

Data Warehousing and Business Intelligence Project

By: Mayank Gulaty X15031705 National College of Ireland

Table of Contents

Approach	3
Introduction	3
Architecture and Implementation	4
Technologies Used Programming languages Database Management Additional Add-ons / Softwares	4 4
Data Sources	5
Data Bus Architecture	5
Implementation and design process	5
ETL (Extract Transform Load)	6
Back room: Preparing The data	6
Front room: Presenting The data	9
Limitations	9
Future Work	10
Case Studies Case Study 1 Case Study 2 Case Study 3	10 11
Statistics	14
Conclusion	16
List of References	17
Appendix A: Screenshots of Code	18

List of figures

Figure 1 Star Schema of the Project	6
Figure 2 SSIS Workflow	8
Figure 3 Sentiment Dimension	
Figure 4 Geography Dimension	8
Figure 5 Genre Dimension	
Figure 6 Year Dimension	<u>C</u>
Figure 7 Fact Table	<u>c</u>
Figure 8 Case study 1: Emotion vs time	10
Figure 9 Case study 2.1	11
Figure 10 Case study 2.2	12
Figure 11 Case study 3.1	13
Figure 12 Case study 3.2 Bubble Chart	14
Figure 13 Correlation	15
Figure 14 Partial Correlation	16
Figure 15 Wikipedia Scraping	18
Figure 16 Artist Location	18
Figure 17 Sentiment Analysis	18
Figure 18 Grabbing Lyrics	19
Figure 19 Emotional Sentiment Analysis	19
Figure 20 Project Whitburn csv file screenshot	20

Approach

I wanted to do a project based on music so I started searching for papers and I found 2 very good papers that inspired this project. One paper sees the evolution of music over 50 years from 1960 -2010 (Mauch, MacCallum, et al. 2015) and the other paper does the lyric based song sentiment classification (Xia, Wang, et al. 2008). In the second paper, problems in lyric sentiment classifications are discussed like many words like nouns and words in the lyrics are ambiguous. I wanted to do audio based sentiment analysis but due to lack of time and sources, I stuck with lyric based sentiment analysis. After deciding the topic, I started looking for APIs and got few APIs. Some were working, some were not and some had incomplete data. However, I managed to find some good sources at the end. After that I started studying about warehousing architectures and approaches and how to use APIs with R and started my project.

Introduction

This project implemented a working model of a data warehouse and showed its business intelligence capabilities. The paper will show the whole process of a data warehouse along with 3 case studies to show the business intelligence capabilities of data warehouse. The most popular

definition of the data warehouse is that it is a "subject oriented, integrated, non-volatile, time variant collection of data for management's decision making" by Inmon told in his book Building the Data Warehouse in 1998. I will discuss my data sources and the architecture used and implementation of the project along with 3 case studies.

Case study 1 will evaluate how the emotions of joy and sadness in the lyrics of the songs changed over 10 years. Case study 2 will examine which genre's lyrics were most positive and negative. Finally, case study 3 will see evolution of emotions of joy and sadness in songs' lyrics in the various cities of United states.

Architecture and Implementation

There are many types of data warehouse architectures available but the main ones are Kimball and Inmon's approach. Inmon approach is relational which is based on entity-relationship model, normalization and tables using joins.

Unlike Inmon's top down approach, Kimball's approach is bottom-up. This approach uses dimensional data modelling which means that it begins with tables rather entity relationship diagram. The tables are either dimension tables or fact tables. (Breslin 2004).

As, the time was limited for this project, I am going to use Kimball architecture because of its ease of use and implementation and not much planning is needed in the start as opposed to the Inmon approach where we have to design the models up front. Also, normalized data model is not required in Kimball. Kimball architecture is made up of independent dimensional data marts connected by a data bus architecture in a star schema and data consistency is achieved as the dimensions are conformed.

