

Angle Sensors

GMR-Based Angular Sensors

TLE5012B Register Setting

TLE5012B

Application Note

V1.1, 2011-07-01

Edition 2011-07-01

Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History						
Page or Item Subjects (major changes since previous revision)						
V1.1, 2011-07-0	V1.1, 2011-07-01					

Trademarks of Infineon Technologies AG

AURIXTM, BlueMoonTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, COMNEONTM, EconoPACKTM, CoolMOSTM, CoolSETTM, CORECONTROLTM, CROSSAVETM, DAVETM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, HITFETTM, HybridPACKTM, I²RFTM, ISOFACETM, IsoPACKTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OmniTuneTM, OptiMOSTM, ORIGATM, PRIMARIONTM, PrimePACKTM, PrimeSTACKTM, PRO-SILTM, PROFETTM, RASICTM, ReverSaveTM, SatRICTM, SIEGETTM, SINDRIONTM, SIPMOSTM, SMARTiTM, SmartLEWISTM, SOLID FLASHTM, TEMPFETTM, thinQ!TM, TRENCHSTOPTM, TriCoreTM, X-GOLDTM, X-PMUTM, XMMTM, XPOSYSTM.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2010-10-26

Application Note 3 V1.1, 2011-07-01

TLE5012B

Table of Contents

Table of Contents

	Table of Contents	4
	List of Figures	
	List of Tables	6
1	Introduction	7
2 2.1 2.1.1 2.2	SSC- Register Description Registers Chapter TLE5012B Registers Description Communication Examples	8
3 3.1 3.1.1	SSC- Register Description for SPC Interface	27
4	Fuse Values	29

.ist	_ £	_	٠	
ICT	α			 ro

L	is	t (of	F	ig	u	re	2
_		•	9.	•	ıу	ч		

Figure 1	Default fuse settings	20
iguic i		 . 20

TLE5012B

List of Tables

List of Tables

Table 1	Bit Types	. 7
Table 2	Registers Overview	. 7
Table 3	SSC Command to read the angle value	26
Table 4	SSC Command to read angle speed and angle revolution	26
Table 5	SSC Command to change Interface Mode2 register	26
Table 6	Registers Overview	27

Introduction

1 Introduction

This document is the second part of the electrical specification. Generally the latest data sheet of TLE5012B is valid.

The main interface of the TLE5012B is SSC and the following section describes their configuration bits.

2 SSC- Register Description

In the following section different bit types are used. The meaning of the abbreviation can be found in Table 1.

Table 1 Bit Types

Abbreviation	Function	Description
R	Read	Read-only registers
W	Write	Read and write registers
U	Update	Update buffer for this bit is present. If an update is issued and the Update-Register Access bit (UPD in Command Word) is set, the immediate values are stored in this update buffer simultaneously. This enables a snapshot of all necessary system parameters at the same time.

2.1 Registers Chapter

This section defines the registers of the TLE5012B. It also defines the read/write access rights of the specific registers. **Table 2** identifies the values with symbols. Access to the registers is accomplished via the SSC Interface.

Table 2 Registers Overview

Register Short Name	Register Long Name	Offset Address	Page Number					
Registers Chapter, TLI	Registers Chapter, TLE5012B Registers Description							
STAT	Status Register	00 _H	8					
ACSTAT	Activation Status Register	01 _H	10					
AVAL	Angle Value Register	02 _H	12					
ASPD	Angle Speed Register	03 _H	13					
AREV	Angle Revolution Register	04 _H	13					
FSYNC	Frame Synchronization Register	05 _H	14					
MOD_1	Interface Mode1 Register	06 _H	15					
SIL	SIL Register	07 _H	16					
MOD_2	Interface Mode2 Register	08 _H	17					
MOD_3	Interface Mode3 Register	09 _H	18					
OFFX	Offset X	0A _H	19					
OFFY	Offset Y	0B _H	20					
SYNCH	Synchronicity	0C _H	20					
IFAB	IFAB Register	0D _H	21					
MOD_4	Interface Mode4 Register	0E _H	22					
TCO_Y	Temperature Coefficient Register	0F _H	23					

Table 2 Registers Overview (cont'd)

Register Short Name	Register Long Name	Offset Address	Page Number
ADC_X	X-raw value	10 _H	24
ADC_Y	Y-raw value	11 _H	24
IIF_CNT	IIF Counter value	20 _H	25

The register is addressed wordwise.

