Math 1271 Spring 2021

Worksheet 8

1. Use the Fundamental Theorem of Calculus to find f'(x) when f(x) =

(a)
$$\int_0^x (t^2 - 3) dt$$
.

(b)
$$\int_{3}^{x} (t^2 - 3) dt$$
.

(c)
$$\int_{x}^{3} (t^2 - 3) dt$$
.

2. Use the Fundamental Theorem of Calculus to evaluate the integral.

(a)
$$\int_0^2 x^2 dx$$
.

(b)
$$\int_{1}^{4} x^{2} dx$$
.

(c)
$$\int_0^3 e^x dx$$
.

(d)
$$\int_{-2}^{2} e^x dx.$$

(e)
$$\int_0^{\pi} \sin x dx.$$

(f)
$$\int_0^{\pi/4} \sec^2 x dx$$
.

(g)
$$\int_1^2 \frac{1}{x} dx.$$

(h)
$$\int_{1}^{2} \frac{1}{x+1} dx$$
.

(i)
$$\int_1^2 \frac{1}{x(x+1)} dx$$

3. Rewrite the following limit as definite integral, then evaluate it using FTC.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + i^2/n}$$

4. Do the following Riemann sums using midpoints.

(a)
$$f(x) = e^x$$
, $[-2, 2]$, $n = 4$.

(b)
$$f(x) = x^2 + 1$$
, $[0, 1]$, $n = 3$.