BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree
Guess Papers, Past Papers & Notes
Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

OBJECTIVES (MCQ'S) OF CHAPTER-1 ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Functions Domain & Range: 1. A function $f: X \to Y$ defined by $f(X) = a \forall x \in X$ and $a \in Y$ is called (B) Identity function (A) Linear function (D) Non-linear function (C) Constant function 2. The area of a circle as a function of its circumference 'C' is : (2 times) (B) $A = \frac{1}{4\pi}C$ (C) $A = \frac{1}{4\pi}C^2$ (D) $\frac{1}{\pi}C^2$ 3. $\cos h^2 x + \sinh^2 x =$ (2 times) (C) sinh 2x . (D) 2 cosh 2x (A) 1 (B) cosh 2x 4. If f(x) is a function such that f(-x) = f(x) then f(x) is said to be : (B) Even function (C) Constant function (D)Linear function (A) Odd function 5. A function defined by $f(x) = x^3$ is: · (5 times) (A) Even function (B) Identity function. (C) Odd function (D) Linear function 6. $x = at^2$, y = 2at are parametric equations of: (5 times) (A) Circle (B) Parabola (C) Hyperbola (D) Ellipse 7. Domain of $f(x) = 2 + \sqrt{x-1}$ is : (3 times) (B) $[2,\infty)$ $(D) [0, \infty)$ (C) [1,∞) (A) (O, 1] 8. $x = a\cos\theta$, $y = b\sin\theta$ are parametric equations of : (3 times) (A) Parabola . (B) Ellipse (C) Circle (D) Hyperbola 9. A function defined by $f(x) = x^2$ is: (4 times) (A) Odd function (B) Linear function (C) Even function (D) Constant function If $f(x) = \cos x$, then f(0) = ?: (A) -1 · (C) 0(B) -1/2· 11. 2sinhx is equal to: (5 times) (C) $\frac{e^x - e^{-x}}{e^x + e^{-x}}$ (D) $\frac{e^x + e^{-x}}{e^x - e^{-x}}$ (A) $e^{x} + e^{-x}$ (B) $e^{x} - e^{-x}$ $f(x) = \cos x + \sin x$ is _____ function: (3-times) (B) Odd (C) Both even & odd (D) Neither even nor odd (A) Even 13. The function is said to be an even function if f(-x) = ____ (B) f(-x)(D) None of these (C) f(x) 14. If y is image of x under function f we write it as: (3 times) (A) x = f(y).(B) $y \neq f(x)$ (C) y = f(x)(D) y = xIf f(x) = 2x + 5 then f(2) equals: (3 times) (B) 9 (C) - 9(D) - 1(A) 1. 16. Which of the following is an odd function? (6 times) (D) sin^2x (B) coshx (C) sinhx If $f(x) = \sqrt{x+1}$ domain of f equal to: (5 times) (B) (-1, -∞) (D) $(-\infty, +\infty)$ $(A)(1, +\infty)$ $(C)[-1,+\infty)$ Cosh x is equal to. (B) $\frac{e^x - e^{-x}}{2}$ (D) $e^{x} + e^{-x}$ (C) e^x

39. If
$$f(x) = 2x - 1$$
, then $f^{1}(x)$ equals

(A) 1-x

(B) 1+x

(C) $\frac{1-x}{2}$

(D) $\frac{1+x}{2}$

Topic III: Limit of Function

 $\lim_{x\to 0} \frac{a^x-1}{x}$ is equal to:

(4 times)

(A) lnx.

(B) log, a

(C) 1

(D) 0

 $x \to 0 \frac{x^4}{\sin 7x \sin 5x}$ (A) $\frac{7}{5}$ (B) $\frac{5}{2}$

(2 times)

(B) $\frac{5}{3}$

(D) $\frac{1}{35}$

 $\lim_{x\to 0} \left(\frac{1}{e^{-x}}\right) = \text{equals}:$

(1 time)

(C) -1

(D) -00

43. $\lim_{x\to 2} \frac{x-2}{\sqrt{x}-\sqrt{2}} = -$

(2 times)

(A) \square

(B) 2

(C) 2√2

(D) 0

 $\lim_{x\to 1} \frac{x^3 - 3x^2 + 3x - 1}{x^3 - x}$ equals:

(3 times)

(A) 0

(D) 3

 $\lim_{x\to 0}\frac{e^x-1}{x}=\frac{1}{x}$

(4 times)

(A) 0

(B) 1

(C) e

(D) 00

 $\lim_{x \to 0} e^{1/x} = \underline{\hspace{1cm}}, x < 0$

(D) ∞

(A) -147.

(C) 1

(4 times)

(2 times)

(2 times)

(A) 0

 $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta}$ equals:

(D) 2

48.

(B) - 1

(C) 1

 $\lim_{x\to 0}\frac{\sin x^0}{x}=$

(a) 1

(b) 0

49,

(a) e²

 $\lim_{n\to\infty}(1+\frac{1}{n})^{2n}=$

(c) e /2

(d) e

50.

 $\lim_{n \to \infty} (1 + \frac{1}{n})^n =$

(c) 2e

(2 times

(a) 4e

(b) 3e

(b) e-1

51.

(A) a

 $\lim_{x \to 0} \frac{\sin ax}{\sin bx} =$

 $(C)\frac{-a}{b}$

(A) e3

 $\lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^n =$

(C) $e^{\frac{1}{3}}$

 $(D) - \frac{1}{a^3}$

53. Lim
$$\frac{x^2-a^2}{x \to a} = :$$
(A) 0 (B) 2a (C) a^2 (D) Unde.

54. $\lim_{x\to 0} (1+3x)^{2/x}$ (A) e^2 (B) e^8 (C) e^6 (D) e^4

55. Lim $f(x) \to f(a)$ is equal to:
(A) $f'(x)$ (B) $f'(a)$ (C) $f'(2)$ (D) $f'(0)$

56. If $\lim_{x\to 0} f(x) \to f(a)$ (B) $f'(a)$ (C) $f'(2)$ (D) $f'(0)$

57. $\lim_{x\to \infty} (1+\frac{x}{2})^2$ equals:
(A) e^x (B) e^x (C) e^x (D) e^x

58. The function $f(x) = \frac{x^2-1}{x-1}$ is discontinuous Functions.

58. The function $f(x) = \frac{x^2-1}{x-1}$ is discontinuous at:
(a) $f'(x) = f'(x) = f'(x)$ (B) $f'(x) = f'(x) = f'(x)$ (C) $f'(x) = f'(x) = f'(x)$ (D) $f'(x) = f'(x) = f'(x) = f'(x)$ (D) $f'(x) = f'(x) = f'(x) = f'(x) = f'(x)$ (D) $f'(x) = f'(x) = f'$

- (A) Hyperbola
- (B) Circle
- (C) Parabola
- (D) Ellipse

70.

Domain of $f(x) = x^2 + 1$ is:

- (a) R
- (b) R {1}
- (c) R (-1)
- (d) [1,∞)

71. $\frac{e^x - e^{-x}}{2} = \frac{1}{2}$

- (a) sin x
- (b) cos x
- (c) sin h x
- (d) cos h x

72. $\lim_{x \to 1} \frac{x^2 - 6x + 8}{x - 4} =$

(a) 4

(b) 2

(c) 6

(d) 8

73. $\lim_{\theta \to 0} \frac{1-\cos p\theta}{1+\cos p\theta}$ equals:

(a) 1

(b) 0

- (c) $\frac{p^2}{a^2}$
- (d) 2

74. The range of $f(x) = x^2$ is:

- (a) $(-\infty,0)$
- (b) (-∞,∞)
- (c) (-1,0)
- (d) [0,∞)

75. If $f(x) = \frac{1}{x^2}(x \neq 0)$, then $f \circ f(x)$ is

- (a) x
- · (b) x2
- (c) 1

(d) $\frac{1}{x^4}$

ANSWERS TO THE MULTIPLE CHOICE QUESTIONS

1	2	. 3	4	5	6	7	8	9	10	11	12	13	14	15
C	c	Ь	ь	C	ь	b	b	C	d	b	· d		C	b
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
C	.с	a	C	а	C	C	c	C	b	C	b	d	C	b
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
a	b	C	C.	C	b	C	C	d	b	d	b	C	a	b
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	c	a	d	а	C	b	·c	b	b	d.	Ь	C	C
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
b	C	a	b	d	Ь	c	d	a	а	C	b	b	d	a

SHORT QUESTION'S OF CHAPTER-1 ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Functions Domain & Range:

1. If $f(x) = \sqrt{x+4}$ then find $f(x^2+4)$

(C.W)

Sol:

 $f(x) = \sqrt{x+4}$

$$f(x^2 + 4) = \sqrt{x^2 + 4 + 4}$$

 $f(x^2+4) = \sqrt{x^2+8}$ Which is required.

2. Find the domain and range of $\sqrt{x^2-4}$

(C,W) (2 times)

Domain of f = R - (-2, 2)Sol: Range of $f = [0, \infty)$

Define an implicit function, 3.

(4 times)

If x and y be so mixed that y can't express in term of x then y is called on implicit function. Example $y^2 = x^3y - x^2y^2 + 5$

Let $f(x) = \sqrt{x^2 - 9}$, find the domain and range of f.

Sol:
$$f(x) = \sqrt{x^2 - 9}$$

Domain f = R - (-3, 3)

Range $f = [0, \infty)$

Determine whether $f(x) = x^{2/3} + 6$ is even or odd.

(C.W) (2 times)

Soi : $f(x) = x^{2/3} + 6$

Now
$$f(-x) = (-x)^{2/3} + 6 = [(-x)^2]^{1/3} + 6$$

= $[x^2]^{1/3} + 6 = x^{2/3} + 6 = f(x)$

So f(x) is an even function.

If $f(x) = \sin x + \cos x$. Check whether f is even or odd.

Let f(x) = Sinx + Cosx

Put x = -x in eq. (1)

$$\Rightarrow$$
f(-x) = Sin (-x) + Cos (-x)

$$\Rightarrow$$
 f(-x) = -Sinx + Cosx

$$\Rightarrow f(-x) \neq \pm f(x)$$

Hence f(x) is neither even nor odd.

Define Even and odd functions.

(6 times)

Even function: A function f is said to be an even if f(-x) = f(x)Sol:

i.e.
$$f(x) = x^2$$

 $f(-x) = (-x)^2 = x^2 = f(x)$

Odd function: A function f is said to be odd function if f(-x) = -f(x)

$$f(x) = x^3 \qquad replace \ x \ by - x$$
$$f(-x) = (-x)^3 = -x^3 = -f(x)$$

Hence f(x)be an odd function.

8: Find the Domain and Range of :
$$g(x) = \begin{cases} 6x+7, & \text{if } x \le -2 \\ 4x-3, & \text{if } -2 < x \end{cases}$$
 (C.W)

 $g(x) = \begin{cases} 6x + 7 & \text{if } x \le -2 \\ 4x - 3 & \text{if } -2 < x \end{cases}$ Sol:

We see that g(x) is defined for all real values of x.so

Domain g = Set of all real numbers $= (-\infty, \infty)$

Range g = Set of all real numbers = $(-\infty, \infty)$

Express the perimeter P of square as a function of its area A.

(H.W) (3 times)

Consider a square with x as length of each side If P is perimeter and A as Sol: Area then P=x+x+x+x P = 4xand $A = x^2$ Now P = 4x $=4\sqrt{x^{2}}=4\sqrt{A}$ So $P = 4\sqrt{A}$ $f(x) = x^3 - ax^2 + bx + 1$, if f(2) = -3 and f(-1) = 0 Find values of a and b (H.W. 10: Given function $iscf(x) = x^3 - ax^2 + bx + 1$ Sol: As f(2) = -3 So $(2)^3 - a(2)^2 + 2b + 1 = -3$ 8 - 4a + 2b + 1 = -3-4a + 2b = -122a - b = 6As f(-1) = 0 $(-1)^3 - a(-1)^2 + b(-1) + 1 = 0$ -1-a-b+1=0 a+b=0(2)Adding (1) and (2) 3a = 6Put in equation (2) a +b=0 2+b=0: b = -2If $f(x) = \sin x$, then find $\frac{f(a+b)-f(a)}{f(a+b)}$ 11: Sol: Given $f(x) = \sin x$ \Rightarrow f (a + b) = sin (a + b) f (a) = sin a $f(a+h)-f(a) = \sin(a+b)-\sin a$ $\frac{2}{h}$ Cos $\left(a + \frac{h}{2}\right)$ Show that $x = at^2$, are parametric equations of parabola $y = 2at \cdot (C.W)$ 12. Given parametric equation of parabola are. Sol $x = at^2$ v = 2atsquaring eq (2) $v^2 = 4a^2t^2$ $v^2 = 4a(at^2)$ Put eq (1) in (3) $v^2 = 4ax$ Which is required equation of parabola $(1+2h)^{V_h}$ 13. **Evaluate** Sol Given

$$= \begin{pmatrix} Lim \\ h \to 0 \end{pmatrix} (1+2h)^{\frac{1}{2}h}$$

$$= (e)^{2}$$

$$= e^{2}$$

Define identity function. 14.

Sol **Identity Function:-**

Let a function $I: X \to X$ of the form I(x) = x, $\forall x \in X$ is called an identity function.

 $f(x) = x^2 - x$ then find f(x - 1). 15.

Sol

Find f(x-1)

of Given
$$f(x) = x^2 - x$$

Now $f(x-1) = (x-1)^2 - (x-1)$
 $f(x-1) = x^2 - 2x + 1 - x + 1$
 $f(x-1) = x^3 - 3x + 2$

Determine whether the given function is Odd or Even $f(x) = \frac{.3x}{x^2 + 1}$ 16.

Sol Given
$$f(x) = \frac{3x}{x^2 + 1}$$
 replace x by -x
Now $f(-x) = \frac{3(-x)}{(-x)^2 + 1}$

$$\Rightarrow f(-x) = \frac{-3x}{x^2 + 1}$$

$$\Rightarrow f(-x) = -\left(\frac{3x}{x^2 + 1}\right)$$

$$\Rightarrow f(-x) = -f(x)$$

Hence f(x) be an odd function.

Topic II: Composition of Functions and Inverse of Function:

Without finding inverse state Domain and Range of $f^{-1}(x)$ where $f(x) = 2 + \sqrt{x-1}$ 17.

We see f is not defined when x < 1Sol:

Domain $f = [1, +\infty)$

Range $f = (2, +\infty)$

Domain $f^{-1} = \text{Range } f = [2, +\infty)$

Range $f^{-1} = \text{Domain } f = [1, +\infty)$

If $f(x) = \sqrt{x+1}$; $g(x) = \frac{1}{x^2}$ find fog (x) 18. (H.W)

Sol: fog(x)

$$f(x) = \sqrt{x+1}, g(x) = \frac{1}{x^2}$$

$$fog(x) = f[g(x)]$$

$$fog(x) = f \left[\frac{1}{x^2} \right]$$

fog (x) =
$$\sqrt{\frac{1}{x^2} + 1} = \sqrt{\frac{1 + x^2}{x^2}} = \frac{\sqrt{x^2 + 1}}{x}$$

2nd Year A Plus Mathematics (ALP Smart Syllabus-2020) Verify $f(f^{-1}(x)) = x$, where $f(x) = (-x + 9)^3$ (H.W) (2 times) Given $f(x) = (-x + 9)^3$ Sol: $y = (-x + 9)^3$ $\forall y = f(x)$ $v^{1/3} = -x + 9$ $x = 9 - v^{1/3}$ " x = f1 (v) $f^{-1}(y) = 9 - y^{1/3}$ Replace y by x. $f^{-1}(x) = 9 - x^{1/3}$ Now $f(f^1(x))$, $f(9-x^{1/3})$ $= [-(9-x^{1/3})+9]^3$ $=[-(9-x^{1/3})+9]^3=(x^{1/3})^3=x$ $= f(f^{-1}(x)) = x$ $g(x) = \frac{1}{x^2} \text{ find gof(x)}$ If $f(x) = \sqrt{x+1}$ and 20. Given $f(x) = \sqrt{x+1}$, $g(x) = \frac{1}{x^2}$ Now $gof(x) = g[f(x)] = g(\sqrt{x+1})$ $=\frac{1}{(\sqrt{x+1})^2}=\frac{1}{x+1}$ If $f(x) = (-x+9)^3$ find $f^3(x)$ 21. Given $f(x) = (-x+9)^3$ As y = f(x) $y = (-x+9)^3$ $y^{1/3} = [(-x+9)^3]^{1/3}$ $y^{\frac{1}{3}} = -x + 9$ $x = 9 - v^{1/3}$ As $x = f^{-1}(y)$ $f^{-1}(y) = 9 - y^{\frac{1}{2}}$

Replacing y by x

$$f^{-1}(x) = 9 - x^{\frac{1}{3}}$$

Topic III: Limit of Function:

Evaluate $\lim_{x \to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$ (C.W) (2 times) 22.

Sol:
$$\lim_{x \to 3} \frac{x - 3}{\sqrt{x} - \sqrt{3}}$$

$$= \lim_{x \to 3} \frac{\left(\sqrt{x}\right)^2 - \left(\sqrt{3}\right)^2}{\sqrt{x} - \sqrt{3}}$$

$$= \lim_{x \to 3} \frac{\left(\sqrt{x} - \sqrt{3}\right)\left(\sqrt{x} + \sqrt{3}\right)}{\sqrt{x} - \sqrt{3}}$$

$$= \lim_{x \to 3} \left(\sqrt{x} + \sqrt{3}\right) = \sqrt{3} + \sqrt{3} = 2\sqrt{3}$$

23. Evaluate
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$$
 (C.W)

Sol:

$$= \lim_{n \to \infty} \left(1 + \left(-\frac{1}{n} \right) \right)^n$$

$$= \lim_{n \to \infty} \left(1 + \left(-\frac{1}{n} \right) \right)^{(-n)(-1)}$$

$$= \left[\lim_{n \to \infty} \left(1 + \left(-\frac{1}{n} \right)^{-n} \right) \right]^{-1}$$

$$= e^{-1} = \frac{1}{e}$$

24. Evaluate
$$\lim_{x\to 2} \frac{x^3-8}{x^2+x-6}$$
 (H.W

Sol:
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 + x - 6} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{(x - 2)(x + 3)}$$

$$= \frac{\lim_{x \to 2} (x^2 + 2x + 4)}{\lim_{x \to 2} (x + 3)} = \frac{\left(\lim_{x \to 2} x\right)^2 + 2\lim_{x \to 2} x + 4}{\lim_{x \to 2} x + 3}$$

$$(2)^2 + 2(2) + 4 \qquad 12$$

$$=\frac{(2)^2+2(2)+4}{2+3}=\frac{12}{5}$$

25. Evaluate
$$\lim_{x\to 0} \frac{2-3x}{\sqrt{3+4x^2}}$$
 (C.W)

Solo Here
$$\sqrt{x^2} = |x| = -x$$
 as $x < 0$

.. Dividing up and down by -x, we get

$$\lim_{x \to \infty} \frac{2 - 3x}{\sqrt{3 + 4x^2}} = \lim_{x \to \infty} \frac{-2/x + 3}{\sqrt{3/x^2 + 4}} = \frac{0 + 3}{\sqrt{0 + 4}} = \frac{3}{2}$$

26. Evaluate
$$\lim_{x \to 1} \frac{x^3 - x}{x + 1}$$
 (H.W) (3 times

Sol:
$$\frac{x^3 - x}{x+1} = \frac{x(x^2 - 1)}{x+1} = \frac{x(x-1)(x+1)}{x+1} = x(x-1)$$

$$\lim_{x \to -1} x(x-1)$$

$$= -1 (-1 - 1)$$

$$= 2$$

Evaluate
$$\frac{Lim}{x \to 0} (1 + 2x^2)^{\frac{1}{x^2}}$$
 (H.W)

32.

Sol: Given
$$\lim_{x \to 0} (1 + 2x^2)^{\frac{1}{2x^2}}$$

= $\lim_{x \to 0} [(1 + 2x^2)^{\frac{1}{2x^2}}]^2$

= $\lim_{x \to 0} \lim_{x \to 0$

Sol
$$\lim_{x \to -1} \left(\frac{x^3 + x^2}{x^2 - 1} \right)$$

Using algebraic technique

16

$$=\frac{Lim}{x \to -1} \frac{x^2(x+1)}{(x-1)(x+1)}$$

$$=\frac{Lim}{x \to -1} \cdot \left(\frac{x^2}{x-1}\right)$$

$$=\frac{(-1)^2}{-1-1}$$

$$=\frac{1}{-2}$$

$$=-\frac{1}{2} \text{ Ans.}$$

33. Evaluate
$$\sum_{x \to 0}^{Lim} \frac{1 - \cos 2x}{x^2}$$

 $\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$

$$x \to 0 \qquad x^2$$

$$= \frac{Lim}{x \to 0} \frac{2sin^2x}{x^2}$$

$$= 2 \frac{Lim}{x \to 0} \frac{sin^2 x}{x^2}$$

$$= 2 \frac{Lim}{x \to 0} \left(\frac{sinx}{x}\right)^2$$

$$= 2 \left(\frac{Lim}{x \to 0} \frac{sinx}{x}\right)^2$$

$$\frac{Lim}{x \to 0} \frac{sinx}{x} = 1$$

$$=2(1)^{2}$$

= 2 Ans.

Topic IV: Continuous and Discontinuous Function

34: Discuss continuity of $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases}$

' (C.W)' (4 times)

Sol: Let f(x) be a continuous function at x = 3

(i) f(3) = 6 be defined at x = 3

(ii) $Lim \atop x \to 3 \atop Lim \atop x \to 3$ f(x) be exists. $Lim \atop x \to 3$ f(x) $= \frac{Lim}{x \to 3} \frac{x^2 - 9}{x - 3} = \frac{Lim}{x \to 3} \frac{(x - 3)(x + 3)}{(x - 3)}$ $= \frac{Lim}{x \to 3} (x + 3)$ = 3 + 3 = 6

(iii)
$$\lim_{x \to 3} f(3) = f(3)$$

6 = 6

Hence f(x) be a continuous function at $x \approx 3$

Discuss continuity of f(x) at 3. When f(x) = $\begin{cases} x-1 & \text{if } x < 3 \\ 2x+1 & \text{if } x \ge 3 \end{cases}$ (H.W) (2 times) 35: '

Let function be defined at x = 3Sol:

(i)
$$f(3) = 2(3) + 1 = 6 + 1 = 7$$

(ii) Let
$$\lim_{x \to 3} f(x)$$
 will be exists.

If
$$\lim_{x \to 3} f(x) = \lim_{x \to 3} + f(x)$$

$$\frac{Lim}{x \to 3} f(x) = \frac{Lim}{x \to 3^{-}} (x - 1) = 3 - 1 = 2$$

$$Lim \atop x \to 3 f(x) = Lim \atop x \to 3^{+} (2x + 1) = 2(3) + 1 = 6 + 1 = 7$$

Since
$$\lim_{x \to 3^-} x \to 3^+$$

 $\lim_{x \to 3^-} f(x) \neq \lim_{x \to 3^+} f(x)$

Cóndition (II) is not satisfied

Hence f(x) is not continues at x = 3

36: Define Continuity.

Sol: A Function f is said t

o be continuous at 'c' iff the following three conditions are satisfied.

(i)
$$f(c)$$
 is defined (ii) $x \to c$ $f(x)$ exists

(iii)
$$\frac{Lim}{x \to c} f(x) = f(c).$$

(i) f(c) is defined (ii)
$$\frac{Lim}{x \to c}$$
 f(x) exists (iii) $\frac{Lim}{x \to c}$ f(x) = f(c).

37. Discuss continuity of function $f(x) = \begin{cases} 2x + 5 & \text{if } x \le 2 \\ 4x + 1 & \text{if } x > .2 \end{cases}$ at x=2 (C.W)

Sol Given

$$f(x) = \begin{cases} 2x+5 & \text{if } x \le 2 \\ 4x+1 & \text{if } x > 2 \end{cases}$$

.. be a continuous function at x = 2

(i)
$$f(2) = 2(2) + 5 = 9$$

(ii)
$$x \to 2$$
 $y(x)$ be exists.

L.H.L =
$$\frac{Lim}{x \to 2} f(x)$$

L.H.L =
$$\lim_{x \to \overline{2}} (2x+5)$$
$$= 2(2)+5$$

$$R.H.L = \lim_{x \to 2} f(x)$$

$$= Lim \atop x \to 2 = 4(2)+1 = 8+1 = L.H.L = R.H.L Lim So $x \to 2$ be exists
$$f(2) = \frac{Lim}{x \to 2} f(x)$$
 (iii) $f(2) = \frac{Lim}{x \to 2} f(x)$$$

Hence all conditions of continuous function be satisfy. So f(x) be a continuous function

x = 2 Ans.

38. If
$$f(x) = \begin{cases} x+2 & x \le -1 \\ c+2 & x > -1 \end{cases}$$
, Find 'c'. So that $\lim_{x \to -1} f(x)$ exists. (H.W)

Since $\lim_{x \to -1} f(x)$ be exists

Right hand limit Left Hand limit

$$\lim_{x \to -\bar{1}} f(x) = \lim_{x \to -1} f(x)$$

$$\lim_{x \to -1} (x+2) = \lim_{x \to -1} (c+2)$$

$$-1+2 = c+2$$

$$1 = c+2$$

$$-1 = c$$

$$c = -1$$

39.
$$f(x) = \frac{x}{x^2 - 4}$$
, Find the domain and range of $f(x)$. (C.W)

Sol: At x = 2 and x = -2, $f(x) = \frac{x}{x^2 - 4}$ is not defined.

Domain of f(x) = Set of all real number except – 2 and 2 Range of f(x) = Set of all real numbers

40. Find
$$f \circ g(x)$$
 if $f(x) = \frac{1}{\sqrt{x-1}}$, $g(x) = \frac{1}{x^2}$, $x \neq 1$ (H.W)

Sol: Given
$$f(x) = \frac{1}{\sqrt{x-1}}, \ g(x) = \frac{1}{x^2}$$
Now
$$fog(x) = f(g(x))$$

$$fog(x) = f(\frac{1}{x^2})$$

$$fog(x) = \frac{1}{\sqrt{\frac{1}{x^2} - 1}}$$
 = $\frac{1}{\sqrt{\frac{1 - x^2}{x^2}}}$
 $fog(x) = \frac{1}{\sqrt{1 - x^2}} = \frac{x}{\sqrt{1 - x^2}}$ Ans.

41. Find value of 'm' so that f is continuous at
$$x = 3$$
: $f(x) = \begin{cases} mx & \text{if } x < 3 \\ x^2 & \text{if } x \ge 3 \end{cases}$ (H.W)

Sol: Since f(x) be a continuous function so $\frac{Lim}{x \to 3} f(x)$ exist.

So
$$\lim_{x \to \overline{3}} f(x)$$
 be exists
As Left hand limit

Left hand limit = Right hand limit
$$x \to \overline{3} f(x) = \lim_{x \to 3^+} f(x)$$

$$\lim_{x \to \overline{3}} (mx) = \lim_{x \to 3^+} f(x)$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} f(x)$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} f(x)$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+}$$

42. Determine whether function
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$
 is even or odd. (H.W)

Sol: Given
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$

Replace x by $-x$

$$f(-x) = \frac{(-x)^3 - (-x)}{(-x)^2 + 1} = \frac{-x^3 + x}{x^2 + 1} = -\left(\frac{x^3 - x}{x^2 + 1}\right).$$

$$f(-x) = -f(x)$$

Hence f(x) in an odd function

43. Evaluate
$$\lim_{x \to 0} \frac{\sec x - \cos x}{x}$$
 (H.W

Sola

$$\lim_{x \to 0} \frac{\sec x - \cos x}{x} \left(\frac{0}{0} \text{ form} \right)$$

$$= \lim_{x \to 0} \frac{\frac{1}{\cos x} - \cos x}{x}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x}$$

$$= \lim_{x \to 0} \frac{\sin^2 x}{x \cos x}$$

$$\lim_{x \to 0} \frac{\sin x}{x} \frac{\sin^2 x}{\cos x}$$

$$\lim_{x \to 0} \frac{\sin x}{x} \frac{\sin^2 x}{\cos x}$$

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree

Guess Papers, Past Papers & Notes

Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available 👇

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

$$\lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \tan x$$

$$\lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \tan x$$

$$= 1. (0)$$

$$= 1. \tan 0 = 0$$
An

44. For the function
$$f(x) = -2x + 8$$
, find $f^{-1}(x)$

Sol: Given
$$f(x) = -2x + 8$$
, $f^{-1}(x) = ?$

Let
$$f(x) = -2x + 8 = y$$

 $\Rightarrow -2x + 8 = y$
 $\Rightarrow -2x = y - 8$
 $\Rightarrow x = \frac{y - 8}{-2}$

or
$$\Rightarrow x = \frac{8 - y}{2} \rightarrow (i)$$

Now
$$y = f(x)$$

Now
$$y = f(x)$$

then $f^{-1}(y) = x$ from (i)

$$\Rightarrow f^{-1}(y) = \frac{8-y}{2} \text{ Replace "} y \text{" by } x.$$

$$\Rightarrow f^{-1}(x) = \frac{8-x}{2}$$
 which is required.

45. Evaluate:
$$\lim_{x\to 0} \frac{x-3}{\sqrt{x}-\sqrt{3}}$$

Sol: Given
$$\lim_{x\to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}} \left(\frac{0}{0} \text{ form} \right)$$

$$= \lim_{x \to 3} \frac{x-3}{\sqrt{x} - \sqrt{3}} \times \frac{\sqrt{x} + \sqrt{3}}{\sqrt{x} + \sqrt{3}}$$

$$= \lim_{x \to 3} \frac{(x-3)(\sqrt{x} + \sqrt{3})}{(\sqrt{x} - \sqrt{3})(\sqrt{x} + \sqrt{3})}$$

$$\because (a-b)(a+b) = \dot{a}^2 - b^2$$

$$= \lim_{x \to 3} \frac{(x-3)(\sqrt{x} + \sqrt{3})}{(\sqrt{x})^2 - (\sqrt{3})^2}$$
$$(x-3)(\sqrt{x} + \sqrt{3})$$

$$= \lim_{x \to 3} \frac{(x-3)(\sqrt{x} + \sqrt{3})}{(x-3)}$$

$$=\lim_{x\to 3}\left(\sqrt{x}+\sqrt{3}\right)$$

$$=\sqrt{3}+\sqrt{3}=2\sqrt{3}$$

So
$$\lim_{n \to 3} \frac{x-3}{\sqrt{x} - \sqrt{3}} = 2\sqrt{3}$$

46. Express the area "A" of a circle as a function of its circumference "C". (H.W)

Sol: Consider a circle with centre at O and radius "x"

21

Then circumference of circle

i.e.
$$c = 2\pi x$$

$$\Rightarrow \frac{c}{2\pi} = x \quad \rightarrow \quad (1) \qquad \qquad 0$$

niso

area of circle

i.e

$$A = \pi x^2$$

from (i)

$$A = \pi \left(\frac{c}{2\pi}\right)^2$$
$$A = \frac{\pi c^2}{4\pi^2}$$

$$A = \frac{c^2}{4\pi}$$

Which is required.

47. For the real valued function $f(x) = \frac{2x+1}{x-1}$ find $f^{-1}(x)$ and $f^{-1}(-1)$ (C.W)

Sol:

$$f^{-1}(x) = ?$$
 and $f^{-1}(-1) = ?$

Given
$$f(x) = \frac{2x+1}{x-1}$$

Let
$$y = \frac{2x+1}{x-1}$$

$$\Rightarrow y(x-1)=2x+1$$

$$\Rightarrow xy - y = 2x + 1$$

$$\Rightarrow xy - 2x = y + 1$$

$$\Rightarrow x(y-2)=y+1$$

$$x = \frac{y+1}{y-2} \to (1)$$

then
$$y = f(x)$$

$$\Rightarrow f^{-1}(y) = x$$
 from (i),

$$f^{-1}(y) = \frac{y+1}{y-2}$$
 Replace "y" by "x"

$$f^{-1}(x) = \frac{x+1}{x-2}$$
Also replace "x" by -1
$$\Rightarrow f^{-1}(-1) = \frac{-1+1}{-1-2} = \frac{0}{-3} = 0$$

$$\Rightarrow f^{-1}(-1) = 0$$

Which is required

48.
$$f(x) = \sqrt{x+4}$$
, find $f(x^2+4)$

Sol:
$$f(x^2+4)=?$$

Given
$$f(x) = \sqrt{x+4}$$

Replace x by " $x^2 + 4$ " we get

$$f(x^2+4) = \sqrt{x^2+4+4}$$

$$f(x^2+4)=\sqrt{x^2+8}$$
 which is required.

49.
$$f(x) = 3x^4 - 2x^2$$
, $g(x) = \frac{2}{\sqrt{x}}$ find $f(g(x))$

Sol:
$$f(g(x)) = ?$$

Given
$$f(x) = 3x^4 - 2x^2$$
 and $g(x) = \frac{2}{\sqrt{x}}$

$$f(g(x)) = f\left(\frac{2}{\sqrt{x}}\right)$$

$$f(g(x)) = 3\left(\frac{2}{\sqrt{x}}\right)^4 - 2\left(\frac{2}{\sqrt{x}}\right)^2.$$

$$f(g(x)) = 3\left(\frac{16}{x^2}\right) - \frac{8}{x}$$

(L.C.M)

$$f(g(x)) = \frac{48-8x}{x^2}$$

$$f(g(x)) = \frac{6(6-x)}{x^2}$$

Which is required.

50. Evaluate:
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta}$$

(C.W)

Sol: Given
$$\lim_{\theta \to 0} \frac{1-\cos\theta}{\sin\theta}$$
 $\left(\frac{0}{0} form\right)$

$$= \lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta} \times \frac{1 + \cos \theta}{1 + \cos \theta}$$

$$=\lim_{\theta\to0}\frac{(1-\cos\theta)(1+\cos\theta)}{\sin\theta(1+\cos\theta)}$$

$$(a-b)(a+b)$$

$$= a^2 - b^2$$

$$= \lim_{\theta \to 0} \frac{\left(1^2 - \cos^2 \theta\right)}{\sin \theta \left(1 + \cos \theta\right)}$$

$$= \lim_{\theta \to 0} \frac{\left(1 - \cos^2 \theta\right)}{\sin \theta \left(1 + \cos \theta\right)}$$

$$= \lim_{\theta \to 0} \frac{\sin^2 \theta}{\sin \theta \left(1 + \cos \theta\right)}$$

$$= \lim_{\theta \to 0} \frac{\sin \theta}{1 + \cos \theta}$$

$$= \frac{\sin \theta}{1 + \cos \theta} = \frac{\theta}{1 + 1} = \frac{0}{2} = 0$$

$$\cos \theta = 1$$
So
$$= \lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta} = 0$$

ACCORDING TO ALP SMART SYLLABUS-2020

1. Solve that parametric equations $x = a\cos\theta$, $y = b\sin\theta$ represent the equation of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (H.W)

Topic II: Composition of Functions and Inverse of Function

2. For the real valued function f, defined below find:

(H.W)

(i)
$$f^{-1}(x)$$
 (ii) $f^{-1}(-1)$ and verify $f(f^{-1}(x)) = f^{-1}(f(x)) = x$, if $f(x) = (-x+9)^3$

Topic III: Limit of Function

3. Evaluate
$$\lim_{\theta \to 0} \frac{1-\cos p\theta}{1-\cos q\theta}$$

(H.W) (2 times)

4. Evaluate
$$\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$$

(H.W) (4 times)

Tapic IV' Continux and Discontinux Function:

4. If
$$f(x) = \begin{cases} 3x & \text{if } x \le -2 \\ x^2 - 1 & \text{if } -2 < x < 2 \end{cases}$$
 discuss continuity at $x = 2$ and $x = -2$.

(C.W) (3 times)

5. Discuss the continuity of
$$f(x)$$
 at $x = 2$ if $f(x) = \begin{cases} 2x + 5 & \text{if } x \le 2 \\ 4x + 1 & \text{if } x > 2 \end{cases}$ (C.W)

6. If
$$f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$$
 find the value of k so that f is continuous at $x = 2$. (C.W) (9 times)

7. Discuss the continuity of $f(x) = \begin{cases} 3x-1, & \text{if } x < 1 \\ 4, & \text{if } x = 1 \\ 2x, & \text{if } x > 1 \end{cases}$ (H.W)

Chapter-1 (Examples According to ALP Smart Syllabus

Example 2: (Page#22)

(C.W)

Evaluate
$$\lim_{x \to \infty} \frac{5x^4 - 10x^2 + 1}{-3x^3 + 10x^2 + 50}$$

Sol: Dividing up and down by x3, we get

$$\lim_{x \to \infty} \frac{5x^4 - 10x^2 + 1}{-3x^3 + 10x^2 + 50} = \lim_{x \to \infty} \frac{5x - 10/x + 1/x^3}{-3 + 10/x + 50/x^3}$$
$$= \frac{\infty - 0 + 0}{-3 + 0 + 0} = \infty$$

Example 4: (Page#22)

(C.W)

Evaluate (i)
$$\lim_{x \to -\infty} \frac{2 - 3x}{\sqrt{3 + 4x^2}}$$

(ii)
$$\lim_{x \to +\infty} \frac{2-3x}{\sqrt{3+4x^2}}$$

Sol: Here
$$\sqrt{x^2} = |x| = -x \text{ as } x < 0$$

Dividing up and down by -x, we get

$$\lim_{x \to \infty} \frac{2 - 3x}{\sqrt{3 + 4x^2}} = \lim_{x \to \infty} \frac{-2/x - 3}{\sqrt{3/x^2 + 4}} = \frac{0 + 3}{\sqrt{0 + 4}} = \frac{3}{2}$$

(ii)
$$\lim_{x \to \infty} \frac{2-3x}{\sqrt{3+4x^2}} = \lim_{x \to \infty} \frac{2/x-3}{\sqrt{3/x^2+4}} = \frac{0-3}{\sqrt{0+4}} = \frac{-3}{2}$$
 (Dividing up and down by x)

Example 7: Evaluate:
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta}$$
 (Page#26)

Sol:
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = \frac{1 - \cos \theta}{\theta}, \frac{1 + \cos \theta}{1 + \cos \theta}$$

$$=\frac{1-\cos^2\theta}{\theta(1+\cos\theta)}=\frac{\sin^2\theta}{\theta(1+\cos\theta)}=\sin\theta\left(\frac{\sin\theta}{\theta}\right)\left(\frac{1}{1+\cos\theta}\right)$$

$$\lim_{\theta \to 0} \left(\frac{1 - \cos \theta}{\theta} \right) = \lim_{\theta \to 0} \sin \theta \cdot \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \lim_{\theta \to 0} \left(\frac{1}{1 + \cos \theta} \right)$$

$$=(0)(1)\left(\frac{1}{1+1}\right)=0$$

OBJECTIVES (MCQ'S) OF CHAPTER-2 **ACCORDING TO ALP SMART SYLLABUS-2020**

Topic I: Derivative of a function by definition

1.	Notation for derivative was used by Newton is:	(1 time)
۱ ام		1- 41114)
(A) 4	IDI DELLI ICI CALLI	in the second

(A)
$$\frac{f}{dx}$$
 (B) Df(x)

(C)
$$f^*(x)$$
 (D) $f(x)$

2.
$$\lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x} = \frac{\text{(6 times)}}{\text{(A) } f'(x)}$$
(A) $f'(x)$ (B) $f'(a)$ (C) $f'(2)$ (D) $f'(0)$
3. The notation used by Lagrange for derivative is: (2 times)

(A)
$$f'(x)$$
 (B) $f'(a)$ (C) $f'(2)$ (D) $f'(0)$
3: The notation used by Lagrange for derivative is: (2 times)

(A)
$$\frac{df}{dx}$$
 (B) $f^*(x)$ (C) $f'(x)$ (D) $Df(x)$

4.
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = (2 \text{ Times})$$
(A) $f'(x)$ (B) $f'(a)$ (C) $f'(2)$ (D) $f'(0)$

Topic II: Direct Differentiation:

5.
$$\frac{d}{dx}(\ln 3x) =$$
 (3 times)

$$-(A) \frac{1}{3x}$$
(B) $\frac{3}{x}$
(C) $3x$

6. The derivative of
$$\sqrt{x}$$
 at $x = a$ is: (2 times)
(A) $\sqrt{2a}$ (B) $\frac{1}{\sqrt{2a}}$ (C) $\sqrt[3]{a}$ (D) $\frac{1}{2\sqrt{a}}$

7.
$$\frac{d}{d}\left(\frac{1}{d}\right)$$
 is equal to (4 times)

7.
$$\frac{d}{dx}\left(\frac{1}{ax+b}\right) \text{ is equal to}$$
(A)
$$\frac{1}{(ax+b)^2}$$
(B)
$$\frac{a}{(ax+b)^2}$$
(C)
$$\frac{-a}{(ax+b)^2}$$
(D)
$$\ln(ax+b)$$

8. If
$$f(x) = \frac{1}{x^2}$$
 then $f'(x) = \underline{\qquad}$ (4 times)

(A) 1 (B)
$$\frac{1}{(ax+b)^2}$$
 (C) $\frac{1}{(ax+b)^2}$ (A) 1 (B) -1 (C) $\frac{1}{2}$ (D) $\frac{-2}{x^3}$

(A) dy' (B) $\frac{dy}{dx}$ (C) dx (D) dy

10. If
$$y = x + \frac{1}{x}$$
 then $\frac{dy}{dx} = \frac{1}{x^2}$ (3 times)

10. If
$$y = x + \frac{1}{x}$$
 then $\frac{dy}{dx} = \frac{1}{x}$ (C) $1 - \frac{1}{x}$ (D) $1 - \frac{1}{x^2}$

11. If $y = x^{-3/2}$ then $\frac{dy}{dx}$ is: (3 times)

(A) $-\frac{3}{2}x^{-1/2}$ (B) $-\frac{3}{2}x^{1/2}$ (C) $-3x^{3/2}$ (D) $\frac{-3}{2}x^{-5/2}$

12. $\frac{d}{dx}(x^3)$ is equal to: (4 times)

11. If
$$y = x^{-3/2}$$
 then $\frac{dy}{dx}$ is: (3 times)

(A)
$$-\frac{3}{2}x^{-1/2}$$
 (B) $-\frac{3}{2}x^{1/2}$ (C) $-3x^{5/2}$ (D) $\frac{-3}{2}x^{-5}$

12.
$$\frac{d}{d}(x^3)$$
 is equal to: (4 times)

(a)
$$\frac{x^3}{x^2}$$
 (b) x^2 (c) $3x^2$ (d) $4x^4$

13.	$\frac{d}{dx} \left(\frac{g(x)}{f(x)} \right) $ is equal to
(A) I	$\frac{(x)g'(x)-g(x)f'(x)}{(f(x))^{1}}$
44,-	$(f(x))^1$
(C) 8	(x)f'(x)-f(x)g'(x)

(B)
$$\frac{g(x)f'(x) - f(x)g'(x)}{(f(x))^2}$$

(D)
$$\frac{f(x)g'(x) - g(x)f'(x)}{(g(x))^4}$$

14. If
$$f(x) = x^{\frac{2}{3}}$$
 then $f'(8) =$ _____

(A)
$$\frac{1}{2}$$

(B)
$$\frac{2}{3}$$

(C)
$$\frac{1}{3}$$
 (D) 3

(2 times)

15.

(6 times)

(C)
$$2x\frac{dy}{dx}$$

(D)
$$2x \frac{dx}{dy}$$

(4 times)

(A)
$$\frac{2}{x^2}$$

(B)
$$\frac{-2}{x^2}$$

(C)
$$\frac{1}{2x^2}$$

(D)
$$\frac{-1}{2x^2}$$

17.

(3 times)

18.
$$\frac{d}{dx}\left(\frac{x-1}{x}\right) = \frac{1}{1-x}$$

$$10 \quad \frac{d}{d} \leq f(x) \text{ is some}$$

19.
$$\frac{d}{dx} 5f(x)$$
 is equal to.

(c)
$$5 f'(x)$$

20.
$$\frac{d}{dx}(x-\frac{1}{x})$$
 is equal to.

