Sistema de lA para Análise de Jogo da Velha

Desenvolvimento de sistema para análise e classificação de estados do jogo da velha usando algoritmos de machine learning.

Alunos: Daniel Araujo, Eduardo Bregalda e Leonardo Duarte

PUCRS - Faculdade de Informática

Disciplina: Inteligência Artificial

Professora: Silvia Moraes

Dataset e Preparação dos Dados

Fonte Original

UCI Machine Learning Repository com 958 configurações de tabuleiro

Balanceamento

250 amostras por classe, totalizando 500 amostras balanceadas

Divisão Estratégica

80% treino, 10% validação, 10% teste

Motivação: Preparação e Balanceamento dos Dados

A qualidade e a estrutura do nosso dataset são cruciais para o treinamento de modelos de Machine Learning eficazes. Para o jogo da velha, estados de jogo desequilibrados podem levar a um desempenho enviesado.

Balanceamento de Classes Essencial

Foi necessário balancear as classes do dataset para garantir que o modelo não fosse enviesado para a classe majoritária. Estados de vitória, derrota e empate não ocorrem com a mesma frequência na prática.

Impacto no Desempenho do ML

Modelos treinados com dados desbalanceados tendem a ter alta precisão na classe majoritária, mas falham nas minoritárias, resultando em um algoritmo que não prevê corretamente os possíveis desfechos do jogo.

O Problema do Dataset Desbalanceado

O dataset original continha um número desproporcional de exemplos para certas classes (muitos empates, poucas vitórias de um jogador). Isso faria com que o modelo "aprendesse" melhor a classe mais comum.

Divisão Estratégica para Avaliação

A divisão cuidadosa dos dados (treino, validação e teste) após o balanceamento é fundamental. Isso assegura que a avaliação do modelo reflita sua verdadeira capacidade de generalização e evita estimativas de desempenho superotimistas.

Gráfico Preparação dos Dados

Algoritmos Implementados

K-Nearest Neighbors

Classificação baseada em similaridade com k=5 vizinhos mais próximos usando métrica euclidiana.

Árvore de Decisão

Regras hierárquicas com critério Gini e profundidade máxima de 10 níveis.

Multi-Layer Perceptron

Rede neural com topologia [100, 50] neurônios, solver Adam e ativação ReLU.

Support Vector Machine

Hiperplano ótimo com kernel RBF, C=1.0 e gamma='scale' para separação das classes.

Comparação de Performance

Análise comparativa dos quatro algoritmos implementados mostrando acurácia e F1-Score em validação e teste.

Resultados Detalhados

Algoritmo	Acurácia Validação	F1-Score Validação	Acurácia Teste	F1-Score Teste
K-Nearest Neighbors	70%	0,70	86%	0,86
Multi-Layer Perceptron	76%	0,76	90%	0,90
Árvore de Decisão	80%	0,80	86%	0,86
Support Vector Machine	78%	0,78	88%	0,88

Análise de Erros por Algoritmo

KNN - Overfitting

Maior discrepância entre validação (70%) e teste (86%). Sensível a ruído e features irrelevantes.

MLP - Melhor Performace

Performance instável na validação (76%) mas melhor resultado no teste (90%). Arquitetura adequada para dataset.

Árvore - Consistência

Performance estável entre validação (80%) e teste (86%). Regras específicas demais para algumas configurações.

SVM - Robustez

Melhor performance geral com melhoria de 78% para 88%. Poucos erros na fronteira de decisão.

MLP: Melhor Modelo

90%

0.90

100%

Acurácia no Teste

Maior precisão entre todos os algoritmos testados F1-Score

Excelente equilíbrio entre precisão e recall

Estabilidade

Performance consistente sem overfitting

Frontend Interativo

Funcionalidades Implementadas

- Jogo interativo humano vs computador
- Detecção automática de 5 estados do jogo
- Análise em tempo real do tabuleiro
- Contabilização de acertos e erros
- Cálculo de acurácia dinâmica
- Geração de relatórios das partidas

Performance no Frontend

5 partidas jogadas

Acurácia média: 87,1%

Estados finais detectados com 100% de precisão. Maior dificuldade em estados intermediários.

Análise de Estados do Jogo

12/17 predições corretas em estados intermediários

Vitórias X e O

Detecção perfeita de estados finais definitivos

Acurácia Geral

26/30 predições corretas no uso prático

Principal desafio: diferenciação entre "Tem jogo" e "Possibilidade de Fim de Jogo". IA ocasionalmente antecipou situações de final.

Considerações Finais

Principais Desafios

Balanceamento do dataset, ajuste de hiperparâmetros, integração IA-interface em tempo real.

Conhecimentos Adquiridos

Aplicação prática de ML, importância do préprocessamento, avaliação comparativa de algoritmos.

Propostas Futuras

Algoritmos ensemble, deep learning, interface gráfica mais elaborada, análise de estratégias ótimas.

Ferramentas de IA utilizadas: GitHub Copilot para otimização de código e Gamma para apresentação de slides.

