# ACCURATE DISSOCIATION ENERGIES FOR THE X 12+ STATES OF KH AND CsH

# Warren T. ZEMKE

Department of Chemistry, Wartburg College, Waverly, IA 50677, USA

and

# William C. STWALLEY

Center for Laser Science and Engineering and Departments of Chemistry and Physics, University of Iowa, Iowa City, IA 52242-1294, USA

Received 17 August 1987; in final form 27 October 1987

We have constructed new hybrid potential energy curves for the ground states of KH and CsH. Then for observed quasibound states (v'' = 23, J'' = 7 in KH; v'' = 25, J'' = 11 in CsH), we calculated energies and linewidths for varying dissociation energies  $D_c$ . Based on a comparison of calculated and observed linewidths, we determined improved  $D_c$  values: for KH,  $D_c = 14772.7 \pm 0.6$  cm<sup>-1</sup> ( $D_0 = 14282.6$  cm<sup>-1</sup>); for CsH,  $D_c = 14791.2 \pm 2.0$  cm<sup>-1</sup> ( $D_0 = 14348.5$  cm<sup>-1</sup>).

#### 1. Introduction

Because of the ionic-covalent avoided crossing of the potential curves of the  $X^{1}\Sigma^{+}$  and  $A^{1}\Sigma^{+}$  states of the alkali hydrides [1,2], it is not possible to accurately estimate the dissociation energy  $(D_c)$  of the alkali hydrides by Birge-Sponer extrapolation [3,4]. Although there has been a number of earlier laser-induced fluorescence studies of the A-X system in KH [5-7], only very recently has an accurate  $D_e$  value been obtained for the  $X^{1}\Sigma^{+}$  state [8]. Using high resolution Fourier transform spectroscopy, Hussein et al.[8] observed A-X system fluorescence from the v' = 7, J' = 6 level to ground state levels up to v'' = 23. From their data they were able to construct a Rydberg-Klein-Rees (RKR) potential energy curve for the X state that went > 99.9% of the way to the dissociation limit.

Based on the rotationally predissociated v''=23, J''=7 level observed by Hussein et al. [8], we have determined a new and very precise  $D_c$  value for the  $X^{-1}\Sigma^{-1}$  state of KH. We constructed a new hybrid potential energy curve that includes a scaled ab initio calculation at short range, RKR turning points in the potential well, and proper long range behavior. For

the observed quasibound level E(v''=23, J''=7), we calculated linewidths for various dissociation energy values. The only levels affected by a variation in  $D_e$  are the uppermost E(23, J) levels. Specifically for v=20, 21 and 22 (with J=0 or J=7), E(v, J) values change by less than 0.01 cm<sup>-1</sup> as the  $D_e$  value is varied from 14770 to 14777 cm<sup>-1</sup>. For the same range of  $D_e$ , E(23, 0) and hence its spacing with other nearby levels varies by 0.2 cm<sup>-1</sup>. From a comparison with the experimental linewidth [8], we determined an improved  $D_e$  value that is 4.3 cm<sup>-1</sup> lower and seven times more precise than the best previous results [8].

Encouraged by our results on KH, we used the same hybrid potential approach on the X  $^{1}\Sigma^{+}$  state of CsH. Based on A-X system fluoresence studies by Crépin et al. [9], and their observed rotationally predissociated v'' = 25, J'' = 11 level, we determined an improved  $D_{\rm e}$  value that is 15.8 cm<sup>-1</sup> lower and 2.5 times more precise than (but outside the range of) the best previous result for CsH [9].

Our approach is easily described with the use of fig. 1, appropriate to the ground state of KH. The figure shows the rotationless potential V(R) for  $D_c=14772.7$  cm<sup>-1</sup> and the effective potential



Fig. 1. The outer portion of the potential energy curve for the  $X^{\dagger}\Sigma^+$  state of KH. E(v=23, J=7) is the quasibound level determined by the effective potential  $U_7(R)$  and E(v=23, J=0) is the last observed bound level determined by the true potential  $V(R) = U_0(R)$ .  $U_7^{\dagger}$  is the barrier maximum occurring at the distance  $R_7^{\dagger}$ . The arrow at the far right indicates  $D_c = 14772.7$  cm<sup>-1</sup>.

