Закон Дальтона

Уровень 1

- 1. Единицей измерения в системе СИ давления является:
- а) мм; б) ${}^{\circ}C^{-1}$; в) Па; г) мм.рт.ст.
- 2. Закон Дальтона имеет следующий вид:

- **3.** Давление, которое оказывал бы газ на стенки сосуда при условии, когда другие газы отсутствуют называется
 - а) парциальным; б) нормальным; в) физическим; г) смешанным.
 - **4.** Коэффициент $k \approx 1,38 \cdot 10^{-23} \, \text{Дж}/K$ называется
 - а) постоянная Больцмана;
 - б) универсальная газовая постоянная;
 - в) термодинамическая температура;
 - г) коэффициент объемного расширения.
- **5.** Давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов называется законом
 - а) Авогадро; б) Дальтона; в) Клапейрона; г) Гей-Люссака.

Уровень 2

- **1.** Чему равно давление смеси газа, если $p_1 = 34 \text{к}\Pi a$ и $p_2 = 53 \text{к}\Pi a$. ($p = 87 \text{к}\Pi a$)
- **2.** Чему равно давление p_2 , если $p_1 = 50$ кПа и p = 76кПа. ($p_2 = 26$ кПа)
- **3.** Чему равно давление p_1 , если $p_2 = 30$ кПа и p = 89кПа. $(p_1 = 59$ кПа)
- **4.** [6] В баллоне вместимостью 110 л помещено 0,8 кг водорода и 1,6 кг кислорода. Определить давление смеси на стенки сосуда, если температура окружающей среды 27°С. (10МПа)
- **5.** [6] Плотность газа составляет 2.5кг/м 3 при температуре 10°C и нормальном атмосферном давлении. Определить молярную массу этого газа. (59г/моль)

Уровень 3

- **1.** [7] Два сосуда, содержащих один и тот же газ, соединены трубкой с краном. Вместимости сосудов V_1 и V_2 , а давления в них p_1 и p_2 . Каким будет давление газа после того, как откроют кран соединительной трубки. ($p = \frac{p_1 V_1 + p_2 V_2}{V_1 + V_2}$)
- **2.** [7] В колбе емкостью V=4м³ находится кислород и азот при температуре t_0 =0°C . Определить давление на стенки сосуда, если массы газов m_1 = m_2 =1г. (9347 Πa)
- **3.** [7] Какое давление воздуха должно быть в сосуде, объем которого $V_1 = 10 \text{м}^3$, чтобы при соединении его с сосудом объемом колбе $V_2 = 30 \text{м}^3$, в котором находится воздух при давлении $p_2 = 10^5 \Pi a$, установилось давление $p = 3 \cdot 10^5 \Pi a$? Температуру считать постоянной. $(9 \cdot 10^5 \Pi a)$
- **4.** [7] В сосуде объемом V_1 находится одноатомный газ при давлении p_1 и температуре T_1 , а в сосуде объемом V_2 такой же газ при давлении p_2 и температуре T_2 . Какое давление и температура установится в сосудах при их соединении? Теплообмен с окружающей средой и стенками сосудов пренебречь. ($p = \frac{p_1 V_1 + p_2 V_2}{V_1 + V_2}$)
- **5.** [11] В сосуде находится газ при давлении 2МПа и температуре 27°С. После нагревания на 50°С в сосуде осталась только половина газа (по массе). Определите давление газа, установившееся в сосуде. (1,2МПа)

Уровень 4

- **1.** [7] В закрытом сосуде вместимость V=2м³ находится 0,9кг воды и 1,6кг кислорода. Найти давление в сосуде при температуре 500°C, зная, что при этой температуре вся вода превращается в пар. $(3.2 \cdot 10^4 \Pi a)$
- **2.** [11] Смесь гелия с кислородом массой 40г находится в баллоне вместимостью 14дм³ при температуре 7°С и давлении 0,65МПа. Определите массу гелия и массу кислорода в смеси. (12г, 28г)
- **3.** [12] Некоторая масса молекулярного водорода занимает объем V_1 =1 M^3 при температуре T_1 =250К и давлении p_1 =200кПа. Какое давление p_2 будет иметь та же масса водорода при температуре T_2 =5000К и объеме V_2 =10 M^3 ,

если при этой температуре все молекулы водорода диссоциируют на атомы? Найдите давление смеси? ($p_{\alpha} = 400\Pi a$, $p = 600\Pi a$)

- **4.** Масса молекулярного водорода занимает объем V_1 =10 M^3 при температуре T_1 =230K и давлении p_1 =150KПа. Какое давление p_2 будет иметь та же масса водорода при температуре T_2 =500K и объеме V_2 =20 M^3 , если при этой температуре все молекулы водорода диссоциируют на атомы? Найдите давление смеси? (p_2 =163KПа, p=313KПа)
- **5.** Определите плотность смеси, состоящей из 5г водорода и 32г кислорода при температуре 330К и давлении 100кПа. $(0,225\kappa \epsilon/m^3)$

Уровень 5

- **1.** [7] При температуре 36°C давление насыщенного водяного пара 5,945кПа. Влажный воздух при этой температуре, относительной влажности 80% и давлении 101,3кПа занимает объем V=1м³. Определить его массу. (1,12кг)
- **2.** [11] Компрессор при каждом ходе поршня захватывает из атмосферы 5дм³ воздуха при нормальном атмосферном давлении и температуре 280К и подает его в баллон вместимостью 2м³. Температура воздуха в баллоне поддерживается равной 300К. Сколько качаний должен сделать компрессор, чтобы давление в баллоне увеличилось на 0,3МПа? (1109)
- **3.** [11] В воде на глубину 1м находится пузырек имел вдвое меньший радиус? Атмосферное давление нормальное. (80м)
- **4.** [15] При температуре 1000°C распадается на атомы η =11,6% молекул йода. Какова масса паров йода, находящихся в сосуде объемом 0,5л, если давление в нем при данной температуре 93кПа?
- **5.** [15] В закрытом сосуде находится двухатомный газ. При увеличении температуры в n=3раза давление газа увеличилось в k=3,15раза. Сколько процентов молекул от их начального количества распалось на атомы?