

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-30. (Cancelled)

31. (New) An automated method for frequency compensated communications reception including compensating for frequency offset in a received signal by adaptively forming a combination of basis functions and a training sequence that collectively approximate to a desired frequency-shifted signal to be acquired.
32. (New) A method according to Claim 31 including constructing a reference signal or comparison training sequence that is an adaptively formed combination of basis functions and the training sequence.
33. (New) A method according to Claim 32 for acquiring a signal with a receiver having multiple antenna elements, the method including constructing the reference signal by minimising a cost function constructed from an adaptively weighted combination of basis functions, a training sequence and a received signal, together with a constraint to obtain non-trivial solutions.
34. (New) A method according to Claim 33 wherein the constraint requires non-zero signal power.
35. (New) A method according to Claim 33 wherein the cost function is J given by:
$$J = \|\mathbf{X}\mathbf{w} - \mathbf{C}\mathbf{F}\mathbf{v}\|^2 + \lambda(\mathbf{w}^H \mathbf{X}^H \mathbf{X}\mathbf{w} - 1)$$
, where \mathbf{X} is a matrix of received signal samples, \mathbf{w} is a vector of beamforming weights which are adaptive to minimise J , \mathbf{C} is a

diagonal matrix having elements of the training sequence on its diagonal, \mathbf{F} is a matrix having columns defining respective basis functions, \mathbf{v} is a vector of weights which are adaptive to minimise J , superscript index H indicates a complex conjugate transpose and λ is a Lagrange multiplier for a term to constrain beamformer output power to be non-zero.

36. (New) A method according to Claim 35 including determining the adaptive weight vectors \mathbf{w} and \mathbf{v} at intervals from true estimates of a correlation matrix determined from multiple data vectors and from inverses of such estimates recursively updated to reflect successive new data vectors which are rows of the matrix \mathbf{X} .
37. (New) A method according to Claim 36 including recursively updating inverse correlation matrices by:
 - a) forming a vector $\mathbf{u}(n)$ having a first element $u_1(n)$ equal to $\sqrt{U_{1,1}(n)}$ and other elements $u_p(n)$ ($p=2$ to M) which are respective ratios $U_{p,1}(n)/u_1(n)$, $U_{p,1}(n)$ is a p th element of a first column of a matrix $\mathbf{U}(n)$, the matrix $\mathbf{U}(n) \equiv \mathbf{u}(n)\mathbf{u}^H(n) = \mathbf{x}(n)\mathbf{x}^H(n) - \mathbf{x}(n-K+1)\mathbf{x}^H(n-K+1)$, $\mathbf{x}(n)$ is a most recent data vector and $\mathbf{x}(n-K+1)$ is a least recent data vector involved in updating and $\mathbf{x}(n)\mathbf{x}^H(n)$ and $\mathbf{x}(n-K+1)\mathbf{x}^H(n-K+1)$ are correlation matrices;
 - b) premultiplying a previous inverse correlation matrix $\mathbf{P}(n-1)$ by vector $\mathbf{u}^H(n)$ and postmultiplied by vector $\mathbf{u}(n)$ to form a product and adding the product to a forget factor to form a sum;
 - c) postmultiplying the previous inverse correlation matrix $\mathbf{P}(n-1)$ by vector $\mathbf{u}(n)$ and dividing by the said sum to form a quotient; and
 - d) subtracting the quotient from the previous inverse correlation matrix $\mathbf{P}(n-1)$ to provide a difference.

- 38. (New) A method according to Claim 32 for acquiring a signal with a receiver having a single antenna element, the method including constructing the reference signal by minimising a cost function constructed from an adaptively weighted combination of basis functions, a scaled received signal and a constraint requiring non-zero signal power.
- 39. (New) A method according to Claim 38 wherein the cost function is J given by:
$$J = \|x - CFv\|^2$$
, where x is a vector of received signal samples, and v , C and F are as defined earlier.
- 40. (New) A method according to Claim 38 wherein the cost function is J given by:
$$J = \|\alpha x - Gv\|^2 + \lambda(\alpha^* x^H x \alpha - 1)$$
, where α is a scaling factor, x is a vector of received signal samples, G is a matrix equal to CF and v , λ , C , F and H are as defined earlier.
- 41. (New) Apparatus for frequency compensated communications reception including means for compensating for frequency offset in a received signal by adaptively forming a combination of basis functions and a training sequence that collectively approximate to a desired frequency-shifted signal to be acquired.
- 42. (New) Apparatus according to Claim 41 including means for constructing a reference signal or comparison training sequence that is an adaptively formed combination of basis functions and the training sequence.
- 43. (New) Apparatus according to Claim 42 having a receiver with multiple antenna elements for acquiring the received signal, the apparatus including means for constructing the reference signal by minimising a cost function constructed from an adaptively weighted combination of basis functions, a training sequence and a received signal, together with a constraint to obtain non-trivial solutions.

