Four Q on Embedded Devices with Strong Countermeasures Against Side-Channel Attacks

CHES 2017 September 26-28, Taipei, Taiwan

Zhe Liu Patrick Longa

Geovandro C. C. F. Pereira

Oscar Reparaz Hwajeong Seo

Microsoft[®] Research

Zhe Liu Patrick Longa **Geovandro C. C. F. Pereira**Oscar Reparaz Hwajeong Seo

- 1996, P. Kocher initiates Simple Power Analysis (SPA) attacks (timing).
 - 1999, SPA evolves to Differential Power Analysis (DPA) and Template attacks.

- 1996, P. Kocher initiates Simple Power Analysis (SPA) attacks (timing).
 - 1999, SPA evolves to Differential Power Analysis (DPA) and Template attacks.
- 1999, FIPS 186-2 is published
 - NIST publishes the 15 popular NIST (Weierstrass) curves along with ECDSA.

- 1996, P. Kocher initiates Simple Power Analysis (SPA) attacks (timing).
 - 1999, SPA evolves to Differential Power Analysis (DPA) and Template attacks.
- 1999, FIPS 186-2 is published
 - NIST publishes the 15 popular NIST (Weierstrass) curves along with ECDSA.
- New requirements imposed to ECC
 - Constant-time algorithms
 - Complete formulas (achieved by models such as (Twisted) **Edwards** curves).
 - Provenance

- 1996, P. Kocher initiates Simple Power Analysis (SPA) attacks (timing).
 - 1999, SPA evolves to Differential Power Analysis (DPA) and Template attacks.
- 1999, FIPS 186-2 is published
 - NIST publishes the 15 popular NIST (Weierstrass) curves along with ECDSA.
- New requirements imposed to ECC
 - Constant-time algorithms
 - Complete formulas (achieved by models such as (Twisted) **Edwards** curves).
 - Provenance
- 2015, NIST holds a workshop for new ECC standardization.

Next-generation elliptic curves

Farrel-Moriarity-Melkinov-Paterson [NIST ECC Workshop 2015]:

"... the real motivation for work in CFRG is the **better performance** and **side-channel resistance of new curves** developed by academic cryptographers over the last decade."

Speed (in thousands of cycles) to compute variable-base scalar multiplication on different computer classes.

Platform	FourQ	Curve25519	Speedup ratio
Intel Haswell processor, desktop class	56	162	2.9x
ARM Cortex-A15, smartphone class	132	315	2.4x
ARM Cortex-M4, microcontroller class	470	907 / 1,424	1.9 / 3.0x

$$E/\mathbb{F}_{p^2}$$
: $-x^2 + y^2 = 1 + dx^2y^2$

d=125317048443780598345676279555970305165i+4205857648805777768770, $p=2^{127}-1,\,i^2=-1,\,\#E=392\cdot N,\,\text{where }N\text{ is a }246\text{-bit prime}.$

$$E/\mathbb{F}_{p^2}$$
: $-x^2 + y^2 = 1 + dx^2y^2$

d=125317048443780598345676279555970305165i+4205857648805777768770, $p=2^{127}-1,\,i^2=-1,\,\#E=392\cdot N,\,\text{where }N\text{ is a }246\text{-bit prime}.$

- Fastest (large char) ECC addition laws are complete on E
- *E* is equipped with *two* endomorphisms:
 - E is a degree-2 $\mathbb Q$ -curve: endomorphism ψ
 - E has CM by order of D=-40: endomorphism ϕ

$$E/\mathbb{F}_{p^2}$$
: $-x^2 + y^2 = 1 + dx^2y^2$

d=125317048443780598345676279555970305165i+4205857648805777768770, $p=2^{127}-1,\,i^2=-1,\,\#E=392\cdot N,\,\text{where }N\text{ is a }246\text{-bit prime}.$

- Fastest (large char) ECC addition laws are complete on E
- *E* is equipped with *two* endomorphisms:
 - E is a degree-2 $\mathbb Q$ -curve: endomorphism ψ
 - E has CM by order of D=-40: endomorphism ϕ

