NATURA del GENE e del GENOMA

DNA, CROMOSOMI ED INFORMAZIONE GENETICA

heat-killed

Esperimento di Griffith (1923), utilizzo di batteri che causano la polmonite.

S: cellule batteriche virulente, dotate di capsula. Formano colonie uniformi, regolari, a cupola.

R: cellule batteriche non virulente. Formano colonie non uniformi e piatte.

*In S. pneumoniae le due forme sono intercambiabili

Nelle cellule di tipo S esistono molecole che trasformano e rendono patogene le cellule di tipo R!

Esperimento di Avery, MacLeod e MacCarty (1950)

Il DNA ha la capacità di rendere patogene le cellule di tipo R e quindi contiene l'informazione genetica

3 funzioni che caratterizzano il materiale genetico

- Il DNA deve contenere l'informazione che codifica i caratteri ereditari.
- Il DNA deve contenere l'informazione per dirigere la sua duplicazione (REPLICAZIONE)
- 3. Il DNA deve contenere l'informazione che dirige il processo di costruzione di proteine specifiche (TRASCRIZIONE)

*L'elica di DNA contiene i geni

*Un gene contiene l'informazione completa per costruire una proteina o un RNA

*L'informazione genetica completa di un organismo costituisce il GENOMA

*Diversi tipi di proteine sono associate all'elica di DNA: istoni e proteine non istoniche

*Il complesso DNA-proteine prende il nome di cromatina e costituisce i cromosomi

*Nei batteri il genoma è contenuto in un unico cromosoma circolare

*Negli eucarioti il genoma è distribuito in un certo numero di cromosomi lineari

DAL DNA ALLE PROTEINE Trascrizione

gene DNA 5' SINTESI DELL'RNA TRASCRIZIONE nucleotidi RNA SINTESI PROTEICA TRADUZIONE PROTEINA H₂N **-**√ amminoacidi

ESPRESSIONE GENICA

TRASCRIZIONE

La trascrizione è la sintesi di una molecola di RNA la cui sequenza di basi è complementare a quella del filamento stampo.

L'enzima RNA polimerasi trascrive il DNA in RNA.

Nelle cellule eucariotiche esistono 3 diverse RNA polimerasi (I-II-II) attive nella trascrizione di tipi differenti di geni.

Nella cellula vengono prodotti diversi tipi di RNA

Tipo di RNA	Funzione	
RNA messaggeri (mRNA)	Codificano le proteine	RNA pol II
RNA ribosomali (rRNA)	Formano il nucleo centrale del ribosoma e catalizzano la sintesi proteica	RNA pol I e III
RNA transfer (tRNA)	Fungono da adattatori tra l'mRNA e gli amminoacidi nella sintesi delle proteine	RNA pol III
microRNA (miRNA)	Regolano l'espressione genica	RNA pol II
Altri RNA non codificanti	Attivi nello splicing, nella regolazione dei geni, nel mantenimento dei telomeri e in molti altri processi	RNA pol II

Passaggi principali della trascrizione

Appositi segnali sul DNA indicano all'RNA polimerasi dove cominciare la trascrizione e dove deve completarla.

Nelle cellule eucariotiche le RNA polimerasi richiedono il concorso di numerose proteine per iniziare la trascrizione.

I fattori di trascrizione sono proteine che si aggregano al promotore posizionando l'RNA polimerasi e aprendo la doppia elica per esporre il filamento stampo.

I fattori generali di trascrizione (FGT) insieme alla RNA pol in corrispondenza del promotore formano il complesso di pre-inizio (PIC).

Proteina TBP che si lega al TATA box distorce la doppia elica del DNA (in rosso).

Formazione del PIC

*solo TFIIH ha attività enzimatica, poichè va a fosforilare la RNA pol

- Legame sequenziale di sei fattori di trascrizione generali e della RNA polimerasi.
- L'attivazione della RNA polimerasi richiede una fosforilazione ATP-dipendente.
- Intervento di proteine aggiuntive (elicasi) che despiralizzano la molecola di DNA facilitando l'assemblaggio del complesso a livello di specifici geni.

Per poter essere tradotte le molecole di pre mRNA sintetizzate nel nucleo, devono essere esportate nel citoplasma attraverso i pori dell'involucro nucleare.

Questo trasporto è preceduto dalla maturazione dell'RNA (RNA processing).

La maturazione dell'RNA consiste nell' apposizione del cappuccio (capping), nello splicing e nella poliadenilazione.

Il capping e la poliadenilazione aumentano la stabilità della molecola di RNA e ne facilitano l'esportazione dal nucleo al citoplasma.

