MAT 226B Large Scale Matrix Computation Final Project

Ahmed Mahmoud

March, 22nd 2020

Problem 1:

(a) We know from nonsymmetric Lanczos process that

$$MV_k = V_k T_k + \beta_{k+1} [0 \dots 0 v_{k+1}]$$

We can multiply the above by e_1 to extract the first column (v_1) from V_k before multiplying it by M and the result is

$$MV_k e_1 = V_k T_k e_1 + \beta_{k+1} [0 \dots 0 v_{k+1}] e_1$$

 $MV_k e_1 = V_k T_k e_1 + 0$

Note that $MV_ke_1=Mv_1$. Now, we can easily give the proof as

$$M^j r = M^j(\beta_1 v_1) = \beta_1 M^j v_1$$

$$M^{j}r = \beta_{1}V_{k}T_{k}^{j}e_{1}, \quad \forall j = 0, 1, \dots, k-1$$
 (1)

For the second part, we note that $e_k^T T_k^{k-1} e_1 = 0$. Thus, the second sum has no effect. We can let j = k in 1 and we get

$$M^{k}r = \beta_{1}V_{k}T_{k}^{k}e_{1} + \beta_{1}\beta_{k+1}(e_{k}^{T}T_{k}^{k-1}e_{1})v_{k+1}$$

(b) We follow the same steps as in (a). First we have

$$M^{T}W_{k} = W_{k}\hat{T}_{k} + \gamma_{k+1}[0\dots 0w_{k+1}]$$

$$M^{T}W_{k}e_{1} = W_{k}\hat{T}_{k}e_{1} + \gamma_{k+1}[0\dots 0w_{k+1}]e_{1}$$

$$M^{T}w_{1} = W_{k}\hat{T}_{k}e_{1} + 0$$

Taking the transpose of the above, we get

$$(M^T w_1)^T = w_1^T M = e_1^T \hat{T}_k^T W_k^T$$

We also know that $\hat{T_k}^T = D_k T_k D_k^{-1}$. Thus,

$$w_1^T M = e_1^T D_k T_k D_k^{-1} W_k^T$$

Now, we can give the proof as

$$c^T M^j = \gamma_1 w_1^T M^j$$

$$c^T M^j = \gamma_1 e_1^T D_k T_k^j D_k^{-1} W_k^T$$

$$c^T M^j = \gamma_1 \delta_1 e_1^T T_k^j D_k^{-1} W_k^T$$

(c) We can write the Z(s) as

$$Z(s) = \sum_{j=0}^{\infty} \sigma^j c^T M^j r \tag{2}$$

We can find two values positive j_1 and j_2 such that $j_1 + j_2 = j$. Then, we can write 2 as

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j} c^{T} M^{j_{1}} M^{j_{2}} r$$

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j} (\gamma_{1} \delta_{1} e_{1}^{T} T_{k}^{j_{1}} D_{k}^{-1} W_{k}^{T}) (\beta_{1} V_{k} T_{k}^{j_{2}} e_{1})$$

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j} \gamma_{1} \delta_{1} \beta_{1} e_{1}^{T} T_{k}^{j_{1}} D_{k}^{-1} W_{k}^{T} V_{k} T_{k}^{j_{2}} e_{1}$$
(3)

We know from Lanczos process that $W_k V_k = D_k$. In addition, we have $c^T r = (\gamma_1 w_1)^T (\beta_1 v_1) = \gamma_1 \beta_1 w_1^T v_1 = \gamma_1 \delta_1 \beta_1$. We can plug this relations in 3 to get

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j}(c^{T}r)e_{1}^{T}T_{k}^{j_{1}}D_{k}^{-1}D_{k}T_{k}^{j_{2}}e_{1}$$

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j}(c^{T}r)e_{1}^{T}T_{k}^{j_{1}}T_{k}^{j_{2}}e_{1} = \sum_{j=0}^{\infty} \sigma^{j}(c^{T}r)e_{1}^{T}T_{k}^{j}e_{1}$$

Problem 2:

Here we are required to find an efficient way to compute q = Mv and $q = M^Tv$ for $v \in \mathbb{C}^n$ where $M = (A - s_0 E)^{-1} E$. We can compute the matrix-vector multiplication efficiently using LU factorization. We first can write the multiplication as

$$q = (A - s_0 E)^{-1} E v = \underbrace{(A - s_0 E)^{-1}}_{W} \underbrace{E v}_{f}$$

$$q = W^{-1} f \quad \Rightarrow \quad W q = f \quad \Rightarrow \quad \underbrace{P D^{-1} W Q}_{LU} \underbrace{Q^T q}_{d} = P D^{-1} f$$

Thus, we can fist solve $Lc = PD^{-1}f$ for $c \in \mathbb{C}^n$ via forward substitution, then solve Ud = c for $d \in \mathbb{C}^n$ via backward substitution, and finally set q = Qd.

We can use the same LU factorization to compute $q=M^Tv$ efficiently. We first not that transposing the LU factorization for a given matrix W is $U^TL^T=Q^TW^TD^{-T}P^T$ We can write this multiplication as

$$q = ((A - s_0 E)^{-1} E)^T v = E^T \underbrace{(A - s_0 E)^{-T} v}_{g}$$

$$q = W^{-T} v \quad \Rightarrow \quad W^T g = v \quad \Rightarrow \quad \underbrace{Q^T W^T D^{-T} P^T}_{U^T L^T} \underbrace{(D^{-T} P^T)^{-1} g}_{d} = Q^T v$$

Thus, we can first solve $U^Tc=Q^Tv$ for c via forward substitution, then solve $L^Td=c$ for d via backward substitution, and then set $g=D^{-T}P^Td$. Finally, we multiply g from the left by E^T to get q. The functions Mv and transposeMv implements these operations as discussed.

Problem 3:

The leading 2k moments $\mu_j = c^T M^j r$ for $j = 0, 1, \dots, 2k-1$ can be computing as follows. Let $f_j = M^j r$. It is easy to see that $f_j = M f_{j-1}$ from which we can compute the moment at j as $\mu_j = c^T f_j$ and compute f_j recursively. We can use the same LU factorization to compute r and used the function Mv to compute f_j . The function compute Moments compute the moments as discussed here.

We wrote another function textbookAlgo that utilizes computeMoments to implement the textbook algorithm for computing $Z_k(s)$. More precisely, it compute the coefficient of the polynomials $p(\sigma)$ and $q(\sigma)$ such that $Z_k(s) = \frac{p(\sigma)}{q(\sigma)}$ where $p(\sigma) = \alpha_0 + \alpha_1 \sigma + \cdots + \alpha_{k-1} \sigma^{k-1}$, $q(\sigma) = \beta_0 + \beta_1 \sigma + \cdots + \beta_k \sigma^k$, $\alpha_0, \ldots, \alpha_{k-1}, \beta_1 \ldots \beta_k \in \mathbb{C}$, and $\beta_0 = 1$. The output of this function is two vectors α and β containing the coefficients.