

Plan of this introduction

- Human Robot Interaction
 - Social Robots
 - Some examples
- Talking with robots
 - Command Interpretation
 - Dialog

SHRI, May 2019

What is HRI?

"Human-robot interaction is the field of study dedicated to understanding, designing, and evaluating robotic systems for use by or with humans"

Dynamic Interaction (Goodrich, Schultz 2007, HRI)

a, 2010

Some temporal references

- 1992 First IEEE Int. Symp. on Robot & Human Interactive Communication (RoMan)
- 1997 AAAI Hors d'oeuvres Anyone?
- 1999 IEEE RAS TC on Human-Robot Interaction & Coordination
- 2000 IEEE Humanoids
- 2006 ACM Int. Conf. Human-Robot Interaction
- 2006 RoboCup@Home
- 2009 Int. Conf. Social Robotics

SHRI, May 2019

HRI vs HCI

- Robots have (physical) bodies
- Robots act in the real world
- Robots are perceived as living entities
- Human-robot interaction is asymmetric (robots have not the same cognitive skills of humans)
- HRI is bidirectional (robots are not passive entities like computers!)

HRI is not a special case of HCI

SHRI, May 2019

HRI: multidisciplinarity

HRI brings together a variety of fields, including:

- engineering (electrical, mechanical, industrial, and
- computer science (human-computer interaction, artificial intelligence, robotics, natural language understanding, and computer vision),
- social sciences (psychology, cognitive science, communications, anthropology, and human factors),
- · humanities (ethics and philosophy).

SHRI, May 2019

Possible inputs (for the robot)

- Hand-held devices
- Speech
- Sound
- Touch

- **Temperature**
- Olfaction

Head

People

- Gaze
- **Facial Expressions**

Race? Gender?

Locomotion

Gestures

SHRI, May 2019

Possible inputs (vision)

- Face detection / tracking / recognition (including expressions)

Person detection / tracking / recognition

Possible outputs (of the robot)

Body

- Position
- Speed

Head

- Turning
- Eye motion
- Facial expressions

Arms

- Grab/Hand objects
- Gestures
- Shake hands
- Speech
- Sound
- Lighting
- Smell

SHRI, May 2019

14

Possible outputs (of the robot)

SHRI, May 2019

HRI: application domains

ANY ROBOT !!!

Service Robotics and robots in our homes is one of the most compelling cases.

obots

Social Robots

(e.g. Robots as dietary assistants)

16

"Intelligent" Robots

- at least: not(stupid) robots
- Gap between user expectations and robot functionality.
- Why?
 - limited capabilities of perception systems
 - difficulty of communicating with humans
 - ability to acquire, maintain and use knowledge

SHRI, May 2019

Our Approach: Symbiotic Autonomy

The concept

Enable a robot to get help from humans in the same fashion a person might be helped by another individual.

- Symbiotic autonomy^[1] and symbiotic robotics^[2]
- Exploit HRI to overcome the limitations of the robot

SHRI, May 2019

18

Are humans willing to help?

In the context of Symbiotic Autonomy

evaluate the Collaboration
Attitude of humans

varying different factors:

- Activity context
- Proxemics
- GenderHeight

SHRI, May 2019

10

Our approach: Small is beautiful

The concept

Acquire very detailed knowledge about the operational requirements through a continuous interaction

- 1.Environment (Semantic Map)
- 2.Tasks
- 3.User

SHRI, May 2019

20

Semantic Mapping

Herzberg & Nuchter, 2008

A semantic map for a mobile robot is a map that contains, in addition to spatial information about the environment, assignments of mapped features to entities of known classes.

Semantic maps allow the robot to...

- ...perform reasoning over environments, objects and properties
- ...communicate with humans, understanding complex commands
- ...perform complex tasks

SHRI, May 2019

RoboCup@Home

- Development of Domestic Service Robots
- Complex Integrated Systems
- · Large variety of tasks
- Human-Robot Interaction

HRI and semantic map

Take the screwdriver on platform 1 ...

Human Robot Interaction within RoboCup@Work scenarios

Learning Tasks from the User

- Robots face difficulties not envisioned by their developers at programming time
- Tasks specialized and adapted to the needs of specific users and environments
- 1. Learning parametric task descriptions that are defined as a combination of primitive actions
- 2. Learning primitive actions (e.g. handover)

SHRI, May 2019

Teaching parametric tasks

Bring @object to @location

Not really convinced...

- · Why don't we use a dedicated UI?
 - Touch
 - Artificial Language
 - Gestures
- Because an artificial UI requires training and NL is the most efficient and natural way of communicating
 - Elder
 - Kids
 - Lazy people

SHRI, May 201

32

Spoken Human-Robot Interaction

- Design robotic systems that exhibit a natural and effective interaction with users
 - spoken language
 - guiding touch
 - gestures
 - gaze
 - visual demonstration

SHRI, May 2019

3.

Challenges in Spoken Human Robot Interaction

- The input signal (sound) is highly noisy (unless very constrained)
- Natural Language is inherently ambiguous
 - Natural Language (English or Italian are highly ambiguous)
 - Syntactic: Jordan could write more profound essays "more" what?
 - Semantic: Prostitutes appeal to the Pope (real life headline) appeal
 may mean both "to be liked by someone" and "to seriously request
 for help"
- Natural Language Interpretation is highly dependent on context

SHRI, May 2019

Interpreting commands — increasing complexity could you please find the remote controller of the television and bring it to the kitchen LOCATING(phenomenon: "the remote controller of the television")# BRINGING(theme: "it", goal: "to the kitchen") go to the bathroom, take the soap, and bring it to the side-table MOTION(goal: "to the bathroom")#TAKING(theme: "the soap")#BRINGING(theme: "it", goal: "to the side-table")

Grammar-based vs. data-driven

- S4R1 (Speaky 4 Robots)
 - Grammar-based
 - Language is domain-specific
 - Interpretation is application-dependent
- LU4R² (adaptive spoken Language Understanding 4 Robots)
 - Data-driven
 - Language is domain-driven
 - Interpretation is context-sensitive

SHRI, May 2019

39

Command Interpretation vs. Spoken Dialog Systems

- Command interpretation
 - · Communication is an atomic processing of sentences
 - Each sentence is independent
 - Linguistic/Physical context irrelevant
 - The SLU process is enough to carry out the task
- Dialogic interactions
 - Communication is a sequence of turns (sentences)
 - Each sentence depends (at least) on the previous one
 - The dialogue state influences the flow
 - Implies: dialogue manager, SLU, dialogue state tracking, natural language generation, ...

SHRI, May 2019

44

Plan of the lectures Command Interpretation - ASR (1) Morpho-syntactic analysis (1,2) Morphology POS tagging · Syntactic Parsing Semantic Analysis (3) POS tagging Syntactic Morphology Analysis • Dialogue Management (4) - Rule-based - Statistical DM SHRI, May 2019

NLP has many other application contexts

- Google Assistant
- Siri
- Smart cars
- Machine translation

More in the AI course and then on Natural Language Processing

SHRI, May 2019

46

Summary of introduction

- HRI is a critical feature for (service) robots
- Speech is a powerful HR interaction channel
- Spoken HRI is a an ideal framework to address the integration of symbolic and numerical reasoning

SHRI, May 2019