

Agenda

Introduction

Ahead of time compilation

OAT file format

Security implications

Reverse engineering

2

Background

Introduced in Android KitKat 4.4 back in October, 2013

Still in experimental stage

Poised to replace Dalvik

Background

- Dalvik
 - Dexopt
 - Just-in-time (JIT) compilation

- ART
 - Ahead-of-time (AOT) compilation
 - Dalvik bytecode -> Native code

Background

- Advantages
 - Better performance
 - Better battery life

- (slight) Disadvantages
 - More storage space
 - Longer installation time

Turning on ART

Settings > Developer options > Select runtime

Turning on ART

- Runtime selection is not possible on some devices using official releases
 - 2012 Nexus 7
 - Nexus 10

- Third-party ROMs
- Build from AOSP

Turning on ART

To check which runtime is enabled

getprop persist.sys.dalvik.vm.lib.1

- Returns "libart.so" if ART is enabled
- Returns "libdvm.so" if Dalvik

Before we proceed

- ART is still under heavy development
- Some parts of this talk may change
- In some parts will focus on the fundamental principles versus details that may change

Agenda

Introduction

Ahead of time compilation

OAT file format

Security implications

Reverse engineering

When?

- Upon reboot after ART is enabled
 - Creates boot.oat and boot image
 - All installed apps will be compiled
 - May take a while
- App installation
- When it meets certain criteria based on profiling results

Dex2oat

- Dex2oat
 - Ex:

```
/system/bin/dex2oat --zip-fd=6 --zip-location=/system/app/
Email.apk --oat-fd=7 --oat-location=/data/dalvik-cache/
system@app@Email.apk@classes.dex --profile-file=/data/
dalvik-cache/profiles/com.android.email
```

Resulting OAT file will be placed in /data/dalvikcache

Dex2oat

- Retrieve classes.dex from APK
- Verify each class
- Verify each method
- Verify each Dalvik instruction
- Compile bytecode in all methods in each class into native code
 - Except class initializers (<clinit>)

Boot.oat

- system@framework@boot.oat
- Contains libs and frameworks in boot class path
 - To be pre-loaded in all apps

/system/bin/dex2oat --image=/data/dalvik-cache/system@framework@boot.art --runtime-arg -Xms64m --runtime-arg -Xmx64m --dex-file=/system/framework/core-libart.jar --dex-file=/system/framework/core-libart.jar --dex-file=/system/framework/okhttp.jar --dex-file=/system/framework/core-junit.jar --dex-file=/system/framework/bouncycastle.jar --dex-file=/system/framework/framework.jar --dex-file=/system/framework.jar --dex-file=/system/framework/framework.jar --dex-file=/system/framework/telephony-common.jar --dex-file=/system/framework/mms-common.jar --dex-file=/system/framework/mms-common.jar --dex-file=/system/framework/services.jar --dex-file=/system/framework/services.jar --dex-file=/system/framework/apache-xml.jar --dex-file=/system/framework/webviewchromium.jar --oat-file=/data/dalvik-cache/system@framework@boot.oat --runtime-arg -implicit-checks:none --instruction-set=arm --instruction-set-features=default --base=0x70000000 --image-classes-zip=/system/framework/framework.jar

Boot.oat

- /system/framework/core-libart.jar
- /system/framework/conscrypt.jar
- /system/framework/okhttp.jar
- /system/framework/core-junit.jar
- /system/framework/bouncycastle.jar
- /system/framework/ext.jar
- /system/framework/framework.jar
- /system/framework/framework2.jar
- /system/framework/telephony-common.jar
- /system/framework/voip-common.jar
- /system/framework/mms-common.jar

- /system/framework/android.policy.jar
- /system/framework/services.jar
- /system/framework/apache-xml.jar
- /system/framework/webviewchromium.jar

Boot image

- system@framework@boot.art
- Contains absolute pointers for methods in boot.oat
- boot.oat contain absolute pointers to methods in the boot image
- Loaded by zygote along with boot.oat

Compilation

- Compiler backends:
 - Quick
 - Optimizing
 - Portable
- "-compile-backend" option for dex2oat
- Current default is Quick

