Lecture 6

Process identity. Access permissions.

Department of Computer Systems FIT, Czech Technical University in Prague ©Jan Trdlička, 2011

User account

- User name
- . User ID (UID)
 - UID=0 represents root account
- Primary group ID (GID)
 - User belongs to at least one group (primary)
- List of secondary group ID's (optional)
 - User can set his secondary to primary group by command newgrp
- Comment
 - Description of the user account
- Home directory
 - Working directory is set to home directory after login
- . Login shell

User account

Encrypted password

- It can be changed by command passwd
- User must known the original password, root needn't
- User must satisfy password policy, root needn't

User account database

. /etc/nsswitch.conf

Defines where the information about user accounts are saved

Local Files

```
/etc/passwd
/etc/shadow
/etc/group
```

Central name service

Keeps information about user accounts at one place (not only about user accounts ...)

```
NIS (commands ypcat, ypmatch, ...)

NIS+ (commands niscat, nisgrep, ...)

LDAP (commands Idaplist, Idapsearch, ...)
```

User account database

File /etc/passwd

```
name:x:UID:GID:comment:home_directory:login_shell
```

. File /etc/shadow

```
name:password:lastchg:min:max:warn:inactive:expire:flag
```

File /etc/group

group::GID:list_of_users

Login process

- System asks for user name and password
- System verifies the name and password in database
- After successful verification, login shell is started and
 - working directory = home directory of the user account
 - effective user ID (EUID) = UID
 - real user ID (RUID) = UID
 - save user ID (SUID) = UID
 - effective group ID (EGID) = primary GID
 - real group ID (RGID) = primary GID
 - save group ID (SGID) = primary GID
 - list of secondary group ID's

Process identity

Real process identity (RUID, RGID)

- It equals to the identity of the user that starts the process (by default)
- Can be printed by commands

```
ps -o ruid,rgid,comm
pcred PID
```

Saved process identity (RUID, RGID)

- It is equals to real identity (in most cases)
- It can be printed by commands

```
pcred PID
```

Effective process identity (EUID, EGID)

- It is used to verify the authenticity of the process
- It is equals to real identity (in most cases)
- It can be changed to real or saved identity
- It can be printed by commands

```
ps -o uid,gid,comm
pcred PID
```


Modification of process identity

- Process identity is set by kernel during process startup or kernel can change it on demand of process.
- RUID, EUID, SUID respectively RGID, EGID, SGID are the same in most cases and they are inherited from the parent process.
- In some cases, they are not inherited from parent and can be different:
 - During login (process login/dtlogin)
 - By commands su/newgrp
 - Execution of binary files with permission suid modifies EUID, SUID
 - Execution of binary files with permission guid modifies EGID, SGID

su / newgrp

```
su [ - ] [ user_name]
```

- Stars new login shell with new process identity
- With option new environment is set

Start new shell with group identity=secondary group

Example

```
$ id
uid=0(root) gid=1(other)
$su - trdlicka
Sun Microsystems Inc. SunOS 5.10
                                    Generic January 2005
You have new mail.
$id -a
uid=4365(trdlicka) gid=1002(k336) groups=1002(k336),2003(y36uos)
$ newgrp y36uos
$ id
uid=4365(trdlicka) gid=2003(y36uos)
$ newgrp k336
$ id
uid=4365(trdlicka) gid=1002(k336)
```

File/directory

- Owner-user (UID)
- Owner-group (GID)
- Access permissions read, write and execute for user, group and other.

These information about file can be printed by command: 1s −1

Permissions	File	Directory	
r	Read content of file (cat)	List content of directory (1s) without atributes	
W	Modify content of file (vi)	Create or remove files/subdirectory (rm)	
X	Execute program	set and browse directory (cd)	

chmod [-R] permissions files

-R Recursively descends through directory arguments

permissions can be defined by symbolic or absolute (octal) mode

Symbolic mode

Absolute (octal) mode

Permission specification:

Example:

\$1s -1 a.txt

-rw-r--r-- 1 trdlicka k336 1105 Oct 23 20:52 a.txt

\$chmod 706 a.txt

\$1s -1 a.txt

-rwx---rw- 1 trdlicka k336 1105 Oct 23 20:52 a.txt

File mode creation mask

- It defines permissions that are set to a file/directory during its creation.
- It is inherited from parent process.
- It can be printed or modified by command umask.
- File permissions = initial permissions \cap file mode creation mask
- File Initial permissions are 666
- Directory initial permissions are 777

mask	file	directory	note
000	666	777	Initial value, unsafe
022	644	755	Default
027	640	750	More safe
077	600	700	The most safe
066	600	711	Compromise

How to change user/group owner

- . Only root can.
- By commands

```
chown [-R] user [:group] files
chgrp [-R] group files
```


Special access permissions

Permissions	Value	File	Directory
s uid 4000 u+s		After execution of binary file, the process EUID equals to owner of binary file	No meaning
s gid l ock	2000 g+s	After execution of binary file, the process EGID equals to group of binary file	New files from directory inherit GID of directory, not of GID of process
sticky sTicky 0+t		No meaning	Anybody can create file/directory in this directory. Only owner can remove them.