Министр науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет информационных технологий и программирования

Лабораторная работа №3

Работа с LaTeX.

Выполнил студент группы № М3115 Федурин Артем

Проверил: Хасан Карим Асадович

Санкт-Петербург 18.10.2024

Содержание

1 Общее описание файлов библеотеки						
	1.1	circle.py				
	1.2	square.py				
	1.3	triangle.py				
	1.4	calculate.py				
2	Опи	исание файлов программ из репозитория				
	2.1	circle.py				
		2.1.1 Код программы				
		2.1.2 Логика программы				
		2.1.3 Используемые формулы				
	2.2	square.py				
		2.2.1 Код программы				
		2.2.2 Логика программы				
		2.2.3 Используемые формулы				
	2.3	triangle.py				
		2.3.1 Код программы				
		2.3.2 Логика программы				
		2.3.3 Используемые формулы				
	2.4	calculate.py				
	2.4					
		2.4.2 Логика программы				
		2.4.3 Как пользоваться калькулятором				
_	Сот	LHVII IIO IIDOOVII				
3	3.1	Ссылки на проект 3.1 Overleaf				
		Github				

1 Общее описание файлов библеотеки

1.1 circle.py

Находит площадь и периметр круга.

1.2 square.py

Находит площадь и периметр квадрата.

1.3 triangle.py

Находит площадь и периметр треугольника.

1.4 calculate.py

Определяет необходимую функцию, принимает введенные числа и выводит нужную нам величину и её значение.

2 Описание файлов программ из репозитория

2.1 circle.py

2.1.1 Код программы

Вычисление площади

```
def area(r):
    ''' Принимает число, которое явялется радиусом окружности, и возвращает число, которое является площадью этой окружности'''
    return math.pi * r * r
```

Вычисление периметра

```
def perimeter(r):
    ''' Принимает число, которое явялется радиусом окружности, и возвращает число,
    которое является периметром этой окружности'''
    return 2 * math.pi * r
```

2.1.2 Логика программы

- 1. Функция area(r) принимает радиус окружности r и возвращает значение, которое является площадью.
- 2. Функция perimeter(r) принимает радиус окружности r и возвращает значение, которое является периметром.

2.1.3 Используемые формулы

```
Площадь круга : \pi \cdot R^2
```

```
Периметр круга : 2 \cdot \pi \cdot R
```

2.2 square.py

2.2.1 Код программы

Вычисление площади

```
def area(a): ^{\prime\prime\prime}Принимает сторону квадрата и возвращает его площадь^{\prime\prime\prime\prime} return a * a
```

Вычисление периметра

```
def perimeter(a): ""Принимает сторону квадрата и возвращает его периметр"" return <math>4*a
```

2.2.2 Логика программы

- 1. Функция area(r) принимает сторону квадрата а и возвращает значение, которое является его площадью.
- 2. Функция perimeter(a) принимает сторону квадрата а и возвращает значение, которое является его периметром.

2.2.3 Используемые формулы

```
Площадь квадрата : a^2
```

```
Периметр квадрата : 4 \cdot a
```

2.3 triangle.py

2.3.1 Код программы

Вычисление площади

```
def area(a, b, c): ^{\prime\prime\prime}Принимает стороны треугольника и выводит его площадь^{\prime\prime\prime\prime} return (a + b + c) / 2
```

Вычисление периметра

```
def perimeter(a, b, c): ""Принимает стороны треугольника и выводит его периметр"" return a + b + c
```

2.3.2 Логика программы

- 1. Функция area(a, b, c) принимает стороны треугольника и возвращает значение, которое является его площадью.
- 2. Функция perimeter(a, b, c) принимает стороны треугольника и возвращает значение, которое является его периметр.

2.3.3 Используемые формулы

```
Площадь треугольника : \sqrt{(p\cdot (p-a)\cdot (p-b)\cdot (p-c)} Периметр треугольника : a+b+c
```

2.4 calculate.py

2.4.1 Код прогаммы

```
import circle
import square
figs = ['circle', 'square']
funcs = ['perimeter', 'area']
sizes = {}
def calc(fig, func, size):
        assert fig in figs
        assert func in funcs
        result = eval(f'{fig}.{func}(*{size})')
        print(f'{func} of {fig} is {result}')
if __name__ == "__main__":
        func = ''
        fig = ''
        size = list()
        while fig not in figs:
                fig = input(f"Enter figure name, avaliable are {figs}:\n")
        while func not in funcs:
                func = input(f"Enter function name, avaliable are {funcs}:\n")
        while len(size) != sizes.get(f"{func}-{fig}", 1):
                size = list(map(int, input("Input figure sizes separated by space, 1 for cir
        calc(fig, func, size)
```

2.4.2 Логика программы

Фукция calc(fig, func, size) просит на ввести то, какая фигура нас интерсует, ищем мы площадь или же периметр, размеры фигуры, затем возвращает значение на основе введенных нами параметров.

2.4.3 Как пользоваться калькулятором

- 1. Запустите 'python calculate.py'
- 2. Введите название фигуры. Доступные: Круг и Квадрат .
- 3. Введите функцию: Площадь или Периметр.
- 4. Введите размеры фигуры. Радиус для круга, сторону квадрата.
- 5. Получите ответ!

3 Ссылки на проект

3.1 Overleaf

https://www.overleaf.com/project/670997e3b50d0126e49d6543

3.2 Github

https://github.com/fedurinartem/geometric_lib/tree/documentation