

理论力学II

主讲: 梁旭东

哈尔滨工业大学(深圳)

2023年春季学期

课程名称:理论力学||(2023年春)

授课对象:自动化专业本科生3,4班

授课教师:梁旭东(G栋621)

(邮箱: liangxudong@hit.edu.cn)

助教:魏泽峰、程前(理学院)

教材:哈尔滨工业大学理论力学第8版

参考书:理论力学,周培源编著,科学出版社

理论力学,李俊峰、张雄编著,清华大学出版社

学时: 64学时(静力学20, 运动学14, 动力学28, 综合算例2)

课外答疑:解答课程学习中的疑问

线上: QQ群; 线下: G621 (请提前预约)

总评成绩:平时成绩占40%权重(作业+考勤+课堂)

期末考试占60%权重.

课程交流群:548214252(发布通知,作业,课程内容交流、答疑)

班级交流QQ群

群名称: 2023春季理论力学 (自动化)

群号: 548214252

上课地点: H301

上课时间: 1-10,12-16周, 周一第5,6节 (2月20日-6月5日)

1-6,8-10,12-16周,周四第5,6节 (2月22日-6月7日)

第7,11周,周六第5,6节(4月8日,5月6日)

第9周,周日第5,6节 (4月23日)

时间	教师课表						
	星期一	星期二	星期三	星期四	星期五	星期六	星期日
第 1- 2 节							
第 3- 4 节							
第 5- 6 节	【本】理论力学II [1-6,8-10,12-16周] [21级自动化3班,21级自动化4 班,] [H301] 第5-6节	下午 2:00 – 3:45	【本】理论力学II [1-6,8-10,12-16周] [21级自动化3班,21级自动化4 班,] [H301] 第5-6节	下午 2:00-3:45		【本】理论力学II [11周] [21级自动化3班,21级自动化4 班,] [H301] 第5-6节	【本】理论力学II [9周] [21级自动化3班,21级自动化4 班,] [H301] 第5-6节
	【本】理论力学II [7周] [21级自动化3班,21级自动化4 班。] [H301] 第5-6节					【本】理论力学II [7周] [21级自动化3班,21级自动化4 班.] [H301] 第5-6节	
第 7- 8 节							

课程成绩:

平时成绩占40%权重(作业+预习+考勤+课堂)

作业:每周4-6道题目,每周三课后提交,大约15次,占比30%

(题目主要来源于教材习题,部分参考答案书有错误!!)

考勤: 占比5%, 出勤率

课堂: 占比5%, 课堂表现

(课堂中会有关键难点讨论与往年考题自测,希望大家积极参与)

额外的学习资源: Bilibili-

【理论力学-哈尔滨工业大学(精品课)】

https://www.bilibili.com/video/BV1WT411J7ah/?share_source=copy_web&vd_source=4340fc1f5ffdd1da9b42868674483118

手机扫码观看/分享

课程成绩:

平时成绩占40%权重(作业+预习+考勤+课堂)

作业:每周3-4道题目,每周三课后提交,大约15次,占比30%

考勤: 占比5%, 出勤率

课堂: 占比5%, 课堂表现

期末考试占60%权重

形式: 统一出题, 闭卷考试

题型: 判断题(5道,约10分); 单选题(6道,约20分);

计算题(6道,约70分,静力学、运动学、动力学)

期末考试题型举例:

判断题:

2. 如果刚体上各点的轨迹都是圆,则该刚体一定作定轴转动。

选择题:

1. 以下四个图所示的力三角形,哪一个图表示力矢 \mathbf{R} 是 \mathbf{F}_1 和 \mathbf{F}_2 两力矢的合力矢量()。

计算题

绪论

一、理论力学的研究对象和内容

理论力学是研究物体机械运动一般规律的科学。

机械运动:物体在空间的位置随时间的改变。包括:静止、移动、转动、振动、变形、流动、波动、扩散等。而热运动、化学运动、电磁运动、生命现象中都含有位置的变化,但不能把它们简单地归结为机械运动

热运动中每个分子(如空气)都在做机械运动吗?为什么热运动不能简单归结为机械运动?

