Sailing Through Data: Discoveries and Mirages

Emmanuel Candès, Stanford University

2018 Machine Learning Summer School, Buenos Aires, June 2018

Controlled variable selection

- $\bullet \ \mathsf{Response} \ Y \ \mathsf{(e.g. \ disease \ status)}$
- Features X_1, \ldots, X_p (e.g. SNPs)

Question: distribution of $Y \mid X$ depends on X through which variables?

Controlled variable selection

- Response Y (e.g. disease status)
- Features X_1, \ldots, X_p (e.g. SNPs)

Question: distribution of $Y \mid X$ depends on X through which variables?

 $\underline{\text{Goal}}\text{: select set of features }X_j \text{ that are likely to be relevant}$ without too many false positives – $\frac{1}{2}$ do not run into the problem of irreproducibility

$$\mathsf{FDR} = \mathbb{E}\Big[\underbrace{\frac{\# \ \mathsf{false \ positives}}{\# \ \mathsf{features \ selected}}}_{\mathsf{FDP}}\Big]$$

Which variables should we report?

Feature importance Z_j from random forests

Which variables should we report?

Feature importance Z_j from random forests

Knockoffs as negative controls

Exchangeability of feature importance statistics

Knockoff agnostic feature importance ${\cal Z}$

$$(\underbrace{Z_1,\dots,Z_p}_{\text{originals}},\underbrace{\tilde{Z}_1,\dots,\tilde{Z}_p}_{\text{knockoffs}}) = z([\boldsymbol{X},\ \tilde{\boldsymbol{X}}],\ \boldsymbol{y})$$

Exchangeability of feature importance statistics

Knockoff agnostic feature importance ${\cal Z}$

$$(\underbrace{Z_1,\dots,Z_p}_{\text{originals}},\underbrace{\tilde{Z}_1,\dots,\tilde{Z}_p}_{\text{knockoffs}}) = z([\boldsymbol{X},\; \tilde{\boldsymbol{X}}],\; \boldsymbol{y})$$

This lecture

Can construct knockoff features such that

$$j \text{ null } \implies (Z_j, \tilde{Z}_j) \stackrel{d}{=} (\tilde{Z}_j, Z_j)$$

more generally $\ensuremath{\mathcal{T}}$ subset of nulls $\implies (Z, \tilde{Z})_{\mathsf{swap}(\ensuremath{\mathcal{T}})} \stackrel{d}{=} (Z, \tilde{Z})$

Knockoffs-adjusted scores

Ordering of variables + 1-bit p-values

Adjusted scores W_i with flip-sign property

Combine Z_j and \tilde{Z}_j into single (knockoff) score W_j

$$W_j = w_j(Z_j, \tilde{Z}_j)$$
 $w_j(\tilde{Z}_j, Z_j) = -w_j(Z_j, \tilde{Z}_j)$

e.g.
$$W_j = Z_j - \tilde{Z}_j$$
 $W_j = Z_j \vee \tilde{Z}_j \cdot \begin{cases} +1 & Z_j > \tilde{Z}_j \\ -1 & Z_j \leq \tilde{Z}_j \end{cases}$

 \Longrightarrow Conditional on |W|, signs of null W_j 's are i.i.d. coin flips

Selection by sequential testing

Select
$$S^+(t)$$
 \Longrightarrow $\widehat{\mathsf{FDP}}(t) = \frac{1+|S^-(t)|}{1 \vee |S^+(t)|}$ $S^+(t) = \{j : W_j \ge t\}$ $S^-(t) = \{j : W_j \le -t\}$

Theorem (Barber and C. ('15))

Select
$$S^+(\tau)$$
, $\tau = \min\{t : \widehat{\mathsf{FDP}}(t) \le q\}$

Knockoff

$$\mathbb{E}\left[\frac{\# \text{ false positives}}{\# \text{ selections} + q^{-1}}\right] \le q$$

Knockoff+

$$\mathbb{E}\left[\frac{\text{\# false positives}}{\text{\# selections}}\right] \leq q$$

Some Pretty Math... (I Think)

Proof Sketch of FDR Control

$$\tau = \min \left\{ t : \frac{1 + |\mathcal{S}^-(t)|}{|\mathcal{S}^+(t)| \vee 1} \le q \right\} \qquad \begin{array}{l} \mathcal{S}^+(t) = \{j : W_j \ge t\} \\ \mathcal{S}^-(t) = \{j : W_j \le -t\} \end{array}$$

$$\tau = \min \left\{ t : \frac{1 + |\mathcal{S}^{-}(t)|}{|\mathcal{S}^{+}(t)| \vee 1} \le q \right\} \qquad \begin{array}{l} \mathcal{S}^{+}(t) = \{j : W_j \ge t\} \\ \mathcal{S}^{-}(t) = \{j : W_j \le -t\} \end{array}$$

$$\mathsf{FDP}(\tau) = \frac{\#\{j \; \mathsf{null} : j \in \mathcal{S}^+(\tau)\}}{\#\{j : j \in \mathcal{S}^+(\tau)\} \vee 1}$$

$$\tau = \min \left\{ t : \frac{1 + |\mathcal{S}^{-}(t)|}{|\mathcal{S}^{+}(t)| \vee 1} \le q \right\} \qquad \begin{array}{l} \mathcal{S}^{+}(t) = \{j : W_j \ge t\} \\ \mathcal{S}^{-}(t) = \{j : W_j \le -t\} \end{array}$$

$$\mathsf{FDP}(\tau) = \frac{\#\{j \; \mathsf{null} : j \in \mathcal{S}^+(\tau)\}\}}{\#\{j : j \in \mathcal{S}^+(\tau)\} \vee 1} \cdot \frac{1 + \#\{j \; \mathsf{null} : j \in \mathcal{S}^-(\tau)\}}{1 + \#\{j \; \mathsf{null} : j \in \mathcal{S}^-(\tau)\}}$$

$$\tau = \min \left\{ t : \frac{1 + |\mathcal{S}^{-}(t)|}{|\mathcal{S}^{+}(t)| \vee 1} \le q \right\} \qquad \begin{array}{l} \mathcal{S}^{+}(t) = \{j : W_j \ge t\} \\ \mathcal{S}^{-}(t) = \{j : W_j \le -t\} \end{array}$$

$$\mathsf{FDP}(\tau) \leq q \cdot \frac{ \underbrace{\#\{j \; \mathsf{null} : j \in \mathcal{S}^+(\tau)\}}_{V^-(\tau)} }{1 + \underbrace{\#\{j \; \mathsf{null} : j \in \mathcal{S}^-(\tau)\}}_{V^-(\tau)} }$$

$$\tau = \min \left\{ t : \frac{1 + |\mathcal{S}^{-}(t)|}{|\mathcal{S}^{+}(t)| \vee 1} \le q \right\} \qquad \begin{array}{l} \mathcal{S}^{+}(t) = \{j : W_j \ge t\} \\ \mathcal{S}^{-}(t) = \{j : W_j \le -t\} \end{array}$$

$$\mathsf{FDP}(\tau) \leq q \cdot \underbrace{\frac{V^+(\tau)}{\#\{j \; \mathsf{null} : j \in \mathcal{S}^+(\tau)\}}}_{V^-(\tau)}$$

