# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-247494

(43)Date of publication of application: 03.10.1989

(51)Int.Cl.

C10M149/06 C10M149/10 // C10N 30:00 C10N 30:04 C10N 30:06 C10N 40:24

(21)Application number: 63-077594

(71)Applicant: DAIDO KAGAKU KOGYO KK

(22)Date of filing:

29.03.1988

(72)Inventor: HIBI TORU

MORIKAWA HIROKICHI YAMAMOTO KAZUYOSHI

# (54) METAL ROLLING OIL COMPOSITION

(57)Abstract:

PURPOSE: To improve liq. circulation stability without decreasing the amt. of plate-out, by adding a particular polymer compd. to a lubricating oil component. CONSTITUTION: A lubricating oil component (a) selected from among animal and vegetable oils and fats, mineral oils and fatty acid esters is mixed with 0.1-10wt.%, based on the amt. of component (a), polymer compd. (b) selected from among an a-olefin-maleic acid copolymer (i) having repeating units of formula I (wherein R1 is a 1-50C straight-chain or branched alkyl; at least one of A's is formula II and the other is OH, formula III or IV, OR6, -OM, -NHR7 or -NR8R9; n1 is 10-3000; m1 is 2-10; m2 is 1-20; m3 is 1-10; each of R2 and R3 is H or CH3; each of R4 and R5 is H or a 1-4C alkyl; each of R6 and R7 is a 1-20C straight-chain or branched alkyl; and each of R8 and R9 is H or R6), an a-olefin-maleic acid copolymer (ii) having repeating units of formula V (wherein B is a 1-10C straight-chain or branched alkyl or -R10-O-R11-; and each of R10 and R11 is a 1-4C

alkyl) and a polymer compd. (iii) obtd. by imidization of a polymer material of formula VI with an amine compd. selected from among N-aminoethylpiperidine, N-aminopropylpiperidine, 2-aminopyridine, 3-picolylamine, etc.

# **LEGAL STATUS**

[Date of request for examination]
[Date of sending the examiner's decision of rejection]
[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

**BEST AVAILABLE COPY** 

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

# ⑲ 日本 国 特 許 庁 (JP) ⑪ 特 許 出 願 公 開

# ⑫ 公 開 特 許 公 報 (A) 平1-247494

| ®Int, Cl. ⁴                                | 識別記号 | 庁内整理番号                                                     | @公開   | 平成 1 年(198 | 9)10月3日 |
|--------------------------------------------|------|------------------------------------------------------------|-------|------------|---------|
| C 10 M 149/06<br>149/10                    |      | 8519—4H<br>8519—4H                                         |       |            |         |
| // C 10 N 30:00<br>30:04<br>30:06<br>40:24 |      | Z-8217-4H<br>8217-4H<br>8217-4H<br>8217-4H<br>8217-4H 審査請求 | 未請求 ! | 請求項の数 1    | (全8頁)   |

金属圧延油組成物 図発明の名称

②特 願 昭63-77594

忽出 願 昭63(1988) 3月29日

大阪府高槻市浦堂1丁目219-30 ②発 明 者 8 比

大阪府堺市新金岡町4丁目3番15-902号 吉 守川 博 @発明者

奈良県奈良市杉ケ町57番地2 和 義 山本 個発 明 者

大阪府大阪市北区梅田1丁目2番2-1400号 大同化学工業株式会社 勿出 顕 人

弁理士 尾 関 邳代 理 人

- 1. 発明の名称 金属圧延油組成物
- 2. 特許請求の範囲
- (3) (A) 動植物油脂、鉱物油並びに脂肪酸エス テルの少なくとも1種である潤滑油成分、及び

(但し、式中R'はC」~soの直鎖又は分岐アル キル基、Aは両方またはいずれか一方が

他方がOH、-O <del>(</del>C: H. O <del>)</del>m、 H、OR・ - O M . - N H - C H : ) N H . . - N H R , . - N R \* R \* である。 ここでn, は10~3000の整数

m a は1~10

R\*、R\*は同一又は相異なるH又はCH:

R 4 、R 3 は同一又は相異なるHまたは

C. ~。のアルキル茲

R \* 、R \* は炭素数1~20の直鎖又は分 岐アルキル基

R®、R®は同一又は相異なる日または炭 素数1~20の直鎖又は分岐 アルキル塩

で表される、繰返し単位を有するαーオレフィン - マレイン酸系共π合体

(口) 下記式

(但し、R¹、n₁、R⁴、R³は(イ)式に同 じ、BはC₁~C₁•の直鎖又は分岐アルキル基又 は-R¹⁴-O-R¹!-を示す。

R''、R''はC。~C。のアルキル茲を示す) で扱される縁返し単位を有するαーオレフィンー マレイン酸系共頂合体

(八) 下記一般式 (二)

(但し式中R'及びn; は上記と同じ) で表わされる高分子物質と、

N-アミノエチルピペリジン、N-アミノブロピルピペリジン、N-アミノエチル-4-ピペコリン、N-アミノブロピルピペコリン、N-アミノブロピルモルホリン、N-アミノピペリジン、N-アミノー4-メチルピペコリン、イソニコチンアミド、ニコチンアミド、ピコリンアミド、2-アミノピリジン、

々苛酷なものとなってきており、その要求に充分 対応出来る圧延油の開発が望まれているのが現状 である。しかしながら従来の乳化剤を用いた圧延 油は、種々の難点を有し、満足し得るものではな かった。即ち、従来の乳化剤を用いた圧延油では、 乳化剤の種類、添加量を変化させ、圧延油と圧延 材の表面に付着する油量(プレートアウト量)を 増減させ、圧延潤滑性をコントロールしていた。 しかしこのような乳化剤を用いた圧延油に於いて は、プレートアウト量と、液循環安定性とは相反 する傾向を示すものであって、エマルジョンの安 定性を高めれば圧延材へのプレートアウト量が波 少して潤滑性が不充分となり、またプレートアウ ト量を増大せんとすれば、エマルジョンが不安定 になって循環使用する際に種々の支障をきたす欠 点があった。また発生する鉄粉が不安定エマルジ ョンに付着し、冷間圧延興板を汚す所謂圧延汚れ が生じ、後工程である洗浄、焼鈍工程に悪影響を 及ぼす難点も生じる。加えて圧延機自体及びその 周辺にも付着し英観を損うばかりでなく作業上も

3 - アミノピリジン、4 - アミノピリジン、2 - ピコリルアミン、3 - ピコリルアミン、4 - ピコリルアミンがら成る群から遊ばれた少なくとも1種のアミン系化合物との反応ィミド化物質の少なくとも1種を必須成分として含有して成ることを特徴とする金属圧延油組成物。

### 3. 発明の詳細な説明

#### 〔産業上の利用分野〕

本発明は金属圧延油組成物に関し、更に詳しくは乳化型金属圧延組成物に関する。

#### 〔從来技術〕

従来から一般に使用されている金属圧延油は潤滑油成分通常は油脂、鉱物油または脂肪酸エステル等の基油に、防錆剤、極圧剤、油性向上剤、酸化防止剤等の各種の助剤を加え、これを乳化剤でO/W型エマルジョンとして通常0.1~20%程度の濃度で圧延加工部に供給している。しかしながら最近の圧延技術の進歩により圧延速度の高速、大量生産化がはかられ、潤滑性、循環安定性、作業性、廃水処理性等、圧延油に対する要求が、増

**問題が生じる。** 

#### 〔発明が解決しようとする課題〕

本発明が解決しようとする課題は上記従来の圧 延油の欠点を解決することである。

### 〔解決するための手段〕

このために本発明者は従来から鋭意研究を続けて来たが、この研究に於いてある特定の高分子化・合物を使用することにより上記欠点が解消出来、プレートアウト最を減少せしめずに液循環安定性の優れた乳化型圧延油が収得出来ることを見出し、ここに本発明を完成するに至った。即ち本発明は、(1)(A)動植物油脂、鉱物油並びに脂肪酸エス

テルの少なくとも1種である潤滑油成分、及び

(B) (イ) 下記式

$$\begin{array}{c|c}
R \\
\hline
C H - C H_{2} - C H - C H - C H - C \\
O - C C C = O
\end{array}$$

