

Негладкие задачи

ℓ_1 induces sparsity

@fminxyz

Субградиентный метод:

$$\inf_{x \in \mathbb{R}^n} f(x)$$

 $\min_{x \in \mathbb{R}^n} f(x) \hspace{1cm} x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k)$

 $f o \min_{x,y,z}$ Субградиентный метод

Субградиентный метод:	$\min_{x \in \mathbb{R}^n} f(x)$	$x_{k+1} = x_k - \alpha_k g_k, g_k \in \partial f(x_k)$
выпуклый (негладкий)		сильно выпуклый (негладкий)
$\begin{split} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right) \end{split}$		$\begin{split} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$

 $f o \min_{x,y,z}$ Субградиентный метод

Субградиентный метод:

 $\min_{x \in \mathbb{R}^n} f(x)$

 $x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k)$

выпуклый (негладкий)	сильно выпуклый (негладкий)
$\begin{split} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right) \end{split}$	$f(x_k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$
$k_{arepsilon} \sim \mathcal{O}\left(rac{1}{arepsilon^2} ight)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$

i Theorem

Предположим, что f является G-липшицевой и выпуклой, тогда субградиентный метод сходится как:

$$f(\overline{x}) - f^* \leq \frac{GR}{\sqrt{k}},$$

где $lpha = rac{R}{G\sqrt{k}}$

Субградиентный метод:

 $\min_{x \in \mathbb{R}^n} f(x)$

 $x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k)$

выпуклый (негладкий)	сильно выпуклый (негладкий)
$\begin{aligned} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right) \end{aligned}$	$\begin{split} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_{\varepsilon} &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$

где

как:

Предположим, что f является G-липшицевой и выпуклой, тогда субградиентный метод сходится

$$f(\overline{x}) - f^* \le \frac{GR}{\sqrt{k}},$$

 $\alpha = \frac{R}{G\sqrt{k}}$ $R = \|x_0 - x^*\|$

Субградиентный метод:

 $\min_{x \in \mathbb{R}^n} f(x)$

 $x_{k+1} = x_k - \alpha_k g_k, \quad g_k \in \partial f(x_k)$

выпуклый (негладкий)	сильно выпуклый (негладкий)
$f(x_k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_arepsilon \sim \mathcal{O}\left(rac{1}{arepsilon} ight)$

где

Предположим, что f является G-липшицевой и выпуклой, тогда субградиентный метод сходится как:

$$f(\overline{x}) - f^* \le \frac{GR}{\sqrt{k}},$$

 $\begin{array}{l} \bullet \ \alpha = \frac{R}{G\sqrt{k}} \\ \bullet \ R = \|x_0 - x^*\| \end{array}$

$$\bullet \ \overline{x} = \frac{1}{k} \sum_{i=0}^{k-1} x_i$$

выпуклый (негладкий)	сильно выпуклый (негладкий)
$f(x_k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$
$k_arepsilon \sim \mathcal{O}\left(rac{1}{arepsilon^2} ight)$	$k_arepsilon \sim \mathcal{O}\left(rac{1}{arepsilon} ight)$

выпуклый (негладкий)	сильно выпуклый (негладкий)
$f(x_k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$
$k_{arepsilon} \sim \mathcal{O}\left(rac{1}{arepsilon^2} ight)^{\sqrt{N}}$	$k_arepsilon \sim \mathcal{O}\left(rac{1}{arepsilon} ight)$

• Субградиентный метод является оптимальным для задач выше.

выпуклый (негладкий)	сильно выпуклый (негладкий)
$\begin{aligned} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right) \end{aligned}$	$\begin{split} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$

- Субградиентный метод является оптимальным для задач выше.
- Можно использовать метод зеркального спуска (обобщение метода субградиента на, возможно, неевклидову метрику) с той же скоростью сходимости, чтобы лучше согласовать геометрию задачи.

выпуклый (негладкий)	сильно выпуклый (негладкий)
$\begin{split} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right) \end{split}$	$\begin{split} f(x_k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$

- Субградиентный метод является оптимальным для задач выше.
- Можно использовать метод зеркального спуска (обобщение метода субградиента на, возможно, неевклидову метрику) с той же скоростью сходимости, чтобы лучше согласовать геометрию задачи.
- ullet Однако, мы можем достичь стандартной скорости градиентного спуска $\mathcal{O}\left(rac{1}{L}
 ight)$ (и даже ускоренной версии $O(\frac{1}{k^2})$), если мы будем использовать структуру задачи.

Проксимальный оператор

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Явный метод Эйлера:

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Явный метод Эйлера:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Явный метод Эйлера:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Неявный метод Эйлера:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_{k+1})$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Неявный метод Эйлера:

Явный метод Эйлера:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \end{split}$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Неявный метод Эйлера:

Явный метод Эйлера:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x) \Big|_{x=x_{k+1}} = 0 \end{split}$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Явный метод Эйлера:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x) \Big|_{x=x_{k+1}} = 0 \end{split}$$

$$\frac{x - x_k}{x + \nabla f(x)} + \nabla f(x) = 0$$

$$\nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \Big|_{x = x} = 0$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Явный метод Эйлера:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x) \Big|_{x=x_{k+1}} = 0 \end{split}$$

$$\begin{split} \nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \bigg|_{x = x_{k+1}} &= 0 \\ x_{k+1} &= \arg \min_{x \in \mathbb{R}^n} \left[f(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right] \end{split}$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Явный метод Эйлера:

$$\frac{x_{k+1}-x_k}{\alpha} = -\nabla f(x_k)$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x) \Big|_{x=x_{k+1}} = 0 \end{split}$$

$$\begin{split} \nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \bigg|_{x = x_{k+1}} &= 0 \\ x_{k+1} &= \arg \min_{x \in \mathbb{R}^n} \left[f(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right] \end{split}$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x)$$

Явный метод Эйлера:

$$\frac{x_{k+1}-x_k}{2}=-\nabla f(x_k)$$

Приводит к обычному методу градиентного спуска.

Неявный метод Эйлера:

$$\frac{\alpha}{x_{k+1}-x_{k+1}}$$

$$+ \, \nabla f(x_{k+1}) = - \frac{1}{2} \int_{\mathbb{R}^n} dx \, dx \, dx$$

$$(x_{k+1}) = 0$$

$$\begin{split} \frac{x_{k+1}-x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1}-x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x-x_k}{\alpha} &+ \nabla f(x) \Big|_{x=x_{k+1}} = 0 \end{split}$$

$$\nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \Big|_{x = x_{k+1}} = 0$$

$$\left[\frac{1}{\|x - x_h\|_2^2} \right]$$

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^n} \left[f(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right]$$

$$x_{k+1} - y_{k+1} = y_{k+1}$$

- Проксимальный оператор
 - $\operatorname{prox}_{f,\alpha}(x_k) = \arg\min_{x \in \mathbb{R}^n} \left| f(x) + \frac{1}{2\alpha} \|x x_k\|_2^2 \right|$

Визуализация проксимального оператора

$$\operatorname{Prox}_{f}(x) = \underset{x'}{\operatorname{argmin}} \frac{1}{2} ||x - x'||^{2} + f(x')$$

Проксимальный оператор

$$x_{k+1} + \alpha \nabla f(x_{k+1}) = x_k$$

$$\begin{aligned} x_{k+1} + \alpha \nabla f(x_{k+1}) &= x_k \\ (I + \alpha \nabla f)(x_{k+1}) &= x_k \end{aligned}$$

$$\begin{split} x_{k+1} + \alpha \nabla f(x_{k+1}) &= x_k \\ (I + \alpha \nabla f)(x_{k+1}) &= x_k \\ x_{k+1} &= (I + \alpha \nabla f)^{-1} x_k \overset{\alpha \to 0}{\approx} (I - \alpha \nabla f) x_k \end{split}$$

$$\begin{split} x_{k+1} + \alpha \nabla f(x_{k+1}) &= x_k \\ (I + \alpha \nabla f)(x_{k+1}) &= x_k \\ x_{k+1} &= (I + \alpha \nabla f)^{-1} x_k \overset{\alpha \to 0}{\approx} (I - \alpha \nabla f) x_k \end{split}$$

• GD из метода проксимального отображения. Возвращаемся к дискретизации:

$$\begin{split} x_{k+1} + \alpha \nabla f(x_{k+1}) &= x_k \\ (I + \alpha \nabla f)(x_{k+1}) &= x_k \\ x_{k+1} &= (I + \alpha \nabla f)^{-1} x_k \overset{\alpha \to 0}{\approx} (I - \alpha \nabla f) x_k \end{split}$$

Таким образом, мы получаем обычный градиентный спуск с $\alpha \to 0$: $x_{k+1} = x_k - \alpha \nabla f(x_k)$.

Метод Ньютона из метода проксимального отображения. Теперь рассмотрим проксимальное отображение второго порядка приближения функции $f_{x_{t}}^{II}(x)$:

• GD из метода проксимального отображения. Возвращаемся к дискретизации:

$$\begin{split} x_{k+1} + \alpha \nabla f(x_{k+1}) &= x_k \\ (I + \alpha \nabla f)(x_{k+1}) &= x_k \\ x_{k+1} &= (I + \alpha \nabla f)^{-1} x_k \overset{\alpha \to 0}{\approx} (I - \alpha \nabla f) x_k \end{split}$$

Таким образом, мы получаем обычный градиентный спуск с $\alpha \to 0$: $x_{k+1} = x_k - \alpha \nabla f(x_k)$.

Метод Ньютона из метода проксимального отображения. Теперь рассмотрим проксимальное отображение второго порядка приближения функции $f_{x}^{II}(x)$:

$$x_{k+1} = \operatorname{prox}_{f_{x_k}^{II},\alpha}(x_k) = \arg\min_{x \in \mathbb{R}^n} \left[f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right]$$

• GD из метода проксимального отображения. Возвращаемся к дискретизации:

$$\begin{split} x_{k+1} + \alpha \nabla f(x_{k+1}) &= x_k \\ (I + \alpha \nabla f)(x_{k+1}) &= x_k \\ x_{k+1} &= (I + \alpha \nabla f)^{-1} x_k \overset{\alpha \to 0}{\approx} (I - \alpha \nabla f) x_k \end{split}$$

Таким образом, мы получаем обычный градиентный спуск с $\alpha \to 0$: $x_{k+1} = x_k - \alpha \nabla f(x_k)$.

Метод Ньютона из метода проксимального отображения. Теперь рассмотрим проксимальное отображение второго порядка приближения функции $f_{x}^{II}(x)$:

$$\begin{split} x_{k+1} &= \mathsf{prox}_{f_{x_k}^{II},\alpha}(x_k) = \arg\min_{x \in \mathbb{R}^n} \left[f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right] \\ & \left. \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k) + \frac{1}{\alpha} (x - x_k) \right|_{x = x_k + 1} = 0 \end{split}$$

GD из метода проксимального отображения. Возвращаемся к дискретизации:

$$\begin{split} x_{k+1} + \alpha \nabla f(x_{k+1}) &= x_k \\ (I + \alpha \nabla f)(x_{k+1}) &= x_k \\ x_{k+1} &= (I + \alpha \nabla f)^{-1} x_k \overset{\alpha \to 0}{\approx} (I - \alpha \nabla f) x_k \end{split}$$

Таким образом, мы получаем обычный градиентный спуск с $\alpha \to 0$: $x_{k+1} = x_k - \alpha \nabla f(x_k)$.

