Time Complexity

Time Complexity

$$T(P)=C+T_P(I)$$

- Compile time (C) independent of instance characteristics
- run (execution) time T_P
- Definition

$$T_P(n) = c_a ADD(n) + c_s SUB(n) + c_l LDA(n) + c_{st} STA(n)$$

- A *program step* is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.
- Example

$$- abc = a + b + b * c + (a + b - c) / (a + b) + 4.0$$

- abc = a + b + c

Methods to compute the step count

- Introduce variable count into programs
- Tabular method
 - Determine the total number of steps contributed by each statement
 - step per execution \times frequency
 - add up the contribution of all statements

Iterative summing of a list of numbers

*Program 1.12: Program 1.10 with count statements (p.23)

```
float sum(float list[], int n)
float tempsum = 0; count++; /* for assignment */
                      int i;
              for (i = 0; i < n; i++) {
       count++; /*for the for loop */
 tempsum += list[i]; count++; /* for assignment */
    count++; /* last execution of for */
               return tempsum;
         count++; /* for return */
                               2n + 3 steps
```

CHAPTER 1

*Program 1.13: Simplified version of Program 1.12 (p.23)

2n + 3 steps

Recursive summing of a list of numbers

*Program 1.14: Program 1.11 with count statements added (p.24)

```
float rsum(float list[], int n)
  count++; /*for if conditional */
                 if (n) {
count++; /* for return and rsum invocation */
       return rsum(list, n-1) + list[n-1];
               count++;
             return list[0];
           2n+2
```

Recursive summing of a list of numbers

*Program 1.14: Program 1.11 with count statements added (p.24)

```
float rsum(float list[], int n)
  count++; /*for if conditional */
                 if (n) {
count++; /* for return and rsum invocation */
       return rsum(list, n-1) + list[n-1];
               count++;
             return list[0];
           2n+2
```

CHAPTER 1

Matrix addition

*Program 1.15: Matrix addition (p.25)

*Program 1.16: Matrix addition with count statements (p.25)

```
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
              int c[][MAX_SIZE], int row, int cols )
                       int 2rpws * cols + 2 rows + 1
              for (i = 0; \frac{1}{1} < rows; i++)
             count++; /* for i for loop */
               for (j = 0; j < cols; j++) {
              count++; /* for i for loop */
                 c[i][i] = a[i][i] + b[i][i];
      count++; /* for assignment statement */
       count++; /* last time of j for loop */
    count++; /* last time of i for loop */
```

*Program 1.17: Simplification of Program 1.16 (p.26)

```
void add(int a[][MAX_SIZE], int b [][MAX_SIZE],
              int c[][MAX_SIZE], int rows, int cols)
                        int i, j;
              for(i = 0; i < rows; i++) {
                for (j = 0; j < cols; j++)
                       count += 2;
                       count += 2;
                      count++;
     2rows \times cols + 2rows +1
```

Suggestion: Interchange the loops when rows >> cols

Tabular Method

*Figure 1.2: Step count table for Program 1.10 (p.26)

Iterative function to sum a list of numbers steps/execution

Statement	s/e	Frequency	Total steps
<pre>float sum(float list[], int n)</pre>	0	0	0
{	0	0	0
float tempsum $= 0$;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Recursive Function to sum of a list of numbers *Figure 1.3: Step count table for recursive summing function (p.27)

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
<pre>return rsum(list, n-1)+list[n-1];</pre>	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Matrix Addition

*Figure 1.4: Step count table for matrix addition (p.27)

Statement	s/e	Frequency	Total steps
Void add (int a[][MAX_SIZE]• • •)	0	0	0
yold add (int at j[ivii in _Sizz])	0	0	0
\{	0	0	0
int i, j;	1	rows+1	rows+1
for $(i = 0; i < row; i++)$ for $(j=0; j < cols; j++)$	1	rows• (cols+1)	rows• cols+rows
c[i][j] = a[i][j] + b[i][j];	1	rows• cols	rows• cols
}	0	0	0
Total		2r	ows• cols+2rows+1

*Program 1.18: Printing out a matrix (p.28)

*Program 1.19:Matrix multiplication function(p.28)

*Program 1.20:Matrix product function(p.29)

*Program 1.21:Matrix transposition function (p.29)

Asymptotic Notation (O)

- Definition f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.
- Examples

Example

- Complexity of c₁n²+c₂n and c₃n
 - for sufficiently large of value, $c_3 n$ is faster than $c_1 n^2 + c_2 n$
 - for small values of n, either could be faster
 - $c_1=1$, $c_2=2$, $c_3=100 --> c_1 n^2 + c_2 n \le c_3 n$ for $n \le 98$
 - $c_1=1$, $c_2=2$, $c_3=1000 --> c_1n^2+c_2n \le c_3n$ for $n \le 998$
 - break even point
 - no matter what the values of c1, c2, and c3, the n beyond which c_3 n is always faster than c_1 n²+ c_2 n

- O(1): constant
- O(n): linear
- O(n²): quadratic
- O(n³): cubic
- O(2ⁿ): exponential
- O(logn)
- O(nlogn)

*Figure 1.7:Function values (p.38)

		tic n					
Time	Name	1	2	4	8	16	3
1	Constant	1	1	1	1	1	
log n	Logarithmic	0	1	2	3	4	
n	Linear	1	2	4	8	16	.3
$n \log n$	Log linear	0	2	8	24	64	16
n^2	Quadratic	1	4	16	64	256	102
n^3	Cubic	1	8	64	512	4096	3276
2"	Exponential	2	4	16	256	65536	429496729
/1!	Factorial	1	2	24	40326	20922789888000	26313 x 10 ⁵

*Figure 1.8:Plot of function values(p.39)

*Figure 1.9:Times on a 1 billion instruction per second computer(p.40)

	Time for $f(n)$ instructions on a 10^9 instr/sec computer									
n	f(n)=n	$f(n) = \log_2 n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$			
10	.01µs	.03µs	.1µs	1µs	10µs	10sec	1µs			
20	.02µs	.09µs	.4µs	8µs	160µs	2.84hr	1ms			
30	.03µs	.15µs	.9µs	27µs	810µs	6.83d	1sec			
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3mir			
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d			
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr			
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr			
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr				
100,000	100.00µs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr				
1,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr				

 μs = microsecond = 10^{-6} seconds ms = millisecond = 10^{-3} seconds

sec = seconds

min = minutes

hr = hours

d = days

yr = years

CHAPTER 1 23