Chin. Ann. Math. 32B(3), 2011, 475–482 DOI: 10.1007/s11401-011-0641-8 Chinese Annals of Mathematics, Series B
© The Editorial Office of CAM and

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2011

A Note on Heegaard Splittings of Amalgamated 3-Manifolds*

Kun DU¹ Xutao GAO²

Abstract Let M be a compact orientable irreducible 3-manifold, and F be an essential connected closed surface in M which cuts M into two manifolds M_1 and M_2 . If M_i has a minimal Heegaard splitting $M_i = V_i \cup_{H_i} W_i$ with $d(H_1) + d(H_2) \ge 2(g(M_1) + g(M_2) - g(F)) + 1$, then $g(M) = g(M_1) + g(M_2) - g(F)$.

Keywords Distance, Stabilization, Strongly irreducible 2000 MR Subject Classification 57M25

1 Introduction

All 3-manifolds in this paper are assumed to be compact and orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with $S = \partial_+ W = \partial_+ V$, then we say that M has a Heegaard splitting, denoted by $M = V \cup_S W$, and S is called a Heegaard surface of M. Moreover, if the genus g(S) of S is minimal among all Heegaard surfaces of M, then g(S) is called the genus of M, denoted by g(M). If there are essential disks $B \subset V$ and $D \subset W$ such that $\partial B = \partial D$ (resp. $\partial B \cap \partial D = \emptyset$), then $V \cup_S W$ is said to be reducible (resp. weakly reducible). Otherwise, it is said to be irreducible (resp. strongly irreducible).

Let $M = V \cup_S W$ be a Heegaard splitting. The distance between two essential simple closed curves α and β on S, denoted by $d(\alpha, \beta)$, is the smallest integer $n \geq 0$, so there is a sequence of essential simple closed curves $\alpha_0 = \alpha, \dots, \alpha_n = \beta$ on S such that α_{i-1} is disjoint from α_i for $1 \leq i \leq n$. The distance of the Heegaard splitting $W \cup_S V$ is $d(S) = \min\{d(\alpha, \beta)\}$, where α bounds a disk in V and β bounds a disk in W (see [7]).

Let M be a 3-manifold, and A be an incompressible annulus on ∂M . Let $M = V \cup W$ be a Heegaard splitting with $A \subset \partial_- W$. Recalling that a spine annulus in W is an essential annulus of which one boundary component lies in $\partial_- W$, the other lies in $\partial_+ W$. A spine annulus A_s of W is called an A-spine annulus if one component of ∂A_s lies in A. $V \cup W$ is said to be A-primitive if there is an essential disk in V which intersects an A-spine annulus of W in one

Manuscript received April 30, 2009. Revised July 18, 2010. Published online April 19, 2011.

 $^{^1{\}rm School}$ of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China.

E-mail: dunk2000@sina.com

²School of Mathematical Science, Dalian University of Technology, Dalian 116024, Liaoning, China. E-mail: gxt1982@sina.com

^{*}Project supported by the National Natural Science Foundation of China (No. 10625102).

point. A 3-manifold M is said to be A-primitive if one of the minimal Heegaard splittings of M is A-primitive.

If a surface F in a 3-manifold M is incompressible and not parallel to ∂M , then F is said to be essential.

Let M be an irreducible 3-manifold, F be an essential connected closed surface in M which cuts M into two 3-manifolds M_1 and M_2 . If $M_i = V_i \cup_{H_i} W_i$ is a Heegaard splitting of M_i (i = 1, 2), then M has a natural Heegaard splitting called the amalgamation of $V_1 \cup_{H_1} W_1$ and $V_2 \cup_{H_2} W_2$ (see [23]). From this construction, we have $g(M) \leq g(M_1) + g(M_2) - g(F)$. Now an interesting problem is: When $g(M) = g(M_1) + g(M_2) - g(F)$ or $g(M) < g(M_1) + g(M_2) - g(F)$?

