

AKADEMIA GÓRNICZO-HUTNICZA

Dokumentacja do projektu

Generyczna biblioteka do protokołów komunikacyjnych mikrokontrolera STM32 Nucleo-L476RG

z przedmiotu

Języki Programowanie Obiektowego

Elektronika i Telekomunikacja rok 3

Michał Ciągała

Piątek 13:15, grupa 5

prowadzący: Jakub Zimnol

09.01.2025

1. Wstęp

Celem projektu było stworzenia generycznej biblioteki do obsługi portów komunikacyjnych mikrokontrolera STM32 Nucleo-L476RG. Biblioteka zawiera swoją jedną klasę główną CommunicationBase po które dziedziczą klasy odpowiedzialne za poszczególne protokoły (UART, I2C, SPI). Ustawienia pinów i rejestrów zostały stworzone przy pomocy STMCubeMX oraz biblioteki HAL. Klasa CommunicationBase zawiera 3 podstawowe funkcje odpowiedzialne za inicjalizację, przesyłanie i odbieranie danych. W ramach testów protokołów I2C oraz SPI dodano klasy czujników SH35 oraz BME280, lecz nie przeliczają one poprawnie danych są tylko w celu sprawdzenia przesyłania, a wyniki ich pomiarów przesyłane są przez protokół UART. Plik CommunicationLib.hpp jest czymś w rodzaju "wrapper'a", mający na celu zebrać ze sobą wszystkie Handlery. Funkcja main.cpp służy do testowania biblioteki.

2. Środowisko STM32CubelDE

Środowisko STM32CubeIDE zostało wybrane do stworzenia projektu tj. napisania kodu oraz poprawnego przypisania pinów oraz rejestrów (korzystając z HAL) za pomocą wbudowanego STM32CubeMX, pozwoliło to również na automatyczną konfigurację zegarów.

3. Pobieranie i uruchamianie

Aby prawidłowo uruchomić projekt/bibliotekę należy sklonować repozytorium GitHub i zalecane jest aby stworzyć nowy projekt w STM32CubeIDE, wybrać płytkę Nucleo-L476RG i język programowania C++, następnie w pliku .ioc stworzonym przez środowisko w zakładce Connectivity aktywować protokoły I2C1, SPI1, USART2 (ustawiamy na tryb asynchroniczny). W zakładce Clock Configuration wybrać HSI i ustawić zegary na wartości podane poniżej.

Później przejść do zakładki Project Manager, zaznaczyć poniższe opcje i wcisnąć zębatkę Generate Code

Na sam koniec należy przekleić/podmienić pliki pobrane z repozytorium by wyglądało to w ten sposób.

4. Podłączenie peryferii

Bez podłączenia peryferii możemy zasadniczo testować tylko protokół UART za pomocą ST Link, więc by przetestować I2C i SPI musimy podłączyć czujniki BME280 oraz SHT35 w odpowiedni sposób:

SHT35:

SDA -> PB7

SCL -> PB6

VCC -> 3.3V

GND -> GND

BME280:

VCC -> 3.3V

GND -> GND

CSB -> PC13

SDO -> PA6

SDA -> PA7

SCL -> PA5