Registration number:

EEE102 Power Networks Mid Term Test – March 2009

Constants required: $\mu_0 = 4\pi x 10^{-7} \text{ Hm}^{-1}$

	Question	Answer	Marks
1	Convert the following impedances into magnitude and phase representations:	i)	[1]
	i) 3 + j21 Ω ii) 4 - j3 Ω	ii)	[1]
2	Convert the following impedances into complex number representations:	i)	[1]
	i) 13.3∠45° Ω ii) 27.4∠85° Ω	ii)	[1]
3	Calculate the impedance of the circuit below and the magnitude and phase of the current 3Ω 0.02H	Impedance:	[1]
	230V rms 50Hz AC sinusoidal supply	Current:	[2]
4	A 100 turn coil is wound onto the circular iron core shown below. The iron core includes an airgap of length 3mm. The iron core has a fixed relative permeability of 400. Calculate the current required to achieve a flux density in the core of 1.3T.	Include any intermediate calculations in this box and state answer at bottom of box Current:	[4]

	Which of the following expressions defines the rms voltage for any generalised time varying voltage	State (a), (b) or (c):	
5	(a) $V_{rms} = \sqrt{\frac{1}{T} \int_0^T v^2 dt}$		[1]
	(b) $V_{rms}=rac{1}{T}\sqrt{\int_0^T v^2 dt}$		
	(c) $V_{rms}=rac{V_{peak}}{\sqrt{2}}$		
		Show all your intermediate calculations in the box and state the final answers at the bottom of the box	
	Calculate the circuit current and the VA, VAr and Watts supplied to the load		
6	230V rms 50Hz AC sinusoidal supply 0.05H		
		Current :	[1]
		VA:	[1]
		VArs:	[1]
		Watts:	[1]

