

AD-A102 237

NAVAL RESEARCH LAB WASHINGTON DC
IGNITION OF THE BEAM-PLASMA-DISCHARGE AND ITS DEPENDENCE ON ELE--ETC(U)
JUL 81 D N WALKER, E P SZUSZCZEWCZ, C S LIN
UNCLASSIFIED

NRL-MR-4547

F/G 20/7

NL

[REDACTED]
40-1237

END
DATE
FILED
B-81
DTIC

AD A102237

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT (Continued)

was established among the controlling parameters of beam current, energy and length as well as ambient pressure and magnetic field, a dependence of the BPD on plasma density of the form $\omega_p \approx \omega_c$ was suggested. We have since conducted a survey of various beam-plasma conditions covering beam currents from 8 to 85 ma, beam energies from 0.8 to 2.0 keV and magnetic fields at 0.9 and 1.5 gauss. This survey includes full determinations of radial profiles of electron density for each of the selected conditions extending from a low-density pre-BPD state to a strong BPD condition. At BPD threshold N_e^{\max} was determined and ω_p calculated with results that can be summarized by

$$\omega_p = (5.8 + 1.3) \omega_c - 1.9$$

as the density dependent threshold condition for BPD. The experimental results are shown to compare favorably with a developing theoretical model that considers BPD to be triggered by electron plasma wave excitation of a beam-plasma instability.

CONTENTS

I. INTRODUCTION	1
II. EXPERIMENT CONFIGURATION AND RESULTS	2
III. DISCUSSION OF RESULTS	7
ACKNOWLEDGMENTS	12
REFERENCES	13

Accession For	
NTIS GEN&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

IGNITION OF THE BEAM-PLASMA-DISCHARGE AND ITS DEPENDENCE ON ELECTRON DENSITY

I. INTRODUCTION

A cold electron beam, propagating through a weakly ionized plasma will, under proper conditions, produce a modified beam-plasma state known as the Beam-Plasma-Discharge (BPD). This discharge state has received considerable attention in recent years as a result of increased interest in mechanisms for vehicle neutralization during spaceborne accelerator experiments (Bernstein, et al., 1980; Cambou, et al., 1978), enhanced beam-plasma ionization processes (Bernstein, et al., 1978), and in general single-particle or collective phenomena initiated by beam injection into neutral gas and charged-particle environments (Hess et al., 1971; Winckler, et al., 1975; Hendrickson and Winckler 1976; Cambou, et al., 1975; Monson and Kellogg 1978a; Szuszczewicz 1979; Jost et al., 1980). As the subject of a continuing series of experiments in a large vacuum chamber facility (Bernstein et al., 1978) it was determined that the BPD appears at a critical energetic-electron-beam current I_B^C , following the relationship

$$I_B^C \propto \frac{V_B^{1.5}}{B^{0.7} P_L}, \quad (1)$$

where V_B , B , P and L are the beam energy (voltage), the superimposed magnetic field, the ambient pressure and the beam length (gun aperture-to-collector distance), respectively.

Manuscript submitted May 12, 1981.

While the $I_B^c = I_B^c (V_B, B, P, L)$ relationship was established among the controlling system parameters, a dependence on plasma density was also expected, with early thoughts (Bernstein, et al., 1979) suggesting that $\omega_p = \omega_c$ satisfied ignition threshold criteria. We have conducted a survey of various beam-plasma conditions from 8 to 85 ma, beam energies from 0.8 to 2.0 keV and magnetic fields at 0.9 and 1.5 gauss. The survey included determination of radial profiles of electron density for each of the selected conditions extending from a low-density, pre-BPD state to a strong BPD condition. In summary, the results indicate that

$$\omega_p = (5.8 \begin{array}{l} +1.3 \\ -1.9 \end{array}) \omega_c \quad (2)$$

is the density-dependent threshold condition for BPD. The experimental details and analysis procedures that led to this result are presented below and compared with the predictions of a theoretical model which assumes that the BPD is triggered by electron plasma wave excitation of a beam-plasma instability.

II. EXPERIMENT CONFIGURATION AND RESULTS

The experiment was conducted in a 20 m diameter by 30 m high vacuum chamber facility at the NASA Johnson Space Flight Center. The configuration involved a pair of pulsed-plasma-probes mounted on a radial traversal mechanism positioned at approximately 8 m above the injection point of the beam.

Each of the probes provided simultaneous measurements of electron density N_e , temperature T_e , plasma potential V_∞ , and density fluctuation power spectra δN_e ($\rightarrow P_n(k)$) with capability for the associated diagnostics under dynamic plasma conditions and under environmental conditions that could contaminate electrode surfaces (Holmes and Szuszczewicz, 1975, 1981; Szuszczewicz and Holmes 1975, 1976). Both of these conditions prevailed to various degrees.

