University of Barishal

Department of Chemistry

Assignment

<u>Course Title</u>: Database (MySQL/Oracle/SQL Server)

Submitted by

Name: Abu Bakar Akon

Roll : 05-002-003

University of Barishal

Submitted to

Md. Samsuddoha

Assistant Professor

Department of Computer Science

Engineering

University of Barishal

Date of Submission: 26.10.2024

Assignment 1

Question-1. You have to develop a Human Resource Management database for a company. It requires that you have to add some information of departments, employees and projects including company. As mentioned, every department has many employees and each employee works for a department and each department is led by only one manager who is also an employee. Initially a new department need not have any employee. Here, though an employee belongs a department but they can work for different projects at the same time. Each employee can work for different job positions like Developer, Programmer and frontend designer.

ER diagram for Human Resource Management

Step 1: Identify the Attributes and Primary key for each Entity

- 1. Employees: employee_id(primary key), Name, Address, Gender, Dob, hire_date, salary, position_id(foreign key), dept_id.
- 2. Departments: dept_id(primary key), Name, num_of_employee, hod, Location. 3. Projects: Project_id(primary key), name, num_of_employee, location
- 4. Dependents: D_no, Gender, relationship.
- 5. Positions :position_id (Primary Key), title, description

6.

Step 2: Identify the Relationship

Entities have some relationships with each other. Relationships define how entities are associated with each other.

Let's Establishing Relationships between them are:

- 1. Employee works in Departments
- 2. Employee(manager) manages Department
- 3. Employee works on project
- 4. Department controls Projects
- 5. Employee has dependents
- 6. Employee holds position

Step 3: Identify the Cardinality Ratio and Participation

1. Employee-Department

Relationship: Many-to-One

Many employee works in one Department but one employee can not work in many departments.

2. Employee(manager)-Department

Relationship: one-to-one

Employee works under the manager of the Department and the manager records the date of joining of employee in the department.

3. Employee-Project

Relationship: Many-to-Many

Many employee works on several projects and the number of hours worked by the employee on a single project is recorded.

4. Department-project

Relationship: one-to-Many

One department has many projects but one project can not come under many departments.

5. Employee-Dependent

Relationship: one-to-one

Each Employee has dependents. Each dependent is dependent of only one employee.

6. Employee-Position

Relationship: one-to-One

An Employee can have one Position at a time and a Position is held by one Employee.

Step 4: ER Diagram Representation

ERD to table:

- 1. Employee(id, Name, Address, Gender, Dob, hire_date, salary, position_id, dept_id.
- ${\tt 2. \ \, Departments : dept_id, Name, num_of_employee, \ manager_id, Location.}$
- 3. Projects: Project_id, name, num_of_employee, location
- 4. Dependents: D_no, Gender, employee_id
- 5. Positions :position_id, title, description
- 6. works_on (id, hours, start_date, employee_id, Project_id.

Question -2: ER diagram for University Management System

ER diagram for University Management System

Step 1: Identify the Attributes and Primary key for each Entity

- 1. Students: Student_ID (Primary Key), Name, Date_of_Birth, Age, Gender, Address, Phone_Number, Email
- 2. Courses: Course_ID (Primary Key), Course_Name, Credits, Duration
- 3. Faculty: Faculty_ID (Primary Key), Name, Date_of_Birth, Gender, Address, Phone_Number, Email, Hire_Date, Salary, Department, Designation.
- 4. Department: Dept_ID (Primary Key), Dept_Name, Location
- 5.Hostel: Hostel_id (primary key), Hostel_name, No_of_seats
- 6.Subjects: Sub_id(primary key), Sub_name
- 7.Exams: Exam_code(primary key), Room, Date, Time

Step 2: Identify the Relationship

Entities have some relationships with each other. Relationships define how entities are associated with each other.

Let's Establishing Relationships between them are:

- 1. Faculty teaches student
- 2. Faculty takes subjects
- 3. Faculty belongs to department
- 4. Students enrolls courses
- 5. Student living in hostel
- 6. Course handles Department
- 7. Department conducts exams

Step 3: Identify the Cardinality Ratio and Participation

1. Student— Faculty

Relationship: Many-to-One

A faculty members teaches many students, but each student is taught by one faculty members.

2. Faculty—Subject

Relationship: One-to-many

A faculty members takes many subjects, but each subject is taught by one faculty members.

3. Faculty— Department

Relationship: Many-to-One

A department can have multiple faculty members, but a faculty member belongs to only one department.

4. Student — Course

Relationship: Many-to-Many

A student can enroll in many courses, and each course enrolled by many students.

5. Student — Hostel

Relationship: Many-to-One

A hostel accommodates many students, but single student is living in one hostel.

6. Course — Department

Relationship: Many-to-One

A department handles multiple courses, but each course is handled by one department.

7. Department — Exams

Relationship: one-to-Many

A department conducts multiple exams, but each exam is conducted by one department.

(hostel_name) go of seates hostel id Din code state hostel city department last_name course name first name address living course id faculty id salary duration designation student id name name N Faculty 1 teaches students enrolls courses mobile no age . email dob mobile_n takes handles belongs Subject_name subject id subjects department conducts exams location time room dept_id dept_name exam_code date

Step 4: ER Diagram Representation

ERD to table:

- 1. Students: Student_ID, first_name, last_name, Date_of_Birth, Age, Gender, Address, Phone_Number, Email
- 2. Courses: Course_ID, Course_Name, Credits, Duration, dept_id
- 3. Faculty: Faculty_ID, Name, Date_of_Birth, Gender, Address, Phone_Number, Email, Hire_Date, Salary, dept_id, Designation.
- 4. Department: Dept_ID, Dept_Name, Location

5.Hostel: Hostel_id, Hostel_name, No_of_seats

6.Subjects: Sub_id, Sub_name, course_id

7.Exams: Exam_code, Room, Date, Time, subject_id.

8. Address: city, state, pin_code

Question 3: Construct an E-R diagram for a car insurance company whose customers own one or more cars each. Each car has associated with it zero to any number of recorded accidents. Each insurance policy covers one or more cars and has one or more premium payments associated with it. Each payment is for a particular period of time, and has an associated due date, and the date when the payment was received.

ER diagram for car insurance company

Step 1: Identify the Attributes and Primary key for each Entity

- 1. Customer: C_id(primary key), name, address, phone_no
- 2. Car: car_id(primary key), color, model, year, engine_no
- 3. Insurance policy : policy_id(primary key), name, start_date, end_date
- 4. Premium installments : premium_no, amount, received_date, due date
- 5. Accident : accident_id(primary key), car_id(foreign key), date, place, report_no, damage_cost

Step 2: Identify the Relationship

Entities have some relationships with each other. Relationships define how entities are associated with each other.

Let's Establishing Relationships between them are:

- 1. Customer owns Car
- 2. Car insured by Insurance policy
- 3. Car associated with Accident
- 4. Insurance policy involves premium installments

Step 3: Identify the Cardinality Ratio and Participation

1. Customer-car

Relationship: One-to-many

One customer can own multiple cars but one car can't own by multiple customers.

2. Car-insurance_policy

Relationship: One-to-One

One car can insured by only one insurance policy.

3. Car-Accident

Relationship: one-to-Many

One car can meet with multiple accidents.

4. Insurance_policy-premium installments

Relationship: one-to-Many

One insurance policy has multiple premium installments but one premium installments has one Insurance policy.

Step 4: ER Diagram Representation

ERD to table:

- 1. Customer: C_id, name, address, phone_no
- 2. Car: car_id, color, model, year, engine_no
- 3. Insurance policy : policy_id, name, start_date, end_date
- 4. Premium installments : premium_no, amount, received_date, due_date, policy_id
- 5. Accident : accident_id, car_id, date, place, report_no, damage_cost