

Markscheme

May 2017

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

(Questi	ion	Answers	Notes	Total
1.	а	i	use a colorimeter/monitor the change in colour OR take samples AND quench AND titrate «with thiosulfate» ✓	Accept change in pH. Accept change in conductivity. Accept other suitable methods. Method must imply "change".	1
1	а	ii	0.8 0.7 0.6 0.5 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	M2 is independent of M1. Accept range from 0.0070 to 0.0080.	2
1	b		Relationship: rate of reaction is «directly» proportional to [H ⁺] OR rate of reaction α [H ⁺] ✓ Order of reaction with respect to [H ⁺]: first ✓	Accept "doubling the concentration doubles the rate". Do not accept "rate increases as concentration increases".	2

C	Question		Answers	Notes	Total
1.	С		zero order ✓ rate of reaction is the same for all concentrations of iodine ✓	Accept "all graphs have same/similar gradient".	2
1.	d		slow rate of reaction which gradually increases ✓ as H ⁺ ions are produced «to catalyse the reaction» OR reaction is autocatalytic ✓	M1 should mention "rate of reaction".	2

2.	а		electrostatic attraction ✓ between «a lattice of» metal/positive ions/cations <i>AND</i> «a sea of» delocalized electrons ✓	Accept "mobile electrons". Do not accept "metal atoms/nuclei".	2
2.	b		$\frac{(46 \times 7.98) + (47 \times 7.32) + (48 \times 73.99) + (49 \times 5.46) + (50 \times 5.25)}{100}$ = 47.93 \checkmark	Answer must have two decimal places with a value from 47.90 to 48.00. Award [2] for correct final answer. Award [0] for 47.87 (data booklet value).	2
2.	С		Protons: 22 AND Neutrons: 26 AND Electrons: 22 ✓		1
2.	d	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² ✓		1
2.	d	ii	vanadium has smaller ionic radius «leading to stronger metallic bonding» ✓	Accept vanadium has «one» more valence electron«s» «leading to stronger metallic bonding». Accept "atomic" for "ionic".	1

continued...

C	Questi	on	Answers	Notes	Total
2.	d	iii	I.E. A	A log graph is acceptable. Accept log plot on given axes (without amendment of y-axis). Award mark if gradient of 5 to 6 is greater than "best fit line" of 1 to 5.	1
2.	d	iv	titanium atoms/ions distort the regular arrangement of atoms/ions OR titanium atoms/ions are a different size to aluminium «atoms/ions» ✓ prevent layers sliding over each other ✓	Accept diagram showing different sizes of atoms/ions.	2

Question		on	Answers	Notes	Total
2.	е		pair of electrons provided by the ligand ✓	Do not accept "dative" or "co- ordinate bonding" alone.	1
2.	f		partially filled d-orbitals ✓ «ligands cause» d-orbitals «to» split ✓ light is absorbed as electrons transit to a higher energy level «in d–d transitions» OR light is absorbed as electrons are promoted ✓ energy gap corresponds to light in the visible region of the spectrum ✓ colour observed is the complementary colour ✓		4 max
2.	g	i	ionic OR «electrostatic» attraction between oppositely charged ions ✓		1
2.	g	ii	«simple» molecular structure OR weak«er» intermolecular bonds OR weak«er» bonds between molecules ✓	Accept specific examples of weak bonds such as London/dispersion and van der Waals. Do not accept "covalent".	1
2.	h	i	TiCl ₄ (I) + 2H ₂ O (I) → TiO ₂ (s) + 4HCl (aq) correct products ✓ correct balancing ✓	Accept ionic equation. Award M2 if products are HCI and a compound of Ti and O.	2
2.	h	ii	HCI causes breathing/respiratory problems OR HCI is an irritant OR HCI is toxic OR HCI has acidic vapour OR HCI has acidic vapour	Accept TiO ₂ causes breathing problems/is an irritant. Accept "harmful" for both HCI and TiO ₂ . Accept "smoke is asphyxiant".	1

