L'M-1 downing

One-sided alternative: 4, 82>62 Apreliative T> 4,: 52 637 - Pepul when T < , Xxx, 1-8 Critical point for the level α test:

Two-sided alternative:

C & to presentile of Kny dist. 4, 67 60: Right shen This 1-42 or TY Xh, 42

• Chi-square test

gowss (1-x, h-1).

なんかり

(x) x

p-value:

reject when p-value computing p-value $\frac{P\left[\sum_{n'} \frac{\chi^{n}}{N} + \sum_{n'} \frac{\pi n}{N}\right]}{1 - Pen'sg(\pi n + N)}$ 2 min {P[22,4 > TOB], P[22,4 > TOB]}

-> Perced as in Detail to compute oritical polar and 10 8x/8x = 5x - Fm-1, n-1 know the is fore. to the first of the first Toking Hypretures on ratio of two wormed variances Data: You - M ~ Firt, nt H: one of the threety possibilities. The / WIN ~ K muterally Indy. (my) Six X~ N[Mx, or] Ho: Ox 1 or For stanistic. the s

Chi-square tests [wappy 10]

Chi-square Goodness of Fit Test

Set up: Count data on a categorical variable.

the ordered (ASSWARTISANCE • Observed data: O_i , i = 1, ..., k, where $O_i = \#$ of or graditative. • There are k categories, labeled as $i = 1, \ldots, k$.

observations in the i-th category.

Of is the total number of charmatical papers (p, k). • $n = \sum_{i=1}^{k} O_i$ is the total number of observations.

Hypotheses: H_0 : The data follow a given model, versus, H_1 : The data don't follow the given model.

- Let $p_i = \text{proportion of observations in the population that}$ fall in the i-th category, $i = 1, \ldots, k$. We can also think of p_i as the probability that a randomly selected observation from the population falls in the *i*-th category. • $H_0: p_i = (p_{i,0})$ = 1,..., k, where $p_{i,0}$ are known.
- proportions that add up to 1. [it, all the cell pros, are property
 - Model is completely known under H_0 .

Case 2: More than two categories Ho: P. = P.O., PL = P.O = 1 - P.O

"success" and the other as to interpret to interpret to interpret to interpret to interpret in and will proportions. Nothing how here as we can care as

Basic idea: Compare O_i 's with E_i 's — counts expected assuming H_0 is true — using a chi-square statistic

$$\chi^2 = \sum_{i=1}^k (O_i - E_i)^2 / E_i$$

• Large χ^2 : Large Lift. In the and upp, counts,

Reject H_0 when χ^{μ} is lumple, ξ_E in ξ_E in

• Rule of thumb: All $E_i \geq 5$. Collapse adjacent categories if this is not the case. Ex: Suppose 60 independent rolls of a die lead to the following

category		2	ಣ	4	ಬ	9	total
observed count (O_i)	7	9	17	16	∞	6	09
expected count (E_i)	0/	10	0 /	01	0/	0)	09

appropriate test of hypothesis at 5% level of significance. Is the die fair? Answer this question by performing an

Ho: By is fath,
$$P_{i,0} = \frac{1}{6}$$
, $P_{i,1,1} - P_{i,6}$.

H_i. Whe is not fair, $P_{i,e}$, at least one pass, is $\frac{1}{6}$.

E_i = $nP_{i,0} = \frac{1}{160}(6)(4) = 10$.

E_i = $nP_{i,0} = \frac{1}{160}(6)(4) = 10$.

Proby = $\frac{(4-10)}{10} + \frac{(6-10)}{10} + \cdots + \frac{(9-10)}{10} = 1$.

Proby = $\frac{(4-10)}{10} + \frac{(6-10)}{10} + \cdots + \frac{(9-10)}{10} = 1$.

Proby = $\frac{(4-10)}{10} + \frac{(6-10)}{10} + \cdots + \frac{(9-10)}{10} = 1$.

Proby = $\frac{(4-10)}{10} + \frac{(6-10)}{10} + \cdots + \frac{(9-10)}{10} = 1$.

R code:

> x < -c(4, 6, 17, 16, 8, 9)

> sum(x)

[1] 60

> sum($(x-10)^2/10$) [1] $(14.2) \rightarrow k m_k$

> 1-pchisq(14.2, 5) [1](0.01438768)