Filip Ramazan STAT 461

Homework #4

Problem 1: Dies by Calculation

Suppose a fair die is tossed three times.

a. Let X be the largest of the faces that appear. Write with justification the probability density function of X.

b. Let Y be the number of different faces that appear. Write with justification the probability density function and the cumulative distribution function F_Y of Y. Plot the graph of F_Y .

Solution.

a. Probability mass function of X:

To find the probabilities for each value of X, we use the formula $\frac{k^3}{6^3} - \frac{(k-1)^3}{6^3}$, since $P(x \le k) - P(x \le k-1) = P(x = k)$

b. Probability mass function of Y:

$$\begin{array}{c|cccc} y & 1 & 2 & 3 \\ \hline P(Y=y) & \frac{6}{216} & \frac{90}{216} & \frac{120}{216} \end{array}$$

 $P(x=1)=6\cdot 1\cdot 1=6$, since there must be only 1 distinct number. $P(x=2)=6\cdot 5\cdot 1=30$, since there

Cumulative distribution function of Y:

$$F_Y(t) = \begin{cases} 0 & t < 1\\ \frac{1}{36} & 1 \le t < 2\\ \frac{4}{9} & 2 \le t < 3\\ 1 & 3 \le t \end{cases}$$

Plot of F_Y :