If g(F) = 0, any natural Heegaard splitting of the amalgamated 3-manifold M along unstablized Heegaard splittings of M_1 and M_2 is unstablized. It is proved in [1] and [18] respectively. There are some examples for $g(M) < g(M_1) + g(M_2) - g(F)$ (see [9, 25]).

A sufficient condition for $g(M) = g(M_1) + g(M_2) - g(F)$ was first given in [8] by using Hemple distance in [7]. Then there are some results about this (see [3, 5, 11, 17, 19, 26]).

The amalgamated 3-manifold M can be viewed as gluing M_1 to M_2 via a homeomorphism $f: F_1 \to F_2$, where $F_i \subset \partial M_i$ (i = 1, 2). So, from the viewpoint of homeomorphic maps of surfaces, there are some results about $g(M) = g(M_1) + g(M_2) - g(F)$ (see [10, 12, 14, 24]).

In this paper, we give a bound of the sum of the distance of two Heegaard splittings of M_1 and M_2 , such that for any minimal Heegaard splitting $V \cup_S W$ of M, $g(S) = g(M_1) + g(M_2) - g(F)$. The main result is as follows.

Theorem 1.1 Let M be an irreducible 3-manifold, F be an essential connected closed surface in M which cuts M into two 3-manifolds M_1 and M_2 . If M_i has a minimal Heegaard splitting $M_i = V_i \cup_{H_i} W_i$ (i = 1, 2) with $d(H_1) + d(H_2) \ge 2(g(M_1) + g(M_2) - g(F)) + 1$, then $g(M) = g(M_1) + g(M_2) - g(F)$.

Corollary 1.1 If $d(H_i) \ge 2g(M_i) - g(F)$ for i = 1, 2, then $g(M) = g(M_1) + g(M_2) - g(F)$.

Question 1.1 Wether the bound of the sum of this two distances is the best?

2 Preliminary

There are some lemmas which can be used to prove the main theorem.

Lemma 2.1 (see [4, 19]) Let $M = V \cup_S W$ be a Heegaard splitting, and F be an incompressible surface in M. Then either F can be isotoped to be disjoint from S or $d(S) \leq 2 - \chi(F)$.

Lemma 2.2 Let $M = V \cup_S W$ be a strongly irreducible Heegaard splitting, and F be an essential connected closed surface in M which cuts M into two manifolds M_1 and M_2 . Then S can be isotoped so that

- (1) one of $S \cap M_1$ and $S \cap M_2$, say $S \cap M_1$, is incompressible while all components of $S \cap M_2$ are incompressible except one bicompressible component, or
- (2) one of $S \cap M_1$ and $S \cap M_2$, say $S \cap M_1$, is incompressible while $S \cap M_2$ is compressible only in one side, say $M_2 \cap V$, and there is a Heegaard surface S' isotopic to S such that

- (i) $S' \cap M_1$ is only compressible in $M_1 \cap W$ or incompressible while $S' \cap M_2$ is incompressible,
- (ii) S' is obtained by ∂ -compressing S in M_2 only one time.

This is a stronger version of [8, 17]. The arguments in [8, 17] contain this result. We give an outline of the proof.

Proof of Lemma 2.2 By [8, Proposition 2.6], S can be isotoped such that at least one of $S \cap M_1$ and $S \cap M_2$ is incompressible, and $S \cap F$ is a collection of essential simple closed curves on both S and F. We may assume $S \cap M_1$ is incompressible. Then, there are three cases for $S \cap M_2$:

- Case 1 $S \cap M_2$ is incompressible.
- Case 2 $S \cap M_2$ is bicompressible.
- Case 3 $S \cap M_2$ is only compressible in $M_2 \cap V$, incompressible in $M_2 \cap W$.
- If Case 2 holds, then there is nothing to prove. Now we consider Case 1 and Case 3.
- Case 1 Suppose that $S \cap M_1$ is incompressible, and $S \cap M_2$ is incompressible.

