IE1204 Digital Design

Föreläsningar och övningar bygger på varandra! Ta alltid igen det Du missat! Läs på i förväg – delta i undervisningen – arbeta igenom materialet efteråt!

Ex 8.4 7-4-2-1 kod

Kodomvandlare 7-4-2-1-kod till BCD-kod.

Vid kodning av siffrorna 0...9 användes förr ibland en kod med vikterna 7-4-2-1 i stället för den binära kodens vikter 8-4-2-1.

I de fall då en siffras kodord kan väljas på olika sätt väljs det kodord som innehåller minst antal ettor.

(en variant av 7-4-2-1 koden används i dag till butikernas streck-kod. Koden har "bra kontrast".)

	7	4	2	1		8	4	2	1
	<i>x</i> ₇	x_4	x_2	x_1		<i>y</i> ₈	<i>y</i> ₄	y_2	y_1
(0)	0	0	0	0	0	0	0	0	0
(1)	0	0	0	1	1	0	0	0	1
(2)	0	0	1	0	2	0	0	1	0
(3)	0	0	1	1	3	0	0	1	1
(4)	0	1	0	0	4	0	1	0	0
(5)	0	1	0	1	5	0	1	0	1
(6)	0	1	1	0	6	0	1	1	0
_			_		7	0	1	1	1
Ingen skillnad upp till 6					8	1	0	0	0
upp) IIII	O			9	1	0	0	1

Ex 8.4 7-4-2-1 kod

Kodomvandlare 7-4-2-1-kod till BCD-kod.

Vid kodning av siffrorna 0...9 användes förr ibland en kod med vikterna 7-4-2-1 i stället för den binära kodens vikter 8-4-2-1.

I de fall då en siffras kodord kan väljas på olika sätt väljs det kodord som innehåller minst antal ettor.

(en variant av 7-4-2-1 koden används i dag till butikernas streck-kod. Koden har "bra kontrast".)

	7	4	2	1		8	4	2	1
	x_7	x_4	x_2	x_1		<i>y</i> ₈	<i>y</i> ₄	y_2	y_1
(0)	0	0	0	0	0	0	0	0	0
(1)	0	0	0	1	1	0	0	0	1
(2)	0	0	1	0	2	0	0	1	0
(3)	0	0	1	1	3	0	0	1	1
(4)	0	1	0	0	4	0	1	0	0
(5)	0	1	0	1	5	0	1	0	1
(6)	0	1	1	0	6	0	1	1	0
(8)	1	0	0	0	7	0	1	1	1
(9)	1	0	0	1	8	1	0	0	0
					9	1	0	0	1

Ex 8.4 7-4-2-1 kod

Kodomvandlare 7-4-2-1-kod till BCD-kod.

Vid kodning av siffrorna 0...9 användes förr ibland en kod med vikterna 7-4-2-1 i stället för den binära kodens vikter 8-4-2-1.

I de fall då en siffras kodord kan väljas på olika sätt väljs det kodord som innehåller minst antal ettor.

(en variant av 7-4-2-1 koden används i dag till butikernas streck-kod. Koden har "bra kontrast".)

	7	4	2	1		8	4	2	1
	<i>x</i> ₇	x_4	x_2	x_1		<i>y</i> ₈	<i>y</i> ₄	y_2	y_1
(0)	0	0	0	0	0	0	0	0	0
(1)	0	0	0	1	1	0	0	0	1
(2)	0	0	1	0	2	0	0	1	0
(3)	0	0	1	1	3	0	0	1	1
(4)	0	1	0	0	4	0	1	0	0
(5)	0	1	0	1	5	0	1	0	1
(6)	0	1	1	0	6	0	1	1	0
(8)	1	0	0	0	7	0	1	1	1
(9)	1	0	0	1	8	1	0	0	0
(10)	1	0	1	0	9	1	0	0	1

8.4

8.4

8.4

X	X	, У ₂						
$\begin{array}{c} x_7 \\ x_7 \\ x_4 \\ 0 \end{array}$	^1 00	01	11	10				
^X 4 0	⁰ 0	¹ 0	3 1	2 1				
0 1	⁴ 0	⁵ 0	7_	ි 1				
1 1	12	13 -	15 -	14				
1 0	⁸ 1	⁹ 0	11	¹ 0				

