Name: GSI: DISC #:

Solutions to Homework 5.

Prob 1. Find a formula for $\sum_{k=0}^{m} \lfloor \sqrt[3]{k} \rfloor$.

Solution: First note that any sum $\sum_{k=0}^{m} f(k)$ where f(k) is a function from \mathbb{Z}_{+} to \mathbb{Z}_{+} is in fact the total number of (integer) points of the type (k,h) where the first coordinate corresponds to our summation index k and the second coordinate (denoted h for "height") corresponds to the positive integer heights that do not exceed the value f(k). In other words, it is the total number of points in the set

$$S = \bigcup_{k=0}^{m} \bigcup_{h \in \mathbb{N}} \{(k,h) : h \le f(k)\} = \bigcup_{h \in \mathbb{N}} \bigcup_{k=0}^{m} \{(k,h) : f(k) > h - 1\}.$$

That is, $\sum_{k=0}^{m} f(k) = |S|$. Notice next that the set S is a disjoint union, over all possible natural values h, of its subsets $S_h = \{(k, h) : f(k) > h - 1\}, h \in \mathbb{N}$. Thus

$$\sum_{k=0}^{m} f(k) = |S| = \sum_{h \in \mathbb{N}} |S_h|. \tag{1}$$

Now apply this reasoning to the function $f(k) = \lfloor \sqrt[3]{m} \rfloor - \lfloor \sqrt[3]{k} \rfloor$. We see that f(k) > 0 for the following values of k: $k = 0, \ldots, \lfloor \sqrt[3]{m} \rfloor^3 - 1$, which gives us $|S_1| = \lfloor \sqrt[3]{m} \rfloor^3$. Further, f(k) > 1 for $k = 0, \ldots, (\lfloor \sqrt[3]{m} \rfloor - 1)^3 - 1$, which gives $|S_2| = (\lfloor \sqrt[3]{m} \rfloor - 1)^3$, and so forth. The last nonempty set is $S_{\lfloor \sqrt[3]{m} \rfloor}$ of size $|S_{\lfloor \sqrt[3]{m} \rfloor}| = 1$ corresponds to the only value k = 0 that works for it. So, the formula (1) implies

$$\sum_{k=0}^{m} f(k) = |S| = \sum_{h \in \mathbb{N}} |S_h| = \sum_{j=1}^{\lfloor \sqrt[3]{m} \rfloor} j^3.$$

By the well-known formula for the sum of cubes (see the book), this gives us

$$\sum_{k=0}^{m} f(k) = \frac{\lfloor \sqrt[3]{m} \rfloor^2 (\lfloor \sqrt[3]{m} \rfloor + 1)^2}{4}.$$

Now we must transition from the designed sum $\sum_{k=0}^{m} f(k) = \sum_{k=0}^{m} (\lfloor \sqrt[3]{m} \rfloor - \lfloor \sqrt[3]{k} \rfloor)$ to our original sum. As

$$\sum_{k=0}^{m} \lfloor \sqrt[3]{m} \rfloor = \lfloor \sqrt[3]{m} \rfloor \sum_{k=0}^{m} 1 = \lfloor \sqrt[3]{m} \rfloor (m+1),$$

we can finally conclude

$$\sum_{k=0}^m \lfloor \sqrt[3]{k} \rfloor = \sum_{k=0}^m \lfloor \sqrt[3]{m} \rfloor - \sum_{k=0}^m f(k) = \lfloor \sqrt[3]{m} \rfloor (m+1) - \frac{\lfloor \sqrt[3]{m} \rfloor^2 (\lfloor \sqrt[3]{m} \rfloor + 1)^2}{4}.$$

Prob 2. (a) Find a recurrence relation for the balance B(k) owed at the end of k months on a loan at a rate r if a payment P is made on the loan each month.

Solution: We need to apply interest to our previous balance and subtract our fixed payment. This gives

$$B(k) = B(k-1)\left(1 + \frac{r}{12}\right) - P. \tag{2}$$

Note that the interest is computed using the monthly rate, i.e., 1/12 of the annual interest rate.

(b) Determine what the monthly payment P should be so that the loan is paid off after T months.

Solution: Iterate the recurrence (2) k-1 times, i.e., keep replacing each balance B(k-j) by the previous balance B(k-j-1) using the recurrence (2) for $j=1,\ldots,k-1$. This produces

$$B(k) = B(0)\left(1 + \frac{r}{12}\right)^k - P - P\left(1 + \frac{r}{12}\right) - P\left(1 + \frac{r}{12}\right)^2 - \dots - P\left(1 + \frac{r}{12}\right)^{k-1}.$$

The subtracted part is the sum of a geometric progression with ratio 1 + r/12 and initial term P, i.e.,

$$P\frac{\left(1+\frac{r}{12}\right)^k-1}{\left(1+\frac{r}{12}-1\right)} = \frac{12P}{r}\left(\left(1+\frac{r}{12}\right)^k-1\right), \quad \text{so} \qquad B(k) = (B(0)-\frac{12P}{r})\left(1+\frac{r}{12}\right)^k+\frac{12P}{r}.$$

To pay the loan off after T months, we must have B(T) = 0, i.e.,

$$P = \frac{rB(0)}{12} \cdot \frac{\left(1 + \frac{r}{12}\right)^T}{\left(1 + \frac{r}{12}\right)^T - 1}.$$

(c) Suppose you take out a fixed-rate mortgage for \$1M\$ at the current (historically low) rate 3% and want to pay it off in 20 years. What monthly payment should you make?

Solution: Plug in r = .03, $T = 20 \cdot 12 = 240$, and B(0) = 1000000 to get

$$P = 2500 \cdot \frac{1.0025^{240}}{1.0025^{240} - 1} \approx 5545.97$$

So the fixed payment should be about \$5,546 per month.

(d) Now suppose the same mortgage of \$1M but you have qualified only for the rate 5% and the maximum monthly payment you can afford is \$5K. How many years will it take you to pay off that mortgage?

Solution: Now we must have

$$\left(\frac{12P}{r} - B(0)\right)\left(1 + \frac{r}{12}\right)^T = \frac{12P}{r}, \quad \text{hence} \quad \left(1 + \frac{r}{12}\right)^T = \frac{12P}{12P - rB(0)},$$

which yields

$$T = \frac{\ln(12P) - \ln(12P - rB(0))}{\ln\left(1 + \frac{r}{12}\right)}.$$

Plugging in our new data P = 5000, r = 0.05, B(0) = 1000000, we get

$$T = \frac{\ln 6}{\ln 1.00416667} \approx 430.918$$

This is time in months, and conversion into years gives approximately 35.9 years.

Prob 3. Write down the full addition and multiplication tables for \mathbb{Z}_9 (where addition means $+_9$ and multiplication means \cdot_9).

Solution:

$\begin{array}{ c cccccccccccccccccccccccccccccccccc$										
1 1 2 3 4 5 6 7 8 0 2 2 3 4 5 6 7 8 0 1 3 3 4 5 6 7 8 0 1 2 4 4 5 6 7 8 0 1 2 3 5 5 6 7 8 0 1 2 3 4 5 6 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6	+9	0	1	2	3	4	5	6	7	8
2 2 3 4 5 6 7 8 0 1 3 3 4 5 6 7 8 0 1 2 4 4 5 6 7 8 0 1 2 3 5 5 6 7 8 0 1 2 3 4 6 6 7 8 0 1 2 3 4 5 7 7 8 0 1 2 3 4 5 6	0	0	1	2	3	4	5	6	7	8
3 3 4 5 6 7 8 0 1 2 4 4 5 6 7 8 0 1 2 3 5 5 6 7 8 0 1 2 3 4 6 6 7 8 0 1 2 3 4 5 7 7 8 0 1 2 3 4 5 6	1	1	2	3	4	5	6	7	8	0
4 4 5 6 7 8 0 1 2 3 5 5 6 7 8 0 1 2 3 4 6 6 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 6	2	2	3	4	5	6	7	8	0	1
5 5 6 7 8 0 1 2 3 4 6 6 7 8 0 1 2 3 4 5 7 7 8 0 1 2 3 4 5 6	3	3	4	5	6	7	8	0	1	2
6 6 7 8 0 1 2 3 4 5 7 7 8 0 1 2 3 4 5 6	4	4	5	6	7	8	0	1	2	3
7 7 8 0 1 2 3 4 5 6	5	5	6	7	8	0	1	2	3	4
	6	6	7	8	0	1	2	3	4	5
8 8 0 1 2 3 4 5 6 7	7	7	8	0	1	2	3	4	5	6
	8	8	0	1	2	3	4	5	6	7

