bq40z50-R1

Technical Reference

Literature Number: SLUUBC1B
July 2015-Revised December 2015

Contents

Pref	асе		10
1	Intro	duction	12
2	Prote	ections	13
_	2.1	Introduction	
	2.2	Cell Undervoltage Protection	
	2.3	Cell Undervoltage Compensated Protection	
	2.4	Cell Overvoltage Protection	
	2.5	Overcurrent in Charge Protection	
	2.6	Overcurrent in Charge Protection	
	2.7	Hardware-Based Protection	
	2.1	2.7.1 Overload in Discharge Protection	
		2.7.2 Short Circuit in Charge Protection	
		2.7.3 Short Circuit in Charge Protection	
	2.8	· · · · · · · · · · · · · · · · · · ·	
	_	Temperature Protections	
	2.9	Overtemperature in Charge Protection	
	2.10	Overtemperature in Discharge Protection	
	2.11	Overtemperature FET Protection.	
	2.12	Undertemperature in Charge Protection	
	2.13	Undertemperature in Discharge Protection	
	2.14	SBS Host Watchdog Protection	
	2.15	Precharge Timeout Protection	
	2.16	Fast Charge Timeout Protection	
	2.17	Overcharge Protection	
	2.18	OverChargingVoltage() Protection	
	2.19	OverChargingCurrent() Protection	
	2.20	OverPreChargingCurrent() Protection	
3	Perm	nanent Fail	
	3.1	Introduction	
		3.1.1 Black Box Recorder	
	3.2	Safety Cell Undervoltage Permanent Fail	
		3.2.1 SUV Check Option	
	3.3	Safety Cell Overvoltage Permanent Fail	
	3.4	Safety Overcurrent in Charge Permanent Fail	
	3.5	Safety Overcurrent in Discharge Permanent Fail	
	3.6	Safety Overtemperature Cell Permanent Fail	
	3.7	Safety Overtemperature FET Permanent Fail	
	3.8	QMax Imbalance Permanent Fail	24
	3.9	Cell Balancing Permanent Fail	25
	3.10	Impedance Permanent Fail	
	3.11	Capacity Degradation Permanent Fail	
	3.12	Voltage Imbalance At Rest Permanent Fail	
	3.13	Voltage Imbalance Active Permanent Fail	
	3.14	Charge FET Permanent Fail	
	3.15	Discharge FET Permanent Fail	
	3.16	Chemical Fuse Permanent Fail	27

	3.17	AFE Register Permanent Fail	27
	3.18	AFE Communication Permanent Fail	27
	3.19	PTC Permanent Fail	28
	3.20	Second Level Protection Permanent Fail	28
	3.21	Instruction Flash (IF) Checksum Permanent Fail	28
	3.22	Open Cell Voltage Connection Permanent Fail	28
	3.23	Data Flash (DF) Permanent Fail	29
	3.24	Open Thermistor Permanent Fail (TS1, TS2, TS3, TS4)	29
4	Adva	ınced Charge Algorithm	31
	4.1	Introduction	
	4.2	Charge Temperature Ranges	
	4.3	Voltage Range	
		4.3.1 RelativeStateofCharge() Range	
	4.4	Charging Current	
	4.5	Charging Voltage	
	4.6	Valid Charge Termination	
	4.7	Charge and Discharge Termination Flags	
	4.8	Terminate Charge and Discharge Alarms	
	4.9	Precharge	
	4.10	Maintenance Charge	
	4.11	Charge Control SMBus Broadcasts	
	4.12	Charge Disable and Discharge Disable	
	4.13	Charge Inhibit	
	4.14	Charge Suspend	
	4.15	ChargingVoltage() Rate of Change	
	4.16	ChargingCurrent() Rate of Change	
	4.17	Charging Loss Compensation	
_			
5		er Modes	
	5.1	Introduction	
	5.2	NORMAL Mode	
		5.2.1 BATTERY PACK REMOVED Mode/System Present Detection	
	5.3	SLEEP Mode	
		5.3.1 Device Sleep	
		5.3.2 IN SYSTEM SLEEP Mode	
		5.3.3 ManufacturerAccess() MAC Sleep	
		5.3.4 Wake Function	
	5.4	SHUTDOWN Mode	
		5.4.1 Voltage Based Shutdown	
		5.4.2 ManufacturerAccess() MAC Shutdown	
		5.4.3 Time Based Shutdown	
		5.4.4 Emergency Shutdown (EMSHUT)	44
	5.5	Power Save Shutdown	45
6	Gaug	ging	47
	6.1	Introduction	47
	6.2	Impedance Track Configuration	47
	6.3	Gas Gauge Modes	
	6.4	QMax and Ra	
		6.4.1 QMax Initial Values	
		6.4.2 QMax Update Conditions	
		6.4.3 Fast QMax Update Conditions	
		6.4.4 QMax and Fast QMax Update Boundary Check	
		6.4.5 Ra Table Initial Values	

		6.4.6 Ra Table Update Conditions	
	6.5	FullChargeCapacity(FCC), RemainingCapacity(RemCap), and RelativeStateOfCharge(RSOC)	
	6.6	Impedance Track Configuration Options	
	6.7	State-of-Health (SoH)	
	6.8	TURBO BOOST Mode	55
	6.9	Battery Trip Point (BTP)	56
7	Cell I	Balancing	58
	7.1	Introduction	58
	7.2	Cell Balancing Setup	59
	7.3	Balancing Multiple Cells	
	7.4	Cell Balancing Operation	
8	LED	Display	67
•	8.1	Introduction	
		8.1.1 LED Display of State-of-Charge	
		8.1.2 LED Display of PF Error Code	
		8.1.3 LED Display on Exit of a Reset	
		8.1.4 LED Display Control Through ManufacturerAccess()	
9	Lifoti	me Data Collection	
9	9.1	Description	
	-	•	
10		ce Security	
	10.1	Introduction	
	10.2	SHA-1 Description	
	10.3	HMAC Description	
	10.4	Authentication	
	10.5	Security Modes	
		10.5.1 FULL ACCESS or UNSEALED to SEALED	
		10.5.2 SEALED to UNSEALED	
		10.5.3 UNSEALED to FULL ACCESS	
11		ufacture Production	
	11.1	Manufacture Testing	
	11.2	Calibration	
		11.2.1 Calibration Data Flash	
12	Device	c <mark>e SMBus Address</mark>	86
13	SBS	Commands	88
	13.1	0x00 ManufacturerAccess() and 0x44 ManufacturerBlockAccess()	
		13.1.1 ManufacturerAccess() 0x0000	
		13.1.2 ManufacturerAccess() 0x0001 Device Type	
		13.1.3 ManufacturerAccess() 0x0002 Firmware Version	
		13.1.4 ManufacturerAccess() 0x0003 Hardware Version	
		13.1.5 ManufacturerAccess() 0x0004 Instruction Flash Signature	
		13.1.6 ManufacturerAccess() 0x0005 Static DF Signature	
		13.1.7 ManufacturerAccess() 0x0006 Chemical ID	
		13.1.8 ManufacturerAccess() 0x0008 Static Chem DF Signature	
		13.1.9 ManufacturerAccess() 0x0009 All DF Signature	
		13.1.10 ManufacturerAccess() 0x0010 SHUTDOWN Mode	
		13.1.11 ManufacturerAccess() 0x0011 SLEEP Mode	91
		13.1.12 ManufacturerAccess() 0x0013 AutoCCOffset	
		13.1.13 ManufacturerAccess() 0x001D Fuse Toggle	
		13.1.14 ManufacturerAccess() 0x001E PCHG FET Toggle	
		13.1.15 ManufacturerAccess() 0x001F CHG FET Toggle	
		13.1.16 ManufacturerAccess() 0x0020 DSG FET Toggle	
		13.1.17 ManufacturerAccess() 0x0021 Gauging	

13.1.18	ManufacturerAccess() 0x0022 FET Control	92
13.1.19	ManufacturerAccess() 0x0023 Lifetime Data Collection	93
13.1.20	ManufacturerAccess() 0x0024 Permanent Failure	93
13.1.21	ManufacturerAccess() 0x0025 Black Box Recorder	93
13.1.22	ManufacturerAccess() 0x0026 Fuse	93
13.1.23	ManufacturerAccess() 0x0027 LED DISPLAY Enable	93
13.1.24	ManufacturerAccess() 0x0028 Lifetime Data Reset	93
13.1.25	ManufacturerAccess() 0x0029 Permanent Fail Data Reset	93
13.1.26	ManufacturerAccess() 0x002A Black Box Recorder Reset	93
13.1.27	ManufacturerAccess() 0x002B LED TOGGLE	
13.1.28	ManufacturerAccess() 0x002C LED DISPLAY PRESS	94
13.1.29	ManufacturerAccess() 0x002D CALIBRATION Mode	94
13.1.30	ManufacturerAccess() 0x002E Lifetime Data Flush	94
13.1.31	ManufacturerAccess() 0x002F Lifetime Data SPEED UP Mode	94
13.1.32	ManufacturerAccess() 0x0030 Seal Device	94
13.1.33	ManufacturerAccess() 0x0035 Security Keys	94
13.1.34	ManufacturerAccess() 0x0037 Authentication Key	95
13.1.35	ManufacturerAccess() 0x0041 Device Reset	
13.1.36	ManufacturerAccess() 0x0050 SafetyAlert	95
13.1.37	ManufacturerAccess() 0x0051 SafetyStatus	97
13.1.38	ManufacturerAccess() 0x0052 PFAlert	
13.1.39	ManufacturerAccess() 0x0053 PFStatus	101
13.1.40	ManufacturerAccess() 0x0054 OperationStatus	103
13.1.41	ManufacturerAccess() 0x0055 ChargingStatus	
13.1.42	ManufacturerAccess() 0x0056 GaugingStatus	
13.1.43	ManufacturerAccess() 0x0057 ManufacturingStatus	
13.1.44	ManufacturerAccess() 0x0058 AFE Register	
13.1.45	ManufacturerAccess() 0x005F NoLoadRemCap	
13.1.46	ManufacturerAccess() 0x0060 Lifetime Data Block 1	
13.1.47	ManufacturerAccess() 0x0061 Lifetime Data Block 2	
13.1.48	ManufacturerAccess() 0x0062 Lifetime Data Block 3	
13.1.49	ManufacturerAccess() 0x0063 Lifetime Data Block 4	
13.1.50	ManufacturerAccess() 0x0064 Lifetime Data Block 5	
13.1.51	ManufacturerAccess() 0x0070 ManufacturerInfo	
13.1.52	ManufacturerAccess() 0x0071 DAStatus1	
13.1.53	ManufacturerAccess() 0x0071 DAStatus2	
13.1.54	"	114
13.1.55	· · · · · · · · · · · · · · · · · · ·	115
13.1.56	· ·	116
13.1.57	· · · · · · · · · · · · · · · · · · ·	116
13.1.58	·	116
13.1.59	·	117
13.1.60		117
13.1.61		117
13.1.62		117
13.1.63		118
13.1.64		118
13.1.65	•	119
		119
	- · · · · · · · · · · · · · · · · · · ·	120
	V	120
	RateTimeToFull()	121
UNUU MIT	\all-into For all()	141

13.2 13.3 13.4 13.5 13.6

13.7	0x06 AtRateTimeToEmpty()	121
13.8	0x07 AtRateOK()	121
13.9	0x08 Temperature()	
13.10	0x09 Voltage()	
13.11	0x0A Current()	
13.12	0x0B AverageCurrent()	
13.13	0x0C MaxError()	
13.14	0x0D RelativeStateOfCharge()	
_	0x0E AbsoluteStateOfCharge()	
13.15		
13.16	0x0F RemainingCapacity()	
13.17	0x10 FullChargeCapacity()	
13.18	0x11 RunTimeToEmpty()	
13.19	0x12 AverageTimeToEmpty()	
13.20	0x13 AverageTimeToFull()	
13.21	0x14 ChargingCurrent()	
13.22	0x15 ChargingVoltage()	
13.23	0x16 BatteryStatus()	124
13.24	0x17 CycleCount()	126
13.25	0x18 DesignCapacity()	126
13.26	0x19 DesignVoltage()	126
13.27	0x1A SpecificationInfo()	126
13.28	0x1B ManufacturerDate()	127
13.29	0x1C SerialNumber()	
13.30	0x20 ManufacturerName()	
13.31	0x21 DeviceName()	
13.32	0x22 DeviceChemistry()	
13.33	0x23 ManufacturerData()	
13.34	0x2F Authenticate()	
13.35	0x3C CellVoltage4()	
13.36	0x3D CellVoltage3()	
13.37	0x3E CellVoltage2()	
13.38	0x3F CellVoltage1()	
13.39	0x4A BTPDischargeSet()	
13.40	0x4B BTPChargeSet()	
13.41	0x4F State-of-Health (SoH)	
	0x50 SafetyAlert	
13.43	0x51 SafetyStatus	129
13.44	0x52 PFAlert	129
13.45	0x53 PFStatus	129
13.46	0x54 OperationStatus	130
13.47	0x55 ChargingStatus	130
13.48	0x56 GaugingStatus	130
13.49	0x57 ManufacturingStatus	130
13.50	0x58 AFE Register	130
13.51	0x59 TURBO_POWER	130
13.52	0x5A TURBO_FINAL	131
13.53	0x5B TURBO_PACK_R	131
13.54	0x5C TURBO_SYS_R	131
13.55	0x5D TURBO_EDV	131
13.56	0x5E TURBO_CURRENT	131
13.57	0x5F NoLoadRemCap()	132
13.58	0x60 Lifetime Data Block 1	132
13.59	0x61 Lifetime Data Block 2	132
10.00	UNO I ENGLINO DALLA DIOUN Z.	102

	13.60	0x62 Li	fetime Data Block 3	132
	13.61	0x63 Li	fetime Data Block 4	132
	13.62	0x64 Li	fetime Data Block 5fetime Data Block 5	133
	13.63	0x70 M	anufacturerInfoanufacturerInfo	133
	13.64	0x71 D	AStatus1	133
	13.65	0x72 D	AStatus2	133
	13.66	0x73 G	augeStatus1	133
	13.67		augeStatus2	
	13.68		augeStatus3	
	13.69		BStatus	
	13.70		rate-of-Health	
	13.71		IteredCapacity	134
14			alues	
14			ormats	
	14.1			
			Unsigned Integer	
		14.1.2	Integer	
		14.1.3	Floating Point	
			Hex	
			String	
	14.2	_	S	
			Configuration	
			Fuse	
		_	BTP	
			Protection	
			Permanent Failure	
			AFE	
		14.2.7	ZVCHG Exit Threshold	156
	14.3	Manufa	cturing	156
		14.3.1	Manufacturing Status Init	156
	14.4	Advance	ed Charging Algorithm	157
		14.4.1	Temperature Ranges	157
		14.4.2	Low Temp Charging	158
		14.4.3	Standard Temp Charging	159
		14.4.4	High Temp Charging	160
		14.4.5	Rec Temp Charging	160
		14.4.6	Pre-Charging	161
		14.4.7	Maintenance Charging	161
			Voltage Range	
			Termination Config	
			Charging Rate of Change	
			Charge Loss Compensation	
			Cell Balancing Config	
	14.5		Con Building Connig	164
	1 1.0		Power	164
			Shutdown	164
		14.5.3	Sleep	164
		14.5.4	Ship	165
		-	·	
			Power Off	166
	116			166
	14.6		pport	166
	447		LED Config	166
	14.7	•	Data	168
		14.7.1	Manufacturer Info	168

	14.7.2 Static DF Signature	169
	14.7.3 Static Chem DF	169
	14.7.4 All DF Signature	169
14.8	Lifetimes	169
	14.8.1 Voltage	169
	14.8.2 Current	170
	14.8.3 Temperature	
	14.8.4 Safety Events	
	•	
	14.8.6 Gauging Events	
	14.8.8 Cell Balancing	
	14.8.9 Time	
14.9	Protections	
17.3	14.9.1 CUV—Cell Undervoltage	
	14.9.2 CUVC—Cell Undervoltage	
	14.9.3 COV—Cell Overvoltage	
	· · · · · · · · · · · · · · · · · · ·	
	14.9.4 OCC1—Overcurrent In Charge 1	
	14.9.5 OCC2—Overcurrent In Charge 2	
	14.9.6 OCC—Overcurrent In Charge Recovery	
	14.9.7 OCD1—Overcurrent In Discharge 1	
	14.9.8 OCD2—Overcurrent In Discharge 2	
	Ç ,	
	14.9.10 AOLD—Overload in Discharge	183
	3	
	14.9.12 ASCD—Short Circuit in Discharge	
	, ,	
	14.9.14 OTD—Overtemperature in Discharge	
	14.9.15 OTF—Overtemperature FET	
	14.9.16 UTC—Under Temperature in Charge	
	14.9.17 UTD—Under Temperature in Discharge	
	14.9.18 HWD—Host Watchdog	
	14.9.19 PTO—Precharge mode Time Out	
	14.9.20 CTO—Fast Charge Mode Time Out	
	14.9.21 OC—Overcharge	
	14.9.22 CHGV—ChargingVoltage	
	14.9.23 CHGC—ChargingCurrent	190
4440	14.9.24 PCHGC—Pre-ChargingCurrent	191
14.10		191
	14.10.1 SUV—Safety Cell Undervoltage	191
	14.10.2 SOV—Safety Cell Overvoltage	192
	14.10.3 SOCC—Safety Overcurrent in Charge	192
	14.10.4 SOCD—Safety Overcurrent in Discharge	192
	14.10.5 SOT—Overtemperature Cell	193
	14.10.6 SOTF—Overtemperature FET	193
	14.10.7 Open Thermistor—NTC Thermistor Failure	193
	14.10.8 QIM—QMax Imbalance	194
	14.10.9 CB—Cell Balance	194
	14.10.10 VIMR—Voltage Imbalance At Rest	195
	14.10.11 VIMA—Voltage Imbalance Active	195
	14.10.12 IMP—Impedance Imbalance	196
	14.10.13 CD—Capacity Degradation	196
	14.10.14 CFET—CHG FET Failure	197

	ion His		252
В	Samp	le Filter Settings	
	A.3	Short Circuit in Discharge (ASCD1 and ASCD2)	
	A.2	Short Circuit in Charge (ASCC)	248
	A.1	Overload in Discharge Protection (AOLD)	
Α	AFE T	hreshold and Delay Settings	248
		Data Flash Summary	229
		14.15.1 Data	
	14.15	SBS Configuration	
		14.14.8 R_a3x	
		14.14.7 R_a2x	
		14.14.6 R_a1x	224
		14.14.5 R_a0x	224
		14.14.4 R_a3	223
		14.14.3 R_a2	222
		14.14.2 R_a1	221
		14.14.1 R_a0	
	14.14	RA Table	
		14.13.15 TURBO Cfg	
		14.13.14 SoH	
		14.13.13 Max Error	
		14.13.12 Condition Flag	
		14.13.11 Smoothing	
		14.13.10 IT Config	
		14.13.9 Cycle Count	
		14.13.8 State	
		14.13.7 TC	
		14.13.6 TD	
		14.13.5 FC	
		14.13.4 FD	
		14.13.3 Cycle	
		14.13.2 Design	
		14.13.1 Current Thresholds	
	14.13	Gas Gauging	
		14.12.2 PF Status	
		14.12.1 Safety Status	
	14.12	Black Box	
		14.11.6 AFE Regs	
		14.11.5 Device Gauging Data	
		14.11.4 Device Temperature Data	
		14.11.3 Device Current Data	
		14.11.2 Device Voltage Data	
		14.11.1 Device Status Data	
	14.11	PF Status	
		14.10.20 OPNCELL—Open Cell Connection	
		14.10.19 2LVL—2nd Level OV	
		14.10.18 AFEC—AFE Communication	
		14.10.17 AFER—AFE Register	
		14.10.16 FUSE—FUSE Failure	
		14.10.15 DFET—DFET Failure	

Preface

Read this First

This manual discusses the modules and peripherals of the bq40z50-R1 device, and how each is used to build a complete battery pack gas gauge and protection solution.

Notational Conventions

The following notation is used if SBS commands and data flash values are mentioned within a text block:

- SBS commands: italics with parentheses and no breaking spaces, for example, RemainingCapacity().
- Data Flash: italics, bold, and breaking spaces; for example, Design Capacity.
- Register Bits and Flags: italics and brackets; for example, [TDA] Data
- Flash Bits: italics and bold; for example, [LED1]
- Modes and states: ALL CAPITALS; for example, UNSEALED

The reference format for SBS commands is: SBS:Command Name(Command No.): Manufacturer Access(MA No.)[Flag]; for example:

SBS:Voltage(0x09), or SBS:ManufacturerAccess(0x00): Seal Device(0x0020)

Trademarks

Impedance Track is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

www.ti.com Notational Conventions

Introduction

The bq40z50-R1 device provides a feature-rich gas gauging solution for 1-series cell to 4-series cell battery-pack applications. The device has extended capabilities, including:

- Fully Integrated 1-Series, 2-Series, 3-Series, and 4-Series Li-Ion or Li-Polymer Cell Battery Pack Manager and Protection
- Next-Generation Patented Impedance Track[™] Technology Accurately Measures Available Charge in Li-Ion and Li-Polymer Batteries
- High Side N-CH Protection FET Drive
- Integrated Cell Balancing While Charging or At Rest
- Low Power Modes
 - LOW POWER
 - SLEEP
- Full Array of Programmable Protection Features
 - Voltage
 - Current
 - Temperature
 - Charge Timeout
 - CHG/DSG FETs
 - Cell Imbalance
- Sophisticated Charge Algorithms
 - JEITA
 - Advanced Charging Algorithm
- Diagnostic Lifetime Data Monitor
- Black Box Event Recorder
- Supports Two-Wire SMBus v1.1 Interface
- SHA-1 Authentication
- Ultra-Compact Package: 32-Lead QFN

Protections

2.1 Introduction

The bq40z50-R1 provides recoverable protection. When the protection is triggered, charging and/or discharging is disabled. This is indicated by the OperationStatus()[XCHG] = 1 when charging is disabled, and/or the OperationStatus()[XDSG] = 1 when discharging is disabled. Once the protection is recovered, charging and discharging resume. All protection items can be enabled or disabled under Settings: Enabled Protections A, Settings: Enabled Protections B, Settings: Enabled Protections C, and Settings: Enabled Protections D.

When the protections and permanent fails are triggered, the BatteryStatus()[TCA][TDA][FD][OCA][OTA] is set according to the type of safety protections. A summary of the set conditions of the various alarms flags is available in Section 4.8.

2.2 **Cell Undervoltage Protection**

The device can detect cell undervoltage in batteries and protect cells from damage by preventing further discharge.

Status	Condition	Action
Normal	Min cell voltage14 > CUV:Threshold	SafetyAlert()[CUV] = 0 BatteryStatus()[TDA] = 0
Alert	Min cell voltage14 ≤ <i>CUV:Threshold</i>	SafetyAlert()[CUV] = 1 BatteryStatus()[TDA] = 1
Trip	Min cell voltage14 ≤ <i>CUV:Threshold</i> for <i>CUV:Delay</i> duration	SafetyAlert()[CUV] = 0 SafetyStatus()[CUV] = 1 BatteryStatus()[FD] = 1,[TDA] = 0 OperationStatus()[XDSG] = 1
	Condition 1: SafetyStatus()[CUV] = 1 AND Min cell voltage14 ≥ CUV:Recovery AND Protection Configuration[CUV_RECOV_CHG] = 0	SafetyStatus()[CUV] = 0
Recovery	OR Condition 2: SafetyStatus()[CUV] = 1 AND Min cell voltage14 ≥ CUV:Recovery AND Protection Configuration[CUV_RECOV_CHG] = 1 AND Charging detected (that is, BatteryStatus()[DSG] = 0)	BatteryStatus()[FD] = 0, [TDA] = 0 OperationStatus()[XDSG] = 0

2.3 **Cell Undervoltage Compensated Protection**

The device can detect cell undervoltage in batteries and protect cells from damage by preventing further discharge. The protection is compensated by the Current() x Cell Resistance1..4.

Status	Condition	Action
Normal	Min cell voltage14 – Current() × Cell Resistance > CUVC: Threshold	SafetyAlert()[CUVC] = 0 BatteryStatus()[TDA] = 0
Alert	Min cell voltage14 – Current() × Cell Resistance ≤ CUVC: Threshold	SafetyAlert()[CUVC] = 1 BatteryStatus()[TDA] = 1
Trip	Min cell voltage14 – Current() × Cell Resistance ≤ CUVC: Threshold for CUVC:Delay duration	SafetyAlert()[CUVC] = 0 SafetyStatus()[CUVC] = 0 BatteryStatus()[FD] = 1, [TDA] = 0 OperationStatus()[XDSG] = 1

Status	Condition	Action
	Condition 1: SafetyAlert()[CUVC] = 1 AND Min cell voltage14 - Current() × Cell Resistance > CUVC: Recovery AND Protection Configuration[CUV_RECOV_CHG] = 0	SafetyStatus()[CUVC] = 0
Recovery	OR Condition 2: SafetyAlert()[CUVC] = 1 AND Min cell voltage14 – Current() × Cell Resistance > CUVC: Recovery AND Protection Configuration[CUV_RECOV_CHG] = 1 AND Charging detected (that is, BatteryStatus()[DSG] = 0)	BatteryStatus()[FD] = 0, [TDA] = 0 OperationStatus()[XDSG] = 0

2.4 Cell Overvoltage Protection

The device can detect cell overvoltage in batteries and protect cells from damage by preventing further charging.

NOTE: The protection detection threshold may be influenced by the temperature settings of the advanced charging algorithm and the measured temperature.

Status	Condition	Action	
Normal, ChargingStatus()[UT] or [LT] = 1	Max cell voltage14 < COV:Threshold Low Temp		
Normal, ChargingStatus()[STL] or [STH] = 1	Max cell voltage14 < COV:Threshold Standard Temp	SafetyAlert()[COV] = 0	
Normal, ChargingStatus()[RT] = 1	Max cell voltage14 < COV:Threshold Rec Temp	SaletyAlett()[COV] = 0	
Normal, ChargingStatus()[HT] or [OT] = 1	Max cell voltage14 < COV:Threshold High Temp		
Alert, ChargingStatus()[UT] or [LT] = 1	Max cell voltage14 ≥ COV:Threshold Low Temp		
Alert, ChargingStatus()[STL] or [STH] = 1	Max cell voltage14 ≥ COV:Threshold Standard Temp	SafetyAlert()[COV] = 1	
Alert, ChargingStatus()[RT] = 1	Max cell voltage14 ≥ COV:Threshold Rec Temp	BatteryStatus()[TCA] = 1	
Alert, ChargingStatus()[HT] or [OT] = 1	Max cell voltage14 ≥ COV:Threshold High Temp		
Trip, ChargingStatus()[UT] or [LT] = 1	Max cell voltage14 ≥ COV:Threshold Low Temp for COV:Delay duration	SafetyAlert()[COV] = 0 SafetyStatus()[COV] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1	
Trip, ChargingStatus()[STL] or [STH] = 1	Max cell voltage14 ≥ COV:Threshold Standard Temp for COV:Delay duration	SafetyAlert()[COV]= 0	
Trip, ChargingStatus()[RT] = 1	Max cell voltage14≥ COV:Threshold Rec Temp for COV:Delay duration	SafetyStatus()[COV] = 1 BatteryStatus()[TCA] = 0	
Trip, ChargingStatus()[HT] or [OT] = 1	Max cell voltage14 ≥ COV:Threshold High Temp for COV:Delay duration	OperationStatus()[XCHG] = 1	
Recovery, ChargingStatus()[UT] or [LT] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage14 ≤ COV:Recovery Low Temp		
Recovery, ChargingStatus()[STL] or [STH] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage14 ≤ COV:Recovery Standard Temp	SafetyStatus()[COV] = 0	
Recovery, ChargingStatus()[RT] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage14 ≤ COV:Recovery Rec Temp	BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0	
Recovery, ChargingStatus()[HT] or [OT] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage14 ≤ COV:Recovery High Temp		

2.5 Overcurrent in Charge Protection

The device has two independent overcurrent in charge protections that can be set to different current and delay thresholds to accommodate different charging behaviors.

Status	Condition	Action
Normal	Current() < OCC1:Threshold	SafetyAlert()[OCC1] = 0
Normal	Current() < OCC2:Threshold	SafetyAlert()[OCC2] = 0
Alert	Current() ≥ OCC1:Threshold	SafetyAlert()[OCC1] = 1 BatteryStatus()[TCA] = 1
Alert	Current() ≥ OCC2:Threshold	SafetyAlert()[OCC2] = 1 BatteryStatus()[TCA] = 1
Trip	Current() continuous ≥ OCC1:Threshold for OCC1:Delay duration	SafetyAlert()[OCC1] = 0 SafetyStatus()[OCC1] = 1 BatteryStatus()[TCA] = 0 Charging is not allowed. OperationStatus()[XCHG] = 1
Trip	Current() continuous ≥ OCC2:Threshold for OCC2:Delay duration	SafetyAlert()[OCC2] = 0 SafetyStatus()[OCC2] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[OCC1] = 1 AND Current() continuous ≤ OCC:Recovery Threshold for OCC:Recovery Delay time	SafetyStatus()[OCC1] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0
Recovery	SafetyStatus()[OCC2] = 1 AND Current() continuous ≤ OCC:Recovery Threshold for OCC:Recovery Delay time	SafetyStatus()[OCC2] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

2.6 Overcurrent in Discharge Protection

The device has two independent overcurrent in discharge protections that can be set to different current and delay thresholds to accommodate different load behaviors.

Status	Condition	Action
Normal	Current() > OCD1:Threshold	SafetyAlert()[OCD1] = 0
Normal	Current() > OCD2:Threshold	SafetyAlert()[OCD2] = 0
Alert	Current() ≤ OCD1:Threshold	SafetyAlert()[OCD1] = 1 BatteryStatus()[TDA] = 1
Alert	Current() ≤ OCD2:Threshold	SafetyAlert()[OCD2] = 1 BatteryStatus()[TDA] = 1
Trip	Current() continuous ≤ OCD1:Threshold for OCD1:Delay duration	SafetyAlert()[OCD1] = 0 SafetyStatus()[OCD1] = 1 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 1
Trip	Current() continuous ≤ OCD2:Threshold for OCD2:Delay duration	SafetyAlert()[OCD2] = 0 SafetyStatus()[OCD2] = 1 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 1
Recovery	SafetyStatus()[OCD1] = 1 AND Current() continuous ≥ OCD:Recovery Threshold for OCD:Recovery Delay time	SafetyStatus()[OCD1] = 0 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 0
Recovery	SafetyStatus()[OCD2] = 1 AND Current() continuous ≥ OCD:Recovery Threshold for OCD:Recovery Delay time	SafetyStatus()[OCD2] = 0 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 0

2.7 Hardware-Based Protection

The bq40z50-R1 device has three main hardware-based protections—AOLD, ASCC, and ASCD1,2—with adjustable current and delay time. Setting *AFE Protection Configuration[RSNS]* divides the threshold value in half. The *Threshold* settings are in mV; therefore, the actual current that triggers the protection is based on the R_{SENSE} used in the schematic design.

In addition, setting the *AFE Protection Configuration*[SCDDx2] bit provides an option to double all of the SCD1,2 delay times for maximum flexibility towards the application's needs.

For details on how to configure the AFE hardware protection, refer to the tables in Appendix A.

All of the hardware-based protections provide a Trip/Latch Alert/Recovery protection. The latch feature stops the FETs from toggling on and off continuously on a persistent faulty condition.

Hardware-Based Protection www.ti.com

In general, when a fault is detected after the **Delay** time, both CHG and DSG FETs will be disabled (Trip stage), and an internal fault counter will be incremented (Alert stage). Since both FETs are off, the current will drop to 0 mA. After **Recovery** time, the CHG and DSG FETs will be turned on again (Recovery stage).

If the alert is caused by a current spike, the fault count will be decremented after *Counter Dec Delay* time. If this is a persistent faulty condition, the device will enter the Trip stage after *Delay* time, and repeat the Trip/Latch Alert/Recovery cycle. The internal fault counter is incremented every time the device goes through the Trip/Latch Alert/Recovery cycle. Once the internal fault counter hits the *Latch Limit*, the protection enters a Latch stage and the fault will only be cleared through the Latch Reset condition.

The Trip/Latch Alert/Recovery/Latch stages are documented in each of the following hardware-based protection sections.

The recovery condition for removable pack ([NR] = 0) is based on the transition on the \overline{PRES} pin, while the recovery condition for embedded pack ([NR] = 1) is based on the **Reset** time.

2.7.1 Overload in Discharge Protection

The device has a hardware-based overload in discharge protection with adjustable current and delay.

Status	Condition	Action
Normal	Current() > (OLD Threshold[3:0]/R _{SENSE})	SafetyAlert()[AOLDL] = 0, if OLDL counter = 0
Trip	Current() continuous ≤ (OLD Threshold[3:0]/R _{SENSE}) for OLD Threshold[7:4] duration	SafetyStatus()[AOLD] = 1 OperationStatus()[XDSG] = 1 Increment AOLDL counter
Recovery	SafetyStatus()[AOLD] = 1 for OLD:Recovery time	SafetyStatus()[AOLD] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[AOLDL] = 0.
Latch Alert	AOLDL counter > 0	SafetyAlert()[AOLDL] = 1 Decrement AOLDL counter by one after each OLD:Counter Dec Delay period
Latch Trip	AOLDL counter ≥ <i>OLD:Latch Limit</i>	SafetyAlert()[AOLDL] = 0 SafetyStatus()[AOLDL] = 1 OperationStatus()[XDSG] = 1
Latch Reset ([NR] = 0)	SafetyStatus()[AOLDL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[AOLDL] = 0 Reset AOLDL counter OperationStatus()[XDSG] = 0 if SafetyStatus()[AOLD] = 0.
Latch Reset ([NR] = 1)	SafetyStatus()[AOLDL] = 1 AND DA Configuration[NR] = 1 for OLD:Reset time	SafetyStatus()[AOLDL] = 0 Reset AOLDL counter OperationStatus()[XDSG] = 0 if SafetyStatus()[AOLD] = 0.

2.7.2 Short Circuit in Charge Protection

The device has a hardware based short circuit in charge protection with adjustable current and delay.

Status	Condition	Action
Normal	Current() < (SCC Threshold[2:0]/R _{SENSE})	SafetyAlert()[ASCCL] = 0, if ASCCL counter = 0
Trip	Current() continuous ≥ (SCC Threshold[2:0]/R _{SENSE}) for SCC Threshold[7:4] duration	SafetyStatus()[ASCC] = 1 BatteryStatus()[TCA] = 1 OperationStatus()[XCHG] = 1 increment ASCCL counter
Recovery	SafetyStatus()[ASCC] = 1 for SCC:Recovery time	SafetyStatus()[ASCC] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0 if SafetyStatus()[ASCCL] = 0.
Latch Alert	ASCCL counter > 0	SafetyAlert()[ASCCL] = 1 Decrement ASCCL counter by one after each SCC:Counter Dec Delay period
Latch Trip	ASCCL counter ≥ SCC:Latch Limit	SafetyAlert()[ASCCL] = 0 SafetyStatus()[ASCCL] = 1 OperationStatus()[XCHG] = 1
Latch Reset ([NR] = 0)	SafetyStatus()[ASCCL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[ASCCL] = 0 OperationStatus()[XCHG] = 0 if SafetyStatus()[ASCC] = 0.
Latch Reset ([NR] = 1)	SafetyStatus()[ASCCL] = 1 AND DA Configuration[NR] = 1 for SCC:Reset time	SafetyStatus()[ASCCL] = 0 OperationStatus()[XCHG] = 0 if SafetyStatus()[ASCC] = 0.

2.7.3 Short Circuit in Discharge Protection

The device has a hardware based short circuit in discharge protection with adjustable current and delay.

Status	Condition	Action
Normal	Current() > (SCD1 Threshold[2:0]/R _{SENSE}) AND Current() > (SCD2 Threshold[2:0]/R _{SENSE})	SafetyAlert()[ASCDL] = 0 if ASCDL counter = 0
Trip	$ \begin{aligned} &\textit{Current()} \ \text{continuous} \leq (\textit{SCD1} \\ &\textit{Threshold[2:0]} / \text{R}_{\text{SENSE}}) \ \text{for} \ \textit{SCD1} \ \textit{Threshold[7:4]} \\ &\textit{duration} \\ &\textit{OR} \\ &\textit{Current()} \ \text{continuous} \leq (\textit{SCD2} \\ &\textit{Threshold[2:0]} / \text{R}_{\text{SENSE}}) \ \text{for} \ \textit{SCD2} \ \textit{Threshold[7:4]} \\ &\textit{duration} \end{aligned} $	SafetyStatus()[ASCD] = 1 OperationStatus()[XDSG] = 0 Increment ASCDL counter
Recovery	SafetyStatus()[ASCD] = 1 for SCD:Recovery time	SafetyStatus()[ASCD] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[ASCDL] = 0.
Latch Alert	ASCDL counter > 0	SafetyAlert()[ASCDL] = 1 Decrement ASCDL counter by one after each SCD:Counter Dec Delay period
Latch Trip	SCD counter ≥ <i>SCD:Latch Limit</i>	SafetyStatus()[ASCD] = 0 SafetyStatus()[ASCDL] = 1 OperationStatus()[XDSG] = 1
Latch Reset ([NR] = 0)	SafetyStatus()[ASCDL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[ASCDL] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[ASCD] = 0.
Latch Reset ([NR] = 1)	SafetyStatus()[ASCCL] = 1 AND DA Configuration[NR] = 1 for SCD:Reset time	SafetyStatus()[ASCDL] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[ASCD] = 0.

2.8 Temperature Protections

The device provides overtemperature and undertemperature protections based on Cell Temperature measurement and FET temperature measurements. The Cell Temperature based protections are further divided into a protection-in-charging direction and discharging directions. This section describes in detail each of the protection functions.

For temperature reporting, the device supports a maximum of four external thermistors and one internal temperature sensor. Unused temperature sensors must be disabled by clearing the corresponding flag in **Settings:Temperature Enable[TS4][TS3][TS2][TS1][TSInt]**.

Each of the external thermistors and the internal temperature sensor can be set up individually as a source for Cell Temperature or FET Temperature reporting. Setting the corresponding flag to 1 in **Settings:Temperature Mode[TS4 Mode][TS3 Mode][TS2 Mode][TS1 Mode][TSInt Mode]** configures that temperature sensor to report for FET Temperature. Clearing the corresponding flag sets that temperature sensor to report for Cell Temperature. The **Settings:DA Configuration[FTEMP][CTEMP]** allows users to use the maximal (setting the corresponding flag to 0) or the average (setting the corresponding flag to 1) of the source temperature sensors for Cell Temperature and FET Temperature reporting.

The *Temperature()* command returns the Cell Temperature measurement. The MAC and extended command *DAStatus2()* also returns the temperature measurement from the internal temperature sensor, the external thermistors TS1, TS2, TS3, and TS4, and the Cell and FET Temperatures.

The Cell Temperature based overtemperature and undertemperature safety provide protections in charge and discharge conditions. The battery pack is considered in CHARGE mode when <code>BatteryStatus()[DSG] = 0</code>, where <code>Current() > Chg Current Threshold</code>. The overtemperature and undertemperature in charging protections are active in this mode. The <code>BatteryStatus()[DSG]</code> is set to 1 in a NON-CHARGE mode condition, which includes RELAX and DISCHARGE modes. The overtemperature and undertemperature in discharge protections are active in these two modes. See <code>Section 6.3</code> for detailed descriptions of the gas gauge modes.

2.9 Overtemperature in Charge Protection

The device has an overtemperature protection for cells under charge.

Status	Condition	Action
Normal	Temperature() < OTC:Threshold OR not charging	SafetyAlert()[OTC] = 0
Alert	Temperature() ≥ OTC:Threshold AND charging	SafetyAlert()[OTC] = 1 BatteryStatus()[TCA] = 1
Trip	Temperature() ≥ OTC:Threshold AND Charging for OTC:Delay duration	SafetyAlert()[OTC] = 0 SafetyStatus()[OTC] = 1 BatteryStatus()[OTA] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1 if FET Options[OTFET] = 1.
Recovery	SafetyStatus()[OTC] AND Temperature() ≤ OTC:Recovery	SafetyStatus()[OTC] = 0 BatteryStatus()[OTA] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

2.10 Overtemperature in Discharge Protection

The device has an overtemperature protection for cells in DISCHARGE or RELAX state (that is, non-charging state with *BatteryStatus[DSG]* = 1).

Status	Condition	Action
Normal	Temperature() < OTD:Threshold OR charging	SafetyAlert()[OTD] = 0
Alert	Temperature() ≥ OTD:Threshold AND Not charging (that is, <i>BatteryStatus[DSG]</i> = 1)	SafetyAlert()[OTD] = 1 BatteryStatus()[TDA] = 1
Trip	Temperature() ≥ OTD:Threshold AND Not charging (that is, BatteryStatus[DSG] = 1) for OTD:Delay duration	SafetyAlert()[OTD] = 0 SafetyStatus()[OTD] = 1 BatteryStatus()[OTA] = 1 OperationStatus()[XDSG] = 1 if FET Options[OTFET] = 1. BatteryStatus()[TDA] = 0
Recovery	SafetyStatus()[OTD] AND Temperature() ≤ OTD:Recovery	SafetyStatus()[OTD] = 0 BatteryStatus()[OTA] = 0 OperationStatus()[XDSG] = 0 BatteryStatus()[TDA] = 0

2.11 Overtemperature FET Protection

The device has an overtemperature protection to limit the FET temperature.

Status	Condition	Action
Normal	FET Temperature in DAStatus2() < OTF:Threshold	SafetyAlert()[OTF] = 0
Alert	FET Temperature in <i>DAStatus2()</i> ≥ <i>OTF:Threshold</i>	SafetyAlert()[OTF] = 1 BatteryStatus()[TDA] = 1, [TCA] = 1
Trip	FET Temperature in <i>DAStatus()</i> ≥ <i>OTF:Threshold</i> for <i>OTF:Delay</i> duration	SafetyAlert()[OTF] = 0 SafetyStatus()[OTF] = 1 BatteryStatus()[OTA] = 1 BatteryStatus()[TDA] = 0, [TCA] = 0 OperationStatus()[XCHG][XDSG] = 1,1 if FET Options[OTFET] = 1
Recovery	SafetyStatus()[OTF] AND FET Temperature in DAStatus2() ≤ OTF:Recovery	SafetyStatus()[OTF = 0 BatteryStatus()[OTA] = 0 BatteryStatus()[TDA] = 0, [TCA] = 0 OperationStatus()[XCHG][XDSG] = 0,0

2.12 Undertemperature in Charge Protection

The device has an undertemperature protection for cells in charge direction.

Status	Condition	Action
Normal	Temperature() > UTC:Threshold OR not charging	SafetyAlert()[UTC] = 0
Alert	Temperature() ≤ UTC:Threshold AND charging	SafetyAlert()[UTC] = 1
Trip	Temperature() ≤ UTC:Threshold AND Charging for UTC:Delay duration	SafetyAlert()[UTC] = 0 SafetyStatus()[UTC] = 1 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[UTC] AND Temperature() ≥ UTC:Recovery	SafetyStatus()[UTC] = 0 OperationStatus()[XCHG] = 0

2.13 Undertemperature in Discharge Protection

The device has an undertemperature protection for cells in DISCHARGE or RELAX state (that is, noncharging state with BatteryStatus[DSG] = 1).

Status	Condition	Action
Normal	Temperature() > UTD:Threshold OR charging	SafetyAlert()[UTD] = 0
Alert	Temperature() ≤ UTD:Threshold AND Not charging (that is, <i>BatteryStatus[DSG]</i> = 1)	SafetyAlert()[UTD] = 1
Trip	Temperature() ≤ UTD:Threshold AND Not charging (that is, <i>BatteryStatus[DSG]</i> = 1) for UTD:Delay duration	SafetyAlert()[UTD] = 0 SafetyStatus()[UTD] = 1 OperationStatus()[XDSG] = 1
Recovery	SafetyStatus()[UTD] AND Temperature() ≥ UTD:Recovery	SafetyStatus()[UTD] = 0 OperationStatus()[XDSG] = 0

2.14 SBS Host Watchdog Protection

The device can check periodic communication over SBS and prevent usage of the battery pack if no valid communication is detected.

Status	Condition	Action
Trip	No valid SBS transaction for <i>HWD:Delay</i> duration	SafetyStatus()[HWD] = 1 OperationStatus()[XCHG] = 1
Recovery	Valid SBS transaction detected	SafetyStatus()[HWD] = 0 OperationStatus()[XCHG] = 0

2.15 Precharge Timeout Protection

The device can measure the precharge time and stop charging if it exceeds the adjustable period.

Status	Condition	Action
Enable	Current() > PTO:Charge Threshold AND ChargingStatus()[PV] = 1	Start PTO timer SafetyAlert()[PTOS] = 0
Suspend or Recovery	Current() < PTO:Suspend Threshold	Stop PTO timer SafetyAlert()[PTOS] = 1
Trip	PTO timer > PTO:Delay	Stop PTO timer SafetyStatus()[PTO] = 1 BatteryStatus()[TCA] = 1 OperationStatus()[XCHG] = 1
Reset	SafetyStatus()[PTO] = 1 AND DA Configuration[NR] = 0 AND (Discharge by an amount of PTO:Reset OR low-high-low transition on PRES)	Stop and reset PTO timer SafetyAlert()[PTOS] = 0 SafetyStatus()[PTO] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0
Reset	SafetyStatus()[PTO] = 1 AND DA Configuration[NR] = 1 AND (Discharge by an amount of PTO:Reset)	Stop and reset PTO timer SafetyAlert()[PTOS] = 0 SafetyStatus()[PTO] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

2.16 Fast Charge Timeout Protection

The device can measure the charge time and stop charging if it exceeds the adjustable period.

Status	Condition	Action
Enable	Current() > CTO:Charge Threshold AND (ChargingStatus()[LV] = 1 OR ChargingStatus()[MV] = 1 OR ChargingStatus()[HV] = 1)	Start CTO timer SafetyAlert()[CTOS] = 0
Suspend or Recovery	Current() < CTO:Suspend Threshold	Stop CTO timer SafetyAlert()[CTOS] = 1

Overcharge Protection www.ti.com

Status	Condition	Action
Trip	CTO time > CTO:Delay	Stop CTO timer SafetyStatus()[CTO] = 1 OperationStatus()[XCHG] = 1
Reset	SafetyStatus()[CTO] = 1 AND DA Configuration[NR] = 0 AND (Discharge by an amount of CTO:Reset OR low-high-low transition on PRES)	Stop and reset CTO timer SafetyAlert()[CTOS] = 0 SafetyStatus()[CTO] = 0 OperationStatus()[XCHG] = 0
Reset	SafetyStatus()[CTO] = 1 AND DA Configuration[NR] = 1 AND (Discharge by an amount of CTO:Reset)	Stop and reset CTO timer SafetyAlert()[CTOS] = 0 SafetyStatus()[CTO] = 0 OperationStatus()[XCHG] = 0

2.17 Overcharge Protection

The device can prevent continuing charging if the pack is charged in excess over FullChargeCapacity().

Status	Condition	Action
Normal	RemainingCapacity() < FullChargeCapacity()	SafetyAlert()[OC] = 0
Alert	RemainingCapacity() ≥ FullChargeCapacity() AND Internal charge counter > 0	SafetyAlert()[OC] = 1 BatteryStatus()[TCA] = 1
Trip	RemainingCapacity() ≥ FullChargeCapacity() AND Internal charge counter ≥ OC:Threshold	SafetyAlert()[OC] = 0 SafetyStatus()[OC] = 1 BatteryStatus()[TCA] = 0, [OCA] = 1 if the device is in charge state (that is, BatteryStatus[DSG] = 0). OperationStatus()[XCHG] = 1
Recovery, [NR] = 0	SafetyStatus()[OC] = 1 AND DA Configuration[NR] = 0 AND (Low-high-low transition on PRES pin)	SafetyStatus()[OC] = 0 BatteryStatus()[TCA] = 0, [OCA] = 0 OperationStatus()[XCHG] = 0
Recovery [NR] = 1	Condition 1: SafetyStatus()[OC] = 1 AND DA Configuration[NR] = 1 AND continuous discharge of Recovery	SafetyStatus()[OC] = 0 BatteryStatus()[TCA] = 0, [OCA] = 0
	OR Condition 2: SafetyStatus()[OC] = 1 AND DA Configuration[NR] = 1 AND RelativeStateOfCharge() < OC:RSOC Recovery	OperationStatus()[XCHG] = 0

2.18 OverChargingVoltage() Protection

The device can stop charging if it measures a difference between the requested ChargingVoltage() and the delivered voltage from the charger. This feature only operates when the device is in CHARGE mode.

NOTE: ChargingVoltage() will be set to 0 mV when the protection is tripped. The ChargingVoltage() for the recovery is the intended or targeted Charging Voltage, not the 0 mV that was set due to the trip of protection.

Status	Condition	Action
Normal	Pack pin voltage in DAStatus1() < ChargingVoltage() + CHGV:Threshold × Number of series cells	SafetyAlert()[CHGV] = 0
Alert	Pack pin voltage in DAStatus1() ≥ ChargingVoltage() + CHGV:Threshold × Number of series cells	SafetyAlert()[CHGV] = 1 BatteryStatus()[TCA] = 1
Trip	Pack pin voltage in DAStatus1() continuous ≥ ChargingVoltage() + CHGV:Threshold × Number of series cells for CHGV:Delay period	SafetyAlert()[CHGV] = 0 SafetyStatus()[CHGV] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[CHGV] = 1 AND Pack pin voltage in DAStatus1() ≤ intended ChargingVoltage() + CHGV Recovery × Number of series cells	SafetyStatus()[CHGV] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

2.19 OverChargingCurrent() Protection

The device can stop charging if it measures a difference between the requested *ChargingCurrent()* and the delivered current from the charger. This protection is designed to recover by a discharge event; therefore, *CHGC:Recovery* should be set to a negative value in data flash.

Status	Condition	Action
Normal	Current() < ChargingCurrent() + CHGC:Threshold	SafetyAlert()[CHGC] = 0
Alert	Current() ≥ ChargingCurrent() + CHGC:Threshold	SafetyAlert()[CHGC] = 1 BatteryStatus()[TCA] = 1
Trip	Current() continuous ≥ ChargingCurrent() + CHGC:Threshold for CHGC:Delay period	SafetyAlert()[CHGC] = 0 SafetyStatus()[CHGC] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[CHGC] = 1 AND Current() ≤ CHGC:Recovery Threshold for CHGC:Recovery Delay time	SafetyStatus()[CHGC] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

2.20 OverPreChargingCurrent() Protection

The device can stop charging if it measures a difference between the requested *ChargingCurrent()* and the delivered current from the charger during precharge. This protection is designed to recover by a discharge event; therefore, *PCHGC:Recovery* should be set to a negative value in data flash.

Status	Condition	Action
Normal	Current() < ChargingCurrent() + PCHGC:Threshold AND ChargingStatus()[PV] = 1	SafetyAlert()[PCHGC] = 0
Alert	Current() ≥ ChargingCurrent() + PCHGC:Threshold AND ChargingStatus()[PV] = 1	SafetyAlert()[PCHGC] = 1 BatteryStatus()[TCA] = 1
Trip	Current() continuous ≥ ChargingCurrent() + PCHGC:Threshold for PCHGC:Delay period AND ChargingStatus()[PV] = 1	SafetyAlert()[PCHGC] = 0 SafetyStatus()[PCHGC] = 1 If charging, BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[PCHGC] = 1 AND Current() ≤ PCHGC:Recovery Threshold for PCHGC:Recovery Delay time	SafetyStatus()[PCHGC] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

Permanent Fail

3.1 Introduction

The device can permanently disable the use of the battery pack in case of a severe failure. The permanent failure checks, except for IFC and DFW, can be individually enabled or disabled by setting the appropriate bit in **Settings:Enabled PF A**, **Settings:Enabled PF B**, **Settings:Enabled PF C**, and **Settings:Enabled PF D**. All permanent failure checks, except for IFC and DFW, are disabled until *ManufacturingStatus()[PF]* is set. When any *PFStatus()* bit is set, the device enters PERMANENT FAIL mode and the following actions are taken in sequence:

- 1. Precharge, charge, and discharge FETs are turned off.
- 2. OperationStatus()[PF] = 1, [XCHG] = 1, [XDSG] = 1
- 3. The following SBS data is changed: BatteryStatus()[TCA] = 1, BatteryStatus()[TDA] = 1, ChargingCurrent() = 0, and ChargingVoltage() = 0.
- 4. A backup of the internal AFE hardware registers are written to data flash: AFE Interrupt Status, AFE FET Status, AFE RXIN, AFE Latch Status, AFE Interrupt Enable, AFE FET Control, AFE RXIEN, AFE RLOUT, AFE RHINT, AFE Cell Balance, AFE AD/CC Control, AFE ADC Mux, AFE LED Output, AFE State Control, AFE LED/Wake Control, AFE Protection Control, AFE OCD, AFE SCC, AFE SCD1, and AFE SCD2.
- 5. The black box data of the last three *SafetyStatus()* changes leading up to PF with the time difference is written into the black box data flash along with the 1st *PFStatus()* value.
- 6. The following SBS values are preserved in data flash for failure analysis:
 - SafetyAlert()
 - SafetyStatus()
 - PFAlert()
 - PFStatus()
 - OperationStatus()
 - ChargingStatus()
 - GaugingStatus()
 - Voltages in DAStatus1()
 - Current()
 - TSINT, TS1, TS2, TS3, and TS4 from DAStatus2()
 - Cell DOD0 and passed charge
- 7. Data flash writing is disabled (except to store subsequent *PFStatus()* flags).
- 8. The FUSE pin is driven high if configured for specific failures and *Voltage()* is above *Min Blow Fuse Voltage* or there is a CHG FET (CFETF) or DSG FET (DFETF) failure. The FUSE pin will remain asserted until the *Fuse Blow Timeout* expired.

NOTE: If [PACK_FUSE] = 0, Voltage() is used to check for **Min Blow Fuse Voltage**, indicating the fuse is connected to the BAT side.

If **[PACK_FUSE]** = 1 (that is, Fuse is connected to the PACK side and is required to have a charger connected in order to blow the fuse), then the pack voltage is used to check for **Min Blow Fuse Voltage** threshold.

www.ti.com Introduction

While the device is in PERMANENT FAIL mode, any new *SafetyAlert()*, *SafetyStatus()*, *PFAlert()*, and *PFStatus()* flags that are set are added to the permanent fail log. Any new *PFStatus()* flags that occur during PERMANENT FAIL mode can trigger the FUSE pin. In addition, new *PFStatus()* flags are recorded in the Black Box Recorder 2nd and 3rd PF Status entries.

3.1.1 Black Box Recorder

The Black Box Recorder maintains the last three updates of *SafetyStatus()* in memory. When entering PERMANENT FAIL mode, this information is written to data flash together with the first three updates of *PFStatus()* after the PF event.

NOTE: This information is useful in failure analysis, and can provide a full recording of the events and conditions leading up to the permanent failure.

If there were less than three safety events before PF, then some information will be left blank.

3.2 Safety Cell Undervoltage Permanent Fail

The device can permanently disable the battery in the case of severe undervoltage in any of the cells.

