SISTEM PENGUKUR TINGGI DAN KEKERUHAN AIR DALAM TANDON MENGGUNAKAN TEKNOLOGI VISIBLE LIGHT COMMUNICATION DAN APLIKASI ANDROID

Water Height and Turbidity System in Tandons with Visible Light Communication

Technology and Android Application

PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengambil Mata Kuliah Proyek Akhir

oleh:

Fasha Rosdiana Herawan 6705174128

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Air merupakan sebuah kebutuhan yang sangat amat pokok untuk kehidupan Mahluk Hidup, mulai dari skala kecil maupun besar, contohnya di Rumah kita sendiri. Pada zaman yang serba canggih sekarang sangat dibutuhkan teknologi yang dapat memonitoring dan mengontrol ketersediaan air dan kejernihan air dalam tandon penampung air maupun di bak penampungan air. Namun, masalah yang muncul ketika pelampung pada tandon tidak diketahui, hal itu menyebabkan air dalam tandon bisa meluap ataupun kosong, dikarenakan kurangnya perangkat pengontrolan terhadap tandon tersebut, sehingga diperlukan suatu alat yang dapat menggantikan kerja pelampung pada tandon air sehingga dapat memonitoring ketinggian air dan kejernihan air secara otomatis melalui aplikasi Android.

Sensor Ultrasonik dan Sensor kejernihan air merupakan sebuah komponen yang sangat membantu proses pembuatan alat ini. Sensor ultrasonik adalah alat elektronika yang kemampuannya dapat mengubah energi listrik menjadi energi mekanik. Sensor ini adalah jenis transducer yang digunakan untuk mengubah besaran mekanis, magnetis, sinar dan kimia menjadi tegangan dan arus listrik. Sampai saat ini, terdapat peniliti yang telah dipublikasikan di bidang mikrokontroler, diantaranya adalah implementasi pendeteksi dan pengontrolan volume air menggunakan sensor ultrasonik.

Kekeruhan merupakan sifat optik dari suatu larutan yang menyebabkan cahaya yang melaluinya terabsorbsi dan terbias. Air akan dikatakan keruh apabila air tersebut mengandung begitu banyak partikel bahan yang tersuspensi, sehingga memberikan warna atau rupa yang berlumpur dan kotor . Air keruh yang tidak tembus pandang menyatakan bahwa air tersebut memiliki tingkat kekeruhan yang sangat tinggi sedangkan air yang tembus pandang memiliki kekeruhan yang rendah. Bahan-bahan yang menyebabkan kekeruhan ini meliputi tanah liat, lumpur, pasir halus dan bahan-bahan organik.

Di era yang serba maju ini banyak teknologi yang dijumpai berbasis digital, dimana dalam ini dimunkinkan untuk dapat menjamin efisiensi waktu dan tenaga serta manajemen dengan baik. Oleh karena itu banyak orang lebih cederung memlilih teknologi digital karena mempuyai banyak keuntunggan baik dari segi ergonomi dan penggunaanya yang mudah. Akan tetapi sampai saat ini belum ada alat yang menggunakan *Visible Communication Light (VLC)* untuk merealisasikan alat monitoring ketinggian air dan kejernihan air.

Oleh karena itu perlu dibuat sebuah alat secara elektronik yang dapat memantau ketinggian volume air sekaligus memantau kejernihan air yang dapat diakses melalui smartphone yang sudah memiliki akses kepada alat tersebut. Sistem ini juga dapat dikembangkan dengan pendeteksian kekeruhan air yang ditempatkan pada saluran pipa air. Sistem pengendalian yang digunakan pada penelitian ini menggunakan mikrokontroler Arduino Uno ,*Visible Communication Light (VLC)*, dan Aplikasi Android.

Rancangan Sistem

Pada Bab ini akan dijelaskan mengenai perancangan sistem pengukur ketinggian dan kekeruhan air menggunakan teknologi *Visible Communication Light (VLC)*.

Secara Umum sistem kerja dari pengukur ketinggian dan kekeruhan air menggunakan teknologi *Visible Communication Light (VLC)* dapat digambarkan melalui blok sistem diagram dibawah ini:

Gambar 1 Blok Diagram Sistem

Pada blok diagram diatas dapat dijelaskan bagaimana pada sisi *transmitter* proses pertama nya melalui pemberian catu daya terhadap sensor ultrasonic dan sensor kekeuruhan air, setelah kedua sensor dapat membaca sebuah ketinggian dan kekeruhan air , kedua sensor mengirimkan informasi yang didapat kepada mikrokontroller , dimana semua informasi yang didapat di simpan disana. Setelah informasi di dapat maka informasi tersebut akan di proses kembali kepada Driver *LED* yang merupakan sebuah Driver untuk memperakurat informasi yang di dapat kepada cahaya yang akan melakukan komunikasi.

Di sisi *Receiver*, setelah komunikasi cahaya di langsungkan, maka informasi yang dikirimkan dari informasi cahaya *transmitter* akan diterima oleh cahaya dari sisi *Receiver*, setelah informasi diterima maka akan diterima oleh *Photodioda* sebagai penerima cahaya dari komunikasi kedua cahaya *transmitter* dan *receiver*, setelah informasi diterima terhadap *photodioda*, maka akan diolah dan dikuatkan kembali informasi nya agar lebih akurat di penguat sinyal sebelum benar-benar dikirimkan kepada mikrokontroller *receiver*. Setelah proses berhasil mikrokontroller di sisi *receiver* akan mengirimkan semua informasi yang didapat kepada aplikasi Android dengan penyambungan menggunakan USB-OTG.

