Syntax

Terms $M ::= x \mid \lambda x.M \mid M_1 M_2 \mid \#op(M) \mid \text{handle } M \text{ with } H \mid \lambda E^{\ell}$

Values $v := \lambda x.M \mid \lambda E^{\ell} \mid \ell$

Handlers $H ::= \{ \text{return } x \mapsto M \} \mid \{ op(x, k) \mapsto M \} ; H$ **Evaluation contexts** $E ::= [] \mid v_1 \mid E \mid E \mid M_2 \mid \#op(E) \mid \text{handle } E \text{ with } H$

Type variables α, β, γ

Types $A, B, C, D ::= \alpha \mid A \to B \mid \forall \alpha. A$

Typing contexts $\Gamma ::= \emptyset \mid \Gamma, x : A \mid \Gamma, \alpha$

Runtime error ε

Reduction rules

$$M_1 \rightsquigarrow M_2$$

$$(\lambda x.M) \ v \ /\sigma \leadsto M[v/x] \ /\sigma \qquad \qquad \text{R_Beta}$$
 handle v with $H \ /\sigma \leadsto M[v/x] \ /\sigma$ (where $\{ \text{return } x \mapsto M \} \in H \}$) R_RETURN handle $E[\#op(v)]$ with $H \ /\sigma \leadsto M[v/x][\lambda E^{\ell}/k] \ /\sigma[\ell \mapsto true]$ R_Handle (where $op \notin E$, $\{op(x,k) \mapsto M\} \in H$, and $\lambda E^{\ell} = \lambda y$. handle $E[y]$ with H)
$$(\lambda E^{\ell}) \ v \ /\sigma[\ell \mapsto true] \leadsto \text{handle } E[v] \text{ with } H \ /\sigma[\ell \mapsto false]$$
 R_RESUME
$$(\lambda E^{\ell}) \ v \ /\sigma[\ell \mapsto false] \leadsto \varepsilon$$

Term typing

$$\Gamma \vdash M : A$$

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}\text{ T_VAR}\qquad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash\lambda x.M:A\to B}\text{ T_ABS}\qquad \frac{\Gamma,\alpha\vdash M:A}{\Gamma\vdash M:\forall\alpha.A}\text{ T_GEN}$$

$$\frac{\Gamma \vdash M_1 : A \to B \qquad \Gamma \vdash M_2 : A}{\Gamma \vdash M_1 M_2 : B} \text{ T_APP} \qquad \frac{ty(op) = \forall \alpha . A \to B \qquad \Gamma \vdash M : A[C/\alpha]}{\Gamma \vdash \#op(M) : B[C/\alpha]} \text{ T_OP}$$

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash H : A \Rightarrow B}{\Gamma \vdash \text{handle } M \text{ with } H : B} \text{ T_Handle } \frac{\Gamma, x : A \vdash \text{handle } E[x] \text{ with } H : B}{\Gamma \vdash \lambda E^{\ell} : A \rightarrow B} \text{ T_Eabs}$$

Progress

If $\Delta \vdash M : A$, then:

- 1. $M \longrightarrow M'$ for some M';
- 2. M is a value; or M = E[#op(v)] for some E, op, and v such that $op \notin E$.
- 3. $M \longrightarrow \varepsilon$

Proof By induction on the typing derivation for M.

Case (T_Var): Contradictory.

Case (T_Abs): Obvious.

Case (T_Gen): By the IH.

Case (T_App):

$$\frac{\Gamma \vdash M_1 : A \to B \qquad \Gamma \vdash M_2 : A}{\Gamma \vdash M_1 M_2 : B} \text{ \mathbf{T}_App}$$

By case analysis on the behavior of M_1 . We have four cases to consider by the IH.

Subcase $M_1 \longrightarrow M_1'$ for some M_1' : We have $M \longrightarrow M_1'M_2$.

Subcase $M_1 = E_1[\#op(v)]$ for some E_1 , op, and v such that op $\notin E_1$: We have $E = E_1M_2$.

Subcase $M_1 \longrightarrow \varepsilon$: We have $M \longrightarrow \varepsilon$.

Subcase $M_1 = v_1$ for some v_1 : By case analysis on the behavior of M_2 with the IH.

Subcase $M_2 \longrightarrow M_2'$ for some M_2' : We have $M \longrightarrow v_1 M_2'$.

Subcase $M_2 = E_2[\#op(v)]$ for some E_2 , op, and v such that op $\notin E_2$: We have $E = v_1 E_2$.

Subcase $M_2 \longrightarrow \varepsilon$: We have $M \longrightarrow \varepsilon$.

Subcase $M_2 = v_2$ for some v_2 : we have two cases to consider.

Subcase $v_1 = \lambda E^{\ell}$: If $\ell \mapsto true$, then $M = (\lambda E^{\ell}) v_2 \longrightarrow \text{handle } E[v_2]$ with $H / \sigma[\ell \mapsto false]$. Otherwise $M \longrightarrow \varepsilon$.

Subcase $v_1 = \lambda x.M'$: By (R_Beta), $M = (\lambda x.M') v_2 \longrightarrow M'[v_2/x]$.

Case (T_Op) :

$$\frac{ty(op) = \forall \alpha.A \rightarrow B \qquad \Gamma \vdash M : A[C/\alpha]}{\Gamma \vdash \#op(M) : B[C/\alpha]} \text{ T-Op}$$

Subcase $M \longrightarrow M'$ for some M': We have $\#op(M) \longrightarrow \#op(M')$.

Subcase $M = E'[\#\mathbf{op}'(v)]$ for some E', \mathbf{op}' , and v such that $\mathbf{op}' \notin E'$: We have $E = \#\mathbf{op}(E')$.

Subcase M = v for some v: We have E = [].

Subcase $M \longrightarrow \varepsilon$: We have $\#op(M) \longrightarrow \varepsilon$.

Case (T_Handle):

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash H : A \Rightarrow B}{\Gamma \vdash \text{handle } M \text{ with } H : B} \text{ \mathbf{T}_Handle}$$

```
Subcase M \longrightarrow M' for some M': We have handle M with H \longrightarrow handle M' with H.

Subcase M = E'[\#\mathbf{op}'(v)] for some E', \mathbf{op}', and v, such that \mathbf{op}' \notin E':

If handler H contains an operation clause \mathbf{op}'(x,k) \to M', then we have handle M with H \longrightarrow M'[v/x][\lambda y.handle E'[y] with H/k]. Otherwise, if H contains no operation clause for \mathbf{op}', we have E = handle E' with H.

Subcase M = v for some v: By (R_Return).
```

Subcase M = v for some v: By (R_Return). Subcase $M \longrightarrow \varepsilon$: We have handle M with $H \longrightarrow \varepsilon$. Case (T_Eabs): Obvious.