Chapter 2: Real numbers

1 Groups

Definition 1 (Group). Let G be a non-empty set and \circ : $G \times G \to G$ be a binary operator. Then (G, \circ) is a group iff all of the following hold:

- 1. Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$.
- 2. Identity exists: $\exists e \in G \text{ such that } \forall a \in G, \ e \circ a = a \circ e = a.$ Such an e is called an identity of (G, \circ) . We can prove that the identity is unique.
- 3. Inverses exist: Let e be an identity of (G, \circ) . Then $\forall a \in G$, $(\exists \ell \in G, \ell \circ a = e)$ and $(\exists r \in G, a \circ r = e)$. ℓ is called a left inverse of a. r is called a right inverse of a.

 (G, \circ) is called symmetric, commutative, or abelian iff $\forall a \in G, \forall b \in G, a \circ b = b \circ a$.

Lemma 1. In a group (G, \circ) , the identity is unique and each element has a unique inverse.

Proof. Let e_1 and e_2 be identities of (G, \circ) . Then $e_1 \circ e_2 = e_1$, since e_2 is an identity, and $e_2 \circ e_1 = e_2$, since e_1 is an identity. Hence, $e_1 = e_2$.

Let ℓ be a left inverse and r be a right inverse of $a \in G$. Then

$$\ell = \ell \circ e = \ell \circ (a \circ r) = (\ell \circ a) \circ r = e \circ r = r.$$

Hence, every left inverse equals every right inverse. Hence, they are all equal.

If we use + as a group operator, we denote identity as 0 and inverse of g as -g. If we use \times as a group operator, we denote identity as 1 and inverse of g as g^{-1} .

Definition 2. Let (G, \times) be a group. Then for any $n \in \mathbb{Z}$ and any $g \in G$, define

$$g^{n} = \begin{cases} g \times g \times \ldots \times g \ (n \ times) & if \ n > 0 \\ 1 & if \ n = 0 \\ g^{-1} \times g^{-1} \times \ldots \times g^{-1} \ (-n \ times) & if \ n < 0 \end{cases}$$

Lemma 2 (Basic properties). Let (G,\cdot) be a group. Let $a,b\in G$ and $m,n\in\mathbb{Z}$.

- 1. $(ab)^{-1} = b^{-1}a^{-1}$.
- $2. (a^{-1})^{-1} = a.$
- $3. \ a^m a^n = a^{m+n}.$
- 4. $(a^m)^n = a^{mn}$.
- 5. If G is symmetric, $(ab)^n = a^n b^n$.

2 Fields

Definition 3 (Field). $(F, +, \times)$ is a field iff it satisfies all of the following:

- 1. (F, +) is a symmetric group. It's identity is denoted as 0.
- 2. $(F \{0\}, \times)$ is a symmetric group. It's identity is denoted as 1.
- 3. Distributivity: a(b+c) = ab + ac and (a+b)c = ac + bc.

Lemma 3 (Basic properties). Let $(F, +, \times)$ be a field. Let $a, b \in F$.

- 1. a0 = 0a = 0.
- 2. a(-b) = (-a)b = -(ab).
- 3. (-a)(-b) = ab.
- 4. $ab = 0 \iff (a = 0 \text{ or } b = 0)$.
- 5. $(-a)^{-1} = -a^{-1}$.

Proof sketches.

- 1. a0 = a(0+0) = a0 + a0.
- 2. 0 = a0 = a(b + (-b)) = ab + a(-b).
- 3. (-a)(-b) = a(-(-b)) = ab.
- 4. Suppose $a \neq 0$. Then $ab = 0 \implies b = a^{-1}0 = 0$.
- 5. (-1)(-1) = 1, so $(-1)^{-1} = -1$. $(-a)^{-1} = ((-1)a)^{-1} = (-1)^{-1}a^{-1} = -a^{-1}$.