1. Uncertainty & Error Propagation

General Formula (First-Order)

For a function $u = f(x_1, \ldots, x_n)$, with small, positive uncertainties δx_i :

$$\delta u = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \delta x_i = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^T \delta \mathbf{x}$$

Variance for Dependent Variables

For u = f(x, y), the variance σ_u^2 is:

$$\sigma_{u}^{2} = \left(\frac{\partial f}{\partial x}\right)^{2}\sigma_{x}^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}\sigma_{y}^{2} + 2\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial f}{\partial y}\right)\sigma_{xy}$$

where $\sigma_{xy} = \text{cov}(x, y) = \langle (x - \bar{x})(y - \bar{y}) \rangle = \rho_{xy}\sigma_x\sigma_y$.

Simple Cases (Independent Variables)

- Linear Sum: $u = ax + by \implies \sigma_u^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2$ Power Law: $u = Ax^a y^b \implies \left(\frac{\sigma_u}{\bar{u}}\right)^2 = a^2 \left(\frac{\sigma_x}{\bar{x}}\right)^2 + a^2 \left(\frac{\sigma_$

2. Combining Measurements

Measurements $z_a \sim N(x, \sigma_a^2)$ and $z_b \sim N(x, \sigma_b^2)$.

Optimal Combination (Two Dependent Meas.)

• Optimal estimate \hat{x} :

$$\hat{x} = z_a + K(z_b - z_a), \text{ where } K = \frac{\sigma_a^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}}$$

• Optimal variance $\tilde{\sigma}^2$:

$$\tilde{\sigma}^2 = (1 - \rho_{ab}^2) \left(\frac{1}{\sigma_a^2} + \frac{1}{\sigma_b^2} - \frac{2\rho_{ab}}{\sigma_a \sigma_b} \right)^{-1} = \frac{\sigma_a^2 \sigma_b^2 (1 - \rho_{ab}^2)}{\sigma_a^2 + \sigma_b^2 - 2\rho_{ab} \sigma_a \sigma_b}$$

• Independent case ($\rho_{ab} = 0, \sigma_{ab} = 0$):

$$\tilde{\sigma}^2 = \left(\frac{1}{\sigma_a^2} + \frac{1}{\sigma_b^2}\right)^{-1} = \frac{\sigma_a^2 \sigma_b^2}{\sigma_a^2 + \sigma_b^2}$$

Variance of the Mean (\bar{z})

For N measurements $\{z_i\}$:

• General (Dependent):

$$\sigma_m^2 = \frac{1}{N^2} \left(\sum_{i=1}^N \sigma_i^2 + 2 \sum_{i < j} \sigma_{ij} \right)$$

- Independent: $\sigma_m^2 = \frac{1}{N^2} \sum_{i=1}^N \sigma_i^2$
- Independent, equal variance σ_z^2 : $\sigma_m^2 = \frac{\sigma_z^2}{N}$

Variance-Weighted Combination (N Indep. Meas.)

• Optimal estimate \bar{h} :

$$\bar{h} = \frac{\sum w_i h_i}{\sum w_i}$$
, where weight $w_i = \frac{1}{\sigma_i^2}$

• Optimal variance $\tilde{\sigma}^2$:

$$\frac{1}{\tilde{\sigma}^2} = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} = \sum_{i=1}^{N} w_i$$

3. The Kalman Filter

Constant Scalar Quantity

• Estimate update:

$$\hat{x}_{n+1} = \hat{x}_n + \frac{\hat{\sigma}_n^2}{\hat{\sigma}_n^2 + \sigma_{z_{n+1}}^2} (z_{n+1} - \hat{x}_n)$$

• Variance update:

$$\frac{1}{\hat{\sigma}_{n+1}^2} = \frac{1}{\hat{\sigma}_n^2} + \frac{1}{\sigma_{z,n+1}^2}$$

• Initialization: $\hat{x}_1 = z_1$, $\hat{\sigma}_1^2 = \sigma_{z,1}^2$

General Scalar Dynamics

Model: $x_{n+1} = \Phi_n x_n + c_n + \Gamma_n w_n$, with process noise variance $Q = \langle w_n^2 \rangle$. Variances: $P_n = \hat{\sigma}_n^2$ (optimal), $M_{n+1} = \bar{\sigma}_{n+1}^2$ (extrapolated), $R_{n+1} = \sigma_{z,n+1}^2$ (measurement). 1. Extrapolation (Prediction):

$$\bar{x}_{n+1} = \Phi_n \hat{x}_n + c_n$$

$$M_{n+1} = \Phi_n^2 P_n + \Gamma_n^2 Q_n$$

2. Optimization (Update):

$$\begin{split} K_{n+1} &= \frac{M_{n+1}}{M_{n+1} + R_{n+1}} \quad \text{(Kalman Gain)} \\ \hat{x}_{n+1} &= \bar{x}_{n+1} + K_{n+1}(z_{n+1} - \bar{x}_{n+1}) \\ P_{n+1} &= (1 - K_{n+1}) M_{n+1} \end{split}$$

