Aufgabe 1:d

Sei $f: X \to Y$ eine Funktion, $A \subseteq X$ und

$$B := \{ f(a) : a \in A \} = f(A).$$

Welche der folgenden Aussagen müssen dann gelten?

- (i) $\forall x \in X : (x \in A \Rightarrow f(x) \in B)$
- (ii) $\forall x \in X : (f(x) \in B \Rightarrow x \in A)$
- (iii) $A \subseteq f^{-1}(B)$
- (iv) $f^{-1}(B) \subseteq A$

Lösung und Begründung

- (i) Wahr. Wenn $x \in A$ gilt, so ist f(x) per Definition ein Element von f(A) = B. Daher gilt $x \in A \Rightarrow f(x) \in B$.
- (ii) **Falsch.** Aus $f(x) \in B$ folgt nur, dass es ein $a \in A$ mit f(a) = f(x) gibt. Das bedeutet nicht zwingend $x \in A$, außer f ist injektiv.

Beispiel:
$$X = \{1, 2\}, A = \{1\}, f(1) = f(2) = 0.$$

Dann ist $B = \{0\}$, und $f(2) \in B$, aber $2 \notin A$.

- (iii) Wahr. Es gilt $f^{-1}(B)=\{x\in X: f(x)\in B\}$. Für alle $a\in A$ gilt $f(a)\in B,$ also $a\in f^{-1}(B).$ Damit folgt $A\subseteq f^{-1}(B).$
- (iv) **Falsch.** Im obigen Gegenbeispiel ist $f^{-1}(B) = \{1, 2\} \not\subseteq A = \{1\}$.

Bemerkung

Die Aussagen (i) und (iii) sind logisch äquivalent (punktweise bzw. mengenweise formuliert). Die Aussagen (ii) und (iv) gelten nur, falls f injektiv ist.