台北市立松山高中 105 學年度第一學期第一次期中考高二自然組數學科試題卷

一、填充題:60%

1. 設θ為銀角,若 $\tan\theta = \frac{3}{2}$,試求 $\frac{2\sin\theta - 5\cos\theta}{4\sin\theta + 3\cos\theta}$ 的值。

2. 試來
$$\sin\frac{5}{6}\pi + \cos\left(-\frac{8}{3}\pi\right)$$
的值。

3. 弑求 sin² 1°+sin² 2°+·····+sin² 88°+sin² 89° 約億。

4. 試求 sin 25° cos 110°--sin 290° sin 65° 的值。

5. 若 sin x=3 cos x · 弑求 cos 2x 的值。

6. 圖內接內達形 ABCD 中, $\overline{AB}=4$, $\angle ACB=30$ ", $\angle CAD=60$ ",試來 \overline{CD} 的長度。

7. 在 $\triangle ABC$ 中、若 $\overline{BC} = \sqrt{3}$, $\overline{AC} = \sqrt{7}$, $\overline{AB} = 4$,故求 $\triangle ABC$ 的面積。

8. 下圈(一)△ABC 中: $\overline{AD} \pm \overline{BC}$; 已知 $\overline{AB} = 25 \cdot \sin B = \frac{3}{5} \cdot \sin C = \frac{15}{17} \cdot 求 \overline{BC}$ 的長度。

9. 如上國(二)<u>小明</u>在作幾何圖形時,不小心沾到油漬、除 \overline{BD} 的長度無法得知外,其它的長度為 \overline{AB} \overline{AB} \overline{AB} \overline{AB} \overline{AC} \overline{AC}

10. 在極坐標平面上,有極點 O 及兩點 A[4, 30°], B[6, 150°], 試束 AB 的長度。

二、多重選擇題:24%

已知 P(2, -1)為標準位置角θ 终邊上的一點,試問下列選項中何者正確?

(A)
$$\sin \theta = -\frac{\sqrt{5}}{5}$$
 (B) $\cos \theta = \frac{2\sqrt{5}}{5}$ (C) $\tan \theta = -\frac{1}{2}$ (D) $\sin \theta = \frac{2\sqrt{5}}{5}$ (E) $\cos \theta = -\frac{\sqrt{5}}{5}$

2. 沒
$$\sin \theta = \frac{1}{2}$$
 , 且 $\frac{1}{2}\pi < \theta < \pi$, 試問下列選項中何者正確?

2. 段
$$\sin\theta = \frac{1}{3}$$
 , 且 $\frac{1}{2}$ $\pi < \theta < \pi$, 块間下列選項中何者正確?
(A) $\cos\theta = -\frac{2\sqrt{2}}{3}$ (B) $\tan\theta = -\frac{\sqrt{2}}{4}$ (C) $\sin\left(\frac{1}{2}\pi + \theta\right) = -\frac{2\sqrt{2}}{3}$ (D) $\cos\left(\pi - \theta\right) = \frac{2\sqrt{2}}{3}$ (E) $\sin\left(\frac{3}{2}\pi + \theta\right) = \frac{2\sqrt{2}}{3}$

(D)
$$\cos((\pi - \theta) - \frac{2\sqrt{2}}{2})$$
 (E) $\sin(\frac{3}{2}\pi + \theta) = \frac{2\sqrt{2}}{2}$

3, $\triangle ABC$ 中, $\overline{BC}=5$ 、 $\overline{AC}=3$, $\cos C=-rac{1}{2}$,問下列何者正確?

(A)
$$\triangle ABC$$
的外接圈单键= $\frac{14\sqrt{3}}{3}$ (B) $\triangle ABC$ 的內切圖半徑= $\frac{\sqrt{3}}{2}$

(C)
$$\sin^2 A + \sin^2 B > \sin^2 C$$
 (D) \overline{BC} 達上的高為 $\frac{3\sqrt{3}}{2}$

(E) 若 N 為 \overline{BC} 的 中點 · 則 $\overline{AM} = \frac{\sqrt{91}}{2}$

4. 设 180° < θ < 270° ,且 $\sin\theta = \frac{-3}{5}$,铸選出下列正確的選項:

(A)
$$\cos \theta = \frac{4}{5}$$
 (B) $\sin \frac{\theta}{2} = \frac{3}{\sqrt{10}}$ (C) $\tan \frac{\theta}{2} = \frac{-3}{2}$ (D) $\cos 2\theta = \frac{7}{25}$ (E) $\cos 3\theta = \frac{-117}{125}$.

三、計算證明題:16%

在Δ ABC 中, 若三個高之長為 6, 4, 3, 求Δ ABC 的面積. (8 分)

台北市立松山高中 105 學年度第一學期第一次期中考高二自然組數學科 答案卷

班級_____ 座號____ 姓名_

一、填充題:60%

1	2	3	4	5
2	0	$\frac{89}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{4}{5}$
6	7	8	9	10
4√3	√3	28	8	2√19

二、多重選擇題:24%

(每題6分,只錯一個選項得4分、錯二個選項得2分,若是錯三個以上選項或未答者不給分)

٠.						_
	1	_ 2	3	. 4	得分	l
	A. B. C.	A. B. C. D. E.	B. D. E	B. D		١.

三、計算證明題:16%

由正弦定理:
$$\frac{\overline{AB}}{\sin 45^{\circ}} = \frac{\overline{BC}}{\sin 105^{\circ}} = \frac{\overline{AC}}{\sin 30^{\circ}} - 2R = 16 \quad (得2分)$$

由正弦定理:
$$\frac{\overline{AB}}{\sin 45^\circ} = \frac{\overline{BC}}{\sin 105^\circ} = \frac{\overline{AC}}{\sin 30^\circ} = 2R = 16$$
 (得2分)
 $\therefore \overline{AB} = 16 \cdot \sin 45^\circ = 16 \cdot \frac{\sqrt{2}}{2} = 8\sqrt{2}$, $\overline{AC} = 8$ (\overline{BC} , \overline{AC} , \overline{AB} 其中兩個各得2分)

$$\overline{BC} = 16 \cdot \sin 105^{\circ} - 16 \cdot \sin 75^{\circ} = 16 \cdot \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right) = 4 \left(\sqrt{6} + \sqrt{2}\right)$$

$$\triangle ABC$$
 面積= $\frac{1}{2}$ \overline{AB} \cdot \overline{BC} \cdot $\sin B$ = $\frac{1}{2}$ \cdot $8\sqrt{2}$ \cdot 4($\sqrt{6}$ + $\sqrt{2}$) \cdot $\frac{1}{2}$ = $16+16\sqrt{3}$ (得2分)