Scilab Textbook Companion for Radar Engineering and Fundamentals of Navigational Aids by G. S. N. Raju¹

Created by
Garnapudi Vamsikrishna
B.Tech
Computer Engineering
Sastra University
College Teacher
N. Raju
Cross-Checked by
Lavitha Pereira

May 27, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Radar Engineering and Fundamentals of Navigational Aids

Author: G. S. N. Raju

Publisher: I. k. International, New Delhi

Edition: 1

Year: 2010

ISBN: 978-81-906942-1-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Schab Codes	
1	INTRODUCTION TO RADAR RADAR PARAMETERS AND THEIR DEFINITIONS	5
2	BASIC RADARS	9
3	ADVANCED RADARS	16
4	TRACKING RADAR	25
5	FACTORS AFFECTING RADAR OPERATION AND RADALOSSES	4R 28
6	RADAR TRANSMITTERS	30
7	RADAR RECEIVERS	38
9	RADAR ANTENNAS	43
11	SOLVED PROBLEMS	66

List of Scilab Codes

Exa 1.1	PEAK POWER DUTY CYCLE	5
Exa 1.2	FINDING PRT PW	6
Exa 1.3	FINDING AVERAGE POWER	6
Exa 1.4	FINDING DUTY CYCLE AND PRT	7
Exa 1.5	FINDING DOPPLER FREQUENCY	8
Exa 2.1	FINDING RANGE OF TARGET	9
Exa 2.2	FINDING DUTY CYCLE PRT PULSE WIDTH PULSE	
	ENERGY	9
Exa 2.3	FINDING PRF PRT RANGE RESOLUTION AND PULS	$^{ m E}$
	WIDTH	10
Exa 2.4	FINDING DUTY CYCLE AVERAGE POWER	11
Exa 2.5	FINDING PRF AVERAGE POWER DUTY CYCLE	
	AND RADAR RANGE	12
Exa 2.6	FINDING RANGE RESOLUTION AND UNAMBIGU-	
	OUS RANGE	12
Exa 2.7	FINDING PRF	13
Exa 2.8	FINDING MIN RECEIVABLE SIGNAL	13
Exa 2.9	FINDING MAX RADAR RANGE	14
Exa 3.1	FINDING LOWEST BLIND SPEED	16
Exa 3.2	FINDING SPEED OF AUTOMOBILE	17
Exa 3.3	FINDING LOWEST THREE BLIND SPEEDS	17
Exa 3.4	FINDING LOWEST THREE BLIND SPEEDS	18
Exa 3.5	FINDING PRF	19
Exa 3.6	FINDING MAX UNAMBIGUOUS RANGE	20
Exa 3.7	FINDING RATIO OF OPERATING FREQ	20
Exa 3.8	FINDING RATIO OF PRFs	21
Exa 3.9	FINDING BLIND SPEEDS	22
Exa 3.10	FINDING PEAK TX POWER	23

Exa 4.1	FINDING PHASE DIFFERENCE BETWEEN ECHOS	25
Exa 4.2	FINDING SPACING BETWEEN ANTENNAS	26
Exa 5.1	FINDING RCS	28
Exa 5.4	FINDING RCS	29
Exa 6.1	FINDING MAX POWER	30
Exa 6.2	FINDING GAIN PARAMETER OUTPUT POWER GAIN	V
	AND Be	31
Exa 6.3	FINDING CYCLOTRON ANGULAR FREQ AND CUT-	
	OFF VOLTAGE	32
Exa 6.4	FINDING ELECTRON VELOCITY TRANSIT ANGLE	
	AND BEAM COUPLING COEFFICIENT	32
Exa 6.5	FINDING EFFICIENCY	33
Exa 6.6	FINDING FREQ OF IMPATT DIODE	34
Exa 6.7	FINDING FREQ OF IMPATT DIODE	34
Exa 6.8	FINDING AVALANCHE ZONE VELOCTY	35
Exa 6.9	FINDING FREQ OG GUNN DIODE OSCILLATOR .	36
Exa 6.10	FINDING MIN OPERATING GUNN DIODE VOLT-	
	AGE	36
Exa 7.1	FINDING PROBABILTY OF FALSE ALARM	38
Exa 7.2	FINDING RADAR INTEGRATION TIME	39
Exa 7.5	FINDING RANGE RESOLUTION	39
Exa 7.8	RANGE RESOLUTION BEFORE AND AFTER COM-	
	PRESSION	40
Exa 7.9	FINDING MIN RECEIVABLE SIGNAL	41
Exa 9.1	FINDING BEAMWIDTHS	43
Exa 9.2	FINDING GAIN OF PARABOLIC REFLECTOR	44
Exa 9.3	FINDING NNBW HPBW AND POWER GAIN OF	
	ANTENNA	44
Exa 9.4	FINDING POWER GAIN	45
Exa 9.5	FINDING MOUTH DIAMETER HPBW AND POWER	
	GAIN OF PARABOLOID	46
Exa 9.6	FINDING BEAMWIDTH DIRECTIVITY AND CAP-	
	TURE AREA	47
Exa 9.7	FINDING MIN DISTANCE REQUIRED BETWEEN	
	TWO ANTENNAS	48
Exa 9.8	FINDING MOUTH DIAMETER AND BEAM WIDTH	
	OF ANTENNA	49

Exa 9.9	FINDING CAPTURE AREA AND BEAMWIDTH OF	
	ANTENNA	50
Exa 9.10	FINDING BEAMWIDTH AND POWER GAIN	51
Exa 9.11	FINDING POWER GAIN	52
Exa 9.12	FINDING MOUTH DIAMETER AND CAPTURE AREA	52
Exa 9.13	FINDING MOUTH DIAMETER AND POWER GAIN	53
Exa 9.14	FINDING BEAMWIDTH AND POWERGAIN	54
Exa 9.15	FINDING POWER GAIN	55
Exa 9.16	FINDING BEAMWIDTH AND DIRECTIVITY OF AN-	
	TENNA	56
Exa 9.17	FINDING BEAMWIDTH POWERGAIN AND DIREC-	
	TIVITY	57
Exa 9.18	FINDING POWER GAIN OF HORN ANTENNA	58
Exa 9.19	FINDING POWER GAIN AND DIRECTIVITY	58
Exa 9.20	FINDING COMPLEMENTARY SLOT IMPEDANCE	59
Exa 9.21	FINDING RADIATION RESISTANCE OF HERTZIAN	
	DIPOLE	61
Exa 9.22	DIRECTIVITY OF HALFWAVE DIPOLE	62
Exa 9.23	FINDING RADIATED POWER	63
Exa 9.24	FINDING EFFECTIVE AREA OF HALF WAVE DIPOLE	63
Exa 9.25	FINDING EFFECTIVE AREA OF HERTZIAN DIPOLE	64
Exa 11.1	FINDING RECEIVED SIGNAL POWER	66
Exa 11.2	FINDING TARGET DISTANCE FROM RADAR	67
Exa 11.3	FINDING MAX AND MIN RANGES OF RADAR	67
Exa 11.4	FINDING DUTY CYCLE	68
Exa 11.5	FINDING AVERAGE TX POWER	69
Exa 11.6	FINDING RANGE RESOLUTION	69
Exa 11.7	FINDING TARGET RANGE	70
Exa 11.8	FINDING DOPPLER SHIFT	71
Exa 11.9	FINDING DOPPLER SHIFT FREQUENCY	71
Exa 11.10	FINDING DOPPLERSHIFT FREQUENCY AND FREQ	
	OF RELECTED ECHO	72
Exa 11.11	FINDING DOPPLER SHIFT FREQUENCY AND FRE-	
	QUENCY OF REFLECTED SIGNAL	73
	FINDING AVERAGE POWER	74
Exa 11.13	FINDING DUTY CYCLE AVERAGE POWER AND	
	MAX RANGE OF RADAR	75
Exa 11 14	FINDING PRF	76

Exa 11.15	FINDING RANGE	76
Exa 11.16	FINDING FREQUENCIES	77
Exa 11.17	FINDING BEAMWIDTH	78
Exa 11.18	FINDING MIN TIME REQUIRED TO RESOLVE AIR-	
	CRAFTS	78
Exa 11.19	FINDING DUTY CYCLE CORRECTION FACTOR .	79
Exa 11.20	FINDING AVERAGE POWER DUTY CYCLE AND	
	PULSE ENERGY	80
Exa 11.21	FINDING NOISE POWER SPECTRAL DENSITY .	81
Exa 11.22	FINDING RANGE OF TARGET	82
Exa 11.23	FINDING RANGE OF TARGET	82
Exa 11.24	FINDING TARGET BLIND SPEED	83
Exa 11.25	RATIO OF OPERATING FREQUENCIES	84
Exa 11.26	RATIO OF OPERATING FREQUENCIES	84
Exa 11.27	FINDING COMPRESSION RATIO AND COMPRESSED	
	PULSE WIDTH	85
Exa 11.28	FINDING COMPRESSION PULSEWIDTH AND RA-	
	TIO	86
Exa 11.29	FINDING COMPRESSED PULSE WIDTH AND BAND-	
	WIDTH	86
Exa 11.30	FINDING RANGE RESOLUTION	87
Exa 11.31	FINDING CLOSEST FREQUENCIES	88
Exa 11.32	FINDING SPECTRUM CENTRE BANDWIDTH AND	
	COMPRESSED PULSE WIDTH	88
Exa 11.33	FINDING MINIMUM RECEIVABLE SIGNAL	89
Exa 11.34	FINDING MAXIMUM RANGE OF RADAR	90
Exa 11.35	FINDING PEAK TX POWER	91
Exa 11.36	FINDING MAX RANGE OF RADAR	92
Exa 11.37	FINDING LOWEST BLIND SPEEDS	93
Exa 11.38	FINDING RANGE OF BEACON	94
Exa 11.39	FINDING DOPPLER SHIFT	95
Exa 11.40	FINDING RX SIGNAL POWER	96
Exa 11.41	FINDING DISTANCE OF TARGET	97
Exa 11.42	FINDING MIN AND MAX TARGET RANGE	98
Exa 11.43	FINDING DOPPLER SHIFT FREQUENCY	99
Exa 11.44	FINDING DISTANCE OF TARGET	99
Exa 11.45	FINDING DUTY CYCLE AND AVERAGE POWER 1	.00
Exa 11.46	FINDING PRF	01

Exa 11.47	FINDING DUTY CYCLE AND MAX UNAMBIGU-	
	OUS RANGE	102
Exa 11.48	FINDING MAX UNAMBIGUOUS RANGE AND RANG	$^{\mathrm{E}}$
	RESOLUTION	103
Exa 11.49	CALCULATING RADAR PARAMETERS	103
Exa 11.50	FINDING AVERAGE POWER	105
Exa 11.51	FINDING MIN RECEIVABLE SIGNAL	106
Exa 11.52	FINDING MAX RANGE OF RADAR	106
Exa 11.53	FINDING MAX RANGE OF RADAR	107
Exa 11.54	FINDING BEAMWIDTH OF ANTENNA	108
Exa 11.55	FINDING OPERATING FREQ PEAK POWER AND	
	RANGE OF RADAR	109
Exa 11.56	FINDING RADIAL VELOCITY OF TARGET	110
Exa 11.57	FINDING DOPPLER SHIFT FREQUENCY	111
Exa 11.58	FINDING DOPPLER SHIFT FREQUENCIES	111
Exa 11.59	FINDING BLIND SPEED	112
Exa 11.61	FINDING PULSE WIDTH AND PULSE ENERGY .	113
Exa 11.62	FINDING PRT PRF RANGE RESOLUTION AND PUL	SE
	WIDTH	114
Exa 11.63	FINDING DOPPLER FREQUENCY	115
Exa 11.64	FINDING MAX RANGE OF RADAR	116
Exa 11.65	FINDING APERTURE SIZE AND PEAK POWER OF	
	TXR	117

INTRODUCTION TO RADAR RADAR PARAMETERS AND THEIR DEFINITIONS

Scilab code Exa 1.1 PEAK POWER DUTY CYCLE

1 / Chapter -1, Example 1.1, Page 34

```
3 clc;
4 clear;
5
6 //INPUT DATA
7 PRF= 1000; // pulse repetitive frequency in Hz
8 PW = 2*10^-6; // pulse width 2us
9 Pav=100; // average power in watts
10
11 // Calculations
12
13 Ppeak = (Pav)/(PW*PRF); // Peak power in watts
```

Scilab code Exa 1.2 FINDING PRT PW

Scilab code Exa 1.3 FINDING AVERAGE POWER

```
1 / Chapter -1, Example 1.3, Page 35
```

```
2 //
```

```
3 clc;
4 clear;
5
6 //INPUT DATA
7 D = 0.001; //Duty Cycle
8 Ppeak=500*10^3; //Peak Power in Watts
9
10 //Calculations
11
12 Pav = D * Ppeak; // D=averagepower/Peakpower;
13
14 //Output
15 mprintf('Average power is %g Watts', Pav);
```

Scilab code Exa 1.4 FINDING DUTY CYCLE AND PRT

1 / Chapter -1, Example 1.4, Page 35

```
15
16 //Output
17 mprintf('Duty cycle is %g\n pulse repetitive time is %g ms',D,PRT*1000);
```

Scilab code Exa 1.5 FINDING DOPPLER FREQUENCY

```
1 / Chapter -1, Example 1.5, Page 36
3 clc;
4 clear;
6 //INPUT DATA
7 F = 6*10^9; //frequency in Hz
8 Vo = 3*10^8; //velocity in m/s;
9 Vr = 200; //Radial velocity in kmph
10
11 // Calculations
12
13 lamda = Vo/F; //wavelength = vel/freq;
      = (2*Vr/lamda)*(5/18);//doppler frequency in
     Hz;
  //5/18 is multiplied to convert kmph to m/s
15
16
17 // Output
18 mprintf('Doppler Frequency is %3.2 f KHz', Fd/1000);
```

