Al Masterclass

Technical Generative Al Concepts Explained Simply

Learning Journey Roadmap

Technical Generative Al Introduce foundational technical knowledge about Al and large language models (LLMs), laying the groundwork for Foundations understanding Generative Al. An overview of key LLM optimization techniques, with a deep 02 GenAl Optimization dive into Fine-Tuning and Prompt Engineering. Techniques 1 An overview of key LLM optimization techniques, with a deep 03 GenAl Optimization dive into Retrieval Augmented Generation (RAG) and Agentic Techniques 2 AI. An overview of key implications and practical considerations 04Generative Al Monitoring of bringing Generative Al products to life safely and and Evaluation efficiently.

Goals

- Understand how GenAl technology works
- Feel comfortable exploring with GenAl tools
- Start applying GenAl technology safely and responsibly

Presented by

Esteban D. Lopez

Contact Location	New York, NY
	Quito, Ecuador
Education	University of New Orleans – BS. Accounting
	Louisiana State University – MS. Accounting
	Columbia University – FinTech Bootcamp
	New York University – MS. AI and Machine Learning (Current)
Professional Career	Hedge Funds Assurance
	Transformation & Economic Consulting
	AI & Data Technology Consulting
	Al Product Management

Learning Journey Roadmap

Technical Generative Al Introduce foundational technical knowledge about Al and large language models (LLMs), laying the groundwork for Foundations understanding Generative Al. An overview of key LLM optimization techniques, with a deep 02 Model Optimization dive into Fine-Tuning and Prompt Engineering. Techniques 1 An overview of key LLM optimization techniques, with a deep 03 Model Optimization dive into Retrieval Augmented Generation (RAG) and Agentic Techniques 2 An overview of key implications and practical considerations 04Generative Al Monitoring of bringing Generative Al products to life safely and and Evaluation efficiently.

Goals

- Understand how GenAl technology works
- Feel comfortable exploring with GenAl tools
- Start applying GenAl technology safely and responsibly

Technical Generative Al Foundations

What is Generative AI?

Learning Objective

Generative Al Defined

A field of **artificial intelligence** that uses **machine learning** techniques, particularly **neural networks**, to create new content by identifying and replicating patterns in data. Popular modern systems are often built using **Large Language Models (LLMs)** that apply **natural language processing (NLP)** to understand prompts and generate human-like text, code, or other media*.

Simply put, Generative AI learns from large sets of data to not just analyze, classify, or predict, but also to generate human-like text, code, and other creative content.

^{*}Image generation tools use **diffusion models**, which learn patterns from millions of images and then generates new ones based on a text prompt.

Demystifying Generative AI Concepts

ΑI

Broad field of intelligent systems

Machine Learning

Algorithms learning from data

Neural Networks

Complex data processing systems

Generative Al

Branch creating new content

How do Al Chatbots work?

Neural Networks

Neural networks are a type of machine learning model that mimic the operations of a human brain to recognize patterns by adjusting the strengths of their connections based on data.

They consist of layers of nodes, or artificial neurons, and layers. Each node connects to others and has its own associated weight and threshold. Have been around since the 1950s.

Illustrating Neural Network Layers

Large Language Models (LLMs)

Are massive neural networks trained on vast amounts of text to understand and generate human-like language by predicting the next token in a sequence.

Tokenization

Tokens are the small chunks of text (parts of words, words, or punctuation) that large language models read and generate, and all their input and output is processed as sequences of these tokens.

Visualizing a Large Language Model

Understanding Inputs
Input Data: Represents the gueries, consist

Input Data: Represents the queries, consisting of text prompts provided by the user.

O2 Processing Complexity

Processing: Actions taken by the model to understand and structure input into response.

Outcome Generation

Output: Results generated to answer user queries, crafted intelligently via processing logic.

Natural Language Processing (NLP)

Branch of artificial intelligence that focuses on enabling computers to understand, interpret, and generate human language by combining linguistics, computer science, and machine learning techniques to process text and speech in a way that is meaningful and useful.

Limited Context

LLMs can only consider a fixed window of tokens at once, and when they lose relevant information outside that window, they may fill the gaps by guessing, often leading to hallucinations.

Transformer Architecture

The Transformer model architecture revolutionized Generative AI by introducing parallel processing and self-attention mechanisms, significantly boosting efficiency and contextual understanding.

Self-Attention

Doesn't treat all words equally, focuses on the meaning of each word and weights its importance relative to others to enhance context understanding.

- Parallel Processing

 Reads multiple words simultaneously instead of sequentially to reduce training times and improving the model's ability to learn from vast datasets.
- Scalability
 Highly scalable, fueling introduction of LLMs.

The Rise and Rise of A.I. Size = no. of parameters Open-access Large Language Models (LLMs) & their associated bots like ChatGPT

David McCandless, Tom Evans, Paul Barton Information is Beautiful // UPDATED 20th Mar 24 source: news reports, <u>LifeArchitect.ai</u>
* = parameters undisclosed // see <u>the data</u>

HOW LARGE

are Large Language Models?

Understanding GPT-4's Scale

HOW LARGE

are Large Language Models?

Source: Medium

Al Energy Consumption

1%

Data Centers: Consume 1% of global electricity.

10x

Inference: Uses 10 times search energy.

62k

Training: GPT-4 consumed 62,000 MWh.

5y

Power: Equal to homes' usage for 5 years.

Model Optimization

Because large language models are so large, complex, and resource-intensive, it's crucial to apply optimization techniques to guide them effectively, yielding more accurate, safer results while using resources far more efficiently.

Strengths and Challenges of Generative Al

Efficiency

Versatility

Opportunities

- Improved productivity: Generative Al automates complex tasks, saving time and resources.
- Adaptation: Can be tailored across domains for tasks like content creation or predictive analytics.
- Revolutionization: Improves resource allocation, expands creativity, and aids decision-making.

Ethical Concerns

Bias in Outputs

Environmental Impact

- Privacy risks: Data handling raises questions about security and user privacy.
- Fairness issues: Outputs can reflect and propagate biases in training data.
- **Energy consumption:** Training and operation may have significant environmental costs.

Workflow Evolution

People-Driven Processes

Manual execution with data insights

Technology Adoption

Technology takes over process execution

Data-Driven Execution

Processes driven by data analysis

Technology-Driven Processes

Automated execution with human oversight

Thank you!

Questions?

