

Команда fbbc

Капитан: Кулаков Игорь Юрьевич Браузман Всеволод Маркович Ельнова Екатерина Дмитриевна Иванов Денис Дмитриевич Мочалов Артем Андреевич

Команда fbbc

КУЛАКОВ ИГОРЬ ЮРЬЕВИЧ

ЕЛЬНОВА ЕКАТЕРИНА ДМИТРИЕВНА

ИВАНОВ ДЕНИС ДМИТРИЕВИЧ

МОЧАЛОВ АРТЕМ АНДРЕЕВИЧ

БРАУЗМАН ВСЕВОЛОД МАРКОВИЧ

Идея

Веб-сервис с применением последовательной нейросетевой системы, состоящей из нескольких нейронных сетей обрабатывающих снимки компьютерной томографии легких.

- 1. Нейросеть определяет патологию (на данный момент: Ковид-19, пневмония, рак и легкие без патологий).
- 2. В зависимости от патологии, происходит передача КТ снимка в следующую (подходящую по патологии) нейронную сеть для уточнения характеристик, например:
 - Степень рака
 - Координаты опухолей и их количество

Данный подход позволяет каждому ИИ заниматься своим делом, а значит значительно повышает качество предсказаний

Для достижения лучшего результата использовались:

- Residual блоки с SEвниманием
- Cross-Slice Attention (CSA)
- 2.5D-бекбон на 3Dсвёртках
- Балансировка даталоадера
- GPU-ресэмплинг

Фронтенд

Инструкция:

- 1. Загрузить ZIP-архив с Dicom файлами в форму;
- 2. Откроется окно с результатом;
- 3. В боковом меню можно снова открыть серию dicomфайлов для просмотра;
- 4. Также в боковом меню можно экспортировать все результаты.

Фронтенд

CSS

C55

F

HTML

HTML

JS(React)

Серверная часть

Python

— это язык программирования, известный своей простотой.

Flask

— это фреймворк языка Python для вебразработки.

FlasksocetIO

— это расширение для веб-фреймворка Flask.

Torch

для запуска обученной модели.

Принципы выбора данных

- ВОЗМОЖНОСТЬ КОММЕРЧЕСКОГО ИСПОЛЬЗОВАНИЯ
- КАЧЕСТВЕННЫЕ МЕЖДУНАРОДНЫЕ ДАННЫЕ
- РАЗНООБРАЗИЕ ПАТОЛОГИЙ

Требования к данным для обучения

- ФОРМАТ DICOM
- КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ(КТ) ЛЕГКИХ
- НЕ МЕНЕЕ 64 СРЕЗОВ ДЛЯ КТ СНИМКА
- ЛИЦЕНЗИЯ СС ВУ 4.0

Использованные данные

Название датасета	Источник		
COVID-CT-MD	https://www.nature.com/articles/s41597-021-00900-3		
NSCLC-Radiomics	https://www.cancerimagingarchive.net/collection/ns <mark>clc-</mark> radiomics/		
MIDRC-RICORD-1A	https://www.cancerimagingarchive.net/collection/midrc-ricord-1a/		

Данные для обучения и валидации

Для балансировки классов использовались:

- Взвешенный самплинг в обучающем даталоадере
- Класс-взвешенная кроссэнтропия
- Unified Focal Loss (после 10 эпох)

Классы патологий	Количество снимков (шт)	Процентное соотношение (%)		
Normal	76	15,5		
Сар	60	12,2		
Covid-19	169	34,5		
Cancer	184	37,6		

- Для ленивой загрузки данные преобразованы в виде .npz(Веб-сервис принимает zip-архив с DICOM файлами)
- Каждый хранит npz в себе КТ снимок легких
- Данные приводятся к 64 срезам (равномерно, не зависимо от изначального количества), 512х512 пикселей

Npz scan (D, H, W)

Preprocess scan normalize -> [0,1] -> (1, D, H, W) tensor

GPU resample -> (B,1,64,512,512)

DataLoader
Collate_variable_de
pth pad to maxD ->
(B,1,maxD,H,W)

Комбинированная функция потерь LOSS

LOSS	Взвешенная Cross Entropy Loss	Unified Focal Loss
Преимущества	Компенсирует дисбаланс классов Плавное уменьшение ошибки	Фокус на сложных и редких классах (Normal, Cap) Устойчивая реализация

Архитектура CSANet2.5D нейросети

Обучение

Количество эпох: 130

Размер батча: 3

Тренировочная выборка: 80%

Валидационная выборка: 20%

Optimizer/Scheduler: AdamW(lr=1e-4, wd=1e-4), factor = 0.5

Device: Cuda

Подробное логирование

Итоги обучения

Уверенная модель, протестированная на валидационной выборке

Показатель	Доля верных предсказаний, % (Accuracy)	Уверенность в предсказании, % (Cross-Entropy)	Normal	Сар	Covid-19	Canser
Обучающая выборка	96,43	95,3	98,7	100	88,4	100
Валидация	87,5	95,6	84,6	63,6	83,9	100

Итоги обучения

Лучшая модель на 149 эпохе

Точность(%) предсказания при обучении

Количество(%) корректно предсказанных классов

Демонстрация

УБЕДИТЕСЬ САМИ НА СЛЕДУЮЩЕМ СЛАЙДЕ ИЛИ ОНЛАЙН

OTKPЫТОЕ ТЕСТИРОВАНИЕ ПО ССЫЛКЕ: HTTPS://USER233756200-XKDDUIPR.TUNNEL.VK-APPS.COM/

РЕЗЕРВНЫЙ СЕРВЕР: HTTP://77.221.145.108

=

MedVision Al

Анализ DICOM файлов

Загрузите ZIP архив с DICOM файлами

Нажмите или перетащите файл сюда

Загрузите ZIP архив с DICOM файлами для анализа.

После загрузки здесь будет отображаться результат обработки и станут доступны серии для просмотра.

Планы на будущее

На сайте MosMedData в основном Covid-19 и Pak, но мы хотим выявлять легкие без патологий, поэтому мы сначала сделали общую модель предсказывающую основные патологии (с акцентом на выявлении нормальных легких) и после на нее хотим «надстраивать» специализированные модули(другие нейросети) для уточнения характеристик каждой патологии, например, координаты опухоли или степени рака. То есть на итогах получится нейросетевая система, которая выявляет патологии и в зависимости от них может уточнить их характеристики. На данный момент распознавание стадий рака уже в разработке, собран и обработан датасет, идет настройка архитектуры и обучение нейросети.

Спасибо за внимание!

КОНТАКТ ДЛЯ СВЯЗИ:

НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯРОСЛАВ А МУДРОГО ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ АССИСТЕНТ КАФ. ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И СИСТЕМ КУЛАКОВ ИГОРЬ ЮРЬЕВИЧ +7 (952) 483 7296

TG: @USER626364