BASIC RADARS

Scilab code Exa 2.1 FINDING RANGE OF TARGET

Scilab code Exa 2.2 FINDING DUTY CYCLE PRT PULSE WIDTH PULSE ENERGY

```
1 / Chapter - 2 example 2.2
2 //
3 clc;
4 clear;
5 Pt=5000; //Peak tx power in watts
6 Pav=1000; //Average Power
7 PRF1 = 10; //Pulse repetition frequency in khz
8 PRF2 = 20; //Pulse repetition frequency in khz
9 // Calculations
10 D=Pav/Pt;//Duty cycle
11 PRI1=1/PRF1;
                   //Pulse repetitive interval in
12 PRI2=1/PRF2; //Pulse repetitive interval in
                                                      msec
                   //Pulse Width in msec
13 PW1=D*PRI1;
14 PW2=D*PRI2;
15 PE1=Pt*PW1;
                   //Pulse Width in msec
                  //Pulse Energy in joules
16 PE2=Pt*PW2;
                  //Pulse Energy in joules
17 //Output
18 mprintf('Duty cycle is %3.2f \n pulse repetition
      interval 1 is \%3.2 \,\mathrm{f} msec\n pulse repetition
      interval 2 is %3.2f msec\n Pulse Width1 is %3.2f
      usec\n Pulse Width2 is \%3.2f usec\n Pulse Energy1
       is %3.2 f J \n Pulse Energy2 is %3.2 f J', D, PRI1,
      PRI2, PW1*1000, PW2*1000, PE1/1000, PE2/1000);
```

Scilab code Exa 2.3 FINDING PRF PRT RANGE RESOLUTION AND PULSE WIDTH

```
\begin{array}{ccc} 1 & //\operatorname{Chapter}{-2} & \operatorname{example} & 2.3 \\ 2 & // & \end{array}
```

Scilab code Exa 2.4 FINDING DUTY CYCLE AVERAGE POWER

1 / Chapter - 2 example 2.4

```
2 //
3 clc;
4 clear;
5 Pt=50000;//peal power in watts
6 PRF=1000;//pulse repetitive frequency in hz
7 PW=0.8;//pulse width in usec
8 //Calculations
9 D=PW*PRF*10^-6;//duty cycle
10 Pav=Pt*D;//average power
11 //output
12 mprintf('Duty cycle is %g\n Average power is %g
Watts',D,Pav);
```

Scilab code Exa 2.5 FINDING PRF AVERAGE POWER DUTY CYCLE AND RADAR RANGE

```
1 / Chapter - 2 example 2.5
3 clc;
4 clear;
5 Vo=3*10^8; // velocity in m/s
6 Pt=1*10^6; //peak power in watts
7 PW=1.2*10^-6; // pulse width in sec
8 PRI=1*10^-3; //pulse repetition interval in sec
9 // Calculations
10 PRF=1/PRI; //pulse repetition frequency in hz
11 Pav=Pt*PW*PRF; //average power in watts
12 D=Pav/Pt;//Duty cycle;
13 Rmax=Vo/(2*PRF); //maximum range of the radar in m
14 mprintf('pulse repetition frequency is %g KHz\n
     average power is %g KW\n Duty cycle = %e\n
     maximum range of the radar is %g Km', PRF/1000, Pav
     /1000,D,Rmax/1000);
```

Scilab code Exa $2.6\,$ FINDING RANGE RESOLUTION AND UNAMBIGUOUS RANGE

```
1 //Chapter-2 example 2.6
2 //
```

3 clc;

```
4 clear;
5 \text{ PW} = 2*10^-6;
                        //pulse width in sec
6 PRF=800;
                        //pulse repetition frequency in
     KHz
7 V0=3*10^8;
                        //velocity in m/s
8 // Calculations
9 Ru=V0/(2*PRF);
                        //unambigious range in mts
10 RR = (V0*PW)/2;
                        //Range resolution in m
11 //output
12 mprintf ('unambigious range is %g Km\n Range
      resolution is %g m', Ru/1000, RR);
```

Scilab code Exa 2.7 FINDING PRF

1 / Chapter - 2 example 2.7

```
3 clc;
4 clear;
5 Rmax=500; //maximum range in kms
6 V0=3*10^8; // velocity in m/s;
7 //calculations
8 PRF=(V0/(2*Rmax*10^3)); // pulse repetitive frequency in Hz
9 //output
10 mprintf('pulse repetitive frequency is %g Hz', PRF);
```

Scilab code Exa 2.8 FINDING MIN RECEIVABLE SIGNAL

```
1 / Chapter - 2 example 8
```

```
2 / /
```

```
3 clc;
4 clear;
5 //input data
     7 BW
         = 290; // Temperature in kelvin
= 1.38*10^-23; // Boltzman constant
8 To
9 K
10
11 // Calculations
12
13 F1 = 10^{(F/10)} //antilog calculation
          = (K*To*BW)*(F1-1); //minimum receivable
14 Pmin
    power
15
16 //Output
17 mprintf ('Minimum receivable power Pmin = \%3.4 f pW',
    Pmin*10^12);
18 mprintf('\n Calculation error at Pmin in textbook');
19
20
21 //
```

Scilab code Exa 2.9 FINDING MAX RADAR RANGE

```
1 //Chapter -2 example 2.9
2 //
3 clc;
```

4 clear;

ADVANCED RADARS

Scilab code Exa 3.1 FINDING LOWEST BLIND SPEED

```
1 / Chapter -3, Problem 3.1, Page 104
2 / /
3 clc;
4 clear;
6 //INPUT DATA
7 PRF= 1500; // pulse repetitive frequency in Hz
8 lamda = 3*10^-2; // wavelength in m;
9
10 // Calculations
11 //n = 1 gives lowest blind speed
12 n=1;
13
14 Vb = n*(lamda/2)*PRF; //blind speed in m/s
15
16
17 // Output
18 mprintf('Lowest Blind Speed is %g m/s', Vb);
```

Scilab code Exa 3.2 FINDING SPEED OF AUTOMOBILE

```
1 / Chapter -3, Problem 3.2, Page 105
3 clc;
4 clear;
6 //INPUT DATA
7 PRF= 1000; // pulse repetitive frequency in Hz
8 Fd = 1000; //doppler frequency in Hz;
9 F = 10*10^9; //operating frequency of radar in Hz;
10 Vo = 3*10^8; // velocity in m/s
11
12 // Calculations
  lamda = Vo/F;
13
         = (Fd*lamda)/2; //speed of automobile in m/s
14
         = Va*18/5; //speed of automobile in kmph
15
16
17 // Output
18 mprintf('Speed of automobile is %g m/s or %g kmph\n'
      , Va, Va1 );
```

Scilab code Exa 3.3 FINDING LOWEST THREE BLIND SPEEDS

```
1 //Chapter-3, Problem 3.3 , Page105
2 //
3 clc;
```

4 clear;

```
5
6 //INPUT DATA
7 PRF= 1000; // pulse repetitive frequency in Hz
8 F = 10*10^9; //operating frequency of radar in Hz;
9 Vo = 3*10^8; // velocity in m/s
10
11 // Calculations
12
   lamda = Vo/F;
    // Blind Frequency is given by Fn = n*PRF;
13
14
15
   n2 = 2;
16
   n3 = 3;
17
   F1 =n1*PRF; // blind frequency for n=1 in Hz;
    F2 =n2*PRF; // blind frequency for n=2 in Hz;
18
    F3 =n3*PRF; //blind frequency for n=3 in Hz;
19
20
21 // Output
22 mprintf('Lowest three Blind Frequencies are %g KHz,
     \%g KHz and \%g KHz\n',F1/1000,F2/1000,F3/1000 );
```

Scilab code Exa 3.4 FINDING LOWEST THREE BLIND SPEEDS

1 / Chapter -3, Problem 3.4, Page 105

```
12 \quad n3 = 3;
13 // Calculations
14
15 lamda = Vo/F; // Wavelength in m
16
17 // blind speed Vb = n*(lamda/2)*PRF in m/s
18
19 Vb1 = n1*(lamda/2)*PRF; // first blind speed in m/s;
20 Vb2 = n2*(lamda/2)*PRF; //second blind speed in m/s;
21 Vb3 = n3*(lamda/2)*PRF; //third blind speed in m/s;
22
23 //Output
24 mprintf('First Blind Speed is %g m/s\n Second Blind
      Speed is %g m/s\n Third Blind Speed is %g m/s\n',
     Vb1, Vb2, Vb3);
25 mprintf('NOTE: IN TEXT BOOK THIRD BLIND SPEED IS
     WRONGLY PRINTED AS 48 m/s');
```

Scilab code Exa 3.5 FINDING PRF

1 / Chapter -3, Problem 3.5, Page 106

```
3 clc;
4 clear;
5
6 //INPUT DATA
7 F = 10*10^9; //operating frequency in Hz
8 Vo = 3*10^8; //velocity in m/s;
9 Vb1 = 20;//lowest(first) blind speed in m/s
10 n =1;//since first blindspeed
11 //Calculations
12
13 lamda = Vo/F;//Wavelength in m
```

Scilab code Exa 3.6 FINDING MAX UNAMBIGUOUS RANGE

1 / Chapter -3, Problem 3.6, Page 106

```
2 //
3 clc;
4 clear;
5
6 //INPUT DATA
7 lamda = 3*10^-2; // wavelength in m
8 PRF = 1000; // pulse repetitive frequency in Hz
9 Vo = 3*10^8; // velocity in m/s
10
11 // Calculations
12
13 Ruamb = (Vo)/(2*PRF); // max unambiguous range in m
14 // Output
15 mprintf('Maximum unambiguous range is %g Kms', Ruamb /1000);
```

Scilab code Exa 3.7 FINDING RATIO OF OPERATING FREQ

```
1 / Chapter -3, Problem 3.7, Page 106
2 //
3 clc;
4 clear;
  //INPUT DATA
8 n1
        = 1 ;//since first blindspeed
       = 3; // since third blindspeed
9 n3
10
11 // Calculations
12
13
14 // blind speed Vb1 = n1*(lamda_1/2)*PRF1 in m/s
15 // blind speed Vb3 = n3*(lamda-2/2)*PRF2 in m/s
16 / here PRF1 = PRF2 = PRF
17 // if Vb1=Vb3 then
18 //1*(lamda_1/2)*PRF = 3*(lamda_2/2)*PRF
19 / lamda_1 / lamda_2
                     = 3/1;
20 //lamda = C/F;
21 / therefore F1/F2 = 1/3;
22
23
24 // Output
25 mprintf('Ratio of Operating Frequencies of two
     Radars are (F1/F2) = 1/3;
```

Scilab code Exa 3.8 FINDING RATIO OF PRFs

```
1 //Chapter -3, Problem 3.8, Page107
2 //
```

```
3 clc;
4 clear;
6 //INPUT DATA
8 Vb1 = 20; // first blind speed in m/s
9 Vb2 = 30; // second blind speed in m/s
        =1; //since first blindspeed
        =2; //since second blindspeed
12 lamda = 3*10^-2; //wavelength in m;
13 // Calculations
15 PRF1 = (2*Vb2)/(n1*lamda);//pulse repetitive
     frequency in Hz of First Radar;
16
17 PRF2 = (2*Vb2)/(n1*lamda);//pulse repetitive
     frequency in Hz of Second Radar;
18
19
20 //Output
21 mprintf('Ratio of pulse repetitive frequencies of
     the Radars is PRF1/PRF2 = \%g', PRF1/PRF2);
```

Scilab code Exa 3.9 FINDING BLIND SPEEDS

1 / Chapter -3, Problem 3.9 , Page 107

```
2 //
3 clc;
4 clear;
5
6 //INPUT DATA
7 F = 6*10^9;  //operating frequency in Hz
8 PRF= 1000;  //pulse repetitive frequency in Hz
```

```
9 Vo = 3*10^8; //velocity in m/s;
                  // n value for second blind speed
10 n2 = 2;
                  // n value for third blind speed
11 \quad n3 = 3;
12 // Calculations
13
14 lamda = Vo/F//Wavelength in m
15
16 // blind speed Vb = n*(lamda/2)*PRF in m/s
17
18 Vb2 = n2*(lamda/2)*PRF //second blind speed in m/s;
19 \text{ Vb21} = \text{Vb2}*18/5;
                            //second blind speed in kmph
20 Vb3 = n3*(lamda/2)*PRF //third blind speed in m/s;
21 \text{ Vb31} = \text{Vb3}*18/5;
                           //third blind speed in kmph;
22
23 // Output
24 mprintf('Second Blind Speed is %g kmph\n Third Blind
       Speed is \%g \text{ kmph} \ n', Vb21, Vb31);
```

Scilab code Exa 3.10 FINDING PEAK TX POWER

1 / Chapter - 3 example 10

```
2 //
3 clc;
4 clear;
5 //input data
                                     //Antenna Radius in
6 r
                  = 0.5;
     \mathbf{m}
                                      //operating
7 f
                  = 8*10^9
     frequency in Hz
8 Vo
                 = 3*10^8;
                                      //vel. of EM wave in
      m/s
9 RCS
                 = 5;
                                      // Radar cross
```

```
section in m<sup>2</sup>
                                        // antenna diameter
10 D
                   = 1;
      in m
                                           // noise figure
11 F
                   = 4.77;
      in dB
12 \text{ Rmax}
                   = 12*10^3
                                        // Radar range
                   = 500*10^3;
                                        // bandwidth
13 BW
14
15 // Calculation
16 F1
                   = 10^{(F/10)}
                                        // antilog
      calculation
                                        // wavelength
17 lamda
                   = Vo/f
18
                   = 48*((Pt*D^4*RCS)/(BW*lamda*lamda(F))
19 / \text{Rmax}
      -1)))^0.25
20
21 Pt
                   = ((Rmax/48)^4)*((BW*lamda*lamda*(F1))
      -1))/(D<sup>4</sup>*RCS))
22
23 // Output
24 mprintf('Peak Transmitted Power is %e',Pt);
25 mprintf('\n Note: Calculation error in textbook at
      Pt 10<sup>12</sup> missing')
26 //
```

