

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 399 987
A1

②

EUROPEAN PATENT APPLICATION

㉑ Application number: 90870079.2

㉓ Int. Cl. 5: E21B 47/12, H01F 23/00,
E21B 17/02

㉒ Date of filing: 22.05.90

㉔ Priority: 23.05.89 DE 3916704

㉕ Applicant: SMET-HOLE, NAAMLOZE
VENNOOTSCHAP
Stenheil 30
B-2480 Dessel(BE)

㉖ Date of publication of application:

28.11.90 Bulletin 90/48

㉗ Inventor: Wellhausen, Heinz, Prof., Dipl.-Ing.
Trockener Kamp 92
D-3200 Hildesheim(DE)

㉘ Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

㉙ Representative: Debrabandere, René
Bureau De Rycker sa Arenbergstraat 13
B-2000 Antwerpen(BE)

㉚ Device and method for signal transmission in drill stems.

㉛ Device for signal transmission in drill stems consisting of pipes (4), characterized in that the device comprises electrically interconnected induction loops (1) located in such a way that loops (1) of two pipes

(4) between which the signal has to be transmitted are placed opposite each other and are coupled with a transformer coupling.

Fig. 2

EP 0 399 987 A1

The invention pertains to a device and method for signal transmission in drill stems.

In ground drillings, it is often necessary to send signals to or from the drill head, either for measuring or for controlling purposes. Currently, this is achieved by modifying the pressure of the drilling fluid, which presents the disadvantage of an extremely limited transmission speed.

The aim of the present invention is to increase said transmission speed to a considerable extent.

To achieve this goal, the pipes building the drill stem comprise electrically interconnected induction loops in such a way that loops of two pipes between which the signal has to be transmitted are placed opposite each other. Said loops are coupled by a contactless transformer coupling.

The signal is transformed and further transferred over two induction loops located opposite each other in the transmission area of two pipes. For frequencies of 1 kHz or above, the transmission can be achieved with a single winding.

Preferably the electrical connection of the loops on a pipe is achieved over a single line or wire and over the pipe itself.

In general, as the pipes are mostly electrically conductive and form a short-circuited winding for the induction loop, losses will occur. Said losses can be limited by working with low signal voltages, for which the sender and the receiver are to be adapted by means of transformers.

The electrical resistance can be increased by providing the pipes with a suitable design in the transmission area, with the help of grooves or slots, and in such a way that the magnetic properties of the pipes are not affected. Losses can be avoided to a large extent by using a magnetic material such as ferrite, which is placed around the two opposite loops in such a way that it conducts the essential magnetic flow.

Other features and advantages of the invention will stand out from the following description of a device and method for signal transmission in drill stems according to the invention. Said description is only given by way of example and does not limit the invention; the reference numerals pertain to the accompanying drawings.

Figure 1 is a schematic representation of the electrical principle of the signal transmission according to the invention.

Figure 2 represents schematically a longitudinal section of two pipe ends provided with a device for signal transmission according to the invention.

Figure 3 represents schematically a longitudinal section of two coaxial pipe parts provided with a device for signal transmission according to the invention.

Figure 4 represents schematically a transver-

sal section of a pipe end provided with a device for signal transmission according the invention with respect to another form of embodiment of the invention.

Figure 5 and 6 represent sections according to lines V-V and VI-VI in figure 4.

The basic philosophy behind this discovery is the contactless transmission of signals via a transformer coupling through wires which are separated from each other and whose galvanic connection is impossible for construction reasons, as is the case e.g. in drill stems. Two conductive loops, located as close to each other as possible, are coupled inductively. At both ends of the conductive chain 2 which is coupled in this way, the adaptation to the generator or receiver circuit is achieved through transformers 3 as shown schematically in figure 1.

As shown in figure 2, the pipes 4 of the stem are screwed on each other and have adjacent ends lying in the extension of each other. On each of said ends is mounted in a groove 5 on the inside of the pipe 4, an open single-winding loop 1. The two ends lying near each other of said loop 1 at one end of a pipe 4 are electrically connected to the two ends of the loop 1 at the other end of the pipe 4 either by two wires, each of them connecting one end of one loop with one end of the other loop, or preferably, as shown in the right pipe 4 in figure 2 by means of one wire 8 connecting one end of one loop to one end of the other loop, the other ends being connected by the pipe 4 itself which pipe should then of course be electrically conductive. Said wires or wire 8 are located in longitudinal grooves 9 in the inner face of the pipe 4. If the pipe 4 is electrically conductive, the loops and the wire 8 or wires have to be insulated, e.g. by non-conductive plastic material or ferrite 6.

In principle, the transmission link which is established in this fashion is not dependent upon the direction or the frequency of the signal. However, as the material of the pipes is normally electrically conductive, the pipes themselves also constitute a conductive loop and thus become a short-circuiting winding. In order to avoid this and/or to reduce the deadening caused by this phenomenon, the distance between the loop 1 and the pipe 4 must be greater than the distance between the two conductive loops 1 which are to be inductively coupled together. Embedding the conductive loops 1 in material which is magnetically active but is not electrically conductive, such as e.g. ferrite, has a positive effect.

For the inductive transmission, it is irrelevant that the coupling loops 1 are rotated symmetrically one to another, i.e. the pipes 4 can rotate independently from each other, as long as this does not modify the adjacent relative position of the loops.

In figure 2 the pipes 4 are e.g. so positioned

that the ends of open loops 1 in the pipes are not lying exactly in front of each other.

The transmission frequency is selected in such a way that the deadening is minimal. This will depend upon the actual construction and the material properties. A suitable frequency should be found above 1 kHz, e.g. within the 1 kHz - 100 MHz range.

In figure 3 a device for signal transmission is shown similar to the above described device but between two pipes 4 one of which penetrates in the other.

The pipes 4 may be mechanically connected in known ways to each other. Such connection does not affect the signal transmission. They can be telescoping pipes. Said transmission is achieved by an open loop 1 in a groove 5 in the inner face of the outmost pipe 4 and an open loop 1 in a groove 5 in the outer face of the innermost pipe 4, in front of the other loop both loops 1 being inductively coupled. Loops 1 are embedded in ferrite or non-conductive plastic material 6 holding loop 1 at a distance from the pipe material.

The signal transmission in each pipe 4 itself is achieved by an electrical connection between the loop 1 in the pipe and a next loop 1 on the same pipe.

The electrical connection comprises two wires connecting to two ends of one loop 1 to the two ends of the other loop 1, or only one wire 8 connecting one end of one loop 1 with one end of the other loop 1, and the electrically conductive pipe 4 itself connecting the other ends of both loops 1.

