Linear Algebra (0031) Project 0

Yulwon Rhee (202211342)

Department of Computer Science and Engineering, Konkuk University

```
1. (a) transposeMatrix(A, m, n): transpose the m × n matrix A and return the result
Let A<sup>T</sup> = B. Since B<sub>ij</sub> = A<sub>ji</sub>, the code below returns transpose of matrix A.

double** transposeMatrix(double **A, int m, int n) {
    double** B = allocateMemory(n, m);

for (int i = 0; i < m; i++)
    for (int j = 0; j < n; j++)
    B[j][i] = A[i][j];

return B;
}</pre>
```

```
(x) Solve Problem 2(b) Select Menu: a #### Transpose Matrix #### Enter the number of row: 2 Enter the number of column: 3 Enter the element of matrix: 1 2 3 4 5 6

A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}
A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
A^{AT} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
A^{AT} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
A^{AT} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
3 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
```

(a) Transpose Matrix(b) Normalise Vector(c) Calculate Length(d) Scale Matrix(e) Multiply 2 Matrices(f) Add 2 Matrices

(b) Result Image

Fig. 1: transposeMatrix()

(a) Equation

(b) normalizeVector(v, n): normalise the *n*-dimensional vector v and return the result Since normalised vector is calculated by dividing all entries by its length, the code below returns the normalised vector v.

```
double** normalizeVector(double** v, int n) {
    double** w;
    double len = calculateLength(v, n);

w = allocateMemory(n, 1);
    for (int i = 0; i < n; i++)
        w[i][0] = v[i][0] / len;

return w;
}</pre>
```

```
\mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}||\mathbf{v}|| = \sqrt{(1)^2 + (-1)^2}\therefore \hat{\mathbf{v}} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}\hat{\mathbf{v}} \approx \begin{bmatrix} 0.707107 \\ -0.707107 \end{bmatrix}
```

(a) Equation

```
(a) Transpose Matrix
(b) Normalise Vector
(c) Calculate Length
(d) Scale Matrix
(e) Multiply 2 Matrices
(f) Add 2 Matrices
(x) Solve Problem 2(b)
Select Menu : b
#### Normalise Vector ####
Enter the number of row : 2
Enter the element of matrix:
-1
1.000000
-1.000000
Normalised v =
0.707107
-0.707107
```

(b) Result Image

Fig. 2: normalizeVector()

(a) Transpose Matrix(b) Normalise Vector(c) Calculate Length

(b) Result Image

(c) calculateLength(v, n): calculate the length of the n-dimensional vector \mathbf{v} and return the result

Since length of vector is calculated by square root of the sum of the square of all entries, the code below returns the length of vector \mathbf{v} .

```
double calculateLength(double** v, int n) {
    double len = 0.0;

for (int i = 0; i < n; i++) {
        len += v[i][0] * v[i][0];
    }
    len = sqrt(len);

return len;
}</pre>
```

(a) Equation

```
 (d) \ Scale \ Matrix \\ (e) \ Multiply 2 \ Matrices \\ (f) \ Add 2 \ Matrices \\ \hline \\ (x) \ Solve \ Problem 2(b) \\ Select \ Menu : c \\ \hline \\ \#### \ Calculate \ Length \ #### \\ Enter the number of row : 3 \\ Enter the element of matrix : 1 \\ \hline \\ v = \begin{bmatrix} 1\\7\\4 \end{bmatrix} \\ ||v|| = \sqrt{1^2 + 7^2 + 4^2} \\ ||v|| = \sqrt{66} \\ ||v|| \approx 8.124038   v = 1.000000 \\ 4.000000 \\ Length \ of \ V = 8.124038
```