(a)
$$1 - \frac{1}{x}$$
 (b) $1 + \frac{1}{x}$

(b)
$$1 + \frac{1}{x}$$

(c)
$$1 + \frac{1}{v^2}$$

(d)
$$1 - \frac{1}{v^2}$$

21. If
$$f(x) = 3 - \sqrt{x}$$
 then $f'(1) =$

(a)
$$\frac{3}{2}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{-1}{2}$$

(d)
$$\frac{-1}{\sqrt{2}}$$

22. If
$$y = x - \frac{1}{x}$$
, then $\frac{dy}{dx} = \frac{1}{x}$

(a)
$$1 + \frac{1}{r^2}$$

(b)
$$1 - \frac{1}{r^2}$$

(c)
$$1 + \frac{1}{x}$$

(d)
$$1 - \frac{1}{x}$$

23. If
$$3x + 4y - 7 = 0$$
, then $\frac{dy}{dx}$

(a)
$$\frac{3}{4}$$

(b)
$$\frac{-3}{4}$$

(c)
$$\frac{4}{3}$$

(d)
$$\frac{-4}{3}$$

$$24. \frac{4}{dx} \left(\frac{1}{\sqrt{x}}\right) =$$

$$(A) \frac{1}{2x\sqrt{x}}$$

$$-\frac{1}{2x\sqrt{x}}$$

$$(C) \frac{1}{2} x \sqrt{x}$$

(2 times)

$$25, \quad \frac{d}{dx} \left[\frac{x}{a} \right] =$$

$$(A)\frac{x}{a^2}$$

(C)
$$\frac{1}{a^2}$$

$$(D)\frac{x^2}{a^2}$$

$$(A) \frac{2}{\sqrt{x-9}}$$

(B)
$$\frac{-1}{2\sqrt{x-9}}$$

$$\{C\} \frac{1}{2\sqrt{x-9}}$$

(D)
$$\sqrt{x-9}$$

27.
$$\frac{d}{dx}x^n$$
 is equal to:

If
$$f(x+h) = cos(x+h)$$
, then $f'(x)$ equals:
 $f'(x) = cos(x+h)$, then $f''(x)$ equals:

29.
$$f(x) = \frac{1}{x-2}$$
 then $f'(2) =$

30.
$$\frac{d}{dx}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2 =$$

(A)
$$1 - \frac{1}{2x}$$

(B)
$$1 + \frac{1}{r^2}$$

(D)
$$1 - \frac{1}{x^2}$$

31.
$$\frac{d}{dx}(x^2+1)^2 =$$

(A)
$$2(x^2 + 1)$$

(B)
$$\frac{(x^2+1)^3}{3}$$

(C)
$$2x(x^2+1)$$

(D)
$$4x(x^2+1)$$

$$32. \qquad \frac{d}{dx}\left(3x^{4/3}\right) =$$

33.
$$(f \circ g)'(x) =$$

(A)
$$f'(g(x))$$

(B)
$$f(g'(x))$$

(C)
$$f(g(x)).g'(x)$$

(D)
$$f'(g(x)).g'(x)$$

34.
$$\frac{d}{dx}(x^3+4)^{\frac{1}{3}}$$
 is equal to:

(A)
$$x(x^3+4)^{\frac{-3}{2}}$$
 (B) $(x^3+4)^{\frac{-2}{3}}2x^2$

(B)
$$(x^3+4)^{\frac{-2}{3}}2x^2$$

(C)
$$x^2 (x^3 + 4)^{\frac{-2}{3}}$$

$$_{3}(D)(x^{3}+4)^{\frac{4}{8}}$$

35. If
$$f(x) = \frac{2}{x^3}$$
 then $f'(2)$ is equal to:

$$(A)^{\frac{3}{6}}$$

(B)
$$\frac{5}{8}$$

$$(C)^{\frac{1}{2}}$$

(D)
$$\frac{-3}{9}$$

$$36. \qquad \frac{d}{dx} \left(\frac{1}{g(x)} \right) =$$

$$\{A\}\frac{g'(x)}{g(x)}$$

(B)
$$\frac{-g^{t}(x)}{g(x)}$$

(C)
$$\frac{-g^{\flat}(\bar{x})}{(g(x))^2}$$

(D)
$$\frac{g'(x)}{(g(x))^2}$$

Topic III: Chain Rule:

37.
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
 is called

(A) Product rule

39. If
$$y = \cos x$$
, $u = \sin x$ then $\frac{dy}{dx} = \frac{1}{2}$

$$(B) - cotx$$

(C)
$$-\tan x$$

(A) 9
$$(x^3 + 1)^8$$
 (B) $27x^2(x^3 + 1)^9$

(C)
$$3x^2(x^3+1)^8$$

(D)
$$27x(x^3+1)^8$$

Topic IV: Derivative of Tringnometric Functions:

41. If
$$y = \cos \sqrt{x}$$
, then $\frac{dy}{dx} =$

(A)
$$-\sin\sqrt{x}$$

(B)
$$\frac{\cos\sqrt{x}}{\sqrt{x}}$$

$$(C) \frac{-\sin\sqrt{x}}{2\sqrt{x}}$$

(D)
$$\frac{\cos\sqrt{x}}{\sqrt[3]{x}}$$

42.
$$\frac{d}{dx}(\cos ec^2x - \cot^2x)$$
 is:

(A)
$$\cot^2 x + \cos ec^2 x$$

(B)
$$-2\cos ecx \cot x + 2\cot x \cos ec^2$$

(D) $\sec^2 x + \tan^2$

43.	$\frac{d}{dx}\cos 2x$	ls ;
-----	-----------------------	------

- (C) $-2\sin 2x$

44.
$$\frac{d}{dx}(\sqrt{\tan x}) = \frac{1}{1-x}$$

- (A) $\frac{dx}{2\sqrt{\tan x}}$ (B) $\frac{1}{2}\sqrt{\tan x}.\sec^2 x$ (C) $\frac{1}{2}\tan^{\frac{3}{2}}x.\sec^2 x$ (D) $\frac{\sec^2 x}{\sqrt{\tan x}}$

$$\frac{d}{dx}\sin^{-1}\frac{x}{a} = \frac{1}{1-x}$$

- (A) $\frac{a}{\sqrt{a^2-v^2}}$ (B) $\frac{-a}{\sqrt{a^2-v^2}}$
- (C) $\frac{-1}{\sqrt{a^2-x^2}}$ (D) $\frac{1}{\sqrt{a^2-x^2}}$

- 46. $\frac{d}{dx}(\tan^{-1}x + \cot^{-1}x)$ is equal to
- (C)1
- · (2 times)

(D) 2

- 47. $\frac{d}{dx}(\sin \sqrt{x})$ is equal to
- (3 times)

- (A) $\cos \sqrt{x}$ (B) $\frac{-\cos \sqrt{x}}{2\sqrt{x}}$ (C) $\frac{\cos \sqrt{x}}{2\sqrt{x}}$
- (D) $\frac{\cos\sqrt{x}}{\sqrt{x}}$

48. $\frac{d}{dx}(\cot^{-1}x) =$ _____

(3 times)

- (A) $\frac{1}{1-x^2}$ (B) $\frac{1}{1-x^2}$
- (C) $\frac{-1}{1-x^2}$
- (D) $\frac{-1}{1-x^2}$

49. If $f(x) = \sin x$ then $f'(0) = ______$

(2 times) (D)'x-

- :: (1 time)

- (A) $\cos ec^2 ax$ (B) $a \cos ec^2 ax$ (C) $-a \cos ec^2 ax$ (D) $\frac{a \cos ec^2 ax}{a}$
- 51. $\frac{d}{dx}(\sin^{-1}x)$ is:

 $50. \qquad \frac{d}{d}(\cot ax) = \underline{\hspace{1cm}}$

(11 times)

- (A) $\frac{1}{x\sqrt{x^2-1}}$ (B) $\frac{-1}{x\sqrt{x^2-1}}$
- (C) $\frac{1}{1+x^2}$ (D) $\frac{1}{\sqrt{1-x^2}}$
- 52. $\frac{d}{dx}(\tanh^{-1}x) =$ _____

(5 times)

- (A) $\frac{1}{1+r^2}$ (B) $\frac{1}{1-r^2}$
- (C) $\frac{-1}{1-x^2}$

53. $\frac{d}{dx} \left(\frac{1}{\sec x} \right)$ is equal to:

(3 times)

- (A) $\frac{d}{dx}\sin x$
 - (B) $\frac{d}{dt}\cos ecx$
- (C) $\frac{d}{dx}\cos x$
 - (D) $\frac{d}{dt}\cot x$

54. $\frac{d}{dx}(\sin x^3)$ is equal to:

(3 times)

- (A) cos x
- (B) $-\cos x^3$
- (C) $x^2 \sin x^3$
- (D) $3x^2\cos x^3$

55. $\frac{1}{1+x^2}$ is the derivative of:

(4 times)

- (A) sin⁻¹ x
- (B) sec-1 x
- (C) $tan^{-1}x$
- (D) cot-1 x

56. If
$$f(x) = \tan^{-1} x$$
 then $f'(\cot x) =$ _____

(4 times)

(A)
$$\frac{1}{1+x^2}$$

(D) sec² x

57.
$$\frac{d}{dx}(\sinh 3x) =$$
(A) 3 sinh 3x (B) 3 cosh 3x (C) cosh 3x

(6 times)

nh 3x (B) 3 cosh 3x
If
$$f(x) = \sin x$$
 then $f'(\pi) =$

59.
$$\frac{d}{dx}(-\cot x)$$
 equals:

(A)
$$\sec^2 x$$
 (B) $\csc^2 x$ (C) $-\cos^2 x$ (D) $-\sec^2 x$

$$f(x) = Sec^{-1} x$$
 then $f'(x) =$

61.
$$\frac{d}{dx}(\cosh x)$$
 is equal to.
(a) $\sinh x$ (b) $-\sinh x$

(3 Times)

62.
$$\frac{d}{dx}(\cot x)$$

$$63. \qquad \frac{d}{dx}(\cosh^{-1}x) =$$

(a)
$$\frac{1}{\sqrt{x^2-1}}$$
 (b) $\frac{1}{\sqrt{1+x^2}}$ (c) $\frac{-1}{\sqrt{x^2-1}}$ (d) $\frac{1}{\sqrt{1-x^2}}$

$$(b) \frac{1}{\sqrt{1+x^2}}$$

(c)
$$\frac{-1}{\sqrt{x^2-1}}$$

(d)
$$\frac{1}{\sqrt{1-x^2}}$$

64. If
$$f(x) = \tan x$$
, then $f'(\frac{\pi}{4})$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{1}{\sqrt{2}}$$

65. Derivative of cos x² w.r.t.x equals. (a) 2x Sinx² (b) -2x Sinx²

66. If
$$\sqrt{Cotx} = y$$
, then $\frac{dy}{dx} = :$

(a)
$$\frac{\cos \sec^2 x}{2\sqrt{\cot x}}$$

(b)
$$\frac{-\cos \sec^2 x}{2\sqrt{\cot x}}$$
 (c) $\frac{2\sqrt{\cot x}}{\cos \sec^2 x}$

(c)
$$\frac{2\sqrt{\cot x}}{\cos \sec^2 x}$$

$$(d) \frac{-2\sqrt{\cot x}}{\cos \sec^2 x}$$

$$67. \qquad \frac{d}{dx}(Co\sec hx)$$

$$68. \qquad \frac{d}{dx} \left[\frac{1}{\sin x} \right] =$$

(a)
$$\frac{1}{\cos x}$$

$$(b) - \frac{\sin x}{\cos x}$$

(c)
$$Co \sec^2 x$$
 (d) $-\cos ecx \cot x$

$$69. \qquad \frac{1}{2} \frac{d}{dx} (\sin x^2) =$$

(c)
$$2x \cos^2 x$$
 (d) $2 \cos x^2$

70.
$$\frac{d}{dx}(\cos x^2) =$$

(B)
$$2x \cos x^2$$
 (C) $4x^2 \cos x^2$

(A) Sec:
$$\frac{d}{dx}$$
 (Cot-1x) =

(B)
$$\frac{1}{\sqrt{1-x^2}}$$

(C)
$$\frac{1}{\sqrt{m^2-4}}$$

(C) Secxtanx

(D) -Secktany

73. Derivative of In (1-cos x)w.r.t x equals

(B) Cosecx

74. $\frac{d}{dx}$ (sin 2x) is equal to

(C)
$$\frac{\cos 2x}{2}$$

$$(D) \frac{-\cos 2}{2}$$

 $\frac{a}{dx}$ (sinhx) is equal to :

 $\frac{d}{dx}$ (-cosec x) =

If $y = \sec\left(\frac{3\pi}{3} - x\right)$, then y_1 equals:

78.
$$f(x) = \cot x \text{ then } f'(\pi/6) = -1$$

$$(D) - 1/4$$

$$79. \ \frac{d}{dx} \cot^2 2x =$$

(A) 4 cot 2x cosec 2x (B) -4 cot 2x cosec² 2x (C) 4 cot² 2x cosec 2x (D) -4 cot 2x

80. If
$$f(x) = \cos x$$
 then $f'(\frac{\pi}{2}) =$:

$$(C)^{\frac{1}{2}}$$

81.
$$\frac{d}{dx} (\tan h^{-1} x) =$$

$$(A) \frac{1}{1+x^2}$$

$$(B) \frac{1}{1-x^2}$$

(C)
$$\frac{1}{x^2-1}$$

(D)
$$\frac{-1}{1+x^2}$$

82. If
$$y = \sin^{-1} \sqrt{x}$$
, then $\frac{dy}{dx}$ equals.

$$(A) \frac{1}{2\sqrt{x}\sqrt{1-x^2}}$$

$$(B) \frac{-1}{2\sqrt{x}\sqrt{1-x^2}}$$

$$(C) \frac{1}{2\sqrt{x}\sqrt{1-x}}$$

(D)
$$\frac{1}{\sqrt{x}\sqrt{1-x}}$$

83.
$$\frac{d}{dx}$$
 ($cos^{-1}x$) is equal to:

$$(A) \frac{1}{\sqrt{1-x^2}}$$

(B)
$$\frac{-1}{\sqrt{1-x^2}}$$

(C)
$$\frac{1}{1+x^2}$$

(D)
$$\frac{-1}{1+x^2}$$

84.
$$\frac{d}{dx}$$
 (sec hx) is equal to:

$$(A) \sec x \tan x$$

(8)
$$-\sec x \tan x$$

$$(C) - secc hx tan hx$$
 (D) $sec hx tan hx$

85.
$$\frac{d}{dx}(\sec x) =$$
(A) $\sec x \tan x$

(B)
$$-\sec x \tan x$$

(C)
$$sec^2 x$$

$$86. \quad \frac{d}{dx} \left(\cos h^{-1} x\right) =$$

$$(A) \frac{1}{\sqrt{1+x^2}}$$

(B)
$$\frac{-1}{\sqrt{1-x^2}}$$

(C)
$$\frac{1}{\sqrt{x^2-1}}$$

$$(D) \frac{-1}{\sqrt{x^2-1}}$$

Topic V: Derivative of exponential and Logrithmic Function:

87. If
$$y = ln(f(x))$$
, then $\frac{dy}{dx} =$

$$\frac{f'(x)}{f(x)\ln a}$$

$$\begin{array}{c} \textbf{(B)} \ \frac{f'(x)}{f(x)} \end{array}$$

$$\cdot$$
 (C) $f(x)$

(D)
$$\frac{1}{f(x)}$$

88.
$$\frac{\mathrm{d}}{\mathrm{d}x}[\ell n(\ell nx)] =$$

(A)
$$\frac{1}{x}$$

(B)
$$\frac{1}{x \ell n a}$$

(C)
$$\frac{1}{x \ln x}$$

(D)
$$\frac{x}{\ln x}$$

- (B) a' Ina
- (C) $\frac{a^x}{lna}$

- 90. $\frac{d}{dx}\log_{x}x^{\frac{1}{2}}$
 - (8) $\frac{1}{x} \log a$

(5 times)

(5 times)

- If $y = \ell n(\tan hx)$ then $\frac{dy}{dx}$ is:
- (A) $\operatorname{sec} h^2 x \operatorname{coth} x$ (B) $2 \operatorname{cos} \operatorname{ech} 2x$ (C) $\operatorname{sec} hx \operatorname{coth}^2 x$
- (D) $-2\sec hx \coth x$

- 92. $\frac{d}{dx}(2^{\sqrt{x}})$ equals:
 - (B) $2^{\sqrt{x}} \ln 2$ (C) $\frac{2^{\sqrt{x}} \ln 2}{2\sqrt{x}}$
- (D) $\frac{2^A}{2\sqrt{x}}$

(3 times)

- 93. $\frac{d}{dx}(\ell nx)$ is equal to: (A) $\frac{1}{\ell nx}$ (B) $\frac{1}{x}$
- (C) x
- (D) lnx

(1 time)

(D) $27e^{3x}$

(2 times)

. (5 times)

- If $y = e^{3x}$ then y_3 is:
- (C) .9e3x
- (A) e^{3x} (b) e^{-3x} 95. The derivative of $f(x) = e^{-x}$ equals:
 - (B) xe^{x-1}
- (C) $\frac{e^{x-1}}{x-1}$
- (D) $\frac{e^{x}}{x+1}$

- $f(x) = \ln (x + 1) \text{ then } f'(x) =$
- (A) x + 1 (B) $\frac{1}{1-x}$
 - (c) $\frac{1}{x+1}$
- (D) 1-x

- $97. \qquad \frac{d}{dx}(e^{tw^2}) =$

- (c) $\frac{2e^{ba^{2}}}{}$
- $(d) 2x^2$

- The differential co-efficient of $e^{\sin x}$ is:
- (b) e***.sin x
- (c) e.osx .cosx
- (d) $\sin x e^{\sin x 1}$

- 99. If $y = \ell n(\sin x)$, then $\frac{dy}{dx}$ equals:
- (a) tan x
- (b) cot x
- $(d) \cot x$

(2 times)

- $100. \quad \frac{d}{dx}e^{f(x)}equals$
- (a) $e^{f'(x)}$ (b) $e^{f'(x)} \cdot f'(x)$ (c) $\frac{f'(x)}{x^e}$
- $d \frac{e^{f(x)}}{e'(x)}$

101. $\frac{d}{dx}(lne^x) =$

(2 times)

- (a) 2x
- (b) 1

- (c) x²
- (d) $\frac{1}{\sqrt{2}}$

- $102. \qquad \frac{d}{dx}(e^{\tan x}) =$
- (b) $e^{\tan x \ln a c^2 x}$
- (c) $e^{\tan x} sec^2 x$
- (d) $e^{\tan x} \ln \tan x$

103. d/de ((e ^{x²+1}) =		•
(A) e ^{x2+1}	$(e^{x^2+1}) =$ (8) $2xe^{x^2+1}$	(C) 2e ^{x²+1}	(D) $-2xe^{x^2+1}$
104. y = 5e ³¹	then dy =		(2 times)
(A) 5 e3x-4	(B) 15e ³ⁿ⁻⁴	(C) -5e ^{3x-4}	(D) 15e ^{3x-4}
105. If $f(x) =$	e^{ax} then $f'(x)$ is equal		
(A) ##X	e^{ax} then $f'(x)$ is equal $(B) - \frac{e^{ax}}{a}$	(C) aeax	(D) —aeax
106. d/(e ^{cos i}) equals:	*.	(2 Times)
(A) -sinxe ^{coex}	(B) sinxe ^{coex}	(C) cosxesinx	(D) -cosxe ^{sinx}
107. $\frac{d}{dx}$ ((27)	ex)**)*		
$(A) \stackrel{mk}{=} (\ell n, r)^m$	$^{k-1} \qquad (B) \frac{k}{x^m} \left(\ell n x \right)^k$	$k-1$ (C) $\frac{1}{x^{mk}}$	$(D)\frac{mk}{x}$
108. $\frac{d}{dx}(\log x)$		· · · · ·	*
106. , dx (10g	$(B) \frac{1}{x} \cdot \frac{1}{\ln a}$	$(C) = \frac{1}{x \ln a}$	$(D) - \frac{1}{x}$
(A) = d (\sqrt{2}	$(b) \frac{1}{x} \ln a$	x Ina	X .
109, dx (8,	$(\mathbf{B}) \frac{-e^{\sqrt{x}}}{\sqrt{x}}$		√ 2 e√ Z
(A) $e^{\sqrt{x}}$	(B) - √x	(C) $\frac{1}{2\sqrt{x}}$	$(D) \frac{\sqrt{x} e^{\sqrt{x}}}{2}$
110. $\frac{d}{dx} \ln \left(\right)$	$\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right) - x$		
(A) x	, (D) -x	(C) $\frac{1}{x}$	$(D) = \frac{1}{x}$
111. $\frac{d}{dx}(\alpha^x)$	·= ·		
(A) a ^x in a	$(B) \frac{1}{\ln a} a^{x}$	(C) a ^x in e	(D) –a ^x in a
112. $\frac{d}{dx} a^{\lambda x} =$		*	(2 times)
(A) lakena	(B) a ^{lx} ℓna	(C) $\frac{a^{\lambda x}}{\ell n a}$	$(D)\frac{a^{\lambda x}}{\lambda}$
		ena.	λ
113. $\frac{dx}{dx}$ ((en	$(e^x + e^{-x})) =$	e*-e-x	
	(B) $\frac{e^x - e^{-x}}{e^x + e^{-x}}$	(C) $\frac{-e^x+e^{-x}}{-e^x}$	(D) $e^{x}-e^{-x}$
114. $\frac{d}{dx} a^{f(x)} e^{-\frac{1}{2}(x)}$			
	(B) a ^{f(x)} . f'(x).a	(C) a ^{f(x)}	(D) a ^{f(x)} f'(x)-€na
	ner Derivative:		A.
115. If y = sin	x then $\frac{d^2y}{dx^2}$ equals		
(a) cos x	(b),— cosx	(c) y	(d) — y
116. If $y = e^{2x}$ (A) $16e^{2x}$	then y ₄ equals:- (B) 8e ^{2x}	·(C) 2e ^{2x}	(D) e ^{2x}
117. If y = eax	then y ₄ =		•
(A) a ⁴ e ^{ax}	(B) 2 eax	(C) 3 e ^{ax}	(D) xe ^{ax}
118. Let y = c (A) ay	os (ax + b) , then y ₂ eq (B) -ay	j ualș: (C) a²y	(D) -a ² y
Topic VII: Ser	ies Expansions of F		,
	$+\frac{x^3}{3}+\dots$ is Maclaurin's		(1 time)
(A) cosx	(B) six:	(C) e ^x	(D) inx

32

2 Year		
120. Maciaurins expansion of in (1	+ x) is:	(3 times)
120. Maclaurins expansion of in (1 A) $x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$ (B) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$	(C) $-x - \frac{x^3}{2!} - \frac{x^3}{3!} +$	(D) $x - \frac{x^2}{2} + \frac{x^2}{3} +$
121. The series $x - \frac{x^2}{21} + \frac{x^2}{81} - \frac{x^7}{71} + \dots = 3$		•
(A) cosx (B) tanx	(C) sinx	(D) -sinx'
122. a ₀ + a ₁ x +a ₂ x ² + a _n x ⁿ + ls: (A) Maclaurin's series (B) Taylor Series	es (C) Power Series	(D) Binomial Series
Topic VIII: Increasing and Decre		
ton Formatelanami malmi for a fit	action f. we have fix) a	(3 times) (D) ∞
(A) 0 (B) The function $f(u) = 2 \cdot 2u^2$ has	e minimum value at :	(4 times)
(A) 0 (B) +ve 124. The function f(x) = 2 + 3x ² ha: (A) X = 3 (B) x = 2 125: f(x) increases if:	(C) x = 1	(D) x = 0 (1 time)
(A) $f'(x) < 0^2$ (B) $f'(x) > 0$	(C) $f'(x) = 0$	(D) $f'(x) \geq 0$
126. If $f'(c) = 0$ then f has relative	maximum at x = c if :	(3 times)
(A) $f''(c) > 0$ (B) $f''(c) < 0$	$\{C\} f''(c) = 0$	(D) $f''(c) \ge 0$
127 The function fix = 3x2 has mi	nimum value at :	(2 times)
(A) $x = 3$ (B) $x = 2$ 128. If f'(c) = 0 and f''(c) < 0 then	(C) x = 1	(D) x = 0
128 H f (c) = 0 and f" (c) < 0 then t	(x) will give at x = c /b) Minimum valu	
(a)Maximum value (c) Neither maximum nor minimum v	alue (d) Stationary Va	lue
.129. The minimum value of the fu	$nction f(x) = x^2 + 2x - 3i$	s at x =.
(a) -3 . (b) 1	(c) O	(d) -1
130. $f(x) = -3x^2$ has maximum value	e at:	. (d) = 4
(a) $x = -2$ (b) $x = -1$	(c) x = U	(a) x = T
131. Solution of differential equat	ion, $\frac{2}{dx} = y$ is: .	(2 Times)
(A) ce ^x (B) ce ^{-x}	(C) e ^x	(D) e ^{-x}
132. f (x) = sin x is decreasing func	tion in the interval:	
(A) $(-\pi, -\pi/2)$ (B) $(-\pi/2, 0)$	(c) $(0, \pi/2)$	(D) $(-3\pi/2, -2\pi)$
133. Let "f" be differential functi		f "c" where $f'(c) = 0$;
then "f" has relative maxima	at $x = c$ if:	(D) (* (a) door not aulet
(A) $f''(c) = 0$ (B) $f''(c) > 0$ 134. The critical value of $f(x) = x^2$	(C) 1 (C) < U	(D) 1 (C) does not exist
(A) $\frac{1}{2}$ (B) $\frac{-1}{2}$	(C) 2	(D) -2
-	. (0) 2	(0) 2
135- $\frac{d}{dx}\cos^2 x$ is equal to:	/	,
/A\ _ cin ² v /Q\ 2cinv	(C) 2sinxcosx	(D) - 2cosxsinx
136- $1+x+\frac{x^2}{2}+\frac{x^2}{2}+\frac{x^2}{2}+\dots$ is Maclai	urin series of:	- 1
136- $1+x+\frac{x^3}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots$ is Maclai (A) e^x (B) sinx	(C) cosx	(D) $ln(1+x)$
137 If $x = at^2$, $y = 2at$, then $\frac{dy}{dx}$ is 6	equal to:	
(A) t (B) $\frac{1}{\ell}$	(C) t ²	$(0) \frac{1}{t^2}$
138- $\frac{d}{dx}\left(\frac{1}{ax+b}\right)$ is equal to:		
(A) $ax + b$ (B) $\frac{-1}{(ax + b)^2}$		(D) $ln(ax+b)$
139- If $y = \sin 3x$, then y_2 is equal to	o:	
(A) 9sin3x (B) -9sin3x		(D) -9cos3x

140- If $y = e^{f(x)}$ then y' = :

(A)
$$e^{f(x)}.f(x)$$

(B)
$$e^{f(x)}.f'(x)$$

(B)
$$e^{f(x)} f'(x)$$
 (C) $e^{f'(x)} \log f(x)$

(D)
$$e^{f'(x)} f'(x)$$

141: For relative maxima at x = c:

$$(A) f(c) < f(x)$$

(B)
$$f(c) > f(x)$$

(C)
$$f(c) \ge f(x)$$

D)
$$f(c) \le f(x)$$

(A) f(c) < f(x) (B) f(c) > f(x) (C) $f(c) \ge f(x)$ (D) $f(c) \le f(x)$ 142. If $f'(a-\varepsilon) < 0$ and $f'(a+\varepsilon) < 0$ then at x = a f(x) has:

(A) Relative Minima (B) Relative Maxima (C) Point of Inflexion (D) Critical Point

143-
$$\frac{1}{2} \frac{d}{dx} [Tan^{-1}x - Cot^{-1}x] =$$

(A)
$$\frac{-1}{1+x^2}$$
 (B) $\frac{1}{1+x^2}$ (C) $\frac{1}{1-x^2}$

(B)
$$\frac{1}{1+x^2}$$

(C)
$$\frac{1}{1-x^2}$$

(D)
$$\frac{-1}{1-x^2}$$

144 $\frac{d}{dx}[g(x)]^{-1} = :$

(A)
$$-[g(x)]^{-2}$$

(B)
$$= [g'(x)]^{-2}$$

(A)
$$-[g(x)]^{-2}$$
 (B) $-[g'(x)]^{-2}$ (C) $-g'(x)[g(x)]^{-2}$

$$(D) \frac{-g(x)}{[g(x)]^2}$$

145- $\frac{d}{dx}(\cos \csc x) =$ (A) $-\csc^2 x$ (B) $-\csc x$ Cotx (C) $-\csc^2 x$ Cotx

(D)
$$-\cot^2 x$$

146-
$$\frac{d}{dx}(a^{\sqrt{x}})=:$$

(A)
$$a^{\sqrt{x}}$$
 ina (B) $\frac{-a^{\sqrt{x}}}{ina}$ (C) $\frac{a^{\sqrt{x}} ina}{2\sqrt{x}}$

(B)
$$\frac{-a^{\sqrt{x}}}{\ln a}$$

$$(C) \frac{a^{\sqrt{x}} \ln a}{2\sqrt{x}}$$

$$(D) \frac{a^{\sqrt{x}}}{2\sqrt{x} \ln a}$$

147- Geometrically dy means:

(A) Tangent of slope (B) Slope of tangent (C) Slope of line (D) Slope of x-axis

148- If
$$y = \sqrt{1-x^2}$$
, $0 < x < 1$ then $\frac{dy}{dx} =$:

(A)
$$\sqrt{x^2-1}$$

(A)
$$\sqrt{x^2-1}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{x}{\sqrt{1-x^2}}$

(C)
$$\frac{x}{\sqrt{1-x^2}}$$

$$(D) \frac{-x}{\sqrt{1-x^2}}$$

149- If $y = e^{\sin x}$, then $\frac{dy}{dx} =$:

(B)
$$e^{\sin x}\cos x$$
 (C) $e^{\sin x}+\cos x$ (D) $-e^{\sin x}\cos x$

150- If f(x) has second derivative at "c" such that f'(c) = 0 and f''(c) < 0 then "c" is a point of:

(A) Maxima

(B) Minima

(C) Zero point (D) Point of inflection

151- $\frac{d}{dx} \sin^{-1} x = -$

(A)
$$\frac{1}{\sqrt{1+x^2}}$$
 (B) $\cos^2 x$ (C) $\frac{1}{\sqrt{1-x^2}}$

 $152- \frac{d}{2}(5^2) =$

(2 times)

(A) 5×

(B) 5×ℓn5

(C) $\frac{5^x}{4n5}$

(D) 5(5x)

153- $\frac{d}{dx} \left(\sec^{-1} x + \csc e c^{-1} x \right) =$

(A) 1

(C) 0

(D) 2

 $\frac{d}{dx}\left(\frac{1}{x^2}\right) \text{ at } x = 1 \text{ is } \Rightarrow$

(2 times)

(C) 1

(D) -1

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree

Guess Papers, Past Papers & Notes

Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available 👇

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

155.
$$\frac{d}{dx}e^{(x)} = \cdots$$

(b)
$$f(x)e^{i(x)}$$

(a) $e^{f(x)}$ (b) $f(x)e^{f(x)}$ (c) $e^{f(x)}f'(x)$ 156. $\frac{d}{dx}\sqrt{x} =$

(2 times)

(2 times)

(a) √1

(b) 1

(d) $\frac{1}{2\sqrt{x}}$

157. If f(x) has maximum value at x = c, then f'(c) = 0 but f''(c) is:

(a) Negative

(b) Positive

.(c) Zero .

(d) Undefined

158. $\frac{d}{dx}\left(\frac{a}{x}\right) = \frac{1}{x}$

(a) a (b) $\frac{1}{x}$ (c) $\frac{a}{x^2}$ (d) $-\frac{a}{x^2}$

(a) $\sin x^2$ (b) $-\sin x^2$ (c) $2x \sin x^2$ (d) $-2x \sin x^2$

(a) $\cos y$ (b) $\cos x$ (c) $\frac{x}{a}$ (d) $\frac{y}{a}$ 161. $\frac{d}{dx}(f(u)) = \frac{d}{dx}(x-5)(3-x) =$

163. $\frac{d}{dx}(2x^2+3)^5 =$

(a) $(2x^2+3)^4 20x$ (b) $20(2x^2+3)^5$ (c) $15(2x^2+3)^5$ (d) $(2x^2+3)^5 100x$ 164. The Derivative of x^3 w.r.t x^2 is equal to:

(a) $\frac{3x^2}{2}$ (b) $\frac{3x}{2}$ (c) $\frac{2}{3x}$

165. Second term in Maclaurin Series expansion of $f(x) = e^x$ is

(a) 1 ·

(b) x²

166. $\frac{d}{dx}(\ln 2x) =$

(b) $\frac{1}{x}$. (c) $-\frac{1}{2x}$. (d) 2x

167. $y = \sin 3x$ then y_2 is

(a) 9 cos x .

(b) $-9\sin 3x$

. (c) 9sin 3x

ANSWERS TO THE MULTIPLE CHIOCE QUESTIONS

- 1	-	_												
	1	2	3	4	.2	6	7	8	9	10	11	12	13	14
1	C	a	C	Ь	d	d	\c.	ä	d	4	d		3	c .
	15	16	17	18	19	20	21	22	23	24	.25	16	27	30
				-						6.4	-23	40	61	45

1													20
Ь	b		E	C.	С	c	81	b	b	Ь	C	-	
29	30	31	32	33	34	35	36	37	38	39	40	41	1
d	d	d	b	d	C	d	3	c	d	C		1	3
43	44	45	46	47	48	49 .	50	51	52	53	54	55	1
C		d	b	C	d		C	d	ь	C	d	C	3
57	38	59	60	61	62	63	64	65	66	67	68	69	1
. b	18	Ь	8	8	ď	8	b	b	Ь	C	d	-	3
71	72	73	74	75	76	77 `	78	79	80	81	82	83	-
C	d	С	Ь	b	ď	a	a	b	d	b	C	b	3
85	26	87	88	89	90	91	92	93	94	95	96	97	2
8	C	Ь	e	Ь	C	b	, c	b	d	3	C	c	-
99	100	101	102	103	104	105	106	107	108	109	110	111	E
Ь	Ь	b	C	Ь	Ь	C	a	a	b	C	d ·	. 2	-
113	114	115	116	117	118	119	120	121	122	123	124	,125	126
Ь	ď	ď	ä	- a	d	C.	d	ε	Ç	a	d	b	P
127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	a	d	С	a '	a	С	- a	d	а	b	C	b	b
141	142 1	143	144	145	146	147	148	149	150	151	152	153	154
C	Ь	b	С	Ь	E	Ь	d	b	а	С	b	C	-
155	156	157	158	159	160	161	162	163	164	165	166	167	-
1C	d	1 a	d	ď	C	С	b		b	·c	' b	· b	

ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Derivative of a function by definition:

1. Define derivative of the function

(5 times)

Sol: Derivative of the function:

Let f(x) be any function then if $\lim_{x\to 0} \frac{f(x+h)-f(x)}{h}$ exist is called derivative of the f(x). It is denoted by f'(x).

2. Differentiate $\frac{2x-3}{2x+1}$ w.r.t. 'x'

(H.W) (6 times)

Sol: Let $y = \frac{2x-3}{2x+1}$ Diff.w.r.t. 'x' $\frac{dy}{dx} = \frac{d}{dx} \left(\frac{2x-3}{2x+1} \right)$ $= \frac{(2x+1)2 - (2x-3)2}{(2x+1)^2}$ $= \frac{4x+2-4x-6}{(2x+1)^2}$ $= \frac{8}{(2x+1)^2}$

3. Differentiate
$$\sqrt{x+\sqrt{x}}$$
 w.r.t.'x'

(C.W) (9 times)

sol: Let
$$y = \sqrt{x + \sqrt{x}}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sqrt{x + \sqrt{x}} \right)$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x + \sqrt{x}}} \cdot \frac{d}{dx} \left(x + \sqrt{x} \right) = \frac{1}{2\sqrt{x + \sqrt{x}}} \cdot \left(1 + \frac{1}{2\sqrt{x}} \right)$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x} + \sqrt{x}} \left(\frac{2\sqrt{x} + 1}{2\sqrt{x}} \right) = \frac{2\sqrt{x} + \sqrt{x}}{4\sqrt{x}\sqrt{x} + \sqrt{x}}$$

$$\frac{dx}{dx} = \frac{dy}{dx}$$

Sol: $x = at^2$

$$\frac{dx}{dt} = 2at$$

$$\frac{dy}{dt} = 2a$$

Diff. w.r.t. 'x' Sol:

$$3x^2 - 3y^2 \frac{dy}{dx} = 0$$

$$x^2-y^2\frac{dy}{dx}=0$$

$$y^2 \frac{dy}{dx} = x^2 \qquad \frac{dy}{dx} = \frac{x^2}{y^2}$$

$$\frac{dy}{dx} = \frac{x^2}{y^2}$$

6. Find
$$\frac{dy}{dx}$$
 if $y = x \cos y$

(H.W)

(6 times)

$$\frac{dy}{dx} = x(-\sin y)\frac{dy}{dx} + \cos y(1)$$

$$\frac{dy}{dx} + x \sin y \frac{dy}{dx} = \cos y$$

$$\frac{dy}{dx}(1+x\sin y)=\cos y$$

$$\frac{dy}{dr} = \frac{\cos y}{1 + r\sin y}$$

7. Find
$$\frac{dy}{dx}$$
 if $y^2 + x^2 - 4x = 5$

(C.W)

(2 times)

Sol. $y^2 + x^2 - 4x = 5$ Diff. - w.r.t. 'x'

11:

Sol:

 $y = x^4 + 2x^2 + 2$

Diff. w.r.t.x

$$\frac{d}{dx}(y^2 + x^2 - 4x) = \frac{d}{dx}(5)$$

$$2y \frac{dy}{dx} + 2x - 4 = 0$$

$$2y \frac{dy}{dx} = 4 - 2x = \frac{4 - 2x}{2y} = \frac{2(2 - x)}{2y} = \frac{2 - x}{y}$$
8: Find $\frac{dy}{dx}$ iff $3x + 4y + 7 = 0$ (H.W) (4 times)
Sol: Given
$$3x + 4y + 7 = 0$$

$$0 \text{ Iff. w.r.t. } x$$

$$\frac{dy}{dx}(3x + 4y + 7) = 0$$

$$3\frac{d}{dx}(x) + 4\frac{d}{dx}(y) + \frac{d}{dx}7 = 0$$

$$3(1) + 4\frac{dy}{dx} + 0 = 0$$

$$3 + 4\frac{dy}{dx} = 0$$

$$4\frac{dy}{dx} = -3$$

$$\frac{dy}{dx} = \frac{-3}{4}$$
9: Find $\frac{dy}{dx}$ if $y = \frac{x}{\ln x}$ (M.W) (7 times)
Sol: Let $y = \frac{x}{\ln x}$

$$0 \text{ Iff w.r.t. } x$$

$$\frac{dy}{dx} = \frac{d}{dx}(\frac{x}{\ln x})$$

$$\frac{dy}{dx} = \frac{(\ln x)^{\frac{1}{2}}}{(\ln x)^{\frac{1}{2}}}$$

$$\frac{dy}{dx} = \frac{(\ln x)^{\frac{1}{2}}}{(\ln x)^{\frac{1}$$

$$\frac{dy}{dx} = \frac{d}{dx} (x^4 + 2x^2 + 2)$$

$$\frac{dy}{dx} = 4x^3 + 4x + 0$$

$$\frac{dy}{dx} = 4x^3 + 4x$$

$$\frac{22}{dx} = 4x^3 + 4x$$

$$\frac{dy}{dx} = 4x (x^2 + 1)$$

$$\frac{dy}{dx} = 4x \sqrt{(x^2 + 1)^2} = 4x \sqrt{x^4 + 2x^2 + 1}$$

$$\frac{dy}{dx} = 4x \sqrt{x^4 + 2x^2 + 2 - 1} = 4x \sqrt{y - 1}$$
 (Hence Proved)

12: If
$$y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$$
, find $\frac{dy}{dx}$

15.

Sol:
$$y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$$

$$\gamma = \left(\sqrt{x}\right)^2 + \left(\frac{1}{\sqrt{x}}\right)^2 - 2\sqrt{x} \cdot \frac{1}{\sqrt{x}}$$

$$y = x + \frac{1}{x} - 2$$

$$y = x + x^{-1} - 2$$

$$\frac{dy}{dx} = \frac{d}{dx} (x + x^{-1} - 2)$$
$$= \frac{d}{dx} x + \frac{d}{dx} x^{-1} - \frac{d}{dx} 2$$

$$= \frac{d}{dx} \times + \frac{d}{dx} \times^{-1} - \frac{d}{dx} = \frac{1}{2}$$

$$\frac{dy}{dx} = 1 + (-1)x^2 - 0 = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$$
Differentiate w.r.t. $x = \frac{x^2 + 1}{x^2 - 3}$.

Sol: Let
$$y = \frac{x^2 + 1}{x^2 - 3}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{x^2 + 1}{x^2 - 3} \right)$$

$$\frac{dy}{dx} = \frac{(x^2 - 3)\frac{d}{dx}(x^2 + 1) - (x^2 + 1)\frac{d}{dx}(x^2 - 3)}{(x^2 - 3)^2}$$

$$\frac{dy}{dx} = \frac{(x^2-3)(2x+0)-(x^2+1)(2x-0)}{(x^2-3)^2}$$

$$\frac{dy}{dx} = \frac{2x \left[x^2 - 3 - x^2 - 1\right]}{(x^2 - 3)^2}$$

$$\frac{dy}{dx} = \frac{2x(-4)}{(x^2-3)^2} = \frac{-8x}{(x^2-3)^2}$$

14. Find derivative of
$$\sqrt{\frac{a-x}{a+x}}$$
 w.r.t. x

SO Given

$$y = \sqrt{\frac{a-x}{a+x}}$$

Differentiate w.r.t x.

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{a-x}{a+x} \right)^{\frac{1}{2}} \qquad \frac{d}{dx} f(x)^{n} = n f(x)^{n-1} \cdot \frac{d}{dx} f(x)$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{a-x}{a+x} \right)^{\frac{1}{2}-1} \times \frac{d}{dx} \left(\frac{a-x}{a+x} \right)$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{a - x}{a + x} \right)^{-\frac{1}{2}} \times \frac{(a + x) \frac{d}{dx} (a - x) - (a - x) \frac{d}{dx} (a + x)}{(a + x)^2} \cdot \left(\frac{u}{v} \right) = \frac{vu' - uv'}{v^2}$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{a + x}{a - x} \right)^{\frac{1}{2}} \times \frac{(a + x) (0 - 1) - (a - x) (0 + 1)}{(a + x)^2}$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{a + x}{a - x} \right)^{\frac{1}{2}} \times \frac{(a + x) (-1) - (a - x) (1)}{(a + x)^2}$$

$$\frac{dy}{dx} = \frac{1}{2(a - x)^{\frac{1}{2}} (a + x)^{-\frac{1}{2}}} \times \frac{-a - x - a + x}{(a + x)^2}$$

$$\frac{dy}{dx} = \frac{-2a}{2(a - x)^{\frac{1}{2}} (a + x)^{\frac{2-\frac{1}{2}}{2}}}$$
Eind the derivative of $x = u^{\frac{1}{2}} + \frac{2ux + 2}{a}$

$$y = x^3 + 2x + 3$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^3 + 2x + 3 \right)$$

$$= \frac{d}{dx} x^3 + 2 \frac{d}{dx} \cdot (x) + \frac{d}{dx} \cdot (3)$$

$$= 3x^2 + 2(1) + 0$$

$$\frac{d}{dx} x^n = n x^{n-1}$$

$$\frac{d}{dx} c = 0$$

$$\frac{dy}{dx} = 3x^2 + 2$$

Topic III: Chain Rule:

Let

$$y = \sin x$$
 $u = \cot x$
Diff. w.r.t. 'x' Diff. w.r.t. 'x'

$$\frac{dy}{dx} = \cos x$$

$$\frac{du}{dx} = -\cos ec^2 x$$

By chain rule

$$\frac{dy}{du} = \frac{dy}{dx} \cdot \frac{dx}{du}$$

$$\frac{dy}{du} = \cos x \left(\frac{1}{-\cos ec^2 x} \right) = -\sin^2 x \cos x$$

17. Find
$$\frac{dy}{dx}$$
 if $x = 1 - t^2$, $y = 3t^2 - 2t^3$

(C.W) (4 times)

Sol:
$$x = 1 - t^2$$

Diff. w.r.t. 't' $y = 3t^2 - 2t^3$
Diff. w.r.t. 't' $\frac{dx}{dt} = \frac{d}{dt}(1 - t^2)$ $\frac{dy}{dt} = \frac{d}{dt}(3t^2 - 2t^3)$

$$\frac{dx}{dt} = -2t$$

$$\frac{dy}{dt} = 3(2t) - 2(3t)^2 = 6t - 6t^2$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

$$\frac{dy}{dx} = \frac{6t(1-t)}{-2t}$$

$$\frac{dy}{dt} = -3(1-t)$$

Differentiate sin2 x w.r.t cos4x 18:

(C.W) (6 times)

Sol:

$$y = \sin^2 x$$
.

Diff. w.r.t. x

$$\frac{dy}{dx} = \frac{d}{dx} \sin^2 x$$

$$\frac{dy}{dx} = \frac{d}{dx} \sin^2 x$$

$$\frac{dy}{dx} = 2\sin x \cos x$$

· Diff. w.r.t. x

$$\frac{dz}{dx} = \frac{d}{dx} \cos^4 x$$

$$\frac{\frac{dz}{dx}}{\frac{dz}{dx}} = -4 \cos^3 x \sin x$$

$$\frac{dz}{dx} = \frac{-1}{4Cos^3 x Sin x}$$

$$\frac{dz}{dz} = \frac{-1}{4Cos^3 v Sin v}$$

Using Chain Rule

$$\frac{dy}{dx} = \frac{dy}{dx} + \frac{dx}{dx}$$

$$\frac{dz}{dz} = \frac{1}{dx} \times \frac{1}{dz}$$

$$\frac{dy}{dx} = \frac{2\sin x \cos x}{-4\cos^2 x \sin x} = \frac{1}{-2\cos^2 x} = \frac{-1}{2} \sec^2 x$$

Topic IV: Derivative of Tringnometric Functions

$$\frac{d}{d}\cot^{-1}\frac{x}{d}$$

13.

$$\frac{d}{dx}\cot^{-1}\frac{x}{a}$$

$$= \frac{-1}{1 + \left(\frac{x}{a}\right)^2} \cdot \frac{d}{dx} \left(\frac{x}{a}\right)$$
$$= \frac{-1}{1 + \frac{x^2}{a^2}} \left(\frac{1}{a}\right)$$

$$=\frac{-1}{\frac{a^2+x^2}{2}}\left(\frac{1}{a}\right)$$

$$=\frac{-a^2}{a^2+x^2}\left(\frac{1}{a}\right)$$

$$=\frac{\sqrt{a^2+x^2}}{a^2+x^2}\left(\frac{1}{a^2}\right)=\frac{-a}{a^2+x^2}$$

20,

Find $\frac{dy}{dx}$ if $y = \tanh(x)^2$

 $y = \tanh x^2$

(C.W)

(2 times)

Diff. w.r.t. 'x'
$$\frac{dy}{dx} = \frac{d}{dx} (\tanh x^2)$$

$$\frac{dy}{dx} = \operatorname{sech}^2 x^2.2x$$

$$\frac{dy}{dx} = 2x \operatorname{sech}^2 x^2$$

21. If
$$\tan y(1 + \tan x) = 1 - \tan x$$
, than show that $\frac{dy}{dx} = -1$ (H.W

Sol:
$$tan y(1 + tan x) = 1 - tan x$$

 $tan y = \frac{1 - tan x}{1 + tan x}$

$$\tan y = \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x}$$

$$\tan y = \tan\left(\frac{\pi}{4} - x\right)$$

$$\Rightarrow y = \frac{\pi}{4} - x \quad \text{Diff. w.r.t.} / x'$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \left(\frac{\pi}{4} \right) - \frac{d}{dx} x$$

$$\frac{dy}{dx} = -1$$

22: Differentiate w.r.t x,
$$\cos\sqrt{x} + \sqrt{\sin x}$$

(C.W) (2 times)

Soli
$$y = \cos\sqrt{x} + \sqrt{\sin x}$$

Diff. w.r.t.x

$$\frac{dy}{dx} = \frac{d}{dx}\cos\sqrt{x} + \frac{d}{dx}\sqrt{\sin x}$$

$$\frac{dy}{dx} = -\sin \sqrt{x} \times \frac{1}{2} x^{-1/2} + \frac{1}{2} (\sin x)^{-1/2} \cos x.$$

$$\frac{dy}{dx} = \frac{-\sin\sqrt{x}}{2\sqrt{x}} + \frac{\cos x}{2\sqrt{\sin x}}$$

3: Differentiate
$$y = \sin h^{-1}(x^3)$$
 w.r.t.x

(C.W) (4 times)

Sol: Let
$$y = Sin h^{-1} (x^3)$$

Diff. w.r.t.x

$$\frac{dy}{dx} = \frac{d}{dx} \sinh^{-1}(x^3)$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1+(x^3)^2}} \times \frac{d}{dx} \times^3 = \frac{3x^2}{\sqrt{1+x^6}}$$

24: Prove that
$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{1+x^2}}$$

(C.W) (3 times)

$$\frac{d}{dx}\sinh x = \cosh x$$

 $\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1+x}}$

coshy
$$\frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos hy} = \frac{1}{\sqrt{1 + \sinh^2 y}}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2}}$$
Hence
$$\frac{d}{dx} \operatorname{Sinh}^{-1}x = \frac{1}{\sqrt{1 + x^2}}$$
25. Differentiate $\tan^3 \theta \operatorname{Sec}^2 \theta$ with respect to θ .
Sol Given
$$y = \tan^3 \theta \sec^2 \theta$$
Differentiate w.r.t θ

$$\frac{dy}{dy} = \frac{d}{dx} (\tan^3 \theta \sec^2 \theta)$$

The state of the s

$$\frac{dy}{d\theta} = \frac{d}{dx} \left(\tan^3 \theta \sec^2 \theta \right) \qquad (u.v) = uv + vu$$

$$\frac{d}{d\theta} \tan \theta = \sec^2 \theta$$

$$\frac{dy}{d\theta} = \tan^3 \theta \frac{d}{dx} \sec^2 \theta + \sec^2 \theta \frac{d}{dx} \tan^3 \theta \qquad \frac{d}{d\theta} \sec \theta = \sec \theta \tan \theta$$

$$\frac{dy}{d\theta} = \tan^3 \theta . 2 \sec \theta \sec \theta \tan \theta + \sec^2 \theta 3 \tan^2 \theta \sec^2 \theta$$

$$\frac{dy}{d\theta} = 2 \tan^4 \theta \sec^2 \theta + 3 \tan^2 \theta \sec^4 \theta$$

$$\frac{dy}{dx} = \tan^2 \theta \sec^2 \theta \left(2 \tan^2 \theta + 3 \sec^2 \theta \right)$$

Topic V: Derivative of exponential and Logrithmic Function:

26. If
$$y = e^{-2x} \sin 2x$$
, then find $\frac{d^2y}{dx^2}$. {H.W} (4 times)
Sol: $y = e^{-2x} \sin 2x$
Diff. w.r.t. 'x'
 $\frac{dy}{dx} = \frac{d}{dx} (e^{-2x} \sin 2x)$
 $\frac{dy}{dx} = e^{-2x} \cdot \frac{d}{dx} (\sin 2x) + (\sin 2x) \cdot \frac{d}{dx} e^{-2x}$
 $\frac{dy}{dx} = e^{-2x} (2\cos 2x) + (\sin 2x)(-2e^{-2x})$
 $\frac{dy}{dx} = 2e^{-2x} \cos 2x - 2e^{-2x} \sin 2x$
 $\frac{dy}{dx} = 2e^{-2x} (\cos 2x - \sin 2x)$
Diff. w.r.t. 'x'
 $\frac{dy}{dx} = \frac{d}{dx} 2e^{-2x} (\cos 2x - \sin 2x)$
 $\frac{dy}{dx} = 2e^{-2x} \frac{d}{dx} (\cos 2x - \sin 2x) + (\cos 2x - \sin 2x) \cdot \frac{d}{dx} (2e^{-2x})$

$$\frac{d^2y}{dx^2} = 2e^{-2x}(-2\sin 2x - 2\cos 2x) + (-4)e^{-2x}(\cos 2x - \sin 2x)$$

$$\frac{d^2y}{dx^2} = -4e^{-2x}(\sin 2x + \cos 2x + \cos 2x - \sin 2x)$$

$$\frac{d^2y}{dx^2} = -8e^{-2x}\cos 2x$$

27. If
$$y = \ln \tanh x$$
, then find $\frac{dy}{dx}$

(H.W) (3 times)

Soi:
$$y = ln(\tanh x)$$

Diff. w.r.t. 'w'
$$\frac{dy}{dx} = \frac{d}{dx} \ln(\tanh x)$$

$$\frac{dy}{dx} = \frac{1}{\tanh x} \sec h^2 x = \frac{1}{\sinh x}$$

$$\frac{dy}{dx} = \frac{1}{\sinh x \cdot \cosh x} = \frac{2}{2 \sinh x \cdot \cosh x} = \frac{2}{\sinh 2x}$$

$$\frac{dy}{dy} = \frac{2}{2 \cos x \cos^{2} 2x}$$

$$\frac{dy}{dx} = 2\cos e c h 2x$$

28. If
$$y = x^2 e^{-x}$$
, then find y_1

(C.W)

Sol:
$$y = x^2 e^{-x}$$

$$\frac{dy}{dx} = \frac{d}{dx}(x^2e^{-x}) = x^2\frac{d}{dx}(e^{-x}) + (e^{-x})\frac{d}{dx}(x^2)$$

$$\frac{dy}{dx} = x^2(-e^{-x}) + (e^{-x})(2x)$$

$$\frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} = xe^{-x}(2-x)$$

29. If
$$y = xe^{\sin x}$$
, then find $\frac{dy}{dx}$

(H.W) (6 times)

Sol:

$$\frac{dy}{dx} = x \frac{d}{dx} e^{\sin x} + e^{\sin x} \frac{d}{dx}(x)$$

$$\frac{dy}{dx} = xe^{\sin x}\cos x + e^{\sin x}(1 + x\cos x)$$

30. If
$$y = x^2 \ln \frac{1}{x}$$
 then find $\frac{dy}{dx}$

(H.W) (4 times)

