

CPSC 319 Data Structures, Algorithms, and Their Applications

Winter 2024

Introduction

Nima Vahidi Ferdowsi

MSc student under the supervision of Dr. Mario Costa Sousa and Dr. Usman Alim Deep Neural Networks for Style Transfer in Computer Graphics and Visualization

• Email: nima.vahidiferdowsi@ucalgary.ca

Please start your subject with "CPSC 319 - "

Outline

- Java Primer (Chapter 1)
- Fundamental Data Structures (Chapter 3)
- Specifics about the Programming Assignments
- Any specific data structures/algorithms covered in class throughout the term

Recursion

- A programming concept where a function calls itself to solve a problem.
- Continues until a base case is reached, returning a result without further recursive calls.
- Factorial:

$$n! = n \times (n-1) \times ... \times 2 \times 1$$

Matrix

- A matrix is a two-dimensional array of numbers, symbols, or expressions arranged in rows and columns.
- Denoted by an uppercase letter, such as A.
- Matrix Elements: a_{ij} represents the element in the i-th row and j-th column of matrix A.
- Matrix Size: m×n indicates a matrix with m rows and n columns.

$$\mathbf{A} = egin{bmatrix} -1.3 & 0.6 \ 20.4 & 5.5 \ 9.7 & -6.2 \end{bmatrix}.$$

Matrix Operations

Addition:

C = A + B for matrices A, B, and C of the same size.

$$c_{ij} = a_{ij} - b_{ij}$$

• Subtraction:

C = A - B for matrices A, B, and C of the same size.

$$c_{ij} = a_{ij} - b_{ij}$$

• Scalar Multiplication:

 $C = k \cdot A$ for a scalar k and matrix A.

$$c_{ij} = k \cdot a_{ij}$$

Matrix Multiplication:

 $C = A \times B$ for matrices A, B, and C with appropriate dimensions.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Transpose:

 $B = A^{T}$ where B is the transpose of A.

$$b_{ij} = a_{ji}$$

Exponentiation

• Exponentiation is the process of raising a number (base) to a certain power (exponent).

- $n^{m} = n \times n^{m-1}$
- $n^m = n^{m/2} \times n^{m/2} \times n$ (m is odd)
- $n^m = n^{m/2} \times n^{m/2}$ (m is even)