To show

$$\mathbb{E}\left|\frac{V^+(\tau)}{1+V^-(\tau)}\right| \le 1$$

$$\frac{V^+(t)}{1+V^-(t)}$$
 is a (super)martingale wrt $\mathcal{F}_t = \{\sigma(V^\pm(u))\}_{u \leq t}$

$$\frac{V^+(t)}{1+V^-(t)}$$
 is a (super)martingale wrt $\mathcal{F}_t=\{\sigma(V^\pm(u))\}_{u\leq t}$

$$rac{V^+(t)}{1+V^-(t)}$$
 is a (super)martingale wrt $\mathcal{F}_t=\{\sigma(V^\pm(u))\}_{u\leq t}$

Conditioned on $V^+(s)+V^-(s)$, $V^+(s)$ is hypergeometric

$$\frac{V^+(t)}{1+V^-(t)}$$
 is a (super)martingale wrt $\mathcal{F}_t = \{\sigma(V^\pm(u))\}_{u \leq t}$

Conditioned on $V^+(s) + V^-(s)$, $V^+(s)$ is hypergeometric

$$\mathbb{E}\left[\frac{V^{+}(s)}{1+V^{-}(s)} \mid V^{\pm}(t), V^{+}(s) + V^{-}(s)\right] \le \frac{V^{+}(t)}{1+V^{-}(t)}$$

Optional stopping theorem

$$\mathsf{FDR} \leq q \; \mathbb{E}\left[\frac{V^+(\tau)}{1+V^-(\tau)}\right] \leq q \; \mathbb{E}\left[\frac{\overbrace{V^+(0)}^{\mathsf{Bin}(\#\mathsf{nulls},1/2)}}{1+V^-(0)}\right] \leq q$$

Knockoffs for Random Features

Joint with Fan, Janson & Lv

Random pair (X,Y) (perhaps thousands/millions of covariates) $p(Y\,|\,X)$ depends on X through which variables?

Random pair (X,Y) (perhaps thousands/millions of covariates) $p(Y\,|\,X) \text{ depends on } X \text{ through which variables?}$

Working definition of null variables

Say $j \in \mathcal{H}_0$ is null iff $Y \perp \!\!\! \perp X_j \, | \, X_{-j}$

Random pair (X,Y) (perhaps thousands/millions of covariates) p(Y|X) depends on X through which variables?

Working definition of null variables

Say $j \in \mathcal{H}_0$ is null iff $Y \perp \!\!\! \perp X_j \mid X_{-j}$

Local Markov property \Longrightarrow non nulls are smallest subset ${\mathcal S}$ (Markov blanket) s.t.

$$Y \perp \{X_j\}_{j \in \mathcal{S}^c} \mid \{X_j\}_{j \in \mathcal{S}}$$

Random pair (X,Y) (perhaps thousands/millions of covariates) $p(Y \mid X)$ depends on X through which variables?

Working definition of null variables

Say $j \in \mathcal{H}_0$ is null iff $Y \perp \!\!\! \perp X_j \mid X_{-j}$

Local Markov property \Longrightarrow non nulls are smallest subset ${\mathcal S}$ (Markov blanket) s.t.

$$Y \perp \{X_j\}_{j \in \mathcal{S}^c} \mid \{X_j\}_{j \in \mathcal{S}}$$

$$\text{Logistic model:} \qquad \mathbb{P}(Y=0|X) = \frac{1}{1+e^{X^\top\beta}}$$

If variables $X_{1:p}$ are not perfectly dependent, then $j \in \mathcal{H}_0 \iff \beta_j = 0$

- i.i.d. samples from p(X, Y)
 - Distribution of X known
 - ullet Distribution of $Y \mid X$ (likelihood) completely unknown

i.i.d. samples from p(X,Y)

- ullet Distribution of X known
- ullet Distribution of $Y \mid X$ (likelihood) completely unknown
- Originals $X = (X_1, \dots, X_p)$
- ullet Knockoffs $ilde{X}=(ilde{X}_1,\dots, ilde{X}_p)$

i.i.d. samples from p(X,Y)

- Distribution of X known
- ullet Distribution of $Y \mid X$ (likelihood) completely unknown
- Originals $X = (X_1, \dots, X_p)$
- ullet Knockoffs $ilde{X} = (ilde{X}_1, \dots, ilde{X}_p)$

(1) Pairwise exchangeability

$$(X, \tilde{X})_{\mathsf{swap}(S)} \stackrel{d}{=} (X, \tilde{X})$$

e.g.

$$(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)_{\mathsf{swap}(\{2,3\})} \quad \overset{d}{=} \quad (X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3)$$

i.i.d. samples from p(X,Y)

- Distribution of X known
- ullet Distribution of $Y \mid X$ (likelihood) completely unknown
- Originals $X = (X_1, \dots, X_p)$
- ullet Knockoffs $ilde{X}=(ilde{X}_1,\dots, ilde{X}_p)$
- (1) Pairwise exchangeability

$$(X, \tilde{X})_{\mathsf{swap}(S)} \stackrel{d}{=} (X, \tilde{X})$$

e.g.

$$(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)_{\text{swap}(\{2,3\})} \stackrel{d}{=} (X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3)$$

(2) $\tilde{X} \perp Y \mid X$ (ignore Y when constructing knockoffs)

Exchangeability of feature importance statistics

Theorem (C., Fan, Janson Lv ('16))

For knockoff-agnostic scores and any subset ${\mathcal T}$ of nulls

$$(Z,Z)_{\mathit{swap}(\mathcal{T})} \stackrel{d}{=} (Z,\tilde{Z})$$

- ullet This holds no matter the relationship between Y and X
- ullet This holds conditionally on Y

Exchangeability of feature importance statistics

Theorem (C., Fan, Janson Lv ('16))

For knockoff-agnostic scores and any subset ${\mathcal T}$ of nulls

$$(Z,Z)_{\mathit{swap}(\mathcal{T})} \stackrel{d}{=} (Z,\tilde{Z})$$

- This holds no matter the relationship between Y and X
- This holds conditionally on Y

 \Longrightarrow FDR control (conditional on Y) no matter the relationship between X and Y

Swapping any subset of original and knockoff features leaves (joint) dist. invariant

e.g.
$$\mathcal{T} = \{2,3\}$$
 $(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$

Note $\tilde{X} \stackrel{d}{=} X$

Swapping any subset of original and knockoff features leaves (joint) dist. invariant

e.g.
$$\mathcal{T} = \{2,3\}$$
 $(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$

