

多元统计与矩阵分析

张锋 8125345@qq.com 中国地质大学, 计算机学院, 武汉

第1章 多元正态分布

内容

- (1) 随机向量
- (2) 多元正态分布概述
- (3) 多元正态分布的参数估计
- (4) 常用分布与抽样分布

内容

- (1) 随机向量
- (2) 多元正态分布概述
- (3) 多元正态分布的参数估计
- (4) 常用分布与抽样分布

随机向量

• 样本数据库(样本资料阵)

$$X = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \dots & \mathbf{X}_{1p} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \dots & \mathbf{X}_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{X}_{n1} & \mathbf{X}_{n2} & \dots & \mathbf{X}_{np} \end{bmatrix}$$

无特殊说明,本 书所有变量均为 列变量

- 样品:每一个个体的p个变量成为一个样品
- 样本:全体n个样品形成一个样本
- 总体
- 随机向量: 指标(变量)排在一起所构成的向量
- 横看,第i个样品的观测值,p维随机向量
- 纵看,第j个变量的n次观测,n维随机向量

多"元"数据

学生成绩表											
学号	姓名	班级	性别	政治	语文	英语	数学	物理	化学	总分	平均分
20060001	陈文章	1	男	93	89	87	85	82	86		
20060002	张强	1	男	84	86	89	92	90	88		
20060003	李芬	1	女	95	90	93	89	91	89		
20060004	陆洋	2	男	83	78	76	86	80	84		p: 5
20060005	姚舒	3	女	90	92	94	95	92	90		
20060006	丁琼玉	2	女	81	84	83	78	84	67		
20060007	钟达峰	2	男	78	83	75	82	85	77	3	
20060008	朱桐	3	男	92	94	96	96	95	93	20 -	
20060009	吴燕	1	女	87	91	90	94	96	91		
20060010	曹斌	3	男	81	80	82	87	88	83		
20060011	宋令文	3	男	88	96	97	95	94	93		
20060012	杨华	2	女	95	93	92	92	87	85		50.

多"元"数据

表 3-11 指标数据(1)

# IZ	人均地区	人均可	人均拥有公共	人均教育文化	人均交通通讯	每百户计算机
地区	生产总值	支配收入	图书馆藏量	娱乐消费支出	消费支出	拥有量
北京	129 041.64	57 229.8	1.27	3 916.72	5 033.98	101.08
天津	119 134.17	37 022.3	1.07	2 691.52	3 744.54	74.21
河北	45 234.47	21 484.1	0.34	1 578.29	2 290.30	59.48
山西	41 946.03	20 420.0	0.47	1 879.25	1 884.04	55.57
内蒙古	63 646.54	26 212.2	0.71	2 227.80	2 914.92	47.35
辽宁	53 580.32	27 835.4	0.91	2 534.52	3 088.44	60.66
吉林	55 003.79	21 368.3	0.73	1 928.51	2 217.96	52.72
黑龙江	41 970.65	21 205.8	0.57	1 897.99	2 185.53	47.35
上海	126 687.30	58 988.0	3.21	4 685.92	4 057.65	131.07
江苏	106 949.51	35 024.1	1.07	2 747.59	3 496.40	78.75
浙江	91 511.86	42 045.7	1.38	2 844.91	4 306.54	80.75
安徽	43 194.24	21 863.3	0.41	1 700.51	2 102.26	46.23
福建	82 286.09	30 047.7	0.85	1 966.44	2 642.78	67.50
江西	43 284.96	22 031.4	0.53	1 606.79	1 600.74	50.81
.1	70 500 00	22 222 2	A ==	1 010 11	0.500.00	20.00

多"元"数据

表 3-10 全国各地区居民生活质量测度指标体系

指标名称	变量名	单位
人均地区生产总值	X_1	元
人均可支配收入	X_2	元
人均拥有公共图书馆藏量	X 3	册
人均教育文化娱乐消费支出	X_4	元
人均交通通讯消费支出	X_5	元
每百户计算机拥有量	X_6	台
每百户家用汽车拥有量	X_7	辆
每百户照相机拥有量	X 8	台
每万人公共车辆数	X_9	辆
每千人口医疗卫生机构床位数	X 10	个
生活垃圾无害化处理率	X_{11}	%

