第6回 演習問題 解答

▶ 問題1

- 下左表は、JKフリップフロップの真理値表である。JKフリップフロップは、 クロックCが、1から0になるごとに(すなわち、クロックの立下りをトリガ として)、真理値表に示した動作をする。ここで、Q_n、Q_{n+1}は、あるクロッ ク周期nでの出力、その直後のクロック周期n+1での出力を、それぞれ 表す。
- ▶ 下右図に示したJKフリップフロップを2個用いて構成した回路の状態変化を示せ、(タイミングチャートのひな型を次ページに示す。)

J	K	Q_{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}}_{n}$

▶ 問題1(続き)

J	K	Q_{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}}_{n}$

▶ 問題1 解答

J	K	Q_{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}}_{n}$

▶ 問題2

下図の組み合わせ回路を、 メモリを用いて実現したい。 メモリに格納すべき値を、 右表に記入せよ。

アドレス D ₃ D ₂ D ₁ D ₀	格納データ Q ₃ Q ₂ Q ₁ Q ₀
0000	
0001	
0010	
0011	
0 1 0 0	
0 1 0 1	
0 1 1 0	
0 1 1 1	
1000	
1001	
1010	
1011	
1 1 0 0	
1 1 0 1	
1 1 1 0	
1111	

- ▶ 問題2 解答
 - 下図の組み合わせ回路を、 メモリを用いて実現したい。 メモリに格納すべき値を、 右表に記入せよ。

アドレス	格納データ
$D_3D_2D_1D_0$	$Q_3Q_2Q_1Q_0$
0000	1000
0001	1 1 1 0
0010	1 1 1 0
0011	1010
0100	1 1 1 0
0 1 0 1	1010
0 1 1 0	1010
0 1 1 1	1 1 1 0
1000	0 1 1 0
1001	0010
1010	0010
1011	0 1 1 0
1 1 0 0	0010
1 1 0 1	0 1 1 0
1110	0 1 1 0
1111	0011

▶ 問題3

▶ 下左図の真理値表で示される組み合わせ回路を, 下右図のPLAにて 構成したい. 接続する必要のある交点に, 黒丸を記入せよ. なお, 未接

続配線は、論理値0とする.

D_1	D ₂	D ₃	Q_1	Q ₂	Q ₃
0	0	0	1	0	0
1	0	0	1	1	0
0	1	0	1	0	0
1	1	0	0	1	0
0	0	1	1	1	0
1	0	1	1	0	0
0	1	1	1	0	0
1	1	1	0	0	1

▶ 問題3 解答

▶ 下左図の真理値表で示される組み合わせ回路を, 下右図のPLAにて 構成したい. 接続する必要のある交点に, 黒丸を記入せよ. なお, 未接

続配線は、論理値0とする.

D_1	D ₂	D ₃	Q_1	Q ₂	Q ₃
0	0	0	1	0	0
1	0	0	1	1	0
0	1	0	1	0	0
1	1	0	0	1	0
0	0	1	1	1	0
1	0	1	1	0	0
0	1	1	1	0	0
1	1	1	0	0	1

