COMP9020 Week 7 Term 3, 2020 Logic I: Boolean logic

- [RW] Ch. 2, 10
- [LLM] Ch. 3

What is logic?

Logic is about formalizing reasoning and defining truth

- Adding rigour
- Removing ambiguity
- Mechanizing the process of reasoning

Loose history of logic

- (Ancient times): Logic exlusive to philosophy
- Mid-19th Century: Logical foundations of Mathematics (Boole, Jevons, Schröder, etc)
- 1910: Russell and Whitehead's Principia Mathematica
- 1928: Hilbert proposes Entscheidungsproblem
- 1931: Gödel's Incompleteness Theorem
- 1935: Church's Lambda calculus
- 1936: Turing's Machine-based approach
- 1930s: Shannon develops Circuit logic
- 1960s: Formal verification; Relational databases

Applications to Computer Science

 ${\sf Computation} \quad = \quad {\sf Calculation} \, + \, {\sf Symbolic \ manipulation}$

Applications to Computer Science

 ${\sf Computation} \quad = \quad {\sf Calculation} \quad + \quad {\sf Symbolic \ manipulation}$

Logic as 2-valued computation (Boolean logic):

- Circuit design
- Code optimization
- Boolean algebra

Applications to Computer Science

Computation = Calculation + Symbolic manipulation

Logic as symbolic reasoning (Propositional logic, and beyond):

- Formal verification
- Proof assistance
- Knowledge Representation and Reasoning
- Automated reasoning
- Databases

Outline

- Boolean logic
- Boolean functions
- CNF/DNF
- Karnaugh maps
- Boolean algebras

Outline

- Boolean logic
- Boolean functions
- CNF/DNF
- Karnaugh maps
- Boolean algebras

Boolean logic

Boolean logic is about performing calculations in a "simple" mathematical structure.

- complex calculations can be built entirely from these simple ones
- can help identify simplifications that improve performance at the circuit level
- can help identify simplifications that improve presentation at the programming level

The Boolean Algebra B

Definition

The (two-element) **Boolean algebra** is defined to be the set $\mathbb{B}=\{0,1\}$, together with the functions $!:\mathbb{B}\to\mathbb{B}$, &&: $\mathbb{B}^2\to\mathbb{B}$, and $||:\mathbb{B}^2\to\mathbb{B}$, defined as follows:

$$|x = (1 - x)$$
 $x \&\& y = \min\{x, y\}$ $x \parallel y = \max\{x, y\}$

The Boolean Algebra \mathbb{B} – Alternative definition

Definition

The (two-element) **Boolean algebra** is defined to be the set $\mathbb{B} = \{ \text{false}, \text{true} \}$, together with the functions $! : \mathbb{B} \to \mathbb{B}$, &&: $\mathbb{B}^2 \to \mathbb{B}$, and $\| : \mathbb{B}^2 \to \mathbb{B}$, defined as follows:

X	!x
false	true
true	false
	'

X	y	x && y
false	false	false
false	true	false
true	false	false
true	true	true

X	y	$x \parallel y$
false	false	false
false	true	true
true	false	true
true	true	true

Alternative notation

Commonly, the following alternative notation is used:

For \mathbb{B} : $\{F, T\}$

For !x: \overline{x} , x', $\sim x$, $\neg x$

For x && y: xy, $x \land y$

For $x \parallel y$: x + y, $x \vee y$

Properties

We observe that !, &&, and || satisfy the following:

For all
$$x, y, z \in \mathbb{B}$$
:
 Commutativity
$$x \parallel y = y \parallel x$$

$$x \&\& y = y \&\& x$$
Associativity
$$(x \parallel y) \parallel z = x \parallel (y \parallel z)$$

$$(x \&\& y) \&\& z = x \&\& (y \&\& z)$$
Distribution
$$x \parallel (y \&\& z) = (x \parallel y) \&\& (x \parallel z)$$

$$x \&\& (y \parallel z) = (x \&\& y) \parallel (x \&\& z)$$
Identity
$$x \parallel \text{false} = x$$

$$x \&\& \text{true} = x$$
Complementation
$$x \parallel (!x) = \text{true}$$

$$x \&\& (!x) = \text{false}$$

Examples

- Calculate x && x for all $x \in \mathbb{B}$
- Calculate ((1 && 0) || ((!1) && (!0))

