Artificial Intelligence Fundamentals

2024-2025

All opinions are not equal. Some are a very great deal more robust, sophisticated and well supported in logic and argument than others."

– Douglas Adams

AIMA Chapter 8

First-order logic

1

Outline

- ♦ Why FOL?
- ♦ Syntax and semantics of FOL
- ♦ Fun with sentences
- ♦ Wumpus world in FOL
- ♦ Knowledge Engineering in FOL

Pros and cons of propositional logic

- + Propositional logic is declarative: pieces of syntax correspond to facts
- + Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- + Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- + Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of ...

Logics in general

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Syntax of FOL: Basic elements

```
Constants KingJohn, 2, UCB,...
Predicates Brother, >,...
Functions Sqrt, LeftLegOf,...
Variables x, y, a, b,...
Connectives \land \lor \lnot \Rightarrow \Leftrightarrow
Equality =
Quantifiers \forall \exists
```


Atomic sentences

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \land S_2$, $S_1 \lor S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1,2) \lor \leq (1,2) > (1,2) \land \neg > (1,2)$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for

```
constant symbols → objects
predicate symbols → relations
function symbols → functional relations
```

An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

Models for FOL: Example

Truth example

Consider the interpretation in which

Richard → Richard the Lionheart

 $John \rightarrow$ the evil King John

Brother → the brotherhood relation

Under this interpretation, *Brother*(*Richard, John*) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements *n* from 1 to ∞

For each *k*-ary predicate *P_k* in the vocabulary

For each possible *k*-ary relation on *n* objects

For each constant symbol *C* in the vocabulary

For each choice of referent for *C* from *n* objects . . .

Computing entailment by enumerating FOL models is not easy!

Universal quantification

∀ {*variables*} *sentences*

Everyone at Berkeley is smart:

```
\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
```

 $\forall x P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
(At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn))
 \land (At(Richard, Berkeley) \Rightarrow Smart(Richard))
 \land (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley))
 \land \dots
```


A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using ∧ as the main connective with ∀:

 $\forall x \ At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

∃ {variables} sentences

Someone at Stanford is smart:

 $\exists x \ At(x, Stanford) \land Smart(x)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

```
(At(KingJohn, Stanford) ∧ Smart(KingJohn))

∨ (At(Richard, Stanford) ∧ Smart(Richard))

∨ (At(Stanford, Stanford) ∧ Smart(Stanford))

∨ ...
```


Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$$

is true if there is anyone who is not at Stanford!

P	Q	P o Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Properties of quantifiers

```
\forall x \ \forall y is the same as \forall y \ \forall x
```

$$\exists x \exists y$$
 is the same as $\exists y \exists x$

$$\exists x \ \forall y \ \text{is not}$$
 the same as $\forall y \ \exists x$

$$\exists x \ \forall y \ Loves(x, y)$$

"There is a person who loves everyone in the world"

$$\forall y \exists x \ Loves(x, y)$$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$$

$$\exists x \ Likes(x, Broccoli)$$
 $\neg \forall x \neg Likes(x, Broccoli)$

Brothers are siblings

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$.

One's mother is one's female parent

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$.

One's mother is one's female parent

 $\forall x, y \; M \; other(x, y) \Leftrightarrow (Female(x) \land P \; arent(x, y)).$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; M \; other(x, y) \Leftrightarrow (Female(x) \land P \; arent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x, y \; FirstCousin(x, y) \Leftrightarrow \exists p, ps \; Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$I = 2$$
 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable $2 = 2$ is valid

E.g., definition of (full) *Sibling* in terms of *Parent*:

 $\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg (x = y) \land \exists m, f \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Interacting with FOL KBs

Suppose a wumpus-world agent is using a FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

```
Tell(KB, Percept([Smell, Breeze, None], 5))
 Ask(KB, \exists \ a \ Action(a, 5))
```

I.e., does KB entail any particular actions at t = 5?

Answer: Yes, $\{a/Shoot\} \leftarrow substitution (binding list)$

Given a sentence S and a substitution σ ,

 $S\sigma$ denotes the result of plugging σ into S; e.g.,

S = Smarter(x, y) $\sigma = \{x/Hillary, y/Bill\}$

 $S\sigma = Smarter(Hillary, Bill)$

Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

```
"Perception"
```

```
\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)
\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)
```

Reflex: $\forall t \; AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already?

 $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

Holding(Gold, t) cannot be observed

⇒ keeping track of change is essential

Deducing hidden properties

Properties of locations:

```
\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)
\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)
```

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect $\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adj \; acent(x, y)$

Causal rule—infer effect from cause

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the *Breezy* predicate:

$$\forall y \; Breezy(y) \Leftrightarrow [\exists x \; Pit(x) \land Adj \; acent(x, y)]$$

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s

Describing actions I

"Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe non-changes due to action $\forall s \; HaveArrou(s) \Rightarrow HaveArrou(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, . . .

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

P true afterwards ⇔ [an action made P true

P true already and no action made P false

For holding the gold:

```
\forall a, s \; Holding(Gold, Result(a, s)) \Leftrightarrow
[(a = Grab \land AtGold(s))
\lor \; (Holding(Gold, s) \land \neg (a = Release))]
```


Making plans

Initial condition in KB:

```
At(Agent, [I, I], S_0)
 At(Gold, [I, 2], S_0)
```

Query: $Ask(KB, \exists s \ Holding(Gold, s))$

i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Knowledge Engineering in FOL

Knowledge engineering: the general process of knowledge-base construction.

The steps used in the knowledge engineering process:

- 1. Identify the questions.
- 2. Assemble the relevant knowledge
- 3. Decide on a vocabulary of predicates, functions, and constants
- 4. Encode general knowledge about the domain
- 5. Encode a description of the problem instance
- 6. Pose queries to the inference procedure and get answers
- 7. Debug and evaluate the knowledge base

A complete example is available in the reference book at the end of chapter 8.

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

Developing a KB in FOL requires a careful process of analyzing the domain, choosing a vocabulary, and encoding the axioms required to support the desired inferences.

AIMA notebooks: «logic.ipynb»

Logic

This Jupyter notebook acts as supporting material for topics covered in **Chapter 6 Logical Agents**, **Chapter 7 First-Order Logic** and **Chapter 8 Inference in First-Order Logic** of the book *Artificial Intelligence: A Modern Approach*. We make use of the implementations in the logic.py module. See the intro notebook for instructions.

Let's first import everything from the logic module.

```
from utils import *
from logic import *
from notebook import psource
```

CONTENTS

- Logical sentences
 - Expr
 - PropKB
 - Knowledge-based agents
 - Inference in propositional knowledge base
 - o Truth table enumeration
 - Proof by resolution
 - Forward and backward chaining
 - o DPLL
 - WalkSAT
 - SATPlan
 - FolKB
 - Inference in first order knowledge base
 - Unification
 - o Forward chaining algorithm
 - o Backward chaining algorithm

https://github.com/aimacode/aima-python/blob/master/logic.ipynb

In the next lecture...

- ♦ Reducing first-order inference to propositional inference
- **♦** Unification
- ♦ Generalized Modus Ponens
- ♦ Forward and backward chaining
- ♦ Logic programming
- **♦** Resolution

