New Dimensional Space

Key points:

- During training in the new high dimensional space of $\emptyset(x)$ we want to compute γ_i through kernels, without ever computing any $\emptyset(x_i)$ or even w.
- We previously established that $w = \sum_{j=1}^{n} \alpha_j \phi(x_j)$, and $\gamma_i = 2(w^T \phi(x_i) y_i)$

$$\gamma_i = 2\left(\sum_{j=1}^n \alpha_j K_{ij} - y_i\right)$$

$$\alpha_i^{t+1} \leftarrow \alpha_i^t - 2s\left(\sum_{j=1}^n \alpha_j^t K_{ij} - y_i\right)$$

We have n such updates to do.

General Kernels

Popular Kernel Functions:

- Linear: $K(x,z) = x^T z$ (It's faster to use a kernel matrix if data dimension is high)
- Polynomial: $K(x,z) = (1 + x^T z)^d$
- Radial Basis Function (RBF) (aka Gaussian Kernel): $K(x,z) = e^{\frac{-||x-z||^2}{\sigma^2}}$
 - The RBF kernel is the most commonly used Kernel.
- Exponential Kernel: $K(x,z) = e^{\frac{-||x-z||}{2\sigma^2}}$
- Laplacian Kernel: $K(x,z) = e^{\frac{-|x-z|}{\sigma}}$
- Sigmoid Kernel: $K(x,z) = \tanh(ax^T + c)$

Kernel Functions

What function can be used as a kernel $K(\cdot,\cdot) \to \mathcal{R}$?

• The matrix $K(x_i, x_j)$ has to correspond to real inner-products after some transformation $x \to \phi(x)$.

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite iff $\forall \mathbf{q} \in \mathbb{R}^n$, $\mathbf{q}^{\top} A \mathbf{q} \geq 0$.

• The element $K_{ij} = \phi(x_i)^T \phi(x_j)$, so $K = \phi^T \phi$, where $\phi = [\phi(x_1), ..., \phi(x_n)]$ so K is p.s.d. because $q^T K q = (\phi^T q)^2 \ge 0$.

• If any matrix A is p.s.d., it can be decomposed as $A = \phi^T \phi$ for some ϕ .

Kernel Functions

Well-defined Kernels

- The most common kernels: Linear, RBF, Polynomial.
- Kernels built by recursively combining one or more of the following rules are called well-defined kernels:

1.
$$k(x,z) = x^T z$$

2.
$$k(x,z) = ck_1(x,z)$$

3.
$$k(x,z) = k_1(x,z) + k_2(x,z)$$

4.
$$k(x,z) = g(k(x,z))$$

5.
$$k(x,z) = k_1(x,z) k_2(x,z)$$

6.
$$k(x,z) = f(x)k_1(x,z)f(z)$$

7.
$$k(x,z) = e^{k_1(x,z)}$$

8.
$$k(x,z) = x^T A z$$

- Linear Kernel
- \circ $c \geq 0$
- \circ k_1 , k_2 are well-defined kernels
- \circ g is a polynomial function with positive coefficients
- \circ k_1 , k_2 are well-defined kernels
- o f is any function
- \circ k_1 is well-defined kernel
- o $A \ge 0$ is positive semi-definite

Well-defined Kernels

Theorem. The RBF kernel $k(x,z) = e^{\frac{-(x-z)^2}{\sigma^2}}$ is a well-defined kernel matrix.

Prove it!

•
$$k_1(x,z) = x^T z$$

•
$$k_2(x,z) = \frac{2}{\sigma^2} k_1(x,z) = \frac{2}{\sigma^2} x^T z$$

• $k_3(x,z) = e^{k_2(x,z)} = e^{\frac{2x^T z}{\sigma^2}}$

•
$$k_2(x,z) = e^{k_2(x,z)} = e^{\frac{2x^2z}{\sigma^2}}$$

well defined by rule 1

well defined by rule 2

•
$$k_3(x,z) = e^{k_2(x,z)} = e^{\frac{2x^Tz}{\sigma^2}}$$
 well defined by rule 7
• $k_4(x,z) = e^{\frac{-x^Tx}{\sigma^2}} k_3(x,z) e^{\frac{-z^Tz}{\sigma^2}} = e^{\frac{-x^Tx}{\sigma^2}} e^{\frac{2x^Tz}{\sigma^2}} e^{\frac{z^Tz}{\sigma^2}} = e^{\frac{-x^Tx + 2x^Tz - z^Tz}{\sigma^2}} = e^{\frac{-(x-z)^2}{\sigma^2}} = k_{RBF}(x,z)$

