Total No. of Questions: 8]	20	SEAT No.:	
P4832		[Total No	o. of Pages :

[5060] - 737 M.E. (E & TC) (VLSI & Embedded Systems)

		(2013 Pattern) (Semester - I)	
Time	2:3H	Iours] [Max. Marks:	50
Instr	uctio	ns to the candidates :-	
	<i>1)</i>	Answer any five questions.	
	2)	Neat diagram must be drawn wherever necessary.	
	3)	Figures to the right side indicate full marks.	
	<i>4)</i> 5)	Use of Calculator is allowed. Assume Suitable data if necessary.	
	3)	Assume Suluble data if necessary.	
<i>Q1</i>)	a)	Explain key differences between Configurable, Programmable, a	ınd
	ŕ		[4]
	b) \	What are Research challenges in RC? What is state of Art?	[4]
	c)	What is key relation between interconnect, configuration memory a	ınd
		active logic.	[2]
<i>Q2</i>)	a)	Discuss general purpose computing issues.	[5]
	b)	Explain the Metric: Density and Diversity.	[5]
			7
Q3)	a)	Compare ASIC, GPP, FPGA, Memory, RALU, PDSP with respect	to
		power consumption, design efforts, throughput and NRE.	[4]
	b)	Explain VLIW processor, discuss its failure from performing at peak.	[4]
	c)	Explain the term Multi-Context.	[2]
Q4)	a)	Explain the hierarchical interconnect scheme.	[4]
	b)	What are issues in Reconfigurable Network Design.	[4]
	c)	Brief on channel and wire growth.	[2]
		T T	

<i>Q5</i>)	a)	What are different instruction compression techniques? Explain a one.	iny [4]
	b)	Find the number of interconnect bits required for a 1000 4-LUT dev	ice
		with 200 inputs.	[4]
	c)	Explain the terms Architecture W & Design W.	[2]
Q6)	a)	Draw and explain the architecture of DPGA.	[5]
	b)	Explain with suitable diagram the time switched input register.	[5]
Q 7)	a)	What are working RC examples? What tasks are being performed	by
		them?	[5]
	b)	Explain MATRIX as reconfigurable architecture.	[5]
Q 8)	a)	Explain Rapid prototyping as the application of RC.	[4]
	b)	Explain Multicontext FPGA as platform for RC.	[4]
	c)	Brief on the term partial reconfigurability.	[2]
		\mathfrak{HHH}	
		39.73	
		A.I.A. S.	