As far as the pipes 4 are from electrically conductive material, losses will occur as the pipes form a short circuit winding. Said losses can be limited by working with low signal voltages. The sender and receiver are therefor connected by means of suited transformers 3 to the conductive chain 2. The losses are also avoided to a large extend by the above mentioned magnetic material 6 such as ferrite.

Losses are also decreased by increasing the electrical resistance of the pipes 4 what can be obtained by providing said pipes 4 with a suitable design in the transmission area by means of grooves 7. Said grooves 7 do not affect the magnetic properties of the pipes 4 but make the current way longer so that the court-circuit action is decreased.

It should be remarked that said magnetic properties are not essential. At high frequencies, such properties even have a deadening effect.

5 1.- Device for signal transmission in drill stems consisting of pipes (4), characterized in that the device comprises electrically interconnected induction loops (1) located in such a way that loops (1) of two pipes (4) between which the signal has to be transmitted are placed opposite each other and are coupled with a transformer coupling.

10 2.- A device according to claim 1 characterized in that the electrical connection (4, 8) of the loops (1) on the pipe (4) is achieved over a single line (8) and the pipe (4) itself.

15 3.- Device according to any one of claims 1 and 2, characterized in that the electrical conductivity of the pipe (1) is reduced without affecting its magnetic properties, as a result of an appropriate design, e.g. by means of slots or grooves (7).

20 4.- Device according to any one of claims 1 to 3, characterized in that the immediate surroundings of the induction loops (1) are lined with a magnetically active material (6) with low electrical conductivity and that the magnetic flow of two loops (1) located opposite each other is conducted through it.

25 5.- Device according to any one of claims 1 to 4, characterized in that it comprises transformers (3) for adapting to the signal source and to the receivers.

30 6.- Device according to any one of claims 1 to 5, characterized in that an induction loop (1) consists of a single winding only.

7.- Device according to any one of claims 1 to 6, characterized in that the pipes (4) are mounted end to end and each pipe (4) comprises an induction loop (1) on both ends.

35 8.- Device according to any one of claims 1 to 6, characterized in that one pipe (4) penetrates the other and in a transmission area, the outermost pipe (4) comprises an induction loop (1) at its inner side while the innermost pipe (4) comprises an induction loop (1) at its outer side, in front of the first mentioned loop (1).

45

50

55

Claims

Fig. 3

Fig. 4

Fig. 5

Fig. 6

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 90 87 0079

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
X	US-A-2 379 800 (HARE) * Page 1, left-hand column, line 44 - page 1, right-hand column, line 16; page 2, left-hand column, lines 1-8, 20-25; figures *	1,2,4,5 ,7	E 21 B 47/12 H 01 F 23/00 E 21 B 17/02
Y	---	8	
X	US-A-4 605 268 (MEADOR) * Abstract; column 2, lines 30-58; column 4, line 21 - column 7, line 23; figures *	1,7	
X	US-A-2 414 719 (CLOUD) * Column 4, lines 58-74; column 5, lines 30-67; column 8, lines 21-49 *	1,7	
Y	WO-A-8 801 096 (CONTROLOGY PROD. LTD) * Page 1, line 30 - page 2, line 11; page 2, line 30 - page 3, line 1; figure 2 *	8	
A	FR-A-2 165 074 (DROGO) * Claim 1; figure 1 *	8	TECHNICAL FIELDS SEARCHED (Int. Cl.5)
X, P	DE-A-3 916 704 (WELLHAUSEN) * Whole document *	1-7	E 21 B H 01 F
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	31-08-1990	WEIAND T.	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

Right Available Copy

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5 : E21B 47/12, 17/02, H01F 23/00		A2	(11) Internationale Veröffentlichungsnummer: WO 90/14497 (43) Internationales Veröffentlichungsdatum: 29. November 1990 (29.11.90)
 (21) Internationales Aktenzeichen: PCT/EP90/00837 (22) Internationales Anmeldedatum: 23. Mai 1990 (23.05.90) (30) Prioritätsdaten: P 39 16 704.6 23. Mai 1989 (23.05.89) DE (71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): EAST-MAN CHRISTENSEN GMBH [DE/DE]; Christensenstr. 1, D-3100 Celle 1 (DE).		 (74) Anwälte: BUSSE, V. usw. ; Großhandelsring 6, Postfach 1226, D-4500 Osnabrück (DE). (81) Bestimmungsstaaten: AT (europäisches Patent), BE (europäisches Patent), CA, CH (europäisches Patent), DE (europäisches Patent)*, DK (europäisches Patent), ES (europäisches Patent), FR (europäisches Patent), GB (europäisches Patent), IT (europäisches Patent), LU (europäisches Patent), NL (europäisches Patent), NO, SE (europäisches Patent), US. Veröffentlicht <i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>	
 (54) Title: PROCESS AND DEVICE FOR TRANSMITTING DATA SIGNALS AND/OR CONTROL SIGNALS IN A PIPE TRAIN (54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR ÜBERTRAGUNG VON INFORMATIONS- UND/ODER STEUERSIGNALEN IN EINEM BOHRSTRANG (57) Abstract Process and device for transmitting data signals and/or control signals in a pipe train (1) during operation of a drilling implement, in particular process and device for transmitting data signals and/or control signals from the borehole to the surface. Data in the form of data signals and/or control signals are retransmitted between a data processing unit and/or control unit and a processor (10) via a transmission section between a transmitter unit (8, 11, 18, 30) and a receiver unit (9, 14, 20, 31). In order in particular to transmit local or remote data to the processor while taking account of the operating conditions prevailing in the pipe train, the data signals and/or control signals are transmitted via the transmission section between the transmitter and receiver units or via one or more alternating magnetic fields, or the data received by the transmitter unit (8, 11, 18, 30) are retransmitted to the receiver unit (9, 14, 20, 31) via the transmission section in the form of audio signals. In devices according to the invention, the transmission section includes magnetically inductive couplers (18, 20), or an audio sensor (8, 11, 30) and an audio receiver (9, 14, 31). 			

