Završni ispit

4. veljače 2016.

Ime i Prezime:

Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (7 bodova)

Slika 1: Sustav upravljanja.

Korištenjem postupka sinteze primjenom KMK odredite parametre PD regulatora na slici 1 tako da zatvoreni krug upravljanja ima prigušenje $\zeta=0.707$ i vrijeme smirivanja $t_{1\%}=2.3$ s.

2. zadatak (10 bodova)

Na slici 2 prikazan je sustav upravljanja s proporcionalnim regulatorom.

Slika 2: Sustav upravljanja.

- a) (6 bodova) Odredite funkciju osjetljivosti polova zatvorenog sustava upravljanja o pojačanju regulatora K ako je zadana prijenosna procesa $G_P(s) = \frac{1}{(s+1)(s+2)}$.
- b) (4 boda) Zadano je $G_P(s) = \frac{1}{s+1}$ i K = 1. Za koje frekvencije će vrijediti da je $\left|S_{G_v(s)}^{Y(s)}\right| \le 0.9$?

3. zadatak (7 bodova)

Neka je proces opisan prijenosnom funkcijom:

$$G(z) = \frac{-3 + 2z}{2 - 3z + z^2}$$

Potrebno je projektirati sustav upravljanja s dva stupnja slobode tako da su svi polovi zatvorenog krug z=-0.5 i da u stacionarnom stanju odziv sustava na skokovitu referencu iznosi 1.

4. zadatak (10 bodova)

Zadan je DLTI sustav:

$$x(k+1) = Ax(k) + Bu(k),$$

gdje je $A \in \mathbb{R}^{n \times n}$ i $B \in \mathbb{R}^{n \times 1}$. n > 1. Potrebno je odabrati upravljački zakon u tako da x(k) što brže konvergira u ishodište kada $k \to \infty$. Vaš prijatelj predlaže sljedeću jednostavnu metodu: u trenutku k odaberi u(k) koji minimizira $||x(k+1)||^2$. Njegova argumentacija je da će metoda raditi zadovoljavajuće budući da u svakom koraku minimiziramo normu stanja pa će sustav vrlo brzo završiti u ishodištu. Vaš je zadatak analizirati ovu metodu.

- a) (3 boda) Odredite eksplicitni izraz za predloženi u(k) parametriran po A i B.
- b) (3 boda) Razmotrite zatvoreni krug upravljanja x(k+1) = Ax(k) + Bu(k), gdje je u(k) određen po predloženoj metodi. Pokažite da x zadovoljava jednadžbu x(k+1) = Fx(k) te odredite izraz za matricu F parametriran po A i B.
- c) (2 boda) Sada razmotrite specifičan slučaj: $A = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Usporedite ponašanje sustava x(k+1) = Ax(k) (originalni sustav sa u(k) = 0) i sustava x(k+1) = Fx(k) (originalni sustav sa u(k) prema predloženoj metodi). Analizirajte stabilnost svakog od ta dva sustava.
- d) (2 boda) Je li predložena metoda zadovoljavajuća? Obrazložite odgovor. Ako nije, predložite prikladnu metodu projektiranja regulatora po varijablama stanja koji će zadovoljiti tražene specifikacije.

Napomena: $||x||^2 = x^T x$.

5. zadatak (11 bodova)

Proces grijanja prostorije može se opisati modelom dobivenim diskretizacijom linearnog modela uz vrijeme diskretizacije $T=25~{
m s}$:

$$\tau(k+1) = 0.9\tau(k) + 0.8q_{\rm u}(k),$$

gdje je s τ (°C) označena promjena temperature, a $q_{\rm u}(k)$ (kW) označava toplinski tok grijača prostorije.

a) (8 bodova) Za zadani proces projektirajte regulator koji minimizira upravljački kriterij:

$$J = \sum_{k=0}^{\infty} 10\tau^{2}(k) + q_{\mathrm{u}}^{2}(k).$$

b) (3 boda) Je li zatvoreni krug uz regulator iz a) podzadatka stabilan? Obrazložite odgovor.