МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СП6ГУТ)

ФАКУЛЬТЕТ ИНФОКОММУНИКАЦИОННЫХ СЕТЕЙ И СИСТЕМ (ИКСС) КАФЕДРА ПРОГРАММНОЙ ИНЖЕНЕРИИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ (ПИ И ВТ)

Дисциплина:

Разработка Java-приложений управления телекоммуникациями

Отчет по лабораторной работе № 1 «Программирование линейных алгоритмов»

> Студентка группы ИКПИ-93 Колтунова Е.В. Подпись_____ Приняла: Белая Т.И.

Выполнила:

Подпись_____

Санкт-Петербург 2021

Содержание

1.	Задание 1.1	4
	1.1 Задание	4
	1.2 Порядок выполнения операций	4
	1.3 Ограничения	
	1.4 Блок-схема алгоритма	5
	1.5 Результаты работы программы	
2.	Задание 1.2	
	2.1 Задание	
	2.2 Порядок выполнения операций	6
	2.3 Ограничения	
	2.4 Блок-схема алгоритма	7
	2.5 Результаты работы программы	7
3.	Задание 1.3	
	3.1 Задание	8
	3.2 Порядок выполнения операций	8
	3.4 Блок-схема алгоритма	
	3.5 Результаты работы программы	9
4.	Задание 2.1	
	4.1 Задание	
	4.2 Порядок выполнения операций	
	4.3 Ограничения	
	4.4 Блок-схема алгоритма	
	4.5 Результаты работы программы	
5.	Задание 2.2	
	5.1 Задание	
	5.2 Порядок выполнения операций	
	5.3 Ограничения	
	5.4 Блок-схема алгоритма	
	5.5 Результаты работы программы	
6.	Задание 2.3	
	6.1 Задание	
	6.2 Порядок выполнения операций	
	6.3 Ограничения	
	6.4 Блок-схема алгоритма	
	6.5 Результаты работы программы	
	ывод	
П	риложение	
	А. Код программы	
	В. Блок-схемы для основных функций программы	
	В.1 Блок-схема для программы	23

B.2 Проверка на тип double	24
В.З Проверка на тип integer	
В.4 Проверка на ввод вещественного числа	
В.5 Проверка на ввод целого числа	26
В.6 Проверка на ввод целого положительного числа	27
В.7 Проверка на ввод вещественного положительного числа	27
В.8 Проверка на допустимый диапазон double	28
В.9 Проверка на допустимую ОО для tg(x)	28
В.10 Проверка на sin(x) != 0	29

1. Задание 1.1

1.1 Задание

Записать арифметическое выражение на алгоритмическом языке и указать порядок выполнения операций.

Вариант 11.

$$S = 9,756y^7 + 2tgx$$

1.2 Порядок выполнения операций

- 1. y⁷
- 2. 9,756 * [1]
- 3. tgx
- 4. 2 * [3]
- 5.[1] + [4]

1.3 Ограничения

Область ограничения(ОО) функции tg(x):

$$x != pi/2 + pi*k.$$

Следовательно, если k = (x - pi/2) / pi, то пользователь должен ввести другое значение для x.

Рисунок 1 - Блок-схема для первого задания

```
Введите номер задания от 1 до 6.

Если хотите закончить, нажмите иное: 1
Введите х = qwerty
Введите число!
Введите х = 10e308
Вне диапазона double!
Введите х = -10e308
Вне диапазона double!
Введите х = 1.570796327
Введите число, отличное от pi/2 + pi*k!
Введите х = -4.712388980
Введите число, отличное от pi/2 + pi*k!
Введите х = 1
Введите х = 1
Введите х = 1
```

2. Задание 1.2

2.1 Задание

Записать арифметическое выражение на алгоритмическом языке и указать порядок выполнения операций.

Вариант 11.

$$D = y^2 + \frac{0.5n + 4.8}{\sin y}$$

2.2 Порядок выполнения операций

- 1. y^2
- 2. 0,5 * n
- 3.[2] + 4.8
- 4. sin(y)
- 5. [3] / [4]
- 6.[1] + [5]

2.3 Ограничения

Sin(y) находится в знаменателе, поэтому sin(y) не должен равняться 0. Следовательно, у != pi * k.

Соответственно, если k = y / pi, то пользователь должен ввести другое значение для у.

Рисунок 2 - Блок-схема для второго задания

```
Введите номер задания от 1 до 6. 

Если хотите закончить, нажмите иное: 2 

Введите у = 3.141592654 

Введите число, отличное от pi*k! 

Введите у = -12.566370614 

Введите число, отличное от pi*k! 

Введите у = 1 

Введите n = 2 

Результат: D = 7.89
```

3. Задание 1.3

3.1 Задание

Записать арифметическое выражение на алгоритмическом языке и указать порядок выполнения операций.