Метод Ньютона из метода проксимального отображения. Теперь рассмотрим проксимальное отображение второго порядка приближения функции $f_{x}^{II}(x)$:

$$\begin{split} x_{k+1} &= \mathsf{prox}_{f_{x_k}^{II},\alpha}(x_k) = \arg\min_{x \in \mathbb{R}^n} \left[f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right] \\ & \left. \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k) + \frac{1}{\alpha} (x - x_k) \right|_{x = x_{k+1}} = 0 \\ & x_{k+1} = x_k - \left[\nabla^2 f(x_k) + \frac{1}{\alpha} I \right]^{-1} \nabla f(x_k) \end{split}$$

Пусть \mathbb{I}_S — индикаторная функция для замкнутого, выпуклого множества S. Возвратимся к ортогональной проекции $\pi_S(y)$:

Пусть \mathbb{I}_S — индикаторная функция для замкнутого, выпуклого множества S. Возвратимся к ортогональной проекции $\pi_S(y)$:

$$\pi_S(y) := \arg\min_{x \in S} \frac{1}{2} \|x - y\|_2^2.$$

Пусть \mathbb{I}_S — индикаторная функция для замкнутого, выпуклого множества S. Возвратимся к ортогональной проекции $\pi_S(y)$:

$$\pi_S(y) := \arg \min_{x \in S} \frac{1}{2} \|x - y\|_2^2.$$

С использованием следующего обозначения индикаторной функции

$$\mathbb{I}_S(x) = \begin{cases} 0, & x \in S, \\ \infty, & x \notin S, \end{cases}$$

Пусть \mathbb{I}_S — индикаторная функция для замкнутого, выпуклого множества S. Возвратимся к ортогональной проекции $\pi_S(y)$:

$$\pi_S(y) := \arg \min_{x \in S} \frac{1}{2} \|x - y\|_2^2.$$

С использованием следующего обозначения индикаторной функции

$$\mathbb{I}_S(x) = \begin{cases} 0, & x \in S, \\ \infty, & x \notin S, \end{cases}$$

Перепишем ортогональную проекцию $\pi_{S}(y)$ как

$$\pi_S(y) := \arg\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x-y\|^2 + \mathbb{I}_S(x).$$

От проекций к проксимальности

Пусть \mathbb{I}_S — индикаторная функция для замкнутого, выпуклого множества S. Возвратимся к ортогональной проекции $\pi_S(y)$:

$$\pi_S(y) := \arg\min_{x \in S} \frac{1}{2} \|x - y\|_2^2.$$

С использованием следующего обозначения индикаторной функции

$$\mathbb{I}_S(x) = \begin{cases} 0, & x \in S, \\ \infty, & x \notin S, \end{cases}$$

Перепишем ортогональную проекцию $\pi_S(y)$ как

$$\pi_S(y) := \arg\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x-y\|^2 + \mathbb{I}_S(x).$$

Проксимальность: заменим \mathbb{I}_S на некоторую выпуклую функцию!

$$\operatorname{prox}_r(y) = \operatorname{prox}_{r,1}(y) := \arg\min \frac{1}{2} \|x - y\|^2 + r(x)$$

Составная оптимизация

⊕ n ø

Регулярные / Составные целевые функции

Многие негладкие задачи имеют вид

$$\min_{x \in \mathbb{R}^n} \varphi(x) = f(x) + r(x)$$

Lasso, L1-LS, compressed sensing

$$f(x) = \frac{1}{2} \|Ax - b\|_2^2, r(x) = \lambda \|x\|_1$$

Негладкая

Регулярные / Составные целевые функции

Многие негладкие задачи имеют вид

$$\min_{x \in \mathbb{R}^n} \varphi(x) = f(x) + r(x)$$

Lasso, L1-LS, compressed sensing

$$f(x) = \frac{1}{2} \|Ax - b\|_2^2, r(x) = \lambda \|x\|_1$$

 $f(x) = -y \log h(x) - (1-y) \log(1-h(x)), r(x) = \lambda ||x||_1$

Гладкая

$$0 \in \nabla f(x^*) + \partial r(x^*)$$

$$0 \in \nabla f(x^*) + \partial r(x^*)$$
$$0 \in \alpha \nabla f(x^*) + \alpha \partial r(x^*)$$

$$\begin{split} 0 &\in \nabla f(x^*) + \partial r(x^*) \\ 0 &\in \alpha \nabla f(x^*) + \alpha \partial r(x^*) \\ x^* &\in \alpha \nabla f(x^*) + (I + \alpha \partial r)(x^*) \end{split}$$

$$\begin{split} 0 &\in \nabla f(x^*) + \partial r(x^*) \\ 0 &\in \alpha \nabla f(x^*) + \alpha \partial r(x^*) \\ x^* &\in \alpha \nabla f(x^*) + (I + \alpha \partial r)(x^*) \\ x^* &- \alpha \nabla f(x^*) \in (I + \alpha \partial r)(x^*) \end{split}$$

$$\begin{split} 0 &\in \nabla f(x^*) + \partial r(x^*) \\ 0 &\in \alpha \nabla f(x^*) + \alpha \partial r(x^*) \\ x^* &\in \alpha \nabla f(x^*) + (I + \alpha \partial r)(x^*) \\ x^* &- \alpha \nabla f(x^*) \in (I + \alpha \partial r)(x^*) \\ x^* &= (I + \alpha \partial r)^{-1}(x^* - \alpha \nabla f(x^*)) \end{split}$$

$$\begin{split} 0 &\in \nabla f(x^*) + \partial r(x^*) \\ 0 &\in \alpha \nabla f(x^*) + \alpha \partial r(x^*) \\ x^* &\in \alpha \nabla f(x^*) + (I + \alpha \partial r)(x^*) \\ x^* &- \alpha \nabla f(x^*) \in (I + \alpha \partial r)(x^*) \\ x^* &= (I + \alpha \partial r)^{-1}(x^* - \alpha \nabla f(x^*)) \\ x^* &= \operatorname{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*)) \end{split}$$

$$\begin{split} 0 &\in \nabla f(x^*) + \partial r(x^*) \\ 0 &\in \alpha \nabla f(x^*) + \alpha \partial r(x^*) \\ x^* &\in \alpha \nabla f(x^*) + (I + \alpha \partial r)(x^*) \\ x^* &- \alpha \nabla f(x^*) \in (I + \alpha \partial r)(x^*) \\ x^* &= (I + \alpha \partial r)^{-1}(x^* - \alpha \nabla f(x^*)) \\ x^* &= \operatorname{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*)) \end{split}$$

Условия оптимальности:

$$\begin{split} 0 &\in \nabla f(x^*) + \partial r(x^*) \\ 0 &\in \alpha \nabla f(x^*) + \alpha \partial r(x^*) \\ x^* &\in \alpha \nabla f(x^*) + (I + \alpha \partial r)(x^*) \\ x^* &- \alpha \nabla f(x^*) \in (I + \alpha \partial r)(x^*) \\ x^* &= (I + \alpha \partial r)^{-1}(x^* - \alpha \nabla f(x^*)) \\ x^* &= \mathrm{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*)) \end{split}$$

Которые приводят к методу проксимального градиента:

$$x_{k+1} = \mathsf{prox}_{r,\alpha}(x_k - \alpha \nabla f(x_k))$$

И этот метод сходится со скоростью $\mathcal{O}(\frac{1}{k})!$

Условия оптимальности:

$$\begin{split} 0 &\in \nabla f(x^*) + \partial r(x^*) \\ 0 &\in \alpha \nabla f(x^*) + \alpha \partial r(x^*) \\ x^* &\in \alpha \nabla f(x^*) + (I + \alpha \partial r)(x^*) \\ x^* &- \alpha \nabla f(x^*) \in (I + \alpha \partial r)(x^*) \\ x^* &= (I + \alpha \partial r)^{-1}(x^* - \alpha \nabla f(x^*)) \end{split}$$

 $x^* = \operatorname{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$

Которые приводят к методу проксимального градиента:

$$x_{k+1} = \mathsf{prox}_{r,\alpha}(x_k - \alpha \nabla f(x_k))$$

И этот метод сходится со скоростью $\mathcal{O}(\frac{1}{L})!$

 $\operatorname{prox}_{f,\alpha}(x_k) = \operatorname{prox}_{\alpha f}(x_k) = \arg\min_{x \in \mathbb{R}^n} \left| \alpha f(x) + \frac{1}{2} \|x - x_k\|_2^2 \right| \qquad \operatorname{prox}_f(x_k) = \arg\min_{x \in \mathbb{R}^n} \left| f(x) + \frac{1}{2} \|x - x_k\|_2^2 \right|$

Примеры проксимальных операторов

•
$$r(x) = \lambda ||x||_1$$
, $\lambda > 0$

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i),$$

который также известен как оператор мягкого порога (soft-thresholding).

Примеры проксимальных операторов

•
$$r(x) = \lambda ||x||_1$$
, $\lambda > 0$

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i),$$

который также известен как оператор мягкого порога (soft-thresholding).

• $r(x) = \frac{\lambda}{2} ||x||_2^2, \ \lambda > 0$

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

Примеры проксимальных операторов

•
$$r(x) = \lambda ||x||_1, \lambda > 0$$

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i),$$

который также известен как оператор мягкого порога (soft-thresholding).

• $r(x) = \frac{\lambda}{2} ||x||_2^2, \ \lambda > 0$

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \mathbb{I}_S(x)$.

$$\operatorname{prox}_r(x_k - \alpha \nabla f(x_k)) = \operatorname{proj}_r(x_k - \alpha \nabla f(x_k))$$

i Theorem

Пусть $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой prox_r определён. Если существует такой $\hat{x} \in \mathbb{R}^n$, что $r(x) < +\infty$, то проксимальный оператор определяется однозначно (т.е. всегда возвращает единственное значение).

Доказательство:

i Theorem

Пусть $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой ргох, определён. Если существует такой $\hat{x} \in \mathbb{R}^n$, что $r(x) < +\infty$, то проксимальный оператор определяется однозначно (т.е. всегда возвращает единственное значение).

Доказательство:

Проксимальный оператор возвращает минимум некоторой задачи оптимизации.

i Theorem

Пусть $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой ргох, определён. Если существует такой $\hat{x} \in \mathbb{R}^n$, что $r(x) < +\infty$, то проксимальный оператор определяется однозначно (т.е. всегда возвращает единственное значение).

Доказательство:

Проксимальный оператор возвращает минимум некоторой задачи оптимизации.

Вопрос: Что можно сказать об этой задаче?

i Theorem

Пусть $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой ргох, определён. Если существует такой $\hat{x} \in \mathbb{R}^n$, что $r(x) < +\infty$, то проксимальный оператор определяется однозначно (т.е. всегда возвращает единственное значение).

Доказательство:

Проксимальный оператор возвращает минимум некоторой задачи оптимизации.

Вопрос: Что можно сказать об этой задаче?

Это сильно выпуклая функция, что означает, что она имеет единственный минимум (существование \hat{x} необходимо для того, чтобы $r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2$ принимало конечное значение).

i Theorem

Пусть $r:\mathbb{R}^n o \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой prox, определен. Тогда, для любых $x,y\in\mathbb{R}^n$, следующие три условия эквивалентны:

• $\operatorname{prox}_r(x) = y$,

Доказательство

i Theorem

Пусть $r:\mathbb{R}^n o \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой prox, определен. Тогда, для любых $x,y\in\mathbb{R}^n$, следующие три условия эквивалентны:

- $\operatorname{prox}_{r}(x) = y$,
- $x y \in \partial r(y)$.

Доказательство

i Theorem

Пусть $r:\mathbb{R}^n o \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой ргох $_r$ определен. Тогда, для любых $x,y\in\mathbb{R}^n$, следующие три условия эквивалентны:

- $\operatorname{prox}_r(x) = y$,
- $x y \in \partial r(y)$.
- $\langle x-y,z-y\rangle \leq r(z)-r(y)$ для любого $z\in\mathbb{R}^n$.

