UNIVERSITY OF OSLO

Master's thesis

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Johan Mylius Kroken

Computational Science: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics
Faculty of Mathematics and Natural Sciences

Johan Mylius Kroken

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Supervisors:

A David Fonseca Mota

B Julian Adamek

C Francisco Antonio Villaescusa Navarro

Abstract

On large scales, comparable to the horizon, various relativistic effect will affect the observable clustering properties of galaxies. In order to solve for these effects, one need to constantly solve for the metric, velocities and densities in a particular gauge. When simulating large-scale structures we often use N-body simulations, usually performed in the Newtonian limit. However, it is not obvious that Newtonian gravity yield a good global description of an in-homogeneous cosmology when there is significant nonlinear dynamical behaviour (Jeong, Fabian Schmidt and Hirata 2012). Literature results suggest that the relativistic corrections necessary on top of realistic Newtonian cosmologies should be very small (Chisari and Zaldarriaga 2011). If this is the case, then this justifies the use of Newtonian simulations even on scales larger than the Hubble radius, whose results may be translated into relativistic cosmologies using relevant dictionaries (Green and Wald 2012).

I investigate this by running 2000 simulations with the relativistic N-body code gevolution by Adamek et al. 2016, with and without relativistic effects, using identical ΛCDM cosmologies. The simulations are run on a 256³ grid each with dimension 5120 Mpc in order to capture the Hubble horizon. I investigate the difference between the gravities by considering the power spectra and bispectra of the gravitational potential Φ , the latter should reveal the nonlinear dynamical behaviour present in the relativistic simulation.

The whole dataset is used to train a Convolutional Neural Network (CNN), aiming to classify the two cases. If successful, the CNN may be used to analyse and understand the features separating the relativistic and Newtonian simulations. This may for instance be done using saliency maps.

Sammendrag

Here comes the abstract in a different language.

Contents

1.1	Motivation	1
4.0		ı
1.2	Outline	1
1.3	Aim	1
1.4	Nomenclature	1
Cosmo	ological Structure Formation	3
	_	5
		5
	•	5
	·	5
		5
		5
22		5
		7
•	·	7
0.1		7
	j ,	7
		7
32	·	7
_	•	7
	•	9
		9
		9
		9
	·	9
		9
	•	11
	·	11
.		
		11
		11
	<u> </u>	11
5.2	Newtonian Approach	11
	2.2 Back 3.1 3.2 3.3 Pertu 4.1 4.2 4.3 4.4 4.5	Cosmological Structure Formation Preliminaries

Contents

II	Machir	ne Leari	າing											13
6	Funda	amental I	Elements of Mach	ine Learn	ing									15
	6.1	Introdu	ction				•							15
	6.2	Linear	Algebra											15
	6.3	Probab	ility and Information	on Theory	<i>/</i> .		•							15
	6.4	Basic N	Machine Learning											15
		6.4.1	Estimators, Bias,											15
		6.4.2	Maximum Likelih	ood Estir	nati	on								16
		6.4.3	Bayesian Statisti	cs			•							16
		6.4.4	Supervised Lear	ning										16
		6.4.5	Unsupervised Le	earning .										16
7	Neura	ıl Networ	ks											17
	7.1	Forwar	d pass - Prediction	ı										17
		7.1.1	Activation function	ons										17
		7.1.2	Loss functions.				•							17
	7.2	Backpr	opagation - Trainir	ng										17
		7.2.1	Gradient descen	t										17
		7.2.2	Optimizers											17
		7.2.3	Regularization											17
8	Convo	olutional	Neural Networks											19
	8.1	Convol	ution											19
	8.2	New La	ayers											19
		8.2.1	Convolutional lay	ers										19
		8.2.2	Pooling layers.											19
		8.2.3	Dropout layers								•	•	•	19
Ш	A oqui	ring Dat	ta											21
	-	_												23
9														
	9.1		eters											23
		9.1.1	Cosmological pa											23 23
		9.1.2 9.1.3	Primordial power	-										23 24
			Box parameters											24 24
10	Doto \	9.1.4												
10		Verification												25
	10.1													25
	10.2		spectra from Theo	-										25
	10.3		spectra from Simul											25
44	10.4		spectra from Datac											25
11	ırama	เมเย มลเล	set											29

List of Figures

List of Figures

List of Tables

9.1	Cosmological parameters								23
9.2	Primordial power spectra parameters								23
9.3	Box parameters								24

Preface

Here comes your preface, including acknowledgments and thanks. $\,$

Preface

Introduction

This is the introduction that will shortly be written. How fast does things change.

