THE SPLITTING FIELD OF $X^3 - 7$ OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$K = \mathbf{Q}(\sqrt[3]{7}, \omega),$$

where $\omega = (-1 + \sqrt{-3})/2$ is a primitive cube root of unity.

Here is the notation for the fields and Galois groups to be used. Let

$$k = \mathbf{Q}(\sqrt[3]{7}),$$

$$K = \mathbf{Q}(\sqrt[3]{7}, \omega),$$

$$F = \mathbf{Q}(\omega) = \mathbf{Q}(\sqrt{-3}),$$

$$G = \operatorname{Gal}(K/\mathbf{Q}) \cong S_3,$$

$$N = \operatorname{Gal}(K/F) \cong A_3,$$

$$H = \operatorname{Gal}(K/k).$$

First we work out the basic invariants for the fields F and k.

Theorem 1. The field $F = \mathbf{Q}(\omega)$ has ring of integers $\mathbf{Z}[\omega]$, class number 1, discriminant -3, and unit group $\{\pm 1, \pm \omega, \pm \omega^2\}$. The ramified prime 3 factors as $3 = -(\sqrt{-3})^2$. For $p \neq 3$, the way p factors in $\mathbf{Z}[\omega] = \mathbf{Z}[X]/(X^2 + X + 1)$ is identical to the way $X^2 + X + 1$ factors mod p, so p splits if $p \equiv 1 \mod 3$ and p stays prime if $p \equiv 2 \mod 3$.

We now turn to the field k.

Since $\operatorname{disc}(\mathbf{Z}[\sqrt[3]{7}]) = -\operatorname{N}_{k/\mathbf{Q}}(3(\sqrt[3]{7})^2) = -3^37^2$, only 3 and 7 can ramify in k. Clearly 7 is totally ramified: $(7) = (\sqrt[3]{7})^3$. The prime 3 is also totally ramified, since

$$(X+1)^3 - 7 = X^3 + 3X^2 + 3X - 6$$

is Eisenstein at 3. So by [2, Lemma 1], $\mathcal{O}_K = \mathbf{Z}[\sqrt[3]{7}]$ and $\operatorname{disc}(\mathcal{O}_K) = -3^3 7^2$. Let's find the fundamental unit of k. The norm form for k is

(1)
$$N_{k/\mathbf{Q}}(a+b\sqrt[3]{7}+\sqrt[3]{49}) = a^3+7b^3+49c^3-21abc,$$

so an obvious unit is $v \stackrel{\text{def}}{=} 2 - \sqrt[3]{7}$, which is between 0 and 1. Let $u \stackrel{\text{def}}{=} 1/v = 4 + 2\sqrt[3]{7} + \sqrt[3]{49} \approx 11.4$. Letting U be the fundamental unit for \mathcal{O}_k , we have

$$\frac{3^37^2}{4} < U^3 + 7 \Rightarrow U^2 > \left(\frac{3^37^2}{4} - 7\right)^{2/3} \approx 47.1 > u,$$

so U = u.

(It turns out that $\mathbf{Z}[u] = \mathbf{Z}[\sqrt[3]{7}]$ – explicitly, $\sqrt[3]{7} = -4 + 12u - u^2$.) The Minkowski bound for k is

$$\frac{3!}{3^3} \left(\frac{4}{\pi}\right) 21\sqrt{3} = \frac{56\sqrt{3}}{3\pi} \approx 10.3,$$

so we factor 2, 3, 5, 7. Since

$$X^3 - 7 \equiv (X+1)(X^2 + X + 1) \mod 2$$
, $X^3 - 7 = (X-3)(X^2 + 3X - 1) \mod 5$,

so

(2)
$$(2) = \mathfrak{p}_2\mathfrak{p}_2', \quad (3) = \mathfrak{p}_3^3, \quad 5 = \mathfrak{p}_5\mathfrak{p}_5', \quad (7) = (\sqrt[3]{7})^3,$$

where $N \mathfrak{p}_2 = 2$, $N \mathfrak{p}'_2 = 4$, $N \mathfrak{p}_5 = 5$, $N \mathfrak{p}'_5 = 25$.

