Семинар 21

Задачи для подготовки к экзамену

- 1. Пусть σ автоморфизм поля E. Дано, что $\sigma^4=1$, а $\sigma(e)+\sigma^3(e)=e+\sigma^2(e)$ для всех $e\in E$. Доказать, что $\sigma^2=1$.
- 2. Рассмотрим вещественное квадратичное поле $\mathbb{Q}(\sqrt{7})$ как двумерное векторное пространство над полем \mathbb{Q} и билинейную форму Tr(xy), заданную на этом пространстве. Определите сигнатуру ассоциированной квадратичной формы.
- 3. Сколько неприводимых множителей содержится в разложении многочлена $X^{255}-1$ над полем рациональных чисел и какие у них степени?
- 4. Сколько неприводимых множителей содержится в разложении многочлена $X^{255}-1$ над полем из двух элементов и какие у них степени?
- 5. Пусть F поле из q элементов. Предположим, что q-1 делится на n. Тогда для ненулевого элемента $a \in F$ уравнение $x^n = a$ либо не имеет решений, либо имеет n решений. При этом множество тех элементов a, для которых уравнение разрешимо, является подгруппой. Сколько элементов в этой подгруппе?
 - 6. Описать подгруппу квадратов в конечном поле характеристики 2.
 - 7. Нарисовать граф вложений подполей поля из 4096 элементов.
 - 8. Найти степень над \mathbb{Q} поля разложения многочлена $(X^3-5)(X^3-7)$.
 - 9. Доказать, что поле $\mathbb{Q}(\sqrt{5})$ не изоморфно полю $\mathbb{Q}(\sqrt{11})$.
 - 10. Доказать, что конечная область целостности является полем.