Отчет о выполнении лабораторной работы 2.2.3 "Измерение теплопроводности воздуха при атмосферном давлении"

Кириченко Варвара, Б03-402

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются:

- цилиндрическая колба с натянутой по оси нитью $(2r_1 = 50 \pm 3 \text{ мкм}, 2r_0 = 7, 0 \pm 0, 1 \text{ мм}, L = 400 \pm 2 \text{ мм});$
- термостат ($\sigma_t = 0, 1 \, {}^{\circ}C$);
- вольтметр ($\varepsilon_U = 0.012\%$) и амперметр ($\varepsilon_I = 0.05\%$) (цифровые мультиметры);
- источник постоянного напряжения;
- магазин сопротивлений (0, 1 Ом 99999, 9 Ом)

1. Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых час тей системы к холодным за счёт хаотического движения частиц среды. В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии \vec{q} пропорциональна градиенту температуры ∇T

$$\vec{q} = \kappa \nabla T$$

где κ – коэффициент теплопроводности. Его можно пропопрционален квадратному корню из температуры:

$$\kappa \sim \lambda \bar{v} n c_V = \frac{1}{\sigma} \sqrt{\frac{8kT}{\pi m}} \frac{i}{2} R \propto \sqrt{T}$$

В случае, когда тепло выделяется в длинном проводе, размещенном в оси полого цилиндра той же длины и теплопроводность стационарна, нетрудно получить, что тепловая мощность провода равна

$$Q = \frac{2\pi L}{\ln r_0/r_1} \kappa \Delta T$$

где r_1 – радиус провода, r_0 – радиус цилиндра, L – длина провода, ΔT – перепад температуры между проводом и стенками цилиндра.

2. Экспериментальная установка

Схема установки приведена на рис. 1. На оси полой цилиндрической трубки с внутренним диаметром $2r_0$ размещена металлическая нить диаметром $2r_1$ и длиной L. Полость трубки заполнена воздухом. Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура T_0 поддерживается постоянной.

Для измерения напряжения и тока используется два мультиметра, работающие в режимах вольтметра и амперметра соответственно. Подключение к нити $R_{\rm H}$ осуществляется по четырёхпроводной схеме. По двум проводам через сопротивление пропускается измерительный ток, а два других используются для параллельного подключения вольтметра.

Рис. 1: Схемы установки и цепи

3. Проведение эксперимента

1. Предварительно рассчитаем максимальные допустимые значения напряжения $U_{\mathrm{макс}}$ и $I_{\mathrm{макc}}$ тока на нити из формулы

$$Q = \frac{2\pi L}{\ln r_0/r_1} \kappa \Delta T$$

используя приближенные значения параметров установки. Получим:

$$U_{\text{Makc}} = 2,7 \ B \quad I_{\text{Makc}} = 130 \ mA$$

- 2. Выставим максимальное значение сопротивления на магазине сопротивлений. Включим вольтметр и амперметр, настроим их на нужный режим работы. Запустим источник питания и термостат.
- 3. Выставим на термостате комнатную температуру и будем фиксировать показания приборов, постепенно уменьшая сопротивление магазина R_n . Занесем данные в таблицу 2. Значения сопротивления R_n были предварительно рассчитаны таким образом, чтобы мощность, выделяемая проволокой, возрастала монотонно в диапазоне от 0 до Q_{max} (таблица 1).
- 4. Вновь выставим на магазине максимальное сопротивление.
- 5. Повторим предыдущие два пункта еще шесть раз постепенно увеличивая температуру термостата и дожидаясь ее установления.
- 6. Выключим все измерительные приборы, блок питания, на магазине сопротивлений установим максимальное сопротивление, а на термостате установим комнатную температуру.

4. Обработка данных

- 7. Для каждой температуры построим зависимость R(Q) $(R = \frac{U}{I}, Q = UI)$. Через точки проведем прямую МНК. Рассчитаем значения $R_0 = R(0)$ и $\frac{\mathrm{d}R}{\mathrm{d}Q}$ и занесем их в таблицу 3.
- 8. Через точки R_0 , полученные в предыдущем пункте, построим прямую МНК. Получим зависимость R(T). Рассчитаем температурный коэффициент сопротивления нити α по формуле:

$$\alpha = \frac{1}{R(T_0)} \frac{\mathrm{d}R}{\mathrm{d}T}, \quad T_0 = 273 \text{ K}$$

9. Используя результаты предыдущих пунктов, вычислим наклон зависимости выделяющейся на нити мощности Q от ее перегрева ΔT относительно стенок:

$$\frac{\mathrm{d}Q}{\mathrm{d}\Delta T} = \frac{\mathrm{d}R}{\mathrm{d}T}/\frac{\mathrm{d}R}{\mathrm{d}Q}$$

Дополним таблицу 2.