随机向量的分布

• 定义1.1 p个随机变量 $X_1, X_2, ..., X_p$ 所组成的向量 $X = (X_1, X_2, ..., X_p)'$ 称为随机向量。

• 定义1.2 设 $X = (X_1, X_2, ..., X_P)'$ 为p维随机向量,其联合分布函数为

$$F(x_1,\ldots,x_p)=P(X_1\leq x_1,\ldots,X_p\leq x_p)$$

记为 $X\sim F$ 。

随机向量的分布

定义1.3 如果存在非负函数 $f(x_1,...,x_p)$,使得对一切 $(x_1,...,x_p) \in R^p$,联合分布函数可表示为

$$F(x_1,...,x_p) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_p} f(t_1,...,t_p) dt_1 ... dt_p$$

则称X为连续型随机向量,称 $f(x_1,...,x_p)$ 为X的联合概率密度函数,简称为密度函数或者分布密度。

密度函数有以下两条重要性质:

(1)
$$\forall (x_1, ..., x_p) \in R^p, f(x_1, ..., x_p) \ge 0$$

(2)
$$\int_{-\infty}^{+\infty} ... \int_{-\infty}^{+\infty} f(t_1, ..., t_p) dt_1 ... dt_p = 1$$

事实上,一个p维变量的函数 $f(x_1,...,x_p)$ 能作为p中某个随机向量的分布密度当且仅当以上两条性质成立时。 www.cug.edu.cn

随机向量的边际分布

定义1.4 设 $X = (X_1, X_2, \dots, X_p)'$ 为 p 维随机向量,其联合分布函数 $F(x_1, \dots, x_p)$ 。 X 的 q 个分量所组成的子向量 $(X_{i_1}, \dots, X_{i_q})'$ 的分布称为 X 的边缘(或边际) 分布。如果我们将 X 划分为 q 维子向量 $X^{(1)}$ 与 p-q 维子向量 $X^{(2)}$,那么 $X^{(1)}$ 的

边缘分布为
$$\begin{split} F^{(1)}(x_1,...,x_q) &= P(X_1 \leq x_1,...,X_q \leq x_q) \\ &= P(X_1 \leq x_1,...,X_q \leq x_q,X_{q+1} \leq \infty,...,X_p \leq \infty) \\ &= F(x_1,...,x_q,\infty,...,\infty) \end{split}$$

当 X 有分布密度时, $X^{(1)}$ 也有分布密度,其边缘密度为

$$f^{(1)}(x_1, \dots, x_q) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_1, \dots, x_p) dt_{q+1} \dots dt_p$$

随机向量的条件分布与独立

定义 1.5 如果我们将 X 划分为 q 维子向量 $X^{(1)}$ 与 p-q 维子向量 $X^{(2)}$, 那么在给定 $X^{(2)}$ 时, $X^{(1)}$ 的分布称为条件分布。如果 X 有密度函数 $f(x^{(1)}, x^{(2)})$, 那么给定 $X^{(2)}$ 时, $X^{(1)}$ 的密度函数为

$$f_1(\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)}) = f(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})/f_2(\mathbf{x}^{(2)})$$

其中, $f_2(x^{(2)})$ 是 $X^{(2)}$ 的边缘密度。

定义1.6 若 p 个随机向量 X_1, \dots, X_p 的联合分布等于各自边缘分布的乘积,则称 X_1, \dots, X_p 是相互独立的。需要注意的是,如果 X_1, \dots, X_p 相互独立,那么其中任意两个随机向量两两独立,但是反之不真。

总体期望方差标准差

- 总体均值
 - -X是离散的随机变量

$$-X$$
是离散的随机变量 $E(X) = \mu = \sum_{i=0}^{\infty} p_i x_i$
-X是连续的随机变量 $E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$

• 总体方差

$$Var(X) = E[(X - \mu)^{2}]$$

$$= E[X^{2} - 2XE[X] + (E[X])^{2}] = E[X^{2}] - 2E[X]E[X] + (E[X])^{2} = E[X^{2}] - (E[X])^{2}$$

$$Var(X) = \sigma^{2} = \frac{\sum (X - \mu)^{2}}{N}$$

• 总体标准差

$$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$$

样本均值方差标准差

• 样本均值

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

• 样本方差

$$s^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}$$

Why N-1??

