DataFrame Operations

Name: Jann Moises Nyll B. De los Reyes

Section: CPE22S3

Date: March 27, 2024

Submitted to: Engr. Roman M. Richard

About the Data

In this notebook, we will working with 2 data sets:

- Facebook's stock price thoughout 2018 (obtained using the stock_analysis package
- daily weather data for NYC from the National Centers for Environmental Information (NCEI) API.

Note: The NCEI is part of the National Oceanic and Atmospheric Administration (NOAA) and, as you can see from the URL for the API, this resource was created when the NCEI was called the NCDC. Should the URL for this resource change in the future, you can search for the NCEI weather API to find the updated one.

Background on the weather data

Data meanings:

AWND: average wind speed

• PRCP: precipitation in millimeters

• SNOW: snowfall in millimeters

• SNWD: snow depth in millimeters

• TMAX: maximum daily temperature in Celsius

• TMIN: minimum daily temperature in Celsius

→ Setup

```
1 import numpy as np
2 import pandas as pd
3
4 weather = pd.read_csv('/content/drive/MyDrive/data/data 8.3/nyc_weather_2018 .csv', parse_dates=['date'])
5 weather.head()
```

	attribute	s data	atype	date		station	value	
) "	٧,	PRCP	2018-01-01	GHCND:	US1CTFR0039	0.0	
	1 "	N,	PRCP	2018-01-01	GHCND:	US1NJBG0015	0.0	
:	2 "	۷, ۶	SNOW	2018-01-01	GHCND:	US1NJBG0015	0.0	
;	3 "	N,	PRCP	2018-01-01	GHCND:	US1NJBG0017	0.0	
	4 "	۷, ۶	SNOW	2018-01-01	GHCND:	US1NJBG0017	0.0	
				nded plots	re/data/d	data 8.3/fb_:	2018.csv	',index_col='date',parse_dates =True)
		open	high	low	close	volume		
	date						ıl.	
-	2018-01-02	177.68	181.58	177.5500	181.42	18151903		
:	2018-01-03	181.88	184.78	181.3300	184.67	16886563		
:	2018-01-04	184.90	186.21	184.0996	184.33	13880896		

Next steps: View recommended plots

2018-01-05 185.59 186.90 184.9300 186.85 13574535 **2018-01-08** 187.20 188.90 186.3300 188.28 17994726

Arithmetics and Statistics

We already saw that we can use mathematical operators like + and / with dataframes directly. However, we can also use methods, which allow us to specify the axis to perform the calculation over. By default this is per column. Let's find the z-scores for the volume traded and look at the days where this was more than 3 standard deviations from the mean:

- 1 fb.assign(
- abs_z_score_volume = lambda x: x.volume.sub(x.volume.mean()).div(x.volume.std()).abs()
- 3).query('abs_z_score_volume > 3')

We can use rank() and pct_change() to see which days had the largest change in volume traded from the day before:

```
1 fb.assign(
2    volume_pct_change=fb.volume.pct_change(),
3    pct_change_rank=lambda x: x.volume_pct_change.abs().rank(
4    ascending = False
5    )
6 ).nsmallest(5,'pct_change_rank')
```

	open	high	low	close	volume	volume_pct_change	pct_change_rank	
date								11.
2018-01-12	178.06	181.48	177.40	179.37	77551299	7.087876	1.0	
2018-03-19	177.01	177.17	170.06	172.56	88140060	2.611789	2.0	
2018-07-26	174.89	180.13	173.75	176.26	169803668	1.628841	3.0	
2018-09-21	166.64	167.25	162.81	162.93	45994800	1.428956	4.0	
2018-03-26	160.82	161.10	149.02	160.06	126116634	1.352496	5.0	

January 12th was when the news that Facebook changed its news feed product to focus more on content from a users' friends over the brands they follow. Given that Facebook's advertising is a key component of its business (<u>nearly 89% in 2017</u>), many shares were sold and the price dropped in panic:

1 fb['2018-01-11':'2018-01-12']

	open	high	low	close	volume	
date						ılı
2018-01-11	188.40	188.40	187.38	187.77	9588587	
2018-01-12	178.06	181.48	177.40	179.37	77551299	

Throughout 2018, Facebook's stock price never had a low above \$215:

Facebook's OHLC (open, high, low, and close) prices all had at least one day they were at \$215 or less:

```
1 (fb > 215).all()
    open    False
    high    False
    low    False
    close    False
    volume     True
    dtype: bool
```

Binning and tresholds

When working with the volume traded, we may be interested in ranges of volume rather than the exact values. No two days have the same volume traded:

```
1 (fb.volume.value_counts() > 1 ).sum()
0
```

We can use pd.cut() to create 3 bins of even an even range in volume traded and name them. Then we can work with low, medium, and high volume traded categories:

	open	high	low	close	volume	
date						
2018-07-26	174.89	180.13	173.75	176.26	169803668	
2018-03-20	167.47	170.20	161.95	168.15	129851768	
2018-03-26	160.82	161.10	149.02	160.06	126116634	

July 25th Facebook announced disappointing user growth and the stock tanked in the after hours:

Cambridge Analytica scandal broke on Saturday March 17th, so we look to the Monday for the numbers:

Since most days have similar volume, but a few are very large, we have very wide bins. Most of the data is in the low bin.

