Question (1)

i) PCA after centring on datasetSource code file name: - first_part_i.py

ii) PCA without centring on dataset Source code file name: - first_part_ii.py

Observations: Results obtained are quite same as the part i of this question.

Since the mean of the data set are very small as compared to the dataset hence there is almost no effect of centring the dataset in our case.

iii) Kernel PCA on dataset

A.
$$\kappa(x,y) = (1 + x^T y)^d$$
 for $d = \{2,3\}$

Source code file name: - first_part_iii.py

d=3

B.
$$\kappa(x,y) = \exp \frac{-(x-y)^T(x-y)}{2\sigma^2}$$
 for $\sigma = \{0.1, 0.2, \dots, 1\}$

Source code file name: - first_part_iii.py

Sigma=0.1

Sigma=0.2

Sigma=0.3

Sigma=0.4

Sigma=0.5

Sigma=0.6

Sigma=0.7

Sigma=0.8

Sigma=0.9

Sigma=1.0

iv) By Observation from the above plots of kernel, degree 3 polynomial kernel is best suited for this dataset. Its variance in the top two components of the kernel is maximum which is approx. 73%. Other variance for degree 2 poly kernel is approx. 68% and the maximum variance for exponential kernel holds for sigma=1.0 and is approx. 15% So, degree 3 polynomial kernel should be chosen for plotting.

Question (2)

i) Source code file name: - second_part_i.py

Random Initialization 1:

Random Initialization 2:

Random Initialization 3:

Random Initialization 4:

Random Initialization 5:

ii) Source code file name: - second_part_ii.py

K=5

iii) Source code file name: - second_part_iii.py

Polynomial Kernel with degree 2 is the closest to the expected output which is rings clustered from outwards to inwards.

Kernel degree 2 polynomial from Q1

Kernel degree 3 polynomial from Q1

Exponential Kernel function with Sigma=0.1 from Q1

Exponential Kernel function with Sigma=0.2 from Q1

Exponential Kernel function with Sigma=0.3 from Q1

Exponential Kernel function with Sigma=0.4 from Q1

Exponential Kernel function with Sigma=0.5 from Q1

Exponential Kernel function with Sigma=0.6 from Q1

Exponential Kernel function with Sigma=0.7 from Q1

Exponential Kernel function with Sigma=0.8 from Q1

Exponential Kernel function with Sigma=0.9 from Q1

Exponential Kernel function with Sigma=1.0 from Q1

iv) Source code file name: - second_part_iii.py

Using arg max function to map eigen vectors to clusters

$$\ell = \arg\max_{j=1,\dots,k} v_i^j$$

Answer: The results obtained are Better than k-mean clustering which is initialized randomly. As here we are moving to higher dimension. But it is not as good as Normalized mean clustering.

H[n][k] denotes the likelihood of point n to go into the kth cluster So, it performs better as compared to random initialization

Kernel degree 2 polynomial from Q1

Kernel degree 3 polynomial from Q1

Exponential Kernel function with Sigma=0.1 from Q1

Exponential Kernel function with Sigma=0.2 from Q1

Exponential Kernel function with Sigma=0.3 from Q1

Exponential Kernel function with Sigma=0.4 from Q1

