Section 5.3

Exercise 21: Bhaskara, 1150. What number divided by 6 leaves a remainder of 5, divided by 5 leaves a remainder of 4, divided by 4 leaves a remainder of 3, and divided by 3 leaves a remainder of 2?

$$N \cong 5mod6$$
,

$$N \cong 4mod5$$
,

$$N \cong 3mod4$$
,

$$N \cong 2mod3$$
.

Solution:

To solve this problem we must first compute the product M, of the moduli m_i ,

$$M = 6 * 5 * 4 * 3 = 360.$$

The next step involves computing all M_i such that

$$M_i = \frac{M}{m_i}.$$

Therefore we get the following,

$$M_1 = \frac{360}{6} = 60,$$

$$M_2 = \frac{360}{5} = 72,$$

$$M_3 = \frac{360}{4} = 90,$$

$$M_4 = \frac{360}{3} = 120.$$

Now we reduce each $M_i \mod m_i$, so find a P_i such that,

$$M_i = P_i \mod m_i$$
.

Doing that we get,

$$60 \equiv 0 \mod 6$$
.

$$72 \equiv 2 \mod 5$$
.

$$90 \equiv 2 \mod 4$$
.

$$120 \equiv 0 \mod 3$$
.

Now we need to find one for each P_i so solving for some x_i that gives,

$$P_i x_i \equiv 1 \mod m_i$$
.

Doing this we get,

$$(0)(1) \equiv 1 \mod 6$$

 $(2)(4) \equiv 1 \mod 5$
 $(2)(5) \equiv 1 \mod 4$
 $(0)(1) \equiv 1 \mod 3$

Section 5.5

Exercise 1: Solve the following quadratic equations with the araic method of complete the square.

1.
$$x^2 + 12x = 64$$

Solution:

First note that this is a type 4 problem with the form $ax^2 + bx = 2$. We complete the square by noting that,

$$(x+6)^2 = x^2 + 12x + 36.$$

So adding 36 to both sides we get that,

$$x^{2} + 12x + 36 = 64 + 36,$$

 $(x + 6)^{2} = 100,$
 $(x + 6)^{2} = 10^{2}.$

Therefore x = 4, -12.

2.
$$3x^2 + 10x = 32$$

Solution:

From the hint lets multiply both sides of the equation by 3 and and simplify the form of our equantio with a substitution of y = 3x,

$$3x^{2} + 10x = 32,$$

$$3(3x^{2} + 10x) = 3(32),$$

$$9x^{2} + 30x = 96,$$

$$(3x)^{2} + 10(3x) = 96,$$

$$(y)^{2} + 10(y) = 96.$$

Now our problem is a type 4 problem with the form $ax^2 + bx = 2$. We complete the square by noting that,

$$(y+5)^2 = y^2 + 10y + 25.$$

So adding 25 to both sides,

$$y^{2} + 10y + 25 = 96 + 25,$$

 $(y + 5)^{2} = 121,$
 $(y + 5)^{2} = (11)^{2}.$

Thus we get that y = 6, -16 and since y = 3x we get that x = 2, $\frac{-16}{3}$

Exercise 7: 1. Show that the cubic equation $x^3 + b^2c = b^2x$ can be solved by finding the intersection of the parabola $x^2 = by$ and the hyperbola $y^2 + cx = x^2$.

Solution:

We can show that the intersection of $x^2 = by$ and $y^2 + cx = x^2$ gives $x^3 + b^2c = b^2x$ through algebra. First solve the first equation for y,

$$y = \frac{x^2}{b}.$$

Now substituting into the second equation and doing some algebra to get the third equation.

$$(\frac{x^2}{b})^2 + cx = x^2,$$

$$\frac{x^4}{b^2} + cx = x^2,$$

$$\frac{x^4}{b^2} + cx = x^2,$$

$$\frac{x^3}{b^2} + c = x,$$

$$x^3 + b^2c = b^2x.$$

Therefore where the two conic sections intersect we get the solution to the cubic.

2. Show that the cubic equation $x^3 + c = ax^2$ can be solved by finding the intersection of the parabola $y^2 + cx = ac$ and the rectangular hyperbola xy = c.

Solution:

Again we can show this through algebra. Solving the rectangular hyperbola for y,

$$y = \frac{c}{x}.$$

Substotutinog into the parabola and doing some algebra to get the cubic,

$$y^{2} + cx = ac,$$

$$(\frac{c}{x})^{2} + cx = ac,$$

$$\frac{c^{2}}{x^{2}} + cx = ac,$$

$$c^{2} + cx^{3} = acx^{2},$$

$$c + x^{3} = ax^{2},$$

$$x^{3} + c = ax^{2}.$$

Thus where the two conic sections intersect we get the solution to the cubic.

Additional Problems

Exercise 1:

Exercise 2:

Reflection

- 1.
- 2.