Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 21 • INDICATIONS Dérivation

Exercice 21.1

Soient $a, b \in \mathbb{R}$ tels que a < b. Soit $f : [a, b] \longrightarrow \mathbb{R}_+^*$ dérivable. Montrer que

$$\exists x \in]a,b[: \frac{f(b)}{f(a)} = e^{(b-a)\frac{f'(c)}{f(c)}}.$$

— indication -

On peut appliquer le théorème des accroissements finis à $\ln \circ f$.

Exercice 21.2

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+^*$ dérivable. Soit $\ell \in \mathbb{R}$.

Montrer que

$$\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} \ell \quad \Longrightarrow \quad \frac{f(x+1)}{f(x)} \xrightarrow[x \to +\infty]{} e^{\ell}.$$

indication

On pourra considérer $g: x \longmapsto \ln(f(x))$ et utiliser le théorème des accroissements finis.

Exercice 21.3

Soient $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ dérivables. Soit $x_0 \in \mathbb{R}$.

On suppose que

$$\forall x \in [a, b], \quad g'(x) \neq 0.$$

1. Soit $x > x_0$. Montrer que

$$\exists c \in]x, x_0[: \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}.$$

2. Soit $\ell \in \mathbb{R}$. Montrer que

$$\frac{f'(x)}{g'(x)} \xrightarrow[x \to x_0]{} \ell \quad \Longrightarrow \quad \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \xrightarrow[x \to x_0]{} \ell.$$

1

indication

- **1.** \blacklozenge On vérifiera d'abord que $g(a) \neq g(b)$ pour justifier le sens de l'expression proposée.
 - ♦ On appliquera le théorème de Rolle à une fonction h bien choisie, construite à l'aide de f et g.
- **2.** On remarquera que le c précédemment construit dépend de x. Lorsque x tend vers x_0 , c aussi.

Exercice 21.4

Soit h > 0. Soit $f: [-h, h] \longrightarrow \mathbb{R}$ de classe \mathscr{C}^5 . Montrer que

$$\exists c \in]-h, h[: f(h) - f(-h) = \frac{h}{3} (f'(-h) + 4f'(0) + f'(h)) - \frac{h^5}{90} f^{(5)}(c).$$

indication —

En notant $A \in \mathbb{R}$ définit par la même équation que $f^{(5)}(c)$ et

$$\varphi: x \longmapsto f(x) - f(-x) - \frac{x}{3}(f'(-x) + 4f'(0) + f'(x)) + \frac{x^5}{90}A,$$

on applique le théorème de Rolle à φ , φ' et φ'' de façon à obtenir A en fonction de $\varphi^{(3)}$ et donc de $f^{(4)}$. On conclut par le théorème des accroissements finis.

Exercice 21.5

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{3}(4 - u_n^2). \end{cases}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

indication

On note $f: x \longmapsto \frac{1}{3}(4-x^2)$.

- Rechercher les points fixes de f, un intervalle stable de f au regard de u_0 et garder le point fixe ℓ de cet intervalle stable.
- ♦ À l'aide de l'inégalité des accroissements finis, montrer que

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - \ell| \leqslant k|u_n - \ell|$$

où $k \in]0,1[$ et en déduire la convergence de $(u_n)_n$ vers ℓ .

résultat

2

L'intervalle $\left[0,\frac{4}{3}\right]$ est stable par f. On a $u_n\longrightarrow 1$.

Exercice 21.6

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\left\{ egin{aligned} u_0 &= 1 \ orall n &\in \mathbb{N}, \quad u_{n+1} &= rac{1}{1+u_n}. \end{aligned}
ight.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

indication

On note $f: x \longmapsto \frac{1}{1+x}$.

- lacktriangle Rechercher les points fixes de f, un intervalle stable de f au regard de u_0 et garder le point fixe ℓ de cet intervalle stable.
- ♦ À l'aide de l'inégalité des accroissements finis, montrer que

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - \ell| \leqslant k|u_n - \ell|$$

où $k \in [0, 1[$ et en déduire la convergence de $(u_n)_n$ vers ℓ .

résultat

L'intervalle $\left[\frac{1}{2},1\right]$ est stable par f. On a $u_n\longrightarrow \frac{-1+\sqrt{5}}{2}.$

Exercice 21.7

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit $f:[a,b] \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 telle que

$$\forall x \in [a, b], \quad f'(x) > 0.$$

Montrer que

$$\exists (\alpha, \beta) \in \mathbb{R}_+^* \times \mathbb{R} : \forall x \in [a, b], f(x) \geqslant \alpha x + \beta.$$

– indication –

La fonction f' étant de classe \mathscr{C}^1 sur le segment [a,b], elle est bornée et atteint ses bornes. On utilise après le théorème des accroissements finis.

Exercice 21.8

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction dérivable.

Soit $\ell \in \mathbb{R}$ tel que

$$\begin{cases} f(x) \xrightarrow[x \to +\infty]{} \ell \\ f(x) \xrightarrow[x \to +\infty]{} \ell. \end{cases}$$

Montrer que

$$\exists c \in \mathbb{R}: f'(c) = 0.$$

3

— indication

Si f n'est pas identiquement nulle, considérer $x_0 \in \mathbb{R}$ tel que $f(x_0) > 0$. On pourra appliquer la définition de limite avec $\varepsilon = \frac{f(x_0)}{2} < f(x_0)$ et en déduire, par le théorème des valeurs intermédiaires, qu'il existe $a < x_0$ et $b > x_0$ tels que f(a) = f(b).

Exercice 21.9

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit $f:[a,b]\longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^2 telle que

$$\begin{cases} f(a) = f(b) = 0 \\ f'(a) = f'(b) = 0. \end{cases}$$

Montrer que

$$\exists c \in]a, b[: f(c) = f''(c).$$

— indication –

On pourra considérer les fonctions $x \longmapsto \mathrm{e}^{-x} f(x)$, $x \longmapsto \mathrm{e}^{-x} f'(x)$ et utiliser le théorème de Rolle.