厦门大学高等代数 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

第六章 特征值

§6.1 特征值和特征向量

思考 一个非零向量是否可以属于两个不同的特征值?

解 一个非零向量不可属于两个不同的特征值. 事实上,设 A 是 n 阶方阵, $0\neq X\in F^n$, $AX=\lambda X$, $AX=\mu X$,则 $(\lambda-\mu)X=0$. 因为 $X\neq 0$,所以 $\lambda=\mu$.

思考 n 阶零矩阵的特征值和特征向量是什么? n 阶单位矩阵的特征值和特征向量是什么?

解 零是 n 阶零矩阵的 n 重特征值,任意 n 维非零向量都是 n 阶零矩阵的属于特征值零的特征向量,因为 0X=0X. 1 是 n 阶单位矩阵的 n 重特征值,任意 n 维非零向量都是 n 阶单位矩阵的属于特征值 1 的特征向量,因为 EX=1X.

习题

1. 求矩阵 A 的特征值和特征向量, 其中

(1)

$$A = \left(\begin{array}{rrr} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{array}\right).$$

(2)

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & a & b \\ 0 & 0 & c \end{array}\right),$$

其中 $b \neq 0$.

 $\mathbf{m}(1)$ 矩阵 A 的特征多项式为

$$f_A(\lambda)=\det(\lambda E_3-A)=\left|egin{array}{ccc} \lambda-3 & -1 & 1\ -2 & \lambda-2 & 1\ -2 & -2 & \lambda \end{array}
ight|=(\lambda-1)(\lambda-2)^2$$

解得 A 的特征值为 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 2$.

对特征值 $\lambda_1=1$, 解线性方程组 $(E_3-A)X=0$, 即解线性方程组

$$\left(egin{array}{ccc} -2 & -1 & 1 \ -2 & -1 & 1 \ -2 & -2 & 1 \end{array}
ight) \left(egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight),$$

得到基础解系 $X_1 = (2, 1, 0)^T$.

同理,对特征值 $\lambda_2=\lambda_3=2$,解线性方程组 $(2E_3-\Lambda)X=0$,即解线性方程组

$$\left(egin{array}{ccc} -1 & -1 & 1 \ 2 & 0 & 1 \ -2 & -2 & 2 \end{array}
ight) \left(egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight),$$

得到基础解系 $X_2 = (-\frac{1}{2}, \frac{3}{2}, 1)^T$.

故综上所述,属于特征值 $\lambda_1=1$ 的特征向量为 c_1X_1 ,其中 c_1 为 F 中任意非零数.属于特征值 $\lambda_2=\lambda_3=2$ 的特征向量为 c_2X_2 ,其中 c_2 为 F 中非零数.

(2) 矩阵 A 的特征多项式为 $f_A(\lambda) = (\lambda - 1)(\lambda - a)(\lambda - c)$. 分五种情况讨论.

第一种情况: a=c=1. 这时 $f_A(\lambda)=(\lambda-1)^3$, A 的特征值为 $\lambda_1=\lambda_2=\lambda_3=1$. 解线性方程组 $(E_3-A)X=0$,即解线性方程组 $-bx_3=0$. 其基础解系为 $X_1=(1,0,0)^T$, $X_2=(0,1,0)^T$.

所以,属于特征值 $\lambda_1=\lambda_2=\lambda_3=1$ 的特征向量为 $c_1(1,0,0)^T+c_2(0,1,0)^T$,其中 c_1,c_2 为 F 中不全为零的数.

第二种情况: a=1 且 $c\neq 1$. 这时 $f_A(\lambda)=(\lambda-1)^2(\lambda-c),$ A 的特征值为 $\lambda_1=\lambda_2=1,$ $\lambda_3=c.$

对于特征值 $\lambda_1=\lambda_2=1$,解线性方程组 $(E_3-A)X=0$,即解线性方程组

$$\begin{cases}
-bx_3 = 0 \\
(1-c)x_3 = 0
\end{cases}.$$

其基础解系为 $X_1 = (1,0,0)^T$, $X_2 = (0,1,0)^T$.

对于特征值 $\lambda_3=c$,解线性方程组 $(cE_3-A)X=0$,即解线性方程组

$$\begin{cases} (c-1)x_1 = 0\\ (c-1)x_2 - bx_3 = 0 \end{cases}.$$

其基础解系为 $X_3 = (0, b, c-1)^T$.

所以,属于特征值 $\lambda_1 = \lambda_2 = 1$ 的特征向量为 $c_1(1,0,0)^T + c_2(0,1,0)^T$,其中 c_1,c_2 为 F 中不全为零的数,属于特征值 $\lambda_3 = c$ 的特征向量为 $c_3(0,b,c-1)^T$,其中 c_3 为 F 中非零数.

