PROJECTE FINAL PROCESSADORS DIGITALS:

CONTROL D'UNA MÀ ROBÒTICA VIA WEB

JANA LLORET SELLABONA MARTA PITARCH GRANELL

1. Introducció

Aquest projecte ha consistit a dissenyar i desenvolupar un sistema funcional que permet controlar una mà robòtica a distància a través d'una pàgina web.

L'objectiu principal era aconseguir una connexió entre un usuari i un braç robòtic, de manera que aquest es pogués manipular de forma senzilla, només utilitzant un navegador web i un microcontrolador ESP32. Això ens ha permès aplicar i consolidar coneixements d'electrònica digital, programació de microcontroladors i desenvolupament web.

Aquesta experiència ens ha ajudat a entendre de forma pràctica com es comuniquen diferents tecnologies i sistemes entre si.

2. Objectius del projecte

- Crear una interfície web intuïtiva i fàcil d'utilitzar, que permetés escollir quin dit volem moure i a quin angle.
- Controlar diversos servomotors, els quals representen els dits de la mà robòtica.
- Establir una comunicació eficient entre el navegador web i el microcontrolador ESP32.
- Integrar components diversos (web, electrònica, programació) en un sistema robust i coordinat.

3. Procés de desenvolupament

3.1 Impressió i muntatge de la mà

La mà robòtica que hem utilitzat forma part del projecte **InMoov**, un projecte open source de robòtica. El nostre professor ens va facilitar les peces impreses en 3D ja parcialment muntades. Això ens va permetre centrar-nos més en l'electrònica i el programari.

Referència: InMoov Hand Assembly Guide

Durant la fase inicial de recerca, vam trobar alguns projectes similars que feien servir interfícies senzilles per controlar servos a través d'internet. Tot i així, la majoria d'exemples no s'adaptaven del tot a les necessitats del nostre projecte, especialment perquè volíem implementar una interfície web pròpia.

Així doncs, vam haver de desenvolupar el nostre propi sistema, combinant HTML, i utilitzant tecnologies com Arduino i/o ESP32 per rebre els senyals i controlar els servos.

3.2 Arquitectura general del sistema

El sistema es compon dels següents elements:

Component	Funció principal
ESP32	Microcontrolador que genera una xarxa WiFi i rep les ordres.
PCA9685	Driver I2C que permet controlar múltiples servomotors amb precisió.
Interfície Web	Formulari HTML que envia les ordres des del navegador.
Usuari final	Interactua amb el sistema mitjançant la pàgina web.

4. Explicació del codi

4.1 Configuració punt d'accés i servidor

El microcontrolador ESP32 crea un **punt d'accés** amb SSID i contrasenya pròpia, permetent a qualsevol dispositiu connectar-se directament sense necessitar internet.

```
const char* ap_ssid = "MA_ROBOTICA";
const char* ap_password = "12345678";
WiFi.softAP(ap_ssid, ap_password);
```

El servidor escolta peticions HTTP al port 80 i serveix la pàgina web principal i el gestor d'instruccions.

4.2 Interfície web

Es tracta d'una pàgina HTML molt simple que permet:

- Seleccionar el dit a moure.
- Indicar l'angle entre 0° i 180°.
- Enviar la petició GET al servidor.

```
<form action="/mou" method="GET">
   <label for="servo">Selecciona un dit:</label>
   <select id="servo" name="servo">...</select>
   <label for="angle">Angle (0-180):</label>
   <input type="number" id="angle" name="angle" min="0" max="180">
   <input type="submit" value="Moure">
   </form>
```

4.3 Control dels servos amb PCA9685

La conversió de l'angle (en graus) a valor PWM per al servo es fa amb una funció que mapeja l'interval 0-180 a 50-400 (rang acceptat pel driver).

```
uint16_t angleAServoPWM(uint8_t angle) {
    return map(angle, 0, 180, 50, 400);
}
```

Quan es rep la petició /mou, el servidor:

- 1. Extreu el número de servo i l'angle.
- 2. Converteix l'angle a PWM.
- 3. Envia l'ordre al driver PCA9685 perquè mogui el servo corresponent.

4.4 Diagrama de blocs

4.5 Diagrama de flux del sistema

1. Inicialització:

- o S'inicia la comunicació serial
- Es configura el bus I2C pels controladors PCA9685
- o Es crea un punt d'accés WiFi
- S'inicia el servidor web asíncron
- 2. Rutes web:

- /: Mostra un formulari HTML per seleccionar dit i angle
- /mou: Processa la petició:
 - Converteix l'angle a valor PWM
 - Envia l'ordre al servo corresponent
 - Retorna resposta al client
- 3. Loop principal:
 - o Buit, ja que el servidor web gestiona les peticions de manera asíncrona

Flux de dades:

```
Client Web \rightarrow Sol·licita formulari \rightarrow Servidor \rightarrow Retorna HTML Client Web \rightarrow Envia dades (servo, angle) \rightarrow Servidor \rightarrow Mou servo \rightarrow Confirma acció
```

El diagrama mostra com el programa respon a sol·licituds HTTP per controlar els servos de manera remota a través d'una interfície web senzilla.

5. Conclusions

Aquest projecte ens ha permès entendre millor:

- Com comunicar un microcontrolador amb una interfície web.
- Com utilitzar controladors com el PCA9685 per controlar múltiples servos.

Tot i ser un projecte funcional, com a millores de futur podríem:

- Fer que la interfície permeti controlar múltiples dits alhora.
- Afegir sensors de pressió als dits.