Lab 8

Operational Amplifier Applications-Inverting Summing Amplifier and Difference Amplifier

OBJECTIVES:

To demonstrate the use of Operational Amplifier for performing mathematical operations of summation and difference.

EQUIPMENT:

- 1. DC Power Supply
- 2. Oscilloscope
- 3. Function Generator

Components

- 1. LM 741 Op-amp
- 2. 47kΩ
- 3. 100kΩ

Part A

Inverting Summing Amplifier

Theory Overview

Figure 1 shows an example of how an operational amplifier is connected to perform voltage summation. In this figure, an ac and a dc voltage are $R_F = 100 \ k\Omega$

summed. In general,

$$V_{o} = -\left(\frac{R_{f}}{R_{1}}V_{1} + \frac{R_{f}}{R_{2}}V_{2} + \dots \text{.....etc.}\right)$$

Figure 1

Procedure

1. To demonstrate the use of an operational amplifier as a summing amplifier, connect the circuit of Figure 1.

- 2. With V_s adjusted to produce a 1 V peak sine wave at 1 kHz, observe the output voltage V_0 (and V_s to note the phase relationship) on an oscilloscope set to dc input coupling.
- 3. Sketch the output voltage waveform. Be sure to note the dc level in the output.
- 4. Interchange the 5 V dc power supply and the 1 V peak signal generator.
- 5. Repeat procedure step 2 and observe the change in output waveform.

Part B

Difference Amplifier

Theory Overview

A difference amplifier has two inputs and the output voltage is proportional to the voltage difference of the input voltages. In fact, the (open-loop) Op-Amp itself is a difference amplifier, except that the gain is ideally infinity. Here we want a difference amplifier with finite gain. One such circuit using a single OpAmp is shown in Figure 4. It can be shown that the gain of the difference amplifier can be calculated using the following:

$$V_{O} = \left(V_{2} \left(1 + \frac{R_{f}}{R_{1}}\right) \left(\frac{R_{3}}{R_{2} + R_{3}}\right)\right) - \left(\frac{R_{f}}{R_{1}}V_{1}\right)$$

Figure 2

This equation can be simplified by making $R_3 = R_1 = R_2$, yielding a simple differential amplifier with unity gain:

$$V_0 = V_2 - V_1$$

Procedure

- 1. To investigate the use of an operational amplifier in a difference amplifier configuration, connect the circuit of Figure 2.
- 2. With V_S adjusted to produce a 1 V peak sine wave at 1 kHz, observe the output voltage V_O (and V_S to note the phase relationship) on an oscilloscope set to dc input coupling.
- 3. Sketch the output voltage waveform. Be sure to note the dc level in the output.
- 4. Interchange the 5 V dc power supply and the 1 V peak signal generator.
- 5. Repeat procedure step 2 and observe the change in output waveform.