Unificando teorias de cohomologia através de motivos

Sergio Maciel Orientador: Olivier Martin

hoje, 2024

Decompondo cohomologias de variedades

2 Um passo além: estruturas Hodge

1 Decompondo cohomologias de variedades

2 Um passo além: estruturas Hodge

Estratificações de variedades

O espaço projetivo \mathbb{P}^1 possui uma decomposição na união disjunta de \mathbb{A}^1 e um ponto $\{\infty\}$. Já \mathbb{P}^2 pode ser decomposto como $\mathbb{P}^2 = \mathbb{A}^2 \sqcup \mathbb{P}^1 = \mathbb{A}^2 \sqcup \mathbb{A}^1 \sqcup \{\infty\}$. Indutivamente, temos

$$\mathbb{P}^n = \mathbb{A}^n \sqcup \mathbb{A}^{n-1} \sqcup \cdots \sqcup \mathbb{A}^1 \sqcup \{\infty\}.$$

Claro que isso não é especial do espaço projetivo, variedades algébricas possuem diversos tipos de estratificações como essa. O que é realmente interessante é a relação entre a cohomologia da variedade e a cohomologia dos estratos.

Cohomologia de \mathbb{A}^n e de \mathbb{P}^n

Fixada uma teoria de cohomologia de Weil

 $H: \mathbf{SmProj}_{\mathbb{C}} \longrightarrow \mathbf{GrAlg}_F$ (por exemplo, singular, étale, ℓ -adic, de Rham, etc.), qual é a relação entre $H(\mathbb{P}^n)$ e os $H(\mathbb{A}^k)$? Por exemplo, se escolhermos cohomologia de de Rham algébrica, temos

$$H_{\mathrm{dR}}^{i}(\mathbb{A}^{n}) = \begin{cases} \mathbb{C}, \text{ se } i = 0; \\ 0 \text{ caso contrário} \end{cases}$$
 e $H_{\mathrm{dR}}^{i}(\mathbb{P}^{n}) = \begin{cases} \mathbb{C}, \text{ se } i < 2n \text{ par}; \\ 0 \text{ caso contrário.} \end{cases}$

Ou para cohomologia ℓ -adic, por exemplo, temos $H^i(\mathbb{P}^n;\mathbb{Q}_\ell)=\mathbb{Q}_\ell(-\frac{i}{2})$ quando $i\leq 2n$ é par e zero caso contrário.

Cohomologia de \mathbb{A}^n e \mathbb{P}^n

Por que parece que tanto a cohomologia de de Rham quanto a cohomologia ℓ -adic de \mathbb{P}^n são feitas de "pedaços" das cohomologias dos \mathbb{A}^k ?

Uma possível explicação: a sequência longa de Gysin. Dada uma subvariedade $Z\subset X$, temos uma sequência exata longa

$$\cdots \longrightarrow H^{j}(X \setminus Z) \longrightarrow H^{j}(X) \longrightarrow H^{j}(Z) \longrightarrow H^{j+1}(X \setminus Z) \longrightarrow \cdots$$

que vale para H de Rham, étale e, consequentemente, ℓ -adic.

Fibrados projetivos

Seja agora $p: Y \longrightarrow X$ um fibrado projetivo com fibras isomorfas a \mathbb{P}^n . Então observamos o isomorfismo

$$H(Y) \cong \bigoplus_{i=0}^{n} H^{*-2i}(X)(-i)$$

para todas as teorias de cohomologia de Weil. Como anteriormente, se pensarmos em Y como uma familia de espaços projetivos parametrizada por X, então a cohomologia de Y é completamente determinada pela cohomologia de X.

O caso do blow up

Agora vamos olhar para uma variedade X e uma subvariedade $Z \subset X$ suave. Seja $Y = \operatorname{Bl}_Z X$ o blow up de X ao longo de Z, com $\pi: Y \longrightarrow X$ o mapa birracional que contrai o divisor excepcional $E \subset Y$.

Dadas as constatações dos slides anteriores, podemos esperar alguma relação entre H(Y) e H(X), já que

- $X = Z \sqcup (X \setminus Z)$;
- $\bullet \ \ Y = E \sqcup (Y \setminus E);$
- $\pi|_E: E \longrightarrow Z$ é um fibrado projetivo;
- $\pi|_{Y\setminus E}: Y\setminus E\longrightarrow X\setminus Z$ é um isomorfismo.