(57) Zusammenfassung Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Übertragung von Informations- und/oder Steuersignalen an einem Bohrstrang (1) während des Betriebes eines Bohrgerätes, insbesondere auch ein Verfahren und eine Vorrichtung zur Übertragung von Informations- und/oder Steuersignalen aus dem Bohrloch zur Erdoberfläche, wobei Daten zwischen einer Datenverarbeitungs- und/oder einer Steuergeräteeinheit und einem Prozessor (10) als Informations- und/oder Steuersignale auf einer Übertragungsstrecke von einer Sendereinheit (8, 11, 18, 30) an eine Empfängereinheit (9, 14, 20, 31) weitergeleitet werden. Um insbesondere auch ortsgbundene oder von dem Prozessor örtlich abgesetzt zu erfassende Informationsdaten unter Berücksichtigung der Besonderheiten der im Bohrrohrstrang vorliegenden Einsatzbedingungen übertragen zu können, ist vorgesehen, daß die Informations- und/oder Steuersignale auf der Übertragungsstrecke zwischen der Sender- und Empfängereinheit über ein oder mehrere magnetische(s) Wechselfeld(er) übertragen werden oder daß die an die Sendereinheit (8, 11, 18, 30) gegebenen Daten als Schallsignale an die Empfängereinheit (9, 14, 20, 31) der Übertragungsstrecke weitergeleitet werden. Bei Vorrichtungen nach der Erfindung umfaßt die Übertragungsstrecke magnetisch induktive Koppler (18, 20) oder einen Schallsensor (8, 11, 30) und einen Schallempfänger (9, 14, 31).

BENENNUNGEN VON "DE"

Bis auf weiteres hat jede Benennung von "DE" in einer internationalen Anmeldung, deren internationaler Anmeldetag vor dem 3. Oktober 1990 liegt, Wirkung im Gebiet der Bundesrepublik Deutschland mit Ausnahme des Gebietes der früheren DDR.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	MG	Madagaskar
AU	Australien	FI	Finnland	ML	Mali
BB	Barbados	FR	Frankreich	MR	Mauritanien
BE	Belgien	GA	Gabon	MW	Malawi
BF	Burkina Faso	GB	Vereinigtes Königreich	NL	Niederlande
BG	Bulgarien	GR	Griechenland	NO	Norwegen
BJ	Benin	HU	Ungarn	RO	Rumänien
BR	Brasilien	IT	Italien	SD	Sudan
CA	Kanada	JP	Japan	SE	Schweden
CF	Zentral-Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SN	Senegal
CG	Kongo	KR	Republik Korea	SU	Soviet Union
CH	Schweiz	LI	Liechtenstein	TD	Tschad
CM	Kamerun	LK	Sri Lanka	TG	Togo
DE	Deutschland, Bundesrepublik	LU	Luxemburg	US	Vereinigte Staaten von Amerika
DK	Dänemark	MC	Monaco		

- 1 -

**Verfahren und Vorrichtung zur Übertragung
von Informations- und/oder Steuersignalen
in einem Bohrstrang**

Die Erfindung bezieht sich auf Verfahren und Vorrichtungen zur Übertragung von Informations- und/oder Steuersignalen in einem Bohrstrang während des Betriebes eines Bohrgerätes, insbesondere auch auf Verfahren und Vorrichtungen zur Übertragung von Informations- und/oder Steuersignalen aus dem Bohrloch zur Erdoberfläche, wobei Daten zwischen einer Datenerfassungs- und/oder Steuergeräteeinheit und einem Prozessor als Informations- und/oder Steuersignale auf einer Übertragungsstrecke von einer Sendereinheit an eine Empfängereinheit weitergeleitet werden.

Bei bekannten Verfahren und Vorrichtungen dieser Art sind die Geräte zur Informationsdatenerfassung und der Prozessor zur Umwandlung der Daten in eine Folge elektrischer Steuersignale in demselben Gehäuseeinsatz oder in getrennten, unmittelbar aneinander angrenzenden Gehäuseeinsätzen ver-einigt, die z. B. durch Steckverbindungen galvanisch mit-einander koppelbar sind. Eine derartige Anordnung eignet sich aber nur für Geräte zur Erfassung solcher Daten, die nicht oder nicht ausgesprochen selektiv ortsgebunden auf-treten, wie es z. B. für Inklinations-, Azimuth-, Temperatur oder Druck zutrifft.

- 2 -

Aus der DE-PS 34 28 931 sind darüber hinaus Geräte bekannt, bei denen ermittelte Informations- und Steuerdatensignale als Druckpulse von einem Sender über die Spülungsflüssigkeit des Bohrgerätes an eine Empfängereinheit übertragen und von dort an den Prozessor weitergegeben werden. Diese Übertragungsart überzeugt für viele Einsatzbereiche, kann jedoch für bestimmte Datenübertragungserfordernisse, beispielsweise zur Übertragung von Daten von einem feststehenden Bohrstrangteil auf einen rotierenden Bohrstrangteil nur mit erhöhtem Aufwand Anwendung finden. Dies gilt auch für die Datentübertragung in größeren Teufen bei z. B. dem Richtungsbohren. Die Anordnungsmöglichkeit von Druckpulssensoren innerhalb des Bohrstrangs ist zudem aufgrund der Verschleißanfälligkeit derartiger Geräte beschränkt.

Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung der eingangs genannten Art zu schaffen, bei dem bzw. mit der sowohl ortsgebundene als auch vom Prozessor örtlich abgesetzt zu erfassende Informationen unter Berücksichtigung der Besonderheiten der im Bohrrohrstrang vorliegenden Einsatzbedingungen schnell auch beispielsweise beim Richtungsbohren zu übertragen sind. Diese Aufgabe wird bei den erfindungsgemäßen Verfahren der eingangs genannten Art durch die im kennzeichnenden Teil der Ansprüche 1 und 14 angegebenen Merkmale gelöst. Vorrichtungen nach der Erfindung zeichnen sich zunächst durch die in den Ansprüchen 4 und 23 angegebenen Merkmale aus.

Durch die Übertragung der Informations- bzw. Steuersignale auf der Übertragungsstrecke zwischen der Sender- und Empfängereinheit über magnetisch induktive Koppler, die bevorzugterweise auch transformatorisch gekoppelt sein können, oder durch Schallsignalsender und -empfänger, zweckmäßigerweise Ultraschall- oder Körperschallsender und -empfänger, ist zunächst die Übertragungsgeschwindigkeit wesentlich zu erhöhen und im übrigen auch die Übertragung von derartigen Signalen beim z. B. Richtungsbohren mit wesentlich verringerten Übertragungsfehlern möglich. Darüber

hinaus kann in kritischen Bereichen im rauen Alltagsbetrieb eines Bohrrohrstranges zwischen den zu verbindenden Rohren eine Datenübertragung stattfinden, bei denen eine galvanische Kabelverbindung für eine direkte Verbindung einen erheblichen Herstellungs- und/oder Montageaufwand erfordern würde bzw. aufgrund der rauen Betriebsbedingungen während des Bohrbetriebes eine erhebliche Störanfälligkeit der Kabelverbindung zu befürchten wäre. Ein wesentlicher Vorteil, der mit den erfindungsgemäßen Verfahren und den Vorrichtungen einhergeht, ist darüber hinaus auch, daß Informations- und/oder Steuersignale von einem z. B. während des Bohrbetriebes feststehenden Außenrohr berührungslos auf ein rotierendes Innenrohr übertragen werden können. Des weiteren ist eine Übertragung von Datensignalen mit nur geringem Aufwand in zweifacher Richtung möglich, so daß ohne weiteres eine Empfängereinheit als Sendereinheit operieren kann, indem z. B. ausgewählte Frequenzbereiche als Sender- oder Empfangsoperation zugeordnet werden. Dazu können Filter vorgesehen werden. Gleichfalls lassen sich diese jeweils zweifachen Operationsaufgaben auch durch geeignete Steuerschaltungen realisieren.

