МОДЕЛЬ ДЛЯ ВРЕМЕННЫХ ОЦЕНОК ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Хусаинов А.А. – д-р физ.-мат. наук, профессор, проф. кафедры «Математическое обеспечение и применение ЭВМ», e-mail: husainov51@yandex.ru; *Кудряшова Е.С.* – аспирант, ассистент кафедры «Информационная безопасность автоматизированных систем», e-mail: ekatt@inbox.ru (КнАГТУ)

Рассматривается асинхронная система, переходы которой соответствуют инструкциям вычислительной системы. Для каждой инструкции задано время выполнения. Предлагается математическая модель, позволяющая построить алгоритм для нахождения минимального времени выполнения параллельного процесса с заданной трассой. Рассматривается задача построения параллельного процесса с минимальным временем выполнения, переводящего систему из начального состояния в заданное. Показано, что она сводится к задаче поиска кратчайшего пути в направленном графе с длинами ребер, равными 1.

We consider an asynchronous system with transitions corresponding to the instructions of a computer system. For each instruction, a runtime is given. We propose a mathematical model, allowing us to construct an algorithm for finding the minimum time of the parallel process with a given trace. We consider a problem of constructing a parallel process which transforms the initial state to given and has the minimum execution time. We show that it is reduced to the problem of finding the shortest path in a directed graph with edge lengths equal to 1.

Ключевые слова: асинхронная система, моноид трасс, нормальная форма Фоаты, временные сети Петри.

Вычислительные системы, которые мы изучаем, имеют ячейки памяти, содержащие некоторые данные, и набор операций (инструкций, машинных команд), изменяющих состояния этой памяти. Некоторые из инструкций могут выполняться параллельно. Известно состояние системы в начальный момент времени. Для каждой операции определено время выполнения.

Последовательный процесс состоит из последовательности инструкций. Наша первая задача — указать алгоритм распараллеливания этого процесса, который указал бы вычисляемые инструкции для каждого момента времени. Вторая задача — для заданного состояния памяти указать минимальное время его достижения из начального состояния.

Асинхронной системой $A = (S, s_0, E, I, Tran)/1/$ называется пятерка, состоящая из множества состояний S, начального состояния $s_0 \in S$, множества E инструкций, а также антирефлексивного симметричного отношения $I \subseteq E \times E$ независимости, удовлетворяющих условиям

- 1. Если $(s,a,s') \in Tran \& (s,a,s'') \in Tran$, то s'=s''.
- 2. Для каждого $s \in S$, если $(a,b) \in I$ & $(s, a, s') \in Tran$ & $(s', b, s'') \in Tran$, то существует такой $s_l \in S$, что $(s,b,s_l) \in Tran$ & $(s_l, a, s'') \in Tran$.

В частности, всякую сеть Петри можно рассматривать как асинхронную систему, состояниями которой будут маркировки, а инструкциями – переходы. Отношение независимости состоит из пар переходов, не имеющих общих мест.

Пусть E — множество, $I \subseteq E \times E$ — антирефлексивное симметричное отношение. Элементы $a, b \in E$ называются Hestarrow E из пар слов E^* определено отношение эквивалентности, состоящее из пар слов полученных друг из друга с помощью последовательностей перестановок рядом стоящих независимых букв. Для произвольного слова $W \in E^*$ его класс эквивалентности [W] называется Metarrow E иле видеть, что операция над трассами, определенная по правилу $[W_I][W_2]=[W_IW_2]$, превращает множество классов эквивалентности в моноид. Этот моноид обозначается через M(E,I) и называется Metarrow E или Metarrow E и

Трассы $[w_I]$, $[w_2] \in M(E,I)$ называются *параллельными*, если для любой буквы a_I из слова w_I и буквы a_2 из w_2 имеет место $(a_I, a_2) \in I$. Известно /2/, что всякую асинхронную систему $A=(S, s_0, E, I, Tran)$ можно определить как множество S с частичным действием моноида M(E,I) справа. Действие определяется по формуле sa=s', если $(s,a,s') \in Tran$. Если не существует s', удовлетворяющее условию $(s,a,s') \in Tran$, то действие sa не определено.

Это позволяет рассматривать морфизмы асинхронных систем как морфизмы соответствующих множеств с частичным действием моноидов трасс.

Определение. Гомоморфизмом асинхронных систем (σ ,f): $A \to A'$ называется пара, состоящая из отображения $\sigma: S \to S'$ и гомоморфизма моноидов $f: M(E,I) \to M(E',I')$ удовлетворяющих условиям

- 1) f переводит параллельные трассы в параллельные;
- 2) $\sigma(s_0) = s_0'$;
- 3) $\sigma(sa) = \sigma(s)f(a)$, если действие sa определено.

Пусть $A=(S, s_0, E, I, Tran)$ – асинхронная система. Функцией времени на A называется произвольная функция $\tau: E \rightarrow N$, принимающая значения во множество неотрицательных целых чисел $N = \{0, 1, 2, ...\}$.

