Solutions of the retry exam problems (V3A1, Algebra I)

Exercise A. i) We have $\operatorname{Spec} \mathbb{Z}_{(p)} = \{ \mathfrak{q} \in \operatorname{Spec} \mathbb{Z} \colon \mathfrak{q} \subset (p) \} = \{ (0), (p) \}$, so the dimension $\dim \mathbb{Z}_{(p)} = 1$, and the chain is $(0) \subset (p)$.

- ii) Spec $\mathbb{Z}_p = \{ \mathfrak{q} \in \operatorname{Spec} \mathbb{Z} : p \notin \mathfrak{q} \}$. The only inclusions between prime ideals in \mathbb{Z} are $(0) \subset (q)$, and for $q \neq p$ this gives a chain of maximal length in \mathbb{Z}_p , so dim $\mathbb{Z} = 1$.
- iii) Consider the morphism $\mathbb{Z}_p[T] \to \mathbb{Z}_p[X,1/X]$, $T \mapsto X+1/X$. This is an integral ring extension, since the generators X and 1/X are integral over $\mathbb{Z}_p[T]$: $X^2 TX + 1 = 0$, $(1/X)^2 T(1/X) + 1 = 0$. Hence the dimension is the same as for $\mathbb{Z}_p[T]$, which is dim $\mathbb{Z}_p[T] = \dim \mathbb{Z}_p + 1 = 2$, because \mathbb{Z}_p is Noetherian. The maximal chain: $(0) \subset (X-1) \subset (X-1,l)$ for a prime $l \neq p$.
- iv) $\mathbb{Z}_{(p)}[1/p] = \mathbb{Q}$, so the dimension dim $\mathbb{Q} = 0$, the only prime ideal is (0).

Exercise B. i) Note that $\mathfrak{p}_1 = \{F \in A \colon F(1,1) = 0\}$. Let $F \in \mathfrak{p}_2$, then $F = X \cdot G(X,Y)$, so F(1,1) = F(0,0) = 0 and $F \in \mathfrak{p}_1$.

- ii) We have X(X-1), $X(Y-1) \in \mathfrak{p}_2$. If $(f) \cap A = \mathfrak{p}_2$, then $X(X-1) = f \cdot g_1$, $X(Y-1) = f \cdot g_2$ and since f is irreducible, f = X (up to a constant).
- iii) Let $\mathfrak{q}_1 = (X-1,Y-1)$. Suppose we have an ideal $\mathfrak{q}_2 \subset \mathfrak{q}_1$ with $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$. Then $X(X-1) \in \mathfrak{q}_2$ and $X(Y-1) \in \mathfrak{q}_2$ and necessarily $X \in \mathfrak{q}_2$: otherwise we would have $X-1,Y-1 \in \mathfrak{q}_2$, hence $X-Y \in \mathfrak{q}_2 \cap A = \mathfrak{p}_2$ which is false. But $X \notin \mathfrak{q}_1$, so this is a contradiction.
- iv) The going-down theorem states that if $A \subset B$ is an integral extension of domains, where A is a normal, then for any pair of prime ideals $\mathfrak{p}_2 \subset \mathfrak{p}_1 \subset A$ and a prime ideal $\mathfrak{q}_1 \subset B$ with $\mathfrak{q}_1 \cap A = \mathfrak{p}_1$ there exists a prime ideal $\mathfrak{q}_2 \subset \mathfrak{q}_1$ with $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$.

In our case A is not normal: the element X lies in the quotient field of A, $X = \frac{X^2(X-1)}{X(X-1)}$, and satisfies the equation $t^2 - t - (X-1)X = 0$, but $X \notin A$.

Exercise C. i) By Nakayama's lemma there exists an element $e \in \mathfrak{a}$, such that $(1-e)\mathfrak{a} = 0$. In particular, (1-e)e = 0, so e is idempotent, and for any $a \in \mathfrak{a}$ we have (1-e)a = 0, so $a \in (e)$. ii) For any prime ideal $\mathfrak{p} \in A$ the elements of the quotient A/\mathfrak{p} satisfy the same identity: for $b \in A/\mathfrak{p}$ there exist n > 0 such that $b(b^{n-1} - 1) = 0$. A/\mathfrak{p} has no zero divisors, so b is either zero or invertible, so A/\mathfrak{p} is a field and \mathfrak{p} is maximal. A ring for which any prime ideal is maximal has dimension zero.

Exercise D. A ring is called normal if it is an integral domain which is integrally closed in its field of fractions.

