Chapitre 12: Intégration: rappels et compléments

1 Rappels: intégration sur un segment

1.1 Primitive et intégrale sur un segment

Définition 1 (Primitive)

Soient f et F deux fonctions définies sur un intervalle I.

On dit que F est une **primitive de** f sur I si F est dérivable sur I de dérivée f:

$$\forall x \in I$$
, $F'(x) = f(x)$.

Remarque 1

Si une fonction f possède une primitive F sur un intervalle I, alors pour tout réel k, la fonction définie sur I par

$$x \in I \longrightarrow F(x) + k$$

est aussi une primitive de f sur I. De plus, toute primitive de f sur I est de cette forme.

Théorème 1

Toute fonction continue sur un intervalle I possède une primitive sur I.

Remarque 2

Une primitive F d'une fonction continue f sur I est donc une fonction de classe \mathscr{C}^1 sur I, en effet :

Proposition 1 (Théorème fondamental du calcul intégral)

Soient f une fonction définie sur un intervalle I et a, b deux éléments de I. Soit F une primitive de f sur I.

- 1. Le réel F(b) F(a) ne dépend pas du choix de la primitive F de f sur I.
- 2. On appelle **intégrale de** f **sur le segment** [a,b] et on note $\int_a^b f(t)dt$ ce réel :

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

Remarque 3

On conserve les notations de la proposition précédente.

1. On note souvent:

$$[F(t)]_a^b = F(b) - F(a) = \int_a^b f(t) dt.$$

2. Dans la notation $\int_{a}^{b} f(t)dt$, la variable t est muette, ainsi :

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = F(b) - F(a).$$

3. On a

$$\int_a^b f(t)dt = \mathrm{F}(b) - \mathrm{F}(a) = -(\mathrm{F}(a) - \mathrm{F}(b)) = -\int_b^a f(t)dt.$$

1

Proposition 2

Soient f, g deux fonctions continues sur un intervalle I, a, b, c trois éléments de I et λ un réel.

1. Linéarité: on a

$$\int_{a}^{b} (f(t) + \lambda g(t))dt = \int_{a}^{b} f(t)dt + \lambda \int_{a}^{b} g(t)dt.$$

2. Relation de Chasles: on a

$$\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt.$$

3. *Positivité* : si $a \le b$ alors

$$\forall t \in [a,b], f(t) \geqslant 0 \Longrightarrow \int_a^b f(t)dt \geqslant 0.$$

4. *Croissance*: si $a \le b$ alors

$$\forall t \in [a,b], f(t) \geqslant g(t) \Longrightarrow \int_a^b f(t)dt \geqslant \int_a^b g(t)dt.$$

5. Inégalité triangulaire:

$$\left| \int_{a}^{b} f(t)dt \right| \leq \int_{a}^{b} |f(t)|dt.$$

Proposition 3

Soit f une fonction **positive et continue** sur un segment [a,b] telle que $\int_a^b f(t)dt = 0$. Alors :

$$\forall x \in [a, b], \quad f(x) = 0.$$

Test 1 (Voir solution.)

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{1+t^2} dt$.

- 1. Justifier que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Soit $n \in \mathbb{N}$. Montrer que pour tout $t \in [0,1]$, $0 \le \frac{t^n}{1+t^2} \le t^n$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n+1}$.
- 4. Monter que $(I_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

Extension aux fonctions continues par morceaux

- Soit f une fonction définie sur un segment [a,b]. On dit que f est **continue par morceaux** sur [a,b] s'il existe une subdivision $a_0 = a < a_1 < \cdots < a_n = b$ de [a,b] telle que les restrictions de f à chaque intervalle ouvert $]a_i, a_{i+1}[$ admettent un prolongement par continuité à l'intervalle fermé $[a_i, a_{i+1}]$.
- Pour une telle fonction continue par morceaux f, on définit l'intégrale de f sur [a,b] par

$$\int_{a}^{b} f(t)dt = \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i+1}} f(t)dt.$$

• La proposition 2 reste vraie pour les fonctions continues par morceaux.

Remarque 4

Une fonction continue par morceaux sur [a,b] est donc une fonction qui est continue sur [a,b] sauf éventuellement en un nombre fini de points en lesquels elle admet tout de même des limites finies à droite et à gauche.

2

La fonction	n partie entière f	est continue par	morceaux sur	[0,2].	
Intégrale d	le f sur [0,2].				
Tittegrate d	[0,2].				
1					

1.2 Techniques de calcul

► Calcul de primitives « à vue ».

Fonction f	Une primitive de f	sur l'intervalle :
$x \longmapsto a, a \in \mathbb{R}$	$x \longmapsto ax$	R
$x \longmapsto x^n, n \in \mathbb{N}$	$x \longmapsto \frac{x^{n+1}}{n+1}$	R
$x \longmapsto x^a, a \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{x^{a+1}}{a+1}$	R*
$x \longmapsto \frac{1}{x}$	$x \longmapsto \ln(x)$	ℝ*
$x \longmapsto e^x$	$x \longmapsto e^x$	R

TABLE 1 – Primitives usuelles

Fonction f	Une primitive de f	sur tout I tel que :
$x \longmapsto u'(x)u(x)^n, n \in \mathbb{N}$	$x \longmapsto \frac{u(x)^{n+1}}{n+1}$	<i>u</i> est dérivable sur I
$x \longmapsto u'(x)u(x)^a, a \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{u(x)^{a+1}}{a+1}$	u est dérivable et $u > 0$ sur I
$x \longmapsto \frac{u'(x)}{u(x)}$	$x \longmapsto \ln(u(x))$	u est dérivable et ne s'annule pas sur I
$x \longmapsto u'(x)e^{u(x)}$	$x \longmapsto e^{u(x)}$	<i>u</i> est dérivable sur I

TABLE 2 – Primitives de fonctions composées

Calculer $\int_0^1 \frac{t}{\sqrt{t^2+1}} dt$.

Test 2 (Voir solution.)

Calculer les intégrales suivantes :

$$1. \int_{e}^{3e} \frac{1}{x \ln(x)} dx.$$

$$2. \int_0^2 e^{2t-1} dt.$$

3.
$$\int_0^1 s(s^2+3)^2 ds.$$

► Intégration par parties.

Proposition 4 (Intégration par parties)

Soient u et v deux fonctions de classe \mathscr{C}^1 sur un segment [a,b]. Alors :

$$\int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt.$$

Exemple 3

Calculer $\int_{1}^{3} t^{2} \ln(t) dt$.

Test 3 (Voir solution.)

Soit $x \in]1, +\infty[$. Calculer $\int_1^x \ln(t) dt$.

► Changement de variables.

Proposition 5 (Changement de variables)

Soit u une fonction de classe \mathscr{C}^1 sur [a,b] et soit f une fonction continue sur u([a,b]). Alors

$$\int_{u(a)}^{u(b)} f(x)dx = \int_a^b f(u(t))u'(t)dt.$$

Exemple 4

Calculer $\int_1^2 \frac{dt}{e^t + 1}$ à l'aide du changement de variable $u = e^t$.

- 1. Transformer du avec la formule du = u'(t)dt.
- 2. Transformer l'expression sous l'intégrale.
- 3. Transformer les bornes.
- 4. Rédaction finale:

Test 4 (Voir solution.)

Soit f une fonction impaire continue $\sup \mathbb{R}$. Montrer que pour tout $a \ge 0$: $\int_{-a}^a f(t)dt = 0$. Indication: à l'aide d'un changement de variable, montrer que $\int_0^a f(t)dt = \int_{-a}^0 f(-t)dt$.

Test 5 (Voir solution.)

Soit f une fonction définie sur \mathbb{R}_+^* par :

$$\forall x \in \mathbb{R}^*_+, \quad f(x) = \int_{-\sqrt{x}}^{x^2} \frac{\ln(1+t^2)}{e^t} dt.$$

Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.

2 Intégrales impropres

2.1 Intégrales impropres en $\pm \infty$

Définition 2 (Convergence d'une intégrale impropre en $+\infty$)

Soit f une fonction continue sur un intervalle de la forme $[a, +\infty[$ où a est un réel.

• Si la limite suivante existe et est finie

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur** $[a, +\infty[$ et on la note $\int_{a}^{+\infty} f(t) dt$.

• Si la limite $\int_a^{+\infty} f(t)dt$ existe et est finie, on dira que l'intégrale impropre $\int_a^{+\infty} f(t)dt$ converge, sinon on dira qu'elle **diverge**.

De même:

Définition 3 (Convergence d'une intégrale impropre en $-\infty$)

Soit f une fonction continue sur un intervalle de la forme $]-\infty,b]$ où b est un réel.

• Si la limite suivante existe et est finie

$$\lim_{x \to -\infty} \int_{a}^{b} f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur**] $-\infty$, b] et on la note $\int_{-\infty}^{b} f(t)dt$.

• Si la limite $\int_{-\infty}^{b} f(t)dt$ existe et est finie, on dira que l'intégrale impropre $\int_{-\infty}^{b} f(t)dt$ converge, sinon on dira qu'elle **diverge**.

Méthode 1

Soit f définie sur un intervalle $[a, +\infty[$. Étudier la nature de l'intégrale impropre $\int_a^{+\infty} f(t)dt$, c'est déterminer si elle converge ou non, c'est-à-dire déterminer si

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

existe et est finie ou non. En pratique :

- 1. on commence par montrer que f est continue sur $[a, +\infty[$,
- 2. on introduit $x \in [a, +\infty[$ et on étudie si $\int_a^x f(t)dt$ admet une limite finie quand x tend vers $+\infty$.

6

On procède de manière analogue pour étudier la nature d'une intégrale de la forme $\int_{-\infty}^{b} f(t)dt$.

Exemple 5

1. Étudier la nature de $\int_1^{+\infty} \frac{1}{t} dt$.

2.	Étudier la nature de $\int_2^{+\infty} \frac{1}{t^2} dt$.
3.	Étudier la nature de $\int_0^{+\infty} e^{-t} dt$.
	J0

Plus généralement :

Exemples de référence

- 1. L'intégrale $\int_0^{+\infty} e^{-\lambda t} dt$ converge si et seulement si $\lambda > 0$.
- 2. Intégrale de Riemann en $+\infty$: pour tout réel c>0, l'intégrale $\int_c^{+\infty} \frac{1}{t^a} dt$ converge si et seulement si a>1.

Test 6 (Voir solution.)

Démontrer les critères de convergence des exemples de référence.

2.2 Intégrales impropres sur un intervalle]a, b] ou [a, b]

Définition 4 (Convergence d'une intégrale impropre)

Soient a, b deux réels avec a < b.

• Soit *f* une fonction continue sur [*a*, *b*[. Si la limite suivante existe et est finie

$$\lim_{x \to b^{-}} \int_{a}^{x} f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur** [a,b[et on la note $\int_a^b f(t)dt$. Dans ce cas on dira que l'intégrale impropre $\int_a^b f(t)dt$ **converge**, sinon on dira qu'elle **diverge**.

• Soit *f* une fonction continue sur] *a*, *b*]. Si la limite suivante existe et est finie

$$\lim_{x \to a^+} \int_x^b f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur**]a,b] et on la note $\int_a^b f(t)dt$. Dans ce cas on dira que l'intégrale impropre $\int_a^b f(t)dt$ **converge**, sinon on dira qu'elle **diverge**.

Méthode 2

Soit f définie sur un intervalle [a,b[. Étudier la nature de l'intégrale impropre $\int_a^b f(t)dt$, c'est déterminer si elle converge ou non, c'est-à-dire déterminer si

$$\lim_{x \to b^{-}} \int_{a}^{x} f(t) dt$$

existe et est finie ou non. En pratique :

- 1. on commence par montrer que f est continue sur [a, b],
- 2. on introduit $x \in [a, b[$ et on étudie si $\int_a^x f(t)dt$ admet une limite finie quand x tend vers b^- .

On procède de manière analogue pour étudier la nature d'une intégrale d'une fonction f définie sur a,b.

8

1. Étudier la nature de $\int_0^2 \frac{1}{x-2} dx$.

2.	Étudier la nature de	\int_{1}^{2}	$\frac{1}{\sqrt{t-1}}dt$	t.

Exemples de référence

- 1. L'intégrale $\int_0^1 \ln(t) dt$, impropre en 0, converge.
- 2. Intégrale de Riemann en 0: pour tout réel c > 0, l'intégrale $\int_0^c \frac{1}{t^a} dt$, impropre en 0, converge si et seulement si a < 1.

Test 7 (Voir solution.)

Démontrer le critère de convergence des intégrales de Riemann.

Soit f une fonction continue $\sup a,b$] et prolongeable par continuité en a. Alors l'intégrale $\int_a^b f(t)dt$ est convergente.

2.3 Extension au cas des fonctions ayant un nombre fini de points discontinuité

Définition 5 (Convergence d'une intégrale plusieurs fois impropre)

Soient $-\infty \le a < b \le +\infty$ et f une fonction continue sur]a, b[.

S'il existe $c \in]a,b[$ tel que les deux intégrales impropres $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent, on dit que

l'intégrale doublement impropre $\int_a^b f(t)dt$ est convergente et on note

$$\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt.$$

Sinon, on dira qu'elle diverge.

Remarque 5

En conservant les notations de la définition, les intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ sont des intégrales impropres respectivement en a et en b au sens des paragraphes précédents.

Méthode 3

Soit f définie sur un intervalle]a,b[. Étudier la nature de l'intégrale impropre $\int_a^b f(t)dt$, c'est déterminer si elle converge ou non. En pratique on prend n'importe quel $c \in]a,b[$ et on étudie la nature des intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ avec les méthodes précédentes.

Exemple 8

1. Étudier la nature de $\int_0^{+\infty} \frac{1}{t^2} dt$.

2. Étudier la nature de $\int_{-\infty}^{+\infty} e^{-|t|} dt$.

Proposition 6 (Propriétés des intégrales impropres)

Soient $-\infty \le a < b \le +\infty$ et f, g deux fonctions continues sur]a,b[. Soient $c \in]a,b[$ et λ un réel.

1. Linéarité: si $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ convergent alors $\int_a^b (f(t) + \lambda g(t))dt$ converge et

$$\int_{a}^{b} (f(t) + \lambda g(t)) dt = \int_{a}^{b} f(t) dt + \lambda \int_{a}^{b} g(t) dt.$$

2. Relation de Chasles : si $\int_a^b f(t)dt$ converge alors $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent et

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt.$$

- 3. *Positivité* : si f est positive sur]a,b[et que $\int_a^b f(t)dt$ converge alors $\int_a^b f(t)dt \ge 0$.
- 4. Si f est positive sur]a,b[et que $\int_a^b f(t)dt$ converge alors

$$\int_{a}^{b} f(t)dt = 0 \Longrightarrow \forall t \in]a, b[, f(t) = 0.$$

Méthode 4 (Techniques de calcul)

On peut utiliser les techniques de calcul comme les primitives « à vue », le changement de variable ou l'intégration par parties pour calculer des intégrales impropres :

- 1. on se ramène à une intégrale sur un segment (par exemple, pour une fonction continue sur [a,b[avec une impropreté en b, on considère $x \in [a,b[$ et on s'intéresse à l'intégrale sur le segment [a,x]);
- 2. on utilise la technique voulue (primitive « à vue », le changement de variable ou l'intégration par parties) dans cette intégrale sur un segment;
- 3. on passe à la limite (dans l'exemple, quand x tend vers b^-).

1. Étudier $\int_0^{+\infty} \frac{e^t}{(1+e^t)^3} dt.$

2. Étudier $\int_0^1 \ln(t) dt$.

3. Étudier $\int_0^1 \frac{e^{-\frac{1}{t}}}{t^2} dt$ avec le changement de variable $u = \frac{1}{t}$.

Test 8 (Voir solution.)

Déterminer la nature, et le cas échéant la valeur, des intégrales suivantes.

1. $\int_0^{\sqrt{2}} \frac{t}{\sqrt{2-t^2}} dt;$ 2. $\int_0^{+\infty} ue^{-u} du;$ 3. $\int_1^{+\infty} \frac{\ln(t)}{t^2} dt \text{ en posant } u = \ln(t).$

$$1. \int_0^{\sqrt{2}} \frac{t}{\sqrt{2-t^2}} dt;$$

$$2. \int_0^{+\infty} ue^{-u} du;$$

3.
$$\int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt \text{ en posant } u = \ln(t).$$

3 Convergence des intégrales de fonctions positives.

Proposition 7

• Soient $a < b \le +\infty$ et f une fonction continue **positive** sur [a,b[. L'intégrale $\int_a^b f(t)dt$ converge si et seulement si $x \mapsto \int_a^x f(t)dt$ est majorée sur [a,b[.

• Soient $-\infty \le a < b$ et f une fonction continue **positive** sur]a,b]. L'intégrale $\int_a^b f(t)dt$ converge si et seulement si $x \mapsto \int_x^b f(t)dt$ est majorée sur]a,b].

Remarque 6

Il s'agit d'une conséquence du théorème de la limite monotone : la fonction $x \mapsto \int_a^x f(t)dt$ (resp. $x \mapsto \int_x^b f(t)dt$) est croissante sur [a,b[(resp. décroissante sur]a,b]).

Proposition 8 (Comparaison par inégalité)

• Soient $a < b \le +\infty$ et f, g deux fonctions continues sur [a,b[et **positives au voisinage de** b telles que, au voisinage de $b: 0 \le f \le g$.

1. Si $\int_{a}^{b} g(t)dt$ converge alors $\int_{a}^{b} f(t)dt$ converge.

2. Si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.

• Soient $-\infty \le a < b$ et f, g deux fonctions continues sur]a,b] et **positives au voisinage de** a telles que, au voisinage de a: $0 \le f \le g$.

1. Si $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.

2. Si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.

Remarque 7

Dire qu'au voisinage de b on a $0 \le f \le g$ signifie :

Exemple 11

Étudier la nature de $\int_1^{+\infty} \frac{e^{-t}}{t^2} dt$.

Déterminer la nature des intégrales suivantes.

$$1. \int_{1}^{+\infty} \frac{t}{t + \sqrt{t}} dt;$$

$$2. \int_1^{+\infty} \frac{dt}{e^t + e^{-t}}.$$

Proposition 9 (Comparaison par négligeabilité)

- Soient $a < b \le +\infty$ et f, g deux fonctions continues sur [a,b[et **positives au voisinage de** b telles que $f(x) = \underset{x \to b^-}{o}(g(x))$.
 - 1. Si $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.
 - 2. Si $\int_{a}^{b} f(t)dt$ diverge alors $\int_{a}^{b} g(t)dt$ diverge.
- Soient $-\infty \le a < b$ et f, g deux fonctions continues sur a0 et **positives au voisinage de** a telles que a1 et a2 et a3 et a4 et a5 et a6 et a7 et a8 et a9 et a
 - 1. Si $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.
 - 2. Si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.

Méthode 5 (Comparaison avec les exemples de référence)

En pratique, pour étudier la nature d'une intégrale d'une fonction positive, on cherche à la comparer avec l'un des exemples de référence. Par exemple, si f continue sur $[c, +\infty[(c>0)]$ et positive au voisinage de $+\infty$ (raisonnement à refaire à chaque fois qu'on l'utilise) :

- 1. $si \lim_{x \to +\infty} x^a f(x) = 0$ alors $f(x) = \int_{x \to +\infty}^{\infty} \left(\frac{1}{x^a}\right) donc \int_{c}^{+\infty} f(t) dt$ converge $si \ a > 1$ par comparaison avec une intégrale de Riemann;
- 2. $si \lim_{x \to +\infty} x^a f(x) = +\infty$ alors $\frac{1}{x^a} = o(f(x)) donc \int_c^{+\infty} f(t) dt$ diverge $si \ a \le 1$ par comparaison avec une intégrale de Riemann.

On peut raisonner de manière analogue pour une impropreté en 0.

Exemple 12

1. Étudier la nature de $\int_0^{+\infty} e^{-t^2} dt$.

Test 10 (Voir solution.)

Déterminer la nature des intégrales suivantes.

$$1. \int_2^{+\infty} \frac{1}{\ln(t)} dt;$$

2.
$$\int_0^1 \frac{|\ln(t)|}{t^2} dt$$
.

Proposition 10 (Comparaison par équivalence)

- Soient $a < b \le +\infty$ et f, g deux fonctions continues sur [a,b[et **positives au voisinage de** b telles que $f(x) \underset{x \to b^{-}}{\sim} g(x)$. Alors $\int_{a}^{b} g(t)dt$ et $\int_{a}^{b} f(t)dt$ sont de même nature.
- Soient $-\infty \le a < b$ et f, g deux fonctions continues sur]a,b] et **positives au voisinage de** a telles que $f(x) \underset{x \to a^+}{\sim} g(x)$. Alors $\int_a^b g(t)dt$ et $\int_a^b f(t)dt$ sont de même nature.

Méthode 6

En pratique, pour étudier la nature d'une intégrale d'une fonction positive, on cherche à en déterminer un équivalent simple.

1.	Déterminer la nature de	\int_{1}^{1}	$\frac{\sqrt{t}}{a^t-1}$	d t
		١.	$\rho \iota - 1$	

2. Déterminer la nature de $\int_{1}^{+\infty} (\sqrt{t+1} - \sqrt{t}) dt$.

Test 11 (Voir solution.)

1.
$$\int_0^1 \frac{1}{\sqrt{t^2 + t}} dt$$
;

Déterminer la nature des intégrales suivantes.

1.
$$\int_0^1 \frac{1}{\sqrt{t^2 + t}} dt;$$
2.
$$\int_0^1 \frac{\sqrt{t}}{e^t - 1 - t} dt.$$

$$3. \int_0^{+\infty} \frac{1}{t^2+1} dt.$$

Remarque 8

Tous les résultats énoncés dans cette partie pour les fonctions f continues positives se transposent pour les fonctions continues négatives en considérant -f (l'important est que la fonction soit de signe constant).

4 Convergence absolue

Définition 7 (Convergence absolue)

Soient $a < b \le +\infty$ (resp. $-\infty \le a < b$, resp. $-\infty \le a < b \le +\infty$). Soit f une fonction continue sur [a,b[(resp.]a,b[), resp.]a,b[).

On dit que l'intégrale impropre $\int_a^b f(t)dt$ est **absolument convergente** si l'intégrale impropre $\int_a^b |f(t)|dt$ converge.

Proposition 11

Soient $a < b \le +\infty$ (resp. $-\infty \le a < b$).

Soit f une fonction continue sur [a,b[(resp.]a,b]). Si $\int_a^b f(t)dt$ est absolument convergente alors elle est convergente. Dans ce cas :

$$\left| \int_a^b f(t) dt \right| \le \int_a^b |f(t)| dt.$$

Remarque 9

La réciproque est fausse : il existe des intégrales qui ne sont pas absolument convergentes mais qui sont convergentes.

5 Objectifs

- 1. Connaître les primitives de références.
- 2. Connaître la nature des intégrales impropres de référence.
- 3. Connaître par coeur les critères de convergence des intégrales impropres de fonctions continues positives (comparaison, négligeabilité, équivalence).
- 4. Savoir déterminer la nature d'une intégrale impropre d'une fonction continue positive en utilisant les critères de comparaison, négligeabilité, équivalence.
- 5. Savoir montrer qu'une intégrale d'une fonction de signe quelconque est convergente en utilisant la convergence absolue.
- 6. Savoir étudier une intégrale plusieurs fois impropre.
- 7. Savoir calculer une intégrale sur un segment avec une intégration par parties, un changement de variable. Appliquer ces techniques à l'étude d'intégrales impropres.