	X :	X	_, У ₁						
×7 ×4	X ₂ ;	`1 00	01	11	10				
X 4	0	°0	¹ 1	³ 1	² 0				
	0	⁴ 0	⁵ 1	7_	ි 0				
	1	12	1 <u>3</u>	15 -	1 <u>4</u>				
	1	⁸ 1	⁹ 0	11	¹ 9				

$$y_8 = x_7 x_2 + x_7 x_1$$

Х	, У ₂					
× ₇ × ₄ 0	00	01	11	10		
X 4 0	°0	¹ 0	3 1	² 1		
0 1	⁴ 0	⁵ 0	7_	⁶ 1		
1 1	12	13	15 -	14		
1 0	⁸ 1	⁹ 0	11	1 0		

	γ,	__ У ₁					
×7 ×4	X ₂ ;	`1 00	01	11	10		
^X 4	0	°0	¹ 1	³ 1	2 0		
	0	⁴ 0	⁵ 1	7 -	⁶ 0		
	1	12	13	1 <u>5</u>	14		
	1	⁸ 1	⁹ 0	1 <u>1</u>	19		

$$y_8 = x_7 x_2 + x_7 x_1$$

$$y_8 = x_7 x_2 + x_7 x_1$$
 $y_4 = x_4 + x_7 x_2 x_1$

X ₂	Υ	__ У ₁						
x_{4}^{2}	^1 00	01	11	10				
X 4 0	°0	1	³ 1)	2 0				
0 1	⁴ 0	51	7 <u> </u>	⁶ 0				
1	(2)	1 <u>3</u>	15	14				
1 0	⁸ 1	⁹ 0	11	19				

$$y_8 = x_7 x_2 + x_7 x_1$$

$$y_4 = x_4 + x_7 x_2 x_1$$

$$y_8 = x_7 x_2 + x_7 x_1$$
 $y_4 = x_4 + x_7 \overline{x_2} \overline{x_1}$ $y_2 = \overline{x_7} x_2 + x_7 \overline{x_2} \overline{x_1}$

$$y_1 = \overline{x_7} x_1 + x_7 x_2 + x_7 \overline{x_2} x_1$$

Code converter

Gemensamma hoptagningar kan ge delade grindar!

$$y_8 = x_7 x_2 + x_7 x_1$$

$$y_4 = x_4 + x_7 x_2 x_1$$

$$y_8 = x_7 x_2 + x_7 x_1$$
 $y_4 = x_4 + x_7 x_2 x_1$ $y_2 = x_7 x_2 + x_7 x_2 x_1$

$$y_1 = \overline{x_7} x_1 + x_7 x_2 + x_7 \overline{x_2} x_1$$

PLA-kretsar innehåller programerbara AND och OR grindar.

(Detta visade sig vara onödigt komplext, så det vanliga blev PAL-kretsar med endast AND-nätet programmerbart).

PLA. Numera en utdöd kretsarkitektur

Grindarna har många programmerbara ingångsanslutningar. De många ingångarna ritas därför oftast med ett "förenklat" ritsätt.

$$y_{3} = x_{7}x_{2} + x_{7}x_{1} y_{4} = x_{4} + x_{7}\overline{x_{2}}\overline{x_{1}} y_{2} = \overline{x_{7}}x_{2} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}} y_{1} = \overline{x_{7}}x_{1} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}}$$
 8.4 PLA
$$y_{2} = \overline{x_{7}}x_{1} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}}$$
 Grind-delning!

$$y_{8} = x_{7}x_{2} + x_{7}x_{1} y_{4} = x_{4} + x_{7}\overline{x_{2}}\overline{x_{1}} y_{2} = \overline{x_{7}}x_{2} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}} y_{1} = \overline{x_{7}}x_{1} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}}$$
 Grind-delning!

$$y_{8} = x_{7}x_{2} + x_{7}x_{1} y_{4} = x_{4} + x_{7}\overline{x_{2}}\overline{x_{1}} y_{2} = \overline{x_{7}}x_{2} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}} y_{1} = \overline{x_{7}}x_{1} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}}$$
 Grind-delning!

