Departamento de Informática - UFPR

Segunda prova - RESPOSTAS

Algoritmos e Teoria dos Grafos - CI065 - 2010/2

Prof. André Luiz Pires Guedes 24 de novembro de 2010 PROVA SEM CONSULTA

A prova tem duração de 1:30 horas.

A interpretação faz parte da prova. Pode fazer a lápis (contanto que seja possível ler). Pode ficar com a folha de questões.

 $\begin{array}{c} \mathbf{Dado} & : \text{um grafo conexo } G \text{ com pesos nas arestas.} \\ \mathbf{Devolve} & : \text{árvore geradora de custo mínimo } T. \\ \mathbf{1} & \text{escolha } v \in V(G); \\ \mathbf{2} & S \leftarrow \{v\}; \\ \mathbf{3} & A \leftarrow \emptyset; \\ \mathbf{4} & \mathbf{enquanto } S \neq V(G) \text{ faça} \\ \mathbf{5} & \text{escolha } \{u,w\} \in E(S,\overline{S}) \text{ de peso mínimo no corte, com } u \in S; \\ \mathbf{6} & \text{insira } \{u,w\} \text{ em } A; \\ \mathbf{7} & \text{insira } w \text{ em } S; \\ \mathbf{8} & \text{devolva } T = (S,A). \end{array}$

Algoritmo 1: Prim(G).

- (20pts) 1. Apresente (desenhando ou descrevendo) todas as árvores (não-isomorfas) com 6 vértices.
- R. Apenas 5 diferentes vetores de graus, mas 6 árvores diferentes:
 - 1. (1,1,2,2,2,2) uma árvore que é um caminho com os 6 vértices;
 - 2. (1,1,1,2,2,3) duas árvores, uma delas é um caminho com 5 vértices e o sexto vértice está conectado com o segundo no caminho; a outra é o mesmo caminho com 5 vértices mas o sexto vértice está conectado com o terceiro no caminho;
 - 3. (1,1,1,1,3,3) uma árvore onde os vértices de grau 3 são vizinhos e cada um tem 2 vértices de grau 1 como vizinhos;
 - 4. (1,1,1,1,2,4) uma árvore onde o vértice de grau 4 tem um de seus vizinhos de grau 2;
 - 5. (1,1,1,1,1,5) uma árvore, um vértice ligado aos demais.
- (20pts) **2.** Considerando o algoritmo 1, prove que (S, A) é uma sub-árvore de alguma árvore geradora mínima de G sempre que a linha 4 é executada.

R. O par (S, A) é uma árvore, já que as arestas entram em A se conectando com o vértice novo de S, logo não forma ciclo, e o número de arestas é sempre um a menos que o número de vértices.

Seja S_i , e A_i os valores de S e A na i-ésima vez que a linha 4 é executada.

Por indução, (base) para $i=1,\ S_1=\{v\}$ e $A=\emptyset$, o que faz com que (S_1,A_1) seja sub-árvore de qualquer árvore geradora mínima de G.

Suponha que (hipótese) para i = k, para um certo k >= 1, (S_k, A_k) é subárvore de uma árvore geradora mínima T^* .

Após a (k+1)-ésima execução, $S_{k+1} = S_k \cup \{u\}$ e $A_{k+1} = A_k \cup \{e\}$, onde $e = \{u, w\}$, e u e w são escolhidos pelo algoritmo.

Se e é uma aresta de T^* então (S_{k+1}, A_{k+1}) é sub-árvore de alguma árvore geradora mínima de G.

Se e não é uma aresta de T^* , o grafo $T^* + e$ tem um ciclo. Como este ciclo passa por u e w, sendo que $u \in \overline{S_k}$ e $w \in S_k$, este ciclo possui pelo menos uma outra aresta no corte $E(S_k, \overline{S_k})$, além de e. Seja f esta outra aresta.

Como o algoritmo escolheu e tendo f como uma das opções (arestas do corte) o peso de e deve ser menor ou igual ao peso de f ($c(e) \le c(f)$). O grafo $T' = T^* + e - f$ é uma árvore geradora de G de peso igual a $c(T^*) + c(e) - c(f)$. Como T^* é mínima, $c(T^*) \le c(T^*) + c(e) - c(f)$, e portanto $c(f) \le c(e)$. Logo, c(f) = c(e) e T' é uma árvore geradora mínima de G. Assim, (S_{k+1}, A_{k+1}) é sub-árvore de uma árvore geradora mínima de G.

- (20pts) **3.** Prove que se um grafo bipartido $G = (A \cup B, E)$, de partes A e B, tem um emparelhamento M que cobre A então para todo $S \subseteq A$, $|N(S)| \ge |S|$. Onde N(S) é a união das vizinhanças de cada vértice de S.
- **R.** Um emparelhamento M em G que cobre A induz uma função $f:A\to B$ defina por f(a)=b onde $\{a,b\}\in M$.

A função f deve ser injetora, já que se existem $x,y\in A$, distintos, são tais que f(x)=f(y)=z então existem arestas $\{x,z\}$ e $\{y,z\}$ em M e M não seria um emparelhamento.

Se existe $S \subseteq A$ tal que |N(S)| < |S|, pelo princípio da casa dos pombos, pelo menos 2 vértices de S teriam o mesmo valor de f, e f não seria injetora. Logo, não pode existir $S \subseteq A$ tal que |N(S)| < |S|.

- (20pts) 4. Dado um grafo G, o grafo linha de G é o grafo L(G) = (E(G), A) onde $A = \{ \{a,b\} \mid a \cap b \neq \emptyset \}$. Sabendo que $\Delta(G)$ é o grau máximo de G e que $\omega(G)$ é o tamanho da maior clique de G. Prove, ou apresente um contra-exemplo, que para todo grafo G, $\omega(L(G)) \leq \Delta(G)$.
- **R.** Contra-exemplo: G é um triângulo. L(G) também é um triângulo. $\Delta(G)=2$ e $\omega(L(G))=3$.

(20pts) 5. Um grafo G é Hamiltoniano se existe um ciclo em G que passa por todos os vértices (sem repetições). Um grafo G é Euleriano se existe um passeio fechado em G que passa por todas as arestas (sem repetições). Usando a definição de grafo linha da questão anterior, prove, ou apresente um contra-exemplo, que um grafo G é euleriano se, e somente se, L(G) é hamiltoniano.

R. (=>)

Vamos provar que se G é euleriano então L(G) é hamiltoniano.

Se G é euleriano então existe um passeio fechado $P = (v_1, v_2, \ldots, v_k, v_1)$ que passa por todas arestas de G sem repetições, voltando ao vértice inicial. Considere a sequência $C = (\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_i, v_{i+1}\}, \ldots, \{v_k, v_1\}, \{v_1, v_2\})$. Como cada aresta de G é um vértice de L(G) e cada aresta consecutiva em C tem um vértice em comum, C é um ciclo hamiltoniano em L(G). Logo se G é euleriano então L(G) é hamiltoniano.

(<=)

Existe um contra-exemplo para a volta.

Seja G o grafo com 4 vértices, sendo um deles com grau 3 e os demais com grau 1. L(G) é um triângulo. L(G) é hamiltoniano, mas G não é euleriano.