Subtraction and Negative Numbers

Steven R. Bagley

Introduction

- Saw in the last lecture how to add two binary numbers
- Using just discrete logic gates
- But how do we do subtraction?
- And what about negative numbers?

Subtraction 4 0 9 6 1 0 2 4 -

Standard decimal subtraction

Subtraction 4 0 9 6 1 0 2 4 2

Standard decimal subtraction

Subtraction 4 0 9 6 1 0 2 4 3 0 7 2

Standard decimal subtraction

Standard decimal subtraction Gets more interesting when some of the bottom numbers are bigger than the top (e.g. 2 and 4)

Subtraction 8 | 89 | 12 1 0 2 4 -

Need to borrow one Now 12 -4 which of course is 8

Need to borrow one Now 12 -4 which of course is 8 Then subtract 2 from the new 8 in the 10s column

Need to borrow one Now 12 -4 which of course is 8 Then subtract 2 from the new 8 in the 10s column And repeat Can sometimes have to borrow from the next column along

Subtraction

- Subtract each column from right
- If bottom row greater than top, we borrow one from the next column (or even further)
- Binary subtraction is the same...

Standard decimal subtraction Have to borrow 'one' to do first subtraction

Standard decimal subtraction Have to borrow 'one' to do first subtraction

Standard decimal subtraction Have to borrow 'one' to do first subtraction 10-1 is 1 Now need to borrow one from next-left, btu that is zero -- so that borrows from its left

Standard decimal subtraction Have to borrow 'one' to do first subtraction 10 - 1 is 1 Now need to borrow one from next-left, btu that is zero -- so that borrows from its left Now we can borrow...

10 - 1 is 1 again

Binary Subtraction

10 - 1 is 1 again

Subtraction in Logic

- Can design a circuit
- Half-subtractor and full-subtractors
- But there's another way to subtract two numbers...

Subtraction by Addition

- Can also 'subtract' by adding a negative number
- So 4096-2048 is the same as 4096 + -2048
- Same holds true in binary...
- But how do we represent a negative number in binary?

Negative Numbers

- Four approaches
 - Sign and Magnitude
 - One's complement
 - Excess-n
 - Two's complement

4-bit signed encodings

Sign and Magnitude		Excess-3			Complement			Complement		
					One's		Two's			
0111	+7	1111	+12	0111	+7		0111	+7		
0110	+6	1110	+11	0110	+6		0110	+6		
0101	+5	1101	+10	0101	+5		0101	+5		
0100	+4	1100	+9	0100	+4		0100	+4		
0011	+3	1011	+8	0011	+3		0011	+3		
0010	+2	1010	+7	0010	+2		0010	+2		
0001	+1	1001	+6	0001	+1		0001	+1		
0000	+0	1000	+5	0000	+0		0000	0		
1000	-0	0111	+4	1111	-0		1111	-1		
1001	-1	0110	+3	1110	-1		1110	-2		
1010	-2	0101	+2	1101	-2		1101	-3		
1011	-3	0100	+1	1100	-3		1100	-4		
1100	-4	0011	0	1011	-4		1011	- 5		
1101	- 5	0010	-1	1010	- 5		1010	-6		
1110	-6	0001	-2	1001	-6		1001	- 7		
1111	-7	0000	-3	1000	-7		1000	-8		

	Sign	ar	d	Mag	nit	cude						
1111	- 7	0000	-3	1000		1000						
1110	-6	0001	-2	1001		1001						
1101	- 5	0010	-1	1010		1010						
1100	-4	0011	0	1011		1011						
1011	- 3	0100	+1	1100		1100						
1010	-2	0101	+2	1101		1101						
1001	-1	0110	+3	1110		1110						
1000	-0	0111	+4	1111		1111						
0000	+0	1000	+5	0000		0000						
0001	+1	1001	+6	0001		0001						
0010	+2	1010	+7	0010		0010						
0011	+3	1011	+8	0011		0011						
0100	+4	1100	+9	0100		0100						
0101	+5	1101	+10	0101		0101						
0110	+6	1110	+11	0110		0110						
0111	+7	1111	+12	0111		0111						
Sign Magni		Exce	ss-3	One Comple		1011						

Use top bit to represent sign (just as we do in decimal) Addition is 'tricky' Have 'two zeroes'

Excess-n								
1111	-7	0000	-3	1000		1000		
1110	-6	0001	-2	1001		1001		
1101	- 5	0010	-1	1010		1010		
1100	-4	0011	0	1011		1011		
1011	- 3	0100	+1	1100		1100		
1010	-2	0101	+2	1101		1101		
1001	-1	0110	+3	1110		1110		
1000	-0	0111	+4	1111		1111		
0000	+0	1000	+5	0000		0000		
0001	+1	1001	+6	0001		0001		
0010	+2	1010	+7	0010		0010		
0011	+3	1011	+8	0011		0011		
0100	+4	1100	+9	0100		0100		
0101	+5	1101	+10	0101		0101		
0110	+6	1110	+11	0110		0110		
0111	+7	1111	+12	0111		0111		
Sign Magni		Exce	ss-3	One Comple		Two Comple		

Add a fixed offset to all values Seen this used with sampled audio data...

One's Complement									
1111		0000		1000	-7	1000	-8		
1110		0001		1001	-6	1001	- 7		
1101		0010		1010	- 5	1010	- 6		
1100		0011		1011	-4	1011	- 5		
1011		0100		1100	-3	1100	-4		
1010		0101		1101	-2	1101	- 3		
1001		0110		1110	-1	1110	-2		
1000		0111		1111	-0	1111	-1		
0000		1000		0000	+0	0000	0		
0001		1001		0001	+1	0001	+1		
0010		1010		0010	+2	0010	+2		
0011		1011		0011	+3	0011	+3		
0100		1100		0100	+4	0100	+4		
0101		1101		0101	+5	0101	+5		
0110		1110		0110	+6	0110	+6		
0111		1111		0111	+7	0111	+7		
	Sign and Excess-3 One's Two's Magnitude Complement Complement								

In this case, negative values are inverted (notted) Has two zeroes again, but addition now works as with unsigned numbers (more or less)

4-	bit	sig	nec	l en	co	ding	S
1111		0000		1000		1000	-8
1110		0001		1001		1001	- 7
1101		0010		1010		1010	-6
1100		0011		1011		1011	-5
1011		0100		1100		1100	-4
1010		0101		1101		1101	-3
1001		0110		1110		1110	-2
1000		0111		1111		1111	-1
0000		1000		0000		0000	0
0001		1001		0001		0001	+1
0010		1010		0010		0010	+2
0011		1011		0011		0011	+3
0100		1100		0100		0100	+4
0101		1101		0101		0101	+5
0110		1110		0110		0110	+6
0111		1111		0111		0111	+7
Sign a Magnit		Exces	ss-3	One Comple		Two Comple	

Very similar to one's complement but we invert negative numbers and add one Only one zero, but we have one more negative number than positive Addition same as with unsigned numbers

Adding negative

- Easiest to understand addition with sign and magnitude
- Lets add -18 and 25 (in 16-bit sign/mag format)

• Can't just add as normal binary...

Would give us -(18+25)

Adding Negative

 $\bullet \quad -18 = 100000000010010$ 25 = 000000000011001

- Need to find the larger number and subtract the smaller from it (based on magnitudes)
- Then adjust the signs...
- Messy!

Still needs a dedicated subtractor circuit

One's Complement

- Negative numbers formed by inverting the bits of the equivalent positive number
- But leads to two zeros which is annoying
- However, addition can be done using a standard full adder

With some tweaks Example add together -124 and 236 using one's complement notation $124 == 0b0111\ 1100$ $236 == 0b1110\ 1100$ Use 12 bits

Two's complement

- Represent -x in n bits as $2^n x$
- Quick way to calculate
 - Invert x and add 1 to result
- Addition identical to unsigned numbers (although carry bit is ignored)
- The standard on all CPUs for signed numbers

Show this in C

Two's Complement Clock

Two's Complement Clock

Two's Complement Clock