Status	Condition	Action
Normal	Min cell voltage14 > SUV:Threshold	PFAlert()[SUV] = 0 BatteryStatus()[TDA] = 0
Alert	Min cell voltage14 ≤ SUV:Threshold	PFAlert()[SUV] = 1 BatteryStatus()[TDA] = 1
Trip	Min cell voltage14 continuous ≤ SUV:Threshold for SUV:Delay duration	PFAlert()[SUV] = 0 PFStatus()[SUV] = 1 BatteryStatus()[FD] = 1

3.2.1 SUV Check Option

When **Protection Configuration[SUV_MODE]** is set, the SUV PF check only applies when the gauge wakes up from shutdown. The CHG and DSG FETs are disabled for the duration of the test (**SUV:Delay**) to prevent an applied charge voltage from masking a copper deposition condition.

3.3 Safety Cell Overvoltage Permanent Fail

The device can permanently disable the battery in the case of severe overvoltage in any of the cells.

Status	Condition	Action
Normal	Max cell voltage14 < SOV:Threshold	PFAlert()[SOV] = 0
Alert	Max cell voltage14 ≥ SOV:Threshold	PFAlert()[SOV] = 1 BatteryStatus()[TCA] = 1
Trip	Max cell voltage14 continuous ≥ SOV:Threshold for SOV:Delay duration	PFAlert()[SOV] = 0 PFStatus()[SOV] = 1

3.4 Safety Overcurrent in Charge Permanent Fail

The device can permanently disable the battery in the case of severe overcurrent in charge state.

Status	Condition	Action
Normal	Current() < SOCC:Threshold	PFAlert()[SOCC] = 0
Alert	Current() ≥ SOCC:Threshold	PFAlert()[SOCC] = 1 BatteryStatus()[TCA] = 1 BatteryStatus()[OCA] = 1
Trip	Current() ≥ SOCC:Threshold for SOCC:Delay duration	PFAlert()[SOCC] = 1 PFStatus()[SOCC] = 1

3.5 Safety Overcurrent in Discharge Permanent Fail

The device can permanently disable the battery in the case of severe overcurrent in discharge or RELAX state.

Status	Condition	Action
Normal	Current() > SOCD:Threshold	PFAlert()[SOCD] = 0
Alert	Current() ≤ SOCD:Threshold	PFAlert()[SOCC] = 1 BatteryStatus()[TDA] = 1
Trip	Current() ≤ SOCD:Threshold for SOCD:Delay duration	PFAlert()[SOCC] = 1 PFStatus()[SOCC] = 1

3.6 Safety Overtemperature Cell Permanent Fail

The device can permanently disable the battery pack in case of severe overtemperature of the cells detected using the external TS1...4 temperature sensor(s), which are configured to report as cell temperature, *Temperature()*. The *Temperature()* measurement configuration is done by setting the corresponding flag in *Temperature Mode* and *DA Configuration[CTEMP]*.

Status	Condition	Action
Normal	Temperature() < SOT:Threshold	PFAlert()[SOT] = 0
Alert	Temperature() ≥ SOT:Threshold	PFAlert()[SOT] = 1 BatteryStatus()[OTA] = 1
Trip	Temperature() continuous ≥ SOT:Threshold for SOT:Delay duration	PFAlert()[SOT] = 0 PFStatus()[SOT] = 1 BatteryStatus()[OTA] = 1

3.7 Safety Overtemperature FET Permanent Fail

The device can permanently disable the battery pack in case of severe overtemperature on the power FET. The temperature sensor(s) can be configured to report as FET Temperature in *DAStatus2()* by setting the corresponding flag in *Temperature Mode* and *DA Configuration[FTEMP]*.

Status	Condition	Action
Normal	FET Temperature in DAStatus2() < SOTF:Threshold	PFAlert()[SOTF] = 0
Alert	FET Temperature in <i>DAStatus2()</i> ≥ SOTF:Threshold	PFAlert()[SOTF] = 1 BatteryStatus()[OTA] = 1
Trip	FET Temperature in <i>DAStatus2()</i> continuous ≥ SOTF:Threshold for SOTF:Delay duration	PFAlert()[SOTF] = 0 PFStatus()[SOTF] = 1 BatteryStatus()[OTA] = 1

3.8 QMax Imbalance Permanent Fail

The device can permanently disable the battery pack in case the capacity of one of the cells is much lower than the others.

Status	Condition	Action
Normal	[Max(QMax Cell 14) – Min(QMax14)]/Qmax Pack * 100 < QIM:Delta Threshold	PFAlert()[QIM] = 0
Alert	[Max(QMax Cell 14) – Min(QMax14)]/Qmax Pack * 100 > QIM:Delta Threshold	PFAlert()[QIM] = 1
Trip	[Max(QMax Cell 14) – Min(QMax14)]/Qmax Pack * 100 continuous ≥ QIM:Delta Threshold for number of QIM:Delay ⁽¹⁾ updates	PFAlert()[QIM] = 0 PFStatus()[QIM] = 1

The delay for this check is counted each time QMax Cycle Count is updated.

3.9 **Cell Balancing Permanent Fail**

The device can permanently disable the battery pack in case one of the cells in the stack is cell-balanced much more than the others.

Status	Condition	Action
Normal	Δ(Time Cell 14) < CB:Delta Threshold	PFAlert()[CB] = 0
Alert	∆(Time Cell 14) ≥ CB:Delta Threshold	PFAlert()[CB] = 1
Trip	∆(<i>Time Cell 14</i>) continuous ≥ <i>CB:Delta Threshold</i> for <i>CB:Delay</i> ⁽¹⁾ cycles	PFAlert()[CB] = 0 PFStatus()[CB] = 1 BatteryStatus()[TCA] = 1 BatteryStatus()[TDA] = 1
Trip	Max (Time Cell 14) ≥ CB:Max Threshold	PFAlert()[CB] = 0 PFStatus()[CB] = 1

⁽¹⁾ The delay for this check is counted each time **QMax Cycle Count** is updated.

3.10 Impedance Permanent Fail

The device can permanently disable the battery pack in case the impedance of one of the cells is much higher than the others.

NOTE: Reference Grid is configurable from 0 (resistance at fully charged cell) to 14 (resistance at fully discharged cell). The default setting of Reference Grid = 4 is a good typical value to use because it is close to the average in the range of 20% to 100% SOC. Design Resistance is automatically calculated and updated during the learning cycle and is part of the golden image).

This check is only performed when the gauge updates the *Ra* data for the *Reference Grid* directly. If a selected grid point is typically being scaled rather than directly updated by the gauge (for example, grid point 0 or grid point 14), this check is effectively disabled. It is recommended to use the default Design Resistance setting.

Status	Condition	Action
Normal	Δ(Cell14 R_a at IT Cfg:Reference Grid) < (IMP:Delta Threshold × IT Cfg:Design Resistance)	PFAlert()[IMP] = 0
Alert	∆(Cell14 R_a at IT Cfg:Reference Grid) ≥ (IMP:Delta Threshold × IT Cfg:Design Resistance)	PFAlert()[IMP] = 1
Trip	∆(Cell14 R_a at <i>IT Cfg:Reference Grid</i>) ≥ (<i>IMP:Delta Threshold</i> × <i>IT Cfg:Design Resistance</i>) for <i>IMP:Ra Update Counts</i>	PFAlert()[IMP] = 0 PFStatus()[IMP] = 1 BatteryStatus()[TCA] = 1 BatteryStatus()[TDA] = 1
Trip	∆(Cell14 R_a at IT Cfg:Reference Grid) ≥ (IMP:Max Threshold × IT Cfg:Design Resistance)	PFAlert()[IMP] = 0 PFStatus()[IMP] = 1

3.11 Capacity Degradation Permanent Fail

The device can permanently disable the battery pack in case the capacity of the battery is degraded below a threshold.

Status	Condition	Action
Normal	QMax pack > CD:Threshold	PFAlert()[CD] = 0
Alert	QMax pack ≤ CD:Threshold	PFAlert()[CD] = 1
Trip	QMax pack continuous ≤ CD:Threshold for CD:Delay ⁽¹⁾ cycles	PFAlert()[CD] = 0 PFStatus()[CD] = 1

⁽¹⁾ The delay for this check is counted each time **QMax Cycle Count** is updated.

3.12 Voltage Imbalance At Rest Permanent Fail

The device can permanently disable the battery pack in case of a voltage difference between the cells in a stack while at rest.

Status	Condition	Action
Normal	Max cell voltage14 < VIMR:Check Voltage OR Current() > VIMR:Check Current OR Max cell voltage14 - Min cell voltage14 < VIMR:Delta Threshold	PFAlert()[VIMR] = 0
Alert	(Max cell voltage14 ≥ VIMR:Check Voltage AND Current() < VIMR:Check Current) for VIMR:Duration AND Max cell voltage14 – Min cell voltage14 ≥ VIMR:Delta Threshold	PFAlert()[VIMR] = 1
Trip	(Max cell voltage14 ≥ VIMR:Check Voltage AND Current() < VIMR:Check Current) for VIMR:Duration AND Max cell voltage14 – Min cell voltage14 ≥ VIMR:Delta Threshold for VIMR:Delta Delay	PFAlert()[VIMR] = 0 PFStatus()[VIMR] = 1

3.13 Voltage Imbalance Active Permanent Fail

The device can permanently disable the battery pack in case of a voltage difference between the cells in a stack while active.

Status	Condition	Action
Normal	Max cell voltage14 < VIMA:Check Voltage OR Current() < VIMA:Check Current OR Max cell voltage14 - Min cell voltage14 < VIMA:Delta Threshold	PFAlert()[VIMA] = 0
Alert	Max Cell voltage ≥ VIMA:Check Voltage AND Current() > VIMA:Check Current AND Max cell voltage14 – Min cell voltage14 ≥ VIMA:Delta Threshold	PFAlert()[VIMA] = 1
Trip	(Max cell voltage14 ≥ VIMA:Check Voltage AND Current() > VIMA:Check Current AND Max cell voltage14 – Min cell voltage14 ≥ VIMA:Delta Threshold) for VIMA:Delay	PFAlert()[VIMA] = 0 PFStatus()[VIMA] = 1

3.14 Charge FET Permanent Fail

The device can permanently disable the battery pack in case the charge FET is not working properly.

Status	Condition	Action
Normal	CHG FET off AND Current() < CFET:OFF Threshold	PFAlert()[CFETF] = 0
Alert	CHG FET off AND Current() ≥ CFET:OFF Threshold	PFAlert()[CFETF] = 1
Trip	CHG FET off AND <i>Current()</i> continuously ≥ <i>CFET:OFF Threshold</i> for <i>CFET:OFF Delay</i> duration	PFAlert()[CFETF] = 0 PFStatus()[CFETF] = 1

3.15 Discharge FET Permanent Fail

The device can permanently disable the battery pack in case the discharge FET is not working properly.

Status	Condition	Action
Normal	DSG FET off AND Current() > DFET:OFF Threshold	PFAlert()[DFETF] = 0
Alert	DSG FET off AND Current() ≤ DFET:OFF Threshold	PFAlert()[DFETF] = 1
Trip	DSG FET off AND Current() continuously ≤ DFET:OFF Threshold for DFET:OFF Delay duration	PFAlert()[DFETF] = 0 PFStatus()[DFETF] = 1

3.16 Chemical Fuse Permanent Fail

The device can detect a non-working fuse. It cannot disable the battery pack permanently, but can record this event for analysis.

Status	Condition	Action
Normal	FUSE pin = high AND Current() < FUSE:Threshold	PFAlert()[FUSE] = 0
Alert	FUSE pin = high AND Current() ≥ FUSE:Threshold	PFAlert()[FUSE] = 1
Trip	FUSE pin = high AND Current() continuous ≥ FUSE:Threshold for FUSE:Delay duration	PFAlert()[FUSE] = 0 PFStatus()[FUSE] = 1

3.17 AFE Register Permanent Fail

The device compares the AFE hardware register periodically with a RAM backup and corrects any errors. If any errors are found during the check, the device increments the AFE register fail counter. If the comparison fails too many times, the device disables the pack permanently.

Status	Condition	Action
Normal	AFE register fail counter = 0	PFAlert()[AFER] = 0 Compare AFE register and RAM backup every AFER:Compare Period
Alert	AFE register fail counter > 0	PFAlert()[AFER] = 1 Decrement AFE register fail counter by one after each AFER:Delay Period Compare AFE register and RAM backup every AFER:Compare Period
Trip	AFE register fail counter ≥ AFER:Threshold	PFAlert()[AFER] = 0 PFStatus()[AFER] = 1

3.18 AFE Communication Permanent Fail

The device monitors the internal communication to the AFE hardware and increments the AFE read/write fail counter on any communication error. If the read or write fails exceed a limit within a configurable timeframe, the device disables the pack permanently.

Status	Condition	Action
Normal	AFE read/write fail counter = 0	PFAlert()[AFEC] = 0
Alert	AFE read/write fail counter > 0	PFAlert()[AFEC] = 1 Decrement AFE read/write fail counter by one after each AFEC:Delay Period
Trip	Read and Write Fail counter ≥ <i>AFEC:Threshold</i>	PFAlert()[AFEC] = 0 PFStatus()[AFEC] = 1

PTC Permanent Fail www.ti.com

3.19 PTC Permanent Fail

The device can detect overtemperature using a positive temperature coefficient (PTC) resistor connected to the PTC pin. This protection also works in SHUTDOWN mode.

If the device detects a PTC pin high state, the CHG and DSG FETs are turned off, and the pack is disabled permanently. For manufacturer testing, the fault state can be reset by a full power cycle of the device.

This is a hardware controlled feature. To enable this feature, the PTCEN pin should be tied to BAT. To disable this feature, connect the PTCEN pin to ground.

Status	Condition	Action
Normal	Reset AFE and PTC pin = low	PFStatus()[PTC] = 0
Trip	PTC pin = high	PFStatus()[PTC] = 1 FUSE = high BatteryStatus()[TCA] = 1 BatteryStatus()[TDA] = 1

3.20 Second Level Protection Permanent Fail

The device can detect an external trigger of the chemical fuse by an external protection circuit such as a 2nd-level protector by monitoring the FUSE pin state.

If the device detects a FUSE pin high state, the CHG and DSG FETs are turned off.

Setting **Enabled PF C[2LVL]** = 0 will not prevent the second level protector from triggering and blowing the fuse, setting **[2LVL]** = 0 will only prevent the gauge from detecting the fuse state.

Status	Condition	Action
Normal	Reset AFE and FUSE pin = low AND No FUSE trigger by firmware	PFAlert()[2LVL] = 0
Alert	FUSE pin = high AND No FUSE trigger by firmware	PFAlert()[2LVL] = 1 Reset AFE FUSE bit
Trip	FUSE pin continuously high for <i>2LVL:Delay</i> period AND No FUSE trigger by firmware	PFAlert()[2LVL] = 0 PFStatus()[2LVL] = 1

3.21 Instruction Flash (IF) Checksum Permanent Fail

The device can permanently disable the battery if it detects a difference between the stored IF checksum and the calculated IF checksum only following a device reset.

8	Status	Condition	Action
N	Normal	Stored and calculated IF checksum match	_
	Trip	Stored and calculated IF checksum after reset does not match	PFStatus()[IFC] = 1

3.22 Open Cell Voltage Connection Permanent Fail

The device can permanently disable the battery if it detects a difference between the BAT pin voltage and the sum of the individual cell voltages. *Recommendation*: Perform BAT pin calibration in production if this protection is enabled.

Status	Condition	Action
Normal	Voltage() - BAT voltage in DAStatus1()	PFAlert()[OPNCELL] = 0
Alert	Voltage() – BAT voltage in DAStatus1() ≥ OPNC:Threshold	PFAlert()[OPNCELL] = 1
Trip	Voltage() – BAT voltage in DAStatus1() continuous ≥ OPNC:Threshold for OPNC:Delay Period	PFAlert()[OPNCELL] = 0 PFStatus()[OPNCELL] = 1

3.23 Data Flash (DF) Permanent Fail

The device can permanently disable the battery in case a data flash write fails.

NOTE: A DF write failure causes the gauge to disable further DF writes.

Status	Condition	Action
Normal	Data flash write OK	_
Trip	Data flash write not successful	PFStatus()[DFW] = 1

3.24 Open Thermistor Permanent Fail (TS1, TS2, TS3, TS4)

The device can permanently disable the battery if it detects an open thermistor on TS1, TS2, TS3, or TS4. The state of TS1..4 and the internal temperature sensor is available in *DAStatus2()*.

Status	Condition	Action	
Normal, TS1	TS1 Temperature > Open Thermistor:Threshold OR Internal Temperature ≤ TS1 Temperature + Cell Delta if Temperature Mode[TS1 Mode] = 0 OR Internal Temperature ≤ TS1 Temperature + FET Delta if Temperature Mode[TS1 Mode] = 1	PFAlert()[TS1] = 0	
Normal, TS2	TS2 Temperature > Open Thermistor:Threshold OR Internal Temperature ≤ TS2 Temperature + Cell Delta if Temperature Mode[TS2 Mode] = 0 OR Internal Temperature ≤ TS2 Temperature + FET Delta if Temperature Mode[TS2 Mode] = 1	PFAlert()[TS2] = 0	
Normal, TS3	TS3 Temperature > Open Thermistor:Threshold OR Internal Temperature ≤ TS3 Temperature + Cell Delta if Temperature Mode[TS3 Mode] = 0 OR Internal Temperature ≤ TS3 Temperature + FET Delta if Temperature Mode[TS3 Mode] = 1	PFAlert()[TS3] = 0	
Normal, TS4	TS4 Temperature > Open Thermistor:Threshold OR Internal Temperature ≤ TS4 Temperature + Cell Delta if Temperature Mode[TS4 Mode] = 0 OR Internal Temperature ≤ TS4 Temperature + FET Delta if Temperature Mode[TS4 Mode] = 1	<i>PFAlert()[TS4]</i> = 0	
Alert, TS1	Condition 1: TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS1 Mode]</i> = 0 OR Condition 2:	PFAlert()[TS1] = 1	
	TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS1 Mode]</i> = 1		
Alert,	Condition 1: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS2 Mode]</i> = 0	- <i>PFAlert()[TS1]</i> = 1	
TS2	OR Condition 2: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS2 Mode]</i> = 1	7 7 110, (() [TO 1] — 1	

Status	Condition	Action	
Alert,	Condition 1: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS3 Mode]</i> = 0	<i>PFAlert()[TS1]</i> = 1	
TS3	OR Condition 2: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS3 Mode]</i> = 1	7 7 7 1 S. 1 ()[1 S 1] = 1	
Alert,	Condition 1: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS4 Mode]</i> = 0	- <i>PFAlert()[TS1]</i> = 1	
TS4	OR Condition 2: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS4 Mode]</i> = 1	- Praiet()[131] = 1	
Trip,	Condition 1: TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if <i>Temperature Mode[TS1 Mode] = 0</i>	PFAlert()[TS1] = 0 PFStatus()[TS1] = 1	
TS1	OR Condition 2: TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS1 Mode]</i> = 1		
Trip,	Condition 1: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if Temperature Mode[TS2 Mode] = 0	<i>PFAlert()[TS2]</i> = 0	
TS2	OR Condition 2: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS2 Mode]</i> = 1	PFStatus()[TS2] = 1	
Trip,	Condition 1: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if <i>Temperature Mode[TS3 Mode] = 0</i>	<i>PFAlert()[TS3]</i> = 0	
TS3	OR Condition 2: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS3 Mode]</i> = 1	PFStatus()[TS3] = 1	
Trip,	Condition 1: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if Temperature Mode[TS4 Mode] = 0	<i>PFAlert()[TS4]</i> = 0	
TNP, TS4	OR Condition 2: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS4 Mode]</i> = 1	PFStatus()[TS4] = 1	

Advanced Charge Algorithm

4.1 Introduction

The device can change the values of *ChargingVoltage()* and *ChargingCurrent()* based on *Temperature()* and cell voltage1..4 or *RelativeStateofCharge()*. Its flexible charging algorithm is JEITA compatible and can also meet other specific cell manufacturer charge requirements. The *ChargingStatus()* register shows the state of the charging algorithm.

4.2 Charge Temperature Ranges

The measured temperature is segmented into several temperature ranges. The charging algorithm adjusts *ChargingCurrent()* and *ChargingVoltage()* according to the temperature range. The temperature ranges set in data flash should adhere to the following format:

 $T1 \le T2 \le T5 \le T6 \le T3 \le T4$.

Voltage Range www.ti.com

4.3 Voltage Range

The measured cell voltage is segmented into several voltage ranges. The charging algorithm adjusts ChargingCurrent() according to the temperature range and voltage range. The voltage ranges set in data flash need to adhere to the following format:

Charging Voltage Low ≤ Charging Voltage Med ≤ Charging Voltage High ≤ x Temp Charging: Voltage

where x is Standard or Rec. Depending on the specific charging profile, the **Low Temp Charging:Voltage** and **High Temp Charging:Voltage** settings do not necessarily have the highest setting values.

www.ti.com Voltage Range

4.3.1 RelativeStateofCharge() Range

If **[SOC_CHARGE]** in **Charging Configuration** is set, then the voltages threshold control, as described in Section 4.3, is replaced with **RelativeStateOfCharge()** control.

With this method, the following changes in control transitions occur:

- (a) [LV] state and RelativeStateOfCharge() > Charging SoC Mid; move to [MV].
- (b) [MV] state and RelativeStateOfCharge() > Charging SoC High; move to [HV].
- (c) [MV] state [DSG]=1, and RelativeStateOfCharge() < Charging SoC Mid SoC Hysteresis; move to [LV].
- (d) [HV] state [DSG]=1, and RelativeStateOfCharge() < Charging SoC High Charging SoC Hysteresis; move to [MV].

				• · · •			
Class	Subclass	Name	Туре	Min Value	Max Value	Default Value	Unit
Advanced Charge Algorithm	SOC Range	Charging SoC Mid	U1	0	100	50	%
Advanced Charge Algorithm	SOC Range	Charging SoC High	U1	0	100	75	%
Advanced Charge	SOC Range	Charging SoC Hysteresis	U1	0	100	1	%

Table 4-1. RelativeStateofCharge() Range

U1 = Unsigned 1 byte, see page 136

4.4 Charging Current

The ChargingCurrent() value changes depending on the detected temperature and voltage per the charging algorithm.

The **Charging Configuration[CRATE]** flag provides an option to adjust the **ChargingCurrent()** based on FullChargeCapacity()/DesignCapacity().

For example, with **[CRATE]** = 1, if **FullChargeCapacity()**/DesignCapacity() = 90% and **Rec Temp Charging: Current Med** is active per the charging algorithm, the **ChargeCurrent()** = **Rec Temp Charging: Current Med** × 90%.

NOTE: Table priority is top to bottom.

Temp Range	Voltage Range	Condition	Action
Any	Any	OperationStatus()[XCHG] = 1	ChargingCurrent() = 0
UT or OT	Any	_	ChargingCurrent() = 0
Any	PV	_	ChargingCurrent() = Pre-Charging:Current
Any	LV, MV, or HV	ChargingStatus()[MCHG] = 1	ChargingCurrent() = Maintenance Charging:Current
	LV	_	ChargingCurrent() = Low Temp Charging:Current Low
LT	MV	_	ChargingCurrent() = Low Temp Charging:Current Med
	HV	_	ChargingCurrent() = Low Temp Charging:Current High
	LV	_	ChargingCurrent() = Standard Temp Charging:Current Low
STL or STH	MV	_	ChargingCurrent() = Standard Temp Charging:Current Med
	HV	_	ChargingCurrent() = Standard Temp Charging:Current High

Charging Voltage www.ti.com

Temp Range	Voltage Range	Condition	Action
	LV	_	ChargingCurrent() = Rec Temp Charging:Current Low
RT	MV	_	ChargingCurrent() = Rec Temp Charging:Current Med
	HV	_	ChargingCurrent() = Rec Temp Charging:Current High
НТ	LV	_	ChargingCurrent() = High Temp Charging:Current Low
	MV	_	ChargingCurrent() = High Temp Charging:Current Med
	HV	_	ChargingCurrent() = High Temp Charging:Current High

4.5 Charging Voltage

The Charging Voltage() changes depending on the detected temperature per the charge algorithm.

NOTE: Table priority is top to bottom.

Temp Range	Condition	Action
Any	OperationStatus()[XCHG] = 1	ChargingVoltage() = 0
UT or OT	_	ChargingVoltage() = 0
LT	_	ChargingVoltage() = Low Temp Charging:Voltage × (DA Configuration[CC1:CC0] + 1)
STL or STH	_	ChargingVoltage() = Standard Temp Charging:Voltage × (DA Configuration[CC1:CC0] + 1)
RT	_	ChargingVoltage() = Rec Temp Charging:Voltage × (DA Configuration[CC1:CC0] + 1)
HT	_	ChargingVoltage() = High Temp Charging:Voltage × (DA Configuration[CC1:CC0] + 1)

4.6 Valid Charge Termination

The charge termination condition must be met to enable valid charge termination. The device has the following actions at charge termination, based on the flags settings:

- If SBS Gauging Configuration[CSYNC] = 1, RemainingCapacity() = FullChargeCapacity().
- If **SBS Gauging Configuration[RSOCL]** = 1, RelativeStateOfCharge() and RemainingCapacity() are held at 99% until charge termination occurs. Only on entering charge termination is 100% displayed.
- If SBS Gauging Configuration[RSOCL] = 0, RelativeStateOfCharge() and RemainingCapacity() are not held at 99% until charge termination occurs. Fractions of % greater than 99% are rounded up to display 100%.

Status	Condition	Action
Charging	GaugingStatus()[DSG] = 0	Charge Algorithm active
Valid Charge Termination	All of the following conditions must occur for two consecutive 40-s periods: Charging (that is, <i>BatteryStatus[DSG]</i> = 0) AND AverageCurrent() < Charge Term Taper Current AND Max cell voltage14 + Charge Term Voltage ≥ ChargingVoltage() / number of cells in series AND The accumulated change in capacity > 0.25 mAh.	ChargingStatus()[VCT] = 1 ChargingStatus()[MCHG] = 1 ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm BatteryStatus()[FC] = 1 and GaugingStatus()[FC] = 1 if SOCFlagConfig A[FCSETVCT] = 1 BatteryStatus()[TCA] = 1 and GaugingStatus()[TCA] = 1 if SOCFlagConfig B[TCASETVCT] = 1

4.7 **Charge and Discharge Termination Flags**

The [TC] and [FC] bits in GaugingStatus() can be set at charge termination as well as based on RSOC or cell voltages. If multiple set and clear conditions are selected, then the corresponding flag will be set whenever a valid set or clear condition is met. If both set and clear conditions are true at the same time, the flag will clear. The same functionality is applied to the [TD] and [FD] bits in GaugingStatus().

NOTE: GaugingStatus()[TC][TD][FC][FD] are the status flags based on the gauging conditions only. These flags are set and cleared based on SOC Flag Config A and SOC Flag Config B.

The BatteryStatus()[TAC][FC][TDA][FD] flags will be set and cleared according to the BatteryStatus()[TC][FC][TD][FD] flags as well as the safety and permanent failure protections status. For more information, see Section 4.8.

When GaugingStatus() [FC] is set AND FET Option[CHGFET] = 1, the CHG FET turns off.

The [FC] flag is identical between gauging status and battery status, but not [TD]. The table below summarizes the various options to set and clear the [TC] and [FC] flags in GaugingStatus().

Flag	Set Criteria	Set Condition	Enable
	cell voltage	Max cell voltage14 ≥ <i>TC:</i> Set Voltage Threshold	SOC Flag Config A[TCSetV] = 1
[TC]	RSOC	RelativeStateOfCharge() ≥ TC: Set % RSOC Threshold	SOC Flag Config A[TCSetRSOC] = 1
	Valid Charge Termination (enable by default)	When ChargingStatus[VCT] = 1	SOC Flag Config A[TCSetVCT] = 1
	cell voltage	Max cell voltage14 ≥ FC: Set Voltage Threshold	SOC Flag Config B[FCSetV] = 1
[FC]	RSOC	RelativeStateOfCharge() ≥ C: Set % RSOC Threshold	SOC Flag Config B[FCSetRSOC] = 1
	Valid Charge Termination (enable by default)	When ChargingStatus[VCT] = 1	SOC Flag Config A[FCSetVCT] = 1

Flag	Clear Criteria	Clear Condition	Enable
[TC]	cell voltage	Max cell voltage14 ≤ <i>TC: Clear Voltage Threshold</i>	SOC Flag Config A[TCClearV] = 1
	RSOC (enable by default)	RelativeStateOfCharge() ≤ TC: Clear % RSOC Threshold	SOC Flag Config A[TCClearRSOC] = 1
[FC]	cell voltage	Max cell voltage14 ≤ FC: Clear Voltage Threshold	SOC Flag Config B[FCClearV] = 1
	RSOC (enable by default)	RelativeStateOfCharge() ≤ FC: Clear % RSOC Threshold	SOC Flag Config B[FCClearRSOC] = 1

[TD] and [FD] both have extra conditions. If gauging status [FD] is set then battery status is always set, but clearing depends also on some safety conditions (CUV/SUV).

The table below summarizes the various options to set and clear the [TD], and [FD] flags in GaugingStatus().

Flag	Set Criteria	Set Condition	Enable
[TD]	cell voltage	Min cell voltage14 ≤ <i>TD</i> : Set Voltage <i>Threshold</i>	SOC Flag Config A[TDSetV] = 1
	RSOC (enable by default)	RelativeStateOfCharge() < = TD: Set % RSOC Threshold	SOC Flag Config A[TDSetRSOC] = 1
[FD]	cell voltage	Min cell voltage14 ≤ FD: Set Voltage Threshold	SOC Flag Config B[FDSetV] = 1
	RSOC (enable by default)	RelativeStateOfCharge() < = FD: Set % RSOC Threshold	SOC Flag Config B[FDSetRSOC] = 1

Flag	Clear Criteria	Clear Condition	Enable
[TD]	cell voltage	Min cell voltage14 ≥ <i>TD: Clear Voltage Threshold</i>	SOC Flag Config A[TDClearV] = 1
	RSOC (enable by default)	RelativeStateOfCharge() ≥ TD: Clear % RSOC Threshold	SOC Flag Config A[TDClearRSOC] = 1
[FD]	cell voltage	Min cell voltage14 ≥ FD: Clear Voltage Threshold	SOC Flag Config B[FDClearV] = 1
	RSOC (enable by default)	RelativeStateOfCharge() ≥ FD: Clear % RSOC Threshold	SOC Flag Config B[FDClearRSOC] = 1

4.8 Terminate Charge and Discharge Alarms

When the protections and permanent fails are triggered, the BatteryStatus()[TCA][TDA][FD][OCA][OTA][FC] will be set according to the type of safety protections. Here is a summary of the set conditions of the various alarms flags.

$$[TCA] = 1$$
 if

- SafetyAlert()[OCC1], [OCC2], [COV], [OTC], [OTF], [OC], [CHGC], [CHGV], or [PCHGC] = 1, OR
- PFAlert()[SOV] or [SOCC] = 1, OR
- Any PFStatus() = 1, OR
- OperationStatus()[PRES] = 0, OR
- GaugingStatus()[TC] = 1 AND in CHARGE mode

$$[FC] = 1$$

• if GaugingStatus()[FC] = 1

$$[OCA] = 1$$
 if

• SafetyStatus()[OC] = 1 AND in CHARGE mode

[TDA] = 1 if

- SafetyAlert()[OCD1], [OCD2], [CUV], [CUVC], [OTD], or [OTF] = 1, OR
- PFAlert()[SUV] or [SOCD] = 1, OR
- Any PFStatus() = 1, OR
- OperationStatus()[PRES] = 0
- GaugingStatus()[TD] = 1 AND in DISCHARGE mode

[FD] = 1 if

- SafetyStatus()[CUV] = 1, OR
- PFStatus()[SUV] = 1, OR
- GaugingStatus()[FD]

[OTA] = 1 if

- SafetyStatus()[OTC], [OTD], or [OTF] = 1, OR
- PFStatus()[SOT] or [SOTF] = 1

4.9 Precharge

The gauge enters PRECHARGE mode if,

- 1. Min cell voltage1..4 < **Precharge Start Voltage**, OR
- Max cell voltage1..4 < Charging Voltage Low Charging Voltage Hysteresis and not in CHARGE mode

www.ti.com Maintenance Charge

Depending on the *FET Options[PCHG_COMM]* settings, the external precharge FET or CHG FET can be used in PRECHARGE mode. Setting the *Precharge Start Voltage and Charging Voltage Low* = 0 mV disables the precharge function.

[PCHG_COMM] = 0	[PCHG_COMM] = 1
FET USED: external precharge FET	FET USED: CHG FET

The device also supports 0-V charging using either an external precharge FET or CHG FET. If **[PCHG_COMM]** = 1, the gauge enables the hardware 0-V charging circuit automatically when the battery stack voltage is below the minimum operation voltage of the device (see the *bq40z50-R1 1-Series to 4-Series Li-lon Battery Pack Manager* data sheet [SLUSCB3] for bq40z50-R1 electrical specifications).

4.10 Maintenance Charge

Maintenance charge can be configured to provide charge current after charge termination is reached.

If the Overcharge Protection is enabled, *Enabled Protections C[OC]* = 1, extra margin may be needed for *OC:Threshold* to prevent triggering the OC protection by the maintenance charging.

Status	Condition	Action
Set	ChargingStatus()[IN] = 0 AND ChargingStatus()[SU] = 0 AND ChargingStatus()[PV] = 0 AND GaugingStatus()[TCA] = 1	ChargingStatus()[MCHG] = 1 ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm
Clear	ChargingStatus()[IN] = 1 OR ChargingStatus()[SU] = 1 OR ChargingStatus()[PV] = 1 OR GaugingStatus()[TCA] = 0	ChargingStatus()[MCHG] = 0 ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm

4.11 Charge Control SMBus Broadcasts

If the **[HPE]** bit is enabled, MASTER mode broadcasts to the host address are PEC enabled. If the **[CPE]** bit is enabled, MASTER mode broadcasts to the smart-charger address are PEC enabled. The **[BCAST]** bit enables all broadcasts to a host or a smart charger. When the **[BCAST]** bit is enabled, the following broadcasts are sent:

- ChargingVoltage() and ChargingCurrent() broadcasts are sent to the smart-charger device address (0x12) every 10 to 60 s.
- If any of the [OCA], [TCA], [OTA], [TDA], [RCA], [RTA] flags are set, the AlarmWarning() broadcast is sent to the host device address (0x14) every 10 s. Broadcasts stop when all flags above have been cleared.
- If any of the [OCA], [TCA], [OTA], [TDA] flags are set, the AlarmWarning() broadcast is sent to a smart-charger device address every 10 s. Broadcasts stop when all flags above have been cleared.

4.12 Charge Disable and Discharge Disable

The device can disable charging if certain safety conditions are detected, setting the *OperationStatus()[XCHG]* = 0.

Status	Condition	Action
Normal	ALL PFStatus() = 0 AND SafetyStatus()[COV] = 0 AND SafetyStatus()[OCC1][OCC2] = 0,0 AND SafetyStatus()[ASCC] = 0 AND SafetyStatus()[ASCCL] = 0 AND SafetyStatus()[CTO] = 0 AND SafetyStatus()[PTO] = 0 AND OperationStatus()[PRES] = 1 AND GaugingStatus()[TCA] = 0 if Charging Configuration[CHGFET] = 1	ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm OperationStatus()[XCHG] = 0

Charge Inhibit www.ti.com

Status	Condition	Action
Trip	ManufacturingStatus()[FET_EN] = 0 OR ANY PFStatus()[] = 1 OR SafetyStatus()[COV] = 1 OR SafetyStatus()[OCC1] = 1 OR SafetyStatus()[OCC2] = 1 OR SafetyStatus()[ASCC] = 1 OR SafetyStatus()[ASCC] = 1 OR SafetyStatus()[ASCC] = 1 OR SafetyStatus()[CTO] = 1 OR SafetyStatus()[PTO] = 1 OR SafetyStatus()[PTO] = 1 OR SafetyStatus()[CHGC] = 1 OR SafetyStatus()[CHGC] = 1 OR SafetyStatus()[CHGV] = 1 OR SafetyStatus()[CHGV] = 1 OR SafetyStatus()[CTC] = 1 if [OTFET] = 1 OR ChargingStatus()[NT] = 1 if [CHGIN] = 1 OR ChargingStatus()[SU] = 1 if [CHGSU] = 1 OR OperationStatus()[SLEEP] = 1 if [NR] = 1 AND [SLEEPCHG] = 0 OR OperationStatus()[PRES] = 0 OR GaugingStatus()[TCA] = 1 if Charging Configuration[CHGFET] = 1	ChargingVoltage() = 0 ChargingCurrent() = 0 OperationStatus()[XCHG] = 1

Similarly, the device can disable discharge if any of the following conditions are detected, setting the OperationStatus()[XDSG] = 1.

- ManufacturingStatus()[FET_EN] = 0, OR
- Any PFStatus() set, OR
- SafetyStatus()[OCD1] or [OCD2] or [CUV] or [CUVC] or [AOLD] or [AOLDL] or [ASCD] or [ASCDL] or [UTD] = 1, OR
- SafetyStatus()[OTD] or [OTF] = 1 if [OTFET] = 1, OR
- OperationStatus()[PRES] = 0, OR
- OperationStatus()[EMSHUT] = 1 ,OR
- OperationStatus()[SDM] = 1 AND delay time > FET Off Time, OR
- OperationStatus()[SDV] = 1 AND low voltage time ≥ **Shutdown Time**

4.13 Charge Inhibit

The device can inhibit the start of charging at high and low temperatures to prevent damage of the cells. This feature prevents the start of charging when the temperature is at the inhibit range; therefore, if the device is already in the charging state when the temperature reaches the inhibit range, a FET action will not take place even if **FET Options[CHGIN]** = 1.

Status	Condition	Action
Normal	ChargingStatus()[LT] = 1 OR ChargingStatus()[STL] = 1 OR ChargingStatus()[RT] = 1 OR ChargingStatus()[STH] = 1	ChargingStatus()[IN] = 0 ChargingVoltage() = charging algorithm ChargingCurrent() = charging algorithm
Trip	Not charging AND (ChargingStatus()[HT] = 1 OR ChargingStatus()[OT] = 1 OR ChargingStatus()[UT] = 1	ChargingStatus()[IN] = 1 ChargingStatus()[SU] = 0 ChargingVoltage() = 0 ChargingCurrent() = 0 OperationStatus()[XCHG] = 1 if FET Options[CHGIN] = 1.

www.ti.com Charge Suspend

4.14 Charge Suspend

The device can stop charging at high and low temperatures to prevent damage of the cells.

The ChargingStatus()[SU] condition is only active in the CHARGING mode. Once CHARGE SUSPEND is triggered, the gauge will exit CHARGING mode after **Chg Relax Time** and the CHARGE SUSPEND will change to CHARGE INHIBIT.

Status	Condition	Action
Normal	ChargingStatus()[LT] = 1 OR ChargingStatus()[STL] = 1 OR ChargingStatus()[RT] = 1 OR ChargingStatus[STH] = 1 OR ChargingStatus()[HT] = 1	ChargingStatus()[SU] = 0 ChargingVoltage() = charging algorithm ChargingCurrent() = charging algorithm
Trip	ChargingStatus()[UT] = 1 OR ChargingStatus()[OT] = 1	ChargingStatus()[SU] = 1 ChargingVoltage() = 0 ChargingCurrent() = 0 OperationStatus()[XCHG] = 1 if FET Options[CHGSU] = 1.

4.15 ChargingVoltage() Rate of Change

The device can slope the value changes from one range to another to avoid jumping between different voltage ranges. Setting the *Voltage Rate* to 1 disables this feature because the *ChargingVoltage()* changes in one step. The gauge will not apply any voltage stepping if *Voltage Rate* is set to 1.

NOTE: The host needs to read *ChargingVoltage()* at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Trip	ChargingVoltage() Change	ChargingStatus()[CVR] = 1 ChargingVoltage() = Old + n × (New – Old)/Voltage Rate, where Old = present ChargingVoltage() New = the target ChargingVoltage() that the device is going to change to n = 1 Voltage Rate, increment in steps of one per second.

4.16 ChargingCurrent() Rate of Change

The device can slope the value changes from one range to another to avoid jumping between different current ranges. Setting the *Current Rate* to 1 disables this feature because the *ChargingCurrent()* changes in one step. The gauge will not do any current stepping if *Current Rate* is set to 1.

NOTE: The host needs to read *ChargingCurrent()* at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Trip	ChargingCurrent() Change	ChargingStatus()[CCR] = 1 ChargingCurrent() = Old + n × (New – Old)/Current Rate, where Old = present ChargingCurrent() New = the target ChargingCurrent() that the device will change to $n = 1Current Rate$, increment in steps of 1 per second.

4.17 Charging Loss Compensation

The device can modify *ChargingVoltage()* and *ChargingCurrent()* to compensate losses caused by the FETs, the fuse, and the sense resistor by measuring the cell voltages directly and adjusting *ChargingCurrent()* and *ChargingVoltage()* accordingly.

In CONSTANT CURRENT mode, the device can increase the Charging Voltage() value to compensate the drop losses. This feature can be enabled by setting Configuration[CCC] = 1 and configuring the CCC Current Threshold.

NOTE: The host must read ChargingVoltage() and/or ChargingCurrent() at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Normal	Current() > CCC Current Threshold AND Voltage() = Charging algorithm voltage	ChargingStatus()[CCC] = 0 ChargingVoltage() = Charging Algorithm
Active	Current() > CCC Current Threshold AND Voltage() < Charging algorithm voltage	ChargingStatus()[CCC] = 1 ChargingVoltage() = Charging Algorithm + (PackVoltage() – Voltage())
Limit	(Pack pin voltage in DAStatus1() – Voltage()) > CCC Voltage Threshold	Charging Voltage() = Charging Algorithm + CCC Voltage Threshold

Power Modes

5.1 Introduction

To enhance battery life, the bq40z50-R1 supports several power modes to minimize power consumption during operation.

5.2 NORMAL Mode

In NORMAL mode, the device takes voltage, current, and temperature readings every 250 ms, performs protection and gauging calculations, updates SBS data, and makes status decisions at 1-s intervals. Between these periods of activity, the device is in a reduced power state.

If the [NR] bit is set, the PRES input can be left floating, as it is not monitored.

5.2.1 BATTERY PACK REMOVED Mode/System Present Detection

5.2.1.1 System Present

PRES is sampled four times per second, and if PRES is high for 4 samples (one second), the OperationStatus[PRES] flag is cleared. If PRES is low for 4 samples (one second), the OperationStatus [PRES] flag is set, indicating the system is present (the battery is inserted). If the [NR] bit is set, the PRES input is ignored and can be left floating.

5.2.1.2 Battery Pack Removed

The bq40z50-R1 detects the BATTERY PACK REMOVED mode if the **[NR]** bit is set to 0 AND the PRES input is high (**[PRES]** = 0).

On entry to the BATTERY PACK REMOVED mode, the [TCA] and [TDA] flags are set, ChargingCurrent() and ChargingVoltage() are set to 0, the CHG and DSG FETs are turned off, and the Precharge FET is turned off (if used).

Polling of the PRES pin continues at a rate of once every 1 s.

The bq40z50-R1 exits the BATTERY PACK REMOVED state if the **[NR]** flag is set to 0 AND the PRES input is low (**[PRES]** = 1). When this occurs, the **[TCA]** and **[TDA]** flags are reset.

5.3 SLEEP Mode

5.3.1 Device Sleep

When the sleep conditions are met, the device goes into SLEEP mode with periodic wake-ups for voltage, temperature, and current measurements to reduce power consumption.

OperationStatus()[SLPAD] is set when the gauge wakes to measure voltage and temperature. Similarly, the [SLPCC] is set when the gauge wakes for current measurement. In general, it is not possible to read these flags because an SMBus communication will wake up the gauge.

The device returns to NORMAL mode if any exit sleep condition is met.

41

SLEEP Mode www.ti.com

Status	Condition	Action
Activate	SMBus low for Bus Timeout ⁽¹⁾ if [IN_SYSTEM_SLEEP] = 0, or no communication for Bus Timeout if [IN_SYSTEM_SLEEP] = 1 AND DA Config[SLEEP] = 1 ⁽¹⁾ AND Current() ≤ Sleep Current AND Voltage Time > 0 AND (OperationStatus()[PRES] = 0 OR DA Config[NR] = 1) AND OperationStatus()[SDM] = 0 AND No PFAlert() bits set AND No PFStatus() bits set AND No SafetyAlert() bits set AND No [AOLD], [AOLDL], [ASCC], [ASCCL], [ASCD], [ASCDL] set in SafetyStatus()	Turn off CHG FET and PCHG FET if DA Configuration[SLEEPCHG] = 0. ⁽³⁾ Device goes to sleep. Device wakes up every Sleep:Voltage Time period to measure voltage and temperature. Device wakes up every Sleep:Current Time period to measure current.
Exit	SMBus connected (¹)OR SMBus command received (⁴) OR DA Config[SLEEP] = 1 (¹) OR Current() > Sleep Current OR Wake comparator activates (⁵) OR Voltage Time = 0 OR (OperationStatus()[PRES] = 1 AND DA Config[NR] = 0) OR OperationStatus()[SDM] = 1 OR PFAlert() bits set OR PFStatus() bits set OR SafetyAlert() bits set OR [AOLD], [AOLDL], [ASCC], [ASCCL], [ASCD], [ASCDL] set in SafetyStatus()	Return to NORMAL mode

DA Config[SLEEP] and SMBus low are not checked if the ManufacturerAccess() SLEEP mode command is used to enter

5.3.2 IN SYSTEM SLEEP Mode

The device provides an option for removable packs (that is, **DA Config[NR]** = 0) to enter SLEEP mode insystem. When the DA Config[IN_SYSTEM_SLEEP] = 1, the device will enter SLEEP mode even if the OperationStatus()[PRES] = 1. This option ignores the PRES pin status only. All the other sleep conditions must be met for the device to enter SLEEP mode.

In the IN SYSTEM SLEEP mode, it is possible to read the [SLPAC] and [SLPCC] flags if [IN SYSTEM SLEEP] = 1 and Bus Timeout = 0. This setting allows the gauge to enter SLEEP mode with active communication in progress.

NOTE: Setting the Bus Timeout = 0 with [IN_SYTEM_SLEEP] can be used for testing purposes, but it is not recommended to set the **Bus Timeout** = 0 in the field. If **Bus Timeout** = 0, the device's sleep and wake conditions are strictly controlled by current detection. If the host system performs a low load operation periodically (for example, wireless detection in a tablet application), this small load current may be missed, introducing an error into remaining capacity tracking. Having a non-zero Bus Timeout setting enables the gauge to wake up by a communication and capture the current measurement.

SafetyAlert()[PTO], [PTOS], [CTO], [CTOS] or PFAlert()[QIM], [OC], [IMP], [CB] will not prevent the gauge to enter SLEEP mode.

For [NR] = 0, the CHG FET and PCHG FET remains on in SLEEP mode if [SLEEPCHG] = 1, but if the battery pack is removed from the system, the CHG FET is off because the system present takes higher priority than [SLEEPCHG].

Wake on SMBus command is only possible when the gas gauge is put to sleep using the ManufacturerAccess() SLEEP mode command or [IN_SYSTEM_SLEEP] is enabled with Bus Timeout = 0. Otherwise, the gas gauge wakes on an SMBus connection (clock or data high).

⁽⁵⁾ The wake comparator threshold is set through Power. WakeComparator [WK1, WK0] (see Section 5.3.4).

www.ti.com SLEEP Mode

5.3.3 ManufacturerAccess() MAC Sleep

The SLEEP MAC command can override the requirement for bus low to enter sleep. In this case, the bq40z50-R1 clock and data high condition is ignored for sleep to exit, though sleep will also exit if there is any further SMBus communication. The device can be sent to sleep with *ManufacturerAccess()* if specific sleep entry conditions are met.

5.3.4 Wake Function

The device can exit SLEEP mode if enabled by the presence of a voltage across SRP and SRN. The voltage threshold needed for the device to wake from SLEEP mode is programmed in *Power:Wake Comparator*. This allows the gauge to wake up quickly in response to a higher current detection. Otherwise, the gauge only wakes up every *Sleep Current Time* to detect if |*Current()*| is > Sleep Current.

Reserved (Bits 7–4, 1–0): Reserved. Do not use.

WK1,0 (Bits 3-2): Wake Comparator Threshold

WK1	WK0	Voltage
0	0	±0.625 mV
0	1	±1.25 mV
1	0	±2.5 mV
1	1	±5 mV

5.4 SHUTDOWN Mode

5.4.1 Voltage Based Shutdown

To minimize power consumption and to avoid draining the battery, the device can be configured to shut down at a programmable stack voltage threshold. This function also works in PERMANENT FAILURE mode. When the device is in PERMANENT FAILURE mode, the parameters **PF Shutdown Voltage** and **PF Shutdown Time** configure the shutdown threshold.

Status	Condition	Action
Enable	Min cell voltage < Shutdown Voltage	OperationStatus()[SDV] = 1
Trip	Min cell voltage continuous < Shutdown Voltage for Shutdown Time	Turn DSG FET off
Shutdown	Voltage at PACK pin < Charger Present Threshold	Send device into SHUTDOWN mode
Exit	Voltage at PACK pin > V _{STARTUP}	OperationStatus()[SDV] = 0 Return to NORMAL mode

Table 5-1. PF Shutdown Voltage

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Power	Shutdown	PF Shutdown Voltage	Int	2	0	32767	1750	mV

SHUTDOWN Mode www.ti.com

Table 5-2. PF Shutdown Time

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Power	Shutdown	PF Shutdown Time	Unsigned Int	1	0	255	10	S

NOTE: The device goes through a full reset when exiting from SHUTDOWN mode, which means the device will re-initialize. On power up, the gauge will check some special memory locations. If the memory checksum is incorrect, or if the gauge or the AFE watchdog has been triggered, the gauge will do a full reset.

The memory checksum is good; for example, in a case of a short power glitch, the gauge will do a partial reset. The initialization is faster in a partial reset, and certain memory data will not be re-initialized (for example, all SBS registers, last known FET state, last ADC and CC readings, and so on), and so a partial reset is usually transparent to the host.

5.4.2 ManufacturerAccess() MAC Shutdown

In SHUTDOWN mode, the device turns off the FETs after FET Off Time, and then shuts down to minimize power consumption after **Delay** time. Both **FET Off Time** and **Delay** time are referenced to the time the gauge receives the command. Thus, the Delay time must be set longer than the FET Off Time. The device returns to NORMAL mode when voltage at PACK pin > V_{STARTUP}. The device can be sent to this mode with the ManufacturerAccess() Shutdown command. Charger voltage must not be present for the device to enter SHIP SHUTDOWN mode.

NOTE: If the gauge is unsealed and the MAC Shutdown() command is sent twice in a row, the gauge will execute the shutdown sequence immediately and skip the normal delay sequence.

5.4.3 Time Based Shutdown

The device can be configured to shut down after staying in SLEEP mode without communication for a preset time interval specified in the Auto Ship Time. Setting the PowerConfig[AUTO SHIP EN] = 1 enables this feature. Any communication to the device will restart the timer. When the timer reaches the Auto Ship Time, the time based shutdown effectively triggers the MAC shutdown command to start the shutdown sequence. The device returns to NORMAL mode when voltage at PACK pin > V_{STARTUP}.

5.4.4 Emergency Shutdown (EMSHUT)

The EMERGENCY SHUTDOWN function provides an option to disable the battery power to the system by opening up both CHG and DSG FETs before removing an embedded battery pack. There are two ways to enter the EMERGENCY SHUTDOWN state:

- (a) Use an external signal (for example, a push-button switch) to detect a low-level threshold signal on the SHUTDN pin.
- (b) Send a Manual FET Control (MFC) sequence to ManufacturerAccess().

When the gauge is in the EMERGENCY SHUTDOWN state, the OperationStatus()[EMSHUT] = 1.

5.4.4.1 Enter Emergency Shutdown Through SHUTDN

When a high-to-low transition on the SHUTDN pin is detected with a debounce delay of about 1 s for the low level threshold, the gauge will turn off both CHG and DSG FETs immediately. This entry method only applies if [NR] = 1 and DA Configuration[EMSHUT] = 1. If [NR] = 0, the SHUTDN pin will restore to the regular system present detection.

www.ti.com Power Save Shutdown

5.4.4.2 Enter Emergency Shutdown Through MFC

Alternately, sending a Manual FET Control (MFC) sequence using the steps below also puts the gauge to the EMERGENCY SHUTDOWN state. This entry method applies to **NR**] = 0 and **[NR**] = 1.

- (a) Send word 0x207C to ManufacturerAccess() (0x00) to enable the MFC.
- (b) Within 4 s, send word 0x043D to ManufacturerAccess() (0x00) to turn off CHG and DSG FETs.
- (c) The CHG and DSG FETs will be off after Manual FET Control Delay.

5.4.4.3 Exit Emergency Shutdown

Regardless of which EMSHUT entry method is used, the gauge can exit the EMSHUT mode by turning on the CHG and DSG FETs with the following conditions:

- A high-to-low transition on the SHUTDN pin is detected with a debounce delay of 1 s for the low level threshold. For example, a push button is pressed again.
- Send word 0x23A7 to ManufacturerAccess() (0x00).

In addition to these exit conditions, if the gauge enters EMSHUT (via a push-button, for example), it can exit the EMSHUT mode after a shutdown restore timeout defined by the *Timeout* parameter.

For the case of **[NR]** = 0, a battery insertion will also exit the EMERGENCY SHUTDOWN mode.

5.5 Power Save Shutdown

Power Save Shutdown is enabled when [PWR_SAVE_VSHUT] is set. The bq40z50-R1 enters **Power Save Shutdown** when the lowest cell voltage is below *PS Shutdown Voltage* and when: *NoLoadRemCap()* ≤ **PS NoLoadResCap Threshold**.

Status	Condition	Action
Enable	Min cell voltage < PS Shutdown Voltage	OperationStatus()[SDV] = 1
Trip	Min cell voltage continuous < <i>PS Shutdown Voltage</i> and <i>NoLoadRemCap()</i> ≤ <i>PS No Load Res Cap Threshold</i>	Turn DSG FET off
Shutdown	Voltage at PACK pin < Charger Present Threshold	Send device into SHUTDOWN mode
Exit	Voltage at PACK pin > V _{STARTUP}	OperationStatus()[SDV] = 0 Return to NORMAL mode

Table 5-3. PS Shutdown Voltage

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Power	Shutdown	PS Shutdown Voltage	Int	2	0	32767	2500	mV

Table 5-4. PSNoLoadResCap

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Power	Shutdown	PS No Load Res Cap	Unsigned Int	2	0	32767	0	mAh

45

Power Save Shutdown www.ti.com

Gauging

6.1 Introduction

The bq40z50-R1 measures individual cell voltages, pack voltage, temperature, and current. It determines battery state-of-charge by analyzing individual cell voltages when a certain relax time has passed since the last charge or discharge activity of the battery.

The bq40z50-R1 measures charge and discharge activity by monitoring the voltage across a small-value series sense resistor (1 m Ω typical) between the negative terminal of the cell stack and the negative terminal of the battery pack. The battery state-of-charge is subsequently adjusted during a load or charger application using the integrated charge passed through the battery. The device is capable of supporting a maximum battery pack capacity of 32 Ah. See the *Theory and Implementation of Impedance Track*TM Battery Fuel-Gauging Algorithm in bq20zxx Product Family (SLUA364B) for further details.

The default for Impedance Track gauging is off. To enable the gauging function, set **Manufacturing Status[GAUGE_EN]** = 1. The gauging function will be enabled after a reset or a seal command is set. Alternatively, the MAC command, **Gauging()**, can be used to turn on and off the gauging function. The **Gauging()** command will take effect immediately and the **[GAUGE_EN]** will be updated accordingly.

The ITStatus1(), ITStatus2(), and ITStatus3() commands return various gauging related information that is useful for problem analysis.

