Создание персонализированных генераций изображений

Кристина М. Казистова
ФПМИ
МФТИ
Долгопрудный
kazistova.km@phystech.edu

Степанов Илья Дмитриевич ФПМИ МФТИ Долгопрудный iliatut94@gmail.com

Филатов Андрей Викторович Сколковский Институт Технологий Москва filatovandreiv@gmail.com

Модели генерации изображений по тексту совершили значительный скачок в области искусственного интеллекта, обеспечив высококачественный и разнообразный синтез изображений из заданного текстового описания. Однако, когда возникает запрос на генерацию специфичного объекта, в нашем случае человека, модель не может сгенерировать его с необходимой точностью и передать его идентичность. Предлагается решение, которое будет способно генерировать изображения заданного человека в различных вариациях в высоком разрешении. Мы представляем подход, в основе которого лежит метод IP-Adapter. Данный подход способен обрабатывать несколько изображений одновременно, что приводит к повышению качества генерации.

Ключевые слова: Диффузионная модель, Stable Diffusion(2), IP-Adapter(1), DreamBooth(3).

1 Введение

В последние годы наблюдается быстрое развитие генеративных моделей, которые решают задачу генерации изображений по тексту. Существующие модели способны генерировать разнообразные изображения по текстовым описаниям с высокой точностью. Однако, в процессе работы с моделями генерации изображений возникают определенные проблемы, одной из которых является недостаточное соответствие сгенерированных изображений исходным текстовым описаниям. Наша задача заключается в повышении качества визуальных представлений за счет большего количества изображений. В работе рассматриваются методы, которые позволяют решить вышеупомянутые проблемы, и затем сравниваются между собой. Все описанные далее подходы основаны на применении диффузионной модели(2).

Диффузионная модель состоит из двух процессов: прямого и обратного. Во время прямого процесса ко входным данным постепенно добавляется шум, а во время обратного процесса модель постепенно восстанавливает данные из шума. Эта модель позволяет создавать высококачественные изображения на основе текстовых и графических подсказок, открывая новые возможности в области синтеза изображений.

Первый представленный метод — это DreamBooth(3).Он принимает на вход несколько изображений одного объекта вместе с соответствующим названием класса и возвращает специальный токен, идентифицирующий объект, который затем встраивается в текстовое описание, по которой генерируется желаемое изображение. Проблемы данного метода заключаются в слабой адаптивности, отсутствии обобщения и необходимости обучать всю диффузионную модель.

Второй метод — это IP-Adapter(1). Он состоит из двух частей: энкодера для извлечения признаков изображения, текста и адаптированных модулей с механизмом перекрестного внимания. Метод принимает на вход только одно изображение объекта. Однако одной картинки может быть мало, для того чтобы модель могла уловить все необходимые зависимости.

В работе предлагается третий метод, представляющий собой модификацию IP-Adapter. На вход подаются несколько изображений вместо одного, причем каждому изображению соответствует своя текстовая подсказка. В процессе обучения модели одно изображение удаляется равновероятно, и модель учится восстанавливать это удаленное изображение, опираясь на текстовое описание и другие имеющиеся

изображения. К векторным представлениям изображений применяется агрегирующая функция. За счет подачи нескольких изображений добиваемся лучшей передачи идентичности. Рассмотренные методы сравниваются между собой по метрикам качества генерации и разнообразия, метрикам идентичности. Исследование проводится на выборке из датасета LFW Deep Funneled(5) — датасете изображений знаменитостей в высоком разрешении.

2 Постановка задачи

Определим датасет как $\mathfrak{D} = \{(x_i, \tau_i) : i = 1, \dots, n\}, x_i$ — изображение, τ_i — соответствующий текстовый промпт. Рассматривается модель ϵ_{θ} из класса диффузионных моделей. На этапе обучения на каждом шаге из \mathfrak{D} удаляется изображение $x_j, j \sim \mathcal{U}\{1, \dots, n\}$, и модель учится восстанавливать его по оставшимся изображениям.

