期中考试答案

问题 1 判断题。请在以下正确的命题前打勾,错的命题前打叉。

- (1) 任何两个线段都是可公度的。
- (2) 希尔伯特公理体系由关联公理,次序公理,合同公理和平行公理组成。
- (3) 两个反射的复合总是平移。
- (4) 三个反射的复合不可能是平移。
- (5) 设 $\mathbf{u}, \mathbf{v}, \mathbf{w}$ 为 E^3 中任意向量,则 $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ 与 $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ 同向。
- (6) 刚体变换群是交换群。
- (7) 两个反射的复合总是刚体变换。
- (8) 刚体变换群的元素中除单位元之外都是无穷阶的。
- (9) 刚体变换保持内积。即设 $\phi: E^3 \to E^3$ 为刚体变换,则下列等式恒成立: $\langle \phi(u), \phi(v) \rangle = \langle u, v \rangle_{\circ}$
- (10) 任意非空集合上都存在距离函数。

解:只有(4)(7)(10)正确,其余错误。

问题 2 利用向量代数求解以下命题。

- (a) 证明三角形的三条中线相交于一点。
- (b) 求项点为 $P_1 = (1,2,3), P_2 = (2,4,1), P_3 = (1,-3,5), P_4 = (4,-2,3)$ 的四 面体的体积。

解: (a) 同第四次作业 2。(b) 同第四次作业 9。

问题 3 已知 $\mathbf{u} = (3, 4, 5), \mathbf{v} = (0, 1, 2), \mathbf{w} = (-1, 0, 1)$ 。 试计算

- $(i)2\mathbf{u} + 3\mathbf{v} \mathbf{w}_{\circ}$
- (ii) $\langle \mathbf{u}, \mathbf{v} \rangle$ 和 $\mathbf{v} \times \mathbf{w}$ 。
- (iii) 角 ∠(**u**, **v**) 的余弦值。

解: (i)2u + 3v - w = (7, 11, 15)。

(ii)
$$\langle \mathbf{u}, \mathbf{v} \rangle = 14$$
, $\mathbf{v} \times \mathbf{w} = (1, -2, 1)$.
(iii) $\cos \angle (\mathbf{u}, \mathbf{v}) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\mathbf{u}| \cdot |\mathbf{v}|} = \frac{14}{5\sqrt{10}}$.

问题 4 (a) 设 $\mathbf{u}, \mathbf{v}, \mathbf{w}$ 为 E^3 向量。试证二重外积展开式: $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) =$ $\langle \mathbf{u}, \mathbf{w} \rangle \mathbf{v} - \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{w}_{\circ}$

(b) 设 $\mathbf{v}_i, 1 \leq i \leq 4$ 为 E^3 中向量。试证如下等式: $\langle \mathbf{v}_1 \times \mathbf{v}_2, \mathbf{v}_3 \times \mathbf{v}_4 \rangle =$ $\langle \mathbf{v}_1, \mathbf{v}_3 \rangle \langle \mathbf{v}_2, \mathbf{v}_4 \rangle - \langle \mathbf{v}_1, \mathbf{v}_4 \rangle \langle \mathbf{v}_2, \mathbf{v}_3 \rangle$.

解: (a) 同第四次作业 5。(b) 同第五次作业 4(1)。

问题 5 试求解下列平面或直线的参数方程。

- (a) 过点 (3,-1,4), (1,0,-3), 且垂直与平面 2x+5y+z=0 的平面。
- (b) 过点 (3,-1,4), 且垂直于平面 2x + 5y + z = 0 的直线。

解: (a) 所求平面内有两个不共线的方向: (2,5,1),(3,-1,4)-(1,0,-3)=

$$(2,-1,7)$$
,故平面参数方程为
$$\begin{cases} x = 3 + 2t_1 + 2t_2 \\ y = -1 - t_1 + 5t_2 \\ z = 4 + 7t_1 + t_2 \end{cases}$$
。

