

FCC PART 15.247

MEASUREMENT AND TEST REPORT

For

Verykool USA Inc

4350 Executive Dr. #100, San Diego, CA 92121, USA

FCC ID: WA6I315

Report Type: Product Type:

Original Report GSM&GPRS Dual Standby Mobile Phone

Kuass. Yang

meny, when

Test Engineer: Kvass Yang

Report Number: RSZ11012701-15.247

Report Date: 2011-03-10

Merry Zhao

Reviewed By: EMC Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018

Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "\(\dag{\pm} \)" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	6
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §2.1093 – RF EXPOSURE INFORMATION	9
APPLICABLE STANDARD	
RESULT:	
FCC §15.203 - ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	12
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
Test Data	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	16
APPLICABLE STANDARD	16
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	22
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	22

TEST PROCEDURE	22
Test Data	22
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	25
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	25
Test Data	25
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	28
APPLICABLE STANDARD	28
TEST EQUIPMENT LIST AND DETAILS	28
TEST PROCEDURE	
TEST DATA	28
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	30
APPLICABLE STANDARD	30
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	30
TEST DATA	30
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	36
APPLICABLE STANDARD	36
MEASUREMENT UNCERTAINTY	36
EUT Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Verykool USA Inc*'s product, model number: *i315 (FCC ID: WA6I315)* or the "EUT" as referred to in this report is a *GSM&GPRS Dual Standby Mobile Phone*, which measures approximately: 8.0 cm (L) x 3.5 cm (W) x 1.6 cm (H), rated input voltage: DC 3.7 V battery.

Frequency Range:

Cellular Band: 824-849 MHz (Tx), 869-894 MHz (Rx) PCS Band: 1850-1910 MHz (Tx), 1930-1990 MHz (Rx)

Bluetooth: 2400-2483.5 MHz (Tx/Rx)

Modulation Mode: GMSK (PCS/DCS); GFSK (Bluetooth)

Transmitter Output Power:

GSM Cellular Band: 33 dBm, GSM PCS Band: 30 dBm

Bluetooth: -6~4 dBm

Objective

This Type approval report is prepared on behalf of *Verykool USA Inc in* accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 22H&24E submission with FCC ID: WA6I315.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Note: The uncertainty of any RF test which use conducted method measurement is \pm 0.96 dB, the uncertainty of any radiation emissions measurement is \pm 4.0 dB.

^{*} All measurement and test data in this report was gathered from production sample serial number: 11010092 (Assigned by BACL, Shenzhen). The EUT was received on 2011-01-27.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which is provided by manufacture.

EUT Exercise Software

N/A

Equipment Modifications

No modification was made to the unit tested.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
R & S	Universal Radio Commutation Tester	CMU200	11000008.02	DOC

External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Undetachable DC Power Cable	1.1	EUT	Adapter

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliace
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of Hopping Channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC §15.247 (i) & §2.1093 – RF EXPOSURE INFORMATION

Applicable Standard

According to FCC §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Table 2 - Summary of SAR Evaluation Requirements for a Cell Phone with Multiple Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission — o output \leq 60/f: SAR not required o output \geq 60/f: stand-alone SAR required When there is simultaneous transmission — Stand-alone SAR not required when output \leq 2·P _{Ref} and antenna is \geq 5.0 cm from other antennas output \leq P _{Ref} and antenna is \geq 2.5 cm from other antennas output \leq P _{Ref} and antenna is \leq 2.5 cm from other antennas output \leq P _{Ref} and antenna is \leq 2.5 cm from other antennas, each with either output power \leq P _{Ref} or 1-g SAR \leq 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required test SAR on highest output channel for each wireless mode and exposure condition of SAR for highest output channel is \geq 50% of SAR limit, evaluate all channels according to normal procedures	o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test requirements may apply
Jaw, Mouth and Nose	Flat phantom SAR required o when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues o position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

Two antennas are available for the EUT, (GSM antenna, Bluetooth antenna), The distance between Bluetooth antenna and GSM antenna is less than $2.5~\rm cm$, the SAR of GSM antenna is less than $1.2~\rm W/Kg$, according to KDB 648474, simultaneous SAR measurement is not required.

