НИУ «МЭИ»

Кафедра «Инженерной экологии и охраны труда» Безопасность жизнедеятельности

ЛАБОРАТОРНАЯ РАБОТА № 1 «ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ЧЕЛОВЕКА»

Группа: А-03-21

Бригада: 4

ФИО студентов:

Михайловский М.

Рехалов А.

Озеров С.

Юрасов А.

Максимов А.

ФИО преподавателя:

Мирошниченко Д.А.

Звонкова Н.В.

Дата выполнения: 06.03.2025

Цель работы

Используя физическую модель, определить зависимость сопротивления тела человека от некоторых параметров электрической цепи (напряжения, рода и частоты тока) и параметры элементов его эквивалентной схемы.

Содержание работы

- 1. Принципиальная схема включения человека в цепь электрического тока.
- 2. Измеренные значения пороговых ощутимых, неотпускающих и фибрилляционных токов.
- 3. Измеренные и вычисленные значения U_h и I_h , необходимые для определения зависимости сопротивления тела человека от частоты приложенного тока и график $Z_h=f(f)$, построенный на полулогарифмической сетке.
- 4. Измеренные и вычисленные значения U_h , I_h , Z_h , необходимые для определения зависимости сопротивления тела от значения приложенного напряжения и график Z_h = $f(U_h)$.
- 5. Эквивалентная схему сопротивления тела человека.
- 6. Выводы о влиянии рода, частоты тока и значения напряжения, приложенного к телу человека на его сопротивление.

1.Принципиальная схема включения человека в цепь электрического тока.

Ниже, на рисунке 1, представлена принципиальная схема включения человека в цепь электрического тока.

Рис 1. Принципиальная схема включения

2. Измеренные значения пороговых ощутимых, неотпускающих и фибрилляционных токов.

Результаты определения пороговых значений ощутимого, фибриляционного и неотпускающего токов приведены ниже, в таблице 1.

Таблица 1. Значения пороговых токов

Род тока		\sim		
Пороговый ощутимый ток, мА	6	4.1	2.2	1.2
Пороговый неотпускающий ток, мА	80	48	25	16
Пороговый фибрилляционный ток, мА	300	250	170	100

Полученные значения для пороговых токов соответствуют принятым на практике значениям:

Для переменного тока: Для постоянного тока:

Ощутимый: $0.6 \div 1.5$ мА Ощутимый: $5 \div 8$ мА

Неотпускающий: 16 мА Неотпускающий: 80 мА

Фибрилляционный: 100 мА Фибриляционный: 300 мА

3. Зависимость сопротивления от частоты напряжения.

Ниже, в таблице 2, представлены значения токов, полученные при различных частотах, а также рассчитанные значения сопротивлений тела человека при различных частотах и воздействии гармонического тока.

Для расчёта значений Z_h нами была использована формула (1), представленная ниже.

$$Z_h = \frac{U_h}{I_h} \tag{1}$$

Таблица 2. Значения сопротивлений тела человека

Частота тока f , к Γ ц	0.05	0.1	0.5	1	5
lgf	1.7	2.0	2.7	3.0	3.7
I _h , мА при U _h =40 В	9.7	10	11	14	50
Сопротивление тела	4.12	4	3.64	2.86	0.80
человека Z _h , кОм					

График зависимости $Z_h(f)$ в полулогарифмическом масштабе представлен ниже, на рисунке 2.

Рис 2. Зависимость $Z_h(f)$

На графике, представленном на рисунке 2, наглядно видно, что с увеличением частоты приложенного электрического тока полное сопротивление тела человека уменьшается.

4. Зависимость сопротивления от напряжения.

Значения сопротивлений тела человека при увеличении тока от 10 В до 220 В при воздействии гармонического тока с частотой 50 Гц представлены в таблице 3.

Таблица 3	Значения Z	при U _h :10	$B \rightarrow 220 B$
-----------	------------	------------------------	-----------------------

U _h , B	40	60	80	100	120	140	160	180	200	220	240
I _{h,} MA	9.7	18	30	44	61	78	96	113	129	143	155
Z _h ,кОм	4.12	3.33	2.67	2.27	1.97	1.79	1.67	1.59	1.55	1.54	1.55

Ниже, на рисунке 3, представлен график зависимости Zh(Uh).

Рис 3. Зависимость $Z_h(U_h)$

Из графика, представленного на рисунке 3, наглядно видно, что с увеличением напряжения приложенного электрического тока полное сопротивление тела человека уменьшается.

