

Simple Linear Regression Model

n cases (trials/subjects): Y; - the value of the response variable in the ith case; X_i – the value of the predictor variable in the ith case.

Model equation:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \qquad i = 1, \dots, n.$$
 (1)

- Model assumptions:
 - \bullet ϵ_i s are uncorrelated, zero-mean, equal-variance random variables:

$$E(\epsilon_i) = 0$$
, $Var(\epsilon_i) = \sigma^2$, $i = 1, ..., n$

$$\operatorname{Cov}(\epsilon_i, \epsilon_j) = 0, \quad 1 \leq i \neq j \leq n.$$

- Unknown parameters:
 - β_0 regression intercept; β_1 regression slope • σ^2 : error variance

Given X_i s, the distributions of the responses Y_i s have the following properties:

- The response Y_i is the sum of two terms:
 - The mean of Y_i:

$$E(Y_i) = \beta_0 + \beta_1 X_i,$$

- which is non-random.
 The random error \(\epsilon_i\) which has zero-mean.
- ϵ_i s have constant variance \implies Y_i s have the same constant
 - variance (regardless of the values of X_i):

$$\operatorname{Var}(Y_i) = \sigma^2, \quad i = 1, \dots, n.$$

• ϵ_i s are uncorrelated \Longrightarrow Y_i s are uncorrelated:

$$Cov(Y_i, Y_j) = 0, \quad 1 \le i \ne j \le n.$$

In summary, the simple linear regression model says that the responses Y; are random variables whose means are linear in X_i whose variances are a constant. Moreover, two responses Y_i and Y_i ($i \neq j$) are uncorrelated. Are the distributions of the responses Y, fully specified by this model?

4 □ ト 4 □ ト 4 □ ト 4 □ ト 9 へ ○

Regression Function

$$y = \beta_0 + \beta_1 x$$

- A straight line.
- β_1 is the slope of the regression line: the change in E(Y) per unit change of X.
- β_0 is the intercept of the regression line: the value of E(Y) when X=0.

We will study how to model and fit the regression function from data.

Least Squares Principle

For a given line: $y = b_0 + b_1 x$, the sum of squared vertical deviations of the observations $\{(X_i, Y_i)\}_{i=1}^n$ from the corresponding points on the line is:

$$Q(b_0,b_1) = \sum_{i=1}^n (Y_i - (b_0 + b_1 X_i))^2.$$

- $(X_i, b_0 + b_1 X_i)$ is the point on the line with the same x-coordinate as the ith observation point (X_i, Y_i) .
- The least squares (LS) principle is to fit the observed data by minimizing the sum of squared vertical deviations.

smallest sum of squared vertical deviations LS line has the among all straight lines.

Least Squares Estimators

LS estimators of β_0, β_1 are the pair of values b_0, b_1 that minimize the function $Q(\cdot, \cdot)$:

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{b_0, b_1}{\operatorname{argmin}}_{b_0, b_1} Q(b_0, b_1).$$

LS estimators:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = r_{XY} \frac{s_Y}{s_X}, \qquad \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} \quad (2)$$

•
$$\overline{X} = 1/n \sum_{i=1}^{n} X_i$$
, $\overline{Y} = 1/n \sum_{i=1}^{n} Y_i$ are the sample means.

Could you write down the formula for sample correlation r_{XY} and sample standard deviations s_Y , s_X ?

- If X_is are all equal, then LS estimators do not exist! Though this is rare in practice.
- If the data are centered such that $\overline{X}=0$, $\overline{Y}=0$, then $\hat{\beta}_0=0$ and the LS line passes the origin (0,0). (Recall the "exam score" example.)

How to derive the LS Estimators?

The values of b_0 , b_1 that minimize the function Q satisfy:

$$\frac{\partial Q(b_0,b_1)}{\partial b_0}=0, \quad \frac{\partial Q(b_0,b_1)}{\partial b_1}=0.$$

This leads to the **normal equations**:

$$nb_0 + b_1 \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} Y_i$$

$$b_0 \sum_{i=1}^{n} X_i + b_1 \sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} X_i Y_i$$

Can you solve these two equations with respect to b₀, b₁?

Fitted Values

The fitted regression line (LS line):

$$y = \hat{\beta}_0 + \hat{\beta}_1 x = \overline{Y} + \hat{\beta}_1 (x - \overline{X}). \tag{3}$$

- The fitted regression line passes through the point $(\overline{X}, \overline{Y})$, i.e., the center of the data.
- The fitted value for the ith case:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i = \overline{Y} + \widehat{\beta}_1 (X_i - \overline{X}), \quad i = 1, \dots n.$$

Residuals

Residuals are differences between the observed values Y_i and their respective fitted values \widehat{Y}_i :

$$e_{i} = Y_{i} - \widehat{Y}_{i} = Y_{i} - (\widehat{\beta}_{0} + \widehat{\beta}_{1}X_{i}), \quad i = 1, \dots n.$$

$$= (Y_{i} - \overline{Y}) - \widehat{\beta}_{1}(X_{i} - \overline{X}).$$

- The residual e_i is an "estimator" of the respective error term: $\epsilon_i = Y_i (\beta_0 + \beta_1 X_i)$.
- Properties of residuals: (i) $\sum_{i=1}^{n} e_i = 0$; (ii) $\sum_{i=1}^{n} X_i e_i = 0$; (iii) $\sum_{i=1}^{n} X_i e_i = 0$; (iii)
- What are geometric interpretation of these properties?

