HM514400B/BL Series HM514400C/CL Series

1,048,576-word × 4-bit Dynamic Random Access Memory

HITACHI

Rev. 1.0 Nov. 29, 1994

The Hitachi HM514400B/BL, HM514400C/CL are CMOS dynamic RAM organized 1,048,576-word × 4-bit. HM514400B/BL, HM514400C/CL have realized higher density, higher performance and various functions by employing 0.8 µm CMOS process technology and some new CMOS circuit design technologies. The HM514400B/BL, HM514400C/CL offer Fast Page Mode as a high speed access mode. Multiplexed address input permits the HM514400B/BL, HM514400C/CL to be packaged in standard 300-mil 26-pin plastic SOJ, standard 400-mil 20-pin plastic ZIP and 26-pin plastic TSOP II.

Features

- Single 5 V (±10%)
- · High speed
 - Access time60 ns/70 ns/80 ns (max)
- Low power dissipation
 - Active mode

605 mW/550 mW/495 mW (max)

— Standby mode 11 mW (max)

0.55 mW (max) (L-version)

- Fast page mode capability
- 1024 refresh cycles: 16 ms

1024 refresh cycles: 128 ms (L-version)

- 3 variations of refresh
 - RAS-only refresh
 - CAS-before-RAS refresh
 - Hidden refresh

- · Test function
- · Battery back up operation
 - HM514400BL Series (L-version)
 - HM514400CL Series (L-version)

Ordering Information

Type No.	Access time	Package	Type No.	Access time	Package
HM514400BS-6	60 ns	300-mil 26-pin	HM514400CZ-6	60 ns	400-mil 20-pin
HM514400BS-7	70 ns	plastic SOJ	HM514400CZ-7	70 ns	plastic ZIP
HM514400BS-8	80 ns	(CP-26/20D)	HM514400CZ-8	80 ns	(ZP-20)
HM514400BLS-6	60 ns		HM514400CLZ-6	60 ns	
HM514400BLS-7	70 ns		HM514400CLZ-7	70 ns	
HM514400BLS-8	80 ns		HM514400CLZ-8	80 ns	
HM514400CS-6	60 ns		HM514400BTT-6	60 ns	26-pin
HM514400CS-7	70 ns		HM514400BTT-7	70 ns	plastic TSOPII
HM514400CS-8	80 ns	_	HM514400BTT-8	80 ns	(TTP-26/20D)
HM514400CLS-6	60 ns		HM514400BLTT-6	60 ns	
HM514400CLS-7	70 ns		HM514400BLTT-7	70 ns	
HM514400CLS-8	80 ns		HM514400BLTT-8	80 ns	
HM514400BZ-6	60 ns	400-mil 20-pin	HM514400CTT-6	60 ns	
HM514400BZ-7	70 ns	plastic ZIP	HM514400CTT-7	70 ns	
HM514400BZ-8	80 ns	(ZP-20)	HM514400CTT-8	80 ns	
HM514400BLZ-6	60 ns	_	HM514400CLTT-6	60 ns	
HM514400BLZ-7	70 ns		HM514400CLTT-7	70 ns	
HM514400BLZ-8	80 ns		HM514400CLTT-8	80 ns	

Pin Arrangement

Pin Description

Pin name	Function
A0 to A9	Address input
A0 to A9	Refresh address input
I/O1 to I/O4	Data-in/Data-out
RAS	Row address strobe
CAS	Column address strobe
WE	Read/Write enable
ŌĒ	Output enable
V _{CC}	Power (+5 V)
V _{SS}	Ground

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit		
Voltage on any pin relative to V _{SS}	V_{T}	-1.0 to +7.0	V		
Supply voltage relative to V _{SS}	Vcc	-1.0 to +7.0	V		
Short circuit output current	lout	50	mA		
Power dissipation	P _T	1.0	W		
Operating temperature	Topr	0 to +70	°C		
Storage temperature	Tstg	-55 to +125	°C		

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note	
Supply voltage	V_{SS}	0	0	0	V		
	V _{CC}	4.5	5.0	5.5	V	1	
Input high voltage	V_{IH}	2.4	_	6.5	V	1	
Input low voltage	V _{IL}	-1.0	_	0.8	V	1	

Note: 1. All voltage referred to V_{SS} .

