PLSC 504 - Fall 2017 Cure Models

October 10, 2017

Cure Models

Standard models (e.g.):

$$h(T_i|\mathbf{X}_i,\beta) = \frac{f(T_i|\mathbf{X}_i,\beta)}{S(T_i|\mathbf{X}_i,\beta)}$$

assume:

$$\int_0^\infty f(t)\,dt=1\,\forall\,i.$$

All observations will (eventually) experience the event of interest.

Mixture Cure Model

Assume (unobserved):

$$Y_i = \begin{cases} 1 \text{ for observations that will eventually fail,} \\ 0 \text{ for those that will not.} \end{cases}$$

For observations with Y = 1:

$$f(T_i|\mathbf{X}_i, \beta, Y_i = 1) = g(T|\mathbf{X}_i, \beta)$$

 $F(T_i|\mathbf{X}_i, \beta, Y_i = 1) = G(T|\mathbf{X}_i, \beta)$

For observations with Y = 0, f(T) and F(T) are undefined.

Mixture Cure Model (continued)

Define:

$$Pr(Y_i = 1) = \delta_i$$
.

Overall survival is then just:

$$S_i(T) = (1 - \delta_i) + \delta_i[1 - G_i(t)]$$

Mixture Cure Model: Likelihood

Then for $C_i = 1$:

$$L_i|C_i = 1 = \Pr(Y_i = 1) \Pr(T_i = t|Y_i = 1, \mathbf{X}_i, \beta)$$

= $\delta_i g(T_i|\mathbf{X}_i, \beta)$

For $C_i = 0$:

$$L_{i}|C_{i} = 0 = \Pr(Y_{i} = 0) + \Pr(Y_{i} = 1)\Pr(T_{i} > t_{i}|Y_{i} = 1, \mathbf{X}_{i}, \beta)$$

= $(1 - \delta_{i}) + \delta_{i}[1 - G(T_{i}|\mathbf{X}_{i}, \beta)]$

Mixture Cure Model: Likelihood

Implies:

$$\mathbf{L} = \prod_{i=1}^{N} \left[\delta_i \mathbf{g}(T_i | \mathbf{X}_i, \beta) \right]^{C_i} \left\{ (1 - \delta_i) + \delta_i \left[1 - G(T_i | \mathbf{X}_i, \beta) \right] \right\}^{(1 - C_i)}$$

and:

$$InL = \sum_{i=1}^{N} C_i \left\{ \ln(\delta_i) + \ln \left[g(T_i | \mathbf{X}_i, \beta) \right] \right\}$$

$$+ (1 - C_i) \ln \left\{ (1 - \delta_i) + \delta_i \left[1 - G(T_i | \mathbf{X}_i, \beta) \right] \right\}$$

Mixture Cure Model: Specification

Typically:

$$\delta_i = rac{ \mathsf{exp}(\mathbf{Z}_i \gamma)}{1 + \mathsf{exp}(\mathbf{Z}_i \gamma)}$$

or:

$$\delta_i = \Phi(\mathbf{Z}_i \gamma).$$

Identified even if $\mathbf{Z} \equiv \mathbf{X}$.

Non-Mixture Cure Model (e.g. Sposto 2002)

 N_i = number of pre-cancerous cell clusters, with:

$$N_i \sim \mathsf{Poisson}(\lambda)$$
.

Pr(Cure) is:

$$\pi_i = \Pr(N_i = 0).$$

Time to cancer onset for cluster j of observation i is:

$$Z_{ij} \sim F(t), j = \{1, 2, ...N_i\}.$$

Non-Mixture Cure Model (continued)

Survival to first onset:

$$S(t) = \pi^{F(t)}$$

with hazard function:

$$h(t) = -\ln(\pi)f(t)$$

which reflects the fact that $\int_0^\infty h(t)dt = -\ln(\pi)$.

Non-Mixture Cure Model (continued)

Rewritten S(t):

$$S(t) = \exp[\ln(\pi)F(t)].$$

Assuming:

$$\pi_i = \exp[-\exp(\mathbf{X}_i\beta)]$$

we get:

$$S(t) = \exp\{[-\exp(\mathbf{X}_i\beta)]F(t)\}.$$

which is the Cox.

