Course. Several Sequences Integration Probability Valiables. (5 weeks) (1 week) (3 - weeks) Series (3 weeks) 1st week: Surfaces, · Planes (René Des contes parcusson to Newton and · Vectors (William Hamiltonian) 7. Point (2,3,4) Vector < 3, 3, 4> Differences. Vector.
Pointed bracket. · Curry bracket · with as sow. , without allow · Represent a Represents magnitude . House 200) and disection. (eq. go to 470,-47E). (go 200 km East)

Ve clos from point (P1,P2, P3) to (91,92,93) is (91-P1,92-P2,93-P3) Vector addition: 2 = <2,3,4>
2 = <-3,-6,2> C+V= <2+(-3), 3+(-6), 4+2> = < -1, -3, 6@> $2\vec{x} = \langle 2.2, 2.3, 2.4 \rangle$ $= \langle 4, 6, 8 \rangle$ $= \langle 3.(-3), 3.(-6), 3(2) \rangle$ $= \langle -9, -18, 6 \rangle$ $2\vec{x} - 3\vec{y} = \langle 4-(-9), 6-(-18), 8-6 \rangle$ = < 13, 24, 2>Magnitude ? = < v, 2/2, v3> The magnitude is [1/2+1/2+1/3 = 1] Pirection $\hat{V} = \frac{1}{|V|} = \frac{1}{|V|^2 + |V_2|^2 + |V_3|} \langle V_1, V_2, V_3 \rangle$

The dot product is i. V = u, v, + uz vz + uz vz.

Or the gonal / Perpendicular vectors The gonal / Perpendicular vectors Parallel vectors
Parallel vectors
I and I are parallel if
$\hat{U} = \hat{V}$ or $\hat{U} = -\hat{V}$.
Example 1)
Example 1) $\vec{x} = \langle 0, 3, 4 \rangle$ $ \vec{x} = \sqrt{0^2 + 3^2 + 4^2} = 1$ $= \sqrt{0 + 4 + 16} = 5$ $= \sqrt{9 + 16 + 0} = 5$
$2)$ $0 - \langle 0, 3, 4 \rangle$ $\hat{V} = \langle 3, 4, 0 \rangle$
= 〈月子,号〉 = 〈号,号,〇>
3> A To + product 2.7=20,3,47.43,40> = 12.
· û + û and vû +-û so û is not
parallel to V. o i. V. to so is not orthogonal to V.

Planes

A plane is a set of points (x,y,z)

Such that

ax tby +cz=d for some

9,6,c,d.

axtby+ cz=d is the equation of the plane.

How to check if a point lie on a plane?

Does. (2,3,4) lie. on (2x+3y+5z=610)So (2,3,4) in place (3,3,4) in place (3,3,4) in (3,4,2)(3,4,3) (3) (4) (4) (4) (5) (5) (4) (5) (5) (5) (6) (6) (7) (

(2,3,4) does not lies on 2x+3y+5z=10

Noqual to the plane Noqual to vector. too ax + by + c = d is < 9,6,c>

Two planes are parallel if their normal vectors are parallel.
Two planes are perpendicular if their normal

vectors are perpendicular

Example? Ane 39+4z=6 and 3x+4y+=10
parellel or perpendicular?

3y+4z=6= => 0.x+3y+4z=6

noand vector is

3x44y+ 0.2 = 10 3x44y+ 0.2 = 10 Normal vector is <3,4,0>

In Example 1 we proved

20,3,4> and <3,4,0> are notified

parallel nox. orthogonal.

Example(3) - Very important

Find plane passing through (0,2,1) and parallel to 2x+y+z=15.

« Notmal vector of Zxty+2=15 is <2,1,1>

Equation is of form 2xxy+2= a Need to find 'a'

The gin. point (0,2,1) in the equation.

3(0) + (2) + (1) = a

=> 0 = 3

The equation is is

2x+ y+2=3.

Steps: 1> Find normal

2> Write the form of equation.

3> Plug in the point.

4) Find a

57. Quake down the equation.