6.2 Impedance Track Configuration

Load Mode — During normal operation, the battery-impedance profile compensation of the Impedance Track algorithm can provide more accurate full-charge and remaining state-of-charge information if the typical load type is known. The two selectable options are constant current (**Load Mode** = 0) and constant power (**Load Mode** = 1).

Load Select — To compensate for the I x R drop near the end of discharge, the bq40z50-R1 must be configured for whatever current (or power) will flow in the future. While it cannot be exactly known, the bq40z50-R1 can use load history, such as the average current of the present discharge, to make a sufficiently accurate prediction.

The bq40z50-R1 can be configured to use several methods of this prediction by setting the **Load Select** value. Because this estimate has only a second-order effect on remaining capacity accuracy, different measurement-based methods (methods 0 to 3, and method 7) result in only minor differences in accuracy. However, methods 4–6, where an estimate is arbitrarily assigned by the user, can result in a significant error if a fixed estimate is far from the actual load. For highly variable loads, selection 7 provides the most conservative estimate and is preferable.

Constant Current	(Load Mode = 0))
------------------	-------------------------	---

0 = Avg I Last Run

1 = Present average discharge current

2 = Current()

3 = AverageCurrent()

4 = Design Capacity/5

5 = AtRate() (mA)

6 = User Rate-mA

7 = **Max Avg I Last Run** (default)

Constant Power (*Load Mode* = 1)

Avg P Last Run

Present average discharge power

 $Current() \times Voltage()$

AverageCurrent() × average Voltage()

Design Energy/5

AtRate() (10 mW)

User Rate-mW

Max Avg P Last Run

Gas Gauge Modes www.ti.com

Pulsed Load Compensation and Termination Voltage — To take into account pulsed loads while calculating remaining capacity until *Term Voltage* threshold is reached, the bq40z50-R1 monitors not only average load but also short load spikes. The maximum voltage deviation during a load spike is continuously updated during discharge and stored in **Delta Voltage**.

Reserve Battery Capacity — The bq40z50-R1 allows an amount of capacity to be reserved in either mAh (Reserve Cap-mAh, Load Mode = 0) or 10 mWh (Reserve Cap-mWh, Load Mode = 1) units between the point where the RemainingCapacity() function reports zero capacity and the absolute minimum pack voltage, Term Voltage. This enables a system to report zero energy, but still have enough reserve energy to perform a controlled shutdown or provide an extended sleep period for the host system.

The reserve capacity is compensated at the present discharge rate as selected by **Load Select**.

No Load Reserve Capacity — The PSNoLoadResCap threshold is programmed to a value in mAh based on how much capacity to reserve for powering the RTC for a period of time after RSOC is 0%.

				•				
Subclass	Name	Format	Size in Bytes	Min	Max	Default	Unit	
Shutdown	PS No Load Res Cap	Unsigned Int	2	0	32767	0	mAh	

Table 6-1. PSNoLoadResCap

NOTE: There is no requirement to change Term Voltage, and this can remain set to the minimum system operation voltage.

Pack Based and Cell Based Termination — The bq40z50-R1 forces RemainingCapacity() to 0 mAh when the battery stack voltage reaches the *Term Voltage* for a period of *Term V Hold Time*. If *IT* Gauging Configuration[CELL_TERM] = 1, the battery can terminate based on cell voltage or pack voltage. When the cell based termination is used, the Term Min Cell V threshold is checked for the termination condition. The cell based termination can provide an option to enable the gauge to reach 0% before the device triggers CUV for a pack imbalance.

Table 6-2. Term V Hold Time

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Gas Gauging	IT Cfg	Term V Hold Time	Unsigned Int	1	0	255	1	s

6.3 **Gas Gauge Modes**

Class

Power

Resistance updates take place only in DISCHARGE mode, while open circuit voltage (OCV) and QMax updates only take place in RELAX mode. If fast Qmax is enabled, the Qmax also updates at the end of discharge given a minimum of 37% delta change of charge. Entry and exit of each mode is controlled by data flash parameters in the subclass Gas Gauging: Current Thresholds section. When the device is determined to be in RELAX mode and OCV is taken, the GaugingStatus()[REST] flag is set. In RELAX mode or DISCHARGE mode, the DSG flag in BatteryStatus() is set.

www.ti.com Gas Gauge Modes

Figure 6-1. Gas Gauge Operating Modes

- CHARGE mode is exited and RELAX mode is entered when Current goes below Quit Current for a
 period of Chg Relax Time.
- DISCHARGE mode is entered when *Current* goes below (–)Dsg Current Threshold.

QMax and Ra www.ti.com

 DISCHARGE mode is exited and RELAX mode is entered when Current goes above (-)Quit Current threshold for a period of Dsg Relax Time.

Figure 6-2. Gas Gauge Operating Mode Example

6.4 QMax and Ra

The total battery capacity is found by comparing states of charge before and after charge and discharge with the amount of charge passed. When an applications load is applied, the impedance of each cell is measured by comparing the open circuit voltage (OCV) obtained from a predefined function for present state-of-charge with the measured voltage under load.

Measurements of OCV and charge integration determine chemical state-of-charge and Chemical Capacity (QMax).

The bq40z50-R1 acquires and updates the battery-impedance profile during normal battery usage. It uses this profile, along with state-of-charge and the *QMax* values, to determine *FullChargeCapacity* and *RelativeStateOfCharge* specifically for the present load and temperature. *FullChargeCapacity* reports a capacity or energy available from a fully charged battery reduced by *Reserve Cap-mAh* or *Reserve Cap-mWh* under the present load and present temperature until *Voltage* reaches the *Term Voltage*.

6.4.1 QMax Initial Values

The initial **QMax Pack**, **QMax Cell 0**, **QMax Cell 1**, **QMax Cell 2**, and **QMax Cell 3** values should be taken from the cell manufacturers' data sheet multiplied by the number of parallel cells, and are also used for the **DesignCapacity** function value in the **Design Capacity** data flash value.

See the Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm in bq20zxx Product Family Application Report (SLUA364B) for further details.

www.ti.com QMax and Ra

6.4.2 QMax Update Conditions

QMax update is enabled when gauging is enabled. This is indicated by the *GaugingStatus[QEN]* flag. The bq40z50-R1 updates the no-load full capacity (QMax) when two open circuit voltage (OCV) readings are taken. These OCV readings are taken when the battery is in a relaxed state before and after charge or discharge activity. A relaxed state is achieved if the battery voltage has a dV/dt of < 4 μ V/s. Typically it takes 2 hours in a charged state and 5 hours in a discharged state to ensure that the dV/dt condition is satisfied. If 5 hours is exceeded, a reading is taken even if the dV/dt condition was not satisfied. The *GaugingStatus()[REST]* flag is set when a valid OCV reading occurs. If a valid DOD0 (took at the previous QMax update) is available, then QMax will also be updated when a valid charge termination is detected.

The flag is cleared at the exit of a relaxed state. A QMax update is disqualified under the following conditions:

Temperature — If *Temperature* is outside of the range 10°C to 40°C.

Delta Capacity — If the capacity change between suitable battery rest periods is less than 37%.

Voltage — If *CellVoltage4..1* is inside a flat voltage region. (See the *Support of Multiple Li-lon Chemistries with Impedance Track Gas Gauges Application Report* (<u>SLUA372</u>) for the voltage ranges of other chemistries.) This flat region is different with different chemistry. The *GaugingStatus[OCVFR]* flag indicates if the cell voltage is inside this flat region.

Offset Error — If offset error accumulated during time passed from previous OCV reading exceeds 1% of Design Capacity, update is disqualified. Offset error current is calculated as **CC Deadband** / sense resistor value.

Several flags in *GaugingStatus()* are helpful to track for QMax update conditions. The *[REST]* flag indicates an OCV is taken in RELAX mode. The *[VOK]* flag indicates the last OCV reading is qualified for the QMax update. The *[VOK]* is set when charge or discharge starts. It clears when the QMax update occurs, when the offset error for a QMax disqualification is met, or when there is a full reset. The *[QMax]* flag will be toggled when the QMax update occurs. *ITStatus2()* and *ITStatus3()* return the QMax and DOD (depth of discharge, corresponding to the OCV reading) data.

The bq40z50-R1 device includes a check in which, during discharge, there must be a minimum change in *Voltage()* programmed in *Min Delta Voltage*.

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Gas Gauging	IT Cfg	Min Delta Voltage	Int	2	-32768	32767	0	mV

Table 6-3. Min DeltaV

6.4.3 Fast QMax Update Conditions

The Fast QMax update conditions are very similar to the QMax update conditions with the following differences:

- Instead of taking two OCV readings for QMax update, Fast QMax update requires only one OCV reading, AND
- The battery pack should discharge below 10% RSOC.

The differences in requirements allow the Fast QMax feature to have a QMax update at the end of discharge (given one OCV reading is already available and discharge below 10% RSOC) without a longer relax time after a discharge event. Typically, it can take up to 5 hours in a discharge state to ensure the $dV/dt < 4 \,\mu V/s$ condition is satisfied. The Temperature, Delta Capacity, Voltage, and Offset Error requirements for QMax update are still required for the Fast QMax update.

This feature is particularly useful for reducing production QMax learning cycle time or for an application that is mostly in charge or discharge stage with infrequent relaxation. Setting *IT Gauging Configuration[FAST_QMAX_LRN]* = 1 enables Fast QMax during production learning only (that is, *Update Status* = 6). When setting *IT Gauging Configuration[FAST_QMAX_FLD]* = 1, Fast QMax is enabled when Impedance Track is enabled and *Update Status* ≥ 6.

QMax and Ra www.ti.com

6.4.4 QMax and Fast QMax Update Boundary Check

The bq40z50-R1 implements a QMax and Fast QMax check prior to saving the value to data flash. This improves the robustness of the QMax update in case of potential QMax corruption during the update process.

The verifications are as follows:

- 1. Verify that the updating QMax or Fast QMax value is within **QMaxMaxDeltaPercent**, which is the maximum allowed QMax change for each update. If the updating value is outside of this data flash parameter, the bq40z50-R1 caps the change to **QMaxMaxDeltaPercent** of the Design Capacity.
- 2. Bound the absolute QMax value, *UpperBoundQMax*. This is the maximum allowed QMax value over the lifetime of the pack.
- 3. Ensure that QMax is greater than 0 before saving to data flash.

6.4.5 Ra Table Initial Values

The Ra table is part of the impedance profile that updates during discharge when gauging is enabled. The initial *Cello R_a0...14*, *Cell 1 R_a0...14*, *Cell 2 R_a0...14*, *Cell 3 R_a0...14* values should be programmed by selecting the correct chemistry data during data flash configuration. A chemistry database is constantly updating, and can be downloaded from the Gas Gauge Chemistry Updater product web page (http://www.ti.com/tool/gasgaugechem-sw). The initial *xCello R_a0...14*, *xCell 1 R_a0...14*, *xCell 2 R_a0...14*, *xCell 3 R_a0...14* values are a copy of the non-x data set. Two sets of Ra tables are used alternatively when gauging is enabled to prevent wearing out the data flash.

The Cello R_a Flag, Cell 1 R_a Flag, Cell 2 R_a Flag, Cell 3 R_a Flag and the xCello R_a Flag, xCell 1 R_a Flag, xCell 3 R_a Flag indicate the validity of the cell impedance table for each cell.

NOTE: FW updates these values: It is not recommended to change them manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x05	RSVD
0x55	DISCHARGE mode and cell impedance updated	0x55	Table is used
0xFF	Cell impedance never updated	0xFF	A fast Qmax update without OCV read will also clear the R_DIS flag. Table never used, no QMax or cell impedance update.

6.4.6 Ra Table Update Conditions

The impedance is different across different DOD states. Each cell has 15 Ra grid points presenting the impedance from 0%–100% DOD. In general, the Ra table is updated during discharge. The *GaugingStatus()[RX]* flag will toggle when the Ra grid point is updated. The Ra update is disabled if any of the following conditions are met. The *GaugingStatus()[R_DIS]* is set to indicate the Ra update is disabled.

- During the optimization cycle, the Ra update is disabled until QMax is updated (that is, Ra will not be updated if Update Status = 4), OR
- Ra update is disabled if the charge accumulation error > 2% of Design Capacity, OR
- During a discharge, a bad Ra value is calculated:
 - A negative Ra is calculated or
 - A bad RaScale value is calculated.

A valid OCV reading during RELAX mode or a fast Qmax update without an OCV read will clear the [R_DIS] flag.

6.5 FullChargeCapacity(FCC), RemainingCapacity(RemCap), and RelativeStateOfCharge(RSOC)

The Impedance Track algorithm applies QMax, impedance, temperature, voltage, and current data to predict the runtime *FullChargeCapacity()*, *RemainingCapacity()*, and *RelativeStateOfCharge()*. These values are updated if any of the following conditions are met, reflecting the battery capacity at real time.

- QMax update occurs
- · Ra update occurs
- At onset of charge and discharge
- At exit of discharge
- Every 5 hours in RELAX mode
- If temperature changes more than 5°C

6.6 Impedance Track Configuration Options

The bq40z50-R1 provides several Impedance Track (IT) configuration options to fine-tune the gauging performance. These configurations can be turned on or off through the corresponding flags in **SBS Gauging Configuration** or **IT Gauging Configuration**.

[LOCK0]: After a discharge event, cell voltage will usually recover to a slightly higher voltage during RELAX state. A new OCV reading during this time can result in a slightly higher state-of-charge. This flag provides an option to keep *RemainingCapacity()* and *RelativeStateOfCharge()* jumping back during relaxation after 0% and FD are reached during discharge.

[RSOC_HOLD]: An IT simulation will run at the onset of discharge. If charge terminates at a low temperature and a discharge occurs at a higher temperature, the difference in temperature could cause a small rise of RSOC for a short period of time at the beginning of discharge. This flag option prevents RSOC rises during discharge. RSOC will be held until the calculated value falls below the actual state.

[RSOC HOLD] should not be used when [SMOOTH] is set.

[RSOCL]: When set, RSOC will be held at 99% until charge termination is detected. When the device exits reset and **[RSOCL]** = 1, then even if the battery is fully charged (**[FC]** = 1), only a value of \leq 99% is reported by *RelativeStateOfCharge()* until a valid charge termination is detected. See Section 4.6 for more details.

[RFACTSTEP]: The gauge keeps track of an Ra factor of the (old Ra)/(new Ra) during the Ra update. This factor is used for Ra scaling. It is limited to 3 max. During an Ra update, if (old Ra)/(new Ra) is > 3, the gauge can take on two different actions based on the setting of this flag.

If this flag is set to 1 (default), the gauge allows Ra to update once using the max factor of 3, then disables the Ra update. If this flag is set to 0, the gauge will not update Ra and also disables the Ra update. It is recommended to keep the default setting.

[OCVFR]: An OCV reading is taken when a dV/dt condition is met. This is not the case if charging stops within the flat voltage region.

By default, this flag is set. The device will take a 48-hour wait before taking an OCV reading if charging stops below the FlatVoltMax. A discharge will not cancel this 48-hour wait. The 48-hour wait will only be cleared if charging stops above the FlatVoltMax level. Setting this flag to 0 removes the 48-hour wait requirement, and OCV is taken when the dV/dt condition is met. Removing the 48-hour requirement can be useful sometimes to reduce test time during evaluation.

[DOD0EW]: DOD0 readings have an associated error based on the elapsed time since the reading, the conditions at the time of the reading (reset, charge termination, etc), the temperature, and the amount of relax time at the time of the reading, and so on This flag provides an option to take into account both the previous and new calculated DOD0, which are weighted according to their respective accuracies. This can result in improved accuracy and in a reduction of RSOC jumps after relaxation.

[LFP_RELAX]: This is an option for LiFePO4 chemistry. This flag can be enabled even if non-LiFePO4 chemistry is programmed. The device will check for the chemistry ID (that is, ChemID = 4xx series) before activating this function.

The LiFePF4 has a unique slow Configuration relaxation near full charge. Detailed, in-house test data suggests that the relaxation after a full charge takes a few days to settle. The slow decaying voltage causes RSOC to continue to drop every 5 hours. Depending on the full charge taper current, the fully settled voltage could be close to or even below FlatVoltMax in some cases. For the chemID 4xx (LiFePO4) series, the condition to exit the long RELAX mode is if the pack had previously charged to full or near full state, and then either a significant long relaxation or a non-trivial discharge has happened, such that when in relaxation, the OCV < **FlatVoltMax**.

The QMax update is disabled because DOD will not be taken as long as it is in LFP_relax mode. By the time the gas gauge exits the LFP_relax mode, the OCV is already in the flat zone. Therefore, the QMax update takes an alternative approach: Once full charge occurs ([FC] bit set), DOD0=Dod_at_EOC is automatically assigned and valid for a QMax update. **[VOK]** is set if there is no QMax update. If QMax is updated, **[VOK]** is cleared. The DOD error as a result of this action is zero or negligible because in the LiFePO4 table, OCV voltage corresponding to DOD= 0 is much lower.

[Fast_QMAX_LRN] and **[Fast_QMAX_FLD]**: The first flag enables fast Qmax during the learning cycle when **Update Status** = 06. The second flag enables fast Qmax in the field when **Update Status** ≥ 06. See Section 6.4.3 for more details.

[RSOC_CONV]: This function is also called fast scaling. It is an option to address the convergence of RSOC to 0% at a low temperature and a very high rate of discharge. Under such conditions, it is possible to have a drop of RSOC to 0%, especially if the termination voltage is reached at the DOD region with a higher Ra grid interval. To account for the error caused by the high granularity of the impedance grid interval, the **[ROSC_CONV]**, when enabled, applies a scale factor to impedance, allowing more frequent impedance data updates used for RemCap simulation leading up to 0% ROSC.

If **[ROSC_CONV]** is enabled, it is recommended to start this function around the knee region of the discharge curve. This is usually around 10% of ROSC or around 3.3 V–3.5 V. This function will check for both cell voltage and RSOC status and start the function when either condition is met. The RSOC and cell voltage setting can be configured through **Fast Scale Start SOC** or **Term Voltage Delta**.

[FF_NEAR_EDV]: Fast Filter Near EDV. If this flag is set, the gauge applies an alternative filter, **Near EDV Ra Param Filter**, for an Ra update in the fast scaling region (starting around 10% RSOC). This flag should be kept to 1 as default. When this flag is 0, the gauge uses the regular Ra filter, **Resistance Parameter Filter**. Both of the DF filters should not be changed from the default.

[SMOOTH]: A change in temperature or current rate can cause a significant change in Remaining Capacity (RemCap) and Full Charge Capacity (FCC), resulting in a jump or drop in the Relative State-of-Charge (RSOC). This function provides an option to prevent an RSOC jump or drop during charge and discharge.

If a jump or drop of RSOC occurs, the device examines the amount of RSOC jump or drop versus the expected end point (that is, the charge termination for the charging condition or the EDV for the discharge condition) and automatically smooths the change of RSOC, and always converges with the filtered (or smoothed) value to the actual charge termination or EDV point. The actual and filtered values are always available. The **[SMOOTH]** flag selects either the actual or filtered values are returned by the SBS commands.

[RELAX_JUMP_OK] and **[RELAX_SMOOTH_OK]**: When the battery enters RELAX mode from CHARGE or DISCHARGE mode, the transient voltage may change to RSOC as the battery goes into its RELAX state. Once the battery is in RELAX mode, a change in temperature or self-discharge may also cause a change in RSOC.

If **[RELAX_JUMP_OK]** = 1, this allows the RSOC jump to occur during RELAX mode. Otherwise, RSOC holds constant during RELAX mode and any RSOC jump will be passed into the onset of the charge or discharge phase.

If **[RELAX_SMOOTH_OK]** = 1, this allows the amount of the RSOC jump to be smoothed out over a period of **Smooth Relax Time**. Otherwise, the additional RSOC jump amount will be passed into the onset of charge or discharge phase.

If both flags are set to 1, the **[RELAX_JUMP_OK]** = 1 takes higher priority and the RSOC jump is allowed during RELAX mode.

www.ti.com State-of-Health (SoH)

[TDELAV]: This flag setting defines how the **Delta Voltage** is calculated. By setting this flag to 1, the gauge will calculate **Delta Voltage** that corresponds to the power spike defined in **Min Turbo Power**. This flag must be set to 1 if TURBO BOOST mode is used. Otherwise, leaving this flag set to 0 as default enables the gauge to calculate **Delta Voltage** by using the maximal difference between instantaneous and average voltage.

[CELL_TERM]: This flag provides an option to have a cell voltage based discharge termination. If the minimum cell voltage reaches **Term Min Cell V**, RemainingCapacity() will be forced to 0 mAh. For more details, see the **Pack Based and Cell Based Termination** section in Section 6.2.

[CSYNC]: This flag, if set to 1, will synchronize *RemainingCapacity()* to *FullChargeCapacity()* at valid charge termination.

[CCT]: This flag provides an option to use FullChargeCapacity() ([CCT] = 1) or DesignCapacity() ([CCT] = 0) for cycle count threshold calculation. If FullChargeCapacity() is selected for cycle count threshold calculation, the minimum cycle count threshold is always 10% of Design Capacity. This is to avoid any erroneous cycle count increment caused by extremely low FullChargeCapacity().

[VOLTAGE_CONSIST]: Voltage Consistency Check. This function helps to prevent an RSOC jump. The flag should be set to 1 as default. The resistance toward the EDV level is not linear. The non-linearity can result in a raise in voltage in DISCHARGE mode. When this function is enabled, the gauge checks will ignore the increase of voltage from the voltage measurement. Instead, an interpolation using previous measurements is applied. The voltage consistency check will take place when the voltage is within the **Voltage Consistency Delta** from the **Term Voltage**.

6.7 State-of-Health (SoH)

The bq40z50-R1 implements a new state-of-health (SoH) function. Previously, the SoH of a battery was typically represented by the actual runtime *FullChargeCapacity/Design Capacity* (or FCC/DC). Using the runtime FCC, however, was not a very good representation for the state-of-health because the runtime FCC reflects the usable capacity under load. A high current load reduces the runtime FCC. If using just the FCC/DC calculation for SoH, the SoH under high load will be worse than the SoH under typical load. However, a smaller usable capacity at high load does not mean the SoH of a battery is degraded. This is the same when FCC is reduced at a lower temperature.

The bq40z50-R1 implementation of state-of-health addresses these issues. It provides the SoH of the battery through an SBS command, SoH(). The SoH() is calculated using the FCC simulated at 25°C with current specified by SoH Load Rate. The SoH Load Rate can be set to the typical current of the application, and it is specified in hour-rate (that is, Design Capacity/SoH Load Rate will be the current used for the SoH simulation). This data flash setting is used for SOH() calculation only. This SoH FCC is updated at the same time ASOC and RSOC are updated. Since this implementation removes the variation of current or temperature, it is a better representation of a battery's state-of-health. The SoH FCC is available on MAC StateOfHealth().

6.8 TURBO BOOST Mode

A system with TURBO BOOST mode applies short high-power pulses (for example 10 ms) during the turbo boost operation. These high-power pulses may drop down battery voltage. If the battery voltage drops below the *Shutdown Voltage*, the system will shut down. To avoid shutting down the system during turbo boost operation, the system should never apply a pulse with power that would cause the battery power to go below the system shutdown voltage.

The TURBO BOOST mode in the bq40z50-R1 helps the system to adjust the power level by providing information about maximal power depending on the battery state-of-charge, temperature, and present battery impedance. In particular, the gauge predicts the maximum power pulse (*TURBO_POWER()*) and maximum current pulse (*TURBO_CURRENT()*) the system can draw for 10 ms without system input power delivered by the battery dropping below the termination voltage. The *TURBO_POWER()* and *TURBO_CURRENT()* are updated every 1 s in the NORMAL mode of operation.

Battery Trip Point (BTP) www.ti.com

The *Max C Rate* specifies the maximal discharge current. If the calculated turbo current is larger than the *Max C Rate*, then the reported *TURBO_CURRENT()* is capped to this value. The *TURBO_POWER()* is adjusted accordingly. The *IT Gauging Configuration[TDELTAV]* must be set when TURBO BOOST mode is in use. This flag calls the gauge to calculate the *Delta Voltage* that corresponds to the power spike defined in *Min Turbo Power*. The *Pack Resistance* and the *System Resistance* are additional resistance inputs of the overall system that should be specified to archive an accurate maximum power and current computation. The *High Frequency Resistance* is cell chemistry and battery pack configuration specific parameters. It is required to use the TURBO BOOST mode.

The system should always consume less power than the *TURBO_POWER()* level to avoid system shutdown. However, depending on how often the system polls the *TURBO_POWER()* data and how fast the system can switch to a lower power mode, it is possible to exceed the *TURBO_POWER()* level during the present power consumption. To avoid any system shutdown, the gauge provides a *Reserve Energy* % setting, which can be served as a "buffer" to ensure there is available energy at the present average discharge rate until the maximal peak power reported by *TURBO_POWER()*.

6.9 Battery Trip Point (BTP)

Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has depleted to a certain value set in a DF register.

The BTP feature allows a host to program two capacity-based thresholds that govern the triggering of a BTP interrupt on the BTP_INT pin and the setting or clearing of the *OperationStatus()[BTP_INT]* on the basis of *RemainingCapacity()*. The interrupt is enabled or disabled via *Settings.Configuration.IO*Config[BTP_EN]. Similarly, the polarity of the interrupt is configurable based on the value set in Settings.Configuration.IO Config[BTP_POL].

- OperationStatus()[BTP_INT] is set when:
 - Current > 0 and RemCap > "clear" threshold ("charge set threshold"). This threshold is initialized at reset from Settings.BTP.Init Charge Set.
 - Current ≤ 0 and RemCap < "set" threshold ("discharge set threshold"). This threshold is initialized at reset from Settings.BTP.Init Discharge Set.
- When OperationStatus()[BTP_INT] is set, if Settings.Configuration.IO Config[BTP_EN] is set, then
 the BTP_INT pin output is asserted.
 - If Settings.Configuration.IO Config[BTP_POL] is set, it will assert high; otherwise, it will assert low
- When either BTPDischargeSet() or BTPChargeSet() commands are received,
 OperationStatus()[BTP_INT] will clear and the pin will be de-asserted. The new threshold is written to
 either BTPDischargeSet() or BTPChargeSet().
- At reset, the pin is set to the de-asserted state.
 - If **[BTP_POL]** is **changed**, one of the BTP commands must be reset or sent to "clear" the state.

www.ti.com Battery Trip Point (BTP)

Cell Balancing

7.1 Introduction

The bq40z50-R1 can determine the chemical state-of-charge of each cell using the Impedance Track algorithm. The cell balancing algorithm used in the device decreases the differences in imbalanced cells in a fully charged state gradually, which prevents fully charged cells from becoming overcharged, causing excessive degradation. This increases overall pack energy by preventing premature charge termination.

The algorithm determines the amount of charge needed to fully charge each cell. There is a bypass FET in parallel with each cell connected to the gas gauge. The FET is enabled for each cell with a charge greater than the lowest charged cell to reduce charge current through those cells. Each FET is enabled for a precalculated time as calculated by the cell balancing algorithm. When any bypass FET is turned on, then the *OperationStatus()[CB]* operation status flag is set; otherwise, the *[CB]* flag is cleared.

The gas gauge balances the cells by balancing the SOC difference. Thus, a field updated QMax (*Update Status* = 0E) is required prior to any attempt of Cell Balance Time calculation. This ensures the accurate SOC delta is calculated for the cell balancing operation. If the Qmax update has only occurred once (*Update Status* = 06), then the gauge will only attempt to calculate the Cell Balance Time if a fully charged state is reached, *GaugingStatus*()[FC] = 1.

The cell balancing is enabled if **Settings:Balancing Configuration [CB]** = 1. The cell balancing at rest can be enabled separately by setting **Balancing Configuration [CBR]** = 1. If **Settings:Balancing Configuration [CB]** = 0, both cell balancing at charging and at rest are disabled.

The cell balancing at rest can be configured by determining the data flash *Min Start Balance Delta*, *Relax Balance Interval*, and *Min RSOC for Balancing*. For the data flash setting description, see Section 14.4.12. The gas gauge balances cells by bypassing the energy. It is recommended to perform cell balancing at rest when there is capacity in the battery pack.

www.ti.com Cell Balancing Setup

7.2 Cell Balancing Setup

The bq40z50-R1 is required to be in RELAX mode before it can determine if the cells are unbalanced and how much balancing is required. The bq40z50-R1 enters RELAX mode when:

|Current()|< Quit Current for at least Dsg Relax Time when coming from DISCHARGE mode or Chg Relax Time when coming for CHARGE mode.

Figure 7-1. Entering CHARGE or RELAX Mode

Once in RELAX mode, the bq40z50-R1 waits until an OCV measurement is taken, which occurs after:

- 1. A dV/dt condition of $< 4 \mu V/s$ is satisfied,
- 2. Five hours from when | Current()| < Quit Current,
- 3. Upon gas gauge reset,
- 4. An IT Enable command is issued.

Cell Balancing Setup www.ti.com

The determination of when to update the OCV data is part of the normal Impedance Track algorithm and is not specific to the cell balancing algorithm.

Figure 7-2. OCV Measurement

The bq40z50-R1 then calculates the amount of charge difference between cells with a higher state-of-charge than the lowest cell SOC. The value, dQ, is determined for each cell based by converting the measured OCV to Depth-of-Discharge (DOD) percentages using a temperature-compensated DOD vs. OCV table lookup table. If the measured, OCV does not coincide with a specific table entry, then the DOD value is linearly interpolated from the two adjacent DODs of the respective table adjacent OCVs.

The delta in DOD% between each cell and the cell of lowest SOC is multiplied by the respective cells QMax to create dQ: for example, dQ = CellnDOD - CellLOWEST_SOC DOD x CellnQMax (mAh).

www.ti.com Cell Balancing Setup

Figure 7-3. ΔQ Calculation

The bq40z50-R1 calculates the required balancing time using dQ and **Bal Time/mAh Cell 1** (for Cell 1) or Bal Time/mAh Cell 2–4 (for cells 2–4). The value of **Bal Time/mAh Cell 1** and **Bal Time/mAh Cell 2–4** are fixed value determined based on key system factors and is calculated by:

Internal Cell Balancing:

Balance Time per mAh Cell 1 =
$$\frac{3600 \text{ mAs} \times (RVCx + Rcb)}{Vcell \times Duty}$$

Balance Time per mAh Cell 2 – 4 =
$$\frac{3600 \text{ mAs} \times (2 \times RVCx + Rcb)}{Vcell \times Dutv}$$

External Cell Balancing:

Balance Time per mAh Cell 1 =
$$\frac{3600 \text{ mAs} \times (RVCx + Rcb) || Rext}{Vcell \times Duty}$$

Balance Time per mAh Cell 2 – 4 =
$$\frac{3600 \text{ mAs} \times (2 \times RVCx + Rcb) || \text{ Rext}}{Vcell \times Duty}$$

Where:

 V_{CELL} = average cell voltage (for example, 3700 mV for most chemistries)

RVCx = resistor value in series to VCx input (for example, 100Ω , based on the reference schematic)

 R_{cb} = cell balancing FET R_{dson} , which is 200 Ω (Max)

DUTY = cell balancing duty cycle, which is 75% typ

The cell balancing time for each cell to be balanced is calculated by: dQCelln × **Bal Time/mAh Cell 1** for Cell 1 or and dQCelln × **Bal Time/mAh Cell 2–4** for Cell 2–4. The cell balancing time is stored in the 16-bit RAM register CellnBalanceTimer, providing a maximum calculated time of 65535 s (or 18.2 hrs). This update only occurs if a valid QMax update has been made; otherwise, they are all set to 0.

7.3 Balancing Multiple Cells

When multiple cells require balancing, the gauge will perform a rotation cell balancing with only one cell to be balanced at a time, starting on the cell with highest dQ. For example, at time 0, Cell 1 has the highest dQ while Cell 2 has the second highest dQ on a 3-series pack. Cell balancing will start to balance Cell 1 first. As time progresses, the dQ in the cell reduces, and Cell 2 becomes the cell with the highest dQ. The gauge then switches to balance Cell 2. The cell balancing rotation between Cell 1 and Cell 2 continues until all the cells are balanced.

7.4 Cell Balancing Operation

Figure 7-4. Cell Balance Mode Detection

The bq40z50-R1 calls the cell balancing algorithm every 1 s during normal operation. Cell balancing is not called when the device is in SLEEP mode. All algorithm decisions are made on this same 1-s timer.

In RELAX mode, if cell balancing at rest is enabled, **Balancing Configuration[CBR]** = 1, the gauge will verify if the dv/dt condition is met at the entry of the RELAX mode. If so, then the cell balance at rest will start when all of the conditions below are met:

- Any of the pre-calculated Cell Balance Timer is non-zero, AND
- RelativeStateofCharge() > Min RSOC for Balancing

The gauge will attempt to re-calculate the cell balancing time in RELAX mode every *Relax Balance Interval*. The cell balancing time is updated if the conditions below are met:

- The Relax Balance Interval has passed, AND
- A OCV measurement is taken, AND
- The max cell voltage delta > Min Start Balance Delta

On exit of the RELAX mode, cell balancing time is re-calculated as long as a valid OCV update is available.

NOTE: Cell balancing is paused during OCV measurement.

Figure 7-5. Cell Balance Operation in RELAX Mode

When the bq40z50-R1 is in CHARGE mode, it follows these steps during cell balancing:

- (a) Check if any of the pre-calculated Cell Balance Timers are > 0.
- (b) The cell balance FETs are turned ON for the corresponding cell balance timers that are ≠ 0.

NOTE: There are no SOC restrictions controlling the enabling of cell balancing in CHARGE mode.

Figure 7-6. Cell Balance Operation in CHARGE Mode

LED Display

8.1 Introduction

The bq40z50-R1 device has an LED display that shows various status information when a high-to-low transition of the DISP pin is detected. The LED display is disabled if *SafetyStatus[CUV]* or *[CUVC]* = 1 or if the device is in SHUTDOWN mode.

8.1.1 LED Display of State-of-Charge

When the DISP pin is pressed and a high-to-low transition of the pin is detected, the LED display shows the state-of-charge for **LED Hold Time**. The state-of-charge can display the *RelativeStateOfCharge()* or *AbsoluteStateOfCharge()* based on the **[LEDMODE]** setting.

The state-of-charge threshold can be set according to the number of LEDs available. The following table shows an example for data flash setting with 5-LED display.

If **[LEDCHG]** = 1, the LED display will show the state-of-charge during charging when *Current()* > **Charge Current Threshold**.

	State-of-Charge			
	Current() > 0	Current() ≤ 0		
LED1	CHG Thresh 1 – 100%	DSG Thresh 1 – 100%		
LED2	CHG Thresh 2 - 100%	DSG Thresh 2 - 100%		
LED3	CHG Thresh 3 – 100%	DSG Thresh 3 – 100%		
LED4	CHG Thresh 4 – 100%	DSG Thresh 4 – 100%		
LED5	CHG Thresh 5 – 100%	DSG Thresh 5 – 100%		

If **[LEDRCA]** = 1 and the BatteryStatus[RCA] change from 0 to 1, the LED display will also flash with **LED Flash Rate** according to the **CHG Flash Alarm** or **DSG Flash Alarm** setting as shown below.

	State-of-Charge		
	Current() > 0	Current() ≤ 0	
Flash Alert	0 % – CHG Flash Alarm	0 % – DSG Flash Alarm	

8.1.2 LED Display of PF Error Code

If **[LEDPF1, LEDPF0]** = 0,1, then the LED display shows each PF code for 2x the **LED Hold Time** after showing the state-of-charge information.

The following table shows each PF error code. Each code is shown with the lowest to highest priority order.

PF Flag	Priority	LED3	LED2	LED1
No PF	0	LED Blink Rate	off	off
SUV	0	LED Blink Rate	on	off
SOV	1	LED Blink Rate	LED Flash Rate	off
SOCC	2	LED Blink Rate	off	on
SOCD	3	LED Blink Rate	on	on
SOT	4	LED Blink Rate	LED Flash Rate	on
Reserved	5	LED Blink Rate	off	LED Flash Rate

Introduction www.ti.com

PF Flag	Priority	LED3	LED2	LED1
SOTF	6	LED Blink Rate	on	LED Flash Rate
QIM	7	LED Blink Rate	LED Flash Rate	LED Flash Rate
СВ	8	LED Blink Rate	off	LED Blink Rate
IMP	9	LED Blink Rate	on	LED Blink Rate
CD	10	LED Flash Rate	LED Blink Rate	off
VIMR	11	off	LED Blink Rate	off
VIMA	12	on	LED Blink Rate	off
Reserved	13	LED Flash Rate	LED Blink Rate	on
Reserved	14	off	LED Blink Rate	on
Reserved	15	on	LED Blink Rate	on
CFETF	16	LED Flash Rate	LED Blink Rate	LED Flash Rate
DFETF	17	off	LED Blink Rate	LED Flash Rate
Reserved	18	on	LED Blink Rate	LED Flash Rate
FUSE	19	LED Flash Rate	LED Blink Rate	LED Blink Rate
AFER	20	off	LED Blink Rate	LED Blink Rate
AFEC	21	on	off	LED Blink Rate
2LVL	22	LED Flash Rate	off	LED Blink Rate
PTC	23	off	off	LED Blink Rate
IFC	24	on	on	LED Blink Rate
OPNCELL	25	LED Flash Rate	on	LED Blink Rate
DF	26	off	on	LED Blink Rate
Reserved	27	on	LED Flash Rate	LED Blink Rate
Open Therm TS1	28	LED Flash Rate	LED Flash Rate	LED Blink Rate
Open Therm TS2	29	off	LED Flash Rate	LED Blink Rate
Open Therm TS3	30	on	LED Blink Rate	LED Blink Rate
Open Therm TS4	31	LED Flash Rate	LED Blink Rate	LED Blink Rate

8.1.3 LED Display on Exit of a Reset

If the **[LEDR]** = 1 and a reset occurs at the exit of the rest, the LED display shows the state-of-charge for **LED Hold Time**. If **[LEDPF1, LEDPF0]** = 0,1, the LED display also shows each of the PF error code for 2×0 of the **LED Hold Time** afterward.

8.1.4 LED Display Control Through ManufacturerAccess()

The gauge provides *ManufacturerAccess()* command (MAC) for testing purpose. The MAC *LED Toggle()* command can toggle the LED display on and off. The MAC *LED Display Press()* command can trigger the LED display and simulate 100% RSOC to demonstrate with all LEDs in actions.

www.ti.com Introduction

Lifetime Data Collection

9.1 Description

Useful for analysis, the device has extensive capabilities for logging events over the life of the battery. The Lifetime Data Collection is enabled by setting *ManufacturingStatus()[LF_EN]* = 1. The data is collected in RAM and only written to DF under the following conditions to avoid wear out of the data flash:

- Every 10 hours if RAM content is different from flash.
- In permanent fail, before data flash updates are disabled.
- A reset counter increments. The lifetime RAM data is reset; therefore, only the reset counters are updated to data flash.
- Before scheduled shutdown
- Before low voltage shutdown and the voltage is above the Valid Update Voltage.

The Lifetime Data stops collecting under following conditions:

- · After permanent fail
- Lifetime Data Collection is disabled by setting ManufacturingStatus()[LF_EN] = 0.

When the gauge is unsealed, the following *ManufacturingStatus()* can be used for testing Lifetime Data.

- Lifetime Data Reset() can be used to reset the Lifetime Data.
- Lifetime Data Flush() can be used to flush out RAM Lifetime Data to data flash.
- Lifetime Data Speedup Mode() can be used to increase the rate the Lifetime Data is incremented.

Total firmware Runtime starts when Lifetime Data is enabled.

- Voltage
 - Max/Min Cell Voltage Each Cell
 - Max Delta Cell Voltage at any given time (that is, the max cell imbalance voltage)
- Current
 - Max Charge/Discharge Current
 - Max Average Discharge Current
 - Max Average Discharge Power
- Safety Events that trigger the SafetyStatus() (The 12 most common are tracked.)
 - Number of Safety Events
 - Cycle Count at Last Safety Event(s)
- Charging Events
 - Number of Valid Charge Terminations (That is, the number of times [VCT] is set.)
 - Cycle Count at Last Charge Termination
- Gauging Events
 - Number of QMax updates
 - Cycle Count at Last QMax update
 - Number of RA updates and disable
 - Cycle Count at Last RA update and disable

www.ti.com Description

- Power Events
 - Number of Resets, Partial Resets, and Watchdog Resets
 - Number of shutdowns
- Cell Balancing (This data is stored with a resolution of 2 hours up to a limit of 510 hours.)
 - Cell Balancing Time each Cell
- Temperature
 - Max/Min Cell Temp
 - Delta Cell Temp (max delta cell temperature across the thermistors that are used to report cell temperature)
 - Max/Min Int Temp Sensor
 - Max FET Temp
- Time (This data is stored with a resolution of 2 hours.)
 - Total runtime
 - Time spent different temperature ranges
- Discharge Temp
 - Max Discharge Temp
 - Min Discharge Temp
 - Time Max Discharge Temp
 - Time Min Discharge Temp
- Charge Temp
 - Max Charge Temp
 - Min Charge Temp
 - Time Max Charge Temp
 - Time Min Charge Temp
- Charge Voltage
 - Max Charge Voltage
 - Min Charge Voltage
 - Time Max Charge Voltage
 - Time Min Charge Voltage
- Discharge Current
 - Max Discharge Current
 - Min Discharge Current
 - Time Max Discharge Current
 - Time Min Discharge Current

Description www.ti.com

Device Security

10.1 Introduction

There are three levels of secured operation within the device. To switch between the levels, different operations are needed with different keys. The three levels are SEALED, UNSEALED, and FULL ACCESS. The device also supports SHA-1 HMAC authentication with the host system.

10.2 SHA-1 Description

As of March 2012, the latest revision is FIPS 180–4. SHA-1, or secure hash algorithm, is used to compute a condensed representation of a message or data also known as hash. For messages < 2⁶⁴, the SHA-1 algorithm produces a 160-bit output called a digest.

In a SHA-1 one-way hash function, there is no known mathematical method of computing the input given, only the output. The specification of SHA-1, as defined by FIPS 180–4, states that the input consists of 512-bit blocks with a total input length less than 264 bits. Inputs that do not conform to integer multiples of 512-bit blocks are padded before any block is input to the hash function. The SHA-1 algorithm outputs the 160-bit digest.

The device generates a SHA-1 input block of 288 bits (total input = 160-bit message + 128-bit key). To complete the 512-bit block size requirement of the SHA-1 function, the device pads the key and message with a 1, followed by 159 0s, followed by the 64 bit value for 288 (000...00100100000), which conforms to the pad requirements specified by FIPS 180–4.

Detailed information about the SHA-1 algorithm can be found here:

- 1. http://www.nist.gov/itl/
- 2. http://csrc.nist.gov/publications/fips
- 3. www.faqs.org/rfcs/rfc3174.html

10.3 HMAC Description

The SHA-1 engine calculates a modified HMAC value. Using a public message and a secret key, the HMAC output is considered to be a secure fingerprint that authenticates the device used to generate the HMAC.

To compute the HMAC: Let H designate the SHA-1 hash function, M designate the message transmitted to the device, and KD designate the unique 128-bit Unseal/Full Access/Authentication key of the device. HMAC(M) is defined as:

H[KD || H(KD || M)], where || symbolizes an append operation.

The message, M, is appended to the unseal/full access/authentication key, KD, and padded to become the input to the SHA-1 hash. The output of this first calculation is then appended to the unseal/full access/authentication key, KD, padded again, and cycled through the SHA-1 hash a second time. The output is the HMAC digest value.

10.4 Authentication

- 1. Generate 160-bit message M using a random number generator that meets approved random number generators described in FIPS PUB 140–2.
- 2. Generate SHA-1 input block B1 of 512 bytes (total input = 128-bit authentication key KD + 160-bit message M + 1 + 159 0s + 100100000).
- 3. Generate SHA-1 hash HMAC1 using B1.

Security Modes www.ti.com

- 4. Generate SHA-1 input block B2 of 512 bytes (total input = 128-bit authentication key KD + 160-bit hash HMAC1 + 1 + 159 0s + 100100000).
- 5. Generate SHA-1 hash HMAC2 using B2.
- 6. With no active *Authentication()* data waiting, write 160-bit message M to *Authentication()* in the format: 0xAABBCCDDEEFFGGHHIJJKKLLMMNNOOPPQQRRSSTT, where AA is LSB.
- 7. Wait 250 ms, then read Authentication() for HMAC3.
- Compare host HMAC2 with device HMAC3. If it matches, both host and device have the same key KD and the device is authenticated.

10.5 Security Modes

10.5.1 FULL ACCESS or UNSEALED to SEALED

The MAC Seal Device() command instructs the device to limit access to the SBS functions and data flash space, and sets the [SEC1][SEC0] flags. In SEALED mode, standard SBS functions have access (per the Smart Battery Data Specification). Most of the extended SBS functions and data flash are not accessible. Refer to Chapter 13 where each command has documented the accessibility information. Once in SEALED mode, the gauge can never permanently return to UNSEALED or FULL ACCESS modes.

10.5.2 SEALED to UNSEALED

SEALED to UNSEALED instructs the device to extend access to the SBS and data flash space and clears the [SEC1][SEC0] flags. In UNSEALED mode, all data, SBS, and DF have read/write access. Note that although writing to most of the SBS commands are accepted by the gauge, the written data will be immediately overwritten by the gauge and the write action is ignored. Unsealing is a two-step command performed by writing the first word of the unseal key to ManufacturerAccess() (MAC), followed by the second word of the unseal key to ManufacturerAccess(). The two words must be sent within 4 s. The unseal key can be read and changed via the MAC SecurityKey() command when in the FULL ACCESS mode. To return to the SEALED mode, either a hardware reset is needed or the MAC Seal Device() command is needed to transit from FULL ACCESS or UNSEALED to SEALED.

10.5.3 UNSEALED to FULL ACCESS

UNSEALED to FULL ACCESS instructs the device to allow full access to all SBS commands and data flash. The device is shipped from TI in this mode. The keys for UNSEALED to FULL ACCESS can be read and changed via the MAC command <code>SecurityKey()</code> when in FULL ACCESS mode. Changing from UNSEALED to FULL ACCESS is performed by using the <code>ManufacturerAccess()</code> command, by writing the first word of the Full Access Key to <code>ManufacturerAccess()</code>, followed by the second word of the Full Access Key to <code>ManufacturerAccess()</code>. The two words must be sent within 4 s. In FULL ACCESS mode, the command to go to boot ROM can be sent.

www.ti.com Security Modes

Manufacture Production

11.1 Manufacture Testing

To improve the manufacture testing flow, the gas gauge device allows certain features to be toggled on or off through ManufacturerAccess() commands; for example, the PCHG FET(), CHG FET(), DSG FET(), Lifetime Data Collection(), Calibration(), and so on. Enabling only the feature under test can simplify the test flow in production by avoiding any feature interference. The ManufacturerAccess() commands that toggle the ManufacturingStatus()[CAL_EN], [LT_TEST], [DSG_TEST], [CHG_TEST], and [PCHG_TEST] will only set the RAM data, meaning the conditions set by these commands will be cleared if a reset or seal is issued to the gauge. The ManufacturerAccess() commands that toggle the ManufacturingStatus()[LED_EN], [FUSE_EN], [BBR_EN], [PF_EN], and [LT_EN], [FET_EN], [GAUGE_EN] will be updated to data flash and synchronized between ManufacturingStatus() and Mfg Status Init. The ManufacturingStatus() keeps track of the status (enabled or disabled) of each feature.

The *Mfg Status Init* provides the option to enable or disable individual features for normal operation. Upon a reset or a seal command, ManufacturingStatus() will be re-loaded from data flash Mfg Status Init. This means if an update is made to Mfg Status Init to enable or disable a feature, the gauge will only take the new setting if a reset or seal command is sent.

11.2 Calibration

Refer to the bq40zxx Manufacture, Production, and Calibration Application Note (SLUA734) for the detailed calibration procedure.

The device has integrated routines that support calibration of current, voltage, and temperature readings, accessible after writing 0xF081 or 0xF082 to ManufacturerAccess() when the ManufacturingStatus()[CAL] bit is ON. While the calibration is active, the raw ADC data is available on ManufacturerData(). The device stops reporting calibration data on ManufacturerData() if any other MAC commands are sent or the device is reset or sealed.

NOTE: The ManufacturingStatus()[CAL] bit must be turned OFF after calibration is completed. The ManufacturingStatus()[CAL] bit is set by default when the Manufacturing Status Init is set to zero. This bit is cleared at reset or after sealing.

ManufacturerAccess()	Description
0x002D	Enables/Disables ManufacturingStatus()[CAL]
0xF080	Disables raw ADC data output on ManufacturerData()
0xF081	Outputs raw ADC data of voltage, current, and temperature on ManufacturerData()
0xF082	Outputs raw ADC data of voltage, current, and temperature on <i>ManufacturerData()</i> . This mode enables an internal short on the coulomb counter inputs (SRP, SRN).

The ManufacturerData() output format is: ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilljjJJkkKK, where:

Value	Format	Description
ZZ	byte	8-bit counter, increments when raw ADC values are refreshed (every 250 ms)
YY	byte	Output status ManufacturerAccess() = 0xF081: 1 ManufacturerAccess() = 0xF082: 2
AAaa	2's comp	Current (coulomb counter)

www.ti.com Calibration

Value	Format	Description
BBbb	2's comp	Cell Voltage 1
CCcc	2's comp	Cell Voltage 2
DDdd	2's comp	Cell Voltage 3
EEee	2's comp	Cell Voltage 4
FFff	2's comp	PACK Voltage
GGgg	2's comp	BAT Voltage
HHhh	2's comp	Cell Current 1
Ilii	2's comp	Cell Current 2
JJjj	2's comp	Cell Current 3
KKkk	2's comp	Cell Current 4

11.2.1 Calibration Data Flash

11.2.1.1 Voltage

12, U2, F4 data types see page 136

Class	Subclass	Name	Start	Туре	Min	Max	Default	Unit	Description
Calibration	Voltage	Cell Gain	0x4000	12	-32767	32767	12101 ⁽¹⁾		VC[n]-VC[n-1] gain
Calibration	Voltage	PACK Gain	0x4002	U2	0	65535	49669 ⁽¹⁾		PACK-VSS gain
Calibration	Voltage	BAT Gain	0x4004	U2	0	65535	48936 ⁽¹⁾	_	BAT-VSS gain

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

11.2.1.2 Current

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	Current	CC Gain	F4	1.00E-001	4.00E+000	3.58422	Coulomb Counter Gain
Calibration	Current	Capacity Gain	F4	2.98E+004	1.19E+006	1069035.256	Capacity Gain

11.2.1.3 Current Offset

11.2.1.3.1 CC Offset

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Current Offset	CC Offset	12	-32767	32767	0	_

Description: Coulomb Counter Offset. This offset is used for *Current()* and *AverageCurrent()* measurement.

11.2.1.3.2 Coulomb Counter Offset Samples

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Current Offset	Coulomb Counter Offset Samples	U2	0	65535	64	

Description: Coulomb Counter Offset Samples is used for averaging.

11.2.1.3.3 Board Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Current Offset	Board Offset	12	-32768	32767	0	_

Calibration www.ti.com

Description: PCB board offset

11.2.1.4 CC Auto Config

Class	Subclass	Name	Туре	Min	Max	Default	Units
Calibration	Current Offset	CC Auto Config	H1	0x00	0x07	0x03	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	OFFSET_ TAKEN	AUTO_ NESTON	AUTO_ CAL_EN

SpecificationInformation() values

RSVD (Bits 7-3): Reserved. Do not use.

OFFSET_TAKEN (Bit 2): CC Auto offset is taken.

- 1 = CC Auto Offset has been measured.
- 0 = CC Auto Offset has not been measured.

AUTO_NESTON (Bit 1): NEST Circuit ON

- 1 = When **[OFFSET_TAKEN]** = 1, FW automatically controls the HW NEST circuit for best current and cell current measurements.
- 0 = HW NEST circuit is always on. Individual cell current measurement may have error relative to *Current()*, but the *Current()* accuracy is not impacted.

AUTO_CAL_EN (Bit 0): Auto CC offset calibration enable

- 1 = FW will perform auto CC calibration on entry into SLEEP mode. A min auto CC calibration interval is set to 10hr to prevent flash wear out. The result is saved to CC Auto Offset.
- 0 = Auto CC offset calibration is disabled.

11.2.1.5 CC Auto Offset

Class	Subclass	Name	Туре	Min	Max	Default
Calibration	Current Offset	CC Auto Offset	12	-10000	10000	0

Description: CC offset collected via CC Auto Calibration. This offset is used for cell current measurement and is different than CC Offset.

Calibration www.ti.com

11.2.1.6 Temperature

11.2.1.6.1 Internal Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	Internal Temp Offset	I1	-128	127	0	0.1 °C

Description: Internal temperature sensor reading offset

11.2.1.6.2 External 1 Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	External 1 Temp Offset	I1	-128	127	0	0.1 °C

Description: TS1 temperature sensor reading offset

11.2.1.6.3 External 2 Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	External 2 Temp Offset	I1	-128	127	0	0.1 °C

Description: TS2 temperature sensor reading offset

11.2.1.6.4 External 3 Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	External 3 Temp Offset	I1	-128	127	0	0.1 °C

Description: TS3 temperature sensor reading offset

11.2.1.6.5 External 4 Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	External 4 Temp Offset	I1	-128	127	0	0.1 °C

Description: TS4 temperature sensor reading offset

11.2.1.7 Internal Temp Model

11.2.1.7.1 Int Gain

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Gain	12	-32768	32767	-12143	-

Description: Internal temperature gain

Calibration www.ti.com

11.2.1.7.2 Int Base Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Base Offset	12	-32768	32767	6232	_

Description: Internal temperature base offset

11.2.1.7.3 Int Minimum AD

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Minimum AD	12	-32768	32767	0	_

Description: Minimum AD count used for calculation

11.2.1.7.4 Int Maximum Temp

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Maximum Temp	12	-32768	32767	6232	0.1 °K

Description: Maximum Temperature boundary

11.2.1.8 Cell Temp Model

11.2.1.8.1 Coefficient a1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a1	12	-32768	32767	-11130	

Description: Cell Temperature calculation polynomial a1

11.2.1.8.2 Coefficient a2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a2	12	-32768	32767	19142	_

Description: Cell Temperature calculation polynomial a2

11.2.1.8.3 Coefficient a3

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a3	12	-32768	32767	-19262	

Description: Cell Temperature calculation polynomial a3

www.ti.com Calibration

11.2.1.8.4 Coefficient a4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a4	12	-32768	32767	28203	_

Description: Cell Temperature calculation polynomial a4

11.2.1.8.5 Coefficient a5

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a5	12	-32768	32767	892	_

Description: Cell Temperature calculation polynomial a5

11.2.1.8.6 Coefficient b1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient b1	12	-32768	32767	328	_

Description: Cell Temperature calculation polynomial b1

11.2.1.8.7 Coefficient b2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient b2	12	-32768	32767	-605	_

Description: Cell Temperature calculation polynomial b2

11.2.1.8.8 Coefficient b3

Ī	Class	Subclass	Name	Туре	Min	Max	Default	Unit
	Calibration	Cell Temp Model	Coefficient b3	12	-32768	32767	-2443	_

Description: Cell Temperature calculation polynomial b3

11.2.1.8.9 Coefficient b4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient b4	12	-32768	32767	4969	_

Description: Cell Temperature calculation polynomial b4

11.2.1.8.10 Rc0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Rc0	12	-32768	32767	11703	Ω

Description: Resistance at 25°C

11.2.1.8.11 Adc0

Calibration www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Adc0	12	-32768	32767	11703	_

Description: ADC reading at 25°C

11.2.1.8.12 Rpad

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Rpad	12	-32768	32767	0 ⁽¹⁾	Ω

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Description: Pad Resistance (0 to use factory calibration)

11.2.1.8.13 Rint

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Cell Temp Model	Rint	12	-32768	32767	0 ⁽¹⁾	Ω

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Description: Pull up resistor resistance (0 to use factory calibration)

11.2.1.9 FET Temp Model

11.2.1.9.1 Coefficient a1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a1	12	-32768	32767	-11130	1

Description: FET Temperature calculation polynomial a1

11.2.1.9.2 Coefficient a2

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a2	12	-32768	32767	19142	1

Description: FET Temperature calculation polynomial a2

11.2.1.9.3 Coefficient a3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a3	12	-32768	32767	-19262	1

Description: FET Temperature calculation polynomial a3

11.2.1.9.4 Coefficient a4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a4	12	-32768	32767	28203	

Description: FET Temperature calculation polynomial a4

11.2.1.9.5 Coefficient a5

www.ti.com Calibration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a5	12	-32768	32767	892	-

Description: FET Temperature calculation polynomial a5

11.2.1.9.6 Coefficient b1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b1	12	-32768	32767	328	_

Description: FET Temperature calculation polynomial b1

11.2.1.9.7 Coefficient b2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b2	12	-32768	32767	-605	_

Description: FET Temperature calculation polynomial b2

11.2.1.9.8 Coefficient b3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b3	12	-32768	32767	-2443	1

Description: FET Temperature calculation polynomial b3

11.2.1.9.9 Coefficient b4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b4	12	-32768	32767	4969	1

Description: FET Temperature calculation polynomial b4

11.2.1.9.10 Rc0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Rc0	12	-32768	32767	11703	Ω

Description: Resistance at 25°C

11.2.1.9.11 Adc0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Adc0	12	-32768	32767	11703	1

Description: ADC reading at 25°C

11.2.1.9.12 Rpad

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Rpad	12	-32768	32767	0 ⁽¹⁾	Ω

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Calibration www.ti.com

Description: Pad Resistance (0 to use factory calibration)

11.2.1.9.13 Rint

Class	Subclass	Name	Туре	Min	Max	Default	Unit	
Calibration	FET Temp Model	Rint	12	-32768	32767	0 ⁽¹⁾	Ω	

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Description: Pull up resistor resistance (0 to use factory calibration)

11.2.1.10 Current Deadband

11.2.1.10.1 Deadband

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Current Deadband	Deadband	U1	0	255	3	mA

Description: Pack-based Deadband to report 0 mA

11.2.1.10.2 Coulomb Counter Deadband

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Current Deadband	Coulomb Counter Deadband	U1	0	255	9	116 nV

Description: Coulomb counter deadband to report 0 charge (This setting should not be modified.)

www.ti.com Calibration

Device SMBus Address

The bq40z50-R1 SMBus address (default 0x16) can be changed. The target address should be programmed in *Address* and the 2's complement of that value should be programmed in *Address Check*.

