#### Races or Tournaments?

**Andrea Blasco**<sup>1</sup> KJ Boudreau M Menietti KR Lakhani

This version: June 30, 2017

<sup>&</sup>lt;sup>1</sup>ablasco@fas.harvard.edu

#### Outline

#### Introduction

Race or tournaments?

The model

Experimental design

Results

Structural approach

Appendix

Introduction 2

### Contests and economic growth

#### Historically, awards offered by government

- ▶ navigation and cartography (Longitude awards in 1714)
- agricoltural innovation (Royal Agricultural Society awards 1900's)
- ▶ aviation industry (Orteig prize in 1919)
- ▶ architecture (Thomas Jefferson organized the first US design contest to build the White House in 1790)

#### Today, contests are common management tool

- ▶ Incentives for workers
- ▶ Philanthropic initiatives
- Crowdsourcing internal activities to online communities of freelancers

Introduction 3

### The problem of contest design

How to design a contest? Contest designers need to deal with:

- ▶ "Incentive" design problem
  - What is the optimal prize structure?
- ▶ "Competition" design problem
  - a "race" competition? or in a "tournament" competition?

Introduction 4

#### Outline

Introduction

Race or tournaments?

The model

Experimental design

Results

Structural approach

Appendix

## Examples by competition design

#### ► Races

- Longitude prize (1714 and 2014)
- Orteig Prize
- Netflix prize
- Ansari's X-prize

#### ▶ Tournaments

- White House design contest
- Golden Carrot Contest
- DARPA Grand Challenges
- X-Prize Challenges
- European Commission's Horizon Challenge

#### Race or tournaments?

- ▶ Contest designers face trade-off between "speed" and "quality"
  - Example: seeking solutions to public health care problems (effective and timely)
  - EC's Horizon Challenge (race) and 2014 Longitude Prize (tournament) about antibiotic resistance
- ► Efficiency concerns
  - Fullerton & MacAfee (1992)'s result that only 2 competitors are optimal
  - Prevent entry:
    - Minimum quality requirements
    - ► Time deadlines
  - Example: online platforms running many contests

#### Prior literature

#### Theory:

Patent races (e.g., Loury 1979, Nalebuff & Stiglitz 1983); contests (e.g., Lazear & Rosen 1981, Green Stokey 1983, Dixit 1987); debate on prizes or patents for R&D (Wright 1983); strategic equivalence (Baye Hoppe 2003)

#### Empirical works:

Non-experimental data on contests (e.g., Ehrenberg Bognanno 1990, Knoeber Thurman 1994, Eriksson 1999) and on races (Cockburn Henderson 1994); Laboratory experiments on contests and on races (see Dechenaux et al. 2014).

### In this paper

- ▶ We develop a model to examine contest designer's choice between races and tournaments in one framework
  - The model extends Moldovanu and Sela (2001)'s static "all-pay" contest model
- We design and conduct a field experiment to examine predictions of the model
  - An online community of highly skilled coders with experience in programming competitions

## Model's basic setup

- ightharpoonup "All-pay" contest with deadline  $t_0$  and target  $y_0$
- ► Cost:  $C(a, q, t) = a^{\alpha} y^{\beta} t^{\gamma}$  with  $\alpha, \gamma \leq -1, \beta \geq 1$
- ▶ Payoff:  $\pi_i = \sum_{k=1}^q p_k(y_i, t_i) v_k C(a_i, y_i, t_i)$
- ▶ Equilibrium in a race:  $t^* = b_{\text{race}}(a)$  and  $y^* = y_0$
- ▶ Equilibrium in a tournament:  $y^* = b_{\text{tournament}}(a)$  and  $t^* = t_0$

## Equilibrium performance



### Behavioral predictions

- 1. Competitors will enter a Tournament more than a Race
  - Entry in a tournament is driven by "low-ability" competitors
- 2. On speed, Race  $\succ$  ("dominates") Tournament
  - No clear dominance on performance
- 3. On performance, Tournament "with Reserve"  $\succ$  Tournament and Race

## Contest designer's problem

- ► Maximize expected revenues
- Revenues increase in performance, decrease in time of the winner  $(y^w, t^w)$
- ▶ Consider  $t_0$  and  $y_0$  as given
- ▶ Expected payoff:  $\pi_{cd} = E[y^w \tau t^w \mid y^w \ge y_0, t^w \le t_0]$
- ▶ Main result: if  $\tau \ge \hat{\tau}$ , the race should be preferred

#### Outline

Introduction

Race or tournaments?

