

Statistics & Data Assimilation

An introduction

Andreas S. Stordal & Patrick N. Raanes

Outline

- Probability (crash course)
- Estimation (brief overview)
- State space models
- Monte Carlo methods
- Ensemble Kalman filter

Table of Contents

- Probability (crash course)
- Estimation (brief overview)
- State space models
- Monte Carlo methods
- Ensemble Kalman filter

Probability of events

- > A *sample space*, S, is a (finite or countable) set of *outcomes*, $s \in S$.
- > Subsets $A, B, \dots \subset S$ are called *events*.
- > The *probability* of some A is the number of outcomes in A relative to the total: $\mathbb{P}(A) = \frac{\#A}{\#S}$. More generally, \mathbb{P} is defined by
 - $0 \leq \mathbb{P}(A) \leq 1$
 - $\mathbb{P}(S) = 1$
 - For any two *disjoint* events A, B, the probability of *either* one occurring, i.e. $\mathbb{P}(A \cup B)$, equals the sum $\mathbb{P}(A) + \mathbb{P}(B)$.
- > The *joint* probability is that of both A and B occurring, i.e. $\mathbb{P}(A \cap B)$.
- **>** We say that *A* and *B* are *independent* if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$.
- ho $\mathbb{P}(A|B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$ is the *conditional* probability of A given B
 - $\mathbb{P}(A) = \sum_{i=1}^{N} \mathbb{P}(A|B_i) \mathbb{P}(B_i)$ if $B_1, \dots B_N$ is a *partition* of S.

Venn diagram examples

Venn diagrams exercise

Exercise:

- **>** Express $\mathbb{P}(A \cup B)$ in terms of the labeled quantities.
- > Then do the same for $\mathbb{P}(A \cup B \cup C)$ of the second panel.

Discrete random variables

Instead of asking ' $\underline{\textit{Did}}$ event X_n occur?' (for a family of X_n), **random variables** enables the more convenient ' $\underline{\textit{What}}$ was the value of X?'

- > Implies that the events (lowercase!) x_1, \ldots, x_N partition the sample space.
- \rightarrow \implies X is actually a function mapping any $s \in S$ to some $x_n \in \mathbb{R}$.
- > Can have other random variables, e.g. Y, on the *same* prob. space.
- > Tend to forget about underlying prob. space.

The probability *mass* function (pmf) of X is defined as

$$p(x) = \begin{cases} \mathbb{P}(X = x_n) & \text{if } x = x_n, \\ 0 & \text{otherwise}. \end{cases}$$

Clearly, $0 \le p(x) \le 1$ and $\sum_n p(x_n) = 1$.

Its *cumulative distribution function* (CDF) is: $F(x) = \mathbb{P}(X \le x) = \sum_{x' < x} p(x')$.

Examples

> *Exercise:* What is F(x) for the uniform (constant) dist., i.e. $p(x) = \frac{1}{N}$?

Joint pmf

The *joint* pmf of X and Y is defined as $p(x,y) = \mathbb{P}(X = x \cap Y = y)$

Example:

		Y			
		1	3	9	P(x)
X	2	0.02	0.19	0.08	0.29
	4	0.07	0.14	0.05	0.26
	6	0.05	0.21	0.19	0.45
	P(y)	0.14	0.54	0.32	1

- **Exercise:** What is p(x|y=1)?
- > Probabilities $\frac{0.02}{0.14}, \frac{0.07}{0.14}, \frac{0.05}{14}$ for each of X = 2, 4, 6.

Continuous random variables

> A *continuous* random variable, X, taking values in \mathbb{R} or some subset thereof, has a probability *density* function (pdf) $p(x) \geq 0$ such that

$$\mathbb{P}(X \in A) = \int_A p(x) \, dx.$$

- Can be derived from pmf by dividing by Δx and letting this $\to 0$.
- Clearly, $\int p(x) dx = 1$.
- > Its CDF, F(x), is given by

$$F(x) = \int_{-\infty}^{x} f(z) \, dz$$

N ORCE

Example - probability density function

Example pdfs

> *Exercise:* What is F(x) for the uniform dist. U[0,a], i.e. $p(x) = \frac{1}{a}$ for $x \in [0,a]$.