If \mathfrak{p}_2 is principal, say $\mathfrak{p}_2 = (\alpha)$, then $N_{k/\mathbb{Q}}(\alpha) = 2$. But by (1), the norm of an element of $\mathbb{Z}[\sqrt[3]{7}]$ is a cube mod 7, so there is no algebraic integer with norm 2, since the only nonzero cubes mod 7 are ± 1 . Thus \mathfrak{p}_2 is not principal, so h(k) > 1. Similarly \mathfrak{p}_3 is not principal. Since $\mathfrak{p}_3^3 = (3)$, $[\mathfrak{p}_3]$ has order 3 in $\mathrm{Cl}(k)$, hence 3|h(k). We now show that $[\mathfrak{p}_3]$ generates $\mathrm{Cl}(k)$, so h(k) = 3.

By (2), Cl(k) is generated by $\mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_5$. Since $N_{k/\mathbb{Q}}(2+\sqrt[3]{7})=15$, $\mathfrak{p}_3\mathfrak{p}_5\sim 1$, so $\mathfrak{p}_5\sim \mathfrak{p}_3^2$. Since $N_{k/\mathbb{Q}}(-1+\sqrt[3]{7})=6$, $\mathfrak{p}_2\sim \mathfrak{p}_3^2$. Therefore Cl(k) is generated by $[\mathfrak{p}_3]$.

Theorem 2. The field $k = \mathbf{Q}(\sqrt[3]{7})$ has class number 3 and discriminant -3^37^2 . The ramified primes 3 and 7 factor as

$$(3) = (3, 1 - \sqrt[3]{7})^3, \quad (7) = (\sqrt[3]{7})^3,$$

with $\mathfrak{p}_3 = (3, 1 - \sqrt[3]{7})$ generating $\operatorname{Cl}(k) \cong \mathbf{Z}/3\mathbf{Z}$. The ring of integers of k is $\mathbf{Z}[\sqrt[3]{7}]$. The unit group of \mathcal{O}_k has two roots of unity, rank 1, and generator $u = 4 + 2\sqrt[3]{7} + \sqrt[3]{49}$. The minimal polynomial of u is

$$T^3 - 12T^2 + 6T - 1$$

and $\mathcal{O}_k = \mathbf{Z}[u]$.

We now turn to $K = \mathbf{Q}(\sqrt[3]{7}, \omega)$. By [2, Cor. 1], the discriminant is

$$\operatorname{disc}(K) = \operatorname{disc}(F)\operatorname{disc}(k)^2 = -3^7 7^4.$$

Let's factor the ramified primes 3 and 7. In \mathcal{O}_F , $(7) = (2 + \sqrt{-3})(2 - \sqrt{-3})$. In \mathcal{O}_k , $(7) = (\sqrt[3]{7})^3$. So in \mathcal{O}_K , $3|e_7$ and $g_7 \geq 2$, hence $e_7 = 3$ and $g_7 = 2$. Thus 7 factors principally, with ramification index 3:

(3)
$$7 \mathcal{O}_K = (2 + \sqrt{-3})^3 (2 - \sqrt{-3})^3.$$

Since

$$3\mathcal{O}_F = (\sqrt{-3})^2, \quad 3\mathcal{O}_k = \mathfrak{p}_3^3,$$

we get $3\mathcal{O}_K = \mathfrak{P}_3^6$. Therefore $g\mathfrak{P}_3 = \mathfrak{P}_3$ for all $g \in G$ and

(4)
$$\mathfrak{P}_3^3 = \sqrt{-3}\,\mathcal{O}_K, \quad \mathfrak{P}_3^2 = \mathfrak{p}_3\,\mathcal{O}_K.$$

The ideal \mathfrak{P}_3 is not principal, since if $\mathfrak{P}_3 = (x)$ then $N_{K/k} \mathfrak{P}_3 = \mathfrak{p}_3 = (N_{K/k}(x))$ is principal, which is not so. By (4), $[\mathfrak{P}_3] \in Cl(K)$ has order 3.

