Dimensionality Reduction

Principal component analysis Biology 683

Lecture 9

Heath Blackmon

Planning

Thursday (22 April): Class but just if you have questions about using Rmarkdown or PCA (otherwise you can skip).

Tuesday 27th Brief class to go over project assignment

- Inside of a single .Rmd file you will
- Read in a csv datafile
- Performing a statistical analysis
- Provide a publication quality plot
- Include text above and below each block of code that explains what you are doing.
- You will upload your .Rmd file and the CSV file that you use to a google folder.
- I will "knit" your file and grade the resulting html file.
- Contact me first if you are considering using any R packages we have not covered in class.

Thursday 29th Review class: Final will post after class and you can begin to work on it.

Tuesday 4th 5:00 PM Final will close.

Thanks to all of you for your flexibility and hard work this semester I know that the delivery format has been less than ideal for a class like this.

Why do we do dimensional reduction?

- 1. Datasets are getting bigger and bigger
- 2. Understanding our data is often the new bottleneck
- 3. We can't think well beyond 3-4 dimensions
- 4. We can't illustrate well beyond 2-3 dimensions

What is principal component analysis

PCA is a dimensional reduction tool that takes many (possibly correlated) measurements and transforms it into a smaller set of uncorrelated measuerments.

One dimensional data

fish_ID	length
379	9.74
430	9.47
55	13.17
434	10.63
147	9.38
497	8.78
127	8.79
362	8.92
107	11.07
116	9.57
414	10.84
232	8.89
193	9.55
80	10.81
283	8.23
68	8.67
341	9.8
288	9.05
200	11.23
62	9.97
69	10.94
466	11.42
400	10.31
83	10.64
106	9.4
280	9

Two-dimensional data

fish_ID		length	fat
	379	9.74	0.21
	430	9.47	0.2
	55	13.17	0.28
	434	10.63	0.22
	147	9.38	0.28
	497	8.78	0.26
	127	8.79	0.24
	362	8.92	0.25
	107	11.07	0.24
	116	9.57	0.25
	414	10.84	0.26
	232	8.89	0.17
	193	9.55	0.23
	80	10.81	0.32
	283	8.23	0.24
	68	8.67	0.25
	341	9.8	0.19
	288	9.05	0.26
	200	11.23	0.23
	62	9.97	0.22
	69	10.94	0.18
	466	11.42	0.21
	400	10.31	0.23
	83	10.64	0.19

High dimensional data

fish_ID	length	fat	m3	m4	m5	m6	m7
379	9.74	0.21	9.74	0.21	0.27	1.45	2.97
430	9.47	0.2	9.47	0.2	4.28	0.83	1.57
55	13.17	0.28	13.17	0.28	7.01	1.25	4.59
434	10.63	0.22	10.63	0.22	15.33	0.89	2.09
147	9.38	0.28	9.38	0.28	5.77	0.77	2.03
497	8.78	0.26	8.78	0.26	18.81	0.61	1.39
127	8.79	0.24	8.79	0.24	8.92	1.24	2.62
362	8.92	0.25	8.92	0.25	0.44	0.98	2.19
107	11.07	0.24	11.07	0.24	16.89	0.84	2.24
116	9.57	0.25	9.57	0.25	13.55	1.26	3.02
414	10.84	0.26	10.84	0.26	11.23	0.2	0.57
232	8.89	0.17	8.89	0.17	2.02	0.94	1.42
193	9.55	0.23	9.55	0.23	5.24	1.05	2.32
80	10.81	0.32	10.81	0.32	6.04	0.79	2.73
283	8.23	0.24	8.23	0.24	0.12	0.07	0.13
68	8.67	0.25	8.67	0.25	2.76	0.41	0.89
341	9.8	0.19	9.8	0.19	9.73	1.59	2.97
288	9.05	0.26	9.05	0.26	15.31	0.49	1.16
200	11.23	0.23	11.23	0.23	3.04	1.26	3.24
62	9.97	0.22	9.97	0.22	13.14	0.28	0.61
69	10.94	0.18	10.94	0.18	5.23	0.14	0.28
466	11.42	0.21	11.42	0.21	6.11	0.3	0.71
400	10.31	0.23	10.31	0.23	2.78	0.43	1.02
83	10.64	0.19	10.64	0.19	10.93	0.86	1.73

What are our options?

Dimensionality reduction - PCA

fish_ID		length	fat
	379	9.74	0.21
	430	9.47	0.2
	55	13.17	0.28
	434	10.63	0.22
	147	9.38	0.28
	497	8.78	0.26
	127	8.79	0.24
	362	8.92	0.25
	107	11.07	0.24
	116	9.57	0.25
	414	10.84	0.26
	232	8.89	0.17
	193	9.55	0.23
	80	10.81	0.32
	283	8.23	0.24
	68	8.67	0.25
	341	9.8	0.19
	288	9.05	0.26
	200	11.23	0.23
	62	9.97	0.22
	69	10.94	0.18
	466	11.42	0.21
	400	10.31	0.23
	83	10.64	0.19

The math behind - PCA

fish_ID	PC1	PC2	PC3	PC4	PC5	PC6	PC7
379	0.48401035	0.3204638	0.86441909	0.75599341	0.19841263	0.29382035	0.87356767
430	0.92864946	0.7321531	0.17546787	0.22461749	0.50242958	0.66343818	0.82559145
55	0.12804522	0.03920335	0.59362519	0.39215655	0.9883746	0.92951871	0.26687076
434	0.2062225	0.21152673	0.47047215	0.66007816	0.71549665	0.89006466	0.31692619
147	0.85635814	0.17733842	0.94029393	0.11666265	0.10601835	0.18949868	0.42276984
497	0.78104386	0.88445893	0.45355361	0.61294154	0.02441031	0.3948512	0.08124852

= T nxm matrix

This is T a nxm matrix that has our PC scores. The first column of the matrix will be the one that captures the most variation.

Input data: 500,000 SNP genotypes for 3000 Europeans.

3000 rows 500,000 columns

What are PC1 and PC2?

Input data: Expression level for 1000s of genes

In 100s of cells (color indicates type of cell)

What are the PCs here?

Input data:

Radseq data (genotypes at 100s of loci) For a large number of species or strains

Input data:

Radseq data (genotypes at 100s of loci) For a large number of species or strains

How informative is your PCA

Scree Plot: A plot that illustrates the proportion of total variance that is captured by each principal component.

Steep means you can greatly reduce dimensionality without losing information

Alternatives

Discriminate function analysis: This is similar to PCA but you assign groupings to the data first and the discriminating components best parse your assigned groups from one another.

An example of useful and less useful dimensional reduction

Example in Rmarkdown

Standard Packages

stats - this is part of the base install and has the function prcomp

New Packages

car - data.ellipse function

FactoMineR - PCA function