Mixture vs. Non-Mixture Models

Discrete-Time Cure Models

• Parametric / Cox \longrightarrow Poisson

 Mixture Cure Model → Zero-Inflated Poisson

Non-Mixture Cure Model → "Hurdle"
 Poisson

Software

R

- smcure (semiparametric mixture models via EM)
- semicure (same; old)
- nltm (various; see Tsodikov 2003)
- · CR, NPHMC (power analysis for cure models)

Stata

- strsmix and strsnmix (general parametric mixture & non-mixture cure models)
- · cureregr (an old version)
- · Incure (log-normal cure model)
- · spsurv (discrete-time cure model)
- zip / zinb (discrete-time kludge)

A Simulated Example

```
> set.seed=7222009
> X<-rnorm(500)
> Z<-rbinom(500,1,0.5)
> T<-rweibull(500,shape=1.2,scale=1/(exp(0.5+1*X)))
> C<-rbinom(500,1,(0.4-0.3*Z))
> S<-Surv(T,C)</pre>
```


Cox Models

```
> coxph(S~X)
Call:
coxph(formula = S ~ X)
 coef exp(coef) se(coef) z p
X 1.05 2.85 0.124 8.44 0
Likelihood ratio test=77.7 on 1 df, p=0 n= 500, number of events= 130
> coxph(S~X+Z)
Call:
coxph(formula = S ~ X + Z)
  coef exp(coef) se(coef) z p
X 1.08 2.956 0.122 8.9 0.0e+00
Z -1.59 0.204 0.230 -6.9 5.4e-12
Likelihood ratio test=140 on 2 df, p=0 n= 500, number of events= 130
```

Cure Model

```
> cure.fit<-smcure(S~X,cureform=~Z,data=data.cure,model="ph")</pre>
Program is running..be patient... done.
Call:
smcure(formula = S ~ X, cureform = ~Z, data = data.cure, model = "ph")
Cure probability model:
           Estimate Std.Error Z value Pr(>|Z|)
(Intercept) 1.6 0.39 4.1 3.4e-05
             -2.8 0.41 -6.7 2.5e-11
Failure time distribution model:
 Estimate Std.Error Z value Pr(>|Z|)
X 1.1 0.14 8.1 6.7e-16
```

An Interesting Plot

> cure.pic<-plotpredictsmcure(cure.hat,type="S",model="ph")</pre>

An Example: Ceasefire Durability

Data are a subset used in Fortna (2004) (full data are here).

- N = 63
- Non-time-varying

Ceasefires: Cox Model

```
data=CF,method="efron")
> CF.cox
Call:
coxph(formula = CF.S ~ tie + imposed + lndeaths + contig + onedem +
   twodem, data = CF, method = "efron")
          coef exp(coef) se(coef)
tie
    1.845
                  6.327 0.557 3.314 0.00092
imposed 0.210
                  1.233 0.594 0.353 0.72000
Indeaths -0.135 0.874 0.193 -0.699 0.48000
contigyes 2.898 18.143 0.948 3.058 0.00220
onedem 3.423 30.648 1.144 2.991 0.00280
twodem -0.723 0.485 1.209 -0.598 0.55000
Likelihood ratio test=36.8 on 6 df, p=0.00000197 n= 63, number of events= 23
```

> CF.cox<-coxph(CF.S~tie+imposed+lndeaths+contig+onedem+twodem,

(hours of fiddling...)

A Typical Result

```
> CF.cure1.fit<-smcure(CF.S~tie+Indeaths+imposed,
                   cureform="contig,data=CF,model="ph",
                   link="logit", emmax=500)
Program is running..be patient... done.
Call:
smcure(formula = CF.S ~ tie + lndeaths + imposed, cureform = ~contig,
   data = CF, model = "ph", link = "logit", emmax = 500)
Cure probability model:
          Estimate Std.Error Z value Pr(>|Z|)
(Intercept) -3.4 12.4 -0.27 0.79
contig
              2.1 7.4 0.28 0.78
Failure time distribution model:
        Estimate Std. Error Z value Pr(>|Z|)
                    4.06 0.50 0.61
tie
       2.05
Indeaths -0.37 0.34 -1.10 0.27
imposed 0.97 2.40 0.41 0.68
There were 50 or more warnings (use warnings() to see the first 50)
```

From Svolik (2008)

Consolidation status model ^b				
GDP per capita	2.121***	_	2.045***	2.121***
	(0.586)	_	(0.555)	(0.586)
GDP growth	-0.014	_	-0.048	-0.014
	(0.227)	_	(0.246)	(0.227)
Military (vs. Not independent)	-4.061**	_	-3.985**	-4.061**
	(1.895)	_	(1.857)	(1.895)
Civilian (vs. Not independent)	-0.421	_	-0.549	-0.421
	(1.097)	_	(1.067)	(1.097)
Monarchy (vs. Not independent)	-20.158	_	-15.844	-13.965
	(2888.609)	_	(680.185)	(891.870)
Parliamentary (vs. Mixed)	2.231	_	2.290	2.231
	(2.230)	_	(2.326)	(2.230)
Presidential (vs. Mixed)	-8.310**	_	-8.186**	-8.310**
	(3.958)	_	(4.035)	(3.958)
Intercept	-6.144 **	_	-5.920**	-6.145**
	(2.646)	_	(2.644)	(2.647)

