Duration: 3 Hours	Maximum Marks: 35	
Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, insert, inorder. Write a menu driven program that performs the above operations. [15]		
Q.2) Write a C program that accepts the vertices and edg matrix. Display the adjacency matrix. Implement function		
Q.3) Viva	[5]	

Slip 1

Maximum Marks: 35

Q.1)	Implement a Binary search tree (BST) library (btree.h) with operations – create, search, p	reorder.
Write	e a menu driven program that performs the above operations.	[15]
Q.2)	Implementation of Dijkstra's shortest path algorithm for finding Shortest Path	
•	from a given source vertex using adjacency cost matrix	[15]
Q.3)	Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q1) Implementation of static hash table with Linear Probing.	[15]
Q.2) C program to implement graph traversal method using depth first	st search [15]
Q 3) Viva	[5]

Duration: 3 Hours Maximum Marks: 35 Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, search, preorder. Write a menu driven program that performs the above operations. [15] Q.2) Write C Program that accept the vertices and edges of a graph and store it is an adjacency Matrix [15] **Q.3**) Viva [5]

Slip 4

Duration: 3 Hours Maximum Marks: 35 Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, insert, postorder. Write a menu driven program that performs the above operations. [15] Q.2) Write a C program that accepts the vertices and edges of a graph and store it as an adjacency matrix. Implement function to traverse the graph using Breadth First Search (BFS) traversal. [15] **Q.3**) Viva [5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – creat postorder. Write a menu driven program that performs the above operations.	te, preorder and [15]
Q.2) Write a C program that accepts the vertices and edges of a graph. Create adjac display the adjacency list.	ency list and [15]
Q.3) Viva	[5]

Duration: 3 Hours Maximum Marks: 35 Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, preorder .Write a menu driven program that performs the above operations. [15] Q.2) Write a C program that accepts the vertices and edges of a graph and store it as an adjacency matrix. Implement function to traverse the graph using Depth First Search (DFS) traversal. [15] **Q.3**) Viva [5]

Slip 7

Duration: 3 Hours	Maximum Marks: 35
Q.1) C program to implement graph as adjacency matrix.	[15]
Q.2) Implementation of static hash table with Linear Probing.	[15]
Q.3) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) C program to implement graph traversal method using depth fi	rst search. [15]
Q.2) C program to implement BST to perform following operations a) Create b) Counting leaf nodes.	on BST- [15]
Q.3) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a C program to implement graph traversal method using dept	n first search. [15]
Q.2) Write a C program that accepts the vertices and edges of a graph an Implement functions to print indegree of all vertices of graph.	d store it as an adjacency matrix. [15]
Q.3) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a C program that accepts the vertices and edges of a matrix. Implement function to traverse the graph using Breadth Fi	
Q.2) Implement a Binary search tree (BST) library (btree.h) we menu driven program that performs the above operations.	ith operations – create, inorder. Write a [15]
Q.3) Viva	[5]

Duration: 3 Hours Maximum Marks: 35 Q.1) Write a C program that accepts the vertices and edges of a graph and store it as an adjacency matrix. Implement function to traverse the graph using Depth First Search (DFS) traversal. [15] Q.2) Implement a Binary search tree (BST) library (btree.h) with operations – create, preorder. Write a menu driven program that performs the above operations. [15] **Q.3**) Viva [5]

Duration: 3 Hour	'S	Maximum Marks: 35
recursion:	which uses Binary search tree library ompares two binary search trees an	and implements following function with d returns 1 if they are equal and 0 [15]
Q.2) Write a C program matrix. Display the adjace	<u> </u>	of a graph and stores it as an adjacency [15]
Q.3) Viva		[5]

Duration: 3 Hours	Maximum Marks: 35	
Q.1) Write a C program that accepts the vertices and edges of a graph. Create adjacency list and display the adjacency list. [15]		
Q.2) Write a program which uses binary search tree library and coun int $count(T)$ – returns the total number of nodes from BST	nts the total nodes in the tree. [15]	
Q.3) Viva	[5]	

Γ	Ouration: 3 Hours Maximum Marks: 35	5
Q.1) I	mplementation of static hash table with Linear Probing.	[15]
Q.2) int cou	Write a program which uses binary search tree library and counts the total nodes in the tree. $\operatorname{int}(T)$ – returns the total number of nodes from BST	[15]
Q.3)	Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) C program to implement graph traversal method using Breadth	first search [15]
Q.2) Implement a Binary search tree (BST) library (btree.h) with open menu driven program that performs the above operations.	rations – create, preorder. Write a [15]
Q.3) Viva	[5]

Slip 16

Maximum Marks: 35

${\bf Q.1})$ Write a program which uses binary search tree library and counts the total leaf nodes int countLeaf(T) – returns the total number of leaf nodes from BST	in the tree. [10]
Q.2) Write a C program that accepts the vertices and edges of a graph and stores it as an matrix. Display the adjacency matrix.	adjacency [10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Q.1) Write a program which uses binary search tree library and counts the total leaf no	odes in the tree.
int countLeaf(T) – returns the total number of leaf nodes from BST	[15]
(Q2) Write a C program that accents the vertices and edges of a graph and store it	os on adiaconos

Maximum Marks: 35

Duration: 3 Hours

Q.2) Write a C program that accepts the vertices and edges of a graph and store it as an adjacency matrix. Implement functions to print indegree of all vertices of graph. [15]

Q.3) Viva [5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a C program that accepts the vertices display the adjacency list.	and edges of a graph. Create adjacency list and [15]
Q.2) Implement a Binary search tree (BST) library menu driven program that performs the above ope	(btree.h) with operations – create, preorder. Write a crations. [15]
Q.3) Viva	[5]

Duration: 3 Hours Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, insert, inorder. Write a menu driven program that performs the above operations. [15]

Q.2) Write a C program that accepts the vertices and edges of a graph and stores it as an adjacency matrix. Display the adjacency matrix. Implement functions to print indegree of all vertices of graph. [15]

Q.3) Viva [5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) C program to implement graph traversal method using depth first sea	arch. [15]
Q.2) Implementation of Dijkstra's shortest path algorithm for finding Shortest path algorithm for fi	ortest Path [15]
Q.3) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, insert, postor. Write a menu driven program that performs the above operations.	order. [15]
Q.2) Implementation of static hash table with Linear Probing method.	[15]
Q.3) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) C program to implement graph as adjacency List.	[15]
Q.2) C program to implement BST to perform following operations on BST-a) Create b) Counting Total nodes	[15]
Q 3. Viva	[5]

Duration: 3 Hours Maximum Marks: 35

- **Q.1**) Implement a Binary search tree (BST) library (btree.h) with operations create, insert, postorder. Write a menu driven program that performs the above operations. [15]
- Q.2) Write a C program that accepts the vertices and edges of a graph and store it as an adjacency matrix. Implement function to traverse the graph using Breadth First Search (BFS) traversal. [15]
- Q.3) Viva [5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, preorder and postorder. Write a menu driven program that performs the above operations. [15]
Q.2) Implementation of static hash table with Linear Probing. [15]
Q.3) Viva [5]