Independence and conditional densities

The *conditional* density of X given Y = y is defined as

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

> Furthermore, if *independent*,

$$p_{X,Y}(x,y) = p_X(x) p_Y(y),$$

Expectation

The expected value (first moment) of a of a random variable is defined by

$$\mathbb{E}[X] = \int x \, p(x) \, dx$$
 [In the discrete case use $\sum \Delta x$]

The expectation is 'essentially/just' the average/mean of infinite draws of X:

$$\overline{X}_N := rac{1}{N}(X_1 + \dots + X_N) \xrightarrow[N o \infty]{} \mathbb{E}[X]$$
 . [law of large numbers (LLN)]

Transformations

Let Z=f(X) where f is a monotone function with inverse $x=f^{-1}(z)$, then

$$p_Z(z) = p_X \left(f^{-1}(z) \right) \left| \frac{d}{dz} f^{-1}(z) \right|$$

- > Exercise: Prove this
- Note that

$$\mathbb{E}[Z] = \int z \, p_Z(z) \, dz = \int f(x) \, p_X(x) \, dx = \mathbb{E}[f(X)]$$

Moments

Similarity, the k-th moment and central moment are defined by

$$\mathbb{E}[X^k] = \int x^k p(x) dx$$

$$\mathbb{E}[(X - \mathbb{E}[X])^k] = \int (x - \mathbb{E}[X])^k p(x) dx$$

- The first moment is simply the *expected value* $\mu_x = \mathbb{E}[X]$.
- The second central moment is the *variance* $\sigma_x^2 = \mathbb{V}[X] = \mathbb{E}[(X \mathbb{E}[X])^2].$
- The third central moment is the *skewness* $\mathbb{E}[(X \mathbb{E}[X])^3]$.
- Note that the skewness is zero for symmetric distributions.
- The fourth central moment is the *kurtosis* $\mathbb{E}[(X \mathbb{E}[X])^4]$.
- The kurtosis says something about how heavy the tails are.

Moment generating functions

For a random variable X, the moment generating function (MGF) is define by

$$M_x(t) = \mathbb{E}[e^{tX}], \quad \text{must be finite for } t \in (-\epsilon, \epsilon)$$

> The k-th derivative at zero

$$M_x^{(k)}(0) = [X^k]$$

- MGF is unique
- MGF of a sum is the product of their MGF-s:

$$M_{x+y+z}(t) = M_x(t)M_y(t)M_z(t)$$

⇒ Facilitates finding the distributions of sums of random variables

Expectation properties

In general,

- $\mathbf{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $\mathbf{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$

Exercise: If independent, then

- $ightharpoonup \mathbb{E}[XY] = \mathbb{E}[X]\,\mathbb{E}[Y],$
- $> \mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y].$

Covariance

- Let X and Y be two random variables with
 - Expectations $\mathbb{E}[X] = \mu_x$ and $\mathbb{E}[Y] = \mu_x$
 - Variances $\mathbb{V}[X] = \sigma_x^2$ and $\mathbb{V}[Y] = \sigma_y^2$.
- \rightarrow We define the *covariance* between X and Y as

$$\mathbb{C}[X, Y] = \mathbb{E}[(X - \mu_x)(Y - \mu_y)]$$
$$= \mathbb{E}[XY] - \mu_x \mu_y$$
$$= \mathbb{C}[Y, X]$$

- **Example:** If Y = HX for some number H, then $\mathbb{C}[Y, X] = H\sigma_x^2$ regardless of the distribution of X and Y.
- **Exercise**: Show that if X and Y are independent, then $\mathbb{C}[X,Y]=0$
- > Blackboard *exercise*: What is $\mathbb{V}[X + Y]$ (X and Y not necessarily independent)?

Correlation

Define the (unitless) *correlation* between X and Y as

$$\rho[X,Y] = \frac{\mathbb{C}[X,Y]}{\sqrt{\sigma_x^2 \sigma_y^2}}$$

- > Can show by Cauchy-Swartz that $-1 \le \rho \le 1$.
- If X and Y are independent, then $\rho[X,Y]=0$
- ightharpoonup
 ho quantifies (defines) the *linear dependence* between X and Y.
- Example: for Y = HX (as above), $\rho = \pm 1$.
- > Blackboard *exercise*: Let X be a symmetric, zero mean random variable with variance one and let $Y = X^2$. What is $\rho[X, Y]$?

Multivariate (vector) case

> A multivariate, continuous random variable, $X=(X_1,X_2,\ldots,X_d)$, taking values in \mathbb{R}^d or some subset, has a probability density function (pdf) $p(x)=p(x_1,x_2\ldots,x_d)\geq 0$ such that

$$\mathbb{P}(X \in A) = \int_A p(x_1, x_2 \dots, x_d) \, dx_1 dx_2 \dots dx_d,$$

- A joint is a multivariate distribution.
- > Its cumulative distribution function, F(x) is given by

$$F(x) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2, \dots X_d \le x_d)$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_d} p(z_1, z_2, \dots, z_d) dz_1 dz_2 \dots dz_d$$

Example - joint density function

Exercise: Multivariate integration (CDF)

Express the probability that a random variable X with CDF F lies within the rectangle