A Simulation Example

This is a simulated data set with n = 5 cases and

$$Y_i = 2 + X_i + \epsilon_i, \quad i = 1, \cdots, 5,$$

where ϵ_i are generated as i.i.d. N(0, 1). What is the true regression function and what is the true error variance σ^2 ?

ca	se i		λ	j	Yį		X _i -	- X	Yį	– <u>Y</u>	(Xi	$-\overline{X})^{2}$	2	(X _i –	$\overline{X})(Y$	- <u>Y</u>)	
1			1	.86	3.5	34	-0.1	17	-0.	94	0.0	3		0.16			
2			0	.22	1.	79	-1.8	31	-2.	48	3.2	9		4.50			
3			3	.55	5.0	66	1.5	2	1.3	9	2.3	0		2.11			
4			3	.29	5.8	33	1.2	6	1.5	6	1.5	8		1.96			
5			1	.25	4.	74	-0.7	78	0.4	7	0.6	1		-0.36			
Co	lumn	Sum	1	0.17	21	.36	0.0	0	0.0	0	7.8	1		8.37			
								5				5					
$\overline{\mathbf{v}}$	10 17	/=	0.00	V	01.00	/=	4.07			V \2	7.01	Ť	/ V	V)//	<u></u>	0.0	7
<i>x</i> =	10.17	/o =	2.03,	Y =	21.30)/5 =	4.27,	اہکے	X_i	$(X)^2 =$	7.81	بے,	$(X_i -$	X)(Y	- r)	= 8.3	57.

$$\hat{\beta}_1 = 8.37/7.81 = 1.07, \quad \hat{\beta}_0 = 4.27 - 1.07 \times 2.03 = 2.09.$$

Check the three properties of residuals.

Estimation of Error Variance by MSE

- Recall $\sigma^2 = \text{Var}(\epsilon_i)$, so it is reasonable to estimate σ^2 by the "variance" of the residuals ei.
- Error sum of squares (SSE):

$$SSE := \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \overline{Y})^2 - \hat{\beta}_1^2 \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

- $E(SSE) = (n-2)\sigma^2$. Could you derive this?
- The degrees of freedom of SSE is n-2.
- Two degrees of freedom are lost in estimating β_0, β_1 .

Mean squared error (MSE):
$$s^2 = MSE = \frac{SSE}{n-2}, \quad E(MSE) = \sigma^2.$$

So MSE is an unbiased estimator of σ^2 .

- Do you know what does it mean to be an unbiased estiamtor?
- What are the similarities with and differences from the estimation of the variance of a single population based on an i.i.d. sample?

(4)

Simulation Example (Cont'd)

$$SSE = (-0.75)^2 + (-0.54)^2 + (-0.23)^2 + 0.22^2 + 1.31^2 = 2.6715$$

and $n = 5$, so $MSE = \frac{2.6715}{5.2} = 0.8905$.

What would be a reasonable estimator for σ ? Would it be unbiased?

Notes: by Jensen's inequality, $\sqrt{\text{MSE}}$ would be an underestiamte for σ .

4 D > 4 B > 4 E > 4 E > E 9 Q C

Heights

$$n = 928$$
, $\overline{X} = 68.316$, $\overline{Y} = 68.082$, $\sum_i X_i^2 = 4334058$, $\sum_i Y_i^2 = 4307355$, $\sum_i X_i Y_i = 4318152$. Thus

$$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}$$
= 4318152 - 928 × 68.316 × 68.082 = 1936.738

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - n(\overline{X})^2$$

$$= 4334058 - 928 \times 68.316^2 = 3038.761.$$

$$\hat{\beta}_1 = 1936.738/3038.761 = 0.637$$

$$\hat{\beta}_0 = 68.082 - 0.637 \times 68.316 = 24.54.$$

Properties of LS Estimators

LS estimators are linear functions of the responses Yis.

$$\hat{\beta}_{1} = \sum_{i=1}^{n} \frac{X_{i} - \overline{X}}{\sum_{j=1}^{n} (X_{j} - \overline{X})^{2}} Y_{i} = \sum_{i=1}^{n} k_{i} Y_{i}$$

$$\hat{\beta}_0 = \sum_{i=1}^n (\frac{1}{n} - \bar{X}k_i) Y_i.$$

• The fitted values \hat{Y}_i and the residuals e_i are also linear functions of the responses Y_i s.

Can you write down their respective coefficients?

LS estimators are unbiased: For all values of
$$\beta_0, \beta_1$$
,

$$E(\hat{\beta}_0) = \beta_0, \ E(\hat{\beta}_1) = \beta_1.$$

Notes: Use the fact
$$E(Y_i) = \beta_0 + \beta_1 X_i$$
, $i = 1, \dots n$.

• Variances of $\hat{\beta}_0, \hat{\beta}_1$:

es of
$$\beta_0, \beta_1$$
:

$$\sigma^{2}\{\hat{\beta}_{0}\} = \sigma^{2}\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right]$$

$$\sigma^{2}\{\hat{\beta}_{1}\} = \frac{\sigma^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}.$$

Standard errors (SE) of the LS estimators.

• Replace σ^2 by MSE:

$$s^{2}\{\hat{\beta}_{0}\} = MSE\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right],$$

$$s^{2}\{\hat{\beta}_{1}\} = \frac{MSE}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}.$$

• $s\{\hat{\beta}_0\}$ and $s\{\hat{\beta}_1\}$ are SE of $\hat{\beta}_0$ ad $\hat{\beta}_1$, respectively. What are the implications?

ivital are the implications: