4/25/03 Density Functional Reary and Effective Feld Reary The Skyrme approach to nuclei is very reminiscent of "It we ignore the original dirivation of the Skyrme energy functional in terms of the Skyrme interaction" and concentrate instead on the functional itself, we can · Consider Re functional as a local density plus gradient expansion of a DFT functional, just like Phose used in Coulomb problems. · Unfortunately, we cannot at present validate the Skyrne ... functional by comparing it to an "ab into" calculation of the energy per porticle of nuclear matter.

- "ab initio" in this case would mean in terms of twoand three-body (Four-body?) potentials lit to NN and few-body scattering data.
We don't have he analog of a Coulomb potential, which can be derived (with well-defined corrections) from the underlying Rall Propy GED. GCD is too hard (it present).

The difficulties in corrying out the ab initio program include technical difficulties in accurately solving the many-body problem and a limited knowledge of the many-budy forces (Arce-body and higher) •In the future, we might succeed in carrying out this
program by using a chiral Lagrangian EFT to parametrize
the low-energy NN and many-body forces.

• There has been significant development along
these lines in recent years.

16 ¹ N	
	4/26/03
	-To make the connection between EFT and DFT, we'll
	use the effective action formalism.
" " " " " " " " " " " " " " " " " " " 	· Arguman and Makov have established that DET can be thought of in terms of Logendre
	DET can be thought of in terms of Logendre
	tantomations
	· We have two things to figure at:
	· We have two things to figure at: · How to systematically carry out the Legendre transformation.
	transformation.
	· How to make the connection to Kohm Sham orbitals.
	We can achieve both goa's for a short-anguel interaction following "Density Functional Teary for a Confined Fermi System with Short-Range Interaction," by Puglia, Bhottacharyya, and Furnstahl, nud-th/03/2071. The system studied could be fermionic atoms in
	following "Density Functional Teory for a Confined
	Fermi System with Short-Range Interaction," by
	Puglia, Chattacharyya, and Furnstahl, nud-th/0212871.
<u> </u>	· The system studied could be fermionic atoms in
	an optical trap => harmonic contining potential.
	an oftical trap => harmonic contining potential. The method is called the "inversion method."
·	'See the paper for further references.
	We start with the short-range Lagrangian:
	Contrib Catalata
<u> </u>	2= 4 [iz+ + 2m] 4 - 5 [44) + (2 [44) (4724) + h.c.]
	+ (474), 404+
	MB 7=5-3
	Matching to the effective-range expansion determines Go Go G:
	$C_0 = \frac{11105}{M}$ $C_2 = C_0 = \frac{4116}{9}$ $C_3 = \frac{4116}{M}$
· · · · · · · · · · · · · · · · · · ·	
	1

4156103
- We all an external potential: (note: it is time independent)
 (2-> x - x >)4(x)4(x)
 which he will take for cactual calculations to be on esotropic hormonic oscillator potential?
 $\sqrt{(2)} = \frac{1}{2} m \omega^2 \vec{x} ^2$
 · We write the generating functional with a source, coupled to the density operator 44;
[S[2] = 6, M[2] = 284 8/4 6, 8/4 (g+2x), (f/wy/x)]
Here x storts for (2,t), so the source is time-dependent in general.
· Note that we could absorb vix) into the definition of Ja), since they both multiply 444.
· Since Pe original system we want corresponds to taking J=0, it is more convenient to leave Pen separate (oflurwise we would be setting to= vx) at le end).
 · Jixi plays the role of an external magnetic field in our spin example. We not to find the ground state when it is set to zero.
The density of the system while $J(x)$ is $J($
 $= \frac{1}{12} \frac{8}{12} \frac{1}{12} \frac{1}{12}$

4/28/03 So now we do the Legendre transformation from WIJ [[2] = W[] - [0] J() P(X) which ensures Plat [[g] does not depend on Jix).
(I.e. ST/SJU, =0). The idea in applying this equation is that we solve (X) = (C) 13 for J(x) as a functional of p(x), and substitute it above to construct (Tp). The possibility of invoting this relation uniquely is guaranteed by the same kind of physics that ensures us that we can solve for a chemical potential in terms of the number of particles. In porticular, WII is strictly ancore. · We can either use a chemical potential to enforce that is fixed, or else by hand make sure that this always holds. We'll do the latter by building P(X), from A normalized wavefunctions - sproved => P(X) = 2/P(X) 12 (sabelow) · We will use time-independent sources from now on, which or appropriate for a ground states. It's possible we could miss the true ground state by neglecting Plese variations, but we'll check for them separately. 4136163 When we work with time independent sources, every contribution to the effective action picks up an ornall Pastor of the time interval over which the source acts, which we'll call T. · Just think of any diagram (f), which can only depend on time differences at the vertices, but we integrate over time everywhere. For N vertices, we can shift it integrations to the time differences, leaving one free integration. For example: (at (ot, flata) = Sota (au flux) with the = to to = T (du, f(u) - We'll divide out the Tand identify the resulting every finitional? E(p) = - (Te)/T (in the paper we also use T[g] = -E[g]).

