Exercise Sheet 1

Wiktoria Kuna

Exercise 1

(a) Probability tables

(b) Analizying independencies

• $(A \perp B)_p$ For the independence to hold the following must be true: P(A|B) = P(A).

Since $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{2}$, and from the table above,

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

for $A, B \in \{0, 1\}$.

Therefore, random variables A,B are independent.

• $(A \perp C)_p$ For A, C to be independent the P(A|C) = P(A).

$$P(A|C) = \frac{P(A,C)}{P(C)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

Therefore, the independence holds.

• $(A \perp \!\!\!\perp B|C)_p$

$$P(A|B,C) = \frac{P(A,B,C)}{P(B,C)}$$

Now, i.e., for A = 0, B = 0, C = 0 we would get:

$$P(A=0|B=0,C=0) = \frac{P(A=0,B=0,C=0)}{P(B=0,C=0)} = \frac{0}{P(B=0,C=0)} \neq \frac{1}{2} = P(A|C)$$

Therefore, A is not independent of B given C.

(c) Joint probability distribution as Bayesian network

- (d) Analazing independencies using d-separation
 - $(A \perp B)_G$ A and B are d-separated (by the set $Z = \emptyset$); A and B are marginally independent.
 - $(A \perp C)_G$ There's unblocked path (A, C) by Z (where $Z = \emptyset$), therefore A and C are d-connected. This means that A and C are marginally dependent.
 - $(A \perp \!\!\!\perp B|C)_G$ Here, C would normally be a collider on a path from A to B. Because C is a member of conditioning set it is no longer blocking the path between A and B. And therefore, A and B are d-connected and the following holds: $(A \not\perp \!\!\!\perp B|C)_G$
- (e) Given $(X \perp Y|Z)_p$ does not imply $(X \perp Y|Z)_G$.

Exercise 2

(a) $X = \{A, B\}, Y = \{G, H\}$. Find all d-separators Z relative to (X, Y)

Let's consider all possible subsets of vertices $V_G \setminus \{A, B, G, H\} = \{C, D, E, F\}$ and check if they're the d-separators relative to (X, Y).

Z	Is d-separator
Ø	No, i.e $(A, C)(C, E)(E, H)$
C	No, i.e. $(A,C)(C,D)(D,G)$
D	No, i.e $(A, C)(C, E)(E, H)$
E	No, i.e $(A, C)(C, F)(F, H)$
F	No, i.e $(A, C)(C, E)(E, H)$
C,D	No, i.e $(B, F)(F, H)$
C, E	No, i.e $(B, F)(F, H)$
C, F	No, i.e. $(A,C)(C,D)(D,G)$
D, E	No, i.e $(B, F)(F, H)$
D, F	No, i.e $(A, C)(C, E)(E, H)$
E, F	No, i.e. $(A,C)(C,D)(D,G)$
C, D, E	No, i.e $(B, F)(F, H)$
C, D, F	Yes
C, E, F	No, i.e. $(A,C)(C,D)(D,G)$
D, E, F	Yes
C, D, E, F	Yes

(b) Is there for every DAG G and disjoint sets $X,Y\subseteq V$ a set $Z\subseteq V$ which d-separates X and Y?

Let's consider following DAG:

The path between A and B is just an edge between them. Regardless of Z, the A, B cannot be d-separated (since there's no node between to block the path).

(c) Minimal d-separators are $Z=\{C,D,F\}$ and $Z=\{D,E,F\}$. $Z=\{C,D,E,F\}$ is not minimal because for $W=\{E\},\ Z\backslash W=\{C,D,F\}$ d-separates X and Y.