Major Project AI

October 13, 2022

```
[2]: import tensorflow as tf
     from keras.models import Sequential
     from keras.layers import Dense, Dropout, Conv2D, MaxPool2D, Flatten
     from keras import layers, models
     from tensorflow.keras.preprocessing.image import ImageDataGenerator
     from keras.preprocessing import image
     import matplotlib.pyplot as plt
     import matplotlib.image as nping
     import matplotlib.pyplot as plt
     %matplotlib inline
     import random
     from tensorflow.keras.applications import InceptionV3
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import BatchNormalization, Conv2D, MaxPooling2D,
      →Activation, Flatten, Dropout, Dense
     from tensorflow.keras.preprocessing.image import load_img,img_to_array
[3]: #Accesing Google drive
[4]: from google.colab import drive
     drive.mount('/content/drive')
    Mounted at /content/drive
[5]: !unzip /content/drive/MyDrive/drive-download-20220930T072955Z-001.zip
    Archive: /content/drive/MyDrive/drive-download-20220930T072955Z-001.zip
      inflating: Validation.zip
      inflating: Training.zip
[]: !unzip /content/Training.zip
[]: !unzip /content/Validation.zip
[8]: #Training Data
```

```
[9]: epochs=50
      lr=1e-3
      batch_size=128
      data=[]
      labels=[]
[10]: size=224
[11]: train_datagen=ImageDataGenerator(horizontal_flip=True,width_shift_range=0.
       4, height_shift_range=0.4, zoom_range=0.3, rotation_range=20, rescale=1/255)
[12]: test_gen=ImageDataGenerator(rescale=1/255)
[13]: target_size=(size,size)
      target_size
[13]: (224, 224)
[14]: train_generator=train_datagen.flow_from_directory(directory="/content/
       aTraining",target_size=target_size,batch_size=batch_size,class_mode="binary")
     Found 47009 images belonging to 2 classes.
[15]: validation_generator=test_gen.flow_from_directory(directory="/content/
       →Validation",target_size=target_size,batch_size=batch_size,class_mode="binary")
     Found 11649 images belonging to 2 classes.
[16]: train_generator.class_indices
[16]: {'female': 0, 'male': 1}
[17]: len(train_generator.classes)
[17]: 47009
[18]: train_generator.class_mode
[18]: 'binary'
[19]: x,y=train_generator.next()
[20]: x[0].shape
[20]: (224, 224, 3)
[21]: x[0]
```

```
[21]: array([[[0.30090436, 0.13831134, 0.03921569],
              [0.3019608, 0.13725491, 0.03921569],
              [0.33054796, 0.16686305, 0.06576092],
              [0.86274517, 0.68235296, 0.5803922],
              [0.8523215, 0.67609876, 0.5762227],
              [0.8431373, 0.67058825, 0.57254905]],
             [[0.32226366, 0.16057092, 0.06170106],
              [0.34837404, 0.18366814, 0.08562892],
              [0.37564322, 0.21150817, 0.11175646],
              [0.86639935, 0.6860072, 0.58550805],
              [0.8590764, 0.6819534, 0.5828881],
              [0.84743124, 0.67488223, 0.576843 ]],
             [[0.33736065, 0.1765682, 0.07852898],
              [0.38823533, 0.22352943, 0.1254902],
              [0.39282152, 0.2282363, 0.12983501],
              [0.882353, 0.7019608, 0.60784316],
              [0.8740618, 0.69603854, 0.60073644],
              [0.854902, 0.68235296, 0.58431375]],
             ...,
             [[0.7607844 , 0.6
                                   , 0.52156866],
              [0.7607844 , 0.6
                                     , 0.52156866],
              [0.7607844 , 0.6
                                     , 0.52156866],
              [0.47450984, 0.19215688, 0.09411766],
              [0.50408185, 0.22172889, 0.12368967],
              [0.6420583, 0.35970533, 0.26166612]],
             [[0.7607844, 0.6
                                    , 0.52156866],
              [0.7607844 , 0.6
                                    , 0.52156866],
              [0.7607844 , 0.6
                                     , 0.52156866],
              [0.47450984, 0.19215688, 0.09411766],
              [0.4833754, 0.20102243, 0.10298321],
              [0.62135184, 0.33899888, 0.24095964]],
             [[0.7607844 , 0.6
                                   , 0.52156866],
              [0.7607844 , 0.6
                                   , 0.52156866],
              [0.7607844 , 0.6
                                   , 0.52156866],
              [0.47450984, 0.19215688, 0.09411766],
```

```
[0.47450984, 0.19215688, 0.09411766],
[0.6006453, 0.3182924, 0.22025318]]], dtype=float32)
```

