Search Criteria	BreadthFirst	DepthFirst	IterativeDeepening
Completeness?	Yes	No	Yes
Optimality?	Yes	No	Yes
Time	b^d	b^m	b^d
Space	h ^d b ^a	bm bm	(bd) bd

b - maximum branching factor of the search tree d - depth of the least-cost solution m - maximum depth of state space (may be so)

Properties of Greedy Best-First – without g

Complete ??

Optimal?? Time complexity ??

Space complexity ??

Properties of A*

Complete ?? Optimal??

Time complexity ??

Space complexity ??

No, can get stuck in loops

 $O(b^m)$

keep all nodes in memory

h(n) never overestimate cost

Yes

Yes - if h(n) is both admissible & consistent for graph

 $O(b^m)$

 $O(b^m)$, 1

keep all nodes in memory

Criteria	Characteristics	
completeness	does it always find a solution if one exists?	
optimality	does it always find a least-cost solution?	
time complexity	number of nodes generated/expanded	
space complexity	maximum number of nodes in memory	

Main issue of A*: run out of memory - not practical for many large scale problems

Properties of Minimax

Complete ?? Yes, if tree is finite (Chess has specific rules)

Optimal?? Yes, against an optimal opponent

Time complexity ?? $O(b^m)$

Space complexity ?? O(b*m) (depth-first exploration)

Chess: b = 35, m = 100 for 'reasonable' games

⇒ Exact solution completely infeasible

But do we need to explore every path?

=> Search efficiency is crucial

Properties of Alpha-beta

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = $O(b^{m/2})$ ⇒ doubles solvable depth

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35⁵⁰ is still impossible!

When Brute Force Minimax/Alpha-Beta are no longer applicable, how could it possibly "plan" ahead when there are so many potential moves and counter moves in GO?

	complete	optimal	time	space
BFS	Yes	Yes	bod	bd
DFS	No	No	P _w	b·m
IDS	Yes	Yes	b d	b - d
Greedy-Bf	No	No	b m	b ^m
A*	Yes	Yes	b ^m	bm if him admissiable
Minimax	Yes	Yes	bm	b·m (美DFS)
Q-B prune	Yes	Yes	6 m	b·m