

MNIST Training for BNN

Jack Diep, Florian Köhler, Yannick Naumann

September 4, 2021

Design Your Own CPU - Design of Embedded Systems

Content

- 1. Neural Networks
- 2. BNN Design
- 3. BNN Training Analysis
 - Layer Analysis
 - Parameter Analysis

Binarisation of Linear Layer

- binarisation of weights
- binarisation of input data for hidden layers
- calculation through nn.linear

Activation

Inhalt...

Batch Norm (BN)

- In NN
 - normalize batches
 - mean 0
 - standard derivation 1
- In BNN
 - prevent expolding gradient

Evaluation of last layer

- normalisation of activation
- decision of the network

- 1. Neural Networks
- 2. BNN Design

3. BNN Training Analysis

- Layer Analysis
- Parameter Analysis

Consequences of linear layer binarisation

Run	binary	normal
1	88.29%	97.43%
2	87.32%	96.98%
3	87.19%	97.2%

- training for 50 epochs
- mean loss of 9,6%
- loss in granularity

Effect of Batch Norm

- 7.4% improved peak performance
- Less jitter with BN
- Reduced expolding gradient

learning rate

- $lue{}$ higher value ightarrow more weights are updated
- balance between over- and underfitting

evaluation learning rate