- i) Not normal. The element X/Y satisfies the equation $t^2 Y^5 = 0$, but $X/Y \notin A$, because otherwise $X = Y \cdot G(X,Y)$ which is impossible.
- ii) Not normal. The element i = 3i/3 lies in the field of fractions and satisfies $t^2 + 1 = 0$, but $i \notin A$.
- iii) Normal. The ring is isomorphic to k[X].

Exercise E. i) Since k[X,Y] is UFD, any element $h \in k(X,Y)$ can be uniquely represented in the form $h = (X - Y)^n f/g$ with f and g not divisible by (X - Y). Define $\nu(h) = n$. Let's check that this is a discrete valuation. First, $\nu(h_1h_2) = \nu(h_1) + \nu(h_2)$ is obvious. Second, for $h_1 = (X - Y)^{n_1} f_1/g_1$ and $h_2 = (X - Y)^{n_2} f_2/g_2$ we have $h_1 + h_2 = (X - Y)^{\min(n_1, n_2)} f_3/g_3$ with $f_3, g_3 \in k[X, Y]$, and g_3 not divisible by (X - Y), so $\nu(h_1 + h_2) \ge \min(n_1, n_2) = \min(\nu(h_1), \nu(h_2))$. Finally, the map ν is surjective onto \mathbb{Z} , since $\nu((X - Y)^n) = n$. Clearly the ring A is the valuation ring for ν .

ii) Any element h with $\nu(h) = 1$ is uniformizing, for example h = X - Y.

Exercise F. i) To simplify things, define $y' = y - x^2$. Then $A = k[x, y', z]/(zy', z^2)$, and $\mathfrak{a}_1 = (y - x^2, z)^2 = (y', z)^2 = (y'^2, y'z, z^2)$. Then any $f \in A/\mathfrak{a}_1$ can be written in the form f = p(x) + q(x)y' + r(x)z. It is clear that if f is a zero-divisor, then p(x) = 0. In this case $f^2 = 0$, so any zero divisor in A/\mathfrak{a}_1 is nilpotent and \mathfrak{a}_1 is primary. The ideal (z) is prime because A/(z) = k[x, y] is a domain.

ii) Let us show that $(0) = (y', z)^2 \cap (z)$ in A. It is clearly enough to prove, that in k[x, y', z] we have $(y', z)^2 \cap (z) = (zy', z^2)$. Any $f \in (y', z)^2$ is of the form $f = p(x, y', z)y'^2 + q(x, y', z)zy' + r(x, y', z)z^2$ and such f is also in (z) if and only if p = 0. This proves the claim.

The prime ideals corresponding to the primary ideals of the decomposition are: $\mathfrak{p}_1 = (y', z)$ and $\mathfrak{p}_2 = (z)$. We have $\mathfrak{p}_2 \subset \mathfrak{p}_1$, so \mathfrak{p}_1 is embedded and \mathfrak{p}_2 is isolated.

- **Exercise G.** i) Since M is a submodule of A, and the ring A has no zero divisors, the elements of M have trivial annihilators, so localization $M_{\mathfrak{p}}$ at any prime ideal $\mathfrak{p} \subset M$ is non-zero. Hence $\mathrm{Ann}(M) = (0)$, $\mathrm{Supp}(M) = \mathrm{Spec}\,A$. The associated prime ideals are exactly the minimal elements of the support, so $\mathrm{Ass}(M) = \{(0)\}$.
- ii) For an ideal $I \subset A$ the module A/I is supported at $\mathfrak{p} \in \operatorname{Spec} A$ if and only if $(A/I)_{\mathfrak{p}} = A_{\mathfrak{p}}/IA_{\mathfrak{p}} \neq 0$, that is when $IA_{\mathfrak{p}} \neq A_{\mathfrak{p}}$. This is the case exactly when $I \subset \mathfrak{p}$. In our case I = (X Y), so $\operatorname{Supp}(M) = V(I) = \operatorname{Spec} A/(X Y)$. Trivially $\operatorname{Ann}(A/I) = I$, so $\operatorname{Ann}(M) = (X Y)$. The ideal (X Y) is prime, so it is the only minimal prime of $\operatorname{Supp}(M)$, hence $\operatorname{Ass}(M) = \{(X Y)\}$.
- iii) As in the previous case, M = A/I with $I = (X^2, Y^3)$, $Supp(M) = V(I) = V(\sqrt{I})$. But $\sqrt{I} = (X, Y)$ is maximal, so $Supp(M) = \{(X, Y)\}$. The annihilator $Ann(M) = (X^2, Y^3)$ and $Ass(X) = \{(X, Y)\}$.