Práctica 10

Pablo Gutiérrez Aguirre pgutierrez2018@udec.cl

13 de junio 2022

Tabla de contenidos

- Repaso
- 2 Ejercicio 3
- 3 Ejercicio 5

Repaso

La forma estándar de un problema de programación lineal es la siguiente, NO CONFUNDIR CON FORMA CANÓNICA.

$$max c^t X$$
 (1)

$$s.a: AX = b (2)$$

$$c, X \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m_+$$
 (3)

En el caso de que alguna restricción no esté en la forma estándar (que sea \leq o \geq) se deben agregar variables de holgura.

Al agregar variables de holgura se tendrán grados de libertad, que corresponden a la cantidad de variables menos la cantidad de restricciones.

En cada solución básica habrán *n* variables igual a 0, donde *n* son los grados de libertad.

Repaso: Definiciones

- Variables de holgura: Se agregan a cada restricción que no cumpla la forma estándar, de esta forma la restricción puede ser representada como una igualdad
- Solución básica: Solución en la cual habrán n variables igual a 0, n son los grados de libertad
- **Variable no básica**: Variable que son igual a 0 en mi *solución básica*, hay al menos *n* variables no básicas.
- Variables básicas: Variables distintas de cero, se obtienen del sistema de ecuaciones.

Una fábrica localizada en Palomares, manufactura tres productos A, B y C. Cada producto requiere tiempo de producción en tres departamentos, como se muestra en la siguiente

Producto	Departamento 1	Departamento 2	Departamento 3
A	3 hr/unidad	2 hr/unidad	1 hr/unidad
В	4 hr/unidad	1 hr/unidad	3 hr/unidad
C	2 hr/unidad	2 hr/unidad	3 hr/unidad

Se dispone de 600, 400 y 300 horas de tiempo de producción en los tres departamentos, respectivamente. Si cada unidad de producto A, B y C contribuye con \$2 000, \$4 000 y \$2 500 al beneficio, respectivamente, encuentre la combinación óptima de productos.

Variables

- x_a : Unidades del producto A a producir
- x_b: Unidades del producto B a producir
- x_c: Unidades del producto C a producir

$$max \quad 2000x_a + 4000x_b + 2500x_c$$
 (1)

$$s.a: 3x_a + 4x_b + 2x_c \le 600 \tag{2}$$

$$2x_a + x_b + 2x_c \le 400 \tag{3}$$

$$x_a + 3x_b + 3x_c \le 300 \tag{4}$$

$$x_a \ge 0, x_b \ge 0, x_c \ge 0 \tag{5}$$

Escribiendo el modelo en la forma estándar

$$max \quad z = 2000x_a + 4000x_b + 2500x_c + 0h_1 + 0h_2 + 0h_3$$
 (1)

$$s.a: 3x_a + 4x_b + 2x_c + h_1 = 600 (2)$$

$$2x_a + x_b + 2x_c + h_2 = 400 (3)$$

$$x_a + 3x_b + 3x_c + h_3 = 300 (4)$$

$$x_a \ge 0, x_b \ge 0, x_c \ge 0 \tag{5}$$

$$h_1 \ge 0, h_2 \ge 0, h_3 \ge 0$$
 (6)

Empezamos con una base inicial, donde cada variable de holgura toma el valor del coeficiente de cada restricción.

VB	Xa	X _b	X _C	h_1	h ₂	<i>h</i> ₃	RHS
-Z	2000	4000	2500	0	0	0	0
h_1	3	4	2	1	0	0	600
h_2	2	1	2	0	1	0	400
h_3	1	3	3	0	0	1	300

Buscamos la dirección de mejora, dada por el valor más grande de las variables en la función objetivo, en este caso es x_b

VB	Xa	x_b	X _C	h_1	h_2	h_3	RHS
-Z	2000	4000	2500	0	0	0	0
$\overline{h_1}$	3	4	2	1	0	0	600
h_2	2	1	2	0	1	0	400
h_3	1	3	3	0	0	1	300

Una vez encontrada la dirección de mejora, vemos que variable (filas) se hace 0 primero, esto con el cociente entre los valores de la columna RHS y x_b y la que tenga menor valor es la elegida.

VB	Xa	Хb	X _C	h_1	h_2	h_3	RHS	Cociente
-Z	2000	4000	2500	0	0	0	0	
$\overline{h_1}$	3	4	2	1	0	0	600	=600/4=150
h_2	2	1	2	0	1	0	400	=400/1=400
h_3	1	3	3	0	0	1	300	=300/3=100

En este caso, es la variable h_3 , esta es la **variable básica de salida**, con esto vamos a pivotear la tabla respecto al valor 3.