Sol:
$$y = x^2 ln \frac{1}{x}$$

$$y = x^2 ln x^{-1} = -x^2 ln x$$

Diff. w.r.t. 'x'

$$\frac{dy}{dx} = \frac{-d}{dx}(x^2 lnx)$$

$$\frac{dy}{dx} = -\left[x^2 \frac{d}{dx}(\ln x) + (\ln x) \frac{d}{dx}(x^2)\right]$$

$$\frac{dy}{dx} = -\left[x^2 \left(\frac{1}{x}\right) + 2x lnx\right]$$

$$\frac{dy}{dx} = -(x + 2x lnx)$$

$$\frac{dy}{dx} = -x(1 + 2\ell nx)$$
If $y = 5e^{3z-4}$ then find $\frac{dy}{dx}$

31. If $y = 5e^{3z-4}$ then find $\frac{dy}{dz}$

Sol:
$$y = 5e^{3x-4}$$

Diff. w.r.t. 'x'

$$\frac{dy}{dx} = \frac{d}{dx} 5e^{3x-4}$$

$$\frac{dy}{dx} = 5\frac{d}{dx} (e^{3x-4})$$

$$\frac{dy}{dx} = 5e^{3x-4} \cdot \frac{d}{dx} (3x-4)$$

$$\frac{dy}{dx} = 5e^{3x-4} (3)$$

$$\frac{dy}{dx} = 15e^{3x-4}$$

32. Find $\frac{dy}{dx}$ if $y = \log_{10}(ax^2 + bx + c)$

Sol:
$$y = \log_{10}(ax^2 + bx + c)$$

 $y = \frac{\ln(ax^2 + bx + c)}{\ln 10}$
 $\frac{dy}{dx} = \frac{1}{\ln 10} \cdot \frac{d}{dx} \ln(ax^2 + bx + c)$
 $\frac{dy}{dx} = \frac{1}{\ln 10} \cdot \frac{1}{(ax^2 + bx + c)} \cdot \frac{d}{dx} (ax^2 + bx + c)$
 $\frac{dy}{dx} = \frac{1}{\ln 10(ax^2 + bx + c)} \cdot (2ax + b)$
 $\frac{dy}{dx} = \frac{2ax + b}{\ln 10(ax^2 + bx + c)}$

33. Find f'(x) if $f(x) = \ln \sqrt{e^{2x} + e^{-2x}}$.

(HC.W)(2 times)

Sol: $y = \ln \sqrt{e^{2x} + e^{-2x}} = \frac{1}{2} \ln(e^{2x} + e^{-2x})$

Diff. w.r.t. 'x' on both sides

$$\frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} \ln(e^{2x} + e^{-2x})$$

$$= \frac{1}{2} \frac{1}{\left(e^{2x} + e^{-2x}\right)} \times \frac{d}{dx} \left(e^{2x} + e^{-2x}\right)$$

$$= \frac{1}{\left(2e^{2x} + e^{-2x}\right)} \times 2e^{2x} - 2e^{-2x}$$

$$= \frac{2\left(e^{2x} - e^{-2x}\right)}{2\left(e^{2x} + e^{-2x}\right)}$$

$$= \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$$

34: Find f'(x) if f(x) = $e^{\sqrt{x}-1}$

(H.W) (4 times)

Sol: Let
$$f(x) = e^{\sqrt{x}-1}$$

$$f'(x) = \frac{d}{dx} e^{\sqrt{x}-1}$$

$$f'(x) = e^{\sqrt{x}-1} \times \frac{d}{dx} (\sqrt{x}-1)$$

$$f'(x) = e^{\sqrt{x}-1} \left[\frac{1}{2\sqrt{x}} - 0 \right] = \frac{e^{\sqrt{x}-1}}{2\sqrt{x}}$$

35. Find $\frac{dy}{dx}$ if $y = \ln \sqrt{\frac{x^2 - 1}{x^2 + 1}}$.

(3 times)

Soi Given

$$y = \ln \sqrt{\frac{x^2 - 1}{x^2 + 1}}$$

$$y = \ln \left(\frac{x^2 - 1}{x^2 + 1}\right)^{1/2}$$

$$y = \frac{1}{2} \ln \left(\frac{x^2 - 1}{x^2 + 1}\right)$$

$$y = \frac{1}{2} \left[\ln \left(x^2 - 1\right) - \ln \left(x^2 + 1\right)\right]$$

Differentiate wirit x

$$\frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} \left[\ln(x^2 - 1) - \ln(x^2 + 1) \right]$$

$$\frac{dy}{dx} = \frac{1}{2} \left[\frac{2x}{x^2 - 1} - \frac{2x}{x^2 + 1} \right]$$

$$\frac{dy}{dx} = \frac{2x}{2} \left[\frac{1}{x^2 - 1} - \frac{1}{x^2 + 1} \right]$$

$$\frac{dy}{dx} = x \left[\frac{x^2 + 1 - (x^2 - 1)}{(x^2 - 1)(x^2 + 1)} \right]$$

$$\frac{dy}{dx} = \frac{x(x^2 + 1 - x^2 + 1)}{x^4 - 1}$$

$$\frac{dy}{dx} = \frac{2x}{x^4 - 1}$$

36. Find
$$f'(x)$$
 if $f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}$

Given Sol

$$f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}$$
Differentiate w.r.t. x

$$f'(x) = \frac{d}{dx} \left[\ln \left(e^{2x} + e^{-2x} \right) \right]^{1/2}$$

$$f'(x) = \frac{1}{2} \left[ln(e^{2x} + e^{-2x}) \right]^{\frac{1}{2} - 1} \times \frac{d}{dx} ln(e^{2x} + e^{-2x})$$

$$f'(x) = \frac{1}{2} \left[\ln \left(e^{2x} + e^{-2x} \right) \right]^{-\frac{1}{2}} \times \frac{dx}{\left(e^{2x} + e^{-2x} \right)} \times \frac{d}{dx} \left(e^{2x} + e^{-2x} \right)$$

$$f'(x) = \frac{1}{2 \ln \sqrt{(e^{2x} + e^{-2x})}} \times \frac{1}{(e^{2x} + e^{-2x})} \times (e^{2x} \times 2 + e^{-2x}(-2))$$

$$f'(x) = \frac{2(e^{2x} - e^{-2x})}{2\sqrt{\ln(e^{2x} + e^{-2x})(e^{2x} + e^{-2x})}}$$

$$f'(x) = \frac{e^{2x} - e^{-2x}}{\sqrt{\ln(e^{2x} + e^{-2x})(e^{2x} + e^{-2x})}}$$

37. Find
$$\frac{dy}{dx}$$
 if $y = \ln (9 - x^2)$.

$$y = \ln\left(9 - x^2\right)$$

 $y = \ln(9 - x^2)$ Differentiate w.r.t. x

$$\frac{dy}{dx} = \frac{d}{dx} \ln (9 - x^2)$$

$$\frac{d}{dx}\ln f(x) = \frac{1}{f(x)}xf'(x)$$

$$\frac{dy}{dx} = \frac{1}{9-x^2} \times \frac{d}{dx} \left(9-x^2\right)$$

$$\frac{dy}{dx} = \frac{1}{9-x^2} \times (0-2x)$$

$$\frac{dy}{dx} = \frac{-2x}{9-x^2} \text{ Ans.}$$

Topic VI: Higher Derivative:

38. If
$$2x^5-3x^4+4x^3+x-2$$
, then find y_2

(C.W) (2 times)

Sol:

$$\frac{dy}{dx} = 10x^4 - 12x^3 + 12x^2 + 1$$

$$v_1 = 10x^4 - 12x^3 + 12x^2 + 1$$

Diff. w.r.t. 'x'

$$\frac{dy_1}{dx} = 40x^3 - 36x^2 + 24x$$

39. Find v₂ if v = x² e².

(C.W) (2 times)

Sol Given

$$y=x^2\cdot e^{-x}$$

Differentiate w. r. t x

$$y_1 = \frac{d}{dx}x^2e^{-x}$$

$$= x^2\frac{d}{dx}e^{-x} + e^{-x}\frac{d}{dx}x^2$$

$$= x^2e^{-x}\left(\frac{d}{dx}(-x)\right) + e^{-x}2x$$

$$= x^2e^{-x}\left(-1\right) + e^{-x}2x$$

$$y_t = e^{-x} \left(-x^2 + 2x \right)$$

Again differentiate w. r. t. x

$$y_2 = \frac{d}{dx} e^{-x} \left(-x^2 + 2x\right).$$

$$y_2 = e^{-x} \frac{d}{dx} \left(-x^2 + 2x \right) + \left(-x^2 + 2x \right) \frac{d}{dx} e^{-x}$$

$$= e^{-x} \left(-2x + 2 \right) + \left(-x^2 + 2x \right) e^{-x} \left(-1 \right)$$

$$= e^{-x} \left[-2x + 2 + x^2 - 2x \right]$$

$$y_2 = e^{-x}[x^2 - 4x + 2]$$

Ans

Topic VII: Series Expansions of Function:

40. Write Maclaurin's series expansion.

(C.W) (6 times)

Sol: The Maclaurin's series expansion of a function f(x) is given by

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + ...$$

41: Expand cos x by Maclaurin's series expansion.

(C.W) (3 times)

Sol: Let
$$f(x) = xos x$$
. \Rightarrow $f(0) = cos 0 = 1$
 $F'(x) = -sin x$ \Rightarrow $f'(0) = -sin 0 = 0$
 $F''(x) = -cos x$ \Rightarrow $f''(0) = -cos 0 = -1$
 $F'''(x) = sin x$ \Rightarrow $f'''(0) = sin 0 = 0$

Using Maclaurin's Series.

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + ...$$

$$\cos x = 1 + x (0) + \frac{x^2}{2!} (-1) + \frac{x^3}{3!} (0) + ...$$

$$\cos x = 1 + 0 - \frac{x^2}{2!} + 0 + \frac{x^4}{4!} + ...$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{4!} + ...$$

Topic VIII: Increasing and Decreasing Functions

42: Find the interval for which function is increasing and decreasing $f(x) = 4 - x^2$ for $e \in \{-2, 2\}$. (H.W) (4 times)

Sol: Given $f(x) = 4 - x^2$ Diff. w.r.t.x

f'(x) = -2x

If f is increasing then,

If f is decreasing then

$$f'(x) > 0$$
 $f'(x) < 0$
 $-2 \times > 0$ $-2 \times < 0$
 $\times < 0$ $\times > 0$
 $\times \in [-2, 0[$ $\times \in]0, 2]$
So f increase on $[-2, 0[$, So f decreases on $]0, 2]$

43. Determine the intervals in which $f(x) = \cos x$: $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is increasing or decreasing function. (C.W) (3 times)

sol Given

$$f(x) = \cos x \qquad : x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

Differentiate w.r.t x

$$f'(x) = \frac{d}{dx}\cos x$$
$$f'(x) = -\sin x$$

x ∈ I & IV quadrants

We know that

sinx < 0 in quad IV

So
$$f'(x) = -\sin x > 0$$
 in quad IV

$$f'(x) = -\sin x > 0 \text{ for } x \in \left(\frac{-\pi}{2}, 0\right)$$

Hence $f(x) = \cos x$ is increasing on $\left(\frac{-\pi}{2}, 0\right)$

Also we know that, $\sin x > 0$ in I quad.

So
$$f'(x) = -\sin x < 0$$
 for $x \in \left(0, \frac{\pi}{2}\right)$

Hence $f'(x) = \cos x$ is decreasing on the interval $\left(0, \frac{\pi}{2}\right)$

44. Determine the intervals in which f is increasing or decreasing

$$f(x) = \sin x \quad x \in [-\pi, \pi]$$
 (H.W) (2times)

Soi Given

$$f(x) = Sinx f'(x) = Cosx$$

Now

$$f'(x) = 0$$
$$Cosx = 0$$

$$x = Cos^{-1}(0) \Rightarrow x = \frac{-\pi}{2}, \frac{\pi}{2}$$

So intervals:
$$\left[-\pi, \frac{-\pi}{2}\right], \left[\frac{-\pi}{2}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \pi\right]$$

$$f(x) = Sinx$$
 is increasing on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

i-e
$$f'(x) = Cosx > 0$$
 , $\forall x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree

Guess Papers, Past Papers & Notes

Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available 👇

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

Now
$$f'(x) = Cosx < 0$$
 $\forall x \in \left(-\pi, \frac{-\pi}{2}\right)$

$$f(x) = Sinx \text{ is decreasing on } \left(-\pi, \frac{-\pi}{2}\right)$$
And $f'(x) = Cosx < 0$, $\forall x \in \left(\frac{\pi}{2}, \pi\right)$.

So $f(x) = Sinx \text{ is decreasing on } \left(\frac{\pi}{2}, \pi\right)$ Ans.

1.45. Find $\frac{dy}{dx}$ if $y = (3x^2 - 2x + 7)^3$ (H.W)

Sol: $y = (3x^2 - 2x + 7)^3$

$$\frac{dy}{dx} = \frac{d}{dx} (3x^2 - 2x + 7)^3 + \frac{d}{dx} f(x)$$

$$\frac{dy}{dx} = 6 \left(3x^2 - 2x + 7\right)^3 + \frac{d}{dx} \left(3x^2 - 2x + 7\right)$$

$$\frac{dy}{dx} = 6 \left(3x^2 - 2x + 7\right)^3 \left(6x - 2\right)$$

$$\frac{dy}{dx} = 12 \left(3x^2 - 2x + 7\right)^3 \left(3x - 1\right)$$
Ans.

46. Differentiate w.r.t. x , $y = \frac{2x - 1}{\sqrt{x^2 + 1}}$ (H.W)

Sol: $y = \frac{2x - 1}{\sqrt{x^2 + 1}}$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{2x - 1}{\sqrt{x^2 + 1}}\right)$$

$$\frac{dy}{dx} = \frac{\sqrt{x^2 + 1}}{dx} \frac{d}{dx} \left(2x - 1\right) - \left(2x - 1\right) \frac{d}{dx} \sqrt{x^2 + 1}}{\left(\sqrt{x^2 + 1}\right)^3}$$

$$\frac{dy}{dx} = \frac{\sqrt{x^2 + 1}}{(x^2 + 1)^3} \left(2x - 1\right) - \left(2x - 1\right) \frac{1}{2} \left(x^2 + 1\right)^{\frac{1}{2} - 1} (2x + 0)}{\left(x^2 + 1\right)^3}$$

$$\frac{dy}{dx} = \frac{\sqrt{x^2 + 1}}{(2x - 0) - (2x - 1) \frac{1}{2}} \left(x^2 + 1\right)^{\frac{1}{2} - 1} (2x + 0)}{\left(x^2 + 1\right)}$$

$$\frac{dy}{dx} = \frac{\sqrt{x^2 + 1}}{(2x - 1)^3} \left(2x - 1\right) - 2x \left(2x - 1\right) \frac{1}{2} \left(x^2 + 1\right)^{\frac{1}{2} - 1} (2x + 0)}{\left(x^2 + 1\right)^3}$$

$$\frac{dy}{dx} = \frac{2\sqrt{x^2 + 1}}{(2x - 1)^3} \left(2x - 1\right) - 2x \left(2x - 1\right) \frac{1}{2} \left(x^2 + 1\right)^{\frac{1}{2} - 1} (2x + 0)}{\left(x^2 + 1\right)^3}$$

$$\frac{dy}{dx} = \frac{2\sqrt{x^2 + 1} - 2x(2x - 1)\frac{1}{2}(x^2 + 1)^{\frac{1}{2}}}{(x^2 + 1)}$$

$$\frac{dy}{dx} = \frac{2\sqrt{x^2 + 1} - (2x^2 - x)\frac{1}{\sqrt{x^2 + 1}}}{(x^2 + 1)}$$

$$\frac{dy}{dx} = \frac{2(\sqrt{x^2 + 1})^2 - 2x^2 + x}{\sqrt{x^2 + 1}}$$

$$\frac{dy}{dx} = \frac{2(x^2 + 1) - 2x^2 + x}{(x^2 + 1)\sqrt{x^2 + 1}}$$

$$\frac{dy}{dx} = \frac{2x^2 + 2 - 2x^2 + x}{(x^2 + 1)^{\frac{1}{2}}}$$

$$\frac{dy}{dx} = \frac{2 + x}{(x^2 + 1)^{\frac{1}{2}}}$$
Ans.

47. Differentiate $Cos^{-1}\left(\frac{x}{a}\right)$ w.r. t. x

(C.W) (2 times)

Sol: Let
$$y = Cos^{-1} \left(\frac{x}{a}\right)$$
Diff. w.r.t. x

$$\frac{dy}{dx} = \frac{d}{dx} Cos^{-1} \left(\frac{x}{a}\right)$$

$$\therefore \frac{d}{dx} \cos^{-1} x = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} \times \frac{d}{dx} \left(\frac{x}{a}\right)$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \frac{x^2}{a^2}}} \times \frac{1}{a}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{\frac{a^2 - x^2}{a^2}}} \times \frac{1}{a}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{a^2 - x^2}} \times \frac{1}{a}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{a^2 - x^2}}$$

48. Find by definition, the derivative of $2-\sqrt{x}$ w.r.t x.

(H.W)

56l: Let $y = 2 - \sqrt{x}$ _____(1)

$$y + \phi y = 2 - \gamma$$

Eq (2) – Eq (1)

$$y + \delta y - y = 2 - \sqrt{x + \delta x} - 2 + \sqrt{x}$$

$$\delta y = -\sqrt{x + \delta x} + \sqrt{x}$$

$$\delta y = \sqrt{x} - \sqrt{x + \delta x}$$

$$\delta y = \left(\sqrt{x} - \sqrt{x + \delta x}\right) \frac{\left(\sqrt{x} + \sqrt{x + \delta x}\right)}{\sqrt{x} + \sqrt{x + \delta x}}$$

$$\delta y = (\sqrt{x} - \sqrt{x} + \delta x) \frac{\sqrt{x} + \sqrt{x}}{\sqrt{x} + \sqrt{x}}$$

$$\delta y = \frac{(\sqrt{x})^2 - (\sqrt{x} + \delta x)^2}{\sqrt{x} + \sqrt{x}}$$

$$=\frac{x-x-\delta x}{\sqrt{x}+\sqrt{x+\delta x}}$$

$$\delta y = \frac{-\delta x}{\sqrt{x + \sqrt{x + \delta x}}}$$

Dividing by δx on both sides

$$\frac{\delta y}{\delta x} = \frac{-1}{\sqrt{x} + \sqrt{x + \delta x}}$$

$$\lim_{\delta x \to 0} \frac{\delta y}{dx} = \lim_{x \to 0} \frac{-1}{\sqrt{x} + \sqrt{x + \delta}}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{x} + \sqrt{x + 0}}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{x} + \sqrt{x}}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{x} + \sqrt{x}}$$

Differentiate $(\ln x)^x$ w.r.t. x.

Sol: Let
$$y = (\ln x)^x$$

$$y = (\ln x)^{x}$$

$$\ln y = x \ln(\ln x)$$

Diff. w.r.t. x

$$\frac{d}{dx}\ln y = \frac{d}{dx} x \ln (\ln x)$$

$$\frac{1}{y}\frac{dy}{dx} = x\frac{d}{dx}\ln(\ln x) + \ln(\ln x)\frac{d}{dx}. x$$

$$\frac{d}{dx}\ln f(x) = \frac{1}{f(x)}.f'(x)$$

$$\frac{1}{y}\frac{dy}{dx} = x\frac{1}{\ln x}\frac{d}{dx}\ln x + \ln(\ln x).1$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{x}{\ln x} \cdot \frac{1}{x} + \ln(\ln x)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{\ln x} + \ln(\ln x)$$

$$\ln a^b = b \ln a$$

$$(u.v)' = uv' + vu$$

$$\frac{dy}{dx} = y \left[\frac{1}{\ln x} + \ln(\ln x) \right]$$

$$\frac{dy}{dx} = (\ln x)^{2} \left[\ln(\ln x) + \frac{1}{\ln x} \right]$$
50. Find $f'(x)$ if $f(x) = \ln(e^{x} + e^{-x})$

$$\int (x) = \ln(e^{x} + e^{-x})$$

$$\int (x) = \frac{d}{dx} \ln(e^{x} + e^{-x})$$

$$= \frac{1}{(e^{x} + e^{-x})^{2}} \times \frac{d}{dx} (e^{x} + e^{-x})$$

$$= \frac{d}{dx} \ln(f(x)) = \frac{1}{f(x)} \times f'(x)$$

$$= \frac{1}{(e^{x} + e^{-x})^{2}} \times (e^{x} + e^{-x} (-1)) \qquad \frac{d}{dx} e^{f(x)} = e^{f(x)} f'(x)$$

$$f'(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
51. Find y_{2} if $y = \sqrt{x} + \frac{1}{\sqrt{x}}$

$$y = (x)^{\frac{1}{2}} + (x)^{\frac{1}{2}}$$

$$y_{1} = \frac{d}{dx} \left(x^{\frac{1}{2}} + x^{\frac{1}{2}}\right)$$

$$y_{1} = \frac{d}{dx} \left(x^{\frac{1}{2}} + x^{\frac{1}{2}}\right)$$

$$y_{1} = \frac{1}{2} x^{\frac{1}{2}} + \frac{1}{2} x^{\frac{1}{2}}$$

$$y_{1} = \frac{1}{2} x^{\frac{1}{2}} + \frac{1}{2} x^{\frac{1}{2}}$$

$$y_{1} = \frac{1}{2} (x^{-\frac{1}{2}} - x^{-\frac{1}{2}})$$
Again diff. w.r.t. x

$$y_{2} = \frac{1}{2} \left(\frac{-1}{2} x^{-\frac{1}{2}} - x^{-\frac{1}{2}}\right)$$

$$y_{2} = \frac{1}{2} \left(\frac{-1}{2} x^{-\frac{1}{2}} - \frac{-3}{2} x^{-\frac{1}{2}}\right)$$

$$y_{2} = \frac{1}{2} \left(\frac{-1}{2} x^{-\frac{1}{2}} - \left(\frac{-3}{2} x^{-\frac{1}{2}} - 1\right)$$

$$y_{2} = \frac{1}{2} \left(\frac{-1}{2} x^{-\frac{1}{2}} - \left(\frac{-3}{2} x^{-\frac{1}{2}} - 1\right)$$

$$y_{2} = \frac{1}{2} \left(\frac{-1}{2} x^{-\frac{1}{2}} + \frac{3}{2} x^{-\frac{1}{2}} - 1\right)$$

 $y_2 = \frac{1}{4} \left(\frac{-1}{\sqrt{2}} + \frac{3}{\sqrt{2}} \right)$

$$y_2 = \frac{1}{4} \left(\frac{-x+3}{x^{\frac{3}{2}}} \right)$$
$$y_2 = \frac{3-x}{4x^{\frac{3}{2}}}$$

52. Find
$$\frac{dy}{dx}$$
 if $x^2 - 4xy - 5y = 0$

 $\frac{d}{dx}x^n = nx^{n-1}.$

Sol:
$$x^2 - 4xy - 5y = 0$$

$$\frac{d}{dx}(x^2 - 4xy - 5y) = \frac{d}{dx}(0)$$

$$\frac{d}{dx}x^2 - 4\frac{d}{dx}(xy) - 5\frac{dy}{dx} = 0$$

$$2x - 4\left[x\frac{dy}{dx} + y\frac{d}{dx}x\right] - 5\frac{dy}{dx} = 0$$

$$2x - 4\left[x\frac{dy}{dx} + y\right] - 5\frac{dy}{dx} = 0$$

$$2x - 4x\frac{dy}{dx} - 4y - 5\frac{dy}{dx} = 0$$

$$(2x-4y)-(4x+5)\frac{dy}{dx}=0$$

$$(4x+5)\frac{dy}{dx} = 2x-4y$$

$$\frac{dy}{dx} = \frac{2x - 4y}{4x + 5}$$

$$\frac{dy}{dx} = \frac{2(x-2y)}{4x+5}$$

Differentiate $x^2 - \frac{1}{x^2}$ w.r.t. x^4 53.

Sol:

Let
$$y = x^2 - \frac{1}{x^2}$$
, $t = x^4$

$$t = x^4$$

Find
$$\frac{dy}{dt}$$

Diff. w.r.t. x

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^2 - x^{-2} \right)$$

$$\therefore \frac{d}{dx} x^n = n x^{n-1}$$

$$\frac{dy}{dx} = 2x - \left(-2\right)x^{-2-6}$$

$$\frac{dy}{dx} = 2x + 2x^{-3}$$

$$\frac{dy}{dx} = 2(x + x^{-3})$$

$$\frac{dy}{dx} = 2\left(x + \frac{1}{x^3}\right)$$

$$\frac{dy}{dx} = 2\left(\frac{x^4 + 1}{x^3}\right)$$
Now
$$t = x^4$$
Diff. w.r.t. x
$$\frac{dt}{dt} = \frac{d}{x^3}$$

$$\frac{dt}{dx} = \frac{d}{dx}x^{4}$$

$$\frac{dt}{dx} = 4x^3$$

$$\frac{dx}{dt} = \frac{1}{4x^3}$$

Applying chain Rule

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

$$\frac{dy}{dt} = 2\left(\frac{x^4 + 1}{x^3}\right) \times \frac{1}{4x^3}$$

$$\frac{dy}{dt} = \frac{x^4 + 1}{x^6}$$

54. Differentiate
$$Sin^{-1}\sqrt{1-x^2}$$
 w.r.t. x.

Sol:

Let
$$y = Sin^{-1}\sqrt{1-x^2}$$

$$\frac{dy}{dx} = \frac{d}{dx}Sin^{-1}\sqrt{1-x^2}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-\left(1-x^2\right)^2}} \times \frac{d}{dx} \sqrt{1-x^2}$$

$$\frac{d}{dx}Sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \times \frac{dx}{dx}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - 1 + x^2}} \times \frac{1}{2} (1 - x^2)^{\frac{1}{2} - 1} \times (0 - 2x)$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{x^2}} \times \frac{1}{2} (1 - x^2)^{-\frac{1}{2}} (-2x)$$

$$\frac{dy}{dx} = \frac{-x}{x\sqrt{1-x^2}}.$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}$$

55. Find
$$\frac{dy}{dx}$$
 if $y = \ln(x + \sqrt{x^2 + 1})$

 $y = \ln\left(x + \sqrt{x^2 + 1}\right)$ Sol:

$$\frac{dy}{dx} = \frac{d}{dx} \ln \left(x + \sqrt{x^2} + 1 \right)$$

$$\frac{dy}{dx} = \frac{1}{\left(x + \sqrt{x^2 + 1}\right)} \times \frac{d}{dx} \left(x + \sqrt{x^2 + 1}\right)$$

$$\because \frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \cdot f'(x)$$

$$\frac{d}{dx}x^{n} = nx^{n-1}$$

$$\frac{dy}{dx} = \frac{1}{\left(x + \sqrt{x^2 + 1}\right)} \times \left(1 + \frac{1}{2} \left(x^2 + 1\right)^{\frac{1}{2} - 1} (2x + 0)\right)$$

$$\frac{dy}{dx} = \frac{1}{\left(x + \sqrt{x^2 + 1}\right)} \times \left(1 + \frac{1}{2} \left(x^2 + 1\right)^{\frac{1}{2} - 1} (2x + 0)\right)$$

$$\frac{dy}{dx} = \frac{1}{(x + \sqrt{x^2 + 1})} \times \left(1 + \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}}(2x)\right)$$

$$\frac{dy}{dx} = \frac{1}{\left(x + \sqrt{x^2 + 1}\right)} \times \left(1 + \frac{x}{\sqrt{x^2 + 1}}\right)$$

$$\frac{dy}{dx} = \frac{1}{\left(x + \sqrt{x^2 + 1}\right)} \times \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}}$$

56. Differentiate
$$(\ln x)^x$$
 w.r.t. x

(C.W)

Sol:
$$\frac{d}{dx}(\ln x)^{x} = ?$$
Let $y = (\ln x)^{x} \rightarrow (i)$

Taking natural logarithm on both sides.

$$\ln y = \ln (\ln x)^{x}$$

$$\ln y = x \ln(\ln x)$$
 Diff w.r.t. x

$$\frac{d}{dx}\ln y = \frac{d}{dx}\left(x\ln\left(\ln x\right)\right)$$

$$\frac{1}{v}\frac{dy}{dx} = x\frac{d}{dx}\ln(\ln x) + \ln(\ln x)\frac{d}{dx}x.$$

$$\frac{1}{y}\frac{dy}{dx} = x \left[\frac{1}{\ln x} \frac{d}{dx} (\ln x) \right] + \ln (\ln x).$$

$$\frac{1}{y}\frac{dy}{dx} = \cancel{x} \left[\frac{1}{\ln x} \cdot \frac{1}{\cancel{x}} \right] + \ln(\ln x)$$

$$\frac{1}{v}\frac{dy}{dx} = \frac{1}{\ln x} + \ln\left(\ln x\right)$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{1 + (\ln x) \ln (\ln x)}{(\ln x)} \right]$$
 from (i)

$$\frac{dy}{dx} = (\ln x)^{x} \left[\frac{1 + (\ln x) \ln (\ln x)}{(\ln x)^{1}} \right]$$

$$\Rightarrow \frac{d}{dx}(\ln x)^{x} = (\ln x)^{x-1} \left[1 + (\ln x) \ln(\ln x)\right]$$

57. Find
$$f'(x)$$
 if $f(x) = \frac{e^x}{e^{-x} + 1}$

(C.W)

Sol:
$$f'(x) = ?$$

Given
$$f(x) = \frac{e^x}{e^{-x} + 1}$$
 Diff. .w.r.t. x.

$$\frac{d}{dx}f(x) = \frac{d}{dx}\left(\frac{e^x}{e^{-x}+1}\right)$$

$$f'(x) = \frac{(e^{-x} + 1)\frac{d}{dx}e^{x} - e^{x}\frac{d}{dx}(e^{-x} + 1)}{(e^{-x} + 1)^{2}}$$

$$f'(x) = \frac{(e^{-x} + 1)e^{x} - e^{x}(-e^{-x})}{(e^{-x} + 1)^{2}}$$

$$f'(x) = \frac{e^{-x} e^{x} + e^{x} + e^{x} e^{-x}}{(e^{-x} + 1)^{2}}$$

$$f'(x) = \frac{e^{-x+x} + e^x + e^{x-x}}{\left(e^{-x} + 1\right)^2} = \frac{e^0 + e^x + e^0}{\left(e^{-x} + 1\right)^2}$$

$$f'(x) = \frac{1 + e^{x} + 1}{\left(e^{-x} + 1\right)^{2}} = \frac{2 + e^{x}}{\left(e^{-x} + 1\right)^{2}}$$

58. Find
$$\frac{dy}{dx}$$
 if $y = (x^2 + 5)(x^3 + 7)$

(C.W)

Soli
$$\frac{dy}{dx} = ?$$

Given
$$y = (x^2 + 5)(x^3 + 7)$$

Diff. w.r.t. x

$$\frac{dy}{dx} = \frac{d}{dx} \left[\left(x^2 + 5 \right) \left(x^3 + 7 \right) \right]$$

Using product Rule

$$\frac{dy}{dx} = \left(x^2 + 5\right) \frac{d}{dx} \left(x^3 + 7\right) + \left(x^3 + 7\right) \frac{d}{dx} \left(x^2 + 5\right)$$

$$\frac{dy}{dx} = (x^2 + 5)(3x^2) + (x^3 + 7)(2x)$$

$$\frac{dy}{dx} = 3x^4 + 15x^2 + 2x^4 + 14x$$

$$\frac{dy}{dx} = 5x^4 + 15x^2 + 14x$$

59. Find
$$\frac{dy}{dx}$$
 if $y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$

(C.W)

Sol:
$$\frac{dy}{dx} = ?$$

Given
$$y = \left(\sqrt[4]{x} - \frac{1}{\sqrt{x}}\right)^2$$

$$y = \left(\sqrt{x}\right)^2 + \left(\frac{1}{\sqrt{x}}\right)^2 - 2\left(\sqrt{x}\right)\left(\frac{1}{\sqrt{x}}\right)$$

$$y = x + \frac{1}{x} - 2$$

$$y = x + x^{-1} - 2$$

$$\frac{dy}{dx} = \frac{d}{dx}x + \frac{d}{dx}x^{-1} - \frac{d}{dx}2$$

$$\frac{dy}{dx} = 1 + (-1)x^{-1-1} - 0$$

$$\frac{dy}{dx} = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$$

60. Find
$$\frac{dy}{dx}$$
 if $y = \frac{x^2 + 1}{x^2 - 3}$

(H.W)

Sol:
$$\frac{dy}{dx} = ?$$

Given
$$y = \frac{x^2+1}{x^2-3}$$
 diff. w.r.t, x.

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{x^2 + 1}{x^2 - 3} \right)$$
 using Quotient Rules

$$\frac{dy}{dx} = \frac{\left(x^2 - 3\right)\frac{d}{dx}\left(x^2 + 1\right) - \left(x^2 + 1\right)\frac{d}{dx}\left(x^2 - 3\right)}{\left(x^2 - 3\right)^2}$$

$$\frac{dy}{dx} = \frac{(x^2 - 3)(2x) - (x^2 + 1)(2x)}{(x^2 - 3)^2}$$

$$\frac{dy}{dx} = \frac{(2x)\left[(x^2 - 3) - (x^2 + 1)\right]}{(x^2 - 3)^2}$$

$$\frac{dy}{dx} = \frac{2x(x^2 - 3 - x^2 - 1)}{(x^2 - 3)^2}$$

$$\frac{dy}{dx} = \frac{(2x)(-4)}{(x^2 - 3)^2} = \frac{8x}{(x^2 - 3)^2}$$

59

Topic I: Derivative of a function by definition: Differentiate ab-intio with respect to x if $y = \sin \sqrt{x}$ (C.W)(C.W)Differentiate $\cos \sqrt{x}$ w.r.t x from first principle. Topic II: Direct Differentiation: If $y = x^4 + 2x^2 + 2$ then prove that $\frac{dy}{dx} = 4x \sqrt{y-1}$ (H.W) Topic III: Chain Rule Differentiate $x^2 - \frac{1}{x^2}$ w.r.t. x^4 (H.W) If $x = a\cos^3\theta$, $y = b\sin^3\theta$, show that $\frac{ay}{dx} + b\tan\theta = 0$ (H.W) 5. Find $\frac{dy}{dx}$ if $x = a (\cos t + \sin t)$, $y = a (\sin t - t \cos t)$. (H.W) 6. Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1 - t^2}{1 + t^2}$ $y = \frac{2t}{1 + t^2}$ (H.W) (2 times) 7. Find $\frac{dy}{dx}$ If $x = \theta + \frac{1}{\theta}$, $y = \theta + 1$ (C.W) Topic IV: Derivative of Tringnometric Functions: Differentiate with respect to x if $\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$ (C.W) Show that $\frac{dy}{dt} = \frac{y}{x}$ If $\frac{y}{x} = Tan^{-1}(\frac{x}{x})$ 10. (H.W) (4 times) If y = tan (p tan'1 x)', show that $(1 + x^2) y_1 - p (1 + y^2) = 0$. 11. (C.W) If $y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + \dots \infty}}}$ then prove that $(2y - 1)\frac{dy}{dx} = \sec^2 x$. (C.W) Topic V: Derivative of exponential and Logrithmic Function: If y = e^{ax} Sinbx then show that $\frac{d^2y}{dx^2}$ - $2a\frac{dy}{dx}(a^2+b^2)y=0$ (H.W) Find f'(x), when $f(x) = (\ell nx)^{\ell nx}$ (H.W) Topic VI: Higher Derivative: If x = a(θ +sin) and y = (1 + cos θ), then shows that $y^2 \frac{d^2y}{dx^2} + a = 0$ (C.W) 15. If $y = e^x \sin x$, show that $\frac{d^2y}{dx^2} - 2y \frac{dy}{dx} + 2y = 0$ 16. If y = a cos (1) x) + b sin (ln x), then prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$ (H.W) 17. If $y = (\cos^{-1}x)^2$ prove that $(1-x^2) y_2 - xy_1 - 2 = 0$ (C.W) (2 times) -Topic VIII: Increasing and Decreasing Functions. 19. Show that $y = x^x$ has minimum value at x = 1/e(H.W) Show that $y = \frac{\ell nx}{x}$ has maximum value at $x = e^{-t}$ 20.

(C.W)

Chapter-2 (Examples According to ALP Smart Syllabus)

Example 2: (Pag#46) Find the derivative of \sqrt{x} at x = a from first principles. (C.W)

Sol: If
$$f(x) = \sqrt{x}$$
, then

(I)
$$f(x+\delta x) = \sqrt{x+\delta x}$$
 and

(ii)
$$f(x+\delta x)-f(x)=\sqrt{x+\delta x}-\sqrt{x}$$

$$f(x+\delta x)-f(x)=\frac{\left(\sqrt{x+\delta x}-\sqrt{x}\right)\left(\sqrt{x+\delta x}+\sqrt{x}\right)}{\sqrt{x+\delta x}+\sqrt{x}}=\frac{\left(x+\delta x\right)-x}{\sqrt{x+\delta x}+\sqrt{x}}$$

i.e.,
$$f(x+\delta x)-f(x)=\frac{\delta x}{\sqrt{x+\delta x}+\sqrt{x}}$$
 (1)

(iii) Dividing both sides of (i) by $\delta x \rightarrow 0$, we have

$$\lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x} = \lim_{\delta x \to 0} \frac{\delta x}{\sqrt{x+\delta x} + \sqrt{x}} = \frac{1}{\sqrt{x+\delta x} + \sqrt{x}}, (\because \delta x \neq 0)$$

(iv) Taking limit of both the sides as $\delta x \to 0$, we have

$$\frac{f(x+\delta x)-f(x)}{\delta x} = \left(\frac{1}{\sqrt{x+\delta x}+\sqrt{x}}\right)$$

i.e.,
$$f'(x) = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}, (x > 0)$$

and
$$f(a) = \frac{1}{2\sqrt{a}}$$

or Putting x = a in
$$f(x) = \sqrt{x}$$
, gives $f(a) = \sqrt{a}$

So,
$$f(x) - f(a) = \sqrt{x} - \sqrt{a}$$

Using alternative form for the definition of a derivative, we have

$$\frac{f(x)-f(a)}{x-a} = \frac{\sqrt{x}-\sqrt{a}}{x-a}$$

$$= \frac{\left(\sqrt{x} - \sqrt{a}\right)\left(\sqrt{x} + \sqrt{a}\right)}{\left(x - a\right)\left(\sqrt{x} + \sqrt{a}\right)}$$
 (rationalizing the numerator)

$$= \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} = \frac{1}{\sqrt{x}+\sqrt{a}}, (x \neq a) \quad (II)$$

Taking limit of both the sides of (II) as $x \rightarrow a$, gives

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{\sqrt{a} + \sqrt{a}}$$

$$f'(a) = \frac{1}{2\sqrt{a}}$$

Example 7: (Page#59) Differentiate $\frac{(\sqrt{x}+1)(x^{2/3}-1)}{\sqrt{x^{3/2}-1/2}}$ with respect to x.

sol: Let
$$y = \frac{(\sqrt{x}+1)(x^{2/3}-1)}{x^{3/2}-x^{1/2}}$$

$$y = \frac{\left(\sqrt{x} + 1\right)\left(\left(\sqrt{x}\right)^3 - 1\right)}{\sqrt{x}(x - 1)}$$

$$y = \frac{(\sqrt{x} + 1)(\sqrt{x} - 1)(x + \sqrt{x} + 1)}{\sqrt{x}(x - 1)} = \frac{(x - 1)(x + \sqrt{x} + 1)}{\sqrt{x}(x - 1)} = \frac{x + \sqrt{x} + 1}{\sqrt{x}}$$

Differentiating with respect to x, we have

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{x + \sqrt{x} + 1}{\sqrt{x}} \right] = \frac{\sqrt{x} \frac{d}{dx} (x + \sqrt{x} + 1) - (x + \sqrt{x} + 1) \frac{d}{dx} (\sqrt{x})}{(\sqrt{x})^2}$$

$$\frac{dy}{dx} = \frac{\sqrt{x} \left(1 + \frac{1}{2} x^{-\frac{1}{2}} + 0 \right) - \left(x + \sqrt{x} + 1 \right) \left(\frac{1}{2} x^{-\frac{1}{2}} \right)}{x}.$$

$$\frac{dy}{dx} = \frac{\sqrt{x}\left(1 + \frac{1}{2\sqrt{x}}\right) - \left(x + \sqrt{x} + 1\right)\frac{1}{2\sqrt{x}}}{x}$$

$$\frac{dy}{dx} = \frac{\sqrt{x}\left(1 + \frac{1}{2\sqrt{x}}\right) - \frac{\left(x + \sqrt{x} + 1\right)}{2\sqrt{x}}}{x} = \frac{2x + \sqrt{x} - x - \sqrt{x} - 1}{\sqrt{x} \cdot 2\sqrt{x}} = \frac{x - 1}{2x^{3/2}}$$

Example 8: Differentiate $\frac{2x^3 - 3x^2 + 5}{x^2 + 1}$ with respect to x.

Sol:

Let
$$\phi(x) = \frac{2x^3 - 3x^2 + 5}{x^2 + 1}$$
 Then we take

$$f(x) = 2x^3 - 3x^2 + 5$$
 and $g(x) = x^2 + 1$

Now
$$f'(x) = \frac{d}{dx} [2x^3 - 3x^2 + 5] = 2(3x^2) - 3(2x) + 0 = 6x^2 - 6x$$

and
$$g'(x) = \frac{d}{dx}[x^2 + 1] = 2x + 0 = 2x$$

Using the quotient formula
$$\phi'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$
 we obtain

$$\frac{d}{dx} = \left[\frac{2x^3 - 3x^2 + 5}{x^2 + 1} \right] = \frac{\left(6x^2 - 6x\right)\left(x^2 + 1\right) - \left(2x^3 - 3x^2 + 5\right)\left(2x\right)}{\left(x^2 + 1\right)^2}$$

$$= \frac{6x^4 - 6x^3 + 6x^2 - 6x - \left(4x^4 - 6x^3 + 10x\right)}{\left(x^2 + 1\right)^2}$$

$$= \frac{6x^4 - 6x^3 + 6x^2 - 6x - 4x^4 + 6x^3 - 10x}{\left(x^2 + 1\right)^2} = \frac{2x^4 + 6x^2 - 16x}{\left(x^2 + 1\right)^2}$$

Example 2(ii): Differentiate ab-initio w.r.t. 'x' $\sin \sqrt{x}$

Sol: Let
$$y = \sin \sqrt{x}$$
, then $y + \delta y = \sin \sqrt{x + \delta x}$.

And
$$\delta y = \sin \sqrt{\lambda + \delta x} - \sin \sqrt{x}$$

$$=2\cos\left(\frac{\sqrt{x+\delta x}+\sqrt{x}}{2}\right)\sin\left(\frac{\sqrt{x+\delta}-\sqrt{x}}{2}\right)$$

As
$$(\sqrt{x+\delta x} + \sqrt{x})(\sqrt{x+\delta x} - \sqrt{x}) = (x+\delta x) - x = \delta x$$

So
$$\frac{\delta y}{\delta x} = 2\cos\left(\frac{\sqrt{x+\delta x} + \sqrt{x}}{2}\right) \cdot \frac{\sin\left(\frac{\sqrt{x+\delta x} - \sqrt{x}}{2}\right)}{\delta x}$$

$$\frac{\delta y}{\delta x} = \frac{2\cos\left(\frac{\sqrt{x+\delta x} + \sqrt{x}}{2}\right).\sin\left(\frac{\sqrt{x+\delta x} - \sqrt{x}}{2}\right)}{\left(\sqrt{x+\delta x} + \sqrt{x}\right)\left(\sqrt{x+\delta x} - \sqrt{x}\right)}$$

$$= \frac{\cos\left(\frac{\sqrt{x+\delta x} + \sqrt{x}}{2}\right)}{\left(\sqrt{x+\delta x} + \sqrt{x}\right)} \cdot \frac{\sin\left(\frac{\sqrt{x+\delta x} - \sqrt{x}}{2}\right)}{\left(\sqrt{x+\delta x} - \sqrt{x}\right)}$$

Thus
$$\frac{dy}{dx} = \lim_{\delta x \to 0} \left(\frac{\cos\left(\frac{\sqrt{x + \delta x} + \sqrt{x}}{2}\right)}{\left(\sqrt{x + \delta x} + \sqrt{x}\right)} \right) \cdot \lim\left(\frac{\sqrt{x + \delta x} - \sqrt{x}}{2}\right) \to 0 \left[\frac{\sin\left(\frac{\sqrt{x + \delta x} - \sqrt{x}}{2}\right)}{\frac{\sqrt{x + \delta x} - \sqrt{x}}{2}}\right]$$

$$\frac{dy}{dx} = \left(\frac{\cos\left(\frac{\sqrt{x} + \sqrt{x}}{2}\right)}{\left(\sqrt{x} + \sqrt{x}\right)}\right) \cdot 1 = \frac{\cos\sqrt{x}}{2\sqrt{x}} \quad \left(\frac{\sqrt{x} + \delta x} - \sqrt{x}}{2} \to 0 \text{ when }\right)$$

Example 1: (Pag#83) Find if
$$\frac{dy}{dx}y = \log_{10}(ax^2 + bx + c)$$
 (C.W

Sol: Let
$$u = ax^2 + bx + c$$
 then

$$y = \log_{10}^{u} \Rightarrow \frac{dy}{du} = \frac{1}{u} \cdot \frac{1}{\ln 10}$$

And
$$\frac{du}{dx} = \frac{d}{dx} \cdot \left(ax^2 + bx + c\right) = a(2x) + b(1) = 2ax + b$$

Thus
$$\frac{dy}{dx} = \frac{dy}{du}$$
, $\frac{du}{dx} = \left(\frac{1}{u} \cdot \frac{1}{\ln 10}\right) \frac{du}{dx} = \frac{1}{\left(ax^2 + bx + c\right) \ln 10} \left(2ax + b\right)$

Or
$$\frac{d}{dx} \cdot \left[\log_{10} \left(ax^2 + bx + c \right) \right] = \frac{2ax + b}{\left(ax^2 + bx + c \right) \ln 10}$$

Example 3: (Pag#84) Differentiate (in x)* w.r.t 'x'

(C.W)

Sol: Let
$$y = (\ln x)^x$$

Taking logarithm of both sides of (I) we have

$$\ln y = \ln \left[\left(\ln x \right)^{3} \right] = x \ln \left(\ln x \right)$$

Differentiate w.r.t 'x'.

$$\frac{1}{y}\frac{dy}{dx} = 1.\ln\left(\ln x\right) + x.\frac{1}{\ln x}.\frac{d}{dx}\left(\ln x\right)$$

$$= \ln (\ln x) + x \cdot \frac{1}{\ln x} \cdot \frac{1}{x} = \ln (\ln x) + \frac{1}{\ln x}$$

$$\frac{dy}{dx} = y \left[\ln \left(\ln x \right) + \frac{1}{\ln x} \right] = \left(\ln x \right)^{x} \left[\ln \left(\ln x \right) + \frac{1}{\ln x} \right]$$

Example 7: (Pag#94) If $y = \sin^{-1} \frac{x}{a}$ then show that $y_2 = x(a^2 - x^2)^{-\frac{1}{2}}$ (C.W)

Sol:
$$y = \sin^{-1} \frac{x}{a}$$
 so

$$y_1 = \frac{dy}{dx} = \frac{d}{dx} \left[\sin^{-1} \frac{x}{a} \right] = \frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} \times \frac{d}{dx} \left(\frac{x}{a}\right)$$

$$= \frac{1}{\sqrt{\frac{a^2 - x^2}{a^2}}} \cdot \frac{1}{a} = \frac{a}{\sqrt{a^2 - x^2}} \cdot \frac{1}{a} = \left(a^2 - x^2\right)^{-1/2}$$

$$y_2 = \frac{d}{dx} \left[\left(a^2 - x^2 \right)^{-1/2} \right] = -\frac{1}{2} \left(a^2 - x^2 \right)^{-3/2} \times \left(-2x \right) = x \left(a^2 - x^2 \right)^{-3/2}$$

Example 1: Expand $f(x) = \frac{1}{1+x}$ in the Maclaurin series.

Sol: f is defined at x = 0 that is, f(0) = 1. Now we find successive derivatives of f and their values at x = 0.

$$f'(x) = \{-1\} (1+x)^{-2} \text{ and } f'(0) = -1$$

$$f''(x) = (-1)(-2)(1+x)^{-3}$$
 and $f''(0) = (-1)^{2} 2$

$$f'''(x) = (-1)(-2)(-3)(1+x)^{-4}$$
 and $f'''(0) = (-1)^3 \frac{1}{3}$

$$f^{(4)}(x) := (-1)^{4}(-2) \cdot (-3)^{4}(-4)^{-5}$$
 and $f^{(4)}(x) = (-1)^{4} \cdot 4$

Following the pattern, we can write $f^{(n)}(0) = (-1)^n \lfloor n \rfloor$

Now substituting f(0) = 1, f'(0) = -1, $f''(0) = (-1)^2 (2)$

 $f'''(0) = (-1)^3 [3, f^{(4)}(0) = (-1)^4 [4, ..., f^{(n)}(0) = (-1)^n [n]$ in the formula.

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{2}x^3 + \frac{f^{(4)}(0)}{4}x^4 + \dots + \frac{f^{(n)}(0)}{2}x^n + \dots$$

We have

$$\frac{1}{1+x} = 1 + (-1)x + (-1)^2 \frac{|2|}{|2|} x^2 + (-1)^3 \frac{|3|}{|3|} x^3 + (-1)^4 \frac{|4|}{|4|} x^4 + \dots + \frac{(-1)^n |n|}{|n|} x^n + \dots$$

$$= 1 - x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + \dots$$

Thus, the Maclaurin series for $\frac{1}{1+x}$ is the geometric series with the first term 1 and common ratio -x.

