```
import plotly.io as pio
pio.kaleido.scope.default_format = "png"
```

1. Data Collection

- The data consists concentration of pollutants Carbon Monixide (CO),PM2.5 and Ozone for different California counries for the years 2010 to 2021.
- The raw data contains the columns:
 - Date: The date the observation was taken.
 - **Source**: Source of the observation.
 - **Site ID**: Site ID for the particular site in the California county.
 - **POC**: This is the "Parameter Occurrence Code" used to distinguish different instruments that measure the same parameter at the same site.
 - Daily Mean Pollutant Concentration : Mean concentration for the pollutant for the date.
 - UNITS: Units of measurement for the pollutant concentration.
 - **DAILY AQI VALUE**: Air Quality Index value for the date.
 - **Site Name**: Site Name within the County.
 - **DAILY_OBS_COUNT**: The number of values that comprise the daily data set.
 - PERCENT_COMPLETE: The percentage of required observations (or scheduled days) made for the given assessment time period.
 - AQS_PARAMETER_CODE : The AQS code corresponding to the parameter measured by the monitor
 - AQS_PARAMETER_DESC: description assigned in AQS to the parameter measured by the monitor.
 Parameters may be pollutants or non-pollutants (e.g., wind speed).
 - **CBSA_CODE**: The code of the core based statistical area (metropolitan area) where the monitoring site is located.
 - **CBSA_NAME**: The short version of the OMB-assigned title for the core-based statistical area (CBSA).
 - **STATE CODE**: Code for the State in USA.
 - **STATE**: State Name
 - COUNTY_CODE : County code within the State.
 - **COUNTY**: County name.
 - SITE LATITUDE: Latitude for the site.
 - SITE_LONGITUDE :Longiture fir the site.
- All the data pertaining to the pollutants has been stored in a public github repository: https://github.com/wadhawanabhishek/CrowdDoing
- Each pollutant information has been stored in a separate folder within the repository as follows:-

2. Data Transformation

The data stored in the github repository is transformed for further analysis.

- Data is transformed from a daily level of pollutant concentration to a monthly level.
- Along with pollutant concentration, the AQI levels are also calculated
- Only the data corresponding to years fed to function is transformed an further analysed.

```
In [48]:
         import pandas as pd
         import re
         import requests
         from bs4 import BeautifulSoup
         import plotly.express as px
         # Currently we have data from 2010 - 2021
         class Pollutant:
             #
             def init (self,pollutant:str,start year:int,end year:int):
                 self. pollutant = pollutant.upper()
                 self.__start_year = start year
                 self. end year = end year
                 self. master list = []
                 self.__pollutant_list = ["CO","PM2.5","OZONE"]
                 self. units = None
                 assert self. pollutant in self. pollutant list ,"Not a valid Pollutant"
                 assert isinstance(start year,int), "Start Year is not Integer!"
                 assert isinstance(end year,int), "End Year is not Integer!"
             @property
             def pollutant(self):
                 return self. pollutant
             def get data(self):
                 try:
                     year regex = re.compile(r' d/d/d/d')
                     github url = 'https://github.com/wadhawanabhishek/CrowdDoing/tree/main/'+self
                     result = requests.get(github url)
                     soup = BeautifulSoup(result.text, 'html.parser')
                     csvfiles = soup.find all(title=re.compile("\.csv$"))
                 except:
                     print("Resuouce not Found!")
                 filename = [ ]
                 for i in csvfiles:
                     filename.append(i.extract().get_text())
                 years=[]
                 for file in filename:
                     year = year regex.search(file)
                     years.append(year.group())
                 years =[int(i) for i in years]
                 # 2011-2016
                 if (self. start year < min(years)) or (self. start year > max(years)):
```

```
print("Invalid Year Range. The Start Year Does not Exist")
    if (self. end year > max(years)) or (self. end year < self. start year) or (self.</pre>
        print ("Invalid Year Range. The End Year Does not Exist")
    new lst = [i for i in range(self. start year,self. end year+1)]
    check = all(item in years for item in new lst)
    up file=[]
    if check == True:
        for file in filename:
            for yr in new 1st:
                if str(yr) in file:
                    up file.append(file)
    else:
        raise Exception ("The data for the given years not present")
    github url = github url.replace("github.com",'raw.githubusercontent.com")
    github url = github url.replace("tree/",'')
   appended data =[]
    for f in up file:
        url = github url +'/'+ f
        data = pd.read csv(url)
        appended data.append(data)
    final df = pd.concat(appended data)
    self. units = final df['UNITS'].unique()[0]
    return final df
def feature extraction(self, data df):
   df = data df
    df = df.iloc[:, [0,17,2,4,6,15]]
    df = df[df['STATE'] == 'California']
    return df
def get transformed data(self, f df):
    initial df= f df
   drop cols = ['Site ID','STATE']
    for col in drop cols:
        initial df = initial df.drop(col,axis = 1)
    initial df = initial df.groupby(['COUNTY', 'Date']).sum()
    initial df=initial df.reset index(['Date','COUNTY'])
    initial df['Date'] = pd.to datetime(initial df['Date'], format='%m/%d/%Y')
    initial df['Year'] = pd.to datetime(initial df['Date']).dt.to period('Y')
    initial df['Month'] = pd.to datetime(initial df['Date']).dt.to period('M')
    initial df = initial df.drop("Date",axis = 1)
    cols = [initial df.columns]
    final df = initial df.groupby(['COUNTY', 'Year', 'Month']).mean()
    final df = final df.reset index(['COUNTY', 'Year', 'Month'])
   pollutant col = "Monthly Avg "+ self. pollutant+ " Concentration"
   final df = final df.rename(columns={final df.columns[3]:pollutant col, "DAILY AQI V
    final df['Pollutant'] = self. pollutant
    final df['Units'] = self. units
    return final df
def run(self):
    data df = self. get data()
    feature df = self. feature extraction(data df)
```

```
trans df = self. get transformed data(feature df)
                     return trans df
In [49]:
           df1 = Pollutant("co", 2010, 2021).run()
           df2 = Pollutant("pm2.5", 2010, 2021).run()
           df3 = Pollutant("ozone", 2010, 2021).run()
In [50]:
           df1.head()
Out[50]:
              COUNTY
                                      Monthly Avg CO Concentration Monthly_Avg_AQI_VALUE Pollutant
                       Year
                              Month
                                                                                                      Units
                       2010
                             2010-01
                                                          2.645161
              Alameda
                                                                                 30.451613
                                                                                                  CO
                                                                                                       ppm
                             2010-02
                                                          2.071429
                                                                                 23.892857
              Alameda
                       2010
                                                                                                  CO
                                                                                                       ppm
                             2010-03
              Alameda
                       2010
                                                          1.754839
                                                                                 20.322581
                                                                                                  CO
                                                                                                       ppm
              Alameda
                       2010
                             2010-04
                                                          1.316667
                                                                                 15.533333
                                                                                                  CO
                                                                                                       ppm
              Alameda 2010 2010-05
                                                          0.993548
                                                                                 11.000000
                                                                                                  CO
                                                                                                       ppm
In [51]:
           df2.head()
Out[51]:
              COUNTY
                                      Monthly Avg PM2.5 Concentration
                                                                      Monthly_Avg_AQI_VALUE Pollutant
                                                                                                             Units
                       Year
                              Month
              Alameda
                       2010
                             2010-01
                                                            62.574194
                                                                                    226.096774
                                                                                                  PM2.5
                                                                                                         ug/m3 LC
              Alameda
                       2010
                             2010-02
                                                            41.082143
                                                                                    165.857143
                                                                                                  PM2.5
                                                                                                         ug/m3 LC
              Alameda
                       2010
                             2010-03
                                                            35.087097
                                                                                    145.677419
                                                                                                  PM2.5
                                                                                                         ug/m3 LC
              Alameda
                       2010
                             2010-04
                                                            31.866667
                                                                                    132.100000
                                                                                                  PM2.5
                                                                                                         ug/m3 LC
                       2010 2010-05
                                                            29.545161
                                                                                                  PM2.5 ug/m3 LC
              Alameda
                                                                                    123.096774
In [52]:
           df3.head()
Out[52]:
              COUNTY
                       Year
                              Month
                                      Monthly Avg OZONE Concentration Monthly_Avg_AQI_VALUE
                                                                                               Pollutant
                                                                                                          Units
              Alameda
                       2010
                             2010-01
                                                              0.075323
                                                                                     69.709677
                                                                                                  OZONE
                                                                                                           ppm
              Alameda
                       2010
                             2010-02
                                                              0.106214
                                                                                     98.642857
                                                                                                  OZONE
                                                                                                           ppm
              Alameda
                       2010
                             2010-03
                                                              0.140323
                                                                                    129.774194
                                                                                                  OZONE
                                                                                                           ppm
              Alameda
                       2010
                             2010-04
                                                              0.147800
                                                                                    136.766667
                                                                                                  OZONE
                                                                                                           ppm
```

