VV285 RC Part II

Elements of Linear Algebra "Linear Algebra!"

Yiwen Tu

Univerity of Michigan-Shanghai Jiao Tong University Joint Institute

May 25, 2022

5.1. Definition. An $m \times n$ matrix over the complex numbers is a map

$$a: \{1, \ldots, m\} \times \{1, \ldots, n\} \to \mathbb{C}, \qquad (i, j) \mapsto a_{ij}.$$

We represent the graph of a through

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

We denote the set of all $m \times n$ matrices over \mathbb{C} by $Mat(m \times n; \mathbb{C})$.

- A D I

5.3. Theorem. Each matrix $A \in \operatorname{Mat}(m \times n; \mathbb{R})$ uniquely determines a linear map $j(A) \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$ such that the columns $a_{\cdot k}$ are the images of the standard basis vectors $e_k \in \mathbb{R}^n$; in particular,

$$j \colon \operatorname{\mathsf{Mat}}(m \times n; \mathbb{R}) \to \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$$

is an isomorphism, $\operatorname{Mat}(m \times n; \mathbb{R}) \cong \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$, so every map $L \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$ corresponds to a matrix $j^{-1}(L)$ whose columns $a_{\cdot k}$ are the images of the standard basis vectors $e_k \in \mathbb{R}^n$.

5.4. Definition. Let $A \in \mathsf{Mat}(I \times m; \mathbb{C})$ and $B \in \mathsf{Mat}(m \times n; \mathbb{C})$. Then we define the **product of** $A = (a_{ik})$ and $B = (b_{kj})$ by

$$AB \in \mathsf{Mat}(I \times n; \mathbb{C}), \qquad AB := \left(\sum_{k=1}^{m} \mathsf{a}_{ik} b_{kj}\right)_{\substack{i=1,\dots,l \ j=1,\dots,n}}$$

We have seen that the matrix product satisfies $j(A) \circ j(B) = j(AB)$. Furthermore, the product is *associative*, i.e.,

$$A(BC) = j^{-1}(j(A) \circ j(BC)) = j^{-1}(j(A) \circ (j(B) \circ j(C)))$$

= $j^{-1}((j(A) \circ j(B)) \circ j(C)) = j^{-1}(j(AB) \circ j(C))$
= $(AB)C$

If $A, B \in \mathsf{Mat}(n \times n; \mathbb{C})$ both products AB and BA exist; however

$$AB \neq BA$$
,

so the matrix product is not commutative.

For $A=(a_{ij})\in \mathsf{Mat}(m\times n;\mathbb{F})$ we define the *transpose* of A by

$$A^T \in \mathsf{Mat}(n \times m; \mathbb{F}), \qquad \qquad A^T = (a_{ji}).$$

For example,

$$\begin{pmatrix} 5 & 6 & 7 \\ 1 & 0 & 2 \end{pmatrix}^T = \begin{pmatrix} 5 & 1 \\ 6 & 0 \\ 7 & 2 \end{pmatrix}.$$

We also define the adjoint

$$A^* \in \mathsf{Mat}(n \times m; \mathbb{F}), \qquad A^* = \overline{A}^T = (\overline{a_{ji}}).$$

where in addition to the transpose the complex conjugate of each entry is taken.

It is easy to see (in the assignments) that for $A \in \mathsf{Mat}(m \times n; \mathbb{F})$, $x \in \mathbb{F}^m$, $y \in \mathbb{F}^n$,

$$\langle x, Ay \rangle = \langle A^*x, y \rangle.$$

- 5.8. Elementary Matrix Manipulations. An elementary row manipulation of a matrix is one of the following:
 - (i) Swapping (interchanging) of two rows,
 - (ii) Multiplication of a row with a non-zero number,
- (iii) Addition of a multiple of one row to another row.

We are now able to properly define the matrix of a linear map between two finite-dimensional vector spaces.

Let U, V be finite-dimensional real or complex vector spaces with bases

$$\mathscr{A}=(a_1,\ldots,a_n)\subset U$$
 and $\mathscr{B}=(b_1,\ldots,b_m)\subset V.$

$$\mathscr{B}=(b_1,\ldots,b_m)\subset V$$

Define the isomorphisms

$$\varphi_{\mathcal{A}} \colon U \xrightarrow{\cong} \mathbb{R}^n$$
,

$$\varphi_{\mathscr{A}} \colon U \xrightarrow{\cong} \mathbb{R}^n, \qquad \varphi_{\mathscr{A}}(a_j) = e_j, \qquad j = 1, \ldots, n,$$

$$\varphi_{\mathscr{B}} \colon V \xrightarrow{\cong} \mathbb{R}^m$$
, $\varphi_{\mathscr{B}}(b_j) = e_j$, $j = 1, \ldots, m$.

$$j=1,\ldots$$
 , m

Then any linear map $L \in \mathscr{L}(U,V)$ induces a matrix $A = \Phi_{\mathscr{A}}^{\mathscr{B}}(L)$ \in Mat $(m \times n; \mathbb{R})$ through

$$n imes n$$
; \mathbb{R}) through $U \stackrel{L}{\longrightarrow} V$

$$\Phi_{\mathscr{A}}^{\mathscr{B}}(L) = A = \varphi_{\mathscr{B}} \circ L \circ \varphi_{\mathscr{A}}^{-1}$$

5.9. Definition. A matrix $A \in \mathsf{Mat}(n \times n; \mathbb{R})$ is called *invertible* if there exists some $B \in \mathsf{Mat}(n \times n; \mathbb{R})$ such that

$$AB = BA = id = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}. \tag{5.3}$$

We then write $B = A^{-1}$ and say that A^{-1} is the *inverse* of A.

