Nama: Muhammmad Zidan Fadillah

Nim: 312210277 Kelas: TI.22.A.2

Mata Kuliah: Pengolahan Citra

Manipulasi Citra Digital

• Modul

import cv2

• Original Image

image = cv2.imread('many fruits.png')

imagecopy= image.copy()

cv2.imshow('Original image', image)

cv2.waitKey(0)

cv2.destroyAllWindows()

• gray

 $gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)$

cv2.imshow('gray', gray_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

• binary

ret,binary_im = cv2.threshold(gray_image,245,255,cv2.THRESH_BINARY)
cv2.imshow('binary' , binary_im)
cv2.waitKey(0)

cv2.destroyAllWindows()

• inverted binary

binary_im= ~binary_im
cv2.imshow('inverted binary' , binary_im)
cv2.waitKey(0)
cv2.destroyAllWindows()

contours, hierarchy cv2.findContours(binary im, cv2.RETR EXTERNAL, cv2.CHAIN APPROX SIMPLE)

• contours marked on RGB image

with_contours = cv2.drawContours(image,contours,-1,(0,0,255),3) cv2.imshow('contours marked on RGB image', with_contours)

cv2.waitKey(0)

cv2.destroyAllWindows()

• Refrence image

ref_image = cv2.imread('bananaref.png')

cv2.imshow('Reference image', ref image)

cv2.waitKey(0)

cv2.destroyAllWindows()

• Grayscale image

gray_image = cv2.cvtColor(ref_image,cv2.COLOR_BGR2GRAY)
cv2.imshow('Grayscale image' , gray_image)
cv2.waitKey(0)

cv2.destroyAllWindows()

• Binary image

ret,binary_im = cv2.threshold(gray_image,245,255,cv2.THRESH_BINARY)
cv2.imshow('Binary image' , binary_im)
cv2.waitKey(0)

cv2.destroyAllWindows()

• inverted binary image

binary_im= binary_im
cv2.imshow('inverted binary image' , binary_im)
cv2.waitKey(0)
cv2.destroyAllWindows()

reference_contour = contours[0]

```
# Buat list kosong untuk menyimpan hasil perbandingan
dist_list = []

# Loop melalui setiap kontur dalam contours
for cnt in contours:

# Hitung kesamaan bentuk antara kontur saat ini dan reference_contour
retval = cv2.matchShapes(cnt, reference_contour, 1, 0)
# Tambahkan hasil ke dalam list dist_list
dist_list.append(retval)
```

• Contours marked on RGB image

```
reference_contour = contours[0]
# Buat list kosong untuk menyimpan hasil perbandingan
dist_list = []
```

Loop melalui setiap kontur dalam contours

```
for cnt in contours:
```

```
# Hitung kesamaan bentuk antara kontur saat ini dan reference_contour
retval = cv2.matchShapes(cnt, reference_contour, 1, 0)
# Tambahkan hasil ke dalam list dist_list
dist_list.append(retval)
sorted_list= dist_list.copy()
sorted_list.sort() # sorts the list from smallest to largest
ind1_dist= dist_list.index(sorted_list[0])
ind2_dist= dist_list.index(sorted_list[1])
banana_cnts= []
banana_cnts.append(contours[ind1_dist])
```

```
banana_cnts.append(contours[ind2_dist])
with_contours = cv2.drawContours(image,banana_cnts,-3,(255,2,0),3)
cv2.imshow( 'contours marked on RGB image' , with_contours )
cv2.waitKey(0)
```

cv2.destroyAllWindows()

• Upright banana marked on RGB image

for cnt in banana_cnts:

```
x, y, w, h = cv2.boundingRect(cnt)
if h > w:

# Calculate the center and radius of the circle
center = (x + w // 2, y + h // 2)
radius = max(w, h) // 2
# Draw the circle
cv2.circle(imagecopy, center, radius, (255, 0, 0), 5)
```

cv2.imshow('Upright banana marked on RGB image', imagecopy) cv2.waitKey(0)

cv2.destroyAllWindows()