•
$$\psi(P) = [\lambda_{\psi}]P$$
 and $\phi(P) = [\lambda_{\phi}]P$ for all $P \in E[N]$ and $m \in [0, 2^{256})$
$$m \mapsto (a_1, a_2, a_3, a_4)$$

$$[m]P = [a_1]P + [a_2]\phi(P) + [a_3]\psi(P) + [a_4]\psi(\phi(P))$$

Optimal 4-Way Scalar Decompositions

```
m \mapsto (a_1, a_2, a_3, a_4)
```

Proposition: for all $m \in [0, 2^{256})$, decomposition yields four $a_i \in [0, 2^{64})$ with a_1 odd.

m = 42453556751700041597675664513313229052985088397396902723728803518727612539248

```
a_1 = 13045455764875651153 P
a_2 = 9751504369311420685 \phi(P)
a_3 = 5603607414148260372 \psi(P)
a_4 = 8360175734463666813 \psi(\phi(P))
```

Optimal 4-Way Scalar Decompositions

$$m \mapsto (a_1, a_2, a_3, a_4)$$

Proposition: for all $m \in [0, 2^{256})$, decomposition yields four $a_i \in [0, 2^{64})$ with a_1 odd.

m = 42453556751700041597675664513313229052985088397396902723728803518727612539248

```
a_1 = 13045455764875651153 P
a_2 = 9751504369311420685 \phi(P)
a_3 = 5603607414148260372 \psi(P)
a_4 = 8360175734463666813 \psi(\phi(P))
```

Multi-Scalar Recoding

Step 1: recode a_1 to signed non-zero representation

Step 2: recode a_2 , a_3 and a_4 by "sign-aligning" columns

 $a_1 = 1, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline$

Multi-Scalar Recoding

Step 1: recode a_1 to signed non-zero representation

Step 2: recode a_2 , a_3 and a_4 by "sign-aligning" columns

 $a_1 = 1, \overline{1}, 1, \overline{1}, 1, \overline{1}, \overline$

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks
- Reduced number of precomputations (only 8 points).

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks
- Reduced number of precomputations (only 8 points).

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks
- Reduced number of precomputations (only 8 points).

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks
- Reduced number of precomputations (only 8 points).

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks
- Reduced number of precomputations (only 8 points).

- Regular execution (exactly 64 DBLS and 64 ADDs) facilitates protection against timing/SSCA attacks.
- Reduced number of precomputations (only 8 points).

SPA/DPA-protected scalar multiplication

SPA countermeasures

- Constant-time, constant-flow implementations
 - ✓ Complete formulas
 - ✓ Ladder-based or regular double-and-add based algorithms

SPA/DPA-protected scalar multiplication

SPA countermeasures

- Constant-time, constant-flow implementations
 - ✓ Complete formulas
 - ✓ Ladder-based or regular double-and-add based algorithms

Previous protections do not prevent

- Differential Power Analysis (DPA): many traces with same key and varying plaintext
- Other variants: template attacks: very powerful attacker

- 1999: J.S. Coron suggested randomizing the computation by using:
 - 1. Scalar randomization

$$m \cdot P \equiv (m + r \cdot \#E) \cdot P$$

- 1999: J.S. Coron suggested randomizing the computation by using:
 - 1. Scalar randomization

$$m \cdot P \equiv (m + r \cdot \#E) \cdot P$$

2. Base point blinding (inspired by Chaum's blind signatures)

Blind: for random *R*

$$\widetilde{P} \leftarrow P + R$$

Scalar multiplication:

$$Q \leftarrow m \cdot \widetilde{P}$$

Unblind:

$$P = Q - m \cdot R$$

Moreover, update R for the next scalar multiplication.

