The Mordell-Faltings theorem

https://seasawher.github.io/kitamado/ @seasawher

Some basics of algebraic number theory

Proposition 1.4

quotation. Let $\{\beta_1, \dots, \beta_n\}$ be the dual basis of $\{\alpha_1, \dots, \alpha_n\}$ with respect to $(,)_{\operatorname{Tr}_{K/\mathbb{Q}}}$. Then, for any $x \in O_K$, we have $x = (x, \alpha_1)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_1 + \dots + (x, \alpha_n)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_n$.

Proof. hogehoge

Lemma 1.16

quotation. Because $(O_K)_P$ is a principal ideal domain, $(O_{K'})_P$ is a free $(O_K)_{P}$ module of rank [K':K].

Proof. hogehoge

Lemma 1.16

quotation. Thus
$$\dim_{O_K/P}O_{K'}/PO_{K'}=\dim_{O_K/P}(O_{K'})_P/P(O_{K'})_P\\=\dim_{O_K/P}((O_K)_P/P(O_K)_P)\otimes_{(O_K)_P}(O_{K'})_P$$

Proof. hogehoge

Adjacent to Lemma 1.17

quotation. We take a integral basis $\{\omega_1, \dots, \omega_n\}$ of O_K , we denote by $\{\beta_1, \dots, \beta_n\}$ the dual basis with respect to $(\ ,\)_{\mathrm{Tr}_{K/\mathbb{Q}}}$. Then we have $\mathcal{M}=$

Proof. hogehoge