OTÁZKY K ÚSTNÍ ZKOUŠCE – SAS LS 2022

1. Klasifikace signálů ve spojitém a diskrétním čase, speciální signály

- *Co je to signál?
 - reálná nebo komplexní funkce nezávislé proměnné
 - popis veličiny nejčastěji v čase, u obrazů souřadnice x, y
 - jakákoliv závislost fyzikální veličiny na čase
 - zápis matematickou formulací, kde proměnou je čas
- *Jak vypadá signál ve spojitém a diskrétním čase?
 - spojitá funkce v čase
 - diskrétní vzorky v čase
- Jak se liší deterministické a náhodné (stochastické) signály?
 - deterministické explicitně určené v každém okamžiku můžeme říci, jaké hodnoty nabývá
 - stochastické = **náhodné** mají náhodný průběh, popisujeme pravděpodobností
- Co to jsou kauzální a finitní signály?
 - kauzalita = příčinnost signály mají definovaný začátek
 - finitní mají definovaný jak začátek, tak i konec konečná délka trvání
- *Jak vypadá a jaké základní vlastnosti má jednotkový skok, obdélníkový impuls, jednotkový impuls, Diracův impuls a vzorkovací funkce?

- stejnosměrná složka = ½, autokorelační funkce = ½, výkon = ½
- stejnosměrná složka ~ průměrná hodnota signálu
- konstantní ACF = ½
- obdélníkový impuls složen ze 2 jednotkových skoků (jednou nahoru, jednou dolů)
- **jednotkový impuls** Dirac v diskrétním čase
- Diracův impuls derivace jednotkového skoku podle t
 - plocha (integrál) z Diraca = 1 jednotková plocha

- normalizovaná sin(πt) / πt
- energetický signál E = π
- v t = 0 je Sa definována jako 1

 $\mathbb{I}(t)$

rect(t)

0

- Vysvětlete vzorkovací vlastnost Diracova a jednotkového impulsu?
 - průnik Diraca s nějakou funkcí je rovna funkci v daném bodě, kde je Dirac (ovzorkování Dirakem nějaké funkce)
 - všechny ostatní hodnoty mimo to, kde leží Dirac budou pronásobeny 0

2. Časová a spektrální reprezentace signálů, charakteristiky signálů, korelace, základní teorémy

- Jak určíme energii a výkon signálu, jaké vlastnosti mají energetické a výkonové signály?
 - energetické signály mají konečnou energii
 - časový posuv signálu nemá vliv na energii signálu
- $E = \int_{-\infty}^{\infty} |s(t)|^2 dt = \int_{-\infty}^{\infty} s(t) s^*(t) dt$ $E = \sum_{k=-\infty}^{\infty} |s[k]|^2 = \sum_{k=-\infty}^{\infty} s[k] s^*[k]$
- pokud je signál finitní → je energetický (má konečnou energii) neplatí obráceně
- výkon energetického signálu = 0
- výkonové mají **nekonečnou** energii
 - konečný a nenulový výkon výpočet pomocí Av operátoru Av[.]
 - příkladem může být jednotkový skok 1(t) (není finitní -> určitě není energetický)
 - výkon závisí čistě na amplitudě
 - periodický signál → výkonový signál (neplatí obráceně)

$$P = Av[p(t)] = Av[|s(t)|^{2}] = Av[s(t)s^{*}(t)] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |s(t)|^{2} dt$$

$$P = Av[p[k]] = Av[|s[k]|^{2}] = Av[s[k]s^{*}[k]] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} |s[k]|^{2}$$

- <u>*Co popisují a jaký je mechanismus výpočtu vzájemné korelační funkce a autokorelační funkce?</u>
 - R₁₂(tau), R₁₂[m] vzájemná korelační funkce
 - "míra podobnosti, která uvažuje i posun", vztah dvou signálů zahrnující i posun
 - pronásobování jednoho signálu s druhým, který je časově posunut
 - přikládám signál k jinému → posouvám v čase a hledám, kdy jsou si nejvíce podobné → vyhodnocuji vzájemnou energii → pro jaké tau bude největší
 - pro reálně signály R12(tau) = R21(-tau)
 - R(tau), R[m] autokorelační funkce
 - vyjadřuje závislost signálu na sobě samém
 - závislost hodnot jednoho a téhož signálu
 - použití např. u GPS porovnávání ACF s korelačními funkcemi s jinými signály
 - lokalizace podobnosti signálů
 - autokorelační funkce pro reálný signál je sudá R(tau) = R(-tau)
 - v R(0) má funkce globální maximum
- Jaký je vztah autokorelační funkce a energie/výkonu signálu?
 - E = R(0), P = R(0)
- Co to je operátor Av a jak určíme stejnosměrnou složku signálu?
 - $s_{ss} = Av[s(t)]$
 - stejnosměrné složce signálu odpovídá koeficient FS c₀
- *Co to znamená, když jsou dva signály vzájemně ortogonální?
 - ortogonální signály mají nulovou vzájemnou energii/výkon
 - kritérium ortogonality = vzájemná energie/výkon
 - ortogonální signály podle výkonu/energie (ortogonalita = nezávislost, neovlivňují se)
 - vzájemný P/E = $0 \rightarrow$ ortogonální \rightarrow odlišné signály tvarem, nebo posunuté