- 1.1 Motivation
- 1.2 Outline
- 1.3 Aim
- 1.4 Nomenclature

Part I Cosmological Structure Formation

Preliminaries

2.1 General Relativity

2.1.1 Einstein's Field Equations

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \tag{2.1}$$

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \tag{2.2}$$

$$R = g^{\mu\nu} R_{\mu\nu} \tag{2.3}$$

$$R_{\mu\nu} = \partial_{\rho}\Gamma^{\rho}_{\mu\nu} - \partial_{\nu}\Gamma^{\rho}_{\mu\rho} + \Gamma^{\rho}_{\mu\nu}\Gamma^{\sigma}_{\rho\sigma} - \Gamma^{\rho}_{\mu\sigma}\Gamma^{\sigma}_{\nu\rho}$$
 (2.4)

2.1.2 Riemann Connection and Covariant Derivatives

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \right) \tag{2.5}$$

$$\nabla_{\mu}T^{\mu}_{\nu} = \partial_{\mu}T^{\mu}_{\nu} + \Gamma^{\mu}_{\mu\alpha}T^{\alpha}_{\nu} - \Gamma^{\alpha}_{\mu\nu}T^{\mu}_{\alpha}$$
 (2.6)

2.1.3 Geodesic Equation

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\beta}}{d\tau} = 0 \tag{2.7}$$

2.1.4 The Stress-Energy Tensor

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu} \tag{2.8}$$

2.2 Useful Relations

Chapter 2. Preliminaries

Background Cosmology

3.1 The homogeneous Universe

In this chapter I will focus on explaining the background cosmology in light of a homogeneous universe. A natural place to start is the cosmological principle, followed by a description of the geometry of space itself. If not otherwise stated, the development of this chapter is based on Dodelson and F. Schmidt 2020, Weinberg 2008 and TODO: cite Baumann

- 3.1.1 The Cosmological Principle
- 3.1.2 The Robertson-Walker Metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2} \right]$$
(3.1)

- 3.1.3 The Friedmann Equations
- 3.2 My Universe is loaded with...
- 3.3 Thermal History of the Universe

Chapter 3. Background Cosmology

Perturbation Theory

- 4.1 Initial Conditions
- 4.2 Transfer Functions
- 4.3 Power Spectra
- 4.4 Non-linear Evolution

4.5 Bispectra

The bispectra are powerful tools for studying the non-linear evolution of the density field. The bispectrum is defined as the Fourier transform of the three-point correlation function, and is given by:

$$\langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3)\rangle = (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$
(4.1)

Well this is rather awkward. Adamek et al. 2016 or (Falck et al. 2017)

Chapter 4. Perturbation Theory

Simulation theory

Some theory and history as to how to conduct N-body simulations.

- 5.1 N-body simulations
- 5.1.1 Describing a box of particles
- 5.1.2 Forces and Fields
- 5.1.3 Mass Assignment Schemes
- 5.1.4 Validity of Box
- 5.2 Newtonian Approach
- 5.3 General Relativistic Approach

Chapter 5. Simulation theory

Part II Machine Learning

Fundamental Elements of Machine Learning

6.1 Introduction

In this chapter I will give a brief introduction into machine learning. This includes a mathematical description of some fundamental concepts common across numerous machine learning models. The more advanced models will be dealt with at a later stage. If not otherwise stated, the following chapter is based on Goodfellow, Bengio and Courville 2016 and Hastie, Tibshirani and Friedman 2009.