Marginal distributions

For multivariate continuous random variable, $X = (X_1, X_2, \dots, X_d)$, the marginal distribution for any subset is given by (example:)

$$p(x_1, \dots x_{k-1}, x_{k+1} \dots x_d) = \int_{-\infty}^{\infty} p(x_1, x_2, \dots x_k, \dots, x_d) dx_k$$
$$p(x_k) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} p(x_1, x_2, \dots x_k, \dots, x_d) dx_1 dx_2 \dots dx_{k-1} dx_{k+1} \dots dx_d$$

Factorization

Any joint density, $p(x_1, x_2, \dots, x_d)$, can be factorized as

$$p(x_1, x_2, \dots, x_d) = p(x_1) p(x_2|x_1) p(x_3|x_2, x_1) \dots p(x_d|x_1, x_2, \dots x_d)$$

The ordering can be arbitrary and allows us to work only with marginal distributions

Covariance matrix

Let X be a random vector. Its covariance matrix is defined by

$$\Sigma_x = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X]^\top)]$$
$$= \mathbb{E}[XX^\top] - \mathbb{E}[X]\mathbb{E}[X]^\top$$

- > Other frequently used notations: C_{xx} and P, and we'll also encounter R and Q !!!
- Σ_x is symmetric and positive-definite
- > The $extit{diagonal}$ elements are $[\mathbf{\Sigma}_x]_{ii} = \mathbb{V}[X_i]$
- ullet The *off-diagonal* elements are $[\Sigma_x]_{ij}=\mathbb{C}[X_i,X_j]$
- Σ_x is diagonal if all components of X are *independent*

More covariance

• If X has covariance matrix Σ_x and $Y = a + \mathbf{A}X$, then

$$\boldsymbol{\Sigma}_y = \mathbf{A}\boldsymbol{\Sigma}_x\mathbf{A}^\top$$

The cross covariance matrix between two random vectors X and Y is:

$$\Sigma_{xy} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]^{\top})]$$
$$= \mathbb{E}[XY^{\top}] - \mathbb{E}[X]\mathbb{E}[Y]^{\top}$$

If Z = [X, Y] then

$$oldsymbol{\Sigma}_z = egin{bmatrix} oldsymbol{\Sigma}_x & oldsymbol{\Sigma}_{xy} \ oldsymbol{\Sigma}_{yx} & oldsymbol{\Sigma}_y \end{bmatrix}$$

Table of Contents

- Probability (crash course)
- Estimation (brief overview)
- State space models
- Monte Carlo methods
- Ensemble Kalman filter

Likelihood function

- > For a given observation, y, we often refer to the *likelihood*
- > What is a likelihood?
- > For a statistical model with state X and/or parameter θ , we describe the model in terms of probability density functions, p(y|x) or $p(y|\theta)$
- Yet we often refer to p(y|x) or $p(y|\theta)$ as the *likelihood*
- > The function $p(y|\theta)$ is a *density* w.r.t. y, and thus integrates to 1 for any fixed value of θ .
- > However, for fixed y, we can define $\ell(\theta) = p(y|\theta)$ as a function of θ , a *likelihood* function. It does not integrate to 1
- > For a given observation y and a given value θ , the value of the likelihood function tells us how 'likely' it is that the observation originates from a model with the given value for θ .

Likelihood in DA

- > How do we go from observation to likelihood in Data Assimilation?
- > We have observed Y = y
- We have assumed $y = \mathcal{H}(x) + \epsilon$
- > It is the distribution of ϵ that defines the likelihood of the observation y, evaluated at the model output $\mathcal{H}(x)$

Likelihood in DA

- Y = $\mathcal{H}(x) + \epsilon$, hence $Y \mathcal{H}(x) = \epsilon$
- ightharpoonup As soon as we specify a probability density for ϵ , we have a likelihood
- $p(y|x) = p_{\epsilon}(y \mathcal{H}(x))$
- We claim: an observation without uncertainty is infinitely less valuable than one with uncertainty specified.
- Tell your engineer!

Exercise

- Let Y be the time it takes for a patient to recover (in days) after surgery. Assume that Y is exponentially distributed with parameter θ. We start observations 1 weeks after surgery and observe the patients for 2 weeks.
- **>** What is the likelihood function for θ ?

