直流电源

雷飞

010-67392914 leifei@bjut.edu.cn

8.1 直流电源的组成及各部分的作用

整流:将交流变为直流的过程。

滤波: 将脉动的直流电压变为平滑的直流电压。

8.2 整流电路

一、整流电路的分析方法及其基本参数

1. 工作原理

单相半波整流电路

优点:使用元件少。

缺点:输出波形脉动大;直流

成分小;变压器利用率低。

2. 主要参数

1) 输出电压平均值 *U*_{O(AV)}

输出电压平均值就是负 载电阻上电压的平均值

$$U_{\text{O(AV)}} = \frac{1}{2\pi} \int_0^{2\pi} u_{\text{o}} d(\omega t)$$

$$U_{\text{O(AV)}} = \frac{1}{2\pi} \int_0^{\pi} \sqrt{2} U_2 \sin \omega t d(\omega t) = \frac{\sqrt{2}}{\pi} U_2 = 0.45 U_2$$

2) 负载电流的平均值

$$I_{O(AV)} = \frac{U_{O(AV)}}{R_{L}} \approx \frac{0.45U_{2}}{R_{L}}$$

$$S = \frac{U_{\text{O1m}}}{U_{\text{O(AV)}}}$$

3. 二极管的选择

根据流过二极管电流的平均值和它所承受的最大反向电 压来选择二极管的型号。

二极管的正向电流等于负载电流平均值

 $U_{\rm p,max} = \sqrt{2}U_{\rm p}$

$$I_{D(AV)} = I_{O(AV)} \approx \frac{0.45U_2}{R_1}$$

二极管承受的最大反向电压等于变压器副边的峰值电压

$$\begin{cases}
I_{F} > 1.1I_{O(AV)} = 1.1 \frac{\sqrt{2}U_{2}}{\pi R_{L}} \\
U_{R} > 1.1 \sqrt{2}U_{2}
\end{cases}$$

单相桥式整流电路

在实用电路中,多采用全波整流电 路,最常用的是单向桥式整流电路

1.单向桥式整流 电路的组成

单向桥式整流电路

单向桥式整流电路的习惯画法

2.工作原理

1. $u_2 > 0$ 时,电流由+流出,经 D_1 、 R_1 、 D_2 流入-。

2. u_2 < 0时,电流由-流出,经 D_3 、 R_L 、 D_4 流入+。

3.输出电压平均值 $U_{O(AV)}$ 和输出电流的平均值 $I_{O(AV)}$

$$U_{\text{O(AV)}} = \frac{1}{\pi} \int_0^{\pi} \sqrt{2} U_2 \sin \omega t d(\omega t) = \frac{2\sqrt{2}}{\pi} U_2 = 0.9U_2$$

$$I_{O(AV)} = \frac{U_{O(AV)}}{R_{L}} \approx \frac{0.9U_{2}}{R_{L}}$$

脉动系数:

$$\therefore u_{\mathcal{O}} = \sqrt{2}U_{2}(\frac{2}{\pi} - \frac{4}{3\pi}\cos 2\omega t - \frac{4}{15\pi}\cos 4\omega t \cdots)$$

$$\therefore S = \frac{U_{\text{O1m}}}{U_{\text{O(AV)}}} = \frac{\frac{4\sqrt{2}}{3\pi}U_2}{\frac{2\sqrt{2}}{\pi}U_2} = 0.67$$

4.二极管的选择

每只二极管只在变压器副边电压的半个周期通过电流,所以每只二极管 的平均电流只有负载电阻上电流平均值的一半。

$$I_{D(AV)} = \frac{I_{O(AV)}}{2} \approx \frac{0.45U_2}{R_1}$$

二极管承受的最大反向电压等于变压器副边的峰值电压

$$U_{R \max} = \sqrt{2}U_{2}$$

对于二极管最大整流平均电流作和 最高反向工作电压*U*。均应留10%的 余地,以保证二极管安全工作。

$$I_{F} > \frac{1.1I_{O(AV)}}{2} = 1.1 \frac{\sqrt{2}U_{2}}{\pi R_{L}}$$

$$U_{R} > 1.1 \sqrt{2}U_{2}$$

如何实现正、负电源?

