CS330 Homework 2

Topics covered: Time Efficiency Analysis

Deliverables: Write down your answers neatly on a piece of paper.

Your name must be indicated clearly on the piece of paper. Then scan it into a.pdf file called cs330_yourid_2.pdf.If you have used more than one

piece of paper, please scan them in order.

Objectives: To demonstrate the ability of analyzing the time

efficiency of algorithms and recurrence solving.

Homework Questions (5 questions)

1. List the following functions according to their order of growth from the lowest to the highest. (Hint: you could start with using basic asymptotic efficiency classes) (10 points)

$$f_1(n) = n^{2.5};$$
 $f_2(n) = \sqrt{2n};$ $f_3(n) = n + 10$

$$f_4(n) = 10^n$$
; $f_5(n) = 100^n$; $f_6(n) = n^2 log n$

2. Consider the following algorithm. (10 points)

ALGORITHM Secret(A[0..n-1])

//Input: An array A[0..n - 1] of n numbers

//Output: An n by n array B[0..n-1][0..n-1]

- 1. for $i \leftarrow 0$ to n 1 do
- 2. for $j \leftarrow i$ to n 1 do
- 3. Add up array entries A[i] through A[j]
- 4. Store the result in B[i]
- 5. return B
- a) Suppose input $A=\{1,2,3\}$, and each entry of B is initialized as 0, what is it's output? (2 points)
- b) What is its basic operation? (2 points)
- c) How many times is the basic operation executed? (3 points)
- d) What is the efficiency class (Big O) of this algorithm? (3 points)
- 3. Solve the following recurrences using characteristic equation (linear homogeneous recurrence with constant coefficients). (10 points)
 - a) T(n) = 5T(n-1) 6T(n-2), initial conditions T(0) = 2, T(1) = 5 (5 points)
 - b) T(n) = 2T(n-1) + 3 initial condition T(0) = 0 (5 points)

- 4. Solve recurrence T(n) = T(n/2) + 1, with initial condition, T(1) = 0 by
 - (a) drawing the recursion tree and summing up a series (5 points)
 - (b) using Master's theorem (5 points)
- 5. Solve recurrence T(n) = T(n-1) + n, with initial condition T(1) = 0 by
 - (a) drawing the tree and summing up a series (5 points)
 - (b) using characteristic equation (5 points)

Goh Wei Zhe - CS330 Homework 2

1.
$$f_1(n) = n^{2.5}$$
. When $n = 10$, $f_1(10) = 10^{2.5} = 316.227766$

$$f_2(n) = \sqrt{2}n$$
. When $n = 10$, $f_2(10) = \sqrt{2}(10) = \sqrt{2}0 = 4.47213$

$$f_3(n) = n + 10$$
. When $n = 10$, $f_3(10) = 10 + 10 = 20$

$$f_4(n) = 10^n$$
. When $n = 10$, $f_4(10) = 10^{10} = 1 \times 10^{10}$

$$f_5(n) = 100^n$$
. When $n = 10$, $f_5(10) = 100^{10} = 1 \times 10^{20}$

$$f_6(n) = n^2 \log n$$
. When $n = 10$, $f_6(n) = 10^2 \log 10 = 100$

Order of growth (lowest to highest): $f_2(n)$, $f_3(n)$, $f_6(n)$, $f_1(n)$, $f_4(n)$, $f_5(n)$

2a. Input: array
$$A = \{1,2,3\} = A[3]$$
, $n = 3$

Output: array
$$B = B[n][n] = B[3][3]$$

Int sum initialized to 0.

When
$$i = 0$$
, $j = 0$. sum $+= A[j]$. sum $+= A[0] = 0 + 1 = 1$. $B[0][0] = \text{sum} = 1$.

When
$$i = 0$$
, $j = 1$. sum $+= A[j]$. sum $+= A[1] = 1 + 2 = 3$. $B[0][1] = sum = 3$.

When
$$i = 0$$
, $j = 2$. sum $+= A[j]$. sum $+= A[2] = 3 + 3 = 6$. $B[0][2] = sum = 6$.

Int sum reset back to 0.

$$B[1][0] = 0.$$

When
$$i = 1$$
, $j = 1$. sum $+= A[j]$. sum $+= A[1] = 0 + 2 = 2$. $B[1][1] = sum = 2$.