Note $\tilde{X} \stackrel{d}{=} X$

• $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Swapping any subset of original and knockoff features leaves (joint) dist. invariant

e.g.
$$\mathcal{T} = \{2,3\}$$
 $(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$

Note $\tilde{X} \stackrel{d}{=} X$

- $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Possible solution

$$(X, \tilde{X}) \sim \mathcal{N}(*, **)$$

Swapping any subset of original and knockoff features leaves (joint) dist. invariant

e.g.
$$\mathcal{T} = \{2,3\}$$
 $(X_1, \tilde{X_2}, \tilde{X_3}, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$

Note $\tilde{X} \stackrel{d}{=} X$

- $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Possible solution

$$(X, \tilde{X}) \sim \mathcal{N}(*, **)$$
 $* = \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu} \end{bmatrix}$ $* * = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{\Sigma} - \operatorname{diag}\{\boldsymbol{s}\} \\ \boldsymbol{\Sigma} - \operatorname{diag}\{\boldsymbol{s}\} & \boldsymbol{\Sigma} \end{bmatrix}$

Knockoffs for Gaussian features

Swapping any subset of original and knockoff features leaves (joint) dist. invariant

$$\text{e.g. } \mathcal{T} = \{2,3\} \qquad (X_1, \tilde{\pmb{X}}_{\pmb{2}}, \tilde{\pmb{X}}_{\pmb{3}}, \tilde{X}_{\pmb{1}}, \underline{\pmb{X}}_{\pmb{2}}, \underline{\pmb{X}}_{\pmb{3}}) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Note $\tilde{X} \stackrel{d}{=} X$

- $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Possible solution

$$(X, \tilde{X}) \sim \mathcal{N}(*, **) \qquad * = \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu} \end{bmatrix} \quad * * = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{\Sigma} - \operatorname{diag}\{\boldsymbol{s}\} \\ \boldsymbol{\Sigma} - \operatorname{diag}\{\boldsymbol{s}\} & \boldsymbol{\Sigma} \end{bmatrix}$$

s such that $** \succeq 0$

Knockoffs for Gaussian features

Swapping any subset of original and knockoff features leaves (joint) dist. invariant

$$\text{e.g. } \mathcal{T} = \{2,3\} \qquad (X_1, \tilde{\pmb{X}}_{\pmb{2}}, \tilde{\pmb{X}}_{\pmb{3}}, \tilde{X}_{\pmb{1}}, \underline{\pmb{X}}_{\pmb{2}}, \underline{\pmb{X}}_{\pmb{3}}) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Note $\tilde{X} \stackrel{d}{=} X$

- $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Possible solution

$$(X, \tilde{X}) \sim \mathcal{N}(*, **)$$
 $* = \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu} \end{bmatrix}$ $* * = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{\Sigma} - \operatorname{diag}\{\boldsymbol{s}\} \\ \boldsymbol{\Sigma} - \operatorname{diag}\{\boldsymbol{s}\} & \boldsymbol{\Sigma} \end{bmatrix}$

s such that $** \succeq 0$

• Given X, sample \tilde{X} from $\tilde{X} \mid X$ (regression formula)

Different from knockoff features for fixed X!

Knockoffs inference with random features

Pros:

- No parameters
- No p-values

- Holds for finite samples
- ullet No matter the dependence between Y and X
- No matter the dimensionality

Cons: Need to know distribution of covariates

Classical	MF Knockoffs		

Classical	MF Knockoffs		
Observations of X are fixed Inference is conditional on obs. values	Observations of X are ${\sf random}^1$		

 $1\,$ Often appropriate in 'big' data apps: e.g. SNPs of subjects randomly sampled

Classical	MF Knockoffs		
Observations of X are fixed Inference is conditional on obs. values	Observations of X are ${\rm random}^1$		
Strong model linking \boldsymbol{Y} and \boldsymbol{X}	Model free ²		

- $1\,$ Often appropriate in 'big' data apps: e.g. SNPs of subjects randomly sampled
- 2 Shifts the 'burden' of knowledge

Classical	MF Knockoffs	
Observations of X are fixed Inference is conditional on obs. values	Observations of X are $random^1$	
Strong model linking \boldsymbol{Y} and \boldsymbol{X}	Model free ²	
Useful inference even if model inexact	Useful inference even if model inexact 3	

- 1 Often appropriate in 'big' data apps: e.g. SNPs of subjects randomly sampled
- 2 Shifts the 'burden' of knowledge
- 3 More later

Shift in the burden of knowledge

When are our assumptions useful?

- When we have large amounts of unsupervised data (e.g. economic studies with same covariate info but different responses)
- When we have more prior information about the covariates than about their relationship with a response (e.g. GWAS)
- ullet When we control the distribution of X (experimental crosses in genetics, gene knockout experiments,...)

Obstacles to obtaining p-values

$$Y \mid X \sim \text{Bernoulli}(\text{logit}(X^{\top}\beta))$$

Figure: Distribution of null logistic regression p-values with n=500 and p=200

Obstacles to obtaining p-values

$\mathbb{P}\{p\text{-val} \leq \dots \%\}$	Sett. (1)	Sett. (2)	Sett. (3)	Sett. (4)
5%	16.89% (0.37)	19.17% (0.39)	$16.88\% \ (0.37)$	16.78% (0.37)
1%	6.78% (0.25)	8.49% (0.28)	$7.02\% \ (0.26)$	7.03% (0.26)
0.1%	1.53% (0.12)	$2.27\% \ (0.15)$	$1.87\% \ (0.14)$	2.04% (0.14)

Table: Inflated p-value probabilities with estimated Monte Carlo SEs

Shameless plug: distribution of high-dimensional LRTs

Wilks' phenomenon (1938)

$$2 \log L \stackrel{\mathrm{d}}{\to} \chi_{\mathrm{df}}^2$$

Shameless plug: distribution of high-dimensional LRTs

Wilks' phenomenon (1938)

$$2 \log L \stackrel{\mathrm{d}}{\to} \chi_{\mathrm{df}}^2$$

Sur, Chen, Candès (2017)

$$2 \log L \stackrel{\mathrm{d}}{\to} \kappa \left(\frac{p}{n}\right) \chi_{\mathrm{df}}^2$$

'Low' dim. linear model with dependent covariates

$$Z_{j} = |\hat{\beta}_{j}(\hat{\lambda}_{CV})|$$
$$W_{j} = Z_{j} - \tilde{Z}_{j}$$

