Е.Г.Крылова

Решение оптимизационных задач в среде MS Excel

1. ПОСТАНОВКА ОПТИМИЗАЦИОННОЙ ЗАДАЧИ

Общая формулировка

Оптимизационная задача сводится к нахождению такого набора значений переменных $X_1, X_2, ..., X_N$, при которых функция $F(X_1, X_2, ..., X_N)$ принимает максимальное или минимальное значение, и выполняются ограничения вида $G_K(X_1, X_2, ..., X_N) \leq C_K$.

Оптимизация – не абстракция, а реальность!

Несмотря на кажущуюся заумность и абстрактность математической постановки оптимизационной задачи, мы в действительности постоянно вынуждены решать оптимизационные задачи в повседневной жизни. Как потратить нищенскую зарплату, чтобы и семья была сыта, и как можно больше денег удалось отложить на подарок ребёнку ко дню рождения? В каком порядке сдавать накопившиеся «хвосты», чтобы минимизировать моральный ущерб от родительской порки? Как выстроить маршрут, чтобы посетить все нужные пункты?

Ещё больше оптимизационных задач возникает в сфере экономики и управления. Какие изделия следует выпускать из имеющихся материалов, чтобы получить максимальную прибыль от их реализации? Как наиболее экономно раскроить материал на требуемое количество заготовок? Каким маршрутом везти партию товара из Парижа в Конотоп, чтобы минимизировать поборы и при этом не разориться на бензине и зарплате водителя?

Терминология

Итак, убедившись в том, что жизнь непрерывно ставит перед нами оптимизационные задачи, вернёмся к математической постановке. Переменные $X_1, X_2, ..., X_N$ будем называть **искомыми переменными**, функцию $F(X_1, X_2, ..., X_N)$ — **целевой функцией**, а функции $G_K(X_1, X_2, ..., X_N) \le C_K$ - ограничениями.

Для решения оптимизационных задач разработан специальный математический аппарат (в ходе изучения математики вы, возможно, сталкивались или столкнётесь с симплекс-методом решения задач линейного программирования¹). Решениям отдельных видов оптимизационных задач посвящены сотни научных работ, но математические аспекты оптимизации – вне сферы наших интересов в курсе информатики. Нас интересует практика их решения с помощью замечательного инструмента – табличного процессора MS Excel.

¹ Линейное программирование – не имеет прямого отношения к программированию и даже не вполне линейно. Это раздел математики. Посвящённый формулировке и решению оптимизационных задач. А симплекс-метод в его бескомпьютерном варианте – способ решения таких задач, при котором даже для небольшой задачи приходится исписывать целую тетрадку в 12 листов.

2. ВОЗМОЖНОСТИ ОПТИМИЗАЦИИ В ЕХСЕL

Надстройка Поиск решения и её активизация

В состав Microsoft Excel'98 и выше входит специализированная надстройка *Поиск решения*, предназначенная для решения оптимизационных задач.

По умолчанию эта надстройка является неактивной. Для подключения её в MS Office 2010 необходимо выполнить следующее:

- на вкладке Файл выберите Параметры, в списке групп настроек параметров Надстройки;
- в нижней части окна нажмите кнопку Перейти для управления надстройками Excel;

• в появившемся окне установите флажок Поиск решения и нажмите ОК

Если всё сделано верно, надстройка Поиск решения будет доступна на вкладке Данные:

Общая последовательность действий

Решение задачи в Excel включает 2 этапа:

- подготовка расчётной таблицы, содержащей ячейки для искомых переменных и вычисляемые на их основе функции;
- формирование задания для надстройки *Поиск решения* (указание ячеек, содержащих искомые переменные, целевую функцию, задание ограничений) и получение решения.

