The Morse theory of Čech and Delaunay filtrations

Ulrich Bauer Herbert Edelsbrunner

IST Austria

SoCG 2014

Connect the dots: topology from geometry

Connect the dots: topology from geometry

 $X \subset \mathbb{R}^d$: finite point set (in general position)

 $X \subset \mathbb{R}^d$: finite point set (in general position)

Simplices $\Delta(X)$: nonempty subsets of X

 $X \subset \mathbb{R}^d$: finite point set (in general position)

Simplices $\Delta(X)$: nonempty subsets of X

 $X \subset \mathbb{R}^d$: finite point set (in general position)

Simplices $\Delta(X)$: nonempty subsets of X

Two functions on simplices $Q \subseteq X$:

Čech function $f_C(Q)$:

radius of smallest enclosing sphere of Q

 $X \subset \mathbb{R}^d$: finite point set (in general position)

Simplices $\Delta(X)$: nonempty subsets of X

Two functions on simplices $Q \subseteq X$:

Čech function $f_C(Q)$:

radius of smallest enclosing sphere of Q

Delaunay function $f_D(Q)$:

radius of smallest empty circumsphere

 $X \subset \mathbb{R}^d$: finite point set (in general position)

Simplices $\Delta(X)$: nonempty subsets of X

Two functions on simplices $Q \subseteq X$:

Čech function $f_C(Q)$:

radius of smallest enclosing sphere of Q

Delaunay function $f_D(Q)$:

radius of smallest empty circumsphere

• defined only if Q has an empty circumsphere: $Q \in Del(X)$

Define for any radius r:

• Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$

- Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$
 - all simplices having an enclosing sphere of radius $\leq r$

- Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$
 - all simplices having an enclosing sphere of radius $\leq r$
- *Delaunay*–Čech complex $DelCech_r = Cech_r \cap Del$

- Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$
 - all simplices having an enclosing sphere of radius $\leq r$
- *Delaunay–Čech complex* $DelCech_r = Cech_r \cap Del$
 - restriction of Čech complex to Delaunay simplices

- Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$
 - all simplices having an enclosing sphere of radius $\leq r$
- *Delaunay–Čech complex* $DelCech_r = Cech_r \cap Del$
 - restriction of Čech complex to Delaunay simplices
- Delaunay complex (α -complex, for $\alpha = r$) $\mathrm{Del}_r = f_D^{-1}(-\infty, r]$

- Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$
 - all simplices having an enclosing sphere of radius $\leq r$
- *Delaunay–Čech complex* $DelCech_r = Cech_r \cap Del$
 - restriction of Čech complex to Delaunay simplices
- Delaunay complex (α -complex, for $\alpha = r$) $\mathrm{Del}_r = f_D^{-1}(-\infty, r]$
 - all simplices having an empty circumsphere of radius $\leq r$

- Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$
 - all simplices having an enclosing sphere of radius $\leq r$
- *Delaunay–Čech complex* $DelCech_r = Cech_r \cap Del$
 - restriction of Čech complex to Delaunay simplices
- Delaunay complex (α -complex, for $\alpha = r$) $\mathrm{Del}_r = f_D^{-1}(-\infty, r]$
 - all simplices having an empty circumsphere of radius $\leq r$

By the Nerve theorem (Borsuk 1947):

$$\mathrm{Del}_r(X) \simeq \mathrm{Cech}_r(X) \simeq B_r(X).$$

By the Nerve theorem (Borsuk 1947):

$$\mathrm{Del}_r(X) \simeq \mathrm{Cech}_r(X) \simeq B_r(X).$$

But we also have

$$\mathrm{Del}_r(X) \subseteq \mathrm{DelCech}_r(X) \subseteq \mathrm{Cech}_r(X).$$

By the Nerve theorem (Borsuk 1947):

$$\mathrm{Del}_r(X) \simeq \mathrm{Cech}_r(X) \simeq B_r(X).$$

But we also have

$$\mathrm{Del}_r(X) \subseteq \mathrm{DelCech}_r(X) \subseteq \mathrm{Cech}_r(X).$$

• Are all three complexes homotopy equivalent?

By the Nerve theorem (Borsuk 1947):

$$\mathrm{Del}_r(X) \simeq \mathrm{Cech}_r(X) \simeq B_r(X).$$

But we also have

$$\mathrm{Del}_r(X) \subseteq \mathrm{DelCech}_r(X) \subseteq \mathrm{Cech}_r(X)$$
.

