The Statistical Sleuth in R: Chapter 13

Kate Aloisio Ruobing Zhang Nicholas J. Horton*

January 21, 2019

Contents

T	Introduction	J
2	Intertidal seaweed grazers	2
	2.1 Data coding, summary statistics and graphical display	2
	2.2 Models	5
	2.3 Linear combinations	8
3	Pygmalion effect	11
	3.1 Statistical summary	11
	3.2 Graphical presentation	12
	3.3 Two way ANOVA (fit using multiple linear regression model)	
	3.4 Randomization Methods	15

1 Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the Second Edition of the *Statistical Sleuth* (2002) by Fred Ramsey and Dan Schafer. More information about the book can be found at http://www.proaxis.com/~panorama/home.htm. This file as well as the associated knitr reproducible analysis source file can be found at http://www.amherst.edu/~nhorton/sleuth.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (http://cran.r-project.org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command:

 $^{^*}$ Department of Mathematics, Amherst College, nhorton@amherst.edu

```
> install.packages('mosaic') # note the quotation marks
```

Once this is installed, it can be loaded by running the command:

```
> require(mosaic)
```

This needs to be done once per session.

In addition the data files for the *Sleuth* case studies can be accessed by installing the **Sleuth2** package.

```
> install.packages('Sleuth2') # note the quotation marks
```

```
> require(Sleuth2)
```

We also set some options to improve legibility of graphs and output.

```
> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
> options(digits=4, show.signif.stars=FALSE)
```

The specific goal of this document is to demonstrate how to calculate the quantities described in Chapter 13: The Analysis of Variance for Two-Way Classifications using R.

2 Intertidal seaweed grazers

This wicked complicated trial is a subset of a factorial design (6 of the possible 2 by 2 by 2 combination of factors) plus blocking. This randomized block design is analyzed in case study 13.1 in the *Sleuth*.

2.1 Data coding, summary statistics and graphical display

We begin by reading the data, performing the necessary transformations and summarizing the variables.

```
> # logit transformation
> case1301 = transform(case1301, logitcover = log(Cover/(100-Cover)))
```

```
> summary(case1301)
     Cover
                    Block
                             Treat
                                        logitcover
                                              :-4.595
 Min. : 1.0
                В1
                       :12
                               :16
                                      Min.
 1st Qu.: 9.0
                B2
                       :12
                                :16
                                      1st Qu.:-2.314
                             f
 Median:22.5
                                      Median :-1.237
                ВЗ
                       :12
                             fF :16
Mean :28.6
                В4
                       :12
                             L :16
                                      Mean
                                            :-1.233
 3rd Qu.:42.2
                В5
                             Lf :16
                                      3rd Qu.:-0.313
                       :12
 Max.
        :95.0
                       :12
                             LfF:16
                                              : 2.944
                B6
                                      Max.
                (Other):24
```

```
> favstats(logitcover~Treat, data=case1301)
  Treat
           min
                     Q1
                        median
                                      Q3
                                                               sd
                                              max
                                                     mean
                                                                  n missing
1
      C -1.815 -0.7995
                         0.1201
                                 0.80579
                                           2.9444
                                                   0.1805 1.3990
                                                                 16
2
      f -2.091 -0.8119 -0.4898
                                 0.09007
                                           2.0907 -0.3137 1.0748
                                                                           0
3
     fF -2.197 -1.7762 -0.5325 -0.30237
                                                                           0
                                           0.9946 -0.8214 0.9599
4
      L -3.178 -2.4784 -1.6964 -0.90838
                                          0.3228 -1.7120 1.0215 16
                                                                           0
     Lf -3.476 -2.9444 -2.1530 -1.25519
5
                                          0.2819 -2.0044 1.1399 16
                                                                           0
    LfF -4.595 -2.9444 -2.7515 -2.28453 -1.2657 -2.7247 0.8310 16
```

There were a total of 96 rock plots free of seaweed. These plots where split into 8 blocks based on location. Each block contained 12 plots. Then 6 treatments were randomly assigned to plots within each block. Therefore there were two plots per treatment within each block, as shown in Display 13.2 (page 377 of the *Sleuth*).