A cohomologia do blow up

A partir das nossas observações, a partição $Y = E \sqcup (Y \setminus E)$ sugere que H(Y) é igual a alguma combinação de H(E) e de $H(X \setminus Z)$, com possíveis twists. Além disso, como E é um fibrado projetivo sobre Z, H(E) se escreve em termos de H(Z). Então, a expectativa é que H(Y) possa ser escrito apenas em termos de $H(X \setminus Z)$ e H(Z), ou ainda em termos de H(X) e H(Z). De fato, podemos observar que para toda teoria de cohomologia de Weil H, vale

$$H(Y) = H(X) \bigoplus_{i=1}^{m-1} H^{*-2i}(Z),$$

em que m é a codimensão de Z em X.

Decompondo cohomologias de variedades

2 Um passo além: estruturas Hodge

As decomposições das estruturas de Hodge

Curiosamente, ao olharmos para os exemplos anteriores, vemos que não são apenas os grupos de cohomologia que apresentam esse comportamento. Algumas estruturas a mais nos anéis de cohomologia também apresentam esse fenômeno.

Considere a cohomologia de de Rham de \mathbb{P}^n . Anteriormente sugerimos que $H_{dR}(\mathbb{P}^n)$ parece ser obtido através dos anéis $H_{dR}(\mathbb{A}^k)$. Existe um jeito mais refinado de dizer isso.

$$H^{p,q}_{dR}(\mathbb{P}^n) = \bigoplus_{k=1}^n H^{p-k,q-k}_{dR}(\mathbb{A}^1) = \bigoplus_{k=1}^n H^{p,q}_{dR}(\mathbb{A}^1)(-k).$$

Um passo além: ações de Galois

Dada uma variedade suave projetiva X, o que é a estrutura de Hodge em $H^n(X)$ se não uma representação do grupo de Galois $Gal(\mathbb{C}/\mathbb{R})$?

De forma similar, temos grupos de Galois naturais para outras teorias de cohomologia de Weil. Por exemplo, para cohomologia I-adic, temos representações de $\operatorname{Gal}(\bar{\mathbb{Q}_\ell}/\mathbb{Q}_\ell)$.

Será que podemos sistematizar o estudo das relações entre cohomologias de Weil e esses diversos tipos de decomposição de variedades?

Decompondo cohomologias de variedades

2 Um passo além: estruturas Hodge

O que procuramos?

Baseado no comportamento observado das várias teorias de cohomologia de Weil, e principalmente no fato de que esse comportamento é comum a todas elas, Grothendieck concebeu a ideia de *motivo*.

Procuramos uma categoria $\mathbf{Mot}(k)$ de motivos que satisfaça as seguintes condições:

- Existe um funtor $h: \mathbf{SmProj}(k) \longrightarrow \mathbf{Mot}(k)$ pelo qual todas as teorias de cohomologia de Weil se fatoram;
- Mot(k) é simétrica monoidal, abeliana e semisimples (na verdade Tannakiana).

Explicando o comportamento das cohomologias

Com essa ideia de motivos, podemos explicar vários dos comportamentos que observamos anteriormente:

1

$$h(\mathbb{P}^n) = \mathbb{L}^n \oplus \cdots \oplus \mathbb{L} \oplus \mathbf{1};$$

2 para um fibrado projetivo $Y \longrightarrow X$, temos a fórmula

$$h(Y) = \bigoplus_{i=0}^{m} h(X)(-i);$$

para um blow up, temos a relação

$$h(Y) = h(X) \bigoplus_{i=1}^{m} h(Z)(-i).$$

Referências

- Murre, J.; Nagel, J.; Peters, C. Lectures on the theory of pure motives. Volume 61. American Mathematical Society.
- Riou, J. Realization functors. Available at https://www.imo.universite-parissaclay.fr/ joel.riou/doc/realizations.pdf.
- Voisin, C. The Hodge Conjecture. Available at https://webusers.imjprg.fr/ claire.voisin/Articlesweb/voisinhodge.pdf.