ALGORITMI - Complessità

Anno Accademico 2014-15

Appello - 2 Febbraio 2015

Nome e Cognome: Matricola:

Importante: Usare solo i fogli forniti dal docente. Scrivere in modo **leggibile**. Risposte non giustificate saranno valutate **0**. Per ogni algoritmo proposto vanno **provate** correttezza e complessità. Si chiede di risolvere tutti gli esercizi

Esercizio 1 - 10 punti

Siano \mathbb{A}, \mathbb{B} , e \mathbb{C} tre problemi decisionali sullo stesso insieme di istanze e tali che per ognuno di essi esistono sia istanze yes che istanze no. Sia $\mathbb{D} = \mathbb{B} \cap \overline{\mathbb{C}}$ cioè il problema decisionale le cui istanze yes sono quelle e solo quelle che risultano essere yes sia per \mathbb{B} che per $\overline{\mathbb{C}}$.

Si provi che se valgono le seguenti condizioni

- 1. $\mathbb{A} \leq_P \mathbb{D}$
- 2. $\mathbb{B} \in \mathcal{NP}$
- 3. $\mathbb{C} \in \mathcal{P}$

allora è anche vero che $\overline{\mathbb{A}} \in \text{co-}\mathcal{NP}$

Esercizio 2 - 20 punti

Si consideri il seguente puzzle. Viene data una scacchiera di dimensione $a \times b$ (a righe ed b colonne). Ogni casella contiene una pedina rossa, oppure una pedina nera, oppure è vuota. Va effettuata esattamente una mossa per riga: Una mossa su una riga consiste nell'eliminare o tutte le pedine rosse o tutte le pedine nere da quella riga. Il puzzle è riuscito se dopo le a mosse ogni colonna contiene ancora almeno una pedina. In tal caso diremo che il puzzle è terminato con successo.

Non è difficile osservare che non tutte le disposizioni iniziali permettono di terminare con successo. Definiamo allora il seguente problema decisionale

Puzzle

Input: Una scacchiera $a \times b$ con alcune pedine rosse e nere distribuite su di essa **Output**: yes se e solo se è possibile terminare con successo.

- 1. Si dimostri che Puzzle $\in \mathcal{NP}$.
- 2. Si dimostri che Puzzle è \mathcal{NP} -hard (una possibile riduzione usa 3-SAT).

Esercizio 3 - 20 punti

Definiamo il seguente problema su un grafo diretto

Target

Input: Un grafo diretto G = (V, E) ed un vertice $t \in V$

Output: yes se e solo se per ogni vertice $u \in V$ esiste un cammino diretto da u a t

Si provi che TARGET è NL-hard.

Esercizio 4 - 20 punti

Il problema di ottimizzazione MIN-GRAPHCOLOURING è definito come segue

MIN-GRAPHCOLOURING (MIN-GC)

Input: Un grafo G

 \mathbf{Output} : Una colorazione propria dei vertici di G che usa il minimo numero di colori

Usando la tecnica del gap si dimostri che sotto l'ipotesi $\mathcal{P} \neq \mathcal{NP}$ non può esistere un algoritmo polinomiale per MIN-GC che garantisce un'approssimazione 4/3.