Result:

The SAR measurement is exempt.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a monopole antenna of Bluetooth, the gain is 0 dBi, which are in accordance to section 15.203, please refer to the internal photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratory Corp. (Shenzhen) is ± 2.4 dB.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	830245/006	2010-03-03	2011-03-02
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2010-03-09	2011-03-08

^{*} **Statement of Traceability:** Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207</u>, with the worst margin reading of:

11.15 dB at 1.730 MHz in the Neutral conductor mode

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

^{*} The testing was performed by Kvass Yang on 2011-02-24.

Test Mode: Adapter Charging & Transmitting

120 V, 60 Hz, Line:

Со	Conducted Emissions			FCC Part 15.207		
Frequency (MHz)	Cord. Result (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave)	
1.740	34.69	10.17	46.00	11.31	Ave	
1.740	39.18	10.17	56.00	16.82	QP	
0.580	28.73	10.18	46.00	17.27	Ave	
0.675	28.71	10.16	46.00	17.29	Ave	
0.775	27.77	10.15	46.00	18.23	Ave	
2.955	26.45	10.15	46.00	19.55	Ave	
28.185	36.58	10.12	60.00	23.42	QP	
2.955	32.56	10.15	56.00	23.44	QP	
28.215	25.94	10.12	50.00	24.06	Ave	
0.775	26.72	10.15	56.00	29.28	QP	
0.580	25.20	10.18	56.00	30.80	QP	
0.675	24.69	10.16	56.00	31.31	QP	

120V, 60 Hz, Neutral:

Со	nducted Emissi	ons)7	
Frequency (MHz)	Cord. Result (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave.)
1.730	34.85	10.17	46.00	11.15	Ave
0.750	32.36	10.15	46.00	13.64	Ave
0.700	31.98	10.16	46.00	14.02	Ave
0.890	31.83	10.12	46.00	14.17	Ave
27.120	34.65	10.13	50.00	15.35	Ave
3.185	25.93	10.14	46.00	20.07	Ave
27.120	26.34	10.13	60.00	33.66	QP
0.750	19.95	10.15	56.00	36.05	QP
0.700	19.32	10.16	56.00	36.68	QP
0.890	17.52	10.12	56.00	38.48	QP
1.730	15.92	10.17	56.00	40.08	QP
3.180	14.07	10.14	56.00	41.93	QP

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is +4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30 MHz – 1000 MHz	$100 \mathrm{kHz}$	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447D	2944A09795	2010-08-02	2011-08-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2010-03-11	2011-03-10
НР	Amplifier	2VA-213+	T-E27H	2010-03-08	2011-03-07
Sunol Sciences	Horn Antenna	DRH-118	A052604	2010-05-05	2011-05-04
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2010-07-08	2011-07-07

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

For the radiated emissions test, maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, and section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

Below 1 GHz:

4.7 dB at 42.197250 MHz in the Vertical polarization

Above 1 GHz:

8.70 dB at **4960.0 MHz** in the **Horizontal** polarization (Middle Channel)

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Kvass Yang on 2011-02-26.

Below 1 GHz

Test Mode: Adapter Charging & Transmitting

Eraquanov Correcte		Test An	tenna	Turntable	Correction	Limit	Margin
Frequency (MHz)	Amplitude (dBμV/m)	Height (cm)	Polarity (H/V)	Position (degree)	Factor (dB)	(dBµV/m)	(dB)
42.197250	35.3	102.0	V	77.0	-10.5	40.0	4.7
35.408250	35.2	103.0	V	115.0	-9.1	40.0	4.8
35.509750	35.1	102.0	V	128.0	-9.1	40.0	4.9
208.212750	33.0	145.0	Н	245.0	-14.2	43.5	10.5
756.247750	32.2	205.0	V	171.0	-2.4	46.0	13.8
701.116500	31.9	173.0	V	0.0	-3.0	46.0	14.1

Test Mode: Transmitting

Above 1 GHz (worst case)