.9	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8
2	0	2	4	6	8	1	3	5	7
3	0	3	6	0	3	6	0	3	6
4	0	4	8	3	7	2	6	8	5
5	0	5	1	6	2	7	3	8	4
6	0	6	3	0	6	3	0	6	3
7	0	7	5	3	8	8	6	4	2
8	0	8	7	6	5	4	3	2	1

Prob 4. (a) Prove that, if p is a prime, then all positive integers less than p except for 1 and p-1 can be split into (p-3)/2 pairs such that each pair consists of integers that are inverses of each other modulo p.

Proof. For p = 2, the proof of this fact is vacuous.

Suppose p > 2. Then p is necessarily odd. If a is relatively prime to p, the congruence $ax \equiv 1 \pmod{p}$ has a unique solution $x \in \{1, \ldots, p-1\}$. Each number in the set $S = \{2, 3, \ldots, p-2\}$ is relatively prime to p, hence has a unique inverse mod p; that inverse lies in the same set S because the numbers 1 and p-1 are their own multiplicative inverses.

Moreover, there are no elements of S that are multiplicative inverses of themselves, since the congruence $k^2 \equiv 1 \pmod{p}$ implies $p|(k^2-1)$, i.e., p|(k-1)(k+1). Since p is prime, this implies that p|(k-1) or p|(k+1), so $k \equiv \pm 1 \pmod{p}$, and the latter condition is not met by any element of S.

Thus the set S splits into (p-3)/2 pairs that are inverses of each other.

(b) Conclude from part (a) that $(p-1)! \equiv -1 \pmod{p}$ whenever p is prime.

Proof. From (a), we see that the product of all numbers in the set S is congruent to 1 mod p because it can be rewritten as a product of (p-3)/2 pairs that are inverses of each other mod p. Now,

$$(p-1)! = 1\Big(\prod_{j \in S} j\Big)(p-1) \equiv 1(-1) \equiv -1 \pmod{p}.$$

(c) What can we conclude if n is a positive integer such that $(n-1)! \not\equiv -1 \pmod{n}$?

If $(n-1)! \not\equiv -1 \pmod{n}$, this shows n is composite: if n were prime, that congruence would hold by (b).

Prob 5. Prove or disprove that there are infinitely many primes of the form 6k + 5, $k \in \mathbb{Z}_+$.

Proof. Suppose there are only finitely many primes of the form 6k + 5. List all them as p_1, p_2, \ldots, p_n for some $n \in \mathbb{N}$. Consider the number $N = 6p_1 \cdots p_n - 1$. This is a number of the form 6k + 5 as well, since $N = 6(p_1 \cdots p_n - 1) + 5$. None of the primes p_1, \ldots, p_n divides N since $N \equiv -1 \pmod{p_j}$ for all $j = 1, \ldots, n$. N is either prime or composite.

If N is prime, then N is not on the original list $(p_j)_{j=1}^n$ since none of the p_j s even divides N.

If N is composite, consider its prime divisors. N is not divisible by 2 or 3 since $N \equiv -1 \pmod{6}$. A prime cannot be of the form 6k, 6k+2, 6k+3 or 6k+4 for $k \in \mathbb{N}$ since these expressions can all be explicitly divided by 2 or by 3 and are greater than those two numbers.

Hence all prime divisors of N are either -1 or $1 \mod 6$. If they were all equal to $1 \mod 6$, then N itself would also be equal to $1 \mod 6$, but $N \equiv -1 \pmod 6$. Hence at least one of the prime divisors of N is equal to $-1 \equiv 5 \pmod 6$. We already established that no prime divisor of N is on the original list $(p_j)_{j=1}^n$. Hence we have found a new prime of the form 6k + 5.

Thus, we have established that there are infinitely many primes of the form 6k + 5.