

FIG._ 1A

SEQ ID NO: 1

Nucleotide Sequence Tankyrase Homologue isotype1

CTTGAAAGACACTGGATTCATACTTTGCCTGGGTTATCTCTGTGTCTCACTACATAGACAAATA
TTAGCTGTGAGCAGATCTTTTGTGCTTGTAGTCCCCCAGTTAGCAGAAACATTCTGTGAGA
TAGATGTGGGAAAGGAATTCTAGCAAGAGTTGTCACTGTATCATAAGGTTGTGATTACATATTAA
GTTTATACTTGAACATCTGAAAATGTATACATACTAAATATGCAGAACTCTATTGTAGAGTGAGAAA
CATTGAACTTGAGCTTCAGTCACTTTTGTATTCTTCTTGAGGTTAGCAGTAGTACCAACCCA
AGGCAC TGCTTAGGTACCTGCTGCTTAGTGGAGAGTCCCTGCGTTATCATTAAAGGTTGGCG
GAAAGACGTAGTTGAATATTGCTTCAGAATGGTCAAGTGTCCAAGCACGTGATGATGGGGCCCTAT
TCCTCTCATATGCATGCTCTTGGTCACTGCTGAAGTAGTCAATCTCCTTGCACATGGTGCAGA
CCCCAATGCTCGAGATAATTGGAATTATACTCCTCTCCATGAAGCTGCAATTAAAGGAAAGATTGATGT
TTGCATTGTGCTGTTACAGCATGGAGCTGAGCCAACCATCCGAAATACAGATGGAAGGACAGCATGGA
TTTAGCAGATCCATCTGCCAAGCAGTGCTTACTGGTGAATATAAGAAAGATGAACTCTTAGAAAGTGC
CAGGAGTGGCAATGAAGAAAAATGATGGCTACTCACACCATTAAATGTCAACTGCCACGCAAGTGA
TGGCAGAAAGTCAACTCCATTACATTGGCAGCAGGATATAACAGAGTAAAGATTGTACAGCTGTTACT
GCAACATGGAGCTGATGTCCATGCTAAAGATAAAGGTGATCTGGTACCATACACAATGCCTGTTCTA
TGGTCATTATGAAGTAAGTAACTGAACTTTGGTCAAGCATGGCCTGTGTAATGCAATGGACTTGTGGCA
ATTCACTCCTCTCATGAGGCAGCTCTAAGAACAGGGTTGAAGTATGTTCTCTCTTAAGTTATGG
TGCAGACCCAACACTGCTCAATTGTCACAATAAAAGTGTCTAGACTGGCTCCCACACCACAGTTAA
AGAAAGATTAGCATATGAATTAAAGGCCACTCGTTGCTGCAAGCTGCAAGGAGCTGATGTTACTCG
AATCAAAAAACATCTCTCTGGAAATGGTGAATTCAAGCATCCTCAAACACATGAAACAGCATTGCA
TTGTGCTGCTGCATCTCCATATCCAAAAGAAAGCAAATATGTGAACTGTTGCTAAGAAAAGGAGCAAA
CATCAATGAAAAGACTAAAGAATTCTTGACTCCTCTGCACGTGGCATCTGAGAAAGCTCATAATGATGT
TGGTGAAGTAGTGGTGAACATGAAGCAAAGGTTAATGCTCTGGATAATCTGGTCAGACTCTACA

