

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	M.I. Marco Antonio Martinez Quintana
Asignatura:	Estructura de datos y algoritmos I
Grupo:	15
No de Práctica(s):	1
Integrante(s):	López Cruz Marino
No. de Equipo de cómputo empleado:	No aplica
No. de Lista o Brigada:	No aplica
Semestre:	2021-2
Fecha de entrega:	15-Marzo-2021
Observaciones:	
	CALIFICACIÓN:

Practica 1. Aplicaciones de Arreglos.

Objetivo: Utilizar apuntadores en lenguaje C para acceder a las localidades de memoria tanto de datos primitivos como de arreglos.

Actividades:

- Crear apuntadores.
- Leer y modificar datos a través de apuntadores.
- Buscar un sudoku en una revista, periódico, app o internet y desplegarlo en la pantalla con la ayuda de un arreglo bidimensional.
- Indicar al usuario qué casilla llenar con coordenadas y actualizar la matriz desplegada (puede ser consecutiva o limpiar pantalla y volver a escribir)
- Llenar el sudoku y mostrar algunas capturas de pantalla en su reporte.
- En las conclusiones, además de las personales, indicar otros 3 tipos de aplicaciones de los arreglos (en la vida cotidiana, en tu campo de conocimiento y otro).

Introducción

Se le conoce como apuntador a una variable que tiene como contenido la dirección de memoria de otra variable. Gracias a que los apuntadores trabajan directamente con la memoria, es fácil acceder a la información a través de ellos.

La forma de declarar un apuntador es la que se muestra a continuación:

Tipodedato*apuntador,variable;

Donde se debe de especificar el tipo de dato, el nombre que se le dará al apuntador y el mismo tipo de dato de la variable que va a apuntar.

Para asignarle un valor, la forma correcta es la siguiente:

Apuntador=&variable;

Los apuntadores solo pueden apuntar variables con el mismo tipo de datos con el cual fueron declarados.

Se puede acceder (leer/modificar) mediante el puntero al valor que está almacenado en la dirección de memoria (la que está almacenada en el puntero por supuesto) utilizando el operador *

Para acceder a los miembros de clase de un objeto a través de un puntero se utiliza el operador flecha -> en lugar del operador punto, obviamente el acceso con operador flecha sigue respetando los niveles de acceso establecidos en la definición de la clase.

Traduciendo a lenguaje C el algoritmo de la escala Escítala Espartana.

```
#include<stdio.h>
#include<math.h>
#include <stdlib.h>
#define p printf
#define s scanf
int main(){
int i,j;
char A[5][5],menu,R;
do
{
printf("\n\t FAVOR DE SELECCIONAR UNA OPCIÓN\n");
printf("\n\t -a- Encriptar\n");
printf("\n\t -b- Desencriptar\n");
scanf("%s",&menu);
switch(menu)
{
case 'a':
              p("\nTu mensaje puede contener 25 letras");
               for(i=1;i<=5;i++)
                      for(j=1;j<=5;j++)
               {
                      fflush(stdin);
                             p("\n Dame una letra de tu mensaje: ");
                             s("%c",&A[i][j]);}
              p("\nTu mensaje es: ");
               for(i=1;i<=5;i++)
                      for(j=1;j<=5;j++)
                             p("\n\%c",A[i][j]);
               p("\nY cifrado queda: ");
               for(i=1;i<=5;i++)
                      for(j=1;j<=5;j++)
                             p("\n\%c",A[j][i]);
break;
case 'b':
```

```
p("\nTu mensaje puede contener 25 letras");
for(i=1;i<=5;i++)
       for(j=1;j<=5;j++)
              fflush(stdin);
              p("\n Dame una letra de tu mensaje: ");
              s("%c",&A[i][j]);}
p("\nTu mensaje es: ");
for(i=1;i<=5;i++)
       for(j=1;j<=5;j++)
              p("\n\%c",A[i][j]);
p("\nY descifrado queda: ");
for(i=1;i<=5;i++)
       for(j=1;j<=5;j++)
              p("\n\%c",A[j][i]);
break;
default:printf("\n\t OPCION NO VALIDA\n");
break;
}//cierre de switch
printf("\n\t DESEA VER EL MENU NUEVAMENTE Escriba s o S\n");
scanf("%s",&R);
}while(R=='S' || R=='s' );//cierre de do-while
return 0;
}
```


Sudoku

Conclusiones:

- Los arreglos y apuntadores tienen un campo de aplicaciones enorme en el ámbito computacional, teniendo la capacidad de resolver y plantear en interfases digitales, problemas complejos, que permiten estudiar fenómenos o desarrollar nuevas tecnologías.
- Los juegos como el sudoku son un claro ejemplo de lo laborioso mentalmente que puede llegar a ser un problema, sin embargo, la computadora programada de forma correcta tiene la capacidad para resolverlo sin mayores complicaciones.
- Es labor del ingeniero tener la capacidad de análisis que permita abstraer el proceso de resolución para programar a una computadora con el fin de resolver el problema.
- Dentro de las 3 aplicaciones que mencionare podemos hacer un enmarcado de los siguientes puntos:
 - En la vida cotidiana los arreglos son de utilidad para la organización de datos que puedan ser útiles tales como tablas de conteo financiero o de actividades programadas con relaciones entre si.
 - En mi campo de conocimiento, son una base fundamental para lograr avances en la automatización de sistemas complejos como el algoritmo diseñado para el autopilot de vehículos eléctricos.
 - 3. En el campo musical, a partir de una serie de arreglos se pueden definir las frecuencias y longitudes de onda ideales para la construcción o adaptación de espacios, que posean una acústica que permita grabaciones de alta calidad auditiva.