Zadania z Matematyki Dyskretnej - Notacja ${\cal O}$ i zbiory uporządkowane

1. Notacja O

- (a) Dla każdego z poniższych ciągów znajdź najmniejszą liczbę $k\in\mathbb{Q}$ taką, że $f(n)=O(n^k)$:
 - i. $5n^4 3n^3 + 2n^2 + 4n + 2$
 - ii. $(n+1)^2(3n^2+2n)$
 - iii. $\sqrt{n+100}$
 - iv. $\sqrt{n^2 + 3n}$
 - v. $(1.5)^n$
 - vi. loq_2n
 - vii. $n^2 log_2 n$
- (b) Czy jest prawdą? Uzasadnij odpowiedź.
 - i. $2^{n+1} = O(2^n)$
 - ii. $2^{2n} = O(2^n)$
 - iii. (n+1)! = O(n!)
 - iv. (2n)! = O(n!)
 - v. $(\sqrt{n}+1)^4 = O(n^2)$
 - vi. $n + 3log_2n = O(log_2n)$
 - vii. $\sqrt{n}(n+3) = O(n\log_2 n)$
 - viii. $\sqrt{n^2 + 1} + 3loq_2n = O(nloq_2n)$
 - ix. $\sqrt{3n^3 + 2n^2 + 1} + n^2 \sqrt{\log_2 n} = O(n^2)$

2. Zbiory uporządkowane

- (a) Narysuj diagram Hassego zbioru $A = (\{1, 2, 3, 5, 7, 12, 15, 18, 36\}, |)$, gdzie m|n oznacza, że m jest dzielnikiem n. Wskaż, o ile istnieją: element największy, najmniejszy, elementy maksymalne i minimalne. Jaki element należałoby dodać do A, aby istniał w nim element największy? Jaki jest najdłuższy łańcuch w A?
- (b) i. Jak wygląda diagram Hassego zbioru $\mathbb{N} \times \mathbb{N}$ z porządkiem produktowym $(n,m) \preceq (k,l) \Longleftrightarrow n \leq k \wedge m \leq l$. Gdzie znajdują się te elementy $(m,n) \in \mathbb{N} \times \mathbb{N}$, dla których $(1,1) \preceq (m,n) \preceq (3,2)$?
 - ii. To samo polecenie dla porządku leksykograficznego.

- (c) Niech $\Sigma = \{a, b\}$, gdzie $a \prec b$. Ustaw w porządku:
 - i. standardowym (Σ^*, \preceq^*)
 - ii. leksykograficznym (Σ^*, \preceq_L)

następujące słowa:

aba, ab, aaba, baba, baab, aabb.

Ile i jakie słowa leżą między słowami ab i b w każdym z tych porządków? A między słowami b i ba?

(d) Niech Σ będzie pewnym alfabetem. Dla $w_1, w_2 \in \Sigma^*$ powiemy, że $w_1 \leq w_2$, jeśli w Σ^* istnieją słowa w i w' takie, że $w_2 = ww_1w'$. Czy \leq jest częściowym porządkiem w zbiorze Σ^* ?