Определим функцию потерь:

$$\mathcal{L}(\epsilon, \epsilon_{\theta}) = \mathbb{E}_{\epsilon \sim N(0, I), \mathbf{c}_{\tau}, \mathbf{c}_{i}, t, \mathbf{c}_{t}^{j}} \| \epsilon - \epsilon_{\theta}(\mathbf{c}_{\tau}, \mathbf{c}_{i}, t, \mathbf{c}_{t}^{j}) \|^{2},$$
(1)

где $\mathbf{c}_{\tau} = \Gamma_{\tau}(\tau_{j})$ — текстовые признаки удаленного изображения, полученные путем применения текстового энкодера Γ_{τ} к текстовому промпту τ_{j} ; $\mathbf{c}_{i} = G(\Gamma_{i}(x_{1}), \ldots, \Gamma_{i}(x_{j-1}), \Gamma_{i}(x_{j+1}), \ldots, \Gamma_{i}(x_{n}))$ — признаки оставшихся изображений, являющиеся результатом применения агрегирующей функции G к эмбеддингам изображений, полученным с помощью image-энкодера Γ_{i} ; $\mathbf{c}^{j} = \Gamma_{i}(x_{j})$ — признаки удаленного изображения; $t \in [0,T]$ — временной шаг диффузионного процесса; $\mathbf{c}_{i}^{j} = \alpha_{t}\mathbf{c}^{j} + \sigma_{t}\epsilon$ — зашумленные данные удаленного изображения на шаге t; α_{t}, σ_{t} — предопределенные функции от t, определяющие диффузионный процесс.

Решается следующая оптимизационная задача:

$$\epsilon_{\theta}^* = \arg\min_{\epsilon_{\theta}} \mathcal{L}(\epsilon, \epsilon_{\theta}),$$
 (2)

Текстовые признаки, извлеченные из текстового энкодера, передаются в предобученную диффузионную модель через слои перекрестного внимания. Для передачи в модель признаков изображения каждому слою перекрестного внимания для текстовых признаков сопоставляется слой перекрестного внимания для признаков изображения. Выход полученного слоя изолированного перекрестного внимания определяется как:

$$\mathbf{Z}^{new} = Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) + \lambda \cdot Attention(\mathbf{Q}, \mathbf{K}', \mathbf{V}'), \tag{3}$$

где λ — весовой коэффициент, \mathbf{Z} — признаки запроса, $\mathbf{Q} = \mathbf{Z}\mathbf{W}_q$, $\mathbf{K} = \mathbf{c}_t\mathbf{W}_k$, $\mathbf{K}' = \mathbf{c}_i\mathbf{W}_k'$, $\mathbf{V} = \mathbf{c}_t\mathbf{W}_v$, $\mathbf{c}_i\mathbf{W}_v'$ — матрицы запросов, ключей и значений механизмов внимания для текста и изображений соответственно, а \mathbf{W}_q , \mathbf{W}_k , \mathbf{W}_k' , \mathbf{W}_v' , \mathbf{W}_v' , \mathbf{W}_v' , — соответствующие матрицы весов.

Для определения качества модели введем метрики качества генерации Frechet Inception Distance (FID) и Inception Score (IS):

$$FID = ||\mu_p - \mu_q||^2 + Tr(\mathbf{\Sigma}_{\mathbf{p}} + \mathbf{\Sigma}_{\mathbf{q}} - 2(\mathbf{\Sigma}_{\mathbf{p}}\mathbf{\Sigma}_{\mathbf{q}})^{1/2})$$
(4)

где μ_p и μ_q — средние значения признаков в реальных и сгенерированных изображениях соответственно, $\Sigma_{\mathbf{p}}$ и $\Sigma_{\mathbf{q}}$ — ковариационные матрицы для распределений признаков на реальных и сгенерированных изображениях соответственно.

$$IS(x) = \exp(\mathbb{E}_x \left[D_{KL}(p(y|x)||p(y)) \right]) \tag{5}$$

Где D_{KL} - дивергенция Кульбака-Лейблера для двух распределений; p(y|x) - вероятность класса y для изображения x; p(y) - равномерное распределение на множестве классов.

3 Метод

В данной секции мы сначала введем необходимые понятия, затем опишем принцип работы существующих методов решения поставленной задачи: IP-Adapter и DreamBooth. Наконец, представим описание разработанного нами метода.

3.1 Вводные сведения

3.1.1 Диффузионные модели

Диффузионная модель состоит из двух процессов: прямого и обратного.