理论力学的研究内容: 静力学, 运动学, 动力学

二、理论力学的研究方法

- 1、观察、进行实验、分析、综合、归纳和总结规律。
- 2、建立力学模型和理论体系
- 3、理论用于实践

三、学习理论力学的目的

- 1、为解决工程问题打下一定的基础;
- 2、为学习后续课程打下一定的基础;
- 3、有助于学习其他科学技术理论。

2022年大学生数学建模大赛A题 波浪能最大输出功率设计

波浪能装置如右图,由浮子、振子、中轴以及能量输出系统(PTO,包括弹簧和阻尼器)构成,其中振子、中轴及PTO被密封在浮子内部,浮子由质量均匀分布的圆柱壳体和圆锥壳体组成两壳体。振子是穿在中轴上的圆柱体,通过PTO系统与中轴底座连接。

在波浪的作用下,浮子运动并带动振子运动,通过两者的相对运动驱动阻尼器做功,并将所做的功作为能量输出。

受力分析: 浮体在波浪的作用下做摇荡运动时, 会受到海水的作用, 包括: 附加惯性力(矩)、 兴波阻尼力(矩)和静水恢复力。

核心模型:振子的位置 x_1 和浮子的位置 x_2 ,列动力学方程。

$$\begin{cases} f_{wave}(t) + c_1(\dot{x}_2(t) - \dot{x}_1(t)) + k_2(x_2(t) - x_1(t)) = \left[m_1 + m(\infty) \right] \ddot{x}_1(t) + \int_0^t h(t - \tau) \dot{x}_1(\tau) d\tau + k_{zz} x_1(t) \\ c_1(\dot{x}_2(t) - \dot{x}_1(t)) + k_2(x_2(t) - x_1(t)) = m_2 \ddot{x}_2(t) \end{cases}$$

静力学引言

静力学研究的问题:

研究物体在力系(多个力)作用下平衡规律的科学。 包括:物体的受力分析、力系的等效替换(或简化)、建立 各种力系的平衡条件.

- 1、物体的受力分析:分析物体(包括物体系)受哪些力,每个力的作用位置和方向,并画出物体的受力图.
- 2、力系的等效替换(或简化):用一个简单力系等效代替一个复杂力系一简化为一个力和一个力矩.
- 3、建立各种力系的平衡条件:建立各种力系的平衡条件,并应用这些条件解决静力学实际问题一求解未知的约束力

第一章 静力学公理和物体的受力分析

本章主要内容:

- 1. 力、刚体和平衡概念;
- 2. 五个静力学公理与两个推理;
- 3. 约束概念, 各种常见约束的性质;
- 4. 对物体系统能地取分离体, 画受力图。

几个基本概念

刚体: 在力的作用下, 其内部任意两点间的距离始终保持不变的物体.

(刚体与质点的区别:有形状,有大小)

三体问题

侧方停车

平衡: 质点(系)的平衡与刚体的平衡

质点平衡: 质点相对惯性参考系(如地面)静止或匀速直线运动(速度不变)

刚体平衡: 刚体上存在某点(质心),该点相对惯性参考系(如地面)的速

度不变,且刚体绕该点转动的速度(角速度)不变

几个基本概念

力:物体间相互的机械作用,作用效果使物体的机械运动状态发生改变. 质点—力改变质点的速度(大小、方向)

刚体—力既会改变刚体上某点的速度,也会改变刚体绕该点转动的速度

力的三要素:大小、方向、作用点 □□□> 力是矢量.

力系:一群力.

平面汇交 (共点) 力系 平面平行力系 平面力偶系 平面任意力系

空间汇交 (共点) 力系

零力系:没有外力作用的力系

等效力系: 作用于同一个物体产生了相同效果的两个力系

平衡力系: 等效于零力系的力系

公理1 力的平行四边形法则

用于分析简化作用于刚体的力系,是人们长期生活和生产实践的经验总结,又经过实践 反复检验,被确认是符合客观实际的规律

作用在物体上同一点的两个力,可以合成为一个合力。 合力的作用点也在该点,合力的大小和方向,由这两个 力为边构成的平行四边形的对角线确定。

合力(合力的大小与方向) $\vec{F}_R = \vec{F}_1 + \vec{F}_2$ (矢量和)

亦可用力三角形求得合力矢(收尾相连)

矢量加法与顺序无关 $\vec{F}_R = \vec{F}_2 + \vec{F}_1 = \vec{F}_1 + \vec{F}_2$

公理2 二力平衡条件

作用在刚体上的两个力,使<mark>刚体保持平衡</mark>的必要和充分 条件是:这两个力的大小相等,方向相反,且作用在同 一直线上。

使刚体平衡的充分必要条件

$$\vec{F}_1 = -\vec{F}_2$$

公理2不是公理1的退化形式!

公理1: 作用在同一个点

公理2: 作用在同一条直线

最简单力系的平衡力系

公理3 加减平衡力系原理

在已知力系上加上或减去任意的平衡力系,并不改变原力系对刚体的作用。

推理1 力的可传性

作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。

作用在刚体上的力的三要素为大小、方向和作用线.