Example 2: Examine the function defined $f(x) = 1 + x^3$ for extreme values.

Sol: Given that $f(x) = 1 + x^3$

Differentiating w.r.t 'x', we get $f'(x) = 3x^2$

$$f'(x) = 0 \Rightarrow 3x^2 = 0 \Rightarrow x = 0$$

 $f'(x) = 6x \text{ and } f^{-n}(0) = 6(0) = 0$

The second derivative does not help in determining the extreme values.

$$f'(0-\varepsilon) = 3(0-\varepsilon)^2 = 3\varepsilon^2 > 0$$

$$f'(0+\varepsilon) = 3(0+\varepsilon)^2 = 3\varepsilon^2 > 0$$

As the first derivative does not change sign at x = 0, therefore (0,0) is a point of inflexion.

Example 5: Find the point on the graph of the curve $y = 4 - x^2$ which is closest to the point (3,4)

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree

Guess Papers, Past Papers & Notes

Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available 👇

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

Sol: Let be distance between a point (x,y) on the curve $y = 4 - x^2$ and the point (3,4), . Then

$$l = \sqrt{(x-3)^2 + (y-4)^2} = \sqrt{(x-3)^2 + (4-x^2-4)} \quad (\because (x,y) \text{ is on the curve } y = 4-x^2)$$
$$= \sqrt{(x-3)^2 + x^4}$$

Now we find x for which / Is minimum.

$$\frac{dl}{dx} = \frac{1}{2.\sqrt{(x-3)^2 + x^4}} \left[2(x-3) + 4x^3 \right]$$

$$= \frac{1}{2l} \cdot 2(2x^3 + x - 3) = \frac{1}{l}(2x^3 + x - 3) = \frac{1}{l}(x - 1)(2x^2 + 2x + 3)$$

$$\frac{dl}{dx} = 0 \Rightarrow \frac{1}{l}(x-1)(2x^2 + 2x + 3) = 0 \Rightarrow x-1 = 0 \text{ or } 2x^2 + 2x + 3 = 0$$

$$\Rightarrow x = 1 \qquad \left(:: 2x^2 + 2x + 3 = 0 \text{ gives complex roots} \right)$$

I is positive for $1-\varepsilon$ and $1+\varepsilon$ where ε is very very small positive real number.

Also
$$2x^2 + 2x + 3 = 2\left(x^2 + x + \frac{1}{4}\right) + \frac{5}{2} = 2\left(x + \frac{1}{2}\right)^2 + \frac{5}{2}$$
 is positive, for $x = 1 - \varepsilon$

The sign of $\frac{dl}{dx}$ depends on the factor x-1

x - 1 is negative for x =
$$1 - \varepsilon$$
 because $x - 1 = 1 - \varepsilon - 1 = -\varepsilon$ (i)

x - 1 is negative for x =
$$1 - \varepsilon$$
 because x - 1 = $1 - \varepsilon$ - 1 = ε (ii)

From (i) and (ii) we conclude that $\frac{dl}{dx}$ changes sign from —ve to +ve at x = 1 Thus ! has a minimum value at x = 1

Putting x = 1 in $y = 4 - x^2$, we get the y-coordinate of the required point which is

Hence the required point on the curve is (1,3).

 $4-(1)^2=3$

OBJECTIVES (MCQ'S) OF CHAPTER-3 ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Differential of Variables

Topic I: Ditterent	tial of Variables:		
1. If $y = f(x)$ is	a differential function	then differential of X is	defined by relation
(A) ax = oy	(B) $dx = dy$	(C) $\delta x = dy$	(D) $ax = \delta x$
2. Differential	of y is denoted by.		(2 times)
(a) dy'	(b) $\frac{dy}{dx}$	(c) dy	(d) dx
3. If $v = x^3$, the	n differential of v is.		(2 Times)
(a) $3x^3$ 4. $f(x + \delta x)$	(b) 3x² dv	(c) x ³ dv	(d) 3x ² dx
(A) T (X) dX	(B) f(X) — (X) UX	(C) $f'(x) + f'(x) dx$	(D) -f' (x) dx
	rivative (Integratic		
		d of f(x)	
		Differential coefficient	(D) Area
$6. \qquad \int \sec^2 nx dx$	=		(4 times)
(A) $\frac{n}{3}\sec 3nx + c$	(B) $n \tan nx + c$	(C) $\tan mx + c$	(D) $\frac{1}{n} \tan n\alpha + c$
7. If α is cons	tant, then $\int \cot \alpha dy =$		(2 times)
(A) $\sin \alpha + c$	(B) $-\sin\alpha + c$	(C) $y \cot \alpha + c$	(D) $x \sin \alpha + c$
8. $\int sex5x \tan \theta$	5xdx is equal to:	•	(3 times)
(A) 5 sec 5x + c		(C) $\frac{\sec 5x}{5} + c$	(D) $\frac{\tan 5x}{5} + c$
9. $\int \cos 2x dx i$	s equal to:		' (1 time)
(A) - 2sin2x + c	(B) 2sin2x+ c	(C) $\frac{-\sin 2x}{2} + c$	$(D) \frac{\sin 2x}{2} + c$
$10. \qquad \int (ax+b)^n dx$	k is equal to:		(3 times)
, ,		$(C) \frac{(ax+b)^{n+1}}{n+1} + c$	(D) $\frac{(ax+b)^n}{n+1}+c$
11. $\int \frac{1}{\alpha x - 1} dx$			(2 times)
(A) $\ln (ax - 1) + c$	(B) a in $(ax - 1) + c$	(C) $\frac{1}{a}\ln(ax-1)+c$	$(D) \frac{-1}{(\alpha x - 1)^2}$
$12. \qquad \int e^{ax} dx = \underline{\hspace{1cm}}$		*	(3 times)
(A) $e^{ax} + c$	(B) e" + c	(C) $ae^{ax} + c$	(D) $\frac{1}{a}e^{ax}+c$
.13. $\int \cot x dx$ is	equals:		(6 times)
•	(B) $Co \sec^2 x + c$	(C) $lnCosx + c$	(D) $\ln \left \sin x \right + c$
14. $\int e^x dx$ is ea			(5 times)
J			

(B) $xe^{x-1} + c$

(A) $xe^x + c$

(C) $e^{x-1} + c$

	1 1	,	
$15. \qquad \int e^{\lambda x + \mu} dx = \underline{\hspace{1cm}}$	·		(3 times)
$(A) \frac{1}{\lambda} e^{\lambda x + \mu} + c \qquad .$	$(B) \frac{1}{\mu} e^{\lambda x + \mu} + c$	(C) $\lambda e^{\lambda t + \mu} + c$	(D) $\mu e^{\lambda x + \mu} + c$
16. For $n \neq -1$, $\int x$	"dx =		(3 times)
$(A) \frac{x^{n-1}}{n-1}$		$(C) \frac{x^{n+1}}{n+1} + c$	$(D) \frac{x^n}{n+1} + c$
$17. \qquad \int \frac{1}{\sqrt{1-x^2}} dx ds dx$	equal to.		(3 Times)
(a) tan ⁻¹ x		(c) cos ⁻¹ x	(d) sin-1x
18.	qual to.	,	,
(a) sin x+c	(b) cos x+c	(c) — cos x+c	(d) sin x+c
19. $\int (3x^2 + 2x) dx$	is equal to.		
(a) 6x + 2	(b) x ³ + x ²	(c) 3x + 2	(d) $\frac{x^3}{3} + \frac{x^2}{2}$
20. $\int (e^x + 1) dx = 0$	equal to.	•	(2 Times)
(a) e ^x	•	(c) e ^x - x	(d) $e^x + x^2$
21. \ \tan x \ dx =			(3 Times)
(a) tnsecx	(b) sec² x	(c) ln cos x	(d) tasinx
22. $\int (2x+3)^{\frac{1}{2}} dx, \epsilon$	equals:		
(a) $(2x+3)^{\frac{1}{2}}+c$		(c) $\frac{1}{3}(2x+3)^{\frac{1}{2}}+c$	
23. Anti derivative	e of cot x, equal.		(3 Times)
(a) $\ln \cos x + c$	(b) $\ln \sin x + c$	(c) $-\cos ec^2x + c$	(d) $\ln \sec x + c$
24. $\int \sin 2x dx =$			
(a) $-\frac{Cos2x}{2}$.	(b) $\frac{Cos2x}{2}$	(c) -2Sin2x	(d) $-2Cos2x$
$25. \qquad \int \tan \frac{\pi}{4} dx =$			
(a) $ln(\sin\frac{\pi}{4})$	(b) $\frac{1}{4}\sec^2\frac{\pi}{4}$	(c) $\sec^2 \frac{\pi}{4}$)	(d) $x \tan \frac{\pi}{4}$
$26. \qquad \int \frac{\sin p}{\cos^2 x} dx =$			
- CO2 X	(h) cinntan y	(c) cospsec ² x	(d) sec ² x
(a) Sinpsec ² x	(D) Surbran v	(0) 000 000	(4 Times)
27. $\int \frac{1}{x} dx = :$	1	(c) 1	(D) Inx
$(A)\frac{1}{x^2}$	(B) $\frac{1}{x^2}$	(C) $\frac{1}{x}$	(4 Times)
28. $\int a^x dx = :$		tna	•
$(A) \frac{a^{x}}{\ell n a} .$		(C) $\frac{\ell na}{a^x}$	(D) a ^x ℓna
29. $\int \frac{1}{1+\cos x} dx is$	equal to		(2 times)
		Sca	anned with CamSca

			5010)
(A) $\tan \frac{x}{2}$		(C) $\cot \frac{x}{2}$	(D) $\frac{1}{2}$ cot $\frac{x}{2}$
30. $\int \frac{-1}{1+x^2} dx = qu$	ials		
(A) - tan-1 x		(C) cot ⁻¹ x ²	(D) cot-1x
31. ∫ sec x dx equ	uals:-		
(A) sec x tan x	(B) ℓn(sec x tan x)	(C) €n (sec x + tan x)	(D) In(secx - tank)
32. $\int \frac{1}{1+x^2} dx = $ _			(2 Times)
(A) tan-1x		(C) Cos ⁻¹ x	(D) Sin ⁻¹ X
$33. \int x(\sqrt{x}+1)dx$	* -	•	
_	(B) $\frac{2}{5} \times \frac{5/2}{2} + \frac{x^2}{2} + c$	$(C) = x^{5/2} + c$	(D) x ^{3/2} +x+c
, 34. ∫ sin x dx is e		**	, , , , , , , , , , , , , , , , , , , ,
(A) cos x		(C) -sin x	(D) -cos x
	on is the reverse proc	* *	۾ دون پردا
(A) Induction	(B) Differentiation	(C) Tabulation	(D) Sublimation
36. $\int e^{ax} dx =$,		
*	(8) ae*x	(C) xe ^{ax}	$(D) \frac{e^{ax}}{a}$
37 ∫ a ^x Ina dx =	(0) 00	(0)	, a
_	(D) a ^x	(C) Ina* + c	(D) Inc. of the
(A) a ^k +c	(B) Ina	(C) IDa" + C	(D) Ina a" + c
38. ∫ o dx =	101 0 2	101.0	(D)
(A) 1 ((B) O	· (C) Constant	(D) x
$39. \qquad \int \frac{x}{x+2} \ dx = :$	4-4		(0) 0 (0)
		(C) $x - 2 \ln (x + 2) + \frac{1}{2}$	
$40. \qquad \int \tan x dx =$		t dest d'	(3 Times)
		(C) $\ln \sin x + c$	(D) e^{x} sec $x + c$
41. $\int (2x)^{3/2} dx$			
$(A) \frac{1}{5} (2x)^{5/2} + C$	(B) $\frac{2}{5} (2x)^{5/2} + C$	(C) $\frac{1}{2} \cdot (2x)^{3/2} + C$	$(D)^{\frac{2}{3}}(2x)^{1/2}+C$
$42. \qquad \int 3^{\lambda x} dx =$			
$(A) \frac{3^{\lambda x}}{1 + c}$	(B) $\frac{3^{\lambda x}}{2} \ln 3 + c^{-1}$	$(C)\frac{\lambda 3^{\lambda x}}{\sqrt{\ln 3}} + c$	$(D) \frac{3^{\lambda x}}{2} + c$
	is equal to:	111 0	In 3
(A) 2 tan x	(B) 2 tan v A v	(C) $\tan x + x$	(D) taper = v
AA (sin 2 w dw	(b) 2 (all x + x	(C) tall x + x	(D) tall x x
44. $\int \sin 2x dx$		•	
$(A) \frac{-\cos 2x}{2}$	(B) $\frac{6922}{2}$	(C) $2 \cos 2x$	$(D) -2 \cos 2x$
Topic III: Substitu	ition Method.		,
45. $\int \frac{1}{(1+x^2)Tan^{-1}}$	$\frac{1}{x}dx =$		· (3 times)
(A) $l \eta 1+x^2 +c$	(B) $(1+x^2)^2+c$	(C) $\ln \left Tan^{-1}x \right + c$	(D) $Tan^{-1}x+c$
$46. \qquad \int \frac{2x}{\sqrt{1-x^2}} dx =$			(3 times)
, 41-4		(c) $2\sqrt{1-x^2}+c$	(D) $\sqrt{1-x^2}+c$
			·

$\int \frac{1}{x \ln x} dx$			(5 times)
A) 1+c	(B) lnx + c	(C) $(\ln x)^2 + c$	(D) In (Inx) + c
-	erivative of $\frac{1}{(1+x^2).ta}$		(2 times)
	(B) $ln(\tan x) + c$		(D) $\tan x + c$
		$(c) \ln^{c}(x) + c$	(3 times)
A) $lnf'(x)+c$	(B) $lnf(x)+c$	(c) $lnf^n(x)+c$	(D) $f(x)+c$
$\int \frac{e^{\tan^{-1}x}}{1+x^2} dx =$	•		(3 times)
TTA		$(C) e^{\cos^{-1}z} + c$	(D) $e^{\ln i x^{-1}x} + c$
1. If the expr	essions involves $\sqrt{x^2}$	$\frac{1}{-a^2}$, then the suitable	e substitution is :
A) $x = a \sin \theta$ 2. $\int \cos e c^2 2x$	- (B) $x = a \sec \theta$		$(D) \cdot x = \sin \theta$
•		(c) 2 tan 2 x	(d) $\frac{1}{2}\cot 2x$
$\int \frac{\sec^2 x}{\tan x} dx$	-		· - ·
a) tan x	(b) lncotx	· (c) cot x	(d) In tan x
$4. \qquad \int \frac{\ell nx}{x} dx =$			(4 Times)
a) x	(b) $\frac{(\ell nx)^2}{2}$	(c) $\frac{1}{\ell nc}$.	(d) $lnx(lnx)$
5. $\int \sec^2 2x dx$			· .
a) $\frac{1}{2} \tan 2x$	(b) tan 2x	(c) $\frac{1}{2} \tan x$	(d) $2 \tan 2x$
6. esin z cos z	c daç		(4 Times)
a) In sin x + C	(b) In cos x + C	(c) $e^{\cos x} + C$	(d) $e^{\sin x} + C$
$7. \qquad \int -Co\sec^2$		Catha	
a) $\frac{\cos 2x}{2}$.	(b) $\frac{Cot2x}{2}$	(c) $-\frac{\cos 2x}{2}$	(d) <i>Cot2x</i>
$58. \qquad \int f''(\mathbf{x}).f'$	(x) dx where $n \neq -1$	equals.	
a) n' f^{n-1}	(b) n f^{n+1}	$(c) \frac{f^{n+1}(x)}{n+1}$	$ (d) \frac{f^n(x)}{n+1} $
59. $\int \frac{1}{\sqrt{\sigma^2 - v^2}}$	dx dx is equal to		(2 times)
V- NA	4	(c) $Cos^{-1}(\frac{x}{a})$	(d) $Sin^{-1}(\frac{x}{m})$
60. $\int_{e^{\tan x}}^{e^{\tan x}} Sec^{2}$	dx =	94	-
(a) e ^{un x}	(b) e ^{-tan a}	(c) e ^{cots}	(d) e^{-cotx}

$$\textbf{61.} \qquad \int Cot^3 x (-Co\sec^2 x) dx$$

(a)
$$\frac{Cot^3x}{3}$$

(a)
$$\frac{Cot^3x}{3}$$
 (b) $\frac{-Cot^3x}{3}$

(c)
$$\frac{-Cot^4x}{4}$$

(d),
$$\frac{Cot^4x}{4}$$

62.
$$\int \sqrt{2x+3}(2dx) =$$

(a)
$$\frac{2}{3}(2x+3)^{\frac{3}{2}}$$

(b)
$$\frac{3}{2}(2x+3)^{\frac{3}{2}}$$

(a)
$$\frac{2}{3}(2x+3)^{\frac{3}{2}}$$
 (b) $\frac{3}{2}(2x+3)^{\frac{3}{2}}$ (c) $\frac{-2}{3}(2x+3)^{\frac{3}{2}}$

(d)
$$\frac{-3}{2}(2x+3)^{\frac{3}{2}}$$

$$63. \qquad \int \frac{\sin 2x}{\sin x} dx =$$

(c)
$$\frac{1}{2}\sin x$$

64.
$$\int \sin^3 x \cos x \, dx =$$

(A)
$$\frac{\sin^3 x}{3}$$

$$(B) \frac{\sin^4 x}{4}$$

(C)
$$\frac{\sin^5 x}{5}$$

(D)
$$\frac{\cos^{-4}x}{-4}$$

65.
$$\int \frac{e^{Svc^{-1}x}}{x\sqrt{x^2-1}} dx is:$$

(C)
$$e^{Tan^{-1}x}$$

$$66, \qquad \int \frac{dx}{\sqrt{S-x^2}} = 1$$

(B)
$$\sin^{-3}\frac{x}{s}$$

(C)
$$\sin^{-1} \frac{\sqrt{5}}{x}$$

$$67. \qquad \int \frac{dx}{ax+b}$$

(C)
$$\frac{1}{a}$$
 in (ax + b)

(D)
$$log_a (ax + b)$$

68.
$$\int \frac{1}{x^2+16} \, dx$$

(A)
$$\tan \frac{x}{4}$$

(B)
$$\frac{1}{4} \tan^{-1} \frac{\dot{x}}{4}$$

(C)
$$\frac{1}{4} \tan \frac{x}{4}$$

69.
$$\int Sec^2 x \tan x dx =$$

(2 times)

(B)
$$\frac{Sec^3x}{3}$$

(C)
$$\frac{\tan^2 x}{2}$$

(D)
$$\frac{Sec^3x \tan x}{3}$$

When the expression $\sqrt{\alpha^2-x^2}$ involves in integration , we substituted: a cosec θ (B) $x=a \tan \theta$ (C) $x=a \sec \theta$ (D) $x=a \sin \theta$

(A)
$$x = a \cdot cosec \theta$$

(B)
$$x = a \tan \theta$$
.

(C)
$$x = a \sec \theta$$

(D)
$$x = a \sin \theta$$

71.
$$\int \frac{1}{x^2+9} dx =$$

(A)
$$\frac{1}{3} \sin^{-1} \frac{x}{3}$$

(B)
$$)\frac{1}{3} tan^{-1} \frac{x}{3}$$

(C)
$$)\frac{1}{3} cos^{-1}\frac{x}{3}$$

(D)
$$tan^{-1}\frac{x}{3}$$

72.
$$\int \frac{sec^2x}{\sqrt{\tan x}} dx \text{ is equal to:}$$

(A)
$$2\sqrt{\tan x} + c$$

(B)
$$-2\sqrt{\tan x + c}$$

$$(C)\sqrt{\tan x} + c$$

(D)
$$\ln \sqrt{\tan x} + c$$

73.
$$\int a^{x^2} \cdot 2x \, dx$$
 is equal to:

$$(A) a^{x^2} + c$$

(B)
$$\frac{a^{x}+c}{2\ell na}$$

(C)
$$a^{x^2} \ln a + c$$

$$(D)\frac{a^{x^2}}{4\pi a} + c$$

Topic IV: Integration by Parts

74.
$$\int e^{\alpha x} [af(x) + f'(x)] dx$$

(A)
$$e^{\alpha} f(x) + c$$

(A)
$$e^{ax} f(x) + c$$
 (B) $\frac{1}{a} e^{ax} f(x) + c$ (C) $\frac{1}{a} f(x) + c$

(C)
$$\frac{1}{c}f(x)+c$$

(D)
$$\frac{1}{a}e^{ax} + c$$

75.
$$\int e^{x} (\ln x + \frac{1}{x}) dx = \frac{1}{x}$$

(B) $\ln x + e^x + c$ (C) $e^x \ln x + c$ (D) $\ln x - e^x + c$ $\int e^{-x}(\cos x - \sin x)dx$ is equals: (4 times) (C) $e^x \cos x + c$ (D) $e^x \sin x + c$ $\int e^{x} \left(\frac{1}{\sqrt{x^{2}-1}} + Sec^{-1}x \right) dx =$ (C) exCosec-1 x (D) ex Cot1 x (A) $\sqrt{x^2-1}$ $\int e^x(\cos x + \sin x) dx =$ (2 times) (A) $e^x \cos x + c$ (B) $e^x \sin x + c$ (D) $-e^x \sin x + c$ $\int e^{x} (x+1) dx =:$,(C) $e^{x} \cdot \frac{x^{2}}{2}$ · (A) ex (D) None 80. ✓ ∫ ℓnx dx is equal to: (2 times) $(D) \stackrel{1}{=} \ell nx$ (C) $\times \ell nx + x$. (B) x - x ℓnx $\int e^{2x} (-\sin x + 2 \cos x) dx$ equals: (C) $-e^{2x} \sin x$ (A) e^{2x} sin $\int e^x \left[\frac{1}{1+x^2} + tan^{-1}x \right] dx =$ (D) $e^{x} tan^{-1} x + c$ (C) e^x sin x + c 83. $\int e^{-x} \left(\cos x - \sin x \right) dx =$ (2 times) (D) e-x Sinx +C (A) $e^x \cos x + C$. (B) $e^x \sin x + C$ (C) $e^{-x} \cos x + C$ (3 Times) $\int \ell nx \, dx =$ (A) $x - x \ell n x + c$ (B) $x \ell n x + x + c$ (C) $\frac{1}{n} + c$ (D) $x \ell n x - x + c$ Topic VI: Area under the curve: (4 times) 85. If a < c < b, $\int f(x) dx =$ (B) $\int f(x)dx$ (C) $\int f(x)dx + \int f(x)dx$ (D) $\int f(x)dx - \int f(x)dx$ $(A) \int f(x) dx$ (4 times) (B) $a^3 + x^3$ (4 times) (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{2}$ The area bounded by cos x function from $x = \frac{-\pi}{2}$ to $x = \frac{\pi}{2}$ is: (C) 3 sq unit (D) 4 sq unit (B) 2 sq unit (A) 1 sq unit (5 times) 89. $\sec x \tan x dx =$ (c) $\sqrt{2} + 1$ ·(D) 1 (A) $\sqrt{2}$ (B) $\sqrt{2}-1$

If $\int_{-1}^{1} x^3 dx$ is equal to:

- (4 times)

- (A) 20
- (C) 28
- (3 times)

(D) 18

91. $\int (4x+k)dx = 4$, then k will be:

(A) $-\frac{1}{3}$

- (B) O.
- (C) 1

(D) 2

- 92. $\int_0^1 \frac{1}{1+x^2} dx$ is equal to: (B) $\frac{4}{\pi}$

(4 times)

$$\int_{0}^{x} f(x)dx = \underline{\hspace{1cm}}$$

- (A) $-\int_{a}^{b} f(x)dx$ (B) $-\int_{a}^{a} f(x)dx$ (C) $\int_{a}^{a} f(x)dx$

(A) 2

(D) 8

(5 times)

$$\int_{0}^{\infty} Sinx \, dx = \underline{\hspace{1cm}}$$

(7 times) 1

(A) 0

$$\int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx =$$

(a) 1

- (b) $\frac{1}{\sqrt{2}}$
- (c) $\sqrt{2}$
- (d)0

$$\int_{1+\tan x}^{\pi} \frac{\sec^2 x}{1+\tan x} =$$

(c) ln2

(2 Times)

$$\int_{0}^{3} \frac{1}{\sqrt{9-x^2}} dx$$
 is equal to

(b)
$$-\frac{2}{\pi}$$

(c)
$$-\frac{\pi}{2}$$

(4 Times)

$$\int_{0}^{1} \frac{1}{1+x^2} dx =$$

(c) $\frac{3\pi}{4}$

(d) π

(a) $\frac{\pi}{4}$

100.
$$\int_{0}^{\pi/2} k \cos x \, dx = 4 \text{ then } k = 0$$

(a) 5

(c) 2

(d) 0

$$\int_{0}^{\infty} \frac{1}{1+x^2} dx =$$


```
129. Solution of ydx + xdy = 0

(B) \frac{y}{x} = c
                                                      \cdot \quad \text{(C) } xy = c
  130- \int \frac{1}{\sqrt{1-v^2}} dx is equal to:
(A) \frac{\pi}{2} (B) \frac{\pi}{3}
 131. \int e^{\tan x} (\sec^2 x) dx is equal to:
  (A) e^{tanx} + c (B) e^x \cdot tanx + c
                                                           (C) e^x . secx + c^x (D) e^{cotx + c}
  132- \int_{1}^{2} (x^2 + 1) dx is equal to:
  (A) \frac{3}{10} (B) \frac{14}{3}
                                                      (C) \frac{5}{3} (D) \frac{8}{3}
  133- \int \frac{\log_e Tanx}{\sin 2x}, dx = -1
  (A) \frac{1}{2} (\log_e (Tanx))^2 + c
                                                           (B) \frac{1}{4} (\log_e (Tanx))^2 + c
  (C) \frac{1}{2} \log_{\epsilon} (Sin2x)^2 + c
                                                                  (D) \frac{1}{4} \log_e (Sin2x)^2 + c
  134- 3 \int Sinx. dx = :
  (A) 1
   135- Solution of differential equation (e^x + e^{-x})\frac{dy}{dx} = e^x - e^{-x} is y =:
   (A) \log_a(e^x - e^{-x}) + c (B) \log_e(e^x + e^{-x}) + c
                                                         (C) \log_a(e^x - e^{-x}) + c (D) \log_e(e^x - e^{-x}) + c
   136- \int (m+1)[x^2+2x]^m(2x+2)dx = :
   A) (x^2 + 2x)^{m+1} + c (B) \frac{(x^2 + 2x)^{m+1}}{m+1} + c (C) (x^2 + 2x)^{m-1} + c (D) m (x^2 + 2x)^{m-1} + c
   137- \int 3^x dx =
                                                           (C) \frac{3^x}{(n)^2} + c (D) 3\ln 3^x + c
   (A) 3^{x} + c
                       (B) 3×ln3 + c
   138-\int \cos x \, dx =:
                                                       (C) 2
   (A) 0
                                                                                        (D) 3
          \int \frac{1}{f(x)} \times f'(x) \, dx =
                                                                                   (D) \ln |f(x)| + c
                              (B) \ell n [f'(x) + c] (C) \frac{1}{f(x)} + c
   (A) Inx + c
   140 \quad \int x \, dx = :
                                                            (C) \frac{3}{2} . . . (D) -\frac{3}{2}
```

```
\int \sec^2 x \, dx =
                                                            (C) secx + c
 (A) \cot x + c
                              (B) tanx + c
         \int \frac{\sec^2 x}{\tan x} dx - \int \frac{\cos ec^2 x}{\cot x} dx = 0
                                                           (C) 2 & ncotx + c .
                                                                                         (D) & ncotx + c
 (A) 0
                               (B) 2 € n tanx + c
         \int \frac{d}{dx} (x^n) dx =
 (A) \frac{x^{n+1}}{n+1} + c (B) nx^{n-1} + c (C) \frac{x^{n+1}}{n} + c
 144. \int e^{ax} (af(x) + f(x)) dx =
                                                                                        (d) e^{ax}.a f'(x)
                                                       (c) e^{ax}.f(x)
 (a) e^{ax}.af(x)
                            (b) e^{ax} \cdot f'(x)
 145. \int \frac{1}{1+x^2} dx =
                                                                                         (2 times)
146 \int 3\sin 3x dx =
(a) \cos 3x
                                                           (c) 0
                                                                                         (d) 9cos3x
                                                          \cdot (c) a \sin 3x
 147. If \int f(x)dx = 5, then \int f(x)dx =
                         (b) -\frac{1}{5} (c) -5
 (a) \frac{1}{2}.
                                                                                       , (d) 5
148. \int \frac{1}{x^2 + 2x + 5} dx equals
(a) 2 \tan^{-1} \left( \frac{x+1}{2} \right) + c (b) 2 \tan^{-1} \left( \frac{x-1}{2} \right) + c (c) \frac{1}{2} \tan^{-1} \left( \frac{x-1}{2} + c \right) (d) \frac{1}{2} \tan^{-1} \left( \frac{x+1}{2} + c \right)
 149. \int (4-x^2)^{-\frac{1}{2}} (-2x) dx =
                    (b) \frac{1}{2}\sqrt{4-x^2} (c) ln(4-x^2) (d) ln\sqrt{4-x^2}
(a) 2\sqrt{4-x^2}
150. \int 3t^2 dt = 1
(a) t^3 (b) \frac{t^3}{2}
151. \int l nx dx =
                            (b) 0
                                                                                     ' (d) e
                                                            (c) 1 ·
152. \int \frac{\sin 2x}{4\sin x} dx =
        \sin 2x + c (b) 2\sin 2x + c (c) \frac{1}{2}\sin x + c
                                                                                       (d) 2\sin x + c
(a)
153. If \int_2^K 2 dx = 12, then K = ?:
```

(a) 12

(b) 16

(c) 8

(d) 4

154. Solution of Differential Equation $\frac{dy}{dx} = sec^2x$ is: (a) y = cotx + c (b) y = tan - c(a) $y = \cot x + c$ (b) $y = \tan x + c$ 155. $\int \frac{1}{1 + \cos x} dx$ equal

(a)
$$y = \cot x + c$$

(b)
$$y = \tan x + c$$

(c)
$$y = cosx + c$$

(d)
$$y = -\tan x + c$$

(a)
$$\cot\left(\frac{x}{2}\right) + c$$

(a)
$$\cot\left(\frac{x}{2}\right) + c$$
 (b) $\cot\left(\frac{2}{x}\right) + c$ (c) $\tan\left(\frac{2}{x}\right) + c$ (d) $\tan\left(\frac{x}{2}\right) + c$

(c)
$$\tan\left(\frac{2}{x}\right) + c$$

(d)
$$\tan\left(\frac{x}{2}\right) + c$$

156: $\int_0^1 (5x^4 - 3x^2 + 1) dx$ equals
(a) 1 (b) 2

157.
$$\int_{a}^{x} 3t^{2} dt =$$
(a) $x^{3} - a^{3}$ (b) t^{3}

(a)
$$x^3 - a^3$$

(c)
$$t^3 - a^2$$

								Ailia	CE UC	TATIF.	ILIC.		
1.	2	3	4	5	6	7	8	9	10	11	12	13	14
d	C .	, D	С	b	,d ·	С	c ·	ď	а	C	. d	d	d
15	16	17	-18	19	20	21	22	23	24	25	26	27	28
9	С	d	· b	p.	þ	a	d	þ	а	ď	b	d	a
29	30	31	32	33	34	35	36	37	38	39	40	41	42
a	d	С	a	Ь	d	þ	d	a	C.	С	d	а	а
43	44	45	46	47	48	49.	50	51	52	53	54	55	56
d	а	·C	b	d	а	b	d	Ь	b	d	b	а	d
57	58	59	60	61	62	63	64	_. 65	66	67	68	69	70
b	С	d	а	d	. а	d	Ь	· a	d	, C .	b	, C	d
71	72	73	74	75	76	77	78	79	80	81	82	83	84
Ь	а	d	a	С	a	b	b ´	b	а	b	d	d	d
85	86	87	88	89	90	91	92	93	94	95	96	97	98
C	C	d	b	b	а	· d	С	Ь	d	a	а	С	.d
99	100	101	102	103	104	105	106	107	108	109	110	111	112
a	b	а	С	à	d	.9	¹d.	C	С	C	a	С	С
113	114	115	116	117	118	119	120	121	122	123	124	125	126
С	C	, c	C	ď	C	а	С	b	С	d	a	а	· b
127	128	129	130	131	132	133	134	135	136	137	.138	139	140
С	a	С	a	b	b	b	С	b	а	С	b	d	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154
b	a	d	С	Ь	b	С	d	а	C	С	,c	C	þ
155	156	157											

SHORT QUESTION'S OF CHAPTER-3 : CACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Differential of Variables

1. Find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ for xy + x = 4 by differentials.

(C.W) (4 times)

Sol:- xy + x = 4

Taking differentials of both sides of the given equation, we get

$$d(xy+x)=d(4)$$

$$d(xy) + d(x) = 0$$

$$xdy + ydx + dx = 0.....(i)$$

[using d(f+g)=df+dg] [using d(f.g)= fdg+ g df]

$$xdy = -(y+1)dx \Rightarrow \frac{dy}{dx} = -\frac{y+1}{x}$$

$$\frac{dx}{dy} = \frac{-x}{y+1}$$

2. Find dy and δy of the function $y = x^2 - 1$ when x changes from 3 to 3.02 (H.W) (2 times)

Sol:-
$$y = x^2 - 1$$
.....(i) $\Rightarrow \frac{dy}{dx} = 2x$

Here x = 3 and $\delta x = dx = 3.02 - 3 = .02$

$$dy = 2xdx = 2(3)(0.02) = 0.12$$

Now

$$y + \delta y = (x + \delta x)^2 - 1$$

$$\delta y = (x + \delta x)^2 - 1 - x^2 + 1$$

$$\delta y = (x + \delta x)^2 - x^2$$

$$\delta y = (3 + 0.02)^2 - 3^2$$

$$\delta y = (3.02)^2 - 9$$

$$\delta y = 9.12 - 9$$

$$\delta y = 0.12$$

3. Find δy and dy, if $y = x^2 + 2x$, when x changes from 2 to 1.8.

(C.W) (6 times)

Sol:
$$y = x^2 + 2x$$
....(1) $\Rightarrow \frac{dy}{dx} = 2x + 2$

Here x= 2 and
$$\delta x = dx = 1.8 - 2 = -0.2$$

When
$$x=2$$
, $y=(2)^2+2(2)=4+4=8$

To find δy , we have

$$y + \delta y = (x + \delta x)^2 + (x + \delta x)$$

$$8 + \delta y = (2 + (-0.2))^2 + 2\{2 + (-0.2)\}$$

$$=(1.8)^2+2(1.8)=3.24+3.6=6.84$$

$$\delta y = 6.84 - 8 = -1.16$$

From (1)
$$dy=(2x+2)dx$$

$$\Rightarrow dy = (2 \times 2 + 2) \times (-0.2) = 6 \times (-0.2) = -1.2$$

79

Using differentials to find $\frac{dy}{dx}$ if $x^2 + 2y^2 = 16$.

(H.W) (4 times)

Taking differentials of both sides of the given equation, we get

$$d(x^2+2y^2)=d(16)$$

$$d(x^2)+d(2y^2)=0$$

$$2xdx + 2(2ydy) = 0....(1)$$

$$2ydy = -xdx \Rightarrow dy = -\frac{x}{2y}dx \Rightarrow \frac{dy}{dx} = -\frac{x}{2y}$$

From (1)
$$xdx = -2ydy \Rightarrow dx = -\frac{2y}{x}dy \Rightarrow \frac{dx}{dy} = -\frac{2y}{x}$$

Using differentional to find the value of $\sqrt[4]{17}$. . 5. . (H.W) (2 times)

Sol Let
$$y = \sqrt{x}$$

put
$$x = 16$$
 and $dx = \delta x = 1$

$$y = \sqrt[4]{16} = (16)^{1/4} = 2$$

Now

$$dy = dx^{\frac{1}{4}}$$

$$dy = \frac{1}{4}x^{\frac{1}{4}-1}$$

$$dy = \frac{1}{4}x^{-\frac{3}{4}}$$

$$dy = \frac{1}{4x^{\frac{3}{4}}}$$

$$dy = \frac{1}{4(2^4)^{\frac{3}{4}}}$$

$$dy = \frac{1}{4(8)} = \frac{1}{32} = 0.0312$$

$$y + \delta y = \sqrt[4]{x + \delta n}$$

$$\sqrt[4]{x+\delta n} = y+\delta y$$

$$\sqrt[4]{x+dx} \approx y+dy$$

$$\sqrt[4]{18+1} \approx 2+0.0312$$

$$\sqrt[4]{17} \approx 2.0312$$
 Which required.

6. Use differential to calculate Cos290.

(C.W)

Sal Cos290

$$f(x+\delta x) = Cos29^{\circ} = Cos(30^{\circ} - 1^{\circ})$$

Let
$$y = \cos x$$

 $x = 30^{\circ}$ Let

$$dx = \delta x = -1^0 = -0.01745$$

Taking differential on both sides.

$$dy = -\sin 30^{\circ}(-0.01745)$$

$$dy = 0.5(0.01745)$$

Now
$$f(x + \delta x) \approx y + dy$$

$$f(x + \delta x) \approx \cos x + dy$$

7. Find δy if when $y = \sqrt{x} \times \text{changes from 4 to 4.41.}$

(H.W) (5 times)

Sol ' Given

$$y = \sqrt{x}$$
$$y + \delta x = \sqrt{x + \delta x}$$

$$\delta y = \sqrt{x + \delta x} - y$$

$$\delta y = \sqrt{x + \delta x} - \sqrt{x}$$

$$\delta y = \sqrt{4.41} - \sqrt{4}$$

$$\delta y = 2.1 - 2$$

$$\delta y = 0.1$$

x changes from 4 to 4.41

$$x = 4$$

$$\delta x = 4.41 - 4$$

$$\delta x = 0.41$$

Topic II: Anti-Derivative (Integration):

Evaluate $\int \frac{1-x^2}{1-x^2} dx$

(H.W) (3 times)

Sol:
$$\int \frac{1-x^2}{1+x^2} dx = \int \left[\frac{2-x^2-1}{1+x^2} \right] dx = \int \left[\frac{2-(x^2+1)}{1+x^2} \right] dx$$

$$= \int \frac{2}{1+x^2} dx - \int \frac{x^2+1}{x^2+1} dx = 2 \int \frac{1}{x^2+1} dx - \int 1 dx = 2 \tan^{-1} x - x + c$$

9. Evaluate $\int \frac{3x+2}{\sqrt{x}} dx$

(H.W) (4 times)

Sol:-
$$\int \frac{3x+2^{2}}{\sqrt{x}} dx = \int \left[\frac{3x}{\sqrt{x}} + \frac{2}{\sqrt{x}} \right] dx = 3 \int \sqrt{x} dx + 2 \int \frac{1}{\sqrt{x}} dx$$

$$=3\int x^{\frac{1}{2}}dx+2\int x^{\frac{-1}{2}}dx=3\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+2\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$$

$$=3\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c=2x^{\frac{3}{2}}+4x^{\frac{1}{2}}+c$$

10.

$$\int \sin^2 x dx$$

(H.W) (2 times)

Sol:- $\int \sin^2 x dx = \int \left(\frac{1 - \cos 2x}{2}\right) dx$

$$= \int \left(\frac{1-\cos 2x}{2}\right) dx$$

$$=\frac{1}{2}\int 1dx - \frac{1}{2}\int \cos 2x dx$$

 $= \frac{1}{2} \frac{(2x+3)^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c$

$$\int f(x)^{n} f'(x)dx = \frac{f(x)^{n+1}}{n+1} + c$$

$$= \frac{1}{2} \frac{(2x+3)^{\frac{1}{2}}}{\frac{3}{2}} + c$$

$$= \frac{1}{3} (2x+3)^{\frac{1}{2}} + c$$

16. Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$
; $(x > 0)$

(C.W) (2 times)

Sol

$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$

$$= \int \frac{1+(\sqrt{x})^2 - 2\sqrt{x}}{\sqrt{x}} dx$$

$$= \int \frac{1+x-2\sqrt{x}}{\sqrt{x}} dx$$

$$= \int \left(\frac{1}{\sqrt{x}} + \frac{x}{\sqrt{x}} - \frac{2\sqrt{x}}{\sqrt{x}}\right) dx$$

$$= \int (x^{-\frac{1}{2}} + x^{\frac{1}{2}} - 2) dx$$

$$= \int x^{-\frac{1}{2}} dx + \int x^{\frac{1}{2}} dx - 2\int 1 dx$$

$$= \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 2x + c$$

$$= 2\sqrt{x} + \frac{2}{3}x^{\frac{3}{2}} - 2x + c \text{ Ans.}$$

Topic III: Substitution Method

Evaluate $\int \frac{e^x}{e^x+3} dx$.

Sol:-
$$= \int \frac{e^x}{e^x + 3} dx$$
 put $u = e^x + 3 \Rightarrow du = e^x dx$
$$= \int \frac{1}{u} du = \ln u + c = \ln (e^x + 3) + c$$

Evaluate $\int \cos ec \ x dx$ Multiplying and dividing by $(\cos ecx - \cot x)$ (C.W) 18.

Sol:-
$$\int \cos ec \ x dx = \int \frac{\cos ecx(\cos ecx - \cot x)}{(\cos ecx - \cot x)} dx$$

Put cosec x - cot x= t, then (-cosec x cot x + $\cos ec^2$ x) dx= dt

Or cosec $x(\csc x - \cot x) dx = dt$

So
$$\int \frac{\cos ecx (\cos ecx - \cot x)}{(\cos ecx - \cot x)} dx = \int \frac{1}{t} dt = \ln|t| + c$$

Thus $\int \cos e c x dx = \ln |\cos e c x - \cot x| + c$

 $[:: t = \cos exc - \cot x]$

 $= \int \frac{4 + x^{2}}{4 + x^{2}} dx$ $= \int \left(1 - \frac{4}{4 + x^{2}}\right) dx = \int 1 dx - 4 \frac{1}{4 + x^{2}} dx$ $= x - \frac{4}{2} \tan^{-1} \frac{x}{2} + c$ $= x - 2 \tan^{-1} \frac{x}{2} + c$ $= x - 2 \tan^{-1} \frac{x}{2} + c$ 24. Evaluate $\int x \sqrt{x^{2} - 1} dx$ Sol: Given ' $\int x \sqrt{x^{2} - 1} dx$ (C.W) (5 times)

$$= \int \sqrt{x^2 - 1} \cdot x dx$$

$$= \frac{1}{2} \int (x^2 - 1)^{1/2} 2x dx$$

$$= \frac{1}{2} \frac{(x^2 - 1)^{3/2}}{3/2} + c$$

$$= \frac{2}{2(3)} (x^2 - 1)^{3/2} + c = \frac{1}{3} (x^2 - 1)^{3/2} + c$$

Evaluate $\int \frac{x}{\sqrt{4+x^2}} dx$

Sol

$$\int \frac{x}{\sqrt{4+x^2}} dx$$
= $\int (4+x^2)^{-1/2} x dx$
= $\frac{1}{2} \int (4+x^2)^{-1/2} 2x dx$

Let
$$f'(x) = 4 + x^2$$

$$f'(x) = 0 + 2x$$

$$f'(x) = 2x$$

$$\int f(x)^n f'(x) dx = \frac{f(x)^{n+1}}{n+1} + c$$

$$= \frac{1}{2} \frac{\left(4 + x^2\right)^{-\frac{1}{2} + 1}}{\frac{-1}{2} + 1} + c$$

$$= \frac{1}{2} \frac{\left(4 + x^2\right)^{\frac{1}{2}}}{\left(4 + x^2\right)^{\frac{1}{2}}}$$

$$= \frac{1}{2} \frac{\left(4 + x^2\right)^{\frac{1}{2}}}{\frac{1}{2}} + c \qquad = \frac{2}{2} \sqrt{4 + x^2} + c = \sqrt{4 + x^2} + c$$
26. Evaluate
$$\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx , \quad x > 0$$

(C.W) (4 times)

Sol

$$\int \frac{Cot\sqrt{x}}{\sqrt{x}} dx$$

$$= \int Cot\sqrt{x} \left(\frac{1}{\sqrt{x}}\right) dx \qquad \text{Let} \qquad t = \sqrt{x} \implies t^2 = x$$

$$= \int \cot \frac{2tdt}{t} \qquad \implies 2tdt = c$$

$$= 2\int \cot dt \qquad \implies \int Cot x dx = \ln St$$

$$= 2\ln(Sint) + c$$

$$= 2\ln(Sin\sqrt{x}) + c \qquad \text{Ans.}$$

Let
$$t = \sqrt{x} \implies t^2 = x$$

 $\implies 2tdt = dx$
 $\therefore \int Cot \ x \ dx = \ln Sinx + c$

27. Evaluate
$$\int \frac{Sin\theta}{1 + Cos^2\theta} d\theta$$

(H.W) (3 times)

Sol Given

$$\int \frac{\sin \theta}{1 + \cos^2 \theta} d\theta$$

$$= \int \frac{\sin \theta}{1 + (\cos \theta)^2} d\theta \qquad \text{Let} \quad t = \cos \theta$$

$$= \int \frac{-dt}{1 + t^2} \qquad \Rightarrow dt = -\sin \theta d\theta$$

$$= -\int \frac{dt}{1+t^2} \qquad \qquad \because \int \frac{1}{1+\dot{x}^2} dt = \tan^{-1} x + c$$

= $-\tan^{-1}(t) + c$ = $-\tan^{-1}(\cos\theta) + c$ Ans.

upic IV: Integration by Parts.

28. Evaluate | sin xab

(H.W) (3 times)

Sol:
$$\int \sin^{-1} x dx$$

$$= \int (\sin^{-1} x)(1) dx$$

$$= (\sin^{-1} x)(x) - \int x \cdot \frac{1}{\sqrt{1 - x^2}} dx$$

$$= x \sin^{-1} x + \frac{1}{2} \int (1 - x^2)^{\frac{1}{2}} (-2x) dx$$

$$= x \sin^{-1} x + \frac{1}{2} \frac{(1 - x^2)^{\frac{1}{2}}}{\frac{1}{2}} + c = x \sin^{-1} x + \sqrt{1 - x^2} + c$$

29. Evaluate ∫in xár

(C.W)

Sol:- Let $i = \int \ln x dx = \int 1 \cdot \ln x dx$ Integrating by parts, we have $= \ln x \cdot (x) - \int (x) \left(\frac{1}{x}\right) dx$

$$= x \ln x - \int 1 dx = x \ln x - x + c$$

30. Evaluate $\int e^{2x} (-\sin x + 2\cos x) dx =$

(H.W) (3 times)

Sol: Given $\int e^{2x} \left(-\sin x + 2\cos x\right) dx$

or $\int e^{2x} [2 \cos x + (-\sin x)] dx$

 $\therefore \int e^{ax} [af(x) + f'(x)] dx = e^{ax} f(x) + c$

 $= e^{2x} \cos x + c$

31. Evaluate $\int e^x \left(\frac{1}{x} + \ell nx\right) dx$

(H.W) (6 times)

Sol: Let: $\int e^{x} \left(\frac{1}{x} + \ell nx \right) dx$

or = $\int e^x \left[\ell nx + \frac{1}{x} \right] dx$ = $e^x \ell nx + c$ $\therefore \int e^{x} [f(x) + f'(X)] dx = e^{x} f(X) + c$

32. Evaluate $\int x \ln x dx$.

(H.W) (8 times)

Sol:- Let $I = \int x \ln x dx$

Integrating by parts, we have

$$= \ln x \cdot \left(\frac{x^2}{2}\right) - \int \left(\frac{x^2}{2}\right) \times \left(\frac{1}{x}\right) dx$$

$$=\frac{x^2}{2}\ln x - \frac{1}{2}\int x dx$$

$$= \frac{x^2}{2} \ln x - \frac{1}{2} \left(\frac{x^2}{2} \right) + c = \frac{1}{2} x^2 \left(\ln x - \frac{1}{2} \right) + c$$

33. Evaluate
$$\int e^{2x} \left(\frac{3Sinx - Cosx}{Sin^2x} \right) dx$$

(H.W) (2 times)

Sol Given

$$\int e^{2x} \left(\frac{3Sinx - Cosx}{Sin^2 x} \right) dx$$

$$= \int e^{3x} \left[3 \frac{Sinx}{Sin^2 x} - \frac{Cosx}{Sin^2 x} \right] dx$$

$$= \int e^{3x} \left[\frac{3}{Sinx} - \frac{Cosx}{SinxSinx} \right] dx$$

$$= \int e^{3x} \left[3Co \sec x - Co \sec xCotx \right] dx$$

$$\therefore f(x) = Co \sec x$$

$$f'(x) = -Co \sec x Cotx$$

 $e^{3x}Co\sec x + c$

$$\therefore \int e^{ax} \left[af(x) + f'(x) \right] dx = e^{ax} f(x) + c$$

34. Evaluate $\int x' \cos x \, dx$

(C.W)

Sol Given

$$\int_{\mathcal{X}} Cosx \, dx$$
Integration by parts
$$= x Sin x - \int_{\mathcal{X}} 1 \cdot Sin x \, dx$$

$$= x Sin x - \int_{\mathcal{X}} Sin x \, dx$$

$$= x Sin x - (-Cosx) + c$$

$$= x Sin x + Cosx + c \quad Ans$$

Topic V: Integration by Partial Fractions

35. Evaluate
$$\int \frac{3x+1}{x^2-x=6} dx$$
 (C.W) (2 times)

Sol:
$$\int \frac{3x+1}{x^2-x-6} dx \cdots (i)$$

Since
$$x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x+2)(x-3)$$

Let
$$\frac{3x+1}{(x+2)(x-3)} = \frac{A}{x+2} + \frac{B}{x-3}$$

Multiply both sides by L.C.M=(x+2)(x-3), we have

$$3x+1=A(x-3)+B(x+2)....(1)$$

Put x=3 in (1)

$$3(3)+1=A(3-3)+B(3+2)$$

$$9+1=A(0)+B(5) \Rightarrow 10=5B \Rightarrow B=\frac{10}{5} \Rightarrow B=2$$

Put x= -1 in (1)

$$3(-2)+1=A(-2-3)+B(-2+2)$$

$$-6+1=A(-5)+B(0) \Rightarrow -5=-5A+0 \Rightarrow A=1$$

Hence (1) can be written as

$$\int \frac{3x+1}{x^2 - x - 6} dx = \int \left(\frac{1}{x+2} + \frac{2}{x-3} \right) dx$$

(H.W) (5 times)

Sol:-
$$\int_{0}^{1} \frac{dy}{x^{2} + 9} dx$$

$$= \int_{0}^{3} \frac{1}{x^{2} + (3)^{2}} dx$$

$$= \frac{1}{3} \left[\tan^{-1} \frac{x}{3} \right]_{0}^{3}$$

$$= \frac{1}{3} \left[\tan^{-1} \frac{3}{3} - \tan^{-1} \frac{0}{3} \right] = \frac{1}{3} \left[\tan^{-1} 1 - 0 \right] = \frac{1}{3} \left[\frac{\pi}{4} \right] = \frac{\pi}{12}$$

- 40. Find the area below the curve $y = 3\sqrt{x}$ and above the x-axis between x=1 and x=4. (H.W) (2 times)
- Sol:- The required area = $\int_{1}^{4} 3\sqrt{x} dx = 3\int_{1}^{4} x^{\frac{1}{2}} dx$ = $3\left|\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right|^{4} = 3\left|\frac{2}{3}x^{\frac{3}{2}}\right|^{4}$

$$\begin{vmatrix} \frac{1}{2} + 1 \\ \frac{1}{2} + 1 \end{vmatrix} = 2 \begin{bmatrix} 4^{\frac{3}{2}} - 1^{\frac{3}{2}} \end{bmatrix}$$

$$= 2 \begin{bmatrix} 4^{\frac{3}{2}} - 1^{\frac{3}{2}} \end{bmatrix}$$

$$= 2 \begin{bmatrix} 4^{\frac{1}{2}} - 1^{\frac{3}{2}} \end{bmatrix}$$

$$=2|8-1|=14$$
 square units.

