5.0 EBNF (Extended BNF) and Syntax Diagrams

EBNF is the same as BNF, with three additional meta-symbols:

- {} which indicates 0 or more
- [] which indicates optional

BNF

 $\langle X \rangle$::= $\langle X \rangle$ A | ϵ

• (... | ... | ...) which indicates sub-alternatives

EBNF has exactly the same expressive power as BNF.

But it is more convenient for many applications.

Converting from BNF to EBNF must be done precisely:

EBNF

 $\langle X \rangle ::= \{ A \}$

Some things to notice about the conversions to EBNF:

- most "or"'s (|) have been removed, reducing the number of rules,
- redundant items are removed when all they do is specify options,
- most recursion has been removed and replaced with { } loops, and
- occurances of the null string (€) have been removed.

Conversion to EBNF makes it easier to draw Syntax Diagrams. Later, we will use the Syntax Diagrams to write a recursive-descent parser. <u>Syntax Diagrams</u>, sometimes called "Railroad Tracks", are graphical representations of EBNF production rules. Here are syntax diagrams for each of the examples on the previous page:

It can be helpful to imagine train tracks, to help in drawing them correctly:

• Control structures (curves and switches) should be very clear:

The train must <u>never</u> "reverse directions":

There are some common structures in programming languages. Here is the correct way to draw them in BNF, EBNF, and Syntax Diagrams:

	BNF	EBNF	Syntax Diagram
A is optional	M ::= xxAxx xxxx	M ::= x x [A] x x	A
A is required	M ::= xxAxx	M ::= xxAxx	$\longrightarrow \hspace{-0.8cm} \longrightarrow$
1 or more of A	M ::= MA A	$M : := A \{ A \}$	\longrightarrow
0 or more of A	M ::= MA ∈	M ::= { A }	A
1 or more of A with separators	M ::= M ; A A	M ::= A { ; A }	\xrightarrow{A}
1 or more of A with terminators	M ::= MA; A;	$M : := A; \{A; \}$	—————————————————————————————————————
0 or more of A with separators	M : := H ∈ H : := H ; A A	M ::= [A { ; A }]	(A)
0 or more of A with terminators	M ::= MA; ∈	M ::= { A ; }	;-A