Espacios Vectoriales

1.1. $R^n y C^n$

Definición 1.1 (Números complejos)

- Un número complejo es un par ordenado (a,b), donde $a,b \in \mathbb{R}$, pero lo escribimos como a+bi.
- lacktriangle El conjunto de todos los números complejos es denotado por \mathbb{C} :

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$$

■ La adición y la multiplicación en C esta definida por:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Propiedades de la aritmética compleja

Conmutatividad

$$\alpha + \beta = \beta + \alpha$$
 y $\alpha\beta = \beta\alpha$ para todo $\alpha, \beta \in \mathbb{C}$;

Asociatividad

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 para todo $\alpha, \beta, \lambda \in \mathbb{C}$;

Inverso aditivo

Para cada $\alpha \in \mathbb{C}$, existe un único $\beta \in \mathbb{C}$ tal que $\alpha + \beta = 0$;

Inverso multiplicativo

Para cada $\alpha \in \mathbb{C}$ con $\alpha \neq 0$, existe un único $\beta \in \mathbb{C}$ tal que $\alpha\beta = 1$;

Propiedad distributiva

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$
 para todo $\lambda, \alpha, \beta \in \mathbb{C}$

TEOREMA 1.1 (Conmutatividad) Muestre que $\alpha\beta = \beta\alpha$ para todo $\alpha, \beta \in \mathbb{C}$.

Demostración.- Supóngase $\alpha=a+bi$ y $\beta=c+di$, donde $a,b,c,d\in\mathbb{R}$. Entonces la definición de multiplicación de números complejos muestra que

$$\alpha\beta = (a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

y

$$\beta \alpha = (c+di)(a+bi) = (ca-db) + (cb+da)i$$

Por lo tanto $\alpha\beta = \beta\alpha$.

Definición 1.2 ($-\alpha$, sustracción, $1/\alpha$) Sea $\alpha, \beta \in \mathbb{C}$

• Sea $-\alpha$ que denota el inverso aditivo de α . Por lo tanto $-\alpha$ es el único número complejo tal que

$$\alpha + (-\alpha) = 0.$$

■ Sustracción en C es definido por:

$$\beta - \alpha = \beta + (-\alpha).$$

■ Para $\alpha \neq 0$, sea $1/\alpha$ denotado por el inverso multiplicativo de α . Por lo tanto $1/\alpha$ es el único número complejo tal que

$$\alpha(1/\alpha) = 1.$$

■ División en C es definido por:

$$\beta/\alpha = \beta(1/\alpha).$$

1.1.1. Listas

Definición 1.3 (Listas, longitud) Supóngase que n es un entero no negativo. Una lista de longitud n es una colección ordenada de n elementos (el cual podría ser números, otras listas, o mas entidades abstractas) separadas por comas y cerradas por paréntesis. Una lista de longitud n se muestra de la siguiente manera:

$$(x_1,\ldots,x_n)$$

Dos listas son iguales si y sólo si tienen la misma longitud y los mismos elementos en el mismo orden.

Las listas difieren de los conjuntos de dos maneras: en las listas, el orden importa y las repeticiones tienen significado; en conjuntos, el orden y las repeticiones son irrelevantes.

1.1.2. F^n

Definición 1.4 (Listas, longitud) \mathbb{F}^n es el conjunto de todas las listas de longitud n de elementos de \mathbb{F}

$$\mathbb{F}^n = \{(x_1, \dots, x_n) : x_j \in \mathbb{F} \text{ para } cada \ j = 1, \dots, n\}.$$

 $Para(x_1,\ldots,x_n) \in \mathbb{F} \ y \ j \in \{1,\ldots,n\}, \ decimos \ que \ x_j \ es \ la \ j-enesima \ coordenada \ de(x_1,\ldots,x_n).$

Definición 1.5 (Adición en \mathbb{F}^n) La adición en F^n es definido añadiendo las correspondientes coordenadas:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

TEOREMA 1.2 Si $x, y \in F^n$, entonces x + y = y + x.

Demostración.- $x = (x_1, \ldots, x_n)$ y $y = (y_1, \ldots, y_n)$. Entonces

$$x + y = (x_1, \dots, x_n) + (y_1, \dots, y_n)$$

$$= (x_1 + y_1, \dots, x_n + y_n)$$

$$= (y_1 + x_1, \dots, y_n x_n)$$

$$= (y_1, \dots, y_n) + (x_1, \dots, x_n)$$

$$= y + x$$

Definición 1.6 (0) Sea 0 la lista de longitud n cuyas coordenadas son todas 0:

$$0 = (0, \dots, 0)$$

Definición 1.7 (Inverso aditivo en \mathbb{F}^n) Para $x \in \mathbb{F}^n$, el inverso aditivo de x, denota por -x, es el vector $-x \in \mathbb{F}^n$ tal que

$$x + (-x) = 0$$

En otras palabras, si $x = (x_1, \ldots, x_n)$, entonces $-x = (-x_1, \ldots, -x_n)$.

Definición 1.8 (Multiplicación scalar en \mathbb{F}^n) El producto de un número λ y un vector en \mathbb{F}^n es calculado por la multiplicación de cada coordenada del vector por λ :

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

donde $\lambda \in \mathbb{F}$ $y(x_1, \dots, x_n) \in \mathbb{F}^n$.

1.1.3. Ejercicios

1.2. Definición de espacio vectorial

La motivación para la definición de un espacio vectorial proviene de las propiedades de la suma y la multiplicación escalar en \mathbb{F}^n : la suma es conmutativa, asociativa y tiene una identidad. Todo elemento tiene un inverso aditivo. La multiplicación escalar por 1 actúa como se esperaba. La suma y la multiplicación escalar están conectadas por propiedades distributivas. Definiremos un espacio vectorial como un conjunto V con una suma y una multiplicación escalar en V que satisfagan las propiedades del párrafo anterior.

Definición 1.9 (Adición y multiplicación escalar)

- Una adición en un conjunto V es una función que asigna un elemento $u + v \in V$ para cada par de elementos $u, v \in V$.
- Una multiplicación escalar en un conjunto V es una función que asigna un elemento $\lambda v \in V$ para cada $\lambda \in \mathbb{F}$ y cada $v \in V$.

Definición 1.10 (Espacio vectorial) Un espacio vectorial es un conjunto V junto con una suma en V y una multiplicación escalar en V tal que se cumplen las siguientes propiedades:

lacksquare Conmutatividad

$$u + v = v + u$$
 para todo $u, v \in V$;

■ Asociatividad

$$(u+v)+w=u+(v+w)$$
 y $(ab)v=a(bv)$ para todo $u,v,w\in V$ y todo $a,b\in \mathbb{F}$;

■ Identidad aditiva

Existe un elemento
$$0 \in V$$
 tal que $v + 0 = v$ para todo $v \in V$;

■ Inverso aditivo

Para cada
$$v \in V$$
, existe $w \in V$ tal que $v + w = 0$;

 $lacktriangleq Identidad\ Multiplicativa$

$$1v = v \ para \ todo \ v \in V$$

■ Propiedad distributiva

$$a(u+v) = au + av \ y \ (a+b)v = av + bv \ para \ todo \ a,b \in \mathbb{F} \ y \ todo \ u,v \in V.$$

Definición 1.11 (Vector, punto) Elementos de un espacio vectorial son llamados vectores o puntos.

Definición 1.12 (Vector, punto)

- Un espacio vectorial sobre \mathbb{R} es llamado un espacio vectorial real.
- lacktriangle Un espacio vectorial sobre $\Bbb C$ es llamado un espacio vectorial complejo.