TUGAS BESAR KOMUNIKASI AKSES WIRELESS PERENCANAAN JARINGAN SISTEM KOMUNIKASI 5G KECAMATAN LANGKAHAN KABUPATEN ACEH UTARA

Oleh:

Kelas TT-43-11

Muhammad Andriyansyah Malardy	(1101184350)
M. Hasyim Abdillah P.	(1101191095)
Sayid Huseini Elfarizi	(1101194232)
Rivanka Abyan Yusuf	(1101193458)

S1 TEKNIK TELEKOMUNIKASI FAKULTAS TEKNIK ELEKTRO TELKOM UNIVERSITY BANDUNG

2022

DAFTAR ISI

DAFTAR ISI	2
DAFTAR GAMBAR	3
DAFTAR TABEL	4
BAB I PENDAHULUAN	5
1.1. Kondisi Geografis	5
1.2. Kependudukan	6
BAB II PERANCANGAN PARAMETER	7
2.1 Parameter Yang Akan Digunakan	8
BAB III PERHITUNGAN CAPACITY PLANNING	9
3.1 Forecasting User	9
3.2 Single User Throughput	10
3.3 Network Throughput	12
3.4 Kapasitas Arah Downlink & Uplink	13
3.5 Total Site Calculation	14
BAB IV COVERAGE PLANNING	16
4.1 Link Budget	16
4.2 Model Propagasi	18
4.2.1 Model Propagasi Stanford University Interim (SUI)	18
4.2.2 Perhitungan Total Site	19
BAB V HASIL PERANCANGAN	20
5.1 Perbandingan Capacity Planning dan Coverage Planning	20
5.2 Hasil Simulasi	20
BAB VI KESIMPULAN DAN SARAN	25
6.1 Kesimpulan	25
6.2 Saran	25

DAFTAR GAMBAR

Gambar 1.1 Peta Kecamatan Langkahan	5
Gambar 1.2 Jumlah Penduduk Kecamatan Langkahan	6
Gambar 3.1 Service Model Parameter	11
Gambar 3.2 Nilai Single User Throughput	12
Gambar 3.3 Kapasitas Sel	14
Gambar 5.1 Lokasi Site	21
Gambar 5.2 Histogram Coverage by Signal Level	22
Gambar 5.3 CDF Coverage by Signal Level	22
Gambar 5.4 Histogram Downlink Coverage	23
Gambar 5.5 CDF Downlink Coverage	24

DAFTAR TABEL

Tabel 2.1 Data Kependudukan Kecamatan Langkahan	7
Tabel 2.2 Parameter Perancangan 5G	8
Tabel 3.1 Nilai Network Throughput	13
Tabel 3.2 Modulasi	13
Tabel 3.3 Hasil Perhitungan Capacity Planning	15
Tabel 4.1 Link Budget Downlink	16
Tabel 4.2 Link Budget Uplink	17
Tabel 4.3 Hasil Perhitungan Coverage Planning	19
Tabel 5.1 Perbandingan Capacity Planning dan Coverage Planning	20

BAB I PENDAHULUAN

1.1. Kondisi Geografis

Kecamatan Langkahan merupakan salah satu kecamatan di Kabupaten Aceh Utara, Provinsi Nanggroe Aceh Darussalam. Kabupaten Aceh Utara sendiri memiliki 27 wilayah kecamatan, meliputi: Kecamatan Langkahan, Baktiya, Dewantara, Kuta Makmur, Lhoksukon, Matangkali, Muara Batu, Meurah Mulia, Samudera, Seunuddon, Syamtalira Aron, Syamtalira Bayu, Tanah Luas, Tanah Pasir, Tanah Jambo Aye, Sawang, Nisam, Cot Girek, Baktiya Barat, Paya Bakong, Nibong, Simpang, Lapang, Pirak Timur, Geuredong Pase, Banda Baro, dan Nisam Antara. Kecamatan Langkahan memiliki luas 150,52 km2 yang terdiri dari 23 desa/gampong. Secara geografi Kecamatan terletak pada 4.8729315 derajat lintang utara dan 97.4597725 derajat bujur timur.

