3. Half Adder

The circuit is used to add two 1-bit values to give corresponding 1-bit sum and carry outputs.

Truth table:

	Truth	Table		
Inj	Input		Output	
A	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Block Diagram:

Verilog Code:

```
File: halfAdder.v

/*

K Rahul Reddy 17C0119
Sushruth V 17C0148
15 October 2018

*/

module halfAdder (output reg sum, output reg carry, input op1, input op2);
always @ (op1 or op2) begin //if inputs are 0 and 0, thread is not executed
sum = op1 ^ op2; // sum bit of two operands
carry = op1 & op2; // carry bit of two operands
end
endmodule
```

Explanation:

The above block diagram is coded in the module using data flow modelling.

Output:

```
VCD info: dumpfile tb_halfAdder.vcd opened for output.

Sum of 1 and 1

Sum = 0

Carry = 1

Sum of 1 and 0

Sum = 1

Carry = 0

Sum of 0 and 1

Sum = 1

Carry = 0

Sum of 0 and 0

Sum = 0

Carry = 0
```