We can check for evidence of nonadditivity using interaction plots. For a figure akin to Display 13.7 on page 383 we can use the following code:

```
> with(case1301, interaction.plot(Block, Treat, Cover))
```


This figure shows evidence of nonadditivity. However as the authors note the type of nonadditivity seen in this figure may be removed by transformations. In addition, the residual plot from the saturated model (shown below and is akin to Display 13.8 on page 384) has a distinct funnel shape, also indicating a need for transformation.

> plot(aov(Cover ~ Block*Treat, data=case1301), which=1)

After the log transformation, we can then observe an interaction plot on the log transformed data akin to Display 13.9 on page 385.

```
> with(case1301, interaction.plot(Block, Treat, logitcover))
```


2.2 Models

Then we can create an ANOVA for the nonadditive model estimating the log of the seaweed regeneration ratio as summarized on page 385 (Display 13.10).

```
> anova(lm(logitcover ~ Block*Treat, data=case1301))
Analysis of Variance Table
Response: logitcover
            Df Sum Sq Mean Sq F value Pr(>F)
Block
             7
                  76.2
                         10.89
                                  35.96 <2e-16
Treat
             5
                  97.0
                         19.40
                                  64.06 <2e-16
Block:Treat 35
                  15.2
                          0.44
                                   1.44
                                          0.12
Residuals
            48
                  14.5
                          0.30
```

This model has an R^2 of 92.84%, an adjusted R^2 of 85.83%, and an estimated SD of 0.5503. Notice that the interaction term has a large p-value, 0.1209, suggesting that the data may be more consistent with an additive model.

We can then compare these results to an ANOVA for the additive model estimating the log of the seaweed regeneration ratio as shown in Display 13.11 on page 387.

```
> anova(lm(logitcover ~ Block+Treat, data=case1301))
Analysis of Variance Table
```

```
Response: logitcover

Df Sum Sq Mean Sq F value Pr(>F)

Block 7 76.2 10.89 30.4 <2e-16

Treat 5 97.0 19.40 54.1 <2e-16

Residuals 83 29.8 0.36
```

This model has an R^2 of 85.34%, an adjusted R^2 of 83.22%, and an estimated SD of 0.5989. Next we can assess the fit of the additive model through diagnostic plots. First we can check the linearity assumption.

```
> plot(aov(logitcover ~ Block+Treat, data=case1301), which=1)
```


From this plot is appears that the linearity assumption seems reasonable. We will need to assume independence based on the information given. Next we will assess the normality assumption for the additive model.

```
> case1301$resid = residuals(aov(logitcover ~ Block+Treat, data=case1301))
> histogram(~ resid, type='density', density=TRUE, data=case1301)
```


From this figure normality seems reasonable as well. Now we can assess equality of variance.

> plot(aov(logitcover ~ Block+Treat, data=case1301), which=3)

From this figure, the assumption of equal variance seems to be somewhat problematic, as seen

in the curvature of the lowess line.

Lastly we can look for influential points and/or high leverage with the additive model.

```
> plot(aov(logitcover ~ Block+Treat, data=case1301), which=4)
```


From this figure we can obtain certain plots that appear to be influential points.

```
> case1301[c(13, 22, 87),]
   Cover Block Treat logitcover
                                   resid
13
      19
             B7
                     \mathbb{C}
                           -1.4500 -1.336
      58
22
             ВЗ
                     L
                            0.3228 1.333
87
             B4
                   LfF
                           -2.5867 -1.440
```

2.3 Linear combinations

First we can observe the Block and Treatment averages and the Block and Treatment effects from Display 13.12 (page 388).

For the effects we used:

```
> model.tables(aov(lm(logitcover ~ Block*Treat, data=case1301)), type="effects")
Tables of effects
Block
```

```
Block
  B1
         B2 B3
                      B4 B5
                                     В6
                                          В7
                                                   R8
-1.4031 -0.9432 0.7015 1.5776 -0.1871 0.6220 -0.2946 -0.0731
Treat
Treat
        f fF L Lf LfF
1.4131 0.9190 0.4112 -0.4794 -0.7718 -1.4921
Block:Treat
   Treat
Block C
       f fF L Lf LfF
  B1 -0.2892 0.0951 0.1755 -0.0629 0.1972 -0.1157
  B2 -0.1797 -0.0509 -0.2013 0.1406 -0.1663 0.4576
  B3 0.2303 -0.1658 -0.0007 0.6996 -0.2540 -0.5094
  B4 1.0899 0.5743 -0.1179 -0.6724 -0.0947 -0.7791
  B5 -0.2650 -0.1850 0.3241 0.4996 -0.4376 0.0638
  B6 -0.0918 -0.4920 -0.2067 -0.1392 0.7185 0.2112
  B7 -0.6709 0.5274 0.3807 -0.5903 -0.2862 0.6394
 B8 0.1763 -0.3030 -0.3536 0.1250 0.3231 0.0322
```

