9.S912 Principles of Neural Computation in Minds and Machines

Novel task learning by Distributed vs. Specialized neural computation architectures

Theodor Cucu and Jason Li

Motivation

Human brains can learn and infer novel features about familiar objects.

Hemolymph?

- To what extent does a distributed computation strategy support this ability?
- **Hypothesis:** distributed computation serves as a better prior for a neural network to learn new features, compared to feature-specialized computation.

Data

The overlap of two datasets:

- 58,289 images
- 45 animals
- Average close to 1300 224x224 images per animal

Plan

- 1. Train a **Distributed** NN and a **Feature-Specialized** NN to extract 3 features (speed, lifespan, conservation status) given animal images
- 2. Add a 4th feature, diet or social structure, to the training regimen, and continue training
- 3. Compare performance

Models

Results: Distributed Network

Average Speed (km/h) Predicted: 19.63 - True Label: 9.00

Average Speed (km/h) Predicted: 19.63 - True Label: 60.00

Height (cm) Predicted: 116.03 - True Label: 160.00

Height (cm) Predicted: 116.03 - True Label: 10.25

Weight (kg) Predicted: 967.38 - True Label: 56.00

Weight (kg) Predicted: 967.38 - True Label: 11.00

Converges to Constant :(

Results: Specialized Network

Average Speed (km/h) Predicted: 1.37 - True Label: 42.00

Average Speed (km/h)
Predicted: 0.53 - True Label: 30.00

Height (cm) Predicted: 8.50 - True Label: 162.00

Height (cm) Predicted: 7.73 - True Label: 122.50

Weight (kg) Predicted: 131.50 - True Label: 50.00

Weight (kg) Predicted: 83.99 - True Label: 247.00

ALMOST Converges to Constant :(

Trying MNIST

Train on:

- x+3
- x*1.5
- sqrt(x)

4th task:

- x^2
- 2.3*sqrt(x)-1.4

Training results on 3 initial tasks

Adding 4th task and continuing training

Controlling for architecture

Same architecture: results on 3 initial tasks

Same architecture: adding 4th task and continuing training

Views and Principles

- Investigating the benefits of distributed computation in the context of learning a new prediction task
- Bridging the gap between two very different representations of the same concept

Future Directions

- Explore variations on model architecture, datasets, and features
- Experiment with different training strategies
- Better capture human intuition on feature learning
- Further control for model size and/or complexity
- What if the models must learn several new features/tasks at once?
- Look into learning dynamics to figure out why we see what we see