Squeeze Theorem and Continuity of Algebraic Operations

Cliff Sun

April 24, 2024

Squeeze Theorem

Claim:

$$\lim_{n \to \infty} \frac{\cos n}{n} = 0 \tag{1}$$

Proof. We use the squeeze theorem, with $a_n = \frac{-1}{n}$, $b_n = \frac{1}{n}$ and $x_n = \frac{\cos n}{n}$. Since we have that

$$a_n \le x_n \le b_n \tag{2}$$

For all n, and that

$$\lim a_n = 0 \wedge \lim b_n = 0 \tag{3}$$

It follows that

$$\lim x_n = 0$$
(4)

Theorem 0.1. Suppose

$$a_n \le x_n \le b_n \tag{5}$$

for all n. Then if

$$\lim a_n = a \tag{6}$$

$$\lim b_n = b \tag{7}$$

and

$$a \neq b$$
 (8)

Then if $\lim x_n = x$, then we have that

$$a \le x \le b \tag{9}$$

Theorem 0.2. Suppose that (x_n) and (y_n) are sequences that converge to x, y respectively. Then

- $1. \lim(x_n + y_n) = x + y$
- $2. \lim (x_n y_n) = x y$
- 3. $\lim (x_n \cdot y_n) = x \cdot y$
- 4. If y and all y_n are not zero, then $\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{x}{y}$

This tells us that addition, multiplication, subtraction, and division are all continuous functions. That is if x_n is close to x and y_n is close to y. Then $x_n + y_n$ is close to x + y.

To begin, we prove statement (1).

Proof. Suppose $\lim x_n = x$ and $\lim y_n = y$, we claim that $\lim (x_n + y_n) = x + y$. Let $\epsilon > 0$, plugging in $\frac{\epsilon}{2}$ for both x_n and y_n , then we get M_1 and M_2 . Choosing $M' = \max(M_1, M_2)$, we have that

$$|x_n - x| < \frac{\epsilon}{2} \tag{10}$$

and

$$|y_n - y| < \frac{\epsilon}{2} \tag{11}$$

We rewrite this to be the following:

$$-\frac{\epsilon}{2} + x < x_n < \frac{\epsilon}{2} + x \tag{12}$$

and

$$-\frac{\epsilon}{2} + y < y_n < \frac{\epsilon}{2} + y \tag{13}$$

Adding the equations together yields

$$-\epsilon < x_n + y_n - (x+y) < \epsilon \tag{14}$$

This concludes the proof.

lim sup and lim inf

Recall that if (x_n) converges, then (x_n) is bounded. But the converse is clearly not true. Then what is the long-term behavior of a bounded divergent sequence?

Then we define \lim inf to be the lower \liminf of the interval in which the sequence oscillates long term and \limsup similarly.

Definition 0.3. Let (x_n) be a bounded sequence such that

- 1. $a_n = \sup\{x_k : k \ge n\}$
- $2. b_n = \inf\{x_k : k \ge n\}$
- 3. $\limsup (x_n) = \lim a_n$
- 4. $\liminf (x_n) = \lim b_n$