Let f be a real-valued signal, $f_n \in \mathbb{R}$ for n = 0, ..., N-1

$$F_k = \sum_{n=0}^{N-1} f_n \exp\left(\frac{-2\pi i n k}{N}\right) \quad \text{for } k = 0, \dots, N-1$$
$$g_n = f_{N-n}$$

Assume the Fourier coefficients of g are G_k

$$G_k = \sum_{n=0}^{N-1} g_n \exp\left(\frac{-2\pi i n k}{N}\right) \qquad for \ k = 0, \dots, N-1$$

$$G_k = \sum_{n=0}^{N-1} f_{N-n} \exp\left(\frac{-2\pi i n k}{N}\right)$$

Change of variables: Let m = N - n, so that n = N - m,

when
$$n = 0$$
, $f_{N-n} = f_N$, $m = N$
when $n = 1$, $f_{N-n} = f_{N-1}$, $m = N-1$
when $n = 2$, $f_{N-n} = f_{N-2}$, $m = N-2$
...

when $n = N-1$, $f_{N-n} = f_1$, $m = 1$

Thus, when substituting m = N - n, the summation can start from m = 1 to m = N

$$G_k = \sum_{m=1}^{N} f_m \exp\left(\frac{-2\pi i(N-m)k}{N}\right)$$

$$G_k = \sum_{m=1}^{N} f_m \exp(-2\pi ik) \cdot \exp\left(\frac{2\pi i(m)k}{N}\right)$$

$$G_k = \sum_{m=1}^{N} f_m \exp\left(\frac{2\pi imk}{N}\right)$$

$$G_k = \sum_{m=0}^{N} f_m \exp\left(\frac{2\pi imk}{N}\right) - \sum_{m=0}^{0} f_m \exp\left(\frac{2\pi imk}{N}\right)$$

$$G_k = \sum_{m=0}^{N} f_m \exp\left(\frac{2\pi imk}{N}\right) - f_0 \exp\left(\frac{2\pi i(0)k}{N}\right)$$

$$G_k = \sum_{m=0}^{N} f_m \exp\left(\frac{2\pi imk}{N}\right) - f_0$$

$$G_k = \left(f_N \exp\left(\frac{2\pi iNk}{N}\right) + \sum_{m=0}^{N-1} f_m \exp\left(\frac{2\pi imk}{N}\right) - f_0\right)$$

$$G_k = \left(f_N + \sum_{m=0}^{N-1} f_m \exp\left(\frac{2\pi imk}{N}\right) - f_0\right)$$

Since f is a signal, it is periodic, thus $f_N=f_0$, this implies:

$$G_k = \sum_{m=0}^{N-1} f_m \exp\left(\frac{2\pi i m k}{N}\right)$$

Since f is real-valued, $f_m = \overline{f_m}$, thus:

$$G_k = \sum_{m=0}^{\overline{N-1}} \overline{f_m} \exp\left(\frac{-2\pi \imath mk}{N}\right)$$

$$G_k = \sum_{m=0}^{N-1} f_m \exp\left(\frac{-2\pi \imath mk}{N}\right)$$
$$G_k = \overline{F_k}$$

Therefore, it has been proven that $G_k = \overline{F_k}$.