well defined by rule 6 with $f(x) = e^{\frac{-x^T x}{\sigma^2}}$

Kernelized an algorithm

- (In practice) an algorithm can be kernelized in three steps:
 - Prove that the solution lies in the span of the training points (i.e. $w = \sum_{i=1}^{n} \alpha_i x_i$ for some α_i)
 - Rewrite the algorithm and the classifier so that all training or testing inputs x_i are **only accessed** in inner-products with other Inputs, e.g. $x_i^T x_i$.
 - Define a kernel function and substitute $k(x_i, x_i)$ with $x_i^T x_i$.

Kernelize Linear Regression

For linear regression, we try to minimize the squared loss:

$$\min_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

- \circ The hyperplane is defined by w.
- O When testing, simply $h(x) = w^T x$.
- Since $X = [x_1, ..., x_n]$ and $y = [y_1, ..., y_n]^T$, the closed form solution based on OLS can be written in closed form: $w = (XX^T)^{-1}Xy$

Kernelize Linear Regression

• Recap from last lecture that the solution w is a linear combination of training inputs

$$w = \sum_{i=1}^{n} \alpha_i x_i = X \vec{\alpha}$$

- α must always exist if the loss is minimized by gradient descent and the initial vector is set to $\vec{0}$.
- During testing, a test point z is only accessed through inner-products with training inputs

$$h(z) = w^T z = \sum_{i=1}^n \alpha_i x_i^T z$$

Kernelize Linear Regression

Theorem. Kernelized ordinary least squares has the solution $\vec{\alpha} = K^{-1}y$

Proof

```
X\vec{\alpha} = w = (XX^T)^{-1}Xy | least square results (X^TX)(X^TX)\vec{\alpha} = X^T(XX^T(XX^T)^{-1})Xy | multiply from left by X^TXX^T K^2\vec{\alpha} = Ky | substitute K = X^TX | multiply from left by (K^{-1})^2
```

Kernel regression can be extended to the kernelized version of Ridge regression. The solution is $\vec{\alpha} = (K + \tau^2 I)^{-1} y$ In practice a small value of $\tau^2 > 0$ increases stability, especially if K is invertible.

Kernelize SVM

The **primal** SVM is a quadratic programming problem:

$$\min_{w,h} \mathbf{w}^T \mathbf{w} + C \sum_{i=1} \xi_i$$

s.t.
$$\forall i, \ y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$

 $\xi_i \ge 0$

The **dual** form (not required for understanding)

$$\min_{\alpha_1,...,\alpha_n} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K_{ij} - \sum_{i=1}^n \alpha_i$$

$$\mathbf{s.t.} 0 \le \alpha_i \le C$$

$$\sum_{i=1}^n \alpha_i y_i = 0$$

Kernelize SVM

• We have
$$\mathbf{w} = \sum_{i=1}^n \alpha_i y_i \phi(\mathbf{x}_i)$$

We never compute this

- And $h(\mathbf{x}) = sign\left(\sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x_i}, \mathbf{x}) + b\right)$
- For the primal formulation, only support vectors satisfy the constraint with equality $y_i(\mathbf{w}^T\phi(x_i) + b) = 1$.
- In the dual formulation, the support vectors will have $\alpha_i > 0$ and other training inputs have $\alpha_i = 0$.
- During test, only need to compute the sum in h(x) over the support vectors and all the others with $\alpha_i = 0$ can be <u>discarded</u> after training.

Kernelize SVM

- Solving b for classification:
 - For support vectors, we have $lpha_i>0$. Then

$$y_i(\mathbf{w}^T \phi(x_i) + b) = 1 \qquad y_i(\mathbf{w}^T \phi(x_i) + b) = 1$$
$$y_i\left(\sum_j y_j \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) + b\right) = 1 \quad y_i\left(\sum_j y_j \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) + b\right) = 1$$
$$y_i - \sum_j y_j \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) = b \quad y_i - \sum_j y_j \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) = b$$

Such that we can solve for b from the support vectors.

