1 Enhanced tunability in ferroelectric composites through local field 2 enhancement and the effect of disorder

Benjamin Vial^{1, a)} and Yang Hao^{1, b)}

School of Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,

United Kingdom

6 (Dated: 12 June 2019)

We investigate numerically the homogenized permittivities of composites made of low index dielectric inclusions in a ferroelectric matrix under a static electric field. A refined model is used to take into account the coupling between the electrostatic problem and the electric field dependent permittivity of the ferroelectric material, leading to a local field enhancement and permittivity change in the ferroelectric. Periodic and pseudo-random structures in two dimensions are investigated and we compute the effective permittivity, losses, electrically induced anisotropy and tunability of those metamaterials. We show that the tunability of such composites might be substantially enhanced in the periodic case, whereas introducing disorder in the microstructure weaken the effect of enhanced local permittivity change. Our results may be useful to guide the synthesis of novel composite ceramics with improved characteristics for controllable microwave devices.

7 I. INTRODUCTION

Ferroelectric materials play a crucial role in reconfigurable 9 microwave devices, with typical applications including antenna beam steering, phase shifters, tunable power splitters, filters, voltage controlled oscillators and matching networks¹. 12 Both bulk ceramics and thin films have been employed to 13 design frequency agile components^{2–4} and metamaterials^{5,6}. The main reason of using ferroelectric materials is their strong dependence of their permittivity ε on an applied electric field E, which is measured by their tunability defined as $= \varepsilon(0)/\varepsilon(E)$, along with a non hysteresis behaviour when used in their paraelectric state. The key requirements for antenna and microwave applications are large tunability and low losses. These two characteristics are correlated and one has to find a trade-off for optimal device performance, which can be quantified by the so called commutation quality factor $K = (n-1)^2/(n \tan \delta(0) \tan \delta(E))$, where $\tan \delta$ is the loss tangent. These materials have usually high permittivity values even at microwave frequencies, often leading to slow response time and impedance mismatch, which can be an issue in some practical applications. Thus it has been considered to mix ferroelectric ceramics with low-index and low-loss nonunable dielectrics in order to reduce both permittivity values and losses, or to use porous ceramics to achieve the same goals without unwanted chemical reactions at the boundaries between dissimilar materials. In particular, the addition of magnesium oxide in barium strontium titanate (BST) ceramics have been shown to decrease the losses while keeping good tunability^{7,8}. Ceramics such as Pb(Zr, Ti)O₃ (PZT) and BaTiO₃ (BT) have been used as fillers in polymer based composites with high dielectric constant⁹. Other mixtures include metal-polymer composites 10 and electroactive polymers such as poly(vinylidene fluoride) (PVDF) with high index dielec-40 tric inclusions¹¹.

The effective parameters of those composites have been 42 investigated 12-15 and it has been found that the permittivity can be greatly reduced while losses are much less sensitive to the dielectric phase addition, and in some situations lead to 45 a small increase of the tunability of the mixtures. Analytical 46 models based on the Bruggeman effective medium approach 47 for low concentration of dielectrics were derived for differ-48 ent configurations (columnar, layered and spherical inclusions 49 models) and have been successfully compared with numeri-50 cal simulations and experiments 12. In the context of porous 51 ferroelectrics, the homogenized properties strongly depends 52 on the size and morphology of the pores 16,17. Recently, the 53 concept of tailoring the nonlinear properties of ferroelectric 54 and dielectric structures by local field engineering has been introduced^{18–20}. It was shown through finite element calcula-56 tion including the nonlinear coupling, that by employing com-57 posite materials made of linear dielectric inclusions into a fer-58 roelectric matrix, one can lower the permittivity while main-59 taining high tunability, due to the local field in the ferroelectric 60 phase which is tuned by the linear dielectric phase. Moreover, 61 the effect of grain sizes in ferroelectric ceramics was studied 62 using a model taking the field enhancement into account at 63 the grain boundaries, and the predicted behaviour successfully 64 compared to experimental data¹⁹. Generally, there is a need 65 for refined theoretical and numerical models to explain and 66 design tunable materials and composites with tailored nonlin-67 ear properties. Note that the general method followed by our 68 coupled model could be applied to other type of tunable systems where local field enhancement and amplification is rel-70 evant, including for example ferromagnetic metamaterials²¹, 71 liquid crystals based devices²², or field-enhanced carrier dy-72 namics in doped semiconductors at other frequency ranges, particularly in the THz and near-infrared^{23,24}.