Figure: Low-dimensional setting: n=3000, p=1000

'Low' dim. logistic model with indep. covariates

$$Z_j = |\hat{\beta}_j(\hat{\lambda}_{CV})|$$

$$W_j = Z_j - \tilde{Z}_j$$

Figure: Low-dimensional setting: n=3000, p=1000

'High' dim. logistic model with dependent covariates

$$Z_{j} = |\hat{\beta}_{j}(\hat{\lambda}_{CV})|$$

$$W_{j} = Z_{j} - \tilde{Z}_{j}$$

Figure: High-dimensional setting: n=3000, p=6000

Bayesian knockoff statistics

LCD (Lasso coeff. difference)

BVS (Bayesian variable selection) $Z_j = \mathbb{P}(\beta_j \neq 0 \,|\, \boldsymbol{y}, \boldsymbol{X})$ $W_i = Z_j - \tilde{Z}_j$

Bayesian knockoff statistics

LCD (Lasso coeff. difference)

BVS (Bayesian variable selection)

$$Z_j = \mathbb{P}(\beta_j \neq 0 \mid \boldsymbol{y}, \boldsymbol{X})$$

 $W_i = Z_i - \tilde{Z}_i$

Figure: n=300, p=1000 and Bayesian linear model with 60 expected variables

Inference is correct even if prior is wrong or MCMC has not converged

Partial summary

- No valid p-values even for logistic regression
- ullet Shifts the burden of knowledge to X (covariates); makes sense in many contexts
- ullet Robustness: simulations show properties of inference hold even when the model for X is only approximately right.
 - Always have access to these diagnostic checks (later)
- When assumptions are appropriate → gain a lot of power, and can use sophisticated selection techniques

How to Construct Knockoffs for some Graphical Models

Joint with Sabatti & Sesia

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

for $j = \{1, ..., p\}$ do

Sample \tilde{X}_j from law of $X_j \, | \, X_{-j}, \, \tilde{X}_{1:j-1}$ end

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

```
\begin{array}{ll} \text{for } j=\{1,\ldots,p\} \text{ do} \\ \mid \text{ Sample } \tilde{X}_j \text{ from law of } X_j \,|\, X_{-j},\, \tilde{X}_{1:j-1} \\ \text{end} \end{array}
```

e.g. p = 3

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

```
\begin{array}{l} \text{for } j=\{1,\ldots,p\} \text{ do } \\ \mid \text{ Sample } \tilde{X}_j \text{ from law of } X_j \, | \, X_{-j}, \, \tilde{X}_{1:j-1} \\ \text{end} \end{array}
```

- e.g. p = 3
 - Sample \tilde{X}_1 from $X_1 \mid X_{-1}$

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

```
\begin{array}{l} \text{for } j=\{1,\ldots,p\} \text{ do } \\ \mid \text{ Sample } \tilde{X}_j \text{ from law of } X_j \, | \, X_{-j}, \, \tilde{X}_{1:j-1} \\ \text{end} \end{array}
```

- e.g. p=3
 - Sample \tilde{X}_1 from $X_1 \mid X_{-1}$
 - \bullet Joint law of X, \tilde{X}_1 is known

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

```
\begin{array}{l} \text{for } j=\{1,\ldots,p\} \text{ do } \\ \big| \text{ Sample } \tilde{X}_j \text{ from law of } X_j \, \big| \, X_{\!-\!j}, \, \tilde{X}_{1:j-1} \\ \text{end} \end{array}
```

```
e.g. p = 3
```

- Sample \tilde{X}_1 from $X_1 \mid X_{-1}$
- ullet Joint law of X, \tilde{X}_1 is known
- ullet Sample $ilde{X}_2$ from $X_2\,|\,X_{-2}, ilde{X}_1$

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

 $\begin{array}{l} \text{for } j=\{1,\ldots,p\} \text{ do } \\ \big| \text{ Sample } \tilde{X}_j \text{ from law of } X_j \, \big| \, X_{\text{-}j}, \, \tilde{X}_{1:j-1} \\ \text{end} \end{array}$

e.g.
$$p = 3$$

- Sample \tilde{X}_1 from $X_1 \mid X_{-1}$
- ullet Joint law of X, \tilde{X}_1 is known
- ullet Sample $ilde{X}_2$ from $X_2\,|\,X_{-2}, ilde{X}_1$
- Joint law of $X, \tilde{X}_{1:2}$ is known

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

 $\begin{array}{l} \text{for } j=\{1,\ldots,p\} \text{ do } \\ \big| \text{ Sample } \tilde{X}_j \text{ from law of } X_j \, | \, X_{\text{-}j}, \, \tilde{X}_{1:j-1} \\ \text{end} \end{array}$

e.g.
$$p = 3$$

- Sample \tilde{X}_1 from $X_1 \mid X_{-1}$
- ullet Joint law of X, \tilde{X}_1 is known
- ullet Sample $ilde{X}_2$ from $X_2\,|\,X_{-2}, ilde{X}_1$
- Joint law of $X, X_{1:2}$ is known
- ullet Sample $ilde{X}_3$ from $X_3\,|\,X_{-3}, ilde{X}_{1:2}$

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

 $\begin{array}{l} \text{for } j=\{1,\ldots,p\} \text{ do } \\ \big| \text{ Sample } \tilde{X}_j \text{ from law of } X_j \,|\, X_{\text{-}j},\, \tilde{X}_{1:j-1} \\ \text{end} \end{array}$

e.g.
$$p=3$$

- Sample \tilde{X}_1 from $X_1 \mid X_{-1}$
- ullet Joint law of X, \tilde{X}_1 is known
- ullet Sample $ilde{X}_2$ from $X_2\,|\,X_{-2}, ilde{X}_1$
- Joint law of $X, X_{1:2}$ is known
- ullet Sample $ilde{X}_3$ from $X_3\,|\,X_{-3}, ilde{X}_{1:2}$
- \bullet Joint law of X,\tilde{X} is known and is pairwise exchangeable!

$$(X_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_1, X_2, X_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$$

Algorithm Sequential Conditional Independent Pairs

```
for j = \{1, \dots, p\} do
| Sample \ \tilde{X}_i \text{ from law of } X_i \mid X_{-i}, \ \tilde{X}_{1:i-1}
```

end

e.g. p = 3

- Sample \tilde{X}_1 from $X_1 \mid X_{-1}$
- ullet Joint law of X, \tilde{X}_1 is known
- ullet Sample $ilde{X}_2$ from $X_2\,|\,X_{-2}, ilde{X}_1$
- Joint law of $X, X_{1:2}$ is known
- ullet Sample X_3 from $X_3 \,|\, X_{-3}, X_{1:2}$
- \bullet Joint law of X,\tilde{X} is known and is pairwise exchangeable!

