

Système d'exploitation avancé

Structuration et système d'exploitation

Pierre LEROY – leroy.pierre1@gmail.com

- I. Architecture
- II. Processeur
- III. Typologie SE
- IV. Conclusion

Architecture

Un ordinateur s'articule autour des principes décrits par Von Neumann :

ARCHITECTURE « VON NEUMANN » (1945)

- UAL (ALU) Unité Arithmétique et Logique
 - ou unité de traitement
 - effectue les opération arithmétiques de base.
- **UC** Unité de Contrôle
 - en charge du séquencement des opérations
- **MEM** Mémoire
 - contient à la fois les données et le programme
 - > Distinction entre *mémoire vive* et *mémoire de masse*
- E/S Entrées-Sortie
 - Dispositif de communication avec l'extérieur

Architecture

Un ordinateur s'articule autour des principes décrits par Von Neumann :

ARCHITECTURE « Pentium »:

- Logique semblable
 - Multiplication des bus
 - Multiplication des contrôleurs

- I. Architecture
- II. Processeur
- III. Typologie SE
- IV. Conclusion

Processeur

- Extrait des instructions de la mémoire et les exécute.
- Possède un jeu d'instructions qui lui est propre.
- Registres : stockent des variables importantes et des résultats intermédiaires.
- Instructions classiques :
 - charger un mot de la mémoire vers un registre (et inversement).
 - > opération arithmétique : une ou deux opérandes, stockage du résultat dans un registre.
- Compteur ordinal : adresse de la prochaine instruction à exécuter.
 - Mis à jour à chaque exécution d'instruction.
- Pointeur de pile : adresse courante du sommet de la pile.
- Mot d'état (PSW, Program Status Word): entre autre, mode (utilisateur ou noyau) d'exécution. Rôle très important dans les appels système.
- Pipeline : unités séparées pour l'extraction, le décodage et l'exécution.
 - L'instruction n+1 est décodée / l'instruction n+2 est extraite / l'instruction n exécutée.
 - ➤ Une instruction qui rentre dans le pipeline est exécutée, même si l'instruction précédente Cnam était un branchement conditionnel.

- I. Architecture
- II. Processeur
- III. Typologie SE
- IV. Conclusion

Mode utilisateur/noyau

- Information stockée dans le PSW.
- Mode noyau: le processeur peut exécuter tout son jeu d'instruction et a accès à l'ensemble du matériel.
- Mode utilisateur : sous-ensemble d'instructions.
 - > E/S (entrées/sorties) et accès à la mémoire inaccessibles.
 - Interdiction de basculer le bit de protection du PSW.
- Pour accéder aux services du SE, un programme utilisateur doit effectuer un appel système.
- Le programme bascule en mode noyau, puis reprend la main à la fin du traitement de l'appel système.

Noyau && Pilotes

- Partie qui réside constamment en mémoire centrale.
- Routines qui requièrent un mode d'exécution privilégié :
 - > mode **superviseur** ou mode **noyau** : appels systèmes.
- Passage en mode noyau nécessite un changement de contexte :
 - Appelé « commutation de contexte » : sauvegarde des registres et restauration du contexte.
 - Mécanisme coûteux.

Modules qui dialoguent avec les périphériques réels.

Typologie de Noyau : Monolitique

- Anciennes versions d'UNIX, de Linux (<1.2) :</p>
 - Nécessite une recompilation du noyau à chaque mise à jour /installation de pilote.
- Versions récentes de Linux :
 - > Tant vers un système modulaire mais reste toujours monolithique
 - Les pilotes sont chargés dynamiquement dans le noyau.
 - Meilleures performances, mais problème de robustesse :
 - ✓ Injecter un pilote buggé dans le noyau peut mettre à mal tout le système d'exploitation.

Typologie de Noyau: Micronoyaux

- Noyau minimaliste
- les pilotes sont chargés dans l'espace utilisateur.
- Meilleure extensivité et adaptatbilité.
 - Un pilote buggé ne fait pas s'écrouler le système.
- Problème de performances.
 - Systèmes très complexes.
- Exemples:
 - Système GNU Hurd (en développement).
 - Windows NT, MacOs X : pas véritable
 - micronoyau, architecture hybride.

Constat

- Un système d'exploitation a pour objectif de gérer 5 fonctions essentielles :
 - Les processus
 - La mémoire
 - Les E/S (réseau compris)
 - Les fichiers
 - Les utilisateurs

Grand Est

- I. Interruptions
- II. Appels système
- III. Essentiel
- IV. Conclusion

Essentiel

Toutes les notions abordées dans ce chapitre sont fondamentales

Conclusion

Annexes

Annexes

Liens annexes :

Von Neumann : https://fr.wikipedia.org/wiki/John von Neumann