$$R \leftarrow (-1)^b 2R$$

- 1999: J.S. Coron suggested randomizing the computation by using:
 - 1. Scalar randomization

$$m \cdot P \equiv (m + r \cdot \#E) \cdot P$$

2. Base point blinding (inspired by Chaum's blind signatures)

Blind: for random *R*

$$\widetilde{P} \leftarrow P + R$$

Scalar multiplication:

$$Q \leftarrow m \cdot \widetilde{P}$$

Unblind:

$$P = Q - m \cdot R$$

Moreover, update R for the next scalar multiplication.

$$R \leftarrow (-1)^b 2R$$

3. Projective coordinates randomization

$$P = (X:Y:Z) \equiv (\lambda X:\lambda Y:\lambda Z)$$
, for random $\lambda \neq 0$

Scalar randomization

• 1999: J.S. Coron suggested scalar randomization

$$m \cdot P \equiv (m + r \cdot \#E) \cdot P$$

where r is small (e.g., 20 bits).

Scalar randomization

• 1999: J.S. Coron suggested scalar randomization

$$m \cdot P \equiv (m + r \cdot \#E) \cdot P$$

where r is small (e.g., 20 bits).

• **Problem**: prime-order curves over pseudo-Mersenne primes

$$p = 2^{k_1} \pm 2^{k_2} \cdots + c$$
,

present undesired repeated 1/0 patterns in #E.

• **Unsafe** example: curve P-256:

• Safe example: curve Four \mathbb{Q} : non-prime order, #E = 392 * N

• Safe example: curve Four \mathbb{Q} : non-prime order, #E = 392 * N

But we usually work with the prime-order **subgroup** where #P = N, therefore

$$m \cdot P \equiv (m + r \cdot \# N) \cdot P$$

and notice that

N = 0x29CBC14E5E0A72F05397829CBC14E5DFBD004DFE0F79992FB2540EC7768CE7

does not present the undesired patterns and Coron's technique could be used.

• Safe example: curve Four \mathbb{Q} : non-prime order, #E = 392 * N

But we usually work with the prime-order **subgroup** where #P = N, therefore

$$m \cdot P \equiv (m + r \cdot \# N) \cdot P$$

and notice that

N = 0x29CBC14E5E0A72F05397829CBC14E5DFBD004DFE0F79992FB2540EC7768CE7

does not present the undesired patterns and Coron's technique could be used.

Can we do better in Four ? A.: yes.

Scalar randomization

• Remark: Coron's method is inefficient for curves with endomorphisms.

- In FourQ, we extended to Ciet et al.'s GLV scalar randomization
 - Extend every mini-scalar by 16 bits (64 bits in total)
 - No problem with pattern repetitions
 - Overhead is only 25% (compared against at least 50% overhead in curve25519)

Algorithm 2. SCA-protected Four \mathbb{Q} 's scalar multiplication on $\mathcal{E}(\mathbb{F}_{p^2})[N]$.

Input: Point $P = (x_P, y_P)$, blinding point $R = (x_R, y_R) \in \mathcal{E}(\mathbb{F}_{p^2})[N]$, integer scalar m and random value $s \in [0, 2^{256})$, a random bit b, and random values $[r_{81}, r_{80}, \dots, r_0] \in \mathbb{F}_p^{82}$.

Output: [m]P and updated point R.

Randomize input points and update blinding point R:

- 1: Set $R = (r_{81} \cdot x_R, r_{81} \cdot y_R, r_{81})$.
- 2: Compute $R = [(-1)^b 3]R$.
- 3: Set $P = (r_{80} \cdot x_P, r_{80} \cdot y_P, r_{80}).$

Compute endomorphisms and precompute lookup table:

- 4: Compute $\phi(P)$, $\psi(P)$ and $\psi(\phi(P))$.
- 5: Compute $T[u] = -R + [u_0]P + [u_1]\phi(P) + [u_2]\psi(P) + [u_3]\psi(\phi(P))$ for $u = (u_3, u_2, u_1, u_0)_2$ in $0 \le u \le 15$. Write T[u] in coordinates (X, Y, Z).