Usually not practical, easy in some cases (e.g. Markov chains)

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^{p} Q_j(X_j | X_{j-1})$$
 $(X \sim MC(q_1, Q))$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^p Q_j(X_j | X_{j-1})$$
 ($X \sim \mathsf{MC}(q_1, Q)$)

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a Markov chain

$$p(X_1,...,X_p) = q_1(X_1) \prod_{j=0}^{p} Q_j(X_j|X_{j-1})$$
 $(X \sim MC(q_1, Q))$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=0}^{p} Q_j(X_j | X_{j-1})$$
 $(X \sim MC(q_1, Q))$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a Markov chain

$$p(X_1,...,X_p) = q_1(X_1) \prod_{j=1}^{p} Q_j(X_j|X_{j-1})$$
 ($X \sim MC(q_1, Q)$)

 $\boldsymbol{X} = (X_1, X_2, \dots, X_p)$ is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^p Q_j(X_j | X_{j-1})$$
 ($X \sim MC(q_1, Q)$)

General algorithm can be implemented efficiently in the case of a Markov chain

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^p Q_j(X_j | X_{j-1})$$
 ($X \sim MC(q_1, Q)$)

General algorithm can be implemented efficiently in the case of a Markov chain

 $\boldsymbol{X} = (X_1, X_2, \dots, X_p)$ is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^p Q_j(X_j | X_{j-1})$$
 ($X \sim MC(q_1, Q)$)

General algorithm can be implemented efficiently in the case of a Markov chain

Knockoff copies of a Markov chain

 $\boldsymbol{X} = (X_1, X_2, \dots, X_p)$ is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^p Q_j(X_j | X_{j-1})$$
 $(X \sim MC(q_1, Q))$

General algorithm can be implemented efficiently in the case of a Markov chain

Knockoff copies of a Markov chain

 $\boldsymbol{X} = (X_1, X_2, \dots, X_p)$ is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^p Q_j(X_j | X_{j-1})$$
 ($X \sim MC(q_1, Q)$)

General algorithm can be implemented efficiently in the case of a Markov chain

Knockoff copies of a Markov chain

 $\boldsymbol{X} = (X_1, X_2, \dots, X_p)$ is a Markov chain

$$p(X_1, ..., X_p) = q_1(X_1) \prod_{j=2}^p Q_j(X_j | X_{j-1})$$
 $(X \sim MC(q_1, Q))$

General algorithm can be implemented efficiently in the case of a Markov chain

Recursive update of normalizing constants

(a) Sampling \tilde{X}_2 at step j=2.

(b) Sampling \tilde{X}_3 at step j=3.

ullet Sampling $ilde{X}_1$

$$p(X_1|X_{-1}) = p(X_1|X_2)$$

ullet Sampling $ilde{X}_1$

$$p(X_1|X_{-1}) = p(X_1|X_2) = \frac{p(X_1, X_2)}{p(X_2)}$$

$$p(\mathbf{X}_1|X_{-1}) = p(\mathbf{X}_1|X_2) = \frac{p(\mathbf{X}_1, X_2)}{p(X_2)} = \frac{q_1(\mathbf{X}_1) Q_2(X_2|\mathbf{X}_1)}{Z_1(X_2)}$$

$$Z_1(z) = \sum q_1(u) Q_2(z|u)$$

$$p(X_1|X_{-1}) = p(X_1|X_2) = \frac{p(X_1, X_2)}{p(X_2)} = \frac{q_1(X_1) Q_2(X_2|X_1)}{Z_1(X_2)}$$
$$Z_1(z) = \sum q_1(u) Q_2(z|u)$$

• Sampling X_2

 $p(X_2|X_{-2}, \tilde{X}_1) = p(X_2|X_1, X_3, \tilde{X}_1)$

$$p(X_2|X_{-2}, X_1) = p(X_2|X_1, X_3, X_1)$$

$$p(\mathbf{X}_1|X_{-1}) = p(\mathbf{X}_1|X_2) = \frac{p(\mathbf{X}_1, X_2)}{p(X_2)} = \frac{q_1(\mathbf{X}_1) Q_2(X_2|\mathbf{X}_1)}{Z_1(X_2)}$$
$$Z_1(z) = \sum q_1(u) Q_2(z|u)$$

• Sampling X_2

$$p(\mathbf{X_2}|X_{-2}, \tilde{X}_1) = p(\mathbf{X_2}|X_1, X_3, \tilde{X}_1) \propto Q_2(\mathbf{X_2}|X_1) Q_3(X_3|\mathbf{X_2}) \frac{Q_2(\mathbf{X_2}|\tilde{X}_1)}{Z_1(\mathbf{X_2})}$$

$$p(X_1|X_{-1}) = p(X_1|X_2) = \frac{p(X_1, X_2)}{p(X_2)} = \frac{q_1(X_1) Q_2(X_2|X_1)}{Z_1(X_2)}$$
$$Z_1(z) = \sum q_1(u) Q_2(z|u)$$

ullet Sampling $ilde{X}_2$

$$p(\mathbf{X_2}|X_{-2}, \tilde{X}_1) = p(\mathbf{X_2}|X_1, X_3, \tilde{X}_1) \propto Q_2(\mathbf{X_2}|X_1) Q_3(X_3|\mathbf{X_2}) \frac{Q_2(\mathbf{X_2}|\tilde{X}_1)}{Z_1(\mathbf{X_2})}$$

normalization constant $Z_2(X_3)$

$$Z_2(z) = \sum Q_2(u|X_1) Q_3(z|u) \frac{Q_2(u|\tilde{X}_1)}{Z_1(u)}$$

ullet Sampling $ilde{X}_3$

$$p(X_3|X_{-3}, \tilde{X}_1, \tilde{X}_2) = p(X_3|X_2, X_4, \tilde{X}_1, \tilde{X}_2)$$

$$\begin{split} p(\textbf{\textit{X}}_{\textbf{3}}|X_{-3}, \tilde{X}_{1}, \tilde{X}_{2}) &= p(\textbf{\textit{X}}_{\textbf{3}}|X_{2}, X_{4}, \tilde{X}_{1}, \tilde{X}_{2}) \\ &\propto Q_{3}(\textbf{\textit{X}}_{\textbf{3}}|X_{2}) \, Q_{4}(X_{4}|\textbf{\textit{X}}_{\textbf{3}}) \, \frac{Q_{3}(\textbf{\textit{X}}_{\textbf{3}}|\tilde{X}_{2})}{Z_{2}(\textbf{\textit{X}}_{\textbf{3}})} \end{split}$$

$$p(\mathbf{X_3}|X_{-3}, \tilde{X}_1, \tilde{X}_2) = p(\mathbf{X_3}|X_2, X_4, \tilde{X}_1, \tilde{X}_2)$$

$$\propto Q_3(\mathbf{X_3}|X_2) Q_4(X_4|\mathbf{X_3}) \frac{Q_3(\mathbf{X_3}|\tilde{X}_2)}{Z_2(\mathbf{X_3})}$$

normalization constant $Z_3(X_4)$

$$Z_3(z) = \sum_{u} Q_3(u|X_2) Q_4(z|u) \frac{Q_3(u|X_2)}{Z_2(u)}$$

• Sampling \hat{X}_3

$$p(X_3|X_{-3}, \tilde{X}_1, \tilde{X}_2) = p(X_3|X_2, X_4, \tilde{X}_1, \tilde{X}_2)$$

$$\propto Q_3(X_3|X_2) Q_4(X_4|X_3) \frac{Q_3(X_3|\tilde{X}_2)}{Z_2(X_3)}$$

normalization constant $Z_3(X_4)$

$$Z_3(z) = \sum_{u} Q_3(u|X_2) Q_4(z|u) \frac{Q_3(u|X_2)}{Z_2(u)}$$

ullet And so on sampling X_j ...