3. Concentration Trends for Different Counties Over the Years

0.136323

126.354839

OZONE

ppm

Alameda

2010

2010-05

- After the data is transformed to the desired level, the pollutant concentration and AQI values are plotted for different years for different counties.
- This is done to analyse whether the pollutant concentrations follow a particluar pattern in different counties and to understand the trend of pollutant concentration in different counties within California.

- Further, The year in which the pollutant levels were maximum for most of the counties is analysed.
- Here the function takes two arguments -
 - 1. The transformed data for the pollutant analysed
 - 2. conc / agi : Whether the pollutant concentration needs to be plotted or the AQI levels.

```
In [53]:
         from plotly.subplots import make subplots
         from math import ceil
         import plotly.graph objects as go
         class Plot Map():
             def __init__(self,df,calc_type:str):
                 self.df = df
                 self.typ = calc type.lower()
                 self. pollutant = None
                 self.units = None
                 assert self.typ in ['conc','aqi'], "Not a valid Calculation Type!"
             def transform data(self):
                 self. pollutant = self.df.Pollutant.unique().tolist()[0]
                 units = self.df.Units.unique().tolist()[0]
                 self.units = units
                 trans df = self.df.drop(['Month','Pollutant','Units'],axis=1)
                 trans df = trans df.groupby(['COUNTY', 'Year']).mean()
                 trans df.reset index(['COUNTY', 'Year'], inplace=True)
                 trans df['Year'] = trans df.Year.apply(lambda x : str(x))
                 cols = trans df.columns.tolist()
                 trans df[cols[2]] = trans df[cols[2]].round(2)
                 trans df[cols[3]] = trans df[cols[3]].round(2)
                 pollutant col = "Yearly Avg "+ self. pollutant+ " Concentration"+"("+units+")"
                 aqi col = "Yearly Avg "+ self. pollutant+" AQI VALUE"
                 trans df = trans df.rename(columns={trans df.columns[2]:pollutant col,trans df.col
                 if self.typ == 'conc':
                     trans df.drop(trans df.columns[3],axis=1,inplace=True)
                     trans df.drop(trans df.columns[2],axis=1,inplace=True)
                 return trans df
             def getmap(self, trans df):
                 trans df = trans df
                 counties = trans df.COUNTY.unique()
                 # print(len(counties))
                   cols = df x.columns
                 rows = ceil(len(counties)/4)
                 fig = make subplots(rows=rows, cols=colus, subplot titles=counties)
                 fig['layout'].update(height=3400, width=1800)
                 fig['layout'].update(title = self. pollutant+" Data Trend")
                 r = 1
                 c = 1
                 for county in counties:
                     cdf = trans df[trans df['COUNTY']==county]
                       col = cdf.columns
                     fig.add trace(go.Scatter(x=cdf['Year'], y=cdf.iloc[:,2] ,name=county),row=r,
                     fig.update xaxes(title text = "Year")
```

```
fig.update yaxes(title text = "Pollutant Concentration "+"("+self.units+")")
        c+=1
        if c > 4:
            r+=1
            c=1
    fig.show()
     return fig
def getmap analysis(self, trans df):
   trans df = trans df
   cols = trans df.columns.tolist()
   dic= dict(trans df.groupby("COUNTY")[cols[2]].max())
    for county in dic.keys():
       val = trans df[(trans df["COUNTY"]==county) & (trans df[cols[2]]==dic[county])
       data = {"County": county, "Concentration":dic[county], "Year":val}
       lst.append(data)
   d = pd.DataFrame(lst)
   d= d.explode(['Year'])
   d n = pd.DataFrame(d['Year'].value_counts()).reset_index()
   d n= d n.rename(columns = {"index":"Year", "Year":"Count"})
   f = px.bar(d n, x= "Year", y = "Count", text = "Count", text auto=True)
   f['layout'].update(title = self. pollutant+" Maximum Pollution Years")
    f.update yaxes(title text = "No. of Counties")
    f.show()
def run(self):
    trans data = self. transform data()
   self. getmap(trans data)
   self. getmap analysis(trans data)
   return trans data
```

```
In [54]: df4 = Plot_Map(df1, 'conc').run()
```

```
In [55]: df5 = Plot_Map(df2,'conc').run()
```

In [56]: df6 = Plot_Map(df3,'conc').run()

4. Regression Analysis
 Regression Analysis (OLS method) is done to examine the relationship between Year and the pollutant

concentration levels.