1 / Chapter - 4 example 4.1

TRACKING RADAR

Scilab code Exa 4.1 FINDING PHASE DIFFERENCE BETWEEN ECHOS

```
3 clc;
4 clear;
5 //input data
6 / d = lamda/2
7 theta_d = 5//angle blw los and perpendicular
     bisector of line joining two antennas
9 // calculations
10
11 //PD = (2*\%pi/lamda)*(d*sin(theta));
12 //PD = (2*\%pi/lamda)*(lamda/2*sin(theta));
13 theta_r = theta_d*(\%pi/180)
             = (2*\%pi)*((sin(theta_r))/2);//phase
14 PD_r
      difference in radians
             = PD_r*(180/%pi);//phase difference in
15 PD_d
     radians
16 //output
```

Scilab code Exa 4.2 FINDING SPACING BETWEEN ANTENNAS

```
1 / Chapter - 4 example 4.2
2 / /
3 clc;
4 clear;
5 //input data
6 F = 1*10^9; //operating frequency of
     monopulse radar in Hz
7 Vo = 3*10^8;
8 theta_d = 10
                           //velocity of EM wave in m/s
                           //angle blw los and
     perpendicular bisector of line joining two
     antennas
9 \text{ PD_d} = 20;
                           //phase difference in
     degrees
10
11 // calculations
                //wavelength in m
12 \text{ lamda} = \text{Vo/F}
13 //PD = (2*\%pi/lamda)*(d*sin(theta));
14 theta_r = theta_d*(\%pi/180) //degree to radian
     conversion
            = PD_d*(\%pi/180) //degree to radian
15 PD_r
     conversion
16 d
             = (PD_r*lamda)/(2*\%pi*sin(theta_r));
17
18 //output
19 mprintf('Spacing between the antennas is %3.2 f cms',
```

```
d*100);
20
21 //=____end of the program
```

FACTORS AFFECTING RADAR OPERATION AND RADAR LOSSES

Scilab code Exa 5.1 FINDING RCS

1 / Chapter - 5 example 1

2 / /

```
(cos)^2]^2\n');

11
12 //=____end of the program
```

Scilab code Exa 5.4 FINDING RCS

```
1 / Chapter - 5 example 4
2 //
3 \text{ clc};
4 clear;
5 //input data
6 \text{ lamda} = 0.03; // \text{wavelength in m}
7 Pt = 250*10^3; // transmitter power
8 G = 2000; // antenna gain
9 R = 50*10^3; // maximum range
10 Pr = 10*10^-12; //minimum detectable power
11 // Calculations
12 Ae = (lamda*lamda*G)/(4*\%pi); // effective
      aperture area
13 RCS = (Pr*(4*\%pi*R*R)^2)/(Pt*G*Ae);//Radar cross
      section of the target
14
15 //output
16 mprintf('Radar cross section of the target is %3.2 f
      m^2, RCS);
17
18 //——end of the program
```

RADAR TRANSMITTERS

Scilab code Exa 6.1 FINDING MAX POWER

```
1 / Chapter - 6 example 1
2 //
3 clc;
4 clear;
5 //input data
      = 9*10^9; // Reflex Klystron operating frequency
       in hz
7 Va = 300;//beam voltage in volts
8 I = 20; //Beam current in mA
9 n = 1; \frac{1}{1} for \frac{7}{4} mode
10
11 // Calculations
12 //transit time for reflector space = n+3/4
13 I1
             = I*10^-3; //beam current in mA
14 Prfmax
          = (0.3986*I1*Va)/(n+3/4);/maximum RF
     power
15 // Output
16 \texttt{mprintf} ('Maximum R-F power is \%3.3\,\mathrm{f} Watts', Prfmax);
17
```

```
18 //=end of the program
```

Scilab code Exa 6.2 FINDING GAIN PARAMETER OUTPUT POWER GAIN AND Be

```
1 / Chapter - 6 example 2
2 / /
3 clc;
4 clear;
5 //input data
6 Vdc = 2.5*10^3; //Beam voltage
7 Idc = 25*10^-3; //beam current in A;
8 Zo = 10; // charecteristic impedance

9 F = 9.5*10^9; //TWT operating frequency in hz

10 N = 40; // circuit length
11
12 // Calculations
13 C = ((Idc*Zo)/(4*Vdc))^(1/3);//gain parameter
        = -9.54 + (47.3 * N * C); //Output power gain of twt
14 Ap
15 \text{ w} = 2*\%\text{pi}*\text{F};
16 \text{ vdc} = 0.593*10^6*\text{sqrt}(Vdc);
17 Be
          = w/vdc;
18 //Output
19 mprintf('Gain parameter is %3.3 f\n Output Power gain
        is %3.3 f dB\n phase constant of electron beam is
       \%e rad/m',C,Ap,Be);
20
        end of the program
21 / =
```

Scilab code Exa 6.3 FINDING CYCLOTRON ANGULAR FREQ AND CUTOFF VOLTAGE

```
1 / Chapter - 6 example 3
2 / /
3 clc;
4 clear;
5 //input data
6 e = 1.609*10^-19; // charge of electron
7 me = 9.109*10^{-31}; //mass of electron in kg
8 B = 0.40; //magnetic flux density
      = 10*10^-2; // Radius of vane edge from the centre
      = 4*10^-2; //radius of cathode
10 a
11
12 // Calculations
13 Wc = (e/me)*B;//cyclotron angular frequency in
     radians
14 Vc = (e/(8*me))*(B^2)*(b^2)*(1-(a/b)^2)^2; //cut-off
       voltage
15 //Output
16 mprintf('Cyclotron Angular Frequency is %g rad\n Cut
     -off voltage is \%g \ V \ n', Wc, Vc);
17 mprintf(' Note: Cut-off voltage obtained in textbook
     is wrongly calculated. Instead of (a/b)^2, (a/b)
     is calculated');
18
             end of the program
19 //=
```

Scilab code Exa 6.4 FINDING ELECTRON VELOCITY TRANSIT ANGLE AND BEAM COUPLING COEFFICIENT

```
1 / Chapter - 6 example 4
```

```
2 //
```

```
3 clc;
4 clear;
5 //input data
6 Va = 900; // Accelarating voltage in volts
7 F = 3.2*10^9; //operating frequency
8 d = 10^{-3};
9 // Calculations
10 Ve = (0.593*10^6)*sqrt(Va);//electron velocity
11 \ w = 2*\%pi*F;
12 theta = w*(d/Ve); // transit angle in radians
13 Be = sin(theta/2)/(theta/2);//Beam Coupling Co-
     efficient
14 //output
15 mprintf ('Electron Velocity is %g m/s\n Transit Angle
      is %g rad\n Beam Coupling Co-efficient is %3.3f
     ', Ve, theta, Be);
16 //——end of the program
```

Scilab code Exa 6.5 FINDING EFFICIENCY

1 / Chapter - 6 example 5

```
9 Ib = 26*10^-3; //beam current
10 Bc = 0.946; //beam coupling coefficient of catcher gap
11 //Calculations
12 n = ((Bc*I2*V2)/(2*Ib*Vb))*100; // efficiency of klystron
13 //output
14 mprintf('Efficiency of the klystron is %g \n',n);
15 mprintf('Note: In textbook Bc value is taken as 0.946 in calculation')
16 // end of the program
```

Scilab code Exa 6.6 FINDING FREQ OF IMPATT DIODE

```
1 //Chapter-6 example 6
2 //

3 clc;
4 clear;
5 //input data
6 Vd = 2.2*10^5; // Carrier Drift Velocity in m/s
7 l = 5*10^-6; // drift region length
8 // Calculations
9 F = Vd/(2*1); // frequency of IMPATT Diode
10 //output
11 mprintf('Frequency of IMPATT Diode is %g Ghz', F /10^9);
12 // end of the program
```

Scilab code Exa 6.7 FINDING FREQ OF IMPATT DIODE

```
1 //Chapter-6 example 7
2 //
3 clc;
4 clear;
5 //input data
6 Vd = 3*10^5; // Carrier Drift Velocity in m/s
7 l = 7*10^-6; // drift region length
8 // Calculations
9 F = Vd/(2*1); // frequency of IMPATT Diode
10 //output
11 mprintf('Frequency of IMPATT Diode is %3.2 f Ghz', F /10^9);
12 // end of the program
```

Scilab code Exa 6.8 FINDING AVALANCHE ZONE VELOCTY

1 //Chapter-6 example 8

```
2 //
3 clc;
4 clear;
5 //input data
6 Na = 1.8*10^15; //Doping Concentration
7 J = 25*10^3; //current density in A/cm^2
8 q = 1.6*10^-19; //charge of electron
9 //Calculations
10 Vaz = J/(q*Na); // Avalanche Zone Velocity
11 //output
12 mprintf('Avalanche Zone Velocity of TRAPATT is %g\n', Vaz);
13 mprintf('Note: wrong calculation done in Textbook')
```

```
; end of the program
```

Scilab code Exa 6.9 FINDING FREQ OG GUNN DIODE OSCILLATOR

Scilab code Exa 6.10 FINDING MIN OPERATING GUNN DIODE VOLTAGE

```
1 //Chapter-6 example 10
2 //
```

```
3 clc;
4 clear;
```

Chapter 7

RADAR RECEIVERS

Scilab code Exa 7.1 FINDING PROBABILTY OF FALSE ALARM

```
1 //Chapter-7 example 1
2 //

3 clc;
4 clear;
5 //input data
6 BW = 0.5*10^9; // bandwidth of pulsed radar in hz
7 Tfa = 10; // false alarm time in minutes
8
9 // Calculations
10 Tfa1 = Tfa*60; // false alarm time in seconds
11 Pfa = 1/(BW*Tfa1)
12 // Output
13 mprintf('probability of false alarm is %g', Pfa);
14
15 // end of the program
```

Scilab code Exa 7.2 FINDING RADAR INTEGRATION TIME

Scilab code Exa 7.5 FINDING RANGE RESOLUTION

```
1 //Chapter-7 example 5
2 //

3 clc;
4 clear;
5 //input data
6 BW = 0.5*10^9; //Bandwidth of waveform in Hz
7 PW = 5*10^-3; //pulse width in sec
8 Vo = 3*10^8; // velocity of EM wave
9
10 //Calculations
11
```

```
= (Vo*PW)/2; //Range Resolution in m before
12 RR
     compression
13
14 / RR = Vo*tn1/2 ;
15 tn1
          = 1/BW;
          = (Vo*tn1)/2; //Range Resolution in m after
16 RRc
     compression
17
18 //output
19
20 mprintf ('Range Resolution before compression = \%e m\
     n Range Resolution before compression = %3.2 f m\n
      ', RR, RRc );
21 mprintf(' Note: Wrong Calculation in Textbook');
```

Scilab code Exa 7.8 RANGE RESOLUTION BEFORE AND AFTER COM-PRESSION

```
2 / /
3 clc;
4 clear;
5 //input data
        = 0.3*10^9; //Bandwidth of waveform in Hz
6 BW
        = 3*10^-3; //pulse width in sec
7 PW
        = 3*10^8; //velocity of EM wave
```

= (Vo*PW)/2; //Range Resolution in m before 12 RR compression 13 14 / RR = Vo*tn1/2 ;

10 // Calculations

8 Vo 9

11

1 / Chapter - 7 example 8

Scilab code Exa 7.9 FINDING MIN RECEIVABLE SIGNAL

```
1 / Chapter - 7 example 9
2 / /
3 clc;
4 clear;
5 //input data
              2*10^6; //Radar Bandwidth in Hz
6 BW
                           //Noise Figure in dB
7 Fn
              9;
             1.38*10^-23; //Boltzmann constant
8 k
                           //Temperature in kelvin
9 To
              290;
10
11 // Antilog Calculation
12 // 10 * \log 10 (Fn) = 9
13 //Fn
                     = \operatorname{antilog}(9/10);
14 Fn
          = 10^{(9/10)}
15
          = k*To*BW*(Fn-1); //Minimum Receivable signal
16 MRS
17
18 //Output
19
20 mprintf ('Minimum Receivable signal (MRS) = \%3.4 f PW'
```

,MRS*10^12);

 $\mbox{\tt mprintf('} \mbox{\tt Note: Calculation error in Textbook');}$

Chapter 9

1 / Chapter - 9 example 1

RADAR ANTENNAS

Scilab code Exa 9.1 FINDING BEAMWIDTHS

```
3 clc;
4 clear;
5 //input data
      = 2.5; // diameter of parabolic antenna in m
         = 5*10^9; //radar operating frequency in hz
       = 3*10^8; //velocity of EM wave in m/s
8 Vo
9
10 // Calculations
11 lamda = Vo/F; //wavelength
12 NNBW = 140*(lamda/Da);
13 HPBW = 70*(lamda/Da); //half power beamwidth in deg
14
15 //Output
16 mprintf('NNBW of parabolic reflector is %g degrees\n
      HPBW of parabolic reflector is %g degrees', NNBW,
     HPBW);
17
```

```
18 //——end of the program
```

Scilab code Exa 9.2 FINDING GAIN OF PARABOLIC REFLECTOR

```
1 / Chapter - 9 example 2
2 / /
3 clc;
4 clear;
5 //input data
6 Da = 2.5; // diameter of parabolic antenna in m
7 F = 5*10^9; //radar operating frequency in hz
8 Vo = 3*10^8; //velocity of EM wave in m/s
9
10 // Calculations
11 lamda = Vo/F;//wavelength
12 Gp = 6.4*(Da/lamda)^2/gain of parabolic
     reflector
13 G = 10*log10(Gp)//gain in dB
14 //Output
15 mprintf('Gain of parabolic reflector is %3.2 f dB',G)
16
17 //——end of the program
```