(b) 所求直线的方向为
$$(2,5,1)$$
,故直线的参数方程为
$$\begin{cases} x = 3 + 2t \\ y = -1 + 5t \\ z = 4 + t \end{cases}$$

问题 6 (a) 设 $d: E^3 \times E^3 \to \mathbb{R}$ 为距离函数。试证对任意 $\lambda > 0$, $\lambda \cdot d$ 仍然为距离函数。

- (b) 令 D 为 E^3 所有距离函数的集合。我们定义 D 上的关系 $R = \{(d, \lambda \cdot d) \in D \times D | \lambda > 0\}$ 。试证 R 给出了 D 上的等价关系 \sim 。
- (c) 试证等价类集合 D/\sim 是一个无穷集合。

解: (a) 正定性: 由 $d(X,Y) \ge 0$ 且 d(X,Y) = 0 当且仅当 X = Y,以及 $\lambda > 0$,得 $\lambda d(X,Y) \ge 0$ 且 $\lambda d(X,Y) = 0$ 当且仅当 X = Y。对称性: 由 d(X,Y) = d(Y,X),得 $\lambda d(X,Y) = \lambda d(Y,X)$ 。三角不等式: 由 $d(X,Y) + d(Y,Z) \ge d(X,Z)$ 且 $\lambda \ge 0$,得 $\lambda d(X,Y) + \lambda d(Y,Z) = \lambda (d(X,Y) + d(Y,Z)) \ge \lambda d(X,Z)$ 。故 $\lambda \cdot d$ 也是距离函数。

(b) 自反性: 取 $\lambda = 1$, 知 $d \sim d$ 。对称性: 设 $d_1 \sim d_2$,则存在 $\lambda > 0$ 使得 $d_2 = \lambda d_1$,因此 $d_1 = \frac{1}{\lambda} d_2$, $\frac{1}{\lambda} > 0$,故 $d_2 \sim d_1$ 。传递性: 设 $d_1 \sim d_2$, $d_2 \sim d_3$,则 存在 $\lambda, \mu > 0$,使得 $d_2 = \lambda d_1$, $d_3 = \mu d_2$,故 $d_3 = \lambda \mu d_1$, $\lambda \mu > 0$,因此 $d_1 \sim d_3$ 。 综上, \sim 是等价关系。

(c) 设
$$d_1$$
 为离散距离: $d_1(X,Y) = \begin{cases} 0, & X = Y \\ 1, & X \neq Y \end{cases}$, d_2 为欧氏距离: $d_2(X,Y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$ 。则易验证 $d_1, d_1 + d_2, d_1 + 2d_2, \cdots$ 两两

 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$ 。则勿验证 $a_1,a_1+a_2,a_1+2a_2,\cdots$ 內內不等价,因此无穷集合 $\{[d_1+nd_2]|n\in\mathbb{N}\}\subset D/\sim$,故 D/\sim 是无穷集合。

问题 7 令 $\{O; \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ 为 E^3 的标准直角坐标系。设有刚体变换 $\phi: E^3 \to E^3$ 。

(a) 试证存在直角坐标系
$$\{O'; \mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$$
 使得 $\phi(\sum_{i=1}^3 x_i \mathbf{e}_i) = \sum_{i=1}^3 x_i \mathbf{e}'_i + O'$ 。

