The Book of Math (Notes)

Kevin Kuo

November 13, 2020

Forward and Disclaimer

These are math notes made by a student (with a physics major and math minor) based off text books. It may contain misconceptions and misinterpretations, thus should not be viewed in the same light of a text book. Use at your own risk and mental sanity.

Symbols

Logic

Name	Symbol	Comment
Exists	3	There exists at least one
For all	A	
Not exists	∄	There does not exist
Exists one	∃!	There only exists one and only one
And	\wedge	
Or	V	Inclusive or
Not	¬	
Logically implies	\Longrightarrow	If
Logically implied by	←	Only if
Logically equivalent	\iff	If and only if
Implies	\longrightarrow	
Implied by	←	
Double Implication	\longleftrightarrow	

Set Notation

Name	Symbol	Comment
Empty Set	Ø	The set that is empty
Natural Numbers	\mathbb{N}	Set of natural numbers not containing 0, equivalent to
		the set of positive integers
Integers	$\mathbb Z$	Set of integers
Rational Numbers	\mathbb{Q}	
Algebraic Numbers	\mathbb{A}	
Real Numbers	\mathbb{R}	
Complex Numbers	$\mathbb C$	
In	€	
Not in	∉	
Owns	Э	Has an element
Proper Subset	C	Subset that is not itself
Subset	\subseteq	
Superset)	Superset that is not itself
Proper Superset	⊇	

Power set	ေ
Union	U
Intersection	\cap
Difference	\

Relationships

Name	Symbol	Comment
Defined	Ė	
Approximate	≈	
Equivalent	≡	Isomorphic (Group Theory)
Congruent	≅	Homomorphic (Group Theory)
Proportional	\propto	

Operators

Name	Symbol	Comment
	\oplus	
	\otimes	
	•	
	0	Convolution
Dagger	†	Complex conjugate transpose of a matrix

Arrows

Name	Symbol	Comment
Maps to	\mapsto	

Hebrew

Name	\mathbf{Symbol}	Comment
Aleph	×	Carnality of infinite sets that can be well ordered

Other

Name	\mathbf{Symbol}	Comment
Real part	R	Real part of a number
Imaginary part	I	Imaginary part of a number

Contents

Ι	Logic	1
II	Numbers	3
1	Natural \mathbb{N}	5
2	Integers \mathbb{Z}	7
3	Rationals \mathbb{Q}	9
4	Constructible	11
5	Algebraic \mathbb{A}	13
6	Reals \mathbb{R}	15
7	Complex $\mathbb C$	17
II	I Real Analysis	19
IV	Complex Analysis	23
8	Conformal Mapping	27

V Differential Equations	29
VI Partial Differential Equations	31
VII Linear Algebra	33
9 Markov Chains	35
VIII Tensors	37
IX Riemann Geometry	39
X Abstract Algebra	41
10 Groups	43
11 Rings 11.1 Ideals	45
12 Integral Domains	47
13 GCD Domains	49
14 Unique Factorization Domains	51
15 Principal Ideal Domains	53
16 Fields	55

XI	Galois Theory	57
XII	Set Theory	59
XIII	Model Theory	61
XIV	Statistics	63
XV	Time Series Analysis	65
XVI	Tips and Tricks	67
17 In	tegration Techniques	69
17	.1 DI Method (Integration Table)	69
17	.2 Feynman Integration	69
XVI	I Bibliography	71

Part I

Logic

Part II

Numbers

Natural \mathbb{N}

Integers \mathbb{Z}

Rationals \mathbb{Q}

Constructible

Algebraic \mathbb{A}

Reals \mathbb{R}

Complex $\mathbb C$

Part III Real Analysis

Books Used:

1. Kenneth A. Ross - Elementary Analysis (2nd Ed.) $\left[1\right]$

Part IV Complex Analysis

Books Used:

1. Brown and Churchill - Complex Variables and Applications $\left[2\right]$

Conformal Mapping

$\begin{array}{c} {\bf Part~V} \\ {\bf Differential~Equations} \end{array}$

Part VI Partial Differential Equations

Part VII Linear Algebra

Markov Chains

Part VIII

Tensors

Part IX Riemann Geometry

Part X Abstract Algebra

Groups

Rings

11.1 Ideals

Integral Domains

GCD Domains

Unique Factorization Domains

Principal Ideal Domains

Fields

Part XI Galois Theory

Part XII Set Theory

Part XIII Model Theory

Part XIV

Statistics

Part XV Tips and Tricks

Integration Techniques

- 17.1 DI Method (Integration Table)
- 17.2 Feynman Integration

Part XVI Bibliography

Bibliography

- [1] Kenneth A. Ross. *Elementary Analysis*. Springer, 2 edition, 2013.
- [2] James Ward Brown and Ruel V. Churchill. *Complex Variables and Applications*. McGraw-Hill Education, 9 edition, 2014.