Scilab code Exa 9.3 FINDING NNBW HPBW AND POWER GAIN OF ANTENNA

```
1 / Chapter - 9 example 3
```

```
2 //
```

```
3 clc;
4 clear;
5 //input data
6 Da = 0.15; //diameter of parabolic antenna in m
7 F = 9*10^9; //radar operating frequency in hz
       = 3*10^8; //velocity of EM wave in m/s
8 Vo
10 // Calculations
11 lamda = Vo/F; //wavelength
12 Gp = 6.4*(Da/lamda)^2/gain of parabolic
     reflector
     = 10*log10(Gp)//gain in dB
13 G
14 \text{ NNBW} = 140*(lamda/Da);
15 HPBW = 70*(lamda/Da); //half power bandwidth in deg
16
17 // Output
18 mprintf('NNBW of parabolic reflector is %3.2 f
     degrees \n HPBW of parabolic reflector is %3.2 f
     degrees \setminus n', NNBW, HPBW);
19
20 mprintf(' Gain of parabolic reflector is %3.2 f dB', G
     );
21
22 //——end of the program
```

Scilab code Exa 9.4 FINDING POWER GAIN

```
1 // Chapter -9 example 4
2 //
```

```
3 clc;
4 clear;
5 //input data
6 Da = 2; //diameter of parabolic antenna in m
7 F
       = 2*10^9; //radar operating frequency in hz
8 Vo = 3*10^8; // velocity of EM wave in m/s
9
10 // Calculations
11 lamda = Vo/F;//wavelength
12 Gp = 6.4*(Da/lamda)^2/gain of parabolic
     reflector
13 G = 10*log10(Gp)/gain in dB
14 //Output
15 mprintf('Gain of parabolic reflector is %3.2 f dB',G)
16
17 //——end of the program
```

Scilab code Exa 9.5 FINDING MOUTH DIAMETER HPBW AND POWER GAIN OF PARABOLOID

```
2 //
3 clc;
4 clear;
5 //input data
6 F = 6*10^9; //radar operating frequency in hz
7 Vo = 3*10^8; // velocity of EM wave in m/s
8 NNBW = 5; // Null to Null beamwidth
9
10 // Calculations
11 lamda = Vo/F; // wavelength
```

1 / Chapter - 9 example 5

```
12
13 Da = 140*(lamda/NNBW);
14 HPBW = 70*(lamda/Da); // half power beamwidth in deg
15 Gp = 6.4*(Da/lamda)^2/gain of parabolic
     reflector
16 G
       = 10*log10(Gp)/gain in dB
17
18 //Output
19 mprintf ('Mouth Diameter of paraboloid is %g m\n HPBW
      of parabolic reflector is %g degrees \n', Da, HPBW)
20
21 mprintf(' Gain of parabolic reflector is %g dB\n
     Gain of parabolic reflector is %g ',G,Gp);
22
        end of the program
23
```

Scilab code Exa 9.6 FINDING BEAMWIDTH DIRECTIVITY AND CAPTURE AREA

```
3 clc;
4 clear;
5 //input data
6 F = 9*10^9; //radar operating frequency in hz
7 Vo = 3*10^8; //velocity of EM wave in m/s
8 NNBW = 5; // Null to Null beamwidth
9 Da = 5; // diameter of antenna in m
10
11 // Calculations
12 lamda = Vo/F; // wavelength
```

1 //Chapter-9 example 6

2 //

```
13 A = (\%pi*Da*Da)/4;//actural area of antenna
       = 0.65*A; // Capture Area
14 Ac
15
       = 6.4*(Da/lamda)^2;//directivity of antenna
16 D
        = 10*log10(D)//gain in dB
17 D1
        = 70*(lamda/Da);//half power beamwidth in deg
18 HPBW
       = 2*HPBW; // null to null beamwidth
19 NNBW
20
21 //Output
22 mprintf('HPBW of parabolic reflector is %g degrees\n
      NNBW of parabolic reflector is %g degrees\n
     Directivity is %g dB\n Capture area is %g m^2',
     HPBW, NNBW, D1, Ac);
23
24
         end of the program
25
```

Scilab code Exa 9.7 FINDING MIN DISTANCE REQUIRED BETWEEN TWO ANTENNAS

```
2 //
3 clc;
4 clear;
5 //input data
6 Da = 5;//diameter of parabolic antenna in m
7 F = 5*10^9;//radar operating frequency in hz
8 Vo = 3*10^8;//velocity of EM wave in m/s
9
10 //Calculations
11 lamda = Vo/F;//wavelength
12 R = (2*Da*Da)/lamda;//min distance b/w antennas
```

1 / Chapter - 9 example 7

```
13 //Output
14 mprintf('Minimum distance Required is %g m',R);
15
16 //———end of the program
```

Scilab code Exa 9.8 FINDING MOUTH DIAMETER AND BEAM WIDTH OF ANTENNA

```
1 //Chapter-9 example 8
2 / /
3 clc;
4 clear;
5 //input data
         = 4*10^9; //radar operating frequency in hz
        = 3*10^8; // velocity of EM wave in m/s
8 Vo
         = 500; //power gain of antenna
9 Gp
10 // Calculations
11 lamda = Vo/F;//wavelength
         = lamda*(Gp/6.4)^0.5//diameter of parabolic
     antenna in m
13
14 NNBW = 140*(lamda/Da); //beamwidth b/w null to null
15 HPBW = 70*(lamda/Da); //half power beamwidth in deg
16
17 // Output
18 mprintf('NNBW of parabolic reflector is %3.2 f
      degrees\n HPBW of parabolic reflector is %3.2
      fdegrees \setminus n', NNBW, HPBW);
19
20 mprintf(' Mouth diameter of parabolic reflector is
     \%3.2 \text{ f m', Da)};
```

```
21
22 //=____end of the program
```

Scilab code Exa 9.9 FINDING CAPTURE AREA AND BEAMWIDTH OF ANTENNA

```
1 / Chapter - 9 example 9
3 clc;
4 clear;
5 //input data
       = 9*10^9; //radar operating frequency in hz
       = 3*10^8; //velocity of EM wave in m/s
         = 100; //power gain of antenna in dB
10 // Calculations
11 lamda = Vo/F;//wavelength
12 //antilog calculation
13 / 100 = 10 \log 10 (Gp);
14 //10 = \log(Gp);
         = 10^10; //gain of antenna
15 G
         = lamda*sqrt(G/6.4)//diameter of parabolic
16 Da
     antenna in m
17 A
         = (%pi*Da*Da)/4;//Area of antenna
18 Ac = 0.65*A; // capture area
19 NNBW = 140*(lamda/Da); //beamwidth b/w null to null
20 HPBW = 70*(lamda/Da); //half power beamwidth in deg
21
22 // Output
23 mprintf('NNBW of parabolic reflector is %g degrees\n
      HPBW of parabolic reflector is %g degrees\n',
     NNBW, HPBW);
```

```
24
25 mprintf('\n Mouth diameter of parabolic reflector is %3.3 f m\n Capture area is %3.2 f m^2', Da, Ac);
26
27 //———end of the program
```

Scilab code Exa 9.10 FINDING BEAMWIDTH AND POWER GAIN

1 / Chapter - 9 example 10

```
2 / /
3 clc;
4 clear;
5 //input data
6 F = 10*10^9; //radar operating frequency in hz
       = 3*10^8; //velocity of EM wave in m/s
7 Vo
     = 5;//antenna diameter in m
8 Da
9
10 // Calculations
11 lamda = Vo/F;//wavelength
     = 6.4*(Da/lamda)^2/gain of parabolic
     reflector
      = 10*log10(Gp)/gain in dB
13 G
14
15 BWFN = 140*(lamda/Da); //beam width b/n nulls
16 HPBW = 70*(lamda/Da); //half power beamwidth in deg
17
18
19 //Output
20 mprintf('BWFN of parabolic reflector is %g degrees\n
      HPBW of parabolic reflector is %g degrees\n',
     BWFN, HPBW);
21
```

Scilab code Exa 9.11 FINDING POWER GAIN

```
1 //Chapter-9 example 11
2 //
3 \text{ clc};
4 clear;
5 //input data
6 F = 10*10^9; //radar operating frequency in hz
7 Vo = 3*10^8; //velocity of EM wave in m/s
8 IE =0.6; //illumination efficiency
9 Da =12; //diameter of antenna
10 // Calculations
11 lamda = Vo/F; //wavelength
12 Gp = IE*(Da/lamda)^2/gain of parabolic reflector
13 G = 10*log10(Gp)//gain in dB
14
15 // Output
16 mprintf(' Gain of parabolic reflector is %3.2 f dB', G
      );
17
18 //——end of the program
```

Scilab code Exa 9.12 FINDING MOUTH DIAMETER AND CAPTURE AREA

```
1 / Chapter - 9 example 12
2 / /
3 clc;
4 clear;
5 //input data
        = 4*10^9; //radar operating frequency in hz
        = 3*10^8; //velocity of EM wave in m/s
9 NNBW = 8; // Null to Null beamwidth in degrees
10 // Calculations
11 lamda = Vo/F;//wavelength
12 Da = (140*lamda)/NNBW;
        = (%pi*Da*Da)/4;//Area of antenna
13 A
14 Ac = 0.65*A;//capture area
15
16 //Output
17 mprintf('\n Mouth diameter of parabolic reflector is
       \%3.3 \text{ f m } \setminus \text{n Capture area is } \%3.2 \text{ f m}^2, \text{Da,Ac};
18
19 //———end of the program
```

Scilab code Exa 9.13 FINDING MOUTH DIAMETER AND POWER GAIN

```
1 //Chapter-9 example 13
2 //
3 clc;
4 clear;
5 //input data
6 F = 4*10^9; //radar operating frequency in hz
7 Vo = 3*10^8; // velocity of EM wave in m/s
```

```
8 NNBW = 2; // Null to Null Beamwidth in degrees
9
10 // Calculations
11 lamda = Vo/F;//wavelength
12 Da = (140*lamda)/2; //diameter of antenna in m
        = 6.4*(Da/lamda)^2/gain of parabolic
13 Gp
     reflector
        = 10*log10(Gp)/gain in dB
14 G
15
16
17 //Output
18 mprintf('Gain of parabolic reflector is %g dB\n
     mouth diameter of the antenna is %g m ',G,Da);
19
             end of the program
20 / =
```

Scilab code Exa 9.14 FINDING BEAMWIDTH AND POWERGAIN

1 //Chapter-9 example 14

Scilab code Exa 9.15 FINDING POWER GAIN

1 //Chapter-9 example 15

```
2 / /
3 clc;
4 clear;
5 //input data
6 / Da = 6*lamda;
8 // Calculations
10 //Gp = 6.4*(Da/lamda)^2; //power gain
11
12 //Gp = 6.4*(6*lamda/lamda)^2 //power gain of
     parabolic reflector
13 Gp = 6.4*(6)^2;
14 G = 10*log10(Gp)/gain in dB
15
16
17 // Output
18 mprintf('Gain of parabolic reflector is %3.2 f dB\n',
     G);
19
20 //——end of the program
```

Scilab code Exa 9.16 FINDING BEAMWIDTH AND DIRECTIVITY OF ANTENNA

```
1 //Chapter-9 example 16
2 / /
3 clc;
4 clear;
5 //input data
6 //Da = 7*lamda; diameter of antenna
8 // Calculations
9 //HPBW = 70*(lamda/Da)
10 / \text{HPBW} = 70 * (\text{lamda} / (7 * \text{lamda}));
11 HPBW = 70/7; // half power beamwidth
12 NNBW = 2*HPBW; //null to null beamwidth
13 //Gp = 6.4*(Da/lamda)^2; //power gain
14
15 //\text{Gp} = 6.4*((7*\text{lamda})/\text{lamda})^2; power gain of
      parabolic reflector
16 Gp = 6.4*(7)^2;
17 G = 10*log10(Gp)//gain in dB
18
19
20 //Output
21 mprintf('Gain of parabolic reflector is %3.1f \n
     HPBW of Antenna is %3.1f degrees\n NNBW of
      Antenna is %3.1 f degrees ', Gp, HPBW, NNBW);
22
23 / =
           end of the program
```

Scilab code Exa 9.17 FINDING BEAMWIDTH POWERGAIN AND DIRECTIVITY

```
1 / Chapter - 9 example 17
2 / /
3 clc;
4 clear;
5 //input data
       = 8*10^9; //radar operating frequency in hz
        = 3*10^10; //velocity of EM wave in cm/s
        = 9;//pyramida horn
                               diameter in cm
       = 4;//pyramida horn
                               width in cm
10 // Calculations
11 lamda = Vo/F//wavelength in cm
12 HPBW_E = 56*(lamda/D)//halfpower beamwidth in E-
      plane;
13 HPBW_H = 67*(lamda/W)/halfpower beamwidth in H-
          = (4.5*W*D)/(lamda*lamda);//power gain
14 Gp
          = 10*log10(Gp);//power gain in dB
15 G
     =(7.5*W*D)/(lamda*lamda);//directivity
16 Di
17
18
19 //Output
20 mprintf ('Halfpower beamwidth ib E-plane is %3.2 f
      degrees \n Halfpower beamwidth iN H-plane is \%3.2 f
       degrees \n Powergain is %3.2 f dB\n Directivity is
      \%3.2 \,\mathrm{f}', HPBW_E, HPBW_H, G, Di);
21
22
23
               end of the program
```

