MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav matematiky a statistiky

Diplomová práce

BRNO 2025

Tomáš Petit

M A S A R Y K O V A U N I V E R Z I T A

PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY

Topological data analysis

Diplomová práce

Tomáš Petit

Vedoucí práce: prof. RNDr. Jan Slovák, DrSc. Brno 2025

Bibliografický záznam

Autor: Bc. Tomáš Petit

Přírodovědecká fakulta, Masarykova univerzita

Ústav matematiky a statistiky

Název práce: Topological data analysis

Studijní program: Matematika

Studijní obor: Matematika

Vedoucí práce: prof. RNDr. Jan Slovák, DrSc.

Akademický rok: 2024/2025

Počet stran: ?? + ??

Klíčová slova: Topologie; Algebraická Topologie; Homologie; Persis-

tentní Homologie; Topologická analýza dat; TDA; Topo-

logické Metody

Bibliographic Entry

Author: Bc. Tomáš Petit

Faculty of Science, Masaryk University Department of mathematics and statistics

Title of Thesis: Topological data analysis

Degree Programme: Mathematics

Field of Study: Mathematics

Supervisor: prof. RNDr. Jan Slovák, DrSc.

Academic Year: 2024/2025

Number of Pages: ?? + ??

Keywords: Topology; Algebraic Topology; Homology; Persistent

Homology; Topological data analysis; TDA; Topologi-

cal Methods

Abstrakt

 ${\bf V}$ této bakalářské/diplomové/rigorózní práci se věnujeme ...

Abstract

In this thesis we study ...

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA

KOTLÁŘSKÁ 2, 611 37 BRNO

IČ: 00216224 DIČ: CZ00216224

ZADÁNÍ DIPLOMOVÉ PRÁCE

Akademický rok: 2024/2025

Ústav:	Přírodovědecká fakulta
Student:	Bc. Tomáš Petit
Program:	Matematika
Specializace:	Matematika

Ředitel ústavu PřF MU Vám ve smyslu Studijního a zkušebního řádu MU určuje diplomovou práci s názvem:

Název práce:	Topological data analysis
Název práce anglicky:	Topological data analysis
Jazyk závěrečné práce:	angličtina

Oficiální zadání:

Goal: The goal is to understand the concepts and tools of Topological Data Analysis, and to be ready to use them in practical tasks. Aim: Depending on the results of the initial period, the student will either focus on theoretical understanding and original research in Mathematics and Statistics, or the focus will be on smart use of advanced tools in solving practical problems, including the implementation issues. One of the resources for real data requiring sophisticated analysis will come form the project Machine Learning in Nanomaterial Biocompatibility Assessment (MUNI/G/1125/2022).

Literatura: RAÚL RABADÁN, ANDREW J. BLUMBERG, Topological Data Analysis for Genomics and Evolution, Cambridge University Press, 2020, DOI: 10.1017/9781316671665

Vedoucí práce:	prof. RNDr. Jan Slovák, DrSc.
Datum zadání práce:	20. 9. 2023
V Brně dne:	25. 7. 2024

Zadání bylo schváleno prostřednictvím IS MU.

Bc. Tomáš Petit, 16. 10. 2023 prof. RNDr. Jan Slovák, DrSc., 17. 10. 2023 RNDr. Jan Vondra, Ph.D., 18. 10. 2023

Poděkování

TodeRovalli	
Na tomto místě bych chtěl(-a) poděkovat	
Prohlášení	
Prohlašuji, že jsem svoji bakalářskou/diplomovou pr pod vedením vedoucího práce s využitím informačních citovány.	
Prohlašuji, že jsem svoji rigorózní práci vypracoval(informačních zdrojů, které jsou v práci citovány.	-a) samostatně s využitím
Brno xx. měsíce 20xx .	Tomáš Petit

Contents

List of used notation	xv
Introduction	1
Kapitola 1. Why Topology?	3
Kapitola 2. Simplicial Complexes and Homology	7
2.1 Simplicial complexes	
2.2 Nerves, Čech and Rips complexes	9
Summary	11
Appendix A	13
Bibliography and sources	15

List of used notation

Pro snažší orientaci v textu zde čtenáři předkládáme přehled základního značení, které se v celé práci vyskytuje.

- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- \mathbb{C} množina všech komplexních čísel
- R množina všech reálných čísel
- \mathbb{Z} množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- ${\mathbb C}$ množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- \mathbb{Z} množina všech celých čísel

Introduction

To add later.

Chapter 1

Why Topology?

Data has shape. This is hardly a new or revolutionary idea in the realm of data analysis and statistics. It is an assumption that we make all the time, even if we do not say it out loud. Whenever one tries to construct a linear regression model, we all have the mental image of a straight line in our minds, which should roughly approximate the data. This is then generalized via hyperplanes in higher dimensions.

Another example would be periodic time series or signals – we all expect to see a "loop" of some sort, given a long enough time interval between the measurements, see for example 1.1. It isn't much of a stretch to imagine that we could use this loop to try to approximate the period of the time series (something that we will actually do in the following chapters, after introducing the necessary mechanisms).

Figure 1.1: Example plot of seasonal temperature changes in Seattle throughout the years.

Clustering algorithms – be it k-means, hierarchical clustering and so on – all work with the shape and geometry of our data explicitly by partitioning the

available search space into the distinct clusters, once a measure of distance (which doesn't need to be a metric, per se) is chosen. The list could go on, but I believe the point was already made. Historically and traditionally, an appropriate analytic model was derived and constructed for each of the above-mentioned methods with a rich theoretical background to justify the results.

While this approach works for most simple cases the average data analyst will encounter on an Excel spreadsheet, thanks to the advancements made in computing power and software engineering, we're collecting massive amounts of complicated, high-dimensional data living faster than we did before, especially in the fields of biology and medical sciences.

Figure 1.2: Time-scaled phylogenetic tree of H3 influenza viruses inferred by BEAST using molecular clock model.

A good example of that would be phylogenetic and evolutionary trees, like the one in 1.2. We might be interested to know whether any mutation occurred, where did they happen and how far were they transmitted down the tree. We might look for re-combinations of the genomic material or both horizontal and vertical transfer of it. All those questions pertain to the shape of the phylogenetic tree and its branching. ¹

The situation only gets more complex with each passing day and batch of collected data. One *could* try to develop analytical models for each case, provide the rigorous theory and obtain the conclusions that they seek. But a far more reasonable and general method would be to instead study the shape itself and approximate the datasets by selecting the shape that describes it the "best". This is

¹Data downloaded from the following link, visited on the 01.08.2024

where topology comes into play, as this gives us the tools and theory to do exactly that, with the help of algebraic topology.

Algebraic topology will help us to qualitatively distinguish the two situations in 1.3, where even on an intuitive level we can see that the difference lies in the number of "blobs" in each figure; or more rigorously in the number of connected components.

Figure 1.3: Counting the number of blobs in each figure.

Likewise, using the already established machinery, we will be able to describe and quantify the fact that in 1.4 there is a hole in the middle of it.

Figure 1.4: Data sampled from a unit circle characterized by the distinct hole in the middle.

Both of these can be thought of as counting n-dimensional holes: connected components being of dimension 0, while the hole in 1.4 is a 1-dimensional one. We will see how this approach and its extension will be the foundation of what we call TDA – Topological Data Analysis.

Chapter 2

Simplicial Complexes and Homology

The goal of this and the following chapters is to establish and set up the pipeline for extracting the algebraic invariants of our data. Usually, we can only work with sampled and discrete data coming from some set of measurements. As such, we can't directly use methods of algebraic topology, since we won't typically be working with discrete topological spaces and to properly use these methods, we would need an uncountable amount of data; something that isn't feasible from a computational point of view.

This forces us to use different methods to somehow approximate and recover the topology of the ambient space given only a finite set of points. Secondly, we also need to consider the *scale* of the data – some interesting properties may be more apparent only after we "zoom" in closely on them, some may not become apparent at all. All in all, we will construct the following pipeline:

and repeat this step for all scales at once, effectively measuring the evolution of the algebraic invariants through the changes in the feature scale.

2.1 Simplicial complexes

Definition 2.1.1 (Simplex). For $k \ge 0$, a k-simplex σ of dimension k in a Euclidean space \mathbb{R}^n is the convex hull of a set P of (k+1) affinely independent points in \mathbb{R}^n . For $0 \le m \le k$, an m-face of σ is an m-simplex that is the convex hull of a nonempty subset of P. A *proper face* of σ is a simplex that is the convex hull of a proper subset of P (any face except σ). (k-1) faces of σ are called *facets* of σ .

Typically, we refer to a 0-simplex as a *vertex*, a 1-simplex as an *edge*, a 2-simplex as a *triangle* and so on. An illustration of those can be seen in 2.1.

Definition 2.1.2 (Geometric simplicial complex). A *geometric simplicial complex* K is a set with finitely many simplices that satisfy the following:

Figure 2.1: From the left: a 0-simplex, a 1-simplex and a 2-simplex

- *K* contains every face of each simplex in *K*.
- For any two simplices $\sigma, \tau \in K$, their intersection $\sigma \cap \tau$ is either empty or a face or both σ and τ .

This is also known as a *triangulation*, where the *dimension* k of K is the maximum dimension of any simplex in K. The two definitions above are highly geometric and easy to visualize and imagine. The next definition is more technical and abstract but nonetheless important.

Definition 2.1.3 (Abstract simplex). A collection K of non-empty subsets of a given set V(K) is an abstract simplicial complex, if every element $\sigma \in K$ has all of its non-empty subsets $\sigma' \subseteq \sigma$ also in K. Each element σ with a cardinality $|\sigma| = k+1$ is called a k-simplex and each of its subsets $\sigma' \subseteq \sigma$ with $|\sigma'| = k'+1$ is called a k'-face. Finally, a (k-1)-face of a k-simplex is called its facet.

Remark. One could also dually define a *k*-coface, cofacet and its codimension but it's not terribly important.

Figure 2.2: A simplicial complex with 4 vertices, 4 edges and 1 triangle.

A geometric simplicial complex K in \mathbb{R}^n is called a *geometric realization* of an abstract simplicial complex K', if and only if there is an embedding $e:V(K')\to\mathbb{R}^n$, that takes every k-simplex $\{v_0,\ldots,v_k\}$ in K' to a k-simplex in K that is the convex hull of $e(v_0),\ldots,e(v_k)$. An example is shown in 2.2 as this is the geometric realization of the abstract complex with vertices A,B,C,D, edges $\{A,B\},\{A,C\},\{B,C\},\{C,D\}$ and 1 triangle $\{A,B,C\}$.

Definition 2.1.4 (Underlying space). The *underlying space* of an abstract simplicial complex K, denoted by |K|, is the pointwise union of its simplices in its geometrical realization, i.e., $|K| = \bigcup_{\sigma \in K} |\sigma|$, where $|\sigma|$ is the restriction of this realization on σ . If K is geometric, then its geometric realization can be taken as itself.

Unless it is considered necessary, we won't be making the distinction between the two due to this equivalence between geometric and abstract simplicial complexes.

Definition 2.1.5 (k-skeleton). For any $k \ge 0$, the k-skeleton of a simplicial K complex, denoted by K^k , is the subcomplex formed by all simplices of dimension at most k.

Given this, in 2.2, the 1-skeleton consists of the vertices A, B, C, D and the edges joining those.

2.2 Nerves, Čech and Rips complexes

Given any open cover of a topological space, we are able to construct a simplicial complex on top of it. As we'll see, there isn't only one kind of complex we can build, depending on the properties we're looking for and its size, which has to be considered whenever we talk about any software implementation of the algorithms.

Definition 2.2.1 (Nerve). Given a finite collection of sets $\mathfrak{U} = \{U_{\alpha}\}_{{\alpha} \in A}$, we define the *nerve* of the set \mathfrak{U} to be the simplicial complex $N(\mathfrak{U})$, whose vertex set is the index set A, and where a subset $\{\alpha_0, \ldots, \alpha_k\} \subseteq A$ spans a k-simplex in $N(\mathfrak{U})$ if and only if $U_{\alpha_0} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

Figure 2.3: An example of a space M, its open cover $\mathfrak U$ and its nerve $N(\mathfrak U)$.

The following important theorem about nerves tells us when are the nerves "equivalent" to the original space. There are various formulation of this statement but since we are working primarily with finite metric spaces, we'll adopt the appropriate version for it.

Theorem 2.2.1 (Nerve theorem). Given a finite cover $\mathfrak U$ (open or closed) of a metric space M, the underlying space $|N(\mathfrak U)|$ is homotopy equivalent to M, if every nonempty intersection $\cap_{i=0}^k U_{\alpha_i}$ of cover elements is homotopy equivalent to a point, i.e., contractible.

For those interested in a proof of this statement, see [Borsuk1948OnTI] for example. From this we can see, that the nerve is homotopy equivalent to M in 2.3.

Summary

Summary of the work.

Appendix A

Bibliography and sources