Installing SensiML

```
!pip install sensiml-dev -U
      Requirement already satisfied: sensiml-dev in /usr/local/lib/python3.7/dist-packages (2021.1.0)
      Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (1.3.0)
      Requirement already satisfied: semantic-version>=2.6.0 in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (2.8.5)
      Requirement already satisfied: pyserial in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (3.5)
      Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (1.19.5)
      Requirement already satisfied: seaborn in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (0.11.1)
      Requirement already satisfied: appdirs==1.4.3 in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (1.4.3)
      Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (1.0.18)
      Requirement already satisfied: wurlitzer in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (2.1.1)
      Requirement already satisfied: cookiejar==0.0.2 in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (0.0.2)
      Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (3.2.2)
      Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (1.1.5)
      Requirement already satisfied: requests>=2.14.2 in /usr/local/lib/python3.7/dist-packages (from sensiml-dev) (2.23.0)
      Requirement already satisfied: cookiecutter in /usr/local/lib/python3.7/dist-packages (from cookiejar==0.0.2-sensim1-dev) (1.7.3)
      Collecting argparse
        Using cached argparse-1.4.0-py2.py3-none-any.whl (23 kB)
      Requirement already satisfied: pager in /usr/local/lib/python3.7/dist-packages (from cookiejar==0.0.2->sensiml-dev) (3.3)
      Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.14.2->sensiml-dev) (1.24.3)
      Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.14.2->sensiml-dev) (2021.5.30)
      Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.14.2->sensiml-dev) (3.0.4)
      Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.14.2->sensiml-dev) (2.10)
      Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->sensiml-dev) (3.1.1)
      Requirement already satisfied: Jinja2<4.0.0,>=2.7 in /usr/local/lib/python3.7/dist-packages (from cookiecutter->cookiejar==0.0.2->sensiml-dev) (2.11.3)
      Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.7/dist-packages (from cookiecutter->cookiejar==0.0.2->sensiml-dev) (1.15.0)
      Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from cookiecutter->cookiejar==0.0.2->sensiml-dev) (7.1.2)
      Requirement already satisfied: jinja2-time>=0.2.0 in /usr/local/lib/python3.7/dist-packages (from cookiecutter->cookiejar==0.0.2->sensiml-dev) (0.2.0)
      Requirement already satisfied: poyo>=0.5.0 in /usr/local/lib/python3.7/dist-packages (from cookiecutter->cookiejar==0.0.2->sensiml-dev) (0.5.0)
      Requirement already satisfied: binaryornot>=0.4.4 in /usr/local/lib/python3.7/dist-packages (from cookiecutter->cookiejar==0.0.2->sensiml-dev) (0.4.4)
      Requirement already satisfied: python-slugify>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from cookiecutter->cookiejar==0.0.2->sensiml-dev) (5.0.2)
      Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from Jinja2<4.0.0,>=2.7->cookiecutter->cookiejar==0.0.2->sensiml-dev) (2.0.1)
      Requirement already satisfied: arrow in /usr/local/lib/python3.7/dist-packages (from jinja2-time>=0.2.0->cookiecutter->cookiejar==0.0.2->sensiml-dev) (1.1.1)
      Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.7/dist-packages (from python-slugify>=4.0.0->cookiecutter->cookiejar==0.0.2->sensiml-dev) (1.3)
      Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from arrow->jinja2-time>=0.2.0->cookiecutter->cookiejar==0.0.2->sensiml-dev) (3.7.4.3)
      Requirement already satisfied: python-dateutil>=2.7.0 in /usr/local/lib/python3.7/dist-packages (from arrow->jinja2-time>=0.2.0->cookiecutter->cookiejar==0.0.2->sensiml-dev) (2.8.1)
      Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->sensiml-dev) (0.10.0)
      Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->sensiml-dev) (2.4.7)
      Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->sensiml-dev) (1.3.1)
      Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->sensiml-dev) (2018.9)
      Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit->sensiml-dev) (0.2.5)
      Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.7/dist-packages (from seaborn->sensiml-dev) (1.4.1)
      Installing collected packages: argparse
      Successfully installed argparse-1.4.0
      WARNING: The following packages were previously imported in this runtime:
        [argparse]
      You must restart the runtime in order to use newly installed versions.
       DESTART DUNTIME

    Login into the Project

  import pandas as pd
 from sensiml import SensiML
 dsk = SensiML()
      /usr/local/lib/python3.7/dist-packages/sensiml/client.py:112: UserWarning: Config option `use jedi` not recognized by `IPCompleter`.
        mgc("%config Completer.use_jedi = False")

    Sensor Data

 dsk.project = 'Stride Classification'
 dsk.project.columns()
      dict keys(['GyroscopeX', 'GyroscopeY', 'GyroscopeZ', 'AccelerometerX', 'AccelerometerY', 'AccelerometerZ'])

    Metadata

 dsk.project.metadata columns()
      ['Cont or Event', 'Type', 'Side', 'Subject', 'capture uuid', 'segment uuid']
```

dsk.project.get project summary().T

Data Samples

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Capture Name	Rafael_Normal 2021-07-31 16_00_17.csv	Martin_Heel Striking 2021- 07-30 08_06_42.csv	Rafael_Pronation 2021-07-31 16_13_34.csv	Rafael_Pronation 2021-07-31 16_14_27.csv	2021-07-30	Rafael_Over Supination 2021-07-31 16_26_03.csv	Rafael_Pronation 2021-07-28 07_28_37.csv		Martin_Heel Striking 2021- 07-30 08_24_32.csv	Martin_Supination 2021-07-30 08_26_39.csv	2021-07-30	Martin_Over Supination 2021-07-30 08_19_56.csv	Rafael_Over Supination 2021-07-31 16_21_42.csv	Rafael_Normal 2021-07-31 16_33_55.csv	Rafael_Over Pronation 2021-07-31 16_20_46.csv	Rafael_Supination 2021-07-31 16_12_12.csv	Rafael_Supination 2021-07-31 S 16_11_39.csv 0
Capture UUID	01267146- efa1-4bfb- ad0f- f27d64db23ab	062dddc8- 7474-48e0- 8b4c- fdece0a6a453	0779527e-a0c8- 4c51-8c99- 68f837196a70	1629d4c8-b571- 4eb9-bb85- f1106668e56a	4b41-9bdb-	227d454e- ea7f-4172- a3ae- 958d39e9d44f	22f47e0a-cf35- 4106-8695- 31b0fbb2a24e	24ee543f-2b4f- 4467-9d71- cf79d2fdbeb8	2a5c0303- 99e5-4b3c- a1fb- 5f89b50d313f	2ef1c534-daf1- 4d6b-966c- 007b2ca123a5	39fd2f79- b066-46a2- 97b4- 98eb442df4a4	3aad6577- f3c2-4f57- ab30- 37e18387c9da	3def2270- 154f-41d4- a634- a790015e1ae1	3ff47016- 36d5-43bb- af38- deef07dd2777	41b704e1- 6ea5-40b3- 913c- 62e73cb6a44b	48dd262a-fb47- 4562-9013- 15cffec53379	4d3d20b8-e6f9- 4637-a789- bb526a005ee1
Total Event Count	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Size (MB)	0.01	0.02	0.02	0.02	0.08	0.02	0.10	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02
Cont or Event	Continuous	None	Continuous	Continuous	Discrete Event	Continuous	Continuous	Continuous	Continuous	Continuous	None	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Side	Right	Right	Right	Right	Right	Right	Right	Right	Left	Left	Right	Right	Right	Right	Right	Right	Right
Subject	Rafael	Martin	Rafael	Rafael	Rafael	Rafael	Rafael	Rafael	Martin	Martin	Martin	Martin	Rafael	Rafael	Rafael	Rafael	Rafael
Туре	Train	Train	Train	Train	Train	Test	Train	Train	Train	Train	Train	Train	Train	Train	Test	Train	Train

▼ Project Pipeline

dsk.pipeline = 'Pipeline Final'

▼ Feature Generator

pd.set_option("display.max_rows",150)
dsk.list_functions(qgrid=False).head(100)