C	Question		Answers	Notes	Total
3.	а		V_2O_5 : +5 \checkmark VO^{2+} : +4 \checkmark	Do not penalize incorrect notation twice.	2
3.	b	i	H ₂ SO ₃ (aq) OR Pb (s) ✓		1
3.	b	ii	Zn(s) ✓	Accept og vilibrium eign	1
3.	С	ı	$VO^{2+}(aq) + V^{2+}(aq) + 2H^{+}(aq) \rightarrow 2V^{3+}(aq) + H_2O(I)$	Accept equilibrium sign.	1
3.	С	ii	E^{\ominus} «= +0.34 V − (−0.26 V)» = +0.60 «V» ✓ ΔG^{\ominus} = «− <i>nFE</i> $^{\ominus}$ = −9.65 × 10 ⁴ C mol ⁻¹ × 0.60 J C ⁻¹ =» − 57 900 «J mol ⁻¹ » / −57.9 «kJ mol ⁻¹ » ✓ spontaneous as ΔG^{\ominus} is negative ✓	Do not award M3 as a stand-alone answer. Accept "spontaneous" for M3 if answer given for M2 is negative. Accept "spontaneous as E^{Θ} is positive" for M3.	3

C	Question		Answers	Notes	Total
4.	а		$2NiS(s) + 3O_2(g) \rightarrow 2NiO(s) + 2SO_2(g) \checkmark$		1
4.	b		formation of «gaseous» pentacarbonyliron is slower OR «gaseous» complexes form at different rates OR gases have different rates of diffusion «due to difference in masses» OR difference in thermal stability of «gaseous» complexes OR		1
			difference in boiling points of «gaseous» complexes OR difference in solubility of «gaseous» complexes OR difference in surface affinity «onto solid absorbent» OR difference in chemical properties of «gaseous» complexes ✓	Accept any other valid answer.	
4.	С	i		Award [2] for correct final answer.	2
4.	С	ii	$\Delta H^{\ominus} = -633.0 - 4 \times (-110.5) = -191 \text{ (kJ)}$		1
4.	С	iii	«when» $\Delta G = 0$ «forward and backward reactions are equally favourable» \checkmark «when $\Delta G = 0$, $T = \frac{\Delta H}{\Delta S}$ », $T = «\frac{191 \text{ kJ}}{0.5069 \text{ kJ K}^{-1}} =» 377 \text{ «K» }\checkmark$ «temperature =» $104 \text{ «°C» }\checkmark$	Award [3] for correct final answer. Use of -500 J K^{-1} and -200 kJ gives $127 ^{\circ}\text{C}$. Award [2 max] for $T < 104 ^{\circ}\text{C}$. Accept $\Delta G < 0$ and $T > 104 ^{\circ}\text{C}$.	3

Question	Answers	Notes	Total
4. d	CO is toxic/poisonous OR Ni(CO)₄ decomposition deposits nickel in the lungs OR tetracarbonylnickel is toxic/poisonous OR tetracarbonylnickel is highly flammable «auto-ignition temperature of 60 °C» ✓		1

(Question		Answers	Notes	Total
5.	а		107° ✓	Accept 100° to $<109.5^{\circ}$. Literature value = 105.8°	1
5.	b		tetrahedral ✓ sp³ ✓	No ECF allowed.	2
5.	С		removes/reacts with OH⁻ ✓ moves to the right/products «to replace OH⁻ ions» ✓	Accept ionic equation for M1.	2
5.	d	i	$K_b = 10^{-5.77} / 1.698 \times 10^{-6}$ OR $K_b = \frac{[N_2 H_5^+] \times [OH^-]}{[N_2 H_4]} \checkmark$ $[OH^-]^2 \ll 1.698 \times 10^{-6} \times 0.0100 \text{w} = 1.698 \times 10^{-8}$ OR $[OH^-] \ll \sqrt{1.698 \times 10^{-8} \text{ w}} = 1.303 \times 10^{-4} \text{ wmol dm}^{-3} \text{w} \checkmark$ $pH \ll -\log_{10} \frac{1 \times 10^{-14}}{1.3 \times 10^{-4}} \text{w} = 10.1 \checkmark$	Award [3] for correct final answer. Give appropriate credit for other methods containing errors that do not yield correct final answer.	3
5.	d	ii	methyl red OR bromocresol green OR bromophenol blue OR methyl orange ✓		1
5.	е		bubbles OR gas OR magnesium disappears ✓ 2NH ₄ ⁺ (aq) + Mg (s) → Mg ²⁺ (aq) + 2NH ₃ (aq) + H ₂ (g) ✓	Do not accept "hydrogen" without reference to observed changes. Accept "smell of ammonia". Accept $2H^+$ (aq) $+ Mg$ (s) $\rightarrow Mg^{2+}$ (aq) $+ H_2$ (g) Equation must be ionic.	2

Ques	stion	Answers	Notes	Total
5. f		bonds broken: $E(N-N) + 4E(N-H)$ OR $158 \text{ "kJ mol}^{-1} \text{ " } + 4 \times 391 \text{ "kJ mol}^{-1} \text{ " } / 1722 \text{ "kJ} \text{ " } \checkmark$ bonds formed: $E(N=N) + 2E(H-H)$ OR $945 \text{ "kJ mol}^{-1} \text{ " } + 2 \times 436 \text{ "kJ mol}^{-1} \text{ " } / 1817 \text{ "kJ} \text{ " } \checkmark$ $\text{" } \Delta H = \text{bonds broken } - \text{bonds formed} = 1722 - 1817 = \text{" } -95 \text{ "kJ} \text{" } \checkmark$ -95 kJ mol^{-1} $N_2 H_4(g) \longrightarrow N_2(g) + 2H_2(g)$ $\Delta H_{\text{vap}} \longrightarrow N_2(g) + 2H_2(g)$ $\Delta H_{\text{vap}} = -50.6 \text{ kJ mol}^{-1} - (-95 \text{ kJ mol}^{-1}) \checkmark$ $\text{" } \Delta H_{\text{vap}} = \text{" } +44 \text{" } \text{ " } \text{ kJ mol}^{-1} \text{" } \checkmark$	Award [3] for correct final answer. Award [2 max] for $+95$ «kJ». Award [2] for correct final answer. Award [1 max] for -44 «kJ mol $^{-1}$ ». Award [2] for: $\Delta H_{vap} = -50.6 \text{ kJ mol}^{-1} - (-85 \text{ J mol}^{-1}) = +34 \text{ «kJ mol}^{-1}$ ». Award [1 max] for -34 «kJ mol $^{-1}$ ».	2
5. h	i	total mass of oxygen $= 8.0 \times 10^{-3} \text{g dm}^{-3} \times 1000 \text{dm}^3 = 8.0 \text{g}$ $n(O_2) \text{w} = \frac{8.0 \text{g}}{32.00 \text{gmol}^{-1}} = \text{w } 0.25 \text{wmol} \text{w}$ \textit{OR} $n(N_2H_4) = n(O_2) \text{w}$ $\text{wmass of hydrazine} = 0.25 \text{mol} \times 32.06 \text{g mol}^{-1} = \text{w } 8.0 \text{wg} \text{w}$	Award [3] for correct final answer.	3

(Question 5h continued)

Q	Question		Answers	Notes	Total
5.	h	==		Award [1] for correct final answer.	1

Question		Answers	Notes	Total
а		substitution <i>AND</i> «free-»radical <i>OR</i> substitution <i>AND</i> chain ✓	Award [1] for "«free-»radical substitution" or " S_R " written anywhere in the answer.	1
b	i	Two propagation steps: $C_2H_6 + {}^{\bullet}CI \rightarrow C_2H_5 {}^{\bullet} + HCI \checkmark$ $C_2H_5 {}^{\bullet} + CI_2 \rightarrow C_2H_5 CI + {}^{\bullet}CI \checkmark$	Accept radical without • if consistent throughout.	
		One termination step: $C_2H_5^{\bullet} + C_2H_5^{\bullet} \rightarrow C_4H_{10}$ OR $C_2H_5^{\bullet} + {}^{\bullet}CI \rightarrow C_2H_5CI$ OR ${}^{\bullet}CI + {}^{\bullet}CI \rightarrow CI_2 \checkmark$	Allow ECF for incorrect radicals produced in propagation step for M3.	3
b	ii	triplet AND quartet ✓		1
b	iii	chemical shift/signal outside range of common chemical shift/signal ✓ strong signal/12/all H atoms in same environment OR singlet/no splitting of the signal ✓ volatile/easily separated/easily removed OR inert/stable ✓	Do not accept chemical shift = 0.	2 max
	a b	a b i	a substitution AND «free-»radical OR substitution AND chain ✓ b i Two propagation steps: C₂H₆ + •Cl → C₂H₆• + HCl ✓ C₂H₆• + Cl₂ → C₂H₆Cl + •Cl ✓ One termination step: C₂H₆• + Cl → C₂H₆Cl → OR C₂H₆• + Cl → C₂H₆Cl OR •Cl + •Cl → Cl₂ ✓ b ii triplet AND quartet ✓ b iii chemical shift/signal outside range of common chemical shift/signal ✓ strong signal/12/all H atoms in same environment OR singlet/no splitting of the signal ✓ volatile/easily separated/easily removed OR	a substitution AND «free-»radical OR substitution AND chain ✓ b i Two propagation steps: C₂H₅+•Cl→ C₂H₅+ HCl ✓ C₂H₅+•Cl→ C₂H₅Cl+•Cl ✓ One termination step: C₂H₅+•Cl→ C₂H₅Cl OR cl+•Cl→ C₂H₅Cl oR cl+•Cl→ C₂H₅Cl oR cl+•Cl→ Cl₂ ✓ b ii triplet AND quartet ✓ b chemical shift/signal outside range of common chemical shift/signal ✓ strong signal/12/all H atoms in same environment OR singlet/no splitting of the signal ✓ volatile/easily separated/easily removed OR inert/stable ✓

continued...

C	Question		Answers	Notes	Total
6.	С	i	$C = \frac{24.27}{12.01} = 2.021$ AND $H = \frac{4.08}{1.01} = 4.04$ AND $CI = \frac{71.65}{35.45} = 2.021$ "hence" CH_2CI	Accept $\frac{24.27}{12.01}$: $\frac{4.08}{1.01}$: $\frac{71.65}{35.45}$. Do not accept $C_2H_4CI_2$. Award [2] for correct final answer.	2
6.	С	ii	molecular ion peak(s) «about» <i>m</i> / <i>z</i> 100 <i>AND</i> «so» C ₂ H ₄ Cl ₂ «isotopes of Cl» ✓ two signals «in ¹H NMR spectrum» <i>AND</i> «so» CH ₃ CHCl ₂ <i>OR</i> «signals in» 3:1 ratio «in ¹H NMR spectrum» <i>AND</i> «so» CH ₃ CHCl ₂ <i>OR</i>	Accept "peaks" for "signals".	3
			one doublet and one quartet «in ¹H NMR spectrum» AND «so» CH₃CHCl₂ ✓ 1,1-dichloroethane ✓	Allow ECF for M3 if the formula of an incorrect chlorohydrocarbon is identified.	
6.	С	iii	base OR proton acceptor ✓		1
6.	d		H H H H H	Continuation bonds must be shown. Ignore square brackets and "n". Accept H C C C C Accept other versions of the polymer, such as head to head and head to tail. Accept condensed structure provided all C to C bonds are shown (as single).	1

Question		Answers	Notes	Total
7. a	1	Any two of: planar «X-ray» ✓ C to C bond lengths all equal OR C to C bonds intermediate in length between C–C and C=C ✓ all C–C–C bond angles equal ✓		2 max
7. b)	benzene: «electrophilic» substitution/S _E AND cyclohexene: «electrophilic» addition/A _E ✓	Accept correct equations.	1
7. c	;	«concentrated» nitric <i>AND</i> sulfuric acids ✓ ⁺ NO ₂ ✓	Accept NO ₂ ⁺ .	2
7. d	i	the triangle of triangle	Accept mechanism with corresponding Kekulé structures. Do not accept a circle in M2 or M3. Accept first arrow starting either inside the circle or on the circle. M2 may be awarded from correct diagram for M3. M4: Accept C ₆ H ₅ NO ₂ + H ₂ SO ₄ if HSO ₄ -used in M3.	4

Question		on	Answers	Notes	Total
7.	е		Fe/Zn/Sn <i>AND</i> HCI/H₂SO₄/CH₃COOH ✓ NaOH/KOH ✓	Accept other suitable metals and acids. Accept other suitable bases. Award [1 max] for single-step reducing agents (such as H ₂ /Pt, Na ₂ S etc.). Accept formulas or names.	2

8.	а	$NO^{\bullet}(g) + O_3(g) \rightarrow NO_2^{\bullet}(g) + O_2(g) \checkmark$	Allow representation of radicals without • if consistent throughout.	
		$NO_2 \bullet (g) + O \bullet (g) \rightarrow NO \bullet (g) + O_2 (g)$ <i>OR</i>		2
		$NO_2 \bullet (g) + O_3 (g) \rightarrow NO \bullet (g) + 2O_2 (g) \checkmark$		
8.	b	«loss of ozone» allows UV radiation to penetrate atmosphere/reach earth ✓		
		UV radiation causes skin cancer		2
		OR .		
		UV radiation causes tissue damage ✓		