(b) 试证 ϕ 是双射。

解: (a) 记 $T_{\mathbf{u}}$ 为沿 \mathbf{u} 的平移变换。设 $O' = \phi(O)$,设 $\tilde{\phi} = T_{-O'} \circ \phi$ 也为刚 体变换,则 $\tilde{\phi}(O) = O$ 。令 $\mathbf{e}'_i = \tilde{\phi}(\mathbf{e}_i)$,则由 $\tilde{\phi}$ 的保距性,知 $|\mathbf{e}'_i| = |\overrightarrow{O\mathbf{e}'_i}| = |\vec{\tilde{\phi}}(O)\tilde{\phi}(\mathbf{e}_i)| = |\overrightarrow{O\mathbf{e}_i}| = |\mathbf{e}_i| = 1$,且 $\langle \mathbf{e}'_i, \mathbf{e}'_j \rangle = \langle \overrightarrow{O\mathbf{e}'_i}, \overrightarrow{O\mathbf{e}'_j} \rangle = -\langle \overrightarrow{O\mathbf{e}'_i}, -\overrightarrow{O\mathbf{e}'_j} \rangle = \frac{1}{2}(|\overrightarrow{O\mathbf{e}'_i}|^2 + |\overrightarrow{O\mathbf{e}'_j}|^2) = \frac{1}{2}(|\overrightarrow{O\mathbf{e}_i}|^2 + |\overrightarrow{O\mathbf{e}_j}|^2 - |\overrightarrow{\mathbf{e}_i\mathbf{e}_j}|^2) = -\langle \overrightarrow{O\mathbf{e}_i}, -\overrightarrow{O\mathbf{e}_j} \rangle = \langle \mathbf{e}_i, \mathbf{e}_j \rangle = 0$ (其中 $i \neq j$),故 $\{O'; \mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ 构成一个坐标系。 设 $X = \sum_{i=1}^3 x_i \mathbf{e}_i$,则 $x_i = \langle \overrightarrow{OX}, \mathbf{e}_i \rangle$ 。设 $\tilde{\phi}(X) = \sum_{i=1}^3 x_i' \mathbf{e}'_i$,则同上有 $x'_i = \langle \overrightarrow{O\tilde{\phi}}(X), \mathbf{e}'_i \rangle = \langle \overrightarrow{OX}, \overrightarrow{O\mathbf{e}_i} \rangle = \langle \overrightarrow{OX}, \mathbf{e}_i \rangle = x_i$,因此 $\phi(\sum_{i=1}^3 x_i \mathbf{e}_i) = T_{O'} \circ \tilde{\phi}(\sum_{i=1}^3 x_i \mathbf{e}_i) = T_{O'}(\sum_{i=1}^3 x_i \mathbf{e}'_i) = \sum_{i=1}^3 x_i \mathbf{e}'_i + O'$ 。 (b) 先证 ϕ 是单射。若 $\phi(X) \neq \phi(Y)$,则 $|\overrightarrow{\phi}(X)\phi(Y)| = |\overrightarrow{XY}| > 0$,故 $X \neq Y$ 。因此 ϕ 是单射。再证 ϕ 是满射。由 $\{O'; \mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ 是坐标系,知 E^3 中的任意 点 Y 都有 $Y = \sum_{i=1}^3 y_i \mathbf{e}'_i + O'$ 。令 $X = \sum_{i=1}^3 y_i \mathbf{e}_i$,则由 (a),有 $\phi(X) = Y$ 。因此 ϕ 是满射。综上, ϕ 是双射。

思考题 对任意自然数 $n \ge 1$,我们定义 E^3 中的 n 次曲面为某一非零 n 次三元多项式的零点集。给定 E^3 中不超过 $m \ge 3$ 个不同的点。问是否总存在一个 m-2 次曲面穿过所有的给定点?注意到这个问题在 m=3 情形是显然成立的。

解:存在。设这 m 个点为 X_1, \cdots, X_m 。对 X_1, X_2, X_3 三点,必有一平面通过它们,设为 Ax + By + Cz + D = 0,其中 A, B, C 不全为 0。对 $i \geq 4$,设 $X_i = (x_i, y_i, z_i)$,设曲面方程为 $(Ax + By + Cz + D) \prod_{i=4}^m (x + y + z - x_i - y_i - z_i) = 0$ 。则显然该曲面通过 X_1, \cdots, X_m 这 m 个点;且由于 A, B, C 不全为 0,因此 x, y, z 中必有一项次数为 m - 2。该曲面即为所求。