10. Зная, что $\frac{\mathrm{d}Q}{\mathrm{d}\Delta T} = \frac{2\pi L}{\ln r_0/r_1} \kappa$, вычислим значение коэффициента теплопроводности κ :

$$\kappa = \frac{\ln r_0 / r_1}{2\pi L} \frac{\mathrm{d}Q}{\mathrm{d}\Delta T}$$

Результаты также занесем в таблицу.

11. Построим график зависимости $\kappa(T)$ в двойной логарифмическом масштабе. Заметим, что на прямую ложатся только первые три точки, поэтому будем использовать только их. Определим показатель степени в зависимости $\kappa \propto T^{\beta}$.

5. Расчет погрешностей

Определим относительную погрешность величин, полученных в пункте 7. Пусть зависимость R(Q) имеет вид R=kQ+b. Тогда:

$$\varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}O}} = \sqrt{\varepsilon_k^2 + \varepsilon_U^2 + \varepsilon_I^2} = 0,9\%$$

$$\varepsilon_{R_0} = \sqrt{\varepsilon_b^2 + \varepsilon_U^2 + \varepsilon_I^2} = 0,08\%$$

Определим погрешность $\frac{\mathrm{d}R}{\mathrm{d}T}$ из МНК:

$$\varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}T}} = \sqrt{\varepsilon_k^2 + \varepsilon_{R_0}^2 + \varepsilon_t^2} = 2,0\%$$

Величина $1/\varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}T}}\approx 50$ удовлетворяет критерию Стьюдента при n-k-1=1 и p=0,95, равному 12,7.

Погрешность величины α выражается по формуле:

$$\varepsilon_{\alpha} = \sqrt{\frac{\sigma_k^2 T_0^2 + \sigma_b^2}{(kT_0 + b)^2} + \varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}T}}^2} = 2,0\%$$

$$\alpha = 3, 2 \pm 0, 01 \ \frac{10^{-3}}{\text{K}}$$

Найдем погрешность $\frac{\mathrm{d}Q}{\mathrm{d}\Delta T}$:

$$\varepsilon_{\frac{\mathrm{d}Q}{\mathrm{d}\Delta T}} = \sqrt{\varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}Q}}^2 + \varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}T}}^2} = 2,2\%$$

Вычислим погрешность коэффициента теплопроводности:

$$\varepsilon_{\kappa} = \sqrt{\frac{\varepsilon_{r_0}^2 + \varepsilon_{r_1}^2}{\ln^2(r_0/r_1)} + \varepsilon_L^2 + \varepsilon_{\frac{\mathrm{d}Q}{\mathrm{d}\Delta T}}^2} = 2,6\%$$

Наконец, определим погрешность коэффициента β :

$$\frac{\sigma_{\beta}}{\beta} = \frac{1}{\beta} \sqrt{\varepsilon_{\kappa}^2 + \varepsilon_t^2 + \sigma_k^2} = 13\%$$
$$\beta = 0.27 \pm 0.06$$

6. Вывод

В результате работы, несмотря на осложнения, вызванные данными, полученными при высоких температурах термостата, получилось определить температурный коэффициент сопротивления платины α , приближенный к его действительному значению = $3,9\cdot 10^{-3}~\frac{1}{\rm K}$. Однако коэффициент β сильно отличнается от настоящего значения, равного = 0,5.

