Machine Learning Topic 1

Introduction and Binary Classification

Aimee Barciauskas 29 March 2016

Binary Classification

- Definitions μ and η : slide 4
- Definition of R(g) as function of g(X) and of expected loss: slide 5
- Definition of **Bayes Classifier** $g^*(x)$: slide 5
 - Bayes Classifier Theorem: bottom of slide 5
 - Proof Bayes classifier is optimal: slide 6
- Definition of **plug-in classifier**: slide 7
- Data-based classifier and it's risk: slide 8
- Consistency, universal and strong: slide 9

Notes

- How do we classify? Pick whichever class-conditional density is bigger!
- When you expand the variance of $R(g) = \mathbb{E}[R(g) R_n(g)]^2$, expanding the expected value reveals only terms in R(g) and you find that the variance is small when R(g) is small

Definitions

$$\eta(x) = \frac{\mathbb{P}\{Y=1\}f_1(x)}{f(x)}$$
, where $f_1(x)$ is the conditional distribution of x given $Y=1$

$$f(x|Y=1) = \frac{f(x)\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=1)}$$

$$\mathbb{P}{Y=1} = \mathbb{E}[\eta(x)]$$

$$\mathbb{P}\{X \in A\} = \mathbb{P}\{Y = 1\}f_1(x|Y = 1) + \mathbb{P}\{Y = 0\}f_0(X|Y = 0)$$

Risk

$$R(g) = 1 - \mathbb{E}[\mathbb{I}_{g(X)=1}\eta(X)] - \mathbb{E}[\mathbb{I}_{g(X)=0}(1 - \eta(X))]$$

$$R(g_n) = \frac{1}{n}Bin(n, R(g))$$

$$\mathbb{E}[R(g_n)] = \frac{1}{n}(nR(g)) = R_g$$

 \bar{R} : best risk of family

 $\hat{R_n}$: empirical risk

Bayes Risk

$$R^* = \inf_{g:\mathcal{R}^d \to \{0,1\}} \mathbb{P} \big\{ g(X) \neq Y \big\}$$

$$= \mathbb{E}[\min(\eta(x), 1 - \eta(x))]$$

$$\begin{split} &= \tfrac{1}{2} - \tfrac{1}{2} \mathbb{E} \bigg\{ \left| 2 \eta(X) - 1 \right| \bigg\} \\ &= \int \min(\eta(x), 1 - \eta(x)) f(x) dx \text{ if } X \text{ has density } f(x) \\ &= \int \min((1 - p) f_0(x), p f_1(x)) dx \text{ if } X \text{ has class-conditional densities } f_i(x) \\ &R^* = 0 \text{ when } \eta \in \{0, 1\} \text{ everywhere} \end{split}$$

Error Estimation

Error-counting estimator:

(8.1) Given, m is the **testing** sequence:

$$\hat{L}_{n,m} = \frac{1}{m} \sum_{j=1}^{m} \mathbb{I}_{g_n(X_{n+j}) \neq Y_{n+j}}$$

Clearly unbiased: $\mathbb{E}\{\hat{L}_{n,m}|D_n\} = L_n$

The conditional distribution of $\hat{L}_{n,m}$ given D_n is binomial with paramters m and L_n