TENTAMEN I MATEMATISK STATISTIK, 7.5 HP

Distanskurs 30 april, 2011 kl. 9.00–13.00

Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten. Kursansvarig: Eric Järpe (035-16 76 53, 0702-822 844).

Till uppgifterna skall fullständiga lösningar lämnas. Lösningarna skall vara utförligt redovisade! Varje lösning skall börja överst på nytt papper. Endast en lösning per blad.

- 1. Antag att $X \in Exp(\lambda_X)$, att $Y \in Exp(\lambda_Y)$ och att X och Y är oberoende av varandra. Bevisa att $\min(X,Y) \in Exp(\lambda_X + \lambda_Y)$. (3p)
- 2. Beräkna a om P(X > a) = 0.99 där $X \in N(0.99, 0.99)$, dvs X är normalfördelad med väntervärde = varians = 0.99. (3p)
- 3. Låt

$$f(x) = \begin{cases} Cxe^{-3x^2} & \text{om } x > 0\\ 0 & \text{annars} \end{cases}$$

- (a) Bestäm C så att f(x) är en frekvensfunktion för en slumpvariabel. (3p)
- (b) Beräkna medianen för en slumpvariabel som har f(x) som frekvensfunktion. (3p)
- 4. Gatumusikanten Berit spelar gitarr på Brogatan kl. 11.00–17.00 en dag. Antag att varje förbipasserande, i Berits framlagda mössa, lägger ett antal kronor som är Poissonfördelat med $\lambda=3$. Hur stor chans är det då
 - (a) exakt att Berit tjänar minst 5 kr under 5 minuter om det då går förbi 2 personer? (3p)
 - (b) approximativt att Berit tjänar minst 1000 kr under hela dagen om det då går förbi 345 personer? (3p)
- 5. Urmakaren Urban beställer ett parti om 10 likadana klockor med återköpsgarantin "Om klockorna i genomsnitt drar sig mer än 5 sekunder/dygn så får köparen nya klockor eller pengarna åter". Urban tar tiden och ser att de klockor han beställt drar sig

sekunder under ett dygn.

- (a) Betyder det att han borde skicka tillbaka klockorna? Gör ett test på 5% signifikansnivå. (4p)
- (b) Gör ett 99% konfidensintervall för variansen av klockavvikelsen under ett dygn. (3p)

6. Agda brukar varje år sälja exklusiva julböcker. Av försäljningssiffrorna från tidigare år vet hon att efterfrågan fördelar sig enligt

$$\begin{array}{c|ccccc} Antal \ efter fr \mathring{a}gade \ b \ddot{o} cker & 0 & 1 & 2 & 3 & 4 \\ \hline Sannolikhet & 0.05 & 0.1 & 0.3 & 0.35 & 0.2 \\ \end{array}$$

Agda beställer böckerna för 250:-/st och säljer dem för 495:-/st. Vidare kostar det henne 75:-/st då hon ska göra sig av med de böcker som hon ej lyckats sälja. Hur många böcker ska Agda beställa för att maximera sin förväntade vinst? (5p)

LYCKA TILL!

Sannolikhetslära

Def Om ett experiment har m möjliga utfall varav q är gynnsamma för händelsen A, så är sannolikheten för A

$$P(A) = g/m$$
.

P är ett sannolikhetsmått om Def

1.
$$0 < P(A) < 1$$

2.
$$P(\Omega) = 1$$

3.
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

för alla händelser $A \subset \Omega$ där Ω är hela utfallsrummet.

Multiplikationsprincipen

Om ett experiment kan indelas i j delexperiment där det första kan få n_1 utfall

andra kan få n_2 utfall

j:te kan få n_i utfall

har experimentet totalt $n_1 \cdot n_2 \cdots n_j$ utfall.

 $P(A \cup B) = P(A) + P(B) - P(A \cap B).$ Additionssatsen

A och B är <u>oberoende händelser</u> om $P(A \cap B) = P(A)P(B)$ Def

Den betingade sannonlikheten för A givet B är $P(A|B) = \frac{P(A \cap B)}{P(B)}$ Def

Bayes sats $\underline{\mathrm{Om}}\ A_1,\ldots,A_n$ är en partition av Ω

 $\frac{1}{\text{(dvs att } i \neq j \Rightarrow A_i \cap A_j = \emptyset \text{ och } \bigcup_{i=1}^n A_i = \Omega).}$ $\underline{\text{så}} \quad \text{är} \quad P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)} \text{ för varje } k = 1, 2, \dots, n.$

Kombinatorik Antalet sätt som k element kan väljas bland n möjliga, utan återläggning och utan hänsyn till ordningen, är

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 2\cdot 1}$$

Stokastiska variabler

X diskret: Sannolikhetsfunktion: p(x) = P(X = x)

Fördelningsfunktion: $P(X \le a) = F(a) = \sum_{x \le a} p(x)$,

X kont.:

<u>Täthetsfunktion</u>: $f(x) = \frac{d}{dx}P(X \le x)$ <u>Fördelningsfunktion</u>: $P(X \le a) = F(a) = \int_{-\infty}^{a} f(x) dx$.