(但し、式中R」はC, ~s。の直鎖又は分岐アルキル菇、Aはいずれか一方が

他方がOH、-O ←C: H。O <del>)m·</del> H、OR<sup>\*</sup>、
-OM、-NH ←CH: <del>)</del>my NH: 、 -NHR<sup>†</sup>、
-NR<sup>®</sup> R<sup>®</sup> である。

ここでn, は10~3000の整数

m, は2~10

m : は1~20

m , は1~10

R\*、R\*は同一又は相異なるH又はCH3

R <sup>4</sup> 、 R <sup>5</sup> は同一又は相異なるHまたは

C. ~。のアルキル基

R®、R®は同一又は相異なるHまたは炭素数1~20の直鎖又は分岐マルキル丼

で表される、繰返し単位を有するαーオレフィン ーマレイン酸系共宜合体

#### で表わされる高分子物質と、

### (発明の作用)

本発明に於いては、上記式 (イ) ~ (ハ) で表される特定の高分子化合物の少なくとも1 種を使用することにより、プレートアウト量が減少することなく優れた液循環安定性を示す。 更に詳しく

(但し、R'、n,、R'、R'は(イ) 式に同じ、BはC, ~C, の直鎖又は分岐アルキル 基又は一R'°-O-R''~を示す。 R'°、R''はC, ~C。のアルキル基を示す) で表される繰返し単位を有するαーオレフィンー マレイン酸系共重合体

(ハ) 下記一般式 (ニ)

は本発明圧延油組成物に於いては上記式 (イ) ~ (ハ) で表される特定の高分子化合物の優れた保 設コロイド的作用によって、潤滑油成分はかなり 大きな粒径を保って安定に水中に分散し、ないなり 分散している粒度分布もプロードな大きな幅を でいるなりせまい幅でシャープな分布を 示し、極めて循環安定性が良い。また圧延初に保 となれたときには、これが金属被圧延材に厚 く強力な潤滑膜を形成し、プレートアウト最が大 きくなる効果を発揮する。

また本発明圧延油組成物は上記作用以外にも次の様な優れた作用を有する。

(i) エマルジョン濃度並びにクーラント(使用時に圧延油を水に希釈した状態)に於いて温度の影響を受けることが極めて少なく、温度の変化によってエマルジョンの状態が変化せず安定して使用出来、圧延作業管理が大変容易となる。

(ii) スカムや金属粉が混入してもエマルジョン 中の潤滑油成分の粒径の変化が非常に少なく、ま たスカムや鉄初を親水化するためミル (圧延機) よごれが改善される。

(iii) 金属被圧延材の表面の清浄性が大きく向上する。この際被圧延材の表面が清浄化されていないと後工程の焼鈍に於いてエッジカーボン等が生じ好ましくない。

(iv) 潤滑性が従来の圧延油に比し2~10%程度も大きく向上する。

#### (発明の構成)

本発明の圧延油組成物は基本的には、油脂、鉱物油および脂肪酸エステルの少なくとも1種から成る潤滑油成分に、上配式 (イ) ~ (ハ) で表される高分子化合物の少なくとも1種を配合したものである。

本発明に於いて使用される潤滑油成分としては 従来からこの種圧延組成物に使用されて来たもの がいずれも使用出来、その代表例として油脂、鉱 物油および脂肪酸エステルが挙げられ、これ等は 1 種または2 種以上の混合系で使用出来る。具体 的には、たとえばスピンドル油、マシン油、ター

下記一般式 (二)

$$\begin{bmatrix}
R' \\
CH - CH - CH - CH - CH \\
O - C
\end{bmatrix}$$

$$\begin{bmatrix}
C - O
\end{bmatrix}$$

$$\begin{bmatrix}
C - O
\end{bmatrix}$$

$$\begin{bmatrix}
C - O
\end{bmatrix}$$

(但し、R'は上記と同じ、nは10~3000 の整数)

で表される緑返し単位を有する高分子物質を、ベ ソゼン、キシレン、ジメチルスルホキシド等の適 宜な溶媒に溶解した後、下記一般式 (A)

$$R^{4}$$
 $N-B-N$ 
 $R^{12}$ 
...... (A)