William Sandqvist william@kth.se

$$y_{8} = x_{7}x_{2} + x_{7}x_{1} y_{4} = x_{4} + x_{7}\overline{x_{2}}\overline{x_{1}} y_{2} = \overline{x_{7}}x_{2} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}} y_{1} = \overline{x_{7}}x_{1} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}}$$
 8.4 PLA
$$y_{2} = \overline{x_{7}}x_{1} + \overline{x_{7}}\overline{x_{2}}\overline{x_{1}}$$
 Grind-delning!

One chip

PLA

PAL

A2 A1 A0 Utdöd arkitektur

Också snart utdöda ...

MUX Tree

William Sandqvist william@kth.se

Reella tal

Decimalkomma "," och Binärpunkt "."

$$10,3125_{10} = 1010.0101_2$$

Bin
$$\rightarrow$$
 Dec
1 0 1 0 0 1 0 1
 $2^3 2^2 2^1 2^0 2^{-1} 2^{-2} 2^{-3} 2^{-4}$
8 4 2 1 0,5 0,25 0,125 0,0625
8+0+2+0+0+0,25+0+0,0625 = 10,3125

Ex 1.2b

$$110100.010_2 =$$

Ex 1.2b

$$110100.010_2 =$$

$$= (2^5 + 2^4 + 2^2 + 2^{-2} = 32 + 16 + 4 + 0.25) =$$

$$= 52,25_{10}$$

Komplementräkning

Subtraktion med en additionsmaskin = komplementräkning

$$63 - 17 = 46$$

Talet -17 slås in som med röda siffror 17 och blir då 82. När - tangenten trycks in adderas 1. Resultatet blir: 63+82+1=146.

Om bara två siffror visas: 46

2-komplement

Komplementräkning i datorn.

Binärtalet 3, **0011**, blir negativt -3 genom att man inverterar alla bitar och lägger till ett, **1101**.

Registeraritmetik

• Datorregister är "ringar"

Ett fyra bitars register rymmer $2^4 = 16$ tal.

Antingen 8 positiva (+0...+7) och 8 negativa (-1...-8) tal "**med tecken**", eller 16 (0...F) "**teckenlösa**" tal.

Om registret är fullt gör "+1" att det "slår runt".

Registerlängd

- 4 bitar kallas **Nibble**. Registret rymmer $2^4 = 16$ tal.
- 0...15, -8...+7
- 8 bitar kallas **Byte**. Registret rymmer $2^8 = 256$ tal.
- 0...255, -128...+127
- 16 bitar kallas **Word**. $2^{16} = 65536$ tal.
- 0...65535, -32768...+32767

Vanliga registerstorlekar är idag 32 bitar (DoubleWord) och 64 bitar (QuadWord).

Dessa storleksbenämningar är de som används av Windows-programmet Calculator. Word kan ofta vara 32 bitar i stället.

Skriv följande tal "med tecken" med två-komplementsnotation, $x = (x_6, x_5, x_4, x_3, x_2, x_1, x_0)$ som decimaltal med tecken.

- a) -23
- b) -1 =
- c) +38 =
- d) -64 =

Skriv följande tal "med tecken" med två-komplementsnotation, $x = (x_6, x_5, x_4, x_3, x_2, x_1, x_0)$ och som decimaltal.

a)
$$-23 = (+23_{10} = 0010111_2 \rightarrow -23_{10} = 1101000_2 + 1_2) = 1101001_2 = 105_{10}$$

- b) -1 =
- c) +38 =
- d) -64 =

Skriv följande tal "med tecken" med två-komplementsnotation, $x = (x_6, x_5, x_4, x_3, x_2, x_1, x_0)$ och som decimaltal.

a)
$$-23 = (+23_{10} = 0010111_2 \rightarrow -23_{10} = 1101000_2 + 1_2) = 1101001_2 = 105_{10}$$

b)
$$-1 = (+1_{10} = 0000001_2 \rightarrow -1_{10} = 11111110_2 + 1_2) = 11111111_2 = 127_{10}$$

c)
$$+38 =$$

d)
$$-64 =$$

Skriv följande tal "med tecken" med två-komplementsnotation, $x = (x_6, x_5, x_4, x_3, x_2, x_1, x_0)$ och som decimaltal.

