Renal cilia

detect flow

Ardon Shorr

Chekhov's Gun

"If you show a gun in Act one you better fire it in Act three."

"If you say in the first chapter that there is a rifle hanging on the wall, in the second or third chapter it absolutely must go off. If it's not going to be fired, it shouldn't be hanging there."

Evolutionary conservation

Primary cilia are ancient, with an unknown function

Kidney epithelia each express a single

primary cilium

Primary cilia are microtubule structures

The Journal of

Membrane Biology

© Springer-Verlag New York Inc. 2001

Bending the MDCK Cell Primary Cilium Increases Intracellular Calcium

H.A. Praetorius, K.R. Spring

NIH, NHLBI, LKEM, 10 Center Drive, Bldg. 10, Bethesda, MD 20892-1603, USA

Bending cilia increases calcium inside the cell

Cilia can be bent by suction

Cilia can be bent by suction or laminar flow

Flow triggers an increase in calcium

 1.74 ± 0.07 fold (p < 0.01, n = 37).

relative fluorescence

Suction triggers an increase in calcium in one cell that spreads to neighbor cells

Controls show this response is not an artifact

- Ionomycin serves as a positive control
- Control experiments used a pH-sensitive dye:
 - no change in cell thickness, volume, intracellular pH
- Bleaching or dye leakage would diminish fluorescence

Response depends on cilia and flow rate

- Ionomycin serves as a positive control
- Control experiments used a pH-sensitive dye:
 - no change in cell thickness, volume, intracellular pH
- Bleaching or dye leakage would diminish fluorescence

Bending cilia increases calcium inside the cell

- Flow or suction increases calcium inside the cell
- Bending one cilium spreads a signal to neighbors
- This response requires a primary cilium
- This response is "dose-dependent"

This calcium comes from two sources

Bending-induced calcium response depends on extracellular calcium

fluorescence intensity

Bending response does not depend on calcium channels

Bending response depends on stretch channels

This calcium comes from two sources

- Cilia response depends on extracellular calcium
 - and stretch channels
- But calcium doesn't have to get in
- So it liberates intracellular calcium

This signal spreads by gap junctions

Critique

Renal cilia

detect flow

Ardon Shorr