Commands

Command	Explanation	Abbreviation
freduse UNRATE	imports FRED unemployment data	
tssmooth ma	generates moving average of time series	
scalar a = 5	defines scalar $a = 5$	
scalar list	lists scalars	
ttail(df,c)	gives $Pr(T > 2.3)$ for $T \sim t(df)$	
invttail(df,c)	gives the value t^* such that $Pr(T > t^*) = c$	

Examples

FRED. To install freduse command,

```
ssc install freduse
search freduse
```

choose SJ-6-3 st0110 and install

Moving Average. Generate 12 period (11 month lag plus current) MA smoothing,

```
freduse UNRATE import FRED's UNRATE data (unemployment rate)
generate month = mofd(daten) converts FRED monthly format into Stata format
tsset month, monthly sets time variable, tells Stata it's monthly
tssmooth ma MAUNRATE = UNRATE, window(11 1 0)
tsline MAUNRATE
```

Summary Statistics and Scalars.

```
sum UNRATE, detail

scalar xbar = r(mean)

scalar n = r(N)

scalar s = r(sd)

xbar equals UNRATE mean

n equals number of UNRATE obs

s equals UNRATE standard deviation
```

Tails and Confidence Intervals. Construct 95% CI for the UNRATE mean using

$$\bar{x} \pm t_{\alpha/2,df} \times \frac{s}{\sqrt{n}}.$$

95% confidence interval means $\alpha = 0.05$. There are n = 840 observations so df = 839. Critical value is $t_{0.025,839} = \text{invttail}(839,0.025)$. Construct the confidence interval with

```
scalar lconf = xbar - invttail(839,0.025)*s/sqrt(n)
scalar uconf = xbar + invttail(839,0.025)*s/sqrt(n)
```

Type in scalar list to see the values of each scalar. Notice that lconf and uconf are the same values from using mean UNRATE, and that s/\sqrt{n} is the standard error.