Indica	ited		Table	Test An	itenna	Cori	rection l	Factor	F	CC Part 15	.247/15.2	09
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/Ave.)	Angle Degree	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
	Low Channel (2402 MHz)											
7206.00	30.21	Ave	80	1.0	Н	36.4	5.22	26.60	45.23	54	8.77	harmonic
7206.00	28.70	Ave	70	1.2	V	37.0	5.22	26.60	44.32	54	9.68	harmonic
4804.00	30.79	Ave	160	1.0	Н	33.5	4.30	26.80	41.79	54	12.21	harmonic
4804.00	28.88	Ave	150	1.2	V	32.8	4.30	26.80	39.18	54	14.82	harmonic
7206.00	43.10	PK	70	1.0	Н	36.4	5.22	26.60	58.12	74	15.88	harmonic
1134.26	37.30	Ave	12	1.0	Н	24.2	2.02	26.49	37.03	54	16.97	spurious
1134.26	37.11	Ave	35	1.2	V	24.3	2.02	26.49	36.94	54	17.06	spurious
7206.00	40.78	PK	60	1.2	V	37.0	5.22	26.60	56.40	74	17.60	harmonic
4804.00	44.30	PK	180	1.0	Н	33.5	4.30	26.80	55.30	74	18.70	harmonic
4804.00	42.93	PK	180	1.2	V	32.8	4.30	26.80	53.23	74	20.77	harmonic
1134.26	50.11	PK	20	1.2	V	24.3	2.02	26.49	49.94	74	24.06	spurious
1134.26	49.14	PK	20	1.0	Н	24.2	2.02	26.49	48.87	74	25.13	spurious
				Mi	iddle C	hannel (2	2441 M	Hz)				
7323.00	29.92	Ave	15	1.1	Н	36.3	5.09	26.57	44.74	54	9.26	harmonic
7323.00	29.14	Ave	10	1.0	V	37.0	5.09	26.57	44.66	54	9.34	harmonic
4882.00	30.25	Ave	175	1.0	Н	33.7	4.36	26.78	41.53	54	12.47	harmonic
4882.00	30.25	Ave	185	1.1	V	33.0	4.36	26.78	40.83	54	13.17	harmonic
7323.00	42.61	PK	0	1.0	Н	36.3	5.09	26.57	57.43	74	16.57	harmonic
7323.00	41.57	PK	0	1.2	V	37.0	5.09	26.57	57.09	74	16.91	harmonic
4882.00	44.02	PK	180	1.2	V	33.0	4.36	26.78	54.60	74	19.40	harmonic
4882.00	42.18	PK	180	1.2	Н	33.7	4.36	26.78	53.46	74	20.54	harmonic
1260.52	31.85	Ave	30	1.0	Н	24.5	2.06	26.52	31.89	54	22.11	spurious
1448.89	31.74	Ave	45	0	V	24.6	2.06	26.52	31.88	54	22.12	spurious
1260.52	46.55	PK	45	1.2	Н	24.5	2.06	26.52	46.59	74	27.41	spurious
1448.89	44.53	PK	30	1.0	V	24.6	2.06	26.52	44.67	74	29.33	spurious
				Н	igh Ch	annel (24	180 MH	(z)				
4960.0	33.05	Ave	0	1.0	Н	34.6	4.40	26.75	45.30	54	8.70	harmonic
7440.0	29.74	Ave	0	1.1	Н	36.6	5.20	26.55	44.99	54	9.01	harmonic
7440.0	29.12	Ave	15	1.0	V	37.0	5.20	26.55	44.77	54	9.23	harmonic
4960.0	31.34	Ave	20	1.0	V	34.7	4.40	26.75	43.69	54	10.31	harmonic
7440.0	43.12	PK	10	1.0	Н	36.3	5.20	26.55	58.07	74	15.93	harmonic
7440.0	40.84	PK	10	1.2	V	37.0	5.20	26.55	56.49	74	17.51	harmonic
4960.0	42.23	PK	0	1.2	V	34.7	4.40	26.75	54.58	74	19.42	harmonic
1450.9	33.61	Ave	30	1.0	Н	25.3	2.24	26.58	34.57	54	19.43	spurious
4960.0	41.80	PK	20	1.2	Н	34.6	4.40	26.75	54.05	74	19.95	harmonic
1450.9	30.67	Ave	0	1.0	V	25.5	2.24	26.58	31.83	54	22.17	spurious
1450.9	44.72	PK	30	1.0	V	25.5	2.24	26.58	45.88	74	28.12	spurious
1450.9	44.35	PK	0	1.2	Н	25.3	2.24	26.58	45.31	74	28.69	spurious