Die für die induktive Datenübertragung und/oder Schall- signalübertragung notwendigen Übertragungselemente sind bekannte Bauelemente, die lediglich je nach Einsatzfall auf die betriebsoptimierten Übertragungsbedingungen einzustellen bzw. auszulegen sind. So sind z. B. als magnetisch induktive Koppler sowohl als Sender- als auch als Empfängereinheit Induktionsschleifen bzw. Spulenkörper geeignet, deren Windungszahl bzw. -durchmesser den Betriebsbedingungen in geeigneter Weise anzupassen ist. Als induktiv magnetische Empfängereinheiten sind darüber hinaus auch magnetfeld- empfindliche Halbleitersensoren geeignet. Zweckmäßigerweise liegen die z. B. in den einander zugewandten Endbereichen als einerseits Sender- und andererseits als Empfängereinheit dienenden magnetisch induktiven Koppler frei zueinander ausgerichtet, wodurch diese in baulich einfacher Weise transformatorisch zu koppeln sind. Sind an beiden Enden eines Rohres magnetisch induktive Koppler als einerseits Empfänger und andererseits Sender für ein nachfolgendes

- 4 -

Bohrrohr vorhanden, können diese galvanisch z. B. durch vorzusehende Kabelverbindungen, darüber hinaus jedoch auch über elektrisch leitende Bohrrohrwandungsteile miteinander verbunden sein. Elektrisch leitende Bohrrohrwandungsteile können nach außen bzw. innen hin derart den Übertragungsaufgaben von z. B. Spulenköpfen angepaßt sein, daß sie einen hinreichenden Spalt zum Spulenkörper haben, um nicht die magnetischen Wechselfelder aufgrund ihrer elektrischen Leitfähigkeit in das Übertragungsergebnis verfälschender Weise zu beeinflussen. Es besteht die Möglichkeit, die magnetisch zu übertragenden Signale und auch die Schallsignale mit nur einer Sender-/Empfängereinheit über mehrere miteinander verbundene Rohre zu übertragen. Dabei wird zweckmäßigerweise für die magnetisch zu übertragenden Signale eine Frequenz bis etwa 100 Hz gewählt, um Wirbelstromverluste und dgl. möglichst gering zu halten. Bei Schallsignalen ist es je nach zu erwartenden Störsignalen wie z. B. Umgebungsgeräusche zweckmäßig, Frequenzen von z. B. 100 KHz zu wählen. Bei einer Luftübertragung zwischen Spulenköpfen als Sender-/Empfängereinheit (transformatorische Kopplung) hat sich ein Frequenzbereich zwischen 1 bis 20 KHz als zweckmäßig erwiesen.

Für die Übertragung der Schallsignale bietet sich zunächst auch die Bohrrohrwandung an, um Körperschallsignale von einer Sendereinheit auf eine Empfängereinheit zu übertragen. Darüber hinaus ist, soweit vorhanden, die Bohrlochverrohrung für die Körperschallübertragung geeignet. Die Sender- und Empfängereinheiten können als Piezowandler ausgebildet sein. Zur Übertragung von Ultraschallsignalen bietet sich darüber hinaus auch eine Luftsäule an, die beispielsweise in dem rohrförmigen Innenbereich eines Bohrrohrstranges vorhanden sein kann.

Sowohl die magnetisch induktiven Koppler als auch Schallsensoren oder -empfänger aufweisenden Übertragungsstrecken können jeweils mit einer weiteren Übertragungsstrecke gekoppelt sein, die z. B. aus der DE-PS 34 28 931 bekannte Übertragungselemente als Sender- und Empfängereinheiten aufweist, wie z. B. Druckpulssender. Hierbei können die

- 5 -

Druckpulse über die die weitere Übertragungsstrecke bildende Spülungsflüssigkeit des Bohrgerätes auf die Druckpuls-empfängereinheit übertragen werden, die in bekannter Weise mit dem Prozessor zur Verarbeitung der empfangenen Informations- bzw. Steuersignale verbunden ist. Zur weiteren Erläuterung der Erfindung wird auf Unteransprüche, die Zeichnung und die nachfolgende Beschreibung verwiesen. In der Zeichnung zeigen jeweils in einer schematischen abgebrochenen Querschnittsdarstellung:

Fig. 1 ein erstes Ausführungsbeispiel einer Vorrichtung nach der Erfindung mit Ultraschallübertragung;

Fig. 2 ein weiteres Ausführungsbeispiel der Vorrichtung nach der Erfindung bei einem Bohrstrang zum Richtungsbohren mit einerseits Körperschallsignalübertragung sowie nachfolgender Druckpulssignalübertragung;

Fig. 3 ein weiteres Ausführungsbeispiel einer Vorrichtung nach der Erfindung mit Körperschallsignalübertragung;

Fig. 4 ein weiteres Ausführungsbeispiel der Vorrichtung nach der Erfindung mit einerseits magnetisch induktiver Signalübertragung von einem Andruckkraftsensor und andererseits Druckpulsdatenübertragung für Andruckkraftsignale sowie für Neigungs- und Richtungsdatensignale eines weiteren Sensors;

Fig. 5 ein weiteres Ausführungsbeispiel der Vorrichtung nach der Erfindung mit Druckpulssignalübertragung von Neigungs- und Richtungsmeßdatensignalen zum Prozessor und mit Körperschallsignalübertragung der Neigungs- und Richtungsmeßdaten an ein Richtbohrwerkzeug, und

ERSATZBLATT

Fig. 6 ein Ausführungsbeispiel von miteinander verbundenen Innenrohren eines Bohrstranges eines Bohrgerätes mit transformatorisch gekoppelten Spulenköpfen als magnetische Kopplungselemente zur magnetischen Datenübertragung.