CAGAGCTGCATATTGTGGTCATCTACAAACCTGCCGCCTACTCCTGAGCTATGGGTGTGATCCTAACAT
TATATCCCTCAGGGCTTACTGCTTACAGATGGAAATGAAAATGTACAGCAACTCCTCCAAGAGGG
TATCTCATTAGGTAAATTCAAGAGGCAGACAGACAATTGCTGGAAGCTGCAAAGGCTGGAGATGTCGAAAC
TGTAAAAAAACTGTGTACTGTCAGAGTGTCAACTGCAGAGACATTGAAGGGCGTCAGTCTACACCACT
TCATTTGCAGCTGGGTATAACAGAGTGTCCGTGGAAATATCTGCTACAGCATGGAGCTGATGTGCA
TGCTAAAGATAAAGGAGGCCTGTACCTTGACAAATGCATGTTCTATGGACATTATGAAGTTGCAGA
ACTTCTGTTAACATGGAGCAGTAGTTAATGTAGCTGATTATGAAATTACACCTTACATGAAGC
AGCAGCAAAAGGAAAATATGAAATTGCAAACCTCTGCTCCAGCATGGTGCAGACCCCTACCAAAAAAA
CAGGGATGGAATACTCCTTGGATCTGTTAAAGATGGAGATACAGATATTCAAGATCTGCTTAGGG
AGATGCAGCTTGCTAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGTGAAGAAGTTGTCTTCTCCTGA
TAATGTAATTGCCGCGATAACCAAGGCAGACATTCAACACCTTACATTAGCAGCTGGTTATAATAA
TTTAGAAGTTGCAGAGTATTGTTACAACACGGAGCTGATGTGAATGCCAAGACAAAGGAGGACTTAT
TCCTTACATAATGCAGCATCTACGGGCATGTAGATGTAGCAGCTCTACTAATAAGTATAATGCATG
TGTCAATGCCACGGACAAATGGGCTTACACCTTGCACGAAGCAGCCAAAGGGACGAACACAGCT
TTGTGCTTGTGCTAGCCATGGAGCTGACCCGACTCTAAAAATCAGGAAGGACAAACACCTTAGA
TTTAGTTTCAGCGGATGATGTCAGCGCTCTGACAGCAGCCATGCCCATCTGCTCTGCCCTTTG
TTACAAGCCTCAAGTGCCTAATGGTGTGAGAAGCCCAGGAGCCACTGCAGATGCTCTTCAGGTCC
ATCTAGCCCATCAAGCCTTCTGCAGCCAGCAGCTTGACAACCTATCTGGAGTTTCAGAACTGTC
TTCAGTAGTTAGTTCAAGTGGAACAGAGGGTGCTCCAGTTGGAGAAAAGGAGGTTCCAGGAGTAGA
TTTAGCATAACTCAATTGTAAGGAATCTGGACTTGAGCACCTAATGGATATATTGAGAGAGAAC
GATCACTTGGATGTATTAGTTGAGATGGGGCACAAGGAGCTGAAGGAGATTGAATCAATGCTTATGG
ACATAGGCACAAACTAATTAAAGGAGTCGAGAGACTTATCTCCGGACAACAAGGTCTAACCCATATTT
AACTTTGAACACCTCTGGTAGTGGAAACAATTCTTATAGATCTGTCCTGATGATAAAGAGTTTCAGTC
TGTGGAGGAAGAGATGCAAAGTACAGTTGAGAGCACAGAGATGGAGGTATGCAGGTGGAATCTCAA
CAGATACAATATTCTCAAGATTCAAGGTTGTAACAAGAAACTATGGAAAGATAACACTCACCGGAG
AAAAGAAGTTCTGAAGAAAACCACAACCATGCCAATGAACGAATGCTATTCTATGGGTCTCCTTGT
GAATGCAATTATCCACAAAGGCTTGATGAAAGGCATGCGTACATAGGTGTATTTGGAGGAGGTACTGGGTGTCC
AGTTCACAAAGACAGATCTGTTACATTGCCACAGGCAGCTGCTCTTGCCTGGTAACCTGGAAA
GTCTTCTGCAGTTGCAATGAAAATGGCACATTCTCCTCCAGGTATCACTCAGTCAGTCACTGGTAG
GCCCAAGTGTAAATGGCCTAGCATTAGCTGAATATGTTATTTACAGAGGAGAACAGGCTTATCCTGAGTA
TTAATTACTTACCAAGATTATGAGGCCTGAAGGTATGGTCATGGATAAATAGTTATTTAAGAAACTA
ATTCCACTGAACCTAAATCATCAAAGCAGCAGTGGCCTACGTTACTCCTTGCTGAAAAAA
AA

