3.2
$$\bigcirc$$
 Row reduction on A gives $\begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & 0 \end{bmatrix}$

The nullspace is the plane -x + 3y + 5z = 0 in \mathbb{R}^3 .

Equivalently, the null space consists of all vectors

$$\begin{bmatrix} x \\ y \\ \overline{z} \end{bmatrix} = \begin{bmatrix} 3y + 5\overline{z} \\ y \\ \overline{z} \end{bmatrix} = y \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + \overline{z} \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$$

Row reduction on B gives
$$\begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & -3 \end{bmatrix}$$

The hollspace is the intersection of the planes -x + 3y + 5z = 0 and -2x + 6y + 7z = 0.

This intersection is a line, given by all points of the form $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3y & 4y \\ 0 \end{bmatrix} = y \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$.

So $\begin{bmatrix} 3\\ 1\\ 6 \end{bmatrix}$ is a point on the line.

- (9) a) F, if row reduction gives rows of zeros, we have free vars (e.g. any singular matrix)
 - b) T, invertible nxn matrix has a pivots.
 - e) 智子 can't have more no columns
 - d) T, can't have more pivots than rows.

21) A could be a 2 × 4 matrix. Let's construct in reduced form.

The pivot cols are cols 1 \$ 2, the free cols are 3 \$ 4 (since free cols always have 0's \$ 1's in special sol2s).

So
$$R = \begin{bmatrix} 1 & 0 & a_1 & a_2 \\ 0 & 1 & a_3 & a_4 \end{bmatrix}$$
 Solving $R \begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \end{bmatrix} = 0$ and $R \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = 0$

gives
$$R = \begin{bmatrix} 1 & 0 & -2 & -3 \\ 0 & 1 & -2 & -1 \end{bmatrix}$$
, which satisfies the desired nollspace.

(so does AR, where A is any invertible 2×2 mat).

$$A = \begin{bmatrix} 1 & 0 & \alpha_1 \\ 1 & 3 & \alpha_2 \\ 5 & 1 & \alpha_3 \end{bmatrix} \quad \text{and solve} \quad A \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{to find } \alpha_1, \alpha_2, \alpha_3.$$

row reduce
$$\begin{bmatrix} 1 & 0 & a_1 \\ 0 & 3 & a_2 - a_1 \\ 0 & 1 & a_3 - 5a_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & a_1 \\ 0 & 3 & a_2 - a_1 \\ 0 & 0 & 3a_3 - a_2 - |4a_1| \end{bmatrix}$$

R

 $\begin{bmatrix} 1 & 0 & a_1 \\ 0 & 3 & a_2 - a_1 \\ 0 & 0 & 3a_3 - a_2 - |4a_1| \end{bmatrix}$

$$R\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ gives } a_1 = -\frac{1}{2} \quad a_2 = -2 \quad a_3 = -3$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ is the desired matrix.}$$

So
$$A = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 1 & 3 & -2 \\ 5 & 1 & -3 \end{bmatrix}$$
 is the desired matrix.

(27) The dimension of the null space is given by the $\frac{1}{2}$ of the vars, but the dim. of the column space is given by the number of pivots. With 3 cols there is no way for n-r=r.

b)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 has X free, A^{T} has Y free

c) A is in ref,
$$A^{T} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 has $vref = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq R^{T}$.

$$(2)$$
 $y_1 - y_2 - y_5 = 0$

$$So A = \begin{bmatrix} -1 & 0 & 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
-1 & 0 & 1 & -1 & 0 & 0 \\
0 & -1 & 1 & -1 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$$

so free vars are \$3, x5, X6.

(10)
$$A = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$$
 $A = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 & 2 \end{bmatrix}$

$$A = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 & 2 \end{bmatrix}$$

(1) a) recall
$$AB = A \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{bmatrix} = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \cdots & A\vec{b}_n \end{bmatrix}$$

So if column
$$\overrightarrow{b}_j = a_i \overrightarrow{b}_i + \dots + a_{j-1} \overrightarrow{b}_{j-1}$$
 then
$$A\overrightarrow{b}_j = a_i A\overrightarrow{b}_i + \dots + a_{j-1} A\overrightarrow{b}_{j-1} \quad is$$
still a combo of prev. cols of AB.

so rank (AB) < rank (B), since we can't get new. pivot columns this way.

b)
$$A_1 = I$$
, $A_2 = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$

If AB = I, then rank(AB) = rank(I) = n.

we know rank (A) ≤ n, since A can't have more pivots than columns. But rank (A) = rank (AB) = n

=> rank(A)=n. and therefore A is invertible.

B must be its inverse, since A 1 is unique.

(will have cols of zeros in addition to rows of zeros).