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V)

-6

HM514400B/BL, HM514400C/CL

-8

-7

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test conditions	Notes
Operating current	I _{CC1}	_	110	_	100	_	90	mA	\overline{RAS} , \overline{CAS} cycling t_{RC} = min	1, 2
Standby current	I _{CC2}	_	2	_	2	_	2	mA	$\frac{\text{TTL interface}}{\text{RAS, CAS}} = V_{\text{IH}}$ $\text{Dout} = \text{High-Z}$	
		_	1	_	1		1	mA	CMOS interface \overline{RAS} , \overline{CAS} $\geq V_{CC} - 0.2 \text{ V}$ Dout = High-Z	
Standby current (L-version)	I _{CC2}	_	100	_	100	_	100	μА	$\begin{array}{l} \textbf{CMOS interface} \\ \hline \textbf{RAS, } \hline \textbf{CAS} = \textbf{V}_{IH} \\ \hline \textbf{WE, } \hline \textbf{OE, } \textbf{Address and} \\ \textbf{Din = V}_{IH} \text{ or V}_{IL} \\ \textbf{Dout = High-Z} \end{array}$	4
RAS-only refresh current	I _{CC3}	_	110	_	100	_	90	mA	t _{RC} = min	2
Standby current	I _{CC5}	_	5	_	5	_	5	mA	$\overline{RAS} = V_{IH}, \overline{CAS} = V_{IL}$ Dout = enable	1
CAS-before-RAS refresh current	I _{CC6}	_	110	_	100	_	90	mA	t _{RC} = min	
Fast page mode current	I _{CC7}	_	110	_	100	_	90	mA	t _{PC} = min	1, 3
Battery back up current (Standby with CBR refresh) (L-version)	I _{CC10}	_	200	_	200	_	200	μΑ	$\begin{split} t_{RC} &= 125~\mu s \\ t_{RAS} &\leq 1~\mu s \\ \overline{WE} &= V_{IH}, \overline{CAS} = V_{IL} \\ \overline{OE}, Address and \\ Din &= V_{IH} \text{ or } V_{IL} \\ Dout &= High-Z \end{split}$	4
Input leakage current	ILI	-10	10	-10	10	-10	10	μΑ	0 V ≤ Vin ≤ 7 V	
Output leakage current	I _{LO}	-10	10	-10	10	-10	10	μΑ	0 V ≤ Vout ≤ 7 V Dout = disable	
Output high voltage	V _{OH}	2.4	V _{CC}	2.4	V _{CC}	2.4	Vcc	V	High lout = −5 mA	
Output low voltage	V _{OL}	0	0.4	0	0.4	0	0.4	V	Low lout = 4.2 mA	

Notes: 1. I_{CC} depends on output load condition when the device is selected. I_{CC} max is specified at the output open condition.

- 2. Address can be changed twice or less while $\overline{RAS} = V_{IL}$.
- 3. Address can be changed once or less while $\overline{CAS} = V_{IH}$.
- 4. $V_{CC}-0.2~V \le V_{IH} \le 6.5~V$ and 0 $V \le V_{IL} \le 0.2~V$.

Capacitance (Ta = 25°C, V_{CC} = $5 \text{ V} \pm 10\%$)

Parameter	Symbol	Тур	Max	Unit	Notes
Input capacitance (Address)	C _{I1}	_	5	pF	1
Input capacitance (Clocks)	C_{l2}	_	7	pF	1
Output capacitance (Data-in, Data-out)	C _{I/O}	_	7	pF	1, 2

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable Dout.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V) *1, *14, *15, *16

Test Conditions

• Input rise and fall times: 5 ns

• Input timing reference levels: 0.8 V, 2.4 V

• Output load: 2 TTL gate + C_L (100 pF) (Including scope and jig)

Read, Write, Read-Modify-Write and Refresh Cycles (Common parameters)