 $U_J(R) = V(R) + J(J+1)\hbar^2/2\mu R^2$  in the region of the curve where the potential is dominated by the long range expansion  $-C_n/R^n$  (where n=6, 8 and 10). In KH the quasibound level E(v=23, J=7) has a width because it is above the dissociation limit of V(R) and tunneling occurs. By varying the assumed depth of the potential well (i.e. varying  $D_c$ ) while keeping the long-range portion of the curve unchanged, the calculated energy and width of  $E_{23.7}$  change. For example, if the  $D_e$  value is decreased slightly,  $E_{23,7}$  is closer to the maximum of the barrier ( $U_7^{\ddagger}$  at a distance of  $R_7^{\dagger}$  in fig. 1) and broadens (its width  $\Gamma_{\text{fwhm}}$ increases). Comparison of calculated  $\Gamma_{\text{fwhm}}$  values with the observed value yields the accurate energy of  $E_{23.7}$  with respect to the barrier maximum  $U_7^{\rm r}$ . Since  $E_{23,7}$  is experimentally determined with respect to the minimum of the well, simple arithmetic gives us a value for  $D_e$ .

In sections 2 and 3 we present our analysis for KH and CsH, respectively. In section 4 we give our results, new dissociation energies for the ground states of KH and CsH.

## 2. X 1Σ+ state of KH

The full hybrid potential energy curve for the  $X^{1}\Sigma^{+}$  state consists of a spline fit of the well  $(2.909200 \le R \le 17.0 \ a_0)$  plus an exponential inner wall and a long range  $-C_n/R^n$  expansion for  $R \ge 17.0 \ a_0$ ; see table 1 and fig. 2.

The well of the curve is from the RKR turning points based on the Hussein et al. molecular constants \*1 from  $R_{22}$  = 2.909200  $a_0$  \*2 to the adjusted

<sup>\*\*</sup>I There is a mistake in the molecular constants reported in ref. [8] (personal communication from R.F. Barrow). In ref. [8], table 2 should read:  $10^5Y_{71} = -0.163822469$  (1.00 E-6),  $10^7Y_{81} = 0.633047058$  (0.64 E-7),  $10^8Y_{91} = -0.13521347$  (0.34 E-7).

using the corrected  $Y_{ij}$  constants of ref. [8] (see footnote 1) and the reduced mass  $\mu(^{30}\text{KH}) = 0.982414340$  as found in Huber and Herzberg [10], we were able to reproduce G(v) values to exactly the cited number of figures in ref. [8]. However our  $R_{v-}$  and  $R_{v+}$  turning points were systematically all 0.0001-0.0004 Å larger than those of ref. [8]. Our  $R_c = 2.240316$  Å, while  $R_c = 2.2401$  Å in ref. [8]. We are unable to identify the source of this small difference. Also, the innermost turning point  $R_{23-}$  is out of line with the rest of the adjoining inner turning points and was not included in the final potential V(R).

Table 1
Potential energy curves (in au with respect to the dissociation limit) for  $X^{1}\Sigma^{+}$  states of KH and CsH. V(R) and dV/dR are continuous

| State                             | Region | Range of $R(a_0)^{a}$                 | Function a)                                                                                |
|-----------------------------------|--------|---------------------------------------|--------------------------------------------------------------------------------------------|
| KH X <sup>1</sup> Σ <sup>+</sup>  | I      | R≤2.909200                            | $(1.46589) \exp(-0.372253R^2) - 0.063415627$                                               |
|                                   | II     | $2.909200 \le R \le 17.0$             | tensioned cubic spline fit of RKR turning points b)                                        |
|                                   | III    | 17.0 ≤ <i>R</i>                       | and the long range point at $17.0 a_0$<br>- $105.7/R^6 - 7076/R^8 - 642800/R^{10}$         |
| CsH X <sup>1</sup> Σ <sup>+</sup> | I      | <i>R</i> ≤3.402405                    | $(57.34445) \exp(-2.07000R) - 0.067401380$                                                 |
|                                   | 11     | $3.402405 \leqslant R \leqslant 18.0$ | tensioned cubic spline fit of RKR turning points by and the long range point at $18.0 a_0$ |
|                                   | Ш      | 18.0 ≤ <i>R</i>                       | $-132.9R^6 - 10690/R^8 - 1143000/R^{10}$                                                   |

a)  $1a_0 = 0.5291770 \text{ Å}$ ; 1 au = 1 hartree = 219474.6 cm<sup>-1</sup>.

