Geometria e Algebra - MIS-Z

Secondo appello - Luglio - Soluzioni 19/07/2022

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) La matrice

$$\begin{pmatrix} 2 & 0 & 1 \\ -3 & 1 & 0 \\ 0 & 4 & 6 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

è invertibile.

- \square VERO
- FALSO

Giustificazione

Ricordiamo che una matrice $A \in \mathcal{M}_n(\mathbb{R})$ è invertibile se e solo se $\det(A) \neq 0$. Nel nostro caso abbiamo

$$\begin{vmatrix} 2 & 0 & 1 \\ -3 & 1 & 0 \\ 0 & 4 & 6 \end{vmatrix} = 12 - 12 = 0,$$

quindi la matrice assegnata non è invertibile.

- (b) I punti del piano euclideo A(-2,0), B(2,0) e $C(0,2\sqrt{3})$ sono i vertici di un triangolo equilatero.
 - VERO
 - \square FALSO

Giustificazione

I punti A, B e C sono i vertici di un triangolo equilatero se e solo se $\|\overrightarrow{AB}\| = \|\overrightarrow{BC}\| =$ $\|\overrightarrow{AC}\|$, dove $\|\cdot\|$ è la norma relativa al prodotto scalare standard di \mathbb{R}^2 . Per A(-2,0), $B(2,0) \in C(0,2\sqrt{3})$ abbiamo:

- $\overrightarrow{AB} = (4,0) \Rightarrow ||\overrightarrow{AB}|| = 4;$
- $\overrightarrow{BC} = (-2, 2\sqrt{3}) \Rightarrow \|\overrightarrow{AB}\| = \sqrt{4+12} = 4;$ $\overrightarrow{AC} = (2, 2\sqrt{3}) \Rightarrow \|\overrightarrow{AC}\| = \sqrt{4+12} = 4.$

Poiché $\|\overrightarrow{AB}\| = \|\overrightarrow{BC}\| = \|\overrightarrow{AC}\|$ concludiamo che il triangolo ABC è equilatero.

(c) Esiste un'applicazione lineare suriettiva $f: \mathbb{R}^{2021} \to \mathbb{R}^{2022}$.

 \square VERO

FALSO

Giustificazione

Supponiamo per assurdo che esista un'applicazione suriettiva $f: \mathbb{R}^{2021} \to \mathbb{R}^{2022}$. Allora $\operatorname{Im}(f) = \mathbb{R}^{2022}$. Quindi $\operatorname{rg}(f) = \dim(\operatorname{Im}(f)) = \dim(\mathbb{R}^{2022}) = 2022$ e per il teorema del rango si avrebbe:

$$\dim(\ker(f)) = \dim(\mathbb{R}^{2021}) - \operatorname{rg}(f) = 2021 - 2022 = -1,$$

ma questo è assurdo, poiché la dimensione di un sottospazio vettoriale è sempre maggiore o uguale a 0. Concludiamo che una tale applicazione non può esistere.

(d) L'applicazione lineare $f:\mathbb{R}^3\to\mathbb{R}^3$ la cui matrice rispetto alla base canonica è

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \\ 0 & 3 & 2 \end{pmatrix}$$

non è diagonalizzabile.

 \square VERO

FALSO

Giustificazione

L'applicazione lineare f è un operatore simmetrico rispetto al prodotto scalare standard di \mathbb{R}^3 , poiché la matrice A che rappresenta f rispetto a una base ortornormale (quella canonica) è una matrice simmetrica. Quindi, per il teorema spettrale, f è diagonalizzabile.

ESERCIZIO 2 [6 punti]. Sistema con parametro.

(a) Si dimostri il seguente enunciato:

Un sistema lineare di m equazioni in n incognite

$$AX = b$$
,

dove $A \in \mathcal{M}_{m,n}(K)$, $b \in M_{m,1}(K)$ e $X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, è compatibile se e solo se $\operatorname{rg}(A) = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$ $\operatorname{rg}(A|b)$.