The model

Experimental design

Results

Structural approach

Appendix

## Basic setup

Imagine i=1,...,n players competing for k=1,...,q prizes of value  $v_1 \geq v_2 \geq ... \geq v_q$  (normalized  $\sum v_k = 1$ ).

Players simultaneously choose quality  $y_i$  and time  $t_i$  ( $y_i/t_i$  speed).

Each player has an ability  $a_i$  drawn at random from a common cdf  $F(\cdot)$  with pdf  $f(\cdot)$ .

The cost function  $C(\cdot)$  is Cobb-Douglas:

$$C(a, q, t) = a^{\alpha} y^{\beta} t^{\gamma}$$
 with  $\alpha, \gamma \le -1, \beta \ge 1$  (1)

• or denoting speed (y/t) by s:

$$C(a,q,t) = a^{\alpha} y^{\beta'} s^{\gamma'} \qquad \beta' = \beta + \gamma, \gamma' = -\gamma. \tag{2}$$

### **Payoffs**

Player i's payoffs:

$$\pi_i = \sum_{k=1}^{q} p_k(y_i, t_i) v_k - C(a_i, y_i, t_i)$$
(3)

where  $p_k(\cdot)$  is the prob. of winning prize k

#### Competition

- ▶ Let denote a deadline by  $t_0$  and a minimum-quality target by  $y_0$ .
- ▶ We consider two competitive formats:
  - Race: competition with target where the first to achieve the target wins
  - Tournament: competition with deadline where the best wins

### **Probability**

Let  $y_{1:n}, ..., y_{n:n}$  denote the order statistics of the y's. Let denote the corresponding distribution functions by  $F_{y_{1:n}}, ..., F_{y_{n:n}}$ .

Then the conditional probability of winning the first prize in a tournament is

$$\Pr(y_i \ge y_{n-1:n-1}) = F_{y_{n-1:n-1}}(y_i) = F(y_i)^{n-1}$$

when  $t_i \leq t_0$ . And is zero otherwise.

$$Pr(y_i x x x x) = [1 - F(y_i)]F(y_i)^{n-2}$$

### Probability 2

If  $a \sim \text{Uniform}(0,1)$ , then:

$$p_1(y) = y^{n-1}, p_2(y) = [1-y]y^{n-2}$$

$$p_1(y)' = (n-1)y^{n-2}$$

$$p_2(y)' = -y^{n-2} + (1-y)(n-2)y^{n-3} = y^{n-3}[(1-y)(n-1) - 1]$$

### Contest designer's payoff

Contest designer is risk neutral and wants to max quality while min time of the winner.

Z is the competition format. Let denote the race by Z = 1 and the tournament by Z = 0. Let denote the winner's actions by  $(y^w, t^w)$ .

The contest designer's expected payoff:

$$\pi_{cd} = E[y^w - \tau t^w \mid y^w \ge y_0, t^w \le t_0, R]. \tag{4}$$

## Solution concept

We solve the model for its unique symmetric Perfect Bayes Nash Equilibrium (the "equilibrium").

Let denote equilibrium bidding functions with respect to ability by  $t(\cdot)$  and  $y(\cdot)$ .

Consider Tournament first.

### Maximization problem

- Key observation:  $t_i = t_0$  is a (weakly) dominant strategy
- ▶ This simplifies the maximization problem to:

$$\max_{y} \hat{\pi} = \sum_{k=1}^{q} p_k(y)\hat{v}_k - a_i^{\alpha} y^{\beta}$$
 (5)

with  $\hat{v}_k$  denoting each prize  $v_k$  rescaled by a factor  $t_0^{\gamma}$ .

#### First order condition

For each i = 1, ..., n, first order conditions are:

$$\sum_{k=1}^{q} p_k'(y)\hat{v}_k = a_i^{\alpha} \beta y^{\beta - 1}$$

$$\tag{6}$$

### Solving differential equation

Substituting the equilibrium function  $y(\cdot)$  increasing in  $a_i$  and with inverse  $\phi(\cdot)$ , together with a "change of variable" (moving  $a_i = \phi(y_i)$  to the lhs):

$$\phi^{-\alpha} \sum_{k=1}^{q} \hat{p}'_{k}(\phi) \phi' v_{k} = t_{0}^{\gamma} \beta y(a)^{\beta - 1}$$
 (7)

Integrating both sides (using the "chain of derivatives" on the lhs):

$$\sum_{k=1}^{q} \hat{v}_k \int_{a_0}^{a} p'_k(x) x^{\alpha} dx + \beta y(a_0)^{\beta - 1} = \beta y(a)^{\beta - 1}$$
 (8)

## **Bidding function**

For every i = 1, ..., n:

- ightharpoonup Time  $t(a) = t_0$
- $\triangleright$  Equilibrium quality  $y_i$  for competitor with ability a is given by:

$$y(a) = \left[ y(a_0)^{\beta - 1} + \frac{1}{\beta} \sum_{k=1}^{q} \hat{v}_k \int_{a_0}^{a} p'_k(x) x^{\alpha} dx \right]^{1/(\beta - 1)}$$
(9)

with boundary condition  $y(a_0) = 0$ .

