La transformée de Fourier rapide (FFT)

Projet I

Exercice 1 Soit A une matrice circulante

$$A = \begin{pmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \cdots & c_{n-2} \\ c_{n-2} & c_{n-1} & c_0 & \cdots & c_{n-3} \\ \vdots & & & \ddots & \vdots \\ c_1 & c_2 & \cdots & \cdots & c_0 \end{pmatrix} \in \mathcal{M}_N(\mathbb{C}).$$

1. Déterminer une suite d_k telle que

$$(Ax)_i = \sum_{j=0}^{N-1} d_{i-j} x_j.$$

Le vecteur Ax peut donc s'obtenir comme "convolution" de deux vecteurs d et x.

- 2. (a) Définir un matrice A circulante dont la première ligne est choisie aléatoirement.
 - (b) Calculer les valeurs propres de A (et des vecteurs propres associés) en résolvant le problème $Ax=\lambda x$
 - (c) En déduire un moyen de résoudre le problème Ax = b pour $b \in \mathbb{C}^N$.

Exercice 2 On considère le problème

$$-u'' = f$$

posé sur l'intervalle $[0, 2\pi]$ avec des conditions aux limites périodiques.

- 1. Résoudre, à la main, ce problème en cherchant une solution sous forme de série de Fourier.
- 2. Résoudre par la méthode des différences finies le même problème (avec une discrétisation centrée du Laplacien). On utilisera la méthode proposée à la question 2c de l'exercice 1 pour résoudre le système linéaire.
- 3. Comparer les solutions pour différentes fonctions f.

Exercice 3 Résoudre par la méthode des différences finies le problème

$$-\Delta u = f$$

posé sur le carré unité avec des conditions aux limites périodiques. On utilisera la méthode proposée à la question 2c de l'exercice 1 pour résoudre le système linéaire.