When
$$i = 1$$
, $j = 2$. Sum $+= A[j]$. sum $+= A[2] = 2 + 3 = 5$. $B[1][2] = sum = 5$.

Int sum reset back to 0.

$$B[2][0] = 0$$

$$B[2][1] = 0$$

When
$$i = 2$$
, $j = 2$. sum $+= A[j]$. sum $+= A[2] = 0 + 3 = 3$. $B[2][2] = 3$.

Output: B[3][3] = {1, 3, 6, 0, 2, 5, 0, 0, 3}

- Its basic operation is addition. 2b.
 - The basic operation executed 6 times. \times 3 L $\sqrt{3}$
- 2c.
- if input array A size n = 1, output array B size $= n^2 = 2$, basic operation runs 1 time. T (1) = 1 2d.

$$n = 2$$
, ----- $n^2 = 4$, ----- runs $2 + 1$ times. $T(2) = 3$

$$n = 4$$
, ----- $n^2 = 16$, ----- runs $4 + 3 + 2 + 1$ times. T (4) = 10

$$T(n) = n + (n-1) + (n-2) + + 1$$

$$T(n) = n(n+1)/2$$

$$= (n^2 + n)/2$$

$$= N^2/2 + n/2$$

$$= 0.5n^2 + 0.5n$$

$$= 0.5 n^2 + 0.5 n E O(n^2)$$

Therefore, the efficiency class of this algorithm is O(n²).

3a.
$$T(n) = 5T(n-1) - 6T(n-2)$$

//b = 0, recurrence is homogeneous

$$T(0) = 2$$
, $T(1) = 5$, k-degree = = 2

$$r^2 - 5r - (-6) = 0$$

$$r^2 - 5r + 6 = 0$$

$$(r-3)(r-2)=0$$

$$r_1 = 3$$
 and $r_2 = 2$

//root is real and distinct, case 1

$$T(n) = a_1 r_1^n + + a_k r_k^n$$

$$= a_1 r_1^n + a_2 r_2^n$$

$$T(0) = a_1(3)^0 + a_2(2)^0$$

$$2 = a_1 + a_2$$

$$a_2 = 2 - a_1$$
 ----- Equation (1)

$$T(1) = a_1(3)^1 + a_2(2)^1$$

$$5 = 3a_1 + 2a_2$$
 ----- Equation (2)

Substitute equation (1) into equation (2):

$$5 = 3a_1 + 2(2 - a_1)$$

$$5 = 3a_1 + 4 - 2a_1$$

$$5 = a_1 + 4$$

$$a_1 = 1$$

Substitute $a_1 = 1$ into equation (1):

$$a_2 = 2 - a_1$$

$$T(n) = a_1 r_1^n + a_2 r_2^n$$

$$= (1)(3)^n + (1)(2)^n$$

$$= 3^n + 2^n$$

$$=3^{n}+2^{n} E O(3^{n})$$

3b.
$$T(n) = 2T(n-1) + 3$$

$$T(0) = 0$$

$$T(n) = 2T(n-1) + 3$$

$$T(n + 1) = 2T(n + 1 - 1) + 3$$

$$= 2T(n) + 3$$

$$T(n + 1) - T(n) = 2T(n) + 3 - [2T(n - 1) + 3]$$

$$T(n + 1) = 3T(n) + 3 - 2T(n - 1) - 3$$

$$T(n + 1) = 3T(n) - 2T(n - 1)$$

//b = 0, recurrence is homogeneous

//b = 3, recurrence not homogeneous

$$//k$$
 – degree = 2

$$r^2 - 3r - (-2) = 0$$

$$r^2 - 3r + 2 = 0$$

$$r_1 = 2$$
 and $r_2 = 1$

//roots are real and distinct, case 1

T (n) =
$$a_1r_1^n + \dots + a_kr_k^n$$

= $a_1r_1^n + a_2r_2^n$

$$T(0) = a_1(2)^0 + a_2(1)^0$$

$$0 = a_1 + a_2$$
----- Equation (1)

$$T(1) = 2T(1-1) + 3 = 3$$

$$T(1) = a_1(2)^1 + a_2(1)^1$$

$$3 = 2a_1 + a_2$$
----- Equation (2)

Substitute equation (1) into equation (2)