Quick Backend

- Medium level IR (DEX bytecode)
- Low level IR
- Native code
- Some optimizations at each stage

Optimizing backend

Basically Quick with additional optimizations

Still in heavy development

Portable backend

- Uses LLVM bitcode as its LIR
- Optimizations using LLVM optimizer
- Code generation is done by LLVM backends

 By default, ART compiles methods regardless of impact on performance

 Profiling feature allows ART to be more selective on which methods to compile

- Currently disabled by default
- To enable:

setprop dalvik.vm.profiler 1

- No AOT compilation upon app install
 - Reduced install time
 - Save on disk space

- Profiling data is collected while app is running
- Profile files are placed in /data/dalvik-cache/ profiles
- Profile file name is the package name
- Profile data is used to determine if AOT compilation will be done

42/2/352
android.database.Cursor com.android.email.provider.EmailProvider.uiAccounts(java.lang.String[])/1/128
void com.android.email.NotificationController.ensureHandlerExists()/1/37
int com.android.email.provider.EmailProvider.getFolderTypeFromMailboxType(int)/2/56
boolean com.android.mail.browse.ConversationCursor\$ConversationProvider.onCreate()/1/49
com.google.common.collect.ImmutableList com.google.common.collect.ImmutableList.of()/1/3
<snip>

- First line is the summary information
 - Samples count/Null methods count/Boot path methods count
- Subsequent lines are the profile data
 - Method name/Count/Size

- When?
 - Does the app need to undergo dex2oat?
 - Number of methods comprising 90% of called methods has changed by > 10%
 - If yes, which methods are to be compiled?
 - Methods comprising 90% of called methods

Agenda

Introduction

Ahead of time compilation

OAT file format

Security implications

Reverse engineering

- ELF dynamic object
- .oat file extension

▼ struct dynamic_symbol_table	
▶ struct Elf32_Sym symtab[0]	[U] <undefined></undefined>
▼ struct Elf32_Sym symtab[1]	oatdata
struct sym_name32_t sym_name	oatdata
Elf32_Addr sym_value	0x00001000
Elf32_Xword sym_size	892928
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	4
▶ char sym_data[892928]	
▼ struct Elf32_Sym symtab[2]	oatexec
struct sym_name32_t sym_name	oatexec
Elf32_Addr sym_value	0x000DB000
Elf32_Xword sym_size	605104
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	5
▶ char sym_data[605104]	
▼ struct Elf32_Sym symtab[3]	oatlastword
▶ struct sym_name32_t sym_name	oatlastword
Elf32_Addr sym_value	0x0016EBAC
Elf32_Xword sym_size	4
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	5
▶ char sym_data[4]	ðGőç

- Dynamic symbol tables pointing to OAT data and code
 - oatdata
 - oatexec
 - oatlastword

▼ struct dynamic_symbol_table	
▶ struct Elf32_Sym symtab[0]	[U] <undefined></undefined>
▼ struct Elf32_Sym symtab[1]	oatdata
▶ struct sym_name32_t sym_name	oatdata
Elf32_Addr sym_value	0x00001000
Elf32_Xword sym_size	892928
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	4
▶ char sym_data[892928]	
▼ struct Elf32_Sym symtab[2]	oatexec
struct sym_name32_t sym_name	oatexec
Elf32_Addr sym_value	0x000DB000
Elf32_Xword sym_size	605104
struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	5
▶ char sym_data[605104]	
▼ struct Elf32_Sym symtab[3]	oatlastword
struct sym_name32_t sym_name	oatlastword
Elf32_Addr sym_value	0x0016EBAC
Elf32_Xword sym_size	4
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	5
▶ char sym_data[4]	ðGőç

- oatdata -> headers, DEX files
- oatexec -> compiled code
- oatlastword -> end marker