Gambar 1.1 Peta Kecamatan Langkahan

1.2. Kependudukan

Berdasarkan data dari Badan Pusat Statistik Kecamatan Langkahan tahun 2022, diketahui bahwa penduduk Kecamatan Langkahan seluruhnya berjumlah 22.591 jiwa pada tahun 2021 dengan kepadatan penduduk 150,08 *jiwa/km*². Berikut merupakan jumlah keseluruhan penduduk per desa tahun 2021:

	Desa/	2020	2021	
	Gampong			
90	(1)	(2)	(2)	
1	Lubok Pusaka	2,224	2,230	
2	Seureuke	2,925	2,933	
3	Buket Linteung	1,978	1,982	
4	Rumoh Rayeuk	1,311	1,314	
5	Langkahan	857	861	
6	Geudumbak	1,427	1,432	
7	Tanjong Dalam Selatan	2,005	2,011	
8	Mns Blang	469	471	
9	Alue Krak Kayee	513	515	
10	Tanjong Jawa	352	354	
11	Matang Teungoh S	520	523	
12	Padang Meuria	471	473	
13	Leubok Mane	798	800	
14	Matang Rubek	654	655	
15	Simpang Tiga	1,289	1,292	
16	Paya Tukai	660	663	
17	Kampung Blang	272	273	
18	Matang Keutapang	202	204	
19	Pante Gaki Bale	929	931	
20	Krueng Lingka	1,132	1,136	
21	Bantayan	506	508	
22	Alue Dua	521	523	
23	Cot Bada	503	507	
	Jumlah	22,518	22,591	

Sumber: Registrasi Penduduk

Gambar 1.2 Jumlah Penduduk Kecamatan Langkahan

BAB II

PERANCANGAN PARAMETER

Perencanaan yang dilakukan adalah untuk 5 tahun mendatang, yaitu sampai pada tahun 2028. berikut ini parameter yang digunakan dalam perencanaan jaringan seluler di Kecamatan Langkahan:

- 1. Perencanaan dilakukan untuk 5 (lima) tahun mendatang, yaitu sampai tahun 2028.
- 2. Kategori wilayah adalah Sub-Urban.
- 3. Perencanaan berdasarkan frekuensi dan bandwidth yang dimiliki Telkomsel, yaitu frekuensi sebesar 2100 MHz, dan bandwidth sebesar 20 MHz.
- 4. Tinggi UE (hr) adalah 1,75 m.
- 5. Tinggi gNodeB (ht) adalah 35 m.
- 6. Antena yang digunakan adalah antena omnidireksional.
- 7. Usia produktif (15-54 tahun).
- 8. Market Share Telkomsel 59,3%
- 9. 5G penetration 42%

Berikut adalah data kependudukan yang diperlukan nantinya dalam perancangan jaringan 5G pada Kecamatan Langkahan:

Tabel 2.1 Data Kependudukan Kecamatan Langkahan

Data	Nilai	Satuan
Luas wilayah	150,52	Km ²
Jumlah penduduk saat ini pada Kecamatan Langkahan 2021 (Po)	22.591	jiwa
Usia produktif (15-54 tahun)	12.250 (54,23%)	jiwa
Grow factor (Gf)	0,28%	persen

2.1 Parameter Yang Akan Digunakan

Dalam perencanaan dan analisis jaringan 5G di Kecamatan Langkahan, Kabupaten Aceh Utara, ditentukan beberapa parameter *forecasting* dan spesifikasi umumnya, yaitu:

Tabel 2.2 Parameter Perancangan 5G

Data	Nilai	Satuan	Keterangan
Jenis Wilayah	Sub-Urban	-	Daerah merupakan daerah yang berada di pinggiran kota
ht	35	m	Tinggi gNodeB
hr	1,75	m	Tinggi UE
Market Share	59,3	persen	DIGITALIZATION FOR A BETTER FUTURE
5G Penetration	42	persen	Telkomsel
Frekuensi	2100	MHz	Telkomsel
Bandwidth	20	MHz	Karena mengambil nilai resource block 100 dan menggunakan syarat dari provider Telkomsel

BAB III

PERHITUNGAN CAPACITY PLANNING

Capacity Planning merupakan salah satu tolak ukur untuk merencanakan seberapa besar kapasitas jaringan agar dapat menampung seluruh user dengan berbagai macam layanan. Jaringan dirancang agar dapat menampung kebutuhan user selama 5 tahun kedepan. Tahapan untuk menentukan capacity planning sebagai berikut:

3.1 Forecasting User

Sebelum menentukan jumlah forecasting user terlebih dahulu memperkirakan jumlah penduduk 5 tahun kedepan dari tahun dilakukannya perancangan jaringan menggunakan persamaan sebagai berikut :

$$P_n = P_0(1 + Gf)^n$$

Dimana:

 P_n = Jumlah penduduk tahun ke-n

 P_0 = Jumlah penduduk tahun ke-0 (saat dilakukannya perancangan jaringan)

Gf = Faktor Pertumbuhan jumlah penduduk

n = Tahun Perencanaan

Perencanaan dilakukan untuk 5 tahun mendatang terhitung dari selesainya dibuat laporan ini, yaitu pada tahun 2023 dengan target perencanaan sampai 2028. Namun, karena data yang tersedia hanya sampai tahun 2021 maka nilai n yang akan digunakan adalah 7, didapat dari 2028-2021=7. Nilai P_0 yang digunakan adalah jumlah penduduk di tahun 2021. Berikut adalah hasil perhitungan untuk Kecamatan Langkahan:

$$P_n = 22.591 (1 + 0.28\%)^7$$

 $P_n = 22.591 (1,0028)^7$

 $P_n = 22.591 (1,01977)$

 $P_n = 23.038 \text{ jiwa}$

Langkah selanjutnya adalah menghitung jumlah forecasting user dari daerah yang akan menjadi target perancangan jaringan dengan menggunakan persamaan berikut :

$$Total\ Target\ User = P_n \times A \times B \times C$$

Dimana:

 P_n = Jumlah penduduk tahun ke-n = 23.038 jiwa

A = Jumlah Penduduk Usia Produktif = 54,23%

B = Market Share dari Operator Jaringan Seluler = 59,3%

C = Penetrasi User 5G = 42%

Dengan hasil perhitungan sebagai berikut:

 $Total\ Target\ User = 23.038 \times 54,23\% \times 59,3\% \times 42\%$

 $Total\ Target\ User = 3112\ user$

3.2 Single User Throughput

Sebelum mencari nilai single user throughput kita perlu mencari nilai throughput uplink dan downlink dari tiap layanan terlebih dahulu. Berikut adalah persamaan yang digunakan dalam menentukan throughput dari tiap layanan:

$$Throughput = ST \times SDR \times Bearer\ Rate \times \left[\frac{1}{(1 - BLER)}\right]$$

Dimana:

Throughput = Throughput yang harus tersedia agar kualitas jaringan baik(Kbit)

ST = Durasi dari tiap sesi layanan (s)

SDR = Sesion Duty Radio, rasio data transmisi setiap sesi

BLER = Block Error Rate yang diizinkan di tiap sesi

Bearer Rate = Nilai data rate yang dimiliki dari layanan aplikasi layer (IP)

Nantinya akan didapatkan nilai dari throughput tiap layanan yang sudah tertera dalam tabel service model parameter yang dapat dilihat pada tabel berikut ini:

		Uplink									
Parameter Rat	Bearer Rate (Kbps)	ppp Session Time (s)	PPP Session Duty Ratio	BLER (%)	Bearer Rate (Kbps)	ppp Session Time (s)	ppp Session Duty Ratio			DL Throughput/Session (Kbps)	
VolP	26.9	80	0.4	1	26.9	80	0.4	1	869.4949495	869.4949495	
Video Phone	62.53	70	1	1	62.53	70	1	1	4421.313131	4421.313131	
Video Conferenc e	62.53	1800	1	1	62.53	1800	1	1	113690.9091	113690.9091	
Real Time Gaming	31.26	1800	0.2	1	125.1	1800	0.4	1	11367.27273	90952.72727	
Streaming Media	31.26	3600	0.05	1	250.1	3600	0.95	1	5683.636364	864016.3636	
IMS Signalling	15.63	7	0.2	1	15.63	7	0.2	1	22.1030303	22.1030303	
Web Browsing	62.53	1800	0.05	1	250.1	1800	0.05	1	5684.545455	22737.27273	
File Transfer	140.7	600	1	1	750.3	600	1	1	85266.66667	454751.5152	
Email	140.7	50	1	1	750.3	15	1	1	7105.555556	11368.78788	
P2P File Sharing	250.1	1200	1	1	750.3	1200	1	1	303163.6364	909503.0303	

Gambar 3.1 Service Model Parameter

Setelah mendapatkan nilai throughput pada tiap layanan, kemudian dilakukan perhitungan untuk mencari nilai single user throughput. Dengan menggunakan persamaan berikut:

$$SUT = \frac{(\Sigma Throughput \times BHSA \times Penetration \, Rate \times (1 + PAR))}{3600}$$

Dimana:

SUT = Single User Throughput (Kbps)

BHSA = Inisiasi Penggunaan Layanan Selama Jam Sibuk

Penetration Rate = Penetrasi Penggunaan Layanan jaringan

PAR = Persentase Lonjakan Trafik di jam sibuk

3600 = Jumlah 1 jam dalam detik

Dan karena wilayah yang dilakukan perancangannya merupakan daerah dengan kategori sub-urban jadi menggunakan nilai 10% sebagai asumsi untuk nilai peak to average ratio. Nilai hasil perhitungannya dapat dilihat tabel berikut ini:

	Sul	o-Urban) ii	700		F1 1 11	Single User Throughput (SUT) DL (Kbps)
Traffic Parameter	Traffic Penetration Ratio (%)	BHSA	Peak to Average Ratio (%)	UL Throughput/Session (Kbps)	DL Throughput/Session (Kbps)	Single User Throughput (SUT) UL (Kbps)	
VolP	50	1	10	869.4949495	869.4949495	0.132839506	0.132839506
Video Phone	10	0.1	10	4421.313131	4421.313131	0.013509568	0.013509568
Video Conference	10	0.1	10	113690.9091	113690.9091	0.347388889	0.347388889
Real Time Gaming	10	0.1	10	11367.27273	90952.72727	0.034733333	0.277911111
Streaming Media	5	0.1	10	5683.636364	864016,3636	0.008683333	1.320025
IMS Signalling	25	3	10	22.1030303	22.1030303	0.005065278	0.005065278
Web Browsing	40	0.3	10	5684.545455	22737.27273	0.208433333	0.8337
File Transfer	20	0.2	10	85266.66667	454751.5152	1.042148148	5.558074074
Email	10	0.2	10	7105.555556	11368.78788	0.04342284	0.069475926
P2P File Sharing	20	0.2	10	303163.6364	909503.0303	3.705333333	11.11614815
	Total (Kbl	t)		537275.1333	2472333.517		
		Total Si	ngle User T	hroughput (Kbps)		5.541557562	19.6741375

Gambar 3.2 Nilai Single User Throughput

3.3 Network Throughput

Persamaan UL dan DL Network Throughput yaitu:

UL Network Throughput (IP)

$$= (UL Single User Throughput) \times (Total Target User)$$
$$= 5.541557562 \times 3112$$
$$= 17,245.327132944 Kbps = 17.25 Mbps$$

