Dr. MOHAMED SASS

Série d'exercices n°1

Exercice 01:

1) Quelles sont les fonctions réalisées par les circuits suivants :

2) Completer le chronogramme :

Exercice 02:

Donner les équations de sortie du circui logique.

Pour la combinaison d'entrée 11100101 donner les valeurs de sortie en fonction de C.

Exercice 03:

Réaliser les logigrammes des fonctions suivantes :

$$F = \overline{A}.\overline{B}.\overline{C} + \overline{C}.D$$

$$G = A.(B + C)$$

$$H = A.B + BC + AC$$

avec 3 portes NOR à 2 entrées, avec 3 portes NAND à 2 entrées, avec des portes NAND à 2 entrées.

Simplifier l'équation suivante et dessiner son logigramme.

$$K = B.\overline{C}.\overline{D} + A.B.\overline{D} + \overline{A}.B.C.\overline{D}$$

Exercice 04:

Déterminer l'équation du circuit de la figure suivante :

Exercice 05:

Simplifier par les méthodes algébriques les équations logiques suivantes :

$$F_1 = A\overline{B}C + BC$$

$$F_2 = A\overline{B} + AB\overline{C}D + ABCD + \overline{A}\overline{B}\overline{C}$$

$$F_3 = \overline{A}\,\overline{B} + \overline{A}BC + AB + AC$$

$$F_4 = (\overline{A+C}).(\overline{B}\overline{D}).(\overline{A}+\overline{D})$$

Exercice 06:

a) Donner l'expression booléenne sous la forme d'une somme de produits, de la fonction logique définie par la table de vérité suivante :

Α	В	С	У
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- b) Donner le tableau de Karnaugh à 3 variables pour la somme de produits, de la fonction.
- c) Regrouper convenablement des 1 dans le tableau trouvé et donner l'expression booléenne simplifiée de la fonction.

Exercice 07:

a) Donner l'expression booléenne sous la forme d'une somme de produits, de la fonction logique définie par la table de vérité suivante :

Α	В	С	٥	У
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- b) Donner le tableau de Karnaugh à 4 variables pour la forme somme de produits, de la fonction.
- c) Regrouper convenablement des 1 dans le tableau trouvé et donner l'expression booléenne simplifiée de la fonction.

Exercice 08:

a) Donner l'expression booléenne sous la forme d'un somme de produits, de la fonction logique définie par la table de vérité suivante :

Α	В	С	D	У
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

- b) Donner le tableau de Karnaugh à 4 variables pour la somme de produits, de la fonction.
- c) Regrouper convenablement des 1 dans le tableau trouvé et donner l'expression booléenne simplifiée de la fonction.

Exercice 09:

Le circuit logique dont la table de vérité suivante, donne en sortie une valeur de 1 lorsque son entrée codée en BCD représente un nombre décimal paire (2, 4, 6, 8, ..).

Α	В	С	۵	У
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	Х
1	0	1	1	Χ
1	1	0	0	Х
1	1	0	1	Χ
1	1	1	0	Χ
1	1	1	1	Х

a) Donner l'expression booléenne sous la forme d'une somme de produits, de cette fonction logique.

- b) Donner le tableau de Karnaugh à 4 variables pour la somme de produits, de la fonction.
- c) Regrouper convenablement des 1 et des X dans le tableau obtenu et donner l'expression booléenne simplifiée de la fonction.
- d) Regrouper convenablement des 1 sans des X dans le tableau précédent et donner l'expression booléenne simplifiée de la fonction.