AMENDMENT TO THE CLAIMS

Please add new claims 20 and 21, and amend claims 14 and 17 as shown in the following list of claims:

1.-13. (Canceled).

- 14. (Currently Amended) A method of inhibiting TfR binding to transferrin, comprising administering to a subject a therapeutically effective amount of a compound comprising the formula:
 - (I) $Z_1-X_1-X_2-X_3-X_4-X_5-X_6-X_7-X_8-X_9-X_{10}-X_{11}-X_{12}-X_{13}-X_{14}-X_{15}-X_{16}-X_{17}-Z_2$ wherein:

 X_1 is an apolar residue;

 X_2 is a hydrophobic residue;

 X_3 is an acidic or an aliphatic residue;

 X_4 is a basic residue;

 X_5 is an apolar residue;

 X_6 is an aromatic residue;

 X_7 is a polar residue;

 X_8 is an aliphatic residue;

 X_9 is an acidic or an aliphatic residue;

 X_{10} is an aromatic residue;

 X_{11} is an aromatic residue;

 X_{12} is a polar residue;

 X_{13} is Ile;

 X_{14} is an apolar residue;

 X_{15} is an acidic residue;

 X_{16} is a polar residue;

X—is a basic or an aliphatic residue

 Z_1 is H_2N , RHN- or, RRN:

 Z_{γ} is -C(O)R -C(O)OR. -C(O)NHR, or -C(O)NRR;

each R is independently (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl,

substituted (C_1-C_6) alkyl, substituted (C_1-C_6) alkenyl or substituted (C_1-C_6) alkynyl;

each " " between residues Z_1 and X_1 and residues Z_2 and X_{17} represents a covalent linkage; and

each "—" between residues X_1 through X_{17} represents a covalent linkage,

wherein the compound reduces cell-associated binding of transferrin as measured in an *in vitro* cellular binding assay and produces at least an additive effect with soluble HFE/ β_2 m heterodimers in reducing cell-associated binding of transferrin as measured in the assay.

15. (Previously Added) The method of Claim 14, wherein:

 X_1 is an apolar amino acid;

 X_2 is an aromatic amino acid;

 X_3 is an acidic amino acid;

 X_4 is a basic amino acid;

 X_5 is an apolar amino acid;

X₆ is an aromatic amino acid;

 X_7 is a polar amino acid;

 X_8 is a aliphatic amino acid;

 X_9 is a an acidic amino acid;

 X_{10} is an aromatic amino acid;

 X_{11} is an aromatic amino acid;

 X_{12} is a polar amino acid;

 X_{13} is Ile;

 X_{14} is an apolar amino acid;

 X_{15} is an acidic amino acid;

 X_{16} is a polar amino acid;

 X_{17} is a basic amino acid; and

each "—" between residues X_1 through X_{17} is independently an amide, a substituted amide or an isostere of amide.

16. (Previously Added) The method of Claim 14, wherein:

 X_1 is Gly,

 X_2 is Trp or Ala;

 X_3 is Asp or Ala;

X₄ is His;

X₅ is Met;

 X_6 is Phe;

X₇ is Thr;

 X_8 is Val;

X₉ is Asp or Ala;

 X_{10} is Phe;

 X_{11} is Trp;

 X_{12} is Thr;

 X_{13} is Ile;

X₁₄ is Met;

 X_{15} is Glu;

 X_{16} is Asn;

 X_{17} is His or Ala;

 Z_1 is H_2N_- ;

 Z_2 is -C(O)OH; and

each "—" between residues X1 through X17 is an amide linkage.

- 17. (Currently Amended) A method of treating an iron overload disease, comprising administering to a subject a therapeutically effective amount of a compound comprising the formula:
 - (I) $Z_1-X_1-X_2-X_3-X_4-X_5-X_6-X_7-X_8-X_9-X_{10}-X_{11}-X_{12}-X_{13}-X_{14}-X_{15}-X_{16}-X_{17}-Z_2$ wherein:

 X_1 is an apolar residue;

 X_2 is a hydrophobic residue;

 X_3 is an acidic or an aliphatic residue;

 X_4 is a basic residue;

 X_5 is an apolar residue;

X₆ is an aromatic residue;

X- is a polar residue:

No is an aliphatic residue:

 X_0 is an acidic or an aliphatic residue;

 X_{10} is an aromatic residue;

X₁₁ is an aromatic residue;

 X_{12} is a polar residue;

 X_{13} is Ile;

 X_{14} is an apolar residue;

 X_{15} is an acidic residue;

 X_{16} is a polar residue;

 X_{17} is a basic or an aliphatic residue;

 Z_1 is H_2N_- , RHN- or, RRN-;

 Z_2 is -C(O)R, -C(O)OR, -C(O)NHR, or -C(O)NRR;

each R is independently (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl,

substituted (C_1 - C_6) alkyl, substituted (C_1 - C_6) alkenyl or substituted (C_1 - C_6) alkynyl;

each "—" between residues Z_1 and X_1 and residues Z_2 and X_{17} represents a covalent linkage; and

each "—" between residues X_1 through X_{17} represents a covalent linkage,

wherein the compound reduces cell-associated binding of transferrin as measured in an in vitro cellular binding assay and produces at least an additive effect with soluble HFE/ β_2 m heterodimers in reducing cell-associated binding of transferrin as measured in the assay.

