Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

# **VITMO**

## ЛАБОРАТОРНАЯ РАБОТА №5 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «АКТИВНЫЕ ФИЛЬТРЫ НА ОПЕРАЦИОННЫХ УСИЛИТЕЛЯХ»

Вариант №10

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

## Содержание

| 1 | Цел | ть работы                                    | 2 |
|---|-----|----------------------------------------------|---|
| 2 | Исх | кодные данные                                | 2 |
|   | 2.1 | Активные фильтры первого порядка             | 2 |
|   |     | 2.1.1 ФНЧ инвертирующий                      | 2 |
|   |     | 2.1.2 ФВЧ неинвертирующий                    | 2 |
|   | 2.2 | Активные фильтры второго порядка             | 3 |
|   |     | 2.2.1 ФВЧ Салена-Ки                          | 3 |
|   |     | 2.2.2 ПФ многопетлевая ОС                    | 3 |
|   |     | 2.2.3 Режекторный фильтр                     | 3 |
| 3 | Исс | следование активных фильтров первого порядка | 4 |
|   | 3.1 | Схема инвертирующего ФНЧ                     | 4 |
|   | 3.2 | ЛАФЧХ характеристика инв. ФНЧ                | 4 |
|   | 3.3 | Схема неинвертирующего ФВЧ                   | 5 |
|   | 3.4 | ЛАФЧХ характеристика неинв. ФВЧ              | 5 |
| 4 | Исс | следование активных фильтров второго порядка | 6 |
|   | 4.1 | ФВЧ Салена-Ки                                | 6 |
|   | 4.2 | ЛАФЧХ характеристика ФВЧ Салена-Ки           | 6 |
|   | 4.3 | $\Pi\Phi$ многопетлевая $OC$                 | 6 |
|   | 4.4 | ЛАФЧХ характеристика ПФ многопетлевая ОС     | 7 |
|   | 4.5 | Режекторный фильтр                           | 7 |
|   | 4.6 | ЛАФЧХ характеристика РФ                      | 8 |
| 5 | Вы  | вол                                          | 8 |

## Цель работы

Цель работы – исследование схем активных фильтров.

## Исходные данные

Операционный усилитель берем как в лабораторной работе №3 – LT1037.

## Активные фильтры первого порядка

#### ФНЧ инвертирующий

Исходные данные ФНЧ инвертирующий

| $R_1$ , OM | $R_2$ , Om | $C_1$ , н $\Phi$ | $K_U^*$ | $f_{ m cp}^*$ , к $\Gamma$ ц |
|------------|------------|------------------|---------|------------------------------|
| 442.1      | 2650       | 10               | 6       | 6                            |



Рис. 1: Схема ФНЧ инвертирующий

#### ФВЧ неинвертирующий

Исходные данные ФВЧ неинвертирующий

| $R_1$ , OM | $R_2$ , кОм | $R_3$ , кОм | $C_1$ , н $\Phi$ | $K_U^*$ | $f_{ m cp}^*$ , к $\Gamma$ ц |
|------------|-------------|-------------|------------------|---------|------------------------------|
| 3180       | 1           | 4           | 10               | 5       | 5                            |



Рис. 2: Схема ФВЧ неинвертирующий

#### Активные фильтры второго порядка

#### ФВЧ Салена-Ки

Исходные данные ФВЧ Салена-Ки

| $C_1$ , н $\Phi$ | $C_2$ , н $\Phi$ | $R_1$ , Om | $R_2$ , кОм | $R_3$ , кОм | $R_4$ , кОм | $K_U^*$ | $f_{ m cp}^*$ , к $\Gamma$ ц |
|------------------|------------------|------------|-------------|-------------|-------------|---------|------------------------------|
| 100              | 100              | 292.2      | 0.8766      | 1           | 3           | 4       | 4                            |



Рис. 3: Схема ФВЧ Салена-Ки

#### ПФ многопетлевая ОС

Исходные данные ПФ многопетлевая ОС

| $C_1$ , н $\Phi$ | $C_2$ , н $\Phi$ | $R_1$ , Om | $R_2$ , кОм | $R_3$ , кОм | $K_U^*$ | $f_{\mathrm{cp}}^{*}$ , к $\Gamma$ ц | $\Delta f^*$ , к $\Gamma$ ц |
|------------------|------------------|------------|-------------|-------------|---------|--------------------------------------|-----------------------------|
| 10               | 10               | 530.5      | 4.78        | 5.3         | 5       | 10                                   | 6                           |



Рис. 4: Схема  $\Pi\Phi$  с многопетлевой обратной связью

## Режекторный фильтр

Исходные данные для режекторного фильтра

| $C_1$ , н $\Phi$ | $C_2$ , н $\Phi$ | $C_3$ , н $\Phi$ | $R_1$ , кОм | $R_2$ , кОм | $R_3$ , Om | $R_4$ , кОм | $R_5$ , кОм |
|------------------|------------------|------------------|-------------|-------------|------------|-------------|-------------|
| 10               | 10               | 20               | 0.7958      | 0.7958      | 397.9      | $\infty$    | 0           |

| $K_U^*$ | $f_{ m cp}^*$ , к $\Gamma$ ц | $\Delta f^*$ , к $\Gamma$ ц |
|---------|------------------------------|-----------------------------|
| 1       | 20                           | 20                          |