Väntevärde och varians

X diskret:

<u>Väntevärdet</u> av X: $\mu = E(X) = \sum_{x \in \Omega} x p(x)$. <u>Variansen</u> av X: $\sigma^2 = V(X) = \sum_{x \in \Omega} (x - \mu)^2 p(x)$.

<u>Väntevärdet</u> av X: $\mu = E(X) = \int_{x \in \Omega} x f(x) dx$. <u>Variansen</u> av X: $\sigma^2 = V(X) = \int_{x \in \Omega} (x - \mu)^2 f(x) dx$. X kont:

<u>Kovariansen</u> av X och Y: $Cov(X,Y) = E((X - \mu_x)(Y - \mu_y))$ <u>Korrelationen</u> mellan X och Y: $\rho = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$

 $\sigma = \sqrt{V(X)}$. Standardavv.

Linjaritet: E(aX + bY) = a E(X) + b E(Y) för alla stokastiska

variabler X och Y och reella tal a och b.

Om X, Y ober. $V(aX + bY) = a^2V(X) + b^2V(Y)$.

Om X diskret $E(g(X)) = \sum_{x \in \Omega} g(x) p(x)$ $V(X) = E(X^2) - (E(X))^2$ Regler:

 $Cov(X,Y) = \sum_{x \in \Omega_x} \sum_{y \in \Omega_y} xy p(x,y) - E(X)E(Y)$

Normalfördelning betecknas $N(\mu, \sigma^2)$ där μ är väntevärde och σ^2 är varians

N(0,1) kallas standard normalfördelning, dess fördelningsfunktion $\Phi(x)$

 $\underline{\underline{\mathrm{Om}}\ X} \in N(\mu, \sigma^2) \ \underline{\mathrm{så}}\ P(X \leq x) = \Phi\left(\frac{x-\mu}{\sigma}\right) \ \text{för alla}\ x \in \mathbb{R}.$

Symmetri: $\Phi(-x) = 1 - \Phi(x)$ för alla $x \in \mathbb{R}$.

Sannolikheter: $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ för all $a < b \in \mathbb{R}$

Def De stokastiska variablerna X_1, X_2, \dots, X_n är ett stickprov på X om X_i har samma fördelning som X, $i = 1, \ldots, n$, och alla variabler är oberoende av varandra på alla nivåer.

CGS (Centrala gränsvärdessatsen)

 $\underline{\mathrm{Om}}\ X_1,\ldots,X_n$ stickprov där

 $E(X_i) = \mu \text{ och } V(X_i) = \sigma^2, i = 1, ..., n$

 $\underline{\operatorname{så}} \quad P\Big(\frac{\sqrt{n}}{\sigma}(\bar{X} - \mu) \le x\Big) \to \Phi(x) \quad \operatorname{då} n \to \infty.$

Därför är $\sum_{i=1}^{n} X_{i}$ approximativt $N(n\mu, n\sigma^{2})$ och \bar{X} approximativt $N(\mu, \frac{\sigma^2}{n})$ för stora n.

Approximationer

Fördelning Villkor Approximativ fördelning

 $Bin(n,\pi)$ $n \ge 10 \text{ och } \pi < 0.1 \quad Po(n\pi)$

 $Bin(n,\pi)$ $n\pi(1-\pi) \ge 10$ $N(n\pi, n\pi(1-\pi))$

 $Poi(\mu)$ $\mu > 15$ $N(\mu,\mu)$

Statistik

Punktskattning $\underline{Om} \ E(X) = \mu, \ V(X) = \sigma^2 \text{ och } X_1, \dots, X_n \text{ stickprov på } X$ $\underline{\text{så}} \ \text{ är exempel på punktskattningar av } \mu \text{ och } \sigma^2$:

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\hat{\sigma}^{2} = S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \mu^{2}$$
om μ är känd
$$\hat{\sigma}^{2} = S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \bar{X}^{2} \right)$$
om μ är okänd

Def En punktskattning, θ^* , av en parameter θ är <u>väntevärdesriktig</u> om $E(\theta^*) = \theta$. Om θ_1^* och θ_2^* är väntevärdesriktiga skattningar av θ , så är θ_1^* <u>effektivare</u> än θ_2^* om $V(\theta_1^*) < V(\theta_2^*)$.

