Nr Ćwiczenia 202	Data wykonania 26.11.2024	Wydział WIiT	Semestr 3	Grupa LAB L1
Prowadzący: mgr inż. Taras Zhezhera		Stanisław Fiedler		Ocena:

Sprawozdanie Laboratorium Fizyka dla informatyków

Badanie Transformatora.

Stanisław Fiedler 160250

LAB 2, 12 listopada 2024

Spis treści

1	Wst	tep teoretyczny	1
	1.1	Transformator	1
	1.2	Stan jałowy	2
	1.3	Stan zwarcia	2
	1.4	Stan obciążenia	2
	1.5	Sprawność	2
2	Wy	niki pomiarów	3
3	Opi	racowanie wyników	5
	3.1	Przekładnia transformatora	5
		3.1.1 Obliczenia	5
		3.1.2 Wyniki	6
	3.2	Zależności natężenia prądu wtórnego od natężenia prądu pierwotnego	6
	3.3	Sprawnosc Transformatora	7
		3.3.1 Obliczenia	7
4	Wn	ioski	8

1 Wstęp teoretyczny

1.1 Transformator

Transformator jest urządzeniem służącym on do zamiany napięcia i natężenia prądu przemiennego na inne napięcie i natężenie prądu bez zmiany częstotliwości prądu. Transformator składa się z ferromagnetycznego rdzenia i co najmniej dwóch uzwojeń (cewek) nawiniętych na niego.

Zasada działania transformatora opiera się na zjawisku indukcji elektromagnetycznej. Rozróżniamy trzy podstawowe stany pracy transformatora: stan jałowy, stan zwarcia oraz stan obciążenia.

1.2 Stan jałowy

W stanie jałowym uzwojenie pierwotne podłączone jest do źródła prądu przemiennego, a uzwojenie wtórne jest rozwarte. Prąd przemienny w uzwojeniu pierwotnym indukuje w rdzeniu przemienny strumień magnetyczny, który powoduje powstanie sił elektromotorycznych w uzwojeniach. Dzięki pomijanie małym rezystancją uzwojeń możemy przyjąć, że chwilowe spadki napięć są równe indukowanym w nich siłom elektromotorycznym. A zastępując chwilowe spadki napięć na uzwojeniach napięciami skutecznymi otrzymujemy:

$$\frac{U_1}{U_2} = \frac{n_1}{n_2} = K \tag{1}$$

Gdzie K nazywamy przekładnią transformatora.

1.3 Stan zwarcia

W stanie zwarcia uzwojenie pierwotne jest połączone ze źródłem prądu przemiennego, a uzwojenie wtórne jest zwarte. W uzwojeniu wtórnym pod wpływem indukcji pojawia się prąd przemienny. Korzystając z zasady zachowania energii, stwierdzić, że moc przekazywana przez źródło do uzwojenia pierwotnego jest równa mocy przekazywanej do obwodu wtórnego. Dzięki temu otrzymujemy:

$$\frac{I_1}{I_2} = \frac{n_2}{n_1} = \frac{1}{K} \tag{2}$$

1.4 Stan obciążenia

W stanie zwarcia uzwojenie pierwotne jest połączone ze źródłem prądu przemiennego, a uzwojenie wtórne jest połączony z odbiornikiem o skończonej rezystancji. W tej sytuacji stosunek napięć w uzwojeniu pierwotnym i wtórnym nie jest równy przekładni transformatora. Badając więc napięcie na uzwojeniu wtórnym, obserwujemy jego spadek wraz ze wzrostem natężenia prądu płynącego w tym uzwojeniu.

1.5 Sprawność

Sprawność transformatora jest stosunkiem mocy oddanej P_2 do mody pobranej ze źródła.

$$\eta = \frac{P_2}{P_1} \cdot 100\% \tag{3}$$

Przybliżając kąty przesunięcia fazowego pomiędzy napięciem i natężeniem prądu w obwodach pierwotnym i wtórnym otrzymujemy wzór:

$$\eta = \frac{U_2 I_2}{U_1 I_1} \cdot 100\% \tag{4}$$

2 Wyniki pomiarów

	BADAVIE	TRAUS	FORMA	ATO RA		7
	Jan jalewy				2	
	M_= 400	M) C	$\Delta U = 0 \frac{2}{n a v}$		7.000	2 = 1/2
0		00	400		200 U/(v) U/(v)	
	M085	Uz [V)	0811	12 [V] 100 0,991 100		
	8 121	3,011		2,008 2,1		
1	3,260	4,53		3,036 3,2 4,05 4,3	62 1,571	
3	5,42	7,64	5,41	5,08 5,0	17 2,552	
	6,50	9,19		6,13 6,5		
3	9,59	10,76		3,17 7,6		
13	9,76	13,88	9,79	9,78 9,5	19 4,63	
3	10,85	15,47	10,87	10 33 10	89 5116	
	Stan Tuevria		120	00	200	
		(A)	(₁ (A)		1, (A)	12 (A)
	000		0,046	0,047	0,042	0,078
		087		0,085	0,086	0,859
	40 0,191 0,	117 0	188	0,173	0,174	0,321
			282	0,261	0,217	0,401
			328	0,305	0,0301	0'228
	8V 0,382 0,2		374		0,346	0,644
144	94 0,429 0,2 100 0,476 0,2		400	0,392	0, 387	0, 903
	<u>-100</u> 0,476 0,2		466	0, 477	0,430	0,503