- Are all three complexes homotopy equivalent?
- Are they related by a sequence of simplicial collapses?

Definition (Whitehead 1938)

Let K be a simplicial complex.

Definition (Whitehead 1938)

Let K be a simplicial complex.

 A free face of K is a simplex which is contained in a unique proper coface.

Definition (Whitehead 1938)

Let K be a simplicial complex.

 A free face of K is a simplex which is contained in a unique proper coface.

 We can collapse K to a subcomplex L by removing a free face F, along with its proper coface.

Definition (Whitehead 1938)

Let K be a simplicial complex.

 A free face of K is a simplex which is contained in a unique proper coface.

- We can collapse K to a subcomplex L by removing a free face F, along with its proper coface.
- L is homotopy equivalent to K.
 In particular, they have isomorphic homology.

Definition (Whitehead 1938)

Let *K* be a simplicial complex.

 A free face of K is a simplex which is contained in a unique proper coface.

- We can collapse K to a subcomplex L by removing a free face F, along with its proper coface.
- L is homotopy equivalent to K.
 In particular, they have isomorphic homology.

If there is a sequence of these elementary collapses from K to L, we say that K collapses to L (written as $K \setminus L$).

Theorem (B, Edelsbrunner)

Čech, Delaunay–Čech, Delaunay, and Wrap complexes are homotopy equivalent. In particular,

 $DelCech_r \setminus Del_r \setminus Wrap_r$.

Theorem (B, Edelsbrunner)

Čech, Delaunay–Čech, Delaunay, and Wrap complexes are homotopy equivalent. In particular,

 $\operatorname{Cech}_r \setminus \operatorname{Del}\operatorname{Cech}_r \setminus \operatorname{Del}_r \setminus \operatorname{Wrap}_r$.

Theorem (B, Edelsbrunner)

Čech, Delaunay–Čech, Delaunay, and Wrap complexes are homotopy equivalent. In particular,

 $\operatorname{Cech}_r \setminus \operatorname{Del}\operatorname{Cech}_r \setminus \operatorname{Del}_r \setminus \operatorname{Wrap}_r$.

• All collapses are induced by a single discrete gradient field

Theorem (B, Edelsbrunner)

Čech, Delaunay–Čech, Delaunay, and Wrap complexes are homotopy equivalent. In particular,

 $\operatorname{Cech}_r \setminus \operatorname{Del}\operatorname{Cech}_r \setminus \operatorname{Del}_r \setminus \operatorname{Wrap}_r$.

- All collapses are induced by a single discrete gradient field
- The filtrations have isomorphic persistent homology

Theorem (B, Edelsbrunner)

Čech, Delaunay–Čech, Delaunay, and Wrap complexes are homotopy equivalent. In particular,

 $\operatorname{Cech}_r \setminus \operatorname{Del}\operatorname{Cech}_r \setminus \operatorname{Del}_r \setminus \operatorname{Wrap}_r$.

- All collapses are induced by a single discrete gradient field
- The filtrations have isomorphic persistent homology
- Also works for weights

Definition (Forman 1998)

A discrete vector field on a simplicial complex is a partition of the simplices into singletons and facet pairs (Q, R) (Q is a face of R with codimension 1).

Definition (Forman 1998)

A discrete vector field on a simplicial complex is a partition of the simplices into singletons and facet pairs (Q, R) (Q is a face of R with codimension 1).

The singletons are called *critical simplices*.

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

• the sublevel sets $K_t = f^{-1}(-\infty, t]$ are subcomplexes

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

• the sublevel sets $K_t = f^{-1}(-\infty, t]$ are subcomplexes

1

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

• the sublevel sets $K_t = f^{-1}(-\infty, t]$ are subcomplexes

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

- the sublevel sets $K_t = f^{-1}(-\infty, t]$ are subcomplexes
- the level sets f⁻¹(t) form a discrete vector field (the discrete gradient of f)

Definition (Forman 1998)

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *discrete Morse function* if for all $t \in \mathbb{R}$:

- the sublevel sets $K_t = f^{-1}(-\infty, t]$ are subcomplexes
- the level sets f⁻¹(t) form a discrete vector field (the discrete gradient of f)

If $f^{-1}(t) = \{Q\}$ then t is a *critical value*.

