Análisis Numérico

2. Resolución numérica de sistemas de ecuaciones lineales

(Introducción)

Sea un cuerpo K. Sea $\mathcal{M}_n(K)$ el conjunto de las matrices cuadradas de dimensión n, de elementos de K. Dada $A \in \mathcal{M}_n$, llamamos:

diagonal de
$$A$$
: $D = \text{diag } (A) = \{a_{ii}, i = 1, 2, \dots, n\}$
traza de A : $\text{Tr}(A) = \sum_{i=1}^{n} a_{ii}$

Asimismo, decimos que A es una matriz

diagonal, si
$$a_{ij} = 0$$
, $\forall i \neq j$
triangular superior, si $a_{ij} = 0$, $\forall i > j$
triangular inferior, si $a_{ij} = 0$, $\forall i < j$
simétrica, si $a_{ii} = a_{ii}$, $\forall i, j$

Definición

Llamamos matriz identidad de dimensión n a la matriz:

$$I_n = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & & \dots & 0 \\ 0 & 0 & \dots & 1 \end{array} \right) \in \mathcal{M}_n$$

Sea $A \in \mathcal{M}_n(\mathbb{R})$.

Definición

Llamamos matriz traspuesta de A a la matriz A^T de componentes: $a_{ij}^T = a_{ji}$

Definición

Decimos que una matriz A es:

simétrica,
$$si A = A^T$$

ortogonal, $si AA^T = A^TA = I \implies A^{-1} = A^T$

Nota

El producto de matrices simétricas no es necesariamente simétrico. Por ejemplo,

$$\left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right) \left(\begin{array}{cc} 3 & 4 \\ 4 & 5 \end{array}\right) = \left(\begin{array}{cc} 11 & 14 \\ 10 & 13 \end{array}\right)$$

Autovalores y autovectores

Sea $A \in \mathscr{M}_n(IR)$

Definición

El vector $v \neq \vec{0}$ es un **autovector** (o vector propio) de A si existe $\lambda \in \mathbb{C}$ tal que:

$$Av = \lambda v$$

El escalar λ se denomina **autovalor** (o valor propio) asociado al vector v

Ejemplo

La matriz:

$$A = \left(\begin{array}{cc} 7 & -4 \\ 5 & -2 \end{array}\right)$$

tiene los siguientes autovalores y autovectores:

$$\lambda_1 = 3$$
 $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\lambda_2 = 2$ $v_2 = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$

Autovalores y autovectores

Propiedad

Los autovalores de una matriz cuadrada son las raíces de su ecuación característica:

$$p(A) = |A - \lambda I| = 0$$

Una matriz de dimensión n tiene n autovalores, contando cada uno de ellos tantas veces como indique su multiplicidad.

Los autovalores de una matriz simétrica de coeficientes reales son todos reales.

Definición

Se denomina radio espectral de la matriz A a la cantidad:

$$\rho(A) = \max_{i=1,\dots,n} |\lambda_i(A)|$$

Definición

Se dice que una matriz $A \in \mathcal{M}_n$ es **definida positiva** si:

$$v^T A v > 0$$
 , $\forall v \in \mathbb{R}^n - \{\vec{0}\}$

Propiedad

Una matriz cuadrada es definida positiva si los determinantes de todos sus menores principales son estrictamente positivos.

Propiedad

Una matriz cuadrada es definida positiva si todos sus autovalores son estrictamente positivos.

Normas vectoriales

Sea un espacio vectorial $(V, +, \cdot, K)$

Definición

Llamamos **norma** sobre V a toda aplicación $\|\cdot\|: V \longrightarrow I\!\!R^+$ tal que:

- 1. $||v|| = 0 \iff v = 0$
- 2. $||u+v|| \le ||u|| + ||v||$, $\forall u, v \in V$
- 3. $\|\lambda v\| = |\lambda| \|v\|$, $\forall \lambda \in K$, $\forall v \in V$

Un e.v. dotado de una norma se denomina **espacio vectorial normado** $(V, \|\cdot\|)$.

Ejemplo

Son ejemplos de norma, en \mathbb{R}^n , las aplicaciones dadas por:

$$||v||_p = \left[\sum_{i=1}^n |v_i|^p\right]^{1/p}, \qquad (p = 1, 2, ...)$$

$$||v||_{\infty} = \sup_{i=1,\dots,n} |v_i|$$

Normas matriciales

Sea $\mathcal{M}_{m,n}(K)$ el conjunto de las matrices de m filas y n columnas.