• The relation between different years and pollutant concentration is examined for different counties. For each county, the regression line slope value, R squared value, P-value and the regression line equation is calculated. Further, the significance of each relationship is checked by analysing the calculated P-value at a 95% confidence level.

```
In [57]:
         from sklearn import linear model
         import plotly.graph objects as go
         import warnings
         from scipy import stats
         import numpy as np
         from plotly.subplots import make subplots
         warnings.filterwarnings("ignore")
         class regression analysis(Plot Map):
             def init (self, df, calc type):
                 self. pollutant = None
                 super(). init (df,calc type)
             def r trans df(self):
                 df = super(). transform data()
                 cols = df.columns
                 self. pollutant = cols[2].split()[2]
                 df['Year'] = pd.to numeric(df['Year'])
                 return df
             def reg analysis(self,initial df):
                 df = initial df
                 cols = df.columns
                 counties list = df.COUNTY.unique().tolist()
                 appended data =[]
                 for i, county in enumerate (counties list):
                     df2 = df[df['COUNTY']==county]
                     ## Regression Analysis
                     X = df2['Year'].values.tolist()
                     y = df2[cols[2]].values.tolist()
                     X f = np.array(X, dtype=np.float32)
                     y f = np.array(y, dtype=np.float32)
                     slope, intercept, r value, p value, std err = stats.linregress(X f,y f)
                     line = str(round(slope,4)) + ' * '+'Year '+ '+ ' + str(round(intercept,4))
                     sig=lambda p value: True if p value <= 0.05 else False
                     data = {'County':county,'Slope':slope,'R-Squared Value':r value**2,'P-Value':r
                             'P-Value less than 0.05?':sig(p value),
                              'Line-Equation': line}
                     data df = pd.DataFrame(data,index = [i])
                     appended data.append(data df)
                     final df = pd.concat(appended data)
                 self. annotations = final df['Line-Equation'].values.tolist()
```

```
return final df
def getmap(self, trans df):
   map df = trans df
    map df['Year'] = pd.to numeric(map df['Year'])
    cols = map df.columns.tolist()
    fig = px.scatter(map df, x="Year", y=cols[2], color="COUNTY", trendline='ols', trend
    fig.update layout(
        title = self. pollutant+" Data " + "Regression Analysis",
        updatemenus=[
                "buttons": [
                        "label": m,
                        "method": "update",
                        "args": [
                            {
                                "visible": [
                                    True if m == "All" else t.name == m for t in fig.d
                            }
                        ],
                    for m in ["All"] + map df["COUNTY"].unique().tolist()
               ]
       ]
    fig.show()
def run(self):
    initial_df = self.__r_trans_df()
    final df = self. reg analysis(initial df)
      f df = final df[['County','R-Squared value']]
      f df = f df.groupby(['County']).max()
      f df.reset index(inplace=True)
    final df['Pollutant'] = self. pollutant
    self.__getmap(initial_df)
    return final df
```

4.1 Regression Analysis for Carbon Monoxide Pollutant

```
In [58]: df7 = regression_analysis(df1,'conc').run()
    df7
```

Out[58]:		County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant
_	0	Alameda	0.181014	0.773692	1.622657e- 04	True	0.181 * Year + -362.8829	СО
	1	Butte	-0.005175	0.125143	2.592817e- 01	False	-0.0052 * Year + 10.8099	СО
	2	Contra Costa	0.026888	0.428582	2.088022e- 02	True	0.0269 * Year + -52.9505	СО
	3	Fresno	-0.074406	0.436578	1.932940e- 02	True	-0.0744 * Year + 151.4761	СО
	4	Humboldt	-0.021434	0.266949	8.544420e- 02	False	-0.0214 * Year + 43.6885	СО
	5	Imperial	-0.122622	0.789959	1.108163e- 04	True	-0.1226 * Year + 248.0612	СО
	6	Inyo	0.007143	0.474084	1.304062e- 01	False	0.0071 * Year + -14.2862	СО
	7	Kern	-0.024023	0.381131	4.300232e- 02	True	-0.024 * Year + 48.9327	СО
	8	Los Angeles	-0.321958	0.946043	1.151702e- 07	True	-0.322 * Year + 656.4047	СО
	9	Madera	-0.012000	0.450000	2.151700e- 01	False	-0.012 * Year + 24.452	СО
•	10	Marin	-0.005804	0.455913	1.597737e- 02	True	-0.0058 * Year + 12.1367	СО
•	11	Monterey	-0.018706	0.786473	1.205383e- 04	True	-0.0187 * Year + 38.065	СО
•	12	Napa	-0.018497	0.467606	1.419980e- 02	True	-0.0185 * Year + 37.8172	СО
	13	Orange	0.011783	0.012210	7.324470e- 01	False	0.0118 * Year + -21.6632	СО
	14	Riverside	-0.090175	0.597405	3.201102e- 03	True	-0.0902 * Year + 183.9449	СО

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant
15	Sacramento	-0.129720	0.810342	6.583694e- 05	True	-0.1297 * Year + 262.9862	СО
16	San Bernardino	0.043811	0.162288	1.941439e- 01	False	0.0438 * Year + -85.7373	СО
17	San Diego	-0.107867	0.438314	1.900591e- 02	True	-0.1079 * Year + 218.9637	СО
18	San Francisco	0.000140	0.000051	9.824136e- 01	False	0.0001 * Year + 0.1564	СО
19	San Joaquin	0.007028	0.156639	2.028339e- 01	False	0.007 * Year + -13.7657	СО
20	San Mateo	-0.016678	0.779575	1.418100e- 04	True	-0.0167 * Year + 34.1577	СО
21	Santa Barbara	-0.090559	0.521985	7.952537e- 03	True	-0.0906 * Year + 183.6775	СО
22	Santa Clara	0.039161	0.445220	1.776415e- 02	True	0.0392 * Year + -77.837	СО
23	Santa Cruz	NaN	0.000000	NaN	False	nan * Year + nan	CO
24	Solano	-0.008077	0.241107	1.050098e- 01	False	-0.0081 * Year + 16.8199	СО
25	Sonoma	-0.012587	0.473343	1.339056e- 02	True	-0.0126 * Year + 25.8133	СО
26	Stanislaus	-0.051993	0.739006	3.371726e- 04	True	-0.052 * Year + 105.3911	СО
27	Sutter	0.030000	0.566751	1.419174e- 01	False	0.03 * Year + -60.302	СО

