Projet Foot Cours 5 21013

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr

Université Pierre et Marie Curie (UPMC) Laboratoire d'Informatique de Paris 6 (LIP6)

S2 (2015-2016)

Plan

Résultats de la semaine

Perceptron

Reinforcement Learning

Tournoi 1v1

```
psg (luluperet): 54 (18,0,0) - (133,9) lob (nihaakey): 45 (15,0,3) - (133,28) DZPOWER (Raouf16): 38 (12,2,4) - (85,27) team2 (Kabegami): 37 (12,1,5) - (70,30) JSK (lounisAmazigh): 30 (10,0,8) - (66,65) lalyal (hmdd): 28 (9,1,8) - (57,57) team1 (ad50144124): 18 (6,0,12) - (42,50) Warrior (Asparodia): 8 (2,2,14) - (22,85) equipel1 (jordanupmc): 8 (2,2,14) - (35,105) team1 (3408247): 0 (0,0,18) - (2,189)
```

Tournoi 2v2

```
*** Resultats pour le tournoi 2 joueurs : ***
lob (nihaakey) : 42 (13,3,2) - (61,11)
JSK (lounisAmazigh) : 40 (13,1,4) - (79,15)
lalya2 (hmdd) : 36 (10,6,2) - (91,14)
team1 (Kabegami) : 33 (8,9,1) - (71,6)
Tremblez! (Asparodia) : 33 (10,3,5) - (79,24)
DZPOWER (Raouf16) : 29 (9,2,7) - (73,45)
psg (luluperet) : 21 (7,0,11) - (66,106)
equipe2 (jordanupmc) : 17 (5,2,11) - (29,36)
team2 (3408247) : 6 (2,0,16) - (20,132)
team1 (ad50144124) : 0 (0,0,18) - (0,180)
```

Tournoi 4v4

```
*** Resultats pour le tournoi 4 joueurs : ***
DZPOWER (Raouf16) : 27 (9,0,0) - (62,2)
lob (nihaakey) : 24 (8,0,1) - (43,4)
JSK (lounisAmazigh) : 21 (7,0,2) - (44,10)
team4 (Kabegami) : 16 (5,1,3) - (42,10)
Lel (Asparodia) : 16 (5,1,3) - (33,14)
equipe4 (jordanupmc) : 10 (3,1,5) - (38,12)
team1 (ad50144124) : 10 (3,1,5) - (31,18)
mars (luluperet) : 6 (2,0,7) - (20,83)
team4 (3408247) : 3 (1,0,8) - (10,80)
lalya4 (hmdd) : 0 (0,0,9) - (0,90)
```

Un peu de recule sur les arbres de décisions

- Peut-on tout apprendre?
- De quelle forme sont les règles apprises ?

Un peu de recule sur les arbres de décisions

- Peut-on tout apprendre?
- De quelle forme sont les règles apprises ?

Plan

Résultats de la semaine

Perceptron

Reinforcement Learning

Inspiration biologique

Le cerveau

- Robuste, tolérant aux fautes
- Flexible, sait s'adapter
- Gère les informations incomplètes
- Capable d'apprendre

Composé de neurones !

- 10¹¹ neurones dans un cerveau humair
- 10⁴ connexions par neurones
- Potentiel d'action, neuro-transmetteurs, période réfractaire
- Signaux excitateurs / inhibiteurs

Problèmes

- Opacité des raisonnements
- Opacité des résultats

Inspiration biologique

Le cerveau

- Robuste, tolérant aux fautes
- Flexible, sait s'adapter
- Gère les informations incomplètes
- · Capable d'apprendre

Composé de neurones!

- 10¹¹ neurones dans un cerveau humain
- 10⁴ connexions par neurones
- Potentiel d'action, neuro-transmetteurs, période réfractaire
- Signaux excitateurs / inhibiteurs

Problèmes

- Opacité des raisonnements
- Opacité des résultats

Historique

Prémisses

- Mc Cullch et Pitts (1943): 1er modèle de neurone formel. Base de l'IA
- Règle de Hebb (1949) : apprentissage par renforcement du couplage synaptique

Premières réalisations

- Adaline (Widrow-Hoff, 1960)
- Perceptron (Rosenblatt, 1958-1962)
- Analyse de Minsky et Papert (1969)

Développement

- Réseau bouclé (Hopfield 1982)
- Réseau multi-couches (1985)

Deuxième renaissance

Réseaux profonds (2000-)

Le perceptron de Rosenblatt (1960)

L'idée

- Reconaissance de forme (pattern) entre deux classes
- Inspirée cortex visuel

- Chaque cellule d'association produit une sortie f_i(S) en fonction d'un stimulus
- La cellule de décision répond selon une fonction seuil $f_d(\sum w_i f_i(S_i))$

Formalisation

Le perceptron considère

•
$$f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{w} \rangle = \sum_{i=1}^{d} x_i w_i$$

- Fonction de décision : g(x) = sign(x)
- \rightarrow Sortie: $g(f(\mathbf{x})) = sign(\langle \mathbf{x}, \mathbf{w} \rangle)$

Considérations géométriques

Soit y(x) la sortie attendue :

- Que représente w par rapport à la séparatrice ?
- Que représente < wx > ?
- Que représente $y(x) < \mathbf{wx} >$?
- A quoi correspond la règle de mise à jour :
 - Si $(y(x) < \mathbf{w}.\mathbf{x} >) > 0$ ne rien faire
 - Si $(y(x) < \mathbf{w}.\mathbf{x} >) < 0$ corriger $\mathbf{w} = \mathbf{w} + y(x)x$?