• 样本标准差

$$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$

随机向量的均值

设
$$X = (X_1, X_2, ..., X_p)', Y = (Y_1, Y_2, ..., Y_q)'$$
 为两个随机向量。 若 $E(X_i) = \mu_i$ 存在,则称

$$E(\mathbf{X}) = \begin{bmatrix} E(X_1) \\ \vdots \\ E(X_p) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_p \end{bmatrix}$$

为随机向量 X 的均值向量。

根据定义容易验证均值向量具有以下性质:

$$E(AX) = AE(X)$$
$$E(AXB) = AE(X)B$$

其中 $A \setminus B$ 为大小适合矩阵运算的常数矩阵。www.cug.edu.cn

协方差矩阵

若 X_i 与 X_j 的协方差存在 $(i, j = 1, \dots, p)$,则称 $\Sigma = Cov(X, X) = D(X) = E[(X - E(X))(X - E(X))']$

$$= \begin{bmatrix} D(X_1) & \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{cov}(X_1, X_p) \\ \operatorname{cov}(X_2, X_1) & D(X_2) & \cdots & \operatorname{cov}(X_2, X_p) \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{cov}(X_p, X_1) & \operatorname{cov}(X_p, X_2) & \cdots & D(X_p) \end{bmatrix}$$

为随机向量 X 的协方差阵。

协方差矩阵

若 X_i 与 Y_j 的协方差存在 $(i = 1, \dots, p; j = 1, \dots, q)$,则称

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))']$$

$$= \begin{bmatrix} Cov(X_1, Y_1) & Cov(X_1, Y_2) & \cdots & Cov(X_1, Y_q) \\ Cov(X_2, Y_1) & Cov(X_2, Y_2) & \cdots & Cov(X_2, Y_q) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(X_p, Y_1) & Cov(X_p, Y_2) & \cdots & Cov(X_p, Y_q) \end{bmatrix}$$

为随机向量 X 和 Y 的协方差阵。

当 X = Y 时,Cov(X, Y) 即为 D(X)。

当 Cov(X,Y) = 0 时,称 X 与 Y 不相关。

如果 X 与 Y 独立,则 X 与 Y 不相关。反之不真。
www.cug.edu.cn

相关阵

若 X_i 与 X_j 的协方差存在 $(i,j = 1, \dots, p)$,则 X_i 与 X_j 的相关系数

$$r_{ij} = \frac{Cov(X_i, X_j)}{\sqrt{D(X_i)D(X_j)}}$$

将这 $p \times p$ 个相关系数排列成一个方阵 $\mathbf{R} = (r_{ij})_{p \times p}$, 称为 \mathbf{X} 的相关阵。 若记的 X_i 的方差 $D(X_i)$ 为 σ_{ii} ,则我们称 $\mathbf{V}^{1/2} = \operatorname{diag}(\sqrt{\sigma_{11}}, \cdots, \sqrt{\sigma_{pp}})$ 为标准差矩阵。协方差矩阵与相关阵有这样的关系:

$$\Sigma = V^{1/2}RV^{1/2}$$
 或 $R = (V^{1/2})^{-1}\Sigma(V^{1/2})^{-1}$ 。

根据协方差阵的定义,可以验证其具有以下性质:

- (1) 随机向量 X 的协方差阵是对称非负定矩阵
- (2) (2) Cov(AX, BY) = A Cov(X, Y) B

其中 A,B 为大小适合矩阵运算的常数矩阵。

内容

- (1) 随机向量
- (2) 多元正态分布概述
- (3) 多元正态分布的参数估计
- (4) 常用分布与抽样分布

多元正态分布

- 设 X_1, \dots, X_m 为 m 个相互独立标准正态变量, $X = (X_1, \dots, X_m)$ 为这 m 个随机变量构成的随 机向量;
- 设 μ 为 p 维常数向量, A 为 p × m 维常数矩阵;
- 则称 $Y = AX + \mu$ 的分布为 p 元正态分布,或称 Y 为 p 维正态随机向量,记为 $Y \sim N_p(\mu, AA')$

