

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

PCS-2302 / PCS-2024 Lab. de Fundamentos de Eng. de Computação

Aula 03

Montador Relocável Ligador e relocador

Professores:

Marcos A. Simplício Junior Paulo Sergio Muniz Silva

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Ji Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação:

v.1.1 ago 2012

Roteiro

- 1. Necessidade de programas relocáveis
- 2. Visão geral
- 3. Implicações na linguagem simbólica
 - Novas pseudo-instruções
 - Novo formato de instrução
- 4. Montador relocável
- 5. Ligador e Relocador
- 6. Importância de estruturação do código.

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Necessidade de Programas Relocáveis (1)

- Programas absolutos são executáveis estritamente nas posições de memória em que foram criados.
- Tornam difícil a manutenção e o trabalho em equipe, pois:
 - Exigem gerência cuidadosa das áreas de memória ocupadas e dos endereços de cada parte do programa;
 - Toda vez que um programa é modificado, pode ser necessário recodificá-lo parcial ou totalmente;
 - Se a área ocupada pelo novo código for maior que a antiga, é preciso alojar o programa em outra parte da memória.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação:

v.1.1 ago 2012

Necessidade de Programas Relocáveis (2)

- Programas relocáveis permitem sua execução em qualquer posição de memória:
 - As referências à memória devem ser previamente ajustadas;
 - Um gerenciador da ocupação da memória deve ser utilizado.
- Tornam possível utilizar partes de código projetadas externamente:
 - Uso de bibliotecas;
 - Exigem que se possa montar parcialmente um programa, sem todos os endereços resolvidos!

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Implicações na linguagem simbólica

- Para que se possa exprimir um programa relocável com possibilidade de construção em módulos, separadamente desenvolvidos, é necessário que:
 - Haja a possibilidade de representar e identificar endereços absolutos e endereços relativos;
 - Um programa possa ser montado sem que os seus endereços simbólicos estejam todos resolvidos;
 - Seja possível identificar, em um módulo, símbolos que possam ser referenciados simbolicamente em outros módulos.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Implicações no montador

- No montador, tornam-se necessários:
 - endereços relativos uma pseudo-instrução especial deve indicar que se trata de origem relativa;
 - importar símbolos para que um símbolo X de outro programa possa ser referenciado no programa;
 - exportar símbolos para que um ponto X do programa possa ser referenciado em outros programas;
 - anexar, ao final da montagem, todos os símbolos não-resolvidos ao programa-objeto, para que essa informação possa ser passada posteriormente ao programa ligador (linker);
 - Gerar código-objeto no formato compatível com o loader hexadecimal (função P do simulador MVN).

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Alterações no Montador

- A inserção das seguintes modificações no montador absoluto são necessárias:
 - Inclusão e tratamento das novas pseudo instruções, para declarar:
 - & Origem relocável
 - > Endereço simbólico interno para exportar (entry point)
 - Endereço simbólico externo para importar (external)
 - Geração de código-objeto no novo formato:
 - · Origem absoluta e relocável
 - · Operando absoluto e relocável

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação:

v.1.1 ago 2012

Exemplos

• & - Origem relocável

ABC & /01AC ; ASSOCIA A ORIGEM CORRENTE AO SÍMBOLO ABC

; NOVA ORIGEM (RELOCÁVEL) É /01AC + BASE DE RELOCAÇÃO

& /0000 ; INICIA A ORIGEM (RELOCAVEL) EM 0

XYZ ... ; XYZ FICA ASSOCIADO AO ENDEREÇO RELOCÁVEL 0

• > - Endereço simbólico de entrada (entry point)

ABC > ; DECLARA QUE O SÍMBOLO INTERNO ABC ESTÁ SENDO EXPORTADO

< – Endereço simbólico externo (external)

ABC < ; DECLARA QUE O SÍMBOLO EXTERNO ABC ESTÁ SENDO IMPORTADO

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Tipos de endereços no programa-objeto