This study investigates numerically the effective permittivity of composites made of dielectric inclusions in a ferroelectric matrix by using a two-scale convergence method^{25,26}. The originality lies in the fact that a fully coupling model is employed to calculate the electrostatic field distribution when a uniform biasing field is applied on the structures, which will result in a local modification of the permittivity in the fer-

a) Electronic mail: b.vial@qmul.ac.uk

b)Electronic mail: y.hao@qmul.ac.uk

81 roelectric phase due to the microstructure. As compared to a simple uncoupled model where the ferroelectric phase is only modified through the biasing field, the resulting effective permittivity, dielectric losses, tunability and anisotropy significantly differ. In contrast with earlier studies in the literature 18,19, we account for the non-linear coupling beyond the first iteration and use two-scale convergence homogenization analysis to obtain the effective parameters at higher frequencies, instead of a capacitance-based model valid in the static regime. This is an important point, as contrarily to most homogenization procedures that are based on a quasi-static approximation, the two scale convergence method fixes the frequency and lets the characteristic size of the system (the periodicity of the composites) tend to zero²⁶. This asymptotic analysis allows one to study the frequency dependence of the effective parameters. In addition, analytical models for the effective permittivity routinely employed in the literature such as Maxwell-Garnett or Bruggeman theories are limited to a few canonical shapes of the inclusions, and cannot handle arbitrary geometries and media with spatially varying properties. This last point is of particular importance in the context of this study since we have to account for the field induced local permittivity change.

The model we developed has been implemented with the finite element method (FEM) and we realise a systematic computational study of ferroelecric-dielectric mixtures. First, we consider metamaterials consisting of a square array of parallel dielectric rods with circular cross section in a ferroelectric host, and then investigate the effect of random distribution of 110 those rods within the unit cell.

THEORY AND NUMERICAL MODEL

We consider a composite made of a ferroelectric material with anisotropic permittivity $\varepsilon^{\rm f}(E)$ that is dependent on an applied electric field E, and a non tunable dielectric of permittivity ε^d , which are both non-magnetic. The structures under study are invariant along the z direction, which leads to the standard decomposition of the wave equation in the transverse electric case (TE, electric field parallel to the direction of invariance) and the transverse magnetic case (TM, magnetic field parallel to the direction of invariance). 121 A uniform biasing field is applied in order to be able to tune the effective permittivity. Modelling homogenized properties 123 of this type of mixtures can be done by assuming that the 124 electric field distribution is uniform throughout the sample, so that the study of the tunability is essentially achieved by changing the value of the properties in the ferroelectric phase and computing the effective permittivity of the composite. We refer this approach as to the uncoupled model in the following. However, a more accurate description is to take into 138 gives the dependence of the polarization on the applied elec-130 account the change of the electric field by the microstructure, 131 if any. We therefore need to solve an electrostatic equation to 132 find the field distribution within the material, but its solution 133 depends on the permittivities of both materials, and the permittivity in the ferroelectric phase depends on this induced electric field: this leads to a strongly coupled problem.

FIG. 1. Variation of the ferroelectric permittivity as a function of the applied electric field (dots: measurements, dashed lines: fit to formula (1)), for the static case (green) and at microwave frequencies (orange, f = 3.8 GHz). The fitting parameters are given in Table I.

Permittivity model

We use barium strontium titanate (BST) as our ferroelectric material. Ba_rSr_{1-r}TiO₃ samples were fabricated using the conventional sintering method with a barium ratio of x = 0.6 to obtain a dielectrically tunable material as reported in the literature^{11,27}. The tunability was measured using an impedance analyzer up to 100 MHz, and at 3.8 GHz using a loaded microstrip split ring resonator²⁸. The measured tunability of the in-house BST samples of 27% under 1kv/mm DC bias was in agreement with those reported elsewhere 11,27. The method presented is however general and only relies of the gradient of the dielectric tunability vs electric field and could be applied to any tunable host material. The normalized permittivity value as a function of biasing field are reported on Fig. (1).

To describe the permittivity, we make use of the Landau potential given by $F(P,E) = F_0 + aP^2/2 + bP^4/4 +$ $cP^6/6 - EP$, where E is the applied electric field and P is the polarization^{29,30}. Variations of the permittivity with the temperature can be taken into account through the coefficients a, b and c, but we assume we are working at a constant room temperature. We further assume that the material is not subject to any stress, so that the variation of permittivity due to mechanical constraints is irrelevant. The equation of state

$$\frac{\partial F(P,E)}{\partial P} = aP_0 + bP_0^3 + cP_0^5 - E = 0$$

tric field, with P_0 being the equilibrium polarization. Along 140 the direction of a uniform applied electric field, the relative 141 permittivity is given by:

$$\varepsilon^{\mathrm{f}}(E) = \left[\frac{\partial^2 F(P, E)}{\partial P^2}\right]^{-1} = \frac{\varepsilon^{\mathrm{f}}(0)}{1 + \alpha P_0^2 + \beta P_0^4},\tag{1}$$

TABLE I. Fitting parameters to model (1) for the measured permittivity values as a function of applied electric field shown on Fig. (1).

case	$\boldsymbol{arepsilon}^{\mathrm{f}}(0)$	$\alpha (\mu \text{m}^2/\text{V}^2)$	$\beta (\mu \text{m}^4/\text{V}^4)$
static	3050	0.120	0.024
f = 3.8 GHz	165	0.240	0.079

where $\varepsilon^{\rm f}(0)=1/a,\ \alpha=3b/a$ and $\beta=5c/a$. The fitting pa-189 C. Homogenization 143 rameters are given in Table I. As the norm of the field in-144 creases, the permittivity decreases with a characteristic bell 190 150 components³¹, we have:

$$\boldsymbol{\varepsilon}^{\mathrm{f}}(\boldsymbol{E}) = \begin{pmatrix} \boldsymbol{\varepsilon}_{xx}^{\mathrm{f}}(E_{x}) & 0 & 0\\ 0 & \boldsymbol{\varepsilon}_{yy}^{\mathrm{f}}(E_{y}) & 0\\ 0 & 0 & \boldsymbol{\varepsilon}_{zz}^{\mathrm{f}}(E_{z}) \end{pmatrix}$$
(2)

151 where each of the diagonal components have the functional 152 form given by Eq. (1). Note that we will use the static values 153 of permittivity for the electrostatic modelling, while we are interested in the homogenized values of permittivity at mi- 199 where (.) denotes the mean value over the unit cell. The elecrowaves. 155

Electrostatic model

150

The composites under study are made of two materials, thus $_{206}$ $\tilde{\varepsilon}=\langle \varepsilon \rangle$. their permittivity is represented by a piecewise defined tensor $\varepsilon(r, E)$ which is equal to $\varepsilon^{\dagger}(E(r))$ in the ferroelectric phase and diag(ε^d) in the dielectric phase. In the following, we con- 207 III. NUMERICAL RESULTS sider two different cases for the biasing field. Because of the form (2) assumed for the ferroelectric permittivity tensor, ε_{zz} 208 will not be changing for a field in the plane orthogonal to the z axis. This is the only component being relevant for TE polarization, so we consider in this case a uniform biasing electric field applied along the direction of invariance $E_0 = E_0 e_z$. On the other hand, the in-plane components of ε^{f} are tuned 170 by E_x and E_y , therefore, without loss of generality, we con- $_{171}$ sider a uniform applied electric field directed along the x axis $E_0 = E_0 e_x$ for the TM polarization case. To calculate the total 173 electric field in the material, one has to solve for the potential 174 V satisfying Gauss' law:

$$\nabla \cdot (\varepsilon \nabla V) = 0 \tag{3}$$

175 Note that for the TE case, the solution is trivial since the 176 structures are invariant along z, so that the electric field is 219 Lets us now consider a periodic square array of infinitely 177 equal to the uniform biasing field, and we will thus not study 220 long dielectric rods of circular cross section of radius r em-178 it in the following. However in the TM case, the situation 221 bedded in a ferroelectric matrix. ₁₈₀ electric field $E = -\nabla V$ derived from the solution of Eq. (3) ₂₂₃ particular case with dielectric filling fraction $f = \pi r^2/d^2 =$ ₁₈₁ depends on the permittivity distribution, which itself depends ₂₂₄ 0.5 and $E_0 = 2MV/m$. Figures 2(a) and 2(b) show the con-182 on the electric field. The coupled system formed of Eqs. (2) 225 vergence of the real part and loss tangent of the components

and (3) is solved iteratively until there is convergence on the 184 norm of the electric field. Here we would like to emphasise that the permittivity in the ferroelectric material, although 186 uniform initially, is spatially varying due to the non-uniform 187 distribution of the total electric field.

When the period of the composite metamaterial is much curve typical for a ferroelectric material in its paraelectric 191 smaller than the wavelength, one can describe the properstate. Furthermore, assuming the crystalline principal axes 192 ties of the composite by a bulk medium with homogenized of the ferroelectric material are oriented in the coordinate di- 193 parameters. The effective permittivity for TM polarization 148 rections, and that the diagonal components of the permittivity 194 is calculated using a two scale convergence homogenization tensor are only function of the corresponding bias electric field 195 technique^{25,26}. For this purpose, one has to find the solutions 196 ψ_i of two annex problems \mathcal{P}_i , $j = \{1, 2\}$:

$$\nabla \cdot \left[\xi \nabla (\psi_j + r_j) \right] = 0, \tag{4}$$

where $r = (x,y)^{\mathrm{T}}$ is the position vector in the xy plane and 198 $\xi = \varepsilon^{\mathrm{T}}/\det(\varepsilon)$. The homogenized tensor $\tilde{\xi}$ is obtained with:

$$\tilde{\boldsymbol{\xi}} = \langle \boldsymbol{\xi} \rangle + \boldsymbol{\phi},\tag{5}$$

200 ments of the matrix ϕ represent correction terms and are given 201 by $\phi_{ij} = \langle \xi \nabla \psi_i \rangle_j$. Finally the effective permittivity tensor can be calculated using $\tilde{\varepsilon} = \tilde{\xi}^{\mathrm{T}}/\mathrm{det}(\tilde{\xi})$. 203 Note that the TE case, which we shall not study here as no

204 coupling happens, is trivial since the homogenized permittiv-205 ity is simply the average of the permittivity in the unit cell:

In the following numerical results, the dielectric phase is supposed to be lossless and non dispersive with $\varepsilon^{\rm d}=3$ while 210 the ferroelectric material follows the permittivity described in section II A and has a constant loss tangent $\tan \delta^{\rm f} = 10^{-2}$. Equations (3) and (4) are solved with a Finite Element Method using the open source packages Gmsh³² and GetDP³³. In both 214 cases we use a square unit cell Ω of length d with periodic 215 boundary conditions along x and y. Second order Lagrange 216 elements are used and the solution is computed with a direct 217 solver (MUMPS³⁴).

218 A. Two dimensional periodic metamaterial

is much more complex: this is a coupled problem since the 222 We first study the convergence of the coupled problem on the

FIG. 2. Convergence of the coupled problem. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i. The values are normalized to the corresponding quantities for the bulk ferroelectric material. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i = 1 (c and d) and i = 12 (e and f).

FIG. 3. Effective parameters of the 2D metamaterials as a function of the applied electric field for various filling fraction of dielectric. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines correspond to the coupled model and the dashed lines to the uncoupled model. The values are normalized to the corresponding quantities for the bulk ferroelectric

stantially from the initial conditions. This is due to the effect 237 mogenized properties of the composite. 232 electric field is still much stronger than the y component, even 240 haviour when subjected to an external electrostatic field (see 233 if spatially varying in the ferroelectric medium. At equilib- 241 Fig. (3)). The results of our coupled model differ significantly

of the homogenized permittivity tensor, respectively. The yy 234 rium, the electric field is concentrated close to the y axis in components converge quickly and are almost unaffected by 235 between two neighbouring rods. This in turn affects the perthe coupling process whereas the xx components change sub- 236 mittivity distribution (see Figs. (2.e) and (2.f)), and the ho-

of the redistribution of the electrostatic field within the unit 238 We computed the effective parameters of these metamaterial cell (see Figs. (2.c) and (2.d)), where the x component of the 239 structures for different radii of the rods and studied their be-

FIG. 4. Effective parameters of the pseudo-random composites as a function of the applied electric field for various filling fraction of dielectric, when the coupling is taken into account. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation. The values are normalized to the corresponding quantities for the bulk ferroelectric material.

lution of ferroelectric makes the composite less tunable, but 287 a simple uncoupled model. on the other hand, the rearrangement of the electrostatic field 288 surrounding the inclusion and its concentration in some region will cause a higher permittivity change locally. The relative strength of those phenomena is governed by the shape 290 B. Pseudo-random case of the inclusion and its permittivity and so it is envisioned that the performance of the composites might be enhanced by 291 engineering their microstructure. Those observations are conistent with previously published numerical and experimental esults¹⁸ where the local field enhancement in porous ferroelectrics has been shown to possibly increase tunability with reducing permittivity for small porosity levels. Our appraoch 267

from the uncoupled one. Increasing the dielectric fraction 275 material properties of the ferroelectric phase itself, and delowers the effective permittivity while the losses are slightly 276 pending on the topology and permittivity of the rods, one educed but much less sensitive. Due to the inhomogeneous 277 effect would be predominant. In the case studied here, the edistribution of the permittivity over the ferroelectric domain, 278 equilibrium permittivity distribution varies strongly along the the overall tunability changes. In the case studied here, tak- 279 bias direction and much less orthogonally to it, which adds ing into account the coupling leads to an effective tunabil- 280 anisotropy by diminishing the effective permittivity in the x ity increase with higher dielectric concentration, and that is 281 direction. This is local field induced effect is what makes the larger than the tunability of bulk ferroelectric. This can be 282 anisotropy stronger in our coupled model compared to the unseen in Fig. (3).c where we plot the tunability of the compos- 283 coupled one (cf. Fig. (3.d) where we plot the anisotropy factor ites along the x axis, $\tilde{n}(E) = \tilde{\epsilon}_{xx}(E)/\tilde{\epsilon}_{xx}(0)$, normalized to the 284 $\alpha = \epsilon_{xx}/\epsilon_{yy}$). Those subtle phenomena can only be rigorously tunability of the bulk ferroelectric $n(E) = \mathcal{E}_{xx}^{f}(E)/\mathcal{E}_{xx}^{f}(0)$. Two 285 taken into account by employing a coupling formalism and concurrent effects are at stake here: on the one hand the di- 286 are responsible for the difference observed when compared to

We finally study the effect of random distribution of the in-292 clusions within the unit cell on the effective parameters of the 293 composites. This is an important point as fabrication of ran-294 domly dispersed inclusions is much more easy from a techno-295 logical perspective. For each filling fraction of the dielectric, we generated 21 numerical samples with inclusions of circualso agrees with an analytical spherical inclusion model pre- $_{297}$ lar cross section of average radius r = d/20 that can vary by licting an increase of the tunability with the dilution of the $_{298}$ $\pm 30\%$. Their centre is chosen randomly and the rods are allowed to overlap. An example of distribution for f = 0.5 is The geometry of the unit cell is symmetric so the homoge- 300 given on Fig. (6). The effective material properties are plotted nized material is isotropic when no field is applied. But when 301 on Fig. (4). Similarly to the periodic case, the permittivity dethe sample is biased, the permittivity distribution becomes 302 creases with increasing dilution of ferroelectric, but for idenasymmetric due to the inhomogeneity of the electric field, 303 tical filling fraction, the permittivity is lower as compared to thus making the effective material properties anisotropic. This 304 the periodic array, and the smaller the dielectric concentration geometric effect is added to the anisotropy arising from the 305 the larger is the difference. Losses decrease as well and the

FIG. 5. Convergence of the coupled problem in the random case for one sample. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i The values are normalized to the corresponding quantities for the bulk ferroelectric material.. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i = 1 (c and d) and i = 12 (e and f).

effective tunability is on average smaller than that in the periodic case, and for low biasing fields and for some particular 337 the coupled case at higher fields. 331 ε_{xx} and ε_{yy} are affected by the coupling, so that the anisotropy 355 the spatially dependent electric field that will induce locally 332 factor for higher fields is reduced as compared to the periodic 360 a tunable, anisotropic response in the ferroelectric phase

335 with increasing dielectric concentration.

higher variation from sample to sample as f increases. The

306 reduction is substantially larger than the periodic case, with 336 IV. CONCLUSION

We have studied the homogenized properties of dielecsamples can be greater than the bulk tunability. However, at 338 tric/ferroelectric mixtures using a rigorous model that take higher applied electric fields, normalized tunability becomes 339 into account the coupling between the electrostatic field smaller than unity and is reduced as one adds more dielectric. 340 distribution and the field dependant ferroelectric permittivity For comparison, the homogenized parameters are plotted on 341 tensor. After convergence of the coupled problem, the Fig. (7) in the case where the coupling is neglected. One can 342 effective permittivity tensor is calculated using two scale see that the coupled and uncoupled models give similar re- 243 convergence homogenization theory. The results obtained ults for the tunability whereas the losses are still smaller for 344 by this model differ significantly from a simple assumption 345 that the permittivity of the ferroelectric respond just to the The redistribution of electric field, permittivity and conver- 346 uniform biasing field. We have considered both periodic and gence of the effective parameters are displayed in Fig. (5). 347 random arrays of dielectric rods in a ferroelectric matrix in The effect of disorder plays an important role here: the elec- 348 2D, and studied their effective properties for TM polarization trostatic field gets concentrated in between neighbouring in- 349 as a function of dielectric concentration and bias field. clusions and the smaller the gap the higher the field, hence 350 Importantly, adding more low index and low loss dielectric a greater local permittivity change. In addition, even if the 351 allows to decrease the overall permittivity significantly and distribution is random, one expects that the anisotropy due to 352 slightly lower the losses. For the periodic case, the tunability geometry would cancel for a sufficiently large number of rods 353 is higher than the bulk due to local field enhancement, (which is the case as the mean anisotropy factor is close to 1 354 whereas this effect is strongly suppressed when disorder is when no bias field is applied). However, the anisotropy due 355 introduced. The asymmetric redistribution of the permittivity to ferroelectric properties is important in this case as well, as 356 induce an effective anisotropy that is added to the one arising both the x and y components of the electrostatic field are play- 357 purely from the ferroelectric material. The properties of the ing a role. Because of the relative positions of the rods, both 358 composites are affected by multiple factors: geometry and 333 case. However even if there is a substantial variability from 361 depending on its amplitude and direction. This suggest that 334 sample to sample, on average, the anisotropy factor decreases 362 the performances of the composites may be enhanced by 363 distributing the two phases in an optimal way to get high 364 tunability and low losses. Further work in that direction is 365 needed as well as extending this study to 3D media. Finally, 366 because the permittivity of the dielectric is much smaller than the ferroelectric one, it would be of great interest to 425 ¹⁴V. O. Sherman, A. K. Tagantsev, and N. Setter, "Tunability and loss of the ferroelectric-dielectric composites," in 14th IEEE International Symposium ferroelectric-dielectric composites," in 14th IEEE International Symposium kind of mixtures. This would reveal the frequency dependant 427 artificial magnetism due to "micro-resonances" in the high index phase and potentially lead to composites with tunable 430 372 effective permeability.