a)
$$-23 = (+23_{10} = 0010111_2 \rightarrow -23_{10} = 1101000_2 + 1_2) = 1101001_2 = 105_{10}$$

b)
$$-1 = (+1_{10} = 0000001_2 \rightarrow -1_{10} = 11111110_2 + 1_2) = 11111111_2 = 127_{10}$$

c) +38 =
$$(32_{10}+4_{10}+2_{10}) = 0100110_2 = 38_{10}$$

d)
$$-64 =$$

Skriv följande tal "med tecken" med två-komplementsnotation, $x = (x_6, x_5, x_4, x_3, x_2, x_1, x_0)$ och som decimaltal.

a)
$$-23 = (+23_{10} = 0010111_2 \rightarrow -23_{10} = 1101000_2 + 1_2) = 1101001_2 = 105_{10}$$

b)
$$-1 = (+1_{10} = 0000001_2 \rightarrow -1_{10} = 11111110_2 + 1_2) = 11111111_2 = 127_{10}$$

c) +38 =
$$(32_{10}+4_{10}+2_{10}) = 0100110_2 = 38_{10}$$

d) $-64 = (+64_{10} = 1000000_2 \text{ är ett för stort positivt tal!}$ men fungerar ändå $-64_{10} \rightarrow 0111111_2 + 1_2) = 10000000_2 = 64_{10}$

Ex 2.1

- a) 110 + 010 b) 1110 + 1001
- c) 11 0011.01 + 111.1 d) 0.1101 + 0.1110

a)
$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{0}{0}$$

 $\frac{+ \ 0 \ 1 \ 0}{1 \ 0 \ 0 \ 0}$

a)
$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{0}{0}$$
 b) $\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{0}{0}$ $\frac{+ 1 \cdot 0 \cdot 0 \cdot 1}{1 \cdot 0 \cdot 1 \cdot 1}$

Addera bit för bit med carry.

Align at add/sub

Heladderaren

Heladderaren

Ett grindnät som gör en binär addition på en valfri bitposition med två binära tal kallas för en **Heladderare**.

4-bits adderare

En additionskrets för binära fyrbitstal består således av fyra heladderarkretsar.

Subtraktion?

2-komplementet "snabbt"

- För att lätt ta fram 2-komplementet av ett binärtal kan man använda följande förfarande:
 - Börja från höra sidan
 - Kopiera alla bitar från binärtalet som är 0 och den första 1:an
 - Invertera alla andra bitar

Exempel: 2-komplement från

Ex 2.2 add/sub

Addera eller subtrahera (addition med motsvarande negativa tal) nedanstående tal. Talen skall representeras som binära 4-bitstal (Nibble) på två-komplementform.

a)
$$1+2$$
 b) $4-1$ c) $7-8$ d) $-3-5$

Exemplets negativa tal:

$$-1_{10} = (+1_{10} = 0001_2 \rightarrow -1_{10} = 1110_2 + 1_2) = 1111_2$$

$$-8_{10} = (+8_{10} = 1000_2 \rightarrow -8_{10} = 0111_2 + 1_2) = 1000_2$$

$$-3_{10} = (+3_{10} = 0011_2 \rightarrow -3_{10} = 1100_2 + 1_2) = 1101_2$$

$$-5_{10} = (+5_{10} = 0101_2 \rightarrow -5_{10} = 1010_2 + 1_2) = 1011_2$$

$$-1_{10} = 1111_2$$

$$-8_{10} = 1000_2$$

$$-3_{10} = 1101_2$$

$$-5_{10} = 1011_2$$

$$1+2=3$$

$$4-1=3$$

d)
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}{0}$ =-3
+ $\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{0}$ =-5
 $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ =-8

Ex 2.3 a,b mul

Multiplicera för hand följande par av teckenlösa binära tal.

a) 110.010 b) 1110.1001

110·010=
$$(6\cdot2=12)=1100$$
 1110·1001=1111110
a) $\begin{array}{c} 1 & 1 & 0 & =6 \\ \times & 0 & 1 & 0 \\ \hline & 0 & 0 & 0 \\ \end{array}$ $\begin{array}{c} 1 & 1 & 1 & 0 & =14 \\ \times & 1 & 0 & 0 & 1 \\ \hline & 1 & 1 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \times & 1 & 0 & 0 & 1 \\ \hline & 1 & 1 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \times & 1 & 0 & 0 & 1 \\ \hline & 1 & 1 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \times & 1 & 0 & 0 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 & 1 \\ \end{array}$ $\begin{array}{c} \times & 1 \\$

