We say Ri, Ri' ER agnée on {a,b} if for agent i aPib (aPib

bPia & bPia alib \$ alib

we denote this by $R_i|_{a,b} = R_i|_{a,b}$

if this holds for every agent, $R|_{a,b} = R'|_{a,b}$.

Defn (F satisfies IIA if $\forall a,b \in A$, $\forall x \in A$).

$$\left[R \Big|_{a,b} = R' \Big|_{a,b} \right] \Rightarrow \left[F(R) \Big|_{a,b} = F(R') \Big|_{a,b} \right]$$

if the relative positions of two alternatives are same in two different preference profiles - The outputs must have also be same profesence nelative positions.

Physality: $S_1 = 1$, $S_2 = ... \neq S_m = 0$

Does phrality satisfy IIA?

R	R'	a F(R) b
a a c d b c b c	de b b a a c a	b F ^{P(} (R') α
c b a b d d d a	b b a d c d d C	$R _{a,b} = R' _{a,b}$
	12.	10,6

does dictatorship satisfy 11A?

Theorem (Awrow 1957) Assume IAI 7,3, If an ASWF F satisfies WP and IIA, it must be dictatorial.

(7-2)

Proof: Part 1: Field Expansion Lemma

-if a group is decisive over over a pair of alternatives, it is decisive over all pairs of alternatives

Part 2: Group Contraction Lemma

-if a group is decisive, There is a strict subset

of that group is also decisive.

Defn: Let $F: \mathbb{R}^m \to \mathbb{R}$ be given, satisfie $G \subseteq \mathbb{N}$, $G \neq \emptyset$

(1) G is almost decisive over $\{a,b\}$ by $\{a,b\}$ by $\{a,b\}$ by $\{a,b\}$ by $\{a,b\}$ by $\{a,b\}$ $\{a,b\}$ by $\{a,b$

D_G(a,b): G is almost decisive over {a,b} w.n.t. F.

2) G is decisive over $\{a,b\}$ if $[a P_i b \ \forall i \in G] \Rightarrow [a \hat{F}(R)b]$ $D_G(a,b) : G is decisive over \{a,b\} \text{ w.n.t. } F$ Clearly, $D_G(a,b) \Rightarrow D_G(a,b)$

Observe: It a group G is decisive (at nesp almost) decisive over {a,b} for some profile, it is decisive over {a,b} for every profile. (11A)

these notions are equivalent under WP and 11A F.

(17 -3)

Field Expansion Lemma

Let F satisfy WP and IIA, Then $\forall a,b,x,y$, $G \neq \phi$, $G \subseteq N$. $D_G(a,b) \Rightarrow D_G(x,y)$.

Prior : Cases to consider

$$(3) \quad \bar{\mathcal{D}}_{G}(\alpha,b) \Rightarrow \mathcal{D}_{G}(\alpha,\gamma)$$

$$x \neq a, b, y \neq a, b$$

$$(4) \quad \overline{D}_{G}(a,b) \Rightarrow D_{G}(\alpha,a)$$

(6)
$$\overline{D}_{\mathcal{G}}(a,b) \Rightarrow D_{\mathcal{G}}(a,b)$$

$$\overline{\mathcal{F}}$$
 $\overline{\mathcal{D}}_{\mathcal{G}}(a,b) \Rightarrow \mathcal{D}_{\mathcal{G}}(b,a)$

(ase(): Given $\overline{D}_{G}(a,b)$, wed to show $D_{G}(a,y)$

i.e. pick arbitnary $R \in \mathbb{R}^n$ s.t. $a \not\models_i y \forall i \in G$ need to prove $a \hat{F}(R) y$.

Construct R'

$$\frac{G}{a} = \frac{N G}{b}$$

ensure
$$R_i^{\prime}|_{a,y} = R_i|_{a,y} \forall i \in N$$
.

$$\overline{D}_{G}(a,b) \Rightarrow a \hat{F}(R') b ?$$

WP over b, $y \Rightarrow b\hat{f}(R')y$ thankitivity $a\hat{f}(R')y$

$$\Rightarrow a f(R) y$$

$$\Rightarrow a f(R) y$$

$$\Rightarrow a f(R) y$$

(17-4)
Case 2: Given $D_G(a,b)$, need to show $D_G(x,b)$ Pick R A.t. 2Pib HiEG need to show $z \hat{F}(R) b$ R' = R 2.60 $R_i'|_{x,b} = R_i|_{x,b}$ $D_{G}(a,b) \Rightarrow a\hat{F}(R')b$ WP $\alpha, \alpha \Rightarrow \alpha + (R') \alpha$ Thousitivity 2 F(R') b \uparrow $\chi \hat{f}(R) b$. (3) $\overline{D}_{G}(a,b) \Rightarrow D_{G}(a,\gamma)$ case (1) $\gamma \neq a,b$ =) Dc (a,y) definition \Rightarrow DG(2, y) case 2 (4) $D_{G}(a,b) \rightarrow D_{G}(x,b)$ case 2 $a \neq a,b$ $\rightarrow \overline{\mathcal{D}}_{G}(\alpha,b)$ \Rightarrow $\mathcal{D}_{\mathsf{G}}(\mathsf{x},\mathsf{a})$ case (1) $\bar{D}_{G}(a,b) \Rightarrow D_{G}(a,y)$ case $\bar{D}_{G}(a,b)$

 $\begin{array}{cccc}
& \Rightarrow & \overline{D}_{G}(a, y) \\
& \Rightarrow & \overline{D}_{G}(b, y) & \text{case } (2) \\
& \overline{D}_{G}(a, b) \Rightarrow \overline{D}_{G}(a, b) \Rightarrow \overline{D}_{G}(b, y) \\
& \xrightarrow{2 \neq a, b} & \xrightarrow$