Para pivotear tenemos que hacer operaciones por filas, para esto, el valor pivote (3) debemos convertirlo en 1, por lo tanto vamos a dividir la fila de la variable h_3 por 3. Luego, el resto de valores de la columna pivote deben ser 0, para esto las operaciones serán las siguientes:

- $h_3 = h_3/3$
- $h_1 = h_1 4h_3$
- $h_2 = h_2 h_3$
- $Z = Z 4000h_3$

VB	Xa	Xb	X _C	h_1	h ₂	h ₃	RHS
-Z	2000/3	0	-1500	0	0	-4000/3	-400000
h_1	5/3	0	-2	1	0	-4/3	200
h_2	5/3	0	1	0	1	-1/3	300
Xh	1/3	1	1	0	0	1/3	100

Buscamos la dirección de mejora que es la columna x_a , luego, haciendo el cociente entre RHS y x_a se tiene que la variable de salida es h_1 y la variable de entrada es x_a

VB	Xa	Хb	X _c	h_1	h ₂	h ₃	RHS	Cociente
-Z	2000/3	0	-1500	0	0	-4000/3	-400000	
h_1	5/3	0	-2	1	0	-4/3	200	=200/(5/3)=120
h_2	5/3	0	1	0	1	-1/3	300	=300/(5/3)=180
x_b	1/3	1	1	0	0	1/3	100	=100/(1/3)=300

Con esto tenemos que pivotear respecto a 5/3

Para pivotear tenemos que hacer operaciones por filas, para esto, el valor pivote (5/3) debemos convertirlo en 1, por lo tanto vamos a dividir la fila de la variable h_1 por 5/3. Luego, el resto de valores de la columna pivote deben ser 0, para esto las operaciones serán las siguientes:

- $h_1 = \frac{h_1}{5/3}$
- $Z = Z \frac{2000}{3}h_1$
- $h_2 = h_2 \frac{5}{3}h_1$
- $x_b = x_b h_1/3$

VB	Xa	X _b	X _C	h_1	h ₂	h ₃	RHS
-Z	0	0	-700	-400	0	-800	-480000
X _a	1	0	-6/5	3/5	0	-4/5	120
h_2	0	0	3	-1	1	1	100
x_b	0	1	7/5	-1/5	0	3/5	60

VB	Xa	Хb	X _C	h_1	h_2	h ₃	RHS
-Z	0	0	-700	-400	0	-800	-480000
Xa	1	0	-6/5	3/5	0	-4/5	120
h_2	0	0	3	-1	1	1	100
x_b	0	1	7/5	-1/5	0	3/5	60

Finalmente, la solución óptima es $(x_a, x_b, x_c, h_1, h_2, h_3) = (120, 60, 0, 0, 100, 0)$, con un valor de 480000 en la función objetivo. Esto quiere decir que se deben producir 120 unidades del producto A, 60 unidades del producto B y 0 unidades del producto C.

Los Almendros de Manquimávida es una empresa familiar de inmigrantes británicos, dedicada a la comercialización de frutos secos de alta calidad. El empaquetador de frutos tiene a la mano 150 libras de maní, 100 libras de castañas de cajú, y 50 libras de almendras (son británicos, no les gusta el sistema internacional de medidas). La empresa vende paquetes con 3 tipos de mezclas de frutos secos:

- Mix Económico: Contiene 80% de maní y 20% de castañas de cajú.
- Mix carretera: Contiene 50% de maní, 30% de castañas de cajú y 20% de almendras.
- Mix de lujo: Contiene 20% de maní, 50% de castañas de cajú y 30% de almendras.

Si un paquete de 12 onzas (son británicos) del Mix Económico, Mix Carrete y Mix De Lujo se venden por \$900, \$1 100 y \$1 300 respectivamente, ¿cuantas bolsas de cada tipo debería producir la empresa, de modo que puedan maximizar el ingreso? **Indicación:** Mister Charles, dueño de la empresa, les recuerda que 1 libra equivalen a 16 onzas.

Eiercicio 5

Variables

- x_e : Bolsas de mix económico
- x_c: Bolsas de mix carretera
- x₁: Bolsas de mix de lujo

150 libras = 2400 onzas, 100 libras 1600 onzas, 50 libras = 800 onzas Los porcentajes de cada fruto seco en las bolsas se pueden escribir como 0.8*12 = 9.6 onzas en el caso del maní para el mix económico, con esto se tiene:

$$max \quad 900x_e + 1100x_c + 1300x_l \tag{1}$$

$$s.a: 9.6x_e + 6x_c + 2.4x_l \le 2400$$
 (2)

$$2.4x_e + 3.6x_c + 6x_l \le 1600 \tag{3}$$

$$2.4x_c + 3.6x_l \le 800 \tag{4}$$

$$x_e \ge 0, x_c \ge 0, x_l \ge 0 \tag{5}$$

Escribiendo el modelo en la forma estándar

$$max \quad 900x_e + 1100x_c + 1300x_l \tag{1}$$

s.a:
$$9.6x_e + 6x_c + 2.4x_l + h_1 = 2400$$
 (2)

$$2.4x_e + 3.6x_c + 6x_l + h_2 = 1600 (3)$$

$$2.4x_c + 3.6x_l + h_3 = 800 (4)$$

$$x_e \ge 0, x_c \ge 0, x_l \ge 0 \tag{5}$$

$$h_1 \ge 0, h_2 \ge 0, h_3 \ge 0$$
 (6)