При решении задачи с помощью данной надстройки не требуется никаких специальных математических знаний — достаточно будет навыка построения расчётных таблиц и здравого смысла. Интересующиеся математической стороной процесса поиска решения могут обратиться к специальной литературе (всё интересное в этой области было сделано в 50-е-60-е гг XX века, поэтому не удивляйтесь древности некоторых первоисточников). А те, кто до сих пор не овладел искусством работы с формулами, найдёт всё необходимое в справочной системе MS Excel.

Расчётная таблица для решения оптимизационной задачи должна содержать:

- ячейки для искомых переменных;
- ячейки с коэффициентами, необходимыми для расчёта значений целевой функции и функций-ограничений;
- ячейку с формулой целевой функции;
- ячейки с формулами функций-ограничений.

Расположение таблицы, её оформление безразличны. Требуется лишь наличие всех необходимых данных и формул. Таблица может быть разбита на несколько взаимосвязанных таблиц. Можно включать в таблицы данные, не относящиеся к задаче, но поясняющие структуру таблицы (например, наименования столбцов).

Статическую часть таблицы составляют данные, приведённые в условии задачи. Обычно эта часть не содержит формул, но иногда для удобства в неё вводят какие-либо расчёты на базе исходных данных, не оперирующие с искомыми переменными.

Ячейки для искомых переменных всегда образуют диапазон (строку или столбец). Для того, чтобы построить формулы базирующихся на них расчётов, следует ввести в ячейки начальные значения. Обычно в качестве начальных значений вводят единицы.

Целевая функция представляет собой размещённую в одной ячейке формулу, оперирующую с ячейками искомых переменных и с коэффициентами из статической части таблицы.

Формулы функций-ограничений также оперируют с искомыми переменными и статическими данными. Ячейки с этими формулами могут располагаться произвольно – и по отдельности, и образуя диапазоны.

Вот пример такой таблицы:

4 A	В	С	D	E	F	G	н	1	J	К	L	M	N	0
L														
2	Вид колбасы	Расход свинины на 1 кг, г	Расход говядины на 1 кг, г	Расход сои на 1 кг, г	Расход крахмала на 1 кг	Себесто- имость 1 кг, рүб	Отпускная цена 1 кг, руб	Прибыль с 1 кг	ПЛАН	Расход свинины на план	Расход говядины на план	Расход сои на план	Расход крахмала на план	Прибыль от плана
3	Докторская	300	700	0	150	180	260	80	1	300	700	0	150	80
1	Кандидатская	400	400	300	0	160	245	85	1	400	400	300	0	85
5	Аспирантская	300	300	200	200	135	200	65	1	300	300	200	200	65
5	Студенческая	400	0	200	600	90	120	30	1	400	0	200	600	30
7	Школьная	150	400	400	200	110	150	40	1	150	400	400	200	40
3	Детская	200	700	100	100	160	240	80	1	200	700	100	100	80
9	Имеется:	1200000	700000	500000	2300000					1750	2500	1200	1250	380
0														
1		исходные да	нные											
2		расчёты на о	расчёты на основе исходных данных, не использующие искомых переменных											
3		искомые значения												
4		формулы дл:	я расчёта коз	ффициентов	ограничений	и целевой фу								
5		значения для ограничений												
6		значение цел	евой функци	и										

Все числовые ячейки, кроме оранжевых и жёлтых, содержат формулы. Какие именно – будет показано ниже на конкретных примерах.

Поиск решения задачи

После построения таблиц следует обратиться к надстройке Поиск решения.

После её вызова на экране возникнет окно, содержащее: поля для задания целевой функции (Оптимизировать целевую функцию, до максимума, минимума, значения), поле для задания искомых переменных (Изменяя ячейки переменных) и для задания ограничений (В соответствии с ограничениями - добавить, изменить, удалить). Способ работы с этими полями традиционен. При работе с ограничениями следует обратить внимание на возможность задавать ограничение не только на ячейку, но и на целый диапазон.