Scalar decomposition, randomization and recoding:

- 6: Decompose m into the multiscalar (a_1, a_2, a_3, a_4) as in [16, Prop. 5].
- 7: Randomize (a_1,a_2,a_3,a_4) as in Proposition 1 and recode to digit-columns (d_{79},\ldots,d_0) s.t. $d_i=a_1[i]+2a_2[i]+4a_3[i]+8a_4[i]$ for $i=0,\ldots,79$.

- 8: Q = R
- 9: **for** i = 79 **to** 0 **do**
- 10: $S = (r_i \cdot X_{T[d_i]}, r_i \cdot Y_{T[d_i]}, r_i \cdot Z_{T[d_i]}).$
- 11: Q = [2]Q + S
- 12: **return** (Q R) and R in affine coordinates.

Algorithm 2. SCA-protected FourQ's scalar multiplication on $\mathcal{E}(\mathbb{F}_{p^2})[N]$.

Input: Point $P = (x_P, y_P)$, blinding point $R = (x_R, y_R) \in \mathcal{E}(\mathbb{F}_{p^2})[N]$, integer scalar m and random value $s \in [0, 2^{256})$, a random bit b, and random values $[r_{81}, r_{80}, \dots, r_0] \in \mathbb{F}_p^{82}$.

Output: [m]P and updated point R.

Randomize input points and update blinding point R:

- 1: Set $R = (r_{81} \cdot x_R, r_{81} \cdot y_R, r_{81})$.
- 2: Compute $R = [(-1)^b 3]R$.
- 3: Set $P = (r_{80} \cdot x_P, r_{80} \cdot y_P, r_{80})$.

Compute endomorphisms and precompute lookup table:

- 4: Compute $\phi(P)$, $\psi(P)$ and $\psi(\phi(P))$.
- 5: Compute $T[u] = -R + [u_0]P + [u_1]\phi(P) + [u_2]\psi(P) + [u_3]\psi(\phi(P))$ for $u = (u_3, u_2, u_1, u_0)_2$ in $0 \le u \le 15$. Write T[u] in coordinates (X, Y, Z).

Always update blinding point R

Scalar decomposition, randomization and recoding:

- 6: Decompose m into the multiscalar (a_1, a_2, a_3, a_4) as in [16, Prop. 5].
- 7: Randomize (a_1,a_2,a_3,a_4) as in Proposition 1 and recode to digit-columns (d_{79},\ldots,d_0) s.t. $d_i=a_1[i]+2a_2[i]+4a_3[i]+8a_4[i]$ for $i=0,\ldots,79$.

- 8: Q = R
- 9: for i = 79 to 0 do
- 10: $S = (r_i \cdot X_{T[d_i]}, r_i \cdot Y_{T[d_i]}, r_i \cdot Z_{T[d_i]}).$
- 11: Q = [2]Q + S
- 12: **return** (Q R) and R in affine coordinates.

Algorithm 2. SCA-protected Four Q's scalar multiplication on $\mathcal{E}(\mathbb{F}_{p^2})[N]$.

Input: Point $P = (x_P, y_P)$, blinding point $R = (x_R, y_R) \in \mathcal{E}(\mathbb{F}_{p^2})[N]$, integer scalar m and random value $s \in [0, 2^{256})$, a random bit b, and random values $[r_{81}, r_{80}, \dots, r_0] \in \mathbb{F}_p^{82}$.

Blinding point R plays a role in T

'Sign-alignment' cannot be used here, thus

New table has now 16 points

Output: [m]P and updated point R.

Randomize input points and update blinding point R:

- 1: Set $R = (r_{81} \cdot x_R, r_{81} \cdot y_R, r_{81})$.
- 2: Compute $R = [(-1)^b 3]R$.
- 3: Set $P = (r_{80} \cdot x_P, r_{80} \cdot y_P, r_{80}).$

Compute endomorphisms and precompute lookup table:

- 4: Compute $\phi(P)$, $\psi(P)$ and $\psi(\phi(P))$.
- 5: Compute $T[u] = \overline{-R} + [u_0]P + [u_1]\phi(P) + [u_2]\psi(P) + [u_3]\psi(\phi(P))$ for $u = (u_3, u_2, u_1, u_0)_2$ in $0 \le u \le 15$. Write T[u] in coordinates (X, Y, Z).

