1 Dinamica del punto

1.1 Concetto di forza

La forza è la grandezza che esprime e misura l'interazione tra sistemi fisici.

1.2 Primo principio della dinamica: principio d'inerzia

Un corpo non soggetto a forze si muove di moto rettilineo uniforme oppure sta fermo se inizialmente era fermo. $\bar{v} = \cos(z)$

1.3 Secondo principio della dinamica: principio fondamentale della dinamica

La variazione di quantità di moto di un corpo è proporzionale alla forza impressa e avviene nella direzione della forza stessa.

$$\bar{F} = m\bar{a}$$
.

L'accelerazione è sempre nella direzione della forza, e il rapporto delle accelerazioni è inverso al rapporto delle masse:

$$F = m_1 a_1$$

 $F = m_2 a_2$ = $m_1 a_1 = m_2 a_2 \implies \frac{a_1}{a_2} = \frac{m_2}{m_1}$

1.3.1 Massa di un corpo

La massa si misura con la bilancia. La forza della gravità è proporzionale alla massa del corpo:

$$\bar{F} = m\bar{g}$$

1.4 Seconda legge di Newton

Esprime la legge fondamentale della dinamica del punto:

$$\bar{F} = m\bar{a} = m\frac{d\bar{v}}{dt} = m\frac{d^2\bar{r}}{dt^2} \quad \star$$

Possiamo scrivere ★ scomponendola in tre equazioni relative ai tre moti proiettati sugli assi cartesiani:

$$\begin{cases} F_x = m\bar{a}_x = m\frac{d^2x}{dt^2} \\ \\ F_y = m\bar{a}_y = m\frac{d^2y}{dt^2} \\ \\ F_z = m\bar{a}_z = m\frac{d^2z}{dt^2} \end{cases}$$

1.5 Terza legge della dinamica

Immaginiamo di avere due corpi A e B: se A esercita una forza su B, allora B esercita una forza uguale e opposta su A, principio di azione e reazione.

▲ Figura 2.3 Principio di azione e reazione delle forze tra due punti materiali.

$$\bar{F}_{AB} = -\bar{F}_{BA}$$

Ad ogni azione corrisponde una reazione uguale e contraria.

Se A e B sono la Terra e il sole allora:

$$F = G \frac{M_t M_s}{r^2} \quad Gravitazione$$

Per le cariche:

$$F = k \frac{q_1 q_2}{r^2}$$
 Elettromagnetica

Questo non significa che i due corpi non si muovano, anzi si muovono in qundo il punto di applicazione è diverso: immagina la roulotte e la macchina.

1.6 Quantità di moto, impulso

Si definisce quantità di moto di un punto materiale il vettore:

$$\bar{p} = m\bar{v}$$

Se la massa è costante la seconda legge di Newton diventa:

$$\bar{F} = \frac{d\bar{p}}{dt}$$

Da cui si ottiene il teorema dell'impulso:

$$\bar{F}dt = d\bar{p} \implies \int_0^{t_0} \bar{F}dt = \int_{\bar{p}_i}^{\bar{p}_f} d\bar{p} = \bar{p}_f - \bar{p}_i = \Delta \bar{p} = \bar{J}$$

Dove \bar{J} è l'impulso della forza \bar{F} e Δp è la variazione della quantità di moto. . Il teorema dell'impulso dice che: l'impulso do una forza applicata a un punto materiale provoca la variazione della quantità di moto Se la massa è costante:

$$\bar{F}_m \cdot \Delta t = \Delta \bar{p} \implies \bar{F}_m = \frac{\Delta \bar{p}}{\Delta t}$$

1.6.1 Unità di misura

$$[\bar{F}] = [M] \cdot \frac{[L]}{[T^2]} \implies \frac{kg \cdot m}{s^2} = N$$

$$[\bar{p}] = [M] \cdot \frac{[L]}{[T]} \implies \frac{kg \cdot m}{s} = N \cdot s$$

1.6.2 Esercizio 2.1

Esempio 2.1 Una pallina rimbalza su un muro

Un punto materiale che si muove con velocità \mathbf{v} costante urta contro un muro, posto a 90° rispetto alla traiettoria, e rimbalza ripercorrendo l' iniziale traiettoria rettilinea con velocità $-\mathbf{v}$, cioè eguale ed opposta alla velocità prima dell' urto. Calcolare la variazione di quantità di moto e, se l' urto ha durata Δt , il valor medio della forza agente durante l' urto. Si ponga $\mathbf{v} = 2$ m/s, $\mathbf{m} = 0.05$ kg, $\Delta t = 10^{-3}$ s.

