

VL Deep Learning for Natural Language Processing

10. Named Entity Recognition

Prof. Dr. Ralf Krestel AG Information Profiling and Retrieval

Learning Goals for this Chapter

- Know different input representations for text
 - and how/when to use them
- Develop a simple window classifier
- Understand the max-margin loss function
 - and know how to employ it

- Relevant chapters
 - P6.1
 - S3 (2019) https://www.youtube.com/watch?v=PLryWeHPcBs

Topics Today

- 1. Text as Input to Neural Networks
- 2. DNN to Classify Words
- 3. The Max-Margin Loss Function

What Makes Text Representation Hard?

- Noise
 - Spelling mistakes, colloquialisms, slang words, emoticons, ...
- Ambiguity
 - multiple meanings, sarcasm, ...
- Semantic structure
 - order and placement of words can drastically change the meaning, e.g., "not"
- Domain knowledge
 - understanding of the domain and domain jargon necessary
- Multilingualism
 - Mixed-code text, low resource languages

How to Process Text?

- Token-level
 - Character by character
- Word-level
 - One word at a time
- Sentence-level
 - Or fixed-size context window
- Document-level
 - Fixed-length chunk
 - E.g., first 100 words

- Recurrent neural networks (LSTM, GRU)
- Seq2seq models
- Transformers

Typically fixed-length, non-sequential

- Feed forward neural networks
- Convolutional neural networks (CNN)
- Generative adversarial networks (GAN)

VL DL4NLP

How to Represent Text?

Alternatively: multiset of 1-hot-encoded word vectors

- Bag-of-words (BOW) model
 - Keep the frequency: word count
 - Other weights, e.g., TF-IDF
 - Binary: set of words, incident vectors
 (0/1 wether a word occurs at least once)
 - Optional: smoothing
 - Optional: normalization, stemming, etc.
 - Optional: n-grams

DOC1: John likes dogs. Mary likes cats. Both play soccer.

dogs	D	OC1
[0]	John	Γ1 ⁻
0	likes	2
1	dogs	1
0	Mary	1
0	cats	1
0	Both	1
0	play	1
0	soccer	1
0	•••	0
:	•	:
$\lceil 0 \rceil$	Zyzzyva	L_{0}

ZBW C A U

How to Represent Text?

Topic model

- Learn a latent (hidden) space
- Based on singular value decomposition (SVD)
 - Latent semantic analysis (LSA) aka latent semantic indexing (LSI)
- Based on probabilistic models
 - Probabilistic LSA (PLSA)
 - Latent Dirichlet allocation (LDA)

dogs	
0	
0.1	
0	
:	
L0.1J	

แนเบอ		
	DOC	1
	DOC:	L
nature	[0.4]	
politics	0.1	
sport	0.4	
•••	0	
•	:	
entertain	L0.1J	

Manual topic

Example

DOC1: John likes dogs. Mary likes cats. Both play soccer.

Dimensions in latent space

How to Represent Text?

Alternatively: Multiset of word vectors

Embedding model

- Character-level
- Subword-level
- Word-level
- Phrase- and sentence-level
- Paragraph-level
- Document-level
- Combinations of levels also possible
 - e.g. character + word for NMT
 - o or using lower-levels as additional input

Example

DOC1: John likes dogs. Mary likes cats. Both play soccer.

Can also be Dimensions in latent space

Most meaningful

0.16 0.21 0.18 0.04 :

dogs

Meaningful structure along arbitrary directions

0.05 0.11 0.09 0.02

DOC1

Average or sum of word vectors

VL DL4NLP

Most Tasks and Applications

- Ordered multiset of words
 - 1-hot-encoded

- Ordered multiset of embeddings
 - Dense word vectors for each word
 - Can be pretrained/fine-tuned

- Sequence of words
 - 1-hot-encoded

- Sequence of embeddings
 - Dense word vectors for each word
 - Can be pretrained/fine-tuned

Different Input Data Types

- Categorical
 - Character
 - String (=array of char)
 - Text (indexed strings)
- Numerical
 - Real
 - Integer
- Combining different feature types
 - Concatenating their representations

Leibniz Leibniz Gemeinschaft

Objects

with IDs

The Embedding Layer

• Example: DOC2: John likes dogs. Mary likes cats.

• Index of words: $[0,1,2,3,1,4]^T$

Input matrix I:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Why do we need a special embediding layer?
Why not use a normal fully connected, dense layer?

Assume a 3-dimensional embedding layer with weight matrix W:

The Embedding Layer

• The output would be I * W =

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.1 & 0.4 & 0.27 \\ 0.4 & 0.3 & 0.2 \\ 0.5 & 0.6 & 0.5 \\ 0.3 & 0.2 & 0.8 \\ 0.6 & 0.6 & 0.1 \end{bmatrix}$$

0.5 0.8 The embedding layer selects directly the right vectors: $[0,1,2,3,1,4]^T$

L0.6

0.2

Topics Today

- 1. Text as Input to Neural Networks
- 2. DNN to Classify Words
- 3. The Max-Margin Loss Function

Word Classification

- Isolated, individual words are rarely classified
 - Meaning of words only clear in context
- Ambiguity can only be resolved in context
 - Autoantonyms: Same words, opposite semantics
 - o Overlook, comprise, dust, left, ...
 - Ambigous named entities
 - o Paris
 - Michael Jordan
 - Orange

Leibniz Leibniz Gemeinschaft

Classification with Context

- Idea: Classification of a word in the context of its k neighboring words
- E.g. named entity recognition (NER) can be modeled as word classification with four classes:
 - person, organization, location, none
- Naive approach:
 - Average of all word vectors in the context window.
 - Problem: Position information is lost
- Better:
 - Concatenating all word vectors from the context window

Leibniz Leibniz Gemeinschaft

Window Classifier

- Softmax classifier
 - Input: the target word to be classified and neighboring words in a context window of size k, left and right of the target word
 - Output: probability distribution over four named entity classes
- Example: Classification of the word *Paris* as location with context of size two:

	museums	in	Paris	are	amazing	
	$\begin{bmatrix} \blacklozenge \\ \blacklozenge \end{bmatrix}^T$		$\begin{bmatrix} \blacklozenge \\ \blacklozenge \end{bmatrix}^T$	$\begin{bmatrix} \blacklozenge \\ \blacklozenge \end{bmatrix}^T$	$\begin{bmatrix} \blacklozenge \\ \blacklozenge \end{bmatrix}^T$	
$x_{window} =$	$[x_{museums}]$	x_{in}	x_{Paris}	x_{are}	$\left[x_{amazing} \right]^{T}$	

- The input vector is a column vector in \mathbb{R}^{5d}
 - $-x_{window} = [\diamond]^T$

Simplest Window Classifier

- Use softmax function!
- With $x = x_{window}$ we can use softmax on the concatenated word vectors

$$\hat{y}_y = p(y|x) = \frac{\exp(W_y.x)}{\sum_{c=1}^C \exp(W_c.x)}$$

$$W \in \mathbb{R}^{c \times d}$$

Loss function as usual: cross entropy

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} -\log\left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_c}}\right)$$
 $f_y = W_y.x$

- How are the word vectors learned?
 - Gradient descend!
 - Analogous to word2vec

Additional Layer

- Up to now, we only have an input layer (word vectors) and a softmax output layer.
- Softmax can only discriminate linearly in the input space
 - No dependencies of the individual words in the window
- Thus, additional layer with non-linear activation function
 - Example: only if "museums" is the first vector, then the "in" at position two is important

Single Layer Neural Network

- Input: Concatenated word vectors of a window x
- Hidden layer: z = Wx + b with activation function a = f(z)
- Output layer:
 - Softmax for probability distribution over multiple classes
 - $\circ p(y|x) = softmax(Wa)$
 - Easier: non-normalized score for each class

$$\circ$$
 score(x) = $U^T a \in \mathbb{R}$

Forward Pass

- Score for one window:
 - s=score(museums in Paris are amazing)
 - $-s = \boldsymbol{U}^T f(\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) \quad \boldsymbol{x} \in \mathbb{R}^{20 \times 1}, \boldsymbol{W} \in \mathbb{R}^{8 \times 20}, \boldsymbol{U} \in \mathbb{R}^{8 \times 1}$

Word Classifier

- How does the network architecture look like if softmax over four classes should be used for the output layer?
- Which effect do the window size and the dimensionality of the word vectors have?
 - On runtime,
 - memory,
 - Quality of results?

VL DL4NLP

Topics Today

- 1. Text as Input to Neural Networks
- 2. DNN to Classify Words
- 3. The Max-Margin Loss Function

Max-Margin Loss Function Idea

- Many windows to train
 - Most of them don't have a location in the center
 - Those are called "corrupt" or negative samples
- Example
 - -s = score(museums in Paris are amazing)
 - $-s_c = score(Not \ all \ museums \ in \ Paris)$
- Score of positive examples should be high; score of negative examples should be low
- Target function
 - $-I = \max(0.1 s + s_c)$
 - Not differentiable but continuous
 - o SGD

margin

For One Training Sample

- $J = \max(0.1 s + s_c)$
- For each positive window, i.e. with a location in the center
 - Sample *m* negative windows
 - Sum over these training windows
- The score for each positive window should be at least 1.0 higher than the highest score of the negative windows

Training with Backpropagation

- $J = \max(0, 1 s + s_c)$ - Assumption at start J > 0
- $\bullet \quad s = U^T f(Wx + b)$
- $\bullet \quad s_c = U^T f(W x_c + b)$
- Derivatives of s and s_c with respect to all involved variables: U, W, b, x
- Gradient with Respect to U

$$\frac{\partial s}{\partial U} = \frac{\partial}{\partial U} U^T a = a$$

Gradient with Respect to W

•
$$\frac{\partial s}{\partial W} = \frac{\partial}{\partial W} U^T \alpha = \frac{\partial}{\partial W} U^T f(z) = \frac{\partial}{\partial W} U^T f(Wx + b)$$

Derivative of single weight W_{ii}

$$\frac{\partial s}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} U_i a_i$$

$$= U_i \frac{\partial}{\partial W_{ij}} a_i$$

$$= U_i \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial W_{ij}} = U_i \frac{\partial f(z_i)}{\partial z_i} \frac{\partial z_i}{\partial W_{ij}}$$

$$= U_i f'(z_i) \frac{\partial z_i}{\partial W_{ij}} = U_i f'(z_i) \frac{\partial W_{i,x+b_i}}{\partial W_{ij}}$$

$$= U_i f'(z_i) \frac{\partial}{\partial W_{ij}} \sum_k W_{ik} x_k$$

 W_{ij} only appears together with x_i

$$z_i = W_{i,x} + b_i = \sum_k W_{ij} x_j + b_i$$
$$a_i = f(z_i)$$

$$= U_i f'(z_i) x_j$$
 with $f'(z) = f(z)(1 - f(z))$ for the logistic function

Local input signal x_j

SS 2022

VL DL4NLP

Gradient with Respect to W

•
$$\frac{\partial s}{\partial W} = \frac{\partial}{\partial W} U^T \alpha = \frac{\partial}{\partial W} U^T f(z) = \frac{\partial}{\partial W} U^T f(Wx + b)$$

• From single weight W_{ij} to full W:

$$\frac{\partial s}{\partial W_{ij}} = U_i f'(z_i) x_j = \delta_i x_j$$

- We want all combinations i=1,2 and j=1,2,3
 - We need all, i.e., complete matrix W
- Solution:
 - –Dyadic product (outer product), often denoted ⊗
 - –In contrast to scalar product (inner product)

$$\frac{\partial s}{\partial W} = \delta x^T$$
 with $\delta \in R^{2 \times 1}$ is the error signal coming

from each activation a

Dimensions of $\frac{\partial s}{\partial w}$?

Gradient with Respect to b

•
$$J = \max(0.1 - s + s_c)$$

•
$$s = U^T f(Wx + b)$$

$$\bullet \quad s_c = U^T f(W x_c + b)$$

$$\bullet$$
 $\frac{\partial s}{\partial u} = \frac{\partial}{\partial u} U^T a = a$

$$\bullet \quad \frac{\partial s}{\partial w} = \delta x^T$$

•
$$\frac{\partial s}{\partial U} = \frac{\partial}{\partial U} U^T a = a$$

• $\frac{\partial s}{\partial W} = \delta x^T$
• $\frac{\partial s}{\partial b_i} = U_i f'(z_i) \frac{\partial W_i x + b_i}{\partial b_i} = \delta_i$
• $\frac{\partial s}{\partial b} = \delta$

•
$$\frac{\partial s}{\partial b} = \delta$$

Gradient with Respect to x

- $J = \max(0.1 s + s_c)$
- $s = U^T f(Wx + b)$
- $\bullet \quad s_c = U^T f(W x_c + b)$
- $\bullet \quad \frac{\partial s}{\partial x_j} = \sum_{i=1}^2 \frac{\partial s}{\partial a_i} \frac{\partial a_i}{\partial x_j}$
- $\bullet = \sum_{i=1}^{2} \frac{\partial U^{T} a}{\partial a_{i}} \frac{\partial a_{i}}{\partial x_{i}}$
- $\bullet = \sum_{i=1}^{2} U_i \frac{\partial f(W_i x + b)}{\partial x_i}$
- $\bullet = \sum_{i=1}^{2} U_i f'(z_i) \frac{\partial W_{i} \cdot x}{\partial x_i}$
- $\bullet = \sum_{i=1}^{2} \delta_i W_{ij}$
- $\bullet = W_{\cdot j}^T \delta$

Dimensions of $\frac{\partial s}{\partial x_i}$?

- Up to now only derivative with respect to one x_j
- Complete gradient of x

$$\frac{\partial s}{\partial x} = W^T \delta$$

All Gradients

- $I = \max(0.1 s + s_c)$
- $s = U^T f(Wx + b)$
- $s_c = U^T f(W x_c + b)$
- Derivatives of s and s_c with respect to all involved variables: U, W, b, x

$$\bullet \ \frac{\partial s}{\partial U} = \frac{\partial}{\partial U} U^T \alpha = \alpha$$

- $\bullet \ \frac{\partial s}{\partial W} = \delta x^T$

- From s to J: indicator function: $[1-s+s_c>0] = \begin{cases} 1 & if \ 1-s+s_c>0 \\ 0 & else \end{cases}$
- E.g. gradient of J with respect to U: $\frac{\partial J}{\partial u} = [1 s + s_c > 0](-a + a_c)$

VI DI 4NI P

Learning Goals for this Chapter

- Know different input representations for text
 - and how/when to use them
- Develop a simple window classifier
- Understand the max-margin loss function
 - and know how to employ it

- Relevant chapters
 - P6.1
 - S3 (2019) https://www.youtube.com/watch?v=PLryWeHPcBs

Literature

- Li, J., Sun, A., Han, J., & Li, C. (2020). A survey on deep learning for named entity recognition. *IEEE Transactions on Knowledge and Data Engineering*, *34*(1), 50-70.
 - https://arxiv.org/pdf/1812.09449.pdf

Leibniz Leibniz Gemeinschaft