将桥式整流电路变压器副边中点接地 ,并将二个负载电阻相连接,且连接 点接地。

 u_{01} 为正; u_{02} 为负

三相整流电路

变压器副边的三个端均应接二只二极管,一只接阳极,另一只 接阴极。

 D_1 D_2 D_3 轮流导通,阳极电位高的D先导通; $D_4D_5D_6$ 轮流导通,阴极电位低的D先导通。

利用桥式整流电路实现正、负电源

三相整流电路

8.3 滤波电路

滤波:将脉动的直流电压变为平滑的直流电压。

滤波电路的结构特点: 电容与负载 R_L并联, 或电感与负载 R_L串联。

一、电容滤波电路

滤波电路

滤波电容容量较大,一般采用电解电容器。

电容滤波电路利用电容的充放电作用,使输出电压趋于平滑。

滤波电路输出电压波形

(b)理想情况下的波形

(c)考虑整流电路内阻时的波形

1. 滤波原理 (电容器的充、放电)

以单向桥式整流电容滤波为例进行分析, 其电路如图所示。

桥式整流电容滤波电路

R_L未接入时(忽略整流电路内阻)

 R_L 接入 (且 R_L C较大) 时 (忽略整流电路内阻)

u₂上升, u₂大于电容 上的电压u_c, u₂对电容充电, u_o= u_c≈ u₂ 时间常数τ = (R_L // R_{int}) C u₂下降, u₂小于电容上的电压。
 二极管承受反向电压而截止。
 电容C通过R_L放电, u_c按指数
 规律下降,时间常数τ = R_L C

放电时间常数τ远远大于充电时间常数τ,

滤波效果取决于放电τ, 其值愈大, 滤波效果愈好。

二、输出电压平均值

$$U_{O \text{ (AV)}} = \frac{U_{O \text{max}} + U_{O \text{min}}}{2} = \sqrt{2}U_{2}(1 - \frac{T}{4R_{L}C})$$

$$U_{O \text{min}}$$

当负载开路时

$$U_{\text{\tiny O(AV)}} = \sqrt{2}U_{2}$$

当
$$R_L$$
C = (3~5)T/2时 $U_{o(AV)} \approx 1.2U_2$

考虑电网电压波动,电容的耐压值应大于 $1.1\sqrt{2U}$

三、脉动系数
$$S$$

$$S = \frac{U_{\text{Olm}}}{U_{\text{O(AV)}}} = \frac{1}{\frac{4R_LC}{T} - 1}$$

4. 整流二极管的导通角

5.电容滤波电路的输出特性和滤波特性

1.输出特性

当滤波电容选定后,输出电压平均值 $U_{O(AV)}$ 和输出电流平均值 $I_{O(AV)}$ 的关 系。

电容滤波电路的输出特性

2.滤波特性

脉动系数S和输出电流平均值 I_{O} (AV) 的关系。

电容滤波电路滤波的特性

8.4 稳压二极管稳压电路

整流滤波电路输出电压不稳定的主要原因:

- •负载变化;
- •电网电压波动。
- 一、稳压管稳压电路的组成

稳压二极管组成的稳压电路

两个基本公式

$$U_{I} = U_{R} + U_{O}$$

$$I_{R} = I_{DZ} + I_{L}$$

稳压管的伏安特性

在稳压管稳压电路中,只要使稳压管始终工作在稳压区,保证稳压管

的电流: I_Z≤I_{DZ}≤I_{ZM}

输出电压Uo就基本稳定。

稳压管的伏安特性

二、稳压原理

稳压电路应从以下二个方面 考察其稳压特性

- •电网电压波动;
- •负载变化。

1. U, 不变, R_L 减小

$$R_{L} \downarrow \longrightarrow I_{L} \uparrow \longrightarrow U_{R} \uparrow \longrightarrow U_{O} \downarrow \longrightarrow I_{Z} \downarrow \downarrow \stackrel{I_{R}=I_{L}+I_{Z}}{\longrightarrow} U_{O}$$
基本不变

综上所述,在稳压二极管所组成的稳压电路中,利用稳压管所起的电流调节作用 ,通过限流电阻R上电压或电流的变化进行补偿,来达到稳压的目的。

8.5 串联型稳压电路

稳压二极管稳压电路输出电流较小,输出电压不可调。

串联型稳压电路以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载电流;在电路中引入电压负反馈使输出电压稳定;可通过改变反馈网络的参数使输出电压可调。