Scalar decomposition, randomization and recoding:

- 6: Decompose m into the multiscalar (a_1, a_2, a_3, a_4) as in [16, Prop. 5].
- 7: Randomize (a_1,a_2,a_3,a_4) as in Proposition 1 and recode to digit-columns (d_{79},\ldots,d_0) s.t. $d_i=a_1[i]+2a_2[i]+4a_3[i]+8a_4[i]$ for $i=0,\ldots,79$.

- 8: Q = R
- 9: **for** i = 79 **to** 0 **do**
- 10: $S = (r_i \cdot X_{T[d_i]}, r_i \cdot Y_{T[d_i]}, r_i \cdot Z_{T[d_i]}).$
- 11: Q = [2]Q + S
- 12: **return** (Q R) and R in affine coordinates.

Algorithm 2. SCA-protected Four Q's scalar multiplication on $\mathcal{E}(\mathbb{F}_{p^2})[N]$.

Input: Point $P = (x_P, y_P)$, blinding point $R = (x_R, y_R) \in \mathcal{E}(\mathbb{F}_{p^2})[N]$, integer scalar m and random value $s \in [0, 2^{256})$, a random bit b, and random values $[r_{81}, r_{80}, \dots, r_0] \in \mathbb{F}_p^{82}$.

Output: [m]P and updated point R.

Randomize input points and update blinding point R:

projective coordinate randomization

- 1: Set $R = (r_{81} \cdot x_R, r_{81} \cdot y_R, r_{81})$.
- 2: Compute $R = [(-1)^b 3]R$.
- 3: Set $P = (r_{80} \cdot x_P, r_{80} \cdot y_P, r_{80}).$

Compute endomorphisms and precompute lookup table:

- 4: Compute $\phi(P)$, $\psi(P)$ and $\psi(\phi(P))$.
- 5: Compute $T[u] = -R + [u_0]P + [u_1]\phi(P) + [u_2]\psi(P) + [u_3]\psi(\phi(P))$ for $u = (u_3, u_2, u_1, u_0)_2$ in $0 \le u \le 15$. Write T[u] in coordinates (X, Y, Z).

Scalar decomposition, randomization and recoding:

- 6: Decompose m into the multiscalar (a_1, a_2, a_3, a_4) as in [16, Prop. 5].
- 7: Randomize (a_1, a_2, a_3, a_4) as in Proposition 1 and recode to digit-columns (d_{79}, \ldots, d_0) s.t. $d_i = a_1[i] + 2a_2[i] + 4a_3[i] + 8a_4[i]$ for i = 0, ..., 79.

