Data

```
pacman::p_load(dplyr, magrittr, data.table)
x =
read.csv("C:\\Users\\jaime\\OneDrive\\Desktop\\housing_data_2016_2017.csv",
header = TRUE)
xhat = x %>%
    select(coop_condo, full_address_or_zip_code, approx_year_built,
common_charges, maintenance_cost, parking_charges,
listing_price_to_nearest_1000, total_taxes, date_of_sale, fuel_type,
garage_exists, kitchen_type, num_total_rooms, num_bedrooms,
num_floors_in_building, sale_price)
```

Regression Tree Modeling

```
pacman::p_load(rpart)
rpart(sale_price~coop_condo, data = xhat)
## n=528 (1702 observations deleted due to missingness)
##
## node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
##
## 1) root 528 517 $155,000 (0.0019 0.0019 0.0019 0.0019 0.0038 0.0019
0.0019 0.0019 0.0019 0.0038 0.0019 0.0019 0.0019 0.0019 0.0095 0.0019 0.0038
0.0076 0.0019 0.0019 0.0019 0.0019 0.0019 0.013 0.0038 0.0057 0.0019 0.0038
0.0038 0.0019 0.0019 0.0019 0.0019 0.0038 0.0038 0.0019 0.011 0.0038 0.0019
0.0095 0.0019 0.0019 0.0019 0.0019 0.0019 0.021 0.0019 0.0038 0.0057 0.0038
0.0019 0.0076 0.0038 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
0.0038 0.0057 0.0095 0.0019 0.0019 0.0038 0.019 0.0019 0.0019 0.0019 0.0019
0.0038 0.0095 0.0019 0.0019 0.0095 0.0019 0.0019 0.0038 0.0057 0.0019 0.0019
0.0019 0.0019 0.0019 0.0019 0.0076 0.0019 0.0038 0.0019 0.0095 0.0038 0.0038
0.0019 0.0019 0.0019 0.0019 0.0038 0.013 0.0038 0.0019 0.0019 0.0076 0.0019
0.0038 0.0057 0.0019 0.0038 0.0019 0.013 0.0019 0.0019 0.0019 0.0019 0.0019
0.0076 0.0019 0.0019 0.0057 0.0019 0.0038 0.0019 0.0019 0.0076 0.0019 0.0019
0.0057 0.0019 0.0019 0.0019 0.0019 0.0057 0.0038 0.0019 0.0076 0.0019 0.0019
0.0019 0.0057 0.0019 0.0019 0.011 0.0019 0.0019 0.0095 0.0019 0.0019 0.0076
0.0019 0.0019 0.0019 0.0019 0.0076 0.0019 0.0019 0.0019 0.0019 0.0038 0.0038
0.0019 0.0038 0.0019 0.0076 0.0057 0.0019 0.0019 0.0019 0.0038 0.0019 0.0019
0.0038 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0076 0.0019 0.0038 0.0019
0.0057 0.0038 0.0019 0.0038 0.0038 0.0076 0.0019 0.0019 0.0019 0.0038 0.0019
0.0019 0.0019 0.0019 0.0038 0.0019 0.0019 0.0038 0.0019 0.0057 0.0057 0.0019
0.0076 0.0038 0.0019 0.0019 0.0057 0.0019 0.0038 0.0019 0.0038 0.0019 0.0038
0.0038 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0038
0.0019 0.0057 0.0019 0.0019 0.0057 0.0019 0.0019 0.0038 0.0019 0.0019 0.0019
0.0019 0.0057 0.0038 0.0019 0.0019 0.0019 0.0038 0.0019 0.0019 0.0019 0.0019
0.0019 0.0038 0.0038 0.0019 0.0038 0.0038 0.0038 0.0038 0.0019 0.0019 0.0019
0.0038 0.0019 0.0038 0.0038 0.0019 0.0019 0.0019 0.0019 0.0057 0.0019 0.0019
0.0019 0.0019 0.0019 0.0057 0.0038 0.0038 0.0019 0.0019 0.0019 0.0038 0.0019
0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0038 0.0019 0.0019 0.0038 0.0019
```

0.0019 0.0019

Linear Modeling

```
y = rnorm(xhat$sale price)
x0 = rnorm(xhat$coop_condo)
x1 = rnorm(xhat$num total rooms)
x2 = rnorm(xhat$parking charges)
data\_set = lm(y \sim x0 + x1 + x2)
summary(data_set)
##
## Call:
## lm(formula = y \sim x0 + x1 + x2)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -4.0746 -0.6439 0.0062 0.6375 3.3461
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.034478  0.020185 -1.708
                                             0.0878 .
                          0.020036 0.167
## x0
               0.003352
                                             0.8671
                                             0.4792
                          0.019827 0.708
## x1
               0.014030
              -0.011799 0.020244 -0.583
## x2
                                            0.5601
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9529 on 2226 degrees of freedom
## Multiple R-squared: 0.0003774, Adjusted R-squared: -0.0009698
## F-statistic: 0.2801 on 3 and 2226 DF, p-value: 0.8398
pacman::p_load(ggplot2)
ggplot(data.frame(x = x0 + x1 + x2, y = y)) +
geom_point(aes(x = x, y = y))
```