HM514400B/BL	. HM514400C/CI

				,	-				
		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	110	_	130	_	150	_	ns	
RAS precharge time	t_{RP}	40	_	50	_	60	_	ns	
RAS pulse width	t _{RAS}	60	10000	70	10000	80	10000	ns	19
CAS pulse width	t _{CAS}	15	10000	20	10000	20	10000	ns	20
Row address setup time	t _{ASR}	0	_	0	_	0	_	ns	
Row address hold time	t _{RAH}	10	_	10	_	10	_	ns	
Column address setup time	t _{ASC}	0	_	0	_	0	_	ns	
Column address hold time	t _{CAH}	15	_	15	_	15	_	ns	
RAS to CAS delay time	t _{RCD}	20	45	20	50	20	60	ns	8
RAS to column address delay time	t _{RAD}	15	30	15	35	15	40	ns	9
RAS hold time	t _{RSH}	15	_	20	_	20	_	ns	
CAS hold time	t _{CSH}	60	_	70	_	80	_	ns	
CAS to RAS precharge time	t _{CRP}	10	_	10	_	10	_	ns	
OE to Din delay time	t _{ODD}	15	_	20	_	20	_	ns	
OE delay time from Din	t _{DZO}	0	_	0	_	0	_	ns	
CAS setup time from Din	t _{DZC}	0	_	0	_	0	_	ns	
Transition time (rise and fall)	t _T	3	50	3	50	3	50	ns	7
Refresh period	t _{REF}		16		16		16	ms	
Refresh period (L-version)	t _{REF}	_	128	_	128	_	128	ms	
•									

Read Cycle

HM514400B/BL, HM514400C/CL

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Access time from RAS	t _{RAC}	_	60	_	70	_	80	ns	2, 3, 17
Access time from CAS	t _{CAC}	_	15	_	20	_	20	ns	3, 4, 13, 17
Access time from address	t _{AA}	_	30	_	35	_	40	ns	3, 5, 13, 17
Access time from OE	t _{OAC}	_	15	_	20	_	20	ns	3, 17
Read command setup time	t _{RCS}	0	_	0	_	0	_	ns	
Read command hold time to $\overline{\text{CAS}}$	t _{RCH}	0	_	0	_	0	_	ns	18
Read command hold time to RAS	t _{RRH}	0	_	0	_	0	_	ns	18
Column address to RAS lead time	t _{RAL}	30	_	35	_	40	_	ns	
Output buffer turn-off time	t _{OFF1}	0	15	0	20	0	20	ns	6
Output buffer turn-off time to $\overline{\sf OE}$	t _{OFF2}	0	15	0	20	0	20	ns	6
CAS to Din delay time	t _{CDD}	15	_	20	_	20	_	ns	
OE pulse width	t _{OEP}	15	_	20	_	20	_	ns	

Write Cycle

HM514400B/	BL. HM514400C/C	L

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command setup time	t _{WCS}	0	_	0	_	0	_	ns	10
Write command hold time	t _{WCH}	15	_	15	_	15	_	ns	
Write command pulse width	t_{WP}	10	_	10	_	10	_	ns	
Write command to RAS lead time	t _{RWL}	15	_	20	_	20	_	ns	
Write command to CAS lead time	t _{CWL}	15	_	20	_	20	_	ns	
Data-in setup time	t _{DS}	0	_	0	_	0	_	ns	11
Data-in hold time	t _{DH}	15	_	15	_	15	_	ns	11

Read-Modify-Write Cycle

HM514400B/BL	, HM514400C/CL
--------------	----------------

		-6		-7		-8		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	t _{RWC}	150	_	180	_	200	_	ns	
RAS to WE delay time	t _{RWD}	80	_	95	_	105	_	ns	10
CAS to WE delay time	t _{CWD}	35	_	45	_	45	_	ns	10
Column address to WE delay time	t _{AWD}	50	_	60	_	65	_	ns	10
OE hold time from WE	t _{OEH}	15	_	20	_	20	_	ns	

Refresh Cycle

		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS setup time (CBR refresh cycle)	t _{CSR}	10	_	10	_	10	_	ns	
CAS hold time (CBR refresh cycle)	t _{CHR}	10	_	10	_	10	_	ns	
RAS precharge to CAS hold time	t _{RPC}	10	_	10	_	10	_	ns	
CAS precharge time in normal mode	t _{CPN}	10	_	10	_	10	_	ns	

Fast Page Mode Cycle

HM514400B/BL, HM514400C/CL

		-6		-/		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Fast page mode cycle time	t _{PC}	40	_	45	_	50	_	ns	
Fast page mode $\overline{\text{CAS}}$ precharge time	t _{CP}	10	_	10	_	10	_	ns	
Fast page mode RAS pulse width	t _{RASC}	_	10000	0—	10000	0—	10000	0ns	12
Access time from CAS precharge	t _{ACP}	_	35	_	40		45	ns	3, 13, 17
RAS hold time from CAS precharge	t _{RHCP}	35	_	40	_	45	_	ns	

