Terms, Concepts, and Examples

• Integer Representations - Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

where k is a nonnegative integer, a_0, a_1, \ldots, a_k are nonnegative integers less than b, and $a_k \neq 0$. Base 10 Example:

$$394, 256 = 3 \cdot 100, 000 + 9 \cdot 10, 000 + 4 \cdot 1, 000 + 2 \cdot 100 + 5 \cdot 10 + 6 \cdot 1$$
$$= 3 \cdot 10^5 + 9 \cdot 10^5 + 4 \cdot 10^3 + 2 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0$$

Video on Using the Theorem

• Base Conversion Algorithm - An algorithm for constructing the base b expansion of an integer n. First, divide n by b to obtain a quotient and remainder, that is,

$$n = bq_0 + a_0 \qquad 0 \le a_0 < b$$

the remainder, a_0 , is the rightmost digit in the base b expansion of n. Next, divide q_0 by b to obtain

$$q_0 = bq_1 + a_1$$
 $0 \le a_1 < b$

We see that a_1 is the second digit from the right in the base b expansion of n. Continue this process, successively dividing the quotients by b, obtaining additional base b digits as the remainders. This process terminates when we obtain a quotient equal to zero. It produces the base b digits of n from the right to the left.

Video on Base Conversion

1. **Binary** - uses base 2 which means powers of 2 (i.e. 1, 2, 4, 8, 16, 32) Examples:

$$46 = 1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 1 \cdot 4 + 1 \cdot 2 + 0 \cdot 1$$

= $1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 0 \cdot 1$
= $(10\ 1110)_2$

$$(101\ 1011)_2 = 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

= 1 \cdot 64 + 0 \cdot 32 + 1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1
= 91

1

2. Octal - uses base 8 which means powers of 8 (i.e. 1, 8, 64, 512) Examples:

$$46 = 5 \cdot 8 + 6 \cdot 1$$

= $5 \cdot 8^{1} + 6 \cdot 1$
= $(56)_{8}$

$$(725)_8 = 7 \cdot 8^2 + 2 \cdot 8^1 + 5 \cdot 8^0$$
$$= 7 \cdot 64 + 2 \cdot 8 + 5 \cdot 1$$
$$= 469$$

3. **Hexadecimal** - uses base 16 which means powers of 16 (i.e. 1, 16, 256, 4096) Since we only have 10 digits, hexadecimal needs to use letters as well: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Examples:

$$46 = 2 \cdot 16 + 14 \cdot 1$$

= $5 \cdot 16^{1} + 14 \cdot 1$
= $(5E)_{8}$

$$(B3A)_{16} = 11 \cdot 16^{2} + 3 \cdot 16^{1} + 10 \cdot 16^{0}$$
$$= 11 \cdot 256 + 3 \cdot 16 + 10$$
$$= 2874$$

Video on Binary and Octal Expansions

Video on Hexadecimal Expansion

Video on Hexadecimal and Binary Expansion

Conversion between binary, octal, and hexadecimal expansions - Each octal digit corresponds
to a block of three binary digits and each hexadecimal digit corresponds to a block of four
binary digits.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Video on Conversion

Practice Problems

1. Fine	d the base 9 expansion of the	ne following decir	mal numbers.				
(b)	$(236)_{10}$ $(1485)_{10}$ $(230956)_{10}$						
	evert the decimal expansion a hexadecimal expansion.	of these integer	s to a binary expansion, an octal expansion,				
(a)	231	(b) 4532	(c) 97644				
3. Convert the binary expansion of each of these integers to a decimal expansion.							
(a)	$(1\ 1111)_2$		(c) $(1\ 0101\ 0101)_2$				
(b)	$(10\ 0000\ 0001)_2$		(d) $(110\ 1001\ 0001\ 0000)_2$				
4. Convert the octal expansion of each of these integers to a decimal expansion.							
(a)	$(123)_8$		$(c) (7325)_8$				
(b)	$(41)_8$		(d) $(101)_8$				
5. Convert the octal expansion of each of these integers to a binary expansion.							
(a)	$(572)_8$		(c) $(423)_8$				
(b)	$(1604)_8$		(d) $(2417)_8$				
6. Convert the hexadecimal expansion of each of these integers to a binary expansion.							
(a)	$(80E)_{16}$		(c) $(ABBA)_{16}$				
(b)	$(135AB)_{16}$		(d) $(DEFACED)_{16}$				
7. Convert the binary expansion of each of these integers to an octal expansion and a hexadecimal expansion.							
(a)	$(1111\ 0111)_2$						
(b)	$(1010\ 1010\ 1010)_2$						
(c)	$(111\ 0111\ 0111\ 0111)_2$						
(d)	$(101\ 0101\ 0101\ 0101)_2$						