Scilab code Exa 9.18 FINDING POWER GAIN OF HORN ANTENNA

```
1 / Chapter - 9 example 18
2 / /
3 clc;
4 clear;
5 //input data
6 //Aperture size = 10*lamda
7 // Calculations
8 //Gp = (4.5*W*D) / (lamda*lamda);
9 //Gp = (4.5*(10*lamda)*(10*lamda))/(lamda*lamda);
10 Gp = (4.5*10*10); //power gain of square horn
     antenna
      = 10*log10(Gp);//power gain in dB
11 G
12
13 // Output
14 mprintf ('Power Gain of Square Horn Antenna is %3.2 f
15 // end of the program
     dB', G);
```

Scilab code Exa 9.19 FINDING POWER GAIN AND DIRECTIVITY

```
1 //Chapter-9 example 19
2 //

3 clc;
4 clear;
5 //input data
```

```
6 F = 8*10^9; //radar operating frequency in hz
        = 3*10^10; //velocity of EM wave in cm/s
7 Vo
        = 10;//pyramida horn diameter in cm
        = 5; //pyramida horn width in cm
9 W
10 // Calculations
11 lamda = Vo/F//wavelength in cm
         = (4.5*W*D)/(lamda*lamda);//power gain
12 Gp
         = 10*log10(Gp);//power gain in dB
13 G
         =(7.5*W*D)/(lamda*lamda);//directivity
14 Di
         =10*log10(Di);//Directivity in dB
15 DI
16
17
18 //Output
19 mprintf ('Powergain is %3.2 f dB\n Directivity is %3.2
     f dB',G,DI);
20
21
         end of the program
```

Scilab code Exa 9.20 FINDING COMPLEMENTARY SLOT IMPEDANCE

```
//Chapter-9 example 20
//

clc;
clear;
//input data
no = 377; // Free space intrinsic impedance in ohms
Zd1 = 73+50*%i; // dipole impedance;
Zd2 = 70; // dipole impedance;
Zd3 = 800; // dipole impedance;
Zd4 = 400// dipole impedance;
Zd5 = 50+10*%i; // dipole impedance;
```

```
= 50-30*\%i; // dipole impedance;
12 Zd6
         = 350; // dipole impedance;
13 Zd7
14
15 // Calculations
16 K
          = (no^2)/4;
17 / Zs
          = (no*no)/(4*Zd); slot impedance
18 Zs1
          = K/Zd1//slot impedance
          = K/Zd2; //slot impedance
19 Zs2
          = K/Zd3; //slot impedance
20 Zs3
          = K/Zd4; //slot impedance
21 Zs4
          = K/Zd5; //slot impedance
22 Zs5
          = K/Zd6; //slot impedance
23 Zs6
24 Zs7
          = K/Zd7; //slot impedance
25
26 //output
27
28 mprintf('slot impedance if Zd = 73+i50 ohm is '),
     mprintf( prettyprint(Zs1)),mprintf(' ohm \n');
  mprintf(' slot impedance if Zd = 70
                                            ohm is '),
     mprintf( prettyprint(Zs2)),mprintf('
                                            ohm n';
30 mprintf(' slot impedance if Zd = 800
                                            ohm is '),
     mprintf( prettyprint(Zs3)),mprintf('
                                            ohm n';
31 mprintf(' slot impedance if Zd = 400
                                            ohm is '),
     mprintf( prettyprint(Zs4)),mprintf('
                                            ohm n';
32 mprintf(' slot impedance if Zd = 50+i10 ohm is '),
     mprintf( prettyprint(Zs5)),mprintf('
                                            ohm n';
33 mprintf(' slot impedance if Zd = 50-i30 ohm is '),
     mprintf( prettyprint(Zs6)),mprintf(' ohm \n');;
  mprintf(' slot impedance if Zd = 350
                                            ohm is '),
     mprintf( prettyprint(Zs7)),mprintf(' ohm \n');;
35
36
37
                end of the program
38
```

Scilab code Exa 9.21 FINDING RADIATION RESISTANCE OF HERTZIAN DIPOLE

```
1 //Chapter-9 example 21
2 / /
3 clc;
4 clear;
5 //input data
7 //dl1 = lamda/20;
8 //d12 = lamda/30;
9 //d13 = lamda/40;
10
11 // Calculations
12 / Rr = 80*(pi*pi)*(dl/lamda)^2 Radiation Resistance
      in ohms
13 / Rr1 = 80*(pi*pi)*(dl1/lamda)^2 Radiation
     Resistance in ohms
14 / Rr1 = 80*(pi*pi)*((lamda/20)/lamda)^2 Radiation
     Resistance in ohms
         =80*(%pi*%pi)*(1/20)^2;
15 Rr1
16 / Rr2 = 80*(pi*pi)*(dl2/lamda)^2 Radiation
     Resistance in ohms
  //Rr2 = 80*(pi*pi)*((lamda/30)/lamda)^2 Radiation
     Resistance in ohms
         =80*(\%pi*\%pi)*(1/30)^2;
  //Rr3 = 80*(pi*pi)*(dl3/lamda)^2 Radiation
     Resistance in ohms
20 / Rr3 = 80*(pi*pi)*((lamda/40)/lamda)^2 Radiation
     Resistance in ohms
21
  Rr3
         =80*(\%pi*\%pi)*(1/40)^2;
22
```

Scilab code Exa 9.22 DIRECTIVITY OF HALFWAVE DIPOLE

```
1 / Chapter - 9 example 22
2 / /
 3 clc;
 4 clear;
 5 disp('For half wave dipole Emax = 60I/r')
 6 disp('But Pr = 73 \text{ I}^2 \text{ Watts}');
 7 \operatorname{disp}('For Pr = 1 W');
8 disp('I = 1/sqrt(73)');
 9 disp('Emax = (60/r)*I');
10 \operatorname{disp}(\operatorname{Gdmax} = (4*\operatorname{pi}*\operatorname{phi})/\operatorname{Pr}), \operatorname{disp}(\operatorname{as} \operatorname{Pr} = 1 \text{ and } \operatorname{phi})
        = (r^2)*(E^2)/no'
11 disp('Gdmax = 4*pi*(r^2)*(E^2)/no');
12 disp(' = (4*pi*(r^2)*60*60)/(no*r*r*73)');
                 = (4*pi*60*60)/(120*pi*73)');
13 disp('
                 = 120/73;
14 Gdmax
15
16 mprintf('Directivity of half wave dipole is %3.2f',
       Gdmax );
17 //——end of program
```

Scilab code Exa 9.23 FINDING RADIATED POWER

```
1 / Chapter - 9 example 23
2 / /
3 clc;
4 clear;
5 //input data
6 F = 12*10^9; //operating frequency in Ghz
7 I = 2;//current in amperes
8 Rr = 300; //radiation resistance in ohms
9
10 // Calculations
11 Pr = I*I*Rr;
12
13 //output
14 mprintf('Radiated Power is %3.1f Watts', Pr);
15
16 //=end of the program
```

Scilab code Exa 9.24 FINDING EFFECTIVE AREA OF HALF WAVE DIPOLE

```
\begin{array}{ccc} 1 & //\operatorname{Chapter} - 9 & \operatorname{example} & 24 \\ 2 & // & \end{array}
```

3 clc;

```
d clear;
5 //input data
6 F = 600*10^6; //radar operating frequency in hz
7 Vo = 3*10^8; // velocity of EM wave in m/s
8 D = 1.644; // Directivity of the half wave dipole
9 // Calculations
10 lamda = Vo/F; // wavelength
11 Ae = (lamda^2*D)/(4*%pi); // effective area of antenna
12 // Output
13 mprintf('Effective Area of the antenna is %3.4 f m^2', Ae);
14
15 // end of the program
```

Scilab code Exa 9.25 FINDING EFFECTIVE AREA OF HERTZIAN DIPOLE

```
2 //
3 clc;
4 clear;
5 //input data
6 F = 200*10^6; //radar operating frequency in hz
7 Vo = 3*10^8; // velocity of EM wave in m/s
8 D = 1.5; // Directivity of the Hertzian dipole
9 // Calculations
10 lamda = Vo/F; // wavelength
11 Ae = (lamda^2*D)/(4*%pi); // effective area of antenna
12 // Output
13 mprintf('Effective Area of the antenna is %3.4 f m^2', Ae);
```

1 / Chapter - 9 example 25

Chapter 11

1 / Chapter - 11 example 1

 $16 \quad lamda = Vo/F$

SOLVED PROBLEMS

Scilab code Exa 11.1 FINDING RECEIVED SIGNAL POWER

```
3 clc;
4 clear;
5 //Given data
6 F = 10*10^9; //radar operating frequency in Hz
7 Vo = 3*10^8; //vel in m/s;
8 G = 20; //antenna gain in dBi;
9 R = 20*10^3; //distance of radar reflected signal
       from target
10 Pt = 10*10^3 //Tx power in watts
11 CS = 10;
                     //cross sectional area in m<sup>2</sup>
12 // Calculations
13 Gain = 10^{(G/10)}
                        //G = 10 \log (Gain) \Longrightarrow gain -
      antilog (20/10);
14 Gr = Gain; //gain of tx antenna and Rx antenna
15 Gt = Gain
```

17 Pr= (lamda*lamda*Pt*Gt*Gr*CS)/((4*4*4*%pi*%pi*%pi)*(

```
R^4))//received power in watts

18

19 // Output

20 mprintf('Received signal Power is %g',Pr);

21 mprintf('\n Note: Calculation error in Textbook');
```

Scilab code Exa 11.2 FINDING TARGET DISTANCE FROM RADAR

```
1 //Chapter-11 example 2
2 //
3 clc;
4 clear;
5 Vo = 3*10^8; // velocity of EM wave in m/s
6 t = 20*10^-6; // echo time in sec
7 // calculations
8
9 R = (Vo*t)/2; // distance b/n target and Radar in m
10
11 // Output
12 mprintf('Distance of Target from the Radar is %g Km', R/1000 );
13
14 // end of program
```

Scilab code Exa 11.3 FINDING MAX AND MIN RANGES OF RADAR

```
1 / Chapter - 11 example 3
```

```
2 //
```

```
3 clc;
4 clear;
5 Vo = 3*10^8; // velocity of EM wave in m/s
6 F = 0.8*10^3; // pulse repetitive frequency
7 Tp = 1.2*10^-6; // pulse width in sec
8 // Calculations
9 Rmax = Vo/(2*F); // maximum Range of Radar in m
10 Rmin = (Vo*Tp)/2; // minimum Range of radar in m
11
12 // Output
13 mprintf('Maximum Range of Radar is %g Km\n Minimum Range of the Radar is %g m', Rmax/1000, Rmin);
14
15 // end of program
```

Scilab code Exa 11.4 FINDING DUTY CYCLE

```
12 mprintf('Duty Cycle is %e',Dc);
13 //=end of program
```

Scilab code Exa 11.5 FINDING AVERAGE TX POWER

```
1 / Chapter - 11 example 5
2 //
3 \text{ clc};
4 clear;
5 PW = 2*10^-6//\text{pulse} width in sec
6 PRF = 1000//pulse repetitive frequency
7 Pp = 1*10^6; //peak power in watts
9 // Calculations
10 Dc = PW*PRF;//duty cycle
11 AvgTp = Pp*Dc; //average transmitted power in watts
12
13 //Output
14 mprintf ('Average Transmitted power is %g KW', AvgTp
     /1000);
15
16 //——end of program
```

Scilab code Exa 11.6 FINDING RANGE RESOLUTION

```
1 / Chapter - 11 example 6
```

```
2 //
```

```
3 clc;
4 clear;
5 PW = 2*10^-6; // pulse width in sec
6 Vo = 3*10^8; // velocity of EM wave in m/s
7
8 // Calculations
9
10 RR = (Vo*PW)/2; // Range Resolution in m
11
12 // Output
13 mprintf('Range Resolution is %g m', RR);
14
15 // end of program
```

Scilab code Exa 11.7 FINDING TARGET RANGE

```
1 //Chapter-11 example 7
2 //
3 clc;
4 clear;
5 t = 50*10^-6; //echo time in sec
6 Vo = 3*10^8; // velocity of EM wave in m/s
7
8 //Calculations
9
10 R = (Vo*t)/2; //Range in m
11
12 //Output
```

```
13 mprintf('Target Range is %g Kms',R/1000);
14
15 //———end of program
```

Scilab code Exa 11.8 FINDING DOPPLER SHIFT

```
1 //Chapter-11 example 8
2 / /
3 clc;
4 clear;
5 //input data
6 Tvel = 1000; //target speed in kmph
7 F = 10*10^9; //radar operating frequency in hz
8 Vo = 3*10^8; //velocity of EM wave in m/s
9
10 // Calculations
11 Vr = 1000*(5/18); // target speed in m/s
       = (2*Vr*F)/Vo;//Doppler Frequency shift in Hz
12 Fd
13
14 //Output
15 mprintf('Doppler Frequency shift Caused by aircraft
     is \%3.2 f \text{ KHz', Fd/1000};
16
17 //——end of the program
```

Scilab code Exa 11.9 FINDING DOPPLER SHIFT FREQUENCY

```
1 / Chapter - 11 example 9
```

```
2 //
```

```
3 clc;
4 clear;
5 //input data
6 F = 6*10^9; // Transmitting Frequency of Radar
7 Vr = 250; //velocity of automobile in Kmph
8 Vo = 3*10^8; //velocity of EM wave in m/s
9
10 // Calculations
11
12 Va
       = Vr*(5/18)//velocity of automobile in m/s
        = (2*Va*F)/Vo//Doppler Frequency shift in Hz
13 Fd
14
15 // Output
16 mprintf('Doppler Frequency shift is %3.3 f KHz', Fd
     /1000)
17
      end of the program
```

Scilab code Exa 11.10 FINDING DOPPLERSHIFT FREQUENCY AND FREQ OF RELECTED ECHO

```
2 //
3 clc;
4 clear;
5 //input data
6 F = 9*10^9;//Transmitting Frequency of Radar
7 Vr = 800;//velocity of aircraft in Kmph
8 Vo = 3*10^8;//velocity of EM wave in m/s
```

```
9
10 // Calculations
11
12 Va
       = Vr*(5/18)//velocity of aircraft in m/s
13 Fd
         = (2*Va*F)/Vo//Doppler Frequency shift in Hz
        = F+Fd; //frequency of reflected echo in Hz
14 Fr
15 //Output
16 mprintf('Doppler Frequency shift is %g Hz\n
     frequency of reflected echo is %e Khz\n',Fd,Fr
     /1000)
17 mprintf('Note: doppler frequency shift wrongly
     printed in Text Book as 1333.3 Hz');
18
           end of the program
```

Scilab code Exa 11.11 FINDING DOPPLER SHIFT FREQUENCY AND FREQUENCY OF REFLECTED SIGNAL

```
2 / /
3 clc;
4 clear;
5 //input data
6 F = 2*10^9; // Transmitting Frequency of Radar
7 Vr = 350; // velocity of sports Car in Kmph
8 Vo = 3*10^8; //velocity of EM wave in m/s
9
10 // Calculations
11
12 Va
       = Vr*(5/18)//velocity of aircraft in m/s
13 Fd = (2*Va*F)/Vo//Doppler Frequency shift in Hz
14 //Car moving away from Radar
15 Fr
         = F-Fd; //frequency of reflected signal in Hz
```

Scilab code Exa 11.12 FINDING AVERAGE POWER

```
3 clc;
4 clear;
5 //input data
6 PRF
        =
            2000; // pulse repetition frequency per
     second
       = 1*10^-6; // pulse width in sec
7 PW
       = 500*10^3; //Peak power in watts
8 Pp
9
10 // Calculations
11 Dc = PW*PRF;//Duty Cycle
12 Pav = Pp*Dc; //average power in watts
13 pavdB = 10*log10(Pav);
14
15 //Output
16
17 mprintf ('Average power is %g KW\n Average Power is
     \%g dB', Pav/1000, pavdB);
18
```

```
19 //——end of the program
```

Scilab code Exa 11.13 FINDING DUTY CYCLE AVERAGE POWER AND MAX RANGE OF RADAR

```
1 / Chapter - 11 example 13
2 / /
3 clc;
4 clear;
5 //input data
6 PRF
        = 1000; // pulse repetition frequency per
     second
7 PW = 0.8*10^-6; // pulse width in sec
8 Pp = 10*10^6; //Peak power in watts
9 Vo = 3*10^8; //velocity of EM wave in m/s;
10
11 // Calculations
12 Dc = PW*PRF;//Duty Cycle
13 Pav = Pp*Dc;//average power in watts
14 Rmax = Vo/(2*PRF);
15
16
17 // Output
18
19 mprintf ('Average power is %g KW\n Maximum Radar
     Range is %g Km', Pav/1000, Rmax/1000);
20
      end of the program
21 / =
```

Scilab code Exa 11.14 FINDING PRF

```
1 / Chapter - 11 example 14
2 / /
3 clc;
4 clear;
5 //input data
6 Rmax = 500*10^3; //maximum Range of Radar in ms
7 Vo
      = 3*10^8; // Velocity of EM wave in m/s
8 // Calculations
10 PRF = Vo/(2*Rmax); //pulse repetitive frequency in
     Hz
11
12 //output
13 mprintf('Pulse repetive frequency required for the
     range of 500km is %g Hz', PRF);
14
15 //=end of program
```

Scilab code Exa 11.15 FINDING RANGE

```
1 //Chapter-11 example 15
2 //

3 clc;
4 clear;
5 //input data
6 Te = 0.2*10^-3; //echo time in sec
7 PRF = 1000; // pulse repetitive Frequency in Hz
```

```
8 Vo = 3*10^8; // Velocity of EM wave in m/s
9 // Calculations
10 R = (Vo*Te)/2; // Range of the target in m
11 Runamb = (Vo/(2*PRF)); // Maximum unambiguous Range
    in m
12
13 // Output
14 mprintf('Target range is %g Km\n Maximum Unambiguous
        Range is %g Km', R/1000, Runamb/1000);
15
16 // end of program
```

Scilab code Exa 11.16 FINDING FREQUENCIES

```
2 / /
3 clc;
4 clear;
5 //input data
         = 10*10^9; // operating frequency of radar in Hz
        = 3*10^8; // Velocity of EM wave in m/s
            100; // velocity of car in kmph
8 Vr
9 // Calculations
10 lamda = Vo/F; // wavelength in m
         = Vr*(5/18); //velocity of car in m/s
12 Fd
         = (2*Vc)/lamda; //doppler shift in Hz
13 //Output
14 mprintf('Doppler Shift is %g KHz\n Frequency of the
     Received echo when car is approaching radar is %g
      Ghz + %g Khz\n Frequency of the Received echo
     when car is moving away from radar is %g Ghz - %g
      Khz',Fd/1000,F/10^9,Fd/1000,F/10^9,Fd/1000);
```

```
15
16 //=_____end of program
```

Scilab code Exa 11.17 FINDING BEAMWIDTH

```
1 / Chapter - 11 example 17
2 //
3 clc;
4 clear;
5 //input data
6 D = 200; //azimuth distance between two radars
7 R = 10*10^3; //Range of radar
8
9 // Calculations
10 BWdB = (D/R)*(180/\%pi); //3dB beam width in degrees
11
12 //Output
13 mprintf ('Maximum 3db beamwidth of radar resolving
     the target is %3.3f degrees', BWdB);
14
      end of the program
15 //=
```

Scilab code Exa 11.18 FINDING MIN TIME REQUIRED TO RESOLVE AIRCRAFTS

```
\begin{array}{cccc} 1 & //\operatorname{Chapter} -11 & \operatorname{example} & 18 \\ 2 & // & \end{array}
```

```
3 \text{ clc};
4 clear;
5 //input data
6 F = 10*10^9; //operating frequency of radar in Hz
       = 3*10^8; // Velocity of EM wave in m/s
8 Vr1 = 100; //velocity of one aircraft in m/s
9 theta = 45; //angle b/n velocity vector and radar
     axis for second aircraft
10 Vr
        = 200; // vel in m/s
11 // Calculations
12 lamda = Vo/F; //wavelength in m
        = (2*Vr1)/lamda//doppler shift due to 1st
      aircraft
         = Vr*cos(45*%pi/180)//radial velocity of the
14 Vr2
     second aircraft
        = (2*Vr2)/lamda//doppler shift due to 2nd
     aircraft
16 Fd = Fd2-Fd1//difference in doppler shift in Hz
      = 1/Fd; //time required to resolve the aircraft
17 T
      in sec
18
19 //Output
20 mprintf ('Minimum time required to resolve the
     aircrafts is \%g usec\n', T*10^6);
21 mprintf(' Note: in textbook there is a mistake in
     the calculation of doppler shift Fd1');
22 //——end of the program
```

Scilab code Exa 11.19 FINDING DUTY CYCLE CORRECTION FACTOR

```
\begin{array}{cccc} 1 & //\operatorname{Chapter} -11 & \operatorname{example} & 19 \\ 2 & // & \end{array}
```

```
3 clc;
4 clear;
5 //input data
6 Pp = 100*10^3; //peak power in watts
7 Pav = 100; //average power in watts
9 // Calculations
10 PdB = 10*log10(Pp); //peak power in dB
11 PavdB = 10*log10(Pav); //average power in dB;
12 DCC = PdB-PavdB; //Duty Cycle Correction factor
13
14 // Output
15 mprintf('Duty Cycle Correction Factor is %g dB\n',
     DCC);
16 mprintf(' Note: In question given peak power is 100
     KW but while solving 1KW is taken instead of 100
     KW')
17
18 //=end of the program
```

Scilab code Exa 11.20 FINDING AVERAGE POWER DUTY CYCLE AND PULSE ENERGY

```
3 clc;
4 clear;
5 //input data
6 Pp = 1*10^6;//peak power in watts
7 PW = 1*10^-6;//pulse width in sec
8 NPd = 20;//pulses in one dwell period
```

1 / Chapter - 11 example 20

2 / /

```
9 PRF = 1000; //pulse repetitive frequency
10
11 //calculations
12 PE = Pp*PW; // pulse energy in joule
13 PED = NPd*PE;//pulse energy in one dwell period
       = PW*PRF; // Duty cycle
15 Pav = Pp*D; //average power in watts
16
17 //output
18 mprintf('Average Power is %g watts\n Duty Cycle is
     %e\n Pulse Energy is %g Joules\n Pulse Energy in
     one Dwell Period is %g Joules\n',Pav,D,PE,PED);
19 mprintf(' Note: In textbook Values of PRF and pulses
      in one dwell period are varied from given values
      in question while solving ');
20 ;
             end of the program
21 / =
```

Scilab code Exa 11.21 FINDING NOISE POWER SPECTRAL DENSITY

```
3 clc;
4 clear;
5 //input data
6 Noise_power = -50; // noise power in dBm
7 Fl = 1*10^6; //lower cutoff frequency in Hz
8 Fh = 21*10^6; // upper cutoff frequency in Hz
9
10 // calculation
11 BW = Fh-Fl; // bandwidth
12 NP =10^-8// noise power in watts; -50dBm = 10log10 (NP)
```

Scilab code Exa 11.22 FINDING RANGE OF TARGET

Scilab code Exa 11.23 FINDING RANGE OF TARGET

```
1 //Chapter-11 example 23
2 //

3 clc;
4 clear;
5 //input data
6 Az = 60; //azimuth angle of the target in degrees
7 Height = 10; //height of target in kms
8 //Calculations
9 R = 10/sin(Az*%pi/180);
10
11 //output
12 mprintf('Range of the Target is %g Kms',R);
13
14 //______end of the program
```

Scilab code Exa 11.24 FINDING TARGET BLIND SPEED

```
3 clc;
4 clear;
5 //input data
6 F = 10*10^9; //MTI radar operating Frequency
7 Vo = 3*10^8; // velocity of EM wave in m/s;
8 PRF = 2*10^3; // pulse repetitive frequency in hz
9 n=1; // for lowest blind speed
10 // Calculations
11 lamda = Vo/F; // wavelength in m
12 BS = (n*lamda/2)*PRF; // blind speed
13
```

Scilab code Exa 11.25 RATIO OF OPERATING FREQUENCIES

```
1 / Chapter - 11 example 25
2 / /
3 clc;
4 clear;
5 //input data
6 PRF = 2*10^3; //pulse repetitive frequency in Hz
7 Vo = 3*10^8; //velocity of EM wave in m/s
8 mprintf('f1 = first operating frequency of MTI Radar
     \n');
9 mprintf(') f2 = second operating frequency of MTI
     Radar\n');
10 mprintf(' 2nd blind speed of 1st radar = (2Vo/2f1)*
     PRF \setminus n 5th blind speed of 2nd radar = (5Vo/2f2)*
     PRF \setminus n');
11 mprintf(' PRF(V0/f1) = (5/2)*(Vo/f2)*PRF(n');
12 mprintf(' (f2/f1) = 5/2 n');
13
14 //——end of the program
```

Scilab code Exa 11.26 RATIO OF OPERATING FREQUENCIES

```
1 / Chapter - 11 example 26
```

```
2 / /
```

```
3 clc;
4 clear;
5 //input data
6 mprintf('(PRF1) = 2(PRF2)\n');
7 mprintf(' Vb3 = 4Vb5\n');
8 mprintf(' (3Vo/2F1)(PRF1)) = 4(5Vo/2F2)(2PRF2)\n');
9 mprintf(' 3/2F1 = 20/F2\n');
10 mprintf(' Ratio of operating frequencies is F2/F1 = 40/3\n');
11
12 //=______end of the program
```

Scilab code Exa 11.27 FINDING COMPRESSION RATIO AND COMPRESSED PULSE WIDTH

```
clc;
d clear;
f/input data
PW = 5;//FM pulse width before compression in us
Fl = 40;//lower cut off Frequency in Mhz
Fh = 60;//upper cut off Frequency in Mhz

// Calculations
BW = Fh-Fl;//bandwidth of signal in Mhz
CPW = 1/BW;//Compression pulse width in us
CR = PW/CPW;//compression ratio
```

Scilab code Exa 11.28 FINDING COMPRESSION PULSEWIDTH AND RATIO

```
1 / Chapter - 11 example 28
2 //
3 clc;
4 clear;
5 //input data
6 \text{ BW} = 100 // \text{band width in Mhz}
7 PW = 4; // pulse width in us
8 // Calculations
9 CPW = 1/BW; //compressed pulse width in us
10 CR = PW/CPW; //compression ratio
11
12 //output
13 mprintf('compressed pulse width is %g us\n
     compression ratio is \%g\n', CPW, CR);
14 mprintf(' Note: In textbook compression ratio is
     wrongly printed as 40');
15
      end of the program
16 / =
```

Scilab code Exa 11.29 FINDING COMPRESSED PULSE WIDTH AND BANDWIDTH

```
1 / Chapter - 11 example 29
2 / /
3 clc;
4 clear;
5 //input data
6 CR = 50; //compression ratio
7 PW = 2; // pulse width in us
8 // Calculations
9 CPW = PW/CR //compression pulse width in us
10 BW = 1/CPW //compression band width in Mhz
11
12 //output
13 mprintf('compressed pulse width is %g us\n
     compression Bandwidth is %g MHz\n', CPW, BW);
14
15
           end of the program
16 / =
```

Scilab code Exa 11.30 FINDING RANGE RESOLUTION

```
3 clc;
4 clear;
5 //input data
6 PW = 1*10^-6; //transmitted pulse width in sec
7 Vo = 3*10^8; //velocity of EM wave in m/s
8
9 //Calculations
10 RR = (Vo*PW)/2;
```

```
//output
mprintf('Range Resolution is %g m\n', RR);
mprintf(' As the targets are separated by 100m it is possible to resolve');
//===end of program
```

Scilab code Exa 11.31 FINDING CLOSEST FREQUENCIES

```
1 / Chapter - 11 example 31
2 //
3 clc;
4 clear;
5 //input data
6 F = 10*10^9; //operating frequency in Hz
7 PRF = 1000; //pulse repetitive frequency in Hz
8 Fm = PRF; // modulating frequency
9 // Calculations
10 Fc1 = F+Fm; // closest frequency in Hz
11 Fc2 = F-Fm; //closest frequency in Hz
12 //output
13 mprintf('Closest Frequencies are %3.3 f Mhz and %3.3 f
      Mhz', Fc1/10^6, Fc2/10^6);
14
      end of the program
```

Scilab code Exa 11.32 FINDING SPECTRUM CENTRE BANDWIDTH AND COMPRESSED PULSE WIDTH

```
1 / Chapter - 11 example 32
```

```
2 //
```

```
3 clc;
4 clear;
5 //input data
6 F1 = 490; //freq shift lower limit in Mhz
7 F2 = 510; //freq shift upper limit in Mhz
9 //calculations
10
11 SC = (F1+F2)/2; //Spectrum Centre in Mhz
12 BW = F2-F1; //bandwidth in Mhz
13 CPW = 1/BW; //compressed bandwidth in us
14
15 //Output
16 mprintf('Spectrum centre is %g MHz\n BandWidth is %g
      MHz\n Compressed pulse Width is %g us', SC, BW, CPW
17
18 //—end of the program
```

Scilab code Exa 11.33 FINDING MINIMUM RECEIVABLE SIGNAL

Scilab code Exa 11.34 FINDING MAXIMUM RANGE OF RADAR

```
1 / Chapter - 11 example 34
2 / /
3 clc;
4 clear;
5 //input data
6 Pt = 500*10^3; //peal pulse power in watts
7 Pmin = 1*10^-12; //minimum receivable power
8 Ac = 5; //area of capture in m<sup>s</sup>
9 RCS = 16; //radar cross sectional area in m^2
10 F = 10*10^9; //radar operating frequency
        = 3*10^8; //vel of Em wave in m/s;
11 Vo
12
13 //calculations
14 lamda = Vo/F; // wavelength
15
```

Scilab code Exa 11.35 FINDING PEAK TX POWER

```
3 clc;
4 clear;
5 //input data
                                   //wavelength in m
6 lamda
                 = 0.03;
                                    // Radar cross
7 RCS
                 = 5;
      section in m<sup>2</sup>
                                    // antenna diameter
8 D
                 = 1;
     in m
9 F
                 = 5;
                                     // noise figure in
     dB
                                    // Radar range
                 = 10*10^3
10 Rmax
11 BW
                 = 500*10^3;
                                    // bandwidth
12
13 // Calculation
14 F1
                 = 10^{(F/10)}
                                   // antilog
      calculation
15
16 //Rmax = 48*((Pt*D^4*RCS)/(BW*lamda*lamda(F)
```

```
-1)))^0.25

17

18 Pt = ((Rmax/48)^4)*((BW*lamda*lamda*(F1 -1))/(D^4*RCS))

19

20 //Output
21 mprintf('Peak Transmitted Power is %e',Pt);
22 mprintf('\n Note: Antilog Calculation error in textbook at F')

23 //
```

Scilab code Exa 11.36 FINDING MAX RANGE OF RADAR

```
2 / /
3 clc;
4 clear;
5 //input data
6 Pt = 20*10^6; //peak pulse power in watts
7 RCS = 1;//radar cross sectional area in m^2
     = 3*(10^9); //radar operating frequency
       = 3*(10^8); //vel of Em wave in m/s;
9 Vo
10 D
      = 50; // diameter of antenna in m
       = 2; //receiver noise figure
11 F
12 BW
       = 5000; //receiver bandwidth
13
14 //calculations
15
16 lamda = Vo/f//wavelength in m
17 Rmax = 48*((Pt*(D^4)*RCS)/(BW*lamda*lamda*(F-1)))
     ^0.25;
```

Scilab code Exa 11.37 FINDING LOWEST BLIND SPEEDS

```
1 / Chapter - 11 example 37
3 clc;
4 clear;
5 // Given data
6 lamda = 6*10^-2; //Wavelength in m
7 PRF = 800; //Pulse Repetitive frequency
      in Hz
            = 1; //n value for first blind
8 n1
     speed
            = 2; //n value for first blind
9 n2
     speed
            = 3; //n value for first blind
10 n3
     speed
11
12 // Calculations
14 /Vb = (n*lamda/2)*PRF; Blind speed of the
     Radar
15
```

```
16 / For n = 1
17
        = (n1*lamda/2)*PRF; //Blind speed of the
18 Vb1
      Radar in m/s
             = (n2*lamda/2)*PRF; //Blind speed of the
19 Vb2
      Radar in m/s
        = (n3*lamda/2)*PRF; //Blind speed of the
  Vb3
20
      Radar in m/s
21
\frac{22}{multiply} by \frac{18}{5} to convert from m/s to kmph
23
24 // Output
25 mprintf('The lowest Blind speeds are %3.1f, %3.2f
     and \%3.2 \text{ f Km/hr}, Vb1*(18/5), Vb2*(18/5), Vb3*(18/5)
     );
26
27 //——end of program
```

Scilab code Exa 11.38 FINDING RANGE OF BEACON

```
// wavelength in m
                                           = 0.12;
10 lamda
                                                                              // antenna diameter in m
// Radar Bandwidth
11 D
                                           = 64;
12 BW
                                           = 5000;
13 Ab
                                           = 0.51;
                                           = 1.38*10^-23; // Boltzmann constant
14 k
                                                                                                // Noise figure
                                       = 20
15 F
                                                                                                  // Noise figure of beacon
                                        = 1.1
16 Fb
                                                                                                   // Temperature in kelvin
                                           = 290;
17 To
18
19 // Calculations
20
                              = (0.65*\%pi*D*D)/4
21 Ar
22 Rmax = sqrt((Ar*Pt*Ab)/(lamda*lamda*k*To*BW*(F
                   -1))); // Max tracking range of radar
23
24 \text{ Rmax1} = \frac{\text{sqrt}((Ar*pt*Ab)}{(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*To*BW*(lamda*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*lamda*k*k*lamda*k*lamda*k*lamda*k*lamda*k*lamd
                   Fb-1))); // Max tracking range of radar if Fb =
                   1.1
25
26 //output
27 mprintf ('Maximum Tracking Range of Radar is \%3.3 e Km
                   \n Range of beacon if noise figure is 1.1 = \%3.3e
                     Km n', Rmax/1000, Rmax1/1000;
28 mprintf ('Note: Calculation mistake in textbook in
                    calculating Range of beacon\n instead of
                    1.36*10^9 km range is wrongly printed as 136*10^6
                     km')
29
                                                                           end of program
30 //=
```

Scilab code Exa 11.39 FINDING DOPPLER SHIFT

```
\begin{array}{cccc} 1 & //\operatorname{Chapter} -11 & \operatorname{example} & 39 \\ 2 & // & \end{array}
```

Scilab code Exa 11.40 FINDING RX SIGNAL POWER

```
signal from target
10 Pt = 10*10^3 //Tx power in watts
11 CS = 10;
                      //cross sectional area in m^2
12
13 // Calculations
14 Gain = 10^{(G/10)} //G = 10\log(Gain) ==>gain -
      antilog (20/10);
         = Gain; //gain of tx antenna and Rx
15 Gr
      antenna
16 \text{ Gt} = \text{Gain}
17 \text{ lamda} = \text{Vo/F}
18 Pr= (lamda*lamda*Pt*Gt*Gr*CS)/((4*4*4*%pi*%pi*%pi)*(
     R^4))/received power in watts
19
20 // Output
21 mprintf('Received signal Power is %g Watts',Pr);
22 //
```

Scilab code Exa 11.41 FINDING DISTANCE OF TARGET

```
2 //
3 clc;
4 clear;
5 //Given data
6
7 Vo = 3*10^8;  // vel of EM wave m/s;
8 t = 10*10^-6;  // time taken to rx echo
9
10 //Calculations
11
```

Scilab code Exa 11.42 FINDING MIN AND MAX TARGET RANGE

```
1 / Chapter - 11 example 42
 2 / /
 3 clc;
 4 clear;
 5 //Given data
7 PW = 10^-6;  // Pulse Width in sec
8 PRF = 1000;  // Pulse Repetitive F
                               // Pulse Repetitive Freq in
      {
m Hz}
                               // vel of EM wave m/s;
 9 \text{ Vo} = 3*10^8;
10
11 // Calculations
12
13 Rmax = Vo/(2*PRF); // max range of radar
14 Rmin = (Vo*PW)/2; // min range of radar
15
16 //output
17 mprintf ('Maximum Range of radar is %e m\n Minimum
       Range of radar is %d m', Rmax, Rmin );
18
```

```
19 //
```

Scilab code Exa 11.43 FINDING DOPPLER SHIFT FREQUENCY

Scilab code Exa 11.44 FINDING DISTANCE OF TARGET

```
1 / Chapter - 11 example 44
```

```
2 //
```

Scilab code Exa 11.45 FINDING DUTY CYCLE AND AVERAGE POWER

Scilab code Exa 11.46 FINDING PRF

```
1 / Chapter - 11 example 46
2 / /
3 clc;
4 clear;
5 //Given data
6 Runamb = 300*10^3; // unambiguous range in
     \mathbf{m}
          = 3*10^8; // Vel. of EM wave in m/
7 Vo
    \mathbf{S}
9 // Calculations
10
11 PRF = Vo/(2*Runamb); // Pulse repetitive
     freq.
12
13 //Output
14 mprintf('Pulse repetitive frequency = %g Hz', PRF);
```

```
15 //
```

Scilab code Exa 11.47 FINDING DUTY CYCLE AND MAX UNAMBIGUOUS RANGE

```
1 / Chapter - 11 example 47
3 clc;
4 clear;
5 // Given data
       = 3*10^8;
                         // vel of EM wave m/s;
7 Vo
8 \text{ PRF} = 1000;
                          // pulse repetitive freq. in
     \mathrm{Hz}
                          // Pulse width in sec
9 PW
      = 10^-6;
10
11 // Calculations
12
                    // Duty cycle
13 	 DC = PRF*PW
14
15 Runamb = Vo/(2*PRF); // Distance of the Target
16
17 //output
18
19 mprintf('Duty cycle = %g\n Maximum unambiguous range
      = %g Km^{\prime},DC,Runamb/1000 );
20
21 //
```

Scilab code Exa 11.48 FINDING MAX UNAMBIGUOUS RANGE AND RANGE RESOLUTION

```
1 / Chapter - 11 example 48
 2 / /
3 clc;
 4 clear;
 5 // Given data
7 Vo = 3*10^8; // vel of EM wave m/s;
8 PRF = 1000; // pulse repetitive fr
                              // pulse repetitive freq. in
      Hz
 9 PW
          = 4*10^-6;
                              // Pulse width in sec
10
11 // Calculations
12
13 Runamb = Vo/(2*PRF); // Distance of the Target
14 RR = (Vo*PW)/2; // Range Resolution
15 //output
16
17 mprintf ('Maximum unambiguous range = %g Km\n Range
       Resolution = \%g m', Runamb/1000, RR );
18
19 //
```

Scilab code Exa 11.49 CALCULATING RADAR PARAMETERS

```
1 / Chapter - 11 example 49
```

```
3 clc;
4 clear;
5 // Given data
         = 6*10^9;
                            // Radar operating freq. in
      Hz
7 Vo
         = 3*10^8;
                            // vel of EM wave m/s;
         = 1000;
                            // pulse repetitive freq. in
8 PRF
      Hz
9 PW
         = 1.2*10^-6;
                            // Pulse width in sec
                            // Duty Cycle
10 DC
         = 10^{-3};
11 Smin
         = 5*10^-12;
                            // min. detectable signal
                            // Max. Range in m
12 R
         = 60*10^3;
                            // power gain of antenna
13 G
         = 4000;
14 Ae
                            // effective area in m^2
         = 1
                            // Radar cross sec. in m^2
15 RCS
         = 2
16 // Calculations
17
           = Vo/f;
                                // Wavelength in m
18 lamda
                                // pulse repetitive time
           = PW/DC;
19 PRT
                                // Pulse repetitive freq.
           = 1/PRT;
20 PRF
           = ((Smin*(4*\%pi*R*R)^2))/(Ae*G*RCS); //Peak
21 Pt
       power
22
  Pav
           = Pt*DC;
                                // average power
23
           = Vo/(2*PRF);
                                // Distance of the Target
24 Runamb
           = (Vo*PW)/2;
                                // Range Resolution
25 RR
26 //output
27
28 mprintf ('Operating Wavelength = \%g m\n PRT = \%3.2 f
      ms n PRF = \%3.1 f Hz n Peak power = \%3.3 f KW n
      Average power = \%3.3 f Watts\n unambiguous range =
      \%g \text{ Km}\ n \text{ Range Resolution} = \%g \text{ m'}, lamda, PRT*1000,
      PRF, Pt/1000, Pav, Runamb/1000, RR);
29 mprintf('\n Note: Calculation error in textbook for
      Pt and Pav');
```

```
30
31 //
```

