klasa

data

1. Siatkę czworościanu foremnego przedstawia rysunek:

2. Siatka ostrosłupa przedstawiona jest na rysunku:

В.

C.

D.

- 3. Rysunek obok przedstawia siatkę:
 - A. czworościanu
 - B. graniastosłupa trójkątnego
 - C. ostrosłupa czworokątnego
 - D. czworościanu foremnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 160$$
, $P_c = 185$

B.
$$P_b = 160$$
, $P_c = 105$

$$C. P_b = 80, P_c = 105$$

D.
$$P_b = 80$$
, $P_c = 185$

A.
$$P_b = 960$$
, $P_c = 4\sqrt{3} + 48$

B.
$$P_b = 960$$
, $P_c = 52\sqrt{3}$

C.
$$P_b = 48$$
, $P_c = 4\sqrt{3} + 48$

D.
$$P_b = 48$$
, $P_c = 52\sqrt{3}$

- 7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 228 cm². Jeżeli krawędź jego podstawy ma 6 cm, to pole jednej ściany bocznej tej bryły wynosi:
 - A. 38 cm²
- B. $48 \, \text{cm}^2$
- C. 55.5 cm^2
- D. $192 \, \text{cm}^2$
- 8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach $30\,\mathrm{cm} \times 0,6\,\mathrm{m}$? Wstaw znak X w odpowiednia kratkę.

sześcian o krawędzi 15 cm

TAK

NIE

NIE

graniastosłup prawidłowy trójkątny o wysokości 30 cm i krawędzi podstawy 20 cm

czworościan foremny o krawędzi 20 cm

- NIE TAK
- 9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 7. Pole powierzchni tego ostrosłupa wynosi:

A.
$$\frac{49\sqrt{3}}{4} + 49$$
 B. $49 + 98\sqrt{3}$ C. $94\sqrt{3}$ D. $49 + 49\sqrt{3}$

B.
$$49 + 98\sqrt{3}$$

C.
$$94\sqrt{3}$$

D.
$$49 + 49\sqrt{3}$$

- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 8 cm i krawędzi bocznej 10 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego wynosi 144 cm², a wysokość ściany bocznej -12 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy wynosi 6 cm, a krawędź boczna — 17 cm.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 10 i krawędzi bocznej 6.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 4 jest równe:
 - **A.** $8\sqrt{3}$

- B. $16\sqrt{3}$ C. $4\sqrt{3}$ D. $16 + 16\sqrt{3}$

klasa

data

1. Siatką ostrosłupa czworokątnego nie jest:

Α

В

D

2. Siatka ostrosłupa przedstawiona jest na rysunku:

Α.

В.

C.

D.

3. Rysunek obok nie przedstawia siatki:

A. graniastosłupa prawidłowego trójkątnego

B. czworościanu foremnego

C. czworościanu

D. ostrosłupa prawidłowego trójkątnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 120$$
, $P_c = 156$

B.
$$P_b = 120$$
, $P_c = 276$

$$C. P_b = 240, P_c = 276$$

D.
$$P_b = 240$$
, $P_c = 156$

A.
$$P_b = 216$$
, $P_c = 124\sqrt{3}$

B.
$$P_b = 216$$
, $P_c = 16\sqrt{3} + 108$

C.
$$P_b = 108$$
, $P_c = 124\sqrt{3}$

D.
$$P_b = 108$$
, $P_c = 16\sqrt{3} + 108$

- 7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 156 cm². Jeżeli krawędź jego podstawy ma 6 cm, to pole jednej ściany bocznej tej bryły wynosi:
 - A. 26 cm²
- B. $37.5 \, \text{cm}^2$
- C. $120 \, \text{cm}^2$
- D. $30 \, \text{cm}^2$
- 8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach $10\,\mathrm{cm} \times 0,6\,\mathrm{m}$? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 15 cm

TAK	NIE NIE
-----	---------

graniastosłup prawidłowy trójkątny o wysokości 12,5 cm i krawędzi podstawy 10 cm

NIE

ostrosłup prawidłowy czworokątny o krawędzi podstawy 10 cm i krawędzi bocznej 10 cm