• *Vysvětlete princip rozkladu periodického signálu do Fourierovy řady.

rozklad je založen na vlastnostech úplného ortogonálního systému funkcí

- aproximace signálu (po kouskách) založena na lineární kombinaci signálů z úplného ortogonálního systému
- rozklad (analýza) výpočet Fourierových koeficientů
- popis složení nějakých kmitočtů, neznámý signál se snažím vyjádřit mnou známými funkcemi
- v případě periodických signálů (použijeme FS), budeme skládat z periodických funkcí
- ideální pro popis jsou harmonické funkce
- funkce se nesmí navzájem ovlivňovat, popis musí být jednoznačný funkce nesmí být zaměnitelné → budou ortogonální (pak docílíme unikátního poskládání)

$$s(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}.$$

$$c_n = \frac{1}{T_0} \int_{T_0} s(t) e^{-jn\omega_0 t} dt.$$

- signál je tvořen lineární kombinací koeficientů c_n násobených komplexní harmonickým signálem (exp jde zapsat jako sin, cos)
- určení koeficientů jakou měrou se v signálu s(t) objevuje funkce exp(-jωnt)
 - dělíme 1/T₀, aby byl systém ortonormální
 - minus u exponenciály, protože je komplexně sdružená

• Jak určíte spektrum periodického signálu pomocí komplexní Fourierovy řady?

- spektrum signálu = koeficienty komplexní Fourierovy řady c_n
- FS používáme pro periodický spojitý signál vzniká neperiodické, diskrétní spektrum
- omega $0 = 2\pi/T_0 \text{kmitočet základní (první) harmonické signálu s(t)}$

Co vyjadřuje výkonové spektrum, jaký je jeho vztah k autokorelační funkce u periodických signálů?

- výkonové spektrum výkon dané frekvenční složky
- k autokorelační funkci má vztah Fourierovou řadou
- výkon stejnosměrné složky = $|c_0|^2$
- výkony jednotlivých harmonických ~ koeficientům cn na druhou → výkonové spektrum
- výkon lze vypočítat z klasického vztahu pomocí Av operátoru
- přes ACF v $0 \sim R(0) = P$
- pro periodické signály navíc přes Fourierovy koeficienty, P = součet koeficientů na druhou

- <u>*Popište aplikaci Fourierovy transformace</u> (FT) k výpočtu spektra obecných signálů ve spojitém čase.
 - FT použijeme pro obecné spojité signály
 - aproximace signálu na vhodném intervalu pomocí vhodného ortogonálního systému
 - transformace obecného (neperiodického), spojitého signálu z časové oblasti do frekvenční oblasti
 - zobecnění principu FS i pro neperiodické signály
 - limitní přechod od FS → FT
 - z původního signálu s(t) vyřízneme část signálu sT(t)
 - aproximujeme signál na intervalu od T do T úplným ortogonálním systémem
 - aproximace finitního signálu pomocí Fourierovy řady výpočet Four. koeficientů
 - použijeme limitní přechod T→ nekonečna, základní kmitočet → nule
- Jaké vlastnosti bude mít spektrum reálných signálů a periodických signálů?
 - spektrum reálného signálu bude symetrické
 - spektrum periodického signálu bude posloupnost Diraců vynásobena jednotlivými koeficienty, spektrum odpovídá jednotlivým harmonickým

- *Jak vypadá spektrum Fourierovy transformace pro Diracův impuls, konstantní signál, vzorkovací funkci, obdélníkový impuls, harmonický signál?
 - Dirac → 1 (konstantní signál v 1)
 - konstantní signál → Dirac
 - Sample function → obdélník
 - obdélník → Sample funkce
 - harmonický signál Diracův impuls na kmitočtu harmonického signálu

- Jaký je vztah spektrální hustoty energie/výkonu a korelační funkce pro obecné spojité a diskrétní signály?
 - spektrální hustota energie C(w) = modul kvadrát spektra
 - Fourierova transformace R(tau)
- Popište aplikaci Fourierovy transformace v diskrétním čase (DtFT) k výpočtu spektra obecných signálů v diskrétním čase.
 - analogie FT ve spojitém čase
 - použijeme pro diskrétní obecný (neperiodický) signál → vznikne diskrétní periodické spektrum
- *Jakou základní vlastnost má spektrum DtFT diskrétních signálů?
 - DtFT se používá na diskrétní neperiodické signály -> vytváří spojitý periodický signál
 - spektrum je periodickou funkcí
- *Vysvětlete význam věty o Fourierově transformaci konvoluce dvou signálů.
 - FT konvoluce dvou signálů = násobení mezi spektry signálů