После задания изменяемых ячеек, целевой функции, ограничений, метода решения (для линейных задач подходит симплекс-метод, для нелинейных — ОПГ) следует нажать кнопку *Найти решение*. После этого возможны два исхода: или решение будет найдено (тогда пользователю предложат либо сохранить сформированные в изменяемых ячейках оптимальные значения, либо вернуться к исходным), или появится сообщение о невозможности найти решение с объяснением причины (ограничения несовместны, целевая функция не ограничена и т.п.).

Параметры, заданные в окне Поиск решения, сохраняются при сохранении документа и могут быть использованы для повторного решения задачи с этими или другими данными.

3. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача о планировании производства

Швейное предприятие выпускает 4 вида продукции: куртки, ветровки, спальники и рукавицы. Для этого используются 3 материала: капрон для верха изделия, вискоза для подкладки и утеплитель синтепон. Данные о расходе материалов (м2) на одно изделие, себестоимости и цене изделий приведены в таблице:

Наименование изделия	Расход капрона на 1 шт	Расход вискозы на 1 шт	Расход синтепона на1 шт	Себестои- мость 1 шт	Цена1 шт
Куртка	4	3	3	1000	1500
Ветровка	3,5	0,3	0	350	800
Спальник	2	2	4	400	700
Рукавицы	0,3	0,3	0,3	30	40
Кол-во материала на складе	150	100	250		

Требуется спланировать выпуск продукции таким образом, чтобы получить максимальную прибыль, используя имеющиеся ресурсы. Искомыми переменными для нас будут объёмы выпуска каждого вида изделий. Целевая функция — прибыль от запланированного выпуска. Ограничения — расход каждого материала на производство запланированной продукции не должен превышать имеющихся на складе запасов. Кроме этого, искомые переменные должны быть целыми и неотрицательными (т.к. затруднительно будет выпускать -5.11 куртки).

Начнём формирование расчётной таблицы для задачи. В качестве статической части введём приведённую выше таблицу. Добавим к ней справа столбец План выпуска и заполним его начальными значениями искомых переменных, т.е. единицами. Затем введём расчётные столбцы: Расход капрона на выпуск, Расход вискозы на выпуск, Расход синтепона на выпуск, Прибыль от выпуска.

Значения в столбцах расхода вычисляются как произведение плана выпуска изделия на расход на 1 шт. Прибыль от выпуска вычисляется как произведение плана выпуска изделия и разности цены и себестоимости.

Значения расчётных столбцов суммируются. Окончательный вид таблицы с отображением формул приведён на следующей странице.

Обратите внимание на абсолютный по столбцу адрес в формуле в ячейке I3: это сделано для удобства тиражирования — чтобы формулу можно было растянуть на 2 следующих столбца, а затем вниз, с сохранением ссылки именно на столбец *ПЛАН*.

⊿ A	В	С	D	E	F	G	Н	I	J	К	L
1											
2	Наимен <i>о</i> вание изделия	Расход капрона на 1 шт	Расход вискозы на1 шт	Расход синтепона на1 шт	Себестои- мость1 шт	Цена1 шт	ПЛАН	Расход капрона на план	Расход вискозы на план	Расход синтепона на 1план	Прибыль от плана
3	Куртка	4	3	3	1000	1500	1	=C3*\$H3	=D3*\$H3	=E3*\$H3	=(G3-F3)*H3
4	Ветровка	3,5	0,3	0	350	800	1	=C4*\$H4	=D4*\$H4	=E4*\$H4	=(G4-F4)*H4
5	Спальник	2	2	4	400	700	1	=C5*\$H5	=D5*\$H5	=E5*\$H5	=(G5-F5)*H5
6	Рукавицы	0,3	0,3	0,3	30	40	1	=C6*\$H6	=D6*\$H6	=E6*\$H6	=(G6-F6)*H6
	Кол-во материала										
7	на складе	150	100	250				=СУММ(13:16)	=СУММ(Ј3:Ј6)	=СУММ(К3:К6)	=CУММ(L3:L6)

