Olimpiada Națională de Matematică 2007 Etapa județeană și a Municipiului București 3 martie 2007

CLASA A XI-A, SOLUŢII ŞI BAREMURI

Subiectul 1. Fie $a_1 \in (0,1)$ şi $(a_n)_{n\geq 1}$ şirul de numere reale dat de următoarea relație de recurență:

$$a_{n+1} = a_n(1 - a_n^2),$$

pentru orice $n \in \mathbf{N}^*$.

Să se calculeze $\lim_{n\to\infty} \sqrt{n} \cdot a_n$.

Prin urmare există $l \in \mathbb{R}^+$ astfel încât $\lim_{n \to \infty} a_n = l$. Prin trecere la limită în relația de recurență, deducem $l = l - l^3$, deci $l = 0 \dots 1$ punct Şirul $\frac{1}{a_n^2}$ tinde crescător la ∞ . Avem

$$\frac{n+1-n}{\frac{1}{a_{n+1}^2} - \frac{1}{a_n^2}} = \frac{(1-a_n^2)^2}{2-a_n^2},$$

de unde deducem, cu lema Stolz-Cesaro, că $\lim_{n\to\infty}\frac{n}{\frac{1}{a_n^2}}=\frac{1}{2}$. De aici

$$\lim_{n \to \infty} \sqrt{n} a_n = \frac{1}{\sqrt{2}}.$$
 4 puncte

Subiectul 2. Fie $A \in \mathcal{M}_n(\mathbb{R})$. Dacă $A \cdot {}^t A = I_n$, arătaţi că:

- a) $|\operatorname{tr}(A)| \le n$;
- b) Pentru n impar avem $\det(A^2 I_n) = 0$.

Prin transpunere și conjugare complexă obținem $\overline{{}^tX \cdot {}^tA} = \overline{\lambda {}^tX}$. Înmulțind cele două relații obținem $\overline{{}^tX}{}^tA \cdot A \cdot X = |\lambda|^{2\overline{t}}\overline{X} \cdot X$. Cum $A \cdot {}^tA = I_n$ și că

 $\overline{{}^tX}\cdot X$ e număr real nenul strict pozitiv, deducem $|\lambda|^2=1$ deci $|\lambda|=1,\ldots 2$ puncte

Cum ${\rm tr}(A)=\sum \lambda$ unde suma se face după toate cele n valori proprii, cu multipiplicități, aplicând inegalitatea modulului deducem rezultatul cerut. 1 punct

b) Dacă n este impar polinomul caracteristic are cel puţin o rădăcină reala, deci ea este fie 1 fie -1, aşadar $\det(A - I_n) = 0$ sau $\det(A + I_n) = 0$, prin urmare $\det(A^2 - I_n) = 0 \dots 2$ puncte

Subiectul 3. Fie şirul $(x_n)_{n\geq 1}$ dat de $x_n=\sqrt{n}-[\sqrt{n}]$. Se notează cu A mulţimea punctelor sale limită, i.e. mulţimea punctelor $x\in\mathbb{R}$ pentru care există un subşir al lui $(x_n)_n$ cu limita x.

- a) Să se arate că $\mathbb{Q} \cap [0,1] \subset A$;
- b) Să se determine A.

(Cu [x] s-a notat partea întreagă a numărului real x)

$$x_{n_k} = \sqrt{q^2 k^2 + 2pk} - qk = \frac{2p}{q\left(1 + \sqrt{1 + \frac{2p}{q^2 k}}\right)} \to \frac{p}{q}.$$

Având în vedere punctul a) vom arăta că orice iraţional $\alpha \in (0,1)$ este în A. Construim inductiv un şir strict crescător de numere naturale $(n_k)_k$ astfel încât $|x_{n_k} - \alpha| < \frac{1}{k}$, astfel: dacă $n_1 < n_2 < \cdots < n_k$ au fost alese, găsim $r \in \mathbb{Q} \cap [0,1]$ cu $|r - \alpha| < \frac{1}{2(k+1)}$ și conform observație de mai sus cu $n_0 = n_k$ și $\varepsilon = \frac{1}{2(k+1)}$ există $n_{k+1} > n_k$ cu $|x_{n_{k+1}} - r| < \frac{1}{2(k+1)}$. Atunci

$$|x_{n_{k+1}} - \alpha| \le |x_{n_{k+1}} - r| + |r - \alpha| < \frac{1}{k+1}.$$

Subiectul 4. Fie $A, B \in \mathcal{M}_n(\mathbb{R})$ cu proprietatea că $B^2 = I_n$ şi $A^2 = AB + I_n$. Să se demonstreze că $\det(A) \leq \left(\frac{1+\sqrt{5}}{2}\right)^n$.

Soluţie şi barem. Fie $(f_k)_k$ şirul lui Fibonacci,

$$f_k = \frac{1}{\sqrt{5}} \left[\varphi^k - \overline{\varphi}^k \right]$$

$$\det\left(\frac{1}{f_k}A^k\right) \to \det(A - \bar{\varphi}B) \in \mathbb{R}.$$

$$\det\left(\frac{1}{f_k}A^k\right) = \frac{1}{f_k^n}(\det A)^k = \left(\frac{\varphi^k}{f_k}\right)^n \left(\frac{\det A}{\varphi^n}\right)^k,$$

ce tinde la infinit. Contradicția obținută probează proprietatea enunțată. . 2 puncte

Observație. Rezultatul este cel mai bun posibil; alegem $B=I_n$ și $A=\varphi I_n.$