18. (Previously Added) The method of Claim 17, wherein:

 X_1 is an apolar amino acid;

 X_2 is an aromatic amino acid;

 X_3 is an acidic amino acid;

 X_4 is a basic amino acid;

 X_5 is an apolar amino acid;

X₆ is an aromatic amino acid;

 X_7 is a polar amino acid;

 X_8 is a aliphatic amino acid;

 X_9 is a an acidic amino acid;

 X_{10} is an aromatic amino acid;

X:: is an aromatic amino acid;

 $X_{i,j}$ is a polar amino acid;

X₁₃ is He;

 X_{14} is an apolar amino acid;

 X_{15} is an acidic amino acid;

 X_{16} is a polar amino acid;

 X_{12} is a basic amino acid; and

each "—" between residues X_1 through X_{17} is independently an amide, a substituted amide or an isostere of amide.

19. (Previously Added) The method of Claim 17, wherein:

 X_1 is Gly;

X₂ is Trp or Ala;

 X_3 is Asp or Ala;

X₄ is His;

 X_5 is Met;

X₆ is Phe;

 X_7 is Thr;

X₈ is Val;

X₉ is Asp or Ala;

 X_{10} is Phe;

 X_{11} is Trp;

 X_{12} is Thr;

 X_{13} is He;

 X_{14} is Met;

 X_{15} is Glu;

 X_{16} is Asn;

 X_{17} is His or Ala;

 Z_1 is H_2N -;

 Z_2 is -C(O)OH; and

each "—" between residues X₁ through X₁₇ is an amide linkage.

20. (New) A method of inhibiting TfR binding to transferrin, comprising administering to a subject a therapeutically effective amount of a compound comprising the formula:

(I) $Z_0 X_0 X_2 - X_3 - X_4 - X_5 - X_0 - X_7 - X_8 - X_7 - X_{11} - X_{12} X_1 + X_{12} X_2 + X_{23} X_{24} X_{25} X_{$

 X_1 is an apolar residue;

 X_2 is a hydrophobic residue;

 X_3 is an acidic or an aliphatic residue;

 X_4 is a basic residue;

 X_5 is an apolar residue;

 X_6 is an aromatic residue;

 X_7 is a polar residue;

 X_8 is an aliphatic residue;

X₀ is an acidic or an aliphatic residue;

 X_{10} is an aromatic residue;

 X_{11} is an aromatic residue;

 X_{12} is a polar residue;

 X_{13} is Ile;

 X_{14} is an apolar residue;

 X_{15} is an acidic residue;

 X_{16} is a polar residue;

 X_{17} is a basic or an aliphatic residue;

 Z_1 is H_2N_- , RHN- or, RRN-;

 Z_2 is -C(O)R, -C(O)OH, -C(O)OR, -C(O)NHR, or -C(O)NRR;

each R is independently (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl,

substituted (C_1 - C_6) alkyl, substituted (C_1 - C_6) alkenyl or substituted (C_1 - C_6) alkynyl;

each "— " between residues Z_1 and X_1 and residues Z_2 and X_4 - represents a covalent linkage; and

each "—" between residues X_1 through X_{17} represents a covalent linkage,

wherein the compound reduces cell-associated binding of transferrin as measured in an *in vitro* cellular binding assay and produces at least an additive effect with soluble HFE/ β_2 m heterodimers in reducing cell-associated binding of transferrin as measured in the assay.

21. (New) A method of treating an iron overload disease, comprising administering to a subject a therapeutically effective amount of a compound comprising the formula:

(I)
$$Z_{1}-X_{1}-X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}-X_{13}-X_{14}-X_{15}-X_{16}-X_{12}-Z_{2}$$
 wherem.

 X_1 is an apolar residue;

 N_2 is a hydrophobic residue;

 X_3 is an acidic or an aliphatic residue;

 X_4 is a basic residue;

 X_5 is an apolar residue;

 X_6 is an aromatic residue;

 X_7 is a polar residue;

 X_8 is an aliphatic residue;

X₉ is an acidic or an aliphatic residue;

 X_{10} is an aromatic residue;

 X_{11} is an aromatic residue;

 X_{12} is a polar residue;

 X_{13} is Ile;

 X_{14} is an apolar residue;

 X_{15} is an acidic residue;

 X_{16} is a polar residue;

 X_{17} is a basic or an aliphatic residue;

 Z_1 is H_2N_- , RHN- or, RRN-;

 Z_2 is -C(O)R, -C(O)OH, -C(O)OR, -C(O)NHR, or -C(O)NRR;

each R is independently (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl,

substituted (C_1-C_6) alkyl, substituted (C_1-C_6) alkenyl or substituted (C_1-C_6) alkynyl;

each "—" between residues Z_1 and X_1 and residues Z_2 and X_{17} represents a covalent linkage; and

each "—" between residues X_1 through X_{17} represents a covalent linkage,

wherein the compound reduces cell-associated binding of transferrin as measured in an in vitro cellular binding assay and produces at least an additive effect with soluble HFE/ β_2 m heterodimers in reducing cell-associated binding of transferrin as measured in the assay.