Die in der Zeichnung veranschaulichten Bohrgeräte mit Vorrichtungen nach der Erfindung umfassen jeweils einen als Ganzes mit 1 bezeichneten Bohrstrang mit einem inneren Kanal 2 sowie einen den Bohrrohrstrang 1 umgebenden Ringraum 3. In dem Ausführungsbeispiel nach Fig. 1 wird bei 4 Druckluft in den inneren Kanal 2 eingeschlagen, die auf ihrem Weg zur Bohrlochsohle eine nicht im einzelnen gezeigte Bohrturbine passiert und durch Düsen eines von der Bohrturbine angetriebenen Drehbohrmeißels 5 in das Bohrloch austritt und durch den den Bohrrohrstrang 1 umgebenden Ringraum 3 zur Erdoberfläche bei 6 zurückkehrt.

Oberhalb des Drehbohrmeißels 5 befindet sich ein Richtungs- und Neigungssensor 7, der mit einem Ultraschallsender 8 im inneren Kanal 2 verbunden ist. Über die Luftsäule im inneren Kanal 2 werden die Ultraschallsignale an einen Ultraschallempfänger 9, der galvanisch mit dem Prozessor 10 verbunden ist, an den Prozessor zur Weiterverarbeitung bzw. Auswertung weiterleitet.

Bei dem Ausführungsbeispiel der Vorrichtung nach der Fig. 2 dient der Bohrstrang 1 zum Richtungsbohren. Der Bohrstrang 1 hat wiederum einen inneren Kanal 2 sowie einen den Bohrstrang 1 umgebenden Ringraum 3. Während des Betriebes des Bohrgerätes wird hier mittels einer nicht dargestellten Pumpe Spülungsflüssigkeit durch den inneren Kanal 2 abwärts gepumpt, die auf ihrem Wege zur Bohrlochsohle eine nicht dargestellte Bohrturbine antreibt und durch Düsen des von der Bohrturbine angetriebenen Drehbohrmeißels 5 in das Bohrloch austritt und durch den den Bohrrohrstrang umgebenden Ringraum 3 zur Erdoberfläche zurückkehrt. Hier ist wiederum oberhalb des Drehbohrmeißels 7 ein Sensor für Neigungs- und Richtungsmeßdaten angeordnet, der mit dem Körperschallsensor 11 verbunden ist. Zwischen dem den Kör-

perschallsender 11 tragenden Bohrrohr und dem Untertagebohrmotor 12 mit Spülungsantrieb ist ein Gelenkstück 13 vorhanden. Zwischen dem Motor 12 und dem den Körperschallempfänger 14 tragenden Bohrrohr ist ein weiteres Gelenkstück 13 vorgesehen. Die vom Sensor 17 ermittelten Neigungs- und Richtungsmeßdaten werden durch Körperschall vom Sensor 11 an den Empfänger 14 geleitet. Oberhalb des Empfängers 14 ist ein Druckpulssender 15 bekannter Bauart angeordnet, der die vom Empfänger 14 erhaltenen Signale über eine weitere Übertragungsstrecke, die durch die Spülungsflüssigkeit im inneren Rohr 2 gebildet wird, an den Druckpulsesmpfänger 16 weiterleitet. Diese werden nach Umwandlung in elektrische Signale in dem Prozessor 10 ausgewertet.

Das Ausführungsbeispiel nach Fig. 3 ist bezüglich der Kurzstreckendatenkörperschallsignalübertragung analog aufgebaut wie das Ausführungsbeispiel nach Fig. 2. Hier werden lediglich vom Sensor 7 z. B. Andrucksignale des Drehbohrmeißels 5 ermittelt und wiederum über Körperschallsignalsender 11 an den Körperschallempfänger 14 weitergeleitet, wobei ggfs. bei größeren Längen des Bohrstranges Zwischenverstärker vorzusehen sind. Die vom Körperschallempfänger 14 empfangenen Signale werden nach Umwandlung in elektrische Signale wiederum in dem Prozessor 10 weiterverarbeitet.

In dem Ausführungsbeispiel nach Fig. 4 ist oberhalb des Drehbohrmeißels 5 des Bohrstranges 1 ein erster Sensor 17 zur Ermittlung von Andruckkraftsignalen angeordnet. Dieser ist galvanisch mit einem Spulenkörper 18 verbunden. Der Spulenkörper 18 ist Sender zur magnetisch induktiven Übertragung der empfangenen Signale an einen transformatorisch mit der Spule 18 über den freien Luftspalt 19 gekoppelten Spulenkörper 20, der mithin den Empfänger dieser magnetisch induktiven Übertragungsstrecke darstellt, so daß die Datenübertragung berührungslos von den rotierenden Teilen 5, 17 sowie dem den Spulenkörper 18 tragenden Außenrohr 21 des Bohrstranges 1 auf die nicht rotierenden Bohrrohrwandungsteile 22 sowie den sich daran anschließenden Bohrmotor 23 erfolgt. Über den Untertagemotor 23 werden die Signale des Sensors 17 durch galvanische Kopplung über

eine Kabelverbindung 24 an einen Neigungs- und Richtungssensor 25 weitergeleitet. Die in den beiden Sensoreinheiten 17 und 25 generierten Meßdaten werden dann gemeinsam von der Druckpulssendereinheit über die Spülungsflüssigkeitssäule im Kanal 2 des Bohrgestänges in bekannter Weise an den Druckpulsesmpfänger 16 weitergeleitet und von dort über eine Kabelverbindung an den Prozessor nach Umwandlung in elektrische Signale übertragen.

Bei dem Ausführungsbeispiel nach Fig. 5 ist ein Neigungs- und Richtungssensor sowohl mit einem Druckpulssender 27 zur Übertragung der Neigungs- und Richtungsmeßsignale zu dem Druckpulsesmpfänger 28 und Weiterleitung nach Umwandlung in elektrische Signale an den Prozessor 10 verbunden als auch über eine Kabelverbindung 29 mit einem Körperschallsender 30 zur Kurzstreckendatenübertragung an einen Körperschallempfänger 31. Oberhalb und unterhalb des Neigungs- und Richtungsdatensensors befinden sich mehrere antimagnetische Schwerstangen 32, um die Neigungs- und Richtungsdatenermittlung mithilfe von magnetempfindlichen Sensoren nicht zu beeinflussen. Die vom Neigungs- und Richtungssensor 26 über Körperschall auf den Körperschallempfänger 31 übertragenen Steuersignale werden über eine Kabelverbindung 33 an das Richtbohrwerkzeug 34 gegeben, so daß bei auftretenden Abweichungen zwischen einer vorgegebenen Richtung bzw. Neigung und den von dem Sensor 26 erfaßten Ist-Werten Steuerbewegungen solange durchzuführen sind, bis die Abweichung sich innerhalb eines vorgebbaren Toleranzbereiches verringert hat.

