```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]:

```
data=pd.read_csv('Iris.csv.csv')
data
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0 1	5.1	3.5	1.4	0.2	Iris-setosa
	1 2	4.9	3.0	1.4	0.2	Iris-setosa
:	2 3	4.7	3.2	1.3	0.2	Iris-setosa
	3 4	4.6	3.1	1.5	0.2	Iris-setosa
	4 5	5.0	3.6	1.4	0.2	Iris-setosa
14	5 146	6.7	3.0	5.2	2.3	Iris-virginica
14	6 147	6.3	2.5	5.0	1.9	Iris-virginica
14	7 148	6.5	3.0	5.2	2.0	Iris-virginica
14	8 149	6.2	3.4	5.4	2.3	Iris-virginica
14	9 150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [3]:

```
data=data.drop('Id',axis=1)
```

In [4]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
Column Non-Null Count Dt

#	Column	Non-Null Count	Dtype
0	SepalLengthCm	150 non-null	float64
1	SepalWidthCm	150 non-null	float64
2	PetalLengthCm	150 non-null	float64
3	PetalWidthCm	150 non-null	float64
4	Species	150 non-null	object
dt vn	es: float64(4).	object(1)	

dtypes: float64(4), object memory usage: 6.0+ KB

In [5]:

```
data.describe()
```

Out[5]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667

std	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [8]:

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
```

In [9]:

```
mod=DecisionTreeClassifier(criterion='entropy')
```

In [10]:

```
x=data.drop('Species',axis=1)
y=data['Species']
```

In [11]:

```
X_train, X_test, Y_train, Y_test = train_test_split(x,y,test_size=0.25, random_state=0)
```

In [12]:

```
X_train.shape
```

Out[12]:

(112, 4)

In [13]:

```
Y_train.shape
```

Out[13]:

(112,)

In [14]:

```
model1=mod.fit(X_train,Y_train)
```

In [15]:

```
y_pred=mod.predict(X_test)
```

In [16]:

```
print(classification_report(y_pred,Y_test))
```

Iris-setosa 1.00 1.00 1.00 13
Iris-versicolor 0.94 1.00 0.97 15
Iris-virginica 1.00 0.90 0.95 10
accuracy 0.97 38
0 00 0 07 0 07

macro avg 0.98 0.97 0.97 38 weighted avg 0.98 0.97 0.97 38

In [17]:

accuracy_score(y_pred,Y_test)

Out[17]:

0.9736842105263158

In [18]:

 $\verb|sns.heatmap| (\verb|confusion_matrix| (\verb|y_pred,Y_test|) , \verb|annot=True||$

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a26c349d48>

In [19]:

```
from sklearn import tree
tree.plot_tree(mod);
```


In [20]:

cols=list(data.columns.values)
cols

Out[20]:

['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species']

In [21]:

