N	0	t	۵	c	٠
ıν	v	L	ᆫ	э	

- If u know basics Deasy time passing
- Then more complex exercises
- Same points for easy and difficult exercises
- For each assignment

 Specification of points, and if documentation is required
- Based on pivots Othere is a B ... Offind minimal value for m and n, what is the smallest the matrix can be and the facts are still true
- 3 statements TRUE/FALSE,
- *be alarmed② if you see a big matrix in the first part, there is sth you can do so that you can avoid rrefing or ... LOOK for
- based on graph Dfigure out the eig.vals. and their multiplicities:
 - -local/global max/min 12that means the alg.multiplicity of the eig.val. is more than 1
- dim ColA, dim NullA, dim NullA.T, ..., 2dimensions of fundamental subspaces
- -differential equation (less complex, with 2 equations, NO mixing problem, just with equation stated)
- you get det(A) and you need to calculate ...(something with K) combination of det(A) and det(B)
 /det(AB)=det(A)*det(B)
- you get a system ②put it to the matrix ②in the next part you get echelon form and you have to deduce rank, nullspace(=solution), Assume that find x-s that solves the system, if there are free vars you need to set them to sth too (the easiest is to set the to 0) ②give PVF.

(there isn't the b/result vector in Nullspace!) Iso it is 0-vector

- True/Fals if it always has a solution, ...
- Cofactor expansion (3 unknowns in 3x3 matrix)
- 3. Vector is dep. On the first 2 ②you need to find its lin.comb (it is first part so you should not use rrf but find sth else to figure it out / look for multiples)

-	Dep./Indep.: It is dep. if it contains 0-vector, if one vector is multiple of the other,
-	You get a vector a, check if it is orthogonal? 2 matrix multiplication?
- the trar	You get a basis for a subsapace of R4 Indits orthogonal complement (= it is the nullspace of asposed vectors)
PART2:	
-	*some surprise with the mixing problem
1.	
О	U get xyz such that the expression=0 (plain eqution, plain spanned by 2 vectors)
О	Find its nullspace and you will get its vectors ?
Projecti	ion
a.	Project v onto x (you can use the "classic" projection or the "least square"
b.	Calculate a Distance projection
c.	You get 2 vectors in a null space (you cannot know if they are orthogonal @GramSchmidt)
2.	Mixing problem:
a.	Same solution as we have already seen but there are different questions (4):
i.	How much will be in tank-x at time t
ii.	At what time it will be quarter of the original
iii.	In the long run (limit) !!! ②to 0 or to ②inf!!!
iv.	+ surprise
3. lind.ind	One set of 2 vectors and one with 3 ②when you put them together they are not necessarily ep.
4.	Regression
5.	SVD (similar to one we had)