Assignment 2

Suraj - CS20BTECH11050

and latex-tikz codes from

https://github.com/Suraj11050/Assignments-AI1103/blob/main/Assignment%202/ Assignment2.tex

1 GATE PROBLEM 78

The joint probability density function of two random variables X and Y is given as

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & 0 \le x \le 1 & 0 \le y \le 1\\ 0 & \text{elsewhere} \end{cases}$$

a)
$$\frac{2}{5}$$
 and $\frac{3}{5}$

a)
$$\frac{2}{5}$$
 and $\frac{3}{5}$ b) $\frac{3}{5}$ and $\frac{3}{5}$

c)
$$\frac{3}{5}$$
 and $\frac{6}{5}$

d)
$$\frac{4}{5}$$
 and $\frac{6}{5}$

2 SOLUTION

For a continuous joint probability distribution E(X)and E(Y) are obtained using the following equations (2.0.1) and (2.0.2)

$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) \, dx \, dy$$
 (2.0.1)

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) \, dx \, dy \qquad (2.0.2)$$

Using equation (2.0.1) E(X) is calculated as

$$E(X) = \int_{0}^{1} \int_{0}^{1} x \frac{6}{5} (x + y^{2}) dx dy + 0$$

$$= \int_{0}^{1} \frac{6}{5} \left(\int_{0}^{1} x^{2} dx \right) + \frac{6}{5} y^{2} \left(\int_{0}^{1} x dx \right) dy$$

$$= \int_{0}^{1} \frac{6}{5} \left(\frac{1}{3} \right) + \frac{6}{5} y^{2} \left(\frac{1}{2} \right) dy$$

$$= \frac{2}{5} \int_{0}^{1} dy + \frac{3}{5} \int_{0}^{1} y^{2} dy$$

$$= \frac{2}{5} + \frac{3}{5} \left(\frac{1}{3} \right)$$

$$E(X) = \frac{3}{5}$$

Using equation (2.0.2) E(Y) is calculated as

$$E(Y) = \int_{0}^{1} \int_{0}^{1} y \frac{6}{5} (x + y^{2}) dx dy + 0$$

$$= \int_{0}^{1} \frac{6}{5} x \left(\int_{0}^{1} y dy \right) + \frac{6}{5} \left(\int_{0}^{1} y^{3} dy \right) dx$$

$$= \int_{0}^{1} \frac{6}{5} x \left(\frac{1}{2} \right) + \frac{6}{5} \left(\frac{1}{4} \right) dx$$

$$= \frac{3}{5} \int_{0}^{1} x dx + \frac{3}{10} \int_{0}^{1} dx$$

$$= \frac{3}{5} \left(\frac{1}{2} \right) + \frac{3}{10}$$

$$E(Y) = \frac{3}{5}$$

$$\therefore E(X) = \frac{3}{5} \text{ and } E(Y) = \frac{3}{5}$$

Hence the answer is **option** b