Implementering af programmeringssprog - Skriftlig 4 timer

14 22 juni 2022

Planlagt: 17:00 - 21:00

Eksamensnr: 14
Plads: EH-2151
Side 1 af 17

Eksamensnummer: 14 Plads: EH-2151 Side 2 af 17

Opgave 1.

1.1

$$move(s, \epsilon) = \epsilon - \{1\} = \{1,4\} = s_0$$
 accepting

$$move(s_0, x) = \epsilon - \{2,3\} = \{1,2,3,4\} = s_1 \text{ accepting}$$

$$move(s_0, y) = \epsilon - \{ \} = \{ \}$$

$$move(s_0, z) = \epsilon - \{2\} = \{1, 2, 4\} = s_2 \text{ accepting}$$

$$move(s_1, x) = \epsilon - \{2,3\} = s_1$$

$$move(s_1, y) = \epsilon - \{4\} = \{4\} = s_3$$
 accepting

$$move(s_1, z) = \epsilon - \{2,3\} = s_1$$

$$move(s_2, x) = \epsilon - \{2,3\} = s_1$$

$$move(s_2, y) = \epsilon - \{ \} = \{ \}$$

$$move(s_2, z) = \epsilon - \{2,3\} = s_1$$

$$move(s_3, x) = \epsilon - \{ \} = \{ \}$$

$$move(s_3, y) = \epsilon - \{ \} = \{ \}$$

$$move(s_3, z) = \epsilon - \{2\} = s_2$$

Eksamensnummer: 14

Plads: EH-2151 Side 3 af 17

1.2

$$G_1 = \{2,5\}$$

$$G_2 = \{1,3,4,6,7,D\}$$

G_2	а	b
1	G_2	G_2
3	G_1	G_2
4	G_2	G_1
6	G_2	G_2
7	G_2	G_2

Eksamensnummer: 14 Plads: EH-2151

Side 4 af 17

D	G_2	G_2
G_2 bliver lavet om til	<u> </u>	
	$G_3 = 1,6,7,D$	
	$G_4 = 3$	
	$G_5 = 4$	
G_3	а	b
1	G_5	G_4
6	G_3	G_3
7	G_3	G_3
D	G_3	G_3
G_3 bliver lavet om til	<u> </u>	
	$G_6 = 1$	
	$G_7=6,7,D$	
G_7	а	b
6	G_7	G_7
7	G_7	G_7
D	G_7	G_7
	<u> </u>	
G_1	а	b
2	G_1	G_6
5	G_1	G_6
L	L	
G_4	а	b
3	G_1	G_7
G_5	a	b
4	G_7	G_1
L		
G_6	а	b

Eksamensnummer: 14 Plads: EH-2151

Side 5 af 17

1	G_5	G_4

 G_7 er blevet fjernet, da det er en død state.

1.3

- a) Det er muligt, at lave en RegEx, da man kan lave en, for alle keywords, og trække dem fra den man har lavet for identifiers, som starter med en bogstav, efterfulgt at bogstaver, tal og underscore.
- b) Det ville være muligt, da man kan lave en regex, som kan have alle tegn (inklusiv intet tegn) foran sig, og det samme efter sig, og så med et givent keyword i midten, eller flere keywords i midten.

[0-127]*(int | in | ..|) [0-127]*

Implementering af programmeringssprog - Skriftlig 4 timer

Eksamensnummer: 14 Plads: EH-2151

Side 6 af 17

hvor [0-127] er alle ascii tegn

c) Igen kan man have alle tegn, inklusiv intet tegn, foran, og det samme efter sig, med 2 keywords i midten.

[0-127]*(intint | inin | .. |)[0-127]*

hvor [0-127] er alle ascii tegn

- d) Det kan man ikke, hvis der er ikke er en begrænsning på, hvor langed identifierne kan være, da den givene regex vil blive uendeligt stort. Hvis der er en grænse, kan man matche op mod alt, inden for den givene længde, men det vil blive en meget stor regex.
- e) Man kan have alle tegn, inklusiv intet tegn, foran, og det samme efter sig, med et keyword, efterfulgt af alle tegn, inklusiv intet tegn efter sig, efterfulgt af det samme keyword igen.

[0-127]*(int [0-127]* int | in [0-127]* in | ..|) [0-127]* hvor [0-127] er alle ascii tegn

Opgave 2.