Тройки $(s,e,s') \in Tran$ будем обозначать с помощью стрелок $s \xrightarrow{e} s'$. Всякую последовательность инструкций

$$s \xrightarrow{e_1} s_1 \xrightarrow{e_2} s_2 \xrightarrow{} \cdots \xrightarrow{} s_{n-1} \xrightarrow{e_n} s_n = s'$$
,

состоящую из троек принадлежащих Tran, мы будем называть npoueccom или nymem, соединяющим состояния s и s. В этом случае действие моноида M(E,I) на S будет сопоставлять паре $(s,[e_I\cdots e_n])$ элемент s $\in S$.

Минимальное время выполнения трассы. Если время выполнения инструкций одинаково и равно 1, то минимальное время выполнения трассы будет равно высоте ее нормальной формы Фоаты /3/. В общем случае, если каждой инструкции $e \in E$ соответствует время $\tau(e) \in N$, разложим каждую инструкцию в композицию мелких попарно зависимых инструкций, время выполнения которых равна 1, и применим алгоритм построения нормальной формы Фоаты для полученной трассы. Эти мелкие инструкции можно обозначить как инструкцию, в разложении которых они участвуют, а сама инструкция будет равна $e^{\tau(e)}$. Приходится также вводить промежуточные состояния. Для этой цели введем новую асинхронную систему, ассоциированную с функцией времени.

Пусть A — асинхронная система с функцией τ : $E \rightarrow N$. Определим отношение линейного порядка на множестве E. Рассмотрим асинхронную систему $A_{\tau} = (S_{\tau}, s_0, E, I, Tran_{\tau})$, определенную следующим образом. Ее множество состояний равно

$$\begin{split} S_{\tau} &= \{(s, a_1^{i_1} a_2^{i_2} \cdots a_m^{i_m}) \mid s \in S, s \cdot a_1 a_2 \cdots a_m \in S, \, a_1 < a_2 < \cdots < a_m \,, \\ &(a_i, a_j) \in I \; npu \; 1 \leq i < j \leq m, \, 1 \leq i_1 < \tau(a_1), \, ..., \, 1 \leq i_m < \tau(a_m) \} \end{split}$$

По техническим соображениям нам будет удобно рассматривать состояния $(s,a_1^{i_1}a_2^{i_2}\cdots a_m^{i_m})$, у которых для некоторых $q\in\{1,2,...,m\}$ имеют место $i_q=0$ или $i_q=\tau(a_q)$. Они будут отождествляться с элементами из S_τ с помощью формул

$$(s, a_1^{i_1} a_2^{i_2} \cdots a_{q-1}^{i_{q-1}} a_q^0 a_{q+1}^{i_{q+1}} \cdots a_m^{i_m}) = (s, a_1^{i_1} a_2^{i_2} \cdots a_{q-1}^{i_{q-1}} a_{q+1}^{i_{q+1}} \cdots a_m^{i_m})$$

$$(s, a_1^{i_1} a_2^{i_2} \cdots a_{q-1}^{i_{q-1}} a_q^{\tau(a_q)} a_{q+1}^{i_{q+1}} \cdots a_m^{i_m}) = (sa_q, a_1^{i_1} a_2^{i_2} \cdots a_{q-1}^{i_{q-1}} a_{q+1}^{i_{q+1}} \cdots a_m^{i_m})$$

Определим частичное действие моноида M(E,I) на S_{τ} , полагая

$$(s,a_1^{i_1}a_2^{i_2}\cdots a_m^{i_m})\cdot a=(s,a_1^{i_1}a_2^{i_2}\cdots a_{q-1}^{i_{q-1}}a_q^{i_q+1}a_{q+1}^{i_{q+1}}\cdots a_m^{i_m}),$$

если $a=a_q$ для некоторого $q\in\{1,\,2,\,\ldots,\,m\}$. Если $(a,a_r)\in I$ для всех $r\in\{1,\,2,\,\ldots,\,m\}$, то вставим элемент $a\in E$ в последовательность так, чтобы были верны неравенства $a_1< a_2<\cdots< a_{q-1}< a< a_q<\cdots< a_m$, для некоторого q, и положим $(s,a_1^{i_1}a_2^{i_2}\cdots a_m^{i_m})\cdot a=(s,a_1^{i_1}a_2^{i_2}\cdots a_m^{i_q-1}aa_a^{i_q}\cdots a_m^{i_m})$.

Во всех остальных случаях действие не определено.

Определим отображение множеств $i: S \to S_{\tau}$ по формуле i(s) = (s, 1). Пусть $t: M(E,I) \to M(E,I)$ – гомоморфизм, определенный значениями на элементах $a \in E$, равными $t(a) = a^{\tau(a)}$.

Предложение 1. Пара (i, t) является гомоморфизмом асинхронных систем $A \to A_{\tau}$.