DL Network Throughput (IP)

$$= (DL Single User Throughput) \times (Total Target User)$$
$$= 19.6741375 \times 3112$$
$$= 61,225.9159 Kbps = 61.23 Mbps$$

UL Network Throughput (MAC LAYER) =
$$\frac{UL \ Network \ Throughput \ (IP)}{0.98}$$
$$= \frac{17.25 \ Mbps}{0.98} = 17.6 \ Mbps$$

DL Network Throughput (MAC LAYER) =
$$\frac{DL \ Network \ Throughput \ (IP)}{0.98}$$
$$= \frac{61.23 \ Mbps}{0.98} = 62.48 \ Mbps$$

Dimana: $A \times B \times C = 0.98$, berdasarkan tabel berikut.

Tabel 3.1 Nilai Network Throughput

Item	Sub-Urban				
	UL DL				
Total Target User	3112				
Single User Throughput (Kbps)	5.541557562	19.6741375			
Network Throughput (IP) (Kbps)	17,245.3271	61,225.9159			
Network Throughput (IP) (Mbps)	17.25	61.23			
Network Throughput MAC layer (Mbps)	17.6	62.48			

3.4 Kapasitas Arah Downlink & Uplink

Untuk mendapatkan *cell average throughput* pada DL dan UL atau kapasitas sel, maka disesuaikan dengan jenis modulasi unit code bit, code rate, SINR, dan SINR *probability*.

Tabel 3.2 Modulasi

Modulation	Code bit	Code rate	SINR probability
QPSK 1/3	2	0.3	0.28
QPSK 1/2	2	0.5	0.25
QPSK 2/3	2	0.67	0.17
16 QAM 1/2	4	0.5	0.13
16 QAM 2/3	4	0.67	0.1
16 QAM 4/5	4	0.8	0.05
64 QAM 1/2	6	0.5	0.01
64 QAM 2/3	6	0.67	0.01

Tugas Besar kali ini hanya menggunakan modulasi pada tabel dengan menggunakan antena MIMO 2x2. Berikut adalah persamaan untuk menentukan kapasitas sel:

$$Cell\ Thr_{UL} + CRC = (168 - 24) \times (CB) \times (CR) \times (Nrb) \times C \times 1000$$

$$Cell\ Thr_{DL} + CRC = (168 - 36 - 12) \times (CB) \times (CR) \times (Nrb) \times C \times 1000$$

Dimana:

CRC = 24, dalam 1 resource elements (RE)

168 = Jumlah Resource Elemen (RE) dalam 1 ms

36 = Jumlah Control Channel RE dalam 1 ms

12 = Jumlah referensi sinyal RE dalam 1 ms (untuk Uplink)

24 = Jumlah referensi sinyal RE dalam 1 ms (untuk Downlink)

 $CB = Code\ Bite, efisiensi\ modulasi$

Nrb = Jumlah Resource Block yang digunakan

CD = Coding Rate kanal

C = Model antena MIMO

Modulation	Code Bit	Code Rate	UL Cell Capacity (Mbps)	DL Cell Capacity (Mbps)	SINR Probability	UL Cell Average Throughput (Mbps)	DL Cell Average Throughput (Mbps)
QPSK 1/3	2	0.33	19.2	16	0.28	5.376	4.48
QPSK 1/2	2	0.50	28.8	24	0.25	7.2	6
QPSK 2/3	2	0.67	38.4	32	0.17	6.528	5.44
16 QAM 1/2	4	0.50	57.6	48	0.13	7.488	6.24
16 QAM 2/3	4	0.67	76.8	64	0.1	7.68	6.4
16 QAM 4/5	4	0.80	92.16	76.8	0.05	4.608	3.84
64 QAM 1/2	6	0.50	86.4	72	0.01	0.864	0.72
64 QAM 2/3	6	0.67	115.2	96	0.01	1.152	0.96
1	otal Ce		40.896	34.08			

