

12 STAGE BINARY COUNTER

- HIGH SPEED : f_{MAX} = 70 MHz (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 4040

The M74HC4040 is an high speed CMOS 12 STAGE BINARY COUNTER fabricated with silicon gate C²MOS technology.

A clear input is used to reset the counter to the all low level state. A high level on CLEAR accomplishes the reset function. A negative

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC4040B1R	
SOP	M74HC4040M1R	M74HC4040RM13TR
TSSOP		M74HC4040TTR

transition on the CLOCK input increments the counter by one.

For M74HC4040 each division stage has an output; the final frequency is $1/4096\ f_{IN}$.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1	Q1 to Q12	Parallel Outputs
10	CLOCK	Clock Input (LOW to HIGH, Edge Triggered)
11	CLEAR	Reset Inputs
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

TRUTH TABLE

CLOCK	CLEAR	OUTPUT STATE
X	Н	ALL OUTPUTS = "L"
	L	NO CHANGE
	L	ADVANCE TO NEXT STATE

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ιο	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		Test Condition		Value							
Symbol	Parameter	v _{cc}		T _A = 25°C		C	-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH} High Level Output		2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μА
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		Т	est Condition		Value						
Symbol	Parameter	ameter V _{CC}		T _A = 25°C			-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		110	
	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0			20	50		65		75	
	Time	4.5			5	10		13		15	ns
	(Qn - Qn+1)	6.0			4	9		11		13	
t _{PLH} t _{PHL}	Propagation Delay	2.0			48	145		180		220	
	Time	4.5			17	29		36		44	ns
	(CLOCK Q1)	6.0			13	25		31		38	
t _{PHL}	Propagation Delay	2.0			56	140		175		210	
	Time	4.5			18	28		35		42	ns
	(CLEAR - Qn)	6.0			15	24		30		36	
f _{MAX}	Maximum Clock	2.0		6.0	15		4.8		4		
	Frequency	4.5		30	65		24		20		MHz
		6.0		35	70		28		24		
t _{W(H)}	Minimum Pulse	2.0			40	75		95		110	
t _{W(L)}	Width (CLOCK)	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{W(H)}	Minimum Pulse	2.0			70	175		220		265	
,	Width (CLEAR)	4.5			19	35		44		53	ns
		6.0			16	30		37		45	
t _{REM}	Minimum Removal	2.0				25		30		40	
	Time	4.5				5		6		8	ns
		6.0				5		5		7	

CAPACITIVE CHARACTERISTICS

		1	est Condition		Value								
Symbol	Parameter	V _{CC}	V _{CC}	V _{CC}	v _{cc}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.			
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF		
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			34						pF		

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2$ (per FLIP/FLOP)

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: MINIMUM PULSE WIDTH (CLEAR) AND REMOVAL TIME (CLEAR TO CLOCK) (f=1MHz; 50% duty cycle)

WAVEFORM 2: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

WAVEFORM 3 : PROPAGATION DELAY TIME, MINIMUM PULSE WIDTH (CLOCK)(f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
Α			1.75			0.068			
a1	0.1		0.2	0.003		0.007			
a2			1.65			0.064			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45°	(typ.)	•				
D	9.8		10	0.385		0.393			
Е	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		8.89			0.350				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.62			0.024			
S			8° (max.)	•	•			

TSSOP16 MECHANICAL DATA

DIM.		mm.			inch	
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