[22]: #Building Model for Gender prediction

```
[23]: model=Sequential()
  model.add(InceptionV3(include_top=False,pooling="avg",weights="imagenet"))
  model.add(Flatten())

model.add(BatchNormalization())
  model.add(Dense(2048,activation="relu"))
  model.add(BatchNormalization())

model.add(Dense(1024,activation="relu"))
  model.add(BatchNormalization())

model.add(Dense(1,activation="sigmoid"))

model.layers[0].trainable=False
```

[24]: model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
inception_v3 (Functional)		21802784
flatten (Flatten)	(None, 2048)	0
<pre>batch_normalization_94 (Bat chNormalization)</pre>	(None, 2048)	8192
dense (Dense)	(None, 2048)	4196352
<pre>batch_normalization_95 (Bat chNormalization)</pre>	(None, 2048)	8192
dense_1 (Dense)	(None, 1024)	2098176
<pre>batch_normalization_96 (Bat chNormalization)</pre>	(None, 1024)	4096

```
dense_2 (Dense)
                          (None, 1)
                                              1025
    ______
    Total params: 28,118,817
    Trainable params: 6,305,793
    Non-trainable params: 21,813,024
[25]: model.compile(optimizer="adam",loss="binary_crossentropy",metrics=["accuracy"])
[26]: len((train_generator.filenames)),batch_size,len((train_generator.filenames))//
     ⇔batch_size
[26]: (47009, 128, 367)
[27]: model.fit(train_generator,steps_per_epoch=len(train_generator.filenames)//
     -batch_size,epochs=5,validation_data=validation_generator,validation_steps=len(validation_ge
     →filenames)//batch_size)
    Epoch 1/5
    accuracy: 0.8494 - val_loss: 0.2023 - val_accuracy: 0.9211
    accuracy: 0.8694 - val_loss: 0.2060 - val_accuracy: 0.9208
    accuracy: 0.8744 - val_loss: 0.2039 - val_accuracy: 0.9246
    accuracy: 0.8781 - val_loss: 0.2094 - val_accuracy: 0.9172
    Epoch 5/5
    367/367 [============ ] - 526s 1s/step - loss: 0.2814 -
    accuracy: 0.8834 - val_loss: 0.2456 - val_accuracy: 0.9015
[27]: <keras.callbacks.History at 0x7f820e76d610>
[29]: #Testing model by passing a random image
[28]: img_path="/content/Training/male/090648.jpg.jpg"
[29]: img=load_img(img_path,target_size=(size,size,3))
    plt.imshow(img)
```

