Cryptographic Protocols Exercise 7

7.1 Permuted Truth Tables

In their protocol, which we discussed in the lecture, Brassard, Chaum, and Crépeau use "permuted" truth tables of binary logical operations.

X	у	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

X	у	$x \wedge y$
1	0	0
1	1	1
0	1	0
0	0	0

truth table

"permuted" truth table

In this exercise we consider an alternative way of processing \land -gates:

- a) Assume that a commitment scheme of type B is given along with a protocol that allows to prove in zero-knowledge that two blobs are commitments to equal values. Let c_1 , c_2 , and c_3 be blobs for the bits b_1 , b_2 , and b_3 , respectively. Construct a zero-knowledge protocol which allows Peggy to convince Vic that $b_3 = b_1 \wedge b_2$. Show that your protocol is complete, sound, and zero-knowledge.
 - HINT: Use an approach based on "permuted" truth tables.
- **b)** Show how Peggy can use the above construction to prove for an arbitrary circuit that she knows an input that evaluates to a given output.
- c) What is the difference between the process from b) and the one described in the BCC protocol?

7.2 Protocols and Specifications

Parties P_1 and P_2 hold input bits x_1 and x_2 , respectively. They want that P_2 learns the AND of their inputs.

Specification 1

- P_1 (resp. P_2) holds input bit x_1 (resp. x_2).
- 1: P_1 (resp. P_2) sends x_1 (resp. x_2) to the trusted party.
- 2: The trusted party sends $y = x_1$ to P_2 .
- 3: P_2 outputs y.

Specification 2

- P_1 (resp. P_2) holds input bit x_1 (resp. x_2).
- 1: P_1 (resp. P_2) sends x_1 (resp. x_2) to the trusted party.
- 2: The trusted party sends $y = x_1 \wedge x_2$ to P_2 .
- 3: P_2 outputs y.

Protocol 3

- P_1 holds input bit x_1 , P_2 holds input bit x_2 .
- 1: P_1 sends x_1 to P_2 .
- 2: P_2 computes $y = x_1 \wedge x_2$.
- 3: P_2 outputs y.
- a) Does Protocol 3 satisfy Specification 1 in the case where both parties are honest? What about Specification 2?
- b) Does Protocol 3 satisfy Specification 2 when the adversary passively corrupts P_2 ? What if the adversary actively corrupts P_2 ?

Now consider three parties P_1 , P_2 and P_3 with input bits x_1 , x_2 and x_3 , respectively. They want that P_1 and P_3 learn the AND of the three inputs.

Specification 4

- P_1 (resp. P_2 , P_3) has input bit x_1 (resp. x_2,x_3)
- 1: Each party P_i sends x_i to the trusted party.
- 2: The trusted party sends $y = x_1 \wedge x_2 \wedge x_3$ to P_1 and P_3 .
- 3: P_1 and P_3 output y.

Protocol 5

- P_1 (resp. P_2 , P_3) has input bit x_1 (resp. x_2,x_3)
- 1: P_1 sends x_1 to P_2 .
- 2: P_2 sends $y_2 = x_1 \wedge x_2$ to P_3 .
- 3: P_3 sends $y_3 = y_2 \wedge x_3$ to P_1 .
- 4: P_1 and P_3 output y_3 .
- c) Does Protocol 4 satisfy Specification 5 when the adversary passively corrupts P_1 and P_2 ? What about P_1 and P_3 ? Is there a subset of players the adversary can passively corrupt so that the protocol is secure? For the same sets of corrupted players, analyze the protocol when the adversary is active.