Diszkrét matematika 1.

4. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Trigonometrikus alak

Definíció

 $z \in \mathbb{C}$ trigonometrikus alakja: $z = |z|(\cos \varphi + i \cdot \sin \varphi)$

Moivre azonosságok

Legyenek $z=|z|(\cos\varphi+i\cdot\sin\varphi), w=|w|(\cos\psi+i\cdot\sin\psi)\neq 0.$

Ekkor igazak az alábbiak

- $z \cdot w = |z| \cdot |w|(\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi))$
- $\frac{z}{w} = \frac{|z|}{|w|} (\cos(\varphi \psi) + i \cdot \sin(\varphi \psi))$
- $z^n = |z|^n (\cos n \cdot \varphi + i \cdot \sin n \cdot \varphi)$

Geometriai jelentés

Egy z komplex számmal való szorzásnak a Gauss síkon egy forgatva-nyújtás felel meg. (φ -vel forgatás és |z|-vel nyújtás)

Gyökvonás komplex számokból

Tétel

Legyen $z=|z|(\cos\varphi+i\cdot\sin\varphi)\neq 0, n\in\mathbb{N}^+$. Ekkor a z-nek n darab különböző n-edik gyöke van, azon w_k -k, amikre $w_k^n=z$:

$$w_k = \sqrt[n]{|z|} \left(\cos\left(\frac{\varphi + 2k\pi}{n}\right) + i \cdot \sin\left(\frac{\varphi + 2k\pi}{n}\right) \right),$$

ahol k = 0, 1, ..., n - 1.

Komplex egységgyökök

Definíció

Az $\varepsilon^n=1$ egyenlet megoldásait n-edik egységgyököknek nevezzük

$$\varepsilon_k = \varepsilon_k^{(n)} = \left(\cos\frac{2k\pi}{n} + i\cdot\sin\frac{2k\pi}{n}\right),$$

ahol $k = 0, 1, \dots, n - 1$.

Tétel

Legyen $0 \neq z \in \mathbb{C}, n \in \mathbb{N}^+$ és $w \in \mathbb{C}$, amire $w^n = z$. Ekkor z n-edik gyökei az alábbi alakban írhatók fel:

$$w\varepsilon_k : k = 0, 1, ..., n - 1.$$

Komplex számok rendje

Definíció

Egy z komplex szám különböző (egész kitevőjű) hatványainak számát a z rendjének nevezzük, jele o(z).

Tétel

Legyen $0 \neq z \in \mathbb{C}$. Ekkor, ha z nem egységgyök, akkor bármely két egész kitevős hatványa különbözik, vagyis $o(z) = \infty$.

Tétel

Legyen $0 \neq z \in \mathbb{C}$ egységgyök, valamint $d \in \mathbb{N}^+$ a legkisebb, amire $z^d = 1$. Ekkor o(z) = d és z hatványai o(z) szerint periodikusan ismétlődnek.

Komplex egységgyökök 2

Definíció

Egy $z \in \mathbb{C}$ n-edik egységgyököt primitív n-edik egységgyöknek nevezünk, ha o(z) = n.

Állítás

Legyen $z\in\mathbb{C}$ egy n-nedik egységgyök. Ekkor z primitív n-edik egységgyök pontosan akkor, ha minden $w\in\mathbb{C}$ n-edik egységgyök előáll z pozitív egész kitevőjű hatványaként.

Állítás

Legyen $\varepsilon_k = \cos\frac{2k\pi}{n} + i\cdot\sin\frac{2k\pi}{n}$ egy n-edik egységgyök. Ekkor ε_k primitív n-edik egységgyök pontosan akkor, ha n és k relatív prímek.

Gyökvonás komplex számokból

Tétel

Legyen $z=|z|(\cos\varphi+i\cdot\sin\varphi)\neq 0, n\in\mathbb{N}^+$. Ekkor a z-nek n darab különböző n-edik gyöke van, azon w_k -k, amikre $w_k^n=z$:

$$w_k = \sqrt[n]{|z|} \left(\cos\left(\frac{\varphi + 2k\pi}{n}\right) + i \cdot \sin\left(\frac{\varphi + 2k\pi}{n}\right) \right),$$

ahol k = 0, 1, ..., n - 1.