Note: visualizations will be covered in chapters 5 and 6.

```
1 import matplotlib.pyplot as plt

1 fb.plot(y= 'volume', figsize=(15,3),title = 'Daily Volume Traded of Facebook Stock in 2018 (with bins)')
2 for bin_name, alpha, bounds in zip(
3    ['low','med','high'], [0.1,0.2,0.3],pd.cut(fb.volume, bins =3).unique().categories.values
4 ):
5    plt.axhspan(bounds.left, bounds.right, alpha =alpha, label = bin_name, color = 'mediumturquoise')
6    plt.annotate(bin_name, xy= ('2017-12-17',(bounds.left + bounds.right)/2.1))
7    8 plt.ylabel('volume traded')
9 plt.legend()
10 plt.show()
```


If we split using quantiles, the bins will have roughly the same number of observations. For this, we use qcut() . We will make 4 quartiles:

```
1 volume_qbinned = pd.qcut(fb.volume, q=4, labels= ['q1','q2','q3','q4'])
2 volume_qbinned.value_counts()

q1   63
  q2   63
  q4   63
  q3   62
  Name: volume, dtype: int64
```

Notice the bins don't cover ranges of the same size anymore:

```
1 fb.plot(y='volume', figsize=(15, 8), title='Daily Volume Traded of Facebook Stock in 2018 (with quartile bins)')
2
3 for bin_name, alpha, bounds in zip(
4    ['q1', 'q2', 'q3', 'q4'], [0.1, 0.35, 0.2, 0.3], pd.qcut(fb.volume, q=4).unique().categories.values
5 ):
6    plt.axhspan(bounds.left, bounds.right, alpha=alpha, label=bin_name, color='mediumturquoise')
7    plt.annotate(bin_name, xy=('2017-12-17', (bounds.left + bounds.right)/2.1))
8
9    plt.ylabel('volume traded')
10    plt.legend()
11    plt.show()
```


Sometimes we don't want to make bins, but rather cap values at a threshold. Before we look at an example, let's pivot our weather data for the Central Park station:

```
1 central_park_weather = weather.query(
2 'station == "GHCND:USW00094728"'
3 ).pivot(index='date', columns='datatype', values='value')
4
5 central_park_weather.head()
```


Say we don't care how much snow their was, just that it snowed in Central Park. However, we don't want to make a Boolean column since we need to preserve the data type of float. We can use clip() to replace values above a upper threshold with the threshold and replace values below a lower threshold with the lower threshold. This means we can use clip(0, 1) to change all the snow values of one or more to 1, which easily shows us the days snow was recorded in Central Park. Preserving the data type will save some work later on if we are building a model:

```
1 central_park_weather.SNOW.clip(0,1).value_counts()
0.0     354
1.0     11
Name: SNOW, dtype: int64
```

Note: the clip() method can also be called on the dataframe itself.

Applying Functions

PRCP

We can use the apply() method to run the same operation on all columns (or rows) of the dataframe. Let's calculate the z-scores of the TMIN, TMAX, and PRCP observations in Central Park in October 2018:

31.0 4.655774e-17 1.0 -0.394438 -0.394438 -0.394438 -0.240253 3.936167

October 27th rained much more than the rest of the days:

Indeed, this day was much higher than the rest:

```
1 central_park_weather.loc['2018-10','PRCP'].describe()
   count 31.000000
          2.941935
   mean
           7.458542
   std
   min
           0.000000
   25%
         0.000000
   50%
         0.000000
   75%
         1.150000
   max
           32.300000
   Name: PRCP, dtype: float64
```

When the function we want to apply isn't vectorized, we can:

- use np.vectorize() to vectorize it (similar to how map() works) and then use it with apply()
- use applymap() and pass it the non-vectorized function directly

Say we wanted to count the digits of the whole numbers for the Facebook data. len() is not vectorized:

A simple operation of addition to each element in a series grows linearly in time complexity when using iteritems(), but stays near 0 when using vectorized operations. iteritems() and related methods should only be used if there is no vectorized solution:

```
1 import time
2
3 import matplotlib.pyplot as plt
4 import numpy as np
5 import pandas as pd
6
7 np pandom seed(A)
```

```
/ IIp. Falluom. Seeu (v)
 8
 9 vectorized_results = {}
10 iteritems_results = {}
12 for size in [10,100,1000,10000,100000,500000,1000000,500000,10000000]:
      test = pd.Series(np.random.uniform(size=size))
14
15
      start = time.time()
      x =test + 10
16
17
      end = time.time()
18
      vectorized_results[size] = end - start
19
20
      start = time.time()
21
      x=[]
22
      for i,v in test.iteritems():
23
         x.append(v+10)
24
      x = pd.Series(x)
25
      end = time.time()
26
      iteritems_results[size] = end - start
27
28 pd.DataFrame(
      [pd.Series(vectorized_results, name = 'vectorized'), pd.Series(iteritems_results, name = 'iteritems')]
30 ).T.plot(title= 'Time Complexity of Vectorized Operation vs Iteritems()')
31
32 plt.xlabel('items size (rows)')
33 plt.ylabel('time')
34 plt.show()
```

<ipython-input-114-8140ff1e8cdc>:22: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.
 for i,v in test.iteritems():

Window Calculations

Consult the understanding windows calculation notebook for interactive visualization to help understand window calculations.

The rolling() method allows us to perform rolling window calculations. We simply specify the window size (3 days here) and follow it with a call to an aggregation function (sum here):

- 1 central_park_weather['2018-10'].assign(rolling PRCP=lambda x: x.PRCP.rolling('3D').sum() 3)[['PRCP','rolling PRCP']].head(7).T
 - <ipython-input-115-c5ce7d0787b6>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice the rows, like `frame[string]`, is deprecated central park weather['2018-10'].assign(

date	2018-10-01	2018-10-02	2018-10-03	2018-10-04	2018-10-05	2018-10-06	2018-10-07	
datatype								11.
PRCP	0.0	17.5	0.0	1.0	0.0	0.0	0.0	
rolling_PRCP	0.0	17.5	17.5	18.5	1.0	1.0	0.0	

We can also perform the rolling calculations on the entire dataframe at once. This will apply the same aggregation function to each column:

1 central_park_weather['2018-10'].rolling('3D').mean().head(7).iloc[:,:6]

<ipython-input-116-2abb37634d3b>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice the rows, like `frame[string]`, is deprecated central_park_weather['2018-10'].rolling('3D').mean().head(7).iloc[:,:6]

datatype	AWND	PRCP	SNOW	SNWD	TMAX	TMIN	
date							ıl.
2018-10-01	0.900000	0.000000	0.0	0.0	24.400000	17.200000	
2018-10-02	0.900000	8.750000	0.0	0.0	24.700000	17.750000	
2018-10-03	0.966667	5.833333	0.0	0.0	24.233333	17.566667	
2018-10-04	0.800000	6.166667	0.0	0.0	24.233333	17.200000	
2018-10-05	1.033333	0.333333	0.0	0.0	23.133333	16.300000	
2018-10-06	0.833333	0.333333	0.0	0.0	22.033333	16.300000	
2018-10-07	1.066667	0.000000	0.0	0.0	22.600000	17.400000	

We can use different aggregation functions per column if we use agg() instead. We pass in a dictionary mapping the column to the aggregation to perform on it:

```
1 central_park_weather['2018-10-01':'2018-10-07'].rolling('3D').agg(
```

^{{&#}x27;TMAX':'max','TMIN':'min','AWND': 'mean','PRCP':'sum'}

```
3 ).join( # join with original data for comparison
4 central_park_weather[['TMAX', 'TMIN', 'AWND', 'PRCP']],
5 lsuffix= '_rolling'
6 ).sort_index(axis=1)# sort to columnbs so rolling calcs are next to originals
```

datatype	AWND	AWND_rolling	PRCP	PRCP_rolling	TMAX	TMAX_rolling	TMIN	TMIN_rolling	
date									11
2018-10-01	0.9	0.900000	0.0	0.0	24.4	24.4	17.2	17.2	
2018-10-02	0.9	0.900000	17.5	17.5	25.0	25.0	18.3	17.2	
2018-10-03	1.1	0.966667	0.0	17.5	23.3	25.0	17.2	17.2	
2018-10-04	0.4	0.800000	1.0	18.5	24.4	25.0	16.1	16.1	
2018-10-05	1.6	1.033333	0.0	1.0	21.7	24.4	15.6	15.6	
2018-10-06	0.5	0.833333	0.0	1.0	20.0	24.4	17.2	15.6	
2018-10-07	1.1	1.066667	0.0	0.0	26.1	26.1	19.4	15.6	

