TCDS No.: E.018 Type

Issue: 10 BR700-710 engines Date: 29 March 2017

TYPE-CERTIFICATE DATA SHEET

No. E.018

for BR700-710 engines

Type Certificate Holder

Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11, Dahlewitz 15827 Blankenfelde-Mahlow Germany

EASA Design Organisation Approval No: EASA.21J.065

For Models:

BR700-710A1-10 BR700-710A2-20 BR700-710C4-11 BR700-725A1-12

Intentionally left blank

Type BR700-710 engines

Date: 29 March 2017

TCDS No.: E.018 Issue: 10

TABLE OF CONTENTS

I. General	4
1. Type/ Model	
2. Type Certificate Holder	4
2. Manufacturer	4
4. Date of Application	4
5. EASA Type Certification Date	4
II. Certification Basis	5
1. EASA Certification Basis	5
1.1. Airworthiness Standards	5
1.2. Special Conditions (SC)	5
1.3. Equivalent Safety Findings	5
1.4. Deviations	6
1.5. Environmental Protection	6
III. Technical Characteristics	6
1. Type Design Definition	6
2. Description	7
3. Equipment	7
4. Dimensions	7
5. Dry Weight	8
6. Ratings	8
7. Control System	8
8. Fluids (Fuel, Oil, Coolant, Additives)	8
9. Aircraft Accessory Drives	9
10. Maximum Permissible Air Bleed Extraction	. 10
IV. Operating Limitations	. 12
1. Temperature Limits	. 12
2. Speed Limits	. 13
3. Pressure Limits	. 13
3.1 Fuel Pressure	13
3.2 Oil Pressure	14
4. Installation Assumptions:	. 14
5. Time Limited Dispatch:	. 14
V. Operating and Service Instructions	. 15
VI. Notes	
SECTION: ADMINISTRATIVE	. 17
I. Acronyms and Abbreviations	. 17
II. Type Certificate Holder Record	. 17
II. Type Certificate noticer necord	

TCDS No.: E.018 Type

BR700-710 engines Date: 29 March 2017 Issue: 10

I. General

1. Type/ Model

Type: BR700-710

Models:

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12

These Models are approved for use on multi-engined civil aircraft at the ratings and within the operating limitations specified below, subject to compliance with the powerplant installation requirements appropriate to approved installations.

2. Type Certificate Holder

Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11, Dahlewitz 15827 Blankenfelde-Mahlow Germany

EASA Design Organisation Approval No: EASA.21J.065

2. Manufacturer

Rolls-Royce Deutschland Ltd & Co KG (Formerly Rolls-Royce Deutschland GmbH, formerly BMW Rolls-Royce GmbH)

4. Date of Application

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
16 February 1993	23 March 1994	15 January 2001	6 March 2006

5. EASA Type Certification Date

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
(refer to note 6)	(refer to note 6)	(refer to note 6)	
14 August 1996	28 January 1997	24 June 2002	23 June 2009

Certification Reference Date:

31 August 1993

TCDS No.: E.018 Type

Issue: 10 BR700-710 engines Date: 29 March 2017

II. Certification Basis

1. EASA Certification Basis

1.1. Airworthiness Standards

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11

JAR-E, Change 8

Amendment E/91/1, effective 27.05.1991 Amendment E/93/1, effective 17.05.1993

Emissions and Fuel Venting: ICAO Annex 16, Volume II

(Second Edition July 1993)

Plus: CS-34 Issue 17.10.2003; ICAO Annex 16, Volume II (Third Edition, including Amendment 7), Part III, Chapter 2.3.2, e) (CAEP/8)

none	JAR-E, Change 10, E790
	Ingestion of Rain and Hail
	JAR-E, Change 10, E40(f) Ratings

BR700-725A1-12:

CS-E, Initial Issue dated 24 October 2003 E50 and E1030 of CS-E, Amendment 1 dated 10 December 2007 E1040 of CS-E, Amendment 3

1.2. Special Conditions (SC)

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11
Ingestion of Hail Ingestion of Rain		none

BR700-725A1-12:

none

1.3. Equivalent Safety Findings

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11
JAR-E840(a)(2) Rotor Integrity		

TCDS No.: E.018 Type

Issue: 10 BR700-710 engines Date: 29 March 2017

BR700-725A1-12:

none

1.4. Deviations

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11

JAR-E890(a) Engine Calibration in Reverse Thrust – Exemption

BR700-725A1-12:

none

1.5. Environmental Protection

BR700-725A1-12:

CS-34; ICAO Annex 16, Volume II (Second Edition July 1993, including Amendment 5) dated 24 November 2005. NOx Standard in accordance with Part III, Chapter 2, § 2.3.2 d (CAEP/6)

III. Technical Characteristics

1. Type Design Definition

The Engine Type Designs are defined in the following Drawing Introduction Sheets (DIS):

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
DIS 10002 ISSUE 03	DIS 10005 ISSUE 02	DIS 10012 ISSUE 01	Except for the EEC P/N, which is defined in Chapter III, 7, the build standard is defined in DIS 10016 Issue 1 Revision D or later approved issues
or later approved	or later approved	or later approved	
issues	issues	issues	

Changes to the Engine Type Design are introduced by approved Modification Bulletins.