	NAME	TYPE	SUBTYPE	DESCRIPTION	KP FUNCTION
0	Add Convolve	Augmentation	Supervised	Add Convolve:\n Convolve (smoothing	False
1	Add Quantize	Augmentation	Supervised	Add Quantize:\n Quantize time serie	False
2	Add Noise	Augmentation	Supervised	Add Noise:\n Add random noise to ti	False
3	Add Drift	Augmentation	Supervised	Add Drift:\n The augmenter drifts t	False
4	Add Dropout	Augmentation	Supervised	Add Dropout:\n Dropout values of so	False
5	Add Pool	Augmentation	Supervised	Add Pool:\n Reduce the temporal res	False
6	Add Reverse	Augmentation	Supervised	Add Reverse:\n Reverse the time lin	False
7	Add TimeWarp	Augmentation	Supervised	Add Timewarp:\n Random time warping	False
8	PME	Classifier	Clustering	PME or pattern matching engine is a distance b	False
9	Decision Tree Ensemble	Classifier	Ensemble	The decision tree ensemble classifier is an en	False
10	Boosted Tree Ensemble	Classifier	Ensemble	The boosted tree ensemble classifier is an ens	False
11	Bonsai	Classifier	Ensemble	Bonsai is a tree model for supervised learning	False
12	TF Micro	Classifier	NN	The Tensorflow Micro Classifier uses Tensorflo	False
13	Global Peak to Peak of High Frequency	Feature Generator	Amplitude	Global peak to peak of high frequency. The hig	True
14	Global Peak to Peak of Low Frequency	Feature Generator	Amplitude	Global peak to peak of low frequency. The low	True
15	Max Peak to Peak of first half of High Frequency	Feature Generator	Amplitude	Max Peak to Peak of first half of High Frequen	True
16	Global Peak to Peak	Feature Generator	Amplitude	Global Peak to Peak of signal.\n\n Args:\n	True
17	Global Min Max Sum	Feature Generator	Amplitude	This function is the sum of the maximum and mi	True
18	Total Area		Area	Total area under the signal. Total area = sum(True
19	Absolute Area	Feature Generator	Area	Absolute area of the signal. Absolute area = s	True
20	Total Area of Low Frequency	Feature Generator	Area	Total area of low frequency components of the	True
21	Absolute Area of Low Frequency	Feature Generator	Area	Absolute area of low frequency components of t	True
22	Total Area of High Frequency	Feature Generator	Area	Total area of high frequency components of the	True
23	Absolute Area of High Frequency	Feature Generator	Area	Absolute area of high frequency components of	True
24	Absolute Area of Spectrum	Feature Generator	Area	Absolute area of spectrum.\n\n Args:\n	True
25	Two Column Mean Difference	Feature Generator	Column Fusion	Compute the mean difference between two column	True
26	Cross Column Mean Crossing Rate	Feature Generator	Column Fusion	Compute the crossing rate of column 2 of over	True
27	Abs Max Column		Column Fusion	Returns the index of the column with the max a	True
28	Cross Column Correlation	Feature Generator	Column Fusion	Compute the correlation of the slopes between	True
29	Min Column	Feature Generator	Column Fusion	Returns the index of the column with the min v	True
30	Two Column Min Max Difference	Feature Generator	Column Fusion	Compute the min max difference between two col	True
31	Two Column Peak To Peak Difference	Feature Generator	Column Fusion	Compute the max value for each column, then su	True
32	Max Column	Feature Generator	Column Fusion	Returns the index of the column with the max v	True
33	Cross Column Mean Crossing with Offset		Column Fusion	Compute the crossing rate of column 2 of over	True
34	Two Column Median Difference	Feature Generator Feature Generator	Column Fusion	Compute the median difference between two colu	True
35	Two Column Peak Location Difference	Feature Generator	Column Fusion	Computes the location of the maximum value for	True True
36 37	Average Energy	Feature Generator	Energy	Average Energy.\n\n 1) Calculate the elemen	True
38	Total Energy Average Demeaned Energy	Feature Generator	Energy Energy	Total Energy.\n\n 1) Calculate the element Average Demeaned Energy.\n\n 1) Calculate t	True
39	0 0,	Feature Generator	Frequency	Translates the data stream(s) from a segment i	True
40	Dominant Frequency	Feature Generator	Frequency	Calculate the dominant frequency for each spec	True
41	Spectral Entropy	Feature Generator	Frequency	Calculate the spectral entropy for each specif	True
42	Peak Frequencies		Frequency	Calculate the peak frequencies for each specif	True
43	Histogram		Histogram	Translates to the data stream(s) from a segmen	True
44	Histogram Auto Scale Range	Feature Generator	Histogram	Translates to the data stream(s) from a segmen	True
45	Average of Movement Intensity	Feature Generator	Physical	Calculates the average movment intensity defin	True
46	Variance of Movement Intensity	Feature Generator	Physical	Variance of movement intensity\n\n Args:\n	True
47	Average Signal Magnitude Area		Physical	Average signal magnitude area.\n \n m	True
48	Mean Difference	Feature Generator	Rate of Change	Calculate the mean difference of each specifie	True
49	Threshold Crossing Rate	Feature Generator	Rate of Change	The total number of threshold crossings are fo	True
50	Mean Crossing Rate	Feature Generator	Rate of Change	Calculates the rate at which mean value is cro	True
	7 0 i Di	5		0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	

51	Zero Grossing Hate	Feature Generator	Rate of Change	Calculates the rate at which zero value is cro	True
52	Sigma Crossing Rate	Feature Generator	Rate of Change	Calculates the rate at which standard deviatio	True
53	Second Sigma Crossing Rate	Feature Generator	Rate of Change	Calculates the rate at which 2nd standard devi	True
54	Threshold With Offset Crossing Rate	Feature Generator	Rate of Change	The total number of threshold crossings are fo	True
55	Downsample	Feature Generator	Sampling	This function takes `input_data` dataframe as	True
56	Downsample Average with Normalization	Feature Generator	Sampling	This function takes `input_data` dataframe as	True
57	Downsample Max With Normaliztion	Feature Generator	Sampling	This function takes `input_data` dataframe as	True
58	Difference of Peak to Peak of High Frequency b	Feature Generator	Shape	Difference of peak to peak of high frequency b	True
59	Ratio of Peak to Peak of High Frequency betwee	Feature Generator	Shape	Ratio of peak to peak of high frequency betwee	True
60	Shape Median Difference	Feature Generator	Shape	Computes the difference in median between the	True
61	Shape Absolute Median Difference	Feature Generator	Shape	Computes the absolute value of the difference	True
62	Kurtosis	Feature Generator	Statistical	Kurtosis is the degree of 'peakedness' or 'tai	True
63	Maximum	Feature Generator	Statistical	Computes the maximum of each column in 'column	True
64	Absolute Mean	Feature Generator	Statistical	Computes the arithmetic mean of absolute value	True
65	Mean	Feature Generator	Statistical	Computes the arithmetic mean of each column in	True
66	Variance	Feature Generator	Statistical	Computes the variance of desired column(s) in	True
67	Zero Crossings	Feature Generator	Statistical	Computes the number of times the selected inpu	True
68	Positive Zero Crossings	Feature Generator	Statistical	Computes the number of times the selected inpu	True
69	Negative Zero Crossings	Feature Generator	Statistical	Computes the number of times the selected inpu	True
70	Median	Feature Generator	Statistical	The median of a vector V with N items, is the	True
71	Linear Regression Stats	Feature Generator	Statistical	Calculate a linear least-squares regression an	True
72	Standard Deviation		Statistical	The standard deviation of a vector V with N it	True
73	Skewness	Feature Generator	Statistical	The skewness is the measure of asymmetry of th	True
74	Interquartile Range	Feature Generator	Statistical	The IQR (inter quartile range) of a vector V w	True
75	25th Percentile	Feature Generator	Statistical	Computes the 25th percentile of each column in	True
76	75th Percentile	Feature Generator	Statistical	Computes the 75th percentile of each column in	True
77	100th Percentile	Feature Generator	Statistical	Computes the 100th percentile of each column i	True
78	Minimum	Feature Generator	Statistical	Computes the minimum of each column in 'column	True
79		Feature Generator	Statistical	Computes the cumulative sum of each column in	True
80	Absolute Sum	Feature Generator	Statistical	Computes the cumulative sum of absolute values	True
81	Abs Percent Time Over Threshold	Feature Generator	Time	Percentage of absolute value of samples in the	True
82	Average Time Over Threshold	Feature Generator	Time	Average of the time spent above threshold for	True
83	Duration of the Signal		Time	Duration of the signal. It is calculated by di	True
84	Percent Time Over Zero		Time	Percentage of samples in the series that are p	True
85	Percent Time Over Sigma		Time	Percentage of samples in the series that are a	True
86	Percent Time Over Second Sigma	Feature Generator	Time	Percentage of samples in the series that are a	True
87	Percent Time Over Threshold	Feature Generator	Time	Percentage of samples in the series that are a	True
88		Feature Generator	Transpose	Turns raw signal into a feature over a range.\	True
89	Interleave Signal	Feature Generator	Transpose	Turns raw signal into a feature over a range	True
90	Recursive Feature Elimination	Feature Selector	Supervised	This is a supervised method of feature selecti	False
91	Univariate Selection	Feature Selector	Supervised	Select features with the highest univariate (A	False
92	Tree-based Selection	Feature Selector	Supervised	Select features using a supervised tree-based	False
93	Information Gain	Feature Selector	Supervised	This is a supervised feature selection algorit	False
94	Custom Feature Selection	Feature Selector	Supervised	This is a feature selection method which allow	False
95	Custom Feature Selection By Index	Feature Selector	Supervised	This is a feature selection method which allow This is a feature selection method which allow	False
96	t-Test Feature Selector	Feature Selector	Supervised	This is a supervised feature selection algorit	False
97	Variance Threshold	Feature Selector	Unsupervised	Feature selector that removes all low-variance	False
98	Correlation Threshold	Feature Selector	Unsupervised	This is an unsupervised feature selection algo	False
99	Undersample Majority Classes	Sampler	Balance Data		False
99	Ondersample Majority Classes	Jampier	DaidHUE DAIA	Create a balanced data set by undersampling th	raise

```
dsk.pipeline.add_feature_generator?
```

