## Problem Set #3

5/5 points (100%)

Quiz, 5 questions

## **✓** Congratulations! You passed!

Next Item



points

1.

Suppose you implement the functionality of a priority queue using a *sorted* array (e.g., from biggest to smallest). What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

- $\Theta(n)$  and  $\Theta(n)$
- $\Theta(1)$  and  $\Theta(n)$
- $\Theta(\log n)$  and  $\Theta(1)$
- $\Theta(n)$  and  $\Theta(1)$

Correct



1/1 points

5/5 points (100%)

Quiz, 5 questions

2.

Suppose you implement the functionality of a priority queue using an *unsorted* array. What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

|         | $\Theta(n)$ and $\Theta(n)$      |  |  |
|---------|----------------------------------|--|--|
| 0       | $\Theta(1)$ and $\Theta(n)$      |  |  |
| Correct |                                  |  |  |
|         |                                  |  |  |
|         | $\Theta(n)$ and $\Theta(1)$      |  |  |
|         | $\Theta(1)$ and $\Theta(\log n)$ |  |  |
|         |                                  |  |  |
|         |                                  |  |  |

**/** 

1/1 points

3.

You are given a heap with n elements that supports Insert and Extract-Min. Which of the following tasks can you achieve in  $O(\log n)$  time?

|         | Find the median of the elements stored in the heap. |  |
|---------|-----------------------------------------------------|--|
|         | None of these.                                      |  |
| 0       | Find the fifth-smallest element stored in the heap. |  |
| Correct |                                                     |  |

Find the largest element stored in the heap.



1/1 points

5/5 points (100%)

Quiz, 5 questions

4.

You are given a binary tree (via a pointer to its root) with n nodes. As in lecture, let size(x) denote the number of nodes in the subtree rooted at the node x. How much time is necessary and sufficient to compute size(x) for every node x of the tree?

 $\Theta(n^2)$   $\Theta(n \log n)$   $\Theta(n)$ 

## Correct

For the lower bound, note that a linear number of quantities need to be computed. For the upper bound, recursively compute the sizes of the left and right subtrees, and use the formula size(x) = 1 + size(y) + size(z) from lecture.

Θ(height)



1/1 points

5/5 points (100%)

Quiz, 5 questions

5.

Suppose we relax the third invariant of red-black trees to the property that there are no *three* reds in a row. That is, if a node and its parent are both red, then both of its children must be black. Call these *relaxed* red-black trees. Which of the following statements is *not* true?

|                                                             | There is a relaxed red-black tree that is not also a red-black tree.                                                   |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
|                                                             | Every red-black tree is also a relaxed red-black tree.                                                                 |  |
|                                                             | The height of every relaxed red-black tree with $n$ nodes is $O(\log n)$ .                                             |  |
| O                                                           | Every binary search tree can be turned into a relaxed red-black tree (via some coloring of the nodes as black or red). |  |
| <b>Correct</b> A chain with four nodes is a counterexample. |                                                                                                                        |  |