6.2 Linear Algebra

maybe

6.3 Probability and Information Theory

maybe

6.4 Basic Machine Learning

TODO: Fill more here

6.4.1 Estimators, Bias, Variance and Error

Estimators Based on the assumption that there exists some true parameter(s) $\boldsymbol{\theta}$ which remain unknown, we are able to make predictions and estimations of such parameter(s). Let's say we have m independent and identically distributed (i.i.d.) random variables $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ drawn from the same probability distribution $p(\mathbf{x})$. An estimator of the true values $\boldsymbol{\theta}$ is any function of the data such that $\hat{\boldsymbol{\theta}}_m = g(\mathbf{x}_1, \dots, \mathbf{x}_m)$, where $\hat{\boldsymbol{\theta}}$ is the estimate of $\boldsymbol{\theta}$. This is known as point estimation, as we are estimating a single value. This definition does not pose any restrictions on the function g. However, a good estimator would yield an estimate $\hat{\boldsymbol{\theta}}_m$ that is close to the true value $\boldsymbol{\theta}$.

¹This is the frequentist perspective of statistics

Function estimators Say we want to predict a variable \mathbf{y} given some vector \mathbf{x} . We assume the true variable \mathbf{y} is given by some function approximation $f(\mathbf{x})$ plus some error ϵ : $\mathbf{y} = f(\mathbf{x}) + \epsilon$. The aim is then to estimate the function f with the estimator \hat{f} . If we then realise that \hat{f} is really just a point estimator in function space, the two above concepts are equivalent.

Bias The bias of the estimator $\hat{\boldsymbol{\theta}}_m$ is defined as the difference between the expected value of the estimator and the true value of the parameter: $\operatorname{bias}(\hat{\boldsymbol{\theta}}_m) = \mathbb{E}[\hat{\boldsymbol{\theta}}_m] - \boldsymbol{\theta}$. An unbiased estimator has zero bias, i.e. $\mathbb{E}[\hat{\boldsymbol{\theta}}_m] = \boldsymbol{\theta}$. An estimator is asymptotically unbiased if its bias approaches zero as the number of data points m approaches infinity, i.e. $\lim_{m\to\infty} \mathbb{E}[\hat{\boldsymbol{\theta}}_m] = \boldsymbol{\theta}$.

Variance

Standard Error

Mean Squared Error

- 6.4.2 Maximum Likelihood Estimation
- 6.4.3 Bayesian Statistics
- 6.4.4 Supervised Learning
- 6.4.5 Unsupervised Learning

Neural Networks

- 7.1 Forward pass Prediction
- 7.1.1 Activation functions
- 7.1.2 Loss functions
- 7.2 Backpropagation Training
- 7.2.1 Gradient descent
- 7.2.2 Optimizers
- 7.2.3 Regularization

Chapter 7. Neural Networks

Convolutional Neural Networks

- 8.1 Convolution
- 8.2 New Layers
- 8.2.1 Convolutional layers
- 8.2.2 Pooling layers
- 8.2.3 Dropout layers

Chapter 8. Convolutional Neural Networks

Part III Acquiring Data

Simulations

9.1 Parameters

When performing simulations, it was import to keep all parameters fixed for all the different simulations. The only thing that was changed was the random seed.

9.1.1 Cosmological parameters

The relevant cosmological parameters are the dimensionless Hubble factor h, the baryon and cold dark matter densities Ω_b and $\Omega_{\rm CDM}$, the Cosmic Microwave Background temperature $T_{\rm CMB}$ and the effective number of ultra-relativistic neutrinos $N_{\rm ur}$.

Table 9.1: Cosmological parameters

Parameter	Value	Unit				
h	0.67556	_				
Ω_b	0.022032	_				
Ω_{CDM}	0.12038	_				
$T_{ m CMB}$	2.7255	K				
$N_{ m ur}$	3.046	_				

9.1.2 Primordial power spectrum

The primordial power spectrum, as TODO: link to when written, contains the pivot scale k_{piv} , the primordial amplitude, \mathcal{A}_{s} and the spectral index, n_{s} .