NIE TAK

9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 8. Pole powierzchni tego ostrosłupa wynosi:

A. $64 + 64\sqrt{3}$

- **B.** $128\sqrt{3}$
- C. $64 + 4\sqrt{3}$ D. $64 + 128\sqrt{3}$
- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 10 cm i krawędzi bocznej 12 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego wynosi 140 cm², a wysokość ściany bocznej - 14 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy wynosi $8 \, \text{cm}$, a krawędź boczna — $13 \, \text{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 8 i krawędzi bocznej 6.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 9 jest równe:

- A. $\frac{81\sqrt{2}}{4}$ B. $\frac{18}{4}\sqrt{3}$ C. $81\sqrt{3}$ D. $81 + 81\sqrt{3}$

imio i nazwieko

lp. w dzienniku

klasa

data

1. Siatkę ostrosłupa trójkątnego przedstawia rysunek:

2. Siatka ostrosłupa przedstawiona jest na rysunku:

A.

3. Rysunek obok nie przedstawia siatki:

A. czworościanu foremnego

B. czworościanu

C. ostrosłupa prawidłowego trójkątnego

D. graniastosłupa prawidłowego trójkątnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 192$$
, $P_c = 228$

B.
$$P_b = 192$$
, $P_c = 132$

$$C. P_b = 96, P_c = 228$$

D.
$$P_b = 96$$
, $P_c = 132$

A.
$$P_b = 99$$
, $P_c = 9\sqrt{3} + 99$

B.
$$P_b = 99$$
, $P_c = 108\sqrt{3}$

C.
$$P_b = 198$$
, $P_c = 9\sqrt{3} + 99$

D.
$$P_b = 198$$
, $P_c = 108\sqrt{3}$

a)

- 7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 112 cm². Jeżeli krawędź jego podstawy ma 4 cm, to pole jednej ściany bocznej tej bryły wynosi:
 - A. 24 cm²
- B. $28 \, \text{cm}^2$
- C. $27 \, \text{cm}^2$
- D. $96 \, \text{cm}^2$
- 8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach $20\,\mathrm{cm} \times 1,2\,\mathrm{m}$? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 20 cm

TAK	NIE
TAK	NIE NIE

stawy 20 cm ostrosłup prawidłowy czworokątny o krawędzi podstawy 20 cm i krawędzi bocznej 20 cm

graniastosłup prawidłowy trójkątny o wysokości 25 cm i krawędzi pod-

- | NIE | TAK
- 9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 4. Pole powierzchni tego ostrosłupa wynosi:
 - **A.** $32\sqrt{3}$
- B. $16 + 16\sqrt{3}$ C. $16 + 4\sqrt{3}$ D. $16 + 32\sqrt{3}$
- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 4 cm i krawędzi bocznej 8 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokatnego wynosi 128 cm², a wysokość ściany bocznej — 8 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy wynosi $8 \, \text{cm}$, a krawędź boczna — $12 \, \text{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 4 i krawędzi bocznej 6.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 5 jest równe:
 - **A.** $5\sqrt{3}$
- B. $25\sqrt{3}$
- C. $25 + 25\sqrt{3}$
- D. $10\sqrt{3}$

imie i nazwisko

lp. w dzienniku

klasa

data

1. Siatką ostrosłupa prawidłowego czworokątnego nie jest:

2. Siatka ostrosłupa przedstawiona jest na rysunku:

D.