多元正态分布

p 元随机向量 $X = (X_1, X_2, \dots, X_p)'$, $X \sim N_p(\mu, \Sigma)$, 且 Σ 正定 (为了保证 Σ^{-1} 存在), X的联合概率密度函数为:

$$f(x_1, x_2, \dots, x_p) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}, \; \mathbf{\Sigma} > \mathbf{0}$$

则称 $X = (X_1, X_2, \dots, X_p)'$ 遵从 p 元正态分布, 也称 X 为 p 元正态变量, 记为:

$$X \sim N_p(\mu, \Sigma)$$

设 $X \sim N_p(\mu, \Sigma)$, 且 Σ 正定(为了保证 Σ^{-1} 存在), 那么 X 的联合密度函数为

$$f(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(x - \boldsymbol{\mu})'(\mathbf{\Sigma})^{-1}(x - \boldsymbol{\mu})\right]$$

$$f(x) = \frac{1}{(2\pi)^{1/2} |\sigma^2|^{1/2}} \exp\left[-\frac{1}{2}(x - \boldsymbol{\mu})'(\sigma^2)^{-1}(x - \boldsymbol{\mu})\right]$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x - \boldsymbol{\mu})^2}{2\sigma^2}} (\sigma > 0, -\infty < x < \infty)$$

www.cug.edu.cn

二元正态分布

例1.1 设 $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ 服从二元正态分布,利用参数 $\mu_1 = E(X_1)$ 、 $\mu_2 = E(X_2)$ 、 $\sigma_1 = G(X_1)$

$$\sqrt{D(X_1)}$$
、 $\sigma_2 = \sqrt{D(X_2)}$ 、 $\rho = \frac{Cov(X_1, X_2)}{\sigma_1 \sigma_2}$ 来表示X的联合密度。

解我们可以将协方差矩阵写作

$$\boldsymbol{\varSigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

从而其行列式为

$$|\Sigma| = \sigma_1^2 \sigma_2^2 (1 - \rho^2)$$

其逆矩阵为

$$\mathbf{\Sigma}^{-1} = \frac{1}{\sigma_1^2 \sigma_2^2 (1 - \rho^2)} \begin{bmatrix} \sigma_2^2 & -\rho \sigma_1 \sigma_2 \\ -\rho \sigma_1 \sigma_2 & \sigma_1^2 \end{bmatrix}$$

将其代入密度公式中可以得到X的联合密度为

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{(1-\rho^2)}} exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1 - \mu_1}{\sigma_1}\right)\left(\frac{x_2 - \mu_2}{\sigma_2}\right) + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$

多元正态向量的性质

设 $X = (X_1, \cdots, X_p)' \sim N_p(\mu, \Sigma)$ 。

- (1) 若 Σ 为对角矩阵,则 X_1 ,…, X_p 独立。
- (2) X的任意边缘分布仍然为正态分布。特别的,如果将X、 μ 、 Σ 作如下划分:

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}^{(1)} \\ \boldsymbol{X}^{(2)} \end{bmatrix}_{p-q}^{q} \qquad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$

其中 $X^{(1)}$ 与 $\mu^{(1)}$ 为p维向量, $X^{(2)}$ 与 $\mu^{(2)}$ 为p-q维向量, Σ_{11} 为 $q \times q$ 维矩阵, Σ_{12} 为 $q \times (p-q)$ 维矩阵, Σ_{21} 为 $(p-q) \times q$ 维矩阵, Σ_{22} 为 $(p-q) \times (p-q)$ 维矩阵。则 $X^{(1)} \sim N_q(\mu^{(1)}, \Sigma_{11}), X^{(2)} \sim N_{p-q}(\mu^{(2)}, \Sigma_{22})$ 。顺便指出, $X^{(1)}$ 与 $X^{(2)}$ 相互独立当且仅当 Σ_{12} 为零矩阵。

