Introduction à la cryptologie TD n° 6 : Elliptic Curves and Lattices.

We will use the following notation throughout.

- $\langle \vec{u}, \vec{v} \rangle$ is the standard Euclidean inner product of \mathbb{R}^n , that is $\langle \vec{u}, \vec{v} \rangle = \sum_{i=1}^n u_i v_i$.
- The Euclidean norm : $\|\vec{u}\|^2 = \langle \vec{u}, \vec{u} \rangle$.
- span() denotes the sub(vector)space generated by the vectors or the set inside the parentheses. It is the smallest subspace containing the vectors or the set inside the parentheses.
- $\mathcal{B}_r(\vec{v}) = \{\vec{w} \in \mathbb{R}^n, ||\vec{v} \vec{w}|| < r\}$ is the open ball of \mathbb{R}^n of center \vec{v} and radius r.

Exercice 1 (Properties of lattices). Let L be a discrete subgroup of \mathbb{R}^n . Show that :

- 1. There exists r > 0 s.t. for all $\vec{v} \in L$, $L \cap \mathcal{B}_r(\vec{v}) = {\vec{v}}$.
- 2. Show that any convergent sequence of L is stationary: in particular, L is closed.
- 3. For all r > 0 and $\vec{v} \in \mathbb{R}^n$, $L \cap \mathcal{B}_r(\vec{v})$ is finite.
- 4. L is countable.

Exercice 2 (Discreteness of subgroups). Let L be a subgroup of \mathbb{R}^n . Show that L is discrete if and only if one of the following conditions holds:

- 1. 0 is isolated in L, *i.e.* there exists r > 0 s.t. $L \cap \mathcal{B}_r(\vec{0}) = {\vec{0}}$.
- 2. There is no injective sequence of L converging to zero.

Exercise 3 (Examples of lattices). Let L be a discrete subgroup of \mathbb{R}^n . Show that:

- 1. Show that \mathbb{Z}^n is a lattice.
- 2. Show that any subgroup of \mathbb{Z}^n is a lattice.
- 3. Let $\vec{b}_1, \ldots, \vec{b}_d$ be vectors in \mathbb{Z}^n . Show that the set of all integral linear combinations $\mathcal{L}(\vec{b}_1, \ldots, \vec{b}_d) = \{\sum_{i=1}^d x_i \vec{b}_i, x_i \in \mathbb{Z}\}$ is a lattice.
- 4. Let $\vec{b}_1, \ldots, \vec{b}_d$ be linearly independent vectors in \mathbb{R}^n . Show that $\mathcal{L}(\vec{b}_1, \ldots, \vec{b}_d)$ is a lattice.

Exercice 4 (Duality). Let L be a lattice of \mathbb{R}^n . Show that :

- 1. For any group homorphism $f: L \to \mathbb{Z}$, there exists a unique $\vec{v} \in \text{span}(L)$ s.t. for all $\vec{w} \in L$, $f(\vec{w}) = \langle \vec{v}, \vec{w} \rangle$.
- 2. The set L^{\times} of all $\vec{v} \in \text{span}(L)$ such that for all $\vec{w} \in L$, $\langle \vec{v}, \vec{w} \rangle \in \mathbb{Z}$ is a lattice, called the *dual lattice* of L.
- 3. The additive group of all group homorphisms $f: L \to \mathbb{Z}$ is isomorphic to L^{\times} .

Exercice 5 (Elliptic curves). Let C be a non-singular cubic curve $C: y^2 = f(x) = x^3 + ax^2 + bx + c$. We denote by $\mathcal{O} = (\inf, \inf)$ the neutral element. Show the following:

- 1. A point $P = (x, y) \neq \mathcal{O}$ on C has order 2 iff y = 0.
 - **Tip:** The inverse of P is (x, -y).
- 2. The curve C has exactly four points of order 1 or 2.
- 3. A point $P = (x, y) \neq \mathcal{O}$ on C is of order 3 iff x(2P) = x(P), where x(P) is the x coordinate of P.
- 4. A point $P = (x, y) \neq \mathcal{O}$ on C has order 3 iff x is a root of the polynomial $\psi_3(x) = 3x^4 + 4ax^3 + 6bx^2 + 12cx + 4ac b^2$.
 - **Tip:** Use the identity $x(2P) = \frac{x^4 2bx^2 8cx + b^2 4ac}{4x^3 + 4ax^2 + 4bx + 4c}$.

Algorithm 1 Lagrange's reduction algorithm.

```
Require: a basis (\vec{u}, \vec{v}) of a two-rank lattice L.
```

Ensure: a Lagrange-reduced basis of L.

```
1: if \|\vec{u}\| < \|\vec{v}\| then

2: swap \vec{u} and \vec{v}

3: end if

4: repeat

5: \vec{r} \leftarrow \vec{u} - q\vec{v} where q = \left\lfloor \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^2} \right\rfloor and \lfloor x \rceil denotes an integer closest to x.

6: \vec{u} \leftarrow \vec{v}

7: \vec{v} \leftarrow \vec{r}

8: until \|\vec{u}\| \le \|\vec{v}\|

9: Output (\vec{u}, \vec{v}).
```

Exercice 6 (Lagrange's Algorithm). In 1773, Lagrange published a two-dimensional reduction algorithm (Algorithm 1) which is an ancestor of the LLL algorithm.

- 1. Consider Line 5 of Algorithm 1 : show that this choice of $q \in \mathbb{Z}$ minimizes $\|\vec{u} q\vec{v}\|$.
- 2. Show that Lagrange's algorithm terminates, i.e. that the repeat/until loop is not infinite.
- 3. Consider the integer q of Step 5. Show that :
 - if q = 0, then this must be the last iteration of the loop.
 - if |q| = 1, then this must be either the first or last iteration of the loop.
- 4. Show that the number τ of iterations of the repeat/until loop is bounded by : $\tau = O(1 + \log B \log \lambda_1(L))$ where B denotes the maximal Euclidean norm of the input basis vectors \vec{u} and \vec{v} .
- 5. Show that when $L \subseteq \mathbb{Z}^n$, the bit-complexity of Lagrange's algorithm is polynomial in $\log B$.