The bq40z50-R1 will check these values upon exit from POR, and if the two data flash values are not valid or the programmed address is 0x00 or 0xFF, then the device defaults to 0x16.

Table 12-1. Address

Class	Subclass	Name	Format Size in Bytes		Min Value	Max Value	Default Value	Unit
Settings	SMBus	Address	Hex	1	0x00	0xFF	0x16	_

Table 12-2. Address Check

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Settings	SMBus	Address Check	Hex	1	0x00	0xFF	0xEA	

www.ti.com

SBS Commands

13.1 0x00 ManufacturerAccess() and 0x44 ManufacturerBlockAccess()

ManufacturerBlockAccess() provides a method of reading and writing data in the Manufacturer Access System (MAC). This block MAC access method is a new standard for the bq40zxy family. The MAC command is sent via ManufacturerBlockAccess() by the SMBus block protocol. The result is returned on ManufacturerBlockAccess() via an SMBus block read.

Example: Send a MAC Gauging() to enable IT via ManufacturerBlockAccess().

- 1. With Impedance Track disabled, send Gauging() (0x0021) to ManufacturerBlockAccess()
 - (a) SMBus block write. Command = 0x44. Data = 21 00 (data must be sent in Little Endian)
- 2. IT is enabled, ManufacturingStatus()[GAUGEN_EN] = 1.

Example: Read Chemical ID() (0x0006) via ManufacturerBlockAccess()

- 1. Send Chemical ID() to ManufacturerBlockAccess().
 - (a) SMBus block write. Command = 0x44. Data sent = 06 00 (data must be sent in Little Endian)
- 2. Read the result from ManufacturerBlockAccess().
 - (a) SMBus block read. Command = 0x44. Data read = 06 00 00 01 (each data entity is returned in Little Endian).
 - (b) The first 2 bytes, "06 00", is the MAC command.
 - (c) The second 2 bytes, "00 01", is the chem ID returning in Little Endian. That is 0x0100, chem ID 100.

For backwards compatibility with the bq30zxy families, sending MAC commands via *ManufacturerAccess()* (0x00) as well as the returning data on *ManufacturerData()* are supported in bq40z50-R1. Note that MAC commands are sent through *ManufacturerAccess()* (0x00) by an SMBus write word protocol. The result reading from *ManufacturerData()* does not include the MAC command.

Example: Send a MAC Gauging() to enable IT via ManufacturerAccess().

- 1. With Impedance Track disabled, send Gauging() (0x0021) to ManufacturerAccess().
 - (a) SMBus word write. Command = 0x00. Data = 00 21
- 2. IT is enabled, ManufacturingStatus()[GAUGEN_EN] = 1.

Example: Read Chemical ID() (0x0006) via ManufacturerAccess()

- 1. Send Chemical ID() to ManufacturerAccess().
 - (a) SMBus word write. Command = 0x00. Data sent = 0006
- 2. Read the result from ManufacturerData().
 - (a) SMBus block read. Command = 0x23. Data read = 00 01
 - (b) That is 0x0100, chem ID 100.

The ManufacturerAccess() and ManufacturerBlockAccess() are interchangeable. The result can be read from ManufacturerData() or ManufacturerBlockAccess() regardless of how the MAC command is sent.

Table 13-1. ManufacturerAccess() Command List

Command	Function	Access	Format	Data Read on 0x44 or 0x23	Data Read on 0x2F	Available in SEALED Mode	Туре	Unit
0x0001	DeviceType	R	Block	Yes	_	Yes	Hex	_
0x0002	FirmwareVersion	R	Block	Yes	_	Yes	Hex	_
0x0003	HardwareVersion	R	Block	Yes	_	Yes	Hex	_
0x0004	IFChecksum	R	Block	Yes	_	Yes	Hex	_
0x0005	StaticDFSignature	R	Block	Yes	_	Yes	Hex	_
0x0006	ChemID	R	Block	Yes	_	Yes	Hex	_
0x0008	StaticChemDFSignature	R	Block	Yes	_	Yes	Hex	_
0x0009	AllDFSignature	R	Block	Yes	_	Yes	Hex	_
0x0010	ShutdownMode	W	_	_	_	Yes	Hex	_
0x0011	SleepMode	W	_	_	_	_	Hex	_
0x0013	AutoCCOfset	W	_	_	_	_	Hex	_
0x001D	FuseToggle	W	_	_	_	_	Hex	_
0x001E	PrechargeFET	W	_	_	_	_	Hex	_
0x001F	ChargeFET	W	_	_	_	_	Hex	_
0x0020	DischargeFET	W	_	_	_	_	Hex	_
0x0021	Gauging	W	_	_	_	_	Hex	_
0x0021	FETControl	W	_	_	_	_	Hex	_
0x0022	LifetimeDataCollection	W	_	_	_	_	Hex	_
0x0023	PermanentFailure	W	_	_	_	_	Hex	
0x0025	BlackBoxRecorder	W	_	_	_	_	Hex	_
0x0025	Fuse	W		_	_	_	Hex	
	LifetimeDataReset	W			_	_		
0x0028		VV	_	_	_	_	Hex	_
0x0029	PermanentFailureData Reset	W	_	_	_	_	Hex	_
0x002E	LifetimeDataFlush	W	_	_	_	_	Hex	_
0x002F	LifetimeDataSpeedUp Mode	W	_	_	_	_	Hex	_
0x002A	BlackBoxRecorderReset	W	_	_	_	_	Hex	_
0x002D	CalibrationMode	W	_	_	_	_	Hex	_
0x0030	SealDevice	W	_	_	_	_	Hex	_
0x0035	SecurityKeys	R/W	Block	Yes	_	_	Hex	_
0x0037	AuthenticationKey	R/W	Block	_	Yes	_	Hex	_
0x0041	DeviceReset	W	_	_	_	_	Hex	_
0x0050	SafetyAlert	R	Block	Yes	_	Yes	Hex	_
0x0051	SafetyStatus	R	Block	Yes	_	Yes	Hex	_
0x0052	PFAlert	R	Block	Yes	_	Yes	Hex	_
0x0053	PFStatus	R	Block	Yes	_	Yes	Hex	
0x0054	OperationStatus	R	Block	Yes	_	Yes	Hex	_
0x0055	ChargingStatus	R	Block	Yes	_	Yes	Hex	_
0x0056	GaugingStatus	R	Block	Yes	_	Yes	Hex	_
0x0057	ManufacturingStatus	R	Block	Yes	_	Yes	Hex	_
0x0057	AFERegister	R	Block	Yes		Yes	Hex	
0x0056	LifetimeDataBlock1	R	Block	Yes	_	Yes	Mixed	Mixed
0x0060 0x0061	LifetimeDataBlock1	R	Block	Yes	_	Yes	Mixed	
					_			Mixed
0x0062	LifetimeDataBlock3	R	Block	Yes	_	Yes	Mixed	Mixed
0x0070	ManufacturerInfo	R	Block	Yes	_	Yes	Hex	
0x0071	DAStatus1	R	Block	Yes	_	Yes	Mixed	Mixed
0x0072	DAStatus2	R	Block	Yes	_	Yes	Mixed	Mixed
0x0073	GaugeStatus1	R	Block	Yes	_	Yes	Mixed	Mixed
0x0074	GaugeStatus2	R	Block	Yes	_	Yes	Mixed	Mixed
0x0075	GaugeStatus3	R	Block	Yes	_	Yes	Mixed	Mixed
0x0076	CBStatus	R	Block	Yes	_	Yes	Mixed	Mixed

Table 13-1. ManufacturerAccess() Command List (continued)

Command	Function	Access	Format	Data Read on 0x44 or 0x23	Data Read on 0x2F	Available in SEALED Mode	Туре	Unit
0x0077	StateofHealth	R	Block	Yes	_	Yes	Mixed	Mixed
0x0078	FilteredCapacity	R	Block	Yes	_	Yes	Mixed	Mixed
0x007A	ManufacturerInfo2	R	Block	Yes	_	Yes	Hex	_
0x0F00	ROMMode	W	_	_	_	_	Hex	_
0xF080	ExitCalibrationOutput	R/W	Block	Yes	_	_	Hex	_
0xF081	OutputCCandADCfor Calibration	R/W	Block	Yes	_	_	Hex	_
0xF082	OutputShortedCCand ADCforCalibration	R/W	Block	Yes	_	_	Hex	_

13.1.1 ManufacturerAccess() 0x0000

A read word on this command returns the lowest 16 bits of the OperationStatus() data.

13.1.2 ManufacturerAccess() 0x0001 Device Type

The device can be checked for the IC part number. The IC part number returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAA, where:

Value	Description
AAaa	Device Type

13.1.3 ManufacturerAccess() 0x0002 Firmware Version

The device can be checked for the firmware version of the IC. The firmware revision returns on ManufacturerBlockAccess() or ManufacturerData() in the following format: ddDDvvVVbbBBTTzzZZRREE, where:

Value	Description
DDdd	Device Number
VVvv	Version
BBbb	Build Number
TT	Firmware Type
ZZzz	Impedance Track Version
RR	Reserved
EE	Reserved

13.1.4 ManufacturerAccess() 0x0003 Hardware Version

The device can be checked for the hardware version of the IC. The hardware revision returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*.

13.1.5 ManufacturerAccess() 0x0004 Instruction Flash Signature

The device can return the instruction flash signature. The IF signature returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*.

13.1.6 ManufacturerAccess() 0x0005 Static DF Signature

The device can return the data flash checksum. The signature of all static DF returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*. MSB is set to 1 if the calculated signature does not match the signature stored in DF.

13.1.7 ManufacturerAccess() 0x0006 Chemical ID

This command returns the chemical ID of the OCV tables used in the gauging algorithm. The chemical ID returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*.

13.1.8 ManufacturerAccess() 0x0008 Static Chem DF Signature

The device can return the data flash checksum. The signature of all static chemistry DF returns on subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*. MSB is set to 1 if the calculated signature does not match the signature stored in DF.

13.1.9 ManufacturerAccess() 0x0009 All DF Signature

The device can return the data flash checksum. The signature of all DF parameters returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*. MSB is set to 1 if the calculated signature does not match the signature stored in DF. It is normally expected that this signature will change due to updates of lifetime, gauging, and other information.

13.1.10 ManufacturerAccess() 0x0010 SHUTDOWN Mode

To reduce power consumption, the device can be sent to SHUTDOWN mode before shipping. After sending this command, the *OperationStatus()[SDM]* = 1, an internal counter will start, the CHG and DSG FETs will be turned off when the counter reaches **Ship FET Off Time**. When the counter reaches Ship Delay time, the device will enter SHUTDOWN mode if no charger present is detected.

If the device is SEALED, this feature requires the command to be sent twice in a row within 4 seconds (for safety purposes). If the device is in UNSEALED or FULL ACCESS mode, sending the command the second time will cancel the delay and enter shutdown immediately.

To wake up the device, a voltage > **Charger Present Threshold** must apply to the PACK pin. The device will power up and a full reset is applied.

13.1.11 ManufacturerAccess() 0x0011 SLEEP Mode

If the sleep conditions are met, the device can be sent to sleep with ManufacturerAccess().

Status	Condition	Action
Enable	0x0011 to ManufacturerAccess()	OperationStatus()[SLEEPM] = 1
Activate	DA Configuration[NR] = 0 AND OperationStatus()[PRES] = 0 AND Current() < Power:Sleep Current	Turn off CHG FET, DSG FET, PCHG FET Device goes to sleep. Device wakes up every Power: Sleep Voltage Time period to measure voltage and temperature. Device wakes up every Power: Sleep Current Time period to measure current.
Activate	DA Configuration[NR] = 1 AND Current() < Power:Sleep Current	Turn off DSG FET, PCHG FET Turn off CHG FET if DA Configuration[SLEEPCHG] = 0 Device goes to sleep. Device wakes up every Power: Sleep Voltage Time period to measure voltage and temperature. Device wakes up every Power: Sleep Current Time period to measure current.
Exit	DA Configuration[NR] = 0 AND OperationStatus()[PRES] = 1	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode
Exit	Current() > Configuration:Sleep Current	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode
Exit	Wake Comparator trips	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode
Exit	SafetyAlert() flag or PFAlert() flag set	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode

13.1.12 ManufacturerAccess() 0x0013 AutoCCOffset

This command manually starts an Auto CC Offset calibration. The calibration takes about 16 s.

This value is updated to CC Auto Offset, and is used for cell current measurement when the device is in CHARGING or DISCHARGING state. This offset is not used during RELAX mode. The cell current measurement is a current measurement taken simultaneously as the cell voltage measurement.

13.1.13 ManufacturerAccess() 0x001D Fuse Toggle

This command manually activates/deactivates the FUSE output to ease testing during manufacturing. If the *OperationStatus()[FUSE]* = 0 indicates the FUSE output is low. Sending this command toggles the FUSE output to be high and the *OperationStatus()[FUSE]* = 1.

13.1.14 ManufacturerAccess() 0x001E PCHG FET Toggle

This command turns on/off the PCHG FET drive function to ease testing during manufacturing. If the *ManufacturingStatus()[PCHG_TEST]* = 0, sending this command will turn on the PCHG FET and the *ManufacturingStatus()[PCHG_TEST]* = 1 and vice versa. This toggling command is only enabled if *ManufacturingStatus()[FET_EN]* = 0, indicating an FW FET control is not active and manual control is allowed. A reset clears the [PCHG_TEST] flag and turns off the PCHG FET.

13.1.15 ManufacturerAccess() 0x001F CHG FET Toggle

This command turns on/off the CHG FET drive function to ease testing during manufacturing. If the <code>ManufacturingStatus()[CHG_TEST] = 0</code>, sending this command turns on the CHG FET and the <code>ManufacturingStatus()[CHG_TEST] = 1</code> and vice versa. This toggling command is only enabled if <code>ManufacturingStatus()[FET_EN] = 0</code>, indicating an FW FET control is not active and manual control is allowed. A reset clears the [CHG_TEST] flag and turns off the CHG FET.

13.1.16 ManufacturerAccess() 0x0020 DSG FET Toggle

This command turns on/off DSG FET drive function to ease testing during manufacturing. If the *ManufacturingStatus()[DSG_TEST]* = 0, sending this command turns on the DSG FET and the *ManufacturingStatus()[DSG_TEST]* = 1 and vice versa. This toggling command is only enabled if *ManufacturingStatus()[FET_EN]* = 0, indicating an FW FET control is not active and manual control is allowed. A reset clears the [DSG_TEST] flag and turns off the DSG FET.

13.1.17 ManufacturerAccess() 0x0021 Gauging

This command enables or disables the gauging function to ease testing during manufacturing. The initial setting is loaded from *Mfg Status Init[GAUGE_EN]*. If the *ManufacturingStatus()[GAUGE_EN]* = 0, sending this command will enable gauging and the *ManufacturingStatus()[GAUGE_EN]* = 1 and vice versa. In UNSEALED mode, the *ManufacturingStatus()[GAUGE_EN]* status is copied to *Mfg Status Init[GAUGE_EN]* when the command is received by the gauge. The device remains on its latest gauging status prior to a reset.

13.1.18 ManufacturerAccess() 0x0022 FET Control

This command disables/enables control of the CHG, DSG, and PCHG FET by the firmware. The initial setting is loaded from *Mfg Status Init[FET_EN]*. If the *ManufacturingStatus()[FET_EN]* = 0, sending this command allows the FW to control the PCHG, CHG, and DSG FETs and the *ManufacturingStatus()[FET_EN]* = 1 and vice versa.

In UNSEALED mode, the *ManufacturingStatus()[FET_EN]* status is copied to *Mfg Status Init[FET_EN]* when the command is received by the gauge. The device remains on its latest FET control status prior to a reset.

13.1.19 ManufacturerAccess() 0x0023 Lifetime Data Collection

This command disables/enables Lifetime Data Collection to help streamline production testing. The initial setting is loaded from Mfg Status Init[LF_EN]. If the ManufacturingStatus()[LF_EN] = 0, sending this command starts the Lifetime Data Collection and the ManufacturingStatus()[LF_EN] = 1 and vice versa.

In UNSEALED mode, the ManufacturingStatus()[LF_EN] status is copied to Mfg Status Init[LF_EN] when the command is received by the gauge. The device remains on its latest Lifetime Data Collection setting prior to a reset.

13.1.20 ManufacturerAccess() 0x0024 Permanent Failure

This command disables/enables Permanent Failure to help streamline production testing.

The initial setting is loaded from Mfg Status Init[PF_EN]. If the ManufacturingStatus()[PF_EN] = 0, sending this command enables Permanent Failure protections and the ManufacturingStatus()[PF EN] = 1 and vice versa.

In UNSEALED mode, ManufacturingStatus()[PF_EN] status is copied to Mfg Status Init[PF_EN] when the command is received by the gauge. The device remains on its PF enable/disable setting prior to a reset.

13.1.21 ManufacturerAccess() 0x0025 Black Box Recorder

This command enables/disables Black Box Recorder function to help streamline production testing. The initial setting is loaded from *Mfg Status Init[BBR_EN]*. If the *ManufacturingStatus()[BBR_EN]* = 0, sending this command enables the Black Box Recorder and the ManufacturingStatus()[BBR EN] = 1 and vice versa.

In UNSEALED mode, the ManufacturingStatus()[BBR EN] status is copied to Mfg Status Init[BBR EN] when the command is received by the gauge. The device remains on its latest Black Box Recorder enable/disable setting prior to a reset.

13.1.22 ManufacturerAccess() 0x0026 Fuse

This command disables/enables firmware-based fuse activation to ease testing during manufacturing. The initial setting is loaded from Mfg Status Init[FUSE_EN]. If the ManufacturingStatus()[FUSE_EN] = 0, sending this command allows the FW to control the FUSE output and the ManufacturingStatus()[FUSE EN] = 1 and vice versa.

In UNSEALED mode, the ManufacturingStatus()[FUSE_EN] status is copied to Mfg Status Init[FUSE EN] when the command is received by the gauge. The device remains on its latest Fuse Control setting prior to a reset.

13.1.23 ManufacturerAccess() 0x0027 LED DISPLAY Enable

This command enables or disables the LED display function to ease testing during manufacturing. The initial setting is loaded from Mfg Status Init[LED_EN]. If the ManufacturingStatus()[LED_EN] = 0, sending this command will enable the LED display and the ManufacturingStatus()[LED_EN] = 1 and vice versa. In UNSEALED mode, the ManufacturingStatus()[LED_EN] status is copied to Mfg Status Init[LED_EN] when the command is received by the gauge. The device remains on its latest setting prior to a reset.

13.1.24 ManufacturerAccess() 0x0028 Lifetime Data Reset

Sending this command resets Lifetime Data in data flash to help streamline production testing.

13.1.25 ManufacturerAccess() 0x0029 Permanent Fail Data Reset

Sending this command resets PF data in data flash to help streamline production testing.

13.1.26 ManufacturerAccess() 0x002A Black Box Recorder Reset

Sending this command resets the Black Box Recorder data in data flash to help streamline production testing.

13.1.27 ManufacturerAccess() 0x002B LED TOGGLE

This command toggles the LED display on or off to help streamline testing during manufacturing. When the LED display is off, the *OperationStatus()[LED]* = 0. Sending this command turns on all LED displays with *OperationStatus()[LED]* set to 1, and vice versa.

13.1.28 ManufacturerAccess() 0x002C LED DISPLAY PRESS

This command simulates a low-high-low detection of the DISP pin, activating the LED display according to the LED Support data flash setting. This command forces RSOC to 100% in order to demonstrate all LEDs in use, the full speed, and the brightness.

13.1.29 ManufacturerAccess() 0x002D CALIBRATION Mode

This command disables/enables entry into CALIBRATION mode. Status is indicated by the *ManufacturingStatus()[CAL_EN]* flag. CALIBRATION mode is disabled upon a reset.

Status	Condition	Action
Disable	ManufacturingStatus()[CAL_EN] = 1 AND 0x002D to ManufacturerAccess()	ManufacturingStatus()[CAL_EN] = 0 Disable output of ADC and CC raw data on ManufacturingData()
Enable	ManufacturingStatus()[CAL_EN] = 0 AND 0x002D to ManufacturerAccess()	ManufacturingStatus()[CAL_EN] = 1 Enable output of ADC and CC raw data on ManufacturingData(), controllable with 0xF081 and 0xF082 on ManufacturerAccess()

13.1.30 ManufacturerAccess() 0x002E Lifetime Data Flush

This command flushes the RAM Lifetime Data to data flash to help streamline evaluation testing.

13.1.31 ManufacturerAccess() 0x002F Lifetime Data SPEED UP Mode

For ease of evaluation testing, this command enables a lifetime SPEED UP mode where every 1 s in real time counts as 2 hours in FW time. When the lifetime SPEED UP mode is enabled, the *ManufacturingStatus()[LT_TEST]* = 1.

The SPEED UP mode will be disabled if this command is sent again when [LT_TEST] = 1, the MAC LifetimeDataReset() command is sent, the MAC SealDevice() command is sent, or the device is reset.

13.1.32 ManufacturerAccess() 0x0030 Seal Device

This command seals the device for the field, disabling certain SBS commands and access to data flash. See Table 13-1 and Chapter 13 for details.

When the device is sealed, the *OperationStatus()[SEC1, SEC0]* = 1,1. All the test features in *ManufacturingStatus()* will also be disabled.

13.1.33 ManufacturerAccess() 0x0035 Security Keys

This is a read/write command for 2-word UNSEAL and FULL ACCESS keys.

When reading the keys, data can be read from *ManufacturerData()* or *ManufacturerBlockAccess()*. The keys are returned in the following format: aaAAbbBBccCCddDD, where:

Value	Description
AAaa	First word of the UNSEAL key
BBbb	Second word of the UNSEAL key
CCcc	First word of the FULL ACCESS key
DDdd	Second word of the FULL ACCESS key

The default UNSEAL key is 0x0414 and 0x3672. The default FULL ACCESS key is 0xFFFF and 0xFFFF.

It is highly recommended to change the UNSEAL and FULL ACCESS keys from default.

The keys can only be changed through the ManufacturerBlockAccess().

Example: Change UNSEAL key to 0x1234, 0x5678, and leave the FULL ACCESS as default. Send an SMBus block write with Command = 0x44.

Data = MAC command + New UNSEAL key + New FULL ACCESS KEY = 35 00 34 12 78 56 FF FF FF FF

NOTE: The first word of the keys cannot be the same. That means an UNSEAL key with 0xABCD 0x1234 and FULL ACCESS key with 0xABCD 0x5678 are not valid because the first word is the same.

This is because the first word is used as a "detection" for the right command. This also means the first word cannot be the same as any existing MAC command.

13.1.34 ManufacturerAccess() 0x0037 Authentication Key

This command enables the update of the authentication key into the device. The device must be in FULL ACCESS mode for the authentication key to update.

To update a new authentication key:

- Send the AuthenticationKey() + the new 128-bit authentication key to ManufacturerBlockAccess(), OR
- Send the AuthenticationKey() to ManufacturerAccess(), then send the 128-bit authentication key to Authentication().

There is no direct read access to the authentication key. After writing the new authentication to the gauge, the gauge will generate an all-zero challenge and provide the corresponding response for verification.

To verify the new authentication key:

- Read the response from ManufacturerBlockAccess() after updating the new authentication key, OR
- Read the response from Authentication() after updating the new authentication key.

13.1.35 ManufacturerAccess() 0x0041 Device Reset

This command resets the device.

Command 0x0012 also resets the device (for backwards compatibility with the bq30zxy device).

13.1.36 ManufacturerAccess() 0x0050 SafetyAlert

This command returns the SafetyAlert() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RSVD	RSVD	RSVD	RSVD	UTD	UTC	PCHG C	CHGV	CHGC	ОС	стоѕ	СТО	PTOS	PTO	RSVD	OTF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	CUVC	OTD	отс	ASC DL	RSVD	ASC CL	RSVD	AOLD L	RSVD	OCD2	OCD1	OCC2	OCC1	COV	CUV

RSVD (Bits 31-28): Reserved. Do not use.

UTD (Bit 27): Undertemperature During Discharge

1 = Detected

0 = Not Detected

UTC (Bit 26): Undertemperature During Charge

1 = Detected

0 = Not Detected

PCHGC (Bit 25): Over-Precharge Current

1 = Detected

0 = Not Detected

CHGV (Bit 24): Overcharging Voltage

1 = Detected

0 = Not Detected

CHGC (Bit 23): Overcharging Current

1 = Detected

0 = Not Detected

OC (Bit 22): Overcharge

1 = Detected

0 = Not Detected

CTOS (Bit 21): Charge Timeout Suspend

1 = Detected

0 = Not Detected

CTO (Bit 20): Charge Timeout

1 = Detected

0 = Not Detected

PTOS (Bit 19): Precharge Timeout Suspend

1 = Detected

0 = Not Detected

PTO (Bit 18): Precharge Timeout

1 = Detected

0 = Not Detected

RSVD (Bit 17): Reserved. Do not use.

OTF (Bit 16): Overtemperature FET

1 = Detected

0 = Not Detected

RSVD (Bit 15): Reserved. Do not use.

CUVC (Bit 14): Cell Undervoltage Compensated

1 = Detected

0 = Not Detected

OTD (Bit 13): Overtemperature During Discharge

1 = Detected

0 = Not Detected

OTC (Bit 12): Overtemperature During Charge

1 = Detected

0 = Not Detected

ASCDL (Bit 11): Short-Circuit During Discharge Latch

1 = Detected

0 = Not Detected

RSVD (Bit 10): Reserved. Do not use.

ASCCL (Bit 9): Short-Circuit During Charge Latch

1 = Detected

0 = Not Detected

RSVD (Bit 8): Reserved. Do not use.

AOLDL (Bit 7): Overload During Discharge Latch

1 = Detected

0 = Not Detected

RSVD (Bit 6): Reserved. Do not use.

OCD2 (Bit 5): Overcurrent During Discharge 2

1 = Detected

0 = Not Detected

OCD1 (Bit 4): Overcurrent During Discharge 1

1 = Detected

0 = Not Detected

OCC2 (Bit 4): Overcurrent During Charge 2

1 = Detected

0 = Not Detected

OCC1 (Bit 2): Overcurrent During Charge 1

1 = Detected

0 = Not Detected

COV (Bit 1): Cell Overvoltage

1 = Detected

0 = Not Detected

CUV (Bit 0): Cell Undervoltage

1 = Detected

0 = Not Detected

13.1.37 ManufacturerAccess() 0x0051 SafetyStatus

This command returns the SafetyStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RSVD	RSVD	RSVD	RSVD	UTD	UTC	PCHG C	CHGV	CHGC	ОС	RSVD	СТО	RSVD	РТО	RSVD	OTF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

RSVD (Bits 31-28): Reserved. Do not use.

UTD (Bit 27): Undertemperature During Discharge

1 = Detected

0 = Not Detected

UTC (Bit 26): Undertemperature During Charge

1 = Detected

0 = Not Detected

PCHGC (Bit 25): Over-Precharge Current

1 = Detected

0 = Not Detected

CHGV (Bit 24): Overcharging Voltage

1 = Detected

0 = Not Detected

CHGC (Bit 23): Overcharging Current

1 = Detected

0 = Not Detected

OC (Bit 22): Overcharge

1 = Detected

0 = Not Detected

RSVD (Bit 21): Reserved. Do not use.

CTO (Bit 20): Charge Timeout

1 = Detected

0 = Not Detected

RSVD (Bit 19): Reserved. Do not use.

PTO (Bit 18): Precharge Timeout

1 = Detected

0 = Not Detected

RSVD (Bit 17): Reserved. Do not use.

OTF (Bit 16): Overtemperature FET

1 = Detected

0 = Not Detected

RSVD (Bit 15): Reserved. Do not use.

CUVC (Bit 14): Cell Undervoltage Compensated

1 = Detected

0 = Not Detected

OTD (Bit 13): Overtemperature During Discharge

1 = Detected

0 = Not Detected

OTC (Bit 12): Overtemperature During Charge

1 = Detected

0 = Not Detected

ASCDL (Bit 11): Short-circuit During Discharge Latch

1 = Detected

0 = Not Detected

ASCD (Bit 10): Short-circuit During Discharge

1 = Detected

0 = Not Detected

ASCCL (Bit 9): Short-circuit During Charge Latch

1 = Detected

0 = Not Detected

ASCC (Bit 8): Short-circuit During Charge

1 = Detected

0 = Not Detected

AOLDL (Bit 7): Overload During Discharge Latch

1 = Detected

0 = Not Detected

AOLD (Bit 6): Overload During Discharge

1 = Detected

0 = Not Detected

OCD2 (Bit 5): Overcurrent During Discharge 2

1 = Detected

0 = Not Detected

OCD1 (Bit 4): Overcurrent During Discharge 1

1 = Detected

0 = Not Detected

OCC2 (Bit 3): Overcurrent During Charge 2

1 = Detected

0 = Not Detected

OCC1 (Bit 2): Overcurrent During Charge 1

1 = Detected

0 = Not Detected

COV (Bit 1): Cell Overvoltage

1 = Detected

0 = Not Detected

CUV (Bit 0): Cell Undervoltage

1 = Detected

0 = Not Detected

13.1.38 ManufacturerAccess() 0x0052 PFAlert

This command returns the PFAlert() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TS4	TS3	TS2	TS1	RSVD	RSVD	OPNC	RSVD	RSVD	2LVL	AFEC	AFER	FUSE	RSVD	DFE TF	CFE TF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VIMA	VIMR	CD	IMP	СВ	QIM	SOTF	RSVD	SOT	SOCD	SOCC	SOV	SUV

TS4 (Bit 31): Open Thermistor-TS4 Failure

- 1 = Detected
- 0 = Not Detected

TS3 (Bit 30): Open Thermistor-TS3 Failure

- 1 = Detected
- 0 = Not Detected

TS2 (Bit 29): Open Thermistor-TS2 Failure

- 1 = Detected
- 0 = Not Detected

TS1 (Bit 28): Open Thermistor-TS1 Failure

- 1 = Detected
- 0 = Not Detected

RSVD (Bits 27-26): Reserved. Do not use.

OPNC (Bit 25): Open Cell Tab Connection Failure

- 1 = Detected
- 0 = Not Detected

RSVD (Bits 24–23): Reserved. Do not use.

2LVL (Bit 22): Second Level Protector Failure

- 1 = Detected
- 0 = Not Detected

AFEC (Bit 21): AFE Communication Failure

- 1 = Detected
- 0 = Not Detected

AFER (Bit 20): AFE Register Failure

- 1 = Detected
- 0 = Not Detected

FUSE (Bit 19): Chemical Fuse Failure

- 1 = Detected
- 0 = Not Detected

DFETF (Bit 17): Discharge FET Failure

- 1 = Detected
- 0 = Not Detected

CFETF (Bit 16): Charge FET Failure

- 1 = Detected
- 0 = Not Detected

RSVD (Bits 15–13): Reserved. Do not use.

VIMA (Bit 12): Voltage Imbalance While Pack Is Active Failure

- 1 = Detected
- 0 = Not Detected

VIMR (Bit 11): Voltage Imbalance While Pack Is At Rest Failure

- 1 = Detected
- 0 = Not Detected
- CD (Bit 10): Capacity Degradation Failure

- 1 = Detected
- 0 = Not Detected

IMP (Bit 9): Impedance Failure

- 1 = Detected
- 0 = Not Detected

CB (Bit 8): Cell Balancing Failure

- 1 = Detected
- 0 = Not Detected

QIM (Bit 7): QMax Imbalance Failure

- 1 = Detected
- 0 = Not Detected

SOTF (Bit 6): Safety Overtemperature FET Failure

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 5): Reserved. Do not use.

SOT (Bit 4): Safety Overtemperature Cell Failure

- 1 = Detected
- 0 = Not Detected

SOCD (Bit 3): Safety Overcurrent in Discharge

- 1 = Detected
- 0 = Not Detected

SOCC (Bit 2): Safety Overcurrent in Charge

- 1 = Detected
- 0 = Not Detected

SOV (Bit 1): Safety Cell Overvoltage Failure

- 1 = Detected
- 0 = Not Detected

SUV (Bit 0): Safety Cell Undervoltage Failure

- 1 = Detected
- 0 = Not Detected

13.1.39 ManufacturerAccess() 0x0053 PFStatus

This command returns the PFStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TS4	TS3	TS2	TS1	RSVD	DFW	OPN CELL	IFC	PTC	2LVL	AFEC	AFER	FUSE	RSVD	DFE TF	CFE TF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VIMA	VIMR	CD	IMP	СВ	QIM	SOTF	RSVD	SOT	SOCD	SOCC	SOV	SUV

TS4 (Bit 31): Open Thermistor-TS4 Failure

- 1 = Detected
- 0 = Not Detected

TS3 (Bit 30): Open Thermistor-TS3 Failure

1 = Detected

0 = Not Detected

TS2 (Bit 29): Open Thermistor-TS2 Failure

1 = Detected

0 = Not Detected

TS1 (Bit 28): Open Thermistor-TS1 Failure

1 = Detected

0 = Not Detected

RSVD (Bit 27): Reserved. Do not use.

DFW (Bit 26): Data Flash Wearout Failure

1 = Detected

0 = Not Detected

OPNCELL (Bit 25): Open Cell Tab Connection Failure

1 = Detected

0 = Not Detected

IFC (Bit 24): Instruction Flash Checksum Failure

1 = Detected

0 = Not Detected

PTC (Bit 23): PTC Failure

1 = Detected

0 = Not Detected

2LVL (Bit 22): Second Level Protector Failure

1 = Detected

0 = Not Detected

AFEC (Bit 21): AFE Communication Failure

1 = Detected

0 = Not Detected

AFER (Bit 20): AFE Register Failure

1 = Detected

0 = Not Detected

FUSE (Bit 19): Chemical Fuse Failure

1 = Detected

0 = Not Detected

RSVD (Bit 18): Reserved. Do not use.

DFETF (Bit 17): Discharge FET Failure

1 = Detected

0 = Not Detected

CFETF (Bit 16): Charge FET Failure

1 = Detected

0 = Not Detected

RSVD (Bits 15-13): Reserved. Do not use.

VIMA (Bit 12): Voltage Imbalance while Pack is Active Failure

1 = Detected

0 = Not Detected

VIMR (Bit 11): Voltage Imbalance while Pack At Rest Failure

1 = Detected

0 = Not Detected

CD (Bit 10): Capacity Degradation Failure

1 = Detected

0 = Not Detected

IMP (Bit 9): Impedance Failure

1 = Detected

0 = Not Detected

CB (Bit 8): Cell Balancing Failure

1 = Detected

0 = Not Detected

QIM (Bit 7): QMax Imbalance Failure

1 = Detected

0 = Not Detected

SOTF (Bit 6): Safety Overtemperature FET Failure

1 = Detected

0 = Not Detected

RSVD (Bit 5): Reserved. Do not use.

SOT (Bit 4): Safety Overtemperature Cell Failure

1 = Detected

0 = Not Detected

SOCD (Bits 3): Safety Overcurrent in Discharge

1 = Detected

0 = Not Detected

SOCC (Bits 2): Safety Overcurrent in Charge

1 Detected

0 Not Detected

SOV (Bit 1): Safety Cell Overvoltage Failure

1 = Detected

0 = Not Detected

SUV (Bit 0): Safety Cell Undervoltage Failure

1 = Detected

0 = Not Detected

13.1.40 ManufacturerAccess() 0x0054 OperationStatus

This command returns the OperationStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RSVD	RSVD	EM SHUT	СВ	SLP CC	SLP AD	SMBL CAL	INIT	SLEE PM	XL	CAL_ OFFS ET	CAL	AUTO CALM	AUTH	LED	SDM
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SLEE P	XCHG	XDSG	PF	SS	SDV	SEC1	SEC0	BTP_ INT	RSVD	FUSE	RSVD	PCHG	CHG	DSG	PRES

RSVD (Bits 31-30): Reserved. Do not use.

EMSHUT (Bit 29): Emergency Shutdown

- 1 = Active
- 0 = Inactive

CB (Bit 28): Cell balancing status

- 1 = Active
- 0 = Inactive

SLPCC (Bit 27): CC Measurement in SLEEP mode

- 1 = Active
- 0 = Inactive

SLPAD (Bit 26): ADC Measurement in SLEEP mode

- 1 = Active
- 0 = Inactive

SMBLCAL (Bit 25): Auto CC calibration when the bus is low. This bit may not be read by the host because the FW will clear it when a communication is detected.

- 1 = Auto CC calibration starts
- 0 = When the bus is high or communication is detected for the case of **[IN_SYSTEM_SLEEP]** = 1.

INIT (Bit 24): Initialization after full reset

- 1 = Active
- 0 = Inactive

SLEEPM (Bit 23): SLEEP mode triggered via command

- 1 = Active
- 0 = Inactive

XL (Bit 22): 400-kHz SMBus mode

- 1 = Active
- 0 = Inactive

CAL_OFFSET (Bit 21): Calibration Output (raw CC offset data).

- 1 = Active when MAC *OutputShortedCCADCCal()* is sent and the raw shorted CC data for calibration is available.
- 0 = When the raw shorted CC data for calibration is not available.

CAL (Bit 20): Calibration Output (raw ADC and CC data)

- 1 = Active when either the MAC *OutputCCADCCal()* or *OutputShortedCCADCCal()* is sent and the raw CC and ADC data for calibration is available.
- 0 = When the raw CC and ADC data for calibration is not available.

AUTOCALM (Bit 19): Auto CC Offset Calibration by MAC AutoCCOffset()

- 1 = The gauge receives the MAC *AutoCCOffset()* and starts the auto CC offset calibration.
- 0 = Clear when the calibration is completed.

AUTH (Bit 18): Authentication in progress

- 1 = Active
- 0 = Inactive

LED (Bit 17): LED Display

- 1 = LED display is on.
- 0 = LED display is off.


```
SDM (Bit 16): Shutdown triggered via command
```

- 1 = Active
- 0 = Inactive

SLEEP (Bit 15): SLEEP mode conditions met

- 1 = Active
- 0 = Inactive

XCHG (Bit 14): Charging disabled

- 1 = Active
- 0 = Inactive

XDSG (Bit 13): Discharging disabled

- 1 = Active
- 0 = Inactive

PF (Bit 12): PERMANENT FAILURE mode status

- 1 = Active
- 0 = Inactive

SS (Bit 11): SAFETY mode status

- 1 = Active
- 0 = Inactive

SDV (Bit 10): Shutdown triggered via low pack voltage

- 1 = Active
- 0 = Inactive

SEC1, SEC0 (Bits 9-8): SECURITY mode

- 0, 0 = Reserved
- 0, 1 = Full Access
- 1, 0 = Unsealed
- 1, 1 = Sealed

BTP_INT (Bit 7): Battery Trip Point Interrupt. Setting and clearing this bit depends on various conditions. See Section 6.9 for details.

- RSVD (Bit 6): Reserved. Do not use.
- FUSE (Bit 5): Fuse status
 - 1 = Active
 - 0 = Inactive

RSVD (Bit 4): Reserved. Do not use.

- PCHG (Bit 3): Precharge FET status
 - 1 = Active
 - 0 = Inactive

CHG (Bit 2): CHG FET status

- 1 = Active
- 0 = Inactive

DSG (Bit 1): DSG FET status

- 1 = Active
- 0 = Inactive

PRES (Bit 0): System present low

1 = Active

0 = Inactive

13.1.41 ManufacturerAccess() 0x0055 ChargingStatus

This command returns the ChargingStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

								23	22	21	20	19	18	17	16
								RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	CCC	CVR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CCR	VCT	MCHG	IN	HV	MV	LV	PV	RSVD	OT	HT	STH	RT	STL	LT	UT

RSVD (Bits 18–23): Reserved. Do not use.

CCC (Bit 17): Charging Loss Compensation

1 = Active

0 = Inactive

CVR (Bit 16): Charging Voltage Rate of Change

1 = Active

0 = Inactive

CCR (Bit 15): Charging Current Rate of Change

1 = Active

0 = Inactive

VCT (Bit 14): Charge Termination

1 = Active

0 = Inactive

MCHG (Bit 13): Maintenance Charge

1 = Active

0 = Inactive

IN (Bit 12): Charge Inhibit

1 = Active

0 = Inactive

HV (Bit 11): High Voltage Region

1 = Active

0 = Inactive

MV (Bit 10): Mid Voltage Region

1 = Active

0 = Inactive

LV (Bit 9): Low Voltage Region

1 = Active

0 = Inactive

PV (Bit 8): Precharge Voltage Region

1 = Active

0 = Inactive

RSVD (Bits 7): Reserved. Do not use.

OT (Bit 6): Overtemperature Region

1 = Active

0 = Inactive

HT (Bit 5): High Temperature Region

1 = Active

0 = Inactive

STH (Bit 4): Standard Temperature High Region

1 = Active

0 = Inactive

RT (Bit 3): Recommended Temperature Region

1 = Active

0 = Inactive

STL (Bit 2): Standard Temperature Low Region

1 = Active

0 = Inactive

LT (Bit 1): Low Temperature Region

1 = Active

0 = Inactive

UT (Bit 0): Undertemperature Region

1 = Active

0 = Inactive

13.1.42 ManufacturerAccess() 0x0056 GaugingStatus

This command returns the GaugingStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

								23	22	21	20	19	18	17	16
								RSVD	RSVD	RSVD	OCV FR	LDMD	RX	QMax	VDQ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NSFM	RSVD	SLP QMax	QEN	VOK	R_DIS	RSVD	REST	CF	DSG	EDV	BAL_ EN	TC	TD	FC	FD

RSVD (Bits 21 -23): Reserved. Do not use.

OCVFR (Bit 20): Open Circuit Voltage in Flat Region (during RELAX)

1 = Detected

0 = Not Detected

LDMD (Bit 19): LOAD mode

1 = Constant Power

0 = Constant Current

RX (Bit 18): Resistance Update (toggles after every resistance update)

QMax (Bit 17): QMax Update (toggles after every QMax update)

VDQ (Bit 16): Discharge Qualified for Learning (opposite of the R_DIS flag)

1 = Detected

0 = Not Detected

NSFM (Bit 15): Negative Scale Factor Mode

- 1 = Negative Ra Scaling Factor Detected
- 0 = Negative Ra Scaling Factor Not Detected

RSVD (Bit 14): Reserved. Do not use.

SLPQMax (Bit 13): OCV update in SLEEP mode

- 1 = Active. OCV reading in process
- 0 = Inactive. Completed OCV reading

QEN (Bit 12): Impedance Track Gauging (Ra and QMax updates are enabled.)

- 1 = Enabled
- 0 = Disabled

VOK (Bit 11): Voltages are OK for QMax update. This flag is updated at exit of the RELAX mode.

- 1 = A DOD is saved for next QMax update.
- 0 = No DOD saved and QMax update is not possible.

R_DIS (Bit 10): Resistance Updates

- 1 = Disabled
- 0 = Enabled

RSVD (Bit 9): Reserved. Do not use.

REST (Bit 8): Rest

- 1 = OCV Reading Taken
- 0 = OCV Reading Not Taken or Not in RELAX

CF (Bit 7): Condition Flag

- 1 = MaxError() > Max Error Limit (Condition Cycle Needed)
- 0 = MaxError() < Max Error Limit (Condition Cycle Not Needed)

DSG (Bit 6): Discharge/Relax

- 1 = Charging Not Detected
- 0 = Charging Detected

EDV (Bit 5): End-of-Discharge Termination Voltage

- 1 = Termination voltage reached during discharge
- 0 = Termination voltage not reached, or not in DISCHARGE mode

BAL_EN (Bit 4): Cell Balancing

- 1 = Cell balancing is possible if enabled.
- 0 = Cell balancing is not allowed.

TC (Bit 3): Terminate Charge

- 1 = Detected
- 0 = Not Detected

TD (Bit 2): Terminate Discharge

- 1 = Detected
- 0 = Not Detected

FC (Bits 1): Fully Charged

- 1 = Detected
- 0 = Not Detected

FD (Bit 0): Fully Discharged

- 1 = Detected
- 0 = Not Detected

13.1.43 ManufacturerAccess() 0x0057 ManufacturingStatus

This command returns the *ManufacturingStatus()* flags on *ManufacturerBlockAccess()* or *ManufacturerData()*.

15	14	13	12	11	10	9	8
CAL_TEST	LT_TEST	RSVD	RSVD	RSVD	RSVD	LED_EN	FUSE_EN
7	6	5	4	3	2	1	0
BBR_EN	PF_EN	LF_EN	FET_EN	GAUGE_EN	DSG_EN	CHG_EN	PCHG_EN

CAL_TEST (Bit 15): CALIBRATION mode

1 = Enabled

0 = Disabled

LT_TEST (Bit 14): LIFETIME SPEED UP mode

1 = Enabled

0 = Disabled

RSVD (Bits 13-): Reserved. Do not use.

LED_EN (Bit 9): LED Display

1 = LED display is on.

0 = LED display is off.

FUSE_EN (Bit 8): Fuse Action

1 = Enabled

0 = Disabled

BBR EN (Bit 8): Black Box Recorder

1 = Enabled

0 = Disabled

PF EN (Bit 6): Permanent Failure

1 = Enabled

0 = Disabled

LF EN (Bit 5): Lifetime Data Collection

1 = Enabled

0 = Disabled

FET_EN (Bit 4): All FET Action

1 = Enabled

0 = Disabled

GAUGE_EN (Bit 3): Gas Gauging

1 = Enabled

0 = Disabled

DSG_EN (Bit 2): Discharge FET Test

1 = Discharge FET test activated

0 = Disabled

CHG EN (Bit 1): Charge FET Test

1 = Charge FET test activated

0 = Disabled

PCHG_EN (Bit 0): Precharge FET Test

- 1 = Precharge FET test activated
- 0 = Disabled

13.1.44 ManufacturerAccess() 0x0058 AFE Register

This command returns the AFERegister() values on ManufacturerBlockAccess() or ManufacturerData(). These are the AFE hardware registers and are intended for internal debug use only.

Status	Condition
Activate	0x0058 to ManufacturerAccess()

Action: Output AFE Register values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: AABBCCDDEEFFGGHHIJJKKLLMMNNOOPPQQRRSSTTUU where:

Value	Description	
AA	AFE Interrupt Status. AFE Hardware interrupt status (for example, wake time, push-button, and so on)	
BB AFE FET Status. AFE FET status (for example, CHG FET, DSG FET, PCHG FET, FUSE input, and so		
CC AFE RXIN. AFE I/O port input status		
DD	AFE Latch Status. AFE protection latch status	
EE	AFE Interrupt Enable. AFE interrupt control settings	
FF	AFE Control. AFE FET control enable setting	
GG	AFE RXIEN. AFE I/O input enable settings	
HH	AFE RLOUT. AFE I/O pins output status	
II	AFE RHOUT. AFE I/O pins output status	
JJ AFE RHINT. AFE I/O pins interrupt status		
KK AFE Cell Balance. AFE cell balancing enable settings and status		
LL AFE ADC/CC Control. AFE ADC/CC Control settings		
MM AFE ADC Mux Control. AFE ADC channel selections		
NN AFE LED Control		
OO AFE Control AFE control on various HW based features		
PP AFE Timer Control. AFE comparator and timer control		
QQ AFE Protection. AFE protection delay time control		
RR AFE OCD. AFE OCD settings		
SS AFE SCC. AFE SCC settings		
TT	AFE SCD1. AFE SCD1 settings	
UU AFE SCD2. AFE SCD2 settings		

13.1.45 ManufacturerAccess() 0x005F NoLoadRemCap

This read-only word command returns the equivalent of RemainingCapacity() under a no load condition.

- (a) RemainingCapacity() is calculated by the device with compensation based on Load Select (for example, max, average, current last run, and so on).
- (b) Because the RTC power consumption is expected to be relatively small, the new parameter provides a better representation of how much actual capacity is available when only powering the RTC circuit.

Figure 13-1. No Load

13.1.46 ManufacturerAccess() 0x0060 Lifetime Data Block 1

This command returns the Lifetime Data with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKKIlLLmmMMNNOOPPQQRRSS.

Value	Description
AAaa	Cell 1 Max Voltage
BBbb	Cell 2 Max Voltage
CCcc	Cell 3 Max Voltage
DDdd	Cell 4 Max Voltage
EEee	Cell 1 Min Voltage
FFff	Cell 2 Min Voltage
GGgg	Cell 3 Min Voltage
HHhh	Cell 4 Min Voltage
Ilii	Max Delta Cell Voltage
JJjj	Max Charge Current
KKkk	Max Discharge Current
LLII	Max Avg Dsg Current
MMmm	Max Avg Dsg Power
NN	Max Temp Cell
00	Min Temp Cell
PP	Max Delta Cell temp
QQ	Max Temp Int Sensor
RR	Min Temp Int Sensor
SS	Max Temp Fet

13.1.47 ManufacturerAccess() 0x0061 Lifetime Data Block 2

This command returns the Lifetime Data with the following format: AABBCCDDEEFFGGHH.

Value	Description
AA	No. of Shutdowns
BB	No. of Partial Resets
CC	No. of Full Resets
DD	No. of WDT resets

Value	Description
EE	CB Time Cell 1
FF	CB Time Cell 2
GG	CB Time Cell 3
HH	CB Time Cell 4

13.1.48 ManufacturerAccess() 0x0062 Lifetime Data Block 3

This command returns the Lifetime Data with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHH.

Value	Description
AAaa	Total FW Runtime
BBbb	Time Spent in UT
CCcc	Time Spent in LT
DDdd	Time Spent in STL
EEee	Time Spent in RT
FFff	Time Spent in STH
GGgg	Time Spent in HT
HHhh	Time Spent in OT

13.1.49 ManufacturerAccess() 0x0063 Lifetime Data Block 4

This command returns the Lifetime Data with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHIILLmmMMnnNNooOOppPP.

Value	Description
AAaa	No. of COV Events
BBbb	Last COV Event
CCcc	No. of CUV Events
DDdd	Last CUV Event
EEee	No. of OCD1 Events
FFff	Last OCD1 Event
GGgg	No. of OCD2 Events
HHhh	Last OCD2 Event
Ilii	No. of OCC1 Events
JJjj	Last OCC1 Event
KKkk	No. of OCC2 Events
LLII	Last OCC2 Event
MMmm	No. of AOLD Events
NNnn	Last AOLD Event
0000	No. of ASCD Events
PPpp	Last ASCD Event

13.1.50 ManufacturerAccess() 0x0064 Lifetime Data Block 5

This command returns the Lifetime Data with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHIILLmmMMnnNNooOOppPP.

	Value	Description
	AAaa	No. of ASCC Events
	BBbb	Last ASCC Event
Ī	CCcc	No. of OTC Events

Value	Description		
DDdd	Last OTC Event		
EEee	No. of OTD Events		
FFff	Last OTD Event		
GGgg	No. of OTF Events		
HHhh	Last OTF Event		
Ilii	No. Valid Charge Term		
JJjj	Last Valid Charge Term		
KKkk	No. of Qmax Updates		
LLII	Last Qmax Update		
MMmm	No. of Ra Updates		
NNnn	Last Ra Update		
0000	No. of Ra Disable		
РРрр	Last Ra Disable		

13.1.51 ManufacturerAccess() 0x0070 ManufacturerInfo

This command returns ManufacturerInfo on ManufacturerBlockAccess() or ManufacturerData().