Vector Kalman Filter

Model: $\mathbf{x}_{n+1} = \mathbf{\Phi}_n \mathbf{x}_n + \mathbf{c}_n + \mathbf{\Gamma}_n \mathbf{w}_n$. Measurement model $\mathbf{z}_n = \mathbf{H}_n \mathbf{x}_n + \mathbf{v}_n$. Covariance matrices: **P** (state), **Q** (process noise), **R** (measurement noise).

1. Extrapolation (Prediction):

$$egin{aligned} ar{\mathbf{x}}_{n+1} &= \mathbf{\Phi}_n \hat{\mathbf{x}}_n + \mathbf{c}_n \ \mathbf{M}_{n+1} &= \mathbf{\Phi}_n \mathbf{P}_n \mathbf{\Phi}_n^T + \mathbf{\Gamma}_n \mathbf{Q}_n \mathbf{\Gamma}_n^T \end{aligned}$$

2. Optimization (Update):

$$\begin{split} \mathbf{K}_{n+1} &= \mathbf{M}_{n+1} \mathbf{H}_{n+1}^T (\mathbf{H}_{n+1} \mathbf{M}_{n+1} \mathbf{H}_{n+1}^T + \mathbf{R}_{n+1})^{-1} \\ \hat{\mathbf{x}}_{n+1} &= \bar{\mathbf{x}}_{n+1} + \mathbf{K}_{n+1} (\mathbf{z}_{n+1} - \mathbf{H}_{n+1} \bar{\mathbf{x}}_{n+1}) \\ \mathbf{P}_{n+1} &= (\mathbf{I} - \mathbf{K}_{n+1} \mathbf{H}_{n+1}) \mathbf{M}_{n+1} \end{split}$$

Continuous-time dynamics: $\dot{\mathbf{P}} = \mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^T + \mathbf{\Gamma}\mathbf{Q}\mathbf{\Gamma}^T \mathbf{P}\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H}\mathbf{P}.$

4. Distributions & Statistics

Estimators (from sample $\{z_i\}_{i=1}^N$)

• Unbiased Mean: $\bar{z} = \frac{1}{N} \sum z_i$ • Unbiased Variance: $s^2 = \frac{1}{N-1} \sum (z_i - \bar{z})^2$

Key Distributions

• Normal (Gaussian) $N(\mu, \sigma^2)$: Standardized variable $u = (z - \mu)/\sigma \sim N(0, 1).$

$$P(\mu - n\sigma < z < \mu + n\sigma) = 2\Phi(n) - 1$$

where $\Phi(n)$ is the standard normal CDF.

• Chi-Square $\chi^2(\nu)$: Tests variance.

$$\chi^2 = \frac{(N-1)s^2}{\sigma_0^2} \sim \chi^2(N-1)$$

Used for confidence interval on σ^2 : $\sigma_{\pm}^2 = (N-1)s^2/\chi_{\mp}^2$.

Student's t-distribution $t(\nu)$: Tests mean when σ is unknown.

$$T = \frac{\bar{z} - \mu_0}{s/\sqrt{N}} \sim t(N-1)$$

Used for confidence interval on μ : $\mu_{\pm} = \bar{z} \mp T_c \frac{s}{\sqrt{N}}$.

Hypothesis Testing

- 1. State null hypothesis H_0 (e.g., $\mu = \mu_0, \sigma^2 = \sigma_0^2$).
- 2. Choose significance level α .
- 3. Compute test statistic (T_0, χ_0^2) from data under H_0 .
- 4. Find critical value(s) (T_c, χ_c^2) from tables for α and ν .
- 5. If $|T_0| > T_c$ (or χ_0^2 outside interval), reject H_0 .

Pearson χ^2 Goodness-of-Fit Test

Tests if sample follows a proposed distribution.

- Divide data into B bins. N_k = observed count in bin k.
- p_k = theoretical probability for bin k. Np_k = expected
- Test statistic: $\chi_P^2 = \sum_{k=1}^B \frac{(N_k Np_k)^2}{Np_k} \sim \chi^2(B-1)$. Requirement: $Np_k \geq 5$ for all bins.