Рис. 5: Схема РФ

## Исследование активных фильтров первого порядка

#### Схема инвертирующего ФНЧ

Построим схему инвертирующего ФНЧ в LTspice



Рис. 6: Схема инвертирующего ФНЧ

#### ЛАФЧХ характеристика инв. ФНЧ

Зададим на входной сигнал AC 1 и снимем ЛАЧХ на выходе через .ac dec 100 10 100k (sweep по частоте от 10  $\Gamma$ ц до 100  $k\Gamma$ ц с 100 точками на декаду)



Рис. 7: ЛАФЧХ характеристика инвертирующего ФНЧ

Курсором снимем значения  $A_{n \text{ дБ}}, A_{n-3 \text{ дБ}}, f_{n \text{ дБ}}, f_{n-3 \text{ дБ}}, \varphi_{n \text{ дБ}}, \varphi_{n-3 \text{ дБ}}$ , где n-3 – амплитуда, на которой находится полоса пропускания фильтра

$$f_{n \text{ дВ}} = 10 \text{ } \Gamma \text{ц}: \ A_{n \text{ дВ}} = 15.554492 \text{ дВ}, \ \varphi_{n \text{ дВ}} = 179.90453^{\circ};$$

$$f_{n-3 \text{ дБ}} = 5.9961892 \text{ к}\Gamma\text{ц}: A_{n-3 \text{ дБ}} = 12.548454 \text{ дБ}, \ \varphi_{n-3 \text{ дБ}} = 135.02205^{\circ};$$

Имеем

$$\Delta A = 3.006038$$
 дБ,  $f_{n-3$  дБ = 5.9961892 кГц  $pprox f_{
m cp}^* = 6$  кГц;

Экспериментально полученная полоса пропускания фильтра равна теоретиески расчитанной (см.  $f_{\rm cp}^*$  в табл. 2.1.1).

#### Схема неинвертирующего ФВЧ

Построим схему неинвертирующего ФВЧ в LTspice



Рис. 8: Схема неинвертирующего ФВЧ

#### ЛАФЧХ характеристика неинв. ФВЧ

Аналогично найдем ЛАФЧХ характеристику фильтра



Рис. 9: ЛАФЧХ характеристика неинвертирующего ФВЧ

Аналогично курсором снимем значения

$$f_{n \text{ дБ}} = 100 \text{ к}\Gamma\text{ц}: A_{n \text{ дБ}} = 13.977885 \text{ дБ}, \ \varphi_{n \text{ дБ}} = 2.4062551^{\circ};$$
  $f_{n-3 \text{ дБ}} = 5.0300312 \text{ к}\Gamma\text{ц}: A_{n-3 \text{ дБ}} = 10.990257 \text{ дБ}, \ \varphi_{n-3 \text{ дБ}} = 44.830656^{\circ};$ 

Имеем

$$\Delta A = 2.987628$$
 дБ,  $f_{n-3}$  дБ =  $5.0300312$  кГц  $\approx f_{\rm cp}^* = 5$  кГц;

Экспериментально полученная полоса пропускания фильтра равна теоретиески расчитанной (см.  $f_{\rm cp}^*$  в табл. 2.1.2).

## Исследование активных фильтров второго порядка

#### ФВЧ Салена-Ки

Построим схему одноименного фильтра в LTspice



Рис. 10: Схема ФВЧ Салена-Ки

#### ЛАФЧХ характеристика ФВЧ Салена-Ки

Аналогично найдем ЛАФЧХ характеристику фильтра



Рис. 11: ЛАФЧХ характеристика ФВЧ Салена-Ки

Аналогично курсором снимем значения

$$f_{n \text{ дВ}} = 100 \text{ к}\Gamma\text{ц}: A_{n \text{ дВ}} = 12.041278 \text{ дБ}, \ \varphi_{n \text{ дВ}} = 2.728094^{\circ};$$
  $f_{n-3 \text{ дВ}} = 4.0088442 \text{ к}\Gamma\text{ц}: A_{n-3 \text{ дВ}} = 9.0426662 \text{ дБ}, \ \varphi_{n-3 \text{ дВ}} = 74.15903^{\circ};$ 

Имеем

$$\Delta A = 2.9986118$$
 дБ,  $f_{n-3}$  дБ =  $4.0088442$  к $\Gamma$ ц  $pprox f_{
m cp}^* = 4$  к $\Gamma$ ц;

Экспериментально полученная полоса пропускания фильтра равна теоретиески расчитанной (см.  $f_{\rm cp}^*$  в табл. 2.2.1).