Pipeline Datasets

```
dsk.list_queries()
```

```
Name
                            Created
                                                            UUID
       Final reduced 2021-07-31 22:17:56 1bf06b9f-5d8c-4872-b049-48c727738627
     1 Continuous Final 2021-07-31 20:54:37 6f4da48d-4b60-4c81-be9c-939c3ed1202a
              Events 2021-07-31 03:35:41 7712f087-2631-415e-8204-32a8fc76072c
        Discrete Event 2021-07-31 02:42:44 7c2de9e9-b85e-4d45-bd88-cb0c73aa4cf2
dsk.pipeline.reset()
dsk.pipeline.set_input_query("Continuous Final")
dsk.pipeline.describe()
         Name: Continuous Final
                                                     Type: query
print(dsk.snippets.Segmenter.Windowing())
    dsk.pipeline.add_transform("Windowing", params={"window_size": 250,
                                 "delta": 250.
                                 "train delta": 0,
                                 "return_segment_index": False,
                                 })
dsk.function_description("Windowing")
                               Class Rep accelx accely accelz
                        s01 Crawling 1
                                             377
                                                    569 4019
                        s01 Crawling
                                                          4051
                                             357
                                                   594
                        s01 Crawling
                                                   638
                                                           4049
                                             333
                                                   678
                        s01 Crawling
                                             340
                                                          4053
                                                   708
                        s01 Crawling
                                      1 372
1 410
                                                          4051
                        s01 Crawling
                                             410
                                                   733
                                                          4028
                        s01 Crawling 1 450
                                                   733 3988
                        s01 Crawling
                                             492
                                                   696
                        s01 Crawling
                                             518
                                                   677 3943
                                                   695
                        s01 Crawling
                                       1 528
                                                           3988
                                                   2558
                                                           4609
                  10
                        s01 Crawling
                                             -1
                  11
                        s01 Running
                                      1 -44 -3971
                                                           843
                        s01
                              Running
                                             -47 -3982
                  12
                                                           836
                  13
                        s01
                              Running
                                             -43 -3973
                                                           832
                  14
                        s01
                              Running
                                       1 -40 -3973
                                                           834
                  15
                        s01
                              Running
                                             -48 -3978
                                                           844
                        s01
                              Running
                                             -52 -3993
                        s01
                                             -64 -3984
                              Running
                  18
                              Running
                                             -64 -3966
                        s01
                                                           813
                  19
                        s01
                              Running
                                             -66 -3971
                                                           826
                  20
                        s01
                              Running
                                             -62 -3988
                                                           827
                  21
                        s01 Running
                                            -57 -3984
                                                           843
           >>> dsk.pipeline.set_input_data('test_data', df, force=True,
                             data_columns=['accelx', 'accely', 'accelz'],
                             group_columns=['Subject', 'Class', 'Rep'],
                             label_column='Class')
           >>> dsk.pipeline.add_transform('Windowing',
                                        params={'window_size' : 5,
                                                'delta': 5})
           >>> results, stats = dsk.pipeline.execute()
           >>> print results
```

```
out:
                                          Class Rep SegmentID Subject accelx accely accelz
                             Crawling 1 0 s01 377 569 4019
1 Crawling 1 0 s01 357 594 4051
2 Crawling 1 0 s01 357 594 4051
3 Crawling 1 0 s01 333 638 4049
3 Crawling 1 0 s01 340 678 4053
4 Crawling 1 1 s01 372 708 4051
5 Crawling 1 1 s01 410 733 4028
6 Crawling 1 1 s01 450 733 3988
7 Crawling 1 1 s01 450 733 3988
7 Crawling 1 1 s01 518 677 3943
9 Crawling 1 1 s01 528 695 3948
10 Running 1 1 s01 528 695 3988
10 Running 1 0 s01 -44 -3971 843
11 Running 1 0 s01 -47 -3982 836
12 Running 1 0 s01 -47 -3982 836
13 Running 1 0 s01 -43 -3973 832
14 Running 1 0 s01 -48 -3978 844
15 Running 1 1 s01 -64 -3984 821
16 Running 1 1 s01 -64 -3984 821
17 Running 1 1 s01 -64 -3986 813
18 Running 1 1 s01 -66 -3971 826
                                     Crawling 1 0 s01 377 569 4019
dsk.pipeline.add_transform("Windowing", params={"window_size":250, "delta":100,"train_delta":50})
dsk.pipeline.describe()

    Name: Continuous Final

       _____
                                                                                             Type: segmenter
                    group columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'segment uuid']
                    window size: 250
                    delta: 100
                    train delta: 50
                    return_segment_index: False
        ______
                                                                      "type": "mean", },)
                                                                     "type": "mean", },)
                                                                                             Type: segmenter
```

Adding Feature Mannually to the Dataset

```
dsk.pipeline.add_transform("Strip",params={"input_columns":["AccelerometerX","AccelerometerY","AccelerometerZ"],
dsk.pipeline.describe()
dsk.pipeline.add_transform("Strip",params={"input_columns":["GyroscopeX","GyroscopeY","GyroscopeZ"],
dsk.pipeline.describe()
    0. Name: Continuous Final

    Name: Windowing

          group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
          window_size: 250
          delta: 100
          train delta: 50
          return_segment_index: False
    Name: Strip
                                              Type: transform
         group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
input_columns: ['AccelerometerX', 'AccelerometerY', 'AccelerometerZ']
          type: mean
    0. Name: Continuous Final
    ______
    _____

    Name: Windowing

                                        Type: segmenter
    -----
          group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
          window_size: 250
          delta: 100
          train delta: 50
          return segment index: False
    _____
    Name: Strip
                                           Type: transform
          group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
          input_columns: ['GyroscopeX', 'GyroscopeY', 'GyroscopeZ']
          type: mean
```

```
    Adding Features with Feature Generator (Rate of Change & Statistical)

 dsk.pipeline.add feature generator?
 sensor_columns = ['AccelerometerX', 'AccelerometerY', 'AccelerometerZ', 'GyroscopeX', 'GyroscopeX']
 dsk.pipeline.add_feature_generator([
                          { 'subtype call': 'Rate of Change' },
                          {'subtype_call':'Statistical'},
                          {"name":"MFCC",
                           "params": {
                             "columns":sensor_columns,
                             "sample rate":100,
                             "cepstra_count":10,
                          }},
                          function_defaults={'columns':sensor_columns},
 fv, s = dsk.pipeline.execute()
    Executing Pipeline with Steps:

    Name: Continuous Final

                                         Type: query
    _____
                                    Type: segmenter
    Name: Strip
    ______
     Name: generator set
    Results Retrieved... Execution Time: 0 min. 0 sec.

    Features Added

 dsk.pipeline.describe()
     0. Name: Continuous Final
        -----
    ______

    Name: Windowing Type: segmenter

    ______
         group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
          window_size: 250
         delta: 100
         train_delta: 50
         return segment index: False

    Name: Strip Type: transform

    _____
         group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
         input_columns: ['GyroscopeX', 'GyroscopeY', 'GyroscopeZ']
         type: mean
    Name: generator set
                                      Type: generatorset
    0. Name: MFCC
          1. Name: MFCC
          2. Name: MFCC
          3. Name: MFCC
          4. Name: MFCC
          5. Name: MFCC
          6. Name: Mean Difference
          7. Name: Threshold Crossing Rate
          8. Name: Mean Crossing Rate
          9. Name: Zero Crossing Rate
          10. Name: Sigma Crossing Rate
          11. Name: Second Sigma Crossing Rate
          12. Name: Threshold With Offset Crossing Rate
          13. Name: Kurtosis
          14. Name: Maximum
          15. Name: Absolute Mean
          16. Name: Mean
          17. Name: Variance
          18. Name: Zero Crossings
          19. Name: Positive Zero Crossings
          20. Name: Negative Zero Crossings
```

```
21. Name: Median
22. Name: Linear Regression Stats
23. Name: Linear Regression Stats
24. Name: Linear Regression Stats
25. Name: Linear Regression Stats
26. Name: Linear Regression Stats
27. Name: Linear Regression Stats
28. Name: Standard Deviation
29. Name: Skewness
30. Name: Interquartile Range
31. Name: 175th Percentile
32. Name: 75th Percentile
33. Name: 100th Percentile
34. Name: Minimum
35. Name: Sum
36. Name: Absolute Sum
group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
```