Status Condition		Action
Activate	0x0070 to ManufacturerAccess()	Output 32 bytes of ManufacturerInfo on ManufacturerBlockAccess() or ManufacturerData() in the following format: AABBCCDDEEFFGGHHIIJJKKLLMMNN OOPPQQRRSSTTUUVVWWXXVVZZ112233 445566

13.1.52 ManufacturerAccess() 0x0071 DAStatus1

This command returns the Cell Voltages, Pack Voltage, Bat Voltage, Cell Currents, Cell Powers, Power, and Average Power on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x0071 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 32 bytes of data on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKKIILLmmMMnnNNooOOppPP where:

Value	Description	Unit
AAaa	Cell Voltage 1	mV
BBbb	Cell Voltage 2	mV
CCcc	Cell Voltage 3	mV
DDdd	Cell Voltage 4	mV
EEee	BAT Voltage. Voltage at the BAT pin. This is different than <i>Voltage()</i> , which is the sum of all the cell voltages.	mV
FFff	PACK Voltage	mV
GGgg	Cell Current 1. Simultaneous current measured during Cell Voltage1 measurement	mA
HHhh	Cell Current 2. Simultaneous current measured during Cell Voltage2 measurement	mA
Ilii	Cell Current 3. Simultaneous current measured during Cell Voltage3 measurement	mA
JJjj	Cell Current 4. Simultaneous current measured during Cell Voltage 4 measurement	mA
KKkk	Cell Power 1. Calculated using Cell Voltage1 and Cell Current 1 data	mA
LLII	Cell Power 2. Calculated using Cell Voltage2 and Cell Current 2 data	cW
MMmm	Cell Power 3. Calculated using Cell Voltage3 and Cell Current 3 data	cW
NNnn	Cell Power 4. Calculated using Cell Voltage4 and Cell Current 4 data	cW
0000	Power calculated by Voltage() × Current()	cW
PPpp	Average Power	cW

13.1.53 ManufacturerAccess() 0x0072 DAStatus2

This command returns the internal temp sensor, TS1, TS2, TS3, TS4, Cell Temp, and FETTemp on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0072 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 14 bytes of temperature data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGG where:

Value	Description	Unit
AAaa	Int Temperature	0.1°K
BBbb	TS1 Temperature	0.1°K
CCcc	TS2 Temperature	0.1°K
DDdd	TS3 Temperature	0.1°K
EEee	TS4 Temperature	0.1°K
FFff	Cell Temperature	0.1°K
GGgg	FET Temperature	0.1°K

13.1.54 ManufacturerAccess() 0x0073 GaugeStatus1

This command instructs the device to return Impedance Track related gauging information on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0073 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 32 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHliiIIjjJJkkKKIILLmmMMnnNNooOOppPPqqQQ where:

Value	Description	Unit
AAaa	True Rem Q. True remaining capacity in mAh from IT simulation before any filtering or smoothing function. This value can be negative or higher than FCC.	mAh
BBbb	True Rem E. True remaining energy in cWh from IT simulation before any filtering or smoothing function. This value can be negative or higher than FCC.	cWh
CCcc	Initial Q. Initial capacity calculated from IT simulation	mAh
DDdd	Initial E. Initial energy calculated from IT simulation	cWh
EEee	True FCC Q. True full charge capacity from IT simulation without the effects of any smoothing function	mAh
FFff	True FCC E. True full charge energy from IT simulation without the effects of any smoothing function	cWh
GGgg	T_sim. Temperature during the last simulation run.	0.1°K
HHhh	T_ambient. Current assumed ambient temperature used by the IT algorithm for thermal modeling	0.1°K
Ilii	RaScale 0. Ra table scaling factor of Cell 1	_
JJjj	RaScale 1. Ra table scaling factor of Cell 2	_
KKkk	RaScale 2. Ra table scaling factor of Cell 3	_
LLII	RaScale 3. Ra table scaling factor of Cell 4	_
MMmm	CompRes 0. Last temperature compensated Resistance of Cell 1	2 ⁻¹⁰ Ω
NNnn	CompRes 1. Last temperature compensated Resistance of Cell 2	2 ⁻¹⁰ Ω
0000	CompRes 2. Last temperature compensated Resistance of Cell 3	2 ⁻¹⁰ Ω
PPpp	CompRes 3. Last temperature compensated Resistance of Cell 4	2 ⁻¹⁰ Ω

13.1.55 ManufacturerAccess() 0x0074 GaugeStatus2

This command instructs the device to return Impedance Track related gauging information on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0074 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 32 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: AABBCCDDEEFFggGGhhHHiilIjjJJkkKKIILLmmMMnnNNooOOppPPqqQQrrRRssSS where:

Value	Description	Unit
AA	Pack Grid. Active pack grid point (minimum of CellGrid0 to Cell Grid3). This data is only valid during DISCHARGE mode when [R_DIS] = 0. If [R_DIS] = 1 or not discharging, this value is not updated.	_
ВВ	BB: LStatus—Learned status of resistance table Bit 3 Bit 2 Bit 1 Bit 0 QMax ITEN CF1 CF0 CF1, CF0: QMax Status 0,0 = Battery OK 0,1 = QMax is first updated in learning cycle. 1,0 = QMax and resistance table updated in learning cycle ITEN: IT enable 0 = IT disabled 1 = IT enabled QMax: QMax update in field 0 = QMax has not been updated in the field 1= QMax updated in the field	
СС	Cell Grid 0. Active grid point of Cell 1. This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_
DD	Cell Grid 1. Active grid point of Cell 2. This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_
EE	Cell Grid 2. Active grid point of Cell 3. This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_
FF	Cell Grid 3. Active grid point of Cell 4. This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_
GGggHHhh	State Time. Time passed since last state change (DISCHARGE, CHARGE, REST)	S
IIii	DOD0_0. Depth of discharge for Cell 1	_
JJjj	DOD0_1. Depth of discharge for Cell 2	_
KKkk	DOD0_2. Depth of discharge for Cell 3	_
LLII	DOD0_3. Depth of discharge for Cell 4	_
MMmm	DOD0 Passed Q. Passed capacity since the last DOD0 update	mAh
NNnn	DOD0 Passed E. Passed energy since last DOD0 update	cWh
0000	DOD0 Time. Time passed since the last DOD0 update	hr/16
PPpp	DODEOC 0. Depth of discharge at end of charge of Cell 1	_
QQqq	DODEOC 1. Depth of discharge at end of charge of Cell 2	_
RRrr	DODEOC 2. Depth of discharge at end of charge of Cell 3	_
SSss	DODEOC 3. Depth of discharge at end of charge of Cell 4	_

13.1.56 ManufacturerAccess() 0x0075 GaugeStatus3

This command instructs the device to return Impedance Track related gauging information on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0075 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 24 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHIiiIIjjJJkkKKIILL where:

Value	Description	Unit
AAaa	QMax 0. QMax of Cell 1	mAh
BBbb	QMax 1. QMax of Cell 2	mAh
CCcc	QMax 2. QMax of Cell 3	mAh
DDdd	QMax 3. QMax of Cell 4	mAh
EEee	QMax DOD0_0. DOD0 saved to be used for next QMax update of Cell 1. The value is only valid when [VOK] = 1.	_
FFff	QMax DOD0_1. DOD0 saved to be used for next QMax update of Cell 2. The value is only valid when [VOK] = 1.	
GGgg	QMax DOD0_2. DOD0 saved to be used for next QMax update of Cell 3 . The value is only valid when [VOK] = 1.	_
HHhh	QMax DOD0_3. DOD0 saved to be used for next QMax update of Cell 4. The value is only valid when [VOK] = 1.	_
Ilii	QMax Passed Q. Pass capacity since last QMax DOD value is saved.	mAh
JJjj	QMax Time. Time passed since last QMax DOD value is saved.	hr/16
KKkk	Temp k. Thermal Model temperature factor	_
LLII	Temp a. Thermal Model temperature	

13.1.57 ManufacturerAccess() 0x0076 CBStatus

This command instructs the device to return cell balance time information on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0076 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 8 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDD where:

Value	Description	Unit
AAaa	Cell Balance Time 0. Calculated cell balancing time of Cell 1	S
BBbb	Cell Balance Time 1. Calculated cell balancing time of Cell 2	S
CCcc	Cell Balance Time 2. Calculated cell balancing time of Cell 3	S
DDdd	Cell Balance Time 3. Calculated cell balancing time of Cell 4	S

13.1.58 ManufacturerAccess() 0x0077 State-of-Health

This command returns the state-of-health FCC in mAh and energy in cWh with the following format: aaAAbbBB.

Value	Description	Unit
AAaa	State-of-Health FCC	mAh
BBbb	State-of-Health energy	cWh

13.1.59 ManufacturerAccess() 0x0078 FilterCapacity

This command instructs the device to return the filtered remaining capacity and full charge capacity even if [SMOOTH] = 0 on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0078 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 8 bytes of IT data values on ManufacturerBlockAccess() or ManufacturerData() in the following format: aaAAbbBBccCCddDD where:

Value	Description	Unit
AAaa	Filtered remaining capacity	mAh
BBbb	Filtered remaining energy	mWh
CCcc	Filtered full charge capacity	mAh
DDdd	Filtered full charge energy	mWh

13.1.60 ManufacturerAccess() 0x007A ManufacturerInfo2

This command returns ManufacturerInfo2 on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition	Action
Activate	V	Output 32 bytes of ManufacturerInfo2 on ManufacturerBlockAccess() or ManufacturerData() in the following format: AABBCCDDEEFFGGHHIIJJKKLLMMNN OOPPQQRRSSTTUUVVWWXXVVZZ112233 445566

13.1.61 ManufacturerAccess() 0x0F00 ROM Mode

This command sends the device into ROM mode in preparation for firmware re-programming. To enter ROM mode, the device must be in FULL ACCESS mode. To return from ROM mode to FW mode, issue the SMBus command 0x08.

NOTE: Command 0x0033 also puts the device in ROM mode (for backwards compatibility with the bq30zxy device).

13.1.62 0x4000-0x5FFF Data Flash Access()

Accessing data flash (DF) is only supported by the ManufacturerBlockAccess() by addressing the physical address.

To write to the DF, send the starting address, followed by the DF data block. The DF data block is the intended revised DF data to be updated to DF. The size of the DF data block ranges from 1 byte to 32 bytes. All individual data must be sent in Little Endian.

Write to DF example:

Assuming: data1 locates at address 0x4000 and data2 locates at address 0x4002.

Both data1 and data2 are U2 type.

To update data1 and data2, send an SMBus block write with command = 0x44

block = starting address + DF data block

= 0x00 + 0x40 + data1_LowByte + data1_HighByte + data2_LowByte + data2_HighByte

To read the DF, send an SMBus block write to the *ManufacturerBlockAccess()*, followed by the starting address, then send an SMBus block read to the ManufacturerBlockAccess(). The return data contains the starting address followed by 32 bytes of DF data in Little Endian.

Read from DF example:

Taking the same assuming from the read DF example, to read DF,

- a. Send SMBus write block with command 0x44, block = 0x00 + 0x40
- b. Send SMBus read block with command 0x44

```
The returned block = a starting address + 32 bytes of DF data
= 0x00 + 0x40 + data1_LowByte + data1_HighByte + data2_LowByte + data2_HighByte....
data32_LowByte + data32_HighByte
```

The gauge supports an auto-increment on the address during a DF read. This greatly reduces the time required to read out the entire DF. Continue with the read from the DF example. If another SMBus read block is sent with command 0x44, the gauge returns another 32 bytes of DF data, starting with address 0x4020.

13.1.63 ManufacturerAccess() 0xF080 Exit Calibration Output Mode

This command stops the output of calibration data to the *ManufacturerBlockAccess()* or *ManufacturerData()* command. Any other MAC command sent to the gauge will also stop the output of the calibration data.

Status Condition		Condition	Action				
	Activate	ManufacturerBlockAccess() OR ManufacturerData() = 1 AND 0xF080 to ManufacturerAccess()	Stop output of ADC or CC data on ManufacturerBlockAccess() or ManufacturerData()				

13.1.64 ManufacturerAccess() 0xF081 Output CCADC Cal

This command instructs the device to output the raw values for calibration purposes on ManufacturerBlockAccess() or ManufacturerData(). All values are updated every 250 ms and the format of each value is 2's complement, MSB first.

Status	Condition
Disable	ManufacturingStatus()[CAL] = 1 AND 0xF080 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 0, [CAL_OFFSET] = 0 Stop output of ADC and CC data on ManufacturerBlockAccess() or ManufacturerData()

Status	Condition
Enable	0xF081 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 1, [CAL_OFFSET] = 0

Outputs the raw CC and AD values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the format of ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKK:

Value	Description
ZZ	Rolling 8-bit counter, increments when values are refreshed.
YY	Status, 1 when ManufacturerAccess() = 0xF081, 2 when ManufacturerAccess() = 0xF082
AAaa	Current (coulomb counter)
BBbb	Cell Voltage 1
CCcc	Cell Voltage 2
DDdd	Cell Voltage 3
EEee	Cell Voltage 4
FFff	PACK Voltage
GGgg	BAT Voltage
HHhh	Cell Current 1
Ilii	Cell Current 2
JJjj	Cell Current 3

Value	Description
KKkk	Cell Current 4

13.1.65 ManufacturerAccess() 0xF082 Output Shorted CCADC Cal

This command instructs the device to output the raw values for calibration purposes on *ManufacturerBlockAccess()* or *ManufacturerData()*. All values are updated every 250 ms and the format of each value is 2's complement, MSB first. This mode includes an internal short on the coulomb counter inputs for measuring offset.

Status	Condition
Disable	ManufacturingStatus()[CAL] = 1 AND 0xF080 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 0, [CAL_OFFSET] = 0 Stop output of ADC and CC data on ManufacturerBlockAccess() or ManufacturerData()

Status	Condition			
Enable	0xF081 to ManufacturerAccess()			

Action: OperationStatus()[CAL] = 1, [CAL_OFFSET] = 1

Outputs the raw CC and AD values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the format of ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKK:

Value	Description
ZZ	Rolling 8-bit counter, increments when values are refreshed.
YY	Status, 1 when ManufacturerAccess() = 0xF081, 2 when ManufacturerAccess() = 0xF082
AAaa	Current (coulomb counter)
BBbb	Cell Voltage 1
CCcc	Cell Voltage 2
DDdd	Cell Voltage 3
EEee	Cell Voltage 4
FFff	PACK Voltage
GGgg	BAT Voltage
HHhh	Cell Current 1
Ilii	Cell Current 2
JJjj	Cell Current 3
KKkk	Cell Current 4

13.2 0x01 RemainingCapacityAlarm()

This read/write word function sets a low capacity alarm threshold for the cell stack.

SBS	Name		Access		Proto-	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	col	туре	IVIIII	IVIAA	Delault	Oilit
0v01	PomainingCapacityAlarm()		R/W		Word	U2	0	700	300	mAh
0.001	0x01 RemainingCapacityAlarm()		IX/ VV		vvoid	02	0	700	300	10 mWh

NOTE: If *BatteryMode()[CAPM]* = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in 10 mWh.

Description of data types see page 136

13.3 0x02 RemainingTimeAlarm()

This read/write word function sets a low remaining time-to-fully discharge alarm threshold for the cell stack.

SBS	Name	Access			Proto-	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	col	Турс		Mux	Dolault	Oille
0x02	RemainingTimeAlarm()		R/W		Word	U2	0	30	10	min

13.4 0x03 BatteryMode()

This read/write word function sets various battery operating mode options.

SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOGOI	туре	IVIIII	IVIAA	Offic
0x03	BatteryMode()		R/W		Word	H2	0x0000	0xFFFF	_

15	14	13	12	11	10	9	8
CAPM	CHGM	AM	RSVD	RSVD	RSVD	PB	CC
_	_	_	_	_			_
7	6	5	4	3	2	1	0
CF	RSVD	RSVD	RSVD	RSVD	RSVD	PBS	ICC

CAPM (Bit 15): CAPACITY Mode (R/W)

0 = Report in mA or mAh (default)

1 = Report in 10 mW or 10 mWh

CHGM (Bit 14): CHARGER Mode (R/W)

0 = Enable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger

1 = Disable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger (default)

AM (Bit 13): ALARM Mode (R/W)

0 = Enable AlarmWarning broadcasts to host and smart battery charger (default)

1 = Disable Alarm Warning broadcasts to host and smart battery charger

RSVD (Bits 12-10): Reserved. Do not use.

PB (Bit 9): Primary Battery

0 = Battery operating in its secondary role (default)

1 = Battery operating in its primary role

CC (Bit 8): Charge Controller Enabled (R/W)

0 = Internal charge controller disabled (default)

1 = Internal charge controller enabled

CF (Bit 7): Condition Flag (R)

0 = Battery OK

1 = Conditioning cycle requested

RSVD (Bits 6-2): Reserved. Do not use.

PBS (Bit 1): Primary Battery Support (R)

0 = Function not supported (default)

1 = Primary or Secondary Battery Support

ICC (Bit 0): Internal Charge Controller (R)

0x04 AtRate() www.ti.com

0 = Function not supported (default)

1 = Function supported

13.5 0x04 AtRate()

This read/write word function sets the value used in calculating AtRateTimeToFull() and AtRateTimeToEmpty().

SBS	Name	Access		Protocol	Type Min		rotocol Type Min Max		Default	Unit
Cmd	Name	SE	US	FA	FIOLOGOI	Type	IVIIII	IVIAA	Delauit	Oille
0x04	AtRate()		R/W		Word	12	-32768	32767	0	mA
0.04	Aurale()		IX/VV		vvolu	12	-32700	32/0/	U	10 mW

NOTE: If BatteryMode()[CAPM] = 0, then the data reports in mA.

If BatteryMode()[CAPM] = 1, then the data reports in 10 mW.

13.6 0x05 AtRateTimeToFull()

This word read function returns the remaining time-to-fully charge the battery stack.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit	l
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Oille	
0x05	AtRateTimeToFull()		R		Word	U2	0	65535	min	

NOTE: 65535 indicates not being charged.

13.7 0x06 AtRateTimeToEmpty()

This word read function returns the remaining time-to-fully discharge the battery stack.

SBS	md Name		Acces	s	Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	11010001	Туре	101111	WICA	Onne
0x06	AtRateTimeToEmpty()		R		Word	U2	0	65535	min

NOTE: 65535 indicates not being charged.

13.8 0x07 AtRateOK()

This read-word function returns a Boolean value that indicates whether the battery can deliver AtRate() for at least 10 s.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOGOI	Type	IVIIII	IVIAX	Oilit
0x07	AtRateOK()		R		Word	U2	0	65535	_

NOTE: 0 = False. The gauge cannot deliver energy for 10 s, based on the discharge rate indicated in AtRate().

> than 0 = True. The gauge can deliver energy for 10 s, based on the discharge rate indicated in AtRate().

0x08 Temperature() www.ti.com

13.9 0x08 Temperature()

This read-word function returns the temperature in units 0.1°K.

SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Oilit
80x0	Temperature()		R		Word	U2	0	65535	0.1°K

13.10 0x09 Voltage()

This read-word function returns the sum of the measured cell voltages.

SBS	Name		Access	3	Protocol	Туре	Min	Max	Unit
Cme	I Name	SE	US	FA	FIOLOCOI	Type	Willi	Wax	Oilit
0x0	Voltage()		R		Word	U2	0	65535	mV

13.11 0x0A Current()

This read-word function returns the measured current from the coulomb counter. If the input to the device exceeds the maximum value, the value is clamped at the maximum and does not roll over.

SBS Cmd	Name	Access			Protocol	Туре	Min	Max	Unit	
	Cmd	Name	SE	US	FA	11010001	туре	Willi	Wax	Oilit
	A0x0	Current()		R	•	Word	12	-32767	32768	mA

13.12 0x0B AverageCurrent()

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAX	Oille
0x0B	AverageCurrent()		R		Word	12	-32767	32768	mA

13.13 **0x0C MaxError()**

This read-word function returns the expected margin of error, in %, in the state-of-charge calculation with a range of 1 to 100%.

	SBS	Name		Access		Protocol	Typo	Min	Max	Unit
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	Willi	IVIAA	Oille
Ī	0x0C	MaxError()		R		Word	U1	0	100	%

Condition	Action
Full device reset	MaxError() = 100%
RA-table only updated	MaxError() = 5%
QMax only updated	MaxError() = 3%
RA-table and QMax updated	MaxError() = 1%
Each CycleCount() increment after last valid QMax update	MaxError() increment by 0.05%
The Configuration:Max Error Time Cycle Equivalent period passed since the last valid QMax update	MaxError() increment by 0.05%.

13.14 0x0D RelativeStateOfCharge()

This read-word function returns the predicted remaining battery capacity as a percentage of FullChargeCapacity().

SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Oliit
0x0D	RelativeStateOfCharge()		R		Word	U1	0	100	%

13.15 0x0E AbsoluteStateOfCharge()

This read-word function returns the predicted remaining battery capacity as a percentage.

	SBS	Name		Access		Protocol	Туре	Min	Max	Unit
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Oilit
ĺ	0x0E	AbsoluteStateOfCharge()		R		Word	U1	0	100	%

13.16 0x0F RemainingCapacity()

This read-word function returns the predicted remaining battery capacity.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Oill
0x0F	RemainingCapacity()	D	D	D	Word	U2	0	65535	mAh
UAUF	nemainingCapacity()	IX.	K	K	vvoid	02	J	00000	10 mWh

NOTE: If BatteryMode()[CAPM] = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in 10 mWh.

13.17 0x10 FullChargeCapacity()

This read-word function returns the predicted battery capacity when fully charged. The value returned will not be updated during charging.

	SBS	Name		Access		Protocol	Туре	Min	Max	Unit
	Cmd	Hallie	SE	US	FA	11010001	Type	IVIIII	IVIAA	Oilit
ĺ	0x10	FullChargeCapacity()	D	R	D	Word	U2	0	65535	mAh
	UXIU	FullChargeCapacity()	K	K	K	vvoid	02	U	00000	10 mWh

NOTE: If *BatteryMode()[CAPM]* = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in 10 mWh.

13.18 0x11 RunTimeToEmpty()

This read-word function returns the predicted remaining battery capacity based on the present rate of discharge.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit	
	Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	IVIAA	Oilit
	0x11	RunTimeToEmpty()	R	R	R	Word	U2	0	65535	min

NOTE: 65535 = Battery is not being discharged.

13.19 0x12 AverageTimeToEmpty()

This read-word function returns the predicted remaining battery capacity based on AverageCurrent().

SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd		SE	US	FA	Protocol	Туре	141111	IVICA	Oille
0x12	AverageTimeToEmpty()	R	R	R	Word	U2	0	65535	min

NOTE: 65535 = Battery is not being discharged.

13.20 0x13 AverageTimeToFull()

This read-word function returns the predicted time-to-full charge based on AverageCurrent().

SBS	Name		Access		Protocol	Type	Min	Max	Unit
Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	WIGA	Oille
0x13	AverageTimeToFull()	R	R	R	Word	U2	0	65535	min

NOTE: 65535 = Battery is not being discharged.

13.21 0x14 ChargingCurrent()

This read-word function returns the desired charging current.

	SBS	Name		Access		Protocol	Туре	Min	Max	Unit
	Cmd	ivame	SE	US	FA	Piolocoi	Type	IVIIII	IVIAA	Offic
Ī	0x14	ChargingCurrent()	R	R	R	Word	U2	0	65535	mA

NOTE: 65535 = Request maximum current

13.22 0x15 ChargingVoltage()

This read-word function returns the desired charging voltage.

SBS		Name		Access	Protocol	Туре	Min	Max	Unit	
	Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	IVIAA	Onit
	0x15	ChargingVoltage()	R	R	R	Word	U2	0	65535	mV

NOTE: 65535 = Request maximum voltage

13.23 0x16 BatteryStatus()

This read-word function returns various battery status information.

SBS	Name		Access		Protocol	Type	Min	Max
Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	IVIAA
0x16	BatteryStatus()	R	R	R	Word	H2	_	_

15	14	13	12	11	10	9	8
OCA	TCA	RSVD	OTA	TDA	RSVD	RCA	RTA
7	6	5	4	3	2	1	0
INIT	DSG	FC	FD	EC3	EC2	EC1	EC0

www.ti.com 0x16 BatteryStatus()

OCA (Bit 15): Overcharged Alarm

- 1 = Detected
- 0 = Not Detected

TCA (Bit 14): Terminate Charge Alarm

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 13): Undefined

OTA (Bit 12): Overtemperature Alarm

- 1 = Detected
- 0 = Not Detected

TDA (Bit 11): Terminate Discharge Alarm

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 10): Undefined

RCA (Bit 9): Remaining Capacity Alarm

- 1 = RemainingCapacity() < RemainingCapacityAlarm() when in DISCHARGE or RELAX mode
- 0 = RemainingCapacity() ≥ RemainingCapacityAlarm()

RTA (Bit 8): Remaining Time Alarm

- 1 = AverageTimeToEmpty() < RemainingTimeAlarm() or
- 0 = AverageTimeToEmpty() ≥ RemainingTimeAlarm()

INIT (Bit 7): Initialization

- 1 = Gauge initialization is complete.
- 0 = Initialization is in progress.

DSG (Bit 6): Discharging or Relax

- 1 = Battery is in DISCHARGE or RELAX mode.
- 0 = Battery is in CHARGE mode.

FC (Bit 5): Fully Charged

- 1 = Battery fully charged when GaugingStatus()[FC] = 1
- 0 = Battery not fully charged

FD (Bit 4): Fully Discharged

- 1 = Battery fully depleted
- 0 = Battery not depleted

EC3,EC2,EC1,EC0 (Bits 3-0): Error Code

- 0x0 = OK
- 0x1 = Busy
- 0x2 = Reserved Command
- 0x3 = Unsupported Command
- 0x4 = AccessDenied
- 0x5 = Overflow/Underflow
- 0x6 = BadSize
- 0x7 = UnknownError

0x17 CycleCount() www.ti.com

13.24 0x17 CycleCount()

This read-word function returns the number of discharge cycles the battery has experienced. The default value is stored in the data flash value *Cycle Count*, which is updated in runtime.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	11010001	Type	I WIIII	WIGA	Oille
0x17	CycleCount()	R	R/W	R/W	Word	U2	0	65535	cycles

13.25 0x18 DesignCapacity()

This read-word function returns the theoretical pack capacity. The default value is stored in the data flash value **Design Capacity mAh** or **Design Capacity cWh**.

SBS	Name				Protocol	Protocol Type		Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	туре	Min	WICA	Delauit	Oille
0x18	DesignCapacity()	D	R/W	R/W	Word	U2	0	65535	4400	mAh
0.10	DesignCapacity()	IX.	R/W R/W		vvoiu	02	U	03333	6336	10 mWh

NOTE: If *BatteryMode()[CAPM]* = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in 10 mWh.

13.26 0x19 DesignVoltage()

This read-word function returns the theoretical pack voltage. The default value is stored in data flash value **Design Voltage**.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	туре	Willi	Wax	Delauit	Onit
0x19	DesignVoltage()	R	R/W	R/W	Word	U2	7000	18000	14400	mV

13.27 0x1A SpecificationInfo()

SBS	Name		Access		Protocol	Typo	Min	Max
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	Willi	IVIAA
0x1A	SpecificationInfo()	R	R/W	R/W	Word	H2	0x0000	0xFFFF

15	14	13	12	11	10	9	8
IPScale	IPScale	IPScale	IPScale	VScale	VScale	VScale	VScale
,	•	•	•	•	•	•	,
7	6	5	4	3	2	1	0
Version	Version	Version	Version	Revision	Revision	Revision	Revision

IPScale (Bit 15-12): IP Scale Factor

Not supported by the gas gauge MUST be set to 0, 0, 0, 0.

VScale (Bits 11–8): Voltage Scale Factor

Not supported by the gas gauge MUST be set to 0, 0, 0, 0.

Version (Bits 7-4): Version

0.0001 = Version 1.0

0,0,1,1 = Version 1.1

0,0,1,1 = Version 1.1 with optional PEC support

Revision (Bits 3-0): Revision

0,0,0,1 = Version 1.0 and 1.1 (default)

13.28 0x1B ManufacturerDate()

This read-word function returns the pack's manufacturer date.

SBS	Name		Access		Protocol	Туре	Min	Max	Default
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault
0x1B	ManufacturerDate()	R	R/W	R/W	Word	U2		65535	0

NOTE: ManufacturerDate() value in the following format: Day + Month*32 + (Year-1980)*256

13.29 0x1C SerialNumber()

This read-word function returns the assigned pack serial number.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oill
0x1C	SerialNumber()	R	R/W	R/W	Word	H2	0x0000	0xFFFF	0x0001	

13.30 0x20 ManufacturerName()

This read-block function returns the pack manufacturer's name.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	туре	IVIIII	WIGA	Delauit	Oilit
0x20	ManufacturerName()	R	R	R	Block	S20+1	_	_	Texas Inst.	ASCII

13.31 0x21 DeviceName()

This read-block function returns the assigned pack name.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	туре	IVIIII	WIGA	Delauit	Oille
0x21	DeviceName()	R	R	R	Block	S20+1	_	_	bq40z50-R1	ASCII

13.32 0x22 DeviceChemistry()

This read-block function returns the battery chemistry used in the pack.

SBS	Name		Access	•	Protocol	Type	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Delault	Oill
0x22	DeviceChemistry()	R	R	R	Block	S4+1	-	1	LION	ASCII

13.33 0x23 ManufacturerData()

This read-block function returns *ManufacturerInfo* by default. The command also returns a response to MAC command in order to maintain compatibility of the MAC system in bq30zxy family.

0x2F Authenticate() www.ti.com

SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Oilit
0x23	ManufacturerData()	R	R	R	Block	Mixed	_	_	_

13.34 0x2F Authenticate()

This read/write block function provides SHA-1 authentication to send the challenge and read the response in the default mode. It is also used to input a new authentication key when the MAC *AuthenticationKey()* is used.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	11010001	Турс		Mux	Oilit
0x2F	Authenticate()	R/W	R/W	R/W	Block	H20+1	1	_	_

13.35 0x3C CellVoltage4()

This read-word function returns the Cell 4 voltage.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delauit	Oille
0x3C	CellVoltage4()	R	R	R	Word	U2	_	65535	0	mV

13.36 0x3D CellVoltage3()

This read-word function returns the Cell 3 voltage.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Oilit
0x3D	CellVoltage3()	R	R	R	Word	U2	_	65535	0	mV

13.37 0x3E CellVoltage2()

This read-word function returns the Cell 2 voltage.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	11010001	Туре		WIGA	Delauit	Onic
Ī	0x3E	CellVoltage2()	R	R	R	Word	U2	_	65535	0	mV

13.38 0x3F CellVoltage1()

This read-word function returns the Cell 1 voltage.

SBS	Name		Access		Protocol	Type	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Турс	Willi	WIGA	Delauit	Oilit
0x3F	CellVoltage1()	R	R	R	Word	U2	_	65535	0	mV

13.39 0x4A BTPDischargeSet()

This read/write word command updates the BTP set threshold for discharge mode for the next BTP interrupt, de-asserts the present BTP interrupt, and clears the *OperationStatus()[BTP_INT]* bit.

SBS Cmd Name	Namo		Access		Format	Size in	Min	Max	Default	Unit	
	Cmd	Name	SE	US	FA	Format	Bytes	IVIIII	IVIAA	Delault	Oilit
	0x4A	BTPDischargeSet()	R/W	R/W	R/W	Signed Int	2	_	65535	150	mAh

www.ti.com 0x4B BTPChargeSet()

13.40 0x4B BTPChargeSet()

The read/write word command updates the BTP set threshold for charge mode for the next BTP interrupt, de-asserts the present BTP interrupt, and clears the *OperationStatus()[BTP_INT]* bit.

SBS	Name		Access		Format	Size in	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Tomat	Bytes	IVIIII	WIGA	Delauit	Oilit
0x4B	BTPChargeSet()	R/W	R/W	R/W	Signed Int	2	_	65535	175	mAh

13.41 0x4F State-of-Health (SoH)

This read word command returns the SoH information of the battery in percentage of design capacity and design energy.

13.42 0x50 SafetyAlert

This command returns the *SafetyAlert()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Oille
0x50	SafetyAlert()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

13.43 0x51 SafetyStatus

This command returns the *SafetyStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Oilit
0x51	SafetyStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

13.44 0x52 PFAlert

This command returns the *PFAlert()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	Wax	Delault	Oille
0x52	PFAlert()		R	R	Block	H4	0x000000 00	0xFFFFF FFF	1	_

13.45 0x53 PFStatus

This command returns the *PFStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Oilit
0x53	PFStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

0x54 OperationStatus www.ti.com

13.46 0x54 OperationStatus

This command returns the *OperationStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delault	Oilit
Ī	0x54	OperationStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

13.47 0x55 ChargingStatus

This command returns the *ChargingStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SB		Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cm	d	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delauit	Oilit
0x5	5 <i>Cl</i>	nargingStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

13.48 0x56 GaugingStatus

This command returns the *GaugingStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Protocol	туре	IVIIII	IVIAX	Delault	Offic
0x56	GaugingStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

13.49 0x57 ManufacturingStatus

This command returns the *ManufacturingStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Турс	Willi	WIGA	Delauit	Oille
0x57	ManufacturingStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

13.50 0x58 AFE Register

This command returns a snapshot of the AFE register settings. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Ivaille	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oilit
0x58	AFERegister()	_	R	R	Block	_	_	_	_	_

13.51 0x59 TURBO_POWER

TURBO_POWER reports the maximal peak power value, MAX_POWER. The gauge computes a new RAM value every second. *TURBO_POWER()* is initialized to the result of the max power calculation at reset or power up.

0x5A TURBO_FINAL www.ti.com

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Delault	Olik
0x59	TURBO_POWER()	R	R	R/W	Word					cW

NOTE: This computes and provides Turbo Power information based on the battery pack configuration.

13.52 0x5A TURBO_FINAL

TURBO_FINAL sets *Min Turbo Power*, which represents the minimal TURBO BOOST mode power level during active operation (for example, non-SLEEP).

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit	
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delauit	Onic	
0x5A	TURBO_FINAL()	R/W	R/W	R/W	Word					cW	

13.53 0x5B TURBO_PACK_R

TURBO PACK R sets the **PACK Resistance** value of the battery pack serial resistance, including resistance associated with FETs, traces, sense resistors, and so on TURBO PACK R() accesses to the data flash value Pack Resistance.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault	Oilit
0x5B	TURBO_PACK_R()	R/W	R/W	R/W	Word					mΩ

13.54 0x5C TURBO SYS R

TURBO SYS R sets the System Resistance value of the system serial resistance along the path from battery to system power converter input that includes FETs, traces, sense resistors, and so on TURBO SYS R() accesses to the data flash value **System Resistance**.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Турс	IVIIII	WIGA	Delauit	Oilit
0x5C	TURBO_SYS_R()	R/W	R/W	R/W	Word					$m\Omega$

13.55 0x5D TURBO_EDV

TURBO_EDV sets the Minimal Voltage at the system power converter input at which the system will still operate. TURBO EDV() is written to the data flash value Terminate Voltage. Intended use is to write it once on first use to adjust for possible changes in system design from the time the battery pack was designed.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE US F	FA	FIOLOCOI	Туре		IVIAX	Doladit	Oille	
0x5D	MIN_SYS_V()	R/W	R/W	R/W	Word					mV

13.56 0x5E TURBO CURRENT

The gauge computes a maximal discharge current supported by the cell design for a C-rate discharge pulse for 10 ms. This value is updated every 1 s for the system to read.

0x5F NoLoadRemCap() www.ti.com

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Oille
0x5D	TURBO_CURRENT()	R	R	R/W	Word					mAh

NOTE: This computes a maximal discharge current supported by the cell design.

13.57 0x5F NoLoadRemCap()

This read-only word command returns the equivalent of *RemainingCapacity()* under a no load condition. For a description of returned data values, see the *ManufacturerAccess()* version of same command in Section 13.1.

Table 13-2. NoLoadRemCap()

SBS Cmd.	Name	Size in Bytes	Protocol	Туре	Min	Max	Default	Unit
0x5F	NoLoadRemCap()	2	Unsigned Int	R	0	65535	_	mAh

13.58 0x60 Lifetime Data Block 1

This command returns the first block of Lifetime Data. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit	l
Cmd	Name	SE	US	FA	11010001	Туре		IVIAA	Delauit	Oilit	
0x60	LifeTimeDataBlock1()	_	R	R	Block	_	_	_	_	_	Ì

13.59 0x61 Lifetime Data Block 2

This command returns the second block of Lifetime Data. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	IVIAA	Delauit	Oilit
0x61	LifeTimeDataBlock2()	_	R	R	Block	_	_	_	_	_

13.60 0x62 Lifetime Data Block 3

This command returns the third block of Lifetime Data. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре		IVIAX	Delauit	Onic
0x62	LifeTimeDataBlock3()	_	R	R	Block	_			_	

13.61 0x63 Lifetime Data Block 4

This command returns the third block of Lifetime Data. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре		INIUX	Dorault	Oilit
0x63	LifeTimeDataBlock4()	_	R	R	Block	_	1	_	_	_

13.62 0x64 Lifetime Data Block 5

This command returns the third block of Lifetime Data. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Hame	SE	US	FA	11010001	Туре	IVIIII	IVIAA	Delauit	Ollic
0x64	LifeTimeDataBlock5()	_	R	R	Block	_	_	_	_	

13.63 0x70 ManufacturerInfo

This command returns manufacturer information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delauit	Onic
0x70	ManufacturerInfo()	R	R/W	R/W	Block	_	_	_	_	

13.64 0x71 DAStatus1

This command returns the Cell Voltages, Pack Voltage, Bat Voltage, Cell Currents, Cell Powers, Power, and Average Power. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault	Onic
0x71	DAStatus1()	_	R	R	Block	_	_	_	_	

13.65 0x72 DAStatus2

This command returns the internal temp sensor, TS1, TS2, TS3, TS4, Cell Temp, and FETTemp. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Delault	Onic
0x72	DAStatus2()	_	R	R	Block	_	_		_	_

13.66 0x73 GaugeStatus1

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Onit
0x73	GaugeStatus1()	_	R	R	Block	_			_	_

13.67 0x74 GaugeStatus2

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

0x75 GaugeStatus3 www.ti.com

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Protocol	Type		IVIAA	Delauit	Oilit
0x74	GaugeStatus2()	_	R	R	Block	_	_	_	_	_

13.68 0x75 GaugeStatus3

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Турс		WIGA	Delauit	Oilit
0x75	GaugeStatus3()	I	R	R	Block	_	_	_	_	_

13.69 0x76 CBStatus

This command instructs the device to return cell balance time information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре		IVIUX	Dorault	Oilit
0x76	CBStatus()	_	R	R	Block	_	1	1	_	_

13.70 0x77 State-of-Health

This command instructs the device to return the state-of-health full charge capacity and energy. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Oilit
0x77	StateOfHealth()	_	R	R	Block	_	_	_	_	_

13.71 0x78 FilteredCapacity

This command instructs the device to return the filtered capacity and energy even if **[SMOOTH]** = 0. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 13.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oille
0x78	FilteredCapacity()	_	R	R	Block	_	_		_	_

www.ti.com 0x78 FilteredCapacity

Data Flash Values

14.1 Data Formats

14.1.1 Unsigned Integer

Unsigned integers are stored without changes as 1-byte, 2-byte, or 4-byte values in Little Endian byte order

14.1.2 Integer

Integer values are stored in 2's-complement format in 1-byte, 2-byte, or 4-byte values in Little Endian byte order.

14.1.3 Floating Point

Floating point values are stored using the IEEE754 Single Precision 4-byte format in Little Endian byte order.

www.ti.com Data Formats

Where:

Exp: 8-bit exponent stored with an offset bias of 127. The values 00 and FF have unique meanings.

Fract: 23-bit fraction. If the exponent is > 0, then the mantissa is 1.fract. If the exponent is zero, then the mantissa is 0.fract.

The floating point value depends on the unique cases of the exponent:

- If the exponent is FF and the fraction is zero, this represents +/- infinity.
- If the exponent is FF and the fraction is non-zero this represents "not a number" (NaN).
- If the exponent is 00 then the value is a subnormal number represented by $(-1)^{\text{sign}} \times 2^{-126} \times 0$. fraction.
- Otherwise, the value is a normalized number represented by $(-1)^{\text{sign}} \times 2^{(\text{exponent 127})} \times 1$.fraction.

14.1.4 Hex

Bit register definitions are stored in unsigned integer format.

14.1.5 String

String values are stored with length byte first, followed by a number of data bytes defined with the length byte.

0	1	 N
Length	Data0	 DataN

14.2 Settings

14.2.1 Configuration

14.2.1.1 FET Options

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	FET Options	H1	0x00	0xFF	0x20	Hex

7	6	5	4	3	2	1	0
PACK_FUSE	SLEEPCHG	CHGFET	CHGIN	CHGSU	OTFET	RSVD	PCHG_COMM

PACK_FUSE (Bit 7): Source of voltage to check for Min Blow Fuse Voltage

- 1 = Pack+ voltage
- 0 = Battery stack voltage

SLEEPCHG (Bit 6): CHG FET enabled during sleep

- 1 = CHG FET remains on during sleep
- 0 = CHG FET off during sleep (default)

CHGFET (Bit 5): FET action on setting of *GaugeStatus()[TC]*

- 1 = Charging and Precharging disabled, FET off
- 0 = FET active (default)

CHGIN (Bit 4): FET action in CHARGE INHIBIT mode

- 1 = Charging and Precharging disabled, FETs off
- 0 = FET active (default)

CHGSU (Bit 3): FET action in CHARGE SUSPEND mode

1 = Charging and Precharging disabled, FETs off

Settings www.ti.com

0 = FET active (default)

OTFET (Bit 2): FET action in OVERTEMPERATURE mode

1 = CHG and DSG FETs will be turned off for overtemperature conditions

0 = No FET action for overtemperature condition (default)

RSVD (Bit 1): Reserved. Do not use.

PCHG_COMM (Bit 0): Precharge FET selection

1 = CHG FET

0 = PCHG FET (default)

14.2.1.2 SBS Gauging Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SBS Gauging Configuration	H1	0x00	0xFF	0x04	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	LOCK0	RSOC_HOLD	RSOCL

RSVD (Bit 7-3): Reserved. Do not use.

LOCK0 (Bit 2): Keep *RemainingCapacity()* and *RelativeStateOfCharge()* jumping back during relaxation after 0 was reached during discharge.

1 = Enabled (default)

0 = Disabled

RSOC_HOLD (Bit 1): Prevent RSOC from increasing during discharge

1 = RSOC not allowed to increase during discharge

0 = RSOC not limited (default)

RSOCL (Bit 0): RelativeStateOfCharge() and RemainingCapacity() behavior at end of charge

1 = Held at 99% until valid charge termination. On entering valid charge termination update to 100%

0 = Actual value shown (default)

14.2.1.3 SBS Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SBS Configuration	H1	0x7F	0xFF	0x20	Hex

7	6	5	4	3	2	1	0	
RSVD	RSVD	BLT1	BLT0	XL	HPE	CPE	BCAST	

RSVD (Bit 7): Reserved. Do not use.

RSVD (Bit 6): Reserved. Do not use.

BLT1 (Bit 5): Bus low timeout

0,0 = No SBS bus low timeout

0,1 = 1-s SBS bus low timeout

1,0 = 2-s SBS bus low timeout (default)

www.ti.com Settings

1,1 = 3-s SBS bus low timeout

BLT0 (Bit 4): Bus low timeout

0.0 = No SBS bus low timeout

0.1 = 1-s SBS bus low timeout

1,0 = 2-s SBS bus low timeout (default)

1,1 = 3-s SBS bus low timeout

XL (Bit 3): Enable 400-kHz COM mode

1 = 400-kHz bus speed

0 = Normal SBS bus speed (default)

HPE (Bit 2): PEC on host communication

1 = Enabled

0 = Disabled (default)

CPE (Bit 1): PEC on charger broadcast

1 = Enabled

0 = Disabled (default)

BCAST (Bit 0): Enable alert and charging broadcast from device to host

1 = Enabled

0 = Disabled (default)

14.2.1.4 Power Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Power Config	H1	0x00	0x01	0x00	Hex

7	6	5	4	3	2	1	0
RSVD	AUTO_SHIP_E N						

RSVD (Bit 7-1): Reserved. Do not use.

AUTO_SHIP_EN (Bit 0): Automatically Shut Down for Shipment

- 1 = Enable auto shutdown after the device is in SLEEP mode without communication for a set period of time.
- 0 = Disable auto shutdown feature

14.2.1.5 IO Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	IO Config	H1	0x0	0x03	0x00	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	BTP_POL	BTP_EN

Settings www.ti.com

RSVD (Bit 7-2): Reserved. Do not use.

BTP_POL (Bit 1): Control polarity of BTP pin

1 = BTP pin is asserted high when BTP is triggered.

0 = BTP pin is asserted low when BTP is triggered (default).

BTP EN (Bit 0): Enable assertion of BTP pin

1 = Enable assertion of BTP pin when BTP is triggered.

0 = Disable assertion of BTP pin when BTP is triggered (default).

14.2.1.6 LED Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	LED Configuration	H1	0x0	0xFF	0x0D0	Hex

15	14	13	12	11	10	9	8
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LED PFON
7	6	5	4	3	2	1	0
LEDC1	LEDC0	LEDPF1	LEDPF0	LEDMODE	LEDCHG	LEDRCA	LEDR

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

RSVD (Bits 15-9): Reserved. Do not use.

LEDPFON (Bit 8): LED in PF Mode Enable

1 = Display available in PF Mode

0 = Display not available in PF mode (default)

LEDC1, LEDC0 (Bit 7, Bit 6): LED Current sink

0,0 = 0.94 mA average LED current (default)

0, 1 = 1.87 mA average LED current

1, 0 = 2.81 mA average LED current

1, 1 = 3.75 mA average LED current

LEDPF1, LEDPF0 (Bit 5, Bit 4): LED Display PF Error Code

0,0 = PF Error Code not available

0, 1 = PF Error Code shown after SOC if DISP is held low for LED Hold Time (default)

1, 0 = PF Error Code not available

1, 1 = PF Error Code shown after SOC

LEDMODE (Bit 3): LED Display Capacity Selector

1 = Display ASOC/DC

0 = Display RSOC (default)

LEDCHG (Bit 2): LED Display During Charging

1 = Enabled

0 = Disabled

LEDRCA (Bit 1): Flashing of LED Display when [RCA] is set

1 = Enabled

0 = Disabled

LEDR (Bit 0): LED Display activation at Exit of Device Reset

www.ti.com Settings

- 1 = Enabled
- 0 = Disabled

14.2.1.7 SOC Flag Config A

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SOC Flag Config A	H2	0x0	0xFFF	0xC8C	Hex

15	14	13	12	11	10	9	8
RSVD	RSVD	RSVD	RSVD	TCSETVCT	FCSETVCT	RSVD	RSVD
7	6	5	4	3	2	1	0
TCCLEAR RSOC	TCSETRSOC	TCCLEARV	TCSETV	TDCLEAR RSOC	TDSETRSOC	TDCLEARV	TDSETV

RSVD (Bit 15-12): Reserved. Do not use.

TCSETVCT (Bit 11): Enable TC flag set by primary charge termination

- 1 = Enabled (default)
- 0 = Disabled

FCSETVCT (Bit 10): Enable FC flag set by primary charge termination

- 1 = Enabled (default)
- 0 = Disabled

RSVD (Bit 9-8): Reserved. Do not use.

TCCLEARRSOC (Bit 7): Enable TC flag clear by RSOC threshold

- 1 = Enabled (default)
- 0 = Disabled

TCSETRSOC (Bit 6): Enable TC flag set by RSOC threshold

- 1 = Enabled
- 0 = Disabled (default)

TCCLEARV (Bit 5): Enable TC flag clear by cell voltage threshold

- 1 = Enabled
- 0 = Disabled (default)

TCSETV (Bit 4): Enable TC flag set by cell voltage threshold

- 1 = Enabled
- 0 = Disabled (default)

TDCLEARRSOC (Bit 3): Enable TD flag clear by RSOC threshold

- 1 = Enabled (default)
- 0 = Disabled

TDSETRSOC (Bit 2): Enable TD flag set by RSOC threshold

- 1 = Enabled (default)
- 0 = Disabled

TDCLEARV (Bit 1): Enable TD flag clear by cell voltage threshold

- 1 = Enabled
- 0 = Disabled (default)

TDSETV (Bit 0): Enable TD flag set by cell voltage threshold

Settings www.ti.com

1 = Enabled

0 = Disabled (default)

14.2.1.8 SOC Flag Config B

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SOC Flag Config B	H1	0x00	0xFF	0x8C	Hex

7	6	5	4	3	2	1	0
FCCLEAR RSOC	FCSETRSOC	FCCLEARV	FCSETV	FDCLEAR RSOC	FDSETRSOC	FDCLEARV	FDSETV

FCCLEARRSOC (Bit 7): Enable FC flag clear by RSOC threshold

1 = Enabled (default)

0 = Disabled

FCSETRSOC (Bit 6): Enable FC flag set by RSOC threshold

1 = Enabled

0 = Disabled (default)

FCCLEARV (Bit 5): Enable FC flag clear by cell voltage threshold

1 = Enabled

0 = Disabled (default)

FCSETV (Bit 4): Enable FC flag set by cell voltage threshold

1 = Enabled

0 = Disabled (default)

FDCLEARRSOC (Bit 3): Enable FD flag clear by RSOC threshold

1 = Enabled (default)

0 = Disabled

FDSETRSOC Bit 2: Enable FD flag set by RSOC threshold

1 = Enabled (default)

0 = Disabled

FDCLEARV (Bit 1): Enable FD flag clear by cell voltage threshold

1 = Enabled

0 = Disabled (default)

FDSETV (Bit 0): Enable FD flag set by cell voltage threshold

1 = Enabled

0 = Disabled (default)

14.2.1.9 IT Gauging Configuration

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Configuration	IT Gauging Configuration	H2	0x0	0xFFFF	0x5FE	Hex

www.ti.com Settings

15	14	13	12	11	10	9	8
RSVD	RELAX_ SMOOTH_OK	TDELTAV	SMOOTH	RELAX_ JUMP_OK	FF_NEAR_ EDV	CELL_TERM	FAST_ QMAX_FLD
7	6	5	4	3	2	1	0
FAST_QMAX_ LRN	RSOC_CONV	LFP_RELAX	DOD0EW	OCVFR	RFACTSTEP	CSYNC	ССТ

RSVD (Bit 15): Reserved. Do not use.

RELAX_SMOOTH_OK (Bit 14): Smooth RSOC during RELAX mode

- 1 = Enabled (default)
- 0 = Disabled

TDELTAV (Bit 13): TURBO Mode Delta Voltage

- 1 = Calculate *DeltaVoltage* that corresponds to the power spike defined in *Min Turbo Power*. Must set this flag to 1 to support TURBO mode.
- 0 = Use of **DeltaVoltage** learned as the maximal difference between instantaneous and average voltage (default).

SMOOTH (Bit 12): Smooth RSOC

- 1 = Smoothed FullChargeCapacity() and RemainingCapacity() is used (default).
- 0 = True FullChargeCapacity() and RemainingCapacity() is used.

RELAX_JUMP_OK (Bit 11): Allows RSOC jump during RELAX mode

- 1 = Enabled
- 0 = Disabled (default)

FF_NEAR_EDV (Bit 10): Fast Filter Near EDV

- 1 = **Near EDV Ra Param Filter** is used for Ra update in the **[RSOC_CONV]** region (fast scaling region starts around 10% RSOC) (default).
- 0 = Regular **Resistance Parameter Filter** is used for Ra update.

CELL_TERM (Bit 9): Cell Based Termination

- 1 = Cell based termination
- 0 = Stack voltage based termination (default)

FAST_QMAX_FLD (Bit 8): Fast Qmax Update in Field

- 1 = Enabled
- 0 = Disabled (default)

FAST_QMAX_LRN (Bit 7): Fast Qmax Update in Learning

- 1 = Enabled (default)
- 0 = Disabled

RSOC_CONV (Bit 6): RSOC Convergence (Fast Scaling)

- 1 = Enabled (default)
- 0 = Disabled

LFP_RELAX (Bit 5): Lithium Iron Phosphate Relax

- 1 = Enabled
- 0 = Disabled

DOD0EW (Bit 4): DOD0 error weighting

- 1 = Enabled
- 0 = Disabled

OCVFR (Bit 3): Open Circuit Voltage Flat Region

Settings www.ti.com

1 = Enabled

0 = Disabled

RFACTSTEP (Bit 2): Ra Factor Step

1 = Enabled (default).

0 = Disabled

CSYNC (Bit 1): Sync RemainingCapacity() with FullChargeCapacity() at valid charge termination

1 = Synchronized (default)

0 = Not synchronized

CCT (Bit 0): Cycle count threshold

1 = Use CC % of FullChargeCapacity()

0 = Use CC % of DesignCapacity() (default)

14.2.1.10 Charging Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Charging Configuration	H1	0x0	0x3F	0x0	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	SOC_CHARGE	CCC	CRATE

RSVD (Bits 7-3): Reserved. Do not use.

SOC_CHARGE (Bit 2)

- 1 = Enable SOC threshold to replace voltage thresholds (CLV, CMV, and CHV) in Advanced Charging Algorithm
- 0 = Use voltage thresholds (CLV, CMV, and CHV) in Advanced Charging Algorithm

CCC (Bit 1)

- 1 = Enable Charging Loss Compensation feature
- 0 = Charging Loss Compensation disabled (default)

CRATE (Bit 0): ChargeCurrent rate

- 1 = ChargingCurrent() adjusted based on FullChargeCapacity() / DesignCapacity()
- 0 = No adjustment to ChargingCurrent() (default)

14.2.1.11 Temperature Enable

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Temperature Enable	H1	0x0	0x1F	0x6	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	TS4	TS3	TS2	TS1	Internal TS

RSVD (Bit 7-5): Reserved. Do not use.

TS4 (Bit 4): Enable TS4

1 = Enable TS4 (default)

0 = Disable TS4

www.ti.com Settings

TS3 (Bit 3): Enable TS3

1 = Enable TS3 (default)

0 = Disable TS3

TS2 (Bit 2): Enable TS2

1 = Enable TS2 (default)

0 = Disable TS2

TS1 (Bit 1): Enable TS1

1 = Enable TS1 (default)

0 = Disable TS1

Internal TS (Bit 0): Enable internal TS

1 = Enable internal TS

0 = Disable internal TS (default)

14.2.1.12 Temperature Mode

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Temperature Mode	H1	0x0	0x1F	0x4	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	TS4 Mode	TS3 Mode	TS2 Mode	TS1 Mode	TSInt Mode

RSVD (Bit 7-5): Reserved. Do not use.

TS4 Mode (Bit 4): Cell temp or FET temp

1 = FET temp

0 = Cell temp (default)

TS3 Mode (Bit 3): Cell temp or FET temp

1 = FET temp

0 = Cell temp (default)

TS2 Mode (Bit 2): Cell temp or FET temp

1 = FET temp (default)

0 = Cell temp

TS1 Mode (Bit 1): Cell temp or FET temp

1 = FET temp

0 = Cell temp (default)

TSInt Mode (Bit 0): Cell temp or FET temp

1 = FET temp

0 = Cell temp (default)

14.2.1.13 DA Configuration

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Configuration	DA Configuration	H1	0x0	0xFF	0x12	Hex

Settings www.ti.com

7	6	5	4	3	2	1	0	
FTEMP	СТЕМР	EMSHUT_EN	SLEEP	IN_SYSTEM_ SLEEP	NR	CC1	CC0	

FTEMP (Bit 7): FET Temperature protection source

1 = Average

0 = MAX (default)

CTEMP (Bit 6): Cell Temperature protection source

1 = Average

0 = MAX (default)

EMSHUT_EN (Bit 5): Emergency Shutdown Enable

1 = Enable

0 = Disable

SLEEP (Bit 4): SLEEP mode

1 = Enable SLEEP mode (default)

0 = Disable SLEEP mode

IN_SYSTEM_SLEEP (Bit 3): In-system SLEEP mode

1 = Enable

0 = Disable (default)

NR (Bit 2): Use PRES in system detection

1 = NON-REMOVABLE mode

 $0 = \text{Use } \overline{\text{PRES}}$, REMOVABLE mode (default)

CC1, CC0 (Bit 1,0): Cell Count

1,1 = 4 cell

1,0 = 3 cell (default)

0.1 = 2 cell

0.0 = 1 cell

14.2.1.14 Balancing Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Balancing Configuration	H1	0x0	0xFF	0x1	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	CB_RLX_DOD 0EW	CB_CHG_DOD 0EW	CBR	RSVD_ONE	СВ

RSVD (Bits 7-5): Reserved. Do not use.

CB_RLX_DOD0EW (Bit 4):

1 = Enable Error Weighted DOD0 for cell balancing time updates when in RELAX mode

0 = Uses DOD0 for cell balancing time updates when in RELAX mode

CB CHG DOD0EW (Bit 3):

1 = Enable Error Weighted DOD0 for cell balancing time updates when in CHARGE mode

0 = Use DOD0 for cell balancing time updates when in CHARGE mode

CBR (Bit 2): Cell balancing at rest

www.ti.com Settings

1 = Enable cell balancing at rest

0 = Disable cell balancing at rest (default)

RSVD_ONE (Bit 1): Reserved and programmed to 1. Do Not Use.

