The Return to College: Selection Bias and Dropout Risk

Lutz Hendricks Oksana Leukhina

April 15, 2014

Motivation

Over their lifetimes, college graduates earn about 60% more than high school graduates

• Data: NLSY79, men.

The goal: decompose the lifetime earnings gap into

- selection
- return to college

Focus: Risky College Completion

45% of college entrants drop out

• suggests that college completion is risky

Large differences in college graduation rates across AFQT quartiles

 suggests potentially important ability gaps between college / non-college workers

The Approach

Develop a model of risky college completion

Calibrate to data for men born around 1960 (NLSY79, NELS:88)

Decompose the lifetime earnings gap into selection and return to college

Focus on Graduation Prospects

The idea: variation in **graduation prospects across abilities** are key for selection

If low ability students are unlikely to graduate:

- they face small financial gains / losses from attempting college
- their enrollment / dropout decisions are sensitive to "small" shocks
- selection makes a large contribution to the college premum

We need to measure how graduation prospects vary across agents.

A Detailed Model of College Progress

We open up the black box of what happens in college

• this is our main departure from the literature

Key model features:

- graduating from college requires college credits
- more able students are more likely to earn credits
- other frictions may prevent graduation: high tuition, lack of assets, preference shocks

Benefits of this Approach

We can use transcript data to assess students' graduation prospects

- a key fact: dropouts earn about 30% fewer credits than grads in each year in college
- consistent with persistent heterogeneity in abilities that determine graduation prospects

Results

Roughly half of the college earnings premium is selection.

Intuition:

Graduation prospects vary strongly across abilities.

This allows the model to capture:

- large variation in graduation rates across AFQT quartiles
- persistent differences in credits earned between graduates and dropouts

Implications for Selection

How students respond to incentives varies greatly with ability.

- Low ability students enter college not expecting to graduate
 Their entry / dropout decisions are highly sensitive to tuition / financial assets
- High ability students expect to graduate with high probability
 Their decisions are sensitive to the college wage premium

Low ability students are easily deterred from entering / completing college

- if college is expensive
- if assets are scarce

The ability gap between graduates and dropouts is large.

Additional Results

College entry decisions are sensitive to tuition changes

• Intuition: for low ability students, tuition can be a significant fraction of the net gain from attending college

Relaxing borrowing limits affects college entry and graduation

- Even though most students are far from exhausting their borrowing limits
- Intuition: students of intermediate abilities can try college without suffering low consumption

Related Literature

A birds-eye view of existing models of college choice:

- Roy models:
 Anyone can graduate from college in 4 years.
 "Psychic costs" keep some students out of college.
- Risky college completion models where ability does not affect wages: Altonji (1993), Caucutt and Kumar (2003), ...
- Keane-Wolpin (1997) type models: Anyone can graduate from college in 4 years. Some students are hit by shocks (such as wage offers) and choose to drop out.
- Models that open up the college black box: Garriga and Keightley (2007): ability does not affect wages Stange (2012): wages only depend on observables; grades determine the utility cost of college

Outline

- Model
- Parametrization
- Results
 - Selection and the college premium
 - Understanding dropouts
- 4 Counterfactual experiments
 - Tuition subsidy
 - Increased borrowing limits
 - 3 Dual enrollment programs

The Model

Model Outline

- Partial equilibrium.
- 1 cohort.
- Students enter the model at high school graduation (t=1).
- They draw endowments and choose whether to try college or work as high school graduates.
- In college:
 - students attempt credits with random success
 - they update their beliefs about how long it would take to graduate
 - they decide to drop out or continue studying
- At work:
 - individuals consume their lifetime earnings

Endowments

- $\mathbf{0}$ $n_1 = \mathbf{0}$ completed college credits
- ② learning ability $a \in \{\hat{a}_1,...,\hat{a}_{N_a}\}$ with $\hat{a}_1 = 0$ and $\hat{a}_{i+1} > \hat{a}_i$ not observed until the start of work
- **3** type $j \in \{1,...,J\}$ which determines
 - initial assets $k_1 = \hat{k}_j$
 - **a** ability signal $m = \hat{m}_j$
 - **3** net price of attending college $q = \hat{q}_j$

Work

State vector $(k_{\tau}, n_{\tau}, a, s, \tau)$

- $s \in \{HS, CD, CG\}$
- τ: age

Worker's problem:

$$V(k_{\tau}, n_{\tau}, a, s, \tau) = \max_{\{c_t\}} \sum_{t=\tau}^{T} \beta^{t-\tau} u(c_t) + U_s$$

subject to the budget constraint

$$\underbrace{\exp\left(\phi_{s}a + \mu n_{\tau} + y_{s}\right)}_{\text{lifetime earnings}} + Rk_{\tau} = \sum_{t=\tau}^{T} c_{t}R^{\tau-t}.$$

 $\overline{m{U}_s}$: non-monetary utility from working with skill type $m{s}$

Assumptions: $y_{CD} = y_{HS}$ and $\phi_{CD} = \phi_{HS}$

Work

Before ability is revealed:

$$V_W(k_{ au},n_{ au},j,s, au) = \sum_{i=1}^{N_a} \Pr(\hat{a}_i|n_{ au},j, au) V(k_{ au},n_{ au},\hat{a}_i,s, au).$$

We show: (n_{τ}, j, τ) is a sufficient statistic for the worker's beliefs about his ability

College

```
State vector (n, i, j, t)
```

- j determines assets and college costs
- t is age
- i fixes consumption at $c_{i,j}$ (see below)

Attempt n_c credits

Earn each credit with logistic probability $\Pr_c(a) = \gamma_{min} + \frac{\gamma_{max} - \gamma_{min}}{1 + \gamma_1 e^{-\gamma_2 a}}$

Update beliefs about a.

Sufficient statistic for beliefs: n_{t+1}, j, t

Consume $c_{i,j}$ and pay tuition \hat{q}_j .

Borrowing constraint: $k_{t+1} = Rk_t - c_{i,j} - \hat{q}_j \ge -k_{min}$.

College: Value Function

Value of studying in period t:

$$V_{C}(n,i,j,t) = u(c_{i,j}) + \beta \sum_{n'} \Pr(n'|n,j,t) V_{EC}(n',i,j,t+1),$$

with continuation value

$$V_{EC}(n,i,j,t) = \max \left\{ \underbrace{V_C(n,i,j,t) + \pi p_c}_{ ext{study}}, \underbrace{V_W(k_{i,j,t},n,j,s(n),t) + \pi p_w}_{ ext{work}}
ight\} - \pi \overline{\gamma},$$

where

- p_c and p_w are independent draws from standard type I extreme value distributions
- $\bar{\gamma}$ is the Euler–Mascheroni constant
- s(n) is the schooling level associated with n college credits (CG if $n \ge n_{grad}$ and CD otherwise).

Continuation Value

Cases:

- If $n \ge n_{grad}$: work as a CG.
- 2 If $t = T_c$ and $n < n_{grad}$: work as CD.
- 3 Otherwise: choose between working as CD or studying next period.

Choices at High School Graduation

- Choose fixed consumption while in college, $c_{i,j}$ Admissible values exhaust borrowing limits after $1, ..., T_c$ periods
- Choose whether to work as HS or try college

Choices are subject to type I extreme value shocks (for continuity).

▶ Details

Model Summary

- Graduate from high school
- ② Draw financial resources and ability signal
- If ability signal is low or money is tight: work as high school graduate
- Otherwise enter college
 - pre-commit to consumption
- In each period:
 - earn credits
 - update beliefs
 - 3 if beliefs indicate low ability or money runs out: drop out
- Work as a permanent income consumer

Setting Model Parameters

Data Sources

NLSY79

- representative sample of men born between 1957 and 1964
- annual interviews until 1994; then biannual
- wages, schooling, AFQT scores

High School & Beyond (HS&B)

- high school sophomores in 1980
- high school GPAs, college transcripts

Endowment Distributions

Approximate a joint Normal distribution for

- $\bullet \left(\ln\left(\hat{k}_j\right), \quad \hat{q}_j, \quad \hat{m}_j\right)$
- \bullet a|m

J = 120 types

▶ Details

Measurement

College attendance:

• a student attempts at least 9 non-vocational credits in a year.

College credits.

- n_t/n_c = [earned college credits] / [full course load]
- full course load = number of credits attempted by students who eventually graduate from college

Test score quartiles.

- NLSY79: AFQT
- HS&B: High school GPA
- In the model: IQ is a noisy measure of m

Measurement

College costs *q*:

- all college related payments that are conditional on attending college
- tuition and fees net of scholarships, grants, and labor earnings
- "other" college expenditures (books, supplies, and transportation)
- key fact: mean q is close to 0

Assets k_1 :

- financial resources the student receives regardless of college attendance
- financial assets, parental transfers within 6 years of HS graduation

Borrowing limit: Stafford loans (\$19,750)

Setting Parameters

20 calibrated parameters:

- Endowment distributions
- 2 Lifetime earnings: ϕ_s, y_s, μ
- **3** Preferences: U_s, π
- Probability of passing a course Pr(a)

Simulate 100,000 person histories.

Minimize the weighted sum of squared deviations between model and data moments.

