ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА"

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ФИЗИКИ УСКОРИТЕЛЕЙ И РАДИАЦИОННОЙ МЕДИЦИНЫ

ОТЧЁТНАЯ РАБОТА ПО КУРСУ «ВВЕДЕНИЕ В ИЗУЧЕНИЕ ОСНОВ НАЧАЛ ПОНИМАНИЯ МОДЕЛИРОВАНИЯ ПРОХОЖДЕНИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ ЧЕРЕЗ ВЕЩЕСТВО С ИСПОЛЬЗОВАНИЕМ ИНСТРУМЕНТАРИЯ GEANT4»

Тема:

«Моделирование простейшей рентгеновской трубки»

Выполнил студент 418 группы Маракулин Андрей Павлович

Научный руководитель: Золотов Сергей Александрович

Маракулин Андрей Павлович

Оглавление

Постановка задачи	3
Эписание геометрии	3
Описание источника и используемой физики	4
Описание детектора	4
Обработка данных	5
Результаты	6
Выводы	7
Ссылки	7

Постановка задачи

Смоделировать простейшую рентгеновскую трубку (анод Медь, энергия электронов 300 кэВ и построить диаграмму направленности рентгеновского излучения. Объем статистики 1000000 фотонов.

Описание геометрии

Устройство рентгеновской трубки представляет из себя вакуумную колбу в которой расположены катод, испускающий электроны и анод, при взаимодействии с которым образуются гамма кванты.

Математическая модель задачи представляет из себя медный круглый катод и источник электронов без физического объекта.

Параметры анода: материал: медь (G4_Cu), радиус R=30 мм, угол среза $\alpha=45^{\circ}$, длина от основания до центра среза L=90 мм

Описание источника и используемой физики

Источник электронов имеет форму круга радиусом r=2 мм, расположен на оси z, испускает электроны энергией 300 кэB по оси z в сторону анода.

Используемая физика: QBBC_LIV, хорошо согласуется в области энергий ниже 1 ГэВ для широкого спектра частиц.

Описание детектора

В качестве детектора выбрана сферическая область вне источника и анода. Регистрируется последний шаг в вакуумной полой сфере с внешним радиусом $R_{\text{дет}} = 160$ мм, и внутренним радиусом $R_{\text{дет}} = 150$ мм. Регистрируется названия частиц, координаты, вектор их скорости и энергия. Данные записываются в единый кортеж.

Обработка данных

Данные о частицах записываются в csv-файлы и обрабатываются с помщью ЯП Python в среде Jupyter Notebook.

- 1. На первом шаге данные преобразуются в формат DataFrame для удобства работы.
- 2. В детектор попадают около 40% электронов от числа выпущенных катодом и 0,7% образовавшихся гамма квантов. Объем статистики: 1 миллиард катодных электронов.
- 3. Далее отбираются только гамма-кванты, поскольку только они для нас интересны. Объем гамма-квантов при 1 миллиарде испущенных электронов: 7 миллионов.
- 4. Отобразим координаты регистрации гамма-квантов (1500 точек):

- 5. Поскольку виден основной вектор направленности, который направлен под углом 45°, то для удобства построения диаграмм стоит повернуть распределение на 45° чтобы вектор направленности был сонаправлен с одной из осей.
- 6. Далее построим диаграмму направленности в плоскости zy, для этого выберем небольшой поясной слой

Результаты

Диаграмма направленности: суть задачи. Была выбрана двумерная гистограмма в полярных координатах. Выбор обусловлен нахождением статьи, в которой та же диаграмма выводится теоретически. [1]

Диаграмма направленности рентгеновского излучения.

Дополнительные результаты:

Выводы

Результаты согласуются с теоретическими расчетами и МОГУТ для проектирования рентгеновских трубок. использованы Дальнейшее развитие работы может быть продолжено в направлении разностороннего исследования распределенией при различных энергиях испускаемых электронов, а также проектировании оптимального окна для испускания Код рентгеновского излучения. работы является открытым воспроизводимым [2]

MeV

Ссылки

[1] Расчёт диаграммы направленности рентгеновской трубки.

https://studfile.net/preview/387072/page:4/

[2] Репозиторий с кодом для моделирования и обработки:

https://github.com/Annndruha/Geant4/blob//v5.0.0/xray_tube

