Spartan Parallel

Kunming Jiang

Sep 21, 2023

1 Introduction

The problem is consisted of P R1CS instances of the form $\{A_i, B_i, C_i\}$, where each A_i, B_i, C_i are $X \times Y$ matrices, X represents the number of constraints and Y represents the number of (inputs + witnesses). For each instance $\{A_i, B_i, C_i\}$, there are Q_i (input, witnesses) vectors of length Y that claim to be a correct execution of the instance. We name these (input, witnesses) vectors $z_{i,0}, \ldots z_{i,Q_i}$. The goal is to prove the claim for all such $z_{i,j}$ using SNARK.

For simplicity, assume all P, Q_i, X, Y are powers of two. Define $Q_{\max} \leftarrow \max_i Q_i$ and $Q_{\text{sum}} \leftarrow \sum_i Q_i$. Let $p = \log P$, $q_i = \log Q_i$, $q_{\max} = \log Q_{\max}$, $x = \log X$, and $y = \log Y$. We want the total runtime of the Prover (\mathcal{P}) to be $O(Q_{\text{sum}} \cdot X \cdot \log(Q_{\text{sum}} \cdot X))$, and that of the Verifier (\mathcal{V}) to be $O(\log(P \cdot Q_{\max} \cdot Y))$.

2 Starting from Spartan

We begin by modifying Spartan to support data-parallelism. In section 3 we perform a complexity analysis and in 4 we resolve the complexity blow-up.

The modified protocol is shown below:

- 1. \mathcal{P} commits witnesses and sends the commit \mathcal{C} to \mathcal{V} .
- 2. \mathcal{V} samples $\tau \in_{R} \mathbb{F}^{p+q_{\max}+x}$ and sends τ to \mathcal{P} .
- 3. \mathcal{P} computes $Az, Bz, Cz, \widetilde{eq}_{\tau} : \mathbb{F}^{p+q_{\max}+x} \to \mathbb{F}$, defined as:

$$Az(t_p, t_q, t_x) = A(t_p, t_x) \cdot z(t_p, t_q, t_x)$$

 $\widetilde{eq}_{\tau}(t) = 1 \text{ if } t = \tau, 0 \text{ otherwise}$

4. V and P perform sum-check #1 to prove

$$\sum_{t \in \mathbb{F}^{p+q_{\max}+x}} (Az(t) \cdot Bz(t) - Cz(t)) \cdot \widetilde{\operatorname{eq}}_{\tau}(t) = 0$$

- 5. By the end of the sum-check, \mathcal{V} samples $r = (r_p, r_q, r_x) \in_R \mathbb{F}^{p+q_{\max}+x}$ and \mathcal{P} obtains $v_A = Az(r)$, $v_B = Bz(r)$, $v_C = Cz(r)$. \mathcal{P} sends v_A, v_B, v_C to \mathcal{V} .
- 6. V checks $(v_A \cdot v_B v_C) \cdot \widetilde{eq}_{\tau}(r) = e_1$, where e_1 is the final claim of the sum-check.

- 7. \mathcal{V} samples $r_A, r_B, r_C \in_R \mathbb{F}$ and sends to \mathcal{P} . \mathcal{P} computes $T = r_A \cdot v_A + r_B \cdot v_B + r_c \cdot v_C$.
- 8. \mathcal{P} computes

$$\begin{split} ABC: \mathbb{F}^{p+y} &\to \mathbb{F} = r_A \cdot A(\cdot) + r_B \cdot B(\cdot) + r_C \cdot C(\cdot) \\ Z_{r_q}: \mathbb{F}^{p+y} &\to \mathbb{F} \text{ where } Z_{r_q}(t_p, t_x) = z(t_p, r_q, t_x) \\ & \widetilde{\operatorname{eq}}_{r_p}(t_p) = 1 \text{ if } t_p = r_p, \, 0 \text{ otherwise} \end{split}$$

9. V and P perform sum-check #2 to prove

$$\sum_{t \in \mathbb{F}^{p+y}} ABC(t) \cdot Z_{r_q}(t) \cdot \widetilde{\operatorname{eq}}_{r_p}(t_p) = T$$

By the end of the sum-check, \mathcal{V} samples $r^* = (r_p^*, r_x) \in_R \mathbb{F}^{p+y}$ and obtains the claim e_2 .

- 10. \mathcal{P} opens the commitment \mathcal{C} and evaluates the witness polynomial on $r_p^*, r_q, r_y[1..]$ as w, sends w to \mathcal{V} .
- 11. \mathcal{V} evaluates the input polynomial on $r_p^*, r_q, r_y[1..]$ as v, computes $v_Z = (1 r_y[0]) \cdot w + r_y[0] \cdot v$. \mathcal{V} also evaluates $v_{r_p} = \widetilde{\operatorname{eq}}_{r_p}(r_p^*)$
- 12. V checks $e_2 = (r_A \cdot v_A + r_B \cdot v_B + r_c \cdot v_C) \cdot v_Z \cdot v_{r_n}$.

3 Identifying Runtime Overhead

3.1 Verifier Cost

Since we only require the Verifier cost to be $O(\log(P \cdot Q_{\max} \cdot Y))$, there isn't any improvement we need to do. Here's the cost breakdown:

- In step 2: $O(\log(P \cdot Q_{\max} \cdot Y))$ for sampling τ .
- In step 4: $O(\log(P \cdot Q_{\max} \cdot Y))$ due to the sum-check having $p + q_{\max} + x$ rounds. Assume X and Y are of similar size.
- In step 6: $O(\log(P \cdot Q_{\max} \cdot Y))$ for evaluating $\widetilde{eq}_{\tau}(r)$.
- In step 9: $O(\log(P \cdot Y))$ due to the sum-check having p + y rounds.
- In step 11: $O(\log(P \cdot Q_{\mathtt{max}} \cdot Y))$ for evaluating the input, and $O(\log(P))$ for evaluating $\widetilde{\operatorname{eq}}_{r_p}(r_p^*)$.

3.2 Prover Cost

The prover's cost is currently $O(P \cdot Q_{\max} \cdot Y \cdot \log(P \cdot Q_{\max} \cdot Y))$, and we need to reduce it to $O(Q_{\text{sum}} \cdot X \cdot \log(Q_{\text{sum}} \cdot X))$. Here's all the steps that exceeds that complexity:

- Step 1: witness commit
- Step 3: producing Az, Bz, Cz, and \widetilde{eq}_{τ}
- Step 4: sum-check 1
- Step 8: compute Z_{r_a}

We now discuss how to improve Prover's cost in these steps.

4 Reducing Complexity

We can first deal with the easier ones:

 \bullet We assume that filling an array / matrix with 0s does not take time. Thus

Idea: express Z as a polynomial over p times a polynomial over q voer a polynomial over x