Conversion/Formula Sheet (Data Sheet)

$$1 \text{ kg} = 1000 \text{ g}$$

$$1g = 1000 \text{ mg}$$

$$1L = 1000mL$$

$$1 \text{kg} = 2.204 \text{ lbs}$$

Density
$$(g/mL) = Mass(g)/Volume(mL)$$

$$1mL = 1cm^3$$

Celsius to Kelvin
$$T_K = T_c + 273$$

Kelvin to Celsius
$$T_c = T_K - 273$$

Celsius to Fahrenheit
$$T_F = 1.80 (T_c) + 32$$

Fahrenheit to Celsius
$$T_c = (T_F - 32) / 1.80$$

Where

 T_F = Temperature in Fahrenheit

 T_c = Temperature in Celsius

 T_K = Temperature in Kelvin

$$M_1 \times V_1 = M_2 \times V_2$$

$$N_1 \times V_1 = N_2 \times V_2$$

Molecular formula = n x empirical formula

$$Q = m \times c \times \Delta T$$

$$c = \text{specific heat (units J/g}^{0}\text{C)}$$

$$\Delta T$$
 = change in temperature (Celsius, C)

$$\Delta E = q + w$$

E represents internal energy, q represents heat and w represents work

$$Molarity (M) = \frac{moles \ of \ solute}{Volume \ of \ solution(litres)}$$

$$Mass\ percent = \frac{mass\ of\ the\ element}{mass\ of\ compound}\ x\ 100\%$$

$$Mass\ percent = \frac{mass\ of\ solute}{mass\ of\ solution} x\ 100\%$$

$$Percent\ Yield = \frac{Actual\ yield}{Theoratical\ yield}\ \times\ 100\%$$

Normality
$$(N) = \frac{Equivalents}{litre}$$

Table 7.1 ► General Rules for Solubility of Ionic Compounds (Salts) in Water at 25 °C

- 1. Most nitrate (NO₃⁻) salts are soluble.
- 2. Most salts of Na⁺, K⁺, and NH₄⁺ are soluble.
- 3. Most chloride salts are soluble. Notable exceptions are AgCl, PbCl₂, and Hg₂Cl₂.
- 4. Most sulfate salts are soluble. Notable exceptions are BaSO₄, PbSO₄, and CaSO₄.
- 5. Most hydroxide compounds are only slightly soluble.* The important exceptions are NaOH and KOH. Ba(OH)₂ and Ca(OH)₂ are only moderately soluble.
- 6. Most sulfide (S^{2-}), carbonate (CO_3^{2-}), and phosphate (PO_4^{3-}) salts are only slightly soluble.*

^{*}The terms *insoluble* and *slightly soluble* really mean the same thing: such a tiny amount dissolves that it is not possible to detect it with the naked eye.

Ionic Charges Chart

Cations

1	+	2+		3+	
ammonium	NH ₄ ⁺	barium	Ba²⁺	aluminum	AI ³⁺
cesium	Cs ⁺	beryllium	Be ²⁺	chromium(III)	Cr ³⁺
gold(I)	Au⁺	cadmium	Cd ²⁺	cobalt(III)	Co ³⁺
hydrogen	H⁺	calcium	Ca ²⁺	gold(III)	Au ³⁺
lead(I)	Pb⁺	cobalt(II)	Co ²⁺	iron(III)	Fe ³⁺
lithium	Li*	copper(II)	Cu ²⁺	manganese(III)	Mn ³⁺
potassium	K⁺	iron(II)	Fe ²⁺	,	
silver	Ag⁺	lead(II)	Pb ²⁺		
sodium	Na⁺	magnesium	Mg ²⁺	Herenanda Angelo	
copper(I)	Cu⁺	manganese(II)	Mn ²⁺	4+	
		mercury(I)	Hg ₂ ²⁺	tin(IV)	Sn⁴⁺
		mercury(II)	Hg ²⁺	nickel(IV)	Ni ⁴⁺
		nickel(II)	Ni ²⁺	lead(IV)	Pb ⁴⁺
		strontium	Sr ²⁺		
		zinc	Zn ²⁺		
		tin(II)	Sn ²⁺		

Roman numeral notation indicates charge of ion when element commonly forms more than one ion. For example, iron(II) has a 2+ charge; iron(III) a 3+ charge.