- K čemu slouží jednotlivá Fourierovská zobrazení/transformace, Fourierova řada FS (Fourier Series), diskrétní Fourierova řada DFS (Discrete Fourier Series), Fourierova transformace FT (Fourier Transform) a Fourierova transformace v diskrétním čase DtFT (Discrete time Fourier Transform) a jaká jsou vztahy signálů a spekter (spojité, diskrétní, periodické, neperiodické)?
 - FS: spojitý, periodický signál → diskrétní, neperiodické spektrum
 - DFS: diskrétní, periodický signál → diskrétní, periodické spektrum
 - FT: spojitý, neperiodický signál spojité, neperiodické spektrum
 - DtFT: diskrétní, neperiodický signál → spojité, periodické spektrum

- Jak se liší vzorkovací podmínka pro periodické a neperiodické signály?
 - f(vzorkovací)> 2f(maximální), signál musí být spektrálně omezený
 - pro periodické signály \rightarrow $N_0 \ge 2N_m + 1$ $f_{sa} \ge 2f_m + f_0$ $\omega_{sa} \ge 2\omega_m + \omega_0$
- <u>Vysvětlete význam diskrétní Fourierovy transformace **DFT** (Discrete Fourier Transform) a rychlé Fourierovy transformace **FFT** (Fast Fourier Transform).</u>
 - DFT dává do vztahy všechny 4 transformace, dvě komplexní posloupnosti, umožňuje numerický výpočet spektra ze vzorků signálu
 - ne vždy je možné provést výpočet spektra pomocí definičních teoretických vztahů, DFT umožňuje numerický výpočet spektra
 - při PC zpracování máme k dispozici pouze vzorky signálu na omezeném časovém intervalu – DFT umožňuje výpočet spektra ze vzorků signálu na konečném intervalu
 - nepotřebujeme znát signál na celém definičním oboru
 - proto použijeme pro výpočet spektra DFT diskrétní Fourierovu transformaci
 - v některých případech můžeme dostat jen přibližný výsledek

$$D[n] = DFT\{d[k]\} = \sum_{k=0}^{N-1} d[k]e^{-jnk\frac{2\pi}{N}}$$
$$d[k] = DFT^{-1}\{D[n]\} = \frac{1}{N} \sum_{n=0}^{N-1} D[n]e^{jnk\frac{2\pi}{N}}$$

- suma ve vztahu je na omezeném počtu vzorků (konečný součet)
- v exp přibylo 2pi/N
- dvě posloupnosti D[n], d[k] obě konečné, obě mají stejnou délku N
- Ize vypočítat spektra signálu a nahradit tím FS, DFS, DtFT
 - nutnost dávat pozor na určité podmínky (argument jedna perioda signálu, finitní signály), abychom dostali přesné hodnoty spektra
 - pro FT je výpočet pouze přibližný, protože by signál musel být současně frekvenčně i časově omezený
- FFT Fast Fourier Transform
 - PC algoritmus efektivního výpočtu DFT, snižuje počet součinů každého kroku na polovinu
 - rychlá FT, dává stejný výsledek jako DFT

3. Vzorkování a interpolace signálu.

- *Vysvětlete ve spektrální oblasti odvození, význam a důsledky Shannonova vzorkovacího teorému.
 - vzorkování signálů jednoznačné obnovení signálu z jeho vzorků do spojitého signálu
 - vzorkovací podmínka
 - vzorkovaný signál musí být spektrálně omezený
 - musíme vzorkovat tak, že na jednu periodu odebíráme minimálně NO = 2Nm + 1 vzorků
 - pak vzorky nesou veškerou informaci o původním spojitém signálu s(t)
 - → můžeme jednoznačně obnovit signál s(t)
 - → zpracování signálu s(t) lze ekvivalentně provádět číslicově jen s jeho vzorky
 - Shannonův vzorkovací teorém vzorkovací kmitočet musí být větší než dvojnásobek maximálního kmitočtu
 - potřebujeme pro bezchybnou rekonstrukci spojitého signálu z jeho diskrétních
- *Vysvětlete proces ideální interpolace vzorkovaného signálu.
 - ideální interpolace získání hodnot signálu v určitém intervalu (např. mezi dvěma $s(t) = \sum_{k=-\infty}^{\infty} s_d[k] \operatorname{Sa}\left(\frac{\omega_{sa}}{2}(t - kT_{sa})\right) = \sum_{k=-\infty}^{\infty} s(kT_{sa}) \operatorname{Sa}\left(\frac{\omega_{sa}}{2}(t - kT_{sa})\right)$
 - rekonstrukce spojitého signálu z jeho vzorků
 - kmitočtově omezený signál
 - proces:
 - nahrazení Diracy (ideálně vzorkovaný signál)
 - váhování přes dolní propust DP
- Jaké jsou hlavní problémy při realizaci tzv. ideálního interpolátoru a jak je možno tyto vyřešit v **reálných aplikacích**?
 - realizace ideálního interpolátoru
 - problémy:
 - nekauzální DP (není fyzikálně realizovatelná)
 - náhrada Diracy není proveditelná
 - realizovatelný interpolátor
 - bez Diracových impulsů
 - aproximujeme obdélníky vzorkovaný signál
 - potom váhujeme DP posunuté obdélníky -> dojde k nějakému zkreslení
- Popište postup náhrady spojité soustavy diskrétní soustavou.
 - soustava se spojitým vstupem a výstupem, diskrétní filtrací
 - ideální vzorkovač a interpolátor
 - signál ze vzorkovače na vstupu prochází do diskrétní soustavy a následně do interpolátoru