5. Эквивалентная схема сопротивления тела человека.

Далее нами были определены параметры эквивалентной схемы замещения $R_{\scriptscriptstyle B},\,R_{\scriptscriptstyle H},\,C_{\scriptscriptstyle H}.$

Для определения $R_{\rm H}$ нами был использован постоянный электрический ток, значение которого мы увеличивали до тех пор, пока не выполнилось равенство I_h =2.2 мA, а затем нами был проведён расчёт по формуле (1). Полученное значение: U_h =9.

Таким образом:

$$Z_h = \frac{9}{2.2 \cdot 10^{-3}} = 4.09 \text{ кОм}$$

Для определения $R_{\scriptscriptstyle B}$ нами было выбрано значение $Z_{\scriptscriptstyle h}$ при $f=5\kappa\Gamma_{\rm II}$, т.е $R_{\scriptscriptstyle B}=0.8\,$ кОм, так как при увеличении частоты ёмкость наружного покрова шунтирует его сопротивление, из-за чего полное сопротивление тела человека приближается к значению внутреннего сопротивления.

Для определения Z_h нами была использована формула (2), представленная ниже.

$$Z_h = 2 \cdot R_{\rm H} + R_{\rm B} = R_{h0} \tag{2}$$

Таким образом получим следующий результат:

$$Z_h = 2 \cdot R_{\scriptscriptstyle \mathrm{H}} + R_{\scriptscriptstyle \mathrm{B}} = 2 \cdot 4,09 + 0,8 = 8.98 \;$$
кОм

Значения C_H нами были определены для значений частота f=50 Γ Ц и f=500 Γ Ц. При определении ёмкости было принято значение Z_h равным соответствующему значению из таблицы 2, а R_h = R_{h0} .Расчёт C_H производился по формуле (3), представленной ниже.

$$C_H \approx 2C_{\square} = \frac{\sqrt{R_h^2 - Z_h^2}}{\pi f R_h Z_h} \tag{3}$$

Значение $C_{\rm H}$ при f=50 Γ ц:

$$C_H pprox 2C_h = rac{\sqrt{R_h^2 - Z_h^2}}{\pi f R_h Z_h} = rac{\sqrt{8.98^2 \cdot 10^6 - 4.12^2 \cdot 10^6}}{3.14 \cdot 50 \cdot 8.98 \cdot 10^3 \cdot 4.12 \cdot 10^3} = 1.373 \ \mathrm{MK}\Phi$$

Значение $C_{\rm H}$ при f=500 Γ ц:

$$\mathcal{C}_{H} pprox 2\mathcal{C}_{h} = rac{\sqrt{R_{h}^{2} - Z_{h}^{2}}}{\pi f R_{h} Z_{h}} = rac{\sqrt{8.98^{\;2} \cdot 10^{6} - 3.64^{2} \cdot 10^{6}}}{3.14 \cdot 500 \cdot 8.98 \cdot 10^{3} \cdot 3.64 \cdot 10^{3}} = 0.16 \; \mathrm{MK\Phi}$$

Для наглядности, полученные результаты были сведены в таблицу 4.

Таблица 4. Параметры эквивалентной схемы замещения

R _в , кОм	R _н , кОм	R _{h0} , кОм	f=50 Гц		f=50 Гц f=500 Г	
			Z _h , кОм	С _н , мкФ	Z _h , кОм	С _н , мкФ
0.80	4.09	8.98	4.12	1.373	3.64	0.160

Полученные значения используются в эквивалентной схеме замещения, представленной ниже, на рисунке 4.

Рис 4. Эквивалентная схема замещения человека

7. Выводы

В результате выполнения данной лабораторной работы можно сказать, что наибольшими пороговыми значениями ощутимого, неотпускающего и фибриляционного токов обладает постоянный ток.

Также стоит отметить, что общее сопротивление тела зависит от приложенного напряжения и частоты переменного тока:

- При увеличении напряжения прикладываемого электрического тока наблюдается уменьшение общего сопротивления тела человека, что можно объяснить пробоем кожных покровов и изменением их структуры;
- При увеличении частоты приложенного электрического тока уменьшение общего сопротивления тела человека можно объяснить уменьшением сопротивлений конденсаторов в эквивалентной схеме замещения, что вызывает закорачивание наружных сопротивлений и приводит к уменьшению общего сопротивления человека.