第三种情况: $a\neq 1$ 且 c=1. 这时 $f_A(\lambda)=(\lambda-1)^2(\lambda-a),$ A 的特征值为 $\lambda_1=\lambda_2=1,$ $\lambda_3=a.$

对于特征值 $\lambda_1=\lambda_2=1$,解线性方程组 $(E_3-A)X=0$,即解线性方程组 $(1-a)x_2-bx_3=0$. 其基础解系为 $X_1=(1,0,0)^T$, $X_2=(0,b,1-a)^T$.

对于特征值 $\lambda_3 = a$, 解线性方程组 $(aE_3 - A)X = 0$, 即解线性方程组

$$\begin{cases} (a-1)x_1 = 0\\ -bx_3 = 0\\ (a-1)x_3 = 0 \end{cases}.$$

其基础解系为 $X_3 = (0,1,0)^T$.

所以,属于特征值 $\lambda_1=\lambda_2=1$ 的特征向量为 $c_1(1,0,0)^T+c_2(0,b,1-a)^T$,其中 c_1,c_2 为 F 中不全为零的数.属于特征值 $\lambda_3=a$ 的特征向量为 $c_3(0,1,0)^T$,其中 c_3 为 F 中非零数.

第四种情况: $a=c\neq 1$. 这时 $f_A(\lambda)=(\lambda-1)(\lambda-a)^2,$ A 的特征值为 $\lambda_1=1,$ $\lambda_2=\lambda_3=a.$

对于特征值 $\lambda_1=1$, 解线性方程组 $(E_3-A)X=0$, 即解线性方程组

$$\begin{cases} (1-a)x_2 - bx_3 = 0\\ (1-a)x_3 = 0 \end{cases}.$$

其基础解系为 $X_1 = (1,0,0)^T$.

对于特征值 $\lambda_3=a$, 解线性方程组 $(aE_3-A)X=0$, 即解线性方程组

$$\begin{cases} (a-1)x_1 = 0 \\ -bx_3 = 0 \end{cases}.$$

其基础解系为 $X_2 = (0,1,0)^T$.

所以,属于特征值 $\lambda_1=1$ 的特征向量为 $c_1(1,0,0)^T$,其中 c_1 为 F 中非零数.属于特征值 $\lambda_2=\lambda_3=a$ 的特征向量为 $c_2(0,1,0)^T$,其中 c_2 为 F 中非零数.

第五种情况: a,c,1 两两不同. 这时 $f_A(\lambda)=(\lambda-1)(\lambda-a)(\lambda-c),$ Λ 的特征值为 $\lambda_1=1,$ $\lambda_2=a,$ $\lambda_3=c.$

对于特征值 $\lambda_1=1$, 解线性方程组 $(E_3-A)X=0$, 即解线性方程组

$$\begin{cases} (1-a)x_2 - bx_3 = 0 \\ (1-c)x_3 = 0 \end{cases}.$$

其基础解系为 $X_1 = (1,0,0)^T$.

对于特征值 $\lambda_2 = a$, 解线性方程组 $(aE_3 - A)X = 0$, 即解线性方程组

$$\begin{cases} (a-1)x_1 = 0\\ -bx_3 = 0\\ (a-c)x_3 = 0 \end{cases}.$$

其基础解系为 $X_2 = (0, 1, 0)^T$.

对于特征值 $\lambda_3 = c$, 解线性方程组 $(cE_3 - A)X = 0$, 即解线性方程组

$$\begin{cases} (c-1)x_1 = 0\\ (c-a)x_2 - bx_3 = 0 \end{cases}.$$

其基础解系为 $X_3 = (0, b, c - a)^T$.

所以,属于特征值 $\lambda_1=1$ 的特征向量为 $c_1(1,0,0)^T$,其中 c_1 为 F 中非零数.属于特征值 $\lambda_2=a$ 的特征向量为 $c_2(0,1,0)^T$,其中 c_2 为 F 中非零数.属于特征值 $\lambda_3=c$ 的特征向量为 $c_3(0,b,c-a)^T$,其中 c_3 为 F 中非零数.

2. 设 X 是 A 的属于特征值 λ 的特征向量, Y 是 A 的属于特征值 μ 的特征向量。若 $\lambda \neq \mu$, 求证 X+Y 不是 A 的特征向量。

证明 反证法.若 X+Y 是 A 特征向量,必存在 $\nu\in F$ 为 A 的特征值,则 $A(X+Y)=\nu(X+Y)$,进而 $\lambda X+\mu Y=AX+AY=\nu X+\nu Y$,所以 $(\lambda-\nu)X+(\mu-\nu)Y=0$. 因为 X,Y 是 A 的属于不同特征值的特征向量,故 X,Y 线性无关.因此 $\lambda-\nu=0$, $\mu-\nu=0$,得到 $\lambda=\mu$,矛盾.