A tungsten cathode gun was mounted near the chamber floor on a movable cart so that the beam could always be injected parallel to the magnetic field \bar{B} and terminated on the 3×3 m target suspended about 20 m above the gun aperture. A combination of coil current and the Earth's magnetic field established the B-field at one of two levels, 0.9 and 1.5 gauss. The chamber was also equipped with a dipole-antenna/frequency-spectrum-analyzer system (Bernstein et al., 1979) which was used to determine BPD ignition from its characteristic plasma wave emissions. The dipole system was connected to a Tektronix spectrum analyzer with a frequency response from 200 kHz to 30 MHz. Because the high-frequency cut-off was not abrupt, frequencies up to 50 MHz could be detected readily.

In most cases the beam was injected into a neutral gas with no pre-beam plasma; however the experimental survey included two cases in which the chamber was filled with a pre-beam plasma created by a Kauffman-type argon ion thruster. In these cases the pre-beam plasma density was lower than the critical density at BPD ignition.

The survey included seven different conditions, each identified by pre-selected values for V_B , B , P and the existence or non-existence of a pre-beam plasma. For each condition a steady state value for I_B was set, a radial traversal was made and an electron density profile was recorded. A sample profile collected under pre-BPD conditions, is presented in Figure 1. The abscissa is time relative to the start of the radial traversal and the ordinate is relative electron density as determined by baseline electron-saturation currents collected by the E-probe. (The second probe in the two-probe configuration was defined as the I-probe because the associated baseline currents were collected in the ion-saturation portion of the probe's current-voltage characteristic (Holmes and Szuszczewicz, 1975, 1981).) At the start of each traversal the probe was at its outermost position relative to the center of the chamber. As time increased the probe was moved into and through the beam; at minimum radial distance from the chamber center, the traversal system was reversed, allowing a second measurement of the density profile as the probe moved back to its original outermost position. With this procedure the probe's minimum radial coordinate is identified by the symmetry point in the "double" profile.

Absolute electron densities were determined by standard P^3 analysis procedures summarized graphically in Figure 2. The technique provides a determination of relative electron

Fig. 1 — Radial profile of relative electron density under pre-BPD conditions. Run #57, (I_B , V_B , B) = (7 ma, 1.3 keV, 0.9G). The figure shows two cuts through the beam-plasma profile, as time increases from left-to-right the plasma density probe moves into and through the beam center, then reverses and passes through the beam a second time. The symmetry verifies that beam-plasma conditions were stable during the execution of the radial traversal.

Fig. 2 — Sample of raw probe data (2A) showing the effects on density fluctuations (baseline electron-saturation-currents) on the probe's current-voltage characteristics (sweep currents). 2B shows the "corrected" characteristic.

density through the direct measurement of baseline electron-saturation-currents at a sample rate of 1 kHz. Simultaneously, the technique generates a "conventional" Langmuir probe characteristic. The relative density fluctuations (as indicated by the variations in the baseline current) are then unfolded from the raw, uncorrected probe characteristic (Fig. 2A) yielding a smooth, corrected curve (Fig. 2B) to which conventional N_e analysis procedures (Chen, 1965; Szuszczewicz and Holmes, 1977) are applied. This procedure was utilized for all beam-plasma conditions included in this investigation.

Relative electron density profile information and associated plasma wave signatures are presented in Figure 3 for $(V_B, B) = (1.3 \text{ keV}, 0.9G)$. The transition from pre-, threshold- to solid-BPD can be seen as a function of beam current (I_B). The conditions at threshold and under BPD are summarized in Table 1 where the peak density N_e^{\max} associated plasma frequency ω_p^{\max} , and plasma-to-cyclotron frequency ratio ω_p^{\max}/ω_c are also listed. The results can be summarized by

$$\omega_p = (5.8 \begin{array}{l} +1.3 \\ -1.9 \end{array}) \omega_c$$

as the density-dependent threshold condition for the BPD.

III. DISCUSSION OF RESULTS

The experimentally derived threshold condition is reasonably consistent with the suggestion that BPD is triggered

Fig. 3 — Sequence of relative plasma density profiles and associated plasma wave signatures for increasing values of beam current I_B for a fixed condition ($V_B, B = 1.3$ keV, 0.9G) encompassing runs 56 through 59 (pre-BPD through solid-BPD).

