Computer Simulations

ECEN 4138 Control Systems Analysis - Fall 2022 Talles Santos

Lecture 10

Previous class & homework

Determine (analytically) H(s)

*Capacitor and inductor in the circuit may be charged.

Using Matlab, solve numerically H(s) and find h(t). Setting values for the components in the circuit, provide 2 examples and show graphically the step response and freq. response.

*Upload on Canvas the .m routine(s) in a zip code and share a link of the same routine using github tool.

Previous class & homework

- Initial condition is not null !!!
- How to solve it?
 - Second Order Differential Equation with initial condition is out of scope (for now)!
 - E.g.: Analytic solution, Numerical Solution and RLC series and parallel duality

Previous class & homework

Lets try to solve when the initial condition is zero?

RLC series

Determine (analytically) H(s), where $h(t) = \frac{V_c}{V}$

*Capacitor and inductor in the circuit are discharged. (See link1)

Using Matlab, solve numerically H(s) and find h(t). Setting values for the components in the circuit, provide 2 examples and show graphically the step response and freq. response.

*Upload on Canvas the .m routine(s) in a zip code and share a link of the same routine using github tool.

401401451451 5 000

RLC paralel

Determine (analytically) H(s), where $h(t) = \frac{iL}{r}$

Using Matlab, solve numerically H(s) and find h(t). Setting values for the components in the circuit, provide 2 examples and show graphically the step response and freq. response.

*Upload on Canvas the .m routine(s) in a zip code and share a link of the same routine using github tool.

RLC paralel

- Go to github
- Update the repository (ECEN4138_ControlSystemsAnalysis_Fall2022_HW02)
- Modify the function to transform the RLC series rotines to RLC parallel