Chapter 16. Vector calculus. Section 16.1 Vector fields.

Definition. Let D be a set in \mathbb{R}^2 (a plane region). A **vector field on** \mathbb{R}^2 is a function \mathbf{F} that assigns to each point $(x, y) \in D$ a two-dimensional vector $\mathbf{F}(x, y)$.

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$$

The components functions P and Q are sometimes called scalar fields.

Definition. Let E be a set in \mathbb{R}^3 . A vector field on \mathbb{R}^3 is a function \mathbf{F} that assigns to each point $(x,y,z) \in E$ a three-dimensional vector $\mathbf{F}(x,y,z)$.

$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$$

 ${f F}$ is continuous is and only if $P,\,Q,$ and R are continuous. Examples of vector fields.

Example 1. Sketch the vector field F if F(x, y) = xi - yj.

Let f(x, y) be a scalar function of two variables, then

$$\nabla f(x,y) = \langle f_x, f_y \rangle$$

is a vector field called a **gradient vector field**. If f(x,y,z) be a scalar function of three variables, then its gradient vector field is defined as

$$\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle$$

Example 2. Find the gradient vector field of the function $f(x, y, z) = x \ln(y - z)$.

$$\nabla f = \langle f_{x}, f_{y}, f_{z} \rangle = \langle ln(y-z), \frac{x}{y-z}, -\frac{x}{y-z} \rangle$$

A vector field is called a conservative vector field if it is the gradient of some scalar function, that its if there exists a function f such that $\mathbf{F} = \nabla f$. Then f is called a **potential function** for \mathbf{F} .