2.Тренировочные задания по МКТ

<u>**1(A)**</u> Какое явление наиболее убедительно доказывает, что между молекулами существуют силы отталкивания?

- 1) диффузия
- 2) броуновское движение
- 3) беспорядочное движение молекул
- 4) практическая несжимаемость жидкостей и твердых тел

2(A) Где число молекул больше: в одном моле водорода или в одном моле воды?

- 1) одинаковое
- 2) в одном моле водорода
- 3) в одном моле воды
- 4) ответ неоднозначен.

3(A) Температура твердого тела понизилась на 17° С. По абсолютной шкале температур это изменение составило

- 1) 290 K
- 2) 256 K
- 3) 17 K
- 4) 0 K

 $\underline{4(A)}$ Молекула азота летит со скоростью \overrightarrow{v} перпендикулярной к стенке сосуда. Чему равен модуль вектора изменения импульса молекулы?

- 1) 0
- 2) mv
- 3) 2mv
- 4) 4mv

<u>5(A)</u> Частицы вещества находятся в среднем на таких расстояниях друг от друга, при которых силы притяжения между ними незначительны. В этом агрегатном состоянии вещество

- 1) сохраняет свою начальную форму
- 2) практически не сжимается
- 3) не сохраняет форму, но сохраняет начальный объем
- 4) занимает весь предоставленный объем

<u>6(A)</u> Как изменится средняя кинетическая энергия идеального газа при увеличении абсолютной температуры в 2 раза?

- 1) не изменится
- 2) увеличится в 2 раза
- 3) увеличится в 4 раза
- 4) уменьшится в 4 раза.

<u>7(A)</u> На каком из графиков представлен график зависимости плотности идеального газа от его температуры при p=const?

8(A) В первом сосуде водород, а во втором – кислород. Сравните давления p_1 и p_2 в этих сосудах, если концентрация молекул и температура в обоих сосудах одинаковы.

- 1) $p_1 = p_2$
- 3) $16p_1 = p_2$
- 2) $p_1 = 16p_2$
- 4) $p_1 = 8p_2$

9(A) Давление 3 моль водорода в сосуде при температуре 300 К равно p_1 . Каково давление 1 моль водорода в этом сосуде при вдвое большей температуре?

- $(1)\frac{3}{2}p_1$
- 2) $\frac{2}{3}$ p₁
- 3) $\frac{1}{6}$ p₁
- 4) 6p₁

10(A) Сколько частиц содержится в 4 г водорода, если степень его диссоциации 5%?

1) $6 \cdot 10^{22}$

3) $12,6\cdot10^{23}$

2) $6 \cdot 10^{25}$

4) $13.2 \cdot 10^{23}$

<u>11(A)</u> В стеклянный сосуд закачивают воздух, одновременно нагревая его. При этом температура воздуха в сосуде повысилась в 3 раза, а его давление возросло в 5 раз. Во сколько раз увеличилась масса воздуха в сосуде?

1) в 3 раза 2) в 5 раз 3) в 15 раз 4) в
$$\frac{5}{3}$$
 раза

12(A) В сосуде неизменного объема находится идеальный газ в количестве 1 моль. Как надо изменить абсолютную температуру сосуда с газом, чтобы при добавлении в сосуд еще 1 моль газа давление газа на стенки сосуда уменьшилось в 2 раза?

- 1) увеличить в 2 раза
- 2) уменьшить в 2 раза
- 3) увеличить в 4 раза
- 4) уменьшить в 4 раза

13(A) Понятие «изопроцесс» можно применять, если выполняются следующие условия:

- А. масса данного газа постоянна;
- Б. объем газа постоянен;
- В. давление газа постоянно;
- Г. температура газа постоянна;
- Д. один из параметров V, p, T постоянен.
- 1) БиВ

3) АиД

2) А и Г

4) Б, В и Г.

 $\underline{\mathbf{14(A)}}$ При постоянной температуре объем данной массы идеального газа возрос в 9 раз. Давление при этом ...