4. Klasifikace soustav, popis spojitých a diskrétních soustav v časové a frekvenční oblasti, lineární a časově invariantní soustavy, konvoluce, stabilita soustavy.

- *Co to je soustava a operátor soustavy?
 - soustava = objekt, který pod vlivem buzení (vstupního signálu), produkuje výstupní signál (odezva)
 - dává do vztahu skupinu signálů, množina fyzikálních nebo matematických součástí
 - operátor soustavy využit k popisu, aplikace operátoru na vstup soustavy
- Jak se liší soustavy ve spojitém čase, diskrétním čase a smíšené soustavy?
 - smíšené: vzorkovač (spojitý → diskrétní)
 - interpolátor (diskrétní → spojitý)
- Vysvětlete klasifikaci soustav na soustavy kauzální/nekauzální a s pamětí/bez paměti?
 - "**příčinnost**" kauzalita = odezva je vyvolána současnými nebo minulými signály buzení, soustava nezávisí na budoucnosti
 - bez paměti reakce pouze na aktuální vstup, např. odporový dělič
 - s pamětí kapacitory, induktory (paměťové prvky)
- Vysvětlete význam kritéria BIBO (Bounded-Input Bounded-Output) pro stabilitu soustavy.
 - omezený vstup omezený výstup → soustava je BIBO stabilní
- <u>*Vysvětlete význam lineárních a časově invariantních soustav LTI (Linear and Time</u> Invariant).
 - lineární = princip superpozice odezva na lineární kombinaci vstupů (buzení) je lineární kombinace jednotlivých výstupů (odezev)
 - časově neproměnné = časový posun vstupu způsobí časový posun výstupu
- *Co to je impulsová odezva spojité a diskrétní LTI soustavy?
 - impulsová odezva spojité LTI soustavy odezva na Diracův impuls $A[\delta(t)] = h(t)$
 - impulsová odezva diskrétní LTI soustavy odezva na jednotkový impuls
 - $\bullet \quad A[\delta[k]] = h[k]$
- *Vysvětlete princip a mechanismus výpočtu spojité a diskrétní konvoluce.
 - 1) jeden signál necháme, tak jak je
 - 2) druhý signál převrátíme podle svislé osy (-tau) signál s převrácenou osou
 - 3) posuneme o t směrem k 0 posun doprava o čas t (nebo doleva)
 - 4) integrál z obou signálů plocha pod grafem bude odpovídat konvoluci
 - Konvoluci lze interpretovat graficky

- konvoluce v diskrétním čase

 $\sum h[i]x[k-i] = h[k] * x[k]$

- *Jak poznáme z impulsové odezvy soustavy, že jde o soustavu kauzální a stabilní?
 - kauzalita \rightarrow pro t < 0 je h(t) = 0
 - stabilita → integrál z h(t) je < ∞
- Vysvětlete význam popisu LTI spojité/diskrétní soustavy ve spojitém/diskrétním čase pomocí diferenciální/diferenční rovnice s konstantními koeficienty.
 - diferenciální rovnice s konstantními koeficienty u spojitých
 - diferenční rovnice u diskrétních soustav
 - popis LTI soustavy pro nalezení impulsové odezvy
- Jak z diferenciální/diferenční rovnice spojité/diskrétní soustavy určíme její impulsovou odezvu přímou metodou?
 - převedeme na diferenciální rovnici pro impulsovou odezvu – vstupní signál nahradíme Diracem
 - homogenizace rovnou 0
 - kořeny charakteristické rovnice vlastní čísla
 - řešení homogenní rovnice vlastní funkce
- LTI soustava ve spojitém čase Diferenciální rovnice pro impulsovou odezvu x(t)=δ(t) $\sum_{i=0}^{m} a_{i} h^{(i)}(t) = \sum_{i=0}^{m} b_{i} \delta^{(i)}(t)$ Homogenní diferenciální rovnice (x(t)= $\sum a_i h_o^{(i)}(t) = 0$ Charakteristická rovnice

 - Kořeny charakteristické rovnice vlastní čísla λ_n , L_n - násobnost Řešení homogenní rovnice – vlastní funkce

