Analog IC Design lab (EC1061) Experiment No.: 05

Amit Prakash
16/EC/4209
Department
College
Email: amitprks@gmail.com

Abhishek kumar 16/EC/4211 Department College Email: amitprks@gmail.com

Abstract-Simulation of CMOS inverter.

- I. Brief Description of the Work
- a) Construct CMOS inverter.
- b) Plot its VTC and estimate noise $\mathrm{margin}(NM)$ and power consumption.
- c) Determine rise time au_{rise} , fall time au_{fall} and propagation delay au_{pd} .

II. SIMULATION STEPS AND RESULTS

- A. CMOS inverter to determine VTC, NM and power
 - 1) A CMOS inverter circuit is designed as shown in Fig.1.

Fig. 2. V_{OUT} vs V_{in}

6) To find the mid voltage ${\cal V}_m,$ intersection point of the plot as shown in Fig 3.

Fig. 1. CMOS inverter with DC input

- 2) The input and output nodes is labeled as V_{in} & V_{out} respectively.
 - 3) The value of V_{in} is set to 1.8 V in the ADE.
 - 4) In DC analysis varying V_{in} from 0 to 1.8V.
 - 5) Plot VTC, V_{OUT} vs V_{in} is shown in Fig 2.

Fig. 3. V_{OUT} vs V_{in} and V_m

7) Plot the dV_{OUT}/dV_{in} shown in Fig 4.

Fig. 4. V_{OUT} vs V_{in} Noise Margin

- 8) By use marker $dV_{OUT}/dV_{in} = -1$.
- 9) Determine $V_{OH}, V_{OL}, V_{IH}, V_{IL}$.
- 10) Calculate the value of noise margin(NM).

$$NM_H = V_{OH} - V_{IH}$$

$$NM_L = V_{IL} - V_{OL}$$

11) Power plot is shown in Fig 5.

$$power(\mu W) = 1.8V * I_D(\mu A)$$

Fig. 5. Power plot

- 12) Power maximum is at mid voltage V_m .
- B. CMOS inverter to determine τ_{rise} , $\tau_{fall} \& \tau_{delay}$
- 1) The schematic diagram to calculate rise time τ_{rise} , fall time τ_{fall} & propagation delay τ_{pd} is shown in Fig 6.

Fig. 6. Schematic diagram CMOS inverter

- 2) At the input side V_{pulse} is applied which has period 100ns and pulse width 50 ns.
 - 3) Place a capacitance 100 fF at the V_{OUT} .
- 4) Calculation of rise time au_{rise} , fall time au_{fall} & propagation delay au_{pd}
- 5) Transient analysis of signal V_{OUT} from 10% to 90% is called Rise time τ_{rise} .
- 6) Transient analysis of signal V_{OUT} from 90% to 10% is called Fall time τ_{fall} .
- 7) Difference of Transient analysis of signal V_{OUT} and V_{pulse} from 50% rise is called propagation delay low to high τ_{PLH} .
- 8)Difference of Transient analysis of signal V_{OUT} and V_{pulse} to 50% fall is called propagation delay high to low τ_{PHL} .
- 9) Average of propagation delay from low to high and high to low is called propagation delay τ_{pd} .

$$\tau_{pd} = (\tau_{PHL} + \tau PLH)/2$$

$$V_{10\%} = V_{min} + 10/100(V_{max} - V_{min})$$

$$V_{90\%} = V_{min} + 90/100(V_{max} - V_{min})$$

$$V_{50\%} = V_{min} + 50/100(V_{max} - V_{min})$$

10) transient analysis of V_{OUT} is shown in Fig 7.

Fig. 7. Transient analysis of V_{OUT}

- 11) Calculate rise time τ_{rise} , fall time τ_{fall} from the Fig 7.
- 12) Transient analysis of V_{OUT} and V_{pulse} shown in Fig 8.

Fig. 8. Transient analysis of V_{OUT} and V_{pulse}

13) Calculate the propagation delay τpd from the Fig 8.

III. OBSERVATIONS & CONCLUSIONS

The values obtained are tabulated in TABLE I and II.

TABLE I NOISE MARGINS OF THE CMOS INVERTER

V_{OH}	V_{OL}	V_{IH}	V_{IL}	NM_H	NM_L
1.8 V	$0.02285 \ mV$	$822.675 \ mV$	$501.193 \ mV$	0.9773~V	0.50117~V

Power consumed = $32.03 \mu W$

 $\begin{array}{c} \text{TABLE II} \\ \text{VALUES OF } \tau_{rise}, \tau_{fall} \text{ and } \tau_{D} \end{array}$

$ au_{rise}$	$ au_{fall}$	$ au_{PHL}$	$ au_{PLH}$	$ au_D$
3.5646 nS	1.1175 nS	0.6224 nS	1.8295 nS	1.22595 nS