Since F is essential, $V \cup_S W$ is a non-trivial Heegaard splitting of M. So, there are essential disks in both V and W. We may assume that among all the isotopies of S, satisfying

- (1) $S \cap F$ is a collection of essential simple closed curves on both S and F,
- (2) $S \cap M_1$ and $S \cap M_2$ are incompressible,

there is an essential disk D in V or W such that $|D \cap F|$ is minimal. Since F is essential, $D \cap F$ is a collection of arcs in D. Let a be an outermost arc in D. There is an arc $b \in \partial D$ such that $a \cup b$ bounds a subdisk $D' \subset D$ with $\operatorname{int} D' \cap F = \emptyset$. We now prove that D' is a ∂ -compressing disk for S_1 or S_2 . Suppose that D' lies in M_1 . If b is inessential on S_1 , then b can be isotoped to b' which lies in F such that $a \cup b'$ bounds a disk in M_1 . Since F is essential, $a \cup b'$ is an inessential simple closed curve on F. Since M_1 is irreducible, it is easy to see that D' can be pushed into M_2 decreasing $|D \cap F|$, a contradiction. So, b is an essential arc on S_1 or S_2 .

We may assume that D' is a ∂ -compressing disk for S_1 . ∂ -compressing S_1 along D', we get a surface S' isotopic to S. Note that $S' \cap M_1$ is incompressible, except for possibly a ∂ -parallel disk. If there is a ∂ -parallel disk, then we push it into M_2 . We still denote it by S'. Note that $S' \cap F$ is also a collection of essential simple closed curves on both S' and F. By the minimality of $|D \cap F|$, $S' \cap M_2$ is bicompressible or only compressible in $M_2 \cap V$ (resp. $M_2 \cap W$), incompressible in $M_2 \cap W$ (resp. $M_2 \cap V$). So, we have Case 2 or Case 3.

Case 3 Suppose that $S \cap M_1$ is incompressible, $S \cap M_2$ is only compressible in $M_2 \cap V$, incompressible in $M_2 \cap W$.

As in Case 1, we may assume that among all the isotopies of S, satisfying

- (1) $S \cap F$ is a collection of essential simple closed curves on both S and F,
- (2) one of $S \cap M_1$ and $S \cap M_2$ is incompressible, the other is only compressible in one side, there is an essential disk D in W or V with $|D \cap F|$ being minimal. (If one of $S \cap M_1$ and $S \cap M_2$ is compressible in V (resp. W), we say that D lies in W (resp. V).)

Suppose that $S \cap M_1$ is incompressible, $S \cap M_2$ is compressible in $M_2 \cap V$ and incompressible in $M_2 \cap W$. Then, there is an essential disk D in W such that $|D \cap F|$ is minimal.

By the proof as in Case 1, we choose a subdisk D' of D with $\operatorname{int} D' \cap F = \emptyset$. Note that D' is a ∂ -compressing disk for S_1 or S_2 . If D' lies in S_1 , then ∂ -compressing S_1 along D', we get a surface S' isotopic to S such that $S' \cap M_1$ is still incompressible, except for possibly a ∂ -parallel disk. By pushing the ∂ -parallel into M_2 , we still denote this surface by S'. Note that $S' \cap F$ is also a collection of essential simple closed curves on both S' and F, and the isotopy decreases $|D \cap F|$. Since F is essential, S' cannot be disjoint from F. Then, $S' \cap M_1$ is also incompressible, and $S' \cap M_2$ is also compressible in $M_2 \cap V$. By the minimality of $|D \cap F|$, $S' \cap M_2$ is bicompressible. This is Case 2.