- (3) 设 \mathbf{A} 是 $\mathbf{s} \times p$ 阶常数矩阵, \mathbf{d} 为 \mathbf{s} 维常数向量,则 $\mathbf{A}\mathbf{X} + \mathbf{d}$ 也服从正态分布,且 $\mathbf{A}\mathbf{X} + \mathbf{d} \sim N_{\mathbf{s}}(\mathbf{A}\boldsymbol{\mu} + \mathbf{d}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$
- (4) 若Σ为正定阵,则 $(X \mu)\Sigma^{-1}(X \mu)\sim \chi^2(p)$

内容

- (1) 随机向量
- (2) 多元正态分布概述
- (3) 多元正态分布的参数估计
- (4) 常用分布与抽样分布

多元样本数字特征

考虑p元总体 $X \sim N_p(\mu, \Sigma)$,设 $X_{(1)}, \cdots, X_{(n)}$ 为来自p元总体的简单随机样本,其中 $X_{(i)} = (x_{i1}, \cdots, x_{ip})'(i = 1, \cdots, n)$ 。样本均值向量 \overline{X} 的定义为

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{(i)} = (\overline{x}_1, \dots, \overline{x}_p)' = \frac{1}{n} X' \mathbf{1}_n$$

其中 $\bar{x}_i = \frac{1}{n} \sum_{b=1}^n x_{bi} (i = 1, \dots p)$, $\mathbf{1}_n$ 是一个n维的分量全为1的向量。

 \bar{X} 是 μ 的无偏估计。

多元样本数字特征

样本离差阵的定义为

$$A = \sum_{b=1}^{n} \left(X_{(b)} - \overline{X} \right) \left(X_{(b)} - \overline{X} \right)' = X'X - n\overline{X}\overline{X}' = X' \left[I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n' \right] X = \left(a_{ij} \right)_{p \times p}$$

其中 $a_{ij} = \sum_{b=1}^{n} (x_{bi} - \bar{x}_i)(x_{bj} - \bar{x}_j)(i, j = 1, \dots p)_{\circ}$

样本协方差矩阵的定义为

$$S = \frac{1}{n-1}A = (s_{ij})_{p \times p}$$
(或者 $S^* = \frac{1}{n}A$)

此时
$$s_{ij} = \frac{1}{n-1} \sum_{b=1}^{n} (x_{bi} - \bar{x}_i) (x_{bj} - \bar{x}_j) (i, j = 1, \dots, p)_{\circ}$$

样本相关阵的定义为

$$R = (r_{ij})_{p \times p}$$

其中
$$r_{ij} = \frac{\mathbf{s}_{ij}}{\sqrt{\mathbf{s}_{ii}}\sqrt{\mathbf{s}_{jj}}} = \frac{a_{ij}}{\sqrt{a_{ii}}\sqrt{a_{jj}}}, (i,j=1,\cdots,p)_{\circ}$$

S是∑的无偏估计。

正态总体下的性质

定理 **1.1** 设 \bar{X} 和 A 分别为 p 元正态总体 $N_p(\mu, \Sigma)$ 的样本均值向量和样本离差阵,则

(1)
$$\overline{X} \sim N_p\left(\mu, \frac{1}{n}\Sigma\right);$$

- (2) 若设 Z_1, \dots, Z_{n-1} 独立同 $N_p(\mathbf{0}, \mathbf{\Sigma})$ 分布,则 A 与 $\Sigma_{t=1}^{n-1} Z_t Z_t'$ 同分布;
- (3) \bar{X} 与 A 相互独立;
- (4) A 为正定阵的充要条件是 n > p。

注意到这时 A 是随机矩阵, 因此" A 为正定阵"这句话的含义事实上是" A 为正定阵"这个事件的概率为 1。

内容

- (1) 随机向量
- (2) 多元正态分布概述
- (3) 多元正态分布的参数估计
- (4)常用分布与抽样分布

常用分布与抽样分布

- 在一元正态总体中,用于检验参数 μ 、 σ 的 抽样分布有 χ^2 分布、t分布以及F分布。
- 在多元正态总体中,与之对应的分布为 Wishart分布、Hoteling T^2 分布以及Wilks分布。

卡方分布

在数理统计中, 若 $X_i \sim N(0,1)(i=1,2,\cdots,n)$, 且相互独立, 则 $\sum_{i=1}X_i^2$ 所遵从的分布为自由度为 n 的 χ^2 分布 (chi-squared distribution), 记为 $\chi^2(n)$ 。

如果从一元正态总体 $N(\mu, \sigma^2)$ 中抽取 n 个简单随机样本 X_1, \dots, X_n ,我们用样本方差

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

来估计 σ^2 , 此时 $\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$ 。因此, 可以得到 $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$ 。那么对 p 元正态总体, 样本协方差阵 $S = \frac{1}{n-1}A$ 又有怎样的分布呢?

