4. Topologie Übung

Ferdinand Szekeresch

27. Dezember 2016

Aufgabe 2

- a) $\mathbb{R}, (a, b), [a, b], (a, b]$
 - \mathbb{R} und (a, b) sind homöomorph, denn :

$$f_1: \mathbb{R} \to (0,1); x \mapsto \frac{1}{\pi}\arctan(x) + \frac{1}{2}$$
 ist homöomorph $f_2: (0,1) \to (a,b), x \mapsto (b-a)x + a$ ist homöomorph

 $\Rightarrow f_2 \circ f_1 : \mathbb{R} \to (a,b)$ ist Homöomorphismus.

- (a,b) und [a,b] sind nicht homöomorph, denn (a,b) ist nicht kompakt, [a,b] aber schon. Da stetige Abbildungen Kompakta auf Kompakta abbilden und Homöom. insbes. stetig sind, kann es keinen Homöomorphismus $(a,b) \to [a,b]$ geben.
- $[a,b] \rightarrow (a,b]$ sind nicht homöomorph, wäre $f:[a,b] \rightarrow (a,b]$ ein Homöomorphismus, so wäre f nach Zwischenwertsatz streng monoton, d.h. $f([a,b]) = [f(a),f(b)] \not$.
- analog: (a, b) und (a, b] sind nicht homöom. $\Rightarrow \mathbb{R}$ und (a, b) bzw. (a, b] sind nicht homöom.
- b) S^1 und \mathbb{R}/\mathbb{Z} sind homöom.

Definiere Homöomorphismus $h: \mathbb{R}/\mathbb{Z} \to S^1, [x] \mapsto (\cos(2\pi x), \sin(2\pi x))$

h ist wohldefiniert, denn seien x, y mit $x \sim y \Leftrightarrow \exists k \in \mathbb{Z} : x = y + k$

 $\Leftrightarrow h([x]) = (\cos(2\pi y + 2\pi k), \sin(2\pi y + 2\pi k)) = (\cos(2\pi y), \sin(2\pi y)) = h([y])$

Die zeigt auch: h ist injektiv.

Klar: h ist surjektiv.

h ist stetig, da $h \circ \pi$ stetig ist, (+ Aufgabe 4, Blatt 5)

h ist offen, denn $h \circ \pi$ ist offen.

Das reicht, denn $\forall O \subseteq \mathbb{R}/\mathbb{Z} : h(o) = h \circ \pi(\pi^{-1}(O))$, da π surjektiv ist.)

Das überlegt man sich für Intervalle $\subseteq \mathbb{R}$.

c) $W^n := \partial([0,1]^{n+1}), S^n := \{x \in \mathbb{R}^{n+1} | ||x|| = 1\}$ sind homöomorph.

$$f: S^n \to W^n, (x_1, \dots, x_{n+1}) \mapsto \frac{1}{\max(|x_1|, \dots, |x_{n+1}|)} (x_1, \dots, x_{n+1})$$

$$g: S^n \to W^n, (y_1, \dots, y_{n+1}) \mapsto \frac{1}{\max(|y_1|, \dots, |y_{n+1}|)} (y_1, \dots, y_{n+1})$$

f und g sind stetig zueinander.

Aufgabe 1

- a) \mathbb{Q} ist abzählbar $\stackrel{\text{b})}{\Rightarrow}$ $\big\{\{x\}|x\in\mathbb{Q}\big\}$ ist die Menge der Zusammenhangskomponenten von \mathbb{Q} .
- b) Beh: (X, d) abzählbar \Rightarrow die Zusammenhangskomponenten von X sind einelementig.

Bew: Seien $x \neq y \in X \Rightarrow l := d(x, y) > 0$

X abzählbar $\Rightarrow l \in M$, wobei M abzählbare Teilmenge von \mathbb{R}

$$\Rightarrow \exists r \in [0, d] : \{z \in X | d(x, z) = r\} = \emptyset$$

Setze
$$V_1 = \{z \in X | d(x, z) \le r\} V_2 = \{z \in X | d(x, z) \ge r\}$$

Gäbe es eine zusammenhängende Teilmenge A von X mit $x, y \in A$, so wäre $A = \underbrace{(V_1 \cap A)}_{\neq \emptyset} \cup \underbrace{(V_2 \cap A)}_{\neq \emptyset} \quad \not \text{\sharp zu A zusammenhängend}.$

$$\neq \emptyset$$
 $\neq \emptyset$

Aufgabe 3

Seien jetzt aber $A \subseteq B \subseteq A$ mit A zusammenhängend und U, V disjunkte offene Teilmengen mit $B = U \cup V$

$$\Rightarrow \underbrace{(U\cap A)}_{=:\tilde{U}} \cup \underbrace{(V\cap A)}_{=:\tilde{V}} = (U\cup V)\cap A = A$$

 \tilde{U}, \tilde{V} sind disjunkt (wegen $\tilde{U} \cap \tilde{V} \subseteq U \cap V = \emptyset$)

A zusammenhängend $\Rightarrow \tilde{U} = \emptyset$ oder $\tilde{V} = \emptyset$. O.B.d.A $\tilde{U} = \emptyset \Rightarrow A \subseteq V$

$$\Rightarrow U \subset B \subset \bar{A} \subset \bar{V} \Rightarrow U = U \cap \bar{V} = \emptyset \Rightarrow B$$
 ist zusammenhängend.

Aufgabe 4

Beh. X top., $A \subseteq X, Y$ Hausdorffraum, $f: A \to Y$ stetige Abbildung.

 \Rightarrow kann man f fortsetzen zu einer stetigen Abb. $g: \bar{A} \to Y$, so ist g eindeutig.

Bew: Seien $g_1: \bar{A} \to Y, g_2: \bar{A} \to Y$ stetige Fortsetzungen von A.

Ann: $g_1 \neq g_2 \Rightarrow x \in \bar{A}: g_1(x) \neq g_2(x)$. Es muss gelten: $x \notin A$. da $\forall x \in A$: $g_1(x) = f(x) = g_2(x).$

Also: $x \in \bar{A} \backslash A$.

Y Hausdorffraum, $g_1(x) \neq g_2(x) \Rightarrow \exists$ offene disj. Teilmengen $V_1, V_2 \subseteq Y$ mit $g_1(x) \in V_1, g_2(x) \in V_2.$

 g_1 ist stetig $\Rightarrow \exists$ offene Umg. U_1 von x mit $g_1(U_1) \subseteq V_1$

 g_2 ist stetig $\Rightarrow \exists$ offene Umg. U_2 von x mit $g_2(U_2) \subseteq V_2$

 U_1,U_2 sind offene Umgebungen von $x\Rightarrow U_1\cap U_2$ ist offene Umg. von $x\Rightarrow x\in$ $U_1 \cap U_2$

 $x \in \partial A \Rightarrow \exists y \in (U_1 \cap U_2) \cap A \text{ mit } x \neq y \text{ (nach Aufg. 2, Blatt 3)}$

 $\Rightarrow y \in U_1 \Rightarrow g_1(y) \in V_1, y \in U_2 \Rightarrow g_2(y) \in V_2$ Da aber $y \in A$ gilt: $g_1(y) = f(y) = g_2(y)$ $\Rightarrow f(y) \in V_1 \cap V_2 \quad \text{f zu } V_1 \cap V_2 \neq \emptyset.$