- 44. (New) Apparatus according to Claim 43 wherein the constraint requires non-zero signal power.
- 45. (New) Apparatus according to Claim 43 wherein the cost function is J given by:
$$J = \|Xw - CFv\|^2 + \lambda(w^H X^H X w - 1)$$
, where X is a matrix of received signal samples, w is a vector of beamforming weights which are adaptive to minimise J , C is a diagonal matrix having elements of the training sequence on its diagonal, F is a matrix having columns defining respective basis functions, v is a vector of weights which are adaptive to minimise J , superscript index H indicates a complex conjugate transpose and λ is a Lagrange multiplier for term to constrain beamformer output power to be non-zero.
- 46. (New) Apparatus according to Claim 45 including means for determining the adaptive weight vectors w and v at intervals from true estimates of a correlation matrix determined from multiple data vectors and from inverses of such estimates recursively updated to reflect successive new data vectors which are rows of the matrix X .
- 47. (New) Apparatus according to Claim 46 including means for recursively updating inverse correlation matrices by:
 - a) forming a vector $u(n)$ having a first element $u_1(n)$ equal to $\sqrt{U_{1,1}(n)}$ and other elements $u_p(n)$ ($p=2$ to M) which are respective ratios $U_{p,1}(n)/u_1(n)$, $U_{p,1}(n)$ is a p th element of a first column of a matrix $U(n)$, the matrix $U(n) \equiv u(n)u^H(n) = x(n)x^H(n) - x(n-K+1)x^H(n-K+1)$, $x(n)$ is a most recent data vector and $x(n-K+1)$ is a least recent data vector involved in updating and $x(n)x^H(n)$ and $x(n-K+1)x^H(n-K+1)$ are correlation matrices;
 - b) premultiplying a previous inverse correlation matrix $P(n-1)$ by vector $u^H(n)$

- and postmultiplied by vector $u(n)$ to form a product and adding the product to a forget factor to form a sum;
- c) postmultiplying the previous inverse correlation matrix $P(n-1)$ by vector $u(n)$ and dividing by the said sum to form a quotient; and
 - d) subtracting the quotient from the previous inverse correlation matrix $P(n-1)$ to provide a difference.
48. (New) Apparatus according to Claim 42 having a receiver with a single antenna element for acquiring the received signal, the apparatus including means for constructing the reference signal by minimising a cost function constructed from an adaptively weighted combination of basis functions, a scaled received signal and a constraint requiring non-zero signal power.
49. (New) Apparatus according to Claim 48 wherein the cost function is J given by:
$$J = \|x - CFv\|^2$$
, where x is a vector of received signal samples, and v , C and F are as defined earlier.
50. (New) Apparatus according to Claim 48 wherein the cost function is J given by:
$$J = \|\alpha x - Gv\|^2 + \lambda(\alpha^* x^H x \alpha - 1)$$
, where α is a scaling factor, x is a vector of received signal samples, G is a matrix equal to CF and v , λ , C , F and H are as defined earlier.
51. (New) A computer software product comprising a computer readable medium containing computer readable instructions for controlling operation of computer apparatus for use in frequency compensated communications reception, wherein the computer readable instructions provide a means for controlling the computer apparatus to compensate for frequency offset in a received signal by adaptively forming a combination of basis functions and a training sequence that collectively

approximate to a desired frequency-shifted signal to be acquired.

52. (New) A computer software product according to Claim 51 wherein the computer readable instructions provide a means for constructing a reference signal or comparison training sequence that is an adaptively formed combination of basis functions and the training sequence.
53. (New) A computer software product according to Claim 52 for use in processing received signals acquired by a receiver with multiple antenna elements, wherein the computer readable instructions provide a means for for constructing the reference signal by minimising a cost function constructed from an adaptively weighted combination of basis functions, a training sequence and a received signal, together with a constraint to obtain non-trivial solutions.
54. (New) A computer software product according to Claim 53 wherein the constraint requires non-zero signal power.
55. (New) A computer software product according to Claim 53 wherein the cost function is J given by:
$$J = \|\mathbf{X}\mathbf{w} - \mathbf{C}\mathbf{F}\mathbf{v}\|^2 + \lambda(\mathbf{w}^H \mathbf{X}^H \mathbf{X}\mathbf{w} - 1)$$
, where \mathbf{X} is a matrix of received signal samples, \mathbf{w} is a vector of beamforming weights which are adaptive to minimise J , \mathbf{C} is a diagonal matrix having elements of the training sequence on its diagonal, \mathbf{F} is a matrix having columns defining respective basis functions, \mathbf{v} is a vector of weights which are adaptive to minimise J , superscript index H indicates a complex conjugate transpose and λ is a Lagrange multiplier and the term which incorporates it is to constrain beamformer output power to be non-zero.
56. (New) A computer software product according to Claim 55 wherein the computer readable instructions provide a means for determining the adaptive weight vectors \mathbf{w} and \mathbf{v} at intervals from true estimates of a correlation matrix

determined from multiple data vectors and from inverses of such estimates recursively updated to reflect successive new data vectors which are rows of the matrix \mathbf{X} .

57. (New) A computer software product according to Claim 56 wherein the computer readable instructions provide a means for recursively updating inverse correlation matrices by:
 - a) forming a vector $\mathbf{u}(n)$ having a first element $u_1(n)$ equal to $\sqrt{U_{1,1}(n)}$ and other elements $u_p(n)$ ($p= 2$ to M) which are respective ratios $U_{p,1}(n)/u_1(n)$, $U_{p,1}(n)$ is a pth element of a first column of a matrix $\mathbf{U}(n)$, the matrix $\mathbf{U}(n) \equiv \mathbf{u}(n)\mathbf{u}^H(n) = \mathbf{x}(n)\mathbf{x}^H(n) - \mathbf{x}(n-K+1)\mathbf{x}^H(n-K+1)$, $\mathbf{x}(n)$ is a most recent data vector and $\mathbf{x}(n-K+1)$ is a least recent data vector involved in updating and $\mathbf{x}(n)\mathbf{x}^H(n)$ and $\mathbf{x}(n-K+1)\mathbf{x}^H(n-K+1)$ are correlation matrices;
 - b) premultiplying a previous inverse correlation matrix $\mathbf{P}(n-1)$ by vector $\mathbf{u}^H(n)$ and postmultiplied by vector $\mathbf{u}(n)$ to form a product and adding the product to a forget factor to form a sum;
 - c) postmultiplying the previous inverse correlation matrix $\mathbf{P}(n-1)$ by vector $\mathbf{u}(n)$ and dividing by the said sum to form a quotient; and
 - d) subtracting the quotient from the previous inverse correlation matrix $\mathbf{P}(n-1)$ to provide a difference.
58. (New) A computer software product according to Claim 52 for use in processing received signals acquired by a receiver with a single antenna element, wherein the computer readable instructions provide a means for constructing the reference signal by minimising a cost function constructed from an adaptively weighted combination of basis functions, a scaled received signal and a constraint requiring non-zero signal power.

**Edward Steven WARNER
U.S. National Phase of PCT/GB2005/000509**

- 59. (New) A computer software product according to Claim 58 wherein the cost function is J given by: $J = \|x - CFv\|^2$, where x is a vector of received signal samples, and v , C and F are as defined earlier.
- 60. (New) A computer software product according to Claim 58 wherein the cost function is J given by: $J = \|\alpha x - Gv\|^2 + \lambda(\alpha^* x^H x \alpha - 1)$, where α is a scaling factor, x is a vector of received signal samples, G is a matrix equal to CF and v , λ , C , F and H are as defined earlier.