Project description

Design a 32-point FFT in RTL using the Cooley-Tukey FFT algorithm. The butterfly diagram for this is shown below:

Figure 1 32-FFT butterfly diagram

Assumptions:

- 1-Inputs are 8 bits: 7 bits for integer number and 1 bit for sign.
- 2-Inputs go through a block which converts inputs to 24 bits by zero padding.
- 3-24 bits are divided to 10 bits for fraction and 13 bits for integer number and 1 bit for sign.

Design schematic

Figure 2 32-FFT design

For a better quality of design diagram:

https://drive.google.com/file/d/1dkkCorC0PDUxmRcLzsYQztOjM95RdZcE/view?usp=sharing

The throughput of FFT block is 10 MHZ and the throughput of MAC (multiply and accumulate) is 50 MHZ. We use time sharing concept in each column to decrease the hardware used in the FFT block.

Each MAC has 8 inputs and 8 outputs which means that in each column we use $\frac{32}{8}$ =4 MACs. Using

controller (MUXs, counter and decoder) we can control the flow of inputs and outputs then store outputs in latches with clock 50 MHZ after MAC and finally forwarding outputs to the next column through registers with clock 10 MHZ. The main function of registers with clock 10 MHZ is the pipelining between every 2 columns and here we get latency of 500 nsec.

Butterfly

Figure 3 Butterfly implementation

Every input has real and imaginary values which go through MAC with twiddle factor where: a: first input, b: twiddle factor, c: second input.

This MAC has 4 outputs (2 for real and 2 for imaginary): Output1_real =c_r+(a_r*b_r-a_i*b_i), Output2_real =c_r-(a_r*b_r-a_i*b_i).

Instead of using 4 multipliers to get output 1 and another 4 multipliers to get output 2, we concluded that the multiplier inputs are common so we reduced the number of multipliers to half, so we get the result of both output1 and output2 using same 4 multipliers.

Controller

Figure 4 Controller implementation

This is controller consists of 2-bit counter and 2-to-4-bit decoder. Inputs for counter are 10-MHZ and 50-MHZ clocks where we use 50-MHZ clock for increment the counter and the 10-MHZ clock to reset the counter. Outputs of counter are selection lines of MUXs to select the proper inputs to MACs. Also, outputs of counter are the inputs of decoder which has 4 enables to open latches in the proper time to store outputs of MAC.

Results

Figure 5 Real part of first 32 outputs (from 500 to 600 ns)

The expected outputs are:

Out0_re=885	00001101110101000000000
Out1_re=-346.28	100001010110100100011110
Out2_re=-216.09	100000110110000001011100
Out3_re=286.84	000001000111101101011100
Out4_re=204.84	000000110011001101011100
Out5_re=157.5	00000100111011000000000
Out6_re=-535.43	100010000101110110111000
Out7_re=303.4	000001001011110110011001
Out8_re=336	00000101010000000000000
Out9_re=134.62	000000100001101001111010
Out10_re=185.18	000000101110010010111000
Out11_re=315.75	000001001110111100000000
Out12_re=-220.84	100000110111001101011100
Out13_re=-125.33	100000011111010101010001

Out14_re=154.34	0000010011010010111100
Out15_re=73.497	00000010010010111111100
Out16_re=259	00000100000011000000000
Out17_re=73.497	00000010010010111111100
Out18_re=154.34	00000010011010010111100
Out19_re=-125.33	100000011111010101010001
Out20_re=-220.84	100000110111001101011100
Out21_re=315.75	000001001110111100000000
Out22_re=185.18	000000101110010010111000
Out23_re=134.62	000000100001101001111010
Out24_re=336	00000101010000000000000
Out25_re=303.4	000001001011110110011001
Out26_re=-535.43	100010000101110110111000
Out27_re=157.5	000000100111011000000000
Out28_re=204.84	000000110011001101011100
Out29_re=286.84	000001000111101101011100
Out30_re=-216.09	100000110110000001011100
Out31_re=-346.28	100001010110100100011110

Figure 6 imaginary part of first 32 outputs (from 500 to 600 ns)

The expected outputs are:

000000000000000000000000000000000000000
00000010010100000110011
00000000011110010000110
100000011010110100001010
100010001111010101100110
000001001011111111100001
100001010111010100110011
000001011111011011110101
0000010001111000000000
10001000000111010011001
100001001110010110100011
000000100101100111101
1000111101110101100110
100000110000011001110000
100001000110001111101011
100001010100101000011110

Out16_img=0	000000000000000000000000000000000000000
Out17_img=338.53	000001010100101000011110
Out18_img=280.98	000001000110001111101011
Out19_img=193.61	000000110000011001110000
Out20_img=989.35	0000111101110101100110
Out21_img=-148.81	10000010010100111101
Out22_img=313.41	000001001110010110100011
Out23_img=515.65	00001000000111010011001
Out24_img=-143	10000010001111000000000
Out25_img=-381.74	100001011111011011110101
Out26_img=349.3	000001010111010100110011
Out27_img=-151.97	1000001001011111111100001
Out28_img=573.35	00001000111101011100110
Out29_img=107.26	000000011010110100001010
Out30_img=-15.131	10000000011110010000110
Out31_img=-74.05	100000010010100000110011

Figure 7 Outputs of 5 inputs

Here we find that throughput of FFT is 10 MHZ since every output come out after 100 ns from the previous output.

Synthesis Results

Timing Constraints

Figure 8 Timing Constraints

Figure 9 Post synthesis simulation real part of last 32 outputs (from 900 to 1000 ns)

Post Synthesis Simulation:

Figure 10 before synthesis simulation real part of last 32 outputs (from 900 to 1000 ns)

- From figure 9 post synthesis and figure 10 before synthesis show that the function still valid and output value are still the same before synthesis.

Resource usage and report of utilization

1. Slice Logic							
Site Type	Used	Fixed	Available	Util%			
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes F8 Muxes	8595 8595 0 15408 15408 0 10	0 0 0 0 0 0	433200 433200 174200 866400 866400 866400 216600 108300	1.98 1.98 0.00 1.78 1.78 0.00 <0.01			

Figure 11 resource usage and report of utilization