Вариант 11.

$$I = \frac{2.33 \ln \sqrt{1 + \cos^2 y}}{e^y + \sin^2 x}$$

3.2 Порядок выполнения операций

- $1. \cos^2 y$
- 2.1 + [1]
- 3. ln([2])
- 4. 2.33 * [3]
- 5. e^y
- 6. sin^2x
- 7. [5] + [6]
- 8. [4] / [7]

3.3 Ограничения

В данном задании не будет ограничений, так как все условия будут выполняться при любых значениях переменных.

3.4 Блок-схема алгоритма

Рисунок 3 - Блок-схема для третьего задания

3.5 Результаты работы программы

Введите номер задания от 1 до 6.

Если хотите закончить, нажмите иное: 3

Введите х = 2

Введите у = 3

Результат: I = 0.04

4. Задание 2.1

4.1 Задание

Составить структурную схему алгоритма и проект программы решения задачи, исходные данные ввести с клавиатуры.

Вариант 11.

Вычислить длину окружности и площадь круга одного и того же заданного радиуса R.

4.2 Порядок выполнения операций

- 1. Вычисляем длину окружностти по формуле C = 2 * pi * R
- 2. Вычисляем площадь круга по формуле $S = pi * R^2$

4.3 Ограничения

Значение радиуса, вводимое с клавиатуры, должно быть больше нуля.

Рисунок 4 - Блок-схема для четвертого задания

```
Введите номер задания от 1 до 6.

Если хотите закончить, нажмите иное: 4

Введите R = -10

Введите положительное число!

Введите R = 12.5

Результаты:

Длина окружности C = 78.54

Площадь круга S = 490.87
```

5. Задание 2.2

5.1 Задание

Составить структурную схему алгоритма и проект программы вычисления функции. Один параметр ввести с клавиатуры, а другой задать как константу, все вычисляемые значения вывести на экран.

Вариант 11.

№ Функция Значения параметров
$$y = F(x)$$
 параметров $b = 7$ $x = 2$

11 $c = \lg|b|$; $a = (b + x)^3$

5.2 Порядок выполнения операций

- 1. Находим значение переменной а.
- 2. Находим значение переменной с.
- 3. Находим значение переменной у.

5.3 Ограничения

Ограничения не требуются.

Рисунок 5 - Блок-схема для пятого задания

```
Введите номер задания от 1 до 6.

Если хотите закончить, нажмите иное: 5

Введите х = 1

Результаты:

у = 23.34

с = 0.85

а = 512.00
```

6. Задание 2.3

6.1 Задание

Составить структурную схему алгоритма и проект программы, исходные данные ввести с клавиатуры, результат вывести на экран.

Вариант 11.

Тело движется по закону $S = t^3$ - sqrt(t). Вычислить скорость тела и расстояние в момент времени Т. Значение Т ввести с клавиатуры (функция скорости есть производная от функции расстояния по времени).

6.2 Порядок выполнения операций

- 1. Вычисляем расстояние в момент времени Т.
- 2. Вычисляем скорость тела.

Производная от расстояния:

$$V = (S)' = (t^3 - sqrt(t))' = 3*t^2 - 1/(2 * sqrt(t)).$$

6.3 Ограничения

Значение времени, вводимое с клавиатуры, должно быть больше нуля и должно быть целым числом.

Рисунок 6 - Блок-схема для шестого задания

```
Введите номер задания от 1 до 6. 

Если хотите закончить, нажмите иное: 6 

Введите T = -10.5 

Введите число! 

Введите T = -10 

Введите положительное число! 

Введите T = 5.5 

Введите число! 

Введите T = 2 

Результаты: 

S = 6.59 

V = 11.65
```

Вывод

В ходе лабораторной работы мы составили программу на языке Java, решающую алгебраические выражения.