1 = External cell balancing

0 = Internal cell balancing (default)

CB (Bit 0): Cell balancing

1 = Cell balancing enabled (default)

0 = Cell balancing disabled

14.2.2 Fuse

14.2.2.1 Permanent Fail Fuse A

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Fuse	Permanent Fail Fuse A	H1	0x0	0xFF	0x0	_

7	6	5	4	3	2	1	0
QIM	SOTF	RSVD	SOT	SOCD	SOCC	SOV	SUV

Fuse blow action for PFStatus() bits:

QIM (Bit 7): QMax Imbalance

1 = Enabled

0 = Disabled (default)

SOTF (Bit 6): Safety Overtemperature FET

1 = Enabled

0 = Disabled (default)

RSVD (Bit 5): Reserved. Do not use.

SOT (Bit 4): Safety Overtemperature

1 = Enabled

0 = Disabled (default)

SOCD (Bit 3): Safety Overcurrent in Discharge

1= Enabled

0 = Disabled (default)

SOCC (Bit 2): Safety Overcurrent in Charge

1= Enabled

0 = Disabled (default)

SOV (Bit 1): Safety Cell Overvoltage

1 = Enabled

0 = Disabled (default)

SUV (Bit 0): Safety Cell Undervoltage

1 = Enabled

0 = Disabled (default)

14.2.2.2 Permanent Fail Fuse B

СВ

Settings www.ti.com

Class	Subclas	ss	Name	Туре	Min	Max	Default	Unit
Settings	Fuse		Permanent Fail Fuse B	H1	0x0	0xFF	0	Hex
				•				•
_	_	_		_	_			_
7	6	5	4	3	2		1	0

VIMR

CD

IMP

VIMA

Fuse blow action for PFStatus() bits:

RSVD (Bit 7-5): Reserved. Do not use.

RSVD

VIMA (Bit 4): Voltage Imbalance At Rest

1 = Enabled

RSVD

RSVD

0 = Disabled (default)

VIMR (Bit 3): Voltage Imbalance At Rest

1 = Enabled

0 = Disabled (default)

CD (Bit 2): Capacity Degradation

1 = Enabled

0 = Disabled (default)

IMP (Bit 1): Cell impedance

1 = Enabled

0 = Disabled (default)

CB (Bit 0): Cell balancing

1 = Enabled

0 = Disabled (default)

14.2.2.3 Permanent Fail Fuse C

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Fuse	Permanent Fail Fuse C	H1	0x0	0xFF	0	Hex

7	6	5	4	3	2	1	0
PTC	2LVL	AFEC	AFER	FUSE	RSVD	DFETF	CFETF

Fuse blow action for PFStatus() bits:

PTC (Bit 7): Permanent Fail flag Display

- 1 = Allow **PFStatus[PTC]** = 1 when PTC fault is triggered. Function should be enabled/disabled by the PTCEN pin connection.
- 0 = Disable the **PFStatus[PTC]** = 1 when PTC fault is triggered. Function should be enabled/disabled by the PTCEN pin connection.

2LVL (Bit 6): FUSE input indicating fuse trigger by external 2nd level protection

1 = Enabled

0 = Disabled (default)

AFEC (Bit 5): AFE Communication

1 = Enabled

0 = Disabled (default)

AFER (Bit 4): AFE Register

www.ti.com Settings

1 = Enabled

0 = Disabled (default)

FUSE (Bit 3): Fuse

1 = Enabled

0 = Disabled (default)

RSVD (Bit 2): Reserved. Do not use.

DFETF (Bit 1): Discharge FET

1 = Enabled

0 = Disabled (default)

CFETF (Bit 0): Charge FET

1 = Enabled

0 = Disabled (default)

14.2.2.4 Permanent Fail Fuse D

	Unit	Default	Max	Min	Type	Name	Subclass	Class
Settings Fuse Permanent Fail Fuse D H1 0x0 0xFF 0x0	Hex	0x0	0xFF	0x0	H1	Permanent Fail Fuse D	Fuse	Settings

15	14	13	12	11	10	9	8
TS4	TS3	TS2	TS1	RSVD	DFW	OPNCELL	IFC

Fuse blow action for PFStatus() bits:

TS4 (Bit 15)

1 = Enabled

0 = Disabled (default)

TS3 (Bit 14)

1 = Enabled

0 = Disabled (default)

TS2 (Bit 13)

1 = Enabled

0 = Disabled (default)

TS1 (Bit 12)

1 = Enabled

0 = Disabled (default)

RSVD (Bit 11): Reserved. Do not use.

DFW (Bit 10): DF wearout

1 = Enabled

0 = Disabled (default)

OPNCELL (Bit 9): Open Cell tab (tab to PCB)

1 = Enabled

0 = Disabled (default)

IFC (Bit 8)

1 = Enabled

0 = Disabled (default)

Settings www.ti.com

14.2.2.5 Min Blow Fuse Voltage

Class	Subclass	Name	Type	Min	Max	Default
Settings	Fuse	Min Blow Fuse Voltage	12	0	65535	3500

Description: Minimum voltage required to attempt fuse blow, pack based, FET failures bypass this requirement to blow the fuse.

14.2.2.6 Fuse Blow Timeout

Class	Subclass	Name	Туре	Min	Max	Default
Settings	Fuse	Min Blow Fuse Voltage	U1	0	255	30

Description: Minimum time to keep the fuse blow voltage high

14.2.3 BTP

14.2.3.1 Init Discharge Set

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	BTP	Init Discharge Set	12	0	32767	150	mAH

Description: Initial value for *BTPDischargeSet()*

14.2.3.2 Init Charge Set

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	BTP	Init Discharge Set	12	0	32767	175	mAH

Description: Initial value for *BTPChargeSet()*

14.2.4 Protection

14.2.4.1 Protection Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Protection	Protection Configuration	H1	0x00	0x03	0x00	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	CUV_RECOV_ CHG	SUV_MODE

RSVD (Bits 7-2): Reserved. Do not use.

CUV_RECOV_CHG (Bit 1): Require charge to recover SafetyStatus()[CUV]

1 = Enabled (default)

0 = Disabled

SUV_MODE (Bit 0): Copper Deposition check for *PFStatus()[CUV]*

1 = Enabled (default)

0 = Disabled

www.ti.com Settings

14.2.4.2 Enabled Protections A

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Protection	Enabled Protections A	H1	0x00	0xFF	0xFF	Hex

7	6	5	4	3	2	1	0
AOLDL	RSVD_ONE	OCD2	OCD1	OCC2	OCC1	COV	CUV

AOLDL (Bit 7): Overload in Discharge latch

1 = Enabled (default)

0 = Disabled

RSVD_ONE (Bit 6): Reserved and programmed to 1. Do not use.

OCD2 (Bit 5): Overcurrent in Discharge 2nd Tier

1 = Enabled (default)

0 = Disabled

OCD1 (Bit 4): Overcurrent in Discharge 1st Tier

1 = Enabled (default)

0 = Disabled

OCC2 (Bit 3): Overcurrent in Charge 2nd Tier

1 = Enabled (default)

0 = Disabled

OCC1 (Bit 2): Overcurrent in Charge 1st Tier

1 = Enabled (default)

0 = Disabled

COV (Bit 1): Cell Overvoltage

1 = Enabled (default)

0 = Disabled

CUV (Bit 0): Cell Undervoltage

1 = Enabled (default)

0 = Disabled

14.2.4.3 Enabled Protections B

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Protection	Enabled Protections B	H1	0x00	0xFF	0xFF	_

7	6	5	4	3	2	1	0
RSVD	CUVC	OTD	OTC	ASCDL	RSVD_ONE	ASCCL	ASCC

RSVD (Bit 7): Reserved. Do not use.

CUVC (Bit 6): I*R compensated CUV

1 = Enabled (default)

0 = Disabled

OTD (Bit 5): Overtemperature in discharge

Settings www.ti.com

1 = Enabled (default)

0 = Disabled

OTC (Bit 4): Overtemperature in charge

1 = Enabled (default)

0 = Disabled

ASCDL (Bit 3): Short circuit in discharge latch

1 = Enabled (default)

0 = Disabled

RSVD_ONE (Bit 2): Reserved and programmed to 1. Do not use.

ASCCL (Bit 1): Short circuit in charge latch

1 = Enabled (default)

0 = Disabled

ASCC (Bit 0): Short circuit in charge

1 = Enabled (default)

0 = Disables the SafetyAlert() and SafetyStatus() flag only and does NOT disable the FET actions.

14.2.4.4 Enabled Protections C

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Protection	Enabled Protections C	H1	0x00	0xFF	0xFF	Hex

	7	6	5	4	3	2	1	0
(CHGC	OC	RSVD	СТО	RSVD	PTO	HWDF	OTF

CHGC (Bit 7): ChargingCurrent() higher than requested

1 = Enabled (default)

0 = Disabled

OC (Bit 6): Overcharge

1 = Enabled (default)

0 = Disabled

RSVD (Bit 5): Reserved. Do not use.

CTO (Bit 4): Charging timeout

1 = Enabled (default)

0 = Disabled

RSVD (Bit 3): Reserved. Do not use.

PTO (Bit 2): Pre-charging timeout

1 = Enabled (default)

0 = Disabled

HWDF (Bit 1): SBS Host watchdog timeout

1 = Enabled (default)

0 = Disabled

OTF (Bit 0): FET overtemperature

1 = Enabled (default)

www.ti.com Settings

0 = Disabled

14.2.4.5 Enabled Protections D

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Protection	Enabled Protections D	H1	0x00	0xFF	0xFF	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	UTD	UTC	PCHGV	CHGV

RSVD (Bits 7-4): Reserved. Do not use.

UTD (Bit 3): Under temperature while not charging

1 = Enabled (default)

0 = Disabled

UTC (Bit 2): Under temperature while charging

1 = Enabled (default)

0 = Disabled

PCHGV (Bit 1): Charging Voltage() higher than requested in precharge

1 = Enabled (default)

0 = Disabled

CHGV (Bit 0): Charging Voltage() higher than requested

1 = Enabled (default)

0 = Disabled

14.2.5 Permanent Failure

14.2.5.1 Enabled PF A

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Permanent Failure	Enabled PF A	H1	0x00	0xFF	0x00	Hex

7	6	5	4	3	2	1	0
QIM	SOTF	RSVD	SOT	SOCD	SOCC	SOV	SUV

QIM (Bit 7): QMax Imbalance

1 = Enabled (default)

0 = Disabled

OTF (Bit 6): Overtemperature FET

1 = Enabled (default)

0 = Disabled

RSVD (Bit 5): Reserved. Do not use.

PF_OTCE (Bit 4): Overtemperature

1 = Enabled (default)

0 = Disabled

Settings www.ti.com

RSVD (Bits 3-2): Reserved. Do not use.

SOT (Bit 4): Safety Overtemperature

1 = Enabled

0 = Disabled (default)

SOCD (Bit 3): Safety Overcurrent in Discharge

1= Enabled

0 = Disabled (default)

SOCC (Bit 2): Safety Overcurrent in Charge

1= Enabled

0 = Disabled (default)

SOV (Bit 1): Safety Cell Overvoltage

1 = Enabled

0 = Disabled (default)

SUV (Bit 0): Safety Cell Undervoltage

1 = Enabled

0 = Disabled (default)

14.2.5.2 Enabled PF B

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Permanent Failure	Enabled PF B	H1	0x00	0xFF	0x00	_

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VIMA	VIMR	CD	IMP	СВ

RSVD (Bits 7-5): Reserved. Do not use.

VIMA (Bit 4): Voltage imbalance At Rest

1 = Enabled (default)

0 = Disabled

VIMR (Bit 3): Voltage imbalance At Rest

1 = Enabled (default)

0 = Disabled

CD (Bit 2): Capacity Degradation

1 = Enabled (default)

0 = Disabled

IMP (Bit 1): Cell impedance

1 = Enabled (default)

0 = Disabled

CB (Bit 0): Cell balancing

1 = Enabled (default)

0 = Disabled

14.2.5.3 Enabled PF C

www.ti.com Settings

Class Subclass Name Type Min Ma	x Default	Unit
Settings Permanent Failure Enabled PF C H1 0x00 0xF	F 0x00	Hex

7 6 5 4 3 2 0 1 PTC 2LVL **AFEC AFER FUSE RSVD DFET** CFETF

PTC (Bit 7): Permanent Fail Flag Display

- 1 = Allow **PFStatus[PTC]** = 1 when PTC fault is triggered. Function should be enabled/disabled by the PTCEN pin connection.
- 0 = Disable the **PFStatus[PTC]** = 1 when PTC fault is triggered. Function should be enabled/disabled by the PTCEN pin connection.

2LVL (Bit 6): FUSE input indicating fuse trigger by external 2nd level protection

1 = Enabled (default)

0 = Disabled

AFEC (Bit 5): AFE Communication

1 = Enabled (default)

0 = Disabled

AFER (Bit 4): AFE Register

1 = Enabled (default)

0 = n/a

FUSE (Bit 3): Fuse

1 = Enabled (default)

0 = Disabled

RSVD (Bit 2): Reserved. Do not use.

DFET (Bit 1): Discharge FET

1 = Enabled (default)

0 = Disabled

CFETF (Bit 0): Charge FET

1 = Enabled (default)

0 = Disabled

14.2.5.4 Enabled PF D

Class	Subclass Name		Туре	Min	Max	Default	Unit
Settings	Permanent Failure	Enabled PF D	H1	0x00	0xFF	0x00	Hex

7	6	5	4	3	2	1	0
TS4	TS3	TS2	TS1	RSVD	RSVD	OPNCELL	RSVD

TS4 (Bit 7)

1 = Enabled (default)

0 = Disabled

TS3 (Bit 6)

1 = Enabled (default)

0 = Disabled

Settings www.ti.com

TS2 (Bit 5)

1 = Enabled (default)

0 = Disabled

TS1 (Bit 4)

1 = Enabled (default)

0 = Disabled

RSVD (Bits 3-2): Reserved. Do not use.

OPNCELL (Bit 1): Open Cell tab (tab to PCB)

1 = Enabled (default)

0 = Disabled

RSVD (Bit 0): Reserved. Do not use.

14.2.6 AFE

14.2.6.1 AFE Protection Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Configuration	AFE	AFE Protection Control	H1	0x00	0xFF	0x70	Hex

7	6	5	4	3	2	1	0
RSTRIM	RSTRIM	RSTRIM	RSTRIM	RSVD	RSVD	SCDDx2	RSNS

RSTRIM (Bits 7–4): *Unsupport* function. Should leave the default setting 0x7. Changing this setting may cause an error to the AFE current protection accuracy.

RSVD (Bits 3-2): Reserved. Do not use.

SCDDx2 (Bit 1): Double SCD Delay Times

 $1 = 2 \times SCD$ delay times

0 = Normal SCD delay times (default)

RSNS (Bit 0): AOLD, ASCC, ASCD1, ASCD2 Thresholds

1 = Normal AFE Protection Thresholds

 $0 = 0.5 \times AFE$ Protection Thresholds (default)

14.2.7 ZVCHG Exit Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Configuration	AFE	ZVCHG Exit Threshold	12	0x0	0xFFFF	0x0000	mV

Description: Voltage() threshold where the gauge will exit ZVCHG mode when CFET is used for precharging.

14.3 Manufacturing

14.3.1 Manufacturing Status Init

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Manufacturing	Manufacturing Status Init	H2	0x0	0xFFFF	0x0000	Hex

www.ti.com						Advanced Charging Algorithm		
15	14	13	12	11	10	9	8	
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LED_EN	FUSE_EN	
7	6	5	4	3	2	1	0	
BBR_EN	PF_EN	LF_EN	FET_EN	GAUGE_EN	RSVD	RSVD	RSVD	

RSVD (Bits 15-10): Reserved. Do not use.

LED_EN (Bit 9): LED Display

1 = Enabled 0 = Disabled

FUSE_EN (Bit 8): FUSE action

1 = Enabled

0 = Disabled (default)

BBR_EN (Bit 7): Black Box Recorder

1 = Enabled

0 = Disabled (default)

PF_EN (Bit 6): Permanent Fail

1 = Enabled

0 = Disabled (default)

LF_EN (Bit 5): Lifetime Data Collection

1 = Enabled

0 = Disabled

FET_EN (Bit 4): FET action

1 = Enabled

0 = Disabled (default)

GAUGE_EN (Bit 3): Gauging

1 = Enabled

0 = Disabled (default)

RSVD (Bits 2-0): Reserved. Do not use.

14.4 Advanced Charging Algorithm

14.4.1 Temperature Ranges

14.4.1.1 T1 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
nced Charging Algorithms	Temperature Ranges	T1 Temp	I1	-128	127	0	°C

Description: T1 low temperature range lower limit

14.4.1.2 T2 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Temperature Ranges	T2 Temp	I1	-128	127	12	°C

Description: T2 low temperature range to standard temperature range

14.4.1.3 T5 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Temperature Ranges	T5 Temp	I1	-128	127	20	°C

Description: T5 recommended temperature range lower limit

14.4.1.4 T6 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Temperature Ranges	T6 Temp	I1	-128	127	25	°

Description: T6 recommended temperature range upper limit

14.4.1.5 T3 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Temperature Ranges	T3 Temp	I1	-128	127	30	°C

Description: T3 standard temperature range to high temperature range

14.4.1.6 T4 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Temperature Ranges	T4 Temp	I1	-128	127	55	ů

Description: T4 high temperature range upper limit

14.4.1.7 Hysteresis

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Temperature Ranges	Hysteresis Temp	I1	-128	127	1	°C

Description: Temperature Hysteresis, applied when temperature is decreasing.

14.4.2 Low Temp Charging

14.4.2.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Low Temp Charging	Voltage	12	0	32767	4000	mV

Description: Low temperature range *ChargingVoltage()*

14.4.2.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Low Temp Charging	Current Low	12	0	32767	132	mA

Description: Low temperature range low voltage range *ChargingCurrent()*

14.4.2.3 Current Med

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
Adv	vanced Charging Algorithms	Low Temp Charging	Current Med	12	0	32767	352	mA

Description: Low temperature range medium voltage range *ChargingCurrent()*

14.4.2.4 Current High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Low Temp Charging	Current High	12	0	32767	264	mA

Description: Low temperature range high voltage range ChargingCurrent()

14.4.3 Standard Temp Charging

14.4.3.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Standard Temp Charging	Voltage	12	0	32767	4200	mV

Description: Standard temperature range *ChargingVoltage()*

14.4.3.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Standard Temp Charging	Current Low	12	0	32767	1980	mA

Description: Standard temperature range low voltage range *ChargingCurrent()*

14.4.3.3 Current Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Standard Temp Charging	Current Med	12	0	32767	4004	mA

Description: Standard temperature range medium voltage range *ChargingCurrent()*

14.4.3.4 Current High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Standard Temp Charging	Current High	12	0	32767	2992	mA

Description: Standard temperature range high voltage range *ChargingCurrent()*

14.4.4 High Temp Charging

14.4.4.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	High Temp Charging	Voltage	12	0	32767	4000	mV

Description: High temperature range *ChargingVoltage()*

14.4.4.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	High Temp Charging	Current Low	12	0	32767	1012	mA

Description: High temperature range low voltage range *ChargingCurrent()*

14.4.4.3 Current Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	High Temp Charging	Current Med	12	0	32767	1980	mA

Description: High temperature range medium voltage range ChargingCurrent()

14.4.4.4 Current High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	High Temp Charging	Current High	12	0	32767	1496	mA

Description: High temperature range high voltage range *ChargingCurrent()*

14.4.5 Rec Temp Charging

14.4.5.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Rec Temp Charging	Voltage	12	0	32767	4100	mV

Description: Recommended temperature range *ChargingVoltage()*

14.4.5.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Rec Temp Charging	Current Low	12	0	32767	2508	mA

Description: Recommended temperature range low voltage range *ChargingCurrent()*

14.4.5.3 Current Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Rec Temp Charging	Current Med	I2	0	32767	4488	mA

Description: Recommended temperature range medium voltage range *ChargingCurrent()*

14.4.5.4 Current High

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
A	dvanced Charging Algorithms	Rec Temp Charging	Current High	12	0	32767	3520	mA

Description: Recommended temperature range high voltage range *ChargingCurrent()*

14.4.6 Pre-Charging

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	PCHG	Current	12	0	32767	88	mA

Description: Precharge ChargingCurrent()

14.4.7 Maintenance Charging

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithms	MCHG	Current	12	0	32767	44	mA

Description: Maintenance *ChargingCurrent()*

14.4.8 Voltage Range

14.4.8.1 Precharge Start Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Voltage Range	Precharge Start Voltage	12	0	32767	2500	mV

Description: Min cell voltage to enter PRECHARGE mode

14.4.8.2 Charging Voltage Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Voltage Range	Charging Voltage Low	12	0	32767	2900	mV

Description: Precharge Voltage range to Charging Voltage Low range

14.4.8.3 Charging Voltage Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Voltage Range	Charging Voltage Med	12	0	32767	3600	mV

Description: Charging Voltage Low range to Charging Voltage Med range

14.4.8.4 Charging Voltage High

Class		Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Cha Algorithms	ging	Voltage Range	Charging Voltage High	12	0	32767	4000	mV

Description: Charging Voltage Med to Charging Voltage High range

14.4.8.5 Charging Voltage Hysteresis

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithms	Voltage Range	Charging Voltage Hysteresis	U1	0	255	0	mV

Description: Charging Voltage Hysteresis applied when voltage is decreasing

14.4.9 Termination Config

14.4.9.1 Charge Term Taper Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Termination Config	Charge Term Taper Current	12	0	32767	250	mA

Description: Valid Charge Termination taper current qualifier threshold

14.4.9.2 Charge Term Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithms	Termination Config	Charge Term Voltage	12	0	32767	75	mV

Description: Valid Charge Termination delta voltage qualifier, max cell-based

14.4.10 Charging Rate of Change

14.4.10.1 Current Rate

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Charging Rate of Change	Current Rate	U1	1	255	1	steps/s

Description: Number of steps to add between any two *ChargingCurrent()* settings

14.4.10.2 Voltage Rate

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Charging Rate of Change	Voltage Rate	U1	1	255	1	steps/s

Description: Number of steps to add between any two *ChargingVoltage()* settings

14.4.11 Charge Loss Compensation

14.4.11.1 CCC Current Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Charge Loss Compensation	CCC Current Threshold	12	0	32767	3520	mA

Description: CONSTANT CURRENT CHARGE mode *ChargingCurrent()* threshold to activate Charge Loss Compensation

14.4.11.2 CCC Voltage Threshold

(Class	Subclass	Name	Туре	Min	Max	Default	Unit
	ced Charging gorithms	Charge Loss Compensation	CCC Voltage Threshold	12	0	32767	4200	mV

Description: CONSTANT CURRENT CHARGE mode max ChargingVoltage() increase limit

14.4.12 Cell Balancing Config

14.4.12.1 Balance Time per mAh Cell 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Cell Balancing Config	Balance Time per mAh Cell 1	U2	0	65535	367	s/mAh

Description: Required balance time per mAh for Cell 1. For information on how to calculate balancing time, see Section 7.1.

14.4.12.2 Balance Time per mAh Cell 2-4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Cell Balancing Config	Balance Time per mAh Cell 2–4	U2	0	65535	514	s/mAh

Description: Required balance time per mAh for cells 2 to 4. For information on how to calculate balancing time, see Section 7.1.

14.4.12.3 Min Start Balance Delta

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithms	Cell Balancing Config	Min Start Balance Delta	U1	0	255	3	mV

Description: Minimum cell voltage delta to start cell balancing during *Relax Balance Interval* checks. This condition is checked in RELAX mode and so it only applies if cell balancing at rest is enabled.

14.4.12.4 Relax Balance Interval

Power www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Cell Balancing Config	Relax Balance Interval	U4	0	4294967295	18000	s

Description: Interval during RELAX mode to check for cell imbalance. This parameter applies to cell balancing at rest only.

14.4.12.5 Min RSOC for Balancing

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithms	Cell Balancing Config	Min RSOC for Balancing	U1	0	100	80	%

Description: Minimum *RelativeStateOfCharge()* threshold for cell balancing. This condition is checked during relaxation and so it only applies if cell balancing at rest is enabled.

14.5 Power

14.5.1 Power

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Power	Valid Update Voltage	12	0	32767	3500	mV

Description: Min stack voltage threshold for Flash update

14.5.2 Shutdown

14.5.2.1 Shutdown Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Shutdown	Shutdown Voltage	12	0	32767	1750	mV

Description: Cell-based shutdown voltage trip threshold

14.5.2.2 Shutdown Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Shutdown	Shutdown Time	U2	0	255	10	s

Description: Cell-based shutdown voltage trip delay

14.5.2.3 Charger Present Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Shutdown	Charger Present Threshold	12	0	32767	3000	mV

Description: Pack pin charger present detect threshold

14.5.3 Sleep

14.5.3.1 Sleep Current

www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Sleep Current	12	0	32767	10	mA

Description: |Current()| threshold to enter SLEEP mode. If this parameter is set to 0, then the **deadband** will effectively become the Sleep Current setting because any current blow the **deadband** will set the Current() = 0 mA.

14.5.3.2 Bus Timeout

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Bus Timeout	U1	0	255	5	s

Description: Bus low or no communication time to enter SLEEP mode

14.5.3.3 Voltage Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Voltage Time	U1	0	255	5	s

Description: Voltage() sampling period in SLEEP mode

14.5.3.4 Current Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Current Time	U1	0	255	20	s

Description: Current() sampling period in SLEEP mode

14.5.3.5 Wake Comparator

Class	Subclass Name		Туре	Min	Max	Default	Unit
Power	Sleep	Wake Comparator	H1	0x00	0xFF	0x00	_

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	WK1	WK0	RSVD	RSVD

RSVD (Bits 7-4): Reserved. Do not use.

WK1, WK0 (Bits 3-2): Wake Comparator Threshold

 $1,1 = \pm 5 \text{ mV}$

 $1,0 = \pm 2.5 \text{ mV}$

 $0.1 = \pm 1.25 \text{ mV}$

 $0.0 = \pm 0.625 \text{ mV}$

RSVD (Bits 1-0): Reserved. Do not use.

14.5.4 Ship

14.5.4.1 FET Off Time

Power

Power www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Ship	FET Off Time	U1	0	127	10	s

Description: Delay time to turn off FETs prior to entering SHUTDOWN mode. This setting should not be longer than the **Ship Delay** setting.

14.5.4.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Ship	Delay	U1	0	254	20	S

Description: Delay time to enter SHUTDOWN mode after FETs are turned off.

14.5.4.3 Auto Ship Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Ship	Auto Ship time	U2	0	65535	1440	min

Description: The device will automatically enter SHUTDOWN mode after staying in SLEEP mode without communication for this amount of time when **Power Config[AUTO_SHIP_EN]** = 1.

14.5.5 Power Off

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Power Off	Timeout	U2	0	65535	30	min

Description: Timeout to exit the Emergency Shutdown condition

14.5.6 Manual FET Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Manual FET Control	MFC Delay	U1	0	255	60	min

Description: Delay time to turn off FETs through MFC

14.6 LED Support

14.6.1 LED Config

14.6.1.1 LED Flash Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED Flash Period	U2	32	65535	512	488 µs

Description: LED Flashing period for alarm display

14.6.1.2 LED Blink Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED Blink Period	U2	32	65535	1024	488 µs

Description: LED Blinking period for state-of-charge display

www.ti.com LED Support

14.6.1.3 LED Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED Delay	U2	16	65535	100	488 µs

Description: Delay time from LED to LED for state-of-charge display

14.6.1.4 LED Hold Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED Hold Time	U1	1	63	16	0.25 s

Description: LED display active time

14.6.1.5 CHG Flash Alarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Flash Alarm	I1	0	100	10	%

Description: RelativeStateOfCharge() alarm threshold during charging

14.6.1.6 CHG Thresh 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 1	I1	0	100	0	%

Description: RelativeStateOfCharge() threshold for LED1 during charging

14.6.1.7 CHG Thresh 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 2	I1	0	100	20	%

Description: RelativeStateOfCharge() threshold for LED2 during charging

14.6.1.8 CHG Thresh 3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 3	I1	0	100	40	%

Description: RelativeStateOfCharge() threshold for LED3 during charging

14.6.1.9 CHG Thresh 4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 4	I1	0	100	60	%

Description: RelativeStateOfCharge() threshold for LED4 during charging

14.6.1.10 CHG Thresh 5

System Data www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 5	I1	0	100	80	%

Description: RelativeStateOfCharge() threshold for LED5 during charging

14.6.1.11 DSG Flash Alarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Flash Alarm	I1	0	100	10	%

Description: RelativeStateOfCharge() alarm threshold during discharging

14.6.1.12 DSG Thresh 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 1	I1	0	100	0	%

Description: RelativeStateOfCharge() threshold for LED1 during discharging

14.6.1.13 DSG Thresh 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 2	I1	0	100	20	%

Description: RelativeStateOfCharge() threshold for LED2 during discharging

14.6.1.14 DSG Thresh 3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 3	I1	0	100	40	%

Description: RelativeStateOfCharge() threshold for LED3 during discharging

14.6.1.15 DSG Thresh 4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 4	I1	0	100	60	%

Description: RelativeStateOfCharge() threshold for LED4 during discharging

14.6.1.16 DSG Thresh 5

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 5	I1	0	100	80	%

Description: RelativeStateOfCharge() threshold for LED5 during discharging

14.7 System Data

14.7.1 Manufacturer Info

www.ti.com System Data

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Manufacturer Data	ManufacturerInfo	S33	_	_	abcdefghijklmnopqrstu vwzxy012345	1

Description: ManufacturerInfo() value

14.7.2 Static DF Signature

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Integrity	Static DF Signature	H2	0x0	0x7FFF	0x0	Hex

Description: Static data flash signature. Use MAC *StaticDFSignature()* (with MSB set to 0) to initialize this value

14.7.3 Static Chem DF

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Integrity	Static Chem DF Signature	H2	0x0	0x7FFF	0x0	Hex

Description: Static chemistry data signature. Use MAC *StaticChemDFSignature()* (with MSB set to 0) to initialize this value.

14.7.4 All DF Signature

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Integrity	All DF Signature	H2	0x0	0x7FFF	0x0	Hex

Description: Static data flash signature. Use MAC *AllDFSignature()* (with MSB set to 0) to initialize this value.

14.8 Lifetimes

14.8.1 Voltage

14.8.1.1 Cell 1 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 1 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 1

14.8.1.2 Cell 2 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 2 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 2

14.8.1.3 Cell 3 Max Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 3 Max Voltage	12	0	32767	0	mV

Lifetimes www.ti.com

Description: Maximum reported cell voltage 3

14.8.1.4 Cell 4 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 4 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 4

14.8.1.5 Cell 1 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit	l
Lifetimes	Voltage	Cell 1 Min Voltage	12	0	32767	32767	mV	

Description: Minimum reported cell voltage 1

14.8.1.6 Cell 2 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 2 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 2

14.8.1.7 Cell 3 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 3 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 3

14.8.1.8 Cell 4 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 4 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 4

14.8.1.9 Max Delta Cell Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Voltage	Max Delta Cell Voltage	12	0	32767	0	mV

Description: Maximum reported delta between cell voltages 1..4

14.8.2 Current

14.8.2.1 Max Charge Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Charge Current	12	0	32767	0	mA

Description: Maximum reported *Current()* in charge direction

www.ti.com Lifetimes

14.8.2.2 Max Discharge Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Discharge Current	12	-32768	0	0	mA

Description: Maximum reported *Current()* in discharge direction

14.8.2.3 Max Avg Dsg Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Avg Dsg Current	12	-32768	0	0	mA

Description: Maximum reported *AverageCurrent()* in discharge direction

171

Lifetimes www.ti.com

14.8.2.4 Max Avg Dsg Power

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Avg Dsg Power	12	-32768	0	0	cW

Description: Maximum reported Power in discharge direction

14.8.3 Temperature

14.8.3.1 Max Temp Cell

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Max Temp Cell	I1	-128	127	-128	°C

Description: Maximum reported cell temperature

14.8.3.2 Min Temp Cell

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Min Temp Cell	I1	-128	127	127	°C

Description: Minimum reported cell temperature

14.8.3.3 Max Delta Cell Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Max Delta Cell Temp	I1	-128	127	0	°C

Description: Maximum reported temperature delta for TSx inputs configured as cell temperature

14.8.3.4 Max Temp Int Sensor

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Max Temp Int Sensor	I1	-128	127	-128	°C

Description: Maximum reported internal temperature sensor temperature

14.8.3.5 Min Temp Int Sensor

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Min Temp Int Sensor	I1	-128	127	127	°C

Description: Minimum reported internal temperature sensor temperature

14.8.3.6 Max Temp Fet

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Max Temp Fet	I1	-128	127	-128	°C

Description: Maximum reported FET temperature

www.ti.com Lifetimes

14.8.4 Safety Events

14.8.4.1 No Of COV Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of COV Events	U2	0	32767	0	events

Description: Total number of *SafetyStatus()[COV]* events

14.8.4.2 Last COV Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last COV Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[COV] event in CycleCount() cycles

14.8.4.3 No Of CUV Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of CUV Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[CUV] events

14.8.4.4 Last CUV Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last CUV Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[CUV] event in CycleCount() cycles

14.8.4.5 No Of OCD1 Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCD1 Events	U2	0	32767	0	events

Description: Total number of *SafetyStatus()[OCD1]* events

14.8.4.6 Last OCD1 Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCD1 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCD1] event in CycleCount() cycles

14.8.4.7 No Of OCD2 Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCD2 Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OCD2] events

14.8.4.8 Last OCD2 Event

Lifetimes www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCD2 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCD2] event in CycleCount() cycles

14.8.4.9 No Of OCC1 Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCC1 Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OCC1] events

14.8.4.10 Last OCC1 Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCC1 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCC1] event in CycleCount() cycles

14.8.4.11 No Of OCC2 Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCC2 Events	U2	0	32767	0	events

Description: Total number of *SafetyStatus()[OCC2]* events

14.8.4.12 Last OCC2 Event

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCC2 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCC2] event in CycleCount() cycles

14.8.4.13 No Of AOLD Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of AOLD Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OLD] events

14.8.4.14 Last AOLD Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last AOLD Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OLD] event in CycleCount() cycles

14.8.4.15 No Of ASCD Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of ASCD Events	U2	0	32767	0	events

www.ti.com Lifetimes

Description: Total number of *SafetyStatus()[SCD]* events

14.8.4.16 Last ASCD Event

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Safety Events	Last ASCD Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[SCD] event in CycleCount() cycles

14.8.4.17 No Of ASCC Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of ASCC Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[SCC] events

14.8.4.18 Last ASCC Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last ASCC Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[SCC] event in CycleCount() cycles

14.8.4.19 No Of OTC Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OTC Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OTC] events

14.8.4.20 Last OTC Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OTC Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OTC] event in CycleCount() cycles

14.8.4.21 No Of OTD Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OTD Events	U2	0	32767	0	events

Description: Total number of *SafetyStatus()[OTD]* events

14.8.4.22 Last OTD Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OTD Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OTD] event in CycleCount() cycles

14.8.4.23 No Of OTF Events

Lifetimes www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OTF Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OTF] events

14.8.4.24 Last OTF Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OTF Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OTF] event in CycleCount() cycles

14.8.5 Charging Events

14.8.5.1 No Valid Charge Term

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Charging Events	No Valid Charge Term	U2	0	32767	0	events

Description: Total number of valid charge termination events

14.8.5.2 Last Valid Charge Term

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Charging Events	Last Valid Charge Term	U2	0	32767	0	cycles

Description: Last valid charge termination in CycleCount() cycles

14.8.6 Gauging Events

14.8.6.1 No Of Qmax Updates

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	No Of Qmax Updates	U2	0	32767	0	events

Description: Total number of *GaugingStatus()[QMax]* toggles

14.8.6.2 Last Qmax Update

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	Last Qmax Update	U2	0	32767	0	cycles

Description: The CycleCount() cycles made at the last event of GaugingStatus()[QMax] update

14.8.6.3 No Of Ra Updates

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	No Of Ra Updates	U2	0	32767	0	events

Description: Total number of *GaugingStatus()[RX]* toggles

14.8.6.4 Last Ra Update

www.ti.com Lifetimes

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	Last Ra Update	U2	0	32767	0	cycles

Description: Last GaugingStatus()[RX] toggle in CycleCount() cycles

14.8.6.5 No Of Ra Disable

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	No Of Ra Disable	U2	0	32767	0	events

Description: Total number of *GaugingStatus()[R_DIS]* = 1 event

14.8.6.6 Last Ra Disable

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	Last Ra Disable	U2	0	32767	0	cycles

Description: The *CycleCount()* cycles of the last update event of *GaugingStatus()[R_DIS]* = 1

14.8.7 Power Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Power Events	No of Shutdowns	U1	0	255	0	events

Description: Total number of shutdown events

14.8.8 Cell Balancing

14.8.8.1 CB Time Cell 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 1	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 0

14.8.8.2 CB Time Cell 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 2	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 1

14.8.8.3 CB Time Cell 3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 3	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 2

14.8.8.4 CB Time Cell 4

Lifetimes www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 4	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 3

14.8.9 Time

14.8.9.1 Total Firmware Runtime

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Total Firmware Runtime	U2	0	65535	0	2 h

Description: Total firmware runtime between resets

14.8.9.2 Time Spent in UT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in UT	U2	0	65535	0	2 h

Description: Total firmware runtime spent below T1

14.8.9.3 Time Spent in LT

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in LT	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T1 and T2

14.8.9.4 Time Spent in STL

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in STL	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T2 and T5

14.8.9.5 Time Spent in RT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in RT	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T5 and T6

14.8.9.6 Time Spent in STH

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in STH	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T6 and T3

14.8.9.7 Time Spent in HT

www.ti.com Protections

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in HT	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T3 and T4

14.8.9.8 Time Spent in OT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in OT	U2	0	65535	0	2 h

Description: Total firmware runtime spent above T6

14.9 Protections

14.9.1 CUV—Cell Undervoltage

14.9.1.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUV	Threshold	12	0	32767	2500	mV

Description: Cell undervoltage trip threshold

14.9.1.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUV	Delay	U1	0	255	2	S

Description: Cell undervoltage trip delay

14.9.1.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUV	Recovery	12	0	32767	3000	mV

Description: Cell undervoltage recovery threshold

14.9.2 CUVC—Cell Undervoltage

14.9.2.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUVC	Threshold	12	0	32767	2400	mV

Description: Cell undervoltage trip threshold

14.9.2.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUVC	Delay	U1	0	255	2	s

Description: Cell undervoltage trip delay

Protections www.ti.com

14.9.2.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUVC	Recovery	12	0	32767	3000	mV

Description: Cell undervoltage recovery threshold

14.9.3 COV—Cell Overvoltage

14.9.3.1 Threshold Low Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold Low Temp	12	0	32767	4300	mV

Description: Cell overvoltage low temperature range trip threshold

14.9.3.2 Threshold Standard Tem

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold Standard Temp	12	0	32767	4300	mV

Description: Cell overvoltage standard temperature range trip threshold

14.9.3.3 Threshold High Temp

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	COV	Threshold High Temp	12	0	32767	4300	mV

Description: Cell overvoltage high temperature range trip threshold

14.9.3.4 Threshold Rec Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold Rec Temp	12	0	32767	4300	mV

Description: Cell overvoltage recommended temperature range trip threshold

14.9.3.5 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Delay	U1	0	255	2	s

Description: Cell overvoltage trip delay

14.9.3.6 Recovery Low Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery Low Temp	12	0	32767	3900	mV

Description: Cell overvoltage low temperature range recovery threshold

www.ti.com Protections

14.9.3.7 Recovery Standard Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery Standard Temp	12	0	32767	3900	mV

Description: Cell overvoltage standard temperature recovery range threshold

14.9.3.8 Recovery High Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery High Temp	12	0	32767	3900	mV

Description: Cell overvoltage high temperature range recovery threshold

14.9.3.9 Recovery Rec Temp

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	COV	Recovery Rec Temp	12	0	32767	3900	mV

Description: Cell overvoltage recommended temperature range recovery threshold

14.9.4 OCC1—Overcurrent In Charge 1

14.9.4.1 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCC1	Threshold	12	-32768	32767	6000	mA

Description: Overcurrent in Charge 1 trip threshold

14.9.4.2 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCC1	Delay	U1	0	255	6	s

Description: Overcurrent in Charge 1 trip delay

14.9.5 OCC2—Overcurrent In Charge 2

14.9.5.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC2	Threshold	12	-32768	32767	8000	mA

Description: Overcurrent in Charge 2 trip threshold

14.9.5.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC2	Delay	U1	0	255	3	S

Protections www.ti.com

Description: Overcurrent in Charge 2 trip delay

14.9.6 OCC—Overcurrent In Charge Recovery

14.9.6.1 Recovery Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCC	Recovery Threshold	12	-32768	32767	-200	mA

Description: Overcurrent in Charge 1 and 2 recovery threshold

14.9.6.2 Recovery Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCC	Recovery Delay	U1	0	255	5	s

Description: Overcurrent in Charge 1 and 2 recovery delay

14.9.7 OCD1—Overcurrent In Discharge 1

14.9.7.1 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCD1	Threshold	12	-32768	32767	-6000	mA

Description: Overcurrent in Discharge 1 trip threshold

14.9.7.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD1	Delay	U1	0	255	6	s

Description: Overcurrent in Discharge 1 trip delay

14.9.8 OCD2—Overcurrent In Discharge 2

14.9.8.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD2	Threshold	12	-32768	32767	-8000	mA

Description: Overcurrent in Discharge 2 trip threshold

14.9.8.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD2	Delay	U1	0	255	3	s

Description: Overcurrent in Discharge 2 trip delay

www.ti.com Protections

14.9.9 OCD—Overcurrent In Discharge Recovery

14.9.9.1 Recovery Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD	Recovery Threshold	12	-32768	32767	200	mA

Description: Overcurrent in Discharge 1 and 2 recovery threshold

14.9.9.2 Recovery Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCD	Recovery Delay	U1	0	255	5	s

Description: Overcurrent in Discharge 1 and 2 recovery delay

14.9.10 AOLD—Overload in Discharge

14.9.10.1 Latch Limit

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Latch Limit	U1	0	255	0	counts

Description: Overload latch counter trip threshold

14.9.10.2 Counter Dec Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Counter Dec Delay	U1	0	255	10	S

Description: Overload latch counter decrement delay

14.9.10.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Recovery	U1	0	255	5	S

Description: Overload recovery time

14.9.10.4 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Reset	U1	0	255	15	s

Description: Overload latch reset time

14.9.10.5 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Threshold	H1	0x0	0xFF	0xF4	Hex

Protections www.ti.com

Description: AOLD:Threshold Setting

Bits 7–4: OLDD: AOLD delay time Bits 3–0: OLDV: AOLD threshold

14.9.11 ASCC—Short Circuit In Charge

14.9.11.1 Latch Limit

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCC	Latch Limit	U1	0	255	0	-

Description: Short Circuit in Charge Latch counter trip threshold

14.9.11.2 Counter Dec Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	ASCC	Counter Dec Delay	U1	0	255	10	s

Description: Short Circuit in Charge counter decrement delay

www.ti.com Protections

14.9.11.3 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	ASCC	Recovery	U1	0	255	5	s

Description: Short Circuit in Charge recovery time

14.9.11.4 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCC	Reset	U1	0	255	15	S

Description: Short Circuit in Charge latch reset time

14.9.11.5 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCC	Threshold	H1	0x0	0xFF	0x77	Hex

Description: ASCC:Threshold Setting

Bits 7-4: SCCD: SCC delay time

Bit 3: Reserved

Bits 2-0: SCCV: SCC threshold

14.9.12 ASCD—Short Circuit in Discharge

14.9.12.1 Latch Limit

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Latch Limit	U1	0	255	0	_

Description: Short Circuit in Discharge Latch counter trip threshold

14.9.12.2 Counter Dec Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Counter Dec Delay	U1	0	255	10	s

Description: Short Circuit in Discharge counter decrement delay

14.9.12.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Recovery	U1	0	255	5	s

Description: Short Circuit in Discharge recovery time

14.9.12.4 Reset

Protections www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Reset	U1	0	255	15	s

Description: Short Circuit in Discharge latch reset time

14.9.12.5 Thresholds 1 and 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Threshold 1	H1	0x0	0xFF	0x77	Hex
Protections	ASCD	Threshold 2	H1	0x0	0xFF	0xE7	Hex

Threshold 1 Description: ASCD:Threshold 1 Setting

Bits 7-4: SCD1D-SCD1 delay time

Bit 3: Reserved

Bits 2-0: SCD1V: SCD1 threshold

Threshold 2 Description: ASCD: Threshold 2 Setting

Bits 7-4: SCD2D-SCD2 delay time

Bit 3: Reserved

Bits 2-0: SCD2V: SCD2 threshold

14.9.13 OTC—Overtemperature in Charge

14.9.13.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTC	Threshold	12	-400	1500	550	0.1°C

Description: Overtemperature in Charge trip threshold

14.9.13.2 Delay

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
ĺ	Protections	OTC	Delay	U1	0	255	2	s

Description: Overtemperature in Charge Cell trip delay

14.9.13.3 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OTC	Recovery	12	-400	1500	500	0.1°C

Description: Overtemperature in Charge Cell recovery threshold

14.9.14 OTD—Overtemperature in Discharge

14.9.14.1 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OTD	Threshold	12	-400	1500	600	0.1°C

www.ti.com Protections

Description: Overtemperature in Discharge trip threshold

14.9.14.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTD	Delay	U1	0	255	2	s

Description: Overtemperature in Discharge trip delay

14.9.14.3 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OTD	Recovery	12	-400	1500	550	0.1°C

Description: Overtemperature in Discharge recovery threshold

14.9.15 OTF—Overtemperature FET

14.9.15.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTF	Threshold	12	-400	1500	800	0.1°C

Description: Overtemperature FET trip threshold

14.9.15.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTF	Delay	U1	0	255	2	S

Description: Overtemperature FET trip delay

14.9.15.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTF	Recovery	12	-400	1500	650	0.1°C

Description: Overtemperature FET recovery threshold

14.9.16 UTC—Under Temperature in Charge

14.9.16.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTC	Threshold	12	-400	1500	0	0.1°C

Description: Undertemperature in Charge trip threshold

14.9.16.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTC	Delay	U1	0	255	2	S

Protections www.ti.com

Description: Undertemperature in Charge Cell trip delay

14.9.16.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit	l
Protections	UTC	Recovery	12	-400	1500	50	0.1°C	

Description: Undertemperature in Charge Cell recovery threshold

14.9.17 UTD—Under Temperature in Discharge

14.9.17.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit	l
Protections	UTD	Threshold	12	-400	1500	0	0.1°C	

Description: Under Temperature in Discharge trip threshold

14.9.17.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTD	Delay	U1	0	255	2	s

Description: Under Temperature in Discharge trip delay

14.9.17.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTD	Recovery	12	-400	1500	50	0.1°C

Description: Under Temperature in Discharge recovery threshold

14.9.18 HWD—Host Watchdog

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	HWD	Delay	U1	0	255	10	S

Description: SBS Host watchdog trip delay

14.9.19 PTO—Precharge mode Time Out

14.9.19.1 Charge Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	PTO	Charge Threshold	12	-32768	32767	2000	mA

Description: Precharge Timeout Current Threshold

14.9.19.2 Suspend Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PTO	Suspend Threshold	12	-32768	32767	1800	mA

www.ti.com Protections

Description: Precharge Timeout Suspend Threshold

14.9.19.3 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PTO	Delay	U2	0	65535	1800	s

Description: Precharge Timeout trip delay

14.9.19.4 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PTO	Reset	12	-32768	32767	2	mA

Description: Precharge Timeout Reset Threshold

14.9.20 CTO—Fast Charge Mode Time Out

14.9.20.1 Charge Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	СТО	Charge Threshold	12	-32768	32767	2500	mA

Description: Fast-Charge Timeout Current Threshold

14.9.20.2 Suspend Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	СТО	Suspend Threshold	12	-32768	32767	2000	mA

Description: Fast-Charge Timeout Suspend Threshold

14.9.20.3 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	СТО	Delay	U2	0	65535	54000	S

Description: Fast-Charge Timeout trip delay

14.9.20.4 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	СТО	Reset	12	0	32767	2	mA

Description: Fast-Charge Timeout Reset Threshold

14.9.21 OC—Overcharge

14.9.21.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OC	Threshold	12	-32768	32767	300	mAh

Protections www.ti.com

Description: Overcharge trip threshold

14.9.21.2 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OC	Recovery	12	-32768	32767	2	mAh

Description: Overcharge recovery threshold

14.9.21.3 RSOC Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OC	RSOC Recovery	U1	0	100	90	%

Description: Overcharge RelativeStateOfCharge() recovery threshold

14.9.22 CHGV—ChargingVoltage

14.9.22.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGV	Threshold	12	-32768	32767	500	mV

Description: Charging Voltage() delta trip threshold

14.9.22.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGV	Delay	U1	0	255	30	S

Description: Charging Voltage() delta trip delay

14.9.22.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGV	Recovery	12	-32768	32767	-500	mV

Description: Charging Voltage() delta recovery threshold

14.9.23 CHGC—ChargingCurrent

14.9.23.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Threshold	12	-32768	32767	500	mA

Description: ChargingCurrent() delta trip threshold

14.9.23.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Delay	U1	0	255	2	s

www.ti.com Protections

Description: ChargingCurrent() delta trip delay

14.9.23.3 Recovery Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Recovery Threshold	12	-32768	32767	100	mA

Description: ChargingCurrent() delta recovery threshold

14.9.23.4 Recovery Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Recovery Delay	U1	0	255	2	s

Description: ChargingCurrent() delta recovery delay

14.9.24 PCHGC—Pre-ChargingCurrent

14.9.24.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PCHGC	Threshold	12	-32768	32767	50	mA

Description: Pre-ChargingCurrent() trip threshold

14.9.24.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PCHGC	Delay	U1	0	255	2	S

Description: Pre-ChargingCurrent() trip delay

14.9.24.3 Recovery Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PCHGC	Recovery Threshold	12	-32768	32767	10	mA

Description: Pre-ChargingCurrent() recovery threshold

14.9.24.4 Recovery Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PCHGC	Recovery Delay	U1	0	255	2	s

Description: Pre-ChargingCurrent() recovery delay

14.10 Permanent Fail

14.10.1 SUV—Safety Cell Undervoltage

14.10.1.1 Threshold

Permanent Fail www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SUV	Threshold	12	0	32767	2200	mV

Description: Safety Cell Undervoltage trip threshold

14.10.1.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SUV	Delay	U1	0	255	5	S

Description: Safety Cell Undervoltage trip delay

14.10.2 SOV—Safety Cell Overvoltage

14.10.2.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOV	Threshold	12	0	32767	4500	mV

Description: Safety Cell Overvoltage trip threshold

14.10.2.2 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	SOV	Delay	U1	0	255	5	s

Description: Safety Cell Overvoltage trip delay

14.10.3 SOCC—Safety Overcurrent in Charge

14.10.3.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOCC	Threshold	12	-32768	32767	10000	mA

Description: Safety Overcurrent in Charge trip threshold

14.10.3.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOCC	Delay	U1	0	255	5	S

Description: Safety Overcurrent in Charge trip delay

14.10.4 SOCD—Safety Overcurrent in Discharge

14.10.4.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOCD	Threshold	12	-32768	32767	-10000	mA

Description: Safety Overcurrent in Discharge trip threshold

www.ti.com Permanent Fail

14.10.4.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOCD	Delay	U1	0	255	5	s

Description: Safety Overcurrent in Discharge trip delay

14.10.5 SOT—Overtemperature Cell

14.10.5.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOT	Threshold	12	-400	1500	650	0.1°C

Description: Overtemperature Cell trip threshold

14.10.5.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOT	Delay	U1	0	255	5	s

Description: Overtemperature Cell trip delay

14.10.6 SOTF—Overtemperature FET

14.10.6.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOTF	Threshold	12	-400	1500	1000	0.1°C

Description: Overtemperature FET trip threshold

14.10.6.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOTF	Delay	U1	0	255	5	s

Description: Overtemperature FET trip delay

14.10.7 Open Thermistor—NTC Thermistor Failure

14.10.7.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	Threshold	12	0	32767	2232	0.1 °K

Description: Temperature threshold for open thermistor

14.10.7.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	Delay	U1	0	255	5	s

Permanent Fail www.ti.com

Description: Trip delay for open thermistor

14.10.7.3 FET Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	FET Delta	12	0	-400	1500	0.1 °K

Description: Delta from internal temperature to enable Open Thermistor check for FET thermistors

14.10.7.4 Cell Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	Cell Delta	12	0	-400	1500	0.1 °K

Description: Delta from internal temperature to enable Open Thermistor check for cell thermistors

14.10.8 QIM—QMax Imbalance

14.10.8.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	QIM	Threshold	12	0	32767	100	0.10%

Description: QMax Imbalance trip threshold

14.10.8.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	QIM	Delay	U1	0	255	2	updates

Description: QMax Imbalance trip delay

14.10.9 CB—Cell Balance

14.10.9.1 Max Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	СВ	Max Threshold	12	0	32767	120	2 h

Description: Cell Balance max trip threshold

14.10.9.2 Delta Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	СВ	Delta Threshold	U1	0	255	20	2 h

Description: Cell Balance cell delta trip threshold

14.10.9.3 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	СВ	Delay	U1	0	255	2	cycles

www.ti.com Permanent Fail

Description: Cell Balance trip delay

14.10.10 VIMR—Voltage Imbalance At Rest

14.10.10.1 Check Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMR	Check Voltage	12	0	5000	3500	mV

Description: Voltage Imbalance At Rest Check Voltage

14.10.10.2 Check Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMR	Check Current	12	0	32767	10	mA

Description: Voltage Imbalance At Rest Check Current

14.10.10.3 Delta Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMR	Delta Threshold	12	0	5000	200	mV

Description: Voltage Imbalance At Rest trip threshold

14.10.10.4 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMR	Delay	U1	0	255	5	S

Description: Voltage Imbalance At Rest Check trip delay

14.10.10.5 Duration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMR	Duration	U2	0	65535	100	S

Description: Voltage Imbalance At Rest Check Duration

14.10.11 VIMA—Voltage Imbalance Active

14.10.11.1 Check Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMA	Check Voltage	12	0	5000	3700	mV

Description: Voltage Imbalance active Check Voltage

14.10.11.2 Check Current

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMA	Check Current	12	0	32767	50	mA

Permanent Fail www.ti.com

Description: Voltage Imbalance active Check Current

14.10.11.3 Delta Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit	
Permanent Fail	VIMA	Delta Threshold	12	0	5000	300	mV	1

Description: Voltage Imbalance active trip threshold

14.10.11.4 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMA	Delay	U1	0	255	5	S

Description: Voltage Imbalance active check trip Delay

14.10.12 IMP—Impedance Imbalance

14.10.12.1 Delta Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	IMP	Delta Threshold	12	0	32767	300	%

Description: Impedance Imbalance delta threshold

14.10.12.2 Max Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	IMP	Max Threshold	12	0	32767	400	%

Description: Impedance Imbalance max threshold

14.10.12.3 Ra Update Counts

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	IMP	Ra Update Counts	U1	0	255	2	counts

Description: Impedance Imbalance trip delay

14.10.13 CD—Capacity Degradation

14.10.13.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	CD	Threshold	12	0	32767	4200	mAh

Description: Capacity Degradation threshold

14.10.13.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	CD	Delay	U1	0	255	2	cycles

www.ti.com Permanent Fail

Description: Capacity Degradation trip delay

14.10.14 CFET—CHG FET Failure

14.10.14.1 OFF Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	CFET	OFF Threshold	12	0	500	5	mA

Description: CHG FET OFF current trip threshold

14.10.14.2 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	CFET	Delay	U1	0	255	5	S

Description: CHG FET OFF trip delay

14.10.15 DFET—DFET Failure

14.10.15.1 OFF Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	DFET	OFF Threshold	12	-500	0	- 5	mA

Description: DSG FET OFF current trip threshold

14.10.15.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	DFET	Delay	U1	0	255	5	s

Description: DSG FET OFF trip delay

14.10.16 FUSE—FUSE Failure

14.10.16.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	FUSE	Threshold	12	0	255	5	mA

Description: FUSE activation fail trip threshold

14.10.16.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	FUSE	Delay	U1	0	255	5	s

Description: FUSE activation fail trip delay

Permanent Fail www.ti.com

14.10.17 AFER—AFE Register

14.10.17.1 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	AFER	Threshold	U1	0	255	100	_

Description: AFE Register comparison fail trip threshold

14.10.17.2 Delay Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFER	Delay Period	U1	0	255	5	s

Description: AFE Register comparison counter decrement period

14.10.17.3 Compare Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFER	Compare Period	U1	0	255	5	S

Description: AFE Register comparison compare period

14.10.18 AFEC—AFE Communication

14.10.18.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFEC	Threshold	U1	0	255	100	_

Description: AFE Communication fail trip threshold

14.10.18.2 Delay Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFEC	Delay Period	U1	0	255	5	s

Description: AFE Communication counter decrement period

14.10.19 2LVL—2nd Level OV

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	2LVL	Threshold	U1	0	255	5	s

Description: 2nd Level Protector trip detection delay

14.10.20 OPNCELL—Open Cell Connection

14.10.20.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	OPNCELL	Threshold	12	0	32767	5000	mV

www.ti.com PF Status

Description: Open Cell Tab Connection trip threshold

14.10.20.2 Delay Period

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	OPNCELL	Delay Period	U1	0	255	5	s

Description: Open Cell Tab Connection trip delay

14.11 PF Status

The data in this class is saved at the time of the PF event.

