Факультет радіофізики, електроніки та комп'ютерних систем Київського національного університету імені Тараса Шевченка

«ЗАТВЕРДЖЕНО»

		декан	i		
		_	<i>P</i>	Анісімов І	.O.1
		«	»2	018 року	
	_				
Освітн	ія програма «Інж	енерія комг	г'ютерних сис	стем і м	ереж»
	Робоча прогр Дисі	ама навчал кретна мате		іни	
галузь знань спеціальність форма навчання	12 Інформаційні 1 123 Комп'ютерна і денна				
мова навчання	українська				
		Навчалы	ний рік		2018/2019
		Семестр			3
«УЗГОДЖЕНО» Гарант ОП Інжене	рія комп'ютерних си	стем і мереж	Завідувач кафедінженерії	дри Комп'	ютерної
	Баужа О.С.		I	Тогорілий	С.Д.
«27» серпня 2018 ро	оку		«27» серпня 20	18 року	
протокол № в	культету радіофізики ід « »	2018 року	_		
Голова науг	ково-методичної ком	icii	Нет	реба А.В.	,
Продовжено: на 20	0/20 н.р	() ‹	<»	20 p.
Продовжено: на 20	0/20 н.р	() (<»	20 p.
Викладач: Пого Комп'ютерної і	орілий Сергій Дє нженерії	ем'янович,	ц.т.н, професс	ор, завід	дувач кафедрі

Робоча програма навчальної дисципліни Дискретна математика (2 курс, 3 семестр)

 Лекції
 30 год.

 Семінарські заняття
 44 год.

 Модульна контрольна робота
 2 год.

 Колоквіум
 2 год.

 Форма заключного контролю
 іспит

- **1. Статус дисципліни:** Навчальна дисципліна «Дискретна математика» є обов'язковою навчальною дисципліною підготовки фахівців за освітнім рівнем «бакалавр» галузі знань «12 Інформаційні технології» зі спеціальності «123 Комп'ютерна інженерія».
- **2.** Анотація навчальної дисципліни: Методологічний розвиток методів обчислень ϵ першопричиною зародження і еволюції обчислювальної техніки та сучасного програмного забезпечення. Процес обчислення, як відомо, ϵ алгоритмічною процедурою перетворення певної інформації з метою отримання конкретного результату або доведення неможливості такого обчислення. Обчислювальна техніка та інформаційні технології щільно оперують поняттям інформації, яка для них ϵ водночас і вихідними даними, і результатами обчислень. Інформація накопичується і зберігається обчислювальною технікою, як правило, в двійковому цифровому вигляді, а отже цифровий автомат природно визначити як абстрактний перетворювач цифрової дискретної інформації.

Дослідження в галузі дискретної математики і її бурхливий розвиток за останні півсторіччя призвели до формування теорії автоматів. скінченного автомата виявилась плідною і зручною у величезній кількості застосувань не тільки у інформатиці, але і у багатьох інших галузях інженерної діяльності. На цей день теорія автоматів є одним із фундаментальних блоків сучасної теоретичної і практичної інформатики. Разом із класичними застосуваннями теорії автоматів, такими як проектування вбудованих систем логічного управління, обробка текстів і побудова компіляторів програмування, останнім часом з'явилися нові, нетрадиційні області застосування цієї теорії – специфікація та верифікація систем процесів, що взаємодіють (а саме протоколів комунікації), мови опису документів та об'єктно-орієнтованих програмних систем, оптимізація логічних програм, робототехніка тощо.

Дискретна математика ϵ тією методологічною базою дискретних обчислень, що інтегру ϵ всі подальші курси, які викладаються студентам за спеціальністю «123 — Комп'ютерна інженерія».

3. Мета і завдання навчальної дисципліни «Дискретна математика» ϵ оволодіння студентами 2-го курсу факультету радіофізики, електроніки та

комп'ютерних систем математичними засадами новітніх комп'ютерних та інформаційних технологій і формування навичок розв'язання базових задач, а також світогляду студентів у галузі застосування методів дискретної математики для ефективного засвоєння комп'ютерних курсів у подальшому навчанні. Курс передбачає оволодіння студентами теоретичними основами дискретної математики та навичками розв'язання задач у подальшій професійній діяльності після закінчення університетського курсу за спеціальністю «123 — Комп'ютерна інженерія».

