UADE

Facultad de Ingeniería y Ciencias Exactas

Inteligencia Artificial

Trabajo Práctico 3: Algoritmos Genéticos

Profesor:

Christian Parkinson

Integrantes - Grupo 6		
Apellido y Nombre	Legajo	Carrera
Breuer, Andrés	1120248	Ing. en Informatica
Cabezas, Alexander	1086279	Ing. en Informatica
Capellano, María	1056140	Ing. en Informatica
Caneva, Matheo	1129004	Ing. en Informatica
Facón, Nicolas	1133988	Ing. en Informatica

Índice

I. Introducción	3
2. Problema	3
3. Resolución	3
4. Conclusiones	3
5. Soluciones	4

1. Introducción

El siguiente trabajo consta de resolver un acertijo del estilo "El algoritmo de Einstein", utilizando algoritmos genéticos para encontrar una solución óptima a partir de una población inicial.

2. Problema

Se tienen una serie de pistas, las cuales hacen referencia a 5 individuos que viven en casas diferentes y con distintas profesiones, utiliza una base de datos diferente, programa en un lenguaje de programación distinto y utilizan distintos editores de texto.

Buscamos responder: ¿Quién usa el editor Vim?

3. Resolución

- a. Generamos la población inicial con individuos que poseen genes seleccionados al azar.
- b. Seleccionamos al mejor individuo basándonos en un puntaje, el cual se incrementa si cumple con las condiciones dadas en las pistas. En caso que no cumpla, baja el puntaje.
- c. Para cruzar, se hace con un padre de la población promedio y uno de los mejores puntuados.
 - Si cruzábamos padres pertenecientes a los mejores, teníamos un descendientes muy parecidos, lo cual no era lo que buscábamos.
- d. Nuestra mutación toma un subconjunto de la población y cambia individuos con una probabilidad fija de cambio.
- e. Una condición de corte en la evaluación se da si el mismo individuo es elegido como el mejor en múltiples ocasiones, generando entonces una mutación más amplia.
- f. Si nuestro individuo cumple con las 15 condiciones necesarias, corta la ejecución.

4. Conclusiones

- La cantidad de individuos generados al comienzo, tiene mucha influencia en si llegaremos a una solución óptima, dado que son los que posteriormente cruzaremos y mutaremos para lograr llegar a la solución final.

- Ordenar a los individuos de otra manera puede llevar a mejores resultados.
- Mayor cantidad de mutaciones, por lo visto, son proporcional al tamaño de la población, ya que con una población chica y mucha cantidad de mutaciones y recorte de individuos, no nos garantiza llegar a una solución óptima, y viceversa.

5. Soluciones

Algunas soluciones alcanzadas son las siguientes:

¿Quien usa Vim? El individuo que vive en la casa blanca, que es Desarrollador, que programa en Java y usa la base de datos Redis usa Vim Tiempo transcurrido 00:00:15.06

El individuo que vive en la casa blanca, que es desarrollador, programa en Java y usa Redis usa Vim.

¿Quien usa Vim? El individuo que vive en la casa roja, que es Matematico, que programa en Java y usa la base de datos Redis usa Vim Tiempo transcurrido 00:00:06.10

El individuo que vive en la casa roja, que es matemático, programa en Java y usa Redis, usa Vim.

¿Quien usa Vim? El individuo que vive en la casa blanca, que es Ingeniero, que programa en Java y usa la base de datos MongoDB usa Vim Tiempo transcurrido 00:00:04.39

El individuo que vive en la casa blanca, ingeniero, que programa en Java y usa MongoDB, usa Vim.