For the means we changed the type attribute to "means":

```
> model.tables(aov(lm(logitcover ~ Block*Treat, data=case1301)), type="means")
Tables of means
Grand mean
-1.233
Block
Block
         B2 B3 B4 B5 B6 B7 B8
-2.6357 -2.1758 -0.5311 0.3450 -1.4197 -0.6106 -1.5272 -1.3057
Treat
Treat
          f fF L Lf LfF
0.1805 -0.3137 -0.8214 -1.7120 -2.0044 -2.7247
Block:Treat
   Treat
Block C f fF L Lf LfF
  B1 -1.512 -1.622 -2.049 -3.178 -3.210 -4.243
  B2 -0.942 -1.308 -1.966 -2.515 -3.114 -3.210
B3 1.112 0.222 -0.121 -0.311 -1.557 -2.533
```

```
B4 2.848 1.838 0.638 -0.807 -0.522 -1.926

B5 -0.272 -0.686 -0.684 -1.399 -2.629 -2.848

B6 0.711 -0.184 -0.406 -1.229 -0.664 -1.891

B7 -0.785 -0.081 -0.735 -2.597 -2.585 -2.380

B8 0.284 -0.690 -1.248 -1.660 -1.754 -2.766
```

To answer specific questions of interest regarding subgroup comparisons we can use linear combinations. The *Sleuth* proposes five questions as detailed on pages 289-390. The code for results of these questions is displayed below and these results are also interpreted on pages 389-390 and summarized in Display 13.13. For this model the reference group is *control* followed by f, fF, L, Lf, LfF.

```
> require(gmodels)
> lm1 = lm(logitcover ~ Treat+Block, data=case1301); coef(lm1)
(Intercept)
                 Treatf
                            TreatfF
                                        TreatL
                                                   TreatLf
                                                               TreatLfF
                                                   -2.1849
    -1.2226
                            -1.0019
                                                               -2.9052
                -0.4941
                                        -1.8925
    BlockB2
                BlockB3
                            BlockB4
                                        BlockB5
                                                   BlockB6
                                                                BlockB7
     0.4600
                 2.1046
                            2.9807
                                        1.2160
                                                    2.0251
                                                                1.1085
    BlockB8
     1.3300
> large = rbind('Large fish' = c(0, -1/2, 1/2, 0, -1/2, 1/2))
> small = rbind('Small fish' = c(-1/2, 1/2, 0, -1/2, 1/2, 0))
> limpets = rbind('Limpets' = c(-1/3, -1/3, -1/3, 1/3, 1/3, 1/3))
> limpetsSmall = rbind('Limpets X Small' = c(1, -1/2, -1/2, -1, 1/2, 1/2))
> limpetsLarge = rbind('Limpets X Large' = c(0, 1, -1, 0, -1, 1))
> fit.contrast(lm1, "Treat", large, conf.int=.95)
                Estimate Std. Error t value Pr(>|t|) lower CI upper CI
TreatLarge fish -0.614
                         0.1497 -4.101 9.54e-05 -0.9118 -0.3162
attr(,"class")
[1] "fit_contrast"
> fit.contrast(lm1, "Treat", small, conf.int=.95)
                Estimate Std. Error t value Pr(>|t|) lower CI upper CI
TreatSmall fish -0.3933 0.1497 -2.627 0.01026 -0.691 -0.09549
attr(,"class")
[1] "fit_contrast"
> fit.contrast(lm1, "Treat", limpets, conf.int=.95)
             Estimate Std. Error t value Pr(>|t|) lower CI upper CI
TreatLimpets
              -1.829
                      0.1222 -14.96 2.778e-25 -2.072
attr(,"class")
[1] "fit_contrast"
```

```
> fit.contrast(lm1, "Treat", limpetsSmall, conf.int=.95)
                     Estimate Std. Error t value Pr(>|t|) lower CI
TreatLimpets X Small 0.09549
                                  0.2593 0.3682 0.7136 -0.4203
                     upper CI
TreatLimpets X Small
                      0.6113
attr(,"class")
[1] "fit_contrast"
> fit.contrast(lm1, "Treat", limpetsLarge, conf.int=.95)
                     Estimate Std. Error t value Pr(>|t|) lower CI
TreatLimpets X Large -0.2125
                                  0.2994 -0.7097 0.4799 -0.8081
                     upper CI
TreatLimpets X Large
                       0.383
attr(,"class")
[1] "fit_contrast"
```

