5.1 EXERCISES 1-23 odd

1. Is
$$\lambda = 2$$
 an eigenvalue of $\begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$? Why or why not?

2. Is
$$\lambda = -2$$
 an eigenvalue of $\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$? Why or why not?

3. Is
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$? If so, find the eigenvalue.

4. Is
$$\begin{bmatrix} -1 + \sqrt{2} \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$? If so, find the eigenvalue.

5. Is
$$\begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix}$? If so, find the eigenvalue.

6. Is
$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$? If so, find the eigenvalue.

7. Is
$$\lambda = 4$$
 an eigenvalue of $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find one corresponding eigenvector.

8. Is
$$\lambda = 3$$
 an eigenvalue of $\begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$? If so, find one corresponding eigenvector.

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

9.
$$A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}, \lambda = 1, 5$$

10.
$$A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}, \lambda = 4$$

11.
$$A = \begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}, \lambda = 10$$

12.
$$A = \begin{bmatrix} 7 & 4 \\ -3 & -1 \end{bmatrix}, \lambda = 1, 5$$

13.
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \lambda = 1, 2, 3$$

14.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{bmatrix}, \lambda = -2$$

15.
$$A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}, \lambda = 3$$

16.
$$A = \begin{bmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \lambda = 4$$

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$
 18.
$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -3 \end{bmatrix}$$

$$\begin{array}{cccc}
\mathbf{18.} & \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -3 \end{bmatrix}
\end{array}$$

19. For
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
, find one eigenvalue, with no cal-

culation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly independent eigenvectors of $A = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$. Justify your answer.

In Exercises 21 and 22, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer.

- **21.** a. If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} , then λ is an eigenvalue of A. FIX#D
 - b. A matrix A is not invertible if and only if 0 is an eigenvalue of A. T. IMT
 - c. A number c is an eigenvalue of A if and only if the equation $(A - cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

- d. Finding an eigenvector of A may be difficult, but check. Finding an eigenvector is in fact an eigenvector is
- e. To find the eigenvalues of A, reduce A to echelon $f_{O_{T_{\Pi_i}}}$
- 22. a. If $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector
 - b. If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
 - c. A steady-state vector for a stochastic matrix is actually a_{ij}
 - d. The eigenvalues of a matrix are on its main diagonal.
 - e. An eigenspace of A is a null space of a certain matrix,
- **23.** Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at m_{0st} n distinct eigenvalues. Can't have >n ind. Vec, in ph
- 24. Construct an example of a 2×2 matrix with only one distinct eigenvalue.
- **25.** Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [Hint: Suppose a nonzero χ satisfies $A\mathbf{x} = \lambda \mathbf{x}$.
- **26.** Show that if A^2 is the zero matrix, then the only eigenvalue
- 27. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T . [Hint: Find out how $A - \lambda I$ and $A^T - \lambda I$
- 28. Use Exercise 27 to complete the proof of Theorem 1 for the case when A is lower triangular.
- **29.** Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Find an eigenvector.]
- **30.** Consider an $n \times n$ matrix A with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear transformation T. Without writing A, find an eigenvalue of A and describe the eigenspace.

- **31.** T is the transformation on \mathbb{R}^2 that reflects points across some line through the origin.
- **32.** T is the transformation on \mathbb{R}^3 that rotates points about some line through the origin.
- 33. Let \mathbf{u} and \mathbf{v} be eigenvectors of a matrix A, with corresponding eigenvalues λ and μ , and let c_1 and c_2 be scalars. Define

$$\mathbf{x}_k = c_1 \lambda^k \mathbf{u} + c_2 \mu^k \mathbf{v} \quad (k = 0, 1, 2, \ldots)$$

- a. What is \mathbf{x}_{k+1} , by definition?
- b. Compute $A\mathbf{x}_k$ from the formula for \mathbf{x}_k , and show that $A\mathbf{x}_k = \mathbf{x}_{k+1}$. This calculation will prove that the sequence $\{x_k\}$ defined above satisfies the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k \ (k = 0, 1, 2, \ldots).$

5.2 EXERCISES

1-17 odd

Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1–8.

$$\begin{array}{ccc} & & \\ 1. & \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix} & & & \mathbf{2.} & \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \end{array}$$

2.
$$\begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

$$3. \begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 5 & -3 \\ -4 & 3 \end{bmatrix}$$

$$5. \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$

$$7. \begin{bmatrix} 5 & 3 \\ -4 & 4 \end{bmatrix}$$

6.
$$\begin{bmatrix} 3 & -4 \\ 4 & 8 \end{bmatrix}$$

8.
$$\begin{bmatrix} 7 & -2 \\ 2 & 3 \end{bmatrix}$$

Exercises 9-14 require techniques from Section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for 3×3 determinants described prior to Exercises 15–18 in Section 3.1. [*Note:* Finding the characteristic polynomial of a 3×3 matrix is not easy to do with just row operations, because the variable λ is involved.]

