

M74HC4514 M74HC4515

HC4514: 4 TO 16 LINE DECODER/LATCH HC4515: 4 TO 16 LINE DECODER LATCH (INV.)

- HIGH SPEED
 - $t_{PD} = 18 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } I_{A} = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY

 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE ||OH| = IOL = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc(OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 4514B/4515B

DESCRIPTION

The 74HC4514 and the 74HC4515 are high speed CMOS 4-LINE TO 16-LINE DECODERS WITH LATCHED INPUTS fabricated in silicon gate C²MOS technology. They have the same high speed performance of LSTTL combined with true CMOS low power consumption.

A binary code stored in the four input latches (A to D) provides a high level (HC4514) or a low level (HC4515) at the selected one of sixteen outputs excluding the other fifteen outputs, when the inhibit input (INHIBIT) is held low. When the inhibit input is held high, all outputs are kept low level (HC4514) or high level (HC4515), while the latch function is available. The data applied to the data inputs are transfered to the Q outputs of latches when the strobe input is held high. When the strobe input is taken low, the information data applied to the data input at a time is retained at the output of the latches. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1993 1/10

TRUTH TABLE

	INPUTS					SELECT OUTPUT
INHIBIT	A	В	С	D	STROBE	HC4514 - 'H' (HC4515 - 'L')
L	L	L	L	L	STROBE = 'H'	S0 (S0)
L	Н	L	L	L	Refer to truth table	S1 (S1)
L	L	Н	L	L	STROBE = 'L'	S2 (S 2)
L	Н	Н	L	L	Data at the negative going	S3 (S3)
L	L	L	Н	L	transition of strobe shall be	S4 (S4)
L	Н	L	Н	L	provided on the each output	S5 (S 5)
L	L	Η	Н	L	while strobe is held low.	S6 (S6)
L	Н	Н	Н	L		S7 (S7)
L	L	L	L	Н	t _{n-1} - t _n	S8 (S8)
L	Н	L	L	Н		S9 (S 9)
L	L	Η	L	Н		S10 (S10)
L	Н	Н	L	Н		S11 (S11)
L	L	L	Н	Н	STROBE	S12 (S12)
L	Н	L	Н	Н	January 1	S13 (S 13)
L	L	Η	Н	Н		S14 (S14)
L	Н	Η	Н	Н		S15 (S15)
Н	Х	Х	Х	Х		HC4514 - ALL OUTPUTS 'L' (HC4515 - ALL OUTPUTS 'H')

LOGIC DIAGRAM (HC4514)

PIN DESCRIPTION (HC4514)

PIN No	SYMBOL	NAME AND FUNCTION
1	STROBE	Strobe Input
2, 3, 21, 22	A to D	Address Inputs
11, 9, 10, 8, 7, 6, 5, 4, 18, 17, 20, 19, 14, 13, 16, 15	S0 to S15	Multiplexer Outputs (Active HIGH)
23	INHIBIT	Enable Input
12	GND	Ground (0V)
24	Vcc	Positive Supply Voltage

PIN DESCRIPTION (HC4515)

PIN No	SYMBOL	NAME AND FUNCTION
1	STROBE	Strobe Input
2, 3, 21, 22	A to D	Address Inputs
11, 9, 10, 8, 7, 6, 5, 4, 18, 17, 20, 19, 14, 13, 16, 15	S0 to S15	Multiplexer Outputs (Active LOW)
23	INHIBIT	Enable Input
12	GND	Ground (0V)
24	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lο	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: ≡ 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage	0 to Vcc	V	
T _{op}	Operating Temperature		-40 to +85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		T	est Co	nditions	Value					
Symbol	Parameter		Vcc		T _A = 25 °C		-40 to 85 °C		Unit	
		(V)			Min.	Тур.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0			1.5			1.5		
		4.5			3.15			3.15		V
		6.0			4.2			4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5	
	Voltage	4.5					1.35		1.35	V
		6.0					1.8		1.8	
V_{OH}	High Level Output Voltage	2.0	V _I =	Ι _Ο =-20 μΑ	1.9	2.0		1.9		
		4.5			4.4	4.5		4.4		
		6.0	or		5.9	6.0		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		
V_{OL}	Low Level Output Voltage	2.0	Vı =			0.0	0.1		0.1	
		4.5	VIH	I _O = 20 μA		0.0	0.1		0.1	.,
		6.0	or			0.0	0.1		0.1	V
		4.5	V _{IL}	$I_O=4.0 \text{ mA}$		0.17	0.26		0.33	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33	
II	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1	μΑ
l _{OZ}	3 State Output Off State Current	6.0		V _{IH} or V _{IL} V _{CC} or GND			±0.5		±5.0	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Test Conditions		Value					
Symbol	Parameter	Vcc	Т	T _A = 25 °C			-40 to 85 °C		
		(V)	Min.	Тур.	Max.	Min.	Max.		
tTLH	Output Transition Time	2.0		30	75		95		
t _{THL}		4.5		8	15		19	ns	
		6.0		7	13		16		
t _{PLH}	Propagation Delay Time	2.0		65	175		220		
t_{PHL}	$(DATA - Sn, \overline{Sn})$	4.5		22	35		44	ns	
		6.0		19	30		37		
t _{PHL}	Propagation Delay Time	2.0		75	175		220		
t_{PLH} (STROBE - Sn, \overline{Sn})	(STROBE - Sn, Sn)	4.5		24	35		44	ns	
		6.0		20	30		37		
t _{PHL}	Propagation Delay Time	2.0		60	175		220		
t _{PLH}	(INHIBIT - Sn, Sn)	4.5		20	35		44	ns	
		6.0		17	30		37		
t _{W(L)}	Minimum Pulse Width	2.0		14	75		95		
	(STROBE)	4.5		6	15		19	ns	
		6.0		6	13		16		
ts	Minimum Set-up Time	2.0		10	50		65		
	(DATA)	4.5		2	10		13	ns	
		6.0		2	9		11		
t _h	Minimum Hold Time	2.0			5		5		
	(DATA)	4.5			5		5	ns	
		6.0			5		5		
Cin	Input Capacitance			5	10		10	pF	
C _{PD} (*)	Power Dissipation Capacitance			61				pF	

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

Plastic DIP24 (0.25) MECHANICAL DATA

DIM.		mm		inch				
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1		0.63			0.025			
b		0.45			0.018			
b1	0.23		0.31	0.009		0.012		
b2		1.27			0.050			
D			32.2			1.268		
E	15.2		16.68	0.598		0.657		
е		2.54			0.100			
e3		27.94			1.100			
F			14.1			0.555		
I		4.445			0.175			
L		3.3			0.130			

SO24 MECHANICAL DATA

DIM.		mm		inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			2.65			0.104	
a1	0.10		0.20	0.004		0.007	
a2			2.45			0.096	
b	0.35		0.49	0.013		0.019	
b1	0.23		0.32	0.009		0.012	
С		0.50			0.020		
c1			45°	(typ.)		•	
D	15.20		15.60	0.598		0.614	
E	10.00		10.65	0.393		0.420	
е		1.27			0.05		
e3		13.97			0.55		
F	7.40		7.60	0.291		0.299	
L	0.50		1.27	0.19		0.050	
S			8° (r	nax.)			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.