5. Sensors & Filters (Laplace)

Laplace Transform: $\mathcal{L}{f(t)} = F(s) = \int_0^\infty f(t)e^{-st}dt$. Derivative Property: $\mathcal{L}\{\dot{f}(t)\} = sF(s) - f(0)$. Transfer Function: $H(s) = \frac{X(s)}{Z(s)}$, where Z(s) is input, X(s) is

First-Order Sensor

- **DE:** $z(t) = \tau \dot{x}(t) + x(t)$
- Transfer Function: $H(s) = \frac{1}{1+\tau s}$

Second-Order Sensor

- **DE:** $\ddot{x} + 2\zeta\omega_0\dot{x} + \omega_0^2x = \omega_0^2z$
- Transfer Function: $H(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$ Damping: ζ is damping coefficient, ω_0 resonant fre-
- quency.
- Optimal Damping: $\zeta = 1/\sqrt{2}$.

Response to Periodic Signals

For a sinusoidal input $z(t) = z_0 e^{i\omega t}$, the steady-state output

$$x(t) = H(i\omega)z(t) = |H(i\omega)|e^{i\delta}z_0e^{i\omega t}$$

- Gain (Amplification): $A = |H(i\omega)|$
- Phase Shift δ : $\tan \delta = \frac{\text{Im}\{H(i\omega)\}}{\text{Re}\{H(i\omega)\}}$

Bode Plots

Graphical plot of filter response.

- Y-axis (Gain): $20 \log_{10} |H(i\omega)|$ [dB]
- X-axis (Frequency): $\log_{10}(\omega \tau)$ or $\log_{10}(\omega)$

6. Common Filter Circuits

Passive RC/CR Filters

• RC Low-Pass: Resistor in series, Capacitor to ground.

$$H(s) = \frac{1}{1 + sRC}$$

• CR High-Pass: Capacitor in series, Resistor to ground.

$$H(s) = \frac{sRC}{1 + sRC}$$

Ideal Op-Amp Rules

- 1. No current flows into input terminals: $I_{+} = I_{-} = 0$.
- 2. Input terminals are at the same voltage: $V_{+} = V_{-}$.

Op-Amp Circuits (Gain $G = V_{out}/V_{in}$)

- Inverting Amplifier: $G = -\frac{R_f}{R_{in}}$
- Non-Inverting Amplifier: $G = 1 + \frac{R_f}{R_{in}}$
- Voltage Follower (Buffer): G = 1
- Ideal Differentiator (periodic): $H(i\omega) = -i\omega R_f C_{in}$
- Ideal Integrator (periodic): $H(i\omega) = \frac{1}{-i\omega R_{in}C_f}$

Band-Pass & Band-Stop Filters

- Quality Factor Q: $Q = \frac{\omega_0}{\Delta \omega_{-3 \text{dB}}}$. High Q = narrow band. Band-Pass Transfer Function:

$$H(s) = \frac{s\omega_c}{s^2 + s\omega_c + \omega_0^2}, \quad \omega_c = \frac{1}{RC}, \omega_0^2 = \frac{1}{LC}$$

• Band-Stop Transfer Function:

$$H(s) = \frac{s^2 + \omega_0^2}{s^2 + s\omega_c + \omega_0^2}, \quad \omega_c = \frac{R}{L}, \omega_0^2 = \frac{1}{LC}$$

7. Linear Least Squares (LLS)

Model: $\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{r}$, where \mathbf{z} are N measurements, \mathbf{x} are M model parameters.

- Goal: Minimize $\chi^2 = (\mathbf{z} \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1} (\mathbf{z} \mathbf{H}\mathbf{x})$.
- Noise Covariance: $\mathbf{R} = \langle \mathbf{r} \mathbf{r}^T \rangle$. For independent noise with different variances, **R** is a diagonal matrix of σ_i^2 . If all variances are equal, $\mathbf{R} = \sigma^2 \mathbf{I}$.
- Optimal Parameters \hat{x} :

$$\hat{\mathbf{x}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{z}$$

• Parameter Covariance Matrix P:

$$\mathbf{P} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}$$

• Minimum χ^2 value: distributed as $\chi^2(N-M)$.

LLS for $z_i = x_0 t_i + x_1$ (equal variance)

• Structure Matrix H:

$$\mathbf{H} = \begin{pmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots & \vdots \\ t_N & 1 \end{pmatrix}$$

• Slope \hat{x}_0 :

$$\hat{x}_0 = \frac{\overline{tz} - \overline{t}\overline{z}}{\overline{t^2} - (\overline{t})^2}$$

• Intercept \hat{x}_1 :

$$\hat{x}_1 = \bar{z} - \hat{x}_0 \bar{t}$$