Informacijos perdavimo kanalai

Diskretus be atminties kanalas

Diskretus be atminties kanalas

Binarinis simetrinis kanalas

Kanalų pavyzdžiai

Šaltinio tikimybės

Kanalo talpa Kanalo talpos skaičiavimas

Binarinio simetrinio kanalo talpa

Šaltinio abėcėlė: $A = \{a_1, a_2, \dots, a_n\}$. Gavėjo abėcėlė: $B = \{b_1, b_2, \dots, b_r\}$.

Kanalo tikimybių matrica:

$$Q = (q_{ij})_{n \times r}, \quad q_{ij} = P(b_j|a_i).$$

Kanalo matricos eilutės elementų suma

$$\sum_{j=1}^{r} q_{ij} = 1.$$

Binarinis simetrinis kanalas

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Kanalų pavyzdžiai

Šaltinio tikimybės

Kanalo talpa Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa

$$A = B = \{0, 1\},$$

$$Q = \left(\begin{array}{cc} p & 1-p \\ 1-p & p \end{array}\right) ,$$

čia $p \in [0, 1]$ - binarinio simetrinio kanalo patikimumas. Paprastai p > 1/2.

Binarinis simetrinis kanalas

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Kanalų pavyzdžiai Šaltinio tikimybės Kanalo talpa Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa

$$A = B = \{0, 1\},\$$

$$Q = \left(\begin{array}{cc} p & 1-p \\ 1-p & p \end{array}\right) \,,$$

čia $p \in [0, 1]$ - binarinio simetrinio kanalo patikimumas.

Paprastai p > 1/2.

Tegul X_n - klaidų skaičius, pasiuntus n bitų.

$$P(X_n = k) = \binom{n}{k} (1-p)^k p^{n-k},$$

$$\mathbf{E}X_n = n(1-p).$$

Kanalų pavyzdžiai

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Tegul
$$A = \{0, 1\}$$
 .

Kanalų pavyzdžiai

Šaltinio tikimybės

Kanalo talpa Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa

Kanalų pavyzdžiai

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Kanalų pavyzdžiai

Šaltinio tikimybės

Kanalo talpa Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa

Tegul
$$A = \{0, 1\}$$
.

1.
$$B = \{0, 1, *\}$$
,

$$Q = \begin{pmatrix} p & q & s \\ q & p & s \end{pmatrix}, \quad p+q+s=1.$$

Kanalų pavyzdžiai

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Kanalų pavyzdžiai

Šaltinio tikimybės

Kanalo talpa Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa

Tegul
$$A = \{0, 1\}$$
.

1.
$$B = \{0, 1, *\}$$
,

$$Q = \begin{pmatrix} p & q & s \\ q & p & s \end{pmatrix}, \quad p+q+s=1.$$

2. * pakeičiama 0 arba 1 su vienodomis tikimybėmis (metama moneta). Tada $B=\{0,1\}$,

$$Q = \begin{pmatrix} p+s/2 & q+s/2 \\ q+s/2 & p+s/2 \end{pmatrix}.$$

Šaltinio tikimybės

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Kanalų pavyzdžiai

Šaltinio tikimybės

Kanalo talpa Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa

$$P(a_i) = p_i, \quad \sum_{i=1}^n p_i = 1.$$

Tada

$$P(a_i, b_j) = P(a_i \cap b_j) = p_i q_{ij},$$

 $P(b_j) = \sum_{t=1}^{n} p_t q_{tj}, \quad j = 1, 2, \dots, r.$

$$\overrightarrow{P(A)} = (p_1, p_2, \dots, p_n),$$

 $\overrightarrow{P(B)} = (P(b_1), P(b_2), \dots, P(b_r)).$

Tada

$$\overrightarrow{P(B)} = \overrightarrow{P(A)} \cdot Q$$

Kanalo talpa

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Kanalų pavyzdžiai

Šaltinio tikimybės

Kanalo talpa

Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa Tarpusavio informacija

$$I(A,B) = \sum_{i=1}^{n} \sum_{j=1}^{r} P(a_i \cap b_j) \log_2 \frac{P(a_i \cap b_j)}{P(a_i) \cdot P(b_j)}$$
$$= \sum_{i=1}^{n} p_i \sum_{j=1}^{r} q_{ij} \log_2 \left(q_{ij} \left(\sum_{t=1}^{n} p_t q_{tj} \right)^{-1} \right).$$

Fiksuotam kanalui $I(A,B)=I(p_1,p_2,\ldots,p_n)$. Kanalo talpa C yra lygi

$$C = \max_{p_1,\dots,p_n} I(p_1, p_2, \dots, p_n) = I(p_1^*, p_2^*, \dots, p_n^*),$$

čia $p_1^*, p_2^*, \dots, p_n^*$ - optimalios šaltinio tikimybės.

Kanalo talpos skaičiavimas

Diskretus be atminties kanalas Binarinis simetrinis kanalas

Kanalų pavyzdžiai Šaltinio tikimybės

Kanalo talpa

Kanalo talpos skaičiavimas Binarinio simetrinio kanalo talpa Reikia rasti $I(p_1, p_2, \dots, p_n)$ maksimumą srityje

$$\{(p_1, p_2, \dots, p_n) : p_1 + p_2 + \dots + p_n = 1, p_i \ge 0\}.$$

Pagal Lagranžo daugiklių metodą jis gali būti randamas sprendžiant lygčių sistemą

$$\begin{cases} \frac{\partial}{\partial p_k} \left(I(p_1, p_2, \dots, p_n) - \lambda \sum_{i=1}^n p_i \right) = 0, \ k = 1, \dots, n; \\ p_1 + p_2 + \dots + p_n = 1. \end{cases}$$

Po pertvarkymų

$$\begin{cases} \sum_{j=1}^{r} q_{kj} \log_2 \left(q_{kj} \left(\sum_{t=1}^{n} p_t q_{tj} \right)^{-1} \right) = C, \ k = 1, ..., n; \\ p_1 + p_2 + \dots + p_n = 1. \end{cases}$$

Išsprendę šią sistemą, randame optimalias šaltinio tikimybes ir kanalo talpą.

Binarinio simetrinio kanalo talpa

Diskretus be atminties kanalas
Binarinis simetrinis kanalas
Kanalų pavyzdžiai
Šaltinio tikimybės
Kanalo talpa
Kanalo talpos
skaičiavimas
Binarinio simetrinio

kanalo talpa

Tegul (p_0, p_1) yra šaltinio tikimybės, p - kanalo patikimumas.

$$\begin{cases} p \log_2 \frac{p}{p_0 p + p_1 (1 - p)} + (1 - p) \log_2 \frac{1 - p}{p_0 (1 - p) + p_1 p} = C, \\ (1 - p) \log_2 \frac{1 - p}{p_0 p + p_1 (1 - p)} + p \log_2 \frac{p}{p_0 (1 - p) + p_1 p} = C, \\ p_0 + p_1 = 1. \end{cases}$$

Šios sistemos sprendinys yra

$$p_0 = p_1 = \frac{1}{2}, \quad C = 1 - h(p).$$

Čia

$$h(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$$
.