

Outline

- Limitations of RDMS
- What is NoSQL?
- NoSQL characteristics
- CAP theorem
- NoSQL Types
- SQL vs. NoSQL

Relational Databases

كلية تكنولوجيا الصناعة والطاقة

- You can't add a record which does not fit the schema
- You need to add NULLs to unused items in a row
- We should consider the data types. i.e. You can't add a string to an integer field
- You can't add multiple items in a field (You should create another table: primary-key, foreign key, joins, normalization,)

Limitations of RDBMS

كلية تكنولوجيا الصناعة والطاقة

Relational databases were not built for distributed applications.

Because:

- Joins are expensive
- Hard to scale horizontally
- Expensive (product cost, hardware)
- The rise of big data (volume, Variety)

https://www.slideshare.net/ramakantsoni/presentation-on-no-sql

Need of NoSQL

- Explosion of social media sites (Facebook, Twitter, Google etc.,) with large data needs
- Rise of cloud-based solutions such as Amazon S3 (simple storage solution)
- A shift to dynamically typed data with frequent schema changes.
- Expansion of open-source community

What is NOSQL?

- Stands for Not Only SQL.
- Class of non-relational data storage systems
- NoSQL database system contains various database technologies that can manage structured, unstructured, semi-structured data
- Do not require a fixed table schema nor do they use the concept of joins
- Relaxation for one or more of the ACID properties (Atomicity, Consistency, Isolation, Durability) using CAP theorem.

NOSQL Databases

كلية تكنولوجيا الصناعة والطاقة

In NoSQL Databases:

- There is no schema to consider
- There is no unused cell
- There is no datatype (implicit)
- Most of considerations are done in application layer
- We gather all items in an aggregate (document)

NoSQL didn't provide :

- Join
- Group By
- ACID transactions
- 1. _{5/\$}QJ_{24 10:37 AM}

Relational Model

Document Model

NoSQL Characteristics

- Non-relational
- Flexible schema
- Other or additional query languages than SQL
- Distributed horizontal scaling (Scaling Out)
- Less structured data
- Supports big data

Database Scaling

- RDBMS are "scaled up" by adding hardware processing power
- NoSQL is "scaled out" by spreading the load
 - Partitioning (sharding) / replication

CAP Theorem

GIVEN:

- Many nodes
- Nodes contain replicas of partitions of the data
- Consistency
 - All replicas contain the same version of data
 - Client always has the same view of the data (no matter what node)
- Availability
 - System remains operational on failing nodes
 - All clients can always read and write
- Partition tolerance
 - multiple entry points
 - System remains operational on system split (communication malfunction)
 - System works well across physical network partitions

CAP Theorem: satisfying all three at the same time is impossible

RDB ACID to NoSQL BASE

كلية تكنولوجيا الصناعة والطاقة

NoSQL Types

كلية تكنولوجيا الصناعة والطاقة

Key-value

Graph database

Document-oriented

Column family

Key-Value Data Model

كلية تكنولوجيا الصناعة والطاقة

- Simplest NOSQL databases
- The main idea is the use of a hash table
- Access data (values) by strings called keys

Data has no required format data may have any format

Data model: (key, value) pairs

Basic Operations: Insert(key,value), Fetch(key), Update(key), Delete(key)

- Example: Oracle NoSQL Database, Riak etc.
- We use it for: storing session information, user profiles, preferences, shopping cart data.

Column-Oriented

كلية تكنولوجيا الصناعة والطاقة

- It store data as Column families containing rows that have many columns associated with a row key. Each row can have different columns.
- Column families are groups of related data that is accessed together.
- Example:Cassandra, HBase, Hypertable, and Amazon DynamoDB.
- We use it for content management systems, blogging platforms, log aggregation.

Column based [1]

Document Oriented

كلية تكنولوجيا الصناعة والطاقة

Document Based

- The database store send retrieves documents. It stores documents in the value part of the key-value store.
- Self describing, hierarchical tree data structures consisting of maps, collections, and scalar values.
- Example: Lotus Notes ,Mongo DB, Couch DB, Orient DB, Raven DB.
- We use it for content management systems, blogging platforms, webanalytics,real-timeanalytics ecommerce applications.

Graph Data Model

- Store entities and relationships between these entities as nodes and edges of a graph respectively. Entities have properties.
- Traversing the relationships is very fast as relationship between nodes is not calculated at query time but is actually persisted as a relationship.
- Example: Neo4J, InfiniteGraph, OrientDB, FlockDB.
- It is well suited for connected data such as social networks, spatial data, routing information for goods and supply.

SQL vs. NoSQL

كلية تكنولوجيا الصناعة والطاقة

	SQL	NoSQL
1	Relational Databases(RDBMS)	Non-relational or distributed database
2	Vertically scalable	Horizontally scalable
3	Table based databases	Document based, key-value pairs, graph databases or wide-
		column stores.
4	Supports predefined schema	Supports dynamic schema
5	SQL (structured query language) for defining and	Uses unstructured Query Language
	manipulating the data	
6	Standard interface for executing complex query	Not good for executing complex query
7	Best suited for huge load and complex transactional	Not suited for huge load and complex transactional type
	applications	applications
8	SQL databases maintains on ACID properties (NoSQL database follows the Brewers CAP theorem/BASE
	Atomicity, Consistency, Isolation and Durability)	properties
9	Synchronous Inserts & Updates	Asynchronous Inserts & Updates

Conclusion

- RDBMS is a great tool for solving ACID problems
 - When data validity is super important
 - When you need to support dynamic queries
- NoSQL is a great tool for solving data availability problems
 - When it's more important to have fast data than right data
 - When you need to scale based on changing requirements
- Pick the right tool for the job

Thank you