Another Example: Peace Duration

Long, Nordstrom and Baek (2007 JOP)

- Peace duration among allies
- Time-varying dyadic data, 1816-2001 (NT = 57, 819)

Cox Model (replicating LNB)

```
> LNB.cox<-coxph(LNB.S~relcap+major+jdem+border+wartime+s_wt_glo+
               medarb+noagg+arbcom+organ+milinst+cluster(dyad),
               data=LNB,method="breslow")
> LNB.cox
Call:
coxph(formula = LNB.S ~ relcap + major + jdem + border + wartime +
    s_wt_glo + medarb + noagg + arbcom + organ + milinst + cluster(dyad),
   data = LNB, method = "breslow")
          coef exp(coef) se(coef) robust se
                                                 z
        -1.431
                   0.239
                            0.614
                                      0.683 - 2.096 0.036000
relcap
major
         1.137
                   3.118
                            0.241
                                      0.280 4.064 0.000048
jdem
                                      0.380 -2.600 0.009300
       -0.987
                   0.373 0.367
border
        1.931
                   6.897
                          0.190
                                      0.206 9.378 0.000000
wartime
         -0.359
                   0.699
                            0.367
                                      0.467 -0.768 0.440000
s_wt_glo -0.284
                   0.752
                            0.332
                                      0.355 -0.802 0.420000
medarb
        -0.367
                   0.693
                            0.285
                                      0.306 -1.202 0.230000
       -0.463
                   0.630
                            0.126
                                      0.152 -3.051 0.002300
noagg
        1.306
                   3.690
                            0.325
                                      0.316 4.133 0.000036
arbcom
        0.353
                   1.423
                            0.280
                                      0.285 1.236 0.220000
organ
milinst
         -0.373
                   0.689
                            0.187
                                      0.177 - 2.101 0.036000
```

Cure Models

(hours of fiddling...)

Program is running..be patient...

$\underset{\tiny{\text{. stset count1, id(episode) }f(buofmzmid==1)}}{\text{Cure }} \ \text{Models (Stata Remix)}$

- . gen h0=0
- . strsmix major jdem border wartime, bhazard(h0) distribution(weibull) link(logistic) k1
- > (relcap major jdem border wartime s_wt_glo medarb noagg arbcom organ milinst)

Log likelihood	l = -793.2126	3		Wald	er of obs = chi2(4) = > chi2 =	57819 36.82 0.0000
_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
pi I						
major	-7.921296	3.764002	-2.10	0.035	-15.2986	5439877
jdem	6177566	.7656096	-0.81	0.420	-2.118324	.8828107
border	-1.943181	.3786093	-5.13	0.000	-2.685241	-1.20112
wartime	2.583909	1.051959	2.46	0.014	.5221065	4.645711
_cons	2.659179	.3980719	6.68	0.000	1.878972	3.439385
ln_lambda						
relcap	-1.408332	.7129111	-1.98	0.048	-2.805613	0110523
major	-1.232928	.395653	-3.12	0.002	-2.008394	4574626
jdem	-1.69796	.4596442	-3.69	0.000	-2.598846	7970736
border	1.224114	.2622007	4.67	0.000	.7102103	1.738018
wartime	.42086	.4072876	1.03	0.301	377409	1.219129
s_wt_glo	274703	.3579769	-0.77	0.443	9763249	.4269188
medarb	8221547	.3503126	-2.35	0.019	-1.508755	1355545
noagg	68365	.1465971	-4.66	0.000	970975	3963251
arbcom	1.667284	.4562532	3.65	0.000	.7730438	2.561524
organ		.3595899	2.59	0.010	. 2250563	1.634623
milinst		.2251323	-1.97	0.049	8841491	0016468
_cons	-2.060399	.7260061	-2.84	0.005	-3.483344	6374528
ln_gamma						
_cons	.0969349	.0733007	1.32	0.186	0467319	.2406018

Some Lessons

Cure models...

- ...Powerful
- ...Intuitive
- ...Temperamental
- ...Ask a lot of your data