Outline

- Boolean logic
- Boolean functions
- CNF/DNF
- Karnaugh maps
- Boolean algebras

Boolean Functions

Definition

An *n*-ary Boolean function is a map $f : \mathbb{B}^n \to \mathbb{B}$.

Question

How many unary Boolean functions are there? How many binary functions? n-ary?

Examples

- ! is a unary Boolean function
- &&, ∥ are binary Boolean functions
- f(x, y) = !(x && y) is a binary boolean function (NAND)
- AND $(x_0, x_1, ...) = (\cdots ((x_0 \&\& x_1) \&\& x_2) \cdots)$ is a (family) of Boolean functions
- $OR(x_0, x_1, ...) = (\cdots ((x_0 \parallel x_1) \parallel x_2) \cdots)$ is a (family) of Boolean functions

Application: Adding two one-bit numbers

How can we implement:

$$\mathsf{add}: \mathbb{B}^2 \to \mathbb{B}^2$$

defined as

X	y	add(x, y)
0	0	00
0	1	01
1	0	01
1	1	10

Application: Adding two one-bit numbers

How can we implement:

$$\mathsf{add}: \mathbb{B}^2 \to \mathbb{B}^2$$

defined as

X	y	add(x, y)
0	0	00
0	1	01
1	0	01
1	1	10

Use two Boolean functions!

NB

Digital circuits are just sequences of Boolean functions.

Outline

- Boolean logic
- Boolean functions
- CNF/DNF
- Karnaugh maps
- Boolean algebras

Conjunctive and Disjunct ive normal form

Definition

- A **literal** is a unary Boolean function
- A minterm is a Boolean function of the form $AND(l_1(x_1), l_2(x_2), ..., l_n(x_n))$ where the l_i are literals
- A maxterm is a Boolean function of the form $OR(I_1(x_1), I_2(x_2), \dots, I_n(x_n))$ where the I_i are literals
- A CNF Boolean function is a function of the form $AND(m_1, m_2,...)$, where the m_i are maxterms.
- A **DNF Boolean function** is a function of the form $OR(m_1, m_2, ...)$, where the m_i are minterms.

Examples

• $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$:

NB

Examples

• $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$: DNF, but not CNF

NB

Examples

- $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$: DNF, but not CNF
- $g(x, y, z) = (x \parallel (!y) \parallel z) \&\& (x \parallel (!y) \parallel (!z)) = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$:

NB

Examples

- $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$: DNF, but not CNF
- $g(x, y, z) = (x \| (!y) \| z) \&\& (x \| (!y) \| (!z)) = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$: CNF function, but not DNF

NB

Examples

- $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$: DNF, but not CNF
- $g(x, y, z) = (x \| (!y) \| z) \&\& (x \| (!y) \| (!z)) = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$: CNF function, but not DNF
- $h(x, y, z) = (x \&\& (!y) \&\& z) = x \overline{y} z$:

NB

Examples

- $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$: DNF, but not CNF
- $g(x, y, z) = (x \| (!y) \| z) \&\& (x \| (!y) \| (!z)) = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$: CNF function, but not DNF
- $h(x, y, z) = (x \&\& (!y) \&\& z) = x \overline{y} z$: both CNF and DNF

NB

Examples

- $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$: DNF, but not CNF
- $g(x, y, z) = (x \| (!y) \| z) \&\& (x \| (!y) \| (!z)) = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$: CNF function, but not DNF
- $h(x, y, z) = (x \&\& (!y) \&\& z) = x \overline{y} z$: both CNF and DNF
- j(x, y, z) = x + y(z + x):

