TENTAMEN

Operativsystem DVA315, 2017-03-22 Ansvarig lärare: Mats Björkman

Max poäng: 30

Betygsgränser: 3: 15p, 4: 21p, 5: 25p

Hjälpmedel: -

Påbörja varje uppgift på ett nytt papper!

Lycka till!

Begreppsdel

Uppgift 1 (4p) Allmänt

- a) Ett operativsystem kan sägas vara en *virtuell maskin*. Förklara och exemplifiera *virtuell maskin* i detta sammanhang, alltså för generella OS och inte bara hypervisors. (1p)
- b) Ett operativsystem kan även sägas vara en *utökad* virtuell maskin. Förklara och exemplifiera *utökad* i detta sammanhang. (1p)
- c) Ett operativsystem kan även sägas vara en *resursadministratör*, vad innebär detta begrepp i detta sammanhang? Ge exempel på resurser som administreras. (1p)
- d) En processor har oftast två exekveringslägen, *supervisor mode* och *user mode*. Förklara hur ett systemanrop byter mellan dessa lägen, samt förklara syftet med detta. (1p)

Uppgift 2 (4p) Allmänt

Förklara kortfattat följande operativsystemsrelaterade begrepp:

a)	Pseudoparallellism (till skillnad från sann parallellism)	(0.5p)
b)	Relokerbarhet (Ability of relocation) för processer	(0.5p)
c)	Räknande semafor	(0.5p)
d)	Intern fragmentering (i minnessammanhang)	(0.5p)
e)	Osäkert tillstånd (i baklåssammanhang)	(0.5p)
f)	Busy waiting (i processammanhang)	(0.5p)
g)	Thrashing (i processammanhang)	(0.5p)
h)	Asynkront meddelandesystem	(0.5p)

Uppgift 3 (2p) Trådar och Processer

- a) Förutom processer stödjer många operativsystem trådar. Förklara kort skillnaden mellan trådar och processer. Vad saknar trådar som processer har? (1p)
- b) Nämn någon fördel med att använda trådar framför att använda processer. (1p)

Uppgift 4 (2p) Filsystem

Beskriv och förklara två metoder för att hålla reda på *lediga block* på en hårddisk, d.v.s. hålla reda på block som inte används. (2p)

Problemdel

Uppgift 5 (6p) Schemaläggning

Ett system har 6 processer A-F som med följande aktiverings- och exekveringstider:

Process	Aktiveringstid	Exekveringstid
A	0	3
В	1	1
С	2	1
D	2	5
Е	8	3
F	10	1

När processer har samma aktiveringtid antas de komma till skeduleraren i bokstavsordning.

- a) Schemalägg processerna enligt algoritmen *shortest job first* (SJF). Algoritmen är preemptiv, har ett tidskvantum på 1, och schemaläggs enligt kortast kvarvarande exekveringstid vid varje givet tillfälle. (1p)
- b) Beräkna medelomloppstiden för processerna schemalagda med SJF. (1p)
- c) Schemalägg processerna enligt algoritmen *Round Robin* (RR). Algoritmen är preemptiv och har ett tidskvantum på 1. Vid aktivering ställs den nya processen sist i ready-kön. (1p)
- d) Beräkna medelomloppstiden för processerna schemalagda med RR. (1p)
- e) Schemalägg processerna enligt den preemptiva algoritmen *multipla köer* (MK). Schemaläggaren har tre köer: HÖG med kvantum 1, MELLAN med kvantum 2 samt LÅG med kvantum 4. Vid aktivering ställs den nya processen sist i kön HÖG. När en process byter kö ställs den sist i den nya kön. (1p)
- f) Beräkna medelomloppstiden för processerna schemalagda med MK. (1p)

Eventuella antaganden MÅSTE motiveras!

Uppgift 6 (4p) Baklås (Deadlock)

I ett operativsystem har man implementerat baklåsdetektering med hjälp av en algoritm som använder matriserna E (existing), A (available), C (claimed) och R (requested) för att periodiskt kontrollera om några processer är i baklås eftersom systemet stödjer multipla resurser av samma typ.

Vid ett givet tillfälle befinner sig systemet i följande tillstånd:

Existerande resurser: w: 6 st

x: 6 st y: 6 st z: 6 st

Aktiva Processer: p1, p2, p3 och p4

Nuvarande ägandeskap: w: p2 äger 1st, p3 äger 3st

(Claimed Resources) x: p2 äger 1st, p3 äger 3st, p4 äger 2st

y: p3 äger 3st

z: p1 äger 3st, p4 äger 3st

Begärda resurser: w: p1 begär 2st, p2 begär 2st, p4 begär 3st

(Requested Resources) x: p1 begär 3st, p3 begär 2st, p4 begär 1st

y: p1 begär 2st, p2 begär 2st

z: p3 begär 4st

a) Konstruera matriserna E, A, C och R för ovanstående tillstånd. (2p)

b) Är systemet i baklås? Visa hur du kom fram till detta m.h.a matriserna. (2p)

Eventuella antaganden MÅSTE motiveras!

Uppgift 7 (4p) Virtuellt minne

Anta att man har ett sidindelat virtuellt minne med en sidstorlek på 8 bytes. Vidare har varje process (A och B i vårt exempelsystem nedan) tillgång till 128 bytes virtuellt minne medan det fysiska minnet har en storlek av 64 bytes.

- a) Hur många bitar i den virtuella adressen krävs för index till sidtabellen? Hur många bitar krävs för offset? (1p)
- b) Använd binära minnesadresser och visa hur sidtabellen för process A respektive B ser ut om vi antar att process A har de virtuella sidorna 0, 2, 5, 7 och 12 på ramarna 1, 5, 3, 0 respektive 6 i det fysiska minnet, och process B har de virtuella sidorna 2, 5 och 13 på ramarna 2, 7 respektive 4 i det fysiska minnet. (2p)
- c) Till vilken fysisk adress översätts den logiska adressen 0101101 för process A? För process B? Visa hur du kommer fram till detta. (1p)

Eventuella antaganden MÅSTE motiveras!

Uppgift 8 (4p) Filhantering

I filhantering finns många olika tekniker för att hålla reda på vilka block på disken som tillhör vilken fil. Två av dessa tekniker är **i-noder** och **länkade listor med index (t.ex. FAT-tabeller)**.

I ett system med en tom disk med 16 lediga block och tre olika filer (A, B och C), sker följande förfrågningar efter diskutrymme:

- 1. Fil A begär 1 block
- 2. Fil B begär 3 block
- 3. Fil C begär 2 block
- 4. Fil B begär 2 block
- 5. Fil C begär 2 block
- 6. Fil A begär 2 block
- a) Visa hur en teknik med i-noder hanterar ovanstående förfrågningar om diskutrymme (och hur den håller reda på de allokerade blocken). Kom ihåg att visa tillståndet efter varje förfrågan!
- b) Visa hur en teknik med **länkade listor med index (t.ex. FAT-tabeller)** hanterar ovanstående förfrågningar om diskutrymme (och hur den håller reda på de allokerade blocken). Kom ihåg att *visa tillståndet efter varje förfrågan*! (2p)

Kom ihåg att förklara, för var och en av teknikerna, vilken fil de allokerade blocken tillhör *efter varje förfrågan*. Om teknikerna använder några speciella datastrukturer för att hålla reda på blocken, beskriv även dessa strukturers tillstånd *efter varje förfrågan*.

Eventuella antaganden MÅSTE motiveras!