ST202 Lent Term – Handout 4 Extra exercise on hypothesis testing

Yudong Chen y.chen276@lse.ac.uk

March, 2023

1. Let Y_1, \ldots, Y_n be i.i.d exponential random variables with rate parameter $\theta > 0$.

(a) Suppose we want to test $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, where $\theta_0 < \theta_1$. Find the most powerful test of size α .

(b) Show that this is the uniformly most powerful test (UMPT) for $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$.

(c) Is this also the UMPT for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$?

(Hint: you may find the following result helpful: if X_1, \ldots, X_n are i.i.d. $\text{Exp}(\theta)$ random variable, then $2\theta \sum_{i=1}^n X_i \sim \chi_{2n}^2$.)

2. This question is based on PS6Q5. Suppose that X_1, \ldots, X_n and Y_1, \ldots, Y_n are two independent random samples from two exponential distributions with rate θ_1 and θ_2 , respectively. We want to test $H_0: \theta_1 = \theta_2$ vs. $H_1: \theta_1 \neq \theta_2$. Recall that the likelihood ratio statistic is

$$r(\mathbf{X}, \mathbf{Y}) = \left[\frac{(\bar{X} + \bar{Y})^2}{4\bar{X}\bar{Y}}\right]^n.$$

We have established in PS6Q5 that $2 \log r(\mathbf{X}, \mathbf{Y})$ is approximately χ_1^2 under H_0 , when n is large (i.e. χ_1^2 is the asymptotic distribution) and we can use this to construct a test with asymptotic size α . In this question, though, we would like to derive an exact (non-asymptotic) test of size α based on the above likelihood ratio statistic.

(a) Show that the likelihood ratio $r(\mathbf{X}, \mathbf{Y})$ is a monotone function of $|T(\mathbf{X}, \mathbf{Y}) - 1/2|$, where

$$T(\mathbf{X},\mathbf{Y}) = \frac{\bar{X}}{\bar{X} + \bar{Y}}.$$

Is it monotonically increasing or decreasing?

(b) What is the distribution of T under H_0 ? (Hint: if $U \sim \text{Gamma}(\alpha, \lambda)$ and $V \sim \text{Gamma}(\beta, \lambda)$ are independent, then $U/(U+V) \sim \text{Beta}(\alpha, \beta)$.)

(c) Construct a test of exact size α using |T-1/2|.