New Shape With The Added Features

fv.T.shape
(241, 67)
fv.T.head(100)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Cont or Event	Continuous															
SegmentID	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Side	Right															
Stride	Normal	Normal	Normal	Normal	Normal	Over Pronation	Over Pronation	Over Pronation	Over Pronation	Over Pronation	Over Supination	Over Supination	Over Supination	Over Supination	Over Supination	Pronation
Subject	Rafael															
Туре	Train															
	0dbde19a-	2a28cd32-	2d4326a4-	bed1d3fa-	cd3188d4-	1ecfeac3-	7933ef33-	9b7fc31a-	ca1aeefe-	d6c57bff-	4b0fd010-	6e43fb28-	7076c4db-	70982ffb-	7c2156e9-	3b475970-
segment_uuid	d028-47ae- 9642-	0193-4b52- a0ed-	61cd-415c- 9af5-	096a-4bb2- 859f-	7ea5-4b02- 86b8-	276e-412c- b229-	774b-44b9- 9b07-	39d9-4792- b228-	b19f-4263- a0dd-	5706-4488- 952a-	84b5-442c- 94ef-	9173-4567- 922d-	b5ce-431a- 8088-	6bb7-4e86- 9396-	3cc6-4e3d- bffa-	361c-4abc- a98f-
	ef056e4dcdf0	5e25da32832c	dc27933bbb0a	f45c391b3117	d04647388e01		51e21486dc38	cacac7e4c468		dc3e545ca8c3	297c963488d1	415e1b4d8149	400f01f5ba53	7709890b3a7e	b0f03da46a7e	c5f4d1b7214a 63
gen_0001_AccelerometerXmfcc_000000	330571	330408	322229	330449	335191	318918	328760	322643	328487	315458	330741	335700	336712	322798	336426	340719
gen_0001_AccelerometerXmfcc_000001	-96066	-72169	-91373	-91681	-74911	-75976	-76448	-79221	-97713	-81024	-93480	-78744	-88018	-89667	-67643	-76815
gen_0001_AccelerometerXmfcc_000002	-90505	-105532	-73317	-65779	-55228	-59155	-34823	-55773	-79142	-45242	-59635	-76818	-78884	-52125	-68111	-15089
gen_0001_AccelerometerXmfcc_000003	-34643	-39155	-51241	-69776	-22128	-29118	-50249	-36504	-10783	-13184	-12861	-38648	-16325	1615	-29380	-24479
gen_0001_AccelerometerXmfcc_000004	-9615	-14631	-26385	-43273	-26628	-10866	-31783	-30651	-22724	1722	-38167	-29796	-19397	-25190	-34902	-29206
gen_0001_AccelerometerXmfcc_000005	-56522	-17195	-42642	3125	-45874	2485	-12814	-27990	-15751	254	-15152	-44340	-2084	-15587	-13889	-53683
gen_0001_AccelerometerXmfcc_000006	-32336	-9984	-71405	-1239	-59447	-3130	-18701	651	-13495	-1742	26579	-38948	2551	-35223	-21067	-7665
gen_0001_AccelerometerXmfcc_000007	-28055	10705	-49373	-24692	-10367	-11177	-35335	-15648	-13187	-44072	-24159	-56940	12694	-47527	-3261	5003
gen_0001_AccelerometerXmfcc_000008	-7462	-8046	7528	-8849	17510	-29100	9365	17741	-320	-7639	-32380	-5327	-3423	5458	-4733	18654
gen_0001_AccelerometerXmfcc_000009	-21134	33507	-9233	9162	5130	5003	25766	-2531	-30100	51475	-29811	-3490	693	1444	-48310	-1687
gen_0002_AccelerometerYmfcc_000000	362054	359008	345784	362635	361120	354323	358411	356338	352847	343035	363472	362873	359853	355964	347679	347514
gen_0002_AccelerometerYmfcc_000001	-60355	-57397	-47997	-61148	-51068	-61235	-62379	-47782	-63120	-58326	-70393	-66055	-69462	-64354	-61071	-47107
gen_0002_AccelerometerYmfcc_000002	-38405	-20586	-12613	-26600	-39955	-45222	-26604	-31806	-27260	-50551	-29535	-14884	-37319	-41762	-51055	-14745
gen_0002_AccelerometerYmfcc_000003	-23059	-28082	-38464	-43181	-33373	-18341	-22307	-33101	-12900	-23326	-54298	-40174	-21215	-36682	-11635	-34253
gen_0002_AccelerometerYmfcc_000004	-7128	-57807	-27268	-69936	-24440	-17965	-28886	-28296	-25218	1535	-30943	-32707	-76675	-34993	-40363	-45663
gen_0002_AccelerometerYmfcc_000005	5684	-13782	-11805	-45119	2600	-1387	-38696	-40673	-49541	4380	-6219	-39377	-33569	-5480	-12781	-35529
gen_0002_AccelerometerYmfcc_000006	1322	34924	19483	-3502	-5281	14724	10812	-8988	3939	33341	3781	19213	27492	12759	28181	7944
gen_0002_AccelerometerYmfcc_000007	-2923	14919	12632	31182	-8111	11750	45158	45999	27654	35365	41507	59329	18641	46429	41723	10100
gen_0002_AccelerometerYmfcc_000008	-23784	-7330	9773	26094	11622	23156	3521	8925	-8728	21241	26788	24708	41338	37463	82103	23706
gen_0002_AccelerometerYmfcc_000009	-2254	28701	7625	-18465	19191	32248	-10735	2495	-20695	-13843	26032	-4472	13264	20393	21757	-34271
gen_0003_AccelerometerZmfcc_000000	358888	364146	349770	339836	355298	352063	340023	346833	344927	336231	357109	358663	356519	353718	352211	336780
gen_0003_AccelerometerZmfcc_000001	-59583	-74721	-84067	-42384	-36704	-81132	-52866	-53721	-72859	-59146	-84354	-69129	-62207	-62138	-46758	-53618
gen_0003_AccelerometerZmfcc_000002	-61659	-30949	-29252	-29063	-43972	-101671	-23833	-34072	-76851	-60282	-37311	-56958	-66808	-42221	-72264	-47099
gen_0003_AccelerometerZmfcc_000003	-49375	-25036	-57891	-37322	-34498	-65532	-50962	-36971	-5776	-32833	-36609	-50979	-39299	-33268	-8611	-14799
gen_0003_AccelerometerZmfcc_000004	-32922	-55792	-44857	-44718	-10511	-67790	-57501	-43704	-62746	-57251	-49158	-24871	-42690	-37216	-51971	-63142
gen_0003_AccelerometerZmfcc_000005	-46546	-19434	-43035	-51583	-24807	-53954	-95397	-53724	-84044	-86357	-52264	-14767	-82124	-54979	-60574	-53716
gen_0003_AccelerometerZmfcc_000006	-14753	20321	-22809	-46706	-10776	-1928	-82385	-15712	-51931	-24671	-11866	-1630	-36583	-18646	-34264	-1528
gen_0003_AccelerometerZmfcc_000007	12171	18815	7300	-31029	23112	-6983	1363	33694	-31870	-9055	8715	-34895	4029	-1815	-7086	-9988
gen_0003_AccelerometerZmfcc_000008	23376	7461	9982	-5195	-13064	-9554	25126	52707	20140	-13758	-5955	-2763	22925	-2312	1177	6724
gen_0003_AccelerometerZmfcc_000009	-11578	219	-24484	-15749	3189	-7626	-27049	35009	33634	-21318	-10769	18152	5372	-13600	-10746	-7985
gen_0004_GyroscopeXmfcc_000000	408617	411602	407686	400857	403183	404861	403496	397844	399902	401208	406038	396385	394367	401354	406669	397774
gen_0004_GyroscopeXmfcc_000001	-53967	-41599	-51958	-26909	-43613	-60173	-49811	-38841	-44236	-48649	-33941	-49885	-45668	-42453	-55542	-55909
gen_0004_GyroscopeXmfcc_000002	-30662	-41180	-17094	-13237	-38799	-50604	-19881	-28924	-33187	-7117	-43902	-24985	-31224	-22714	-10420	-5182
gen_0004_GyroscopeXmfcc_000003	-48879	-41889	-47893	-23849	-53491	-75396	-32800	-29698	-39305	-35473	-17951	-42452	-36214	-52132	-37077	-45749
gen_0004_GyroscopeXmfcc_000004	-64712	-56348	-58300	-43885	-64101	-88012	-48977	-60363	-78398	-51971	-60078	-44052	-76973	-50089	-27719	-44135
gen_0004_GyroscopeXmfcc_000005	-76234	-71181	-69491	-54110	-50377	-91862	-99253	-80681	-91197	-65373	-46596	-47227	-48811	-52871	-61788	-43290
gen_0004_GyroscopeXmfcc_000006	-30306	-27232	-25454	-43130	-52052	-45924	-49724	-52238	-55666	-17705	-35996	-9006	-65119	-45840	-27326	-32932
gen_0004_GyroscopeXmfcc_000007	9741	-8060	-257	-7722	-46266	-27081	-13084	-8665	-2154	48357	14427	33694	-90399	-11362	-7752	-16202
gen_0004_GyroscopeXmfcc_000008	-17566	4303	-19085	4787	17147	-12646	-17434	3995	2872	43539	34855	4215	-6659	9949	-9554	6207
gen_0004_GyroscopeXmfcc_000009	-24588	-31001	-53463	-34571	-752	-7904	-1664	-18834	-49465	-37691	-7222	-31579	-25825	-5535	1559	-20891
gen_0005_GyroscopeYmfcc_000000	356623	355832	359888	353534	360381	348314	347558	344254	353450	337316	358022	354611	357277	347027	361682	368757
gen_0005_GyroscopeYmfcc_000001	-69547	-64082	-83156	-57871	-55917	-95024	-67469	-40914	-84193	-47004	-55729	-67687	-66889	-64808	-60675	-74108