Note that eve don't divide by the volume V here,
as he have in the past, since we hant the (Finiste) energy of a finite system, not the creamy donsity of a witorm system This every functional is the ground-state energy when evaluated with the ground state density

The third every the functional we are looking for

	41513
	Let's check how this norts out. Going back to
	[[] = W[] - [] X JXI PX)],
	we restrict ourselves to time independent somes and divide out T, defining [\$15] = WIJIT
	=> E[gm) = - [[T(2)] + [03y T])
	$\frac{1}{\sqrt{2u^2}} = \frac{8}{\sqrt{2u^2}}$
)	Take star of E(g(x)):
	SE(0) (SE(0) S(N)) By = -9(X) + (R) + (By (S(N))) T(N)
	$\Rightarrow \left \int_{\mathcal{S}_{N}} \left(\frac{s_{N} g}{s_{N} g} - J_{N} \right) \frac{s_{N} g}{s_{N}} \right = 0$
	But if SAD (SJA) =0, that would mean be couldn't invent to And J[g], so he must have instead Pat
	$\frac{S(x)}{S(x)} = 2(x)$
***************************************	and since TIXI = 0 is our original system, Elg I is extremized for this g.
······································	The role by second The reason.

4155103
Now it is not immediately obvious that we can separate Elg? into a piece independent of vixt and a universal
piece, which is another claim of DFT.
· Hoverer, we can show the decomposition with a
prudent change of variables.
Designate a VIRI = 0 version of W[J] as Wyor. Then since v and J appear in the combination J-V,
Then since y and a appear in the combination J-V,
$\square[2+1] = \square_{-0}[2]$
(Hat is, The VIX) dependence is precisely cancelled.)
for my J(X).
3
Call Jos) the invision of SO(SJ=P and Jos)
Call Jose Pte inversion of ST/SJ= g and Jose) The inversion Stive 185= g for the same density go
(xiz) = (xiz) = (xiz) = (xiz) = (xiz) = (xiz)
oc 201x)
$J_{\varrho}(\vec{x}) = J_{\varrho}^{\varrho}(\vec{x}) + V(\vec{x})$
Thus he have
F = 2
[E[P] = - [[J] + [8x J, x) p(x))
=[-N_v=0[Je]+(dx Jyz)px)+(dx VX)px)
-[-10 1=0-18] + (xx)(x)(x) + (0,x)(x)(x)
$= E_{Y_0}(g) + (\partial^3 x \vee \vec{x}) \rho(\vec{x})$
Thousand I do y has been
which is the promised result,

	4126103
	OK, so now we've got on expression, we still don't
	know how to use it. In outsider, we don't know
	how to carry out the Logender transformation and the
	mersion in particular.
	· We're going to apply what is called the "inversion method" to an EFT exponsion of our effective action.
	to an EFT exponsion of our effective action.
	· We will call the exponsion parameter & generally.
	It could be to in our large N exponsion or
	teas in our dilute exponsion () actually just
	Keeps track of the order - it is not really eyed!
	to keas, since ke only appears at the end when
	he'x evaluated the energy).
	· So me winte E = E[q, X]
	- This is important: The density gols on independent
	variable from λ ; he can stick in any 42) he hant. The special value of girl in the exact ground state, which we'll call girl will depend on λ though the extremization condition:
	· The special value of girt in the exact ground state,
•	much me, I call 8 mill gebeng on y though
	the extremization condition:
	SEGN =01
	29=7 (5192)
	to £ 1 = chancel . When to = it is called to
	Ic, if I is changed, a different gixl is needed to
	solve this equation.
	· We defin E(P,X) as before:
	$E(x, \lambda) = -W[J, \lambda] + (\partial_x J(x) d(x))$
	where JRII here is a Functional of PRI) and a Function of I,

