)	(V -+	
name:	olulian	4

1 (10 points). Here is data from experiment counting the radioactive decay of barium-137m:

Time	1	3	5	7
Count	578	317	203	118

(a) Using the least-squares regression equation

$$Count = 602.8 - (74.7 \times Time)$$

find the predicted values for the counts.

- (b) Compute the differences, observed count minus predicted count. How many of these are positive; how many are negative?
- (c) Square and sum these differences that you found in part (b).
- (d) Repeat the computations made in parts (a), (b), and (c) using the equation

$$Count = 500 - (100 \times Time)$$

(e) Which of the two equations are a better predictor of the radioactive decay of barium-137m?

(c)
$$(49.9)^2 + (-617)^2 + (-16.3)^2 + (38.1)^2$$

= 8440.2

(1)	Time	Count	Diff
	1	400	170
	3	2.0	117
	5	6	203
	7 [-200	318

$$(178)^{2}+(117)^{2}+(7.3)^{2}+(318)^{2}$$

= 187,706

(e) The first line contains a smaller accumulation of error so it's a better predictor.