Dimostrazione

Siano
$$A = (a_{ij}) \in \mathcal{M}_{m,n}(K), b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \in M_{m,1}(K) \text{ e } X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}.$$
 Allora il sistema lineare $AX = b$ è compatibile se e solo se esiste $(x_1, \dots, x_n) \in \mathbb{R}^n$ tale che

lineare AX = b è compatibile se e solo se esiste $(x_1, \ldots, x_n) \in \mathbb{R}^n$ tale che

$$A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \Leftrightarrow x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \Leftrightarrow \left\{ \dim \left\{ Span \left\{ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{nn} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix} \right\} \right\} = \dim \left\{ Span \left\{ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \right\} \right\} \Leftrightarrow \operatorname{rg}(A) = \operatorname{rg}(A|b).$$

(b) Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases}
-X_1 + 2X_3 + kX_4 = 2 \\
X_1 + 3X_2 - X_3 + 5X_4 = -k \\
-X_1 + 6X_2 + k^2X_3 + 4X_4 = 2
\end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Num. di sol.	Insieme delle soluzioni
$k \in \mathbb{R} \setminus \{-2, 2\}$	SI	1	$\left\{ \left(\frac{-k^2 + 2k - 3}{k - 2}t + \frac{2k + 2}{k + 2}, -\frac{k^2 + 3k - 7}{3(k - 2)}t - \frac{k^2 - 2}{3(k + 2)}, \frac{3}{k - 2}t + \frac{2}{k + 2} \right) : t \in \mathbb{R} \right\}$
k = -2	NO	0	-
k = 2	SI	∞^1	$\left\{\left(2t-2,-\tfrac{t}{3},t,0\right):t\in\mathbb{R}\right\}$

Svolgimento

Consideriamo la matrice orlata associata al sistema:

$$\begin{pmatrix} -1 & 0 & 2 & k & 2 \\ 1 & 3 & -1 & 5 & -k \\ -1 & 6 & k^2 & 4 & 2 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 + R_1$,
- 2. $R_3 \leftarrow R_3 R_1$,
- 3. $R_3 \leftarrow R_3 2R_2$

si ottiene la matrice a scalini:

$$\begin{pmatrix} -1 & 0 & 2 & k & 2 \\ 0 & 3 & 1 & 5+k & -k+2 \\ 0 & 0 & k^2-4 & -3k-6 & 2k-4 \end{pmatrix}.$$

CASO 1. Notiamo che se $k^2 - 4 \neq 0$, ovvero se $k \neq 2$ e $k \neq -2$, allora il rango della matrice dei coefficienti è 3 ed è uguale al rango della matrice orlata. Quindi, per il teorema di Rouché-Capelli, il sistema è compatibile ed ammette $\infty^{4-3} = \infty^1$ soluzioni. Scegliendo X_4 come variabile libera, otteniamo per ogni $k \in \mathbb{R} \setminus \{2, -2\}$ l'insieme delle soluzioni è

$$S_k = \left\{ \left(\frac{-k^2 + 2k - 3}{k - 2}t + \frac{2k + 2}{k + 2}, -\frac{k^2 + 3k - 7}{3(k - 2)}t - \frac{k^2 - 2}{3(k + 2)}, \frac{3}{k - 2}t + \frac{2}{k + 2} \right) : t \in \mathbb{R} \right\}.$$

CASO 2. Se k=2 allora la matrice a scalini è

$$\begin{pmatrix} -1 & 0 & 2 & 2 & 2 \\ 0 & 3 & 1 & 7 & 0 \\ 0 & 0 & 0 & -12 & 0 \end{pmatrix}.$$

Anche in questo caso il rango della matrice dei coefficienti è 3 ed è uguale al rango della matrice orlata. Quindi, per il teorema di Rouché-Capelli, il sistema è compatibile ed ammette $\infty^{4-3} = \infty^1$ soluzioni. Scegliendo X_3 come variabile libera, otteniamo che per k=2 l'insieme delle soluzioni è

$$S_2 = \left\{ \left(2t - 2, -\frac{t}{3}, t, 0 \right) : t \in \mathbb{R} \right\}.$$

<u>CASO 3</u>. Infine se k = -2 allora la matrice a scalini è

$$\begin{pmatrix} -1 & 0 & 2 & -2 & 2 \\ 0 & 3 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & -8 \end{pmatrix}.$$

In questo caso il rango della matrice dei coefficienti è 2 ed il rango della matrice orlata è 3. Quindi, per il teorema di Rouché-Capelli, il sistema è incompatibile.

