

20192 CIVIL ENGINEERING FACULTY - CIVIL ENGINEERING DEPARTMENT INS-2942 NUMERICAL ANALYSIS MIDTERM EXAM 12.05.2020

Number	Name Surname	Sign	Group	1	2	3	4	T.(100)

QUESTIONS

Duration: 90 minutes. Good Luck

Notice: 1. Each question sholud be answered its own page.

- 2. Solutions must be readable and understandable.
- 3. You must read and sign the following commitment.

 If you not signed the commitment, you have been thought as cheat in the exam!!

COMMITMENT:

I, in this exam, promised that I am not going to cheat from and / or to nobody.

Name – Surname

Sign

1. (25p) Find a root of the function $8xe^x = \cos(2x)$ by Fixed Point Iteration Method, starting with $x_0 = 0.5$. Absolute error is $\Delta x \le 10^{-4}$ and the following table should be filled.

n	$x_{n+1} = g(x_n) = \frac{\cos 2x}{8e^x}$	$\Delta x \leq 10^{-4}$		
0	0.500000			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				

2.	(25p) Find a root of the function x^3	$-e^x + \sin(x)$	= 0 by Newton Method,
	starting with $x_0 = 1$. Absolute error is	$\Delta x \leq 10^{-4}$	and the following table
	should be filled.		

n	\boldsymbol{x}_n	$\Delta x \leq 10^{-4}$
0	1.0000000	
1		
2		
3		
4		
5		
6		
7		
8		

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

3. (25p) Calculate x_1, x_2, x_3 , by Gauss-Seidell Method. Absolute error is $\Delta x \leq 10^{-4}$ and the following table should be filled.

$$\begin{aligned}
-x_1 + 2x_2 + 5x_3 &= -4 \\
3x_1 + x_2 + x_3 &= 6 \\
x_1 + 5x_2 - 2x_3 &= -3
\end{aligned}, \begin{cases} x_1^0 \\ x_2^0 \\ x_3^0 \end{cases} = \begin{cases} 2 \\ -1 \\ 0 \end{cases} \\
x_{ii}^{(k+1)} &= \frac{1}{a_{ii}} \left[b_i - a_{i1} x_1^{(k+1)} + a_{i2} x_2^{(k+1)} + \dots + a_{ii-1} x_{i-1}^{(k+1)} + a_{ii+1} x_{i+1}^{(k)} + \dots + a_{in} x_n^{(k)} \right]$$

i	0	1	2	3	4	5	6	7
x_1	2							
x_2	-1							
<i>x</i> ₃	0							
Δx_I	-							
Δx_2	-							
Δx_3	-							

4. (25p) Using data in the following table, obtain a polinomial in 3^{rd} order and calculate P(0.75)=?, P(1.25)=?, P(1.5)=? By Lagrange Method.

i	0	1	2	3
x_i	0.5	1	1.5	2
$f(x_i)$	3.375	2	0.125	-3

$$P(x)=$$
?

$$P(x) = L_0(x)f_0 + L_1(x)f_1 + L_2(x)f_2 + L_3(x)f_3 + \dots$$

$$L_{i} = \frac{(x - x_{0})(x - x_{1}).....(x - x_{i-1})(x - x_{i+1}).....(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1}).....(x_{i} - x_{i-1})(x_{i} - x_{i+1}).....(x_{i} - x_{n})}$$