• 1. (20%) Fill in the blanks	
1) Decimal to Hexadecimal* (132.125) ₁₀ = () ₁₆ 84.2	
2) Decimal to Binary + (14.5625) ₁₀ =() _{2-'}	
1110.1001-	
3) 8421BCD to Decimal : (10000100.10010001) _{ECD} =() _{10-'}	
84.91~	
4) The POM of L=X \oplus Y \oplus 1 is	
5) Given $L = \overline{ABC + CD}$, which of the BC and D values can certainly make L=0? BC = $\frac{1}{1}$; D= $\frac{1}{1}$	
6) For Common Cathode 7-segment display, the output of Ya ~ Yg 1111110 shows the number is0	
7) Please compare the following numbers and sort them in descending order (from largest to	
smallest). (4 points). 1) (165) _o . 2) (74) _o . 3) (1101101) _e . 4) (10E) _o .	
进行二进制转换比较。	
$(165)_0 = (1110101)_0 (74)_0 = (1001010)_0 (10E)_H = (100001110)_0 $	
	W2.03

1110.1001

3) 8421BCD to Decimal: (10000100.10010001)_{BCD} =()₁₀

84.91

- 6) For Common Cathode 7-segment display, the output of Ya ~ Yg 1111110 shows the number is ______0
- 7) Please compare the following numbers and sort them in descending order (from largest to smallest). (4 points). 1) (165)_o. 2) (74)_o. 3) (1101101)_B. 4) (10E)_H.

```
进行二进制转换比较: (165)。= (1110101)<sub>8</sub> (74)<sub>0</sub> = (1001010)<sub>8</sub> (10E)<sub>H</sub> = (100001110)<sub>8</sub> (10E)<sub>H</sub> > (165)<sub>o</sub> > (1101101)<sub>8</sub> > (74)<sub>o</sub>
```

8) Please Write out the logic expression based on the circuit diagram and simplify it. (4 points)...

$$L_2 = \overrightarrow{A} \overrightarrow{B} \overrightarrow{C} + \overrightarrow{A}BC = \overrightarrow{A} (\overrightarrow{B} \overrightarrow{C} + BC)$$

$$L_1 = \overline{L_2} + \overline{ABC} = \overline{A(BC+BC)} + \overline{ABC} = \overline{A(BC+BC)} \cdot ABC = \overline{0} = 1$$

2. Given a logical function with output L and inputs A, B, C, and

*2. Given a logical function with output L and inputs A, B, C, and the waveform diagram is as follows. determine the truth table and logical function expression (4 points).

1) the truth table (2points).

解: -				
Ae	Be	C e	Le	
0.0	0.0	0.0	0.0	
0	0.0	10	0.0	
0.0	1 I	0.0	1.	
0.0	10	10	0.	
10	0.0	0.0	00	
10	0.0	10	10	

2) logical function expression. (2points).

ANSWER:

$$A = \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

- *3. Prove the identity of each of the following Boolean equations, using algebraic manipulation (4 points).
- 3. Prove the identity of each of the following Boolean equations, using algebraic manipulation (4 points).

(A)
$$A + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot C \cdot D + (\overline{C} + \overline{D}) \cdot E = A + C \cdot D + E + \overline{C} \cdot D + \overline{C} \cdot D$$

ANSWER:

$$A+ABC+ACD+(\overline{C}+\overline{D})E$$

$$=A(1+BC)+\overline{A}CD+\overline{C}DE$$

$$=A+\overline{A}CD+\overline{C}DE=A+CD+\overline{C}DE \quad (根据A+\overline{A}B=A+B)$$

$$=A+CD+E$$
(B) $(A+B)\cdot (B+C)\cdot (\overline{A}+C)=(A+B)\cdot (\overline{A}+C)$.

