DT301

TRANSMISSOR INTELIGENTE DE DENSIDADE

MAR / 11 **DT301** VERSÃO 2

Especificações e informações estão sujeitas a modificações sem prévia consulta. Informações atualizadas dos endereços estão disponíveis em nosso site.

web: www.smar.com/brasil2/faleconosco.asp

INTRODUÇÃO

O Transmissor Inteligente de Concentração/Densidade **DT301** (Touché) é um equipamento para medir continuamente a concentração/densidade de líquidos diretamente em processos industriais.

O **DT301** tem uma sonda com dois diafragmas repetidores, que fica mergulhada no fluido de processo, com os dois repetidores totalmente submersos nesse fluido. A sonda é conectada ao sensor capacitivo, externo ao processo, através de capilares preenchidos com fluidos apropriados ao processo. Um fluido de enchimento transmite a pressão do processo captada pelos diafragmas repetidores ao sensor de pressão diferencial.

O sensor de temperatura dentro da sonda, localizado entre os dois diafragmas repetidores, compensa automaticamente qualquer variação da temperatura do processo. As variações mínimas de temperatura que ocorrem no processo chegam rapidamente ao transmissor, devido os cuidados implementados na fabricação, na montagem da sonda e do sensor de temperatura. Esses dados são levados para o software dedicado, que calcula com precisão o valor da densidade do fluido do processo ou da concentração.

A concentração medida pelo **DT301** são mostradas no display nas seguintes unidades: Densidade, Densidade Relativa, Grau Brix, Grau Baumé, Grau INPM, Grau Plato, % de Sólidos, etc.

O transmissor foi projetado para gerar um sinal de 4-20 mA proporcional à concentração/densidade medida. Ele fornece, também, comunicação digital (Protocolo HART) para calibração remota e monitoração.

A tecnologia digital usada no **DT301** permite a escolha de vários tipos de funções de transferência, uma interface fácil entre o campo e a sala de controle e algumas características que reduzem consideravelmente os custos da instalação, da operação e da manutenção.

ATENÇÃO

Leia atentamente as próximas instruções para obter o máximo desempenho do DT301.

Este produto é protegido pelas seguintes patentes americanas: 6,234,019; D439,855; 5,827,963.

NOTA

Este manual é compatível com as versões 2.XX, onde 2 indica a versão do software e XX indica o "release". Portanto, o manual é compatível com todos os "releases" da versão 2.

Exclusão de responsabilidade

O conteúdo deste manual está de acordo com o hardware e software utilizados na versão atual do equipamento. Eventualmente podem ocorrer divergências entre este manual e o equipamento. As informações deste documento são revistas periodicamente e as correções necessárias ou identificadas serão incluídas nas edições seguintes. Agradecemos sugestões de melhorias.

Advertência

Para manter a objetividade e clareza, este manual não contém todas as informações detalhadas sobre o produto e, além disso, ele não cobre todos os casos possíveis de montagem, operação ou manutenção.

Antes de instalar e utilizar o equipamento, é necessário verificar se o modelo do equipamento adquirido realmente cumpre os requisitos técnicos e de segurança de acordo com a aplicação. Esta verificação é responsabilidade do usuário.

Se desejar mais informações ou se surgirem problemas específicos que não foram detalhados e ou tratados neste manual, o usuário deve obter as informações necessárias do fabricante Smar. Além disso, o usuário está ciente que o conteúdo do manual não altera, de forma alguma, acordo, confirmação ou relação judicial do passado ou do presente e nem faz parte dos mesmos.

Todas as obrigações da Smar são resultantes do respectivo contrato de compra firmado entre as partes, o qual contém o termo de garantia completo e de validade única. As cláusulas contratuais relativas à garantia não são nem limitadas nem ampliadas em razão das informações técnicas apresentadas no manual.

Só é permitida a participação de pessoal qualificado para as atividades de montagem, conexão elétrica, colocação em funcionamento e manutenção do equipamento. Entende-se por pessoal qualificado os profissionais familiarizados com a montagem, conexão elétrica, colocação em funcionamento e operação do equipamento ou outro aparelho similar e que dispõem das qualificações necessárias para suas atividades. A Smar possui treinamentos específicos para formação e qualificação de tais profissionais. Adicionalmente, devem ser obedecidos os procedimentos de segurança apropriados para a montagem e operação de instalações elétricas de acordo com as normas de cada país em questão, assim como os decretos e diretivas sobre áreas classificadas, como segurança intrínseca, prova de explosão, segurança aumentada, sistemas instrumentados de segurança entre outros.

O usuário é responsável pelo manuseio incorreto e/ou inadequado de equipamentos operados com pressão pneumática ou hidráulica, ou ainda submetidos a produtos corrosivos, agressivos ou combustíveis, uma vez que sua utilização pode causar ferimentos corporais graves e/ou danos materiais.

O equipamento de campo que é referido neste manual, quando adquirido com certificado para áreas classificadas ou perigosas, perde sua certificação quando tem suas partes trocadas ou intercambiadas sem passar por testes funcionais e de aprovação pela Smar ou assistências técnicas autorizadas da Smar, que são as entidades jurídicas competentes para atestar que o equipamento como um todo, atende as normas e diretivas aplicáveis. O mesmo acontece ao se converter um equipamento de um protocolo de comunicação para outro. Neste caso, é necessário o envio do equipamento para a Smar ou à sua assistência autorizada. Além disso, os certificados são distintos e é responsabilidade do usuário sua correta utilização.

Respeite sempre as instruções fornecidas neste Manual. A Smar não se responsabiliza por quaisquer perdas e/ou danos resultantes da utilização inadequada de seus equipamentos. É responsabilidade do usuário conhecer as normas aplicáveis e práticas seguras em seu país.

ÍNDICE

SEÇÃO 1 - INSTALAÇÃO	1.1
ĞERAL	1.1
RECOMENDAÇÕES PARA USO DO DT301	1.1
MONTAGEM	1.2
A – MODELO INDUSTRIAL TIPO CURVO	
B – MODELO INDUSTRIAL TIPO RETO	
C – MODELO SANITÁRIO TIPO CURVO	
D – MODELO SANIȚÁRIO TIPO RETO	1.6
A – INSTALAÇÃO TÍPICA PARA TANQUE DE BAIXA VAZÃO (MODELO INDUSȚRIAL)	
B – INSTALAÇÃO TÍPICA PARA TANQUE DE BAIXA VAZÃO (MODELO SANITÁRIO)	
C – INSTALAÇÃO TÍPICA PARA TANQUE DE ALTA VAZÃO (MODELO INDUSTRIAL)	1.9
D – INSTALAÇÃO TÍPICA EM TANQUE DE TRASBORDAMENTO	1.10
E – INSTALAÇÃO TÍPICA EM TANQUE (MODELO INDUSTRIAL)	1.11
F – INSTALAÇÃO TÍPICA EM TANQUE (MODELO SANITÁRIO)	1.12
G – INSTALAÇÃO TÍPICA PARA TANQUE COM PROTEÇÃO DO DIAFRAGMA (MODELO INDUSTRIAL)	1.13
H – INSTALAÇÃO TÍPICA PARA TANQUE DE BAIXA VAZÃO COM QUEBRA BOLHAS (MODELO INDUSTRIA	AL) 1.14
I – INSTALAÇÃO TÍPICA EM TANQUE PARA NÍVEL DE INTERFACE (MODELO INDUSTRIAL)	1.15
J – INSTALAÇÃO TÍPICA EM TANQUE PARA NÍVEL DE INTERFACE STAND PIPE (MODELO INDUSTRIAL)	1.16
ROTAÇÃO DA CARCAÇA	
LIGAÇÃO ELÉTRICA	
OPERAÇÃO MULTIDROP	1.19
ĮNSTALĀÇÕES EM ÁREAS PERIGOSAS	1.21
À PROVA DE EXPLOSÃO	1.21
SEGURANÇA INTRÍNSECA	1.21
050100 00504010	0.4
SEÇÃO 2 - OPERAÇÃO DESCRIÇÃO FUNCIONAL DO HARDWARE	2.1
DESCRIÇÃO FUNCIONAL DO HARDWARE	2.2
CÁLCULÓ DA DENSIDADE OU DA CONCENTRAÇÃO	2.4
SEÇÃO 3 - CONFIGURAÇÃO	2.4
3EÇAU 3 - CUNFIGURAÇAU	3 .7
RECURSOS DE CONFIGURAÇÃOIDENTIFICAÇÃO E DADOS DE FABRICAÇÃOTRIM DA VARIÁVEL PRIMÁRIA - DENSIDADE	د.د
TDIM DA MADIÁMEL DOIMÁDIA DENCIDADE	3.3
TRIM DE CONCENTRAÇÃOTRIM DE CONCENTRAÇÃO	3.4
TRIM DE AUTOCALIBRAÇÃO	3.4
TRIM DE TEMPERATURA	
TRIM DE CORRENTE DA VARIÁVEL PRIMÁRIA	3.5
AJUSTE DO TRANSMISSOR À FAIXA DE TRABALHO	
SELEÇÃO DA UNIDADE DE ENGENHARIA	
CONFIGURAÇÃO DO EQUIPAMENTO	3.7
MANUTENÇÃO DO EQUIPAMENTO	3.8
SEÇÃO 4 - PROCEDIMENTOS DE MANUTENÇÃO	4.1
GERAL	
DIAGNÓSTICO COM O CONFIGURADOR	4.1
MENSAGENS DE ERRO	
DIAGNÓSTICO SEM O CONFIGURADOR	
PROCEDIMENTO PARA TROCA DA PLACA PRINCIPAL DO DT301	
PROCEDIMENTO DE DESMONTAGEM	
CONJUNTO DA SONDA (16A, 16B, 19A OU 19B)	4 4
CIRCUITO ELETRÔNICO	
CONJUNTO DA SONDA (16A, 16B, 19A OU 19B)	4.5
DISPLAY	
INTERCAMBIABILIDADE	

RETORNO DE MATERIAL	4.6
SEÇÃO 5 - CARACTERÍSTICAS TÉCNICAS FLUIDOS DE ENCHIMENTO	5.1
FLUIDOS DE ENCHIMENTO	5.1
ESPECIFICAÇÕES FUNCIONAIS	5.1
ESPECIFICAÇÕES DE PERFORMANCEESPECIFICAÇÕES FÍSICAS	5.2
ESPECIFICAÇÕES FÍSICAS	5.2
APÊNDICE A – INFORMAÇÕES SOBRE CERTIFICAÇÕES INFORMAÇÕES SOBRE AS DIRETIVAS EUROPÉIAS OUTRAS APROVAÇÕES SANITARY APPROVAL CERTIFICAÇÕES PARTA ÁREAS CLASSIFICADAS	A.1
INFORMAÇÕES SOBRE AS DIRETIVAS EUROPÉIAS	A.1
OUTRAS APROVAÇÕES	A.1
SANITARY APPROVAL	A.1
CERTIFICAÇÕES PARA ÁREAS CLASSIFICADAS	A.1
CERTIFICATO INMETRO	Δ1
CERTIFICAÇÕES NORTE AMERICANAS CERTIFICAÇÕES EUROPÉIASPLAQUETAS DE IDENTIFICAÇÃO E DESENHO DE CONTROLE DE INSTALAÇÃO	A.1
CERTIFICAÇOES EUROPEIAS	A.2
PLAQUETAS DE IDENTIFICAÇÃO E DESENHO DE CONTROLE DE INSTALAÇÃO	A.2
PLAQUETAS DE IDENTIFICAÇÃODESENHO DE CONTROLE DE INSTALAÇÃO	A.2
DESENHO DE CONTROLE DE INSTALAÇÃO	A.5
APÊNDICE B – FSR – FORMULÁRIO DE SOLICITAÇÃO DE REVISÃO	B.1
APÊNDICE C – TERMO DE GARANTIA SMAR	

Fluxograma de Instalação

^{*} Maiores informações encontram-se na Seção 3 do manual de instalação, configuração e manutenção do DT301.

^{**} Dica: O grau Brix da água é 0 (zero)/ ou densidade H₂O = 998,2@20°C.

INSTALAÇÃO

Geral

A precisão da medida da concentração/densidade depende de muitas variáveis. Embora o transmissor de concentração/densidade tenha um desempenho de alto nível, uma instalação adequada é necessária para aproveitar ao máximo os benefícios oferecidos.

Há muitos fatores que podem afetar a precisão dos transmissores e, dentre eles, as condições ambientais são as mais difíceis de controlar. Entretanto, há maneiras de se reduzir os efeitos da temperatura, umidade e vibração.

O sensor capacitivo do **DT301**, que fica externo ao processo, é protegido de fontes externas de calor por um invólucro metálico e por uma manta de poliuretano expandido que funciona como isolante térmico. Ainda assim, o transmissor deve ser instalado de forma a evitar ao máximo a exposição direta aos raios solares.

A umidade é inimiga dos circuitos eletrônicos. Em áreas com altos índices de umidade relativa deve-se certificar da correta colocação dos anéis de vedação das tampas da carcaça. As tampas devem estar completamente fechadas manualmente. Veja como fechá-las adequadamente no item Ligação Elétrica. Evite usar ferramentas nesta operação. Procure não retirar as tampas da carcaça no campo, pois cada abertura introduz mais umidade nos circuitos.

O circuito eletrônico é revestido por um verniz à prova de umidade, mas exposições constantes podem comprometer esta proteção. Também é importante manter as tampas fechadas, pois cada vez que elas são removidas, o meio corrosivo pode atacar as roscas da carcaça, já que nesta região não existe a proteção da pintura. Use selante de silicone não endurecível ou vedante similar nas conexões elétricas para evitar a penetração de umidade.

Embora o **DT301** seja praticamente insensível às vibrações, devem ser evitadas montagens próximas a bombas, turbinas ou outros equipamentos que gerem uma vibração excessiva. Caso seja inevitável, instale o transmissor em uma base sólida e utilize mangueiras flexíveis que não transmitam a vibração.

Recomendações para Uso do DT301

O fluido de processo deve sempre cobrir os dois diafragmas repetidores.

A faixa de temperatura do fluido do processo deverá estar entre -20°C e 150°C.

Os materiais que compõem o transmissor devem ser compatíveis com o fluido de processo a ser medido. Os materiais das partes que não estão em contato direto com o processo, mas podem estar sujeitos à atmosfera corrosiva ou resíduos do processo, também devem ser considerados.

Verifique se um possível vazamento do fluido de enchimento (menos que 5 ml), devido a um furo no diafragma pode contaminar o processo. Caso isso não seja permitido, escolha o fluido de enchimento compatível com o processo.

Modelos dos Transmissores de Concentração/Densidade DT301

DT3011 - Modelo industrial, para uso geral.

DT301S – Modelo sanitário, para indústrias alimentícias, farmacêuticas e outras aplicações onde são exigidas instalações sanitárias.

O modelo industrial usa a conexão flangeada conforme norma ANSI B16.5 ou DIN 2526.

O modelo sanitário usa a conexão tri-clamp, que permite uma colocação e retirada rápida e fácil do processo. O acabamento da superfície molhada é feito de acordo com o padrão de rugosidade 32 Ra. Esse modelo segue recomendação da norma 3A que é a norma sanitária mais largamente aceita nas indústrias alimentícia, farmacêutica e de bebidas.

Montagem

Tanto para o DT301I como para o DT301S são possíveis dois tipos de montagem:

- Montagem de topo (DT301 tipo reto)
- Montagem lateral (DT301 tipo curvo)

As dimensões do **DT301** tipo reto e do **DT301** tipo curvo e os modelos industrial e sanitário podem ser vistos nas figuras 1.1. As dimensões estão em milímetros, entre parênteses estão as mesmas medidas em polegadas.

A instalação pode ser feita em tanques abertos ou pressurizados, ou através de um dispositivo amostrador externo ao processo.

Alguns exemplos de montagens são apresentados nas figuras 1.2, as dimensões estão em milímetros.

Escolha um local para instalação que facilite o acesso para os pontos de medição e que esteja livre de choques mecânicos.

Use uma válvula na conexão ao processo antes do **DT301**, isto simplifica a calibração e a manutenção do equipamento.

Figura 1.1 – Dimensional do DT301 (A)

B – Modelo Industrial Tipo Reto

Figura 1.1 –Dimensional do DT301 (B)

Figura 1.1 –Dimensional do DT301 (C)

D – Modelo Sanitário Tipo Reto

Figura 1.1 – Dimensional do DT301 (D)

A – Instalação Típica para Tanque de Baixa Vazão (Modelo Industrial)

Figura 1.2 – Tipos de Instalação para o DT301 (A)

B – Instalação Típica para Tanque de Baixa Vazão (Modelo Sanitário)

Figura 1.2 – Tipos de Instalação para o DT301 (B)

C – Instalação Típica para Tanque de Alta Vazão (Modelo Industrial)

Figura 1.2 – Tipos de Instalação para o DT301 (C)

D – Instalação Típica em Tanque de Trasbordamento

Figura 1.2 – Tipos de Instalação para o DT301 (D)

E – Instalação Típica em Tanque (Modelo Industrial) 80 Flange Ø4" ANSI B16,5 DT NÍVEL MÍNIMO 150 100 DIÂMETRO MÍNIMO = 20"

Figura 1.2 – Tipos de Instalação para o DT301 (E)

F – Instalação Típica em Tanque (Modelo Sanitário)

Figura 1.2 – Tipos de Instalação para o DT301 (F)

G – Instalação Típica para Tanque com Proteção do Diafragma (Modelo Industrial)

Figura 1.2 – Tipos de Instalação para o DT301 (G)

H – Instalação Típica para Tanque de Baixa Vazão com Quebra Bolhas (Modelo Industrial)

Figura 1.2 – Tipos de Instalação para o DT301 (H)

I – Instalação Típica em Tanque para Nível de Interface (Modelo Industrial)

Figura 1.2 – Tipos de Instalação para o DT301 (I)

J – Instalação Típica em Tanque para Nível de Interface Stand Pipe (Modelo Industrial)

Figura 1.2 – Tipos de Instalação para o DT301 (J)

Rotação da Carcaça

A carcaça pode ser rotacionada para oferecer uma posição melhor do indicador digital. Para rotacionála, solte o parafuso de trava da carcaça. Veja Figura 1.3.

Figura 1.3 – Parafusos de Ajuste da Carcaça e Trava da Tampa

O display digital pode ser rotacionado. Veja a Seção 4, figura 4.2.

Ligação Elétrica

O acesso à borneira é possível removendo-se a tampa que é travada através do parafuso de trava (Veja a figura 1.4). Para soltar a tampa, gire o parafuso de trava no sentido horário.

Figura 1.4 - Parafuso de Trava da Tampa

A borneira possui parafusos que podem receber terminais tipo garfo ou olhal. Veja a figura 1.5.

Para maior conveniência, há dois terminais terra: um interno, próximo à borneira e dois externos, localizados próximos à entrada do eletroduto.

Os terminais de teste e de comunicação permitem, respectivamente, medir a corrente na malha de 4 - 20 mA, sem abri-la, e comunicar com o transmissor. Para medir, conecte nos terminais "– " e "+" um multímetro na escala mA e para comunicar, um configurador HART nos terminais "COMM" e "– ". Veja a figura 1.5.

Figura 1.5 – Borneira

É recomendável o uso de cabos tipo "par trançado" de 22 AWG de bitola ou maior.

Evite a passagem de fiação de sinal por rotas onde tenha cabos de potência ou comutadores elétricos. As roscas dos eletrodutos devem ser vedadas conforme método de vedação requerido pela área. A passagem não utilizada deve ser vedada com bujão e vedante apropriado.

O DT301 é protegido contra polaridade reversa.

A conexão do DT301 deve ser feita conforme a figura 1.7.

Figura 1.6 – Reta de Carga

Figura 1.7 - Diagrama de Ligação do DT301

Operação Multidrop

A conexão multidrop é formada por vários transmissores conectados em paralelo em uma mesma linha de comunicação. A comunicação entre o sistema mestre e os transmissores é feita digitalmente com a saída analógica dos transmissores desativada.

A comunicação com o transmissor e o sistema mestre (configurador, SDCD, Sistema de Aquisição de Dados ou PC) pode ser feita com a interface HI311 Smar Bell 202 usando o protocolo HART. Cada transmissor é identificado por um único endereço de 1 a 15.

O **DT301** sai da fábrica com o endereço 0 (zero), o que significa que ele sai de fábrica configurado em modo de operação não multidrop, permitindo ao transmissor comunicar com o configurador, sobrepondo a comunicação ao sinal de 4-20 mA. Para operar no modo multidrop, o endereço do transmissor deve ser mudado para um número de 1 a 15. Esta mudança desativa a saída analógica de 4-20 mA enviando-a para 4 mA.

NOTA

A corrente de saída será fixada em 4 mA assim que o endereço do transmissor for alterado de zero (0) para um outro na faixa multidrop (1 a 15).

Para operar no modo multidrop, é necessário verificar quais os transmissores que estão conectados na mesma linha.

A interligação do **DT301** em uma rede multidrop deve ser feita conforme a Figura 1.8.

ATENÇÃO

Para comunicar, o configurador Smar exige uma carga mínima de 250Ω entre ele e a fonte de alimentação. (Veja a figura 1.8).

Figura 1.8 – Diagrama de Ligação do DT301 em Rede Multidrop

Instalações em Áreas Perigosas

ATENÇÃO

Explosões podem resultar em morte ou ferimentos sérios, além de dano financeiro. A instalação deste transmissor em áreas explosivas deve ser realizada de acordo com os padrões locais e o tipo de proteção adotados. Antes de continuar a instalação tenha certeza de que os parâmetros certificados estão de acordo com a área classificada onde o equipamento será instalado.

A modificação do instrumento ou substituição de peças sobressalentes por outros que não sejam representantes autorizados da Smar é proibida e anula a certificação do produto.

Os transmissores são marcados com opções do tipo de proteção. A certificação é válida somente quando o tipo de proteção é indicado pelo usuário. Quando um tipo determinado de proteção é selecionado, qualquer outro tipo de proteção não pode ser usado.

Para instalar o sensor e a carcaça em áreas perigosas é necessário dar no mínimo 6 voltas de rosca completas. A carcaça deve ser travada utilizando parafuso de travamento (Figura 1.4).

A tampa deve ser apertada com no mínimo 8 voltas para evitar a penetração de umidade ou gases corrosivos, até que encoste na carcaça. Então, aperte mais 1/3 de volta (120°) para garantir a vedação. Trave as tampas utilizando o parafuso de travamento (Figura 1.4).

Consulte o Apêndice A para informações adicionais sobre certificação.

À Prova de Explosão

ATENCÃO

As entradas da conexão elétrica devem ser conectadas ou fechadas utilizando bucha de redução apropriada de metal Ex-d e/ou bujão certificado IP66.

Como o transmissor é não-acendível sob condições normais, não é necessária a utilização de selo na conexão elétrica aplicada na versão à Prova de Explosão (Certificação CSA).

Na conexão elétrica com rosca NPT, para uma instalação a prova d'água, utilize um selante de silicone não endurecível.

Não remova a tampa do transmissor quando o mesmo estiver em funcionamento.

Segurança Intrínseca

ATENÇÃO

Em áreas classificadas com segurança intrínseca e com requisitos de não-acendível, os parâmetros dos componentes do circuito e os procedimentos de instalação aplicáveis devem ser observados.

Para proteger a aplicação, o transmissor deve ser conectado a uma barreira de segurança intrínseca. Os parâmetros entre a barreira e o equipamento devem ser compatíveis (considere os parâmetros do cabo). Parâmetros associados ao barramento de terra devem ser separados de painéis e divisórias de montagem. A blindagem é opcional. Se for usada, isole o terminal não aterrado. A capacitância e a indutância do cabo mais Ci e Li devem ser menores do que Co e Lo do instrumento associado.

Para acesso livre ao barramento HART em ambiente explosivo, assegure que os instrumentos do circuito estão instalados de acordo com as regras de ligação intrinsecamente segura e não-acendível. Use apenas comunicador Ex HART aprovado de acordo com o tipo de proteção Ex-i (IS) ou Ex-n (NI).

Não é recomendado remover a tampa do transmissor quando o mesmo estiver em funcionamento.

OPERAÇÃO

O Transmissor Inteligente de Concentração/ Densidade **DT301** usa o sensor de pressão capacitivo (célula capacitiva), que é utilizado também pelo Transmissor Inteligente de Pressão LD301. Esse sensor é acoplado numa sonda para realizar as medidas através da leitura diferencial de pressão. A figura 2.1 esquematiza o sensor utilizado pelo **DT301**, onde: P1 e P2 são as pressões aplicadas nas câmaras H e L.

Figura 2.1 - Célula Capacitiva

Descrição Funcional do Sensor

CH =capacitância medida entre a placa fixa do lado de P1 e o diafragma sensor.

CL = capacitância medida entre a placa fixa do lado de P2 e o diafragma sensor.

d = distância entre as placas fixas de CH e CL.

 Δd = deflexão sofrida pelo diafragma sensor devido à aplicação da pressão diferencial ΔP = P1 - P2.

Sabe-se que a capacitância de um capacitor de placas planas e paralelas pode ser expressa em função da área (A) das placas e da distância (d) que as separa como:

$$C = \frac{\in A}{d}$$

Onde ∈ = constante dielétrica do meio existente entre as placas do capacitor.

Se considerar $\it CH$ e $\it CL$ como capacitâncias de placas planas de mesma área e paralelas, quando $\it P_1 > \it P_2$ tem-se:

$$CH = \frac{\in A}{(d/2) + \Delta d}$$
 e $CL = \frac{\in A}{(d/2) - \Delta d}$

Por outro lado, se a pressão diferencial (ΔP) aplicada à célula capacitiva, não defletir o diafragma sensor além de **d/4**, podemos admitir ΔP proporcional a Δd , ou seja:

ΔP α Δd

Se desenvolvermos a expressão (CL-CH) / (CL+CH), obteremos:

$$\frac{CL - CH}{CL + CH} = \frac{2\Delta a}{d}$$

Como a distância (d) entre as placas fixas de CH e CL é constante, percebe-se que a expressão (CL-CH) / (CL+CH) é proporcional à Δd e, portanto, à pressão diferencial que se deseja medir.

Conclui-se que, a célula capacitiva é um sensor de pressão constituído por dois capacitores de capacitâncias variáveis, conforme a pressão diferencial aplicada.

Descrição Funcional do Hardware

O diagrama de blocos do transmissor, como ilustra a figura 2.2, descreve funcionalmente o circuito utilizado pelo **DT301**.

Sonda

É a parte do transmissor que está diretamente em contato com o processo.

Repetidores de Pressão

Transfere ao sensor capacitivo a pressão diferencial detectada no processo.

Sensor de Temperatura

Capta a temperatura do fluido de processo.

Placa do Sensor

Implementa o transdutor que converte o sinal do sensor para uma medida que possa ser tratada pela CPU.

Oscilador

Gera uma frequência proporcional à capacitância gerada pelo sensor.

Isolador de Sinais

Realiza a isolação de sinais entre o sensor e a CPU. Os sinais de controle da CPU são transferidos através de acopladores ópticos, e os sinais do oscilador através de transformadores.

Memória EEPROM

É uma memória não volátil e contêm as informações específicas do sensor, tais como, materiais de construção, calibração do sensor, dados de fabricação e dados do cliente.

Figura 2.2 – Diagrama de Bloco do Hardware do DT301

Placa Principal

Unidade Central de Processamento (CPU) e PROM

A unidade central de processamento (CPU) é a parte inteligente do transmissor, responsável pelo gerenciamento e operação dos circuitos, tratamento dos sinais e por realizar a comunicação digital com outros dispositivos. Para armazenamento temporário de dados, a CPU utiliza a posição de memória da sua RAM interna. Os dados armazenados nesta RAM são aqueles que podem ser destruídos no caso de falta de energia. Os dados que não podem ser perdidos, a CPU armazena-os em sua memória interna não volátil (EEPROM). Esta memória EEPROM admite 10.000 gravações na mesma posição de memória. O programa é armazenado em uma memória PROM externa.

Conversor D/A

Converte os dados digitais da CPU para sinais analógicos com 14 bits de resolução.

Saída

Realiza o controle de corrente na linha de alimentação do transmissor. Este controle de corrente é feito de forma a gerar correntes proporcionais ao valor da variável lida. A faixa de trabalho do transmissor define os valores para as correntes 4 e 20 mA. O controle de corrente do transmissor **DT301** obedece às especificações da norma NAMUR NE-43.

Modem

A função deste circuito é a de tornar possível a troca de informações entre o configurador e o transmissor **DT301**, através do protocolo HART. O sinal de comunicação é simétrico e não afeta o nível DC na saída de 4-20mA.

Fonte de Alimentação

O transmissor retira a energia da linha de comunicação para seu funcionamento (transmissor a dois fios). A tensão mínima para o funcionamento do transmissor é de 12 Vdc, medida em sua borneira.

Controlador de Display

Controla o acendimento dos segmentos do display de cristal líquido de acordo com os dados enviados pela CPU. O usuário tem a opção de selecionar a variável a ser mostrada no display, via comunicação digital.

Descrição Funcional do Software

A figura 2.3 apresenta o diagrama funcional do software do transmissor DT301.

Filtro Digital

O filtro digital é do tipo passa baixa com constante de tempo ajustável - Damping. Ele é usado para suavizar sinais ruidosos. O valor do amortecimento é o tempo necessário para a saída atingir 63,2% para uma entrada em degrau de 100%.

Caracterização de Fábrica

Calcula a pressão real através das leituras de capacitância e temperatura do sensor, considerando os dados de calibração de fábrica armazenados na EEPROM do sensor. Este módulo tem como saída os valores de pressão diferencial e temperatura.

Cálculo do Peso Específico

Calcula os pesos específicos da solução, levando-se em consideração suas propriedades físicoquímicas.

Figura 2.3 - Diagrama de Blocos do Software

Cálculo da Densidade ou da Concentração

Obtendo-se o valor do peso específico, pode-se determinar facilmente a sua densidade ou concentração. Neste ponto, obtém-se o valor da variável principal PV, tanto em porcentagem quanto em unidades de engenharia.

Cálculo da Corrente

Faz a correlação da PV com os valores de corrente em mA, de acordo com a faixa de trabalho configurada.

Display

O indicador, constituído pelo display de cristal líquido, pode mostrar uma ou duas variáveis de acordo com a seleção do usuário. Quando duas variáveis são apresentadas no display, o indicador alternará entre as duas com um intervalo de aproximadamente 3 segundos.

Além dos campos numéricos e alfanuméricos, o indicador apresenta vários ícones alfanuméricos para indicar os estados do transmissor. A figura 2.4 apresenta a configuração dos segmentos utilizados pelo transmissor **DT301**.

Monitoração

O transmissor **DT301** permanece continuamente no modo monitoração. Neste modo, a indicação no display de cristal líquido se alterna entre a variável primária e a secundária, conforme a configuração do usuário. O indicador tem a capacidade de mostrar o valor, a unidade de engenharia e o tipo da variável, simultaneamente com a maioria das indicações de estado. Veja na figura 2.4 uma amostra de uma indicação padrão do **DT301**.

O display é capaz também de mostrar mensagens e erros. (Veja a tabela 2.1).

Figura 2.4 – Modo de Monitoração Típico mostrando no Indicador a PV, neste caso 25,0 BRIX

INDICADOR	DESCRIÇÃO
INIT	O DT301 se encontra na fase de inicialização após a sua alimentação.
FAIL	Falha no transmissor. Veja Seção 4 - Manutenção.
SAT	Variável primária ou secundária fora da faixa de operação. Veja Seção 4 - Manutenção.

Tabela 2.1 - Mensagens de Erro do Indicador

CONFIGURAÇÃO

O transmissor inteligente de densidade **DT301** é um instrumento digital que oferece as mais avançadas características que um aparelho de medição pode oferecer. A disponibilidade de um protocolo de comunicação digital (HART®) permite que o instrumento possa ser conectado a um computador externo e ser configurado de forma bastante simples e completa. Estes computadores que se conectam aos transmissores são chamados de host e eles podem ser tanto um mestre primário ou secundário. Assim, embora o protocolo HART® seja do tipo mestre - escravo, na realidade, ele pode conviver com até dois mestres em um barramento. Geralmente, o host primário é usado no papel de um supervisório e o host secundário, no papel de configurador.

Quanto aos transmissores, eles podem estar conectados em uma rede do tipo ponto a ponto ou multiponto. Em rede ponto a ponto, o equipamento deverá estar com o seu endereço em "0", para que a corrente de saída seja modulada em 4 a 20 mA, conforme a medida efetuada. Em rede multiponto, se o mecanismo de reconhecimento dos dispositivos for via endereço, os transmissores deverão estar configurados com endereço de rede variando de "1" a "15". Neste caso, a corrente de saída dos transmissores é mantida constante, consumindo 4 mA cada um. Se o mecanismo de reconhecimento for via tag, os transmissores poderão estar com os seus endereços em "0" e continuar controlando a sua corrente de saída, mesmo em configuração multiponto.

No caso do **DT301**, que pode ser configurado para transmissor, o endereçamento do HART® é utilizado da seguinte forma:

MODO TRANSMISSOR - o endereço "0" faz com que o **DT301** controle a sua saída de corrente e os endereços "1" a "15" colocam o **DT301** em modo multiponto sem controle de corrente de saída.

NOTA

Quando configurado em multiponto para áreas classificadas, os parâmetros de entidade permitidos para a área devem ser rigorosamente observados. Assim, verifique:

 $Ca \ge \Sigma Ci_i + Cc$

 $La \ge \Sigma Li_i + Lc$

 $Voc \le min [Vmax_i]$

 $lsc \le min [Imax_i]$

onde:

Ca, La = capacitância e indutância permitidas no barramento;

Ci, Li = capacitância e indutância do transmissor j (j=1, 15), sem proteção interna;

Cc, Lc = capacitância e indutância do cabo;

Voc = tensão de circuito aberto da barreira de segurança intrínseca;

Isc = corrente de curto circuito da barreira de segurança intrínseca;

Vmax_i = tensão máxima permitida para ser aplicada no transmissor j;

Imax_i = corrente máxima permitida para ser aplicada no transmissor j.

O transmissor inteligente de densidade **DT301** apresenta um conjunto bastante abrangente de comandos HART® que permite acessar qualquer funcionalidade nele implementado. Estes comandos obedecem às especificações do protocolo HART® e eles estão agrupados em comandos universais, comandos de práticas comuns e comandos específicos.

A Smar desenvolveu dois tipos de Configuradores para os seus equipamentos HART®: O configurador CONF401 e o HPC301, o primeiro funciona na plataforma Windows (95, 98, 2000, XP e NT) e UNIX. Ele fornece uma fácil configuração, monitoração de instrumentos de campo, capacidade para analisar dados e modificar o desempenho dos instrumentos de campo. O segundo, HPC301, é a mais nova tecnologia em computadores portáteis PalmZIRE71 Handheld. Para obter características de operação e utilização dos configuradores mencionados, buscar os respectivos manuais.