Kernel SVM vs. nearest neighbor

• For binary classification problem $(y_i \in \{+1, -1\})$, we can write the decision function for a test point z as

$$h(\mathbf{z}) = sign\left(\sum_{i=1}^{n} y_i \delta^{nn}(\mathbf{x}_i, \mathbf{z})\right)$$

where $\delta^{nn}(\mathbf{z}, \mathbf{x}_i) \in \{0, 1\}$ with $\delta^{nn}(\mathbf{z}, \mathbf{x}_i) = 1$ only if x_i is one of the k nearest neighbors of test point z.

The SVM decision function

$$h(\mathbf{z}) = sign\left(\sum_{i=1}^{n} y_i \alpha_i k(\mathbf{x}_i, \mathbf{z}) + b\right)$$

is actually a soft version of KNN.

Kernel Method

• Once we construct the kernel space, rather than run SVM on original x_i , we can run it on $\Phi(x_i)$.

- o corresponding to find non-linear separator in input space
- What if $\Phi(x_i)$ really big and how can I construct it?
 - use Kernels to compute it implicitly!

Kernel Method

Find kernel K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

- Computing $K(x_i, x_j)$ should be efficient, much more so than computing $\Phi(x_i)$ and $\Phi(x_j)$. So we don't need to compute them \odot
- Use $K(x_i, x_j)$ in SVM algorithm (or other inner product place) rather than $\langle x_i, x_j \rangle$

Polynomial Kernel

• Let $\mathbf{x}_i = [x_{i1}, x_{i2}]$ and $\mathbf{x}_j = [x_{j1}, x_{j2}]$ Consider the following function:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$= (x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

$$= (x_{i1}^2x_{j1}^2 + x_{i2}^2x_{j2}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2})$$

$$= \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

where

$$\Phi(\mathbf{x}_i) = [x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2}]$$

$$\Phi(\mathbf{x}_j) = [x_{j1}^2, x_{j2}^2, \sqrt{2}x_{j1}x_{j2}]$$

Kernelization (one example)

$$\phi\phi^{T} = K = \begin{bmatrix} \phi(x_{1})^{T}\phi(x_{1}) & \phi(x_{1})^{T}\phi(x_{2}) & \phi(x_{1})^{T}\phi(x_{n}) \\ \phi(x_{2})^{T}\phi(x_{1}) & \phi(x_{2})^{T}\phi(x_{2}) & \vdots & \phi(x_{2})^{T}\phi(x_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi(x_{m})^{T}\phi(x_{1}) & \phi(x_{m})^{T}\phi(x_{2}) & \phi(x_{m})^{T}\phi(x_{n}) \end{bmatrix} = \begin{bmatrix} k(x_{1},x_{1}) & k(x_{1},x_{1}) & k(x_{1},x_{n}) \\ k(x_{2},x_{1}) & k(x_{2},x_{2}) & \vdots & k(x_{2},x_{n}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ k(x_{m},x_{1}) & k(x_{m},x_{2}) & k(x_{m},x_{n}) \end{bmatrix}$$

Suppose
$$x = [x_1, x_2]^T$$
, $\emptyset: x \to \emptyset(x) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$

Don't get confused here, $\emptyset(x_1)$ here x_1 is a training data point; for $[x_1^2, \sqrt{2}x_1x_2, x_2^2]$, x_1 is the first dimension.

$$\emptyset(x)^{T}\emptyset(z) = \begin{bmatrix} x_{1}^{2} \\ \sqrt{2}x_{1}x_{2} \\ x_{2}^{2} \end{bmatrix}^{T} \begin{bmatrix} z_{1}^{2} \\ \sqrt{2}z_{1}z_{2} \\ z_{2}^{2} \end{bmatrix} = x_{1}^{2}z_{1}^{2} + 2x_{1}x_{2}z_{1}z_{2} + x_{2}^{2}z_{2}^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2}$$

Polynomial Kernel

- Defined as $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$
 - $\circ \Phi(x)$ contains all monomials of degree d
 - o 10¹⁰ monomials of degree 5
 - \circ Never explicitly compute $\Phi(x)$
- Variation $K(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + 1)^d$
 - \circ adds all lower-order monomials (degrees 1, ..., d)