ANSWER:

 $\pm \dot{\Box} = (A+B)(B+C)(\overline{A}+C)=(A+B)(\overline{A}B+\overline{A}C+BC+CC)$

$$= (A+B)(\overline{A}B+C(\overline{A}+B+1))$$

$$= (A+B)(\overline{A}B+C)$$

using algebraic manipulation (4 points)

(A)
$$A + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot C \cdot D + (\overline{C} + \overline{D}) \cdot E = A + C \cdot D + E$$

ANSWER:

$$A+A \overrightarrow{BC}+\overrightarrow{ACD}+(\overrightarrow{C}+\overrightarrow{D})E$$

 $=A(1+\overrightarrow{BC})+\overrightarrow{ACD}+\overrightarrow{CDE}$
 $=A+\overrightarrow{ACD}+\overrightarrow{CDE}=A+CD+\overrightarrow{CDE}$ (根据 $A+\overrightarrow{AB}=A+B$)
 $=A+CD+E$

(B)
$$(A+B)\cdot (B+C)\cdot (\overline{A}+C)=(A+B)\cdot (\overline{A}+C)$$

ANSWER:

=AC+AR+RC

左边 =
$$(A+B)(B+C)(\overline{A}+C) = (A+B)(\overline{A}B+\overline{A}C+BC+CC)$$

= $(A+B)(\overline{A}B+C(\overline{A}+B+1))$
= $(A+B)(\overline{A}B+C)$
= $AC+\overline{A}B+BC$
右边 = $(A+B)(\overline{A}+C) = A\overline{A}+AC+\overline{A}B+BC$

· 4. Compute the complementing function (4 points)

(A)
$$L = \overline{A} \cdot \overline{B} + \overline{\overline{A} \cdot B \cdot \overline{C}} \cdot D$$

ANSWER:
$$\overline{L} = (A + B) \cdot (\overline{A} + \overline{B} + C + \overline{D}) = (A + B) \cdot (\overline{A}B\overline{C} + \overline{D})$$

(B)
$$L = (A + \overline{B} + C)(\overline{AB} + C)(A + \overline{BC})$$

ANSWER: $\overline{L} = \overline{ABC} + (A + B)\overline{C} + \overline{A}(B + C)$

- 5. Check if the following equations are valid. Please using a
- 5. Check if the following equations are valid. Please using a minimum number of literals by algebraic method (4 points).

$$\overline{A} \cdot C + A \cdot B \cdot \overline{C} + \overline{A} \cdot B + A \cdot \overline{B} = \overline{B} \cdot C + A \cdot \overline{C} + B \cdot \overline{C} + \overline{A} \cdot B \cdot C$$

ANSWER:

(2) 左边 =
$$\overline{AC}(B+\overline{B}) + AB \overline{C} + \overline{AB}(C+\overline{C}) + A \overline{B}(C+\overline{C})$$

= $\overline{ABC} + \overline{ABC} + AB \overline{C} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
= $m_5 + m_1 + m_6 + m_3 + m_2 + m_5 + m_4$
= $\sum m(1,2,3,4,5,6)$
右边 = $\overline{BC}(A+\overline{A}) + \overline{AC}(B+\overline{B}) + \overline{BC}(A+\overline{A}) + \overline{ABC}$
= $A \overline{BC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
= $m_5 + m_1 + m_6 + m_4 + m_6 + m_2 + m_3$
= $\sum m(1,2,3,4,5,6)$
由于等式两侧的最小项表达式相同,它们代表的是同一个函数,所以该等式成立。

· 6. logic circuit diagram (6 points)

(a) Draw the logic circuit diagram that implements the following logical expression, using only NOT gates and two-input NAND gates.

$$L = \overline{(A+B)\cdot(C+D)} +$$

ANSWER:
$$L = \overline{(A+B)\cdot(C+D)} = \overline{A+B} + \overline{C+D} = \overline{\overline{A}\cdot\overline{B}+\overline{C}\cdot\overline{D}} = \overline{\overline{A}\cdot\overline{B}}\cdot\overline{\overline{C}\cdot\overline{D}}$$

(b) Draw the logic circuit diagram that implements the following logical expression, using only NOT gates and two-input NOR gates.

