深度学习基础

现有一个卷积神经网络,网络各层设置如下表第一列所示。请写出每层对应的输出数据维度以及各层参数量。数据维度请按 H×W×C 格式填写,其中 H,W,C 分别为数据的高、宽、通道数。如无特别说明,CONV 和 FC 层均有 bias。

- 符号说明:
- CONV k-N 表示卷积核大小为 k×k, 卷积核个数为 N 的卷积层, padding 为 1, stride 为 1;
- POOL-n 表示 n×n 的 max-pooling 层, stride 为 n, padding 为 0;
- FC-N 表示全连接层,输出维度为 N。

网络层	数据维度	参数量
		包括 weights 和 biases
输入	$28 \times 28 \times 3$	0
CONV3-16	$28 \times 28 \times 16$	448
Leaky ReLU	28 × 28 × 16	0
POOL-2	14 × 14 × 16	0
CONV3-32	$14 \times 14 \times 32$	4640
Leaky ReLU	$14 \times 14 \times 32$	0
POOL-2	$7 \times 7 \times 32$	0
FLATTEN	1568	0
FC-10	10	15690

计算过程(设在计算过程中 padding = p, stride = s)

1.CONV3-16

数据维度: kernel size = 3×3 ,则 k = 3; H = W = 28, C = 3, s = 1, p = 1

输出的数据维度的高为
$$\frac{H+2p-k}{s}+1=28$$

输出的数据维度的宽为
$$\frac{W+2p-k}{s}+1=28$$

输出的数据维度的通道数为 N = 16

最后结果为 28×28×16

参数量: 卷积核大小为 $\mathbf{k} \times \mathbf{k} \times \mathbf{C} = 27$, 卷积核的数量等于输出通道数为 16, 加上 bias; 可以得到公式参数量为($C_{in} \times \mathbf{k} \times \mathbf{k} + 1$) × $C_{out} = 448$ 。

2.Leaky ReLU

数据维度: Leaky ReLU 函数的表达式如下:

$$L(x) = \begin{cases} x, x >= 0 \\ ax, x < 0 \end{cases}$$
 (其中a是一个小正数)

只对数值进行改变,不改变它的数据维度,故为28×28×16

参数量: Leaky ReLU 一般不需要参数,所以参数量为 0

3.POOL-2

数据维度: kernel size = 2×2 ,则 k = 2; H = W = 28, C = 16, s = 2, p = 0

输出的数据维度的高为
$$\frac{H+2p-k}{s}+1=14$$

输出的数据维度的宽为
$$\frac{W+2p-k}{s}+1=14$$

输出的数据维度的通道数为 C = 16

最后结果为 14×14×16

参数量: POOL-n 一般不需要参数, 所以参数量为 0

4.CONV3-32

数据维度: kernel size = 3×3 ,则 k = 3; H = W = 14, C = 16, p = 1, s = 1

输出的数据维度的高为 $\frac{H+2p-k}{s}+1=14$

输出的数据维度的宽为 $\frac{W+2p-k}{s}+1=14$

输出的数据维度的通道数为 N = 32

最后结果为 14×14×32

参数量: 卷积核大小为 $\mathbf{k} \times \mathbf{k} \times \mathbf{C} = 144$, 卷积核的数量等于输出通道数为 32,加上 bias;

可以得到公式参数量为 $(C_{in} \times k \times k + 1) \times C_{out} = 4640$ 。

5.Leaky ReLU

数据维度: Leaky ReLU 函数的表达式如下:

$$L(x) = \begin{cases} x, x >= 0 \\ ax, x < 0 \end{cases} (其中a是一个小正数)$$

只对数值进行改变,不改变它的数据维度,故为14×14×32

参数量: Leaky ReLU 一般不需要参数, 所以参数量为 0

6.POOL-2

数据维度: kernel size = 2 × 2,则 k = 2; H = W = 14, C = 32, s = 2, p = 0

输出的数据维度的高为 $\frac{H+2p-k}{s}+1=7$

输出的数据维度的宽为 $\frac{W+2p-k}{s}+1=7$

输出的数据维度的通道数为 C = 32

最后结果为7×7×32

参数量: POOL-n 一般不需要参数, 所以参数量为 0

7.FLATTEN

数据维度: 将三维的数据降为一维的数据,数据维度为 7×7×32 = 1568

参数量: 该步骤不需要参数,所以参数量为0

8.FC-10

数据维度: FC-N 表示全连接层,输出维度为 N; FC-10 输出的数据维度为 10 **参数量:** 全连接的参数量等于神经元数× N + N, 故为 1568 × 10 + 10 = 15690