Point Estimation

- An estimator of an unknown quantity, θ , is any function of the data, $\hat{\theta} = f(y_{1:n})$
- An estimator, $\hat{\theta}$, is unbiased if $\mathbb{E}_{\theta}(\hat{\theta}) = \theta$
- Most classical methods are the method of moments and maximum likelihood
- > Bayesian point estimators are derived from the posterior, often the mean or mode depending on loss function used

- > For an estimator $\hat{\theta}$ we may evaluate the 'quality' by asking:
- Is the estimator precise?

$$\mathbb{B}[\hat{ heta}] = \mathbb{E}[\hat{ heta} - heta], \quad ext{This is the bias}$$

Is the estimator reliable?

$$\mathbb{V}[\hat{ heta}] = \mathbb{E}[(\hat{ heta} - \mathbb{E}[\hat{ heta}])^2],$$
 This is the variance

The mean squared error defines the quality of the estimator

$$MSE[\hat{\theta}] = \mathbb{E}[(\theta - \hat{\theta})^2] = \mathbb{V}[\hat{\theta}] + \mathsf{Bias}[\hat{\theta}]^2$$

Method of moments

- Assume we have N independent observations, $y_{1:n} = (y_1, y_2, \dots, y_N)$ from a distribution/model with p unknown parameters $\theta = (\theta_1, \dots, \theta_p)$
- > Match p empirical and theoretical moments to estimate θ from $y_{1:n}$

$$\mathbb{E}_{\theta}(Y^k) = N^{-1} \sum_{i=1}^{n} y_i^k, \quad k = 1, \dots p$$

- p equations, p unknowns
- > Consistent due to S-LLN

Maximum likelihood

- Given data $y = y_{1:n}$ from a likelihood model $p(y|\theta)$
- $\mathbf{\hat{\boldsymbol{\theta}}} = \text{ arg max}_{\boldsymbol{\theta}} \quad p(\boldsymbol{y}|\boldsymbol{\theta})$
- If true likelihood is $\tilde{p}(y)$ then $p(y|\theta)$ asymptotically minimize

$$KL(\tilde{p}||p_{\theta}) = \int \log \frac{\tilde{p}(y)}{p(y|\theta)} \tilde{p}(y) dy$$

- Not always unbiased (restricted ML often alternative)
- IF a uniformly minimum variance unbiased estimator (UMVUE) exists, then it is a ML estimator
- > ML is transformation invariant, $\widehat{g(\theta)} = g(\hat{\theta})$, where g is any function

Exercise

- Let y_1, y_2, \dots, y_N be an i.i.d. sample from a uniform density on $(0, \theta)$
- ightharpoonup Find (1) the moment estimator and (2) maximum likelihood estimator for heta

Bayesian inference

- > A model typically consists of unknown parameters, θ , and observations y from the likelihood $p(y|\theta)$
- > Classical statistics treats θ as a fixed number that should be estimated from observations
- > Bayesian statistics treats θ as a random variable whose density quantifies belief and is updated using observations

Prior and Posterior

- > Bayesian statistics is conceptually simple
- > For an unknown parameter θ , incorporate prior believes into a prior pdf $p(\theta)$
- Given data y from a likelihood model $p(y|\theta)$
- Update from prior to posterior using Bayes' rule

$$p(\theta|y) = \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta}$$

The integral is the hard part in general

Predictions in Bayesian statistics

> Prior predictive distribution

$$p(y) = \int p(y|\theta) p(\theta) d\theta$$

Posterior predictive

$$p(y'|y) = \int p(y'|\theta) p(\theta|y) d\theta$$

Monte Carlo versions are often used without referencing these equations

Hierarchical Bayes

> Often we have latent variables or hyperparameters in models

Likelihood
$$p(y|x,\theta)$$
, prior $p(x|\theta)$, hyper prior $p(\theta)$ posterior $p(\theta,x|y) = \frac{p(y|x,\theta)\,p(x|\theta)\,p(\theta)}{p(y)}$

> p(y) is known as the model evidence, given two models: m_1 and m_2 we can compute the Bayes ratio

$$\frac{p(y|m_1)}{p(y|m_2)} = \frac{\int p(y|x,\theta_1) \, p(x|\theta_1) \, p_1(\theta_1) \, d\theta_1}{\int p(y|x,\theta_2) \, p(x|\theta_2) \, p_2(\theta_2) \, d\theta_2}$$

Table of Contents

- Probability (crash course)
- Estimation (brief overview)
- State space models
- Monte Carlo methods
- Ensemble Kalman filter

State space models

N R C E

Hidden Markov models

- Initial condition $X_0 \sim p(x_0)$. We will abuse the p notation
- Markov transitions: $X_t \sim p(x_t|x_{t-1})$, e.g. $X_t = \mathcal{M}(X_{t-1}, \eta_t)$
- > Discrete time measurements Y_t , t = 1, 2, ..., T
- Measurement operator $Y_t = \mathcal{H}(X_t) + \epsilon_t \to p(y_t|x_t)$

Our objective is either

- iltering $p(x_t|y_{1:t})$
- > smoothing $p(x_t|y_{1:t})$
- forecasting $p(x_{t+1}|y_{1:t})$