Anions

1-				2-		3-	
acetate	$C_2H_3O_2^{-1}$	cyanide	CN-	carbonate	CO32-	arsenate	AsO_4^3
amide	NH2	cyanate	OCN-	chromate	CrO42-	arsenite	AsO_3
hydrogen carbonate		fluoride	F ⁻	dichromate	Cr2O72-	citrate	$C_6H_5O_7^3$
(bicarbonate)		hydride	H	oxide	O ²⁻	ferricyanide	Fe(CN) ₆ ³
hydrogen sulfate		hydroxide	OH-	oxalate	C2O42-	nitride	N^3
(bisulfate)	H504	hypochlorite	CIO	silicate	SiO ₃ ²⁻	phosphate	PO ₄ ³
bisulfide	HS-	iodate	IO_3	sulfate	5042-	phosphite	PO ₃
bisulfite	HSO ₃	iodide	I-	sulfide	S ²⁻	phosphide	P^3
bromate	BrO_3^-	nitrate	NO ₃	sulfite	SO ₃ ²⁻		
bromide	Br ⁻	nitrite	NO ₂	tartrate	C4H4O62-		
chlorate	ClO_3^-	perchlorate	CIO4	tetraborate	B ₄ O ₇ ²⁻	5-1111-111-1	
chlorite	ClO2	permanganate	MnO_4	thiosulfate	S ₂ O ₃ ²⁻		
chloride	Cl-	thiocyanate	SCN-				

There are no common anions with a 4- charge.

WIIIA	Heilum	10 ° Neon Neon 20.180	18 ° Ar	36 ° Kryp ton Krypton 84.80	54 × Xenon Xenon Xenon Xenon	Radon 222.018	Ununoctium
	VIIA VIIA	9 Fluorine	Oblorine 35.483	35 +6,-1 Bromine 79,904	53 +6.4	At Astatine 209.987	UUS Ununseptium unknown
	16 VIA 64	9 Oxygen 15.999	16 +62 Sulfur 32.066	34 Selenti		PO Polonium [208.982]	116 unk LV Livermorium [298]
	15 VA 5A	7 *6.3 Nitrogen	15 +6,+3,-3 P	33 +6,+3 AS Arsenic 74,922	51 +3 Sb Antimony 121.780		Uup
	14 174 48	6 Carbon 12,011	Silicon 28.086	32 ⁴⁴ Ge Germanium	50 +2.4 Sn Tin 118.71	82 +2 Pb Lead 207.2	114 unk
	13 3A A	5 ** Boron 10.811	13 +3 AI AI AIUminum 25.982	31 +3 Ga Gallium 69.732	\$	81 +3,+1 T Thallium 204.383	Uut Uut Ununtrium unknown
ents			12 IIB 28	7	48 +2 Cd Cadmium 112.411	80 +2,+1 HQ Mercury 200.59	Copernicium
Elen			± ≅ €	+2,+1	47 +1 Ag Silver 107.868	79 +3 Gold Gold 196.967	
of the	Valence Charge	n bol	Mass 10	28 +2	46 +4,+2 Pd	78 +4-2 Pt Platinum 195.08	DS ROOMENIAM ROOMENIAM (272)
aple	Atomic Number	Symbol	Atomic Mass	27 *3.*2 28 Cobalt N S8.933 5	45 +3	77 +4,+3 F Iridium Iridium 192,22	109 unk Meinerium
Periodic Table of the Elements				26 +3.+2 Fe	Ruthenium	76 +4 Osmlum Osmlum 190.23	Hassium [269]
Perio			7 VIIB 78	9 (+5	43 +7,+4 TC Technetium 98.907	75 +6,+4,+3 Re Rhenlum 186,207	Bh Bohrium
			6 VIB 6B	24 *6.+3.+2 Cr Chromium 51.996	42 +6,+4	74 +6.+4 W	Seaborgium
			5 VB 5B	23 +6.44.43 Vanadium 50.942	Niobium 22.006	73 ** Ta Tantalum 180.948	105 unk Db Dubnium [262]
			4 IVB 4B	22 +4	40 ** Zr Zirconium 91,224	72 H	104 PF Rutherfordium
			3 3B 3B	Scandium	39 ** Yttrium 88.906	57-71	89-103
	24 H 2	Beryllium	Magnesium	Calcium calcium	38 *2	56 +2 Ba Barlum 137.327	88 *2
- ⊴ ≱	Hydrogen	3 Lithium 6.941	Sodium 22.000	19 K R Potassium 39.088	Rubidium	55 ¹ Ceslum 132,905	87 Fr Francium

71 ** Lutetium 174.967	103 +3 L F Lawrencium [262]
70 +3 Yb Ytterbium	102 *2 Nobelium 259,101
69 *** Tm Thullum Thullum 168.934	101 *3 Md
68 +3 Erbium 167.26	100 +3 Fm Fm Fermium 257.095
67 HOImium Holmium	99 +3 ES Einsteinium (254)
66 +3 Dy Dysprosium 162.50	98 +3 Cf Californium 251.080
65 + Tb	97 +3 Bk Berkelium 247.070
64 +3 Gd Gadolinium 157.25	96 *3 Cm Curium 247.070
63 ⁺³ Europium 151.86e	95 *3 Am Americium 243.061
62 ** Samarium 150.36	94 +7.+4 Pu Plutonium 244.064
61 +3 Pm Promethium 144,913	93 +7 Np
60 +3 Nd Neodymium 144.24	92 ** Uranium 238.029
Praseodymium	Protactinium
?	(C Th Thorium Thorium 222.038
57 *3 La Lanthanum	89 ** ACtinium Actinium 227.028
Lanthanide Series	Actinide Series