BUSINESS INTELLIGENCE

OLAP: On-Line Analytical Processing

ON-LINE ANALYTICAL PROCESSING (OLAP)

 An OLAP server provides a multidimensional view starting from a datawarehouse

 The multidimensional view can be navigated through pivot tables, reports, 2-D or 3-D plots, or it can be queried using a query language (eg., MDX - MultiDimensional expressions)

MULTIDIMENSIONAL MODEL (CUBE)

The multidimensional model is useful to understand interactive data analysis, and how to improve the execution performance.

2-D CUBE

Sales ProductId Storeld Qty 300 S1 P1 S2 P1 500 S3 P1 50 S1 P2 30 S2 P2 50 S3 P2 400

Fact Table

CROSS TABULATION

	Storeld		
ProductId	S1	S2	S3
P1	300	500	50
P2	30	50	400

Cube, A. Albano 5

M

3-D CUBE

Sales

Storeld	ProductId	DateId	Qty
S1	P1	D1	300
S2	P1	D1	500
S3	P1	D1	50
S1	P2	D1	30
S2	P2	D1	50
S3	P2	D1	400
S2	P1	D2	200
S3	P1	D2	600
S1	P2	D2	900
S2	P2	D2	800
S3	P2	D2	70

Fact Table

3-D Cube

CUBE OPERATOR: SLICE

Sales SLICE FOR DateId = 'D1';

CUBE OPERATOR: DICE

CUBE OPERATOR: PIVOT

PIVOT (Sales SLICE FOR DateId = 'D1');

Rotate: reorient the cube, visualization, 3D to series of 2D planes

CUBE OPERATORS: ROLL-UP and DRILL-DOWN

Roll-up aggregates data by dimension reduction or by navigating attribute hierarchy (Drill-down is the reverse of roll-up)

Hypothesis: one measure and aggregations by sum.

SALES ROLL-UP ON DateId

(total Qty by ProductId and by StoreId)

CUBE OPERATORS: ROLL-UP and DRILL-DOWN

CUBE OPERATORS: DRILL THROUGH

Drill-through produces the facts that satisfy a cell coordinate

Sales

Storeld	ProductId	DateId	Qty
S1	P1	D1	300
S2	P1	D1	500
S3	P1	D1	50
S1	P2	D1	30
S2	P2	D1	50
S3	P2	D1	400
S2	P1	D2	200
S3	P1	D2	600
S1	P2	D2	900
S2	P2	D2	800
S3	P2	D2	70

Storeld	Productid	DateId	Qty
S1	P2	D1	30
S2	P2	D1	50
S3	P2	D1	400
S1	P2	D2	900
S2	P2	D2	800
S3	P2	D2	70

CUBE NAVIGATION BY DIFFERENT USERS

Product managers look at sales of some products in any period and in any market

Finance manager look at sales of a period compared to the previous period for any product and any market

Branch manager look at sales of his/her stores for any product and any period

TEXTUAL NOTATION FOR CUBE OPERATORS

Hypothesis: one measure and aggregations by sum.

Sales(StoreId, ProductId, DateId)

is the cube with dimensions StoreId, ProdottoId, DataId, and measure M

A cube operation is denoted by substituting a dimension with a value

TEXTUAL NOTATION FOR CUBE OPERATORS (cont)

TEXTUAL NOTATION FOR CUBE OPERATORS (cont.)

Each dimension domain is extended with the value "*", that means summarize data (sum) by all the dimension values.

Sales(StoreId, ProductId, *)

Sales by roll-up on DateId with sum(M)

CUBE OPERATORS: EXAMPLES

Sales(StoreId, ProductId, DateId) =

Sales(StoreId, *, *) =

Sales(*, *, *) =

3900

CUBE OPERATORS: EXAMPLES

What is

EXTENDED CUBE

A data cube is extended with the value '*' for each dimensions, and in the corresponding cells is stored the sum of the measure.

EXTENDED CUBE

With the '*' values, the cube becames a set of cuboids:

- white cells are the data cube
- gray cells are roll-up by a dimension,
- dark gray cells are roll-up by two dimensions
- black cells are roll-up by all dimensions.

EXTENDED CROSS TABULATION

Sales

Storeld	ProductId	Qty	
S1	P1	300	
S2	P1	500	
S3	P1	50	
S1	P2	30	
S2	P2	50	
S3	P2	400	

CROSS TABULATION

	Storeld		
ProductId	S1	S2	S3
P1	300	500	50
P2	30	50	400

EXTENDED CROSS TABULATION

	Storeld			
ProductId	S1	S2	S3	Total
P1	300	500	50	850
P2	30	50	400	480
Total	330	550	450	1330

OLAP SYSTEMS SOLUTIONS

OLAP refers to the technique of performing complex business analysis over the information stored in a data warehouse.

We will see how report developers use SQL to write queries, but there are business intelligence tools that allows a user or a developer to make data analysis and to build beautiful reports without any knowledge of SQL... which is generated automatically.