Доказательство

i Theorem

Пусть $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой ргох $_r$ определен. Тогда, для любых $x,y\in\mathbb{R}^n$, следующие три условия эквивалентны:

- prox $_{\mathbf{x}}(x)=y$,
- $x-y\in\partial r(y)$,
 $\langle x-y,z-y\rangle \leq r(z)-r(y)$ для любого $z\in\mathbb{R}^n$.

Доказательство

1. Установим эквивалентность между первым и вторым условиями. Первое условие можно переписать как

$$y = \arg\min_{\tilde{x} \in \mathbb{D}^d} \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|^2 \right).$$

Из условий оптимальности для выпуклой функции r, это эквивалентно:

i Theorem

Пусть $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклая функция, для которой prox_r определен. Тогда, для любых $x,y\in\mathbb{R}^n$, следующие три условия эквивалентны:

- $y \in \mathbb{R}$, следующие три условия эквиваленті \bullet prox $_r(x) = y$,
- $x-y\in\partial r(y)$,
 $\langle x-y,z-y\rangle \leq r(z)-r(y)$ для любого $z\in\mathbb{R}^n$.

Доказательство

1. Установим эквивалентность между первым и вторым условиями. Первое условие можно переписать как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|^2 \right).$$

Из условий оптимальности для выпуклой функции r, это эквивалентно:

$$\langle g,z-y\rangle \leq r(z)-r(y).$$
 В частности, это верно для $g=x-y$. Обрать

2. Из определения субдифференциала, для любого субградиента $q \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

В частности, это верно для g=x-y. Обратно это также очевидно: для g=x-y, вышеуказанное соотношение выполняется, что означает $g\in\partial r(y)$.

i Theorem

Оператор $\operatorname{prox}_r(x)$ является жёстко нерастягивающим (FNE):

$$\|\mathsf{prox}_r(x) - \mathsf{prox}_r(y)\|_2^2 \leq \langle \mathsf{prox}_r(x) - \mathsf{prox}_r(y), x - y \rangle$$

и нерастягивающим:

$$\|\mathsf{prox}_r(x) - \mathsf{prox}_r(y)\|_2 \leq \|x - y\|_2$$

Доказательство

1. Пусть $u=\operatorname{prox}_r(x)$, и $v=\operatorname{prox}_r(y)$. Тогда, из предыдущего свойства:

$$\langle x - u, z_1 - u \rangle \le r(z_1) - r(u)$$
$$\langle y - v, z_2 - v \rangle \le r(z_2) - r(v).$$

1 Theorem

Оператор $\operatorname{prox}_r(x)$ является жёстко нерастягивающим (FNE):

$$\|\mathsf{prox}_r(x) - \mathsf{prox}_r(y)\|_2^2 \leq \langle \mathsf{prox}_r(x) - \mathsf{prox}_r(y), x - y \rangle$$

и нерастягивающим:

$$\|\mathsf{prox}_r(x) - \mathsf{prox}_r(y)\|_2 \leq \|x - y\|_2$$

Доказательство

1. Пусть $u = \operatorname{prox}_{x}(x)$, и $v = \operatorname{prox}_{x}(y)$. Тогда, из предыдущего свойства:

$$\langle x - u, z_1 - u \rangle \le r(z_1) - r(u)$$
$$\langle y - v, z_2 - v \rangle \le r(z_2) - r(v).$$

2. Заменим $z_1 = v$ и $z_2 = u$ и сложим:

$$\langle x - u, v - u \rangle + \langle y - v, u - v \rangle < 0.$$

 $\langle x - y, v - u \rangle + \|v - u\|_2^2 < 0.$

1 Theorem

Оператор $\operatorname{prox}_{\infty}(x)$ является жёстко нерастягивающим (FNE):

$$\|\operatorname{prox}_n(x) - \operatorname{prox}_n(y)\|_2^2 \le \langle \operatorname{prox}_n(x) - \operatorname{prox}_n(y), x - y \rangle$$

v.

3. Что и требовалось доказать после подстановки u и

 $||u-v||_2^2 < \langle x-y, u-v \rangle$

и нерастягивающим:

$$\|\mathrm{prox}_r(x) - \mathrm{prox}_r(y)\|_2 \leq \|x - y\|_2$$

Доказательство

1. Пусть $u = \operatorname{prox}_{x}(x)$, и $v = \operatorname{prox}_{x}(y)$. Тогда, из предыдущего свойства:

$$\langle y-v,z_2-v\rangle \leq r(z_2)-r(v).$$

 $\langle x - u, v - u \rangle + \|v - u\|_2^2 < 0.$

2. Заменим
$$z_1 = v$$
 и $z_2 = u$ и сложим:

 $\langle x - u, v - u \rangle + \langle y - v, u - v \rangle < 0.$

 $\langle x-u, z_1-u\rangle < r(z_1)-r(u)$

1 Theorem

Оператор $\operatorname{prox}_{\infty}(x)$ является жёстко нерастягивающим (FNE):

$$\|\mathsf{prox}_r(x) - \mathsf{prox}_r(y)\|_2^2 \leq \langle \mathsf{prox}_r(x) - \mathsf{prox}_r(y), x - y \rangle$$

и нерастягивающим:

Доказательство 1. Пусть $u = \operatorname{prox}_{x}(x)$, и $v = \operatorname{prox}_{x}(y)$. Тогда, из

 $\langle x-u, z_1-u\rangle < r(z_1)-r(u)$

предыдущего свойства:

 $\langle y-v, z_2-v \rangle < r(z_2)-r(v).$

 $\|\text{prox}_{x}(x) - \text{prox}_{x}(y)\|_{2} \le \|x - y\|_{2}$

v.

3. Что и требовалось доказать после подстановки u и

 $||u-v||_2^2 < \langle x-y, u-v \rangle$

Последнийпункт следует из неравенства

Коши-Буняковского для последнего неравенства.

2. Заменим $z_1 = v$ и $z_2 = u$ и сложим:

 $\langle x - u, v - u \rangle + \langle y - v, u - v \rangle < 0.$

 $\langle x - u, v - u \rangle + \|v - u\|_2^2 < 0.$

 $f \to \min_{x,y,z}$ Составная оптимизация

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ и $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклые функции. Кроме того, пусть f непрерывно дифференцируема и L-гладкая, а для r, prox, определена. Тогда, x^* является решением составной задачи оптимизации тогда и только тогда, когда для любого $\alpha > 0$, выполняется:

$$x^* = \mathrm{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$$

Доказательство

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ и $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклые функции. Кроме того, пусть f непрерывно дифференцируема и L-гладкая, а для r, prox., определена. Тогда, x^* является решением составной задачи оптимизации тогда и только тогда, когда для любого $\alpha > 0$, выполняется:

$$x^* = \mathrm{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$$

Доказательство

$$0\in\!\nabla f(x^*)+\partial r(x^*)$$

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ и $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклые функции. Кроме того, пусть f непрерывно дифференцируема и L-гладкая, а для r, prox., определена. Тогда, x^* является решением составной задачи оптимизации тогда и только тогда, когда для любого $\alpha > 0$, выполняется:

$$x^* = \mathrm{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$$

Доказательство

$$\begin{aligned} 0 \in & \nabla f(x^*) + \partial r(x^*) \\ & - \alpha \nabla f(x^*) \in & \alpha \partial r(x^*) \end{aligned}$$

1 Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ и $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклые функции. Кроме того, пусть f непрерывно дифференцируема и L-гладкая, а для r, prox., определена. Тогда, x^* является решением составной задачи оптимизации тогда и только тогда, когда для любого $\alpha > 0$, выполняется:

$$x^* = \mathrm{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$$

Доказательство

$$\begin{split} 0 \in & \nabla f(x^*) + \partial r(x^*) \\ & - \alpha \nabla f(x^*) \in & \alpha \partial r(x^*) \\ x^* - \alpha \nabla f(x^*) - x^* \in & \alpha \partial r(x^*) \end{split}$$

Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ и $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклые функции. Кроме того, пусть f непрерывно дифференцируема и L-гладкая, а для r, prox., определена. Тогда, x^* является решением составной задачи оптимизации тогда и только тогда, когда для любого $\alpha > 0$, выполняется:

$$x^* = \mathrm{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$$

Доказательство

1. Условия оптимальности:

$$\begin{split} 0 \in & \nabla f(x^*) + \partial r(x^*) \\ & - \alpha \nabla f(x^*) \in & \alpha \partial r(x^*) \\ x^* - \alpha \nabla f(x^*) - x^* \in & \alpha \partial r(x^*) \end{split}$$

2. Возвратимся к предыдущей лемме:

$$\mathsf{prox}_r(x) = y \Leftrightarrow x - y \in \partial r(y)$$

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ и $r:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ — выпуклые функции. Кроме того, пусть f непрерывно дифференцируема и L-гладкая, а для r, prox $_r$ определена. Тогда, x^* является решением составной задачи оптимизации тогда и только тогда, когда для любого $\alpha>0$, выполняется:

$$x^* = \mathrm{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$$

Доказательство

1. Условия оптимальности:

$$\begin{split} 0 \in & \nabla f(x^*) + \partial r(x^*) \\ & - \alpha \nabla f(x^*) \in & \alpha \partial r(x^*) \\ x^* - \alpha \nabla f(x^*) - x^* \in & \alpha \partial r(x^*) \end{split}$$

2. Возвратимся к предыдущей лемме:

$$\mathsf{prox}_r(x) = y \Leftrightarrow x - y \in \partial r(y)$$

3. Наконец.

$$x^* = \operatorname{prox}_{\alpha r}(x^* - \alpha \nabla f(x^*)) = \operatorname{prox}_{r,\alpha}(x^* - \alpha \nabla f(x^*))$$

Теоретические инструменты для анализа сходимости

i Theorem

Пусть $f:\mathbb{R}^n o\mathbb{R}$ — L-гладкая выпуклая функция. Тогда, для любых $x,y\in\mathbb{R}^n$, выполняется неравенство:

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 & \leq f(y) \text{ или, эквивалентно,} \\ \|\nabla f(y) - \nabla f(x)\|_2^2 = & \|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

Доказательство.

