Computational Mathematics

Ikhan Choi

October 17, 2022

Contents

Ι	Numerical analysis	3
1	Ordinary differential equations 1.1 Polynomial interpolations	4 4 4 4
2	Numerical linear algebra	5
3	Finite difference methods 3.1 Elliptic equations	6 6 6
4	Finite element methods	7
5	Optimization 5.1 Convex optimization	8 8 8 8 8
II	Information theory	10
7	Communication theory	11
8	Coding theory	12
9	Cryptography	13
III	Mathematical statistics	14
10	Statistical models	15
11	Statistical inference 11.1 Parametric inference	16 16 16

Part I Numerical analysis

Ordinary differential equations

- 1.1 Polynomial interpolations
- 1.2 Differentiation and integration
- 1.3 Runge-Kutta methods
- 1.4 Multi-step methods

Numerical linear algebra

Finite difference methods

3.1 Elliptic equations

3.1 (1D Poisson equation). Consider the following boundary value problem:

$$\begin{cases}
-u''(x) = f(x), & \text{in } (0,1), \\
u(0) = u(1) = 0.
\end{cases}$$

We discretize it by $(u_j)_{j=0}^N$ such that hN=1 and

$$\begin{cases} -\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} = f_j, & \text{for } j = 1, \dots, N-1, \\ u_0 = u_N = 0. \end{cases}$$

$$\frac{1}{h^2} \begin{pmatrix} 2 & -1 & & 0 \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ 0 & & -1 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{N-1} \end{pmatrix}$$

eigenvalue problems

3.2 Parabolic equations

3.3 Hyperbolic equations

CFD

Finite element methods

Optimization

- 5.1 Convex optimization
- 5.2 Optimal control
- 5.3 Operations research

theory of decision making

5.4 Mathematical programming

Monte Carlo method

Part II Information theory

Communication theory

shannon's theory

Coding theory

Cryptography

Part III Mathematical statistics

Statistical models

Statistical inference

estimation, testing hypothesis, ranking, selection

- 11.1 Parametric inference
- 11.2 Non-parametric inference