3. Rysunek obok przedstawia siatkę:

A. ostrosłupa czworokatnego

B. ostrosłupa trójkątnego

C. czworościanu

D. graniastosłupa czworokątnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 36$$
, $P_c = 81$

B.
$$P_b = 36$$
, $P_c = 45$

$$C. P_b = 72, P_c = 81$$

D.
$$P_b = 72$$
, $P_c = 45$

A.
$$P_b = 144$$
, $P_c = 160\sqrt{3}$

B.
$$P_b = 144$$
, $P_c = 16\sqrt{3} + 144$

C.
$$P_b = 288$$
, $P_c = 160\sqrt{3}$

D.
$$P_b = 288$$
, $P_c = 16\sqrt{3} + 144$

- 7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokatnego jest równe 96 cm². Jeżeli krawędź jego podstawy ma 4 cm, to pole jednej ściany bocznej tej bryły wynosi:
 - A. 24 cm²
- B. $80 \, \text{cm}^2$
- **C.** $23 \, \text{cm}^2$
- D. $20 \, \text{cm}^2$
- 8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach $60\,\mathrm{cm} \times 1,2\,\mathrm{m}$? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 30 cm czworościan foremny o krawędzi 40 cm graniastosłup prawidłowy trójkątny o wysokości 60 cm i krawędzi podstawy 40 cm

- TAK NIE TAK NIE TAK NIE
- 9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 3. Pole powierzchni tego ostrosłupa wynosi:
 - **A.** $9 + 9\sqrt{3}$
- B. $9 + \frac{9\sqrt{3}}{4}$ C. $18\sqrt{3}$ D. $9 + 18\sqrt{3}$
- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 8 cm i krawędzi bocznej 12 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego wynosi 96 cm², a wysokość ściany bocznej — 8 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy wynosi $10\,\mathrm{cm}$, a krawędź boczna — $14\,\mathrm{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 6 i krawędzi bocznej 12.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 10 jest równe:
 - **A.** $10\sqrt{3}$
- B. $100\sqrt{3}$
- C. $100 + 100\sqrt{3}$
- D. $20\sqrt{3}$

klasa

data

1. Siatkę ostrosłupa prawidłowego czworokątnego przedstawia rysunek:

2. Siatka ostrosłupa przedstawiona jest na rysunku:

C.

D.

3. Rysunek obok nie przedstawia siatki:

A. ostrosłupa prawidłowego trójkatnego

B. czworościanu

C. graniastosłupa prawidłowego trójkątnego

D. czworościanu foremnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 64$$
, $P_c = 80$

B.
$$P_b = 64$$
, $P_c = 144$

$$C. P_b = 128, P_c = 80$$

D.
$$P_b = 128$$
, $P_c = 144$

A.
$$P_b = 120$$
, $P_c = 136\sqrt{3}$

B.
$$P_b = 120$$
, $P_c = 16\sqrt{3} + 120$

C.
$$P_b = 240$$
, $P_c = 136\sqrt{3}$

D.
$$P_b = 240$$
, $P_c = 16\sqrt{3} + 120$

7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 145 cm². Jeżeli krawędź jego podstawy ma 5 cm, to pole jednej ściany bocznej tej bryły wynosi:

A. $29 \, \text{cm}^2$

B. $30 \, \text{cm}^2$

C. $125 \, \text{cm}^2$

D. $35 \, \text{cm}^2$

8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach 5 cm × 0,25 m? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 2,5 cm

TAK NIE

czworościan foremny o krawędzi 5 cm

TAK NIE

graniastosłup prawidłowy trójkątny o wysokości 8 cm i krawędzi podstawy 5 cm

TAK NIE

9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 9. Pole powierzchni tego ostrosłupa wynosi:

A. $\frac{81\sqrt{3}}{4} + 81$ B. $81 + 81\sqrt{3}$ C. $162\sqrt{3}$ D. $81 + 162\sqrt{3}$

- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 6 cm i krawędzi bocznej 9 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego wynosi 108 cm², a wysokość ściany bocznej — 6 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy wynosi 16 cm, a krawędź boczna — 20 cm.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 22 i krawędzi bocznej 15.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 2 jest równe:

A. $\frac{2\sqrt{2}}{3}$ B. $4\sqrt{3}$ C. $3\sqrt{3}$ D. $4 + 4\sqrt{3}$

imie i nazwisko

lp. w dzienniku

klasa

data

1. Siatkę ostrosłupa prawidłowego trójkątnego przedstawia rysunek:

2. Siatka ostrosłupa przedstawiona jest na rysunku:

A.