1. Рассмотрим другую функцию $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$. Очевидно, это выпуклая функция (как сумма выпуклых функций). И легко проверить, что она является L-гладкой функцией по определению, так как $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) \text{ is } \|\nabla \varphi(y_1) - \nabla \varphi(y_2)\| = \|\nabla f(y_1) - \nabla f(y_2)\| \le L\|y_1 - y_2\|.$

Анализ сходимости 💎 💎 💎

i Theorem

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — L-гладкая выпуклая функция. Тогда, для любых $x,y\in\mathbb{R}^n$, выполняется неравенство:

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 & \leq f(y) \text{ или, эквивалентно,} \\ \|\nabla f(y) - \nabla f(x)\|_2^2 = & \|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

- 1. Рассмотрим другую функцию $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. Очевидно, это выпуклая функция (как сумма выпуклых функций). И легко проверить, что она является L-гладкой функцией по определению, так как $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) \text{ is } \|\nabla \varphi(y_1) - \nabla \varphi(y_2)\| = \|\nabla f(y_1) - \nabla f(y_2)\| \leq L\|y_1 - y_2\|.$
- 2. Теперь рассмотрим свойство гладкости параболы для функции $\varphi(y)$:

i Theorem

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — L-гладкая выпуклая функция. Тогда, для любых $x,y\in\mathbb{R}^n$, выполняется неравенство:

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 & \leq f(y) \text{ или, эквивалентно,} \\ \|\nabla f(y) - \nabla f(x)\|_2^2 = & \|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

- 1. Рассмотрим другую функцию $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. Очевидно, это выпуклая функция (как сумма выпуклых функций). И легко проверить, что она является L-гладкой функцией по определению, так как $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) \text{ in } \|\nabla \varphi(y_1) - \nabla \varphi(y_2)\| = \|\nabla f(y_1) - \nabla f(y_2)\| \le L\|y_1 - y_2\|.$
- 2. Теперь рассмотрим свойство гладкости параболы для функции $\varphi(y)$:

$$\varphi(y) \le \varphi(x) + \langle \nabla \varphi(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2$$

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ — L-гладкая выпуклая функция. Тогда, для любых $x,y \in \mathbb{R}^n$, выполняется неравенство:

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \leq f(y) \text{ или, эквивалентно,}$$

$$\|\nabla f(y) - \nabla f(x)\|_2^2 = \|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle\right)$$

- 1. Рассмотрим другую функцию $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. Очевидно, это выпуклая функция (как сумма выпуклых функций). И легко проверить, что она является L-гладкой функцией по определению, так как $\nabla \varphi(y) = \nabla f(y) \nabla f(x)$ и $\|\nabla \varphi(y_1) \nabla \varphi(y_2)\| = \|\nabla f(y_1) \nabla f(y_2)\| \le L\|y_1 y_2\|$.
- 2. Теперь рассмотрим свойство гладкости параболы для функции $\varphi(y)$:

$$\begin{split} \varphi(y) & \leq \varphi(x) + \langle \nabla \varphi(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2 \\ & x = y, y = y - \frac{1}{L} \nabla \varphi(y) \quad \varphi\left(y - \frac{1}{L} \nabla \varphi(y)\right) \leq \varphi(y) + \left\langle \nabla \varphi(y), -\frac{1}{L} \nabla \varphi(y) \right\rangle + \frac{1}{2L} \|\nabla \varphi(y)\|_2^2 \end{split}$$

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ — L-гладкая выпуклая функция. Тогда, для любых $x,y\in\mathbb{R}^n$, выполняется неравенство:

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \leq f(y) \text{ или, эквивалентно,}$$

$$\|\nabla f(y) - \nabla f(x)\|_2^2 = \|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle\right)$$

- 1. Рассмотрим другую функцию $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. Очевидно, это выпуклая функция (как сумма выпуклых функций). И легко проверить, что она является L-гладкой функцией по определению, так как $\nabla \varphi(y) = \nabla f(y) \nabla f(x)$ и $\|\nabla \varphi(y_1) \nabla \varphi(y_2)\| = \|\nabla f(y_1) \nabla f(y_2)\| \le L\|y_1 y_2\|$.
- 2. Теперь рассмотрим свойство гладкости параболы для функции $\varphi(y)$:

$$\varphi(y) \leq \varphi(x) + \langle \nabla \varphi(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2$$

$$x = y, y = y - \frac{1}{L} \nabla \varphi(y) \quad \varphi\left(y - \frac{1}{L} \nabla \varphi(y)\right) \leq \varphi(y) + \left\langle \nabla \varphi(y), -\frac{1}{L} \nabla \varphi(y) \right\rangle + \frac{1}{2L} \|\nabla \varphi(y)\|_2^2$$

3. Из условий первого порядка для выпуклой функции $abla \varphi(y) =
abla f(y) -
abla f(x) = 0$, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

3. Из условий первого порядка для выпуклой функции abla arphi(y) =
abla f(y) -
abla f(x) = 0, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

3. Из условий первого порядка для выпуклой функции $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

$$f(x) - \langle \nabla f(x), x \rangle \leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2I} \|\nabla f(y) - \nabla f(x)\|_2^2$$

3. Из условий первого порядка для выпуклой функции $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

$$\begin{split} f(x) - \langle \nabla f(x), x \rangle &\leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 &\leq f(y) \end{split}$$

Анализ сходимости 💎 💎 💎

3. Из условий первого порядка для выпуклой функции $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

$$\begin{split} &f(x) - \langle \nabla f(x), x \rangle \leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ &f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq f(y) \\ &\| \nabla f(y) - \nabla f(x) \|_2^2 \leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right) \end{split}$$

3. Из условий первого порядка для выпуклой функции $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

4. Теперь, подставим $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$:

$$\begin{split} &f(x) - \langle \nabla f(x), x \rangle \leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ &f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq f(y) \\ &\| \nabla f(y) - \nabla f(x) \|_2^2 \leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right) \\ &\| \nabla f(x) - \nabla f(y) \|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

поменять местами х и у $\|\nabla f(x) - \nabla f(y)\|_2^2 < 2L\left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle\right)$

3. Из условий первого порядка для выпуклой функции $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

4. Теперь, подставим $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$:

$$\begin{split} &f(x) - \langle \nabla f(x), x \rangle \leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ &f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq f(y) \\ &\| \nabla f(y) - \nabla f(x) \|_2^2 \leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right) \\ &\| \nabla f(x) - \nabla f(y) \|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

поменять местами х и у $\|\nabla f(x) - \nabla f(y)\|_2^2 < 2L\left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle\right)$

3. Из условий первого порядка для выпуклой функции abla arphi(y) =
abla f(y) -
abla f(x) = 0, мы можем заключить, что для любого x, минимум функции $\varphi(y)$ находится в точке y=x. Следовательно:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

4. Теперь, подставим $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$:

$$f(x) - \langle \nabla f(x), x \rangle \leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|_2^2$$

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \leq f(y)$$

$$\|\nabla f(y) - \nabla f(x)\|_2^2 \leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle\right)$$
 поменять местами х и у
$$\|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle\right)$$

Лемма доказана. С первого взгляда она не имеет большого геометрического смысла, но мы будем использовать ее как удобный инструмент для оценки разницы между градиентами.

i Theorem

Пусть $f:\mathbb{R}^n o\mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^n . Тогда, функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y \in \mathbb{R}^d$ выполняется следующее:

$$\begin{split} \text{Strongly convex case } \mu > 0 \quad & \langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \mu \|x - y\|^2 \\ \text{Convex case } \mu = 0 \quad & \langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0 \end{split}$$

Доказательство

1. Мы докажем только случай сильной выпуклости, случай выпуклости следует из него с установкой $\mu=0$. Начнем с необходимости. Для сильно выпуклой функции

$$\begin{split} f(y) &\geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|x - y\|_2^2 \\ f(x) &\geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2 \\ \text{sum } & \langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \mu \|x - y\|^2 \end{split}$$

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle = \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle$$

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \end{split}$$

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \end{split}$$

Анализ сходимости 🔷 🔷 🔷

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt \end{split}$$

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt = \mu \|x - y\|^2 \int_0^1 t dt \end{split}$$

Анализ сходимости 🔷 🔷 🔷

2. Для достаточности мы предполагаем, что $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Используя теорему Ньютона-Лейбница $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ y + t(x - y) - y = t(x - y) \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt = \mu \|x - y\|^2 \int_0^1 t dt = \frac{\mu}{2} \|x - y\|_2^2 \end{split}$$

Таким образом, мы получаем критерий сильной выпуклости, удовлетворяющий

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2$$

2. Для достаточности мы предполагаем, что $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Используя теорему Ньютона-Лейбница $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ y + t(x - y) - y = t(x - y) \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt = \mu \|x - y\|^2 \int_0^1 t dt = \frac{\mu}{2} \|x - y\|_2^2 \end{split}$$

Таким образом, мы получаем критерий сильной выпуклости, удовлетворяющий

$$f(x) \geq f(y) + \langle
abla f(y), x-y \rangle + rac{\mu}{2} \|x-y\|_2^2$$
 или, эквивалентно:

Анализ сходимости 🔷 🔷 🔷

2. Для достаточности мы предполагаем, что $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \mu \|x - y\|^2$. Используя теорему Ньютона-Лейбница $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

Таким образом, мы получаем критерий сильной выпуклости, удовлетворяющий

$$f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2$$
 или, эквивалентно:

поменять местами x и y
$$-\langle \nabla f(x), x-y \rangle \leq -\left(f(x)-f(y)+rac{\mu}{2}\|x-y\|_2^2
ight)$$

Проксимальный метод градиента. Выпуклый случай

Сходимость

i Theorem

Рассмотрим проксимальный метод градиента

$$x_{k+1} = \operatorname{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right)$$

Для критерия $\varphi(x) = f(x) + r(x)$, мы предполагаем:

- ullet f выпукла, дифференцируема, $\mathsf{dom}(f) = \mathbb{R}^n$, и abla f является липшицевой с константой L > 0.
- ullet r выпукла, и $\mathrm{prox}_{lpha r}(x_k) = \arg\min_{x\in\mathbb{R}^n} \left[lpha r(x) + rac{1}{2} \|x-x_k\|_2^2
 ight]$ может быть вычислен.

Проксимальный градиентный спуск с фиксированным шагом $\alpha=1/L$ удовлетворяет

$$\varphi(x_k) - \varphi^* \leq \frac{L\|x_0 - x^*\|^2}{2k},$$

Проксимальный градиентный спуск имеет скорость сходимости O(1/k) или $O(1/\varepsilon)$. Это соответствует скорости градиентного спуска! (Но помните о стоимости проксимальной операции)

Доказательство

1. Введем градиентное отображение, обозначаемое как $G_{lpha}(x)$, действующее как "градиентный объект":

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r}(x_k - \alpha \nabla f(x_k)) \\ x_{k+1} &= x_k - \alpha G_{\alpha}(x_k). \end{split}$$

где $G_{\alpha}(x)$ является:

$$G_{\alpha}(x) = \frac{1}{\alpha} \left(x - \operatorname{prox}_{\alpha r} \left(x - \alpha \nabla f \left(x \right) \right) \right)$$

Очевидно, что $G_{lpha}(x)=0$ тогда и только тогда, когда x оптимален. Следовательно, G_{lpha} аналогичен abla fЕсли x локально оптимален, то $G_{\alpha}(x)=0$ даже для невыпуклой f. Это демонстрирует, что проксимальный градиентный метод эффективно объединяет градиентный спуск на f с проксимальным оператором r, позволяя ему эффективно обрабатывать недифференцируемые компоненты.

Доказательство

1. Введем градиентное отображение, обозначаемое как $G_{lpha}(x)$, действующее как "градиентный объект":

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r}(x_k - \alpha \nabla f(x_k)) \\ x_{k+1} &= x_k - \alpha G_{\alpha}(x_k). \end{split}$$

где $G_{\alpha}(x)$ является:

$$G_{\alpha}(x) = \frac{1}{\alpha} \left(x - \operatorname{prox}_{\alpha r} \left(x - \alpha \nabla f \left(x \right) \right) \right)$$

Очевидно, что $G_{lpha}(x)=0$ тогда и только тогда, когда x оптимален. Следовательно, G_{lpha} аналогичен abla fЕсли x локально оптимален, то $G_{\alpha}(x)=0$ даже для невыпуклой f. Это демонстрирует, что проксимальный градиентный метод эффективно объединяет градиентный спуск на f с проксимальным оператором r, позволяя ему эффективно обрабатывать недифференцируемые компоненты.

2. Мы будем использовать гладкость и выпуклость f для некоторой произвольной точки x:

Доказательство

1. Введем градиентное отображение, обозначаемое как $G_{\alpha}(x)$, действующее как "градиентный объект":

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r}(x_k - \alpha \nabla f(x_k)) \\ x_{k+1} &= x_k - \alpha G_{\alpha}(x_k). \end{split}$$

где $G_{\alpha}(x)$ является:

$$G_{\alpha}(x) = \frac{1}{\alpha} \left(x - \operatorname{prox}_{\alpha r} \left(x - \alpha \nabla f \left(x \right) \right) \right)$$

Очевидно, что $G_{lpha}(x)=0$ тогда и только тогда, когда x оптимален. Следовательно, G_{lpha} аналогичен abla f. Если x локально оптимален, то $G_{\alpha}(x)=0$ даже для невыпуклой f. Это демонстрирует, что проксимальный градиентный метод эффективно объединяет градиентный спуск на f с проксимальным оператором r, позволяя ему эффективно обрабатывать недифференцируемые компоненты.

