Expanding GC_{ω} in terms of GQ_{λ} . (contact: ghawkes1217@gmail.com)

The type C stable Grothendieck polynomial or k-theoretic Stanley symmetric function of type C for a given signed permutation ω is defined as:

$$GC_{\omega} = \sum_{f \in F_{\omega}} \mathbf{x}^{wt(f)}$$

where F_{ω} is the set of signed factorizations for ω . A signed factorization f, for ω starts with a word w, in the alphabet $\cdots - 3 < -2 < \cdots - 1 < -0 < 0 < 1 < \cdots < 2 < 3 \cdots$ such that associating i and -i to the simple transposition s_i for $i \neq 0$ and associating -0 and 0 to the special generator of type C, s_0 , the word w forms a Hecke expression for the signed permutation ω . This word is subdivided then into parts where each part must be strictly increasing (under the given order) to form f. The weight of f is the vector whose i^{th} entry records the number of entries in the i^{th} subdivision.

On the other hand, the Q-Grothendieck function is

$$GQ_{\lambda} = \sum_{q \in Q_{\lambda}} \mathbf{x}^{wt(q)}$$

where Q_{λ} is the set of semistandard shifted set valued tableaux (Q version, i.e., primes allowed on diagonal). The weight of q is the vector whose i^{th} entry records the number of times i or i' appears in q.

We claim that we may write:

$$GC_{\omega} = \sum_{t \in T_{\omega}} GQ_{shape(t)}$$

where T_{ω} is the set of unimodal Hecke tableaux (defined later) for ω . It is slightly less computation to verify the stronger statement that

$$GC_{\omega}^{+} = \sum_{t \in T_{\omega}} GR_{shape(t)}$$

where GC_{ω}^+ differ from GC_{ω} by requiring there is a unique number with minimum absolute value in each factor in the definition of a factorization and that this number has a positive sign. GR_{λ} differs from GQ_{λ} by requiring that the first i or i' (reading left to right, bottom to top) in a shifted semistandard set valued tableau is an i (in particular, the first box with i or i' does not conatin both).

The latter equation is implied by the existence of a bijection, ϕ , from the set of Hecke words of length n for ω to pairs of tableaux (t,r) where t and r have the same shape, $t \in T_{\omega}$, and r is a standard shifted set-valued tableau with n entries. The bijection ϕ must have the following additional properties:

- (1) If the word w has repeated consecutive entries, that is $w_i = w_i + 1$ then the corresponding recording tableau, r must have i and i + 1 in the same box (and conversly).
- (2) The word w has a peak at i, that is $w_{i-1} < w_i > w_{i+1}$ if and only if the corresponding recording tableau has a peak at i. That is i appears in a box to the right of i-1 and i+1 appears in a box below i.

The weakest version of the conjecture check the existence of ϕ (this is what the upcoming paper of Arroyo, Hamaker, H., and Pan will prove). The next strongest checks that ϕ exists and satisfies (1). The strongest version checks that ϕ exists and satisfies (1) and (2).