Regression and curve fitting

Benjamin Naecker NENS 230 20 Nov 2014

Outline

- What is it good for?
- Concepts
 - Least-squares
 - Linear vs nonlinear regression
 - Parametric vs non-parametric methods
 - Overfitting and regularization
- Examples!

Why fit curves?

Dependent y = f(x)

Dependent
$$y_{\text{meas}} = f(x) + \text{noise}$$

Given noisy measurements, how can we uncover "true" relationships?

Regression analysis FTW!

Regression analysis

Goal of regression and curve fitting is to find a *line of best-fit*

Recover the "true" relationships in the data

$$y = f(x)$$

Least-squares

Linear vs nonlinear regression

$$y = ax + bx^2 + cx^3$$

Parametric curve fitting

We want to know something about the actual relationship in our data

Non-parametric curve fitting

No model for relationships between variables. Want to *de-noise* or *smoooooth* the data.

Overfitting and regularization

Not all variability in data is meaningful Regularization *penalizes* fitting the noise

A note on terminology

- Independent variables
 - data, predictors, design variables, design matrix
- Dependent variables
 - observations, response variables, outcome
- Statistics
 - summary statistics, goodness-of-fit, e.g, r-square,
 F-statistics etc

Examples!

All examples on course website:

nens230.stanford.edu/lecture9.html/regression-examples.zip

Simple linear regression

- \ (mldivide)
- regress
- robustfit

Why robust least-squares

Ordinary least-squares heavily weights outliers. A residual twice as big costs *four times* as much.

Multiple and multivariate linear regression

- regress
- mvregress

Nonlinear regression

- polyfit
- nlinfit
- Overfitting!
- cftool

Smoothing and interpolation

- smooth
- interp1

Final projects

- Goal is to use concepts learned here in real applications
- Scope of about two assignments, but very flexible
 - Data analysis: your own data, someone else's, or freely available set
 - Simulation and analysis thereof

Final projections

- Will include code, figures and summary
- Code
 - Neat, documented, and reasonably efficient
- Figures
 - Include captions, don't use Matlab's defaults
- Summary
 - 1 page of text
 - Include clear distinction of your own code versus borrowed or inherited code
 - Basic introduction to your dataset, where it came from and how it was collected

Final projections

Do something useful! Have fun!