41. Evaluate:
$$\int_{0}^{\frac{\pi}{4}} \cos^{3}\theta d\theta$$
.

(H.W)

Sol:-
$$\int_{0}^{\frac{\pi}{6}} \cos \theta \cos^{2} \theta d\theta.$$

$$= \int_{0}^{\frac{\pi}{6}} \cos \theta (1 - \sin^{2} \theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{6}} \cos \theta d\theta - \int_{0}^{\frac{\pi}{6}} \cos \theta \sin^{2} \theta d\theta$$

$$= \left| Sin\theta \right|_{0}^{\frac{\pi}{6}} - \left| \frac{Sin^{3}\theta}{3} \right|_{0}^{\frac{\pi}{6}}$$

$$= \left\{ Sin\left(\frac{\pi}{6}\right) - Sin(0) \right\} - \frac{1}{3} \left\{ Sin^{3} \frac{\pi}{6} - 0 \right\}$$

$$= \left(\frac{1}{2} - 0\right) - \frac{1}{3} \left(\left(\frac{1}{2}\right)^3 - 0\right)$$
$$= \frac{1}{2} - \frac{1}{3} \left(\frac{1}{8}\right) = \frac{1}{2} - \frac{1}{24} = \frac{12 - 1}{24} = \frac{11}{24}$$

Find the area above the x-axis and under the curve $y=5-x^2$ from x=-1, to x=2, (C.W) (3 times)

Sol:- The required area =
$$\int_{-1}^{2} (5-x^2) dx = |5x|_{-1}^{2} - \left|\frac{x^3}{3}\right|_{-1}^{2}$$

= $\left[5(2) - (-1)\right] - \left[\frac{2^3}{3} - \frac{(-1)^3}{3}\right]$
= $(10+1) - \left(\frac{8}{3} + \frac{1}{3}\right)$
= $11 - \frac{9}{3}$

43. Evaluate
$$\int_{-\infty}^{2} \frac{x}{x^2 + 2} dx$$
 (H.W) (4 times

Sol:-
$$\int_{1}^{2} \frac{x}{x^{2} + 2} dx$$

$$= \frac{1}{2} \int_{1}^{2} \frac{2x}{x^{2} + 2} dx$$

$$= \frac{1}{2} \left[\ln(x^{2} + 2) \right]_{1}^{2}$$

$$= \frac{1}{2} \left[\ln(2^{2} + 2) - \ln(1^{2} + 2) \right]$$

$$= \frac{1}{2} \left[\ln 6 - \ln 3 \right] = \frac{1}{2} \ln \left(\frac{6}{3} \right)$$

$$= \frac{1}{2} \ln 2$$

44. Evaluate:
$$\int_{0}^{4} \sec x (\sec x + \tan x).$$

(C.W) `{7 times}

Sol: Given
$$\int_{0}^{\frac{\pi}{4}} \sec x (\sec x + \tan x) dx$$

$$= \int_{0}^{\frac{\pi}{4}} \sec^{2}x dx + \int_{0}^{\frac{\pi}{4}} \sec x \tan x dx$$

$$= \int_{0}^{\frac{\pi}{4}} \sec^{2}x dx + \int_{0}^{\frac{\pi}{4}} \sec x \tan x dx$$

$$= \left(\tan \frac{\pi}{4} - \tan 0\right) + \left(\sec \frac{\pi}{4} - \sec 0\right)$$

$$= (1 - 0) + (\sqrt{2} - 1)$$

$$=1+\sqrt{2}-1=\sqrt{2}$$

Find the area between x - axis and the curve $y = 4x - x^2$. 45. (1)

$$x(4-x)=0$$

$$x = 0, 4 - x = 0$$

now Area =
$$\int_{0}^{\infty} f(X) dx$$
.

$$= \int_{0}^{4} (4x - x^{2}) dx$$

$$= \left[4, \frac{x^{2}}{2} - \frac{x^{3}}{3}\right] = \left[2x^{2} - \frac{x^{4}}{3}\right]$$

$$= |4.\frac{3}{2} - \frac{3}{3}| = |2x^{2} - \frac{3}{3}|$$

$$= \left[2(4)^{2} - \frac{(4)^{3}}{3}\right] - \left[2(0^{2}) - \frac{(0)^{2}}{3}\right]$$

$$= 32 - \frac{64}{3} - 0 = \frac{96 - 64}{3} = \frac{32}{3} \text{ square units}$$

$$= 32 - \frac{64}{3} - 0 = \frac{96 - 64}{3} = \frac{32}{3}$$
 square units

46. Evaluate:
$$\int_{-2}^{1} \frac{1}{(2x-1)^2} dx$$
.

Sol:
$$\int_{-2}^{0} \frac{1}{(2x-1)^2} dx$$

$$= \frac{1}{2} \int_{-2}^{0} \frac{1}{(2x-1)^2} 2dx$$

$$= \frac{1}{2} \left| \frac{(2x-1)^{-1}}{-1} \right| = \frac{1}{2} \left| \frac{1}{2} \right| = \frac{1}{2} \left$$

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{2x-1} & | \\ -2 & -\frac{1}{2} & [-1 - \frac{1}{-5}] \end{vmatrix}$$

$$= -\frac{1}{2} \left[-1 + \frac{1}{5} \right] = \frac{-1}{2} \left[\frac{-4}{5} \right] = \frac{2}{5}$$

47. Evaluate
$$\int_{0}^{\pi} \frac{1}{1+\sin x} dx$$

Fol:

$$= \int_{0}^{\frac{\pi}{4}} \frac{1}{1 + Sinx} \times \frac{1 - sinx}{1 - sinx} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1 - sinx}{1 - sin^{2}x} dx = \int_{0}^{\frac{\pi}{4}} \frac{1 - sinx}{\cos^{2}x} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \left[\frac{1}{\cos^{2}x} - \frac{Sinx}{\cos^{2}x} \right] dx$$

$$\int_{1}^{\frac{\pi}{4}} (\sec^2 x - \sec x \tan x) dx$$

$$= |\tan x|_0^{\pi/4} - |\sec x|_0^{\pi/4}$$

$$= (\tan \frac{x}{4} - \tan 0) - [\sec \frac{x}{4} - \sec 0]$$

$$= (1 - 0) - (\sqrt{2} - 1) = 1 - \sqrt{2} + 1 = 2 - \sqrt{2}$$
Compute:
$$\int_0^{\pi/4} \sqrt{3 - x} \, dx$$

48. Compute:
$$\int_{-6}^{2} \sqrt{3-x} \, dx.$$

(H.W) (4 times)

Let:
$$\int_{-6}^{2} \sqrt{3-x} \, dx.$$

$$= -\int_{-6}^{3} (3-x)^{3/2} (-1) \, dx$$

$$= -\left[\frac{(3-x)^{3/2}}{3/2}\right] = -\frac{2}{3} \left[(3-x)^{3/2}\right] -\frac{2}{3}$$

$$= -\frac{2}{3} \left[(3-2)^{3/2} - (3-(-6)^{3/2})\right] = -\frac{2}{3} \left[(1)^{3/2} - (3+6)^{3/2}\right]$$

$$= -\frac{2}{3} \left[1 - (3^{2})^{3/2}\right] = -\frac{2}{3} \left[1 - (3)^{3}\right] = -\frac{2}{3} \left[1 - 27\right]$$

$$= -\frac{2}{3} \left[-26\right] = \frac{52}{3}$$

49. Find
$$\int_{1}^{2} (x^2 + 1) dx$$

H.W) (2 times)

cal Given

$$\int_{1}^{2} (x^{2} + 1) dx$$

$$= \left| \frac{x^{3}}{3} + x \right|_{1}^{2}$$

$$= \left(\frac{(2)^{3}}{3} + 2 \right) - \left(\frac{(1)^{3}}{3} + 1 \right) = \left(\frac{8}{3} + 2 \right) - \left(\frac{1}{3} + 1 \right)$$

$$= \left(\frac{8 + 6}{3} \right) - \left(\frac{1 + 3}{3} \right)$$

$$= \frac{14}{3} - \frac{4}{3} = \frac{14 - 4}{3} = \frac{10}{3}$$

(C.W)

Sol Given

% ∫x Cosx dx

Taking integration by parts.

$$= |x \sin x|_0^{\frac{\pi}{6}} - \int_0^{\frac{\pi}{6}} 1 \cdot \sin x \, dx$$
$$= \left[\frac{\pi}{6} \cdot \left(\sin \frac{\pi}{6} \right) - 0 \right] - |-\cos x|_0^{\frac{\pi}{6}}$$

$$= \frac{\pi}{6} \left(\frac{1}{2}\right) + \left|Cosx\right|_{0}^{\frac{\pi}{6}}$$

$$= \frac{\pi}{12} + \left(Cos\frac{\pi}{6} - Cos0\right)$$

$$= \frac{\pi}{12} + \left(\frac{\sqrt{3}}{2} - 1\right)$$

$$= \frac{\pi + 6\sqrt{3} - 12}{12}$$

Topic VII: Solution of Differential Equation

51. Solve differential equation $\frac{dy}{dx} = -y$.

(H.W) (2 times)

Sol:
$$\frac{dy}{dx} = -y$$

Separating variables, we have

$$\frac{1}{y}dy = -dx$$

Integrating both sides, we have

$$\int \frac{1}{y} dy = -\int 1 dx$$

$$\Rightarrow \ln y = -x + c_1$$

$$\Rightarrow y = e^{-x+c_1}$$

$$y = e^{-x}e^{c_1} = ce^{-x} \qquad \therefore e^{c_1} = c_2$$

52. Solve the differential equation ydx + xdy = 0

(C.W) (4 times)

Sol:-
$$ydx + xdy = 0$$

Separating variables, we have

$$\Rightarrow ydx = -xdy$$
1 . 1

$$\frac{1}{x}dx = -\frac{1}{y}dy$$

Integrating both sides, we have

$$\int \frac{1}{x} dx = -\int \frac{1}{y} dy$$

 $\ln x = -\ln y + \ln c \Rightarrow \ln x + \ln y = \ln c$

$$y = \ln c$$

$$\ln xy = \ln c \Rightarrow xy = c$$

53. Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$

(H.W)

Sol:
$$\frac{dy}{dx} = \frac{y}{x^2}$$

Separating variables, we have

$$\int \frac{1}{y} dy = \int \frac{1}{x^2} dx \Rightarrow \ln y = \int x^{-2} (1) dx$$

$$\ln y = \frac{x^{-2+1}}{-2+1} + c_1 \Rightarrow \ln y = -\frac{1}{x} + c_1$$

$$y = e^{-\frac{1}{x} + c_1} = e^{-\frac{1}{x}} e^{c_1} \Rightarrow y = ce^{-\frac{1}{x}}$$

54. Solve the differential equation:
$$(e^x + e^{-x}) \frac{dy}{dx} = e^x + e^{-x}$$
. (H.W.

Sol:
$$\left(e^x + e^{-x}\right) \frac{dy}{dx} = e^x + e^{-x}$$

Separating variables, we have

$$dy = \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right) dx$$

Integrating both sides, we have

$$\int dy = \int \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right) dx$$

$$y = \ln\left(e^x + e^{-x}\right) + c$$

$$\left[\because \frac{d}{dx} \left(e^x + e^{-x}\right) = e^x - e^{-x} \right]$$

55. Solve the differential equation:
$$xdy+y(x-1)dx=0$$
. (H.W) (2 times)

Sol:
$$xdy + y(x-1)dx = 0$$
$$xdy = -y(x-1)dx$$

Separating variables, we have

$$\frac{1}{y}dy = -\left(\frac{x-1}{x}\right)dx \Rightarrow \frac{1}{y}dy = -\left(1 - \frac{1}{x}\right)dx$$

Integrating on both sides, we have

$$\int \frac{1}{y} dy = -\int \left(1 - \frac{1}{x}\right) dx \Rightarrow \int \frac{1}{y} dy$$
$$= -\int 1 dx + \int \frac{1}{x} dx$$

$$\ln y = -x + \ln x + \ln c$$

$$\ln y = -x + \ln cx$$

$$\ln y - \ln cx = -x$$

$$\ln\left(\frac{y}{cx}\right) = -x \Rightarrow \frac{y}{cx} = e^{-x} \Rightarrow y = cxe^{-x}$$

$$\ln\left(\frac{\tilde{y}}{cx}\right) = -x \Rightarrow \frac{x}{cx} = e^{-x} \Rightarrow y = cxe^{-x}$$

56. Solve the differential equation
$$\frac{1}{x} \frac{dy}{dx} = \frac{(1+y^2)}{2}$$
 (C.)

Sol Given

$$\frac{1}{x}\frac{dy}{dx} = \frac{1+y^2}{2}$$

Separating Variables

$$\frac{1}{1+y^2} dy = \frac{1}{2} x dx$$

Taking integral on both sides

$$\int \frac{1}{1+y^2} \, dy = \frac{1}{2} \cdot \int x \, dx$$

$$\tan^{-1} y = \frac{1}{2} \cdot \left(\frac{x^2}{2}\right) + c$$

$$\tan^{-1} y = \frac{x^2}{4} + c$$

$$y = \tan\left(\frac{x^2}{4} + c\right) \text{ Ans.}$$

57. Evaluate $\int \frac{xe^x}{(1+x)^2} dx$

(C.W)

Sol:
$$\int \frac{xe^x}{(1+x)^2} dx = \int e^x \left(\frac{1+x+1}{(1+x)^2} \right) dx = \int e^x \left(\frac{1+x}{(1+x)^2} - \frac{1}{(1+x)^2} \right) dx$$
$$= \int e^x \left(\frac{1}{1+x} - \frac{1}{(1+x)^2} \right) dx$$

Using formula $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$

$$= e^{x} \left(\frac{1}{1+x} \right) + c$$

$$= \frac{e^{x}}{1+x} + c$$

Ans.

58. Find the area bounded by the curve $y = x^3 + 3x^2$ and x = axis.

(H.W)

Sol: Given $y = x^3 + 3x^2$

Putting y = 0, we have

$$x^3 + 3x^2 = 0$$

 $x^2(x + 3) = 0$
 $x^2 + 3x^2 = 0$

$$x^2 = 0 , x^2 = 0$$

$$x = 0$$
 , $x = -3$

The curve cuts the x - axis at point(-3, 0)

We know that

Area =
$$\int_{-3}^{6} f(x)dx$$

= $\int_{-3}^{3} f(x^3 + 3x^2)dx$
= $\left|\frac{x^4}{4} + \frac{3x^3}{3}\right|_{-3}^{0}$
= $\left(\frac{x^4}{4} + x^3\right)_{-3}^{0}$
= $\left(\frac{0}{4} + 0\right) - \left(\frac{(-3)^4}{4} + (-3)^3\right)$
= $0 - \left[\frac{81}{4} - 27\right]$
 $-\left(\frac{81 - 108}{4}\right) = -\left(\frac{-27}{4}\right) = \frac{27}{4}$ square unit

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree

Guess Papers, Past Papers & Notes

Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available 👇

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

59. Evaluate the integral
$$\int \frac{dx}{\sqrt{x+1} - \sqrt{x}}$$

(C.W) (2 times)

sol:
$$\int \frac{dx}{\sqrt{x+1} - \sqrt{x}}$$
$$= \int \left(\frac{1}{\sqrt{x+1} - \sqrt{x}}\right) \left(\frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}\right) dx$$

by rationalization

$$= \int \left(\frac{1}{\sqrt{x+1} - \sqrt{x}}\right) \left(\frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}\right)$$

$$= \int \frac{\sqrt{x+1} + \sqrt{x}}{\left(\sqrt{x+1}\right)^2 - \left(\sqrt{x}\right)^2} dx$$

$$= \int \frac{\sqrt{x+1} + \sqrt{x}}{x+1 - x} dx$$

$$= \int \left(\sqrt{x+1} + \sqrt{x}\right) dx$$

$$= \int (x+1)^{\frac{1}{2}} dx + \int x^{\frac{1}{2}} dx$$

$$= \frac{(x+1)^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{(x+1)^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c$$

$$=\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}}+\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}}+c$$

$$=\frac{2}{3}(x+1)^{\frac{3}{2}}+\frac{2}{3}x^{\frac{3}{2}}+c$$

$$60. \qquad \text{find} \qquad \int \frac{dx}{x(\ln 2x)^3} \, dx$$

Sol: $\int \frac{dx}{x(\ln 2x)^3} dx$

$$= \int (\ln 2x)^{-3} \frac{1}{x} dx$$

$$= \int (\ln 2x)^{-3} \left(\frac{1}{2x} \times 2 \right) dx$$

Let
$$f(x) = \ln 2x$$

$$f'(x) = \frac{1}{2x} \times 2$$

$$\int (f(x))^n f'(x) dx = \frac{f(x)^{n+1}}{n+1} + c$$

$$= \int \frac{(\ln 2x)^{-3+1}}{-3+1} + c$$

$$= \frac{(\ln 2x)^{-2}}{-2} + c$$

$$= -\frac{1}{2(\ln 2x)^2} + c$$

61. Evaluate the integral
$$\int x^2 \tan^{-1} x \ dx$$

Sol:
$$\int x^2 \tan^{-1} x \ dx$$

$$= \tan^{-1} x \int x^2 dx - \int \left(\frac{d}{dx} \tan^{-1} x\right) \cdot \left(\int x^2 dx\right) dx$$

$$= \tan^{-1} x \left(\frac{x^3}{3}\right) - \int \frac{1}{1+x^2} \left(\frac{x^3}{3}\right) dx$$

$$= x^3 + 1 \cdot x \cdot x^3$$

$$=\frac{x^3}{3}\tan^{-1}x - \frac{1}{3}\int \frac{x^3}{1+x^2} dx$$

(Improper fraction)

$$\begin{array}{c} x^2 + 1 \\ x^2 \pm x \\ -x \end{array}$$

$$= \frac{x^3}{3} \tan^{-1} x - \frac{1}{3} \int \left(x - \frac{x}{1 + x^2} \right) dx$$

$$= \frac{x^3}{3} \tan^{-1} x - \frac{1}{3} \int x dx + dx \frac{1}{3} \int \frac{1}{1 + x^2} dx$$

$$= \frac{x^3}{3} \tan^{-1} x - \frac{1}{3} \left(\frac{x^2}{2} \right) + \frac{1}{3(2)} \int \frac{2x}{1 + x^2} dx$$

$$= \frac{x^3}{3} \tan^{-1} x - \frac{x^2}{6} + \frac{1}{6} \ln(1 + x^2) + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$$

62. Evaluate the definite integral
$$\int_{2}^{\sqrt{3}} x \sqrt{x^2 - 1} \ dx$$

(H.W)

$$\int_{2}^{5} x \sqrt{x^{2} - 1} dx$$

$$= \int_{2}^{\sqrt{5}} (x^{2} - 1)^{V_{2}} x dx$$

Multiply and divide by 2

$$= \frac{1}{2} \int_{2}^{\sqrt{5}} (x^{2} - 1)^{\frac{1}{2}} (2x) dx \qquad \qquad \int_{2}^{\pi} f(x)^{n} f'(x) dx = \frac{(f(x))^{n+1}}{n+1} + c$$

$$= \frac{1}{2} \left[\frac{(x^{2} - 1)^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} \right]_{1}^{\sqrt{5}}$$

$$= \frac{1}{2} \left[\frac{(x^{2} - 1)^{\frac{1}{2} + 1}}{\frac{3}{2}} \right]_{2}^{\sqrt{5}} = \frac{1}{3} \left[(x^{2} - 1)^{\frac{1}{2} + 1} \right]_{2}^{\sqrt{5}}$$

$$= \frac{1}{3} \left[((\sqrt{5})^{2} - 1)^{\frac{3}{2} + 2} - ((2)^{2} - 1)^{\frac{3}{2} + 2} \right] = \frac{1}{3} \left[(5 - 1)^{\frac{3}{2} + 2} - (4 - 1)^{\frac{3}{2} + 2} \right]$$

$$= \frac{1}{3} \left[4^{\frac{3}{2} + 2} - 3^{\frac{3}{2} + 2} \right] = \frac{1}{3} \left[(2^{2})^{\frac{3}{2} + 2} - 3\sqrt{3} \right] = \frac{1}{3} \left[8 - 3\sqrt{3} \right] = \frac{8}{3} - \sqrt{3} \quad \text{Ans.}$$

Solve the differential equation
$$\frac{dy}{dx} = \frac{1-x}{y}$$

$$\frac{dy}{dx} = \frac{1}{1}$$

$$y\,dy=(1-x)^2\,dx$$

integrating both sides

$$\int y \, dy = \int (1-x) \, dx$$

$$\frac{y^2}{2} = x - \frac{x^2}{2} + c_1$$

Multiply both sides by 2 $y^2 = 2x - x^2 + 2c_1$

$$y^2 = 2x - x^2 + 2c_1$$

$$y^2 = x(2-x) + c$$

$$c = 2c_1$$

Evaluate:
$$\int_{-\infty}^{\infty} \frac{x}{x^2 + 2} dx$$

(2 times)

Sol:
$$\int_1^2 \frac{x}{x^2 + 2} dx = \frac{1}{2} \int_1^2 \frac{2x}{x^2 + 2} dx$$
 ••• Multiplying and dividing by 2.

$$= \frac{1}{2} \left[\ln \left(x^2 + 2 \right) \right]_1^2$$

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$$

$$= \frac{1}{2} \left[\left(2^2 + 2 \right) - \ln \left(1^2 + 2 \right) - \ln \left(1^2 + 2 \right) \right]$$

$$= \frac{1}{2} [\ln(6) - \ln(3)]$$

$$=\frac{1}{2} \ln \frac{6}{3}$$

$$=\frac{1}{2} \ln 2 = \ln(2)^{1/2}$$

65.

Sol:

Putting
$$y = 0$$

$$4-v^2 = 0$$

Area =
$$\int_{a}^{b} f(x)dx$$

$$= \int_{0}^{2} (4-x^2) dx$$

$$= \left[4x - \frac{x^3}{3}\right]^2$$

$$= \left[4(2) - \frac{(2)^3}{3}\right] - \left[4(-2) - \frac{(-2)^3}{3}\right]$$

$$= \left(8 - \frac{8}{3}\right) - \left(-8 + \frac{8}{3}\right)$$

66.

$$\frac{3}{3} \quad \frac{3}{3} \quad 3$$
Solve sec²x tany dx + sec²y tanx dy = 0

(C.W)

Sol: $\sec^2x \tan y dx + \sec^2y \tan x dy = 0$ Separating the variables

Sec²y tanx dy = $-\sec^2 x \tan y dx$

$$\frac{\sec^2 y}{\tan y} \, dy = -\frac{\sec^2 x}{\tan x} dx$$

Integrating both sides

$$\int \frac{\sec^2 y}{\tan y} dy = -\int \frac{\sec^2 y}{\tan y} dx \qquad \qquad \int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$$

$$\ln(\tan y) = -\ln(\tan x) + \ln c$$

$$\ln(\tan y) + \ln(\tan x) = \ln c$$

$$\ln \tan y \tan x = \ln c$$

67. Evaluate
$$\int x (\sqrt{x} + 1) dx$$
 (H.W

Sol:
$$\int x (\sqrt{x} + 1) dx$$

$$= \int (x \sqrt{x} + x) dx = \int (x^{\frac{3}{2}} + x) dx$$

$$= \int x^{\frac{3}{2}} dx + \int x dx$$

$$= \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} + \frac{x^{1 + 1}}{1 + 1} + c = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + \frac{x^2}{2} + c = \frac{2}{5} x^{\frac{5}{2}} + \frac{x^2}{2} + c$$

68. Evaluate the integral $\int x^2 e^{ax} dx$ (C.W)

Sol:
$$\int x^2 e^{ax} dx$$

Integrating by parts

$$= x^{2} \int e^{ax} dx - \int \left(\frac{d}{dx}x^{2}\right) \left(\int e^{ax} dx\right) dx$$

$$= \frac{x^{2}}{a} e^{ax} - \frac{2}{a} \int_{1}^{x} e^{ax} dx$$

$$= \frac{x^{2}}{a} e^{ax} - \frac{2}{a} \left\{ x \cdot \frac{e^{ax}}{a} - \int 1 \cdot \frac{e^{ax}}{a} dx \right\}$$

$$= \frac{x^{2}}{a} e^{ax} - \frac{2x}{a^{2}} e^{ax} + \frac{2}{a^{2}} \frac{e^{ax}}{a} + c$$

$$= \frac{x^{2}}{a} e^{ax} - \frac{2x}{a^{2}} e^{ax} + \frac{2}{a^{3}} e^{ax} + c$$

69. Evaluate $\int \frac{x+b}{(x^2+2bx+c)^{1/2}} dx$ (H.W)

Sol:
$$\int \frac{x+b}{(x^2+2bx+c)^{\frac{1}{2}}} dx$$
$$= \int (x^2+2bx+c)^{-\frac{1}{2}} (x+b) dx$$

Multiplying and dividing by 2

$$= \frac{1}{2} \int (x^2 + 2bx + c)^{-\frac{1}{2}} 2(x+b) dx$$

$$= \frac{1}{2} \frac{(x^2 + 2bx + c)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c$$

$$= \frac{1}{2} \frac{(x^2 + 2bx + c)^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$= (x^2 + 2bx + c)^{\frac{1}{2}} + c_1 = \sqrt{x^2 + 2bx + c} + c_1$$

g. Evaluate
$$\int_0^{\pi/3} \cos^2 \theta \sin \theta d\theta$$

$$= \int_0^{\pi/3} \cos^2 \theta \sin \theta d\theta$$

Multiplying and dividing by - 1

$$= -\int_0^{\pi/3} \cos^2 \theta \left(-\sin \theta\right) d\theta$$
$$= -$$

$$\int (f(x))^n f'(x) dx = \frac{f(x)^{n+1}}{n+1} + c$$

$$= -\left[\frac{\cos^3 \theta}{3}\right]_0^{\frac{8}{3}} = -\frac{1}{3}\left[\left(\cos\frac{\pi}{3}\right)^3 - (\cos 0)^3\right]$$

$$= \frac{-1}{3}\left\{\left(\frac{1}{2}\right)^3 - (1)^3\right\}$$

$$= \frac{-1}{3}\left\{\frac{1}{8} - 1\right\}$$

$$= \frac{-1}{3}\left[\frac{1 - 8}{8}\right]$$

$$= \frac{-1}{3}\left(\frac{-7}{8}\right)$$

$$= \frac{7}{24}$$

71. Evaluate $\int x^4 \ln x \, dx$

(H.W)

Sol:

$$\int x^4 \ln x \, dx$$

Integrating by parts

$$= \ln x \int x^4 dx - \int \left(\frac{d}{dx} \ln x\right) \left(\int x^4 dx\right) dx$$

$$= \ln x \left(\frac{x^5}{5}\right) - \int \frac{1}{x} \frac{x^5}{5} dx$$

$$= \frac{x^5}{5} \ln x - \frac{1}{5} \int x^4 dx$$

$$= \frac{x^5}{5} \ln x - \frac{1}{5} \left(\frac{x^5}{5}\right) + c$$

$$= \frac{x^5}{5} \ln x - \frac{x^5}{25} + c = \frac{x^5}{5} \left[\ln x - \frac{1}{5}\right] + c$$

72 Solve the differentiate equation
$$\sec x + \tan y \frac{dy}{dx} = 0$$
 (H.W) (2 times

Sol:
$$\sec x + \tan y \frac{dy}{dx} = 0$$

Separating the variables

$$\tan y \frac{dy}{dx} = -\sec x$$
$$\tan y dy = -\sec x dx$$

Integrating on both sides

$$\int \tan y \, dy = -\int \sec x \, dx$$

$$\operatorname{Or} \int \frac{-\sin y}{\cos y} \, dy = \int \sec x \, dx$$

$$\ell n(\cos y) = \ell n(\sec x + \tan x) + \ell nc$$

$$\ell n(\cos y) = \ell nc(\sec x + \tan x)$$

$$\cos y = c(\sec x + \tan x)$$

73 Evaluate
$$\int e^{x}(\cos x + \sin x)dx$$
 (C.W)
Sol:
$$\int e^{x}(\cos x + \sin x)dx$$

$$Or = \int e^{x}(\sin x + \cos x)dx$$

$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$$

74. Evaluate
$$\int \frac{3-\cos 2x}{1+\cos 2x} dx$$
 (C.W)

Sol:
$$\int \frac{3 - \cos 2x}{1 + \cos 2x} dx$$

$$= \int \frac{4 - (1 + \cos 2x)}{1 + \cos 2x} dx = \int \frac{4}{1 + \cos 2x} dx - \int 1 dx$$

$$= 4 \int \frac{1}{1 + \cos 2x} dx - \int 1 dx = 4 \int \frac{1}{2 \cos^2 x} dx - \int 1 dx$$

$$= 2 \int Sec^2 x dx - \int 1 dx = 2 \tan x - x + c$$

75. Evaluate
$$\int \frac{Cosx}{Sinx \ln Sinx} dx$$
 (H.W)

Sol:
$$\int \frac{Cosx}{Sinx \ln(Sinx)} dx$$

$$= \int \frac{\frac{Cosx}{Sinx}}{\ln(Sinx)} dx \qquad \qquad \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$= \ln|\ln(Sinx)| + c$$

76. Evaluate
$$\int_{0}^{3} (x^3 + 3x^2) dx$$
 (C.W.

Sol:
$$= \left[\frac{x^4}{4} + \frac{3x^3}{3} \right]^3$$

$$= \left(\frac{3^4}{4} + 3^3\right) - \left(\frac{(-1)^4}{4} + (-1)^3\right)$$

$$= \left(\frac{81}{4} + 27\right) - \left(\frac{1}{4} - 1\right) = \left(\frac{81 + 188}{4}\right) - \left(\frac{1 - 4}{4}\right)$$

$$= \frac{269}{4} + \frac{3}{4} = \frac{269 + 3}{4} = \frac{272}{4} \approx 68$$

77. Evaluáte
$$\int (\ln x)^2 dx$$

(H.W)

sol:
$$\left[\left(\ln x \right)^2 \right] dx$$

Intergrating by parts

$$= (\ln x)^2 x - \int x \cdot 2(\ln x) \cdot \frac{1}{x} dx$$
$$= x(\ln x)^2 - 2\int (\ln x) \, dx$$

Again Intergrating by parts

$$= x(\ln x)^2 - 2\left[\ln x \cdot x - \int x \cdot \frac{1}{x} dx\right]$$
$$= x(\ln x)^2 - 2x \ln x + 2x + c$$

78. Evaluate
$$\int \frac{\left(Sinx + Cos^2x\right)}{Cos^2x Sinx} dx$$

(C.W)

Sol:
$$\int \left(\frac{Sinx + Cos^2 x}{Cos^2 x Sinx} \right) dx$$

$$= \int \left(\frac{Sinx}{Cos^2 x Sinx} + \frac{Cos^2 x}{Cos^2 x Sinx} \right) dx$$

$$= \int sec^2 x dx + \int cscx dx$$

$$= \tan x + \ln |cscx - cotx| + c$$

79. Find $\int x(\sqrt{x}+1)dx$

(H.W)

Sol:
$$\int x(\sqrt{x}+1) dx$$

$$= \int x(\sqrt{x}+1) dx = \int x^{\frac{3}{2}} dx + \int x dx$$

$$= \frac{x^{\frac{3}{2}+1}}{\frac{1}{2}+1} + \frac{x^2}{2} + c = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + \frac{x^2}{2} + c$$

$$= \frac{2}{5}x^{\frac{3}{2}} + \frac{x^2}{2} + c$$

$$= \frac{2}{5}x^{\frac{3}{2}} + \frac{x^2}{2} + c$$
Sol: Evaluate
$$\int a^{x^2} x dx$$

(C.W)

Sol: $\int a^{x^2} x dx$

$$= \frac{1}{2} \int a^{x^2} (2x) dx = \frac{1}{2} \frac{a^{x^2}}{\ln a} + c$$

81. Solve
$$\frac{dy}{dx} = \frac{y^2 + 1}{1 - x}$$
 (C.1)

Sol: Given
$$\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$$

Seperation the variables

$$\frac{1}{y^2+1}dy=e^x\,dx$$

Integrating on both sides,

$$\int \frac{1}{1+y^2} dx = \int e^{x} dx$$

$$\Rightarrow \tan^{-1}(y) = e^{x} + c$$

$$\Rightarrow y = \tan(e^{x} + c)$$

82. Integrate tan⁻¹ x w.r.t. x (H.W)

Sol: $\int \tan^{-1} x \, dx$

Integrating by parts.

$$= \tan^{-1} x \cdot x = \int x \cdot \frac{1}{1+x^2} dx$$

$$= x \tan^{-1} x - \int \frac{x}{1+x^2} dx = x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1+x^2} dx$$

$$= x \tan^{-1} x - \frac{1}{2} \ln|1+x^2| + c$$

83. Evaluate $\int (\ln x) \times \frac{1}{x} dx$ (H.W)

Sol:
$$\int (\ln x) \times \frac{1}{x} dx$$
 $\int (f(x))^n f'(x) dx = \frac{(f(x))^{n+1}}{n+1} + c$
= $\frac{(\ln x)^{n+1}}{n+1} + c$ = $\frac{(\ln x)^2}{2} + c$

LONG QUESTIONS OF CHAPTER-3 ACCORDING TO ALP SMART SYLLABUS-2020

Topic II: Ant-Derivative (Integration):

1. Evaluate
$$\int \frac{\sin x + \cos^3 x}{\cos^2 x \sin x} dx$$
 (C.W)

2. Evaluate
$$\int \frac{3-x}{1-x-6x^2} dx$$
 (C.W)

3. Evaluate
$$\int \frac{\sqrt{2}}{S(nx+Cosx)} dx$$
 (H.W) (3 times)

Topic III: Substitution Method:

4. Show that
$$\int \frac{dy}{\sqrt{x^2 - a^2}} = \ln(x + \sqrt{x^2 - a^2}) + c$$
 (H.W) (6 times)

rapic VI: Integration by Parts:

Evaluate: ∫ x4 .ln x dx

(H.W) (2 times

Show that $\int e^{ax} \sin bx \, dx = \frac{1}{\sqrt{a^2 + b^2}} e^{ax} \sin \left(bx - tan^{-1} \frac{b}{a} \right) + c$ (H.W) (2 times)

Evaluate $\int tan^3 x \sec x dx$

(H.W) (2 times)

Topic VI: Area under the curve:

8. Evaluate the definite integral $\int_{2}^{3} \left(x - \frac{1}{x}\right)^{2} dx$

(H.W)

g. Evaluate $\int_{-1}^{1} \left(x + \frac{1}{2}\right) \sqrt{x^2 + x + 1} dx$

(C.W) (2 times)

10. Evaluate $\int_{1}^{2} \frac{x^{2}+1}{x+1} dx$

(C.W)

11. Evaluate: $\int_{-1}^{2} (x+|x|) dx$

(C.W) (2 times

12. Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\cos x + \sin x}{\cos 2x + 1} dx$

् (H.W)

13. Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin x - 1}{\cos^2 x} dx$

(H.W) (2 times)

14. Evaluate ∫ x in x dx

(H,W)

15. Evaluate $\int_{0}^{\pi} \cos^4 t dt$

(H.W)

16. Evaluate $\int_{0}^{\frac{\pi}{0}} \cos^3 \theta \ d\theta$

(H.W) (2 times)

Topic VII Solution of Differential Equation:

17. Solve the differential equation $\frac{x^2+1}{y+1} = \frac{x}{y} \cdot \frac{dy}{dx}$ where x > 0, y > 0. (H.W)(2 times)

Chapter-3 (Examples According to ALP Smart Syllabus)

Example 8: (Page#134) Find $\int \frac{dx}{x(\ln 2x)^3}$,

(x>0) (C.W

Sol:

Put $\ln 2x = t$, then

$$\frac{1}{2x}2dx = dt \text{ or } \frac{1}{x}dx = dt$$

Thus
$$\int \frac{1}{(\ln 2x)^3} \cdot \frac{1}{x} dx = \int \frac{1}{t^3} \cdot dt = \int t^{-3} dt = \frac{t^{-2}}{-2} + c$$

$$= -\frac{1}{2s^2} + c = -\frac{1}{2(\ln 2x)^2} + c$$

Example 10: (Page #134) Evaluate (i) $\int \frac{1}{\sqrt{a^2 - x^2}} dx, (-a < x < a)$ (C.W)

(ii)
$$\int \frac{1}{x\sqrt{a^2-x^2}} dx$$
, $(x-a \text{ or } x<-a)$ where a is positive.

Sol(i): Let $x = a \sin \theta$ that is,

$$x = a \sin \theta$$
 for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ then $dx = a \cos \theta d\theta$

Thus

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a\cos\theta d\theta}{\sqrt{a^2 - a^2\sin^2\theta}} = \int \frac{a\cos\theta d\theta}{a\sqrt{1 - a^2\sin^2\theta}} = \int \frac{a\cos\theta d\theta}{a\cos\theta} = \int 1d\theta = \theta + c$$

$$= \sin^{-1}\left(\frac{x}{a}\right) + c \qquad \left(\because \frac{x}{a} = \sin\theta\right)$$

(ii) Put $x = a\sec\theta$ i.e., $x = a\sec\theta$ for $0 < \theta < \frac{\pi}{2}$ or $\frac{\pi}{2} < \theta < \pi$

Then $dx = a \sec \theta \tan \theta$

$$\int \frac{dx}{x\sqrt{x^2 - a}} = \int \frac{a \sec \theta \tan \theta d\theta}{a \sec \theta \sqrt{a \sec^2 \theta - a^2}} = \int \frac{a \sec \theta \tan \theta dv}{a \sec a \tan \theta} \left(\because \sqrt{a^2 \left(\sec^2 \theta - 1 \right)} \right)$$

$$= \frac{1}{a} \int 1 d\theta = \frac{1}{a} \theta + c$$

$$= \frac{1}{a} \sec^{-1} \frac{x}{a} + c$$

$$\left(\because \sec \theta = \frac{x}{a} \right)$$

Example 4: (Page#147) Evaluate $\int \frac{7x-1}{(x-1)^2(x+1)} dx$, (x>1) (C.W)

Sol: We write

$$\frac{7x-1}{(x-1)^2(x+1)}dx = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$

$$= \frac{2}{x-1} + \frac{3}{(x-1)^2} + \frac{2}{x+1} \qquad \left(\begin{array}{c} Applying the method of \\ Partial Fraction \end{array} \right)$$

$$\int \frac{7x-1}{(x-1)^2(x+1)} = \int \left[\frac{2}{x-1} + \frac{3}{(x-1)^2} - \frac{2}{x+1} \right] dx$$

$$= 2\int (x-1)^{-1} 1 dx + 3\int (x-1)^{-2} 1 dx - 2\left[(x+1)^{-1} 1 dx \right]$$

$$= 2\ln(x-1) + 3\frac{(x-1)^{-2+1}}{-2+1} - 2\ln(x+1) + c, (x>1)$$

$$= 2\left[\ln(x-1) - \ln(x+1)\right] + 3\left[\frac{(x-1)^{-1}}{-1}\right] + c = 2\ln\left(\frac{x-1}{x+1}\right) - \frac{3}{x-1} + c$$

Example 8: (Page#149) Evaluate
$$\int \frac{3}{x(x^3-1)} dx$$
, $x \neq 0, x \neq 1$ (C.W)

Sol: Let
$$\frac{3}{x(x^3-1)} = \frac{A}{x} + \frac{B'}{x-1} + \frac{Cx+D}{x^2+x+1}$$

= $\frac{-3}{x} + \frac{1}{x-1} + \frac{2x+1}{x^2+x+1}$ (By the method of partial fraction)

$$\int \frac{3}{x(x-1)(x^2+x+1)} dx = \int \left(\frac{-3}{x} + \frac{1}{x-1} + \frac{2x+1}{x^2+x+1}\right) dx$$

$$= -3\int (x)^{-1} 1 dx + \int (x-1)^{-1} 1 dx + \int (x^2+x+1)^{-1} (2x+1) dx$$

$$= -3\ln|x| + \ln|x-1| + \ln(x^2+x+1) + c$$

$$= -3\ln|x| + \ln|x-1| (x^2+x+1) + c = -3\ln|x| + \ln|x^3-1| + c$$

Example 8: Evaluate $\int_{-1}^{\infty} x \ln x dx$

Sol: Applying the formula

$$\int f(x)\phi'(x)dx = f(x)\phi(x) - \int \phi(x)f'(x)dx, \text{ we have}$$

$$\int (\ln x)xdx = (\ln x)\frac{x^2}{2} - \int \left(\frac{x^2}{2}\right) \cdot \frac{1}{x}dx$$

$$\int (\ln x)xdx = \frac{1}{2}x^3 \ln x - \frac{1}{2}\int xdx = \frac{1}{2}x^2 \ln x - \frac{1}{2}\left(\frac{x^2}{2}\right) + c$$
Thus
$$\int_1^x \ln xdx = \left[\frac{1}{2}x^2 \ln x - \frac{x^2}{4}\right]^c$$

$$= \left(\frac{1}{2}e^2 \ln e - \frac{e^2}{4}\right) - \left(\frac{1}{2}(1)^2 \ln 1 - \frac{(1)^2}{4}\right)$$

$$= \left(\frac{e^2}{2} \cdot 1 - \frac{e^2}{4}\right) - \left(\frac{1}{2}0 - \frac{1}{4}\right)$$

OBJECTIVES (MCQ'S) OF CHAPTER-4 ACCORDING TO ALP SMART SYLLABUS-2020

Tarres and the same and the sam		**************************************	*******************				
Topic I: Coordi							
	ice of the point (-2, 3) f		(2 times)				
(A) -2	1-1-	(C) 3	(D)'1				
	petween (1, 2) and (2, 1		(8 times)				
(A) √3,	(B) √5	(c) √2	·(D) √7				
	dinate axes divide the p	lane intoequ	al parts:				
(A) 2.			(D) 5				
4. A vertical	line divides a plane inte	o half planes	(3 times)				
(A) Upper and lov	ver (B) Upper and righ	t (C) Left and right	(D) Left and lower				
5. The ratio	in which y-axis divides	the line joining (2 , -3) and (-5, 6) is:				
(A) 2:3	(B) 2 : 5	(C) 1:2	(D) 3 : 5				
6. The point	of concurrency of the	medians of a triangle	is called: (2 times)				
(A) In-centre	(B) Centroid	(C) E-centre	(D) Circumcentre				
7. The dista	nce of the point (1, 1) f	rom origin is:	(6 times)				
(A) 0	(B) 1	(c) √2	(D) 4				
_	nce of the point (3, -7)	- •	(0)4				
(a) 7	(b) 3	(c) -3	(d) -7				
9. Distance	of (-3, 7) from x-axis is.	107.0	. (0) -7				
(a) -3	(b) 3	(c) 7	(d) 10				
10. Distance	between the points (2,		, , , , , , , , , , , , , , , , , , , ,				
(A) 2	(B) √2	(C) 1	(D) 2√5				
11. Distance	of point (1, -2) from y-	axis is.	(-)-10				
(a) 2	(b) 1.	(c) 3	. (d) 4				
12. Mid poin	t of A (2, 0), B (0, 2) is.						
(a) 0, 2	(b) 2. 0	(c) 2, 2	(d) 1, 1				
13. P is mid (A) 1:1	point of AB if P divides	AB in the ratio =:					
- /	(B) 2:2	(C) 1:2	(D) 2:1				
/A) /w \2 . f.	ince between two point	is A (x_1, y_1) and B (x_2, y_1)	,y2) is				
(A) $(x_2 - x_1)^2 + (y_1)^2$	2 - V1)*.	(B) $\sqrt{(x_2 - x_1)} +$	(B) $\sqrt{(x_2 - x_1) + (y_2 - y_1)}$ (D) $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$				
$(C)\sqrt{(x_1-y_1)^2}$	$+(x_2-y_2)^2$	(D) $\sqrt{(x_2-x_1)^2}$	$+(y_2-y_1)^2$				
15. The poin	$\mathbf{t}_i \mathbf{P}(x_i, y_i)$ and the orig	in are on the same si	de of $ax + by + c = 0$ if				
$ax_1 + by_1$	+c and c have the:		(3 times) (D) Does not possible				
(A) c = 0	(B). Same sign	(C) Opposite sign	(D) Doos not possible				
16. The dista	ance between the point	s (0 , 0) and (1 2) is-	(2) Times)				
(A) 0	(B) 2	(C) √3	(U) ² /2				
17. Location	of Point P(x , v) for wh	ich x = v is in the gua	dennie				
(A) 1, and 3,0	(B) 2 nd and 4 th	(C) 1st and 2nd	(D) 3rd and 4th				
10. Centroid	I of a $\triangle ABC$ is a point ti	lat divides each medi	ian in the ratio:				
(A) I : I	. (8)3:2	. (C) 2 : 1	(D) 2:3				
19. The poin	nt (3 , -8) lies in the qua-	drant:					