To compute Cl(K), we compute the Minkowski bound:

$$\frac{6!}{6^6} \left(\frac{4}{\pi}\right)^3 7^2 3^3 \sqrt{3} = \frac{3920\sqrt{3}}{3\pi^3} \approx 72.992,$$

so Cl(K) is generated by the prime ideal factors of all rational primes ≤ 71 :

$$(5) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71.$$

We will determine relations in Cl(K) that allow us to avoid working directly with most of the primes.

By (3), we can ignore p = 7.

If $p \equiv 1 \mod 3$ and $7 \mod p$ is not a cube (with $p \neq 7$), then $p = \alpha \overline{\alpha}$ in \mathcal{O}_F and p stays prime in \mathcal{O}_k . Thus $f_p(K/\mathbf{Q}) = 3$, $g_p(K/\mathbf{Q}) = 2$, so $\alpha \mathcal{O}_K$ and $\overline{\alpha} \mathcal{O}_K$ are prime, hence p

factors principally in \mathcal{O}_K . This applies to the primes 13, 31, 37, 43, 61, 67. The only $p \equiv 1 \mod 3$, $p \leq 71$, $p \neq 7$, which it does not apply to is p = 19. We'll consider the prime factors of 19 in \mathcal{O}_K later.

Turning to the case of $p \equiv 2 \mod 3$, we have $p \mathcal{O}_k = \mathfrak{pp'}$ where $\mathbb{N}\mathfrak{p} = p$, $\mathbb{N}\mathfrak{p'} = p^2$. From this we get that in \mathcal{O}_K , $\mathfrak{P} \stackrel{\text{def}}{=} \mathfrak{p} \mathcal{O}_K$ is prime, $\overline{\mathfrak{P}} = \mathfrak{P}$, and $\mathfrak{p'} \mathcal{O}_K = \sigma \mathfrak{P} \sigma^2 \mathfrak{P} = \sigma \mathfrak{P} \overline{\sigma} \mathfrak{P}$, where σ is a generator of $N = \operatorname{Gal}(K/F)$, i.e. σ has order 3 in $G = \operatorname{Gal}(K/\mathbb{Q})$. If p is a norm from $\mathbb{Z}[\sqrt[3]{7}]$, then $p \equiv \pm 1 \mod 7$, \mathfrak{p} is principal in \mathcal{O}_k , and \mathfrak{P} (and hence each of its Galois conjugates) is principal in \mathcal{O}_K . The $p \equiv 2 \mod 3$ in (5) which are $\equiv \pm 1 \mod 7$ are p = 29, 41, 71, and happily they are all norms from $\mathbb{Z}[\sqrt[3]{7}]$:

$$29 = N_{k/\mathbf{Q}}(-3 + 2\sqrt[3]{7}), \quad 41 = N_{k/\mathbf{Q}}(-2 + \sqrt[3]{49}), \quad 71 = N_{k/\mathbf{Q}}(4 + \sqrt[3]{7}).$$

So 29, 41, 71 factor principally in \mathcal{O}_K . For the other $p \equiv 2 \mod 3$, which are not norms from $\mathbf{Z}[\sqrt[3]{7}]$, Theorem 2 says $\mathfrak{p} \sim \mathfrak{p}_3$ or $\mathfrak{p} \sim \mathfrak{p}_3^2$ in $\mathrm{Cl}(k)$. Extending these relations from $\mathrm{Cl}(k)$ to $\mathrm{Cl}(K)$ implies $\mathfrak{P} \sim \mathfrak{P}_3^2$ or $\mathfrak{P} \sim \mathfrak{P}_3^4 \sim \mathfrak{P}_3$ in $\mathrm{Cl}(K)$. Since \mathfrak{P}_3 is fixed by $\mathrm{Gal}(K/\mathbf{Q})$, applying G to \mathfrak{P} shows all prime ideal factors of p in \mathcal{O}_K are equivalent to \mathfrak{P}_3 or \mathfrak{P}_3^2 in $\mathrm{Cl}(K)$.