Основне завдання навчальної дисципліни «Дискретна математика»:

- 1) надати основні відомості з курсу «Дискретна математика», які складають важливу частину інженерної підготовки студента-бакалавра за спеціальністю «Комп'ютерна інженерія».
- 2) узагальнити відомі поняття курсів «Математика», «Комп'ютерна електроніка», «Комп'ютерна схемотехніка», «Прикладна теорія цифрових автоматів» тощо;
- 3) простежити взаємозв'язок широкого кола об'єктів досліджень;
- 4) продемонструвати застосування теоретичних відомостей до розв'язання практичних задач;
- 5) застосування знань, умінь, навичок і комунікацій у професійній діяльності, розвиток логічного та аналітичного мислення студентів;
- 6) прищепити вміння розв'язувати прикладні задачі методами що розглядаються в курсі «Дискретна математика».
- **4. Результати навчання. У** результаті вивчення дисципліни «Дискретна математика» студент отримає підготовку, необхідну для подальшого навчання за освітньою програмою «Інженерія комп'ютерних систем і мереж», самостійного вивчення необхідної наукової та технічної літератури, рішення типових задач, що виникають при розробці апаратного та програмного забезпечення комп'ютерних систем.

5. Передумови для вивчення навчальної дисципліни:

До вивчення дисципліни «Дискретна математика» необхідно пройти підготовку і скласти іспити/заліки з таких дисциплін:

- Вища математика
- Програмування
- Основи апаратного та програмного забезпечення ЕОМ.

ба. Засоби оцінювання результатів навчання:

- Семестрове оцінювання: контроль здійснюється у такий спосіб. Навчальна дисципліна «Дискретна математика» має два змістові модулі: у змістовий модуль 1 (ЗМ1) входять теми 1-7, у змістовий модуль 2 (ЗМ2) входять теми 8-15. Після завершення вивчення першого модуля студенти пишуть контрольну роботу.

- **Контрольна робота:** містить задачі з теорії множин та булевих функцій. Для визначення рівня досягнення результатів навчання завдання в білетах контрольної роботи перевіряють уміння розв'язувати конкретні задачі відповідних розділів курсу. Максимальна кількість балів за контрольну роботу складає **20**.
- **Колоквіум:** після вивчення матеріалу з теорії графів студенти складають колоквіум, на якому одержують теоретичні питання із перших трьох розділів курсу. Максимальна кількість балів за колоквіум складає **20**.
- **Робота на семінарських заняттях:** в кінці семестру студенти одержують бали за уміння і навички розв'язання задач на семінарах протягом семестру (кожен студент тричі виходить до дошки для розв'язання задач і може одержать максимальну кількість балів 6+7+7=20). У такий спосіб студент може одержати за семестр максимально 60 балів. Обов'язковим для допуску до іспиту є мінімальна кількість балів 30.
- Підсумкове оцінювання (у формі іспиту): форма іспиту письмово-усна. Екзаменаційний білет іспиту складається із 3 питань: 2 теоретичних і 1 задачі. Кожне питання оцінюється від 0 до 13 балів, а задача, — від 0 до 14 балів. Всього за іспит можна отримати від 0 до 40 балів. Умовою досягнення позитивної оцінки за дисципліну є отримання не менше ніж 60 балів, при цьому оцінка за іспит не може бути меншою 25 балів.

6б. Умови допуску до підсумкового іспиту:

умовою допуску до іспиту ϵ мінімальна кількість балів не менше, аніж *критично-розрахунковий мінімум* 30 балів за семестр. Студенти, які протягом семестру набрали сумарно меншу кількість балів, ніж критично-розрахунковий мінімум 30 балів, для одержання допуску до іспиту обов'язково повинні розв'язати додаткові задачі для отримання необхідної порогової кількості балів.

бв. Критерії оцінювання

Критерієм успішного проходження здобувачем освіти підсумкового оцінювання ϵ досягнення ним мінімальних порогових рівнів умінь (рішення задач) і знань (опанування теоретичного матеріалу)

	Знання (мінімум)	Знання (максимум)	Уміння (мінімум)	Уміння (максимум)	Знання + уміння (мінімум)	Знання + уміння (максимум)
Результати протягом семестру	15	30	15	30	30	60
Іспит	15	20	15	20	30	40
Підсумкова оцінка	30	50	30	50	min 60	max 100

6г. Загальні результати і шкала відповідності оцінок

Оцінка (за національною шкалою) /National grade	Рівень досягнень, % /Marks, %
Відмінно / Excellent	90-100%
Добре / Good	75-89%
Задовільно / Satisfactory	60-74%
Незадовільно / Failed	0 -59%

7.1. Програма навчальної дисципліни «Дискретна математика»

Примітка: Теми практичних занять співпадають із темами відповідних лекцій.