 $R_{23+}=13.215548~a_0^{~*3}$ . The inner wall of the curve consists of an exponential function of the form  $A\exp(BR^2)-C$  and is based on the Langhoff et al. points [12] at 2.50, 2.75 and 3.00  $a_0$  and shifted to fit smoothly onto the innermost  $R_{22-}$  turning point. The long range expansion  $V_{LR}(R)=-C_6/R^6-C_8/R^8-C_{10}/R^{10}$  is well defined. The  $C_6$ ,  $C_8$  and  $C_{10}$  coefficients are directly from Proctor and Stwalley

\*\*3 Although the  $R_{23-}$  value was discarded, the difference  $R_{23+}-R_{23-}$  should be preserved. This difference is the RKR  $f_{\nu=23}$  integral and its uncertainty is related to the uncertainty in the  $G(\nu=23)$  value. The value of  $R_{23-}$  was estimated to be too small by 0.0188540  $a_0$ , so the associated  $R_{23+}$  was shifted to a larger value by precisely that amount to preserve  $R_{23+}-R_{23-}$ . Thus the final adjusted  $R_{23+}=13.196694+0.018854=13.215548 <math>a_0$ . See the papers by Yang [11] and LeRoy [4] where this approach and a more complete rationale are given.



Fig. 2. Hybrid potential energy curve for the  $X^{-1}\Sigma^{+}$  state of KH. The inner dashed portion of the curve is based on the slope found in the calculations of Langhoff et al. [12]. The solid line is a spline fit through the RKR turning points  $R_{22-}$  to  $R_{23+}$ . The outer dashed portion of the curve is a spline fit from the last turning point  $(R_{23+} = 7.0 \text{ Å})$  through the long range portion of the curve  $V_{LR}(R)$  defined by the  $C_6$ ,  $C_8$  and  $C_{10}$  long range coefficients. The analytical form  $V_{LR}(R) = -\sum_{n=6,8,10} (C_n/R^n)$  holds for  $R \ge 9.0 \text{ Å}$ .

b) See text for details of specific points.

[13]. The LeRoy criterion [14] for the onset of the breakdown of the long range expansion occurs at  $\approx 14$   $a_0$ , so we take  $V_{LR}(R)$  as valid for  $R \ge 17.0$   $a_0$ .

With a complete potential energy curve, energies and widths for the quasibound level  $E_{23,7}$  were computed as the assumed depth  $D_{\rm e}$  was varied. Plotted in fig. 3 are linewidths as a function of the energy level  $E_{23,7}$  below the barrier maximum  $U_7^{\rm i}$ . The intercept of the smooth near-linear curve with the observed  $\Gamma_{\rm fwhm}$  value  $(0.40\pm0.05~{\rm cm}^{-1}~[8])$  yields the



Fig. 3. The linewidth  $\Gamma_{\rm fwhm}$  of the quasibound level  $E_{23,7}$  for the X  $^1\Sigma^+$  state of KH for various  $D_{\rm e}$  values. The barrier  $U_7^{\rm t}$  is defined with respect to the dissociation limit;  $E_{23,7}$  is determined with respect to the minimum of the well. Thus the quantity  $U_7^{\rm t} - (E_{23,7} - D_{\rm e})$  measures the energy difference between the top of the barrier and the quasibound level. The experimental  $\Gamma_{\rm fwhm}$  of 0.40 cm $^{-1}$  (solid horizontal line) is from ref. [8]; the  $\pm 0.05$  cm $^{-1}$  uncertainty (estimated by us) is indicated by the dashed horizontal lines.

value  $3.5 \pm 0.2$  cm<sup>-1</sup> below the barrier maximum for  $E_{23.7}$ .

