Congratulations for m	naintaining >80% PSP 🖐 👺
Deepak Dharani	Gobika K
Divya Shanmugam	Vinod Supnekar
Shubham Verma	Nandini Umbare
Zahra Sidhpuri	Mariappan Subramanian
SANTOSH KUMAR SHARMA	Saurabh Vishwakarma
Rakesh	Lakshmi Sravani
Pavan Satish	Devender swami
Rajesh Rohan	Rudrakshi Srivastava
SANDEEP MUDAPAKA	christon cardoza
Santosh Nase	Damini
Ajay Jain	Anindya
Arijit Dutta	Subhashish B
Vitul Gupta	Rajkumar
Mrudang Vora	Gujjula Samara simha reddy
Brian Sam Varghese	Manas
Manikanta sai	Vishal Patel

Today's Content.

Introduction to Graphs

Types of Graphs

DFS

BFS

Detect yele in directed graph.

graph. - collection of nodes and edges.

Vertices.

Every tree is a graph. ~

Every graph is a tree. X

1

1) Tree always has root node.

D N nodu - NI-1 edges.

3 Cycle can't be there in foce.

True is a subject

1 Adjacency Matrix

	D	1	2	_ گ
0	0	1	1	0
1	0	O	1	0
2	0	Ō	O	1
3	Ð	1	O	O

$$N = 4$$

$$E = 5$$

Properties/ Types of Graph

1 Directed

(Di-directional)

2 Connected

Disconnected

3 Weighted

Un wighted

mat (i)(j) = 0 if there is no edge from i to j

= Wij if there is edge from i to j.

graph(i) =
$$\{\{1,5\}, \{2,3\}, \{4,7\} - -\}$$

Note of pairs

Cyclic.

digne(x) = 5

No. of edges connected with a node.

Acyclic

In-degree out-degree

in-degree(x) - incoming edges [2] out-degree (n) - outgoing edges [3]

N nody. - numbered from 0 to N-I if they are not numbered from 0 to N-I, then we will do the mapping and get the order from 0 to N-1.

Traversals

1) Depth First Troversal (Pre-order transal of tree)

- Keep track of visited nodus.

code-

Maraph - given

bookan visited (N); // Hi, visited (i) = false

for (i=0; i < N; i++) d

if (visited (i) == false) of

(afs (graph, i, visited);

```
void of (Graph, src, visikd(N)){

print (src);

visited(src) = foru;

for (int nbr: graph(src)){

(visikd(nbr) = false){

dfs(graph, nbr, visikd);

visikd(N) +

max size of stock.
```

Breadth first Traversal - level order traversal.

code-

```
roid bys ( graph, src, visited) {
     Queue < Int > 9;
     q. enqueulsrc), visited [src]: toue;
     print(src);
     while (q. 1s Empty 1) == false) of
               rr = q. dequeu ();
              for (int nbr: graph [rv]) }
                     if ( visited [nbr] == Bake) {
              visited (nor) = toue; point (nor);
q. enqueu (nor);
                                                              visited (N)
                                                               Quem
```

Que check if given directed graph has a cycle or not.

- if a visited node is encountered again - cycle. X

- if a visited node in current path -> cycle

is encountered again

code ...

boolean visited [N], // Hi, visited [i] = false;
boolean path [N], // Hi, path [i] = false;

for (i=0; i < N; i++)d

if (visited (i) == foise)d

if (dfs (graph, i, visited, path) == tous)f

return tous;

return false;

```
boolean dfs ( Graph, src. visited (N7, path (N7)){
        visited[sre] = true;
        path [src] = toue;
        for ( int nbr: graph (IVE)) {
                 if path [nbr] == towe) of lift nbr is already present in current path
                Lz return toue;
                if (visited (nbo) == false dd dfs (graph, nbr, visikd, path)) {
                La return tru;
         path [src] = false; tremoving src from curr path before
                              returny from sxl-
         return false;
```

X

×

7 true
0 ft
1 ft
2 ft
3

60-70% - RFJ, DFJ