To summarize, Cl(K) is generated by $[\mathfrak{P}_3]$ (with order 3) and the prime ideal factors of 19. It turns out that the factors of 19 are related to \mathfrak{P}_3 in Cl(K), so h(K) = 3. To show this, we'll need to factor some principal ideals of \mathcal{O}_K , which requires using some explicit algebraic integers in \mathcal{O}_K . So let's defer calculation of Cl(K) and turn to computing a basis for \mathcal{O}_K .

Since $\mathcal{O}_F = \mathbf{Z}[\omega]$ is a PID, \mathcal{O}_K is a free \mathcal{O}_F -module of rank 3. To find a basis we will use $\operatorname{disc}(K/F)$:

$$\operatorname{disc}(K/\mathbf{Q}) = \operatorname{N}_{F/\mathbf{Q}}(\operatorname{disc}(K/F))\operatorname{disc}(F/\mathbf{Q})^3 \Rightarrow \operatorname{N}_{F/\mathbf{Q}}(\operatorname{disc}(K/F)) = 3^47^4.$$

Since $2 + \sqrt{-3}$ and $2 - \sqrt{-3}$ both ramify in K with ramification index 3, we conclude that

(6)
$$\operatorname{disc}(K/F) = (\sqrt{-3})^4 (2 + \sqrt{-3})^2 (2 + \sqrt{-3})^2 = 9 \cdot 49.$$

The natural first thing to check is if $\mathcal{O}_K = \mathbf{Z}[\omega][\sqrt[3]{7}] = \mathbf{Z}[\sqrt[3]{7}, \omega]$. Alas,

$$\operatorname{disc}_{K/F}(1, \sqrt[3]{7}, \sqrt[3]{49}) = 3^3 7^2$$

is off from $\operatorname{disc}_{K/F}(\mathcal{O}_F)$ by a factor of 3. So we want to find an element of $\mathbf{Z}[\sqrt[3]{7}, \omega]$ which upon division by $\sqrt{-3}$ is nonobviously still in \mathcal{O}_K . Since

$$(1-\sqrt[3]{7})\,\mathcal{O}_k=\mathfrak{p}_2\mathfrak{p}_3\Rightarrow (1-\sqrt[3]{7})\,\mathcal{O}_K=\mathfrak{p}_2\mathfrak{P}_3^2,\quad \mathrm{and}\ (\sqrt{-3})\,\mathcal{O}_K=\mathfrak{P}_3^3,$$

we have

$$\frac{(1-\sqrt[3]{7})^2}{(\sqrt{-3})} = \mathfrak{p}_2^2 \mathfrak{P}_3$$

is an integral ideal, so

$$\eta \stackrel{\text{def}}{=} \frac{(1 - \sqrt[3]{7})^2}{-\sqrt{-3}} = (2\omega + 1) \cdot \frac{1 - 2\sqrt[3]{7} + \sqrt[3]{49}}{3}$$

is an algebraic integer which is not in $\mathbf{Z}[\sqrt[3]{7},\omega]$. Since $\mathrm{disc}_{K/F}(1,\sqrt[3]{7},\eta)=9\cdot 49,\ \{1,\sqrt[3]{7},\eta\}$ is a $\mathbf{Z}[\omega]$ -basis of \mathcal{O}_K , by (6). (But $\mathrm{disc}_{K/F}(1,\eta,\eta^2)=9\cdot 25\cdot 49$, so $\mathcal{O}_K\neq \mathcal{O}_F[\eta]$.)