FIG._ 1B

FIG._2A

SEQ ID NO: 2

Nucleotide Sequence Tankyrase Homologue isotype2

CGCGCTGCCGCCGCCGGGGCAGCCGGGGCAGGGAGCCCAGCGAGGGCGCGCGTGGCGCG
CCCATGGGACTGCGCCGGATCCGGTGACAGCAGGGAGCCAAGCGGCCGGGCCCTGAGCGCGTCTCTC
CGGGGGCCTCGCCCTCTGCTCGCGGGCCGGGCTCTGCTCCGGTGTGGCGCTGGCTGGCTG
TGGCGCGGCCAGGATCATGTCGGGTCGCCGCTGCCGGGGAGCGGCCTGCGGAGCGCCGG
CCGAGGCCGTGGAGGCCGGCCGAGAGCTGTTGAGGGCGTCCGCAACGGGACGTGGAACGAGTCA
AGAGGCCTGGTACGCCCTGAGAAGGTGAACAGCCGACACGGGGCAGGAATCCACCCGCTGCACT
TCGCCGCAGGTTGGCGAAAGACGTAGTTGAATATTGCTTCAGAATGGTCAAATGTCCAAGCAC
GTGATGATGGGGCCTATTCTCTTCAATGCATGCTCTTGGTATGCTGAAGTAGTCAATCTCC
TTTGCGACATGGCAGACCCCAATGCTGAGATAATTGAAATTACTCCCTCCATGAAGCTGCAA
TTAAAGGAAAGATTGATGTTGCATTGTGCTGTTACAGCATGGAGCTGAGCCAACCCTCGAAATACAG
ATGGAAGGACAGCATTGGATTAGCAGATCCATGCCAAAGCAGTGTTACTGGTGAATATAAGAAAG
ATGAACCTTAGAAAGTCCAGGAGTGGCAATGAAGAAAAATGATGGCTCTACTCACACCAATTAAATG
TCAACTGCCACGCAAGTGAATGGCAGAAAGTCAACTCCATTACATTGGCAGCAGGATATAACAGAGTAA
AGATTGTACAGCTGTTACTGCAACATGGAGCTGATGTCCATGCTAAAGATAAAGGTGATCTGGTACCAT
TACACAATGCCCTTTATGGTCAATTGAAGTAATGAACTTTGGTCAAGCATGGCCTGTGAA
ATGCAATGGACTTGTGGCAATTCACTCCCTTCACTGAGGGCAGCTCTAAGAACAGGGTTGAAGTATGTT
CTCTCTCTTAAGTTATGGCAGACCCAACACTGCTCAATTGTACAATAAAAGTGTATAGACTTGG
CTCCCACACCAGTTAAAGAAAGATTAGCATATGAATTAAAGGCCACTCGTTGCTGCAAGCTGCAC
GAGAAGCTGATGTTACTCGAATAAAAACATCTCTGGAAATGGTGAATTCAAGCATCCTCAAA
CACATGAAACAGCATTGCATTGTGCTGCATCTCCATATCCAAAAGAAAGCAAATATGTGAACGT
TGCTAAGAAAAGGAGCAAACATCAATGAAAAGACTAAAGAATTCTGACTCCTCTGCACGTGGCATCTG
AGAAAGCTCATAATGATGTTGAAGTAGTGGTAAACATGAAGCAAAGGTTAATGCTCTGGATAATC