To attain the confidence intervals discussed in the "Summary of Statistical Findings" (page 376) we need to exponential the lower and upper bounds of the above 95% confidence intervals. Therefore, for the limpets estimation, the corresponding 95% confidence interval is (0.126, 0.205). The resulting large fish 95% confidence interval is (0.402, 0.729). Lastly for the estimation of the regeneration ratio for small fish the 95% confidence interval is (0.501, 0.909).

3 Pygmalion effect

Does expected excellence affect performance? More specifically, does telling a manager that some of the supervisees are "superior" affect the supervisor's perception of their performance (Pygmalion effect)? This is the question addressed in case study 13.2 in the *Sleuth*.

3.1 Statistical summary

We begin by reading the data and summarizing the variables.

```
> summary(case1302)
    Company
                    Treat
                                  Score
 C1
        : 3
              Pygmalion:10
                             Min.
                                     :59.5
 C2
        : 3
              Control :19
                             1st Qu.:69.2
 C4
                             Median:73.9
        : 3
 C5
        : 3
                             Mean :74.1
 C6
        : 3
                              3rd Qu.:78.9
 C7
        : 3
                             Max.
                                     :89.8
 (Other):11
> case1302$newTreat = relevel(case1302$Treat, ref="Control")
```

There were a total of 29 platoons. For each of the 10 companies, one platoon received the Pygmalion treatment and two platoons were control, with the exception of one company that only had one control platoon. Therefore, there were 10 Pygmalion platoons and 19 control platoons. As shown in Display 13.3 (page 378 of the *Sleuth*).

3.2 Graphical presentation

The following figure displays an interaction plot for the Pygmalion dataset, akin to Display 13.14 on page 392.

```
> with(case1302, interaction.plot(Company, newTreat, Score))
```


3.3 Two way ANOVA (fit using multiple linear regression model)

We can then use multiple linear regression models for the additive and nonadditive models and compare them using the two-way ANOVA.