- 3. 设三阶矩阵 A 的特征值为 $\lambda_1=\lambda_2=-1,\,\lambda_3=4.$
- (1) 求 $\det A$ 和 $\operatorname{tr} A$.
- (2) 已知 $B = A 3A^2$, 求 B 的特征值, $\det B$ 和 $\operatorname{tr} B$.
- 解 (1) 由推论 6.1.1, 有 $\det A = \lambda_1 \lambda_2 \lambda_3 = 4$, $\operatorname{tr} A = \lambda_1 + \lambda_2 + \lambda_3 = 2$.
- (2) 因为 $B=A-3A^2$, 因此 B 的特征值为 $\lambda_1-3\lambda_1^2,\,\lambda_2-3\lambda_2^2,\,\lambda_3-3\lambda_3^2,\,$ 即 -4,-4,-44 是 B 的特征值. 故 $\det B=-704, \operatorname{tr} B=-52.$
 - 4. 设 A 是数域 F 上 n 阶可逆矩阵, 设 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$. 证明:
 - $(1) \lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1} \not\in A^{-1}$ 的全部特征值;
 - (2) $(\det A)\lambda_1^{-1}$, $(\det A)\lambda_2^{-1}$, ..., $(\det A)\lambda_n^{-1}$ 是 A^* 的全部特征值.

证明(1)因为 A 可逆,所以 $\lambda_i\neq 0 (i=1,2,\cdots,n)$. 由题意知, A 有 n 个特征值 $\lambda_1,\lambda_2,\cdots,\lambda_n$,所以 A 相似于上三角阵,即存在可逆矩阵 P,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

因为可逆上三角阵的逆矩阵可逆,且对角元为原来对角元的逆,所以将上式两边同时取逆,得

$$P^{-1}A^{-1}P = \begin{pmatrix} \lambda_1^{-1} & * & \cdots & * \\ 0 & \lambda_2^{-1} & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n^{-1} \end{pmatrix}$$

故 $\lambda_1^{-1}, \lambda_2^{-1}, \cdots, \lambda_n^{-1}$ 是 A^{-1} 的全部特征值.

(2) A 可逆, 故 $A^* = (\det A)A^{-1}$, 则

$$P^{-1}A^*P = P^{-1}(\det A)A^{-1}P = (\det A)P^{-1}A^{-1}P = \begin{pmatrix} (\det A)\lambda_1^{-1} & * & \cdots & * \\ 0 & (\det A)\lambda_2^{-1} & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & (\det A)\lambda_n^{-1} \end{pmatrix}$$

因此 $(\det A)\lambda_1^{-1}, (\det A)\lambda_2^{-1}, \cdots, (\det A)\lambda_n^{-1}$ 是 A^* 的全部特征值.

5. 已知线性方程组

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + (a+2)x_2 + (a+1)x_3 = a+3 \\ x_1 + 2x_2 + ax_3 = 3 \end{cases}$$

有无穷多解, A 是三阶方阵, $\alpha_1=(1,a,0)^T,$ $\alpha_2=(-a,1,0)^T,$ $\alpha_3=(0,0,a)^T$ 为 A 的属于特征值 $\lambda_1=1,$ $\lambda_2=-2,$ $\lambda_3=-1$ 的特征向量.

- (1) 求 A;
- (2) $\# \det(A^* + 2E)$.

解(1)已知该方程组有无穷多解,则其系数矩阵的行列式

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & a+2 & a+1 \\ 1 & 2 & a \end{vmatrix} = 0.$$

解得, a=1. 故 $\alpha_1=(1,1,0)^T$, $\alpha_2=(-1,1,0)^T$, $\alpha_3=(0,0,1)^T$ 是 A 的属于特征 值 $\lambda_1=1,\lambda_2=-2,\lambda_3=-1$ 的特征向量。显然它们线性无关。令 $P=(\alpha_1,\alpha_2,\alpha_3)$ 。 因此 $\Lambda P=P\mathrm{diag}(\lambda_1,\lambda_2,\lambda_3)$,从而

$$A = P \operatorname{diag}(1, -2, -1)P^{-1}$$

$$= \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{array}\right) \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{array}\right) = \left(\begin{array}{ccc} -\frac{1}{2} & \frac{3}{2} & 0 \\ \frac{3}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{array}\right).$$

(2) 因为 A 的特征值为 1,-2,-1, 所以 $\det A=2,$ 根据上题结论知 A^* 的特征值是 2,-1,-2. 从而 A^*+2E 的特征值为 4,1,0. 因此 $\det (A^*+2E)=0.$