4.2 Regression Analysis for PM2.5 Pollutant

```
In [59]: df8 = regression_analysis(df2,'conc').run()
    df8
```

Out[59]:		County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant
_	0	Alameda	2.086616	0.490191	0.016441	True	2.0866 * Year + -4165.0157	PM2.5
	1	Alpine	1.158000	0.031944	0.734760	False	1.158 * Year + -2316.3115	PM2.5
	2	Butte	0.642417	0.066192	0.445018	False	0.6424 * Year + -1262.7563	PM2.5
	3	Calaveras	0.206515	0.109433	0.320385	False	0.2065 * Year + -407.4393	PM2.5
	4	Colusa	0.544700	0.179519	0.194082	False	0.5447 * Year + -1081.8609	PM2.5
	5	Contra Costa	1.036348	0.540636	0.009924	True	1.0363 * Year + -2072.5521	PM2.5
	6	Del Norte	0.552797	0.575770	0.006777	True	0.5528 * Year + -1108.8905	PM2.5
	7	El Dorado	0.518571	0.539057	0.010090	True	0.5186 * Year + -1039.8428	PM2.5
	8	Fresno	3.834933	0.361976	0.050205	False	3.8349 * Year + -7643.3185	PM2.5
	9	Glenn	0.219466	0.136211	0.264001	False	0.2195 * Year + -433.1729	PM2.5
	10	Humboldt	-0.437170	0.206439	0.160343	False	-0.4372 * Year + 891.8041	PM2.5
	11	Imperial	-0.913825	0.218636	0.146992	False	-0.9138 * Year + 1875.8925	PM2.5
	12	Inyo	2.940467	0.525770	0.011572	True	2.9405 * Year + -5907.2062	PM2.5
	13	Kern	-0.352737	0.014288	0.726295	False	-0.3527 * Year + 778.1667	PM2.5
	14	Kings	1.116308	0.223537	0.141931	False	1.1163 * Year + -2223.3193	PM2.5
	15	Lake	0.333077	0.414838	0.032451	True	0.3331 * Year + -666.7082	PM2.5
	16	Los Angeles	2.288524	0.121861	0.292697	False	2.2885 * Year + -4458.0526	PM2.5
	17	Madera	-1.041656	0.559775	0.008090	True	-1.0417 * Year + 2117.1682	PM2.5

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant
18	B Marin	-0.298137	0.349405	0.055474	False	-0.2981 * Year + 611.202	PM2.5
19) Mariposa	0.631662	0.239007	0.127010	False	0.6317 * Year + -1259.7653	PM2.5
20	M endocino	0.453411	0.207226	0.159447	False	0.4534 * Year + -898.6228	PM2.5
21	Merced	0.421328	0.159051	0.224374	False	0.4213 * Year + -832.0609	PM2.5
22	. Mono	3.248558	0.437510	0.026659	True	3.2486 * Year + -6535.9886	PM2.5
23	3 Monterey	0.788425	0.328144	0.065478	False	0.7884 * Year + -1573.0969	PM2.5
24	l Napa	-0.208031	0.117828	0.301373	False	-0.208 * Year + 429.1586	PM2.5
25	. Nevada	1.252029	0.367868	0.047887	True	1.252 * Year + -2510.6853	PM2.5
26	o Orange	0.293925	0.058200	0.474834	False	0.2939 * Year + -564.2686	PM2.5
27	Placer	3.495447	0.608348	0.004633	True	3.4954 * Year + -7020.5749	PM2.5
28	B Plumas	2.796569	0.313464	0.073273	False	2.7966 * Year + -5604.4559	PM2.5
29	Riverside	-2.587156	0.292193	0.086014	False	-2.5872 * Year + 5346.4703	PM2.5
30	Sacramento	2.837951	0.655459	0.002530	True	2.838 * Year + -5673.3534	PM2.5
31	San Benito	0.113732	0.083108	0.389953	False	0.1137 * Year + -222.523	PM2.5
32	San Bernardino	4.123091	0.687333	0.001605	True	4.1231 * Year + -8249.0527	PM2.5
33	San Diego	-0.059639	0.000311	0.958950	False	-0.0596 * Year + 188.5169	PM2.5
34	San Francisco	-0.113725	0.101034	0.340817	False	-0.1137 * Year + 237.9259	PM2.5
35	San Joaquin	0.394599	0.024553	0.645440	False	0.3946 * Year + -757.2746	PM2.5
36	San Luis Obispo	0.080614	0.002660	0.880302	False	0.0806 * Year + -133.742	PM2.5
37	San Mateo	-0.210274	0.215366	0.150464	False	-0.2103 * Year + 432.1707	PM2.5
38	Santa Barbara	1.086489	0.446352	0.024648	True	1.0865 * Year + -2166.991	PM2.5
39	Santa Clara	0.339132	0.057519	0.477511	False	0.3391 * Year + -655.5384	PM2.5
40	Santa Cruz	0.656682	0.432541	0.027848	True	0.6567 * Year + -1312.8166	PM2.5
41	Shasta	-0.017537	0.000550	0.945430	False	-0.0175 * Year + 44.3541	PM2.5

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant
42	Siskiyou	1.341475	0.460917	0.021612	True	1.3415 * Year + -2694.4367	PM2.5
43	Solano	0.728164	0.315640	0.072068	False	0.7282 * Year + -1450.2304	PM2.5
44	Sonoma	-0.106148	0.093961	0.359235	False	-0.1061 * Year + 221.2794	PM2.5
45	Stanislaus	-0.188151	0.027286	0.627407	False	-0.1882 * Year + 406.6262	PM2.5
46	Sutter	0.299599	0.098113	0.348280	False	0.2996 * Year + -584.2546	PM2.5
47	Tehama	0.127190	0.016799	0.704080	False	0.1272 * Year + -248.9353	PM2.5
48	Trinity	1.614166	0.305647	0.077746	False	1.6142 * Year + -3240.7739	PM2.5
49	Tulare	0.641695	0.134237	0.267759	False	0.6417 * Year + -1252.8405	PM2.5
50	Ventura	0.529346	0.085929	0.381661	False	0.5293 * Year + -1022.2254	PM2.5
51	Yolo	0.182076	0.079343	0.401388	False	0.1821 * Year + -356.5348	PM2.5