As figuras 3.1 e 3.2 mostram o frontal do Palm e a tela do CONF 401 com a configuração ativa.

Figura 3.1 - Configurador

Figura 3.2 – Tela do CONF401

Recursos de Configuração

Através dos configuradores HART®, o firmware do **DT301** permite que os seguintes recursos de configuração possam ser acessados:

- ✓ Identificação e dados de fabricação do transmissor;
- ✓ Trim da variável primária densidade;
- ✓ Trim de corrente da variável primária;
- ✓ Ajuste do transmissor à faixa de trabalho;
- ✓ Seleção da unidade de engenharia;
- ✓ Tabela de linearização:
- ✓ Configuração do equipamento;
- ✓ Manutenção do equipamento.

As operações que ocorrem entre o configurador e o transmissor não interrompem a medição do sinal de densidade e não perturbam o sinal de saída. O configurador pode ser conectado no mesmo cabo do sinal de 4-20 mA até 2 km de distância do transmissor.

Identificação e Dados de Fabricação

As seguintes informações são disponibilizadas em termos de identificação e dados de fabricação do transmissor **DT301**:

TAG - Campo com 8 caracteres alfanuméricos para identificação do transmissor;

SERVIÇO - Campo com 16 caracteres alfanuméricos para identificação adicional do transmissor. Pode ser usado para identificar a localização ou o serviço;

DATA DA MODIFICAÇÃO - A data pode ser usada para identificar uma data relevante como a última calibração, a próxima calibração ou a instalação. A data é armazenada na forma de bytes onde DD = [1,..31], MM = [1..12], AA = [0..255], onde o ano efetivo é calculado por [Ano = 1900 + AA];

MENSAGEM - Campo com 32 caracteres alfanuméricos para qualquer outra informação, tal como o nome da pessoa que fez a última calibração, algum cuidado especial para ser tomado ou se, por exemplo, é necessário o uso de uma escada para ter acesso ao transmissor;

TIPO DE FLANGE - Φ 4" x 150# ANSI B16.5 RF, Φ 4" x 300# ANSI B16.5 RF, Φ 4" x 600# ANSI B16.5 RF, DN 100 PN25/40 DIN2526-Forma D, 03" Tri Clamp, Especial;

MATERIAL DO FLANGE - Aço Inox AISI 316, Hastelloy C276, Especial;

MATERIAL DOS ANÉIS - Buna-N, Viton, Teflon e Especial;

INDICADOR LOCAL - Instalado ou Nenhum:

TIPO DE SELO REMOTO - Tipo Reto, Tipo Curvo;

FLUIDO DO SELO REMOTO - Silicone DC200/20, Silicone DC704, Glicerina/ Água, Sylthern 800, Propileno Glicol (NEOBEE M20);

DIAFRAGMA DO SELO REMOTO - Aço Inox AISI 316L, Hastelloy C276, Especial;

FLUIDO DO SENSOR** - Silicone DC200/20, Silicone DC704, Glicerina/ Água, Sylthern 800, Propileno Glicol (NEOBEE M20);

DIAFRAGMA DE ISOLAÇÃO DO SENSOR** - Aço Inox 316, Hastelloy C, Monel, Tântalo, Especial;

TIPO DE SENSOR** - Mostra o tipo de sensor;

FAIXA DO SENSOR** - Mostra a faixa do sensor na unidade de engenharia escolhida pelo usuário, veja Configuração da Unidade.

NOTA

Os itens de informação marcados com (*) não são aplicáveis ao **DT301** e os com (**) não podem ser modificados pois eles vêm na memória do sensor.

Trim da Variável Primária - Densidade

A variável densidade, definida como variável primária, é determinada a partir da leitura do sensor através de um método de conversão. Este método utiliza parâmetros que são levantados durante o processo de fabricação e são dependentes das características mecânicas e elétricas do sensor e da variação de temperatura a que está submetida o sensor. Estes parâmetros são salvos na memória EEPROM do sensor e quando o sensor é conectado a placa principal, o conteúdo desta memória fica disponível ao microprocessador, que relaciona o sinal do sensor à densidade medida.

Algumas vezes a medida indicada no display do transmissor e/ou indicador difere do padrão do usuário.

A razão pode ser:

- ✓ Posição de montagem do transmissor;
- O padrão do usuário difere do padrão da fábrica;
- ✓ O sensor tem sua característica original deslocada por sobrepressão, sobretemperatura ou outras condições especiais de uso.

O processo trim de concentração é utilizado para ajustar a medida em relação à densidade/concentração do processo, de acordo com o padrão do usuário. Normalmente, a discrepância mais comum encontrada nos transmissores se deve ao deslocamento do zero e ele é corrigido através do trim de concentração inferior.

Trim de Concentração

Este trim é feito com o **DT301** instalado no local de trabalho e com o fluido do processo. Pegar uma amostra do fluido de processo e determinar o valor da densidade ou da concentração em laboratório, entrar no menu trim para fazer ajuste da concentração inferior, informando o valor obtido em laboratório ou outro padrão.

Trim de Autocalibração

O trim de autocalibração faz a calibração do transmissor tendo como referência a densidade do ar e da água.

Autocalibração do DT301

1° Passo – Autocalibração no Ar

Colocar o **DT301** na posição de trabalho (vertical) e no ar, esperar aproximadamente **5** minutos para estabilização, colocar a unidade de medição em **Kg/m³**, entrar no menu **TRIM**, escolher a opção trim de auto-calibração no **AR** e clicar em **ENVIAR**. Quando o erro indicado estiver entre ±0,4 Kg/m³ dar OK.

2° Passo – Autocalibração na Água

Após ajustar no ar, colocar o **DT301** na posição de trabalho (vertical) e na água, garantindo que os dois diafragmas estejam submersos, esperar aproximadamente **5** minutos para estabilização e alterar a unidade de medição para **Brix**. Entrar no menu **TRIM**, escolher a opção trim de auto-calibração na **ÁGUA** e quando o erro indicado estiver entre ±0,1 Brix dar OK.

Figura 3.3 – Auto-Calibração no Ar

Figura 3.4 – Auto-Calibração na Água

Seguindo estes passos o **DT301** já estará calibrado. Caso haja uma diferença entre o **DT301** e o padrão utilizado como referência, fazer ajuste de concentração no processo.

Trim de Temperatura

Pode ocorrer uma pequena diferença entre o padrão de temperatura da Smar e o padrão de temperatura do usuário. Neste caso, deve-se fazer o trim de temperatura para corrigir esta diferença no menu Trim deTemperatura.

Trim de Corrente da Variável Primária

Quando o microprocessador gera um sinal de 0% para a saída, o Conversor Digital/Analógico e componentes eletrônicos associados fornecem uma saída de 4 mA. Se o sinal é 100%, a saída será de 20 mA.

Pode ocorrer uma pequena diferença entre o padrão de corrente da **SMAR** e o padrão de corrente da planta. Neste caso, deve-se usar o ajuste de Trim de Corrente, usando um amperímetro de precisão como referência da medida. Há dois tipos de Trim de Corrente disponíveis:

- ✓ TRIM DE 4 mA: é usado para ajustar o valor de corrente de saída correspondente a 0% da medida;
- ✓ TRIM DE 20 mA: é usado para ajustar o valor de corrente de saída correspondente a 100% da medida.

Para realizar o Trim de Corrente faça o seguinte procedimento:

- ✓ Conecte o transmissor ao amperímetro de precisão;
- ✓ Selecione um dos tipos de Trim;

✓ Espere um momento até a corrente se estabilizar e informe ao transmissor a corrente lida no amperímetro de precisão.

NOTA

O transmissor apresenta uma resolução que permite controlar correntes da ordem de microamperes. Assim, ao informar a corrente lida ao transmissor, é recomendado que a entrada de dados seja feita com valores contendo até décimos de microamperes.

Ajuste do Transmissor à Faixa de Trabalho

Esta função afeta, diretamente, a saída 4-20 mA do transmissor. Ela é usada para definir a faixa de trabalho do transmissor e este processo é definido como calibração do transmissor. O transmissor **DT301** implementa dois recursos de calibração:

CALIBRAÇÃO DA CORRENTE DE SAÍDA: A corrente de saída deve ser configurada para que o valor inferior de concentração represente o 4 mA e o valor superior de concentração represente 20 mA;

CALIBRAÇÃO DA MEDIDA: O transmissor DT301 é fabricado e calibrado conforme o pedido do cliente. Ao instalá-lo no processo pode ocorrer necessidade de um ajuste na medição, em função de alguns desvios decorrentes da instalação. Caso o ajuste requerido for apenas nas unidades de engenharia de medição, recorra ao item medição, descrito mais à frente. Se o ajuste requerer uma alteração na medição dos valores, efetue a calibração com referência;

DAMPING: O item damping no menu calibração, habilita o ajuste do fator de amortecimento do filtro de leitura da pressão, realizado por software. O damping é um filtro digital onde a constante de tempo pode ser ajustada entre 0 e 32 segundos. O transmissor apresenta um damping mecânico intrínseco de 0,2 segundos.

MEDIÇÃO

Esta função do menu de configuração permite selecionar que tipo de função de transferência o transmissor deve realizar. São várias funções relacionadas à medição da densidade, da concentração e uma função especial que permite verificar a corrente de 4 a 20 mA gerada pelo transmissor. As seguintes funções de transferência foram implementadas:

- **Densidade:** As funções de transferência relativas à medição da densidade correspondem à medição da densidade absoluta que leva em conta as propriedades químicas da solução e as propriedades físicas do meio e à medição da densidade relativa, tomando-se como base a densidade da água. Assim, as seguintes medidas podem ser obtidas: kg/m3, g/cm3, DRH₂0@20°C, DRH₂0@4°C;
- Concentração: Estas medidas informam a composição de uma solução em relação a algumas medidas consagradas, tais como: Grau Baumé, Grau Plato, Grau Brix e Grau INPM;
- Corrente Fixa: Esta medida permite ao usuário verificar a consistência da geração da corrente com entrada de valores entre 3,9 e 21 mA. Esta característica também é de suma importância na efetuação do Loop Test durante a fase de startup de uma planta industrial.

DISPLAY

Esta opção permite configurar até duas variáveis para serem apresentadas no display do transmissor. Caso a opção seja por apenas uma variável, repetir a mesma variável para ser mostrada como segunda variável ou selecionar s/indic entre as opções da segunda variável.

Seleção da Unidade de Engenharia

Seleção das Unidades de Engenharia

O usuário também pode escolher o tipo de medida.

- Densidade em g/cm³;
- Densidade em Kg/m³;
- Densidade relativa a 20°C;
- Densidade relativa a 4°C;
- Densidade em lb/ft³;
- Baume;
- Brix;
- Plato;

- INPM;
- GL:
- Porcentagem do sólido;
- API.

Porcentagem de Sólidos (% sol)

O transmissor de Concentração / Densidade DT301 oferece recursos com o objetivo de relacionar grau Baume à porcentagem de sólidos. A equação geral para determinar a porcentagem de sólidos é:

%sol =
$$a_0 + a_1$$
 bme¹ + a_2 bme² + a_3 bme³ + a_4 bme⁴ + a_5 bme⁵

A tabela e o gráfico abaixo indicam a aplicação do polinômio do **DT301** que relaciona grau Baume à porcentagem de sólidos, gerando o polinômio:

 $y = 0.004768x^4 - 0.760813x^3 + 45.407284x^2 - 1200.648795x + 11919.089787.$

	Х	Υ
1	Bme	%SOL.
2	35	56
3	36	56,7
4	37	57
5	37,7	57,5
6	38	57,9
7	38,3	58,2
8	38,4	58,3
9	38,5	59
10	38,6	59,2
11	39	59,3
12	39,4	59,6
13	39,7	60
14	41	60,5
15	42	61,2
16	43	61,8

Porcentagem de Concentração (% conc)

Para aplicações que exijam a utilização de outras relações entre medidas, utiliza-se o polinômio indicado:

$$f(a,d,t) = a_0 + a_1 d + a_2 d^2 + a_3 d^3 + a d^4 + a_5 d^5 + a_6 d t + a_7 d^2 t + a_8 d^3 t + a_9 d t^2 + a_{10} d t^3 + a_{11} d^2 t^2 + a_{12} d^3 t^3 + a_{13} t + a_{14} t^2 + a_{15} t^3 + a_{16} t^4 + a_{17} t^5$$

Essa função é mais abrangente, ou seja, tem ação sobre maior número de aplicações. Relaciona três grandezas, densidade, temperatura e concentração.

Devido ao display que é utilizado no **DT301**, que é de 4½ dígitos, o máximo valor possível de ser indicado no display é 19999. Assim, ao selecionar a unidade, certifique-se que em sua aplicação, o valor não ultrapassará 19999.

Configuração do Equipamento

Além dos serviços de configuração da operação do equipamento, o **DT301** permite que ele próprio seja configurado. Os serviços deste grupo estão relacionados a: filtro de entrada, burnout, endereçamento, indicação no display e senhas.

• FILTRO DE ENTRADA - O Filtro de Entrada, também referenciado como Damping, é um filtro digital de primeira ordem, implementado pelo firmware, em que a constante de tempo pode ser ajustada entre 0 e 32 segundos. O transmissor tem um damping mecânico de 0,2 segundos;

BURNOUT - Esta opção de configuração permite escolher a ação da saída em corrente durante a
presença de uma falha. A saída de corrente se manterá fixa nos limites de Burnout Inferior ou
Burnout Superior, dependendo da escolha do modo de falha.

Os limites inferiores e superiores da corrente de burnout não são definidos pelo usuário. Eles são pré-determinados de acordo com a versão do transmissor. O limite inferior da corrente 3,9 mA e as mais recentes, passaram a adotar as especificações da norma NAMUR NE-43, ou seja, 3,6 mA. Já em relação ao limite máximo, todas as versões têm o mesmo limite: 21 mA. A escolha entre o burnout inferior e burnout superior é feita através de um mecanismo de chaveamento de modo.

- MONITORAÇÃO Esta função permite realizar a monitoração remota de uma das variáveis do transmissor no display do configurador. Para ativá-la, selecione monit no menu principal.
- ENDEREÇAMENTO O DT301 contém uma variável que define o endereço do equipamento em uma rede HART®. Os endereços do HART® vão do valor "0" a "15", sendo que de "1" a "15" são endereços específicos para conexão multiponto. Quando configurado em multiponto, no DT301, isto é, com endereço de "1" a "15", o display indicará MDROP. O DT301 sai de fábrica configurado com endereço "0".

NOTA

A corrente de saída será enviada para 4 mA assim que o endereço do **DT301** for alterado para valor diferente de "0".

- INDICAÇÃO NO DISPLAY o display digital do DT301 contém três campos bem definidos: campo de informações com ícones informando os estados ativos de sua configuração, campo numérico de 4 ½ dígitos para indicação de valores e campo alfanumérico de 5 dígitos para informações de estado e unidades.
 - O **DT301** aceita até duas configurações de display que são mostradas alternadamente, em intervalo de 2 segundos. Os parâmetros que podem ser selecionados para visualização são mostrados na tabela:

PV%	Variável de processo em porcentagem.
PV	Variável de processo em unidades de engenharia.
OUT (mA)	Saída em miliamperes.
OUT (%)	Saída em porcentagem.
TEMP	Temperatura de processo.
S/INDIC	Usado para cancelar a segunda indicação.

Tabela 3.1 - Variáveis para Indicação em Display

SENHAS - Serviço que permite ao usuário modificar as senhas de operação utilizadas pelo DT301.
 Cada senha define o acesso para um nível de prioridade (1 a 3) e esta configuração é armazenada na EEPROM do equipamento. A senha de nível 3 é hierarquicamente superior à senha de nível 2, que por sua vez é superior à senha de nível 1.

Manutenção do Equipamento

Este grupo abrange serviços de manutenção que estão relacionados com a obtenção de informações necessárias à manutenção do equipamento. Os seguintes serviços estão disponíveis: código de pedido, número de série, contador de operações e backup/restore.

✓ CÓDIGO DE PEDIDO - o Código de Pedido define o código utilizado na compra do equipamento, preenchido de acordo com a especificação do usuário. O DT301 disponibiliza um vetor de 22 caracteres para definir o código.

EXEMPLO:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
D	Т	3	0	1	1	ı	S	0	0	1	7	В	0	2							

Transmissor de Densidade Diferencial DT301 (D):

```
Faixa: 0,5 a 1,8 g/cm<sup>3</sup> (1);
Diafragma de aço inox 316L (I);
Fluido de enchimento com óleo silicone DC 200/20 (S);
Sem indicador local (0);
Conexão elétrica 1/2 - 14NPT (0);
Tipo de montagem - reto (1);
Conexão ao processo tri-clamp 4" 300# (J);
Material do anel molhado de Buna N (B);
Sem adaptador do tanque (0);
Tri-clamp em aço inox 304 (2).
```

✓ NÚMERO DE SÉRIE - Três números de série são armazenados no DT301:

Número do Circuito - Este número é único para todas as placas de circuito e não pode ser alterado.

Número do Sensor – Indica o número de série do sensor conectado ao **DT301** e não pode ser alterado. Este número é lido do sensor toda a vez que ocorre a inserção de um sensor diferente na placa principal.

Número do Transmissor - O número que é escrito na placa de identificação de cada transmissor.

NOTA

O número do transmissor deve ser alterado sempre que houver a troca da placa principal para evitar problemas de comunicação.

✓ **CONTADOR DE OPERAÇÕES** - Toda vez que ocorrer alteração através de qualquer mecanismo de configuração nas variáveis monitoradas, conforme a lista abaixo, o **DT301** incrementa o respectivo contador de operação. O contador é cíclico, contando de "0" a "255". Os itens monitorados são:

Valor Inferior/Valor Superior: quando ocorrer qualquer tipo de calibração.

Função: quando ocorrer qualquer modificação na função de transferência, por exemplo: linear, raiz quadrada ou tabela.

Trim 4mA: quando ocorrer o trim de corrente em 4 mA.

Trim 20mA: quando ocorrer trim de corrente em 20 mA.

Trim Zero/Inferior: quando ocorrer o trim de densidade de zero ou densidade inferior.

Trim de Densidade Superior: quando ocorrer o trim de densidade superior.

Caracterização: quando ocorrer alteração em qualquer ponto da tabela de caracterização da densidade em modo trim.

Multidrop: quando ocorrer qualquer mudança no modo de comunicação, por exemplo, multiponto ou transmissor único.

✓ **BACKUP/RESTORE** - quando sensor ou placa principal é trocado, é necessário, imediatamente após a montagem, transferir os dados do novo sensor para a placa principal ou os dados do antigo sensor para a nova placa principal. A maioria dos parâmetros é transferida automaticamente, porém, os parâmetros de calibração permanecem intactos na placa principal, para não correr riscos de mudança de faixa de trabalho, inadvertidamente. Se a parte trocada for o sensor, há necessidade de se transferir a calibração da placa principal para o sensor e vice- versa se a troca for da placa principal. A operação backup salva o conteúdo da placa principal na memória do sensor e o restore faz a operação inversa.

PROCEDIMENTOS DE MANUTENÇÃO

Geral

Os Transmissores de Densidade/Concentração da série **DT301** são intensamente testados e inspecionados antes de serem enviados para o usuário. Apesar disto, o seu projeto foi orientado para permitir fácil reparo quando isso se tornar necessário.

Como características principais quanto à facilidade de manutenção pode-se destacar a sua modularidade e o seu número reduzido de placas eletrônicas.

Em geral, recomenda-se para que o usuário não faça reparos nas placas de circuito impresso. Em vez disso, é recomendado manter conjuntos sobressalentes ou então adquiri-los da Smar, quando necessário.

O transmissor de concentração/densidade **DT301** foi projetado para operar por muitos anos de serviço, sem avarias. Se a aplicação do processo requerer limpeza periódica dos diafragmas repetidores, o flange poderá ser facilmente removido para limpeza e depois recolocado.

Se o transmissor necessitar de uma eventual manutenção, a mesma não deve ser efetuada no campo. O transmissor com possíveis danos deverá ser enviado a Smar para avaliação e reparos. Veja retorno de material ao final desta seção.

Diagnóstico com o Configurador

Se o transmissor estiver alimentado e com o circuito de comunicação e a unidade de processamento funcionando normalmente, o configurador pode ser usado para diagnosticar alguns tipos de falha com o transmissor (Veja tabela 4.1).

O configurador deve ser conectado ao transmissor conforme mostra o esquema de ligação apresentado na Seção 1, figuras 1.7 e 1.8.

Mensagens de Erro

Quando o configurador Smar estiver comunicando com o transmissor, o usuário será informado sobre qualquer problema encontrado, através do seu auto-diagnóstico.

As mensagens de erro são sempre alternadas com a informação mostrada na primeira linha do display do configurador Smar. A Tabela 4.1 lista as mensagens de erro. Para maiores detalhes sobre a ação corretiva, veja a referida tabela.

MENSAGENS DE ERRO	CAUSA POTENCIAL DO PROBLEMA
ERRO DE PARIDADE	A resistência da linha não está de acordo com a especificação.
ERRO OVERRUN	Ruído ou ripple excessivos no barramento. Nível do sinal de comunicação muito baixo.
ERRO CHECK SUM	Interface de comunicação danificada.
ERRO FRAMING	Fonte de alimentação ou configurador sem bateria.
SEM RESPOSTA	 Resistência da linha do transmissor não está de acordo com a especificação. Transmissor sem alimentação. Interface de comunicação não conectada ou danificada. Transmissor configurado no modo multidrop sendo acessado pela função ON LINE SINGLE UNIT. Transmissor reversamente polarizado. Fonte de alimentação ou configurador sem bateria.
LINHA OCUPADA	A linha está sendo usada por outro dispositivo.
CMD NÃO IMPLEMENTADO	 Versão de software não compatível entre o configurador e o transmissor. O configurador está tentando executar um comando específico do DT301 em um transmissor de outro fabricante.
FALHA NO TRANSMISSOR	Sensor desconectado.Sensor com defeito.
PARTIDA A FRIO	Falha na alimentação ou start-up.

MENSAGENS DE ERRO	CAUSA POTENCIAL DO PROBLEMA
SAÍDA FIXA	Saída no modo constante. Transmissor no modo multidrop.
SAÍDA SATURADA	Pressão fora do span calibrado ou em burnout (corrente de saída em 3,90 ou 21,00 mA).
2ª VAR FORA DA FAIXA	Temperatura fora da faixa de operação.Sensor de temperatura danificado.
1ª VAR FORA DA FAIXA	 Pressão fora da faixa nominal da célula. Sensor danificado ou modulo sensor não conectado. Transmissor com configuração errada.
VALOR INFERIOR MUITO ALTO	Valor do ponto 4 mA > (Limite superior da faixa - span mínimo).
VALOR INFERIOR MUITO BAIXO	Valor do ponto 4 mA < (Limite superior da faixa).
VALOR SUPERIOR MUITO ALTO	Valor do ponto 20 mA > 1,24 x (Limite superior da faixa).
VALOR SUPERIOR MUITO BAIXO	Valor do ponto 20 mA < (Limite superior da faixa + span mínimo).
VALOR SUPERIOR E INFERIOR FORA DA FAIXA	Pontos de 4 e 20 mA estão com valores fora dos limites da faixa do sensor.
SPAN MUITO BAIXO	A diferença entre os pontos de 4 e 20 mA é um valor < 0,75 x (Span mínimo).
PRESSÃO APLICADA MUITO ALTA	Pressão aplicada > 1,24 x (Limite superior da faixa).
PRESSÃO APLICADA MUITO BAIXA	Pressão aplicada < 1,24 x (Limite superior da faixa).
EXCESSO DE CORREÇÃO	O valor de trim aplicado excede o valor caracterizado em fábrica em mais de 10%.
VARIÁVEL ACIMA DO VALOR PERMITIDO	Parâmetro acima do limite de operação.
VARIÁVEL ABAIXO DO VALOR PERMITIDO	Parâmetro abaixo do limite de operação.
LOOP DEVE ESTAR EM MANUAL	 Indica que a operação a ser efetuada pode afetar a saída de 4-20 mA e, portanto, o transmissor deve estar desconectado de qualquer malha de controle.
LOOP PODE RETORNAR PARA AUTO	 Depois de efetuada a operação, é recomendado retornar o controle em automático, ou seja, conectado à malha de controle.

Tabela 4.1 - Mensagens de Erros e Causa Potencial

Diagnóstico sem o Configurador

Sintoma: SEM CORRENTE NA LINHA

Provável Fonte de Erro:

Conexão do Transmissor

- Verificar a polaridade da fiação e a sua continuidade.
- · Verificar curto circuito ou loops aterrados.
- Verificar se o conector da fonte de alimentação está conectado à placa principal.

Fonte de Alimentação

 Verificar a saída da fonte de alimentação. A tensão na borneira do transmissor deve estar entre 12 e 45 Vcc.

Falha no Circuito Eletrônico

Verificar se a placa principal está com defeito, usando uma placa sobressalente.

Sintoma: SEM COMUNICAÇÃO

Provável Fonte de Erro:

Conexão do Terminal

- Verificar a conexão da interface do configurador.
- Verificar se a interface está conectada aos fios de ligação do transmissor ou aos pontos [COMM] e [-].
- Verificar se a interface é o modelo IF3 (protocolo Hart).

Conexões do Transmissor

- Verificar se as conexões estão de acordo com o esquema de ligação.
- Verificar se a resistência da linha entre o transmissor e a fonte de alimentação é 250 .

Fonte de Alimentação

Verificar a saída da fonte de alimentação. A tensão na borneira do transmissor deve estar entre
 12 e 45 Vdc e o ripple ser menor que 500 mV.

Falha no Circuito Eletrônico

 Verificar se a falha é no circuito do transmissor ou na interface, usando conjuntos sobressalentes.

Endereço do Transmissor

No item ON LINE MDROP verificar se o endereço é "0".

Sintoma: CORRENTE DE 3,9 mA ou 21,0 mA

Provável Fonte de Erro:

Tomada de Pressão (Tubulação)

- Verificar se a conexão de pressão está correta.
- Verificar se as válvulas de "bypass" estão fechadas.
- Verificar se a pressão aplicada não ultrapassou os limites da faixa do transmissor.

Conexão do Sensor à Placa Principal

Verificar conexão (conectores macho e fêmea).

Sintoma: SAÍDA INCORRETA

Provável Fonte de Erro:

Conexões do Transmissor

- Verificar se a tensão de alimentação é adequada.
- · Verificar curtos circuitos intermitentes, pontos abertos e problemas de aterramento.

Oscilação do Fluido de Processo

Ajustar o amortecimento.

Tomada de Pressão

Verificar a integridade do circuito substituindo-o por um sobressalente.

Calibração

Verificar a calibração do transmissor.

NOTA

Uma corrente de 3,9 mA ou 21,0 mA indica que o transmissor está em BURNOUT. Use o configurador para descobrir a fonte do problema.

Procedimento para Troca da Placa Principal do DT301

- Substituir a placa GLL852 versão 1.0X para 2.0X.
- Fazer leitura do sensor (Menu manutenção).
- Fazer trim de temperatura em duas temperaturas com diferença mínima de 30°C entre elas.
- Esse procedimento deve ser realizado quando a temperatura estiver estável, deve ser utilizado como referência um padrão de temperatura para ajustar a temperatura do equipamento.
- Após o trim de temperatura, fazer a auto-calibração.

Procedimento de Desmontagem

ATENÇÃO

Desligar o transmissor antes de desmontá-lo.

As Figuras 4.3 e 4.4 apresentam uma vista explodida do transmissor e auxiliarão o entendimento dos itens abaixo. Os números entre parênteses referem-se aos dos itens da vista explodida.

Conjunto da Sonda (16A, 16B, 19A ou 19B)

Para se ter acesso à sonda para limpeza, é necessário removê-la do processo.

Retire o transmissor soltando-o do contra-flange.

Deve-se tomar cuidado nas operações de limpeza para evitar danos aos diafragmas repetidores, que são muito finos. Sugere-se o uso de um tecido macio e uma solução não ácida para limpeza do sensor.

Para remover a sonda da carcaça devem ser desconectadas as conexões elétricas dos terminais de campo e o conector da placa principal.

Afrouxar o parafuso tipo Allen (6) e soltar cuidadosamente a carcaça do sensor, sem torcer o flat cable.

ATENÇÃO

Para evitar danos, não gire a carcaça mais do que 270º sem desconectar o circuito eletrônico do sensor e da fonte de alimentação. Veja Figura 4.1.

Figura 4.1 – Rotação Segura da Carcaça

Circuito Eletrônico

Para remover a placa do circuito (5), solte os dois parafusos (3) que prendem a placa.

CUIDADO

A placa tem componentes CMOS que podem ser danificados por descargas eletrostáticas. Observe os procedimentos corretos para manipular os componentes CMOS. Também é recomendado armazenar as placas de circuito em embalagens à prova de cargas eletrostáticas.

Puxe a placa principal para fora da carcaça e desconecte a fonte de alimentação e os conectores do sensor.

Procedimento de Montagem

ATENÇÃO

Não montar o transmissor com a fonte de alimentação ligada.

Conjunto da Sonda (16A, 16B, 19A ou 19B)

Os parafusos, porcas, flanges e outras partes devem ser inspecionados para certificar que não tenham sofrido corrosão ou avarias. As peças defeituosas devem ser substituídas.

A colocação da sonda deve ser feita com a placa principal fora da carcaça. Monte a sonda à carcaça girando-o no sentido horário até que ele pare. Em seguida gire-o no sentido anti-horário até que a tampa (1) fique paralela ao flange de processo e aperte o parafuso (6) para travar a carcaça ao sensor. Somente instale a placa principal após realizar esse procedimento.

Display

Ligue o conector do sensor e o conector da fonte de alimentação à placa principal. Caso tenha display, conecte-o à placa do indicador. A placa do indicador possibilita a montagem em 4 posições (Veja a figura 4.2). A marca Smar, inscrita no topo do indicador, indica a posição de leitura.

Figura 4.2 – Quatro Posições Possíveis do Display

Fixe a placa principal e o indicador à carcaça através dos parafusos (3).

Após colocar a tampa (1) no local, o procedimento de montagem está completo. O transmissor está pronto para ser energizado e testado.

Intercambiabilidade

Para obter uma resposta precisa e com compensação de temperatura, os dados do sensor devem ser transferidos para a EEPROM da placa principal. Isto é feito automaticamente quando o transmissor é energizado.

Nesta operação, o circuito principal lê o número de série do sensor. Se ele diferir do número armazenado na placa principal, o circuito interpretará que houve troca do sensor e buscará na memória do novo sensor suas características:

- Coeficientes de compensação de temperatura;
- Dados do trim do sensor, incluindo curva de caracterização;
- Características intrínsecas ao sensor: tipo, faixa, material do diafragma e fluido de enchimento.

As demais informações ficam armazenadas na placa principal e permanecem inalteradas quando há troca do sensor. A transferência de dados do sensor para a placa principal pode ser executada pela função manut/ backup/ leitura do sensor.

No caso de troca da placa principal, as informações do sensor, como descrito acima, são atualizadas. Porém, as informações do transmissor como valor superior, valor inferior, damping e unidade de saída devem ser reconfigurados.

Retorno de Material

Caso seja necessário retornar o transmissor e/ou configurador para a **SMAR**, basta contactar a empresa **SRS Comércio e Revisão de Equipamentos Eletrônicos Ltda.**, autorizada exclusiva da Smar, informando o número de série do equipamento. O endereço para envio assim como os dados para emissão de Nota Fiscal encontram-se no Termo de Garantia - Apêndice C.

Para maior facilidade na análise e solução do problema, o material enviado deve incluir, em anexo, o Formulário de Solicitação de Revisão (FSR), devidamente preenchido, descrevendo detalhes sobre a falha observada no campo e sob quais circunstâncias. Outros dados, como local de instalação, tipo de medida efetuada e condições do processo, são importantes para uma avaliação mais rápida. O FSR encontra-se disponível no Apêndice B.

Retornos ou revisões em equipamentos fora da garantia devem ser acompanhados de uma ordem de pedido de compra ou solicitação de orçamento.

ACESSÓRIOS					
CÓDIGO DE PEDIDO	DESCRIÇÃO				
PalmZIRE71*	PalmZIRE71Handheld de 16 Mbytes, incluindo o software de instalação e inicialização do HPC301.				
HPC301*	Interface HART® HPI311-M5P para o PalmZIRE71, incluindo o pacote de configuração para os transmissores Smar e para transmissores genéricos.				
HPI311-M5P*	Simplesmente a interface HART®.				

^{*} Para atualizações dos equipamentos e do software HPC301 visite o endereço: http://www.smarresearch.com/id37.htm.

Figura 4.3 – Desenho Explodido do DT301 (Modelo Sanitário)

Figura 4.4 - Desenho Explodido do DT301 (Modelo Industrial)

RELAÇÃO DAS PEÇAS	SOBRESSALENTES		
DESCRIÇÃO DAS PEÇAS	POSIÇÃO	CÓDIGO	CATEGORIA (NOTA 1)
CARCAÇA, Alumínio (NOTA 2)			
½ - 14 NPT	8	400-0246	
M20 x 1.5	8	400-0247	
PG 13.5 DIN	8	400-0248	
CARCAÇA, AÇO INOX 316 (NOTA 2)	1 0	100 0010	1
½ - 14 NPT	8	400-0249	
M20 x 1.5 PG 13.5 DIN	8 8	400-0250 400-0251	
TAMPA (INCLUI O-RING)	0	400-0251	
Alumínio	1 e 12	204-0102	
Aço Inox 316	1 e 12	204-0105	
TAMPA COM VISOR PARA INDICAÇÃO (INCLUI O-RING)	1012	204 0100	
Alumínio	1	204-0103	
Aço Inox 316	1	204-0106	
PARAFUSO DE TRAVA DA TAMPA	7	204-0120	
PARAFUSO DE TRAVA DO SENSOR			
Parafuso M6 sem cabeça	6	400-1121	
PARAFUSO EXTERNO DE ATERRAMENTO	13	204-0124	
PARAFUSO DE FIXAÇÃO DA PLACA DE IDENTIFICAÇÃO	9	204-0116	
INDICADOR DIGITAL	4	214-0108	
ISOLADOR DO TERMINAL	10	400-0058	
PLĄCA ELETRÔNICA PRINCIPAL (NOTA 3)	5	400-0235	Α
ANÉIS DE VEDAÇÃO (NOTA 4)	_	T	
Tampa, Buna-N	2	204-0122	В
Pescoço, Buna-N	15	204-0113	В
Conexão ao processo, Buna-N (Modelo Sanitário)	20	400-0236	В
Conexão ao processo, Viton (Modelo Sanitário)	20	400-0813	В
Conexão ao processo, Teflon (Modelo Sanitário)	20	400-0814	В
PARAFUSO DE FIXAÇÃO DO TERMINAL DA BORNEIRA	T 44	004.0440	
Carcaça em Alumínio	11	304-0119	
Carcaça em Aço Inox 316 PARAFUSO DA PLACA PRINCIPAL PARA CARCAÇA EM ALUMÍNIO	11	204-0119	
Com indicador	3	304-0118	
Sem indicador	3	304-0117	+
PARAFUSO DA PLACA PRINCIPAL PARA CARCAÇA EM AÇO INOX 31		304-0117	
Com indicador	3	204-0118	
Sem indicador	3	204-0117	
CONEXÃO AO PROCESSO MODELO INDUSTRIAL			
Flange 4" - 150# ANSI B-16.5, 316 SST	14	400-0237	
Flange 4" – 300# ANSI B-16.5, 316 SST	14	400-0238	
Flange 4" – 600# ANSI B-16.5, 316 SST	14	400-0239	
Flange DN 100, PN 25 / 40, DIN 2526 – Form D, 316 SST	14	400-0240	
Junta de Vedação Teflon	17	400-0720	
Junta de Isolação em Teflon	18	400-0863	
CONEXÃO AO PROCESSO MODELO SANITÁRIO			
Adaptador do Tanque (modelo RETO) 316 SST	21	400-0241	
Tri-Clamp de 4", 304 SST	22	400-0242	
Adaptador de Tanque (modelo CURVO) 316 SST	23	400-0721	
Anel de vedação Silicone	24	400-0722	
Flange de Proteção	25	400-0723	
Flange de Aperto	26	400-0724	
Parafuso do Flange de Aperto	27	400-0725	
Bujão Sextavado Interno 1/2" NPT Aço Carbono Bicromado BR-EX D Bujão Sextavado Interno 1/2" NPT Aço Inox 304 BR-EX D	28	400-0808 400-0809	
Bujão Sextavado Interno 1/2" NPT Aço Inox 304 BR-EX D Bujão Sextavado Externo M20 X 1.5 Aço Inox 316 BR-EX D	28 28	400-0809 400-0810	
Bujão Sextavado Externo M20 X 1.5 Aço Inox 316 BR-EX D Bujão Sextavado Externo PG13.5 Aço Inox 316 BR-EX D	28	400-0810	
Bucha de Retenção 3/4" NPT Aço Inox 316 BR-EX D	28	400-0811	
SONDA		700 0012	1
Sonda Industrial	16A ou 16B	(NOTA 5)	В
Sonda Sanitária	19A ou 19B	(NOTA 5)	В
Sunua Sanitana	19A 00 19B	(NOTA 5)	l R

- Tabela 4.2 Relação das Peças Sobressalentes

 Nota 1: Na categoria "A" recomenda-se manter em estoque 25 peças para cada conjunto instalado e na categoria "B", 50.

 Nota 2: Inclui borneira, parafusos e plaqueta de identificação sem certificação.

 Nota 3: A placa principal do DT301 e sonda são itens.

 Nota 4: Os anéis de vedação e backup são empacotados com 12 unidades.

 Nota 5: Para especificar os sensores use as tabelas a seguir.

CARACTERÍSTICAS TÉCNICAS

Fluidos de Enchimento

O fluido de enchimento deve ser selecionado considerando suas propriedades físicas para a pressão, para a temperatura extrema e pela compatibilidade química com o fluido de processo. Essa consideração é importante se, por exemplo, o fluido de enchimento entrar em contato com o fluido de processo devido a um vazamento.

A tabela 5.1 mostra os fluidos de enchimento disponíveis para o **DT301**, juntamente com algumas propriedades físicas e aplicações.

FLUIDO DE ENCHIMENTO	VISCOSIDADE (cSt) a 25ºC	DENSIDADE (g/cm³) a 25ºC	COEFICIENTE DE EXPANSÃO TÉRMICA (1/ºC)	APLICAÇÕES
Silicone DC200/20	20	0,95	0,00107	Uso geral - Standard
Silicone DC704	39	1,07	0,000799	Uso geral (alta temperatura e vácuo)
Syltherm 800	10	0,934	0,0009	Uso geral (temperaturas extremas, positivas e negativas).
Propileno Glicol Neobee M20 (Aplicação Alimentícia)	9,8	0,90	0,001	Área alimentícia, de bebidas e farmacêutica.
Glicerina e Água (Aplicação Alimentícia)	12,5	1,13	0,00034	Área alimentícia

Tabela 5.1 - Propriedades dos Fluidos de Enchimento

Especificações Funcionais

Sinal de Saída

4 - 20 mA a dois fios com comunicação digital sobreposta (Protocolo HART®).

Fonte de Alimentação

12 a 45 Vdc

Indicação

Indicador opcional de 4½ dígitos e cinco caracteres alfanuméricos (Cristal Líquido).

Certificação em Área Perigosa

À prova de explosão, à prova de tempo e intrinsecamente seguro. Certificado por CEPEL, FM, Dekra/EXAM e NEMKO.

Outra Certificação

Norma 3A.

Ajuste de Zero e Span

Não interativo - via comunicação digital.

Limites de Temperatura

Ambiente: -40 a 85°C (-40 a 185°F).

Processo: -20 a 150°C (-4 a 302°F).

Estocagem: -40 a 100°C (-40 a 212°F).

Display Digital: -10 a 60°C (14 a 140°F).

Alarme de Falha

No caso de falha do sensor ou do circuito, o auto diagnóstico fixa a saída para 3,6 ou para 21,0 mA, conforme a escolha do usuário.

Tempo para Iniciar Operação

Aproximadamente 5 segundos.

Deslocamento Volumétrico

Menor que 0,15 cm³ (0,01 in³)

Limite de Pressão Estática

70 kgf/cm² (7 MPa) (1015 PSI)

Limites de Umidade

0 a 100% RH

Amortecimento

0 - 32 segundos, somando o tempo de resposta do sensor (0,2s) (via comunicação digital).

Configuração

Através da comunicação digital usando o protocolo HART®.

Especificações de Performance

Condições de referência: span iniciando em zero, temperatura 25°C, pressão atmosférica, tensão de alimentação de 24Vdc, fluido de enchimento: óleo silicone, diafragmas isoladores de aço inox 316L e trim digital igual aos valores inferior e superior da faixa.

FAIXA	PRECISÃO (1)	EFEITO DE TEMPERATURA AMBIENTE (POR 10 ⁰ C)	ESTABILIDADE (POR 3 MESES)	PRESSÃO ESTATICA ZERO (por 1 kgf/cm²) (2)
1	±0,0004 g/cm³ (±0,1 °Bx)	0,003 kg/m ³	0,021 kg/m ³	0,001 kg/m³
2	±0,0007 g/cm ³	0,013 kg/m ³	0,083 kg/m ³	0,004 kg/m ³
3	±0,0016 g/cm ³	0,041 kg/m ³	0,521 kg/m ³	0,007 kg/m ³

⁽¹⁾ Efeitos de linearidade, histerese e repetibilidade estão incluídos.

Efeito da Fonte de Alimentação

±0,005% do span calibrado por volt.

Efeito da Interferência Eletromagnética

Projetado de acordo com IEC 61326-1:2006, IEC 61326-2-3:2006, IEC 61000-6-4:2006 e IEC 61000-6-2:2005.

Especificações Físicas

Conexão Elétrica

½ "- 14 NPT, Pg 13.5 ou M20 x 1.5".

Conexão ao Processo

Modelo Industrial: Flange Φ4" em Aço Inox 316. Modelo Sanitário: Tri-clamp Φ4" em Aço Inox 304.

Partes Molhadas

Diafragma de Isolação: Aço Inox 316L ou Hastelloy C276 Material da Sonda: Aço Inox 316 ou Hastelloy C276

Anéis Molhados (para modelo sanitário): Buna N, VitonTM ou TeflonTM

Partes não Molhadas

Invólucro: Alumínio injetado com pintura eletrostática ou Aço Inox 316 (NEMA 4X, IP67).

Fluido de Enchimento: Silicone (DC200/20, DC704), Syltherm 800, Água e Glicerina ou Neobee M20 Propileno Glicol.

Anel da Tampa: Buna-N

Plaqueta de identificação: Aço Inox 316

Montagem

Montagem lateral ou de topo.

Peso Aproximado

Modelo Sanitário: 9 kg Modelo Industrial: 12 kg

⁽²⁾ Este é um erro sistemático que pode ser eliminado pela calibração na pressão estática de operação.

^{*} Deixar em branco se não houver itens opcionais.

^{**} Atende a Norma 3A-7403 para indústria alimentícia e outras aplicações que necessitam de conexões sanitárias.

^{*} Deixar em branco se não houver itens opcionais.

Notas

(1) IPX8 testado em 10 metros de coluna d'água por 24 horas.

(2) Grau de Proteção:

Produto	CEPEL	NEMKO/ EXAM	FM	CSA	NEPSI
Linha DT30X	IP66/68/W	IP66/68/W	Type 4X/6	Type 4X	IP67

- (3) IPW / TypeX testado por 200 horas de acordo com a norma NBR 8094 / ASTM B 117.
- (4) Certificado para uso em Atmosfera Explosiva (CEPEL, FM, NEMKO e EXAM).
- (5) Certificado para uso em Atmosfera Explosiva (CEPEL e FM).
- (6) Opções não certificadas para Atmosfera Explosiva.
- (7) Certificado para uso em Atmosfera Explosiva (CEPEL, NEMKO e EXAM).

^{*} Deixar em branco se não houver itens opcionais.

(7) Certificado para uso em Atmosfera Explosiva (CEPEL, NEMKO e EXAM).

(1) IPX8 testado em 10 metros de coluna d'água por 24 horas. (2) Grau de Proteção: NEMKO / Produto CEPEL FΜ CSA **NEPSI EXAM** IP66/68/W Linha DT30X IP66/68/W Type 4X/6 IP67 (3) IPW / TypeX testado por 200 horas de acordo com a norma NBR 8094 / ASTM B 117. (4) Certificado para uso em Atmosfera Explosiva (CEPEL, FM, NEMKO e EXAM). Certificado para uso em Atmosfera Explosiva (CEPEL e FM). Opções não certificadas para Atmosfera Explosiva.

INFORMAÇÕES SOBRE CERTIFICAÇÕES

Informações sobre as Diretivas Européias

This product complies with following European Directive:

ATEX Directive (94/9/EC) - Equipment and protective systems intended for use in potentially explosive atmospheres

This product is certified according to the European Standards at NEMKO and EXAM (former DMT). The certified body for manufacturing quality assessment is Nemko (CE0470).

Diretiva LVD (2006/95/EC) - Diretiva de Baixa Tensão

De acordo com esta diretiva, anexo II, os equipamentos certificados sob a Diretiva de Equipamentos e Sistemas de Proteção para Uso em Atmosferas Potencialmente Explosivas 94/9/EC, estão fora do escopo da Diretiva LVD - Low Voltage Directive 2006/95/EC, e portanto isentos da emissão de declaração de conformidade com a mesma.

Consult www.smar.com.br for the EC declarations of conformity for all applicable European directives and certificates.

Outras Aprovações

Sanitary Approval:

Certifier Body: 3A Sanitary Standards

Model Designations: Density Transmitters DT301-S, DT302-S, DT303-S top or side mounted. Sensors and Sensor Fittings and Connections, Number: 74-03. (Authorization No. 1399).

Certificações para Áreas Classificadas

Certificado INMETRO

Certificado No: CEPEL-EX-049/01

Intrinsecamente Seguro – Ex ia IIC T5

Parâmetros: Pi = 0,7 W Ui = 30 V Ii = 93 mA Ci = 5,0 nF Li = Neg

Temperatura ambiente: -20 ≤ T_{amb} ≤ 50 °C

Certificado No: CEPEL-EX-55/01

À prova de explosão – Ex d IIC T6 Temperatura ambiente: 40 °C

Grau de Proteção: IP 66/68 W ou IP 66/68

Certificações Norte Americanas

FM Approvals (Factory Mutual)

Certificate N: FM 3009664 and 3011728

Dust-ignition proof for Class II, Division 1, Groups E, F and G; Class III, Division 1.

Non-incendive for Class I, Division 2, Groups A, B, C and D.

Intrinsically Safe for use in Class I, Division 1, Groups A, B, C and D; Class II, Division 1, Groups E,

F and G; Class III, Division 1.

Entity parameters: $V_{max} = 30 \text{ Vdc Imax} = 110 \text{ mA}$ Ci = 5 nF Li = 12 μ H

Certificate N: FM 3011728

Explosion proof for Class I, Division 1, Groups A, B, C and D.

Ambient Temperature: -40 ≤ T_{amb} ≤ 60 °C

Overpressure Limits: 1015 psi Enclosure type 4X/6 or Type 4/6. *Consulte o Desenho de Controle de Instalação FM na página A5.

Certificações Européias

Certificate No: Nemko 03 ATEX 1375X

ATEX Explosion Proof from Group II 2GD, EEx d IIC T6

Ambient Temperature: 40 °C

Enclosure Type: IP66/68 W or IP66/68.

Special conditions for safe use:

1. The transmitters are marked with three options for the indication of the protection code. The certification is valid only when the protection code is indicated, by the user, in **one** of the boxes following the code.

The following options apply:

• EEx d IIC T6 () with X ticked in the parenthesis:

The EEx d IIC T6 protection according to certificate Nemko 03ATEX1375X applies for the specific transmitter. Certified EEx d IIC cables entries shall be used.

• EEx ia IIC T4 () with X ticked in the parenthesis:

The EEx ia IIC T4/T5/T6 protection according to certificate DMT 01ATEX E 151 applies for the specific transmitter. Certified diode safety barriers shall be used.

- 2. For enclosures of the transmitters made of aluminum impact and friction hazards shall be considered when the transmitter is used in category II 1 G according to EN 50284 clause 4.3.1.
- 3. The diode safety barrier shall have a linear resistive output characteristic.
- 4. The pressure of the potentially explosive atmosphere surrounding the transmitter shall be within the range 0.8 mbar to 1.1 mbar.

Certificate No: DMT 01 ATEX E 151

ATEX Intrinsically Safe

Group I M1, Ex ia I

Group II 1/2G, Ex ia, IIC, T4/T5/T6

Entity parameters: Ui = 28 Vdc Ii = 93 mA Ci ≤ 5 nF Li = neg

Temperature Class:

- T4 (-40°C ≤ T_{amb} ≤+75°C @ Pi=760mW)
- T5 (-40°C ≤ T_{amb} ≤+44°C @ Pi=760mW)
- T6 (-40°C ≤ T_{amb} ≤+40°C @ Pi=575mW)

Ambient Temperature : -40 °C ≤ Ta ≤ +85 °C

Plaquetas de Identificação e Desenho de Controle de Instalação

Plaqueta de Identificação

 Plaquetas de Identificação para Equipamentos Intrinsecamente Seguros e à Prova de Explosão para gases e vapores:

FΜ

EXAM e NEMKO

CEPEL

• Plaqueta de Identificação para Equipamentos Intrinsecamente Seguros em minas:

EXAM

Plaqueta de Identificação para Equipamentos Padrão Sanitário:

3A

Desenho de Controle de Instalação

Factory Mutual (FM)

Apêndice B

	A	
2		

P	r۸	n	ne	:ta	N	Ο.

para Transmissores de Densidade									
Empresa: Unidade:				:	Nota Fiscal de Remessa:				
CONTATO COMERCIAL					CONTATO TÉCNICO				
Nome Completo:						Nome Completo:			
Cargo:					Cargo:				
Fone: Ramal:					Fone: Ramal:				
Fax:					Fax:				
Email: Email:									
DADOS DO EQUIPAMENTO Modelo: Núm. Série: Núm. Série do Sensor:									
Modelo:				Num. Serie:					
Tecnologia: () HART® () FOUNDATION fieldb				s [™] () PROFIBUS PA			Versão de Firmware:		
INFORMAÇÕES DO PROCESSO									
Fluido de Processo:									
Faixa de Calibração		Temperatura Ambiente (°C)		Temperatura de Trabalho (ºC)		Pressão de Trabalho			
Mín:	ín: Max:		Mín: Max:		Mín: Max:		Mín:	Max:	
Pressão Estática		Vácuo		Densidade		Concentração			
Min:	Max:	Min: N	lax:	Min:	Min: Max:		Min:	Max:	
Tempo de Operação: Data da Falha:									
DESCRIÇÃO DA FALHA (Por favor, descreva o comportamento observado, se é repetitivo, como se reproduz, etc. Quanto mais informações melhor)									
ODSEDVAÇÃES.									
OBSERVAÇÕES									
DADOS DO EMITENTE									
Empresa:									
Contato:				Identificação:			Setor:		
Telefone:	Ramal:			E-mail:					
Data: Assinatura:									
Verifique os dados para emissão de Nota Fiscal no Termo de Garantia anexado neste manual.									

TERMO DE GARANTIA SMAR

- A SMAR garante os equipamentos de sua fabricação por um período de 18 (dezoito) meses, contados da data da emissão da Nota Fiscal. A garantia independe da data de instalação do produto.
- 2. Os equipamentos de fabricação SMAR são garantidos contra qualquer defeito proveniente de fabricação, montagem, quer de material quer de mão de obra, desde que a análise técnica tenha revelado a existência de vícios de qualidade passíveis de enquadramento neste termo, comprovados pela análise técnica e dentro dos prazos em garantia. A análise técnica aqui mencionada será realizada exclusivamente pelos laboratórios SMAR, ou efetuados pela empresa SRS Comércio e Revisão de Equipamentos de Automação Ltda., <u>autorizada exclusiva Smar</u>; vide item 4.
- Excetuam-se os casos comprovados de uso indevido, manuseio inadequado ou falta de manutenção básica conforme indicado nos manuais de instrução dos equipamentos. A SMAR não garante qualquer defeito ou dano provocado por situação sem controle, incluindo, mas não limitado aos seguintes itens: negligência, imprudência ou imperícia do usuário, ações da natureza, guerras ou conturbações civis, acidentes, transporte e embalagem inadequados efetuado pelo cliente, defeitos causados por incêndio, roubo ou extravio, ligação à rede de tensão elétrica ou alimentação imprópria, surtos elétricos, violações, modificações não descritas no manual de instruções, se o número de série estiver alterado ou removido, substituição de peças, ajustes ou consertos efetuados por pessoal não autorizado; instalações e/ou manutenções impróprias realizadas pelo cliente ou por terceiros, utilização e/ ou aplicação incorreta do produto, ocasionando corrosão, riscos ou deformação do produto, danos em partes ou peças, limpeza inadequada com utilização de produtos químicos, solventes e produtos abrasivos não compatíveis com os materiais de construção, influências químicas ou eletrolíticas, partes e pecas que se desgastam com o uso regular, utilização do equipamento além dos limites de trabalho (temperatura, umidade entre outros) conforme consta no manual de instruções. Além disso, este termo de garantia exclui despesas com transporte, frete, seguro, constituindo tais ítens, ônus e responsabilidade do cliente.
- 4. Os serviços técnicos de manutenção em garantia serão efetuados pela empresa SRS Comércio e Revisão de Equipamentos de Automação Ltda, <u>autorizada exclusiva Smar</u>. Os equipamentos com problemas técnicos comprovados deverão ser despachados e entregues no endereço abaixo, com frete pago pelo cliente.

Dados para emissão da Nota Fiscal de Retorno:

SRS Comércio e Revisão de Equipamentos de Automação Ltda.
Rodovia Albano Bachega Km 2,1 – Vicinal Sertãozinho/Dumont Sertãozinho/SP
Caixa Postal 532 – CEP 14173-020
IE: 664.156.985-115 CNPJ: 009.005.841/0001-66 Fone: (16) 3513-2500 Fax: (16) 3513-2525
E-mail: revisoes@srsrevisoes.com.br

- 5. Nos casos em que houver necessidade de assistência técnica nas instalações do cliente durante o período de garantia, não serão cobradas as horas efetivamente trabalhadas, entretanto, a SMAR será ressarcida das despesas de transporte, alimentação e estadia do técnico atendente, bem como dos custos com desmontagem e montagem quando existirem.
- 6. O reparo e/ou substituição de peças defeituosas não prorroga sob hipótese alguma o prazo da garantia original, a não ser que essa prorrogação seja concedida e comunicada por escrito pela SMAR.
- Nenhum Colaborador, Representante ou qualquer outra pessoa tem o direito de conceder em nome da SMAR garantia ou assumir alguma responsabilidade quanto aos produtos SMAR. Se for concedida alguma garantia ou assumida sem o consentimento por escrito da SMAR, esta será declarada antecipadamente como nula.
- 8. Casos de aquisição de Garantia Estendida devem ser negociados com a SMAR e documentados por ela.

- O atendimento ao cliente é realizado pela Assistência Técnica SMAR Fone: (16) 3946-3509 (Horário Administrativo) e (16) 3946-3599 (Plantão 24 h) localizado na Matriz em Sertãozinho (SP) ou pelos Grupos de Atendimentos localizados nos escritórios regionais da SMAR.
- Caso seja necessário retornar o equipamento ou produto para reparo ou análise, basta entrar em contato com a SRS Comércio e Revisão de Equipamentos de Automação Ltda. Vide item 4.
- 11. Em casos de reparos ou análises deve-se preencher a "Folha de Solicitação de Revisão", a FSR, contida no manual de instruções, onde deve conter detalhes sobre a falha observada no campo e as circunstâncias da mesma, além de informações sobre o local de instalação e condições do processo. Equipamentos e produtos não cobertos pelas cláusulas de garantia serão objetos de orçamento sujeitos à aprovação do cliente antes da execução do serviço.
- 12. Nos casos de reparos, o cliente é responsável pela correta acondicionamento e embalagem e a SMAR não cobrirá qualquer dano causado em transportes.
- 13. Responsabilidade: Exceto as condições gerais de garantia para Produtos SMAR, mencionadas anteriormente, a SMAR não assume nenhuma responsabilidade frente ao comprador, e isso sem limitações, quanto a danos, conseqüências, reivindicações de indenização, lucros cessantes, despesas com serviços e outros custos que forem causados pela não observação das instruções de instalação, operação e manutenção contidas em manuais SMAR. Além disso, o comprador também declara inocentar o fornecedor de indenizações por danos (excetuando os custos com consertos ou com a reposição de produtos defeituosos descritos anteriormente), causados direta ou indiretamente por causa de teste, aplicação, operação ou conserto inadequados de produtos SMAR.
- 14. É responsabilidade do cliente a limpeza e descontaminação do produto e acessórios antes de enviar para reparo e a SMAR e sua autorizada se reserva do direito de não repararem o equipamento nos casos onde assim não for procedido. É responsabilidade de o cliente avisar a SMAR e sua autorizada quando o produto for utilizado em aplicações que contaminam o equipamento com produtos que podem causar danos durante o seu manuseio e reparo. Qualquer dano, conseqüências, reivindicações de indenização, despesas e outros custos que forem causados pela falta de descontaminação serão atribuídos ao cliente. Por gentileza, preencher a Declaração de Descontaminação antes de enviar produtos à Smar ou autorizadas e que pode se acessada em http://www.smar.com/brasil2/suporte.asp e enviar dentro da embalagem.
- 15. Este termo de garantia é válido apenas quando acompanhado da Nota Fiscal de aquisição.