2.1

a)

S

Α

aA

aaP

aaA+

aaaP+

aaa+

- b) Det kan ikke lade sig gøre, da der mindst skal være et a mere end +'er
- c) ja, $a^+ (a +)^*$ er den tilsvarende regex

Eksamensnummer: 14

Plads: EH-2151 Side 7 af 17

d)

e)

$$S \to A$$

$$A \to a A$$

$$A \to A'$$

$$A' \to a P$$

$$P \to A' + P$$

Eksamensnummer: 14 Plads: EH-2151 Side 8 af 17

2.2

a)

$$Nullable(S) = Nullable(F \$)$$

= $Nullable(F) \land Nullable(\$)$
= $Nullable(F) \land false = false$

$$Nullable(F) = Nullable(f [HT])$$

$$= Nullable(F) = Nullable(f) \land Nullable([) \land Nullable(H) \land Nullable(T) \land Nullable(])$$

$$= Nullable(F) = false \land Nullable([) \land Nullable(H) \land Nullable(T) \land Nullable(])$$

$$= false$$

$$Nullable(H) = Nullable(f) \lor Nullable(g)$$

= $false \lor false = false$

$$Nullable(T) = Nullable(+HT) \lor Nullable(\epsilon)$$

= $Nullable(+HT) \lor true$
= $true$

b)

$$First(F) = \{f[\}\}$$

$$First(H) = \{f, g\}$$

$$First(T) = \{+\}$$

$$First(S) = First(F) = \{f\}$$

c)

Production	Constraint
$S \rightarrow F\$$	$\{\$\} \subseteq Follow(F)$
$F \to f [HT]$	$First(T) \subseteq Follow(H),$
	$\{]\} \subseteq Follow(T)$
$H \rightarrow f$	

Eksamensnummer: 14 Plads: EH-2151

Side 9 af 17

14

$H \rightarrow g$	
$T \rightarrow + H T$	$First(T) \subseteq Follow(H)$
$T o \epsilon$	

```
d)
                                               Follow(F) = \{\$\}
                                               Follow(H) = \{+\}
                                                Follow(T) = \{\}
e)
                                        la(S \rightarrow F\$) = First(F) = \{f\}
                                           la(F \rightarrow f [HT]) = \{f[\}
                                               la(H \rightarrow f) = \{f\}
                                               la(H \rightarrow g) = \{g\}
                                            la(T \rightarrow + HT) = \{+\}
                                 la(T \rightarrow \epsilon) = First(\epsilon) \cup Follow(T) = \{\}
f)
function parseS () =
               if input = 'f' or input ='$' then
                               parseF(); match('$')
               else reportError()
function parseF () =
               if input = 'f' then
                               match ('f'); match ('['); parseH(); parseT(); match(']')
               else reportError()
function parseH () =
               if input = 'f' then
                               match ('f')
               else if input ='g' then
```

Eksamensnummer: 14 Plads: EH-2151 Side 10 af 17

Opgave 3.

3.1

 $Eval_{Exp}(Exp, vtable, ftable) = case \ Exp \ of$

max(Exps)	$v = Eval_{max}(Exps, vtable, ftable)$
	getvalue(v)

 $Eval_{max}(Exps, vtable, ftable) = case Exps of$

Exp	$v_1 = Eval_{Exp}(Exp, vtable, ftable)$
	if v_1 is an interger then
	v_1
	else error()
Exp, Exps	$v_1 = Eval_{Exp}(Exp, vtable, ftable)$
	$if v_1 = INT_MAX then$
	v_1
	$v_2 = Eval_{max}(Exps, vtable, ftable)$
	if v_1 and v_2 are integers then
	if $v_1 < v_2$ then
	v_2
	else v_1

Eksamensnummer: 14

Plads: EH-2151 Side 11 af 17

else error()

3.2

 $Check_{Exp}(Exp, vtable, ftable) = case Exp \ of$

```
 | cc(f, Exp_{arr}, Exp_b) | t_{arr} = Check_{Exp}(Exp_{arr}, vtable, ftable) 
 | t_{el} = case \ t_{arr} \ of 
 | Array(t_1) \rightarrow t_1 
 | Otherwise \rightarrow error() 
 | t_b = Check_{Exp}(Exp_b, vtable, ftable) 
 | t_f = lookup(ftable, name(f)) 
 | case \ t_f \ of 
 | unbound \rightarrow error() 
 | ([t_{in,a}, t_{in,b}] \rightarrow t_{out}) \rightarrow 
 | if \ t_{in,a} == t_{el} \ and \ t_{in,b} == t_b \ and \ t_{out} == t_b \ then 
 | t_{out} 
 | else \ error() 
 | otherwise \rightarrow error()
```

Opgave 4.

