

Agenda

Introduction

Classify Materials from Image

Fabric	Foliage	Glass	Leather	Metal	Paper	Plastic	Stone	Water	Wood

Flickr Material Database:

10 categories & 100 images / category

- 500 close-up images
- 500 full object images

Related Work

Data Preprocessing

- fabric_object_048_new.jpg
- fabric_object_049_new.jpg
- fabric_object_050_new.jpg
- normalizelmage.asv
- normalizelmage.m
- 1. Remove Non .JPG Files

2. Remove Grayscale Images

New Image Size: (150, 150) Normalize: from 0-255 to 0-1

3. Resize & Normalize

Vanilla CNN Model

Transfer Learning

Models:

- Vanilla CNN
- TF VGG16
- TF ResNet50
- TF Xception
- TF MobileNet
- TF DenseNet121
- TF DenseNet201
- TF EfficientNetV2B0
- TF InceptionV3

Step 1

Train all the Models on the Training Dataset and Record Validation Accuracy

Step 2

Use Best Architecture to Run Further Experiments: Data Augmentation, Masks...

Step 3

Compare Validation Accuracies to Determine Best Performing Model

Step 4

Re-Train Best Model on Train & Validation Dataset and Record Test Accuracy

^{*} TF: transfer learning

Data Augmentation

- **Random Crop** (w=256, h=256)
- Horizontal Flip (p=0.5)
- Vertical flip (p = 0.5)
- **RGB** shift (p = 0.4)
- Color Jitter (p = 0.2)
- Brightness Contrast (p = 0.2)

Applying Masks to Images

Original Image

Object of Interest

Mask

Hyperparameter Optimization

Model	Val Accuracy	Learning rate	Dropout rate	Size dense layers
DenseNet201	0.7940	0.0023	0.4	256/192/48
Xception	0.7549	0.00017	0.3	256/128/48

Hyper Parameter	Ranges	Step Size
Units Dense layer 1	(128 – 512)	128
Units Dense layer 2	(64 - 256)	64
Units Dense layer 3	(16 - 64)	16
Learning rate	(0.0001 - 0.01)	Log sampling
Dropout probability	(0.1 - 0.5)	0.1

Xception on Augmented Data: 73.5% Accuracy

Class	Precision
Fabric	0.667
Foliage	0.857
Glass	0.714
Leather	0.824
Metal	0.654
Paper	0.8
Plastic	0.615
Stone	0.812
Water	0.783
Wood	0.714

Garbage Classification

Classify Garbage

Accuracy: 52% using model

Source: Garbage Dataset (Kaggle): https://www.kaggle.com/datasets/asdasdasasdas/garbage-classification

High Accuracy

Better performance than majority of models in literature... but lower than human performance and state-of-the-art model

73.5% accuracy vs 84% accuracy

Simplicity

Main Benefit: Simpler
Approach than the Stateof-the-Art Model, easier to
code and use

Transfer Learning &

Dense Layers

Generalization

Approach is suitable for practical applications as it is easy to run and achieves decent performance on practical examples

Garbage Accuracy: 52%

