

CATEDRA N°2

PROBABILIDAD Y ESTADISTICA (AES500)

Tiempo: 90 minutos

N	0	T	ľ	١
. .	$\mathbf{\circ}$	_	7	•

NOMBRE:	
NRC: 1494	
RUN:	FECHA: 15 – 10 – 2018
CARRERA:	
SECCIÓN: AES500-453	

Problema	Puntaje
1	
2	
3	
4	
Total Pje	

Indicaciones

- Complete los datos solicitados en la prueba.
- Puntaje de la prueba 6.0 puntos.
- No se aceptan consultas una vez iniciada la prueba, excepto de enunciado.
- Sólo podrá salir de la sala después de 30 min de iniciada la prueba.
- Puede utilizar para sus cálculos calculadora, pero no su celular ni otros artículos tecnológicos.
- Deberá devolver todas las hojas de la prueba. La ausencia de alguna de ellas desvalidará la evaluación.
- Si requiere hojas adicionales solicitarlas al profesor.
- Toda respuesta debe estar apoyada de un desarrollo correcto del problema.

Firma	del estudiante	
ı ıı ıı a	dei estudiante	

Resultados de Aprendizajes Cátedra

RAA4: Utilizar propiedades y teoremas en el cálculo de probabilidades de eventos aleatorios propios del área de ingeniería y economía.

RAA5: Aplicar el valor asociado a una probabilidad clásica en sucesos independientes y condicionales.

RAA9: Utilizar Software de planilla electrónica para el análisis de datos del área de las ciencias biológicas y de salud

RAA10: Demostrar una actitud responsable hacia las exigencias propias de la asignatura.

FORMULARIO

Propiedades de los conjuntos	Teoremas de Probabilidad:
1. Primera ley distributiva	Sean A y B dos eventos. Entonces:
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	a) $P(A^c) = 1 - P(A)$, A^c es el complemento de A
2. Segunda ley distributiva	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	b) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
3. Primera Ley de Morgan $(A \cup B)^c = A^c \cap B^c$	c) $P(A) = P(A \cap B) + P(A \cap B^c)$
4. Segunda Ley de Morgan $(A \cap B)^c = A^c \cup B^c$	d) $P(A-B) = P(A) - P(A \cap B)$
Probabilidad de un evento A en Ω	• A y B se dicen independientes, si y solo si
$P(A) = \frac{casos\ favorables}{casos\ totales} = \frac{\#A}{\#O}$	$P(A \cap B) = P(A) \cdot P(B)$
casos totales # Ω	A y B son mutuamente excluyentes, entonces
Probabilidad Condicional	$P(A \cap B) = 0$
$P(A/B) = \frac{P(A \cap B)}{P(B)} \text{ si } P(B) > 0$	• A y B dos eventos se tiene
$P(A/B) - \frac{P(B)}{P(B)} \text{Si } P(B) > 0$	$P(A/B^c) + P(A^c/B^c) = 1$
Teorema de Bayes	Teorema de Probabilidad Total
$P(A_i / E) = \frac{P(A_i)P(E / A_i)}{k} \qquad i = 1, \dots, k$	<u>k</u>
$\sum_{i=1}^{k} P(A_i)P(E/A_i)$	$P(E) = \sum_{i=1}^{K} P(A_i) P(E \mid A_i)$
$\sum_{j=1}^{2} (A_j) \mu(L \mid A_j)$	<u>i=1</u>

PROBLEMA N°1 (1,5 PUNTOS)

Un estudio ha detectado que el **3**% de los computadores del tipo **A** fallan antes de un año y el **5**% del tipo **B** fallan antes de un año.

Se escoge al azar un computador de cada tipo, determinar la probabilidad de que fallen antes de un año:

- a) Ambos (0,5 PUNTOS)
- b) Al menos uno (0,5 PUNTOS)
- c) Sólo uno (0,5 PUNTOS)

PROBLEMA N°2 (1,5 PUNTOS)

Se preguntó a un grupo de personas, hombres y mujeres, que estaban siguiendo un tratamiento para adelgazar, ¿Cuántas veces se salieron del régimen en un plazo de dos meses. El resultado de dicha consulta fue:

Núm. de ocasiones en que	Género		
se salieron del régimen	Hombre	Mujer	Total
0 a 3	15	25	40
4 a 8	20	18	38
Total	35	43	78

- a) Determine la probabilidad que se haya salido del régimen entre 0 y 3 veces. (0,3 PUNTOS)
- b) Determine la probabilidad que la persona sea mujer. (0,3 PUNTOS)
- c) ¿Con qué probabilidad es mujer y se salió del régimen entre 4 y 8 veces? (0,3 PUNTOS)
- d) Si la persona es hombre, Con qué probabilidad se salió entre 4 y 8 veces? (0,3 PUNTOS)
- e) ¿Con qué probabilidad se sale del régimen a lo más 3 veces ó se es mujer? (0,3 PUNTOS)

PROBLEMA N°3 (1,5 PUNTOS)

En una asignatura se ha decidido aprobar a aquellos que superen uno de los dos parciales. Con este criterio aprobó el **80%**, sabiendo que el primer parcial lo superó el **60%** y el segundo el **50%** ¿Cuál hubiese sido el porcentaje de aprobados, si se hubiese exigido superar ambos parciales?

Profesor: Francis Ponce Carvajal

PROBLEMA N°4 (1,5 PUNTOS)

La prevalencia de la diabetes es del 4%. La glucemia basal diagnóstica correctamente el 95% de los diabéticos, pero da un 2% de falsos positivos. Diagnosticada una persona ¿Cuál es la probabilidad de que realmente sea diabética?

Profesor: Francis Ponce Carvajal