2.1.1 TLE5012B Registers Description

Status Register

STAT Status Regist	ter			fset 0 _H			Reset Value 8001 _H
15	14	13	12	11	10	9	8
RD_ST	s_	NR	NO_GMR_ A	NO_GMR_ XY	S_ROM	S_ADCT	Res
r		N	ru	ru	r	ru	
7	6	5	4	3	2	1	0
S_MAGOL	S_XYOL	s_ov	S_DSPU	S_FUSE	S_VR	S_WD	S_RST
ru	ru	ru	ru	ru	ru	ru	ru

Field	Bits	Туре	Description
RD_ST	15	r	Read Status 0 _B status values not changed since last readout 1 _B status values changed Reset: 1 _B
S_NR	14:13	W	Slave Number It is used to identify up to four sensors in a bus configuration. The levels on pin SCK and pin IFC can be used to change the default slave number for SPC interface. Pin SCK represents S_NR[13] and pin IFC the S_NR[14]. Reset: 00 _B

Field	Bits	Type	Description
NO_GMR_A	12	ru	No valid GMR Angle Value Cyclic check of DSPU output. 0 _B valid GMR angle value on the interface 1 _B no valid GMR angle value on the interface (e.g test vectors) Reset: 0 _B
NO_GMR_XY	11	ru	No valid GMR XY Values Cyclic check of ADC input. 0 _B valid GMR_XY values on the ADC input 1 _B no valid GMR_XY values on the ADC input (e.g. test vectors) Reset: 0 _B
S_ROM	10	r	Status ROM¹) Check of ROM-CRC at startup. After fail DSPU does not start. SPI access possible. 0 _B CRC ok 1 _B CRC fail or running Reset: 0 _B
S_ADCT	9	ru	Status ADC-Test ¹⁾ Check of signal path with test vectors. All test vectors at startup tested. Activation in operation via AS_ADCT possible. 0 _B Test vectors ok 1 _B Test vectors out of limit Reset: 0 _B
S_MAGOL	7	ru	Status Magnitude Out of Limit ¹⁾ Cyclic check of available magnetic field strength. Deactivation via AS_VEC_MAG. 0 _B GMR-magnitude ok 1 _B GMR-magnitude out of limit Reset: 0 _B
S_XYOL	6	ru	Status X,Y Data Out of Limit ¹⁾ Cyclic check of X and Y raw values. Deactivation via AS_VEC_XY 0 _B X,Y data ok 1 _B X,Y data out of limit (>23230 digits) Reset: 0 _B
S_OV	5	ru	Status Overflow ¹⁾ Cyclic check of DSPU overflow. Deactivation via AS_OV. 0 _B No DSPU overflow occurred 1 _B DSPU overflow occurred Reset: 0 _B
S_DSPU	4	ru	Status Digital Signal Processing Unit Check of DSPU, CORDIC and CAPCOM at startup. Activation in operation via AS_DSPU possible. 0 _B DSPU self test ok 1 _B DSPU self test not ok, or self test is running Reset: 0 _B

Field	Bits	Туре	Description			
S_FUSE	3	ru	Status Fuse CRC ¹⁾ Cyclic CRC check of laser cut fuses. Deactivation via AS_FUSE and disabled by activated auto calibration. Note: Changing of fused parameters results in new CRC which is unlike to stored CRC> Fuse CRC fail 0 _B Fuse CRC ok 1 _B Fuse CRC fail Reset: 0 _B			
S_VR	2	ru	Status Voltage Regulator ¹⁾ Permanent check of internal and external supply voltages. Deactivation via AS_VR 0 _B Voltages ok 1 _B V _{DD} over voltage; V _{DD} intervillage; V _{DD} -off; GND-off; or V _{OVG} ; V _{OVA} ; V _{OVD} too high Reset: 0 _B			
S_WD	1	ru	Status Watchdog Permanent check of watchdog. After watchdog-counter overflow, the DSPU stops. Deactivation via AS_WD 0 _B after chip reset 1 _B watchdog counter expired (DSPU stop), AS_RST must be activated. Outputs deactivated, Pull Up/Down active. Reset: 0 _B			
S_RST	0	ru	Status Reset Permanent check of any reset. Deactivation via AS_RST. 0 _B no reset since last readout 1 _B indication of power-up, short power-break, firmware or active reset Reset: 1 _B			