▼ struct dynamic_symbol_table	
▶ struct Elf32_Sym symtab[0]	[U] <undefined></undefined>
▼ struct Elf32_Sym symtab[1]	oatdata
▶ struct sym_name32_t sym_name	oatdata
Elf32_Addr sym_value	0x00001000
Elf32_Xword sym_size	892928
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	4
▶ char sym_data[892928]	
▼ struct Elf32_Sym symtab[2]	oatexec
struct sym_name32_t sym_name	oatexec
Elf32_Addr sym_value	0x000DB000
Elf32_Xword sym_size	605104
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	5
▶ char sym_data[605104]	
▼ struct Elf32_Sym symtab[3]	oatlastword
struct sym_name32_t sym_name	oatlastword
Elf32_Addr sym_value	0x0016EBAC
Elf32_Xword sym_size	4
▶ struct sym_info_t sym_info	STB_GLOBAL STT_OBJECT
unsigned char sym_other	0
Elf32_Half sym_shndx	5
▶ char sym_data[4]	ðGőç

OAT Header

Name	Format	Description
magic	ubyte[4]	Magic value. "oat\n"
version	ubyte[4]	OAT version.
adler32_checksum	uint32	Adler-32 checksum of the
		executable code data
instruction_set	uint32	Instruction set architecture
instruction_set_features	uint32	Bitmask of supported
		features per architecture
dex_file_count	uint32	Number of DEX files in the
		OAT
executable_offset	uint32	Offset of executable code
		section from start of
		oatdata
interpreter_to_interpreter_bridge_offset	uint32	offset from oatdata start to
		interpreter_to_interpreter_b
		ridge stub
interpreter_to_compiled_code_bridge_offset	uint32	offset from oatdata start to
		interpreter_to_compiled_code
		_bridge stub
jni_dlsym_lookup_offset_	uint32	offset from oatdata start to
		jni_dlsym_lookup stub
portable_imt_conflict_trampoline_offset	uint32	offset from oatdata start to
		portable_imt_conflict_trampo
		line stub
portable_resolution_trampoline_offset	uint32	offset from oatdata start to
		portable_resolution_trampoli
	uint32	ne stub offset from oatdata start to
portable_to_interpreter_bridge_offset	UINE32	
		portable_to_interpreter_brid ge_stub
quick generic jni trampoline offset	uint32	offset from oatdata start to
quick_generic_jni_trampoline_offset	UINC32	quick generic jni trampoline
		stub
quick_imt_conflict_trampoline_offset	uint32	offset from oatdata start to
quick_imt_conflict_trampoline_offset	ULITESE	quick_imt_conflict_trampolin
		e stub
quick resolution trampoline offset	uint32	offset from oatdata start to
quiet_resolution_erampolitic_orrsec	02111232	quick resolution trampoline
		stub
quick_to_interpreter_bridge_offset	uint32	offset from oatdata start to
quien_eo_in een prieeen_bridge_orride	GINESE	quick to interpreter bridge
		stub
image file location oat checksum	uint32	Checksum of image file's
8		path
image file location oat data begin	uint32	The virtual address of the
B		image file's oatdata section
image file location size	uint32	The length of the image
		file's path
		Tite 5 patri

OAT Header

- Supported instruction sets
 - -ARM
 - ARM64
 - Thumb2
 - X86
 - $X86_64$
 - Mips

OAT DEX File Header

Name	Format	Description
dex_file_location_size	uint32	Length of the original
		input DEX path
dex_file_location_data	ubyte[dex_file_location_size]	Original path of input
		DEX file
dex_file_location_checksum	uint32	Checksum of path
		string
dex_file_pointer	uint32	Offset of embedded
		input DEX
classes_offsets	uint32[DEX.header.class_defs_size]	List of offsets to
		OATClassHeaders

The original DEX file is embedded in the OAT data section

OAT Class Header

Name	Format	Description
status	uint16	State of class during compilation
type	uint16	Type of class
bitmap_size	uint32	Size of methods bitmap
bitmap_pointer	uint32	Offset to methods bitmap
methods_pointer	uint32	Offset to methods

Status

- kStatusError
- kStatusNotReady
- kStatusIdx
- kStatusLoaded
- kStatusResolved
- kStatusVerifying
- kStatusRetryVerificationAtRuntime
- kStatusVerifyingAtRuntime
- kStatusVerified
- kStatusInitializing
- kStatusInitialized

OAT Class Header

Name	Format	Description
status	uint16	State of class during compilation
type	uint16	Type of class
bitmap_size	uint32	Size of methods bitmap
bitmap_pointer	uint32	Offset to methods bitmap
methods_pointer	uint32	Offset to methods

