Lógica Quântica Lecture notes and exercise sheet 4

Natural transformations

Rui Soares Barbosa

2022-2023

Definition 1. Let \mathbf{C} and \mathbf{D} be categories, and let $F: \mathbf{C} \longrightarrow \mathbf{D}$ and $G: \mathbf{C} \longrightarrow \mathbf{D}$ be functors. A natural transformation η from F to G, written $\eta: F \Longrightarrow G$, is given by an arrow $\eta_A: FA \longrightarrow GA$ of \mathbf{D} for each object $A \in \mathsf{Ob}(\mathbf{C})$ satisfying the following property, called naturality: for every arrow $h: A \longrightarrow B$ in \mathbf{C} ,

$$\eta_B \circ Fh = Gh \circ \eta_A$$
,

i.e. the following diagram commutes:

$$FA \xrightarrow{\eta_A} GA$$

$$\downarrow^{Ff} \qquad \qquad \downarrow^{Gf}$$

$$FB \xrightarrow{\eta_B} GB$$

The natural transformation η is called a *natural isomorphism* if each η_A is an iso.

Exercise 1. Recall the functor List: Set \longrightarrow Set from exercise 3.5. Show that the following are natural transformations:

(a) reverse: List \Longrightarrow List where

$$\mathsf{reverse}_X \colon \mathsf{List}X \longrightarrow \mathsf{List}X :: [x_1, \dots, x_n] \longmapsto [x_n, \dots, x_1] ;$$

(b) unit: $Id \Longrightarrow List where$

$$\mathsf{unix}_X \colon X \longrightarrow \mathsf{List}X :: x \longmapsto [x] ;$$

(c) flatten: List \circ List \Longrightarrow List where

$$\mathsf{flatten}_X \colon \mathsf{List}(\mathsf{List}X) \longrightarrow \mathsf{List}X \\ \coloneqq [[x_{1,1}, \dots, x_{1,k_1}], \dots, [x_{n,1}, \dots, x_{n,k_n}]] \\ \longmapsto [x_{1,1}, \dots, x_{1,k_1}, \dots, x_{n,1}, \dots, x_{n,k_n}] \\ \ \vdots \\ \$$

 $\mathrm{(d)} \ \mathsf{concat} \colon \mathsf{List} \times \mathsf{List} \Longrightarrow \mathsf{List} \ \mathrm{where}$

$$\operatorname{concat}_X : \operatorname{List}X \times \operatorname{List}X \longrightarrow \operatorname{List}X :: ([x_1, \dots, x_n], [y_1, \dots, y_m],) \longmapsto [x_1, \dots, x_n, y_1, \dots, y_m]$$

Exercise 2. Let $D: \mathbf{Set} \longrightarrow \mathbf{Set}$ be the functor $D = \times \circ \langle \mathsf{Id}, \mathsf{Id} \rangle$ mapping a set X to $X \times X$ and a function f to $f \times f$, and let $P_1: \mathbf{Set} \times \mathbf{Set} \longrightarrow \mathbf{Set}$ be the functor mapping (X,Y) to X and (f,g) to f.

- (a) Show that $\Delta_X : X \longrightarrow X \times X :: x \longmapsto (x,x)$ defines a natural transformation $\mathsf{Id} \Longrightarrow D$.
- (b) Show that $p_{X,Y}: X \times Y \longrightarrow X :: (x,y) \longmapsto x$ defines a natural transformation $x \Longrightarrow P_1$.
- (c) Show that the Δ and p are the only natural transformations between these functors.

Exercise 3. Define analogous transformations Δ and p for any category C with binary products.

Exercise 4. Let \mathbb{C} be a category with a terminal object T. Let $K_T \colon \mathbb{C} \longrightarrow \mathbb{C}$ be the constant functor with value T, i.e. K_T maps any object to T and any arrow to id_T . Show that the canonical arrows to the terminal object, $\tau_A \colon A \longrightarrow T$ define a natural transformation $\mathrm{Id}_{\mathbb{C}} \Longrightarrow K_T$.

Exercise 5 (Uniform deleting). Let \mathbb{C} be a category and T be any object of \mathbb{C} . A category \mathbb{C} has uniform deleting to T if there is a natural transformation $e: \mathsf{Id}_{\mathbb{C}} \Longrightarrow K_T$ with $e_T = \mathsf{id}_T$. Show that \mathbb{C} has uniform deleting to T if and only if T is terminal.

Exercise 6. Recall the definition of dual of a vector space from exercise 3.6. Let V be a finite-dimensional vector space.

- (a) Show that V is isomorphic to its dual V^* and second dual V^{**} .
- (b) Show that the isomorphism $V \cong V^{**}$ is natural, while there is no natural isomorphism $V \cong V^{*}$. Note how this is related to *basis independence*.

Exercise 7. Let **C** be a category with binary products and a terminal object **1**. Show that there are natural isomorphisms:

- (a) $a_{A,B,C}: A \times (B \times C) \xrightarrow{\cong} (A \times B) \times C$ (Hint: $\langle \langle \pi_1, \pi_1 \circ \pi_2 \rangle, \pi_2 \circ \pi_2 \rangle$.
- (b) $s_{A,B} \colon A \times B \xrightarrow{\cong} B \times A$
- (c) $l_A \colon \mathbf{1} \times A \xrightarrow{\cong} A$
- (d) $r_A : A \times \mathbf{1} \xrightarrow{\cong} A$

Exercise 8. Let P,Q be posets (seen as categories) and $f,g:P\longrightarrow Q$ be functors, i.e. monotone functions. When is there a natural transformation $f\Longrightarrow g$?

Yoneda lemma