第二章 整数规划

第四节 分配问题(指派问题)

n个人

数学模型:
$$\min S = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 n 项工作

$$s.t.$$
 $\begin{cases} \sum_{j=1}^{n} x_{ij} = 1, \ i = 1, 2, \cdots n \end{cases}$ $\begin{cases} \sum_{j=1}^{n} x_{ij} = 1, \ j = 1, 2, \cdots n \end{cases}$ $\begin{cases} x_{ij} = 0 \ \text{od} \ 1, \ i, j = 1, 2, \cdots n \end{cases}$

 c_{ij} — 第i个人做第j项工作的费用

是特殊的运输问题: m = n, $a_i = b_i = 1$.

价格矩阵:
$$C = (c_{ij})$$

元素非负

简单情况:

$$egin{bmatrix} 0 & * & * & * \ * & 0 & * & * \ * & * & 0 & * \ * & * & * & 0 \end{bmatrix},$$

$$\begin{bmatrix} * & * & * & 0 \\ 0 & * & * & * \\ * & 0 & * & * \\ * & * & 0 & * \end{bmatrix}, \dots$$

想法:将价格矩阵C化成这样易于分配工作的形式.

$$C' = (c_{ij}')$$

约化矩阵: $C' = (c_{ii})$ —— 匈牙利方法

将C的某些行和列分别加减某些数而得,

 $c_{ii}' \geq 0$,且每行每列至少有一个0元素.

原理: 给定 $C = (c_{ij})$, 把C的某一行或某一列的所有元素 减去一个常数 β ,记为 C',则以C为价格矩阵的分配 问题和以 C'为价格矩阵的分配问题有相同的最优解.

验证: 设第 i_0 行减 β ,则

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}' x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \sum_{j=1}^{n} \beta x_{i_0 j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \beta \cdot \sum_{j=1}^{n} x_{i_0 j} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \beta$$

理解:
$$C = \begin{vmatrix} 2 & 3 & 4 & 5 \\ * & * & 0 & * \\ * & 0 & * & * \end{vmatrix}$$

理解:
$$C = \begin{bmatrix} 2 & 3 & 4 & 5 \\ * & * & 0 & * \\ * & 0 & * & * \\ * & * & * & 0 \end{bmatrix} D = \begin{bmatrix} 0 & 1 & 2 & 3 \\ * & * & 0 & * \\ * & 0 & * & * \\ * & * & * & 0 \end{bmatrix}$$
时同解.

第二章 整数规划

第五节 0-1型整数规划的隐枚举法

- 0-1型整数规划是一种特殊的整数规划,要求所有变量只能取值为0或1.
- 完全枚举法求解困难: n个变量,2ⁿ种变量组合.

隐枚举法:

- 只要变量组合不满足其中一个约束条件,则不再 检验是否满足其它约束条件;
- 利用目标函数值作为过滤条件.

例1. 求解0-1整数规划:

隐枚举法:

约束条件

	(x_1, x_2, x_3)	z 值	а	b	c	d		过滤条件	
	(0,0,0)	0	$\sqrt{}$					$z \ge 0$	
1	(0,0,1)	5			$\sqrt{}$			$z \ge 5$	
	(0,1,0)	-2							
	(0,1,1)	3							
	(1,0,0)	3							
	(1,0,1)	8						z≥8	
	(1,1,0)	1					ma	$x z = 3x_1 - 2x_2 + $	$-5x_3$
	(1,1,1)	6						$\int x_1 + 2x_2 - x_3 \le 2$	
	最优解(1,0,1),						s.t.	$\begin{cases} x_1 + 4x_2 + x_3 \le 4 \\ x_1 + x_2 \le 3 \\ 4x_2 + x_3 \le 6 \end{cases}$	(b) (c) (d)
	8次+12次=20%	次运算!						$\begin{cases} x_2 + x_3 \le 0 \\ x_1, x_2, x_3 = 0 \not \equiv 1 \end{cases}$	(u)

隐枚举法:

约束条件

(x_1, x_2, x_3)	z 值	a	b	c	d		过滤条件	
(0,0,0)	0						$z \ge 0$	
(0,1,0)	-2							
(0,1,1)	3	$\sqrt{}$	X					
(0,0,1)	5	V	V	V			$z \ge 5$	
(1,0,0)	3							
(1,0,1)	8	V					$z \ge 8$	
(1,1,0)	1					ma	$x z = 3x_1 - 2x_2$	+5x ₃
(1,1,1)	6							(a)
最优解(1,0,1), $\max z = 8$							$\begin{cases} x_1 + 4x_2 + x_3 \le 4 \\ x_1 + x_2 \le 3 \end{cases}$	(c)
8次+14次=22次	大运算!						$\begin{vmatrix} 4x_2 + x_3 \le 6 \\ x_1, x_2, x_3 = 0 \vec{\boxtimes} 1 \end{vmatrix}$	(d)

例1. 求解0-1整数规划:

题中 x_2 系数较大,约束为 \leq ,倾向于让它取0值!

· 在隐枚举法中,可根据约束条件形式及变量系数 大小来调整变量组合的次序,以提高计算效率.