Short-term variability in the activity and composition of the diazotroph community in a coastal upwelling system

B. Mouriño-Carballido¹, R. Alba², E. Broullón¹, P. Chouciño¹, A. Fernández Carrera³, B. Fernández-Castro⁴, D. Fernández-Román¹, H. Farnelid⁵, A. Fuentes-Lema¹, V. Joglar¹, M. Pérez-Lorenzo¹, S. Martínez¹, T. Rodríguez-Ramos², M. M. Varela²

- 1. Universidade de Vigo, Spain
- 2. Instituto Español de Oceanografía-A Coruña, Spain
- 3. Leibniz Institute for Baltic Sea Research, Germany
- 4. University of SouthamptonNational Oceanography Centre Southampton, UK
- 5. Linnaeus University, Sweden

Changes in perspectives in recent decades

Zehr & Capone (2020, Science)

The NW Iberian coastal upwelling: variability in N₂ fixation over seasonal scales

Moreira-Coello (2018, Scientific Reports)

The NW Iberian coastal upwelling: short-term variability

Upwelling occurs as transient events with a duration of about 3 days (Gilcoto et al., 2017)

Does diazotrophy activity and composition respond to the short-term variability in the upwelling-downwelling regime?

Dataset collected during the REMEDIOS cruise (summer 2018)

29 Jun							16 Jul
SURV	EY1	INTENSIVE 1	SURVEY2	INTENS. 2	SURVEY3	INTENSIVE 3	SURVEY4

St 333 (Shelf) and st 222 (Ría de Pontevedra):

- Microturbulence profiler (st 222)
- Nitrate concentration (7-8 depths)
- •Chlorophyll a (7-8 depths)
- N₂ fixation rates (¹⁵N₂-uptake)
- Diversity of gene *nifH* (ASV level)
- Diazotroph abundances (qPCR)

Variability in wind speed, temperatura, nitrate, and chlorophyll a

The cruise started after strong upwelling followed by few days of relaxation-downwelling, and after another upwelling pulse

Variability in N₂ fixation rates

Higher rates (ca. 2.2 μ mol m⁻³ d⁻¹) during relaxation-downwelling, which decreased (0.10 μ mol m⁻³ d⁻¹) during the fertilization associated with upwelling

N₂ fixation versus depth-integrated NO₃ concentration

Negative relationship between N_2 -fixation and depth-integrated NO_3 (R^2 =0.53, p<0.01)

Biogeochemical role of N₂-fixation (μmolN m⁻² d⁻¹)

¹ Depth-integrated N₂ Fix (dBNF=f(sBNF); Moreira et al., 2017))

Biogeochemical role of N₂-fixation (μmolN m⁻² d⁻¹)

¹ Depth-integrated N₂ Fix (dN₂ Fix =f(sN₂ Fix); Moreira et al., 2017))

² NO₃ diffusive flux = $Kz \times \left(\frac{d[NO_3^-]}{dz}\right)$;

Exponential fit of NO_3 at $\sigma t = 26.55$ kg m⁻³

Biogeochemical role of N₂-fixation (μmolN m⁻² d⁻¹)

¹ Depth-integrated N₂ Fix (dN₂ Fix =f(sN₂ Fix); Moreira et al., 2017))

² NO₃ diffusive flux = $Kz \times \left(\frac{d[NO_3^-]}{dz}\right)$;

 $^{^{3}}NO_{3}$ consumption on σ_{t} =26.55 (NO₃=1.192e^{-0.575t})

Biogeochemical role of N_2 -fixation (µmolN m⁻² d⁻¹) $0.6-34 (13 \pm 13)^{1}$ 3500^{3} $CO_2 + HNO_3 + H_2O \Longrightarrow CHON + O_2$ 490 ± 1179²

The comparison with NO₃ consumption and diffusion confirmed the minor role of N₂ Fix (<1%)

NO₃

Diversity of the diazotrophic community (nifH)

The unicellular cyanobacterium UCYN-A2 was the dominant diazotroph during the cruise

Abundance of UCYN-A1 and UCYN-A2 (qPCR)

Relationship between UCYN-A2 abundance and N₂ fixation

Positive relationship between UCYN-A2 abundance and N_2 -fixation (R^2 =0.50, p<0.01)

Conclusions

- 1. Minor role of N₂ Fix
- 2. Decrease in N_2 Fix rates from relaxation-downwelling to fertilizing upwelling
- 3. Dominant UCYN-A2 exhibited changes in abundance in parallel to N_2 Fix

Does diazotrophy activity and composition respond to the short-term variability in the upwelling-downwelling regime?

Diazotrophs respond rapidly to changes in the environment, and the availability of N controls their activity, composition and distribution

Thanks to...

• CTM2016-75451-779 C2-1-R to B. Mouriño-Carballido (Spanish government)

Presentation Date, Time: 6/25/2021 11:00 AM (GMT Daylight Time)

Session: CS27 - Phytoplankton ecology and physiology

Room 6

Rapid wind-driven fluctuations of the pycnocline drive phytoplankton blooms in a long, narrow bay

Esperanza Broullón. Peter JS Franks. Bieito Fernández-Castro. Miquel Gilcoto and Beatriz Mouriño-Carballido