ESERCIZIO 3 [8 punti]. Un endomorfismo di \mathbb{R}^3 .

Si consideri l'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ associato alla seguente matrice rispetto alla base canonica di \mathbb{R}^3 :

$$A = \begin{pmatrix} -2 & -1 & 1\\ 3 & 2 & -1\\ -3 & -1 & 2 \end{pmatrix}$$

(a) Si determini una base di ker(f) e di Im(f).

Svolgimento

Dalla matrice A possiamo dedurre l'espressione di f(x, y, z), per $(x, y, z) \in \mathbb{R}^3$:

$$f(x,y,z) = A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 & -1 & 1 \\ 3 & 2 & -1 \\ -3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = (-2x - y + z, 3x + 2y - z, -3x - y + 2z).$$

Determiniamo quindi una base di ker(f) e di Im(f).

• Abbiamo:

$$\ker(f) = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = (0, 0, 0)\} =$$

$$= \{(x, y, z) \in \mathbb{R}^3 : (-2x - y + z, 3x + 2y - z, -3x - y + 2z) = (0, 0, 0)\}$$

Risolvendo il sistema otteniamo

$$\left\{ \begin{array}{l} -2x-y+z=0\\ 3x+2y-z=0\\ -3x-y+2z=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} -2x-y+z=0\\ 3x+2y-z=0\\ y+z=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=z\\ y=-z \end{array} \right. ,$$

e quindi

$$\ker(f) = \{(t, -t, t) : t \in \mathbb{R}\} = Span\{(1, -1, 1)\}.$$

Ne deduciamo che una base di ker(f) è $\{(1,-1,1)\}$.

• Abbiamo:

$$\begin{split} \operatorname{Im}(f) &= Span\{f(1,0,0), f(0,1,0), f(0,0,1)\} = \\ &= Span\{(-2,3,-3), (-1,2,-1), (1,-1,2)\} = \\ &= Span\{(-2,3,-3), (-1,2,-1)\}, \end{split}$$

dove l'ultimo passaggio è giustificato dal fatto che (1, -1, 2) = -(-2, 3, -3) + (-1, 2, -1).

Quindi $\{(-2,3,-3),(-1,2,-1)\}$ è una base di Im(f).

(b) Si mostri che $\ker(f) \oplus \operatorname{Im}(f) = \mathbb{R}^3$.

Svolgimento

Basta mostrare che l'unione delle basi di $\ker(f)$ e $\operatorname{Im}(f)$ è una base di \mathbb{R}^3 . Questo segue direttamente dal fatto che il determinante

$$\begin{vmatrix} 1 & -2 & -1 \\ -1 & 3 & 2 \\ 1 & -3 & -1 \end{vmatrix} = 1$$

è diverso da 0.

(c) Si determini se f è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

Svolgimento

Cominciamo con il determinare gli autovalori di f, trovando le radici del polinomio caratteristico:

$$P_f(T) = \begin{vmatrix} -2 - T & -1 & 1\\ 3 & 2 - T & -1\\ -3 & -1 & 2 - T \end{vmatrix} = -T^3 + 2T^2 - T = -T(T^2 - 2T + 1) = -T(T - 1)^2.$$

Pertanto gli autovalori di f sono 0 con molteplicità algebrica 1 e 1 con molteplicità algebrica 2. Per ognuno di essi determiniamo l'autospazio corrispondente:

•
$$V_0(f) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} -2 & -1 & 1 \\ 3 & 2 & -1 \\ -3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = \ker(f) = Span\{(1, -1, 1)\}.$$

•
$$V_1(f) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} -3 & -1 & 1 \\ 3 & 1 & -1 \\ -3 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} =$$

$$= \left\{ (x, y, z) \in \mathbb{R}^3 : 3x + y - z = 0 \right\} = \left\{ (x, z - 3x, z) : x, z \in \mathbb{R} \right\} = Span\{(1, -3, 0), (0, 1, 1)\}.$$

Poiché $\dim(V_1(f)) = 2$, la moltiplicità algebrica e geometrica di 1 coincidono. Ne segue che l'operatore f è diagonalizzabile e l'unione delle basi dei due autospazi $V_0(f)$ e $V_1(f)$

$$\mathcal{B}' = \{(1, -1, 1), (1, -3, 0), (0, 1, 1)\}$$

è una base diagonalizzante per f.