4.3 Regression Analysis for Ozone Pollutant

```
In [60]:
```

```
df9 = regression_analysis(df3,'conc').run()
df9
```

Out[60]:		County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant
_	0	Alameda	0.005420	0.697124	0.000726	True	0.0054 * Year + -10.7857	OZONE
	1	Amador	0.000000	0.000000	1.000000	False	0.0 * Year + 0.04	OZONE
	2	Butte	-0.000420	0.094406	0.331313	False	-0.0004 * Year + 0.929	OZONE
	3	Calaveras	0.000105	0.017165	0.684849	False	0.0001 * Year + -0.1706	OZONE
	4	Colusa	-0.000315	0.154482	0.206256	False	-0.0003 * Year + 0.6734	OZONE
	5	Contra Costa	0.003706	0.601327	0.003040	True	0.0037 * Year + -7.3434	OZONE
	6	El Dorado	-0.000315	0.011560	0.739444	False	-0.0003 * Year + 0.7317	OZONE
	7	Fresno	0.004965	0.553692	0.005518	True	0.005 * Year + -9.7087	OZONE
	8	Glenn	0.000000	0.000000	1.000000	False	0.0 * Year + 0.04	OZONE
	9	Humboldt	-0.000699	0.055208	0.462273	False	-0.0007 * Year + 1.4528	OZONE
	10	Imperial	-0.002832	0.328504	0.051402	False	-0.0028 * Year + 5.8591	OZONE
	11	Inyo	0.008147	0.855695	0.000016	True	0.0081 * Year + -16.3358	OZONE
	12	Kern	0.001049	0.024585	0.626508	False	0.001 * Year + -1.7342	OZONE
	13	Kings	0.000734	0.264336	0.087259	False	0.0007 * Year + -1.3941	OZONE
	14	Lake	-0.000944	0.566434	0.004733	True	-0.0009 * Year + 1.9402	OZONE
	15	Los Angeles	0.002133	0.098192	0.321297	False	0.0021 * Year + -3.7163	OZONE
	16	Madera	-0.001189	0.047367	0.496820	False	-0.0012 * Year + 2.4927	OZONE
	17	Marin	0.000000	0.000000	1.000000	False	0.0 * Year + 0.03	OZONE
	18	Mariposa	-0.004336	0.363258	0.038056	True	-0.0043 * Year + 8.8285	OZONE
	19	Mendocino	0.000699	0.419580	0.022752	True	0.0007 * Year + -1.3811	OZONE
	20	Merced	-0.000350	0.065559	0.421817	False	-0.0003 * Year + 0.7514	OZONE
	21	Monterey	0.000490	0.128497	0.252545	False	0.0005 * Year + -0.8833	OZONE
	22	Napa	0.000734	0.264336	0.087259	False	0.0007 * Year + -1.4457	OZONE
	23	Nevada	-0.003636	0.756364	0.000237	True	-0.0036 * Year + 7.3941	OZONE
	24	Orange	-0.002308	0.368487	0.036336	True	-0.0023 * Year + 4.7978	OZONE
	25	Placer	0.001748	0.007458	0.789568	False	0.0017 * Year + -3.3936	OZONE
	26	Riverside	0.001364	0.056677	0.456202	False	0.0014 * Year + -2.0892	OZONE
	27	Sacramento	-0.008007	0.584260	0.003791	True	-0.008 * Year + 16.3839	OZONE
	28	San Benito	0.000000	0.000000	1.000000	False	0.0 * Year + 0.08	OZONE
	20	Cara Dawaasalisaa	0.000140	0.000742	0.022004	Falas	0.0001 * V 0.0726	OZONE

0.000743 0.933004

False -0.0001 * Year + 0.8736 OZONE

29 San Bernardino -0.000140

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant
30	San Diego	-0.012308	0.770873	0.000173	True	-0.0123 * Year + 25.1911	OZONE
31	San Francisco	0.000000	0.000000	1.000000	False	0.0 * Year + 0.03	OZONE
32	San Joaquin	-0.000245	0.029371	0.594334	False	-0.0002 * Year + 0.5691	OZONE
33	San Luis Obispo	-0.001503	0.250259	0.097653	False	-0.0015 * Year + 3.3011	OZONE
34	San Mateo	0.000000	0.000000	1.000000	False	0.0 * Year + 0.03	OZONE
35	Santa Barbara	-0.016573	0.681139	0.000948	True	-0.0166 * Year + 33.8204	OZONE
36	Santa Clara	0.000769	0.026721	0.611716	False	0.0008 * Year + -1.4187	OZONE
37	Santa Cruz	-0.002308	0.387223	0.030712	True	-0.0023 * Year + 4.6928	OZONE
38	Shasta	-0.000420	0.068659	0.410667	False	-0.0004 * Year + 0.994	OZONE
39	Siskiyou	0.000245	0.038073	0.543370	False	0.0002 * Year + -0.4558	OZONE
40	Solano	0.001329	0.540959	0.006408	True	0.0013 * Year + -2.5813	OZONE
41	Sonoma	-0.000699	0.029138	0.595823	False	-0.0007 * Year + 1.4594	OZONE
42	Stanislaus	0.000664	0.280497	0.076575	False	0.0007 * Year + -1.2565	OZONE
43	Sutter	0.000315	0.020474	0.657312	False	0.0003 * Year + -0.5734	OZONE
44	Tehama	0.000455	0.101299	0.313348	False	0.0005 * Year + -0.8453	OZONE
45	Tulare	-0.001678	0.402797	0.026625	True	-0.0017 * Year + 3.5627	OZONE
46	Tuolumne	-0.000315	0.062937	0.431579	False	-0.0003 * Year + 0.6817	OZONE
47	Ventura	-0.002063	0.593723	0.003358	True	-0.0021 * Year + 4.3853	OZONE
48	Yolo	-0.000350	0.058275	0.449729	False	-0.0003 * Year + 0.7797	OZONE

5. Clustering The Counties

- The Counties are now clustered based on their regression slope values
- The counties are then further divided on the bases of their clusters into different pollution trends Low,
 Medium, Increasing, Heavily Increasing

```
In [61]:
    from sklearn.cluster import KMeans
    import matplotlib.pyplot as plt
    from yellowbrick.cluster import KElbowVisualizer
    class Clustering_data:

    def __init__ (self, regression_df, clusters = 4):
        self.df = regression_df
        self.f_clusters = clusters

def __cluster_number_analysis(self):
        self.df.sort_values('Slope', ignore_index=True, inplace=True)
        x1 = np.array(self.df.index.values)
        x2 = np.array(self.df['Slope'].values)
        X = np.array(list(zip(x1, x2))).reshape(len(x1), 2)
```

```
X=np.nan to num(X)
         distortions=[]
         for i in range (1, 11):
             km = KMeans(
                 n clusters=i, init='k-means++',
                 n init=10, max iter=300,
                 tol=1e-04, random state=0
#
             km.fit(X)
#
             distortions.append(km.inertia )
         # plot
         plt.plot(range(1, 11), distortions, marker='o')
         plt.xlabel('Number of clusters')
         plt.ylabel('Distortion')
         plt.title("Determining the number of clusters")
         plt.show()
       model = KMeans()
       visualizer = KElbowVisualizer(
           model, k=(2,10))
                               # Fit the data to the visualizer
       visualizer.fit(X)
       visualizer.poof()
       return X
   def assigning clusters(self,X):
       km = KMeans(
       n clusters=self.f clusters, init='k-means++',
       n init=10, max iter=300,
       tol=1e-04, random state=0)
       y km = km.fit predict(X)
       self.df['Cluster']=y km
       self.df['group'] = self.df['Cluster'].ne(self.df['Cluster'].shift()).cumsum()
       mapping = {1:'Low', 2:'Medium', 3:'Increasing',4:'Heavily Increasing'}
       self.df['Pollution Trend'] = self.df['group'].apply(lambda x : mapping[x])
       self.df.drop('group',axis=1,inplace=True)
   def plot clusters(self):
       fig = px.scatter(self.df,x=self.df.index.values,y='Slope',color='Cluster',hover ne
                         dict(x = "County Index", Slope = "Slope of Regression Line"))
       title = 'Clustering for '+ self.df['Pollutant'].unique()[0]+' data'
       fig.update layout(title=title)
       fig.show()
   def run(self):
       X = self. cluster number analysis()
       self. assigning clusters(X)
       self. plot clusters()
       final df = self.df
       return final df
```

