- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x) = \frac{\cos x}{x}$, $X_1 = (0, \frac{\pi}{2})$, $X_2 = (\frac{\pi}{2}, 2\pi)$. Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Алесь Бинкевич

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\stackrel{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Сергей Бакуменко

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{o}{U}_{\delta}(x_0) : f(x) \leq g(x)$ в $\overset{o}{U}_{\delta}(x_0)$. Доказать, что $A \leq B$.

Студент: Кирилл Балбек

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x) = \frac{\cos x}{x}$, $X_1 = (0, \frac{\pi}{2})$, $X_2 = (\frac{\pi}{2}, 2\pi)$. Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\stackrel{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0,5$. Укажите $\delta \in (0,\delta_0]$: $\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{o}{U}_{\delta}(x_0) : f(x) \leq g(x)$ в $\overset{o}{U}_{\delta}(x_0)$. Доказать, что $A \leq B$.

Студент: Валерия Ведерникова

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x) = \frac{\cos x}{x}$, $X_1 = (0, \frac{\pi}{2})$, $X_2 = (\frac{\pi}{2}, 2\pi)$. Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Маргарита Голиус

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\stackrel{o}{U}_{\delta_0}(x_0).$
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Елизавета Гришкова

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \underset{x \to x_0}{\longrightarrow} A$, то $|f(x)| \underset{x \to x_0}{\longrightarrow} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0).$
 - 2) Пусть $\varepsilon=0,5$. Укажите $\delta\in(0,\delta_0]$: $\forall x\in \stackrel{\circ}{U}_{\delta}(x_0)\hookrightarrow |2-f(x)|<\varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Александр Ермоленко

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0).$
 - 2) Пусть $\varepsilon = 0,5$. Укажите $\delta \in (0,\delta_0]$: $\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{o}{U}_{\delta}(x_0) : f(x) \leq g(x)$ в $\overset{o}{U}_{\delta}(x_0)$. Доказать, что $A \leq B$.

Студент: Анастасия Захарова

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0).$
 - 2) Пусть $\varepsilon=0,5$. Укажите $\delta\in(0,\delta_0]$: $\forall x\in \stackrel{\circ}{U}_{\delta}(x_0)\hookrightarrow |2-f(x)|<\varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Михаил Клюкин

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0).$
 - 2) Пусть $\varepsilon=0,5$. Укажите $\delta\in(0,\delta_0]$: $\forall x\in \stackrel{\circ}{U}_{\delta}(x_0)\hookrightarrow |2-f(x)|<\varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{o}{U}_{\delta}(x_0) : f(x) \leq g(x)$ в $\overset{o}{U}_{\delta}(x_0)$. Доказать, что $A \leq B$.

Студент: Татьяна Коновалова

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\stackrel{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Михаил Кренгауз

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0).$
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{o}{U}_{\delta}(x_0) : f(x) \leq g(x)$ в $\overset{o}{U}_{\delta}(x_0)$. Доказать, что $A \leq B$.

Студент: Глеб Кузь

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon=0,5$. Укажите $\delta\in(0,\delta_0]$: $\forall x\in \stackrel{\circ}{U}_{\delta}(x_0)\hookrightarrow |2-f(x)|<\varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Анастасия Лазарева

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x) = \frac{\cos x}{x}$, $X_1 = (0, \frac{\pi}{2})$, $X_2 = (\frac{\pi}{2}, 2\pi)$. Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\stackrel{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{o}{U}_{\delta}(x_0) : f(x) \leq g(x)$ в $\overset{o}{U}_{\delta}(x_0)$. Доказать, что $A \leq B$.

Студент: Екатерина Маркелова

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\overset{o}{U}_{\delta_0}(x_0).$
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Александр Синькин

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x)=\frac{\cos x}{x},~X_1=(0,\frac{\pi}{2}),~X_2=(\frac{\pi}{2},2\pi).$ Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\stackrel{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon = 0.5$. Укажите $\delta \in (0, \delta_0]$: $\forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow |2 f(x)| < \varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, & x \neq \pi/2 \\ 0, & x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{\circ}{U_{\delta}}(x_0) : f(x) \leq g(x)$ в $\overset{\circ}{U_{\delta}}(x_0)$. Доказать, что $A \leq B$.

Студент: Галина Ступникова

- 1. Найти $\lim_{x\to x_0} f(x)$: 1) $f(x)=x^2+4x+5,\ x_0=1$; 2) $f(x)=(x^3+1)\cdot\sin x,\ x_0=\frac{\pi}{2}$; 3) $f(x)=\frac{x^2-4}{x^2-8},\ x_0=2.$
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty}\frac{1}{x}=0$.
- 4. Используя критерий Коши для функции, докажите, что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.

- 1. Напишите определение числовой функции.
- 2. Что называется композицией функций $f: X \to f(X)$ и $g: f(X) \to \mathbb{R}$?
- 3. Является ли $f(x) = \sin x$ монотонной на $X = [0, \pi]$?
- 4. Как определяется проколотая δ -окрестность точки $x_0 \in \mathbb{R}$?
- 5. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X\to \mathbb{R}, \ x_0, A\in \mathbb{R}$ по Коши.
- 6. Сформулируйте определение того, что $\lim_{x\to x_0} f(x) = A$, где $f: X \to \mathbb{R}, \ x_0, A \in \mathbb{R}$ по Гейне.
- 7. Может ли функция иметь в $x_0 \in \mathbb{R}$ предел по Коши, но не иметь предела по Гейне?
- 8. Пусть $x_0 \in \mathbb{R}$, f(x) определена в $U_{\delta_0}(x_0 + 0)$. Напишите определение предела f(x) в точке x_0 справа.
- 9. Пусть $f(x)=100x^2, g(x)=x^2$. Верно ли, что $\lim_{\substack{x\to 0\\ x\to 0}} f(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}?$
- 10. Сформулируйте критерий Коши для функций.

- 1. 1) Найти все частичные пределы последовательности $x_n = \begin{cases} \sin \frac{\pi n}{2}, n = 2k \\ \cos \frac{\pi n}{2}, n = 2k + 1 \end{cases}$
 - 2) Используя критерий Коши исследовать на сходимость $x_n = n \cdot \cos^2 \pi n$.
- 2. Пусть $f(x) = \cos x$, $g(y) = y^2 + 3y^3$. Составить композиции: 1) z(x) = g(f(x)); 2) z(y) = f(g(y)).
- 3. Пусть $f(x) = \frac{\cos x}{x}$, $X_1 = (0, \frac{\pi}{2})$, $X_2 = (\frac{\pi}{2}, 2\pi)$. Исследовать f(x) на ограниченность и монотонность на X_1 и X_2 .

(Указание: Строго обосновывать не нужно, достаточно дать правильный ответ и пояснить его.)

- 4. Пусть $f(x) = \begin{cases} 2x, x < 1 \\ \frac{2}{x}, x \ge 1 \end{cases}$, $x_0 = 1$.
 - 1) Укажите $\delta_0>0$ такую, чтобы f(x) была определена в $\stackrel{o}{U}_{\delta_0}(x_0)$.
 - 2) Пусть $\varepsilon=0,5$. Укажите $\delta\in(0,\delta_0]$: $\forall x\in \overset{\circ}{U}_{\delta}(x_0)\hookrightarrow |2-f(x)|<\varepsilon$.
- 5. Пусть $f(x) = \sin x, g(x) = \begin{cases} \sin x, x \neq \pi/2 \\ 0, x = \pi/2 \end{cases}$. Доказать, что $\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} g(x) = 1$.
- 6. Пусть $f(x) = \frac{x^2}{x+1}$. Доказать, что: 1) $\lim_{x\to 0} f(x) = 0$; 2) $\lim_{x\to +\infty} f(x) = +\infty$, используя определение предела по Коши.
- 7. Пусть $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$. Доказать, что f и g не имеют предела в нуле, используя определение предела по Гейне.
- 8. Пусть $f(x) \to A \in \mathbb{R}$ и $g(x) \to B \in \mathbb{R}$ при $x \to x_0 \in \mathbb{R}$. Пусть также $\exists \overset{o}{U}_{\delta}(x_0) : f(x) \leq g(x)$ в $\overset{o}{U}_{\delta}(x_0)$. Доказать, что $A \leq B$.

Студент: Андрей Тышевич

- 1. Найти $\lim_{x \to x_0} f(x)$: 1) $f(x) = x^2 + 4x + 5$, $x_0 = 1$; 2) $f(x) = (x^3 + 1) \cdot \sin x$, $x_0 = \frac{\pi}{2}$; 3) $f(x) = \frac{x^2 4}{x^2 8}$, $x_0 = 2$.
- 2. Доказать, что $x^p \to 0$ при $x \to 0$, где p > 1. (Указание: использовать, что если $f(x) \xrightarrow[x \to x_0]{} A$, то $|f(x)| \xrightarrow[x \to x_0]{} |A|$.
- 3. Доказать, что $\lim_{x\to +\infty} \frac{1}{x} = 0$.
- 4. Используя критерий Коши для функции, докажите , что $g(x) = sign(x) \cdot \sin \frac{1}{x^2}$ не имеет предела в нуле.