We examined the effect an adjustment of the outermost RKR turning point would have on  $E_{23.7}$  and its width. Shifting  $R_{23+}$  inwards by  $\approx 0.01 \text{ Å}$  (  $\approx 0.02$  $a_0$ ; see footnote 3) resulted in an increase in  $E_{23,7}$  by  $0.17~\rm cm^{-1}$  and a decrease in its  $\Gamma_{\rm fwhm}$  by  $0.04~\rm cm^{-1}$ (as the barrier got thicker). This is within the uncertainty already noted. Moreover, trial and error adjustments in  $R_{23+}$  and  $D_e$  left the value of  $U_7^t$  unchanged to within  $\pm 0.1$  cm<sup>-1</sup>. Clearly, the shape and height of the rotational barrier, and in turn the quasibound level, are strongly determined by the long range portion of the curve,  $V_{LR}(R)$ . This is not surprising since the barrier maximum (see fig. 1) occurs at  $R_7^{\ddagger} = 16.2 \ a_0 \ (8.6 \ \text{Å})$ , very near the 17  $a_0$ threshold for the  $V_{LR}(R)$  expansion. Based on the reported uncertainty in the  $C_6$  long range coefficient [13], we generously assign an uncertainty in  $U_7^{\ddagger}$  of 0.4 cm<sup>-1</sup>. Thus the energy of the quasibound level above the dissociation limit is determined to be  $(E_{23.7}-D_e)=(11.0\pm0.4)-(3.5\pm0.2)=7.5\pm0.6$ cm<sup>-1</sup>.

# 3. X<sup>1</sup>Σ<sup>+</sup> state of CsH

The full hybrid potential energy curve for the X state of CsH was constructed in a fashion similar to that for the X state of KH; see table 1 and fig. 4. The inner wall of the potential consists of an exponential function of the form  $A \exp(-BR) - C$ , based on the work of Yang et al. [15]. Similar to the case with KH, there are theoretical calculations for short, inner wall distances [16,17]. However, the theoretical inner wall slopes did not match the innermost RKR curve of Crépin et al. [9]. The A and B constants are taken directly from Yang et al.; the C constant differs since the scaling here is to the Crépin et al. RKR curve instead of the Hsieh et al. [18] RKR curve.

The well of the curve is from the RKR turning points based on the Crépin et al. molecular constants from  $R_{15} = 3.402405 \ a_0$  to  $R_{15+} = 8.427850 \ a_0$ . The RKR points at Hsieh et al. agree well with these points, but only up to v=14. Although Yang [11] obtains a potential up to v=24, his inner wall shows a ripple above v=15 and we did not use his inner V(R) points. However, we did use his points for the



Fig. 4. Hybrid potential energy curve for the  $X^{-1}\Sigma^{+}$  curve of CsH. The inner dashed portion of the curve is based on the earlier curve of Yang et al. [15]. The solid line is a spline fit through the RKR [9] turning points  $R_{15-}$  to  $R_{15+}$ . The scaled Yang effective potential at intermediate distances 4.5-6.6 Å [11] fits smoothly onto the RKR curve and is shown as a dashed line through solid points. The outer dashed portion of the curve is a spline fit from the last Yang point through the long range portion of the curve  $V_{LR}(R)$  which holds for  $R \ge 9.5$  Å.

outer portion of the well beyond the range of the Crépin et al. points.

The Yang points are based on a  $U_{15}(R)$  effective potential obtained from  $B^{1}\Sigma^{+}-X^{1}\Sigma^{+}$  laser-induced fluorescence measurements. To obtain rotationless potential points, the proper centrifugal term is subtracted from  $U_{15}(R)$  at each R value. We scaled the rotationless Yang points to match smoothly onto the  $R_{15+}$  outermost Crépin et al. point and extended the well out to 12.561015  $a_0^{\#4}$ .

With a complete potential energy curve, energies and widths for the quasibound level  $E_{25,11}$  were computed as the assumed well depth  $D_{\rm c}$  was varied. Plotted in fig. 5 are linewidths as a function of the level  $E_{25,11}$  below the barrier maximum  $U_{11}^{\rm t}$ . The intercept of the smooth near-linear curve with the observed  $\Gamma_{\rm fwhm}$  value  $(0.6\pm0.1~{\rm cm}^{-1}~[9])$  yields the value  $5.3\pm0.3~{\rm cm}^{-1}$  below the barrier maximum for  $E_{25,11}$ .