B 54	em ob	ilion	m _A = 400	Mz = 200		
RD)		[V) 1, [A]		12 LA3		
0	0,4,28		0,217	0,321		
1	4,28	0,164	0,438	0,302		
2	4,28	0,145	0,779	0,266		(4)
3	4,28	0,136	0,923	0,247		
4	4,28	0,122	1,099	0,272) 44 8
6	4,28	0,108	1,273	0,193) % &
8	4,28	0,090	1,455	0,160		2 2 2 1
10	4,28	0,081	1,551	0,139	NO E	3 3 3
12	4,28	0,072	1,672	0,123	N. O.	lot 8
16	4,28	0,061	1,714	0,91	3-14	0 2 2
20	4,3	0,053	01776	0,084	1811	1 12,12
24	4,32	0,047	1,834	0,071	1887	14 1
28	4,32	6,043	1,862	0,062	this!	2810
32	4,32	0,04	V 88.8	6,60,5		
34	4,34	0,038	1,901	0,051		
04	4,35	0025	2,039	0	(1)	
	240		333			
	624.0		211	26.17	1.24	5.0

3 Opracowanie wyników

3.1 Przekładnia transformatora

Zależności napięcia wtórnego od napięcia pierwotnego $U_2=f(U_1)$

3.1.1 Obliczenia

Przekładnia transformatora zostanie obliczona na podstawie wzoru:

$$\frac{U_1}{U_2} = \frac{n_1}{n_2} = K$$

$n_1 = 400 n_2 = 600$			$n_1 = 400 n_2 = 400$			$n_1 = 400 n_2 = 200$		
$V_1[V]$	$V_2[V]$	przekładania	$V_1[V]$	$V_2[V]$	przekładania	$V_1[V]$	$V_2[V]$	przekładania
1.085	1.491	0.7276995	1.085	0.991	1.0948536	1.085	0.5	2.17
2.171	3.011	0.7210229	2.171	2.008	1.0811752	2.171	1.009	2.1516352
3.26	4.53	0.7196467	3.26	3.036	1.0737812	3.26	1.521	2.1433267
4.33	6.07	0.7133443	4.33	4.05	1.0691358	4.33	2.037	2.1256750
5.42	7.64	0.7094240	5.42	5.08	1.0669291	5.42	2.552	2.1238244
6.5	9.19	0.7072905	6.5	6.13	1.0603588	6.5	3.072	2.1158854
7.59	10.76	0.7053903	7.59	7.17	1.0585774	7.59	3.592	2.1130289
8.67	12.31	0.7043054	8.67	8.22	1.0547445	8.67	4.01	2.1620947
9.76	13.88	0.7031700	9.76	9.28	1.0517241	9.76	4.63	2.1079913
10.85	15.47	0.7013574	10.85	10.33	1.0503388	10.85	5.16	2.1027131
$K_{avg} = 0.7112$			$K_{avg} = 1.0661$			$K_{avg} = 2.1316$		
$\sigma K = 0.0088$		$\sigma K = 0.0141$			$\sigma K = 0.02362$			

Teoretyczne wartości przekładni wynoszą:

1.
$$n2 = 600$$
 $K = \frac{400}{600} = 0.66$

2.
$$n2 = 400$$
 $K = \frac{400}{400} = 1$

3.
$$n2 = 200$$
 $K = \frac{400}{200} = 2$

3.1.2 Wyniki

Przekładnia transformatora dla danych transformatorów wynosi:

n_1	n_2	wartość teoretyczna	wartość wyliczona	odchylenie standardowe
400	600	0,66	0,7112	0.0088
400	400	1	1.0661	0.0141
400	200	2	2.1316	0.0236

3.2 Zależności natężenia prądu wtórnego od natężenia prądu pierwotnego.

Zależności natężenia prądu wtórnego od natężenia prądu pierwotnego $I_2=f(I_1)$

3.3 Sprawnosc Transformatora

Zależność napięcia od natężenia prądu w obwodzie wtórnym $U_2=f(I_2)$

3.3.1 Obliczenia

Sprawność transformatora obliczona na podstawie wzoru:

$$\eta = \frac{U_2 I_2}{U_1 I_1} \cdot 100\%$$

Dla R = 0 jest to:

$$\eta_0 = \frac{0,217 \cdot 0,321}{4,28 \cdot 0,174} \cdot 100\% = 9,35\%$$

-	T T	T	T. 7	7	
R	U_1	I_1	U_2	I_2	sprawność
0	4.28	0.174	0.217	0.321	9.3534482
1	4.28	0.164	0.438	0.302	18.844882
2	4.28	0.145	0.779	0.266	33.389300
3	4.28	0.136	0.923	0.247	39.166609
4	4.28	0.122	1.099	0.222	46.724758
6	4.28	0.108	1.273	0.193	53.151825
8	4.28	0.09	1.455	0.16	60.436137
10	4.28	0.081	1.551	0.139	62.186742
12	4.28	0.072	1.622	0.123	64.741043
16	4.28	0.061	1.714	0.101	66.306879
20	4.3	0.053	1.776	0.084	65.460289
24	4.32	0.047	1.834	0.071	64.132190
28	4.32	0.043	1.862	0.062	62.146856
32	4.32	0.04	1.886	0.055	60.028935
34	4.34	0.038	1.901	0.051	58.786684
∞	4.35	0.022	2.039	0	0
				·	

Zależność sprawności transformatora od natężenia prądu w uzwojeniu wtórnym

4 Wnioski

Różnice pomiędzy wartościami teoretycznymi, a wyliczonymi może wynikać z cech tranzystora oraz zjawisk nieuwzględnionych podczas obliczeń.