MATRIX MULTIPLICATION WITH CUDA

24. APRIL 2018 | JOCHEN KREUTZ

DISTRIBUTION OF WORK

- Each thread computes one element of the result matrix C
- n * n threads will be needed (for square matrix C)
- Indexing of threads corresponds to 2d indexing of the matrices
- Thread(x, y) will calculate element C(x, y) using row y of A and column x of B

17. April 2018

Seite 2

DISTRIBUTION OF WORK

- Block dimensions are limited, hence several thread blocks will be needed
- Use 2d execution grid with

k * k blocks

Result matrix C (n * n elements)

DISTRIBUTION OF WORK

Result matrix C (n * n elements)

- Use 2d execution grid with k * k blocks
- Use 2d thread blocks with fixed block size (m * m)
- k = n / m (n divisible by m)
- k = n / m + 1 (n not divisble by m)

block local thread index

DEFINE DIMENSIONS OF THREAD BLOCK

DIM3 BLOCKDIM

dim3 blockDim (size_t blockDimX, size_t blockDimY, size_t blockDimZ)

On Jureca (Tesla K80):

- Max. dim. of a block: 1024 x 1024 x 64
- Max. number of threads per block: 2048

Example:

// Create 3D thread block with 512 threads dim3 blockDim(16, 16, 2);

DEFINE DIMENSIONS OF GRID

DIM3 GRIDDIM

dim3 gridDim (size_t blockDimX, size_t blockDimY, size_t blockDimZ)

On Jureca (Tesla K80):

• Max. dim. of a grid: (2147483647, 65535, 65535)

Example:

```
// Dimension of problem: nx * ny = 1000 * 1000
dim3 blockDim(16, 16) // Don't need to write z = 1
int gx = (nx \% blockDim.x==0) ? nx / blockDim.x : <math>nx / blockDim.x + 1
int gy = (ny \% blockDim.y==0) ? ny / blockDim.y : <math>ny / blockDim.y + 1
dim3 gridDim(gx, gy);
```

Watch out!

CALLING THE KERNEL

DEFINE DIMENSIONS OF THREAD BLOCK

dim3 blockDim (size_t blockDimX, size_t blockDimY, size_t blockDimZ)

DEFINE DIMENSIONS OF EXECUTION GRID

dim3 gridDim (size_t gridDimX, size_t gridDimY, size_t gridDimZ)

LAUNCH THE KERNEL

kernel<<<dim3 gridDim, dim3 blockDim>>>([arg]*)

KERNEL (CUDA)

KERNEL FUNCTION

```
global void mm kernel(float* A, float* B, float* C, int n){
 int col = blockIdx.x * blockDim.x + threadIdx.x;
  int row = blockIdx.y * blockDim.y + threadIdx.y;
    if (row < n && col < n) {
      for (int i = 0; i < n; ++i) {
        C[row * n + col] += A[row * n + i] * B[i * n + col];
mm kernel <<< dimGrid, dimBlock >>> (d_a, d_b, d_c, n);
```


EXERCISE

Simple Cuda MM implementation

.../exercises/tasks/Cuda_MM_simple

LIMITING FACTOR

Void mm_kernel (float* A, float* B, float* C,int n) { for (int k = 0; k < n; ++k){ C[i * n + j] += A[i * n + k] * B[k * n + j]; } }</pre>

- One floating point operation per memory access
- One double: 8 bytes
- Limited global memory bandwidth
- Check hints from Visual Profiler for further performance issues

LIMITING FACTOR

Visual Profiler hints for simple MM

GPU MEMORY (SCHEMATICS)

...

L2 Cache

Global Memory

USING SHARED MEMORY

ALLOCATE SHARED MEMORY

```
// allocate vector in shared memory
__shared___ float[size];

// can also define multi-dimensional arrays: BLOCK_SIZE is length (and width) of a thread block here
__shared___ float Msub[BLOCK_SIZE][BLOCK_SIZE];
```

COPY DATA TO SHARED MEMORY

// fetch data from global to shared memory

Msub[threadIdx.y][threadIdx.x] = M[TidY * width + TidX];

SYNCHRONIZE THREADS

// ensure that all threads within a block had time to read / write data

```
syncthreads();
```


MATRIX-MATRIX MULTIPLICATION WITH BLOCKS

$$C_{kl} = \sum_{i=1}^{N} A_{ki} B_{il}$$

Split computation into partial computions

$$C_{kl} = \sum_{i=1}^{N/2} A_{ki} B_{il} + \sum_{i=N/2+1}^{N} A_{ki} B_{il}$$

MATRIX-MATRIX MULTIPLICATION WITH BLOCKS

$$C_{kl} = \sum_{i=1}^{N/2} A_{ki} B_{il} + \sum_{i=N/2+1}^{N} A_{ki} B_{il}$$

For each result element:

- Set element to zero
- For each pair of blocks
 - Copy data
 - Do partial sum
 - Add result of partial sum to element

AN EXAMPLE

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad B = \frac{1}{40} \begin{pmatrix} -9 & 11 & 1 & 1 \\ 1 & -9 & 11 & 1 \\ 1 & 1 & -9 & 11 \\ 11 & 1 & 1 & -9 \end{pmatrix}$$

$$C = AB$$

$$A = \begin{pmatrix} A_{11} & A_{12} \\ \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} & \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \\ \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} \end{pmatrix}$$

$$A_{21} \qquad A_{22}$$

$$A = \begin{pmatrix} A_{11} & A_{12} & B_{11} & B_{12} \\ \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} & \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \\ \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} \end{pmatrix} \qquad B = \frac{1}{40} \begin{pmatrix} \begin{pmatrix} -9 & 11 \\ 1 & -9 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 11 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 11 & 1 \end{pmatrix} & \begin{pmatrix} -9 & 11 \\ 1 & -9 \end{pmatrix} \end{pmatrix} \qquad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$A_{21} \qquad A_{22} \qquad B_{21} \qquad B_{22}$$

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$=\frac{1}{40}\begin{pmatrix}1 & 2\\4 & 1\end{pmatrix}\begin{pmatrix}-9 & 11\\1 & -9\end{pmatrix}+\frac{1}{40}\begin{pmatrix}3 & 4\\2 & 3\end{pmatrix}\begin{pmatrix}1 & 1\\11 & 1\end{pmatrix}\\=\frac{1}{40}\begin{pmatrix}-9+2 & 11-18\\-36+1 & 44-9\end{pmatrix}+\frac{1}{40}\begin{pmatrix}3+44 & 3+4\\2+33 & 2+3\end{pmatrix}$$

$$= \frac{1}{40} \begin{pmatrix} -7 & -7 \\ -35 & 35 \end{pmatrix} + \frac{1}{40} \begin{pmatrix} 47 & 7 \\ 35 & 5 \end{pmatrix}$$

$$=\frac{1}{40}\begin{pmatrix}40 & 0\\ 0 & 40\end{pmatrix} = \begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}$$

Do C 12, C 13, and C 14 the same way.

BLOCK MATRIX-MULTIPLICATION APPROACH

Thread block loops over blocks in blue and yellow matrix:

- Calculate upper left corner
- Load data into shared memory
- Do calculation (one thread is still responsible for an element)
- Add partial sum to result

EXERCISE

Shared memory Cuda MM implementation

.../exercises/tasks/Cuda_MM_shared

