IOT Analytics

Electricity Usage Patterns

Brian Mattis

Overall Power Consumption by Submeter (2007-2009)

Residence circuit allocations

- Submeter 1: Kitchen
 - Dishwasher
 - Oven
 - Microwave
- Submeter 2: Laundry Room
 - Washing Machine
 - Dryer
 - Refrigerator
 - Light
- Submeter 3: Heating/cooling
 - Water heater
 - Air Conditioner

Daily and Weekly Power Usage Profiles

* Power data averaged hourly for all days from 2007-2009

Client daily and weekly behavior patterns can be observed

* Power data averaged hourly for all days from 2007-2009, by day-of-week

Summer 2008 Investigation

- Clear data showing minimal power usage Aug 7th Aug 30th 2008
 - Reasonable to conclude client was not living in residence at this time

Usage data

- SM1 and SM2 plotted as weekly mean usage from 2007-2010
- SM3 plotted as weekly sample of the data taken at 8pm on Mondays (per project roadmap)

Forecasts from Linear regression model

Linear Regression Forecasting

	RSE	Multiple R2	Adjusted R2	
SM1	0.4753	0.4411	0.1694	
SM2	0.5085	0.4851	0.2349	
SM3	9.046	0.263	-0.1055	

Forecasts from Linear regression model

Forecasts from Linear regression model

Time

Component Decompositions

Component Decompositions

SM₃

Decomposition of additive time series

		Min.	1st Qu	Median	Mean	3rd Qu.	Max
SM1	Seasonal	-0.946	-0.309	0.021	-0.001	0.240	0.808
	Trend	1.042	1.109	1.135	1.142	1.184	1.228
	Random	-0.737	-0.211	-0.010	-0.010	0.184	0.717
SM2	Seasonal	-1.204	-0.211	-0.001	-0.002	0.228	0.725
	Trend	1.073	1.111	1.257	1.327	1.563	1.638
	Random	-0.855	-0.246	-0.020	-0.001	0.246	0.853
SM3	Seasonal	-6.969	-6.118	1.680	0.010	2.699	11.598
	Trend	4.837	5.913	6.404	6.456	6.981	8.231
	Random	-13.358	-1.401	0.229	0.224	1.849	13.806

- SM2 showed a clear trend decrease with time
 - Client perhaps reduced usage of washer/dryer
- SM3 shows surprisingly weak/noisy seasonal trend
 - Improved if we use weekly averaging instead of sampling

Modeled vs. actual usage in August 2008

Time

- During Aug2008, SM1 and SM2 usages are well outside the 80% confidence ranges, indicating a significant deviation from previous trends
- Further supports the client was not in the residence during this time frame

Business Recommendations

- Combining weather and sunrise/sunset data could help in analyzing the seasonality and trend components of the AC/heater related data
 - SM3 decomposition shows lower seasonal usage in summer (plot on right)
- Increasing the number of submeters in a residence would offer further insight into the details of a resident's behavior
- Sub-meters offer fine granularity, and future cases with tighter timelines in question could benefit
- AC/Water heater consume significantly more energy annually than other appliances, and could be an opportunity for savings with more efficient units
- Access to broad submeter usage data across a city could be useful in other data mining markets, such as targeted advertising
 - Identify meal times, bed times, and work schedules

Decomposition of additive time series

Lessons Learned

- Sampled data is noisier than averaged grouped data for consumption data sets
- Holt-Winters fails to integrate the SM2 downward trend in future forecasts
 - Manually adjusting parameters results in overfitting and a poor model
- Using a weekly-averaged sample set produces much more controlled forecasts for SM3, as seen on right
 - Random sampling has negatively impacted our prediction capabilities
 - SM3 with this forecast would have supported the out-of-range claims for Aug2008

Forecasts from HoltWinters