Gambar 3.3 Kapasitas Sel

3.5 Total Site Calculation

Berikut adalah persamaan yang akan digunakan dalam mencari Total Site Calculation:

$$Site\ Capacity = Cell\ Throughput \times 3$$

$$Jumlah\ site = \frac{Network\ Throughput}{Site\ Capacity}$$

$$Cell \ Coverage = \frac{Area \ Wide}{Jumlah \ site}$$

$$Cell \ Radius = \sqrt{\frac{Cell \ Coverage}{2.6}}$$

$$Cell \ Radius \ (Atoll) = \sqrt{\frac{Cell \ Coverage}{2.6 \times 1.95}}$$

Berikut adalah hasil perhitungan yang diperoleh:

Tabel 3.3 Hasil Perhitungan Capacity Planning

Parameter	UL	DL
Luas Area (km²)	150.52	
5G NR Users	3112	
Network Throughput (MAC Layer) (Mbps)	17.6	62.48
Cell Average Throughput (Mbps)	40.896	34.08
Site Capacity (Mbps)	122.688	102.24
Jumlah Site	1	1
Cell Coverage (km ²)	150.52	150.52
Cell Radius (km)	7.608699	7.608699
Cell Radius (km) (atoll)	5.448703	5.448703

BAB IV COVERAGE PLANNING

4.1 Link Budget

Tabel 4.1 Link Budget Downlink

Downlink Link Budget			
Transmitter	Value	Calculation	
Max Total Tx Power	46	A	
RB to Distribute Power	100	С	
Subcarriers to Distribute Power	1200	D = 12*C	
Subcarrier Power (dBm)	15.20819	E = A-10*log(D)	
Tx Antenna Gain (dBi)	5.7	G	
Feeder Loss (dB)	0.5	Н	
EIRP (dBm)	20.40819	J = E+G-H	
Receiver	Value	Calculation	
SINR (dB)	-3.5	К	
Rx Noise Figure (dB)	7	L	
Receiver Sensitivity (dBm)	-128.739	M = K + L - 174 + 10*log(15000)	
Rx Body Loss (dB)	0	Р	
Interference Margin (dB)	3.67	Q	
Min. Signal Reception Strength (dBm)	-125.069	R = M+P+Q	

Path Loss & Shadow Fading Margin	Value	Calculation
Penetration Loss (dB)	15	S
Shadow Fading Margin (dB)	8	Т
MAPL (dB)	122.4773	U = J-R-S-T

Tabel 4.2 Link Budget Uplink

Uplink Link Budget		
Transmitter	Value	Calculation
Max Total Tx Power	23	A
RB to Distribute Power	8	С
Subcarriers to Distribute Power	96	D = 12*C
Subcarrier Power (dBm)	3.1772877	E = A-10*log(D)
Tx Body Loss (dBi)	0	I
EIRP (dBm)	3.1772877	J = E-I
Receiver	Value	Calculation
SINR (dB)	-2.16	К
Rx Noise Figure (dB)	4	L
Receiver Sensitivity (dBm)	-130.3991	M = K + L - 174 + 10*log(15000)
Rx Antenna Gain (dBi)	5.7	N
Rx Body Loss (dB)	0	0
Interference Margin (dB)	0.87	Q

Min. Signal Reception Strength (dBm)	-135.2291	R = M-N+O+Q
Path Loss & Shadow Fading Margin	Value	Calculation
Penetration Loss (dB)	15	S
Shadow Fading Margin (dB)	8	Т
MAPL (dB)	115.40638	U = J-R-S-T

4.2 Model Propagasi

4.2.1 Model Propagasi Stanford University Interim (SUI)

Karena pada perencanaan jaringan 5G ini menggunakan frekuensi 2100 MHz, maka diperlukan model propagasi SUI sebagai pengaplikasian jaringan nantinya. Model propagasi SUI menggunakan persamaan sebagai berikut untuk menentukan *pathloss*-nya:

$$\begin{split} L_U &= -7,366 + 26log(f_{MHz}) + 10 \ a(h_b). \ (1 + log(d)) \\ a(h_b) &= 4 - 0,0065h_b + 17,1/h_b \\ a(h_r) &= 10,8log(h_r/2) \\ L_{Path} &= L_U - a(h_r) \end{split}$$