■Type

- kOatClassAllCompiled
- kOatClassSomeCompiled
- kOatClassNoneCompiled

OAT Class Header

- kOatClassAllCompiled
 - All methods in the class were compiled
- kOatClassSomeCompiled
 - Some of the methods in the class were compiled
- kOatClassNoneCompiled
 - None of the methods in the class were compiled

OAT Class Header

Name	Format	Description
status	uint16	State of class during compilation
type	uint16	Type of class
bitmap_size	uint32	Size of methods bitmap
bitmap_pointer	uint32	Offset to methods bitmap
methods_pointer	uint32	Offset to OatMethodOffsets list

- Bitmaps are used to represent which methods are compiled
- Each bit represents every method in the class, starting with direct methods, then virtual methods
- If bit it is set, the method was compiled

OAT Method

OatMethodOffset

Name	Format	Description
code_offset	uint32	Offset of compiled code from start of oatdata
frame_size_in_bytes	uint32	Frame size for this method when executed
core_spill_mask	uint32	Bitmap of spilled machine registers
fp_spill_mask	uint32	Bitmap of spilled floating point machine registers
gc_map_offset	uint32	Offset to the GC map

Corresponds to each compiled method

OAT Method

OATMethodHeader

Name	Format	Description
mapping_table_offset	uint32	Offset from the start of the mapping table
vmap_table_offset	uint32	Offset form the start of the vmap table
code_size	uint32	Method's code size in bytes

Appears right before method code

Agenda

Introduction

Ahead of time compilation

OAT file format

Security implications

Reverse Engineering

40

Compiler vulnerabilities

New technology means new code

New code means more potential mistakes

Fuzzing the AOT compiler

Used dumb fuzzing methods

Generated DEX files with mutated method code

Ran dex2oat against them

Fuzzing the AOT compiler

Found several crashes

Did not pursue further due still evolving code in ART

Viable target once ART stabilizes

- Post exploitation scenario
- Attacker already has elevated privileges
- Some past examples in Android
 - Erez Metula in his book "Managed Code Rootkits"
 - Tsukasa Oi's "Yet Another Android Rootkit" paper

 Technologies such as dm-verity introduced in KitKat makes rootkits relying on /system partition modifications obsolete

 No write to /system, or anywhere else except boot.oat, no memory modications, no ptrace

- Example idea
 - Parse the boot image to locate address of methods to hook
 - Patch the target compiled method in boot.oat to jump to your code
 - Hide your code inside boot.oat using ELF virus techniques

Ongoing research

Base address of boot image is fixed at 0x700000

```
5d5ba000-5ee19000 r-xp 00000000 b3:03 922
                                                  /system/lib/libwebviewchromium.so
5ee19000-5ee1a000 ---p 00000000 00:00 0
5ee1a000-5ef2e000 r--p 0185f000 b3:03 922
                                                  /system/lib/libwebviewchromium.so
5ef2e000-5ef48000 rw-p 01973000 b3:03 922
                                                  /system/lib/libwebviewchromium.so
5ef48000-5ef64000 rw-p 00000000 00:00 0
5ef64000-6013e000 r--s 00000000 b3:03 1202
                                                  /system/usr/icu/icudt531.dat
6013e000-6073e000 rw-p 00000000 00:04 7375
                                                  <u>/dev/ashmem/dalvik-allocspace main rosalloc space live-bitmap 2 (deleted)</u>
6081d000-60e1d000 rw-p 00000000 00:04 7376
                                                  /dev/ashmem/dalvik-allocspace main rosalloc space mark-bitmap 2 (deleted)
60e1d000-60e1e000 ---p 00000000 00:00 0
60ele000-60f21000 rw-p 00000000 00:00 0
60fe0000-60fe1000 ---p 00000000 00:00 0
60fe1000-610e4000 rw-p 00000000 00:00 0
61122000-61123000 ---p 00000000 00:00 0
61123000-61226000 rw-p 00000000 00:00 0
74258000-74687000 rw-p 00000000 00:04 3462
                                                  /dev/ashmem/dalvik-zygote / non moving space (deleted)
74687000-74688000 rw-p 00000000 00:04 7377
                                                  /dev/ashmem/dalvik-alloc space (deleted)
                                                  /dev/ashmem/dalvik-alloc space (deleted)
74688000-77a59000 ---p 00001000 00:04 7377
                                                  /dev/ashmem/dalvik-alloc space (deleted)
77a59000-78258000 rw-p 033d2000 00:04 7377
78258000-78459000 rw-p 00000000 00:04 3461
                                                  /dev/ashmem/dalvik-main space (deleted)
78459000-90258000 ---p 00201000 00:04 3461
                                                  /dev/ashmem/dalvik-main space (deleted)
be94f000-be970000 rw-p 00000000 00:00 0
                                                  [stack]
ffff0000-ffff1000 r-xp 00000000 00:00 0
                                                  [vectors]
```


Base address of boot image is fixed at 0x700000

```
5f0ef000-5f10b000 rw-p 00000000 00:00 0
5f10b000-602e5000 r--s 00000000 b3:03 1202
                                                 /system/usr/icu/icudt531.dat
                                                 /dev/ashmem/dalvik-allocspace main rosalloc space mark-bitmap 2 (deleted)
602e5000-608e5000 rw-p 00000000 00:04 5563
                                                 /dev/ashmem/dalvik-allocspace alloc space mark-bitmap 3 (deleted)
608e5000-609d5000 rw-p 00000000 00:04 5566
609d5000-609d6000 ---p 00000000 00:00 0
609d6000-60ad9000 rw-p 00000000 00:00 0
60b93000-60b94000 ---p 00000000 00:00 0
60b94000-60c97000 rw-p 00000000 00:00 0
60cbc000-60cbd000 ---p 00000000 00:00 0
60cbd000-60dc0000 rw-p 00000000 00:00 0
60e74000-60e75000 ---p 00000000 00:00 0
60e75000-60f78000 rw-p 00000000 00:00 0
61003000-61004000 ---p 00000000 00:00 0
61004000-61107000 rw-p 00000000 00:00 0
74258000-74687000 rw-p 00000000 00:04 5542
                                                  /dev/ashmem/dalvik-zygote / non moving space (deleted)
74687000-74688000 rw-p 00000000 00:04 5564
                                                  /dev/ashmem/dalvik-alloc space (deleted)
                                                  /dev/ashmem/dalvik-alloc space (deleted)
74688000-77a59000 ---p 00001000 00:04 5564
                                                 /dev/ashmem/dalvik-alloc space (deleted)
77a59000-78258000 rw-p 033d2000 00:04 5564
78258000-78459000 rw-p 00000000 00:04 5541
                                                  /dev/ashmem/dalvik-main space (deleted)
78459000-90258000 ---p 00201000 00:04 5541
                                                  /dev/ashmem/dalvik-main space (deleted)
be9bc000-be9dd000 rw-p 00000000 00:00 0
                                                  [stack]
ffff0000-ffff1000 r-xp 00000000 00:00 0
                                                  [vectors]
```


Base address of boot image is fixed at 0x700000

```
60405000-60409000 rw-p 00000000 00:00 0
60461000-60464000 rw-p 00000000 00:00 0
60474000-6047a000 rw-p 00000000 00:00 0
60514000-60517000 rw-p 00000000 00:00 0
6053d000-60541000 rw-p 00000000 00:00 0
60601000-60605000 rw-p 00000000 00:00 0
606cf000-606d2000 rw-p 00000000 00:00 0
6076b000-60770000 rw-p 00000000 00:00 0
60770000-60d70000 rw-p 00000000 00:04 6272
                                                 /dev/ashmem/dalvik-allocspace main rosalloc space live-bitmap 2 (deleted)
                                                 /dev/ashmem/dalvik-allocspace main rosalloc space mark-bitmap 2 (deleted)
60e68000-61468000 rw-p 00000000 00:04 6273
61468000-61469000 ---p 00000000 00:00 0
61469000-6156c000 rw-p 00000000 00:00 0
6156c000-6156d000 ---p 00000000 00:00 0
6156d000-61670000 rw-p 00000000 00:00 0
74258000-74687000 rw-p 00000000 00:04 5472
                                                  /dev/ashmem/dalvik-zygote / non moving space (deleted)
74687000-74688000 rw-p 00000000 00:04 6274
                                                  /dev/ashmem/dalvik-alloc space (deleted)
                                                  /dev/ashmem/dalvik-alloc space (deleted)
74688000-77a59000 ---p 00001000 00:04 6274
                                                 /dev/ashmem/dalvik-alloc space (deleted)
77a59000-78258000 rw-p 033d2000 00:04 6274
78258000-78459000 rw-p 00000000 00:04 5471
                                                  /dev/ashmem/dalvik-main space (deleted)
78459000-90258000 ---p 00201000 00:04 5471
                                                  /dev/ashmem/dalvik-main space (deleted)
bed25000-bed46000 rw-p 00000000 00:00 0
                                                  [stack]
ffff0000-ffff1000 r-xp 00000000 00:00 0
                                                  [vectors]
```