Bayes' rule with several events

Typical formulation

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\,\mathbb{P}(B)}{\mathbb{P}(A)}$$

Often we condition on several events

$$\mathbb{P}(B|A,C) = \frac{\mathbb{P}(A|B,C)\,\mathbb{P}(B|C)}{\mathbb{P}(A|C)}$$

Frequently used in filtering and smoothing

Prediction step

Recall: $p(a,b) = \int_B p(a,b) db$. Similarly

$$p(x_k|y_{1:t-1}) = \int p(x_t, x_{t-1}|y_{1:t-1}) dx_{t-1}$$

$$= \int p(x_t|x_{t-1}, y_{1:t-1}) p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$

$$= \int p(x_t|x_{t-1}) p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$

Chapman-Kolmogorov forward equation Yesterdays forecast

Filter step

Using Bayes' rule:

$$p(x_t|y_{1:t}) = \frac{p(y_t|x_t) p(x_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$
$$p(y_t|y_{1:t-1}) = \int p(y_t|x_t) p(x_t|y_{1:t-1}) dx_t$$

Smoothing step

Hindcast step

$$p(x_t|y_{1:T}) = \int p(x_t, x_{t+1}|y_{1:T}) dx_{t+1}$$
$$= \int p(x_t|x_{t+1}, y_{1:T}) p(x_{t+1}|y_{1:T}) dx_{t+1}$$

Exercise: Show that

$$p(x_t|x_{t+1}, y_{1:T}) = p(x_t|x_{t+1}, y_{1:t})$$

Joint and conditional Gaussian random variables N C E

- > Let Z be a Gaussian random vector
- > Then all combinations of sub-vectors are also Gaussian random vector
- Moreover, all conditional distributions are also Gaussian
- If $Z=[X,\ Y]$ we have $\mu_z=[\mu_x,\mu_y]$ and

$$oldsymbol{\Sigma}_z = egin{bmatrix} oldsymbol{\Sigma}_x & oldsymbol{\Sigma}_{xy} \ oldsymbol{\Sigma}_{yx} & oldsymbol{\Sigma}_y \end{bmatrix}$$

What is the distribution if X given Y?

Joint and conditional Gaussian random variables N C E

- Z = [X, Y]
- $\rightarrow p(x|y)$ is Gaussian with mean and covariance given by

$$\mu_{x|y} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y),$$

$$\Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}$$

- Note that $\Sigma_{x|y}$ is independent of the actual value of Y
- These are the building blocks of the Kalman filter (and ensemble versions)

Kalman Filter

- Analytical solution to filter problem in linear/Gaussian state space models
- > System of the form

$$X_0 \sim \mathcal{N}(\mu_0, \mathbf{P}_0)$$

$$X_t = \mathbf{M}X_{t-1} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \mathbf{Q})$$

$$Y_t = \mathbf{H}X_t + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \mathbf{R})$$

> At each time step, we can use properties of Gaussian random vectors to derive the filtering solution (assuming independence between all combinations of η_t and ϵ_k)

Kalman Filter

- $m{Y}_0$ is Gaussian with mean μ_0 and ${f P}_0$
- > Using affine properties of Gaussian random vectors, $[X_1,Y_1]$ is Gaussian with mean and covariance

$$\begin{split} & \mu_1^f = \mathbf{M} \mu_0, \\ & \mu_{y_1} = \mathbf{H} \mu_1^f, \\ & \mathbf{P}_1^f = \mathbf{M} \mathbf{P}_0 \mathbf{M}^\top + \mathbf{Q}, \\ & \mathbf{P}_{y_1} = \mathbf{H} \mathbf{P}_1^f \mathbf{H}^\top + \mathbf{R}, \\ & \mathbf{P}_{x_1,y_1} = \mathbf{P}_1^f \mathbf{H}^\top \end{split}$$

Kalman Filter

• Using properties of conditional Gaussian random vectors, X_1 given $Y_1 = y_1$ is Gaussian with mean and covariance

$$\begin{split} & \boldsymbol{\mu}_1^a = \boldsymbol{\mu}_1^f + \mathbf{P}_1^f \mathbf{H}^\top (\mathbf{H} \mathbf{P}_1^f \mathbf{H}^\top + \mathbf{R})^{-1} (y_1 - \mathbf{H} \boldsymbol{\mu}_1), \\ & \mathbf{P}_1^a = \mathbf{P}_1^f - \mathbf{P}_1^f \mathbf{H}^\top (\mathbf{H} \mathbf{P}_1^f \mathbf{H}^\top + \mathbf{R})^{-1} \mathbf{H} \mathbf{P}_1^f \end{split}$$

