```
In [ ]: # Perform the following operations on any open source dataset (e.g., data.csv)
        # 1. Provide summary statistics (mean, median, minimum, maximum, standard deviat
        # dataset (age, income etc.) with numeric variables grouped by one of the qualit
        # variable. For example, if your categorical variable is age groups and quantita
        # income, then provide summary statistics of income grouped by the age groups. C
        # contains a numeric value for each response to the categorical variable.
        # 2. Write a Python program to display some basic statistical details like perce
        # deviation etc. of the species of 'Iris-setosa', 'Iris-versicolor' and 'Iris-ve
        # dataset.
In [ ]: # Import necessary libraries
        import pandas as pd
        import seaborn as sns
        # Load the Titanic dataset
        titanic = sns.load_dataset('titanic')
In [ ]: # 1. Provide summary statistics for a dataset with numeric variables grouped by
        # Here, we group by 'Sex' and provide summary statistics for 'Age'
        data = titanic.groupby('sex')['age']
        # Summary statistics
        print("Summary statistics for Age grouped")
        print("Mean\n", data.mean())
        print("Median\n", data.median())
        print("Minimum\n", data.min())
        print("Maximum\n", data.max())
        print("Standard Deviation\n", data.std())
       Summary statistics for Age grouped
       Mean
        sex
               27.915709
       female
                 30.726645
       male
       Name: age, dtype: float64
       Median
        sex
       female
                 27.0
                 29.0
       male
       Name: age, dtype: float64
       Minimum
        Sex
       female
                 0.75
                 0.42
       male
       Name: age, dtype: float64
       Maximum
        sex
       female
                 63.0
                 80.0
       male
       Name: age, dtype: float64
       Standard Deviation
        sex
       female
                 14.110146
       male
                 14.678201
       Name: age, dtype: float64
In [ ]: # Create a list that contains a numeric value for each response to the categoric
        numeric = [data.mean(), data.median(), data.min(), data.max(), data.std()]
```

```
print("List of numeric values for each response to the categorical variable\n",
       List of numeric values for each response to the categorical variable
       female
                27.915709
       male
               30.726645
      Name: age, dtype: float64, sex
      female 27.0
       male
                29.0
      Name: age, dtype: float64, sex
      female 0.75
               0.42
      male
      Name: age, dtype: float64, sex
      female 63.0
               80.0
      male
      Name: age, dtype: float64, sex
       female 14.110146
       male
               14.678201
       Name: age, dtype: float64]
In [ ]: # Load the Iris dataset
        iris = sns.load_dataset('iris')
In [ ]: # 2. Write a Python program to display some basic statistical details like perce
        # deviation etc. of the species of 'Iris-setosa', 'Iris-versicolor' and 'Iris-ve
        # dataset.
        iris_setosa = iris[iris['species'] == 'setosa'].describe()
        iris_versicolor = iris[iris['species'] == 'versicolor'].describe()
        iris_virginica = iris[iris['species'] == 'virginica'].describe()
        print("Basic statistical details of the species of 'Iris-setosa'\n", iris_setosa
        print("Basic statistical details of the species of 'Iris-versicolor'\n", iris_ve
        print("Basic statistical details of the species of 'Iris-virginica'\n", iris_vir
```

Basic	statistical det	ails of the s	pecies of 'Iri	s-setosa'
	sepal_length	sepal_width	petal_length	petal_width
count	50.00000	50.000000	50.000000	50.000000
mean	5.00600	3.428000	1.462000	0.246000
std	0.35249	0.379064	0.173664	0.105386
min	4.30000	2.300000	1.000000	0.100000
25%	4.80000	3.200000	1.400000	0.200000
50%	5.00000	3.400000	1.500000	0.200000
75%	5.20000	3.675000	1.575000	0.300000
max	5.80000	4.400000	1.900000	0.600000
Basic	statistical det	ails of the s	pecies of 'Iri	s-versicolor'
	sepal_length	sepal_width	petal_length	petal_width
count	50.000000	50.000000	50.000000	50.000000
mean	5.936000	2.770000	4.260000	1.326000
std	0.516171	0.313798	0.469911	0.197753
min	4.900000	2.000000	3.000000	1.000000
25%	5.600000	2.525000	4.000000	1.200000
50%	5.900000	2.800000	4.350000	1.300000
75%	6.300000	3.000000	4.600000	1.500000
max	7.000000	3.400000	5.100000	1.800000
Basic	statistical det	ails of the s	pecies of 'Iri	s-virginica'
	sepal_length	sepal_width	petal_length	petal_width
count	50.00000	50.000000	50.000000	50.00000
mean	6.58800	2.974000	5.552000	2.02600
std	0.63588	0.322497	0.551895	0.27465
min	4.90000	2.200000	4.500000	1.40000
25%	6.22500	2.800000	5.100000	1.80000
50%	6.50000	3.000000	5.550000	2.00000
75%	6.90000	3.175000	5.875000	2.30000
max	7.90000	3.800000	6.900000	2.50000