Навчальна дисципліна: **Дискретна математика**

Лектор:

професор Кучук Георгій Анатолійович

E-mail: <u>kuchuk56@ukr.net</u>

2 семестр навчання на бакалавраті Наприкінці семестру - іспит

Рекомендована література

- 1. Конспект лекцій.URL: https://drive.google.com/drive/folders/1ZyA3u4y8ZqiAVgu_YeL2XdTk9 https://drive.google.com/drive.google.c
- 2. Балога С.І. Дискретна математика. Навчальний посібник. Ужгород: ПП «АУТДОР-. ШАРК», 2012. 124 с. URL: <a href="https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/3415/1/%D0%BD%D0%B0%D0 %B2%D1%87%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE-%D0%BC%D0 %B5%D1%82%D0%BE%D0%B4%D0%B8%D1%87%D0%BD%D0%B8%D0%B9%20%D0%BF%D0%BE%D1%81%D1%96%D0%B1%D0%BD%D0%B8%D0 %BA.pdf
- 3. Новотарський М. А. Дискретна математика: навч. посіб. для студ. спеціальності 123 «Комп'ютерна інженерія». Київ : КПІ ім. Ігоря Сікорського, 2020. 278 с. URL : https://ela.kpi.ua/handle/123456789/37806
- 4. Тмєнова Н. П.. Дискретна математика. Теорія множин і відношень. Київ : ВПЦ «Київський університет», 2018. 103 с. URL : http://pdf.lib.vntu.edu.ua/books/2020/Tmenova 2018 103.pdf

Тема 1. Відповідності між множинами (рос. соответствия, англ. correspondence)

Питання лекції

- 1. Декартів добуток двох множин.
- 2. Визначення відповідності.
- 3. Способи задання відповідностей.
- 4. Операції з відповідностями.
- 5. Властивості відповідностей.
- 6. Види функціональних відповідностей.
- 7. Кардинальні числа.

1. Декартів добуток двох множин

Def. <u>Декартів добуток</u> множин A і B (позначається як <mark>A×B</mark>) є множиною всіх можливих упорядкованих пар елементів (a, b), з яких перший елемент (a) належить множині A, а другий елемент (b) належить множині B.

Приклад 1. Нехай A = (a_1, a_2, a_3, a_4) и B = (b_1, b_2) . Тоді A × B = $\{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2), (a_4, b_1), (a_4, b_2)\}$.

Приклад 2. Нехай задані 2 множини: $A = \{1, 2, 3, 4\}, B = \{2\}.$ $C = A \times B = \{ (1, 2), (2, 2), (3, 2), (4, 2) \}.$ $D = B \times A = \{ (2, 1), (2, 2), (2, 3), (2, 4) \}.$ $C \neq D.$

Приклад 3. Нехай задані 2 множини: X = [-2, 3], Y = [2, 5]. A × B = { (x, y) \in P}, P – прямокутник.

Ілюстративне зображення у декартовій системі координат:

2. Визначення відповідності

Def. <u>Відповідністю</u> (рос. соответствие, англ. correspondence) називається якийсь зв'язок між елементами однієї множини або елементами різних множин.

Відповідність — це будь-яка підмножина декартова добутку. Декартів добуток — це універсум відповідностей.

Приклад 4. Нехай
$$A = \{1, 2, 3, 4, 5\}$$
 і $B = \{a, b, c, d\}$. Тоді $G = \{(1,a), (1,d), (2,c), (2,d), (3,b), (5,a), (5,b)\}$ —

одна із 2↑(5+4)=512 можливих відповідностей на цих множинах.

Приклад 5. Між елементами множин $X = \{x_1, x_2, x_3\}$ та $Y = \{y_1, y_2\}$ задана відповідність:

$$G = \{(x_1, y_1), (x_1, y_2), (x_2, y_1)\}$$

- **Def.** Областю визначення $D_1(G)$ відповідності $G \subset X \times Y$ є множина його перших координат, $D_1(G) \subseteq X$. Область визначення відповідності називають множиною прообразів.
- **Def.** Областю значень $D_2(G)$ ідповідності $G \subset X \otimes M$ ножина його других координат, $D_2(G) \subseteq Y$ Область визначення відповідності називають множиною образів.

Прикладі 4, відповідність
$$G = \{(1,a), (1,d), (2,c), (2,d), (3,b), (5,a), (5,b)\}.$$

$$D_1(G) = \{1, 2, 3, 5\} \subset A = \{1, 2, 3, 4, 5\}$$

$$D_2(G) = \{a, b, c, d\} \subset B = \{a, b, c, d\}$$

Прикладі 5, відповідність
$$G = \{(x_1, y_1), (x_1, y_2), (x_2, y_1)\}.$$

$$D_1(G) = \{x_1, x_2\} \subset X = \{x_1, x_2, x_3\}$$

$$D_2(G) = \{y_1, y_2\} \subset Y = \{y_1, y_2\}$$

3. Способи задання відповідностей

1. Перерахування всіх елементів (пар) відповідності:

Приклад 5. На множинах
$$X = \{x_1, x_2, x_3\}$$
 , $Y = \{y_1, y_2\}$ задамо відповідність: $G = \{(x_1, y_1), (x_1, y_2), (x_2, y_1)\}$

- 2. Табличний чи матричний спосіб:
- 3. Графічний спосіб:

X	Y ₁	y ₂
X ₁	1	1
x ₂	1	0
x ₃	0	0

4. Кортеж із трьох множин

$$q = (X, Y, G)$$

4. Операції з відповідностями

1. Інверсія відповідності – перестановка її координат.