# Example

If  $a \sim \text{Uniform}(0,1)$  and q=2

First integral:

$$v_1(n-1)\int_0^a x^{(n-2)-\alpha} dx = v_1 \frac{a^{(n-1)-\alpha}}{(n-1)-\alpha}$$

Second integral:

$$v_2 \int_0^a x^{(n-3)-\alpha} [(1-x)(n-1)-1] dx$$

$$= v_2 \frac{a^{-\alpha+n-2}((n-2)(-\alpha+n-1) - a(n-1)(-\alpha+n-2))}{(-\alpha+n-2)(-\alpha+n-1)}$$

# Example 2

#### Equilibrium bids in a tournament



## Bidding function in a race

For every i = 1, ..., n with  $a_i \ge \hat{a}$ 

- Quality  $y(a) = y_0$
- ► Time:

$$t(a) = \left[ t(t_0)^{\gamma - 1} + \frac{1}{\gamma} \sum_{k=1}^{q} \tilde{v}_k \int_{a_0}^{a} \hat{p}'_k(x) x^{\alpha} dx \right]^{1/(\gamma - 1)}$$
(10)

with  $\tilde{v}_k = v_k/y_0^{\beta}$ .

Otherwise, when  $a_i < \hat{a}$ , and  $y(a) < y_0$ .

### Zero profit

The zero profit condition for the marginal player:

$$\sum p_k(y_0, t_0) v_k = \hat{a}^{\alpha} y_0^{\beta} t_0^{\gamma}$$
 (11)

Hence, the marginal ability is pinned down:

$$\hat{a} = \left[\sum p_k(y_0, t_0)v_k/y_0^{\beta} t_0^{\gamma}\right]^{1/\alpha} \tag{12}$$

### Example 2

If  $a \sim \text{Uniform}(0,1)$ , then ZPC

$$p_1(y) = y^{n-1}, p_2(y) = [1-y]y^{n-2}$$

$$(t_0^\gamma=1)$$

$$\pi_i = v_1 p_1(a) + v_2 p_2(a) - a^{\alpha} y_0^{\beta}$$

$$(ZPC) v_1 a^{n-1} + (1 - v_1)[1 - a]a^{n-2} - a^{\alpha} y_0^{\beta} = 0$$

## Example



#### Outline

Introduction

Race or tournaments?

The model

Experimental design

Results

Structural approach

Appendix

## The context: Topcoder.com

Recruit 229 competitors on Topcoder for eight-day programming competition

Three key factors:

- ▶ Platform members are sophisticated competitors
- ▶ Observe measures of skills
- ▶ Rich data analytics about performance and timing

#### The contest

- ▶ Total prize purse \$41000
  - Grand prizes of \$6000 across competition styles
  - Room prizes of \$1000 and \$100 for 1st and 2nd
- ▶ Task solving Named Entity Recognition Problem in medical research

### Experimental design

- ▶ 8 day submission phase
- ▶ Split into 24 rooms of 10 and 15 competitors
- ▶ 3x2 experimental design (Race, Tournament, Reserve) x (10, 15)

#### Data

|               | Mean   | Median | St.Dev. | Min  | Max  | Obs. | P-value |
|---------------|--------|--------|---------|------|------|------|---------|
| year          | 2009.9 | 2010   | 4       | 2001 | 2015 | 299  | 0.596   |
| rating        | 1322.4 | 1278   | 425     | 593  | 3071 | 205  | 0.989   |
| registrations | 17.6   | 9      | 23      | 1    | 161  | 299  | 0.626   |
| submissions   | 7.2    | 2      | 12      | 0    | 91   | 299  | 0.867   |
| lpaid         | 8.4    | 8      | 3       | 3    | 14   | 139  | 0.791   |
| nwins         | 0.3    | 0      | 2       | 0    | 27   | 299  | 0.370   |
| ntop10        | 1.6    | 0      | 5       | 0    | 64   | 299  | 0.273   |
| risk          | 6.4    | 7      | 2       | 1    | 10   | 279  | 0.958   |
| hours         | 31.3   | 24     | 25      | 0    | 192  | 277  | 0.995   |
| male          | 1.0    | 1      | 0       | 0    | 1    | 276  | 0.404   |
| timezone      | 2.1    | 2      | 5       | -8   | 10   | 277  | 0.389   |
| grad          | 0.5    | 0      | 1       | 0    | 1    | 278  | 0.208   |
| below30       | 0.7    | 1      | 0       | 0    | 1    | 278  | 0.503   |

# Skill rating distribution



### Outline

Introduction

Race or tournaments?