Ex 2.3 c,d mul

Multiplicera för hand följande par av teckenlösa binära tal.

$$\begin{array}{c} 110011.01\cdot 111.1=\\ =1100000000.011\\ \text{c}) \\ \hline & 11001101\\ \hline & \underbrace{\times \quad 11111}_{11001101}\\ \hline & 11001101\\ \hline & 11001101\\ \hline & 11001101\\ \hline & 110000000011\\ \hline & =1100000000.011\\ \hline & =110000000.011\\ \hline & =0.10110110\\ \hline & \underbrace{1101}_{1101}\\ \hline & \underbrace{\times \quad 1110}_{1101}\\ \hline & 1101\\ \hline & 1101\\ \hline & 10110110\\ \hline \hline & 10110110\\ \hline \\ \hline & =0.10110110\\ \hline \hline & 10110110\\ \hline \hline & 10110110\\ \hline \hline \\ \hline & (0,8125\cdot 0,875=0.7109375)\\ \hline \end{array}$$

Fixpunktsberäkning är en "heltalsmultiplikation", binärpunkten sätts in först i resultatet.

Ex 2.4 div

Dividera för hand följande par av teckenlösa binära tal.

Trappan:

Ex 2.4

Dividera för hand följande par av teckenlösa binära tal.

Trappan:

Vid heltalsdivision blir svaret i stället 1.

Ex 2.4

Dividera för hand följande par av teckenlösa binära tal. Kort division:

$$\frac{1}{10} = \frac{1}{10} = 1 \qquad \frac{1}{10} = 11$$

Ex 2.4

Dividera för hand följande par av teckenlösa binära tal. Kort division:

$$\frac{1110}{1001} = \frac{1110}{1001} = 1 \qquad \frac{1110}{1001} = 1. \qquad \frac{1110}{1001} = 1.1 \qquad \cdots$$

Vid heltalsdivision blir svaret i stället 1.

IEEE – 32 bit float

Genom att exponenteten skrivs exess–127 kan flyttal storlekssorteras med vanlig heltalsaritmetik!

 $Dec \rightarrow IEEE-754$

IEEE 32 bit flyttal

IEEE 32 bit flyttal

Vad blir:

IEEE 32 bit flyttal

Vad blir:

0 10000001 10010000000000000000000

$$+$$
 129-127 1 + 0.5+0.0625

IEEE 32 bit flyttal

Vad blir:

0 10000001 10010000000000000000000

+
$$129-127$$
 1 + $0.5+0.0625$
+ $1,5625\cdot 2^2 = +6,25$

🛂 IEEE-754 Floating-Point Conversion from 32-bit Hexadecimal to Floating-Point - Mozilla Firefox
<u>Arkiv R</u> edigera Vi <u>s</u> a Hist <u>o</u> rik <u>B</u> okmärken <u>V</u> erktyg <u>H</u> jälp
Google 🔎 🥲 📉 🏠 🎼 http://babbage.cs.qc.cuny.edu/IEEE-754/32bit.html
IEEE-754 Floating-Point Conversion f
IEEE-754 Floating-Point Conversion From 32-bit Hexadecimal Representation To Decimal Floating-Point Along with the Equivalent 64-bit Hexadecimal and Binary Patterns
Enter the 32-bit hexadecimal representation of a floating-point number here, then click the Compute button.
Hexadecimal Representation: 40C80000 Clear
Compute
Results:
Decimal Value Entered: 6.25
Single precision (32 bits):
Binary: Status: normal
Bit 31 Sign Bit O
· · · · · · · · · · · · · · · · · · ·

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

Figure 5.34. IEEE Standard floating-point formats.

Overflow

När man räknar med "tal med tecken" kan summan av två positiva tal *felaktigt* bli negativ

(tex. "+4" + "+5" = "-7"), liksom summan av två negativa tal *felaktigt* kan bli positiv (tex. "-6" + "-7" = "+3").

Detta kallas för Overflow.

Figure 5.42. A comparator circuit.