Fig. 3: calculateLength()

```
(d) scaleMatrix(A, m, n, c): scale the m × n matrix A with scalar c
The code below returns the matrix A scaled by c by multiplying all entries in A by c.

double** scaleMatrix(double** A, int m, int n, double c) {
    double** cA = allocateMemory(m, n);
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            cA[i][j] = c * A[i][j];
        }
}
return cA;
}</pre>
```

```
(a) Transpose Matrix
(b) Normalise Vector
(c) Calculate Length
(d) Scale Matrix
(e) Multiply 2 Matrices
(f) Add 2 Matrices
(x) Solve Problem 2(b)
Select Menu : d
#### Scale Matrix ####
Enter the number of row : 2
Enter the number of column : 4
Enter the element of matrix :
1 3 2 4
3 5 4 6
Enter the value of scalar c : 3.14
1.000000 3.000000 2.000000 4.000000
3.000000 5.000000 4.000000 6.000000
3.140000 9.420000 6.280000 12.560000
9.420000 15.700000 12.560000 18.840000
```

```
3.14 \begin{bmatrix} 1 & 3 & 2 & 4 \\ 3 & 5 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 3.14 & 9.42 & 6.28 & 12.56 \\ 9.42 & 15.7 & 12.56 & 18.84 \end{bmatrix}
```

(a) Equation

(b) Result Image

Fig. 4: scaleMatrix()

(e) multiplyTwoMatrices(A, m, n, B, l, k): for $m \times n$ matrix A and $l \times k$ matrix B, calculate and return AB. Return null if multiplication is impossible.

The code below returns the multiplication between matrix A and B or NULL if multiplication is impossible.

```
double** multiplyTwoMatrices(double** A, int m, int n, double** B, int p, int q) {
       if (n \neq p) return NULL;
       double** AB = allocateMemory(m, n);
       for (int i = 0; i < m; i++) {
           for (int j = 0; j < q; j++) {
                AB[i][j] = 0;
                for (int k = 0; k < p; k +++) {
                    AB[i][j] += A[i][k] * B[k][j];
10
                }
           }
12
       }
13
14
       return AB;
15
16
```

```
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 & 19 & 20 & 21 \end{bmatrix} = \begin{bmatrix} 62 & 68 & 74 & 80 & 86 & 92 & 98 \\ 134 & 149 & 164 & 179 & 194 & 209 & 224 \end{bmatrix}
```

(a) Equation

```
1 2
Enter the number of row of matrix B : 3
Enter the number of column of matrix B : 4
Enter the element of matrix B :
1 2 3 4
5 6 7 8
9 10 11 12
Multiplication is impossible.
```

Enter the number of row of matrix A : 1 Enter the number of column of matrix A : 2

(a) Transpose Matrix
(b) Normalise Vector
(c) Calculate Length
(d) Scale Matrix
(e) Multiply 2 Matrices
(f) Add 2 Matrices
(x) Solve Problem 2(b)
Select Menu : e

Multiply 2 Matrices

Enter the element of matrix A:

(b) Result Image

(c) Result Image When Multiplication is Impossible

Fig. 5: multiplyTwoMatrices()

(f) addTwoMatrices(A, m, n, B, l, k): for $m \times n$ matrix A and $l \times k$ matrix B, calculate and return A + B. Return null if addition is impossible.

The code below returns the addition between matrix A and B or NULL if addition is impossible.

```
double** addTwoMatrices(double** A, int m, int n, double** B, int l, int k) {
        if (m \neq l \mid | n \neq k) return NULL;
        double** C = allocateMemory(m, n);
        for (int i = 0; i < m; i++) {</pre>
            for (int j = 0; j < n; j \leftrightarrow ) {
                 C[i][j] = A[i][j] + B[i][j];
        }
10
        return C;
   }
12
```

