Total No. of Questions: 8]	SEAT No. :
P4299	[Total No. of Pages : 2

[5255]-1054

M. E. (E & TC) (VLSI & Embedded Systems) DIGITAL CMOS DESIGN (2017 Pattern)

Time	:3 I	Hours] [Max. Mark	xs : 50
Instr	uctio	ons to the candidates:	
	<i>1</i>)	Answer any five questions.	
	<i>2</i>)	Assume suitable data if necessary.	
	<i>3</i>)	Neat diagrams must be drawn wherever necessary.	
	4)	Use of nonprogrammable calculator is allowed.	
Q 1)	a)	What is technology scaling? Explain the types & effects in detail.	[5]
	b)	Explain any one type of CMOS fabrication process in detail.	[5]
Q2)	a)	Derive the expressions for static & dynamic power dissipations in C	MOS
		logic. Compare these dissipations.	[5]
	b)	Explore delay estimation techniques in detail.	[5]
Q 3)	a)	Draw ac equivalent ckt of MOSFET & explain various performation parameters.	nance [4]
	b)	Explain various resistances & capacitances pertaining to MOSF wire interconnect that are involved in layout.	ET & [4]
	c)	Draw layout cross section diagram of CMOS Inverter and mention dimensions.	on the [2]
Q4)	a)	Certain logic has load of 10 pF, supply voltage of 1 Volt & opera 1GHz. Calculate total dissipation if number of MOSFETs is 100 & le current per MOSFET is 1 pA. Calculate power delay product fo logic if propagation delay is 10ps.	akage
	b)	What is cross talk? What are the sources & solutions?	[4]
	c)	Write note on fan in & fan out.	[2]

Q5)	a)	Design CMOS logic for Y=ABC + D + EF. Calculate active area. Assutechnology of 90 nm.	
	b)	Draw a flip flop using Transmission Gates (TG) & its timing diagram	m.[4]
	c)	Explain the concept of tristate logic?	[2]
Q6)	a)	Draw FSM diagram & write HDL code for 1110 Moore sequence detect	or.[4]
	b)	What are the sources of metastability? What are the solutions? Exwith example.	plore [4]
	c)	What are the merits & demerits of Transmission Gates?	[2]
Q7)	a)	With the help of schematic, explain the concept of ratioed ckts.	[4]
	b)	Explore domino logic in detail.	[4]
	c)	Write note on materials for performance improvement.	[2]
Q8)	a)	Explain dynamic ckts.	[4]
	b)	What are the methodologies for high speed design? Explain any o them.	ne of [4]
	c)	What is need of BiCMOS? Explain in brief.	[2]
		What is need of BiCMOS? Explain in brief.	2.