TTGGTCAGACTTCTACACAGAGCTGCATATGTGGTCATCTACAAACCTGCCGCCTACTCCTGAGCT
ATGGGGTGTGATCCTAACATTATATCCCTCAGGGCTTACTGCTTACAGATGGAAATGAAAATGTAC
AGCAACTCCTCCAAGAGGGTATCTCATTAGTAATTAGGACAGAGACAGACAATTGCTGGAAGCTGAA
AGGCTGGAGATGTCGAAACTGTAAAAAAACTGTGTACTGTTAGAGTGTCAACTGCAGAGACATTGAAG
GGCGTCAGTCTACACCACTCATTGAGCTGGTATAACAGAGTGTCCGTGGTGGAAATATCTGCTAC
AGCATGGAGCTGATGTGCATGCTAAAGATAAAGGAGGCCTGTACCTTGACAATGCATGTTCTATG
GACATTATGAAGTTGAGACTTCTTAAACATGGAGCAGTAGTTAATGTAGCTGATTATGGAAAT
TTACACCTTACATGAAGCAGCAGCAAAAGGAAATATGAAATTGCAAACCTCTGCTCCAGCATGGT
CAGACCCCTACCAAAAAAAACAGGGATGAAATACTCCTTGGATCTGTTAAAGATGGAGATAAGATA
TTCAAGATCTGCTTAGGGGAGATGAGCTTGTAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGTGA
AGAAGTTGTCTCTCCTGATAATGTAATTGCGCGATAACCAAGGCAGACATTCAACACCTTACATT
TAGCAGCTGGTTATAATAATTAGAAGTTGAGCTGAGTATTGTTACAACACGGAGCTGATGTGAATGCC
AAGACAAAGGAGGACTTATCCTTACATAATGAGCTTACGGGATGCTAGATGTAGCAGCTCTAC
TAATAAAGTATAATGCATGTGCAATGCCACGGACAAATGGCTTACACCTTGACAGCAGGCC
AAAAGGGACGAACACAGCTTGTGCTTGTGCTAGCCCATGGAGCTGACCCACTCTAAAAATCAGG
AAGGACAAACACCTTGTAGATTAGTTGCTAGCAGGATGTCAGCGCTCTGACAGCAGCCATGCC
CATCTGCTCTGCCCTTTGTTACAAGCCTCAAGTGTCAATGGTGAGAAGGCCAGGAGCCACTGCAG
ATGCTCTCTTCAGGTCCATCTAGCCCATCAAGCCTTCTGCAGCCAGCAGTCTGACAACCTATCTG
GGAGTTTCAGAACTGTCTCAGTAGTTAGTTGCTAGCAGGATGTCAGCGCTCTGACAGCAGCCATGCC
AGGAGGTTCCAGGAGTAGATTAGCTAACTCAATTGTAAGGAATCTGGACTTGAGCACCTAATGG
ATATATTGAGAGAGAACAGATCACTTGGATGTTAGTTGAGATGGGCACAAGGAGCTGAAGGAGA
TTGGAATCAATGCTTATGGACATAGGCACAAACTAATTAAAGGAGTCAGAGAGACTTATCTCCGGACAAC
AAGGTCTAACCCATATTTAACCTTGAACACCTCTGGTAGTGGAAACAATTCTTATAGATCTGCTCTG
ATGATAAAGAGTTCAGTCTGTGGAGGAAGAGATGCAAAGTACAGTTGAGAGCACAGAGATGGAGGTC
ATGCAGGTGGAATCTCAACAGATAAACTTCAAGATTGAGCTGAAAGGTTGTAACAAGAAACTATGGG
AAAGATAACACTCACCGGAGAAAAGAAGTTCTGAAGAAAACCACAACCATGCCAATGAACGAATGCTAT
TTCATGGGTCTCTTGTGAATGCAATTATCCACAAAGGCTTGTGAAAGGCATGCGTACATAGGTG
GTATGTTGGAGCTGGCATTATTTGCTGAAAACCTTCCAAAGCAATCAATATGTATATGGAATTG
GAGGAGGTACTGGGTGTCAGTCACAAAGACAGATCTTGTACATTGCCACAGGAGCTGCTCTT
GCCGGGTAACCTGGAAAGTCTTCCGTGAGTCAGTGCATGAAATGGCACATTCTCCAGGTC
ATCACTCAGTCAGTGTAGGCCAGTGTAAATGCCCTAGCATTAGCTGAATATGTTATTACAGAGGAG
AACAGGCTTATCCTGAGTATTAATTACTTACAGATTATGAGGCCTGAAGGTATGGTCATGGATAAA
TAGTTATTTAAGAAACTAATTCCACTGAACCTAAATCATCAAAGCAGCAGTGGCCTACGTTTAC
TCCTTGCTGAAAAAA

FIG._2B

SEQ ID NO: 3

Amino Acid Sequence Tankyrase Homologue isotype1

GFGRKDVEYLLQNGASVQARDDGGIPLHNACSGHAEVVNLLRHGADPNARDNWNYTPLHEAAIKG
KIDVCIVLLQHGAEPITIRNTDGRTALDLADPSAKAVLTGEYKKDELLESARSGNEEKMALLTPLNVNC
HASDGRKSTPLHLAAGYNRVKIVQLLQHGADVHAKDKGDLVPLHNACSYGHYEVTELLVKHGACVNAM
DLWQFTPPLHEAASKNRVEVCSLLLSYGADPTLLNCHNKSAILDAPTPQLKERLAYEFKGHSLLQAAREA
DVTRIKKHLSEMVNFHPQTHETALHCAAASPYPKRKQICELLRKGANINEKTKEFLTPLHVASEKA
HNDVVEVVVKHEAKVNALDNLGQTSLHRAAYCGLQTCRLLLSYGCDPNIISLQGFTALQMGNENVQQL
LQEGISLGNSEADRQLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQSTPLHFAAGYNRVSVVEYLLQHG
ADVHAKDKGGLVPLHNACSYGHYEVAAELLVKHGAVVNADLWKFTPLHEAAAKGKYEICKLLLQHGADP
TKKNRDGNTPLDLVKDGDTIQDLLRGDAALLDAAKKGCLARVKKLSSPDNVNCRDTQGRHSTPLHAA
GYNNEVAEYLLQHGADVNAQDKGGIPLHNAAASYGHVDVAALLIKYNACVNATDKWAFTPLHEAAQKG
RTQLCALLLAHGADPTLKNQEGQTPLDLVSADDVSALLTAAMPPSALPSCYKPQVLNGVRSPGATADAL
SSGPSSPSSLSAASSLDNLSGSFSELSSVSSSGTEGASSLEKKEVPGVDFSITQFVRNLGLEHLMDF
EREQITLDVLVEMGHKELKEIGINAYGHRHKLIKGVVERLISGQQGLNPYLTINTSGSGTILIDLSPDDK
EFQSVEEEMQSTVREHRDGGHAGGI FNRYNILKIQKVCNKKLWERYTHRRKEVSEENHNHANERMLFHG
SPFVNAAIHKGDERHAYIGGMFGAGIYFAENSSKSNQYVYIGGGTGCVPVKDRSCYICHRLQLFCRV
TLGKSFLQFSAMKMAHSPPGHHSVTGRPSVNGLALAELYRGEQAYPEYLITYQIMRPEGMVDG

