Online Learning

Cx. Shipping service website

Chosen
$$y=1$$

not $y=0$
 $p(y=1|z;\theta)$ price logistic regression

Repeat forever
$$\xi$$

Get (x,y) Corresponding to user.

Update θ using (x,y) :

 $\theta_j := \theta_j - \alpha(h_\theta(x) - y)x_j$ $j = (0,...,n)$

- · It can adapt to changing user tastes charges over time
- · It allows us to learn from a continuous stream of data,

Since we use each example once than no larger need to process it again

Map-reduce and Data parallelism

M=400, Batch gradient descent:
$$0j = 0j - \alpha + \infty \sum_{j=1}^{400} (hg(x) - y)x_{j}^{(i)}$$

Machine 1: Use	(x(1),y(1)),, (x(10), y(100))	temp;
	(x(10)), (10)),, (x(200), y(200))	
	(x(201), y(201)),, (x(300), y(300))	Comm
	$(x^{(301)}, y^{(301)}), \cdots, (x^{(400)}, y^{(400)})$	

Many learning algorithms can be expressed as computing sums of functions over the training set