(但しR\*、R\*及びBは前記に同じ、R'\*とR'\* はR\*とR\*と同じ)

で表されるジアミンを、上記高分子物質の級返し単位当たり、1.0~1.2 当量加え、加温下通常 70~80℃程度でモノアミド化して製造出来る。

ビン油、シリングー油等の鉱物油、鯨油、牛脂、豚脂、ナタネ油、ヒマシ油、ヌカ油、パーム油、ヤシ油等の動植物油の油脂;牛脂、ヤシ油、パーム油、ヒマシ油等から得られる脂肪酸と炭素数1~22の脂肪族1個アルコール、エチレングリコール、ネオペンチルグリコール、ペンタエリスリトール等とのエステルが挙げられる。

本発明で使用する式 (イ) で表される高分子化 合物は、その製法は何等限定されないが、たとえ ば次の様な方法で製造される。

αーオレフィンーマレイン酸共重合体をキシレン、nーへキサン等の無極性媒体に溶解したのち、 該共重合体の繰返し単位当り1.0~1.5当費のジアミンで加温下通常70~200℃程度でモノア ミド化し、次いでエチレンオキサイド付加、アル キル化、アミノ化、アルカリ金属塩化し、最後に 脱溶媒して製造することが出来る。

本発明で使用する式 (ロ) で表される高分子化 合物は、その製法は何等限定されないが、たとえ ば次の様な方法で製造される。

また上記高分子物質の繰返し単位当たり2.0 ~ 2.5 当量のジアミンを加え、170~180℃で 反応させ、ジアミド化物が製造できる。

上記(二)の高分子物質は、たとえば次の様な方法で製造される。即ち無水マレイン酸(1モル比)と、αーオレフィン(1.0~1.2 モル比)を無溶媒もしくはベンゼン、キシレン、ジメチルスルネキシド、ジメチルホルムアミド、ジオキサン等の適宜な溶媒中、過酸化ベンゾイル、過酸化ターシャリプチル、アンピスイソプチロニトリル等の適当な重合開始剤の存在下、重合させることにより製造することが出来る。この高分子物質の重合度は10~3000程度、平均分子量は15

・本発明に於いて使用する上記式 (イ) ~ (ハ) の各化合物のうち、好ましいものを示せば次の様なものである。即ち先ず式 (イ) に於いては R' = 19~50、m, = 2~8、m; = 2~10、m, = 2~6、R\* = 6~18、R' = 1~6、R\* = 1~6、M=Na、n=5~1000

のものである。また式(イ)に於いてMで示される金属としては上記好ましい金属に限定されるものではなく通常Li、Kも含まれる。また式(D)に於いては、好ましいものはni が $10\sim120$ 0のものである。

式 (ロ) に於いては R' が3~50、BがC: ~C. の直鎖または分岐アルキル又は -R'°-O-R''-茲中、R'°及び R''がC, ~C. の直鎖または分岐アルキル茲、のものである。また、イミド化物 (ハ) については N-アミノブロビルピベリジン、のものである。

本発明に於いては上記一般式(イ)~(ハ)で 表される化合物の少なくとも「種を使用すること を必須としているが、好ましくはこれ等化合物と 対イオンを形成する物質を併用する。この際使用 される対イオンとしてのアニオンとしては、たと えば硫酸イオン、硝酸イオン、塩素イオン、グリ コール酸イオン、リン酸イオン、硼酸イオン、炭 素数1~20の脂肪酸イオン等が挙げられる。ま

酸イオンおよびリン酸、硼酸のモノまたはジエステルにおいてエステル成分の炭素数が6~18を除く対イオンを使用した場合には、高分子化合物(イ)~(ハ)は、驀油に均一溶解しがたく使用現場に於いて圧延油と分散剤を各々所定濃度に発釈してエマルジョンを形成することが好ましい。