Computationally efficient O(p)

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a HMM if

$$\begin{cases} \boldsymbol{H} \sim \mathsf{MC}\left(q_1, \boldsymbol{Q}\right) & \text{(latent Markov chain)} \\ X_j | \boldsymbol{H} \sim X_j | H_j \overset{\mathsf{ind.}}{\sim} f_j(X_j; H_j) & \text{(emission distribution)} \end{cases}$$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a HMM if

$$\begin{cases} \boldsymbol{H} \sim \mathsf{MC}\left(q_1, \boldsymbol{Q}\right) & \text{(latent Markov chain)} \\ X_j | \boldsymbol{H} \sim X_j | H_j \overset{\mathsf{ind.}}{\sim} f_j(X_j; H_j) & \text{(emission distribution)} \end{cases}$$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a HMM if

$$\begin{cases} \boldsymbol{H} \sim \mathsf{MC}\left(q_1, \boldsymbol{Q}\right) & \text{(latent Markov chain)} \\ X_j | \boldsymbol{H} \sim X_j | H_j \overset{\mathsf{ind.}}{\sim} f_j(X_j; H_j) & \text{(emission distribution)} \end{cases}$$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a HMM if

$$\begin{cases} \boldsymbol{H} \sim \mathsf{MC}\left(q_1, \boldsymbol{Q}\right) & \text{(latent Markov chain)} \\ X_j | \boldsymbol{H} \sim X_j | H_j \overset{\mathsf{ind.}}{\sim} f_j(X_j; H_j) & \text{(emission distribution)} \end{cases}$$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a HMM if

$$\begin{cases} \boldsymbol{H} \sim \mathsf{MC}\left(q_1, \boldsymbol{Q}\right) & \text{(latent Markov chain)} \\ X_j | \boldsymbol{H} \sim X_j | H_j \overset{\mathsf{ind.}}{\sim} f_j(X_j; H_j) & \text{(emission distribution)} \end{cases}$$

$$\boldsymbol{X} = (X_1, X_2, \dots, X_p)$$
 is a HMM if

$$\begin{cases} \boldsymbol{H} \sim \mathsf{MC}\left(q_1, \boldsymbol{Q}\right) & \text{(latent Markov chain)} \\ X_j | \boldsymbol{H} \sim X_j | H_j \overset{\mathsf{ind.}}{\sim} f_j(X_j; H_j) & \text{(emission distribution)} \end{cases}$$

The $oldsymbol{H}$ variables are latent and only the $oldsymbol{X}$ variables are observed

Haplotypes and genotypes

 $\begin{array}{c} \mbox{Haplotype Set of alleles on a single chromosome} \\ \mbox{0/1 for common/rare allele} \end{array}$

Genotype Unordered pair of alleles at a single marker

Haplotype M Haplotype P Genotypes

A phenomenological HMM for haplotype & genotype data

Figure: Six haplotypes: color indicates 'ancestor' at each marker (Scheet, '06)

A phenomenological HMM for haplotype & genotype data

Figure: Six haplotypes: color indicates 'ancestor' at each marker (Scheet, '06)

Haplotype estimation/phasing (Browning, '11) Imputation of missing SNPs (Marchini, '10)

• fastPHASE (Scheet, '06)

- IMPUTE (Marchini, '07)
- MaCH (Li, '10)

A phenomenological HMM for haplotype & genotype data

Figure: Six haplotypes: color indicates 'ancestor' at each marker (Scheet, '06)

Haplotype estimation/phasing (Browning, '11) Imputation of missing SNPs (Marchini, '10)

• fastPHASE (Scheet, '06)

- IMPUTE (Marchini, '07)
- MaCH (Li, '10)

New application of same HMM: generation of knockoff copies of genotypes! Each genotype: sum of two independent HMM haplotype sequences

Theorem (Sesia, Sabatti, C. '17)

A knockoff copy of $ilde{X}$ of X can be constructed as

Theorem (Sesia, Sabatti, C. '17)

A knockoff copy of $ilde{X}$ of X can be constructed as

(1) Sample $m{H}$ from $p(m{H}|m{X})$ using forward-backward algorithm

Theorem (Sesia, Sabatti, C. '17)

A knockoff copy of $ilde{X}$ of X can be constructed as

- (1) Sample ${m H}$ from $p({m H}|{m X})$ using forward-backward algorithm
- (2) Generate a knockoff \hat{H} of H using the SCIP algorithm for a Markov chain

Theorem (Sesia, Sabatti, C. '17)

A knockoff copy of X of X can be constructed as

- (1) Sample $m{H}$ from $p(m{H}|m{X})$ using forward-backward algorithm
- (2) Generate a knockoff \hat{H} of H using the SCIP algorithm for a Markov chain
- (3) Sample $ilde{m{X}}$ from the emission distribution of $m{X}$ given $m{H} = ilde{m{H}}$

Simulations with synthetic Markov chain

Markov chain covariates with 5 hidden states. Binomial response

Figure: Power and FDP over 100 repetitions (true F_X) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_i=|\hat{\beta}_i(\hat{\lambda}_{\text{CV}})|, W_i=Z_i-\tilde{Z}_i$

Robustness

Markov chain covariates with 5 hidden states. Binomial response

Figure: Power and FDP over 100 repetitions (estimated F_X) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_j=|\hat{\beta}_j(\hat{\lambda}_{\text{CV}})|, \ W_j=Z_j-\tilde{Z}_j$

Simulations with synthetic HMM

HMM covariates with latent "clockwise" Markov chain. Binomial response

Figure: Power and FDP over 100 repetitions (true F_X) $n=1000, p=1000, \, {\rm target \; FDR} \colon \alpha=0.1$ $Z_j=|\hat{\beta}_j(\hat{\lambda}_{\rm CV})|, \, W_j=Z_j-\tilde{Z}_j$

Robustness

HMM covariates with latent "clockwise" Markov chain. Binomial response

Figure: Power and FDP over 100 repetitions (estimated F_X) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_j=|\hat{\beta}_j(\hat{\lambda}_{\text{CV}})|, \ W_j=Z_j-\tilde{Z}_j$

