HEURISTIC OPTIMIZATION

Heuristic Algorithms for Multiobjective Combinatorial Optimization

Adapted from a tutorial by Luís Paquete given at SLS 2009

1/36

Introduction

Multiobjective Combinatorial Optimization Problems (MCOPs)

- ► Many real-life problems are multiobjective
 - Logistics and transportation
 - Timetabling and scheduling
 - ... and many others
- ▶ But most MCOPs are NP-hard and intractable

How to design and analyze SLS algorithms for MCOPs?

Train roundtrip through capitals of German federal states

The fastest roundtrip:

► take only ICE trains

The cheapest roundtrip:

► take only local trains

Multiobjective Combinatorial Optimization Problem

The set X of feasible solutions is finite and its elements have some combinatorial property (graph, tree, path, partition, etc.).

The goal is to

$$\min_{x \in X} \mathbf{f}(x) = (f_1(x), \dots, f_Q(x))$$

▶ The objective function **f** maps $x \in X$ to \mathbb{R}^Q

- ► Optimality depends of the decision maker's preferences (or lack of them).
- ► Pareto-optimality is based on component-wise order :

$$\mathbf{u} \leq \mathbf{v} \iff \mathbf{u} \neq \mathbf{v} \text{ and } u_i \leq v_i, i = 1, \dots, Q$$

- ▶ A solution $x \in X$ is efficient iff $\nexists x' \in X$ s.t. $\mathbf{f}(x') \leq \mathbf{f}(x)$
- ▶ Efficient set is the set of all efficient solutions
- ► Nondominated set is the image of the efficient set in **f**

MCOPs and Solution Methods

Most MCOPs are NP-hard

Decision version of MCOP (MCOP-D) [Serafini 1986]:

Given $\mathbf{z} = (z_1, \dots, z_Q)$, does there exist a solution $x \in X$ s.t.

$$f(x) \le z$$
 or $f(x) = z$?

- 1. If the single-objective problem is NP-complete, then the corresponding MCOP-D is also NP-complete.
- 2. If the single-objective problem is solvable in polynomial time, the corresponding MCOP-D may still be NP-complete.

Solution Methods to MCOPs

- ► Enumeration Methods
 - Multiobjective Branch & Bound
 - Multiobjective Dynamic Programming
- ► Scalarized Methods
 - Solving several related single-objective problems
 - Weighted Sum, ϵ -constraint, etc.
- ► SLS Algorithms

13/36

Weighted Sum

- $\sum_{x \in X} \sum_{i=1}^{Q} \lambda_i f_i(x)$
- $ightharpoonup \lambda$ gives a search direction
- An optimal solution with $\lambda > 0$ is efficient.

Weighted Sum

- $ightharpoonup \lambda$ gives a search direction
- An optimal solution with $\lambda > 0$ is efficient.

15 / 36

SLS Algorithms

SLS Algorithm design challenges for MCOPs

- ▶ How to attain more than one solution?
- ► How to attain high quality solutions?
- ► How to evaluate performance?

Rule of thumb

- Closeness to the nondominated set
- Well-distributed outcomes
- ▶ The more, the better

Scalarized Acceptance Criterion (SAC) Model

► Weighted Sum

$$f(x) = \sum_{i=1}^{Q} \lambda_i f_i(x)$$

► Weighted Chebycheff

$$f(x) = \max_{i=1,...,Q} (\lambda_i \mid f_i(x) - y_i \mid)$$

17/36

SAC Search Model

input: weight vectors Λ for each $\lambda \in \Lambda$ do x is a candidate solution $x' = \text{SolveSAC}(x, \lambda)$ Add x' to Archive Filter Archive return Archive

SAC Search Model

input: weight vectors Λ for each $\lambda \in \Lambda$ do x is a candidate solution $x' = \text{SolveSAC}(x, \lambda)$ Add x' to Archive Filter Archive return Archive

- Search Strategy
- Number of Scalarizations
- ► Intensification Mechanism
- Neighborhood

19/36

SAC Search Model - EMO

input: candidate solution set X_n repeat $X_r = \text{Reproduce/Mutate}(X_n)$ $R = \text{Rank}(X_r, X_n)$ $X_s = \text{Select}(X_r, X_n, R)$ $X_n = \text{Replace}(X_s)$ return X_n

SAC Search Model - EMO

input: candidate solution set X_n repeat $X_r = \text{Reproduce/Mutate}(X_n)$ $R = \text{Rank}(X_r, X_n)$ $X_s = \text{Select}(X_r, X_n, R)$ $X_n = \text{Replace}(X_s)$ return X_n

21/36

SAC Search Model - EMO

input: candidate solution set X_n repeat

 $X_r = \text{Reproduce}/\text{Mutate}(X_n)$

 $R = \frac{\mathsf{Rank}(X_r, X_n)}{\mathsf{Rank}(X_r, X_n)}$

 $X_s = Select(X_r, X_n, R)$

 $X_n = \text{Replace}(X_s)$

return X_n

- ► Component-wise order
- Closeness
- Performance indicators

Multiobjective Local Search

```
input:candidate solution x while x is not a local optimum do choose a neighbor x' from x such that \mathbf{f}(x') \leq \mathbf{f}(x) x = x' return x
```

- ▶ What if $\mathbf{f}(x')$ and $\mathbf{f}(x)$ are mutually nondominated?
- ▶ How to obtain more than a single solution?

23 / 36

CWAC Search Model

input: candidate solution xAdd x to Archive

repeat

Choose x from Archive $X_N = \text{Neighbors}(x)$ Add X_N to Archive

Filter Archive

until all x in Archive are visited

return Archive

CWAC Search Model

input: candidate solution x, ϵ Add x to Archive repeat

Choose x from Archive $X_N = \text{Neighbors}(x)$ Add X_N to Archive

Filter Archive according to ϵ until all x in Archive are visited

Archive bounding [Angel et al. 2004]

25 / 36

Hybrid Search Model

return Archive

input: weight vectors Λ for each $\lambda \in \Lambda$ do x is a candidate solution $x' = \text{SolveSAC}(x, \lambda)$ X' = CW(x') Add X' to Archive Filter Archive return Archive

Performance Assessment

Rules of Thumb: An algorithm performs better if

- ▶ It is closer to the nondominated set
- ▶ It has better distributed outcomes
- ▶ It has more solutions

Indicators of Performance

- ► Measure some property of the outcomes
- ► Most of the indicators have limitations [Knowles & Corne 2002, Zitzler et al. 2003]

Many runs of Algorithms Blue and Red

► Better relations [Hansen & Jaszkiewicz 1998, Zitzler et al. 2003]

Blue and Red are incomparable

► Unary Indicator: Hypervolume [Zitzler and Thiele, 1998]

B is better than $W \implies H(B) > H(W)$

31/36

► Unary Indicator: Hypervolume [Zitzler and Thiele, 1998]

 $H(B) > H(W) \implies B$ is not worse than W

► Attainment Functions [V.G. da Fonseca et al. 2001]

AF: Prob. that an outcome set is better or equal to z.

EAF: How many runs an outcome set is better or equal to z?

33 / 36

► Attainment functions – Visualization of differences

positive differences

negative differences

► Attainment functions — Statistical testing

K-S test statistic: $\max | EAF_{Blue} - EAF_{Red} |$

positive differences

negative differences

35 / 36

References

- ► Textbooks: R.E. Steuer 1986, K. Miettinen 1999, M. Ehrgott 2005, V.T'kindt et al. 2002, K. Deb 2002.
- Reviews: M. Ehrgott and X. Gandibleux 2000, 2002, 2004, 2009, C.C. Coello 2000, D. Jones et al. 2002, J. Knowles and D. Corne 2004, L. Paquete and T. Stützle 2007.
- Complexity and Approximation: P. Hansen 1979, P. Serafini 1986, M. Ehrgott 2000, C.H. Papadimitriou and M. Yannakakis 2000, E. Angel et al. 2007.
- ► Performance Assessment: E. Zitzler et al. 2003, 2008, V.G. da Fonseca et al. 2001, 2010, M. Lopéz-Ibáñez et al. 2010.
- Web material: PISA (http://www.tik.ethz.ch/~sop/pisa), MOMH (http://home.gna.org/momh), ParadisEO (http://paradiseo.gforge.inria.fr)