Submission Date: 8th November 2023

1 Bias-Variance Trade-off

- 1. "Bias" and "Variance" are terms which can carry many different meanings. Define what they mean in the context of Bias-Variance trade-off. What else can they refer to?
- 2. How does regularization prevent overfitting?
- 3. Let us say now you have 500 MRI images and you have tested 4 different machine learning models whose error metrics are as follows:

	Model 1	Model 2	Model 3	Model 4
Train error	0.1%	25%	15%	0.2%
Test error	13%	19%	40%	3%

Report the following for each model:

- (a) Bias and Variance (High or Low)
- (b) Under fitting, over fitting or good fit
- (c) In case of model 2, what could be the reason that the test error is lower than the training error?

2 Overfitting and Underfitting in Linear Regression (Use Python)

You are given the following train data

x_1	x_2	y
-0.8	2.8	-8.5
0.3	-2.2	12.8
1.5	1.1	3.8

and test data:

x_1	x_2	y
-2	2	-7
-4	15	-63

- (a) Transform the input features (x_1, x_2) so that a polynomial prediction model overfits. Find the parameters and explain why it overfits.
- (b) Transform the input features so that a polynomial prediction model underfits. Find the parameters and explain why it underfits.

(c) Transform the input features so that a polynomial prediction is adequate given the data (does not overfit nor underfit). Find the parameters and explain.

Hint: Typical ways to transform the input features are by selecting a subset of features or by performing operations among them. For instance a new feature $x_3 = x_1 * x_2$. Additionally notice that the polynomial prediction model is a linear regression model.