- 1) увеличилось в 3 раза
- 2) увеличилось в 9 раз
- 3) уменьшилось в 3 раза
- 4) уменьшилось в 9 раз

15(A) График изменения состояния идеального газа в осях V, р представляет собой прямую линию 1—2. Как изменялась температура газа в этом

процессе?

- 1) уменьшалась
- 2) увеличивалась
- 3) не изменялась
- 4) такой процесс осуществить невозможно.

16(A) На рТ-диаграмме представлена зависимость давления идеального газа постоянной массы от абсолютной температуры. Как изменяется объем в процессе 1-2-3?

- процессе 1-2-3? 1) на участках 1-2 и 2-3 увеличивается
- 2) на участках 1-2 и 2-3 уменьшается 3) на участке 1-2 уменьшается, на участке 2-3 остается неизменным
- 4) на участке 1-2 не изменяется, на участке 2-3 увеличивается

- 17(А) Какое из утверждений справедливо для кристаллических тел?
- 1) Во время плавления температура кристалла изменяется.
- 2) В расположении атомов кристалла отсутствует порядок.
- 3) Атомы кристалла расположены упорядоченно.
- 4) Атомы свободно перемещаются в пределах кристалла.
- **18(A)** В сосуде под поршнем находятся только насыщенные пары воды. Как будет меняться давление в сосуде, если начать сдавливать пары, поддерживая температуру сосуда постоянной?
- 1) давление будет постоянно расти
- 2) давление будет постоянно падать
- 3) давление будет оставаться постоянным
- 4) давление будет оставаться постоянным, а затем начнет падать.
- 19(А) Укажите правильное утверждение.

При переходе вещества из жидкого состояния в газообразное ...

- А. увеличивается среднее расстояние между его молекулами.
- Б. молекулы почти перестают притягиваться друг к другу.
- В. полностью теряется упорядоченность в расположении его молекул.
- 1) только А
- 3) только В
- 2) только Б
- 4) А, БиВ
- **<u>20(B)</u>** Определите давление газа при температуре 127 $^{\circ}$ C, если концентрация молекул в нем 10^{21} частиц на 1 3 . Ответ выразите в паскалях и округлите до целых.
- **21(B)** В сосуде объемом 110 л находится 0,8кг водорода и 1,6 кг кислорода. Определите давление смеси, если температура окружающей среды 27 °C.
- **22(B)** В 1 см 3 объема при давлении 20 кПа находится $5 \cdot 10^{19}$ молекул гелия. Определите среднюю квадратичную скорость молекул при этих условиях.
- **23(B)** Идеальный одноатомный газ в количестве v = 0.09 моль находится в равновесии в вертикальном цилиндре под поршнем массой m = 5 кг. Трение между поршнем и стенками цилиндра отсутствует. Внешнее атмосферное давление равно $p_o = 10^5$ Па. В результате нагревания газа поршень поднялся на высоту $\Delta h = 4$ см, а температура газа поднялась на $\Delta T = 16$ К. Чему равна площадь поршня? Ответ выразите в см² и округлите до целых.
- **24(C)** В сосуде находятся жидкость и ее насыщенный пар. В процессе изотермического расширения объем, занимаемый паром, увеличивается в 3 раза, а давление пара уменьшается в 2 раза. Найдите отношение массы m_2 жидкости к массе m_1 пара, которые первоначально содержались в сосуде.
- **25(C)** В вертикально расположенном закрытом цилиндрическом сосуде, разделенным поршнем массы m = 0,5 кг на два отсека, находится идеальный газ. Количество вещества в верхнем отсеке в 4 раза меньше, чем в нижнем. Площадь основания цилиндра S равна 20 см². В положении равновесия поршень находится посередине сосуда. А температура в обоих отсеках одинаковая. Определите давление газа р в нижнем сосуде.

