Unidad 5: Geometría Analítica del Plano Álgebra y Geometría Analítica II (R-121) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

Recta en el Plano 1.

Lugar geométrico del Plano: subconjunto del plano formado por todos los puntos que satisfacen una o más condiciones geométricas determinadas.

Distancia entre dos puntos P y Q, y se denota d(P,Q) a la longitud PQ del segmento \overline{PQ} . Notamos que $d(PQ) = \sqrt{(x'-x)^2 + (y'-y)^2}$, y además:

- $d(P,Q) \ge 0$ y $d(P,Q) = 0 \iff P = Q$.
- $\bullet d(P,Q) = d(Q,P)$
- $d(P,Q) + d(Q,R) \ge d(P,R)$

Dado un punto P y un vector no nulo \overline{u} , la **recta** r que pasa por P en la dirección \overline{u} es el lugar geométrico de los puntos Q tales que $\overrightarrow{PQ}//\overline{u}$. Es decir, $Q \in r \iff \exists \lambda \in \mathbb{R} : \overrightarrow{PQ} = \lambda \overline{u}$.

- Ecuación Vectorial: $\overrightarrow{OQ} = \overrightarrow{OP} + \lambda \overline{u}$.
- Ecuación Cartesians $\begin{cases} x = x_0 + \lambda u_1 \\ y = y_0 + \lambda u_2 \end{cases}$
- **E**cuación Cartesiana: ax + by + c = 0

El sistema es **compatible determinado** si y sólo si $\begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b \neq 0$, y se cortan en un punto.

El sistema es **compatible indeterminado o incompatible** si y sólo si $\begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b = 0.$

Dado un punto P del plano y una recta r, si trazamos una perpendicular a r que pase por P, ésta corta a r en un único punto P'. Se denomina **distancia** de P a r, d(P,r) a la distancia d(P,P').

2. Secciones Cónicas

Un doble cono recto es una figura que se engendra al hacer girar una recta q alrededor de una recta h que la corta. La recta h se denomina **eje** del cono, y las distintas posiciones de la recta g se denominan generatrices. Una sección cónica es toda sección que se obtiene de intersecar un doble cono recto con un plano que lo corta:

- Plano perpendicular al eje del cono, la cónica se denomina circunferencia.
- Plano que forma con el eje del cono un ángulo superior al ángulo que forman el eje y cualquier generatriz, resulta en una elipse.
- Plano paralelo a cualquiera de las generatrices del cono, resulta en una parábola.
- Plano que forma con el eje del cono un ángulo inferior al ángulo que forman el eje y cualquier generatriz, resulta en una hiperbola.

Los casos especiales se denominan cónicas degeneradas.

2.1. Circunferencia

Se denomina **circunferencia** al conjunto de los puntos del plano que equidistan (a una distancia r > 0denominada radio) de un punto fijo del plano, denominado centro de la circunferencia.

2

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

$$\begin{cases} x = x_0 + r \cos \theta \\ y = y_0 + r \sin \theta \end{cases}$$

2.2. Elipse

Dados dos puntos distintos F_1 y F_2 del plano y un número real positivo a tal que $2a > d(F_1, F_2)$, se denomina **elipse** de **focos** F_1 y F_2 al lugar geométrico de los puntos P del plano tales que

$$d(P, F_1) + d(P, F_2) = 2a$$

El punto medio del segmento que determinan los focos se denomina **centro** de la elipse. Definimos $c = d(C, F_1) = d(C, F_2)$. La recta determinada por los focos se denomina **eje focal**. Luego, se define $b = \sqrt{a^2 - c^2}$. Vemos que c > a. Además, a y b son las distancias de los vértices al centro.

	Eje focal paralelo al eje x	Eje focal paralelo al eje y
Ecuación	$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$	$\frac{(x-x_0)^2}{b^2} + \frac{(y-y_0)^2}{a^2} = 1$
Paramétrica	$\begin{cases} x = x_0 + a\cos\theta \\ y = y_0 + b\sin\theta \end{cases}$	$\begin{cases} x = x_0 + b\cos\theta \\ y = y_0 + a\sin\theta \end{cases}$
Focos	$F_1(x_0-c,y_0), F_2(x_0+c,y_0)$	$F_1(x_0, y_0 - c), F_2(x_0, y_0 + c)$
Vértices	$V_1(x_0-a,y_0), V_2(x_0+a,y_0)$	$V_1(x_0, y_0 - a), V_2(x_0, y_0 + a)$
	$V_3(x_0, y_0 + b), V_4(x_0, y_0 - b)$	$V_3(x_0 - b, y_0), V_4(x_0 + b, y_0)$

