Homework 5

Eco 4306 Economic and Business Forecasting Spring 2019

Due: Friday, March 22, before the class

Problem 1

(a) The time series plot and correlogram of the total private residential construction spending for the period 1993M01-2013M12 are below.

(b) The shape of the correlogram in (a) is similar to the one in Figure 7.19 suggesting that the U.S. residential construction in 1993M01-2013M12 follows a similar process as in 2002M01-2011M01

(c) Since in the correlogram in (a) ACF decays in a wave like pattern and PACF has dominant lags 1, 6, 12, 13, we first consider a multiplicative AR(1)+SAR(1) model

Dependent Variable: DCONST Method: ARMA Maximum Likelihood (BFGS) Date: 04/13/19 Time: 10:04 Sample: 1993M02 2013M12 Included observations: 251 Convergence achieved after 5 iterations Coefficient covariance computed using outer product of gradients Coefficient Std. Error t-Statistic Prob. 218.5690 1235.621 0.176890 0.8597 AR(1) 0.563509 0.044817 12.57349 0.0000 SAR(12) 0.944410 0.013547 69.71517 0.0000 SIGMASQ 379202.0 27048.41 14.01938 0.0000 0.933686 49.44223 R-squared Mean dependent var

S.D. dependent var Akaike info criterion

Hannan-Quinn criter

Durbin-Watson stat

.86-.50i

50-86i

-.50-.86i

.86+.50i .00+1.00i

-.86+.50i

Schwarz criterion

0.932881 620.7600

95179704

-1981.845

1159.242

0.000000

1.00

50+86i

-.50+.86i

-1.00

Adjusted R-squared S.E. of regression

Sum squared resid

Log likelihood F-statistic

Prob(F-statistic)

Inverted AR Roots

-4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -4,00 -8,00 -8,00 -94 96 98 00 02 04 06 08 10 12

8,00

Date: 04/13/19 Time: 10:04 Sample: 1993M01 2013M12 Included observations: 251

Q-statistic probabilities adjusted for 2 ARMA terms

2396.078 15.82347

15.87965

15.84608

2.130377

.56 -.00-1.00i

-.86-.50i

Autocorrelation	Partial Correlation	AC PAC Q-Stat P	rob
4.	1 11	1 -0.066 -0.066 1.1109	
· 🛅		2 0.136 0.132 5.8246	
40	1 1	3 -0.022 -0.005 5.9460 0	.015
40	141	4 -0.010 -0.030 5.9704 0	.051
(j)	ibi	5 0.058 0.061 6.8484 0	.077
ı π -	14 1	6 -0.075 -0.065 8.3212 0	.080
ı ≡ ı	•		.074
· i ii	·		.035
· • ·	inj.		.029
uļu —	id -		.047
of the second	ļ dr		.063
1/1	1 1)1		.094
40	1		.132
1/1	1 1)1		.179
1/1	1 1		.234
(1)	1		.295
(10)	ļ (ļ)		.319
· •	ļ ••••		.251
(1)	1 1/1		.276
(10)	ļ 'þ		.268
(1)	ļ (1)		.300
(1)	' '		.345
40	1 1/1		.398
· III	ļ ' ļ		.159
111	ļ ' ! !'		.197
' g '	'¶'		.202
' ['	'[['		.235
'11'	']'		.272
'[]'	'¶'		.291
'[]'	'¶'		.324
'- [1	'['		.348
٠١١٠	' '		.351
'['	' <u>[</u> '		.400
1111	' '		.434
111	! 날		.476
		36 -0.072 -0.129 34.329 0	.452

The low p-value of the Ljung-Box test for residuals at lag 3 and the marginally significant lag 2 in the PACF of the residuals from AR(1)-SAR(1) model suggest that a modified AR(2)+SAR(1) model will likely yield better results. As shown below, adding the second lag really improves the results of ACF and PACF for residuals, and the AIC also favors AR(2)+SAR(1) model (but note that the SIC prefers the AR(1)+SAR(1) model).