¹⁾ reset to "0" after readout

Activation Status Register

ACSTAT Activation Status Register				fset 1 _H			Reset Value 5AFE _H	
15			T	11	10	9	8	
		Res			AS_FRST	AS_ADCT	Res	
		W			W	W		
7	6	5	4	3	2	1	0	
AS_VEC_ MAG	AS_VEC_ XY	AS_OV	AS_DSPU	AS_FUSE	AS_VR	AS_WD	AS_RST	
W	W	W	W	W	W	W	W	

Field	Bits	Туре	Description
Res	15:11	W	Reserved Reset: 01011 _B
AS_FRST	10	W	Activation of Firmware Reset All configuration registers remain their contents. 0_B after execution 1_B activation of firmware reset (S_RST is set) Reset: 0_B
AS_ADCT	9	w	Enable ADC Test vector Check 0 _B after execution 1 _B activation of ADC Test vector Check Reset: 1 _B
AS_VEC_MAG	7	W	Activation of Magnitude Check 0 _B monitoring of magnitude disabled 1 _B monitoring of magnitude enabled Reset: 1 _B
AS_VEC_XY	6	W	Activation of X,Yout of limit -Check 0 _B monitoring of X,Y out of limit disabled 1 _B monitoring of X,Y out of limit enabled Reset: 1 _B
AS_OV	5	w	Enable of DSPU Overflow Check 0 _B monitoring of DSPU Overflow disabled 1 _B monitoring of DSPU Overflow enabled Reset: 1 _B
AS_DSPU	4	W	Activation DSPU BIST 0 _B after execution 1 _B activation of DSPU BIST or BIST running Reset: 1 _B
AS_FUSE	3	W	Activation Fuse CRC 0 _B monitoring of Fuse CRC disabled 1 _B monitoring of Fuse CRC enabled Reset: 1 _B
AS_VR	2	W	Enable Voltage Regulator Check 0 _B check of regulator voltages disabled 1 _B check of regulator voltages enabled Reset: 1 _B
AS_WD	1	W	Enable DSPU Watchdog-HW-Reset 0 _B DSPU Watchdog monitoring disabled 1 _B DSPU Watchdog monitoring enabled Reset: 1 _B
AS_RST	0	w	Activation of Hardware Reset Activation occurs after CSQ switches from '0' to '1' after SSC transfer. 0 _B after execution 1 _B activation of HW Reset (S_RST is set) Reset: 0 _B

Angle Value Register

AVAL		Off		Reset Value		
Angle Value R	egister	02	2 _H	8000 _H		
15	14			8		
RD_AV			ANG_VAL			
r	,	'	ru			
7				0		
		ANG	_VAL			
	'	rı				

Field	Bits	Туре	Description	
RD_AV	15	r	Read Status, Angle Value 0 _B no new angle value since last readout 1 _B new angle value (ANG_VAL) present Reset: 1 _B	
ANG_VAL	14:0	ru	Calculated Angle Value (signed 15bit) $(ANG_RANGE = 0x080)$ $Angle [°] = \frac{360°}{2^{15}} ANG _VAL[digits]$ $4000_{H} - 180°$ $0000_{H} \ 0°$ $3FFF_{H} + 179.99°$ $Reset: \ 0_{H}$	(1)

Angle Speed Register

Field	Bits	Туре	Description
RD_AS	15	r	Read Status, Angle Speed 0 _B no new angle speed value since last readout 1 _B new angle speed value (ANG_SPD) present Reset: 1 _B
ANG_SPD	14:0	ru	Calculated Angle Speed Without prediction difference between three consecutive angle values. With prediction, difference between predicted value and next-to-last measured angle value.
			$Speed \ [^{\circ}/s] = \frac{AngleRange \ [^{\circ}]}{2^{15}} ANG \ _SPD \ [digits \]}{2t_{upd} \ [s]} $ (2)
			Reset: 0 _H

Angle Revolution Register

Field	Bits	Туре	Description		
RD_REV	15	r	Read Status, Revolution 0 _B no new values since last readout 1 _B new value (REVOL) present Reset: 1 _B		
FCNT	14:9	wu	Frame Counter (unsigned 6 bit value) Increments every new angle value Reset: 0 _H		
REVOL	8:0	ru	Number of Revolutions (signed 9 bit value) If prediction is enabled, revolution counter is one schedule delayed related to ANG_VAL. Reset: 0 _H		

