1. Fondamenti della Sicurezza Informatica

1.1 Concetti Base e Obiettivi

1. Riservatezza

Garantisce che le informazioni siano accessibili esclusivamente a soggetti autorizzati. Si implementa tramite controlli di accesso e tecniche crittografiche, in modo che anche in caso di intercettazione i dati rimangano illeggibili.

2. Integrità

Assicura che le informazioni non subiscano modifiche non autorizzate. Si usano funzioni hash e firme digitali per verificare che il contenuto rimanga invariato.

3. Disponibilità

Garantisce che le risorse siano sempre accessibili agli utenti autorizzati, mediante sistemi ridondanti, backup regolari e difese contro attacchi DoS.

(Approfondimenti e definizioni in □cite□turn1file0□)

1.2 Minacce e Vulnerabilità

1. Minacce Passive

Intercettazioni che non alterano i dati, difficili da rilevare.

2. Minacce Attive

Modifiche o inserimenti di codice malevolo, che compromettono integrità e disponibilità.

3. Minacce Interne

Attacchi da utenti autorizzati che abusano dei propri privilegi.

2. Crittografia

2.1 Fondamenti Teorici

1. Principio di Kerckhoffs

La sicurezza si basa solo sulla segretezza della chiave, non sull'algoritmo, il quale è pubblico.

(Vedi □cite□turn1file0□)

2. Complessità Computazionale

Un sistema è sicuro se il tempo necessario per forzarlo è proibitivo.

2.2 Crittografia Simmetrica

1. Definizione

Utilizza una singola chiave per cifrare e decifrare i dati; è molto veloce e la sicurezza dipende dalla chiave.

2. Algoritmi Principali

DES (Data Encryption Standard):

Opera su blocchi di 64 bit con una chiave effettiva di 56 bit e utilizza 16 round di trasformazioni (permuta, espansione, sostituzione tramite S-box e XOR) secondo la struttura a rete di Feistel.

(In sintesi, DES trasforma il testo in chiaro con una serie di operazioni fisse che "mescolano" i bit, rendendo difficile il recupero del messaggio originale senza la chiave.)

Triple DES (3DES):

Migliora la sicurezza applicando il DES in cascata in modalità EDE (Encrypt–Decrypt–Encrypt) con due o tre chiavi. In pratica, il testo viene cifrato, poi decifrato e infine nuovamente cifrato, aumentando la complessità senza cambiare radicalmente la struttura di DES.

(Riassumendo, 3DES "triplica" la sicurezza di DES, pur comportando un maggior impegno computazionale.)

AES (Advanced Encryption Standard):

Opera su blocchi di 128 bit e supporta chiavi di 128, 192 o 256 bit, ma in questa guida non ne approfondiremo il funzionamento.

2.3 Crittografia Asimmetrica

1. Definizione

Usa una coppia di chiavi correlate: la chiave pubblica, diffusa liberamente, e la chiave privata, mantenuta segreta.

2. Algoritmo RSA

• **Generazione:** Scegli due grandi numeri primi p e q, calcola n = p×q e φ (n); seleziona un esponente e (coprimo con φ (n)) e calcola d tale che (e×d) mod φ (n) = 1.

Operazioni:

Cifratura: C = M^e mod n

Decifratura: M = C^d mod n

(Dettagli in □cite□turn1file0□)

1. Altri Algoritmi

- **ECC:** Offre sicurezza simile a RSA con chiavi più corte, ideale per dispositivi con risorse limitate.
- El Gamal: Basato sul logaritmo discreto, usato per firme digitali e cifratura probabilistica.

2.4 Funzioni di Hash Crittografiche

1. Scopi:

Verifica integrità, supporto per firme digitali e memorizzazione sicura delle password.

2. Caratteristiche:

Resistenza alla preimmagine, alla seconda preimmagine e alle collisioni.

3. Algoritmi:

MD5:

Funziona paddeando il messaggio fino a raggiungere una lunghezza multipla di 512 bit, aggiungendo la lunghezza originale, inizializzando registri con valori fissi e processando il messaggio in blocchi con operazioni non lineari, rotazioni e XOR, producendo un digest a 128 bit.

(In breve, MD5 trasforma il messaggio in un "riassunto" fisso di 128 bit, anche se oggi non è considerato sicuro.)

SHA:

(Es. SHA-1) Il messaggio viene paddato e diviso in blocchi di 512 bit, processato in 80 round di operazioni (rotazioni, somme e funzioni non lineari) con cinque registri inizializzati, producendo un hash a 160 bit.

(Sinteticamente, SHA genera un digest che "riassume" il messaggio e offre resistenza alle modifiche, sebbene SHA-1 sia ora considerato obsoleto.)

3. Sicurezza delle Reti

3.1 Firewall

1. Definizione e Funzioni

Controlla il traffico tra interfacce, filtrando i pacchetti in base a regole predefinite.

 Può essere hardware o software e opera a vari livelli dello stack (dal fisico all'applicativo).

2. Tipologie:

- Packet Filter: Analizza singoli pacchetti (stateless).
- Proxy Server: Filtra a livello applicativo, con caching e analisi del contenuto.
- Firewall Stateful: Considera lo stato della comunicazione per un filtraggio più accurato.

(Dettagli in □cite□turn1file3□)

3.2 NAT e PAT

1. **NAT**:

Traduce indirizzi IP interni in pubblici, permettendo a reti private di accedere a Internet.

2. **PAT**:

Modifica le porte per gestire più connessioni con un singolo IP pubblico.

3.3 Sicurezza Wireless

1. Bluetooth:

- Utilizza Frequency Hopping Spread Spectrum e Time Division Duplexing.
- Forma piconet (fino a 8 dispositivi) e, eventualmente, scatternet per coperture estese.
- Distinzione tra link SCO (point-to-point) e ACL (broadcast).

2. Wi-Fi:

Breve menzione degli standard di sicurezza (WEP, WPA/WPA2, WPA3) e dei meccanismi di autenticazione e cifratura.

4. Gestione della Sicurezza

4.1 Politiche di Sicurezza

1. Obiettivi e Modelli:

Definiscono regole e procedure per confinare gli utenti e proteggere le risorse.

 Si basano su modelli come AAA (Authentication, Authorization, Auditing) e su sistemi di controllo accessi DAC e MAC.

2. Implementazione:

- DAC: Gli utenti gestiscono autonomamente i diritti.
- MAC: Restrizioni impostate dall'amministratore, ideali in ambienti ad alta sicurezza.
- MAC+DAC: Combina flessibilità e restrizione per isolare le risorse.

4.2 Monitoraggio e Controllo

1. Logging e Auditing:

Registrazione degli eventi di autenticazione, accesso e operazioni, con vari livelli di dettaglio.

2. Strumenti di Monitoraggio:

Software e dispositivi che analizzano il traffico di rete per rilevare anomalie.

4.3 Disaster Recovery

1. Backup e Ripristino:

Strategie di backup regolari e procedure di ripristino per garantire continuità operativa.

2. Piani di Contingenza:

Definizione di procedure e sedi alternative, con test periodici per verificarne l'efficacia.