Calibration Targets

- Fraction in population, by (test score quartile, schooling)
- Lifetime earnings, by (test score quartile, schooling)
- Oropout rate, by (test score quartile, year in college)
- Fraction of credits passed, by graduation status and year
- **5** Mean and standard deviation of k_1 (HS and college)
- **1** Mean and standard deviation of q (college)
- Fraction of students in debt, by year in college
- Mean student debt, by year in college
- Average time to BA degree (years)

Fit: Schooling and Test Scores

Fit: Credit Passing Rates

	College dropouts		College graduates	
Year	Model	Data	Model	Data
1	66.7	67.7	95.9	98.7
2	67.9	71.8	95.8	96.3
3	64.7	66.9	95.8	95.7
4	57.7	63.8	95.8	94.9

Fit: Debt

	Mean debt		Fraction with debt		
Year	Model	Data	Model	Data	
1	5,827	3,549	15.3	27.7	
2	6,740	6,060	27.6	36.0	
3	7,907	8,045	49.8	42.5	
4	11,000	9,740	72.1	48.0	

Mean debt: conditional on having debt.

Results

Selection and Earnings

Mean log lifetime earnings of school group s:

$$\mathbb{E}[\phi_s a + \mu n_\tau + y_s + \ln(R^{-\tau})|s], \tag{1}$$

Decomposing the gap relative to high school graduates:

- prices: $y_s y_{HS} + (\phi_s \phi_{HS})\mathbb{E}(a|s)$;
- 2 credits: $\mathbb{E}(\mu n_{\tau}|s)$;
- **3** delayed labor market entry: $\mathbb{E}\{\ln R^{\tau}|s\} \ln R^{-1} = \mathbb{E}\{\ln R^{1-\tau}|s\};$
- **4** ability selection: $\phi_{HS}[\mathbb{E}(a|s) \mathbb{E}(a|HS)]$.

Selection and Earnings

Gap relative to HS	College dropouts		College graduates	
(in log points)	Gap	Fraction	Gap	Fraction
Total gap	8	_	45	_
Delayed labor market entry	-9	-124	-18	-39
Prices: y_s and ϕ_s	0	0	11	24
Credits	11	143	30	67
Ability selection	6	81	22	48

Selection at entry accounts for 2/3 of the CG/HS ability gap

Understanding College Entry

Signals and Lifetime Earnings

Understanding Dropouts

Why do nearly half of all college entrants fail to earn a degree?

Our model offers 3 reasons:

- Money: Low ability students know that they will not graduate. They enter college because it is cheap. Key feature of the data: mean q is close to 0.
- ② Luck: Medium ability students drop out if they receive poorer than expected "grades." ◆ Details
- Preference shocks: Shutting down preference shocks reduces dropout rates from 46% to 40%.

Counterfactual Experiments

Tuition Subsidy

Experiment:

- reduce mean *q* by \$1,000
- for comparison: raise y_{CG} by 4 log points
- both produce similar changes in college enrollment

Result:

- college enrollment rises by 2.7 percentage points
- Dynarski (2003): in the data, a \$1,000 tuition subsidy raises enrollment by 3-4 percentage points

Puzzle:

- Why is the response so large, given that the subsidy is so small (1% of the college earnings premium)?
- Why is the response the same for the much larger change in y_{CG} ?

Tuition Subsidy

Relax Borrowing Limits

Experiment:

• double k_{min}

Result:

- college enrollment rises by 7 percentage points
- even though (in model and data) very few students are close to their borrowing limits

Two effects:

- low to median ability students with low q and low k_1 enter college (most drop out)
- high ability students with high q or low k_1 can now try to graduate (they would have dropped out otherwise)

Relax Borrowing Limits

Conclusion

- The question: What fraction of the college earnings premium is selection?
- The approach:
 - Focus on risky college completion.
 - Selection occurs at 2 levels: in college and at entry.
- Main result: about half of the college earnings premium is selection.
- Asymmetric incentives:
 - high ability students attend college as investment they respond to the college premium
 - low ability students attend college for consumption they respond to the direct cost of college

Choices at High School Graduation

Consumption choice

Students commit to fixed consumption while in college

- For each type j there are T_c consumption levels
- Level i exhausts the borrowing limit after i periods in college

Consumption choice problem:

$$i = \arg\max_{\hat{i}} \left\{ V_C \left(0, \hat{i}, j, 1 \right) + \pi_c (p_{\hat{i}} - \bar{\gamma}) \right\}. \tag{2}$$

where p_i is drawn from a standard type I extreme value distribution.

Choices at High School Graduation

College entry decision

The college/work decision is made after consumption has been chosen.

The agent solves

$$\max \left\{ V_C(0,i,j,1) + \pi p_c, V_W(\hat{k}_j,0,j,HS,1) + \pi p_w \right\} - \pi \bar{\gamma}, \tag{3}$$

Endowment Distributions

The goal: heterogeneity in several variables, but computationally efficient. Types:

- J = 120
- drawn from a joint Normal distribution

Abilities:

- $N_a = 9$ abilities with equal mass
- $Pr(\hat{a}_i|j)$ approximates a joint Normal distribution for (a,m)

Endowments

Draw 3 independent standard Normal random vectors of length J: ε_k , ε_q , and ε_m .