Technologies Used

Programming languages

- R for extracting data from API's and writing it to excel files
- SQL for creating dimensions and fact tables

Database Management

- SQL server & SSIS for loading fact tables and dimensions
- Alchemy API for sentiment analysis

Additional Add-ons / Softwares

- Rvest package in R for web scraping
- SPSS for statistical analysis

• Tableau software for making graphs

Data Sources

Five data sources are being utilised in this data warehouse -

- 1. Project Whitburn (structured csv file) (See Appendix A)
- 2. List of songs scraped from Wikipedia page (unstructured HTML)
- 3. Song metadata from Musixmatch API (semi-structured XML)
- 4. Song Lyrics from Chartlyrics API (semi-structured XML)
- 5. Artist Country and City from echonest API (semi-structured XML)

Data Bus Architecture

Common Dimensions

Business	Genre	Date	Sentiment	Geography
Processes				
Emotional	•	•	•	•
sentiments				
comparison				
Sentiment	•	•	•	•
Scores				
Comparison				

Implementation and design process

This section explains the design process taken in this project. I chose Kimball's design process which is a 4 step process. (Kimball Group 2013)

- 1- Select the business process
- 2- Declare the grain
- 3- Identify the dimensions
- 4- Identify the facts

In my case the business process would analysis of the music lyrics over the years from 1990-2010.

Grain in project is the different sentiment scores. According to Kimball Group 2013, dimensions are sometimes soul of the data warehouse. Dimensions in my case are Genre, Sentiment, Year and geography. The fact table in my project is named FactSongs which contain the different sentiment scores and the foreign keys to all the dimensions which will all be linked to the dimensions via a data bus architecture in a star schema as shown below.

Figure 1 Star Schema of the Project

ETL (Extract Transform Load)

ETL process is the backbone of a data warehouse architecture. The role of ETL is to extract data from different sources, make sure that the quality of data is good and consistent so that these separate sources can be used together to answer a non trivial business intelligence query and to see a pattern to make strategic business decisions. The final form of data is very easy to use and user friendly so that even non coders can make the decisions based on the data.

Back room: Preparing The data

- 1- Extracting
- 2- Cleaning
- 3- Conforming
- 4- Delivering

Extraction - In this project, structured, semi-structured and unstructured sources of data were used. Firstly, I web scraped the Billboard top 100 list from Wikipedia of the year 1990-2000. For this I used rvest package available in CRAN repository. (Wickhan, 2015). I extracted all of them in separate files and then merged to make it one. At this time, I had songs with their artists. I then extracted songs and artists using the loop and hit it on musixmatch api to get the genres. I got the song years from Project whitburn spreadsheet. It was hard getting this spreadsheet but somehow I managed to find one useful for my project. After that, I extracted the lyrics of songs from musixmatch API. Many lyrics were not found in musixmatch API, so I hit it on Chartlyrics API. And finally I got the artist city and country from the echonest API. (See <u>Appendix A</u> for code screenshots)

Cleaning – As the data was collected from so many sources, all the data was not clean like some lyrics were not found, some genres were not found and to move to the next stage, it should be cleaned. For this purpose, I used R programming language and Microsoft excel to clean the data. Cleaning involved editing of the data manually where only 1 field was missing and deletion of the rows where manual editing was not possible as many columns were missing.

Sentiment scores when extracted from the alchemy API to the data frame were in string format. So I had to transform it all to numeric value before loading it to the excel file.

Transformation – Some data transformation had to be done before loading like the sentiment scores extracted were in string format. So I converted that values to numeric values with the help of R.

Conforming - This step is required whenever two or more data sources are joined or merged. In my case Musixmatch ID binded my different data sources.

Delivering - In this part the dimension tables and the fact tables are loaded via SSIS (SQL Server Integration Services) and the cube is also updated. Below are the screenshots of my SSIS workflow, dimension tables and fact tables.

