1,5 Moläquivalente, bezogen auf VII, kann unter Umständen vorteilhaft sein.

Als Hilfsbasen eignen sich tertiäre Alkylamine, Pyridin oder
15 Alkalimetallcarbonate. Als Lösungsmittel können z.B. chlorierte
Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan,
aromatische Kohlenwasserstoffe, wie Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie
20 Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester
wie Essigsäureethylester oder Gemische hiervon verwendet werden.

Werden Benzoylhalogenide als aktivierte Carbonsäurekomponente eingesetzt, so kann es zweckmäßig sein, bei Zugabe dieses Reakti25 onspartners die Reaktionsmischung auf 0-10°C abzukühlen. Anschließend rührt man bei 20 - 100°C, vorzugsweise bei 25 - 50°C, bis die Umsetzung vollständig ist. Die Aufarbeitung erfolgt in üblicher Weise, z.B. wird das Reaktionsgemisch auf Wasser gegossen, das Wertprodukt extrahiert. Als Lösungsmittel eignen sich hierfür besonders Methylenchlorid, Diethylether und Essigsäureethylester. Nach Trocknen der organischen Phase und Entfernen des Lösungsmittels kann der rohe Ester ohne weitere Reinigung zur Umlagerung eingesetzt werden.

- 35 Die Umlagerung der Ester zu den Verbindungen der Formel III erfolgt zweckmäßigerweise bei Temperaturen von 20 bis 100°C in einem Lösungsmittel und in Gegenwart einer Base sowie gegebenenfalls mit Hilfe einer Cyanoverbindung als Katalysator.
- 40 Als Lösungsmittel können z.B. Acetonitril, Methylenchlorid, 1,2-Dichlorethan, Dioxan, Essigsäureethylester, Toluol oder Gemische hiervon verwendet werden. Bevorzugte Lösungsmittel sind Acetonitril und Dioxan.
- 45 Geeignete Basen sind tertiäre Amine wie Triethylamin, aromatische Amine wie Pyridin oder Alkalicarbonate, wie Natriumcarbonat oder Kaliumcarbonat, die vorzugsweise in äquimolarer Menge oder bis zu

einem vierfachen Überschuß, bezogen auf den Ester, eingesetzt werden. Bevorzugt werden Triethylamin oder Alkalicarbonat verwendet, vorzugsweise in doppelt äquimolaren Verhältnis in Bezug auf den Ester.

5

Als Cyanoverbindungen kommen anorganische Cyanide, wie Natriumcyanid oder Kaliumcyanid und organische Cyanoverbindungen, wie Acetoncyanhydrin oder Trimethylsilylcyanid in Betracht. Sie werden in einer Menge von 1 bis 50 Molprozent, bezogen auf den

- 10 Ester, eingesetzt. Vorzugsweise werden Acetoncyanhydrin oder Trimethylsilylcyanid, z.B. in einer Menge von 5 bis 15, vorzugsweise 10 Molprozent, bezogen auf den Ester, eingesetzt.
- Die Aufarbeitung kann in an sich bekannter Weise erfolgen. Das 15 Reaktionsgemisch wird z.B. mit verdünnter Mineralsäure, wie 5 %ige Salzsäure oder Schwefelsäure, angesäuert, mit einem organischen Lösungsmittel, z.B. Methylenchlorid oder Essigsäureethylester extrahiert. Der organische Extrakt kann mit 5-10%iger Alkalicarbonatlösung, z.B. Natriumcarbonat- oder Kaliumcarbonat-
- 20 lösung extrahiert werden. Die wäßrige Phase wird angesäuert und der sich bildende Niederschlag abgesaugt und/oder mit Methylenchlorid oder Essigsäureethylester extrahiert, getrocknet und eingeengt.
- 25 Die Benzoylhalogenide der Formel VIIa (mit L² = C1, Br) können auf an sich bekannte Art und Weise durch Umsetzung der Benzoesäuren der Formel VIIb mit Halogenierungsreagentien wie Thionylchlorid, Thionylbromid, Phosgen, Diphosgen, Triphosgen, Oxalylchlorid, Oxalylbromid hergestellt werden.

30

Die Benzoesäuren der Formel VIIb können in bekannter Weise durch saure oder basische Hydrolyse aus den entsprechenden Estern hergestellt werden. Letztere sind literaturbekannt oder können auf an sich bekannte Art und Weise dargestellt werden.

35

8-Difluormethyl-5-alkoxycarbonyl-chinoline können durch Fluorierung aus den korrespondierenden 8-Aldehyd-Derivaten erhalten werden. Als Fluorierungsagens kommt unter anderem DAST in Betracht. Das Formylchinolin wird durch Oxidation des entsprechen-

40 den Brommethylchinolins erhalten.

Weiterhin ist es möglich 8-Difluormethoxy-5-alkoxycarbonyl-chinoline aus den entsprechenden 8-Hydroxy-Derivaten durch Umsetzung mit Chlordifluormethan zu gewinnen. Bevorzugt wird diese Reaktion 45 in Gegenwart einer Base, wie Kaliumhydroxid oder Natriumhydroxid, in einen aprotischen Lösungsmittel durchgeführt. Die 8-Hydroxy-5-

alkoxycarbonylchinoline werden durch an sich bekannte Vereste-

rungsreaktionen aus 8-Hydroxy-5-hydroxycarbonyl-chinolin erhalten.

65

```
Herstellungsbeispiele:
```

5

- 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.22) und
 2-[(8-Chlorchinolin-5-yl)-chlormethyliden]-4,4,6,6-tetramethyl-
- 2-[(8-Chlorchinolin-5-yl)-chlormethyliden]-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion (Verbindung 3.1)

10

- 4,0 g (10,8 mmol) 2-(8-Chlorchinolin-5-yl)-carbonyl-4,4,6,6-te-tramethyl-cyclohexan-1,3,5-trion wurden in 40 ml Dichlormethan gelöst, 4,1 g (32,4 mmol) Oxalylchlorid und 1,5 ml Dimethylformamid zugegeben. Nach 1,5 Stunden Rühren bei 25°C wurde das
- 15 Lösungsmittel entfernt. Man erhielt 3,9 g farblose Kristalle. Nach Chromatographie an Kieselgel (Eluent: Toluol/Methyl-tert.-butylether) erhielt man:
 - 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion: Ausbeute 0,65 g (farblose Kristalle);
- 20 Fp.: 180°C;
 - 2-[(8-Chlorchinolin-5-yl)-chlormethyliden-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion: Ausbeute 0,35 g (farblose Kristalle); Fp.: 156°C.
- 25 2-[(8-Chlorchinolin-5-yl)-1-(4'-oxo-1',4'-dihydropyrid-1'-yl)-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.46) und 2[(8-chlorchinolin-5-yl)-(4'-oxo-1',4'-dihydropyrid-1'-yl')-methyliden]-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion (Verbindung 3.5)

- 1,0 g (2,6 mmol) einer Mischung der Verbindungen 2.22 und 3.1 wurde in 25 ml Methylenchlorid gelöst, 0,82 g (8,7 mmol) 4-Hydroxy-pyridin zugegeben und 8 Stunden bei 40°C gerührt. Anschließend wurden unlösliche Bestandteile filtriert, das Lösungsmittel
- 35 entfernt und der Rückstand an Kieselgel chromatograhiert (Eluent: Methylenchlorid/Methanol). Man erhielt: 2-[(8-Chlorchinolin-5-yl)-4'-oxo-1',4'-dihydropyridin-1'yl)methyliden-4,4,6,6-tetramethylcyclohexan-1,3,5-trion: Ausbeute 0,40 g (farbloses Öl):
- 40 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-(4'-oxo-1',4'-dihydropyrid-1'-yl)-4,4,6,6-tetramethylcyclohex-1-en-3,5-dion: Ausbeute 0,25 g (farblose Kristalle); Fp. > 210°C.
- 2-(8-Fluorchinolin-5-yl)-carbonyl-1,5-di(ethoxycarbonyloxy)-
- 45 4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 3.20)