 $h_{n,l}(t) = t^l e^{\lambda_n t}, \quad l = 0, \dots, L_n - 1$

- Vysvětlete význam **použití Laplaceovy** a **Z-transformace** pro popis LTI soustav.
 - převádíme signál ve spojitém čase na funkci S(p)
 - nástroj pro řešení diferenciálních rovnic, pro analýzu lineárních a časově invariantních soustav
 - Z transformace pro diskrétní signál
- *Co to je systémová funkce LTI spojité/diskrétní soustavy, jaký je její vztah k impulsové odezvě?
 - systémová funkce je Laplaceova transformace impulsové odezvy pro spojité signály
 - Z-transformace h[k] pro diskrétní signály
- *Co to jsou **nuly** a **póly systémové** funkce a jak z **pozice pólů** poznáme, zda je soustava stabilní?
 - póly jsou kořeny jmenovatele, nuly kořeny čitatele u systémové funkce
 - póly musí být v levé polorovině, aby soustava byla stabilní
- Jaká je **odezva LTI** spojité soustavy na **harmonické buzení**?
 - harmonický signál o stejné frekvenci na výstupu
 - LTI soustava mění jen amplitudu a fázi harmonického signálu
- *Jak určíme frekvenční charakteristiku (přenosovou funkci) LTI spojité/diskrétní soustavy ze známé **impulsové** odezvy?
 - Laplaceovou/ Z transformací
- Jaké vlastnosti bude mít amplitudová a fázová frekvenční charakteristika reálné soustavy (soustavy s reálnou impulsovou odezvou)?
 - amplitudová charakteristika bude sudá, fázová lichá

Reálná soustava - buzení i odezva jsou rea

Impulsová odezva je reálná

 $h(t) \in \mathbb{R}$

· Přenosová funkce vykazuje symetrii

 $H(-\omega) = H^*(\omega)$

Amplitudová charakteristika – sudá

 $|H(-\omega)| = |H(\omega)|$

Fázová charakteristika – lichá

 $\Phi(-\omega) = -\Phi(\omega)$

- <u>Čím se zejména liší frekvenční charakteristika spojité a diskrétní LTI soustavy?</u>
 - frekvenční charakteristiku H(ω) spojité soustavy získáme FT
 - diskrétní soustavy získáme DtFT
 - frekvenční charakteristika diskrétní soustavy je periodická
- <u>Jak by měla vypadat přenosová funkce LTI kauzální soustavy a jaký je důsledek pro tzv.</u> ideální a realizovatelné filtry?
 - ideální filtry bez zkreslení tvaru signálu
 - fyzikálně realizovatelné filtry musí být kauzální
- Jaký je vztah systémové funkce LTI spojité/diskrétní soustavy a její přenosové funkce (frekvenční charakteristiky) význam tzv. membránového modelu?
 - přenosová funkce je spojena FT s impulzovou odezvou
 - u disktrétní DtFT
 - membránový model přišpendlení nul, vytáhnutí pólů systémové funkce

5. Pásmové signály, komplexní obálka, Hilbertova transformace.

- *Jaké specifické vlastnosti má reálný pásmový signál BP (Band Pass), zejména s ohledem na jeho spektrum?
 - spektrum je soustředěno okolo nosného kmitočtu ω_c
 - **mimo pásmo** je spektrum **nulové**, mezi horním a dolním kmitočtem je nenulové
 - reálný, omezený signál
 - nosný kmitočet je obvykle daleko větší než šířka pásma $\omega_c >> 2\pi B$
 - symetrické amplitudové spektrum
- <u>*Popište ve spektrální oblasti přechod od reálného pásmového signálu, přes</u> analytický signál ke komplexní obálce CE (Complex Envelope).
 - (amplitudové) spektrum reálného signálu je symetrické, nenulové pouze mezi danými kmitočty
 - pro popis stačí pouze jednostranné spektrum
 - přechod na analytický signál z(t) -> už nemá symetrické spektrum, je to komplexní signál
 - oříznutí a vynásobení spektra dvěma
 - přechod ke komplexní obálce CE posunutí spektra analytického signálu do nulového kmitočtu
- Jaké jsou hlavní **výhody použití komplexní obálky** CE proti reálnému pásmovému signálu BP?
 - **komplexní obálka** = nf komplexní reprezentace vf reálného pásmového signálu
 - zjednodušení matematického popisu zpracování pásmových signálů
 - zjednodušení simulací s pásmovými signály (nižší vzorkovací kmitočet)
 - jednodušší **realizace algoritmů**
 - názorná reprezentace
- *Co to je Hilbertova transformace, jaké má základní vlastnosti a jaký je její význam při určení analytického signálu a signálu komplexní obálky.
 - transformace na komplexní obálku
 - Hilbertův transformátor realizace přechodu na komplexní obálku CE
 - LTI soustava s přenosovou funkcí →