Figure 2 SSIS Workflow

	Sentiment_ID	Sentiment_Group_ID	Sentiment_Type						
1	1	1	negative		GID	Artist_Country	Artist_City	Artist_Country_Group_ID	Artist_City_Group_ID
2	2	1	negative	1	1	Canada	Kingston	4	83
3	3	1	negative	2	2	United States	Los Angeles	23	89
4	4	2	positive	3	3	Sweden	Gothenburg	21	60
5	5	1	negative	4	4	United States	Nashville	23	101
6	6	1	negative	5	5	United States	Perth Amboy	23	121
7	7	1	negative	6	6	Sweden	Gothenburg	21	60
•	,	1	_	7	7	United States	Sevem	23	149
8	8	1	negative	8	8	United States	Rockport	23	134
9	9	1	negative	9	9	United States	Miami	23	96
10	10	2	positive	10	10	Puerto Rico	San Juan	20	142
11	11	2	positive	11	11	United States	Harlem	23	67
12	12	2	positive	12	12	United Kingdom	London	22	87

Figure 3 Sentiment Dimension

Figure 4 Geography Dimension

Figure 5 Genre Dimension

Figure 6 Year Dimension

Fld	Song_ID	Genre_ID	Geography_ID	Date_ID	Sentiment_ID	Sentiment_Score	Joy	Sadness
1	1	1	1	1	1	-0.3261540000	0.0035240000	0.0421980000
2	2	2	2	2	2	-0.1561480000	0.0028350000	0.0079360000
3	3	3	3	3	3	-0.0653763000	0.0069570000	0.0134790000
4	4	4	4	4	4	0.3583300000	0.7984700000	0.0096400000
5	5	5	5	5	5	-0.2647890000	0.0004770000	0.0056230000
6	6	6	6	6	6	-0.1438050000	0.0017320000	0.1264540000
7	7	7	7	7	7	-0.3767250000	0.0001710000	0.0161950000
8	8	8	8	8	8	-0.1700880000	0.0071790000	0.0200280000
9	9	9	9	9	9	-0.4089870000	0.0035010000	0.2198270000
10	10	10	10	10	10	0.0482900000	0.0136380000	0.0177000000
11	11	11	11	11	11	0.1377250000	0.0185140000	0.0054390000

Figure 7 Fact Table

Front room: Presenting The data

This is the part what end users and managers see. Querying is done in this area and the dimension tables can be accessed here via various means like OLAP cubes and interactive dashboards. I used pivot table and Tableau software for making the graphs for my case studies.

Limitations

Due to time limitations, I couldn't analyze a big data set and so I decided to go with top 100 songs of the year but after getting the genres of the songs and aggregating it, I saw that majority of the songs are from POP genre. So there was a skewness of the data towards the pop genre and United states country. Also, the sentiment analysis was done from one source and there can be a bit of difference when doing sentiment analysis from different sources. Though, in my project I am observing the evolution over years, I still tried to get the specific release date

of the songs for a deeper analytics but could only get it for around 15 percent of my data as most of the dates were empty in the API and that's why I had to drop the idea of adding date dimension and only worked with years.

Future Work

I could get a very big dataset of the music and scale my project up to a bigger level to see the evolution in the past 50 years or more and I could get the release date of the songs by doing web scraping. It will take time but its possible. After the specific dates, I can get a deeper analytics over the specific months. I could also extract the BPM of the music for more relations.

Case Studies

Case Study 1

This case study observes how the joy and sadness in song lyrics changed over the years from 1990-2000. As we can see from the graph that the sad songs were always more popular than the happy songs and the trend didn't change over the years. The songs with the lyrics of joy decreased as the years passed by.

Figure 8 Case study 1: Emotion vs time

Case Study 2

This case study will see the sentiment of the song lyrics whether positive or negative with respect to the specific genres. And as I mentioned, the data is skewed as the number of POP songs are more but still we can see a picture here that popular genres like POP, Hip/Hop, Rock were inclined towards negative. We can see that there are some genres like soul, reggae and Christian & gospel which were positive and its true as Christian & gospel is traditional music and mostly contains the positive lyrics.

Sheet 1

Sentiment Score for each Genre. Color shows details about Sentiment Score.

Figure 9 Case study 2.1

Sentiment Score for each Genre. Color shows details about Sentiment Group ID.

Figure 10 Case study 2.2

Case Study 3

Unlike case study 1, this case study will see the evolution in the various cities in a particular country i.e. United states. I chose United states because most of the artists were from United States so I could get a better picture. We can see that New York has the highest number of sad songs.

Figure 11 Case study 3.1

A much clearer view can be seen from the following bubble chart showing the same information as above. The darker the shade, the sad the song is.