FIG._3

SEQ ID NO: 4

Amino Acid Sequence Tankyrase Homologue isotype2

RCSARRGAAGGQGAQRGARVGAAHGTAPDPVTAGSQAARALSASSPGGLALLLAGPGLLLRLALLAV
AAARIMSGRRCAAGGAACASAAAEEAVEPAARELFEACRNGDVERVKRLVTPEKVNSRDTAGRKSTPLHF
AAGFGRKDVVEYLLQNGANVQARDDGLIPLHNACSFHAEVVNLLRHGADPNARDNWNYTPLHEAAI
KGKIDVCIVLLQHGAEPITRNTDGRITALDADPSAKAVLTGEYKKDELLESARSGNEEKMALLTPLNV
NCHASDGRKSTPLHLAGYNRVKIVQLLLQHGAADVHAKDKGDLVPLHNACSYGHYEVTELLVKHGACVN
AMDLWQFTPPLHEAASKNRVEVCSLLSYGADPTLLNCHNKSAILDAPTPQLKERLAYEFKGHSLLQAAR
EADVTRIKKHSLEMVNFHKPQTHETALHCAAASPYPKRQICELLRKGANINEKTKEFLTPLHVASE
KAHNDVVEVVVKHEAKVNALDNLGQTSIHRAAYCGHLQTCRLLSYGCDPNIISLQGFTALQMGNEVQ
QLLQEGLSLGNSEADRQLLEAKAGDVETVKKLCVQSVNCRDIEGRQSTPLHFAAGYNRVSVEYLLQ
HGADVHAKDKGGLVPLHNACSYGHYEVALLVKHGAVNVADLWKFPLHEAAAKGKYEICKLLLQHGA
DPTKKNRDGNTPLDLVKDGTDIQDLLRGDAALLDAAKKGCLARVKKLSSPDNVNCRDTQGRHSTPLHL
AAGYNNLEVAEYLLQHGADVNAQDKGGLIPLHNAAASYGHVDVAALLIKYNACVNATDKWAFTPPLHEAAQ
KGRTQLCALLLAHGADPTLKNQEGQTPLDVSADDVSALLTAAMPPSALPSCYKPQVLNGVRSPGATAD
ALSSGPSSPSSLSAASSLDNLGSFSSELSSVSSSGTEGASSLEKKEVPGVDFSITQFVRNLGLEHLM
IFEREQITLDVLVEMGHKELKEIGINAYGHRHKLIKGVVERLISGQQGLNPYLTNTSGSGTILIDLSPD
DKEFQSVEEEMQSTVREHRDGGHAGGI FNRYNILKIQKVCNKKLWERYTHRKEVSEENHNHANERMLF
HGSPFVNAAIHKGFDERHAYIGGMFGAGIYFAENSSKSNSQYVYGGGTGCPVHKDRSCYICHRLFC
RVTLGKSFLQFSAMKMAHSPPGHHSVTGRPSVNGLALAEYVIYRGEQAYPEYLITYQIMRPEGMVDG

FIG._4

Schematic Presentation of Dominant Negative Mutants for Tankyrase Homologue

Dominant Negative Mutants

Truncation: 429 Δ C- of the C-terminal catalytic domain – truncation of the catalytic domain of PARP acts as a dominant negative when overexpressed *in vivo* (Oncogene 1999 Nov 25; 18(50):7010-5)

