Výroková logika

2. přednáška z LGR

Obsah

- Sémantika výrokové logiky
 - Úplné systémy logických spojek
 - Booleovské funkce
 - Normální formy formulí

Definice

Množina logických spojek Δ tvoří úplný systém logických spojek, jestliže pro každou formuli φ existuje formule φ_{Δ} , která používá pouze spojky z množiny Δ , a přitom $\varphi \models \varphi_{\Delta}$.

Tvrzení

Následující množiny tvoří úplné systémy logických spojek:

- $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\}, \{\neg, \lor, \land\}$
- $\bullet \ \{\neg, \lor\}, \ \{\neg, \land\}, \ \{\neg, \Rightarrow\}$

Tyto množiny naopak netvoří úplné systémy logických spojek:

• $\{\neg\}$, $\{\land, \lor, \Rightarrow, \Leftrightarrow\}$ - ani žádná její podmnožina

Tvrzení

Je-li Δ úplný systém logických spojek a lze-li každou spojku z Δ tautologicky ekvivalentně přepsat pomocí spojek z Γ , pak také Γ tvoří úplný systém logických spojek.

Tvrzení

Množiny $\{\downarrow\}$, resp. $\{\mid\}$ tvoří úplný systém logických spojek.

Tvrzení

Množina {¬,⇔} úplný systém logických spojek netvoří.

Hilbertův dokazovací systém používá následující definici formule:

Zúžená definice formule

Je dána množina logických proměnných $A \neq \emptyset$.

Formule výrokové logiky je definována induktivně těmito pravidly:

- 1 Atomickými formulemi jsou logické proměnné.
- ② Jsou-li α , β formule, pak také $(\neg \alpha)$ a $(\alpha \Rightarrow \beta)$ jsou formule.
- 3 Každá formule vznikla použitím konečně mnoha kroků 1 a 2.

To je postačující definice, protože $\{\neg, \Rightarrow\}$ tvoří úplný systém logických spojek. Ostatní spojky lze považovat za odvozené od těchto dvou.

K zamyšlení

Ternární spojka "if α then β else γ "je dána následující tabulkou:

β	γ	ifte(α, β, γ)
0	0	0
0	1	1
1	0	0
1	1	1
0	0	0
0	1	0
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0

Tvrzení

Pro libovolné formule α, β, γ platí:

- ifte(α, β, γ) \models ($\alpha \Rightarrow \beta$) \land ($\neg \alpha \Rightarrow \gamma$)
- ifte(α, β, γ) \models ($\alpha \land \beta$) \lor ($\neg \alpha \land \gamma$)

Tvrzení

Množina {ifte, tt, ff} je úplný systém logických spojek.

Návod k důkazu: Zkuste pomocí těchto tří spojek napsat tautologicky ekvivalentně spojky \neg a \Rightarrow .

Booleovské funkce

Booleovská funkce n proměnných je funkce z $\{0,1\}^n$ do $\{0,1\}$.

Každá formule výrokové logiky obsahující *n* logických proměnných jednoznačně určuje booleovskou funkci *n* proměnných.

Sloupeček v tabulce pravdivostních ohodnocení odpovídající formuli φ udává výsledky dané booleovské funkce (označíme f_{φ}) pro všechny možné kombinace vstupních hodnot.

Tvrzení

- $\varphi \models \psi$, právě když určují stejné booleovské funkce.
- ullet Je celkem $2^{(2^n)}$ různých booleovských funkcí n proměnných.
- Pro n logických proměnných je $2^{(2^n)}$ tříd tautologické ekvivalence.

Booleovské funkce

Na množině $\{0,1\}$ jsou definovány operace:

- logický součin $x \cdot y = \min\{x, y\}$
- logický součet $x + y = \max\{x, y\}$
- logický doplněk $\bar{x} = 1 x$

Množina {0,1} tvoří s těmito operacemi tzv. *Booleovu algebru*.

Tvrzení

Pro libovolné pravdivostní ohodnocení u a libovolné formule α , β platí:

- $u(\alpha \wedge \beta) = u(\alpha) \cdot u(\beta)$
- $u(\alpha \vee \beta) = u(\alpha) + u(\beta)$
- $u(\neg \alpha) = \overline{u(\alpha)} = 1 u(\alpha)$

Booleovské funkce

Poznámka

Odlišujte značení a terminologii!

Nechť a, b, c jsou logické proměnné, u je pravdivostní ohodnocení.

Označme
$$u(a) = x$$
, $u(b) = y$, $u(c) = z$, kde $x, y, z \in \{0, 1\}$.

Toto je o formulích: $(a \land b) \lor \neg c \models (a \lor \neg c) \land (b \lor \neg c)$

Toto je o číslech:
$$(x \cdot y) + \overline{z} = (x + \overline{z}) \cdot (y + \overline{z})$$

Otázka

Lze pro každou booleovskou funkci najít formuli, která jí odpovídá? Aneb lze pro každý sloupec v pravdivostní tabulce najít formuli, jejíž pravdivostní hodnoty odpovídají danému sloupci?

Odpověď zní ANO, dokonce najdeme formuli ve speciálním tvaru, tzv. konjunktivní či disjunktivní normální formě.

Definice

Literál je atomická formule nebo její negace.

