

9	Examples
V	Rogression: product house parcl aice y (\$) X Common Guess. Why
Training Dala brown Zulowi	X X Square Footage Your house size
	Capal: Product selling police year = f(x wer
->	Classification:
	x & 12 : Size of tumos y & {0,1} : Benign or Malignoni
Taginin	
	This seams to be the transition point. Largee turnor than this = takeble

much much smo	ller 3
Two poblems: \(\) () typically $n << 2$	
d ~ hundreds n ~ millions/billions	(?) 91 2
In some domains (e.g biodogy) n < d measurer subjects ma study	
(d)	
Even y off by 10 samp	les, that's a le
Take-away: No Assumptions = No Leas	ning
4) How do we measure perform	unce?
Loss/Earon Function L(yod, ŷ) = penatty/cost for producti - Une "bue" or coracil and	ng g when
Usually, Loss = 1 - Accusacy.	

-> Regression: Typical Loss L(y, g) = (y-y) L2 or Squared Loss 1y-g1 Absolute Loss -> Classification:

Typically count #mis-classifications

L(y, y) = 1 4 y ± y 7 0/1 - Loss

O y = y → Typically, Loss "decomposes" over the dataseil $Lose(D) = \frac{1}{n} \stackrel{?}{=} L(y_i, g_i)$ Training Label Production Sometimes losses are "corpus" losses, ie. May are not "additive over each instance. Example: Next time Area-Under-ROC curve