STATS 310B: Theory of Probability II

Winter 2016/17

Lecture 1: January 10

Lecturer: Sourav Chatterjee Scribes: Kenneth Tay

1.1 Conditional Probability

Set-up: We have a probability space (Ω, \mathcal{F}, P) and a sub σ -algebra $\mathcal{G} \subseteq \mathcal{F}$.

Definition 1.1 For an event $A \in \mathcal{F}$, define the **conditional probability of** A **given** \mathcal{G} , written $P(A \mid \mathcal{G})$, to be a \mathcal{G} -measurable random variable such that for all $B \in \mathcal{G}$,

$$P(A \cap B) = \mathbb{E}\left[P(A \mid \mathcal{G})1_B\right] = \int_B P(A \mid \mathcal{G})dP.$$

Why does such a random variable exist, and if it does, is it unique? We will spend the rest of the lecture on this.

(Note: One reason for the complexity of the theory of conditional expectation is the issue of how to condition on events of probability 0. For example, see the Borel-Kolmogorov paradox.)

1.1.1 Conditional Expectation for L^2 Random Variables

Definition 1.2 $L^2(\Omega, \mathcal{F}, P) := \{ all \ \mathcal{F}\text{-measurable random variables } X \ such that \ \mathbb{E} X^2 < \infty \}$.

We will first define conditional expectation for L^2 random variables (this lecture), then extend the notion to L^1 random variables (next lecture). Before that, we will work through a few lemmas that we will need.

Lemma 1.3 L^2 is complete, i.e. Cauchy sequences converge.

Proof: For any $X \in L^2$, let $||X|| := \sqrt{\mathbb{E}X^2}$. If $\{X_n\}$ is a Cauchy sequence, then $||X_n - X_m|| \to 0$ as $n, m \to \infty$.

Find a subsequence n_1, n_2, \ldots such that $||X_{n_{i+1}} - X_{n_i}|| \le 2^{-i}$ for all i. By the Monotone Convergence Theorem and since the L^2 norm dominates the L^1 norm for probability spaces,

$$\mathbb{E}\left(\sum_{i=1}^{\infty}|X_{n_{i+1}}-X_{n_i}|\right) = \sum_{i=1}^{\infty}\mathbb{E}|X_{n_{i+1}}-X_{n_i}|$$

$$\leq \sum_{i=1}^{\infty}\|X_{n_{i+1}}-X_{n_i}\|$$

$$\leq \infty.$$

We thus conclude that $\sum_{i=1}^{\infty} |X_{n_{i+1}} - X_{n_i}|$ is finite a.s. Since $X_{n_i} - X_{n_1} = \sum_{j=1}^{i-1} X_{n_{j+1}} - X_{n_j}$, we can further conclude that $\lim_{i \to \infty} X_{n_i}$ exists a.s.

Call this limit Y. Because

$$||X_{n_i}|| - ||X_{n_1}|| = \sum_{j=1}^{i-1} ||X_{n_{j+1}}|| - ||X_{n_j}||,$$

$$|||X_{n_i}|| - ||X_{n_1}||| \le \sum_{j=1}^{i-1} |||X_{n_{j+1}}|| - ||X_{n_j}|||$$

$$\le \sum_{j=1}^{i-1} ||X_{n_{j+1}} - X_{n_j}||,$$

which converges to a finite limit, we can apply Fatou's Lemma to obtain

$$\mathbb{E}Y^2 \le \liminf \mathbb{E}X_{n_i}^2 = \liminf ||X_{n_i}|| < \infty,$$

i.e. $Y \in L^2$. Since if j > i,

$$||X_{n_i} - X_{n_j}|| \le ||X_{n_i} - X_{n_{i+1}}|| + \dots + ||X_{n_{j-1}} - X_{n_j}||$$

$$\le 2^{-i} + 2^{-(i+1)} + \dots + 2^{-j}$$

$$< 2^{-(i-1)},$$

we can apply Fatou's Lemma again to obtain

$$\mathbb{E}(X_{n_i} - Y)^2 \le \liminf \mathbb{E}(X_{n_i} - X_{n_i})^2 = 0,$$

i.e. $X_{n_i} \stackrel{L^2}{\to} Y$.

Since $X_{n_i} \to Y$ in L^2 and X_n is Cauchy in L^2 , it follows that $X_n \to Y$ in L^2 , as required.

