

Technologiemodul

Winder Dancer-controlled_____

Referenzhandbuch

Lenze

Inhalt

1.1 1.2	Dokumenthistorie						
1.3	Verwendete Konventionen Definition der verwendeten Hinweise						
2	Sicherheitshinweise						
3	Funktionsbeschreibung "Winder Dancer-controlled"						
3.1	Übersicht der Funktionen Wichtige Hinweise zum Betrieb des Technologiemoduls Funktionshaustein L. TTIR Winder Danser Ctrl [Page / Ctate / Light]						
3.2	Wichtige Hinweise zum Betrieb des Technologiemoduls						
3.3	runktionsbaustein i 1119 winderbanderdtrijbase/state/nignj						
	3.3.1 Eingänge und Ausgänge						
	0 0						
	0 0						
3.4							
3.5	State machine						
ر. ر	Signalflusspläne 3.5.1 Struktur des Signalflusses						
	3.5.2 Struktur der Angriffspunkte						
3.6	3.5.2 Struktur der Angriffspunkte						
3.7	Automatische Erkennung der Wickelrichtung						
3.8	Festlegung der Materialzuführung an den Wickler						
3.9	Leitwert-Quelle für die Durchmesserberechnung						
3.10	Drehzahlvorsteuerung						
3.11	Durchmesserberechnung						
3.12	Durchmesser naiten						
3.13	Durchmesser vorgeben / Signal vom Durchmessersensor						
3.14	Durchmesserberechnung mit Korrektur der Tänzerposition						
3.15	5 Materiallängenzähler						
3.16	Materiallängenzähler Quellen für die Materiallängenzählung						
	3.16.1 Quelle: Eingang "IrSetLineVel" 3.16.2 Quelle: Eingang "IrSetLineVelDiamCalc" 3.16.3 Quelle: Eingang "MaterialCounterAxis" (Referenzachse)						
	3.16.2 Quelle: Eingang "IrSetLineVelDiamCalc"						
	3.16.3 Quelle: Eingang "MaterialCounterAxis" (Referenzachse)						
3.17	Handfahren (Jogging)						
3.18	Handfahren (Jogging) Synchronisierung auf die Liniengeschwindigkeit						
3.19	Trimmung						
3.20	Normierung der Tänzerlage						
3.21	reaching-runktion für Tanzerendiagen						
3.22	Uberwachung der Tanzerposition						
3.23	PI-Regler für die Tänzerlageregelung						
3.24							
3.25	Bahnrissüberwachung						
3.26	Persistente Variablen						
3.27 3.28	Beschleunigungskompensation Zugkraftsteuerung über Kennlinienfunktion/Wickelcharakteristik						
3.28 3.29	Identifikation der Massenträgheitsmomente						
3.30	Identifikation der Massenträgheitsmomente						
٥٠.٠	Adaption der Drehzahlregler-Verstärkung						
	3.30.2 Adaptionsmodus eAdaptSpdCtrlGainMode:= 1 (Diam)						
	3.30.3 Adaptionsmodus eAdaptSpdCtrlGainMode:= 2 (Inertia)						
3.31	Regelabweichung im Bereich reduzierter Empfindlichkeit						
3.32							
3.33	Beendigung des Wickelprozesses						
3.34	Identifikation des Durchmessers durch Anheben des Tänzers						
	CPU-Auslastung (Beispiel Controller 3231 C)						

Inhalt

Index	77
Ihre Meinung ist uns wichtig	79

1 Über diese Dokumentation

Diese Dokumentation ...

- enthält ausführliche Informationen zu den Funktionalitäten des Technologiemoduls "Winder Dancer-controlled";
- ordnet sich in die Handbuchsammlung "Controller-based Automation" ein. Diese besteht aus folgenden Dokumentationen:

Dokumentationstyp	Thema		
Produktkatalog	Controller-based Automation (Systemübersicht, Beispieltopologien) Lenze-Controller (Produktinformationen, Technische Daten)		
Systemhandbücher	Visualisierung (Systemübersicht/Beispieltopologien)		
Kommunikationshandbücher Online-Hilfen	Bussysteme • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®		
Referenzhandbücher Online-Hilfen	Lenze-Controller: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500		
Software-Handbücher Online-Hilfen	Lenze Engineering Tools: • »PLC Designer« (Programmierung) • »Engineer« (Parametrierung, Konfigurierung, Diagnose) • »VisiWinNET® Smart« (Visualisierung) • »Backup & Restore« (Datensicherung, Wiederherstellung, Aktualisierung)		

Weitere Technische Dokumentationen zu Lenze-Produkten

Weitere Informationen zu Lenze-Produkten, die in Verbindung mit der Controller-based Automation verwendbar sind, finden Sie in folgenden Dokumentationen:

Pla	nung / Projektierung / Technische Daten
	Produktkataloge
Mo	ntage und Verdrahtung
	Montageanleitungen
	Gerätehandbücher • Inverter Drives/Servo Drives
Pai	rametrierung / Konfigurierung / Inbetriebnahme
	Online-Hilfe / Referenzhandbücher
	Online-Hilfe / Kommunikationshandbücher • Bussysteme • Kommunikationsmodule
Bei	ispielapplikationen und Vorlagen
	Online-Hilfe / Software- und Referenzhandbücher • Application Sample i700 • Application Samples 8400/9400 • FAST Application Template Lenze/PackML

- ☐ Gedruckte Dokumentation
- ☐ PDF-Datei / Online-Hilfe im Lenze Engineering Tool

Aktuelle Dokumentationen und Software-Updates zu Lenze-Produkten finden Sie im Download-Bereich unter:

www.lenze.com

Zielgruppe

Diese Dokumentation richtet sich an alle Personen, die ein Lenze-Automationssystem auf Basis der Application Software Lenze FAST programmieren und in Betrieb nehmen.

1.1 Dokumenthistorie

1.1 Dokumenthistorie

Version	1		Beschreibung
5.2	03/2019	TD06	Fehler korrigiert
5.1	02/2019	TD29	Fehler korrigiert
5.0	05/2018	TD29	Erweitert: • Adaption der Drehzahlregler-Verstärkung (68) Neu: • Begrenzung der Master-Liniengeschwindigkeit (73) • Identifikation des Durchmessers durch Anheben des Tänzers (74)
4.3	05/2017	TD17	 Inhaltliche Struktur geändert. Allgemeine Korrekturen Abbildung <u>Signalfluss des Technologiemoduls</u> (☐ 33) korrigiert. Neu: Eingang "MaterialCounterAxis" (AXIS_REF) Quellen für die Materiallängenzählung (☐ 48)
4.2	11/2016	TD17	 Allgemeine Korrekturen Angriffspunkte <u>L_TT1P_scAP_WinderDancerCtrl [Base/State/High]</u> (☐ 36) ergänzt.
4.1	04/2016	TD17	 Allgemeine Korrekturen Abbildung <u>State machine</u> (☐ 30) korrigiert. Abbildung <u>Signalfluss des Technologiemoduls</u> (☐ 33) korrigiert. Angriffspunkte <u>L_TT1P_scAP_WinderDancerCtrl [Base/State/High]</u> (☐ 36) ergänzt.
4.0	11/2015	TD17	Allgemeine Korrekturen Neu: Regelabweichung im Bereich reduzierter Empfindlichkeit (□ 71) Beendigung des Wickelprozesses (□ 72) Inhaltliche Struktur geändert.
3.0	05/2015	TD17	Allgemeine Korrekturen Neu: Materiallängenzähler (□ 47)
2.0	01/2015	TD17	 Allgemeine redaktionelle Überarbeitung Modularisierung der Inhalte für die »PLC Designer« Online-Hilfe
1.0	04/2014	TD00	Erstausgabe

1.2 Verwendete Konventionen

1.2 Verwendete Konventionen

Diese Dokumentation verwendet folgende Konventionen zur Unterscheidung verschiedener Arten von Information:

Informationsart	Auszeichnung	Beispiele/Hinweise
Zahlenschreibweise		
Dezimaltrennzeichen	Punkt	Es wird generell der Dezimalpunkt verwendet. Zum Beispiel: 1234.56
Textauszeichnung		
Programmname	» «	»PLC Designer«
Variablenbezeichner	kursiv	Durch Setzen von <i>bEnable</i> auf TRUE
Funktionsbausteine	fett	Der Funktionsbaustein L_MC1P_AxisBasicControl
Funktionsbibliotheken		Die Funktionsbibliothek L_TT1P_TechnolgyModules
Quellcode	Schriftart "Corier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>
Symbole		
Seitenverweis	(🕮 7)	Verweis auf weiterführenden Informationen: Seitenzahl in PDF-Datei.

Variablenbezeichner

Die von Lenze verwendeten Konventionen, die für die Variablenbezeichner von Lenze Systembausteinen, Funktionsbausteinen sowie Funktionen verwendet werden, basieren auf der sogenannten "Ungarischen Notation", wodurch anhand des Bezeichners sofort auf die wichtigsten Eigenschaften (z. B. den Datentyp) der entsprechenden Variable geschlossen werden kann, z. B. xAxisEnabled.

1.3 Definition der verwendeten Hinweise

._____

1.3 Definition der verwendeten Hinweise

Um auf Gefahren und wichtige Informationen hinzuweisen, werden in dieser Dokumentation folgende Signalwörter und Symbole verwendet:

Sicherheitshinweise

Aufbau der Sicherheitshinweise:

Piktogramm und Signalwort!

(kennzeichnen die Art und die Schwere der Gefahr)

Hinweistext

(beschreibt die Gefahr und gibt Hinweise, wie sie vermieden werden kann)

Piktogramm	Signalwort	Bedeutung
A	Gefahr!	Gefahr von Personenschäden durch gefährliche elektrische Spannung Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
A	Gefahr!	Gefahr von Personenschäden durch eine allgemeine Gefahrenquelle Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
STOP	Stop!	Gefahr von Sachschäden Hinweis auf eine mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Anwendungshinweise

Piktogramm	Signalwort	Bedeutung
i	Hinweis!	Wichtiger Hinweis für die störungsfreie Funktion
- 🗑 -	Tipp!	Nützlicher Tipp für zum einfachen Bedienen
Ý		Verweis auf andere Dokumentation

2 Sicherheitshinweise

2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise in dieser Dokumentation, wenn Sie ein Automationssystem oder eine Anlage mit einem Lenze-Controller in Betrieb nehmen möchten.

Die Gerätedokumentation enthält Sicherheitshinweise, die Sie beachten müssen!

Lesen Sie die mitgelieferten und zugehörigen Dokumentationen der jeweiligen Komponenten des Automationssystems sorgfältig durch, bevor Sie mit der Inbetriebnahme des Controllers und der angeschlossenen Geräte beginnen.

Gefahr!

Hohe elektrische Spannung

Personenschäden durch gefährliche elektrische Spannung

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

Die Spannungsversorgung ausschalten, bevor Arbeiten an den Komponenten des Automationssystems durchgeführt werden.

Nach dem Ausschalten der Spannungsversorgung spannungsführende Geräteteile und Leistungsanschlüsse nicht sofort berühren, weil Kondensatoren aufgeladen sein können.

Die entsprechenden Hinweisschilder auf dem Gerät beachten.

Gefahr!

Personenschäden

Verletzungsgefahr besteht durch ...

- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

- Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).
- Während der Inbetriebnahme einen ausreichenden Sicherheitsabstand zum Motor oder den vom Motor angetriebenen Maschinenteilen einhalten.

Stop!

Beschädigung oder Zerstörung von Maschinenteilen

Beschädigung oder Zerstörung von Maschinenteilen besteht durch ...

- Kurzschluss oder statische Entladungen (ESD);
- nicht vorhersehbare Motorbewegungen (z.B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Schutzmaßnahmen

- Vor allen Arbeiten an den Komponenten des Automationssystems immer die Spannungsversorgung ausschalten.
- Elektronische Bauelemente und Kontakte nur berühren, wenn zuvor ESD-Maßnahmen getroffen wurden.
- · Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).

3 Funktionsbeschreibung "Winder Dancer-controlled"

Wickelantriebe sind in vielen technologischen Prozessen ein wesentlicher Bestandteil einer Gesamtanlage. In Abhängigkeit von Material und Wickelprozess kommen unterschiedliche Steuerund Regelverfahren zum Einsatz:

- Tänzerlageregelung
- Zugkraftsteuerung
- Zugkraftregelung

Mit diesem Technologiemodul kann ein tänzerlagegeregelter Wickelantrieb projektiert werden.

[3-1] Aufbau eines tänzergeregelten Wicklers

Bei der Tänzerlageregelung wird der Antrieb in Drehzahlregelung betrieben. Zur Vorsteuerung dient das Liniengeschwindigkeitssignal multipliziert mit dem Kehrwert des Durchmessers. Die Tänzerposition wird erfasst und mit der Sollposition verglichen. Bei einer Abweichung sorgt der Tänzerlageregler für eine Korrektur des Drehzahlsollwertes.

- In der Variante "Base" erfolgt die Tänzerlageregelung mit der Berechnung des Durchmessers. Für die Tänzerlageregelung ist es möglich, einen PI-Regler zu verwenden. Die Tänzerendlagen können über die Parameterstruktur <u>L TT1P scPar WinderDancerCtrl [Base/State/High]</u> (<u>L 23</u>) eingestellt werden oder mit der Teaching-Funktion identifiziert werden. Die Zugkraftsteuerung kann über eine lineare Kennlinienfunktion eingestellt werden. Die Sollwerte der Zugkraft können direkt am Ausgang des Technologiemoduls ausgelesen werden.
- In der Variante "State" ist der Funktionsumfang der Base-Variante erweitert. Hierbei stehen insgesamt drei Kennlinien für die Zugkraftsteuerung zur Verfügung:
 - Kennlinie für einen linearen Zugkraftverlauf
 - · Kennlinie für einen linearen Drehmomentverlauf
 - Frei definierbare Kennlinie mit 64 Stützpunkten

Zudem kann während der Tänzerlageregelung das Drehmoment mit der Beschleunigungskompensation vorgesteuert werden.

 Die Variante "High" bietet ergänzend die Möglichkeit, das Massenträgheitsmoment der Wicklerachse zu identifizieren und für die Parametrierung des Technologiemoduls zu verwenden.
 Zudem ist eine Adaption der Drehzahlreglerverstärkung, in Abhängigkeit des aktuellen Massenträgheitsmoments, im laufenden Betrieb ausführbar.

3.1 Übersicht der Funktionen

3.1 Übersicht der Funktionen

Neben den Grundfunktionen zur Bedienung des Funktionsbausteins **L_MC1P_AxisBasicControl**, der **Stopp-Funktion** und der **Halt-Funktion** bietet das Technologiemodul folgende Funktionalitäten, die den Varianten "Base", "State" und "High" zugeordnet sind:

Funktionalität		Variante	
	Base	State	High
Festlegung der Wickelrichtung (Aufwickeln/Abwickeln) (38)	•	•	•
Automatische Erkennung der Wickelrichtung (38)	•	•	•
Festlegung der Materialzuführung an den Wickler (□ 39)	•	•	•
Leitwert-Quelle für die Durchmesserberechnung (40)	•	•	•
Drehzahlvorsteuerung (41)	•	•	•
Durchmesserberechnung (42)	•	•	•
<u>Durchmesser halten</u> (43)	•	•	•
Durchmesser vorgeben / Signal vom Durchmessersensor (44)	•	•	•
Durchmesserberechnung mit Korrektur der Tänzerposition (🕮 45)	•	•	•
Materiallängenzähler (🗆 47)	•	•	•
Quellen für die Materiallängenzählung (💷 47)	•	•	•
Handfahren (Jogging) (50)	•	•	•
Synchronisierung auf die Liniengeschwindigkeit (🕮 52)	•	•	•
Trimmung (🕮 53)	•	•	•
Normierung der Tänzerlage (🕮 54)	•	•	•
Teaching-Funktion für Tänzerendlagen (□ 55)	•	•	•
Überwachung der Tänzerposition (□ 56)	•	•	•
PI-Regler für die Tänzerlageregelung (□ 57)	•	•	•
Zugkraftsteuerung über Kennlinienfunktion (Base-Variante) (58)	•	•	•
Bahnrissüberwachung (59)	•	•	•
Persistente Variablen (60)	•	•	•
Begrenzung der Master-Liniengeschwindigkeit (12 73)	•	•	•
Beschleunigungskompensation (62)		•	•
Zugkraftsteuerung über Kennlinienfunktion/Wickelcharakteristik (64)		•	•
Identifikation der Massenträgheitsmomente (🕮 66)			•
Adaption der Drehzahlregler-Verstärkung (🕮 68)			•
Identifikation des Durchmessers durch Anheben des Tänzers			•
Regelabweichung im Bereich reduzierter Empfindlichkeit (12 71)			•
Beendigung des Wickelprozesses (72)			•

»PLC Designer« Online-Hilfe

Hier finden Sie ausführliche Informationen zum Funktionsbaustein L_MC1P_AxisBasicControl, zur Stopp-Funktion und zur Halt-Funktion.

