Study of the MFT standalone tracking

Optimisation of the LTF radius

- Check the impact of the search radius and its geometry
- Looking at simulations obtained with BoxGen

Basics of the MFT standalone tracking

2 algorithms: Linear Track Finder (LTF) + Cellular automaton (CA)

The more tracks the LTF finds the better as the CA is more refined and therefore slower

Reference : $R = 100 \mu m$

Search road = cylinder → same radius for all plane

Optimisation of the LTF for the standalone tracking

1. Change main reconstruction parameter: reduce the search radius

2. Change the search technique from a cylinder to a cone

$$R_i = R_0 \left(1 + \frac{z_i - z_0}{z_0}\right)$$

- 3. Impact of the z-vertex distribution range
 - Using boxgen simulations : muon only
- 4. Longer term : check for more realistic simulations with full event + Perform similar studies for the CA algorithm

Reducing the LTF radius

• 10000 events ran locally with Geant3 (boxgen) 10 muons per event up to p=10GeV/c -5< η < 0.

Default cuts and parameters

How to run this?

```
>o2-sim-serial -m MFT -e TGeant3 -n 10000 -g boxgen --configKeyValues 'BoxGun.pdg=13;
BoxGun.eta[0]=-3.6; BoxGun.eta[1]=-2.5; BoxGun.prange[0]=0.0; BoxGun.prange[1]=10.0;
BoxGun.number=10'
>o2-sim-digitizer-workflow -b
>o2-mft-reco-workflow -b
```

Reducing the LTF radius

BoxGen 10muons

Efficiency of the LTF algo

Reducing the LTF radius

BoxGen 10muons

Percentage of tracks found by the LTF

Percentage =
$$\frac{LTF \text{ tracks}}{LTF + CA \text{ tracks}}$$

Changing the LTF road from a tube to a cone

- Same simulation file : 10000 events ran locally with Geant3 (boxgen) 10 muons per event up to p=10GeV/c
- Radius increase for the LTF algo as a function of the plane z
- CA road is still a cylinder

$$R_i = R_0 \left(1 + \frac{z_i - z_0}{z_0}\right)$$

From cylinder to cone

BoxGen 10muons

Efficiency of the LTF algo

From cylinder to cone

BoxGen 10muons

Percentage of tracks found by the LTF

Percentage =
$$\frac{LTF \text{ tracks}}{LTF + CA \text{ tracks}}$$

Effect of a larger z-vertex distribution

- Similar simulation files : 10000 events ran locally with Geant3 (boxgen) 10 muons per event up to p=10GeV/c
- V_z at +/- 6cm, 15cm and 30cm
- Checking the radius increase for the LTF algo as a function of the plane z
- CA road is still a tube

$$R_i = R_0 \left(1 + \frac{Z_i - Z_0}{Z_0}\right)$$

How to run this?

>o2-sim-serial -m MFT -e TGeant3 -n 10000 -g boxgen --configKeyValues 'BoxGun.pdg=13; BoxGun.eta[0]=-3.6; BoxGun.eta[1]=-2.5; BoxGun.prange[0]=0.0; BoxGun.prange[1]=10.0; BoxGun.number=10; Diamond.width[2]=6.'

```
>o2-sim-digitizer-workflow -b
```

>o2-mft-reco-workflow -b

Effect of the z-vertex distribution

BoxGen 10muons

Efficiency of the LTF algo

No real loss of efficiency moving from a cone to a cylinder

Conclusions

Investigation of the LTF search radius by looking at simulations obtained with BoxGen: how to enhance the track reconstruction quality with the LTF?

Keeping the radius constant: current value (0.0100 cm) already close to an optimum

• Changing the search area from a tube to a cone seems to provide interesting results

Next steps

- Look at more realistic events from Pythia simulations
 Pull request in preparation (next days) to run on Ixplus
 Check the gain on time computation
- Perform similar study for the radius of the Cellular Automaton algorithm