Motor Trend - Bastiaan Quast

Executive Summary

We look at estimate an OLS model, regressing mileage on an automatic/manual dummy. Find a significantly negative effect of automatic on mileage. We redo the estimation as TSLS, using weight as an instument for automatic. These results are even more significant.

Analysis

We start by loading the mtcars data frame and recode am to a logical automatic variable.

```
data( mtcars )
mtcars$automatic <- mtcars$am == 0
attach( mtcars )</pre>
```

```
## The following objects are masked from mtcars (position 3):
##
##
       am, automatic, carb, cyl, disp, drat, gear, hp, mpg, qsec, vs,
##
## The following objects are masked from mtcars (position 4):
##
       am, automatic, carb, cyl, disp, drat, gear, hp, mpg, qsec, vs,
##
## The following objects are masked from mtcars (position 6):
##
       am, automatic, carb, cyl, disp, drat, gear, hp, mpg, qsec, vs,
##
##
## The following objects are masked from mtcars (position 7):
##
       am, automatic, carb, cyl, disp, drat, gear, hp, mpg, qsec, vs,
##
##
       wt
```

We plot the milage for automatic and non-automatic cars.

```
par( mfrow=c(1,2) )
hist( mpg[which(automatic == TRUE)] )
hist( mpg[which(automatic == FALSE)] )
```

Histogram of mpg[which(automatic == TRUE)]

Histogram of mpg[which(automatic == FALSE)]

We estimate the Ordinary Least Squares (OLS) model.

```
ols <- lm( mpg ~ automatic, data=mtcars )
summary( ols )</pre>
```

```
##
## Call:
## lm(formula = mpg ~ automatic, data = mtcars)
##
## Residuals:
##
     Min
              1Q Median
  -9.392 -3.092 -0.297
                        3.244
                                9.508
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                    24.39
                                1.36
                                       17.94 < 2e-16 ***
## (Intercept)
## automaticTRUE
                    -7.24
                                1.76
                                       -4.11 0.00029 ***
##
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 4.9 on 30 degrees of freedom
## Multiple R-squared: 0.36, Adjusted R-squared: 0.338
## F-statistic: 16.9 on 1 and 30 DF, p-value: 0.000285
```

There is a significant negative effect of automatic on milage. We redo the estimation using Two-Stage Least Squares (TSLS), using weight (**wt**) as an instrument for automatic.

```
tsls.fs <- lm(automatic ~ wt)
tsls <- lm(mpg ~ tsls.fs$fitted.values)
summary(tsls)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ tsls.fs$fitted.values)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.543 -2.365 -0.125 1.410 6.873
##
## Coefficients:
```

```
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            29.08
                                        1.08
                                               26.84 < 2e-16 ***
## tsls.fs$fitted.values
                           -15.13
                                               -9.56 1.3e-10 ***
                                        1.58
##
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 3.05 on 30 degrees of freedom
## Multiple R-squared: 0.753, Adjusted R-squared: 0.745
## F-statistic: 91.4 on 1 and 30 DF, p-value: 1.29e-10
```

This coefficient is even more negative, and even more significant. We finally plot the residuals for both estimations.

```
par( mfrow=c(1,2) )
hist( ols$residuals )
hist( tsls$residuals )
```

-10 -5 0 5 10 ols\$residuals

Histogram of ols\$residuals

Histogram of tsls\$residuals

The residuals of the OLS estimation appear to be normally distibuted, the TSLS somewhat less, though \mathbf{n} is too small to make any real claims.