Now suppose that D' lies in S_2 . ∂ -compressing S_2 along D', we obtain a surface S' isotopic to S. Note that $S' \cap M_2$ is still incompressible in $M_2 \cap W$, except for possibly a ∂ -parallel disk. If there is a ∂ -parallel disk, then we push it into M_1 . We still denote it by S'. Note that $S' \cap F$ is a collection of essential simple closed curves on both S' and F. If $S' \cap M_2$ is still compressible in $M_2 \cap V$, by the minimality of $|D \cap F|$, $S' \cap M_1$ is compressible in $M_1 \cap V$. We also denote the disk isotopic to D by D. Then $D \cap F \neq \emptyset$. We isotope S' via ∂ -compressing along subdisk of D as above, by the minimality of $|D \cap F|$ and the finiteness of $D \cap F$, we have Case 2.

If $S' \cap M_2$ is incompressible in M_2 , by the minimality of $|D \cap F|$, Lemma 2.2 holds.

Lemma 2.3 Let M be an irreducible 3-manifold, $V \cup_P W$ be a Heegaard splitting of M, Q be a properly embedded separating connected bicompressible bounded surface in M which cuts M into two 3-manifolds X and Y. Suppose ∂Q lies in one component of $\partial_- V$. If $d(P) \geq 5$, then $d(P) \leq 2 - \chi(Q)$ or Q lies in $\partial_- V \times I$.

This is the stronger version of the proof in [13]. There are some differences from [13], because in [13], Q is closed. In fact, the condition $d(P) \geq 5$ can be deleted (see [4]). The argument in [13] contains this result. We do not prove it here.

3 The Proof of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1 and Corollary 1.1 Let $V \cup_S W$ be a minimal Heegaard splitting of M, and $k_i = d(H_i)$ for i = 1, 2. Since F is essential, S cannot be isotoped to be disjoint from F.

Case 1 $V \cup_S W$ is strongly irreducible.

Let $S_1 = S \cap M_1$, $S_2 = S \cap M_2$. By Lemma 2.2, there are the following two cases.

Case 1.1 Suppose that S_1 is incompressible, S_2 is compressible in $M_2 \cap V$ and incompressible in $M_2 \cap W$.

By Lemma 2.1, we have $\chi(S_1) \leq 2 - k_1$. By Lemma 2.2, we get an incompressible surface S_2' after ∂ -compressing S_2 in M_2 only one time. By Lemma 2.1, we have $\chi(S_2') \leq 2 - k_2$. Since $\chi(S_2) = \chi(S_2') - 1$, $\chi(S) = \chi(S_1) + \chi(S_2) \leq 2 - k_1 + 1 - k_2 = 3 - (k_1 + k_2) \leq 3 - 2(g(M_1) + g(M_2) - g(F)) - 1$, i.e., $g(S) \geq g(M_1) + g(M_2) - g(F)$.

Case 1.2 Suppose that S_1 is incompressible, S_2 is bicompressible.

By Lemma 2.1, we have $\chi(S_1) \leq 2 - k_1$. If S_2 is not connected, let H be an incompressible component. Since S is strongly irreducible, the bicompressible component of S_2 is not annulus.

So $\chi(H) \ge \chi(S_2) + 2$. By Lemma 2.1, $\chi(H) \le 2 - k_2$. So $\chi(S_2) \le -k_2$. Then $\chi(S) = \chi(S_1) + \chi(S_2) \le 2 - k_1 - k_2 \le 2 - 2(g(M_1) + g(M_2) - g(F)) - 1$, i.e., $g(S) \ge g(M_1) + g(M_2) - g(F) + 1$, a contradiction.

Hence, S_2 is connected. After maximally compressing S_2 in $M_2 \cap V$ (resp. $M_2 \cap W$), we denote it by S_V (resp. S_W). By the no nested lemma in [21], S_V and S_W are incompressible. If there is a bounded component H of S_V (resp. S_W) which is not ∂ -parallel, by Lemma 2.1, $\chi(S_2) + 2 \leq \chi(H) \leq 2 - k_2$. Then $\chi(S) = \chi(S_1) + \chi(S_2) \leq 2 - k_1 - k_2 \leq 2 - 2(g(M_1) + g(M_2) - g(F)) - 1$, i.e., $g(S) \geq g(M_1) + g(M_2) - g(F) + 1$, which is a contradiction.