(d) Si determini una matrice $P \in \mathcal{M}_3(\mathbb{R})$ tale che $P^{-1}AP$ sia una matrice diagonale e si calcoli P^{-1} .

Svolgimento

Siano \mathcal{B} la base canonica di \mathbb{R}^3 e \mathcal{B}' la base diagonalizzante per f trovata al punto (c). Allora una matrice P tale che il prodotto $P^{-1}AP$ è una matrice diagonale è data dalla matrice del cambiamento di base dalla base \mathcal{B}' alla base \mathcal{B} :

$$P = M_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -3 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Utilizzando uno dei metodi per il calcolo dell'inversa (matrice cofattore, Gauss–Jordan, etc.) otteniamo

$$P^{-1} = M_{\mathcal{B}',\mathcal{B}} = \begin{pmatrix} 3 & 1 & -1 \\ -2 & -1 & 1 \\ -3 & -1 & 2 \end{pmatrix}.$$

ESERCIZIO 4 [7 punti]. Sottospazi vettoriali.

(a) Sia V uno spazio vettoriale su un campo K. Si definisca quando un sottoinsieme W di V è un sottospazio vettoriale di V

Definizione

Sia V uno spazio vettoriale su un campo K. Un sottoinsieme $W\subseteq V$ è un sottospazio vettoriale di V se:

- $W \neq \emptyset$;
- $\forall \lambda, \mu \in K, \forall w_1, w_2 \in W \text{ si ha } \lambda w_1 + \mu w_2 \in W.$

(b) Sia $V = \mathcal{M}_2(\mathbb{R})$ lo spazio delle matrici 2×2 a coefficienti reali. Dopo aver mostrato che il sottoinsieme W delle matrici 2×2 triangolari superiori è un sottospazio vettoriale di V, se ne determini la dimensione e una base.

Svolgimento

Consideriamo il sottoinsieme W di $\mathcal{M}_2(\mathbb{R})$ delle matrici triangolari superiori

$$W = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.$$

Mostriamo innanzitutto che W è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$:

- $W \neq \emptyset$, poiché la matrice nulla $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in W$, in quanto è triangolare superiore;
- Siano $\lambda, \mu \in \mathbb{R}$ e $A_1 = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}, A_2 = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} \in W$, allora si ha

$$\lambda A_1 + \mu A_2 = \lambda \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} + \mu \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 + \mu a_2 & \lambda b_1 + \mu b_2 \\ 0 & \lambda c_1 + \mu c_2 \end{pmatrix} \in W,$$

in quanto quest'ultima matrice è ancora triangolare superiore.

Quindi W è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$.

Inoltre è facile mostrare che ogni elemento di W si scrive in modo unico come combinazione lineare delle matrici $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Infatti

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \mu \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{cases} \lambda = a \\ \mu = b \\ \gamma = c. \end{cases}$$

Quindi $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ è una base di W e pertanto W ha dimensione 3.

(c) Si determini la dimensione e una base del sottospazio vettoriale

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a + 2b + 3d = 0 \text{ e } b = c \right\}.$$

Svolgimento

Osserviamo che

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a + 2b + 3d = 0 \text{ e } b = c \right\} =$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a = -2c - 3d \text{ e } b = c \right\} =$$

$$= \left\{ \begin{pmatrix} -2c - 3d & c \\ c & d \end{pmatrix} : c, d \in \mathbb{R} \right\} =$$

$$= \left\{ c \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix} : c, d \in \mathbb{R} \right\} =$$

$$= Span \left\{ \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Quindi $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$ e $\begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ generano U. Inoltre sono linearmente indipendenti, per cui $\left\{ \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ è una base di U e U ha dimensione 2.