推理2 三力平衡汇交定理

作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点。

前提:三力平衡+两力相交 缺少任一前提均不成立,例如?

公理4 作用和反作用定律

作用力和反作用力总是同时存在,同时消失,等值、反向、共线,作用在相互作用的两个物体上.

在画物体受力图时要注意此公理的应用. (注意与公理2:二力平衡的区别)

公理5 刚化原理

变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变.

柔性体 (受拉力平衡)

反之不一定成立.

刚化为刚体(仍平衡)

柔性体 (受压不能平衡)

总结

公理1 力的平行四边形法则

公理2 二力平衡条件

公理3 加减平衡力系原理

公理4 作用和反作用定律

公理5 刚化原理

推理1 力的可传递性

推理2 三力平衡汇交定理

刚体上A点受到力F的作用,问能否在B点上加一个力使刚体平衡?

(a) 不能。

因为B不在F的作用线上,无法满足二力平衡的两个力作用线在同一直线上的条件

(b) 不能。

因为绳子无法满足刚化条件,二力平衡只在刚体上成立

约束: 对非自由体的位移起限制作用的周围物体.

约束力: 约束对非自由体的作用力,又称为约束反力,或反力.

约 東 方向——与该约束所能阻碍的位移方向相反 力 作用点——接触处

工程中常见的约束

1. 具有光滑接触面(线、点)的约束(光滑接触约束)

光滑接触面约束

光滑支承接触对非自由体的约束力,<u>作用在接触处</u>; <u>方向沿接触处的公法线并指向受力物体</u>,故称为法 向约束力,用 \vec{F}_N 表示.

2. 由柔软的绳索、胶带或链条等构成的约束

柔索只能受拉力,又称张力. 用 F_{T} 表示.

§ 1-2 约束和约束力

柔索对物体的约束力为拉力,沿着柔索背向被约束物体.

胶带对轮的约束力沿轮缘的切线方向,为拉力.

3. 光滑铰链约束(径向轴承、圆柱铰链、固定铰链支座等)

(1) 径向轴承(向心轴承)

约束特点: 轴在轴承孔内,轴为非自由体、 轴承孔为约束.

约束力: 当不计摩擦时,轴与孔在接触处为光滑接触约束——法向约束力.约束力作用在接触处,沿径向指向轴心.

当外界载荷不同时,接触点会变,则约束力的大小与方向均有改变.

可用二个通过轴心的正交分力 \vec{F}_x , \vec{F}_y 表示.

(2) 光滑圆柱铰链

约束特点:由两个各穿孔的构件及圆柱销钉组成,如剪刀.

光滑圆柱铰链约束

约束力:

光滑圆柱铰链: 亦为孔与轴的配合问题, 与轴承一样, 可用两个正交分力表示.

其中有作用反作用关系

$$\vec{F}_{Cx} = -\vec{F}_{Cx}', \vec{F}_{Cy} = -\vec{F}_{Cy}'$$

一般不必分析销钉受力,当要分析时,必须把销钉单独取出.

(3) 固定铰链支座

约束特点:由上面构件与地面或机架固定而成.

约束力:与圆柱铰链相同

以上三种约束(径向轴承、光滑圆柱铰链、固定铰链支座) 其约束特性相同,均为轴与孔的配合问题,都可称作光滑圆柱铰链.

思考题:柔索中拉力相等条件

• 圆形定滑轮中的柔索拉力满足 $F_{T1} = F_{T2}$ 条件

柔索中拉力相等的条件:

- 1. 滑轮保持平衡(静力学平衡)
- 2. 轮子形状必须是圆形(为什么?)

4. 其它类型约束

(1) 滚动支座

约束特点:

在上述固定铰支座与光滑固定平面之间装有光滑辊轴而成.

约束力: 构件受到垂直于光滑面的约束力.

(2) 球铰链

约束特点:通过球与球壳将构件连接,构件可以绕球心任意转动,但构件与球心不能有任何移动.

约束力: 当忽略摩擦时, 球与球座亦是光滑约束问题. 约束力通过接触点,并指向球心, 是一个不能预先确定的空间力. 可用三个正交分力表示.

(3) 止推轴承

约束特点:

止推轴承比径向轴承多一个轴向的 位移限制.

约束力: 比径向轴承多一个轴向的约束力,亦有三个正交分力 \vec{F}_{Ax} , \vec{F}_{Ay} , \vec{F}_{Az} .

!!必须学会区分各种支座的示意图画法

- (1) 滚动支座
- (2) 固定铰链支座
 - (3) 光滑圆柱铰链(径向轴承)