37. A linear equa	ation represents a.	•	` –
(a).Circle	(b) Ellipse	(c) Parabola	(d) Straight line
38. If a = 0 then	the line $ax + by + c = 0$	· · · · · · · · · · · · · · · · · · ·	. 4
(a) Parallel to x - axis		(b) Parallel to y - axis	rlain '
(c) Perpendicular to		(d) Passes through o	rigin ,
	a line parallel to x-axis	(c) y = constant	(d) x = constant
(a) $x = 0$. (b) x = y	(c) y = constant	(2 times)
40. Slope of γ – a (a) 0		(c) - 1	(d) Undefined
		nade by line with x – a	
(a) 45°	(b) 30°	(c) 60°	(d) 75°
	vertical line through (5	* *,	
(A) $x = 5$		(C) y = 5	(D) $x = -3$
43. $\frac{x}{a} + \frac{y}{b} = 1$ is:			4
44 17	orm(R) Two intercent (form(C) Symmetric form	n(D) Normal form
	perpendicular to 3x -		*
(A) $\frac{-3}{4}$		(C) $\frac{3}{4}$	(D) $\frac{4}{3}$
•		$x + b_2 y + c_2 = are para$	₽ .
$(A) \frac{1}{a_2} = \frac{1}{b_2}$	$(B)\frac{a_1}{a_2}=\frac{b_2}{b_2}$	$(C) \frac{1}{d_2} = \frac{1}{b_2}$	(D) None of these
46. Equation of t	the line bisecting 2 nd a	nd 4 th quadrant is:	
(A) y = x	(B) y = -x	$\cdot (C) \gamma = \frac{x}{\sqrt{2}} \cdot .$	(D) $y = mx$
(A) x = 0	(B) x = y	(C) y =a	(D) x = a
48. Length of per	rpendicular from (0,0)	to line 4x-3y-1=0 equ	als. /
(A) 3	(B) 4	(C) 5	$(D)\frac{1}{\epsilon}$
49. Two intercer	t from of equation of	A Property of the Control of the Con	(2 times)
$(A) \xrightarrow{x,y} = c$	$\langle R \rangle = \frac{x}{x} + \frac{y}{x} = 1$	$(C)\frac{a}{x} + \frac{b}{y} = 0$	
			$(b) \frac{a}{a} \cdot b = 0$
	the line with inclination	•	
(A) 0	(B) $\frac{1}{\sqrt{3}}$	(C) 1	(D) $\sqrt{3}$
51. If b = 0 , then	the line ax + by + c =	0 is parallel to:	
		(C) along x - axis	
52. The distance	of point P (6, -1) from	the line $6x - 4y + 9 =$	0 is:
(A) 49	(B) $\frac{49}{52}$.	(C) $\frac{\sqrt{49}}{52}$	(D) 49
**************************************	are slopes of two line	s then lines are perpe	√52 ndicular if: (3 Times)
(A) $m_1 m_2 = 0$		(C) m ₁ m ₂ -1=0	
		b₂y = c₂ are parallel if:	
		(C) $a_1b_1 - a_2b_2 = 0$	
	horizontal line through		-
$(\Delta) u = a$	$(\mathbf{R}) \mathbf{v} = \mathbf{b}$	(C) y = a	(D) $x = b$
$56. \qquad \frac{y-y_1}{y-y_2} = \frac{x-x_1}{y-x_2}$	is equation of straig	nt line in:	-
(A) Two point form	(B) Intercent form (C) Symmetric form	(D) Point slope form
57. Vertical line		of official form	(2 times)
(A) 0	(8) 1:	(C) Undefined	(D) -1
58. Two lines ha	ving slopes m ₁ , m ₂ ar		(m) 4
(A) $m1 + m2 = 0$	B) $m_1 - m_2 = 0$	(C) $m1m2 = 1$	(D) $m1m2 = -1$

109

83- Slope of the	line which is perpend	icular to the line 2x - 4	\$y + 11 = 0
(A) $\frac{1}{2}$.		(C) 2	(D) -2
84- Distance of	4	- avis is:	
(A) 3	(B) -3	(C) 7	(D) -7
85- Inclination (of a line perpendicular	to y - axis is:	(m) 440
(A) <u>-a</u>			a to the second
:b	, (B) = · ·	(C) -d	$(D) \stackrel{=}{=} b$
87- The point of			
	(B) Orthocentre	(C) Circumcentre	
(A) 7	Distance of the point (3, -7) from x - axis is: (B) -3 (C) 7 (D) -7 Inclination of a line perpendicular to y - axis is: (B) 60° (C) 30° (D) 90° The slope of a line which is perpendicular to the line ax + by + c = 0 is: - a (B) $\frac{b}{a}$ (C) $-\frac{b}{d}$ (D) $\frac{a}{b}$ The point of concurrency of altitude of a triangle is called: n - Centre (B) Orthocentre (C) Circumcentre The distance of the point (3, 7) from x-axis is: (2 times) (B) 3 (C) -3 If the distance of the point (5, x) from x-axis is 3, then x =: (B) 5 (C) 3 (D) -7 If (3, 5) is the midpoint of (5, y), (x, 7) then x = 7 and y = 7: y = 1, x = 1 (B) y = -4, x = -3 (C) y = 3, x = 1 (D) y = -2, x = -5 The slope of line with inclination 60^0 is: (B) $\frac{1}{\sqrt{3}}$ (C) 1 (D) $\sqrt{3}$ If α is the inclination of the line ℓ then it must be true that: 0 $60 < \alpha < \frac{\pi}{2}$ (B) $\frac{\pi}{2} \le \alpha < \pi$ (C) $0 \le \alpha < \pi$ (D) $0 \le \alpha < 2\pi$ The perpendicular distance of line $3x + 4y - 10 = 0$ from the origin is: 0 $60 < \alpha < \frac{\pi}{2}$ (B) $\frac{\pi}{2} \le \alpha < \pi$ (C) $\frac{1}{2}$ (D) 2 Two lines represented by $\frac{\pi}{2} \le \frac{\pi}{2} \le \frac{\pi}{2} \le \pi$ (D) $\frac{\pi}{2} \le \frac{\pi}{2} \le \pi$ The point of intersection of medians of a triangle is called: Circumcenter (B) Orthocenter (C) Centroid (D) in-center' Distance of the points (2, 3) from y = axis is: 2 (B) 3 (C) 3 (D) $\frac{\pi}{2} \le \pi$ Coordinates of mid — point of A{-1, 4}, B (6, 2) (-7, 2), (b) (7, -2) (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{2}$ (d) $\frac{\pi}{2}$ (d) $\frac{\pi}{2}$ (e) 4 (e) 1 (d) Undefined If a line meets x and y axes at 2, 3 units, then its equation is: 2x + 3y = 0 (b) 3x + 2y = 0 (c) $\frac{x}{2} + \frac{y}{3} = 0$ (d) $\frac{x}{2} + \frac{y}{3} = 1$ Slope of tangent to the curve $x^2 - y^2 - 12 = 0$ at point (4, 2) will be equal to: 4 (b) $\frac{1}{4}$ (c) 2 (d) $\frac{1}{2}$ If the straight lines represented by $\alpha x^2 + 2hxy + by^2 = 0$ are perpendicular, then the curve $x^2 - y^2 - 12 = 0$ at point (4, 2) will be equal to:		
89- If the distar		rom x-axis is 3, then x	=;
(A) /	(B) 5	(C) 3	(D) -5
1-1 -1 -1 -1 -1	ie midpoint of $(5, y)$, $(5, y)$	(, 7) then x = 7 and y =	?: (D)'u= 7
91- The slope o	f line with inclination i	60° is:	(D) $y = -2$, $x = -5$
(A) 0	(B) 1		(0) -/3
•	$\sqrt{3}$		(0) 40
92- If α is the i	inclination of the line	$\ell \text{ then } \frac{x - x_1}{x} = \frac{y - y_1}{x} = $	r (say) is called:
(A) Point slope form	n (B) Normal form	CO Symmetric form	(D) Intercent form
93- If α is the i	inclination of a line "!	" then it must be true	that:
(A) $0 \le \alpha < \frac{\pi}{2}$	(B) $\frac{\pi}{\alpha} \le \alpha < \pi$	(C) $0 \le \alpha < \pi$	(D) $0 \le \alpha < 2\pi$
		4 - 4	1-,
_	_	•	
94- The perpen	dicular distance of line	2 3x + 4y - 10 = 0 from	the origin is:
94- The perpen	dicular distance of line (B) 1	$2x + 4y - 10 = 0$ from (C) $\frac{1}{2}$	the origin is: (D) 2
94- The perpen (A) 0 '95- Two lines	dicular distance of line (B) 1 represented by $ax^2 + 2$	e 3x + 4y - 10 = 0 from (C) $\frac{1}{2}$ bxy + by ² = 0 are orthogonal	the origin is: (D) 2 ogonal if:
94- The perpen (A) 0 95- Two lines (A) a - b = 0 96- The point of	dicular distance of line (B) 1 represented by $ax^2 + 2$ (B) $a + b = 0$ If intersection of media	$\begin{array}{ll} \textbf{2x + 4y - 10 = 0 from} \\ \textbf{(C)} & \frac{1}{2} \\ \textbf{bxy + by}^2 = \textbf{0 are ortho} \\ \textbf{(C) a + b > 0} \\ \textbf{ans of a triangle is call} \end{array}$	the origin is: (D) 2 ogonal if: (D) a + b < 0
94- The perpen (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 f intersection of medicular (B) Orthocenter	bxy + by ² = 0 are orthoroms (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoroms (C) a + b > 0 ans of a triangle is call (C) Centroid	the origin is: (D) 2 ogonal if: (D) a + b < 0 led:
94- The perpen (A) 0 '95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 f intersection of medic (B) Orthocenter the points (2, 3) from	bxy + by ² = 0 are orthoromy (C) = \frac{1}{2} bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y = axis is:	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center
94- The perpen (A) 0 '95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 f intersection of medic (B) Orthocenter the points (2, 3) from	bxy + by ² = 0 are orthoromy (C) = \frac{1}{2} bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y = axis is:	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center
94- The perpen (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 if intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1,	bxy + by ² = 0 are orthoromy (C) = $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2)	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center' (D) √15
94- The perpen (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 if intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1,	bxy + by ² = 0 are orthoromy (C) = $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2)	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center' (D) √15
94- The perpen (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2),	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 if intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1, (b) (7, -2)	bxy + by ² = 0 are orthor(C) $\frac{1}{2}$ bxy + by ² = 0 are orthor(C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center' (D) √15
94- The perpen (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m ₁ , m ₂ are s (a) 0	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 if intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1, (b) (7, -2) slopes of perpendicula (b) — 1	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 = \frac{1}{2}$	the origin is: (D) 2 ogonal if: (D) $a + b < 0$ ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3, \frac{5}{2}\right)$
94- The perpen (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m ₁ , m ₂ are s (a) 0	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 if intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1, (b) (7, -2) slopes of perpendicula (b) — 1	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 = \frac{1}{2}$	the origin is: (D) 2 ogonal if: (D) $a + b < 0$ ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3, \frac{5}{2}\right)$
94- The perpent (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m ₁ , m ₂ are s (a) 0 100. If a line meet	dicular distance of line (B) 1 represented by ax² + 2 (B) a + b = 0 f intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid – point of A(-1, (b) (7, -2) slopes of perpendicula (b) – 1 ts x and y axes at 2, 3 to	bxy + by ² = 0 are orthoronal (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoronal (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 =$ (c) 1	the origin is: (D) 2 ogonal if: (D) $a + b < 0$ ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3, \frac{5}{2}\right)$ (d) Undefined is:
94- The perpent (A) 0 95- Two lines (A) $a - b = 0$ 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m_1, m_2 are so (a) 0 100. If a line meet (a) $2x + 3y = 0$	dicular distance of line (B) 1 represented by $ax^2 + 2$ (B) $a + b = 0$ of intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1, (b) (7, -2) slopes of perpendicula (b) — 1 ts x and y axes at 2, 3 to (b) $3x + 2y = 0$	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 =$ (c) 1 units, then its equation (c) $\frac{x}{2} + \frac{y}{3} = 0$	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3,\frac{5}{2}\right)$ (d) Undefined is: (d) $\frac{x}{2} + \frac{y}{3} = 1$
94- The perpent (A) 0 95- Two lines (A) $a - b = 0$ 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m_1, m_2 are so (a) 0 100. If a line meet (a) $2x + 3y = 0$	dicular distance of line (B) 1 represented by $ax^2 + 2$ (B) $a + b = 0$ of intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid – point of A(-1, (b) (7, -2) slopes of perpendicula (b) – 1 its x and y axes at 2, 3 is (b) $3x + 2y = 0$ ingent to the curve x^2	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 =$ (c) 1 units, then its equation (c) $\frac{x}{2} + \frac{y}{3} = 0$ - $y^2 - 12 = 0$ at point (the origin is: (D) 2 ogonal if: (D) $a+b<0$ ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3,\frac{5}{2}\right)$ (d) Undefined is: (d) $\frac{x}{2} + \frac{y}{3} = 1$ 4,2) will be equal to:
94- The perpent (A) 0 95- Two lines (A) $a - b = 0$ 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m_1, m_2 are so (a) 0 100. If a line meet (a) $2x + 3y = 0$ 101. Slope of tail (a) 4	dicular distance of line (B) 1 represented by $ax^2 + 2$ (B) $a + b = 0$ If intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid – point of A(-1, (b) (7, -2) slopes of perpendicula (b) – 1 its x and y axes at 2, 3 is (b) $3x + 2y = 0$ ngent to the curve $x^2 - (b) = 0$	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 =$ (c) 1 units, then its equation (c) $\frac{x}{2} + \frac{y}{3} = 0$ - $y^2 - 12 = 0$ at point (c) 2	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3,\frac{5}{2}\right)$ (d) Undefined is: (d) $\frac{x}{2} + \frac{y}{3} = 1$ 4,2) will be equal to: (d) $\frac{1}{2}$
94- The perpent (A) 0 95- Two lines (A) $a - b = 0$ 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m_1, m_2 are s (a) 0 100. If a line meet (a) $2x + 3y = 0$ 101. Slope of tail (a) 4	dicular distance of line (B) 1 represented by $ax^2 + 2$ (B) $a + b = 0$ If intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid – point of A(-1, (b) (7, -2) slopes of perpendicula (b) – 1 its x and y axes at 2, 3 is (b) $3x + 2y = 0$ ngent to the curve $x^2 - (b) = 0$	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 =$ (c) 1 units, then its equation (c) $\frac{x}{2} + \frac{y}{3} = 0$ - $y^2 - 12 = 0$ at point (c) 2	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3,\frac{5}{2}\right)$ (d) Undefined is: (d) $\frac{x}{2} + \frac{y}{3} = 1$ 4,2) will be equal to: (d) $\frac{1}{2}$
94- The perpent (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m_1, m_2 are so (a) 0 100. If a line meet (a) 2x + 3y = 0 101. Slope of tail (a) 4 102. If the straighthen	dicular distance of line (B) 1 represented by $ax^2 + 2$ (B) $a + b = 0$ of intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1, (b) (7, -2) slopes of perpendicula (b) — 1 ts x and y axes at 2, 3 to (b) $3x + 2y = 0$ organt to the curve $x^2 - (b) \frac{1}{4}$ the lines represented	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y = axis is: (C) 5 4), B (6, 2) (c) $\left(\frac{5}{2}, 3\right)$ r lines, then $m_1, m_2 =$ (c) 1 units, then its equation (c) $\frac{x}{2} + \frac{y}{3} = 0$ - $y^2 - 12 = 0$ at point (c) 2	the origin is: (D) 2 ogonal if: (D) a + b < 0 ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3,\frac{5}{2}\right)$ (d) Undefined is: (d) $\frac{x}{2} + \frac{y}{3} = 1$ 4,2) will be equal to: (d) $\frac{1}{2}$ 10 are perpendicular,
94- The perpent (A) 0 95- Two lines (A) a - b = 0 96- The point of (A) Circumcenter 97- Distance of (A) 2 98. Coordinates (a) (-7, 2), 99. If m_1, m_2 are s (a) 0 100. If a line meet (a) $2x + 3y = 0$ 101. Slope of tail (a) 4 102. If the straighther (a) $h^2 - ab = 0$	dicular distance of line (B) 1 represented by $ax^2 + 2$ (B) $a + b = 0$ of intersection of medic (B) Orthocenter the points (2, 3) from (B) 3 of mid — point of A(-1, (b) (7, -2) slopes of perpendicula (b) — 1 ts x and y axes at 2, 3 to (b) $3x + 2y = 0$ organt to the curve $x^2 - (b) \frac{1}{4}$ the lines represented	bxy + by ² = 0 are orthoromy (C) $\frac{1}{2}$ bxy + by ² = 0 are orthoromy (C) a + b > 0 ans of a triangle is call (C) Centroid y - axis is: (C) 5 4), B (6, 2) (c) $(\frac{5}{2}, 3)$ r lines, then $m_1, m_2 = (c) 1$ units, then its equation (c) $\frac{x}{2} + \frac{y}{3} = 0$ - $y^2 - 12 = 0$ at point (c) 2 by $ax^2 + 2hxy + by^2 = (c) a + b = 0$	the origin is: (D) 2 ogonal if: (D) $a + b < 0$ ed: (D) In-center' (D) $\sqrt{15}$ (d) $\left(3, \frac{5}{2}\right)$ (d) Undefined is: (d) $\frac{x}{2} + \frac{y}{3} = 1$ 4,2) will be equal to: (d) $\frac{1}{2}$ of ore perpendicular, (d) $a - b = 0$

(a)
$$x = \frac{2}{3}y$$

(b)
$$x = 1$$

(c)
$$y = \frac{1}{2}x$$

(d)
$$y = 2x$$

104. The lines through origin represented by $ax^2 + 2hxy + by^2 = 0$ are clubcudent if:

$$(a) h^2 = ab$$

(b)
$$h^2 + ab = 0$$
 (c) $h^2 - ab > 0$

(d)
$$h^2 - ab < 0$$

105. If a line "/" is parallel to x-axis then inclination=

106. If the line $\frac{x}{a} + \frac{y}{3} = 1$ is parallel to the line 3x - 2y + 4 = 0, then value of 'a' equals

(a)
$$-2$$

107. Equation of a non vertical line with slope m and y intercept zero is

(b)
$$v = m\dot{x}$$

(c).
$$y = mx + c$$
.

d)
$$y=0$$

108. The vertices of a triangle are (a,b-c),(b,c-a),(c,a-b) then its centroid is

(a)
$$\left(0, \frac{a+b+c}{3}\right)$$

(b)
$$\left(0, \frac{a-b-c}{3}\right)$$

(d)
$$\left(\frac{a+b+c}{3},0\right)$$

109. The point of concurrency of altitudes of a triangle is called

(a) centroid

(b) orthocenter

(c) in centre

(d) circum centre

			ANSV	VERS 1	O TH	<u> MUL</u>	TIPLE	<u>CHIO</u>	E QU	ESTIO	42		
1	2	3	4	5	6	. 7	8 -	9	10	11	12_	13	14
Ъ	C	С	C	b	b.	C	а	С	Ь	b	d	'a	d
15	16-	17	18	19	20	21	22	23	24	25	26	. 27	28
b	d	a	C	d	Ь	d	d	C	C	d	C	Ь	C
29	30	31	32	33	34	35	36 -	37	38	39	40	41	42
а	C	C	а	b	. b	d	- C	d	а	С	d	a	а
43	44	45	46	47	48	49	50	. 51	52	53	54	55	56
В	b	C.	Ь	C	d	Ь	а	a	d	Ь	ď	а	а
57	- 58	59	60	61	62	63	64	65	66	67	68	69	70
C	b	d	C	С	Ь	'b	' C	Ь	a	Ь	C	C	а
71	72	73	74	75	76	77	78	79	80	81	82	83	84
a	Ъ	C	Ь	Ь	a	Α.	b	C	d.	b	a	ď	C
85	86	87	88	89	90	91	92	93	94	95	96	. 97	98
a	b	b	а	C	C	d	С	С	d.	b	C	a	C
99	100	101	102	103	104	105	106	107	108	109			
b	ď	d	C	d	а	b	a	Ь	d.	Ь			1.

ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Coordinate System:

1. Find h such that points A(h, 1), B(2, 7), C(-6, -7) are vertives of a right triangle with right angle at vertex A. (2 times)

Sol: As $\triangle ABC$ is a right \triangle with right angle at vertex A so

$$196 - 76 = 2h^2 + 8h$$

8(2,7)

$$120 = 2h^{2} + 8h$$

$$2h^{2} + 8h - 120 = 0$$

$$h^{2} + 4h - 60 = 0$$

$$h^{2} + 10h - 6h - 60 = 0$$

$$h(h+10) - 6(h+10) = 0$$

$$(h+10)(h-6) = 0$$

$$h + 10 = 0$$

$$h = -10$$

$$h = 6$$

The points A (-5 , -2) and B(5 , -4) are ends of a diameter of a circle. Find $h_{\rm S}$ 2. centre and Radius.

Given points are A (-5, -2) & B (5, -4) Since A & B are end points of diameter Sol: of circle. So centre will be the mid point of line segment AB.

. Let C(x , y) be the centre of circle the

C (x, y) =
$$\left(\frac{-5+5}{2}, \frac{-2-4}{2}\right)$$

C (x, y) = $\left(\frac{0}{2}, \frac{-6}{2}\right)$ = (0, -3)
Let t be the radius of circle th

Let r be the radius of circle then .

$$|BC| = r = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$r = \sqrt{(5 - 0)^2 + (-4 + 3)^2}$$

$$r = \sqrt{25 + 1} = \sqrt{26}$$

Show that points A (0 , 2) , B $(\sqrt{3}$, -1) and C(0 , -2) are vertices of a right 3. triangle. (3 times)

Given points are A(0, 2), B ($\sqrt{3}$, -1) and C (0, -2) Sol:

Now
$$|AB| = \sqrt{(0 - \sqrt{3})^2 + (2 + 1)^2}$$

 $|AB| = \sqrt{3 + 9} = \sqrt{12}$
 $|BC| = \sqrt{(\sqrt{3} - 0)^2 + (-1 + 2)^2}$
 $|BC| = \sqrt{3 + 1} = \sqrt{4}$
 $|AC| = \sqrt{(0 - 0)^2 + (2 + 2)^2}$
 $|AC| = \sqrt{0 + 16} = \sqrt{16}$
Now $|AB|^2 + |BC|^2 = |AC|^2$
 $(\sqrt{12})^2 + (\sqrt{4})^2 = (\sqrt{16})^2$
 $12 + 4 = 6$
 $16 = 16$

Pythagoras theorem is satisfied

Hence A (0 , 2) , B($\sqrt{3}$, -1) & C (0 , -2) are the vertices of a right triangle with right angle at B.

Find the mid point of the line joining the two points A(3,1), B(-2,-4).

Hence A (0, 2), B($\sqrt{3}$, -1) & C (0, -2) are the vertices of a right triangle with right angle at B.

Find the mid point of the line joining the two points A(3,1), B(-2,-4).

A Given points are

$$A(x_1,y_1) = A(3,.1)$$

$$\beta(x_2, y_2) = \beta(-2, -4)$$

Let M be the midpoint of line segment AB then

Let M be the map
$$M(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

M (x, y)=
$$(\frac{3-2}{2}, \frac{1-4}{2})$$

$$M(x, y) = \left(\frac{1}{2}, -\frac{3}{2}\right)$$

Hence M(x, y) =
$$\left(\frac{1}{2}, -\frac{3}{2}\right)$$

Find the mid-point of the line joining the two points A(-8, 3), B(2, -1).

Given Points A (-8, 3), B (2, -1)

Mid point of the line joining the two points A & B is

$$M(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$M(x,y) = \left(\frac{-8+2}{2}, \frac{3-1}{2}\right)$$

$$M(x,y) = \left(\frac{-6}{2},\frac{2}{2}\right)$$

$$M(x,y) = (-3,1)$$

Topic II: Translation and Rotation of Axes:

6. The xy coordinate axes are rotated through angle $\theta = 30^{\circ}$ and axes are OX and OY. Find (X, Y) coordinates of P with P(x, y) = (-5, 3)

Sol:
$$P(x, y) = (-5, 3)$$

$$P(X,Y) = ?$$

$$\theta = 30^{\circ}$$

We know that

$$X = x \cos \theta + y \sin \theta$$

$$X = -5\cos 30 + 3\sin 30$$

$$X = -5\left(\frac{\sqrt{3}}{2}\right) + 3\left(\frac{1}{2}\right) = \frac{-5\sqrt{3} + 3}{2} = \frac{3 - 5\sqrt{3}}{2}$$

$$Y = y \cos \theta - x \sin \theta$$

$$Y = 3\cos 30 + 5\sin 30$$

$$Y = 3\left(\frac{\sqrt{3}}{2}\right) + 5\left(\frac{1}{2}\right) = \frac{3\sqrt{3} + 5}{2}$$

So,
$$P(x, y) = P\left(\frac{3-5\sqrt{3}}{2}, \frac{3\sqrt{3}+5}{2}\right)$$

If (x , y) co-ordinates of a point are (-2 , 6). Find (X , Y) trSolformed co-ordinates if new origin is O(-3 , 2)

The co-ordinates of P referred to translated axis O'x O' & O'y are

$$X = x - h$$
 = -2 + 3 = 1
 $Y = y - k$ = 6 - 2 = 4

Hence P(X,Y) = P(1,4)

8. The xy coordinate axes are rotated about the origin, through and angle of 45°. The new axes OX and OY. Find the (X, Y) coordinates of P (5, 3) (2 times)

Sol: Given point of $P(x_1, y_1) = P(5, 3)$ angle of rotation is $\theta = 45^{\circ}$

Suppose P(X, Y) be the coordinates of Preferred to XY - Co-ordinate system, them

$$X = x \cos \theta + y \sin \theta$$

$$X = 5 \cos 45^{\circ} + 3 \sin 45^{\circ}$$

$$X = 5 \left(\frac{1}{\sqrt{2}}\right) + 3\left(\frac{1}{\sqrt{2}}\right)$$

$$Y = -x \sin \theta + y \cos \theta$$

$$Y = -5 \sin 45^{\circ} + 3 \cos 45^{\circ}$$

$$Y = -5 \sin 45^{\circ} + 3 \cos 45^{\circ}$$

$$Y = -5 \left(\frac{1}{\sqrt{2}}\right) + 3\left(\frac{1}{\sqrt{2}}\right)$$

$$Y = -\frac{5}{\sqrt{2}} + \frac{3}{\sqrt{2}}$$

$$Y = \frac{-5}{\sqrt{2}} + \frac{3}{\sqrt{2}}$$

$$Y = \frac{-5 + 3}{\sqrt{2}}$$

$$Y = \frac{-5 + 3}{\sqrt{2}}$$

$$Y = \frac{-5 + 3}{\sqrt{2}}$$

$$Y = \frac{-7 + 3}{\sqrt{2}}$$

$$Y = \frac{-7 + 3}{\sqrt{2}}$$

$$Y = \frac{-7 + 3}{\sqrt{2}}$$

So $(X,Y) = (4\sqrt{2}, -\sqrt{2})$ are required co-ordinates of P.

Topic III: Equations of Straight Line:

9. Find whether points (5, 8) lies above or below the line 2x - 3y + 6 = 0 (2 times)

Sol: Given equation is

$$2x - 3y + 6 = 0$$
.

Make coefficient of y + ve

$$3y - 2x - 6 = 0$$
(i)

Now put (5, 8) in L.H.S of equation (j)

L.H.S =
$$3y - 2x - 6$$

= $3(8) - 2(5) - 6$
= $24 - 20 - 6$
= $8 > 0$

So point above the line.

10. Find the distance between parallel lines 2x-5y+13=0; 2x+5y-6=0 (2 times)

Sol: Parallel lines are:

$$2x - 5y + 13 = 0$$
(i)

$$-2x + 5y - 6 = 0$$
 (ii)

$$5y + 13 = 0$$

$$y = \frac{13}{5}$$

So point P
$$\left(0, \frac{13}{5}\right)$$

Lines on line (i)

Now distance 'd' of point $P\left(0, \frac{13}{5}\right)$ from line

$$-2x + 5y - 6 = 0$$

$$d = \frac{\left| -2(0) + 5\left(\frac{13}{5}\right) - 6\right|}{\sqrt{(-2)^2 + (5)^2}}$$

$$d = \frac{|13-6|}{\sqrt{4+25}} = \frac{7}{29}$$

Required distance.

find k so that the joining A(7, 3) , B(k, -6) and the line joining C(-4, 5) , D(-6, 4) are parallel. . (2 times)

sol:

34

Slope of line
$$\overline{AB} = \frac{-6-3}{k-7} = \frac{-9}{k-7}$$

115

Slope of line
$$\overline{CD} = \frac{4-5}{-6+4} = \frac{-1}{-2} = \frac{1}{2}$$

As given lines are parallel so, Slope of AB = Slope of CD

$$\frac{-9}{k-7} = \frac{1}{2}$$

$$k = -11$$

12.

Whether the lines 2x + y - 3 = 0 and 4x + 2y

sol:

$$I_1 = 2x + y - 3 = 0 \implies y = -2x + 3$$

$$i_2 = 4x + 2y + 5 = 0 \implies y = -2x - \frac{5}{2}$$

Slope of
$$l_1 = m_1 = -\frac{2}{1} = -2$$

Slope of
$$l_2 = m_2 = -\frac{4}{2} = -2$$

So l₁ & l₂ are not a perpendicular

Find the distance from the point P(6, -1) to the line 6x - 4y + 9 = 0. (3 times) 13.

Given point $P(x_1, y_1) = P(6, -1)$ and Given line is 6x - 4y + 9 = 0Sol: Let d be the required distance then

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|6(6) - 4(-1) + 9|}{\sqrt{(6)^2 + (-4)^2}}$$

$$= \frac{|36 + 4 + 9|}{\sqrt{36 + 16}}$$

$$d = \frac{|49|}{\sqrt{52}}$$

$$d = \frac{\sqrt{52}}{\sqrt{52}}$$

Find an equation of the vertical line through (-5, 3) 14.

(3 times)

Given $P(x_1, y_1) = P(-5,3)$ Sol:

$$\therefore \theta = 90^{\circ}$$

So
$$m = \tan \theta = \tan 90^{\circ} = \infty$$

$$y - y_1 = m(x - x_1)$$

$$y-3=\infty(x+5)$$

$$\frac{y-3}{\infty} = x+5$$

$$0=x+5$$

Find K so that the line joining A (7, 3), B(K, -6) and line joining C (-4, 5). 15. (2 times) D(-6, 4) are perpendicular.

Given points are A (7, 3), B(K, -6) and C (-4, 5), D(-6, 4) Sol:

Hence Slope of AB =
$$m_1 = \frac{-6-3}{k-7} = \frac{-9}{k-7} = \frac{9}{7-k}$$

Slope of CD =
$$m_2 = \frac{4-5}{-6+4} = \frac{k-7}{-2} = \frac{1}{2}$$

Given AB 1 CD.

So
$$m_1 m_2 = -1$$

 $\left(\frac{9}{7-k}\right) \left(\frac{1}{2}\right) = -1$
 $\frac{14-2k}{14-2k} = -1$
 $-14+2k = 9$
 $2k = 9+14$
 $2k = 23$

Find equation of line through (-4, -6) and perpendicular to the line having slope = $\frac{-3}{2}$.

Let I be the required line with point $P(x_1, y_1) = P(-4, -6)$ Sol:

Since I is perpendicular to given line with slope is $-\frac{3}{2}$

So Slope of I is
$$m = \frac{2}{3}$$

Hence equation of lis.

$$y-y_1=m\ (x-x_1)$$

$$y + 6 = \frac{2}{3}(x + 4)$$

$$3y + 18 = 2x + 8$$

$$-2x - 3y + 8 - 18 = 0$$

$$2x - 3y - 10 = 0$$

17. Find an equation of line through A(-6, 5) having slope 7. (5 times)

Sol: Let I be the required line

Here
$$P(x_1, y_1) = P(-6, 5)$$

The equation of I is

$$y-y_1=m\ (x-x_1)$$

$$y - 5 = 7 (x + 6)$$

$$y - 5 = 7x + 42$$

$$7x + 42 = y - 5$$

$$7x - y + 42 + 5 = 0$$

$$7x - y + 47 = 0$$

By means of slope, show the points lie on the same line A(-1, -3), B(1, 5), 18. (3 times) C(2, 9).

Let A(-1, -3), B (1, 5) and C(2, 9) are the given points. Sol

Now Slope of
$$\overline{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - (-3)}{1 - (-1)} = \frac{5 + 3}{1 + 1} = \frac{8}{2} = 4$$

Slope of
$$\overline{BC} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 5}{2 - 1} = \frac{4}{1} = 4$$

Since Slope of AB =Slope of BC

Thus A, B & C lie on the same line.

Convert the equation into two intercepts form 4x + 7y - 2 = 0 (4 times) Given equation 4x + 7y - 2 = 0

Given equation
$$4x + 50$$
 $4x + 7y = 2$

4x + 7y = 2pividing by 2 on both sides

$$\frac{4x}{2} + \frac{7y}{2} = \frac{2}{2}$$

117

$$2\dot{x} + \frac{7y}{2} = 1$$

$$\frac{x}{1/2} + \frac{y}{2/7} = 1$$

Which is required two intercept form with

x - intercept =
$$\frac{1}{2}$$

y - intercept = $\frac{2}{7}$

20. Find whether the point (5, 8) lies above or below the line 2x - 3y + 6 = 0. (3 times)

Sol - Given equation 2x-3y+6=0 ____(1) at point (5, 8)

Since y is always positive So.multiply eq (1) by -1 on both sides.

$$-2x + 3y - 6 = 0$$
 (2)

Put (5, 8) in eq (2)

$$= -2(5) + 3(8) - 6$$

Hence point (5, 8) lies above the given line.

Topic V: Homogeneous Equation of Second degree in two variables:

21. Find lines represented by
$$3x^2 + 7xy + 2y^2 = 0$$
. (3 times)

Sol:
$$3x^2 + 7xy + 2y^2 = 0$$

$$3x^2 + 6xy + xy + 2y^2 = 0$$

$$3x(x + 2y) + y(x + 2y) = 0$$

$$(3x+y)(x+2y)=0$$

So required lines are

$$3x + y = 0 & x + 2y = 0$$

22. Find an equation of each of the lines represented by

$$20x^2 + 17xy - 24y^2 = 0$$

(2 times)

Sol Given equation
$$20x^2 + 17xy - 24y^2 = 0$$

$$20x^2 + 32xy - 15xy - 24y^2 = 0$$

$$4x (5x + 8y) - 3y (5x + 8y) = 0$$

$$(4x - 3y) (5x + 8y) = 0$$

$$4x - 3y = 0$$
 or $5x + 8y = 0$

Hence required pair of lines

$$4x - 3y = 0$$

and
$$5x + 8y = 0$$

Find the area of region bounded by the triangle with vertices (a, b + c), (a, b - c) and (-a, c)

Sol: Let A(a, b + c), B(a, b - c) and C(-a, c) be the vertices of triangle ABC Now area of triangle is:

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ a & b-c & 1 \\ -a & c & 1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ 0 & 2c & 0 \\ -a & c & 1 \end{vmatrix} by R_2 - R_1$$

Expanding by second row

$$= \frac{1}{2} [-2c(a+a)]$$

$$= -c(2a)$$

$$= -c(2a)$$

$$= -2ac$$

$$\Delta = 2ac$$
Squ

.: Area in always Positive

 $\Delta = 2ac$ square units. 24 Show that lines 4x - 3y - 8 = 0, 3x - 4y - 6 = 0 and x - y - 2 = 0 are concurrent. (2 times)

Sol: Let
$$\ell_1:4x-3y-8=0$$

 $\ell_2:3x-4y-6=0$
 $\ell_3:x-y-2=0$

lines ℓ_1,ℓ_2,ℓ_3 are concurrent

if
$$\begin{vmatrix} 4 & -3 & -8 \\ 3 & -4 & -6 \\ 1 & -1 & -2 \end{vmatrix} = 0$$

$$\Rightarrow 4(8-6) + 3(-6+6) - 8(-3+4) = 0$$

$$\Rightarrow 4(2) + 3(0) - 8(1) = 0$$

$$\Rightarrow 8 - 8 = 0$$

$$\Rightarrow 0 = 0$$

So lines are concurrent

25 Find volume of "P" such that lines 2x - 3y - 1 = 0, 3x - y - 5 = 0 and 3x.Py + 8 = 0 meet at a point (C.W).

Sol: Let
$$\ell_1: 2x-3y-1=0$$

 $\ell_2: 3x-y-5=0$
 $\ell_3: 3x-Py+8=0$
 \therefore meet at a point
 \therefore lines are concurrent

so
$$\begin{vmatrix} 2 & -3 & -1 \\ 3 & -1 & -5 \\ 3 & p & 8 \end{vmatrix} = 0$$

Expanding by R₁

$$2(-8+5P)+3(24+15)-1(3P+3)=0$$

$$-16+10P+72+45-3P-3=0$$

$$7P+98=0$$

$$7P=-98$$

$$P=-\frac{98}{7}$$

$$P=-14$$

Find distance from the point P(6,-1) to the line 6x-4y+9=0

Given $P(x_1, y_1) = P(6, -1)$ and ax + by + c = 0 = 6x - 4y + 9using formula

$$\perp \text{ distance} = \frac{|36+4+9|}{\sqrt{49}}$$

sol:

$$\perp$$
 distance = $\frac{49}{\sqrt{49}} := \frac{(\sqrt{49})^2}{\sqrt{49}} = \sqrt{49}$

Show that the lines 2x+y-3=0 & 4x+2y+5=0 are parallel.

27. Show that the lines
$$2x+y-5=$$
Sol: Given $l_1:2x+y-3=0$
And $l_2:4x+2y+5=0$
So $m_1=-\frac{a}{b}=-\frac{2}{1}=-2$

and
$$m_2 = \frac{-4}{2} = -2$$

$$m_1 = m_2$$

i.e $-2 = -2$

so lines are II

LONG QUESTIONS OF CHAPTER-4 ACCORDING TO ALP SMART SYLLABUS-2020

Topic | Coordinate System:

- · Find 'h' such that the points A(h, 1); B (2, 7) and C (-6, -7) are the vertices of a right triangle with right angle as the vertex A. (H.W) (2 times)
- Find h such that the point $A(\sqrt{3}, -1)$, B(0, 2) and C(4, -2) are vertices of 2. (H.W) right triangle with right angle at the vertex A.

Topic II: Equations of Straight Line:

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree

Guess Papers, Past Papers & Notes

Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available 👇

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

3. Find an equation of the line through (5, -8) and perpendicular to the join of A(-15, -8), B (10, 7). (H.W) (2 tir

120

- 4. Find the conditions that the lines $y = m_1 x + c_1$; $y = m_2 x + c_2$; $y = m_3 x + c_3$ concurrent. (H.W) (3'times)
- 5. Find equation of two parallel lines perpendicular to $2x y + 3 \approx 0$ such that the product of the x and y intercept of each is 3. (H.W) (8 times)
- 6. Find distance between 3x 4y + 3 = 0 and 3x 4y + 7 = 0. Also find equation of parallel line lying midway between them. (H.W)
- 7. By means of slopes, show that the points lie on the same line (-1, -3), (1,5), (2,9) (2 times)
- 8. One vertex of a parallelogram is (1, 4), the diagonals intersect at (2, 1) and the sides has slope 1 and $\frac{1}{7}$. Find other three vertices. (C.W)

Topic IV: Angle Between Two Lines:

- 9. Find an equation of line through the intersection of the lines x y 4 = 0 and 7x + y + 20 = 0 and parallel to the line 6x + y 14 = 0. (H.W) (2 times)
- 10. Determine the value of P such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 0 meet at a point. (C.W) (2 times)
- 11. Find the interior angles of the triangle whose vertices are A (6, 1), B (2, 7), C (-6,-7) (H.W)
- 12. Find the angles of the triangle whose vertices are A(-5, 4), B(-2, -1), C(7, -5)
- Find an equation of the line through the point of intersection of the lines $\ell_1:3x-4y-10=0$, $\ell_2:x+2y-10=0$ and perpendicular to the line $\ell:3x-4y+1=0$ (H.W)
- 14. Find an equation of the line through the intersection of the lines x + 2y + 3 = 0, 3x + 4y + 7 = 0 and making equal intercepts on the axes. (H.W)

Topic V: Homogeneous Equation of Second degree in two variables:

15. Find lines represented by $2x^2 + 3xy - 5y^2 = 0$, also find measure of angle between them. (H.W) (2 times)

Chapter-4 (Examples According to ALP Smart Syllabus)

Example 3:(Pag#183) Find the coordinates of the point that divides the join of A(-63) and B(5,-2) in the ration 2:3. (i) Internally (ii) externally (C.W)

Sol(i): Here
$$k_1 = 2$$
, $k_2 = 3$, $x_1 = -6$, $x_2 = 5$

By the formula, we have

$$x = \frac{2 \times 5 + 3 \times (-6)}{2 + 3} = \frac{-8}{5}$$
 and $y = \frac{2(-2) + 3(3)}{2 + 3} = 1$

Coordinates of the required point are $\left(\frac{-8}{5},1\right)$

(ii) In this case

$$x = \frac{2 \times 5 - 3 \times (-6)}{2 - 3} = -28$$
 and $y = \frac{2(-2) - 3(3)}{2 + 3} = 13$

Coordinates of the required point are (-28,13)

121

pumple 3: (PagH189) The xy-coordinate axes re rotated about the origin through and angle of 30°. If the xy-coordinates of a point are (5,7), find its XY-coordinates. where OX and OY are the axes obtained after rotation.

Let (X,Y) be the coordinates of P referred to the XY-axes. Here θ = 30°. sol: From equations (3) above, we have

X = 5cos30° + 7 sin30° and Y = -5sin 30° + 7cos30°

$$\Rightarrow X = \frac{5\sqrt{3}}{2} + \frac{7}{2} \qquad \text{and } Y = \frac{-5}{2} + \frac{7\sqrt{3}}{2}$$

i.e.,
$$(X,Y) = \left(\frac{5\sqrt{3}}{2} + \frac{7}{2}, \frac{-5}{2} + \frac{7\sqrt{3}}{2}\right)$$
 are the required coordinates

Example 11: (Pag#203) Find the distance between the parallel lines. (C.W)

$$2x + y + 2 = 0$$
 (1)

$$6x + 3y - 8 = 0$$
 (2)

Sketch the lines. Also find an equation of the line parallel to the given lines and lying midway between them.

We first convert both the lines into normal form (1) can be written as 2x + y = -2Sol:

Dividing both sides by $-\sqrt{4+1}$, we have .

$$\frac{-2}{\sqrt{5}}x + \frac{-y}{\sqrt{5}} = \frac{2}{\sqrt{5}}$$

Which is normal form of (1). Normal form of (2) is

$$\frac{6x}{\sqrt{45}} + \frac{3y}{\sqrt{45}} = \frac{8}{\sqrt{45}}$$

i.e.,
$$\frac{2x}{\sqrt{5}} + \frac{y}{\sqrt{5}} = \frac{8}{3\sqrt{45}}$$

Length of the perpendicular from (0,0) to the line (1) is $\frac{2}{\sqrt{5}}$, [From (3)]

Similarly, length of the perpendicular from (0,0) to the line (2) is $\frac{8}{2\sqrt{45}}$ [From (4)

From the graphs of the lines it is clear that the lines are on opposite sides of the origin, so the distance between them equals the sum of the two perpendicular lengths.

i.e., Required distance =
$$\frac{2x}{\sqrt{5}} + \frac{y}{\sqrt{5}} = \frac{8}{3\sqrt{45}}$$

The line parallel to the given lines lying midway between them is such that length of

the perpendicular from O to the line
$$=$$
 $\frac{8}{3\sqrt{45}} - \frac{7}{3\sqrt{5}} \left(or \frac{7}{3\sqrt{5}} - \frac{2}{\sqrt{5}} \right) = \frac{1}{3\sqrt{5}}$

Required line is
$$\frac{2x}{\sqrt{5}} + \frac{y}{\sqrt{5}} = \frac{1}{3\sqrt{5}}$$

Example 4: (Pagit213) Find the distance between the parallel lines.

122

(C.W)

$$l_1:2x-5y+13=0$$

$$l_2: 2x-5y+6=0$$

Sol: First find any point on one of the lines,

Say l_1 if x = 1 lies on l_1 then y = 3 and the point (1,3) lies on it. The distance d from (1,3) to

$$l_2$$
 is $d = \frac{|2(1)-5(3)+6|}{\sqrt{2^2+5^2}} = \frac{|2-15+6|}{\sqrt{4+25}} = \frac{7}{\sqrt{29}}$

This distance between the parallel lines is $\frac{7}{\sqrt{29}}$.

Example 1: Find an equation of each of the lines represented by. $20x^2 + 17xy - 24y^2 = 0$

Sol: The equation may be written as

$$24\left(\frac{x}{y}\right)^{2} - 17\left(\frac{x}{y}\right) - 20 = 0$$

$$\Rightarrow \frac{x}{y} = \frac{17 \pm \sqrt{289 + 1920}}{48} = \frac{17 \pm 47}{48} = \frac{4}{3}, \frac{-5}{8}$$

$$\Rightarrow y = \frac{3}{4}x \quad \text{and} \quad y = \frac{-5}{8}x$$

$$\Rightarrow 4x - 3y = 0 \quad \text{and} \quad 5x + 8y = 0$$

Example 3: (Pag#228) Find a joint equation of the straight lines through the origin perpendicular to the lines represented by.

Sol: (1) may be written as = 0

$$(x-2y)(x+3y)=0$$

Thus lines represented by (1) are

$$x-2y=0$$

The line through (0,0) and perpendicular to (2) is

$$y=-2x$$
 or $y+2x=0$ (

Similarly, the line through (0,0) and perpendicular to (3) is

$$y = 3x$$
 or $y - 3x = 0$ (5)

Joint equation of the lines (4) and (5) is

$$(y+2x)(y-3x) = 0$$
 or $y^2 - xy - 6x^2 = 0$

An avarace	on involving any one of	the symbol < < > >	le called
1. An expression	(R) Non-inequality	(C) Identity	(D) leasure
(A) An equation	(B) Non-inequality gative inequalities are	called:	(D) inequality
2. The non-riel	(B) Constants	(C) Decision variable	(* times)
(A) parameters	solution which maxim	ize or minimize the of	blective function t
called the: .	•		(1 time)
(A) Feasible region		(B) Optimal solution	·
(C) Converx region	s linear inequality in va (B) 3 n of ax + by < c is:	(D) Feasible solution	set
4. ax + by < c is	s linear inequality in va	riables:	(3 times)
(A) 2	(B) 3 '	(C) 1	(D) 0
5. The solution	of ax + by < c is:		(5 times)
(A) Closed half plan	e (B) Open half plane	(C) Parabola	(D) Hyperbola
6. (2, 1) is the :	solution of inequality		(6 times) (D) x - y > 5
$(A) \times Y < 5$	(B) $x + y > 5$	(C) $x + y = 5$	
7 (0. 1) is not :	solution if inequality		(4 times)
(A) $7x + 2y < 8$	(B) $x - 3y < 0$	(C) $3x + 5y < 7$	(D) $3x + 5y \le 3$
8. (1, 2) is the	solution of: (B) x + y < 0	100 11 0	(3 times)
$(A) \times + y > 0$	(B) x + y < 0	(C) $x + y = 0$	(D) x - y = 1
9, Which one is	s a solution of inequali	ty 2x + 3y < 0:	(2 times)
	(B) (1, +2)	(C) (2, 3)	(D) (0, 1)
10. (1, 3) is in th	e solution region of:	(4)	(3 times)
$(A) \times + y > 0$	(B) $x + y < 0$	(C) $x + y = 2$	(0) x - y = 0
11. The inequali	ity $2x + 3y < 5$ is satisfie	ed by point:	(5 times)
(A) (1, 1)	(B) (-2, 1) e solution of the inequa	(C) (1, 2)	(D) (-2, 3)
			(3 times)
(A) $2x + 1 > 0$	(B) $2x + 1 < 0$	(C) $2x + 1 \le 0$	(D) $2x - 1 > 0$
13. x = 5 is not i	in the solution of: (B) $2x + 3 < 0$		(5 times)
$(A) \cdot x + 4 > 0$	(B) $2x + 3 < 0$	(C) $x-4>0$	$(D) \times > 0$
	olution of inequality.	•	
	(b) 2x + 3 < 0	(c) x + 4 < 0	(d) x < x
			(A) U = U
	les in the solution regio		/d\ 200 t to 5
	(b) $x + 3y > 5$		(d) $2x + y > 6$
	solution of the inequal		
(a) $2x - 1 > 0$	(b) $2x + 1 > 0$	(c) $x + 4 < 0$	(d) $2x - 1 < 0$
17. Solution set	of inequality $2x < 3$ is.		
(a) $(-\infty, \frac{3}{2})$			(d) (-3/2,3/2)
44 .	.—		
18. Solution of i	nequality x + 2y < 6 is.		
(a) (1, 3)	(b) (1, 4)	(c) (1, 5)	(d) (1, 1)
	of the following points		
(a) (4, 1)	(b) (3: 1)	(c) (1, 3)	(d) (1, 4)
_			
20. The solution	(b) 40 and 5	(c) - ∞ < x < 4	(d) Acrem
(a) 0 < x < 4	(a) IO < X < 2	(c)-w <x<4< td=""><td>(0) 7 1 1 10</td></x<4<>	(0) 7 1 1 10
21. Solution of x	$c < \frac{-3}{12}$ is:		
		(C) $\left(\frac{-3}{2}, \frac{3}{2}\right)$	(D) (−∞, ∞)
$(A)\left(-\infty,\frac{-3}{2}\right)$	(B) $\left(\frac{1}{2},\infty\right)$	$(C)(\frac{1}{2},\frac{7}{2})$	(5) (-0,0)
22. $2x + 3y < 0$ is	3 2		
(A) An equation		(C) Identity	(D) Not identity
	fel madernal		

23.	The po	int (-1	L,2) sa	rtisfie	s the	inequ	ality =	:			(2 tl	mes)		
(A) x -	y > 4'		` (B)	x-y	≥ 4	,	(C)	x + y <	:4		(D)	x +y >	4	
24.	The po	int (1	,3) lie	s in ti	ne sol	ution	regio	n of th	ne ine	quali	ty:	•		
(A) x +	y <2	1	(B)	x + y	< 0		(C)	x – y <	<2		(D)	x – y>	0	
	Solution			-	-		- 1				+			
(A)	$\left[\frac{3}{2},\infty\right]$. (B) $\left[\frac{3}{2}\right]$			(0	$\left(\frac{2}{3}\right)$	∞ [(C	$\left(\frac{2}{3}, \alpha\right)$	0]
26.	The as	socia	ted e	quatic	n of i	nequ	alitý x	+ 2y ·	< 6 is:					,
	2y = 6				•		(C)	x + 2y	<i>i</i> = -6		.(D)	x – 2 _y	/ = -6	
	x + 2y													
	3)		(B)	(2,2)			(C)	(3,2)			(0)			
28.	A fund	ction 1	which	is to	be ma	ıximiz						(4	Time	15)
(A) sul	bjective	func	tion				(B)	quali	tative	funct	ion			
(C) ob	jective;	funcți	ion				(D)	quan	titati	ve fun	ction	٠		
29.	(1,0)	is the	e solu	tion o	f ineq	uality								
(A) 7x	+ 2y <	8	(B) x - 3	y < 0		(C)	3x +	5y < 6	,	(D)	-3x+	5y > 2	2
30.	x = 0 i	s not	in the	e solu	tion a	f ineq	uality	,						
(A) 2x	+3>0		(B) x + 4	l > 0		(C) x + 5	> 0		(D)	2x+	3<0	
31-	Point	(1, 2)	, satis	ifies t	he inc	quali	ty:							
(A) 2x	+ 4 > 5		(B) 2x +	γ≥5	5	(C	2x+	y < 3		(D)	2x+	y < 5	
32-	The g	raph	of 2x	≥3 lie	es in:			,						
(A) U	pper Ha	If Pla	ne (E	3) Low	er Ha	lf Plar	ne (C) Left	Half F	lane	(D) R	ight H	alf Pla	ine
	2x -					•				•	٠.	•		
	quation	_		a) ider	ntify	•	(0) inea	uality	,	(D) curv	e	
	The f				_		_		_					ction
is cal			10 301		40110	11 11 101	*******	3 01 11		11263 6	110 00	3		reion.
	xact sol	ution	ti	R) Ont	imal e	colutio	on 10	') Fina	l solu	tion	(D) OF	riectiv	e soli	ition
			-				_					-		
(A) 2	1,2) ! x + y	5	(1	B) 2x	- γ :	≥ 5	(() 2x +	y < 3		(D) 2x +	y < 5	
	To fine												•	
(a) O	ne poir	nt	(b) Ori	gin		(0	:) Som	e poi	nts	(d) Corr	ner Po	ints
37.	(1,1) 1	s solu	rtion o	of:										1
(a) x	+y<1		(b) 2x+	ry<1		(0	:) 2x-y	< 1		{d) x-y<	1	
38.	The n	on-ne	gativ	e cons	trains	are o	alled							
- (a) D	ecision '	Variab	lés (b) Feasi	ble So	lution	set (c)	Optim	al Sol	ution	(d) As	sociate	ed Equ	ation
			ANS	WFR9	TOT	HE M	ULTIP	LE CHI	IOCE I	OUES'	TIONS			
	1	2	3	4	5.	6	7	8	9	10		12	13	
	D	С	В	A	В	A	D	A	A	A	8	A	8	
	4.6	4.5	4.0	4.	4.0	4.0					24	25	26	

1	2	3	4	5.	6	7	8	9	10	11	12	13
D	С	В	Α	В	A	D	A	A	A	8	Α	8
14	15	16	17	18	19	20	21	22	23	24	25	26
Α	В	D.	Α	D	В	С	A	В	С	С	Α	A
27	28	29	30	31	32	33	34	35	36	37	38	
В	C	A	D	D	D	С	В	D	D	D	A	1

ACCORDING TO ALP SMART SYLLABUS-2020

Define feasible solution set.

