Definition: Dot Product

Geometric

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let θ be the angle between the two (the one in the range $[0,\pi]$), then we have the dot product:

$${\bf Algebraic}$$

Let
$$u_1, u_2, \dots, u_{n-1}$$
,

Let
$$u_1, u_2, \dots, u_{n-1}$$

Let
$$u_1, u_2, \dots, u_{n-1}, u_n$$
 an

Let
$$u_1, u_2, \ldots, u_{n-1}, u_n$$
 and $v_1, v_2, \ldots, v_{n-1}, v_n$ denote the components of \vec{u} and \vec{v} respectively, then we have:

$$\vec{u}_1, v_n$$
 denote the components of \vec{u} and

$$\vec{v} \cdot \vec{u} \stackrel{\mathtt{D}}{=} \sum_{i=1}^{n} v_i u_i$$

 $\vec{v} \cdot \vec{u} \stackrel{\mathtt{D}}{=} ||v|| \, ||u|| \cos(\theta)$

$$\sum_{i=1}^{n} v_i u_i$$