Roboti (roboti)

Mega i Ultra su dva najsavremenija robota koji su došli u obilazak grada Visokog. Kako su tu po prvi put, sa sobom su ponijeli i mapu grada na kojoj se nalaze sve lokacije, ulice, raskrsnice, podzemni prolazi, žičare i sl. Obilazak bi sasvim sigurno bio puno jednostavniji da ne moraju štedjeti baterije koje ih pokreću i koje se, nažalost, veoma brzo troše. Mega je toga naročito svjestan i veliku pažnju posvećuje planiranju obilaska, tako da je potrošnja baterija što manja. Na mapi je između svake dvije povezane lokacije naznačio i količinu energije potrebnu da bi se s jedne lokacije stiglo u drugu. S druge strane, Ultra je veliki obožavatelj teorije brojeva i u slobodno vrijeme istražuje različite načine na koje je moguće otkriti da li je neki broj djeljiv sa tri. Štaviše, njegova ljubav je prerasla u opsesiju tako da on izričito zahtjeva da vrijednost potrošene energije pri prelasku s jednog mjesta na drugo tokom obilaska pri dijeljenju sa 3 daje ostatak 0, 1 ili 2, sve u zavisnosti od njegovog raspoloženja. To dodatno otežava složene proračune i pripreme koje Mega izvodi kako bi maksimalno uštedio baterije, i što je najgore, uzima mu vrijeme koje je planirao provesti u obilasku. Meginu nezavidnu situaciju bi značajno popravio program kojeg bi on mogao iskoristiti u sklopu vlastitog softvera. Taj program bi za određen dio mape grada izračunao broj svih minimalnih potrošnji energije pri prelasku iz jednog mjesta u drugo koje se nalaze unutar određenog intervala, a pri dijeljenju sa 3 daju ostatak 0, 1 ili 2. Na njegovu sreću, u Visokom se našao u pravom trenutku. Program ćete mu napisati vi, a on će za to vrijeme nastaviti sa obilaskom grada, koliko god to bilo teško imajući Ultru pored sebe.

Zadatak

Vaš zadatak je da napišete funkciju BrojMinimalnihPotrosnji koja kao argumente prima pet pozitivnih cijelih brojeva r, p, q, v, e, kao i niz pozitivnih cijelih brojeva (veličine $3 \cdot e$). Broj r predstavlja traženi ostatak djeljenja sa 3, dakle, može imati vrijednosti 0, 1 ili 2. Brojevi p i q su donja i gornja granica potrošene energije pri obilasku, respektivno. v predstavlja broj označenih lokacija na mapi, a e broj naznačenih potrošnji energije između povezanih lokacija na mapi. Niz koji se prosljeđuje funkciji u svakom bloku od tri elementa sadrži podatke o početnoj i krajnjoj lokaciji, koje su indeksirane brojevima počevši od 1, kao i o količini energije koja će se potrošiti da bi se došlo iz početne u krajnju lokaciju (ne nužno i obrnuto) sa vrijednostima između 1 i 100, uključujući. Brojevi p i q su uključeni u granice, tako da je p strogo manje od q. Maksimalna vrijednost broja q je 10.000. Moguće je da između nekih lokacija nema naznačenih potrošnji, ali

i s druge strane, da je između neke dvije lokacije naznačeno više od jedne potrošnje.

Podzadatak 1 (18 bodova): $3 \le v \le 20$, $1 \le e \le 100$

Podzadatak 2 (33 boda): $3 \le v \le 100$, $1 \le e \le 1.000$

Podzadatak 3 (49 bodova): $3 \le v \le 150$, $1 \le e \le 2.500$

Primjeri

Primjer 1

BrojMinimalnihPotrosnji $(0, 1, 20, 5, 5\{1, 2, 12, 2, 3, 3, 3, 4, 3, 4, 1, 4, 1, 5, 5\}) = 9$

