K-mean Algorithm (1)

https://en.wikipedia.org/wiki/K-means_clustering

Given a set of observations (\mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n), where each observation is a d-dimensional real vector, k-means clustering aims to partition the n observations into k ($\leq n$) sets $\mathbf{S} = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squares (WCSS) (i.e. variance). Formally, the objective is to find:

$$rg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2 = rg\min_{\mathbf{S}} \sum_{i=1}^k |S_i| \operatorname{Var} S_i$$

Form feature vectors

Cluster Seekingg

K-mean Algorithm (2)

https://en.wikipedia.org/wiki/K-means_clustering

Assignment step: Assign each observation to the cluster whose mean has the least squared Euclidean distance, this is intuitively the "nearest" mean.^[7] (Mathematically, this means partitioning the observations according to the Voronoi diagram generated by the means).

$$S_i^{(t)} = ig\{ x_p : ig\| x_p - m_i^{(t)} ig\|^2 \le ig\| x_p - m_j^{(t)} ig\|^2 \ orall j, 1 \le j \le k ig\},$$

Update step: Calculate the new means to be the centroids

$$m_i^{(t+1)} = rac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$$

Algorithm:

1) Assum Number of Classes = K.

Pick
$$m_i(t)$$
 | $t=1$, $i=1,2,...,K$.

Arbitrary.

2. $g. m_i(t) = \overline{X}_i$

Regroup $\overline{X}_i(t)$ | $\leq ||\overline{X}_i(t)|| ||\overline{X}_i(t)|| ||\overline{X}_i(t)||$

Regroup $\overline{X}_i(t)$ | $\leq ||\overline{X}_i(t)|| ||\overline{X}_i(t)|| ||\overline{X}_i(t)||$

3) Update $m_i(t+1)$ for $i=1,2,...,K$, Check

Termination $m_i(t+1) = \overline{m}_{i,i}(t)$ to go to a

K-mean Example

Hand Calculation

CMPE 9 - March 15/2018 AL 21. Similarly

Example: Given 2 CATS (Classes) Hind the
$$\|X_1 - M_2\| = (x_1 - m_2)^2 + x_1 - x_2 + x_2 + x_3 + x_4 +$$

K-mean

Harry Li, Ph.D.

Use kmean.py To Compute

AI & Machine Learning Machine Learning Decision making Functions March 17,2018 Harry Li github / Rualili/opencu | deaplearning Mathematical Formulation. Objective Function. Algorithm. Flood Fill Schection Uideo CAM IKY) BKY) T Feature Dectors.

Example: w1: B1(x,y), ..., B6(x,y), w2: B'1(x,y), ..., B'10(x,y), V = (V1, V2, V3), where v1 = m11, v2=m10, v3=m01, find m1 and m2 by using kmean.py

kmean.py Example

