Advance Information

32K×8 Bit CMOS Static Random Access Memory

The MCM60256A is a 262,144 bit low-power static random access memory organized as 32,768 words of 8 bits, fabricated using silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability. The operating current is 5 mA/MHz (typ) and the minimum cycle time is 85 ns.

Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. When \overline{E} is a logic high, the part is placed in low power standby mode. The maximum standby current for MCM60L256A is 2 μ A $(T_A=25^{\circ}C)$. Chip enable also controls the data retention mode. Another control feature, output enable (\overline{G}) allows access to the memory contents as fast as 45 ns (MCM60256A-85). Thus the MCM60256A is suitable for use in various microprocessor application systems where high speed, low power, and battery backup are required.

The MCM60256A is offered in a 600 mil, 28 pin plastic dual-in-line package as well as the 330 mil, 28 pin plastic small outline gullwing package.

- Single 5 V Supply, ±10%
- 32K × 8 Organization
- Fully Static − No Clock or Timing Strobes Necessary
- Low Power Dissipation—27.5 mW/MHz (Typical Active)
- Output Enable and Chip Enable Inputs for More System Design Flexibility and Low Power Standby Mode
- Battery Backup Capability (MCM60L256A)
- Data Retention Supply Voltage = 2.0 V to 5.5 V
- All inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: MCM60256A-85 and MCM60L256A-85 = 85 ns (Max)
 MCM60256A-10 and MCM60L256A-10 = 100 ns (Max)
 MCM60256A-12 and MCM60L256A-12 = 120 ns (Max)

MCM60256A MCM60L256A

PÍN NAMES						
A0-A14 Address						
W Write Enable						
Ē						
G Output Enable						
DQ0-DQ7 Data Input/Output						
VCC +5 V Power Supply						
V _{SS} Ground						

This document contains information on a new product. Specifications and information herein are subject to charge without notice.

TRUTH TABLE

Ē	Ğ	w	Mode	Supply Current	I/O Pin
н	×	X	Not Selected	ISB	High Z
L	н	Н	Output Disabled	lcc	High Z
L	L	н	Read	lcc	Dout
L	х	L	Write	Icc	D _{in}

X = don't care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.3 to 7.0	٧
Voltage to Any Pin with Respect to VSS	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	V
Power Dissipation (T _A = 25°C)	PD	1.0	w
Operating Temperature	TA	0 to +70	°C_
Storage Temperature	T _{stg}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedence circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(VCC = 5.0 V ± 10%, TA = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	-	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.3*	_	0.8	V

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -3.0 V ac (pulse width \leq 50 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	lkg(I)	_	<0.01	±1.0	μА
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$, $V_{out} = 0$ to V_{CC})	likg(O)		<0.01	±1.0	μА
Operating Current (Read Cycle) (E=V _{II} , W=V _{IH} , Other Input=V _{IH} /V _{II} , I _{Out} =0 mA)	ICCA1				mA
MCM60256A, MCM60L256A: t _{AVAV} = 1 μs		-	10	_	
MCM60256A, MCM60L256A-85: $t_{AVAV} = 85$ ns		-	-	70	
MCM60256A, MCM60L256A-10: t _{AVAV} = 100 ns	i l	_] -	70	ļ
MCM60256A, MCM60L256A-12: $t_{AVAV} = 120 \text{ ns}$		_	-	70	
$\langle \overline{E} = 0.2 \text{ V}, \overline{W} = V_{CC} - 0.2 \text{ V}, \text{ Other Input} = V_{CC} - 0.2 \text{ V}/0.2 \text{ V},$	ICCA2]
$I_{OUt} = 0 \text{ mA}$ MCM60256A, MCM60L256A: $I_{AVAV} = 1 \mu s$		_	5	-	1
MCM60256A, MCM60L256A-85: $t_{AVAV} = 85 \text{ ns}$		_	-	60	
MCM60256A, MCM60L256A-10: $t_{AVAV} = 100 \text{ ns}$		_	-	60	
MCM60256A, MCM60L256A-12: $t_{AVAV} = 120 \text{ ns}$		_	_	60	
Standby Current (E=V _{IH})	ISB1	_	_	3.0	mA
Standby Current (Ē≥V _{CC} −0.2 V, V _{CC} =2.0 to 5.5 V) MCM60256A	ISB2	_	2	100	μА
MCM60L256A		-		30	ļ .
MCM60L256A (T _A = 25°C)		-	-	2	
Output Low Voltage (I _{OL} = 4.0 mA)	VOL	_		0.4	٧
Output High Voltage (IOH = -1.0 mA)	VOH	2.4	_	_	V

Typical values are referenced to TA = 25°C and VCC = 5.0 V

CAPACITANCE (f = 1 MHz, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic			Min	Max	Unit
Input Capacitance (V _{in} =0 V)	All Inputs Except DQ	C _{in}		10	pF
I/O Capacitance (V _{I/O} =0 V)	DQ	CI/O	-	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(VCC=5.0 V ±10%, TA=0 to 70°C, Unless Otherwise Noted)

Input Pulse Levels	Output Timing Measurement Reference Levels 0.8 and 2.2 V
Input Rise/Fall Time	Output Load
Input Timing Measurement Reference Levels	

READ CYCLE (See Note 1)

