Forecast using a Neural Network model

Lorena Romeo

2025-01-01

Purpose:

This is the bonus part, in which I will forecast the power consumption using a Neural Network model, taking into account also the Temperature regressor.

The first steps are the same of the main project presentation.

Load necessary libraries:

```
library(readxl)
library(openxlsx)
library(lubridate)
library(dplyr)
library(ggplot2)
library(forecast)
library(zoo)
library(writexl)
```

Load file

```
#load xlsx file
data_row = read.xlsx("C:/Users/Utilisateur/OneDrive/Desktop/2023-11-Elec-train.xlsx")
#plot(data_row)
head(data_row) #the first record on timestamp column is not in the good format, I need to convert it in
##
             Timestamp Power.(kW) Temp.(C°)
## 1 40179.052083333336
                           165.1 10.55556
## 2
         1/1/2010 1:30
                            151.6 10.55556
## 3
         1/1/2010 1:45
                            146.9 10.55556
         1/1/2010 2:00
## 4
                            153.7 10.55556
## 5
         1/1/2010 2:15
                            153.8 10.55556
## 6
         1/1/2010 2:30
                            159.0 10.55556
#str(data_row)
```

Work on date conversion

```
convert_timestamp = function(ts) {
  if (grepl("^[0-9]+\.[0-9]+$", ts)) {
    # Handle Excel serial date format
    excel_date = as.numeric(ts)
    origin = as.Date("1899-12-30")
    date = origin + excel_date
    return(as.POSIXct(date))
  } else {
    # Handle standard datetime format
    return(parse_date_time(ts, orders = "m/d/y H:M", tz = "UTC"))
  }
}
# Apply conversion function to Timestamp column
data_row$Timestamp = sapply(data_row$Timestamp, convert_timestamp)
#the timestamp is numeric now, I need to convert to datetime
\# Convert numeric Unix epoch timestamps to POSIXct
data_row$Timestamp = as.POSIXct(data_row$Timestamp, origin = "1970-01-01", tz = "UTC")
#head(data_row)
```

Rename the variables for easiness

```
#now that the dataset is clean I will rename the variables in a easier way
# Rename columns to valid names
elec = data_row %>%
    rename(
        Power_kW = `Power.(kW)`,
        Temp_C = `Temp.(C°)` # Use the exact name here
)

#verify results
# str(elec)
# head(elec)
```

```
elec <- elec %>%
  filter(!is.na(Power_kW))

#interpolation
elec <- elec %>%
  mutate(
    Power_kW = na.approx(ifelse(Power_kW == 0, NA, Power_kW))
)
```

Create train and test dataset

```
# Set up the start and end dates fro train and test dataset
train_start = as.POSIXct("2010-01-01 01:15:00", tz = "UTC")
train_end = as.POSIXct("2010-02-18 23:45:00", tz = "UTC")
test start = as.POSIXct("2010-02-19 00:00:00", tz = "UTC")
test_end = as.POSIXct("2010-02-20 23:45:00", tz = "UTC")
# Create training and test datasets
set.seed(123)
train_data = elec %>% filter(Timestamp >= train_start & Timestamp <= train_end)</pre>
test_data = elec %% filter(Timestamp >= test_start & Timestamp <= test_end)
# str(train_data)
# str(test_data)
#check the boundaries of the datasets
# min(train_data$Timestamp)
# max(train_data$Timestamp)
# min(test_data$Timestamp)
# max(test_data$Timestamp)
```

Create Time Series objects

```
# Create time series objects (without temperature)
# Create time series objects
frequency = 96  # 96 intervals per day (15-minute intervals)
power_train = ts(train_data$Power_kW, start = c(1, 6), end = c(49, 96), frequency = frequency)
#I do not put the end in the test part because the boundary is already set in the code above
power_test = ts(test_data$Power_kW, start = c(50, 1), frequency = frequency)
# #verify results
# str(power_train)
# str(power_test)
```

Create a first Neural Network Model using NNAR

This is a first attempt on creating a Neural Network model without fine tuning.

```
#create neural model
fit_nnar = nnetar(power_train, xreg = train_data$Temp_C)
#check predictions using test data
prev_nnar = forecast(fit_nnar, xreg = test_data$Temp_C, h = length(power_test))
```