Neben den vorgenannten Vorrichtungen können für Übertragungseinrichtungen und Sensoren im allgemeinen sowohl weitere Elektronikkomponenten zur Signalverarbeitung als auch Batterien oder Generatoren mit Antrieb durch die Bohrspülung oder umlaufende Bohrstrangteile zur Erzeugung elektrischer Energie erforderlich sein, welche jedoch für sich bekannt sind und in der jeweils geeigneten Weise vorgesehen werden können.

In Fig. 6 ist in abgebrochener Querschnittsdarstellung

anhand eines Ausführungsbeispiels die Anordnungsmöglichkeit von einer magnetisch induktiven Sender-/Empfängereinheit an gegenüberliegenden Endbereichen von Innenrohren eines Bohrrohrstranges veranschaulicht. Hier sind die beiden miteinander zu koppelnden Innenrohre 35 und 36 in bekannter Weise ineinanderzuschrauben. Das in der zeichnerischen Darstellung innenliegende Ende des Rohrteiles 36 trägt an seinen Stirnkanten den Spulenkörper 20 (gemäß dem Ausführungsbeispiel von Fig. 4), wohingegen in einer Ausnehmung 37 des Innenrohrteiles 35 der Spulenkörper 18 gelegen ist. Zwischen den Spulenköpfen 18 und 20 ist ein freier Luftraum 38 vorhanden, so daß die beiden Spulenköpfe 18 und 20 transformatorisch zu koppeln sind. Die Spulenköpfe 18 und 20 weisen jeweils zu den Wandungsbereichen des Rohrwandungsteiles 35 einen hinreichenden seitlichen Abstand auf, so daß aufgrund der elektrischen Leitfähigkeitseigenschaften des Rohrwandungsmaterials die Übertragungsergebnisse nicht verfälscht werden. Der Spulenkörper 18 dient hierbei als magnetisch induktiver Sender für über das Kabel 39 empfangene Datensignale. Von dem als Empfänger fungierenden Spulenkörper 20 sind die magnetisch induktiv übertragenen Signale über die Kabelverbindung 40 an ein nachgeordnetes Steuer- bzw. Sender- oder Empfangsteil weiterzuleiten.

- 10 -

Patentansprüche

1. Verfahren zur Übertragung von Informations- und/oder Steuersignalen an einem Bohrstrang (1) während des Betriebes eines Bohrgerätes, insbesondere auch Verfahren zur Übertragung von Informations- und/oder Steuersignalen aus dem Bohrloch zur Erdoberfläche, wobei Daten zwischen einer Datenverarbeitungs- und/oder einer Steuergeräteinheit und einem Prozessor (10) als Informations- und/oder Steuersignale auf einer Übertragungsstrecke von einer Sendereinheit (18) an eine Empfängereinheit (20) weitergeleitet werden, dadurch gekennzeichnet, daß die Informations- und/oder Steuersignale auf der Übertragungsstrecke zwischen der Sender- und Empfängereinheit (18,20) über ein oder mehrere magnetische(s) Wechselfeld(er) übertragen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Informations- und/oder Steuersignale zwischen einer Sender- und einer Empfängereinheit (18,20) durch ein die Sender- und die Empfängereinheit durchdringendes magnetisches Wechselfeld (transformatorische Kopplung) übertragen werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die von der Empfängereinheit (20) der Übertragungsstrecke empfangenen Informations- und/oder Steuersignale an eine Sendereinheit (15) einer weiteren Über-

ERSATZBLATT

tragungsstrecke weitergegeben werden und die Sendereinheit (15) der weiteren Übertragungsstrecke die empfangenen Signale als Druckpulssignale an die Empfängereinheit (16) der weiteren Übertragungsstrecke weitergibt.

4. Vorrichtung zur Übertragung von Informations- und/oder Steuersignalen in einem Bohrstrang (1) während des Betriebes eines einen Bohrmeißel (5) umfassenden Bohrgerätes, insbesondere auch zur Übertragung von Informations- und/oder Steuersignalen aus dem Bohrloch zur Erdoberfläche, mit zumindest einer am Bohrrohrstrang (1) vorsehbaren Steuergeräte- und/oder Datenerfassungseinheit und einem Prozessor (10), wobei die Informations- und/oder Steuersignale zwischen Prozessor (10) und Steuergeräte- bzw. Datenerfassungseinheit auf einer Übertragungsstrecke von einer Sendereinheit an eine Empfängereinheit weitergeleitet werden, dadurch gekennzeichnet, daß die Übertragungsstrecke zur Übertragung der Informations- und/oder Steuersignale zwischen der Sender- und Empfängereinheit magnetisch induktive Koppler (18,20) umfaßt.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß den magnetisch induktiven Kopplern (18,20) Signalverstärker zugeordnet sind.

6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß einander zugeordnete magnetisch induktive Koppler (18,20) einerseits an einem feststehenden Bohrrohrwandbereich und andererseits an einem rotierbaren Bohrrohrwandbereich vorsehbar sind.

7. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß magnetisch induktive Koppler (18,20) als in den Endbereichen einander zugewandter Rohre (35,36) des Bohrrohrstranges (1) angeordnete Spulenkörper und/oder magnetfeldempfindliche Halbleitersensoren ausgebildet sind.

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die in den Endbereichen der Rohre (35,36) des Bohrrohrstranges angeordneten magnetisch induktiven Koppler (18,20)

einander frei zugewandt und transformatorisch gekoppelt sind.

9. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß in gegenüberliegenden Endbereichen eines Rohres des Bohrrohrstranges (1) vorgesehene magnetisch induktive Koppler galvanisch über eine Kabelverbindung (39,40) und/oder elektrisch leitende Rohrwandungsteile miteinander verbindbar sind.

10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß magnetisch induktive Koppler (18,20) gegenüber angrenzenden elektrisch leitenden Rohrwandungsteilen mit einem Abstand vorsehbar sind.

11. Vorrichtung nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, daß der die magnetisch induktiven Koppler (18,20) umfassenden Übertragungsstrecke eine eigene Sendereinheit (15) und eigene Empfängereinheit (16) umfassende weitere Übertragungsstrecke zugeordnet ist.

12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Sendereinheit (15) der weiteren Übertragungsstrecke mit den aus der ersten Übertragungsstrecke übertragenen Informations- und/oder Steuersignalen beaufschlagbar ist.

13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die weitere Übertragungsstrecke durch eine von der weiteren Sendereinheit (15) mit Druckpulsen beaufschlagende Spülungsflüssigkeit des Bohrgerätes gebildet ist.

14. Verfahren zur Übertragung von Informations- und/oder Steuersignalen an einem Bohrstrang (1) während des Betriebes eines Bohrgerätes, insbesondere auch Verfahren zur Übertragung von Informations- und/oder Steuersignalen aus dem Bohrloch zur Erdoberfläche, wobei Daten zwischen einer Datenerfassungs- und/oder Steuergeräteeinheit und einem Prozessor (10) als Informations- und/oder Steuersignale auf einer Übertragungsstrecke von einer Sendereinheit

(8,11,30) an eine Empfängereinheit (9,14,31) weitergeleitet werden, dadurch gekennzeichnet, daß die an die Sendereinheit (8,11,30) gegebenen Daten als Schallsignale an die Empfängereinheit (9,14,31) der Übertragungsstrecke weitergeleitet werden.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die von der Sendereinheit (8) empfangenen Daten als Ultraschallsignale an die Empfängereinheit (9) weitergeleitet werden.

16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die von der Sendereinheit (11,30) empfangenen Daten- signale als Körperschallsignale an die Empfängereinheit (14,31) weitergeleitet werden.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Körperschallsignale über Bohrrohrstrangteile an die Empfängereinheit (14,31) übertragen werden.

18. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Übertragungsstrecke durch eine Spülungsflüssigkeit des Bohrgerätes gebildet ist und die Schallsignale über die Spülungsflüssigkeit übertragen werden.

19. Verfahren nach Anspruch 14 oder 15, dadurch gekenn- zeichnet, daß die Übertragungsstrecke durch eine innerhalb des Bohrrohrstranges gelegene Luftsäule gebildet ist und die Schallsignale über die Luftsäule von der Sendereinheit (8) auf die Empfängereinheit (9) übertragen wird.

20. Verfahren nach einem der Ansprüche 14 bis 19, da- durch gekennzeichnet, daß die von der Empfängereinheit (9,14,31) der Übertragungsstrecke empfangenen Schallsignale an eine Sendereinheit (15) einer nachgeordneten weiteren Übertragungsstrecke weitergegeben und von dort an eine eigene Empfängereinheit (16) der weiteren Übertragungs- strecke weitergeleitet werden.

21. Verfahren nach Anspruch 20, dadurch gekennzeichnet,

daß die von der Sendereinheit (15) der weiteren Übertragungsstrecke empfangenen Schallsignale als Druckpulssignale weitergeleitet werden.

22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die von der Sendereinheit (15) abgegebenen Druckpuls-signale über die die weitere Übertragungsstrecke bildende Spülungsflüssigkeit des Bohrgerätes übertragen werden.

23. Vorrichtung zur Übertragung von Informations- und/oder Steuersignalen in einem Bohrrohrstrang (1) während des Betriebes eines einen Bohrmeißel umfassenden Bohrgerätes, insbesondere auch zur Übertragung von Informations- und/oder Steuersignalen aus dem Bohrloch zur Erdoberfläche, mit zumindest einem am Bohrrohrstrang vorsehbaren Steuergeräte- und/oder Datenerfassungseinheit und einem Prozessor (10), wobei die Informations- und/oder Steuersignale zwischen Prozessor (10) und Steuergeräte- bzw. Datenerfassungseinheit auf einer Übertragungsstrecke von einer Sendereinheit (8,11,31) an eine Empfängereinheit (9,14,30) weitergeleitet werden, dadurch gekennzeichnet, daß der am Bohrrohrstrang vorgesehenen Datenerfassungs- und/oder Steuergeräteeinheit ein Schallsensor (8,11,30) und ein Schallempfänger (9,14,31) zugeordnet sind.

24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß zwischen der Sendereinheit (8,11,31) und der Empfänger- einheit (9,14,30) Signalverstärker vorgesehen sind.

25. Vorrichtung nach einem der Ansprüche 23 oder 24, dadurch gekennzeichnet, daß an Bohrrohrinnenwandungsteilen als Schallsignalsender und Schallsignalempfänger Piezowandler befestigt sind.

Fig. 1

ERGÄNZBLATT

2/6

Fig. 2

ERSATZBLATT

Fig. 3

ERGATERPLATT

Fig. 4

ERGÄNZERBLATT

Fig. 5

ERSATZPLATT

Fig. 6

ERODATELLA

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 : H01F 23/00		(11) International Publication Number: WO 88/01096
	A1	(43) International Publication Date: 11 February 1988 (11.02.88)
(21) International Application Number: PCT/GB87/00554		(74) Agent: FITZPATRICKS; 4 West Regent Street, Glasgow G2 1RS (GB).
(22) International Filing Date: 3 August 1987 (03.08.87)		
(31) Priority Application Number: 8619316		(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), LU (European patent), NL (European patent), SE (European patent), US.
(32) Priority Date: 7 August 1986 (07.08.86)		
(33) Priority Country: GB		
(71) Applicant (for all designated States except US): CON- TROLOGY PRODUCTS LIMITED [GB/GB]; 18 Colvilles Place, East Kilbride, Glasgow G75 0TF (GB).		Published <i>With international search report.</i>
(72) Inventors; and		
(75) Inventors/Applicants (for US only) : HALE, John, Chris- topher [GB/GB]; 11 Le Froy lane, East Kilbride, Glas- gow G75 8BJ (GB). HALE, Christopher, Charles, Ha- rold [GB/GB]; 17 Erskine, Beverage Court, Dunferm- line, Fife KY11 3AJ (GB).		

(54) Title: ROTARY SIGNAL COUPLER

(57) Abstract

Signals are coupled between a shaft (20) and a housing (22) which rotate relative to each other by means of a primary coil (24) inductively coupled with a secondary coil (26). The primary coil (24) has a relatively large extent (A) and the secondary coil has a much smaller extent (B) and is positioned at the centre of the primary (24). Suitably A/B > 6.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	LI	Liechtenstein	SN	Senegal
CH	Switzerland	LK	Sri Lanka	SU	Soviet Union
CM	Cameroon	LU	Luxembourg	TD	Chad
DE	Germany, Federal Republic of	MC	Monaco	TG	Togo
DK	Denmark	MG	Madagascar	US	United States of America
FI	Finland				

Rotary Signal Coupler

This invention relates to a coupling for transmitting electrical signals between first and second members which undergo relative rotation.

The invention is particularly, but not exclusively, 5 of relevance to the inspection of long hollow cylindrical objects, such as drill collars for oil boreholes. A drill collar typically has a length of 10 m and an internal bore of about 78 mm; this makes internal inspection for cracks and the like difficult.

10 In our EP-A-0 033802 there is disclosed an electro-magnetic inspection apparatus using a probe with twin windings. This apparatus is suitable for detecting defects of interest in drill collars and the like, but it is necessary to scan the probe over the internal 15 surface. One way of doing this would be to draw through the bore on which the probe is rotatably mounted, so that spiral scan is performed. However, it is necessary to couple the signals from the rotating probe to a non-rotating instrument including a bridge 20 circuit. Since the parameter of interest is a small out-of-balance quantity, it is very easy for this to be swamped by noise in the coupling. It has also been found that the signal of interest can be swamped by spurious signals arising from non-uniformity of 25 rotational and translational movement.

