

PH451, PH551 February 4, 2025

Announcements

- Hands-on #3/Reading HW #2
 - due next Tue
 - Textbook: Chapter 6

ML Methods (partial list)

- Fisher, Quadratic
- Naïve Bayes (Likelihood)
- Kernel Density Estimation
- Random Grid Search
- Rule ensembles
- Boosted decision trees
- Random forests
- Deep neural networks
- Support vector machines
- Genetic algorithms

Linear and Quadratic

Outline

Decision Trees

Binary Decision Trees

Decision trees are recursively constructed multidimensional histograms

- Each leaf associated to the value (class) of f(x) to be approximated
- Tennis-Playing
 Decision Tree:
 f(outlook, humidity, wind, T)

Each internal node: test one attribute X_i

Each branch: selects one value for X_i

Each leaf node: predict Y

Decision Tree Learning

Unknown target function f: X→Y

- Set of possible instances X
 - each instance is a feature vector

```
e.g.
```

<Humidity = High, Wind = weak, Outlook = rain,
Temp = hot>

Decision Tree Learning

Input:

Training examples {<xi,yi>}

Output

- Hypothesis h T H that best approximates target function f
- Tree sorts x to leaf, which assigns y

Building a tree:

- Scan along each variable and propose a DECISION
 - A cut on value that maximizes class separation (binary branching)

Choose decision that leads to greatest separation among classes signal/background

- Based on the information gained from split
 - Build regions of increasing purity
 - Stop when no further improvement from additional branching

 Reach terminal node (leaf) and assign purity-based class

$$\frac{N_{signal}}{N_{signal} + N_{background}} \leq \text{value} > \text{value}$$
 Signal

Separation Gain

Measures of Separation Gain

- Cross-Entropy
 - -p lnp + (1-p) ln(1-p)
- Gini Index
 - p (1 p)
- Want to lower entropy due to split

- Classic ML tool for
 - decision trees
 - rules
 - boosted classifiers
- Written by J.R. Quinlan
 - Name: ID3 \rightarrow C4.5 \rightarrow C5.0
 - Use c5.0 to familiarize with decision tree classifiers

Pruning

Decision trees can become large and complex and risk over-fitting the data

Pruning: remove parts of the tree that are less powerful or possibly noisy

start from the leaves and work back up

Pruned trees smaller in size, easier to interpret