Komplex egységgyökök

Definíció

Az $\varepsilon^n=1$ egyenlet megoldásait n-edik egységgyököknek nevezzük

$$\varepsilon_k = \varepsilon_k^{(n)} = \left(\cos\frac{2k\pi}{n} + i\cdot\sin\frac{2k\pi}{n}\right),$$

ahol $k = 0, 1, \dots, n - 1$.

Tétel

Legyen $0 \neq z \in \mathbb{C}, n \in \mathbb{N}^+$ és $w \in \mathbb{C}$, amire $w^n = z$. Ekkor z n-edik gyökei az alábbi alakban írhatók fel:

$$w\varepsilon_k : k = 0, 1, ..., n - 1.$$

Komplex számok rendje

Definíció

Egy z komplex szám különböző (egész kitevőjű) hatványainak számát a z rendjének nevezzük, jele o(z).

Tétel

Legyen $0 \neq z \in \mathbb{C}$. Ekkor, ha z nem egységgyök, akkor bármely két egész kitevős hatványa különbözik, vagyis $o(z) = \infty$.

Tétel

Legyen $0 \neq z \in \mathbb{C}$ egységgyök, valamint $d \in \mathbb{N}^+$ a legkisebb, amire $z^d = 1$. Ekkor o(z) = d és z hatványai o(z) szerint periodikusan ismétlődnek.

Primitív egységgyökök

Definíció

Egy $z \in \mathbb{C}$ n-edik egységgyököt primitív n-edik egységgyöknek nevezünk, ha o(z) = n.

Állítás

Legyen $z \in \mathbb{C}$ egy n-edik egységgyök. Ekkor z primitív n-edik egységgyök pontosan akkor, ha minden $w \in \mathbb{C}$ n-edik egységgyök előáll z pozitív egész kitevőjű hatványaként.

Állítás

Legyen $\varepsilon_k = \cos\frac{2k\pi}{n} + i\cdot\sin\frac{2k\pi}{n}$ egy n-edik egységgyök. Ekkor ε_k primitív n-edik egységgyök pontosan akkor, ha n és k relatív prímek.

Exponenciális alak

Állítás (NemBiz)

 $\forall z \in \mathbb{C}$ -re az alábbi sorok konvergensek:

$$\sin z = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$

$$\cos z = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$$

Következmény

$$\forall z \in \mathbb{C} : e^{iz} = \cos z + i \sin z$$
, speciálisan $\forall \varphi \in \mathbb{R} : e^{i\varphi} = \cos \varphi + i \sin \varphi$

Definíció

 $\forall z \in \mathbb{C}$ komplex szám a $z = r \cdot e^{i\varphi}$ exponenciális alakba írható, ahol $r = |z|, \varphi = arg(z)$.

Kvaterniók

Definíció 1

Legyen

 $\mathbb{H} = \{ a + b \cdot i + c \cdot j + d \cdot k : a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = ijk = -1 \}.$

Ekkor $(\mathbb{H}, +, \cdot)$ a kvaterniók, a szokásos \mathbb{C} -beli + és \cdot műveletekkel.

Definíció 2

 $(\mathbb{C} \times \mathbb{C}, \oplus, \odot)$ a kvaterniók, ha

- $(z, w) \oplus (z', w') = (z + z', w + w')$
- $(z, w) \odot (z', w') = (z \cdot z' \overline{w'} \cdot w, w' \cdot z + w \cdot \overline{z'})$

ahol + és \cdot a szokásos \mathbb{C} -beli műveletek.

Megjegyzés

- a 2 def ugyanazt a struktúrát adja
- $(\mathbb{H}, +, \cdot)$ "majdnem" test (nem komm)

Kvaterniók

Definíció

Legyen (ℍ, +, ⋅) a kvaterniók, ahol

$$\mathbb{H} = \{a + b \cdot i + c \cdot j + d \cdot k : a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = ijk = -1\}.$$

Megjegyzés

- ... és tovább ... oktávok: $(\mathbb{H} \times \mathbb{H}), \oplus, \odot)$, ahol \odot és \oplus ...
- kapcsolat a térbeli forgatásokkal

Alkalmazások

- robotika
- CAD programok
- négynégyzetszám-tétel $(\forall n \in \mathbb{N} \exists a, b, c, d \in \mathbb{N} : n = a^2 + b^2 + c^2 + d^2)$