5.13. Lemma. Let $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$. Then A is *invertible* if and only if there exists an elementary matrix S corresponding to elementary row operations that transform A into the unit matrix $SA = \mathrm{id}$.

5.15. Remark. We note that if $A, B \in \operatorname{Mat}(n \times n; \mathbb{R})$ are invertible, then so is their product $AB \in \operatorname{Mat}(n \times n; \mathbb{R})$ and $(AB)^{-1} = B^{-1}A^{-1}$.

We can use this procedure to find the inverse of any vector space isomorphism L:

$$L^{-1}=\varphi_{\mathscr{A}}^{-1}\circ A^{-1}\circ \varphi_{\mathscr{B}}$$

5.17. Example. Consider a rotation by 45° in the clockwise direction,

$$\mathcal{T}\colon \mathbb{R}^2 \to \mathbb{R}^2, \qquad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

SO

$$T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Suppose that

$$x = \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} x_i' e_i' = \sum_{i=1}^{n} x_i' T e_i.$$

Then

$$T^{-1}x = \sum_{i=1}^{n} x_i' e_i$$

and we can find the coordinates x_i' , $i=1,\ldots,n$, of x with respect to \mathscr{B}' simply by applying T^{-1} .

Invertibility of matrices

Suppose ||A - I|| < 1. Show that A is invertible. In particular, show that if

$$A - \alpha I < ||A||, \alpha \ge ||A||,$$

then A is invertible.

Invertibility of matrices

This exercise describes the "size" of the set of non-invertible operators. Suppose that A is invertible. Show that there is some $\epsilon>0$ such that for any $||A-B||<\epsilon$, B is invertible.

Operator Norm

4.19. Definition and Theorem. Let U,V be normed vector spaces. Then the set of bounded linear maps $\mathscr{L}(U,V)$ is also a vector space and

$$||L|| := \sup_{\substack{u \in U \\ u \neq 0}} \frac{||Lu||_V}{||u||_U} = \sup_{\substack{u \in U \\ ||u||_U = 1}} ||Lu||_V.$$
(4.7)

defines a norm, the so-called *operator norm* or *induced norm* on $\mathcal{L}(U,V)$.

The proof of the norm properties is left to the reader. The operator norm also has the additional, very useful, property that

$$||L_2L_1|| \le ||L_2|| \cdot ||L_1||, \qquad L_1 \in \mathscr{L}(U, V), \quad L_2 \in \mathscr{L}(V, W).$$

Adjoint

Adjoint Suppose $T \in L(V, W)$. The adjoint of T is the function $T^*: W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^* \rangle$$

for every $v \in V$, $w \in W$

The definition makes sense, suppose $T \in L(V, W)$. fix $w \in W$. Consider the linear functional on V that maps $v \in V$ to $\langle Tv, w \rangle$; this linear functional depends on T and w. By the Riesz representation Theorem, there exists a unique vector in V such that this linear functional is given by takeing the inner product with it. We call this unique vector T^*w . In other words, T^*w is the unique vector in V such that the requirement is met for every v in V.

Properties of the adjoint

- $(S+T)^* = S^* + T^* \text{ for all } S, T \in L(V, W)$
- \blacktriangleright $(\lambda T)^* = \overline{\lambda} T^*$ for all $\lambda \in F$ and $T \in L(V, W)$
- $\blacktriangleright (T^*)^* = T \text{ for all } T \in L(V, W)$
- ▶ $I^* = I$, where I is the identity operator on V;
- ▶ $(ST)^* = T^*S^*$ for all $T \in L(V, W)$ and $S \in L(W, U)$ (here U is an inner product space over F)

Kernel and Range

Suppose $T \in L(V, W)$. then

- kerT*⊥ranT
- kerT⊥ranT*

Conjugate Transpose

The *conjugate transpose* of an m-by-n matrix is the n-by-m matrix obtained by interchanging the rows and columns and then taking tha complex conjugate of each entry. Let $T \in L(V, W)$. Suppose $e_1, \dots e_n$ is an orthonormal basis of V and f_1, \dots, f_m is an orthonormal basis of W. then

$$M(T^*,(f_1,\cdots,f_m),(e_1,\cdots,e_n))$$

is the conjugate transpose of

$$M(T,(e_1,\cdots,e_n),(f_1,\cdots,f_m))$$

The proof is not important.

Self-adjoint operators

An operator $T \in L(V)$ is called *self-adjoint* if $T = T^*$. In other words, $T \in L(V)$ is self-adjoint if and only if

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$

for all $v, w \in V$ You'll run into more details of self-adjoint operators in VV286!

$\langle T v, v \rangle$

Try to prove the following two statements!

Suppose V is a complex inner product space and T inL(V). Suppose

$$\langle Tv, v \rangle = 0$$

for all $v \in V$. Then T=0

Suppose V is a complex inner product space and T inL(V). Then T is self-adjoint if and only if

$$\langle Tv, v \rangle \in R$$

for all $v \in V$.

Normal operators

An operator on an inner product space is called *normal* if it commutes with its adjoint, or:

$$TT^* = T^*T$$

Obviously every self-adjoint operator is normal.

An operator $T \in L(V)$ is normal if and only if

$$||Tv|| = ||T^*v||$$

Discussion

Learn Well And Have Fun!