NB

Examples

- $f(x, y, z) = (x \&\& (!y) \&\& z) || (x \&\& (!y) \&\& (!z)) = x \overline{y} z + x \overline{y} \overline{z}$: DNF, but not CNF
- $g(x, y, z) = (x \| (!y) \| z) \&\& (x \| (!y) \| (!z)) = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$: CNF function, but not DNF
- $h(x, y, z) = (x \&\& (!y) \&\& z) = x \overline{y} z$: both CNF and DNF
- j(x, y, z) = x + y(z + x): Neither CNF nor DNF

NB

Theorem

Every Boolean function can be written as a function in DNF/CNF

Proof...

Canonical DNF

Given an *n*-ary boolean function $f: \mathbb{B}^n \to \mathbb{B}$ we construct an equivalent DNF boolean function as follows:

For each $=(b_1,\ldots,b_n)\in\mathbb{B}^n$ we define the minterm

$$m_{\mathbf{b}} = \text{And}(I_1(x_1), I_2(x_2), \dots, I_n(x_n))$$

where

$$I_i(x_i) = \begin{cases} x_i & \text{if } b_i = 1\\ !x_i & \text{if } b_i = 0 \end{cases}$$

We then define the DNF formula:

$$f_{\mathsf{DNF}} = \sum_{f(\mathbf{b})=1} m,$$

that is, f_{DNF} is the disjunction (or) over all minterms corresponding to elements $\mathbf{b} \in \mathbb{B}$ where $f(\mathbf{b}) = 1$.

Canonical DNF

Theorem

f and f_{DNF} are the same function.

Exercise

Exercises

RW: 10.2.3 Find the canonical DNF form of each of the following expressions in variables x, y, z

- xy
- $xy + \overline{z}$
- f(x, y, z) = 1

Exercise

Exercises

RW: 10.2.3 Find the canonical DNF form of each of the following expressions in variables x, y, z

- xy?
- $xy + \overline{z}$?
- f(x, y, z) = 1?

Outline

- Boolean logic
- Boolean functions
- CNF/DNF
- Karnaugh maps
- Boolean algebras

Karnaugh Maps

For up to four variables (propositional symbols) a diagrammatic method of simplification called **Karnaugh maps** works quite well. For every propositional function of k=2,3,4 variables we construct a rectangular array of 2^k cells. We mark the squares corresponding to the value true with eg "+" and try to cover these squares with as few rectangles with sides 1 or 2 or 4 as possible.

Example		
	yz y z ȳz ȳz	
	x + + + +	
	\bar{x} $+$ $+$ $+$	

- The rectangles can go 'around the corner'/the actual map should be seen as a torus.
- Rectangles must have sides of 1, 2 or 4 squares (three adjacent cells are useless).

Example

- The rectangles can go 'around the corner'/the actual map should be seen as a torus.
- Rectangles must have sides of 1, 2 or 4 squares (three adjacent cells are useless).

Example

38

$$E = (xy) \lor$$

Canonical form would consist of writing all cells separately (6 clauses).

- The rectangles can go 'around the corner'/the actual map should be seen as a *torus*.
- Rectangles must have sides of 1, 2 or 4 squares (three adjacent cells are useless).

Example

$$E = (xy) \lor (\bar{x}\bar{y}) \lor$$

Canonical form would consist of writing all cells separately (6 clauses).

- The rectangles can go 'around the corner'/the actual map should be seen as a torus.
- Rectangles must have sides of 1, 2 or 4 squares (three adjacent cells are useless).

Example

$$E = (xy) \lor (\bar{x}\bar{y}) \lor z$$

Canonical form would consist of writing all cells separately (6 clauses).

Exercise

Exercise

RW: 10.6.6(c)

Exercise

Exercise

RW: 10.6.6(c)

!