Spurious Emissions in Restrict Bands:

Indic	cated		Table		tenna	Corr	rection 1	Factor	FCC	Part 15.247	/15.209/1	15.205
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/Ave.)	Angle	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
2336.696	31.93	Ave	0	1.1	Н	28.7	3.00	26.84	36.79	54	17.21	spurious
2489.836	31.35	Ave	0	1.0	V	29.1	3.00	26.84	36.61	54	17.39	spurious
2318.460	30.78	Ave	230	1.2	Н	29.1	3.00	26.84	36.04	54	17.96	spurious
2318.460	30.47	Ave	0	1.0	V	29.1	3.00	26.84	35.73	54	18.27	spurious
2336.696	30.54	Ave	145	1.2	V	28.7	3.00	26.84	35.40	54	18.60	spurious
2489.176	30.53	Ave	0	1.1	Н	28.7	3.00	26.84	35.39	54	18.61	spurious
2489.836	41.91	PK	0	1.2	V	29.1	3.00	26.84	47.17	74	26.83	spurious
2336.696	42.26	PK	20	1.2	Н	28.7	3.00	26.84	47.12	74	26.88	spurious
2318.460	41.35	PK	30	1.2	V	29.1	3.00	26.84	46.61	74	27.39	spurious
2489.176	41.20	PK	10	1.1	Н	28.7	3.00	26.84	46.06	74	27.94	spurious
2318.460	40.65	PK	230	1.8	Н	29.1	3.00	26.84	45.91	74	28.09	spurious
2336.696	40.01	PK	145	1.2	V	28.7	3.00	26.84	44.87	74	29.13	spurious

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.9kPa

^{*} The testing was performed by Kvass Yang on 2011-02-25.

Test Result: Compliant.

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	2402	1.004	0.701	Pass
Adjacent	2403	1.004	0.701	1 ass
Middle	2441	1.004	0.701	Pass
Adjacent	2442	1.004	0.701	гаѕѕ
High	2480	1.004	0.501	D
Adjacent	2479	1.004	0.701	Pass

Please refer to the following plots.

Low Channel

Date: 25.FEB.2011 16:13:55

Middle Channel

Date: 25.FEB.2011 16:12:55

High Channel

Date: 25.FEB.2011 16:12:04

FCC $\S15.247(a)$ (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.9kPa

^{*} The testing was performed by Kvass Yang on 2011-02-25.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	2402	1.052
Middle	2441	1.052
High	2480	1.052

Please refer to the following plots.

Low Channel

Date: 25.FEB.2011 16:05:16

Middle Channel

Date: 25.FEB.2011 16:06:15

High Channel

Date: 25.FEB.2011 16:07:58

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.9kPa

The testing was performed by Kvass Yang on 2011-02-25.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥ 15

Number of Hopping Channels

Date: 25.FEB.2011 16:00:22

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23	

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= time slot length * hope rate/ number of hopping channels * 31.6s Hop rate=1600/s

Test Data

Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	56 %		
ATM Pressure:	100.0kPa		

^{*} The testing was performed by Kvass Yang on 2011-02-25.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Mode	Channel	Channel Pulse Width (ms)		Limit (S)	Result	
	Low	0.420	0.13440	0.4	Pass	
DH 1	Middle	0.420	0.13440	0.4	Pass	
Dill	High	0.424	0.13568	0.4	Pass	
	Note	: DH1:Dwell time = 1	Pulse time*(1600)	/2/79)*31.6S		
	Low	1.698	0.27168	0.4	Pass	
DIL 2	Middle	1.686	0.26976	0.4	Pass	
Dus	DH 3 High		1.686 0.26976		Pass	
	Note	e: DH3:Dwell time = Pulse time*(1600/4/79)*31.6S				
	Low	2.968	0.316587	0.4	Pass	
DUE	Middle	2.968	0.316587	0.4	Pass	
DH 5	High	2.968	0.316587	0.4	Pass	
	Note	: <i>DH5</i> :Dwell time = 1	Pulse time*(1600	/6/79)*31.6S		

Please refer to the following plots.