Artist City Group ID. Color shows Sadness. Size shows Joy. The marks are labeled by Artist City Group ID. The data is filtered on Country, which keeps United States.

Figure 12 Case study 3.2 Bubble Chart

Statistics

I used SPSS to play around with some statistical methods and I did a pearson correlation test with my sentiment scores, joy and sadness scores. The output is shown below.

Correlations

		Sentiment_Sc ore	Joy	Sadness
Sentiment_Score	Pearson Correlation	1	.439**	248**
	Sig. (2-tailed)		.000	.000
	N	629	629	629
Joy	Pearson Correlation	.439**	1	088*
	Sig. (2-tailed)	.000		.028
	N	629	629	629
Sadness	Pearson Correlation	248**	088*	1
	Sig. (2-tailed)	.000	.028	
	N	629	629	629

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Figure 13 Correlation

We can see from the output that the sentiment score and joy are positively correlated and it's a fairly strong correlation of 0.439 which means higher the sentiment score higher the value of joy is. There is a negative correlation between Sentiment score and sadness though not very strong but not weak also. Then I ran a partial correlation test by controlling the sentiment score variable to see whether or not its really affecting the variables or not and from the following output we can see that the values changed significantly and thus we can conclude that sentiment score is affecting the other two variables. Again, the data in this project was less and I couldn't do much tests but with a bigger dataset and more measures we can run a good correlation and partial correlation to see which variable is affecting which.

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Partial Corr

Correlations

Control Variables Joy Sadnes:									
Sentiment_Score	Joy	Correlation	1.000	.024					
		Significance (2- tailed)		.540					
		df	0	626					
	Sadness	Correlation	.024	1.000					
		Significance (2- tailed)	.540						
		df	626	0					

Figure 14 Partial Correlation

Conclusion

This project saw how a data warehouse is implemented with all the steps from the data extraction to data staging and how the facts and dimensions are made. It was then used to answer 3 business intelligence queries.

List of References

Breslin, M., (2004). Data Warehousing Battle of the Giants: Comparing the Basics of the Kimball and Inmon Models. *Business Intelligence Journal*, pp.6–20.

Group Kimball, (2013). Kimball Dimensional Modeling Techniques., pp.1–24.

Mauch, M., MacCallum, R.M., Levy, M. & Leroi, A.M., (2015). The evolution of popular music: USA 1960–2010. *Royal Society Open Science*, 2(5), p.150081. Available at: http://rsos.royalsocietypublishing.org/content/2/5/150081.abstract.

Xia, Y., Wang, L., Wong, K.F. & Xu, M., (2008). Sentiment vector space model for lyric-based song sentiment classification. *ACL-08: HLT - 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference*, (June), pp.133–136. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84859921031&partnerID=tZOtx3y1.

Wickhan, H. (2015) Package 'rvest' [Online]

Available at: https://cran.r-project.org/web/packages/rvest/rvest.pdf [Accessed 3 March 2016]

Appendix A: Screenshots of Code

```
for(i in seq(1990,2000,1)){
    urls <-paste0("https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_",i)
    print(urls)
    url <- urls
    artist <- url %>%
    read_html() %>%
    html_nodes(xpath='//*[@id="mw-content-text"]/table[1]') %>%
    html_table()
    artist <- artist[[1]]
    Year<- i
    bind<- cbind(artist,Year)
    outputfile <- paste("Billboard","-",i,".xlsx")
    write.xlsx(bind,outputfile,append = TRUE)
}</pre>
```

Figure 15 Wikipedia Scraping

```
60 for (i in 1:1100)
61 - {
62
      j=j+1;
63
      if(j<20)
64 -
        tryCatch({
65 -
66
          city = paste("http://developer.echonest.com/api/v4/artist/profile?",
                        "name=", b , "&api_key=",
68
                        "0YUVFLK5MOXJ0XZTT",
69
                        "&bucket=","artist_location",
70
                        "&format=xml",sep="")
71
72
          xml= xmlParse(city)
          xmltop=xmlRoot(xml)
          a_city=xmlValue(xmltop[[2]][[2]][[1]])
          a_location=xmlValue(xmltop[[2]][[2]][[3]])
75
76
          a_country=xmlValue(xmltop[[2]][[2]][[4]])
77
          cityDF <- rbind(cityDF, a_city)</pre>
          locationDF <- rbind(locationDF, a_location)</pre>
78
          countryDF <- rbind(countryDF, a_country)</pre>
        },error = function(e){
```

