

HOME CONTESTS GYM PROBLEMSET GROUPS RATING API CANADA CUP 🖫 SECTIONS

PROBLEMS SUBMIT STATUS STANDINGS CUSTOM TEST

B. New Year Permutation

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

User ainta has a permutation $p_1, p_2, ..., p_n$. As the New Year is coming, he wants to make his permutation as pretty as possible.

Permutation $a_1, a_2, ..., a_n$ is *prettier* than permutation $b_1, b_2, ..., b_n$, if and only if there exists an integer k ($1 \le k \le n$) where $a_1 = b_1, a_2 = b_2, ..., a_{k-1} = b_{k-1}$ and $a_k < b_k$ all holds.

As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an $n \times n$ binary matrix A, user ainta can swap the values of p_i and p_j ($1 \le i, j \le n, i \ne j$) if and only if $A_{i,j} = 1$.

Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

Input

The first line contains an integer n ($1 \le n \le 300$) — the size of the permutation p.

The second line contains n space-separated integers $p_1, p_2, ..., p_n$ —the permutation p that user ainta has. Each integer between 1 and n occurs exactly once in the given permutation

Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of the i-th line $A_{i,j}$ is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where $1 \le i \le n$, $A_{i,j} = A_{j,j}$ holds. Also, for all integers i where $1 \le i \le n$, $A_{i,j} = 0$ holds.

Output

In the first and only line, print $\it n$ space-separated integers, describing the prettiest permutation that can be obtained.

Fxamples

Examples		
input		
7		
5243671		
0001001		
0000000		
0000010		
1000001		
0000000		
0010000		
1001000		
output		
1243675		

input 5 4 2 1 5 3 00100 00011 10010 01101 01010 output

Good Bye 2014

Finished

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ACM-ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you - solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

×

×

→ Contest materials

- Announcement
- Tutorial #1
- Tutorial #2

12345

Note

In the first sample, the swap needed to obtain the prettiest permutation is: (p_1, p_7) .

In the second sample, the swaps needed to obtain the prettiest permutation is (p_1, p_3) , (p_4, p_5) , (p_3, p_4) .

A **permutation** p is a sequence of integers $p_1, p_2, ..., p_n$, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as p_i . The size of the permutation p is denoted as n.

Codeforces (c) Copyright 2010-2016 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Nov/30/2016 19:19:10^{UTC+8} (c4). Desktop version, switch to mobile version.