AIRCRAFT DESIGN

Wing and Power Loading – Constraint Diagram

Performance Requirements

Normally there few performance requirements that the aircraft needs to achieve:

- Stall Speed
- Take-off and Landing distance
- Cruise Speed (or maximum speed)
- Rate of climb
- Time to climb
- Maneuverability

Design Parameters

Few design parameters are directly related with these performance requirements:

- Wing Loading
- Thrust or Power
- Maximum Lift Coefficient (for all the configurations possible)

Algorithm

The constraint diagram is a method to graphically determine a range of design parameters (wing loading, thrust/weight and maximum lift coefficient) that guarantee that the aircraft will comply with the performance requirements.

Algorithm

□ In general, the requirements states:

$$V_S \leq \sim V_{S \lim ite}$$

Requirement	CS-VLA	Part 23	Part 25	LSA
$V_{Slimite}$	45kts (flaped)	61kts	NA	45kts(no flap)

Assuming equilibrium of vertical forces :

$$V_{_{S}}=\sqrt{rac{2W\!\!\left/S
ight.}{
ho C_{_{L\,\mathrm{max}}}}}$$

 Knowing the required stall speed, there is a clear relation between wing loading, for a given maximum lift coefficient that need to be satisfied.

$$\frac{V_{S \lim ite}^2 \rho}{2} C_{L \max} \ge W / S$$

- The maximum lift coefficient changes with:
 - Wing airfoil type
 - Type and position of the high lifting devices

Aircraft type	C_{Lmax}	C_{LmaxTO}	C_{LmaxLD}
HomeBuilt	1.2-1.8	1.2-1.8	1.2-2.0
Single engine	1.3-1.9	1.3-1.9	1.6-2.3
Twin Engine	1.2-1.8	1.4-2.0	1.6-2.5
Crop duster	1.3-1.9	1.3-1.9	1.3-1.9
Corporate Jet	1.4-1.8	1.6-2.2	1.6-2.6
TP Regional	1.5-1.9	1.7-2.1	1.9-3.3
Transport Jet	1.2-1.8	1.6-2.2	1.8-2.8
Military trainner	1.2-1.8	1.4-2.0	1.6-2.2
Fighter	1.2-1.8	1.4-2.0	1.6-2.6
Bomb./Patr.	1.2-1.8	1.6-2.2	1.8-3.0
Anphybian	1.2-1.8	1.6-2.2	1.8-3.4
Supersonic Transp.	1.2-1.8	1.6-2.0	1.8-2.2

 $C_{_{\!L1}} < C_{_{\!L2}} < C_{_{\!L3}}$

- Take off distance is a parameter that depends of:
 - Takeoff weight
 - Takeoff speed
 - Weight-Power ration
 - Aerodynamic drag
 - Rolling resistance
 - Flight technique
 - Type of runway
- For our cases we will assume hard runways.

 $\hfill\Box$ Roskan (1997) presents an approximated relation between S_{TO} and S_{TOG} for Part 23 airplanes.

For PART 23 (propeller) airplanes, the following relation can be assumed:

$$S_{_{TOG}} \propto rac{W / S_{_{TO}} W / P_{_{TO}}}{\sigma C_{_{L \max TO}}} = TOP_{_{23}}$$

 \square TOP_{23} units are: lb^2/ft^2hp

□ In general, it is correct to assume:

$$C_{_{LTO}} = rac{C_{_{L \max TO}}}{1.21}$$

 \blacksquare Roskan (1997) presents a relation between S_{TOG} and $TOP_{\it 23}$

Therefore, it is possible to establish a relation between wing loading and power loading, for given values of maximum lift coefficient, such way that the take off distance stays smaller than the specified:

$$\begin{split} TOP_{23} & S_{TOG} \geq \frac{W \middle/ S \bigvee W \middle/ P}{\sigma C_{L \max TO}} \\ W \middle/ P \bigvee_{TO} \leq \frac{TOP_{23} & S_{TOG} & \sigma C_{L \max TO}}{W \middle/ S} \end{split}$$

□ For Part 25 airplanes:

$$S_{_{TOFL}} \propto rac{W / S}{\sigma C_{_{L \max TO}}} = TOP25$$

Since on PART25 it is possible to have propeller driven airplanes, (turbo props) it is necessary to have a relation between thrust and power during take off.

