GONIOMETRIE

Orientovaný úhel

- Dvě polopřímky
 - o Počáteční rameno
 - Z bodu P (vrchol úhlu) přes bod A
 - Koncové rameno
 - Z bodu P (vrchol úhlu) přes bod B
- Úhlové jednotky
 - 0 Stupně
 - α (°)
 - $\alpha = 30^{\circ}$
 - Radiány
 - a (rad)
 - $a = \frac{\pi}{6}$ rad
- Úhel se periodicky opakuje
 - o $\alpha + k \cdot 360^{\circ}, k \in \mathbb{Z}$
 - o $a + 2k\pi$, $k \in Z$
- Tabulka nejčastějších úhlů

α (°)	0	30	45	60	90	180	270	360
a (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

 $sin(\alpha)$, $cos(\alpha)$, $tg(\alpha)$, $cotg(\alpha)$

0

$$\circ \quad \sin \alpha = \frac{\text{Protilehlá}}{\text{Přepona}}$$

$$\circ \quad \cos \alpha = \frac{P^{\text{\'rilehl\'a}}}{P^{\text{\'repona}}}$$

$$D(f) = R$$

•
$$H(f) = \langle -1; 1 \rangle$$

$$\circ tg \alpha = \frac{\sin \alpha}{\cos \alpha}
\circ cotg \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\circ \quad \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

•
$$D(f) = R \setminus \left\{ \frac{(2k+1)\pi}{2}, k \in Z \right\}$$

$$H(f) = R$$

0	0	30	45	60	90	180	270	360
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	0	-	0
$\cot \alpha$	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	-	0	-

CYKLOMETRICKÉ FUNKCE

$$y = \arcsin(x) --> x = \sin(y)$$

GONIOMETRICKÉ ROVNICE

$$\sin(x) = a$$
 $\cos(x) = a$ $a \in \langle -1; 1 \rangle$
 $\operatorname{tg}(x) = b$ $\operatorname{cotg}(x) = b$ $b \in R$
! NEKONEČNĚ MNOHO ŘEŠENÍ!

$$\sin x = 0$$

$$x_1 = 0$$

$$x_2 = \pi$$

$$x_3 = 2\pi$$

$$\vdots$$

$$x \in \{k \cdot \pi, k \in Z\}$$

$$2)$$

$$\cos x = 0$$

$$x_1 = \frac{\pi}{2}$$

$$x_2 = \frac{3\pi}{2}$$

$$x_3 = \frac{5\pi}{2}$$

$$\vdots$$

$$x \in \{\frac{(2k+1)\pi}{2}, k \in Z\}$$

1)

3)
$$tg x = 0$$

$$\frac{\sin \alpha}{\cos \alpha} = 0$$

$$\sin x = 0$$

$$x \in \{k \cdot \pi, k \in Z\}$$
4)
$$\cot g x = 0$$

$$\cos \alpha = 0$$

$$\cos \alpha = 0$$

$$\cos x = 0$$

$$x \in \{\frac{(2k+1)\pi}{2}, k \in Z\}$$
5)
$$\sin x = 1$$

$$x_1 = \frac{\pi}{2}$$

$$x_2 = \frac{5\pi}{2}$$

$$x_3 = \frac{9\pi}{2}$$

$$x \in \{\frac{(4k+1)\pi}{2}, k \in Z\}$$
6)
$$\sin x = -1$$

$$x_1 = \frac{3\pi}{2}$$

$$x_2 = \frac{7\pi}{2}$$

$$x_3 = \frac{11\pi}{2}$$

$$x \in \{\frac{(4k+3)\pi}{2}, k \in Z\}$$

$$x \in \{\frac{(4k+3)\pi}{2}, k \in Z\}$$

```
7)
  \cos x = 1
  x_1 = 0
 x_2 = 2\pi
  x_3 = 4\pi
  x \in \{2k\pi, k \in \mathbb{Z}\}
  8)
  \cos x = -1
  x_1 = \pi
  x_2 = 3\pi
  x_3 = 5\pi
  x\epsilon\{(2k+1)\pi,k\epsilon Z\}
  9)
 \sin x = \frac{1}{2}
 x_1 = \frac{\pi}{6}
x_2 = \frac{5\pi}{6}
 x_3 = \frac{13\pi}{6}
 x \in \left\{ \frac{(12k+1)\pi}{6}, k \in \mathbb{Z} \right\} \cup \left\{ \frac{(12k+5)\pi}{6}, k \in \mathbb{Z} \right\}
  10)
 \cos x = \frac{1}{2}
x_1 = \frac{\pi}{3}
x_2 = \frac{5\pi}{3}
 x_3 = \frac{7\pi}{3}
 x\epsilon\left\{\frac{(6k+1)\pi}{3}, k\epsilon Z\right\} \cup \left\{\frac{(6k+5)\pi}{3}, k\epsilon Z\right\}
```