Wishart分布

定义 1.7 设 $X_{(b)} \sim N_p(\mu_b, \Sigma)(b=1, \cdots, n)$ 是相互独立的 $n \wedge p$ 维正态变量,记 $X = (X_{(1)}, \cdots, X_{(n)})'$ 为一个 $n \times p$ 矩阵,则称随机阵 $W = \sum_{b=1}^n X_{(b)} X'_{(b)} = X'X$ 的分布为自由度为 n 的 p 维非中心 Wishart 分布,记为 $W \sim W_p(n, \Sigma, \Delta)$ 。 其中 Δ 一般 称为非中心参数, $\Delta = \sum_{b=1}^n \mu_b \mu'_b$ 。 当 $\mu_b = 0$ 时,我们一般称为中心 Wishart 分布,记为 $W \sim W_p(n, \Sigma)$ 。

当 p=1, $\mu_b=0$ 时, $X_b\sim N(0,\sigma^2)$, 此时 $W=W_1(n,\sigma^2)=\sum_{b=1}^n X_{(b)}^2\sim \sigma^2\chi^2(n)$ 。也就是说 $W_1(n,1)$ 就是 $\chi^2(n)$ 。因此 Wishart 分布是 χ^2 分布在多元正态情形下的推广。

Wishart分布

(1) 设 $X_{(b)} \sim N_p(\mu, \Sigma)(b = 1, \dots, n)$ 相互独立,则样本离差阵 A 服从 Wishart 分布, 即

$$A = \sum_{b=1}^{n} (X_{(b)} - \overline{X})(X_{(b)} - \overline{X})' \sim W_p(n-1, \Sigma)$$

(2) 设 $W_i \sim W_p(n_i, \Sigma)(i = 1, \dots, k)$ 相互独立, 若令 $n = n_1 + \dots + n_k$, 则有

$$\sum_{i=1}^{k} \boldsymbol{W_i} \sim W_p(n, \boldsymbol{\Sigma})$$

这个性质一般称为 Wishart 分布关于自由度 n 具有可加性,这点与 χ^2 分布类似。

(3) 设p 阶随机阵 $W \sim W_p(n, \Sigma), C_{m \times p}$ 为常数矩阵,则

$$CWC' \sim W_m(n, C\Sigma C')$$

特别的,如果取 C 为向量 $\mathbf{l} = (l_1, \cdots, l_p)'$,则有 $\mathbf{l}'W\mathbf{l} \sim W_1(n, \mathbf{l}'\Sigma\mathbf{l})$,也即 $\frac{l'W\mathbf{l}}{l'\Sigma l} \sim \chi^2(n)$

t分布

在一元统计中我们学过,若 $X \sim N(0,1)$, $Y \sim \chi^2(n)$,且 X 与 Y 独立,则随机变量 $t = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,也称为学生分布。我们还学过,如果将 t 平方,就得到

$$t^2 = \frac{nX^2}{Y} \sim F(1, n)$$

即 $t^2(n)$ 服从第一自由度为 1、第二自由度为 n 的中心 F 分布。下面仿照一元情形将 t^2 的分 布推广到 p 元总体的情形。

Hotelling T²分布

定义 **1.8** 设 $W \sim W_p(n, \Sigma), X \sim N_p(0, \Sigma), n \geq p, \Sigma > 0$,且 W 与 X 相互独立,则称随机变量 $T^2 = nX'W^{-1}X$ 所服从的分布称为第一自由度为 p,第二自由度为 n 的 Hotelling T^2 分布,记为

$$T^2 \sim T^2(p,n)$$

注意我们可以证明 T^2 分布只与 n,p 有关,与 Σ 无关,因此在表示 T^2 分布的记号中没有 Σ 。

 T^2 分布与 F 分布也有一定的关系。在一元统计中,如果 $t = \frac{X}{\sqrt{Y/n}} \sim t(n)$,则 $t^2 = \frac{X^2}{Y/n} \sim F(1,n)$ 。推广到 p 元情形, 这个关系是 $\frac{n-p+1}{pn}T^2(p,n) = F(p,n-p+1)$ 。