[29]: <matplotlib.image.AxesImage at 0x7f817fe9eb10>


```
[30]: img=img_to_array(img)
      img
[30]: array([[[203., 108.,
                             64.],
              [203., 108.,
                             64.],
              [203., 108.,
                             64.],
              [ 47., 28.,
                             21.],
              [ 47., 28.,
                             21.],
                             21.]],
              [ 47.,
                      28.,
             [[203., 108.,
                             64.],
              [203., 108.,
                             64.],
              [203., 108.,
                             64.],
              ...,
                             21.],
              [ 47., 28.,
              [ 47.,
                      28.,
                             21.],
              [ 47.,
                      28.,
                             21.]],
             [[184., 87.,
                             44.],
                      87.,
              [184.,
                             44.],
              [184.,
                      87.,
                             44.],
              [ 40., 21.,
                             14.],
                             14.],
              [ 40., 21.,
```

```
[ 40., 21., 14.]],
            ...,
            [[224., 168., 119.],
             [224., 168., 119.],
             [224., 168., 119.],
             [107., 83., 71.],
             [107., 83.,
                           71.],
             [107., 83.,
                          71.]],
             [[244., 186., 138.],
             [244., 186., 138.],
             [244., 186., 138.],
             [132., 110., 99.],
             [132., 110.,
                          99.],
             [132., 110., 99.]],
             [[244., 186., 138.],
             [244., 186., 138.],
             [244., 186., 138.],
             [132., 110., 99.],
             [132., 110., 99.],
             [132., 110., 99.]]], dtype=float32)
[31]: img=img/255.0
     img=img.reshape(1,size,size,3)
[32]: img.shape
[32]: (1, 224, 224, 3)
[33]: res=model.predict(img)
     res
     1/1 [=======] - 2s 2s/step
[33]: array([[0.9878735]], dtype=float32)
[34]: train_generator.class_indices
[34]: {'female': 0, 'male': 1}
```

```
[35]: if res[0][0]<=0.5:
        prediction="women"
      else:
        prediction="men"
      print("prediction:",prediction)
     prediction: men
[36]: #predicting whole Dataset 1st validation data set
[37]: import matplotlib.pyplot as plt
      import matplotlib.image as nping
      import matplotlib.pyplot as plt
      import os
      import random
      import numpy as np
      import cv2
      import pandas as pd
      from tensorflow.keras.preprocessing.image import load_img,img_to_array
      directroy=r"/content/Validation"
      Catogeries=["female", "male"]
[38]: size=224
      data=[]
      i=0
      data=pd.read_csv("/content/work.csv")
      l_pred=list()
      l_imgid=list()
      d=\{\}
 []: for catogery in Catogeries:
        folder=os.path.join(directroy, catogery)
        for img in os.listdir(folder):
          img_path=os.path.join(folder,img)
          img_arr=cv2.imread(img_path)
          img_arr=cv2.resize(img_arr,(size,size))
          img_arr=img_to_array(img_arr)
          img_arr=img_arr/255.0
          img_arr=img_arr.reshape(1,size,size,3)
          res=model.predict(img_arr)
          i=i+1
          if res[0][0]<0.5:
            l_imgid.append(i)
            l_pred.append("Women")
          else:
            l_imgid.append(i)
            l_pred.append("Men")
```

```
[40]: len(l_imgid)
[40]: 11649
[41]: l
      #saving prediction to csv file
[42]: d=pd.DataFrame({"Image_id":l_imgid,"prediction":l_pred})
      d.to_csv("/content/work.csv")
      s=pd.read_csv("/content/work.csv")
[42]:
              Unnamed: 0
                           Image_id prediction
                        0
                                   1
                                          Women
      1
                        1
                                   2
                                          Women
      2
                        2
                                   3
                                            Men
                        3
      3
                                   4
                                          Women
      4
                        4
                                   5
                                          Women
      11644
                   11644
                              11645
                                            Men
      11645
                              11646
                                            Men
                   11645
      11646
                   11646
                              11647
                                            Men
      11647
                   11647
                                            Men
                              11648
      11648
                   11648
                              11649
                                            Men
      [11649 rows x 3 columns]
[43]: s.head(50)
[43]:
          Unnamed: 0
                        Image_id prediction
                    0
      0
                               1
                                       Women
                               2
      1
                    1
                                       Women
                    2
                               3
      2
                                         Men
                    3
                               4
      3
                                       Women
      4
                    4
                               5
                                       Women
      5
                    5
                               6
                                       Women
                               7
      6
                    6
                                         Men
      7
                    7
                               8
                                       Women
                    8
                               9
                                       Women
      8
      9
                    9
                              10
                                       Women
      10
                   10
                              11
                                       Women
      11
                   11
                              12
                                       Women
      12
                   12
                                       Women
                              13
      13
                   13
                              14
                                       Women
      14
                   14
                                       Women
                              15
      15
                   15
                              16
                                       Women
      16
                   16
                              17
                                       Women
      17
                   17
                              18
                                       Women
```

18	18	19	Women
19	19	20	Women
20	20	21	Men
21	21	22	Women
22	22	23	Women
23	23	24	Women
24	24	25	Women
25	25	26	Women
26	26	27	Women
27	27	28	Women
28	28	29	Women
29	29	30	Women
30	30	31	Women
31	31	32	Women
32	32	33	Women
33	33	34	Women
34	34	35	Women
35	35	36	Women
36	36	37	Women
37	37	38	Women
38	38	39	Men
39	39	40	Women
40	40	41	Women
41	41	42	Women
42	42	43	Women
43	43	44	Women
44	44	45	Women
45	45	46	Women
46	46	47	Women
47	47	48	Women
48	48	49	Women
49	49	50	Women

[44]: s.tail(50)

[44]:		Unnamed: 0	${\tt Image_id}$	prediction
	11599	11599	11600	Men
	11600	11600	11601	Men
	11601	11601	11602	Men
	11602	11602	11603	Men
	11603	11603	11604	Men
	11604	11604	11605	Men
	11605	11605	11606	Men
	11606	11606	11607	Men
	11607	11607	11608	Men
	11608	11608	11609	Men
	11609	11609	11610	Men

