

Álgebra Superior I Semestre 2020-2

Prof. Alejandro Dorantes Aldama Ayud. Elmer Enrique Tovar Acosta Ayud. Alejandro Ríos Herrejón Reposición examen I

Kevin Ariel Merino Peña²

- 4. Sean A,B conjuntos. Demuestre que las siguientes son equivalentes:
 - 1. $A \subset B$
 - $A \cap B = A$
 - 3. $A \cup B = B$
 - 4. $A \backslash B = \emptyset$
- 1) \implies 2) Supongamos $A \subseteq B$, por demostrar: $A \cap B = A$. \subseteq

Supongamos que	$a \in A \cap B$
Por definición de intersección	$a \in A \land a \in B$
Particularmente a	$\in A$
	$A \cap B \subseteq A$

 \supseteq

Supongamos
$$a \in A$$

Por hipótesis $A \subseteq B$
Parrticularmente $a \in B$
Entonces $a \in B \land a \in A$
 $i.e.$ $a \in A \cap B$
 $A \subseteq A \cap B$

Como tenemos
$$A \subseteq A \cap B$$
 y $A \supseteq A \cap B$

$$A = A \cap B$$

- 8. Sean $A = \{1, 2, 3\}$ y $B = \{1, 2, 3, 4\}$. Encuentre todas las parejas ordenadas de $A \times B$.
- 9. Sean $A = \{1, 2, ..., n\}$ y $B = \{1, 2, ..., m\}$. Demuestre que el producto $A \times B$ tiene nm elementos. Sugerencia: ¿Cuántas parejas tienen como primera coordenada 1?, ¿y 2?
- 16. Encuentre la imagen de las siguientes funciones:
 - $f: \mathbb{N} \to \mathbb{N}$ dada por f(n) = n + 1.
 - $f: \mathbb{N} \to \mathbb{N}$ dada por $f(n) = n^2 + 1$.
 - $f: \mathbb{Z} \to \mathbb{N}$ dada por $f(n) = n^2 + 1$.
- 17. Sean $f, g: \mathbb{R} \to \mathbb{R}$ dadas por f(x) = x + 1 y $g(x) = x^2$. Calcule $f \circ g$ y $g \circ f$.

Nota: Para los ejercicio 18, por .^{En}contrar funciones"se entiende dat todos los elementos que determinan una función, es decir, dominio, codomino y la regla de correspondencia.

21. Como siempre, los símbolos \mathbb{N} y \mathbb{Q} denotarán al conjunto de número naturales y al conjunto de números racionales, respectivamente, ¿Es cierto que

$$R := \left\{ \left(\frac{m}{n}, \frac{1}{n} \right) : m, n \in \mathbb{N} \right\}$$

es una función de Q en Q?

 $^{^2 \}mathrm{Número}$ de cuenta: 317031326