Substitute $a_1 = 1$ back to equation (1)

$$0 = a_1 + a_2$$

$$0 = 3 + a_2$$

$$a_2 = -3$$

$$T(n) = a_1 r_1^n + a_2 r_2^n$$
$$= (3)(2)^n + (-3)(1)^n$$
$$= 3(2^n) - 3$$

 $= 3(2^n) - 3 E O(2^n)$

4a.
$$T(n) = T(n/2) + 1$$

$$T(1) = 0$$

Level	Size of node	Number of nodes
		in each level
0	1	10 = 1
1	1	1 ¹ = 1
2	1	1 ² = 1
log₂n	1	1 ^{log} 2 ⁿ = 1

$$T(n) = 1^{0} (1) + 1^{1} (1) + 1^{2} (1) + \dots + 1^{\log_{2} n} (1)$$
$$= (1) (1^{0} + 1^{1} + 1^{2} + \dots + 1^{\log_{2} n})$$

$$= (1) (log_2^n + 1)$$

$$= \log_2^n + 1$$

$$= \log_2^n + 1 E O(\log_2^n)$$

4b.
$$T(n) = T(n/2) + 1$$

$$T(1) = 0$$

$$T(n) = aT(n/b) + F(n)$$

$$F(n) = 1$$

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1$$

//Matched, Case 2

$$F(n) = 1 E \Theta((n^{\log_2 1}) (\log n)^k)$$

, let
$$k = 0$$

$$F(n) = 1 E \Theta(n^0) (1)$$

$$F(n) = 1 E \Theta (1)(1)$$

$$F(n) = 1 E \Theta (1)$$

$$T(n) \to \Theta((n^{\log_2 1}) (\log n)^{k+1})$$

$$T(n) E \Theta (log n)$$

5a.
$$T(n-1) + n$$
 $T(1) = 0$

Level	Size of node	Number of nodes	
		in each level	
0	n	10 = 1	
1	n – 1	1 ¹ = 1	
2	n – 2	1 ² = 1	
N - 1	n – (n - 1)	1 ⁿ⁻¹ = 1	

$$T(n) = 1^{0} (n) + 1^{1} (n - 1) + 1^{2} (n - 2) + \dots + 1^{n-1} (n - (n-1))$$

$$= n + (n-1) + (n-2) + (n-(n-1))$$

$$= n (n + 1) / 2$$

$$= 0.5n^{2} + 0.5n$$

$$= 0.5n^{2} + 0.5n \to 0$$

5b.
$$T(n) = T(n-1) + n$$

$$T(1) = 0$$

$$T(n+1) = T(n+1-1) + n$$

$$T(n+1) - T(n) = T(n+1-1) + n - [T(n-1) + n]$$

//Subtraction Method

$$T(n+1) - T(n) = T(n) + n - T(n-1) - n$$

$$T(n+1) = 2T(n) - T(n-1)$$

k = 2-degree

$$r^2$$
 - 2r - (-1) = 0

$$r^2 - 2r + 1 = 0$$

$$r_1 = r_2 = 1$$

$$T(n) = a_1 r_1^n + a_2 n r_2^n$$
$$= a_1(1)^n + a_2 n (1)^n$$

$$= a_1 + na_2$$

$$T(1) = a_1 + (1)a_2$$

$$0 = a_1 + a_2$$
 ----- Equation (1)

$$T(2) = T(2-1) + 2 = T(1) + 2 = 2$$

$$T(2) = a_1 + (2)a_2$$

$$2 = a_1 + 2a_2$$
 ----- Equation (2)

Substitute equation (1) into equation (2)

$$2 = 0 + a_2$$

$$a_2 = 2$$

Substitute $a_2 = 2$ back to equation (1)

$$0 = a_1 + 2$$

$$a_1 = -2$$

$$T(n) = a_1 r_1^n + a_2 n r_2^n$$

$$= (-2) (1)^n + (2)(n)(1)^n$$

$$= 2n - 2$$

$$= 2n - 2 E O(n)$$

X

cs330su21-a.sg

<u>Dashboard</u> / My courses / <u>cs330su21-a.sg</u> / <u>Week 5 (7 June - 13 June)</u> / <u>Assignment 2 - Time Efficiency Analysis</u>

Assignment 2 - Time Efficiency Analysis

______ <u>cs330-hw2.pdf</u>

8 June 2021, 2:50 PM

Submission status

Submission status	Submitted for grading	
Grading status	Graded	
Due date	Monday, 14 June 2021, 11:59 PM	
Time remaining	Assignment was submitted 2 hours 15 mins early	
Last modified	Monday, 14 June 2021, 9:43 PM	
File submissions	cs330 weizhe.goh 2.pdf	
Submission comments	Comments (0)	

Edit submission

Remove submission

You can still make changes to your submission.