Figure 16 Artist Location

```
#sentiment text
for (i in 1:629) {
    ly<-x[i,5]
    url = paste("http://gateway-a.watsonplatform.net/calls/text/TextGetTextSentiment?","a;
    xml= xmlParse(url)
    xmltop=xmlRoot(xml)
    score=xmlValue(xmltop[[5]][[2]])
    type=xmlValue(xmltop[[5]][[3]])
    scoreDF <- rbind(scoreDF, score)
    typeDF <- rbind(typeDF, type)
}</pre>
```

Figure 17 Sentiment Analysis

```
5 for(i in 1:1100)
6 - {
7
      lVar <- x[[i,5]]
8 all = paste("http://api.musixmatch.com/ws/1.1/track.lyrics.get?",
                "track_id=", lVar,"&apikey=",
                "8808c0ad5181267c83b0941c79197c5f",
                "&format=xml",sep="")
11
12
13 xml <- xmlParse(all)
14 xml
15
statusCode<-sapply(getNodeSet(xml, "//status_code"), xmlValue)</pre>
17
18 statusCode<-as.numeric(statusCode)</pre>
19
20 - if(statusCode == 404){
21 lyrics<-"NA"
22 }else
     lyrics<-(sapply(getNodeSet(xml, "//lyrics_body"), xmlValue))</pre>
23
24
25 collect1 <- rbind(collect1, lyrics)</pre>
```

Figure 18 Grabbing Lyrics

```
34 #emotional sentiment analysis
35 - for (i in 1:629) {
    ly<-x[i,4]
36
37
     url = paste("http://gateway-a.watsonplatform.net/calls/text/TextGetEmotion?", "apikey="
38 xml= xmlParse(url)
     xmltop=xmlRoot(xml)
39
40
     anger=xmlValue(xmltop[[5]][[1]])
     disgust=xmlValue(xmltop[[5]][[2]])
41
42
     fear=xmlValue(xmltop[[5]][[3]])
43
     joy=xmlValue(xmltop[[5]][[4]])
44
      sadness=xmlValue(xmltop[[5]][[5]])
     angerDF <- rbind(angerDF, anger)
45
46     disgustDF <- rbind(disgustDF, disgust)</pre>
47
      fearDF <- rbind(fearDF, fear)</pre>
      joyDF <- rbind(joyDF, joy)</pre>
48
49
      sadnessDF <- rbind(sadnessDF, sadness)</pre>
50 }
51
```

