$\begin{array}{c} \textbf{TFY4115 Fysikk} \; (\texttt{MTEL/MTTK/MTNANO}) \\ \textbf{Tips for } \; \textit{Øving 2} \end{array}$

Oppgave 1.

- c. Merk det antas at vinkelakselerasjonen er konstant, en forutsetning for å finne et svar. Dersom den oppgitte $\emptyset kningen \ i \ perioden$ er konstant, vil rotasjonen aldri opphøre teoretisk sett!
- d. Det blir to litt ulike svar (se fasitsvar) om vi antar at vinkelakselerasjonen er konstant, eller om vi antar at den oppgitte økningen i perioden per år er konstant. Sistnevnte gir enklest regning.

Oppgave 2.

- $\underline{\mathbf{a}}$. Dekomponer snorkrafta S vertikalt og horisontalt og bruk Newtons 2. (1.) lov.
- <u>b.</u> Bruk Newtons 2. lov med sentripetalakselerasjon, ikke trekk inn "sentrifugalkrafta". Dekomponer snorkrafta S vertikalt og horisontalt, horisontalt må snordraget sørge for den sentripetalkrafta som skal til for å holde m i en sirkelbane med radius $r = L \sin \theta$.

Oppgave 3.

Forholdene er som i oppgaven ovenfor, men snorkrafta får pålagt betingelsen $S = m_1 g$.

- **a.** Svaret skal bli $\cos \theta = \frac{m_2}{m_1}$.
- **b.** Svaret skal bli $L = \frac{m_1}{m_2} \frac{gT^2}{4\pi^2}$.
- **d.** Ad. friksjon: Friksjon over en kant kan bli ganske stor, refererer til kap. 2.3.3 i Hauge & Støvneng, gjennomgått i forelesning. Vinkelen over kanten er $\phi = (2\pi \theta)$, og den medfølgende friksjon vil gjøre underverker for stabiliteten.

Oppgave 4.

- **b.** I fysikken anbefales å løse diff. likninger ved å sette opp og løse et bestemt integral. Separer likningen ved å skrive alle ω og d ω på venstre side og θ og d θ på høyre side. Integrer fra starttilstand $\theta = 0$; $\omega = \omega_0$ til vilkårlig tilstand θ ; ω . Da unngås å introdusere integrasjonskonstanter som etterpå må bestemmes ved startvilkår.
- c. Husk at tyngden har komponent inn mot sentrum, avhengig av θ . Vanlig fornuft tilsier at strekket i snora blir størst når massen er rett under sirkelens sentrum, $\theta = \frac{3}{2}\pi \pm n \cdot 2\pi$, der n er et heltall. På toppen $(\theta = \frac{1}{2}\pi \pm n \cdot 2\pi)$ må snora ha strekk i seg, dvs. $S_{\min} > 0$.