本売明に於いては上記一般式 (イ) ~ (ハ) で 表される化合物はこれ等の 1 種でも或いは 2 種以 上併用しても良い。

これ等本発明の高分子化合物は圧延油組成物全量に対して0.1~10重量%好ましくは0.5~5重量%になるように配合する。

本発明の金属圧延油組成物には、上記成分の他、 必要に応じて公知の各種添加剤、たとえば防錆剤、 油性向上剤、極圧剤、酸化防止剤等を添加するこ とが出来る。

上記各種添加剤は、必要に応じ圧延袖組成物全 無に対して、それぞれ0~10%、0~20%、 0~3%、0~5%の割合で添加することが出来 る。 たその他リン酸のモノまたはジエステル(エステル成分の炭素数1~18)、硼酸のモノまたはジェステル(エステル成分の炭素数1~18)、炭素数1~20の脂肪酸等が使用出来る。

通常圧延油は製造工場に於いて、油脂、鉱油或いはエステル等を基油とし、これに、必要に応じ油性向上剤、極圧添加剤、防錆添加剤、酸化防止剤、乳化剤等の1種または2種以上を配合した組成物を輸送し、実際使用される現場に於いて水に0.1~10%の濃度に希釈、エマルジョン化して使用される。

このために対イオンとして炭素数1~20好ましくは3~20の脂肪酸イオンまたは、リン酸またはこれで、エステルにおいて、エステル成分の炭素数が6~18を用いた場合には圧みで、は使用する高分子物質(イ)~(ハ)は圧延油の基油に均一に溶解する。従って使用現場に於いては従来の圧延油同様、水に所定濃度に希釈するのみで均一なエマルジョンが形成される。これに対して、対イオンとして炭素数1~20の脂肪

防錆剤としては、アルケニルコハク酸及びその 誘導体、オレイン酸等の脂肪酸、ソルピタンをも オレート等のエステルスはその他フミン類等リンは 油性向上剤としては、オレイン酸、ステテル はが、カリクレジルは、なななが、また、極圧剤と は、トリクレジルホスフェート等のリン系化合 物及びジアルキルジチオリン酸亜鉛等の有機化 であるないが、酸化防止剤としては、2、4ージェーが ルpークレゾール等のフェクール系化合物、 ニルスーナフチルアミン等の芳香族アミン等 れぞれ例示される。

本発明の金属圧延油組成物は、上記圧延油成分と、水溶性高分子化合物とを単に同時混合するか、 或いは、水分量が80%位までの濃厚溶液として 調整しておき、使用時水で希釈することにより使 用される。

#### 〔実施例〕

以下に実施例並びに比較例を示して本発明を具体的に説明する。但し下記例に於いて使用した分

敗剂A~Cは夫々次のものを示す。

#### 高分子分散剂

A: 炭素数 1 2 の α ー オレフィンと無水マレイン 酸の共宜合体の N. N ー ジェチルアミノエチ ルアミンによるジアミド化物

重合度=40

MW = 18000

C:炭素数50のαーオレフィンと無水マレイン 酸の共重合体のメチルアミノプロピルアミン によるイミド化物

重合度-10

 $\overline{MW} = 9000$ 

D:炭素数6のαーオレフィンと無水マレイン酸の共重合体のN、Nージメチルアミノプロピルアミンによるジアミド化物

**置合物 = 200** 

MW = 74000

E: 炭素数18のα-オレフィンと無水マレイン 酸の共重合体のN, N-ジエチルアミノプロ

<圧延試験>

二段試験圧延機を用いて、下記圧延条件にて7 パス圧延し、仲び率-3.4 時点に於ける圧延荷重 (t数)を測定し、下記式による圧延相対比を求 めた。.

※ 圧延 条件

圧延材料:軟鋼板(SPCC)厚さ2.2 mm×巾

50mm×長さ500mm

圧延速度:13/分

圧延ロール: 直径150m、肩長200m

ブライトロール

クーラント温度:50~55℃

クーラント温度:5 %エマルジョン

パススケジュール: 1 パス

※圧延相対比 本発明圧延油の圧延荷重( t 数) 市販圧延油の圧延荷重( t 数)

<细板明度试験>

試験圧延した網板表面に市販メルテングテープ を貼付、次いで剝離し、該テープを標準白色台紙 に貼りつけた表面を日本電色工業製色差計ND-1 ピルアミンのモノアミド化物に更にエチレン オキサイド 5 モル付加物