9.
$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0 \end{bmatrix}$$
10.
$$\begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$
11.
$$\begin{bmatrix} 4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2 \end{bmatrix}$$
12.
$$\begin{bmatrix} -1 & 0 & 1 \\ -3 & 4 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
13.
$$\begin{bmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{bmatrix}$$
14.
$$\begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix}$$

For the matrices in Exercises 15–17, list the eigenvalues, repeated according to their multiplicities.

15.
$$\begin{bmatrix} 4 & -7 & 0 & 2 \\ 0 & 3 & -4 & 6 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
16.
$$\begin{bmatrix} 5 & 0 & 0 & 0 \\ 8 & -4 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 1 & -5 & 2 & 1 \end{bmatrix}$$
17.
$$\begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 & 0 \\ 3 & 8 & 0 & 0 & 0 \\ 0 & -7 & 2 & 1 & 0 \\ -4 & 1 & 9 & -2 & 3 \end{bmatrix}$$

18. It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ . Find h in the matrix A below such that the eigenspace for $\lambda = 5$ is two-dimensional:

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

19. Let *A* be an $n \times n$ matrix, and suppose *A* has *n* real eigenvalues, $\lambda_1, \ldots, \lambda_n$, repeated according to multiplicities, so that $\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$

Explain why det A is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

20. Use a property of determinants to show that A and A^T have the same characteristic polynomial.

In Exercises 21 and 22, A and B are $n \times n$ matrices. Mark each statement True or False. Justify each answer.

- **21.** a. The determinant of *A* is the product of the diagonal entries in *A*.
 - b. An elementary row operation on A does not change the determinant.
 - c. $(\det A)(\det B) = \det AB$
 - d. If $\lambda + 5$ is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.

- 22. a. If A is 3×3 , with columns \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 , then $\det_{\mathbf{a}_1} \mathbf{a}_2$ and \mathbf{a}_3 , then $\det_{\mathbf{b}_1} \mathbf{a}_1$, and \mathbf{a}_3 .
 - b. $\det A^{T} = (-1) \det A$.
 - c. The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A.
 - d. A row replacement operation on A does not change the eigenvalues.

A widely used method for estimating eigenvalues of a general matrix A is the QR algorithm. Under suitable conditions, this algorithm produces a sequence of matrices, all similar to A, that become almost upper triangular, with diagonal entries that approach the eigenvalues of A. The main idea is to factor A (or another matrix similar to A) in the form $A = Q_1 R_1$, where $Q_1^T = Q_1^{-1}$ and R_1 is upper triangular. The factors are interchanged to form $A_1 = R_1 Q_1$, which is again factored as $A_1 = Q_2 R_2$; then to form $A_2 = R_2 Q_2$, and so on. The similarity of A, A_1 , ... follows from the more general result in Exercise 23.

- 23. Show that if A = QR with Q invertible, then A is similar to $A_1 = RQ$.
- **24.** Show that if A and B are similar, then $\det A = \det B$.
- **25.** Let $A = \begin{bmatrix} .6 & .3 \\ .4 & .7 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3/7 \\ 4/7 \end{bmatrix}$, $\mathbf{x}_0 = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$. [*Note: A* is the stochastic matrix studied in Example 5 of Section 4.9.]
 - a. Find a basis for \mathbb{R}^2 consisting of \mathbf{v}_1 and another eigenvector \mathbf{v}_2 of A.
 - b. Verify that \mathbf{x}_0 may be written in the form $\mathbf{x}_0 = \mathbf{v}_1 + c\mathbf{v}_2$
 - c. For k = 1, 2, ..., define $\mathbf{x}_k = A^k \mathbf{x}_0$. Compute \mathbf{x}_1 and \mathbf{x}_2 , and write a formula for \mathbf{x}_k . Then show that $\mathbf{x}_k \to \mathbf{v}_1$ as k increases.
- **26.** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Use formula (1) for a determinant (given before Example 2) to show that det A = ad bc. Consider two cases: $a \neq 0$ and a = 0.

27. Let
$$A = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- a. Show that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors of A. [Note: A is the stochastic matrix studied in Example 3 of Section 4.9.]
- b. Let \mathbf{x}_0 be any vector in \mathbb{R}^3 with nonnegative entries whose sum is 1. (In Section 4.9, \mathbf{x}_0 was called a probability vector.) Explain why there are constants c_1 , c_2 , and c_3 such that $\mathbf{x}_0 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$. Compute $\mathbf{w}^T\mathbf{x}_0$, and deduce that $c_1 = 1$.
- c. For k = 1, 2, ..., define $\mathbf{x}_k = A^k \mathbf{x}_0$, with \mathbf{x}_0 as in part (b). Show that $\mathbf{x}_k \to \mathbf{v}_1$ as k increases.