4 Décomposition de Dunford et application

Leçons 153, 154, 155, 156, 157

Ref: [Gourdon Analyse] IV.4 Th2, [Objectif Agreg] Exo 4.18

On se donne un \mathbb{K} -espace vectoriel E de dimension finie sur un corps \mathbb{K} quelconque.

Théorème 1 (Décomposition de Dunford) Soit $u \in L(E)$ un endomorphisme dont le polynôme caractéristique χ est scindé sur \mathbb{K} . Il existe alors un unique couple d'endomorphismes (d, n), le premier étant diagonalisable et le second nilpotent, qui commutent, et dont la somme est u.

 $D\acute{e}monstration$. On écrit la décomposition du polynôme caractéristique de u en produit de facteurs de degré 1, comptés avec multiplicité :

$$\chi = \prod_{i=1}^{r} (X - \lambda_i)^{\alpha_i}.$$

On note de plus, pour $i \in [1, r]$, $N_i := \ker((u - \lambda_i \operatorname{Id}_E)^{\alpha_i})$ les sous-espaces caractéristiques.

Étape 1. Existence d'une décomposition de Dunford.

D'après le lemme des noyaux couplé au théorème de Cayley-Hamilton, on a

$$E = \bigoplus_{i=1}^{r} N_i.$$

Ainsi, il suffit de définir d et n sur chaque N_i . L'intuition suggère de prendre $d(x) = \lambda_i x$ sur N_i . On définit donc

$$\begin{cases} d_{|N_i} = d_i := \lambda_i \operatorname{Id}_{N_i} \\ n_{|N_i} = n_i := u_{|N_i} - \lambda_i \operatorname{Id}_{N_i} \end{cases}$$

Bien sûr, N_i est stable par d_i , et aussi par n_i puisque N_i est stable par u^1 . Ainsi, d_i et n_i sont des endomorphismes de N_i .

En concaténant des bases de chaque N_i , on obtient une base de E formée de vecteurs propres pour d, donc d est diagonalisable. De plus, on a $n_i^{\alpha_i} = 0$ pour tout $i \in [\![1,r]\!]$ par définition de N_i . Ainsi, si $\alpha = \max \alpha_i$, n^{α} s'annule sur chaque N_i , et donc sur E. Donc n est nilpotent. Reste à montrer que d et n commutent. Comme les d_i sont des homothéties, d_i et n_i commutent pour tout i, et donc d et n commutent sur tous les N_i , donc sur E.

Étape 2. Unicité de la décomposition.

On se donne une seconde décomposition u = d' + n'. Comme d' et n' commutent, u commute avec d' et n'. On en déduit notamment que pour $x \in N_i$, on a

$$(u - \lambda_i \operatorname{Id})^{\alpha_i} (d'(x)) = d' ((u - \lambda_i \operatorname{Id})^{\alpha_i} (x)) = d'(0) = 0,$$

et donc N_i est stable par d'. Ainsi, d_i étant une homothétie sur N_i , d_i commute avec $d'_{|N_i|}$ (qui est bien un endomorphisme de N_i), et donc d et d' commutent. Comme ce sont de plus deux endomorphismes diagonalisables, ils sont codiagonalisables, et donc d-d' est diagonalisable.

De plus, comme n = u - d et n' = u - d', et comme d et d' commutent, n et n' commutent, et donc on a pour $k \in \mathbb{N}$

$$(n-n')^k = \sum_{j=0}^k \binom{k}{j} n^j (-n')^{k-j},$$

et donc en prenant $k \geq 2\dim(E)$, la somme s'annule, ce qui montre que n-n' est nilpotent. Ainsi, n-n'=d'-d est nilpotent et diagonalisable, donc nul. On en déduit l'unicité de la décomposition. \square

On prend cette fois $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} (pour définir l'exponentielle d'endomorphisme).

Application 2 Si $u \in L(E)$, u est diagonalisable si et seulement si $\exp(u)$ l'est.

^{1.} En tant que noyau d'un polynôme en u.

Démonstration. On note u = d + n la décomposition de Dunford de u, et p l'indice de nilpotence de n. Tout d'abord, comme d est diagonalisable, $\exp(d)$ l'est (on prend une base de vecteurs propres pour d, et $\exp(d)$ agit par homothétie sur chaque droite propre, le rapport étant l'exponentielle de la valeur propre de d correspondante). Il faut donc montrer la réciproque.

