KEPLER

$$\frac{1}{\Gamma} = \frac{-\Gamma}{17(3)}$$

$$ED. 2^{\circ} \text{ orden}$$

$$\Lambda^{\circ} \text{ Coudinary } \Gamma(0) = (1,0) \quad \dot{\Gamma}(0) = (0,1)$$

Métado nunterico: EVIER los sistemas deben ser de 1º orden.
Para ello para pasar a 1º orden.

Nos gostaria sober:

$$\frac{dV}{dt} = \begin{pmatrix} \frac{1}{r} \\ \frac{1}{r} \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \\ \frac{1}{r} \end{pmatrix}^{2} = F(V,t)$$
Vedor
Columna

Todos los sistemas se expresan como: dV = F(V,t) de Ademãs, recesita una condución unicial: $V_0 = V^0$ Este método calcula soluciones en instantes temporales, no infenitos. Entre 2 posos de tiempo, tenemos un At

En un instante en tendremos un Tⁿ que será la solución aprox aplicando el soquema temporal de Euler. Tr(tn) es la solución exacta del problema diferencial evaluada en en

El exax, Eⁿ, es el cometido entre la solución exacta y el del modelo.

Para tese error la que se hace es d'At

El modelo
$$\int_{U_n}^{U_n+1} dU = \int_{U_n}^{U_n+1} dU$$

F^ - Solución del problema de Cauchy aproxemada en el instante

n.

VECTOR ESTADO : TU

$$0=0 \longrightarrow \mathcal{T}^{-1} = \mathcal{T}^{\circ} + \Delta t \cdot f^{\circ} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 0' 1 \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0' 1 \\ 0' 1 \end{pmatrix}$$

LIBRERIA PYTHOD: rumpy