Aprendizaje Automático

Depto. de Computación. FCEyN. UBA 2º cuatrimestre de 2016

Recuperatorio del Segundo Parcial

El parcial se aprueba con 60 puntos o más. Poner nombre y apellido en todas las hojas.

Nombre:					
Problema 1	Problema 2	Problema 3		Problema 4	Problema 5
Total:			Nota:		

Problema 1. [40 puntos] Definir brevemente **exactamente 6** de los siguientes términos:

- i. Ecuación de Bellman
- ii. Dilema exploración/explotación
- iii. Función de activación (en RRNN)
- iv. Residuo de una regresión lineal
- v. Regresión LASSO y Ridge
- vi. DBSCAN
- vii. Matriz de similitud (en *clustering*)
- viii. Diferencia entre Value Iteration y Q-Learning

Problema 2. [15 puntos] En regresión lineal múltiple, ¿por qué es necesario normalizar los atributos (es decir, llevarlos a una misma escala) antes de usar regularización?

Problema 3. [15 puntos] Supongamos que tenemos el *grid world* de la siguiente figura. Ejecutar a mano el algoritmo Value Iteration, con γ =0,5 y suponiendo que se inicializan en 0 todos los valores de V. Ilustrar la evolución de los valores de V hasta que se estabilizan.

Problema 4. [15 puntos] ¿Podrá un perceptrón simple aprender cada una de las funciones binarias AND y XNOR, definidas a continuación? Justificar.

р	q	p AND q	p XNOR q
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	1

Problema 5. [15 puntos] ¿Qué resultará de ejecutar K-Means y GMM (en ambos casos con K=2) para cada uno de los siguientes datasets? Justificar.

