Exercice 1

Soit f une fonction définie sur un intervalle I et à valeurs dans $\mathbb R$. Déterminer la signification des assertions suivantes, puis nier ces assertions :

- 1. $\forall x \in I, f(x) \neq 0$;
- 2. $\forall y \in \mathbb{R}, \exists x \in I, f(x) = y;$
- 3. $\exists y \in \mathbb{R}, \forall x \in I, f(x) = y;$
- 4. $\forall x, y \in I, (x < y) \Rightarrow (f(x) < f(y));$
- 5. $\exists M \in \mathbb{R}, \forall x \in I, f(x) \leq M$;
- 6. $\forall M \in \mathbb{R}, \exists x \in I, f(x) \leq M$.

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels.

Traduire formellement les assertions suivantes :

- 1. $(u_n)_{n\in\mathbb{N}}$ est une suite croissante;
- 2. $(u_n)_{n\in\mathbb{N}}$ s'annule au moins une fois;
- 3. $(u_n)_{n\in\mathbb{N}}$ s'annule une infinité de fois;
- 4. $(u_n)_{n\in\mathbb{N}}$ est la suite nulle;
- 5. $(u_n)_{n\in\mathbb{N}}$ est une suite majorée;
- 6. $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique.

Exercice 3

Soit $f:E\to F$ une application. Dans chaque cas, donner la différence de sens entre les deux assertions proposées :

- 1. $\forall x \in E, \exists y \in F, y = f(x)$ et $\exists y \in F, \forall x \in E, y = f(x)$.
- 2. $\forall y \in F, \exists x \in E, y = f(x)$ et $\exists x \in E, \forall y \in F, y = f(x)$.
- 3. Soit $\mathcal{P}(x,y)$ un prédicat dépendant dun couple (x,y) élément de $E \times F$. Laquelle des deux assertions suivantes entraı̂ne l'autre?

$$\exists x \in E, \ \forall y \in F, \ \mathcal{P}(x,y)$$

 et

$$\forall y \in F, \exists x \in E, \mathcal{P}(x, y).$$

Pourquoi ne sont-elles généralement pas équivalentes?

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{R}$ une application. Écrire les négations des phrases quantifiées suivantes :

- 1. $\exists M \in \mathbb{R}, (\forall x \in \mathbb{R}, f(x) \ge M)$ ou $(\forall x \in \mathbb{R}, f(x) \le M)$.
- 2. $\forall x \in \mathbb{R}, f(x) \ge 0 \Rightarrow x \ge 0$.
- 3. $\forall (x,y) \in \mathbb{R}^2, x \leqslant y \Rightarrow f(x) \leqslant f(y)$.
- 4. $\forall a \in \mathbb{R}, \forall \epsilon > 0, \exists \alpha > 0, \forall x \in \mathbb{R}, |x a| \leq \alpha \Rightarrow |f(x) f(a)| \leq \epsilon.$

Exercice 5 Soit $f: \mathbb{R} \to \mathbb{R}$ une application. Signifier à l'aide de phrases quantifiées les affirmations suivantes :

- 1. La fonction f est la fonction nulle.
- 2. La fonction f s'annule.
- 3. La fonction f ne s'annule que sur \mathbb{R}_+ .
- 4. La fonction f s'annule au plus une fois.

Exercice 6

1. Soit $a \in \mathbb{R}$. Établir l'implication :

$$(\forall \epsilon \geqslant 0, \quad |a| \le \epsilon) \Rightarrow a = 0.$$

2. Soit $a \in \mathbb{R}$. Établir l'implication :

$$(\forall \epsilon > 0, \quad |a| \le \epsilon) \Rightarrow a = 0.$$

3. Soient x et y deux réels. Établir l'équivalence :

$$x^2 + y^2 = 0 \Leftrightarrow x = 0 \text{ et } y = 0.$$

Exercice 7

1. Montrer l'assertion

$$\forall x \in \mathbb{R}_+, \quad (x+1=\sqrt{x}) \Rightarrow (x^2+x+1=0).$$

2. En déduire l'assertion

$$\forall x \in \mathbb{R}_+, \quad (x^2 + x + 1 \neq 0) \Rightarrow (x + 1 \neq \sqrt{x}).$$

3. Prouver que l'assertion

$$\exists x \in \mathbb{R}_+, \quad x+1=\sqrt{x} \text{ est fausse.}$$

Exercice 8 Soit E et F deux ensembles. Écrire une assertion mathématique n'utilisant que le symbole " \notin " et traduisant que F n'est pas inclus dans E.

Exercice 9

Écrire une assertion permettant d'exprimer que $E \neq F$.

Exercice 10

Soit E un ensemble, A, B, $C \in \mathcal{P}(E)$. On note

$$X = (A \cap B) \cup (B \cap C) \cup (C \cap A), \ Y = (A \cup B) \cap (B \cup C) \cap (C \cup A).$$

Montrer que :

$$X = Y$$
.

