

Motion Planning

in-depth study

What is motion planning?

Define a sequence of actions to take a robot from one known state (initial) to another known state (goal), while:

- avoiding obstacles;
- respecting motion constraints;
- optimizing a cost function (hopefully)

Assumptions

- Ideal knowledge of the robot and the world
- A priori knowledge of actual and goal positions
- motion rules of our robot are fixed

Popular approaches:

- Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it toward the goal and push it away from obstacles
- Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a graph-search algorithm (Dijkstra, A*, ...)
- Combinatorial planning [LaValle, '06]: constructs structures in the configuration (C-) space that completely capture all information needed for planning
- Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses collision detection algorithms to probe and incrementally search the C-space for a solution, rather than completely characterizing all of the $C_{\rm free}$ structure

Discrete graph representation

It is common to convert the planning problem into a (discrete) **graph** representation use one of the existing search algorithms on the graph

Where *edges* can:

- Have a direction (directed graph)
- Have a cost (weighted graph)

Grid based approach

Discretize the continuous world **into a grid**:

- Each cell is either free or forbidden
- Robot moves between adjacent free cells
- Goal: find sequence of free cells from start

Mathematically, this corresponds to pathfinding in a discrete graph G = (V, E)

- Each vertex $v \in V$ represents a free cell
- Edges $(v, u) \in E$ connect adjacent grid cells

Define **Graph** and a possible **research "tree"** G

Graph search algorithms

Label correcting algorithms:

best path optimizing cost-of-arrival C(q) $q_I \text{ to } q$

Label correcting algorithms:

best path optimizing cost-of-arrival C(q) q_I to q

Initialize $C(nodes) = \infty$:

Remove q from queue and **find q**':

Evaluate and **update** C(q'):

if lower set q as q' parent

if
$$q' != q_G$$

Add q' in queue

Get next (q)

terminate

How to get next node?

Breadth-First-Search (BFS, Bellman-Ford): Maintain Q as a list – First in/first out

Q: frontier/open/alive set of nodes = next nodes to be visited

Update cost for **all edges up to current depth** before proceeding to greater depth

- Complete (will find the solution if it exists)
- Guaranteed to find the shortest (number of edges) path
- First solution found is the optimal path
- Can deal with negative edge (transition) costs

How to get next node?

How to get next node?

Depth-First-Search (DFS): Maintain Q as a **stack** – Last in/first out

Lower memory requirement (only need to store part of graph)

Starts at the root node and explores as far as possible along each branch before backtracking

- Lower memory footprint than BFS with high-branching
- Both BFS and DFS are simple to implement (but generally inefficient).
- not complete for infinite trees

c: frontier/open/alive set of nodes = next nodes to be visited

How to get next node?

Depth-First-Search (DFS): Maintain Q as a **stack** – Last in/first out

How to get next node?

Depth-First-Search (DFS): Maintain Q as a **stack** – Last in/first out

How to get next node?

Depth-First-Search (DFS): Maintain Q as a **stack** – Last in/first out

How to get next node?

Depth-First-Search (DFS): Maintain Q as a **stack** – Last in/first out

Dijkstra

Best-First (BF, Dijkstra): next $q: \rightarrow q = argmin_{q \in Q} C(q)$

- Node will enter Q at most once
- Requires costs to be non-negative

Expanding from closest to start (BFS with edge costs)

Q is ordered according to <u>currently known</u> best cost to arrive

How it works

Q Checked

A(0)

Add in Q ordered by cost

How it works

Move in checked; place connected in Q ranked by cost

How it works

How it works

Q Checked

[]

A(0),
B(2),C(2),
D(3), E(3),
G(4), F(5) Goal reached

Consider parenting: $F \leftarrow G \leftarrow A$

Software requirements

Create Image

- Dimension: ~= 30x30 pixels;
- black walls; grey unknown;
- Save as *.png (24 bit);

✓ Win: Paint

✓ Ubuntu: KolourPaint

Image-Map

```
map_rgb = imread('mappa_test_red.png');
BW = im2bw(map_rgb,0.7);
```

RGB to bool Matrix (try different threshold values..)

Initialize variables & edge - matrix

```
% initialize variables

G=-1*ones(size(BW,1)*size(BW,2));

dist=inf*ones(size(BW,1)*size(BW,2),1);

prec=inf*ones(size(BW,1)*size(BW,2),1);

parenting

nodelist=-1*ones(size(BW,1)*size(BW,2),1);

Q (open queue)
```

Edge - matrix

		1	2	3	4
Node considered	1	0	1	-1	-1
	2	1	0	-1	-1
	3	-1	1	-1	1
	4	-1	-1	-1	0

Is it connected to that node?

Start- goal

```
start_pos = [1,1];
goal_pos = [20,30];

start= (start_pos(2)-1)*size(BW,1)+start_pos(1);
goal= (goal_pos(2)-1)*size(BW,1)+goal_pos(1);

plot(start_pos(1),start_pos(2),'sg','MarkerFaceColor','g')
plot(goal_pos(1),goal_pos(2),'sr','MarkerFaceColor','r')
```


Dijkstra: initialization

Dijkstra: steps 1/2

Q ~= 0 & q ~= goal

evaluate C(q')

update parenting

Dijkstra: steps 2/2

```
[min val,^{\sim}]=min(dist(nodelist(:,1)==1));
    new_nodes=find(dist==min_val);
    tmp i=1;
    while nodelist(new_nodes(tmp_i),1)~=1
         tmp i=tmp i+1;
    end
    act_node=new_nodes(tmp_i);
    nodelist(act_node,1)=0;
    [~,con_nodes]=find(G(act_node,:)>0);
    i con=length(con nodes);
    while i con>0
         if nodelist(con_nodes(i_con),1) ~= 0
                   nodelist(con nodes(i con),1) = 1;
         end
         i_con=i_con-1;
    end
end
```

select q' in Q according to C(q')

remove q from Q

Find connected & add in Q

Dijkstra: shortest path

```
if dist(goal)<inf
     sol_id=goal;
    path=[];
    while(sol_id~=start)
        path=[sol_id path];
        sol_id=prec(sol_id);
    end
    path=[sol_id path];</pre>
```

If a solution is available

recorsively define the sequence

Assignment IV

What we expect from you

Starting from initial Dijkstra code (v-I) provided:

- 1. Modify the code to consider diagonals movements as allowed (v-II);
- 2. Modify the code to implement A* algorithm (v-III);
- 3. Implement both (v-IV).

Apply the algorithms (all) to the maps created from images (estimate also start&goal) provided and compare the results.

Hints: diagonals & A*

Diagonals:

- Adjacent nodes dist = 1;
- Diagonal nodes dist = $\sqrt{2}$;

<u>A*:</u>

```
Dijkstra orders by optimal "cost-to-arrival" A* orders by "cost-to-arrival"+ (approximate) "cost-to-go" C(q') = C(q) + C(q,q') + h(q') where h(q') is an underestimate of "cost-to-go
```

Results

- O What is mandatory for the report?
 - Plot of shortest path;
 - Evaluate total number of nodes analyzed;
 - Plot the sequence of «actual nodes» computed
 - (compare & comment results)