Hence, each bounded component of S_V and S_W is ∂ -parallel. If the bounded components of S_V (resp. S_W) are nested, since S_2 is connected, they are as in Figure 1. Let H be the outermost component of S_V , F_H be a subsurface of F parallel to H, and $F \times I$ be a small regular neighborhood of F in M_2 , where $F = F \times \{0\}$. Then $F' = \overline{H - F \times I} \cup (\overline{F - F_H} \times \{1\})$ is parallel to F. We can push F' slightly such that $F' \cap H = \emptyset$. Since H is outermost, F' is disjoint from S_2 . So, F' lies in V or W, a contradiction. Hence, each bounded component of S_V is ∂ -parallel and non-nested. So does S_W .

Figure 1 The bounded component of S_V

Let $F_V = F \cap (M_2 \cap V)$, $F_W = F \cap (M_2 \cap W)$. It is easy to see that $H' = \overline{S_2 - F \times I} \cup (F_V \times \{1\})$ and $H'' = \overline{S_2 - F \times I} \cup (F_W \times \{1\})$ are Heegaard surfaces of M_2 . We have $\chi(S_2) + \chi(F_V) = \chi(H')$, $\chi(S_2) + \chi(F_W) = \chi(H'')$. Note that $\chi(H') \leq \chi(H_2)$, $\chi(H'') \leq \chi(H_2)$, so $2\chi(S_2) + \chi(F) = \chi(H') + \chi(H'') \leq 2\chi(H_2)$, i.e., $\chi(S_2) \leq \chi(H_2) - \frac{1}{2}\chi(F)$. Since $\chi(S_1) \leq 2 - k_1$, $\chi(S) = \chi(S_1) + \chi(S_2) \leq 2 - k_1 + \chi(H_2) - \frac{1}{2}\chi(F)$. Since $g(S) \leq g(M_1) + g(M_2) - g(F)$, $k_1 \leq 2g(M_1) - g(F) + 1$. Since $k_1 + k_2 \geq 2(g(M_1) + g(M_2) - g(F)) + 1$, $k_2 \geq 2g(M_2) - g(F) \geq 2(g(F) + 1) - g(F) \geq 3$. But H' and H'' are A-primitive, by [14], d(H'), $d(H'') \leq 2$, so g(H'), $g(H'') \geq g(H_2) + 1$, i.e., $\chi(H')$, $\chi(H'') \leq \chi(H_2) - 2$. Then, by the proof as above, $\chi(S_2) \leq \chi(H_2) - 2 - \frac{1}{2}\chi(F)$. Thus, $\chi(S) = \chi(S_1) + \chi(S_2) \leq 2 - k_1 + \chi(H_2) - 2 - \frac{1}{2}\chi(F)$. We have $k_1 \leq 2g(M_1) - g(F) - 1$. Then $k_2 \geq 2g(M_2) - g(F) + 2 \geq 5$. Thus, by Lemma 2.3, we have $\chi(S_2) \leq 2 - k_2$. Hence, $\chi(S) = \chi(S_1) + \chi(S_2) \leq 2 - k_1 + 2 - k_2 \leq 4 - 2(g(M_1) + g(M_2) - g(F)) - 1$, i.e., $g(S) \geq g(M_1) + g(M_2) - g(F) - \frac{1}{2}$.

Note that $k_1 \leq 2g(M_1) - g(F) - 1$. If we suppose $k_i \geq 2g(M_i) - g(F)$ for each i, then this case does not happen. Corollary 1.1 holds.

Case 2 $V \cup_S W$ is weakly reducible.

Since $V \cup_S W$ is weakly reducible, by [2, 16, 22], we have

$$M = V \cup_S W = (V_1 \cup_{P_1} W_1) \cup_{F_1} \cdots \cup_{F_{n-1}} (V_n \cup_{P_n} W_n),$$

where each $V_i \cup_{P_i} W_i$ is strongly irreducible, each F_i is incompressible.

