CS 285

Homework I

Mustafa Suman (ID: 3039767187)

September 12, 2023

1 Analysis

$$\begin{split} \text{A.A} \qquad & \underline{\text{Assume}} \qquad \mathbb{E}_{p_{\pi^*}(s)} \pi_{\theta}(a \neq \pi^*(s) \mid s) = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{p_{\pi^*}(s_t)} \pi_{\theta}(a_t \neq \pi^*(s_t) \mid s_t) \leq \varepsilon, \\ \text{Show} \qquad & \text{that} \qquad \sum_{s_t} \left| p_{\pi_{\theta}}(s_t) - p_{\pi^*}(s_t) \right| \overset{\text{P}}{\leq} 2T\varepsilon. \end{split}$$

Proof: Similary to the lecture, we define

$$P_{\Pi_{\Theta}}(S_{\ell}) = P(\underset{\text{all some } \ell}{\text{slip off expert policy}}) \cdot P_{\Pi_{\Theta}}(S_{\ell}) + (1 - P(\underset{\text{all some } \ell}{\text{stip off expert policy}})) \cdot P_{\Pi_{\Theta}}(S_{\ell})$$

$$Slipping off the trajectory at some ℓ is, according to
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad \text{smaller than} \quad P(A) + P(B), \text{ therefore}$$

$$P(\underset{\text{all some } \ell}{\text{stip off expert policy}}) = \sum_{\ell} \prod_{S_{\ell}} \prod_{S_{\ell}} (\alpha \neq \prod_{S_{\ell}} (S_{\ell}) | S_{\ell}) \cdot P_{\Pi_{\Theta}}(S_{\ell})$$

$$\underset{\text{Assertion}}{\text{Assertion}} T_{\mathcal{E}}$$$$

Putting all things to gether, we can define $LHS = \sum_{s_t} P(slip \text{ off expert policy.}) | P_{mistake}(s_t) - P_{TI} * (s_t) | \leq T_{\mathcal{E}} \sum_{s_t} P_{mistake}(s_t) - P_{TI} * (s_t) | \leq 2T_{\mathcal{E}} = RHS$

1.2 a

$$J(\pi^*) - J(\pi_{\theta}) \stackrel{\text{Def.}}{=} \mathbb{E}_{\rho_{\pi^*}(s_{\tau})} \left[\Gamma(s_{\tau}) \right] - \mathbb{E}_{\rho_{\pi_{\theta}}(s_{\varepsilon})} \left[\Gamma(s_{\tau}) \right]$$

$$\stackrel{\text{Def.}}{=} \sum_{s_{\tau}} \left(\rho_{\pi^*}(s_{\tau}) - \rho_{\pi_{\theta}}(s_{\tau}) \right) \cdot \Gamma(s_{\tau})$$

$$\leq \sum_{s_{\tau}} |\rho_{\pi^*}(s_{\tau}) - \rho_{\pi_{\theta}}(s_{\tau})| \cdot |\Gamma(s_{\tau})| \leq 2 \operatorname{Te} \cdot R_{\text{max}} = 6(\operatorname{Te})$$

1, 2. b

$$J(\Pi^{\vee}) - J(\Pi_{\Theta}) = \sum_{\ell=1}^{T} \mathbb{I} \mathbb{E}_{P_{\Pi^{\vee}}(s_{\ell})} \left[\Gamma(s_{\ell}) \right] - \mathbb{E}_{P_{\Pi^{\circ}}(s_{\ell})} \left[\Gamma(s_{\ell}) \right]$$

$$= \sum_{\ell=1}^{T} \sum_{s_{\ell}} |P_{\Pi^{*}}(s_{\ell}) - P_{\Pi_{\Theta}}(s_{\ell})| \cdot |R_{Max}|$$

$$= \sum_{\ell=1}^{T} \sum_{s_{\ell}} |P_{\Pi^{*}}(s_{\ell}) - P_{\Pi_{\Theta}}(s_{\ell})| \cdot |R_{Max}|$$

$$= 2 \varepsilon T^{2} \cdot |R_{Max}| = 6(\varepsilon T^{2})$$

3 Behavioral Cloning

3.1 Comparing different environments

3.1.1 Successful environment: Ant-v4

Benchmark Expert Policy:

Metric	Value
Train_AverageReturn	4681.89
$Train_StdReturn$	30.71
$Train_MaxReturn$	4712.60
$Train_MinReturn$	4651.18
${\bf Train_AverageEpLen}$	1000.0

Table 1: Number of rollouts = 2

Trained Policy:

Metric	Value
Eval_AverageReturn	2455.73
$Eval_StdReturn$	547.68
$Eval_MaxReturn$	3089.16
$Eval_MinReturn$	1410.66
$Eval_AverageEpLen$	945.17

Table 2: Hyperparams are set as num_agent_train_steps_per_iter = 1300, batch_size = 1000, eval_batch_size = 5000, train_batch_size = 100, n_layers = 2, size=64, lr=5e-3

The corresponding log_file can be found under the name q1_bc_ant_Ant-v4_11-09-2023_12-41-32.

3.1.2 Unsuccessful environment: Hopper-v4

Expert Policy:

Metric	Value
Train_AverageReturn	3717.51
$Train_StdReturn$	0.35
$Train_MaxReturn$	3717.87
$Train_MinReturn$	3717.16
${\bf Train_AverageEpLen}$	1000.00

Table 3: Number of rollouts = 2

Trained Policy:

The corresponding log_file can be found under the name $q1_bc_hopper_Hopper_v4_11-09-2023_13-21-22$.

Metric	Value
Eval_AverageReturn	1056.42
$Eval_StdReturn$	325.34
$Eval_MaxReturn$	1747.99
$Eval_MinReturn$	235.93
$Eval_AverageEpLen$	314.00

Table 4: Hyperparameters are set as in the case before for a fair comparison.

3.2 Hyperparameter Experiment

Figure 1: The Hyperparameter we are considering is the about the number of training steps per iteration, i.e. the amount of training in the BC setting.

I chose this parameter, because the impact on the success of the policy is strong as we can see in the figure. With this parameter, I was able to increase the average return in the previous task to achieve a sufficiently high reward.

4 DAGGER

4.1 Ant-v4

Figure 2: Hyperparams are set as num_agent_train_steps_per_iter = 1200, batch_size = 5000, eval_batch_size = 5000, train_batch_size = 100, n_layers = 2, size=64, lr=5e-3.

The corresponding log_file is q2_dagger_ant_Ant-v4_11-09-2023_17-15-00.

4.2 Hopper-v4

Figure 3: Hyperparams are set as in the figure above.

The corresponding log_file is $q2_dagger_hopper_Hopper_v4_11-09-2023_17-53-33$.

6 Discussion

6.1 1. How much time did you spend on each part of this assignment?

Around 9 hours for the theoretical part and ca. 16 hours for the implementation (including setting everything up etc.)

6.2 2. Any additional feedback?

Very nice code and good introduction to RL coding. Creating the plot and figuring out how to store the logs was tedious and took way to much time. Also it is annoying to write a README file when one does not change the funcionality of the program and already writes down the params in the pdf.