$$L = A \cdot \overline{B} + \overline{A} \cdot C = \overline{\overline{A \cdot B} + \overline{A} \cdot C} = \overline{\overline{\overline{A} + B} + \overline{A} + \overline{C}} = \overline{\overline{A} + B + \overline{A} + \overline{C}} = \overline{\overline{A} + \overline{A} + \overline{C} = \overline{A} + \overline{A} + \overline{A} + \overline{C} = \overline{A} + \overline{A} + \overline{A} + \overline{C} = \overline{A} + \overline{A} + \overline{A} + \overline{A} + \overline{C} = \overline{A} + \overline{A} +$$

*7. Convert the following expressions into sum-of-products and product-of-sums forms (4 points).

7. Convert the following expressions into sum-of-products and product-of-sums forms (4 points).

1)
$$\overline{X} + X(X + \overline{Y})(Y + \overline{Z})$$

2) $(A + B\overline{C} + CD)(\overline{B} + EF)$

$$\overline{X} + X(X + \overline{Y})(Y + \overline{Z}) = (\overline{X} + X)(\overline{X} + (X + \overline{Y})(Y + \overline{Z}))$$

$$= (\overline{X} + X + \overline{Y})(\overline{X} + Y + \overline{Z}) \quad \text{p.o.s.}$$

$$= (1 + \overline{Y})(\overline{X} + Y + \overline{Z}) = \overline{X} + Y + \overline{Z}_{\triangleright} \text{s.o.p.}$$

$$(A + B\overline{C} + CD)(\overline{B} + EF) = (A + B + C)(A + B + D)(A + \overline{C} + D)(\overline{B} + EF)$$

$$= (A + B + C)(A + B + D)(A + \overline{C} + D)(\overline{B} + E)(\overline{B} + F) \quad \text{p.o.s.}$$

$$(A + B\overline{C} + CD)(\overline{B} + EF) = A(\overline{B} + EF) + B\overline{C}(\overline{B} + EF) + CD(\overline{B} + EF)$$

· 8. Simplification with K-Maps (8 points)

 $=A\overline{B}+AEF+B\overline{C}EF+\overline{B}CD+CDEF$ s.o.p.

a)
$$L(A, B, C, D) = \sum m(0, 2, 4, 8, 10, 12)$$

• 8. Simplification with K-Maps (8 points)

a) $L(A, B, C, D) = \sum m(0, 2, 4, 8, 10, 12)$ ANSWER:

A

$$L = \overline{C} \cdot \overline{D} + \overline{B} \cdot \overline{D} +$$

b) $L(A,B,C,D) = \sum m(0,2,4,6,9,13) + \sum d(1,3,5,7,11,15)$ ANSWER:

L) CI	00	01	11	10	
00	(i	(×	×	1	$-\bar{A}$
01	1	×	×	1	
11		1	×		
10		U_	×		-D

1

9. (1)Draw the logic circuit diagram based on the Verilog description. (4points)

```
module circuit (A, B, L) input A, B; output L; wire a1, a2, Anot, Bnot; and G1(a1, A, B); and G2(a2, Anot, Bnot); anot (Anot, A); anot (Bnot, B); anot (Bnot,
```

解: 电路图-

解: 电路图。

(2)Write the Verilog description based on the logic circuit diagram.

(4points).

(2)Write the Verilog description based on the logic circuit diagram. (4points).

解: 四选一 MUX; 采用 case, if-else 或结构化描述均可。。

*10. Analyze the combinational logic circuit shown in the figure and explain the logic function it implements. (6 points)

- (a) List out the logical expression equations and simplify them.
- (b) Please draw the truth table based on the input and output relationship.
- (c) Explain the logic function.

Answer: .

