COMP3121-Ass1-Q1

z5302513, Kihwan Baek

June 2021

Q1.

a)

Firstly, go through all of $\binom{n}{2}$ pairs ((A[k], A[m]), k < m) of distinct integers in A; compute the sums $A[k^2 + m]$ for all $1 \le k < m \le n$ and put the set of integers $(k, m, k^2 + m)$ in an array of size n(n-1)/2. Similarly, compute the sums $A[k+m^2]$ for the same condition and put the set of integers in a different array of size n(n-1)/2. Then, concatenate and sort the two arrays based on the third values $(k^2 + m \text{ and } k + m^2)$ in time $O(n^2 \log_2 n^2) = O(n^2 \log n)$. Finally, go through the sorted array and determine if a number appears in it at least twice and then the four integers are all different values (m, s, p, k).