Eclectic flavor symmetries from orbifolds

based on work with M. Kade, H.P. Nilles, S. Ramos-Sánchez, and P.K.S. Vaudrevange

Alexander Baur

Technical University of Munich & Instituto de Física, Universidad Nacional Autónoma de México

Seminar Series on String Phenomenology - 27.10.2020

String - String setup - How to get a flavor symmetry - What are possible flavor symmetries - How to use the flavor symmetries Pheno

SETUP

- ► Heterotic String Theory
- ► Toroidal orbifolds
- ► For now: 2 dimensional compact space

Figure: Space-time dimensions of a heterotic string.

SETUP

- ► Heterotic String Theory
- ► Toroidal orbifolds
- ► For now: 2 dimensional compact space

Figure: Space-time dimensions of a heterotic string.

SETUP

- ► Heterotic String Theory
- ▶ Toroidal orbifolds
- ► For now: 2 dimensional compact space

Figure: Space-time dimensions of a heterotic string.

TOROIDAL ORBIFOLDS

$$\mathbb{T}^2 = \mathbb{R}^2 / \Lambda$$

$$\mathbb{T}^2/P = \mathbb{R}^2/(P,\Lambda)$$

S: Space group

P: Point group

 Λ : Lattice

Closed string boundary condition:

$$X^i(\sigma+1,\tau) = g X^i(\sigma,\tau)$$

ightarrow Strings characterized by $g \in S$

AN ANALOGY

4D world: C, P, T

- ► Representations of the proper Poincaré group build up fundamental particle states
- ightharpoonup C, P, T transformations interchange representations and conj. classes
- ightharpoonup C, P, T are automorphisms of the proper Poincare group

Extra dim.: Flavor transformations

- lacktriangle Different types of strings correspond to conj. classes of the space group S
- ightharpoonup Calculate the outer automorphisms of the space group S
- Interpret these automorphisms as flavor transformations

Automorphism a:

 $a: S \stackrel{a}{\mapsto} S$

NARAIN CONSTRUCTION

Narain lattice:

Winding- and KK-momenta of a string lie in a Narain lattice of signature $(2_{\rm R},2_{\rm L})$

→ Use Narain lattice instead of usual target space lattice

The moduli:

Complex structure :
$$U = \frac{G_{12}}{G_{11}} + \frac{\mathrm{i}}{G_{11}} \sqrt{\det G}$$
 geometrical

Kähler modulus:
$$T = B_{12} + i \sqrt{\det G}$$
 stringy

Symmetry of the Narain torus: / Z₃ Narain orbifold

$$O(2, 2, \mathbb{Z}) = \left[(SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T) \rtimes (\mathbb{Z}_2^{CP} \times \mathbb{Z}_2^{M}) \right] / \mathbb{Z}_2$$

Orbifold: Elements of $\mathrm{O}(2,2,\mathbb{Z})$ that commute with orbifold action, i.e. point group P

[K. S. Narain et al.: Asymmetric Orbifolds], [Vaudrevange and Groot Nibbelink: 1703.05323]

TYPES OF FLAVOR SYMMETRIES

We find two types of flavor symmetries:

- A modular flavor symmetries
- **B** traditional flavor symmetries

 $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \xrightarrow{\gamma} (cT+d)^k \rho(\gamma) \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$

A MODULAR SYMMETRIES

Symmetry of the Narain torus: $/\mathbb{Z}_3$ Narain orbifold / twisted states:

$$O(2,2,\mathbb{Z}) = \left[(SL(2,\mathbb{Z})_U \times SL(2,\mathbb{Z})_T) \times (\mathbb{Z}_2^{CP} \times \mathbb{Z}_2^{M}) \right] / \mathbb{Z}_2$$

$$\Gamma_3' \simeq T'$$

Twisted string states transform trivially under

$$\Gamma(N) \ = \ \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, , \ \gamma = \mathbb{1} \ \operatorname{mod} N \}$$

but in a nontrivial representation $\rho(\gamma)$ under

$$\Gamma'_N = \operatorname{SL}(2, \mathbb{Z}) / \Gamma(N)$$

finite modular flavor symmetry

Finite modular flavor symmetries:

N	2	3	4	5
Γ_N	S_3	A_4	S_4	A_4
Γ_N'	S_3	T'	SL(2,4)	SL(2,5)

B TRADITIONAL SYMMETRIES

Classification traditional sym: [Olguin-Trejo, Pérez-Martínez, Ramos-Sánchez:1808.06622][Kobayashi et al.: hep-ph/0611020] Pheno with $\Delta(54)$ flavor from orbifolds: [Carballo-Pérez, Peinado, Ramos-Sánchez: 1607.06812]

 $14\,\mathrm{more}$

RESULTING FLAVOR SYMMETRIES

$$\mathbb{T}^2/\mathbb{Z}_3$$

flavor symmetry

traditional	modular	
$\Delta(54)$	$T' \rtimes \mathbb{Z}_2$	
3	$\mathbf{2'}\oplus1$	

[B., Nilles, Trautner, Vaudrevange: 1901.03251, 1908.00805]

flavor symmetry

 $\mathbb{T}^2/\mathbb{Z}_2$

traditional	modular	
$\frac{D_8 \times D_8}{\mathbb{Z}_2}$	$(S_3 \times S_3) \rtimes \mathbb{Z}_4$	
4	$2\oplus1\oplus1$	

[B., Kade, Nilles, Ramos-Sánchez, Vaudrevange: 2008.07534]

Traditional flavor symmetries: [Kobayashi, Nilles, Plöger, Raby, Ratz: hep-ph/0611020]

ECLECTIC FLAVOR GROUPS

[H. P. Nilles, S. Ramos-Sánchez, P. Vaudrevange: 2001.01736, 2004.05200, 2006.03059]

LINEARLY REALIZED FLAVOR SYMMETRIES – $\mathbb{T}^2/\mathbb{Z}_3$

Moduli space of the $\mathbb{T}^2/\mathbb{Z}_3$ Orbifold. [108,17] referrs to SmallGroup(108,17) of the SmallGroups Library of GAP.

MODEL BUILDING WITH MODULAR FLAVOR SYMMETRIES

- Use modular forms as couplings in the superpotential
- Value of modulus is fitted to experimental values
- ► Very predictive, e.g. 7 out of 2 parameters

String setup

CONCLUSIONS

- ▶ Flavor symmetries can arise from outer automorphisms of the Narain space group
- We find modular as well as traditional flavor symmetries, combined in an eclectic flavor symmetry
- ► Finite modular symmetries can be very predictive; eclectic flavor symmetries are even more constraining
- String theory can provide some insights for bottom up model building

Thank you!