- This is valid for all t by replacing 1 with t and 0 with t-1, by induction
- ightharpoonup Defining $\mathbf{K}_t = \mathbf{P}_t^f \mathbf{H}^{ op} (\mathbf{H} \mathbf{P}_t^f \mathbf{H}^{ op} + \mathbf{R})^{-1}$ we have

$$\mu_t^a = \mu_t^f + \mathbf{K}_t (y_t - \mathbf{H}\mu_t),$$

$$\mathbf{P}_t^a = (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \mathbf{P}_t^f$$

Table of Contents

- Probability (crash course)
- Estimation (brief overview)
- State space models
- Monte Carlo methods
- Ensemble Kalman filter

Monte Carlo Sampling

- Let X be a random variable with probability density p(x)
- > For any function f define the expectation $\mathbb{E}_p[f(X)] = \int f(x) \, p(x) \, dx$
- Assume $\{X^i\}_{i=1}^N$ is an i.i.d. sample from p(x)
- > Then $N^{-1}\sum_{i=1}^n f(X^i)$ converges to $\mathbb{E}_p[f(X)]$, if the variance is finite
- Note: $\mathbb{E}_p[N^{-1}\sum_{i=1}^n f(X^i)] = \mathbb{E}_p[f(X)]$ (unbiased)

Ensemble representation in Data Assimilation

- In data assimilation we often work with Gaussian assumptions, i.e. first and second order moments
- > Parameters and states are represented by an *initial* ensemble $\{X^i\}_{i=1}^N$, i.e. a *Monte Carlo sample* representing the distribution at the initial time and/or the prior distribution if parameters.
- $ightharpoonup \mathbb{E}[X] pprox N^{-1} \sum_{i=1}^n X^i$
- $\mathbf{C}_x \approx (N-1)^{-1} \sum_{i=1}^N (X^i \overline{X}) (X_i \overline{X})^{\top} = \mathbf{A} \mathbf{A}^{\top}$
- $A = (N-1)^{-1/2}[X_1 \overline{X}, X_2 \overline{X}, \dots, X_N \overline{X}]$ is often called the *ensemble anomaly* matrix

Predictions

- > Given an initial ensemble $\{X^i\}_{i=1}^N$, we can compute first and second order moments of the *forecast ensemble* by 'applying' our model of interest, \mathcal{M} to each ensemble member
- $\triangleright \mathbb{E}[\mathcal{M}(X)] \approx N^{-1} \sum_{i=1}^{N} \mathcal{M}(X^i) = \overline{\mathcal{M}}$
- $angle \ \mathbb{C}_{\mathcal{M}} pprox (N-1)^{-1} \sum_{i=1}^{N} (\mathcal{M}(X^i) \overline{\mathcal{M}}) (\mathcal{M}(X_i) \overline{\mathcal{M}})^{\top}$
- $ightharpoonup \mathbb{C}_{\mathcal{M},x} pprox (N-1)^{-1} \sum_{i=1}^{N} (\mathcal{M}(X^i) \overline{\mathcal{M}}) (X_i \overline{X})^{\top}$

More Monte Carlo

- Let X be a random variable with probability density p(x) and cumulative density function $F(x) = \int_{-\infty}^{x} p(u) du$
- > Let U be a uniform random variable on $[0\ 1]$
- Then $X = F^{-1}(U)$ has density p(x) (exercise: prove this)
- U can easily be generated (pseudo) randomly on a computer
- > F^{-1} is only known for some (simple) distributions

Importance Sampling

- > What if I cannot sample from p(x), but q(x)? (another density with at least same support)
- > Since, for an arbitrary function *f*

$$\mathbb{E}_p[f(X)] = \int f(x) p(x) dx = \int f(x) \frac{p(x)}{q(x)} q(x) dx = \mathbb{E}_q \left[f(X) \frac{p(X)}{q(X)} \right]$$

- > Sample $\{X^i\}_{i=1}^N$ from q and then $\mathbb{E}_q\left[N^{-1}\sum_{i=1}^N f(X^i)\frac{p(X^i)}{q(X^i)}\right] = \mathbb{E}_p[f(X)]$ (unbiased)
- $w(x) = \frac{p(x)}{q(x)}$ is the weight function

Proportionality

- > What if we can only evaluate p up to a constant, i.e. $p(x) = c^{-1}\tilde{p}(x)$ where the constant c is unknown and \tilde{p} is known?
- > Note that $\mathbb{E}_q\left[N^{-1}\sum_{i=1}^N f(X^i) \frac{\tilde{p}(X^i)}{q(X^i)}\right] = c\mathbb{E}_p[f(X)]$ multiplicative bias)
- > However $\mathbb{E}_q\left[N^{-1}\sum_{i=1}^N \frac{\tilde{p}(X^i)}{q(X^i)}\right] = c$
- We can study the ratio
- > Define the weight function $w(x) = \frac{p(x)}{q(x)}$