	4/28/03
	orbitals of the Kohn-Sham non-interacting system.
March de	· Substituting into the Esta) expression, we find
	[E o [g] = g \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	If me introduce the kinetic energy Ronational Talel For le
	noninteracting KS system,
	Tole] = 9 = 9 = 18/2 (2m) 1/2)
	$= g \xi \varepsilon + ((z_0 x) - v(x)) g(x) \partial x$
., .	
-()	which gives an atternative expression for Eo:
	Folg] = To[g] + Jo3x v(x) p(x)
<u>-</u>	Now if Folg I were given as an explicit finctional of p
	Pen Jolg I would follow from a functional derivative wit p.
	But that just takes us in circles with the current equalities
	· So at this point we have equations that look like Kohn-Sham, but still no procedure to fine Jalx).
	like Rohn-Sham, but STIII no procedure to the Jalx)
	- But we have all of the higher-order surations involving the
	But we have all of the higher order equations involving the REILPI, WILTI, JILPIP for 131.
	. We know the diagrammatic expansion for WLII, W. LII, and
	(M) (1) > (M) (1) > (M) + (M)

	4126/03
	But the lines in this case are Green's functions in the
	presence of V(X) and whatever J(X) Re W; are evaluated,
_	presence of V(X) and whatever J(X) the W; are evaluated of, Let's check the leading order: (can you see where it comes from?)
	[== 3
	$\boxed{E_{I}[g] = -W_{I}[J_{0}] + \int J_{I}[X] \rho(X) d^{3}X - \int \frac{gW[J]}{gJ(X)} J_{I}[X] d^{3}X}$
-	(F-JK)
	which some to main to Tier to East Flat
	which seems to require knowing JUX) to Find Ealp].
_	0000
	$\sqrt{2} = \frac{8\tilde{\kappa}_0(2)}{8\tilde{\kappa}_0(2)} = (\tilde{\kappa}_0^2)$
	so the last two terms cancel, leaving
	$E_{1}[g] = -W_{1}[J_{0}]$
_	Given Eo[p], he can find Jobs) from
	SE(2) = J(Z) = J(Z) = J(Z)
	26k)
_	Since we simply metch expansions of ELPI and J.
_	
_	So given JoB), we can compute Wolto and Willows:
	16kg (7k, 7, t) = = (1, x) (1, x) = (6, t) (0 (+t) (6, -6, 6)
	- 0(t-t) 0(ex-e;)
	-0(c-t)a(ct. s' 1)
	which yields Gos
	W2[Jo] = = = 9(9-1) Co (8x G/2(x,x+)G/2(x,x+) = = = = = G/2 G/2 / PK)

	4/25/03
	- We find a cancellation between the cromolous and extra diagrams. This continues for the more orders.
	extra diagrams. This continues for the more orders.
	· We can devise a set of Feynman rules implying The new piece , but This is just a detail,
·	the new piece but This is just a detail.
	of effective actions for local fields and non-local composite fields.
	of office actions for local tubes and non-local composite trades.
	· For local Rules, the Logender transformation remains
	ore-particle intermediate states, leaving one-particle-irraduible
	- For non-local composite Relde [Connell-Jackin-Tombulis],
	Re Lagendre transformation removes the porticle intermediate
•	ctales
	So here the role of 5' is to remove intermediate states
<u> </u>	propagating between etty)'s.
	·Finally, we can find Jok?) by returning to:
	
	8E[2]X] = 0
	= 8(Eo[g]+E1g]+ [1]+.)
	SP(R) 19=92
	$= J_0 \overline{x}) + \frac{SE_{in}+R_2}{SP(\overline{x})} = P_0$
	Sp(X) 19=99
	Where the interaction every is
,	
	Fight = & Eilp]
·	

	4/36/03
	Thus, $J_0(\vec{x}) = \frac{SE_{1nt}(p)}{Sp(\vec{x})} = \int D^2(\vec{x}, \vec{x}') \frac{SE_{nnt}(p)}{SJ(\vec{x}')} p_{-1/9}$
	In diagrams!
	= 0 + - 0 +
***************************************	Here's the plan! I choose an approximation to Entle? by truncating at
	Some order in). 3. Make a guess for the tohn Shan potential Jose) 3. Calculate Emptpl starting from Jo. (find 4: onl Ei). 4. Use the above equation to find a now Jose) 5. Repeat 3 and 4 until self-consistent
	This procedure simplifies tremendously in the local density
	opproximation, where Eight [g] = Edgird + Exc [gk]]
	With [= (0) (0) (0) (0) [= (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
	lder En is the every density from the beach ball and higher changeams, calculated at constant "local" density. See the paper for explicit expressions.