TCDS No.: E.018 Type Issue: 10

BR700-710 engines Date: 29 March 2017

2. Description

Two spool axial flow engine consisting of a single stage fan, a ten stage axial flow high pressure compressor, an annular combustion chamber, a two stage axial flow high pressure turbine, a two/three* stage axial flow low pressure turbine, an accessory gearbox, a thrust reverser** and a Full Authority Digital Engine Control (FADEC).

3. Equipment

Approved equipment is listed in the following RRD Reports:

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
E-TR150/95-(FR), ISSUE 03 'Engine Equipment Classification' or later approved issues	E-TR427/96-(FR), ISSUE 01 'Engine Equipment Classification' or later approved issues	E-TR466/01-(FR), ISSUE 02 'Engine Equipment Classification' or later approved issues	See Installation Manual O-TR1458/08

For details of equipment included in the type design definition: refer to the appropriate engine DIS.

4. Dimensions

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Overall Length	4669 mm	4669 mm	4660 mm	3297 mm (tip of spinner to rear of exhaust cone)
Maximum Diameter (radius)	1820 mm	1820 mm	1785 mm	950 mm (radius from center line measured at the lowest pont of AGB)

^{*} The BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 feature a two stage axial flow low pressure turbine, while the BR700-725A1-12 features a three stage axial flow low pressure turbine. ** The BR700-725A1-12 is designed for use with a Thrust Reverser, but it is not part of the engine Type Design.

TCDS No.: E.018 Type

Issue: 10 BR700-710 engines Date: 29 March 2017

5. Dry Weight

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Dry engine weight	1851,2 kg	1891,0 kg	1818,4 kg	1635,2 kg

Dry weight includes thrust reverser and dressings for the BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 and dressings for the BR700-725A1-12, but excludes all fluids and all buyer furnished equipment and in the case of the BR700-725A1-12 also the thrust reverser.

6. Ratings

_	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Take off	65,6 kN	65,6 kN	68,4 kN	75,2 kN
Maximum Continuous	64,3 kN	64,3 kN	64,3 kN	66,6 kN

See Note 5.

7. Control System

The engine is equipped with a Full Authority Digital Engine Control (FADEC) system.

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
EEC P/N	1501KDC01-817 or later approved standards	1520KDC01-605 or later approved standards	1505KDC01-002 or later approved standards	G3010ECU01AJ or later approved standards

8. Fluids (Fuel, Oil, Coolant, Additives)

Approved fuels, additives and oils are listed in the Operating Instructions

BR700-710 engines Issue: 10 Date: 29 March 2017

9. Aircraft Accessory Drives

BR700-710A1- 10 (with two	Direction of	Trans- mission	Shear Torque	Weight	Static Overhang	Maximum Torque
hydraulic pumps		Ratio	- 4		Moment	Extraction
installed)		-	[Nm]	[kg]	[Nm]	[Nm]
Gear Line 6 Pad	counter-	0.270	418	8.91	8.1	69
(Hydr. Pump 1)	clockwise	0.270	410	0.91	0.1	09
Gear Line 8 Pad	counter-	0.275	418	8.91	8.1	68
(Hydr. Pump 2)	clockwise	0.275	410	0.91	0.1	00
Gear Line 11 Pad	clockwise	0.520	412.5	32.61	56.5	106
(Generator)	CIOCKWISE	0.320	412.3	32.01	30.3	100

BR700-710A1- 10 & BR700-710C4-	Direction of Rotation ¹	Trans- mission Ratio	Shear Torque	Weight	Static Overhang Moment	Maximum Torque Extraction
11		-	[Nm]	[kg]	[Nm]	[Nm]
Gear Line 8 Pad (Hydraulic Pump)	counter- clockwise	0.275	418	8.91	8.1	86
Gear Line 11 Pad (Generator)	clockwise	0.520	412.5	32.61	56.5	106