Therefore:

$$TOP25 \ S_{TOFL} \ \geq \frac{W/S}{\sigma C_{L \max TO}} \frac{T/W}{T/W}_{TO}$$

$$T/W_{TO} \geq \frac{W/S}{\sigma C_{L \max TO}} \frac{T/W}{TO} \frac{T/W}{TO}$$

- It is more complicated that the take off distance, since it depends of:
 - Weight
 - Approach speed
 - Deceleration devices (brakes, thrust reverser, drogue chute, tail hook, barriers)
 - Airplane handling
 - Flight technique

Relation W_L/W_{TO}

Aircraft type	Minimum	Average	Maximum
HomeBuilt	0.96	1.0	1.0
Single engine	0.95	0.997	1.0
Twin engine	0.88	0.99	1.0
Crop duster	0.7	0.94	1.0
Corporate Jet	0.69	0.88	0.96
Regional TP	0.92	0.98	1.0
Transport Jet	0.65	0.84	1.0
Military trainner	0.87	0.99	1.0
Fighter	0.78(jet)/0.57(TP)		1.0
Bomb./Patr.	0.68(jet)/0.77(TP)	0.76(jet)/0.84(TP)	0.83(jet)/1.0(TP)
Amphybian	0.79(jet)/0.98(TP)		0.95(jet)/1.0(TP)
Supersonic	0.63	0.75	0.88

□ Part 23:

□ However, we can write:

$$V_{\scriptscriptstyle SL}^2 = rac{2W_{\scriptscriptstyle L}}{
ho SC_{_{L \max L}}}$$

Therefore:

$$\left(\frac{W_{L}}{S}\right) \leq \frac{S_{L}\rho C_{L\max L}}{2 \cdot 0.5136}$$

□ Part 25:

$$S_{FL}[ft] = 0.3V_A^2[kt]$$

□ Same way that was done on Part 23 case:

$$V_A^2 = \frac{2W_L}{\rho SC_{L\max L}}$$

Therefore:

$$\left(\frac{W_{L}}{S}\right) \leq \frac{S_{FL}\rho C_{L\max L}}{2 \cdot 0.3}$$

Rate of climb

- Conditions for PART 23 regulations
 - Power and engine conditions (§23.45)
 - AOE (All Engine Operating (§23.65)
 - Minimum rate of climb 300ft/min
 - Min. climb gradient 1:12 (land)/1:15(amph.)
 - Retracted landing gear
 - TO flaps
 - Cowl flaps on adequate position

Rate of Climb

- □ OEI (One Engine Inoperative §23.67)
 - $lue{}$ Multi engine $W_{TO} < 6000 lbs$
 - Min. rate of climb

$$0.027V_{SO}^2[kts]ft/min @ 5000ft$$

- Critical Engine not operating
- Non operating prop on minimum drag position
- Landing gear retracted
- Flaps on most favorable position
- Cowl-flaps adequate
- $\,\Box\,$ Verify conditions for $\,W_{TO}{>}6000lbs$ and jet planes.

- □ Go-around §23.77
 - Minimum gradient 1:30
 - Take off weight
 - Extended landing gear
 - Landing flaps, unless they can't be retracted in less than 2 seconds.

Dimensioning by rate of climb

$$RC = \frac{dh}{dt} = 33000RCP[ft / min]$$

$$RCP = \frac{\eta_p}{W/P} - \left(\frac{\left(\frac{W}{S}\right)^{\frac{1}{2}}}{19 C_L^{3/2}/C_D \sigma^{\frac{1}{2}}}\right)$$

For propeller driven airplanes the maximum rate of climb will be with maximum:

$$C_L^{3/2} \Big/ C_D$$

Therefore, it must happen:

$$C_{LRC\, ext{max}} = \ 3C_{D0}\pi Ae^{rac{1}{2}}$$
 $C_{L}^{3/2}/C_{D}_{RC\, ext{max}} = rac{1.345\ Ae^{3/4}}{C_{C0}^{1/4}}$

In general the conditions for best gradient happens at really low airspeed, really close to the stall. Therefore, it is necessary to define a margin from minimum speed, for instance:

$$C_{LCGR} = C_{L \max} - 0.2$$

Time to Climb

Time to Climb

Assuming that the relation between rate of climb and altitude is linear, we can write:

$$R_{\scriptscriptstyle C} = \biggl(1 - \frac{h}{h_{\scriptscriptstyle abs}}\biggr) R_{\scriptscriptstyle C0}$$