Dimana:

 L_{II} : loss urban

 $a(h_b)$: faktor koreksi ketinggian antena gNodeB

 $a(h_r)$: faktor koreksi ketinggian antena UE

 L_{Path} : path loss di daerah Sub urban (dB)

 f_{MHz} : frekuensi yang digunakan (MHz)

d: jarak antara eNodeB dengan UE

 h_b : tinggi gNodeB (m)

 h_r : tinggi UE (m)

Melalui perhitungan dengan mensubstitusi nilai $L_{Path}=122,4773, h_b=35\ m, h_r=1,75\ m,$ dan $f_{MHz}=2100$ didapatkan nilai d:

$$d = 1,01246 \, km$$

4.2.2 Perhitungan Total Site

Untuk menentukan luas sel dari yang menggunakan Omnidirectional, dapat diperhitungkan dengan menggunakan persamaan berikut:

$$Cell\ coverage = 1,95 \times 2,6 \times d^2$$

$$Number\ of\ cell = \frac{Area\ wide}{Cell\ coverage}$$

$$Cell\ coverage\ (Atoll) = 3 \times 2,6 \times d^2$$

$$Number\ of\ cell = \frac{Area\ wide}{Cell\ coverage\ (Atoll)}$$

Tabel 4.3 Hasil Perhitungan Coverage Planning

Keterangan	Nilai	Satuan
Luas area	150.52	km^2
Radius cell (d)	1.01246	km
Cell coverage	5.19713153	km²
Number of site	28.9621302	site
Cell coverage (Atoll)	7.99558696	km^2
Number of site(Atoll)	18.8253846	site

BAB V HASIL PERANCANGAN

5.1 Perbandingan Capacity Planning dan Coverage Planning

Hasil perhitungan dari capacity planning dan coverage planning yang telah didapatkan kemudian akan dibandingkan satu sama lain. Hasil perbandingan itu kemudian akan jadi bahan pertimbangan ketika mendesain simulasi pada software Atoll. Berikut merupakan tabel yang menunjukan perbandingan parameter downlink antara capacity planning dan coverage planning:

Tabel 5.1 Perbandingan Capacity Planning dan Coverage Planning

Parameter Downlink	Capacity Planning	Coverage Planning
Luas Area (km²)	150,52	
Radius Cell (km)	7.608699	1.01246
Cell Coverage (km ²)	246.3054545	5.19713153
Jumlah Site	1	29
MAPL	159,8019959 dB	122,4773 dB

Nilai dari parameter capacity planning berdasarkan proyeksi jumlah user di tahun 2028. Sedangkan parameter coverage planning berdasarkan kondisi geografi Kecamatan Langkahan, Aceh Utara. Dari tabel di atas akan dipilih parameter dari coverage planning untuk proses simulasi menggunakan software Atoll dikarenakan parameter tersebut lebih realistis daripada capacity planning. Dipilihnya parameter dari coverage planning dikarenakan jumlah penduduk/user yang terlalu sedikit di area yang terlalu luas. Selain itu, persebaran penduduknya juga cukup tersebar sehingga 1 menara BTS tidak akan cukup untuk mencakup area yang luas tersebut.

