# GSTREAMER VIDEO ANALYTICS: OPTIMIZING INFERENCE ACROSS HW TARGETS

Intel Visual Compute Middleware and Tools

Neelay Shah Neena Maldikar Mikhail Nikolskii Ilya Belyakov



### Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting <a href="https://www.intel.com/design/literature.htm">www.intel.com/design/literature.htm</a>.

Intel, the Intel logo, {List the Intel trademarks in your document} are trademarks of Intel Corporation in the U.S. and/or other countries.

\*Other names and brands may be claimed as the property of others

© 2019 Intel Corporation



# Agenda

- Video Analytics Usages
- Supporting Inference Across Different Hardware
- GStreamer Video Analytics
- Demo
- Video Analytics Serving
- Resources



### Growing Demand for Video Intelligence

\$2 Billion (2019) -> \$11 Billion (2026)



Retail analytics



**Industrial inspection** 



Content filtering



Parking management



**Encode Quality Control** 



**Super Resolution** 



Autonomous driving



Action recognition



### Growing Demand for Video Intelligence









Inexpensive Widely Deployed Cameras Increasing
Edge 2 Cloud
Networking
capacity with
5G

Deep Learning
Networks with
Increasing
Accuracy

Increasing
Compute
Capacity and
Options



### Intel Video Analytics Hardware



Scalar



**VPU** Intel® Vision **Accelerator Design** with Intel® Movidius™ Vision **Processing Units** (VPU)

**Matrix** 



### Typical Video Analytics Pipeline



### Typical Video Analytics Pipeline



### Agenda

- Video Analytics Usages
- Supporting Inference Across Different Hardware
- GStreamer Video Analytics
- Demo
- Video Analytics Serving
- Resources



### **OpenVINO**

### Optimized Inference Across Different Hardware



This Python\*-based command line tool imports trained models from popular deep learning frameworks such as Caffe\*, TensorFlow\*, and Apache MXNet\*, and Open Neural Network Exchange (ONNX).

This execution engine uses a common API to deliver inference solutions on the platform of your choice: CPU, GPU, VPU, or FPGA.

### OpenVINO High Level Design



### **OpenVINO Performance Gains**





https://www.dlology.com/blog/how-to-run-keras-model-inference-x3-times-faster-with-cpu-and-intel-openvino-1/



Inference speed comparison between TensorFlow and OpenVINO on a DeepLabV3+ / MobileNetV2 / ASPP head network.

https://hackernoon.com/optimizing-neural-networks-for-production-with-intels-openvino-a7ee3a6883d



# Agenda

- Video Analytics Usages
- Supporting Inference Across Different Hardware
- GStreamer Video Analytics
- Demo
- Video Analytics Serving
- Resources

### **GStreamer Video Analytics**





OpenVINO

Optimized Media Framework

Optimized Inference Engine

### **GStreamer Video Analytics**



### **GStreamer Plugins Architecture**



### **GVA Inference Plugins Architecture**



### GStreamer Pipeline Example

Running on devices...

Video Analytics pipeline – face detection plus age, gender, person recognition



DL model

intel

# **GStreamer Video Analytics Plugins List**

| GST element    | Description                        | INPUT                                                      | ОИТРИТ                                  | Properties        |
|----------------|------------------------------------|------------------------------------------------------------|-----------------------------------------|-------------------|
| gvainference   | Generic inference                  | GstBuffer                                                  | INPUT + GvaTensorMeta                   | <u>Properties</u> |
| gvadetect      | Object detection                   | GstBuffer                                                  | INPUT +<br>GstVideoRegionOfInterestMeta | <u>Properties</u> |
| gvaclassify    | Object classification              | GstBuffer +<br>GstVideoRegionOfInterestMeta                | INPUT + GstVideoRegionOfInterestMeta    | <u>Properties</u> |
| gvaidentify    | Object identification/ recognition | GstBuffer +<br>GstVideoRegionOfInterestMeta                | INPUT + GstVideoRegionOfInterestMeta    | <u>Properties</u> |
| gvametaconvert | Metadata conversion                | GstBuffer + GvaTensorMeta/<br>GstVideoRegionOfInterestMeta | INPUT + GvaJSONMeta                     | <u>Properties</u> |
| gvawatermark   | Overlay                            | GstBuffer + GvaDetectionMeta + { GvaTensorMeta }           | INPUT (with modified image)             | <u>Properties</u> |
| gvametapublish | Message bus (Kafka,<br>MQTT)       | GstBuffer + GvaJSONMeta                                    | -                                       | <u>Properties</u> |