**並合度-40** 

 $\overline{MW} = 26000$ 

F:分散剤A50部と分散剤C50部の混合物

G:オレイルピニルエーテルと無水マレイン酸の N, Nージエチルアミノプロパンジアミドの + サヘル

 $\overline{MW} = 4960$ 

実施例1~6

上記分散剤を用い、第1 表に示す所定の成分と 所定の配合量で配合して圧延油組成物を調製した。

かくして得られた各組成物について、各種特性 を測定した。この結果を第2表並びに第1~4回 に示す。但し各種特性は夫々次の方法で測定した。 <付着量>

1.6 × 8 0 × 1 0 0 mmの酸洗い板をグル圧延5 パス後水切りして風乾(2 4 時間)して秤量して W,を測定する。次いでトリクレンで洗浄して秤 量してW。を測定する。

付着量=W,-W:

0 1 D型でその明度を測定した。完全黒色を 0、 標地白色台紙の明度を 8 5 として求める。

<劣化テスト>

本発明圧延油(3%エマルジョン)を下記第5回に示す循環劣化試験機で7日間劣化試験を行い、試験前後の粒径分布を測定した。但し第5図中(1)はタンク(液温55℃±5℃)、(2)はフィルター、(3)はボンブ(25ℓ/min)、(4)は回転ドラム(30¢cm×20cm²)を示す。この回転ドラム(4)中には1/2網球ボール150個、2cm×2cm×1cm排物ブロック8個を内在せしめ、115rpmで回転するものである。

第1~4図に於ける実線は試験前の粒径分布を 表し、また点線は試験後の粒径分布を表す。

(発泡テスト)

本発明圧延油 (3 %エマルジョン) を下記第 6 図に示す循環発泡試験機を用いて 3 0 分間行い液 両よりの泡の高さを測定した。但し、第 6 図中(II) はタンク(液温 5 5 ℃ ± 5 ℃)、 (2) はポンプ ( 1 0 2 / min )、 (3) はノズル (内径 8 ma) を示し、 ノズルから液面までの距離(H) は30cmである。 また(A)は循環用パイプ(5)は圧延油を示す。