Прямой процесс представляет собой последовательность зашумленных версий входного изображения x_0, \ldots, x_T , где T — количество шагов, а x_t получается по следующей формуле:

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \varepsilon, \tag{6}$$

где $\varepsilon \sim \mathcal{N}(0, I)$,

$$x_t|x_{t-1} \sim \mathcal{N}(\sqrt{1-\beta_t}x_{t-1}, \beta_t I). \tag{7}$$

При $T \to \infty, x_T \to \mathcal{N}(0, I)$. На последнем шаге итераций получается гауссовский шум.

Положим $\alpha_t=1-\beta_t, \overline{\alpha_t}=\prod_{s=1}^t \alpha_s.$ Тогда

$$x_t = \sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \varepsilon, \tag{8}$$

где $\varepsilon \sim \mathcal{N}(0, I)$,

$$x_t|x_0 \sim \mathcal{N}(\sqrt{\overline{\alpha_t}}x_0, (1 - \overline{\alpha_t})I).$$
 (9)

Во время обратного процесса исходное изображение восстанавливается из шума. Знаем $x_T \sim \mathcal{N}(0, I)$. Семплирование происходит итеративно шаг за шагом:

$$\hat{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\hat{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha_t}}} \hat{\varepsilon}_t \right) + \sqrt{\beta_t} \varepsilon, \tag{10}$$

где \hat{x}_t — восстановленное изображение на итерации t, при этом, если t=T, то $\hat{x}_t=x_t; \hat{\varepsilon}_t$ — реконструкция шума, полученная моделью для $\hat{x}_t; \, \varepsilon \sim \mathcal{N}(0,I)$ — шум, который позволяет генерировать различные изображения.

3.1.2 Stable Diffusion

Процесс работы модели Stable Diffusion состоит из трех основных этапов. Сначала энкодер CLIP преобразует входное изображение в эмбеддинг в пространстве меньшей размерности. Затем диффузионная модель выполняет преобразование полученного эмбеддинга (в скрытом пространстве). Наконец, VAE декодер переводит преобразованный эмбеддинг в изображение исходного размера. В качестве диффузионной модели используется UNet архитектура с механизмом внимания.

3.1.3 Classifier-free Guidance

Можно регулировать силу влияния условия c без специального классификатора. Метод classifier-free guidance позволяет увеличить степень, c которой модель ориентируется на промпт. Во время семплирования предсказание получается путем линейной комбинации предсказаний обусловленной и необусловленной моделей:

$$\hat{\epsilon}_{\theta}(x_t, c, t) = w\epsilon_{\theta}(x_t, c, t) + (1 - w)\epsilon_{\theta}(x_t, t) \tag{11}$$

3.2 DreamBooth

Рис. 1: DreamBooth

В основе данной модели лежит предобученная диффузионная text-to-image модель \hat{x}_{θ} , функция потерь которой определяется как:

$$\mathbb{E}_{x,\epsilon \sim N(0,I),c,t} w_t \|\hat{x}_{\theta}(\alpha_t x + \sigma_t \epsilon, c) - x\|^2,$$

где x — исходное изображение; $c = \Gamma(P)$ — вектор условия, полученный с помощью текстового энкодера Γ и текстового промпта $P; t \in [0,T]$ обозначает временной шаг диффузионного процесса; α_t, σ_t, w_t — предопределенные функции от t, определяющие процесс диффузии.

Исходная диффузионная модель дообучается на нескольких входных изображениях одного объекта в паре с текстовым промптом, содержащим уникальный идентификатор и название класса, к которому принадлежит данный объект (например, "A [V] man"). Генерируются данные $x_{pr} = \hat{x}(z, c_{pr})$ с использованием сэмплера на основе замороженной предобученной диффузионной модели со случайным начальным шумом $z \sim \mathcal{N}(0, I)$ и вектором условия $c_{pr} := \Gamma(f(\text{"a [class noun]")})$. Функция потерь принимает следующий вид:

$$\mathbb{E}_{x,\epsilon,\epsilon',c,t}[w_t \| \hat{x}_{\theta}(\alpha_t x + \sigma_t \epsilon, c) - x \|^2 + \lambda w_{t'} \| \hat{x}_{\theta}(\alpha_{t'} x_{pr} + \sigma_{t'} \epsilon', c_{pr}) - x_{pr} \|^2],$$

где λ — весовой коэффициент, а $c = \Gamma(f("a [identifier] [class noun]"))$

3.3 IP-Adapter

Рис. 2: IP-Adapter

IP-Adapter состоит из двух частей: image-энкодера для извлечения признаков изображения из промпта и адаптированных модулей с механизмом изолированного перекрестного внимания для встраивания признаков изображения в предобученную text-to-image модель.