Fördelningar, väntevärden och varianser

	X	p(x), f(x)	E(X)	V(X)
	$\operatorname{Likf}(N)$		(N+1)/2	$(N^2 - 1)/12$
lningar	Bin(n,p)	$\binom{n}{x} p^x (1-p)^{n-x} x = 0, 1, 2, \dots, n$	np	np(1-p)
Diskreta fördelningar	$\operatorname{Poi}(\lambda)$	$\begin{vmatrix} e^{-\lambda} \lambda^x / x! \\ x = 0, 1, 2, \dots \end{vmatrix}$	λ	λ
Diskret	$\operatorname{Geo}(\pi)$	$ \begin{vmatrix} (1-\pi)^{x-1}\pi \\ x = 1, 2, 3, \dots \end{vmatrix} $	$1/\pi$	$(1-\pi)/\pi^2$
ıgar	R(a,b)	$ \begin{vmatrix} 1/(b-a) \\ a \le x \le b \end{vmatrix} $	(a+b)/2	$(a-b)^2/12$
Kont. fördelningar	$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}$ $x > 0$	$1/\lambda$	$1/\lambda^2$
Kont.	$N(\mu, \sigma^2)$	$ \left \begin{array}{l} (\sigma\sqrt{2\pi})^{-1}e^{-(x-\mu)^2/(2\sigma^2)} \\ x \in \mathbb{R} \end{array} \right $	μ	σ^2

Konfidensintervall

Antag X_1, \ldots, X_m och Y_1, \ldots, Y_n är oberoende och normalfördelade $N(\mu_X, \sigma^2)$ resp. $N(\mu_Y, \sigma^2)$. Då är $100(1 - \alpha)\%$ konfidensintervall för parametern θ :

θ	Konf. int.	Anm.
μ_X	$\bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{m}}$	σ känd
μ_X	$\bar{x} \pm t_{\alpha/2}(m-1)\frac{s}{\sqrt{m}}$	σ okänd
σ^2	$\left(0, (m-1)s^2/(\chi^2_{1-\alpha}(m-1))\right)$	
$\mu_X - \mu_Y$	$\bar{\Delta} \pm t_{\alpha/2}(m+n-2)s_{\Delta}\sqrt{\frac{1}{m}+\frac{1}{n}}$	σ okänd $\bar{\Delta} = \bar{x} - \bar{y}$ $s_{\Delta}^2 = \frac{(m-1)s_X^2 + (n-1)s_Y^2}{m+n-2}$

Hypotestest

Antag X_1, \ldots, X_n stickprov av en stokastisk variabel med fördelning F med parameter θ . För att testa hypotesen

$$\begin{cases} H_0 : \theta = \theta_0 \text{ (nollhypotesen)} \\ H_1 : \theta \in \Theta \text{ (alternativhypotesen)} \end{cases}$$

används teststatistikan $U=U(X_1,\ldots,X_n)$, och det kritiska område C_α som svarar mot Θ enl. fördelningen F_U av U under H_0 vid signifikansnivån α .

Testregeln är

$$\begin{cases} \text{F\"orkasta } H_0 \text{ om } u \in C_{\alpha} \\ \text{F\"orkasta inte } H_0 \text{ om } u \notin C_{\alpha} \end{cases}$$

F	θ	H_0	H_1	21	F_U	C_{α}
I'	U	110	111	u	I'U	\cup_{α}
$N(\mu, \sigma^2)$	μ	$\mu = \mu_0$	$\mu < \mu_0$	$\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$	N(0, 1)	$\{u < -\lambda_{\alpha}\}$
σ känt			$\mu > \mu_0$			$\{u > \lambda_{\alpha}\}$
			$\mu \neq \mu_0$			$\{ u > \lambda_{\alpha/2}\}$
$N(\mu, \sigma^2)$	μ	$\mu = \mu_0$	$\mu < \mu_0$	$\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$	t(n-1)	$\{u < -t_{\alpha}(n-1)\}$
σ okänt			$\mu > \mu_0$			$\{u > t_{\alpha}(n-1)\}$
			$\mu \neq \mu_0$			$\{ u > t_{\alpha/2}(n-1)\}$
$N(\mu, \sigma^2)$	σ	$\sigma = \sigma_0$	$\sigma < \sigma_0$	$\frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2(n-1)$	$\left\{ u < \chi_{1-\alpha}^2 \right\}$
			$\sigma > \sigma_0$			$\{u > \chi_{\alpha}^2\}$
			$\sigma \neq \sigma_0$			$\{u < \chi^2_{1-\alpha/2}\} \cup \{u > \chi^2_{\alpha/2}\}$
Kvalitativ	F	$F = F_0$	$F \neq F_0$	$\sum_{i} \frac{(O_i - E_i)^2}{E_i}$	$\chi^2(k-1)$	$\{u > \chi_{\alpha}^2(k-1)\}$

Antag X_1,\ldots,X_n stickprov av X med sannolikhetsfunktion $p(x)=\left\{\begin{array}{cc} p & \text{om } x=1\\ 1-p & \text{om } x=0 \end{array}\right.$ Man testar H_0 mot H_1 genom att förkasta H_0 på signifikansnivå α om $\alpha_0<\alpha$ där

H_0	H_1	u	F_U	α_0
$p = p_0$	$p < p_0$	$\sum_{i} x_{i}$	$Bin(n, p_0)$	$P(U < u H_0)$
	$p > p_0$			$P(U > u H_0)$
	$p \neq p_0$			$\begin{cases} 2P(U < u H_0) & \text{om } u < np_0 \\ 2P(U > u H_0) & \text{om } u > np_0 \end{cases}$

Typ I fel är att förkasta H_0 då H_0 är sann. $P(\text{Typ I fel}) = \alpha$. Typ II fel är att inte förkasta H_0 då H_1 är sann. $P(\text{Typ II fel}) = \beta$. Testets styrka är sannolikheten att förkasta H_0 då H_1 är sann, dvs $1 - \beta$.

Normalfördelningsvärden

 $\Phi(x)$

Tabell över värden på $\Phi(x) = P(X \le x)$ där $X \in N(0,1)$. För x < 0 utnyttja relationen $\Phi(x) = 1 - \Phi(-x)$.

x	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	. 0.0	. 0 -	. 0. 3	. 0. 2	. 0. 1	. 0 =	. 0. 0		. 0.0	. 0. 0
x	+0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Normal-percentiler:

Några värden på λ_{α} sådana att $P(X > \lambda_{\alpha}) = \alpha$ där $X \in N(0, 1)$

α	λ_{lpha}	α	λ_{lpha}
0.1	1.281552	0.005	2.575829
0.05	1.644854	0.001	3.090232
0.025	1.959964	0.0005	3.290527
0.01	2.326348	0.0001	3.719016

t-percentiler

 $0 \quad t_{\alpha}(df)$

Tabell över värden på $t_{\alpha}(df)$.

df	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
4	0.7407	1.5332	2.1318	2.7764	2.9986	3.7470	4.6041	7.1732
5	0.7267	1.4759	2.0150	2.5706	2.7565	3.3649	4.0322	5.8934
6	0.7176	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	5.2076
7	0.7111	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995	4.7853
8	0.7064	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	4.5008
9	0.7027	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	4.2968
10	0.6998	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	4.1437
12	0.6955	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.9296
14	0.6924	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.7874
17	0.6892	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982	3.6458
20	0.6870	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.5518
25	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
30	0.6828	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.3852
50	0.6794	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	3.2614
100	0.6770	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	3.1737

χ^2 -percentiler

 $\begin{array}{c|c} & \alpha \\ \hline \\ 0 & \chi_{\alpha}^{2}(df) \end{array}$

Tabell över värden på $\chi^2_{\alpha}(df)$.

df	$\alpha = 0.999$	0.995	0.99	0.95	0.05	0.01	0.005	0.001
1	0.0000	0.0000	0.0002	0.0039	3.8415	6.6349	7.8794	10.8276
2	0.0020	0.0100	0.0201	0.1026	5.9915	9.2103	10.5966	13.8155
3	0.0243	0.0717	0.1148	0.3518	7.8147	11.3449	12.8382	16.2662
4	0.0908	0.2070	0.2971	0.7107	9.4877	13.2767	14.8603	18.4668
5	0.2102	0.4117	0.5543	1.1455	11.0705	15.0863	16.7496	20.5150
6	0.3811	0.6757	0.8721	1.6354	12.5916	16.8119	18.5476	22.4577
7	0.5985	0.9893	1.2390	2.1673	14.0671	18.4753	20.2777	24.3219
8	0.8571	1.3444	1.6465	2.7326	15.5073	20.0902	21.9550	26.1245
9	1.1519	1.7349	2.0879	3.3251	16.9190	21.6660	23.5894	27.8772
10	1.4787	2.1559	2.5582	3.9403	18.3070	23.2093	25.1882	29.5883
12	2.2142	3.0738	3.5706	5.2260	21.0261	26.2170	28.2995	32.9095
14	3.0407	4.0747	4.6604	6.5706	23.6848	29.1412	31.3193	36.1233
17	4.4161	5.6972	6.4078	8.6718	27.5871	33.4087	35.7185	40.7902
20	5.9210	7.4338	8.2604	10.8508	31.4104	37.5662	39.9968	45.3147
25	8.6493	10.5197	11.5240	14.6114	37.6525	44.3141	46.9279	52.6197
30	11.5880	13.7867	14.9535	18.4927	43.7730	50.8922	53.6720	59.7031
50	24.6739	27.9907	29.7067	34.7643	67.5048	76.1539	79.4900	86.6608
100	61.9179	67.3276	70.0649	77.9295	124.342	135.807	140.169	149.449

Poissonfördelningsvärden Tabell över värden på $P(x) = P(X \le x)$ där $X \in Po(\lambda)$.

λ	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0.5	0.607	0.910	0.986	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1	0.368	0.736	0.920	0.981	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	0.135	0.406	0.677	0.857	0.947	0.983	0.995	0.999	1.000	1.000	1.000	1.000	1.000	1.000
3	0.050	0.199	0.423	0.647	0.815	0.916	0.966	0.988	0.996	0.999	1.000	1.000	1.000	1.000
4	0.018	0.092	0.238	0.433	0.629	0.785	0.889	0.949	0.979	0.992	0.997	0.999	1.000	1.000
5	0.007	0.040	0.125	0.265	0.440	0.616	0.762	0.867	0.932	0.968	0.986	0.995	0.998	0.999
6	0.002	0.017	0.062	0.151	0.285	0.446	0.606	0.744	0.847	0.916	0.957	0.980	0.991	0.996

Binomialfördelningsvärden Tabell över värden på $P(x)=P(X\leq x)$ där $X\in Bin(n,p)$. För p>0.5, utnyttja att $P(X\leq x)=P(Y\geq n-x)$ där $Y\in Bin(n,1-p)$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
0.2	\overline{n}	p	0	1	2	3	4	5	6	7	8	9	10
0.3	3	0.1	0.729	0.972	0.999	1.000	_	_	_	_	_	_	_
0.4		0.2	0.512	0.896	0.992	1.000	_	_	_	_	_	_	_
0.5		0.3	0.343	0.784	0.973	1.000	_	_	_	_	_	_	_
1.0		0.4	0.216	0.648	0.936	1.000	_	_	_	_	_	_	_
0.2 0.410 0.819 0.973 0.998 1.000 —		0.5	0.125	0.500	0.875	1.000	_	_	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	0.1			0.996	1.000	1.000	_	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2		0.819	0.973	0.998	1.000	_	_	_	_	_	_
0.5		0.3						_	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.000	_	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5							1.000	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ı							_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									_	_	_	_	_
6 0.1 0.531 0.886 0.984 0.999 1.000 1.000 1.000 — <t< th=""><th></th><th> </th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th></t<>									_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6									_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ı								_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										_	_	_	_
7 0.1 0.478 0.850 0.974 0.997 1.000 1.000 1.000 1.000 -										_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.5									_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7										_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ı									_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											_	_	_
8 0.1 0.430 0.813 0.962 0.995 1.000 1.000 1.000 1.000 1.000 -											_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. –	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	ı										_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ı										_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												_	_
$\begin{array}{ c cccccccccccccccccccccccccccccccccc$												_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	ı											_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													_
10 0.1 0.349 0.736 0.930 0.987 0.998 1.000 1.00													_
0.2 0.107 0.376 0.678 0.879 0.967 0.994 0.999 1.000 1.000 1.000 1.000 0.3 0.028 0.149 0.383 0.650 0.850 0.953 0.989 0.998 1.000 1.000 1.000 0.4 0.006 0.046 0.167 0.382 0.633 0.834 0.945 0.988 0.998 1.000 1.000													_
0.3 0.028 0.149 0.383 0.650 0.850 0.953 0.989 0.998 1.000 1.000 1.000 0.4 0.006 0.046 0.167 0.382 0.633 0.834 0.945 0.988 0.998 1.000 1.000	10												
0.4 0.006 0.046 0.167 0.382 0.633 0.834 0.945 0.988 0.998 1.000 1.000													
0.5 0.001 0.011 0.055 0.172 0.377 0.623 0.828 0.945 0.989 0.999 1.000													
		0.5	0.001	0.011	0.055	0.172	0.377	0.623	0.828	0.945	0.989	0.999	1.000