Exercices de Modélisation Stochastique

Feuille 3

February 1, 2022

1. Soit $X_t = e^{\int_0^t a(s)ds}$ et

$$Y_t = Y_0 + \int_0^t b(s)e^{-\int_0^s a(u)du}dW_s,$$

où a et b son des fonctions borélieenes inégrables. On pose $Z_t = X_t Y_t$. Montrer que $dZ_t = a(t)Z_t dt + b(t)dW_t$.

2. On admet que le système suivant admet une solution

$$\begin{cases} X_t = x + \int_0^t Y_s dW_s \\ Y_t = y - \int_0^t X_s dW_s. \end{cases}$$

Montrer que $X_t^2 + Y_t^2 = (x^2 + y^2)e^t$.

- 3. Soit $Y_t = \int_0^t e^s dW_s$ et $Z_t = \int_0^t Y_s dW_s$.
 - (a) Ecrire l'EDS vérifiée par Z_t .
 - (b) Calculer $E[Z_t]$, $E[Z_t^2]$ et $E[Z_tZ_s]$.
- 4. Soit X tel que $dX_t = (a bX_t)dt + dW_t$
 - (a) Montrer que $Z_t = e^{c \int_0^t X_s dW_s \frac{c^2}{2} \int_0^t X_s^2 ds}$ est une martingale.
 - (b) Soit $U_t = X_t^2$. Ecrire dU_t puis la variable U comme une somme d'intégrales.
 - (c) Montrer que

$$\int_0^t X_s dW_s = \frac{1}{2}(X_t^2 - X_0^2 - t) - a \int_0^t X_s ds + b \int_0^t X_s^2 ds.$$

5. Soit Z le processus défini par

$$Z_t = \frac{1}{\sqrt{1-t}}e^{-\frac{W_t^2}{2(1-t)}}$$

(a) Montrer que Z est une martingale et que Z_t tends vers 0 quand t tend vers 1.

- (b) Calculer $E[Z_t]$.
- (c) Écrire Z_t sous la forme

$$Z_t = e^{\int_0^t \Phi(s)dW_S - \frac{1}{2} \int_0^t \Phi^2(s)ds}$$

où $\Phi(s)$ es un processus que l'on précisera.

6. Soit V = KX avec

$$dX_t = X_t(\mu - k - s \ln(X_T))dt + \sigma X_t dW_t,$$

$$dK_t = K_t(r+k)dt.$$

Calculer dV_t et $d\ln(X_t)$.

- 7. Soit $A_t = \int_0^t e^{W_s + \nu s} ds$ et $dS_t = S_t(rdt + \sigma dW_t)$. Montrer que le processus $f(t, S_t, A_t)$ est une martingale si f vérifie une équation aux dériveés partielles à coefficients déterministes que l'on précisera.
- 8. Soit B et W deux browniens corrélés ρ et

$$dr_t = [a(b - r_t) - \lambda \sigma r_t]dt + \sigma \sqrt{r_t}dW_t,$$

$$dV_t = (r_t - \delta)V_tdt + \sigma_V V_tdB_t.$$

On pose $X_t = \sqrt{r_t}$ et $Y_t = \ln(V_t) - \alpha X_t$ avec $\alpha = 2\rho\sigma_V/\sigma$. Calculer dX_t et dY_t .

- 9. Soit $dS_t = S_t(bdt + \sigma dW_t)$ $S_0 = x$, et $A_t = \frac{1}{t} \int_0^t \ln(S_s) ds$.
 - (a) Montrer que

$$\ln(S_s) = \ln(S_t) + (b - \sigma^2/2)(s - t) + \sigma(W_s - W_t)$$

pour $s \geq t$.

(b) Montrer que A_t es une variable gaussien.