

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

7. NETWORK FLOWS I

Ford-Fulkerson pathological example

Intuition. Let r satisfy $r^2 = 1 - r$.

- Initially, some residual capacities are 1 and r.
- After two augmenting paths, some residual capacities are r and r^2 .
- After two more augmenting paths, some residual capacities are r^2 and r^3 .
- After two more, some residual capacities are r^3 and r^4 .
- If augmenting paths choreographed carefully, infinitely many residual capacities arise!

$$r^2 - r^3$$

$$r = \frac{\sqrt{5} - 1}{2} \implies r^2 = 1 - r$$

$$r \approx 0.618 \implies r^4 < r^3 < r^2 < r < 1$$

flow network G

augmenting path 1: $s \rightarrow w \rightarrow v \rightarrow t$ (bottleneck capacity = 1)

$$r^2 = 1 - r$$

augmenting path 2: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r)

augmenting path 3: $s \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r)

$$r^2 = 1 - r$$

augmenting path 4: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r^2)

augmenting path 5: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow t$ (bottleneck capacity = r^2)

$$r^2 = 1 - r$$

augmenting path 6: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r^3)

$$r^2 = 1 - r$$

augmenting path 7: $s \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^3)

$$r^2 = 1 - r$$

augmenting path 8: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r^4)

$$r^2 = 1 - r$$

augmenting path 9: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow t$ (bottleneck capacity = r^4)

$$r^2 = 1 - r$$

flow after augmenting path 1: $\{r-r^1, 1, 1-r^0\}$ (value of flow = 1) flow after augmenting path 5: $\{r-r^3, 1, 1-r^2\}$ (value of flow = $1+2r+2r^2$) flow after augmenting path 9: $\{r-r^5, 1, 1-r^4\}$ (value of flow = $1+2r+2r^2+2r^3+2r^4$)

$$r^2 = 1 - r$$

Theorem. The Ford-Fulkerson algorithm may not terminate; moreover, it may converge to a value not equal to the value of the maximum flow.

Pf.

• After (1 + 4k) augmenting paths of the form just described, the value of the flow

$$= 1 + 2 \sum_{i=1}^{2k} r^{i}$$

$$\leq 1 + 2 \sum_{i=1}^{\infty} r^{i}$$

$$= 3 + 2r$$

$$< 5$$

• Value of maximum flow = 2C + 1. •