第1章

まとめと今後の展望

本研究では 12 C $(n,n')^{12}$ C Hoyle 反応の断面積測定のための実験条件の検討を行った. 12 C $(n,n')^{12}$ C Hoyle 反応において、崩壊してできる α 粒子の持つエネルギーが数百 keV と小さいことが分かった。また、広い角度に放出されることも分かった。そこで、 12 C Hoyle から放出される 3 つの低エネルギー α 粒子をすべて検出するために、低エネルギーの荷電粒子を大立体角で検出できる MAIKo TPC を用いて測定行うことを決定した。

MAIKo TPC では α 粒子のエネルギーを取得されたトラックの長さから決定するため, α 粒子が MAIKo TPC の有感領域で停止するとが必要となる.しかし,トラックが短くなるとトラックを識別できなくなるため,適当な物質厚であることが必要となる.そのようなガスとして, CH_4 (50 hPa), CH_4 (3) + H_2 (7) (100 hPa), CH_4 (4) + H_2 (6) (100 hPa),iso- C_4H_{10} (1) + H_2 (9) (100 hPa),iso- C_4H_{10} (1) + H_3 (9) (100 hPa) の 5 種類を検出ガスの候補とした.検出ガスの種類によっては電子のディフュージョン効果が大きく,荷電粒子のトラックが太く検出される.太いトラックでは 3 つの α 粒子を正しく識別できないため,ディフュージョンの効果が小さいことが求められる.ディフュージョンの効果において, CH_4 (3) + H_2 (7) と iso- C_4H_{10} (1) + H_2 (9) が有力であることが分かった.また,実際の測定で取得されるであろうトラックをシミュレーションにより生成し,実際に解析を行うことで検出ガスの評価を行った.評価の結果, CH_4 (3) + H_2 (7) と iso- C_4H_{10} (1) + H_2 (9) では大きな優劣の差は見られなかった.そこで,体積当たりの 12 C の含有量の多い iso- C_4H_{10} (1) + H_2 (9) を検出ガスとして決定した.

2/25-2/28 の 4 日間で OKTAVIAN で 14 MeV の中性子を用いた測定を行う予定である。本研究で決定した検出ガスを用いて測定を行う.