Contents

Prefa	ace	pa	ge xi				
1	Spat	ial concepts and notions	1				
	Intro	oduction	1				
	1.1	The spatial context	3				
	1.2	Ecological data					
	1.3	Spatial structure: spatial dependence					
		and spatial autocorrelation	4				
	1.4	Spatial scales	9				
	1.5	Sampling design	11				
		1.5.1 The sample size (the number of					
		observations 'n')	11				
		1.5.2 Spatial resolution	11				
		1.5.3 The size of the study area: extent	12				
		1.5.4 The location in the landscape	14				
		1.5.5 The size of the sampling or					
		observational units: grain	14				
		1.5.6 The shape of the sampling or					
		observational units	14				
		1.5.7 The spatial sampling design	14				
		1.5.8 Spatial lag	15				
		1.5.9 Edge effect	16				
	1.6	Stationarity	16				
	1.7	Spatial statistics	21				
		1.7.1 First-order statistics	21				
		1.7.2 Second-order statistics	21				
	1.8	Ecological hypotheses and spatial					
		analysis	22				
	1.9	Randomization tests for spatially					
		structured ecological data	25				
		1.9.1 Restricted randomizations	27				
	1.10	In conclusion: what is space?	30				

2	Ecological and spatial processes	32		4.1 Mapped point data in two dimensions	88
	Introduction	32		4.1.0 Introduction: three pattern types	88
	2.1 Ecological processes and spatial			4.1.1 Distance to neighbours methods	89
	structure	32		4.1.2 Refined nearest neighbour analysis	90
	2.2 Spatial processes by species level			4.1.3 Second-order point pattern	
	of organization	40			91
	2.3 Spatial process	43		4.1.4 Bivariate data	96
_				4.1.5 Multivariate point pattern	
3	Points, lines and graphs	46		analysis data	98
	Introduction	46		·	05
	3.1 Points: spatial patterns of point events	50		4.3 Ripley's <i>K</i> -function for inhomogeneous	
	3.1.1 Topological neighbours	50		point pattern analysis 1	06
	3.1.2 Distance-based spatial			4.3.1 Bivariate and multivariate	
	neighbours	55		non-stationary point patterns 1	09
	3.1.3 Directional angle-based spatial			4.3.2 Quantitative marks: mark	
	neighbours	59			10
	3.2 Lines: fibre pattern analysis	61			11
	3.2.1 Aggregation and overdispersion				11
	of fibres	62			12
	3.2.2 Fibres with properties	65		-	15
	3.2.3 Curving fibres	65			16
	3.2.4 Branching curved fibres	66			16
	3.2.5 Congruence and parallelism of cur	ved		•	17
	fibres	67			19
	3.3 Points and lines together	67			19
	3.4 Points and lines: spatial graphs	69		4.0 Concluding remarks	.13
	3.4.1 Signed and directed graphs and		5	Contiguous units analysis 1	23
	networks	70		Introduction 1	23
	3.4.2 How to create subgraphs	71		5.1 Quadrat variance methods 1	23
	3.4.3 Graph models	72		5.2 Significance tests for quadrat variance	
	3.5 Network analysis of areal units	72		methods 1	26
	3.6 Spatial analysis of movement	77		5.3 Adaptations for two or more species 1	27
	3.6.1 Transport and gravity models	77		5.4 Two or more dimensions 1	29
	3.6.2 Least-cost paths	77		5.5 Spectral analysis and related techniques 1	.33
	3.6.3 Circuit theory	79		5.6 Wavelets	34
	3.6.4 Spatial graphs and movement	79		5.7 Concluding remarks 1	35
	3.6.5 Corridors	79		Control and have affected by	40
	3.7 Testing hypotheses with graphs	80	6	1 , 1	40
	3.7.1 Comment on spatial graph				40
	randomization	83			41
	3.8 Concluding remarks	84		6.1.1 Join count statistics for	
	Glossary: graph definitions and properties	84		8	42
				1	44
4	Spatial analysis of complete point	0.0		1	44
	location data	88		6.2.2 Spatial autocorrelation coefficients	
	Introduction	88		for one variable 1	45

	6.2.3 Variography	152		8.3	Randomization procedures	224
	6.2.4 Fractal dimension	158			8.3.1 Restricted randomization and	
	6.3 Sampling design effects on the				bootstrap	224
	estimation of spatial pattern	159			8.3.2 Markov Chain Monte Carlo	226
	6.4 Spatial relationship between two			8.4	Spatial regressions	227
	variables	163			8.4.1 Spatial filtering using	
	6.5 Local spatial statistics	164			autoregressive models	230
	6.6 Spatial scan statistics	168			8.4.2 Spatial filtering using moving	
	6.7 Interpolation and spatial models	170			average models	232
	6.7.1 Proximity polygons	171			8.4.3 Spatial filtering using Moran's	
	6.7.2 Trend surface analysis	172			eigenvector maps	233
	6.7.3 Inverse distance weighting	172			8.4.4 Spatial error regression	233
	6.7.4 Kriging	173			8.4.5 Geographically weighted	
	6.8 Concluding remarks	178			regression	234
	-				8.4.6 Remove spatial autocorrelation	
7	Spatial relationship and multiscale analysis	182			from the residuals	234
	Introduction	182			8.4.7 Example of the use of non-spatial	
	7.1 Correlation between spatially				and spatial regressions	236
	autocorrelated variables	182		8.5	Considerations for sampling and	_00
	7.2 Correlation of distance matrices	183		0.0	experimental design	239
	7.2.1 Mantel test	183			8.5.1 Sampling	239
	7.2.2 Partial Mantel tests and multiple-				8.5.2 Experimental design	241
	matrix regression	189		8.6	Concluding remarks	241
	7.3 Canonical (constrained) ordination	192		0.0	Concruding remarks	211
	7.4 Multiscale analysis	194	9	Spa	tial partitioning: spatial clusters and	
	7.4.1 Generalized Moran's eigenvector				indary detection	244
	maps	195			roduction	244
	7.4.2 Multiresolution spectral			9.1	Patch identification	244
	decomposition analysis based on				9.1.1 Patch properties	244
	wavelets	198			9.1.2 Spatial clustering	245
	7.5 Concluding remarks	203			9.1.3 Fuzzy classification	249
8	Spatial autocorrelation and inferential tests	206		9.2	Boundary delineation	251
U	Introduction	206			9.2.1 Ecological boundaries	251
	8.1 Models dealing with one-dimensional	200			9.2.2 Boundary properties	251
	autocorrelated data	207			9.2.3 Boundary detection and	
	8.2 Dealing with spatial autocorrelation in	207			analysis for one-dimensional	
	inferential models	213			transect data	253
	8.2.1 Simple adjustments				9.2.4 Boundary detection based on	
	8.2.2 Adjusting the effective sample	213			two-dimensional data	262
	size	214		93	Boundary statistics	270
	8.2.3 More on induced autocorrelation	214			Boundary overlap statistics	271
					Hierarchical spatial partitioning	273
	and the relationships between variables	210		0.0	9.5.1 Edge enhancement with kernel	
	variables 8.2.4 Correlation and related	218			filters	274
		220		96	Concluding remarks	275
	methods	220		0.0	Community romanico	213

10	Spatial diversity analysis	278 278		11.7.3 Population synchrony	343
	Introduction			11.7.4 Spatio-temporal chaos	346
	10.1 Space in diversity analysis			11.8 Spatio-temporal graphs	350
	10.1.1 Spatial heterogeneity	279		11.8.1 Characteristics and	
	10.1.2 Spatial location and			classification	351
	environmental gradients	280		11.8.2 Animal movement with spatio-	
	10.1.3 Spatial scale	280		temporal graphs	353
	10.1.4 Propinquity and spatial			11.8.3 Other applications	355
	dependence	281		11.8.4 Final comment on	
	10.2 First-order diversity	283		spatio-temporal graphs	359
	10.2.1 α-diversity	284		11.9 Concluding remarks	360
	10.2.2 β-diversity	287		11.9.1 Recommendations	360
	10.2.3 γ -diversity	293	12	Closing comments and future directions	361
	10.2.4 Why space in first-order		12	Introduction: myths, misunderstandings and	JU1
	diversity analysis?	293		-	361
	10.3 Species combinations and composition	n:		O	367
	agreement and complementarity	295		12.2 Numerical solutions: software	<i>3</i> 01
	10.3.1 Species combinations	296			368
	10.3.2 Comments on species				370
	compositional diversity	302		12.4 Complementarity of current	,,,
	10.3.3 Nested subsets, constraining			- · · · · · · · · · · · · · · · · · · ·	371
	compositional diversity	303			373
	10.4 Multiple classifications	311		12.5.1 Analysis of permanent sample	
	10.5 Spatial diversity: putting it all			•	373
	together with spatial graphs	314			379
	10.6 Temporal aspects of spatial diversity	315 317		12.5.3 Spatial analysis of animal-	
	10.7 Concluding remarks			vegetation according to	
11	Spatio-temporal analysis	319		-	382
	Introduction	319			388
	11.1 Change in spatial statistics			12.6.1 Ongoing development	388
	11.2 Spatio-temporal join count	324		12.6.2 The hierarchical Bayesian	
	11.3 Spatio-temporal analysis of clusters			approach	389
	and contagion	325		12.6.3 Hypothesis testing with	
	11.4 Spatio-temporal scan statistics	329		spatio-temporal graphs	395
	11.5 Polygon change analysis	329		12.7 Other future directions	396
	11.6 Analysis of movement	333			
	11.7 Process and pattern	341	Refe	rences	398
	11.7.1 Tree regeneration, growth		Inde	X	425
	and mortality	341			
	11.7.2 Plant mobility	342			