В.

C.

D.

3. Rysunek obok nie przedstawia siatki:

A. graniastosłupa prawidłowego trójkątnego

B. czworościanu foremnego

C. czworościanu

D. ostrosłupa prawidłowego trójkątnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 56$$
, $P_c = 128$

B.
$$P_b = 56$$
, $P_c = 72$

$$C. P_b = 112, P_c = 128$$

D.
$$P_b = 112$$
, $P_c = 72$

A.
$$P_b = 162$$
, $P_c = 9\sqrt{3} + 81$

B.
$$P_b = 162$$
, $P_c = 90\sqrt{3}$

C.
$$P_b = 81$$
, $P_c = 90\sqrt{3}$

D.
$$P_b = 81$$
, $P_c = 9\sqrt{3} + 81$

- 7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 204 cm². Jeżeli krawędź jego podstawy ma 6 cm, to pole jednej ściany bocznej tej bryły wynosi:
 - **A.** 34 cm²
- B. $49.5 \, \text{cm}^2$
- $C. 42 \text{ cm}^2$
- $D.~168\,cm^2$
- 8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach $20\,\mathrm{cm} \times 1,2\,\mathrm{m}$? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 20 cm

czworościan foremny o krawędzi 20 cm

TAK NIE

graniastosłup prawidłowy trójkątny o wysokości 25 cm i krawędzi podstawy 20 cm

- TAK □ NIE
- 9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 6. Pole powierzchni tego ostrosłupa wynosi:
 - **A.** $36 + 4\sqrt{3}$
- B. $72\sqrt{3}$ C. $36 + 36\sqrt{3}$ D. $72\sqrt{3} + 36$
- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 4 cm i krawędzi bocznej 10 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokatnego wynosi 80 cm², a wysokość ściany bocznej - 10 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy wynosi $6 \,\mathrm{cm}$, a krawędź boczna — $12 \,\mathrm{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 6 i krawędzi bocznej 8.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 8 jest równe:
 - **A.** $8\sqrt{3}$
- B. $4\sqrt{3}$ C. $64 + 64\sqrt{3}$ D. $64\sqrt{3}$

data

1. Siatką czworościanu foremnego jest:

imie i nazwisko

2. Siatka ostrosłupa przedstawiona jest na rysunku:

Α.

C.

lp. w dzienniku

D.

klasa

3. Rysunek obok przedstawia siatkę:

A. czworościanu foremnego

B. czworościanu

C. graniastosłupa trójkątnego

D. ostrosłupa czworokątnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 144$$
, $P_c = 160$

B.
$$P_b = 144$$
, $P_c = 88$

$$C. P_b = 72, P_c = 88$$

D.
$$P_b = 72$$
, $P_c = 160$

A.
$$P_b = 180$$
, $P_c = 9\sqrt{3} + 90$

B.
$$P_b = 180$$
, $P_c = 99\sqrt{3}$

C.
$$P_h = 90, P_c = 9\sqrt{3} + 90$$

D.
$$P_h = 90$$
, $P_c = 99\sqrt{3}$

a)

7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 256 cm². Jeżeli krawędź jego podstawy ma 8 cm, to pole jednej ściany bocznej tej bryły wynosi:

A. $62 \, \text{cm}^2$

B. $32 \, \text{cm}^2$

 $C. 48 \text{ cm}^2$

D. $192 \, \text{cm}^2$

8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach $25\,\mathrm{cm} \times 1,2\,\mathrm{m}$? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 25 cm czworościan foremny o krawędzi 20 cm

TAK NIE TAK NIE

TAK

NIE

graniastosłup prawidłowy trójkątny o wysokości 25 cm i krawędzi podstawy 20 cm

9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 5. Pole po-

A. $90\sqrt{3}$

wierzchni tego ostrosłupa wynosi:

B. $25 + 25\sqrt{3}$ C. $25 + 50\sqrt{3}$ D. $25 + \frac{25\sqrt{3}}{4}$

- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 8 cm i krawędzi bocznej 11 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego wynosi 120 cm², a wysokość ściany bocznej -12 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy wynosi $10\,\mathrm{cm}$, a krawędź boczna — $15\,\mathrm{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 6 i krawędzi bocznej 11.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 7 jest równe:

A. $14\sqrt{3}$

B. $49 + 49\sqrt{3}$ C. $7\sqrt{3}$ D. $49\sqrt{3}$

imie i nazwisko

lp. w dzienniku

klasa

data

1. Siatkę ostrosłupa czworokątnego przedstawia rysunek:

В

С

2. Siatka ostrosłupa przedstawiona jest na rysunku:

Α.

D.

3. Rysunek obok przedstawia siatkę:

A. czworościanu foremnego

B. graniastosłupa trójkątnego

C. ostrosłupa czworokątnego

D. czworościanu

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 320$$
, $P_c = 224$

B.
$$P_b = 160$$
, $P_c = 384$

$$C. P_b = 160, P_c = 224$$

$$D. P_b = 320, P_c = 384$$

A.
$$P_b = 144$$
, $P_c = 160\sqrt{3}$

B.
$$P_b = 144$$
, $P_c = 16\sqrt{3} + 144$

C.
$$P_b = 288$$
, $P_c = 160\sqrt{3}$

D.
$$P_b = 288$$
, $P_c = 16\sqrt{3} + 144$

7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 165 cm². Jeżeli krawędź jego podstawy ma 5 cm, to pole jednej ściany bocznej tej bryły wynosi:

A. 35 cm²

B. $40 \, \text{cm}^2$

C. $33 \, \text{cm}^2$

D. $140 \, \text{cm}^2$

8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach $25 \text{ cm} \times 1,25 \text{ m}$? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 25 cm

TAK NIE

czworościan foremny o krawędzi 25 cm

TAK **NIE**

graniastosłup prawidłowy trójkątny o wysokości 25 cm i krawędzi podstawy 25 cm

TAK NIE

9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 10. Pole powierzchni tego ostrosłupa wynosi:

A. $25\sqrt{3} + 100$

B. $100 + 200\sqrt{3}$

C. $100 + 100\sqrt{3}$

D. $200\sqrt{3}$

- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 6 cm i krawędzi bocznej 10 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokatnego wynosi 64 cm², a wysokość ściany bocznej — 8 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokatnego, którego krawędź podstawy wynosi $10\,\mathrm{cm}$, a krawędź boczna — $15\,\mathrm{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 6 i krawędzi bocznej 4.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 6 jest równe:

A. $36\sqrt{3}$ B. $27\sqrt{3}$ C. $\frac{3\sqrt{2}}{2}$ D. $36 + 36\sqrt{3}$

klasa

data

1. Siatkę ostrosłupa prawidłowego czworokątnego przedstawia rysunek:

2. Siatka ostrosłupa przedstawiona jest na rysunku:

Α.

В.

C.

D.

3. Rysunek obok przedstawia siatkę:

A. czworościanu

B. graniastosłupa trójkątnego

C. ostrosłupa czworokątnego

D. czworościanu foremnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 64$$
, $P_c = 80$

B.
$$P_b = 64$$
, $P_c = 144$

$$C. P_b = 128, P_c = 80$$

D.
$$P_b = 128$$
, $P_c = 144$

A.
$$P_b = 120$$
, $P_c = 136\sqrt{3}$

B.
$$P_b = 120$$
, $P_c = 16\sqrt{3} + 120$

C.
$$P_b = 240$$
, $P_c = 136\sqrt{3}$

D.
$$P_b = 240$$
, $P_c = 16\sqrt{3} + 120$

- 7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 224 cm². Jeżeli krawędź jego podstawy ma 8 cm, to pole jednej ściany bocznej tej bryły wynosi:
 - A. 28 cm²
- B. $40 \, \text{cm}^2$
- **C.** 54 cm^2
- D. $160 \, \text{cm}^2$
- 8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach 20 cm × 1,2 m? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 20 cm

