Universidade Federal de Sergipe

Disciplina: Banco de Dados I (COMP0455)

Alunos:

YUMING RUAN
VICTOR MATOS DOS SANTOS LIMA
VINICIUS BISPO DE JESUS
JOAQUIM LUNA MENEZES NETO

Professor: ANDRÉ BRITTO DE CARVALHO

1.Descrição:

A API da concessionária tem como objetivo gerenciar informações relacionadas a compra e venda de automóveis, permitindo o controle do estoque e a gestão de clientes e funcionários. Os usuários envolvidos no sistema são clientes e funcionários, cada um com suas respectivas informações armazenadas no banco de dados. As principais funcionalidades do sistema incluem o cadastro de novos clientes e funcionários, a gestão de estoque de veículos, o registro de vendas e compras, serviços relacionados de veículos além do controle de pagamentos. Através dessas funcionalidades, é possível otimizar a gestão da concessionária e aumentar a eficiência das operações comerciais.

2.Tecnologia Utilizadas

Ferramentas	Descrição
Sistema Operacional	Windows 10 ou superior, Linux
Servidor Web	Apache 2.4
PHP	PHP 8.0 ou superior
Laravel	Framework de aplicação Web em PHP,Laravel 9.0 ou superior
Banco de Dados	MySQL 5.7 ou superior
Composer	Gerenciador de dependências de projetos em PHP
git	Sistema de controle de versão distribuído
IDE	Visual Studio Code
Github	Plataforma de hospedagem de repositórios
AWS Academy	Plataforma de serviço em nuvem
Swagger	Ferramentas para documentação de APIs REST
Postman / Insomnia	Ferramentas de teste de API

MySQL Workbench	Ferramenta gráfica de modelagem de dados e administração de banco de dados MySQL
brModelo	Ferramenta de modelagem de dados

3. Decisões de mapeamento

Ao modelar um banco de dados, é comum utilizar diversas técnicas de mapeamento para representar os relacionamentos entre as tabelas. Uma dessas técnicas é a Generalização/Especialização, que é utilizada para representar entidades que possuem atributos em comum, mas também possuem características distintas. No exemplo dado, a entidade "Usuário" é generalizada em "Funcionário" e "Cliente", que possuem atributos em comum como nome e endereço, mas também possuem características distintas como salário e CPF para funcionários e número de telefone e histórico de compras para clientes.

Já o relacionamento n-ário em solicitação é utilizado quando existe uma relação entre várias entidades diferentes. No exemplo dado, a tabela "Solicitação" possui relacionamento n-ário com as tabelas "Veículo", "Funcionário", "Cliente" e "Serviço", representando que uma solicitação pode ser feita por um cliente, com a ajuda de um funcionário, e pode incluir vários produtos.

Os relacionamentos binários N:N são utilizados para representar uma relação de muitos para muitos entre duas entidades diferentes. No exemplo dado, as tabelas "Funcionário" e "Solicitação" possuem um relacionamento N:N, o que significa que um funcionário pode estar associado a várias solicitações e uma solicitação pode estar associada a vários funcionários.

Já os relacionamentos binários 1:1 são utilizados para representar uma relação de um para um entre duas entidades diferentes. No exemplo dado, as tabelas "Pagamento" e "Venda" possuem um relacionamento 1:1, o que significa que cada pagamento está associado a uma única venda e cada venda está associada a um único pagamento. Para representar esse relacionamento, é escolhida uma das tabelas para receber a chave estrangeira e a outra tabela é referenciada através dessa chave.

Por fim, os relacionamentos binários 1:N são utilizados para representar uma relação de um para muitos entre duas entidades diferentes. No exemplo dado, a tabela "Cliente" possui um relacionamento 1:N com a tabela "Veículo", o que significa que um cliente pode possuir vários veículos. Para representar esse relacionamento, a tabela "Veículo" é referenciada através da chave primária da tabela "Cliente".

4. Diagrama de Entidade Relacional - Modelo Conceitual

5. Diagrama de Entidade Relacional - Modelo Lógica


```
CREATE SCHEMA concessionaria;
CREATE TABLE concessionaria.usuario (
      cpf INT,
  nome VARCHAR(45) NOT NULL,
  sobrenome VARCHAR(45) NOT NULL,
  sexo CHAR(1),
  email VARCHAR(50) NOT NULL UNIQUE,
  senha VARCHAR(45) NOT NULL,
  telefone VARCHAR(11),
  endereco VARCHAR(50),
  data_nascimento DATE NOT NULL,
  CONSTRAINT pk_cpf PRIMARY KEY(cpf)
);
drop table concessionaria.usuario;
SELECT * FROM concessionaria.usuario;
INSERT INTO concessionaria.usuario(cpf, nome, sobrenome, sexo, email, senha,
telefone, endereco, data_nascimento) VALUES(1234, "Joaquim", "Luna", 'M',
'joca@gmail.com', '1234', NULL, NULL, "2001-05-07");
INSERT INTO concessionaria.usuario(cpf, nome, sobrenome, sexo, email, senha,
telefone, endereco, data_nascimento) VALUES(112, "Tadeu", "Santana", 'M',
'flut@hotmail.com', '43215', NULL, NULL, "1999-01-09");
INSERT INTO concessionaria.usuario(cpf, nome, sobrenome, sexo, email, senha,
telefone, endereco, data_nascimento) VALUES(983, "Fernando", "Clovis", 'M',
'tadeu@yahoo.com', '12345678', NULL, NULL, "2003-12-25");
INSERT INTO concessionaria.usuario(cpf, nome, sobrenome, sexo, email, senha,
telefone, endereco, data_nascimento) VALUES(999, "Maria", "Adilsa", 'F',
'mariaadil.com', '12345678', NULL, NULL, "1950-06-19");
CREATE TABLE concessionaria.cliente (
      id_cliente INT NOT NULL AUTO_INCREMENT,
  cpf INT NOT NULL,
  CONSTRAINT pk_cliente PRIMARY KEY(id_cliente),
  CONSTRAINT fk_usuario_cliente FOREIGN KEY(cpf) REFERENCES
concessionaria.usuario(cpf) ON DELETE SET NULL ON UPDATE CASCADE
);
drop table concessionaria.cliente;
SELECT * FROM concessionaria.cliente;
INSERT INTO concessionaria.cliente(cpf) VALUES(123);
INSERT INTO concessionaria.cliente(cpf) VALUES(112);
INSERT INTO concessionaria.cliente(cpf) VALUES(983);
```

```
CREATE TABLE concessionaria.funcionario(
      matricula INT,
  salario FLOAT,
  cargo VARCHAR(50),
  cpf INT,
  CONSTRAINT pk matricula PRIMARY KEY(matricula),
  CONSTRAINT fk_usuario_funcionario FOREIGN KEY (cpf) REFERENCES
concessionaria.usuario(cpf) ON DELETE SET NULL ON UPDATE CASCADE
drop table concessionaria.funcionario;
SELECT * FROM concessionaria.funcionario;
INSERT INTO concessionaria.funcionario(matricula, salario, cargo, cpf) VALUES(123,
1119.56, "Gerente", 999);
CREATE TABLE concessionaria.marca(
      id_marca INT NOT NULL,
  nome VARCHAR(45) UNIQUE,
  CONSTRAINT pk_marca PRIMARY KEY(id_marca)
);
drop table concessionaria.marca;
SELECT * FROM concessionaria.marca;
INSERT INTO concessionaria.marca(id_marca, nome) VALUES(1, "Ferrari");
INSERT INTO concessionaria.marca(id_marca, nome) VALUES(2, "Lamborghini");
INSERT INTO concessionaria.marca(id_marca, nome) VALUES(3, "Volkswagem");
INSERT INTO concessionaria.marca(id marca, nome) VALUES(4, "Chevrolet");
CREATE TABLE concessionaria.modelo(
      id_modelo INT NOT NULL,
  ano INT.
  versao VARCHAR(45) NOT NULL,
  peso FLOAT.
  cambio VARCHAR(20),
  potencia_motor VARCHAR(10),
  motor VARCHAR(3),
  preco FLOAT,
  ipva FLOAT,
  id marca INT.
  CONSTRAINT pk_modelo PRIMARY KEY (id_modelo),
  CONSTRAINT fk_marca_modelo FOREIGN KEY(id_marca) REFERENCES
concessionaria.marca(id_marca)
drop table concessionaria.modelo;
SELECT * FROM concessionaria.modelo;
-- Ferrari
```

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(1, 2022, "Roma", 1577, "Automatico", "620cv", "V8", 3206558, 128262, 1);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(2, 2022, "296 GTB", 1540, "Automatico", "830cv", "V6", 4800000, 188471, 1);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(3, 2022, "SF90 Stradale", 1675, "Automatico", "780cv", "V8", 6561850, 285945, 1);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(4, 2022, "SF90 Spider", 1670, "Automatico", "1000cv", "V8", 7622701, 301379, 1);

-- Lamborghini

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(5, 2022, "Aventador SVJ", 1625, "Automatico", "759cv", "V12", 8200000, 344400, 2);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(6, 2010, "Gallardo", 1247, "Automatico", "560cv", "V10", 1145988, 45840, 2);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(7, 2022, "Urus", 2200, "Automatico", "666cv", "V8", 3553673, 159915, 2);

-- Volkswagen

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(8, 2022, "Gol", 1001, "Manual", "84cv", "V3", 59942, 2398, 3);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(9, 2022, "Jetta", 1476, "Automatico", "231cv", "V4", 210101, 8404, 3);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(10, 2019, "Golf GTI", 1317, "Automatico", "230cv", "V4", 215164, 8607, 3);

-- Chevrolet

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(11, 2020, "Cobalt", 1104, "Manual", "111cv", "V4", 74037, 2961, 4);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(12, 2020, "Camaro SS", 1709, "Manual", "461cv", "V8", 463219, 18529, 4);

INSERT INTO concessionaria.modelo(id_modelo, ano, versao, peso, cambio, potencia_motor, motor, preco, ipva, id_marca) VALUES(13, 2022, "Onix", 1037, "Manual", "82cv", "V3", 74758, 2990, 4);

CREATE TABLE concessionaria.fornecedor(cnpj INT,

```
razao_social VARCHAR(45) NOT NULL,
  endereco VARCHAR(50),
  telefone VARCHAR(13),
  id marca INT,
  CONSTRAINT pk_cnpj PRIMARY KEY (cnpj),
  CONSTRAINT fk marca fornecedor FOREIGN KEY (id marca) REFERENCES
concessionaria.marca(id_marca) ON DELETE SET NULL ON UPDATE CASCADE
);
drop table concessionaria.fornecedor;
SELECT * FROM concessionaria.fornecedor;
INSERT INTO concessionaria.fornecedor (cnpj, razao_social, endereco, telefone,
id_marca) VALUES (123456789, 'Auto Peças ABC LTDA', 'Rua das Peças, 123, Centro,
São Paulo', '79 91111-1111', 1);
INSERT INTO concessionaria.fornecedor (cnpj, razao_social, endereco, telefone,
id_marca) VALUES (987654321, 'Auto Parts XYZ S.A.', NULL, NULL, 2);
INSERT INTO concessionaria.fornecedor (cnpj, razao_social, endereco, telefone,
id_marca) VALUES (456789123, 'Peças e Acessórios EFG LTDA', 'Rua do Comércio,
456, Centro, Rio de Janeiro', NULL, 3);
INSERT INTO concessionaria.fornecedor (cnpj, razao_social, endereco, telefone,
id marca) VALUES (789123456, 'Auto Parts LMN EIRELI', 'Rua das Auto Peças, 789,
Vila Olímpia, São Paulo', '11 3333-3333', 4);
CREATE TABLE concessionaria.veiculo(
      id_veiculo INT NOT NULL AUTO_INCREMENT,
  ano fabricacao INT,
  chassi VARCHAR(20) UNIQUE,
  statuss VARCHAR(45),
  vendido BOOLEAN,
  placa VARCHAR(9),
  cor VARCHAR(10),
  id_modelo INT,
  id cliente INT.
  CONSTRAINT pk_veiculo PRIMARY KEY (id_veiculo),
  CONSTRAINT fk_modelo_veiculo FOREIGN KEY (id_modelo) REFERENCES
concessionaria.modelo(id modelo) ON DELETE SET NULL ON UPDATE CASCADE,
  CONSTRAINT fk_cliente_veiculo FOREIGN KEY (id_cliente) REFERENCES
concessionaria.cliente(id_cliente) ON DELETE SET NULL ON UPDATE CASCADE
);
drop table concessionaria.veiculo;
SELECT * FROM concessionaria.veiculo;
-- Volkswagen
INSERT INTO concessionaria.veiculo(ano_fabricacao, chassi, statuss, placa, cor,
id_modelo, id_cliente) VALUES(2022, NULL, "Recem chegado", NULL, "Branco", 3,
NULL);
```

-- Ferrari

```
INSERT INTO concessionaria.veiculo(ano_fabricacao, chassi, statuss, placa, cor,
id_modelo, id_cliente) VALUES(2022, NULL, "Recem chegado", NULL, "Preto", 1,
NULL);
-- Chevrolet
INSERT INTO concessionaria.veiculo(ano_fabricacao, chassi, statuss, placa, cor,
id_modelo, id_cliente) VALUES(2022, NULL, "Recem chegado", NULL, "Cinza", 4,
NULL);
-- Lamborghini
INSERT INTO concessionaria.veiculo(ano_fabricacao, chassi, statuss, placa, cor,
id modelo, id cliente) VALUES(2022, NULL, "Recem chegado", NULL, "Roxo", 2,
NULL);
CREATE TABLE concessionaria.compra(
      id_compra INT NOT NULL AUTO_INCREMENT,
  valor FLOAT NOT NULL.
  id funcionario INT,
  id_veiculo INT,
  id fornecedor INT,
  CONSTRAINT pk_compra PRIMARY KEY(id_compra),
  CONSTRAINT fk_veiculo_compra FOREIGN KEY(id_veiculo) REFERENCES
concessionaria.veiculo(id_veiculo) ON DELETE SET NULL ON UPDATE CASCADE,
  CONSTRAINT fk_funcionario_compra FOREIGN KEY(id_funcionario) REFERENCES
concessionaria.funcionario(matricula) ON DELETE SET NULL ON UPDATE CASCADE,
  CONSTRAINT fk fornecedor compra FOREIGN KEY(id fornecedor) REFERENCES
concessionaria.fornecedor(cnpj) ON DELETE SET NULL ON UPDATE CASCADE
drop table concessionaria.compra;
SELECT * FROM concessionaria.compra;
CREATE TABLE concessionaria.pagamento(
      id_pagamento INT NOT NULL AUTO_INCREMENT,
  tipo VARCHAR(30) NOT NULL,
  valor FLOAT NOT NULL,
  CONSTRAINT pk_pagamento PRIMARY KEY(id_pagamento)
drop table concessionaria.pagamento;
SELECT * FROM concessionaria.pagamento;
CREATE TABLE concessionaria.venda(
      id_venda INT NOT NULL AUTO_INCREMENT,
  datta DATE NOT NULL,
  id_funcionario INT,
  id veiculo INT,
  id_pagamento INT,
```

id_cliente INT,

```
CONSTRAINT pk venda PRIMARY KEY(id venda, id funcionario),
  CONSTRAINT fk_veiculo_venda FOREIGN KEY(id_veiculo) REFERENCES
concessionaria.veiculo(id_veiculo) ON DELETE SET NULL ON UPDATE CASCADE,
  CONSTRAINT fk_funcionario_venda FOREIGN KEY(id_funcionario) REFERENCES
concessionaria.funcionario(matricula),
      CONSTRAINT fk cliente venda FOREIGN KEY (id cliente) REFERENCES
concessionaria.cliente(id_cliente) ON DELETE SET NULL ON UPDATE CASCADE,
      CONSTRAINT fk_pagamento_venda FOREIGN KEY (id_pagamento)
REFERENCES concessionaria.pagamento(id pagamento) ON DELETE SET NULL ON
UPDATE CASCADE
);
drop table concessionaria.venda;
SELECT * FROM concessionaria.venda;
CREATE TABLE concessionaria.servico(
      id servico INT NOT NULL AUTO INCREMENT,
  tipo VARCHAR(30) NOT NULL UNIQUE,
  valor FLOAT NOT NULL,
  CONSTRAINT pk_servico PRIMARY KEY (id_servico)
);
drop table concessionaria.servico;
SELECT * FROM concessionaria.servico;
INSERT INTO concessionaria.servico(tipo, valor) VALUES("Troca_oleo", 200);
INSERT INTO concessionaria.servico(tipo, valor) VALUES("Troca_pneus", 130);
INSERT INTO concessionaria.servico(tipo, valor) VALUES("Balanceamento", 370);
INSERT INTO concessionaria.servico(tipo, valor) VALUES("Revisao_completa", 2500);
CREATE TABLE concessionaria.solicitacao(
      id_solicitacao INT NOT NULL AUTO_INCREMENT,
  statuss VARCHAR(45),
  id_servico INT,
  id funcionario INT,
  id_veiculo INT,
  id_cliente INT,
  CONSTRAINT pk id solicitacao PRIMARY KEY(id solicitacao),
  CONSTRAINT fk_veiculo_solic FOREIGN KEY(id_veiculo) REFERENCES
concessionaria.veiculo(id_veiculo) ON DELETE SET NULL ON UPDATE CASCADE,
  CONSTRAINT fk funcionario solic FOREIGN KEY(id funcionario) REFERENCES
concessionaria.funcionario(matricula) ON DELETE SET NULL ON UPDATE CASCADE,
      CONSTRAINT fk_cliente_solic FOREIGN KEY (id_cliente) REFERENCES
concessionaria.cliente(id cliente) ON DELETE SET NULL ON UPDATE CASCADE,
  CONSTRAINT fk_servico_solic FOREIGN KEY (id_servico) REFERENCES
concessionaria.servico(id_servico) ON DELETE SET NULL ON UPDATE CASCADE
);
drop table concessionaria.solicitacao;
SELECT * FROM concessionaria.solicitacao;
```

- 7.Links
- 7.1. <u>Drive</u>
- 7.2. <u>Instância</u>
- 7.3 Repositório