Greeting

- Good morning, dear members of the examination committee (and dear audience).
- My name is Martin Beneš.
- Welcome to my bachelor thesis defense.

Assignment

- Study the PIR sensors and recognition/classification.
- On basis of this knowledge design a theoretical system
 - Predefined fuzzy logic / artificial learning system
- With PIR sensor data scan the situation
 - Possibly the count of people.
- Implement the described algorithm.
 - Verify its functionality on real situation.

Design

- Client-server structure
- Client = sensor device
 - Responsibilities sensing and homogenous segmentation
 - Implemented with PIR STD (B+B Sensors) + NodeMCU
 - Advantage of ESP8266 on the board = WiFi embedded
 - Programmed using C++/Arduino
 - Configuration via HTTP API
 - Writes data to multicast channel
- Server = classification server (Monitor)
 - Responsibilities classification, presentation (and fusion)
 - Implemented in Python3 (easy prototyping)
 - Due to a number of libraries (NumPy, SciPy, MatPlotLib)

Feature extraction

- Let's continue to method description.
- Signal undergoes processing pipeline consisting of
 - Feature extraction + classification itself
- Signal is segmented into parts (artefacts) with similar character
 - The features are statistical attributes of each artefact
 - Mean, variance, interpolated line scale, length
 - To get those artefact
 - The edges were detected using CWT
 - Areas between edges formed primary segments
 - Neighboring segments merged with fuzzy logic

Classifier

- Based on linear regression
 - Multiple classifiers, each determining one attribute
 - Distance
 - Orientation
 - Side
- Spacial model of sensed area = matrix with fuzzy values
 - Formula for the index value is a polynome
 - Classifier outputs being variables
 - Coefficients characteristical for the index
 - o Indices do not separate the space homogenously

Training

- Manual labelling
 - Reference of synchronized video frame
- Rather inaccurate
- Definitely a room for improvement

Postprocessing

- Localization = cluster analysis
 - K-means vs. Partitioning around medoids
- Counting the people = minimal within-cluster sum of squares

Results

- Posterior probability (percentage) of partial classifiers
- Evaluation:
 - O How many positive samples were classified positive?
- Possible improvements to the future
 - Change the labelling method
 - Usage of multiple sensors
 - Fusion described theoretically, but not implemented