BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI - HYDERABAD CAMPUS FIRSTSEMESTER 2022-2023 COURSE HANDOUT (PART-II)

Date: 15/08 /2022

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : EEE G626

Course Title : Hardware and Software Co-design

Instructor-in-charge : Dr. Amit Kumar Panda

1. Scope and Objective:

FPGA and ASIC based design, Low-Power Techniques in RT Embedded Systems Onchipnetworking. Hardware Software partitioning and scheduling, Co-simulation, synthesis andverifications, Architecture mapping, HW-SW Interfaces and Re-configurable computing.

This course deals with the system-level design of embedded systems comprised of both hardware and software; investigate topics ranging from system modeling to hardware-software implementation; explore analysis and optimization processes in support of algorithmic and architectural design decisions; and gain design experience with case studies using contemporary high-level methods and tools. The course emphasizes a top-down design methodology driven by bottom-up constraints. The topics covered will include Co-design of hardware and software. Concurrency, real-time control, hardware/software interfaces, and error handling.

2. Text Book:

- (T1) Daniel D Gajski, Frank Vahid, Sanjay Narayan, JieGong, Specification and Design of Embedded Systems, Prentice Hall, 1994.
- (T2) Jorgen Staunstrup, Wayne Wolf, *Hardware / Software Co-Design: Principles and Practice*, Kluwer Academic, 1997

3. Reference Books:

- 1. G. DeMicheli, R. Ernst and W. Wolf, Readings in Hw/Sw Co-design, M. Kaufmann, 2002,
- 2. Ahmed A. Jerraya and Jean Mermet eds.: System Level Synthesis, Kluwer 1999.
- 3. Hardware/Software Codesign. G. DeMicheli and M. Sami (eds.), NATO ASI Series E, Vol. 310, 1996.
- 4. Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and Wm. A. Wulf. The Codesign of Embedded Systems. Kluwer, 1995
- 5. Proceedings of IEEE.
- 6. IEEE Transactions.
- 7. ACM Transactions

4. Course Plan:

Lecture No.	Topics to be covered	Reference to T1
01, 02	Introduction to Embedded System Design and Challenges	T1: Ch 1, class notes
03, 04, 05	Introduction to Hardware Software Codesign and motivation	T1: Ch 1, class notes
06, 07	Specification, Model, Architecture and Languages	T1: Ch 2-3, class notes
08, 09,10, 11, 12, 13, 14	Models taxonomy, State-Oriented & Activity Oriented Models, Structure & Data –Oriented Models	T1: Ch 2.1-2.7, class notes
15, 16, 17	Architectural Models	T1: Ch 2.8-2.12 / class notes
18, 19, 20	Introduction to Specification Languages	T1: Ch 3.1-3.4 / class notes
21, 22	System-C	
23, 24	Specification Example: Telephone Answering Machine	T1: Ch 4 / class notes
25, 26	System Synthesis: Partitioning and Mapping, HW/SW Co-synthesis	T2: Ch 2 / class notes
27, 28	System Partitioning issues, Partitioning approaches: Structural and Functional	T1: Ch 6.1-6.3 / class notes
29, 30, 31, 32, 33	Partitioning Metrics, Partitioning algorithms	T1: Ch 6.4-6.9 / class notes
34, 35, 36, 37	Design Quality Estimation	T1: Ch 7 / class notes
38, 39, 40	Recent Trends	

5. Evaluation Scheme:

EC	Evaluation Component	Туре	Duration	Weight	Date
No.	_				
1	Mid Examination	Close Book	90 Min	20%(40 M)	31/10 3.30 - 5.00PM
2	Regular Lab	Open Book	-	20% (40 M)	Regular
3	Quizes	Close Book	-	10% (20 M)	To be announced
4	Project + Presentations	Open Book	-	20% (40 M)	To be announced
5	Comprehensive Exam	Close Book	180 Min	30% (60 M)	19/12 AN

6. Chamber Consultation Hour: To be announced in Class

Notices: All notices regarding the course will be put up in CMS and Google Classroom.

Make-up Policy: No make-up without prior permission.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.