BR700-710A2- 20	Direction of Rotation ¹	Trans- mission Ratio	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Gear Line 6 Pad (Hydraulic Pump)	counter- clockwise	0.335	305.1	6.57	6.1	39
Gear Line 8 Pad (Generator No. 2)	counter- clockwise	1.080	283	20.3 ²	32.5	50
Gear Line 11 Pad (Generator No. 1)	clockwise	1.083	283	20.3 ²	32.5	50

BR700-725A1-	Direction	Trans-	Shear	Weight	Contin.	Static
12	of	mission	Torque		Torque	Overhang
	Rotation ¹	Ratio				Moment
		-	[Nm]	[kg]	[Nm]	[Nm]
Hydr. Pump	clockwise	0.261	406,75	14,55 ²	120 ³	16,37
IDG	clockwise	0,522	412,5	32,61 ²	109 ³	56,5
ATS	clockwise	0,988	847	9,99 ²	415	6,76

³ Further details regarding acceptable loading are defined in the Installation Manual

² Dry.

¹ Looking normal to pad along shaft.

TCDS No.: E.018 Type
Issue: 10 BR700-710 engine:

Issue: 10 BR700-710 engines Date: 29 March 2017

10. Maximum Permissible Air Bleed Extraction

BR700-710A1-10, BR700-710A2-20, BR700-710C4-11:

EPR=P50/P20.

The amounts of bleed extraction from stages 5 and 8, respectively, are related to the core entry mass flow, W26. The amounts of fan bleed extraction are related to the fan entry mass flow, W1A.

Stage 8 bleed extractions are cleared for operation up to and including Maximum Continuous rating.

BR700-710A1-10	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR		7.8	\times	3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.2	8.3	7.9	1.6
Above 1.3 EPR	4.3		0.4	8.5	8.0	1.8

BR700-710A2-20	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR		7.8	0,4	3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.4	8.3	7.9	0.9
Above 1.3 EPR	4.3		0.4	8.5	8.0	1.1

BR700-710C4-11	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR		7.7	\times	3.0	12.0	0.6
1.06 to 1.3 EPR	4.3	4.1	0.2	8.2	7.8	1.6
Above 1.3 EPR	4.2		0.4	8.3	7.8	1.8

TCDS No.: E.018 Type

Issue: 10 BR700-710 engines Date: 29 March 2017

BR700-725A-12:

$$NHRT2 = \frac{\text{Mechanical HPSpeed [rpm]}}{\sqrt{\text{Engine Inlet Temperature [K]}}} = \frac{NH}{\sqrt{T2}}$$

- Stage 5 and stage 8 HP compressor customer bleed is expressed as a percentage of HP compressor entry mass flow W26.
- Fan bleed flow is expressed as percentage of the fan tip entry mass flow W12.
- Further details regarding acceptable conditions for customer bleed air extractions are defined in the installation Manual

HP Bleed Stage 5						
Nominal		Maximum				
NHRT2	% W26	NHRT2	% W26			
Idle – 675	6.5	Idle – 700	7.7			
675 – 850	10.1	700 – 875	10.1			
850 – MTO	6.5	875 – MTO	8.6			

HP Bleed Stage 8				
Nominal		Maximum	Maximum	
NHRT2	% W26	NHRT2	% W26	
Idle – 790	13.6	Idle – 800	14.1	
790 – MTO	9.3	800 – MTO	13.6	

LP(Fan) Bleed				
Nominal		Maximum		
NHRT2	% W12	NHRT2	% W12	
Idle – 700	1.4	Idle – 720	1.5	
700 – 775	1.7	720 – MTO	1.9	
775 - MTO	1.7			

TCDS No.: E.018 Type Issue: 10 BR700-710 engines

IV. Operating Limitations

1. Temperature Limits

Gas Temperatures TGT (trimmed):

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Maximum prior to	150 °C			1F0°C
starting on ground	150 C			150°C
Starting on ground	700 °C			700°C
Starting in flight	850 °C			850°C
Take-off ³	900 °C			900°C
Maximum Continuous	860 °C			885°C
Maximum				
Overtemperature	905 °C			920°C (see Note 7)
(20sec.)				

Date: 29 March 2017

Fuel Temperatures:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12**
LP Pump Inlet,	54 °C			
maximum	34 C			
LP Pump Inlet,				47°C
51000ft				47 C
Min. fuel temp.				-40°C within the
				Take-Off envelope/
				-45°C outside the
				Take-Off envelope

^{**} The max. engine fuel inlet temperatures at altitude below 51000ft are derived by linear interpolation between the values given for sea level and 51000ft.

