tone counting vs baseline

SPM{T 98}

PM *mip* [0, 0, 0]

SPMresults:

./spm_voxelwise_p0001

Height threshold $T = 3.175486 \{p < 0.001 (unc.)\}$

Extent threshold k = 0 voxels

Statistics: p-values adjusted for search volume

nn	mm mm mr		peak-level						cluster-level				set-level	
	111111111	1111111	puncorr	(Z_{\equiv})	Τ	$q_{FDR\text{-corr}}$	p _{FWE-corr}	p _{uncorr}	k _E	$q_{FDR\text{-corr}}$	p _{FWE-corr}	С	р	
	-82	-22	0.000	3.31	3.41	0.684	1.000	0.723	1	0.723	1.000			
	-42	52	0.000	3.30	3.40	0.689	1.000	0.442	4	0.629	1.000			
-	-48	44	0.001	3.27	3.37	0.752	1.000	0.598	2	0.723	1.000			
	-40	46	0.001	3.24	3.34	0.788	1.000	0.442	4	0.629	1.000			
	4	16	0.001	3.24	3.33	0.791	1.000	0.442	4	0.629	1.000			
	-32	-54	0.001	3.23	3.33	0.802	1.000	0.723	1	0.723	1.000			
	4	-16	0.001	3.22	3.32	0.810	1.000	0.388	5	0.605	1.000			
	38	22	0.001	3.21	3.30	0.830	1.000	0.388	5	0.605	1.000			
	34	30	0.001	3.20	3.29	0.839	1.000	0.598	2	0.723	1.000			
	-66	56	0.001	3.19	3.28	0.852	1.000	0.723	1	0.723	1.000			
	-76	10	0.001	3.18	3.27	0.859	1.000	0.598	2	0.723	1.000			
	32	20	0.001	3.17	3.27	0.863	1.000	0.723	1	0.723	1.000			
	-14	-60	0.001	3.17	3.26	0.868	1.000	0.723	1	0.723	1.000			
	-94	-22	0.001	3.17	3.26	0.873	1.000	0.723	1	0.723	1.000			
	-46	-66	0.001	3.16	3.25	0.874	1.000	0.723	1	0.723	1.000			
	-34	-68	0.001	3.16	3.25	0.881	1.000	0.723	1	0.723	1.000			
	34	-56	0.001	3.15	3.24	0.900	1.000	0.723	1	0.723	1.000			
	-72	8	0.001	3.14	3.22	0.918	1.000	0.723	1	0.723	1.000			
	-86	42	0.001	3.13	3.22	0.918	1.000	0.723	1	0.723	1.000			
	-92	-18	0.001	3.12	3.21	0.937	1.000	0.723	1	0.723	1.000			

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 3.18, p = 0.001 (1.000)

Extent threshold: k = 0 voxels

Expected voxels per cluster, $\langle k \rangle = 7.217$ Expected number of clusters, $\langle c \rangle = 33.56$

FWEp: 5.310, FDRp: 4.700, FWEc: 116, FDRc: 61

Degrees of freedom = [1.0, 98.0]

FWHM = 8.2 8.1 7.9 mm mm mm; 4.1 4.0 4.0 {voxels} Volume: 1784456 = 223057 voxels = 3155.8 resels Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 65.58 voxels)

Page 5