czworościan foremny o krawędzi 20 cm

TAK	NIF
IAK	INIE

graniastosłup prawidłowy trójkątny o wysokości 25 cm i krawędzi podstawy 20 cm

TAK	NIE

- 9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 6. Pole powierzchni tego ostrosłupa wynosi:
 - **A.** $36 + 4\sqrt{3}$
- B. $72\sqrt{3}$ C. $36 + 36\sqrt{3}$ D. $72\sqrt{3} + 36$
- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 6 cm i krawędzi bocznej 7 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego wynosi 168 cm², a wysokość ściany ${\it bocznej-12\,cm}.$ Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokatnego, którego krawędź podstawy wynosi $10\,\mathrm{cm}$, a krawędź boczna — $15\,\mathrm{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 4 i krawędzi bocznej 7.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 12 jest równe:
 - **A.** $12\sqrt{3}$
- B. $144 + 144\sqrt{3}$ C. $144\sqrt{3}$ D. $24\sqrt{3}$

klasa

data

1. Siatkę czworościanu foremnego przedstawia rysunek:

2. Siatka ostrosłupa przedstawiona jest na rysunku:

Α.

В.

D.

3. Rysunek obok przedstawia siatkę:

- A. czworościanu
- B. graniastosłupa czworokątnego
- C. ostrosłupa trójkątnego
- D. ostrosłupa czworokątnego

4. Na rysunku obok przedstawiono siatkę ostrosłupa prawidłowego. Oblicz pole powierzchni bocznej i pole powierzchni całkowitej tego ostrosłupa. Zaznacz właściwą odpowiedź.

A.
$$P_b = 36$$
, $P_c = 81$

B.
$$P_b = 36$$
, $P_c = 45$

$$C. P_b = 72, P_c = 81$$

D.
$$P_b = 72$$
, $P_c = 45$

A.
$$P_b = 960$$
, $P_c = 4\sqrt{3} + 48$

B.
$$P_b = 960$$
, $P_c = 52\sqrt{3}$

C.
$$P_b = 48$$
, $P_c = 4\sqrt{3} + 48$

D.
$$P_b = 48$$
, $P_c = 52\sqrt{3}$

7. Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego jest równe 144 cm². Jeżeli krawędź jego podstawy ma 8 cm, to pole jednej ściany bocznej tej bryły wynosi:

A. $20 \, \text{cm}^2$

B. $34 \, \text{cm}^2$

C. $18 \, \text{cm}^2$

D. $80 \, \text{cm}^2$

8. Czy na oklejenie wszystkich ścian danej bryły wystarczy papieru z arkusza o wymiarach 30 cm × 0,6 m? Wstaw znak X w odpowiednią kratkę.

sześcian o krawędzi 15 cm

TAK	NIE
IAK	INIE

graniastosłup prawidłowy trójkątny o wysokości 30 cm i krawędzi podstawy 20 cm

czworościan foremny o krawędzi 20 cm

9. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają tę samą długość równą 8. Pole powierzchni tego ostrosłupa wynosi:

A. $64 + 64\sqrt{3}$

B. $128\sqrt{3}$ C. $64 + 4\sqrt{3}$ D. $64 + 128\sqrt{3}$

- 10. Oblicz pole powierzchni ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 8 cm i krawędzi bocznej 9 cm.
- 11. Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego wynosi 112 cm², a wysokość ściany bocznej — 8 cm. Oblicz pole podstawy tego ostrosłupa.
- 12. Oblicz pole powierzchni ostrosłupa prawidłowego sześciokatnego, którego krawędź podstawy wynosi $6 \,\mathrm{cm}$, a krawędź boczna — $12 \,\mathrm{cm}$.
- 13. Oblicz pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 8 i krawędzi bocznej 13.
- 14. Pole powierzchni czworościanu foremnego o krawędzi 3 jest równe:

A. $\frac{27}{4}\sqrt{3}$ B. $9 + 9\sqrt{3}$ C. $\frac{9\sqrt{2}}{4}$ D. $9\sqrt{3}$