|    | 牛 脂         | オレイルオクタノエート                    | バーム油                                            |                                                  |                                                       |                                                             | 教室                                                          |                                                              |                                                                                                        |                                                           | 対イオンリン数                                                                                       | プロピオン酸                                                                      | オクタノイック酸                                                                                                    | ラウリン酸                                                                                                         | 拟结                                                     |
|----|-------------|--------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|    |             | \                              | _                                               |                                                  |                                                       |                                                             |                                                             |                                                              |                                                                                                        |                                                           |                                                                                               | 凝                                                                           | 12                                                                                                          | 额                                                                                                             | ツゴ                                                     |
| 刻砌 |             | 1-J                            |                                                 | ٧                                                | В                                                     | ပ                                                           | ۵                                                           | B                                                            | F                                                                                                      | C                                                         |                                                                                               |                                                                             | 9酸                                                                                                          |                                                                                                               | ポタキランモキレジルー                                            |
| 1  | 9.7         |                                |                                                 | 1                                                |                                                       |                                                             |                                                             |                                                              |                                                                                                        |                                                           |                                                                                               |                                                                             |                                                                                                             | 2                                                                                                             | 0.5                                                    |
| 2  |             | 86                             |                                                 |                                                  | -                                                     |                                                             |                                                             |                                                              |                                                                                                        |                                                           |                                                                                               |                                                                             | 1                                                                                                           |                                                                                                               | 0.5                                                    |
| 3  |             |                                | 9 8                                             |                                                  |                                                       | -                                                           |                                                             |                                                              |                                                                                                        |                                                           |                                                                                               | -                                                                           |                                                                                                             |                                                                                                               | 0.5                                                    |
| 4  | 7.0         | 5 3                            |                                                 |                                                  |                                                       |                                                             | 1                                                           |                                                              |                                                                                                        |                                                           | 0.5                                                                                           |                                                                             |                                                                                                             |                                                                                                               | 0.5                                                    |
| 5  | 5.5         | 4 4                            |                                                 |                                                  |                                                       |                                                             |                                                             | -                                                            |                                                                                                        |                                                           | 0.2                                                                                           |                                                                             |                                                                                                             |                                                                                                               | 0.5                                                    |
| 9  | 35          | 35                             | 8.2                                             |                                                  |                                                       |                                                             |                                                             |                                                              | -                                                                                                      |                                                           |                                                                                               |                                                                             | 1.5                                                                                                         |                                                                                                               | 0.5                                                    |
| 秦  | 9.1         |                                |                                                 |                                                  |                                                       |                                                             |                                                             |                                                              |                                                                                                        |                                                           |                                                                                               |                                                                             |                                                                                                             |                                                                                                               | 3.0                                                    |
| 殿  | 9.9         |                                |                                                 |                                                  |                                                       |                                                             |                                                             |                                                              |                                                                                                        |                                                           | 0.2                                                                                           |                                                                             |                                                                                                             |                                                                                                               | 0.5                                                    |
|    | 1 2 3 4 5 6 | 1 2 3 4 5 6 HKW 97 70 55 35 97 | 1 2 3 4 5 6 Hg/81 97 70 55 35 97 97 98 29 44 35 | 1 2 3 4 5 6 HKW<br>97 70 55 35 97<br>98 29 44 35 | 1 2 3 4 5 6 HKW<br>97 70 55 35 97<br>98 29 44 35<br>1 | 1 2 3 4 5 6 HKW<br>97 70 55 35 97<br>98 29 44 35<br>1 1 2 8 | 1 2 3 4 5 6 HgW<br>97 70 55 35 97<br>98 29 44 35<br>1 28 28 | 1 2 3 4 5 6 HgW<br>97 70 55 35 97<br>98 29 44 35<br>1 1 2 28 | 1 2 3 4 5 6 HgW<br>97 70 55 35 97<br>1 98 29 44 35<br>1 1 2 8<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 HKW 97 97 97 770 55 35 97 97 98 29 44 35 97 1 | 1 2 3 4 5 6 HGM 97 97 97 70 55 35 97 97 98 29 44 35 97 1 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 HGM 97 97 97 98 29 44 35 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 比較<br>97 98 29 44 35 97<br>1 1 2 8 29 44 35 97<br>1 1 1 2 8 28 28 28 28 28 28 28 28 28 28 28 28 | 1 2 3 4 5 6 HgW<br>97 97 70 55 35 97<br>98 29 44 35<br>1 28 28 28 28<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 HgW 97 97 97 97 97 97 97 97 97 97 97 97 97 |

再2数

|       | 付着型<br>(8/㎡) | 田延期対比 | 如阪明度 | 松康   | 粒径分布                                    | 発泡展高さ<br>(国) |
|-------|--------------|-------|------|------|-----------------------------------------|--------------|
| 実施例1  | 1.02         | 96.0  | 65.7 | 11.5 |                                         | 2            |
| 2     | 1.05         | 0.94  | 67.2 | 10.8 | 類[図                                     | 2            |
| 3     | 1.09         | 0.93  | 8.99 | 10.0 | 第2図                                     | 0            |
| 4     | 1.15         | 0.95  | 64.7 | 11.2 |                                         | 1            |
| 5     | 0.95         | 0.38  | 65.3 | 6.8  | 第3図                                     | 8            |
| 9     | 1.13         | 0.96  | 67.4 | 11.4 |                                         |              |
| LAKW1 | 0.92         | 1.00  | 8.29 | 1.2  | 五 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2            |
| 2     | 0.98         | 0.97  | 63.6 | 13.8 |                                         | 2            |

## 4. 図面の簡単な説明

第1~4図は各圧延油組成物の劣化試験の結果 を示す図面であり、また第5図は劣化試験の方法 をまた第6図は発泡テストに使用した装置を示す。

1 ... ... 9 > 0

2……フィルター

3 ……ポンプ

4……回転ドラム

11 ... ... 9 > 9

12……ポンプ

13……ノズル

14 ... ... パイプ

15……圧延油

(以上)

特許出願人 大同化学工类株式会社

代理人 弁理士 尾関



第 1 図



**₹3** ☑



第 2 図



第 4 図



第 5 図



第 6 図

