Звіт про лабораторну роботу №1

з дисципліни "Кластерні розрахунки" (High-Performance Computing) студента 1 курсу групи ПЗС-1 Грищенка Юрія

Тема: Паралельний алгоритм множення матриці на вектор

Робота виконана з використанням бібліотеки OpenMPI на OC Linux.

(див. відео з Google Drive)

Результати

Matrix size	Serial	Parallel				
		2 processors		4 processors		
		Time	Speedup	Time	Speedup	
10	0,00000	0,00004	-0,00003	0,00017	-0,00013	
100	0,00007	0,00014	-0,00007	0,00019	-0,00005	
1000	0,00553	0,00679	-0,00126	0,00896	-0,00217	
2000	0,02104	0,02460	-0,00356	0,02810	-0,00350	
3000	0,04568	0,05437	-0,00869	0,06127	-0,00691	
4000	0,08038	0,09939	-0,01901	0,10787	-0,00848	
5000	0,12894	0,15051	-0,02156	0,16814	-0,01763	
6000	0,18432	0,21705	-0,03272	0,24344	-0,02639	
7000	0,24329	0,30108	-0,05779	0,32883	-0,02775	
8000	0,32622	0,38695	-0,06073	0,43442	-0,04747	
9000	0,41058	0,51650	-0,10592	0,55068	-0,03418	
10000	0,53517	0,66625	-0,13109	0,74795	-0,08170	

Matrix size	2 processors		4 processors		
	Model	Experiment	Model	Experiment	
10	2,5421608580429E-07	0,00004	1,5252965148258E-07	0,00017	
100	2,6625790039502E-05	0,00014	1,3312895019751E-05	0,00019	
1000	0,00267462081854093	0,00679	0,00133731040927046	0,00896	

2000	0,0107011592329616	0,02460	0,00535057961648082	0,02810
3000	0,0240796152432622	0,05437	0,0120398076216311	0,06127
4000	0,0428099888494425	0,09939	0,0214049944247212	0,10787
5000	0,0668922800515026	0,15051	0,0334461400257513	0,16814
6000	0,0963264888494425	0,21705	0,0481632444247212	0,24344
7000	0,131112615243262	0,30108	0,0655563076216311	0,32883
8000	0,171250659232962	0,38695	0,0856253296164808	0,43442
9000	0,216740620818541	0,51650	0,10837031040927	0,55068
10000	0,2675825	0,66625	0,13379125	0,74795

Висновки

- Визначили задачу множення матриці на вектор
- Імплементували послідовний та паралельний (з використанням OpenMPI) алгоритми для вирішення задачі
- Ознайомилися з базовими функціями MPI_Init, MPI_Comm_*, MPI_Scatterv, MPI_Allgatherv тощо
- Дослідили час виконання алгоритмів над вхідними даними різного розміру
- Теоретично оцінили час виконання паралельного алгоритму, порівняли з дійсними результатами
- Отримали неочікуваний результат: послідовний алгоритм швидший за паралельний. Можливі фактори:
 - Це може свідчити про неефективність роботи OpenMPI або його використання в нашій конкретній програмі (зокрема визначили що крок DataDistribution займає >80% часу виконання програми)
 - Така неефективність є дивною, оскільки всі процеси виконуються на одній машині зі спільною пам'яттю, отже не повинно бути затримки через надсилання даних.
 - Це може свідчити про занадто довге очікування синхронізації процесів
 - В наступній лабораторній буде використано Intel MPI
 - Також це може свідчити про високу ефективність кешу процесора при роботі (досить простого) послідовного алгоритму над простою лінійною структурою даних, за рахунок чого отримуємо пришвидшення в порівнянні зі складнішим паралельним алгоритмом