2. Мы будем использовать гладкость и выпуклость f для некоторой произвольной точки x:

гладкость
$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|_2^2$$

Доказательство

1. Введем градиентное отображение, обозначаемое как $G_{\alpha}(x)$, действующее как "градиентный объект":

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r}(x_k - \alpha \nabla f(x_k)) \\ x_{k+1} &= x_k - \alpha G_{\alpha}(x_k). \end{split}$$

где $G_{\alpha}(x)$ является:

$$G_{\alpha}(x) = \frac{1}{\alpha} \left(x - \operatorname{prox}_{\alpha r} \left(x - \alpha \nabla f \left(x \right) \right) \right)$$

Очевидно, что $G_{lpha}(x)=0$ тогда и только тогда, когда x оптимален. Следовательно, G_{lpha} аналогичен abla f. Если x локально оптимален, то $G_{\alpha}(x)=0$ даже для невыпуклой f. Это демонстрирует, что проксимальный градиентный метод эффективно объединяет градиентный спуск на f с проксимальным оператором r, позволяя ему эффективно обрабатывать недифференцируемые компоненты.

2. Мы будем использовать гладкость и выпуклость f для некоторой произвольной точки x:

гладкость
$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|_2^2$$

выпуклость $f(x) > f(x_h) + \langle \nabla f(x_h), x - x_h \rangle$

Доказательство

1. Введем градиентное отображение, обозначаемое как $G_{lpha}(x)$, действующее как "градиентный объект":

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r}(x_k - \alpha \nabla f(x_k)) \\ x_{k+1} &= x_k - \alpha G_{\alpha}(x_k). \end{split}$$

где $G_{\alpha}(x)$ является:

$$G_{\alpha}(x) = \frac{1}{\alpha} \left(x - \operatorname{prox}_{\alpha r} \left(x - \alpha \nabla f \left(x \right) \right) \right)$$

Очевидно, что $G_{lpha}(x)=0$ тогда и только тогда, когда x оптимален. Следовательно, G_{lpha} аналогичен abla fЕсли x локально оптимален, то $G_{\alpha}(x)=0$ даже для невыпуклой f. Это демонстрирует, что проксимальный градиентный метод эффективно объединяет градиентный спуск на f с проксимальным оператором r, позволяя ему эффективно обрабатывать недифференцируемые компоненты.

2. Мы будем использовать гладкость и выпуклость f для некоторой произвольной точки x:

гладкость
$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|_2^2$$

выпуклость
$$f(x) \geq f(x_k) + \langle \nabla f(x_k), x - x_k \rangle$$
 $\leq f(x) - \langle \nabla f(x_k), x - x_k \rangle + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{\alpha^2 L}{2} \|G_{\alpha}(x_k)\|_2^2$

Доказательство

1. Введем градиентное отображение, обозначаемое как $G_{\alpha}(x)$, действующее как "градиентный объект":

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r}(x_k - \alpha \nabla f(x_k)) \\ x_{k+1} &= x_k - \alpha G_{\alpha}(x_k). \end{split}$$

где $G_{\alpha}(x)$ является:

$$G_{lpha}(x)=rac{1}{lpha}\left(x-\mathsf{prox}_{lpha r}\left(x-lpha
abla f(x)
ight)
ight)$$
и только тогла, когла x оптимален. Следовательно, G , аналогичен $abla f$

Очевидно, что $G_{lpha}(x)=0$ тогда и только тогда, когда x оптимален. Следовательно, G_{lpha} аналогичен abla fЕсли x локально оптимален, то $G_{\alpha}(x)=0$ даже для невыпуклой f. Это демонстрирует, что проксимальный градиентный метод эффективно объединяет градиентный спуск на f с проксимальным оператором r, позволяя ему эффективно обрабатывать недифференцируемые компоненты.

2. Мы будем использовать гладкость и выпуклость f для некоторой произвольной точки x:

гладкость
$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|_2^2$$

$$\text{ выпуклость } f(x) \geq f(x_k) + \langle \nabla f(x_k), x - x_k \rangle \\ \leq f(x) - \langle \nabla f(x_k), x - x_k \rangle + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2$$

 $\leq f(x) + \langle \nabla f(x_k), x_{k+1} - x \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

Анализ сходимости 🔷 🗘 💎 💎

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$x_{k+1} = \mathsf{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) \qquad \Leftrightarrow \qquad x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1})$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{aligned} x_{k+1} &= \mathsf{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \mathsf{Так} \ \mathsf{как} \ x_{k+1} - x_k &= -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \end{aligned}$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{aligned} x_{k+1} &= \mathsf{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \mathsf{Так} \ \mathsf{как} \ x_{k+1} - x_k &= -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{aligned}$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{array}{lll} x_{k+1} = \operatorname{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \text{Так как } x_{k+1} - x_k = -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{array}$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{array}{lll} x_{k+1} = \operatorname{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \operatorname{Так \ kak} \ x_{k+1} - x_k = -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{array}$$

$$r(x) \geq r(x_{k+1}) + \langle g, x - x_{k+1} \rangle, \quad g \in \partial r(x_{k+1})$$

подставить конкретный субградиент

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{array}{lll} x_{k+1} = \operatorname{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \operatorname{Так \ kak} \ x_{k+1} - x_k = -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{array}$$

$$\begin{split} r(x) &\geq r(x_{k+1}) + \langle g, x - x_{k+1} \rangle, \quad g \in \partial r(x_{k+1}) \\ r(x) &\geq r(x_{k+1}) + \langle G_{\alpha}(x_k) - \nabla f(x), x - x_{k+1} \rangle \end{split}$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{array}{lll} x_{k+1} = \operatorname{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \operatorname{Так \ kak} \ x_{k+1} - x_k = -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{array}$$

$$r(x) \geq r(x_{k+1}) + \langle g, x-x_{k+1}\rangle, \quad g \in \partial r(x_{k+1})$$
 подставить конкретный субградиент
$$r(x) \geq r(x_{k+1}) + \langle G_\alpha(x_k) - \nabla f(x), x-x_{k+1}\rangle$$

$$r(x) \geq r(x_{k+1}) + \langle G_\alpha(x_k), x-x_{k+1}\rangle - \langle \nabla f(x), x-x_{k+1}\rangle$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{array}{lll} x_{k+1} = \operatorname{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \text{Так как } x_{k+1} - x_k = -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{array}$$

$$r(x) \geq r(x_{k+1}) + \langle g, x - x_{k+1} \rangle, \quad g \in \partial r(x_{k+1})$$
 подставить конкретный субградиент
$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k) - \nabla f(x), x - x_{k+1} \rangle$$

$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k), x - x_{k+1} \rangle - \langle \nabla f(x), x - x_{k+1} \rangle$$

$$\langle \nabla f(x), x_{k+1} - x \rangle \leq r(x) - r(x_{k+1}) - \langle G_{\alpha}(x_k), x - x_{k+1} \rangle$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \mathsf{Так} \ \mathsf{как} \ x_{k+1} - x_k &= -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{split}$$

4. Из определения субградиента выпуклой функции r для любой точки x:

$$r(x) \geq r(x_{k+1}) + \langle g, x-x_{k+1} \rangle, \quad g \in \partial r(x_{k+1})$$
 подставить конкретный субградиент
$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k) - \nabla f(x), x-x_{k+1} \rangle$$

$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k), x-x_{k+1} \rangle - \langle \nabla f(x), x-x_{k+1} \rangle$$

$$\langle \nabla f(x), x_{k+1} - x \rangle \leq r(x) - r(x_{k+1}) - \langle G_{\alpha}(x_k), x-x_{k+1} \rangle$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \mathsf{Так} \ \mathsf{как} \ x_{k+1} - x_k &= -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{split}$$

4. Из определения субградиента выпуклой функции r для любой точки x:

$$r(x) \geq r(x_{k+1}) + \langle g, x-x_{k+1} \rangle, \quad g \in \partial r(x_{k+1})$$
 подставить конкретный субградиент
$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k) - \nabla f(x), x-x_{k+1} \rangle$$

$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k), x-x_{k+1} \rangle - \langle \nabla f(x), x-x_{k+1} \rangle$$

$$\langle \nabla f(x), x_{k+1} - x \rangle \leq r(x) - r(x_{k+1}) - \langle G_{\alpha}(x_k), x-x_{k+1} \rangle$$

$$f(x_{k+1}) \leq f(x) + \langle \nabla f(x_k), x_{k+1} - x \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2$$

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{split} x_{k+1} &= \mathsf{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \mathsf{Так} \ \mathsf{как} \ x_{k+1} - x_k &= -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{split}$$

4. Из определения субградиента выпуклой функции r для любой точки x:

$$r(x) \geq r(x_{k+1}) + \langle g, x-x_{k+1} \rangle, \quad g \in \partial r(x_{k+1})$$
 подставить конкретный субградиент
$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k) - \nabla f(x), x-x_{k+1} \rangle$$

$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k), x-x_{k+1} \rangle - \langle \nabla f(x), x-x_{k+1} \rangle$$

$$\langle \nabla f(x), x_{k+1} - x \rangle \leq r(x) - r(x_{k+1}) - \langle G_{\alpha}(x_k), x-x_{k+1} \rangle$$

$$\begin{split} f(x_{k+1}) & \leq f(x) + \langle \nabla f(x_k), x_{k+1} - x \rangle + \frac{\alpha^2 L}{2} \|G_{\alpha}(x_k)\|_2^2 \\ f(x_{k+1}) & \leq f(x) + r(x) - r(x_{k+1}) - \langle G_{\alpha}(x_k), x - x_{k+1} \rangle + \frac{\alpha^2 L}{2} \|G_{\alpha}(x_k)\|_2^2 \end{split}$$

Анализ сходимости 🔷 🏶 💎 💎

3. Теперь мы будем использовать свойство проксимального оператора, которое было доказано ранее:

$$\begin{aligned} x_{k+1} &= \mathsf{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right) & \Leftrightarrow & x_k - \alpha \nabla f(x_k) - x_{k+1} \in \partial \alpha r(x_{k+1}) \\ \mathsf{Так} \ \mathsf{как} \ x_{k+1} - x_k &= -\alpha G_\alpha(x_k) & \Rightarrow & \alpha G_\alpha(x_k) - \alpha \nabla f(x_k) \in \partial \alpha r(x_{k+1}) \\ & G_\alpha(x_k) - \nabla f(x_k) \in \partial r(x_{k+1}) \end{aligned}$$

