Digital Twin of aquatic ecosystem and its needs for FAIR data & model

Practical information:

- mentimeter will be used for the interactive parts of the workshop and getting input from you
- The workshop consists of (1:30 4:30):
 - 1:30 2:00 Presentations about Digital twin By Qing
 - 2:00 2:15 Discussion
 - 2:15 2:30 Break
 - 2:30 2:45 FAIR data by Lisette
 - 2:45 3:00 Discussion
 - 3:00 3:30 Coffee-break
 - 3:30 3:45 Introduction of Hands-on session (by Qing)
 - 3:30 4:30 Hands-on session: running PCLake in cloud

History of digital twin

- (**Physical**) Twin: NASA uses simulators, as part of the Apollo 13 mission, to train astronauts and mission controllers.
- Digital Twin: Digital replica of a physical entity, allowing users to predict interactions & responses to external drivers.

Digital twin example in natural environmental science

Weather forecast

Crane migration

De Koning et al. 2023; Digital twins: dynamic model-data fusion for ecology

Characteristics of ecosystem digital twin

Open mentimeter.com and share your thoughts (code: 6489 0193)

What characterising the Digital twin?

19 responses

Example use case: Building workflow for Primary Production

Workflow for assessing Primary production

Use case: Running PCLake on cloud

- PCLake is a process-based ecosystem model
- It models nutrient cycle and biomass-based foodweb
- It is open! But FAIR?

Hands-on: Running PCLake on cloud

Workflow structure

Sequential:

Parallel:

Pros & Cons of using the e-infrastructure

Advantages?

Limitations?

FAIR Data & Models

Running Workflows in the Cloud in 4 Steps

1. Prototype code in Jupyter

3. Compose Workflow

2. Containerize Cells

4. Execute Workflow

Steps:

1.Go to: https://naavre.lifewatch.dev/vreapp

2.Choose lab: Wadden_proto_DT

3. Upload files from github: NIOZ-QingZ/GLEON2025 Workshop DT: Digital Twin Workshop

GLEON2025. R & Python Notebooks.

Authorization keys needed

```
param_s3_server = "scruffy.lab.uvalight.net:9000"
param_s3_public_bucket = "naa-vre-waddenzee-shared"
param_s3_public_prefix = "vl-waddenzee-proto-dt"
param_s3_user_bucket = "naa-vre-user-data"
```

Get your own:

```
param_s3_user_prefix = ""
secret_s3_access_key = ""
secret_s3_secret_key = ""
```

Bifurcation analysis results:

Chla levels under different phosphorus loadings

A	В	C	D	E	F	G	Н	- 1	J	K	L	M	N	0	P	Q	
PLoad	nParamSe	nStateSet	time	sPO4W	sO2W	sDDiatW	sDZoo	sDFiAd	sDVeg	sDBent	oPTotW	oChla	aSecchi	aDError	aNError	aPError	
1.00E-04	1	1		0.01	10	0.5	0.05	2	1	1	0.055	42.22338	0.780142	-7.28E-12	-5.68E-14	0	
1.00E-04	1	1		0.005996	10.73726	0.484898	0.051285	1.996805	0.992939	1.004458	0.058114	41.30182	0.789281	1.46E-11	-2.27E-13	-1.55E-10	
1.00E-04	1	1		2 0.004315	11.31441	0.474853	0.052527	1.993645	0.986508	1.008881	0.061138	40.5298	0.797313	1.46E-11	-4.26E-13	-5.29E-10	
1.00E-04	1	1		3 0.003771	11.76948	0.468778	0.053733	1.990517	0.980265	1.013267	0.064066	39.86461	0.804583	2.18E-11	-6.54E-13	-9.80E-10	
1.00E-04	1	1		4 0.003749	12.13002	0.465899	0.054912	1.987421	0.974175	1.017618	0.066904	39.28359	0.811252	2.18E-11	-7.67E-13	-9.15E-10	
1.00E-04	1	1		5 0.003985	12.41735	0.465665	0.056069	1.984354	0.968232	1.021933	0.069661	38.77047	0.817437	1.46E-11	-9.95E-13	-1.51E-09	
1.00E-04	1	1		6 0.004341	12.6496	0.46769	0.057209	1.981317	0.962432	1.026212	0.072335	38.31354	0.823219	1.46E-11	-1.39E-12	-1.82E-09	
1.00E-04	1	1		7 0.004911	12.83862	0.471701	0.058339	1.978307	0.956776	1.030457	0.074927	37.90425	0.828658	-7.28E-12	-1.93E-12	-2.92E-09	
1.00E-04	1	1		8 0.005722	12.99324	0.477358	0.059462	1.975324	0.951259	1.034667	0.07744	37.5349	0.83381	0	-3.55E-12	-7.38E-09	
1.00E-04	1	1		9 0.006791	13.12085	0.484558	0.060585	1.972367	0.945883	1.038844	0.079878	37.20128	0.838699	-1.46E-11	-2.93E-12	-6.61E-09	
1.00E-04	1	1	1	0.008118	13.22735	0.493294	0.06171	1.969435	0.940643	1.042988	0.082243	36.90083	0.843332	0	-2.61E-12	-5.80E-09	
1.00E-04	1	1	1	0.009683	13.31729	0.503566	0.062844	1.966526	0.935538	1.047101	0.084541	36.63016	0.847721	-7.28E-12	-2.44E-12	-5.56E-09	

Group Task: relationship between parallel branches and running time

Structure (Sequential OR Parallel)	Scenarios (1-10)	Contributor (Your Name)	Computing time (mins)
Sequential	3		
Parallel	3		
Sequential	5		
Parallel	5		
Sequential	10		
Parallel	10		
Sequantial	20		
Parallel	20	Qing	55

Pros & Cons of using the e-infrastructure

Open mentimeter.com and provide your feedbacks (code: 6489 0193)

Advantages?

- •It resolves a common issue: "it works on my computer..."
- Interoperable
- Easier to scale up
- •Execution not limited to sequential order (speed up by parallelization)

Limitations?

- Overhead (slower for smaller computation task)
- •Capacity-building needed for start user (certain level of understanding on architecture of the infrastructure)
- •Stable internet connection (Crucial!)

Join the community!

https://lter-life.nl/en

lter-life@nioo.knaw.nl

You can help!

Drawings by Geerten Hengeveld Design by Stefan Vriend, Geerten Hengeveld using illustrations from Storyset, Freepik, Flaticon

Materials

Some materials:

- Getting Started with NaaVRE tutorial | NaaVRE
- <u>2024-02-19 NaaVRE S3 Google Slides</u>
- https://forms.gle/6wjCxT6sUun4sqUt6
- <u>Digital_Twin_GLEON25 Mentimeter</u>
- https://naavre.lifewatch.dev/vl-waddenzee-proto-dt
- NIOZ-QingZ/GLEON2025_Workshop_DT: Digital Twin Workshop GLEON2025. R & Python Notebooks.
- n-a-a-vre-zhanqing2016-gmail-com-xw7j4 / argo / Workflows Argo