Lemma 1.4 Let $C \subseteq L^2(\Omega, \mathcal{F}, P)$ be non-empty, closed and convex. Then there exists a unique $X \in C$ such that $||X|| = \inf\{||Z||: Z \in C\}$.

(Note: This is a general fact about Hilbert spaces.)

Proof: Recall the parallelogram identity:

$$||X_n - X_m||^2 + ||X_n + X_m||^2 = 2||X_n||^2 + 2||X_m||^2$$

or equivalently,

$$||X_n - X_m||^2 = 2\left(||X_n||^2 + ||X_m||^2 - 2\left|\left|\frac{X_n + X_m}{2}\right|\right|^2\right).$$

Let $\lambda := \inf\{\|Z\|: Z \in \mathcal{C}\}$, and pick any sequence $\{X_n\}$ in \mathcal{C} such that $\|X_n\| \to \lambda$. Since \mathcal{C} is convex, we have $\frac{X_n + X_m}{2} \in \mathcal{C}$ and so the parallelogram identity yields

$$||X_n - X_m||^2 = 2(||X_n||^2 + ||X_m||^2 - 2\lambda^2).$$

Since $||X_n|| \to \lambda$, the above implies that $\{X_n\}$ is a Cauchy sequence. Hence, Lemma 1.3 implies that there is a $Y \in L^2(\Omega, \mathcal{F}, P)$ such that $X_n \stackrel{L^2}{\to} Y$. Since \mathcal{C} is closed by assumption, we have $Y \in \mathcal{C}$. Y must minimize the norm in \mathcal{C} because $X_n \stackrel{L^2}{\to} Y$ implies $||X_n|| \to ||Y||$.

To show uniqueness: Assume that Y and W are 2 random variables which minimize the norm in \mathcal{C} . Pick $\{X_n\} = Y, W, Y, W, \ldots$ Then the argument above shows that we must have Y = W.

Lecture 1: January 10

Lemma 1.5 Let M be a closed linear subspace of L^2 , and let X be some element of L^2 . Then there exists a unique $Z \in M$ such that $||X - Z|| = \inf\{||X - Y|| : Y \in M\}$.

Moreover, $X - Z \perp Y$ for all $Y \in M$, i.e. $\langle X - Z, Y \rangle := \mathbb{E}[(X - Z)Y] = 0$.

Moreover, if $W \in M$ satisfies $X - W \perp Y$ for all $Y \in M$, then W = Z.

Proof: Let $C = \{X - Y : Y \in M\}$. Then we can apply Lemma 1.4 to get the existence and uniqueness of Z.

To show that $X - Z \perp Y$ for all $Y \in M$: Define the function $f(c) := \|X - Z + cY\|^2$. Note that X - cY is an element of \mathcal{C} for all c. By definition of Z, the function f must obtain its minimum at c = 0, which implies that f'(0) = 0. However,

$$f(c) = ||X - Z||^2 + 2c < X - Z, Y > +c^2 ||Y||^2,$$

$$f'(c) = 2 < X - Z, Y > +2c ||Y||^2,$$

$$f'(0) = 2 < X - Z, Y >,$$

i.e. $\langle X - Z, Y \rangle = 0$, as required.

The last assertion is left as an exercise.

We can now define conditional expectation for L^2 random variables:

Definition 1.6 For $X \in L^2(\Omega, \mathcal{F}, P)$, define the **conditional expectation of** X **given** \mathcal{G} , written $\mathbb{E}[X \mid \mathcal{G}]$, as the \mathcal{G} -measurable random variable in L^2 such that

$$\mathbb{E}XZ = \mathbb{E}\left[\mathbb{E}[X \mid \mathcal{G}]Z\right]$$

for all $Z \in L^2(\Omega, \mathcal{G}, P)$ (i.e. preserves inner products with X).

Theorem 1.7 $\mathbb{E}[X \mid \mathcal{G}]$ exists and is unique. It is the orthogonal projection of X onto the space $L^2(\Omega, \mathcal{G}, P)$.

Proof: Let $M = L^2(\Omega, \mathcal{G}, P)$. This is a closed subspace: L^2 -convergent sequences have an a.s.-convergent subsequence (proved in Lemma 1.3), and hence the limit of the sequence is \mathcal{G} -measurable.

We can apply Lemma 1.5, and so the projection of X onto this subspace satisfies the criterion for conditional expectation, and is the only \mathcal{G} -measurable L^2 random variable satisfying this condition.