Frame Synchronization Register

FSYNC Frame Synchronization Register		gister	Offset 05 _H			Reset Value 0000 _H		
15					I	9	8	
			FSYNC				Res	
			wu			I		
7					I	ı	0	
	. '		R	es	' I			

Field	Bits	Туре	Description
FSYNC	15:9	wu	Frame Synchronization Counter Value Sub counter within one frame. Reset: 0 _H

Interface Mode1 Register

MOD_1 Interface Mod	de1 Register		Offset 06 _H				Reset Value 4001 _H
15	14	13	T		I I		8
FIR	_ MD			R	es		
1	N		1				
7		5	4	3	2	1	0
	Res	1	CLK_SEL	Res	DSPU_HO LD	IIF_	MOD
			W		W	,	w

Field	Bits	Туре	Description
FIR_MD	15:14	w	Filter Decimation Setting (Update Rate Setting) 00 _B 21.3µs (only for raw X/Y-values) 01 _B 42.7µs 10 _B 85.3µs 11 _B 170.6µs Reset: 01 _B
CLK_SEL	4	W	Clock Source Select in absence of external clock or PLL out of lock automatically switch to internal oscillator. 0 _B internal oscillator 1 _B external 4MHz clock (IFC pin switched to input) Reset: 0 _B
DSPU_HOLD	2	W	Hold DSPU Operation If DSPU is on hold no WD-reset is performed by DSPU. Deactivate watchdog with AS_WD before setting DSPU on hold. 0 _B DSPU in normal schedule operation 1 _B DSPU is on hold Reset: 0 _B
IIF_MOD	1:0	w	Incremental Interface Mode 00 _B IIF disabled 01 _B A/B operation with Index on CLK/HS3 10 _B Step/Direction operation with Index on CLK/HS3 11 _B not allowed Reset: 01 _B

SIL Register

SIL SIL Register		Offset 07 _H				Reset Value 0000 _F		
15	14	13		11	10	9	8	
FILT_PA R	FILT_IN V		Res	1	FUSE_RE L	Ro	es	
w	W	•			W			
7	6	5		3	2		0	
Res	ADCTV_E N		ADCTV_Y	1		ADCTV_X		
	W		W			W		

Field	Bits	Туре	Description
FILT_PAR	15	w	Filter Parallel 0 _B filter parallel disabled 1 _B filter parallel enabled (source: X-value) Reset: 0 _B
FILT_INV	14	w	Filter Inverted 0 _B filter inverted disabled 1 _B filter inverted enabled Reset: 0 _B
FUSE_REL	10	w	Fuse Reload 0 _B fuse reload disabled 1 _B fuse parameters reloaded to DSPU at next cycle start Reset: 0 _B
ADCTV_EN	6	w	ADC-Test vectors 0 _B ADC-Test vectors disabled 1 _B ADC-Test vectors enabled Reset: 0 _B
ADCTV_Y	5:3	W	Test vector Y 000 _B 0V 001 _B +70% 010 _B +100% 011 _B +Overflow 101 _B -70% 110 _B -100% 111 _B -Overflow Reset: 0 _H

Field	Bits	Туре	Description
ADCTV_X	2:0	W	Test vector X
			000 _B 0V
			001 _B +70%
			010 _B +100%
		011 _B +OV	
			101 _B -70%
			110 _B -100%
			111 _B -OV
			Reset: 0 _H

Interface Mode2 Register

MOD_2 Interface Mod	de2 Register			fset 8 _H			Reset Value 0801 _H
15	14						8
Res		'	'	ANG_RANGE		'	
				W			
7			4	3	2	1	0
	ANG_	RANGE	1	ANG_DIR	PREDICT	AUT	OCAL
	,	w		W	W	,	W

Field	Bits	Туре	Description
ANG_RANGE	14:4	W	Angle Range Angle Range [°] = 360° * (2 ⁷ / ANG_RANGE[digits]) 200 _H represents 90° 080 _H represents 360° Reset: 080 _H
ANG_DIR	3	W	Angle Direction 0 _B counterclockwise rotation of magnet 1 _B clockwise rotation of magnet Reset: 0 _B
PREDICT	2	w	Prediction 0 _B prediction disabled 1 _B prediction enabled Reset: 0 _B

Field	Bits	Туре	Description
AUTOCAL	1:0	W	Auto calibration Mode Explanation to auto calibration modes are described in data sheet of TLE5012B. 00 _B no auto calibration 01 _B auto calibration mode 1 10 _B auto calibration mode 2 11 _B auto calibration mode 3 Reset: 01 _B

