Important Math Review Points

October 25, 2015

1 Increasing/Nondecreasing functions

A function is increasing if its graph climbs steadily upward. More precisely:

Defintion. A function f on the real line is increasing (nondecresing) if, whenever $x_1 < x_2$ ($x_1 \le x_2$), $f(x_1) < f(x_2)$ ($f(x_1) \le f(x_2)$).

Example: $f(x) = x^3$ is an increasing function.

Question Is $f(x) = x^2$ increasing?

2 Eventually Nondecreasing Functions

A function is eventually nondecreasing if for all values beyond a certain point on the x-axis, the graph steadily climbs. More precisely,

Definition. A function f is eventually nondecreasing if for some real number x_0 , f is increasing on $[x_0, \infty)$. In other words, for some x_0 we have that whenever $x_0 \le x_1 \le x_2$, then $f(x_0) \le f(x_1) \le f(x_2)$.

Example: $f(x) = (x - 1)^2$.

3 Growth Rates of Functions

Some functions grow faster than others. Example: $f(x) = (x-1)^2$ and g(x) = x+1. Notice when x=3, the quadratic function overtakes the linear function. We say f is asymptotically greater than g. These ideas will be used to evaluate and compare running times of algorithms.

4 Mathematical Induction

The idea: Suppose you wish to prove that some statement $\phi(n)$, which asserts something about each whole number n, is true for every n. For example, to prove that for all $n \geq 0$, $n < 2^n$, we would use " $n < 2^n$ " as our statement $\phi(n)$. We wish to show that this statement holds for every n. Suppose now that we can prove two things:

- (A) that $\phi(0)$ is true (in our example, this would mean that we can prove $0 < 2^0$);
- (B) that, for any n, if $\phi(n)$ happens to be true, then $\phi(n+1)$ must also be true (in our example, this would mean that, if it happens to be true that $n < 2^n$, then it must be true that $n + 1 < 2^{n+1}$).

Mathematical Induction says that, if you can prove both (1) and (2), then you have proven that, for every n, $\phi(n)$ is indeed true.

5 Standard Induction

Suppose $\phi(n)$ is a statement depending on n. If

- 1. $\phi(0)$ is true, and
- 2. under the assumption that $n \geq 0$ and $\phi(n)$ is true, you can prove that $\phi(n+1)$ is also true,

then $\phi(n)$ holds true for all natural numbers n.

Here is a slight generalization:

General Induction Suppose $\phi(n)$ is a statement depending on n and suppose $k \geq 0$ is an integer. If

- 1. $\phi(k)$ is true, and
- 2. under the assumption that $n \geq k$ and $\phi(n)$ is true, you can prove that $\phi(n+1)$ is also true,

then $\phi(n)$ holds true for all natural numbers $n \geq k$.

In General Induction, the step in the proof where $\phi(k)$ is verified is called the Basis Step. The second step, where $\phi(n+1)$ is proved assuming $\phi(n)$, is called the Induction Step. As we reason during this second step, we will typically need to make use of $\phi(n)$ as an assumption; in this context, $\phi(n)$ is called the induction hypothesis.

6 Example of Mathematical Induction

We will prove that for every positive integer n,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

We take this formula to be the formula $\phi(n)$ that we will use in the induction; that is, we let $\phi(n)$ be the statement

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

For the Basis Step, notice that $\phi(1)$ is the statement

$$\sum_{i=1}^{1} i = \frac{1(1+1)}{2}$$

which is obviously true. For the Induction Step, we assume $\phi(n)$ is true, and we prove $\phi(n+1)$. $\phi(n+1)$ is the following statement:

$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

To prove $\phi(n+1)$ is true, we follow these steps:

$$\begin{split} \sum_{i=1}^{n+1} i &= \left(\sum_{i=1}^{n} i\right) + (n+1) \\ &= \frac{n(n+1)}{2} + (n+1) \\ &= \frac{n(n+1)}{2} + \frac{2(n+1)}{2} \\ &= \frac{(n+1)(n+2)}{2} \end{split}$$
 (by Induction Hypothesis)

7 The Division Algorithm

- (1) Suppose m, n are positive integers. Dividing n by m gives a quotient and remainder.
- (2) Example: Divide 17 by 3: Quotient is 5 and remainder is 2. Using integer division and Java mod notation, we can write:
 - 1. quotient = 17/3
 - 2. remainder = 17 % 3

Using mathematical notation:

- 1. quotient = |17/3|
- 2. remainder $= 17 \mod 3$

We can write:

$$17 = \text{quotient} \cdot 3 + \text{remainder} = \lfloor 17/3 \rfloor \cdot 3 + 17 \mod 3.$$

(3) In general, for any positive integers m, n, there are unique q, r so that

$$n = mq + r$$
 and $0 \le r < m$.