(4 times)

Feasible solution set:- The region restricted to 1st quadrent is called feasible region and a set consisting of all feasible solutions of the system of linear inequalities is called feasible solution set.

Draw the graph of $3x+2y \ge 6$.

(4 times)

2. $3x + 2y \ge 6.....(i)$

The Associated Equation of (i) is 3x+2y=6....(ii)

Put x= 0 in (ii) \Rightarrow 2y = 6 as y = 3 and point is p(0,3)

Put $y=0 \implies 3x=6$ as x=2 and second point is Q(2,0) is obtained.

Put O(0,0) as test point in (i).

0+0≥6 False.

Define objective function and optimal solution.

(19 times)

Sol: Objective function:-

A function which is to be maximize or minimize is called objective function.

Optimal solution:-

The feasible solution which maximize and minimize the objective function is called optimal solution.

4. Graph the solution set of $5x-4y \le 20$.

(8 times)

Sol: $5x-4y \le 20$ (i)

The Associated Equation of (i) is 5x-4y=20......(ii)

Put x= 0 in (i) \Rightarrow -4 ν = 20 or ν = -5 and point P(0,-5)

Put y= 0 in (ii) \Rightarrow 5x = 20 or x = 4 and second point Q(4,0) is obtained.

Put O(0,0) as test point in (i)

 $0-0 \le 20$ true

So solution is shaded partion towards the origin.

Graph the inequality x+2y<6.

· (3 times)

Sol:-The associated equation of the inequality

$$x+2y < 6.....(i)$$

Or
$$x+2y=6....(ii)$$

The line (ii) intersects the x-axis and y-axis at (6,0) and (0,3) respectively. As no point of the line (ii) is a solution of the inequality (i), so the graph of the line (ii) is shown by dashes. We take O(0,0) as a test point because it is not on the line (ii).

6. Graph the solution region of $2x + y \ge 2$

Sol:
$$2x + y \ge 2$$
 (i)

The A.E of (i) is
$$2x + y = 2$$
 (ii)

Put
$$x = 0$$
 in (ii) $\Rightarrow y = 2$ and point (0,2)

Put
$$y = 0$$
 in (ii) $\Rightarrow 2x = 2$ as $x = 1$ and point (1, 0) is obtained

$$0+0 \ge 2$$
 false

7. Graph the solution set of inequality $2x + y \le 6$ (3 times)

$$2x + y \leq 6$$

The Associated Equation of (i) is
$$2x + y = 6 \implies (ii)$$

$$y = 6$$
 and point $(0, 6)$
 $2x = 6$ as $x = 3$ and

8. Define vertex of the solution region.

Sol:

Vertex of solution region A point of a

solution region where two of its boundary line interest is called vertex of solution region.

Sol:

The A.E of (i) is 2x - 3y = 6 (ii) $put x = 0 in (ii) \Rightarrow -3y = 6 as y = -2 and point (0; -2)$ put y = 0 in (ii) $\Rightarrow 2x = 6$ as x = 3 and point (3, 0) is obtained put 0(0,0) as test point in (i) 0-0<6 True

Graph the solution set $3y - 4 \le 0$ in xy - plane.

(2 times)

10. Given inequality is sol:

$$3y - 4 \le 0$$
 in xy plane.

The A.E of (i) is
$$3y - 4 = 0$$

$$Y = \frac{4}{3} \Rightarrow (0, \frac{4}{3})$$

Put 0(0, 0) as test point in (i)

$$0-4 \le 0$$

Graph the solution region of $2x + 1 \ge 0$ 11.

(2 times)

SAN.

Given
$$2x + 1 \ge 0$$
 (i)

The A.E of (i) is
$$2x + 1 = 0$$
.

iven
$$2x + 1 \ge 0$$
 (i) Put $0(0, 0)$ as test point in (i)
the A.F. of (i) is $2x + 1 = 0$ $0 + 1 \ge 0$ True

$$2x = -1$$

$$x = -1/2$$

Point
$$(-1/2,0)$$

12. What are problem constraints? Sal:

(3 times)

Problem Constraints: In a certain problem from everyday life each linear inequality concerning the problem is called problem constraints.

13. Shade the solution region of inequality $-y + x \le 1$ Sol:

Given
$$-y + x \le 1$$

The A.E of (i) is
$$-y + x = 1$$

The A.E of (i) is
$$-y + x = 1$$
 (ii)
Put $x = 0$ in (ii) $-y = 1$ as $y = -1$ and point $(0, -1)$

Put
$$y = 0$$
 in (ii) $x = 1$ and point $(1, 0)$ is obtained

Put 0 (0, 0) as test point in (i) -0+0 ≤ 1 true

Graph the solution region of linear inequality $x + y \le 5$. 14. Given

'Sol:

Associative equation

$$x + y = 5$$

X-intercept:

Put
$$y = 0$$
, in eq (2)

$$x+0=5$$

$$P_1(x, y) = (5, 0)$$

Y-Intercept:

Put
$$x = 0$$
, in eq (2)

$$Y = 5$$

$$P_2(x, y) = (0, 5)$$

Testing:

Put
$$x = 0$$
, $y = 0$, in eq (1)

$$0 + 0 < 5$$

$$0 < 5$$
 true

Since statement (1) is satisfy.

So shade is near the origin.

Graph the solution region of linear inequality $x + y \ge 5$. 15. Given

Sol

Associative equation

$$x+y=5 - 100$$

X-intercept:

Put
$$y = 0$$
, in eq (2)

$$x + 0 = 5$$

$$x = 5$$

$$P_1(x, y) = (5, 0)$$

Y-intercept:

Put
$$x = 0$$
, in eq (2)

$$0 + y = 5$$

$$Y = 5$$

$$P_2(x, y) = (0, 5)$$

Testing

$$0 + 0 > 5$$

Since statement (1) does not satisfy. So shade is for the origin.

16. **Decision Variables.**

The variable used in the system of linear inequality to problems of every day Sol: life are called decision variables.

OR The non-negative constrained used in a system of linear inequalities are called decision variable.

Graph

129

What is an inequality?

An expression involving any one of the symbols >, <, ≥, ≤ is called inequality.

LONG QUESTIONS OF CHAPTER-5

```
Maximize f(x, y) = x + 3y subject to the constraints 2x + 5y \le 30; 5x + 4y \le 20;
                                                                   (C.W)
                                                                               · (2 times)
       x \ge 0; y \ge 0.
      Graph the feasible region and find the corner points for the following system of
 1
      inequalities. x-y \le 3, x+2y \le 6, x \ge 0, y \ge 0
      Maximize f(x, y) = 2x + 3y subject to the constraints 3x + 4y \le 12; x + 2y \le 14;
 1.
                                                                   (C.W)
      4x-y \le 4; x \ge 0; y \ge 0.
 ţ.,
      Maximize f(x, y) = 2x + 5y subject to the constraints 2y - x \le 8; x - y \le 4;
                                                                    (H.W)
       x \ge 0; y \ge 0.
ķ.
      Graph the feasible region subject to the following constraints.
                                                                                (3 times)
                                                                    (H.W)
       2x-3y \le 6; 2x+y \ge 2; x \ge 0, y \ge 0
5.
      Maximize f(x, y) = x + 3y subject to the constraints 3x + 5y \ge 15; x + 3y \ge 9;
                                                                                (2 times)
                                                                    (C.W)
6.
      x \ge 0; y \ge 0.
      Graph the feasible region subject to the following constraints
                                                                                (2 times)
       2x+y \le 10; x+4y \le 12; x+2y \le 10; x \ge 0, y \ge 0
1.
      Graph feasible region by 2x - 3y \le 6, 2x + y \ge 2, x + 2y \le 8, x \ge 0, y \ge 0 (H.W)
8.
      Graph the feasible region subject to the following constraint (C.W) (2 times)
9, '
              2x-3y \le 6
              2x+3y \le 12
              x \ge 0, y \ge 0
                                                                                (3 times)
      Maximize f(x,y) = 2x + 5y subject to the constraints.
                                                                     (H.W)
10.
      2y-x \le 8 ; x-y \le 4
X \ge 0 ; y \ge 0
      Graph the feasible region of the following system of linear inequalities.
11.
      Also find Corner Points 2x - 3y \le 6, 2x + 3y \le 12, x \ge 0, y \ge 0 (C.W)
      Minimize f(x, y) = 3x + y; subject to constraints 3x + 5y \ge 15; x + 3y \ge 9; x \ge 0; y \ge 0
12.
                                                                        (C.W)
      Graph the feasible region and find the corner points for the following system of
13.
      inequalities subject to constraint: x-y \le 3; x+2y \le 6, y \ge 0
      Maximize f(x, y) = x + 3y subject to the constraints.
                                                                        (H.W)
14.
      2x + 5y \le 30, 5x + 4y \le 20, x \ge 0, y \ge 0
      Graph feasible region of linear inequalities 2x + y \le 10, x + 4y \le 12, x + 2y \le 10
15.
                                                                                  (C.W)
                                                                          (H.W) (4 times)
      Graph the feasible region and also find the corner points.
16.
      2x-3y \le 6, 2x+3y \le 12, x \ge 0, y \ge 0
```

Chapter-5 (Examples According to ALP Smart Syllabus)

Example 2: Graph the solution region for the following system of the inequalities.

$$x-2y \le 6$$
, $2x+y \ge 2$, $x+2y \le 10$

Sol: The graph of the inequalities $x-2y \le 6$ and $2x+y \ge 2$ have already drawn in figure 5.31(a) and 5.31(b) and their intersection is partially shown as a shaded region in figure 5.31(c) of the example 1 (Art 5.3). Following the procedure of the example 1 of Art (5.3) the graph of the inequality $x+2y \le 10$ is shown partially in the figure 5.32(a)

The intersection of three graphs is the required solution region graphs is the required solution region which is the shaded triangular region PQR (including its sides) shown partially in the figure 5.32(b)

Now we define a corner point of a solution region.

Example 1: A farmer possesses 100 kanals of land and wants to grow corn and wheat. Cultivation of corn requires 3 hours per kanal while cultivation of wheat requires 2 hours per kanal. Working hours cannot exceed 240. If he gets a profit of Rs.20 per kanal for corn and Rs.15/-per kanal of wheat, how many kanals of each he should cultivate to maximize his profit?

Sol: Suppose that he cultivates x kanals of corn and y kanals of wheat. Then constraints can be written as:

$$x+y \le 100$$
 $3x+2y \le 240$

Non-negative constraints are $x \ge 0, y \ge 0$

Let P(x,y) be the profit function, then

$$P(x,y) = 20x + 15y$$

Now the problem is to maximize the profit function P under the given constraints,

Graphing the inequalities, we obtain the feasible region which is shaded in the figure 5.71 solving the equations x + y = 100 and 3x + 2y = 240 gives x = 240 - 2(x+y) = 240 - 200 = 40 and y = 100 - 40 = 60, that is; their point of intersection is (40,60). The corner points of the feasible region are (0,0), (0,100), (40,60) and (80,0). Now we find the values of P at the corner points.

Corner point	P(x,y) = 20x + 15y
(0,0)	$P(0,0) = 20 \times 0 + 15 \times 0 = 0$
(0,100)	$P(0,100) = 20 \times 0 + 15 \times 100 = 1500$
(40,60)	P(0,0) = 20 x 40 + 15 x6 0 = 1700
(80,0)	$P(0,0) = 20 \times 80 + 15 \times 0 = 1600$

From the above table it follows that the maximum profit is Rs. 1700 at the corner point (40,60). Thus the farmer will get the maximum profit if he cultivates 40 kanals of corn and 60 kanals of wheat.

OBJECTIVES (MCQ'S) OF CHAPTER-6 ACCORDING TO ALP SMART SYLLABUS-2020

air I: Equation of Circle:

Opt	If a plane pas	ses through the verte	x of the cone being co	Mode
j. al Pa	rabola	(B) Hyperbola ,	(C) Unit circle	(D) Point alone
,	The length of	the diameter of the	sircle $x^2 + y^2 = a^2$ is:	(2 three)
2	. ,	(B) 2a	(C) 1	
(A) a	Center of circ	$4x^2 + 4y^2 - 8x + 16y$		(D) 2
3				(2 times)
1	-/	(B) $\left(\frac{-3}{2}, 4\right)$		(D) (2, 1)
4	Radius of circ	$1e 4x^2 + 4y^2 + 8x + 8y$	-68 = 0 is:	(3 times)
(A) 44	<i>[</i> 5	(B) √19	(C) 5	(D) 12
g.	Centre of circ	$ext{le } x^2 + y^2 + 7x - 3y = 0$)	(2 times)
		4		(4 times)
(A) (-	$\frac{1}{2},\frac{1}{2}$	(B) $\left(\frac{7}{2}, \frac{-3}{2}\right)$	(C) (7, -3)	(D) (-7, 3)
6.	Center of circ	$1e(5x^2 + 5y^2 + 14x + 12)$	y-10=0 is:	(4 times)
				•
A) [-	5, 5	(B) $\left(\frac{7}{6}, \frac{6}{5}\right)$	(C) (7, 6)	(D) (-7, -6)
-		the circle $x^2 + y^2 + 2g$		(2 simos)
A) (g,	f)	(B) (f, g):	(C) (-fg)	(3 times)
l	The centre of	the circle $x^2 + y^2 - 6x$	+4v+13=0 in	(D) (-g, -f)
A) (-6	, 4)	(B) (6, -4)	ic) (3 -2)	(2 times) .
),	$x^{2} + v^{2} + 2ex$	+2fy+c=0 is the eq	yel (o, -2)	
A) Lin	e '	(B) Ellipse	(C) Hyperhole	(5 times)
0.	is eq	uation of point circle:		(Ď) Circle (2 times)
A) x^2	$-y^2 = 7$	(8) $x^2 + y^2 = 4$	$(C) x^2 + y^2 = 0$	(D) $x^2 + y^2 = 1$
1.	A circle is call	ed a point circle if:	•	
A) r =	1 .	(B) $r = 0$ the circle $(x - 1)^2 + (y - 1)^2$	(C) $r = 2$	(D) r = 3
2.	The centre of	the circle $(x-1)^2 + (y)^2$	$+3)^2 = 3$ is equal to.	(-7, -
D) (-1,	, -3}	(b) (-1, 3)	(c) (1, -3)	(d) (1, 3)
3,	Equation of ci	ircle with centre at ori	gin and radius of $\sqrt{5}$ i	S.
a) x ^{2.}	$+y^2=\sqrt{5}$	(b) $x^2 + y^2 = 5$	(c) $x^2 + y^2 = 25$ (d)	$r^2 + (v-1)^2 = 5$
4.	If (-5, 3) is the	centre of circle and p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x + (y-1) = 3
	will be equal	to.	omt (7, -2) nes on it, t	nen radius or circle
a) 3		(b) 7	(c) 5·	(d) 13
5.	The circle x^2	$+y^2 + 2gx + 2fy + c = 0$	nassing through origi	n if
A) c =	0	(B) c = 1	(C) c = -1 .	/D\c=f+a
6.	The set of all	the points in a plane w	hich are equidistant f	rom a fixed point
	and fixed line	is called:		4
A) Cir		(B) Ellipse	(C) Parabola	(D) Hyperbola
7.	if the ends of	the diameter of the ci	rcle are (0 , 1) and (2 ,	3) then its area is:
A) nr	*	(D) 2 -	101 A -	(D) a -

18. Centre of th	e circle having equatio	$n x^2 + y^2 + 12x - 10y =$	0
	(B) (-6 , 5)		
	nates of centre of circle		
(A) (-3, 2)	(B) (3; -2)	(C) (3 , 2)	(D) (-3 , 2)
20. If $x^2 + y^2 + 2$	gx + 2fy + c = 0 represent	t equation of circle the	n radius r = (2 times)
$(A) \sqrt{g^2 + f^2 + c}$	$(B) \sqrt{g^2 - f^2 - c}$	(C) $\sqrt{g^2 - f^2 + c}$	(D) $\sqrt{g^2 + f^2 - c}$
	circle with centre at o		
(A) $x^2 + y^2 = \sqrt{5}$	(B) $x^2 + y^2 = 5$	(C) $x^2 + y^2 = 25$	(D) $(x-3)^2+v^2=$
	t and Normal Lines:		, , , , , ,
	hat the line y = mx +.c		$x^2 + y^2 = a^2 a $
	(B) $c = \pm a\sqrt{1 + m^2}$		
23. Any chord	passing through the foo	us of the parabola is o	alled the :
(A) Vertex of the p	arabola ,	(B) Axis of the parab	ola
(C) Latus rectum of	f the parabola 💎 🕟	(D) Focal chord of th	e parabola
24. Parabola)	$v^2 = 4\alpha x, \alpha > 0$ opens:		(5 times)
(A) Upward	(B) Downward	(C) Right side	(D) Left side
	arabola $x^2 = -16y$		(4 times)
	(B) (0, -4)	(C) (4, 0)	(D) (-4, O)
	rix of parabola $x^2 = -16$	_	(4 times)
(A) $y - 1 = 0$	(B) y + 1 = 0	(C) v - 4 = 0	(D) y + 4 = 0
	ne parabola $x^2 = 5y$ is:	()	(4 times)
/		(5)	
$(A)\left(0,-\frac{5}{4}\right)$	$(\mathbf{B})\left(0,\frac{5}{4}\right)$	(C) $\left[\frac{3}{4}, 0\right]$	(D) $\left(-\frac{5}{4},0\right)$
	c of the parabola $x^2 = 4$		
(Δ) (a Ω) · ·	(B) (-a, 0)	ay is:	(4 times)
			(D) (O, -a)
	of the parabola $y^2 = 4a$		(4 times)
(A) (a, b)	(B) (-a, O).	(C) (0, 0)	(D) (O, -a)
(A) 2	of the latus rectum of		
(A) 2		(C) 6	(D) 8
31. The verter	x of parabola $y^2 = -8(x)$	-3) is:	(3 times)
32. Focus of t	(B) $(2, 1)$ the parabola $x^2 = 4$ ay is.	(C) (3, 1)	(D) (1, 0)
(a) (a, 0)	(b) (-a, o)	(c)(o, a)	(d) (0 -2)
33. Focus of t	(b) (-a, o) he parabola y² = - 4ax is	. (2 Times)	(4) (0,-4)
(a) (a, U)	(b) (-a, 0)	(c) (0, a)	(d) (0 - a)
	= mx + c, will be tangen		
(a) c = - am ²	(b) $c = \frac{a}{m}$	(c) $c = a'(1 + m^2)$	(d) $c = \frac{m}{c}$
35. The verte	\mathbf{x} of the parabola $(\mathbf{x} - 1)$	² = 8 (v + 2) is.	а
(a) (1, -2)	(b) (0, 2)	(c) (2 (1)	(d) (O, O)
55. The direct $(\Delta) \times \Delta = 0$	trix of the parabola $x^2 =$ (B) $x - 2 = 0$	-8y is:	
37. $x = at^2 \cdot v$	= 2at are the parametric	(C) y + 2 = 0 equations of:	(D) $y - 2 = 0$
(A) Ellipse	(B) Circle	(C) Parabola	(D) Hyperbola

	(0,0) (B) (a,0) (C) (0,a) (D) (a,a) If P(7,-2) iles, on circle with centre (-5, 3), then its radius is: 13 (b) $\sqrt{13}$ (c) 17 (d) $\sqrt{17}$ If a = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. Ellipse (b) Parabola (c) Hyperbola (d) Circle Length of Latus Rectum of Parabola $x^2 = 5y$ is: 5 (b) 20 (c) $\frac{5}{4}$ (d) 10 For hyperbola value of eccentricity e is: 1 (b) Less than 1 (c) Greater than 1 (d) 0 Ecentricity e of circle is: e<1 (b) e=1 (c) e>1 (d) e=0 The radius of circle $x^2 + y^2 = 5$ 25 (b) $\sqrt{5}$ (c) 5 (d) (0,0) The vertex of the parabola $y^2 + 16x$ is: (0,0) (b) (1,0) (c) (0,1) (d) (1,1) Two circles are said to be concentric circles if they have: Same radius (b) Different center (c) Same center (d) Same diameter Directrix of parabola $x^2 = 20y$ is: $x = 10$ (b) $x = 5$ (c) $y = -5$ (d) $x = -5$ The length of diameter of the circle $x^2 + y^2 - 4x - 12 = 0$ is: 6 (b) 7 (c) 8 (d) 9 Slope of tangent to parabola $y^2 = 4ax$ at $(a, 2a)$ is: 3 (b) 2 (c) -1 (d) 1 If the line $6x + 4y + c = 0$ passes through the centre of circle $x^2 + y^2 + 2x + 3 = 0$, then value of 'c' will be 6 (b) 6 (c) -4 (d) 4 • $x, y = 1$ represents Circle (b) Parabola (c) Ellipse (d) Hyperbola The length of tangent from (0,1) to the circle $x^2 + y^2 + 6x - 3y + 3 = 0$ is														
(A) ((0,0)		*	(B) (a,0)	٠		(C) ((0,a)		-	(D) (a, \dot{a}		
56.	If P(7, -2)	lles, o	n circi	e wit	h cent	re (-5	, 3), t	hen It	s radi	us is:				
(a) 1	.3		•	(b) -	√13		,	(c) 1	7	*		(d) v	17	٠	
5/.	If ${\bf a}={\bf b}$ then equation $\frac{x^2}{b^2}+\frac{y^2}{b^2}=1$ represents. Ellipse (b) Parabola (c) Hyperbola (d) Circle Length of Latus Rectum of Parabola $x^2=5y$ is: 5														
(a) E															
58.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
(a) 5	•		:	(b) 2	20			(c) $\frac{5}{4}$	i			'(d) 1	0 .		
59.	For	hyperi	bola v	alue of	f ecce	ntricity	, e is:								
(a) 1								(c) G	reate	r than	1	(d) 0		•	
60.	Ece	ntricii	ty e of	circle	e is:		•	-							
							*	(c) e	>1.			(d) e	=0		
61.	The	radiu	is of c	ircle	ر + ² بر	$v^2 = 5$									
(a) ·	25 .		·	(b).	√5			(c) 5				(d) ((0.0)		
62.	Th	ne ver	tex of	the p	arabo	ola y²	+16x	: is:				,-, ,	,-,-,		
	(0,0) (B) (a,0) (C) (0,a) (D) (a,a) (D) (a,														
							- N		A	ev ha	ve.	100) (-, -,		
(a) :	Same	radiu	S	(b) I	Differ	ent ce	nter	(c) S	Same	cente	r	(d) S:	ame d	iamai	٠
										,		(-,-			rei
(a).	x = 1	0 - 1		(b)	x, ≐ 5			(c) j	y = −5		٠.	(d) 3	: : = -5		
(a)	6			(b)	7 ,7,			(c) t	8				}		
66.	Slo	pe of	tange	nt to	parab	ola y	$r^2 = 4a$	ox at	(a, 2a)	is:		(-, -			
												(d) 1			
67.	If	the	line	· 6x-	+4y+	c = 0	pas	ses	throu	gh :	the .	centr	e of	i cir	cle
	x^2	+ y² +	2x+	3=0,	then	value	of 'c'	will be	е	_				,	
(a)	-6		,	(b)	6		4	' (c) -	-4			(d) 4	ļ.		
68.	х.у	r=1 r	epres	ents	,										
(a)															
69,	The	e leng	th of	tange	nt fro	m (0,	1) to	the ci	rcle x	$x^{2} + y^{2}$	+6x	−3 <i>y</i> +	3 = 0	is	
(a)	If a = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it a = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is = b then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in the ine $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents If it is in														
						-									
ſ		(a) (b) (a, 0) (c) (0, a) (D) (a, a) (D) (a, a) (FP(7, -2) lies, on circle with centre (-5, 3), then its radius is: (b) $\sqrt{13}$ (c) 17 (d) $\sqrt{17}$ (if $a = b$ then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. (ipse (b) Parabola (c) Hyperbola (d) Circle Length of Latus Rectum of Parabola $x^2 = 5y$ is: (b) 20 (c) $\frac{5}{4}$ (d) 10 (e) $\frac{5}{4}$ (f) 10 (for hyperbola value of eccentricity e is: (b) Less than 1 (c) Greater than 1 (d) 0 (e) Cartericity e of circle is: (f) (e) $\frac{5}{4}$ (g) $\frac{5}{4}$ (h) $\frac{5}{4}$ (l) $\frac{5}{4$													
					5	-		8		10	.11	12	13		
					-		d	С	d	C	b	C	Ь	d	
	15	f P(7, -2) lies, on circle with centre (-5, 3), then its radius is: (b) $\sqrt{13}$ (c) 17 (d) $\sqrt{17}$ If $a = b$ then equation $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ represents. pse (b) Parabola (c) Hyperbola (d) Circle Length of Latus Rectum of Parabola $x^2 = 5y$ is: (b) 20 (c) $\frac{5}{4}$ (d) 10 For hyperbola value of eccentricity e is: (b) Less than 1 (c) Greater than 1 (d) 0 Ecentricity e of circle is: (1 (b) $e=1$ (c) $e>1$ (d) $e=0$ The radius of circle $x^2 + y^2 = 5$ 5. (b) $\sqrt{5}$ (c) 5 (d) (0,0) The vertex of the parabola $y^2 + 16x$ is: (0) (b) (1,0) (c) (0,1) (d) (1,1) Two circles are said to be concentric circles if they have: me radius (b) Different center (c) Same center (d) Same diameter Directrix of parabola $x^2 = 20y$ is: $=10$ (b) $x = 5$ (c) $y = -5$ (d) $x = -5$ The length of diameter of the circle $x^2 + y^2 - 4x - 12 = 0$ is: (b) 7 (c) 8 (d) 9 Slope of tangent to parabola $y^2 = 4ax$ at $(a, 2a)$ is: (b) 2 (c) -1 (d) 1 If the line $6x + 4y + c = 0$ passes through the centre of circle $x^2 + y^2 + 2x + 3 = 0$, then value of 'c' will be 6 (b) 6 (c) -4 (d) 4 $x^2 + y^2 + 2x + 3 = 0$, then value of 'c' will be 6 (b) Parabola (c) Ellipse (d) Hyperbola The length of tangent from (0,1) to the circle $x^2 + y^2 + 6x - 3y + 3 = 0$ is (c) 4 (d) 1 ANSWERS TO THE MULTIPLE CHIOCE QUESTIONS													

Ь

35

a

b

36

d

37

þ

32

Ç

33

b

34

b

29

30

31

				لستيا		
				_		
S	canne	ed wit	th Cai	mSca	nner	

c

42

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree

Guess Papers, Past Papers & Notes

Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available 👇

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077

43	44	45	46	47	48	. 49	50	51	52	53	54	55	56
d	b	C	C	С	С	С	d		b	'd			a
57	58	59	60	61	62	63	64	65	66	67	68	69	
ď	C	c	d	b	a	C	C	С	d	Ь	d	d	

SHORT QUESTIONS OF CHAPTER-6 ACCORDING TO ALP SMART SYLLABUS-2020

Tonic I: Equation of Circle.

Show that $5x^2 + 5y^2 + 24x + 36y + 10 = 0$ represents a circle. Also find its center and radius. (Example No. 2 pg.# 2) (C.W) (2 times)

Sol:
$$5x^2 + 5y^2 + 24x + 36y + 10 = 0$$

 $x^2 + y^2 + \frac{24}{5}x + \frac{36}{5}y + 2 = 0$ This is an equation of circle in the general form.

Hence.

$$g=\frac{12}{5}, f=\frac{18}{5}, c=2$$

Thus cetre =
$$(-g, -f) = \left(\frac{-12}{5}, \frac{-18}{5}\right)$$

Radius
$$r = \sqrt{g^2 + f^2 - c}$$

$$=\sqrt{\frac{144}{25}+\frac{324}{25}}-2$$

$$=\sqrt{\frac{418}{25}}=\frac{\sqrt{418}}{.5}$$

$$x^{2} + \frac{24}{5}x + \left(\frac{12}{5}\right)^{2} + y^{2} + \frac{36}{5}y + \left(\frac{18}{5}\right)^{2} + 2 - \left(\frac{12}{5}\right)^{2} - \left(\frac{18}{5}\right)^{2} = 0$$

$$\left(x+\frac{12}{5}\right)^2+\left(y+\frac{18}{5}\right)^2+2-\frac{144}{25}-\frac{324}{25}=0$$

$$\left(x+\frac{12}{5}\right)^2 + \left(y+\frac{18}{5}\right)^2 + \frac{50-144-324}{25} = 0$$

$$\left(x+\frac{12}{5}\right)^2+\left(y+\frac{18}{5}\right)^2-\frac{418}{25}=0$$

Which is equation of circle with center $\left(\frac{-12}{5}, \frac{-18}{5}\right)$ and radius $\frac{\sqrt{418}}{5}$

2. Find an equation of circle with ends of a diameter at (-3, 2) and (5, -6). (H.W) (2 times)

Sol: Centre of circle will be midpoint of line joining. (-3, 2) and (5, 6)

Centre =
$$\left(\frac{5-3}{2}, \frac{-6+2}{2}\right) = \left(\frac{2}{2}, \frac{-4}{2}\right) = (1, -2)$$

Radius =
$$\sqrt{(1+3)^2 + (-2-2)^2}$$

= $\sqrt{16+16} = \sqrt{16 \times 2} = 4\sqrt{2}$

Hence required equation of circle is $(x-1)^2 + (y+2)^2 = (4\sqrt{2})^2$ $x^2 - 2x + 1 + y^2 + 4y + 4 = 32$ $x^2 + y^2 - 2x + 4y + 5 - 32 = 0$ $x^2 + y^2 - 2x + 4y + 5 - 32 = 0$ $x^2 + y^2 - 2x + 4y - 27 = 0$ Find equation of a circle with centre $(\sqrt{2}, -3\sqrt{3})$ and radius $2\sqrt{2}$. (C.W) (2 times) Given centre is $(\sqrt{2}, -3\sqrt{3})$ and radius = $2\sqrt{2}$. $(x-h)^2 + (y-k)^2 = r^2$ $(x - \sqrt{2})^2 + [y - (-3\sqrt{3})]^2 = (2\sqrt{2})^2$ $x^2 - 2\sqrt{2}x + 2 + y^2 + 6\sqrt{3}y + 27 = 8$ $x^2 + y^2 - 2\sqrt{2}x + 6\sqrt{3}y + 21 = 0$ Find the centre and radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ (H.W) (3 times) Given equation of circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ Sol: Dividing by 4 on both sides $x^2 + y^2 - 2x + 3y - \frac{25}{4} = 0$ We know that $x^2 + y^2 + 2gx + 2fy + c = 0$ (ii) Comparing (i) and (ii) 2g = -2f = 3/2We know that $r = \sqrt{g^2 + f^2 - c}$ $= \sqrt{(-1)^2 + \left(\frac{3}{2}\right)^2 + \frac{25}{4}}$ $r = \sqrt{1 + \frac{9}{4} + \frac{25}{4}} = \sqrt{\frac{38}{4}} = \sqrt{\frac{19}{2}}$ Find centre and radius of circle $5x^2 + 14x + 12y - 10 = 0$ (C.W) (2 times) Given equation of circle is Sol: $5x^2 + 14x + 12y - 10 = 0$ Dividing by 5 on both sides $x^2 + y^2 + \frac{14}{5}x + \frac{12}{5}y - 2 = 0$ (1)We know that (ii) $x^2 + v^2 + 2gs + 2fy + c = 0$ Comparing (i) and (ii) $2g = \frac{14}{5}$

Now centre = $(-g, -f) = \left(-\frac{7}{5}, -\frac{6}{5}\right)$

Radius = $r = \sqrt{g^2 + f^2 - c}$

 $=\sqrt{\left(-\frac{7}{5}\right)^2+\left(-\frac{6}{5}\right)^2+2}$

3.

Sol:

5.

$$= \sqrt{\frac{49}{25} + \frac{36}{25} + 2} = \sqrt{\frac{49 + 36 + 50}{25}}$$
$$= \sqrt{\frac{135}{25}}$$
$$f = \sqrt{\frac{27}{5}}$$

2

Laps Il: Langent & Normal Lines

Find the length of the Tangents drawn from the point (-5 , 4) to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$

Given equation of circle is: $5x^2 + 5y^2 - 10x + 15y - 131 = 0$ Dividing by 5 on both sides Sol:

$$x^2 + y^2 - 2x + 3y - \frac{131}{5} = 0$$

Let d be the length of tangent from point (-5 , 4) is.

Let d be the length of tangents
$$d = \sqrt{(-5)^2 + (4)^2 - 2(-5) + 3(4) - \frac{131}{5}}$$

$$d = \sqrt{25 + 16 + 10 + 12 - \frac{131}{5}}$$

$$= \sqrt{63 - \frac{131}{5}} = \sqrt{\frac{315 - 131}{5}}$$

$$d = \sqrt{\frac{184}{5}}$$

Write equation of tangent and normal to the circle $x^2 + y^2 = 25$ at (4, 3). 7.

Sol: Given circle equation is $x^2 + y^2 = 25$ at point (4, 3) Equation of tangent to circle at point (x1, y1)

$$x_1 x + y_1 y = a^2$$

Equation of tangent to given circle at point (4, 3) is

$$4x + 3y = 25$$

Equation of Normal to circle at point (x_1, y_1) is

$$y_1 \times - x_1 y = 0$$

Equation of Normal to given circle at point (4, 3) is

$$3x-4y=0$$

Topic III: Parabola:

(C.W) (3 times) Find the vertex and focus of parabola $x^2 = -16y$.

Given equation of parabola is: $x^2 = -16y$ Sol:

Comparing with $x^2 = -4ay$

We have 4a = 16 ⇒ a = 4

Hence Focus = (0, -a) = (0, -4)

 $Vertex = \{0, 0\}$

Find equation of parabola with focus (-3, 1), directrix x = 3. (C.W) (3 times) 9.

Focus is F(-3,1) and directrix is x - 3 = 0Sol:

Let P(x, y) be any point of the required parabola.

Then
$$|PF| = |PM|$$

 $\Rightarrow \sqrt{(x - (-3))^2 + (y - 1)^2} = \frac{|x - 3|}{\sqrt{1^2 + 0}}$
 $\sqrt{(x + 3)^2 + (y - 1)^2} = |x - 3|$
Requiring on both sides

$$(x+3)^2 + (y-1)^2 = (x-3)^2$$

$$x^{2} + 6x + 9 + (y + 1)^{2} = x^{2} - 6x + 9$$

 $(y - 1)^{2} = 12x$

Find focus and vertex of Parabola $x^2 = 4(y - 1)$. 10.

(H.W) (4 times)

$$x^2 = 4 \left(y - 1 \right)$$

Let x = x, y - 1 = y, Then (1) takes the form $x^2 = 4y$,

(2)

Which is also a parabola whose focus lies on

x = 0, Now coordinates of focus of (2)

are x = 0 , y = 1

$$x = 0$$
 ,

$$y-1=2$$

 $y=2$

So coordinates of focus of parabola (1) is (0, 2)

Now vertex of (2) has coordinates x = 0, y = 0

i.e.
$$x = 0$$

$$y - 1 = 0$$

$$x = 0$$

Hence coordinates of vertex of parabola (1) are (0,1)

Topic V. Hyperbola

11. Find the foci of the hyperbola
$$\frac{x^2}{4} - \frac{y^2}{0} = 1$$

(C.W)

Given equation is $\frac{x^2}{4} - \frac{y^2}{9} = 1$ (I)

It is of the form $\frac{x^2}{a^2} - \frac{y^2}{x^2} = 1$ (ii)

By comparing (i) and (ii)

$$a^2 = 4 \Rightarrow a = 2;$$
 $b^2 = 9 \Rightarrow b = 3$

$$b^2 = 9 \implies b = 3$$

$$\because c^2 = a^2 + b^2$$

$$\Rightarrow c^2 = 4 + 9 = 13$$
 $\Rightarrow c = \sqrt{13}$

$$\Rightarrow c = \sqrt{13}$$

Foci =
$$(\pm c, 0) = (\pm \sqrt{13}, 0)$$

Write the standard equation of Hyperbola. 12.

Standard equation of hyperbola is Sol

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Find Eccentricity and Foci of the Hyperbola $\frac{y^2}{16} - \frac{x^2}{9} = 1$ (H.W). 43.

Sol Given

$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$
 (1)

We know that

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (2)

.from (1) and (2)

$$a^2 = 16$$
 , $b^2 = 9$

$$a = \pm 4$$

We know that

$$c^2 = a^2 + b^2$$

$$c^2 = 16 + 9 = 25$$

$$c = \pm 5$$

(i) Foci =
$$(0, \pm c) = (0, \pm 5)$$

(ii) Eccentricity =
$$e = \frac{c}{a}$$

 $e = \frac{5}{4}$ Ans:

14. Find the centre and vertices of the hyperbola
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$
. (C.W)

Given Sol

$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$
 (1)

We know that

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (2)

From (1) and (2)

$$a^2 = 4$$
 , $b^2 = 9$

(i) Centre at origin = (0,0)

(ii) Vertices =
$$(\pm a, 0) = (\pm 2, 0)$$

Find focus and vertex of parabola 15

(H.W)

$$x^2 - 4x - 8y + 4 = 0$$

 $x^2 - 4x - 8y + 4 = 0$ Sol:

$$x^2 - 4x + 4 = 8y$$
$$(x-2)^2 = 8y$$

Let:

$$X = X - 2$$
$$X^2 = 4aY$$

Focus: F (0, a)

I)

$$\Rightarrow X = 0$$

$$x - 2 = 0$$

$$\Rightarrow F(2, 2)$$

$$x = 2$$

Find foci and vertices of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 16

The given equation of ellipse is

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 (i)

We know that standard equation f ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (11)

Comparing (i) and (ii)

$$a^2 = 9$$

$$h^2 = 4$$

$$\Rightarrow a = \pm 3$$

$$b = +2$$

From

$$c^2 = a^2 - b^2$$

$$c^2 = 9 - 4$$

$$c^{21} = 5$$

$$c^2 = \pm \sqrt{5}$$

i) Foci:

$$F(-\sqrt{5},0), F'(\sqrt{5},0)$$

II) Vertices:

A(-3,0), A'(3,0)

Find an equation of the circle having the joining of $A(x_1, y_1)$ and $B(x_2, y_2)$. 17.

(C.W)

Sol:

Since \overline{AB} is a diameter of the circle so its mid point is C let P(x,y) be any point on the circle then

Slope of AP = =
$$\frac{y-y_1}{x-x_1}$$
 and

Slope of BP =
$$\frac{y-y_2}{11-x_2}$$

Slope of BP = $\frac{y-y_2}{x-x_2}$ Now By condition of perpendicularly

$$\frac{(y-y_1)}{(x-x_1)} \times \frac{(y-y_2)}{(x-x_2)} = -1$$

$$\Rightarrow -(x-x_1)(x-x_2) = (y-y_1)(y-y_2)$$
OR $(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$

Which is required.

18. Define a circle. The set of all points in the plane that are equidistance form a fixed point is Sol: called a circle. Fixed point is called centre of the circle.

19. What is the point circle.

The circle with radius zero is called point circle and its equation is Sol:

$$x^2 + y^2 = 0$$

Derived standard eq. of circle. 20.

Consider a circle with center at c(h,k) and radius "r" take any point Sol: P(x,y) on the boundary of the circle then using distance formula

$$|CD| = \sqrt{(x-h)^2 + (y-k)^2}$$

Squaring on both sides.

$$|CD|^2 = (x-h)^2 + (y-k)^2$$
 : $|CD| = r$
so $r^2 = (x-h)^2 + (y-k)^2$

Which is standard equation of circle.

Find an equation of the parabola having its focus at the origion & directrix parallel to x-axis.

so required equation is $|PF| = \frac{|y-h|}{\sqrt{O^2 + 1^2}}$

$$\Rightarrow \sqrt{(x-0)^2 + (y-0)} = \frac{|y-h|}{1}$$

$$\Rightarrow \sqrt{x^2 + y^2} = (y - h)$$

taking square on both sides.

$$x^2 + y^2 = \left(y - h\right)^2$$

$$\Rightarrow x^2 + y^2 = y^2 + h^2 - 2hy$$

$$\Rightarrow x^2 = h^2 - 2hy$$

$$\Rightarrow x^2 + 2hy - h^2 = 0$$

Which is required.

Define Conic.

I. If e=1 then conic is a parabola.

II. If 0 < e < 1 then the conic is an ellipse.

iii. If e > 1 then the conic is a Hyperbola.

Find focus and directrix of parabola, $y^2 = 8x$

Sol: Given
$$y^2 = 8x$$

$$y^2 = 4\alpha x$$

$$\Rightarrow$$
 4 $a = 8 \Rightarrow a = 2$

So Focus: F(a,0) = F(2,0)

and Direction: x = -a

$$\Rightarrow x = -2$$

$$\Rightarrow x+2=0$$

LONG QUESTIONS OF CHAPTER-6 ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Equation of Circle:

- Find an equation of a circle passing through A(-3, 1) with radius 2 and centre at 2x 3y + 3 = 0 (C.W) (2 times)
- Find an equation of the circle passing through the points A(1, 2), B(1, -2) and touching the line x + 2y + 5 = 0 (Example No. 6 pg . No. 454)
- 3. Show that the circles $x^2 + y^2 + 2x 8 = 0$ and $x^2 + y^2 6x + 6y 46 = 0$ touch internally. (4 times)
- Write the equation of circle passing through the given points. (C.W)
 A(-7, 7), B(5, -1), C(10, 0)
- Find the coordinates of the points of intersection of the line x + 2y = 6 with the circle $x^2 + y^2 2x 2y 39 = 0$ (C.W) (2 times)
- Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally. (C.W) (3 times)

Scanned with CamScanner

Topic II: Tangent & Narmal Lines:

7. Find equation of the tangents of the circle $x^2 + y^2 = 2$ perpendicular to the line 3x + 2y = 6. (C.W) (3 times)

8. Show that the line 2x + 3y - 13 = 0 is tangent to the circle $x^2 + y^2 + 6x - 4y = 0$ (5 times)

9. Find the length of chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$ (H.W) (5 times)

10. Find equation of the circle of radius 2 and tangent to the line x-y-4=0 at A (1, -3) (H.W (3 times)

11. Find an equation of the circle passing through the points A (1,2) and B(1,-2) and touching the line x + 2y + 5 = 0 (C.W)

12. Show that the line 3x - 2y = 0 and 2x + 3y - 13 = 0 are tangents to the circle $x^2 + y^2 + 6x - 4y = 0$ (3 times

Topic III: Parabola

13. Find an equation of parabola having focus F(-3, 1), directrix x = 3
(H.W) (4 times)

14. Find focus, vertex, and directrix of parabola $x^2 - 4x - 8y + 4 = 0$ (H.W)

15. Find an equation of the parabola whose focus is F (-3, 4) and directrix is 3x-4y+5=0 (C.W)

16. Find the focus, vertex and directrix of the parabola $x + 8 - y^2 + 2y = 0$ (H.W)

17. Write an equation of the Parabola with given elements Focus (-3, 1) and Directrix x = 3 (C.W)

Chapter-6 (Examples According to ALP Smart Syllabus)

Example 3: (Page#260) Write equation of two tangents from (2,3) to the circle $x^2 + y^2 = 9$

Sol: Any tangent to the circle is:

$$y = mx + 3\sqrt{1 + m^2}$$

If it passes through (2,3) then

$$3 = 2m + 3\sqrt{1 + m^2}$$

$$\left(3-2m\right)^2=9\left(1+m^2\right)$$

$$9-12m+4m^2=9+9m^2$$

$$5m^2 + 12m = 0$$
 i.e., $m = 0, \frac{-12}{5}$

Inserting these values of m into (1). We have equations of the tangents from (2,3) to the circle as:

For
$$m = 0: y = 0.x + 3\sqrt{1+0}$$
.

Or
$$y = 3$$

For
$$m = \frac{-12}{5}$$
: $y = \frac{-12}{5}x + 3\sqrt{1 + \frac{144}{25}} = \frac{-12}{5}x + \frac{39}{5}$

Ór

pample 2: (Page#277) Find an equation of the parabola whose focus is F(-3,4) and directrix is 3x - 4y + 5 = 0

Let P(x,y) be a point on the parabola. Length of the perpendicular |PM| from P(x,y)øl: to the directrix 3x - 4y + 5 = 0 is

$$|PM| = \frac{|3x-4y+5|}{\sqrt{3^2+(-4)^2}}$$

By definition, |PF| = |PM| or $|PF|^2 = |PM|^2$

Or
$$(x+3)^2 + (y-4)^2 = \frac{(3x-4y+5)^2}{25}$$

Or
$$25(x^2+6x+9+y^2-8y+16) = 9x^2+16y^2+25-24xy+3x-40y$$

Or
$$16x^2 + 24xy + 9y^2 + 120x - 160y + 600 = 0$$

Is an equation of the required parabola.

Example 4: (Page#279) A comet has a parabola orbit with the sum at the focus. When the comet is 100 million km from the sun, the line joining the sun and the comet makes an angle of 60° with the axis of the parabola. How close will the comet get: to the sun?

Let the sun S be the orgin. If the vertex A of the parabola ZM has coordinates (-a,0) Sol: then directrix. Of the parabola is x = -2a, (a>0)

If the comet is at P(x,y) then by definition |PS| = |PM|

i.e.,
$$x^2 + y^2 = (x + 2a)^2$$

 $v^2 = 4ax + 4a^2$ is orbit of the cornet

$$|PS| = \sqrt{x^2 + \dot{y}^2}$$

$$= x + 2a = 100,000,000$$

The comet is closest to the sun when it is at A.

x = PS cos60°

$$|x| = \frac{|PS|}{2} = \frac{x + 2a}{2}$$

Or
$$\frac{x+2a}{2} = \frac{2}{1}$$
 or

Or
$$\frac{x+2a}{2} = \frac{2}{1}$$
 or $\frac{x+2a}{2} = 2$, $(|x| = |-2a| = 2a)$

Or
$$\frac{100,000,000}{2a} = 2$$

Or
$$a = 25,000,000$$

Example 3: (Page#296) Find the eccentricity, the coordinates of the vertices and foci of the asymptotes of the hyperbole.

$$\frac{y^2}{16} - \frac{x^2}{49} = 1.$$

(1)

Also sketch its graph.