Considérations géométriques

Soit y(x) la sortie attendue :

- Que représente w par rapport à la séparatrice ?
- Que représente < wx > ?
- Que représente $y(x) < \mathbf{w}\mathbf{x} >$?
- A quoi correspond la règle de mise à jour :
 - Si $(y(x) < \mathbf{w}.\mathbf{x} >) > 0$ ne rien faire
 - Si $(y(x) < \mathbf{w}.\mathbf{x} >) < 0$ corriger $\mathbf{w} = \mathbf{w} + y(x)x$?

Algorithme de résolution

Algorithme du perceptron

- Initialiser au hasard w

 Tanka ''' a'

 Tanka '''

 Tanka
- Tant qu'il n'y a pas convergence :
 - pour tous les exemples (x^i, y^i) :
 - si $(y^i < \mathbf{w}.\mathbf{x}^i >) < 0$ alors $\mathbf{w} = \mathbf{w} + \epsilon y^i x^i$
- Décision : f(x) = sign(< wx >)

Problèmes "durs"

Non linéairement séparable

Que faire?

Problèmes "durs"

Transformation de la représentation

• On augmente d'une dimension : $(x_1, x_2) \rightarrow (x_1, x_2, x_1x_2)$

- Le problème est de nouveau séparable linéairement!
- Autre solution ?

Deux neurones

- Combiner des neurones → augmente l'expressivité
- Création de dimensions nouvelles, de nouveaux features

Deux neurones

- Combiner des neurones → augmente l'expressivité
- Création de dimensions nouvelles, de nouveaux features

Topologie typique

Couche d'entrée

Couche cachée

Couche de sortie

Flot des signaux

Pour chaque neurone :

$$y_k = g\left(\sum_{j=0}^d w_{j,k}\phi_j\right) = g\left(a_k\right)$$

οù

- w_{j,k}: poids de la connexion de la cellule j à la cellule k
- a_k : activation de la cellule k
- g: fonction d'activation

Fonction d'activation

Fonction à seuil

Fonction à rampe

Fonction radiale

• Fonction sigmoïde

•
$$g(a) = \frac{1}{1 + \exp(-a)}$$

•
$$g(a) = \frac{1}{1 + \exp(-a)}$$

• $g'(a) = g(a)(1 - g(a))$

Réseaux de neurones

- Pouvoir expressif très grand
- Plus difficile à apprendre
- Résaux profonds (*Deep Learning*): ont révolutionné la reconnaissance d'image et beaucoup d'autres domaines depuis une dizaine d'année.

Plan

Résultats de la semaine

Perceptron

Reinforcement Learning

Modélisation agent

- Environnement : tout ce qui est extérieur à l'agent
- Etat : ce que perçoit l'agent
- Action : ce que peut décider l'agent
- Récompense : donnée par l'environnement de l'agent
- ⇒ Objectif : maximiser les récompenses

Formalisation

Modélisation

- L'environnement : un ensemble d'observations $\mathcal{O} = \{O_1, \dots, O_o\}$
- Les états : S = {s₁,...,s_s} ⇒ un vecteur de R^d, la sortie de la fonction gen_feature
- Les actions : $A = \{a_1, \dots, a_a\} \Rightarrow$ les stratégies "simples"
- Les récompenses dans ℝ.

Une séquence de jeu $\mathcal T$

- c'est une séquence de triplets (observation, action, récompense) : $\{(o_{t_1}, a_{t_1}, r_{t_1}), (o_{t_2}, a_{t_2}, r_{t_2}), \dots, (o_{t_T}, a_{t_T}, r_{t_T})\}$
- La récompense : $R = r_{t_1} + r_{t_2} + \dots r_{t_T}$
- A noter: s_i = gen_feature(o_t), l'état "vu" par l'agent est une transformation de l'observation.

Apprentissage par renforcement

Principe

- apprendre une politique pour réagir à l'environnement
- \Rightarrow une fonction $\pi(s)$ renvoyant pour chaque état une action ou une distribution de probabilité sur les actions
 - Objectif: trouver la politique qui maximise l'espérance des récompenses

Notion fondamentale : fonctions (équivalentes)

- de valeur d'état $v_\pi(s)=\mathbb{E}_\pi(r_{t+1}+\gamma r_{t+2}+\gamma^3 r_{t+3}+\ldots+\gamma^T r_T|s_t=s) \text{ prédit le score d'un état}$
- de valeur d'action $Q_{\pi}(s,a) = r_t + \gamma \sum_{s'} P_{\pi}(s'|s) v_{\pi}(s)$ prédit le score d'une action entreprise dans un état donné.

Pour évaluer ses fonctions, besoin de simulations (beaucoup) !

Exemple : labyrinthe ment valeur d'état

Start

Goal

environnement

valeur d'eta

-12 -11 -10

meilleur action

-21

Goal

Apprentissage par renforcement

Beaucoup de variantes possibles

- Value based : pas d'estimation de la politique, uniquement de la fonction de valeur
- Policy based : pas de fonction de valeur, estimation de la politique
- · Actor critic: mixe des deux
- Model based : estime le modèle de transition entre états, et les récompenses attendues
- Model free : pas de modèle à estimer

Exploration vs exploitation : essai-erreur

- Au tout début, on ne connait rien!
- la politique initiale : au hasard
- Besoin de tester de nouveaux choix pour certains états, voir si ca améliore le score global ⇒ Exploration
- Mais pas trop! se guider des bons choix actuels ⇒ Exploitation

Q-learning

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
```

Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$

 $S \leftarrow S';$ until S is terminal