Kernel Trick

 Given an algorithm which is formulated in terms of a positive definite kernel K, one can construct an alternative algorithm by replacing K with another positive definite kernel K'

Gaussian Kernel

Also called Radial Basis Function (RBF) kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2\sigma^2}\right)$$

- \circ Has value 1 when $\mathbf{x}_i = \mathbf{x}_j$
- Value falls off to 0 with increasing distance
- o Need to do feature scaling **before** using Gaussian

Kernel

$$\ell_3 \circ$$

$$\boldsymbol{\theta} = [-0.5, 1, 1, 0]$$

Predict +1 if
$$\theta_0 + \theta_1 K(\mathbf{x}, \boldsymbol{\ell}_1) + \theta_2 K(\mathbf{x}, \boldsymbol{\ell}_2) + \theta_3 K(\mathbf{x}, \boldsymbol{\ell}_3) \geq 0$$

Imagine we've learned that:

$$\theta = [-0.5, 1, 1, 0]$$

Predict +1 if
$$\theta_0 + \theta_1 K(\mathbf{x}, \boldsymbol{\ell}_1) + \theta_2 K(\mathbf{x}, \boldsymbol{\ell}_2) + \theta_3 K(\mathbf{x}, \boldsymbol{\ell}_3) \geq 0$$

For \mathbf{x}_1 , we have $K(\mathbf{x}_1, \ell_1) \approx 1$, other similarities ≈ 0

$$\begin{aligned} \theta_0 + \theta_1(1) + \theta_2(0) + \theta_3(0) \\ &= -0.5 + 1(1) + 1(0) + 0(0) \\ &= 0.5 \geq 0 \text{ , so predict +1} \end{aligned}$$

Imagine we've learned that:

$$\boldsymbol{\theta} = [-0.5, 1, 1, 0]$$

Predict +1 if
$$\theta_0 + \theta_1 K(\mathbf{x}, \ell_1) + \theta_2 K(\mathbf{x}, \ell_2) + \theta_3 K(\mathbf{x}, \ell_3) \ge 0$$

For \mathbf{x}_2 , we have $K(\mathbf{x}_2, \ell_3) \approx 1$, other similarities ≈ 0

$$heta_0 + heta_1(0) + heta_2(0) + heta_3(1)$$

$$= -0.5 + 1(0) + 1(0) + 0(1)$$

$$= -0.5 < 0 \text{, so predict -1}$$

$$\theta = [-0.5, 1, 1, 0]$$

Predict +1 if
$$\theta_0 + \theta_1 K(\mathbf{x}, \ell_1) + \theta_2 K(\mathbf{x}, \ell_2) + \theta_3 K(\mathbf{x}, \ell_3) \ge 0$$

Rough sketch of decision surface

 $\ell_3 \circ$

Other Kernels

- Sigmoid Kernel $K(\mathbf{x}_i, \mathbf{x}_i) = \tanh(\alpha \mathbf{x}_i^T \mathbf{x}_i + c)$
 - o Neural networks use sigmoid as activation function
 - SVM with a sigmoid kernel is equivalent to 2-layer
 - Perceptron
- $K(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i^T \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$ Cosine Similarity Kernel
 - Common choice for text analysis
 - L2 norm projects vectors onto the unit sphere; their dot product is the cosine of the angle between the vectors.

Other Kernels

Chi-squared Kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = exp\left(-\gamma \sum_{k} \frac{(x_{ik} - x_{jk})^2}{x_{ik} + x_{jk}}\right)$$

- Chi-squared measures distance between probability distributions
- o Data is assumed to be non-negative, often with with L1 norm of 1.
- String kernel; Tree kernel; Graph kernel,....

Other Kernels

Chi-squared Kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = exp\left(-\gamma \sum_{k} \frac{(x_{ik} - x_{jk})^2}{x_{ik} + x_{jk}}\right)$$

- Chi-squared measures distance between probability distributions
- o Data is assumed to be non-negative, often with with L1 norm of 1.
- String kernel; Tree kernel; Graph kernel,....

Some Math about Kernels

What does it mean to be a kernel?

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$
 for some Φ

- What does it take to be a kernel?
 - o The Gram matrix $G_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$
 - Symmetric matrix
 - o Positive semi-definite matrix $z^T Gz \ge 0$ for every non-zero vector $z \in \mathbb{R}^d$