 $H(\omega) = 2 \mathbb{1}(\omega)$

• s impulsovou odezvou →

nekauzální a nestabilní soustava

 $h(t) = \frac{1}{\pi t}$

- základní vlastnosti
 - lineární (založena na konvoluci)
 - na kladných kmitočtech realizuje fázové zpoždění o pi/2

- soustava s impulzovou charakteristikou 1/πt
- nekauzální a nestabilní soustava
- posouvá všechny frekvenční složky v původním spektru o π/2

 Pásmový signál a analytický signál Převod S(ω) na Z(ω) $Z(\omega) = 2 \mathbb{I}(\omega) S(\omega)$ Převod Z(ω) na S(ω) $\frac{1}{2}Z(\omega)$ pro $\omega > 0$ Spektrum se doplní symetricky Analytický signál a komplexní obálka Převod Z(ω) na spektrum CE

> $\tilde{S}(\omega) = Z(\omega + \omega_s)$ Převod spektra CE na Z(ω) $Z(\omega) = \tilde{S}(\omega - \omega_c)$

- Hilbertův transformátor
- Co to je **soufázová** a **kvadraturní** složka komplexní obálky?
 - soufázová složka reálná část komplexní obálky
 - Soufázová a kvadraturní složka (ortogonální reprezentace)

$$ilde{s}(t) = a(t) + jc(t)$$

• Soufázová složka $a(t) = \operatorname{Re}\{\tilde{s}(t)\}$

• Kvadraturní složka $c(t) = \operatorname{Im}\{\tilde{s}(t)\}$

kvadraturní složka – imaginární část komplexní obálky

- Popište metody přechodu od pásmového signálu k jeho komplexní obálce a zpět (metoda fázového posunu a filtrační metoda).
 - metoda fázového posunu
 - sečteme s Hilbertovou transformací vstupního signálu (přes Hilbertův transformátor)
 - pro komplexní signály pak vynásobíme komplexní exponenciálou
 - pro reálné signály násobíme cos (reálná část) /sin (imaginární část)
 - filtrační metoda
 - přenásobení signálu cosinem nebo sinem na nosném kmitočtu pro reálné signály
 - Reálná složka násobení cosinem
 - Imaginární složka násobení sinem
 - pro komplexní signály přenásobení komplexní exponenciálou
 - po té filtrace dolní propustí (DP)
- Jaká jsou specifika vzorkování vysokofrekvenčních pásmových signálů proti signálům v základním pásmu, jak volíme vzorkovací kmitočet pro pásmové signály?
 - vzorkování vysokofrekvenčních pásmových signálů
 - musíme splnit vzorkovací podmínku -> spektra se nesmí překrývat
 - volba vzorkovacího kmitočtu
 - M ... číslo pásma (indikuje polohu spektra S(w))

- očíslování jednotlivých spekter od nuly doprava
- (tak, aby se signál vešel do mezer mezi spektry)

• <u>Jak můžeme realizovat zpracování (filtraci) vysokofrekvenčního pásmového signálu pomocí ekvivalentní nízkofrekvenční soustavy s komplexní obálkou?</u>

- komplexní obálka buzení, komplexní obálka odezvy
- komplexní impulsová odezva z důvodu porušení symetrie přenosové funkce
- realizace pomocí dvojice reálných soustav reálná a imaginární část impulsové odezvy i přenosové funkce
- výstupní signál vznikne prokonvolvováním impulsové odezvy (Re části, Im části) a vstupního signálu (Re části, Im části)
- soufázová složka nf soustavy = konvoluce Re složky impulsové odezvy se soufázovou složkou vstupu minus konvoluce Im složky impulsové odezvy a kvadraturní složky vstupu
- kvadraturní složka = →

$$\begin{split} & \text{Výstupní signál} \\ & \tilde{y}(t) = a_y(t) + jc_y(t) = \tilde{h}(t) * \tilde{x}(t) = \\ & = \left(h_r(t) + jh_l(t)\right) * \left(a_x(t) + jc_x(t)\right) \\ & a_y(t) = h_r(t) * a_x(t) - h_l(t) * c_x(t) \\ & c_y(t) = h_r(t) * c_x(t) + h_l(t) * a_x(t) \end{split}$$