Capping 5':

un enzima con 2 siti attivi che toglie un fosfato e aggiunge residuo di guanina che poi viene metilato da altri enzimi (cappuccio di metil-guanosina)

*avviene mentre la molecola di RNA si sta ancora sintetizzando e gli enzimi sono reclutati dal CTD della RNA pol.

Poliadenilazione:

il complesso responsabile è associato al CTD-P della RNA pol (complesso di maturazione). Una endonucleasi taglia preRNA a valle del sito di riconoscimento, mentre la Poli(A) pol aggiunge ca. 250 A senza bisogno dello stampo.

I geni umani sono frammentati in diversi esoni (sequenze codificanti) ed introni (sequenze non codificanti).

Lo splicing dell'RNA comporta la rimozione di tutte le sequenze introniche dal pre-mRNA e la ricucitura di tutti gli esoni.

Specifiche sequenze nucleotidiche segnalano l'inizio e la fine dell'introne (siti di splicing).

Guidato da tali sequenze lo spliceosoma (un aggregato di molecole proteiche e small nucelar RNA o snRNA) taglia gli introni e ricuce gli esoni.

*snRNA e proteine formano small nuclear ribonucleoprotein (snRNP) che quando si associano al pre-mRNA formano lo spliceosoma stesso.

*Durante lo splicing l'introne forma una struttura ad ansa e poi a cappio.

I trascritti primari possono venire elaborati in vari modi e dar luogo a proteine diverse attraverso uno splicing alternativo.

Lo splicing alternativo prevede l'esclusione di alcuni esoni dalla molecola del RNA finale.

DAL DNA ALLE PROTEINE Traduzione

Trascrizione e maturazione

La relazione tra sequenza nucleotidica e sequenza amminoacidica è basata su una serie di regole che vengono definite codice genetico.

Le parole del codice sono i codoni, cioè triplette specifiche di basi che corrispondono a specifici amminoacidi.

64 possibili combinazioni = 61 corrispondono ad amminoacidi (codice degenerato)

3 codoni di stop

1 codone iniziatore

RNA transfer (tRNA)

Le molecole di tRNA sono adattatori molecolari che fanno corrispondere ogni amminoacido al suo codone.

L'anticodone è la sequenza di 3 nucleotidi che si appaia con un codone sulla molecola di mRNA.

L'aminoacido che corrisponde all'anticodone è legato all'estremità 3' del tRNA.

Specifici enzimi legano i tRNA all'amminoacido giusto

Gli enzimi che catalizzano il legame dell'amminoacido all'estremità 3' del tRNA sono amminoacil-tRNA-sintetasi.

L' RNA messaggero è decodificato dai ribosomi, formati da rRNA (RNA ribosomale) e proteine (proteine ribosomali).

Si tratta di un ribozima (RNA svolge la funzione di catalizzatore)

**La direzionalità di scorrimento dell'mRNA è sempre 5'→ 3'

Ribosomi eucariotici (di mammifero)

rRNA

La Maturazione del rRNA è aiutata da piccoli RNA nucleolari (snoRNA) legati a particolari proteine con le quali costituisco piccole ribonucleoproteine nucleolari (snoRNP)

La molecola di mRNA viene tradotta in un processo ciclico a 4 stadi

Appositi codoni dell'RNA messaggero segnalano al ribosoma dove iniziare e dove terminare la traduzione.

La traduzione comincia sempre con il codone AUG e richiede il tRNA iniziatore carico dell'aminoacido metionina.

La traduzione si arresta in corrispondenza ai segnali di un codone di stop (UAA, UAG, UGA).

Ai codoni di stop si associano i fattori di rilascio che liberano il peptide neosintetizzato dal ribosoma.

I Poliribosomi

Le proteine vengono sintetizzate sui poliribosomi, enormi aggregati citoplasmatici costituiti da molti ribosomi attaccati a singoli mRNA

Controllo post-traduzionale e la degradazione delle proteine

Esistono meccanismi cellulari che controllano il tempo di sopravvivenza delle proteine e ne controllano la concentrazione intracellulare

*specifiche vie metaboliche demoliscono le proteine (proteolisi) grazie a proteasi.

*la proteina deve essere eliminata anche in caso di assunzione scorretta della conformazione.

*la demolizione proteica avviene all'interno del proteasoma, presenti nel nucleo e nel citoplasma.

*vengono degradate solamente proteine che sono state precedentemente poliubiquitinilate.

catena polipeptidica nascente

RIPIEGAMENTO E LEGAME DEI COFATTORI, SULLA BASE DI INTERAZIONI NON COVALENTI

LA PROTEINA SUBISCE MODIFICAZIONI COVALENTI, PER ESEMPIO LA FOSFORILAZIONE

LEGAME NON COVALENTE CON ALTRE SUBUNITÀ PROTEICHE

proteina funzionale matura