11.15

EE23BTECH11029 - Kanishk

Question:

A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km/hr. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m/s.

Solution:

Parameter	Description	Value
V	Speed of sound in water	1450m/s
V_e	Speed of enemy submarine	100m/s
Vrel	Relative velocity between both submarine	1550m/s
f	Frequency of SONAR wave	40kHz
y(x,t)	Equation of SONAR wave	$A\sin\left(2\pi ft - \frac{2\pi}{\lambda}x + \phi\right)$
λ	Wavelength of SONAR wave	3.625cm
f'	Frequency observed by enemy submarine	42.76kHz
λ_2	Wavelength of reflected wave	3.157cm
$T = \frac{1}{f'}$	Time period of reflected wave	23.38s
$y_2(x,t)$	Equation of reflected wave as observed from submarine	$A\sin\left(2\pi f''t - \frac{2\pi}{\lambda_2}x + \phi\right)$

TABLE 0 INPUT PARAMETERS

Let us assume that the wave is reflected completely from enemy submarine.

From Table 0:

$$Vrel = V + V_e \tag{1}$$

$$f' = Vrel/\lambda \tag{2}$$

$$=\left(\frac{V+Ve}{V}\right)f\tag{3}$$

$$= \left(\frac{1450 + 100}{1450}\right) 40\tag{4}$$

$$\implies f' = 42.76kHz \tag{5}$$

$$\lambda_2 = T \left(V - V_e \right) \tag{6}$$

$$=\left(\frac{V-V_e}{f'}\right) \tag{7}$$

$$f'' = V/\lambda_2 \tag{8}$$

$$f'' = V/\lambda_2$$

$$\implies f'' = \left(\frac{V}{V - V_e}\right) f'$$
(8)

$$\therefore f'' = 45.92kHz \tag{10}$$

Let us assume that amplitude of both waves is 1cm.

Fig. 0. Graph of SONAR and reflected waves

A: SONAR submarineB: Enemy submarineBlue graph: SONAR waveOrange graph: Reflected wave