gen_0005_GyroscopeYmfcc_000002	-26096	-44201	-38102	-26333	-50616	-59266	-43447	-35851	-49731	-49071	-22205	-43607	-48608	-48128	-55773	-28752
gen_0005_GyroscopeYmfcc_000003	-38291	-17723	-92489	-23900	-44997	-50194	-42630	-37005	-28378	-30210	6338	-73753	-12387	-25153	-74728	-34794
gen_0005_GyroscopeYmfcc_000004	-12470	-13054	-62572	923	-16027	-4558	-33075	-53701	-54965	6141	-32193	-46629	-44850	-15214	-63434	-7948
gen_0005_GyroscopeYmfcc_000005	8227	-27285	-29967	19007	-6301	20910	-20648	-33511	-33314	-2699	-52289	-22683	-7810	-25636	-26227	-1764
gen_0005_GyroscopeYmfcc_000006	39134	35511	-22920	-27782	-10757	14901	-28872	-16708	-34879	14482	4852	-15237	29513	-29486	-382	2952
gen_0005_GyroscopeYmfcc_000007	3476	410	-22580	-31162	3137	2522	-42790	-55833	-23995	933	-29911	-26312	32607	-54613	-13987	-8070
gen_0005_GyroscopeYmfcc_000008	-56626	-19756	-8255	-32215	30552	8584	-2884	-8992	-52598	165	-21176	13911	-12789	-31191	-8376	-16487
gen_0005_GyroscopeYmfcc_000009	-40522	-27685	-24831	-13450	-41596	-21422	14084	-4772	-60384	-1133	-35496	-1399	-22913	-7280	3212	4263
gen_0006_GyroscopeZmfcc_000000	339095	344003	339778	333009	338488	345587	336952	337522	339745	340087	334674	336380	334793	332744	329191	356815
gen_0006_GyroscopeZmfcc_000001	-65024	-57661	-59572	-64744	-51707	-61117	-52966	-58559	-66171	-77161	-58246	-54285	-54857	-44177	-47977	-49770
gen_0006_GyroscopeZmfcc_000002	-58274	-54211	-24218	-57810	-44898	-37011	-36356	-33613	-45292	-21980	-56117	-10150	-57355	-14249	-44652	-11253
gen_0006_GyroscopeZmfcc_000003	-14821	-42079	-48072	-47554	-58776	-61767	-63934	-69542	-61060	-38408	-71163	-41873	-41973	-28467	-29235	-35133
gen_0006_GyroscopeZmfcc_000004	3390	-56320	-27024	-37362	-48380	-21522	-32749	-71631	-59043	-31526	-57327	-50248	-45538	-21515	-44684	-34916
gen_0006_GyroscopeZmfcc_000005	-16629	-67498	-53527	-39245	-33823	14347	-8368	-49114	-48638	-37441	-19451	-57285	-60213	-345	14954	-33889