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

Das Technologiemodul ...

- unterstützt nicht den Simulationsmodus im »PLC Designer«;
- unterstützt keine virtuellen Achsen;
- unterstüzt nur <u>rotatorische</u> Wicklerachsen.

Stellen Sie im »PLC Designer« für jede Achse unter der Registerkarte **Einstellungen** folgende Parameter ein:

- Der Vorschub der Wicklerachse wird in der Einheit [revs/s] parametriert.
- Die Geschwindigkeit der Linie wird in der Einheit [mm/s] parametriert.

Einstellung des Betriebsmodus

Der Betriebsmodus (Mode of Operation) für die Wickler-Achse muss auf "Zyklisch synchrone Position" (csp) eingestellt werden, da die Achse über den Positions-, Geschwindigkeits- und Drehmomentleitwert geführt wird.

Wichtige Hinweise zum Betrieb des Technologiemoduls 3.2

Kontrollierter Anlauf der Achsen

Bewegungsbefehle, die im gesperrten Achszustand (xAxisEnabled = FALSE) gesetzt werden, müssen nach der Freigabe (xRequlatorOn = TRUE) erneut durch eine FALSE TRUE-Flanke aktiviert werden.

So wird verhindert, dass der Antrieb nach der Reglerfreigabe unkontrolliert anläuft.

Beispiel Handfahren (Jogging) (11 50):

- 1. Im gesperrten Achzustand (xAxisEnabled = FALSE) wird xJoqPos = TRUE gesetzt.
 - xRegulatorOn = FALSE (Achse ist gersperrt.) ==> Zustand "READY" (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (Handfahren soll ausgeführt werden.)
- 2. Achse freigeben.
 - xRegulatorOn = TRUE ==> Zustand "READY" (xAxisEnabled = TRUE)
- 3. Handfahren ausführen.
 - xJoqPos = FALSE

 TRUE ==> Zustand "JOGPOS"

3.3 Funktionsbaustein L_TT1P_WinderDancerCtrl[Base/State/High]

3.3 Funktionsbaustein L_TT1P_WinderDancerCtrl[Base/State/High]

Die Abbildung zeigt die Zugehörigkeit der Ein- und Ausgänge für die Varianten "Base", "State" und "High".

Die zusätzlichen Ein- und Ausgänge der Varianten "State" und "High" sind schattiert dargestellt.

3.3 Funktionsbaustein L_TT1P_WinderDancerCtrl[Base/State/High]

._____

3.3.1 Eingänge und Ausgänge

Bezeichner Datentyp	Beschreibung		Verfügbar in Vari- ante		
		Base	State	High	
Axis AXIS_REF	Referenz auf die Achse	•	•	•	
PersistentVar L_TT1P_PersistentVar Winder	l G	•	•	•	

Eingänge 3.3.2

3.3

Bezeichner Datentyp	Beschreibung p		Verfü	igbar in ante	Vari-
			Base	State	High
xEnableInternalControl BOOL	TRUE	In der Visualisierung ist die interne Steuerung der Achse über die Schaltfläche "Internal Control" aus- wählbar.	•	•	•
xEnable	Ausführ	ung des Funktionsbausteins	•	•	•
BOOL	TRUE	Der Funktionsbaustein wird ausgeführt.			
	FALSE	Der Funktionsbaustein wird nicht ausgeführt.			
scCtrlABC scCtrl_ABC	• scCtr • Liegt wech • Vom	sstruktur für den Funktionsbaustein _AxisBasicControl [ABC kann im Zustand "Ready" genutzt werden. eine Anforderung an, wird in den Zustand "Service" geselt. Zustand "Service" wird zurück in den Zustand "Ready" echselt, wenn keine Anforderung mehr anliegt.	•	•	•
xResetError BOOL	TRUE	Fehler der Achse oder der Software zurücksetzen.	•	•	•
xRegulatorOn BOOL	TRUE	Reglerfreigabe der Achse aktivieren (über den Funktionsbaustein MC_Power).	•	•	•
xStop BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrStopDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Zustand "STOP" wird verlassen, wenn (Not xStop AND Not xHalt) AND eAxisState = StandStill. • Der Eingang ist auch bei "Internal Control" aktiv.	•	•	•
xHalt BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrHaltDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xHalt = TRUE (oder xStop = TRUE). • Der Zustand "Stop" kann erst verlassen werden, wenn die Achse still steht.	•	•	•
scPar L_TT1P_scPar_WinderDancerCtrl [Base/State/High]	giemodı	entyp ist abhängig von der verwendeten Variante (Ba-	•	•	•
scAccessPoints L TT1P scAP WinderDancerCtrl [Base/State/High]	I	der Angriffspunkte entyp ist abhängig von der verwendeten Variante (Ba- /High).	•	•	•
MaterialCounterAxis AXIS_REF	rial ange Wenn ei Erhöhun renzach: geeingn Falls hie der Mate dikeit (E • Mater	n eine Modulo-Achse eines Messrades auf dem Mate- eschlossen werden. ne Achse am Eingang angeschlossen ist, so erfolgt die ig der Materiallänge anhand der Daten aus der Refe- se. Dieses Verfahren ist auch für verrauschte Signale et. r keine Achse angeschlossen ist, erfolgt die Ermittlung eriallänge aus der Intergration der Materialgeschwin- ingang IrSetLineVel oder IrSetLineVelDiamCalc). riallängenzähler (47) en für die Materiallängenzählung (48)	•	•	•

Bezeichner Datentyp		Beschrei	Beschreibung		Verfügbar in Var ante		
				Base	State	High	
xMaterialFeeding BC		l	führung von oben oder unten an den Wickelballen lwert: FALSE	•	•	•	
		TRUE	Materialführung von oben				
		FALSE	Materialführung von unten				
xWindingDirection	BOOL	gang IrS	n des Wicklers bei positiver Liniengeschwindigkeit (EinetLineVel > 0) wert: FALSE	•		•	
		TRUE	Abwickler				
		FALSE	Aufwickler				
xLoadDiam	BOOL	TRUE	Den (Start-)Durchmesser aus dem Eingang IrSetDiam laden. • Initialwert: FALSE	•	•	•	
IrSetDiam	LREAL	Der Durd xLoadDi • Einhe	orgabe eines (Start-)Durchmessers er Durchmesser wird zyklisch geladen wenn der Eingang LoadDiam = TRUE gesetzt ist. Einheit: mm Initialwert: 0		•	•	
xHoldDiam		Initialwe	ert: FALSE	•	•	•	
	BOOL	TRUE	Der aktuelle Durchmesser wird gehalten.				
		FALSE	Der aktuelle Durchmesser wird nicht gehalten.				
xDiamCalcReduced	BOOL	langer/k	Jmschaltung der Durchmesserberechnung zwischen eurzer Distanz Iwert: FALSE	• •		•	
		TRUE	Durchmesser wird nach kurzer Distanz aktualisiert.				
		FALSE	Durchmesser wird nach langer Distanz aktualisiert.				
xSetMaterialCounter	BOOL	Der Eing Flanke a	ang ist flankengesteuert und wertet die FALSE⊅TRUE- us.	•	•	•	
		TRUE	Setzt den Materiallängenzähler (Ausgang IrMaterialCounter) auf den Wert, der unter dem Para- meter IrSetMaterialPos eingestellt ist.				
xWebBreakMonit		Initialwe	ert: FALSE	•	•	•	
	BOOL	TRUE	Bahnrissüberwachung aktivieren.				
		FALSE	Bahnrissüberwachung deaktivieren.				
xJogLinePos	BOOL	TRUE	Achse in positive Materialflussrichtung fahren (Handfahren). Ist xJogLineNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•	
xJogLineNeg	BOOL	TRUE	Achse in negative Materialflussrichtung fahren (Handfahren). Ist xJogLinePos auch TRUE, wird die Fahrrichtung bei- behalten, die zuerst gewählt wurde.	•	•	•	
xTrimLinePos	BOOL	TRUE	Den Geschwindigkeits-Offset in positive Material- flussrichtung freigeben, wenn die Wicklerachse auf die Linie synchronisiert ist (xSyncLineVel = TRUE).	•	•	•	
xTrimLineNeg	BOOL	TRUE	Den Geschwindigkeits-Offset in negative Material- flussrichtung freigeben, wenn die Wicklerachse auf die Linie synchronisiert ist (xSyncLineVel = TRUE).	•	•	•	
xSyncLineVel	BOOL	TRUE	Wicklerachse auf die Linie synchronisieren.	•	•	•	

Bezeichner Datentyp		Beschrei	bung	Verfü	gbar in ante	Vari-
				Base	State	High
xTensCurve		Initialwe	ert: FALSE	•	•	•
	BOOL	TRUE	Zugkraftkennlinie freigeben.			
		FALSE	Zugkraftkennlinie sperren.			
IrSetTens	LREAL	Zugkraft • Einhe	sollwert eit: N	•	•	•
		• Initia	lwert: 0			
IrSetLineVel	LREAL		Liniengeschwindigkeit eit: mm/s	•	•	•
IrSetLineVelDiamCalo	c LREAL	nung	Liniengeschwindigkeit für die Durchmesserberecheit: mm/s	•	•	•
xTeachUpperPos	BOOL	TRUE	Die aktuelle Tänzerposition wird als oberer Grenzwert gespeichert.	•	•	•
xTeachLowerPos	BOOL	TRUE	Die aktuelle Tänzerposition wird als unterer Grenzwert gespeichert.	•	•	•
xDancerCtrl	BOOL	TRUE	Tänzerlageregelung aktivieren.	•	•	•
IrActDancerPosIn	LREAL	Die Istpo	Tänzerposition osition des Tänzers wird in Form eines analogen Signals /) an den Controller zurückgeführt.	•	•	•
IrSetDancerPosScaled	d LREAL	• Einhe • Initia	er Sollwert für die Tänzerposition hit: x 100 % lwert: 0 ebereich: -1 1 (-100 100 %)	•	•	•
IrDancerPosInfluence	eScaled LREAL	• Einhe • Initia	pereich des Tänzerlagereglers hit: x 100 % lwert: 0.1 ebereich: 0 1 (0 100 %)	•	•	•
xResetICtrl	BOOL	Stellgröß die Ram dem P-A	teil des PI-Reglers kann ausgeschaltet werden und die Be (Ausgang des Reglers) aus dem I-Anteil kann über penfunktion auf '0' geführt werden. Die Stellgröße aus nteil wird nicht beeinflusst. Iwert: FALSE	•	•	•
		TRUE	Funktionalität aktivieren			
		FALSE	Funktionalität deaktivieren			
xAccCmps	BOOL	lung akt	unigungskompensation während der Tänzerlagerege- ivieren/deaktivieren lwert: FALSE		•	•
		TRUE	Beschleunigungskompensation während der Tänzerlageregelung aktivieren			
		FALSE	Beschleunigungskompensation während der Tänzerlageregelung deaktivieren			
lrMInertiaAdapt	LREAL		kator zum aktuellen Massenträgheitsmoment lwert: 0		•	•
xExecuteIdentMInert		Der Eing Flanke a	ang ist flankengesteuert und wertet die steigende us.			•
		FALSE 7 TRUE	Das Massenträgheitsmoment an der Wicklerwelle wird ermittelt. Am Ausgang IrldentMInertia wird das ermittelte Massenträgheitsmoment in kgcm² angezeigt.			

Bezeichner Datentyp	Beschreibung		Verfügbar in Vari- ante		
			Base	State	High
xExecuteIdentDiam BOOL	Der Eing Flanke a	ang ist flankengesteuert und wertet die steigende us.			•
	FALSE7 TRUE	Die Identifikation des Durchmessers wird gestartet. Der Tänzer wird bei stehender Liniengeschwindigkeit angehoben. Durch den Tänzerhub wird der Wickel- durchmesser aus den ermittelten Daten von zurück- gelegter Materiallänge und Drehwinkel errechnet.			
xAdaptSpdCtrlGain BOOL		n der Drehzahlreglerverstärkung ein-/ausschalten. Iwert: FALSE			•
	TRUE	Adaption der Drehzahlreglerverstärkung einschalten.			
	FALSE	Adaption der Drehzahlreglerverstärkung einschalten.			
IrAdaptSpdCtrlGainFactor LREAL	kann üb • Wert	ltirende Wert der Adaption Drehzahlreglerverstärkung er diesen Eingang multiplikativ beeinflusst werden. ebereicht: 0 1 wert: 1			•

Ausgänge 3.3.3

Bezeichner Datentyp		Beschreibung		Verfügbar in Vari- ante				
				Base	State	High		
xInternalControlAct			ne Steuerung der Achse ist über die Visualisierung ak- Eingang xEnableInternalControl = TRUE)	•	•	•		
eTMState	1P_States		r Zustand des Technologiemoduls <u>machine</u> (🗀 30)	•	•	•		
scStatusABC scSt	atus_ABC	l	der Zustandsdaten des Funktionsbausteins _AxisBasicControl	•	•	•		
xError	BOOL	TRUE	Im Technologiemodul liegt ein Fehler vor.	•	•	•		
xWarning	BOOL	TRUE	Im Technologiemodul liegt eine Warnung vor.	•	•	•		
eErrorID L_I	E1P_Error		hler- oder Warnungsmeldung, wenn xError = TRUE arning = TRUE ist.	•	•	•		
			zhandbuch "FAST Technologiemodule": len Sie Informationen zu Fehler- oder Warnungsmel-					
scErrorInfo L_TT1P_se	cErrorInfo	Fehlerin lerursacl	formationsstruktur für eine genauere Analyse der Fehne	•	•	•		
xAxisEnabled	BOOL	TRUE	Die Achse ist freigegeben.	•	•	•		
scSignalFlow L TT1P scSF Wind [Base]	erDancerCtrl /State/High]	Der Date se/State	des Signalflusses entyp ist abhängig von der verwendeten Variante (Ba- /High). flusspläne (Ш 32)	•	•	•		
xDone	BOOL	TRUE	Die Anforderung/Aktion wurde erfolgreich abgeschlossen.	•	•	•		
xBusy	BOOL	TRUE	Die Anforderung/Aktion wird zur Zeit ausgeführt.	•	•	•		
xSynchronised	BOOL	TRUE	Der Wickler ist auf die Liniengeschwindigkeit synchronisiert.	•	•	•		
xAccDecSync	BOOL	TRUE	Die Synchronisierungsfunktion ist aktiv. Der Wickler wird auf- oder absynchronisiert.	•	•	•		
xUnwind		Statusbi	t für Auf- und Abwickler	•	•	•		
	BOOL	TRUE	Abwickler					
		FALSE	Aufwickler					
xWebBreak	BOOL	TRUE	Ein Bahnriss liegt vor.	•	•	•		
xHoldDiamActive	BOOL	TRUE	Der aktuelle Durchmesser wird gehalten.	•	•	•		
xDiamMax	BOOL	TRUE	Der maximale Durchmesser wurde erreicht.	•	•	•		
xDiamMin	BOOL	TRUE	Der minimale Durchmesser wurde erreicht.	•	•	•		
IrSetDiamOut	LREAL	l	r berechneter Durchmesser eit: mm	•	•	•		
IrSetDiamScaledOu	t LREAL	• Einhe	r berechneter skalierter Durchmesser it: x 100 % 00 % = Parameter IrMaxDiam	•	•	•		

Bezeichner Datentyp		Beschrei	bung	Verfü	gbar in ante	Vari-
				Base	State	High
IrMaterialCounter	LREAL	Je nach <u>F</u> (<u> </u>	Anzeige des Materiallängenzählerstandes auf dem Wickler e nach <u>Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)</u> 38) wird der Materiallängenzähler hoch- oder runterge- ählt. • Einheit: mm			
lrSetLineVelScaledOut	LREAL	• Einhe	skalierte Liniengeschwindigkeit eit: x 100 % 00 % = Parameter IrLineVelRef	•	•	•
IrActTotalTrqScaled	LREAL	• Bezu	s skaliertes Drehmoment der Wicklerwelle gsgröße: Nenn-/Bezugsdrehmoment des Motors. eit: x 100 % (1 = 100 %)	•	•	•
IrWndSpdRef	LREAL		z der Wicklerdrehzahl bei minimalem Durchmesser kimaler Liniengeschwindigkeit.	•	•	•
xDancerReachedSetPos	BOOL	TRUE	Der Tänzer hat die Sollposition erreicht.	•	•	•
xDancerMaxPos	BOOL	TRUE	Der Tänzer hat die obere Grenzposition erreicht.	•	•	•
xDancerMinPos	BOOL	TRUE	Der Tänzer hat die untere Grenzposition erreicht.	•	•	•
IrActDancerPosScaled	LREAL	• Einhe	skalierte Tänzerposition eit: x 100 % ebereich: -1 1 (-100 100 %)	•	•	•
IrSetDancerCtrlScaledO	ut LREAL		Stellgröße des Tänzerlagereglers 00 % = Parameter IrLineVelRef	•	•	•
IrSetTensCurveOut	LREAL	Aktuelle	r Zugkraftsollwert aus der Kurvenfunktion	•	•	•
IrSetMInertiaOut	LREAL		s Massenträgheitsmoment an der Wicklerwelle eit: kgcm ²		•	•
IrSetAccTrqScaledOut	LREAL	Drehmo liert auf	Drehmomentanteil der Beschleunigungskompensation skaliert auf das Nenn-/Bezugsdrehmoment des Motors.			•
IrldentMInertia	LREAL	Identifiz • Einhe	iertes Massenträgheitsmoment an der Wicklerwelle eit: kgcm²			•
IrSetSpdCtrlGainAdaptOut LREAL		Adaption der Drehzahlreglerverstärkung • Einheit: x 100 % (1 = 100 %)				•
IrLimitLineVel	LREAL	rechnete scPar. <i>lrN</i>	imal erlaubte Liniengeschwindigkeit wird aus dem be- em Durchmesser und dem Parameter MaxWndSpd bestimmt. iit [mm/s]			•

Funktionsbaustein L_TT1P_WinderDancerCtrl[Base/State/High]

3.3.4 Parameter

3.3

L_TT1P_scPar_WinderDancerCtrl [Base/State/High]

Die Struktur **L_TT1P_scPar_WinderDancerCtrl[Base/State/High]** enthält die Parameter des Technologiemoduls.

