$$\rho = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mu_x}{\sigma_x} \right) \left(\frac{y_i - \mu_y}{\sigma_y} \right)$$

Figure 2-3

i -th entry of x is $\left(\frac{x_i-\mu_x}{\sigma_x}\right)$ SDs away from the average

$$y_i$$
 is $\left(rac{y_i-\mu_y}{\sigma_y}
ight)$ SDs away from the average y

product of

$$\left(\frac{x_i - \mu_x}{\sigma_x}\right) \left(\frac{y_i - \mu_y}{\sigma_y}\right)$$

will be positive as often as negative and will average to about 0

Figure 5

$$\rho = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mu_x}{\sigma_x} \right)^2 = 1/\sigma^2 \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)^2 = 1$$

Figure 6

