EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (CHEMISTRY)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Magnitude of charge on electron	е	$1,6 \times 10^{-19} \mathrm{C}$
Mass of an electron	m _e	$9.1 \times 10^{-31} \text{kg}$
Standard pressure	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molar gas volume at STP	V_{m}	22,4 dm ³ ⋅mol ⁻¹
Standard temperature	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro's constant	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday's constant	F	96 500 C⋅mol ⁻¹

TABLE 2 CHEMISTRY FORMULAE

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$			
$c = \frac{n}{V}$ OR $c = \frac{m}{MV}$	<u> </u>	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ at 25 °C (298 K)				
q = It $q = nF$		$E_{cell}^{ heta} = E_{cathode}^{ heta} - E_{anode}^{ heta}$				
q = nF	$E_{cell}^{ heta} = E_{oxidising\ agent}^{ heta} - E_{reducing\ agent}^{ heta}$					

TABLE 3 PERIODIC TABLE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1					mic er (Z)	1	2,1	Elect negat									2 He
2	3 1,0 Li 7	4 1,5 Be 9					1 ative c mass	<u> </u>					5 2,0 B 10,8	6 2,5 C 12	7 3,0 N 14	8 3,5 O 16	9 4,0 F 19	10 Ne 20
3	11 0,9 Na 23	Mg 24,3											A ℓ	Si 28	15 2,1 P 31	S	Cℓ 35,5	Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga 70	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb 85,5							44 2,2 Ru 101				· ·					53 2,5 I 127	
6	55 Cs 133	56 Ba 137,3	00	72 Hf 178,5	73 Ta	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt	79 Au 197	80 Hg 200,6	81 T£ 204,4	82 Pb	83 Bi 209	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		170,5	101	104	100	190	192	195	191	200,0	204,4	201	203	<u> </u>	<u> </u>	<u> </u>

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
									-					
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
						7	J		O .			11101		

TABLE 4 STANDARD ELECTRODE POTENTIALS

Half-	E°/volt		
Li ⁺ + e ⁻	=	Li	-3,05
K ⁺ + e ⁻	\rightleftharpoons	K	-2,93
Cs ⁺ + e ⁻	\rightleftharpoons	Cs	-2,92
Ba ²⁺ + 2e ⁻	=	Ва	-2,90
Sr ²⁺ + 2e ⁻	=	Sr	-2,89
Ca ²⁺ + 2e ⁻	=	Ca	-2,87
Na ⁺ + e ⁻	\rightleftharpoons	Na	-2,71
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg	-2,37
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αl	-1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	=	Zn	-0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04
2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2(g)$	0,00
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40
$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+0,45
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻		Hg	+0,79
$NO_3^- + 2H^+ + e^-$		$NO_2(g) + H_2O$	+0,80
$Ag^+ + e^-$		Ag	+0,80
$NO_3^- + 4H^+ + 3e^-$		$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻		2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+1,20
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,21
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	$2Cr^{3+} + 7H_2O$	+1,33
$Cl_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+1,36
	\rightleftharpoons	Au	+1,42
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+1,51
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1,77
$F_2(g) + 2e^-$	=	2F ⁻	+2,87

Increasing reducing ability

Increasing oxidising ability