SentinelAgent: Graph-Based Anomaly Detection in Multi-Agent Systems

Xu He, Di Wu, Zhai Yan, Kun Sun

Visa Inc. & George Mason University

Background

Key security risks:

- Prompt-level threats like injection and hallucination (R1)
- Unsafe tool usage (R2)
- Coordination failures or collusion (R3)

Three-Tier Detection Objectives:

- Global Detection
- Single-Point Localization
- Multi-Point Attribution

Typical MAS Topologies:

- Round-Robin
- Centralized Orchestrator
- Orchestrator + Shared Memory

Backend LLM

Risk 1

(b) Central Orchestrator

(c) Central Orchestrator (Ledger)

SentinelAgent

Graph Modeling:

- Nodes: Agents and tools
- Edges: Messages, function calls
- Static graph reflects architecture

Attack Path Detection:

- Anomalies arise from benign-looking sequences
- Subgraph matching

SentinelAgent Module:

- Real-time runtime monitor
- Modules: Event Monitor, Behavior Analyzer, Risk Responder
- Uses hybrid rule- and LLM-based evaluation for detection and response.

Case Studies

Case Study I: Email Assistant System

- Orchestrator with three agents and four tools.
- Attack Paths:
 - Fake emails triggering unauthorized responses;
 - Summarizer misuse to leak sensitive user data.
- Detection Strategies:
 - Path deviation analysis;
 - Tool parameter validation;
 - Prompt content inspection.

Case Study II: Magentic-One Generalist System

- Orchestrator and agents for documents, web, and code
- Attack Example:
 - Malicious user queries inject executable code.
- Detection Strategies:
 - Input ambiguity analysis;
 - Tool selection validation;
 - Behavioral pattern auditing and trace analysis.