6. Typy základních analogových modulací

- <u>*Vysvětlete základní význam modulací v komunikačním systému, co je to nosná vlna, modulační signál a modulovaný signál?</u>
 - **modulace** = ovlivnění nosné vlny modulačním signálem
 - výsledkem je modulovaný signál (který tvoříme proto, aby lépe vyhovoval komunikačními signálu
 - princip modulačním signálem ovlivňujeme parametry nosného signálu
 - modulací se z nosného signálu stává modulovaný signál
 - **nosná vlna** např. radiofrekvenční harmonická vlna nebo optický paprsek
 - vyhovuje přenosovému médiu
 - modulační signál nese informaci, kterou přenášíme (zvuk, data)
 - modulovaný signál výstup po modulaci (z modulátoru), přenáší informaci
 v podobě, která je vhodná pro dané přenosové médium
- <u>Do jakých dvou základních **skupin** dělíme analogové modulace, jaké jsou jejich základní vlastnosti?</u>
 - dělíme do skupin: **amplitudové / úhlové /** impulsové modulace podle toho, co ovlivňuje modulační signál na nosné vlně (amplituda nebo fáze atd.)
 - amplitudové modulace (AM)
 - modulační signál ovládá amplitudu nosné obálky V(t), fáze je konstantní
 - lineární modulace
 - úhlová modulace
 - fázová (PM) / frekvenční (FM)
 - modulační signál ovládá fázi nebo okamžitý kmitočet, obálka V(t) je konstantní
 - nelineární modulace
 - impulsová modulace PAM, PWM

- *Vysvětlete základní **princip amplitudové modulace** AM (Amplitude Modulation) s **nosnou vlnou** v **časové** a **spektrální** oblasti.
 - modulační signál **ovládá amplitudu nosné obálky** V(t)
 - fáze je konstantní
 - jednoduchý modulátor (časový spínač, násobička) i demodulátor (obálkový detektor)
 - nízká energetická účinnost většina výkonu je v nosné vlně
 - nevýhoda postranní pásma nesou stejnou informaci neefektivní spektrum
 - např. AM rádio (nejstarší a nejčastější způsob modulace)
 - princip v časové oblasti:
 - nosná vlna s vyšší frekvencí, modulační signál s nějakým průběhem
 - obálka nosné vlny bude formována do tvaru modulačního signálu = modulovaný signál
 - princip ve spektrální oblasti:
 - spektrum modulačního signálu symetrické, pásmové spektrum
 - spektrum nosné vlny Diracy na nějakých kmitočtech
 - modulovaný signál = posunutí spektra modulačního signálu do nosného kmitočtu, snížení spektra na půlku

- Jaké jsou hlavní nevýhody AM-DSB (Double Side Band) se zachovanou nosnou vlnou a jak
 tyto nevýhody řeší potlačení nosné AM-DSB-SC (Suppressed Carrier) a potlačení
 postranního pásma AM-SSB (Single Side Band), AM-VSB (Vestigial Side Band).
 - nevýhodnou zachování nosné vlny spektrální neefektivita postranní pásma nesou stejnou informaci, nízká energetická účinnost
 - AM-DBS-SC s potlačenou nosnou vlnou má lepší energetickou účinnost
 - stále postranní pásma nesou stejnou informaci neefektivní
 - složitější demodulace
 - AM-SSB s jedním postranní pásmem
 - **efektivní** využití spektra
 - problematické potlačení postranního pásma, aniž by došlo ke zkreslení
 - AM-VSB částečně potlačené postranní pásmo
 - přenos analogové TV
 - kompromis
- *Vysvětlete základní **princip úhlových** modulací, tedy fázové modulace **PM** (Phase Modulation) a **FM** (Frequency Modulation), popisem v **časové** oblasti. Jaký je **vztah** těchto **modulací**?
 - úhlová modulace FM, PM
 - modulační signál ovládá fázi nebo okamžitý kmitočet nosné vlny
 - obálka je konstantní (konstantní obálka je energeticky výhodná)
 - nelineární modulace

- princip v časové oblasti
 - modulační signál, který potřebujeme přenést
 - podle modulačního signálu upravíme fázi nosné vlny
 - modulovaný signál bude nosná vlna se změněnou fázi o fázi modulačního signálu
 - analogicky u frekvenční modulace

Fázová modulace (PM)

 $s_{PM}(t) = A_c \cdot \cos(\omega_c t + k_P \cdot s_M(t))$

Kmitočtová modulace (FM)

$$s_{FM}(t) = A_c \cdot \cos\left(\omega_c t + k_F \cdot \int_{-\infty}^t s_M(\tau) d\tau\right)$$

- fázová modulace PM
- **kmitočtová** (frekvenční) modulace **FM**
- obě modulace jsou hodně podobné okamžitý kmitočet (frekvence) je derivací fáze
 - při vhodném předzpracování mohou být modulace zaměněny
- Jak bude vypadat spektrum modulovaného signálu kmitočtové modulace FM při modulaci harmonickým modulačním signálem?
 - FM modulace kmitočtová modulace
 - spektrum bude mnohem složitější než u amplitudové modulace
 - harmonický modulační signál ->

$$s_M(t) = A_M \cdot \cos \omega_M t$$

- kmitočtová modulace FM
 - komplexní modulovaný signál

$$J_n(\beta) = J_{-n}(\beta)$$
 n sudé

- Besselova funkce určitá symetrie $J_n(\beta) = -J_{-n}(\beta) \ n \ \text{liché}$
- modulovaný signál bude ovlivněn Besselovou funkcí
- pásmový signál s šířkou pásma = dvojnásobek kmitočtového zdvihu
 - kmitočtový zdvih z okamžité kmitočtové odchylky

$$B_{\scriptscriptstyle FM}=2\beta\omega_{\scriptscriptstyle M}=2\Delta\Omega_{\scriptscriptstyle FM}$$