4. Из определения субградиента выпуклой функции r для любой точки x:

$$r(x) \geq r(x_{k+1}) + \langle g, x - x_{k+1} \rangle, \quad g \in \partial r(x_{k+1})$$
 подставить конкретный субградиент
$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k) - \nabla f(x), x - x_{k+1} \rangle$$

$$r(x) \geq r(x_{k+1}) + \langle G_{\alpha}(x_k), x - x_{k+1} \rangle - \langle \nabla f(x), x - x_{k+1} \rangle$$

$$\langle \nabla f(x), x_{k+1} - x \rangle \leq r(x) - r(x_{k+1}) - \langle G_{\alpha}(x_k), x - x_{k+1} \rangle$$

$$\begin{split} f(x_{k+1}) & \leq f(x) + \langle \nabla f(x_k), x_{k+1} - x \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2 \\ f(x_{k+1}) & \leq f(x) + r(x) - r(x_{k+1}) - \langle G_\alpha(x_k), x - x_{k+1} \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2 \\ f(x_{k+1}) + r(x_{k+1}) & \leq f(x) + r(x) - \langle G_\alpha(x_k), x - x_k + \alpha G_\alpha(x_k) \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2 \end{split}$$

$$\varphi(x_{k+1}) \leq \varphi(x) - \langle G_\alpha(x_k), x - x_k \rangle - \langle G_\alpha(x_k), \alpha G_\alpha(x_k) \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2$$

$$\begin{split} & \varphi(x_{k+1}) \leq \varphi(x) - \langle G_{\alpha}(x_k), x - x_k \rangle - \langle G_{\alpha}(x_k), \alpha G_{\alpha}(x_k) \rangle + \frac{\alpha^2 L}{2} \|G_{\alpha}(x_k)\|_2^2 \\ & \varphi(x_{k+1}) \leq \varphi(x) + \langle G_{\alpha}(x_k), x_k - x \rangle + \frac{\alpha}{2} \left(\alpha L - 2\right) \|G_{\alpha}(x_k)\|_2^2 \end{split}$$

$$\begin{split} & \varphi(x_{k+1}) \leq \varphi(x) - \langle G_{\alpha}(x_k), x - x_k \rangle - \langle G_{\alpha}(x_k), \alpha G_{\alpha}(x_k) \rangle + \frac{\alpha^2 L}{2} \|G_{\alpha}(x_k)\|_2^2 \\ & \varphi(x_{k+1}) \leq \varphi(x) + \langle G_{\alpha}(x_k), x_k - x \rangle + \frac{\alpha}{2} \left(\alpha L - 2\right) \|G_{\alpha}(x_k)\|_2^2 \end{split}$$

$$\alpha \! \leq \! \frac{1}{L} \! \Rightarrow \! \frac{\alpha}{2} \left(\alpha L \! - \! 2 \right) \! \leq \! - \frac{\alpha}{2}$$

6. Используя $\varphi(x) = f(x) + r(x)$ мы можем доказать очень полезное неравенство, которое позволит нам продемонстрировать монотонное убывание итерации:

$$\begin{split} \varphi(x_{k+1}) & \leq \varphi(x) - \langle G_\alpha(x_k), x - x_k \rangle - \langle G_\alpha(x_k), \alpha G_\alpha(x_k) \rangle + \frac{\alpha^2 L}{2} \|G_\alpha(x_k)\|_2^2 \\ & \qquad \qquad \varphi(x_{k+1}) \leq \varphi(x) + \langle G_\alpha(x_k), x_k - x \rangle + \frac{\alpha}{2} \left(\alpha L - 2\right) \|G_\alpha(x_k)\|_2^2 \\ & \qquad \qquad \alpha \leq \frac{1}{L} \Rightarrow \frac{\alpha}{2} (\alpha L - 2) \leq -\frac{\alpha}{2} \\ & \qquad \qquad \varphi(x_{k+1}) \leq \varphi(x) + \langle G_\alpha(x_k), x_k - x \rangle - \frac{\alpha}{2} \|G_\alpha(x_k)\|_2^2 \end{split}$$

7. Теперь легко проверить, что когда $x = x_k$ мы получаем монотонное убывание для проксимального градиентного метода:

$$\varphi(x_{k+1}) \leq \varphi(x_k) - \frac{\alpha}{2} \|G_\alpha(x_k)\|_2^2$$

$$\varphi(x_{k+1}) \leq \varphi(x^*) + \langle G_\alpha(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_\alpha(x_k)\|_2^2$$

Анализ сходимости 🔷 🏶 🗣 💎

$$\begin{split} \varphi(x_{k+1}) &\leq \varphi(x^*) + \langle G_\alpha(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_\alpha(x_k)\|_2^2 \\ \varphi(x_{k+1}) - \varphi(x^*) &\leq \langle G_\alpha(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_\alpha(x_k)\|_2^2 \end{split}$$

Анализ сходимости 🔷 🏶 🖤

$$\begin{split} \varphi(x_{k+1}) &\leq \varphi(x^*) + \langle G_\alpha(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_\alpha(x_k)\|_2^2 \\ \varphi(x_{k+1}) - \varphi(x^*) &\leq \langle G_\alpha(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_\alpha(x_k)\|_2^2 \\ &\leq \frac{1}{2\alpha} \left[2 \langle \alpha G_\alpha(x_k), x_k - x^* \rangle - \|\alpha G_\alpha(x_k)\|_2^2 \right] \end{split}$$

$$\begin{split} \varphi(x_{k+1}) & \leq \varphi(x^*) + \langle G_{\alpha}(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_{\alpha}(x_k)\|_2^2 \\ \varphi(x_{k+1}) - \varphi(x^*) & \leq \langle G_{\alpha}(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_{\alpha}(x_k)\|_2^2 \\ & \leq \frac{1}{2\alpha} \left[2 \langle \alpha G_{\alpha}(x_k), x_k - x^* \rangle - \|\alpha G_{\alpha}(x_k)\|_2^2 \right] \\ & \leq \frac{1}{2\alpha} \left[2 \langle \alpha G_{\alpha}(x_k), x_k - x^* \rangle - \|\alpha G_{\alpha}(x_k)\|_2^2 - \|x_k - x^*\|_2^2 + \|x_k - x^*\|_2^2 \right] \end{split}$$

$$\begin{split} \varphi(x_{k+1}) &\leq \varphi(x^*) + \langle G_{\alpha}(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_{\alpha}(x_k)\|_2^2 \\ \varphi(x_{k+1}) - \varphi(x^*) &\leq \langle G_{\alpha}(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_{\alpha}(x_k)\|_2^2 \\ &\leq \frac{1}{2\alpha} \left[2 \langle \alpha G_{\alpha}(x_k), x_k - x^* \rangle - \|\alpha G_{\alpha}(x_k)\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \left[2 \langle \alpha G_{\alpha}(x_k), x_k - x^* \rangle - \|\alpha G_{\alpha}(x_k)\|_2^2 - \|x_k - x^*\|_2^2 + \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \left[- \|x_k - x^* - \alpha G_{\alpha}(x_k)\|_2^2 + \|x_k - x^*\|_2^2 \right] \end{split}$$

$$\begin{split} \varphi(x_{k+1}) &\leq \varphi(x^*) + \langle G_{\alpha}(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_{\alpha}(x_k)\|_2^2 \\ \varphi(x_{k+1}) - \varphi(x^*) &\leq \langle G_{\alpha}(x_k), x_k - x^* \rangle - \frac{\alpha}{2} \|G_{\alpha}(x_k)\|_2^2 \\ &\leq \frac{1}{2\alpha} \left[2 \langle \alpha G_{\alpha}(x_k), x_k - x^* \rangle - \|\alpha G_{\alpha}(x_k)\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \left[2 \langle \alpha G_{\alpha}(x_k), x_k - x^* \rangle - \|\alpha G_{\alpha}(x_k)\|_2^2 - \|x_k - x^*\|_2^2 + \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \left[-\|x_k - x^* - \alpha G_{\alpha}(x_k)\|_2^2 + \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \left[\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2 \right] \end{split}$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in 0, k-1$ и суммируем их:

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in [0, k-1]$ и суммируем их:

$$\sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] \leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right]$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in [0, k-1]$ и суммируем их:

$$\begin{split} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] &\leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \|x_0 - x^*\|_2^2 \end{split}$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in [0, k-1]$ и суммируем их:

$$\begin{split} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] &\leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \|x_0 - x^*\|_2^2 \end{split}$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in [0, k-1]$ и суммируем их:

$$\begin{split} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] &\leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \|x_0 - x^*\|_2^2 \end{split}$$

$$\sum_{i=0}^{k-1}\varphi(x_k)=k\varphi(x_k)\leq \sum_{i=0}^{k-1}\varphi(x_{i+1})$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in [0, k-1]$ и суммируем их:

$$\begin{split} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] &\leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \|x_0 - x^*\|_2^2 \end{split}$$

$$\begin{split} \sum_{i=0}^{k-1} \varphi(x_k) &= k \varphi(x_k) \leq \sum_{i=0}^{k-1} \varphi(x_{i+1}) \\ \varphi(x_k) &\leq \frac{1}{k} \sum_{i=0}^{k-1} \varphi(x_{i+1}) \end{split}$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in {0, k-1}$ и суммируем их:

$$\begin{split} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] &\leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \|x_0 - x^*\|_2^2 \end{split}$$

$$\begin{split} \sum_{i=0}^{k-1} \varphi(x_k) &= k \varphi(x_k) \leq \sum_{i=0}^{k-1} \varphi(x_{i+1}) \\ \varphi(x_k) &\leq \frac{1}{k} \sum_{i=0}^{k-1} \varphi(x_{i+1}) \\ \varphi(x_k) - \varphi(x^*) &\leq \frac{1}{k} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] \leq \frac{\|x_0 - x^*\|_2^2}{2\alpha k} \end{split}$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in {0, k-1}$ и суммируем их:

$$\begin{split} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] &\leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \|x_0 - x^*\|_2^2 \end{split}$$

$$\begin{split} \sum_{i=0}^{k-1} \varphi(x_k) &= k \varphi(x_k) \leq \sum_{i=0}^{k-1} \varphi(x_{i+1}) \\ \varphi(x_k) &\leq \frac{1}{k} \sum_{i=0}^{k-1} \varphi(x_{i+1}) \\ \varphi(x_k) - \varphi(x^*) &\leq \frac{1}{k} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] \leq \frac{\|x_0 - x^*\|_2^2}{2\alpha k} \end{split}$$

9. Теперь мы запишем приведенное выше ограничение для всех итераций $i \in 0, k-1$ и суммируем их:

$$\begin{split} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] &\leq \frac{1}{2\alpha} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \\ &\leq \frac{1}{2\alpha} \|x_0 - x^*\|_2^2 \end{split}$$

10. Поскольку $\varphi(x_k)$ является убывающей последовательностью, то:

$$\begin{split} \sum_{i=0}^{k-1} \varphi(x_k) &= k \varphi(x_k) \leq \sum_{i=0}^{k-1} \varphi(x_{i+1}) \\ \varphi(x_k) &\leq \frac{1}{k} \sum_{i=0}^{k-1} \varphi(x_{i+1}) \\ \varphi(x_k) - \varphi(x^*) &\leq \frac{1}{k} \sum_{i=0}^{k-1} \left[\varphi(x_{i+1}) - \varphi(x^*) \right] \leq \frac{\|x_0 - x^*\|_2^2}{2\alpha k} \end{split}$$

Что является стандартной оценкой $\frac{L\|x_0-x^*\|_2^2}{2k}$ с $\alpha=\frac{1}{L}$, или, скоростью $\mathcal{O}\left(\frac{1}{k}\right)$ для гладких выпуклых задач с градиентным спуском!

Проксимальный градиентный метод. Сильно выпуклый случай

Сходимость

i Theorem

Рассмотрим проксимальный градиентный метод

$$x_{k+1} = \operatorname{prox}_{\alpha r} \left(x_k - \alpha \nabla f(x_k) \right)$$

Для критерия $\varphi(x) = f(x) + r(x)$, мы предполагаем:

- ullet f является μ -сильно выпуклой, дифференцируемой, $\mathsf{dom}(f) = \mathbb{R}^n$, и abla f является липшицевой с константой L>0.
- ullet r выпукла, и $\mathrm{prox}_{lpha r}(x_k) = \arg\min_{x\in\mathbb{D}^n} \left[lpha r(x) + rac{1}{2} \|x-x_k\|_2^2
 ight]$ может быть вычислен.

Проксимальный градиентный спуск с фиксированным шагом $\alpha \leq 1/L$ удовлетворяет

$$\|x_k - x^*\|_2^2 \leq \left(1 - \alpha \mu\right)^k \|x_0 - x^*\|_2^2$$

Это точно соответствует скорости сходимости градиентного спуска. Обратите внимание, что исходная задача даже негладкая!