После завершения расчётов можно приступать к поиску решения. Вызываем надстройку *Поиск решения* и выбираем следующие параметры:

Оптимизационная задача сформулирована. Перекрестившись, нажимаем кнопку *Найти решение* — и примерно через полсекунды с изумлением видим окошко с сообщением «Решение найдено. Все ограничения и условия оптимальности выполнены» и предложением сохранить найденное решение. Смотрим на таблицу: в столбце План выпуска уже не единицы, а найденные оптимальные значения, и все расчётные ячейки уже заполнены в соответствии с найденным планом. Оказывается, нам следует выпустить 16 ветровок и 47 спальников. Сохраняем найденное решение, распечатываем готовую таблицу. Задача решена.

К задаче планирования производства сводятся и многие другие классические задачи — например, задача о диете (выбрать, какие продукты покупать, чтобы получить нужное количество калорий и полезных веществ, затратив как можно меньше денег), задача о продовольственных наборах (сколько каких наборов купить, чтобы получить не меньше, чем необходимо, каждого продукта и потратить как можно меньше). Единственное отличие — в этих задачах целевая функция минимизируется, а ограничения, соответственно, получаются на «больше или равно».

Задача о раскрое

Крыша фазенды прохудилась и для её покрытия нужен рубероид. Он продаётся в рулонах по 15 м. На крышу требуется 12 кусков по 5 м и 25 кусков по 2 м. Каково минимальное количество рулонов рубероида для решения этой задачи и как их следует разрезать?

Вдохновлённые лёгким решением предыдущей задачи, мы уже заносим руку над клавиатурой... но рука в нерешительности замирает. Как-то тут очень мало исходных данных — всего 4 циферки. И непонятно, что будет искомыми переменными. И неясно, как выразить число разрезаемых рулонов...

Excel, увы, не всемогущ. Придётся задействовать собственный интеллект.

Итак, мы собираемся резать 15-метровые рулоны на кусочки по 5 и по 2 метра. Какими способами это можно сделать? Можно получить из рулона 3 5-метровых куска, можно 2 5-метровых и 2 2-метровых, или же 1 5-метровый и 5 2-метровых, или разрезать рулон на 7 кусков по 2 м. Других рациональных способов разрезки не существует. Сведём эти данные в таблицу:

№ способа	К-во күсков по 5 м	К-во күсков по 2 м	
1	3	0	
2	2	2	
3	1	5	
4	0	7	
Нүжно	12	25	

Добавим в таблицу требуемое количество кусков каждого вида. Статическая часть таблицы готова. Пусть искомыми переменными будет количество рулонов, разрезаемых по каждому способу (вводим столбец План и заполняем единичками). Целевой функцией будет сумма по этому столбцу. Затем подсчитаем, сколько каких кусков мы получим при разрезке запланированного количества рулонов каждым способом.— и получим всё для постановки оптимизационной задачи.

4	А	В	С	D	E	F	G
1							
2		№ способа	К-во күсков по 5 м	К-во күсков по 2 м	План	К-во күсков по 5 м по планү	К-во күсков по 2 м по планү
3		1	3	0	1	=C3 * E3	=D3 * E3
4		2	2	2	1	=C4*E4	=D4*E4
5		3	1	5	1	=C5*E5	=D5*E5
6		4	0	7	1	=C6 * E6	=D6*E6
7		Нүжно	12	25	=СУММ(ЕЗ:Е6)	=CУMM(F3:F6)	=CУММ(G3:G6)
0							

Итак, мы ищем количества рулонов рубероида, разрезаемых по каждому способу, при которых мы получаем нужное количество кусков и тратим в сумме как можно меньше рулонов. Эти количества должны быть целыми и неотрицательными.