Параллельным процессом, реализующим трассу μ называется композиция трасс

$$[a_{i_1}a_{i_2}\cdots a_{i_n}][a_{j_1}a_{j_2}\cdots a_{j_n}]\cdots [a_{k_1}a_{k_2}\cdots a_{k_r}]=\mu,$$

равная этой трассе и состоящая из блоков, внутри каждого из которых инструкции попарно независимы.

Предложение 2. Минимальное время выполнения трассы $[a_1a_2\cdots a_n]$, переводящей систему из состояния s в некоторое состояние s, равно высоте нормальной формы Фоаты трассы $[a_1^{\tau(a_1)}a_2^{\tau(a_2)}\cdots a_n^{\tau(a_n)}]$. Параллельный процесс, имеющий минимальное время, будет равен этой нормальной форме.

Пример. Рассмотрим сеть Петри конвейера, состоящего из трех операционных устройств

Рис. 1. Сеть Петри конвейера

Пусть времена выполнения равны $\tau(a)=3$, $\tau(b)=1$, $\tau(c)=2$. Если на входе получено n чисел, то временная трасса процесса будет равна $[(a^3bc^2)^n]$. Легко видеть, что нормальная форма Фоаты равна

$$[a][a][a]([b][ac][ac]a])^{n-1}[b][c][c].$$

Ее высота равна 4n+2. Значит, минимальное время выполнения на трех процессорах равно T_3 = 4n+2. Время выполнения на одном процессоре T_I =6n. Следовательно, среднее ускорение равно $6n/(4n+2)\approx 3/2$.

Поиск параллельного процесса с минимальным временем дости-жения заданного достижимого состояния из начального состояния. Рассмотрим асинхронную систему A с функцией времени $\tau: E \to N$. Пусть A_{τ} — соответствующая ей асинхронная система. Построим направленный граф, множество вершин которого равно S_{τ} . Если

$$(s, a_1^{i_1} a_2^{i_2} \cdots a_p^{i_p}) \cdot e_1 \cdot e_2 \cdots e_n = (s', b_1^{j_1} b_2^{j_2} \cdots a_q^{j_q})$$

для некоторых вершин $(s, a_1^{i_1}a_2^{i_2}\cdots a_p^{i_p})\in S_{\tau}$, $(s', b_1^{j_1}b_2^{j_2}\cdots a_q^{j_q})\in S_{\tau}$ и таких $e_1, e_2, ..., e_n\in E$, что $(e_i, e_j)\in I$ для всех $1\leq i < j \leq n$, то эти вершины соединяются направленной стрелкой длины 1.

Элементы $s \in S$ отождествляются с парами $(s,1) \in S_{\tau}$, где 1 - единичный элемент моноида M(E,I).

Предложение 3. Параллельный процесс минимального времени, переводящий систему A из состояния s_0 в состояние s, соответствует кратчайшему направленному пути в построенном графе, соединяющем вершины $(s_0,1)$ и (s,1).

Алгоритмы нахождения направленных кратчайших путей хорошо известны. Например, вершины графа раскрашиваются в цвета $0, 1, 2, \ldots$ следующим образом: Сначала вершина s_0 раскрашивается цветом 0. Затем нераскрашенные концы выходящих из нее стрелок раскрашиваются цветом 1. Затем нераскрашенные концы стрелок выходящих из вершин цвета 1 раскрашиваются цветом 2, и т.д. до тех пора, пока не раскрасим заданную вершину s. Цвет вершины s будет длиной кратчайшего пути. Небольшая модификация алгоритма приводит к методу нахождения пути минимальной длины.

Заключение. Предложенную временную модель A_{τ} можно интерпретировать как дискретную модель временного автомата Е. Губо /4/. Аналогичную модель можно построить для дистрибутивных асинхронных автоматов, введенных в /5/. Но, для того, чтобы она позволяла строить алгоритмы для временных оценок, нужно привлечь некоторые дополнительные условия на эти автоматы.

Работа выполнена в рамках программы стратегического развития государственных образовательных учреждений высшего профессионального образования, N 2011-ПР-054.

Библиографические ссылки

- 1. *Bednarczyk M.* Categories of Asynchronous Systems: PhD Thesis. Brighton: University of Sussex, 1987.
- 2. *Husainov A.A.* On the homology of small categories and asynchronous transition systems // Homology Homotopy Appl. 2004. V.1, N 6. P. 439-471.
- 3. *Diekert V.* Combinatorics on Traces. Lecture Notes in Computer Science, 454, Springer-Verlag, Berlin, 1990.
- 4. Goubault E. Durations for truly-concurrent transitions. *Programming Languages and Systems ESOP '96*, Lecture Notes in Computer Science, 1058, Springer-Verlag, Berlin, 1996, 173—187.
- 5. *Кудряшова Е.С., Хусаинов А.А.* Обобщенные асинхронные системы // Модел. и анализ информ. систем. -2012. -№ 4. -C.78-86.