I is rxr, r=# of pivots. note the # of pivots is unchanged. 1) Augmented matrix [A b] reduces to $\begin{cases}
2 & 4 & 6 & 4 & 6_1 \\
0 & 4 & 1 & 2 & 6_2 - 6_1 \\
0 & 0 & 0 & 0 & 6_3 + 6_2 - 26_1
\end{cases}$

b3+bz-26,=0. AX=b has a sol when

all lin combs. of cols 1 \$2, col space of A is (2,2,2) and (4,5,3).

b is in the col space when $A\vec{x} = \vec{b}$ is solvable, that is, when by tbz-2b1=0.

reduce more: (with by - will need later). Nullspace:

$$\begin{bmatrix}
1 & 0 & 1 & -2 & | & 4 \\
0 & 1 & 1 & 2 & | & -1 \\
0 & 0 & 0 & 0 & | & 0
\end{bmatrix}$$

complete sol=: $\vec{x}_p + \vec{x}_n$.

Find x_p : Set $x_3 = x_4 = 0$, $x_2 = -1$, $x_1 = 4$

complete sol = is

ele
$$501 - 15$$

$$\begin{bmatrix} 4 \\ -1 \\ 0 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -2 \\ 0 \\ 1 \end{bmatrix}.$$

$$(3) \quad \overrightarrow{X}_{p} + \overrightarrow{X}_{n} = (\frac{1}{2}, 0, \frac{1}{2}, 0) + x_{2}(-3, 1, 0, 0) + x_{4}(0, 0, -2, 1)$$

(a)
$$x_p + x_n = (z)$$

(b) a) golvable if $b_z = 2b_1$
 $3b_1 - 3b_3 + b_4 = 0$. } then $\vec{x} = \begin{bmatrix} 5b_1 - 2b_3 \\ b_3 - 2b_1 \end{bmatrix} = \vec{x}_p$

b) 11
$$b = \begin{bmatrix} 5b_1 - 2b_3 \\ b_3 - 2b_1 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

(18) let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

$$A \begin{bmatrix} l \\ l \\ l \end{bmatrix} = 0 \implies a+b+c = d+e+f = 0.$$
and $A \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 2a+4b \\ 2d+4e \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$b = 0 \implies c = -1$$

let
$$a=1$$
 $b=0$ =7 $c=-1$

$$d=0$$
 $e=1$ => $d=-1$

$$d=0$$
 $e=1$ => $d=-1$

$$check that $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \end{bmatrix}$ satisfies these regs, with $b=\begin{bmatrix} 2 \\ 4 \end{bmatrix}$.$$

- (3) a) \vec{x}_p is always mult. by 1. b) $A\vec{x} = \vec{b}$ may have a line or plane (for example) of $50|^{n}$ s. Any point on that line or plane is a $50|^{n}$ s.
 - c) $\begin{bmatrix} \alpha & \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2q \\ 2q \end{bmatrix}$. So $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ 0 \end{bmatrix}$ are both sol²s. length $\sqrt{2}$.

- (6) 3, row, always exists, R3, A = \[1 0 0 2 3 \\ 0 0 0 4 5 \\ 0 0 1 6 7 \].
- (22) $A\vec{x} = \vec{b}$ has only many solfs \Rightarrow there are free vars, these don't depend on B.

 If B \notin col(A), then we might have NO solfs.
- $(24)_{a} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $b) \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}$ c) A with <math>r < n, r < m. $b) \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}$ c) A with <math>r < n, r < m. $d) A = I \quad (any invertible matrix).$

one sola if bi=bz ooly many solas. d)
no sola ii bi+bz.

(34) a) rank A is 3

complete
$$sol^{\frac{n}{2}} + A\vec{x} = \vec{0}$$
 is $c \begin{bmatrix} 2\\ 3\\ 1\\ 0 \end{bmatrix}$

so R has form

R has form

$$\begin{bmatrix}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

yust need to solve for a, b from
$$R \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, a = -2, b = -3.$$

The solution of the solution

c) full row rank! (No rows of zeros).

(36) let
$$A = \begin{bmatrix} \vec{a}_1 & \dots & \vec{a}_n \end{bmatrix}$$
. Let $\vec{b} = \vec{a}_1$. Then $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ solves

$$A\vec{x} = \vec{b}$$
. Therefore \vec{x} also solves $(\vec{x} = \vec{b})$. So $\vec{c_1} = \vec{a_1}$, where $\vec{c_1}$ is the first column of \vec{c} . Repeat for the other columns!

3.5 ② Note that
$$(1,1,1)$$
 $\forall i=0$, so all six vectors lie on a plane. No move than 3 can be independent! \vec{v}_1 , \vec{v}_2 , \vec{v}_3 are indep.

