Johannes Hötzer Informatik, Duale Hochschule Baden-Württemberg Semester WS. 17, February 18, 2017

Übung 3. zur Vorlesung Paralleles Rechnen

- Kennzahlen-

Hinweis: Diese Übung wird nur gewertet, wenn sie schriftlich abgegeben wird. D.h. nicht digital oder ausgedruckt!

Aufgabe: 1 Kennzahlen (1.5 P)

Nennen Sie drei Gründe wofür bzw. für welche Aussagen Kennzahlen (Speedup, Flops,...) benötigt?

- •
- •
- •

Effizienz

Aufgabe: 2 Speedup (3.5 P)

Bestimmen Sie zu follgenden Messwerten die während drei Messreihen enstanden sind die in a)-d) beschriebenen Kennzahlen.

Testreihe 1												
CPUs	1	10	20	30	40	50	60	70	80	90	100	
Zeit	1000	105,3	55,6	39,2	31,3	26,7	23,8	21,9	20,8	20,2	20	
Id. Speedup												
Speedup												
Effizienz												
Testreihe 2												
CPUs	1	10	20	30	40	50	60	70	80	90	100	
Zeit	1000,0	108,7	59,5	43,9	36,8	33,3	32,1	32,5	34,7	39,7	50,0	
Id. Speedup												
Speedup												
Effizienz												
Testreihe 3												
CPUs	1	10	20	30	40	50	60	70	80	90	100	
Zeit	1000,0	102,0	52,1	35,5	27,2	22,2	18,9	16,6	14,9	13,6	12,5	
Id. Speedup												
Speedup												

a) Iedalen Speedup $(0.5\ P)$ Berechnen Sie für alle drei Messreihen den Iedalen Speedup!

b) Speedup (1 P) Berechnen Sie für alle drei Messreihen den Speedup!

- c) Effizienz (1 P) Berechnen Sie für alle drei Messreihen die Effizienz!
- d) Diagramm (0.5 P) Tragen Sie die brechneten Werte jeweils (Speedup/Effizienz) in ein Digaramm ein und beschriften Sie die Achsen!
- e) Beobachtung $(0.5\ P)$ Was können Sie Anhand der Diagramme über die drei Messreihen aussagen?

Aufgabe: 3 Amdahls Gesetz (2.5 P)

Bestimmen Sie mit Hilfe von Amdahls Gesetz zu follgenden Messwerten die während zwei Messreihen enstanden sind

Testreihe 1											
CPUs	1	10	20	30	40	50	60	70	80	90	100
par. Laufzeit T_{para}	800,0	80,0	40,0	26,7	20,0	16,0	13,3	11,4	10,0	8,9	8,0
seq. Laufzeit T_{seq}	200,0	20,0	10,0	6,7	5,0	4,0	3,3	2,9	2,5	2,2	2,0
T_{gesamt}											
t_{para}											
t_{seq}											
Id. Speedup											
Speedup											

Testreihe 2											
CPUs	1	10	20	30	40	50	60	70	80	90	100
t_{para}	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
t_{seq}											
Id. Speedup											
Speedup											

- a) Amdahls Gesetz (1 P) Berechnen Sie für beide Messreihen den Iedalen Speedup und den Speedup mit Amdahls Gesetz!
- b) Diagramm (0.5 P) Tragen Sie die brechneten Speedup-Werte in ein Digaramm ein und beschriften Sie die Achsen!
- c) Beobachtung (1 P) Was können Sie Anhand das Diagramms über die Messreihen aussagen?

Aufgabe: 4 Gustafsons Gesetz (2.5 P)

Bestimmen Sie mit Hilfe des Gustafsons Gesetz zu follgenden Messwerten die während zwei Messreihen enstanden sind

Testreihe 1											
CPUs	1	10	20	30	40	50	60	70	80	90	100
T_{gesamt}	1000,0	100,0	50,0	33,3	25,0	20,0	16,7	14,3	12,5	11,1	10,0
par. Laufzeit T_{para}	800,0	80,0	40,0	26,7	20,0	16,0	13,3	11,4	10,0	8,9	8,0
seq. Laufzeit T_{seq}											
t_{para}											
t_{seq}											
Id. Speedup											
Speedup											

Testreihe 2											
CPUs	1	10	20	30	40	50	60	70	80	90	100
t_{para}	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
t_{seq}											
Id. Speedup											
Speedup											

- $a)\ Gustafsons\ Gesetz\ (1\ P)\ Berechnen Sie für beide Messreihen den Iedalen Speedup und den Speedup mit Gustafsons Gesetz!$
- b) Diagramm~(0.5~P)~ Tragen Sie die brechneten Speedup-Werte in ein Digaramm ein und beschriften Sie die Achsen!
- $c) \; Beobachtung \; (1 \; P) \;$ Was können Sie Anhand das Diagramms über die Messreihen aussagen?