- Carsonův vztah pro spojité širokopásmové modulační signály
 - udává šířku pásma

- $B \approx 2\left(\Delta f_{\text{max}} + f_{M \text{ max}}\right) = 2(1+\beta)f_{M \text{ max}}$

- Δf_{max} ... kmitočtový zdvih
- f_{Mmax} ... nejvyšší kmitočet modulačního signálu
- Kmitočtová modulace (FM) spektrum modulovaného signálu

7. Základní charakteristiky náhodného procesu, stacionarita a ergodicita, bílý šum.

- <u>*Co to je náhodný signál (náhodný proces) a jaký je jeho vztah k náhodnému jevu a náhodné veličině?</u>
 - náhodné signály mají **náhodný průběh** (ne však chaotický)
 - popisujeme pomocí **pravděpodobnosti**
 - obsahují **neznámou** informaci, obsahují **šum** (zašuměný deterministický signál)
 - **náhodná veličina** závislá na **čase**, soubor realizací náhodného procesu
 - parametrizace realizace náhodným jevem
- Jak si představujeme jednotlivé realizace náhodného signálu?
 - jedna realizace je determinovaný signál
 - možné průběhy signálu
- Jaký je význam distribuční funkce CDF (Cumulative Density Function) a hustoty pravděpodobnosti PDF (Probability Density Function) náhodného signálu?
 - distribuční funkce (CDF) pst, že náhodná veličina nebude menší než hodnota argumentu
 - hustota pravděpodobnosti (PDF) derivace distribuční funkce
- <u>Popište význam vybraných **pravděpodobnostních charakteristik** náhodných signálů, tedy **střední hodnoty** (na množině realizací), **rozptylu** a **autokorelační funkce**.</u>
 - střední hodnota na množině realizací průměrná hodnota všech realizací v daném časovém okamžiku
 - rozptyl odchylka realizací od střední hodnoty v daném časovém okamžiku
 - autokorelační funkce závislost hodnot ve dvou časových okamžicích
- <u>*Čím se vyznačují **stacionární** náhodné signály?</u>
 - **stacionární** nezávisí na volbě **počátku časové osy** (časově nezávislé)
 - pravděpodobností popis nezáleží na volbě počátku časové osy
 - stacionarita v užším smyslu (SSS) x v širším smyslu (WSS)
- Vysvětlete význam stacionarity v užším smyslu SSS (Strict Sense Stationary) a širším smyslu WSS (Wide Sense Stationary).
 - SSS úplný pst popis, distribuční funkce ani hustota nezávisí na volbě počáteční časové osy
 - WSS vybrané charakteristiky nezávisí na vzdálenosti od počátku časové osy
- Popište vztah mezi (pravděpodobnostní) spektrální hustotou výkonu a autokorelační funkcí a význam tzv. Wiener-Chinčinovy věty.
 - S(w) spektrální hustota výkonu vztah přes FT s autokorelační funkcí B(tau)
 - Wiener-Chinčinovy věta 🔿
 - platí pro stacionární náhodné signály (WSS)
- $S_{x}(\omega) = \mathcal{F}[B_{x}(\tau)] = \int_{-\infty}^{\infty} B_{x}(\tau)e^{-j\omega\tau}d\tau$
 - spektrální hustota výkonu je určena FT jeho autokorelační funkce
- *Jaké vlastnosti má **bílý šum** (white noise) zejména s ohledem na **spektrální hustotu výkonu** a **autokorelační funkci**?
 - WN = White Noise (bílý šum)
 - idealizovaný model náhodného signálu, (pro omezenou šířku pásma?)
 - konstantní spektrální hustotu výkonu, autokorelační funkce je Diracův impuls v nule násobený SO (konstanta spektrálního výkonu)
 - nekonečný pravděpodobností výkon, nulová střední hodnota
- Co to je aditivní bílý gaussovský šum AWGN (Additive White Gaussian Noise)?
 - model náhodného signálu, který má vlastnosti bílého šumu, a Gaussova šumu
 - bílý → **nekonečná** šířka pásma
 - nekorelovaný

- s Gaussovským rozložením pravděpodobnosti
- *Co to jsou ergodické náhodné signály?
 - ergodické signály (třída náhodných signálů) jsou signály, jejichž časová charakteristika se nemění na množině realizací
 - časová charakteristika je determinovaným číslem
 - časová charakteristika má nulový rozptyl
 - nepotřebujeme průměrovat přes množinu realizací
- Jak se zjednoduší pro stacionární a ergodické signály výpočet jejich charakteristik?
 - striktně ergodické signály charakteristiky lze nahradit časovými charakteristikami na jednu realizaci