Deep dive into Linux Hibernation: From kernel flows to Modern tools

Presented by

Ankita Pareek (Software Engineer, Microsoft)
Erni Sri Satya Vennela (Software Engineer, Microsoft)

Contents

- Power Management in the Linux kernel
- Why hibernation?
- Understanding Linux Hibernation
- Deep dive into the hibernation implementation
- Sysfs interface
- Hibernation setup tool
- Critical Challenges in Hibernation Systems
- References

Power Management States in the Linux kernel

System Power Management Sleep States

Features	Suspend-to-Idle (S0ix)	Standby (S1)	Suspend-to-RAM (S3)	Hibernation (S4)
What Happens	CPU enters deepest idle state while keeping system in working state	CPU and some devices powered down while memory remains on	Most components powered off except memory which preserves system state	System state saved to disk and system powered off completely
ACPI State	S0ix	S1	S3	S4
Power Consumption	Highest	<s0ix but="">S3</s0ix>	<s1 but="">S4</s1>	Lowest
Wake-up Time	Minimum	>S0ix but <s3< th=""><th>>S1 but <s4< th=""><th>Maximum</th></s4<></th></s3<>	>S1 but <s4< th=""><th>Maximum</th></s4<>	Maximum
CPU State	Deepest idle stateCore voltage reducedMost clocks stoppedCaches maintained	Non-boot CPU stoppedContext maintainedSome clocks runningVoltage still present	Powered offContext saved to RAMAll clocks stoppedVoltage off	Completely powered offContext saved to diskMostly all power rails off
Memory State	Fully operationalRunning at low powerAll contents preservedMemory controller active	Fully poweredNormal operationFull refresh rateAll contents preserved	Self-refresh modeMinimal power modeContents preserved	Completely offContents saved to diskNo power consumption
Device State	Devices in low powerSome peripherals suspendedWake-capable devices active	Some devices activeMost in low power modeClocks may be running	Wake devices in low powerMost devices are suspendedMinimal power state	All devices offState saved to diskMinimum power consumption
Debug Interface	/sys/power/mem_sleep /sys/power/pm_debug	/sys/power/state /proc/acpi/sleep	/sys/power/state /sys/power/mem_sleep	/sys/power/disk /sys/power/state

Why hibernation?

Minimum Power Consumption

Cost Efficient

State Preservation

Faster boot time

Understanding Linux hibernation

- A system power-saving state aka Suspend-to-disk
- Saves complete system state to a non-volatile memory (disk/swap)
- System enters a special low-power state
- Restores system state on next boot
- Kernel config: CONFIG_HIBERNATION
- Disabled when secure boot or kernel_lockdown feature are enabled on the system
- Commonly supported on almost all Linux distros

Code walkthrough (Basic Flow)

Code walkthrough (Detailed Flow)

Code Walkthrough (Resume Flow)

Resume flow (detailed)

Sysfs interface

The interface exists in /sys/power directory

/sys/power/state:

This controls the system power state

Reading from this file returns what sleep states are supported:

• standby: Power-on Suspend

• freeze: Suspend-to-idle

• mem: Suspend-to-RAM

disk: Suspend-to-disk (hibernate)

Writing one of these strings to this file causes the system to transition into that state

Sysfs interface

/sys/power/disk:

Controls the operating mode of the Hibernation mechanism.

Reading from this file returns supported operating modes and the currently selected ones in brackets:

- platform: Default mode uses platform driver for hibernation
- **shutdown**: Powers off the system after hibernation image creation without platform-specific calls
- reboot: Reboot the system after hibernation image creation
- suspend: Creates hibernation image but doesn't power down keeps system in low-power state
- **test_resume**: Test mode creates and resumes from hibernation image without powering down
- **noresume**: Prevents resume from hibernation image on next boot

Writing one of these strings to this file will select the corresponding mode for hibernation

Hibernation setup tool

- An open-source tool developed by Microsoft to configure and enable hibernation in Linux
- Creates optimized swap file according to the system RAM
- Configures kernel and boot parameters for immediate hibernation and resume operations
- Primarily supports distributions using GRUB2 bootloader and initramfs-tools
- Uses system hooks to track hibernation success, failures, and cold boot scenarios and store them in the system logs
- This is specifically designed for hibernating Linux VMs.

How does this tool work?

Let us hibernate a VM using the hibernation-setup-tool!

Challenges with hibernation

MAX WAKE-UP TIMES

STORAGE REQUIREMENT

MEMORY STATE INCONSISTENCY

PLATFORM DEPENDENCIES

ENCRYPTED SYSTEMS

References

- Power Management In The Linux* Kernel Current Status And Future
- Hibernation in Linux 2.6.29
- System Sleep States The Linux Kernel documentation
- Power management/Suspend and hibernate ArchWiki
- Hibernation Debian Wiki
- Demystifying Hibernation in Linux: Why Isn't It Intuitive?
- kernel_lockdown(7) Linux manual page
- Hibernation overview Azure Virtual Machines | Microsoft Learn
- microsoft/hibernation-setup-tool: Tool to set up a Linux computer to hibernate

THANK YOU!