Rolling calculations (rolling()) use a sliding window. Expanding calculations (expanding()) however grow in size. These are equivalent to cumulative aggregations like cumsum(); however, we can specify the minimum number of periods required to start calculating (default is 1):

```
1 central_park_weather.PRCP.expanding().sum().equals(central_park_weather.PRCP.cumsum())
    False
```

Separate expanding aggregations per column. Note that agg() will accept numpy functions too

```
1 central_park_weather['2018-10-01':'2018-10-07'].expanding().agg(
2 {'TMAX': np.max, 'TMIN': np.min, 'AWND': np.mean, 'PRCP': np.sum}
3 ).join(
4 central_park_weather[['TMAX', 'TMIN', 'AWND', 'PRCP']],
5 lsuffix='_expanding'
6 ).sort_index(axis=1)
7
```

datatype	AWND	AWND_expanding	PRCP	PRCP_expanding	TMAX	TMAX_expanding	TMIN	TMIN_expanding	
date									11.
2018-10-01	0.9	0.900000	0.0	0.0	24.4	24.4	17.2	17.2	
2018-10-02	0.9	0.900000	17.5	17.5	25.0	25.0	18.3	17.2	
2018-10-03	1.1	0.966667	0.0	17.5	23.3	25.0	17.2	17.2	
2018-10-04	0.4	0.825000	1.0	18.5	24.4	25.0	16.1	16.1	
2018-10-05	1.6	0.980000	0.0	18.5	21.7	25.0	15.6	15.6	
2018-10-06	0.5	0.900000	0.0	18.5	20.0	25.0	17.2	15.6	
2018-10-07	1.1	0.928571	0.0	18.5	26.1	26.1	19.4	15.6	

We can calculate the exponentially weighted moving average as follows. Note that span here is the periods to use:

```
1 fb.assign(
2    close_ewma =lambda x: x.close.ewm(span = 5).mean()
3 ).tail(10)[['close','close_ewma']]
```

	close	close_ewma	
date			11
2018-12-17	140.19	142.235433	•
2018-12-18	143.66	142.710289	
2018-12-19	133.24	139.553526	
2018-12-20	133.40	137.502350	
2018-12-21	124.95	133.318234	
2018-12-24	124.06	130.232156	
2018-12-26	134.18	131.548104	
2018-12-27	134.52	132.538736	
2018-12-28	133.20	132.759157	
2018-12-31	131.09	132.202772	

Consult the understanding_window_calculations.ipynb notebook for interactive visualizations to help understand window calculations.

Pipes

Pipes all use to apply any function that accepts our data as the first argument and pass in any additional arguments. This makes it easy to chain steps together regardless of if they are methods or functions:

We can pass any function that will accept the caller of pipe() as the first argument:

For example, passing pd.DataFrame.rolling to pipe() is equivalent to calling rolling() directly on the dataframe, except we have more flexiblity to change this:

The pipe takes the function passed in and calls it with the object that called pipe() as the first argument. Positional and keyword arguments are passed down:

We can use a pipe to make a function that we can use for all our window calculation needs:

```
1 def window_calc(df, func, agg_dict, *args, **kwargs):
 2
      Run a window calculation of your choice on a DataFrame.
 3
 4
 5
      Parameters:
          - df: The DataFrame to run the calculation on.
 6
          - func: The window calculation method that takes df
 7
 8
                   as the first argument.
 9
          - agg dict: Information to pass to `agg()`, could be a
10
                      dictionary mapping the columns to the aggregation
                       function to use, a string name for the function,
11
12
                      or the function itself.
           - args: Positional arguments to pass to `func`.
13
14
           - kwargs: Keyword arguments to pass to `func`.
15
16
      Returns:
17
          - A new DataFrame object.
18
19
      return df.pipe(func, *args, **kwargs).agg(agg_dict)
```

1 window_calc(fb, pd.DataFrame.expanding, np.median).head()

	open	high	low	close	volume	
date						11.
2018-01-02	177.68	181.580	177.5500	181.420	18151903.0	
2018-01-03	179.78	183.180	179.4400	183.045	17519233.0	
2018-01-04	181.88	184.780	181.3300	184.330	16886563.0	
2018-01-05	183.39	185.495	182.7148	184.500	15383729.5	
2018-01-08	184.90	186.210	184.0996	184.670	16886563.0	

Using the exponentially weighted moving average requires we pass in a keyword argument:

1 window_calc(fb,pd.DataFrame.ewm, 'mean',span=3).head()

	open	high	low	close	volume	
date						11.
2018-01-02	177.680000	181.580000	177.550000	181.420000	1.815190e+07	
2018-01-03	180.480000	183.713333	180.070000	183.586667	1.730834e+07	