Pout 1:
$$\phi l = (2\dot{x}_R - \dot{\theta}d)/2r$$

 $\phi r = (2\dot{x}_R + \dot{\theta}d)/2r$

Part 2: 1. original point
$$(x, y, \theta)$$

goal point (x', y', θ')
 $N = \sqrt{(y'-y)^2 + (x'-x)^2}$

if the bearing error is 0 , $n = x_R$

2. $a = \tan^{-1}\left(\frac{y_g - y_r}{x_g - x_r}\right) - \Theta_r$

Part 3:
$$\phi l = (2x_e - \dot{\theta}d)/2r$$

 $\phi_R = (2x_e + \dot{\theta}d)/2r$