The transverse axis of (1) lies along the y-axis. Coordinates of the vertices are Sol: $(0, \pm 4)$

Here a=4, b=7 so that from $c^2=a^2+b^2$, we get

$$C^2 = 16 + 49$$
 or $c = \sqrt{65}$

Foci are:

$$(0,\pm\sqrt{65})$$

Ends of the conjugate axis are $(0,\pm7)$

Eccentricity =
$$\frac{c}{a} = \frac{\sqrt{65}}{4}$$

$$x = \pm 7$$
, $y = \pm 4$

The graph of the curve is as shown.

OBJECTIVES (MCQ'S) OF CHAPTER-7 ACCORDING TO ALP SMART SYLLABUS-2020

unit vector of a Vector V is :

· (4 times)

(Ď)
$$\frac{\nu}{|\nu|^2}$$

The magnitude of vector is also called its:

(3 times) (D) Norm

Unit vector in the direction of $\underline{v} = 2\underline{i} - j$ is: .

(B) Variable

(C) Point

(3 times)

(A)
$$\frac{2i-j}{2}$$

(B)
$$\frac{2\underline{i}-\underline{j}}{\sqrt{2}}$$
 (C) $\frac{2\underline{i}-\underline{j}}{\sqrt{3}}$

(C)
$$\frac{2\underline{i}-\underline{j}}{\sqrt{3}}$$

$$(D) \frac{2\underline{i}-\underline{j}}{\sqrt{5}}$$

Magnitude of the vector $\underline{v} = [3, -4]$

(3 times)

(A) 3

$$P = (a_1, b_1)$$

If
$$P=(a_1,b_1)$$
 $Q=(a_2,b_2)$ then \overline{PQ} is:

(3 times)

(A)
$$(a_1 + a_2)i + (b_1 + b_2)j$$

(B)
$$(a_1 - a_2)\underline{i} + (b_1 - b_2)\underline{j}$$

$$(C) (a_2 - a_1)\underline{i} + (b_2 - b_1)\underline{j}$$

(D)
$$(a_1 + b_1)\underline{i} + (a_2 + b_2)\underline{j}$$

6. If P = (2, 3) and Q = (6, -2) then
$$\overline{PQ}$$
=

(A)
$$4i + 5j$$

(B)
$$-4i + 5j$$

(C)
$$Ai - 5j$$

(C)
$$4\underline{i} - 5\underline{j}$$
 (D) $5\underline{i} - 4\underline{j}$

If
$$\vec{V} = 2\vec{i} + \sqrt{5}\vec{j} + 4k$$
, then $|\vec{V}|$ is equal to.

(a)
$$\sqrt{5}$$

Magnitude of 2i - 3i + k is:

The unit vector of 2i + j is:

(A)
$$2\hat{i} - \hat{j}$$

(B)
$$\frac{2\hat{i}+\hat{j}}{5}$$

(C)
$$\frac{2\hat{i}+\hat{j}}{3}$$

(B)
$$\frac{2\hat{i}+\hat{j}}{5}$$
 (C) $\frac{2\hat{i}+\hat{j}}{3}$ (D) $\frac{2\hat{i}+\hat{j}}{\sqrt{5}}$

A vector with magnitude 1 is called:

A) Null vector

(B) Unit vector

(C) Zero vector

(D) Constant

opic II: Scalar Product of Vector

If the vector $\underline{u} = 2\underline{i} + 4j - 7\underline{k}$ and $\underline{v} = 2\underline{i} + 6\underline{j} - x\underline{k}$ are perpendicular then x = 11.

A) -4

(C) 28

(D) 0

12. If a and b are oppositely directed then a,b equals: (2 times)

A) ab

(B) -ab

(C) ab sin 0

/**13.** The magnitude of dot and cross product of two vector are 1 and 1 respectively. Then angle between vector is:

A) 90°

(B) 60°

(C) 45°

(D) 30°

14.

(5 times)

A) 5

(C) 2

(D) 0

15. If α, β, γ are the direction angles of	of a vector then Costo	$+Cos^2\beta+Cos^2\gamma=$
		(4 times)
(A) 0 (B) 1	(C) 2	(D) 3
16. Projection of $\overline{a} = \underline{i} - \underline{k}$ along $\overline{b} =$	<u>j</u> + <u>k</u> is:,	(3 times)
(n) 1	3	(m) 1
(A) $\frac{-1}{\sqrt{2}}$ (B) $\frac{1}{\sqrt{2}}$	$(c) \frac{1}{\sqrt{2}}$	$(0)\frac{1}{2}$
17. For any two vectors a and b proje	ction of <u>a</u> on <u>b</u> is.	(2 Times)
(a) $\frac{\underline{a}\underline{b}}{a}$ (b) $\frac{\underline{a}\underline{b}}{ b }$ 18. Two non zero vectors a and b are (a) -1 (b) 1	(c) $\frac{\underline{a}\underline{b}}{b}$	(d) $\underline{a}.\underline{b}$
18. Two non zero vectors a and b are	perpendicular if <u>a</u> . <u>b</u> =	4.0.0
(a) -1 (b) 1	(c) 2	(d) 0
19. If $y = 2 \propto i + j - k$, $y = i + \infty i + 4k$		K =
(a) $\frac{1}{3}$ (b) $\frac{2}{3}$	(c) $\frac{4}{3}$	E (b).
20. Which of triples can be direction:	angles of a single vector	or =
(a) 90°, 90°, 45° (b) 0°, 0°, 45°	(c) 45°, 45°, 90°	(d) 30°, 30°, 30°
21. For a vector $\underline{\mathbf{v}} = \mathbf{a} \underline{\mathbf{i}} + \mathbf{b} \underline{\mathbf{j}} + \mathbf{c} \underline{\mathbf{k}}$, pro	jection of y along k is:	
(A) a (B) b	(C) c	(D) a+b+c
22. If the vectors 2i + 4i -7k and 2i + 6	i + xk are perpendicula	ar, then x equals
(A) 5 (B) 4 (C)	(C) -4	(D) 2
23.	(C) 2	(D) 3
76 The small hittories the section (8)	and the second of the first	- Am Alman h
24. The angle between the vectors 2i	+ 3j + K and Zi - j - K !:	s: {2 times}
(A) 30° (B) 45°	(C) 60°	s: (2 times) (D) 90°
(A) 30° (B) 45° 25. The direction cosines of x-axis are	(C) 60°	(D) 90° (2.times)
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1	(C) 60° (C) 1.1.0	(D) 90°
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b	(C) 60° (C) 1,1,0 (c) + c k on x – axis is.	(D) 90° (2.times) (D) 0,0,1
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b	(C) 60° (C) 1.1.0	(D) 90° (2.times)
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Product:	(C) 60° e (C) 1,1,0 o i + c <u>k</u> on x – axis is. (c) c	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2+b^2+c^2}$
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Products 27. The non-zero vectors a and b are	(C) 60° e (C) 1,1,0 o i + c k on x – axis is. (c) c	(D) 90° (2 times) (D) 0,0,1 (d) $\sqrt{a^2+b^2+c^2}$ (2 times)
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Products 27. The non-zero vectors a and b are (A) 1 (B) -1	(C) 60° e (C) 1,1,0 o i + c <u>k</u> on x – axis is. (c) c	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2+b^2+c^2}$ (2 times) (D) ab
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Product 27. The non-zero vectors a and b are (A) 1 (B) -1 28. Commutative law holds in :	(C) 60° (C) 1,1,0 (c) c (c) c (e parallel if $\underline{a} \times \underline{b} =$ (C) 0	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2+b^2+c^2}$ (2 times) (D) ab (4 times)
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector $\mathbf{r} = \mathbf{a} \cdot \mathbf{j} + \mathbf{b}$ (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors \mathbf{a} and \mathbf{b} are (A) 1 (B) -1 28. Commutative law holds in : (A) Vector product	(C) 60° (C) 1,1,0 (c) c (c) c (e parallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2+b^2+c^2}$ (2 times) (D) ab (4 times)
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors a and b are (A) 1 (B) -1 28. Commutative law holds in: (A) Vector product (C) Inner product	(C) 60° (C) 1,1,0 (c) c (c) c (e parallel if $\underline{a} \times \underline{b} =$ (C) 0	(D) 90° (2 times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector $\mathbf{r} = \mathbf{a} \cdot \mathbf{i} + \mathbf{b}$ (a) a (b) b Topic III: Vector Product 27. The non-zero vectors \mathbf{a} and \mathbf{b} are (A) 1 (B) -1 28. Commutative law holds in: (A) Vector product (C) inner product 29. $\mathbf{u} \times \mathbf{v}$ is equal to:	(C) 60° (C) 1,1,0 (c) c (c) c (e parallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors
 (A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors a and b are (A) 1 (B) -1 28. Commutative law holds in: (A) Vector product (C) Inner product (C) Inner product (D) Inner product (E) Inner product (B) Inner product (B) Inner product (C) Inner product (D) Inner product (E) Inner product (E) Inner product 	(C) 60° (C) 1,1,0 (c) $i + c \underline{k}$ on $x - axis$ is. (c) c (e parallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{u}$
 (A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors a and b are (A) 1 (B) -1 28. Commutative law holds in : (A) Vector product (C) inner product (C) inner product (D) inner product (E) inner product <l< th=""><td>(C) 60° (C) 1,1,0 (c) $i + c \underline{k}$ on $x - axis$ is. (c) c reparallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ ent sides are $3i + 4j$ and $a + 4j$</td><td>(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{u}$ and $12i + 9j$ is:</td></l<>	(C) 60° (C) 1,1,0 (c) $i + c \underline{k}$ on $x - axis$ is. (c) c reparallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ ent sides are $3i + 4j$ and $a + 4j$	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{u}$ and $12i + 9j$ is:
 (A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector r = a i + b (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors a and b are (A) 1 (B) -1 28. Commutative law holds in : (A) Vector product (C) inner product (C) inner product (C) inner product (B) u×y is equal to: (A) uv sin θ (B) u×y 30. The area of triangle whose adjacents 	(C) 60° (C) 1,1,0 (c) $i + c \underline{k}$ on $x - axis$ is. (c) c reparallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ ent sides are $3i + 4j$ and $a + 4j$	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{u}$ and $12i + 9j$ is:
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector $\mathbf{r} = \mathbf{a} \mathbf{i} + \mathbf{b}$ (a) a (b) b Topic III: Vector Products 27. The non-zero vectors \underline{a} and \underline{b} are (A) 1 (B) -1 28. Commutative law holds in : (A) Vector product (C) inner product (C) inner product 29. $\underline{u} \times \underline{v}$ is equal to: (A) $uv \sin \theta$ (B) $\underline{u} \times \underline{v}$ 30. The area of triangle whose adjace (A) $\frac{45}{2}$ (B) $\frac{55}{2}$	(C) 60° (C) 1,1,0 (c) $i + c \underline{k}$ on $x - axis$ is. (c) c reparallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ ent sides are $3i + 4j$ and $a + 4j$	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{u}$
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector $\mathbf{r} = \mathbf{a} \mathbf{i} + \mathbf{b}$ (a) a (b) b Topic III: Vector Products 27. The non-zero vectors \underline{a} and \underline{b} are (A) 1 (B) -1 28. Commutative law holds in : (A) Vector product (C) inner product (C) inner product (B) $\underline{u} \times \underline{v}$ is equal to: (A) $uv \sin \theta$ (B) $\underline{u} \times \underline{v}$ 30. The area of triangle whose adjact (A) $\frac{45}{2}$ (B) $\frac{55}{2}$ 31. $j \times k$ is equal to.	(C) 60° (C) 1,1,0 (c) c (e parallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ ent sides are $3i+4j$ and $3i+4j$ an	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{y}$ and $12i + 9j$ is: (D) $\frac{75}{2}$
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector $\mathbf{r} = \mathbf{a} \cdot \mathbf{i} + \mathbf{b}$ (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors \mathbf{a} and \mathbf{b} are (A) 1 (B) -1 28. Commutative law holds in: (A) Vector product (C) Inner product (C) Inner product (B) $\mathbf{u} \times \mathbf{v}$ is equal to: (A) $\mathbf{u} \mathbf{v} \sin \theta$ (B) $\mathbf{u} \times \mathbf{v}$ 30. The area of triangle whose adjact (A) $\frac{45}{2}$ (B) $\frac{55}{2}$ 31. $\mathbf{j} \times \mathbf{k}$ is equal to. (a) \mathbf{i} (b) - \mathbf{i}	(C) 60° (C) 1,1,0 (c) c The parallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ The ent sides are $3i + 4j$ and (C) $\frac{21}{2}$ (c) 1	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{u}$ and $12i + 9j$ is:
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector $\mathbf{r} = \mathbf{a} \cdot \mathbf{i} + \mathbf{b}$ (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors \mathbf{a} and \mathbf{b} are (A) 1 (B) -1 28. Commutative law holds in: (A) Vector product (C) inner product (C) inner product 29. $\mathbf{u} \times \mathbf{v}$ is equal to: (A) $\mathbf{u}\mathbf{v} \sin \theta$ (B) $\mathbf{u} \times \mathbf{v}$ 30. The area of triangle whose adjact (A) $\frac{45}{2}$ (B) $\frac{55}{2}$ 31. $\mathbf{j} \times \mathbf{k}$ is equal to. (a) \mathbf{i} (b) \mathbf{i} 32. Angle between the vectors $\mathbf{i} + \mathbf{i}$	(C) 60° (C) 1,1,0 (c) c (e parallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ ent sides are $3i+4j$ at (C) $\frac{21}{2}$ (c) 1 & $i-j$ is:	(D) 90° (2 times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{y}$ and $12i + 9j$ is: (D) $\frac{75}{2}$ (d) 0
(A) 30° (B) 45° 25. The direction cosines of x-axis are (A) 1,0,0 (B) 1,0,1 26. Projection of the vector $\mathbf{r} = \mathbf{a} \cdot \mathbf{i} + \mathbf{b}$ (a) a (b) b Topic III: Vector Product: 27. The non-zero vectors \mathbf{a} and \mathbf{b} are (A) 1 (B) -1 28. Commutative law holds in: (A) Vector product (C) Inner product (C) Inner product (B) $\mathbf{u} \times \mathbf{v}$ is equal to: (A) $\mathbf{u} \mathbf{v} \sin \theta$ (B) $\mathbf{u} \times \mathbf{v}$ 30. The area of triangle whose adjact (A) $\frac{45}{2}$ (B) $\frac{55}{2}$ 31. $\mathbf{j} \times \mathbf{k}$ is equal to. (a) \mathbf{i} (b) - \mathbf{i}	(C) 60° (C) 1,1,0 (c) c The parallel if $\underline{a} \times \underline{b} =$ (C) 0 (B) Cross product in (D) None of these (C) $uv \cos \theta$ The ent sides are $3i + 4j$ and (C) $\frac{21}{2}$ (c) 1	(D) 90° (2.times) (D) 0,0,1 (d) $\sqrt{a^2 + b^2 + c^2}$ (2 times) (D) ab (4 times) (three vectors (6 times) (D) $-\underline{y} \times \underline{y}$ and $12i + 9j$ is: (D) $\frac{75}{2}$

53-Cose = (C) $\hat{a}.\times\hat{b}$ (A) (B) $|\overline{a} \times \overline{b}|$ A unit vector perpendicular to the vectors $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ is: (A), axb (C)-1 (A) 1 (B) 2The angle between the vectors $2\hat{i} + 3\hat{j} + \hat{k}$ and $2i + -\hat{j} - \hat{k}$ is: 56-(D) 90° $(C) 60^{\circ}$ $(8)45^{\circ}$ (A) 30° If the vectors $2 \propto \hat{i} + \hat{j} - \hat{k}$ and $\hat{i} + \propto \hat{j}_{-} + 4\hat{k}$ are perpendicular to each - 57-(2 times) other, then value of "ac " is: (A) 3 58-Length of the vector 2i - j - 2k is: (A) 2· (B) 4 (C) 3 (2 times) 59-The direction cosines of y – axis are: (D) (0, 0, 0) (A) (0, 1, 0) (B) (1, 0, 0) (C) (0, 0, 1) The non-zero vector 'a' and 'b' are parallel if $\mathbf{a} \times \mathbf{b} = \mathbf{i}$ (C) -1(A) 0 . (B) 1If any two vectors of scalar triple product are equal then its value is: 61-(C) -1If u = v, then $u \cdot (v \times w) =$ (d) Cannot be calculated (c) - 1(a) O (b) 1 63. Direction cosines of z - axis are: (d) [0,0,1] (c) [0,1,0] (b) [1,1,1,] (a) [1,0,0]The triple scalar product of vectors, calculates the volume of: (d) Parallelepiped (c) Tetrahedron (b) Parallelogram (a) Triangle 65. The position vector of any point in xy-plane is: (d) xi + zk(a) $x\underline{i} + y\underline{j} + z\underline{k}$ (b) $y\underline{j} + z\underline{k}$ $\{c\}$ xi + yjA force \vec{F} is applied at an angle of measure $\frac{\pi}{2}$ with the displacement vector r. The work done will be (d) $\vec{F}\vec{F}$ (c) Zero (a) Fxr (b) $F \times \tilde{F}$ If $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, then $\overrightarrow{AB} =$ (c) $\vec{b} - \vec{a}$ Angle between the vectors $4\underline{i}+2\underline{j}-\underline{k}$ and $-\underline{i}+\underline{j}-2\underline{k}$ is (d) 60° 30° (a) ANSWERS TO THE MULTIPLE CHIOCE QUESTIONS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	d	d	С	С	С	b	С	d	b	.a	Ь	С	d	Ь
16	17	18	19	20	-21	22	23	24	25	26	-27	28	29	30
а	b	d	С	С	С	b	b	d	a.	а	С	С	d	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
C	C	а	d	а	C	d	b	b	d	а	a	b	а	С

4			٠.					_						
است	47	48	49	50	51	52	53	54	55	56	57	58	59	60
46		C	а	Ь	а	d	а	Ъ	а	ď	· d	C	a	3
0	62	63	64	65	-66	67	68							h-,
61	-	d	d	C.	ć	С	С						1	
10													•	-

ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Vector in Space:

Find direction of cosines of
$$V = i - j - k$$

(H.W)

(2 times)

So
$$|V| = \sqrt{(1)^2 + (-1)^2 + (-1)} = \sqrt{1 + 1 + 1} = \sqrt{3}$$

Therefore direction cosines of \underline{V} are $\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$

2. If $\overline{AB} = \overline{CD}$, Find the coordinates of the point A when B(1, 2), C(-2, 5) and D(4, 11) are given. (H.W)

Sol: P.V of B =
$$i+2j$$

P.V of
$$C = -2i + 5j$$

P.V of D =
$$4i + 11j$$

We suppose that (a, b) be coordinates of point A

. Then P.V of A = ai + bj

Give
$$\overrightarrow{AB} = \overrightarrow{CD}$$

i.e P.V of B - P.V of A = P.V of D - P.V of C

$$\Rightarrow i+2j-(ai+bj)=(4i+11j)-(-2i+5j)$$

$$\Rightarrow \underline{i} + 2\underline{j} - a\underline{i} - b\underline{j}) = 4\underline{i} + 11\underline{j} + 2\underline{i} - 5\underline{j}$$

$$\Rightarrow$$
 $(1-a)i+(2-b)j=6i+6j$

$$\Rightarrow$$
 1-a = 6 and 2-b = 6.

 \Rightarrow .a = -5 and b = -4

i.e (-5, -4) are required coordinates of A.

3. If
$$\vec{v} = 3i - 2j + 2k$$
, $\vec{w} = 5i - j + 3k$ find $|3\vec{v} + \vec{w}|$.

(C.W)

Sol:
$$3\vec{v} + \vec{w} = 3(3i - 2j + 2k + 5i - j + 3k)$$

$$3\vec{v} + \vec{w} = 9i - 6j + 6k + 5i - j + 3k$$

$$3\vec{v} + \vec{w} = 14i - 7j + 9k$$

Taking magnitude on both sides

$$|3\vec{v} + \vec{w}| = \sqrt{(14)^2 + (-7)^2 + (9)^2}$$

$$|3\vec{v} + \vec{v}| = \sqrt{196 + 49 + 81}$$

$$|3\vec{v} + \vec{w}| = \sqrt{326}$$

4. Find a vector from the point A to the origin where $\overline{AB} = 4\underline{i} - 2\underline{j}$ and B is the point (-2,5). (C.W) (3 times)

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\overrightarrow{OA} = \overrightarrow{OB} - \overrightarrow{AB}$$

$$\overrightarrow{OA} = -2\hat{i} + 5\hat{j} - 4\hat{i} + 2\hat{j}$$

$$\overrightarrow{OA} = -6\hat{i} + 7\hat{j}$$

$$\overrightarrow{OA} = -6\hat{i} + 7\hat{j}$$

$$\overrightarrow{AO} = -6\hat{i} + 7\hat{j}$$

$$\overrightarrow{AO} = 6\hat{i} - 7\hat{j}$$

150

5. If o is the origin and $\overline{OP} = \overline{AB}$, find the point P when A and B are (-3 , 7) and (1 , 0) respectively? (C.W) (2 times)

Sol: Given points are A = (-3, 7), B = (1, 0) Suppose Coordinates of P be P= (x, y) Now $\overline{op} = (x-0) \underline{i} + (y-0) \underline{j}$

=
$$x\underline{i} + y\underline{j}$$

And $\overline{AB} = (1+3)\underline{i} + (0-7)\underline{j}$
= $4\underline{i} - 7\underline{j}$

As given
$$\overrightarrow{OP} = \overrightarrow{AB}$$

 $\times \underline{i} + 4\underline{j} = 4\underline{i} - 7\underline{j}$

By equality of vectors

$$x = 4$$
, $y = -7$
So $P = (x, y) = (4, -7)$

6. Find a vector whose magnitude is 2 and is parallel to vector $\underline{i} + \underline{j} + \underline{k}$

(H.W) (2 times)

Sol: Let
$$\underline{a} = -\underline{i} + \underline{j} + \underline{k}$$

Then $|\underline{a}| = \sqrt{(-1)^2 + (1)^2 + (1)^2}$

$$= \sqrt{1+1+1} = \sqrt{3}$$

If \underline{u} is unit vector parallel to \underline{a} .

Then
$$\frac{\underline{u}}{|\underline{u}|} = \frac{\underline{a}}{|\underline{a}|}$$

$$\frac{\underline{u}}{2} = \frac{-\underline{i} + \underline{j} + \underline{k}}{\sqrt{3}}$$

$$\underline{u} = \frac{2}{\sqrt{3}} (-\underline{i} + \underline{j} + \underline{k})$$

$$\underline{u} = -\frac{2}{\sqrt{3}} \underline{i} + \frac{2}{\sqrt{3}} \underline{j} + \frac{2}{\sqrt{3}} \underline{k}$$

7. Find a unit vector in the direction $\underline{V} = \frac{1}{2} \underline{I} + \frac{\sqrt{3}}{2} \underline{J}$. (H.W) (3 times)

Sol: Given vector is
$$\underline{v} = \frac{1}{2} \underline{i} + \frac{\sqrt{3}}{2} \underline{j}$$

Then $|\underline{V}| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$
 $= \sqrt{\frac{1}{4} + \frac{3}{4}} = \frac{1+3}{4} = \frac{4}{4}$

If \underline{u} is the unit vector in the direction of \underline{v} then

Find the direction cosines for \overline{PQ} , where P (2, 1, 5), Q(1, 3, 1) (C.W) Given points are $P = \{2, 1, 5\}, Q = \{1, 3, 1\}$ Then $\overline{PQ} = (1-2)\underline{i} + (3-1)j + (1-5)\underline{k}$ $\overrightarrow{PO} = -i + 2j - 4k$ $|\overrightarrow{PQ}| = \sqrt{(-1)^2 + (2)^2 + (-4)^2}$ $=\sqrt{1+4+16}$ $|\overline{PQ}| = \sqrt{21}$ Hence the direction cosines of \overrightarrow{PQ} are $\left(\frac{-1}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{4}{\sqrt{21}}\right)$ Find unit vector in the direction of vector $\vec{V} = 2i - j$. Given vector is $\underline{v} = 2\underline{i} - j$ sol: Then $|\underline{v}| = \sqrt{(2)^2 + (-1)^2} = \sqrt{4+1}$ If \underline{u} is the unit vector in the direction of \overrightarrow{V} Then $\underline{u} = \frac{\underline{v}}{|u|}$ $\underline{u} = \frac{2\underline{l} - 1}{\sqrt{5}}$ Write the vector \overrightarrow{PQ} in the form $\overrightarrow{xi} + \overrightarrow{yj}$ where P(0, 5) and Q(-1, -6) (C.W) 10. Given Points are P = (0, 5), Q = (-1, -6)Sol: Then $\overline{PQ} = (-1 - 0) \underline{i} + (-6 - 5) \underline{j}$ $\overline{PQ} = -\underline{i} - 11j$ Find a so that $|a\underline{i} + (a+1)j + 2\underline{k}| = 3$ (6 times) 11. $\left|a\underline{i}+(a+1)\underline{j}+2\underline{k}\right|=3$ Given that Sol: $\sqrt{\alpha^2 + (\alpha + 1)^2 + (2)^2} = 3$ $\sqrt{\alpha^2 + \alpha^2 + 2 \alpha + 1 + 4} = 3$ $\sqrt{2} \propto^2 + 2 \propto +5 = 3$ Squaring both sides $2\alpha^2 + 2\alpha + 5 = 9$ $2\alpha^2 + 2\alpha + 5 - 9 = 0$ $2\alpha^2 + 2\alpha - 4 = 0$ $\alpha^2 + \alpha - 2 = 0$ $\alpha^2 + 2\alpha - \alpha - 2 = 0$ $\propto (\propto +2) -1 (\propto +2) = 0$ $(\infty - 1)(\alpha + 2) = 0$ $\alpha = 1. -2$ Scanned with CamScanner

$$\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$$

$$|\underline{v}| = \sqrt{(1)^2 + (-2)^2 + (3)^3}$$

$$= \sqrt{1 + 4 + 9}$$

$$|\underline{v}| = \sqrt{14}$$

Now unit vector in the direction of y

$$\hat{\mathbf{y}} = \frac{\underline{\mathbf{y}}}{|\underline{\mathbf{y}}|}$$

$$\hat{\mathbf{y}} = \frac{\underline{i - 2j + 3\underline{k}}}{\sqrt{14}}$$

Hence required vector of length 5 in the direction opposite to the direction of $y = -5(\hat{v})$

$$= -5 \left[\frac{-5}{\sqrt{14}} \underline{i} + \frac{10}{\sqrt{14}} \underline{j} - \frac{15}{\sqrt{14}} \underline{k} \right]$$

13. Find a unit vector in the direction of the vector $\underline{v} = 2\underline{i} + 6\underline{j}$ (C.W) (2 times) Sol Given

$$\underline{y} = 2\underline{i} + 6\underline{j}$$

$$|\underline{y}| = \sqrt{(2)^2 + (6)^2}$$

$$= \sqrt{4 + 36}$$

$$= \sqrt{40}$$

$$= \sqrt{4 \times 10}$$

$$|\underline{y}| = 2\sqrt{10}$$

A unit vector in the direction of vector

$$\hat{\mathbf{v}} = \frac{\underline{\mathbf{v}}}{|\underline{\mathbf{v}}|}$$

$$\hat{\mathbf{v}} = \frac{2\underline{\mathbf{i}} + 6\underline{\mathbf{j}}}{2\sqrt{10}}$$

$$= \frac{2}{2\sqrt{10}}\underline{\mathbf{i}} + \frac{6}{2\sqrt{10}}\underline{\mathbf{j}}$$

$$\hat{\mathbf{v}} = \frac{1}{\sqrt{10}}\underline{\mathbf{i}} + \frac{3}{\sqrt{10}}\underline{\mathbf{j}}$$

14. Find the direction cosines for the vector $\underline{v} = 3\underline{i} - \underline{j} + 2\underline{k}$ (H.W) (2 times) Sol Given

$$\underline{v} = 3\underline{i} - \underline{j} + 2\underline{k}$$

$$|\underline{v}| = \sqrt{(3)^2 + (-1)^2 + (2)^2}$$

$$= \sqrt{9 + 1 + 4}$$

$$|\underline{v}| = \sqrt{14}$$
Now

$$\hat{\mathbf{v}} = \frac{\underline{\mathbf{v}}}{|\underline{\mathbf{v}}|} = \frac{3\underline{i} - \underline{f} + 2\underline{k}}{\sqrt{14}}$$

$$\hat{\mathbf{v}} = \frac{3}{\sqrt{14}}\underline{i} - \frac{1}{\sqrt{14}}\underline{j} + \frac{2}{\sqrt{14}}\underline{k}$$

Direction cosines of \underline{y} are

$$\left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{14}\right)$$

Topic II: Scalar Product of Vector:

15. Find a vector whose magnitude is 4 and is parallel to 2i-3j+6k

(H.W) (5 times)

Sol: Let $\underline{v} = 2\underline{i} - 3\underline{j} + 6\underline{k}$

We further suppose that H is a vector whose magnitude is 4 and is parallel to

 $\underline{\underline{v}}$. As unit vector of $\underline{\underline{u}} = \frac{\underline{\underline{u}}}{|\underline{\underline{v}}|}$

Also
$$|\underline{y}| = \sqrt{(2)^2(-3)^2 + (6)^2} = \sqrt{4+9+36} = \sqrt{49} = 7$$

Therefore, unit vector of $\underline{u} = \frac{2\underline{i} - 3\underline{j} + 6\underline{k}}{7} = \frac{2}{7}\underline{i} - \frac{3}{7}\underline{j} + \frac{6}{7}\underline{k}$

Therefore, $\underline{u} = |\underline{u}| \times \text{unit vector of } \underline{u}$

$$= 4\left(\frac{2}{7}\underline{i} - \frac{3}{7}\underline{j} + \frac{6}{7}\underline{k}\right) = \frac{8}{7}\underline{i} - \frac{12}{7}\underline{j} + \frac{24}{7}\underline{k}$$

16. Find \propto so that vectors $\underline{u} = \propto \underline{t} + \underline{2} \propto \underline{j} - \underline{k}$, $\underline{v} = \underline{t} + \propto \underline{j} + 3\underline{k}$ are perpendicular. (H.W) (4 times)

Sol: Given vectors are $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$

Then
$$\underline{u} \cdot \underline{v} = (\alpha \cdot \underline{i} + 2\alpha \cdot \underline{j} - \underline{k}) \cdot (\underline{i} + \alpha \cdot \underline{j} + 3\underline{k})$$

$$= \propto (1) + 2 \propto (\infty) + (-1) (3)$$

$$= \infty + 2\alpha^2 - 3$$

$$u.v = 2\alpha^2 + \alpha - 3$$

As <u>u</u> & <u>v</u> are perpendicular

So.
$$u.v=0$$

$$2\alpha^2 + \alpha - 3 = 0$$

$$2\alpha^2 + 3\alpha - 2\alpha - 3 = 0$$

$$\alpha (2\alpha + 3) - 1(2\alpha + 3) = 0$$

$$(2 \times + 3) (\times - 1) = 0$$

$$\alpha = -3/2, 1$$

17. Show that vectors $\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$ and $\underline{v} = -\underline{i} + \underline{j} + \underline{k}$ are perpendicular to each other. (C.W) (2 times)

Sol Let

$$\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$$
 , $\underline{v} = -\underline{i} + \underline{j} + \underline{k}$

Are perpendicular to each other

If
$$\underline{u} \cdot \underline{v} = 0$$

Now

$$\underline{u} \cdot \underline{v} = (i+2\underline{j}-\underline{k}). (-i+\underline{j}+\underline{k})$$

$$= 1(-1)+2(1)+(-1)(1)$$

$$= -1+2-1$$

$$= -2+2$$

$$= 0$$
Hence $\underline{u} \cdot \underline{v} = 0$ so \underline{u} and \underline{v} are perpendicular to each other

18. If \underline{v} is a vector for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{k} = 0$ and find \underline{v} (C.W) (2 times)

18. If \underline{v} is a vector for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{k} = 0$ and find \underline{v} (C.W) (2 times)

18. If \underline{v} is a vector for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{k} = 0$ and find \underline{v} (C.W) (2 times)

19. If $\underline{v} = 0$ and find $\underline{v} = 0$ (C.W) (2 times)

19. If $\underline{v} = 0$ and find $\underline{v} = 0$ (C.W) (2 times)

19. If $\underline{v} = 0$ and find $\underline{v} = 0$ and f

 $\Rightarrow \underline{a} \times \underline{b} = -\underline{a} \times \underline{c}$

19. Prove that
$$\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (\underline{c} + \underline{a}) + \underline{c} \times (\underline{a} + \underline{b}) = \underline{0}$$
 (3 times)

Soli: L.H.S = $\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (\underline{c} + \underline{a}) + \underline{c} \times (\underline{a} + \underline{b})$ ($\underline{a} \times \underline{b}$) + $(\underline{a} \times \underline{c}) + (\underline{b} \times \underline{c}) + (\underline{b} \times \underline{a}) + (\underline{c} \times \underline{a}) + (\underline{c} \times \underline{b})$ We know that $\underline{a} \times \underline{b} \neq \underline{b} \times \underline{a}$

But $\underline{a} \times \underline{b} = -(\underline{b} \times \underline{a})$ ($\underline{a} \times \underline{b}$) + $(\underline{a} \times \underline{c}) + (\underline{b} \times \underline{c}) - (\underline{a} \times \underline{b}) - (\underline{a} \times \underline{c}) - (\underline{b} \times \underline{c}) = 0 = R$. H.S

20. If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ (C.W) (5 times)

Soli Given

Since $\underline{a} + \underline{b} + \underline{c} = 0$

Taking cross – product with \underline{a}

$$\underline{a} \times (\underline{a} + \underline{b} + \underline{c}) = \underline{a} \times 0$$

$$\underline{a} \times \underline{a} + \underline{a} \times \underline{b} + \underline{a} \times \underline{c} = 0$$

$$\underline{a} \times \underline{a} + \underline{a} \times \underline{b} + \underline{a} \times \underline{c} = 0$$

$$\underline{a} \times \underline{a} + \underline{a} \times \underline{b} + \underline{a} \times \underline{c} = 0$$

∵-<u>a</u>×<u>c</u>=<u>c</u>×<u>a</u>

$$\underline{a} \times \underline{b} = \underline{c} \times \underline{a}$$
 (1).

Also taking cross – product with \underline{b}

$$\underline{b} \times (\underline{a} + \underline{b} + \underline{c}) = \underline{b} \times 0$$

$$\underline{b} \times \underline{a} + \underline{b} \times \underline{b} + \underline{b} \times \underline{c} = 0$$

$$\underline{b} \times \underline{a} + 0 + \underline{b} \times \underline{c} = 0$$

$$\underline{b} \times \underline{a} + 0 + \underline{b} \times \underline{c} = 0$$

$$\underline{b} \times \underline{c} = -\underline{b} \times \underline{a}$$

$$\underline{b} \times \underline{c} = \underline{a} \times \underline{b}$$

$$\underline{b} \times \underline{c} = \underline{a} \times \underline{b}$$

$$\underline{b} \times \underline{c} = \underline{a} \times \underline{b}$$
(2)

From (1) and (2)

Topic IV: Application of Vector:

21. Prove that the vectors i-2j+3k, -2i+3j-4k and i-3j+5k are coplanar.

(H.W) (3 times)

Ans.

sol: vectors are coplanar

 $a \times b = b \times c = c \times a$

Now.

L.H.S=
$$\begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0$$

$$=1(15-12)+2(-10+4)+3(6-3)$$

$$=3-12+9=12-2=0$$

Hence det = 0, So vectrors are coplanar.

22. A force F= 7j+4j-3k is applied at P (1,-2,3). Find its moment about the the point Q (2,1,1). (C.W)

Sol: here F= 7i+4j-3k

$$\vec{r} = \overrightarrow{QP}$$

 $= (1-2)i+(-2-1)j+(3-1)k$
 $\vec{r} = -i-3j+2k$
Moment = $\vec{r} \times \vec{f}$
 $\begin{vmatrix} i & j & k \\ -1 & -3 & 2 \\ 7 & 4 & -3 \end{vmatrix}$
 $= \underline{i}(9-8)-j(3-14)+\underline{k}(-4+21)$

$$=\underline{i}+11\underline{j}+17\underline{k}$$

23. Find α if $\underline{l} - \underline{l} + \underline{k}$, $1 - 2\underline{j} - 3\underline{k}$ and $3\underline{l} - a\underline{j} + 5\underline{k}$ are coplanar. (C.W) (5 times)

Sol: Suppose
$$\underline{u} = \underline{i} - \underline{j} + \underline{k}$$

 $\underline{v} = \underline{i} - 2\underline{j} - 3\underline{k}$
 $\underline{w} = 3\underline{i} - \alpha \underline{j} - 5\underline{k}$

As u, v & w are coplanar

So
$$\begin{vmatrix} 1 & -1 & 1 \\ 1 & -2 & -3 \\ 3 & -\alpha & 5 \end{vmatrix} = 0$$
Expanding from R₁

$$1(-10 - 3 \propto) + 1 (5 + 9) + 1 (- \propto + 6) = 0$$

$$-10 - 3 + 14 - + 6 = 0$$

$$-4 \times + 10 = 0$$

$$0\zeta \neq \frac{10}{4} = \frac{3}{2}$$

A force $\underline{F} = 4\underline{i} - 3\underline{k}$ passes through the point A(2, -2, 5). Find moment of F 24. about the point B(1, -3, 1).

Sol: Given force is $\underline{F} = 4i - 3k$

Point of application = A(2, -2, 5)

. Point of rotation = B(1, -3, 1)

Then
$$\underline{r} = \overrightarrow{BA}$$

$$\underline{r} = (2-1)\underline{i} + (-2+3)\underline{j} + (5-1)\underline{k}$$

$$\underline{r} = \underline{i} + \underline{j} + 4\underline{k}$$

Then moment of \tilde{F} about B is

$$\underline{M} = \underline{r} \times \underline{F}$$

$$\begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 1 & 1 & 4 \\ 4 & 0 & -3 \end{vmatrix}$$

$$= (-3 - 0) \underline{i} - (-3 - 16) \underline{j} + (0 - 4) \underline{k}$$

$$\underline{M} = -3\underline{i} + 19\underline{j} - 4\underline{k}$$

Prove that vectors $\mathbf{i} = 2\mathbf{j} + 3\mathbf{k}$, $-2\mathbf{i} + 3\mathbf{j} = 4\mathbf{k}$ and $\mathbf{i} = 3\mathbf{j} + 5\mathbf{k}$ are coplaner. 25.

(C.W) (5 times)

Sol: Given vectors are
$$\underline{u} = \underline{i} - 2\underline{j} + 3\underline{k}$$
, $\underline{v} = -2\underline{j} + 3\underline{j} - 4\underline{k}$ and $\underline{w} = \underline{i} - 3\underline{j} + 5\underline{k}$
If \underline{u} , \underline{v} & \underline{w} are coplanar

then

$$\begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0$$

Hence u, v & w are coplanar

Year Syllabus-2020

Find the value of ' α ', so that the vectors $\alpha = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3k}{2}$ and $\frac{2k}{2} + \frac{1}{2} - \frac{2k}{2}$ are coplanar. (C.W) (4 times)

$$\begin{array}{ll}
\text{Let} \\
\underline{u} = \alpha \underline{l} + \underline{j} + 0\underline{k} \\
\underline{v} = \underline{l} + \underline{j} + 3\underline{k} \\
\underline{w} = 2\underline{i} + \underline{j} - 2\underline{k}
\end{array}$$

As vectors are coplanar.

If
$$\begin{vmatrix} \alpha & 1 & 0 \\ 1 & 1 & 3 \\ 2 & 1 & -2 \end{vmatrix} = 0$$

$$\alpha(-2-3)-1(-2-6)+0(1-2)=0$$

$$-5\alpha+8+0=0$$

$$-5\alpha+8=0$$

$$8=5\alpha$$

$$\alpha=\frac{8}{5}$$
Ans.

27. Find a vector perpendicular to each of the vectors $\underline{a} = 2\underline{i} - \underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} + 2\underline{j} - \underline{k}$ (C.W) (2 times)

Sol: Let
$$\underline{a} = 2\underline{i} + \underline{j} + \underline{k}$$

 $\underline{b} = 4\underline{i} + 2\underline{j} - \underline{k}$

Now

$$\underline{a} \times \underline{b} = \begin{vmatrix} i & j & k \\ 2 & -1 & 1 \\ 4 & 2 & -1 \end{vmatrix}$$

$$\underline{a} \times \underline{b} = \underline{i}(1-2) - \underline{j}(-2-4) + \underline{k}(4+4)$$

$$= -\underline{i} + 6\underline{j} + 8\underline{k}$$

Now Verification:

$$\underline{a} \cdot \underline{a} \times \underline{b} = (2\underline{i} - \underline{j} + \underline{k}) \cdot (-\underline{i} + 6\underline{j} + 8\underline{k})$$

$$= 2 (-1) + (-1)(6) + (1) \cdot 8$$

$$= -2 - 6 + 6$$

$$= 0$$
And $\underline{b} \cdot \underline{a} \times \underline{b} = (4\underline{i} + 2\underline{j} - \underline{k}) \cdot (-\underline{i} + 6\underline{j} + 8\underline{k})$

$$= 4(-1) + 2(6) + (-1) \cdot 8$$

$$= -4 + 12 - 8$$

$$= -12 + 12$$

$$= 0$$

Hence $\underline{a} \times \underline{b}$ is perpendicular to both the vectors \underline{a} and \underline{b}

28. Find the direction cosines of $\underline{v} = 6\underline{i} - 2\underline{j} + \underline{k}$ (H.W) (2 times)

Sol:
$$\underline{v} = 6\underline{i} - 2\underline{j} + \underline{k}$$

Now
$$|\underline{v}| = \sqrt{(6)^2 + (-2)^2 + (1)^2}$$

130 111111

$$|y| = \sqrt{36 + 4 + 1} = \sqrt{41}$$

We know that

$$\hat{v} = \frac{\underline{v}}{|\underline{v}|} = \frac{6\underline{i} - 2\underline{j} + \underline{k}}{\sqrt{41}}$$

$$\hat{v} = \frac{6}{\sqrt{41}} \underline{i} - \frac{2}{\sqrt{41}} \underline{j} + \frac{1}{\sqrt{41}} \underline{k}$$

Hence Direction cosines of y are-

$$\left(\frac{6}{\sqrt{41}}, \frac{-2}{\sqrt{41}}, \frac{1}{\sqrt{41}}\right)$$

29. Find magnitude of the vector \underline{y} and write the direction cosines of \underline{y} where

$$\underline{v} = 2\underline{i} + 3\underline{j} + 4\underline{k}$$

Sol: Given y=2i+3j+4k

$$|\underline{y}| = \sqrt{(2)^2 + (3)^2 + (4)^2} = \sqrt{4 + 9 + 16}$$

$$v = \sqrt{29}$$

We know that

$$\hat{v} = \frac{\underline{v}}{|\underline{v}|}$$

$$= \frac{2\underline{i} + 3\underline{j} + 4\underline{k}}{\sqrt{29}}$$

$$= \frac{2}{\sqrt{29}}\underline{i} + \frac{3}{\sqrt{29}}\underline{j} + \frac{4}{\sqrt{29}}\underline{k}$$

Hence direction cosines of \underline{y} are

$$\left(\frac{2}{\sqrt{29}}, \frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}\right)$$

30. If \underline{v} is a vector for which $\underline{v}\underline{i} = 0$, $\underline{v}\underline{j} = 0$, $\underline{v}\underline{k} = 0$ find \underline{v} .

Sol: Let
$$\underline{y} = x\underline{i} + y\underline{j} + z\underline{k} \rightarrow (i)$$

Given $\underline{v}\underline{i} = 0$

$$\Rightarrow (x\underline{i} + y\underline{j} + z\underline{k})\underline{i} = 0$$

$$\Rightarrow (x\underline{i} + y\underline{j} + z\underline{k}) \cdot (\underline{i} + 0\underline{j} + 0\underline{k}) = 0$$

$$\Rightarrow (x)(1)+(y)(0)+z(0)=0$$

$$\Rightarrow x+0+0=0$$

$$\Rightarrow x = 0$$

Similarly from $\underline{v}.j=0$ and $\underline{v}.\underline{k}=0$

$$\Rightarrow y=0 \Rightarrow z=0$$

putting in (i) we get .

$$\underline{v} = 0\underline{i} + 0\underline{j} + 0\underline{k} = \underline{0}$$
 (Null Vector)

31. If
$$a+b+c=0$$
 then prove that $a\times b=b\times c=c\times a$ (C.W)

Sol: Given $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

$$\Rightarrow \vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \times \vec{0}$$

$$\vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0$$

$$0 + \vec{a} \times \vec{b} - \vec{c} \times \vec{a} = 0$$

$$\vec{a} \times \vec{b} = \vec{c} \times \vec{a} = 0 \rightarrow (1)$$

taking cross product with \bar{b}

$$\vec{b} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{b} \times \vec{c}$$

$$\vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} = 0$$

$$\vec{b} \times \vec{a} + 0 + \vec{b} \times \vec{c} = 0$$

$$-\vec{a}\times\vec{b}+\vec{b}\times\vec{c}=0$$

$$\Rightarrow \vec{a} \times \vec{b} = \vec{b} \times \vec{c} \rightarrow (i)$$

From (i) and (ii) we get

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$

Hence proved.

32. Find a unit vector in the direction of
$$\vec{v} = \vec{i} + 2\vec{j} - \vec{k}$$

Then $|V| = |\underline{i} + 2\underline{j} - \underline{k}|$

$$|\underline{V}| = \sqrt{(1)^2 + (+2)^2 + (-1)^2}$$

$$|V| = \sqrt{1+4+1} = \sqrt{6}$$

Now

Unit vector in the direction of given vector $V = \frac{-\underline{i} + 2\underline{j} - \underline{k}}{\sqrt{6}}$

Find the vector from point A to the origion where $\overline{AB} = 4i - 2j$ and B is the

 $AB = \overline{OB} - \overline{OA}$

$$\Rightarrow 4\underline{i} - 2\underline{j} = -2\underline{i} + 5\underline{j} - \overline{OA}$$

$$\vec{OA} = -2i + 5j - 4i + 2j$$

$$OA = -6i + 7j$$

Now for required vector from A to origin.

$$-A\vec{O}=-6i+7j$$

$$\Rightarrow A\overline{O} = 6\underline{i} - 7\underline{j}$$

LONG QUESTIONS OF CHAPTER-7 ACCORDING TO ALP SMART SYLLABUS-2020

Topic I: Vector in Space:

- 1. Find a vector of length 5 in the direction opposite that of v = i 2j + 3k (H.W)
- 2. Find a vector whose magnitude is 4 and parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$ (H.W)
- 3. Find the vector from the point A to the origin where $\overline{AB} = 4i-2j$ and B is the point (-2, 5) (C.W)

Topic II: Scalar Product of Vector:

4. Prove by vector method that $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ (C.W)

(2 tiemes)

- 5. Prove that in triangle ABC, $c^2 = a^2 + b^2 2ab \cos C$ (C.W)
- 6. Prove that in any triangle ABC by vector method $a^2 = b^2 + c^2 2bc \cos A$. (C.W)

Topic III: Vector Product:

7. Prove that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ by vector method.

(H.W) (4 times)

8. If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ (C.W) (4 times)

Topic IV: Application of Vector:

9. Prove that the vectors $\underline{i}-2j+3\underline{k}$, $-2\underline{i}+3j-4\underline{k}$ and $\underline{i}-3j+5\underline{k}$ are coplanar.

(H.W) (2 times)

- 10. A force of magnitude '6' units acting parallel to the 2i-2j+k displaces, the 'point of application from (1, 2, 3) to (5, 3, 7). Find the work done. (H.W)
- 11. Find volume of tetrahedron with the vertices (0, 1, 2), (3, 2, 1), (1, 2, 1) and (5, 5, 6). (H.W) (3 times)
- 12. Prove that in any triangle ABC $b^2 = c^2 + a^2 2ca \cos \beta$ (H.W)
- 13. Find the value of α so that $\alpha i + j$, i + j + 3k and 2i + j 2k are coplanar.
- 14. Find the constant a such that the vectors are coplanar $\vec{i} \vec{j} + \vec{k}$, $\vec{i} 2\vec{j} 3\vec{k}$ and $3\vec{i} a\vec{j} + 5\vec{k}$. (H.W)
- 15. Find volume of the tetrahedron whose vertices are (H.W) (5 times) A(2,1,8) , B (3, 2, 9) , C (2, 1, 4) , D (3, 3, 10)

Chapter-7 (Examples According to ALP Smart Syllabus

Example 1: (Page#361) Find the volume of the parallelepiped determined by

$$\underline{u} = \underline{i} + 2\underline{j} - \underline{k}, \ \underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}, \ \underline{w} = \underline{i} - 7\underline{j} - 4\underline{k}$$

Sol: Volume of the parallelepiped =
$$\underline{u}.\underline{v} \times \underline{w} = \begin{vmatrix} 1 & 2 & -1 \\ 1 & -2 & 3 \\ 1 & -7 & -4 \end{vmatrix}$$

Volume =
$$1(8+21) - 2(-4-3) - 1(7+2) = 29 + 14 + 5 = 48$$

BRIGHT FUTURE ACADEMY

The Following Educational Materials Are Available at Reasonable Price

Class 6th To Master Degree
Guess Papers, Past Papers & Notes
Are Available

10th To B.A Allama Iqbal Open University
Hand Written & MS Word Typed Assignments
Are Available

Following Courses Material Are Also Available

Private & Government Jobs Test Preparation Material Available

Contact Us

0331-7000996

0321-5056077