Random Forest

```
pacman::p_load(randomForest)
n = 500
sigma = 0.5
x_{\min} = \min(y)
x_max = max(y)
f_x = function(x) \{ sin(x) \}
y_x = function(x, sigma)\{f_x(x) + rnorm(n, 0, sigma)\}
x_train = runif(n, x_min, x_max)
y_train = y_x(x_train, sigma)
x_test = runif(n, x_min, x_max)
y_{test} = y_{x}(x_{test}, sigma)
node_sizes = 1:500
se_by_node_sizes = array(NA, length(node_sizes))
for (i in 1:length(node_sizes)) {
  rf_{mod} = randomForest(x = data.frame(x = x_train), y = y_train, ntree = 1,
replace = FALSE, sampsize = n, nodesize = node_sizes[i])
  y_hat_test = predict(rf_mod,data.frame(x = x_test))
  se_by_node_sizes[i] = sd(y_test - y_hat_test)
```

Finding R² and RMSE

```
# x0 = coop\_condo
x_bar0 = sum(x0)/n
y_bar = sum(y)/n
b_1 = (sum(x0*y)-n*x_bar0*y_bar) / (sum(x0^2)-n*x_bar0^2)
b_0 = y_{ar} - b_1*x_{bar}
yhat = b_0 + b_1 *x0
e0 = y - yhat
SSE0 = sum(e0^2)
SST0 = sum((y-y_bar)^2)
MSE0 = SSE0 / (n-2)
RMSE0 = sqrt(MSE0)
Rsq0 = 1 - SSE0 / SST0
# x1 = num_total_rooms
x bar1 = sum(x1)/n
b_1 = (sum(x1*y)-n*x_bar1*y_bar) / (sum(x1^2)-n*x_bar1^2)
b_0 = y_{ar} - b_1*x_{bar}
yhat = b_0 + b_1 *x1
e1 = y - yhat
SSE1 = sum(e1^2)
SST1 = sum((y-y_bar)^2)
MSE1 = SSE1 / (n-2)
RMSE1 = sqrt(MSE1)
Rsq1 = 1 - SSE1 / SST1
# x2 = parking_charges
x_bar2 = sum(x2)/n
b_1 = (sum(x2*y)-n*x_bar2*y_bar) / (sum(x2^2)-n*x_bar2^2)
b_0 = y_{ar} - b_1*x_{bar}^2
yhat = b_0 + b_1 *x2
e2 = y - yhat
SSE2 = sum(e2^2)
SST2 = sum((y-y_bar)^2)
MSE2 = SSE2 / (n-2)
RMSE2 = sqrt(MSE2)
Rsq2 = 1 - SSE2 / SST2
```

oobRsq and oobRMSE

```
nstar = 500
ystar = rnorm(xhat$sale_price)
x0_star = rnorm(xhat$coop_condo)
x1_xtar = rnorm(xhat$num_total_rooms)
x2_xtar = rnorm(xhat$parking_charges)
# x0 = coop_condo
    x_bar0 = sum(x0_star)/n
    y_bar = sum(ystar)/n
    b_1 = (sum(x0_star*ystar)-n*x_bar0*y_bar) / (sum(x0_star^2)-n*x_bar0^2)
    b_0 = y_bar - b_1*x_bar0
    yhat = b_0 + b_1 *x0_star
```

```
oobe0 = ystar - yhat
oobSSE0 = sum(oobe0^2)
oobSST0 = sum((ystar-y_bar)^2)
oobMSE0 = oobSSE0 / (n-2)
oobRMSE0 = sqrt(oobMSE0)
oobRsq0 = 1 - oobSSE0 / oobSST0
# x1 = num_total_rooms
x bar1 = sum(x1 xtar)/n
b_1 = (sum(x1_xtar*ystar)-n*x_bar1*y_bar) / (sum(x1_xtar^2)-n*x_bar1^2)
b_0 = y_bar - b_1*x_bar1
yhat = b_0 + b_1 *x1_xtar
oobe1 = ystar - yhat
oobSSE1 = sum(oobe1^2)
oobSST1 = sum((ystar-y bar)^2)
oobMSE1 = oobSSE1 / (n-2)
oobRMSE1 = sqrt(oobMSE1)
oobRsq1 = 1 - oobSSE1 / oobSST1
# x2 = parking_charges
x_{bar2} = sum(x2_xtar)/n
b_1 = (sum(x2_xtar*ystar)-n*x_bar2*y_bar) / (sum(x2_xtar^2)-n*x_bar2^2)
b_0 = y_{ar} - b_1*x_{bar}^2
yhat = b_0 + b_1 *x2_xtar
oobe2 = ystar - yhat
oobSSE2 = sum(oobe2^2)
oobSST2 = sum((ystar-y_bar)^2)
oobMSE2 = oobSSE2 / (n-2)
oobRMSE2 = sqrt(oobMSE2)
oobRsq2 = 1 - oobSSE2 / oobSST2
```