2.3. Hipérbola

Dados dos puntos distintos del plano F_1 y F_2 , y un número real positivo a tal que $2a < d(F_1, F_2)$, se denomina **hipérbola** de **focos** F_1 y F_2 al lugar geométrico de los puntos P del plano tales que

$$|d(P, F_1) - d(P, F_2)| = 2a$$

El punto medio del segmento que determinan los focos se denomina **centro** de la hipérbola. La recta determinada por los focos se denomina **eje focal**. Se define $b = \sqrt{c^2 - a^2}$. Vemos que c > a.

	Eje focal paralelo al eje x	Eje focal paralelo al eje y
Ecuación	$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$	$\frac{(y-y_0)^2}{a^2} - \frac{(x-x_0)^2}{b^2} = 1$
Paramétrica	$\mathcal{H}^{+} \left\{ \begin{array}{l} x = x_0 + a \cosh t \\ y = y_0 + b \sinh t \end{array} \right.$	$\mathcal{H}^+ \left\{ \begin{array}{l} x = x_0 + b \sinh t \\ y = y_0 + a \cosh t \end{array} \right.$
	$\mathcal{H}^{-} \left\{ \begin{array}{l} x = x_0 - a \cosh t \\ y = y_0 + b \sinh t \end{array} \right.$	$\mathcal{H}^{-} \left\{ \begin{array}{l} x = x_0 + b \sinh t \\ y = y_0 - a \cosh t \end{array} \right.$
Focos	$F_1(x_0-c,y_0), F_2(x_0+c,y_0)$	$F_1(x_0, y_0 - c), F_2(x_0, y_0 + c)$
Vértices	$V_1(x_0-a,y_0), V_2(x_0+a,y_0)$	$V_1(x_0, y_0 - a), V_2(x_0, y_0 + a)$
Asíntotas	$r_1)y = -\frac{b}{a}(x - x_0) + y_0$	$r_1)y = -\frac{a}{b}(x - x_0) + y_0$
	$r_2)y = \frac{b}{a}(x - x_0) + y_0$	$r_2)y = \frac{a}{b}(x - x_0) + y_0$

$$\cosh t = \frac{e^t + e^{-t}}{2}, \sinh t = \frac{e^t - e^{-t}}{2} :: \cosh^2 t - \sinh^2 t = 1$$

2.4. Parábola

Dados una recta r y un punto F del plano tal que $F \notin r$, se denomina **parábola** de **directriz** r y **foco** F al lugar geométrico de los puntos P del plano que equidistan de F y r:

$$d(P,F) = d(P,r)$$

Definimos p = d(F, r). Además, $V(x_0, y_0)$, con $y_0 = a \pm \frac{p}{2}$ $(r \parallel \text{eje } x)$, donde r) y = a.

	Directriz \parallel eje x	Directriz \parallel eje y
	F sobre $(+)$ o debajo $(-)$ de r	F a la derecha $(+)$ o a la izquierda $(-)$ de r
Ecuación	$(x - x_0)^2 = \pm 2p(y - y_0)$	$(y - y_0)^2 = \pm 2p(x - x_0)$
Paramétrica	$\begin{cases} x = x_0 + t \\ y = y_0 \pm \frac{1}{2p} t^2 \end{cases}$	$\begin{cases} x = x_0 \pm \frac{1}{2p} t^2 \\ y = y_0 + t \end{cases}$
Foco	$F(x_0, y_0 \pm \frac{p}{2})$	$F(x_0 \pm \frac{p}{2}, y_0)$

3. Extra

Una transformación rígida es una función biyectiva $f: \mathbb{R}^2 \to \mathbb{R}^2$ que preserva la distancia, i.e $\forall P, Q \in \mathbb{R}^2, d(P,Q) = d(f(P), f(Q)).$

4. Resumen

•
$$(x-x_0)^2 + (y-y_0)^2 = r^2 \rightarrow \text{Circunferencia}$$

•
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1 \rightarrow \text{Elipse}$$

•
$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1 \rightarrow \text{Hipérbola}$$

•
$$(x-x_0)^2 = \pm 2p(y-y_0)$$
 \rightarrow Parábola