Partiel

[Durée une heure et demi. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. On considère deux v.a. X, Y telles que $\mathbb{P}(Y \ge k) = p^k$ pour tout $k \ge 0$ et

$$\mathbb{E}[1_{X\geqslant t}|Y] = e^{-Yt}1_{t\geqslant 0}.$$

- a) Montrer que X est une v.a. continue et calculer sa densité de probabilité f_X .
- b) Calculer $\mathbb{P}(Y = k | X \ge t)$ pour $k \in \mathbb{N}$ et $t \ge 0$.

Exercice 2. Montrer que le processus $(X_n)_{n\geqslant 0}$ à valeurs sur l'espace discret \mathcal{M} est une chaîne de Markov homogène avec matrice de transition P si et seulement si, presque sûrement

$$\mathbb{E}[f(X_{n+1})|X_n,...,X_0] = (Pf)(X_n)$$

Exercice 3. Soit $(X_n)_{n\geqslant 0}$ le processus stochastique à valeurs sur N donnée par

$$X_{n+1} \! = \! \left\{ \begin{array}{l} X_n \! - \! 1 & \! \text{si } X_n \! > \! 0 \\ U_{K_n} & \! \text{si } X_n \! = \! 0 \end{array} \right.$$

où $(U_n)_{n\geqslant 1}$ est une suite iid à valeurs sur $\mathbb N$ et de loi $\nu(x)=\mathbb P(U_1=x)>0$ pour tout $x\in\mathbb N$ et $K_n=\operatorname{card}\{k\in\mathbb N:k\leqslant n\text{ et }X_k=0\}$ est le nombre de zéros dans la suite (X_0,\ldots,X_n) . Soit $T_y=\inf\{n\geqslant 0:X_n=y\}$.

a) Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov homogène de matrice de transition P donnée par

$$P(x+1,x)=1$$
 et $P(0,x)=\nu(x)$ $\forall x \in \mathbb{N}$.

- b) La chaîne est-elle irréductible? Soit $S_0 = \inf\{n > 0 \colon X_n = 0\}$. Calculer $\mathbb{P}_0(S_0 = k)$ pour tout $k \in \mathbb{N}$. En déduire que 0 est un état récurrent et que $\mathbb{P}_x(T_y < +\infty) = 1$ pour tout $x, y \in \mathbb{N}$.
- c) Soit $\varphi_{x,y}(t) = \mathbb{E}_x[t^{T_y}]$ pour tout $t \in]0,1]$. Montrer que $\mathbb{E}_x[T_y] = \lim_{t \nearrow 1-} \varphi'_{x,y}(t)$ (limite pour t que tends à 1 de façon croissante) où $\varphi'_{x,y}(t) = \mathrm{d}\varphi_{x,y}(t)/\mathrm{d}t$.
- d) Montrer que $\varphi_{x,y}(t) = t \varphi_{x-1,y}(t)$ si $x \neq y$ et x > 0 et calculer $\varphi_{x,y}(t)$ pour $x \geqslant y$.
- e) Montrer que, pour tout y > 0

$$\varphi_{0,y}(t) = \frac{\sum_{z \ge y} \nu(z) t^{z+1-y}}{1 - \sum_{z < y} \nu(z) t^{z+1}}.$$

- f) Donner une formule pour $\mathbb{E}_x[T_y]$.
- g) Soit $\mu(x) = \mathbb{P}(U_1 \geqslant x)$. Montrer que μ est une mesure invariante pour P et décrire l'ensemble de toutes les mesures invariantes pour P.
- h) Montrer que P admet une unique probabilité invariante π si et seulement si $\mathbb{E}[U_1] < +\infty$.
- i) Vérifier que si U_1 est intégrable on a $\pi(0) = 1/\mathbb{E}_0[S_0]$.
- j) Montrer que pour tout x > 0 on a $\mathbb{E}_x[S_x] = x + \mathbb{E}_0[T_x]$ et vérifier que si U_1 est intégrable alors $\pi(x) = 1/\mathbb{E}_x[S_x]$ pour tout $x \ge 0$.