Obrazloženje: Da bi se stiglo od mjesta označenog sa brojem 1 do mjesta označenog sa brojem 2, tako da se pri tome potroši minimalna količina energije, koja u ovom slučaju treba da bude djeljiva sa 3 je 12. Od mjesta 1 do mjesta 3, 15. Od mjesta 1 do mjesta 4, 18. Od mjesta 1 do mjesta 5 27. Od mjesta 2 do mjesta 3, 3. Od mjesta 2 do mjesta 4, 6. Od mjesta 2 do mjesta 5, 15. Od mjesta 3 do mjesta 4, 3. Od mjesta 3 do mjesta 5, 12. I na kraju od mjesta 4 do mjesta 5, 9. Od ovih 10 minimalnih potrošnji, 9 se nalazi u granicama između 1 i 20.

Primjer 2

BrojMinimalnihPotrosnji $(1, 10, 50, 3, 5\{1, 2, 5, 1, 2, 6, 2, 1, 4, 3, 1, 20, 3, 2, 7\}) = 4$

Detalji implementacije

Sa servera za takmičenje možete preuzeti pripremljena okruženja (roboti_c.zip, roboti_cpp.zip ili roboti_pas.zip) sa osnovnim fajlovima za C, C++ i Pascal.

Ukoliko koristite *C* ili *C*++, napišite funkciju s prototipom: **int** BrojMinimalnihPotrosnji(**int** r, **int** p, **int** q, **int** v, **int** e, **int*** energije); u fajlu *roboti.[c/cpp]*.

Ukoliko koristite Pascal, napišite funkciju sa prototipom:

function BrojMinimalnihPotrosnji (r : **LongInt**; p : **LongInt**; q : **LongInt**; v : **LongInt**; e : **LongInt**; var energije : **Array of LongInt**) : **LongInt**; u failu *roboti.pas*.

Samo unutar ovog fajla treba da implementirate svoje rješenje. Pri tome smijete koristiti i druge pomoćne funkcije koje ste vi napisali, te standardna zaglavlja/biblioteke odabranog programskog jezika i funkcije iz ovih biblioteka. Ne smijete ni na koji način vršiti interakciju sa standardnim ulazom/izlazom niti sa bilo kojom datotekom.

U pripremljenom okruženju nalazi se fajl *grader.[c/cpp/pas]* koji testira ispravnost rada¹ funkcije koju ste napisali na javne testne primjere. Kada šaljete svoje rješenje, šaljete samo fajl *roboti.[c/cpp/pas]*, dok komisija koristi svoj *grader.[c/cpp/pas]* koji nije javni. U skladu s tim, slobodni ste da modificirate *grader.[c/cpp/pas]* i prilagođavate ga svojim potrebama u svrhu testiranja na lokalnom ra unaru.

Ukoliko koristite *Code::Blocks* u pripremljenim okruženjima možete naći i odgovarajuće projekte sa podešenim parametrima za prevođenje. *Release build* u potpunosti odgovara parametrima za prevođenje koji su na serveru za takmičenje, dok *Debug build* ima isljučene optimizacije i uključene simbole za debagiranje.

Ukoliko koristite *FreePascal IDE*, dovoljno je da pokrenete prevođenje fajla *grader.pas* dok je u istom folderu fajl *roboti.pas*. Na serveru za takmičenje postavljeni su sljedeći parametri za prevođenje: -dEVAL -vw -XS -O2.

Ukoliko ne koristite *Code::Blocks*, odnosno *FreePascal IDE*, u okruženjima se nalaze i fajlovi *prevedi_[c/cpp/pas].sh* koje možete koristiti za prevođenje svojih programa, a koje pozivate iz terminala komandom sh *prevedi_[c/cpp/pas].sh* iz odgovarajućeg foldera.

Fajl grader.[c/cpp/pas] koji je javno dostupan testira samo ispravnost bez postavljanja ograničenja na vrijeme izvršavanja i iskorištenu memoriju.