### Metadata

#### **Detection:**

#### GstVideoRegionOfInterestMeta

roi\_type - Detection Label (Face, Bottle,
...)

x - x component of upper-left corner

*y* – component of upper-left corner

*w* – bounding box width

*h* – bounding box height

params - List of Classification Results

#### **Classification:**

### Parameter of Region of Interest

model\_name - name of model

layer\_name - output layer name

label – Classification Label (Age, Gender)

data – Tensor data

#### **Metaconvert:**

#### **GvaJSONMeta**

message – JSON Object Representing list of regions and classifications per frame

```
{
  "timestamp":0,
  "objects": [
    {
        "h": 85, w": 76, "x": 262, y": 601,
        "roi_type": "face",
        "age": {"label": "24", "model": {
            "name": "age_gender"
        }
    },
    "emotion": {
        "label": "anger",
        "model": {
            "name": "0003_EmoNet_ResNet10"
        }
    },]
}
```

### **Common Properties**

**model** – path to model (.xml) in IR format

**model-proc** – path to JSON file with description of input/ output layers for pre/post processing

**device** – target device for inference (CPU, GPU, CPU-GPU, HDDL, multi device)

**inference-id** – unique id to enable inference engine instance sharing between OpenVINO plugin instances

**batch-size** - number of frames to process in one request

nireq - number of inference requests to run in parallel

every-nth-frame – run inference only on each N-th frame

### Agenda

- Video Analytics Usages
- Supporting Inference Across Different Hardware
- GStreamer Video Analytics
- Demo
- Video Analytics Serving
- Resources

### Face Detection And Classification

#### Models:

Detection: face-detection-adas-0001.xml

Classification: age-gender-recognition-retail-0013.xml

Classification: emotions-recognition-retail-0003.xml

Classification: landmarks-regression-retail-0009.xml

### Pipeline:

```
gst-launch-1.0 --gst-plugin-path ${GST_PLUGIN_PATH} \
filesrc location =$INPUT!! decodebin! video/x-raw! videoconvert! \
gvadetect model=$DETECT_MODEL_PATH device=$DEVICE pre-proc=$PRE_PROC! queue! \
gvaclassify model=$CLASS_MODEL_PATH model-proc=$(PROC_PATH $MODEL2_PROC) device=$DEVICE pre-
proc=$PRE_PROC! queue! \
gvaclassify model=$CLASS_MODEL_PATH1 model-proc=$(PROC_PATH $MODEL3_PROC) device=$DEVICE pre-
proc=$PRE_PROC! queue! \
gvaclassify model=$CLASS_MODEL_PATH2 model-proc=$MODEL4_PROC device=$DEVICE pre-
proc=$PRE_PROC! queue! \
gvavatermark! videoconvert! gvametaconvert method=detection!fpsdisplaysink video-sink=ximagesink sync=false
```



### Multi-Channel Object Detection

#### Models:

Detection: mobilenet-ssd.xml

### Pipelines:



# Agenda

- Video Analytics Usages
- Supporting Inference Across Different Hardware
- GStreamer Video Analytics
- Demo
- Video Analytics Serving
- Resources

### Video Analytics Serving

- <a href="https://github.com/intel/video-analytics-serving">https://github.com/intel/video-analytics-serving</a>
- Containerized uService for Video Analytics
- RESTful interfaces for executing and monitoring video analytics pipelines
- Interface agnostic to underlying implementation (GStreamer, FFMPEG, Custom backend)
- Support scaling through container deployment and orchestration frameworks
- Simple to integrate and ready to scale



# Smart Cities: Open Visual Cloud

Process video streams and events from multiple cameras in real-time





# Manufacturing Fault Detection: Edge Insights Platform





### Resources

#### **OpenVINO**

- https://github.com/opencv/dldt

#### **GStreamer Video Analytics**

- https://github.com/opency/gst-video-analytics

#### **Video Analytics Serving**

- https://github.com/intel/video-analytics-serving

#### **Open Visual Cloud**

- Smart City sample <u>https://github.com/OpenVisualCloud/Smart-City-Sample</u>
- Ad Insertion sample <u>https://github.com/OpenVisualCloud/Ad-Insertion-Sample</u>
- Docker files including FFMPEG Video Analytics Filters <u>https://github.com/OpenVisualCloud/Dockerfiles</u>

# THANK YOU!

### Intel Visual Compute Middleware and Tools

Neelay Shah Neena Maldikar Mikhail Nikolskii Ilya Belyakov