fv.T.tail(100)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
gen_0081_AccelerometerZZeroCrossings	53	57	46	36	46	52	52	41	47	58	54	58	40	51	45	50	52	52	
gen_0082_GyroscopeXZeroCrossings	22	33	29	18	35	24	24	27	20	18	31	38	16	21	35	29	26	29	
gen_0083_GyroscopeYZeroCrossings	67	75	70	60	57	73	80	59	84	58	60	71	75	56	50	57	68	47	
gen_0084_GyroscopeZZeroCrossings	60	57	52	58	46	67	62	60	66	58	59	60	44	50	43	23	28	24	
gen_0085_AccelerometerXPositiveZeroCrossings	36	34	39	38	40	36	37	39	39	34	36	36	36	41	36	36	34	34	
gen_0086_AccelerometerYPositiveZeroCrossings	29	31	25	22	24	38	35	27	30	30	36	37	36	31	39	27	32	36	
gen_0087_AccelerometerZPositiveZeroCrossings	27	28	23	18	23	26	26	20	24	29	26	29	20	26	22	26	26	26	
gen_0088_GyroscopeXPositiveZeroCrossings	11	17	15	8	18	12	12	14	10	8	15	20	8	10	18	14	13	14	
gen_0089_GyroscopeYPositiveZeroCrossings	33	38	35	29	29	36	40	30	42	28	30	34	37	28	26	29	33	24	
gen_0090_GyroscopeZPositiveZeroCrossings	30	28	26	29	23	33	31	30	32	29	30	30	22	24	20	11	14	11	
gen_0091_AccelerometerXNegativeZeroCrossings	35	33	40	38	41	38	36	36	39	32	36	36	36	40	37	37	34	33	
gen_0092_AccelerometerYNegativeZeroCrossings	29	33	25	22	25	37	35	27	31	32	35	37	36	34	41	27	32	36	
gen_0093_AccelerometerZNegativeZeroCrossings	26	29	23	18	23	26	26	21	23	29	28	29	20	25	23	24	26	26	
gen_0094_GyroscopeXNegativeZeroCrossings	11	16	14	10	17	12	12	13	10	10	16	18	8	11	17	15	13	15	
gen_0095_GyroscopeYNegativeZeroCrossings	34	37	35	31	28	37	40	29	42	30	30	37	38	28	24	28	35	23	
gen_0096_GyroscopeZNegativeZeroCrossings	30	29	26	29	23	34	31	30	34	29	29	30	22	26	23	12	14	13	
gen_0097_AccelerometerXMedian	67	61	68	68.5	41.5	208	186	162.5	171.5	225	21	16.5	50	-17	-6	59.5	82	69.5	
gen_0098_AccelerometerYMedian	-1065.5	-1041.5	-1050	-1009	-1032	-988	-1003.5	-1018.5	-1001.5	-991	-997	-1018.5	-1002.5	-1038	-1007	-993.5	-1008	-985	
gen_0099_AccelerometerZMedian	251.5	247.5	229.5	245.5	256.5	118.5	203	175.5	183	133	244	188	223.5	230	201	219	232	236	
gen_0100_GyroscopeXMedian	420.5	179.5	198.5	433	-54	228.5	437	137	323	288	37	-23	386.5	276	178.5	169	235	62	
gen_0101_GyroscopeYMedian	23	35.5	-84	72.5	-46.5	-35	39	-13	8.5	-14.5	48	-44	65	38	-23.5	-30.5	-64	36.5	
gen_0102_GyroscopeZMedian	46.5	93	81	1	106.5	25.5	-8	14	-1.5	28.5	26	-1	-12	-2	-26	234.5	243.5	171.5	
gen_0103_AccelerometerXLinearRegressionSlope_0000	0.409442	0.34456	0.157505	-0.406847	0.123613	-0.0698479	-0.311631	0.400351	0.0143695	-0.158726	-0.0194058	-0.153205	0.0319789	0.582936	0.325769	-0.103222	-0.967542	0.509599	-0.2
gen_0103_AccelerometerXLinearRegressionIntercept_0001	20.6204	36.0702	66.8306	137.028	35.2062	197.86	216.594	95.8163	176.475	223.465	4.52402	9.09807	9.94263	-135.372	-90.9422	97.6671	135.359	-36.657	79
gen_0103_AccelerometerXLinearRegressionR_0002	0.118953	0.0922733	0.0543575	-0.124587	0.0378737	-0.0298264	-0.106523	0.171754	0.00497532	-0.0722154	-0.00664734	-0.0409584	0.00918335	0.187654	0.0884594	-0.0238045	-0.137194	0.114235	-0.05
gen_0103_AccelerometerXLinearRegressionStdErr_0003	0.217018	0.236106	0.183725	0.205748	0.207104	0.148639	0.18471	0.145816	0.183396	0.139206	0.185374	0.237324	0.221115	0.193755	0.232934	0.275273	0.443591	0.281417	0.2
gen_0104_AccelerometerYLinearRegressionSlope_0000	-0.652842	-0.711249	-1.3895	0.552391	-0.345383	-0.8354	1.04626	-1.08548	0.080919	-0.184068	-0.189959	-0.260136	1.07957	-0.171028	-0.79286	-0.575826	0.551134	0.07877	-0.07
gen_0104_AccelerometerYLinearRegressionIntercept_0001	-1051.05	-1069.69	-966.679	-1094.38	-1090.68	-969.709	-1197.69	-966.954	-1089.14	-1029.6	-1045.65	-1082.16	-1202.45	-1045.42	-985.653	-1035.03	-1114.93	-1097.14	-10
gen_0104_AccelerometerYLinearRegressionR_0002	-0.0996941	-0.106102	-0.212366	0.0729511	-0.0537304	-0.138824	0.165904	-0.178673	0.0139885	-0.0434758	-0.0280155	-0.0372219	0.17466	-0.0286943	-0.13622	-0.106648	0.0803575	0.014436	-0.01
gen_0104_AccelerometerYLinearRegressionStdErr_0003	0.413755	0.423267	0.406001	0.479545	0.407593	0.378423	0.394906	0.37957	0.367291	0.268592	0.430393	0.44348	0.386458	0.378325	0.366152	0.340901	0.434108	0.346452	0.3
gen_0105_AccelerometerZLinearRegressionSlope_0000	-0.262553	0.118281	0.387147	-0.244663	0.377588	0.0940173	0.179082	0.239034	0.175446	0.114408	-0.666893	1.19532	-0.0136233	-0.224167	0.424276	0.642417	1.19601	-0.607243	0.3
gen_0105_AccelerometerZLinearRegressionIntercept_0001	330.512	213.018	231.024	266.809	290.506	68.0028	180.784	127.832	117.601	152.384	347.532	33.0432	222.924	232.797	115.35	139.619	103.789	339.186	18
gen_0105_AccelerometerZLinearRegressionR_0002	-0.0346871	0.017639	0.0588776	-0.0442424	0.058246	0.0148189	0.0307902	0.04468	0.0327971	0.0268063	-0.106147	0.182497	-0.00212013	-0.0396612	0.0626298	0.145492	0.180625	-0.151181	0.07
gen_0105_AccelerometerZLinearRegressionStdErr_0003	0.480354	0.425744	0.416817	0.350815	0.410948	0.402827	0.369154	0.33938	0.339506	0.270918	0.3967	0.408927	0.408032	0.358624	0.429327	0.277401	0.413551	0.252126	0.2
gen_0106_GyroscopeXLinearRegressionSlope_0000	1.39734	-0.806297	-0.868409	-0.430535	1.16046	2.36654	-0.768193	2.49536	2.17563	0.391936	3.37045	0.0114501	2.26305	-3.16917	4.27359	2.74991	-0.878042	-0.0187716	0.05
gen_0106_GyroscopeXLinearRegressionIntercept_0001	-174.789	100.892	108.149	53.5056	-143.55	-295.038	94.944	-310.568	-271.166	-49.364	-419.021	-1.16954	-281.846	394.358	-531.753	-341.756	108.456	2.40506	-8.1
gen_0106_GyroscopeXLinearRegressionR_0002	0.0459089	-0.0245146	-0.0292402	-0.0146371	0.0450248	0.083021	-0.0271009	0.100025	0.0796216	0.0156881	0.128775	0.000453126	0.0951565	-0.125771	0.158365	0.123249	-0.0371633	-0.000916241	0.003
gen_0106_GyroscopeXLinearRegressionStdErr_0003	1.93073	2.08792	1.88509	1.86758	1.63498	1.80384	1.79929	1.57621	1.72961	1.58623	1.64815	1.60459	1.50333	1.58736	1.69197	1.406	1.49925	1.30096	1.
gen_0107_GyroscopeYLinearRegressionSlope_0000	0.519364	-0.00783789	0.89864	0.932667	0.914738	0.224034	-0.0610778	0.130674	0.39484	0.559174	0.383692	1.10564	1.32664	-0.219873	0.203717	0.251733	-0.549904	-0.205141	-0.6
gen_0107_GyroscopeYLinearRegressionIntercept_0001	-63.9128	1.29982	-111.153	-116.093	-113.577	-27.3562	8.03618	-16.1409	-48.4056	-68.6772	-47.4497	-136.749	-164.747	28.1422	-25.2987	-30.9728	68.991	25.7481	78
gen_0107_GyroscopeYLinearRegressionR_0002	0.0871932	-0.0010145	0.115603	0.134165	0.128201	0.0426573	-0.011359	0.0246412	0.0726293	0.1412	0.0602551	0.164695	0.198251	-0.0384034	0.0245363	0.0282162		-0.0250526	-0.07
gen_0107_GyroscopeYLinearRegressionStdErr_0003	0.376796	0.490591	0.490307	0.437438	0.449346	0.333195	0.341421	0.336644	0.344299	0.248951	0.40362	0.420473	0.416492	0.363292	0.527061	0.566296	0.665131	0.519802	
gen_0108_GyroscopeZLinearRegressionSlope_0000	-0.913795	-0.59439	-0.121848	-0.443276	-1.00758	-0.149276	0.661859	0.0396686	-0.658028	0.101876	-0.361381	-0.506975	-0.522693	-0.356327	-1.27182	1.05817	0.856659	0.737072	0.1
gen_0108_GyroscopeZLinearRegressionIntercept_0001	113.38	73.7575	14.666	55.7839	125.296	19.4728	-83.0374	-5.31474	81.4925	-12.9716	44.952	62.8544	64.6153	43.5187	157.374	-131.974			
gen_0108_GyroscopeZLinearRegressionR_0002	-0.203484	-0.102509	-0.0281039	-0.110648		-0.0280893		0.00917086	-0.135098	0.0238749	-0.0813912	-0.124084	-0.128876	-0.0841263	-0.296759	0.125367	0.0788468	0.084141	
gen_0108_GyroscopeZLinearRegressionStdErr_0003	0.279197	0.36626	0.275202	0.252831	0.276359	0.337326	0.268505	0.274658	0.306457	0.270883	0.281008	0.257439	0.255395	0.268008	0.259884	0.531748	0.687771	0.554285	0.6
gen_0109_AccelerometerXStd	248.406	269.485	209.113	235.67	235.544	169.005	211.126	168.221	208.433	158.622	210.683	269.946	251.309	224.186	265.773	312.938	508.956		31
gen_0110_AccelerometerYStd	472.59	483.776	472.193	546.462	463.902	434.285	455.12	438.439	417.47	305.546	489.337	504.367	446.069	430.146	420.049	389.659	494.967		
gen_0111_AccelerometerZStd	546.254	483.936	474.538	399.094	467.84	457.865	419.745	386.093	386.059	308.01	453.414	472.686	463.731	407.899	488.893	318.658	477.863		
gen_0112_GyroscopeXStd	2196.6	2373.65	2143.33	2122.75	1860.06	2057.18	2045.66	1800.41	1971.97	1802.98	1888.86	1823.63	1716.33	1818.49	1947.51	1610.2	1705.09		
gen_0113_GyroscopeYStd	429.868	557.56	560.998	501.686	514.933	379.023	388.052	382.714	392.334	285.798	459.552	484.486	482.931	413.188	599.188	643.855	756.967	590.943	62