Writing $2\omega + 1 = 3\omega + (1 - \omega)$, we're led from η to the algebraic integer

(7)
$$\theta \stackrel{\text{def}}{=} \frac{(\omega - 1)(1 - \sqrt[3]{7})^2}{3} = -\omega^2 \eta,$$

so $\{1, \sqrt[3]{7}, \theta\}$ is a second basis for $\mathcal{O}_K / \mathcal{O}_F$ (and $\operatorname{disc}_{K/F}(1, \sqrt[3]{7}, \theta) = 9 \cdot 49\omega$).

Having expressed \mathcal{O}_K as a free module over \mathcal{O}_F , can we do likewise over \mathcal{O}_k ? Since \mathcal{O}_k is not a PID, we have no reason to suppose that \mathcal{O}_K is a free \mathcal{O}_k -module, and in fact it is not. To show this, we mimic the argument in [3].

Assume \mathcal{O}_K is a free \mathcal{O}_k -module, so it must have rank 2:

$$\mathcal{O}_K = \mathcal{O}_k e_1 \oplus \mathcal{O}_k e_2.$$

Thus

$$1 = \alpha_1 e_1 + \alpha_2 e_2, \quad \omega = \beta_1 e_1 + \beta_2 e_2,$$

where $\alpha_i, \beta_i \in \mathcal{O}_k = \mathbf{Z}[\sqrt[3]{7}]$. Applying complex conjugation (the nontrivial element of $\operatorname{Gal}(K/k)$),

$$1 = \alpha_1 \overline{e}_1 + \alpha_2 \overline{e}_2, \quad \omega^2 = \beta_1 \overline{e}_1 + \beta_2 \overline{e}_2.$$

These can be combined into the matrix equation

$$\left(\begin{array}{cc} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{array}\right) \left(\begin{array}{cc} e_1 & \overline{e}_1 \\ e_2 & \overline{e}_2 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ \omega & \omega^2 \end{array}\right).$$

The determinant $\Delta \stackrel{\text{def}}{=} \alpha_1 \beta_2 - \alpha_2 \beta_1$ of the first matrix is in \mathcal{O}_k . The determinant of the second matrix is negated under complex conjugation, so its *square* is in \mathcal{O}_k . And the determinant of the matrix on the right is $\omega^2 - \omega = -1 - 2\omega = -\sqrt{-3}$. So equating the squares of the determinants of both sides yields

$$\Delta^2 \delta = -3$$

where $\delta = (e_1 \overline{e}_2 - \overline{e}_1 e_2)^2$. As an equation in ideals of \mathcal{O}_k , we get

$$(\Delta)^2(\delta) = 3 \,\mathcal{O}_k = \mathfrak{p}_3^3.$$

Since \mathfrak{p}_3 and \mathfrak{p}_3^2 are not principal ideals, and \mathfrak{p}_3^3 is not the square of an integral ideal, the only way for this equation to hold is if $(\Delta)^2 = (1)$, $(\delta) = (3)$. Thus $(\Delta) = (1)$, so $\Delta \in \mathcal{O}_k^{\times}$. That means $\{1, \omega\}$ is an \mathcal{O}_k -basis for \mathcal{O}_K . So

$$\mathcal{O}_K = \mathcal{O}_k \oplus \mathcal{O}_k \, \omega = \mathbf{Z}[\sqrt[3]{7}, \omega],$$

which we already saw is false. So \mathcal{O}_K is not a free \mathcal{O}_k -module.