Figure 19 Emotional Sentiment Analysis

1992	29	а	1992 029	21	17	9	1	3	Prince	Prince & The N.P.	G.	Diamonds And Pearls	4:14
1992	30	а	1992 030	18	9	4	1	3	Madonna	Madonna	Erotica	Erotica	5:10
1992	31		1992 031	25	22	10	3	4	Billy Ray Cyrus	Cyrus, Billy Ray	Some Gave	Achy Breaky Heart	3:23
1992	32		1992 032	21		8	2	4	Joe Public	Joe Public		Live And Learn	3:56
1992	33	а	1992 033	22	19	8	1	4	Celine Dion	Dion, Celine	Celine Dion	If You Asked Me To	3:52
1992	34		1992 034	20		7	1	4	Shakespear's Sister	Shakespear's Siste			3:40
1992	35		1992 035	33	_	10	2	5	Ce Ce Peniston	Peniston, Ce Ce	Finally	Finally	4:20
1992	36		1992 036	21	_	7	2	5	Sophie B. Hawkins	Hawkins, Sophie B.		Damn I Wish I Was Your Lover	5:19
1992	37		1992 037	37		12	1	5	Jon Secada	Secada, Jon		Just Another Day	4:11
1992	38		1992 038	20		7	1	5	HI-Five	HI-Five		She's Playing Hard To Get	4:32
1992	39		1992 039	20		7	1	5	Mariah Carev	Carey, Marlah		Make It Happen	4:05
1992	40		1992 040	20		4		5	M.C. Hammer	M.C. Hammer		2 Legit 2 Quit	7:55
1992	41	а	1992_041	22		9	2	6	TLC	TLC		Ain't 2 Proud To Beg	4:09
1992	42		1992_041	20		8	2	6	Nirvana	Nirvana	Management	Smells Like Teen Spirit	4:59
1992	43		1992 043	25		7	1	6	Tevin Campbell	Campbell, Tevin	T.E.V.I.N.	Tell Me What You Want Me To Do	4:09
1992	44	a	1992 044	24	_	7	1	6	En Vogue	En Vogue	2.41.7.2.11.	Giving Him Something He Can Feel	1107
1992	45		1992_044	26		6	1	6	Tom Cochrane	Cochrane, Tom	Mad Mad II	Life is A Highway	4:17
1992	46		1992_045	22		5	1	6	Arrested Development	Arrested Developm		Tennessee	4:35
1992	47		1992_048	26		5	1	6	K.W.S.	K.W.S.	ent	Please Don't Go	4:08
1992	48		1992_047	24			1	6	Mint Condition	Mint Condition		Breakin' My Heart (Pretty Brown Ey	4:44
1992	49		1992_048	20	_	4	1	6	Michael Jackson	Jackson, Michael		In The Closet	4:48
		а		23		4	1	6	Technotronic				
1992 1992	50 51		1992_050	23		10	2	7	Bobby Brown	Technot Featuring Y Brown, Bobby		Move This	3:33 3:52
	52		1992_051	27		10	1	7	TLC	TLC	Bobby	Good Enough	
1992	53		1992_052	31		9	1	7				What About Your Friends	4:00 4:25
1992			1992_053	20				7	Mary J. Blige	Blige, Mary J.	What's The		1100
1992	54		1992_054	20		4	1	7	Genesis	Genesis	We Can't Di	I Can't Dance	3:53 3:54
1992	55		1992_055			2	1		M.C. Hammer	M.C. Hammer		Addams Groove	3.0.1
1992	56		1992_056	20		3	1	8	Firehouse	Firehouse		When I Look Into Your Eyes	4:01
1992	57	а	1992_057	23				8	Arrested Development	Arrested Developm			3:28
1992	58		1992_058	20			1	8 1			teart in Moto	Good For Me	3:59 CS
1992	59		1992_059	20		1	1	8	En Vogue	En Vogue		Free Your Mind	4:06
1992	60	а	1992_060	20		4	4	9	Ugly Kid Joe	Ugly Kid Joe		Everything About You	4:00
1992	61		1992_061	20		5	2	9	Cover Girls, The	Cover Girls, The	Here It Is	Wishing On A Star	4:35
1992	62		1992_062	20	_	2	1	9	Richard Marx	Marx, Richard		Hazard	5:08
1992	63		1992_063	20		2	1	9	Celine Dion		Beauty and	Beauty And The Beast	3:59
1992	64		1992_064	22		1	1	9	Elton John	John, Elton		The One	5:42
1992	65	а	1992_065	20		1	1	9	U2	U2		Mysterious Ways	4:00
1992	66		1992_066	20		3	3	10	Luther Vandross			The Best Things In Life Are Free	4:32
1992	67		1992_067	20		1	1	10	U2	U2	Achtung Ba		4:32
1992	68		1992_068	20	_	1	1	10	George Michael	Michael, George		Too Funky	3:40
1992	69		1992_069	20		0	2	11	Michael Bolton	Bolton, Michael		To Love Somebody	4:00
1992	70		1992_070	18	_	0	2	11	KLF, The		The White R	Justified And Ancient	3:38
1992	71		1992_071	28		0	1	11	Jodecl	Jodeci		Come & Talk To Me	4:07
1992	72		1992_072	20			1	11	Bryan Adams	Adams, Bryan	Waking Up	Do I Have To Say The Words?	4:17
1992	73	а	1992_073	20	13	0	3	12	Karyn White	White, Karyn		The Way I Feel About You	4:18

Figure 20 Project Whitburn csv file screenshot