The following is similar to Display 13.16 (page 394).

```
> lm1 = lm(Score ~ Company*newTreat, data=case1302); summary(lm1)

Call:
lm(formula = Score ~ Company * newTreat, data = case1302)

Residuals:
```

```
Min
           1Q Median
                         3Q
                               Max
  -9.2
         -2.3
                 0.0
                        2.3
                               9.2
Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                            5.09 13.00 3.9e-07
                                66.20
                                            7.20
CompanyC2
                                 6.10
                                                    0.85
                                                             0.419
CompanyC3
                                10.00
                                            8.82
                                                    1.13
                                                             0.286
CompanyC4
                                 0.30
                                            7.20
                                                    0.04
                                                             0.968
                                10.00
                                            7.20
                                                   1.39
                                                            0.198
CompanyC5
CompanyC6
                                15.60
                                            7.20
                                                    2.17
                                                            0.059
                                -1.10
                                            7.20
                                                   -0.15
                                                            0.882
CompanyC7
CompanyC8
                                 4.30
                                            7.20
                                                    0.60
                                                             0.565
                                 6.90
                                                    0.96
CompanyC9
                                            7.20
                                                            0.363
                                            7.20
CompanyC10
                                 4.50
                                                    0.62
                                                             0.548
                                            8.82
                                                   1.56
newTreatPygmalion
                                13.80
                                                            0.152
CompanyC2:newTreatPygmalion
                                -2.20
                                           12.48
                                                   -0.18
                                                            0.864
CompanyC3:newTreatPygmalion
                               -21.80
                                           13.48
                                                   -1.62
                                                            0.140
                                                   -0.30
CompanyC4:newTreatPygmalion
                                -3.80
                                           12.48
                                                            0.768
CompanyC5:newTreatPygmalion
                                -2.20
                                           12.48
                                                   -0.18
                                                            0.864
CompanyC6:newTreatPygmalion
                                -5.80
                                           12.48
                                                  -0.46
                                                            0.653
                                           12.48
                                                   -0.22
CompanyC7:newTreatPygmalion
                                -2.80
                                                             0.827
CompanyC8:newTreatPygmalion
                               -12.80
                                           12.48
                                                   -1.03
                                                            0.332
                                           12.48
CompanyC9:newTreatPygmalion
                               -17.40
                                                   -1.39
                                                            0.197
                                -0.80
                                           12.48
                                                   -0.06
                                                            0.950
CompanyC10:newTreatPygmalion
Residual standard error: 7.2 on 9 degrees of freedom
Multiple R-squared: 0.739, Adjusted R-squared: 0.188
F-statistic: 1.34 on 19 and 9 DF, p-value: 0.336
> lm2 = lm(Score ~ Company+newTreat, data=case1302); summary(lm2) # Display 13.18 page 395
Call:
lm(formula = Score ~ Company + newTreat, data = case1302)
Residuals:
  Min
          1Q Median
                         3Q
                               Max
-10.66 -4.15 1.85
                       3.85
                              7.74
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   68.3932
                               3.8931 17.57 8.9e-13
                               5.3697
                                         1.00
CompanyC2
                    5.3667
                                                 0.331
CompanyC3
                    0.1966
                               6.0189
                                         0.03
                                                 0.974
CompanyC4
                   -0.9667
                               5.3697
                                        -0.18
                                                 0.859
```

```
5.3697 1.73 0.102
CompanyC5
                  9.2667
CompanyC6
                 13.6667
                            5.3697
                                     2.55
                                            0.020
                 -2.0333
                            5.3697
                                  -0.38
                                            0.709
CompanyC7
CompanyC8
                  0.0333
                          5.3697
                                   0.01 0.995
CompanyC9
                 1.1000
                            5.3697
                                     0.20
                                            0.840
CompanyC10
                  4.2333
                            5.3697
                                     0.79
                                            0.441
newTreatPygmalion
                 7.2205
                            2.5795
                                     2.80
                                            0.012
Residual standard error: 6.58 on 18 degrees of freedom
Multiple R-squared: 0.565, Adjusted R-squared:
F-statistic: 2.33 on 10 and 18 DF, p-value: 0.0564
> anova(lm1)
Analysis of Variance Table
Response: Score
               Df Sum Sq Mean Sq F value Pr(>F)
Company
               9
                    671 75 1.44 0.299
               1
                    339
newTreat
                            339
                                  6.53 0.031
Company:newTreat 9 311
                           35 0.67 0.722
Residuals 9 467
                           52
> anova(lm2)
Analysis of Variance Table
Response: Score
         Df Sum Sq Mean Sq F value Pr(>F)
              671 75 1.72 0.156
         9
Company
                     339 7.84 0.012
newTreat
        1
              339
Residuals 18
              779
                      43
> anova(lm2, lm1)
Analysis of Variance Table
Model 1: Score ~ Company + newTreat
Model 2: Score ~ Company * newTreat
 Res.Df RSS Df Sum of Sq
                          F Pr(>F)
     18 779
2 9 467 9
                    312 0.67 0.72
```

Lastly we can observe the residual plot from the fit of the additive model, akin to Display 13.17 on page 395.

```
> plot(lm2, which=1)
```


3.4 Randomization Methods

As introduced in Chapter 4, we can construct a randomization distribution by considering the distribution of a test statistic over all possible ways the randomization could have turned out. For the Pygmalion data we can construct a randomization distribution for the t-statistic of the treatment effect as discussed on pages 397-398.

```
> mod = lm(Score ~ Company+newTreat, data=case1302)
> obs = summary(mod)$coefficients["newTreatPygmalion", "t value"]
> obs

[1] 2.799

> nulldist = do(10000) * summary(lm(Score ~ shuffle(Company)+shuffle(newTreat),
+ data=case1302))$coefficients["shuffle(newTreat)Pygmalion", "t value"]
> histogram(~ result, groups=result >= obs, v=obs, data=nulldist)
> # akin to Display 13.20 page 398
> tally(~ result >= obs, format="proportion", data=nulldist)

result >= obs
   TRUE FALSE
0.0056 0.9944
```


From this simulation we observed that the proportion of t-statistics that were as extreme or more extreme than our observed t-statistic (2.799) is 0.0056.