Oil Temperatures:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-	BR700-725A1-12
			11	
Minimum for starting	-30 °C	-40 °C ⁴	-30 °C	-40°C
Minimum for	20 °C			
acceleration to Take-off	20 C			
Maximum	160 °C	_		

⁴ For temperatures below -30 °C see OI-710-2BR Operating Instructions.

TE.CERT.00052-001 © European Aviation Safety Agency, 2017. All rights reserved. ISO9001 Certified. Page 12 of 17 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

³ Limited to 5 minutes and to maximum 10 minutes after one engine having failed.

TCDS No.: E.018 Type Issue: 10 BR700-710 engines Date: 29 March 2017

2. Speed Limits

Low Pressure Turbine N1:

	BR700-710A1-10 ⁵	BR700-710A2-20 ⁵	BR700-710C4-11 ⁵	BR700-725A1-12 ⁷
Maximum Take-off	101.1 %	102.1 %	101.1 %	102,8 %
Maximum	101 0 %	102.1 %	101.0 %	102,8 %
Continuous	101.0 %	102.1 %	101.0 %	102,0 %
Maximum	101 5 0/	102 5 0/	101 5 0/	104,3 %
Overspeed (20 sec.)	101.5 %	102.5 %	101.5 %	104,3 %
Reverse Thrust	70.0 %			78,1%
(maximum 30 sec.)	70.0 %			78,1%

High Pressure Turbine N2⁶:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Maximum Take-off	99.6%			100.0 %
Maximum Continuous	98.9%			98.7 %
Maximum Overspeed (20 sec.)	99.8%			101.3 %

3. Pressure Limits

3.1 Fuel Pressure

Fuel Pressures:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Minimum at LP Pump Inlet	34.5 kPa			

⁷ 100% N1 equals 7000 min⁻¹ ⁶ 100% N2 equals 15898 min⁻¹

⁵ 100% N1 equals 7431 min⁻¹

TCDS No.: E.018 Type
Issue: 10 BR700-710 engines

3.2 Oil Pressure

Differential Oil Pressures:

Lower limit for flight in the	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
range				
Idle to72.3% N2	241.2 kPa			
72.3% N2 to 90% N2	Straight line interpolation form 241.2 kPa to 310.3 kPa			
Above 90% N2	310.3 kPa			

Date: 29 March 2017

Minimum to complete	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	
flight in the range					
Idle to 72.3% N2	172.3 kPa	172.3 kPa			
72.3% N2 to 90% N2	Straight line interp	Straight line interpolation form 172.3 kPa to 241.2 kPa			
Above 90% N2	241.2 kPa	 241.2 kPa			

4. Installation Assumptions:

Refer to Installation Manuals for details.

5. Time Limited Dispatch:

Information on engine operation with FADEC system dispatch limitations is contained in the respective Time Limits Manuals.

6. ETOPS Capability:

The BR700-725A1-12 engine is approved for ETOPS capability in accordance with CS-E1040 amendment 3 by EASA Approval 10059805 for a Maximum Approved Diversion Time of 180 minutes at Maximum Continuous thrust (see also Note 10). This approval does not constitute an approval to conduct ETOPS operations.

TCDS No.: E.018 Type Issue: 10 BR700-710 engines

V. Operating and Service Instructions

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Installation	E-TR206/95	E-TR364/95	E-TR240/01(FR)	O-TR1458/08
Manual	Issue 6	Issue 1	ISS02	Issue 2
	or later approved	or later approved	or later approved	or later approved
	issues	issues	issues	issues
Operating	OI-710-1BR	OI-710-2BR	OI-710-4BR	OI-725-7BR
Instructions				
Maintenance	M-710-1BR	M-710-2BR	M-710-4BR	M-725-7BR
Manual				
Engine	E-710-1BR	E-710-2BR	E-710-4BR	E-725-7BR
Manual				
Time Limits	T-710-1BR	T-710-2BR	T-710-4BR	T-725-7BR
Manual				
Service	As issued by Rolls-Royce Deutschland Ltd & Co KG.			
Bulletins				

Date: 29 March 2017

For BR700-710C4-11 Engines with Modification 72-101466 incorporated E-TR0283/06 Issue01 or later approved issue and the Service Bulletin SB-BR700-72-101466 apply additionally.

VI. Notes

1. The engines are equipped with a thrust reverser:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	
Left hand engine	P/N04G0001-039	P/N07G0001-005	P/N25G0001-001	P/N RD00103001-1	
	or later approved	or later approved	or later approved	or later approved	
	standards	standards	standards	standards	
Right hand	P/N04G0001-041	P/N07G0001-007	P/N25G0001-003	P/N RD00103001-2	
engine	or later approved	or later approved	or later approved	or later approved	
	standards	standards	standards	standards	
	Operation of these thrust reversers is approved for				
	ground use only.				
	Power back is pro	hibited.			