Parameter	Symbol	Alt	MCM60256A-85 MCM60L256A-85		MCM80256A-10 MCM80L256A-10		MCM80256A-12 MCM80L256A-12		Unit	Notes
		Symbol	Min	Max	Min	Max	Min	Max		
Read Cycle Time	tAVAV	tRC	85	-	100		120		ns	_
Address Access Time	\$AVQV	t _{AA}	-	86		100	-	120	пŝ	_
E Access Time	tELQV	tAC	_	85	_	100	_	120	ns	_
G Access Time	tGLQV	†OE	_	45	_	50		60	ns	_
Output Hold from Address Change	tAXQX	tOH	5	_	10	_	10	_	ns	_
Chip Enable to Output Low-Z	tELQX	tCLZ	10	_	10	T -	10	<u>-</u>	ns	2, 3
Output Enable to Output Low-Z	tGLQX	toLZ	5	_	5	-	5	_	ns	2, 3
Chip Enable to Output High-Z	tEHQZ	†CHZ	0	30	0	50	0	60	ns	2, 3
Output Enable to Output High-Z	tGHOZ	^t OHZ	0	30	0	40	0	50	ns	2, 3

NOTES:

- 1. W is high at all times for read cycles.
- All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.

Figure 1. AC Test Load

WRITE CYCLE 1 AND 2 (See Note 1)

Parameter	Symbol	Alt	MCM60256A-85 MCM60L256A-85		MCM60256A-10 MCM80L256A-10		MCM80256A-12 MCM80L256A-12		Unit	Notes
		Symbol	Min	Max	Min	Max	Min	Max	1	
Write Cycle Time	†AVAV	twc	85	_	100	-	120	_	ns	-
Address Setup Time	tavwl/tavel	†AS	0	_	0	~	0	_	ns	_
Address Valid to End of Write	tavwh/taveh	taw	80		95		. 115		ns	_
Write Pulse Width	₹WFMH	twp	60	_	70	_	80	<u> </u>	ns	2
Data Valid to End of Write	tDVWH/tDVEH	tDW	40	_	40	~	50	_	ns	_
Data Hold Time	tWHDX/tEHDX	tDH	0	_	0	_	0	_	ns	-
Write Low to Output in High-Z	†WLQZ	₹WHZ	0	30	0	50	0	60	ns	3, 4
Write High to Output Low-Z	,twhax	twlz	10		10	_	10	_	ns	3, 4
Write Recovery Time	tWHAX/tEHAX	twr	5	-	5	-	5	_	ns	5
Chip Enable to End of Write	telWH/teleH	tcw	66	_	90	~	100	_	ns	_

NOTES:

- 1. Outputs are in high impedance state if G is high during Write Cycle.
- 2. A write occurs during the overlap (twp) of a low E and a low W. If W goes low prior to E low then outputs will remain in a high impedance state.
- 3. All high-Z and low-Z parameters are considered in a high or low impedance state when the outputs have made a 100 mV transition from the previous steady state voltage.
- 4. These parameters are periodically sampled and not 100% tested.
- 5. t_{WR} is measured from the earlier of \overline{E} or \overline{W} going high to the end of write cycle.

WRITE CYCLE 1 (W CONTROLLED)

WRITE CYCLE 2 (E Controlled)

DATA RETENTION CHARACTERISTICS ($T_{\Delta} = 0$ to +70°C)

Parameter		Symbol	Min	Тур	Max	Unit			
V _{CC} for Data Retention (E≥V _{CC} -0.2 V)		VDR	2.0	_	5.5	V			
Data Retention Current (E≥V _{CC} - 0.2 V)	MCM60256A : VCC = 3.0 V	ICCDR	-	_	50	μА			
	V _{CC} = 5.5 V		_	_	100				
	MCM60L256A: VCC = 3.0 V		_	_	20				
	V _{CC} =5.5 V		_	_	30				
Chip Disable to Data Retention Time		^t CDR	0	_	_	ns			
Operation Recovery Time		trec	tAVAV*	_	-	ns			

^{*}tAVAV = Read Cycle Time

DATA RETENTION MODE

NOTE: If the V_{IH} of \overline{E} is 2.4 V in operation, I_{SB1} current flows during the period that the V_{CC} voltage is decreasing from 4.5 V to 2.4 V.

Figure 1. Input High Voltage versus Supply Voltage

Figure 2. Input Low Voltage versus Supply Voltage

Figure 3. Operating Current versus Ambient Temperature

Figure 4. ISB1 Standby Current versus Ambient Temperature

Figure 5. ISB2 Standby Current versus Ambient Temperature

1.6 1.4 1.2 1.2 1.0 0.8 0.8 0.4 0.4 0.2 0 2 4 8 8 10 12

Figure 6. Operating Current versus Frequency (Read)

Figure 7. Operating Current versus Frequency (Write)

Figure 8. ISB2 Standby Current versus Supply Voltage

Figure 9. Access Time versus Supply Voltage

Figure 10. Access Time versus Ambient Temperature

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers — MCM60256AP85 MCM60L256AP85 MCM60L256AP10 MCM60L256AP10 MCM60L256AP10 MCM60L256AP15 MCM60256AF15 MCM60256AF10 MCM60L256AF10 MCM60L256AF12