Sigmoid function(logistic function):

$$g(z) = \frac{1}{1+e^{-z}}$$
 $0 < g(z) < 1$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + \underline{b}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + \underline{b})}}$$

"logistic regression"

what it does is it inputs feature or set of features X and outputs a number between 0 and 1

here's how the logistic regression models outputs are computed in two steps:

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}})$$

$$z = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$\downarrow z$$

Squared error cost

$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})^2$$

Logistic loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

the further the prediction f of x is ,away from the true value of y .the higher the loss

If using the mean squared error for logistic regression, the cost function is "non-convex", so it's more difficult for gradient descent to find an optimal value for the parameters w and b.

Simplified loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) - (1 - \mathbf{y}^{(i)})\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}))$$

Simplified cost function

$$\begin{split} & \overset{| \text{oss}}{L}(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \overset{\downarrow}{-} \mathbf{y}^{(i)} \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \overset{\downarrow}{-} \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \\ & \overset{cost}{J}(\overrightarrow{\mathbf{w}},b) = \frac{1}{m} \sum_{i=1}^{m} \left[L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \right] \\ & = \frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] \end{split}$$

Gradient descent

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
} simultaneous updates

Linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

Logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

underfit

 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

 Fits the training set extremely well

high variance

Addressing overfitting

Options

- 1. Collect more data
- 2. Select features
 - Feature selection in course 2
- 3. Reduce size of parameters
 - "Regularization" next videos

Regularized linear regression

$$J(\vec{w},b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} w_{j}^{2}$$

Regularized linear regression

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$

Gradient descent

Regularized linear regression

$$\min_{\overrightarrow{w},b} J(\overrightarrow{w},b) = \min_{\overrightarrow{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$
Gradient descent
repeat {
$$w_j = w_j - \alpha \left(\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} w_j^2$$

$$b = b - a \frac{\partial}{\partial b} J(\vec{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)}) \quad \text{don't have to regularize b}$$