Homework 11

Math 55b Due Tuesday, 21 April 2009.

Notation: $\Delta(r) = \{z : |z| < r\}; \Delta = \Delta(1).$

- 1. Let $f_n(z)$ be a sequence of analytic functions on Δ converging uniformly to f(z). (i) Show that for each r < 1, $f'_n(z) \to f'(z)$ uniformly on $\Delta(r)$. (ii) Show the same statement for r = 1 is false.
- 2. Let $u: S^1 \{\pm 1\} \to \mathbb{R}$ be the function which is 1 if $\operatorname{Im} z > 0$ and 0 if $\operatorname{Im} z < 0$. Find a continuous, harmonic extension of u to the unit disk. (The extension will be defined on $\overline{\Delta} \{\pm 1\}$.) Then find the harmonic conjugate of u.
- 3. What is the residue at z=0 of $\sin^3(1/z)$? What are the residues of $z/(1-e^{z^2})$ at its singularities?
- 4. Compute the first 3 nonzero terms in the Taylor series $\sum a_n z^n = \sin^{-1}(z)$, by formally inverting $\sin(z) = z z^3/3! + z^5/5! \cdots$. What is the radius of convergence of the series for $\sin^{-1}(z)$?
- 5. Prove that a positive harmonic function on \mathbb{C} must be constant.
- 6. Prove that if $f: \Delta \to \mathbb{C}$ satisfies f(0) = 0 and $\operatorname{Re} f(z) \leq 1$ for all $z \in \Delta$, then $|f'(0)| \leq 2$. For what f(z) does equality hold?
- 7. Prove that if $f: \mathbb{C} \to \mathbb{C}$ is analytic and there exist A, B > 0 such that $\operatorname{Re} f(z) \leq A|z|^n + B$, then f(z) is a polynomial.
- 8. Find all entire functions $f: \mathbb{C} \to \mathbb{C}$ such that (i) f is never 0 and (ii) there exists a C such that $|f(z)| \leq \exp(C|z|^2)$ for all $z \in \mathbb{C}$.
- 9. Show that if $f: \mathbb{C} \to \mathbb{C}$ is an entire function such that $f(z_n) \to \infty$ whenever $z_n \to \infty$, then f(z) is a polynomial.
- 10. Find the Laurent series for f(z) = 1/(z(z-1)(z-2)) valid (i) in the region 1 < |z| < 2, (ii) in the region |z| > 2.