MAT 150C - Homework 5 Markus Tran

1. Let $\delta = \sqrt{d} = \sqrt{-11}$. Note that $d \equiv 1 \pmod{4}$ so \mathcal{O}_{δ} is the lattice of integers and half-integers as pictured.

The lattice \mathcal{O}_{δ}

Furthermore, let $a \in \mathbb{C}$ be a complex number. In the worst case, a is $\frac{3}{\sqrt{11}} < 1$ from an element of \mathcal{O}_{δ} as depicted by the red dot above.

$$rac{x}{rac{\sqrt{3}}{2}}=rac{\sqrt{3}}{rac{\sqrt{11}}{2}}\implies x=rac{3}{\sqrt{11}}.$$

Let $\sigma(a) = |a|^2$ be a size function over \mathbb{C} which has been shown to be multiplicative. Let $a, b \in \mathcal{O}_{\delta}$ be two arbitrary elements with $b \neq 0$. Then let $q' = a/b \in \mathbb{C}$. If $q' \in \mathcal{O}_{\delta}$, then the division algorithm holds with a = bq'. Otherwise, there is an element $q \in \mathcal{O}_{\delta}$ within a distance of 1 from q'. Let r = a - bq so that a = bq + r where $q, r \in \mathcal{O}_{\delta}$. It follows that

$$rac{\sigma(r)}{\sigma(b)} = \sigma\left(rac{r}{b}
ight) = \sigma\left(q'-q
ight) < 1.$$

This implies that $\sigma(r) < \sigma(b)$. Let $E : (\mathcal{O}_{\delta} \setminus \{0\}) \to \mathbb{Z}^+$ be defined as $E(a) = 4\sigma(a)$ which is a Euclidean function for \mathcal{O}_{δ} . Therefore \mathcal{O}_{δ} is a Euclidean domain and therefore also a unique factorization domain.

2. Let $f: R \to R'$ be a ring homomorphism, and let $\mathfrak{p}' \subseteq R'$ be a prime ideal. Let $\mathfrak{p} = f^{-1}(\mathfrak{p}')$. Since $0 \in \mathfrak{p}'$ and f(0) = 0, it follows that $0 \in \mathfrak{p}$ and \mathfrak{p} is not empty. Let $a, b \in \mathfrak{p}$ and $r \in R$. Then

$$f(a+b) = f(a) + f(b) \in \mathfrak{p}' \qquad \implies a+b \in \mathfrak{p}, \ f(ra) = f(r)f(a) \in \mathfrak{p}' \qquad \implies ra \in \mathfrak{p}.$$

Thus \mathfrak{p} is an ideal in R. Now let $I, J \subseteq R$ be ideals such that $IJ \subseteq \mathfrak{p}$. Let f_X denote f(X) to clear up parentheses. Then $(f_{IJ}) = (f_I)(f_J) \subseteq \mathfrak{p}'$.

 $f_{IJ} \subseteq \mathfrak{p}'$ and (f_{IJ}) is the smallest ideal containing f_{IJ} , which means $(f_{IJ}) \subseteq \mathfrak{p}'$.

Let $x \in (f_{IJ})$ so that $x = r(f_i f_j)$ for some $r \in R', i \in I, j \in J$. Then $x = (rf_i)(f_j) \in (f_I)(f_J)$.

Similarly, let $x \in (f_I)(f_J)$ so that $x = (r_i f_i)(r_j f_j) = r_i r_j (f_i f_j) \in (f_{IJ}).$

Since \mathfrak{p}' is prime, either $(f_I) \subseteq \mathfrak{p}'$ in which case $I \subseteq f^{-1}[(f_I)] \subseteq f^{-1}[\mathfrak{p}'] = \mathfrak{p}$, or $(f_J) \subseteq \mathfrak{p}'$ in which case $J \subseteq f^{-1}[(f_J)] \subseteq f^{-1}[\mathfrak{p}'] = \mathfrak{p}$.

- 3. (a) The zero ideal is a subset of every ideal, so by definition, $V(0) = \operatorname{Spec}(R)$. By definition of a prime ideal, R is not prime, and it is also not the subset of any other ideal. Thus $V(R) = \emptyset$.
 - (b) Let $\mathfrak{p} \in V(IJ)$ which means \mathfrak{p} is a prime ideal containing IJ. Since \mathfrak{p} is prime, then either $I \subseteq \mathfrak{p}$ in which case $\mathfrak{p} \in V(I)$, or $J \subseteq \mathfrak{p}$ in which case $\mathfrak{p} \in V(J)$. Now suppose that $\mathfrak{p} \in V(I) \cup V(J)$ and assume that $\mathfrak{p} \in V(I)$ so that $I \subseteq \mathfrak{p}$ where \mathfrak{p} is prime. Then $IJ \subseteq I \subseteq \mathfrak{p}$ which means $\mathfrak{p} \in V(IJ)$.
 - (c) Let $\mathfrak{p} \in V(J)$ so that \mathfrak{p} is a prime and $J \subseteq \mathfrak{p}$. In particular, $I_{\lambda} \subseteq J \subseteq \mathfrak{p}$ which means $\mathfrak{p} \in V(I_{\lambda})$ and

$$V(J)\subseteq igcap_{\lambda\in\Lambda} V(I_\lambda).$$

Let $\mathfrak{p} \in \bigcap_{\lambda \in \Lambda} V(I_{\lambda})$ so that \mathfrak{p} is a prime and $I_{\lambda} \subseteq \mathfrak{p}$ for all $\lambda \in \Lambda$. Let $j = \sum_{\lambda \in \Lambda} r_{\lambda} f_{\lambda} \in J$. Since I_{λ} and \mathfrak{p} are ideals, we have $r_{\lambda} f_{\lambda} \in I_{\lambda} \subseteq \mathfrak{p}$ and $j = \sum_{\lambda \in \Lambda} r_{\lambda} f_{\lambda} \in \mathfrak{p}$ (it is a finite sum). This means $J \subseteq \mathfrak{p}$, so $\mathfrak{p} \in V(J)$ and

$$igcap_{\lambda\in\Lambda}V(I_\lambda)\subseteq V(J).$$