

DEPARTAMENTO DE ESTATÍSTICA

23 junho 2023

Lista 7 - Normal Multivariada

Prof. Dr. George von Borries Análise Multivariada 1

Aluno: Bruno Gondim Toledo | Matrícula: 15/0167636

Questão 55

```
mu \leftarrow c(3, 2)
sigma \leftarrow matrix(c(1, -1.5, -1.5, 4), 2)
set.seed(150167636)
mvrnorm(20, mu, sigma)
##
             [,1]
                        [,2]
## [1,] 2.713068 2.2421326
   [2,] 3.168527 1.8305926
## [3,] 3.281616 3.6377464
## [4,] 1.225270 3.8406363
## [5,] 2.788789 1.6138664
## [6,] 2.971249 0.3776516
## [7,] 3.139249 -2.2801139
## [8,] 2.729603 0.9393494
## [9,] 2.447450 2.9861925
## [10,] 3.184863 -0.9861318
## [11,] 1.798995 3.6115228
## [12,] 1.712520 4.5234829
## [13,] 3.756708 -0.3153063
## [14,] 2.796773 1.9171775
## [15,] 3.142316 1.5452393
## [16,] 3.364824 1.9736312
## [17,] 1.625479 4.5668874
## [18,] 3.363095 1.8630202
## [19,] 3.756838 1.1431897
## [20,] 3.831592 -0.5266128
```

Questão 56 (caderno)

Questão 57

Elipse para a =1

Questão 58 (caderno)

Questão 59

Questão 60

Ex. 4.26 | Johnson & Wichern

a)

De x_1 e x_2 , obtemos: o o vetor de médias $\mu =$

[,1] ## [1,] 5.200 ## [2,] 12.481

A matriz $\mathbf{S} =$

[,1] [,2] ## [1,] 10.62222 -17.71022 ## [2,] -17.71022 30.85437

E a inversa $S^{-1} =$

[,1] [,2] ## [1,] 2.189813 1.2569395 ## [2,] 1.256939 0.7538861

Com isso, podemos calcular as distâncias estatísticas quadradas

 $d_j^2 = (\mathbf{x_j} - \bar{\mathbf{x}})^{\mathbf{T}} \mathbf{S^{-1}} (\mathbf{x_j} - \bar{\mathbf{x}}) = [1.8753045, \ 2.0203262, \ 2.9009088, \ 0.7352659, \ 0.3105192, \ 0.0176162, \ 3.7329012, \ 0.8165401, \ 1.3753379, \ 4.2152799]$

b)

Neste caso, iremos comparar os valores d_j^2 com o quantil $\chi_2^2(0,5)=1.3862944$ e avaliar a proporção de observações na margem de aceitação, que para este caso é 50%

c)

Duas representações gráficas análogas:

Chi-Square Q-Q Plot of data.frame(x1, x2)

 \mathbf{d}

Pelo resultado da proporção de distâncias não rejeitadas pelo quantil qui-quadrado, pelo baixo número de dados e pelos gráficos acima, creio não haver evidências suficientes para rejeitar a normalidade bivariada destes dados

Questão 61

Ex. 4.27 | Johnson & Wichern

Algumas opções de teste de normalidade multivariada

Caso 1: Variáveis sem transformação

Test	Statistic	p-value	Result
Skewness	11.0013	0.0265	NO
Kurtosis	0.4296	0.6675	YES
MV Normality	NA	NA	NO

Test	HZ	p value	MVN
Henze-Zirkler	1.520541	0.0007484	NO

Caso 2: Variáveis com transformação $\lambda=0~(\ln)$

Test	Statistic	p-value	Result
Skewness	8.0963	0.0881	YES
Kurtosis	-0.5458	0.5852	YES
MV Normality	NA	NA	YES

Test	HZ	p value	MVN
Henze-Zirkler	1.22835	0.0045145	NO

Caso 3: Variáveis com transformação $\lambda = 1/4~(\frac{x^{(\lambda)-1}}{\lambda})$

Test	Statistic	p-value	Result
Skewness Kurtosis MV Normality	11.0013	0.0265	NO
	0.4296	0.6675	YES
	NA	NA	NO

Test	HZ	p value	MVN
Henze-Zirkler	1.520541	0.0007484	NO

Portanto, apesar de ser bem difícil de inferir uma conclusão, a transformação $\lambda=0$ aparenta ter trazido o melhor resultado de normalidade multivariada

Questão 62

Ex. 4.35 | Johnson & Wichern

Test	Statistic	p-value	Result
Skewness	127.17	0	NO
Kurtosis	10.4578	0	NO
MV Normality	NA	NA	NO

Test	HZ	p value	MVN
Henze-Zirkler	1.89379	4e-07	NO

Test	Variable	Statistic	p value	Normality
Anderson-Darling Anderson-Darling	Density Strength MachineDirection	1.1852 0.3001	0.0038 0.5661	NO YES
Anderson-Darling	Strength_CrossDirection	2.7420	< 0.001	NO

	Beta-hat	kappa	p-val
Skewness	17.28145	118.089941	0
Kurtosis	30.62636	9.133963	

```
##
## Shapiro-Wilk normality test
##
## data: Z
## W = 0.56907, p-value = 8.969e-10
```

Diversos testes de normalidade multivariada e marginal univariada foram testados, e à excessão de um teste de normalidade marginal da variável *Machine Direction*, todos os demais rejeitaram a hipótese nula de normalidade multivariada. Portanto, há evidências para descartar a hipótese nula de normalidade multivariada desses dados. Entretando, é possível que transformadas dessas variáveis não rejeitem a hipótese nula de normalidade multivariada.

Questão 63

Ex. 4.1 | Rencher & Christensen

Questão 64

Ex. 4.2 | Rencher & Christensen

Questão 65

Ex. 4.10 | Rencher & Christensen

Questão 66

Ex. 4.11 | Rencher & Christensen

Questão 67

Ex. 4.12 | Rencher & Christensen

Questão 68

Ex. 4.13 | Rencher & Christensen

Questão 69

Ex. 4.14 | Rencher & Christensen

Questão 70

Ex. 4.17 | Rencher & Christensen