раметры поиска решения	
Оптимизировать целев <u>у</u> ю функцию: \$E\$7	
До: Максимум Минимум Значения:	0
Изменяя ячейки переменных:	
\$E\$3:\$E\$6	E
В <u>с</u> оответствии с ограничениями:	
\$E\$3:\$E\$6 = целое \$E\$3:\$E\$7 >= 0	<u>До</u> бавить
\$F\$7 >= \$C\$7 \$G\$7 >= \$D\$7	Изменить

Разъяснив это надстройке *Поиск решения*, получим результат: 3 рулона нужно разрезать первым способом, 1 — вторым, и по 2 — третьим и четвёртым. Едем в магазин покупать 8 рулонов рубероида.

Транспортная задача

В классической постановке этой задачи есть несколько производителей, несколько потребителей, известны объёмы выпуска продукта у каждого производителя и потребности каждого потребителя. Также известны транспортные издержки на перевозку единицы товара от каждого производителя к каждому потребителю. Требуется сформировать план перевозок — определить, сколько продукции к кому от кого везти.

Рассмотрим на примере. Трое студентов создали частное предприятие и выпекают в свободное от занятий время пиццу. А другие четверо студентов являются потребителями пиццы (продают они её или съедают – их личное дело). Вот исходные данные:

Стоимость доставки	ПРО	изводит	Потребляется	
ПОТРЕБИТЕЛИ	Миша	Саша	Алёна	
Игорь	1	4	3	10
Маша	6	3	4	50
Алина	4	2	5	60
Андрей	5	3	2	120
Производится	130	50	80	

Что будет в этой задаче искомыми значениями? Объём перевозки от каждого к каждому, всего 3*4=12 переменных. Впервые план у нас будет не вектором, а матрицей.

Разместим эту матрицу рядышком с данными. Посчитаем, сколько вывозится от каждого поизводителя и сколько привозится к каждому потребитель по данному плану. И вычислим суссарную стоимость всех перевозок — для этого не придётся писать формулу из 12 сумм произведений — достаточно воспользоваться функцией СУММПРОИЗВ.

Вот как выглядит таблица, готовая к началу поиска решения:

⊿ A	В	С	D	Е	F	G	Н	1	J	К	L
1											
	Стоимость	ть					Объём				
2	доставки	ПРОИ	зводи	ІТЕЛИ	Потребляется		перевозки	производители		Привезено	
3	ПОТРЕБИТЕЛИ	Миша	Саша	Алёна			ПОТРЕБИТЕЛИ	Миша	Саша	Алёна	
4	Игорь	1	4	3	10		Игорь	1	1	1	=СУММ(14:К4)
5	Маша	6	3	4	50		Маша	1	1	1	=CУММ(I5:K5)
6	Алина	4	2	5	60		Алина	1	1	1	=CУMM(I6:K6)
7	Андрей	5	3	2	120		Андрей	1	1	1	=CУММ(I7:K7)
8	Производится	130	50	80			Вывезено	=СУММ(14:17)	=СУММ(J4:J7)	=СУММ(К4:К7)	=CУММПРОИЗВ(C4:E7;14:K7)

Задаём параметры поиска решения:

Как видите, помимо ограничений на неотрицательность и целочисленность искомых значений мы требуем ещё. Чтобы каждый потребитель получил не меньше, чем хочет, а у каждого производителя увезли не больше, чем у него есть.

Вот найденное решение:

Объём перевозки	ПРО	Привезено		
ПОТРЕБИТЕЛИ	Миша	Саша	Алёна	
Игорь	10	0	0	10
Маша	0	50	0	50
Алина	60	0	0	60
Андрей	40	0	80	120
Вывезено	110	50	80	760

Список литературы

Абрамов, Л.М., Капустин, В.Ф. Математическое программирование. ч.1. - СПб : СПбГУ, 2001 г..

Канторович Л.В. Экономический расчёт наилучшего использования ресурсов. - М : Изд.АН СССР, 1959 г..