МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 7304	Абдульманов Э.М
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Задание:

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение *интервала* между соседними (i-1) –ой u i –ой o u u i –ой o u u u –ой u u –ой u u u –ой u –ой
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения: W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{\text{эксп}}=s_{\text{эксп}}=1/b=10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = $-\ln(t)/b$
 - с. релеевским законом распределения: $W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками $_{\text{упорядочить}}$ по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%,

80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать $n=30,\ 24$ и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы:

1. Равномерный закон

а. Равномерный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0,560	11	6,886	21	14,004
2	2,057	12	7,616	22	14,120
3	2,080	13	7,825	23	16,362
4	2,454	14	9,561	24	16,735
5	3,130	15	9,659	25	17,027
6	3,551	16	10,048	26	17,424
7	4,597	17	11,503	27	18,114
8	6,525	18	12,907	28	18,667
9	6,528	19	13,808	29	19,252
10	6,816	20	13,917	30	19,811

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 20,321$$

20,321 > 15.5

Поиск т

$$f_n(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f-g
31	3,994987	2,809382	1,185605
32	3,027245	2,568822	0,458423

33	2,558495	2,36621	0,192286
34	2,255465	2,193222	0,062243
35	2,034877	2,043805	0,008928
36	1,863448	1,913448	0,05

Минимум при m=35, B = m-1=34

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,006518364$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
31	38,35318391
32	51,13757855
33	76,70636782
34	153,4127356

Время до полного завершения тестирования: 319,6098659 дней Полное время тестирования: 633,156 дней

b. Равномерный закон распределения (80% входных данных)

i	X	i	X	i	X
1	0,140	9	7,503	17	13,110
2	2,235	10	8,004	18	13,427
3	2,443	11	8,082	19	15,686
4	3,628	12	8,659	20	16,842
5	4,969	13	8,998	21	16,971
6	5,144	14	9,279	22	17,993
7	5,451	15	10,164	23	19,607
8	6,818	16	10,966	24	19,673

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12.5,$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 16,39,$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m - A}$$

m	f	g	f -g
25	3,73429	2,787719	0,946572
26	2,77596	2,49761	0,278349
27	2,31596	2,26219	0,053768
28	2,02109	2,067328	0,046242
29	1,80812	1,903374	0,09525

Минимум при m=28, B=m-1=27

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,008767621$$

Среднее время $\widehat{\mathbf{X}}_{n+1}$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X		
25	38,01867493		
26	57,0280124		
27	114,0560248		

Время до полного завершения тестирования: 209,1027121 дней Полное время тестирования: 444,894 дней

с. Равномерный закон распределения (60% входных данных)

i	X	i	X	i	X
1	1,830	7	3,791	13	14,619
2	2,470	8	4,685	14	15,670
3	2,957	9	9,257	15	17,434
4	3,136	10	11,999	16	17,916
5	3,161	11	13,104	17	19,122
6	3,457	12	14,235	18	19,830

Проверка существования максимума:

$$A > \frac{n+1}{2} = 10.5,$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12,79,$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
19	3,43955	2,902191	0,537361
20	2,49511	2,499233	0,004125
21	2,04774	2,194531	0,146791

Минимум при m=20, B = m-1=19

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{\mathbf{B}} - \mathbf{i} + 1) * X_{i}} = \frac{n}{(\widehat{\mathbf{B}} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,013987743$$

Среднее время \hat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X	
19	71,49116358	

Время до полного завершения тестирования: 71,49116358 дней

Полное время тестирования: 250,164 дней

2. Экспоненциальный закон

а. Экспоненциальный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0,132	11	2,684	21	8,956
2	0,194	12	3,529	22	9,026
3	0,317	13	4,491	23	9,940
4	0,715	14	4,834	24	11,475
5	0,853	15	5,176	25	11,621
6	0,968	16	5,558	26	16,931
7	1,429	17	6,416	27	17,042
8	1,474	18	6,532	28	21,556
9	2,618	19	7,983	29	22,608
10	2,640	20	8,901	30	33,550

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5,$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 23,264,$$

Поиск т

23,264 > 15.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
31	3,99499	3,878105	0,116882
32	3,02725	3,434169	0,406924

Минимум при m=31, B=m-1=30

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{\mathbf{B}} - \mathbf{i} + 1) * X_{i}} = \frac{n}{(\widehat{\mathbf{B}} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,016850471$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

Время до полного завершения тестирования: 0 дней

Полное время тестирования: 230,148 дней

b. Экспоненциальный закон распределения (80% входных данных)

i	X	i	X	i	X
1	0,632	9	5,204	17	16,270
2	0,843	10	5,993	18	20,118
3	0,999	11	6,918	19	20,216
4	1,522	12	9,892	20	20,497
5	1,781	13	10,976	21	21,719
6	3,808	14	11,493	22	22,369
7	4,145	15	13,335	23	29,956
8	5,045	16	14,334	24	39,553

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12.5,$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 17.96,$$

17.96 > 12.5

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
25	3,77596	3,41024	0,365718
26	2,81596	2,985956	0,169998
27	2,35442	2,655564	0,301144

Минимум при m=26, B = m-1=25

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,010381652$$

Среднее время \hat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
25	224,2768214

Время до полного завершения тестирования: 224,2768214 дней

Полное время тестирования: 511,895 дней

с. Экспоненциальный закон распределения (60% входных данных)

i	X	i	X	i	X
1	0,495	7	2,417	13	6,591
2	0,551	8	2,771	14	7,339
3	1,374	9	4,932	15	7,545
4	1,943	10	5,132	16	9,934
5	2,049	11	5,439	17	16,448

6	2,282	12	5,599	18	34,921

Проверка существования максимума:

$$A > \frac{n+1}{2} = 10.5,$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 14,16,$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f-g
19	3,43955	3,722082	0,282529
20	2,49511	3,084303	0,589195

Минимум при m=19, B=m-1=18

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,026190871$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
---	---

Время до полного завершения тестирования: 0 дней

Полное время тестирования: 117,763 дней

3. Релеевский закон

а. Релеевский закон распределения (100% входных данных)

i	X	i	X	i	X
1	1,64345325	11	7,357717055	21	13,35341112
2	2,363375212	12	8,491444403	22	14,36326981
3	3,536264439	13	8,809861527	23	14,4156172
4	4,213710817	14	8,84816184	24	14,50215098
5	4,623835588	15	9,443631458	25	14,6427296
6	5,34213583	16	9,822786923	26	14,97314256
7	5,432172757	17	12,40026137	27	15,29103074
8	5,90983316	18	12,41424536	28	15,65302446
9	6,17725322	19	13,22806442	29	17,99089439
10	6,414533215	20	13,27904399	30	20,83104293

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5,$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 19,6,$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f -g
31	3,99499	2,632658	1,362329
32	3,02725	2,420267	0,606979
33	2,55850	2,239587	0,318908

34	2,03488	2,084009	0,049133
35	1,86345	1,948643	0,085195

Минимум при m=34, B = m-1=33

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_i} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_i - \sum_{i=1}^{n} i * X_i} = 0,006815653$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X
31	48,90702534
32	73,36053802
33	146,721076

Время до полного завершения тестирования: 268,9886394 дней

Полное время тестирования: 574,757 дней

b. Релеевский закон распределения (80% входных данных)

i	X	i	X	i	X
1	4,168109941	9	9,542024716	17	13,39593325
2	5,323591866	10	10,2109797	18	14,07593266
3	5,463333457	11	11,21047503	19	14,08691765
4	6,849758107	12	11,36078201	20	14,48482429
5	7,047148083	13	11,50005135	21	16,15767341
6	7,819801612	14	12,19299496	22	17,75708856
7	8,338996136	15	12,28341839	23	19,81482098
8	8,712173707	16	12,55372126	24	23,80947744

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12.5,$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 15.16,$$

15.16 > 12.5

Поиск т

$$f_n(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f-g
25	3,77596	2,439426	1,336533
26	2,81596	2,214353	0,601605
27	2,35442	2,027304	0,327116
28	2,05812	1,869395	0,188729
29	1,84384	1,734307	0,109531
30	1,67832	1,617427	0,060893
31	1,54499	1,515306	0,029681
32	1,43439	1,425315	0,009073
33	1,54499	1,345414	0,199574

Минимум при m=32, B = m-1=31

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,005124083$$

Среднее время $\widehat{\mathbf{X}}_{n+1}$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X	
25	27,87955135	
26	32,52614325	

27	39,0313719
28	48,78921487
29	65,05228649
30	97,57842974
31	195,1568595

Время до полного завершения тестирования: 506,0138571 дней

Полное время тестирования: 784,174 дней

с. Релеевский закон распределения (60% входных данных)

i	X	i	X	i	X
1	2,809937771	7	3,869159127	13	11,77365374
2	3,137318549	8	3,881286215	14	12,24976574
3	3,462470474	9	4,335660671	15	13,40296909
4	3,464435992	10	6,937653944	16	13,54969489
5	3,628612803	11	7,268823317	17	13,65591852
6	3,711936843	12	8,610392556	18	27,16981516

Проверка существования максимума:

$$A > \frac{n+1}{2} = 10.5,$$

$$\sum_{i=1}^{n} i * X_{i}$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.84,$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m,A) = \frac{n}{m-A}$$

m	f	g	f -g
19	3,43955	2,924381	0,515171
20	2,49511	2,515671	0,020563
21	2,04774	2,207195	0,159455
22	1,76441	1,966107	0,201701

Минимум при m=21, B = m-1=20

$$K = \frac{n}{\sum_{i=1}^{n} (\widehat{B} - i + 1) * X_{i}} = \frac{n}{(\widehat{B} + 1) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,015023156$$

Среднее время \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	X	
19	35,74558179	
20	71,49116358	

Время до полного завершения тестирования: 107,2367454 дней

Полное время тестирования: 254,156 дней

4. Полученные результаты

Оценка первоначального числа ошибок

Закон распределения	n = 30	n = 24	n = 18
Равномерный	34	27	19
Экспоненциальный	30	25	18
Релеевский	33	31	20

Оценка полного времени проведения тестирования

Закон	n = 30	n = 24	n = 18	
распределения	22 0 0			
Равномерный	633,156	444,894	250,164	
Экспоненциальный	230,148	482,775	117,763	
Релеевский	574,757	784,174	254,156	

Выводы:

В результате выполнения данной лабораторной роботы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Экспоненциальный закон распределения показывает наилучшие результаты по двум оценкам сразу при любых входных данных (кроме времени тестирования при n=24), так как по предположению модели Джелински-Моранды время до следующего отказа программы распределено экспоненциально.

Релеевское распределение демонстрирует наихудшие результаты полного времени проведения тестирования при 60% и 80% входных данных, однако в плане оценки первоначального числа ошибок сравнимо с равномерным. При 100% входных данных наихудший результат показывает равномерное распределение.