International TOR Rectifier

IR2110/IR2113 (S)

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +500V or +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V logic compatible
 Separate logic supply range from 3.3V to 20V
 Logic and power ground ±5V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- · Outputs in phase with inputs

Description

The IR2110/IR2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse cur-

Product Summary

V _{OFFSET} (IR2110) (IR2113)	500V max. 600V max.
I _O +/-	2A / 2A
Vout	10 - 20V
t _{on/off} (typ.)	120 & 94 ns
Delay Matching	10 ns

Packages

rent buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.

Symbol	Definition		Min.	Max.	Units
V _B	High side floating supply voltage (IR2110)		-0.3	525	
	(IR2113)		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low side fixed supply voltage		-0.3	25	.,
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	V
V _{DD}	Logic supply voltage		-0.3	V _{SS} + 25	
V _{SS}	Logic supply offset voltage	gic supply offset voltage		V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN, LIN & SD)	input voltage (HIN, LIN & SD)		V _{DD} + 0.3	
dV _s /dt	Allowable offset supply voltage transient (fi	e offset supply voltage transient (figure 2)		50	V/ns
P _D	Package power dissipation @ T _A ≤ +25°C	ckage power dissipation @ T _A ≤ +25°C (14 lead DIP)		1.6	W
		(16 lead SOIC)		1.25	VV
R _{THJA}	Thermal resistance, junction to ambient	(14 lead DIP)	_	75	0000
		(16 lead SOIC)	_	100	°C/W
TJ	Junction temperature		_	150	
Ts	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 36 and 37.

Symbol	Definition		Min.	Max.	Units
V _B	High side floating supply absolute voltage	e	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	(IR2110)	Note 1	500	
		(IR2113)	Note 1	600	
VHO	High side floating output voltage		Vs	VB	
V _{CC}	Low side fixed supply voltage		10	20	V
VLO	Low side output voltage		0	Vcc	
V _{DD}	Logic supply voltage		V _{SS} + 3	V _{SS} + 20	
Vss	Logic supply offset voltage		-5 (Note 2)	5	
V _{IN}	Logic input voltage (HIN, LIN & SD)		V _{SS}	V_{DD}	
TA	Ambient temperature		-40	125	°C

Note 1: Logic operational for V_S of -4 to +500V. Logic state held for V_S of -4V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Note 2: When V_{DD} < 5V, the minimum V_{SS} offset is limited to $-V_{DD}$.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, C_L = 1000 pF, T_A = 25°C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	7	_	120	150		V _S = 0V
t _{off}	Turn-off propagation delay	8	_	94	125		V _S = 500V/600V
t _{sd}	Shutdown propagation delay	9	_	110	140	ns	V _S = 500V/600V
t _r	Turn-on rise time	10	_	25	35	115	
t _f	Turn-off fall time	11	_	17	25		
MT	Delay matching, HS & LS turn-on/off	_	_	_	10		Figure 5

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, T_A = 25°C and V_{SS} = COM unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	12	9.5	_	_		
V _{IL}	Logic "0" input voltage	13	_	_	6.0		
VoH	High level output voltage, V _{BIAS} - V _O	14	_	_	1.2	V	I _O = 0A
V _{OL}	Low level output voltage, VO	15	_	_	0.1		I _O = 0A
I _{LK}	Offset supply leakage current	16	_	_	50		$V_B = V_S = 500V/600V$
I _{QBS}	Quiescent V _{BS} supply current	17	_	125	230		V _{IN} = 0V or V _{DD}
IQCC	Quiescent V _{CC} supply current	18	_	180	340	μA	V _{IN} = 0V or V _{DD}
I _{QDD}	Quiescent V _{DD} supply current	19	_	15	30	μΛ	V _{IN} = 0V or V _{DD}
I _{IN+}	Logic "1" input bias current	20	_	20	40		$V_{IN} = V_{DD}$
I _{IN-}	Logic "0" input bias current	21	_	_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	22	7.5	8.6	9.7		
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold	23	7.0	8.2	9.4		
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	24	7.4	8.5	9.6	V	
VCCUV-	V _{CC} supply undervoltage negative going threshold	25	7.0	8.2	9.4		
I _{O+}	Output high short circuit pulsed current	26	2.0	2.5	_		$V_O = 0V$, $V_{IN} = V_{DD}$ $PW \le 10 \mu s$
I _O -	Output low short circuit pulsed current	27	2.0	2.5	_	A	$V_{O} = 15V, V_{IN} = 0V$ PW \le 10 \mus