Scilab code Exa 11.50 FINDING AVERAGE POWER

```
1 / Chapter - 11 example 50
2 / /
3 \text{ clc};
 4 clear;
5 // Given data
7 Vo = 3*10^8;  // vel of EM wave m/s;
8 PRT = 1.4*10^-3;  // pulse repetitive time. in
    sec
9 PW = 5 *10^-6;  // Pulse width in sec
10 Pt = 1000*10^3;  // Peak power in watts
11
12 // Calculations
13
                                   // Duty cycle
           = PW/PRT
14 DC
                                    // avg. power in W
15 \text{ Pav} = \text{Pt*DC}
16
17 //output
18
19 mprintf('Duty cycle = %e\n Average power = %g W', DC,
       Pav );
20
21 //
```

Scilab code Exa 11.51 FINDING MIN RECEIVABLE SIGNAL

```
1 / Chapter - 11 example 51
2 / /
3 clc;
4 clear;
5 //Given data
10
11 // Calculations
12 F1 = 10^{(5/10)}; // antilog calc of noise
     figure
13 Prmin = K*(F1-1)*T*BW; // min. rx. signal
14
15 //Output
16 mprintf ('Minimum Receivable signal = \%3.4 \,\mathrm{e} \,\mathrm{W} \,\mathrm{n}',
     Prmin);
17 mprintf('Note: In textbook All values are correctly
     substituted in calculating Prmin.\n but incorrect
      final answer is printed in the book')
18
19 //
```

Scilab code Exa 11.52 FINDING MAX RANGE OF RADAR

```
1 / Chapter - 11 example 52
3 clc;
4 clear;
5 //input data
                    //peak pulse power in watts
6 Pt = 1*10^6;
                       //minimum receivable power
7 \text{ Pmin} = 1*10^-12;
                       //effective area in m^s
8 \text{ Ae} = 16;
9 \text{ RCS} = 4;
                       //radar cross sectional area
  in m^2
//Power gain of antenna
12 G
    = 5000;
13
14 //calculations
15
16 Rmax = ((Pt*G*Ae*RCS)/(16*\%pi*\%pi*Pmin))^0.25;
17
18 //output
19 mprintf ('Maximum Radar range of the Radar is %g Kms
     ', Rmax/1000);
20
      end of the program
```

Scilab code Exa 11.53 FINDING MAX RANGE OF RADAR

4 clear;

```
1 //Chapter-11 example 53
2 //
3 clc;
```

```
5 //input data
6 Pt = 500*10^3; //peal pulse power in watts
7 Pmin = 1*10^-12; //minimum receivable power
8 Ac = 5; //area of capture in m<sup>s</sup>
9 RCS = 20; //radar cross sectional area in m^2
10 F = 10*10^9; //radar operating frequency
11 Vo = 3*10^8; //vel of Em wave in m/s;
12 lamda = 3*10^-2; //wavelength in cms
13
14 //calculations
15
16 Rmax = ((Pt*Ac*Ac*RCS)/(4*\%pi*lamda*lamda*Pmin))
     ^0.25;
17
18 //output
19 mprintf ('Maximum Radar range of the Radar system is
     \%g Kms', Rmax/1000);
20
          end of the program
21 / =
```

Scilab code Exa 11.54 FINDING BEAMWIDTH OF ANTENNA

Scilab code Exa 11.55 FINDING OPERATING FREQ PEAK POWER AND RANGE OF RADAR

```
1 //Chapter-11 example 55
2 //
```

```
3 clc;
4 clear;
5 //input data
6 Pav = 200; //average power in watts
7 PRF = 1000; //pulse repetitive frequency in Hz
        = 1*10^-6; // pulse width in sec
9 Pmin = 1*10^-12; //minimum receivable power
10 Ac = 10; // area of capture in m<sup>s</sup>
11 RCS = 2; //radar cross sectional area in m^2
12 Vo = 3*10^8; //vel of Em wave in m/s;
13 lamda = 0.1; // wavelength in cms
14
15 //calculations
16 F = Vo/lamda; //operating frequency in hz
        = Pav/(PRF*PW);
17 Pt
18
19 Rmax = ((Pt*Ac*Ac*RCS)/(4*%pi*lamda*lamda*Pmin))
     ^0.25;
```

Scilab code Exa 11.56 FINDING RADIAL VELOCITY OF TARGET

```
1 / Chapter - 11 example 56
2 / /
3 clc;
4 clear;
5 //input data
6 f = 9*10^9; // operating freq. of radar
     in Hz
     7 Vo
                       // doppler shift freq. in Hz
8 fd
9
10 // Calculations
      da = Vo/f; // Wavelength in m
= lamda*fd/2; // radial velocity of target
11 \quad lamda = Vo/f;
12 Vr
13
14 //output
15 mprintf('Radial velocity of target Vr = \%3.2 \, f \, m/s',
     Vr);
16
17 //
```

Scilab code Exa 11.57 FINDING DOPPLER SHIFT FREQUENCY

```
1 / Chapter - 11 example 57
3 clc;
4 clear;
5 //input data
6 f
           = 10*10^9;
                             // operating freq. of radar
       in Hz
                            // radial ve. of of
7 \text{ Vr} = 800;
     aircraft in kmph
8 \text{ Vo} = 3*10^8;
                           //vel of Em wave in m/s;
9
10 //calculations
11
12 lamda = Vo/f; // Wavelength in m
13 Vr1 = Vr*5/18 // kmph to m/s conversion
14 fd = 2*Vr1/lamda; // Doppler shift freq, in Hz
15
16 // Output
17 mprintf('Doppler shift frequency fd = \%3.2 e Hz', fd);
18
19 //
```

Scilab code Exa 11.58 FINDING DOPPLER SHIFT FREQUENCIES

```
1 / Chapter - 11 example 58
```

```
2 //
```

```
3 clc;
4 clear;
 5 //input data
 6 f = 6*10^9; // operating freq. of radar
      in Hz
 7 Vr
           = 600;
                              // radial ve. of of
      aircraft in kmph
                            //vel of Em wave in m/s;
         = 3*10^8;
8 Vo
10 //calculations
11
12 lamda = Vo/f; // Wavelength in m
13 Vr1 = Vr*5/18 // kmph to m/s conversion
           = 2*Vr1/lamda; // Doppler shift freq, in Hz
14 fd
15
          = Vr1*cos((45*\%pi/180)) // vel in direction
16 V
      of radar if target direction changes by 45 deg
  fd1
           = 2*V/lamda; //doppler shift freq. in Hz
17
18
19
20 //Output
21 mprintf ('Doppler shift frequency fd = \%3.2 \text{ f KHz} \setminus \text{n}
      Doppler shift frequency if the target changes its
       direction by 45 \deg = \%3.2 f \text{ KHz}', fd/1000, fd1
      /1000);
22
23 //
```

Scilab code Exa 11.59 FINDING BLIND SPEED

```
1 / Chapter - 11 example 59
2 / /
3 clc;
4 clear;
5 // Given data
6 lamda = 3*10^-2; //Wavelength in m
7 PRF = 1000; //Pulse Repetitive frequency
     in Hz
8 n = 1' // n value for lowest blind
    \operatorname{speed}
9
10 // Calculations
11 Vb = (n*lamda/2)*PRF; //Blind speed of the
     Radar in m/s
12
13 //Output
14 mprintf('Lowet blind speed = %d m/s', Vb);
15 //
```

Scilab code Exa 11.61 FINDING PULSE WIDTH AND PULSE ENERGY

1 / Chapter - 11 example 60

```
freq.2
8 Pav
                = 1000;
                                     // average tx. power
9 Pt
                = 10*10^3;
                                      // peak power
10
11 // Calculations
12 PRT1
                = 1/PRF1;
                                      // pulse repetitive
      interval in sec
                = 1/PRF2;
                                     // pulse repetitive
13 PRT2
      interval in sec
               = Pav/Pt;
14 DC
                                      // duty cycle
                                     // pulse width for
                = DC*PRT1
15 PW1
      freq1
16 PW2
                = DC*PRT2
                                     // pulse width for
      freq2
                                      // energy of first
17 E1
                = Pt*PW1;
      pulse
                                      // energy of second
18 E2
                = Pt*PW2;
      pulse
19
20 //output
21 mprintf ('PW1 = \%3.2 \text{ f ms/n PW2} = \%3.3 \text{ f ms/n Pulse}
      Energy for PRF = 10KHz is \%3.1f Joules\n Pulse
      Energy for PRF = 20 \text{KHz} is \%3.2 \text{ f} Joules\n',PW1
      *1000, PW2*1000, E1, E2);
22 //
```

Scilab code Exa 11.62 FINDING PRT PRF RANGE RESOLUTION AND PULSE WIDTH

```
1 //Chapter -11 example 62
2 //
```

```
3 clc;
4 clear;
5 // Given data
          = 150*10^3; // unambigiuous range in
6 Runamb
      \mathbf{m}
                              // bandwidth in Hz
7 BW
             = 10^6;
8 Vo
             = 3*10^8;
                                    //vel of Em wave in m
     /s;
10 // Calculations
               = Vo/(2*Runamb); //pulse repetitive
11 PRF
     freq. in Hz
12 PRT
               = 1/PRF;
                                     // pulse repetition
      interval
               = Vo/(2*BW);
= (2*RR)/Vo;
                                    // Range Resolution
13 RR
                                 //Pulse width in sec
14 PW
15
16 //Output
17 mprintf ('PRF = \%3.2 \, \text{f} Hz\n pulse repetition interval
     = \%3.1 f ms\n Range Resolution = \%d m\n PulseWidth
      = \%3.2 \, f \, us', PRF, PRT*1000, RR, PW*10^6);
18
19 //
```

Scilab code Exa 11.63 FINDING DOPPLER FREQUENCY

```
1 //Chapter-11 example 63
2 //
3 clc;
4 clear;
```

5 // Given data

```
// Velocity of radar in m/s
6 Vr
          = 300;
7 Vair
                            // velocty of aircraft in m/
          = 200;
           = 10*10^9;
                            // Radar operating frequency
8 f
                           //vel of Em wave in m/s;
9 Vo
          = 3*10^8;
10
11 // Calculations
12
13 lamda = Vo/f; // wavelength in m
14 Vrel = Vr+Vair; // relative radial vel. b/w
      radar and aircraft when approaching each other
      = (2*Vrel)/lamda// Doppler frequency
15 fd
16
17 // Output
18 mprintf('Doppler frequency = \%3.2 \, \text{f KHz'}, fd/1000);
19 //
```

Scilab code Exa 11.64 FINDING MAX RANGE OF RADAR

1 / Chapter - 11 example 63

```
2 //
3 clc;
4 clear;
5 // Given data
6 Pt
         = 2*10^6;
                         //Peak power in Watts
                            // antenna gain in dB
          = 45;
           = 6*10^9;
                            // operating frequency
8 f
                            // effective temp in kelvin
// min SNR in dB
9 Te
          = 290;
10 \text{ SNRmin} = 20;
11 PW
         = 0.2*10^{-3}
                            // pulse width in sec
                            // Noise Figure
12 F
          = 3;
```

```
13 B
                          // Radar cross section in m
14 RCS
         = 1.38*10^-23; // boltzman constant
15 K
16 Vo
         = 3*10^8; //vel of Em wave in m/s;
17
18 //antilog acalculations
         = 10^{(45/10)};
                        // antilog conversion of
19 G1
     gain
         = 10^{(20/10)}; // antilog conversion of
20 SNR
     SNRmin
         = 10^{(3/10)};
                          // antilog conversion of
     Noise Figure
22
                          //wavelength in m
23 lamda
         = Vo/f;
         = ((Pt*G1*G1*lamda*lamda*RCS)/((64*%pi*%pi*
24 Rmax
     %pi)*(K*Te*B*F1*SNR)))^0.25;
25 / \text{pt1} = 10 * \log 10 \text{ (Pt)}
\frac{26}{\ln 4} = 10 * \log 10 ( \ln 4^2 )
27 //G2 = 2*G
28 / \text{KTB} = 10 * \log 10 (K*Te*B)
29 //RCS1 = 10*log10 (RCS)
       = 10 * \log 10 ((4 * \% pi)^3)
30 / p
31 / R4max = [pt1+G1+lamda1+RCS1-p-KTB-F-SNRmin];
32
33 //Output
34 mprintf('Maximum Range of the Radar is %3.2 f Km',
     Rmax/100);
35 mprintf('\n Note: Calculation error i Textbook in
     multiplying K*Te*B');
```

Scilab code Exa 11.65 FINDING APERTURE SIZE AND PEAK POWER OF TXR

```
1 / Chapter - 11 example 63
```

```
3 \text{ clc};
4 clear;
5 //Given data
                             // antenna gain in dB
           = 50;
           = 6*10^9;
                            // operating frequency
           = 1000;
                             // Noise temp in kelvin
8 Te
                             // min SNR in dB
           = 20;
9 SNR
           = 10;
                            // Losses in dB
10 L
                            // Noise Figure in dB
11 F
           = 3;
                            // Radar cross section in dB
12 RCS
           = -10;
                            // boltzman constant
13 K
           = 1.38*10^-23;
14 Vo
           = 3*10^8;
                            // \text{vel} of Em wave in m/s;
15 DC
           = 0.3;
                            // Duty cycle
           = 300*10^3;
16 R
                            // Range in kms
                            // Average power in watts
17 Pav
           = 1000;
                            //search volume
18 SV
           = 20;
                             //Scan time
19 Ts
           = 3;
20
21 //calculations
22
23 Pav1
          = 10*log10(Pav)
                                       //conversion to dB
            = 10*log10(Te*K)
24 KT
                                            //conversion
      to dB
25 R4
           = 10*log10(R^4)
                                       //conversion to dB
26 Ts1
           = 10*log10(Ts)
                                        //conversion to
     dB
           = (Pav*A*RCS*Ts)/(16*R^4*K*Te*L*F*SV)
27 //SNR
           = (SNR-Pav1-Ts-RCS+16+R4+KT+L+F+SV); //
      aperture
           = Pav/DC;
                                          // peak ower in
29 Pt
      watts
                                            // antilog
             =10^{(A/10)};
      calculation
31
32 //output
```