QUESTION

Let $x_1(t)$ and $x_2(t)$ be two band-limited signals having bandwidth $B = 4\pi \times 10^3$ rad/s each. In the figure below, the Nyquist sampling frequency, in rad/s, required to sample y(t), is $\cos(4\pi \times 10^3 t)$

From figure,

$$y(t) = x_1(t) * cos(4\pi \times 10^3 t) + x_2(t) * cos(12\pi \times 10^3 t)$$
(1)

$$Y(f) = X_1(f) \pi \left[\delta \left(2\pi f - 4\pi \times 10^3\right) + \delta \left(2\pi f + 4\pi \times 10^3\right)\right] + C$$

$$X_2\left(f\right)\pi\left[\delta\left(2\pi f-12\pi\times10^3\right)+\delta\left(2\pi f+12\pi\times10^3\right)\right]$$

Y(f)

(a) $20\pi \times 10^3$

(b)
$$40\pi \times 10^3$$

(c) $8\pi \times 10^3$

(*d*) $32\pi \times 10^3$

(GATE EC 50)

Solution

Symbol	Description
Y(f)	y(t) in frequency domain
ω_m	Maximum frequency of $Y(f)$
ω_s	Nyquist sampling rate
TARLEO	

TABLE OF PARAMETERS

 $x_1(t)$ and $x_2(t)$ in frequency domain,

y(t) in frequency domain

$$\omega_m = 16\pi \times 10^3 rad/sec. \tag{3}$$

$$\omega_s = 2\omega_m = 32\pi \times 10^3 rad/sec. \tag{4}$$