Для получения признаков изображения используется обучаемая сеть, состоящая из линейного слоя и слоя нормализации, на вход которой подается эмбеддинг изображения, полученный с помощью предобученного image-энкодера CLIP. На этапе обучения вышеупомянутый энкодер заморожен.

Текстовые признаки, извлеченные из текстового энкодера ССІР, передаются в предобученную модель UNet через слои перекрестного внимания. Пусть даны признаки запроса Z и текстовые признаки c_t , тогда выход слоя перекрестного внимания Z' определяется как:

$$Z' = Attention(Q, K, V) = Softmax(\frac{QK^T}{\sqrt{d}})V,$$

где $Q = ZW_q, K = c_tW_k, V = c_tW_v$ — матрицы запросов, ключей и значений механизма внимания для текстовых признаков соответственно, а W_q, W_k, W_v — соответствующие матрицы весов. Для передачи в модель UNet признаков изображения каждому слою перекрестного внимания для текстовых признаков сопоставляется слой перекрестного внимания для признаков изображения. Пусть даны признаки изображения c_i , тогда выход нового слоя перекрестного внимания Z'' определяется как:

$$Z'' = Attention(Q, K', V') = Softmax(\frac{Q(K')^T}{\sqrt{d}})V',$$

где $Q=ZW_q, K'=c_iW_k', V'=c_iW_v'$ — матрицы запросов, ключей и значений механизма внимания для признаков изображения соответственно, а W_k', W_v' — соответствующие матрицы весов. Выход

изолированного перекрестного внимания получается как сумма вышеупомянутых выходов:

$$Z^{new} = Softmax(\frac{QK^T}{\sqrt{d}})V + Softmax(\frac{Q(K')^T}{\sqrt{d}})V'$$

Модель UNet замораживается, поэтому только W'_k и W'_v являются обучаемыми параметрами.

В процессе обучения минимизируется следующая функция потерь:

$$\mathcal{L}(\epsilon, \epsilon_{\theta}) = \mathbb{E}_{x_0, \epsilon, c_t, c_i, t} \|\epsilon - \epsilon_{\theta}(x_t, c_t, c_i, t)\|^2$$

Для того чтобы задействовать classifier-free guidance на этапе вывода, во время обучения случайным образом отбрасываются условия изображения:

$$\hat{\epsilon}_{\theta}(x_t, c_t, c_i, t) = w\epsilon_{\theta}(x_t, c_t, c_i, t) + (1 - w)\epsilon_{\theta}(x_t, t)$$

Если условие изображения отброшено, эмбеддинг соответствующего изображения зануляется.

Поскольку перекрестное внимание к тексту и перекрестное внимание к изображению разделены, можно настроить вес условия изображения на этапе вывода:

$$\mathbf{Z}^{new} = Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) + \lambda \cdot Attention(\mathbf{Q}, \mathbf{K}', \mathbf{V}'),$$

где λ — весовой коэффициент.

3.4 IP-Adapter + агрегирующая функция

Рис. 3: IP-Adapter + Pooling

Данный метод представляет собой модификацию метода IP-Adapter и принимает на вход несколько изображений вместо одного. К эмбеддингам входных изображений применяется агрегирующая функция (в нашем случае Max Pooling или Average Pooling). Результат ее применения передается в полностью предобученный IP-Adapter.

