Aula 12: Sensores de posição empregados em determinação, navegação e controle de atitude: Magnetômetros.

Magnetômetros

Os magnetômetros são bastante utilizados como sensores de atitude para satélites por uma série de razões:

- > São sensores vetoriais;
- Fornecem o módulo e a direção do campo magnético;
- São confiáveis, leves e têm baixos requisitos de potência;
- > Operam sob uma larga faixa de temperatura:
- Não tem partes móveis.

Entretanto, não são sensores inerciais de atitude precisos, porque o campo magnético não é perfeitamente conhecido e os modelos usados para prever o módulo e direção do campo magnético, na posição do satélite, estão sujeitos a erros relativamente substanciais. Além do mais, devido ao fato da intensidade do campo magnético ser inversamente proporcional a r^3 , sendo r a distância Satélite-Terra, desvios magnéticos residuais do satélite, eventualmente, podem dominar as medidas do campo magnético total. Isso limita o uso de magnetômetros a satélites que estão abaixo de 1000 km. Entretanto, magnetômetros voaram com sucesso no Satélite RAE-1 a uma altitude de 5875 km.

Como ilustra a Figura 34, o magnetômetro consiste de duas partes:

- > um sensor magnético e
- ➤ uma *unidade eletrônica*, que transforma as medidas do sensor em formato adequado.

Os sensores de campo magnético são divididos em duas categorias principais:

- > magnetômetros quânticos, que utilizam propriedades atômicas fundamentais como divisão de Zeeman ou ressonância nuclear magnética e
- > magnetômetros de *indução*, que são baseados na Lei de Faraday da indutância magnética.

Fig. 34 – Diagrama de blocos generalizado para o Magnetômetro.

A Lei de Faraday vem da observação de que uma força eletromotiva (EMF), \mathbf{E} , é induzida em uma espira colocada em um campo magnético variante no tempo, Φ_B , tal que a integral de linha de \mathbf{E} ao longo da espira é

$$V \equiv \oint \mathbf{E} \bullet d\mathbf{I} = -\frac{d\Phi_B}{dt}.$$
 (3)

Os dois tipos de magnetômetro de indução são os *search-coil* e *fluxgate*. Num magnetômetro *search-coil*, um solenóide com N espiras é enrolado sobre um núcleo ferromagnético com permeabilidade μ e área seccional A. A EMF induzida no solenóide quando colocado num campo magnético produz a tensão, V, dada por

$$V = \oint \mathbf{E} \bullet d\mathbf{l} = -AN\mu \frac{dB_{\perp}}{dt},\tag{4}$$

onde B_{\perp} é a componente do campo magnético ao longo do eixo do solenóide. A tensão de saída é dependente do tempo e, para um solenóide girando com frequência fixa, $f=\omega/2\pi$, em torno de um eixo inercialmente fixo, normal a um campo constante ${\bf B}_0$, pode ser reescrita como

$$V(t) = -AN\mu B_0 \cos \omega t . ag{5}$$

Magnetômetros *search-coil* baseados no princípio acima são usados principalmente para fornecer informação precisa sobre fase em satélites estabilizados por rotação. Devido ao fato do *search-coil* ser sensível somente a variações no componente do campo ao longo do eixo do solenóide, qualquer precessão ou nutação do satélite irá complicar sobremaneira a interpretação dos dados (Sonett, 1963).

O segundo tipo de dispositivo de indução magnética é o magnetômetro *fluxgate*, ilustrado na Fig. 35. O enrolamento primário com terminais P_1 e P_2 é usado para acionar alternativamente os dois núcleos saturáveis SC_1 e SC_2 para os estados de saturação opostos. A presença de qualquer campo magnético no ambiente pode ser observado como uma segunda harmônica da corrente induzida no enrolamento secundário, com terminais S_1 e S_2 . O propósito de dois núcleos saturáveis, enrolados em sentidos opostos, é fazer com que o enrolamento secundário se torne insensível a freqüência fundamental. Outras geometrias usadas para obter desacoplamento entre o primário e o secundário utilizam núcleos helicoidais e toroidais.

Fig. 35 – Magnetômetro *Fluxgate Dual-Core* com bobinas de indução primária e secundária (adaptado de Geyger, 1964).

A operação funcional de um magnetômetro *fluxgate* está ilustrada na Fig. 36. Se a tensão nos terminais do enrolamento primário tem uma forma de onda triangular, de freqüência $2\omega/T$, e a amplitude da intensidade magnética resultante é H_D , então os elementos do núcleo saturam a uma densidade de fluxo $\pm B_S$, quando a intensidade magnética atinge $\pm H_C$. A intensidade magnética líquida é deslocada de zero pela intensidade magnética do ambiente, ΔH . O enrolamento secundário sofrerá uma EMF induzida, V_S , enquanto os elementos do núcleo estão sendo chaveados ou a densidade de fluxo magnético está sendo levada de um estado saturado para outro (o nome *fluxgate* vem daí: "..gated from one satured state to the other.."). V_S consiste de um trem de pulsos de comprimento K_1T , separados por intervalos de tempo K_2T ou $(1-K_2)T$ onde

$$K_1 \equiv \frac{H_C}{4H_D}, \qquad K_2 \equiv \frac{1}{2} \left(1 - \frac{\Delta H}{H_D} \right). \tag{6}$$

Fig. 36 – Princípios operacionais do magnetômetro *Fluxgate*.