

Applied Statistics for Data Scientists with R

Class 17: ANOVA and Post-hoc analysis

ANOVA: What is this?

- ANOVA is acronym for Analysis of Variance
- It is used to compare the means of two or more groups by analyzing variance
- ANOVA decomposes the total variability in the data into:
 - Between-group variance (Variation due to differences in group means)
 - Within-group variance (Variation within each group, assumed to be due to random error)

ANOVA: How does it work?

- If the group means were equal, the between-group variability would be small, and most of the variability would be due to differences within the groups (i.e., the error).
- By comparing the variability between groups to the variability within groups, ANOVA determines
 whether the observed differences between group means are greater than what we'd expect due
 to random variation.

ANOVA: Hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

 H_1 : At least one group mean differs from the others..

ANOVA: F-Statistic

- The test statistic in ANOVA is F-statistic.
- It is the ratio of mean square between (MSB) to the mean square within (MSW): $F = \frac{MS_b}{MS_w}$

ANOVA Table Construction

Source	Sum of Squares (SS)	df	Mean Square (MS)	F
Between (b)	$SS_b = n \sum_{i=1}^k (\overline{X}_i - \overline{X})^2$	k-1	$rac{\mathrm{SS}_b}{k-1}$	$\frac{\mathrm{MS}_b}{\mathrm{MS}_w}$
Within (w)	$\mathrm{SS}_w \ = \ \sum_{i=1}^k \sum_{j=1}^n (X_{ij} - \overline{X}_i)^2$	k(n-1)	$rac{\mathrm{SS}_w}{k(n-1)}$	_
Total (t)	$SS_t = SS_b + SS_w$	kn-1	_	_

• Group mean:
$$\overline{X}_i = \frac{1}{n} \sum_{j=1}^n X_{ij}$$
,

• Grand mean:
$$\overline{X} = \frac{1}{kn} \sum_{i=1}^k \sum_{j=1}^n X_{ij}$$
.

• Mean squares:
$$ext{MS}_b = rac{ ext{SS}_b}{k-1}, \quad ext{MS}_w = rac{ ext{SS}_w}{k(n-1)}$$

• F-statistic:
$$F = \frac{\mathrm{MS}_b}{\mathrm{MS}_w}$$

A Shiny App for Demonstration

https://utrecht-university.shinyapps.io/ANOVA-assumptions/

• ANOVA tells us there is a difference, but not where

- A post hoc analysis is designed to:
 - Pinpoint specific group differences
 - Control for the inflated Type I error rate

Solution to Inflated Type-I Error

Multiple Comparison Problem

Example: Let's say, we aim to compare the means in 3 groups (A, B, C)

Hence, we have to perform **3** separate t-tests:

A vs. B

A vs. C

B vs. C

Each test has a 5% (α) chance of making a Type I error.

- Probability of no type-I Error in 1 test: $1-\alpha=1-0.05=0.95$ So, there's a **95% chance** that we do not make a Type-I error in a single test.
- If we perform 2 **independent** tests, and each test has a 95% chance of being correct, then the probability that **2 tests** with no type-I error is: $0.95 \times 0.95 = 0.9025$
- If we perform 3 **independent** tests, and each test has a 95% chance of being correct, then the probability that **3 tests** with no type-I error is: $0.95 \times 0.95 \times \cdots \times 0.95 = 0.95^3 = 0.8573$

- So, probability of making at least 1 type I error if we perform 1 independent test = 1 0.95 = 0.05
- Probability of making at least 1 type I error if we perform 2 independent tests = $1 0.95^2 = 0.097$
- Probability of making at least 1 type I error if we perform 3 independent tests = $1 0.95^3 = 0.143$
- So, probability of **making at least one** Type I error if we perform n independent tests: $1-(1-\alpha)^n$

- Each additional test increases the risk of a false positive.
- With just 5 groups, requiring 10 tests, the risk of making at least one Type I error jumps from 5% to 40%.
- Instead of running multiple t-tests, ANOVA performs a single test that evaluates all group means simultaneously while controlling for overall Type I error.
- If ANOVA finds a significant result, we can use post-hoc tests (e.g., Bonferroni, Tukey) that adjust for multiple comparisons to determine which means differ.

- Common Post Hoc Tests
 - Tukey's HSD:
 Typically best when group sizes are equal or nearly equal, and homogeneity of variance holds
 - Bonferroni Correction:
 Divides the desired significance level by the number of comparisons to keep the overall Type I error rate in check.