Interface Mode3 Register

Field	Bits	Туре	Description
ANG_BASE	15:4	w	Angle Base 800 _H -180° 000 _H 0° 001 _H 0.0879° 7FF _H +179.912° Reset: 000 _H
SPIKEF	3	W	Analog Spike Filters of Input Pads 0 _B spike filter disabled 1 _B spike filter enabled Reset: 0 _B
SSC_OD	2	w	SSC-Interface 0 _B Push-Pull 1 _B Open Drain Reset: 0 _B

Field	Bits	Туре	Description
PAD_DRV	1:0	W	Configuration of Pad-Driver OOB IFA/IFB/IFC: strong driver, DATA: strong driver, fast edge O1B IFA/IFB/IFC: strong driver, DATA: strong driver, slow edge 10B IFA/IFB/IFC: weak driver, DATA: medium driver, fast edge 11B IFA/IFB/IFC: weak driver, DATA: weak driver, slow edge Reset: OOB

Offset X Register

Field	Bits	Туре	Description
X_OFFSET	15:4	w	Offset Correction of X-value in digits Reset: 0 _H

Offset Y Register

Field	Bits	Туре	Description
Y_OFFSET	15:4	w	Offset Correction of Y-value in digits Reset: 0 _H

Synchronicity Register

Field	Bits	Туре	Description	
SYNCH	15:4	w	Amplitude Synchronicity +2047 _D 112.494% 0 _D 100% -2048 _D 87.500% Reset: 0 _H	

IFAB Register

Field	Bits	Туре	Description
ORTHO	15:4	w	Orthogonality Correction of X and Y Components +2047 _D 11.2445° 0 _D 0° -2048 _D -11.2500° Reset: 0 _H
FIR_UDR	3	W	FIR Update Rate Initial FIR setting. Changes of FIR setting can be done after power-on via SPI within FIR_MD. 0 _B FIR_MD = '10' (85.3μs) 1 _B FIR_MD = '01' (42.7μs) Reset: 1 _B
IFAB_OD	2	w	IFA & IFB Open Drain 0 _B Push-Pull 1 _B Open Drain Reset: 0 _B
IFAB_HYST	1:0	W	HSM & IIF Hysteresis 00 _B 0° 01 _B 0.09° 10 _B 0.27° 11 _B 0.625° Reset: 11 _B

Interface Mode4 Register

Field	Bits	Туре	Description
TCO_X_T	15:9	w	Offset Temperature Coefficient for X-Component Reset: 0 _H
HSM_PLP	8:5	W	Hall Switch Mode; Pole-Pair Configuration 0000 _B 1 pole pairs 0001 _B 2 pole pairs 0010 _B 3 pole pairs 0011 _B 4 pole pairs 0100 _B 5 pole pairs 0101 _B 6 pole pairs 0111 _B 8 pole pairs 0111 _B 8 pole pairs 1000 _B 9 pole pairs 1001 _B 10 pole pairs 1011 _B 12 pole pairs 1011 _B 12 pole pairs 1100 _B 13 pole pairs 1101 _B 14 pole pairs 1111 _B 15 pole pairs 1111 _B 16 pole pairs Reset: 0100 _B
IFAB_RES	4:3	W	IFAB Resolution 00 _B 12bit = 0.088° (244Hz) 01 _B 11bit = 0.176° (488Hz) 10 _B 10bit = 0.352° (977Hz) 11 _B 9bit = 0.703° (1953Hz) Reset: 00 _B

Field	Bits	Туре	Description
IF_MD	1:0	W	Interface Mode Selected by external circuit of CLK pin at Power On Time. CLK pin connected to V _{DD} > Incremental Interface is selected; CLK pin connected to GND> IF_MD stored Interface is used. Switching to another interface during operation needs to stop the DSPU (DSPU_HOLD). 00 _B SSC mode; IIF 01 _B SSC mode; PWM 10 _B SSC mode; HSM 11 _B SSC mode; SPC Reset: 00 _B

Temperature Coefficient Register

Field	Bits	Туре	Description
TCO_Y_T	15:9	w	Offset Temperature Coefficient for Y-Component Reset: 0 _H
SBIST	8	w	Startup-BIST 0 _B Startup-BIST disabled 1 _B Startup-BIST enabled Reset: 1 _B
CRC_PAR	7:0	w	CRC of Parameters CRC of parameters from address 08 _H to 0F _H . By changing any settings within these registers also this CRC has to be updated. Reset: 0 _H