Didalam Aplikasi Android terdapat sebuah tampilan yang menampilkan berapa ketinggian air dan kekeruhan air yang terdapat didalam tandon yang sudah terpasang alat tersebut, aplikasi android akan memunculkan notifikasi apabila tandon itu kosong atau penuh dan tandon itu keruh atau jernih, sehingga pengguna dapat melihat melalui *smartphone* yang sudah mempunyai akses terhadap alat yang dipasang.

Daftar Pustaka

- [1] U. Ulumuddin, M. Sudrajat, T. D. Rachmildha, N. Ismail, and E. A. Z. Hamidi, "Prototipe Sistem Monitoring Air Pada Tangki Berbasis Internet of Things Menggunakan Nodemcu Esp8266 Sensor dan Ultrasonik," *Semin. Nas. Tek. Elektro* 2017, no. 2016, pp. 100–105, 2017, doi: 978-602-512-810-3.
- [2] L. Triyono, D. Ramadhan, and H. I. Wardany, "Aplikasi 'Romo Gila 'Monitoring Dan Pengendali Volume Tandon Air Berbasis Mobile," vol. 14, no. 1, pp. 68–73, 2018.
- [3] M. Kautsar, R. R. Isnanto, and E. D. Widianto, "Sistem Monitoring Digital Penggunaan dan Kualitas Kekeruhan Air PDAM Berbasis Mikrokontroler ATMega328 Menggunakan Sensor Aliran Air dan Sensor Fotodiode," *J. Teknol. dan Sist. Komput.*, vol. 3, no. 1, pp. 79–86, 2016, doi: 10.14710/JTSISKOM.3.1.2015.79-86.

Form Kesediaan Membimbing Proyek Akhir

PROYEK AKHIR SEMESTER GANJIL | GENAP* TA 2020/2021

Tangga	l :	01-1	10-	2020
--------	-----	------	-----	------

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : DYD

Nama : Denny Darlis, S.Si., M.T.

CALON PEMBIMBING 2

Kode : THY

Nama : Tita Haryanti, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705174128

Nama : Fasha Rosdiana Herawan

Prodi / Peminatan : D3TT

Calon Judul PA : Sistem Pengukur Tinggi dan Kejernihan Air Dalam Tandon Menggunakan Teknologi

Visible Light Communication dan Aplikasi Android

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

Denny Darlis, S.Si., M.T

Calon Pembimbing 2

Tita Haryanti, S.T., M.T

CATATAN:

- Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman & Template Desember 2013.rar"
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom UniversityJl. Telekomunikasi No.1, Terusan Buah Batu
Bandung 40257
Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk

: 6705174128

Dosen Wali

: TND / TRI NOPIANI DAMAYANTI

Mahasiswa) Nama

: FASHA ROSDIANA HERAWAN

Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	В
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	В
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	ВС
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	С
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	В
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	ВС
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	А
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	ВС
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	В

Jumlah SKS	97	2.83

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	АВ
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
4	LUH1A2	BAHASA INDONESIA	INDONESIAN	2	В
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	В
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	В
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	В
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	В
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	ВС
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	В
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	ВС
5	DMH2A2	KERJA PRAKTEK	JOB TRAINING	2	AB
5	DTH3C3	KEAMANAN JARINGAN	NETWORK SECURITY	3	С
5	DTH3D3	TEKNIK SWITCHING BROADBAND	SWITCHING TECHNIQUES BROADBAND	3	АВ
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
5	DTH3F3	KOMUNIKASI NIRKABEL BROADBAND	BROADBAND WIRELESS COMMUNICATIONS	3	ВС
5	DTH3B3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND TELECOMMUNICATION NETWORKS	3	АВ
5	DTH3A2	BAHASA INGGRIS TEKNIK II (ACADEMIC PRESENTATION AND COMMUNICATION)	ENGLISH TECHNIQUES II (ACADEMIC PRESENTATION AND COMMUNICATION)	2	А
5	DTH3E2	BENGKEL JARINGAN DAN MULTIMEDIA	NETWORKING AND MULTIMEDIA WORKSHOP	2	АВ
		Jumlah SKS		97	2.83

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kullah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	E
3	VTI2F2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUES I	2	
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	E
4	VTI2J2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGSWORKSHOP	2	
6	VTI3F4	PROYEK I	PROJECT I	4	
6	VPI3GC	MAGANG	APPRENTICE	12	
Jumlah SKS				24	

Mata Kuliah yang Diulang

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	Е
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	E
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	D
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	Е
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	Е
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	Е
5	LUH1A2	BAHASA INDONESIA	INDONESIAN	2	E
Jumlah SKS			18		

Jumlah SKS	: 97 SKS		IPK : 2.72
Tingkat III	: 101 SKS	Belum Lulus	IPK : 2.72
Tingkat II	: 81 SKS	Belum Lulus	IPK : 2.59
Tingkat I	: 41 SKS	Belum Lulus	IPK : 2.63

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 01 Oktober 2020 09:48:24 oleh FASHA ROSDIANA HERAWAN