gen_0114_Gyroscope2Std	324.089	418.461	312.893	289.119	322.392	383.525	308.874	312.164	351.512	307.948	320.431	294.86	292.699	305.677	309.292	609.14	784.097	632.191	78
gen_0115_AccelerometerXSkew	-0.625668	0.948534	0.173924	-0.0719813	0.261581	-0.630694	0.854035	0.411024	0.481925	-0.765358	-0.172651	-0.725966	-0.302312	-1.0083	-0.922119	-0.00976726	-1.02285	-1.03642	1.8
gen_0116_AccelerometerYSkew	0.221493	0.0539103	1.01509	0.805895	0.6484	-0.029751	0.508465	0.418117	0.185758	0.434383	0.901546	0.550052	1.26378	0.930171	1.08906	-0.284227	0.726283	0.487601	0.6
gen_0117_AccelerometerZSkew	0.043257	-0.1054	0.662632	-0.329531	0.95102	-0.858709	-0.0381277	-0.832546	-1.5526	-0.345356	0.360151	-0.427451	-0.371715	-0.123362	-0.575168	-0.614225	0.0554966	-0.831462	-0.0
gen_0118_GyroscopeXSkew	-0.402658	-0.343616	-0.0418966	-0.104486	-0.074723	-0.0948365	-0.457498	-0.355346	-0.280805	-0.418484	-0.236078	-0.528644	-0.428751	-0.470215	-0.326433	-0.166008	-0.0593829	-0.373852	-0.50
gen_0119_GyroscopeYSkew	0.0786959	-0.619565	0.726375	0.0493481	0.495227	0.160913	-0.61991	0.529404	0.691891	-0.279939	-0.557152	0.658237	0.822233	0.144418	0.671503	0.669738	0.108006	0.198271	0.:
gen_0120_GyroscopeZSkew	-0.670558	-0.761377	-0.416821	0.0138191	-0.962182	0.126925	0.276342	0.226512	0.722952	0.332561	0.543434	-0.621436	0.2808	0.040865	0.0231178	-0.788613	-1.10066	-1.16319	-0.7
gen_0121_AccelerometerXIQR	178.25	141	177	153.25	168.75	164.75	173.75	167.75	161.5	147.75	162	188.75	179.75	179.75	150.25	229.25	285.5	167.75	
gen_0122_AccelerometerYIQR	389.75	448	482.5	440.75	426.25	403.5	327.5	426.75	422.5	277.25	422.25	438.5	411.25	341.5	318.75	366	312	406	
gen_0123_AccelerometerZIQR	210.75	243	235.5	222.5	195	257.5	234.75	189.5	231.5	195.75	221.5	257.5	206.25	284	245.75	183.25	211.25	152.75	1
gen_0124_GyroscopeXIQR	3111.5	2036.25	2629.5	3118.25	1615.5	2666.5	1965.5	1603.5	2558.75	1665.5	1400.75	1650	2041	2531	1686.75	1576.25	1921	741.75	11

-1368 5

Feature Selection (using Variance Threshol, Correlation Threshold & t-Test Feature Selector) and Scaling the output data before training the model.

```
nen 0128 AccelerometerV25Percentile
                                                     -1359 95 -1409 5 -1446 75
                                                                                            -1383 5 -1349 75 -1969 5
dsk.pipeline.add_feature_selector([{'name':'Variance Threshold','params':{"threshold":0.05}},
                                 {'name':'Correlation Threshold', 'params': {"threshold": 0.95}},
                                 {'name':'t-Test Feature Selector', 'params':{"Feature_number":2}},
dsk.pipeline.add_transform(
    "Min Max Scale",)
dsk.pipeline.describe()

    Name: Windowing

            group_columns: ['Cont or Event', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
            window size: 250
            delta: 100
            train delta: 50
           return_segment_index: False
     Name: Strip
                                                    Type: transform
            group_columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject', 'Type', 'segment_uuid']
            input_columns: ['GyroscopeX', 'GyroscopeY', 'GyroscopeZ']
            type: mean
     3. Name: generator_set Type: generatorset
             0. Name: MFCC
            1. Name: MFCC
            2. Name: MFCC
            3. Name: MFCC
             4. Name: MFCC
             5. Name: MFCC
            6. Name: Mean Difference
             7. Name: Threshold Crossing Rate
             8. Name: Mean Crossing Rate
            9. Name: Zero Crossing Rate
            10. Name: Sigma Crossing Rate
            11. Name: Second Sigma Crossing Rate
            12. Name: Threshold With Offset Crossing Rate
            13. Name: Kurtosis
            14. Name: Maximum
            15. Name: Absolute Mean
            16. Name: Mean
            17. Name: Variance
            18. Name: Zero Crossings
            19. Name: Positive Zero Crossings
            20. Name: Negative Zero Crossings
            21. Name: Median
            22. Name: Linear Regression Stats
            23. Name: Linear Regression Stats
            24. Name: Linear Regression Stats
            25. Name: Linear Regression Stats
            26. Name: Linear Regression Stats
            27. Name: Linear Regression Stats
            28. Name: Standard Deviation
            29. Name: Skewness
            30. Name: Interquartile Range
            31. Name: 25th Percentile
            32. Name: 75th Percentile
            33. Name: 100th Percentile
           34. Name: Minimum
            35. Name: Sum
            36. Name: Absolute Sum
            group columns: ['Cont or Event', 'SegmentID', 'Side', 'Stride', 'Subject', 'Type', 'segment uuid']
```

▼ Executing the Pipeline

 fv_t , $s_t = dsk.pipeline.execute()$

Executing Pipeline with Steps:

0.	Name:	Continuous Final	Type:	query
1.	Name:	Windowing	Type:	segmenter
2.	Name:	Strip	Type:	transform
3.	Name:	generator_set	Type:	generatorset
4.	Name:	selector_set	Type:	selectorset
5.	Name:	Min Max Scale	Type:	transform

Results Retrieved... Execution Time: 0 min. 0 sec.

▼ Significant Features Selected (reduced to a few)

fv_t.T

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
gen_0099_AccelerometerZMedian	199	193	166	190	207	0	127	85	97	22	188	104	157	167	124	151	170
gen_0102_GyroscopeZMedian	125	156	148	96	165	112	90	104	94	114	112	94	87	94	78	249	255
gen_0133_AccelerometerX75Percentile	133	104	135	122	87	232	225	184	222	255	49	65	79	0	16	175	214
gen_0150_GyroscopeZminimum	187	198	243	233	199	217	206	251	216	249	235	229	248	238	219	28	28
Cont or Event	Continuous																
SegmentID	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Side	Right																
Stride	Normal	Normal	Normal	Normal	Normal	Over Pronation	Over Pronation	Over Pronation	Over Pronation	Over Pronation	Over Supination	Over Supination	Over Supination	Over Supination	Over Supination	Pronation	Pronation
Subject	Rafael																
Туре	Train																
segment_uuid	0dbde19a- d028-47ae- 9642- ef056e4dcdf0	2a28cd32- 0193-4b52- a0ed- 5e25da32832c	2d4326a4- 61cd-415c- 9af5- dc27933bbb0a	bed1d3fa- 096a-4bb2- 859f- f45c391b3117	cd3188d4- 7ea5-4b02- 86b8- d04647388e01	1ecfeac3- 276e-412c- b229- fc23dc180294	7933ef33- 774b-44b9- 9b07- 51e21486dc38	9b7fc31a- 39d9-4792- b228- cacac7e4c468	ca1aeefe- b19f-4263- a0dd- f1f5a527c85b	d6c57bff- 5706-4488- 952a- dc3e545ca8c3	4b0fd010- 84b5-442c- 94ef- 297c963488d1	6e43fb28- 9173-4567- 922d- 415e1b4d8149	7076c4db- b5ce-431a- 8088- 400f01f5ba53	70982ffb- 6bb7-4e86- 9396- 7709890b3a7e	7c2156e9- 3cc6-4e3d- bffa- b0f03da46a7e	3b475970- 361c-4abc- a98f- c5f4d1b7214a	c8b6cfe0- 290f-4b12- a0db- 63f764eb8c71

fv_t.T.shape

(11, 67)

dsk.pipeline.visualize_features(fv_t)