Importance sampling

- ightharpoonup Sample $X_i, \dots X_N$ from q
- Compute

$$\tilde{w}_i = \frac{\tilde{p}(X_i)}{q(X_i)}$$

$$w_i = \frac{\tilde{w}_i}{\sum_j \tilde{w}_j}$$

Then $\sum_i f(X_i)w_i \to E_p[f(X)]$, but it is biased for finite N

Table of Contents

- Probability (crash course)
- Estimation (brief overview)
- State space models
- Monte Carlo methods
- Ensemble Kalman filter

Ensemble Kalman Filter

> Monte Carlo version of Kalman filter for nonlinear systems

$$X_0 \sim \mathcal{N}(\mu_0, \mathbf{P}_0)$$

$$X_t = \mathcal{M}(X_{t-1}) + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \mathbf{Q})$$

$$Y_t = \mathcal{H}X_t + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \mathbf{R})$$

- > How do we 'Kalman filter' this?
- Alternativ 1: Linearize model (and measurement operator)

$$\begin{aligned} \boldsymbol{\mu}_t^f &= \mathcal{M}(\boldsymbol{\mu}_{t-1}^a) \\ \mathbf{P}_t^f &= \mathbf{M} \mathbf{P}_{t-1}^a \mathbf{M}^\top + \mathbf{Q} \end{aligned}$$

> M is the *Jacobian* of the model evaluated at μ_{t-1}^a

Nonlinear Kalman Filter

> If the measurement operator is also nonlinear: $Y_t = \mathcal{H}(X_t) + \epsilon_t$ we get the update equation

$$\mu_t^a = \mu_t^f + \mathbf{K}_t(y_t - \mathcal{H}(\mu_t^f)),$$

$$\mathbf{K}_t = \mathbf{P}_t^f \mathbf{H}^\top (\mathbf{H} \mathbf{P}_t^f \mathbf{H}^\top + \mathbf{R})^{-1}$$

$$\mathbf{P}_t^a = (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \mathbf{P}_t^f$$

- > Where H is the Jacobian of the measurement operator evaluated at μ_t^f
- > This is the classical *Extended* Kalman Filter
- Jacobians are often not available for complex models, and it might lead to unstable updates

Monte Carlo version

- > In the Kalman Filter, how can we
- > Sample a random variable from the forecast distribution at time t using a random variable from the analysis distribution at time t-1?
- How can we sample a random variable form the analysis distribution at time t using a random variable from the forecast distribution at time t?

Ensemble Kalman Filter

- Given a (assume independent) sample $\{X_{t-1}^{a,i}\}_{i=1}^N$ from the analysis distribution at t-1:
- > Sample the forecast distribution:

$$X_t^{f,i} = \mathcal{M}(X_{t-1}^{a,i}) + \eta_t^i, \quad i = 1, \dots, N$$

$$Y_t^{f,i} = \mathcal{H}(X_t^{f,i}) + \epsilon_t^i$$

- > Compute sample covariances P_x , P_{xy} and P_y
- Update the sample (ensemble)

$$X_t^{a,i} = X_t^{f,i} + \mathbf{P}_{xy} \mathbf{P}_y^{-1} (y_t^{\mathrm{obs}} - Y_t^{f,i})$$

> This is one version of the Ensemble Kalman filter

Ensemble Kalman Filter v2

- Given a (assume independent) sample $\{X_{t-1}^{a,i}\}_{i=1}^N$ from the analysis distribution at t-1:
- > Sample the forecast distribution:

$$X_t^{f,i} = \mathcal{M}(X_{t-1}^{a,i}) + \eta_t^i, \quad i = 1, \dots, N$$

 $Y_t^{f,i} = \mathcal{H}(X_t^{f,i})$

- > Compute sample covariances P_x , P_{xy} and P_y
- Update the sample (ensemble)

$$X_t^{a,i} = X_t^{f,i} + \mathbf{P}_{xy}(\mathbf{P}_y + \mathbf{R})^{-1}(y_t^{\text{obs}} - Y_t^{f,i} + \epsilon_t^i)$$

> This is another version of the Ensemble Kalman filter

Localization

- One major challenge with EnKF is the poor estimation of high dimensional covariance matrices using a small sample size
- In addition to Monte Carlo errors, the fact that each ensemble member is updated using the sample covariances results in a positive correlation between ensemble members and hence a *under estimation* of the uncertainty
- To classical ways to deal with this is localization and inflation
- Localization is typically done either by multiplying the Kalman gain or covariance matrices with a *tapering* function, typically based on distances, or by doing *local updates*. Both works best if there is a physical distance between states and observations. For global parameters or non-local observations, covariance thresholding can be used.