Pasando el modelo al tableu se tiene lo siguiente:

VB	X _e	X _C	ΧĮ	h_1	h ₂	h ₃	RHS
		1100				0	0
$\overline{h_1}$	9.6	6	2.4	1	0	0	2400
h_2	2.4	3.6	6	0	1	0	1600
h_3	0	6 3.6 2.4	3.6	0	0	1	800

Buscamos la dirección de mejora que corresponde a la variable de entrada x_I , luego la variable de entrada corresponde a la que tenga menor cociente de RHS y la columna x_I , como se puede ver a continuación:

VB	X _e	X _c	XĮ	h_1	h ₂	h ₃	RHS	Cociente
		1100						•
h_1	9.6	6	2.4	1	0	0	2400	=2400/2.4=1000
h_2	2.4	3.6	6	0	1	0	1600	=1600/6=266.66
h_3	0	2.4	3.6	0	0	1	800	=800/3.6 = 222.22

Las operaciones por filas serán las siguientes:

- $h_3 = \frac{h_3}{3.6}$
- $Z = Z 1300h_3$
- $h_1 = h_1 2.4h_3$
- $h_2 = h_2 6h_1$

VB	X _e	X _c	ΧĮ	h_1	h ₂	h ₃	RHS
-Z	900	700/3	0	0	0	-3250/9	-2600000/9
$\overline{h_1}$	9.6	22/5	0	1	0	-2/3	5600/3
h_2	2.4	-2/5	0	0	1	-5/3	800/3
X_{I}	0	2/3	1	0	0	5/18	2000/9

En esta iteración la dirección de mejora es en x_e , por otro lado la variable de salida corresponde a h_2

-	VB	Xe	Xc	ΧĮ	h_1	h ₂	h ₃	RHS	Cociente
	-Z	900	700/3	0	0	0	-3250/9	-2600000/9	
-	h_1	9.6	22/5	0	1	0	-2/3	5600/3	=(5600/3) / 9.6 = 194.44
	h_2	2.4	-2/5	0	0	1	-5/3	800/3	=(800/3) / 2.4 = 111.11
	ΧĮ	0	2/3	1	0	0	5/18	2000/9	∞

Ahora las operaciones por fila son las siguientes:

- $h_2 = h_2/2.4$
- $Z = Z 900h_2$
- $h_1 = h_1 9.6h_2$
- $\bullet \ x_I = x_I$

Dando como resultado la siguiente tabla

VB	Xe	X _C	ΧĮ	h_1	h ₂	h ₃	RHS
-Z	0	1150/3	0	0	-375	2375/9	-3500000/9
$\overline{h_1}$	0	6	0	1	-4	6	800
X _e	1	-1/6	0	0	5/12	-25/36	1000/9
X_{I}	0	2/3	1	0	0	5/18	2000/9

Finalmente, la dirección de mejora es en la variable de entrada x_c , luego la variable de salida dada por el cociente es h_1

VB	X _e	X _C	ΧĮ	h_1	h ₂	h ₃	RHS	Cociente
-Z	0	1150/3	0	0	-375	2375/9	-3500000/9	-
h_1	0	6	0	1	-4	6	800	=800/6=133.33
X _e	1	-1/6	0	0	5/12	-25/36	1000/9	=(1000/9)/(-1/6) = -666.66
x_I	0	2/3	1	0	0	5/18	2000/9	=(20000/9)/(2/3)=333.33

Eiercicio 5

Las operaciones por filas son:

- $h_1 = h_1/6$
- $Z = Z \frac{1150}{2}h_1$
- $x_e = \frac{-1}{6} \frac{-1}{6}h_1$
- $x_1 = \frac{2}{3} \frac{2}{3}h_1$

Dando la siguiente tabla:

VB	X _e	X _C	ΧĮ	h_1	h ₂	h ₃	RHS
-Z	0	0	0	-575/9	-1075/9	-1075/9	-440000
X _C	0	1	0	1/6	-2/3	1	400/3
Xe	1	0	0	1/36	11/36	-19/36	400/3
x_l	0	0	1	-1/9	4/9	-7/18	400/3

Que tiene como resultado $(x_e, x_c, x_l, h_1, h_2, h_3) = (\frac{400}{3}, \frac{400}{3}, \frac{400}{3}, 0, 0, 0)$.

Por otro lado, es una solución infactible ya que no se pueden vender $\frac{400}{3}$ bolsas. Con esto se puede ver que no todos los problemas de programación lineal se pueden resolver con simplex, específicamente este corresponde a un problema de programación lineal entera, por eso no se puede resolver.