Table 9.2: Primordial power spectra parameters

Parameter	Value	Unit					
$k_{ m piv}$	0.05	${ m Mpc^{-1}}$					
\mathcal{A}_{s}	$2.215 \cdot 10^{-9}$	-					
$n_{ m s}$	0.9619	-					

9.1.3 Box parameters

The relevant box parameters were the initial redshift $z_{\rm ini}$ where the simulations were started from. The simulations box itself was characterised by the physical length L, represented on a cube grid of size $N_{\rm grid}^3$, resulting in a resolution of $\Delta_{\rm res} = L/N_{\rm grid}$. The courant factor TODO: fill and time step limit TODO: fill.

Parameter Value Unit 100 $z_{\rm ini}$ L5120 Mpc 256 $N_{\rm grid}$ рх $20 (= L/N_{\rm grid})$ ${
m Mpc}~{
m px}^{-1}$ $\Delta_{\rm res}$? Courant factor ? Time step limit 0.04

Table 9.3: Box parameters

9.1.4 Seeds

In order to initialise the simulations we used random seeds, one for each simulation. This ensured that analysis performed on different simulations were of different realisations of the simulated universe, essential statistical independence. The seeds, denoted as S ranged from 0 to 2000, and consisted of the following set:

$$\{S \in \mathbb{Z} | 0 \le S < 2000\} \tag{9.1}$$

Data Verification

- 10.1 Slices of Datacubes
- 10.2 Power spectra from Theory

TODO: Provide some camb and class power spectra here.

- 10.3 Powerspectra from Simulations
- 10.4 Powerspectra from Datacubes

Trainable Dataset

Chapter 11. Trainable Dataset

Bibliography

- Adamek, Julian et al. (29th July 2016). 'gevolution: a cosmological N-body code based on General Relativity'. In: *Journal of Cosmology and Astroparticle Physics* 2016.7, pp. 053–053. ISSN: 1475-7516. DOI: 10.1088/1475-7516/2016/07/053. arXiv: 1604. 06065[astro-ph,physics:gr-qc,physics:physics]. URL: http://arxiv.org/abs/1604.06065 (visited on 23/08/2023).
- Chisari, Nora Elisa and Matias Zaldarriaga (2nd June 2011). 'Connection between Newtonian simulations and general relativity'. In: *Physical Review D* 83.12, p. 123505. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.83.123505. arXiv: 1101.3555[astro-ph,physics:gr-qc]. URL: http://arxiv.org/abs/1101.3555 (visited on 23/08/2023).
- Dodelson, S. and F. Schmidt (2020). *Modern Cosmology*. Elsevier Science. ISBN: 9780128159484. URL: https://books.google.no/books?id=GGjfywEACAAJ.
- Falck, B. et al. (16th Mar. 2017). 'The Effect of Corner Modes in the Initial Conditions of Cosmological Simulations'. In: *The Astrophysical Journal* 837.2, p. 181. ISSN: 1538-4357. DOI: 10.3847/1538-4357/aa60c7. arXiv: 1610.04862[astro-ph]. URL: http://arxiv.org/abs/1610.04862 (visited on 20/09/2023).
- Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016). *Deep Learning*. http://www.deeplearningbook.org. MIT Press.
- Green, Stephen R. and Robert M. Wald (15th Mar. 2012). 'Newtonian and Relativistic Cosmologies'. In: *Physical Review D* 85.6, p. 063512. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.85.063512. arXiv: 1111.2997[astro-ph,physics:gr-qc]. URL: http://arxiv.org/abs/1111.2997 (visited on 23/08/2023).
- Hastie, T., R. Tibshirani and J.H. Friedman (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer series in statistics. Springer. ISBN: 9780387848846. URL: https://books.google.no/books?id=eBSgoAEACAAJ.
- Jeong, Donghui, Fabian Schmidt and Christopher M. Hirata (4th Jan. 2012). 'Large-scale clustering of galaxies in general relativity'. In: *Physical Review D* 85.2, p. 023504. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.85.023504. arXiv: 1107.5427[astro-ph]. URL: http://arxiv.org/abs/1107.5427 (visited on 23/08/2023).
- Weinberg, S. (2008). Cosmology. Cosmology. OUP Oxford. ISBN: 9780191523601. URL: https://books.google.no/books?id=nqQZdg020fsC.