

Big Data Analytics com R e Microsoft Azure Machine Learning Módulo 4

Data Science Academy

R Fundamentos Parte 3

Introdução

Parte 1

Parte 2

Parte 3

Data Science Academy

De onde importamos os dados para o R?

Data Science Academy

De onde importamos os dados para o R?

- Arquivos Texto flat files (txt, csv)
- Arquivos Excel (xls, xlsx)
- Bancos de Dados (Oracle, SQL Server, MySQL, PostgreSQL, SQLite)
- Softwares Estatísticos (SAS, SPSS, Stata)
- Dados da Internet (Web Crawling)

Limpeza e Organização

Você vai receber os dados assim:

Você vai deixá-los assim:

A função dos algoritmos é automatizar os processos de análise

Você é a parte inteligente do processo

E quais os tipos mais comuns de problemas encontrados nos dados?

Aqui estão alguns dos padrões mais comumente observados

Aqui estão alguns dos padrões mais comumente observados

- Os cabeçalhos das colunas são valores e não nomes de variáveis
- Diversas variáveis são armazenadas em uma coluna
- As variáveis são armazenados em ambas as linhas e colunas
- Vários tipos de unidade experimental armazenados na mesma tabela
- Um tipo de unidade experimental armazenado em várias tabelas

E por que você limpa e organiza os dados?

Reduzir o tempo de programação

Reduzir o tempo de computação

Menor volume de dados em memória

Data Science Academy

O que vamos estudar então?

- Pacotes para importação e tratamento de arquivos txt e csv
- Pacotes para importação e manipulação de arquivos do Excel
- Importar e tratar dados do SQLite
- Importar e tratar dados do MySQL
- Importar e tratar dados do MongoDB
- Linguagem SQL
- Limpeza e Organização de Dados com dplyr e tidyr

Big Data na Prática

A maior parte do seu tempo será usada na preparação dos dados

txt csv Excel

Manipulação de Arquivos Texto Flat Files (txt, csv)

O R apresenta 3 pacotes principais para carga de dados a partir de arquivos texto:

utils readr data.table

Pacote utils	Pacote readr
read.table()	read_delim()
read.csv()	read_csv()
read.delim()	read_tsv()

Pacote data.table

fread()

Pacote utils

O pacote utils, que é automaticamente carregado na sua sessão R, pode importar arquivos simples em diferentes formas, através das funções:

Pacote utils

read.csv	Para valores sepa <mark>rados por vírgula e</mark> p <mark>onto c</mark> omo separador decimal
read.csv2	Para valores separados por ponto e vírgula e vírgula como separador decimal
read.delim	Para valores separados por tab e p <mark>o</mark> nto como separador decimal
read.delim2	Para valores separado <mark>s por</mark> tab e <mark>vírgul</mark> a e vírgula como separador decimal
read.fwf	Para valores com núm <mark>ero e</mark> xato de bytes por coluna

read.table()

read.table()

Muito útil quando se está fazendo a leitura de arquivos ASCII, que contém dados em formato retangular

read.table()

Muito útil quando se está fazendo a leitura de arquivos <u>ASCII</u>, que contém dados em formato retangular

read.table()

read.table("arquivo.txt", header = TRUE, sep = ",", stringsAsFactors = FALSE) read.table("arquivo.txt", header = TRUE, sep = "\t", stringsAsFactors = FALSE)

read.csv()

read.csv("arquivo.csv", stringsAsFactors = FALSE)
read.csv2("arquivo.csv", sep = ";", dec = ",", stringsAsFactors = FALSE)

read.delim()

read.delim("arquivo.txt")
read.delim2("arquivo.txt")

Parâmetros

header
col.names
na.string
colClasses
sep
stringsAsFactors

Pacote readr

Pacote readr

Lançado em Abril/2015 pelos desenvolvedores do RStudio

install.packages("readr")

```
read_table()
read_csv ()
read_delim ()
```


Pacote readr

arq1 <- read_table("bigdatafile.txt", col_names = c("DAY","MONTH","YEAR","TEMP"))

arq2 <- read.table("bigdatafile.txt", col.names = c("DAY","MONTH","YEAR","TEMP"))