Out-of-sample parameter estimation

Inhomogeneous Markov chain covariates with 5 hidden states. Binomial response

Figure: Power and FDP over 100 repetitions (estimated F_X from independent dataset) n=1000, p=1000, target FDR: $\alpha=0.1$ $Z_i=|\hat{\beta}_i(\hat{\lambda}_{\text{CV}})|, W_i=Z_i-\tilde{Z}_i$

Genetic analysis

Crohn's disease (CD)

- Wellcome Trust Case Control Consortium (WTCCC)
- $n \approx 5,000$ subjects ($\approx 2,000$ patients, $\approx 3,000$ healthy controls)
- $p \approx 400,000 \text{ SNPs}$
- Previously analyzed in WTCCC (2007)

Genetic analysis

Crohn's disease (CD)

- Wellcome Trust Case Control Consortium (WTCCC)
- $n \approx 5,000$ subjects ($\approx 2,000$ patients, $\approx 3,000$ healthy controls)
- $p \approx 400,000 \text{ SNPs}$
- Previously analyzed in WTCCC (2007)

Lipid traits (HDL, LDL cholesterol)

- Northern Finland 1966 Birth Cohort study of metabolic syndrome (NFBC)
- $n \approx 4,700$ subjects
- $p \approx 330,000 \text{ SNPs}$
- Previously analyzed in Sabatti et al. (2009)

Knockoffs with nominal FDR level of 10%

Knockoffs with nominal FDR level of 10%

• Power is much higher:

Datasat	Number of discoveries				
Dataset	Original study	Knockoffs (average)			
CD	9	22.8			
HDL	5	8			
LDL	6	9.8			

Knockoffs with nominal FDR level of 10%

• Power is much higher:

Dataset	Number of discoveries				
Dataset	Original study	Knockoffs (average)			
CD	9	22.8			
HDL	5	8			
LDL	6	9.8			

 Quite a few of the discoveries made by knockoffs were confirmed by larger GWAS (Franke et al., '10, Willer et al., '13)

Knockoffs with nominal FDR level of 10%

• Power is much higher:

Dataset	Number of discoveries				
Dataset	Original study	Knockoffs (average)			
CD	9	22.8			
HDL	5	8			
LDL	6	9.8			

- Quite a few of the discoveries made by knockoffs were confirmed by larger GWAS (Franke et al., '10, Willer et al., '13)
- Knockoffs made a number of new discoveries

Knockoffs with nominal FDR level of 10%

• Power is much higher:

Dataset	Number of discoveries				
Dataset	Original study	Knockoffs (average)			
CD	9	22.8			
HDL	5	8			
LDL	6	9.8			

- Quite a few of the discoveries made by knockoffs were confirmed by larger GWAS (Franke et al., '10, Willer et al., '13)
- Knockoffs made a number of new discoveries
 - Expect some (roughly 10%) of these to be false discoveries

Knockoffs with nominal FDR level of 10%

Power is much higher:

Dataset	Number of discoveries				
Dataset	Original study	Knockoffs (average)			
CD	9	22.8			
HDL	5	8			
LDL	6	9.8			

- Quite a few of the discoveries made by knockoffs were confirmed by larger GWAS (Franke et al., '10, Willer et al., '13)
- Knockoffs made a number of new discoveries
 - ullet Expect some (roughly 10%) of these to be false discoveries
 - It is likely that many of these correspond to true discoveries

Knockoffs with nominal FDR level of 10%

Power is much higher:

Dataset	Number of discoveries				
Dataset	Original study	Knockoffs (average)			
CD	9	22.8			
HDL	5	8			
LDL	6	9.8			

- Quite a few of the discoveries made by knockoffs were confirmed by larger GWAS (Franke et al., '10, Willer et al., '13)
- Knockoffs made a number of new discoveries
 - Expect some (roughly 10%) of these to be false discoveries
 - It is likely that many of these correspond to true discoveries
 - Evidence from independent studies about adjacent genes shows some of the top unconfirmed hits to be promising candidates

Selection frequency	SNP (cluster size)	Chr.	Position range (Mb)	Franke et al. '10	WTCCC '07
100%	rs11209026 (2)	1	67.31-67.42	yes	yes
99%	rs6431654 (20)	2	233.94-234.11	yes	yes
98%	rs6688532 (33)	1	169.4–169.65		yes
97%	rs17234657 (1)	5	40.44-40.44	yes	yes
95%	rs11805303 (16)	1	67.31-67.46	yes	yes
91%	rs7095491 (18)	10	101.26-101.32	yes	yes
91%	rs3135503 (16)	16	49.28-49.36	yes	yes
81%	rs7768538 (1145)	6	25.19-32.91	yes	yes
80%	rs6601764 (1)	10	3.85-3.85		yes
75%	rs7655059 (5)	4	89.5-89.53		
73%	rs6500315 (4)	16	49.03-49.07	yes	yes
72%	rs2738758 (5)	20	61.71-61.82	yes	
70%	rs7726744 (46)	5	40.35-40.71	yes	yes
68%	rs11627513 (7)	14	96.61-96.63		
66%	rs4246045 (46)	5	150.07-150.41	yes	yes
62%	rs9783122 (234)	10	106.43-107.61		
61%	rs6825958 (3)	4	55.73-55.77		

Table: SNP clusters found to be important for CD over 100 repetitions of knockoffs.

Selection frequency	SNP (cluster size)	Chr.	Position range (Mb)	Confirmed in Willer et al. '13	Found in Sabatti et al. '09
100%	rs1532085 (4)	15	58.68-58.7	yes	yes
100%	rs7499892 (1)	16	57.01-57.01	yes	yes
100%	rs1800961 (1)	20	43.04-43.04	yes	
99%	rs1532624 (2)	16	56.99-57.01	yes	yes
95%	rs255049 (142)	16	66.41-69.41	yes	yes

Table: SNP clusters found to be important for HDL over 100 repetitions of knockoffs.

Selection frequency	SNP (cluster size)	Chr.	Position range (Mb)	Confirmed in Willer et al. '13	Found in Sabatti et al. '09
99%	rs4844614 (34)	1	207.3-207.88		yes
97%	rs646776 (5)	1	109.8-109.82	yes	yes
97%	rs2228671 (2)	19	11.2-11.21	yes	yes
94%	rs157580 (4)	19	45.4-45.41	yes	yes
92%	rs557435 (21)	1	55.52-55.72	yes	
80%	rs10198175 (1)	2	21.13-21.13	yes	yes
76%	rs10953541 (58)	7	106.48-107.3		
62%	rs6575501 (1)	14	95.64-95.64		

Table: SNP clusters found to be important for LDL over 100 repetitions of knockoffs.

