Deformable GANs for Pose-based Human Image Generation

CVPR 2018 Poster

Aliaksandr Siarohin¹, Enver Sangineto¹, Stéphane Lathuilière², and Nicu Sebe¹

¹DISI, University of Trento, Italy,

² Inria Grenoble Rhone-Alpes, France

Problem Formulation

- Input: Reference image x_a + pose $P(x_a)$ + Target Pose $P(x_b)$
- Output: x_b
- Training samples:

$$\{(x_a^{(i)}, x_b^{(i)})\}_{\substack{i=1,\dots,N\\x_b}}$$

- The representation of pose
 - Belief map in Gaussian peak
 - Extracted with OpenPose (18 joints)

$$H_j(\mathbf{p}) = exp\left(-\frac{\|\mathbf{p} - \mathbf{p}_j\|}{\sigma^2}\right)$$

- Two-Stream Encoder
 - Pose encoder: UNet
 - Appearance encoder:
 - Unet + Deformable skip
- Decoder
- Discriminator

- Deformable Skip Connections
 - Decomposing an body in 10 rigid subparts 10 masks head, torso, left/right upper/lower arm, left/right upper/lower leg
 - Computing affine transformations

$$\min_{\mathbf{k}_h} \sum_{\mathbf{p}_j \in R_h^a, \mathbf{q}_j \in R_h^b} ||\mathbf{q}_j - f_h(\mathbf{p}_j; \mathbf{k}_h)||_2^2$$

• Approximate the object deformation

$$F'_h = f_h(F \odot M_h),$$

$$d(F(\mathbf{p}, c)) = \max_{h=1,\dots,10} F'_h(\mathbf{p}, c),$$

Figure 3: For each specific body part, an affine transformation f_h is computed. This transformation is used to "move" the feature-map content corresponding to that body part.

Training

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{NN}(G)$$

Adversarial Loss

$$\mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{(x_a, x_b) \in \mathcal{X}}[\log D(x_a, H_a, x_b, H_b)] + \mathbb{E}_{(x_a, x_b) \in \mathcal{X}, z \in \mathcal{Z}}[\log(1 - D(x_a, H_a, \hat{x}, H_b))],$$

- Nearest Neighbor Loss
 - Don't have to be pixel aligned with the GT

$$L_{NN}(\hat{x}, x_b) = \sum_{\mathbf{p} \in \hat{x}} min_{\mathbf{q} \in \mathcal{N}(\mathbf{p})} ||g(\hat{x}(\mathbf{p})) - g(x_b(\mathbf{q}))||_1,$$

Ground Truth

Output

Experiments

- Dataset
 - Market-1501: 32668 images of 1501 people, 128 x 64
 - Deep Fashion: In-shop retrieval: 52712 images, 256 x 256
- Compared with State-of-the-Art
 - DS: detection score from SSD

Table 1: Comparison with the state of the art. (*) These values have been computed using the code and the network weights released by Ma et al. [12] in order to generate new images.

	Market-1501					DeepFashion		
Model	SSIM	IS	mask-SSIM	mask-IS	DS	SSIM	IS	DS
Ma et al. [12]	0.253	3.460	0.792	3.435	0.39*	0.762	3.090	0.95*
Ours	0.290	3.185	0.805	3.502	0.72	0.756	3.439	0.96
Real-Data	1.00	3.86	1.00	3.36	0.74	1.000	3.898	0.98

Experiments

- Ablation Study
 - **Baseline**: Unet **w/o** deformable skip
 - **DSC**: Unet **with** deformable skip + **L1** loss
 - **PerLoss**: Unet **with** deformable skip + **Perceptual** loss
 - **Full**: Unet **with** deformable skip + **NN** loss

Table 3: Quantitative ablation study on the Market-1501 and the DeepFashion dataset.

	Market-1501						DeepFashion	
Model	SSIM	IS	mask-SSIM	mask-IS	DS	SSIM	IS	
Baseline	0.256	3.188	0.784	3.580	0.595	0.754	3.351	
DSC	0.272	3.442	0.796	3.666	0.629	0.754	3.352	
PercLoss	0.276	3.342	0.788	3.519	0.603	0.744	3.271	
Full	0.290	3.185	0.805	3.502	0.720	0.756	3.439	
Real-Data	1.00	3.86	1.00	3.36	0.74	1.000	3.898	

Experiments

• Failure cases

Thanks

Q&A Sijie Song