一、串联型稳压电路的工作原理

1.基本调整管电路

基本调整管电路

在*U*变化或负载电阻*R*L变化时,输出电压基本不变。

稳压原理: 晶体管的调节作用 , T应工作在放大状态。

调整管与负载串联 串联型稳压电源电路

调整管工作在线性区 线性稳压电源电路

加晶体管扩大负载电流的变化范 围稳压电路

常见画法的稳压电路

2.具有放大环节的串联型稳压电路

基本调整管稳压电路输出电压仍不可调节,且输出电压将因 U_{BE} 的变化而变化,稳定性较差。

1) 电路的构成

(a)原理电路图

具有放大环节的串联型稳压电路

电路组成

(b)常见画法

调整管: VT;

比较放大电路: A;

采样电路: R_1 、 R_2 、 R_3 ; 具有放大环节的串联型稳压电路

基准电压电路:由R、VDz提供。

2) 稳压原理

$$U_{\mathsf{I}}^{\uparrow} \to U_{\mathsf{O}}^{\uparrow} \to U_{\mathsf{F}}^{\uparrow} \to U_{\mathsf{Id}}^{\downarrow} \to U_{\mathsf{BE}}^{\downarrow} \to I_{\mathsf{C}}^{\downarrow} - U_{\mathsf{C}}^{\downarrow} \to U_{\mathsf{CE}}^{\uparrow}$$

3) 输出电压的可调范围

由于 *U₊* = *U₋* , *U_F* = *U_Z* † 所以

$$U_{\rm Z} = U_{\rm F} = \frac{R_2'' + R_3}{R_1 + R_2 + R_3} U_{\rm O}$$

则:
$$U_{\text{O}} = \frac{R_1 + R_2 + R_3}{R_2'' + R_3} U_{\text{Z}}$$

串联型直流稳压电路

当 R₂ 的滑动端调至最上端时,

Uo为最小值

$$U_{\text{Omin}} = \frac{R_1 + R_2 + R_3}{R_2 + R_3} U_Z$$

当 R_2 的滑动端调至最下端时, U_0 为最大值,

$$U_{\text{Omax}} = \frac{R_1 + R_2 + R_3}{R_2} U_Z$$

3.串联型稳压电路的方框图

实用的串联型稳压电路至少包括调整管、基准电压电路、取样电路、比较放大电路四个部分组成。此外为使电路安全工作,还常在电路中加保护电路。

串联型稳压电路的方框图

二、集成稳压器电路

从外形上看,集成串联型稳压电路有三个引脚, 分别为输入端、输出端和公共端,因而称为三端 稳压器。

固定式稳压电路: W78XX、W79XX。

可调式稳压电路: W117、W217、W317。

1. W78XX三端稳压器—— 稳定正电压

输出电压有七个等级: 5V、6V、9V、12V、15V、 18V和24V。

如W7805,输出+5V;W7809,输出+9V

输出电流有三个等级: 1.5A、0.5A (M) 和0.1A (L)。

如W7805,输出+5V;最大输出电流为1.5A;W78M05,输出+5V;最大输出电流为0.5A;W78L05,输出+5V;最大输出电流为0.1A。

W79XX系列 —— 稳定负电压

1) 三端集成稳压器的组成

W7800的原理框图

2) 主要参数

参数名称	符号 単位	参型号数值	7805	7806	7809	7812	7815	7818	7824
输入电压	$U_{ m I}$	V	10	11	14	19	23	27	33
输出电压	$U_{\rm O}$	V	5	6	9	12	15	18	24
电压调整率	S_U	%/V	0.0076	0.0086	0.01	0.008	0.0066	0.01	0.011
电流调整率	S_I	mV	40	43	45	52	52	55	60
最小压差	$U_{\rm I}$ – $U_{ m O}$	V	2	2	2	2	2	2	2
输出噪声	$U_{ m N}$	μV	10	10	10	10	10	10	10
输出电阻	$R_{\rm o}$	mΩ	17	17	18	18	19	19	20
峰值电流	I_{OM}	A	2.2	2.2	2.2	2.2	2.2	2.2	2.2
输出温漂	S_{T}	mV/°C	1.0	1.0		1.2	1.5	1.8	2.4

输入端和输出端之间的电压允许值为3~13V。

2.三端稳压器的外形及电路方框图

三端稳压器的外形和方框图

不同封装形式、正负电源管脚号不同。图(c)(d)为金属封装式。

3.基本应用电路

三端集成稳压器基本应用电路

若输出电压较高,接一保护二极管 D,以保护集成稳压器内部的调整管。