5.1 Clustering Counties for Carbon Monoxide Pollutant

```
In [62]: f1_df = Clustering_data(df7).run()
f1_df
```


Out[62]:		County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
	0	Los Angeles	-0.321958	0.946043	1.151702e- 07	True	-0.322 * Year + 656.4047	СО	1	Low
	1	Sacramento	-0.129720	0.810342	6.583694e- 05	True	-0.1297 * Year + 262.9862	СО	1	Low

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
2	Imperial	-0.122622	0.789959	1.108163e- 04	True	-0.1226 * Year + 248.0612	СО	1	Low
3	San Diego	-0.107867	0.438314	1.900591e- 02	True	-0.1079 * Year + 218.9637	СО	1	Low
4	Santa Barbara	-0.090559	0.521985	7.952537e- 03	True	-0.0906 * Year + 183.6775	СО	1	Low
5	Riverside	-0.090175	0.597405	3.201102e- 03	True	-0.0902 * Year + 183.9449	СО	1	Low
6	Fresno	-0.074406	0.436578	1.932940e- 02	True	-0.0744 * Year + 151.4761	СО	1	Low
7	Stanislaus	-0.051993	0.739006	3.371726e- 04	True	-0.052 * Year + 105.3911	СО	3	Medium
8	Kern	-0.024023	0.381131	4.300232e- 02	True	-0.024 * Year + 48.9327	СО	3	Medium
9	Humboldt	-0.021434	0.266949	8.544420e- 02	False	-0.0214 * Year + 43.6885	СО	3	Medium
10	Monterey	-0.018706	0.786473	1.205383e- 04	True	-0.0187 * Year + 38.065	СО	3	Medium
11	Napa	-0.018497	0.467606	1.419980e- 02	True	-0.0185 * Year + 37.8172	СО	3	Medium
12	San Mateo	-0.016678	0.779575	1.418100e- 04	True	-0.0167 * Year + 34.1577	СО	3	Medium
13	Sonoma	-0.012587	0.473343	1.339056e- 02	True	-0.0126 * Year + 25.8133	СО	3	Medium
14	Madera	-0.012000	0.450000	2.151700e- 01	False	-0.012 * Year + 24.452	СО	0	Increasing
15	Solano	-0.008077	0.241107	1.050098e- 01	False	-0.0081 * Year + 16.8199	СО	0	Increasing
16	Marin	-0.005804	0.455913	1.597737e- 02	True	-0.0058 * Year + 12.1367	СО	0	Increasing
17	Butte	-0.005175	0.125143	2.592817e- 01	False	-0.0052 * Year + 10.8099	СО	0	Increasing
18	San Francisco	0.000140	0.000051	9.824136e- 01	False	0.0001 * Year + 0.1564	СО	0	Increasing
19	San Joaquin	0.007028	0.156639	2.028339e- 01	False	0.007 * Year + -13.7657	СО	0	Increasing
20	Inyo	0.007143	0.474084	1.304062e- 01	False	0.0071 * Year + -14.2862	СО	0	Increasing
21	Orange	0.011783	0.012210	7.324470e- 01	False	0.0118 * Year + -21.6632	СО	2	Heavily Increasing
22	Contra Costa	0.026888	0.428582	2.088022e- 02	True	0.0269 * Year + -52.9505	СО	2	Heavily Increasing
23	Sutter	0.030000	0.566751	1.419174e- 01	False	0.03 * Year + -60.302	СО	2	Heavily Increasing

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
24	Santa Clara	0.039161	0.445220	1.776415e- 02	True	0.0392 * Year + -77.837	СО	2	Heavily Increasing
25	San Bernardino	0.043811	0.162288	1.941439e- 01	False	0.0438 * Year + -85.7373	СО	2	Heavily Increasing
26	Alameda	0.181014	0.773692	1.622657e- 04	True	0.181 * Year + -362.8829	СО	2	Heavily Increasing
27	Santa Cruz	NaN	0.000000	NaN	False	nan * Year + nan	СО	2	Heavily Increasing

5.1.1 Checking for Outliers

• For Carbon Monoxide, it is quite evident that the counties Alamaeda and Los Angeles are the outliers. Alamaeda had an increasing trend for pollutant concentration over the years while the county of Los Angeles had a decreasing trend for pollutant concentration over the years.

5.2 Clustering Counties for PM2.5 Pollutant

In [64]: f2_df=Clustering_data(df8).run()