ACKNOWLEDGMENTS

391

- This work was funded by the Engineering and Physical 375 376 Sciences Research Council (EPSRC), UK, under a grant 440 (EP/P005578/1) "Adaptive Tools for Electromagnetics and Materials Modelling to Bridge the Gap between Design and Manufacturing (AOTOMAT)". The authors would like to thanks Henry Giddens for performing the measurements of ferroelectric permittivity used in this 446 381
- paper. 382 The codes necessary to reproduce the results in this 449 384 article are freely available online at this https://www.github.com/benvial/ferromtm.
- ¹A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, 454 386 "Ferroelectric Materials for Microwave Tunable Applications," J Electroce- 455 ram 11, 5-66 (2018). 388
- ²O. Vendik, E. Hollmann, A. Kozyrev, and A. Prudan, "Ferroelectric tuning of planar and bulk microwave devices," J. Supercond. 12, 325–338 (1999). 390
 - ³M. Lancaster, J. Powell, and A. Porch, "Thin-film ferroelectric microwave devices," Supercond. Sci. Technol. 11, 1323 (1998).
- ⁴X. Xi, H.-C. Li, W. Si, A. Sirenko, I. Akimov, J. Fox, A. Clark, and J. Hao, ⁴⁶¹ 393 "Oxide thin films for tunable microwave devices," J. Electroceramics 4, 393-405 (2000). 395
- ⁵T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic meta-396 material using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105 397 398
- ⁶H. Zhao, L. Kang, J. Zhou, Q. Zhao, L. Li, L. Peng, and Y. Bai, "Ex- ⁴⁶⁷ 399 perimental demonstration of tunable negative phase velocity and negative 468 400 refraction in a ferromagnetic/ferroelectric composite metamaterial," Appl. Phys. Lett. 93, 201106 (2008). 402
- ⁷P. Irvin, J. Levy, R. Guo, and A. Bhalla, "Three-dimensional polarization ⁴⁷¹ 403 imaging of (Ba,Sr)TiO3:MgO composites," Appl. Phys. Lett. 86, 042903 472 404 405
- ⁸U.-C. Chung, C. Elissalde, M. Maglione, C. Estournès, M. Paté, and ⁴⁷⁴ J. P. Ganne, "Low-losses, highly tunable Ba0.6sr0.4tio3 / MgO compos-407 ite," Appl. Phys. Lett. 92, 042902 (2008). 408
- ⁹B. Wang, L. Luo, F. Ni, P. Du, W. Li, and H. Chen, "Piezoelectric and ferro-409 electric properties of (Bi1- xNa0. 8k0. 2lax) 0.5 TiO3 lead-free ceramics," 410 411 Journal of Alloys and Compounds 526, 79–84 (2012).
- ¹⁰X. Li, Y.-F. Lim, K. Yao, F. E. H. Tay, and K. H. Seah, "Ferroelectric 480 412 Poly(vinylidene fluoride) Homopolymer Nanotubes Derived from Solu- 481 413 tion in Anodic Alumina Membrane Template," Chem. Mater. 25, 524-529 482 414 415
- G. Hu, F. Gao, J. Kong, S. Yang, Q. Zhang, Z. Liu, Y. Zhang, and 484 416 H. Sun, "Preparation and dielectric properties of poly(vinylidene fluo- 485 417 ride)/Ba0.6sr0.4tio3 composites," Journal of Alloys and Compounds 619, 486 686-692 (2015). 419
- ¹²V. O. Sherman, A. K. Tagantsev, N. Setter, D. Iddles, and T. Price, ⁴⁸⁸ 420 "Ferroelectric-dielectric tunable composites," J. Appl. Phys. 99, 074104 421 422
- ¹³L. Jylha and A. H. Sihvola, "Tunability of granular ferroelectric dielectric 491 composites," Prog. Electromagn. Res. 78, 189-207 (2008).

- on Applications of Ferroelectrics, 2004. ISAF-04. 2004 (2004) pp. 33-38.
- K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, and N. Setter, "Can the addition of a dielectric improve the figure of merit of a tunable material?" J. Eur. Ceram. Soc. 23, 2381 – 2386 (2003).
- ¹⁶K. Okazaki and K. Nagata, "Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics," J. Am. Ceram. Soc. 56, 82-86 433
 - ¹⁷R. Stanculescu, C. E. Ciomaga, L. Padurariu, P. Galizia, N. Horchidan, C. Capiani, C. Galassi, and L. Mitoseriu, "Study of the role of porosity on the functional properties of (Ba,Sr)TiO3 ceramics," J. Alloys Compd. 643, 79-87 (2015).

435

- ¹⁸L. Padurariu, L. Curecheriu, C. Galassi, and L. Mitoseriu, "Tailoring nonlinear dielectric properties by local field engineering in anisotropic porous ferroelectric structures," Appl Phys Lett 100, 252905 (2012).
- ¹⁹L. Padurariu, L. Curecheriu, V. Buscaglia, and L. Mitoseriu, "Fielddependent permittivity in nanostructured BaTiO\${}_{3}\$ ceramics: Modeling and experimental verification," Phys Rev B 85, 224111 (2012).
- ²⁰A. Cazacu, L. Curecheriu, A. Neagu, L. Padurariu, A. Cernescu, I. Lisiecki, and L. Mitoseriu, "Tunable gold-chitosan nanocomposites by local field engineering," Appl Phys Lett 102, 222903 (2013).
 - L. Carignan, A. Yelon, D. Menard, and C. Caloz, "Ferromagnetic Nanowire Metamaterials: Theory and Applications," IEEE Trans. Microw. Theory Tech. 59, 2568-2586 (2011).
 - ²²D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negativezero-positive refractive indices," Opt. Express, OE 15, 3342–3347 (2007).
 - ²³G. R. Keiser and P. Klarskov, "Terahertz Field Confinement in Nonlinear Metamaterials and Near-Field Imaging," Photonics 6, 22 (2019).
 - ²⁴K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, "Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs," Phys. Rev. Lett. 110, 217404 (2013).
 - ²⁵G. Allaire, "Homogenization and Two-Scale Convergence," SIAM J. Math. Anal. 23, 1482–1518 (1992).
 - ²⁶S. Guenneau and F. Zolla, "Homogenization of Three-Dimensional Finite Photonic Crystals," J. Electromagn. Waves Appl. 14, 529-530 (2000).
 - S. Agrawal, R. Guo, D. Agrawal, and A. S. Bhalla, "Tunable BST:MgO Dielectric Composite by Microwave Sintering," Ferroelectrics 306, 155-163 (2004).
 - ²⁸M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, "Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity," IEEE Sens. J. 15, 7181-7189 (2015).
 - ²⁹L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media, Vol. 8 (elsevier, 2013).
 - K. Zhou, S. A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, and S. P. Alpay, "Dielectric response and tunability of a dielectric-paraelectric composite," Appl. Phys. Lett. 93, 102908 (2008).
 - ³¹C. M. Krowne, M. Daniel, S. W. Kirchoefer, and J. A. Pond, "Anisotropic permittivity and attenuation extraction from propagation constant measurements using an anisotropic full-wave Green's function solver for coplanar ferroelectric thin-film devices," IEEE Trans. Microw. Theory Tech. 50, 537-548 (2002).
 - ³²C. Geuzaine and J.-F. Remacle, "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Methods Eng. 79, 1309-1331 (2009).
 - ³³P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Trans. Magn. 34, 3395-3398 (1998).
 - ⁴P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L'Excellent, "A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling," SIAM J. Matrix Anal. Appl. 23, 15-41 (2001).
 - ³⁵G. Bouchitté and D. Felbacq, "Homogenization near resonances and artificial magnetism from dielectrics," Comptes Rendus Mathématique 339, 377 -382(2004).
 - ³⁶K. Cherednichenko and S. Cooper, "Homogenization of the system of highcontrast Maxwell equations," Mathematika 61, 475–500 (2015).

Random material samples, f = 0.5

FIG. 6. Permittivity distribution of the numerical samples used for f = 0.5. Dark colour indicates the ferroelectric material while light colour represents the dielectric inclusions.

FIG. 7. Effective parameters of the random 2D mixtures as a function of the applied electric field for various filling fraction of dielectric, when the coupling is neglected. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation. The values are normalized to the corresponding quantities for the bulk ferroelectric material.