5.2 Hasil Simulasi

Parameter downlink yang telah dipilih kemudian diimplementasikan ke dalam simulasi menggunakan software Atoll. Parameter yang telah diimplementasikan kemudian perlu dilakukan optimasi sesuai untuk menghasilkan hasil simulasi yang paling baik. Pada area perencanaan setelah optimasi di Kecamatan Langkahan diperoleh total 27 site seperti yang ditujukan pada gambar

Gambar 5.1 Lokasi Site

Dari hasil simulasi kemudian didapatkan nilai grafik signal level dari seluruh antena dengan sumbu-x antena merupakan kekuatan sinyal (dBm) dan sumbu-y merupakan area cakupan dari antena BTS (km^2). Histogram yang berwarna biru merupakan area yang paling jauh dari masing-masing antena BTS dan histogram yang berwarna merah merupakan area yang paling dekat dengan antena BTS. Rata-rata dari cakupan kekuatan sinyal antena sebesar -69,09 dBm.

Gambar 5.2 Histogram Coverage by Signal Level

Gambar 5.3 CDF Coverage by Signal Level

Adapula hasil prediksi downlink coverage yang dinyatakan dalam SS-RSRP sinyal antena. SS-RSRP merupakan daya rata-rata yang diterima pada jarak tersebut. Sumbu-x merupakan daya SS-RSRP sinyal (dBm) dan sumbu-y adalah area cakupan downlink sinyal (km^2). Histogram yang berwarna biru merupakan area yang paling jauh dari masing-masing antena BTS dan histogram yang berwarna merah merupakan area yang paling dekat dengan antena BTS. Nilai rata-rata dari prediksi cakupan downlink coverage sebesar -111,86 dBm.

Gambar 5.4 Histogram Downlink Coverage

Gambar 5.5 CDF Downlink Coverage

Rata-rata signal level dan SS-RSRP level memiliki nilai yang bagus karena masih berada di atas nilai sensitivitas receiver berdasarkan perhitungan downlink link budget pada coverage planning dengan nilai -128.739 dBm.

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil perhitungan capacity planning, coverage planning, hingga hasil simulasi menggunakan software Atoll dapat diambil kesimpulan sebagai berikut:

- Perancangan jaringan sistem komunikasi 5G di Kecamatan Langkahan, Kabupaten Aceh Utara dengan kategori daerah sub-urban menggunakan frekuensi 2100 MHz dengan bandwidth 20 MHz yang disediakan oleh provider Telkomsel. Model propagasi yang digunakan adalah Stanford University Interim (SUI) dikarenakan frekuensi yang digunakan lebih dari 2000 MHz.
- 2. Hasil perhitungan capacity planning dan coverage planning dibandingkan terlebih dahulu untuk menentukan parameter mana yang lebih realistis untuk diimplementasikan dalam proses perancangan. Parameter yang telah dipilih kemudian perlu dioptimasi melalui proses simulasi untuk menghasilkan prediksi yang paling baik dalam proses perancangan.
- 3. Optimasi pada proses simulasi penting karena dapat mengurangi hal-hal yang tidak diperlukan. Berdasarkan perhitungan dibutuhkan 29 site, tapi setelah proses optimasi coverage area dari Kecamatan Langkahan dapat dilakukan hanya dengan 27 site dengan hasil prediksi yang tidak berbeda jauh dengan 29 site. Hal ini dapat menghemat biaya dan tenaga pada proses realisasi ke lapangan nantinya.
- 4. Didapatkan nilai rata-rata dari kekuatan sinyal sebesar -69,09 dBm dan rata-rata nilai SS-RSRP sebesar -111,86. Kedua nilai tersebut dikatakan cukup bagus karena masih berada di atas nilai sensitivitas receiver pada coverage planning -128,739 dBm.

6.2 Saran

Perancangan jaringan sistem komunikasi 5G tidak menggunakan terbaru sehingga disarankan untuk menggunakan data terbaru untuk menghasilkan detail perencanaan yang lebih akurat. Model propagasi SUI sendiri ada beberapa macam jenisnya, sehingga perlu dilakukan riset lebih lanjut jika ingin menggunakan model propagasi ini di perencanaan berikutnya. Beberapa parameter juga perlu disesuaikan lagi dengan kebijakan dari provider yang dipilih karena parameter pada laporan ini masih menggunakan parameter untuk jaringan LTE.