3.5 IP-Adapter + Self-Attention

Рис. 4: IP-Adapter + Self-Attention

Предложенная модификация метода IP-Adapter включает в себя обработку нескольких изображений, к эмбеддингам которых применяется алгоритм Self-Attention(4). На вход модели передается N изображений одного объекта (в нашем случае N=10), каждому из которых соответствует свой текстовый промпт. В ходе обучения случайным образом выбирается изображение, которое удаляется из рассмотрения, и модель пытается предсказать отброшенное изображение по его текстовому промпту и эмбеддингам оставшихся изображений, полученных с помощью image-энкодера CLIP.

```
Algorithm 1 Self-Attention  \begin{aligned} & \text{Procedure Self-Attention}(\mathbf{x}) \\ & \mathbf{Q} \leftarrow \mathbf{x} \cdot \mathbf{W}_q \\ & \mathbf{K} \leftarrow \mathbf{x} \cdot \mathbf{W}_k \\ & \mathbf{V} \leftarrow \mathbf{x} \cdot \mathbf{W}_v \\ & \mathbf{Z} \leftarrow softmax \left( \frac{\mathbf{Q} \cdot \mathbf{K}^T}{\sqrt{d_k}} \right) \cdot \mathbf{V} \\ & \text{return } \mathbf{Z} \cdot \mathbf{W}_{out} \\ & \text{end procedure} \end{aligned}
```

После завершения работы модуля Self-Attention следуют модули IP-Adapter без изменений. В данном случае обучаемыми являются слои Self-Attention, Linear, Layer Norm и Cross-Attention. Поскольку модификация Self-Attention обучается на 9 изображениях, то, если на вход поступает большее или меньшее число изображений, в первом случае лишние изображения просто удаляются, а во втором запускается процедура бутстрепа до достижения нужного количества картинок.

4 Вычислительный эксперимент

Для экспериментов с вышеупомянутыми моделями используется датасет LFW Deep Funneled, который представляет собой набор изображений лиц людей вместе с их именами. В этом наборе данных 1680 людям соответствует не меньше двух разных фотографий.

Рис. 5: Примеры изображений из датасета LFW Deep Funneled.

Исходный датасет разделяется на тренировочную и тестовую выборки в соотношении 2:1. Модель IP-Adapter + Self-Attention обучается на тренировочной выборке, содержащей набор персон, каждой из которых соответствует имя персоны и несколько её изображений. Процесс обучения описан выше. В остальных случаях для генерации используются предобученные модели, процедура дообучения не проводится.

Точность качества генерации оценивается по метрикам Frechet Inception Distance (FID) и Inception Score (IS). Результаты приведены в таблице:

Метод	IS ↑	FID ↓
IP-Adapter	15.37	8.92
DreamBooth	17.64	9.61
IP-Adapter + Max Pooling	14.12	10.10
IP-Adapter + Avg Pooling	13.56	11.82
IP-Adapter + Self-Attention	18.72	7.56

Таблица 1: Сравнение предлагаемых нами методов с существующими по метрикам IS и FID на датасете LFW Deep Funneled. Лучшие результаты выделены жирным шрифтом.

Рис. 6: Результаты генерации для рассмотренных моделей.

5 Заключение

Модели генерации текста в изображение подтолкнули вперед возможности искусственного интеллекта, позволяя создавать качественные и разнообразные изображения на основе текстовых описаний. Тем не менее, возникают трудности при создании изображений конкретных объектов, таких как люди, из-за ограничений точности и передачи идентичности. Для преодоления этих проблем мы предложили новые решения, в том числе улучшенная модификация IP-Адаптера, которая умеет обрабатывать несколько изображений одновременно и улучшает качество генерации. В качестве агрегирующей функции были рассмотрены Pooling и механизм Self-Attention. Данные методы показали высокие значения на метриках качества FID и IS. В дальнейшем существует возможность модифировать уже наши алгоритмы посредством использования LoRA(7), FaceNet(6) и других.

Список литературы

- [1] "IP-Adapter"https://arxiv.org/pdf/2308.06721.pdf.
- [2] "Latent Stable Diffusion"https://arxiv.org/abs/2112.10752.pdf.
- [3] "DreamBooth"https://arxiv.org/pdf/2208.12242.pdf.
- [4] "Attention"https://arxiv.org/pdf/1706.03762.pdf.
- [5] "Dataset"https://vis-www.cs.umass.edu/lfw/.
- [6] "FaceNet"https://arxiv.org/abs/1503.03832.
- [7] "LoRA"https://arxiv.org/pdf/2106.09685.