Étape 1. Décomposition de Dunford de $\exp(u)$.

Montrons que la décomposition de Dunford de $\exp(u)$ est

$$\exp(u) = \exp(d) + \exp(d)n',$$

avec $n' = \exp(n) - \operatorname{Id} = \sum_{k=1}^{p-1} \frac{n^k}{k!}$. On a déjà vu que $\exp(d)$ est diagonalisable. De plus, comme d et n

commutent, $\exp(d)$ et $\exp(n)$ commutent aussi, donc $\exp(d)$ et n' commutent, et $\exp(d)$ et $\exp(d)n'$ aussi. Il reste à montrer que $\exp(d)n'$ est nilpotente. Or n' est le produit de n et d'un polynôme en n, donc comme n est nilpotent, n' l'est aussi. De plus, comme $\exp(d)$ et n' commutent, $(\exp(d)n')^k = \exp(d)^k n'^k$ et donc $\exp(d)n'$ est bien nilpotent.

Étape 2. Condition suffisante de diagonalisabilité.

On suppose donc maintenant que $\exp(u)$ est diagonalisable, c'est-à-dire que $\exp(u)$ est égale à la partie diagonalisable de sa décomposition de Dunford ². Cela signifie que $\exp(d)n'$ est nulle, et donc que n' est nulle (car $\exp(d) \in GL(E)$), c'est-à-dire que $\exp(n) = \operatorname{Id}$. Ainsi, le polynôme $X + \cdots + \frac{X^{n-1}}{(n-1)!}$ annule

n. Comme le polynôme minimal de n est X^p , on a $X^p \Big| X + \cdots + \frac{X^{n-1}}{(n-1)!}$ et donc nécessairement p = 1. Finalement, n = 0 et u = d est diagonalisable.

Pour la leçon 156, il faut clairement insister sur l'application. Pour la 154, plutôt sur la démonstration du théorème de décomposition. Pour la 153, on peut présenter cette autre version de la démonstration, qui justifie aussi que d et n sont des polynômes en u. On utilise en particulier le résultat suivant.

Proposition 3 Si $E = \bigoplus_{i=1}^{n} N_i$ est la décomposition de E adaptée à la décomposition en facteur irréductibles d'un polynôme annulateur P de u, les projecteurs sur les N_i parallèlement aux N_j sont des polynômes en u.

Pour démontrer cette proposition, on note $P = \prod_{i=1}^r P_i^{\alpha_i}$, $Q_i = \prod_{j \neq i} P_j^{\alpha_j}$, $\sum_{i=1}^r U_i Q_i = 1$ une relation de Bézout, et on montre que $p_i = U_i Q_i(u)$.

Finalement, on montre le théorème de Dunford.

Démonstration.

Étape 1. Existence de la décomposition de Dunford.

Comme χ annule u (théorème de Cayley-Hamilton), la proposition s'applique : on note p_i le projecteur sur N_i parallèlement à $\bigoplus_{i\neq i} N_j$, qui est donc un polynôme en u. On pose alors

$$d := \sum_{i=1}^{r} \lambda_i p_i.$$

Au vu de sa définition, d est bien sûr diagonalisable (prendre une base propre de chaque N_i). Montrons que n = u - d est nilpotent. On a

$$n = u - d = \sum_{i=1}^{r} (u - \lambda_i \operatorname{Id}) p_i.$$

Par propriété des projecteurs, et comme p_i commute avec $u - \lambda_i$ Id, on en déduit que pour $k \ge 0$, on a

$$n^k = \sum_{i=1}^r (u - \lambda_i \operatorname{Id})^k \circ p_i = \sum_{i=1}^k p_i \circ (u - \lambda_i \operatorname{Id})^k.$$

Donc n est nilpotent d'indice max α_i . Comme d et n sont des polynômes en u, ils commutent.

2. En effet, comme u est diagonalisable, u = u + 0 est une (et donc la seule) décomposition de Dunford de u.

/						
Tt ana	0	TToologita	1.	1 ~	160000	
$r_{L}ane$	Ζ.	$Unicit\'e$	ae	LCL	аесоти	DOSILIOH.

On utilise la même preuve que dans la première démonstration, à ceci près qu'il suffit de rappeler que d et n sont des polynômes en u pour montrer que si d' et n' commutent, ils commutent avec d et n (puisqu'ils commutent avec u).