Homework 9

Joe Baker, Brett Schreiber, Brian Knotten

February 2, 2018

13

Definition 1: TIME(T(n)) is the set of all languages L such that \exists TM M such that (1) M accepts x iff $x \in L$ and (2) \forall but finitely many x, M on x halts in T(|x|) steps.

Definition 2: TIME(T(n)) is the set of all languages L such that \exists TM N and a number b such that (1) N accepts x iff $x \in L$ and (2) $\forall x$, N on x halts within b * T(|x|) steps.

First, show $M \Rightarrow N$:

Given M, there exists a finite number of strings X such that M does not halt on each $x \in X$ in T(|x|) steps.

Consider the running time of M on each $x_i \in X$. Let s_i be the number of steps M takes to accept x_i .

Let $b_i = \frac{s_i}{|x_i|}$. Therefore $s_i = b_i * |x_i|$.

Let b be the largest b_i for all $x_i \in X$.

Now construct N as a Turing machine which does the following:

On input x:

Run M on x while counting the number of steps.

If M accepts x in b * T(|x|) steps, then accept.

 $N \in TIME(T(n))$ because it accepts x within some number b * T(|x|) steps. Therefore $M \Rightarrow N$.

Second, show $N \Rightarrow M$:

We will use N that accepts x in b * T(|x|) steps to build M that accepts x in T(|x|) steps with finitely many exceptions.

Given N, we will construct M's alphabet γ' and set of states Q' from N's alphabet γ and set of states Q as follows: $\gamma' = \gamma \sqcup \gamma^b$

 $Q' = Q \times b \times \gamma^{3b} \cup Q \times \gamma^i$ where i = 1, ..., m-1

Define M as follows:

- Copy the input from the read tape to a new tape in chunks of size b using the symbols from γ' that correspond to the chunks.
- As each symbol in a chunk of b is read M will transition to a new state in $Q \times \gamma^i$ in order to remember the symbols in the chunk it has read.
- \bullet When the end of the input is encountered, pad the rest of the chunk with spaces until the chunk has size b
- M will then perform four steps by moving to the left once, right twice, and to the left once again. During each of these steps M will move to a state in $Q \times b \times \gamma^{3b}$ to track the next b steps of N.
- When M encounters an accepting state of N, accept.

M executes every b number of steps of N in a constant number of steps, so M runs in T(|x|) time and accepts iff N accepts.

We have shown that given M we can construct N and therefore $M \Rightarrow N$ and that given N we can construct M and therefore $N \Rightarrow M$. Thus, $M \Leftrightarrow N$ and the definitions are equivalent.