LA WS 24/25 – ÜBUNGSBLATT 0

DANIEL MEIBORG 2599041

Aufgabe 2

a.

$$\mathsf{zz} : \neg(A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$$

A	f	w	f	w
B	f	f	w	w
$A \wedge B$	f	f	f	w
$\neg(A \land B)$	w	w	w	f
$\neg A$	w	f	w	w
$\neg B$	w	w	f	w
$(\neg A) \lor (\neg B)$	w	w	w	f
$\neg (A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$	w	w	w	w

b.

$$zz : \neg(A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$$

A	f	W	f	w
В	f	f	w	W
$A \lor B$	f	w	w	W
$\neg(A \lor B)$	W	f	f	f
$\neg A$	w	f	w	f
$\neg B$	w	w	f	f
$(\neg A) \wedge (\neg B)$	w	f	f	f
$\neg (A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$	w	w	w	w

c.

$$A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$$

A	f	w	f	w	f	w	f	W	f
B	f	f	w	w	f	f	w	w	f
C	f	f	f	f	w	w	w	w	w
$A \vee (B \wedge C)$	f	w	f	w	f	w	w	w	f
$(A \vee B) \wedge (A \vee C)$	f	w	f	w	f	w	w	w	f

$$A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C) \quad \text{w} \quad \text{w}$$

Aufgabe 3

a.

zz:
$$M = \left\{ \frac{a}{2} + \frac{b}{3} \mid a, b \in \mathbb{Z} \right\} = N = \left\{ \frac{c}{6} \mid c \in \mathbb{Z} \right\}$$

Fall $M \in \mathbb{N}$:

Sei $x \in M$

Dann ist
$$x = \frac{a}{2} + \frac{b}{3} = \frac{c}{6} \Rightarrow 3a + 2b = c$$

Da $a, b \in \mathbb{Z}$ (Definition von M) ist auch $3a + 2b \in \mathbb{Z}$

Fall $N \in M$:

$$\begin{split} M &= \left\{ \frac{a}{2} + \frac{b}{3} \mid a,b \in \mathbb{Z} \right\} = \left\{ \frac{3a}{6} + \frac{2b}{6} \mid a,b \in \mathbb{Z} \right\} = \left\{ \frac{3a+2b}{6} \mid a,b \in \mathbb{Z} \right\} \\ \left\{ \frac{3a+2b}{6} \mid a \in \mathbb{Z}, b = -a \right\} &= \left\{ \frac{a}{6} \mid a \in \mathbb{Z}, b = -a \right\} \text{ ist Teilmenge von } M \end{split}$$

Da
$$\left\{\frac{a}{6} \mid a \in \mathbb{Z}\right\} = \left\{\frac{c}{6} \mid c \in \mathbb{Z}\right\} \text{ ist } N \in M \blacksquare$$

b.

Widerspruch durch Gegenbeispiel: $\frac{1}{6} \in N', \frac{1}{6} \notin M'$

Sei $\frac{1}{6} \in M'$

Dann ist
$$\frac{1}{6} = \frac{a}{2} + \frac{b}{3} \Rightarrow 3a + 2b = 6$$

Diese Gleichung hat keine Lösung für $a,b\in\mathbb{N},$ also ist $\frac{1}{6}\notin M'\blacksquare$