Tracking Everything Everywhere All at Once

Qianqian Wang^{1,2} Yen-Yu Chang¹ Ruojin Cai¹ Zhengqi Li² Bharath Hariharan¹ Aleksander Holynski^{2,3} Noah Snavely^{1,2}

¹Cornell University ²Google Research ³UC Berkeley

背景

• 运动估计的重要性

• 目前的技术挑战:长序列跟踪、遮挡、时间一致性

本文的方法

- 表示视频为3D体积,定义网络F映射坐标到密度和颜色
- 密度反映规范空间信息,颜色用于损失约束

本文的方法

关键技术

- 3D双射
 - 定义双射映射,帧间3D点映射到规范3D坐标
 - 使用可逆网络实现

- 帧间运动
 - 通过采样提升2D点到3D,映射到目标帧
 - 获得颜色和密度,聚合目标帧点

优化

• 优化1 收集运动数据,使用光流方法,应用一致性检查过滤误匹配

• 优化2 应用损失函数,最小化流、光度、加速度损失

• 优化3 硬挖掘监督, 计算误差图指导重要数据采样

实验结果

- 最左侧的图像显示了第一帧中的 查询点,而右边的三个图像显示 了随时间变化的跟踪结果。
- 本文的方法成功地跟踪了 swing 和 india 中的遮挡事件,而基线方法则失败了。
- 本文的方法还可以检测到遮挡并 在点被遮挡时提供合理的位置估 计。

实验结果

Method	Kinetics				DAVIS			RGB-Stacking				
	AJ ↑	$<\delta^x_{ m avg}\uparrow$	OA ↑	$\mathrm{TC}\downarrow$	AJ ↑	$<\delta^x_{ m avg}\uparrow$	OA ↑	$TC \downarrow$	AJ ↑	$<\delta^x_{ m avg}\uparrow$	OA ↑	$\mathrm{TC}\downarrow$
RAFT-C [66]	31.7	51.7	84.3	0.82	30.7	46.6	80.2	0.93	42.0	56.4	91.5	0.18
RAFT-D [66]	50.6	66.9	85.5	3.00	34.1	48.9	76.1	9.83	72.1	<u>85.1</u>	92.1	1.04
TAP-Net [15]	48.5	61.7	86.6	6.65	38.4	53.4	81.4	10.82	61.3	73.7	91.5	1.52
PIPs [23]	39.1	55.3	82.9	1.30	39.9	56.0	81.3	1.78	37.3	50.6	89.7	0.84
Flow-Walk-C [5]	40.9	55.5	84.5	0.77	35.2	51.4	80.6	0.90	41.3	55.7	92.2	0.13
Flow-Walk-D [5]	46.9	65.9	81.8	3.04	24.4	40.9	76.5	10.41	66.3	82.7	91.2	0.47
Deformable-Sprites [81]	25.6	39.5	71.4	1.70	20.6	32.9	69.7	2.07	45.0	58.3	84.0	0.99
Ours (TAP-Net)	53.8	68.3	88.8	0.77	50.9	66.7	85.7	0.86	73.4	84.1	92.2	0.11
Ours (RAFT)	55.1	69.6	89.6	0.76	51.7	67.5	<u>85.3</u>	0.74	77.5	87.0	93.5	0.13

消融实验

Method	AJ ↑	$<\delta^x_{ m avg}\uparrow$	OA ↑	TC↓
No invertible	12.5	21.4	76.5	0.97
No photometric	42.3	58.3	84.1	0.83
Uniform sampling	47.8	61.8	83.6	0.88
Full	51.7	67.5	85.3	0.74

DAVIS 数据集的消融研究 [50]。

我们的表示法提取的伪深度图,其中蓝色表示较 近的物体,红色表示较远的物体。