Fast Page Mode Read-Modify-Write Cycle

		HM514400B/BL, HM514400C/CL							
		-6		-7		-8		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Fast page mode read-modify-write cycle time	t _{PCM}	80	_	95	_	100	_	ns	
Fast page mode read-modify-write cycle CAS precharge to WE delay time	t _{CPW}	55	_	65	_	70	_	ns	10

Test Mode Cycle

		HM514400B/BL, HM514400C/CL							
		-6		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Test mode WE setup time	t _{WS}	0	_	0	_	0	_	ns	
Test mode WE hold time	t _{WH}	10	_	10	_	10	_	ns	

Counter Test Cycle

		HM514400B/BL, HM514400C/CL							
		-6		-7		-8		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS precharge time in counter test cycle	t _{CPT}	40	_	40	_	40	_	ns	

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - Assumes that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the
 maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
 - 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max).
 - 5. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \ge t_{RAD}$ (max).
 - 6. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referred to output voltage levels.
 - 7. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{II} .
 - Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified
 as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time
 is controlled exclusively by t_{CAC}.
 - Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified
 as a reference point only, if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time
 is controlled exclusively by t_{AA}.
 - 10. t_{WCS}, t_{RWD}, t_{CWD}, t_{CPW} and t_{AWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{RWD} ≥ t_{RWD} (min), t_{CWD} ≥ t_{CWD} (min), t_{CPW} ≥ t_{CPW} (min) and t_{AWD} ≥ t_{AWD} (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
 - 11. These parameters are referred to $\overline{\text{CAS}}$ leading edge in an early write cycle and to $\overline{\text{WE}}$ leading edge in a delayed write or read-modify-write cycle.
 - 12. t_{RASC} defines RAS pulse width in fast page mode cycles.
 - 13. Access time is determined by the longest among t_{AA} , t_{CAC} and t_{ACP} .
 - 14. An initial pause of 100 μs is required after power up followed by a minimum of eight initialization cycles (RAS-only refresh cycle or CAS-before-RAS refresh cycle). If the internal refresh counter is used, a minimum of eight CAS-before-RAS refresh cycles is required.
 - 15. In delayed write or read-modify-write cycles, $\overline{\mathsf{OE}}$ must disable output buffer prior to applying data to the device.
 - 16. Test mode operation specified in this data sheet is 2-bit test function controlled by control address bits - CA0. This test mode operation can be performed by WE-and-CAS-before-RAS (WCBR) refresh cycle. Refresh during test mode operation will be performed by normal read cycles or by WCBR refresh cycles. When the state of two test bits accord each other, the condition of the output data is high level. When the state of test bits do not accord, the condition of the output data is low level. In order to end this test mode operation, perform a RAS-only refresh cycle or a CAS-before-RAS refresh cycle.
 - 17. In a test mode read cycle, the value of t_{RAC}, t_{AA}, t_{CAC}, t_{OAC} and t_{ACP} is delayed for 2 ns to 5 ns for the specified value. These parameters should be specified in test mode cycles by adding the above value to the specified value in this data sheet.
 - Either t_{RCH} or t_{RRH} must be satisfied
 - 19. t_{RAS} (min) = t_{RWD} (min) + t_{RWL} (min) + t_{T} in read-modify-write cycle.
 - 20. t_{CAS} (min) = t_{CWD} (min) + t_{CWL} (min) + t_{T} in read-modify-write cycle.

Timing Waveforms*21

Read Cycle

Notes: 21. \bigvee H or L (H: V_{IH} (min) \leq V_{IN} \leq V_{IH} (max), L: V_{IL} (min) \leq V_{IN} \leq V_{IL} (max))

Invalid Dout

Early Write Cycle

Delayed Write Cycle

Read-Modify-Write Cycle

Hidden Refresh Cycle

Fast Page Mode Read Cycle

Fast Page Mode Early Write Cycle

Fast Page Mode Delayed Write Cycle

Fast Page Mode Read-Modify-Write Cycle

Test Mode Cycle

Test Mode Set Cycle

WE-and-CAS-Before RAS-Refresh Cycle

CAS-Before-**RAS** Refresh Cycle

RAS-Only Refresh Cycle

CAS-Before-**RAS** Refresh Counter Check Cycle (Read)

CAS-Before-**RAS** Refresh Counter Check Cycle (Write)