---- Summary ---Class Map: {'Normal': 0, 'Over Pronation': 1, 'Over Supination': 2, 'Pronation': 3, 'Supination': 4}
Train:
total: 53
by class: [6. 15. 12. 11. 9.]
Validate:
total: 14
by class: [3. 1. 4. 4. 2.]
Train:
total: 0
by class: [0. 0. 0. 0. 0.]

x_train.shape

(53, 4)

Creating the NN Aerchitecture Model in Tensorflow

```
from tensorflow.keras import layers
import tensorflow as tf

tf_model = tf.keras.Sequential()

tf_model.add(layers.Dense(11, activation='relu',kernel_regularizer='11',input_shape=(x_train.shape[1],)))
tf_model.add(layers.Dense(11, activation='relu',input_shape=(x_train.shape[1],)))
tf_model.add(layers.Dense(8, activation='relu',input_shape=(x_train.shape[1],)))
tf_model.add(layers.Dense(y_train.shape[1], activation='softmax'))

# Fitting the Model
tf_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

tf_model.summary()
train_history = {'loss':[],'val_loss':[],'accuracy':[],'val_accuracy':[]}

Model: "sequential_1"

Layer (type) Output Shape Param #
```

Layer (type) Output Shape Param # dense 3 (Dense) 55 (None, 11) dropout_2 (Dropout) (None, 11) 0 dense 4 (Dense) (None, 8) 96 dropout 3 (Dropout) (None, 8) dense 5 (Dense) (None, 5) 45 _______ Total params: 196 Trainable params: 196 Non-trainable params: 0

Trainning the Model

```
from IPython.display import clear_output
import sensiml.tensorflow.utils as sml_tf

num_iterations=30
epochs=100
batch_size=32

data = tf.data.Dataset.from_tensor_slices((x_train, y_train))
shuffle_ds = data.shuffle(buffer_size=x_train.shape[0], reshuffle_each_iteration=True).batch(batch_size)

for i in range(num_iterations):
    history = tf_model.fit( shuffle_ds, epochs=epochs, batch_size=batch_size, validation_data=(x_validate, y_validate), verbose=0)
    for key in train_history:
```

```
clear_output()
sml_tf.plot_training_results(tf_model, train_history, x_train, y_train, x_validate, y_validate)
```

train_nistory[key].extend(nistory.nistory[key])

Qualtizing the Model for TFLite

```
import numpy as np
def representative_dataset_generator():
 for value in x validate:
   yield[np.array(value, dtype=np.float32, ndmin=2)]
# Unquantized Model
converter = tf.lite.TFLiteConverter.from_keras_model(tf_model)
tflite model full = converter.convert()
print("Full Model Size", len(tflite_model_full))
# Quantized Model
converter = tf.lite.TFLiteConverter.from_keras_model(tf_model)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
converter.representative_dataset = representative_dataset_generator
tflite_model_quant = converter.convert()
print("Quantized Model Size", len(tflite_model_quant))
    INFO:tensorflow:Assets written to: /tmp/tmpbc2sh7ft/assets
    INFO:tensorflow:Assets written to: /tmp/tmpbc2sh7ft/assets
    Full Model Size 2600
    INFO:tensorflow:Assets written to: /tmp/tmpoyxd2z1b/assets
    INFO:tensorflow:Assets written to: /tmp/tmpoyxd2z1b/assets
    Ouantized Model Size 2768
```

▼ Uploading the Model Back to SensiML Project


```
Executing Pipeline with Steps:
                   Name: Continuous Final

    Name: Windowing

                                                                                            Type: segmenter
          _____
          _____
           Name: Strip
                                                                                               Type: transform
          _____
                   Name: generator_set

    Name: selector set

                                                                                           Type: selectorset
          _____
           Name: Min Max Scale
                      Classifier: TF Micro
                      Training Algo: Load Model TF Micro
                                   class map: {'Normal': 1, 'Over Pronation': 2, 'Over Supination': 3, 'Pronation': 4, 'Supination': 5}
                                   estimator_type: classification
                                  model json: {"class name": "Sequential", "config": {"name": "sequential 1", "layers": [{"class name": "InputLayer", "config": {"batch input shape": [null, 4], "dtype": "float32", "sparse": false, "ragged": false, "name": "dense
                                  train_history: {'loss': [148.83010864257812, 148.53164672851562, 136.0172576904297, 117.43523406982422, 114.4007797241211, 119.56187438964844, 121.40296173095703, 120.16360473632812, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.19879150390625, 104.32524871826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172, 107.198791826172,
                      Validation Method: Recall
          Results Retrieved ... Execution Time: 0 min. 0 sec.
  results.summarize()
          TRAINING ALGORITHM: Load Model TF Micro
          VALIDATION METHOD: Recall
          CLASSIFIER:
                                        TF Micro
          AVERAGE METRICS:
                                    F1_SCORE: 98.2 std: 0.00
                                  PRECISION: 98.8 std: 0.00
                               SENSITIVITY: 97.8 std: 0.00
          RECALL MODEL RESULTS : SET VALIDATION
          MODEL INDEX: Fold 0
                                    F1_SCORE: train: 98.22 validation: 98.22
                                SENSITIVITY: train: 97.78 validation: 97.78

    Confusion Matrix

      model = results.configurations[0].models[0]
     model.confusion matrix stats['validation']
          CONFUSION MATRIX:
                                NormalOver PronationOver Supination PronationSupination
                                                                                                                                              UNC Support Sens(%)
                Normal
                                               0.0
                                                             1.0
                                                                             0.0
                                                                                            0.0
                                                                                                                                0.0
                                                                                                                                               9.0
                                                                                                                                                             88.9
          Over Pronation
                                         0.0
                                                      16.0
                                                                        0.0
                                                                                     0.0
                                                                                                       0.0
                                                                                                                      0.0
                                                                                                                                    0.0
                                                                                                                                                   16.0
                                                                                                                                                                 100.0
                                          0.0
                                                         0.0
                                                                        16.0
                                                                                        0.0
                                                                                                        0.0
                                                                                                                        0.0
                                                                                                                                       0.0
                                                                                                                                                     16.0
                                                                                                                                                                   100.0
          Over Supination
                                  0.0
                                                  0.0
```

model.knowledgepack.save("TFu With SensiML Features") 0.8301886916160583, 0.8679245114326477. 0.9433962106704712, 0.8301886916160583, 0.849056601524353, 0.8867924809455872,

0.0

16

100.0

0.0

100.0

0.849056601524353,

Pronation Supination

PosPred(%)

0.0 15.0

94.1 100.0

0.0

15

0.0

17

0.0

11

11.0

100.0

0.0

0.0

0.0

0.0

15.0

11.0

Acc(%)

67

100.0

100.0

98.5

```
0.9056603908538818,
0.8301886916160583,
0.8679245114326477,
0.8867924809455872,
0.8679245114326477,
0.9245283007621765,
0.9056603908538818,
0.8113207817077637,
0.8679245114326477,
0.9245283007621765,
0.8867924809455872,
0.8301886916160583,
0.9245283007621765,
0.9056603908538818,
0.8113207817077637,
0.8867924809455872,
0.9056603908538818.
0.8867924809455872,
0.8301886916160583,
0.9056603908538818,
0.9433962106704712,
0.9056603908538818,
0.8301886916160583,
0.8679245114326477,
0.9056603908538818,
0.9056603908538818,
0.8679245114326477,
0.849056601524353,
0.8679245114326477,
0.9056603908538818,
0.849056601524353,
0.9433962106704712,
0.8679245114326477.
0.9245283007621765,
0.9056603908538818,
0.849056601524353,
0.7924528121948242,
0.849056601524353,
0.8113207817077637,
0.8679245114326477,
0.8679245114326477,
0.9056603908538818,
0.8679245114326477,
0.9056603908538818,
0.9056603908538818,
0.9056603908538818,
0.849056601524353,
0.9056603908538818,
0.8679245114326477,
0.849056601524353,
0.849056601524353,
0.9056603908538818,
```

Flashing

```
!pip install ggrid

!pip install bqplot

from sensiml import SensiML
from sensiml.widgets import *

dsk = SensiML()
FlashWidget(dsk, folder='pack').create_widget()

# Replace <Your Folder> with the directory folder path of your Knowledge Pack
# Note that the folder path needs double backslashes. See example:
# C:\Users\\YourName\\Documents\\notembooks\\knowledgepacks

/usr/local/lib/python3.7/dist-packages/sensiml/client.py:112: UserWarning: Config option `use_jedi` not recognized by `IPCompleter`.

mgc("sconfig Completer.use_jedi = False")
Platform Nordic Thingy

Binary

Flash Method

J-Link Flash
```

✓ 3s completed at 7:53 PM

• ×