The model

Experimental design

#### Results

Structural approach

Appendix

### Distribution of room outcomes



### Greater participation in the Tournament



3.3125

4.1250

Results 40

##

#### No evidence of skill-based selection



# Deal with noise in performance



Figure: Scores over time

### No evidence of higher performance in Reserve



```
##
## Welch Two Sample t-test
##
## data: final.cap by treatment == "reserve"
## t = -0.072322, df = 12.406, p-value = 0.9435
## alternative hypothesis: true difference in means is
## 95 percent confidence interval:
## -0.006620624 0.006193726
## sample estimates:
## mean in group FALSE mean in group TRUE
```

0.8008850

Results 43

##

0.8006715

# No evidence of difference in performance between Tournament and Race



```
##
## Welch Two Sample t-test
##
## data: final.cap by treatment
## t = -1.0592, df = 12.08, p-value = 0.3102
## alternative hypothesis: true difference in means is
## 95 percent confidence interval:
## -0.009927344 0.003429224
## sample estimates:
## mean in group race mean in group tournament
## 0.7990470 0.8022961
```

## Speed was higher in the Race



126.1204

Results 45

##

160.7990

#### To summarize

- 1. Participation was higher in the Tournament
  - It was not driven by low-skill competitors
- 2. No evidence of a difference in performance
- 3. Competitors worked faster in a race

#### Interpretation:

- ➤ Taken together, though competitors seemed to "like" tournaments more, they "worked" more in a race.
- ► Tournament with reserve does not seem to be better than tournament

### Outline

Introduction

Race or tournaments?

The model

Experimental design

Results

Structural approach

Appendix

## Modeling individual behavior

Identification of causal effect of competition on individual behavior is problematic

- 1. Actions are correlated, violating one key assumption of Rubin's potential outcomes causality model
- 2. Censoring (entry/exit decisions are only partially observed)
- 3. Dynamics

Under our model, however, we have:

$$y = 1 \iff \text{ability} > a_0$$

 $\leadsto$  "single-index" models have nice structural interpretation.

## **Entry decision**

|                              | (1)        | (2)      | (3)      | (4)                 |
|------------------------------|------------|----------|----------|---------------------|
| TREATMENTTOURNAMENT          | 0.32       | 0.32     | 0.30     | 0.30                |
|                              | (0.31)     | (0.37)   | (0.37)   | (0.38)              |
| TREATMENTRESERVE             | $0.04^{'}$ | 0.20     | 0.20     | 0.29                |
|                              | (0.32)     | (0.37)   | (0.37)   | (0.38)              |
| RATING.100                   |            | 0.10***  | 0.11***  | 0.12***             |
|                              |            | (0.04)   | (0.04)   | (0.04)              |
| HOURS.IMP                    |            |          | 0.02**   | 0.02**              |
|                              |            |          | (0.01)   | (0.01)              |
| TIMEZONE.IMP                 |            |          |          | -0.01               |
| CDAD IMB                     |            |          |          | (0.03)              |
| GRAD.IMP                     |            |          |          | -0.32               |
| BELOW30.IMP                  |            |          |          | $(0.32) \\ -0.63^*$ |
| BELOW 30.1MF                 |            |          |          | (0.32)              |
| MALE.IMP                     |            |          |          | -0.39               |
|                              |            |          |          | (0.98)              |
| RISK.IMP                     |            |          |          | 0.01                |
|                              |            |          |          | (0.07)              |
| CONSTANT                     | -1.03***   | -2.15*** | -2.74*** | -1.98               |
|                              | (0.23)     | (0.56)   | (0.63)   | (1.29)              |
| Observations                 | 299        | 205      | 205      | 205                 |
| Log likelihood               | -178.75    | -129.19  | -126.50  | -124.21             |
| Akaike information criterion | 363.49     | 266.38   | 263.00   | 268.43              |

Notes:

<sup>\*\*\*</sup>p < .01; \*\*p < .05; \*p < .1

### Model's fit is ok



## Entry decision across competition styles

| All         | Race                                                                                              | Tourn                                                                                                                                                                                                                                | Rese                                                  |
|-------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 0.11***     | 0.11*                                                                                             | 0.21***                                                                                                                                                                                                                              | 0.02                                                  |
| (0.04)      | (0.07)                                                                                            | (0.08)                                                                                                                                                                                                                               | (0.06)                                                |
| 0.02**      | 0.02                                                                                              | 0.03**                                                                                                                                                                                                                               | 0.0002                                                |
| (0.01)      | (0.01)                                                                                            | (0.01)                                                                                                                                                                                                                               | (0.01)                                                |
| $-0.54^{*}$ | -0.04                                                                                             | -0.63                                                                                                                                                                                                                                | -1.10**                                               |
| (0.31)      | (0.55)                                                                                            | (0.57)                                                                                                                                                                                                                               | (0.55)                                                |
| -2.22***    | -2.67**                                                                                           | -3.92***                                                                                                                                                                                                                             | -0.05                                                 |
| (0.62)      | (1.15)                                                                                            | (1.23)                                                                                                                                                                                                                               | (1.11)                                                |
| 205         | 68                                                                                                | 69                                                                                                                                                                                                                                   | 68                                                    |
| -125.30     | -40.57                                                                                            | -37.87                                                                                                                                                                                                                               | -42.51                                                |
| 258.60      | 89.14                                                                                             | 83.75                                                                                                                                                                                                                                | 93.02                                                 |
|             | 0.11***<br>(0.04)<br>0.02**<br>(0.01)<br>-0.54*<br>(0.31)<br>-2.22***<br>(0.62)<br>205<br>-125.30 | $\begin{array}{cccc} 0.11^{***} & 0.11^* \\ (0.04) & (0.07) \\ 0.02^{**} & 0.02 \\ (0.01) & (0.01) \\ -0.54^* & -0.04 \\ (0.31) & (0.55) \\ -2.22^{***} & -2.67^{**} \\ (0.62) & (1.15) \\ 205 & 68 \\ -125.30 & -40.57 \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Notes:

\*\*\*p < .01; \*\*p < .05; \*p < .1

### Model's fit



## **Incorporating Scores**

Individual scores are censored  $\rightsquigarrow$  OLS is problematic.

We examine "production speed"  $y_i$  (= score<sub>i</sub>/ $t_i$ ) at a given point in time.

Then, our data's likelihood is (e.g., Tobit):

$$\mathcal{L} = \prod_{i=1}^{N} \Pr(Y \ge 0)^{1 - I(y_i)} \times \Pr(Y = y_i)^{I(y_i)}.$$

Under the model's equilibrium, this becomes

$$\mathcal{L} = \prod_{i=1}^{N} [1 - F(a_{0,i})]^{1 - I(y_i)} \times f(b(\text{ability}_i) = y_i)^{I(y_i)}.$$

#### **Estimation**

- We use parametric F known up to a vector  $\theta$ , that we estimate from the data.
- ► Compare against Tobit model (our main benchmark)
- $\blacktriangleright$  Alternatively, replace F with skill rating's  $\hat{F}$  (our second benchmark)

### **Benchmark**

|                     | Tobit    |          | normal  |         |
|---------------------|----------|----------|---------|---------|
|                     | (1)      | (2)      | (3)     | (4)     |
| TREATMENTTOURNAMENT | 0.10     | 0.02     | 0.03    | 0.02    |
|                     | (0.16)   | (0.16)   | (0.05)  | (0.06)  |
| TREATMENTRESERVE    | -0.01    | 0.07     | -0.002  | 0.02    |
|                     | (0.16)   | (0.16)   | (0.05)  | (0.06)  |
| RATING.100          | , ,      | 0.05***  | ` ′     | 0.02*** |
|                     |          | (0.02)   |         | (0.01)  |
| HOURS.IMP           |          | 0.01***  |         | 0.003** |
|                     |          | (0.003)  |         | (0.001) |
| CONSTANT            | -0.41*** | -1.06*** | 0.21*** | -0.11   |
|                     | (0.14)   | (0.28)   | (0.04)  | (0.10)  |
| Observations        | 299      | 205      | 299     | 205     |
| Log likelihood      | -212.65  | -152.89  | -114.80 | -82.37  |

Notes:

\*\*\*p < .01; \*\*p < .05; \*p < .1

# Estimated probability of entry



### Outline

Introduction

Race or tournaments?

The model

Experimental design

Results

Structural approach

Appendix

Appendix 57

## References I

Appendix 58