Let f be a discrete Morse function on a simplicial complex K.

Let f be a discrete Morse function on a simplicial complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then K_t collapses to K_s (written as $K_t \setminus K_s$).

Let f be a discrete Morse function on a simplicial complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then K_t collapses to K_s (written as $K_t \setminus K_s$).

Let f be a discrete Morse function on a simplicial complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then K_t collapses to K_s (written as $K_t \setminus K_s$).

Let f be a discrete Morse function on a simplicial complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then K_t collapses to K_s (written as $K_t \setminus K_s$).

Let V be a discrete gradient field on a simplicial complex K, and let L be a subcomplex of K.

Corollary

If $K \setminus L$ is the union of facet pairs of V, then $K \setminus L$.

Let f be a discrete Morse function on a simplicial complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then K_t collapses to K_s (written as $K_t \setminus K_s$).

Let V be a discrete gradient field on a simplicial complex K, and let L be a subcomplex of K.

Corollary

If $K \setminus L$ is the union of facet pairs of V, then $K \setminus L$.

Let f be a discrete Morse function on a simplicial complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then K_t collapses to K_s (written as $K_t \setminus K_s$).

Let V be a discrete gradient field on a simplicial complex K, and let L be a subcomplex of K.

Corollary

If $K \setminus L$ is the union of facet pairs of V, then $K \setminus L$.

We say that V induces the collapse $K \setminus L$.

Unfortunately...

Neither the Čech nor the Delaunay functions are discrete Morse functions!

Unfortunately...

Neither the Čech nor the Delaunay functions are discrete Morse functions!

• Example: two simplices Q, Q' with $f_C(Q) = f_C(Q')$ that do not form a facet pair:

Definition (Freij 2009)

A *generalized discrete vector field* on a simplicial complex is a partition of the simplices into intervals of the face poset:

$$[L, U] = \{Q : L \subseteq Q \subseteq U\}.$$

Definition (Freij 2009)

A *generalized discrete vector field* on a simplicial complex is a partition of the simplices into intervals of the face poset:

$$[L, U] = \{Q : L \subseteq Q \subseteq U\}.$$

The singletons are called *critical simplices*.

Definition

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *generalized discrete Morse function* if for $t \in \mathbb{R}$:

Definition

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *generalized discrete Morse function* if for $t \in \mathbb{R}$:

• the sublevel sets $K_t = f^{-1}(-\infty, t]$ are subcomplexes

1

Definition

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *generalized discrete Morse function* if for $t \in \mathbb{R}$:

Definition

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *generalized discrete Morse function* if for $t \in \mathbb{R}$:

Definition

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *generalized discrete Morse function* if for $t \in \mathbb{R}$:

Definition

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *generalized discrete Morse function* if for $t \in \mathbb{R}$:

Definition

A function $f: K \to \mathbb{R}$ on a simplicial complex is a *generalized discrete Morse function* if for $t \in \mathbb{R}$:

- the sublevel sets $K_t = f^{-1}(-\infty, t]$ are subcomplexes
- the level sets f⁻¹(t) form a generalized vector field (the discrete gradient of f)

A generalized vector field ${\it V}$ can be refined to a vector field.

For each non-critical interval $[L, U] \in V$:

A generalized vector field V can be refined to a vector field.

For each non-critical interval $[L, U] \in V$:

• choose an arbitrary vertex $x \in U \setminus L$

A generalized vector field V can be refined to a vector field.

For each non-critical interval $[L, U] \in V$:

- choose an arbitrary vertex $x \in U \setminus L$
- partition [L, U] into facet pairs $(Q \setminus \{x\}, Q \cup \{x\})$ for all $Q \in [L, U]$.

A generalized vector field V can be refined to a vector field.

For each non-critical interval $[L, U] \in V$:

- choose an arbitrary vertex $x \in U \setminus L$
- partition [L, U] into facet pairs $(Q \setminus \{x\}, Q \cup \{x\})$ for all $Q \in [L, U]$.

Therefore the collapsing theorems also hold for generalized discrete Morse functions.

Proposition

The Čech function and the Delaunay function are generalized discrete Morse functions.

Proposition

The Čech function and the Delaunay function are generalized discrete Morse functions.

•
$$f_D(Q) = f_C(Q)$$

Proposition

The Čech function and the Delaunay function are generalized discrete Morse functions.

- $f_D(Q) = f_C(Q)$
- Q is a critical simplex of f_C

Proposition

The Čech function and the Delaunay function are generalized discrete Morse functions.

- $f_D(Q) = f_C(Q)$
- Q is a critical simplex of f_C
- Q is a critical simplex of f_D

Proposition

The Čech function and the Delaunay function are generalized discrete Morse functions.

- $f_D(Q) = f_C(Q)$
- Q is a critical simplex of f_C
- Q is a critical simplex of f_D
- Q is a centered Delaunay simplex (containing the circumcenter in the interior)

Čech intervals

Lemma

Let $Q \subseteq X$ be a simplex with smallest enclosing sphere S. Then $Q' \subseteq X$ has the same smallest enclosing sphere as Q iff $L \subseteq Q' \subseteq U$, where

$$L = X \cap S,$$

$$U = X \cap \text{conv } S.$$

The front face of a simplex

Let $T \subseteq X$ be a simplex with smallest circumsphere S. Write the center z of S as an affine combination

$$z = \sum_{x \in T} \mu_x x, \qquad 1 = \sum_{x \in T} \mu_x.$$

We call

front
$$T = \{x \in T \mid \mu_x > 0\}$$

the *front face* of T.

Delaunay intervals

Lemma

Let $Q \subseteq X$ be a simplex with smallest empty circumsphere S. Then $Q' \subseteq X$ has the same smallest empty circumsphere as Q iff $F \subseteq Q' \subseteq T$, where

$$T = X \cap S$$
,

$$F =$$
front T .

Lemma (Excluded Singularity)

The intersection of non-singular Čech and Delaunay intervals is a non-singular interval.

 Consider a non-critical Delaunay simplex Q

Lemma (Excluded Singularity)

The intersection of non-singular Čech and Delaunay intervals is a non-singular interval.

- Consider a non-critical Delaunay simplex Q
- There is a point p inside the Čech sphere and on the Delaunay sphere

Lemma (Excluded Singularity)

The intersection of non-singular Čech and Delaunay intervals is a non-singular interval.

- Consider a non-critical Delaunay simplex Q
- There is a point p inside the Čech sphere and on the Delaunay sphere
- $Q' = Q \setminus \{p\}$ and $Q'' = Q \cup \{p\}$ have the same Čech and Delaunay sphere

Lemma (Excluded Singularity)

The intersection of non-singular Čech and Delaunay intervals is a non-singular interval.

- Consider a non-critical Delaunay simplex Q
- There is a point p inside the Čech sphere and on the Delaunay sphere
- $Q' = Q \setminus \{p\}$ and $Q'' = Q \cup \{p\}$ have the same Čech and Delaunay sphere

Corollary

The pairs (Q', Q'') yield a vector field that induces a collapse $DelCech_r \setminus Del_r$.

Generalizes and greatly simplifies the surface reconstruction algorithm *Wrap* (Edelsbrunner 1995, Geomagic)

Consider the Delaunay function f_D of X.

Consider the Delaunay function f_D of X.

• Let $C \in \operatorname{Crit}_r$ be a critical simplex with value $f_D(C) \leq r$

Consider the Delaunay function f_D of X.

- Let $C \in Crit_r$ be a critical simplex with value $f_D(C) \le r$
- Let ↓ C denote the descending set of Delaunay intervals (with the partial order induced by the face relation)

Consider the Delaunay function f_D of X.

- Let $C \in \operatorname{Crit}_r$ be a critical simplex with value $f_D(C) \leq r$
- Let \(\psi \) C denote the descending set of Delaunay intervals (with the partial order induced by the face relation)

Define

$$Wrap_r = \bigcup_{C \in Crit_r} \downarrow C$$

Consider the Delaunay function f_D of X.

- Let $C \in \operatorname{Crit}_r$ be a critical simplex with value $f_D(C) \leq r$
- Let ↓ C denote the descending set of Delaunay intervals (with the partial order induced by the face relation)

Define

$$Wrap_r = \bigcup_{C \in Crit_r} \downarrow C$$

Equivalent to stable manifolds from smooth Morse theory

Wrapping up

- Čech and Delaunay complexes from Morse functions
- Explicit construction of simplicial collapses
- Simple definition and generalization of Wrap complexes