 $\ln \hat{k}_j = \mu_k + \sigma_k \varepsilon_{k,j}$, where $\varepsilon_{k,j}$ is the j^{th} element of ε_k .

$$\hat{q}_j = \mu_q + \sigma_q rac{lpha_{q,k} arepsilon_{k,j} + arepsilon_{q,j}}{\left(lpha_{q,k}^2 + 1
ight)^{1/2}}$$

$$\hat{m}_{j}=rac{lpha_{m,k}arepsilon_{k}+lpha_{m,q}arepsilon_{q,j}+arepsilon_{m,j}}{\left(lpha_{m,k}^{2}+lpha_{m,q}^{2}+1
ight)^{1/2}}$$

Ability grid:

A discrete approximation of the joint normal distribution

$$a = \bar{a} + \frac{\alpha_{a,m} m + \varepsilon_a}{\left(\alpha_{a,m}^2 + 1\right)^{1/2}},\tag{4}$$

Set
$$\hat{a}_i = \mathbb{E}\left\{a|a \in \Omega_i\right\}$$
 where $\Omega_i = \left\{a: \frac{i-1}{N_a} \le \Phi\left(a-\bar{a}\right) < \frac{i}{N_a}\right\}$
Set $\Pr(\hat{a}_i|j) = \Pr\left(a \in \Omega_i|m = \hat{m}_i\right)$.

Fixed Model Parameters

Parameter	Description	Value
Preferences		
β	Discount factor	0.98
π_c	Scale of preference shocks at consumption choice	0.20
College		
T_c	Maximum duration of college	6
n_{grad}	Number of credits required to graduate	20
n_c	Number of credits attempted each year	5
k_{min}	Borrowing limit	-\$19,750
Other		
R	Gross interest rate	1.04

Calibrated Parameters

Parameter	Description	Value
Endowments		
μ_k, σ_k	Marginal distribution of $ln(k_1)$	0.41, 1.17
μ_q,σ_q	Marginal distribution of q	3.01,5.81
$\alpha_{m,k}, \alpha_{m,q}, \alpha_{q,k}, \alpha_{a,m}, \alpha_{IQ,m}$	Endowment correlations	0.23, -0.11, -0.44, 2.97, 1.78
Lifetime earnings		
ϕ_{HS},ϕ_{CG}	Effect of ability on lifetime earnings	0.153, 0.194
y_{HS}, y_{CG}	Lifetime earnings factors	3.90, 3.91
μ	Earnings gain for each college credit	0.014
Other parameters		
π	Scale of preference shocks	0.767
U_{CD},U_{CG}	Preference for job type s	-1.11, -2.98
$\gamma_1, \gamma_2, \gamma_{min}$	Probability of passing a course	0.68, 7.89, 0.42

Fit: Schooling and Lifetime Earnings

School group			
HS	CD	CG	
46.9	24.3	28.8	
47.1	24.4	28.5	
0.4	0.4	-1.0	
600	643	944	
596	643	934	
-0.7	-0.0	-1.0	
	HS 46.9 47.1 0.4 600 596	HS CD 46.9 24.3 47.1 24.4 0.4 0.4 600 643 596 643	

Fit: Lifetime Earnings

Fit: Dropout Rates (IQ quartiles)

Fit: Financial Moments

	Model	Data
Distribution of k_1 , HS		
mean	16,770	16,630
standard deviation	22,867	23,266
Distribution of k_1 , college		
mean	38,011	37,390
standard deviation	37,329	38,475
Distribution of q , college		
mean	-740	-584
standard deviation	4,928	5,787

Fit: Financial Moments

	Mean <i>q</i>		Standard	deviation	
Test score quartile	Model	Data	Model	Data	N
1	-2,934	-2,266 (678)	5,075	5,253	60
2	-1,362	-1,741 (454)	4,896	6,121	182
3	-560	-509 (308)	4,924	5,692	341
4	-173	-20 (253)	4,764	5,704	510

Dropouts: Money

Consumption and college costs among dropouts

Dropouts: Money

Fraction of college students who choose \emph{c} so high that graduation is ngt/60

Dropouts: Luck

Beliefs among dropouts

Dual Enrollment Programs

Experiment:

• allow high school students to take 40% of an annual course load

Result:

almost no change in college attendance or completion

Reasons:

- For many students, college entry decisions are not sensitive to more precise information about ability
 Very high (low) ability students almost always (never) try college
- The rate of learning is slow The experiment does not change beliefs much

Dual Enrollment Programs