- Há dois aspectos a considerar:
 - o endereço onde será gerado o código;
 - os endereços referenciados pelo código.
- Endereço onde o código deve ser gerado:
 - Absoluto ou relocável.
- Endereço referenciado pelo código:
 - Resolvido ou pendente (não-resolvido): endereços <u>externos</u> são não-resolvidos, endereços internos não-resolvidos são erros!
 - Absoluto ou relocável: somente para endereços <u>internos</u>; para endereços externos designa-se como absoluto;
 - Interno ou externo (em relação à localidade do endereço referenciado (operando), todos os endereços <u>importados (<)</u> no módulo são considerados <u>externos</u>, os demais (exportáveis e rótulos locais) são considerados <u>internos (>)</u>.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação:

v.1.1 ago 2012

Formatos no programa-objeto relocável

- Cada código gerado incorpora duas componentes de endereço:
 - O Endereço onde deve ser gerada a instrução (absoluto/relocável)
 - Operando referenciado (resolvido/pendente, absoluto/relocável, interno/externo)
- Pode-se codificar esses atributos nos quatro bits mais significativos do endereço onde o código deve ser gerado (até aqui, esses bits sempre foram nulos), já que o endereço ocupa apenas 12 bits

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Novas pseudo-instruções

Em adição às pseudo-instruções já utilizadas:

- @ (define uma ORIGEM ABSOLUTA para o código a ser gerado)
 - Exemplo: @ /0050 ;indica /0050 como origem do código seguinte .
- # (define o FIM físico do programa)
 - Exemplo: # X ; indica que X é o endereço de execução do programa.
- K (define uma área preenchida por uma CONSTANTE de 2 bytes)
 - Exemplo: XYZ K /0010 ; Gera /0010 na posição correspondente a XYZ.
- \$ (define um BLOCO DE MEMÓRIA com número especificado de words)
 - Exemplo: XYZ \$ =30 ; reserva 30 words a partir do endereço simbólico XYZ (Operando = número de words a serem reservadas para o bloco)

incluir-se-ão as seguintes novas pseudo-instruções:

- & (define uma ORIGEM RELOCÁVEL para o código a ser gerado)
- Exemplo: & /0050 ;indica que o próximo código se localizará no endereço /0050, relativo à origem do código corrente.
- > (define um endereço simbólico local como entry-point do programa)
 - Exemplo: ABC > ; indica que o símbolo interno ABC está sendo exportado
- < (define um endereço simbólico que referencia um entry-point externo)
 - Exemplo: ABC < ; indica que o símbolo externo ABC está sendo importado

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandā Marcos A. Simplício Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação:

v.1.1 ago 2012

Exemplo: Somador

Programa somador.asm

```
Somador
 Somador que recebe duas entradas, nas posições
 ENTRADA1 e ENTRADA2, e coloca o resultado da
; soma na posição SAIDA (externa).
SOMADOR >
                        ; interno
ENTRADA1 >
                        ; interno
ENTRADA2 >
                        : interno
SAIDA <
                        ; externo
        & /0000
                        ; Origem relocável
; Entradas do programa.
ENTRADA1 K /0000
ENTRADA2 K /0000
; Programa
SOMADOR K /0000
                         : Ponto de entrada da subrotina
INICIO LD ENTRADA1
        + ENTRADA2
        MM SAIDA
                         ; Colocando na saída
       RS SOMADOR
                         ; Retornando
        # INICIO
```


PCS 2302/2024 Laboratório de Fundamentos da

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Eng.de Computação

Aula 3

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

19

Ligador

- No programa objeto relocável surgiram dois novos tipos de endereços simbólicos:
 - Entry points correspondem a rótulos do módulo corrente que devem ser visíveis a partir de outros módulos, e para isso tais módulos devem declará-los como externals.
 - Externals correspondem a rótulos declarados como entry points em outros módulos, e que serão utilizados pelo módulo corrente.
 - Para que um programa formado por diversos módulos fique completo, todos os símbolos declarados como *externals* em algum módulo deverão figurar também como *entry points* em algum dos outros módulos.
 - Cabe ao ligador efetuar essa associação entre externals e entry points, juntando diversos módulos em um só.
 - Símbolos que permanecem não-resolvidos são mantidos como externals ou como entry points conforme for o caso.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação:

v.1.1 ago 2012

Exemplo de Operação do Ligador (1)