Bezeichner	Datentyp	Beschreibung	Verfügbar in Vari ante			
			Base	State	High	
IrStopDec	LREAL	Verzögerung für die Stopp-Funktion und bei Auslösung der Hardware-Endschalter, Software-Endlagen und Schleppfehler- überwachung • Einheit: revs/s • Initialwert: 10000	•	•	•	
IrStopJerk	LREAL	Ruck für die Stopp-Funktion und bei Auslösung der Hardware- Endschalter, Software-Endlagen und Schleppfehlerüberwa- chung • Einheit: revs/s ³ • Initialwert: 100000	•	•	•	
IrHaltDec	LREAL	Verzögerung für die Halt-Funktion Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: revs/s² • Initialwert: 3600 • Nur positive Werte sind zulässig.	•	•	•	
IrJerk	LREAL	Ruck zum Ausgleich bei einer Haltfunktion • Einheit: revs/s³ • Initialwert: 100000	•	•	•	
IrLineJerk	LREAL	Ruck für das Handfahren und zum Ausgleich bei einer Trimm- oder Kupplungsfunktion • Einheit: mm/s ³ • Initialwert: 10000	•	•	•	
IrJogLineAcc	LREAL	Beschleunigung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: mm/s ² • Initialwert: 100	•	•	•	
IrJogLineDec	LREAL	Verzögerung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: mm/s ² • Initialwert: 100	•	•	•	
IrJogLineVel	LREAL	Maximale Geschwindigkeit, mit der das Handfahren durchgeführt werden soll. • Einheit: mm/s • Initialwert: 10	•	•	•	
IrTrimLineAcc	LREAL	Beschleunigung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zur Li- niengeschwindigkeit beschleunigt werden soll. Die auf den An- trieb wirkende Beschleunigung ist die Summe aus der Linien- und Trimmbeschleunigung. • Einheit: mm/s ² • Initialwert: 100	•	•	•	

Bezeichner Datentyp	Beschreibung		Verfügbar in Vari- ante				
		Base	State	High			
IrTrimLineDec LREAL	Verzögerung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zur Liniengeschwindigkeit verzögert werden soll. Die auf den Antrieb wirkende Verzögerung ist die Summe aus der Linien- und Trimmbeschleunigung. • Einheit: mm/s ² • Initialwert: 100	•	•	•			
IrTrimLineVel LREAL	Geschwindigkeit für die Trimmung Vorgabe, mit welcher Geschwindigkeit getrimmt werden soll. • Einheit: mm/s • Initialwert: 10	•	•	•			
lrSyncLineAcc LREAL	Beschleunigung zur Synchronisierung auf die Liniengeschwindigkeit • Einheit: mm/s² • Initialwert: 100	•	•	•			
lrSyncLineDec LREAL	Verzögerung zur Synchronisierung auf die Liniengeschwindigkeit • Einheit: mm/s² • Initialwert: 100	•	•	•			
lrWebBreakWindow LREAL	Bahnrissfenster Der aktuelle Durchmesser wird mit dem vergangenen Durchmesser über das Bahnrissfester vergleichen. • Einheit: x 100 % (1.0 = 100 %) • Initialwert: 0.1 (10 %)	•	•	•			
lrMaxDiam LREAL	Maximaler Durchmesser • Einheit: mm • Initialwert: 180	•	•	•			
lrMinDiam LREAL	Minimale Durchmesser • Einheit: mm • Initialwert: 50	•	•	•			
rFiltTimeDiam REAL	PT1-Filterzeit für den aktuellen Durchmesser (IrSetDiamOut) • Einheit: s • Initialwert: 0.05	•	•	•			
lrDiamCalcRegularDist LREAL	Reguläre Berechnungsdistanz für Durchmesser • Einheit: rev • Initialwert: 1	•	•	•			
lrDiamCalcReducedDist LREAL	Verkürzte Berechnungsdistanz für Durchmesser • Einheit: rev • Initialwert: 0.1	•	•	•			
alrAdaptDiamX ARRAY [19] OF LREAL	Stützpunkte der Kurvenfunktion für das Laden des Durchmessers • Werte, die am analogen Eingang IrSetDiam anliegen können. • Einheit: mm • Initialwerte: 0, 100, 200, 300, 400, 500, 600, 700, 800	•	•	•			
alrAdaptDiamY ARRAY [19] OF LREAL	Stützpunkte der Kurvenfunktion für das Laden des Durchmessers • Funktionswerte für den Durchmesser • Einheit: mm • Initialwerte: 0, 100, 200, 300, 400, 500, 600, 700, 800	•	•	•			

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante			
			Base	State	High	
IrTensCurveCtrlScaled LREAL	• Einhe • Initia • Mit d und c	g der Kennlinie für die Zugkraftsteuerung eit: x 100 % (1 = 100 %) lwert: 0 em Wert '1' ergibt sich ein konstanter Zugkraftverlauf lamit ein für den Durchmesser proportional ansteigen- ollwert.	•	•	•	
IrTensCurveStartDiamScaled LREAL	• Einhe	punkt der Kennlinie für die Zugkraftsteuerung iit: x 100 % 00 % = Parameter IrMaxDiam lwert: 0 (0 %)	•	•	•	
IrLineVelRef LREAL	• Einhe	le Liniengeschwindigkeit eit: mm/s lwert: 1000	•	•	•	
IrMinLineVel LREAL	Bis zu di • Einhe	e Liniengeschwindigkeit eser Geschwindigkeit wird der Durchmesser gehalten. eit: mm/s lwert: 1	•	•	•	
rFiltTimeMaterialCounter REAL	IrMateri	tkonstate für den Materiallängenzähler (Ausgang alCounter) lwert: 0 (Filter ist deaktiviert.)	•	•	•	
IrSetMaterialPos LREAL	Mit eine ter wird IrMateri	Position des Materiallängenzählers Mit einerFALSE⁄JTRUE-Flanke am Eingang xSetMaterialCounter wird der Materiallängenzähler (Ausgang IrMaterialCounter) auf den Wert in IrSetMaterialPos gesetzt. • Einheit: mm		•	•	
xLineVelDiamCalc BOOL		ung des Durchmessers lwert: FALSE	•	•	•	
	TRUE	Für die Berechnung des Durchmessers wird die Geschwindigkeit aus dem Eingang IrSetLineVelDiam-Calc verwendet.				
	FALSE	Für die Berechnung des Durchmessers wird die Geschwindigkeit aus dem Eingang IrSetLineVel verwendet.				
lrDancerPosRamp LREAL	• Einhe	nigungsrampe für die Tänzerlagesollwerte eit: 1/s lwert: 1	•	•	•	
IrDancerPosCtrlGain LREAL	0	rstärkung lwert: 1	•	•	•	
IrDancerPosCtrlResetTime LREAL	• Einhe	ochstellzeit eit: s lwert: 0 (Die Regler-Nachstellzeit ist deaktiviert.)	•	•	•	
IrDancerPosCtrlLimPos LREAL	Reglers)	ung der Tänzerlageregler-Stellgröße (Ausgang des in positive Richtung lwert: 1	•	•	•	
IrDancerPosCtrlLimNeg LREAL	Reglers)	ung der Tänzerlageregler-Stellgröße (Ausgang des in negative Richtung lwert: -1	•	•	•	
IrDancerMaxPosScaled LREAL	• Einhe	le Tänzerposition für das Statusbit xDancerMaxPos sit: x 100 % (1 = 100 %) lwert: 0.95 (95 %)	•	•	•	
lrDancerMinPosScaled LREAL	• Einhe	e Tänzerposition für das Statusbit xDancerMinPos iit: x 100 % (1 = 100 %) lwert: -0.95 (-95 %)	•	•	•	

Bezeichner Datentyp	Beschreibung		Verfügbar in Va ante		
			Base	State	High
xTeachDancerLimits BOOL		er Tänzerlagebegrenzungen lwert: FALSE	•	•	•
	TRUE	Die Endlagen IrDancerLowerLimit und IrDancerUpperLimit werden solange verwendet, bis die Teaching-Funktion ausgeführt wurde. Nach manueller Ausführung der Teaching-Funktion werden immer die gespeicherten Endlagen aus der Teaching-Funktion verwendet.			
	FALSE	Die Endlagen IrDancerLowerLimit und IrDancerUpperLimit werden verwendet.			
IrDancerUpperLimit LREAL	Analoge • Initia	r Wert für die obere Tänzerlagegrenze lwert: 10000000	•	•	•
IrDancerLowerLimit LREAL		r Wert für die untere Tänzerlagegrenze lwert: 0	•	•	•
IrDancerMaterialLength LREAL	• Einhe • Initia • Mit d	es Materials im Tänzer it: mm lwert: 0 em Wert'0' wird die Betrachtung der Tänzerbewegung iiviert.	•	•	•
IrDancerInPosWindowScaled LREAL	cerReach • Einhe	Fir die Sollposition des Tänzers um das Statusbit xDannedSetPos anzusteuern. wit: $x 100 \% (1.0 = 100 \%)$ wert: 0.2 (20 %)	•	•	•
rFiltTimeActDancerPosIn REAL	PT1-Filterzeit für den Eingang lrActDancerPosIn • Einheit: s • Initialwert: 0.005		•	•	•
rFiltTimeActDancerVelComp REAL	• Einhe	für die Geschwindigkeitskompensation it: s lwert: 0	•	•	•
wWebBreakMode WORD	l	ür die Bahnrissüberwachung lwert: 1	•	•	•
	0	Bahnrissüberwachung aus der Durchmesserberechnung und der Tänzerposition			
	1	Bahnrissüberwachung nur aus der Lage des Tänzers			
	2	Bahnrissüberwachung nur aus der Durchmesserberechnung			
dwSelectTensCurve DWORD		l der Kennlinie für die Zugkraftsteuerung lwert: 0		•	•
	0	Liniearer Zugkraftverlauf			
	1	Linearer Drehmomentverlauf			
	2	Zugkraftverlauf nach vorgegebener Kennlinie			
alrTensCurve ARRAY [165] OF LREAL	Kennlini	e für die Zugkraftsteuerung bestehend aus 65 Werten.		•	•
rFiltTimeAccSpd REAL	gungsko • Einhe • Initia	lwert: 0.005		•	•
IrAccCmpsDeadBandTrq Scaled LREAL	moment • Einhe			•	•

Bezeichner Datentyp	Beschreibung		Verfügbar in Vari ante			
		Base	State	High		
lrAccCmpsGainAcc LREAL	Verstärkungsfaktor für das Beschleunigungsmoment in positive Richtung • Einheit: x 100 % (1.00 = 100 %) • Wertebereich: 0 2 (0 200 %) • Initialwert: 1.05 (105 %)		•	•		
IrAccCmpsGainDec LREAL	Verstärkungsfaktor für das Beschleunigungsmoment in negative Richtung • Einheit: x 100 % (1.00 = 100 %) • Wertebereich: 0 2 (0 200 %) • Initialwert: 0.95 (95 %)		•	•		
IrConstMInertia LREAL	Konstantes Massenträgheitsmoment an der Wicklerwelle • Einheit: kgcm² • Initialwert: 9		•	•		
IrMaxMInertia LREAL	Maximal zulässiges Massenträgheitsmoment an der Wicklerwelle • Einheit: kgcm² • Initialwert: 50		•	•		
rFiltTimeldentMInertiaSpd REAL	PT1-Filterzeit für die Drehzahl der Wicklerwelle während der Identifikation des Massenträgheitsmoments • Einheit: s • Initialwert: 0.01			•		
rFiltTimeIdentMInertiaTrq REAL	PT1-Filterzeit für das Drehmoment der Wicklerwelle während der Identifikation des Massenträgheitsmoments • Einheit: s • Initialwert: 0.005			•		
IridentMinertiaMaxSpd Scaled LREAL	Maximale Drehzahl der Wicklerwelle während der Massenträgheitsidentifikation • Einheit: x 100 % (1.0 = 100 % = IrWndSpdRef) • Wertebereich: 0 1 (0 100 %) • Initialwert: 0.2 (20 %)			•		
IrldentMInertiaMaxTrq Scaled LREAL	Maximales Drehmoment der Wicklerwelle während der Massenträgheitsidentifikation • Einheit: x 100 % (1.0 = 100 %) • Wertebereich: 0 1 (0 100 %) • Initialwert: 0.2 (20 %)			•		
alrSpdCtrlGainAdaptX ARRAY [19] OF LREAL	Kennlinienfunktion für die Drehzahlregelungsverstärkung Die X-Achse entspricht dem normierten Massenträgheitsmoment. • Einheit: x 100% (1 = 100% = Parameter IrMaxMInertia) • Initialwerte: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]			•		
alrSpdCtrlGainAdaptY ARRAY [19] OF LREAL	Kennlinienfunktion für die Drehzahlregelungsverstärkung Die Y-Achse entspricht dem Verstärkungsfaktor des Drehzahlreglers. • Einheit: x 100% (1 = 100%) • Initialwerte: • [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 0.98, 0.95, 0.95] • Untere Begrenzung: 0.5 = 50 % • Obere Begrenzung: 1.0 = 100 % Lineare Erhöhung der Verstärkung bis 100 % des Massenträgheitsmoments			•		
IrReducedGainWindow LREAL	Bereich der Regelabweichung mit reduzierter Verstärkung/ Empfindlichkeit • Initialwert: 0.0			•		
lrReducedGain LREAL	Verstärkung der Regelabweichung im Bereich der reduzierten Empfindlichkeit • Initialwert: 0.0			•		

Bezeichner Datentyp	Beschreibung	Verfü	igbar in ante	Vari-
		Base	State	High
eDancerCtrlStopMode L_TT1P_DancerCtrlStop Mode	Modus in dem der Wickelprozess (Zustand "DANCERCTRL") beendet wird. • Initialwert: 0			•
	0 Halt Die Achse wird über die Verzögerung (IrHaltDec) und den Ruck (IrJerk) angehalten.			
	1 Move ABS Absolute Fahrt/Positionierung: Die Achse wird mit der Geschwindigkeit (IrVel), Beschleunigung (IrAcc), Verzögerung (IrDec) und den Ruck (IrJerk) in die Zielposition (IrPos_Dist) gefahren.			
	2 Move Rel Relative Fahrt/Positionierung: Die Achse wird mit der Geschwindigkeit (IrVel), Beschleunigung (IrAcc), Verzögerung (IrDec) und den Ruck (IrJerk) nach der gefahrenen Wegstrecke (IrPos_Dist) in den Stillstand geführt.			
IrPos_Dist LREAL	Relevant bei Modus: • eDancerCtrlStopMode = 1: Absolute Zielposition in [units] (Bezug auf die absolute Position ist die Nullposition) • eDancerCtrlStopMode = 2: Zu fahrende Wegstrecke in [units] (Bezug auf die Sollposition zum Startzeitpunkt des Kommandos.) • Initialwert: 0			•
IrVel LREAL	Geschwindigkeit Relevant nur für die Modi eDancerCtrlStopMode = 1 und 2 (Move ABS, Move Rel). Vorgabe, mit welcher maximalen Geschwindigkeit die Fahrt/Positionierung durchgeführt werden soll. • Einheit: units(Wickler)/s, im Standardfall rev/s • Initialwert: 50			•
IrAcc LREAL	Beschleunigung Relevant nur für die Modi eDancerCtrlStopMode = 1 und 2 (Move ABS, Move Rel). Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: units(Wickler)/s², im Standardfall rev/s² • Initialwert: 100			•
IrDec LREAL	Verzögerung Relevant nur für die Modi eDancerCtrlStopMode = 1 und 2 (Move ABS, Move Rel). Vorgabe, mit welcher Geschwindigkeitsänderung maximal in den Stillstand verzögert werden soll. • Einheit: units(Wickler)/s², im Standardfall rev/s² • Initialwert: 100			•
IrMaxWndSpd LREAL	Festlegung der maximalen Wicklerwellen-Drehzahl (abtriebsseiting). Aus der maximal erlaubten Drehzahl der Wicklerwelle und dem berechneten Durchmesser wird die maximal erlaubte Liniengeschwindigkeit bestimmt. Einheit: rev/s Initialwert: 100			•
IrldentDiamVel LREAL	Umfangsgeschwindigkeit der Wicklerwelle für die Identifikation des Durchmessers. • Einheit: mm/s • Initialwert: 10			•

