Pushdown Automata PDAs

NPDA: Non-Deterministic PDA Example: $a, \lambda \to a \qquad b, a \to \lambda$ $q_0 \lambda, \lambda \to \lambda \qquad q_1 b, a \to \lambda \qquad q_2 \lambda, \$ \to \$ \qquad q_3$

A string is accepted if there is a computation such that:

All the input is consumed

AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

25

The input string aaabbb is accepted by the NPDA:

$$a, \lambda \to a \qquad b, a \to \lambda$$

$$q_1 \qquad b, a \to \lambda \qquad \lambda, \$ \to \$$$

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

NPDA M

$$L(M) = \{ww^R\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

A string is rejected if there is no computation such that:

All the input is consumed

AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

49

In other words, a string is rejected if in every computation with this string:

The input cannot be consumed

OR

The input is consumed and the last state is not a final state

OR

The stack head moves below the bottom of the stack

Another NPDA example NPDA M $L(M) = \{w: n_a = n_b\}$ $a, \$ \to 0\$ \quad b, \$ \to 1\$$ $a, 0 \to 00 \quad b, 1 \to 11$ $a, 1 \to \lambda \quad b, 0 \to \lambda$ $\lambda, \$ \to \$$ Q_2

Formalities for NPDAs

$$(q_1)$$
 $\xrightarrow{a, b \to w} (q_2)$

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w)\}$$

63

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w), (q_3, w)\}$$

We write:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4 Time 5

69

A computation:

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

$$a, \lambda \to a \qquad b, a \to \lambda$$

$$\downarrow q_0 \qquad \lambda, \lambda \to \lambda \qquad \downarrow q_1 \qquad b, a \to \lambda \qquad \downarrow q_2 \qquad \lambda, \$ \to \$ \qquad \downarrow q_3$$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

71

Formal Definition

Language L(M) of NPDA M:

$$L(M) = \{w \colon (q_0, w, s) \overset{*}{\succ} (q_f, \lambda, s')\}$$
 Initial state Final state

Example:
$$(q_0, aaabbb, \$) \succ (q_3, \lambda, \$)$$

$$aaabbb \in L(M)$$

$$aaabbb \in L(M)$$

$$a, \lambda \rightarrow a \qquad b, a \rightarrow \lambda$$

$$a, \lambda \rightarrow a \qquad b, a \rightarrow \lambda$$

$$aaaabbb \in L(M)$$

$$aaaabbb \in L(M)$$

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA $M:$

$$a, \lambda \to a \qquad b, a \to \lambda$$

$$q_0 \qquad \lambda, \lambda \to \lambda \qquad q_1 \qquad b, a \to \lambda \qquad q_2 \qquad \lambda, \$ \to \$ \qquad q_3$$