Time to Climb

Table 3.7 Typical Values for the Absolute Ce	iling, h _{abs}
Airplane Type	h abs
	(ft)x10 ⁻³
Airplanes with piston-propeller combinations	:
normally aspirated	12-18
supercharged	15-25
Airplanes with turbojet or turbofan engines:	
Commercial	40-50
Military	40-55
Fighters	55-75
Military Trainers	35-45
Airplanes with turbopropeller or propfan eng	ines:
Commercial	30-45
Military	30-50
Supersonic Cruise Airplanes (jets)	55-80

Tempo de Subida

If a time to climb is specified and the absolute ceiling is estimated, this problem becomes to determine the rate of climb at sea level.

$$R_{\!\scriptscriptstyle C0} = rac{h_{\!\scriptscriptstyle abs}}{t_{\!\scriptscriptstyle cl}} \ln\!\left(\!1 - rac{h}{h_{\!\scriptscriptstyle abs}}\!
ight)^{\!\!-1}$$

Ceiling

The ceiling specification is generally a specification of rate of climb at altitude. Therefore, we should procedure normally as a rate of climb especification.

Ceiling

Ceiling Type	Minimu Climb	ım Requi: Rate	red
Absolute ceiling	0	fpm	
Service ceiling Commercial/Piston-propeller Commercial/jet Military at maximum power	500	fpm fpm fpm	
Combat ceiling Military/Subsonic/maximum power Military/Supersonic/maximum power		fpm at 1	
Cruise ceiling Military/Subsonic/max.cont. power Military/Supersonic/max.cont. power		fpm at 1	

Power Excess

□ The definition of power excess is:

$$P_{\scriptscriptstyle S} = \frac{dh_{\scriptscriptstyle e}}{dt} = \frac{T - D \ V}{W} = \left[\left(\frac{T}{W} \right) - \left(\frac{D}{W} \right) \right] V$$

where (specific energy):

$$h_{_{e}}=rac{V^{2}}{2g}+h_{_{e}}$$

- The specification of maneuverability, in general, is done with the concept of sustained turn.
- Which is the maximum load factor that the airplane can fly, at an certain altitude (sometimes with airspeed constraints as well).
- It is strongly dependent of maximum lift coefficient and installed power (or thrust).

From the leveled flight, we can write:

$$nW = qSC_L \Rightarrow n = qC_L \left(\frac{W}{S}\right)^{-1}$$

This load factor can only be sustained if there is thrust available.

$$\begin{split} T &= qSC_{D0} + qS\bigg(\frac{C_L^2}{\pi Ae}\bigg) \\ \frac{T}{W} &= qC_{D0}\bigg(\frac{W}{S}\bigg)^{-1} + \bigg(\frac{W}{S}\bigg)n^2\bigg(\frac{1}{\pi Aeq}\bigg) \end{split}$$

In terms of power:

$$\begin{split} P &= VqSC_{D0} + VqS\bigg(\frac{C_L^2}{\pi Ae}\bigg) \\ \frac{W}{P} &= \left[\frac{1}{2}\rho V^3C_{D0}\bigg(\frac{W}{S}\bigg)^{-1} + \bigg(\frac{W}{S}\bigg)n^2\bigg(\frac{1}{\pi Ae\frac{1}{2}\rho V}\bigg)\right]^{-1} \end{split}$$

It is possible to derive a relation between the load factor and the turn rate.

$$\dot{\psi} = \frac{g}{V} n^2 - 1^{\frac{1}{2}}$$

$$n = \left[\left(\frac{V\dot{\psi}}{g} \right)^2 + 1 \right]^{\frac{1}{2}}$$

It must have power or thrust equilibrium:

$$\begin{split} P &= TV = VqSC_{_D} \\ 550SHP\eta_{_p} &= \frac{1}{2}\rho V^3SC_{_D} \end{split}$$

 Assuming small induced drag for maximum or cruise speed.

$$\begin{split} V \propto & \left[\left(\frac{W}{S} \right) \left(\frac{P}{W} \right) \left(\frac{\sigma C_{D0}}{\eta_p} \right) \right]^{\frac{1}{3}} \Rightarrow V \propto I_P \\ I_P = & \left[\left(\frac{W}{S} \right) \left(\frac{P}{W} \right) \frac{1}{\sigma} \right]^{\frac{1}{3}} \end{split}$$

For jet planes:

$$\frac{T}{W} = C_{D0}q \left(\frac{W}{S}\right)^{-1} + \frac{W}{S} \frac{1}{q\pi Ae}$$