If there is F_i for some i, such that $F_i \cap F \neq \emptyset$ after isotopies, we may assume that $F_i \cap F$ is a collection of essential simple closed curves on both F_i and F, and $|F_i \cap F|$ is minimal. Let $F_i^1 = F_i \cap M_1$, $F_i^2 = F_i \cap M_2$. By Lemma 2.1, $\chi(F_i^1) \leq 2 - k_1$, $\chi(F_i^2) \leq 2 - k_2$. Then, we have $\chi(S) + 4 \leq \chi(F_i) = \chi(F_i^1) + \chi(F_i^2) \leq 2 - k_1 + 2 - k_2$. Since $k_1 + k_2 \geq 2(g(M_1) + g(M_2) - g(F)) + 1$, $g(S) > g(M_1) + g(M_2) - g(F) + \frac{3}{2}$, which is a contradiction.

Hence, for each $i, F_i \cap F = \emptyset$. Then, F lies in $V_i \cup_{P_i} W_i$ for some i. If $P_i \cap F = \emptyset$, then F is parallel to F_{i-1} or F_i , we have $g(S) = g(M_1) + g(M_2) - g(F)$. Next, we suppose $P_i \cap F \neq \emptyset$. Note that P_i is strongly irreducible. Let $P_i^1 = P_i \cap M_1$, $P_i^2 = P_i \cap M_2$, and $M_i = V_i \cup_{P_i} W_i$. By Lemma 2.2, there are two cases.

Case 2.1 Suppose that P_i^1 is incompressible in $M_i \cap M_1$, P_i^2 is compressible in $V_i \cap M_2$, and incompressible in $W_i \cap M_2$.

Since each F_i is incompressible, P_i^1 is incompressible in M_1 . By Lemma 2.1, $\chi(P_i^1) \leq 2 - k_1$. Then we get $P_i^{2'}$ obtained by ∂ -compressing P_i^2 , such that $P_i^{2'}$ is incompressible in $M_2 \cap M_i$. So, $P_i^{2'}$ is incompressible in M_2 . Hence, again by Lemma 2.1, $\chi(P_i^{2'}) = \chi(P_i^2) + 1 \leq 2 - k_2$, i.e., $\chi(P_i^2) \leq 1 - k_2$. So, $\chi(P_i) = \chi(P_i^1) + \chi(P_i^2) \leq 2 - k_1 + 1 - k_2 \leq 2 - 2(g(M_1) + g(M_2) - g(F))$. Since $\chi(S) + 2 \leq \chi(P_i)$, we have $\chi(S) > \chi(P_i) = \chi(P_i) + \chi(P_i^2) \leq 2 - k_1 + 1 - k_2 \leq 2 - 2(g(M_1) + g(M_2) - g(F))$.

Case 2.2 Suppose that P_i^1 is incompressible in $M_i \cap M_1$, P_i^2 is bicompressible in $M_i \cap M_2$. Since each F_i is incompressible, P_i^1 is incompressible in M_1 , all compressing disks of P_i^2 in M_2 lie in $M_2 \cap M_i$. By Lemma 2.1, $\chi(P_i^1) \leq 2 - k_1$. If P_i^2 is not connected, let H be an incompressible component of P_i^2 , then $\chi(H) \leq 2 - k_2$. Since $\chi(P_i^2) + 2 \leq \chi(H)$, we have $\chi(P_i^2) \leq -k_2$. So $\chi(P_i) = \chi(P_i^1) + \chi(P_i^2) \leq 2 - k_1 - k_2$. Since $\chi(S) \leq \chi(P_i) - 2$, we have $\chi(S) > \chi(S) = \chi(S) + \chi(S) = \chi(S)$, which is a contradiction.

Hence, P_i^2 is connected. Maximally compressing P_i^2 in $M_2 \cap V_i$ (resp. $M_2 \cap W_i$), we denote it by P_V (resp. P_W). By the no nested lemma in [21], P_V and P_W are incompressible. If there is a bounded component H of P_V (resp. P_W) which is not ∂ -parallel, by Lemma 2.1, $\chi(H) \leq 2 - k_2$. Since $\chi(P_i^2) + 2 \leq \chi(H)$, we have $\chi(P_i^2) \leq -k_2$. Since $\chi(S) \leq \chi(P_i) - 2$, we have $\chi(S) > \chi(M_1) + \chi(M_2) - \chi(M_2) - \chi(S)$, which is a contradiction.

Hence, each bounded component of P_V and P_W is ∂ -parallel. If the bounded components of P_V (resp. P_W) are nested, since P_i^2 is connected, they are also as in Figure 1. Let H be the outermost component of P_V , F_H be a subsurface of F parallel to H, and $F \times I$ be a small regular neighborhood of F in M_2 , where $F = F \times \{0\}$. Then $F' = \overline{H - F \times I} \cup (\overline{F - F_H} \times \{1\})$ is parallel to F. We can push F' slightly such that $F' \cap H = \emptyset$. Since H is outermost, F' is disjoint from P_i^2 . So, F' lies in V_i or W_i , which is a contradiction. Hence, each bounded component of P_V is ∂ -parallel and non-nested. So does P_W .

Let $F_V = F \cap (M_2 \cap V_i)$, $F_W = F \cap (M_2 \cap W_i)$, and $M_i' = M_2 \cap M_i$. It is easy to see that $H' = \overline{P_i^2 - F \times I} \cup (F_V \times \{1\})$ and $H'' = \overline{P_i^2 - F \times I} \cup (F_W \times \{1\})$ are Heegaard surfaces

of M_i' . We have $\chi(P_i^2) + \chi(F_V) = \chi(H')$, $\chi(P_i^2) + \chi(F_W) = \chi(H'')$. So $2\chi(P_i^2) + \chi(F) = \chi(H') + \chi(H'') \le 4 - 4g(M_i')$, i.e., $\chi(P_i^2) \le 2 - 2g(M_i') - \frac{1}{2}\chi(F)$. We have $\chi(S) \le \chi(P_i) - 2 \le 2 - k_1 + 2 - 2g(M_i') - \frac{1}{2}\chi(F) - 2$, i.e., $k_1 \le 2g(M_1) + 2g(M_2) - 2g(M_i') - g(F) - 1$. Since $k_1 + k_2 \ge 2(g(M_1) + g(M_2) - g(F)) + 1$, we have $k_2 \ge 2g(M_i') - g(F) + 2 \ge 5$. By Lemma 2.3, we get $\chi(P_i^2) \le 2 - k_2$. Hence, $\chi(S) \le \chi(P_i) - 2 \le 2 - k_1 + 2 - k_2 - 2$, i.e., $g(S) \ge g(M_1) + g(M_2) - g(F) + 1$, which is a contradiction. Theorem 1.1 is proved.

Note that if $k_i \geq 2g(M_i) - g(F)$ for each i, then the proof of Case 2.1 is the same. In Case 2.2, $2g(M_1) - g(F) \leq k_1 \leq 2g(M_1) + 2g(M_2) - 2g(M_i') - g(F) - 1$, we have $g(M_2) \geq g(M_i') + 1$. Note that $k_2 \geq 2g(M_2) - g(F) \geq 5$. By Lemma 2.3, $\chi(P_i^2) \leq 2 - k_2$. By Lemma 2.1, $\chi(P_i^1) \leq 2 - k_1$. Thus, $\chi(S) \leq \chi(P_i) - 2 \leq 2 - (k_1 + k_2)$. We have $g(S) \geq g(M_1) + g(M_2) - g(F)$. Corollary 1.1 holds.

Acknowledgement The first author would like to thank Professor Ruifeng Qiu for leading her to this question. The authors also thank Professor Ruifeng Qiu for some helpful discussions.

References

- Bachman, D., Connected sums of unstabilized Heegaard splittings are unstabilized, Geom. Topol., 12, 2008, 2327–2378.
- [2] Casson, A. and McA Gordon, C., Reducing Heegaard splittings, Topology Appl., 27, 1987, 275–283.
- [3] Du, K., Lei, F. and Ma, J., Distance and self-amalgamation of Heegaard splittings, preprint.
- [4] Du, K. and Qiu, R., The self-amalgamation of high distance Heegaard splittings is always efficient, Topology Appl., 157(7), 2010, 1136–1141.
- [5] Du, K., Qiu, R., Ma, J. and Zhang, M., Distance and Heegaard genera of annular 3-manifold, *J. Knot Theory Ramifications*, to appear.
- [6] Hartshorn, K., Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math., 204, 2002, 61–75.
- [7] Hempel, J., 3-Manifolds as viewed from the curve complex, Topology, 40, 2001, 631-657.
- [8] Kobayashi, T. and Qiu, R., The amalgamation of high distance Heegaard splittings is unstabilized, Math. Ann., 341(3), 2008, 707-715.
- [9] Kobayashi, T., Qiu, R., Rieck, Y. and Wang S., Separating incompressible surfaces and stabilizations of Heegaard splittings, Math. Proc. Cambridge Philos. Soc., 137(3), 2004, 633–643.
- [10] Lackenby, M., The Heegaard genus of amalgamated 3-manifolds, Geom. Dedicata, 109, 2004, 139–145.
- [11] Lei, F. and Yang, G., A lower bound of genus of amalgamations of Heegaard splittings, Math. Proc. Camb. Phil. Soc., 146, 2009, 615–623.
- [12] Li, T., Heegaard surfaces and the distance of amalgamation. arXiv: math.GT/0807.2869
- [13] Li, T., Saddle tangencies and the distance of Heegaard splittings, Albegr. Geom. Topol., 7, 2007, 1119–1134.
- [14] Li, T., On the Heegaard splittings of amalgamated 3-manifolds, Workshop on Heegaard Splittings, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007, 157–190.
- [15] Moriah, Y., Heegaard splittings of knot exteriors, Workshop on Heegaard Splittings, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007, 191–232.
- [16] Qiu, R., Untelescopings of Heegaard splittings, Northeast. Math. J., 16(4), 2000, 484–490.
- [17] Qiu, R. and Lei, F., On the Heegaard genera of 3-manifolds containing non-separating surfaces, Topology and Physics, Nankai Tracts Math., 12, World Sci. Publ., Hackensack, New Jersey, 2008, 341–347.
- [18] Qiu, R. and Scharlemann, M., A proof of the Gordon conjecture, Adv. Math., 222(6), 2009, 2085–2106.
- [19] Qiu, R., Wang, S. and Zhang, M., Additivity of Heegaard genera of bounded surface sums, Topology and Its Appl., 157, 2010, 1593–1601.

[20] Scharlemann, M., Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math., 228(2), 2006, 325–348.

- [21] Scharlemann, M., Local detection of strongly irreducible Heegaard splittings, Topology and Its Appl., 90, 1998, 135–147.
- [22] Scharlemann, M. and Thompson, A., Thin position for 3-manifolds, Geometric Topology (Haifa, 1992), Contemp. Math., Vol. 164, A. M. S., Providence, RI, 1994, 231–238.
- [23] Schultens, J., The classification of Heegaard splittings for (compact orientable surface) \times S^1 , $Proc.\ London\ Math.\ Soc.$, **67**(3), 1993, 425–448.
- [24] Souto, J., The Heegaard genus and distance in curve complex, preprint.
- [25] Schultens, J. and Weidmann, R., Destabilizing amalgamated Heegaard splittings, Workshop on Heegaard Splittings, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007, 319–334.
- [26] Yang, G. and Lei, F., On amalgamations of Heegaard splittings with high distance, Proc. Amer. Math. Soc., 137(2), 2009, 723–731.