Chapter 1: The Foundations – Logic and Proofs

This chapter introduces the fundamental concepts of logic, reasoning, and proof techniques, which are essential for mathematical problem-solving, programming, and algorithm analysis.

1.1 Propositional Logic

Propositional logic deals with **statements (propositions)** that are either **true (T) or false (F)** but not both. **Basic Logical Operators:**

- 1. **Negation (¬p)**: "Not p" (opposite truth value).
- 2. Conjunction ($p \land q$): "p AND q" (true only if both p and q are true).
- 3. **Disjunction (p V q)**: "p OR q" (true if at least one of p or q is true).
- 4. **Implication** $(p \rightarrow q)$: "If p, then q" (false only if p is true and q is false).
- 5. **Biconditional (p \leftrightarrow q)**: "p if and only if q" (true when both have the same truth value).

Example: Truth Table for $p \rightarrow q$

```
pqp→q
TTT
TFF
FTT
FFT
```

1.2 Applications of Propositional Logic

Used in circuit design, programming conditions, and AI decision-making.

Example: Conditional Statements

- "If it rains, then the ground is wet." → (rains → wet ground)
- "If a number is even, then it is divisible by 2." → (even → divisible by 2)

1.3 Propositional Equivalences

Logical expressions can be simplified using logical identities.

Example: De Morgan's Laws

- $\neg (p \land q) \equiv \neg p \lor \neg q$
- $\neg (p \lor q) \equiv \neg p \land \neg q$

1.4 Predicates and Quantifiers

Extends logic with variables and quantifiers.

- Universal Quantifier (∀x P(x)): "For all x, P(x) is true."
- Existential Quantifier ($\exists x P(x)$): "There exists an x such that P(x) is true."

Example: Universal vs. Existential

- $\forall x (x > 0 \rightarrow x^2 > 0) \rightarrow$ "For all x, if x is positive, then x^2 is positive."
- $\exists x (x^2 = 4) \rightarrow$ "There exists an x such that $x^2 = 4$ " (x = ± 2).

1.5 Rules of Inference

Used to derive conclusions from given premises.

Example: Modus Ponens $(p \rightarrow q, p \vdash q)$

1. "If it is raining, then the ground is wet." $(p \rightarrow q)$

- 2. "It is raining." (**p**)
- 3. ∴ "The ground is wet." (q)

1.6 Introduction to Proofs

Mathematical proofs verify the correctness of statements.

Types of Proofs:

• **Direct Proof**: Assume p is true, then show q is true.

• **Proof by Contradiction**: Assume ¬q is true and derive a contradiction.

Proof by Induction: Used for statements about integers.

Example: Direct Proof

Theorem: If n is even, then n² is even.

Proof: Let n = 2k (where k is an integer), then $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$, which is even. \checkmark

1.7 Proof Methods and Strategy

Choosing the right proof method based on the problem.

Example: Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof: Assume $\sqrt{2}$ is rational, meaning $\sqrt{2} = a/b$ (where a, b are integers with no common factors). Squaring

both sides: $2b^2 = a^2$

This means a^2 is even, so a is even \rightarrow a = 2k. Substituting, we get b is also even.

This contradicts our assumption that a and b have no common factors. $\because \sqrt{2}$ is irrational. \checkmark

Conclusion

This chapter builds the foundation for **logical reasoning**, **proof writing**, **and mathematical rigor**, which are crucial for **computer science**, **AI**, **and algorithm analysis**.

Mathematical Symbols

Here are the **symbols** used in the explanation along with their meanings:

Logical Symbols (Propositional Logic)

Symbol	Meaning	Example
¬р	Negation ("NOT p")	$\neg(x > 5) \rightarrow "x$ is not greater than 5"
٨	Conjunction ("AND")	$(p \land q) \rightarrow "p$ and q are both true"
V	Disjunction ("OR")	$(p \lor q) \rightarrow "p$ is true or q is true (or both)"
\rightarrow	Implication ("If p, then q")	$(p \rightarrow q) \rightarrow$ "If p is true, then q must be true"
\leftrightarrow	Biconditional ("p if and only if q")	$(p \longleftrightarrow q) \to "p$ is true if and only if q is true"

Quantifier Symbols (Predicate Logic)

Symbol	Meaning Meaning	Example
A	Universal Quantifier ("For all")	$\forall x (x > 0 \rightarrow x^2 > 0) \rightarrow$ "For all x, if x is positive, then x^2 is positive"
3	Existential Quantifier ("There exists") $\exists x (x^2 = 4)$ → "There exists an x such that $x^2 = 4$ "

Set Theory Symbols

Symbol	Meaning	Example
€	Element of	$x \in A \rightarrow$ "x belongs to set A"
∉	Not an element of	$x \notin A \rightarrow$ "x does not belong to set A"
⊆	Subset	$A \subseteq B \rightarrow$ "A is a subset of B"
C	Proper Subset	$A \subset B \ensuremath{\rightarrow}$ "A is a subset of B but not equal to B"
\cap	Intersection ("AND")	$A \cap B \Rightarrow$ "Elements common in both A and B"
U	Union ("OR")	A \cup B \rightarrow "All elements in A or B or both"
Ø	Empty Set	$A = \emptyset \rightarrow$ "Set A has no elements"

Mathematical Symbols

Symbol	Meaning	Example
≣	Logical equivalence	$\neg(p \land q) \equiv (\neg p \lor \neg q) \Rightarrow$ "De Morgan's Law"
F	Logical derivation (Inference)	$p \rightarrow q, p \vdash q \rightarrow \text{"From } p \rightarrow q \text{ and } p, \text{ we infer } q\text{"}$
٧	Square Root	√4 = 2
	Therefore	\therefore x = 5 (conclusion of proof)

The Foundation (Mathematics): Logic and Proof

- The rules of logic specify the meaning of mathematical statement
- These rules help us understand and reason with mathematical statement
- Logic is the basis of all mathematical reasoning and of all automated reasoning
- It has practical applications to
 - The Design of Computer machine
 - The specification of systems
 - Artificial Intelligence
 - Computer Programming
 - Programming Language
 - Other area of Computer Science
 - Many other field of studies
- To understand mathematics, understand what makes up a correct mathematical arguments, that is, a proof
- Once we prove a mathematical statement is true, we called it a theorem
- A collection of theorems on a topics organize what we know about this topics
- To learn a mathematical topics, a person need to actively construct mathematical arguments on this topic
- Moreover, knowing the proof of a theorem often makes it possible to modify the result to fit new situation
- Proofs are important throughout mathematics and computer science
- In fact, proofs are used to
 - Verify that computer programs produce the correct output for all possible input values
 - Show that algorithms always produce the correct result
 - Establish the security of a system
 - Create artificial intelligence
- Furthermore, automated reasoning systems have been created to allow computers to construct their own proofs

Introduction

- The rules of logic give precise meaning of mathematical statements
- These rules are used to distinguish between valid and invalid mathematical arguments
 - 1. Proposition Example 2
 - 2. Definition 1 Example 2
 - 3. Definition 2 Example 1
 - 4. Definition 3 Example 2
 - 5. Definition 4 Example 2
 - 6. Definition 5 (Conditional Statement) Example 2
 - 7. Converse, Contrapositive, and Inverse Example 1
 - 8. Definition 6 Example 1
 - 9. Implicit use of Bi-conditional
 - 10. Truth Tables of Compound Propositions Example 1
 - 11. Precedence of Logical Operator
 - 12. Logic and Bit Operation
 - 13. Definition 7 Example 2
 - 14. Exercises