- 2. Life limited critical parts are included in the respective Time Limits Manuals.
- 3. The EEC software has been developed and verified in accordance with RTCA/DO-178B respectively ED-12B, Level A
- 4. Information on lightning protection and electromagnetic compatibility is contained in the Installation Manuals.
- 5. The ratings shown under III.6. are achieved at sea level and ISA standard day conditions using a defined test bed configuration for the air intake and exhaust system with all optional bleeds closed and the aircraft service equipment drives unloaded, at a lower fuel heating value of 43179 kJ/kg [22721 CHU/kg]. The take-off rating and associated

TE.CERT.00052-001 © European Aviation Safety Agency, 2017. All rights reserved. ISO9001 Certified. Page 15 of 17 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

TCDS No.: E.018 Type Issue: 10 BR700-710 engines

operating limitations may be used for up to 10 minutes in the event of an engine failure or shut down.

Date: 29 March 2017

- 6. Models BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 were previously covered under LBA Engine Type Certificate 6305 and Type Certificate Data Sheets 6305 (BR700-710A1-10 at Issue 7, BR700-710A2-20 at Issue 6, BR700-710C4-11 at Issue 1) prior to being superseded by the EASA Type Certificate and Type Certificate Data Sheet.
- 7. The BR700-725A1-12 engine is approved for a maximum exhaust gas over temperature of 920°C for inadvertent use for periods up to 20 seconds without requiring maintenance action. The cause of the over temperature must be investigated and recorded.
- 8. The BR700-725A1-12 engine is approved for ground operation in freezing fog conditions down to minus 20°C.
- Models BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 were recertified to show compliance with the NOx Standards defined in ICAO Annex 16, Volume II, Part III, Chapter 2
 - paragraph 2.3.2 d (CAEP/6 NOx production rule)
 - paragraph 2.3.2 e (CEAP/8 NOx Standard)
- 10. BR700-725A1-12 Engines, approved for 180 minute ETOPS Operation must have the following Modifications incorporated:

Modification	Description			
71-101736	POWER PLANT - ENG LT EEC LANE 'A' E2-A LOOM "1A" ELECTRICAL			
	HARNESS-INTRODUCTION OF REVISED HARNESS ROUTING AT THE TRU			
	GUSSET			
73-101707	ENGINE FUEL AND CONTROL - FUEL METERING UNIT - INTRODUCTION OF			
	MODIFIED SERVO AND SPILL VALVES AND AN EXTRACTION FEATURE ON			
	THE FUEL RETURN TO TANK SOLENOID			
73-101717	' ENGINE FUEL AND CONTROL - DATA ENTRY PLUG - INTRODUCTION OF A			
	NEW			
	IDENTIFICATION PLATE			
73-101732	ENGINE FUEL AND CONTROL - FUEL MANIFOLD - RE-INTRODUCTION OF			
	THE BASE LINE STANDARD OF FLEXIBLE FUEL PIPES			
79-101692	OIL - FUEL COOLED OIL COOLER - INTRODUCTION OF THE PRODUCTION			
	STANDARD OF COOLER WITH IMPROVED ANTI-ICING PROTECTION			
80-101678	STARTING - STARTER AIR VALVE - INTRODUCTION OF A NEW STANDARD OF			
	STARTER AIR VALVE			

 TCDS No.: E.018
 Type

 Issue: 10
 BR700-710 engines
 Date: 29 March 2017

SECTION: ADMINISTRATIVE

I. Acronyms and Abbreviations

n/a

II. Type Certificate Holder Record

n/a

III. Change Record

Issue	Date	Changes	TC issue
Issue 01	20 July 2006	Initial Issue	20 July 2006
Issue 02	23 June 2009	BR700-725A1-12 certification	
Issue 03	27 April 2011	Major Changes Approval 10034743 and	
		10034748	
Issue 04	21 May 2012	Major Change Approval 10039751	
Issue 05	03 July 2012	Increased Torque Load IDG	
		Customer bleed extraction limitations	
Issue 06	04 January 2013	Major Change Approval 10047087	
Issue 07	15 November 2013	VEG Weight Limit Change	
Issue 08	26 October 2016	ETOPS Capability	
Issue 09	15 February 2017	Temperature Limit for Freezing Fog Operation	
Issue 10	27 March 2017	TCDS number in document header	