Because the location of the barrier maximum  $(R_{11}^{t} \approx 15.3 \ a_0)$  is midway between the last Yang RKR point and the threshold for the  $V_{LR}(R)$  expansion, the value of  $U_{11}^{t}$  is not as strongly dominated by the long range expansion as was the case for KH. We examined the effect an adjustment of this outermost RKR point would have on  $U_{11}^{t}$ . A shift of  $\pm 0.10 \ \text{Å} \ (\approx 0.2 \ a_0)$ , about six times the shift in R noted by Yang [11], caused  $U_{11}^{t}$  to vary as much as the uncertainty in the long range coefficients. Thus we conservatively assign an uncertainty in  $U_{11}^{t}$  twice

When the Course of Scaling factor is 1.015497; multiplying nine points from table V of Yang [11] by this factor gave the following lowered energies: -0.01652328 au at 4.501 Å; -0.01412328 au at 4.626 Å; -0.01184035 au at 4.756 Å; -0.00967864 au at 4.895 Å; -0.00764186 au at 5.048 Å; -0.00573463 au at 5.211 Å; -0.00248559 au at 5.692 Å; -0.00132007 au at 6.084 Å; and -0.00046084 au at 6.647 Å. These energies are with respect to a dissociation limit of 0.0 au. The point at 5.386 Å causes tension in the spline fit and was not included in the final potential V(R).



Fig. 5. The linewidth  $\Gamma_{\rm fwhm}$  of the quasibound level  $E_{25,11}$  for the X  $^1\Sigma^+$  state of CsH for various  $D_e$  values. The barrier maximum  $U_{11}^e$  is defined with respect to the dissociation limit;  $E_{25,11}$  is determined with respect to the minimum of the well. Thus the quantity  $U_{11}^e - (E_{25,11} - D_e)$  measures the energy difference between the top of the barrier and the quasibound level. The experimental  $\Gamma_{\rm fwhm}$  of 0.6 cm $^{-1}$  (solid horizontal line) is estimated from fig. 3 of ref. [9]; the  $\pm 0.1$  cm $^{-1}$  uncertainty (estimated by us) is indicated by the dashed horizontal lines.

as large as that due to the long range coefficients (0.74 cm<sup>-1</sup> [13]). Consequently the energy of the quasibound level above the dissociation limit is determined to be  $(E_{25,11}-D_c)=(26.1\pm1.5)-(5.3\pm0.3)$ = 20.8±1.8 cm<sup>-1</sup>.

## 4. Results and conclusions

In the  $X^{1}\Sigma^{+}$  state of KH, the rotational predis-

Table 2 Dissociation energies ( $D_r$ ) for the X  $^1\Sigma^+$  state of  $^{39}KH$ 

| Ref.      | $D_{\rm e}$ (cm <sup>-1</sup> ) |
|-----------|---------------------------------|
| [10]      | 15000                           |
| [16] a)   | 14490                           |
| [2]       | $14500 \pm 500$                 |
| [4]       | $15020 \pm 400$                 |
| [12] a)   | 14500                           |
| [8]       | 14777 ± 4                       |
| this work | 14772.7± 0.6                    |

a) Ab initio calculations with no error bounds cited.

sociated level  $E_{23,7}$  is observed [8] to be 14780.18 cm<sup>-1</sup> above the minimum of the potential well. In section 2 we determined  $E_{23,7}$  to be  $7.5\pm0.6$  cm<sup>-1</sup> above the dissociation limit. Therefore we calculate  $D_{\rm c}({\rm KH}({\rm X}^{\rm T}\Sigma^+))=14772.7\pm0.6$  cm<sup>-1</sup> ( $D_0=14282.6$  cm<sup>-1</sup>). This value agrees well with the best previous value [8],  $D_{\rm c}=14777\pm4$  cm<sup>-1</sup>. Table 2 contains a list of the most recent determinations of the dissociation energy, both experimental and theoretical. They converge very nicely to the most precise value, that of this work.

