Exercise 1 (14.2.B Vakil). Suppose \mathcal{F} , \mathcal{G} are locally free sheaves on X of rank m and n respectively. Show that $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ is a locally free sheaf of rank mn.

Answer

Observe that if \mathcal{F} is locally free of rank m then, there is a basis (U_i) of X such that $\mathcal{F} \mid_{U_i} \simeq \mathcal{O}_{U_i}^m$. Similarly $\mathcal{G} \mid_{V_i} \simeq \mathcal{O}_{V_i}^n$.

Now the collection $(U_i \cap V_j)_{i,j}$ is also a cover for X. From this we get that

$$\mathfrak{F} \mid_{U_i \cap V_j} \simeq \mathcal{O}^m_{U_i \cap V_j}, \quad \text{and} \quad \mathfrak{G} \mid_{U_i \cap V_j} \simeq \mathcal{O}^n_{U_i \cap V_j}.$$

Observe now that for open sets $W \subseteq U_i \cap V_j$ we have that

$$\mathcal{H}om(\mathfrak{F},\mathfrak{G})(W) = \operatorname{Hom}(\mathfrak{F} \mid_{W},\mathfrak{G} \mid_{W}) \simeq \mathcal{H}om(\mathfrak{O}_{W}^{m},\mathfrak{O}_{W}^{n}) \simeq \mathfrak{O}_{W}^{mn}.$$

This means that the Hom-sheaf locally looks like copies O which means it's locally free.

Exercise 2 (14.2.C Vakil). If \mathcal{E} is a locally free sheaf on X of rank n, then $\mathcal{E}^{\vee} = \mathcal{H}om(\mathcal{E}, \mathcal{O}_X)$ is also locally free of rank n. This is the <u>dual</u> of \mathcal{E} .

- i) Given transition functions for \mathcal{E} , describe the transition functions for \mathcal{E} for \mathcal{E}^{\vee} . $[\![$ Note that if \mathcal{E} is rank 1, i.e., invertible, the transition functions of the dual are the inverse of the transition functions of the original. $[\![$
- ii) Show $\mathcal{E} \simeq \mathcal{E}^{\vee\vee}$. [Caution: your argument showing that there is a canonical isomorphism $\mathcal{F} \to (\mathcal{F}^{\vee})^{\vee}$ better not also show that there is an isomorphism $\mathcal{F} \to \mathcal{F}^{\vee}$! We will see an example in 15.1 of a locally free \mathcal{F} that is not isomorphic to its dual: the invertible sheaf $\mathcal{O}(1)$ on \mathbb{P}^n .]

Answer

Exercise 3. Show that every invertible sheaf on \mathbb{P}^1_k is of the form O(n) for some n. $[\![$ Hint: Use the classification of finitely generated modules over a principal ideal domain to show that all invertible sheaves on \mathbb{A}^1_k are trivial. Reduce to determining possible transition functions between the two open subsets in the standard cover of \mathbb{P}^1_k . $[\![$]