2016-MA- 14-26

1

EE24BTECH11021 - Eshan Ray

- 14) Consider a real vector space V of dimension n and a non-zero linear transformation $T: V \to V$. If dimension (T(V)) < n and $T^2 = \lambda T$, for some $\lambda \in R \setminus \{0\}$, then which of the following statements is TRUE?
 - a) determinant(T) = $|\lambda|^n$
 - b) There exists a non-trivial subspace V_1 of V such that T(X) = 0 for all $X \in V_1$
 - c) T is invertible
 - d) λ is the only eigenvalue of T
- 15) Let $S = [0, 1) \cup [2, 3]$ and $f: S \to R$ be a strictly increasing function such that f(S) is connected. Which of the following statements is TRUE?
 - a) f has exactly two discontinuity
 - b) f has exactly two discontinuities
 - c) f has infinitely many discontinuities
 - d) f is continuous
- 16) Let $a_1 = 1$ and $a_n = a_{n-1} + 4, n \ge 2$. Then,

$$\lim_{n \to \infty} \left[\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_{n-1} a_n} \right]$$

is equal to ...

- 17) Maximum $\{x + y : (x, y) \in \overline{B(0, 1)}\}$ is equal to ...
- 18) Let $a, b, c, d \in R$ such that $c^2 + d^2 \neq 0$. Then, the Cauchy problem

$$au_x + bu_y = e^{x+y}, \quad x, y \in R$$

$$u(x, y) = 0 \text{ on } cx + dy = 0$$

has a unique solution if

- a) $ac + bd \neq 0$
- b) $ad bc \neq 0$
- c) $ac bd \neq 0$
- d) $ad + bc \neq 0$
- 19) Let u(x, y) be the d'Alembert's solution of the initial value problem for the wave equation

$$u_{tt} - c^2 u_{xx} = 0$$

$$u(x,0) = f(x), u_t(x,0) = g(x),$$

where c is a positive real number and f,g are smooth odd functions. Then, u(0,1) is equal to ...

20) Let the probability density function of a random variable X be

$$f(x) \begin{cases} x & 0 \le x < \frac{1}{2} \\ c(2x-1)^2 & \frac{1}{2} < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Then, the value of c is equal to ...

- 21) Let *V* be the set of all solutions of the equation y'' + ay' + by = 0 satisfying y(0) = y(1), where *a*, *b* are positive real numbers. Then, dimension(*V*) is equal to...
- 22) Let y'' + p(x)y' + q(x)y = 0, $x \in (-\infty, \infty)$, where o(x) and q(x) are continuous functions. If $y_1(x) = \sin(x) 2\cos(x)$ and $y_2(x) = 2\sin(x) + \cos(x)$ are two linearly independent solutions of the above, equation, then |4p(0) + 2q(1)| is equal to ...
- 23) Let $P_n(x)$ be the Legendre polynomial of degree n and $I = \int_{-1}^{1} x^k P_n(x) dx$, where k is a non-negative integer. Consider the following statements P and Q:
 - (P): I = 0 if k < n.
 - (Q): I = 0 if n k is an odd integer.

Which of the above statements hold TRUE?

- a) both P and Q
- b) only P
- c) only Q
- d) Neither P nor Q
- 24) Consider the following statements P and Q:
 - (P): $x^2y'' + xy' + \left(x^2 \frac{1}{4}\right)y = 0$ has two linearly independent Frobenius series solution near x = 0.
 - (Q): $x@y'' + 3\sin(x)y' + y = 0$ has two linearly independent Frobenius series solution near x = 0.

Which of the above statements hold TRUE?

- a) both P and Q
- b) only P
- c) only Q
- d) Neither P nor Q
- 25) Let the polynomial x^4 be approximated by a polynomial of degree ≤ 2 , which interpolates x^4 at x=-1,0 and 1. Then, the maximum absolute interpolation error over the interval [-1,1] is equal to ...
- 26) Let (z_n) be a sequence of distinct points in $D(0,1) = \{z \in C : |z| < 1\}$ with $\lim_{n \to \infty} z_n = 0$. Consider the following statements P and Q:
 - (P): There exists a unique analytical function f on D(0,1) such that $f(z_n) = \sin(z_n)$ for all n.
 - (Q): There exists an analytical function f on D(0, 1) such that $f(z_n) = 0$ if n is even and $f(z_n) = 1$ if n is odd.

Which of the above statements hold TRUE?

- a) both P and Qb) only P
- c) only Q
- d) Neither P nor Q