Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 2 Segundo Semestre 2021

PRÁCTICO 8: Funcionales Lineales y adjunta de una transformación lineal

A menos que se indique lo contrario, considerar en \mathbb{R}^n y en \mathbb{C}^n los productos internos usuales, en $\mathbb{R}_n[x]$ el producto interno $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$ y en $\mathcal{M}_n(\mathbb{R})$ el producto interno $\langle A, B \rangle = tr(AB^t)$.

1. Representación de Riesz

EJERCICIO 1. Hallar el representante de Riesz de los siguientes funcionales lineales:

- 1. $T: \mathbb{R}^3 \to \mathbb{R}$ dada por T(x, y, z) = x + 2y 3z.
- 2. $T: \mathbb{C}^3 \to \mathbb{C}$ dada por T(x, y, z) = ix + (2+3i)y + (1-2i)z.
- 3. $T: \mathbb{R}_1[x] \to \mathbb{R}$ definida por $T(p) = p(\alpha)$, donde α es un número real fijo.
- 4. $T: \mathbb{R}_2[x] \to \mathbb{R}$ definida por T(p) = p(0) + p'(1).

EJERCICIO 2. Sea V un espacio vectorial de dimensión finita, con producto interno, $T:V\to\mathbb{K}$ un funcional lineal no nulo y v_0 el representante de Riesz de T.

- 1. Probar que $v_0 \in (Ker(T))^{\perp}$.
- 2. Probar que $||v_0|| = \sqrt{T(v_0)}$.
- 3. Probar que $\dim((KerT)^{\perp}) = 1$.
- 4. Si $\{e\}$ es una base ortonormal de $(Ker(T))^{\perp}$; probar que $v_0 = \overline{T(e)} e$.
- 5. Se considera la funcional lineal $T: \mathbb{R}^3 \to \mathbb{R}$ definida por:

$$T(1,0,0) = 2,$$
 $T(0,1,0) = 1,$ $T(0,0,1) = -1.$

Hallar una base de $\big(Ker(T)\big)^{\perp}$ y utilizarla para determinar el representante de Riesz de T.

2. Adjunta de una transformación lineal

EJERCICIO 3. Si $T, S: V \to W$ y $R: U \to V$ son transformaciones lineales entre \mathbb{K} -espacios vectoriales de dimensión finita con producto interno, y $\alpha \in \mathbb{K}$, probar las propiedades de la adjunta:

1. Si $\{e_1, \ldots, e_n\}$ es una base ortonormal de V, entonces

$$T^*\left(w\right) = \left\langle w, T\left(e_1\right)\right\rangle_W \cdot e_1 + \ldots + \left\langle w, T\left(e_n\right)\right\rangle_W \cdot e_n, \ \forall w \in W.$$

- 2. $(T+S)^* = T^* + S^*$.
- 3. $(\alpha T)^* = \overline{\alpha} T^*$.
- 4. $(T \circ R)^* = R^* \circ T^*$.
- 5. $(T^*)^* = T$.
- 6. T es invertible $\Leftrightarrow T^*$ es invertible. Además $(T^*)^{-1} = (T^{-1})^*$.
- 7. λ es valor propio de $T \Leftrightarrow \overline{\lambda}$ es valor propio de T^* .
- 8. $Ker(T^*) = (Im(T))^{\perp}$.
- 9. $Im(T^*) = (Ker(T))^{\perp}$.
- 10. $Ker(T^*T) = Ker(T)$.
- 11. $\dim (Im(T^*T)) = \dim (Im(T)).$

Ejercicio 4.

1. a) Hallar el producto interno de \mathbb{R}^2 para el cual $\left\{ \left(\frac{1}{4}, 0 \right), \left(0, \frac{1}{2} \right) \right\}$ es una base ortonormal.

- b) Hallar el producto interno de \mathbb{R}^3 para el cual $\{(1,0,0),(1,1,0),(1,1,1)\}$ es una base ortonormal.
- 2. Se considera la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que

$$T(x,y) = (x + 3y, 3x + y, x + y).$$

Hallar T^* en las siguientes situaciones:

- a) \mathbb{R}^2 y \mathbb{R}^3 con los productos internos usuales.
- \overline{b} \mathbb{R}^2 con producto interno usual y \mathbb{R}^3 con el producto interno de la parte 1. b).
- c) \mathbb{R}^2 con el producto interno de la parte 1. a) y \mathbb{R}^3 con producto interno usual.
- \overline{d} \mathbb{R}^2 y \mathbb{R}^3 con los productos internos hallados en la parte 1.

EJERCICIO 5. Hallar la transformación lineal adjunta de las siguientes transformaciones (con los productos internos usuales)

- 1. $T: \mathbb{R}_2[x] \to \mathbb{R}_1[x]$ tal que T(p) = p'.
- 2. $T: \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$ tal que $T(A) = A^t + A$.

3. Representación matricial de la adjunta en bases ortonormales

EJERCICIO 6. Hallar $_{\mathcal{B}}(T)_{\mathcal{B}}$ y $_{\mathcal{B}}(T^*)_{\mathcal{B}}$ en alguna base \mathcal{B} conveniente, para las siguientes transformaciones lineales.

- 1. $T: \mathbb{C}^3 \to \mathbb{C}^3$ tal que T(x, y, z) = (2x + iy, y 5iz, x + (1 i)y + 3z).
- 2. $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x, y, z) = (2x + y z, x + y + z).

3.
$$T: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$$
 tal que $T(A) = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} A$.

EJERCICIO 7. Se considera la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(x, y, z) = (x - y + 2z, -2x + 2y - 3z, -x + y - z).$$

- 1. Hallar bases de Ker(T) y de Im(T).
- 2. Sin determinar T^* , hallar bases de $Ker(T^*)$ y de $Im(T^*)$.

EJERCICIO 8. Sea V un espacio vectorial de dimensión finita con producto interno, S un subespacio vectorial de V y $T:V\to V$ una transformación lineal.

Probar que

$$S$$
es invariante bajo $T \Leftrightarrow S^\perp$ es invariante bajo $T^*.$

EJERCICIO 9. Sea V un espacio vectorial con producto interno sobre \mathbb{R} , con dim(V) = 3. Se considera una transformación lineal $T: V \to V$ y un subespacio vectorial S de V.

- 1. Si dim(S) = 1 probar que S es invariante bajo $T \Leftrightarrow \text{existe } \lambda_0$ valor propio de T tal que $S \subseteq N(T \lambda_0 I)$.
- 2. Si dim(S)=2 probar que S es invariante bajo $T\Leftrightarrow$ existe λ_0 valor propio de T tal que $Im(T-\lambda_0I)\subseteq S$
- 3. Se considera la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$T(x, y, z) = (7y - 6z, -x + 4y, 2y - 2z)$$

- a) Hallar todos los subespacios de dimensión 1 invariantes bajo T.
- b) Hallar todos los subespacios de dimensión 2 invariantes bajo T.