Definición

Llamamos norma matricial *a una aplicación* $\|\cdot\|: \mathcal{M}_{m,n} \longrightarrow \mathbb{R}^+$ *tal que:*

$$||A|| = 0 \iff A = 0 ||A + B|| \le ||A|| + ||B||, \quad \forall A, B \in \mathcal{M}_{m,n} ||\lambda A|| = |\lambda| ||A||, \quad \forall A \in \mathcal{M}_{m,n}, \quad \forall \lambda \in K ||A C|| \le ||A|| ||C||, \quad \forall A \in \mathcal{M}_{m,n}, \quad \forall C \in \mathcal{M}_{n,p}$$

El espacio vectorial $\mathcal{M}_{m,n}(K)$ junto con la aplicación anterior es un espacio vectorial normado.

Normas matriciales

Dado que en K^n podemos definir una norma vectorial y $Ax \in K^n$, $\forall x \in K^n$, podemos construir la norma:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| \le 1} ||Ax||$$

llamada **norma matricial subordinada** a la norma vectorial definida en K^n . Algunas normas matriciales subordinadas pueden calcularse en función de los coeficientes de la matriz:

$$||A||_1 = \max_{j=1,\dots,n} \left(\sum_{i=1}^n |a_{ij}| \right) \qquad ||A||_{\infty} = \max_{i=1,\dots,n} \left(\sum_{j=1}^n |a_{ij}| \right) \qquad ||A||_2 = [\rho(A^*A)]^{1/2}$$

Ejemplo

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 1 \\ -1 & 4 & 2 \end{pmatrix} \qquad ||A||_1 = \max\{4, 8, 3\} = 8$$

$$||A||_{\infty} = \max\{2, 6, 7\} = 7$$

Sucesiones de vectores y matrices

Sea un espacio vectorial V sobre un cuerpo K. Sea $\|\cdot\|$ una norma vectorial en V.

Definición

Llamaremos sucesión de vectores de V, $(x_k)_k$, al conjunto ordenado de vectores:

$$(x_k)_k = \{x_0, x_1, x_2, \ldots\}, \quad x_k \in V$$

Definición

Decimos que la sucesión $(x_k)_k$ converge $a \ x \in V$ si:

$$\lim_{k\to\infty}||x_k-x||=0$$

y se denota por x_k \longrightarrow x

Puede demostrarse que $x_k \longrightarrow x \iff x_k^i \longrightarrow x^i \ (i = 1, ..., n).$

Dado que $(\mathcal{M}_{m,n}(K),+,\cdot)$ es un espacio vectorial sobre K, puede definirse una sucesión de matrices y su convergencia, considerando una norma matricial. Además,

$$A_k \longrightarrow A \iff A_k^{ij} \longrightarrow A^{ij} \quad (i,j=1,\ldots,n).$$

Condicionamiento de un sistema de ecuaciones lineales

Consideremos los siguientes sistemas lineales:

$$\begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix} \implies x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 32.1 \\ 22.9 \\ 33.1 \\ 30.9 \end{pmatrix} \implies u = \begin{pmatrix} 9.2 \\ -12.6 \\ 4.5 \\ -1.1 \end{pmatrix}$$

Condicionamiento de un sistema de ecuaciones lineales

De manera similar,

$$\begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix} \implies x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 10.01 & 7 & 8.10 & 7.10 \\ 7 & 4.98 & 6 & 4.95 \\ 8.10 & 6 & 10 & 9 \\ 7.10 & 4.95 & 9 & 9.80 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix} \implies u = \begin{pmatrix} 12.89 \\ -18.55 \\ 6.42 \\ -2.70 \end{pmatrix}$$

Condicionamiento de un sistema de ecuaciones lineales

Otro ejemplo:

$$\begin{pmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.168 \\ 0.067 \end{pmatrix} \implies x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0.168 \\ 0.068 \end{pmatrix} \implies z = \begin{pmatrix} -666 \\ 834 \end{pmatrix}$$

El método de **eliminación gaussiana** está basado en las siguientes operaciones posibles sobre las ecuaciones del sistema:

- ▶ la ecuación (i) puede ser multiplicada por un valor $\lambda \neq 0$, y la ecuación resultante utilizarse en lugar de la ecuación (i)
- ▶ la ecuación (j) puede ser multiplicada por un valor $\lambda \neq 0$, sumarse a la ecuación (i), y utilizar el resultado en lugar de las ecuaciones (i) o (j)
- ▶ las ecuaciones (i) y (j) pueden intercambiarse entre sí.