7. Приложения

η	0,01	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$R_{\rm m}, {\rm Om}$	207	50	28,4	19	13,4	9,5	6,7	4,5	2,7	1,2	0

Таблица 1: Значения $R_{\text{м}}$, подобранные для монотонного возрастания мощности, выделяемой нитью ($Q = \eta \cdot Q_{\text{макс}}$)

Таблица 2: Результаты измерений и вычислений

T, °C	гаолица 2. гезультаты измерении и вычислении 23												
U, V	0,31	0,98	1,37	1,67	1,91	2,1	2,3	2,51	2,6	3,32	3,5		
I, A	0,015	0,047	0,065	0,077	0,088	0,096	0,104	0,111	0,113	0,143	0,15		
R, Ω	$\frac{0,013}{20,6}$	20,9	21,1	21,6	21,7	21,9	22,1	22,6	23,0	23,2	23,3		
Q, W	$\frac{20,0}{0,004}$	0,046	0,091	0,131	0,168	0,202	0,239	0,279	0,2938	0,474	0,525		
<i>♥</i> , * *	0,004	0,040	0,001	0,101	0,100	0,202	0,200	0,213	0,2300	0,414	0,020		
T, °C	30												
U, V	0,32	1,01	1,38	1,67	1,92	2,14	2,31	2,47	2,62	3,33	3,5		
I, A	0,015	0,047	0,064	0,076	0,087	0,095	0,102	0,109	0,115	0,14	0,15		
R, Ω	21,3	21,4	21,5	21,9	22,0	22,5	22,6	22,6	22,7	23,7	23,8		
Q, W	0,0048	0,047	0,088	0,127	0,167	0,203	0,236	0,262	0,301	0,466	0,515		
T, °C	40												
U, V	0,33	1,03	1,42	1,72	1,96	2,16	2,34	2,5	2,64	2,78	3,5		
I, A	0,015	0,046	0,063	0,076	0,086	0,094	0,101	0,107	0,113	0,118	0,143		
R, Ω	22	22,4	22,5	22,6	22,8	22,9	23	23,3	23,4	23,5	24,47		
Q, W	0,00495	0,0474	0,0894	0,131	0,168	0,203	0,236	0,267	0,291	0,328	0,501		
T, °C			1		ı	50		ı	ı				
U, V	0,34	1,05	1,45	1,74	1,98	2,1	2,4	2,5	2,6	2,8	2,9		
I, A	0,015	0,046	0,062	0,074	0,084	0,092	0,099	0,103	0,106	0,113	0,117		
R, Ω	22,6	22,8	23,3	23,5	23,6	23,8	24,2	24,3	24,5	24,7	24,8		
Q, W	0,0051	0,048	0,0899	0,128	0,166	0,185	0,237	0,257	0,275	0,316	0,339		
T. 0.C													
T, °C		1.05			2.01	60	2.22		2.60	2.01	2.02		
U, V	0,35	1,07	1,47	1,77	2,01	2,21	2,38	2,54	2,68	2,81	2,92		
I, A	0,015	0,045	0,0618	0,073	0,083	0,089	0,095	0,106	0,11	0,113	0,114		
R, Ω	23,3	23,7	23,8	24,2	24,5	24,8	25,05	25,1	25,2	25,5	25,6		
Q, W	0,0052	0,0481	0,0908	0,1292	0,1648	0,1966	0,226	0,256	0,284	0,309	0,332		
T, °C	70												
U, V	0,36	1,09	1,5	1,78	2,03	2,23	2,4	2,56	2,7	2,83	2,94		
I, A	0,015	0,045	0,061	0,072	0,082	0,089	0,095	0,101	0,106	0,11	0,114		
R, Ω	24	24,2	24,5	24,7	24,75	25,32	25.26	25,3	25,4	25,72	25,8		
Q, W	0,0054	0,049	0,0915	0,128	0,166	0,214	0,228	0,258	0,286	0,311	0,335		
<u> </u>	,	,			,	,	L '	_ ′	,				

$t, ^{\circ}C$	23	30	40	50	60	70
R_0 , Om	20,78	21,22	22,02	22,57	23,29	23,97
$\frac{\mathrm{d}R}{\mathrm{d}Q}$, OM/MBT	5,43	5,21	4,69	6,73	7,09	5,44
$\frac{dQ}{d\Delta T}$, MBT/K	12,4	13,0	14,4	10,07	9,55	12,45
$\kappa, \text{ MBT/(M \cdot K)}$	24,4	25,6	28.3	19,8	18,8	24,5

Таблица 3: Значения параметров для различных температур

Рис. 2: Графики зависимостей R(Q) для различных температур

Рис. 3: Графики зависимости R(T)

Рис. 4: Графики зависимости $\ln \kappa (\ln T)$