Приложение

А. Код программы

```
package com.company;
import java.util.Scanner;
public class Main {
 public static void main(String[] args) {
    Scanner sc = new Scanner(System.in);
    boolean stop = false;
    while (!stop) {
      System.out.println("Введите номер задания от 1 до 6.");
      System.out.print("Если хотите закончить, нажмите иное: ");
      int taskNumber = sc.nextInt();
      switch (taskNumber) {
        case 1:
          task1(sc);
          break;
        case 2:
          task2(sc);
          break;
      case 3: task3(sc);
        break;
      case 4: task4(sc);
        break;
      case 5: task5(sc);
        break;
      case 6: task6(sc);
```

```
break;
        default: stop = true;
     }
    }
  }
 public static void task1(Scanner sc){
    double x = inputDouble("x", sc, true, false, false);
    double y = inputDouble("y", sc, false, false, false);
    double S = 9.756 * Math.pow(y, 7) + 2 * Math.tan(x);
    System.out.printf("Pesynbtat: S = %.2f\n\n'', S);
  }
  private static void task2(Scanner sc) {
    double y = inputDouble("y", sc, false, true, false);
    double n = inputDouble("n", sc, false, false, false);
    double D = Math.pow(y,2) + ((0.5 * n + 4.8) / (Math.sin(y)));
    System.out.printf("Pesynbtat: D = %.2f\n\n", D);
  }
 private static void task3(Scanner sc) {
    double x = inputDouble("x", sc, false, false);
    double y = inputDouble("y", sc, false, false, false);
    double I = (2.33 * Math.log(Math.sqrt((1+Math.pow(Math.cos(y),2))))) /
(Math.pow(Math.\mathbf{E}, y) + Math.pow(Math.sin(x),2));
    System.out.printf("Pesynbtat: I = %.2f\n\n'', I);
  }
```

```
private static void task4(Scanner sc) {
  double R = inputDouble("R", sc, false, false, true);
  double C = 2 * Math.PI * R;
  double S = Math.PI * Math.pow(R, 2);
  System.out.println("Результаты: ");
  System.out.printf("Длина окружности С = %.2f\n", С);
  System.out.printf("Площадь круга S = %.2f\n", S);
}
private static void task5(Scanner sc) {
  double b = 7;
  double x = inputDouble("x", sc, false, false, true);
  double a = Math.pow(b + x, 3);
  double c = Math.log10(Math.abs(b));
  double y = Math.pow(c, 2) + Math.sqrt(Math.abs(a));
  System.out.println("Результаты: ");
  System.out.printf("y = %.2f\n", y);
  System.out.printf("c = %.2f\n", c);
  System.out.printf("a = \%.2f\n\n", a);
}
private static void task6(Scanner sc) {
  double t = inputInt("T", sc, true);
  double S = Math.pow(t,3) - Math.sqrt(t);
  double V = 3 * Math.pow(t, 2) - 1 / (2 * Math.sqrt(t));
  System.out.println("Результаты: ");
```

```
System.out.printf("S = \%.2f\n", S);
    System.out.printf("V = %.2f\n\n", V);
 }
 private static double inputDouble(String label, Scanner sc, boolean
needTangentCheck, boolean needSin0, boolean needPos) {
    double x:
    while (true) {
      System.out.printf("Введите %s = ", label);
      if (!checkDouble(sc)) continue;
      x = sc.nextDouble();
      if (!checkRange(x)) continue;
      if (needTangentCheck && !checkTangent(x)) continue;
      if (needSin0 && !checkSin0(x)) continue;
      if (needPos && !checkPositiveDouble(x)) continue;
      break;
    return x;
  }
  private static double inputInt(String label, Scanner sc, boolean
needPosInt) {
    int x;
    while (true) {
      System.out.printf("Введите %s = ", label);
      if (!checkInt(sc)) continue;
```

```
x = sc.nextInt();
    if (needPosInt && !checkPositiveInt(x)) continue;
    break:
  }
  return x;
}
private static boolean checkPositiveDouble(double x) {
  return validate(x \ge 0, "Bведите положительное число!");
}
private static boolean checkPositiveInt(int x) {
  return validate(x \ge 0, "Bведите положительное число!");
}
public static boolean checkDouble(Scanner sc) {
  if (!sc.hasNextDouble()) {
    sc.next();
    validate(false, "Введите число!");
    return false:
  }
  return true;
}
private static boolean checkInt(Scanner sc) {
  if (!sc.hasNextInt()){
    sc.next();
    validate(false, "Введите число!");
    return false;
  }
  return true;
```

```
private static boolean checkRange(double x) {
    return validate(x > -1.7e308 & x < 1.7e308, "Вне диапазона
double!");
 }
 private static boolean checkTangent(double x) {
    double k = (x - Math.PI / 2) / Math.PI;
    return validate(Math.abs(k - Math.round(k)) > 10.0e-10,
        "Введите число, отличное от pi/2 + pi*k!");
  }
 private static boolean checkSinO(double x) {
    double k = x / Math. PI;
    return validate(Math.abs(k - Math.round(k)) > 10.0e-10,
        "Введите число, отличное от pi*k!");
 }
 private static boolean validate(boolean b, String message) {
   if (!b) System.out.println(message);
    return b;
 }
```

В. Блок-схемы для основных функций программы

В.1 Блок-схема для программы

Рисунок 7 - Блок-схема для программы

В.2 Проверка на тип double

Рисунок 8 - Блок-схема алгоритма для проверки на mun double

В.3 Проверка на тип integer

Рисунок 9 - Блок-схема алгоритма для проверки на mun integer

В.4 Проверка на ввод вещественного числа

Рисунок 10 - Блок-схема для проверки на ввод вещественного числа

В.5 Проверка на ввод целого числа

Рисунок 11 - Блок-схема для проверки на ввод целого числа

В.6 Проверка на ввод целого положительного числа

Рисунок 12 - Проверка на ввод целого положительного числа

В.7 Проверка на ввод вещественного положительного числа

Рисунок 13 - Проверка на ввод вещественного положительного числа

В.8 Проверка на допустимый диапазон double

Рисунок 14 - Проверка на допустимый диапазон double

В.9 Проверка на допустимую ОО для tg(x)

Рисунок 15 - Проверка на допустимую ОО для tg(x)

В.10 Проверка на sin(x) != 0

Рисунок 16 - Проверка на sin(x) != 0

В.11 Вывод сообщение об ошибке

Вывод сообщения об ошибке

Рисунок 17: Блок-схема вывода текста сообщения