Application on derivatives

Calculate the derivative of the following functions:

·		
1. Y = cos(2x)	2. $Y = cos^3(2x)$	$3. Y = \sin^2(3x)$
4. $Y = x^2 \sin(2x)$	$5. Y = \frac{2x}{\cos(2x)}$	$6. Y = tan^3(3x)$
7. $Y = x^2 \cdot \sqrt{2x + 1}$	8. $Y = \frac{1}{\sqrt{2x+1}}$	9. Y = 2 + tan(4x)
10. Y = -2sin(5x)	11. $Y = 3x^2 + 2tan^2(3x)$	12. $Y = sec^2(3x)$
13. $Y = \frac{2t}{t^2 + 1}$	$14. Y = 3t^2 cos^2 t$	15. $Y = 7x^2(1+x^2)^2$
16. $Y = \sqrt{2 + \cos(3x)}$	17. Y = 2cot(3x)	18. $Y = 2cot^3(3x)$
19. Y = $(3\tan(5x))^3$	20. Y = $\sqrt{2 + \tan(2x)}$	21. Y = $5sin^3(\frac{x}{3})$
22. Y = \sqrt{t} . cos (\sqrt{t})	23. $Y = (1 + 2\cos^3(3x))^3$	24. Y = $\frac{1}{\cos^3(3\sqrt{x^2+1})}$
$25. Y = (1 + 2\cos(3x))^3$	26. $Y = cos^2x + 3 sin^2x$	$27. Y = 2x^2 + \sec(3x)$
$28. Y = \frac{\sin(2x)}{\cos(3x)}$	29. $Y = 3tan^2(3x)$	30. $Y = \frac{2x\cos(2x)}{1+x^2}$
31. Y = x^2 . \sqrt{x}	32. Y = $sin^2(\sqrt{2cos^2(3x) + 1})$	$33. Y = 2sin^2x. cos^2x$