X-raw Value Register

Field	Bits	Туре	Description
ADC_X	15:0	r	ADC value of X-GMR
			Read out of this register will update ADC_Y
			Reset: 0 _H

Y-raw Value Register

,	ADC_Y Offset /-raw value 11 _H					Reset Value 0000 _H										
ſ	15	ı	T	I	T	Т	T	T	I	I	I	I	I	Т	I	0
	ADC_Y															
									r							

Field	Bits	Туре	Description
ADC_Y	15:0	r	ADC value of Y-GMR Updated when ADC_X or ADC_Y is read. Reset: 0 _H

Increment Counter Register

Field	Bits	Туре	Description
IIF_CNT	13:0	r	Counter value of increments This value can be used for synchronization purposes between sensor and counter value on micro controller side. Reset: 0 _H

2.2 Communication Examples

This chapter gives some short SPI communication examples. The sensor has to be selected first via CSQ and also SCK must be available for the communication.

Table 3 SSC Command to read the angle value

SSC Word No.	Description	Master transmitting	TLE5012 transmitting	Note
1	Command	1_0000_0_000010_0001		R/W_Lock_UPD_ADD_ND
2	Read Data		1_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Read angle value
3	Safety Word		1_1_1_1_xxxx_xxxxxxx	Read safety word

Table 4 SSC Command to read angle speed and angle revolution

SSC Word No.	Description	Master transmitting	TLE5012 transmitting	Note
1	Command	1_0000_0_000011_0010		R/W_Lock_UPD_ADD_ND
2	Read Data		1_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Read angle speed
3	Read Data		1_xxxxxx_xxxxxxxxx	Read angle revolution
4	Safety Word		1_1_1_1_xxxxx_xxxxxxxx	Read safety word

Table 5 SSC Command to change Interface Mode2 register

SSC Word No.	Description	Master transmitting	TLE5012 transmitting	Note
1	Command	0_1010_0_001000_0001		R/W_Lock_UPD_ADD_ND
2	Write Data	0_00010000000_1_0_01		ANG_Range: 080 _H ; ANG_DIR: 1 _B ; PREDICT: 0 _B ; AUTOCAL: 01 _B
3	Safety Word		1_1_1_1_xxxxx_xxxxxxxx	Read safety word

SSC- Register Description for SPC Interface

3 SSC- Register Description for SPC Interface

The Short PWM Code (SPC) is a synchronized data transmission based on the SENT protocol (Single Edge Nibble Transmission). More details to that can be found in the latest data sheet of TLE5012B. SPC uses some registers in a different way. Not mentioned registers and bits remain the same as described in **Section 2**.

3.1 Registers Chapter for SPC Interface

This section defines the registers of the TLE5012B. It also defines the read/write access rights of the specific registers. **Table 6** identifies the values with symbols. Access to the registers is accomplished in parallel to the SPC Interface via the SSC Interface.

Table 6 Registers Overview

Register Short Name	Register Long Name	Offset Address	Page Number			
Registers Chapter for SPC Interface, TLE5012B SPC Registers Description						
IFAB	IFAB Register	0D _H	27			
MOD_4	Interface Mode4 Register	0E _H	28			

The register is addressed wordwise.

3.1.1 TLE5012B SPC Registers Description

IFAB Register

SSC- Register Description for SPC Interface

Field	Bits	Туре	Description
Predivider	1:0	W	SPC Predivider The length of one unit time (UT) can be changed. 00_B $3\mu s$ 01_B $2.5\mu s$ 10_B $2.0\mu s$ 11_B $1.5\mu s$ Reset: 00_B

Interface Mode4 Register

Field	Bits	Туре	Description
SPC_Trigger	7	w	SPC Total Trigger Time The maximum length of the master pulse can be reduced. $0_B = 90UT$ $1_B = t_{mlow} + 12UT$ Reset: 0_B
SPC_Frame	4:3	W	SPC Frame Configuration 00 _B 12bit angle 01 _B 16bit angle 10 _B 12bit angle; 8bit temperature 11 _B 16bit angle; 8bit temperature Reset: 00 _B

Fuse Values

4 Fuse Values

The difference between the product types can be seen in Figure 1

Figure 1 Default fuse settings

www.infineon.com