Predicción de Series Temporales.

Nos han facilitado la información de la producción de leche en el periodo Enero 1962 a Diciembre 1975. Fuente:

 $\underline{https://datamarket.com/data/set/22ox/monthly-milk-production pounds-per-cow-jan-62-dec-75\#!}\\ \underline{ds=22ox\&display=line}$

Se pide calcular la predicción de producción de leche por vaca para todos los meses de 1976 y 1977.

1. Carga de datos

Los datos se descargan de la fuente en formato csv y se cargan a R-studio. En un análisis de calidad se comprueba que los datos están ordenados y se observa un valor nulo que es la última observación. El valor nulo queda eliminado.

```
summary(MILK)
               Monthly.milk.production..pounds.per.cow..Jan.62...Dec.75
     Month
 1962-01:
               Min.
                       :553.0
 1962-02:
                1st Qu.:677.8
           1
 1962-03:
                Median :761.0
 1962-04:
               Mean
                       :754.7
           1
1
 1962-05:
                3rd Qu.:824.5
 1962-06:
                       :969.0
               Max.
 (Other):162
```

2. Análisis de datos

En un análisis gráfico de los datos observamos que la serie tiene estacionalidad y tendencia.

Para analizar la serie de datos y seleccionar un modelo utilizaré la metodología Box – Jenkins.

Podemos observar que la serie no es estacionaria. La función de autocorrelación (ACF) que mide la correlación entre variables separadas por k periodos no decrece hasta cero.

También observamos saltos periódicos, aproximadamente cada año, que indican estacionalidad. La función de correlación parcial (PACF), que mide la correlación entre dos variables separadas por k periodos cuando no se considera la dependencia creada por los retardos intermedios existentes entre ambas, muestra varios valores no nulos y tampoco decrece rápidamente.

3. Descomposición de los datos

Podemos descomponer los datos en componente estacional, tendencia y el resto.

Observamos claramente el componente estacional bastante visible alrededor de la mitad de cada año y también una tendencia creciente de la cantidad media de leche por vaca obtenido a lo largo de los años.

En el siguiente paso voy a separar los componentes de estacionalidad y tendencia, dejando solamente la parte aleatoria, para poder trabajar con una serie estacionaria.

Después de transformación la serie parece estacionaria.

4. Construcción del modelo

En el primer paso he observado que la serie muestra una tendencia creciente, lo cual excluye utilización del modelo MA unicamente. Este argumento apoya también un lento decrecimiento de ACF.

PACF tampoco decrece rápidamente en la serie estacionaria, por lo cual tampoco será suficiente un modelo auto regresivo AR y voy a tener que elegir un modelo ARIMA.

Analizando el componente estacional obtenemos:

Podemos observar un patrón bastante claro: un ascenso de la cantidad de leche obtenida en los meses de verano, sobre todo en mayo y junio.

De los gráficos de la función ACF y PACF se ha podido concluir que hace falta utilizar un parámetro de media mobil y un parámetro estacional [ARIMA(0,1,1)(0,1,1)].

De todos modos voy a utilizar la optimización Auto Arima para elegir el mejor modelo.

```
autoarimamilk <- auto.arima(MILKSERIE,seasonal=TRUE,trace=TRUE) ->Best model: ARIMA(0,1,1)(0,1,1)[12]
```

He obtenido modelo SARIMA con los siguientes parametros:

```
Series: MILKSERIE

ARIMA(0,1,1)(0,1,1)[12]

Coefficients:

ma1 sma1

-0.2204 -0.6214

s.e. 0.0748 0.0627

sigma^2 estimated as 53.42: log likelihood=-530.15

AIC=1066.3 AICC=1066.46 BIC=1075.43
```

5. Diagnóstico del modelo

Si el modelo está bien ajustado, los residuos deberían tener una distribución parecida a normal con media cero y desviación típica 1 y no correlacionados. Analizando los residuos obtenemos:

lag

8

10

En el primer gráfico observamos que los residuos tienden en media a cero y que la desviación típica no se muy alta, aunque se ven valores mayores de 1. La función de auto-correlación en el segundo gráfico también es aceptable. En en tercer gráfico vemos los p valores del test de Ljung-Box para comprobar la hipótesis de correlaciones iguales a cero. Los p valores son altos y no rechazamos la hipótesis de no correlación entre los residuos.

El histograma y QQ plot indican distribución de los residuos aproximada a la normal con cola derecha.

La normalidad no se confirma en el test de Shapiro (rechazo Ho de normalidad):

```
Shapiro-Wilk normality test data: residuos W = 0.96515, p-value = 0.0003192
```

En una prueba con modelo log no mejora el resultado.

Sin embargo los coeficientes del modelo son significativamente distintos de cero: p.value

p.value ma1 sma1 0.00320582 0.00000000

6. Predicción de la cantidad de leche por vaca a meses

Aplicando el modelo predictivo obtenemos el siguiente resultado:

Forecasts from ARIMA(0,1,1)(0,1,1)[12]

prog # valores prognosticados

-	_	Point Forecast	Lo 80	ні 80	Lo 95	ні 95
Jan	1976	864.9773	855.6103	874.3443	850.6517	879.3029
Feb	1976	817.7493	805.8719	829.6267	799.5843	835.9142
Mar	1976	924.4056	910.4626	938.3485	903.0817	945.7295
Apr	1976	937.4836	921.7439	953.2233	913.4118	961.5554
	1976	1000.6235	983.2721	1017.9749	974.0868	1027.1601
	1976	973.2165	954.3909	992.0420	944.4252	1002.0077
Jul	1976	931.8501	911.6576	952.0426	900.9684	962.7318
Aug	1976	892.2597	870.7873	913.7322	859.4204	925.0991
Sep	1976	846.3679	823.6875	869.0483	811.6812	881.0545
0ct	1976	851.5326	827.7055	875.3597	815.0921	887.9731
Nov	1976	817.4931	792.5719	842.4143	779.3795	855.6068
Dec	1976	859.7534	833.7842	885.7225	820.0370	899.4698
Jan	1977	882.8150	854.6706	910.9593	839.7719	925.8581
	1977	835.5870	805.6961			881.3012
	1977	942.2433	910.7024	973.7842	894.0057	990.4809
	1977		922.2126			1005.9568
May	1977	1018.4612	983.8555	1053.0668	965.5364	1071.3859
	1977	991.0542	955.0138	1027.0946		
	1977		912.2676	987.1080	892.4585	1006.9171
Aug	1977		871.3465		850.8330	
Sep	1977	864.2056	824.1682			925.4375
	1977		828.0865		806.2321	
	1977		792.8371		770.3423	
Dec	1977	877.5911	833.9210	921.2612	810.8034	944.3787