Point mutant: E945A Δ C- conserved residue in PARP domain, thought to be important in NAD⁺ binding

FIG._5

**Cell Cycle Analysis of A549 Cells
Infected With GFP-fused Wild Type
and Mutant Tankyrase Homologue**

FIG._6A

FIG. 6B

Kinetics of GFP Positive cells in A549 Cells and Human Mammary Epithelial Cells (HMEC) After Retrovirus Infection Encoding GFP-fused Wild Type and Mutant Tankyrase Homologue

FIG. 7

The Binding Site of Antisense Oligos Against Tankyrass Homologue

FIG. 8

**Anti-Proliferative Phenotype of Antisense Oligonucleotides Against
Tankyrase Homologue in A549 and HeLa Cells**

FIG. 9

Cell Cycle Analysis of A549 Cells Transfected with Antisense Oligonucleotides Against Tankyrase Homologue at 48 Hours, Antisense Oligonucleotides (T11) and Control Oligonucleotides (T11S) were transfected with FITC-labeled random 20mer Oligonucleotides (FITC), After 48 Hours, entire population (R1) and Top 5% (R2) of FITC transfected cells were analyzed for cell cycle

FIG. 10A

Cell Cycle Analysis of A549 Cells Transfected with Antisense Oligonucleotides Against Tankyrase Homologue at 48 Hours, Antisense Oligonucleotides (T11) and Control Oligonucleotides (T11S) were transfected with FITC-labeled random 20mer Oligonucleotides (FITC), After 48 Hours, entire population (R1) and Top 5% (R2) of FITC transfected cells were analyzed for cell cycle

FIG. - 10B

mRNA Expression of Tankyrase Homologue in Several Tumors and Normal Tissues by a Taqman Analysis, mRNA Expression was Normalized by 90kDa Highly Basic Protein (HBP) and Ribosomal Protein S9 (S9)

FIG.- 11

Procedure for Nonisotopic Detection of Poly-ADP Ribosylation
Using Anti-GFP mAb-Coated Plates

FIG. 12

Non-Isotopic Plate-Based Detection of TaHo PARP Activity in the Presence of Biotinylated NAD

FIG._ 13

Comparison of IC₅₀ Values of the PARP Inhibitors

	Approximate IC ₅₀ (nM)		hPARP assay IC ₅₀ (nM)		
	TaHo		Rigel	Decker*	Rankin*
3AB	>50 000		5 000	2 000	5 400
6(5H)Phenanthridinone	1 000-2 000		300		
Niacinamide	>50 000		30 000	>>5 000	31 000

* Decker P et al., Clinical Cancer Research. 1999 May; 5:1169-1172

* Rawkin PW et al., J Biol Chem. 1989 Mar 15;264(8):4312-4317

FIG._ 14

**Inhibition of Tankyrase Homologue PARP Activity
by hPARP Inhibitors**

FIG._ 15

TH-1: Tankyrase Homologue isoform-1, TH-2: Tankyrase Homologue isoform-2
M (Red): the first methionine in the sequence, Z: stop codon
In this figure, the first methionine in TH-1 sequence is position 1 (iii)

FIG.-16A

Taho C terminus deletion mutant ends at position 429 (K) and adds 28 amino acids because of frame shift.

Taho F/L mutant has the mutation at position 871

Taho E/A dc mutant has the mutation at position 948, ends at position 957 (A) and adds 2 amino acids.

TH-1	-----	RCSARRGAAGGQGAQORGARVGAAGTAPDPVTAGSQ	-231
TH-2	-----		
TH-1	-----	AARALSASSPGLALLLAGPGLLRLLLAVAAARIMSGRRCAAGGAAACASAEEAVE	-171
TH-2	-----		
TH-1	-----	PAARELFEACRNGDVERVKRLVTPEKVNSRDTAGRKSTPLHFAAGFGRKDVEYLLQNGA	-111
TH-2	-----		
	-----	Ankyrin repeat	
	-----	Ankyrin repeat	
TH-1	-----	SVQARDGGGLIPLHNACSEGHAEVVNLILRHGADPNARDNWNNTPLHEAAIKGKIDVCIV	-51
TH-2	-----	NVQARDGGGLIPLHNACSEGHAEVVNLILRHGADPNARDNWNNTPLHEAAIKGKIDVCIV	-51
	-----	Ankyrin repeat	
TH-1	-----	LLQHGAEPITRNTDGRNTADPSAKAVLTGEYKKDELLESARSQNEEKMMALLTPINV	10
TH-2	-----	LLQHGAEPITRNTDGRNTADPSAKAVLTGEYKKDELLESARSQNEEKMMALLTPINV	10
	-----	Ankyrin repeat	
	-----	• TH1 start	