Анализ сходимости 💎 🤝

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

$$\|x_{k+1} - x^*\|_2^2 = \|\mathsf{prox}_{\alpha \, f}(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2$$

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

$$\|x_{k+1}-x^*\|_2^2 = \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2$$
 лемма о стационарной точке =
$$\|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - \mathsf{prox}_{\alpha f}(x^* - \alpha \nabla f(x^*))\|_2^2$$

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{лемма о стационарной точке} &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - \mathsf{prox}_{\alpha f}(x^* - \alpha \nabla f(x^*))\|_2^2 \\ &\quad \text{нерастяжимость} \leq \|x_k - \alpha \nabla f(x_k) - x^* + \alpha \nabla f(x^*)\|_2^2 \end{split}$$

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{лемма о стационарной точке} &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - \mathsf{prox}_{\alpha f}(x^* - \alpha \nabla f(x^*))\|_2^2 \\ &+ \mathsf{нерастяжимость} \leq \|x_k - \alpha \nabla f(x_k) - x^* + \alpha \nabla f(x^*)\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{лемма о стационарной точке} &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - \mathsf{prox}_{\alpha f}(x^* - \alpha \nabla f(x^*))\|_2^2 \\ &\quad \mathsf{нерастяжимость} \leq \|x_k - \alpha \nabla f(x_k) - x^* + \alpha \nabla f(x^*)\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

2. Теперь мы используем гладкость из анализа сходимости и сильную выпуклость:

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{лемма о стационарной точке} &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - \mathsf{prox}_{\alpha f}(x^* - \alpha \nabla f(x^*))\|_2^2 \\ &\quad \mathsf{нерастяжимость} \leq \|x_k - \alpha \nabla f(x_k) - x^* + \alpha \nabla f(x^*)\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

2. Теперь мы используем гладкость из анализа сходимости и сильную выпуклость:

гладкость
$$\|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \leq 2L\left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle\right)$$

Доказательство

1. Учитывая расстояние до решения и используя лемму о стационарной точке:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{лемма о стационарной точке} &= \|\mathsf{prox}_{\alpha f}(x_k - \alpha \nabla f(x_k)) - \mathsf{prox}_{\alpha f}(x^* - \alpha \nabla f(x^*))\|_2^2 \\ &\quad \mathsf{нерастяжимость} \leq \|x_k - \alpha \nabla f(x_k) - x^* + \alpha \nabla f(x^*)\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

2. Теперь мы используем гладкость из анализа сходимости и сильную выпуклость:

гладкость
$$\|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \leq 2L\left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right)$$
 сильная выпуклость $-\langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle \leq -\left(f(x_k) - f(x^*) + \frac{\mu}{2}\|x_k - x^*\|_2^2\right) - -\langle \nabla f(x^*), x_k - x^* \rangle$

3. Подставим:

3. Подставим:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 & \leq \|x_k - x^*\|^2 - 2\alpha \left(f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|_2^2 \right) - 2\alpha \langle \nabla f(x^*), x_k - x^* \rangle + \\ & + \alpha^2 2L \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \end{split}$$

3. Подставим:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 & \leq \|x_k - x^*\|^2 - 2\alpha \left(f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|_2^2 \right) - 2\alpha \langle \nabla f(x^*), x_k - x^* \rangle + \\ & + \alpha^2 2L \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \\ & \leq (1 - \alpha \mu) \|x_k - x^*\|^2 + 2\alpha (\alpha L - 1) \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \end{split}$$

3. Подставим:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 & \leq \|x_k - x^*\|^2 - 2\alpha \left(f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|_2^2 \right) - 2\alpha \langle \nabla f(x^*), x_k - x^* \rangle + \\ & + \alpha^2 2L \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \\ & \leq (1 - \alpha \mu) \|x_k - x^*\|^2 + 2\alpha (\alpha L - 1) \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \end{split}$$

4. Из выпуклости $f: f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \geq 0$. Следовательно, если мы используем $\alpha \leq \frac{1}{T}$:

$$\|x_{k+1} - x^*\|_2^2 \le (1 - \alpha \mu) \|x_k - x^*\|^2$$

что и означает линейную сходимость метода со скоростью не хуже $1-\frac{\mu}{L}$

Ускоренный проксимальный градиент – *выпуклая* функция

Ускоренный проксимальный градиентный метод

Пусть $f:\mathbb{R}^n o \mathbb{R}$ является выпуклой и L-гладкой, $r:\mathbb{R}^n o \mathbb{R} \cup \{+\infty\}$ является правильной, замкнутой и выпуклой, $\varphi(x) = f(x) + r(x)$ имеет минимизатор x^* , и предположим, что $\operatorname{prox}_{\alpha x}$ легко вычисляется для $\alpha > 0$. С любым $x_0 \in \operatorname{dom} r$ определим последовательность

$$\begin{split} &t_0 = 1, \qquad y_0 = x_0, \\ &x_k = \text{prox}_{\frac{1}{L}r} (y_{k-1} - \frac{1}{L} \nabla f(y_{k-1})), \\ &t_k = \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}, \\ &y_k = x_k + \frac{t_{k-1} - 1}{t_k} \left(x_k - x_{k-1} \right), \qquad k \geq 1. \end{split}$$

 Δ ля каждого k > 1

$$\varphi(x_k) - \varphi(x^\star) \; \leq \; \frac{2L \, \|x_0 - x^\star\|_2^2}{(k+1)^2}$$

Ускоренный проксимальный градиент – μ -сильно выпуклая функция

🗓 Ускоренный проксимальный градиентный метод

Добавим, что f является μ -сильно выпуклой ($\mu > 0$).

Установим шаг $\alpha = \frac{1}{L}$ и фиксированный параметр импульса

$$\beta = \frac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1}.$$

Генерируем итерации для $k \ge 0$ (возьмем $x_{-1} = x_0$):

$$y_k = x_k + \beta (x_k - x_{k-1}),$$

$$x_{k+1} = \mathrm{prox}_{\alpha r} \! \big(y_k - \alpha \nabla f(y_k) \big).$$

Для каждого k > 0

$$\varphi(x_k) - \varphi(x^\star) \; \leq \; \left(1 - \sqrt{\tfrac{\mu}{L}}\right)^k \left(\varphi(x_0) - \varphi(x^\star) + \frac{\mu}{2} \|x_0 - x^\star\|_2^2\right)$$

Численные эксперименты

Квадратичный случай

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=1000, n=100, $\lambda=0$, $\mu=0$, L=10. Optimal sparsity: 0.0e+00

Рис. 2: Гладкий выпуклый случай. Сублинейная сходимость, отсутствие сходимости в области, нет разницы между методом субградиента и проксимальным методом.

⊕ ດ **ø**

Квадратичный случай

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=1000, n=100, $\lambda=1$, $\mu=0$, L=10. Optimal sparsity: 2.3e-01

Рис. 3: Негладкий выпуклый случай. Сублинейная сходимость. В начале метод субградиента и проксимальный метод близки.

⊕ ດ **ø**

Квадратичный случай

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=1000, n=100, λ =1, μ =0, L=10. Optimal sparsity: 2.3e-01

Рис. 4: Негладкий выпуклый случай. Если мы возьмем больше итераций, то проксимальный метод сходится с постоянным шагом, что не так для метода субградиента. Разница огромна, в то время как сложность итерации одинакова.

Бинарная логистическая регрессия

$$f(x) = \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-b_i(A_i x))) + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A_i \in \mathbb{R}^n, \quad b_i \in \{-1, 1\}$$

Binary Logistic Regression with ℓ_1 Regularization. m=300, n=50, λ =0.1. Optimal sparsity: 8.6e-01

Рис. 5: Логистическая регрессия с ℓ_1 -регуляризацией

Softmax multiclass regression

Convex multiclass regression. lam=0.01.

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA является популярным методом для решения задач оптимизации с ℓ_1 -регуляризацией, такой как Lasso. Он объединяет градиентный спуск с оператором сжатия для эффективного управления негладким ℓ_1 -штрафом.

Алгоритм:

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA является популярным методом для решения задач оптимизации с ℓ_1 -регуляризацией, такой как Lasso. Он объединяет градиентный спуск с оператором сжатия для эффективного управления негладким ℓ_1 -штрафом.

- Алгоритм:
 - Дано x_0 , для $k \ge 0$, повторять:

$$x_{k+1} = \operatorname{prox}_{\lambda\alpha\|\cdot\|_1} \left(x_k - \alpha \nabla f(x_k) \right),$$

где $\mathrm{prox}_{\lambda\alpha\|\cdot\|_1}(v)$ применяет оператор сжатия к каждому компоненту v.

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA является популярным методом для решения задач оптимизации с ℓ_1 -регуляризацией, такой как Lasso. Он объединяет градиентный спуск с оператором сжатия для эффективного управления негладким ℓ_1 -штрафом.

- Алгоритм:
 - Дано x_0 , для $k \ge 0$, повторять:

$$x_{k+1} = \operatorname{prox}_{\lambda \alpha \| \cdot \|_1} \left(x_k - \alpha \nabla f(x_k) \right),$$

где $\operatorname{prox}_{\lambda\alpha^{\parallel,\parallel_1}}(v)$ применяет оператор сжатия к каждому компоненту v.

Сходимость:

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA является популярным методом для решения задач оптимизации с ℓ_1 -регуляризацией, такой как Lasso. Он объединяет градиентный спуск с оператором сжатия для эффективного управления негладким ℓ_1 -штрафом.

- Алгоритм:
 - Дано x_0 , для $k \ge 0$, повторять:

$$x_{k+1} = \operatorname{prox}_{\lambda\alpha\|\cdot\|_1} \left(x_k - \alpha \nabla f(x_k) \right),$$

где $\operatorname{prox}_{\lambda\alpha^{\parallel,\parallel_*}}(v)$ применяет оператор сжатия к каждому компоненту v.

- Сходимость:
 - Сходится со скоростью O(1/k) для подходящего шага α .

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA является популярным методом для решения задач оптимизации с ℓ_1 -регуляризацией, такой как Lasso. Он объединяет градиентный спуск с оператором сжатия для эффективного управления негладким ℓ_1 -штрафом.

- Алгоритм:
 - Дано x_0 , для $k \ge 0$, повторять:

$$x_{k+1} = \operatorname{prox}_{\lambda\alpha\|\cdot\|_1} \left(x_k - \alpha \nabla f(x_k) \right),$$

где $\operatorname{prox}_{\lambda\alpha^{\parallel,\parallel_*}}(v)$ применяет оператор сжатия к каждому компоненту v.

- Сходимость:
 - Сходится со скоростью O(1/k) для подходящего шага α .
- Применение:

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA является популярным методом для решения задач оптимизации с ℓ_1 -регуляризацией, такой как Lasso. Он объединяет градиентный спуск с оператором сжатия для эффективного управления негладким ℓ_1 -штрафом.

- Алгоритм:
 - Дано x_0 , для $k \ge 0$, повторять:

$$x_{k+1} = \operatorname{prox}_{\lambda\alpha\|\cdot\|_1} \left(x_k - \alpha \nabla f(x_k) \right),$$

где $\operatorname{prox}_{\lambda\alpha^{\parallel,\parallel_*}}(v)$ применяет оператор сжатия к каждому компоненту v.

- Сходимость:
 - Сходится со скоростью O(1/k) для подходящего шага α .
- Применение:
 - Эффективно для восстановления разреженных сигналов, обработки изображений и compressed sensing.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA улучшает сходимость ISTA, включая в неё импульсное слагаемое, вдохновленное методом Нестерова.