Sea el S.E.L.:

$$A^{1}x = b^{1} \begin{cases} a_{11}^{1}x_{1} + a_{12}^{1}x_{2} + \dots + a_{1n}^{1}x_{n} = b_{1}^{1} \\ a_{21}^{1}x_{1} + a_{22}^{1}x_{2} + \dots + a_{2n}^{1}x_{n} = b_{2}^{1} \\ \dots \\ a_{n1}^{1}x_{1} + a_{n2}^{1}x_{2} + \dots + a_{nn}^{1}x_{n} = b_{n}^{1} \end{cases}$$

Si $a_{11}^1 \neq 0$ (**pivote**), hacemos:

$$a_{ij}^2 = a_{ij}^1 - m_i^1 a_{1j}^1 = a_{ij}^1 - \frac{a_{i1}^1}{a_{11}^1} a_{1j}^1$$
 $b_i^2 = b_i^1 - m_i^1 b_1^1$

y obtenemos el sistema equivalente:

$$A^{2}x = b^{2} \begin{cases} a_{11}^{1}x_{1} + a_{12}^{1}x_{2} + \dots + a_{1n}^{1}x_{n} = b_{1}^{1} \\ a_{22}^{2}x_{2} + \dots + a_{2n}^{2}x_{n} = b_{2}^{2} \\ \dots \\ a_{n2}^{2}x_{2} + \dots + a_{nn}^{2}x_{n} = b_{n}^{2} \end{cases}$$

Si $a_{22}^2 \neq 0$, lo tomamos como nuevo pivote y transformamos el sistema en otro equivalente con $a_{i2}^3 = 0$, para j > 2.

Al cabo de n-1 pasos, habremos obtenido un sistema triangular equivalente al original:

$$A^{n}x = b^{n} \begin{cases} a_{11}^{1}x_{1} + a_{12}^{1}x_{2} + \dots + a_{1n}^{1}x_{n} = b_{1}^{1} \\ a_{22}^{2}x_{2} + \dots + a_{2n}^{2}x_{n} = b_{2}^{2} \\ \dots \\ a_{nn}^{n}x_{n} = b_{n}^{n} \end{cases}$$

Resolución del sistema triangular superior por **sustitución hacia atrás**, o **remonte**:

$$x_{n} = \frac{b_{n}^{n}}{a_{nn}^{n}}$$

$$x_{i} = \frac{b_{i}^{i} - \sum_{j=i+1}^{n} a_{i,j}^{i} x_{j}}{a_{ii}^{i}}, \quad i = n-1, n-2, \dots, 2, 1$$

Método de Gauss. Ejemplo (I)

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & -1 & 4 \\ 4 & 1 & 2 & -1 \\ 8 & 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ 19 \\ 8 \\ 10 \end{pmatrix}$$

Primer pivote: $a_{11} = 1 \neq 0$

$$m_2^1 = a_{21}/a_{11} = 2$$

 $m_3^1 = a_{31}/a_{11} = 4$
 $m_4^1 = a_{41}/a_{11} = 8$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & -7 & -10 & -17 \\ 0 & -14 & -26 & -31 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ -112 \\ -230 \end{pmatrix}$$

Método de Gauss. Ejemplo (II)

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & -7 & -10 & -17 \\ 0 & -14 & -26 & -31 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ -112 \\ -230 \end{pmatrix}$$

Segundo pivote: $a_{22} = -2 \neq 0$

$$m_3^2 = a_{32}/a_{22} = 7/2$$

 $m_4^2 = a_{42}/a_{22} = 7$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & 0 & 29/2 & -3 \\ 0 & 0 & 23 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ 63/2 \\ 57 \end{pmatrix}$$

Método de Gauss. Ejemplo (III)

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & 0 & 29/2 & -3 \\ 0 & 0 & 23 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ 63/2 \\ 57 \end{pmatrix}$$

Tercer pivote: $a_{33} = 29/2 \neq 0$, $m_4^3 = 46/29$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & 0 & 29/2 & -3 \\ 0 & 0 & 0 & 51/29 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ 63/2 \\ 204/29 \end{pmatrix}$$

Método de Gauss. Ejemplo (IV)

Resolución del sistema triangular superior:

$$x_4 = \frac{204/29}{51/29} = 4$$

$$x_3 = \frac{63/2 + 3 \times 4}{29/2} = 3$$

$$x_2 = \frac{-41 + 7 \times 3 + 4 \times 4}{-2} = 2$$

$$x_1 = \frac{30 - 2 \times 2 - 3 \times 3 - 4 \times 4}{1} = 1$$

Método de Gauss-Jordan

Es similar al método de Gauss, pero haciendo las transformaciones necesarias para obtener la matriz identidad.

$$\leadsto \left(\begin{array}{ccc|c} 1 & 2 & 0 & 0 & 5 \\ 0 & -\mathbf{2} & 0 & 0 & -4 \\ 0 & 0 & 29/2 & 0 & 87/2 \\ 0 & 0 & 0 & 51/29 & 204/29 \\ \end{array} \right) \leadsto \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & 0 & -4 \\ 0 & 0 & 29/2 & 0 & 87/2 \\ 0 & 0 & 0 & 51/29 & 204/29 \\ \end{array} \right)$$

Una aplicación interesante de este método es el cálculo de la inversa de una matriz cuadrada de dimensión n, resolviendo simultáneamente n sistemas de ecuaciones