Symmetric and Andisymmetric Fire filters of 2f hun represents the impulse response of a DT Aller, a necessary and sufficient condition fe linear thouse to that him must have O A finite decration N (0 to N-1) and @ 28 either symmetric or Andi symmetric about its le hon= h(N-1-n); n=0,1,...N-1 han=-h(N-1-n); n=0,1, ... N-1 O Freq. response of FIR Alter when hum is Symmetric and N is even with contre of symmetry at NT at NT The centre of symmetry lies blw N-1 (centre or 2) Symmetry we know that the free, verp. Hie'm is 12-1 and 1/2 We know that the freq. resp. $H(e^{i\omega})$ is $\frac{1}{2}$ (contraction of the contraction of

Hier =
$$\frac{1}{N}$$
 a hon $\cos\left(\omega\left(\frac{NZ}{N}\right)\right)$ for $\frac{1}{N}$ and $\frac{1}{N}$ for $\frac{1}{N}$

Ever Noded, the sould point of the antisymmetric hund is $n = \frac{N-1}{2}$ and consequently h(N-1) = 0if h(N-1) = eThe sould some h(N-1) = 0The sould some h(N-1) = 0

fer Never, each term in hin has a matching term of opposite sign

Helw = $= \frac{i}{2}\omega(N\pm1)\int_{-\infty}^{\infty} \frac{N-1}{2} dh(n) \cdot Sin(\omega(n-N\pm1)) \int_{-\infty}^{\infty} \frac{N-1}{2} dh(n) \cdot Sin(\omega(n-N\pm1)) \cdot Sin(\omega(n-N\pm1)$