Application No. 09/892,993
Amendment dated February 18, 2009
Reply to Office Action mailed September 18, 2008

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the Application.

1 to 25 (Canceled)

26. (Currently Amended) A method for repairing a defect area at the gradient junction of cartilaginous tissue and bony tissue, comprising:

providing a composite laminate scaffold with a plurality of substantially parallel layers, a first of the substantially parallel layers being a ceramic layer formed of a poro us discrete ceramic laver said p orous ceramic defining a three dimensional structure with a first surface, a second surface distal to said first surface and a plurality of macropores therein, including a plurality of macropores extending from the second surface into the ceramic layer towards said first surface, a second of the substantially parallel layers being a polymer layer formed of a porous discrete polymer layer, said porous polymer defining a three dimensional structure with a third surface and a fourth surface distal to said third surface and a plurality of micropores therein, said third surface having a plurality of projections extending in a direction distal to the fourth surface, said plurality of extensions matingly extending into a corresponding plurality of said plurality of macropores on the second surface of said ceramic layer, a plurality of said plurality of extensions being porous and having at least one micropore communicating with a mating macropore in said ceramic layer, said mating extensions from said polymer layer being formed and matingly received in said corresponding plurality of macropores of said second surface of said ceramic layer, forming a

permeable

and an interface region, mechanically interlocking attaching the discrete ceramic layer to the discrete polymer layer, where in the interface region, a portion of the polymer layer is at least partially infused into a portion of the ceramic layer mechanically interlocking the ceramic and polymer layers, the interface region being situated between the discrete ceramic layer and the discrete polymer layer;

boring a receptacle space in the gradient junction at the site of the injury to receive the scaffold, the gradient junction being that of articular cartilage; and

placing and securing the scaffold in the receptacle space with the ceramic layer adjacent to the bony tissue and the polymer layer adjacent to the cartilaginous tissue

27-45 (Cancelled)

46. (New) A method for making a composite scaffold, comprising the steps of:

providing a porous ceramic body having first and second surfaces and a plurality of macropores, including macropores extending from within the ceramic body to the second surface;

preparing a polymer solution having a polymer and a solvent;

placing the second surface of said ceramic layer in contact with the polymer solution;

permitting the polymer solution to infuse into a plurality of the macropores extending to the second surface to a given depth within the ceramic body; foaming the polymer solution by lyophilization to separate the solvent from the polymer in the polymer solution to form a porous solid polymer layer with a plurality of micropores therein, attached to and extending from the second surface of the ceramic body, the polymer layer having a plurality of porous polymer projections extending into a corresponding plurality of the plurality of macropores on the second surface of the ceramic layer into which the polymer solution was infused in the prior step, forming an interlocking interface between the ceramic body and the polymer layer, a plurality of said plurality of extensions having at least one micropore communicating with a mating macropore in said ceramic layer.

47. (New) A composite laminate scaffold with a plurality of substantially parallel layers, comprising

a first of the substantially parallel layers being a ceramic layer formed of a porous ceramic, said porous ceramic defining a three dimensional structure with a first surface, a second surface distal to said first surface and a plurality of macropores therein, including a plurality of macropores extending from the second surface into the ceramic layer towards said first surface.

a second of the substantially parallel layers being a polymer layer formed of a porous polymer, said porous polymer defining a three dimensional structure with a third surface and a fourth surface distal to said third surface and a plurality of micropores therein, said third surface having a plurality of extensions extending in a direction distal to the fourth surface, said plurality of extensions matingly extending into a corresponding plurality of said plurality of macropores on the second surface of said ceramic layer, a plurality of said plurality of extensions being porous and having at least

Application No. 09/892,993 Amendment dated February 18, 2009

Reply to Office Action mailed September 18, 2008

one micropore communicating with a mating macropore in said ceramic layer, said

mating extensions from said polymer layer being formed and matingly received in said

corresponding plurality of macropores of said second surface of said ceramic layer,

forming a permeable interface region, mechanically interlocking said ceramic layer to

said polymer layer.

48. (New) The scaffold of Claim 47, further including a mechanical

reinforcement structure embedded in said polymer layer, said mechanical reinforcement

structure selected from the group consisting of films, scrims, woven textiles, non-woven

textiles, knitted textiles, braided textiles and trusses.

49. (New) The scaffold of Claim 47, further including fillers within said

polymer layer selected from the group consisting of growth factors and therapeutic

materials.

50. (New) The scaffold of Claim 47, further including living cells residing

on a surface of said scaffold.

51. (New) The scaffold of Claim 47, wherein at least one of said polymer

layer and said ceramic layer is biodegradable.

52. (New) The scaffold of Claim 47, wherein the scaffold exhibits a

compositional transition from ceramic in the ceramic layer to interlocked ceramic and

5

Application No. 09/892,993 Amendment dated February 18, 2009 Reply to Office Action mailed September 18, 2008

polymer in the interface region to polymer in the polymer layer.