Análisis Matemático II

Tema 5: Funciones medibles

Propiedades

2 Aproximación

Noción general de función medible

Funciones medibles

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega \to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de Ω en Y es medible

Composición de funciones

 $Y\,,\,Z \quad \text{espacios topológicos,} \quad f:\Omega \to Y \quad \text{medible,} \quad g:Y \to Z \quad \text{continua}.$

Entonces $g \circ f : \Omega \to Z$ es medible

Funciones medibles con valores en \mathbb{R}^2

Dadas dos funciones $f,g:\Omega \to \mathbb{R}$, sea $\Phi:\Omega \to \mathbb{R}^2$ dada por

$$\Phi(x) = (f(x), g(x)) \quad \forall x \in \Omega$$

Entonces Φ es medible si, y sólo si, lo son f y g.

Funciones reales medibles: operaciones algebraicas

Operaciones algebraicas con funciones

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$

es un anillo conmutativo y un espacio vectorial sobre $\mathbb R$

con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto: $(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$

Producto por escalares: $(\alpha f)(x) = \alpha f(x) \quad \forall x \in \Omega$

Funciones reales medibles

 $\mathcal{L}(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $\mathbb R$ a las que llamamos funciones reales medibles

Estabilidad por operaciones algebraicas

La suma y el producto de funciones reales medibles son medibles

Funciones reales medibles: cuestiones relacionadas con el orden

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \quad \Longleftrightarrow \quad f(x) \leqslant g(x) \ \, \forall \, x \in \Omega$$

A cada $f \in \mathcal{F}(\Omega)$ se asocian tres funciones:

- Valor absolute de f: $|f|(x) = |f(x)| \quad \forall x \in \Omega$
- Parte positiva de f: $f^+(x) = \max\{f(x), 0\} \ \forall x \in \Omega$
- Parte negativa de f: $f^-(x) = \max\{-f(x), 0\} \ \forall x \in \Omega$

Es claro que:
$$f = f^{+} - f^{-}$$
 y $|f| = f^{+} + f^{-}$

Estabilidad de las funciones medibles

El valor absoluto, la parte positiva y la parte negativa,

de una función real medible, son medibles

Funciones medibles positivas

Funciones medibles positivas

 $\mathcal{L}^+(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $[0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

Para una función $f:\Omega \to [0,\infty]$, las siguientes afirmaciones son equivalentes:

- (1) f es medible
- (2) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) < \alpha\}$ es medible
- (3) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \geqslant \alpha\}$ es medible
- (4) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) > \alpha\}$ es medible
- (5) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \leq \alpha\}$ es medible

Estabilidad de las funciones medibles por operaciones "analíticas"

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$\varphi = \limsup_{n \to \infty} f_n$$
, $\varphi(x) = \limsup_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

•
$$\psi = \liminf_{n \to \infty} f_n$$
, $\psi(x) = \liminf_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

En particular, si $\{f_n(x)\} \to f(x) \in [0,\infty]$ para todo $x \in \Omega$ entonces $f: \Omega \to [0,\infty]$ es una función medible positiva

Consecuencia importante para funciones reales medibles

Si $\{f_n\}$ es una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$, entonces f es medible

Funciones características

Funcion caracteristica de un conjunto

La función característica de un conjunto $B\subset\mathbb{R}^N$ viene dada por:

$$\chi_B : \mathbb{R}^N \to \{0,1\}, \quad \chi_B(x) = 1 \quad \forall x \in B, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Para $B \subset \mathbb{R}^N$, la función χ_B es medible si, y sólo si, B es un conjunto medible

Ejemplos

- Si $W \in \mathcal{P}(R^N) \setminus \mathcal{M}$ y $f(x) = 2\chi_W(x) 1 \ \forall x \in \mathbb{R}^N$, entonces $f: \mathbb{R}^N \to \mathbb{R}$ no es medible pero |f| sí lo es
- Tomando $B=\mathbb{Q}^N$, la función χ_B es medible, pero no es continua en ningún punto de \mathbb{R}^N

Funciones simples positivas

Funciones simples positiva

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N}, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Si $s: \mathbb{R}^N \to \mathbb{R}_0^+$ es una función medible positiva con imagen finita, escribimos

$$s(\mathbb{R}^N) = \{\alpha_1, \alpha_2, \dots, \alpha_p\} \text{ con } p \in \mathbb{N} \text{ y } \alpha_1 < \alpha_2 < \dots \alpha_p$$

y definimos $A_k = \{x \in \mathbb{R}^N : s(x) = \alpha_k\}$ para todo $k \in \Delta_p$.

Entonces $A_k \in \mathcal{M}$ para todo $k \in \Delta_p$ y se tiene:

$$s = \sum_{k=1}^{p} \alpha_k \chi_{A_k} \qquad (*)$$

Por tanto $\,s\,$ es una función simple positiva

y diremos que (*) es la descomposición canónica de s

Aproximación por funciones simples

Sucesiones monótonas funciones

Si $f_n:\Omega\to[0,\infty]$ para todo $n\in\mathbb{N}$, la sucesión $\{f_n\}$ es:

- creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- decreciente cuando $f_n(x) \geqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- monótona cuando es creciente o decreciente

Si
$$\{f_n\}$$
 es monótona, tiene un límite puntual: $f(x) = \lim_{n \to \infty} f_n(x) \ \ \forall x \in \Omega$

Escribimos $\{f_n\} \nearrow f$ si $\{f_n\}$ es creciente, y $\{f_n\} \searrow f$ si es decreciente

Teorema de aproximación de Lebesgue

Toda función medible positiva es el límite puntual de una sucesión creciente de funciones simples positivas

Aproximación uniforme y consecuencias

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\sup f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas que converge uniformemente a f en Ω .

Visión constructiva de las funciones medibles positivas

Una función de Ω en $[0,\infty]$ es medible si, y sólo si, es el límite puntual de una sucesión creciente de funciones simples positivas

Operaciones algebraicas con funciones medibles positivas

Si f y g son funciones medibles positivas, entonces f+g y fg también lo son