Covariance function at grid cell 25

Sample covariance

Tapering function

Localized covariance

Truncated covariance

Inflation

- Inflation is applied to either the forecast- or analysis anomalies (or anomaly matrix)
- $X = \overline{X} + \alpha(X \overline{X})$
- > $\alpha > 1$ is the *inflation factor* that 'compensates' for low rank/underestimated variance in the ensemble
- Benchmark studies on the Lorenz models shows that the optimal EnKF requires both inflation and localization, but they are both hard to tune

Square root ensemble methods

In stochastic EnKF, the simulated measurements are 'perturbed' with a random variable following the observation error distribution

$$X_t^{a,i} = X_t^{f,i} + \mathbf{K}(y_t - \mathbf{H}(X_t^{f,i}) + \epsilon_t^i), \quad \epsilon_t^i \sim \mathcal{N}(0, \mathbf{R})$$

- > This ensures that $\mathbf{P}^a_t pprox (\mathbf{I} \mathbf{K}\mathbf{H}) \mathbf{P}^f_t$ (with equality as $N o \infty$)
- > Square root filter(s) forces $\mathbf{P}^a_t = (\mathbf{I} \mathbf{K}\mathbf{H})\mathbf{P}^f_t$ for the ensemble
- > $\mathbf{X}_t^f = \bar{X}_t^{\ f} + (N-1)^{1/2} \mathbf{A}_t^f$, where \mathbf{A}_t^f is a matrix with column i equal to $(N-1)^{-1/2} (X_t^{f,i} \bar{X}_t^{\ f})$

Square root update

- Update $\bar{X_t}^a = \bar{X_t}^f + \mathbf{K}(y_t H\bar{X_t}^f)$
- > The updated anomaly matrix is given by

$$\begin{split} \mathbf{P}_t^a &= \mathbf{A}_t^a (\mathbf{A}_t^a)^\top = [\mathbf{I} - \mathbf{P}_t^f \mathbf{H}^\top (\mathbf{H} \mathbf{P}_t^f \mathbf{H}^\top + \mathbf{R})^{-1} \mathbf{H}]_t^f \\ &= \mathbf{A}_t^f [\mathbf{I} - (\mathbf{A}_t^f)^\top \mathbf{H} (\mathbf{H} \mathbf{A}_t^f (\mathbf{A}_t^f)^\top \mathbf{H}^\top + \mathbf{R})^{-1} + \mathbf{H} \mathbf{A}_t^f] (\mathbf{A}_t^f)^\top \\ &= \mathbf{A}_t^f [\mathbf{I} - \mathbf{V}_t \mathbf{D}_t^{-1} \mathbf{V}_t^\top] (\mathbf{A}_t^f)^\top, \ \mathbf{V}_t = (\mathbf{H} \mathbf{A}_t^f)^\top \ \text{and} \ \mathbf{D}_t = \mathbf{V}_t^\top \mathbf{V}_t \\ \mathbf{A}_t^a &= \mathbf{A}_t^f [\mathbf{I} - \mathbf{V}_t \mathbf{D}_t^{-1} \mathbf{V}_t^\top]^{1/2} \mathbf{U}_t, \ \mathbf{U}_t \ \text{is a random orthogonal matrix} \\ \mathbf{A}_t^a &= \mathbf{A}_t^f \mathbf{B} \mathbf{\Gamma}^{1/2} \mathbf{B} \top \mathbf{U}_t, \ \text{where} \ [\mathbf{I} - \mathbf{V}_t \mathbf{D}_t^{-1} \mathbf{V}_t^\top] = \mathbf{B} \mathbf{\Gamma} \mathbf{B}^\top \end{split}$$

This is known as the symmetric solution, others exist

Subspace/Transform variants

- > Since the ensemble size is typically much smaller then the dimension of the state space, and since the update of EnKF is a linear combination of the ensemble, we never are actually working in an N-1 dimensional subspace/flat
- By re-writing the ensemble matrix, $\mathbf{E} = [X^1, X^2, \dots, X^N]$ as

$$\mathbf{E} = \overline{X} + \mathbf{AW}$$

> W is an $N \times N$ matrix, initially equal to the identity matrix, and is the one being updated in subspace/transform methods.

Ensemble smoother and iterative methods

- Used to update parameters/initial conditions or states in a given time window without stopping and starting simulations
- More data, longer time evolution of model between updates. More nonlinear/non Gaussian. Poor results
- Introduce iterations. Either by an annealing process or by recasting the problem as an optimization problem
- Methods to study: Iterative ensemble smoother (IES), Randomized maximum likelihood(RML/EnRML), multippel data assimilation (ESMDA)
- Alternative methods such as particle flow, Gaussian mixtures and optimal transport are also available in the DA literature