Feedback

Grade	40.50 / 50.00	
Graded on	Monday, 21 June 2021, 6:25 PM	
Graded by	Hong Wei CHUA	
Annotate PDF	Wei Zhe GOH 15658 0.pdf	21 June 2021, 6:25 PM
	View annotated PDF	

https://distance3.sg.digipen.edu/2021sg-summer/mod/assign/view.php?id=10654

$$f_{1}(n) = n^{2.5}; \quad f_{2}(n) = \sqrt{2n}; \quad f_{3}(n) = n + 10$$

$$f_{4}(n) = 10^{n}; \quad f_{5}(n) = 100^{n}; \quad f_{6}(n) = n^{2}logn$$

$$f_{1}(n) = n^{2.5} \qquad f_{2}(n) = \int_{2}^{2} \cdot n^{0.5} \qquad f_{3}(n) = \int_{10^{n}}^{2} \int_{10^$$

d) (1-ALGORITHM Secret(A[0..n - 1]) //Input: An array A[0...n-1] of n numbers //Output: An n by n array B[0..n - 1] [0..n - 1] n iteration for i ←0 to n − 1 do < n iferation for j←i to n − 1 do Basic Operation, it is not a constant time uperation Add up array entries A[i] through A[j] Store the result in B[i] [j] $A = \{1,2,3\}$ 5. return B A [u] --- A[] A211~ AU) ALI] .. ALZ (SA CETA

ALGORITHM Secret(A[0..n-1])

//Input: An array A[0..n-1] of n numbers

//Output: An n by n array B[0..n-1][0..n-1]1. for $i \leftarrow 0$ to n-1 do

2. for $j \leftarrow i$ to j-1 do

3. (Add up array entries A[i] through A[j] \in n.)

4. Store the result in B[i][j]5. return B

d) addition (in add up)

d) addition 20(1)

$$\frac{n^3 \cdot n}{n^3 \cdot 1} \Rightarrow n^3$$

T(n) = 5T(n-1) - 6T(n-2), initial conditions T(0) = 2, T(1) = 5

$$r^{2}-5r+6=0 \Rightarrow (r-2)(r-3)=0$$

$$r_{1}=2 \quad r_{2}=3$$

$$T(n)= x_{1}\cdot 2^{n}+ x_{2}=2 \qquad (x_{1}=1)$$

$$T(1)=2x_{1}+3x_{2}=5 \qquad (x_{2}=1)$$

$$T(n)=2^{n}+(3^{n}) \in \theta(3^{n})$$

$$T(n) = 2T(n-1) + 3 \text{ initial condition } T(0) = 0$$

$$T(n+1) = 2T(n) + 3.$$

$$T(n+1) = 3T(n) = 2T(n) + 3 - 2T(n+1) + 3$$

$$T(n+1) = 3T(n) - 2T(n-1) + 3 - 2T(n) = 2T(n) + 3 - 2T($$

```
T(n) = T(n/2) + 1, with initial condition, T(1) = 0

Master

n = n = 1

n = 1
  cased: fin E B ( N 656 A ( lgh) Kzv
Ochgin) 1 + 0 (1. ((gnk))? Let do 20.
                       1 e 0 (1) V.
         Tin) & Oinlyw-(gn)kii) = O(1-16n1) & Oilgn
  T(n) = T(n-1) + n, with initial condition T(1) = 0

n

T(n) = T(n-1) + n, with initial condition T(1) = 0

n

T(n) = T(n-1) + n, with initial condition T(1) = 0

n

T(n) = T(n-1) + n, with initial condition T(1) = 0

T(n) = T(n-1) + n, with initial condition T(1) = 0

T(n) = T(n-1) + n, with initial condition T(1) = 0
 H=n. \eta-1
                                                                       n-l
                                                                       n-2
                                                                                  T(1):0
    T(n)= 1+ (n-1)+ (n-2)+...+2+1+0
```