4.Ответы к заданиям по МКТ

1.Ответы к обучающим заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A
2	2	1	4	3	1	3	3	4	4	4	1	3	3
15A	16A	17A	18A	19A	20A	21B	22B		23C		24C	25C	
2	1	1	3	2	1	3	1,5·10 ⁵ Па		0,54 кг	Умен. в 8 раз			2,8·10 ⁻¹⁰

2. Ответы к тренировочным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A	15A	16A
4	1	3	3	4	2	1	1	2	3	4	4	3	4	1	3
17	17A		19A		20B		21B		22B		23B	24C		25C	
3	3		4	.	6 Па		10,2 МПа		425 м/с		25 cm ²	0,5		3300 Па	

24С При изотермическом увеличении объема жидкость начинает испаряться. Давление пара при этом не изменяется до тех пор, пока вся жидкость не испариться (пар остается насыщенным, и его давление определяется температурой). Дальнейшее увеличение объема вызывает уменьшение давления по закону Бойля-Мариотта. Пусть p_1, V_1, T_1 ; p_2, V_2, T_2 - начальное и конечное давление пара, его объем и

температура. Уравнения состояния при этом имеют вид: $p_1 V_1 = \frac{m_1}{M} RT \;, \qquad p_2 V_2 = \frac{m_1 + m_2}{M} RT \;.$

По условию V_2/V_1 =3, p_1/p_2 =2. Разделив уравнения, находим $\frac{p_2V_2}{p_1V_1}=\frac{m_1+m_2}{m_1}$, $\frac{m_2}{m_1}=\frac{3}{2}-1=0$,5.

25С Условие равновесия поршня: $mg + F_1 = F_2$, где m — масса поршня; F_1 - сила давления на поршень газа, находящегося в верхнем отсеке; F_2 - сила давления на поршень газа, находящегося в нижнем отсеке. Силы давления рассчитываются по формулам F = pS, где p-давление газа; S-площадь поршня. Давление газа может быть определено из уравнения Менделеева — Клапейрона. По условию $V_1 = V_2$, $T_1 = T_2$, $V_2 = 4V_1$.

$$p_1 = rac{v_1 RT}{V}\,, \;\; p_2 = rac{4v_1 RT}{V}\,,\;$$
 следовательно $rac{p_2}{p_1} = 4$ $mg + rac{p_2}{4}S = p_2 S\,,\;$ отсюда $\;\; p_2 = rac{mg}{S(1-rac{1}{4})} pprox 3300 \Pi a$

3. Ответы к контрольным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A	15A
2	3	3	1	2	2	2	2	3	4	1	3	2	2	2
16A	17A	18A	19A	20A	21B	22B		23B		24C			25C	
4	3	2	1	1	160 K	1,24кг		$\Delta p = 0.14 \text{ M}\Pi a$		Умен. в 2 раза			100 кг	

24C

Решение.
$$p_1V_1=\nu RT_1$$

$$p_22V_1=\nu RT_2$$

$$\frac{T_2}{T_1}=\frac{2p_2}{p_1}=\frac{2p_2}{4p_2}=\frac{1}{2}\,,$$
 температура уменьшится в 2 раза.
$$p_1V_1^2=p_2(2V_1)^2$$

25С Шар с грузом удерживается в равновесии при условии, что сумма сил, действующих на него, равна нулю: $(M+m)g+m_{\Gamma}g-m_{B}g=0$, где М и m- массы оболочки и груза, $m_{\Gamma}-$ масса гелия, а $F=m_{B}g-$ сила Архимеда, действующая на шар. Из условия равновесия следует: $M+m=m_{B}+m_{\Gamma}$.

Давление р гелия и его температура Т равны давлению и температуре окружающего воздуха. Следовательно, согласно уравнению Клапейрона-Менделеева,

$$pV=rac{m_{\Gamma}}{M_{\Gamma}}RT$$
 и $pV=rac{m_{B}}{M_{B}}RT$, где V – объем шара. Отсюда: $rac{m_{\Gamma}}{M_{\Gamma}}=rac{m_{B}}{M_{B}}$; $m_{B}=rac{m_{\Gamma}M_{B}}{M_{\Gamma}}=7,25m_{\Gamma}$; $M+m=6,25m_{\Gamma}$.

Следовательно,
$$m_{\varGamma}=\frac{M+m}{6{,}25}=\frac{400\kappa z+225\kappa z}{6{,}25}=100\kappa z$$
 . Ответ: 100кг.