Math 381 - Fall 2021

Jay Newby

University of Alberta

Week 11

Last Time

- Low rank approximations
- Q Gaussian elimination with complete pivoting

Today

• Eigenvalue problems

Eigenvalue problems

Eigenvalues and eigenvectors

For square matrices A, an eigenvalue λ and eigenvector v satisfy

$$Av = \lambda v$$
.

Characteristic equation

Eigenvalues of A are the roots of the characteristic polynomial; that is, they satisfy

$$\det(A - \lambda I) = 0.$$

Conditioning of the eigenvalue problem (simple eigenvalues)

$$(A + \delta A)r = \lambda r$$
. $A = A$, $EA = A$

Rewrite as $(A_0 + \epsilon A_1)r = \lambda r$ for $0 < \epsilon \ll 1$.

Will show that $\lambda \sim \lambda_0 + \epsilon \frac{I_0^* A_1 r_0}{I_0^* r_0}$.

unterly

O(E): Anote EAOri + EAIRO = 20 + E2Ori + E2IRO
$$|A = 20|^{\times}$$

AO(D) + AIRO = 20 (T) (2) Fredhom/Alternative

 $\Rightarrow [A_0 - 2 \cdot \vec{l}] r_1 = -[A_1 - 2 \cdot \vec{l}] r_0$
 $\Rightarrow [A_0 - 2 \cdot \vec{l}] r_1 = -[A_1 - 2 \cdot \vec{l}] r_0$

Need "solvability cordition" for A,

Fredhom Alternative

1 ([A,-2]=0

> L^[A,-2,I]n=0

Conditioning of the eigenvalue problem (continued)

Conditioning of the eigenvalue problem (simple eigenvalues)

Let λ_0 be a simple eigenvalue of the matrix A_0 . Consider

$$(A_0 + \epsilon A_1)r = \lambda$$
, $0 < \epsilon \ll 1$.

Assuming that $||r_0|| = ||l_0|| = 1$ we have

$$|\lambda - \lambda_0| \leq \frac{\epsilon ||A_1||}{|I_0^* r_0|}.$$

Condition number of an eigenvalue

Let r and l be a right and left eigenvector of A (respectively) corresponding to the simple eigenvalue λ . The condition number of λ is

$$\kappa(\lambda) = \frac{\|r\| \|I\|}{|I^*r|}.$$

Why don't we simply solve for the roots of the characteristic polynomial?

Example Example $\lambda^2 - 2\lambda + 1 - \epsilon = 0$ $\lambda^2 - 2\lambda + 1 + \epsilon = 0$ unperturbed $\lambda^{2}-2\lambda+1=(\lambda-1)^{2}$ 2ENITIVE ZINITE Previous examples we have seen of: Il-conditional browning

Ill conditioned eigenvalue problems: eigenvalues with degenerate eigenspaces are ill conditioned

Example:
$$A = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$$
Unperterned problem
$$\begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$$

$$\lambda = 1$$

Finish Friday

General eigenvalue solvers must be iterative

Theorem: Abel 1824

For any $n \ge 5$, there is a polynomial p(z) of degree n with rational coefficients that has a real root p(r) = 0 with the property that r cannot be written using any expression involving rational numbers, addition, subtraction, multiplication, division, and kth roots.

Daily Linear Algebra

Definition: similar matrix

A matrix $A \in \mathbb{C}^{n \times n}$ is similar to a matrix $B \in \mathbb{C}^{n \times n}$ if there exists a nonsinglular $S \in \mathbb{C}^{n \times n}$ such that

$$A = SBS^{-1}$$

Daily Linear Algebra

Claim:

If $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$ are similar, then they have the same eigenvalues.

Proof:

Eigenvalue revealing decompositions

- **1** Diagonalization $A = X\Lambda X^{-1}$ (only if the matrix is diagonalizable)
- **Q** Unitary diagonalization $A = Q\Lambda Q^*$ (only normal matrices $A^T A = AA^T$)
- **3** Schur factorization $A = QTQ^*$ (all square matrices)

Theorem: Schur factorization

Every Square matrix A has a Schur factorization such that

$$A = QRQ^*$$

where Q is unitary and R is upper triangular.

Proof: (time permitting)