Logik för att detektera _ overflow

XOR testar "olikhet"

För 4-bit-tal

Overflow om c₃ och c₄ är *olika* Annars är det inte overflow

Overflow =
$$c_3\overline{c}_4 + \overline{c}_3c_4 = c_3 \oplus c_4$$

För n-bit-tal

Overflow =
$$c_{n-1} \oplus c_n$$

BV ex 5.10, <>=

Flags, Comparator. Two four-bit signed numbers, $X = x_3x_2x_1x_0$ and $Y = y_3y_2y_1y_0$, can be compared by using a subtractor circuit, which performs the operation X - Y. The three Flag-outputs denote the following:

- Z = 1 if the result is 0; otherwise Z = 0
- N = 1 if the result is negative; otherwise N = 0
- V = 1 if aritmetic overflow occurs; otherwise V = 0

Show how *Z*, *N*, and *V* can be used to determine the cases

$$X = Y$$
, $X < Y$, $X > Y$.

William Sandqvist william@kth.se

BV ex 5.10 X=Y

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

$$X = Y$$
?

$$X = Y$$
?

BV ex 5.10 X=Y

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

$$X = Y$$
?

$$X = Y$$
?

$$X = Y \implies Z = 1$$

BV ex 5.10 X<Y

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

X < Y?

Några testtal med X<Y:

BV ex 5.10 X<Y

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

X < Y?

Om X och Y har samma tecken kommer X - Y alltid att ligga inom talområdet. Dvs. V = 0. X, Y positiva tex. 3 - 4 N = 1. X, Y negativa tex. -4 - (-3) N = 1.

Om X neg och Y pos och X - Y ligger inom talområdet, blir V = 0 och N = 1. Tex. -3 - 4.

Om X neg och Y pos men X - Y ligger utanför talområdet, blir V = 1. Då blir N = 0. Ex. -5 - 4.

 Vid X<Y blir flaggorna V och N således alltid olika. Detta kan indikeras med XOR.

BV ex 5.10 X<Y

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

X < Y?

Om X och Y har samma tecken kommer X - Y alltid att ligga inom talområdet. Dvs. V = 0. X, Y positiva tex. 3 - 4 N = 1. X, Y negativa tex. -4 - (-3) N = 1.

Om X neg och Y pos och X - Y ligger inom talområdet, blir V = 0 och N = 1. Tex. -3 - 4.

Om X neg och Y pos men X - Y ligger utanför talområdet, blir V = 1. Då blir N = 0. Ex. -5 - 4.

 Vid X<Y blir flaggorna V och N således alltid olika. Detta kan indikeras med XOR.

$$X < Y \implies N \oplus V$$

BV ex 5.10 more compares

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

$$X = Y \implies Z = 1$$
 $X < Y \implies N \oplus V$
 $X \le Y \implies$
 $X > Y \implies$
 $X \ge Y \implies$

BV ex 5.10

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

$$X = Y \implies Z = 1$$

$$X < Y \implies N \oplus V$$

$$X \le Y \implies Z + N \oplus V$$

$$X > Y \implies \overline{Z + N \oplus V} = \overline{Z} \cdot (\overline{N \oplus V})$$

$$X \ge Y \implies \overline{N \oplus V}$$

BV ex 5.10

$$X - Y$$

$$V = c_4 \oplus c_3 \quad N = s_3$$

$$Z = \overline{(s_3 + s_2 + s_1 + s_0)}$$

$$X = Y \Rightarrow Z = 1$$
 Så här kan en dator göra de vanligaste jämförelserna ... $X \leq Y \Rightarrow Z + N \oplus V$ $X > Y \Rightarrow \overline{Z + N \oplus V} = \overline{Z} \cdot (\overline{N \oplus V})$

(Ex 8.12) Adderarkrets

Ett fyrabitars teckenlöst tal x ($x_3x_2x_1x_0$) är anslutet till en 4-bits adderare som figuren visar. Resultatet blir ett 5-bitars tal y ($y_4y_3y_2y_1y_0$). Rita in i figuren till höger hur samma resultat kan fås *utan användning av adderaren*. Konstanter med värdet 0 eller 1 finns tillgängliga.

(Ex 8.12) Adderarkrets

William Sandqvist william@kth.se