In the  $X^{1}\Sigma^{+}$  state of CsH, the rotationally predissociated level  $E_{25,11}$  is observed \*5 to be  $14812.0\pm0.2~\mathrm{cm^{-1}}$  above the minimum of the potential well. In section 3 we determined  $E_{25,11}$  to be  $20.8\pm1.8~\mathrm{cm^{-1}}$  above the dissociation limit. Therefore we calculate  $D_{\mathrm{e}}(\mathrm{CsH}(\mathrm{X^{1}\Sigma^{+}}))=14791.2\pm2.0$  $\mathrm{cm^{-1}}$  ( $D_{0}=14348.5~\mathrm{cm^{-1}}$ ).

Table 3 contains a list of the most recent determinations of the dissociation energy, both spectroscopic and theoretical. They bracket the very precise

In the experiments of Crépin et al. [9], they pumped from the v''=0, J''=9 level of the X  $^1\Sigma^+$  state with the 457.9 nm line of the Ar $^+$  laser to reach the v'=19, J'=10 level of the A  $^1\Sigma^+$  state. Then they measured fluorescence into numerous highlying vibrational-rotational levels of the X state, including the predissociated  $E_{25,11}$  level. A mistake was made in their statement (in ref. [9]) of the E(v''=0,J''=9) level energy and thus their subsequent value of  $E_{25,11}$  should be decreased by 1.3 cm $^{-1}$  (personal communication from C. Amiot). In addition, they did not include the zero-point correction  $Y_{00}$  (which equals 0.18 cm $^{-1}$ ) in the determination of E(v''=0,J''=9). So, contrary to their value of  $E_{25,11}=14813.1$  cm $^{-1}$ , the value of the quasibound level should be 1.1 cm $^{-1}$  lower than reported:  $E_{25,11}=(14813.1\pm0.1)-1.3+Y_{00}=(14811.8\pm0.1)+(0.2\pm0.1)=14812.0\pm0.2$  cm $^{-1}$ .

Table 3 Dissociation energies ( $D_e$ ) for the X  $^1\Sigma$  + state of  $^{133}$ CsH

| Ref.               | $D_{ m e}$ (cm $^{-1}$ ) |
|--------------------|--------------------------|
| [10]               | 14600                    |
| [19]               | $15000 \pm 500$          |
| [16] a)            | 15384                    |
| [17] <sup>a)</sup> | 14900                    |
| [2]                | $14500 \pm 500$          |
| [11]               | $14805 \pm 30$           |
| [4]                | $14910 \pm 400$          |
| [20] a)            | 14500                    |
| 191                | $14807 \pm 5$            |
| [12] a)            | 14500                    |
| this work          | $14791.2 \pm 2.0$        |

a) Ab initio calculations with no error bounds cited.

value reported in this work, except for the value of Crépin et al. [9]. The disagreement arises because of the way Crépin et al. determined  $D_{\rm e}$ . In their fluorescence measurements they observed a noticeably broadened line, associated with the quasibound level  $E_{25,11}$  which they correctly assigned as an upper bound to  $D_{\rm e}$ . The next line associated with the level  $E_{25,10}$  was assumed to be a lower bound because the line was not perceptively broadened. Thus they reported a  $D_{\rm e}$  bounded by the last sharp level and the first broadened level:  $E_{25,10}({\rm sharp}) \leq D_{\rm e} \leq E_{25,11}({\rm broad})$ , or  $14801.7 \leq D_{\rm e} \leq 14812.0~{\rm cm}^{-1}$ .

Clearly the  $E_{25,11}$  level is broadened due to rotational predissociation and becomes a valid upper bound to  $D_{\rm e}$ . However, the inability to observe broadening in the "last sharp level" does not mean  $E_{25,11}$  is not quasibound. Our calculations show that  $E_{25,10}$  is quasibound like  $E_{25,11}$  (but with  $\Gamma_{\rm fwhm} < 0.1$  cm<sup>-1</sup>, the uncertainty in the width of the observed quasibound  $E_{25,11}$  level). Thus the Crépin et al. contention that  $E_{25,10} \le D_{\rm e}$  is not valid and their  $D_{\rm e}$  value of 14807 cm<sup>-1</sup> should be lowered, closer to the value  $D_{\rm e} = 14791.2$  cm<sup>-1</sup> determined in this work.