Figure 2.4

$$\Delta \vec{p} = \vec{p}_{F} - \vec{p}_{\pm} = -m\vec{v} - n\vec{n}\vec{v} = -2m\vec{v}$$

$$\vec{J} = \vec{J} \vec{F} dt = \vec{F} n. \Delta t = \Delta \vec{p} , \quad \vec{F} m = t d \Delta t$$

$$\vec{F} dt = \frac{2m\vec{v}}{\Delta t} - \frac{2m\vec{v}}{\Delta t} = 200N$$

2 Risultante delle forze, equilibrio

▲ Figura 2.5 Risultante di tre forze in un piano.

Principio di sovrapposizione:

$$\bar{F} = \bar{F}_1 + \bar{F}_2 + \bar{F}_3 + \ldots + \bar{F}_n = \sum_{i=1}^n \bar{F}_i$$

e l'accelerazione del punto è pari alla somma vettoriale delle accelerazioni che il punto avrebbe se agisse ciascuna forza separatamente:

$$\bar{a} = \frac{\bar{F}}{m}$$

indipendenza delle azioni simultanee.

Se $\bar{F} = 0$ e $\bar{v} = 0$ allora il punto rimane in quiete: sono realizzate le condizioni di equilibrio statico. Devono quindi essere nulle tutte le componenti della risultate ovvero con riferimento a un sistema di assi cartesiani:

$$\bar{F} = \sum_{i} \bar{F}_{i} = 0 \implies \begin{cases} F_{x} = \sum_{i} F_{ix} = 0 \\ F_{y} = \sum_{i} F_{iy} = 0 \\ F_{z} = \sum_{i} F_{iz} = 0 \end{cases}$$

▲ Figura 2.6 Risultante nulla del sistema di due forze (a) e di tre forze (b).

2.0.1 Esercizio 2.2

Un punto P è sottoposto a una forza $F_1=34\,$ N lungo il verso negativo dell'asse y e a una forza $F_2=25\,$ N che forma un angolo $\theta=30^\circ$ con l'asse y, vedi Figura 2.7. Calcolare modulo, di rezione e verso della forza F_3 che occorre applicare al punto P per mantenerlo in equilibrio statico.

Soluzione

All'equilibrio deve valere la relazione (2.4)

$$\mathbf{F}_1 + \mathbf{F}_9 + \mathbf{F}_3 = 0,$$

che equivale alle due equazioni

$$F_{2,x}+F_{3,x}=0, \qquad F_{1,y}+F_{2,y}+F_{3,y}=0.$$

Infatti $F_{1,x}=0$ e non ci sono componenti lungo l'asse z; \mathbf{F}_3 deve stare nel piano x,y individuato da \mathbf{F}_1 e \mathbf{F}_2 dato che sommata a esse deve dare risultante nulla.

▶ Figura 2.7

ESEMPIO 2.2 continua

Pertanto, detto ϕ l'angolo formato da \mathbf{F}_3 con l'asse y, si ha:

CAPITOLO 2 Dinamica del punto: le leggi di Newton

$$\begin{cases} -F_2 \operatorname{sen}\theta + F_3 \operatorname{sen}\phi = 0, \\ -F_1 + F_2 \cos\theta + F_3 \cos\phi = 0. \end{cases}$$

Risolvendo si trova:

$$\mathrm{tg}\phi = \frac{F_2 \, \mathrm{sen}\theta}{F_1 - F_2 \, \mathrm{cos}\theta}, \quad \phi = 45.4^\circ,$$

$$F_3 = F_2 \frac{\operatorname{sen}\theta}{\operatorname{sen}\phi} = 17.6 \text{ N}.$$

La soluzione è mostrata in Figura 2.8; qualitativamente era evidente che ${f F}_3$ doveva giacere nel primo quadrante.

Come verifica del risultato trovato per il modulo di ${\bf F}_3$ si provi a calcolare il modulo della risultante di ${\bf F}_1$ e ${\bf F}_2$ applicando il teorema del coseno (appendice C).