- 8: Q = R
- 9: **for** i = 79 **to** 0 **do**
- 10: $S = (r_i \cdot X_{T[d_i]}, r_i \cdot Y_{T[d_i]}, r_i \cdot Z_{T[d_i]}).$
- 11: Q = [2]Q + S
- 12: **return** (Q R) and R in affine coordinates.

```
Algorithm 2. SCA-protected Four Q's scalar multiplication on \mathcal{E}(\mathbb{F}_{n^2})[N].
Input: Point P = (x_P, y_P), blinding point R = (x_R, y_R) \in \mathcal{E}(\mathbb{F}_{p^2})[N], integer scalar m
  and random value s \in [0, 2^{256}), a random bit b, and random values [r_{81}, r_{80}, \ldots, r_0] \in
Output: [m]P and updated point R.
  Rando<u>mize input points and update blinding point R:</u>
                                                                                projective coordinate randomization
  1: Set R = (r_{81} \cdot x_R, r_{81} \cdot y_R, r_{81})
  2: Compute R = [(-1)^b 3]R.
  3: Set P = (r_{80} \cdot x_P, r_{80} \cdot y_P, r_{80})
  Compute endomorphisms and precompute lookup table:
  4: Compute \phi(P), \psi(P) and \psi(\phi(P)).
  5: Compute T[u] = -R + [u_0]P + [u_1]\phi(P) + [u_2]\psi(P) + [u_3]\psi(\phi(P)) for u =
  (u_3, u_2, u_1, u_0)_2 in 0 \le u \le 15. Write T[u] in coordinates (X, Y, Z).
  Scalar decomposition, randomization and recoding:
  6: Decompose m into the multiscalar (a_1, a_2, a_3, a_4) as in [16, Prop. 5].
  7: Randomize (a_1, a_2, a_3, a_4) as in Proposition 1/2 and recode to digit-columns
  (d_{79},...,d_0) s.t. d_i = a_1[i] + 2a_2[i] + 4a_3[i] + 8a_4[i] for i = 0,...,79.
  Main loop:
  8: Q = R
  9: for i = 79 to 0 do
          S = (r_i \cdot X_{T[d_i]}, r_i \cdot Y_{T[d_i]}, r_i \cdot Z_{T[d_i]})
  11:
  12: return (Q - R) and R in affine coordinates.
```

```
Algorithm 2. SCA-protected Four \mathbb{Q}'s scalar multiplication on \mathcal{E}(\mathbb{F}_{p^2})[N].

Input: Point P = (x_P, y_P), blinding point R = (x_R, y_R) \in \mathcal{E}(\mathbb{F}_{p^2})[N], integer scalar m and random value s \in [0, 2^{256}), a random bit b, and random values [r_{81}, r_{80}, \dots, r_0] \in \mathbb{F}_p^{82}.

Output: [m]P and updated point R.

Randomize input points and update blinding point R:

1: Set R = (r_{81} \cdot x_R, r_{81} \cdot y_R, r_{81}).

2: Compute R = [(-1)^b 3]R.

3: Set P = (r_{80} \cdot x_P, r_{80} \cdot y_P, r_{80}).
```

Compute endomorphisms and precompute lookup table:

4: Compute $\phi(P)$, $\psi(P)$ and $\psi(\phi(P))$.

5: Compute $T[u] = -R + [u_0]P + [u_1]\phi(P) + [u_2]\psi(P) + [u_3]\psi(\phi(P))$ for $u = (u_3, u_2, u_1, u_0)_2$ in $0 \le u \le 15$. Write T[u] in coordinates (X, Y, Z).

Scalar decomposition, randomization and recoding:

6: Decompose m into the multiscalar (a_1, a_2, a_3, a_4) as in [16, Prop. 5].

7: Randomize (a_1, a_2, a_3, a_4) as in Proposition 1 and recode to digit-columns $(d_{79}, ..., d_0)$ s.t. $d_i = a_1[i] + 2a_2[i] + 4a_3[i] + 8a_4[i]$ for i = 0, ..., 79.

Main loop:

8:
$$Q = R$$

9: **for** i = 79 **to** 0 **do**

10: $S = (r_i \cdot X_{T[d_i]}, r_i \cdot Y_{T[d_i]}, r_i \cdot Z_{T[d_i]}).$

11: Q = [2]Q + S

12: **return** (Q - R) and R in affine coordinates.

Multi-scalar randomization adds 16 bits Slightly larger loop length (64 -> 80)

Side-channel evaluation

- Carried out a practical side-channel evaluation on an ARM Cortex-M4 with no dedicated security features.
- EM traces. Low noise: DPA with a dozen measurements works.
- Performed leakage detection and key-recovery attacks for vertical DPA attacks
- Tested the effectiveness of each countermeasure first in isolation and then combined
- No leakage detected with up to 10 million measurements with all countermeasures activated

Side-channel evaluation: point blinding correlation

Four @ software for embedded systems

- Open-source (MIT license).
- C language + Assembly (optional)
- ARM Cortex M4 (32-bit), MSP430(X) (16-bit), AVR ATxmega (8-bit)
- Highly customizable:
 - w/ or w/o endomorphisms, tables sizes, w/ or w/o assembly
- Crypto primitives
 - KeyAgreement (w/ and w/o compression)
 - [Update] Schnorr@ signature recently included (extended version)
- Speed-records set for ECDH and signatures.