Hotelling T²分布

(1) 设 $X_{(b)}(b = 1, \dots, n)$ 是从 p 维正态总体 $N_p(\mu, \Sigma)$ 中抽取的 n 个随机样本, \overline{X} 为样本均值向量, A 为样本离差阵, 则统计量

$$T^{2} = (n-1)[\sqrt{n}(\overline{X} - \mu)]'A^{-1}[\sqrt{n}(\overline{X} - \mu)]$$
$$= n(n-1)(\overline{X} - \mu)'A^{-1}(\overline{X} - \mu)$$
$$\sim T^{2}(p, n-1)$$

(2) 设有两个 p 维正态总体 $N_p(\mu_1, \Sigma)$, $N_p(\mu_2, \Sigma)$, 从这两个总体中抽出容量分别为 n_1 和 n_2 的两个样本。记 \overline{X}_1 , \overline{X}_2 为两样本的均值向量, S_1 , S_2 为两样本协方差阵, 并记

$$S_p = \frac{n_1 S_1 + n_2 S_2}{n_1 + n_2 - 2}$$

若 $\mu_1 = \mu_2$, 则

$$\frac{n_1 n_2}{n_1 + n_2} (\overline{X}_1 - \overline{X}_2)' S_p (\overline{X}_1 - \overline{X}_2) \sim T^2(p, n_1 + n_2 - 2)$$

F分布

在一元统计学中,若 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$,且 X 与 Y 相互独立,则称 $F = \frac{X/m}{Y/n}$ 所 遵从的分布为第一自由度为 m 、第二自由度为 n 的中心 F 分布,记为 $F \sim F(m,n)$ 。 F 分布本质上是从正态总体 $N(\mu,\sigma^2)$ 中随机抽取的两个样本方差的比。

Wilks A分布

定义 1.9 设 $X \sim N_p(\mu, \Sigma)$, 则称协方差阵的行列式 $|\Sigma|$ 为 X 的广义方差。再设 $A_1 \sim W_p(n_1, \Sigma)$, $A_2 \sim W_p(n_2, \Sigma)$ ($\Sigma > 0$, $n_1 \ge p$),且 A_1 与 A_2 独立,则称

$$\Lambda = \frac{|A_1|}{|A_1 + A_2|}$$

为 Wilks 统计量或 Λ 统计量, 其所遵从的分布称为 Wilks 分布, 记为

$$\Lambda \sim \Lambda(p, n_1, n_2)$$

Wilks //近似分布

p	n_2	统计量F	F的自由度
任意	1	$\frac{n_1 - p + 1}{p} \frac{1 - \Lambda}{\Lambda}$	$p, n_1 - p - 1$
任意	2	$\frac{n_1 - p + 1}{p} \frac{1 - \sqrt{\Lambda}}{\sqrt{\Lambda}}$	$2p, 2(n_1 - p + 1)$
1	任意	$\frac{1-\Lambda}{\Lambda}\frac{n_1}{n_2}$	n_2 , n_1
2	任意	$\frac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}}\frac{n_1-1}{n_2}$	$2n_{2,2}(n_1-1)$

Wilks //近似分布及性质

当 $n_2 > 2, p > 2$ 时, 我们有这样的近似分布:

$$\stackrel{\text{def}}{=} n_1 \to \infty, -\left(n_1 - \frac{1}{2}(p - n_2 + 1)\right) \ln \Lambda \sim \chi^2(pn_2) .$$

此外,类似于 F 分布中 F(n,m) 与 $\frac{1}{F(m,n)}$ 同分布, Λ 分布也有一个类似的性质: 若 $n_2 < p$, 则 $\Lambda(p,n_1,n_2) = \Lambda(n_2,p,n_1+n_2-p)$ 。

作业

为什么样本方差

$$s^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}$$

分母是N-1而不是N?