Exercice 11 Existence d'un point fixe pour une application croissante de $\mathcal{P}(E)$ dans $\mathcal{P}(E)$ Soient E un ensemble, $f:\mathcal{P}(E)\to\mathcal{P}(E)$ une application croissante pour l'inclusion, c'est-à-dire telle que :

$$\forall A, B \in \mathcal{P}(E), \quad (A \subseteq B \Rightarrow f(A) \subseteq f(B)).$$

Montrer que f admet au moins un point fixe, c'est-à-dire qu'il existe $X \in \mathcal{P}(E)$ tel que f(X) = X.

Exercice 12

Soit A, B et C trois parties d'un ensemble E.

- 1. Montrer que $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 2. On suppose $A \cap B \subseteq A \cap C$ et $A \cup B \subseteq A \cup C$. Montrer $B \subseteq C$.
- 3. On suppose $A \setminus B = C$. Montrer $A \cup B = B \cup C$.
- 4. On suppose $A \cap B = B \cap C = C \cap A$ et $A \cup B = B \cup C = C \cup A$. Montrer que les trois ensembles A, B et C sont égaux.

Exercice 13

Soit A et B des parties de E. Discuter et résoudre l'équation $A \cup X = B$ d'inconnue $X \in \mathcal{P}(E)$.

Exercice 14 Différence symétrique

Soient A, B et C des ensembles. On définit la différence symétrique de A et B, notée $A\Delta B$ comme l'ensemble des éléments qui appartiennent soit à A, soit à B, mais pas à $A\cap B$. On a donc

$$A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

Montrer les propriétés suivantes :

- 1. $A\Delta B = B\Delta A$ (commutativité).
- 2. $A\Delta(B\Delta C) = (A\Delta B)\Delta C$ (associativité).
- 3. Si $A\Delta B = A\Delta C$ alors B = C (régularité).
- 4. $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$ (distributivité de $\cap par\ rapport\ \grave{a}\ \Delta$).

Exercice 15

- 1. Soit $x \in \mathbb{R}$. On suppose que $x < \epsilon$ pour tout $\epsilon > 0$. Montrer que $x \le 0$.
- 2. Simplifier les ensembles

$$\bigcup_{n\in\mathbb{N}^*} \left[\frac{1}{n}, n\right] \quad \text{et} \quad \bigcap_{n\in\mathbb{N}^*} \left] -\frac{1}{n}, 1\right].$$

Exercice 16 Soient a et b deux réels tels que b-a>2. Déterminer

$$A = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n} \right] \quad \text{et} \quad B = \bigcap_{n=1}^{\infty} \left[a - \frac{1}{n}, b + \frac{1}{n} \right].$$

Exercice 17

On considère A et B des parties de \mathbb{R}^2 définies par

$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x - y = 1\}$$

et

$$B = \{(t+1, 4t+3) \mid t \in \mathbb{R}\}.$$

Montrer que A = B.

Exercice 18

Soit Ω un ensemble; pour toutes parties A,B de Ω , on définit $A*B = \overline{A} \cap \overline{B}$ où \overline{A} et \overline{B} désignent respectivement les complémentaires de A et B dans Ω .

Montrer que \overline{A} , $A \cup B$, $A \cap B$ s'expriment en utilisant le seul symbole *.

Exercice 19 Soient E un ensemble, $A,B,C\in\mathcal{P}(E)$. Montrer :

$$A \cup B = A \cup C \iff A \cup \overline{B} = A \cup \overline{C},$$

où on a noté \overline{B} (resp. \overline{C}) le complémentaire de B (resp. C) dans E.

Exercice 20 Montrer, par disjonction des cas, que l'équation :

$$5x^3 + 11y^3 + 13z^3 = 0,$$

n'admet dans \mathbb{Z}^3 que la solution (0,0,0).

Exercice 21

Montrer qu'il existe une infinité de nombres premiers de la forme 4n-1 (resp. 6n-1).

Exercice 22 On pose $a_0 = 1$, $a_1 = 1$ et :

$$\forall n \ge 0, \quad a_{n+2} = a_{n+1} + (n+1)a_n.$$

Montrer par récurrence double que :

$$\forall n \ge 0, \quad \frac{a_n}{n!} \le 1.$$

Exercice 23 Montrer, à l'aide d'un raisonnement par récurrence forte, que tout entier $n \geq 2$ s'écrit comme produit de nombres premiers :

$$n = p_1 \times p_2 \times \cdots \times p_k, \quad p_1, p_2, \dots, p_k$$
 premiers.

Exercice 24

Montrer que pour tout $n \ge 3$, il existe des entiers $a_1, \ldots, a_n \in \mathbb{N}^*$ pour lesquels $a_1 < \cdots < a_n$ et

$$\sum_{k=1}^{n} \frac{1}{a_k} = 1.$$

Exercice 25

On admet l'inégalité triangulaire :

$$\forall (x,y) \in \mathbb{R}^2, \quad |x+y| \le |x| + |y|.$$

Montrer l'inégalité triangulaire généralisée : $\forall n \in \mathbb{N}^*, \forall (x_1, \dots, x_n) \in \mathbb{R}^n,$

$$|x_1 + \dots + x_n| \le |x_1| + \dots + |x_n|$$
.