Приклад 6.
$$G = \{(x_1, y_2), (x_3, y_1), (x_3, y_2), (x_4, y_2)\}$$
 $G \subseteq X \times Y$ $G^{-1} = \{(y_2, x_1), (y_1, x_3), (y_2, x_3), (y_2, x_4)\}$ $G^{-1} \subseteq Y \times X$

2. Композиція відповідностей

Приклад 7.
$$X = \{x_1, x_2, x_3, x_4\}$$
 $Y = \{y_1, y_2, y_3, y_4\}$ $Z = \{z_1, z_2, z_3, z_4, z_5\}$ $G = \{(x_1, y_1), (x_1, y_2), (x_2, y_2), (x_4, y_2), (x_3, y_4), (x_4, y_4)\}$ $H = \{(y_1, z_2), (y_1, z_5), (y_2, z_2), (y_3, z_4), (y_3, z_1)\}$ $F = G \circ H = ?$ Рішення. $F = \{(x_1, z_2), (x_1, z_5), (x_2, z_2), (x_4, z_2)\}$

5. Властивості або характер відповідностей

1. Функціональність (*fun*)

$$X = \{x_1, x_2, x_3, x_4\}$$

$$Y = \{y_1, y_2, y_3\}$$

$$G = \{(x_2, y_2), (x_3, y_3), (x_4, y_2)\}$$

 $G = \{(x_2, y_2), (x_3, y_3), (x_4, y_2)\}$

 $X = \{x_1, x_2, x_3, x_4\}$ $Y = \{y_1, y_2, y_3, y_4\}$ $G = \{(x_1, y_1), (x_1, y_3), (x_3, y_2)\}\$

2. Ін'єктивність (*in*);

3. Всюди визначеність (def)

$$X = \{x_1, x_2, x_3, x_4\}$$

$$Y = \{y_1, y_2, y_3\}$$

$$Y = \{(x_2, y_1), (x_1, y_3), (x_3, y_3), (x_4, y_3)\}$$

$$Y = \{(x_1, x_2, x_3, x_4)\}$$

$$Y = \{(x_1, y_1), (x_2, y_2), (x_4, y_2)\}$$

4. Сюр'єктивність (*sur*)

$$X = \{x_1, x_2, x_3, x_4\}$$

$$Y = \{y_1, y_2\}$$

$$G = \{(x_1, y_1), (x_2, y_2), (x_4, y_2)\}$$

5. Бієктивність (bi) або взаємно однозначність

$$X = \{x_1, x_2, x_3, x_4\}$$

$$Y = \{y_1, y_2, y_3, y_4\}$$

$$G = \{(x_1, y_1), (x_2, y_3), (x_3, y_2), (x_4, y_4)\}$$

6. Види функціональних відповідностей

Всюди визначена функціональна відповідність:

функція: числова множина \rightarrow числова множина

функціонал: множина функцій → числова множина

<u>оператор:</u> множина функцій → множина функцій

Приклади функціональних відповідностей

Приклад 8: $y = \sin(x)$.

- 1. Вид відповідності функція.
- 2. Область визначення $D_1(G) = \{x \in (-\infty; +\infty)\}$
- 3. Область значень $D_2(G) = [-1; +1]$

Приклади функціональних відповідностей

Приклад 9:
$$y = \int_{0}^{1} f(x) dx$$

- 1. Вид відповідності функціонал.
- 2. Область визначення $D_1(G) = \{ f(x) \}$
- 3. Область значень $-D_{2}(G) = (-∞; +∞)$

Приклад 10:
$$y = \frac{\partial f(x,y)}{\partial x}$$

- 1. Вид відповідності оператор.
- 2. Область визначення $D_1(G) = \{ f(x,y) \in D^1(x) \}$
- 3. Область значень $D_{2}(G) = \{ f(x) \}$

7. Кардинальні числа

Def. Дві множини називаються <u>рівносильними</u>, якщо між елементами цих множин можна встановити взаємно однозначну відповідність.

Def. *Кардинальне число* – клас рівносильних множин.

Множина, котра рівносильна множині натуральних чисел, називається <u>зліченою</u> множиною, тобто елементи зліченної множини можна пронумерувати натуральними числами.

Всі злчені множини мають одне кардинальне число, яке позначають через \aleph_0 (читається «алеф-нуль»).