14.11.1 Device Status Data

14.11.1.1 Safety Alert A

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.2 Safety Status A

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.3 Safety Alert B

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.4 Safety Status B

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.5 Safety Alert C

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert C	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.6 Safety Status C

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status C	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.7 Safety Alert D

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.8 Safety Status D

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

14.11.1.9 PF Alert A

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Alert A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

14.11.1.10 PF Status A

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	PF Status A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

14.11.1.11 PF Alert B

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	PF Alert B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

14.11.1.12 PF Status B

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	PF Status B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

14.11.1.13 PF Alert C

	Class	Subclass	Name	Type	Min	Max	Default	Units
F	PF Status	Device Status Data	PF Alert C	H1	0x0	0xFF	0x0	Hex

www.ti.com PF Status

Description: Accumulated PF flags since PF event

14.11.1.14 PF Status C

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Status C	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

14.11.1.15 PF Alert D

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Alert D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

14.11.1.16 PF Status D

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	PF Status D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

14.11.1.17 Fuse Flag

Class Subclass		Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Fuse Flag	H2	0x0	0xFFFF	0x0	Hex

Description: Flag set to indicate fuse blow

14.11.1.18 Operation Status A

Class Subclass		Name Type		Min	Max	Default	Units	
PF Status	Device Status Data	Operation Status A	H2	0x0	0xFFFF	0x0	Hex	

Description: OperationStatus() data at the time of the PF event

14.11.1.19 Operation Status B

Class Subclass		Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Operation Status B	H2	0x0	0xFFFF	0x0	Hex

Description: OperationStatus() data at the time of the PF event

14.11.1.20 Temp Range

Class Subclass		Name	Туре	Min	Max	Default	Units
PF Status Device Status Data		Temp Range	H1	0x0	0xFF	0x0	Hex

Description: Temperature range status at the time of the PF event. The temperature range information returned by *ChargingStatus()*

PF Status www.ti.com

14.11.1.21 Charging Status A

Class	Class Subclass		Туре	Min	Max	Default	Units
PF Status	Device Status Data	Charging Status A	H1	0x0	0xFF	0x0	Hex

Description: The charging status at the time of the PF event. See Section 13.48 for the bit definitions.

7	6	5	4	3	2	1	0
VCT	MCHG	SU	IN	HV	MV	LV	PV

14.11.1.22 Charging Status B

Class Subclass		Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	Charging Status B	H1	0x0	0xFF	0x0	Hex

Description: The charging status at the time of the PF event. See Section 13.48 for the bit definitions.

7	6	5	4	3	2	1	0
VCT	RSVD	RSVD	RSVD	RSVD	CCC	CVR	CCR

14.11.1.23 Gauging Status

Class Subclass		Name	Туре	Min	Max	Default	Units
PF Status	PF Status Device Status Data		H1	0x0	0xFF	0x0	Hex

Description: The gauging status at the time of the PF event.

7	6	5	4	3	2	1	0
CF	DSG	EDV	BAL_EN	TCA	TDA	FC	FD

14.11.1.24 IT Status

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	IT Status	H2	0x0	0xFFFF	0x0	Hex

Description: The Impedance Track status at the time of the PF event. See Section 13.48 for the bit definitions.

15	14	13	12	11	10	9	8
RSVD	RSVD	SLPQ MAX	QEN	VOK	RDIS	RSVD	
7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	OCVFR	LDMD	RX	QMAX	VDQ

14.11.2 Device Voltage Data

14.11.2.1 Cell 1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 1 Voltage	12	-32768	32767	0	mV

www.ti.com PF Status

Description: Cell 1 voltage

14.11.2.2 Cell 2 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 2 Voltage	12	-32768	32767	0	mV

Description: Cell 2 voltage

14.11.2.3 Cell 3 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Statu	Device Voltage Data	Cell 3 Voltage	12	-32768	32767	0	mV

Description: Cell 3 voltage

14.11.2.4 Cell 4 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 4 Voltage	12	-32768	32767	0	mV

Description: Cell 4 voltage

14.11.2.5 Battery Direct Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Battery Direct Voltage	12	-32768	32767	0	mV

Description: Battery voltage

14.11.2.6 Pack Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Pack Voltage	12	-32768	32767	0	mV

Description: Pack pin voltage

14.11.3 Device Current Data

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Current Data	Current	12	-32768	32767	0	mV

Description: Current()

14.11.4 Device Temperature Data

14.11.4.1 Internal Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	Internal Temperature	12	-32768	32767	0	0.1°K

PF Status www.ti.com

Description: Internal temperature sensor temperature

14.11.4.2 External 1 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 1 Temperature	I2	-32768	32767	0	0.1°K

Description: External TS1 temperature

14.11.4.3 External 2 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 2 Temperature	12	-32768	32767	0	0.1°K

Description: External TS2 temperature

14.11.4.4 External 3 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 3 Temperature	12	-32768	32767	0	0.1°K

Description: External TS3 temperature

14.11.4.5 External 4 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 4 Temperature	12	-32768	32767	0	0.1°K

Description: External TS4 temperature

14.11.5 Device Gauging Data

14.11.5.1 Cell 1DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 1DOD0	12	-32768	32767	0	_

Description: Cell 1 depth of discharge

14.11.5.2 Cell 2 DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 2 DOD0	12	-32768	32767	0	_

Description: Cell 2 depth of discharge

14.11.5.3 Cell 3 DOD0

www.ti.com PF Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 3 DOD0	12	-32768	32767	0	_

Description: Cell 3 depth of discharge

14.11.5.4 Cell 4 DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 4 DOD0	12	-32768	32767	0	_

Description: Cell 4 depth of discharge

14.11.5.5 Passed Charge

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Passed Charge	12	-32768	32767	0	mAh

Description: Passed charge since last QMax update

14.11.6 AFE Regs

The AFE Regs data is intended for Texas Instruments' use to help with internal firmware diagnostics.

14.11.6.1 AFE Interrupt Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Interrupt Status	H1	0x00	0xFF	0x00	Hex

Description: AFE Interrupt Status Register Contents

14.11.6.2 AFE FET Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE FET Status	H1	0x00	0xFF	0x00	Hex

Description: AFE FET Status Register Contents

14.11.6.3 AFE RXIN

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RXIN	H1	0x00	0xFF	0x00	Hex

Description: AFE Rxin Register Contents

14.11.6.4 AFE Latch Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Latch Status	H1	0x00	0xFF	0x00	Hex

Description: AFE Latch Status Register Contents

14.11.6.5 AFE Interrupt Enable

PF Status www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Interrupt Enable	H1	0x00	0xFF	0x00	Hex

Description: AFE Interrupt Enable Register Contents

14.11.6.6 AFE FET Control

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE FET Control	H1	0x00	0xFF	0x00	Hex

Description: AFE FET Control Register Contents

14.11.6.7 AFE RXIEN

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RXIEN	H1	0x00	0xFF	0x00	Hex

Description: AFE RXIEN Register Contents

14.11.6.8 AFE RLOUT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RLOUT	H1	0x00	0xFF	0x00	Hex

Description: AFE RLOUT Register Contents

14.11.6.9 AFE RHOUT

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RHOUT	H1	0x00	0xFF	0x00	Hex

Description: AFE RHOUT Register Contents

14.11.6.10 AFE RHINT

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RHINT	H1	0x00	0xFF	0x00	Hex

Description: AFE RHINT Register Contents

14.11.6.11 AFE Cell Balance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Cell Balance	H1	0x00	0xFF	0x00	Hex

Description: AFE Cell Balance Register Contents

14.11.6.12 AFE AD/CC Control

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE AD/CC Control	H1	0x00	0xFF	0x00	Hex

www.ti.com PF Status

Description: AFE AD/CC Control Register Contents

14.11.6.13 AFE ADC Mux

Class	Subclass	Name	Type	Min	Max	Default	Unit	
PF Status	AFE Regs	AFE ADC Mux	H1	0x00	0xFF	0x00	Hex	

Description: AFE ADC Mux Register Contents

14.11.6.14 AFE LED Output

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE LED Output	H1	0x00	0xFF	0x00	Hex

Description: AFE LED Output Register Contents

14.11.6.15 AFE State Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE State Control	H1	0x00	0xFF	0x00	Hex

Description: AFE State Control Register Contents

14.11.6.16 AFE LED/Wake Control

	Class	Subclass	Name	Type	Min	Max	Default	Unit
PI	F Status	AFE Regs	AFE LED/Wake Control	H1	0x00	0xFF	0x00	Hex

Description: AFE LED/Wake Control Register Contents

14.11.6.17 AFE Protection Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Protection Control	H1	0x00	0xFF	0x00	Hex

Description: AFE Protection Control Register Contents

14.11.6.18 AFE OCD

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE OCD	H1	0x00	0xFF	0x00	Hex

Description: AFE OCD Register Contents

14.11.6.19 AFE SCC

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE SCC	H1	0x00	0xFF	0x00	Hex

Description: AFE SCC Register Contents

14.11.6.20 AFE SCD1

Black Box www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE SCD1	H1	0x00	0xFF	0x00	Hex

Description: AFE SCD1 Register Contents

14.11.6.21 AFE SCD2

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE SCD2	H1	0x00	0xFF	0x00	Hex

Description: AFE SCD2 Register Contents

14.12 Black Box

14.12.1 Safety Status

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Black Box	Safety Status	1st Status Status A	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Status Status B	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Safety Status C	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Safety Status D	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Time to Next Event	U1	0	255	0	s	Time from 1st event to 2nd event
Black Box	Safety Status	2nd Status Status A	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	2nd Status Status B	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	2nd Safety Status C	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	2nd Safety Status D	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	2nd Time to Next Event	U1	0	255	0	S	Time from 2nd event to 3rd event
Black Box	Safety Status	3rd Status Status A	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Status Status B	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Safety Status C	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Safety Status D	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Time to Next Event	U1	0	255	0	S	Time since 3rd event

14.12.2 PF Status

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
Black Box	PF Status	1st PF Status A	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	1st PF Status B	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	1st PF Status C	H1	0x0	0xFF	0x0	Hex	PFStatus() data

www.ti.com Gas Gauging

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Black Box	PF Status	1st PF Status D	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	1st Time to Next Event	U1	0	255	0	s	Time from 1st event to 2nd event
Black Box	PF Status	2nd PF Status A	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd PF Status B	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd PF Status C	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd PF Status D	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd Time to Next Event	U1	0	255	0	s	Time from 2nd event to 3rd event
Black Box	PF Status	3rd PF Status A	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd PF Status B	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd PF Status C	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd PF Status D	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd Time to Next Event	U1	0	255	0	s	Time since 3rd event

14.13 Gas Gauging

14.13.1 Current Thresholds

14.13.1.1 Dsg Current Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Dsg Current Threshold	12	-32768	32767	100	mA

Description: DISCHARGE mode Current() threshold

14.13.1.2 Chg Current Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Chg Current Threshold	12	-32768	32767	50	mA

Description: CHARGE mode Current() threshold

14.13.1.3 Quit Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Quit Current	12	0	32767	10	mA

Description: |Current()| threshold to enter rest mode

14.13.1.4 Dsg Relax Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Dsg Relax Time	U1	0	255	1	mA

Gas Gauging www.ti.com

Description: Discharge to relax timeout. When discharge is stopped, the device will exit the DISCHARGE mode after this time is passed.

14.13.1.5 Chg Relax Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Chg Relax Time	U1	0	255	60	mA

Description: Charge to relax timeout. When charging is stopped, the device will exit the CHARGE mode after this time is passed.

14.13.2 Design

14.13.2.1 Design Capacity mAh

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Design	Design Capacity mAh	12	0	32767	4400	mAh

Description: Design Capacity in mAh. This is reported by DesignCapacity() if [CAPM] = 0.

14.13.2.2 Design Capacity in cWh

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Design	Design Capacity cWh	12	0	32767	6336	cWh

Description: Design Capacity in cWh. This is reported by *DesignCapacity()* if **[CAPM]** = 1.

14.13.2.3 Design Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Design	Design Voltage	12	0	32767	14400	mV

Description: Design Voltage. This is reported by *DesignVoltage()*.

14.13.3 Cycle

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Cycle	Cycle Count Percentage	U1	0	100	90	%

Description: This is a threshold to increment the *Cycle Count* if the accumulated discharge is more than this set percentage of *FullChargeCapacity()* (if *[CCT]* = 1) or *DesignCapacity()* (if *[CCT]* = 0). Note that a minimum of 10% of *DesignCapacity()* change of the accumulated discharge is required for cycle count increment. This is to prevent an erroneous cycle count increment due to extremely low *FullChargeCapacity()*.

14.13.4 FD

14.13.4.1 Set Voltage Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	FD	Set Voltage Threshold	12	0	5000	3000	mV

Description: GaugingStatus()[FD] and BatteryStatus()[FD] cell voltage set threshold

www.ti.com Gas Gauging

14.13.4.2 Clear Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FD	Clear Voltage Threshold	12	0	5000	3100	mV

Description: GaugingStatus()[FD] and BatteryStatus()[FD] cell voltage clear threshold

14.13.4.3 Set RSOC % Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	FD	Set RSOC % Threshold	U1	0	100	0	%

Description: GaugingStatus()[FD] and BatteryStatus()[FD] RelativeStateOfCharge() set threshold

14.13.4.4 Clear RSOC % Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	FD	Clear RSOC % Threshold	U1	0	100	5	%

Description: GaugingStatus()[FD] and BatteryStatus()[FD] RelativeStateOfCharge() clear threshold

14.13.5 FC

14.13.5.1 Set Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FC	Set Voltage Threshold	12	0	5000	4200	mV

Description: GaugingStatus()[FC] and BatteryStatus()[FC] cell voltage set threshold

14.13.5.2 Clear Voltage Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	FC	Clear Voltage Threshold	12	0	5000	4100	mV

Description: GaugingStatus()[FC] and BatteryStatus()[FC] cell voltage clear threshold

14.13.5.3 Set RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FC	Set RSOC % Threshold	U1	0	100	100	%

Description: GaugingStatus()[FC] and BatteryStatus()[FC] RelativeStateOfCharge() set threshold

14.13.5.4 Clear RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FC	Clear RSOC % Threshold	U1	0	100	95	%

Description: GaugingStatus()[FC] and BatteryStatus()[FC] RelativeStateOfCharge() clear threshold

Gas Gauging www.ti.com

14.13.6 TD

GaugingStatus()[TD] is used to set BatteryStatus()[TDA] when in DISCHARGE mode.

14.13.6.1 Set Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TD	Set Voltage Threshold	12	0	5000	3200	mV

Description: GaugingStatus()[TD] cell voltage set threshold

14.13.6.2 Clear Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TD	Clear Voltage Threshold	12	0	5000	3300	mV

Description: GaugingStatus()[TD] cell voltage clear threshold

14.13.6.3 Set RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TD	Set RSOC % Threshold	U1	0	100	6	%

Description: GaugingStatus()[TD] RelativeStateOfCharge() set threshold

14.13.6.4 Clear RSOC % Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	TD	Clear RSOC % Threshold	U1	0	100	8	%

Description: GaugingStatus()[TD] RelativeStateOfCharge() clear threshold

14.13.7 TC

GaugingStatus()[TC] is used to set BatteryStatus()[TCA] when in CHARGE mode

14.13.7.1 Set Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TC	Set Voltage Threshold	12	0	5000	4200	mV

Description: GaugingStatus()[TC] cell voltage set threshold

14.13.7.2 Clear Voltage Threshold

Class	Class Subclass Name		Туре	Min	Max	Default	Unit
Gas Gauging	TC	Clear Voltage Threshold	12	0	5000	4100	mV

Description: GaugingStatus()[TC] cell voltage clear threshold

14.13.7.3 Set RSOC % Threshold

www.ti.com Gas Gauging

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TC	Set RSOC % Threshold	U1	0	100	100	%

Description: GaugingStatus()[TC] RelativeStateOfCharge() set threshold

14.13.7.4 Clear RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TC	Clear RSOC % Threshold	U1	0	100	95	%

Description: GaugingStatus()[TC] RelativeStateOfCharge() clear threshold

14.13.8 State

14.13.8.1 QMax

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	State	QMax Cell 1	12	0	32767	4400	mAh	QMax Cell 1
Gas Gauging	State	QMax Cell 2	12	0	32767	4400	mAh	QMax Cell 2
Gas Gauging	State	QMax Cell 3	12	0	32767	4400	mAh	QMax Cell 3
Gas Gauging	State	QMax Cell 4	12	0	32767	4400	mAh	QMax Cell 4
Gas Gauging	State	QMax Pack	12	0	32767	4400	mAh	QMax of the whole stack
Gas Gauging	State	Qmax Cycle Count	U2	0	65535	0	_	The CycleCount() when Qmax updated

14.13.8.2 Update Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	State	Update Status	H1	0x00	0x0E	0x00	_

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	QMax	Enable	Update1	Update0

RSVD (Bits 7-4): Reserved. Do not use.

QMax update in the field (Bit 3)

1 = Updated

0 = Not updated

Enable (Bit 2): Impedance Track gauging and lifetime updating enable

1 = Enabled

0 = Disabled

Update1, Update0 (Bits 1-0): Update Status

0,0 = Impedance Track gauging and lifetime updating is disabled.

0,1 = QMax updated

1,0 = QMax and Ra table have been updated.

Gas Gauging www.ti.com

14.13.8.3 Cell 1-4 Chg Voltage at EoC

14.13.8.3.1 Cell 1Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 1Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 1 voltage value at end of charge

14.13.8.3.2 Cell 2 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 2 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 2 voltage value at end of charge

14.13.8.3.3 Cell 3 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 3 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 3 voltage value at end of charge

14.13.8.3.4 Cell 4 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 4 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 4 voltage value at end of charge

14.13.8.4 Current at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Current at EoC	12	0	32767	250	mA

Description: Current at end of charge

14.13.8.5 Average Last Run

14.13.8.5.1 Avg I Last Run

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Avg I Last Run	12	-32768	32767	-2000	mA

Description: Average current last discharge cycle

14.13.8.5.2 Avg P Last Run

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Avg P Last Run	12	-32768	32767	-3022	10 mW

Description: Average power last discharge cycle

www.ti.com Gas Gauging

14.13.8.6 Delta Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Delta Voltage	12	-32768	32767	0	mV

Description: Voltage() delta between normal and short load spikes to optimize run time calculation

14.13.8.7 Temp

14.13.8.7.1 Temp k

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Temp k	12	0	32767	100	0.1°C/ 2560 mW

Description: Initial Thermal model temperature factor

14.13.8.7.2 Temp a

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Temp a	12	0	32767	1000	_

Description: Initial Thermal model temperature

14.13.8.8 Max Avg Last Run

14.13.8.8.1 Max Avg I Last Run

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Max Avg I Last Run	12	-32768	32767	-2000	mA

Description: Max current last discharge cycle

14.13.8.8.2 Max Avg P Last Run

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Max Avg P Last Run	12	-32768	32767	-3022	cW

Description: Max power last discharge cycle

14.13.9 Cycle Count

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	State	Cycle Count	U2	0	65535	0		Cycle Count

Description: Value reported by *CycleCount()*. Updated by the gauge automatically based on *Cycle Count Percentage*.

14.13.10 IT Config

14.13.10.1 Load Select

Gas Gauging www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Load Select	U1	0	7	7	_

Description: Defines Load compensation mode used by gauging algorithm

14.13.10.2 Load Mode

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Load Mode	U1	0	1	0	_

Description: Defines unit used by gauging algorithm:

0 = Constant Current1 = Constant Power

14.13.10.3 Design Resistance

Class		Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gau	jing	IT Cfg	Design Resistance	12	1	32767	42	mΩ

Description: Averaged cell resistance at *Reference Grid* point. Automatically updated when Update Status is set to 0x6 by the gauge. To automatically update again, set Update Status to 0x4 or manually set when Update Status is set to 0x6.

14.13.10.4 User Rate-mA

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	User Rate-mA	12	-9000	0	0	mA

Description: Discharge rate used for capacity calculation selected by **Load Select** = 6

14.13.10.5 User Rate-cW

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	User Rate-cW	12	-32768	0	0	cW

Description: Discharge rate used for capacity calculation selected by **Load Select** = 6

14.13.10.6 Reserve Cap-mAh

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Reserve Cap-mAh	12	0	9000	0	mAh

Description: Capacity reserved available when the gauging algorithm reports 0% RelativeStateOfCharge()

14.13.10.7 Reserve Cap-cWh

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Reserve Cap-cWh	12	0	32000	0	cWh

www.ti.com Gas Gauging

Description: Capacity reserved available when the gauging algorithm reports 0% RelativeStateOfCharge()

14.13.10.8 Ra Filter

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Ra Filter	U2	0	999	500	%

Description: Filter value used in Ra Updates and specifies what percentage or Ra update is from the new value (100% setting) vs. old value (setting). The recommended setting is 80% if the **[RSOC_CONV]** feature is enabled. Otherwise, the setting should be 50% as default.

14.13.10.9 Ra Max Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Ra Max Delta	U1	0	255	15	%

Description: Maximum value of allowed Ra change

14.13.10.10 Reference Grid

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Reference Grid	U1	0	14	4	_

Description: **Reference Grid** point used by Design Resistance. The default setting should be used if the **[RSOC_CONV]** feature is enabled. Otherwise, grid point 11 should be used to ensure resistance updates fast enough at the grid where discharge termination occurs.

14.13.10.11 Resistance Parameter Filter

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Resistance Parameter Filter	U2	1	65535	65142	_

Description: This is one of the filters used for resistance update. Reducing this filter setting can improve low temperature performance at high rates. The default setting is 41 s. It is recommended to keep this filter within the range of 4 s (that is, DF setting = 61680) up to the default 41 s (that is, DF setting = 65142). Examining the Term Voltage Delta setting and Fast Scale Start SOC should be done prior to twisting this parameter when trying to improve the RSOC performance.

The following is the formula to convert the DF setting into actual filter time constant: Filter time constant = $[0.25 / (1 - (DF_Value / 65536))] - 0.25$.

14.13.10.12 Near EDV Ra Param Filter

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Near EDV Ra Param Filter	U2	1	65535	59220	_

Description: Ra filter used in the fast scaling region if [FF_NEAR_EDV] = 1. Default value should be used.

14.13.10.13 Qmax Delta

Gas Gauging www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Qmax Delta	U1	3	100	5	%

Description: Maximum allowed Qmax change from its previous value. The Qmax change will be capped by this setting if the delta from the previous Qmax is larger than **Qmax Delta**. **Qmax Delta** is a percentage of Design Capacity.

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Qmax Upper Bound	U1	100	255	130	%

Description: Maximum Qmax value over the lifetime of the pack. If the updated Qmax value is larger than this setting, the updated Qmax will be capped to **Qmax Upper Bound**. **Qmax Upper Bound** is a percentage of Design Capacity.

14.13.10.15 Term Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Term Voltage	12	0	32767	9000	mV

Description: Min stack voltage to be used for capacity calculation

14.13.10.16 Term Voltage Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Term Voltage Delta	12	0	32767	300	mV

Description: Controls when the **[RSOC_CONV]** feature becomes active. The recommended setting is 3.3 – **Term Voltage**/Number Cells.

The default setting is 300 mV, which is assuming a typical 3-V termination voltage per cell. If a different termination voltage is used, this parameter should be adjusted accordingly.

14.13.10.17 Term Min Cell V

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Term Min Cell V	12	0	32767	2800	mV

Description: Minimum cell termination voltage when used when **[CELL_TERM]** = 1. This is intended to allow the IT algorithm to reach 0% before CUV is triggered; therefore, this value should be set at or above **CUV:Threshold**.

14.13.10.18 Voltage Consistency Delta

Clas	s	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gau	ıging	IT Cfg	Voltage Consistency Delta	12	0	32767	300	mV

Description: Use in voltage consistency check. See **[VOLTAGE_CONSIST]** in the Section 6.6 for details.

14.13.10.19 Fast Scale Start SOC

www.ti.com Gas Gauging

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Fast Scale Start SOC	U1	0	100	10	%

Description: Control the start of convergence when **[RSOC_CONV]** = 1 based on RSOC %. Raising this setting can improve RSOC drop at the end of discharge. However, the RSOC % chosen for this setting must keep after the sharp drop of the discharge curve (the keen of the discharge curve).

14.13.10.20 Pack Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Pack Resistance	12	0	32767	30	mΩ

Description: Pack side resistance value accessed using *TURBO_PACK_R()*

14.13.10.21 System Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	System Resistance	12	0	32767	0	mΩ

Description: System side resistance value accessed using *TURBO_SYS_R()*

14.13.11 Smoothing

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Smoothing	Smooth Relax Time	12	1	32767	1000	s

Description: If **[RELAX_SMOOTH_OK]** = 1, the delta Remaining Capacity and Full Charge Capacity is smoothed over this set period of time. It is recommended to use the default setting.

14.13.12 Condition Flag

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Condition Flag	Max Error Limit	U1	0	100	100	%

Description: Max Error Limit Percentage

14.13.13 Max Error

14.13.13.1 Time Cycle Equivalent

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Max Error	Time Cycle Equivalent	U1	1	255	12	2 h

Description: After valid QMax update, each passed time period of *Time Cycle Equivalent* will increment of *MaxError()* by *Cycle Delta*.

14.13.13.2 Cycle Delta

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	Max Error	Cycle Delta	U1	0	255	5	0.01%

Gas Gauging www.ti.com

Description: Each increment of *CycleCount()* after valid QMax update will increment of *MaxError()* by *Cycle Delta*. Setting this parameter to 0 disables the *MaxError()* increment by time or cycle increment.

14.13.14 SoH

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	SoH	SoH Load Rate	U1	1	255	50	0.1 h rate

Description: Current rate used in SoH simulation specified in hour-rate (that is, current = C/**SoH Load Rate**)

14.13.15 TURBO Cfg

14.13.15.1 Min Turbo Power

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Min Turbo Power	12	-32768	32767	-1000	cW

Description: This is the minimal Turbo Power for the TURBO BOOST mode used by the system toward the end of discharge. This value is used when **[TDELATV]** = 1 to calculate the **Delta Voltage**. Using the lowest turbo level instead of the regular learned **Delta Voltage** for IT simulation can avoid unnecessary SOC jumps when the system is switching from higher to lower turbo mode levels, reducing its power approaching the end of discharge.

14.13.15.2 Max Current C Rate

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Max Current C Rate	I1	-127	00	-4	С

Description: This value specifies the maximal discharge current. If *TURBO_CURRENT()* > *Max Current C Rate*, the *TURBO_CURRENT()* will be capped to this setting and the *TURBO_POWER()* will be adjusted accordingly.

14.13.15.3 High Frequency Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	High Frequency Resistance	12	0	32767	20	mΩ

Description: This is the high frequency resistance related the specific cell chemistry and pack configuration.

14.13.15.4 Reserve Energy %

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Reserve Energy %	I1	0	100	2	%

Description: Remaining energy at present average discharge rate (as defined in **Load Select**) until the maximal peak power will reach the value reported by MAX_POWER().

14.14 RA Table

14.14.1 R a0

www.ti.com RA Table

Class	Subclass	Name	Type	Min	Max	Default	Unit
RA Table	R_a0	Cell 0 R_A Flag	H2	0x0000	0xFFFF	0xFF55	$2^{-10} \Omega$

Description:

This value indicates the validity of the cell impedance table for Cell1. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x55	Table being used
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell1 as shown in the following table.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a0	Cell 0 R_A 0	12	0	32767	38	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 0
RA Table	R_a0	Cell 0 R_A 1	12	0	32767	41	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 1
RA Table	R_a0	Cell 0 R_A 2	12	0	32767	43	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 2
RA Table	R_a0	Cell 0 R_A 3	12	0	32767	44	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 3
RA Table	R_a0	Cell 0 R_A 4	12	0	32767	42	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 4
RA Table	R_a0	Cell 0 R_A 5	12	0	32767	42	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 5
RA Table	R_a0	Cell 0 R_A 6	12	0	32767	45	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 6
RA Table	R_a0	Cell 0 R_A 7	12	0	32767	48	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 7
RA Table	R_a0	Cell 0 R_A 8	12	0	32767	49	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 8
RA Table	R_a0	Cell 0 R_A 9	12	0	32767	52	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 9
RA Table	R_a0	Cell 0 R_A 10	12	0	32767	56	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 10
RA Table	R_a0	Cell 0 R_A 11	12	0	32767	64	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 11
RA Table	R_a0	Cell 0 R_A 12	12	0	32767	74	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 12
RA Table	R_a0	Cell 0 R_A 13	12	0	32767	128	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 13
RA Table	R_a0	Cell 0 R_A 14	12	0	32767	378	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 14

14.14.2 R_a1

Class	Subclass	Name	Type Min		Max	Default	Unit
RA Table	R_a1	Cell 1 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell2. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x55	Table being used
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update
0xFF	Cell impedance never updated		

RA Table www.ti.com

The gauge stores and updates the impedance profile for Cell2, as shown in the following table.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a1	Cell 1 R_A 0	I2	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 0
RA Table	R_a1	Cell 1 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 1
RA Table	R_a1	Cell 1 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 2
RA Table	R_a1	Cell 1 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 3
RA Table	R_a1	Cell 1 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 4
RA Table	R_a1	Cell 1 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 5
RA Table	R_a1	Cell 1 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 6
RA Table	R_a1	Cell 1 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 7
RA Table	R_a1	Cell 1 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 8
RA Table	R_a1	Cell 1 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 9
RA Table	R_a1	Cell 1 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 10
RA Table	R_a1	Cell 1 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 11
RA Table	R_a1	Cell 1 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 12
RA Table	R_a1	Cell 1 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 13
RA Table	R_a1	Cell 1 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 14

14.14.3 R_a2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a2	Cell 2 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell3. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x55	Table being used
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update
0xFF	Cell impedance never updated		

www.ti.com RA Table

The gauge stores and updates the impedance profile for Cell3 as shown in the following table.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a2	Cell 2 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 0
RA Table	R_a2	Cell 2 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 1
RA Table	R_a2	Cell 2 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 2
RA Table	R_a2	Cell 2 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 3
RA Table	R_a2	Cell 2 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 4
RA Table	R_a2	Cell 2 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 5
RA Table	R_a2	Cell 2 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 6
RA Table	R_a2	Cell 2 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 7
RA Table	R_a2	Cell 2 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 8
RA Table	R_a2	Cell 2 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 9
RA Table	R_a2	Cell 2 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 10
RA Table	R_a2	Cell 2 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 11
RA Table	R_a2	Cell 2 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 12
RA Table	R_a2	Cell 2 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 13
RA Table	R_a2	Cell 2 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 14

14.14.4 R a3

Class	Subclass	Name	Type Min		Max	Default	Unit
RA Table	R_a3	Cell 3 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell4. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x55	Table being used
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell4 as shown in the following table.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a3	Cell 3 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 0
RA Table	R_a3	Cell 3 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 1
RA Table	R_a3	Cell 3 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 2
RA Table	R_a3	Cell 3 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 3
RA Table	R_a3	Cell 3 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 4
RA Table	R_a3	Cell 3 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 5
RA Table	R_a3	Cell 3 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 6
RA Table	R_a3	Cell 3 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 7
RA Table	R_a3	Cell 3 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 8
RA Table	R_a3	Cell 3 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 9
RA Table	R_a3	Cell 3 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 10
RA Table	R_a3	Cell 3 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 11

RA Table www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a3	Cell 3 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 12
RA Table	R_a3	Cell 3 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 13
RA Table	R_a3	Cell 3 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 14

14.14.5 R_a0x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a0x	xCell 0 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for Cell1. It is recommended not to change this value manually.

High Byte		Low Byte	Low Byte					
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated					
0x05	RELAX mode and QMax update in progress	0x55	Table being used					
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update					
0xFF	Cell impedance never updated							

The gauge stores and updates the impedance profile for Cell1 as shown in the following table.

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
RA Table	R_a0x	xCell 0 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 0
RA Table	R_a0x	xCell 0 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 1
RA Table	R_a0x	xCell 0 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 2
RA Table	R_a0x	xCell 0 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 3
RA Table	R_a0x	xCell 0 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 4
RA Table	R_a0x	xCell 0 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 5
RA Table	R_a0x	xCell 0 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 6
RA Table	R_a0x	xCell 0 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 7
RA Table	R_a0x	xCell 0 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 8
RA Table	R_a0x	xCell 0 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 9
RA Table	R_a0x	xCell 0 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 10
RA Table	R_a0x	xCell 0 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 11
RA Table	R_a0x	xCell 0 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 12
RA Table	R_a0x	xCell 0 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 13
RA Table	R_a0x	xCell 0 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 14

14.14.6 R_a1x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a1x	xCell 1 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for Cell2. It is recommended not to change this value manually.

www.ti.com RA Table

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x55	Table being used
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell2 as shown in the following table.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a1x	xCell 1 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 0
RA Table	R_a1x	xCell 1 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 1
RA Table	R_a1x	xCell 1 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 2
RA Table	R_a1x	xCell 1 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 3
RA Table	R_a1x	xCell 1 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 4
RA Table	R_a1x	xCell 1 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 5
RA Table	R_a1x	xCell 1 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 6
RA Table	R_a1x	xCell 1 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 7
RA Table	R_a1x	xCell 1 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 8
RA Table	R_a1x	xCell 1 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 9
RA Table	R_a1x	xCell 1 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 10
RA Table	R_a1x	xCell 1 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 11
RA Table	R_a1x	xCell 1 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 12
RA Table	R_a1x	xCell 1 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 13
RA Table	R_a1x	xCell 1 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 14

14.14.7 R_a2x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a2x	xCell 2 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for Cell3. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x55	Table being used
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell3 as shown in the following table.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a2x	xCell 2 R_A 0	12	-32768	32768	38	$2^{-10} \Omega$	Cell 2 resistance at grid point 0
RA Table	R_a2x	xCell 2 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 1
RA Table	R_a2x	xCell 2 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 2

RA Table www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a2x	xCell 2 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 3
RA Table	R_a2x	xCell 2 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 4
RA Table	R_a2x	xCell 2 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 5
RA Table	R_a2x	xCell 2 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 6
RA Table	R_a2x	xCell 2 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 7
RA Table	R_a2x	xCell 2 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 8
RA Table	R_a2x	xCell 2 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 9
RA Table	R_a2x	xCell 2 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 10
RA Table	R_a2x	xCell 2 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 11
RA Table	R_a2x	xCell 2 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 12
RA Table	R_a2x	xCell 2 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 13
RA Table	R_a2x	xCell 2 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 14

14.14.8 R_a3x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a3x	xCell 3 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for Cell4. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table not used and QMax updated
0x05	RELAX mode and QMax update in progress	0x55	Table being used
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table never used, no QMax or cell impedance update
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell4 as shown in the following table.

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a3x	xCell 3 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 0
RA Table	R_a3x	xCell 3 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 1
RA Table	R_a3x	xCell 3 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 2
RA Table	R_a3x	xCell 3 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 3
RA Table	R_a3x	xCell 3 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 4
RA Table	R_a3x	xCell 3 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 5
RA Table	R_a3x	xCell 3 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 6
RA Table	R_a3x	xCell 3 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 7
RA Table	R_a3x	xCell 3 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 8
RA Table	R_a3x	xCell 3 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 9
RA Table	R_a3x	xCell 3 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 10
RA Table	R_a3x	xCell 3 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 11
RA Table	R_a3x	xCell 3 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 12
RA Table	R_a3x	xCell 3 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 13
RA Table	R_a3x	xCell 3 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 14

www.ti.com SBS Configuration

14.15 SBS Configuration

14.15.1 Data

14.15.1.1 Remaining Capacity Alarm

14.15.1.1.1 Remaining Ah Capacity Alarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Remaining Ah Capacity Alarm	U2	0	700	300	mAh

Description: RemainingCapacityAlarm() value in mAh

14.15.1.1.2 Remaining Wh Capacity Alarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Remaining Wh Capacity Alarm	U2	0	1000	432	cWh

Description: RemainingCapacityAlarm() value in 10 mWh

14.15.1.2 RemainingTimeAlarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Remaining Time Alarm	U2	0	30	10	min

Description: RemainingTimeAlarm() value

14.15.1.3 Initial Battery Mode

Class	Subclass	Name	Type	Min	Max	Default	Unit
SBS Configuration	Data	Initial Battery Mode	H2	0x0000	0xFFFF	0x0081	l

15	14	13	12	11	10	9	8
CAPM	CHGM	AM	RSVD	RSVD	RSVD	PB	CC
7	6	5	4	3	2	1	0
CF	RSVD	RSVD	RSVD	RSVD	RSVD	PBS	ICC

CAPM (Bit 15): Capacity_Mode (R/W)

- 1 = Report in 10 mW or 10 mWh
- 0 = Report in mA or mAh (default)

CHGM (Bit 14): Charger_Mode (R/W)

- 1 = Disable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger (default)
- 0 = Enable ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger

AM (Bit 13): ALARM Mode (R/W)

- 1 = Disable AlarmWarning broadcasts to host and smart battery charger
- 0 = Enable AlarmWarning broadcasts to host and smart battery charger (default)

SBS Configuration www.ti.com

RSVD (Bits 12-10): Reserved. Do not use.

PB (Bit 9): Primary_Battery (R/W)

1 = Battery operating in its primary role

0 = Battery operating in its secondary role (default)

CC (Bit 8): Charge_Controller_Enabled (R/W)

1 = Internal charge control enabled

0 = Internal charge control disabled (default)

CF (Bit 7): Condition_Flag (R)

1 = Conditioning cycle requested

0 = Battery OK

RSVD (Bits 6-2): Reserved. Do not use.

PBS (Bit 1): Primary_Battery_Support (R)

1 = Primary or secondary battery support

0 = Function not supported (default)

ICC (Bit 0): Internal_Charge_Controller (R)

1 = Function supported

0 = Function not supported (default)

14.15.1.4 Specification Information

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Specification Information	H2	0x0000	0xFFFF	0x0031	_

15	14	13	12	11	10	9	8
IPScale	IPScale	IPScale	IPScale	VScale	VScale	VScale	VScale
7	6	5	4	3	2	1	0
Version	Version	Version	Version	Revision	Revision	Revision	Revision

SpecificationInformation() values

IPScale (Bits 15-12): IP Scale Factor

0,0,0,0 = Reported currents and capacities scaled by 10E0 except ChargingVoltage() and ChargingCurrent()

0,0,0,1 = Reported currents and capacities scaled by 10E1 except ChargingVoltage() and ChargingCurrent()

0,0,1,0 = Reported currents and capacities scaled by 10E2 except ChargingVoltage() and ChargingCurrent()

0,0,1,1 = Reported currents and capacities scaled by 10E3 except *ChargingVoltage()* and *ChargingCurrent()*

VScale (Bits 11-8): Voltage Scale Factor

0,0,0,0 = Reported voltages scaled by 10E0

0.0.0.1 = Reported voltages scaled by 10E1

0,0,1,0 = Reported voltages scaled by 10E2

0,0,1,1 = Reported voltages scaled by 10E3

Version (Bits 7–4): Version

0.00001 = Version 1.0

0,0,1,1 = Version 1.1

0,0,1,1 = Version 1.1 with optional PEC support

Revision (Bits 3-0): Revision

0,0,0,1 = Version 1.0 and 1.1 (default)

14.15.1.5 Manufacturer Date

Cla	ass	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Con	nfiguration	Data	Manufacturer Date	U2	0	65535	01/01/80	_

Description: ManufacturerDate() value in the following format: Day + Month*32 + (Year–1980) * 512

14.15.1.6 Serial Number

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Serial Number	H2	0x0000	0xFFFF	0x0001	_

Description: SerialNumber() value

14.15.1.7 Manufacturer Name

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Manufacturer Name	S20+1	_	_	Texas Instruments	ASCII

Description: ManufacturerName() value

14.15.1.8 Device Name

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Device Name	S20+1	_	_	bq40z50-R1	ASCII

Description: DeviceName() value

14.15.1.9 Device Chemistry

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Device Chemistry	S4+1	_	_	LION	ASCII

Description: DeviceChemistry() value

14.16 Data Flash Summary

Table 14-1. Data Flash Summary

Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Calibration	Voltage	0x4000	12	Cell Gain	-32767	32767	12101	_
Calibration	Voltage	0x4002	U2	Pack Gain	0	65535	49669	_
Calibration	Voltage	0x4004	U2	BAT Gain	0	65535	48936	_
Calibration	Current	0x4006	F4	CC Gain	1.00E-01	4.00E+00	3.58422	_
Calibration	Current	0x400A	F4	Capacity Gain	2.98E+04	1.19E+06	1069035.256	_
Calibration	Current Offset	0x400E	12	CC Offset	-32767	32767	0	_

		Table 1-	r-1. Da	ta Flash Summa	iry (continu	eu,	T	
Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Calibration	Current Offset	0x4010	U2	Coulomb Counter Offset Samples	0	65535	64	_
Calibration	Current Offset	0x4012	I2	Board Offset	-32768	32767	0	_
Calibration	Current Offset	0x40C0	H1	CC Auto Config	0x00	0x07	0x03	hex
Calibration	Current Offset	0x40C1	12	CC Auto Offset	-10000	10000	0	_
Calibration	Temperature	0x4014	l1	Internal Temp Offset	-128	127	0	0.1°C
Calibration	Temperature	0x4015	I1	External1 Temp Offset	-128	127	0	0.1°C
Calibration	Temperature	0x4016	I1	External2 Temp Offset	-128	127	0	0.1°C
Calibration	Temperature	0x4017	I1	External3 Temp Offset	-128	127	0	0.1°C
Calibration	Temperature	0x4018	I1	External4 Temp Offset	-128	127	0	0.1°C
Calibration	Internal Temp Model	0x45C0	12	Int Gain	-32768	32767	-12143	_
Calibration	Internal Temp Model	0x45C2	12	Int base offset	-32768	32767	6232	_
Calibration	Internal Temp Model	0x45C4	12	Int Minimum AD	-32768	32767	0	_
Calibration	Internal Temp Model	0x45C6	12	Int Maximum Temp	-32768	32767	6232	0.1°K
Calibration	Cell Temperature Model	0x45C8	12	Coeff a1	-32768	32767	-11130	_
Calibration	Cell Temperature Model	0x45CA	12	Coeff a2	-32768	32767	19142	_
Calibration	Cell Temperature Model	0x45CC	12	Coeff a3	-32768	32767	-19262	_
Calibration	Cell Temperature Model	0x45CE	12	Coeff a4	-32768	32767	28203	_
Calibration	Cell Temperature Model	0x45D0	I2	Coeff a5	-32768	32767	892	_
Calibration	Cell Temperature Model	0x45D2	12	Coeff b1	-32768	32767	328	_
Calibration	Cell Temperature Model	0x45D4	12	Coeff b2	-32768	32767	-605	_
Calibration	Cell Temperature Model	0x45D6	12	Coeff b3	-32768	32767	-2443	_
Calibration	Cell Temperature Model	0x45D8	12	Coeff b4	-32768	32767	4696	_
Calibration	Cell Temperature Model	0x45DA	12	Rc0	-32768	32767	11703	_
Calibration	Cell Temperature Model	0x45DC	I2	Adc0	-32768	32767	11703	_
Calibration	Cell Temperature Model	0x45DE	I2	Rpad	-32768	32767	0	_
Calibration	Cell Temperature Model	0x45E0	I2	Rint	-32768	32767	0	_
Calibration	Fet Temperature Model	0x45E2	I2	Coeff a1	-32768	32767	-11130	_
Calibration	Fet Temperature Model	0x45E4	I2	Coeff a2	-32768	32767	19142	_
Calibration	Fet Temperature Model	0x45E6	I2	Coeff a3	-32768	32767	-19262	_
Calibration	Fet Temperature Model	0x45E8	12	Coeff a4	-32768	32767	28203	_
Calibration	Fet Temperature Model	0x45EA	12	Coeff a5	-32768	32767	892	_
Calibration	Fet Temperature Model	0x45EC	12	Coeff b1	-32768	32767	328	_
Calibration	Fet Temperature Model	0x45EE	12	Coeff b2	-32768	32767	-605	_
Calibration	Fet Temperature Model	0x45F0	12	Coeff b3	-32768	32767	-2443	_

Class	Subclass	Address	Type	Name	Min	Max	Default	Units
Calibration	Fet Temperature Model	0x45F2	I2	Coeff b4	-32768	32767	4696	_
Calibration	Fet Temperature Model	0x45F4	12	Rc0	-32768	32767	11703	_
Calibration	Fet Temperature Model	0x45F6	12	Adc0	-32768	32767	11703	_
Calibration	Fet Temperature Model	0x45F8	I2	Rpad	-32768	32767	0	_
Calibration	Fet Temperature Model	0x45FA	12	Rint	-32768	32767	0	_
Calibration	Current Deadband	0x4606	U1	Deadband	0	255	3	mA
Calibration	Current Deadband	0x4607	U1	Coulomb Counter Deadband	0	255	9	116 nV
Settings	Configuration	0x47C7	H1	FET Options	0x0	0xFF	0x20	hex
Settings	Configuration	0x47C8	H1	Sbs Gauging Configuration	0x0	0x0F	0x04	hex
Settings	Configuration	0x47C9	H1	Sbs Configuration	0x0	0xFF	0x20	hex
Settings	Configuration	0x47CB	H1	Power Config	0x0	0x83	0x00	hex
Settings	Configuration	0x47CC	H1	IO Config	0x0	0x03	0x00	hex
Settings	Configuration	0x47F2	H2	LED Configuration	0x0	0x01FF	0x00D0	hex
Settings	Configuration	0x4819	H2	SOC Flag Config A	0x0	0x0FFF	0x0C8C	hex
Settings	Configuration	0x481B	H1	SOC Flag Config B	0x0	0xFF	0x8C	hex
Settings	Configuration	0x4834	H2	IT Gauging Configuration	0x0	0xFFFF	0x54Fe	hex
Settings	Configuration	0x4916	H1	Charging Configuration	0x0	0x3F	0x0	hex
Settings	Configuration	0x495B	H1	Temperature Enable	0x0	0x1F	0x06	hex
Settings	Configuration	0x495C	H1	Temperature Mode	0x0	0x1F	0x04	hex
Settings	Configuration	0x495D	H1	DA Configuration	0x0	0xFF	0x12	hex
Settings	Configuration	0x4971	H1	Balancing Configuration	0x0	0xFF	0x03	hex
Settings	Fuse	0x47C0	H1	PF Fuse A	0x0	0xFF	0x0	hex
Settings	Fuse	0x47C1	H1	PF Fuse B	0x0	0xFF	0x0	hex
Settings	Fuse	0x47C2	H1	PF Fuse C	0x0	0xFF	0x0	hex
Settings	Fuse	0x47C3	H1	PF Fuse D	0x0	0xFF	0x0	hex
Settings	Fuse	0x47C4	12	Min Blow Fuse Voltage	0	65535	3500	mV
Settings	Fuse	0x47C6	U1	Fuse Blow Timeout	0	255	30	s
Settings	BTP	0x47CD	12	Init Discharge Set	0	32767	150	mAh
Settings	BTP	0x47CF	12	Init Charge Set	0	32767	175	mAh
Settings	SMBus	0x47D1	H1	Address	0x0	0xFF	0x16	_
Settings	SMBus	0x47D2	H1	Address Check	0x0	0xFF	0xea	_
Settings	Protection	0x484A	H1	Protection Configuration	0x0	0x03	0x0	hex
Settings	Protection	0x484B	H1	Enabled Protections A	0x0	0xFF	0xFF	hex
Settings	Protection	0x484C	H1	Enabled Protections B	0x0	0xFF	0x7F	hex
Settings	Protection	0x484D	H1	Enabled Protections C	0x0	0xFF	0xd5	hex
Settings	Protection	0x484E	H1	Enabled Protections D	0x0	0xFF	0x0F	hex
Settings	Permanent Failure	0x48C8	H1	Enabled PF A	0x0	0xFF	0x0	hex
Settings	Permanent Failure	0x48C9	H1	Enabled PF B	0x0	0xFF	0x0	hex
Settings	Permanent Failure	0x48CA	H1	Enabled PF C	0x0	0xFF	0x0	hex
Settings	Permanent Failure	0x48CB	H1	Enabled PF D	0x0	0xFF	0x0	hex
Settings	AFE	0x495F	H1	AFE Protection Control	0x0	0xFF	0x70	hex

Table 14-1. Data Flash Summary (continued) Class Subclass Address Type Name Min May Default Units													
Class	Subclass	Address	Туре	Name	Min	Max	Default	Units					
Settings	AFE	0x4965	12	ZVCHG Exit Threshold	0	8000	2200	mV					
Settings	Manufacturing	0x4580	H2	Mfg Status init	0x0	0xFFFF	0x0000	hex					
Advanced Charge Algorithm	Temperature Ranges	0x4917	I1	T1 Temp	-128	127	0	°C					
Advanced Charge Algorithm	Temperature Ranges	0x4918	I1	T2 Temp	-128	127	12	°C					
Advanced Charge Algorithm	Temperature Ranges	0x4919	I1	T5 Temp	-128	127	20	°C					
Advanced Charge Algorithm	Temperature Ranges	0x491A	I1	T6 Temp	-128	127	25	°C					
Advanced Charge Algorithm	Temperature Ranges	0x491B	I1	T3 Temp	-128	127	30	°C					
Advanced Charge Algorithm	Temperature Ranges	0x491C	I1	T4 Temp	-128	127	55	°C					
Advanced Charge Algorithm	Temperature Ranges	0x491D	I1	Hysteresis Temp	0	127	1	°C					
Advanced Charge Algorithm	Low Temp Charging	0x491E	12	Voltage	0	32767	4000	mV					
Advanced Charge Algorithm	Low Temp Charging	0x4920	12	Current Low	0	32767	132	mA					
Advanced Charge Algorithm	Low Temp Charging	0x4922	12	Current Med	0	32767	352	mA					
Advanced Charge Algorithm	Low Temp Charging	0x4924	12	Current High	0	32767	264	mA					
Advanced Charge Algorithm	Standard Temp Charging	0x4926	12	Voltage	0	32767	4200	mV					
Advanced Charge Algorithm	Standard Temp Charging	0x4928	12	Current Low	0	32767	1980	mA					
Advanced Charge Algorithm	Standard Temp Charging	0x492A	12	Current Med	0	32767	4004	mA					
Advanced Charge Algorithm	Standard Temp Charging	0x492C	12	Current High	0	32767	2992	mA					
Advanced Charge Algorithm	High Temp Charging	0x492E	12	Voltage	0	32767	4000	mV					
Advanced Charge Algorithm	High Temp Charging	0x4930	12	Current Low	0	32767	1012	mA					
Advanced Charge Algorithm	High Temp Charging	0x4932	12	Current Med	0	32767	1980	mA					
Advanced Charge Algorithm	High Temp Charging	0x4934	12	Current High	0	32767	1496	mA					
Advanced Charge Algorithm	Rec Temp Charging	0x4936	12	Voltage	0	32767	4100	mV					
Advanced Charge Algorithm	Rec Temp Charging	0x4938	12	Current Low	0	32767	2508	mA					

01	Cubalasa			Name		-	Defect	11
Class	Subclass	Address	Type	Name	Min	Max	Default	Units
Advanced Charge Algorithm	Rec Temp Charging	0x493A	12	Current Med	0	32767	4488	mA
Advanced Charge Algorithm	Rec Temp Charging	0x493C	12	Current High	0	32767	3520	mA
Advanced Charge Algorithm	Pre-Charging	0x493E	12	Current	0	32767	88	mA
Advanced Charge Algorithm	Maintenance Charging	0x4940	12	Current	0	32767	44	mA
Advanced Charge Algorithm	Voltage Range	0x4942	12	Precharge Start Voltage	0	32767	2500	mV
Advanced Charge Algorithm	Voltage Range	0x4944	12	Charging Voltage Low	0	32767	2900	mV
Advanced Charge Algorithm	Voltage Range	0x4946	12	Charging Voltage Med	0	32767	3600	mV
Advanced Charge Algorithm	Voltage Range	0x4948	12	Charging Voltage High	0	32767	4000	mV
Advanced Charge Algorithm	Voltage Range	0x494A	U1	Charging Voltage Hysteresis	0	255	0	mV
Advanced Charge Algorithm	SoC Range	0x494B	U1	Charging SoC Med	0	100	50	%
Advanced Charge Algorithm	SoC Range	0x494C	U1	Charging SoC High	0	100	75	%
Advanced Charge Algorithm	SoC Range	0x494D	U1	Charging SoC Hysteresis	0	100	1	%
Advanced Charge Algorithm	Termination Config	0x494E	12	Charge Term Taper Current	0	32767	250	mA
Advanced Charge Algorithm	Termination Config	0x4952	I2	Charge Term Voltage	0	32767	75	mV
Advanced Charge Algorithm	Charging Rate of Change	0x4955	U1	Current Rate	1	255	1	steps
Advanced Charge Algorithm	Charging Rate of Change	0x4956	U1	Voltage Rate	1	255	1	steps
Advanced Charge Algorithm	Charge Loss Compensation	0x4957	12	CCC Current Threshold	0	32767	3520	mA
Advanced Charge Algorithm	Charge Loss Compensation	0x4959	12	CCC Voltage Threshold	0	32767	4200	mV
Advanced Charge Algorithm	Cell Balancing Config	0x4972	U2	Bal Time/mAh Cell 1	0	65535	367	s/mAh
Advanced Charge Algorithm	Cell Balancing Config	0x4974	U2	Bal Time/mAh Cell 2–4	0	65535	514	s/mAh
Advanced Charge Algorithm	Cell Balancing Config	0x4976	U1	Min Start Balance Delta	0	255	3	mV
Advanced Charge Algorithm	Cell Balancing Config	0x4977	U4	Relax Balance Interval	0	4294967295	18000	S

Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Advanced	Cell Balancing			Min Rsoc for				
Charge Algorithm	Config	0x497B	U1	Balancing	0	100	80	%
Power	Power	0x47D3	12	Valid Update Voltage	0	32767	3500	mV
Power	Shutdown	0x47D5	12	Shutdown Voltage	0	32767	1750	mV
Power	Shutdown	0x47D7	U1	Shutdown Time	0	255	10	s
Power	Shutdown	0x47D8	I2	PF Shutdown Voltage	0	32767	1750	mV
Power	Shutdown	0x47DA	U1	PF Shutdown Time	0	255	10	s
Power	Shutdown	0x47DB	I2	PS Shutdown Voltage	0	32767	2500	mV
Power	Shutdown	0x47DD	I2	PS NoLoadResCap Threshold	0	32767	0	mAh
Power	Shutdown	0x47DF	12	Charger Present Threshold	0	32767	3000	mV
Power	Sleep	0x47E1	12	Sleep Current	0	32767	10	mA
Power	Sleep	0x47E3	U1	Bus Timeout	0	255	5	S
Power	Sleep	0x47E8	U1	Voltage Time	0	255	5	S
Power	Sleep	0x47E9	U1	Current Time	0	255	20	S
Power	Sleep	0x47EA	H1	Wake Comparator	0x0	0xFF	0x0	hex
Power	Ship	0x47EB	U1	FET Off Time	0	127	10	s
Power	Ship	0x47EC	U1	Delay	0	254	20	s
Power	Ship	0x47ED	U2	Auto Ship Time	0	65535	1440	min
Power	Power Off	0x47EF	U2	Timeout	0	65535	30	min
Power	Manual FET Control	0x47F1	U1	MFC Delay	0	255	60	S
LED Support	LED Config	0x47F4	U2	LED Flash Period	32	65535	512	488 µs
LED Support	LED Config	0x47F6	U2	LED Blink Period	32	65535	1024	488 µs
LED Support	LED Config	0x47F8	U2	LED Delay	16	65535	100	488 µs
LED Support	LED Config	0x47FA	U1	LED Hold Time	1	63	16	0.25 s
LED Support	LED Config	0x47FB	I1	CHG Flash Alarm	0	100	10	%
LED Support	LED Config	0x47FC	I1	CHG Thresh 1	0	100	0	%
LED Support	LED Config	0x47FD	I1	CHG Thresh 2	0	100	20	%
LED Support	LED Config	0x47FE	I1	CHG Thresh 3	0	100	40	%
LED Support	LED Config	0x47FF	I1	CHG Thresh 4	0	100	60	%
LED Support	LED Config	0x4800	I1	CHG Thresh 5	0	100	80	%
LED Support	LED Config	0x4801	I1	DSG Flash Alarm	0	100	10	%
LED Support	LED Config	0x4802	I1	DSG Thresh 1	0	100	0	%
LED Support	LED Config	0x4803	I1	DSG Thresh 2	0	100	20	%
LED Support	LED Config	0x4804	I1	DSG Thresh 3	0	100	40	%
LED Support	LED Config	0x4805	l1	DSG Thresh 4	0	100	60	%
LED Support	LED Config	0x4806	l1	DSG Thresh 5	0	100	80	%
System Data	Manufacturer Data	0x4040	U1	Manufacturer Info A Length	1	32	32	_
System Data	Manufacturer Data	0x4041	H1	Manufacturer Info Block A01	0x0	0xFF	0x61	Hex
System Data	Manufacturer Data	0x4042	H1	Manufacturer Info Block A02	0x0	0xFF	0x62	Hex
System Data	Manufacturer Data	0x4043	H1	Manufacturer Info Block A03	0x0	0xFF	0x63	Hex
System Data	Manufacturer Data	0x4044	H1	Manufacturer Info Block A04	0x0	0xFF	0x64	Hex
System Data	Manufacturer Data	0x4045	H1	Manufacturer Info Block A05	0x0	0xFF	0x65	Hex
System Data	Manufacturer Data	0x4046	H1	Manufacturer Info Block A06	0x0	0xFF	0x66	Hex
System Data	Manufacturer Data	0x4047	H1	Manufacturer Info Block A07	0x0	0xFF	0x67	Hex

					imary (continued)				
Class	Subclass	Address	Туре	Name	Min	Max	Default	Units	
System Data	Manufacturer Data	0x4048	H1	Manufacturer Info Block A08	0x0	0xFF	0x68	Hex	
System Data	Manufacturer Data	0x4049	H1	Manufacturer Info Block A09	0x0	0xFF	0x69	Hex	
System Data	Manufacturer Data	0x404A	H1	Manufacturer Info Block A10	0x0	0xFF	0x6A	Hex	
System Data	Manufacturer Data	0x404B	H1	Manufacturer Info Block A11	0x0	0xFF	0x6B	Hex	
System Data	Manufacturer Data	0x404C	H1	Manufacturer Info Block A12	0x0	0xFF	0x6C	Hex	
System Data	Manufacturer Data	0x404D	H1	Manufacturer Info Block A13	0x0	0xFF	0x6D	Hex	
System Data	Manufacturer Data	0x404E	H1	Manufacturer Info Block A14	0x0	0xFF	0x6E	Hex	
System Data	Manufacturer Data	0x404F	H1	Manufacturer Info Block A15	0x0	0xFF	0x6F	Hex	
System Data	Manufacturer Data	0x4050	H1	Manufacturer Info Block A16	0x0	0xFF	0x70	Hex	
System Data	Manufacturer Data	0x4051	H1	Manufacturer Info Block A17	0x0	0xFF	0x71	Hex	
System Data	Manufacturer Data	0x4052	H1	Manufacturer Info Block A18	0x0	0xFF	0x72	Hex	
System Data	Manufacturer Data	0x4053	H1	Manufacturer Info Block A19	0x0	0xFF	0x73	Hex	
System Data	Manufacturer Data	0x4054	H1	Manufacturer Info Block A20	0x0	0xFF	0x74	Hex	
System Data	Manufacturer Data	0x4055	H1	Manufacturer Info Block A21	0x0	0xFF	0x75	Hex	
System Data	Manufacturer Data	0x4056	H1	Manufacturer Info Block A22	0x0	0xFF	0x76	Hex	
System Data	Manufacturer Data	0x4057	H1	Manufacturer Info Block A23	0x0	0xFF	0x77	Hex	
System Data	Manufacturer Data	0x4058	H1	Manufacturer Info Block A24	0x0	0xFF	0x7A	Hex	
System Data	Manufacturer Data	0x4059	H1	Manufacturer Info Block A25	0x0	0xFF	0x78	Hex	
System Data	Manufacturer Data	0x405A	H1	Manufacturer Info Block A26	0x0	0xFF	0x79	Hex	
System Data	Manufacturer Data	0x405B	H1	Manufacturer Info Block A27	0x0	0xFF	0x30	Hex	
System Data	Manufacturer Data	0x405C	H1	Manufacturer Info Block A28	0x0	0xFF	0x31	Hex	
System Data	Manufacturer Data	0x405D	H1	Manufacturer Info Block A29	0x0	0xFF	0x32	Hex	
System Data	Manufacturer Data	0x405E	H1	Manufacturer Info Block A30	0x0	0xFF	0x33	Hex	
System Data	Manufacturer Data	0x405F	H1	Manufacturer Info Block A31	0x0	0xFF	0x34	Hex	
System Data	Manufacturer Data	0x4060	H1	Manufacturer Info Block A32	0x0	0xFF	0x35	Hex	
System Data	Manufacturer Info B	0x4062	H1	Manufacturer Info Block B01	0x0	0xFF	0x01	Hex	
System Data	Manufacturer Info B	0x4063	H1	Manufacturer Info Block B02	0x0	0xFF	0x23	Hex	
System Data	Manufacturer Info B	0x4064	H1	Manufacturer Info Block B03	0x0	0xFF	0x45	Hex	
System Data	Manufacturer Info B	0x4065	H1	Manufacturer Info Block B04	0x0	0xFF	0x67	Hex	
System Data	Integrity	0x4066	H2	Static DF Signature	0x0	0x7FFF	0x0	hex	
System Data	Integrity	0x4068	H2	Static Chem DF Signature	0x0	0x7FFF	0x6C98	hex	
System Data	Integrity	0x406A	H2	All DF Signature	0x0	0x7FFF	0x0	hex	

Class Subclass Address Type Name Min Max SBS Configuration Data 0x406C U2 Manufacture Date 0 65535	Default	Units
	0	date
SBS Configuration Data 0x406E H2 Serial Number 0x0 0xFFFF	0x0001	hex
SBS Configuration Data 0x4070 S21 Manufacturer Name x x	Texas Instruments	_
SBS Configuration Data 0x4085 S21 Device Name x x	bq40z50-R1	_
SBS Configuration Data 0x409A S5 Device Chemistry x x	LION	_
SBS Configuration Data 0x4807 I2 Remaining AH Cap. Alarm 0 32767	300	mAh
SBS Configuration Data 0x4809 I2 Remaining WH Cap. Alarm 0 32767	432	cWh
SBS Configuration Data 0x480B U2 Remaining Time Alarm 0 65535	10	min
SBS Configuration Data 0x480D H2 Initial Battery Mode 0x0 0xFFFF	0x0081	hex
SBS Configuration Data 0x480F H2 Specification Information 0x0 0xFFFF	0x0031	hex
Lifetimes Voltage 0x4380 I2 Cell 1 Max Voltage 0 32767	0	mV
Lifetimes Voltage 0x4382 I2 Cell 2 Max Voltage 0 32767	0	mV
Lifetimes Voltage 0x4384 I2 Cell 3 Max Voltage 0 32767	0	mV
Lifetimes Voltage 0x4386 I2 Cell 4 Max Voltage 0 32767	0	mV
Lifetimes Voltage 0x4388 I2 Cell 1 Min Voltage 0 32767	32767	mV
Lifetimes Voltage 0x438A I2 Cell 2 Min Voltage 0 32767	32767	mV
Lifetimes Voltage 0x438C I2 Cell 3 Min Voltage 0 32767	32767	mV
Lifetimes Voltage 0x438E I2 Cell 4 Min Voltage 0 32767	32767	mV
Lifetimes Voltage 0x4390 I2 Max Delta Cell Voltage 0 32767	0	mV
Lifetimes Current 0x4392 I2 Max Charge Current 0 32767	0	mA
Lifetimes Current 0x4394 I2 Max Discharge Current -32768 0	0	mA
Lifetimes Current 0x4396 I2 Max Avg Dsg Current -32768 0	0	mA
Lifetimes Current 0x4398 I2 Max Avg Dsg Power -32768 0	0	cW
Lifetimes Temperature 0x439A I1 Max Temp Cell -128 127	-128	°C
Lifetimes Temperature 0x439B I1 Min Temp Cell -128 127	127	°C
Lifetimes Temperature 0x439C I1 Max Delta Cell Temp -128 127	0	°C
Lifetimes Temperature 0x439D I1 Max Temp Int Sensor -128 127	-128	°C
Lifetimes Temperature 0x439E I1 Min Temp Int Sensor -128 127	127	°C
Lifetimes Temperature 0x439F I1 Max Temp Fet -128 127	-128	°C
Lifetimes Safety Events 0x43A0 U2 No Of COV Events 0 32767	0	events
Lifetimes Safety Events 0x43A2 U2 Last COV Event 0 32767	0	cycles
Lifetimes Safety Events 0x43A4 U2 No Of CUV Events 0 32767	0	events
Lifetimes Safety Events 0x43A6 U2 Last CUV Event 0 32767	0	cycles
Lifetimes Safety Events 0x43A8 U2 No Of OCD1 Events 0 32767	0	events
Lifetimes Safety Events 0x43AA U2 Last OCD1 Event 0 32767	0	cycles
Lifetimes Safety Events 0x43AC U2 No Of OCD2 Events 0 32767	0	events
Lifetimes Safety Events 0x43AE U2 Last OCD2 Event 0 32767	0	cycles
Lifetimes Safety Events 0x43B0 U2 No Of OCC1 Events 0 32767	0	events
Lifetimes Safety Events 0x43B2 U2 Last OCC1 Event 0 32767	0	cycles
Lifetimes Safety Events 0x43B4 U2 No Of OCC2 Events 0 32767	0	events
Lifetimes Safety Events 0x43B6 U2 Last OCC2 Event 0 32767	0	cycles
Lifetimes Safety Events 0x43B8 U2 No Of AOLD Events 0 32767	0	events
Lifetimes Safety Events 0x43BA U2 Last AOLD Event 0 32767	0	cycles

		14510 14		ta i iasii oaiiiila		-	I	T
Class	Subclass	Address	Type	Name	Min	Max	Default	Units
Lifetimes	Safety Events	0x43BC	U2	No Of ASCD Events	0	32767	0	events
Lifetimes	Safety Events	0x43BE	U2	Last ASCD Event	0	32767	0	cycles
Lifetimes	Safety Events	0x43C0	U2	No Of ASCC Events	0	32767	0	events
Lifetimes	Safety Events	0x43C2	U2	Last ASCC Event	0	32767	0	cycles
Lifetimes	Safety Events	0x43C4	U2	No Of OTC Events	0	32767	0	events
Lifetimes	Safety Events	0x43C6	U2	Last OTC Event	0	32767	0	cycles
Lifetimes	Safety Events	0x43C8	U2	No Of OTD Events	0	32767	0	events
Lifetimes	Safety Events	0x43CA	U2	Last OTD Event	0	32767	0	cycles
Lifetimes	Safety Events	0x43CC	U2	No Of OTF Events	0	32767	0	events
Lifetimes	Safety Events	0x43CE	U2	Last OTF Event	0	32767	0	cycles
Lifetimes	Charging Events	0x43D0	U2	No Valid Charge Term	0	32767	0	events
Lifetimes	Charging Events	0x43D2	U2	Last Valid Charge Term	0	32767	0	cycles
Lifetimes	Gauging Events	0x43D4	U2	No Of Qmax Updates	0	32767	0	events
Lifetimes	Gauging Events	0x43D6	U2	Last Qmax Update	0	32767	0	cycles
Lifetimes	Gauging Events	0x43D8	U2	No Of Ra Updates	0	32767	0	events
Lifetimes	Gauging Events	0x43DA	U2	Last Ra Update	0	32767	0	cycles
Lifetimes	Gauging Events	0x43DC	U2	No Of Ra Disable	0	32767	0	events
Lifetimes	Gauging Events	0x43DE	U2	Last Ra Disable	0	32767	0	cycles
Lifetimes	Power Events	0x43E0	U1	No Of Shutdowns	0	255	0	events
Lifetimes	Cell Balancing	0x43E4	U1	Cb Time Cell 1	0	255	0	2 h
Lifetimes	Cell Balancing	0x43E5	U1	Cb Time Cell 2	0	255	0	2 h
Lifetimes	Cell Balancing	0x43E6	U1	Cb Time Cell 3	0	255	0	2 h
Lifetimes	Cell Balancing	0x43E7	U1	Cb Time Cell 4	0	255	0	2 h
Lifetimes	Time	0x43E8	U2	Total Fw Runtime	0	65535	0	2 h
Lifetimes	Time	0x43EA	U2	Time Spent In UT	0	65535	0	2 h
Lifetimes	Time	0x43EC	U2	Time Spent In LT	0	65535	0	2 h
Lifetimes	Time	0x43EE	U2	Time Spent In STL	0	65535	0	2 h
Lifetimes	Time	0x43F0	U2	Time Spent In RT	0	65535	0	2 h
Lifetimes	Time	0x43F2	U2	Time Spent In STH	0	65535	0	2 h
Lifetimes	Time	0x43F4	U2	Time Spent In HT	0	65535	0	2 h
Lifetimes	Time	0x43F6	U2	Time Spent In OT	0	65535	0	2 h
Protections	CUV	0x484F	12	Threshold	0	32767	2500	mV
Protections	CUV	0x4851	U1	Delay	0	255	2	S
Protections	CUV	0x4852	I2	Recovery	0	32767	3000	mV
Protections	CUVC	0x4854	12	Threshold	0	32767	2400	mV
Protections	CUVC	0x4856	U1	Delay	0	255	2	S
Protections	CUVC	0x4857	I2	Recovery	0	32767	3000	mV
Protections	COV	0x4859	I2	Threshold Low Temp	0	32767	4300	mV
Protections	COV	0x485B	l2	Threshold Standard Temp	0	32767	4300	mV
Protections	COV	0x485D	12	Threshold High Temp	0	32767	4300	mV
Protections	COV	0x485F	12	Threshold Rec Temp	0	32767	4300	mV
Protections	COV	0x4861	U1	Delay	0	255	2	S
Protections	COV	0x4862	I2	Recovery Low Temp	0	32767	3900	mV
Protections	COV	0x4864	12	Recovery Standard Temp	0	32767	3900	mV
Protections	COV	0x4866	12	Recovery High Temp	0	32767	3900	mV
Protections		0.4060	12	Recovery Rec Temp	0	32767	3900	mV
	COV	0x4868						
Protections	OCC1	0x486A	12	Threshold	-32768	32767	6000	mA
						32767 255	6000	mA s

			- 1. Da	ta Fiash Summa	iry (Continu	ieu)		
Class	Subclass	Address	Type	Name	Min	Max	Default	Units
Protections	OCC2	0x486F	U1	Delay	0	255	3	S
Protections	OCC	0x4870	12	Recovery Threshold	-32768	32767	-200	mA
Protections	OCC	0x4872	U1	Recovery Delay	0	255	5	S
Protections	OCD1	0x4873	12	Threshold	-32768	32767	-6000	mA
Protections	OCD1	0x4875	U1	Delay	0	255	6	s
Protections	OCD2	0x4876	12	Threshold	-32768	32767	-8000	mA
Protections	OCD2	0x4878	U1	Delay	0	255	3	S
Protections	OCD	0x4879	12	Recovery Threshold	-32768	32767	200	mA
Protections	OCD	0x487B	U1	Recovery Delay	0	255	5	S
Protections	AOLD	0x487C	U1	Latch Limit	0	255	0	_
Protections	AOLD	0x487D	U1	Counter Dec Delay	0	255	10	s
Protections	AOLD	0x487E	U1	Recovery	0	255	5	s
Protections	AOLD	0x487F	U1	Reset	0	255	15	S
Protections	AOLD	0x4960	H1	Threshold	0x0	0xFF	0xf4	hex
Protections	ASCC	0x4880	U1	Latch Limit	0	255	0	_
Protections	ASCC	0x4881	U1	Counter Dec Delay	0	255	10	S
Protections	ASCC	0x4882	U1	Recovery	0	255	5	S
Protections	ASCC	0x4883	U1	Reset	0	255	15	s
Protections	ASCC	0x4961	H1	Threshold	0x0	0xFF	0x77	hex
Protections	ASCD	0x4884	U1	Latch Limit	0	255	0	-
Protections	ASCD	0x4885	U1	Counter Dec Delay	0	255	10	s
Protections	ASCD	0x4886	U1	Recovery	0	255	5	S
Protections	ASCD	0x4887	U1	Reset	0	255	15	s
Protections	ASCD	0x4962	H1	Threshold 1	0x0	0xFF	0x77	hex
Protections	ASCD	0x4963	H1	Threshold 2	0x0	0xFF	0xe7	hex
Protections	OTC	0x4888	12	Threshold	-400	1500	550	0.1°C
Protections	OTC	0x488A	U1	Delay	0	255	2	S
Protections	OTC	0x488B	12	Recovery	-400	1500	500	0.1°C
Protections	OTD	0x488D	12	Threshold	-400	1500	600	0.1°C
Protections	OTD	0x488F	U1	Delay	0	255	2	s
Protections	OTD	0x4890	12	Recovery	-400	1500	550	0.1°C
Protections	OTF	0x4892	12	Threshold	-400	1500	800	0.1°C
Protections	OTF	0x4894	U1	Delay	0	255	2	s
Protections	OTF	0x4895	12	Recovery	-400	1500	650	0.1°C
Protections	UTC	0x4897	12	Threshold	-400	1500	0	0.1°C
Protections	UTC	0x4899	U1	Delay	0	255	2	s
Protections	UTC	0x489A	12	Recovery	-400	1500	50	0.1°C
Protections	UTD	0x489C	12	Threshold	-400	1500	0	0.1°C
Protections	UTD	0x489E	U1	Delay	0	255	2	s
Protections	UTD	0x489F	12	Recovery	-400	1500	50	0.1°C
Protections	HWD	0x48A1	U1	Delay	0	255	10	s
Protections	PTO	0x48A2	12	Charge Threshold	-32768	32767	2000	mA
Protections	PTO	0x48A4	12	Suspend Threshold	-32768 -32768	32767	1800	mA
Protections	PTO	0x48A6	U2	Delay	0	65535	1800	S
Protections	PTO	0x48A8	12	Reset	0	32767	2	mAh
Protections	CTO	0x48AA	12	Charge Threshold	-32768	32767	2500	mA
Protections	СТО	0x48AC	12	Suspend Threshold	-32768 -32768	32767	2000	mA
Protections	СТО	0x48AE	U2	Delay	0	65535	54000	
Protections	СТО	0x48B0	12	Reset	0	32767	2	s mAh
Protections	OC OC	0x48B2	12	Threshold	-32768 32768	32767	300	mAh
Protections	UC	0x48B4	12	Recovery	-32768	32767		mAh

Class	Subclass	Address		Name	Min	Max	Default	Units
			Type					
Protections	OC	0x48B6	U1	RSOC Recovery	0	100	90	%
Protections	CHGV	0x48B7	12	Threshold	-32768	32767	500	mV
Protections	CHGV	0x48B9	U1	Delay	0	255	30	S
Protections	CHGV	0x48BA	12	Recovery	-32768	32767	-500	mV
Protections	CHGC	0x48BC	12	Threshold	-32768	32767	500	mA
Protections	CHGC	0x48BE	U1	Delay	0	255	2	S
Protections	CHGC	0x48BF	I2	Recovery Threshold	-32768	32767	100	mA
Protections	CHGC	0x48C1	U1	Recovery Delay	0	255	2	S
Protections	PCHGC	0x48C2	I2	Threshold	-32768	32767	50	mA
Protections	PCHGC	0x48C4	U1	Delay	0	255	2	S
Protections	PCHGC	0x48C5	I2	Recovery Threshold	-32768	32767	10	mA
Protections	PCHGC	0x48C7	U1	Recovery Delay	0	255	2	S
Permanent Fail	SUV	0x48CC	I2	Threshold	0	32767	2200	mV
Permanent Fail	SUV	0x48CE	U1	Delay	0	255	5	S
Permanent Fail	SOV	0x48CF	12	Threshold	0	32767	4500	mV
Permanent Fail	SOV	0x48D1	U1	Delay	0	255	5	s
Permanent Fail	SOCC	0x48D2	12	Threshold	-32768	32767	10000	mA
Permanent Fail	SOCC	0x48D4	U1	Delay	0	255	5	s
Permanent Fail	SOCD	0x48D5	12	Threshold	-32768	32767	-10000	mA
Permanent Fail	SOCD	0x48D7	U1	Delay	0	255	5	S
Permanent Fail	SOT	0x48D8	12	Threshold	-400	1500	650	0.1°C
Permanent Fail	SOT	0x48DA	U1	Delay	0	255	5	s
Permanent Fail	SOTF	0x48DB	12	Threshold	-400	1500	1000	0.1°C
Permanent Fail	SOTF	0x48DD	U1	Delay	0	255	5	S
Permanent Fail	Open Thermistor	0x48DE	12	Threshold	0	32767	2232	0.1°K
Permanent Fail	Open Thermistor	0x48E0	U1	Delay	0	255	5	S
Permanent Fail	Open Thermistor	0x48E1	12	Fet Delta	-400	1500	200	0.1°C
Permanent Fail	Open Thermistor	0x48E3	12	Cell Delta	-400	1500	200	0.1°C
Permanent Fail	QIM	0x48E5	12	Delta Threshold	0	32767	150	0.10%
Permanent Fail	QIM	0x48E7	U1	Delay	0	255	2	updates
Permanent Fail	СВ	0x48E8	12	Max Threshold	0	32767	120	2 h
Permanent Fail	СВ	0x48EA	U1	Delta Threshold	0	255	20	2 h
Permanent Fail	СВ	0x48EB	U1	Delay	0	255	2	cycles
Permanent Fail	VIMR	0x48EC	12	Check Voltage	0	5000	3500	mV
Permanent Fail	VIMR	0x48EE	12	Check Current	0	32767	10	mA
Permanent Fail	VIMR	0x48F0	12	Delta Threshold	0	5000	500	mV
Permanent Fail	VIMR	0x48F2	U1	Delta Delay	0	255	5	S
Permanent Fail	VIMR	0x48F3	U2	Duration	0	65535	100	S
Permanent Fail	VIMA	0x48F5	12	Check Voltage	0	5000	3700	mV
Permanent Fail	VIMA	0x48F7	12	Check Current	0	32767	50	mA
Permanent Fail	VIMA	0x48F9	12	Delta Threshold	0	5000	200	mV
Permanent Fail	VIMA	0x48FB	U1	Delay	0	255	5	S
Permanent Fail	IMP	0x48FC	12	Delta Threshold	0	32767	300	%
Permanent Fail	IMP	0x48FE	12	Max Threshold	0	32767	400	%
Permanent Fail	IMP	0x4900	U1	Ra Update Counts	0	255	2	Counts
Permanent Fail	CD	0x4900 0x4901	12	Threshold	0	32767	0	mAh
Permanent Fail	CD	0x4901 0x4903	U1	Delay	0	255	2	cycles
Permanent Fail	CFET	0x4903 0x4904	12	OFF Threshold	0	500	5	mA
Permanent Fail	CFET	0x4904 0x4906	U1	OFF Threshold OFF Delay	0	255	5	
	DFET							S m^
Permanent Fail		0x4907	12	OFF Threshold	-500	0	-5 F	mA
Permanent Fail	DFET	0x4909	U1	OFF Delay	0	255	5	S

21				ia Fiasii Sullilla		•		
Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Permanent Fail	FUSE	0x490A	12	Threshold	0	255	5	mA
Permanent Fail	FUSE	0x490C	U1	Delay	0	255	5	S
Permanent Fail	AFER	0x490D	U1	Threshold	0	255	100	_
Permanent Fail	AFER	0x490E	U1	Delay Period	0	255	2	S
Permanent Fail	AFER	0x490F	U1	Compare Period	0	255	5	S
Permanent Fail	AFEC	0x4910	U1	Threshold	0	255	100	_
Permanent Fail	AFEC	0x4911	U1	Delay Period	0	255	5	S
Permanent Fail	2LVL	0x4912	U1	Delay	0	255	5	S
Permanent Fail	OPNCELL	0x4913	I2	Threshold	0	32767	5000	mV
Permanent Fail	OPNCELL	0x4915	U1	Delay	0	255	5	S
PF Status	Device Status Data	0x4440	H1	Safety Alert A	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4441	H1	Safety Status A	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4442	H1	Safety Alert B	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4443	H1	Safety Status B	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4444	H1	Safety Alert C	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4445	H1	Safety Status C	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4446	H1	Safety Alert D	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4447	H1	Safety Status D	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4448	H1	PF Alert A	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4449	H1	PF Status A	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x444A	H1	PF Alert B	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x444B	H1	PF Status B	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x444C	H1	PF Alert C	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x444D	H1	PF Status C	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x444E	H1	PF Alert D	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x444F	H1	PF Status D	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4450	H2	Fuse Flag	0x0	0xFFFF	0x0	hex
PF Status	Device Status Data	0x4452	H2	Operation Status A	0x0	0xFFFF	0x0	hex
PF Status	Device Status Data	0x4454	H2	Operation Status B	0x0	0xFFFF	0x0	hex
PF Status	Device Status Data	0x4456	H1	Temp Range	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4457	H1	Charging Status A	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4458	H1	Charging Status B	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4459	H1	Gauging Status	0x0	0xFF	0x0	hex
PF Status	Device Status Data	0x4458	H2	IT Status	0x0	0xFFFF	0x0	hex
PF Status	Device Voltage Data	0x445C	12	Cell 1 Voltage	-32768	32767	0	mV
PF Status	Device Voltage Data	0x445E	12	Cell 2 Voltage	-32768	32767	0	mV
PF Status		0x4460	12	Cell 3 Voltage	-32768	32767	0	mV
	Device Voltage Data			0				
PF Status	Device Voltage Data	0x4462	12	Cell 4 Voltage	-32768	32767	0	mV
PF Status	Device Voltage Data	0x4464	12	Battery Direct Voltage	-32768	32767	0	mV
PF Status	Device Voltage Data	0x4466	12	Pack Voltage	-32768	32767	0	mV
PF Status	Device Current Data	0x4468	I2	Current	-32768	32767	0	mA
PF Status	Device Temperature Data	0x446A	I2	Internal Temperature	-32768	32767	0	0.1°K
PF Status	Device Temperature Data	0x446C	I2	External 1 Temperature	-32768	32767	0	0.1°K
PF Status	Device Temperature Data	0x446E	12	External 2 Temperature	-32768	32767	0	0.1°K
PF Status	Device Temperature Data	0x4470	12	External 3 Temperature	-32768	32767	0	0.1°K
PF Status	Device Temperature Data	0x4472	12	External 4 Temperature	-32768	32767	0	0.1°K
PF Status	Device Gauging Data	0x4474	12	Cell 1 Dod0	-32768	32767	0	

Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
PF Status	Device Gauging	0x4476	12	Cell 2 Dod0	-32768	32767	0	
FF Status	Data	0x4476	12	Cell 2 Dodo	-32700	32101	U	_
PF Status	Device Gauging Data	0x4478	I2	Cell 3 Dod0	-32768	32767	0	_
PF Status	Device Gauging Data	0x447A	12	Cell 4 Dod0	-32768	32767	0	_
PF Status	Device Gauging Data	0x447C	I2	Passed Charge	-32768	32767	0	mAh
PF Status	AFE Regs	0x447E	H1	AFE Interrupt Status	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x447F	H1	AFE FET Status	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4480	H1	AFE RXIN	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4481	H1	AFE Latch Status	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4482	H1	AFE Interrupt Enable	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4483	H1	AFE FET Control	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4484	H1	AFE RXIEN	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4485	H1	AFE RLOUT	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4486	H1	AFE RHOUT	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4487	H1	AFE RHINT	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4488	H1	AFE Cell Balance	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4489	H1	AFE AD/CC Control	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x448A	H1	AFE ADC Mux	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x448B	H1	AFE LED Output	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x448C	H1	AFE State Control	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x448C 0x448D	H1	AFE LED/Wake	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x448E	H1	Control AFE Protection	0x0	0xFF	0x0	hex
DE Ctatus	-	0.440	114	Control	0,40	٥٧٢٢	0.40	hov
PF Status	AFE Regs	0x448F	H1	AFE OCD	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4490	H1	AFE SCC	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4491	H1	AFE SCD1	0x0	0xFF	0x0	hex
PF Status	AFE Regs	0x4492	H1	AFE SCD2	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4400	H1	1st Status Status A	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4401	H1	1st Status Status B	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4402	H1	1st Safety Status C	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4403	H1	1st Safety Status D 1st Time to Next	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4404	U1	Event	0	255	0	S
Black Box	Safety Status	0x4405	H1	2nd Status Status A	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4406	H1	2nd Status Status B	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4407	H1	2nd Safety Status C	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4408	H1	2nd Safety Status D	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x4409	U1	2nd Time to Next Event	0	255	0	s
Black Box	Safety Status	0x440A	H1	3rd Status Status A	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x440B	H1	3rd Status Status B	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x440C	H1	3rd Safety Status C	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x440D	H1	3rd Safety Status D	0x0	0xFF	0x0	hex
Black Box	Safety Status	0x440E	U1	3rd Time to Next Event	0	255	0	s
Black Box	PF Status	0x440F	H1	1st PF Status A	0x0	0xFF	0x0	hex
Black Box	PF Status	0x4410	H1	1st PF Status B	0x0	0xFF	0x0	hex
Black Box	PF Status	0x4411	H1	1st PF Status C	0x0	0xFF	0x0	hex
Black Box	PF Status PF Status	0x4411 0x4412	H1	1st PF Status C	0x0 0x0	0xFF	0x0 0x0	hex
				1st Time to Next				IICA
Black Box	PF Status	0x4413	U1	Event	0	255	0	S

Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Black Box	PF Status	0x4414	H1	2nd PF Status A	0x0	0xFF	0x0	hex
Black Box	PF Status	0x4415	H1	2nd PF Status B	0x0	0xFF	0x0	hex
Black Box	PF Status	0x4416	H1	2nd PF Status C	0x0	0xFF	0x0	hex
Black Box	PF Status	0x4417	H1	2nd PF Status D	0x0	0xFF	0x0	hex
Black Box	PF Status	0x4418	U1	2nd Time to Next Event	0	255	0	s
Black Box	PF Status	0x4419	H1	3rd PF Status A	0x0	0xFF	0x0	hex
Black Box	PF Status	0x441A	H1	3rd PF Status B	0x0	0xFF	0x0	hex
Black Box	PF Status	0x441B	H1	3rd PF Status C	0x0	0xFF	0x0	hex
Black Box	PF Status	0x441C	H1	3rd PF Status D	0x0	0xFF	0x0	hex
Black Box	PF Status	0x441D	U1	3rd Time to Next Event	0	255	0	S
Gas Gauging	Current Thresholds	0x4968	12	Dsg Current Threshold	-32768	32767	100	mA
Gas Gauging	Current Thresholds	0x496A	12	Chg Current Threshold	-32768	32767	50	mA
Gas Gauging	Current Thresholds	0x496C	12	Quit Current	0	32767	10	mA
Gas Gauging	Current Thresholds	0x496E	U1	Dsg Relax Time	0	255	1	s
Gas Gauging	Current Thresholds	0x496F	U1	Chg Relax Time	0	255	60	S
Gas Gauging	Design	0x4811	12	Design Capacity mAh	0	32767	4400	mAh
Gas Gauging	Design	0x4813	12	Design Capacity cWh	0	32767	6336	cWh
Gas Gauging	Design	0x4815	12	Design Voltage	0	32767	14400	mV
Gas Gauging	Cycle	0x4817	U1	Cycle Count Percentage	0	100	90	%
Gas Gauging	FD	0x481C	12	Set Voltage Threshold	0	5000	3000	mV
Gas Gauging	FD	0x481E	I2	Clear Voltage Threshold	0	5000	3100	mV
Gas Gauging	FD	0x4820	U1	Set % RSOC Threshold	0	100	0	%
Gas Gauging	FD	0x4821	U1	Clear % RSOC Threshold	0	100	5	%
Gas Gauging	FC	0x4822	12	Set Voltage Threshold	0	5000	4200	mV
Gas Gauging	FC	0x4824	I2	Clear Voltage Threshold	0	5000	4100	mV
Gas Gauging	FC	0x4826	U1	Set % RSOC Threshold	0	100	100	%
Gas Gauging	FC	0x4827	U1	Clear % RSOC Threshold	0	100	95	%
Gas Gauging	TD	0x4828	12	Set Voltage Threshold	0	5000	3200	mV
Gas Gauging	TD	0x482A	I2	Clear Voltage Threshold	0	5000	3300	mV
Gas Gauging	TD	0x482C	U1	Set % RSOC Threshold	0	100	6	%
Gas Gauging	TD	0x482D	U1	Clear % RSOC Threshold	0	100	8	%
Gas Gauging	TC	0x482E	12	Set Voltage Threshold	0	5000	4200	mV
Gas Gauging	TC	0x4830	I2	Clear Voltage Threshold	0	5000	4100	mV
Gas Gauging	TC	0x4832	U1	Set % RSOC Threshold	0	100	100	%
Gas Gauging	TC	0x4833	U1	Clear % RSOC Threshold	0	100	95	%
Gas Gauging	State	0x4306	I2	Qmax Cell 1	0	32767	4400	mAh
Gas Gauging	State	0x4308	I2	Qmax Cell 2	0	32767	4400	mAh
Gas Gauging	State	0x430A	I2	Qmax Cell 3	0	32767	4400	mAh
Gas Gauging	State	0x430C	12	Qmax Cell 4	0	32767	4400	mAh
Gas Gauging	State	0x430E	12	Qmax Pack	0	32767	4400	mAh

Class	Subclass	Address	Type	Name	Min	Max	Default	Units
Gas Gauging	State	0x4310	U2	Qmax Cycle Count	0	65535	0	_
Gas Gauging	State	0x4312	H1	Update Status	0x0	0x0E	0x0	_
Gas Gauging	State	0x4313	I2	Cell 1 Chg Voltage at EoC	0	32767	4200	mV
Gas Gauging	State	0x4315	I2	Cell 2 Chg Voltage at EoC	0	32767	4200	mV
Gas Gauging	State	0x4317	I2	Cell 3 Chg Voltage at EoC	0	32767	4200	mV
Gas Gauging	State	0x4319	I2	Cell 4 Chg Voltage at EoC	0	32767	4200	mV
Gas Gauging	State	0x431B	12	Current at EoC	0	32767	250	mA
Gas Gauging	State	0x431D	12	Avg I Last Run	-32768	32767	-2000	mA
Gas Gauging	State	0x431F	12	Avg P Last Run	-32768	32767	-3022	cW
Gas Gauging	State	0x4321	12	Delta Voltage	-32768	32767	0	mV
Gas Gauging	State	0x4323	I2	Temp k	0	32767	100	0.1°C/256 cW
Gas Gauging	State	0x4325	12	Temp a	0	32767	1000	s
Gas Gauging	State	0x4327	12	Max Avg I Last Run	-32768	32767	-2000	mA
Gas Gauging	State	0x4329	12	Max Avg P Last Run	-32768	32767	-3022	cW
Gas Gauging	State	0x4340	U2	Cycle Count	0	65535	0	_
Gas Gauging	IT Cfg	0x4300	12	Design Resistance	1	32767	96	mΩ
Gas Gauging	IT Cfg	0x4302	12	Pack Resistance	0	32767	30	mΩ
Gas Gauging	IT Cfg	0x4304	12	System Resistance	0	32767	0	mΩ
Gas Gauging	IT Cfg	0x474E	U2	Ra Filter	0	999	800	0.10%
Gas Gauging	IT Cfg	0x4751	U1	Ra Max Delta	0	255	15	%
Gas Gauging	IT Cfg	0x4753	U1	Reference Grid	0	14	4	_
Gas Gauging	IT Cfg	0x4754	U2	Resistance Parameter Filter	1	65535	65142	_
Gas Gauging	IT Cfg	0x4756	U2	Near EDV Ra Param Filter	1	65535	59220	_
Gas Gauging	IT Cfg	0x477C	U1	Qmax Delta	3	100	5	%
Gas Gauging	IT Cfg	0x477D	U1	Qmax Upper Bound	100	255	130	%
Gas Gauging	IT Cfg	0x477E	12	Term Voltage	0	32767	9000	mV
Gas Gauging	IT Cfg	0x4780	U1	Term V Hold Time	0	255	1	s
Gas Gauging	IT Cfg	0x4781	12	Term Voltage Delta	0	32767	300	mV
Gas Gauging	IT Cfg	0x4783	12	Term Min Cell V	0	32767	2800	mV
Gas Gauging	IT Cfg	0x479D	U1	Fast Scale Start SOC	0	100	10	%
Gas Gauging	IT Cfg	0x47A6	12	Min Delta Voltage	-32768	32767	0	mV
Gas Gauging	IT Cfg	0x4838	U1	Load Select	0	7	7	_
Gas Gauging	IT Cfg	0x4839	U1	Load Mode	0	1	0	_
Gas Gauging	IT Cfg	0x483A	12	User Rate-mA	-9000	0	0	mA
Gas Gauging	IT Cfg	0x483C	12	User Rate-cW	-32768	0	0	cW
Gas Gauging	IT Cfg	0x483E	12	Reserve Cap-mAh	0	9000	0	mAh
Gas Gauging	IT Cfg	0x4840	12	Reserve Cap-cWh	0	32000	0	cWh
Gas Gauging	Smoothing	0x4842	12	Smooth Relax Time	1	32767	1000	S
Gas Gauging	Condition Flag	0x4844	U1	Max Error Limit	0	100	100	%
Gas Gauging	Max Error	0x4848	U1	Time Cycle Equivalent	1	255	12	2 h
Gas Gauging	Max Error	0x4849	U1	Cycle Delta	0	255	5	0.01%
Gas Gauging	SoH	0x47A8	U1	SoH Load Rate	0	255	50	0.1 h rate
Gas Gauging	Turbo Cfg	0x44C0	12	Min Turbo Power	-32768	0	0	cW
Gas Gauging	Turbo Cfg	0x44C2	I1	Max C Rate	-127	0	-4	С
Gas Gauging	Turbo Cfg	0x44C3	I2	High Frequency Resistance	0	32767	36	mΩ

Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Gas Gauging	Turbo Cfg	0x44C9	11	Reserve Energy %	0	100	0	%
Ra Table	R_a0	0x4100	H2	Cell0 R_a flag	0x0	0xFFFF	0xFF55	_
Ra Table	R_a0	0x4102	12	Cell0 R_a 0	0	32767	67	2-10 Ω
Ra Table	R_a0	0x4104	12	Cell0 R_a 1	0	32767	71	2-10 Ω
Ra Table	R_a0	0x4106	12	Cell0 R_a 2	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4108	12	Cell0 R_a 3	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x410A	12	Cell0 R_a 4	0	32767	96	2-10 Ω
Ra Table	R_a0	0x410C	12	Cell0 R_a 5	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x410E	12	Cell0 R_a 6	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4110	12	Cell0 R_a 7	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4112	12	Cell0 R_a 8	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4114	12	Cell0 R_a 9	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4116	12	Cell0 R_a 10	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4118	12	Cell0 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x411A	12	Cell0 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x411C	12	Cell0 R_a 13	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x411E	12	Cello R_a 14	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4140	H2	Cell1 R_a flag	0x0	0xFFFF	0xFF55	
Ra Table	R_a1	0x4142	12	Cell1 R a 0	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4144	12	Cell1 R_a 1	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4146	12	Cell1 R_a 2	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4148	12	Cell1 R_a 3	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x414A	12	Cell1 R_a 4	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x414C	12	Cell1 R_a 5	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x414E	12	Cell1 R_a 6	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4150	12	Cell1 R_a 7	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4152	12	Cell1 R_a 8	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4154	12	Cell1 R_a 9	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4154 0x4156	12	Cell1 R_a 10	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4158	12	Cell1 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x415A	12	Cell1 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table		0x415A	12	Cell1 R_a 13	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a1 R_a1	0x415E	12	Cell1 R_a 14	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R a2	0x413L 0x4180	H2	Cell2 R_a flag	0x0	0xFFFF	036 0xFF55	Ζ Ω
Ra Table	R_a2	0x4180 0x4182	12	Cell2 R_a 0	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x4184	12	Cell2 R_a 1	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x4186	12	Cell2 R_a 2	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x4188	12	Cell2 R_a 3	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x418A	12	Cell2 R_a 4	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x418C	12	Cell2 R_a 4	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a2 R_a2	0x418E	12	Cell2 R_a 5	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a2 R_a2	0x418E	12	Cell2 R_a 6	0	32767	86	2 · · · Ω 2 ⁻¹⁰ Ω
								2 · · · Ω 2 ⁻¹⁰ Ω
Ra Table	R_a2	0x4192	12	Cell2 R_a 8	0	32767	84	2 · · · Ω 2 ⁻¹⁰ Ω
Ra Table	R_a2	0x4194	12	Cell2 R_a 9	0	32767	82	
Ra Table	R_a2	0x4196	12	Cell2 R_a 10	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x4198	12	Cell2 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x419A	12	Cell2 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x419C	12	Cell2 R_a 13	0	32767	123	2 ⁻¹⁰ Ω

Table 14-1. Data Flash Summary (continued)

Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Ra Table		0x419E	1ype 12	Cell2 R_a 14	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a2 R_a3	0x419E	H2		0x0	0xFFFF	0xFF55	2 0
Ra Table	R_a3	0x41C0	12	Cell3 R_a flag Cell3 R_a 0	0	32767	67	
Ra Table	_	0x41C2	12		0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41C4 0x41C6	12	Cell3 R_a 1		32767		2 ⁻¹⁰ Ω
	R_a3			Cell3 R_a 2	0		83	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41C8	12	Cell3 R_a 3	0	32767	110	
Ra Table	R_a3	0x41CA	12	Cell3 R_a 4	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41CC	12	Cell3 R_a 5	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41CE	12	Cell3 R_a 6	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41D0	12	Cell3 R_a 7	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41D2	12	Cell3 R_a 8	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41D4	12	Cell3 R_a 9	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41D6	12	Cell3 R_a 10	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41D8	12	Cell3 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41DA	12	Cell3 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41DC	I2	Cell3 R_a 13	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x41DE	12	Cell3 R_a 14	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4200	H2	xCell0 R_a flag	0x0	0xFFFF	0xFFFF	_
Ra Table	R_a0x	0x4202	12	xCell0 R_a 0	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4204	12	xCell0 R_a 1	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4206	12	xCell0 R_a 2	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4208	12	xCell0 R_a 3	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x420A	12	xCell0 R_a 4	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x420C	I2	xCell0 R_a 5	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x420E	12	xCell0 R_a 6	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4210	I2	xCell0 R_a 7	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4212	12	xCell0 R_a 8	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4214	12	xCell0 R_a 9	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4216	12	xCell0 R_a 10	0	32767	81	$2^{-10} \Omega$
Ra Table	R_a0x	0x4218	12	xCell0 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x421A	12	xCell0 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x421C	12	xCell0 R_a 13	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x421E	12	xCell0 R_a 14	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4240	H2	xCell1 R_a flag	0x0	0xFFFF	0xFFFF	_
Ra Table	R_a1x	0x4242	12	xCell1 R_a 0	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4244	12	xCell1 R_a 1	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4246	12	xCell1 R_a 2	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4248	12	xCell1 R_a 3	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x424A	12	xCell1 R_a 4	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x424C	12	xCell1 R_a 5	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x424E	12	xCell1 R_a 6	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4250	12	xCell1 R_a 7	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4252	12	xCell1 R_a 8	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4254	12	xCell1 R_a 9	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4256	12	xCell1 R_a 10	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4258	12	xCell1 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x425A	12	xCell1 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table		0x425C	12		0	32767	123	
Ra Table	_	0x425A	12		0	32767	103	

Class	Subclass	Address	Туре	Name	Min	Max	Default	Units
Ra Table	R_a1x	0x425E	12	xCell1 R_a 14	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4280	H2	xCell2 R_a flag	0x0	0xFFFF	0xFFFF	_
Ra Table	R_a2x	0x4282	12	xCell2 R_a 0	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4284	12	xCell2 R_a 1	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4286	12	xCell2 R_a 2	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4288	12	xCell2 R_a 3	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x428A	12	xCell2 R_a 4	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x428C	12	xCell2 R_a 5	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x428E	12	xCell2 R_a 6	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4290	12	xCell2 R_a 7	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4292	12	xCell2 R_a 8	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4294	12	xCell2 R_a 9	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4296	12	xCell2 R_a 10	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x4298	12	xCell2 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x429A	12	xCell2 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x429C	12	xCell2 R_a 13	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a2x	0x429E	12	xCell2 R_a 14	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42C0	H2	xCell3 R_a flag	0x0	0xFFFF	0xFFFF	_
Ra Table	R_a3x	0x42C2	I2	xCell3 R_a 0	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42C4	I2	xCell3 R_a 1	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42C6	12	xCell3 R_a 2	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42C8	12	xCell3 R_a 3	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42CA	12	xCell3 R_a 4	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42CC	12	xCell3 R_a 5	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42CE	12	xCell3 R_a 6	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42D0	12	xCell3 R_a 7	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42D2	12	xCell3 R_a 8	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42D4	12	xCell3 R_a 9	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42D6	12	xCell3 R_a 10	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42D8	12	xCell3 R_a 11	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42DA	12	xCell3 R_a 12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a3x	0x42DC	12	xCell3 R_a 13	0	32767	123	2-10 Ω
Ra Table	R_a3x	0x42DE	12	xCell3 R_a 14	0	32767	658	2-10 Ω

AFE Threshold and Delay Settings

A.1 Overload in Discharge Protection (AOLD)

Table A-1. Overload in Discharge Protection Threshold (Settings:AFE:AFE Protection Control [RSNS] = 0)⁽¹⁾

	OLD Threshold ([RSNS] = 0)										
Setting	Threshold	Setting	Threshold								
0x00	−8.30 mV	0x08	−30.54 mV								
0x01	–11.08 mV	0x09	−33.32 mV								
0x02	–13.86 mV	0x0A	−36.10 mV								
0x03	–16.64 mV	0x0B	−38.88 mV								
0x04	–19.42 mV	0x0C	–41.66 mV								
0x05	–22.20 mV	0x0D	–44.44 mV								
0x06	–24.98 mV	0x0E	–47.22 mV								
0x07	–27.76 mV	0x0F	−50.00 mV								

⁽¹⁾ Data flash setting Protection: AFE Thresholds: OLD Threshold[3:0] sets the voltage threshold.

Table A-2. Overload in Discharge Protection Threshold (Settings:AFE:AFE Protection Control [RSNS] = 1)⁽¹⁾

	OLD Threshold ([RSNS] = 1)									
Setting	Threshold	Setting	Threshold							
0x00	−16.60 mV	0x08	–61.08 mV							
0x01	–22.16 mV	0x09	–66.64 mV							
0x02	−27.72 mV	0x0A	−72.20 mV							
0x03	−33.28 mV	0x0B	–77.76 mV							
0x04	−38.84 mV	0x0C	−83.32 mV							
0x05	-44.40 mV	0x0D	–88.88 mV							
0x06	–49.96 mV	0x0E	−94.44 mV							
0x07	−55.52 mV	0x0F	-100.00 mV							

⁽¹⁾ Data flash setting **Protection:AFE Thresholds:OLD Threshold[3:0]** sets the voltage threshold.

Table A-3. Overload in Discharge Protection Delay⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	1 ms	0x04	9 ms	0x08	17 ms	0x0C	25 ms
0x01	3 ms	0x05	11 ms	0x09	19 ms	0x0D	27 ms
0x02	5 ms	0x06	13 ms	0x0A	21 ms	0x0E	29 ms
0x03	7 ms	0x07	15 ms	0x0B	23 ms	0x0F	31 ms

⁽¹⁾ Data flash setting Protection: AFE Thresholds: OLD Threshold[7:4] sets the delay time.

A.2 Short Circuit in Charge (ASCC)

Table A-4. Short Circuit in Charge Threshold (Settings:AFE:AFE Protection Control [RSNS] = 0)⁽¹⁾

Setting Threshold		Setting	Threshold		
0x00	22.2 mV	0x04	66.65 mV		
0x01	33.3 mV	0x05	77.75 mV		
0x02	44.4 mV	0x06	88.85 mV		
0x03	55.5 mV	0x07	100 mV		

⁽¹⁾ Data flash setting Protection: AFE Thresholds: SCC Threshold[2:0] sets the voltage threshold.

Table A-5. Short Circuit in Charge Threshold (Settings:AFE:AFE Protection Control [RSNS] = 1)⁽¹⁾

Setting	Setting Threshold		Threshold
0x00	44.4 mV	0x04	133.3 mV
0x01	66.6 mV	0x05	155.5 mV
0x02	88.8 mV	0x06	177.7 mV
0x03	111.1 mV	0x07	200 mV

⁽¹⁾ Data flash setting Protection: AFE Thresholds: SCC Threshold[2:0] sets the voltage threshold.

Table A-6. Short Circuit in Charge Delay(1)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0C	732 µs
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0D	793 µs
0x02	122 µs	0x06	366 µs	0x0A	610 µs	0x0E	854 µs
0x03	183 µs	0x07	427 µs	0x0B	671 µs	0x0F	915 µs

Data flash setting Protection: AFE Thresholds: SCC Threshold[7:4] sets the delay time.

A.3 Short Circuit in Discharge (ASCD1 and ASCD2)

Table A-7. Short Circuit in Discharge Threshold (Settings: AFE: AFE Protection Control [RSNS] = 0)⁽¹⁾

Setting	Threshold	Setting	Threshold
0x00	–22.2 mV	0x04	−66.65 mV
0x01	−33.3 mV	0x05	−77.75 mV
0x02	–44.4 mV	0x06	−88.85 mV
0x03	−55.5 mV	0x07	–100 mV

⁽¹⁾ Data flash setting *Protection:AFE Thresholds:SCD1 Threshold*[2:0] and *Protection:AFE Thresholds:SCD2 Threshold*[2:0] sets the voltage thresholds.

Table A-8. Short Circuit in Discharge Threshold (Settings:AFE:AFE Protection Control [RSNS] = 1)⁽¹⁾

Setting	Threshold	Setting	Threshold
0x00	–44.4 mV	0x04	−133.3 mV
0x01	−66.6 mV	0x05	−155.5 mV
0x02	−88.8 mV	0x06	−177.7 mV
0x03	–111.1 mV	0x07	–200 mV

⁽¹⁾ Data flash setting Protection: AFE Thresholds: SCD1 Threshold[2:0] and Protection: AFE Thresholds: SCD2 Threshold[2:0] sets the voltage thresholds.

Table A-9. Short Circuit in Discharge 1 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 0)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0C	732 µs
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0D	793 µs
0x02	122 µs	0x06	366 µs	0x0A	610 µs	0x0E	854 µs
0x03	183 µs	0x07	427 µs	0x0B	671 µs	0x0F	915 µs

⁽¹⁾ Data flash setting *Protection:AFE Thresholds:SCD1Threshold[7:4]* sets the delay time.

Table A-10. Short Circuit in Discharge 1 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 1)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	488 µs	0x08	976 µs	0x0C	1464 µs
0x01	122 µs	0x05	610 µs	0x09	1098 µs	0x0D	1586 µs
0x02	244 µs	0x06	732 µs	0x0A	1220 µs	0x0E	1708 µs
0x03	366 µs	0x07	854 µs	0x0B	1342 µs	0x0F	1830 µs

⁽¹⁾ Data flash setting Protection: AFE Thresholds: SCD1 Threshold[7:4] sets the delay time.

Table A-11. Short Circuit in Discharge 2 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 0)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	122 µs	80x0	244 µs	0x0C	366 µs
0x01	31 µs	0x05	153 µs	0x09	275 µs	0x0D	396 µs
0x02	61 µs	0x06	183 µs	0x0A	305 µs	0x0E	427 µs
0x03	92 µs	0x07	214 µs	0x0B	335 µs	0x0F	458 µs

⁽¹⁾ Data flash setting Protection: AFE Thresholds: SCD2 Threshold[7:4] sets the delay time.

Table A-12. Short Circuit in Discharge 2 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 1)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 μs	0x04	244 µs	0x08	488 µs	0x0C	732 µs
0x01	62 µs	0x05	306 µs	0x09	550 µs	0x0D	792 µs
0x02	122 µs	0x06	366 µs	0x0A	610 µs	0x0E	854 µs
0x03	184 µs	0x07	428 µs	0x0B	670 µs	0x0F	916 µs

⁽¹⁾ Data flash setting *Protection:AFE Thresholds:SCD2 Threshold[7:4]* sets the delay time.

Sample Filter Settings

Table B-1. Sample V/I/P Filter Settings and Associated Low-Pass Filter Time Constants⁽¹⁾

Average V/I/P Filter	Effective Low-Pass Time Constant
10	0.25 seconds
50	0.5 seconds
145	1 second
200	3 seconds

① Data flash setting *Calibration:Filter:Average V/I/P* sets this threshold.

Revision History www.ti.com

Revision History

Cł	hanges from A Revision (September 2015) to B Revision	Pa	ıge
•	Changed Section 5.4.4.2		45

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive amplifier.ti.com Communications and Telecom www.ti.com/communications **Amplifiers Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>