Low Channel for DH1

Date: 25.FEB.2011 16:19:32

Middle Channel for DH1

Date: 25.FEB.2011 16:18:46

High Channel for DH1

Date: 25.FEB.2011 16:21:28

Low Channel for DH3

Date: 25.FEB.2011 16:25:20

Middle Channel for DH3

Date: 25.FEB.2011 16:22:58

High Channel for DH3

Date: 25.FEB.2011 16:22:34

Low Channel for DH5

Date: 25.FEB.2011 16:26:34

Middle Channel for DH5

Date: 25.FEB.2011 16:27:02

High Channel for DH5

Date: 25.FEB.2011 16:27:40

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is ± 4.0 dB (k=2, 95% level of confidence).

EUT Setup

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2009.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W
30MHz – 1000 MHz	100 kHz	300 kHz
1000 MHz – 25 GHz	1 MHz	3 MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447D	2944A09795	2010-08-02	2011-08-02
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2010-03-11	2011-03-11
HP	Amplifier	8449B	3008A00277	2010-09-12	2011-09-11
Sunol Sciences	Horn Antenna	DRH-118	A052604	2010-05-05	2011-05-04
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2010-07-08	2011-07-08

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

FCC DA 00-705

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.9kPa

^{*} The testing was performed by Kvass Yang on 2011-02-25.

Test Result: Compliance.

Indic	ated		Table	Test An	tenna	Corr	ection F	actor		FCC	Part 15	.247	
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/Ave)	Angle		Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. (dB)	Cord. Amp. (dBµV/m)	Cord. Amp. (dBm		Limit (mW)	Result
	Low Channel (2402 MHz)												
2402	92.73	PK	180	1.8	V	30.1	3.03	26.84	99.02	3.75	2.37	1000	Pass
2402	86.87	PK	160	1.0	Н	30.2	3.03	26.84	93.26	-2.01	0.96	1000	Pass
				mid	dle Ch	annel (24	41 MH	(z)					
2441	88.15	PK	70	2.0	V	30.2	3.05	26.85	94.55	-0.72	0.85	1000	Pass
2441	83.64	PK	80	1.1	Н	30.3	3.05	26.85	90.14	-5.13	0.31	1000	Pass
	high Channel (2480 MHz)												
2480	84.06	PK	20	1.7	V	30.4	3.07	26.86	90.67	-4.60	0.35	1000	Pass
2480	79.05	PK	12	1.0	Н	30.4	3.07	26.86	85.66	-9.61	0.11	1000	Pass

Note: In 3 m chamber, P dBm = E $(dB\mu V/m)$ - 95.27

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447D	2944A09795	2010-08-02	2011-08-02
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23
Sunol Sciences	Broadband Antenna	ЈВ1	A040904-1	2010-03-11	2011-03-11
HP	Amplifier	8449B	3008A00277	2010-09-12	2011-09-11
Sunol Sciences	Sunol Sciences Horn Antenna		A052604	2010-05-05	2011-05-04
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2010-07-08	2011-07-08

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3 MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Page 39 of 42

5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	56 %		
ATM Pressure:	100.9kPa		

^{*}The testing was performed by Kvass Yang on 2011-02-25.

Test Result: Compliance

Test Mode: Transmitting

Frequency (MHz)	Delta Peak to band emission (dBc)	Antenna Polar (H/V)	Limit (dBc)
2336.696	45.14	Н	20
2318.460	51.13	V	20
2489.176	38.76	Н	20
2489.836	43.47	V	20

Note: The point fall into the stricted band was in FCC 15.209, please refer to the restrict band testing.

Please refer to follow plots:

Band Edge: Left Side (Horizontal)

Date: 25.FEB.2011 14:58:33

Band Edge: Right Side (Horizontal)

Date: 25.FEB.2011 15:14:08

Band Edge: Left Side (Vertical)

Date: 25.FEB.2011 16:00:35

Band Edge: Right Side (Vertical)

Date: 25.FEB.2011 15:19:18

***** END OF REPORT *****