Exercice 26

Déterminer l'ensemble des fonctions $f:\mathbb{R}\to\mathbb{R}$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x) \cdot f(y) - f(xy) = x + y.$$

Exercice 27 Soit a, b, c et d quatre réels donnés. Montrer que si le système

$$\begin{cases} ax + by = 0\\ cx + dy = 0 \end{cases}$$

possède un couple solution différent de (0,0), alors on a ad-bc=0.

Exercice 28 Montrer par l'absurde que $\sqrt{2}$ est un irrationnel

Indication : Commencer par supposer que $\sqrt{2}$ est un rationnel, c'est-à-dire qu'il existe deux entiers r et s, que l'on peut supposer non tous les deux pairs, tels que $\sqrt{2} = r/s$.

Exercice 29

Démontrer que $\sqrt{3} \notin \mathbb{Q}$.

Exercice 30

Soit f une application de \mathbb{R} dans \mathbb{R} vérifiant : $\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad \forall z \in \mathbb{R}$

$$(x \neq y \text{ et } x \neq z) \Rightarrow \left(\frac{f(x) - f(y)}{x - y} = \frac{f(x) - f(z)}{x - z}\right).$$

Montrer l'assertion

$$\exists (a,b) \in \mathbb{R}^2 \quad \forall x \in \mathbb{R} \quad f(x) = ax + b.$$

Approche: il faut prouver une existence et donc construire un a et un b.

Exercice 31 Soit f une application de \mathbb{R} dans \mathbb{R} . Montrer qu'il existe un unique couple (f_1, f_2) tel que l'on ait $f = f_1 + f_2$ avec f_1 (resp. f_2) fonction impaire (resp. paire) de \mathbb{R} dans \mathbb{R} .

Indication : commencer par l'unicité, ou mieux par une phase d'analyse supposant le problème résolu, et donnant alors la seule expression possible de f_1 et f_2 en fonction de f. Ensuite, prouver l'existence.

Exercice 32 Montrer que pour tout $x \in [0,1]$ et pour tout $n \in \mathbb{N}$:

$$1 - nx \le (1 - x)^n \le \frac{1}{1 + nx}.$$

Exercice 33

1. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables pour lesquelles, pour tous $x, y \in \mathbb{R}$:

$$f(x+y) = f(x) + f(y).$$

2. Déterminer toutes les fonctions $f: \mathbb{N} \to \mathbb{N}$ pour lesquelles pour tout $m, n \in \mathbb{N}$:

$$f(m+n) = f(m)f(n).$$

3. Déterminer toutes les fonctions $f: \mathbb{Z} \to \mathbb{R}$ pour lesquelles pour tout $m, n \in \mathbb{Z}$:

$$f(m+n) + f(m-n) = 2f(m) + 2f(n).$$

4. Déterminer toutes les isométries de \mathbb{R} , i.e. les fonctions $f: \mathbb{R} \to \mathbb{R}$ pour lesquelles pour tous $x, y \in \mathbb{R}$:

$$|f(x) - f(y)| = |x - y|.$$

Exercice 34

Soit $\mathcal{P}(n)$ un prédicat portant sur un entier $n \geq 2$. On suppose :

- $--\mathcal{P}(2)$;
- $--\forall n \geq 2, \mathcal{P}(n) \Rightarrow \mathcal{P}(2n);$
- $--\forall n \geq 3, \mathcal{P}(n) \Rightarrow \mathcal{P}(n-1).$

Montrer que $\forall n \geq 2, \mathcal{P}(n)$.

Exercice 35

En utilisant le mode de raisonnement par récurrence décrit dans l'exercice précédent, montrer que

$$\forall n \geq 2, \forall x_1, \dots, x_n \geq 0, \quad \sqrt[n]{x_1 \cdot \dots \cdot x_n} \leq \frac{x_1 + \dots + x_n}{n}.$$

Exercice 36

On définit la suite de Fibonacci $(F_n)_{n\geq 1}$ par récurrence :

$$F_1 = F_2 = 1$$
 et $\forall n \ge 1$, $F_{n+2} = F_n + F_{n+1}$.

- 1. Montrer que $\forall n \geq 2, \forall m \geq 1,$ $F_{n+m} = F_{n-1}F_m + F_nF_{m+1}.$
- 2. Montrer que $\forall n \geq 2$, $F_n^2 = F_{n-1}F_{n+1} + (-1)^{n+1}$.
- 3. Montrer que, pour tout $n \ge 1$:

$$F_1F_2 + F_2F_3 + \dots + F_{2n-1}F_{2n} = F_{2n}^2$$

et

$$F_1F_2 + F_2F_3 + \dots + F_{2n-1}F_2n + 1 = F_{2n+1} - 1.$$