Dependent Variable: DCONST
Method: ARMA Maximum Likelihood (BFGS)
Date: 04/13/19 Time: 10:04
Sample: 1993M02 2013M12
Included observations: 251
Convergence achieved after 7 iterations
Coefficient covariance computed using outer product of gradients

		· ·			
Variable	Coefficient	Std. Error t-Statistic		Prob.	
С	214.4219	1374.109	0.8761		
AR(1)	0.497140	0.054595	9.105947	0.0000	
AR(2)	0.116143	0.052147	2.227211	0.026	
SAR(12)	0.944592	0.013249	71.29646	0.0000	
SIGMASQ	373960.6	26485.07	0.0000		
R-squared	0.934603	Mean deper	ndent var	49.44223	
Adjusted R-squared	0.933540	S.D. depen	2396.078		
S.E. of regression	617.7066	Akaike info	15.81783		
Sum squared resid	93864109	Schwarz cri	15.8880		
Log likelihood	-1980.137	Hannan-Qu	15.84609		
F-statistic	878.9103	Durbin-Wat	son stat	1.975678	
Prob(F-statistic)	0.000000				
Inverted AR Roots	1.00	.86+.50i	.8650i	.67	
	.50+.86i	.5086i	.00+1.00i	00-1.00i	
	17	50+.86i	5086i	86+.50i	
	8650i	-1.00			

Date: 04/13/19 Time: 10:04 Sample: 1993M01 2013M12 Included observations: 251 Q-statistic probabilities adjusted for 3 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- 1)1	1 1)1	1	0.011	0.011	0.0322	
· þ i		2	0.054	0.054	0.7743	
1	if -	3	-0.054	-0.056	1.5282	
u l ti	10	4	-0.032	-0.034	1.7972	0.180
· þ i		5	0.042	0.049	2.2539	0.324
d -	<u>"</u> '	6	-0.091	-0.092	4.3953	0.222
ı d ı	<u>"</u> '	7	-0.081	-0.089	6.1091	0.191
· þ		8	0.112	0.132	9.3965	0.094
 [i[i	9	-0.073	-0.078	10.799	0.095
u t i	- III -	10	-0.031		11.048	0.137
141	10	11	-0.041		11.501	0.175
1 1	1 1		-0.005		11.507	0.243
1 1	III		-0.013		11.553	0.316
1 1	1)1		-0.007	0.014	11.565	0.397
1 1	1)1	15	0.006	0.021	11.575	0.480
1)1	11/1	16		-0.024	11.670	0.555
1 j i	1 1	17	0.040	0.045	12.109	0.598
· ['	! " ¶'	18	-0.095		14.580	0.482
' [[]'	' <u> </u> '	19	0.042	0.037	15.068	0.520
' j i	! '.P'	20	0.070	0.082	16.416	0.495
' I I'	'¶'	21	-0.041		16.875	0.532
'!'	' '	22		-0.006	16.904	0.596
'[-	<u> 'l</u> '	23	-0.005	0.036	16.912	0.659
' !	! '♬	24	0.158	0.146	23.933	0.296
']'	<u>'</u> "	25		-0.038	23.952	0.350
'¶'	' '		-0.075		25.527	0.324
'4'	'['		-0.033		25.837	0.362
'}'	<u>'</u> !'	28	0.024	0.018	25.999	0.408
'",	<u>'</u> !'		-0.044		26.564	0.432
''	'''		-0.043		27.097	0.459
11.			-0.037		27.498	0.491
18	'!!	32	0.064	0.024	28.673	0.482
11.	111	33	0.022	0.028	28.816	0.527
	<u> </u>	34	0.044	0.058	29.388	0.549
11.	'- '- '- '- '- '- '- '- '- '- '- '- '-		-0.016		29.459	0.596
		36	-0.071	-0.119	30.955	0.569

- (d) The left panel in the figure below shows the multistep forecast for period 2014M01-2017M12. The RMSE for this forecast is 1126.308.
- (e) The right panel in the figure below shows the fixed scheme sequence of one step ahead forecasts for period 2014M01-2017M12. The RMSE for this fixed scheme forecast is 691.004.
- (f) The fixed scheme yields a lower RMSE than the multistep forecast, which is also visible in the two plots the confidence interval of the fixed scheme forecast is narrower, and the forecast is closer to the