- Base address of boot image is fixed at 0x700000
- Rich source of ROP gadgets
- boot.oat code section has 27 mb of code

7286e000-74257000 r-xp 01d46000 b3:09 425154 /data/dalvik-cache/system@framework@boot.oat

Agenda

Introduction

Ahead of time compilation

OAT file format

Security implications

Reverse engineering

Static analysis

- Still better to read Dalvik bytecode disassembly (unless you're weird)
- If you are, you can use oatdump to dump the native code disassembly
 - You can find it in your ART enabled device

oatdump -oat-file=<oat-file>

Static analysis

```
DEX CODE:
  00049758: invoke-direct {v0}, void android/app/Activity-><init>() // method@(11, 0x000b)
  0004975e: return-void
COMPILED CODE:
  0x00000000: ldr.w
                                  ip, [sb, #0x78]
  0x00000004: push.w
                                  {r5, r6, lr}
  0x00000008: subs.w
                                  sp, sp, #0x14
                                  sp, ip
  0x000000c: cmp
                                  #0x38
  0x0000000e: blo.w
  0x00000012: adds
                                  r6, r0, #0
  0x00000014: str
                                  r0, [sp]
                                  r5, r1, #0
  0x00000016: adds
  0x0000018: movw
                                  1r, #0xbd05
  0x0000001c: movt
                                  1r, #0x72f0 ; entryPointFromQuickCompiledCode
  0x00000020: movw
                                  r0, #0x7528
  0x00000024: movt
                                  r0, #0x7053; void android.app.Activity.<init>()
  0x00000028: adds
                                  r1, r5, #0
  0x0000002a: blx
                                  ٦r
  0x0000002c: subs
                                  r4, #1
  0x0000002e: beg.w
                                  #0x3e
  0x00000032: add
                                  sp, #0x14
  0x0000034: pop.w
                                  {r5, r6, pc}
  0x00000038: add
                                  sp, #0x20
                                  pc, [sb, #0x2d8]
  0x0000003a: ldr.w
  0x0000003e: ldr.w
                                  lr, [sb, #0x2c0]
  0x00000042: blx
                                  ٦r
  0x00000044: b
                                  #0x32
  0x00000046: movs
                                  r0, r0
```


Static analysis

• oatdump dumps the whole OAT file

 Need to have a tool to dump individual classes or methods and display xrefs

Or better yet, an IDA plugin

Dynamic analysis

- Debugging Java code
 - ART supports JDWP, so you can use jdb (theoretically, haven't tried)

- Use gdb to debug native code
 - Get address of method using oatdump
 - Set breakpoint
 - trace

Dynamic analysis

- Dynamic instrumentation
 - Cydia Substrate for Android by saurik
 - Xposed Framework by rovo89

- ART not supported yet in these tools
- But work is ongoing

Dynamic analysis

- For now, static instrumentation is still the way to go
 - unpack
 - disassemble
 - add instrumentation
 - assemble
 - repackage

Conclusion

 ART is poised to supersede Dalvik in (hopefully) the near future

Ripe for more security research

RE tools need to adapt

Questions?

Thanks for listening!

Paul Sabanal paul[dot]sabanal[at]ph[dot]ibm[dot]com / pv[dot]sabanal[at]gmail[dot]com @polsab