4.22.

Dada la siguiente tabla de Simplex, indicar los valores que deben tomar A, B, C, D, E, F, G, H, K y L para que la tabla que se presenta sea:

- a- Una tabla óptima de un problema de minimización con punto degenerado.
- Una tabla no óptima de un problema de maximización cuya siguiente tabla es un punto degenerado.
- c- Una tabla no óptima de un problema de maximización en la que al intentar pasar a la siguiente tabla se comprueba que el problema no está acotado.

			A	3	0	В	0	0
Cĸ	Xĸ	$\mathbf{B}_{\mathbf{K}}$	\mathbf{A}_1	A ₂	A ₃	A_4	A5	A ₆
0	X3	C	-3	D	1	0	1	0
В	X4	16	1	0	0	1	E	-4
3	X2	24	3	F	0	0	-1	G
	Z=		Н	J	0	0	K	L

Condiciones globales:

X2 está en la base \rightarrow D = 0, F = 1

 $C.N.N \rightarrow C >= 0$

Por cálculo de Zj – Cj:

- $H = 0^* 3 + B^* + 1 + 3^* + 3 A \rightarrow H = B A + 9$
- $J = 0*0 + 0*B + 3*1 3 \rightarrow J = 0$
- $K = 1*0 + E*B + 3*-1 -0 \rightarrow K = E*B -3$
- L = $0*0 + B*-4 + 3*G 0 \rightarrow L = -4*B + 3*G$

a) Tabla optima de minimización con punto degenerado.

C = 0

b) Tabla no optima de maximización cuya siguiente tabla es un punto degenerado.

No óptimo de maximización → algún Zj-Cj < 0

Siguiente tabla punto degenerado → empate de titas mínimos VÁLIDOS.

Tita por H	Tita por K	Tita por L
-	C/1	-
16/1	16/E	-
24/3	-	24/G

Entrar por H \rightarrow es IMPOSIBLE empate de titas \rightarrow queremos evitar que se pueda entrar: H >= 0.

Entrar por K \rightarrow C=16/E (E \neq 0 y debe ser positivo, sino se ignoraría el tita) hay empate de titas \rightarrow queremos que se pueda entrar: K < 0.

Entrar por L \rightarrow es IMPOSIBLE empate de titas \rightarrow queremos evitar que se pueda entrar: L >= 0.

c) Tabla no óptima de maximización en al que intentar pasar de tabla se comprueba que el problema no está acotado.

No acotado → Poliedro abierto → Todos los titas son INVÁLIDOS.

No óptimo de maximización → algún Zj-Cj < 0

Tita por H	Tita por K	Tita por L
-	C/1	-
16/1	16/E	-
24/3	-	24/G

Entrar por H \rightarrow siempre hay algún tita válido \rightarrow entonces NO queremos entrar por H \rightarrow H >= 0 Entrar por K \rightarrow C/1 es tita válido (C >= 0) \rightarrow entonces no queremos entrar por K \rightarrow K >= 0 Entrar por L \rightarrow si G <= 0 no hay titas validos \rightarrow L < 0 y G <= 0