ST5202: Applied Regression Analysis

Department of Statistics and Applied Probability National University of Singapore

> 12-Feb-2018 Week 5

Simultaneous Inferences and Other Topics in Regression Analysis (Chapter 4), Matrix Approach & Multiple Regression (Chapter 5 & 6)

Outline

- Chapter 4
 - Simultaneous inferences
 - Regression through the origin
 - Inverse prediction (left as reading)
 - Effects of measurement errors in X
 - Choice of X levels
- Matrix approach to linear regression analysis
 - Matrix overview
 - Simple linear regression in matrix terms
 - (b_0, b_1)
 - Hat matrix
 - Sum of squares in quadratic form
 - Geometrical interpertation of the linear model

Confidence intervalas and simultaneous inference

- For a $(1 \alpha)100\%$ CI for one parameter of interest, e.g., 95% CI for β_1 , we can say:
 - Before observing the data: $Prob(Event\beta_1 \in 95\%CI) = 0.95$
 - After observing the data: We are 95% confident that β_1 is in its 95% CI
- ullet For multiple parameters, each with its own (1-lpha)100% CI for one parameter of interest
 - e.g., a 95% CI for β_0 and a 95% CI for β_1 :
 - Before observing the data: Prob ({Event $\beta_0 \in 95\%CI$ } AND {Event $\beta_1 \in 95\%CI$ }) = ??
 - After observing the data: We are ??% confident that β_0 is in its CI, AND β_1 is in its CI

Confidence intervalas and simultaneous inference

- When constructing confidence intervals for multiple parameters:
 - \bullet Each parameter has its own confidence interval, with its own <code>individual</code> confidence level, say $1-\alpha$
- Goal in simultaneous inference:
 Control the family confidence coefficient (by controlling the individual confidence coefficients)

Bonferroni joint confidence intervals

- Bonferroni:
 - When constructing 2 confidence intervals, we can use $(1 \alpha_1)$ and $(1 \alpha_2)$ confidence levels for individual intervals, with $\alpha_1 + \alpha_2 = \alpha$, to guarantee an overall confidence interval of level (1α)
- E.g., we can use 10% CI for β_0 and β_1 jointly, such that
 - before observing the data: the probability of "the event that at least one CI does not contain their β " happening is 0.10
 - after observing the data: we are 90% confident that each CI contains its own β

Bonferroni inequality

- A_1 : the event that the CI for β_0 does not cover β_0 , $P(A_1)=\alpha_1$
- A_2 : the event that the CI for β_1 does not cover β_1 , $P(A_2) = \alpha_2$
- We want $P(A_1^c \cap A_2^c) \ge 1 \alpha$
- We have

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

and thus

$$P(A_1^c \cap A_2^c) = P((A_1 \cup A_2)^c)$$

$$= 1 - P(A_1 \cup A_2)$$

$$= 1 - P(A_1) - P(A_2) + P(A_1 \cap A_2)$$

$$\geq 1 - P(A_1) - P(A_2) = 1 - \alpha_1 - \alpha_2$$

Bonferroni joint confidence intervals

- Extended Bonferroni: When constructing m confidence intervals, we can use $(1 \alpha_k)$ individual confidence levels, with $\sum_{k=1}^{m} \alpha_k = \alpha$, to guarantee on overall confidence level of (1α)
- Bonferroni gives conservative bounds: the family confidence confidence coefficient is AT LEAST $1-\alpha$

Understanding Bonferroni correction

 Consider a case where you have 1 hypothesis to test, and a significance level of the test is 0.05. What is the probability of observing a significant result just due to chance?

$$P(\text{at least one significant result}) = 1 - P(\text{no significant results})$$

$$= 1 - (1 - 0.05)^{1}$$

$$\approx 0.05$$

 Consider a case where you have 2 hypotheses to test, and a significance level of each test is 0.05. What is the probability of observing at least one significant result just due to chance?

$$P(\text{at least one significant result}) = 1 - P(\text{no significant results})$$

$$= 1 - (1 - 0.05)^{2}$$

$$\approx 0.0975$$

Understanding Bonferroni correction

 Now, consider a case where you have 20 hypotheses to test, and a significance level of each test is 0.05. What is the probability of observing at least one significant result just due to chance?

$$P(\text{at least one significant result}) = 1 - P(\text{no significant results})$$

$$= 1 - (1 - 0.05)^{20}$$

$$\approx 0.64$$

- With 20 tests being considered simultaneously, we have a 64 % of observing at least one significant result, even if all the 20 tests are actually not significant
- Methods for dealing with multiple testing frequently call for asjusting α in some way, so that the probability of observing at least one significant result due to chance remains below your desired significance level

Understanding Bonferroni correction

ullet Bonferroni correction sets the significance cut-off at lpha/n

```
P(\text{at least one significant result}) = 1 - P(\text{no significant results})
= 1 - (1 - 0.05/20)^{20}
= 1 - (1 - 0.0025)^{20}
\approx 0.0488
```

• Bonferroni gives conservative bounds: only reject a null hypothesis if the p-value is less than 0.0025!

