Neural Networks: An Intuitive Introduction

TJ Machine Learning

Neural Network Lecture Series

- 1. Intuitive Introduction
- 2. Forward Propagation
- 3. Backpropagation
 - a. Might Include Basic Calculus Lecture before this
- 4. Hyperparameters
- 5. Implementation using Tensorflow with Keras

Brief History

- Basic Perceptron Model was developed by Frank Rosenblatt in 1958
- He was a psychologist
- Trying to develop a model for the human brain

Perceptron

Simplest Form of a Neural Network

What is a Perceptron?

A perceptron is the most basic unit in a neural network

- Takes in numerical inputs (in the image it takes two, but it can be more)
- Multiplies each input with some weight
- Sums up resulting products and add bias term

Push resulting sum through activation function (we will use the step function)

throughout this lecture)

Formalizing the Perceptron

The formal equations that represent the perceptron are:

$$f(x) = w_1x_1 + w_2x_2 + b$$

$$y = \begin{cases} 0 & \text{if } f(x) \leq 0 \\ 1 & \text{if } f(x) > 0 \end{cases}$$
 Step Function

Note that there would be more terms in f(x) if we had more inputs to the perceptron

Visualization

Perceptrons learn linear functions

- Above the line, they classify data points as 1
- Below the line, they classify data points as 0

The line $x_2 = -x_1 + 1.5$ separates these points well

Rearrange to get $x_1 + x_2 + (-1.5) = 0$

We can then say $f(x) = x_1 + x_2 + (-1.5)$

For points above line, f(x) > 0, so y = 1

For points below line, f(x) < 0, so y = 0

AND Function

x 1	x2	у
0	0	0
0	1	0
1	0	0
1	1	1

where

d - desired output

y - current output

 (i_1, i_2) - location of current data point

$$w_1 = w_1 + \alpha(d - y)(i_1)$$
$$w_2 = w_2 + \alpha(d - y)(i_2)$$
$$b = b + \alpha(d - y)$$

$$x_1 + x_2 - 1.5 = 0$$

The only misclassified point is at (1,0)

$$x_1 + x_2 - 1.5 = 0$$

$$w_1 = w_1 + \alpha(d-y)(i_1)$$

 $w_2 = w_2 + \alpha(d-y)(i_2)$
 $b = b + \alpha(d-y)$

The only misclassified point is at (1,0)

$$w_1 = 1 + 0.2(1 - 0)(1) = 1.2$$

$$w_2 = 1 + 0.2(1 - 0)(0) = 1$$

$$b = -1.5 + 0.2(1 - 0) = -1.3$$

$$1.2x_1 + 1.0x_2 - 1.3 = 0$$

$$1.2x_1 + 1.0x_2 - 1.3 = 0$$

$$w_1 = w_1 + \alpha(d - y)(i_1)$$
$$w_2 = w_2 + \alpha(d - y)(i_2)$$
$$b = b + \alpha(d - y)$$

The only misclassified point is still at (1,0)

$$w_1 = 1.2 + 0.2(1 - 0)(1) = 1.4$$

 $w_2 = 1 + 0.2(1 - 0)(0) = 1$
 $b = -1.3 + 0.2(1 - 0) = -1.1$

$$1.4x_1 + 1.0x_2 - 1.1 = 0$$

^{*} Note that our process didn't result in the optimal separating line. The process stops as soon as we correctly classify all points.