Check quality of the model

```
# # Mean Absolute Error
# mae = mean(abs(prev_nnar$mean - power_test))
# print(mae)
# # Mean Squared Error
# mse = mean((prev nnar$mean - power test)^2)
# print(mse)
# Root Mean Squared Error
nnr1_rmse = sqrt(mean((prev_nnar$mean - power_test)^2))
print(nnr1_rmse)
## [1] 19.08972
# # Mean Absolute Percentage Error
# mape = mean(abs((prev_nnar$mean - power_test) / power_test)) * 100
# print(mape)
# # Symmetric Mean Absolute Percentage Error
\# smape = mean(2 * abs(prev_nnar$mean - power_test) / (abs(prev_nnar$mean) + abs(power_test))) * 100
# print(smape)
```

From the RMSE I can suppose that with a bit of fine tune the model can have a better fit.

Retrieve the parameters of the auto generated model to understand how to fine tune it

I extract the parameters of the auto generated nnar and then decide what to change

```
# View specific model components
p_value = fit_nnar$p  # Number of non-seasonal lags
P_value = fit_nnar$P  # Number of seasonal lags
size_value = fit_nnar$size  # Number of neurons in the hidden layer
lambda_value = fit_nnar$lambda  # Box-Cox transformation parameter (if used)
repeats_value = fit_nnar$repeats  # Number of networks averaged

# Print these values
cat("Number of lags (p):", p_value, "\n")

## Number of seasonal lags (P):", P_value, "\n")
## Number of seasonal lags (P): 1
```

```
cat("Number of neurons (size):", size_value, "\n")
## Number of neurons (size): 14
cat("Box-Cox transformation (lambda):", lambda_value, "\n")
## Box-Cox transformation (lambda):
cat("Number of repeats:", repeats_value, "\n")
## Number of repeats:
#Fit manually a new model and forecast
I can now try to fine tune the NN model.
#1st attempt
fit2_nnar = nnetar(
 power_train,
 p = 15,
 P = 1,
 size = 15,
 repeats = 10,
 lambda = "auto",
 xreg = train_data$Temp_C
```

Make forecast based on test set and check quality of the model.

```
# Make forecasts
prev_nnar2 = forecast(fit2_nnar, xreg = test_data$Temp_C, h = length(power_test))

# Evaluate model performance on adjusted test data
mse = mean((prev_nnar2$mean - power_test)^2)
print(mse)

## [1] 223.9655

# Root Mean Squared Error
nnr2_rmse = sqrt(mean((prev_nnar2$mean - power_test)^2))
print(nnr2_rmse)
## [1] 14.96548
```

Fit manually another model and forecast

```
#2nd attempt
fit3_nnar = nnetar(
  power_train,
  p = 15,
  P = 3,
  size = 15,
  repeats = 10,
  lambda = "auto",
    xreg = train_data$Temp_C
)
```

Make forecast based on test set and check quality of the model.

```
# Make forecasts
prev_nnar3 = forecast(fit3_nnar, xreg = test_data$Temp_C, h = length(power_test))

# Evaluate model performance on adjusted test data
mse = mean((prev_nnar3$mean - power_test)^2)
print(mse)

## [1] 379.552

# Root Mean Squared Error
nnr3_rmse = sqrt(mean((prev_nnar3$mean - power_test)^2))
print(nnr3_rmse)

## [1] 19.48209
```

From the RMSE of the three NN models I can see that the 2nd attempt (nnr2) is the best one. I will use it to forecast the power consumption on the 21st February.

Plot the best NN model with the test data

Forecats Vs Actuals

Prepare to Forecast the Power kw of the 21st February

```
# I need to create a new ts object with the complete dataset
#set up the start and end dates for the complete dataset until 20th feb
start = as.POSIXct("2010-01-01 01:15:00", tz = "UTC")
end = as.POSIXct("2010-02-20 23:45:00", tz = "UTC")

#create complete datasets until 20 feb 2010
complete_data = elec %>% filter(Timestamp >= start & Timestamp <= end)

#create time series objects (without temperature)
frequency = 96  # 96 intervals per day (15-minute intervals)
power_complete = ts(complete_data$Power_kW, start = c(1, 6), frequency = frequency)

#then I create a ts for the complete temperature
temp_next = ts(complete_data$Temp_C, start = c(1, 6), frequency = frequency)

#extract the relevant temperature series for the next 96 time points
temp_forecast = tail(complete_data$Temp_C, 96)  # Extract last 96 temperature observations

#I create a ts object for the temperature of the 21 Feb
temp_forecast_ts = ts(temp_forecast, frequency = 96)</pre>
```

