Principal Component Analysis

1. Download the "applicant" dataset from the Homework 3 page on the course website. This dataset contains various features on applicants applying for a job at NCSA. The description of each feature is as follows:

FL	Form of their letter application
APP	Appearance
AA	Academic ability
LA	Likeability
SC	Self-confidence
LC	Lucidity
HON	Honesty
SMS	Salesmanship
EXP	Experience
DRV	Drive
AMB	Ambition
GSP	Ability to grasp concepts
POT	Potential
KJ	Keenness to join
SUIT	Suitability for position

- 2. Use Python to solve the problems below. Submit your code and output of the code tabularized in a readable format. You do not need to submit a separate report.
 - a. Find correlation (**R**) and covariance ($\widehat{\Sigma}$) matrix of the applicant dataset.
 - b. Should principal component analysis be performed on the covariance or the correlation matrix? Explain your choice.
 - c. Find the eigenvalues and eigenvectors of both **R** and $\widehat{\Sigma}$. Show that all pairs of eigen vectors are orthogonal to one another.
 - d. Show that sum of the eigen values of $\widehat{\Sigma}$ is equal to the trace of $\widehat{\Sigma}$.
 - e. Run PCA analysis on the dataset based on your choice in part 2.b.
 - i. How many principal components are required to describe the space in which the data actually falls?
 - ii. Show the scree plot for your PCA analysis
 - iii. Plot the first principal component against the second principal component and include an interpretation
 - iv. Explain the benefits of running PCA analysis on this dataset