Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Кафедра	Информационных технологий и управления Интеллектуальных информационных технологий
	К защите допустить: Заведующий кафедрой Д.В. Шункевич
по ди	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к расчетной работе сциплине «Проектирование программного обеспечения интеллектуальных систем»:
	Поиск диаметра графа
	БГУИР РР 1-40 03 01
Студент: Группа:	И. Д. Телица 221701

Руководитель:

С. А. Никифоров

СОДЕРЖАНИЕ

Перечень условных обозначений	ز
Введение	4
1 Понятия и определения	٦
2 Алгоритм решения задачи	ϵ
3 Примеры и результаты	7
Заключение	(
Список использованных источников	1

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ

БЗ — база знаний;

SC — Semantic Code;

SCg — Semantic Code Graphical;

SCn — Semantic Code Natural.

ВВЕДЕНИЕ

Цель: получить базовые знания и представления о графе, научиться работать с графом, изучить строение ostis-агента и научиться его разрабатывать.

Задача: разработать ostis-агента, который произведет поиск диаметра графа. В данной задаче граф является неориентированным.

Нахождение диаметра в неориентированном графе является важной задачей в теории графов. Диаметром неориентированного графа называется максимальная длина кратчайшего пути между двумя вершинами. Диаметр графа используется в различных областях математики и компьютерных наук для анализа и описания структуры графов. Таким образом, нахождение диаметра в графе является важным фактором при анализе и сравнении различных графов.

1 ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

1. **Графом** называется система объектов произвольной природы (вершин) и связок (ребер), соединяющих некоторые пары этих объектов. Пример графа представлен на Рисунке 1.1.

Рисунок 1.1 – Пример графа

2. Графы, в которых все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен, называются **неориентированными**. Пример неориентированного графа представлен на Рисунке 1.2.

Рисунок 1.2 – Пример неориентированного графа

- 3. **Эксцентриситетом** вершины называется расстояние до самой дальней вершины графа.
- 4. **Диаметр графа** это наибольшее расстояние между всеми парами вершин графа.

2 АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ

- 1. С помощью алгоритма поиска в ширину находим расстояние от каждой вершины до всех остальных вершин графа.
 - 1.1. Добавляем стартовую вершину в очередь.
 - 1.2. Пока очередь не пуста, извлекаем первый элемент из очереди.
 - 1.3. Если сосед первого элемента очереди отмечен как не посещенный, то добавляем его в очередь и обозначаем, что посетили(посетим) его, расстояние до этого соседа будет равно расстоянию до извлеченного элемента, увеличенному на один.
- 2. Имея расстояния от каждой вершины до всех других, находим эксцентриситет каждой вершины.
 - 3. Диаметр находим как максимальный эксцентриситет.

3 ПРИМЕРЫ И РЕЗУЛЬТАТЫ

Пример 1. Тестовый граф представлен на Рисунке 3.1а, ответная конструкция агента представлена на Рисунке 3.1б.

Рисунок 3.1 – Граф 1 (a) и Вывод агента (б)

Пример 2. Тестовый граф представлен на Рисунке 3.2a, ответная конструкция агента представлена на Рисунке 3.2б.

Рисунок 3.2 – Граф 2 (а) и Вывод агента (б)

Пример 3. Тестовый граф представлен на Рисунке 3.3а, ответная конструкция агента представлена на Рисунке 3.3б.

Рисунок 3.3 – Граф 3 (а) и Вывод агента (б)

Пример 4. Тестовый граф представлен на Рисунке 3.4а, ответная конструкция агента представлена на Рисунке 3.4б.

Рисунок 3.4 – Граф 4 (а) и Вывод агента (б)

Пример 5. Тестовый граф представлен на Рисунке 3.5а, ответная конструкция агента представлена на Рисунке 3.5б.

Рисунок 3.5 – Граф 5 (а) и Вывод агента (б)

ЗАКЛЮЧЕНИЕ

В ходе данной расчётной работы были получены знания об *ostis- системе*, а также об *ostis-агенте*. Было произведено ознакомление с такой программой, как *ostis-агент*, была изучена его структура, а так же получены базовые навыки писания *ostis-агента*, способного выполнять определенную задачу. В данном случае был написан *ostis-агент*, способный находить диаметр неориентированного графа.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Sc-Machine documentation. https://ostis-dev.github.io/sc-machine/.
- [2] Обход в ширину (BFS). https://brestprog.by/topics/bfs/.
- [3] Поиск радиуса и диаметра графа. https://graphonline.ru/wiki.