f2 df

_		-	_	_	-	
()	+	1	6	Л	-1	
υu	L	1	U	+	-1	

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
0	Riverside	-2.587156	0.292193	0.086014	False	-2.5872 * Year + 5346.4703	PM2.5	0	Low
1	Madera	-1.041656	0.559775	0.008090	True	-1.0417 * Year + 2117.1682	PM2.5	0	Low
2	Imperial	-0.913825	0.218636	0.146992	False	-0.9138 * Year + 1875.8925	PM2.5	0	Low
3	Humboldt	-0.437170	0.206439	0.160343	False	-0.4372 * Year + 891.8041	PM2.5	0	Low
4	Kern	-0.352737	0.014288	0.726295	False	-0.3527 * Year + 778.1667	PM2.5	0	Low
5	Marin	-0.298137	0.349405	0.055474	False	-0.2981 * Year + 611.202	PM2.5	0	Low
6	San Mateo	-0.210274	0.215366	0.150464	False	-0.2103 * Year + 432.1707	PM2.5	0	Low
7	Napa	-0.208031	0.117828	0.301373	False	-0.208 * Year + 429.1586	PM2.5	0	Low
8	Stanislaus	-0.188151	0.027286	0.627407	False	-0.1882 * Year + 406.6262	PM2.5	0	Low
9	San Francisco	-0.113725	0.101034	0.340817	False	-0.1137 * Year + 237.9259	PM2.5	0	Low
10	Sonoma	-0.106148	0.093961	0.359235	False	-0.1061 * Year + 221.2794	PM2.5	0	Low
11	San Diego	-0.059639	0.000311	0.958950	False	-0.0596 * Year + 188.5169	PM2.5	0	Low
12	Shasta	-0.017537	0.000550	0.945430	False	-0.0175 * Year + 44.3541	PM2.5	0	Low
13	San Luis Obispo	0.080614	0.002660	0.880302	False	0.0806 * Year + -133.742	PM2.5	2	Medium
14	San Benito	0.113732	0.083108	0.389953	False	0.1137 * Year + -222.523	PM2.5	2	Medium
15	Tehama	0.127190	0.016799	0.704080	False	0.1272 * Year + -248.9353	PM2.5	2	Medium
16	Yolo	0.182076	0.079343	0.401388	False	0.1821 * Year + -356.5348	PM2.5	2	Medium
17	Calaveras	0.206515	0.109433	0.320385	False	0.2065 * Year + -407.4393	PM2.5	2	Medium
18	Glenn	0.219466	0.136211	0.264001	False	0.2195 * Year + -433.1729	PM2.5	2	Medium
19	Orange	0.293925	0.058200	0.474834	False	0.2939 * Year + -564.2686	PM2.5	2	Medium
20	Sutter	0.299599	0.098113	0.348280	False	0.2996 * Year + -584.2546	PM2.5	2	Medium

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
21	Lake	0.333077	0.414838	0.032451	True	0.3331 * Year + -666.7082	PM2.5	2	Medium
22	Santa Clara	0.339132	0.057519	0.477511	False	0.3391 * Year + -655.5384	PM2.5	2	Medium
23	San Joaquin	0.394599	0.024553	0.645440	False	0.3946 * Year + -757.2746	PM2.5	2	Medium
24	Merced	0.421328	0.159051	0.224374	False	0.4213 * Year + -832.0609	PM2.5	2	Medium
25	Mendocino	0.453411	0.207226	0.159447	False	0.4534 * Year + -898.6228	PM2.5	2	Medium
26	El Dorado	0.518571	0.539057	0.010090	True	0.5186 * Year + -1039.8428	PM2.5	2	Medium
27	Ventura	0.529346	0.085929	0.381661	False	0.5293 * Year + -1022.2254	PM2.5	1	Increasing
28	Colusa	0.544700	0.179519	0.194082	False	0.5447 * Year + -1081.8609	PM2.5	1	Increasing
29	Del Norte	0.552797	0.575770	0.006777	True	0.5528 * Year + -1108.8905	PM2.5	1	Increasing
30	Mariposa	0.631662	0.239007	0.127010	False	0.6317 * Year + -1259.7653	PM2.5	1	Increasing
31	Tulare	0.641695	0.134237	0.267759	False	0.6417 * Year + -1252.8405	PM2.5	1	Increasing
32	Butte	0.642417	0.066192	0.445018	False	0.6424 * Year + -1262.7563	PM2.5	1	Increasing
33	Santa Cruz	0.656682	0.432541	0.027848	True	0.6567 * Year + -1312.8166	PM2.5	1	Increasing
34	Solano	0.728164	0.315640	0.072068	False	0.7282 * Year + -1450.2304	PM2.5	1	Increasing
35	Monterey	0.788425	0.328144	0.065478	False	0.7884 * Year + -1573.0969	PM2.5	1	Increasing
36	Contra Costa	1.036348	0.540636	0.009924	True	1.0363 * Year + -2072.5521	PM2.5	1	Increasing
37	Santa Barbara	1.086489	0.446352	0.024648	True	1.0865 * Year + -2166.991	PM2.5	1	Increasing
38	Kings	1.116308	0.223537	0.141931	False	1.1163 * Year + -2223.3193	PM2.5	1	Increasing
39	Alpine	1.158000	0.031944	0.734760	False	1.158 * Year + -2316.3115	PM2.5	1	Increasing
40	Nevada	1.252029	0.367868	0.047887	True	1.252 * Year + -2510.6853	PM2.5	3	Heavily Increasing
41	Siskiyou	1.341475	0.460917	0.021612	True	1.3415 * Year + -2694.4367	PM2.5	3	Heavily Increasing
42	Trinity	1.614166	0.305647	0.077746	False	1.6142 * Year + -3240.7739	PM2.5	3	Heavily Increasing

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
43	Alameda	2.086616	0.490191	0.016441	True	2.0866 * Year + -4165.0157	PM2.5	3	Heavily Increasing
44	Los Angeles	2.288524	0.121861	0.292697	False	2.2885 * Year + -4458.0526	PM2.5	3	Heavily Increasing
45	Plumas	2.796569	0.313464	0.073273	False	2.7966 * Year + -5604.4559	PM2.5	3	Heavily Increasing
46	Sacramento	2.837951	0.655459	0.002530	True	2.838 * Year + -5673.3534	PM2.5	3	Heavily Increasing
47	Inyo	2.940467	0.525770	0.011572	True	2.9405 * Year + -5907.2062	PM2.5	3	Heavily Increasing
48	Mono	3.248558	0.437510	0.026659	True	3.2486 * Year + -6535.9886	PM2.5	3	Heavily Increasing
49	Placer	3.495447	0.608348	0.004633	True	3.4954 * Year + -7020.5749	PM2.5	3	Heavily Increasing
50	Fresno	3.834933	0.361976	0.050205	False	3.8349 * Year + -7643.3185	PM2.5	3	Heavily Increasing
51	San Bernardino	4.123091	0.687333	0.001605	True	4.1231 * Year + -8249.0527	PM2.5	3	Heavily Increasing

5.2.1 Checking for Outliers

• From the outlier analysis of PM2.5 pollutant concentrations, it is evident that the counties - Riverside and San Bernardino are the extreme outliers

5.3 Clustering Counties for Ozone Pollutant

```
In [66]:
    f3_df = Clustering_data(df9).run()
    f3_df
```


Out[66]:		County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
	0	Santa Barbara	-0.016573	0.681139	0.000948	True	-0.0166 * Year + 33.8204	OZONE	1	Low
	1	San Diego	-0.012308	0.770873	0.000173	True	-0.0123 * Year + 25.1911	OZONE	1	Low