Bezeichner Datentyp	Beschrei	bung	Verfügbar in Vari- ante			
			Base	State	High	
IrldentDiamAcc LREAL	on des D • Einhe	Umfangsbeschleunigung der Wicklerwelle für die Identifikation des Durchmessers. • Einheit: mm/s ² • Initialwert: 100				
IrldentDiamDec LREAL	des Durc	sverzögerung der Wicklerwelle für die Identifikation hmessers. it: mm/s ² lwert: 100			•	
IrldentDiamJerk LREAL	messers. • Einhe	sruck der Wicklerwelle für die Identifikation des Durchit: mm/s ³ lwert: 0			•	
wIdentDiamCalcCycles WORD	tion	er Berechnungszyklen für eine erfolgreiche Identifika- lwert: 2			•	
IrldentDiamMaxDancerPos LREAL	Identifik schritter Einstellu	Skalierte Endlage des Tänzers während der Identifikation. Die Identifikationsfahrt wird abgebrochen, wenn die Endlage überschritten wird. Einstellungsbereich: -1 1 Initialwert: 0.5			•	
IrldentDiamSpdCtrlGain LREAL	rend der stärkung	zahlregler-Verstärkung wird eingestellt, wenn wäh- Durchmesser-Identifikation die Drehzahlregler-Ver- s xAdaptSpdCtrlGain = TRUE ist. ngsbereich: 0 1			•	
eAdaptSpdCtrlGainMode ENUM	l	uswahl zur Adaption der Drehzahlreglerverstärkung. lwert: 2			•	
	0	DiamToSquare; VP = f(d ²)				
	1	Diam; VP = f(d)				
	2	Inertia; VP = f(J)				
lrAdaptSpdCtrlLowLimit LREAL	Der Adap sein als d • Werte	egrenzung der Drehzahlreglerverstärkung im Antrieb. otionswert IrSetSpdCtrlGainAdaptOut darf nicht kleiner der Wert scPar. IrAdaptSpdCtrlLowLimit. ebereich: 0 bis 1 lwert: 0			•	

3.4 State machine

3.4 State machine

[3-2] State machine des Technologiemoduls

- (*1 Im Zustand "Ready" muss xRegulatorOn auf TRUE gesetzt werden.
- (*2 Im Zustand "ERROR" muss xResetError zum Quittieren und Zurücksetzen der Fehler auf TRUE gesetzt werden.

3.4 State machine

Zustände des Ausgangs eTMState (L_TT1P_States)

Nr.	L_TT1P_States	Beschreibung
1	INIT	Initialisierung des Technologiemoduls aktiv.
2	READY	Technologiemodul betriebsbereit.
3	HOMING	Referenzierung aktiv.
10	JOGGING	Handfahren aktiv.
11	JOGPOS	Handfahren in positive Richtung aktiv.
12	JOGNEG	Handfahren in negative Richtung aktiv.
70	SYNCLINEVEL	Synchronisation der Wicklerachse auf Linie aktiv.
80	IDENTMINERTIA	Massenträgheitsidentifikation aktiv.
81	IDENTDIAMETER	Durchmesseridentifikation aktiv.
90	IDENTFRICTION	Reibungsidentifikation aktiv.
100	DANCERCTRL	Tänzerlageregelung aktiv.
110	TENSIONCTRL	Zugkraftsteuerung/Zugkraftregelung aktiv.
121	SELECTMODECSV	Die Betriebsart wird auf CSV eingestellt.
122	SELECTMODECST	Die Betriebsart wird auf CST eingestellt.
123	SELECTMODECSP	Die Betriebsart wird auf CSP eingestellt.
996	STOP	Stop/Halt aktiv.
998	SERVICE	Das Technologiemodul befindet sich im Servicemodus. Der interne Funktionsbaustein L_MC1P_AxisBasicControl wird über die Eingangsstruktur scCtrlABC gesteuert. Der Status des Funktionsbausteins ist über die Ausgangsstruktur scStatusABC einsehbar.
999	ERROR	Fehlerzustand
1000	SYSTEMFAULT	Systemfehler

3.5 Signalflusspläne

3.5 Signalflusspläne

In den Abbildungen [3-3] und [3-4] ist der Haupt-Signalfluss der umgesetzten Funktionen dargestellt.

Der Signalfluss der Zusatzfunktionen, wie z. B. "Handfahren", sind hier nicht dargestellt.

Durchmesser-Berechnung

[3-3] Signalfluss zur Berechnung des Durchmessers

3.5 Signalflusspläne

[3-4] Signalfluss des Technologiemoduls

3.5 Signalflusspläne

3.5.1 Struktur des Signalflusses

L_TT1P_scSF_WinderDancerCtrl [Base/State/High]

Die Inhalte der Struktur **L_TT1P_scSF_WinderDancerCtrl[Base/State/High]** sind nur lesbar und bieten eine praktische Diagnosemöglichkeit innerhalb des Signalflusses (<u>Signalflusspläne</u> (<u>LLL 32</u>)).

Bezeichner Datentyp	Beschreibung		Verfügbar in Vari- ante		
			Base	State	High
IP01_IrSetLineVel LREAL	Aktuelle Liniengeschwindigkeit • Einheit: mm/s			•	•
IP02_IrSetLineVelDiamCalc LREAL	Aktuelle Liniengeschwindigkeit für die Durchmesserberechnung • Einheit: mm/s			•	•
IP03_xLineVelDiamCalc BOOL	Quelle der Liniengeschwindigkeit für die Durchmesserberechnung • Initialwert: FALSE		•	•	•
	TRUE	Für die Berechnung des Durchmessers wird die Geschwindigkeit aus dem Eingang IrSetLineVelDiam-Calc verwendet.			
	FALSE	Für die Berechnung des Durchmessers wird die Geschwindigkeit aus dem Eingang IrSetLineVel verwendet.			
IP04_IrDancerMaterial Length LREAL	Länge des Materials im Tänzer • Einheit: mm • Initialwert: 1 • Mit dem Wert '0' wird die Betrachtung der Tänzerbewegung deaktiviert.			•	•
IP05_IrSetDiam LREAL	Vorgabe eines (Start-)Durchmessers Der Durchmesser wird zyklisch geladen wenn der Eingang xLoadDiam = TRUE gesetzt ist. • Einheit: mm			•	•
IP06_xLoadDiam BOOL	TRUE	Der Durchmessers wird aus dem Signal IrSetDiam geladen.	•	•	•
IP07_xWindingDirection BOOL	Funktion des Wicklers bei positiver Liniengeschwindigkeit (Eingang IrSetLineVel > 0)		•	•	•
	TRUE	Abwickler			
	FALSE	Aufwickler			
IP08_xMaterialFeeding	Materia	lführung von oben oder unten an den Wickelballen	•	•	•
BOOL	TRUE	Materialführung von oben			
	FALSE	Materialführung von unten			
IP09_IrActDancerPosIn LREAL	Aktuelle Tänzerposition			•	•
IP10_IrSetDancerPosScaled LREAL	Skalierter Sollwert für die Tänzerposition • Einheit: x 100 % • Wertebereich: -1 1 (-100 100 %)		•	•	•
IP11_IrLineVelRef LREAL	Maximale Liniengeschwindigkeit • Einheit: mm/s • Initialwert: 1000			•	•
IP12_IrSetTens LREAL		Zugkraftsollwert • Einheit: N			•

3.5 Signalflusspläne

Bezeichner Datentyp	Beschreibung		Verfügbar in Vari- ante		
		Base	State	High	
MP01_lrDancerPosScaled 0To1 LREAL	Skalierte Tänzerposition • Einheit: x 100 % • Wertebereich: 0 1 (0 100 %)	•	•	•	
MP02_IrDancerCompVelOut LREAL	Resultierende Geschwindigkeit des Tänzers • Einheit: mm/s	•	•	•	
MP03_rFiltDancerCompVel Out REAL	Gefilterte resultierende Geschwindigkeit des Tänzers • Einheit: mm/s	•	•	•	
MP04_rFiltActDancerPos Scaled REAL	Aktuelle skalierte gefilterte Tänzerposition • Einheit: x 100 % • Wertebereich: -1 1 (-100 100 %)	•	•	•	
MP05_IrSetRampDancerPos LREAL	Sollposition des Tänzers nach dem Rampengenerator Diese Position ist die Führungsgröße des Wickelantriebs. • Einheit: x 100 % • Wertebereich: -1 1 (-100 100 %)	•	•	•	
MP06_IrDancerCtrlPosOut LREAL	Stellgröße des Tänzerlagereglers • Einheit: x 100 % • Wertebereich: -1 1 (-100 100 %)	•	•	•	
MP07_IrDancerCtrlLineVel Out LREAL	Stellgröße des Tänzerlagereglers umgerechnet in die Linienge- schwindigkeit • Einheit: mm/s	•	•	•	
MP08_IrSetSpeedPoint LREAL	Resultierender Drehzahlsollwert • Einheit: revs/s	•	•	•	
MP09_IrAxisTorque LREAL	Drehmoment für die Vorsteuerung • Einheit: Nm		•	•	
MP10_IrSetTrqPoint LREAL	Resultierender Drehmomentsollwert für die Vorsteuerung • Einheit: Nm		•	•	
MP11_lrDancerCtrlOutGain LREAL	Die Stellgröße aus dem proportionalen Anteil (P-Anteil) des Tänzerlagereglers (skaliert)	•	•	•	
MP12_IrDancerCtrlOutReset Time LREAL	Die Stellgröße aus dem integrierenden Anteil (I-Anteil) des Tänzerlagereglers (skaliert)	•	•	•	
MP13_IrDancerCtrlOutRate Time LREAL	Die Stellgröße aus dem differenzierenden Anteil (D-Anteil) des Tänzerlagereglers (skaliert)	•	•	•	
OP01_IrActDancerPosScaled LREAL	Aktuelle skalierte Tänzerposition • Einheit: x 100 % • Wertebereich: -1 1 (-100 100 %)	•	•	•	
OP02_IrSetDiamOut LREAL	Aktueller berechneter Durchmesser • Einheit: mm	•	•	•	
OP03_IrAxisSpeed	Aktueller Drehzahl des Wickelantriebs • Einheit: revs/s	•	•	•	
OP04_IrSetTensCurveOut LREAL	Aktuelle Zugkraft aus der Kurvenfunktion • Einheit: N	•	•	•	

3.5 Signalflusspläne

3.5.2 Struktur der Angriffspunkte

L_TT1P_scAP_WinderDancerCtrl [Base/State/High]

Über die Angriffspunkte (AP) können Signale beeinflusst werden. Im Initialzustand haben die Angriffspunkte keine Wirkung.

Jeder Angriffspunkt wirkt als ein alternativer Zweig und wird über eine ODER-Verknüpfung oder einen Schalter aktiviert.

Bezeichner Datenty		Beschreibung		Verfügbar in Vari- ante		
				State	High	
AP01_xSetSpeedPoint	Freigabe	Freigabe des Angriffspunktes AP01_IrSetSpeedPoint		•	•	
BOC	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.	-			
AP01_IrSetSpeedPoint LREA		olsollwert für den Wickelantrieb eit: revs/s				
AP02_xSetTrqPoint		e des Angriffspunktes AP02_lrSetTrqPoint	•		•	
BOC	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.	1-			
AP02_IrSetTrqPoint LREA		mentsollwert für die Vorsteuerung eit: Nm				
AP03_xSetDancerCtrlOut	Freigabe	e des Angriffspunktes AP03_lrSetDancerCtrlOutGain	•		•	
Gain BOC	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP03_IrSetDancerCtrlOut Gain LREA	Anteil) o	es Laden der Stellgröße des proportionalen Anteils (P- les Tänzerlagereglers (skaliert)				
AP04_xSetDancerCtrlOut ResetTime		e des Angriffspunktes SetDancerCtrlOutResetTime	-	•	•	
BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP04_IrSetDancerCtrlOut ResetTime LREA	Anteil) d	Zyklisches Laden der Stellgröße des integrierenden Anteils (I- Anteil) des Tänzerlagereglers (skaliert)				
AP05_xSetDancerCtrlOut RateTime BOOL		e des Angriffspunktes SetDancerCtrlOutRateTime		•	•	
	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.	-			
AP05_IrSetDancerCtrlOut RateTime LREA	(Ď-Ante	Zyklisches Laden der Stellgröße des differenzierenden Anteils (D-Anteil) des Tänzerlagereglers (skaliert)				
AP09_xSetVelOffset		Freigabe des Angriffspunktes AP09_IrSetVelOffset		•	•	
BOC	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP09_IrSetVelOffset LREA	lérachse • Einhe Der Offs	Zyklische Vorgabe des Offset für die Geschwindigkeit der Wicklerachse bezogen auf die Wickelwelle (Getriebeausgangsseite) • Einheit: units/s Der Offset-Wert wird ohne Rampengenerator sofort und sprungartig eingestellt!				

3.5 Signalflusspläne

Bezeichner Datentyp	Beschreibung		Verfügbar in Vari- ante	
		Base	State	High
AP10_xSetTrqOffset	Freigabe des Angriffspunktes AP10_lrSetTrqOffset	•	•	•
BOOL	TRUE Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.			
AP10_IrSetTrqOffset LREAL	Zyklische Vorgabe des Offset für das Drehmoment der Wickler- achse bezogen auf die Wickelwelle (Getriebeausgangsseite) • Einheit: Nm Der Offset-Wert wird ohne Rampengenerator sofort und sprungartig eingestellt!			
AP11_xSetVelOffsetDiamCal	$Freigabe\ des\ Angriffspunktes\ AP11_Ir Set Vel Offset Diam Calc:$	•	•	•
c BOOL	TRUE Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss			
AP11_IrSetVelOffsetDiamCal c LREAL	Zyklische Vorgabe des Offsets für die Geschwindigkeit der Wicklerachse, die für die Berechnung des Durchmessers verwendet wird. Dieser Angriffspunkt wirkt sich nicht auf den Sollwert der Wicklerachse aus, sondern geht lediglich in die Berechnung des Durchmessers ein.			
AP12_xSetSpeedPointDiam	Freigabe des Angriffspunktes AP12_lrSetSpeedPointDiamCalc	. •	•	•
Calc BOOL	TRUE Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.			
AP12_IrSetSpeedPointDiam Calc LREAL	Berechnung des Durchmessers verwendet wird.			

.6 Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)

3.6 Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)

Damit die Vorsteuergrößen, die Störgrößenkompensation und auch das Korrektursignal des Tänzerlagereglers immer in die erforderliche Richtung wirken, ist eine einmalige Festlegung der "normalen Wickelrichtung" erforderlich.

Über den Eingang xWindingDirection können Sie einstellen, ob der Wickelantrieb – bezogen auf die normale Materialflussrichtung mit positiver Liniengeschwindigkeit – als Abwickler oder als Aufwickler arbeiten soll.

- xWindingDirection = TRUE: Abwickler (Das Material wird abgewickelt.)
- xWindingDirection = FALSE: Aufwickler (Das Material wird aufgewickelt.)

[3-5] Wirkrichtung von Drehzahl und Drehmoment in Abhängigkeit des Materialflusses

3.7 Automatische Erkennung der Wickelrichtung

Nach <u>Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)</u> (38) ist es möglich, die Wickelantriebe mit einer negativen Liniengeschwindigkeit auch in entgegengesetzter Richtung zu betreiben. Ein Eingriff in den Signalfluss ist bei Umkehrung der Materialflussrichtung nicht erforderlich. Die aktuelle Wickelrichtung wird am Ausgang *xUnwind* ausgeben.

Festlegung der Materialzuführung an den Wickler

3.8 Festlegung der Materialzuführung an den Wickler

Über den Eingang *xMaterialFeeding* legen Sie fest, ob das Material von oben oder von unten an den Wickler geführt wird.