Accordingly, an object of the present invention is to provide a coupling of the kind stated and which provides low noise and a high immunity to non-uniform movement.

30 The invention provides a rotary coupling for transferring an electrical signal between first and second members arranged to undergo relative rotation, comprising a primary winding on the first member, and a secondary winding on the second member adjacent 35 the primary winding for inductive coupling therewith,

the primary winding having a given linear extent and the secondary winding being positioned within a minor part of and spaced from the ends of said linear extent.

5 Preferably there are two primary and two secondary windings, both pairs being as specified in the preceding paragraph, for coupling two signals.

10 In a preferred form, the first member is a shaft and the second member a surrounding sleeve. The primary winding is a single-layer coil of length A on the shaft surface, and the secondary a multi-layer coil of length B on the sleeve adjacent the centre of the primary. Suitably $A/B \geq 6$.

Preferably, the face of the primary winding away from the secondary winding is covered with a ferrite material.

15 Embodiments of the invention will now be described, by way of example, with reference to the drawings, in which:-

Fig 1 is a perspective view of an inspection apparatus incorporating the invention;

Fig 2 is a diagrammatic cross-section of a coupling embodying the invention for use in the apparatus of Fig 1;

20 Fig 3 is a similar view of an alternative embodiment of the coupling; and

Fig 4 is a side view, partly in cross-section, of a further embodiment.

25 The inspection apparatus shown in Fig 1 comprises a cylindrical body 10 dimensioned to be pulled through the bore of a tubular member by a cable 12. The body 10 has spring-biased wheels 14 for engagement with the bore. A probe 16, suitably of the type described in EP-A-0033802, is mounted in a holder 18 which is rotatable with respect to the body 10, to produce a helical scanning pattern.

30 Referring to Fig 2, the probe and holder are attached to a shaft 20 rotatable within a sleeve 22. The two windings of the probe 16 are connected each to a respective primary winding 24a, 24b, which are single-layer windings formed over ferrite layers 26a, 26b in circumferential grooves in the outer surface of the shaft 20.

35 Each primary winding 24a, 24b is inductively coupled with a respective secondary winding 28a, 28b, these being multi-layer

- 3 -

windings formed in narrow slots in the sleeve 22.

In accordance with the invention, the linear extent A of the primary windings 24 is considerably larger than the linear extent B of the secondary windings. The purpose is to position the secondary 5 winding in an area of uniform flux from its primary, and to avoid coupling in the end zone of the primary where flux concentration occurs.

This minimises noise induced by axial movement between the shaft and the sleeve, or lack of concentricity in the rotational 10 movement. It has been found that $A/B > 6$ is suitable, and that (while the coupling efficiency is poor) induced noise is very low.

The alternative embodiment shown in Fig 3 operates in a similar manner and like parts are denoted by like references. In this case, however, the primary windings 24 are disc-shaped in a transversely 15 extending flange 30 and are coupled with secondary windings 28 in an annular housing 32. Bearings 34 journal the shaft 20 for rotation in the housing 32.

Fig 4 illustrates the invention applied to the inspection of a narrow-bore tube 40 having a bore too small to accept the 20 rotary coupling. A probe 16 is mounted on the end of a rod 42 for rotation and translation within the tube 40. Bearing means indicated at 44 are provided for locating the probe 16 within the tube 40. The rod 42 is rotated by a drive assembly 46 embodying the coupling described above and located outside the tube 40. 25 It will be understood that the rod 42 houses conductors connecting the probe 16 to the inductive coupling.

Preferably, the rod 42 is sectional, the sections being provided with mechanical screw or bayonet connectors and mating electrical contacts. This permits long tubing to be inspected with the drive 30 assembly requiring axial movement only by the section length.

CLAIMS:

1. A rotary coupling for transferring an electrical signal between first and second members arranged to undergo relative rotation, comprising a primary winding on the first member, and a secondary winding on the second member adjacent the primary winding for inductive coupling therewith, the primary winding having a given linear extent and the secondary winding being positioned within a minor part of and spaced from the ends of said linear extent..
2. A rotary coupling having two primary and two secondary windings, arranged in pairs of a primary and a secondary winding, each pair being in accordance with claim 1, for coupling two signals.
3. A rotary coupling according to claim 1, in which the first member is a shaft and the second member is a sleeve.
4. A rotary coupling according to claim 3, in which the primary winding is a single-layer coil of length A on the shaft surface, and the secondary a multi-layer coil of length B on the sleeve adjacent the centre of the primary.
5. A rotary coupling according to claim 4, in which A:B is equal to or greater than 6.
6. A rotary coupling according to claim 1, in which the face of the primary winding away from the secondary winding is covered with a ferrite material.

1/3

Fig. 1

2/3

Fig. 2

Fig. 3

SUBSTITUTE SHEET

3/3

Fig. 4

INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 87/00554

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC⁴ : H 01 F 23/00

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
IPC ⁴	H 01 F; G 01 N

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category ⁹	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
A	GB, A, 2058475 (WESTINGHOUSE) 8 April 1981 see page 2, lines 88-111; figures 3,4 --	1,3
A	DE, A, 1920890 (VOGELER) 12 November 1970 see page 3, lines 19-29; figure 2 --	1,3
A	Patent Abstracts of Japan, vol. 10, no. 168(E-411)(2224), 14 June 1986 see the whole document & JP, A, 6120308 (PIONEER K.K.) 29 January 1986 --	2
A	US, A, 3519969 (HOFFMAN) 7 July 1970 -----	

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
21st October 1987

Date of Mailing of this International Search Report

24 NOV 1987

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

M. VAN MOL

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/GB 87/00554 (SA 18141)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 05/11/87

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A- 2058475	08/04/81	FR-A, B 2464544 JP-A- 56036112 DE-A- 3032320 US-A- 4303902 CA-A- 1122666 GB-A, B 2100592 FR-A, B 2507884 SE-A- 8103840 JP-A- 58001430 NL-A- 8202136 DE-A, C 3222458 US-A- 4419783 CA-A- 1177206 GB-A- 1366134	06/03/81 09/04/81 10/09/81 01/12/81 27/04/82 06/01/83 24/12/82 19/12/82 06/01/83 17/01/83 20/01/83 13/12/83 06/11/84 11/09/74
DE-A- 1920890	12/11/70	None	
US-A- 3519969	07/07/70	None	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.