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
2	Sacramento	-0.008007	0.584260	0.003791	True	-0.008 * Year + 16.3839	OZONE	1	Low
3	Mariposa	-0.004336	0.363258	0.038056	True	-0.0043 * Year + 8.8285	OZONE	1	Low
4	Nevada	-0.003636	0.756364	0.000237	True	-0.0036 * Year + 7.3941	OZONE	1	Low
5	Imperial	-0.002832	0.328504	0.051402	False	-0.0028 * Year + 5.8591	OZONE	1	Low
6	Orange	-0.002308	0.368487	0.036336	True	-0.0023 * Year + 4.7978	OZONE	1	Low
7	Santa Cruz	-0.002308	0.387223	0.030712	True	-0.0023 * Year + 4.6928	OZONE	1	Low
8	Ventura	-0.002063	0.593723	0.003358	True	-0.0021 * Year + 4.3853	OZONE	1	Low
9	Tulare	-0.001678	0.402797	0.026625	True	-0.0017 * Year + 3.5627	OZONE	1	Low
10	San Luis Obispo	-0.001503	0.250259	0.097653	False	-0.0015 * Year + 3.3011	OZONE	1	Low
11	Madera	-0.001189	0.047367	0.496820	False	-0.0012 * Year + 2.4927	OZONE	1	Low
12	Lake	-0.000944	0.566434	0.004733	True	-0.0009 * Year + 1.9402	OZONE	1	Low
13	Humboldt	-0.000699	0.055208	0.462273	False	-0.0007 * Year + 1.4528	OZONE	3	Medium
14	Sonoma	-0.000699	0.029138	0.595823	False	-0.0007 * Year + 1.4594	OZONE	3	Medium
15	Butte	-0.000420	0.094406	0.331313	False	-0.0004 * Year + 0.929	OZONE	3	Medium
16	Shasta	-0.000420	0.068659	0.410667	False	-0.0004 * Year + 0.994	OZONE	3	Medium
17	Merced	-0.000350	0.065559	0.421817	False	-0.0003 * Year + 0.7514	OZONE	3	Medium
18	Yolo	-0.000350	0.058275	0.449729	False	-0.0003 * Year + 0.7797	OZONE	3	Medium
19	Tuolumne	-0.000315	0.062937	0.431579	False	-0.0003 * Year + 0.6817	OZONE	3	Medium
20	Colusa	-0.000315	0.154482	0.206256	False	-0.0003 * Year + 0.6734	OZONE	3	Medium
21	El Dorado	-0.000315	0.011560	0.739444	False	-0.0003 * Year + 0.7317	OZONE	3	Medium
22	San Joaquin	-0.000245	0.029371	0.594334	False	-0.0002 * Year + 0.5691	OZONE	3	Medium
23	San Bernardino	-0.000140	0.000743	0.933004	False	-0.0001 * Year + 0.8736	OZONE	3	Medium
24	San Mateo	0.000000	0.000000	1.000000	False	0.0 * Year + 0.03	OZONE	3	Medium

	County	Slope	R-Squared Value	P-Value	P-Value less than 0.05?	Line-Equation	Pollutant	Cluster	Pollution Trend
25	Marin	0.000000	0.000000	1.000000	False	0.0 * Year + 0.03	OZONE	2	Increasing
26	San Francisco	0.000000	0.000000	1.000000	False	0.0 * Year + 0.03	OZONE	2	Increasing
27	Glenn	0.000000	0.000000	1.000000	False	0.0 * Year + 0.04	OZONE	2	Increasing
28	Amador	0.000000	0.000000	1.000000	False	0.0 * Year + 0.04	OZONE	2	Increasing
29	San Benito	0.000000	0.000000	1.000000	False	0.0 * Year + 0.08	OZONE	2	Increasing
30	Calaveras	0.000105	0.017165	0.684849	False	0.0001 * Year + -0.1706	OZONE	2	Increasing
31	Siskiyou	0.000245	0.038073	0.543370	False	0.0002 * Year + -0.4558	OZONE	2	Increasing
32	Sutter	0.000315	0.020474	0.657312	False	0.0003 * Year + -0.5734	OZONE	2	Increasing
33	Tehama	0.000455	0.101299	0.313348	False	0.0005 * Year + -0.8453	OZONE	2	Increasing
34	Monterey	0.000490	0.128497	0.252545	False	0.0005 * Year + -0.8833	OZONE	2	Increasing
35	Stanislaus	0.000664	0.280497	0.076575	False	0.0007 * Year + -1.2565	OZONE	2	Increasing
36	Mendocino	0.000699	0.419580	0.022752	True	0.0007 * Year + -1.3811	OZONE	2	Increasing
37	Napa	0.000734	0.264336	0.087259	False	0.0007 * Year + -1.4457	OZONE	0	Heavily Increasing
38	Kings	0.000734	0.264336	0.087259	False	0.0007 * Year + -1.3941	OZONE	0	Heavily Increasing
39	Santa Clara	0.000769	0.026721	0.611716	False	0.0008 * Year + -1.4187	OZONE	0	Heavily Increasing
40	Kern	0.001049	0.024585	0.626508	False	0.001 * Year + -1.7342	OZONE	0	Heavily Increasing
41	Solano	0.001329	0.540959	0.006408	True	0.0013 * Year + -2.5813	OZONE	0	Heavily Increasing
42	Riverside	0.001364	0.056677	0.456202	False	0.0014 * Year + -2.0892	OZONE	0	Heavily Increasing
43	Placer	0.001748	0.007458	0.789568	False	0.0017 * Year + -3.3936	OZONE	0	Heavily Increasing
44	Los Angeles	0.002133	0.098192	0.321297	False	0.0021 * Year + -3.7163	OZONE	0	Heavily Increasing
45	Contra Costa	0.003706	0.601327	0.003040	True	0.0037 * Year + -7.3434	OZONE	0	Heavily Increasing
46	Fresno	0.004965	0.553692	0.005518	True	0.005 * Year + -9.7087	OZONE	0	Heavily Increasing
47	Alameda	0.005420	0.697124	0.000726	True	0.0054 * Year + -10.7857	OZONE	0	Heavily Increasing
48	Inyo	0.008147	0.855695	0.000016	True	0.0081 * Year + -16.3358	OZONE	0	Heavily Increasing

5.3.1 Checking for Outliers

• From the outlier analysis of Ozone pollutant concentrations, it is evident that the counties - Santa Barbara and Inyo are the extreme outliers

5.4 Analysing Pollution Trends

Analysing which Counties had the Pollution Trend as Heavily Increasing for all three pollutants:

```
In [68]: ##Getting counties with Heavily Increasing pollution trend for all 3 pollutants

co_counties_high = set(f1_df[f1_df['Pollution Trend']=='Heavily Increasing']['County'].val
    pm_counties_high = set(f2_df[f2_df['Pollution Trend']=='Heavily Increasing']['County'].val
    ozone_counties_high = set(f3_df[f3_df['Pollution Trend']=='Heavily Increasing']['County'].

common_counties_high = co_counties_high.intersection(pm_counties_high,ozone_counties_high)
    common_counties_high
Out[68]:
```

• Analysing which Counties had the Pollution Trend as **Low** for all three pollutants: