Editorial - Transforming Bowsons

This question could be modelled as a BFS tree.

The start node will be \boldsymbol{X} given in the question. We need to add new nodes according to the operations given. Paths will be created if there is a direct relationship between the two nodes, i.e. if \boldsymbol{b} is the result after performing one of the operations on \boldsymbol{a} , then there is a path between \boldsymbol{a} and \boldsymbol{b} . It is also needed to keep track of the nodes created to avoid redundancy. While constructing the tree if node \boldsymbol{Y} is found, then the height from the starting node, \boldsymbol{X} to \boldsymbol{Y} will be the number of operations needed to transform \boldsymbol{X} to \boldsymbol{Y} . As we are creating a BFS tree, the depth is increased level by level. Therefore, the height gives the minimum number of operations needed. If \boldsymbol{X} or \boldsymbol{Y} exceeds 100,000 or is less than or equal to 0, and none of the operations transform \boldsymbol{X} to \boldsymbol{Y} , or when the tree is completed and \boldsymbol{Y} value is not reached, then it is considered as impossible to transform \boldsymbol{X} to \boldsymbol{Y} .

The Time complexity is O(V + E) where V is the number of nodes and E is the number of edges in the BFS tree.

Eg: The following diagram represents the BFS tree for the test case given in the question.