We now return to the computation of Cl(K). Recall θ , defined in (7). Since $\theta + \overline{\theta} = -(1-\sqrt[3]{7})^2$ and $\theta\overline{\theta} = -9 + \sqrt[3]{7} + 2\sqrt[3]{49}$, the minimal polynomial of θ over k is

$$f(T) = T^{2} + (1 - \sqrt[3]{7})^{2}T + (-9 + \sqrt[3]{7} + 2\sqrt[3]{49}),$$

so the minimal polynomial of θ over **Q** is

$$g(T) = f\sigma(f)\sigma^{2}(f) = T^{6} + 3T^{5} + 18T^{4} + 45T^{3} + 23T^{2} + 180T + 48T^{4} + 45T^{2} + 180T + 48T^{2} + 180T + 48T^{2} + 180T + 18$$

Thus $N_{K/\mathbb{Q}}(\theta-1)=g(1)=532=2^2\cdot7\cdot19$, so $(\theta-1)=\mathfrak{P}_2(2\pm\sqrt{-3})\mathfrak{P}_{19}$, where $\mathfrak{P}_2|(2)$, $\mathfrak{P}_{19}|(19)$. Therefore $\mathfrak{P}_{19}\sim\mathfrak{P}_2^{-1}$. From the discussion of factoring primes $p\equiv 2$ mod 3, the ideal class of a factor of 2 is $[\mathfrak{P}_3]$ or $[\mathfrak{P}_3^2]$. Therefore $[\mathfrak{P}_{19}]=[\mathfrak{P}_2]^{-1}=[\mathfrak{P}_3]$ or $[\mathfrak{P}_3^2]$. So Cl(K) is generated by $[\mathfrak{P}_3]$.

(In fact, $[\mathfrak{P}_{19}] = [\mathfrak{P}_3^2]$. We saw already that in $\mathrm{Cl}(k)$, $\mathfrak{p}_2 \sim \mathfrak{p}_3^{-1} \sim \mathfrak{p}_3^2$ Therefore in $\mathrm{Cl}(K)$, $\mathfrak{p}_2 \mathcal{O}_K \sim \mathfrak{P}_3^4 \sim \mathfrak{P}_3$. Since \mathfrak{P}_3 is fixed by G, all prime factors of 2 in \mathcal{O}_K are equivalent to \mathfrak{P}_3 . So by the previous paragraph, $\mathfrak{P}_{19} \sim \mathfrak{P}_3^2$.)

We now can find a pair of fundamental units for \mathcal{O}_K^{\times} . By [2, Cor. 1] and the discussion following it,

$$h(K)R(K) = h(F)R(F)(h(k)R(k))^2 = (3\log u)^2 = 9(\log u)^2$$

and

$$\left[\mathcal{O}_K^{\times}/\mu_K:\langle u,\sigma u\rangle\right] = 3h(K)/h(F)h(k)^2 = h(K)/3.$$

Since h(K) = 3, $\{u, \sigma u\}$ is a pair of fundamental units for K and $R(K) = 3(\log u)^2 \approx 17.876$.

Theorem 3. The field $K = \mathbf{Q}(\sqrt[3]{7}, \omega)$ has class number 3, discriminant -3^77^4 , and regulator $3(\log u)^2$, where $u = 4 + 2\sqrt[3]{7} + \sqrt[3]{49}$. The ramified primes 3 and 7 factor as

$$3 = \mathfrak{P}_3^6$$
, $(7) = (2 + \sqrt{-3})^3 (2 - \sqrt{-3})^3$.

The ring of integers of K is

$$\mathcal{O}_K = \mathcal{O}_F \oplus \mathcal{O}_F \sqrt[3]{7} \oplus \mathcal{O}_F \theta,$$

where $\theta = (\omega - 1)(1 - \sqrt[3]{7})^2/3$. The ideal class group of \mathcal{O}_K is generated by $[\mathfrak{P}_3]$. The unit group of \mathcal{O}_K has six roots of unity, rank 2, and basis $\{u, \sigma u\}$.

There is no power basis for \mathcal{O}_K . See [1].

References

- [1] Chang, M-L., Non-monogeneity in a family of sextic fields, J. Number Theory 97 (2002), 252–268.
- [2] CONRAD, K., The Splitting Field of $X^3 2$ over **Q**.
- [3] MacKenzie, R. and J. Schuneman. A Number Field Without a Relative Integral Basis, *Amer. Math. Monthly*, **78** (1971), 882-883.