Men	11611	11610	11610
Men	11612	11611	11611
Men	11613	11612	11612
Men	11614	11613	11613
Men	11615	11614	11614
Men	11616	11615	11615
Women	11617	11616	11616
Men	11618	11617	11617
Men	11619	11618	11618
Men	11620	11619	11619
Men	11621	11620	11620
Men	11622	11621	11621
Men	11623	11622	11622
Men	11624	11623	11623
Men	11625	11624	11624
Men	11626	11625	11625
Men	11627	11626	11626
Men	11628	11627	11627
Men	11629	11628	11628
Men	11630	11629	11629
Men	11631	11630	11630
Men	11632	11631	11631
Men	11633	11632	11632
Men	11634	11633	11633
Men	11635	11634	11634
Men	11636	11635	11635
Men	11637	11636	11636
Men	11638	11637	11637
Men	11639	11638	11638
Women	11640	11639	11639
Men	11641	11640	11640
Men	11642	11641	11641
Men	11643	11642	11642
Men	11644	11643	11643
Men	11645	11644	11644
Men	11646	11645	11645
Men	11647	11646	11646
Men	11648	11647	11647
Men	11649	11648	11648

```
[45]: #predicting whole training data set
```

```
[46]: directroy=r"/content/Training"
Catogeries=["female","male"]
```

```
[47]: size=224 data=[]
```

```
i=0
      data=pd.read_csv("/content/training_pred.csv")
      l_pred=list()
      l_imgid=list()
      d=\{\}
 []: for catogery in Catogeries:
        folder=os.path.join(directroy,catogery)
        for img in os.listdir(folder):
          img_path=os.path.join(folder,img)
          img_arr=cv2.imread(img_path)
          img_arr=cv2.resize(img_arr,(size,size))
          img_arr=img_to_array(img_arr)
          img_arr=img_arr/255.0
          img_arr=img_arr.reshape(1,size,size,3)
          res=model.predict(img_arr)
          i=i+1
          if res[0][0]<0.5:
            l_imgid.append(i)
            l_pred.append("Women")
          else:
            l_imgid.append(i)
            l_pred.append("Men")
[49]: #saving to csv file
[50]: d1=pd.DataFrame({"Image_id":l_imgid,"prediction":l_pred})
      d1.to_csv("/content/training_pred.csv")
      s1=pd.read_csv("/content/training_pred.csv")
[50]:
                         Image_id prediction
             Unnamed: 0
                      0
                                 1
                                        Women
                                 2
      1
                      1
                                        Women
      2
                      2
                                 3
                                        Women
      3
                      3
                                 4
                                          Men
      4
                      4
                                 5
                                        Women
      47004
                  47004
                             47005
                                          Men
      47005
                  47005
                             47006
                                          Men
      47006
                  47006
                             47007
                                          Men
      47007
                  47007
                             47008
                                          Men
      47008
                  47008
                             47009
                                          Men
      [47009 rows x 3 columns]
[51]: s1.head(50)
```

[51]:	Unnamed: 0	Tmage id	prediction
0	0	_	Women
1	1		Women
2	2		Women
3	3		Men
4	4		Women
5	5		Women
6	6		Women
7	7		Women
8	8	9	Women
9	9	10	Women
1	0 10	11	Women
1	1 11	. 12	Women
1	2 12	13	Women
1	3 13	14	Women
1	4 14	. 15	Women
1	5 15	16	Women
1	6 16	17	Women
1	7 17	18	Women
1	8 18	19	Women
1			Women
2			Men
2			Women
2			Women
2			Women
3			Women
3			Women
3 3			Women Women
3			Women
4			Men
4			Women

Men	47	46	46
Men	48	47	47
Women	49	48	48
Women	50	49	49

[52]: s1.tail(50)

[52]:		Unnamed: 0	${\tt Image_id}$	${\tt prediction}$
	46959	46959	46960	Men
	46960	46960	46961	Men
	46961	46961	46962	Men
	46962	46962	46963	Men
	46963	46963	46964	Men
	46964	46964	46965	Men
	46965	46965	46966	Men
	46966	46966	46967	Men
	46967	46967	46968	Men
	46968	46968	46969	Men
	46969	46969	46970	Men
	46970	46970	46971	Men
	46971	46971	46972	Men
	46972	46972	46973	Men
	46973	46973	46974	Men
	46974	46974	46975	Women
	46975	46975	46976	Men
	46976	46976	46977	Men
	46977	46977	46978	Men
	46978	46978	46979	Men
	46979	46979	46980	Men
	46980	46980	46981	Men
	46981	46981	46982	Men
	46982	46982	46983	Men
	46983	46983	46984	Men
	46984	46984	46985	Men
	46985	46985	46986	Women
	46986	46986	46987	Men
	46987	46987	46988	Women
	46988	46988	46989	Men
	46989	46989	46990	Men
	46990	46990	46991	Men
	46991	46991	46992	Men
	46992	46992	46993	Men
	46993	46993	46994	Men
	46994	46994	46995	Men
	46995	46995	46996	Men
	46996	46996	46997	Men
	46997	46997	46998	Men

46998	46998	46999	Women
46999	46999	47000	Men
47000	47000	47001	Men
47001	47001	47002	Men
47002	47002	47003	Men
47003	47003	47004	Men
47004	47004	47005	Men
47005	47005	47006	Men
47006	47006	47007	Men
47007	47007	47008	Men
47008	47008	47009	Men