

Hieroglify

Zespół amerykańskich naukowców bada podobieństwa pomiędzy ciągami hieroglifów. Naukowcy reprezentują każdy hieroglif za pomocą nieujemnej liczby całkowitej. Aby przeprowadzić swoje badania, korzystają z następujących pojęć dotyczących ciągów.

Dla ustalonego ciągu A, ciąg S nazywany jest **podciągiem** ciągu A wtedy i tylko wtedy, gdy można uzyskać S usuwając niektóre elementy (być może żadne) z A.

Poniższa tabela przedstawia przykłady podciągów ciągu A=[3,2,1,2].

Podciąg	Jak można go uzyskać z A
[3, 2, 1, 2]	Żaden element nie został usunięty.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] lub [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

Z drugiej strony, [3,3] oraz [1,3] nie są podciągami A.

Rozważmy dwa ciągi hieroglifów, A i B. Ciąg S nazywany jest **wspólnym podciągiem** ciagów A i B wtedy i tylko wtedy, gdy S jest podciągiem zarówno A, jak i B. Ponadto mówimy, że ciąg U jest **uniwersalnym wspólnym podciągiem** ciągów A i B wtedy i tylko wtedy, gdy spełnione są następujące dwa warunki:

- U jest wspólnym podciągiem A i B.
- Każdy wspólny podciąg A i B jest również podciągiem U.

Można udowodnić, że dowolne dwa ciągi A i B mają co najwyżej jeden uniwersalny wspólny podciąg.

Naukowcy znaleźli dwa ciągi hieroglifów A i B. Ciąg A składa się z N hieroglifów, a ciąg B składa się z M hieroglifów. Pomóż badaczom wyznaczyć uniwersalny wspólny podciąg ciągów A i B, lub ustalić, że taki ciąg nie istnieje.

Szczegóły implementacji

Powinieneś zaimplementować następującą procedurę.

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- A: tablica o długości N opisująca pierwszy ciąg.
- ullet B: tablica o długości M opisująca drugi ciąg.
- Jeżeli istnieje uniwersalny wspólny podciąg A i B, procedura powinna zwrócić tablicę zawierającą ten ciąg. W przeciwnym wypadku procedura powinna zwrócić [-1] (tablicę o długości 1, której jedynym elementem jest -1).
- Ta procedura jest wywoływana dokładnie raz dla każdego testu.

Ograniczenia

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- ullet $0 \leq A[i] \leq 200\,000$ dla każdego i takiego, że $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$ dla każdego j takiego, że $0 \leq j < M$

Podzadania

Podzadanie	Punkty	Dodatkowe ograniczenia
1	3	N=M; każdy z A i B składa się z N różnych liczb całkowitych pomiędzy 0 a $N-1$ (włącznie)
2	15	Dla dowolnej liczby całkowitej k , (liczba elementów A równych k) plus (liczba elementów B równych k) wynosi co najwyżej 3 .
3	10	$A[i] \leq 1$ dla każdego i takiego, że $0 \leq i < N$; $B[j] \leq 1$ dla każdego j takiego, że $0 \leq j < M$
4	16	Istnieje uniwersalny wspólny podciąg A i B .
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	Brak dodatkowych ograniczeń.

Przykłady

Przykład 1

Rozważmy następujące wywołanie.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

W tym przypadku wspólne podciągi A i B są następujące: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] oraz [0,1,0,2].

Ponieważ [0,1,0,2] jest wspólnym podciągiem A i B, a wszystkie wspólne podciągi A i B są podciągami [0,1,0,2], procedura powinna zwrócić [0,1,0,2].

Przykład 2

Rozważmy następujące wywołanie.

```
ucs([0, 0, 2], [1, 1])
```

W tym przypadku jedynym wspólnym podciągiem A i B jest pusty ciąg $[\,]$. Z tego wynika, że procedura powinna zwrócić pustą tablicę $[\,]$.

Przykład 3

Rozważmy następujące wywołanie.

```
ucs([0, 1, 0], [1, 0, 1])
```

Tutaj wspólne podciągi A i B to $[\,],[0],[1],[0,1]$ oraz [1,0]. Można udowodnić, że nie istnieje żaden uniwersalny wspólny podciąg. Dlatego procedura powinna zwrócić [-1].

Przykładowy program oceniający

Format wejścia:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Format wyjścia:

```
T
R[0] R[1] ... R[T-1]
```

R jest tablicą zwróconą przez ucs, a T jest jej długością.