Outline

- Boolean logic
- Boolean functions
- CNF/DNF
- Karnaugh maps
- Boolean algebras

Definition: Boolean Algebra

A Boolean algebra is a structure $(T, \vee, \wedge, ', 0, 1)$ where

- $0, 1 \in T$
- $\vee : T \times T \to T$ (called **join**)
- $\wedge : T \times T \to T$ (called **meet**)
- $': T \to T$ (called **complementation**)

and the following laws hold for all $x, y, z \in T$:

commutative: •
$$x \lor y = y \lor x$$

•
$$x \lor y = y \lor x$$

$$\bullet \ \ x \land y = y \land x$$

associative: •
$$(x \lor y) \lor z = x \lor (y \lor z)$$

$$\bullet (x \wedge y) \wedge z = x \wedge (y \wedge z)$$

distributive: •
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

$$\bullet \ x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

identity:
$$x \lor 0 = x$$
, $x \land 1 = x$

complementation:
$$x \lor x' = 1$$
, $x \land x' = 0$

Example

The set of subsets of a set X:

- T : Pow(X)
- \bullet \wedge : \cap
- V: U
- ' : c
- 0 : ∅
- 1 : X

Laws of Boolean algebra follow from Laws of Set Operations.

Example

The two element Boolean Algebra:

$$\mathbb{B} = (\{\mathtt{true}, \mathtt{false}\}, \&\&, \|, !, \mathtt{false}, \mathtt{true})$$

where $!, \&\&, \parallel$ are defined as:

- !true = false; !false = true,
- true && true = true; ...
- true | true = true; ...

Example

Cartesian products of \mathbb{B} , that is *n*-tuples of 0's and 1's with Boolean operations, e.g. \mathbb{B}^4 :

join:
$$(1,0,0,1) \lor (1,1,0,0) = (1,1,0,1)$$

meet:
$$(1,0,0,1) \land (1,1,0,0) = (1,0,0,0)$$

complement:
$$(1,0,0,1)' = (0,1,1,0)$$

Example

Functions from any set S to \mathbb{B} ; their set is denoted $\mathsf{Map}(S,\mathbb{B})$

If $f, g: S \longrightarrow \mathbb{B}$ then

- $(f \lor g) : S \longrightarrow \mathbb{B}$ is defined by $s \mapsto f(s) \parallel g(s)$
- ullet $(f \land g) : S \longrightarrow \mathbb{B}$ is defined by $s \mapsto f(s) \&\& g(s)$
- $f': S \longrightarrow \mathbb{B}$ is defined by $s \mapsto !f(s)$
- $0: S \longrightarrow \mathbb{B}$ is the function f(s) = false
- 1: $S \longrightarrow \mathbb{B}$ is the function f(s) = true

Proofs in Boolean Algebras

Show an identity holds using the laws of Boolean Algebra, then that identity holds in all Boolean Algebras.

Example

In all Boolean Algebras

$$x \land x = x$$

for all $x \in T$.

Proof:

$$\begin{array}{lll} x &= x \wedge 1 & & [\text{Identity}] \\ &= x \wedge (x \vee x') & & [\text{Complement}] \\ &= (x \wedge x) \vee (x \wedge x') & & [\text{Distributivity}] \\ &= (x \wedge x) \vee 0 & & [\text{Complement}] \\ &= (x \wedge x) & & [\text{Identity}] \end{array}$$

Duality

Definition

If E is an expression defined using variables (x, y, z, etc), constants (0 and 1), and the operations of Boolean Algebra $(\land, \lor, \text{ and }')$ then dual(E) is the expression obtained by replacing \land with \lor (and vice-versa) and 0 with 1 (and vice-versa).

Definition

If $(T, \vee, \wedge, ', 0, 1)$ is a Boolean Algebra, then $(T, \wedge, \vee, ', 1, 0)$ is also a Boolean algebra, known as the **dual** Boolean algebra.

Theorem (Principle of duality)

If you can show $E_1 = E_2$ using the laws of Boolean Algebra, then $dual(E_1) = dual(E_2)$.

Duality

Example

We have shown $x \wedge x = x$.

By duality: $x \lor x = x$.