Die grundsätzliche Anpassung der Wicklerwellendrehrichtung an den Materialfluss erfolgt über die Motoranbaurichtung.

Die Drehrichtung der Achse stellen Sie im »PLC Designer« unter der Registerkarte **Einstellungen Konfiguration** ein:

3.9 Leitwert-Quelle für die Durchmesserberechnung

3.9 Leitwert-Quelle für die Durchmesserberechnung

Das Technologiemodul arbeitet immer mit der Liniengeschwindigkeit am Eingang IrSetLineVel.

Für die Berechnung des Durchmessers kann ein separater Encoder für die Messung der Liniengeschwindigkeit zwischen dem Tänzer und der Wickelachse verwendet werden. In diesem Fall muss die Liniengeschwindigkeit für die Durchmesserberechnung aus dem Encoder am Eingang IrSetLineVelDiamCalc verschaltet werden und der Parameter xLineVelDiamCalc = TRUE gesetzt werden. Dadurch ist die Berücksichtigung der Tänzerbewegung nicht mehr notwendig – der Parameter IrDancerMaterialLength = 0 muss gesetzt werden.

Wird kein Encoder verwendet, so muss der Parameter xLineVelDiamCalc = FALSE gesetzt werden. Dadurch wird für die Berechnung des Durchmessers die Liniengeschwindigkeit am Eingang IrSetLineVel verwendet. Um die Berechnung des Durchmessers zu optimieren, kann die Tänzerbewegung berücksichtigt werden (siehe dazu <u>Durchmesserberechnung mit Korrektur der Tänzerposition</u> (🖂 45)).

Einzustellende Parameter

Die Parameter für die Durchmesserberechnung mit oder ohne Encoder befinden sich in der Parameterstruktur <u>L_TT1P_scPar_WinderDancerCtrl [Base/State/High]</u> (<u>LL</u> 23).

```
xLineVelDiamCalc : BOOL := FALSE;
lrDancerMaterialLength : LREAL := 0;
```

3.10 Drehzahlvorsteuerung

3.10 Drehzahlvorsteuerung

Die Solldrehzahl für die Drehzahlvorsteuerung wird durch Division der Liniengeschwindigkeit am Eingang IrSetLineVel mit dem aktuellen Durchmesser und der Zahl π berechnet:

Berechnung der Solldrehzahl für die Drehzahlvorsteuerung			
$nSet = \frac{vLine}{dact \cdot \pi}$			
Formelzeichen	Beschreibung	Maßeinheit	
nSet	Solldrehzahl für die Drehzahlvorsteuerung	revs/s	
VLine	Liniengeschwindigkeit am Eingang IrSetLineVel	mm/s	
dact	Aktueller Durchmesser	mm	

Damit die Wicklersolldrehzahl mit der Motorsolldrehzahl und dem Liniengeschwindigkeitssignal übereinstimmen, ist die passende Einstellung für die Motorbezugsdrehzahl zwingend erforderlich. Deshalb erfolgt die Berechnung und Parametrierung automatisch und wird nicht dem Anwender überlassen.

Die normierte Wicklersolldrehzahl am Ausgang IrWndSpdRef bezieht sich auf die Motordrehzahl, die bei minimalem Durchmesser (d_{min}) erforderlich ist, um die Bezugsliniengeschwindigkeit am Umfang des Wickelballens zu erreichen.

Drehzahlvorsteuerung prüfen

- Laden Sie den Durchmesser-Rechner mit dem minimalen Durchmesser (d_{min}): Eingang IrSetDiam = 0 (oder ≤ d_{min})
 Eingang xLoadDiam = TRUE
- Bei der Synchronisierung auf die Liniengeschwindigkeit (2 52) mit dem Eingang xSyncLineVel =
 TRUE folgt die Wicklerachse dem Liniengeschwindigkeitssollwert rein drehzahlgeregelt, ohne
 dass die Tänzerlage korrigiert wird.
 - Starten Sie den Liniengeschwindigkeits-Master und erhöhen die Geschwindigkeit, z. B. bis auf 50 %. Der Wickler muss nun mit der Hälfte der Referenzdrehzahl, die am Ausgang *IrWndSpdRef* berechnet wird, drehen.
- Die Umfangsgeschwindigkeit des Wicklers muss nun der Hälfte der Referenz *IrLineVelRef* entsprechen. Das aktuelle Liniengeschwindigkeitssignal wird im Ausgang des Technologiemoduls *IrSetLineVelScaledOut* = 0.5 [x 100 %] = 50 % angezeigt.

Bei falscher Geschwindigkeit oder Drehrichtung prüfen Sie die oben aufgeführte Festlegung der Systemdaten.

3.11 Durchmesserberechnung

3.11 Durchmesserberechnung

Der aktuelle Durchmesser wird durch Division der Liniengeschwindigkeit mit der Wicklerdrehzahl und der Zahl π berechnet:

Berechnung des aktuellen Durchmessers			
$dact = \frac{VLine}{nWinder \cdot \pi}$			
Formelzeichen	Beschreibung	Maßeinheit	
dact	Aktueller Durchmesser	mm	
VLinie	Liniengeschwindigkeit	mm/s	
NWickler	Wicklerdrehzahl	revs/s	

Tatsächlich werden bei der Berechnung keine Momentanwerte für die Geschwindigkeit und Drehzahl verwendet sondern aufintegrierte Werte. Hierdurch erfolgt eine Mittelwertbildung. Die Anzahl der Umdrehungen, nach der eine Neuberechnung des Durchmessers erfolgt, wird über den Parameter *IrDiamCalcRegularDist* bestimmt. Der Initialwert dieses Parameters ist auf 1 Wicklerwellenumdrehung eingestellt.

Für schnelle Durchmesseränderungen von *IrDiamCalcRegularDist* kann durch das Setzen des Eingangs *xDiamCalcReduced* = TRUE auf den schnellen Berechnungmodus umgeschaltet werden. Die kleinere Berechnungsdistanz wird mit dem Parameter *IrDiamCalcReducedDist* eingestellt. Als Initalwert ist hier 1/10 Wicklerwellenumdrehung vorgegeben.

Diese kleinere Berechnungsdistanz wird auch automatisch durch Laden eines Startdurchmessers aktiviert. Dieser Zustand bleibt solange erhalten, bis ein neuer Durchmesserwert berechnet wurde. Diese Funktion wird benötigt, wenn der reale Durchmesser des Wickelballens von dem geladenen Durchmesser stark abweichen kann. Damit dreht die Wicklerwelle nur um eine kurze Distanz mit "falschem" Durchmesser. Nach der Durchmesserberechnung ist wieder ein passender Wert vorhanden.

Einzustellende Parameter

Die Parameter für die Durchmesserberechnung befinden sich in der Parameterstruktur <u>L TT1P scPar WinderDancerCtrl [Base/State/High]</u> (<u>La 23</u>).

```
lrDiamCalcRegularDist : LREAL := 1;
lrDiamCalcReducedDist : LREAL := 0.1;
```

3.12 Durchmesser halten

3.12 Durchmesser halten

In einigen Betriebszuständen des Wicklers, in denen die Liniengeschwindigkeit nicht der Umfangsgeschwindigkeit des Wickelballens entspricht, kann der aktuelle Durchmesser nicht aus der Liniengeschwindigkeit und der Motordrehzahl berechnet werden. In diesem Fall muss die Berechnung neuer Werte unterbunden werden; der Durchmesserwert wird auf dem alten Wert gehalten.

Wenn der Durchmesser gehalten wird, ist der Ausgang xHoldDiamActive = TRUE

Dies erfolgt automatisch bei folgenden Bedingungen:

- Liniengeschwindigkeit < Mininmale Liniengeschwindigkeit
 <p>(IrMinLineVel [mm/s] aus der Parameterstruktur <u>L_TT1P_scPar_WinderDancerCtrl [Base/State/High]</u> (<u>Q23</u>));
- Wicklerdrehzahl < IrMinLineVel [mm/s] / (π x d [mm]);
- In den Zuständen STOP, ERROR, READY, JOGGING und SYNCLINEVEL.

Für das anwenderseitige Halten des Durchmessers setzen Sie den Eingang xHoldDiam = TRUE.

3.13 Durchmesser vorgeben / Signal vom Durchmessersensor

3.13 Durchmesser vorgeben / Signal vom Durchmessersensor

Zu Beginn eines Wickelvorgangs kann es erforderlich sein, einen Startdurchmesser vorzugeben oder das Signal eines Durchmessersensors zu verwenden.

Mit dem Eingang *IrSetDiam* können Sie einen Startdurchmesser festlegen, der mit *xLoadDiam* = TRUE mit höchster Priorität übernommen und zyklisch geladen wird.

Ebenso kann ein externer Durchmesserwert, z. B. von einem Ultraschallsensor, auf den Eingang IrSetDiam geschaltet werden. Dieser Analogwert kann über eine Kurvenfunktion Y = f(x) adaptiert werden. Die Kurvenfunktion wird mit neun Stützpunkten über die Parameter alrAdaptDiamX[1...9] und alrAdaptDiamY[1...9] eingestellt. Damit der Analogwert als Startdurchmesser verwendet wird, ist der adaptierte Kurvenverlauf mit alrAdaptDiamY = alrAdaptDiamX initialisiert. Das Sensorsignal kann auch permanent geladen werden.

Einzustellende Parameter

Die Parameter für die Kurvenfunktion befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

```
alrAdaptDiamX : ARRAY[1...9] OF LREAL := [0,100,200,300,400,500,600,700,800];
alrAdaptDiamY : ARRAY[1...9] OF LREAL := [0,100,200,300,400,500,600,700,800]
```


[3-6] Laden eines Durchmessers über eine Kurvenfunktion

3.14 Durchmesserberechnung mit Korrektur der Tänzerposition

3.14 Durchmesserberechnung mit Korrektur der Tänzerposition

Bewegt sich der Wickler am Umfang schneller oder langsamer als die Linie, muss die Tänzerposition korrigiert werden. Wenn hierbei die Umfangsgeschwindigkeit gegenüber der Liniengeschwindigkeit vor dem Tänzer deutlich zu oder abnimmt, muss die resultierende Umfangsgeschwindigkeit (V_{Line; total}) für die Durchmesserberechnung verwendet werden.

Das ist in der Regel bei Anwendungen der Fall, in denen größere Längen Material in der Tänzermechanik gespeichert werden.

[3-7] Resultierende Umfangsgeschwindigkeit bei Änderung der Tänzerposition

Die Geschwindigkeit, die sich aus der Bewegung des Tänzers ergibt, kann aus der Differenzierung der Tänzerposition ermittelt werden. Die maximal gespeicherte Materiallänge entspricht einer Änderung der Tänzerposition um 200 %.

[3-8] Beispiel: Die gespeicherte Materiallänge entspricht dem doppeltem Tänzerweg

Das Speichervolumen wird mit dem Parameter *IrDancerMaterialLength* definiert und ergibt sich aus dem doppelten Weg zwischen den beiden Grenzlagen multipliziert mit der Anzahl der Materialumschlingungen.

Durchmesserberechnung mit Korrektur der Tänzerposition

Die Tänzerposition wird über einen PT1-Filter mit der Zeitkonstante *rFiltTimeActDancerPosIn* gefiltert. Die gefilterte Position wird von -1 bis 1 skaliert und am Ausgang *lrActDancerPosScaled* ausgegeben.

Die Konvertierung der skalierten Tänzerposition zu einer Materiallänge in Milimeter erfolgt mit dem Parameter IrDancerMaterialLength durch die Formel:

Gleichung für die Konvertierung der skalierten Tänzerposition zu einer Materiallänge [mm]		
$DancerPos = \left(\frac{\mathit{IrActDancerPosScaled} + 1}{2}\right) \cdot \mathit{IrDancerMaterialLength}$		
Formelzeichen	Beschreibung	Maßeinheit
DancerPos	Tänzerposition	
IrActDancerPosScaled	Aktuelle skalierte Tänzerposition • Wertebereich: -1 1 (-100 100 %)	%
IrDancerMaterialLength	Länge des Materials im Tänzer	mm

Diese Position wird differenziert. Nachfolgend wird die Zusatzgeschwindigkeit aus der Tänzerbewegung mit der eigentlichen Liniengeschwindigkeit für die Durchmesserberechnung IrSetLineVelDiamCalc zusammengeführt.

Zusätzliche Geschwindigkeit bei der Durchmesserberechnung

Wenn die folgenden Einstellungen erfolgt sind, wird jede Tänzerbewegung bei der Durchmesserbrechnung berücksichtigt:

- Parametrierung der maximalen Materiallänge, die in der Tänzermechanik gespeichert werden kann: *IrDancerMaterialLength* = maximale Materiallänge [mm]
- Mit der Voreinstellung *IrDancerMaterialLength* = 0 [mm] wird keine Zusatzgeschwindigkeit aus der Tänzerbewegung für die Durchmesserberechnung berücksichtigt.

Einzustellende Parameter

Die Parameter für die Durchmesserberechnung befinden sich in der Parameterstruktur <u>L TT1P scPar WinderDancerCtrl [Base/State/High]</u> (<u>La 23</u>).

```
lrDancerMaterialLength : LREAL := 0;
rFiltTimeActDancerPosIn : REAL := 0.005;
```

3.15 Materiallängenzähler

3.15 Materiallängenzähler

Der Materiallängenzähler wird mit dem Eingang xEnable = TRUE aktiviert.

Die Materiallänge wird durch Integration die Liniengeschwindigkeit am Eingang *IrSetLineVel* berechnet und am Ausgang *IrMaterialCounter* (in Milimeter) angezeigt. Je nach <u>Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)</u> (© 38) wird die Materiallänge hoch- oder runtergezählt.

Für das Analogsignal der Liniengeschwindigkeit kann der aktuelle Wert der Materiallänge mit einer PT1-Charakteristik gefiltert werden. Die Filterzeit wird mit dem Parameter rFiltTimeMaterialCounter eingestellt (die Voreinstellung ist '0 ms').

Der aktuelle Wert der Materiallänge wird in den persistenten Daten in der Struktur *PersistentVar* gespeichert.

Für die Initialisierung der Materiallänge kann über den Parameter IrSetMaterialPos eine Anfangsmateriallänge eingestellt werden. Mit einer FALSE TRUE-Flanke am Eingang xSetMaterialCounter wird die Anfangsmateriallänge mit höchster Priorität übernommen.

Einzustellende Parameter

Die Parameter für den Materiallängenzähler befinden sich in der Parameterstruktur L_TT1P_scPar_WinderDancerCtrl [Base/State/High] (23).

```
rFiltTimeMaterialCounter : LREAL := 0;
lrSetMaterialPos : REAL := 0;
```

3.16 Quellen für die Materiallängenzählung

3.16 Quellen für die Materiallängenzählung

Die Materiallängenzählung kann aus einer von drei unterschiedlichen Quellen und nach zwei unterschiedlichen Verfahren erfolgen.

3.16.1 Quelle: Eingang "IrSetLineVel"

Voraussetzungen

- Es ist keine Referenzachse am Eingang MaterialCounterAxis angeschlossen.
- Paramter xLineVelDiamCalc = FALSE

Funktionsweise

In die Materiallängenzählung wird zusätzlich zur Position (Parameter *IrSetMaterialPos*) die Liniengeschwindigkeit am Eingang *IrSetLineVel* intergriert. Der resultirende Wert wird als Materiallänge am Ausgang *IrMaterialCounter* angezeigt und persistent gespeichert.

Mit einer FALSE TRUE-Flanke am Eingang xSetMaterialCounter wird die Materiallänge aus dem Parameter IrSetMaterialPos geladen. Dabei wird die Materiallänge am Ausgang IrMaterialCounter direkt auf den Wert von IrSetMaterialPos gesetz. Die weitere Zählung wird auf den am Ausgang gesetzten Wert der Materialllänge addiert.

Hinweis!

Bei einem verrauschten Signal wird die Materialzählung durch die Integration der Liniengeschwindigkeit verfälscht. Hierbei kann eine Drift des Materiallängenzählers beobachtet werden, auch wenn die Linie steht.

3.16.2 Quelle: Eingang "IrSetLineVelDiamCalc"

Voraussetzungen

- Es ist keine Referenzachse am Eingang MaterialCounterAxis angeschlossen.
- Paramter xLineVelDiamCalc = TRUE

Funktionsweise

In die Materiallängenzählung wird zusätzlich zur Position (Parameter *IrSetMaterialPos*) die Liniengeschwindigkeit für die <u>Durchmesserberechnung</u> (<u>L. 42</u>) am Eingang *IrSetLineVelDiamCalc* intergriert. Der resultirende Wert wird als Materiallänge am Ausgang *IrMaterialCounter* angezeigt und persistent gespeichert.