No			У тому числі	у числі		
п/п	Назва теми		Семінарські заняття	Лаборатор ні заняття	Самостійна робота	
	Змістовий модуль 1. Фінітні м	г инижони	га булеві фун	нкції		
1	Вступ. Множини та фінітні множини, операції над ними. <i>N</i> -арні відношення та їх властивості	2	2	-	12	
2	Унарні, бінарні та тернарні відношення. Ін'єктивні, бієктивні та сюр'єктивні відображення. Багатоосновні алгебри. Система алгоритмічних алгебр Глушкова, приклади застосування	2	4	-	12	
3	Булеві функції та їх властивості. Булеві операції, правила де Моргана	2	2	-	12	
4	Розкладання булевих функцій за змінними. Досконала диз'юнктивна нормальна форма булевої функції. Принцип двоїстості. Досконала кон'юнктивна нормальна форма булевої функції	2	4	-	12	
5	Поняття повноти системи булевих функцій та базису. Базис Жегалкіна. Задача мінімізації булевих функцій. Аналітичні методи мінімізації	2	2	-	12	
6	Постановка задачі мінімізації булевих функцій у геометричній формі. Геометричні методи мінімізації	2	4	-	12	
7	Неповністю визначені булеві функції та їх мінімізація. Формальний логічний синтез комбінаційних схем	2	2	-	12	
	Всього	14	20	-	84	
	Змістовий модуль 2. Теорія графів	та синтез	скінченних	автоматів		
8	Графи і методи їх задання, основні визначення з теорії графів. Деякі спеціальні види графів	2	4	-	12	
9	Ізоморфізм графів та алгоритми розпізнавання ізоморфізму графів. Ізоморфне вкладення графів та алгоритм його розпізнавання	2	2	-	12	

10	Скінченні автомати Мілі і Мура та методи їх задання. Еквівалентність автоматів	2	4	-	12
11	Зображення подій у скінченних автоматах. Алгебра подій	2	2	-	12
12	Задання регулярних виразів у вигляді графів Бержа. Трансформація графів виразів	2	4	-	12
13	Абстрактний синтез скінченних автоматів. Алгоритм абстрактного синтезу	2	2	-	12
14	Структурний синтез автоматів Мілі та Мура. Алгоритми структурного синтезу. Композиція автоматів. Недетерміновані скінченні автомати	2	4	-	12
15	Мови, граматики і автомати (вступ до теорії обчислень). Граматики, що розпізнають та породжують та їх приклади. Класифікація граматик (та мов) за Хомським	2	2	-	12
	Всього	16	24	-	96

Загальний обсяг $176 \, cod.$, в тому числі: Лекцій – $30 \, cod.$ Семінарські заняття – $44 \, cod.$ Самостійна робота – $102 \, cod.$

7.2 Самостійна робота студентів (СРС).

	Тема СРС	Джерело інформації
1.	Вивчення теорії множин	[1, 2] §1.1 – 1.4
2.	Розв'язання задач із теорії множин	[1, 2] §1.5
3.	Вивчення теорії булевих функцій	[1, 2] §2.1 – 2.11
4.	Розв'язання задач із теорії булевих функцій	[1, 2] §2.12
5.	Вивчення теорії графів	[1, 2] §3.1 – 3.6
6.	Розв'язання задач із теорії графів	[1, 2] §3.7
7.	Вивчення теорії скінченних автоматів	[1, 2] §§4.1 – 4.6
8.	Розв'язання задач із теорії скінченних автоматів	[1, 2] § 4.7
9.	Вивчення вступу до теорії обчислень	[1, 2] §5.1 – 5.4
10.	Розв'язання задач із теорії обчислень	[1, 2] §5.5

Примітка: всі питання СРС включаються до екзаменаційих білетів

7.3. Список джерел до тем самостійної роботи студентів:

- [1] Погорілий С.Д. Програмне конструювання. Підручник за редакцією академіка АПН України Третяка О.В., видання 2-е. Київ : ВПЦ "Київський університет", Київ, 2007.
- [2] Погорілий С.Д. Дискретна математика. Київ : ВПЦ "Київський університет", 1996.