(d) Si determini una base di $U + W \in U \cap W$.

Svolgimento

• Base di U+W

Notiamo che la matrice $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$ appartiene a U+W (in quanto appartiene a U), ma non a W (in quanto non è triangolare superiore). Ne segue che $W \subsetneq U+W \subseteq \mathcal{M}_2(\mathbb{R})$. Quindi $\dim(W)<\dim(U+W)\leq \dim(\mathcal{M}_2(\mathbb{R}))$, ossia $3<\dim(U+W)\leq 4$. Ne seque che $\dim(U+W)=4$ e pertanto $U+W=\mathcal{M}_2(\mathbb{R})$. Una base di U+W è allora data dalla base canonica di $\mathcal{M}_2(\mathbb{R})$):

$$\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right\}.$$

\bullet Base di $U\cap W$

Notiamo che

$$U \cap W = \{A \in \mathcal{M}_2(\mathbb{R}) : A \in U \text{ e } A \in W\} =$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a = -2c - 3d, b = c \text{ e } c = 0 \right\} =$$

$$= \left\{ \begin{pmatrix} -3d & 0 \\ 0 & d \end{pmatrix} : d \in \mathbb{R} \right\} =$$

$$= \left\{ d \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix} : d \in \mathbb{R} \right\} =$$

$$= Span \left\{ \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Quindi $U \cap W$ ha dimensione 1 e $\left\{ \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ è una base di $U \cap W$.

(e) Sia D il sottospazio delle matrici diagonali di $\mathcal{M}_2(\mathbb{R})$. È vero che $U \cap W = D$? Si giustifichi la risposta.

Svolgimento

No, i sottospazi $U \cap W$ e D sono diversi, in quanto hanno dimensione distinta. Infatti D ha dimensione 2, in quanto generato dalle matrici $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ e $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, mentre, come visto nel punto (c), il sottospazio $U \cap W$ ha dimensione 1. Equivalentemente, si poteva mostrare che esiste un elemento di D che non appartiene a $U \cap W$, ad esempio la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

ESERCIZIO 5 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e cartesiane della retta r passante per i punti A(1,2,1) e B(2,1,2) di \mathbb{E}^3 .

Svolgimento

Per scrivere le equazioni parametriche di r abbiamo bisogno di un punto della retta e di un vettore direttore. Scegliamo:

• Punto: A(1,2,1);

• Vettore directore: $\overrightarrow{AB} = (1, -1, 1)$.

Quindi

$$r: \left\{ \begin{array}{l} x=t+1\\ y=-t+2\\ z=t+1 \end{array} \right., \qquad s,t\in\mathbb{R}.$$

Per ottenere un'equazione cartesiana di r ricaviamo t dalla prima equazione e la sostituiamo nelle altre due:

$$\begin{cases} t = x - 1 \\ y = -(x - 1) + 2 \\ z = x - 1 + 1 \end{cases} \Rightarrow \begin{cases} y = -x + 3 \\ z = x \end{cases} \Rightarrow \begin{cases} x + y - 3 = 0 \\ x - z = 0 \end{cases}$$

Le equazioni cartesiane di r sono quindi:

$$r: \left\{ \begin{array}{l} X+Y-3=0 \\ X-Z=0. \end{array} \right.$$

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca delle rette r e s_h , dove s_h è definita dalle equazioni cartesiane

$$s_h: \left\{ \begin{array}{l} hX+Y-3Z=3 \\ -X+Y+2Z=h \end{array} \right. .$$

Per i valori di h per cui r e s_h sono incidenti si determini il punto di intersezione.

Svolgimento

Consideriamo le rette

$$r: \left\{ \begin{array}{l} X+Y=3 \\ X-Z=0 \end{array} \right. s_h: \left\{ \begin{array}{l} hX+Y-3Z=3 \\ -X+Y+2Z=h. \end{array} \right.$$

Sia

$$A = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 1 & 0 & -1 & 0 \\ h & 1 & -3 & 3 \\ -h & 1 & 2 & h \end{pmatrix}$$

la matrice dei coefficienti delle equazioni cartesiane di r e s_h . Ricordiamo che r e s_h sono complanari se e solo se $\det(A) = 0$, altrimenti sono sghembe. Utilizzando il metodo di Laplace per il calcolo del determinante otteniamo:

$$\det(A) = h^2 - 7h - 12 = (h-3)(h-4).$$

Ne deduciamo che r e s_h sono sghembe se e solo se $h \neq 3$ e $h \neq 4$.

Per h=3 o h=4, r e s_h sono complanari, e in base al loro numero di intersezioni determiniamo se sono incidenti, parallele disgiunte o parallele coincidenti.

• Sia h = 3. Consideriamo il sistema

$$\begin{cases} X + Y = 3 \\ X - Z = 0 \\ 3X + Y - 3Z = 3 \\ -X + Y + 2Z = 3. \end{cases}$$

Risolvendo il sistema si ottiene l'unica soluzione (0,3,0). Quindi le rette r e s_3 sono incidenti e si intersecano nel punto $(0,3,0) \in \mathbb{E}^3$.

• Sia h = 4. Consideriamo il sistema

$$\begin{cases} X + Y = 3 \\ X - Z = 0 \\ 4X + Y - 3Z = 3 \\ -X + Y + 2Z = 4. \end{cases}$$

Si mostra facilmente che tale sistema è incompatibile, per cui r e s_4 sono parallele disgiunte.

(c) Sia s_0 la retta descritta dalle equazioni in (b) per h=0. Si determini un'equazione cartesiana del piano π parallelo a r e s_0 passante per il punto $P\left(\frac{1}{2},2,0\right)$.

Svolgimento

Sia h = 0. La retta s_0 è definita dalle equazioni cartesiane:

$$s_0: \left\{ \begin{array}{l} Y - 3Z = 3 \\ -X + Y + 2Z = 0. \end{array} \right.$$

Risolvendo il sistema e utilizzando Z come variabile libera, otteniamo le equazioni parametriche di s_0 :

$$s_0: \begin{cases} x = 5t + 3\\ y = 3t + 3\\ z = t. \end{cases}$$

Dal punto (b) sappiamo che le rette r e s_0 sono sghembe. Un piano parallelo sia a r che a s_0 avrà giacitura generata dai vettori direttori di r e s_0 . Dalle equazioni parametriche troviamo che un vettore direttore di r è $v_r = (1, -1, 1)$ e un vettore direttore di s_0 è $v_{s_0} = (5, 3, 1)$. Quindi un vettore normale al piano π sarà dato da $v_r \times v_{s_0} = (-4, 4, 8)$. Pertanto un'equazione cartesiana di π sarà della forma:

$$-4X + 4Y + 8Z + d = 0.$$

Imponendo che π passa per il punto $P = (\frac{1}{2}, 2, 0)$, otteniamo d = -6. Dividendo ambo i membri per -2, otteniamo che un'equazione cartesiana di π è quindi data da:

$$\pi: 2X - 2Y - 4Z + 3 = 0.$$

(d) Si mostri che il piano π è equidistante da r e s_0 .

Svolgimento

Calcoliamo le distanze di π da r e da s_0 . Siano $A=(1,2,1)\in r$ e $Q=(0,3,0)\in s_0,$ allora abbiamo:

$$d(\pi, r) = d(\pi, A) = \frac{|2 \cdot 1 - 2 \cdot 2 - 4 \cdot 1 + 3|}{\sqrt{4 + 4 + 16}} = \frac{3}{\sqrt{24}} = \frac{3}{2\sqrt{6}},$$
$$d(\pi, s_0) = d(\pi, Q) = \frac{|2 \cdot 0 - 2 \cdot 3 - 4 \cdot 0 + 3|}{\sqrt{4 + 4 + 16}} = \frac{3}{\sqrt{24}} = \frac{3}{2\sqrt{6}}.$$

Poiché $d(\pi,r)=d(\pi,s_0)$ concludiamo che il piano π è equidistante da r e s_0 .