Mit einer FALSE TRUE-Flanke am Eingang xSetMaterialCounter wird die Materiallänge aus dem Parameter IrSetMaterialPos geladen. Dabei wird die Materiallänge am Ausgang IrMaterialCounter direkt auf den Wert von IrSetMaterialPos gesetz. Die weitere Zählung wird auf den am Ausgang gesetzten Wert der Materialllänge addiert.

Hinweis!

Bei einem verrauschten Signal wird die Materialzählung durch die Integration der Liniengeschwindigkeit verfälscht. Hierbei kann eine Drift des Materiallängenzählers beobachtet werden, auch wenn die Linie steht.

3.16 Quellen für die Materiallängenzählung

3.16.3 Quelle: Eingang "MaterialCounterAxis" (Referenzachse)

Voraussetzungen

- Eine Referenzachse (Modulo-Achse) ist am Eingang MaterialCounterAxis angeschlossen.
- Als Basis wird die Ermittlung der verlustfreien Anzahl der Umdrehungen für die Materiallängenzählung verwendet. – Dieses Verfahren eingnet sich für verauschte Signale!

Funktionsweise

Über die Vorschubkonstante der Referenzachse (Modulo-Achse) wird die Materiallänge am Ausgang IrMaterialCounter angezeigt.

Die Anzahl der gezählten Umdrehungen kann über den Messpunkt MP20_liRevCounter ausgelesen werden. Der Bruchteil einer Umdrehung wird über den Messpunkt MP21_lrRevCounterResidual angezeigt. Die Werte dieser Messpunkte werden persistent gespeichert.

Mit einer FALSE TRUE-Flanke am Eingang xSetMaterialCounter wird die Materiallänge aus dem Parameter IrSetMaterialPos geladen. Dabei wird die Materiallänge über die Vorschubkonstante der Achse in die Anzahl der Umdrehungen umgerechnet und gespeichert.

Die Materiallänge aus dem Parameter Ir Set Material Pos wird am Ausgang Ir Material Counter ausgegeben.

Hinweis!

Eine genaue Materiallängenzählung kann nur bei einem schlupffreien Messrad erfolgen. Ein schlupfbehaftetes Messrad auf dem Material führt zur Fehlern in der Materiallängenzählung.

3.17 Handfahren (Jogging)

3.17 Handfahren (Jogging)

Zum Handfahren des Wicklers wird die Handfahr-Geschwindigkeit IrJogLineVel verwendet.

Mit dem Eingang xJogLinePos = TRUE wird die Linie in positive Richtung und mit dem Eingang xJogLineNeg = TRUE in negative Richtung gefahren. Die Linie wird solange gefahren, wie der Eingang TRUE gesetzt bleibt. Der laufende Fahrbefehl kann nicht durch den anderen Jog-Befehl abgelöst werden.

Die parametrierbaren Sollwerte IrJogLineVel, IrJogLineAcc und IrJogLineDec für das Handfahren beziehen sich auf die Umfangsgeschwindigkeit oder Liniengeschwindigkeit und nicht auf die Motordrehzahl.

Einzustellende Parameter

Die Parameter für das Handfahren befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

```
lrLineJerk : LREAL := 10000; // Jerk [mm/s^3]
lrJogLineVel : LREAL := 100; // Velocity [mm/s]
lrJogLineAcc : LREAL := 100; // Acceleration [mm/s^2]
lrJogLineDec : LREAL := 10; // Deceleration [mm/s^2]
```

Die Parameterwerte können während des Betriebes verändert werden. Sie werden bei erneutem Setzen der Eingänge xJogLinePos = TRUE oder xJogLineNeg = TRUE übernommen.

3.17 Handfahren (Jogging)

Beispiel

- xWindingDirection = FALSE: Aufwickler (Das Material wird aufgewickelt.)
- xMaterialFeeding = FALSE: Das Material wird von unten geführt.

[3-9] Handfahren der Linie

Hinweis!

Während des Handfahrens wird der Durchmesserrechner angehalten und der Durchmesser wird gehalten (xHoldDiamActive = TRUE).

3.18 Synchronisierung auf die Liniengeschwindigkeit

3.18 Synchronisierung auf die Liniengeschwindigkeit

Die Synchronisierung der Wicklerachse auf die Liniengeschwindigkeit wird mit dem Eingang xSyncLineVel = TRUE ausgeführt.

Die Parameter *IrSyncLineAcc* und *IrSyncLineDec* beziehen sich auf die Umfangsgeschwindigkeit oder Liniengeschwindigkeit und nicht auf die Motordrehzahl.

Einzustellende Parameter

Die Parameter für die Synchronisierung auf die Liniengeschwindigkeit befinden sich in der Parameterstruktur <u>L TT1P scPar WinderDancerCtrl [Base/State/High]</u> (<u>L 23</u>).

```
lrLineJerk : LREAL := 10000; // Jerk [mm/s^3]
lrSyncLineAcc : LREAL := 100; // Acceleration [mm/s^2]
lrSyncLineDec : LREAL := 100; // Deceleration [mm/s^2]
```


Hinweis!

Während des Handfahrens wird der Durchmesserrechner angehalten und der Durchmesser wird gehalten (xHoldDiamActive = TRUE).

3.19 Trimmung

3.19 Trimmung

Hinweis!

Die Trimmung kann nur verwendet werden, wenn die Wicklerachse auf die Liniengeschwindigkeit synchronisiert ist.

▶ <u>Synchronisierung auf die Liniengeschwindigkeit</u> (☐ 52)

Mit dem Eingang xTrimLinePos = TRUE wird die Linie in positive Richtung und mit dem Eingang xTrimLineNeg =TRUE in negative Richtung vertrimmt.

Für die Trimmung wird die Trimm-Geschwindigkeit *IrTrimLineVel* zur Liniengeschwindigkeit *IrSetLineVel* addiert. Bei der Trimmung kann der Gesamtsollwert maximal um den Wert der minimalen Liniengeschwindigkeit größer sein als der Trimm-Sollwert.

Die parametrierbaren Sollwerte *IrTrimLineVel*, *IrTrimLineAcc* und *IrTrimLineDec* für den positiven und negativen Trimm-Betrieb beziehen sich auf die Umfangsgeschwindigkeit oder Liniengeschwindigkeit und nicht auf die Motordrehzahl.

Einzustellende Parameter

Die Parameter für die Trimmung befinden sich in der Parameterstruktur <u>L TT1P scPar WinderDancerCtrl [Base/State/High]</u> (<u>La 23</u>).

```
lrLineJerk : LREAL := 10000; // Jerk [mm/s^3]
lrTrimLineVel : LREAL := 100; // Velocity [mm/s]
lrTrimLineAcc : LREAL := 100; // Acceleration [mm/s^2]
lrTrimLineDec : LREAL := 10; // Deceleration [mm/s^2]
```

3.20 Normierung der Tänzerlage

Die Istposition des Tänzers wird in Form eines analogen Signals (0 ... 10 V) an den Controller zurückgeführt. Das analoge Signal muss am Eingang *IrActDancerPosIn* anliegen.

Die Tänzerposition wird über einen PT1-Filter mit der Zeitkonstante *rFiltTimeActDancerPosIn* gefiltert. Die gefilterte Position wird von -1 bis 1 skaliert und am Ausgang *lrActDancerPosScaled* ausgegeben. Dadurch wird die Vorgabe des Sollwertes und die Überwachung der Tänzerposition vereinfacht.

Die Grenzwerte für die obere und untere Tänzerposition (Tänzerendlagen) werden über die Parameter *IrDancerUpperLimit* und *IrDancerLowerLimit* vorgegeben. Die Quelle für die Tänzerlagebegrenzungen wird durch den Parameter *xTeachDancerLimits* bestimmt.

Einzustellende Parameter

Der Parameter für die Normierung der Tänzerlage befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

[3-10] Normierung der Tänzerlage

3.21 Teaching-Funktion für Tänzerendlagen

3.21 **Teaching-Funktion für Tänzerendlagen**

So führen Sie das Teaching manuell aus:

- 1. Den Tänzer manuell in die untere Endlage bewegen, so dass maximal Material im Tänzer vorhanden ist.
- 2. Den Eingang xTeachLowerPos = TRUE setzen.
 - Der aktuelle Eingangswert IrActDancerPosIn wird gespeichert und in den Retain/Persistent-Speicher, falls dieser über den Eingang PersistentVar verschaltet ist, geschrieben.
- 3. Tänzer manuell in die obere Endlage bewegen, so dass minimal Material im Tänzer gespeichert ist.
- 4. Den Eingang xTeachUpperPos = TRUE setzen.
 - Der aktuelle Eingangswert IrActDancerPosIn wird gespeichert und in den Retain/Persistent-Speicher, falls dieser über den Eingang PersistentVar verschaltet ist, geschrieben.

Alternativ zum Teaching können Sie die jeweiligen Eingangswerte manuell in die Parameter IrDancerUpperLimit und IrDancerLowerLimit eintragen.

Mit dem Parameter xTeachDancerLimits wird die Quelle der Tänzerlagebegrenzungen ausgewählt:

Parameter- wert	Beschreibung
TRUE	Die Endlagen IrDancerLowerLimit und IrDancerUpperLimit werden solange verwendet, bis die Teaching-Funktion ausgeführt wurde. Nach manueller Ausführung der Teaching-Funktion werden immer die gespeicherten Endlagen aus der Teaching-Funktion verwendet.
FALSE	Die Endlagen IrDancerLowerLimit und IrDancerUpperLimit werden verwendet.

Einzustellende Parameter

Die Parameter für die Teaching-Funktion befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

```
lrDancerUpperLimit : LREAL := 10000000; // Mechanical upper limit dancer position
lrDancerLowerLimit : LREAL := 0;  // Mechanical lower limit dancer position
xTeachDancerLimits : BOOL := FALSE; // Source for dancer position limiting
```

3.22 Überwachung der Tänzerposition

3.22 Überwachung der Tänzerposition

Für den Betrieb des Wicklers ist die Überwachung der Tänzerposition in folgenden Fällen von Bedeutung:

- Nach Freigabe des Tänzerlagereglers sollte die Maschine erst gestartet werden, wenn sich der Tänzer in der Sollposition befindet: Ausgang xDancerReachedSetPos = TRUE.
- Kommt der Tänzer in den Endlagenbereich, kann es im laufenden Betrieb zu einem Bahnriss kommen. Dies ist wahrscheinlich dann der Fall, wenn sich der Tänzer für längere Zeit in der unteren Endlage befindet.
 - Ausgang xDancerMinPos = TRUE: Die <u>untere</u> Endlage ist erreicht.
 - Ausgang xDancerMaxPos = TRUE: Die <u>obere</u> Endlage ist erreicht.

Einzustellende Parameter

Die Parameter für die Überwachung der Tänzerposition befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

lrDancerMaxPosScaled : LREAL := 0.95; //Upper limit of dancer position 0..1 [x100%]
lrDancerMinPosScaled : LREAL := -0.95; //Lower limit of dancer position 0..-1 [x100%]
lrDancerInPosWindowScaled : LREAL := 0.2; //Window of dancer in position [x100%]

3.23 PI-Regler für die Tänzerlageregelung

3.23 PI-Regler für die Tänzerlageregelung

Durch Aktivierung der Tänzerlageregelung mit dem Eingang *xDancerCtrl* = TRUE wird auf einen Tänzerpositions-Istwert geregelt.

Mit dem Eingang IrDancerPosInfluenceScaled legen Sie fest, welchen Einfluss der PI-Regler auf die Steuerung des Motors haben soll.

Das Signal der aktuellen Tänzerposition kann mit einer PT1-Charakteristik gefiltert werden. Die Filterzeit ist mit dem Parameter *rFiltTimeActDancerPosIn* einstellbar (Standard-Einstellung: 5 ms).

Der I-Anteil des PI-Reglers kann mit dem Parameter *IrDancerPosCtrlResetTime* (Reglernachstellzeit) gesetzt werden. In der Standard-Einstellung ist *IrDancerPosCtrlResetTime* = 0 (deaktiviert) gesetzt.

Die Reglerverstärkung wird mit dem Parameter IrDancerPosCtrlGain eingestellt.

Nach Aktivierung der Tänzerlageregelung muss der Tänzer erst in die Sollposition gebracht werden. Damit der Tänzer kontrolliert angehoben wird, wird zuvor der Rampengenerator für den Positionssollwert mit dem aktuellen Positionsistwert geladen. Die Rampe wird mit dem Parameter IrDancerPosRamp eingestellt (Standard-Einstellung: 1 = 100 %/s). Eine Einblendung des Tänzerreglereinflusses ist dadurch nicht erforderlich.

Mit dem Eingang xResetICtrl = TRUE wird der I-Anteil des PI-Reglers wird ausgeschaltet und die Stellgröße (Ausgang des Reglers) aus dem I-Anteil wird über die Rampenfunktion auf '0' geführt. Die Stellgröße aus dem P-Anteil wird nicht beeinflusst.

Einzustellende Parameter

Die Parameter für den PI-Regler und die Tänzerlageregelung befinden sich in der Parameterstruktur LTT1P scPar WinderDancerCtrl [Base/State/High] (23).

.24 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante)

3.24 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante)

In Abhängigkeit von der Oberfläche und der Art des Wickelmaterials ist es bei vielen Aufwicklern erforderlich, dass die Zugkraft mit zunehmendem Durchmesser reduziert wird, damit der Wickelballen nicht verschoben wird. Man spricht hierbei von der Wickelcharakteristik oder Zugkraftcharakteristik. Der tänzerlagegeregelte Wickler hat keinen direkten Einfluss auf den Bahnzug; dieser wird durch den Druck oder das Gewicht am Tänzer bestimmt.

Dennoch ist es üblich die Zugkraftbeeinflussung in der Wicklersteuerung vorzunehmen, um den adaptierten Sollwert dann, z.B. auf ein pneumatisches Stellglied, wieder zu geben.

Damit die materialabhängige Charakteristik erreicht wird, wird der eigentliche Zugkraftsollwert aus dem Eingang *IrSetTens* über eine lineare Kennlinienfunktion durchmesserabhängig bewertet.

Die Kennlinie ist gekennzeichnet durch einen Anfangsbereich mit konstanter Bewertung (100 %) und einem zweiten Bereich, in dem die Zugkraft dem Durchmesser angepasst wird.

Mit dem Parameter *IrTensCurveStartDiamScaled* wird festgelegt, bei welchem Durchmesser die Zugkraftabsenkung beginnen soll. Mit dem Parameter *IrTensCurveCtrlScaled* wird die Zugkraft beim maximalen Durchmesser bewertet.

[3-11] Kennlinie für einen linearen Zugkraftverlauf

Einzustellende Parameter

Die Parameter für die "Zugkraftsteuerung über Kennlinienfunktion" befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

3.25 Bahnrissüberwachung

3.25 Bahnrissüberwachung

Das Technologiemodul bietet zwei Möglichkeiten einer Bahnrissüberwachung:

A. Bei einem Bahnriss entwickelt sich der berechnete Durchmesser entgegen der Wickelrichtung (Abwickeln oder Aufwickeln).

Die Überwachung wird mit dem Eingang xWebBreakMonit = TRUE und dem Parameter xWebBreakMode = 2 aktiviert. Damit ist eine Durchmesseränderung entgegen der Wickelrichtung nur noch innerhalb des im Parameter IrWebBreakWindow eingestellten Fensters zulässig. Der Auf- oder Abwickelbetrieb wird automatisch anhand des Vorzeichens der Liniengeschwindigkeit und der über den Eingang xWindingDirection eingestellten Wickelrichtung erkannt.

Hinweis!

Die Bahnrissüberwachung darf erst aktiviert werden, wenn der berechnete Durchmesser dem realen Durchmesser entspricht.

Bei aktiver Bahnrissüberwachung (xWebBreakMonit = TRUE) wird eine Durchmesseränderung entgegen der über den Ausgang xUnwind vorgegebenen Wickelrichtung unterbunden.

Nach dem Laden eines Startdurchmessers, der entgegen der Wickelrichtung deutlich vom realen Durchmesser abweicht, kann dies zum ungewollten Ansprechen der Überwachung führen. So wird beispielsweise beim Aufwickler ein Startdurchmesser von 50 % geladen; der reale Durchmesser beträgt aber nur 45 %. Die Änderung des Durchmesserwertes auf die realen 45 % wird bei aktiver Bahnrissüberwachung verhindert.

B. Auswertung der Tänzerposition:

Ein Bahnriss wird festgestellt, wenn die Tänzerposition die untere Endlage erreicht. Die Überwachung wird mit dem Eingang xWebBreakMonit = TRUE und dem Parameter xWebBreakMode = 1 aktiviert.

Reaktionen auf einen Bahnriss:

- · Halten des aktuellen Durchmessers.
- Setzen der Ausgangs xWebBreak = TRUE.