Алгоритм:

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

- Алгоритм:
 - Инициализируем $x_0 = y_0, t_0 = 1.$

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

- Алгоритм:
 - Инициализируем $x_0 = y_0$, $t_0 = 1$.
 - Для k > 1, обновляем:

$$\begin{split} x_k &= \operatorname{prox}_{\lambda \alpha \|\cdot\|_1} \left(y_{k-1} - \alpha \nabla f(y_{k-1})\right), \\ t_k &= \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}, \\ y_k &= x_k + \frac{t_{k-1} - 1}{t_k} (x_k - x_{k-1}). \end{split}$$

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA улучшает сходимость ISTA, включая в неё импульсное слагаемое, вдохновленное методом Нестерова.

- Алгоритм:
 - Инициализируем $x_0 = y_0$, $t_0 = 1$.
 - Для k > 1, обновляем:

$$\begin{split} x_k &= \operatorname{prox}_{\lambda \alpha \|\cdot\|_1} \left(y_{k-1} - \alpha \nabla f(y_{k-1})\right), \\ t_k &= \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}, \\ y_k &= x_k + \frac{t_{k-1} - 1}{t_k} (x_k - x_{k-1}). \end{split}$$

Сходимость:

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

- Алгоритм:
 - Инициализируем $x_0 = y_0, t_0 = 1.$
 - Для k > 1, обновляем:

$$\begin{split} x_k &= \operatorname{prox}_{\lambda \alpha \|\cdot\|_1} \left(y_{k-1} - \alpha \nabla f(y_{k-1})\right), \\ t_k &= \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}, \\ y_k &= x_k + \frac{t_{k-1} - 1}{t_k} (x_k - x_{k-1}). \end{split}$$

- Сходимость:
 - Улучшает скорость сходимости до $O(1/k^2)$.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

- Алгоритм:
 - Инициализируем $x_0 = y_0, t_0 = 1.$
 - Для k > 1, обновляем:

$$\begin{split} x_k &= \mathsf{prox}_{\lambda \alpha \| \cdot \|_1} \left(y_{k-1} - \alpha \nabla f(y_{k-1}) \right), \\ t_k &= \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}, \\ y_k &= x_k + \frac{t_{k-1} - 1}{t_k} (x_k - x_{k-1}). \end{split}$$

- Сходимость:
 - Улучшает скорость сходимости до $O(1/k^2)$.
- Применение:

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

- Алгоритм:
 - Инициализируем $x_0 = y_0$, $t_0 = 1$.
 - Для k > 1, обновляем:

$$\begin{split} x_k &= \operatorname{prox}_{\lambda \alpha \|\cdot\|_1} \left(y_{k-1} - \alpha \nabla f(y_{k-1})\right), \\ t_k &= \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}, \\ y_k &= x_k + \frac{t_{k-1} - 1}{t_k} (x_k - x_{k-1}). \end{split}$$

- Сходимость:
 - Улучшает скорость сходимости до $O(1/k^2)$.
- Применение:
 - ullet Особенно полезен для больших задач в машинном обучении и обработке сигналов, где ℓ_1 -штраф индуцирует разреженность.

Решение задачи Matrix Completion

Задачи matrix completion стремятся заполнить пропущенные элементы частично наблюдаемой матрицы при определенных предположениях, обычно низкого ранга. Это может быть сформулировано в виде задачи минимизации, включающую ядерную норму (сумму сингулярных значений), которая продвигает решения низкого ранга.

Формулировка задачи:

$$\min_{X} \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(M)\|_F^2 + \lambda \|X\|_*,$$

где P_{Ω} проецирует на наблюдаемое множество Ω , и $\|\cdot\|_*$ обозначает ядерную норму.

Решение задачи Matrix Completion

Задачи matrix completion стремятся заполнить пропущенные элементы частично наблюдаемой матрицы при определенных предположениях, обычно низкого ранга. Это может быть сформулировано в виде задачи минимизации, включающую ядерную норму (сумму сингулярных значений), которая продвигает решения низкого ранга.

Формулировка задачи:

$$\min_{X} \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(M)\|_{F}^{2} + \lambda \|X\|_{*},$$

где P_{Ω} проецирует на наблюдаемое множество Ω , и $\|\cdot\|_*$ обозначает ядерную норму.

Проксимальный оператор:

Решение задачи Matrix Completion

Задачи matrix completion стремятся заполнить пропущенные элементы частично наблюдаемой матрицы при определенных предположениях, обычно низкого ранга. Это может быть сформулировано в виде задачи минимизации, включающую ядерную норму (сумму сингулярных значений), которая продвигает решения низкого ранга.

Формулировка задачи:

$$\min_{X} \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(M)\|_F^2 + \lambda \|X\|_*,$$

где P_{Ω} проецирует на наблюдаемое множество Ω , и $\|\cdot\|_*$ обозначает ядерную норму.

- Проксимальный оператор:
 - Проксимальный оператор для ядерной нормы включает сингулярное разложение (SVD) и сжатие сингулярных значений.

Решение задачи Matrix Completion

Задачи matrix completion стремятся заполнить пропущенные элементы частично наблюдаемой матрицы при определенных предположениях, обычно низкого ранга. Это может быть сформулировано в виде задачи минимизации, включающую ядерную норму (сумму сингулярных значений), которая продвигает решения низкого ранга.

Формулировка задачи:

$$\min_{X} \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(M)\|_F^2 + \lambda \|X\|_*,$$

где P_{Ω} проецирует на наблюдаемое множество Ω , и $\|\cdot\|_*$ обозначает ядерную норму.

- Проксимальный оператор:
 - Проксимальный оператор для ядерной нормы включает сингулярное разложение (SVD) и сжатие сингулярных значений.
- Алгоритм:

Решение задачи Matrix Completion

Задачи matrix completion стремятся заполнить пропущенные элементы частично наблюдаемой матрицы при определенных предположениях, обычно низкого ранга. Это может быть сформулировано в виде задачи минимизации, включающую ядерную норму (сумму сингулярных значений), которая продвигает решения низкого ранга.

Формулировка задачи:

$$\min_{X} \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(M)\|_F^2 + \lambda \|X\|_*,$$

где P_{Ω} проецирует на наблюдаемое множество Ω , и $\|\cdot\|_{*}$ обозначает ядерную норму.

- Проксимальный оператор:
 - Проксимальный оператор для ядерной нормы включает сингулярное разложение (SVD) и сжатие сингулярных значений.
- Алгоритм:
 - Можно применять аналогичные проксимальные методы или ускоренные проксимальные методы; основной вычислительный расход приходится на выполнение SVD.

Решение задачи Matrix Completion

Задачи matrix completion стремятся заполнить пропущенные элементы частично наблюдаемой матрицы при определенных предположениях, обычно низкого ранга. Это может быть сформулировано в виде задачи минимизации, включающую ядерную норму (сумму сингулярных значений), которая продвигает решения низкого ранга.

Формулировка задачи:

$$\min_{X} \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(M)\|_F^2 + \lambda \|X\|_*,$$

где P_{Ω} проецирует на наблюдаемое множество Ω , и $\|\cdot\|_{*}$ обозначает ядерную норму.

- Проксимальный оператор:
 - Проксимальный оператор для ядерной нормы включает сингулярное разложение (SVD) и сжатие сингулярных значений.
- Алгоритм:
 - Можно применять аналогичные проксимальные методы или ускоренные проксимальные методы; основной вычислительный расход приходится на выполнение SVD.
- Применение:

Решение задачи Matrix Completion

Задачи matrix completion стремятся заполнить пропущенные элементы частично наблюдаемой матрицы при определенных предположениях, обычно низкого ранга. Это может быть сформулировано в виде задачи минимизации, включающую ядерную норму (сумму сингулярных значений), которая продвигает решения низкого ранга.

Формулировка задачи:

$$\min_{X} \frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(M)\|_{F}^{2} + \lambda \|X\|_{*},$$

где P_{Ω} проецирует на наблюдаемое множество Ω , и $\|\cdot\|_{*}$ обозначает ядерную норму.

- Проксимальный оператор:
 - Проксимальный оператор для ядерной нормы включает сингулярное разложение (SVD) и сжатие сингулярных значений.
- Алгоритм:
 - Можно применять аналогичные проксимальные методы или ускоренные проксимальные методы; основной вычислительный расход приходится на выполнение SVD.
- Применение:
 - Широко используется в рекомендательных системах, восстановлении изображений и других областях, где данные естественно представлены в виде матриц, но частично наблюдаемы.

• Если использовать структуру задачи, можно превзойти нижние оценки для неструктурированной постановки.

- Если использовать структуру задачи, можно превзойти нижние оценки для неструктурированной постановки.
- ullet Проксимальный метод для задачи с L-гладкой выпуклой функцией f и выпуклой функцией r с вычислимым проксимальным оператором имеет ту же скорость сходимости, что и метод градиентного спуска для f. Свойства гладкости/негладкости r на сходимость не влияют.

- Если использовать структуру задачи, можно превзойти нижние оценки для неструктурированной постановки.
- ullet Проксимальный метод для задачи с L-гладкой выпуклой функцией f и выпуклой функцией r с вычислимым проксимальным оператором имеет ту же скорость сходимости, что и метод градиентного спуска для f. Свойства гладкости/негладкости r на сходимость не влияют.
- ullet Кажется, что если f=0, то любая негладкая задача может быть решена таким методом. Вопрос: это правда?

- Если использовать структуру задачи, можно превзойти нижние оценки для неструктурированной постановки.
- ullet Проксимальный метод для задачи с L-гладкой выпуклой функцией f и выпуклой функцией r с вычислимым проксимальным оператором имеет ту же скорость сходимости, что и метод градиентного спуска для f. Свойства гладкости/негладкости r на сходимость не влияют.
- ullet Кажется, что если f=0, то любая негладкая задача может быть решена таким методом. Вопрос: это правда?

- Если использовать структуру задачи, можно превзойти нижние оценки для неструктурированной постановки.
- ullet Проксимальный метод для задачи с L-гладкой выпуклой функцией f и выпуклой функцией r с вычислимым проксимальным оператором имеет ту же скорость сходимости, что и метод градиентного спуска для f. Свойства гладкости/негладкости r на сходимость не влияют.
- ullet Кажется, что если f=0, то любая негладкая задача может быть решена таким методом. Вопрос: это правда?
 - Если разрешить численно неточный проксимальный оператор, то действительно можно решать любую негладкую задачу оптимизации. Но с теоретической точки зрения это не лучше субградиентного спуска, поскольку для решения проксимальной подзадачи используется вспомогательный метод (например, тот же субградиентный спуск).
- Проксимальный метод является общим современным фреймворком для многих численных методов. Далее развиваются ускоренные, стохастические, приближенные двойственные методы и т.д.

- Если использовать структуру задачи, можно превзойти нижние оценки для неструктурированной постановки.
- ullet Проксимальный метод для задачи с L-гладкой выпуклой функцией f и выпуклой функцией r с вычислимым проксимальным оператором имеет ту же скорость сходимости, что и метод градиентного спуска для f. Свойства гладкости/негладкости r на сходимость не влияют.
- ullet Кажется, что если f=0, то любая негладкая задача может быть решена таким методом. Вопрос: это правда?
 - Если разрешить численно неточный проксимальный оператор, то действительно можно решать любую негладкую задачу оптимизации. Но с теоретической точки зрения это не лучше субградиентного спуска, поскольку для решения проксимальной подзадачи используется вспомогательный метод (например, тот же субградиентный спуск).
- Проксимальный метод является общим современным фреймворком для многих численных методов. Далее развиваются ускоренные, стохастические, приближенные двойственные методы и т.д.
- Дополнительные материалы: разбиение по проксимальному оператору, схема Дугласа—Рачфорда, задача наилучшего приближения, разбиение на три оператора.

