[Digital Logic] Homework 2 Sudarshana Jagadeeshi CS 4341.206/502

Problem 1 I worked alone.

Problem 2 I used the textbook.

Problem 3

1.

W	х	у	z	f	index
0	0	0	0	1	0
0	0	0	1	0	1
0	0	1	0	x	2
0	0	1	1	0	3
0	1	0	0	0	4
0	1	0	1	x	5
0	1	1	0	0	6
0	1	1	1	x	7
1	0	0	0	x	8
1	0	0	1	0	9
1	0	1	0	1	10
1	0	1	1	0	11
1	1	0	0	x	12
1	1	0	1	1	13

1	1	1	0	х	14
1	1	1	1	1	15

k-map

VV wx >> yz	00	01	11	10
00	1 (0)	0 (1)	0 (3)	X (2)
01	0 (4)	X (5)	X (7)	0 (6)
11	X (12)	1 (13)	1 (15)	X (14)
10	X (8)	0 (9)	0 (11)	1 (10)

3.2

W'X'Y'Z' + WX'YZ' + WXZ

The two 1s in the corners are the first two terms. For the group of two, only the c changes.

3.3

There is one group of four, and 1 group of two.

$$f' = (xz + w'xz')'$$

 $f = (x+z') (wx'z)$

3.4

There is one central group of four, and then the four corners xz+ x'z'

3.5

There is one wrap group of 4. The other group of four is one the second row

$$(w'x + x'z)' = (w+x')(xz)$$

3.6

	Equation	#literals	#and	#or	#not	total
3.2	w'x'y'z' + wx'yz' + wxz	11	8	2	6	27
3.3	(x+z') (wx'z)	5	3	1	2	11
3.4	XZ+ X'Z'	4	2	1	2	9
3.5	(w+x')(xz)	4	2	1	1	8

3.7

Yes, the first two with w/o dont care were 27 and 11. This went down to 9 and 8 after doing the dont care.

Problem 4

4.1 Half-adder

Row_index	A_0	B_0	C_1	S_1
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	0

4.2 Full-adder

Row_in dex	A_0	B_0	C_0	C_1	S_1
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0

4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

4.4 One-hot decoder

Row_i ndex	I_1	I_0	O_3	O_2	O_1	O_0
0	0	0	0	0	0	1
1	0	1	0	0	1	0
2	1	0	0	1	0	0
3	1	1	1	0	0	0

4.5 One-hot encoder

Row _inde x	I_3	I_2	I_1	I_0	Enable	O_0	O_1
0	0	0	0	1	1	0	0
1	0	0	1	0	1	0	1
2	0	1	0	0	1	1	0
3	1	0	0	0	1	1	1
4	x	x	х	х	0	x	х

4.6 4-bit Right Arbiter

Ro	I_3	I_2	I_1	I_0	O_0	O_1	O_2	O_3
w_i								
w_i nde								

Х								
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	0	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	0	0	0	1
6	0	1	1	0	0	0	1	0
7	0	1	1	1	0	0	0	1
8	1	0	0	0	1	0	0	0
9	1	0	0	1	0	0	0	1
10	1	0	1	0	0	0	1	0
11	1	0	1	1	0	0	0	1
12	1	1	0	0	0	1	0	0
13	1	1	0	1	0	0	0	1
14	1	1	1	0	0	0	1	0
15	1	1	1	1	0	0	0	1

4.7 Mux

Row_i ndex	Sele ct_1	Sele ct_0	Cha nnel _1	Ch an nel _2	d3	d2	d1	d0
0								
1								

2					
3					
4					
5					
6					
7					
8					

Problem 5

The circuit will be a 74154 decoder. There will be 4 inputs fed in, A B C and D. There will also be 7 NAND gates, each feeding into outputs a-g. Then wach Y0-Y9 will be sent to their respective NAND gates as follows:

23														
-	A	B	C	D		a	b	C	d	e	F	9		
0	0	0	0	0		1	1.	- I	l	l	1	0		
1	0	0	0	Í	1	0	l	1	0	0	0	0	-	
2 .	0	0	1	0		l	1	0	1	1	0	1	7	
_ 3	0	0	1	1		1	1	. (- (0	0	1	and in	
_ 5		1	0	0		0	l	1	O	0	1	1		
. 5	0	Ţ	0	1			0	((0	1	1	9	
6	0			D			р	1	1.	1	. 1	1	18.85	
. 7	9		31.	1		1	l	1	0	7	ک د	0 0		
3	(-	€	0	0		1	ţ	1	((1	1		
9	1	0	ی	1		1	1	1	1	0	l	1		
10-15	X	×	7	*	7	X	×	×	× ×	*	K	A		

Here, the Y2 output is sent to a, b, d, e, and g nand gates.

The circuit should look something like this, but I have only filled Y2 in.