Manipulação de Arquivos Excel

Pacote XLConnect

loadWorkbook()
 getSheets()
readWorksheet()
 createsheet()
writeWorksheet()

Pacote xlsx

read.xlsx(file, sheetIndex, header=TRUE, colClasses=NA)

read.xlsx2(file, sheetIndex, header=TRUE, colClasses="character")

Pacote readxl

read_excel()
Excel_sheets()

Pacote gdata

read.xls()

Atenção aos Detalhes

- Em seus arquivos, evite espaços em branco e números como título para as colunas
- Normalmente, a primeira linha de cada arquivo é o cabeçalho, a lista de nomes para cada coluna
- Para a concatenação de palavras, use . ou _
- Use nomes curtos como título de coluna
- Evite o uso de caracteres especiais
- Dados NA podem existir no seu conjunto de dados e isso será tratado no processo de limpeza

Atenção aos Detalhes

- Encoding
- Linha de cabeçalho
- Separador de colunas
- Quoting (aspas)
- Missing values
- Linhas em branco
- Espaços em branco em campos do tipo caracter
- Comentários

Outros Pacotes para Importação de Arquivos:

- Pacote rison Leitura de arquivos JSON para o R
- Pacote XML Leitura de arquivos xml
- Pacote httr Leitura de páginas html para o R
- Pacote Rcurl Web Crawling (Capítulo 5)
- Pacote foreign Leitura de arquivos do SPSS, SAS (Capítulo 5)
- Pacote sas7bdat Leitura de arquivos SAS (Capítulo 5)

data.table

Fonece um rápido processo de carga de dados, pois as funções reconhecem automaticamente os parâmetros dos arquivos e decidem a melhor forma de carga

fread()

Resumindo:

Manipulação de Arquivos txt e csv

read.table()

Package utils read.csv()

read.delim()

read_table()

Package readr read_csv()

read_delim()

Package data.table fread()

Manipulação de Arquivos excel

XLConnect

xlsx

readxl

gdata

r2excel

Linguagem SQL (Structured Query Language)

Tudo que fazemos no banco de dados, passa pelo SGBD

A Lingagem SQL é implementada de forma diferente em diferentes RDBMS, mas a base da linguagem é a mesma

- MS SQL Server utiliza a T-SQL
- Oracle utiliza PL/SQL
- MS Access utiliza o JET SQL

Permite que os usuários acessem dados em sistemas de gerenciamento de bancos de dados relacionais

Permite a manipulação de dados armazenados em bancos de dados

Permite a criação e remoção de objetos no banco de dados (tabelas, índices, visões, procedimentos armazenados)

Permite que os usuários possam definir restrições de acesso

Existem 3 Tipos de Instrução SQL

DDL

DDL – Data Definition Language

- Create
- Alter
- Drop

DML

DML – Data Manipulation Language

- Select
- Insert
- Delete
- Update

DCL

DCL – Data Control Language

- Revoke
- Alter

Tabela

ID	NOME	IDADE	CIDADE
0001	Pele	120	Roma
0002	Zico	110	Paris
0003	Garrincha	105	Vienna

Tabela

Coluna

Linha ou Registro

ID	NOME	IDADE	CIDADE
0001	Pele	120	Roma
0002	Zico	110	Paris
0003	Garrincha	105	Vienna

Constraints - Integridade Referencial

Importação e Manipulação de Dados de Bancos de Dados Relacionais

Importação e Manipulação de Dados de Bancos de Dados Relacionais

Bancos de Dados são Coleções de Tabelas

DataFrames em R são estruturas semelhantes a Tabelas

DataFrames em R são estruturas semelhantes a Tabelas

Observações => Linhas Variáveis => Colunas

Como acessamos dados em tabelas?

Como acessamos dados em tabelas?

Linguagem SQL

Sistemas Gerenciadores de Bancos de Dados

E como o R se conecta aos SGBD's?

Bancos de Dados e Pacotes R

Banco de Dados	Pacote R	
Oracle	ROracle	
Microsoft SQL Server	RSQLServer	
PostgreSQL	RPostgreSQL	
MySQL	RMySQL	
SQLite	RSQLite	
MongoDB	RMongo	
Conexão ODBC	RODBC	

ta Science Academy

Bancos de Dados e Pacotes R

Banco de Dados	Pacote R
Conexão ODBC	RODBC

Conectar ao banco de dados → DBI.dbConnect ()

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha
- Listar e importar tabelas → dbListTables()

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha
- Listar e importar tabelas → dbListTables()

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha
- Listar e importar tabelas
- Manipular os dados

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha
- Listar e importar tabelas
- Manipular os dados
- Desconectar

Importação e Manipulação de Dados de Bancos de Dados NoSQL

Bancos de Dados NoSQL (Not Only SQL)

NoSQL é uma tecnologia de banco de dados projetada para suportar os requisitos de aplicações em nuvem e arquitetado para superar em escala e desempenho as limitações de bancos de dados relacionais (RDBMS)

Os principais Bancos de Dados NoSQL são:

Key-value	Oracle NoSQL DB
	MemcacheDB
	Redis
	Voldemort

Document	MongoDB	
	CouchDB	
	RavenDB	
	Terrastore	

Column	HBase
	Cassandra*
	Hypertable
	Accumulo

MongoDB	RDBMS
Database	Database
Collection	Tabela
Document	Linha/Tupla
Field	Coluna
Embedded Documents	Join de Tabelas
Primary Key	Primary Key

E por que devo aprender a usar um banco de dados NoSQL?

Preparação

Data Wrangling (Manipulação de Dados)

Como o cliente explicou o que queria

Como o gerente do projeto entendeu

Como foi idealizado

Como foi planejado

Como o gerente o explicou ao cliente

Como o projeto foi documentado

Como o projeto foi entregue

Como o cliente foi cobrado

Como o projeto foi apoiado

O que o cliente realmente precisava

Data Science Academy

Data Wrangling (Manipulação de Dados)

Limpeza, Processamento, Organização e Manipulação

Qual o objetivo do Data Wrangling?

Cada Variável em uma coluna

Cada observação em uma linha

Data Science Academy

E o que o R pode fazer para ajudar o Cientista de Dados?

dplyr

- select()
- filter()
- group_by()
- summarise()
- arrange()
- join()
- mutate()

tidyr

- gather()
- spread()
- separate()
- unite()

Data Science Academy

tidyr

Remodelagem de Dados

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

gather()

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Data Science Academy

demy

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

Data Science Academy

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

Data Science Academy

Talvez você ainda não tenha percebido.

Mas com apenas uma função, somos capazes de mudar completamente o formato (shape) dos nossos dados e isso pode fazer muita diferença no processo de análise

diplyr

Transformação de Dados

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

summarise()

1.7

0.4

setosa

head(iris)

Species	Mean	SD	n
setosa	5.006	0.352	50
versicolor	5.936	0.516	50
virginica	6.588	0.636	50

Data Science Academy

3.9

5.4

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
7.9	3.8	6.4	2.0	virginica
7.7	3.8	6.7	2.2	virginica
7.7	2.6	6.9	2.3	virginica
7.7	2.8	6.7	2.0	virginica
7.7	3.0	6.1	2.3	virginica
7.6	3.0	6.6	2.1	virginica

mutate()

head(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

x1	x2.x	x2.y
Α	1	T
В	2	F
С	3	NA
D	NA	T

Existem outras funções e variações destas funções

O pacote dplyr permite que se realize operações complexas com dataframes e matrizes, utilizando apenas uma instrução

Operador %>%

filter(data, variable == numeric_value)

<u>ou</u>

data %>% filter(variable == numeric_value)

Curta Nossas Páginas nas Redes Sociais

E fique sabendo das novidades em Data Science, Big Data, Internet das Coisas e muito mais...

www.facebook.com/dsacademybr

twitter.com/dsacademybr

www.linkedin.com/company/data-science

Data Science Academy

academy

