Automatic Piano Transcription

with Hierarchical Frequency-Time Transformer

Keisuke Toyama¹, Taketo Akama², Yukara Ikemiya³, Yuhta Takida³, Wei-Hsiang Liao³, Yuki Mitsufuji^{1,3}

¹Sony Group Corporation, ²Sony Computer Science Laboratories, ³Sony Al

Introduction

For automatic music transcription (AMT), it is important to analyze

- several harmonic structures that spread in a wide range of frequencies
- temporal sequences of acoustic features in the time axis
- → self-attention mechanism is a powerful tool to capture the long-term dependency

We propose an AMT method that uses a 2-level hierarchical frequency-time Transformer architecture

- 1st hierarchy: 1-D CNN (time), 1st Transformer encoder (frequency), Transformer decoder (frequency)
- 2nd hierarchy: 2nd Transformer encoder (time)

Methods

Loss function

• frame, onset, offset: binary cross-entropy

 $L_{\text{all}} = \alpha_{1\text{st}} \frac{L_{1\text{st}}}{L_{1\text{st}}} + \alpha_{2\text{nd}} L_{2\text{nd}}$

velocity: 128-category cross-entropy

 $L = L_{\text{bce}}^{\text{frame}} + L_{\text{bce}}^{\text{onset}} + L_{\text{bce}}^{\text{offset}} + L_{\text{cce}}^{\text{velocity}}$

Experimental Results

Dataset (Piano)

- MAPS (train/valid/test=8.3/4.4/5.5 hours)
- MAESTRO v3.0.0 (159.2/19.4/20.0 hours)

Results

- outperformed the other existing methods
- half-stride strategy is effective

Dataset Method		Half- stride	Params	Frame	Note	Note Offset	Note Offset&Velocity
	Onsets&Frames [7]		26M	78.30	82.29	50.22	35.59
MAPS	ADSR [10]		0.3M	77.16	81.38	56.08	-
IVIAPS	hFT-Transformer		5.5M	<u>82.67</u>	<u>85.07</u>	<u>66.03</u>	<u>47.92</u>
	hFT-Transformer	√	5.5M	82.89	85.14	66.34	48.20
	Seq2Seq [3]		54M	-	96.01	83.94	82.75
	HPT-T [2]		-	90.09	96.77	83.20	81.90
	Semi-CRFs [12]		9M	90.75	96.11	88.42	87.44
MAESTRO	HPPNet-sp [5]		1.2M	<u>93.15</u>	97.18	83.80	82.24
v3.0.0	hFT-Transformer		5.5M	93.02	97.43	90.32	<u>89.25</u>
	hFT-Transformer	\checkmark	5.5M	93.24	97.44	90.53	89.48
	SpecTNT (*)		-	-	(96.9)	-	-
	PerceiverTF (*)		-	-	(96.7)	-	-

Evaluation results on MAPS/MAESTRO test dataset (**bold**: best score, <u>underline</u>: 2nd best score) (*: reported in "Multitrack Music Transcription with a Time-Frequency Perceiver," in ICASSP2023)

Ablation Study

ш											
	Model	1 st Hierarchy			2 nd Hierarchy					Note	Note
		CNN	1st Encoder	Converter	2 nd Encoder	Output	Params	Frame	Note	Offset	Offset& Velocity
	hFT- Transformer	1-D	V	Decoder	√	2 nd	5.5M	91.09	96.72	84.42	75.95
	1-F-D-N	1-D	\checkmark	Decoder	n/a	1 st	3.9M	90.09	95.95	80.23	<u>71.78</u>
	2-F-D-T	2-D	\checkmark	Decoder	✓	2 nd	6.1M	67.52	31.10	20.88	13.50
	1-F-L-T	1-D	\checkmark	Linear	✓	2 nd	3.4M	90.99	95.79	82.98	69.34

Evaluation results of ablation study on MAPS validation dataset

2nd Transformer encoder in time axis (vs 1-F-D-N)

presumably helpful in offset estimation

Complexity of convolutional block (vs 2-F-D-T)

• 2-D convolution block may over aggregate the spectral information

Converter (vs 1-F-L-T)

effective in velocity estimation