- Neste exemplo, admita-se que se deseje ligar três módulos independentemente montados usando o montador relocável (ver figura no *slide* seguinte):
 - Módulo 1. Contém um programa principal A, e uma função B, e faz referência aos subprogramas C e D. Este módulo ocupa 500 bytes, e os *entry points* A e B correspondem aos endereços relativos 100 e 200, respectivamente.
 - Módulo 2. Contém o subprograma C, que faz referência ao programa A e ao subprograma D. Este módulo ocupa 200 bytes, e o *entry point* C corresponde ao endereço relativo 120.
 - Módulo 3. Contém o subprograma D, que referencia o programa A e os subprogramas B, C e D. Este módulo ocupa 150 bytes, e o entry point D corresponde ao endereço relativo 50.
- Com essas hipóteses, o ligador vai receber os três módulos na ordem apresentada.

Exemplo de Operação do Ligador (2)

Módulos produzidos pelo montador relocável

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Módulo 1: (500 bytes)

e. /n

C < ; subprograma

D < ; subprograma

A > ; principal

100 A; end. relativo de A

B > ; função

200 B; end. relativo de B

Módulo 2: (200 bytes)

& /0

A <; programa

D < ; subprograma

C > ; subprograma

120 C ; end. relativo de C

Módulo 3: (150 bytes)

& /0

A < ; programa

B < ; subprograma

C < ; subprograma D > ; subprograma

50 D ; end. relativo de D

U271

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (3)

- Inicialmente a base de alocação é zerada.
- Lê-se o Módulo 1, e todas as referências a endereços relocáveis são corrigidas somando-se-lhes a base de alocação. Todas as referências a símbolos ainda não presentes na tabela devem ficar pendentes, como foi feito no montador.
- Todos os externals são adicionados (se aí já não estiverem) à tabela de símbolos e marcados como tais.
- Todos os entry points são também coletados e marcados como tais. Caso algum deles corresponda a algum dos externals contidos na tabela de símbolos, o valor do location counter (base de alocação) associado a tal entry point resolve esse símbolo, e portanto deve-se resolver as pendências associadas a tal símbolo, do mesmo modo como foi feito no montador.

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (4)

- O Módulo 1 contém um programa principal A, uma função B, e faz referência aos subprogramas C e D. Este módulo ocupa 500 bytes, e os *entry points* A e B correspondem aos endereços relativos 100 e 200, respectivamente.
- A base de alocação contém o endereço 0.
- Resulta na tabela de símbolos:

A = endereço relativo 100+0 = 100 (resolvido)

B = endereço relativo 200+0 = 200 (resolvido)

C = *external* indefinido

D = external indefinido

A nova base de alocação será 0+500 = 500

TSP

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (5)

- Se nenhum módulo adicional for apresentado ao ligador, este deve completar sua tarefa gerando como parte do código objeto o conteúdo de todas as pendências para que a operação de ligação possa prosseguir posteriormente.
- No caso do exemplo, deveriam ser geradas todas as pendências referentes aos símbolos declarados como externals e ainda não resolvidos, ou seja, os referentes aos símbolos C e D.