Einzustellende Parameter

Die Parameter für die Bahnrissüberwachung befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

```
lrWebBreakWindow : LREAL := 0.1; // Window for web break 0..1 [x100%]
wWebBreakMode : WORD := 0; // Select web break mode:
    0: Use Dancer Position and lrWebBreakWindow for detectinm the Web break.
    1: Use only dancer position for detecting the Web Break.
    2: Use only lrWebBreakWindow for detecting the Web Break.
```

3.26 Persistente Variablen

3.26 Persistente Variablen

Das Technologiemodul bietet die Möglichkeit, die ermittelten Parameter, wie z. B. den Wickeldurchmesser oder die "erlernten" Tänzerendlagen, persistent zu speichern. Dazu müssen im »PLC Designer« folgende Einstellung für das Technologiemodul ausgeführt werden.

So legen Sie im »PLC Designer« persistente Variablen an:

Hinweis!

Diese Vorgehensweise gilt <u>nicht</u> für das ApplicationTemplate, weil dort bereits Strukturen für persistente Daten der Maschinenmodule bereitgestellt werden.

 Im Kontextmenü zu Application mit dem Befehl Objekt hinzufügen → Persistente Variablen... die globale Liste für die Verwaltung von persistenten Variablen hinzufügen.

3.26 Persistente Variablen

2. Die Referenz der persistenten Variablen "L_TT1P_PersistentVarWinder" in der globalen Struktur der persistenten Variablen instanziieren.

3. Die Instanz der persistenten Variablen mit dem Eingang PersistentVar verschalten.

3.27 Beschleunigungskompensation

3.27 Beschleunigungskompensation

Die Beschleunigung im Liniengeschwindigkeitssollwert stellt im Wickelprozess eine Störgröße dar. Das Drehmoment welches zur Beschleunigung aufgebracht werden muss, fehlt in der Zugkraft.

Das Beschleunigungsdrehmoment muss also berechnet und als Zusatzdrehmoment vorgesteuert werden.

Berechnung des Beschleunigungsdrehmoments		
$M = 2 \cdot \pi \cdot \left(\frac{\partial n}{\partial t}\right) \cdot (Jconst + Jvar)$ mit		
$J_{var} = (J_{max} - J_{const}) \cdot \left(\frac{d_{act}^4 - d_{min}^4}{d_{max}^4 - d_{min}^4}\right) \cdot B$		
Formelzeichen	Beschreibung	Maßeinheit
M	Beschleunigungsdrehmoment	Nm
∂n	(Delta-)Drehzahl des Motors	revs/s
∂t	(Delta-)Zeit	S
Jconst	Konstantes Massenträgheitsmoment	kgm ²
Jvar	Variables (durchmesserabhängiges) Massenträgheitsmoment	
Jmax	Maximales Massenträgheitsmoment	
dact	Aktueller Durchmesser	mm
dmin	Minimaler Durchmesser (Hülsendurchmesser)	
dmax	Maximaler Durchmesser	
В	Materialbreite	mm

Die Änderung des Drehzahlwertes (neuer Wert - alter Wert) entspricht dabei der Beschleunigung des Wicklers. Die Wicklerdrehzahl wird aus der Liniengeschwindigkeit berechnet.

In der Praxis ist mit einem nicht ideal, stetig verlaufenden Liniengeschwindigkeitssignal zu rechnen. Über die Parameter *IrAccCmpsGainAcc* und *IrAccCmpsGainDec* kann die Auflösung des Signals, welches differenziert wird, eingestellt werden. Zudem kann das Signal voher über eine PT1-Funktionalität geglättet werden. Die PT1-Zeitkonstante wird über den Parameter *rFiltTimeAccSpd* eingestellt. Zur Rauschunterdrückung kann ein Nacheilbereich über das berechnete Beschleunigungsmoment verschaltet werden. Der Nacheilbereich wird über den Parameter *IrAccCmpsDeadBandTrqScaled* in der Einheit [x 100%] eingestellt.

Die Beschleunigungskompensation wird mit dem Eingang xAccCmp = TRUE freigegeben.

Zur Bildung einer Beschleunigung ist eine Differenzierung der Liniengeschwindigkeit erforderlich. Je nach Auflösung und Stabilität dieses Signals kann es erforderlich sein, die Empfindlichkeit der Differenzierung herabzusetzen. So führen Leitwertschwankungen nicht zu Sprüngen in der Beschleunigung. Unterschiedliche Materialbreiten oder Materialdichten können prozentual über den Eingang IrMInertiaAdapt berücksichtigt werden.

Beschleunigungskompensation

Massenträgheitsmomente vorgeben

Hinweis!

Die Vorgabe der Massenträgheit muss auf die Wicklerwelle und <u>nicht</u> auf die Motorwelle bezogen werden.

Die Trägheit (J) von Motorwelle auf die Wicklerwelle kann mit folgender Gleichung umgerechnet werden:

Berechnung der Trägheit (J) von Motorwelle auf die Wicklerwelle			
$JWinder = i^2 \cdot JMotor$ mit $i = \frac{nMotor}{r}$			
' NWinder Formelzeichen Beschreibung Maßeinheit			
	Massenträgheitsmoment der Wicklerwelle	kgcm ²	
JMotor	Massenträgheitsmoment der Motorwelle	kgcm ²	
i	Getriebefaktor		
nMotor	Motordrehzahl	revs/s	
nWinder	Wicklerdrehzahl	revs/s	

Das Massenträgheitsmoment setzt sich aus einem konstanten und einem durchmesserabhängigen Anteil zusammen. Der konstante Anteil wird durch das Massenträgheitsmoment des Motors bestimmt (Codestelle C00273/1 bei Lenze-Motoren). Der variable Anteil wird aus dem Durchmesser sowie der maximalen und konstanten Massenträgheit im Technologiemodul ermittelt.

Die Einstellung des konstanten Massenträgheitsmoments erfolgt mit dem Parameter *IrConstMInertia*.

Die Einstellung des maximalen Massenträgheitsmoments (voller Wickelballen) erfolgt über den Parameter *IrMaxMInertia*.

Einzustellende Parameter

Die Parameter für die Beschleunigungskompensation befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

```
rFiltTimeAccSpd : REAL := 0.005; // Filtertime ActReelSpeed during AccComp [s] lrAccCmpsDeadBandTrqScaled : LREAL := 0.10; // Dead-band of winder torque [Nm] lrAccCmpsGainAcc : LREAL := 1.05; // [x100%] lrAccCmpsGainDec : LREAL := 0.95; // [x100%] lrConstMInertia : LREAL := 9; // Constant MInertia J_min [kgcm^2] lrMaxMInertia : LREAL := 50; // Maximal MInertia J_max [kgcm^2]
```

3.28 Zugkraftsteuerung über Kennlinienfunktion/Wickelcharakteristik

Die Kennlinienfunktion zur Zugkraftsteuerung ist in der State-Variante erweitert. Damit die materialabhängige Charakteristik erreicht wird, wird der eigentliche Zugkraftsollwert aus dem Eingang *IrSetTens* über eine Kennlinienfunktion durchmesserabhängig bewertet.

Die Adaption kann entsprechend verschiedener Prinzipien erfolgen:

- Kennlinie für einen linearen Zugkraftverlauf (dwSelectTensCurve = 0)
- Kennlinie für einen linearen Drehmomentverlauf (dwSelectTensCurve = 1)
- Frei definierbare Kennlinie mit 64 Stützpunkten (dwSelectTensCurve = 2)

Die Kennlinie ist gekennzeichnet durch einen Anfangsbereich mit konstanter Bewertung (100 %) und einem zweiten Bereich, in dem die Zugkraft dem Durchmesser angepasst wird. Über den Parameter *IrTensCurveStartDiamScaled* wird festgelegt, bei welchem Durchmesser die Zugkraftabsenkung beginnt. Mit dem Parameter *IrTensCurveCtrlScaled* wird der prozentulle Anteil der Zugkraft beim maximalen Durchmesser festgelegt.

[3-12] Kennlinie für einen linearen Drehmomentverlauf

3.28

[3-13] Kennlinie mit freidefinierbaren Stützstellen

Einzustellende Parameter

Die Parameter für die Kennlinienfunktion befinden sich in der Parameterstruktur L_TT1P_scPar_WinderDancerCtrl [Base/State/High] (23).

3.29 Identifikation der Massenträgheitsmomente

3.29 Identifikation der Massenträgheitsmomente

Zur Kompensation des Beschleunigungsdrehmoments ist die Parametrierung oder Identifikation des konstanten Massenträgheitsmoments (Motor + Getriebe + Wicklerwelle) und des maximalen Massenträgheitsmoments (mit vollem Wickelballen) erforderlich.

Identifikation des konstanten Massenträgheitsmoments

Die Wicklerwelle ist leer (ohne Material).

Mit dem Parameter *IrldentMInertiaMaxSpdScaled* wird die maximale Motordrehzahl in [x 100%] bezogen auf die maximal erreichbare Wicklerdrehzahl *IrWndSpdRef* festgelegt. Typischerweise sind hier Drehzahlen zwischen 50 ... 60 % ausreichend.

Mit dem Parameter *IrIdentMInertiaMaxTrqScaled* wird das Beschleunigungsmoment festgelegt. Dieser Wert muss immer größer sein, als die maximal auftretende Reibung – Empfehlung: 25 %.

Mit einer steigenden Flanke (FALSE TRUE) am Eingang xExecuteldent MInertia erfolgt die Ermittlung des Massenträgheitsmoments. Am Ausgang Irldent MInertia wird das ermittlete Massenträgheitsmoment angezeigt.

Identifikation des maximalen Massenträgheitsmoments

Der Wickler ist mit dem maximal möglichen Wickelballen beladen (maximaler Durchmesser und maximale Breite).

Die maximale Motordrehzahl IrldentMInertiaMaxSpdScaled muss so parametriert werden, dass die maximal zulässige Umfangsgeschwindigkeit des Wicklers nicht überschritten wird (z. B. IrldentMInertiaMaxSpdScaled = 10% bei $d_{max}/d_{min} = 10$) – Empfehlung: 25%.

Mit einer steigenden Flanke (FALSE TRUE) am Eingang xExecuteIdentMInertia erfolgt die Ermittlung des Massenträgheitsmoments.

Beendigung der Identifikation

Die Identifikation ist beendet, wenn der Motor wieder den Stillstand erreicht hat, keine Fehler gemeldet wurden und *xDone* auf TRUE gesetzt wurde.

Die ermittelte Trägheit der Wicklerwelle (Jwinder) wird am Ausgang IrldentMInertia angezeigt und muss auf Plausibilität geprüft werden.

Die Identifikation sollte für beide Fälle mehrmals durchgeführt werden. Dabei kann die Filterzeit für die Drehzahl *rFiltTimeldentMInertiaSpd* variiert werden.

Hinweis!

Eine ausgeprägte <u>nichtlineare</u> Reibung im System beeinflusst die Berechnung des Massenträgheitsmoments im Technologiemodul negativ.

Übernehmen Sie die Werte der identifizierten Massenträgheitsmomente in die Parameterstruktur LTT1P scPar WinderDancerCtrl [Base/State/High] (23).

3.29 Identifikation der Massenträgheitsmomente

Einzustellende Parameter

Die Parameter für die Identifikation der Massenträgheitsmomente befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

```
rFiltTimeIdentMInertiaSpd : REAL := 0.01; // Filter time ActReelSpeed during Ident

MInertia 1 = 1[s]

rFiltTimeIdentMInertiaTrq : REAL := 0.005; // Filtertime ActTorque during Ident

MInertia 1 = 1[s]

lrIdentMInertiaMaxSpdScaled : LREAL := 0.2; // Max Ident Speed [x 100%]

lrIdentMInertiaMaxTrqScaled : LREAL := 0.2; // Max Ident Torque [x 100%]
```

Berechnung des maximalen Massenträgheitsmoments

Steht kein Wickelballen zur Verfügung, so kann das maximale Massenträgheitsmoment wie folgt berechnet werden:

Berechnung des maximalen Massenträgheitsmoments Die Dichte des Wickelmaterials ist bekannt: $\mathsf{JMaxWinder} = i^2 \cdot \mathsf{JMotor} + \left(\frac{\pi}{32 \cdot 10^8}\right) \cdot B \cdot \rho \cdot (\mathsf{dmax}^4 - \mathsf{dmin}^4)$ Die <u>Masse</u> des Wickelmaterials ist bekannt: $JMaxWinder = i^2 \cdot JMotor + \frac{m \cdot dmax^2}{200}$ Formelzeichen Beschreibung Maßeinheit Maximales Massenträgheitsmoment der Wicklerwelle kgcm² **J**MaxWinder Massenträgheitsmoment der Motorwelle kgcm² Getriebefaktor **B** Materialbreite mm r | Materialdichte kg/dm³ dmax | Maximaler Durchmesser mmdmin | Minimaler Durchmesser (Hülsendurchmesser) m | Masse kg

3.30

3.30 Adaption der Drehzahlregler-Verstärkung

Voraussetzungen

• Die Wicklerachse muss freigeben sein (Eingang xRegulatorOn = TRUE).

Adaption der Drehzahlregler-Verstärkung aktivieren/deaktivieren

Die Adaption der Drehzahlregler-Verstärkung ist vom Zustand des TMs sowie von einer aktuell ausgeführten Funktion unabhängig und kann daher zu einem beliebigen Zeitpunkt aktviert oder deaktiviert werden.

Eingang scPar.xAdaptSpdCtrlGain = TRUE: Adaption Drehzahlregler-Verstärkung aktiviert.

Eingang scPar.xAdaptSpdCtrlGain = FALSE: Adaption Drehzahlregler-Verstärkung deaktiviert.

Funktionsweise

Der Wert für die Adaption wird im TM berechnet, wobei die Berechnungsvorschrift über den Adaptionsmodus scPar.eAdaptSpdCtrlGainMode (siehe unten) vorgegeben wird.

Bereich für den Wert der Adaption: 0 ... 1 (1 = 100 % der Drehzahlverstärkung aus der Einstellung des Drehzahlreglers)

Der im Drehzahlregler eingestellte resultierende Adaptionswert kann mit einem Faktor aus dem Eingang scPar.lrAdaptSpdCtrlGainFactor multiplikativ beeinflusst werden.

Über den Parameter scPar. Ir Adapt SpdCtrlLowLimit wird der kleinste zulässige Wert für die Adaption der Drehzahlregler-Verstärkung festgelegt.

3.30.1 Adaptionsmodus eAdaptSpdCtrlGainMode:= 0 (DiamToSquare)

Im Modus eAdaptSpdCtrlGainMode:= 0 wird die Adaption aus dem skalierten Durchmesser (Ausgang IrSetDiamScaledOut) zum Quadrat berechnet.

[3-14] Adaption des Drehzahlreglers in Abhängigkeit des Durchmessers zum Quadrat unter Einfluss von IrAdaptSpdCtrlGainFactor

Beim maximalen Durchmesser wird der Adaptionswert = 1 gesetzt. Über den Parameter scPar.lrAdaptSpdCtrlLowLimit wird die Adaption der Drehzahregler-Verstärkung nach unten begrenzt.

3.30

3.30.2 Adaptionsmodus eAdaptSpdCtrlGainMode:= 1 (Diam)

Im Modus *eAdaptSpdCtrlGainMode*:= 1 wird die Drehzahlregler-Adaption proportional zum skalierten Durchmesser (Ausgang *lrSetDiamScaledOut*) berechnet.

[3-15] Adaption des Drehzahlreglers in Abhängigkeit des Durchmessers unter Einfluss von IrAdaptSpdCtrlGainFactor

Beim maximalen Durchmesser wird der Adaptionswert = 1 gesetzt. Über den Parameter IrAdaptSpdCtrlLowLimit wird die Adaption der Drehzahregler-Verstärkung nach unten begrenzt.

3.30.3 Adaptionsmodus eAdaptSpdCtrlGainMode:= 2 (Inertia)

In einem idealen Modell des Wicklerantriebs betrachtet man Motor und Wickelballen als ein starres Ein-Masse-System. Damit verhält sich die optimale Verstärkung des Drehzahlreglers direkt proportional zum Massenträgheitsmoment J mit einer d⁴-Funktion.

Da sich während des Wickelprozesses das Massenträgheitsmoment meist deutlich verändert, kann es für ein gutes Regelverhalten erforderlich sein, die Verstärkung des Drehzahlreglers mit dem Massenträgheitsmoment mitzuführen.

Für den Modus *eAdaptSpdCtrlGainMode*:= 2 (Inertia) ist die Angabe der Masseträgheiten erfoderlich:

- Massenträgheit des leeren Wickelballens scPar.lrConstMInertia beim minimalen Durchmesser scPar.lrMinDiam
- Massenträgheit des Wickelballens mit Material scPar.lrMaxMInertia beim maximalen Durchmesser scPar.lrMaxDiam

Die Massenträgheit kann entweder berechnet oder über das TM identifiziert werden.