Based on an analysis of the binding energy of the last vibrational levels near dissociation, similar to that presented earlier by Stwalley [21], we predict there may be a v=24 level in the ground state of KH, but definitely no v=25. Finally, the present status of the alkali hydrides is that the ground state dissociation energies for LiH [22], KH and CsH are known to within 2 cm<sup>-1</sup>. Further experimental investigation is underway on NaH and RbH at the University of Iowa.

# Acknowledgement

We wish to thank Professor Joel Tellinghuisen for his RKR program [23], and Professor Kenneth Sando for his EIGEN program [24], which were critical in the completion of this work. Personal communications from Professor R.F. Barrow and Professor C. Amiot, concerning KH and CsH, respectively, are gratefully acknowledged.

#### References

- [1] R.S. Mulliken, Phys. Rev. 50 (1936) 1017, 1028.
- [2] S.C. Yang and W.C. Stwalley, ACS Symp. Ser. 179 (1982) 241
- [3] A.G. Gaydon, Dissociation energies and spectra of diatomic molecules, 3rd Ed. (Chapman and Hall, London, 1968).
- [4] S.C. Yang, D.D. Nelson and W.C. Stwalley, J. Chem. Phys. 78 (1983) 4541.
- [5] J.A. Cruse and R.N. Zare, J. Chem. Phys. 60 (1974) 1182.
- [6] M.Giroud and O. Nedelec, J. Chem. Phys. 73 (1980) 4151.
- [7] A. Pardo, J.M.L. Poyato, M.S. Guijarro and J.I. Fernandez-Alonso, J. Mol. Spectry. 97 (1983) 248.
- [8] K. Hussein, C. Effantin, J. d'Incan, J. Vergès and R.F. Barrow, Chem. Phys. Letters 124 (1986) 105.
- [9] C. Crépin, J. Vergès and C. Amiot, Chem. Phys. Letters 122 (1984) 10.
- [10] K.P. Huber and G. Herzberg, Molecular spectra and molecular structure (Van Nostrand Reinhold, New York, 1979).
- [11] S.C. Yang, J. Chem. Phys. 77 (1982) 2884.
- [12] S.R. Langhoff, C.W. Bauschlicher Jr. and H. Partridge, J. Chem. Phys. 85 (1986) 5158.
- [13] T.R. Proctor and W.C. Stwalley, J. Chem. Phys. 66 (1977) 2063.
- [14] R.J. LeRoy, in: Molecular spectroscopy, Vol. 1, eds. R.F. Barrow, D.A. Long and D.J. Millin (Chem. Soc., London, 1973) p. 113.
- [15] S.C. Yang, Y.K. Hsieh, A.C. Tam, W.T. Zemke, K.K. Verma and W.C. Stwalley, J. Chem. Phys. 75 (1981) 3679.
- [16] W.J. Stevens, A.M. Karo and J.R. Hiskes, J. Chem. Phys. 74 (1981) 3989.
- [17] B. Laskowski and J.R. Stallcop, J. Chem. Phys. 74 (1981) 4883.
- [18] Y.K. Hsieh, S.C. Yang, A.C. Tam and W.C. Stwalley, J. Chem. Phys. 68 (1978) 1448.
- [19] W.C. Stwalley, S.C. Yang, Y.K. Hsieh, F.B. Orth and K.C. Li, J. Chem. Phys. 69 (1978) 1791.
- [20] G.H. Jeung, F. Speigelmann, J.P. Daudey and J.P. Malrieu, J. Phys. B16 (1982) 2659.
- [21] W.C. Stwalley, Chem. Phys. Letters 6 (1970) 241.
- [22] C.R. Vidal and W.C. Stwalley, J. Chem. Phys. 80 (1984) 2697.
- [23] J. Tellinghuisen, Computer Phys. Commun. 6 (1974) 221.
- [24] K.M. Sando and A. Dalgarno, Mol. Phys. 20 (1971) 103.