Figure: Number of discoveries made on different GWAS datasets (left) and proportion of discoveries confirmed by a meta-analysis (right). Red lines correspond to results published in papers that first analyzed our datasets

Data analysis issues

- (1) Estimate distribution of SNPs (HMM) to build knockoffs
- (2) Highly correlated SNPs

Data analysis issues

- (1) Estimate distribution of SNPs (HMM) to build knockoffs
- (2) Highly correlated SNPs

- (1) Estimating the HMM
 - Methodology of Scheet and Stephens '06
 - Fitted with fastPHASE (EM), $K \approx 10$ possible hidden states
 - For each individual, making a knockoff copy of 70,000 SNPs takes about 1.3 sec on Intel Xeon CPU (2.6GHz) (after parameter estimation)

Highly correlated SNPs

Hard to choose between two or more nearly-identical variables if the data supports at least one of them being selected

- Cluster SNPs using estimated correlations as similarity measure and single-linkage cutoff of 0.5
 - → settle for discovering important SNP clusters among
 71,145 candidates for CD and 59,005 for cholesterol

- Cluster SNPs using estimated correlations as similarity measure and single-linkage cutoff of 0.5
 - → settle for discovering important SNP clusters among 71,145 candidates for CD and 59,005 for cholesterol
- Cluster variables? Choose a representative SNP from each cluster (see also Reid and Tibshirani, '15)
 - \rightsquigarrow approximate null: cluster rep $\perp \!\!\! \perp Y \mid$ other reps

- Cluster SNPs using estimated correlations as similarity measure and single-linkage cutoff of 0.5
 - → settle for discovering important SNP clusters among 71,145 candidates for CD and 59,005 for cholesterol
- Cluster variables? Choose a representative SNP from each cluster (see also Reid and Tibshirani, '15)
 - \rightsquigarrow approximate null: cluster rep $\perp \!\!\! \perp Y \mid$ other reps
- Which rep? Most significant SNP as computed on 20% of the samples

- Cluster SNPs using estimated correlations as similarity measure and single-linkage cutoff of 0.5
 - → settle for discovering important SNP clusters among 71,145 candidates for CD and 59,005 for cholesterol
- Cluster variables? Choose a representative SNP from each cluster (see also Reid and Tibshirani, '15)
 - \leadsto approximate null: cluster rep $\perp \!\!\! \perp Y \mid$ other reps
- Which rep? Most significant SNP as computed on 20% of the samples
- Safe data re-use (optimize power) as in Barber and C. (16)

Safe data re-use

We used an independent split of the data to select representative SNPs

Re-use data to improve ordering but not to compute signs (1-bit p-values)

Simulations with genetic covariates

- ullet Real genetic covariates X
- ullet Logistic conditional model $Y \mid X$ with 60 variables

Simulations with genetic covariates

- ullet Real genetic covariates X
- ullet Logistic conditional model $Y \mid X$ with 60 variables

Figure: Power and FDP over 100 repetitions $Z_j=|\hat{eta}_j(\hat{\lambda}_{\text{CV}})|,\,W_j=Z_j-\tilde{Z}_j,\, \text{target FDR: } \alpha=0.1$

Diagnostic plot: simulation with data from Chromosome 1

Feature importance $Z_j = |\hat{\beta}_j(\lambda_{\text{CV}})|$

Diagnostic plot: simulation with data from Chromosome 1

Feature importance $Z_j = |\hat{\beta}_j(\lambda_{\text{CV}})|$

Results of data analysis

Selection frequency	SNP (cluster size)	Chr.	Position range (Mb)	Franke et al. '10	WTCCC '07
100%	rs11209026 (2)	1	67.31-67.42	yes	yes
99%	rs6431654 (20)	2	233.94-234.11	yes	yes
98%	rs6688532 (33)	1	169.4–169.65		yes
97%	rs17234657 (1)	5	40.44-40.44	yes	yes
95%	rs11805303 (16)	1	67.31–67.46	yes	yes
91%	rs7095491 (18)	10	101.26-101.32	yes	yes
91%	rs3135503 (16)	16	49.28-49.36	yes	yes
81%	rs7768538 (1145)	6	25.19-32.91	yes	yes
80%	rs6601764 (1)	10	3.85-3.85		yes
75%	rs7655059 (5)	4	89.5-89.53		
73%	rs6500315 (4)	16	49.03-49.07	yes	yes
72%	rs2738758 (5)	20	61.71-61.82	yes	
70%	rs7726744 (46)	5	40.35-40.71	yes	yes
68%	rs11627513 (7)	14	96.61-96.63		
66%	rs4246045 (46)	5	150.07-150.41	yes	yes
62%	rs9783122 (234)	10	106.43-107.61		
61%	rs6825958 (3)	4	55.73-55.77		

Table: SNP clusters found to be important for CD over 100 repetitions of knockoffs.

Selection frequency	SNP (cluster size)	Chr.	Position range (Mb)	Confirmed in Willer et al. '13	Found in Sabatti et al. '09
100%	rs1532085 (4)	15	58.68-58.7	yes	yes
100%	rs7499892 (1)	16	57.01-57.01	yes	yes
100%	rs1800961 (1)	20	43.04-43.04	yes	
99%	rs1532624 (2)	16	56.99-57.01	yes	yes
95%	rs255049 (142)	16	66.41–69.41	yes	yes

Table: SNP clusters found to be important for HDL over 100 repetitions of knockoffs.

Selection frequency	SNP (cluster size)	Chr.	Position range (Mb)	Confirmed in Willer et al. '13	Found in Sabatti et al. '09
99%	rs4844614 (34)	1	207.3-207.88		yes
97%	rs646776 (5)	1	109.8-109.82	yes	yes
97%	rs2228671 (2)	19	11.2-11.21	yes	yes
94%	rs157580 (4)	19	45.4-45.41	yes	yes
92%	rs557435 (21)	1	55.52-55.72	yes	
80%	rs10198175 (1)	2	21.13-21.13	yes	yes
76%	rs10953541 (58)	7	106.48-107.3		
62%	rs6575501 (1)	14	95.64-95.64		

Table: SNP clusters found to be important for LDL over 100 repetitions of knockoffs.

Summary and open questions

- Knockoffs offers finite sample inferential properties in subtle and important problems
- Knockoffs is a powerful, flexible, and robust solution whenever there is considerable outside information on dist, of X such as GWAS
- Knockoffs addresses the replicability issue
- Where is the burden of knowledge?

Valid inference/selection

Summary and open questions

- Knockoffs offers finite sample inferential properties in subtle and important problems
- Knockoffs is a powerful, flexible, and robust solution whenever there is considerable outside information on dist. of X such as GWAS
- Knockoffs addresses the replicability issue
- Where is the burden of knowledge?

- Robustness theory (Barber, Samworth and C.)
- Derandomization (multiple knockoffs)
- Knockoff constructions and statistics for other applications

Derandomization

Combine information from mutiple knockoffs: who's consistently showing up?

Figure: Cartoon representation of W's from different sample realizations of knockoffs