Train the model using the complete dataset

```
#I train the model using complete power and temperature data (until 20 Feb 2010)
naar_complete = nnetar(
  power_complete,
  p = 15,
  P = 1,
  size = 15,
  repeats = 10,
  lambda = "auto",
  xreg = complete_data$Temp_C
```

Forecast the next day: 21st February

```
#forecast the next 96 time points
nnar_next = forecast(naar_complete, h = 96, xreg = temp_forecast_ts)
```

Plot the Forecast together with the complete dataset

```
# Plot the complete data and forecast
autoplot(power_complete) +
   autolayer(nnar_next$mean, series = "Forecast of 21st Feb with Neural Network", color = "red") +
   ggtitle("Forecats in red the Power_kw demanded on 21st February 2010") +
   ylab("Power (kW)") +
   xlab("Time")
```

Forecats in red the Power_kw demanded on 21st February 2010

Eventually print the Forecast results

print(nnar_next)

```
##
          Point Forecast
## 52.000
                145.6907
## 52.010
                150.4935
## 52.021
                147.6592
## 52.031
                152.8594
## 52.042
                152.2445
## 52.052
                150.9902
## 52.062
                144.7835
## 52.073
                147.1291
## 52.083
                152.3461
## 52.094
                151.2604
## 52.104
                151.0461
## 52.115
                150.4351
## 52.125
                150.3203
## 52.135
                149.5579
## 52.146
                151.2756
## 52.156
                153.8665
## 52.167
                154.9969
## 52.177
                154.3688
```

##	52.188	154.6456
##	52.198	156.0038
##		157.0506
##		156.8542
##	52.229	157.2407
##	52.240	157.5332
##	52.250	157.7289
##		159.3751
##		169.2357
##		168.8449
##		167.4386
##	52.302	166.7923
##	52.312	166.6251
##	52.323	167.9958
##		168.6610
##		240.1823
##		242.4280
##	52.365	238.1170
##	52.375	238.9614
##	52.385	241.2206
##	52.396	238.0453
	52.406	236.9842
	52.417	238.8281
	52.427	236.9497
##	52.438	238.2555
##	52.448	237.7421
##	52.458	239.3256
##	52.469	240.3811
	52.479	240.1133
	52.490	239.8259
	52.500	241.0943
	52.510	242.2076
##	52.521	242.0155
##	52.531	244.1660
##	52.542	245.3850
	52.552	245.4353
	52.562	247.6843
##		246.2365
##		244.5160
##	52.594	244.7483
##	52.604	244.3141
##	52.615	244.5518
##	52.625	246.4486
	52.635	245.1013
	52.646	245.6720
	52.656	244.0176
##	52.667	242.6935
##	52.677	240.7766
##	52.688	239.0332
##	52.698	236.4584
##		235.9669
		237.5633
##		
##		236.0683
##	52.740	242.4798

```
## 52.750
                275.3447
## 52.760
                296.3020
## 52.771
                298.3884
## 52.781
                294.5101
## 52.792
                293.0158
                294.3916
## 52.802
## 52.812
                293.4311
## 52.823
                293.7605
## 52.833
                295.4606
## 52.844
                293.1883
## 52.854
                291.1890
## 52.865
                291.3834
## 52.875
                291.2492
## 52.885
                290.6722
## 52.896
                290.5390
## 52.906
                289.1686
## 52.917
                283.4425
## 52.927
                277.1372
## 52.938
                275.7809
## 52.948
                272.4689
## 52.958
                266.4824
## 52.969
                218.2557
## 52.979
                197.9135
## 52.990
                167.6409
```

Export the results in excel

```
#correctly convert forecast power to a data frame
forecast_nnr = as.data.frame(nnar_next)
#extracting just the forecast points
point_forecast_nnr = forecast_nnr[["Point Forecast"]]
#create columns that I will use as 1st column in excel file
nnr_forecast_withtemp = as.data.frame(point_forecast_nnr)

#rename the columns to more descriptive names
colnames(nnr_forecast_withtemp) = c("NNR_With_Temperature")
#save the data frames to an Excel file
write_xlsx(nnr_forecast_withtemp, path = "C:/Users/Utilisateur/OneDrive/Desktop/Romeo_Lorena_NNR_second
```