- a) 3 pivols => independent
- b) 2 pivots => dependent

7) Take
$$c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 = c_1(\vec{w}_2 - \vec{w}_3) + c_2(\vec{w}_1 - \vec{w}_3) + c_3(\vec{w}_1 - \vec{w}_2) = 0$$
.
let $c_1 = c_3 = 1$, $c_2 = -1$. This is a non-trivial linear comb.
 $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3] = [\vec{w}_1 \ \vec{w}_2 \ \vec{w}_3][a b c]$

$$[a b c]$$

So e.g
$$\vec{v}_1 = \vec{w}_z - \vec{w}_3 = a\vec{w}_1 + d\vec{w}_z + g\vec{w}_3$$
 so $a = 0, d = 1, g = -1$

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$
 is singular. (row reduce to get rows of zeros).

(16) a)
$$\{(1,1,1,1)\}$$
 b) $\{(a,b,c,d) \mid a+b+c+d=0\}$ is the space.
To find a basis let $a=1,b=0,c=0 \implies d=-1$ similarly

find 3 other combinations:
$$\{(1,0,0,-1),(0,1,-1)\}$$
 is a basis.

c) I to the two vectors:

$$(1,1,0,0) \cdot (a,b,c,d) = a+b=0 \implies a=-b$$

 $(1,0,1,1) \cdot (a,b,c,d) = a+c+d=0 \implies c=b-d$
so $(a,b,c,d) = (-b,b,b-d,d) = b(-1,1,1,0) + d(0,0,-1,1)$
and $\{(-1,1,1,0),(0,0,-1,1)\}$ form a basis.

d) columns of I are a basis for
$$col(I)$$
, $nol(I) = {\vec{o}}$, which has the empty set as a basis.

b) The xy-plane has basis
$$(0,0,1)$$
.

Note that all pts of the form $c(2,1,0)$ lie on the plane. This is precisely the plane $Z=0$ (the xy-plane).

So $\{(2,1,0)\}$ is a basis.

c) The normal vector is (1,-2,3) is \bot to everything in the plane. \Longrightarrow it is a basis.

(29) a) F: when we have
$$n > m$$
, can have indep rows \$ dependent cols e.g $A = \begin{bmatrix} I & B \end{bmatrix}$

b)
$$F$$
: consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a & b & -2a-b \\ d & e & -2d-e \end{bmatrix} = a \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} + 4 \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -2 \end{bmatrix} + 2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

These 4 mats, are a basis.

(35)
$$a_0 + a_1 x + a_2 x^2 + 1_3 x^3 \leftarrow general form$$

when
$$p(1) = 0$$
, we have $a_0 + a_1 + a_2 + a_3 = 0$.

$$s_0 = a_0 + a_1 x + a_2 x^2 + (-a_0 - a_1 - a_2) x^3 = a_0 (1 - x^3) + a_1 (x - x^3) + a_2 (x^2 - x^3)$$

$$\Rightarrow \xi_1-x^3, x-x^3, x^2-x^3$$
 is one basis.

(43) Consider a lin combo:

sider a lin combo:

$$a_1 \vec{u_1} + \cdots + a_r \vec{u_r} + b_1 \vec{v_1} + \cdots + b_s \vec{v_s} + c_1 \vec{w_1} + \cdots + c_t \vec{w_t} = \vec{o}$$
. $\cancel{\#}$

want to prove: all coeffs must be zero.

let $\vec{x} = a_1 \vec{u}_1 + ... + a_r \vec{u}_r + b_1 \vec{v}_1 + ... + b_s \vec{v}_s$.

Note that \vec{x} is in V.

This means that $c_1 \vec{w}_1 + \cdots + c_t \vec{w}_t = a - \vec{x}$, from \Re

Therefore \vec{x} is in W too.

 $\vec{x} \in V, W \Rightarrow \vec{x} \in V \cap W.$

=> x can be written using only the vi's.

e.g & becomes

 $a_1\vec{u}_1 + \dots + a_r\vec{u}_r + b_1\vec{v}_1 + \dots + b_s\vec{v}_s + d_1\vec{u}_1 + \dots + d_r\vec{u}_r = \vec{0}$ $-\vec{x}$ expressed in terms of the u_i 's.

But now this is a linear comb. of the $\overline{u_i}$'s and the $\overline{v_j}$'s, so it is an element of V, and we know the u_i 's ϕ the v_i 's are indep.

= all coeffs = 0

⇒ヌーラ

 $\Rightarrow -\vec{x} = \vec{0} = c_1 \vec{w}_1 + \dots + c_t \vec{w}_t$

but $\widetilde{w}_1, \ldots, \widetilde{w}_k$ are $\lim_{n \to \infty} indep \implies c_1 = \ldots = c_k = 0$ too, which proves the claim.