- 0,12 g (4 mmol) Natriumhydrid wurden in 10 ml Tetrahydrofuran gelöst, bei Raumtemperatur 0,36 g (1 mmol) 2-[(8-Fluorchinolin-5-yl)-carbonyl]-4,4,6,6-tetramethyl-1-hydroxy-cyclohexan-3,5-dion in 5 ml Tetrahydroforan zugetropft und 1 Stunde bei 40°C gerührt.
- 5 Anschließend wurde bei Raumtemperatur 0,43 g (4 mmol) Chlorameisensäureethylester zugetropft und 3 Stunden unter Rückfluß erhitzt. Nach Abkühlen wurden Wasser zugegeben, mit Essigsäureethylester extrahiert, die organische Phase mit 2-prozentiger Kaliumcarbonatlösung und Wasser gewaschen, getrocknet und das
- 10 Lösungsmittel entfernt. Man erhielt 0,45 g eines farblosen Öles.
 - 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-[dimethylamino)carbonyl-thio]-4,4,6,6-tetramethyl-cyclo-hex-1-en-3,5-dion (Verbindung 2.45) und
- 15 2-{(8-Chlorchinolin-5-yl)-[dimethylamino)carbonylthio]methyliden}-4,4,6,6-tetramethylcyclohexan-1,3,5-trion (Verbindung 3.4)
- 0,50 g (1,3 mmol) 2-[(8-Chlorchinolin-5-yl)-carbonyl]-4,4,6,6-te20 tramethyl-cyclohexan-1,3,5-trion wurden in 15 ml Tetrahydrofuran gelöst, 0,52 g (5,2 mmol) Triethylamin zugegeben und 0,32 g (2,6 mmol) Dimethylaminothiocarbonylchlorid in 5 ml Tetrahydrofuran zugetropft. Nach 30 Stunden Rühren bei Raumtemperatur, wurde das Lösungsmittel entfernt, der Rückstand in Essigsäureethylester
- 25 aufgenommen, mit 5-prozentiger Kaliumcarbonatlösung und Wasser gewaschen, getrocknet, eingeengt und mit Cyclohexan/Essigsäure-ethylester an Kieselgel chromatographiert. Man erhielt 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-[dimethylamino)carbonyl-thio]-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion: Ausbeute 0,5 g
- 30 (farblose Kristalle); Fp. 138°C; 2-{(8-Chlorchinolin-5-yl)-[[dimethylamino)carbonyl-thio]methyl-iden}-4,4,6,6-tetramethylcyclohexan-1,3,5-trion: Ausbeute: 0,2 g (farblose Kristalle) Fp. 75°C.
- 35 2-[(8-Difluormethylchinolin-5-yl)carbonyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.31)
 - Stufe a) 8-Formyl-5-chinolincarbonsäuremethylester
- 40 28,8 g (103 mmol) 8-(Brommethyl)-5-chinolincarbonsäuremethylester wurden in 200 ml Acetonitril gelöst, 36,1 g (309 mmol) N-Methyl-morpholin-N-oxid zugegeben, 7 Stunden bei 25°C gerührt und anschließend das Lösungsmittel entfernt. Nach Chromatographie an Kieselgel (Eluent: Cyclohexan/Essigsäureethylester) erhielt man
- 45 12,0 g 8-Formyl-5-chinolinearbonsaure-methylester (farblose Kristalle), Fp.: 128°C.

67

Stufe b) 8-Difluormethyl-5-chinolincarbonsäuremethylester

0,5 g (2,3 mmol) 8-Formyl-5-chinolincarbonsäuremethylester wurden in 50 ml Dichlorethan gelöst und bei -20°C 1,1 g (6,8 mmol)

- 5 Diethylaminoschwefeltrifluorid (DAST) zugetropft. Nach 30 min. Rühren bei -20°C wurde auf 25°C erwärmt und 50 ml Wasser zugetropft. Die wäßrige Phase wurde mit Methylenchlord extrahiert, die vereinigten organischen Phasen mit Natriumhydrogencarbonat-Lösung gewaschen, getrocknet und das Lösungsmittel entfernt.
- 10 Ausbeute: 0,7 g farblose Kristalle;

 1H-NMR (δin ppm, d⁶-DMSO): 9.28 (d,1H); 9.04 (s, 1H); 8.36

 (d, 1H); 8.11 (d, 1H); 7.90 (t, 1H); 7.80 (brs, 1H); 3.96 (s,3H).

Stufe c) 8-Difluormethyl-5-chinolincarbonsäure

15

- 0,5 g (2,0 mmol) 8-Difluormethyl-5-chinolincarbonsäuremethylester wurden in 5 ml Ethanol gelöst, 0,43 g (10,5 mmol) Natriumhydroxyd und 1 ml Wasser zugegeben und 20 Stunden bie 25°C gerührt. Anschließend wurden die Lösungsmittelentfernt, der Rückstand in
- 20 Wasser aufgenommen, zweimal mit Methylenchlorid gewaschen, mit 10 N Salzsäure auf pH 1 gestellt und der Niederschlag abgesaugt. Nach dem Trocknen erhielt man 0,5 g 8-Difluormethyl-5-chinolincarbonsäure (farblose Kristalle);

¹H-NMR (δ in ppm, d⁶-DMSO): 9.35 (d,1H); 9.04 (s, 1H); 8.38 **25** (d, 1H); 8.10 (d, 1H); 7.92 (t, 1H); 7.78 (brs, 1H).

- Stufe d) 2-[(8-Difluormethylchinolin-5-yl)-carbonyl]-4,4,6,6-tetramethylcyclohexan-1,3,5-trion
- 30 0,26 g (1,4 mmol) 2,2,4,4-Tetramethylcyclohexan-1,3,5-trion wurden in 10 ml Acetonitril gelöst, 0,34 g (1,4 mmol) 8-Difluor-methyl-5-chinolincarbonsäure und 0,38 g (1,9 mmol) Dicyclohexyl-carbodiimid zugegeben und 17 Stunden bei 25°C gerührt. Zu der Suspension wurden dann 0,57 g (5,6 mmol)Triethylamin und 5 Trop-
- 35 fen Trimethylsilylcyanid gegeben und weitere 25 Stunden bei 25°C gerührt. Anschließend wurde 50 ml 5-prozentige Kaliumcarbonatlösung zugegeben, filtriert, das Filtrat mit Methylstert. Butylether gewaschen, die wäßrige Phase mit konzentrierter Salzsäure auf pH 2 gestellt und der Niederschlag abfiltriert, mit Wasser

- Stufe e) 2-[(8-Difluormethylchinolin-5-yl)-carbonyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.31)
- 5 0,25 g (0,65 mmol) 2-(8-Difluormethylchinolin-5-yl)-carbonyl-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion wurden in 15 ml Dichlormethan gelöst, 0,25 g (1,95 mmol) Oxalylchlorid und 7 Tropfen Dimethylformamind zugegeben. Nach 17 Stunden Rühren bie 25°C wurde das Lösungsmittel entfernt. Man erhielt 0,2 g farblose 10 Kristalle.

Darstellung des Vorprodukts 2-[(8-Difluormethoxychinolin-5-y1)carbonyl]-4,4,6,6-tetramethylcyclohexan-1,3,5-trion

- 15 Stufe a) 8-Hydroxy-5-chinolincarbonsäuremethylester
- 16,25 g (86 mmol) 8-Hydroxy-5-chinolincarbonsäure wurden in 70 ml Methanol gelöst, 3 ml konzentrierte Schwefelsäure zugegeben und 25 Stunden unter Rückfluß erhitzt. Das Lösungsmittel wurde dann
- 20 entfernt, der Rückstand in Eiswasser aufgenommen, mit Natriumcarbonatlösung ein pH-Wert von 8 eingestellt und heiß filtriert. Der Rückstand wurde am Heiß-Extraktor 7 Stunden mit Methyl-tert.butylether extrahiert und anschließend das Lösungsmittel vom Extrakt entfernt. Man erhielt 6,8 g eines braunen Pulvers;
- 25 1 H-NMR (δ in ppm, d⁶-DMSO): 9.38 (d, 1H); 8.90 (d, 1H); 8.26 (d, 1H); 7.71 (dd, 1H); 7.15 (d, 1H); 3.93 (s, 3H).
 - Stufe b) 8-Difluormethoxy-5-chinolincarbonsauremethylester
- 30 1,0 g (5,0 mmol) 8-Hydroxy-5-chinolincarbonsäuremethylester wurden in 20 ml Dimethylformamid gelöst, 0,76 g (5,5 mmol) Kalium-carbonat zugegeben und bei 40°C über 2 Stunden 14 g Chlordifluor-methan eingesetzt. Feste Bestandteile wurden dann abfiltriert, das Lösungsmittel enfernt, der Rückstand mit Wasser gewaschen und 35 getrocknet. Man erhielt 0,75 g eines braunen Pulvers; ¹H-NMR (δin ppm, CDCl₃): 9.45 (d,1H); 9.00 (d, 1H); 8.30 (d, 1H);
 - Stufe c) 8-Difluormethoxy-5-chinolincarbonsaure
- 0,7 g (2,8 mmol) 8-Difluormethoxy-5-chinolincarbonsäuremethylester wurden in 15 ml Wasser suspendiert und 0,4 g (10 mmol) Natriumhydroxid zugegeben. Es wurde 20 Stunden bei 25°C gerüht, abfiltriert und das Filtrat mit Methyl-tert.-butylether

7.61 (dd, 1H); 7.49 (d, 1H); 7.18 (t, 1H); 3.99 (s, 3H).

45 gewaschen. Die wäßrige Phase wurde mit konzentrierter Salzsäure auf pH 3 gestellt, abfiltriert und der Rückstand getrocknet. Man erhält 0,45 g eines farblosen Pulvers;

69

¹H-NMR (δ in ppm, d⁶-DMSO): 13.5 (br, 1H); 9.39 (d, 1H); 9.03 (d, 1H); 8.32 (d, 1H); 7.78 (dd, 1H); 7.62 (d, 1H); 7.60 (t, 1H).

Stufe d) 2-[(8-Difluormethoxychinolin-5-yl)carbonyl]-4,4,6,6-tetramethylcyclohexan-1,3,5-trion

0,4 g (1,7 mmol) 8-Difluormethoxy-5-chinolincarbonsäure wurden in 20 ml Acetonitril gelöst, 0,4 g (1,9 mmol) N,N-Dicyclohexylcarbodimid und 0,3 g (1,7 mmol) 2,2,4,4-Tetramethylcyclohexan-1,3,5
10 trion zugegeben und 20 Stunden bei 25°C gerührt. Dann wurden 0,4 g (4,0 mmol) Triethylamin und 2 Tropfen Trimethylsilylcyanid zugegeben und weitere 3 Stunden bei 30 - 35°C gerührt. Der Niederschlag wurde abfiltriert, das Filtrat eingeengt, 20 ml5-prozentige Kaliumcarbonatlösung zugegeben und mit Methyl-tert.-butylether gewaschen. Die wäßrige Phase wurde anschließend mit konzentrierter Salzsäure auf pH 3 gestellt und mit Essigsäureethylester extrahiert. Nach Entfernen des Lösungsmittels wurde an Kieselgel

chromatographiert (Eluent: Methylenchlord/Methanol). Man erhielt

20 ¹H-NMR (δin ppm, CDCl₃): 16.5 (br, 1H); 9.02 (d, 1H); 8.30 (d, 1H); 7.51 (m, 2H); 7.21 (d, 1H); 7.17 (t, 1H); 1.60 (s, 6H); 1.35 (s, 6H).

0,2 g eines farblosen Pulvers;

In den Tabellen 2 und 3 sind neben den veranstehend beschriebenen 25 Cyclohexanonchinolinoyl-Derivaten der Formel I weitere aufgeführt, die in analoger Weise oder auf an sich bekannte Art und Weise hergestellt wurden oder herstellbar sind:

30

35

~
Φ
Н
_
Φ
Д
Ø
_

Nr.	R1	R ²	R3	R5	(R ⁶) ₁	Fp. [°C] oder ¹ H-NMR [ppm]
2.1	Ŀı	Ħ	Ħ	ососень	4,4,6,6-(CH ₃) ₄ -5-oxo	178
2.2	Ĺ	н	н	осос (сн₃) з	4,4,6,6-(CH ₃) ₄ -5-oxo	9.22(d, 1H); 9.03 (d, 1H); 7.98 (q, 1H); 7.62 (q, 1H); 7.39 (t, 1H); 1.49 (s, 6H); 1.40 (s, 6H); 1.11 (s, 9H)
2.3	C1	Н	H	OCOC6H5	4,4,6,6-(CH ₃) ₄ -5-oxo	>200
2.4	C1	н	н	осос (сн³) з	4,4,6,6-(CH ₃) ₄ -5-oxo	9.20 (dd, 2H); 8.85 (q, 2H); 7.60 (q, 1H); 1.40 (s, 12H); 1.12 (s, 9H)
2.5	снз	н	н	OPS (OCH ₂ CH ₃) ₂	4,4,6,6-(CH ₃) ₄ -5-0xo	9.50 (d, 1H); 8.98 (d, 1H); 8.06 (d, 1H); 7.60 (m, 2H); 3.95 (m, 4H); 2.90 (s, 3H); 1.65 (s, 6H); 1.51 (s, 6H)
2.6	СН3	Н	н	осовснз	4,4,6,6-(CH ₃) ₄ -5-oxo	128

Nr.	R1	R2	R3	R5	(R6) ₁	Fp. [°C] oder ¹ H-NMR [ppm]
2.7	CH ₃	н	н	OCSN (CH ₃) ₂	4,4,6,6-(CH ₃) ₄ -5-oxo	163
2.8	СН3	н	н	осос ₆ н ₅	4,4,6,6-(CH ₃) ₄ -5-0xo	9.05 (d, 1H); 9.85 (d, 1H); 7.92 (d, 1H); 7.72 (d, 2H); 7.51 (d, 1H); 7.48 (t, 1H); 7.35 (q, 1H); 7.28 (t, 2H); 2.79 (s, 3H); 1.62 (s, 6H); 1.55 (s, 6H)
2.9	СН3	н	Ħ	OPO [N (CH ₃) ₂] ₂	4,4,6,6-(CH ₃) ₄ -5-0xo	9.41 (d, 1H); 8.95 (d, 1H); 8.07 (d, 1H); 7.58 (d, 1H); 7.50 (q, 1H); 2.88 (s, 3H); 2.45 (s, 6H); 2.42 (s, 6H); 1.65 (s, 6H); 1.48 (s, 6H)
2.10	СН3	H	H		4,4,6,6-(CH ₃) ₄ -5-0x0	Öl
2.11	СН3	Н	н	OCOCH (CH ₃) O (2 · CH ₃ · 4 · C1 · C ₆ H ₃)	4,4,6,6-(CH ₃) ₄ -5-oxo	Öı
2.12	СН3	н	н	осос (сн3) 3	4,4,6,6-(CH ₃) ₄ -5-oxo	9.20 (d, 1H); 8.85 (d, 1H); 7.80 (d, 1H); 7.51 (d, 1H); 7.48 (q, 1H); 2.85 (s, 3H); 1.55 (s, 6H); 1.50 (s, 6H); 1.08 (s, 9H)
2.13	ᅜ	Н	н	ococ (cH ₃) ₃	4,4,6-(CH ₃) ₃	Öl
2.14	C1	н	н	ососн2сн3	4,4,6,6-(CH ₃) ₄ -5-oxo	9.13 (d, 1H); 9.02 (d, 1H); 7.85 (s, 2H); 7.58 (q, 1H); 2.40 (q, 2H);1.60 (s, 6H); 1.50 (s, 6H); 1.05 (t, 3H)
2.15	দ	н	н	осовснз	4,4,6,6-(CH ₃) ₄ -5-(OH)	190-192
2.16	C1	H	H	осовснз	4,4,6,6-(CH ₃) ₄ -5-oxo	84

Nr.	R1	R2	R3	R5	(R6) ₁	Fp. [oC] oder 1H-NMR [ppm]
2.17	Eq	H	н	осовсиз	4,4,6,6-(CH ₃) ₄ -5-oxo	72
2.18	СН3	H	H	осн3	4,4,6,6-(CH ₃) ₄ -5-oxo	9.44 (d, 1H); 9.03 (d, 1H); 7.88 (d, 1H); 7.59 (m, 2H); 3.92 (s, 3H); 2.90 (s, 3H); 1.50 (s, 6H); 1.38 (s, 6H)
2.19	£4	I	н	оѕо₂сн₃	4,4,6,6-(CH ₃)4-5-(OH)	9.30 (d, 1H); 9.02 (d, 1H); 7.93 (q, 1H); 7.61 (q, 1H); 7.40 (q, 1H); 3.01 (s, 3H); 1.57 (s, 3H); 1.53 (s, 3H); 1.28 (s, 3H);
2.20	ᄕ	ж	н	осоосн2сн3	4,4,6,6-(CH ₃) ₄ -5- (OCOOCH ₂ CH ₃)	9.18 (d, 1H); 9.02 (s, 1H); 7.92 (q, 1H); 7.65 (q, 1H); 7.41 (q, 1H); 4.32 (q, 2H); 4.11 (q, 1H); 1,45 (s, 3H); 1.40 (s, 3H); 1.38 (s, 3H); 1.30 (s, 3H); 1.22 (s, 3H); 1.15 (s, 3H)
2.21	ដ	н	H	оснз	4,4,6,6-(CH ₃) ₄ -5-oxo	9.45 (d, 1H); 9.03 (d, 1H); 7.96 (q, 1H); 7.68 (q, 1H); (7.40 (t, 1H); 3.88 (s, 3H); 1.50 (s, 6H); 1.39 (s, 6H)
2.22	C1	Н	Н	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	180
2.23	F	н	н	c1	4,4,6,6-(CH ₃) ₄ -5-oxo	152
2.24	C1	Н	Н	S(4-CH3-C ₆ H ₄)	4,4,6,6-(CH ₃) ₄ -5-oxo	119
2.25	S (4-CH ₃ -C ₆ H ₄)	н	Н	S(4-CH ₃ -C ₆ H ₄)	4,4,6,6-(CH ₃) ₄ -5-oxo	132-135
2.26	C1	H	Н	c1	4,4,6,6-(CH ₃) ₄ -5-oxo	

Nr.	\mathbb{R}^1	R2	R3	R5	(R6) ₁	Fp. [oC] oder 1H-NMR [ppm]
2.27	O(tetra	Ħ	H	c1	4,4,6,6-(CH ₃) ₄ -5-oxo	9.65 (d, 1H); 9.05 (d, 1H); 8.83
	hydro-					(d, 1H); 7.66 (q, 1H); 6.95 (d,
	furan-3					1H); 5.23 (m, 1H); 4.21 (d, 2H);
	-y1)					4.05 (m, 2H); 2.39 (m, 2H); 1.62
						(s, 6H); 1.48 (s, 6H)
2.28	СН3	н	н	c1	4,4,6,6-(CH ₃) ₄ -5-oxo	194
2.29	Ēų	н	Ħ	C1	4,4,6·(CH ₃) ₃	Öl
2.30	СН3	Ħ	н	Br	4,4,6,6-(CH ₃) ₄ -5-oxo	Öl
2.31	CHF2	æ	H	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	9.40 (d, 1H); 9.05 (d, 1H); 8.05
			_			(d, 1H); 7.86 (t, 1H); 7.80 (d,
						1H); 7.65 (q, 1H); 1.59 (s, 6H);
						1.48 (s, 6H)
2.32	CF3	н	H	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	Ö1
2.33	CF_3	CH ₃	н	C1	5,5-(CH ₃) ₂	9.15 (d, 1H); 8.10 (d, 1H); 7.75
						(d, 1H); 7.52 (d, 1H); 3.02 (s,
						2H); 2.91 (s, 2H); 2.80 (s, 3H);
		·				1.20 (s, 6H)
2.34	СН3	H	н	N (CH ₃) OCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	Ö1
2.35	CH ₃	Ħ	H	SCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	9.50 (d, 1H); 9.02 (d, 1H); 7.80
		<u> </u>				(d, 1H); 7.50 (m, 3H); 2.90 (s,
						3H); 2.30 (s, 3H); 1.50 (s, 6H);
						1.35 (s, 3H); 1.25 (s, 3H)

R1 R2 R3		В3	1	R5	(R6) ₁	Fp. [°C] oder ¹ H-NMR [ppm]
Cl H H 1-pyrazolyl	H 1-pyra	1-pyra	1-pyrazolyl		4,4,6,6-(CH ₃) ₄ -5-oxo	9.30 (d, 1H); 9.05 (d, 1H); 7.80 (d, 1H); 7.75 (d, 1H); 7.61 (q, 1H); 7.52 (d, 1H); 7.40 (s, 1H);
						6.11 (s, 1H); 1.65 (s, 3H); 1.60 (s, 3H); 1.50 (s, 6H)
C1 H H N(CH ₃) OCH ₃	H N(CH ₃)	N(CH ₃)			4,4,6,6-(CH ₃) ₄ -5-oxo	190
CH ₃ H H 1-pyrolidinyl	H 1-pyro	1-pyro	1-pyrolidinyl		4,4,6,6-(CH ₃) ₄ -5-oxo	Ö1
CH ₃ H H 4-morpholinyl	н		4-morpholinyl		4,4,6,6-(CH ₃) ₄ -5-oxo	205
C1 H H 4-morpholinyl	H		4-morpholinyl		4,4,6,6-(CH ₃) ₄ -5-oxo	205
сн ₃ н н с1	н		C1		4,4,6,6-(CH ₃) ₄ -5-oxo	194
CH ₃ H H 1-pyrazolyl	H 1-pyra	1-pyra	1-pyrazolyl		4,4,6,6-(CH ₃) ₄ -5-oxo	150
CF ₃ H 4-morpholinyl	Ħ		4-morpholinyl		4,4,6,6-(CH ₃) ₄ -5-oxo	Öl
CHNOCH ₃ H H C1	H		C1		4,4,6,6-(CH ₃) ₄ -5-oxo	Öl
C1 H H SCON (CH ₃) ₂	H SCON(C	SCON (C	SCON (CH ₃) ₂		4,4,6,6-(CH ₃) ₄ -5-oxo	138
Cl H 4-oxo-1,4-dihydro- pyrid-1-yl	H 4-oxo pyrid	4-oxo pyrid	4-oxo-1,4-dihyo pyrid-1-yl	iro-	4,4,6,6-(CH ₃) ₄ -5-oxo	>210
F H H C1	Н		C1		4,6-(CH ₃) ₂ -4-SCH ₃	Öl
CH ₃ H H SCON(CH ₃) ₂	Ħ		SCON (CH ₃) ₂		4,4,6,6-(CH ₃) ₄ -5-oxo	166
CH ₃ H H OP (OCH ₂ CH ₃) ₂	н ор (осн	OP (OCH	OP (OCH2CH3) 2		4,4,6,6-(CH ₃) ₄ -5-oxo	9.65 (d, 1H); 8.97 (d, 1H); 7.79
						(d, 1H); 7.60 (m, 2H); 4.00 (m, 4H); 2.91 (s, 3H); 1.71 (s, 6H);
						1.51 (s, 6H)

Nr.	\mathbb{R}^1	R2	R3	R5	(R6) ₁	Fp. [oC] oder 1H-NMR [ppm]
2.50	оснз	H	H	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	9.65 (d, 1H); 9.01 (d, 1H); 7.83 (d, 1H); 7.65 (q, 1H); 7.02 (d, 1H); 4.18 (s, 3H); 1.65 (s, 6H); 1.55 (s, 6H)
2.51	fu .	Ħ	н	OCOS (CH ₂) ₇ CH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	9,20 ((d, 1H); 9,02 (d, 1H); 7,89 (q, 1H); 7,60 (q, 1H); 7,40 (t, 1H); 2,62 (t, 2H); 1,55 (s, 6H); 1,48 (s, 6H); 1,1-1,5 (m, 12H); 0,85 (t, 3H)
2.52	[Eq	ж	H	C1	4,6-(ethan-1,2-diyl) ¹⁾	9,55 (d, 1H); 9,02 (d, 1H); 7,78 (q, 1H); 7,65 (q, 1H); 7,40 (t, 1H); 3,24 (m, 1H); 3,17 (m, 1H); 2,41 (d, 1H); 1,8-2,4 (m, 5H)
2.53	SCH ₃	Ħ	н	осовснз	4,4,6,6-(CH ₃)4-5-oxo	147
2.54	년	н	Н	OCOSCH ₂ CH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	107
2.55	Br	Ħ	Н	OCOC (CH ₃) 3	4,4,6,6-(CH ₃) ₄ -5-oxo	134
2.56	Br	н	н	0CO (C ⁶ H ²)	4,4,6,6-(CH ₃) ₄ -5-oxo	228
2.57	CI	н	Н	Ή	4,4,6,6-(CH ₃) ₄ -5-oxo	181
2.58	Ħ	н	Н	so ₂ сн ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	206
2.59	ţ	H	н	SOCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	190
2.60	SCH ₂ F	н	#	[t.	4,4,6,6-(CH ₃) ₄ -5-oxo	9,50 (d, 1H); 9,00 (d, 1H); 7,81 (s, 2H); 7,65 (g, 1H); 6,01 (d, 2H); 1,60 (s, 6H); 1,51 (s, 6H)
2.61	स	H	Н	SC ₆ H ₅	4,4,6,6-(CH ₃) ₄ -5-oxo	65
2.62	F	H	н	SO ₂ C ₆ H ₅	4,4,6,6-(CH ₃) ₄ -5-oxo	111

Nr.	R1	R2	R3	R5	(R6) ₁	Fp. [°C] oder ¹ H-NMR [ppm]
2.63	Į.	Н	Н	scн ₃	4,4,6,6-(CH ₃) ₄ -5-0x0 143	143
2.64	.64 CHF2	н	Н	F	4,4,6,6-(CH ₃) ₄ -5-oxo 183	183
2.65	C1	CHF2	н	F	4,4,6,6-(CH ₃) ₄ -5-oxo	173
2.66	Ħ	н	н	ŢĦ	4,4,6,6-(CH ₃) ₄ -5-0x0 153	153

1) $R^4 = 4.0xo \cdot (bicyclo[3.2.1]oct - 2.en - 3.yl) carbonyl$

••
n
Φ
П
-
ø
Ā
ેત
E

1p

$\overline{}$	\neg	77	5		2.5	\neg
Fp. [°C] oder ¹ H-NMR [ppm]	156	4,4,6,6.(CH ₃) ₄ -5-oxo 9.00 (d, 1H); 8.09 (s, 1H); 7.82 (d, 1H); 7.72 (s, 1H); 7.68 (d, 1H); 7.47 (d, 1H); 7.35 (q, 1H); 2.95 (s, 3H); 1.55 (s, 6H); 1.30 (s, 6H)	9.15 (d, 1H); 8.32 (d, 1H); 7.82 (d, 1H); 7.60 (q, 1H); 7.45 (d, 1H); 4.05 (m, 2H); 3.68 (m, 4H); 3.35 (m, 1H); 3.25 (m, 1H); 1.30 (s, 6H); 1.22 (s, 6H)	75	9.02 (d, 1H); 8.42 (d, 1H); 7.80 (2d, 3H); 7.50 (q, 1H); 7.38 (d, 1H); 6.72 (d, 2H); 1.50 (s, 12H)	190
	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-0xo	4,4,6,6-(CH ₃)4-5-oxo	4.4,6,6.(CH ₃) ₄ -5-0x0 pyrid-1-y1	4,4,6,6-(CH ₃)4-5-oxo
R5	c1	1-(1,2,4-tri- azoly1)	4-morpholinyl	SCON (CH ₃) ₂	4.oxo.1,4.dihydro. pyrid.1.y1	N(CH ₃) ₂
_К 3	н	Ħ	Ħ	н	н	H
R ²	н	Ħ	Ħ	н	Ħ	Ħ
R^1	C1	CH ₃	C1	C1	IJ	C1
Nr.	3.1	3.2	3.3 8.	3.4	3.5	3.6 C1

Die Verbindungen der Formel I und deren landwirtschaftlich brauchbaren Salze eignen sich sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die herbiziden 5 Mittel, die Verbindungen der Formel I enthalten, bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen der Formel I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung 15 unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec.

- 20 rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis
- 25 guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot
- 30 esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum
- 35 tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.

Darüber hinaus können die Verbindungen der Formel I auch in Kul-40 turen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

Die Verbindungen der Formel I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt 45 versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln,

WO 00/14069 PCT/EP99/06322 79

Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der 5 erfindungsgemäßen Wirkstoffe gewährleisten.

Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflan-10 zenschutzmitteln übliche Hilfsmittel.

Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht:

Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie

15 Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol,

20 Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren

- 25 Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Cyclohexenonchinolinoyl-Derivate der Formel I als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden.
- 30 Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
- 35 Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta-
- 40 und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder
- 45 Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenoder

Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

- 5 Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
- Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate

 10 können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Dünge-
- 15 mittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
- 20 Die Konzentrationen der Verbindungen der Formel I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa von 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer
- 25 Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:

- I. 20 Gewichtsteile der Verbindung Nr. 2.2 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid,
- 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- II. 20 Gewichtsteile der Verbindung Nr. 2.4 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ein-

WO 00/14069 PCT/EP99/06322 81

gießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

- 5 III. 20 Gewichtsteile der Verbindung Nr. 2.16 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile der Verbindung Nr. 2.18 werden mit 3
 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
- V. 3 Gewichtsteile der Verbindung Nr. 2.22 werden mit
 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält
 25 auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.
- VI. 20 Gewichtsteile der Verbindung Nr. 2.46 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 30 8 Gewichtsteilen Fettalkoholpolyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

- VII. 1 Gewichtsteil der Verbindung Nr. 3.1 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.
- VIII. 1 Gewichtsteil der Verbindung Nr. 3.4 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol^R EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl) besteht. Man erhält ein stabiles Emulsionskonzentrat.

Die Applikation der Verbindungen der Formel I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei 5 welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, 10 lay-by).

Die Aufwandmengen an Verbindung der Formel I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0 vorzugsweise 0.01 bis 1.0 kg/ha aktive Substanz 15 (a.S.).

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Cyclohexenonchinolinoyl-Derivate
der Formel I mit zahlreichen Vertretern anderer herbizider oder
20 wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam
ausgebracht werden. Beispielsweise kommen als Mischungspartner
1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure
und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkansäuren und deren Derivate, Benzoesäure und deren
25 Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexandione, Hete-

- 25 Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexandione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF3-Phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexenonoximetherderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane,
- 30 Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenylessig-
- 35 säure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.

40

Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder

45 phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können

WO 00/14069 PCT/EP99/06322

83

auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Anwendungsbeispiele

5 Die herbizide Wirkung der Cyclohexenonchinolinoyl-Derivate der Formel I ließ sich durch die folgenden Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit 10 etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein vertei-

- 15 lender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt 20 wurde.
 - Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgier-
- 25 ten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0.25 bzw. 0.125 kg/ha a.S.
- 30 (aktive Substanz).

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen 35 gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der 40 oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

	Lateinischer Name	Deutscher Name	Englischer Name
	Abutilon theophrasti	Chinesischer Hanf	velvet leaf
5	Chenopodium album	Weißer Gänsefuß	lambsquarters
	Galium aparine	Klettenlabkraut	catchweed bedstraw
	Ipomoea spp.	Prunkwindearten	morningglory
10	Setaria faberi	Borstenhirse	giant foxtail
	Setaria viridis	Grüne Borstenhirse	green foxtail
	Solanum nigrum	Schwarzer Nacht- schatten	black nightshade

Bei Aufwandmengen von 0.25 bzw. 0.125 kg/ha a.S. zeigten die Verbindungen 2.2, 2.4 und 2.16 im Nachauflauf eine sehr gute Wirkung gegen Schadpflanzen wie Borstenhirse, grüne Borstenhirse und schwarzen Nachtschatten. Weiterhin bekämpfen die Verbindungen 2.2 und 2.4 chinesischen Hanf und Prunkwinden sehr gut. Verbindung 2.16 zeigt zudem hervorragende Wirkung gegenüber den Unkräutern weißer Gänsefuß und Klettenlabkraut.

Patentansprüche

Cyclohexenonchinolinoyl-Derivate der Formel I

10

5

$$\mathbb{R}^{4} \longrightarrow \mathbb{N} \mathbb{R}^{2}$$

$$\mathbb{R}^{1}$$

in der die Variablen folgende Bedeutungen haben:

15

 R^1 Wasserstoff, Nitro, Halogen, Cyano, C1-C6-Alkyl, C1-C6-Halogenalkyl, C1-C6-Alkoxyiminomethyl, $C_1-C_6-Alkoxy$, $C_1-C_6-Halogenalkoxy$, $C_1-C_6-Alkylthio$, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, 20 C_1-C_6 -Halogenalkylsulfinyl, C_1-C_6 -Alkylsulfonyl, C1-C6-Halogenalkylsulfonyl, Aminosulfonyl, $N-(C_1-C_6-Alkyl)$ -aminosulfonyl, $N, N-Di-(C_1-C_6-alkyl)$ -aminosulfonyl, $N-(C_1-C_6-alkyl-aminosulfonyl)$ sulfonyl)-amino, N- $(C_1-C_6-Halogenalkylsulfonyl)$ -25 amino, $N-(C_1-C_6-Alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino, N- $(C_1-C_6-Alky)-N-(C_1-C_6-Halogenalkyl$ sulfonyl) - amino, Phenoxy, Heterocycloyloxy, Phenylthio oder Heterocyclylthio, wobei die vier letztgenannten Reste partiell oder vollständig ha-30 logeniert sein können und/oder einen bis drei der

nachfolgend genannten Substituenten tragen können: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

35

 R^2 , R^3 Wasserstoff, C1-C6-Alkyl, C1-C6-Halogenalkyl oder Halogen;

 R^4

eine Verbindung IIa oder IIb

IIa

IIb

10 wobei

5

15

20

25

30

Halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , POR^8R^9 , OPR^8R^9 , OPR^8R^9 , $OPSR^8R^9$, $OPSR^9$,

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogen-alkyl, Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkyl-thio)-methyl, (C₁-C₆-Alkoxy)(C₁-C₆-alkylthio)-methyl, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkylcarbony

Alkoxycarbonyl oder C_1 - C_6 -Halogenalkoxycarbonyl;

oder

Rб

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- oder -S-(CH₂)_n-Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann:

Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxycarbonyl;

oder

zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine - $(CH_2)_p$ -Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/

WO 00/14069 PCT/EP99/06322

87 oder durch einen bis vier Reste aus folgender

Gruppe substituiert sein kann: Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Alkoxycarbonyl;

5

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine Methylidengruppe, die durch 10 einen bis zwei Reste aus folgender Gruppe substituiert sein kann: Halogen, Hydroxy, Formyl, Cyano, C1-C6-Alkyl, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Alkoxy$, $C_1-C_6-Halogen$ alkoxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio, 15 $C_1-C_6-Alkylsulfinyl$, $C_1-C_6-Halogenalkylsulfinyl$, C_1 - C_6 -Alkylsulfonyl oder C_1 - C_6 -Halogenalkylsulfonyl;

oder

20

30

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus;

25 oder

> zwei Reste R6, die an verschiedenen Kohlenstoffen gebunden sind, bilden gemeinsam eine - (CH₂)_n-Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Hydroxy oder C_1 - C_6 -Alkoxycarbonyl;

R⁷ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, 35 C3-C6-Alkinyl, C3-C6-Halogenalkinyl, C3-C6-Cycloalkyl, C1-C20-Alkylcarbonyl, C2-C6-Alkenylcarbonyl, C2-C6-Alkinylcarbonyl, C3-C6-Cycloalkylcarbonyl, $C_1-C_6-Alkoxycarbonyl, C_3-C_6-Alkenyloxycarbonyl,$ C₃-C₆-Alkinyloxycarbonyl, (C₁-C₂₀-Alkyl-40 thio) carbonyl, C₁-C₆-Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl, C₃-C₆-Alkinylaminocarbonyl, $N, N-Di-(C_1-C_6-alkyl)$ -aminocarbonyl, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl$, 45 $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_3-C_6-Alkenyl) - N-(C_1-C_6-alkoxy)-aminocarbonyl,$

 $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$,

		88
		Di- $(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-alkyl$ carbonyl- $C_1-C_6-alkyl$, $C_1-C_6-alkyl$, $N-(C_1-C_6-alkyl)$ -imino- $C_1-C_6-alkyl$ oder
5		N,N-Di-(C ₁ -C ₆ -alkylamino)-imino-C ₁ -C ₆ -alkyl, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tra- gen können:
10		Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylthio, Di-(C ₁ -C ₄ -alkyl)-amino, C ₁ -C ₄ -Alkylcarbonyl, C ₁ -C ₄ -Alkoxy-carbonyl, C ₁ -C ₄ -Alkoxy-C ₁ -C ₄ -alkoxycarbonyl, Di-(C ₁ -C ₄ -alkyl)-amino-C ₁ -C ₄ -alkoxycarbonyl, Hydroxycarbonyl, C ₁ -C ₄ -Alkylaminocarbonyl, Di-(C ₁ -C ₄ -alkyl)-aminocarbonyl, Aminocarbonyl,
15		C ₁ -C ₄ -Alkylcarbonyloxy oder C ₃ -C ₆ -Cycloalkyl;
		Phenyl, Heterocyclyl, Phenyl-C ₁ -C ₆ -alkyl, Heterocyclyl-C ₁ -C ₆ -alkyl, Phenylcarbonyl-C ₁ -C ₆ -alkyl, Heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, Phenylcarbonyl, Heterocyclylcarbonyl
20		rocyclylcarbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxychiocarbonyl, Phenoxy-C ₁ -C ₆ -alkylcarbonyl, Heterocyclyoxy-C ₁ -C ₆ -alkylcarbonyl, Phenylaminocarbonyl, N-(C ₁ -C ₆ -Alkyl)-N-(phenyl)-aminocarbonyl, Heterocy-
25		clylaminocarbonyl, N-(C ₁ -C ₆ -Alkyl)-N-(heterocyclyl)-aminocarbonyl, Phenyl-C ₂ -C ₆ -alkenylcarbonyl oder Heterocyclyl-C ₂ -C ₆ -alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 20 letztgenannten Substituenten partiell oder vollständig
30		halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Halogenalkyl, C ₁ -C ₄ -Alkoxy oder C ₁ -C ₄ -Halogenalkoxy;
35	R ⁸ , R ⁹	C ₁ -C ₆ -Alkyl, C ₃ -C ₆ -Alkenyl, C ₃ -C ₆ -Halogenalkenyl, C ₃ -C ₆ -Alkinyl, C ₃ -C ₆ -Halogenalkinyl, C ₃ -C ₆ -Cycloalkyl, Hydroxy, C ₁ -C ₆ -Alkoxy, Amino, C ₁ -C ₆ -Alkylamino, C ₁ -C ₆ -Halogenalkylamino, Di-(C ₁ -C ₆ -Alkylamino, C ₁ -C ₆ -Halogenalkylamino, Di-(C ₁ -C ₆ -C ₆ -Alkylamino, Di-(C ₁ -C ₆ -C ₆ -Alkylamino, Di-(C ₁ -C ₆
40		alkyl)amino oder Di-(C ₁ -C ₆ -Halogenalkyl)amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:
45		Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di- $(C_1$ - C_4 -alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxy-carbonyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkoxycarbonyl, Di- $(C_1$ - C_4 -alkyl)-amino- C_1 - C_4 -alkoxycarbonyl,

			89
			Hydroxycarbonyl, C_1-C_4 -Alkylaminocarbonyl,
			$Di-(C_1-C_4-alkyl)-aminocarbonyl$, Aminocarbonyl,
			C ₁ -C ₄ -Alkylcarbonyloxy oder C ₃ -C ₆ -Cycloalkyl;
	5		Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztge-
	10		nannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl,
			C ₁ -C ₄ -Alkoxy oder C ₁ -C ₄ -Halogenalkoxy;
	15	R ¹⁰	C ₁ -C ₆ -Alkyl, C ₃ -C ₆ -Alkenyl, C ₃ -C ₆ -Halogenalkenyl, C ₃ -C ₆ -Alkinyl, C ₃ -C ₆ -Halogenalkinyl, C ₃ -C ₆ -Cycloalkyl, Hydroxy, C ₁ -C ₆ -Alkoxy, C ₃ -C ₆ -Alkenyloxy, C ₃ -C ₆ -Alkinyloxy, Amino, C ₁ -C ₆ -Alkylamino,
	20		Di-(C ₁ -C ₆ -Alkyl)-amino oder C ₁ -C ₆ -Alkylcarbonyl- amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen bis drei Reste der fol- genden Gruppe tragen können:
•	25		Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylthio, Di-(C ₁ -C ₄ -alkyl)-amino, C ₁ -C ₄ -Alkylcarbonyl, C ₁ -C ₄ -Alkoxycarbonyl, C ₁ -C ₄ -Alkoxy-C ₁ -C ₄ -alkoxy- carbonyl, Di-(C ₁ -C ₄ -alkyl)-amino-C ₁ -C ₄ -alkoxy- carbonyl, Hydroxycarbonyl, C ₁ -C ₄ -Alkylamino- carbonyl, Di-(C ₁ -C ₄ -alkyl)-aminocarbonyl, Amino- carbonyl, C ₁ -C ₄ -Alkylcarbonyloxy oder C ₃ -C ₆ -Cyclo-
	30		alkyl;
	35		Phenyl, Heterocyclyl, Phenyl-C ₁ -C ₆ -alkyl oder Heterocyclyl-C ₁ -C ₆ -alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein
			kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Halogenalkyl, C ₁ -C ₄ -Alkoxy oder C ₁ -C ₄ -Halogenalkoxy;
	40	R ¹¹ , R ¹²	C ₁ -C ₆ -Alkyl, C ₃ -C ₆ -Alkenyl, C ₃ -C ₆ -Alkinyl oder C ₁ -C ₆ -Alkylcarbonyl;
	4 E	1	0 bis 6;
	45		

2 bis 4; m

- n 1 bis 5;
- p 2 bis 5;
- 5 sowie deren landwirtschaftlich brauchbaren Salze.
 - Cyclohexenonchinolinoyl-Derivate der Formel I, gemäß Anspruch
 wobei
- 10 R¹ Halogen, C¹-Cô-Alkyl, C¹-Cô-Halogenalkyl, C¹-Cô-Alkoxy, C¹-Cô-Alkylthio, Heterocyclyloxy oder Phenylthio, wobei die zwei letztgenannten Reste partiell oder vollständig halogeniert sein können und/oder einen bis drei der nachfolgend genannten Substituenten tragen können:
 Nitro, Cyano, C¹-C⁴-Alkyl, C¹-C⁴-Halogenalkyl, C¹-C⁴-Alkoxy oder C¹-C⁴-Halogenalkoxy;
- R⁵ Halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

 Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;
- 25 bedeuten.
 - Cyclohexenonchinolinoyl-Derivate der Formel I, gemäß den Ansprüchen 1 oder 2, wobei
- R⁵ Halogen, OR⁷, NR¹⁰R¹¹ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
 Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

bedeutet.

- 4. Cyclohexenonchinolinoyl-Derivate der Formel I, gemäß den Ansprüchen 1 bis 3, wobei
- R⁷ C₁-C₆-Alkyl, C₁-C₂₀-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, (C₁-C₂₀-Alkylthio)carbonyl, N,N-Di(C₁-C₆-alkyl)amino-carbonyl, Phenyl, Phenylcarbonyl oder Pheno-xy-C₁-C₆-alkylcarbonyl, wobei der Phenylrest der drei letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

R¹⁰ C₁-C₆-Alkyl oder C₁-C₆-Alkoxy;

5

 R^{11} C_1 - C_6 -Alkyl;

bedeuten.

10 5. Cyclohexenonchinolinoyl-Derivate der Formel I, gemäß den Ansprüchen 1 bis 4, wobei

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl, (C₁-C₆-Alkoxy)(C₁-C₆-alkylthio)-methyl, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy,
C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl oder
C₁-C₆-Halogenalkoxycarbonyl;

bedeutet

25

30

oder

zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-O-(CH_2)_n-O-(CH_2)_n-CETE,$ die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl oder C_1-C_4 -Alkoxycarbonyl;

35

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden eine - (CH₂)_p-Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/oder durch einen bis vier Reste aus folgender Gruppe substituiert sein kann:

Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxycarbonyl;

45

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus.

5 6. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1 bis 5 mit R^5 = Halogen, dadurch gekennzeichnet, daß man ein Cyclohexandion-Derivat der Formel III,

10

$$(R^6)_1 \xrightarrow{\bigcirc Q} Q \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$

15

wobei die Variablen R^1 bis R^3 , R^6 und 1 die in den Ansprüchen 1 bis 5 genannte Bedeutung haben, mit einem Halogenierungsmittel umsetzt.

20

7. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1 bis 5 mit $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ oder $OPSR^8R^9$ dadurch gekennzeichnet, daß man ein Cyclohexandion-Derivat der Formel III,

25

$$(\mathbb{R}^6)_1 \xrightarrow{\mathbb{Q}^3} \mathbb{R}^2$$
III

30

wobei die Variablen R^1 bis R^3 , R^6 und 1 die in den Ansprüchen 1 bis 5 genannte Bedeutung haben, mit einer Verbindung der Formel IV α , IV β , IV γ , IV δ oder IV ϵ ,

40

35

$$L^1-R^7$$
 $L^1-SO_2R^8$ $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IVa) (IVb) (IVb)

wobei die Variablen R⁷ bis R⁹ die in den Ansprüchen 1 bis 5 genannte Bedeutung haben und L¹ für eine nucleophil verdrängbare Abgangsgruppe steht, umsetzt.

8. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1 bis 5 mit $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-gebundenes Heterocyclyl oder O(N-gebundenes Heterocyclyl), dadurch gekennzeichnet, daß man eine Verbindung der Formel I α (\equiv I mit $R^5 = Halogen$, OSO_2R^8),

10
$$(R^6)_1$$
 R^5 R^2 R^6 R^6

I mit R⁵ = Halogen oder OSO₂R⁸

15

5

wobei die Variablen R^1 bis R^3 , R^6 und die in den Ansprüchen 1 bis 5 genannte Bedeutung haben, mit einer Verbindung der Formel V α , V β , V γ , V δ , V ϵ , V η oder V ϑ ,

20

	HOR7	HSR ⁷	HPOR ⁸ R ⁹	HNR ¹⁰ R ¹¹	HONR ¹¹ R ¹²
	(Va)	(Vβ)	(Vγ)	(νδ)	(VE)
25	•	N-gebunde terocycly		H(ON-gebo Heterocyc	
		(∇η)		(VV)	

wobei die Variablen R⁷ bis R¹² die in den Ansprüchen 1 bis 5 genannte Bedeutung haben, gegebenenfalls in Gegenwart einer Base, umsetzt.

9. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1, 2 oder 5 mit $R^5 = SOR^8$, SO_2R^8 , dadurch gekennzeichnet, daß man eine Verbindung der Formel I β (\equiv I mit $R^5 = SR^8$),

5
$$(R^6)_1$$
 R^5 R^1 R^2 R^3 R^2 R^3 R^3 R^4 R^5 R^5

I mit $R^5 = SR^8$

- wobei die Variablen R¹ bis R⁸ und 1 die in den Ansprüchen 1, 2 oder 5 genannte Bedeutung haben, mit einem Oxidationsmittel umsetzt.
- 10. Mittel, enthaltend eine herbizid wirksame Menge mindestens eines Cyclohexenonchinolinoyl-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5, und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.
- 11. Verfahren zur Herstellung von Mitteln gemäß Anspruch 10, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines Cyclohexenonchinolinoyl-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel mischt.
- 12. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines Cyclohexenonchinolinoyl-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5, auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.
- 35 13. Verwendung von Cyclohexenonchinolinoyl-Derivaten der Formel I oder deren landwirtschaftlich brauchbaren Salze gemäß den Ansprüchen 1 bis 5 als Herbizide.

INTER TIONAL SEARCH REPORT

trv. stional Application No PCT/EP 99/06322

A C 486	MECATION OF OUR FOR MATERIA			21 337 66622
ÎPC 7	SECUTION OF SUBJECT MATTER C07D215/18 A01N43/42 C07D2 C07D401/08 C07D401/06 C07F9	215/14 CO7 0/60	D215/36	C07D405/12
According	to international Patent Classification (IPC) or to both national cla	ssification and IPC		
	S SEARCHED			
IPC /	ocumentation searched (classification system followed by class CO7D A01N CO7F			
	ation searched other than minimum documentation to the extent (
Electronic o	data base consulted during the international search (name of dat	ta bese and, where p	ractical, search tr	erms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of th	e relevant passages		Relevant to claim No.
A	WO 98 12180 A (BASF AG) 26 March 1998 (1998-03-26) cited in the application claims 1,16			1,10
A	EP 0 283 261 A (IMPERIAL CHEMIC INDUSTRIES PLC) 21 September 1988 (1988-09-21) cited in the application claims	CAL		1,10
Furth	er documents are listed in the continuation of box C.	X Patient fo	emily members a	re listed in annex.
	egories of cited documents :	T' later document	x published after	the international filing date lict with the application but
conside "E" earlier de filing da "L" documen which is citation "O" documer other m "P" documen	it which may throw doubts on priority claim(s) or crited to establish the publication date of another or other special reason (as specified) at referring to an oral disclosure, use, exhibition or	"X" document of p cannot be co involve an im "Y" document of p cannot be co document is	particular relevant maidered novel of ventitive step when particular relevant maidered to involve combined with on combined with on combination bein	the or theory underlying the set the claimed invention or cannot be considered to a the document is taken alone set the claimed invention are an inventive step when the set or more other such document to a person sidiled
Date of the ac	ctual completion of the international search			onal search report
20	December 1999	11/01	1/2000	
Name and ma	alling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+51-70) 340-3018	Authorized off	_{Noer} Bijlen. H	***************************************

Information on patent family members

tr. ational Application No PCT/EP 99/06322

Patent document cheed in search report Publication date		5						
AU 4383397 A 14-04-1998 EP 0931070 A 28-07-1999 PL 332212 A 30-08-1999 EP 283261 A 21-09-1988 AT 110067 T 15-09-1994 AU 603648 B 22-11-1990 AU 1311388 A 22-09-1988 AU 1328088 A 24-11-1988 CA 1340284 A 22-12-1998 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 US 53988 A 28-02-1990		Patent document cited in search repor	t	Publication date				
EP 0931070 A 28-07-1999 PL 332212 A 30-08-1999 EP 283261 A 21-09-1988 AT 110067 T 15-09-1994 AU 603648 B 22-11-1990 AU 1311388 A 22-09-1988 AU 1328088 A 24-11-1988 CA 1340284 A 22-12-1998 DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 595839 A 28-09-1999 US 4912262 A 27-03-1990 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990		WO 9812180	A	26-03-1998				
PL 332212 A 30-08-1999 EP 283261 A 21-09-1988 AT 110067 T 15-09-1994 AU 603648 B 22-11-1990 AU 1311388 A 22-09-1988 AU 1328088 A 24-11-1988 CA 1340284 A 22-12-1998 DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	1							
EP 283261 A 21-09-1988 AT 110067 T 15-09-1994 AU 603648 B 22-11-1990 AU 1311388 A 22-09-1988 AU 1328088 A 24-11-1988 CA 1340284 A 22-12-1998 DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 63264542 A 01-11-1988 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990								
AU 603648 B 22-11-1990 AU 1311388 A 22-09-1988 AU 1328088 A 24-11-1998 CA 1340284 A 22-12-1998 DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990					PL	332212 A	30-08-1999	
AU 1311388 A 22-09-1988 AU 1328088 A 24-11-1988 CA 1340284 A 22-12-1998 DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1989 JP 63264542 A 01-11-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5098464 A 24-03-1992 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990		EP 283261	A	21-09-1988		110067 T	15-09-1994	
AU 1328088 A 24-11-1988 CA 1340284 A 22-12-1998 DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990						603648 B	22-11-1990	
CA 1340284 A 22-12-1998 DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							22-09-1988	
DE 3851073 D 22-09-1994 DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1989 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	1						24-11-1988	
DE 3851073 T 02-03-1995 EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1989 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990						1340284 A	22-12-1998	
EP 0283152 A 21-09-1988 ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1989 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	1					3851073 D	22-09-1994	
ES 2058257 T 01-11-1994 HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							02-03-1995	
HU 46881 A 28-12-1988 JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							21-09-1988	
JP 63264542 A 01-11-1988 JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	1						01-11-1994	
JP 1006256 A 10-01-1989 JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							28-12-1988	
JP 2579663 B 05-02-1997 US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	i						01-11-1988	
US 5958839 A 28-09-1999 US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	1					1006256 A	10-01-1989	
US 5426091 A 20-06-1995 US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							05 - 02-1997	
US 4912262 A 27-03-1990 US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	l						28-09-1999	
US 5563115 A 08-10-1996 US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	l						20-06-1995	
US 5041681 A 20-08-1991 US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							27-03-1990	
US 5098464 A 24-03-1992 US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							08 - 10-1996	
US 5744610 A 28-04-1998 US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990							20-08-1991	
US 5210312 A 11-05-1993 US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	l					5098464 A	24-03-1992	
US 5250501 A 05-10-1993 YU 53988 A 28-02-1990	l						28-04-1998	
YU 53988 A 28-02-1990							11-05-1993	
	j						05-10-1993	
YU 165289 A 31-12-1990							28-02-1990	
					YU	165289 A	31-12-1990	

Into Vionales Aldenzeichen
PCT/EP 99/06322

ÎPK 7	C07D215/18 A01N43/42 C07D215 C07D401/08 C07D401/06 C07F9/6	/14 C07D215/36 0	C07D405/12			
Nach der In	nternationalen Patentidaasifikation (IPK) oder nach der nationalen Ka	assifikation und der IPK				
	RCHIERTE GEBIETE					
IPK 7	rter Mindestprütstoff (Klassifikationssystem und Klassifikationssymb CO7D A01N C07F					
	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s					
Waller R. C.	er Internationalen Recherche konsuttierte elektronische Datenbank (i	Name der Datenbank und ews. ven	wendete Suchbegriffe)			
C. ALS WE	ESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	be der in Betracht kommenden Teile	Betr. Anapruch Nr.			
A	WO 98 12180 A (BASF AG) 26. März 1998 (1998–03–26) in der Anmeldung erwähnt		1,10			
	Ansprüche 1,16					
A	EP 0 283 261 A (IMPERIAL CHEMICA INDUSTRIES PLC) 21. September 1988 (1988-09-21)	L	1,10			
	in der Anmeldung erwähnt Ansprüche					
	ere Veröffentlichungen alnd der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfami				
"A" Veröfter	o Kategorien von angegebenen Veröffentlichungen : ntlichung, die den aligemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist	oder dem Prioritätsdatum verö Anmeidung nicht kollidiert, son	ach dem internationalen Anmeidedatum Virentlicht worden ist und mit der ndem nur zum Veratändnis des der			
"E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-						
scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer enfinderischer Tätigkeit beruhend betrachtet werden anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf enfinderischer Tätigkeit beruhend betrachtet						
ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Berutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Armeidedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "a" Veröffentlichung, die Mitglied derselben Patentfamilie ist						
	Abechlusses der Internationalen Recherche	Absendedatum des Internation				
20	O. Dezember 1999	11/01/2000				
Name und P	Postanschrift der Internationalen Recherchenbehörde Europälaches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk	Bevolimächtigter Bedlensteter				
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Van Bijlen, H	l			

Angaben zu Veröffentlich... "Jen, die zur seiben Patentfamilie gehören

			101/21 00/00022		
im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung		
WO 9812180 A	26-03-1998	DE 19638486 A	26-03-1998		
		AU 4383397 A	14-04-1998		
1		EP 0931070 A	28-07-1999		
		PL 332212 A	30-08-1999		
EP 283261 A	21-09-1988	AT 110067 T	15-09-1994		
		AU 603648 B	22-11-1990		
		AU 1311388 A	22-09-1988		
		AU 1328088 A	24-11-1988		
		CA 1340284 A	22-12-1998		
		DE 3851073 D	22-09-1994		
i		DE 3851073 T	02-03-1995		
		EP 0283152 A	21-09-1988		
		ES 2058257 T	01-11-1994		
		HU 46881 A	28-12-1988		
ł		JP 63264542 A	01-11-1988		
İ		JP 1006256 A	10-01-1989		
		JP 2579663 B	05-02-1997		
		US 5958839 A	28-09-1999		
		US 5426091 A	20-06-1995		
		US 4912262 A	27-03-1990		
		US 5563115 A	08-10-1996		
		US 5041681 A	20-08-1991		
		US 5098464 A	2 4- 03-1992		
		US 5744610 A	28-04-1998		
		US 5210312 A	11-05-1993		
		US 5250501 A	05-10-1993		
		YU 53988 A	28-02-1990		
		YU 165289 A	31-12-1990		