逻辑函数表达式及化简。

$$X = \overline{AB}(A+B) \oplus C$$

$$= \overline{AB}(A+B) C + \overline{AB}(A+B) \overline{C}$$

$$= (AB + \overline{A+B}) C + (\overline{A+B}) (A+B) \overline{C}$$

A	B	C	X	Y
0	0	0	0	0
0 🗟	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

功能: 全加器。A 为加数, B 为被加数, C 为低位的进位, X 为本位和, Y 为向高位的进位。

*11. A certain football committee consists of one coach and three fans, who vote on the referee's decision. Agreement is indicated

- 11. A certain football committee consists of one coach and three fans, who vote on the referee's decision. Agreement is indicated when the following conditions are met: three or more people agree, or two people agree, but one of them is the coach. Please design the voting circuit using only two-input NAND gates: (9 points).
- (a) Please draw the truth table based on the input and output relationship.
- (b) List out the logical expression equations and simplify them. You can only use two-input NAND gates.
- (c) Draw the circuit diagram.

ANSWER-

Δ.

ANSWER-

A

解:设一位教练和三位球迷分别用 A 和 B、C、D 表示,并且这些输入变量为 1 时表示同意,为 0 表示不同意。输出 L 表示表决结果,为 1 时表示同意判罚,为 0 表示不同意。由此列出真值表,如表所示。。

Ι

	160	A.		输出		- 編 人			
A.	В	C	D	L	A.	В	C	D	L
0	0	0		0	1	0	0	0	.0
0		0	1	0	1	0	0	. 1.	1.
0		1	0	0	1	.0	.1	.0.	1.
0		I.	1	0	1.		1	1	1
0.	1	0	0 :	0	1.	1	0		1
0	1	0	3		1	1.	0	1	1
0	1	1.	.0		1	1	1	0	1.
0		Y.	i	1	1	1.	1	1	1

B

由真值表画卡诺图: 化简得 $L = A \cdot B + A \cdot C + A \cdot D + BCD$, 进一步变为两输入与非式。

Q _c

12. Design a 4-to-16-line decoder with enable using 2±to-4-line decoders with enable as shown in Figure following: (7 points).

2-to-4-line decoders

ANSWER:

- *12. Please design a four-digit parity checker. When there are odd numbers of 1s in the four-digit number, the output should be 0; otherwise, the output should be 1: (9 points).
- (a) Please draw the truth table based on the input and output relationship.
- (b) List out the logical expression equations and simplify them.
- (c) Draw the circuit diagram. You can only use XOR and NOT gate.

解:设输入为 A,B,C,D;输出为 L。奇数个 1 输出为 0;偶数个或没有 1 输出为 1。真值表如下:

$$= (\overline{A} \overline{B} + AB) \overline{C \oplus D} + (\overline{A}B + A\overline{B}) (C \oplus D)$$

$$=\overline{(A \oplus B)} \ \overline{(C \oplus D)} + (A \oplus B) (C \oplus D)$$

$$=\overline{A \oplus B \oplus C \oplus D}$$

异或门和非门组成的电路:

12. Please use the four-choice data selector(MUX4 TO 1) to generate the

logic function: (7 points)

(a)
$$L(A,B) = A \cdot B + \overline{A} \cdot \overline{B}$$
.

(b)
$$L(A, B, C) = \sum m(1, 2, 6, 7)$$
.

M: "

(a) 将输入 A,B 作为选择信号, 依据同或运算关系将 MUX 的四个输入置 1,0,0,1。

(b) 将输入 A,B 做选择信号, C 做数据输入端, 根据最小项列出真值表: 。

出	输		输 人	
	L	C	В	A
	0	0	0	0
L=C	1	1	0	0
	1	0	1	0
$L = \overline{C}$	0	1	1	0
	0	0	0	1
0	0	1	0	1
	1	0	1	1

285	输		输入	
	L	C	В	A.
1-0	0	0	0	0
L = C	1	1	0	0
	1	0	1	0
$L = \overline{C}$	0	1	1	0
	0	0	0	1
u	0	1	0	1
	1	0	1	1
1	1	1	1	1

当 AB=00,L=C; 当 AB=01, *L=\overline{c}*; 当 AB=10,L=0; 当 AB=11,L=1;电路图如下:

