Compositional Models for Microbiome

HMP2Data package

```
https://hmpdacc.org/ihmp/
https://github.com/dozmorovlab/HMP2Data
Workshop:
BiocWorkshops2019
```

Compositional data

Vector of proportions

$$z = (z_1, \dots, z_k)^T, z_i > 0, \sum_{i=1}^k z_i = 1, z \in \Delta^{k-1}$$

Closure operation: $\mathcal{C}[z_1,\cdots,z_k]=[\frac{z_1}{\sum_{j=1}^k z_j},\cdots,\frac{z_k}{\sum_{j=1}^k z_j}]$

- Composition of rock samples.
- Composition of nutrient groups in diet
- Composition of air pollutions

A subcomposition z_s with s parts is obtained via the closure of a subvector $[z_{i_1}, z_{i_2}, \ldots, z_{i_n}]$ of z.

Triangle plot

Spider plot

(0.4, 0.2, 0.1, 0.05, 0.25)

Proper CoDa analysis

- scale invariance: multiple the vector with a scalar doesn't change anything
- permutation invariance: the order of the parts should be irrelevant
- subcompositional coherence: studies performed on subcompositions should not stand in contradiction with those performed on the full composition

Algebra for compositions

▶ Perturbations: For $\xi, \alpha \in \Delta^{k-1}$

$$\xi \oplus \alpha = \left(\frac{\xi_i \alpha_1}{\sum_{i=1}^k \xi_i \alpha_i}, \dots, \frac{\xi_k \alpha_k}{\sum_{i=1}^k \xi_i \alpha_i}\right)$$

The composition $e = (\frac{1}{k}, \dots, \frac{1}{k})$ acts as zeros so that $\xi \oplus e = \xi$

- ▶ Let $\xi^{-1} = (\frac{1}{\xi_i}, \dots, \frac{1}{\xi_n})$, then $\xi \oplus \xi^{-1} = e$
- \triangleright $\xi \ominus \eta = \xi \oplus \eta^{-1}$

Power

Let a be a scalar.

$$\xi \otimes a = \left(\frac{\xi_1^a}{\sum_{i=1}^k \xi_i^a}, \dots, \frac{\xi_k^a}{\sum_{i=1}^k \xi_i^a}\right)$$

Ex: Aitchison (1986) regression of sand, silt and clay in rock composition.

$$x = \xi \oplus [\log d \otimes \beta] \oplus p$$

Vector space structure

- ightharpoonup commutative group structure of S^k, \oplus
 - ▶ commutativity: $\xi \oplus \eta = \eta \oplus \xi$
 - associativity: $(\xi \oplus \eta) \oplus \epsilon = \eta \oplus (\xi \oplus \epsilon)$
 - ▶ Inverse: $\xi \ominus \xi^{-1} = e$ and $\xi \oplus \eta^{-1} = \xi \ominus \eta$
- properties of powering
 - associativity $a \otimes (b \otimes \xi) = ab \otimes \xi$
 - ▶ distributivity 1 $a \otimes (\xi \oplus \eta) = (a \otimes \xi) \oplus (a \otimes \eta)$
 - ▶ distributivity 2 $(a + b) \otimes \xi = (a \otimes \xi) \oplus (b \otimes \xi)$

Inner product space

 $lackbox (\Delta^{k-1}, \oplus, \otimes)$ is a complete inner product space, with

$$\langle \xi, \eta \rangle = \sum_{i=1}^{k} \log \frac{\xi_i}{g(\xi)} \log \frac{\eta_i}{g(\eta)}$$
$$= \frac{1}{2k} \sum_{i=1}^{k} \sum_{j=1}^{k} \log \frac{\xi_i}{\xi_j} \log \frac{\eta_i}{\eta_j}$$

- $|\xi| = \langle \xi, \xi \rangle$ is a norm on the simplex.
- ▶ Aitchison distance $d_a(\xi, \eta) = \sqrt{\frac{1}{2k} \sum_i \sum_j \left(\log \frac{\xi_i}{\xi_j} \log \frac{\eta_i}{\eta_j}\right)^2}$ The inner product and norm are invariant to permutations of the components of the composition.

Log ratio transformations

- Additive log-ratio: $ALR(z) = \left(\log \frac{z_1}{z_k}, \dots, \log \frac{z_{k-1}}{z_k}\right)^T$
- ▶ Centered log-ratio: $CLR(z) = \left(\log \frac{z_1}{g(z)}, \dots, \log \frac{z_k}{g(z)}\right)^T$
- ▶ Isometric log-ratio transformation

Some models

Measurement error model:

$$z_j = \xi \oplus \epsilon_j$$

Regression:

$$\xi_j = \xi \oplus \gamma \otimes \mu_j$$

Correspondence in Euclidean space:

$$\mu_j = \beta_0 + \beta_1 (x_j - \bar{x})$$
$$ALR^{-1}(\mu_j) = ALR^{-1}(\beta_0) \oplus ALR^{-1}(\beta_1) \otimes (x_j - \bar{x})$$

Distributions on a simplex

- ▶ If $ALR(z) = \left(\log \frac{z_1}{z_k}, \dots, \log \frac{z_{k-1}}{z_k}\right)^T \sim MVN(\mu, \Sigma)$, z is logistic normal that $z \sim LN(\mu, \Sigma)$.
- Dirichlet distribution: an extension of the beta distribution. Ratios of independent Gammas
- Danish distribution: ratios of independent inverse Gaussian.
- ▶ Both with quite limited correlation structure.

Microbiome sequencing are compositional

- In ecological studies, it is possible that many species co-exist and their AA may be important.
- ▶ In high-throughput sequencing (HTS) experiments, sequencers deliver reads up to the capacity of the machine.
- Sequencing process can be considered as a random sampling of all molecule floating in the sample

Gloor, et al., 2017. Frontier in Microbiology

Compositional models in microbiome

Operation	Standard approach	Compositional approach
Normalization	Rarefaction 'DESeq'	CLR ILR ALR
Distance	Bray-Curtis UniFrac Jenson- Shannon	Aitchison
Ordination	PCoA (Abundance)	PCA (Variance)
Multivariate comparison	perManova ANOSIM	perMANOVA ANOSIM
Correlation	Pearson Spearman	SparCC SpiecEasi Φ ρ
Differential abundance	metagenomSeq LEfSe DESeq	ALDEx2 ANCOM

Compositional models usually involve :

- Log-ratios (selecting one reference taxon, or CLR transformation)
- Pseudo-counts through simple or sophisticated imputations.

ANCOM

- Basic idea: if we form all pairwise log-ratios, for a taxon that is truly DA between conditions, many of the log-ratios with this taxon should be DA.
- \triangleright For each taxon i, form all pairwise log-ratios with all other taxa.
- ▶ Assess the association between group membership with the log-ratios.
- Test statistics: number of log-ratios that is associated with clinical groups.

Linear log-contrast model

Aitchison and Bacon-Shone (1984) Let Z represent the $n \times p$ microbiome data. Let $\mathbf{X}^p = \log(\frac{x_{ij}}{x_{ip}})$

$$y = \mathbf{X}^p \beta_{\backslash p} + \epsilon$$

that $\beta_{\setminus p}$ is a p-1 dimensional coefficients.

- However, choosing the reference can be tricky.
- Alternative approach (Lin et al., 2014)

$$y = \mathbf{Z}\beta + \epsilon$$
, with $\mathbf{1}_p^T \beta = 0$

Subcompositional regression models

Let X_{gs} be the RA of s-th taxon within a higher rank g. $g=1,\ldots,r,s=1,\ldots,m_g$ such that

$$\sum_{s=1}^{m_g} X_{gs} = 1, \text{for } g = 1, \dots, r$$

▶ X_g is the $n \times m_g$ matrix

$$Y = \sum_{g=1}^{r} Z_g \beta_g + \epsilon$$

that $Z_g = (Z_{g1}, \ldots, Z_{gm_g}) = (\log X_{g1}, \ldots, \log X_{gm_g}) \in R^{n \times m_g}$, $\beta_g = (\beta_{g1}, \ldots, \beta_{gm_g})^T$, we need the following constraints: $\mathbf{1}_{m_s}^T \beta_a = \sum_{s=1}^{m_g} \beta_{as} = 0$ for $g = 1, \ldots, r$.

Penalized estimation

General model

$$Y = \mathbf{Z}\beta + \epsilon$$
, subject to $\mathbf{C}^T\beta = 0$

In big n small p problem, solving constrained least squares is easy.

- ▶ Microbiome data is high dimensional –Sparse log-contrast regression $\hat{\beta}^n = \operatorname{argmin}\left(\frac{1}{2n}||Y \mathbf{Z}\beta||_2^2 + \lambda||\beta||_1\right), \text{ subject to } \mathbf{C}^T\beta = 0$
- Coordinate decent method of multipliers for optimization