Improvement upon Bonferroni

- Bonferroni leads to a high rate of false negative (type II error)
- The false discovery rate (FDR): the proportion of false positive among all significant results
- \bullet The FDR works by estimating some rejection region so that, on average, FDR $\leq \alpha$

Simulation example

- Generate data from N(0,1) and N(3,1) so that 900 samples are from N(0,1) and 100 samples are from N(3,1)
- Given that the data points are generated from normal distribution with $\sigma^2=1$, we want to test

```
H_{0,i}: i^{th} data point is from N(0,1)

H_{a,i}: i^{th} data point is NOT from N(0,1)
```

simultaneously for $i = 1, \cdots, 1000$

Simulation example—no correction

• Let's apply test of level $\alpha=0.05$ to each i, and take a look at results without any adjustment

• The type I error rate (false positive) is $46/900 \approx 0.051$. The type II error rate (false negative) is 11/100 = 0.11. Note that the type I error rate is very close to our $\alpha = 0.05$. This is not a coincidence: α can be thought of as some target value of type I error rate.

Simulation example—Bonferroni correction

• Let's apply test of level $\alpha=0.05$ to each i, and take a look at results with Bonferronin correction. Now the threshold is $|Z_{1-\alpha/(2\cdot1000)}|$

```
> test = (x <qnorm(1-0.025/1000)) & (x >qnorm(0.025/1000))
> table(test[1:900])

TRUE
   900
> table(test[901:1000])

FALSE TRUE
   14  86
> |
```

The type I error rate (false positive) is 0/900 = 0.
 The type II error rate (false negative) is 86/100 = 0.86.
 We have reduced our false positives at the expense of false negatives.
 Ask yourself: which is worth? False positive or false negative?

Simulation example-FDR control

• For the FDR control, we want to consider the ordered p-values. We will see if the k^{th} ordered p-value is larger than $k \cdot \frac{0.05}{1000}$ (Benjamini-Hochberg procedure)

• Now we have a type I error rate of $7/900 \approx 0.0078$, and the type II error rate of 42/100 = 0.42. Big improvement over the Bonferroni correction!

Simultaneous estimation for the mean response

- Goal: estimate the mean $E\{Y_h\}$ at m levels of X: $\{X_h: h=1,\cdots,m\}$
- Two approaches:
 - Bonferroni procedure: use $1 \alpha/m$ as individual confidence coefficient for each X_h :

$$\hat{Y}_h \pm B \cdot s\{\hat{Y}_h\}$$
 where $B = t\left(1 - rac{lpha}{2m}, n - 2
ight)$

Working-Hotelling procedure (confidence band from Chapter 2):

$$\hat{Y}_h \pm W \cdot s\{\hat{Y}_h\}$$
 where $W = \sqrt{2F(1-\alpha,2,n-2)}$

- Both approaches give conservative bounds, choose the tighter one
- We are 95% confident that m Cls contains the m true means; we expect that this procedure leads to m Cls that contain all the true m means at least 95% of the time for repeated samples with the same X's.

Simultaneous estimation for mean GPA

- Estimate mean GPA for ACT test score 20,25, and 30
- The 95% family confidence coefficient means that we are 95% confident that all the 3 Cls contain their targeted true means.

Simultaneous prediction for a new observation

- Goal: predict new observations $Y_{h(new)}$ at m levels of X: $\{X_h: h=1,\cdots,m\}$
- Two approaches:
 - Bonferroni procedure: use $1 \alpha/m$ as individual confidence coefficient for each X_h :

$$\hat{Y}_h \pm B \cdot s\{ extit{pred}\}$$
 where $B = t\left(1 - rac{lpha}{2m}, n-2
ight)$

Scheffe procedure:

$$\hat{Y}_h \pm S \cdot s\{pred\}$$
 where $S = \sqrt{mF(1-lpha,m,n-2)}$

Again, choose the tighter intervals

Simultaneous prediction of GPA

- Predict new observations at ACT test score 20, 25, and 30
- The 95% family confidence means that we are 95% confident that the 3 PIs contain the 3 new observations
- Not very informative though

Regression through the origin

- What if we know that the intercept of the regression line has to be zero?
 - E.g., when modeling sales Y of a certain product as a function of how much space X that product takes up in the grocery store
- We could fit the regression line with no intercept:

$$Y_i = \beta_1 X_i + \epsilon_i$$

- You can do all the calculation as before to get b_1 , \hat{Y} , e_i 's, etc.
 - $b_1 = \frac{\sum X_i Y_i}{\sum X_i^2}$
 - $s^2 = MSE = \frac{\sum e_i^2}{n-1} = \frac{\sum (Y_i \hat{Y}_i)^2}{n-1}$ with degrees of freedom of n-1.

Regression through the origin: some notes

- $\sum e_i \neq 0$ (only $\sum X_i e_i = 0$ holds)
- ullet SSE may exceed the total sum of squares SSTO, and thus R^2 can be negative
- Generally, people use the model with intercept. If $\beta_0 = 0$, b_0 will be close to zero in the regression model with intercept

Choices of X levels

- ullet Choice depends on goal of study and knowledge about relation between X and Y
- Some examples:
 - If you are not sure if a linear relationship is appropriate, you'll need a (fine) grid of X outcomes
 - If you want to estimate β_1 precisely, choose more spread X levels to minimize the sampling variance of b_1 :

$$s\{b_1\} = rac{s}{\sqrt{\sum (X_i - ar{X})^2}}$$

• If you want to predict Y's around X_h (and you already know that there is a linear relation), choose X's such that $\bar{X} = X_h$ to minimize the sampling variance of $Y_{h(new)}$:

$$s\{pred\} = s\sqrt{1 + \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right)}$$

Matrix Overview

- A matrix A is a rectangular array of elements arranged in rows and columns
- Special cases: vector, row vector, square matrix, and so on
- Notation: $\mathbf{A} = [a_{ij}], i = 1, \dots, n \text{ rows and } j = 1, \dots, p \text{ columns}$
- Transpose: $\mathbf{A}' = [a_{ji}], i = 1, \dots, n \text{ and } j = 1, \dots, p$
- **A** is symmetric if $\mathbf{A} = \mathbf{A}'$ $(a_{ij} = a_{ji}, \text{ and } n = p)$
- Summation element-wise: $\mathbf{C} = \mathbf{A} + \mathbf{B} \ (c_{ij} = a_{ij} + b_{ij})$
- Matrix multiplication C = AB:
 - number of columns in A = number of rows in B
 - Each c_{ij} is the inner product of row i of \mathbf{A} and column j of \mathbf{B} : $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$
 - Note:

$$(AB)C = A(BC)$$

 $(ABC)' = C'B'A'$

Special matrices

- Diagonal matrix
- Identity matrix I (diagonal matrix with ones on the diagonal) AI = IA = A
- Scaler matrix λI $\mathbf{A}(\lambda \mathbf{I}) = (\lambda \mathbf{I})\mathbf{A} = \lambda \mathbf{A}$
- Column vector with 1's: 1
- Column vector with 0's: 0
- Square matrix with all 1's: J
- What's $\mathbf{1'1}$, and $\mathbf{11'}$ when the length of $\mathbf{1}$ is n?

Simple linear regression in matrix terms

Write $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ for i = 1, ..., n as set of equations:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix},$$

such that $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Y and ε are random vectors!

For a random vector $\mathbf{Y} = (Y_1, \cdot, Y_n)'$

- Expectation of **Y**: $E\{Y\} = (E\{Y_1\}, \dots, E\{Y_n\})'$
- Variance-covariance matrix

$$\sigma^{2}\{Y\} = E\{(\mathbf{Y} - E\mathbf{Y})(\mathbf{Y} - E\mathbf{Y})'\}$$

$$= \begin{bmatrix} \sigma^{2}\{Y_{1}\} & \sigma\{Y_{1}, Y_{2}\} & \cdots & \sigma\{Y_{1}, Y_{n}\} \\ \vdots & \vdots & & \vdots \\ \sigma Y_{n}, Y_{1} & \sigma\{Y_{n}, Y_{n}\} & \cdots & \sigma^{2}\{Y_{n}\} \end{bmatrix}$$

with

$$\sigma^{2}\{Y_{i}\} = E\{(Y_{i} - E\{Y_{i}\})^{2}\}$$

$$\sigma\{Y_{i}, Y_{j}\} = E\{(Y_{i} - E\{Y_{i}\})(Y_{j} - E\{Y_{j}\})\}$$

• For linear regression model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$:

$$\mathbf{Y} \sim N_n(\mathbf{X}\beta, \sigma^2 \mathbf{I})$$

Least-squares estimation in matrix form

• Minimizing the sum of squared errors:

$$Q = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

w.r.t β_0 and β_1 gave the normal equations:

$$\frac{\partial Q}{\partial \beta_0} = 0 \quad \to \quad \sum (Y_i - b_0 - b_1 X_i) = 0$$

$$\frac{\partial Q}{\partial \beta_1} = 0 \quad \to \quad \sum (Y_i - b_0 - b_1 X_i) X_i = 0$$

In matrix terms, these two equations can be written as

$$X'Xb = X'Y$$

with
$$\mathbf{b} = (b_0, b_1)'$$

Least-squares estimation in matrix form

• Rewrite the normal equations using $e_i = Y_i - b_0 - b_1 X_i$:

$$\sum (Y_i - b_0 - b_1 X_i) = 0 \rightarrow \sum e_i = 0,$$

$$\sum (Y_i - b_0 - b_1 X_i) X_i = 0 \rightarrow \sum e_i X_i = 0$$

• Equivalently:
$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ X_1 & X_2 & \cdots & X_n \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• Note that $\mathbf{e} = (e_1, \cdots, e_n)' = (\mathbf{Y} - \mathbf{X}\mathbf{b})$ and

$$X' = \begin{pmatrix} 1 & 1 & \dots & 1 \\ X_1 & X_2 & \dots & X_n \end{pmatrix}$$
 such that:

$$X'(Y - Xb) = 0 \Rightarrow X'Xb = X'Y$$

Least-squares estimation in matrix form

- Solve using the inverse matrix of $\mathbf{X}'\mathbf{X}$: If the inverse of $\mathbf{X}'\mathbf{X}$ exists, then $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- What is $(\mathbf{X}'\mathbf{X})^{-1}$?

Inverse matrices and ranks

• The inverse of a square matrix $\bf A$ is another matrix, denoted by $\bf A^{-1}$, with

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}$$

- E.g., used for solving $\mathbf{A}\mathbf{b} = c$ so that $\mathbf{b} = \mathbf{A}^{-1}\mathbf{c}$
- Some basic results (if inverse matrices exist):

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

 $(A')^{-1} = (A^{-1})^t$

- The inverse of A exists if its rank is equal to its number of columns
 - The rank of a matrix A is the number of linearly independent columns (or rows)
 - columns are linearly independent if none of the columns can be written as a linear combination of the other columns

Back to simple linear regression: some matrices

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ X_1 & X_2 & \cdots & X_n \end{bmatrix} \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots \\ 1 & X \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^{n} X_i \\ \sum_{i=1}^{n} X_i & \sum_{i=1}^{n} X_i^2 \end{bmatrix}$$

$$\mathbf{X}'\mathbf{Y} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots \\ 1 & Y \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n Y_i \\ \sum_{i=1}^n X_i Y_i \end{bmatrix}$$

$$\mathbf{Y'Y} = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_n \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \sum_{i=1}^n Y_i^2$$

To get $(X'X)^{-1}$, we can use this

If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
then $\mathbf{A}^{-1} = \begin{bmatrix} \frac{d}{D} & \frac{-b}{D} \\ \frac{-c}{D} & \frac{a}{D} \end{bmatrix}$
where $D = ad - bc$

If $D \neq 0$ then $(\mathbf{X}'\mathbf{X})^{-1}$ is given by:

• The inverse of matrix

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} n & \sum_{i=1}^{n} X_i \\ \sum_{i=1}^{n} X_i & \sum_{i=1}^{n} X_i^2 \end{bmatrix}$$

$$D = n \sum_{i=1}^{n} X_i^2 - (n\bar{X})^2 = n \left(\sum_{i=1}^{n} X_i^2 - n\bar{X}^2 \right) = n \sum_{i=1}^{n} (X_i - \bar{X})^2$$

So

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} \frac{\sum_{i=1}^{n} X_{i}^{2}}{n\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} & \frac{-\sum_{i=1}^{n} X_{i}}{n\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \\ \frac{-\sum_{i=1}^{n} X_{i}}{n\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} & \frac{n}{n\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{n} + \frac{\bar{X}^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} & \frac{-\bar{X}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \\ \frac{-\bar{X}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} & \frac{1}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \end{bmatrix}$$

Fitted values, residuals, and the hat matrix

- Estimated mean response $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$, with $\hat{\mathbf{Y}} = (\hat{Y}_1, \cdots, \hat{Y}_n)'$
- Rewrite $\hat{\mathbf{Y}}$ in terms of \mathbf{X} and \mathbf{Y} (plug in \mathbf{b}):

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

ullet Here $oldsymbol{\mathsf{H}} = oldsymbol{\mathsf{X}} (oldsymbol{\mathsf{X}}'oldsymbol{\mathsf{X}})^{-1}oldsymbol{\mathsf{X}}'$ is called the hat matrix, or projection matrix

Some useful properties of hat matrix

- • \mathbf{H} is symmetric: $\mathbf{H}' = \mathbf{H}$
 - ullet H is idempotent: HH = H
 - ullet $(\mathbf{I}-\mathbf{H})$ is symmetric and idempotent too
- $\bullet \quad \sigma^2\{\hat{\mathbf{Y}}\} = \sigma^2\mathbf{H}$
 - $\sigma^2\{\mathbf{e}\} = \sigma^2(\mathbf{I} \mathbf{H})$

A random vector
$$\mathbf{Y} = (Y_1, \cdots, Y_n)'$$

- If Y is multiplied a non-random matrix A:
 - Expectation: $E\{AY\} = AE\{Y\}$
 - Variance-covariance matrix: $\sigma^2\{\mathbf{AY}\} = \mathbf{A}\sigma^2\{\mathbf{Y}\}\mathbf{A}'$

$$\sigma^{2}\{\mathbf{AY}\} = E((\mathbf{AY} - E(\mathbf{AY}))(\mathbf{AY} - E(\mathbf{AY}))')$$

$$= E(\mathbf{A(Y} - E(\mathbf{Y}))((\mathbf{A(Y} - E(\mathbf{Y})))')$$

$$= E(\mathbf{A(Y} - E(\mathbf{Y}))(\mathbf{Y} - E(\mathbf{Y}))'\mathbf{A}')$$

$$= \mathbf{AE}((\mathbf{Y} - E(\mathbf{Y}))(\mathbf{Y} - E(\mathbf{Y}))')\mathbf{A}'$$

$$= \mathbf{A}\sigma^{2}(\mathbf{Y})\mathbf{A}'$$

•
$$\sigma^2{\{\hat{\mathbf{Y}}\}} = \sigma^2{\{\mathbf{HY}\}} = \mathbf{H}\sigma^2{\{\mathbf{Y}\}}\mathbf{H}' = \sigma^2\mathbf{H}\mathbf{H}' = \sigma^2\mathbf{H}$$

Statistical inference: intercept and slope

• Estimator $\mathbf{b} = (b_0, b_1)'$ for slope and intercept:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

such that

$$E(b) = E((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y})$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{Y})$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\beta)$$

$$= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{X})\beta$$

$$= \beta$$

Statistical inference: intercept and slope

Variance-covariance matrix of **b** given by:

$$\sigma^{2}\{\boldsymbol{b}\} = \begin{pmatrix} \sigma^{2}\{b_{0}\} & \sigma\{b_{0}, b_{1}\} \\ \sigma\{b_{0}, b_{1}\} & \sigma^{2}\{b_{1}\} \end{pmatrix} \\
= \sigma^{2}\{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}\} \\
= ((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\sigma^{2}\{\mathbf{Y}\}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')' \\
= ((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\sigma^{2} \cdot \boldsymbol{I} \cdot \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\
= \sigma^{2} \cdot (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= \sigma^{2} \cdot (\boldsymbol{X}'\mathbf{X})^{-1} \\
= \sigma^{2} \cdot \left(\frac{\frac{1}{n} + \frac{\bar{X}^{2}}{\sum (\bar{X}_{i} - \bar{X})^{2}}}{\frac{-\bar{X}_{i}}{\sum (\bar{X}_{i} - \bar{X})^{2}}} \right) \\
= \sigma^{2} \cdot \left(\frac{\frac{1}{n} + \frac{\bar{X}^{2}}{\sum (\bar{X}_{i} - \bar{X})^{2}}}{\frac{-\bar{X}_{i}}{\sum (\bar{X}_{i} - \bar{X})^{2}}} \right)$$

Are $\sigma^2\{b_0\}$ and $\sigma^2\{b_1\}$ as before? When/why are b_0 and b_1 negatively/positively/not correlated?

Statistical inference: mean and new observation

Estimator for the mean response:

$$\hat{Y}_h = \mathbf{X}_h' \mathbf{b}$$
, with $\mathbf{X}_h = (1, X_h)'$

- Variance $\sigma^2\{\hat{Y}_h\} = \sigma^2\{\mathbf{X}_h'\mathbf{b}\} = \mathbf{X}_h'\sigma^2\{\mathbf{b}\}\mathbf{X}_h = \sigma^2\cdot\mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h$
- For a new observation, $(Y_{h(new)} \hat{Y}_h) \sim N(0, \sigma^2\{pred\})$, with

$$\begin{split} \sigma^2\{\textit{pred}\} &= \sigma^2\{Y_\textit{h(new)} - \hat{Y}_\textit{h}\} \\ &= \sigma^2\{Y_\textit{h(new)}\} + \sigma^2\{\hat{Y}_\textit{h}\} \\ &= \sigma^2 + \sigma^2 \cdot \mathbf{X}_\textit{h}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_\textit{h} \\ &= \sigma^2\left(1 + \mathbf{X}_\textit{h}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_\textit{h}\right) \end{split}$$

Analysis of variance in matrix form

 All sum of squares in the ANOVA table (SSTO, SSE, and SSR) can be expressed as quadratic forms:

$$\mathbf{Y}'\mathbf{AY} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} Y_i Y_j$$

with **A** the matrix of the quadratic form

• Quadratic forms:

SSTO =
$$\sum (Y_i - \bar{Y})^2 = \mathbf{Y}' \left(\mathbf{I} - \frac{1}{n} \mathbf{J} \right) \mathbf{Y}$$

SSE = $\sum (Y_i - \hat{Y}_i)^2 = \mathbf{Y}' \left(\mathbf{I} - \mathbf{H} \right) \mathbf{Y}$
SSR = $\sum (\hat{Y}_i - \bar{Y})^2 = \mathbf{Y}' \left(\mathbf{H} - \frac{1}{n} \mathbf{J} \right) \mathbf{Y}$

• The degrees of freedom of each sum of squares is equal to the rank of the quadratic matrix

Some functions in R

- For a matrix A:
 - A[1,] gives the first row, A[,1] the first column, and A[i,j] returns element A_{ij}
 - t(A) returns A'
 - dim(A) returns the dimension of A
 - rank(A) returns the rank of A
 - solve(A) returns the inverse of A
- Summation and subtraction of matrices: just with + and -
- Multiplication:
 - C = A * B gives element-wise multiplication $c_{ij} = a_{ij} \cdot b_{ij}$
 - C = A %*% B gives the matrix multiplication $c_{ij} = \sum_k a_{ik} b_{kj}$
- Create matrices
 - 'matrix(1, nrow= \cdots , ncol= \cdots)' gives a matrix 1's (**J**)
 - use 'cbind(·)' to bind in column-wise manner, 'rbind(·)' to bind in row-wise manner
 - 'diag(n)' gives In

General linear regression model

• With p-1 predictor variables (thus p parameters):

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i$$

• Interpretation of β_k for $k \neq 0$ in a first-order model: β_k is the increase in $E\{Y\}$ associated with a one-unit increase in X_k when the other X's are held constant

What is a general linear model?

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i$$

- The X_k 's can be quantitative/qualitative variables, higher-order terms of the predictor variables, transformed variables, interaction terms
- General linear model referes to:
 - Mean response $E\{Y\}$ is a linear function of the parameters
 - Additive relation between the mean response and error terms
 - Are these general linear regression models?

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}X_{i2} + \beta_{4}X_{i1}^{2} + \varepsilon_{i}$$

$$Y_{i} = \log(\beta_{1}X_{i1}) + \beta_{2}X_{i2} + \varepsilon_{i}$$

$$Y_{i} = \beta_{0} \exp(\beta_{1}X_{i1}) + \varepsilon_{i}$$

Matrix notation for the general linear model

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \ldots + \beta_{p-1}X_{i,p-1} + \varepsilon_{i},$$

$$Y = \beta_{0}X_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \ldots + \beta_{p-1}X_{p-1} + \varepsilon,$$

$$= X\beta + \varepsilon,$$

where
$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$
, $\mathbf{X}_0 = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$, $\mathbf{X}_k = \begin{pmatrix} X_{1k} \\ X_{2k} \\ \vdots \\ X_{nk} \end{pmatrix}$ for $k \neq 0$,
$$\mathbf{X} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \dots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{n,p-1} \end{pmatrix}$$
, $\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$, $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}_{45/75}$

LS estimator of
$$\beta_0, \dots, \beta_{p-1}$$

- LS-estimation: minimize $Q = (\mathbf{Y} \mathbf{X}\mathbf{b})'(\mathbf{Y} \mathbf{X}\mathbf{b}) = \sum e_i^2$ w.r.t b_0, \dots, b_{p-1} with $\mathbf{b} = (b_0, \dots, b_{p-1})'$
- Normal equations:

$$rac{\partial Q}{\partial eta_k} = 0 ext{ for } k=1,\cdots,p-1 ext{ gives}$$
 $\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{X}'\mathbf{Y}$

(same as in the case of simple linear regression model)

• If the inverse of X'X exists, then

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

MLE of
$$\beta_0, \dots, \beta_{p-1}$$

Likelihood and log-likelihood:

$$\begin{split} L(\beta, \sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} \text{exp}\left\{-\frac{1}{2\sigma^2}(\mathbf{Y} - \mathbf{X}\beta)^T(\mathbf{Y} - \mathbf{X}\beta)\right\} \\ \text{Log } L(\beta, \sigma^2) &= -\frac{1}{2}\left\{n\text{log}2\pi + n\text{log}\sigma^2 + \frac{1}{\sigma^2}(\mathbf{Y} - \mathbf{X}\beta)^T(\mathbf{Y} - \mathbf{X}\beta)\right\} \end{split}$$

ullet We are trying to find eta giving the hyperplane with minimum sum of squared vertical distance from observations

$$(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = \underbrace{\sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_{i1} - \beta_1 X_{i2} - \dots - \beta_1 X_{i,p-1})^2}_{\text{sum of square}}$$

The geometry of least squares

• There are two dual geometric view point that one may adopt:

$$\mathbf{Y} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \dots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{(n-1),1} & X_{(n-1),2} & \dots & X_{(n-1),p-1} \\ 1 & X_{n1} & X_{n2} & \dots & X_{n,p-1} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

- Row geometry: focus on the n OBSERVATIONS
- Column geometry: focus on the p-1 EXPLANATORIES
- Both are useful, usually for different things:
 - Row geometry: useful for explanatory analysis
 - Column geometry: useful for theoretical analysis

Row geometry (observations)

- ▶ *n* points in \mathbb{R}^p (or in fact \mathbb{R}^{p-1})
- least square parameters give parametric equation for a hyperplane
- hyperplane has property that it minimizes the sum of squared vertical distances of observations from the plane itself over all possible hyperplanes
- ▶ Fitted values are vertical projections (NOT orthogonal projections!) of observations onto plane, residuals are signed vertical distances of observations from plane

Orthogonal projection-principal components regression

► There is another sensible way of measuring the distance between a cloud of points and a line and it (the line) is symmetric.

Vertical and horizontal distance


```
data(cars)
plot(cars)
abline(lm(cars$dist ~ cars$speed), col='red')
title(main="dist ~ speed regression")
```



```
plot(cars)
r <- lm(cars$dist ~ cars$speed)
abline(r, col='red')
r <- lm(cars$speed ~ cars$dist)
a <- r$coefficients[1] # Intercept
b <- r$coefficients[2] # slope
abline(-a/b, 1/b, col="blue")
title(main="dist ~ speed and speed ~ dist regressions")</pre>
```

dist ~ speed and speed ~ dist regressions


```
plot(cars)
r <- lm(cars$dist ~ cars$speed)
abline(r, col='red')
r <- lm(cars$speed ~ cars$dist)
a <- r$coefficients[1] # Intercept
b <- r$coefficients[2] # slope
abline(-a/b , 1/b, col="blue")
r <- princomp(cars)
b <- r$loadings[2,1] / r$loadings[1,1]
a <- r$center[2] - b * r$center[1]
abline(a,b)
title(main='Comparing three "regressions"')</pre>
```

Comparing three "regressions"

Another example

- ► An example where the three regression lines are different
- Vertical regression (red), horizontal regression (blue), PCA (black)

Column geometry (variable)

- ightharpoonup Consider the entire vector m f Y as a single point living in \mathbb{R}^n
- ► Then consider each variable (column) as a point also in \mathbb{R}^n
- Turns out there is another important plane here: the plane spanned by the variable vectors (the column vectors of X)
 - Recall that this is the column space of X, denoted by M(X).

Column geometry (variable)

Recall:
$$\mathcal{M}(\mathbf{X}) := \{\mathbf{X}_{\gamma} : \gamma \in \mathbb{R}^p\}$$

- Q: what does $\mathbf{Y} = \mathbf{X}\beta + \epsilon$ imply?
- A: \mathbf{Y} is [some element of $\mathcal{M}\mathbf{X}$]+[Gaussian disturbance]

Any realization of $\mathbf y$ of $\mathbf Y$ lies outside of $\mathcal M(\mathbf X)$ (almost surely), MLE estimates β by minimizing

$$(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$

Thus we search for a β giving the element of $\mathcal{M}(\mathbf{X})$ with the minimum distance from \mathbf{y}

$$\mathsf{X}eta := \mathsf{X}(\mathsf{X}'\mathsf{X})^{-1}\mathsf{X}'\mathsf{y} = \mathsf{H}\mathsf{y}$$

Analysis of variance

• SSTO =
$$\mathbf{Y}'\mathbf{Y} - \left(\frac{1}{n}\right)\mathbf{Y}'\mathbf{J}\mathbf{Y} = \mathbf{Y}'\left(\mathbf{I} - \left(\frac{1}{n}\mathbf{J}\right)\right)\mathbf{Y}$$

$$\bullet \ \mathsf{SSE} = e'e = (\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b}) = \mathbf{Y}'\mathbf{Y} - \mathbf{b}'\mathbf{X}'\mathbf{Y}' = \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y}$$

• SSR =
$$\mathbf{b'X'Y} - \left(\frac{1}{n}\right)\mathbf{Y'JY} = \mathbf{Y'}\left(\mathbf{H} - \left(\frac{1}{n}\mathbf{J}\right)\right)\mathbf{Y}$$

Source of Variation	SS	df	MS
Regression	$SSR = \mathbf{Y}' \left(\mathbf{H} - \left(\frac{1}{n} \mathbf{J} \right) \right) \mathbf{Y}$	p-1	$MSR = \frac{SSR}{p-1}$
Error	$SSE = \mathbf{Y}'\mathbf{Y} - \mathbf{b}'\mathbf{X}'\mathbf{Y}'$	n-p	$MSR = \frac{SSR}{p-1}$ $MSE = \frac{SSE}{n-p}$
Total	$SSTO = \mathbf{Y}'\mathbf{Y} - \left(\frac{1}{n}\right)\mathbf{Y}'\mathbf{JY}$	n-1	F

Inference on β_k 's

• Parameter vector β estimated by **b**;

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y},$$

with

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \sim \mathcal{N}(\beta, \sigma^2 \cdot (\mathbf{X}'\mathbf{X})^{-1})$$

Thus

$$b_k \sim N(\beta_k, \sigma^2 \cdot [(\mathbf{X}'\mathbf{X})^{-1}]_{k+1,k+1})$$

• Use the sampling distrubtion of b_k and $\frac{MSE}{\sigma^2} \sim \frac{\chi^2_{n-p}}{n-p}$ to derive

$$\frac{b_k - \beta_k}{s\{b_k\}} = \frac{\frac{b_k - \beta_k}{\sigma\{b_k\}}}{\sqrt{MSE/\sigma^2}} \sim t_{n-p}$$

with
$$s^2\{b_k\} = MSE \cdot [(\mathbf{X}'\mathbf{X})^{-1}]_{k+1,k+1}$$

• Use this distribution for CI and hypothesis test for β_{k}

Inference on β_k 's

• The $(1-\alpha)100\%$ CI for β_k is

$$b_k \pm t(1-\alpha/2; n-p)s\{b_k\}$$

• Tests for β_k to test:

$$H_0$$
 : $\beta_k = 0$
 H_a : $\beta_k \neq 0$

- The test statistic: $t^* = \frac{b_k}{s\{b_k\}}$
- The decision rule:

If
$$|t^*| \le t(1 - \alpha/2; n - p)$$
, conclude H_0
Otherwise conclude H_a

Estimating of σ^2

▶ As before, we use MSE to estimate σ^2 . For p parameters:

$$MSE = \frac{\sum (Y_i - \hat{Y}_i)^2}{n - p},$$

with $E\{MSE\} = \sigma^2$ When $Y_i \sim N(E\{Y_i\}, \sigma^2)$ independent, and p parameters are used to estimate $E\{Y_i\}$ by \hat{Y}_i , then

$$\frac{SSE}{\sigma^2} = \frac{\sum (Y_i - \hat{Y}_i)^2}{\sigma^2} \sim \chi_{n-p}^2$$

- Important!
 - ▶ Inference based on model with (p-1) predictors very similar to inference for simple linear regression model
 - ▶ However, the degrees of freedom in the sampling distributions that we use for constructing CIs, PIs and test statistics for β 's and $E\{Y_h\}$'s and $Y_{h(new)}$'s change

Examine if sales of portrait studios for children can be predicted with

- 1. number of people younger than 16
- 2. average disposable personal income

R code and output for portrait studio example

Residual standard error: 11.01 on 18 degrees of freedom Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075 F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

Getting same results with matrix equations

```
> n = length(Y)
> X = cbind(rep(1,n), X1, X2)
> tXX = t(X)\%*\%X; tXY = t(X)\%*\%Y
> b = solve(tXX)%*%tXY
> b
         [,1]
   -68.857073
X1 1.454560
X2 9.365500
> p = length(X[1,])
> p
[1] 3
```

R-code and matrix equations

```
> Yhat = X%*%b
> res = Y-Yhat
> MSE = sum(res^2)/(n-p)
> sqrt(MSE)
[1] 11.00739
> s2b = MSE*solve(tXX)
> s2b
                       X 1
                                    X2
   3602.03467 8.74593958 -241.4229923
X1
      8.74594 0.04485151 -0.6724426
X2 -241.42299 -0.67244260 16.5157558
```

Estimating the mean response and predictions

• Estimated mean response $\hat{\mathbf{Y}} = (\hat{Y}_1, \dots, \hat{Y}_n)'$:

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y},$$

with $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ the hat matrix

- ▶ Inference for the mean and a new observation:
 - ▶ As in simple linear regression model, but degrees of freedom change, e.g.

$$\hat{Y}_h = \boldsymbol{X}_h' \boldsymbol{b}$$
, with $\boldsymbol{X}_h' = (1, X_{h1}, X_{h2})$, $s^2 \{ \hat{Y}_h \} = MSE \cdot \boldsymbol{X}_h' (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}_h$, $\hat{Y}_h - E(Y_h)$

and

$$\frac{\hat{Y}_h - E(Y_h)}{s\{\hat{Y}_h\}} \sim t_{n-p},$$

Note: be careful not to extrapolate beyond the observed range of X's! (more on that in chapter 10)

Estimating the mean response and predictions

• $1 - \alpha$ confidence limits for $E\{E_h\}$ are:

$$\hat{Y}_h \pm t(1-\alpha/2; n-p)s\{\hat{Y}_h\}$$

• 1 – α prediction limits for anew observation $Y_{h(new)}$:

$$\hat{Y}_h \pm t(1 - \alpha/2; n - p)s\{pred\}$$
 where $s^2\{pred\} = MSE(1 + X_h'(X'X)^{-1}X_h)$

• $1-\alpha$ confidence region for regression surface

$$\hat{Y}_h \pm \mathit{Ws}\{\hat{Y}_h\}$$

where
$$W = \sqrt{pF(1-\alpha; p, n-p)}$$

- Simultaneous CI for *m* mean responses:
 - Working-Hotelling CI: $\hat{Y}_h \pm Ws\{\hat{Y}_h\}$
 - Bonferroni CI: $\hat{Y}_h \pm Bs\{\hat{Y}_h\}$ where $B = t(1 \alpha/2m; n p)$

➤ Construct a 95% confidence and prediction interval for sales in city A, with 65,400 people <16 years and average disposable income of 17,600

```
R-code:
```

```
> # CI for mean
> SE_Yh1 = sqrt(s2yh[1,1])
> alpha = 0.05
> Yh[1] - qt(1-alpha/2, n-p)*SE_Yh1
[1] 185,2911
> Yh[1] + qt(1-alpha/2, n-p)*SE_Yh1
[1] 196.9168
> # or directly
> predict(mod, newdata=data.frame(X1 = 65.4, X2 = 17.6),
                level = 1-alpha, interval = "confidence")
       fit
                lwr
                         upr
1 191,1039 185,2911 196,9168
```

```
> # for new observation, additional uncertainty:
> s2yh + MSE
         Γ.17
[1,] 128.8178
> Yh - qt(1-alpha/2, n-p)*sqrt(diag(s2yh + MSE ))
         [,1]
[1,] 167.2589
> Yh + qt(1-alpha/2, n-p)*sqrt(diag( s2yh + MSE ))
         \lceil , 1 \rceil
[1,] 214.9490
> # or directly
> predict(mod, newdata=data.frame(X1 = Xh[2], X2 = Xh[3]),
        level = 1-alpha, interval = "predict")
       fit
                lwr
                          upr
1 191.1039 167.2589 214.9490
```

Analysis of variance

• SSTO =
$$\mathbf{Y}'\mathbf{Y} - \left(\frac{1}{n}\right)\mathbf{Y}'\mathbf{J}\mathbf{Y} = \mathbf{Y}'\left(\mathbf{I} - \left(\frac{1}{n}\mathbf{J}\right)\right)\mathbf{Y}$$

$$\bullet \ \mathsf{SSE} = e'e = (\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b}) = \mathbf{Y}'\mathbf{Y} - \mathbf{b}'\mathbf{X}'\mathbf{Y}' = \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y}$$

• SSR =
$$\mathbf{b}'\mathbf{X}'\mathbf{Y} - \left(\frac{1}{n}\right)\mathbf{Y}'\mathbf{J}\mathbf{Y} = \mathbf{Y}'\left(\mathbf{H} - \left(\frac{1}{n}\mathbf{J}\right)\right)\mathbf{Y}$$

Source of Variation	SS	df	MS
Regression	$SSR = \mathbf{Y}' \left(\mathbf{H} - \left(\frac{1}{n} \mathbf{J} \right) \right) \mathbf{Y}$	p-1	$MSR = \frac{SSR}{p-1}$
Error	$SSE = \mathbf{Y}'\mathbf{Y} - \mathbf{b}'\mathbf{X}'\mathbf{Y}'$	n-p	$MSR = \frac{SSR}{p-1}$ $MSE = \frac{SSE}{n-p}$
Total	$SSTO = \mathbf{Y}'\mathbf{Y} - \left(\frac{1}{n}\right)\mathbf{Y}'\mathbf{JY}$	n-1	•

F-test for regression function

- ► Test if there is a linear relation between *Y* and the *X*'s (or whether Y has a constant mean)
- ▶ $H_0: E\{Y\} = \beta_0$ (or $\beta_1 = \ldots = \beta_{p-1} = 0$) versus H_a : there is at least on $\beta_{k\neq 0} \neq 0$
- ► Test statistic:

$$F^* = \frac{SSE(R) - SSE(F)}{df_R - df_F} \cdot \frac{df_F}{SSE(F)}$$
$$= \frac{SSTO - SSE}{p - 1} \cdot \frac{n - p}{SSE}$$
$$= \frac{SSR/(p - 1)}{SSE/(n - p)} = \frac{MSR}{MSE}$$

What is the distribution of F* under H₀? Do we reject for large/small outcomes of F*? Does that make sense?

F-test for regression function

• Under H_0 , we have

$$F^* \sim F_{p-1,n-p}$$

ullet The decision rule with level lpha is

If
$$F^* \leq F(1-\alpha; p-1, n-p)$$
 conclude H_0
Otherwise conclude H_a

R-squared and adjust R-squared

Coefficient of multiple determination:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO},$$

proportionate reduction in Y associated with the use of the set of X variables X_1, \ldots, X_{p-1}

- ▶ Coefficient of multiple correlation $R = \sqrt{R^2}$
- ▶ Does R^2 increase/decrease with p?
- Adjusted coefficient of multiple determination:

$$R_a^2 = 1 - \frac{SSE/(n-p)}{SSTO/(n-1)}$$

ightharpoonup When adding an extra predictor variable, R_a^2 will increase only if the MSE decreases

 $> mod = lm(Y \sim X1 + X2)$

R-code and output for portrait studio

Residual standard error: 11.01 on 18 degrees of freedom Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075 F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10