• Identifikation der Massenträgheitsmomente (66)

Wenn die beiden Massenträgheiten scPar.lrConstMInertia und scPar.lrMaxMInertia bekannt sind, wird die Adaption anhand der folgenden Kennlinie festgelegt:

3

3.30

._____

[3-16] Voreingestellte Kennlinienfunktion für die Adaption des Drehzahlreglers in Abhängigkeit der Massenträgheit

Diese Kennlinienfunktion beinhaltet in der Standard-Einstellung folgende Werte:

- Untere Begrenzung der Adaption: 50 %
- Obere Begrenzung der Adaption: 100 %
- Lineare Erhöhung der Verstärkung bis 100 % des Massenträgheitsmoments

Einzustellende Parameter

Die Kennlinie kann über die Parameterierung verändert oder komplett neu bestimmt werden.

Die einzustellenden Parameter befinden sich in der Structur scPar:

3.31 Regelabweichung im Bereich reduzierter Empfindlichkeit

3.31 Regelabweichung im Bereich reduzierter Empfindlichkeit

Durch eine reduzierte Reglerdynamik bei geringen Regelabweichungen wird das Dämpfungsverhalten des Regelkreises meist günstig beeinflusst.

Die Regelabweichung ergibt sich aus der Differenz der Werte aus Eingang IrSetDancerPosScaled und Ausgang IrActDancerPosScaled.

Mit dem Parameter *IrReducedGainWindow* lässt sich ein Toleranzbereich einstellen, in dem die Regelabweichung mit einer geringeren Verstärkung an den Regler weitergegeben wird. Der Toleranzbereich wird ober- und unterhalb um den Sollwert (Eingang *IrSetDancerPosScaled*) gelegt.

Mit dem Parameter *IrReducedGain* erfolgt die Einstellung, auf welchen Wert die Verstärkung im festgelegten Toleranzbereich reduziert werden soll. Das heißt im Toleranzbereich wirkt die reduzierte Verstärkung (*IrReducedGain*).

Einzustellende Parameter

Die Parameter für die Regelabweichung befinden sich in der Parameterstruktur L TT1P scPar WinderDancerCtrl [Base/State/High] (23).

```
lrReducedGain : LREAL := 0;
lrReducedGainWindow : LREAL := 0;
```

3.32 Beendigung des Wickelprozesses

3.32 Beendigung des Wickelprozesses

Zur Beendigung des Wickelprozesses (Zustand "DANCERCTRL") gibt es zwei Möglichkeiten:

A. Eingänge xDancerCtrl = FALSE und xSyncLineVel = TRUE setzen.

Das Technologiemodul wechselt vom Wickelprozess in die synchrone Fahrt. Hierbei wird die Wicklerumfangsgeschwindigkeit auf die Liniengeschwindigkeit (Eingang *IrSetLineVel*) synchronisiert.

Zustandswechsel: DANCERCTRL ==> SYNCLINEVEL

- B. Eingänge xDancerCtrl = FALSE und xSyncLineVel = FALSE setzen.
 Der Wickelprozess wird in Abhängigkeit der Einstellung des Parameters eDancerCtrlStopMode beendet
 - eDancerCtrlStopMode = 0: Halt
 Die Achse wird über die Verzögerung (IrHaltDec) und den Ruck (IrJerk) in den Stillstand geführt.
 - eDancerCtrlStopMode = 1: Move ABS
 Die Achse wird mit der Geschwindigkeit (IrVel), Beschleunigung (IrAcc), Verzögerung (IrDec) und den Ruck (IrJerk) in die Zielposition (IrPos_Dist) gefahren.
 - eDancerCtrlStopMode = 2: Move Rel
 Die Achse wird mit der Geschwindigkeit (IrVel), Beschleunigung (IrAcc), Verzögerung (IrDec)
 und den Ruck (IrJerk) nach der gefahrenen Wegstrecke (IrPos_Dist) in den Stillstand geführt.

Zustandswechsel: DANCERCTRL ==> STOP

Einzustellende Parameter

Die einzustellenden Parameter zur Beendigung des Wickelprozesses befinden sich in der Parameterstruktur <u>L TT1P scPar WinderDancerCtrl [Base/State/High]</u> (<u>L 23</u>).

```
eDancerCtrlStopMode : L_TT1P_DancerCtrlStopMode := 0;
lrPos_Dist : LREAL := 0;
lrHaltDec : LREAL := 3600;
lrJerk : LREAL := 100000;
lrVel : LREAL := 50;
lrAcc : LREAL := 100;
lrDec : LREAL := 100;
```

3.33 Begrenzung der Master-Liniengeschwindigkeit

Zur Reduzierung der Antriebsleistung bei kleinen Wicklerdurchmessern oder um zulässige Getriebe-Eintriebsdrehzahlen nicht zu überschreiten, kann es erforderlich sein, die Liniengeschwindigkeit der Anlage zu begrenzen. Die Berechung der Begrenzung erfolgt im TM Winder.

Die maximale Drehzahl der Wicklerwelle (abtriebsseitig) wird über den Parameter scPar.lrMaxWndSpd festgelegt. Mit Eingabe dieses Parameters ist die Begrenzungsfunktion direkt freigegeben.

Am Ausgang *IrLimitLineVel* wird die maximal zugelassen Liningeschwindigkeit in [mm/s] ausgegeben. Ein Überschreiten der Liniengeschwindigkeit *IrLimitLineVel* bedeutet zwangsläufig auch eine Überschreitung der maximalen Wicklerwellen-Drehzahl *scPar.IrMaxWndSpd*.

[3-17] Signalfluss für die Berechnung der Liniengeschwindigkeit-Sollwert-Begrenzung

Folgende Grafik verdeutlicht die notwendige Begrenzung der Liniengeschwindigkeit zwischen Referenz-Liniengeschwindigkeit (Vref) bis maximaler Liniengeschwindigkeit (Vmax) für einen Aufwickler, der bei minimalem Durchmesser (Dmin) startet, um die maximal zugelassen Drehzahl der Winkelwelle scPar. IrMaxWndSpd nicht zu überschreiten.

[3-18] Beispiel für die Begrenzung der Liniengeschwindigkeit

3.34 Identifikation des Durchmessers durch Anheben des Tänzers

In Anlagen, in denen auf Wicklerrollen mit unbekannten Durchmessern gewechselt wird, sollte man deren Durchmesser vorher identifizieren. Andernfalls kann es zu großen Instabilitäten im Wickelprozess kommen, weil weder die Drehzahl-Vorsteuergröße noch die Drehzahl-Reglerverstärkung passt.

Durch Anheben des Tänzers bei Liniengeschwindigkeit = Null kann ein Wicklerrollen-Durchmesser identifiziert werden, indem die Tänzerbewegung im Liniengeschwindigkeitssignal berücksichtigt wird.

3.34

Hinweis!

Während der Durchmesser-Identifikation wird bei einer aktiven <u>Adaption der</u> <u>Drehzahlregler-Verstärkung</u> (xAdaptSpdCtrlGain = TRUE) diese auf den definierten Wert scPar.IrldentDiamSpCtrlGain gesetzt.

Voraussetzung

- Die Achse ist freigeben (Eingang xRegulatorOn = TRUE)
- Das TM befindet sich im Zustand "READY"

[3-19]

Identifikation starten

Mit einer FALSE TRUE-Flanke am Eingang xExecuteIdentDiam startet die Identifikation. Anschließend wechselt das TM WinderDancer in den Zustand "IDENTDIAMETER".

Funtionsablauf

Der Durchmesser wird auf den Startwert von 50 % des maximalen Durchmessers scPar.lrMaxDiam gesetzt. Aufgrund der Unterschreitung der minimalen Liniengeschwindigkeit (scPar.lrMinLineVel), wird das interne Halten des Durchmessers deaktiviert.

Die Bewegung der Wicklerachse startet mit den vorgegebenen Profilparametern (Geschwindigkeit, Beschleunigung, Verzögerung und Ruck).

Hinweis!

Die Profilparameter beziehen sich auf die Umfangsgeschwindigkeit des Wicklers.

- Geschwindigkeit scPar.IrIdentDiamVel in [mm/s]
- Beschleunigung (scPar.lrIdentDiamAcc) in [mm/s²]
- Verzögerung (scPar.lrldentDiamDec) in [mm/s²]
- Ruck scPar. IrldentDiamJerk in [mm/s³]

Durch die Materialbewegung wird der Tänzer angehoben.

Anschließend wird geprüft, ob an der Wickelwelle der vorgegebene Durchmesser-Berechnungszyklus mit der erwarteten Häufigkeit aus scPar.lrDiamldentCalcCycles durchlaufen werden konnte.

Der interne Zähler für IrDiamIdentCalcCycles wird nur inkrementiert, wenn ...

xDancerMinPos = FALSE (untere Endlage)

UND

xDancerMaxPos = FALSE (obere Endlage).

Ein Berechnungszyklus ist nach der verkürzten Berechnungsdistanz scPar.lrDiamCalcReduced abgeschlossen.

Eine erfolgreiche Identifikation des Durchmessers wird durch xDone = TRUE gemeldet.

Nach einer erfolgreichen Identifizierung schaltet das TM in den Zustand ...

- "READY", wenn der Eingang xDanceCtrl = FALSE ist.
- "DANCERCTRL", wenn der Eingang xDanceCtrl = TRUE ist; der Wickelbetrieb ist damit aktiviert.

Abbruch Identifikation

Wird die maximale Tänzerposition (scPar.lrDiamIdentMaxPos) oder die obere Tänzerendlage (xDancerMaxPos = TRUE) erreicht, ohne dass die Identifikation erfolgreich abgeschlossen werden konnte, wird die Identifikation mit einem "Stopp" abgebrochen.

Der Abbruch wird durch xError = TRUE und Ausgabe eErrorld= 17164 (Fehlertext: MaxDancerPosDuringDiamterIdent) gemeldet. Das Technologiemodul wechselt in den Zustand "ERROR".

Der anliegende Fehler kann über den Eingang xResetError quittiert werden. Das TM wechselt in den Zustand "READY", wenn kein Fehler anliegt.

3.35 CPU-Auslastung (Beispiel Controller 3231 C)

3.35 CPU-Auslastung (Beispiel Controller 3231 C)

Die folgende Tabelle zeigt die CPU-Auslastung in Mikrosekunden am Beispiel des Controller 3231 C (ATOM™-Prozessor, 1.6 GHz).

Variante	Beschaltung des Technologiemoduls	tung des Technologiemoduls CPU-Auslastung	
		Durchschnitt	Maximale Spitze
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncLineVel := TRUE;	75 μs	106 μs
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncLineVel := TRUE;	90 μs	125 μs
High	xEnable := TRUE; xRegulatorOn := TRUE; xSyncLineVel := TRUE;	100 μs	137 μs

A	J
Abweichung im Bereich reduzierter Empfindlichkeit 71	Jogging (Handfahren) <u>50</u>
Access points 36	
Adaption der Drehzahlreglerverstärkung <u>68</u>	K
Anlauf der Achsen <u>14</u>	Kontrollierter Anlauf der Achsen <u>14</u>
Anwendungshinweise <u>8</u>	Korrektur der Tänzerposition 45
Aufbau der Sicherheitshinweise <u>8</u>	L
Ausgänge 21	-
D	L_TT1P_scAP_WinderDancerCtrlBase 36
B	L_TT1P_scAP_WinderDancerCtrlHigh <u>36</u>
Bahnrissüberwachung <u>59</u>	L_TT1P_scAP_WinderDancerCtrlState <u>36</u>
Beendigung des Wickelprozesses 72	L_TT1P_scPar_WinderDancerCtrlBase 23
Begrenzung der Master- Liniengeschwindigkeit 73	L_TT1P_scPar_WinderDancerCtrlHigh 23
Beschleunigungskompensation <u>62</u>	L_TT1P_scPar_WinderDancerCtrlState 23
Betriebsmodus <u>13</u>	L_TT1P_scSF_WinderDancerCtrlHigh_34
C	L_TT1P_scSF_WinderDancerCtrlHigh <u>34</u>
_	L_TT1P_scSF_WinderDancerCtrlState 34
CPU-Auslastung (Beispiel Controller 3231 C) 76	L_TT1P_WinderDancerCtrlHigh_15
D	L_TT1P_WinderDancerCtrlHigh <u>15</u> L_TT1P_WinderDancerCtrlState <u>15</u>
Dokumenthistorie <u>6</u>	Leitwert-Quelle für die Durchmesserberechnung 40
Drehzahlreglerverstärkung (Adaption) 68	terewere Quelle für die Durchmesserberechnung 40
Drehzahlvorsteuerung 41	M
Drehzahlvorsteuerung prüfen 41	Massenträgheitsmomente identifizieren 66
Durchmesser halten 43	Massenträgheitsmomente vorgeben 63
Durchmesser vorgeben 44	Master-Liniengeschwindigkeit begrenzen 73
Durchmesserberechnung 42	Materiallängenzähler <u>47</u>
Durchmesserberechnung mit Korrektur der Tänzerposition 45	Materiallängenzählung (Quellen) 48
Durchmessersensor-Signal 44	Materialzuführung an den Wickler 39
<u> </u>	Max. Massenträgheitsmoment berechnen 67
E	_
Eingänge <u>17</u>	N
Eingänge und Ausgänge <u>16</u>	Normierung der Tänzerlage <u>54</u>
E-Mail an Lenze <u>79</u>	
eTMState <u>31</u>	P
	Parameterstruktur L_TT1P_scPar_WinderDancerCtrlBase/
F	State/High 23
Feedback an Lenze <u>79</u>	Persistente Variablen <u>60</u>
Funktionen des Technologiemoduls (Übersicht) 12	PI-Regler für die Tänzerlageregelung <u>57</u>
FunktionsbausteinL_TT1P_WinderDancerCtrlBase/State/High	Q
<u>15</u>	
Funktionsbeschreibung "Winder Dancer-controlled" <u>11</u>	Quellen für die Materiallängenzählung 48
G	R
Gestaltung der Sicherheitshinweise 8	Regelabweichung im Bereich reduzierter Empfindlichkeit 71
destaitung der sichemensimmweise <u>a</u>	Regelab Welchang in Dereien reduzierter Emphinanenkeit 71
Н	S
Handfahren (Jogging) <u>50</u>	Sicherheitshinweise 8, 9
Hinweise zum Betrieb des Technologiemoduls 13	Signal vom Durchmessersensor 44
<u>==</u>	Signalfluss des Technologiemoduls "Winder Dancer-
1	controlled" <u>33</u>
Identifikation der Massenträgheitsmomente 66	Signalfluss zur Berechnung des Durchmessers 32
Identifikation des Durchmessers 74	Signalflusspläne 32
_	Startdurchmesser vorgeben 44

Index

State machine 30 Struktur der Angriffspunkte $L_TT1P_scAP_WinderDancerCtrlBase/State/High~\underline{36}$ Struktur des Signalflusses L_TT1P_scSF_WinderDancerCtrlBase/State/High 34 Synchronisierung auf die Liniengeschwindigkeit 52 Т Tänzerlage (Normierung) 54 Tänzerposition korrigieren 45 Tänzerpositions-Überwachung 56 Teaching-Funktion für Tänzerendlagen 55 Trimmung 53 Überwachung der Tänzerposition 56 Variablenbezeichner 7 Verwendete Konventionen 7 Wickelprozess beenden 72 Wickelrichtung (Automatische Erkennung) 38 Wickelrichtung festlegen (Aufwickeln/Abwickeln) 38 Winder Dancer-controlled (Funktionsbeschreibung) 11 Ζ Zielgruppe 5 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante) Zugkraftsteuerung über Kennlinienfunktion/ Wickelcharakteristik 64 Zusätzliche Geschwindigkeit bei der Durchmesserberechnung 46 Zustände 30 Zustände des Ausgangs eTMState 31

Ihre Meinung ist uns wichtig

Wir erstellten diese Anleitung nach bestem Wissen mit dem Ziel, Sie bestmöglich beim Umgang mit unserem Produkt zu unterstützen.

Vielleicht ist uns das nicht überall gelungen. Wenn Sie das feststellen sollten, senden Sie uns Ihre Anregungen und Ihre Kritik in einer kurzen E-Mail an:

feedback-docu@lenze.com

Vielen Dank für Ihre Unterstützung. Ihr Lenze-Dokumentationsteam

Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen Germany

HR Hannover B 205381

- [+49 5154 82-0
- <u>+49 5154 82-2800</u>
- @ sales.de@lenze.com <u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal Germany

- © 008000 24 46877 (24 h helpline)
- 💾 +49 5154 82-1112
- ø service.de@lenze.com