#### ПФ многопетлевая ОС

Построим схему одноименного фильтра в LTspice



Рис. 12: Схема ПФ с многопетлевой обратной связью

#### ЛАФЧХ характеристика ПФ многопетлевая ОС

Аналогично найдем ЛАФЧХ характеристику фильтра



Рис. 13: ЛАФЧХ характеристика ПФ многопетлевая ОС

Курсором измерим вершину «горы» и значения слева и справа от нее

$$\begin{split} f_{n\,\,\mathrm{дB}} &= 9.9797335\,\,\mathrm{к\Gamma\,I\!\!I}:\,\,A_{n\,\,\mathrm{дB}} = 13.969476\,\,\mathrm{дB},\,\,\varphi_{n\,\,\mathrm{дB}} = -179.59242^\circ;\\ f_{n-3\,\,\mathrm{дB}\,\,\mathrm{сл}} &= 7.4515513\,\,\mathrm{к\Gamma\,I\!\!I}:\,\,A_{n-3\,\,\mathrm{дB}\,\,\mathrm{сл}} = 10.982289\,\,\mathrm{дB},\,\,\varphi_{n-3\,\,\mathrm{дB}\,\,\mathrm{сл}} = -135.16323^\circ;\\ f_{n-3\,\,\mathrm{дB}\,\,\mathrm{спр}} &= 13.474586\,\,\mathrm{к\Gamma\,I\!\!I}:\,\,A_{n-3\,\,\mathrm{дB}\,\,\mathrm{спр}} = 10.926412\,\,\mathrm{дB},\,\,\varphi_{n-3\,\,\mathrm{дB}\,\,\mathrm{спр}} = -225.242^\circ; \end{split}$$

Имеем

$$\Delta A_{\rm ch} = A_{n~{\rm dB}} - A_{n-3~{\rm dB}~{\rm ch}} = 2.987187~{\rm dB},$$
 
$$\Delta A_{\rm chp} = A_{n~{\rm dB}} - A_{n-3~{\rm dB}~{\rm chp}} = 3.043064~{\rm dB};$$
 
$$f_{n~{\rm dB}} = 9.9797335~{\rm kF II} \approx f_{\rm cp}^* = 10~{\rm kF II},$$
 
$$\Delta f_{n-3~{\rm dB}} = f_{n-3~{\rm dB}~{\rm chp}} - f_{n-3~{\rm dB}~{\rm ch}} = 6.0230347~{\rm kF II} \approx \Delta f^* = 6~{\rm kF II};$$

Экспериментально полученная полоса пропускания фильтра равна теоретиески расчитанной (см.  $f_{\rm cp}^*, \Delta f^*$  в табл. 2.2.2).

#### Режекторный фильтр

Построим схему одноименного фильтра в LTspice



Рис. 14: Схема РФ

#### ЛАФЧХ характеристика РФ

Аналогично найдем ЛАФЧХ характеристику фильтра



Рис. 15: ЛАФЧХ характеристика РФ

Курсором измерим низину «ямы» и значения слева и справа от нее

$$f_{n\,{}_{\rm д}{\rm B}}=20.061636~{\rm K}$$
 Гц :  $A_{n\,{}_{\rm д}{\rm B}}=-9.5470452~{\rm д}{\rm B},~~ \varphi_{n\,{}_{\rm д}{\rm B}}=0.25264918^\circ;$   $f_{n-3\,{}_{\rm д}{\rm B}~{\rm c}{\rm n}}=11.587212~{\rm K}$  Гц :  $A_{n-3\,{}_{\rm д}{\rm B}~{\rm c}{\rm n}}=-6.4971049~{\rm д}{\rm B},~~ \varphi_{n-3\,{}_{\rm д}{\rm B}~{\rm c}{\rm n}}=-28.006004^\circ;$   $f_{n-3\,{}_{\rm d}{\rm B}~{\rm c}{\rm n}{\rm p}}=34.454665~{\rm K}$  Гц :  $A_{n-3\,{}_{\rm d}{\rm B}~{\rm c}{\rm n}{\rm p}}=-6.5038859~{\rm д}{\rm B},~~ \varphi_{n-3\,{}_{\rm d}{\rm B}~{\rm c}{\rm n}{\rm p}}=27.939365^\circ;$ 

Имеем

$$\begin{split} \Delta A_{\text{сл}} &= |A_{n \text{ дБ}} - A_{n-3 \text{ дБ сл}}| = 3.0499403 \text{ дБ}, \\ \Delta A_{\text{спр}} &= |A_{n \text{ дБ}} - A_{n-3 \text{ дБ спр}}| = 3.0431593 \text{ дБ}; \\ f_{n \text{ дБ}} &= 20.061636 \text{ к} \Gamma \text{ц} \approx f_{\text{ср}}^* = 20 \text{ к} \Gamma \text{ц}, \\ \Delta f_{n-3 \text{ дБ}} &= f_{n-3 \text{ дБ спр}} - f_{n-3 \text{ дБ сл}} = 22.867453 \text{ к} \Gamma \text{ц} \approx \Delta f^* = 20 \text{ к} \Gamma \text{ц}; \end{split}$$

Экспериментально полученная полоса пропускания фильтра равна теоретиески расчитанной (см.  $f_{\rm cp}^*, \Delta f^*$  в табл. 2.2.3).

#### Вывод

В ходе выполнения работы были рассмотрены различные виды активных фильтров первого и второго порядков. Были построены схемы и промоделированы ЛАФ-ЧХ для каждого случая. Результаты подтверждают корректность расчетов.