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (6)

- O Módulo 2 contém o subprograma C, que faz referência ao programa A e ao subprograma D. Este módulo ocupa 200 bytes e o entry point C corresponde ao endereço relativo 120.
- A base de alocação contém o endereço 500.
- Resulta na tabela de símbolos:

A = endereço relativo 100 (permanece)

B = endereço relativo 200 (permanece)

C = endereço relativo 120+500 = 620 (resolvido)

D = *external* indefinido (permanece)

A nova base de alocação será 500+200 = 700

CSP

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (7)

- Se nenhum módulo adicional for apresentado ao ligador, este deve completar sua tarefa gerando como parte do código objeto o conteúdo de todas as pendências para que a operação de ligação possa prosseguir posteriormente.
- No caso deste exemplo, deveriam ser geradas todas as pendências referentes aos símbolos declarados como externals e ainda não resolvidos, ou seja, os referentes ao símbolo D.

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (8)

- O Módulo 3 contém o subprograma D, que referencia o programa A e os subprogramas B, C e D. Este módulo ocupa 150 bytes, e o *entry point* D corresponde ao endereço relativo 50.
- A base de alocação contém o endereço 700.
- Resulta na tabela de símbolos:

A = endereco relativo 100 (permanece)

B = endereço relativo 200 (permanece)

C = endereço relativo 620 (permanece)

D = endereço relativo 50+700 = 750 (resolvido)

A nova base de alocação será 700+150 = 850

CSP

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandã Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (9)

 Todos os endereços simbólicos referenciados entre módulos já estão resolvidos, portanto nada mais há para ligar, e o trabalho do ligador se encerra neste ponto.

Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Exemplo de Operação do Ligador (10)

Módulo 1: (500 bytes)

C < ; subprograma

D < ; subprograma

A > ; principal

100 A; end. relativo de A

B > ; função

200 B; end. relativo de B

Módulo 2: (200 bytes)

& /0

A <; programa

D < ; subprograma

C > ; subprobrama

120 C; end. relativo de C

Módulo 3: (150 bytes)

A < ; programa

B < ; subprograma

C < ; subprograma

D > ; subprograma

50 D: end. relativo de D

Ligador gera:

Módulos Ligados: (850 bytes)

100 A (considera-se base de alocação 0)

200 B (considera-se base de alocação 0)

620 C (considera-se base de alocação 500 = tamanho do módulo 1)

750 D (considera-se base de alocação 700 = soma dos tamanhos dos módulos 1 e 2)

PCS 2302/2024 Laboratório de Fundamentos da Fundamentos da Eng.de Computação

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Funcionamento do Relocador (1)

- Como produto da execução do ligador, ao final pode ser obtido um único módulo relocável, isento de referências a símbolos externos nãoresolvidos.
- Esse módulo integra todos os módulos menores a partir dos quais foi gerado, mas ainda não pode ser executado pois todos os endereços do seu espaço de endereçamento são relativos.

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Funcionamento do Relocador (2)

- É preciso eleger uma região de memória onde esse módulo deverá ser executado, e corrigir (relocar) no código todas as referências a endereços relativos, adicionando-lhes o endereço-base escolhido. O programa que executa esta tarefa denomina-se relocador.
- Como resultado, surge um programa-objeto equivalente, porém absoluto e pronto para a execução, o qual pode ser carregado na memória usando os métodos já conhecidos, empregados na programação absoluta.

CSP

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Funcionamento do Relocador (3)

- Em algumas instalações, opta-se por fundir em um único programa o relocador e o ligador, obtendo-se o **relocador-ligador**.
- Perde-se a flexibilidade de obter módulos relocáveis intermediários, a partir da resolução parcial dos endereços externos referenciados.
- Em ambientes mais simples, o relocador-ligador pode ser muito útil e prático, evitando a criação de programas-objeto intermediários adicionais.
- Para a MVN serão utilizados programas distintos para o ligador e para o relocador.

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

33

Exemplo de Operação do Relocador (2)

Módulos Ligados: (850 bytes)

100 A (considera-se base de alocação 0)

200 B (considera-se base de alocação 0)

620 C (considera-se base de alocação 500 = tamanho do módulo 1)

750 D (considera-se base de alocação 700 = soma dos tamanhos dos módulos 1 e 2)

Relocador gera:

Módulos Ligados Absolutos: (850 bytes)

200 A (base de relocação 100)

300 B (base de relocação 100)

720 C (base de relocação 100)

850 D (base de relocação 100)

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Ji Ricardo L. A. Rocha (2013)

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

.

Estruturação de código

- Criação de programas estruturados
 - Uso de subprogramas
 - Reuso de programas disponíveis em bibliotecas
- Programação estruturada
 - Linguagens de programação estruturadas
 - · C, Pascal, Ada, Fortran, Modula

Reestruturação: Paulo S. Muniz Silva v.1.1 ago 2012

Anexo

Combinações possíveis no Montador Relocável

Combinações possíveis - caso geral

	Endereço de geração	Resolução do operando	Relocabilidade do operando	Localidade do operando
0000	absoluto	resolvido	absoluto	interno
0001	absoluto	resolvido	absoluto	externo
0010	absoluto	reselvido	relocável	interno
0011	absoluto	reselvido	relocável	extermo
0100	ab eol uto	pendente	abeoluto	interno
0101	absoluto	pendente	absoluto	Externo
0110	ab solu to	pendente	relocável	Interno
0111	ab eol uto	pendente	relocável	externo
1000	relocável	resolvido	absoluto	interno
1001	relocável	resolvido	absoluto	externo
1010	relocável	resolvido	relocável	interno
1011	relocável	resolvido	relocável	externo
1100	relocável	pendente	absolu to	interno
1101	relocável	pendente	absoluto	externo
1110	relecável	pendente	relocável	interno
1111	relocável	pendente	relocável	externo

Aula 3: Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Combinações possíveis no montador Pseudo-instruções

- Entry point >
 - ABC >
- External <
 - ABC <
- Utilização dos bits.

0 0 0 0

- Endereço de geração: sempre zero.
- Resolução do operando: zero/um.
- Relocabilidade do operando: zero/um.
- Localidade do operando: como ele tem o mesmo valor do bit "Resolução", pode ser considerado como informação redundante. Otimizando, terá sempre zero como valor.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Ji Ricardo L. A. Rocha D 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Combinações possíveis no montador Pseudo-instruções

- 3 combinações possíveis
 - Declaração de variável externa (importada): o segundo bit é igual a um.
 - Declaração de variável interna (exportada) com endereço absoluto: o terceiro bit é igual a zero.
 - Declaração de Variável interna (exportada) com endereço relativo: o terceiro bit é igual a um.

PCS

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Combinações possíveis no montador Instruções

- Instrução com variáveis externas (*)
 - SOMADOR < ;Pseudo-instrução
 - MM SOMADOR ; Instrução com variável externa
- Endereço de geração: zero/um.
- Resolução do operando: sempre um.
- Relocabilidade do operando: sempre zero.
- Localidade do operando: sempre um.

(*) Combinações diferentes destas citadas são casos de erros e devem ser corretamente tratadas.

ISP

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício J Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Combinações possíveis no montador Instruções

- Instruções com variáveis internas (*)
 - SAIDA > ; Pseudo-instrução
 - LD SAIDA; instrução com variável interna
- Endereço de geração: zero/um.
- Resolução do operando: sempre zero.
- Relocabilidade do operando: zero/um.
- Localidade do operando: sempre zero.

(*) Combinações diferentes destas citadas são casos de erros e devem ser corretamente tratadas.

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Ricardo L. A. Rocha © 2013

Aula 3:

Montador Relocável

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.1 ago 2012

Combinações possíveis no montador Instruções

- Declaração de variáveis (*)
 - SAIDA > ; Pseudo-instrução
 - SAIDA K /100 ; Pseudo-instrução
- Endereço de geração: zero/um.
- Resolução do operando: sempre zero.
- Relocabilidade do operando: sempre zero.
- Localidade do operando: sempre zero.

(*) Combinações diferentes destas citadas são casos de erros e devem ser corretamente tratadas.