4.1

Går ud fra j ikke er med, da den ikke bliver brugt i koden, selvom der står j mapper til v_1

$$t_1 = v_2$$

$$t_2 = t_1 + 4$$

$$v_0 = M[t_2]$$

Label startWhile:

$$t_3 = v_0$$
$$t_4 = 0$$

Eksamensnummer: 14 Plads: EH-2151 Side 12 af 17

if $t_3 > t_4$ then trueLabel else endWhile

Label trueLabel:

$$t_5 = v_2$$

$$t_6 = v_0$$

$$t_7 = t_5 + t_6$$

$$t_8 = M[t_7]$$

$$t_9 = 0$$

if $t_8! = t_9$ then bodywhile else endWhile

Label bodyWhile:

$$t_{10}=v_0$$

$$t_{11} = 1$$

$$t_{12} = CALL_{-}f_{0}(t_{10}, t_{11})$$

$$v_0 = t_{12}$$

Label endWhile:

$$t_{13} = v_0$$

$$t_{14} = v_2$$

$$t_{15} = t_{13} + t_{14}$$

$$M[t_{15}] = t_{13}$$

4.2

 $slt R1, r_a, r_c$

beq $R1, R0, lab_2$

 $Label\ lab_1$

addi r_a , r_a , 471

add r_b, r_a, r_b

 $lw r_x, 0(r_a)$

 $lw r_y, 0(r_b)$

Eksamensnummer: 14 Plads: EH-2151

Side 13 af 17

4.3

```
Let t1 = newReg "expt_L"
Let t2 = newReg "expt R"
Let 1Reg = newReg "1Reg"
Let negativReg = newReg "negativReg"
Let code1 = compileExp e1 vtable t1
Let code2 = compileExp e2 vtable t2
Let newLab = "negativExpt"
Let newLab = "0Expt"
Let newLab = "body"
Let newLab = "endLab"
Code2@
[ Mips.SLT (negativReg, t2, RZ)
; Mips.BEQ (negativReg, RZ, negativExpt)
; Mips.BEQ (t2, RZ, 0Expt)
; Mips.LI (1Reg, 1)
; Mips.LABEL body
; Mips.BEQ (t2, RZ, endLab)
; Mips.MUL (place, t1, t1)
; Mips.SUB (t2, t2, 1Reg)
; Mips.J body
; Mips.Label negativExpt
; Mips.LI (RN5, pos)
; Mips.LA(RN6. " Msg IllegalExpt ")
; Mips.J " RuntimeError "
; Mips.LABEL 0Expt
; Mips.ADDI (place, t1, 0)
```

Eksamensnummer: 14 Plads: EH-2151 Side 14 af 17

; Mips.LABEL endLab

Opgave 5

5.1

- a) c, da d bliver dræbt og b bliver læst
- b) a, da der ikke er noget, som bliver dræbt, og e bliver læst og d, da c bliver dræbt, og e og c bliver læst

5.2

a)

i	succ[i]	gen[i]	kill[i]
1	2		
2	3, 9	Y	
3	4		
4	5	Y, x	S
5	6	Y	Т
6	7	S, x	Х
7	8	Т, у	Y
8	1		
9	10		
10		Х	

b)

	Iteration 1		Iteration 1 Iteration 2	
i	out[i]	in[i]	out[i]	in[i]
1	Y, x	Y, x	Y, x	Y, x

Eksamensnummer: 14 Plads: EH-2151

Side 15 af 17

2	Y, x	Y, x	Y, x	Y, x
3	Y, x	Y, x	Y, x	Y, x
4	Y, s, x	Y, x	Y, s, x	Y, x
5	T, y, s, x	Y, s, x	T, y, s, x	Y ,s, x
6	Т, у	T, y, s, x	Т, у, х	T, y, s, x
7		Т, у	Y, x	Т, у х
8			Y, x	Y, x
9	Х	Х	х	Х
10		Х		Х

c)

i	out[i]	kill[i]	Interferes with
4	Y, x	S	Y, x
5	Y ,s, x	Т	Y, s, x
6	Τ, γ, s, x	Х	Т, у ,s
7	Т, у х	Y	Т, х

d)

Plads: EH-2151 Side 16 af 17

Eksamensnummer: 14

e)

Node	Neighbors	color
Т		1
X	Т	2
Υ	Т, х	3
S	Т, х, у	Spill

Spill:

Eksamensnummer: 14 Plads: EH-2151 Side 17 af 17

Node	Neighbors	Color	
S4		1	
Т		1	
Υ	Т	2	
Х	Т,у	3	
S6	X	1	