2017-10-05

- Solving recurrences: substitution method, recursion-tree method, master theorem.
- Useful tricks for substitution method:
 - Strengthen the inductive hypothesis by subtracting a low-order term. Ex: T(n) = 4T(n/2) + O(n).
 - Change of variables. Ex: $T(n) = 2T(\sqrt{n}) + \log n$.
- Master theorem: $T(n) = \begin{cases} O(1) \text{ if } n = 1\\ aT(\frac{n}{b}) + f(n) \text{ if } n \ge 1 \end{cases}$
 - $\bullet \ \ \text{If} \ \exists \epsilon > 0 \ \text{s.t.} \ f(n) = O(n^{\log_b a \epsilon}), \ \text{then} \ T(n) = \Theta(n^{\log_b a}).$
 - If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
 - If $\exists \epsilon > 0$ s.t. $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ s.t. $af(\frac{n}{b}) \le cf(n)$, then $T(n) = \Theta(f(n))$.
- Examples using master theorem:

$$\circ \quad T(n) = aT(\frac{n}{b}) + f(n^{\log_b a} \lg^k n) \implies T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$

- Matrix multiplication:
 - Lower bound: $\Omega(n^2)$
 - Upper bound by Strassen's algorithm: $O(n^{\lg 7})$
- Strassen's algorithm:
 - Total arithmetic operations: 12 addition, 6 subtraction, 7 multiplication.
 - Time complexity: $T(n) = 7T(\frac{n}{2}) + \Theta(n^2) \implies T(n) = \Theta(n^{\lg 7})$.
- Selection problem: $\Theta(n)$
 - Lower bound: $\Omega(n)$
 - Upper bound by sorting: $O(n \log n)$
 - Upper bound by D&C: *O*(*n*)
- Selection problem by D&C:
 - Divide the n inputs into n/r groups each of r (odd) numbers.
 - Collect the median of each group $\implies O(n)$.
 - Choose the median of medians $\implies T(\frac{n}{r})$.
 - Discard at least $\frac{r+1}{4r}$ inputs $\implies T(\frac{(3r-1)n}{4r})$.
 - Time complexity: $T(n) = T(\frac{n}{r}) + T(\frac{(3r-1)n}{4r}) + \Theta(n) \implies T(n) = \Theta(n)$.
- Closest-pair problem:
 - Lower bound: $\Omega(n)$
 - Upper bound by brute-force algorithm: $O(n^2)$
 - Upper bound by D&C: $O(n \log n)$

- Closest-pair problem by D&C:
 - Divide points evenly along *x*-coordinate.
 - Find closest pair in each side recursively.
 - At most 8 points in a $\delta \times 2\delta$ block, where δ is the smaller distance from two sides.