8. Рекомендована література:

- [1] Погорілий С.Д. Програмне конструювання. Підручник за редакцією академіка АПН України Третяка О.В., видання 2-е. Київ : ВПЦ "Київський університет", Київ, 2007.
- [2] Погорілий С.Д. Дискретна математика. Київ : ВПЦ "Київський університет", 1996.
- [3] Капітонова Ю.В., Летичевський О.А., Кривий С.Л. та ін.. Основи дискретної математики. Київ, Наукова думка, 2002.
- [4] Погорілий С.Д. "Автоматизація наукових досліджень. Основоположні математичні відомості. Програмне забезпечення" за редакцією академіка АПН України Третяка О. В. Київ: ВПЦ "Київський університет", 2002.
- [5] Погорілий С.Д. "Автоматизація наукових досліджень. Основоположні математичні відомості. Програмне забезпечення. Задачі та лабораторні практикуми" за редакцією академіка АПН України Третяка О. В. Київ : ВПЦ "Київський університет", 2002.
- [6] Иванов Б.Н. Дискретная математика. Алгоритмы и программы. –М.: Лаборатория базовых знаний, 2002.
- [7] Андерсон Дж. Дискретная математика и комбинаторика. М.: Вильямс, 2003.
- [8] Сэджвик Р. Фундаментальные алгоритмы на С++. Часть 5: Алгоритмы на графах. СПб: ООО DiaSoft, 2002. 496 с.
- [9] Андон Ф.И., Дорошенко А.Е., Цейтлин Г.Е., Яценко Е.А. Алгеброалгоритмические модели и методы паралельного программирования. К.: Академпериодика, 2007.
- [10] Карпов Ю.Г. Теория автоматов. М.: Питер, 2002.
- [11] Вирт Н. Алгоритмы и структуры данных. Санкт-Петербург, Невский Диалект, 2001.

додатки:

9. Рекомендації щодо оцінки типів навчальної роботи

		Знання	Уміння	Комуніка- ційність	Автономність (ініціативність) і відповідальність
1	Лекції	100			
2	Семінари	80		20	

10а. Результати навчання за дисципліною:

		Форми (та/або методи і технології) викладання і навчання	Методи оцінювання та пороговий критерій оцінювання (за необхідності)	Відсоток у підсумковій оцінці з дисципліни
Код	Результат навчання			
1	студент повинен знати:			
1.1	Основоположні відомості із теорії множин. Булеві функції, їх мінімізація та принцип двоїстості	лекційні заняття	Іспит, колоквіум, контрольні роботи, завдання для самостійної роботи	до 50
1.1 a	Основоположні відомості із теорії графів Бержа. Основні положення теорії скінченних автоматів	лекційні заняття	Іспит, колоквіум, контрольні роботи, завдання для самостійної роботи	
1.1 б	Вступ до теорії обчислень	лекційні заняття	Іспит, колоквіум, контрольні роботи, завдання для самостійної роботи	
2	студент повинен вміти:			
2.1	Аналізувати унарні, бінарні та тернарні відношення. Визначати види відображень. Формувати аналітичні схеми алгоритмів. Проводити мінімізацію булевих функцій аналітичними та геометричними методами	проведення практичних занять	контрольні роботи, завдання для самостійної роботи	до 50
2.1 a	Визначати різні види графів, встановлювати факти їх ізоморфізму та ізоморфного вкладення. Спрощувати регулярні вирази в алгебрі регулярних виразів та будувати відповідні графи. Здійснювати абстрактний та структурний синтез скінченних автоматів.		контрольні роботи, завдання для самостійної роботи	
2.1 6	Аналізувати мови, що породжуються формальними граматиками. Визначати типи формальних граматик		контрольні роботи, завдання для самостійної роботи	

10.6 Співвідношення результатів навчання дисципліни із програмними результатами навчання

	Знання (код 1)		Уміння (код 2)		сод 2)	
	1.1	1.1a	1.16	2.1	2.1a	2.16
Програмні результати навчання (назва)						
Знати основні розділи «Дискретної математики» для розв'язання задач комп'ютерної інженерії	+					
А) Основні методи мінімізації булевих функцій і їх застосування для синтезу цифрових схем		+				
Б) Методи абстрактного та структурного синтезу скінченних автоматів для синтезу цифрових схем і створення програмного забезпечення			+			
Розв'язання задач при проектуванні програмноапаратних платформ				+		
А) Здійснювати аналітичні трансформації при проектуванні апаратних платформ					+	
Б) Здійснювати аналітичні трансформації при проектуванні програмних платформ						+

11. Розробник: Погорілий Сергій Дем'янович, доктор технічних наук, професор, завідувач кафедри комп'ютерної інженерії