Functional Block Diagram

Lead Definitions

Symbol	Description
V_{DD}	Logic supply
HIN	Logic input for high side gate driver output (HO), in phase
SD	Logic input for shutdown
LIN	Logic input for low side gate driver output (LO), in phase
V _{SS}	Logic ground
VB	High side floating supply
НО	High side gate drive output
٧s	High side floating supply return
Vcc	Low side supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

International **TOR** Rectifier

IR2110/IR2113 (S)

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. Shutdown Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

Figure 7A. Turn-On Time vs. Temperature

Figure 7C. Turn-On Time vs. VDD Supply Voltage

Figure 8B. Turn-Off Time vs. Vcc/VBS Supply Voltage

Figure 7B. Turn-On Time vs. Vcc/VBs Supply Voltage

Figure 8A. Turn-Off Time vs. Temperature

Figure 8C. Turn-Off Time vs. $\ensuremath{\mathsf{VDD}}$ Supply Voltage

Figure 9A. Shutdown Time vs. Temperature

Figure 9C. Shutdown Time vs. VDD Supply Voltage

Figure 10B. Turn-On Rise Time vs. Voltage

Figure 9B. Shutdown Time vs. Vcc/Vbs Supply Voltage

Figure 10A. Turn-On Rise Time vs. Temperature

Figure 11A. Turn-Off Fall Time vs. Temperature

Figure 11B. Turn-Off Fall Time vs. Voltage

Figure 12B. Logic "1" Input Threshold vs. Voltage

Figure 13B. Logic "0" Input Threshold vs. Voltage

Figure 12A. Logic "1" Input Threshold vs. Temperature

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 14A. High Level Output vs. Temperature

Figure 14B. High Level Output vs. Voltage

Figure 15B. Low Level Output vs. Voltage

Figure 16B. Offset Supply Current vs. Voltage

Figure 15A. Low Level Output vs. Temperature

Figure 16A. Offset Supply Current vs. Temperature

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Voltage

Figure 18B. Vcc Supply Current vs. Voltage

Figure 19B. V_{DD} Supply Current vs. V_{DD} Voltage

Figure 18A. V_{CC} Supply Current vs. Temperature

Figure 19A. V_{DD} Supply Current vs. Temperature

Figure 20A. Logic "1" Input Current vs. Temperature

International TOR Rectifier

IR2110/IR2113 (S)

Figure 20B. Logic "1" Input Current vs. VDD Voltage

Figure 21B. Logic "0" Input Current vs. VDD Voltage

Figure 23. V_{BS} Undervoltage (-) vs. Temperature

Figure 21A. Logic "0" Input Current vs. Temperature

Figure 22. V_{BS} Undervoltage (+) vs. Temperature

Figure 24. V_{CC} Undervoltage (+) vs. Temperature

International TOR Rectifier

Figure 25. Vcc Undervoltage (-) vs. Temperature

Figure 26B. Output Source Current vs. Voltage

Figure 27B. Output Sink Current vs. Voltage

Figure 26A. Output Source Current vs. Temperature

Figure 27A. Output Sink Current vs. Temperature

Figure 28. IR2110/IR2113 T_J vs. Frequency (IRFBC20) R_{GATE} = 33Ω , V_{CC} = 15V

International TOR Rectifier

IR2110/IR2113 (S)

Figure 29. IR2110/IT2113 T_J vs. Frequency (IRFBC30) R_{GATE} = 22Ω , Vcc = 15V

Figure 31. IR2110/IR2113 T_J vs. Frequency (IRFPE50) $R_{GATE} = 10\Omega$, $V_{CC} = 15V$

Figure 33. IR2110S/IR2113S T_J vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega$, $V_{CC} = 15V$

Figure 30. IR2110/IR2113 T_J vs. Frequency (IRFBC40) R_{GATE} = 15Ω , V_{CC} = 15V

Figure 32. IR2110S/IR2113S T_J vs. Frequency (IRFBC20) R_{GATE} = 33Ω , V_{CC} = 15V

Figure 34. IR2110S/IR2113S T_J vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega$, $V_{CC} = 15V$

Figure 35. IR2110S/IR2113S TJ vs. Frequency (IRFPE50) $R_{GATE} = 10\Omega, V_{CC} = 15V$

Figure 36. Maximum V_S Negative Offset vs. V_{BS} Supply Voltage

Figure 37. Maximum V_{SS} Positive Offset vs. V_{CC} Supply Voltage

Case Outlines

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 http://www.irf.com/ Data and specifications subject to change without notice. 11/5/2002