Např. logická proměnná a je pozitivní literál, $\neg a$ je negativní literál, oba jsou navzájem komplementární literály.

Minterm je konjunkce literálů, nebo jeden literál, nebo tt.

Např. $a \wedge \neg b \wedge c$, $a \wedge \neg b$, a, tt jsou mintermy.

Maxterm je disjunkce literálů, nebo jeden literál, nebo ff.

Maxtermům se též říká klausule.

Např. $a \lor \neg b \lor c$, $a \lor \neg b$, a, ff jsou maxtermy.

Definice

Řekneme, že *formule je v disjunktivní normální formě* (DNF), jestliže je disjunkcí mintermů, nebo jeden minterm nebo ff. Řekneme, že *formule je v konjunktivní normální formě* (CNF), jestliže je konjunkcí maxtermů, nebo jeden maxterm nebo tt.

Příklady

Formule $(a \land \neg b \land c) \lor (a \land b)$, $a \lor b$, a, tt, ff jsou v DNF, formule $(a \lor \neg b \lor c) \land a$, $a \lor b$, a, tt, ff jsou v CNF.

Relaxovaný syntaktický strom pro formule v DNF či CNF má hloubku nejvýše 3.

Tvrzení

Ke každé formuli φ existují formule φ_{DNF} v disjunktivní normální formě a φ_{CNF} v konjunktivní normální formě tak, že $\varphi \models \varphi_{\mathit{DNF}}$ a také $\varphi \models \varphi_{CNF}$.

Tvrzení dokážeme tak, že představíme tři způsoby, jak danou formuli do normální formy DNF či CNF převést.

Poznamenejme, že formule φ_{DNF} a φ_{CNF} nejsou pro danou formuli φ určeny jednoznačně.

Tři způsoby, jak najít disjunktivní či konjunktivní normální formu pro danou formuli φ :

- pomocí úprav zachovávajících tautologickou ekvivalenci
- pomocí tabulky pravdivostních hodnot (najdeme úplnou DNF, CNF)
- pomocí Karnaughovy mapy (najdeme zjednodušenou DNF, CNF)

První dva způsoby ukážeme na přednášce, třetí najdete ve skriptech doc. Velebila.

1. způsob - algoritmus používající taut. ekvivalentní úpravy

V každém kroku zpracujeme celý syntaktický strom formule φ a to směrem od kořene k listům:

- přepíšeme taut. ekvivalentně ostatní spojky pomocí ¬, ∧, ∨
 to lze, neboť tyto spojky tvoří úplný systém spojek
- dostaneme negaci k atomickým formulím De Morganovy zákony, vynechání dvojité negace
- upravíme pořadí konjunkce a disjunkce distributivní zákony
- případně zjednodušíme: upravíme max/mintermy, aby obsahovaly každou logickou proměnnou nejvýše jednou idempotence a zákony pro tt a ff; vypustíme zbytečné termy absorpce, slučování typu $(\alpha \lor x) \land (\alpha \lor \neg x) \not\models \alpha$

Získáme tak strom pro φ_{DNF} , resp. φ_{CNF} .

2. způsob - pomocí tabulky pravdivostních hodnot

Vyplníme tabulku pravdivostních hodnot pro formuli φ . To ovšem znamená vyplnit 2^n řádků, kde n je počet logických proměnných. Pro DNF nás zajímají řádky, v nichž má formule φ hodnotu 1, pro CNF naopak řádky s hodnotou 0.

- Řádek je určen kombinací hodnot logických proměnných.
- Konjunkcí literálů ze všech proměnných napíšeme formuli, která má hodnotu 1 pouze na jednom řádku takto - má-li proměnná na tomto řádku hodnotu 1, použijeme pro ni pozitivní literál, má-li hodnotu 0, použijeme negativní literál. Tím získáme minterm.
- Negací tohoto mintermu získáme naopak formuli, která nabývá hodnoty 0 pouze na tomto jediném řádku. Negaci mintermu upravíme na maxterm.

2. způsob - pokračování

- Disjunkce mintermů pro všechny řádky, kde má formule φ hodnotu 1, bude φ_{DNF} .
- Konjunkce maxtermů pro všechny řádky, kde má formule φ hodnotu 0, bude φ_{CNF} .

Poznámka

Pomocí tabulky pravdivostních hodnot získáme tzv. úplnou DNF, resp. μ resp. resp. maxtermu všechny logické proměnné z formule φ . Formule tt nemá úplnou CNF, formule ff nemá úplnou DNF.

Tvrzení

Ke každé booleovské funkci f existuje formule φ , která odpovídá booleovské funkci f. Navíc lze tuto formuli φ nalést v disjunktivní či konjunktivní normální formě.

Otázka k zamyšlení

Kdy je snažší rozhodnout, zda je formule tautologie - pro formuli v DNF, nebo pro formuli v CNF?

Syntaxe a sémantika výrokové logiky

Literatura

- J. Velebil: Velmi jemný úvod do matematické logiky. Kapitola 2.2 obsahuje též Karnaughovy mapy. ftp://math.feld.cvut.cz/pub/velebil/y01mlo/logika.pdf
- M. Demlová, B. Pondělíček: Matematická logika, ČVUT Praha, 1997. Kapitoly 7 a 8.