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix}$$

Normalise Vector
Calculate Length
Scale Matrix
Multiply 2 Matrices
Add 2 Matrices (x) Solve Problem 2(b) Select Menu : f #### Add 2 Matrices ####
Enter the number of row of matrix A : 2
Enter the number of column of matrix A : 3
Enter the element of matrix A : Enter the number of row of matrix B : 2 Enter the number of column of matrix B : 3 Enter the element of matrix B : 7 8 9 10 11 12 1.000000 2.000000 3.000000 4.000000 5.000000 6.000000 7.000000 8.000000 9.000000 10.000000 11.000000 12.000000 8.000000 10.000000 12.000000 14.000000 16.000000 18.000000

(b) Result Image

(a) Equation

```
(a) Transpose Matrix
(b) Normalise Vector
(c) Calculate Length
(d) Scale Matrix
(e) Multiply 2 Matrices
(f) Add 2 Matrices
(x) Solve Problem 2(b)
Select Menu : f
#### Add 2 Matrices ####
Enter the number of row of matrix A : 2
Enter the number of column of matrix A: 3
Enter the element of matrix A:
1 2 3
4 5 6
Enter the number of row of matrix B: 3
Enter the number of column of matrix B : 2
Enter the element of matrix B:
1 2
3 4
5 6
Addition is impossible.
```

(c) Result Image When Addition is Impossible

Fig. 6: addTwoMatrices()

2. (a) Test the correctness of each of the function you wrote in 1. Already done in above.

(b) For given $n \times n$ matrices A and \tilde{H} , normalize each column of \tilde{H} (let H be this normalized matrix). Then, calculate $B = H^T A^H$, and then, $C = HBH^T$.

void problem2b() {

double a[2][2] = {
 {1, 2},
 {3, 4}
 };

double tildeH[2][2] = {
 {1, 1},
 {1, -1}
 };

```
10
11
       double** A = allocateMemory(2, 2);
12
       for (int i = 0; i < 2; i \leftrightarrow)
13
            for (int j = 0; j < 2; j++)
                A[i][j] = (double) a[i][j];
15
       printMatrix(A,2,2,"A");
       double** TildeH = allocateMemory(2, 2);
18
       for (int i = 0; i < 2; i++)
19
            for (int j = 0; j < 2; j \leftrightarrow)
                TildeH[i][j] = (double) tildeH[i][j];
21
       printMatrix(TildeH,2,2,"Tilde H");
22
       double** H = normalizeMatrix(TildeH, 2, 2);
24
       printMatrix(H, 2, 2, "H");
25
       double** HT = transposeMatrix(H, 2, 2);
27
       double** B = multiplyTwoMatrices(HT, 2, 2, A, 2, 2);
29
       B = multiplyTwoMatrices(B, 2, 2, H, 2, 2);
       printMatrix(B, 2, 2, "B");
31
32
       double** C = multiplyTwoMatrices(H, 2, 2, B, 2, 2);
33
       C = multiplyTwoMatrices(C, 2, 2, HT, 2, 2);
       printMatrix(C, 2, 2, "C");
35
       releaseMemory(A, 2);
37
```

releaseMemory(TildeH, 2);

releaseMemory(H, 2);

38

```
Yulwon Rhee (202211342)

releaseMemory(HT, 2);
releaseMemory(B, 2);
releaseMemory(C, 2);
}
```

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\tilde{H} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$B = H^{T}AH$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$= \begin{bmatrix} 5 & -1 \\ -2 & 0 \end{bmatrix}$$

$$C = HBH^{T}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & -1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(a) Equation

```
(a) Transpose Matrix
(b) Normalise Vector
(c) Calculate Length
(d) Scale Matrix
(e) Multiply 2 Matrices
(f) Add 2 Matrices
(x) Solve Problem 2(b)
Select Menu : x
A =
1.000000 2.000000
3.000000 4.000000
Tilde H =
1.000000 1.000000
1.000000 -1.000000
0.707107 0.707107
0.707107 -0.707107
5.000000 -1.000000
-2.000000 0.000000
C =
1.000000 2.000000
3.000000 4.000000
```

(b) Result Image

Fig. 7: problem2b()