Speed-record results (speed prioritized)

Source	Scalar multiplication		ECDH		
	Fixed-base	Random	Static	Ephemeral	
8-bit AVR ATmega	i				
Curve25519	13,900,400	13,900,400	13,900,400	27,800,800	
μKummer	9,513,500	9,513,500	9,739,100	19,027,100	
FourQ (this work)	2,980,700	6,505,300	6,886,400	9,870,500	
			7,221,300	10,206,500	
16-bit MSP430X (16-bit multipl	lier) @8 MHz	;		
Curve25519	7,933,300	7,933,300	7,933,300	15,866,600	
FourQ (this work)	1,851,300	4,280,400	4,527,900	6,379,200	
			4,826,100	6,677,400	
32-bit ARM Cortes	r-M4				
Curve25519	1,423,700	1,423,700	1,423,700	2,847,400	
FourQ (this work)	232,900	469,500	496,400	729,900	
			542,900	776,600	

Speed-record results (speed prioritized)

	Source	Scalar multiplication		ECDH		-
		Fixed-base	Random	Static	Ephemeral	_
	8-bit AVR ATmega					-
	Curve25519	13,900,400	13,900,400	13,900,400	27,800,800	_
Renes'16 ←	$\mu { m Kummer}$	9,513,500	9,513,500	9,739,100	19,027,100	_
	Four (this work)	2,980,700	6,505,300	6,886,400	9,870,500	1.9x
•				7,221,300	10,206,500	
	16-bit MSP430X (16-bit multipl	lier) @8 MHz	,		_
	Curve25519	7,933,300	7,933,300	7,933,300	15,866,600	_
	Four (this work)	1,851,300	4,280,400	4,527,900	6,379,200	_
				4,826,100	6,677,400	
	32-bit ARM Cortex-M4					_
	Curve25519	1,423,700	1,423,700	1,423,700	2,847,400	_
	Four (this work)	232,900	469,500	496,400	729,900	_
				542,900	776,600	_

17/18

Speed-record results (speed prioritized)

	Course	Cooler multi	inligation	ECDU		
	Source	Scalar multiplication		ECDH		
		Fixed-base	Random	Static	Ephemeral	
	8-bit AVR ATmega					
Düll'15 ◀	Curve25519	13,900,400	13,900,400	13,900,400	27,800,800	
	$\mu { m Kummer}$	9,513,500	9,513,500	9,739,100	19,027,100	
	FourQ (this work)	2,980,700	6,505,300	6,886,400	9,870,500	
				7,221,300	10,206,500	
	16-bit MSP430X (16-bit multiplier) @8 MHz					
_	Curve25519	7,933,300	7,933,300	7,933,300	15,866,600	
	Four (this work)	1,851,300	4,280,400	4,527,900	6,379,200	
				4,826,100	6,677,400	
	32-bit ARM Cortex-M4					
	Curve25519	1,423,700	1,423,700	1,423,700	2,847,400	
	Four (this work)	232,900	469,500	496,400	729,900	
				542,900	776,600	

2.8x

2.5x

Remarks and future work

- \succ Fast and secure state-of-the-art implementation of Four ${\mathbb Q}$ on embedded devices
- Proof of concept: open-source library + side-channel evaluation
 - https://github.com/Microsoft/FourQlib
 - https://github.com/geovandro/microFourQ-AVR
 - https://github.com/geovandro/microFourQ-MSP
- Focused on speed
 - Would be interesting to analyze memory tradeoffs
- Would also be interesting to extend to other languages (Javascript, Rust) and different platforms.

Four Q on Embedded Devices with Strong Countermeasures Against Side-Channel Attacks

Geovandro C. C. F. Pereira

geovandro.pereira@uwaterloo.ca