FIG.- 16B

		Ankyrin repeat	Ankyrin repeat	
TH-1		NCHASDGRKSTPLHLAAGYNRVRKVIVQLLLQHGA DVHAKDKGDLYPLHNACSYGHYEVTTEL		70
TH-2		NCHASDGRKSTPLHLAAGYNRVRKVIVQLLLQHGA DVHAKDKGDLYPLHNACSYGHYEVTTEL		70
		Ankyrin repeat	Ankyrin repeat	
TH-1		LVKHGACVNAMDLWQFTPPLHEAASKNRVECSLL SYGADPTLLNCHNKSAILDAPTPQL		130
TH-2		LV		
		Ankyrin repeat	Ankyrin repeat	
TH-1		KERLAYEFKGHSLLQAAREADVTRIKKHL SLEMVNFKHPOTHETALHCAASPYPKRKQI		190
		Ankyrin repeat	Ankyrin repeat	
TH-1		CELLLRKGANINEKTKREFLTPLH VASEKAHNDVVEVVVKHEAVYNALDNLGQTSLH RAY		250
		Ankyrin repeat	Ankyrin repeat	
TH-1		CGHLQTCRLLLSYGC DPNIISLQGFTALQMG NENVQQLLQEGISLG NSEADRLQLEAKA		310
		Ankyrin repeat	Ankyrin repeat	
TH-1		GDVETVKKLCTVQSVNCRDIEGRQSTPLH FAAGYNRSVVEYLLQHGA DVHAKDKGGLVP		370
		Ankyrin repeat	Ankyrin repeat	
TH-1		LHNACSYGHYEVAELLV KHGAVVNADLW KFTPLHEAAAKG KYEICKLLLQH GADPTKKN		T 430
		Ankyrin repeat	Ankyrin repeat	Deletion--•
TH-1		GMEILLWILLK MEOIQIFKICL GEMQLCZ RDGNTPLDLY KDGDTDIQD LLRGDA LLDAKKGCL ARVKKLSSPD NVNCRDTQGR HSTP		490
		Ankyrin repeat	Ankyrin repeat	

FIG.- 16C

TH-1 LHLAAGYNNLEVAEYLLQHGA
 DNAQDKGGGLIPLHNAASYGHVDVA
 ALLIKYNACVNATD 550
 Ankyrin repeat Ankyrin repeat

TH-1 KWAFTPLHEAAQKGR
 TQLCALLLAHGA
 DPTLKNQEGQTPLDI
 VSADDVSALLTAAMPPSA 610
 Ankyrin repeat Ankyrin repeat

TH-1 LPSCYKPQVLNGVRSPG
 ATADALSSGPSSSL
 SAASSLDNL
 SGSFSELSSV
 VSSSGT
 EG 670
 Ankyrin repeat Ankyrin repeat

TH-1 ASSLEKKE--VPGVDF
 PSITQFV
 VRNLGLEH
 LMDIFERE
 QITLDV
 LVM
 GMGH
 KELKEIG
 INAY 730
 SAM domain

TH-1 GHRHKLIK
 GVERLISGQQGL
 NPYLT
 LNTSGSGT
 ILIDLS
 PDDKEF
 QOSV
 EEMQ
 STV
 REHR 790

TH-1 DGGHAGGI
 FNRYN
 NILKIQ
 KV
 CN
 KKL
 WERYT
 HRR
 KEV
 SEEN
 HNH
 ANER
 MFL
 FH
 GSP
 FVN
 NAI
 I 850

TH-1 HKGFDERHAY
 IGGMF
 GAGIY
 FAENSS
 KSQVY
 VIGGGT
 GCPV
 HKDR
 SCYICH
 RQLL
 FCR 910
 F → L mutation
 PARP domain

TH-1 VTLGKSFLQFSAMKMAH
 SPPGHHSVT
 GRPSVNGL
 ALAEV
 YIYGEQAY
 PEYLTYQIMRP 970
 • E → A • Deletion.

TH-1 EGMV
 DG 976