In other words

$$n = m \cdot \lfloor \frac{n}{m} \rfloor + n \bmod m.$$

8 Calculus

For this Algorithms course, it is not necessary to have an in-depth understanding of calculus, but it is important to know a few of the simple concepts and formulas, which we review here. The two concepts to be familiar with are:

- (1) Limits at infinity. Example: $\lim_{n\to\infty} (n+1)/n^2 = 0$.
- (2) Derivative formulas. Example: $\frac{d}{dx}x^2 x + 1 = 2x 1$.

Limits at Infinity

Consider the following graph of $f(x) = \frac{1}{x}$:

As x gets bigger and bigger, f(x) gets closer and closer to 0. We write

$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

Since we will be working with the set N of natural numbers, instead of the set R of real numbers, we will express this limit as

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

The following is the graph of $f(x) = \frac{x}{x-1}$:

Here, as x gets large, the graph approaches the line y = 1. We write:

$$\lim_{x\to\infty}\frac{x}{x-1}=1$$

or when we are dealing only with natural numbers:

$$\lim_{n\to\infty}\frac{n}{n-1}=1$$

We can compute this limit algebraically by factoring from numerator and denominator the reciprocal of the highest power of x that occurs in the expression:

$$\lim_{n \to \infty} \frac{n}{n-1} = \lim_{n \to \infty} \left(\frac{n}{n-1} \cdot \frac{1/n}{1/n} \right)$$
$$= \lim_{n \to \infty} \frac{1}{1 - \frac{1}{n}}$$
$$= 1.$$

Derivatives

The derivative of a function f(x), which is written in any of these ways: f'(x), $\frac{d}{dx}f(x)$, $\frac{dy}{dx}$, represents the slope of the line tangent to the graph of f at the point (x, y).

For example:

There are a number of convenient formulas for computing derivatives of familiar functions:

- (1) $\frac{d}{dx}a = 0$ for any real number a.
- (2) $\frac{d}{dx}x^r = rx^{r-1}$, for any real number $r \neq 0$.
- (3) $\frac{d}{dx} 2^x = 2^x \ln 2$
- $(4) \ \frac{d}{dx} \log x = \frac{1}{x} \cdot \log e$
- (5) For any functions f(x), g(x) (whose derivatives exist) and real numbers a, b:
 - (a) (Linearity Rule) $\frac{d}{dx}(af(x)+bg(x))=a\frac{d}{dx}\,f(x)+b\frac{d}{dx}\,g(x)$
 - (b) (Product Rule) $\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx}g(x) + g(x) \cdot \frac{d}{dx}f(x)$
 - (c) (Reciprocal Rule) $\frac{d}{dx}(\frac{1}{f(x)}) = \frac{-f'(x)}{[f(x)]^2}$

For example:

- (a) $\frac{d}{dx} ax = a$
- (b) $\frac{d}{dx}ax^2 = 2ax$
- (c) $\frac{d}{dx} ax^3 = 3ax^2$
- (d) $\frac{d}{dx} \frac{1}{x} = \frac{-1}{x^2}$.
- (e) $\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{1/2} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$.

Eventually Increasing Functions and Derivatives

Fact. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function (and assume its derivative exists everywhere). For any interval (a, b) (where a could possibly be $-\infty$, b could be ∞):

- (1) if f'(x) > 0 for all x in (a, b), then f is increasing on (a, b)
- (2) if f'(x) < 0 for all x in (a, b), then f is decreasing on (a, b).

Example: The following is the graph of $f(x) = (x-1)^2$.

We can see from the graph that f is increasing when x > 1 and f is decreasing when x < 1; in particular, f(x) is eventually increasing.

These observations could also be made by examining the derivative of f: Since $f(x) = x^2 - 2x + 1$, we have

$$f'(x) = 2x - 2 = 2(x - 1).$$

Now 2(x-1) equals 0 when x=1, is positive when x>1 and is negative when x<1. By the Fact, we may conclude:

- (1) f(x) is increasing on $(1, \infty)$
- (2) f(x) is decreasing on $(-\infty, 1)$.