

Choosing Safe and Suitable Materials for Children's Toys: A Guide to Child-Friendly Options

Raman Mishra
DEPARTMENT OF MECHANICAL ENGINEERING, IIT GUWAHATI
m.raman@iitg.ac.in

230103082

INTRODUCTION

Children's toys need to prioritize safety, durability, and environmental friendliness. The choice of materials can significantly impact a toy's health safety, with concerns surrounding toxicity, biodegradability, and durability. This section introduces the need for child-safe and eco-friendly materials.

Material Type	Safety Rating	Durability	Biodegradability	Common Uses In Toys
Plastic	Low	High	Low	Action figures, blocks
Wood	High	Medium	High	Building blocks, puzzles
Organic Cotton	High	Medium	High	Stuffed animals, fabric toys
Natural Rubber	High	Medium	Medium	Teething toys, rubber balls

TECHNICAL GAP AND OBJECTIVE

Currently, many toys are made from synthetic materials that release harmful chemicals and are difficult to recycle. The objective is to research safe, sustainable materials that minimize environmental impact and meet safety standards for children's products. Ensure that all materials meet stringent safety standards, such as ASTM F963 (Standard Consumer Safety Specification for Toy Safety), CPSIA (Consumer Product Safety Improvement Act), and EN71 (European Toy Safety Standard)

Current Material	Issues Identified	Objective for Improvement	
PVC Plastics	Toxic chemicals, environmental impact	Find non-toxic alternatives	
Synthetic Paints	Contains VOCs, potential allergen	Use natural, water-based paints	
Polyester	Non-biodegradable, chemical exposure	Substitute with organic fibres	

PROPOSED SOLUTION

The solution focuses on identifying and using sustainable, non-toxic materials that comply with safety standards and address the technical gaps in conventional toy manufacturing. The approach emphasizes the entire product lifecycle, from material sourcing to disposal, with goals of health safety, environmental responsibility, and durability. Each material undergoes stringent toxicology assessments to ensure that it meets or exceeds child safety standards. Toys are designed with fewer parts or modular structures, making them easier to repair or replace individual parts, which extends their lifespan.

Material	Source	Key Benefits	Safety Testing	End-of-Life Strategy	
FSC Wood	Sustainable Forests	Durable, Non-toxic	ASTM, CPSIA compliant	Biodegradable	
Organic Cotton	Certified Farms	Hypoallergenic, Soft	Chemical-free	Recyclable, Compostable	
Natural Rubber	Rubber Trees	Biodegradable, Flexible	Heavy metal tested	Compostable	
Bamboo	Sustainable Farms	Strong, Fast- growing	BPA-free	Biodegradable	

DESIGN APPROACH/METHODOLOGY

The design methodology focuses on testing materials through several phases to ensure safety and functionality. Materials undergo toxicity tests, strength and durability assessments, and biodegradability analysis to ensure they are suitable for children's toys.

RESULTS

The results from material testing reveal significant differences in safety, durability, and environmental impact between conventional synthetic materials and sustainable alternatives. The primary materials tested include organic cotton, natural rubber, sustainably sourced wood, and recycled plastics. Each material was evaluated for non-toxicity, durability, biodegradability, and compliance with recognized safety standards.

Organic cotton, natural rubber, and bamboo are biodegradable, reducing their long-term environmental impact. Over time, these materials break down without leaving harmful residues, helping to minimize waste.

FSC wood and some recycled plastics can be repurposed or recycled, but the recycling rate is lower due to multi-material compositions. End-of-life programs are more feasible with modular toys that use recyclable materials

	Material	Non-Toxicity	Durability	Biodegradabili ty	Compliance with Standards	Ideal Use Cases
	Organic Cotton	High	Moderate	High	ASTM, CPSIA	Plush toys, fabric items
	Natural Rubber	High	Moderate	Moderate	ASTM, EN71	Teething toys, flexible toys
	FSC Wood	High	High	Moderate	ASTM, EN71, NAEYC	Building blocks, puzzles
	Bamboo	High	High	High	ASTM, CPSIA	Structures, stackable toys
	Recycled Plastics	Moderate	High	Low	Limited by processing	Hard plastic toys, handles

CONCLUSION

The research and testing of toy materials demonstrate that eco-friendly, non-toxic options like organic cotton, natural rubber, sustainably harvested wood, and bamboo present clear advantages over conventional synthetic materials. These materials not only prioritize child safety but also align with sustainability goals by reducing environmental impact and waste.

By choosing sustainable toys, parents and caregivers can actively contribute to a cleaner environment while promoting safety in play.

This research underscores the viability and advantages of using sustainable, non-toxic materials in toy manufacturing. Continued collaboration between material scientists, manufacturers, and regulatory bodies will be essential to create safer, eco-friendly toys that align with both child safety and environmental preservation goals.

REFERENCES

- Design for Innovation: Toys for Sustainable Play (L. Pereira)
- On Longevity and Lost Toys: Sustainable Approaches to Toy Design and Contemporary Play (Katriina Heljakka)
- https://www.ethicallyengineered.com/eco-friendly-toys/
- Playing for the Planet: Designing Toys that Foster Sustainable Values (Mary Barreto, Michelle Scott, Ian Oakley, Evangelos Karapanos, Nuno J. Nunes, Sofia Gomes, Joana Gomes)
- https://corporate.mattel.com/sustainable-materials-in-toys
- Do Environment-Friendly Toys Have a Future? An Empirical Assessment of Buyers' Green Toys Decision-Making (Akanksha Saini)
- https://www.mdpi.com/2227-9717/10/8/1523

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Professor S. Kanagaraj from the Department of Mechanical Engineering at IIT Guwahati for his invaluable guidance and support throughout the development of this poster. I also thank IIT Guwahati for providing the resources and environment necessary for conducting this research and enabling the completion of this project.