**TABLE 1. ABBREVIATED SUMMARY OF
BEAM-PLASMA SURVEY**

RUN #	BEAM-PLASMA STATE	ELECTRON GUN		CHAMBER CONDITION		N _e max	f _c	f _p f _c	
		I _B (mA)	V _B (v)	B (g)	P (Torr)				
40	THRESHOLD	37	1.9 (10 ³)	0.9	0.7-1.5 (10 ⁻⁵)	ON	3.6 (10 ⁶)	2.5 (10 ⁶)	6.92
	BPD	47	1.9 (10 ³)	0.9	0.7-1.5 (10 ⁻⁵)	ON	5.6 (10 ⁶)	2.5 (10 ⁶)	8.60
48	THRESHOLD	34	1.9 (10 ³)	0.9	0.7-1.5 (10 ⁻⁵)	OFF	3.3 (10 ⁶)	2.5 (10 ⁶)	6.6
	BPD	45	1.9 (10 ³)	0.9	0.7-1.5 (10 ⁻⁵)	OFF	5.0 (10 ⁶)	2.5 (10 ⁶)	8.12
57	THRESHOLD	18.5	1.3 (10 ³)	0.9	0.7-1.5 (10 ⁻⁵)	OFF	1.5 (10 ⁶)	2.5 (10 ⁶)	4.45
	BPD	28	1.3 (10 ³)	0.9	0.7-1.5 (10 ⁻⁵)	OFF	4.5 (10 ⁶)	2.5 (10 ⁶)	7.71
63	THRESHOLD	7.8	800	0.9	0.84-1.5 (10 ⁻⁵)	OFF	0.98 (10 ⁶)	2.5 (10 ⁶)	3.7
	BPD	9.9	800	0.9	0.84-1.5 (10 ⁻⁵)	OFF	2.6 (10 ⁶)	2.5 (10 ⁶)	5.9
69	THRESHOLD	6.2	800	0.9	0.7 (10 ⁻⁵)	ON	3.8 (10 ⁶)	2.5 (10 ⁶)	7.08
	BPD	7.8	800	0.9	0.7 (10 ⁻⁵)	ON	3.6 (10 ⁶)	2.5 (10 ⁶)	6.89
81	THRESHOLD	20	2.0 (10 ³)	1.5	0.6-1.2 (10 ⁻⁵)	OFF	7.0 (10 ⁶)	3.7 (10 ⁶)	6.65
	BPD	30.5	2.0 (10 ³)	1.5	0.6-1.2 (10 ⁻⁵)	OFF	1.8 (10 ⁷)	3.7 (10 ⁶)	10.7
86	THRESHOLD	12	1.3 (10 ³)	1.5	0.6-1.2 (10 ⁻⁵)	OFF	3.9 (10 ⁶)	3.7 (10 ⁶)	4.96
	BPD	18	1.3 (10 ³)	1.5	0.6-1.2 (10 ⁻⁵)	OFF	1.1 (10 ⁷)	3.7 (10 ⁶)	8.34

by the onset of a beam plasma instability excited by electron plasma waves (Rowland et al., 1981; Papadopoulos, private communication, 1981). Qualitatively the threshold process can be described as follows:

(i) As an electron beam linearly interacts with a neutral gas, it collisionally produces a plasma with a density that varies directly with the magnitude of the beam current for a fixed beam energy.

(ii) As the beam current is increased further, a two-stream instability develops in which the electric fields of the excited waves "heat" the electrons to energies comparable to the ionization energy of the neutral species. The "heated" electrons create an enhanced ionization process which results in an avalanche breakdown during the BPD.

Detailed theoretical considerations (Rowland et al., 1981) involving finite beam-plasma geometries suggest that the threshold for BPD ignition corresponds to the onset of convective instability. Quantitatively that threshold takes the form

$$\omega_p \geq 1.4 v_b / r_o \sqrt{\ln(R/r)} \quad (3)$$

where r_o and v_b are the beam radius and velocity, and R is the radius of the plasma with which the beam interacts. For the experimental conditions, r_o is taken to be controlled by the gun half-divergence angle θ , the beam velocity v_b and the superimposed magnetic field. We therefore write

$$r_o = (v_b \sin \theta) / \omega_c , \quad (4)$$

allowing the theoretically predicted threshold condition to be rewritten as

$$\frac{\omega_p}{\omega_c} > \frac{1.4 (1.2)}{\sin \theta} \quad (5)$$

where $1.2 = 1/\sqrt{\ln(R/r_o)}$ has been selected as the experimental average. Equation (5) suggests that the ω_p/ω_c threshold condition is a constant, independent of B itself, and controlled only by the beam cross section through the half-divergence angle θ . Qualitatively this is in agreement with the experimental results. For a quantitative comparison, we estimate θ in the range, $5^\circ \leq \theta \leq 10^\circ$, yielding

$$9.6 \leq \omega_p/\omega_c \leq 19.3 \quad (6)$$

as the spread in values theoretically predicted for BPD ignition. This result, while sensitive to the uncertainties in θ and R/r_o (e.g., electrostatic forces and beam spreading have not been included), is taken to be in reasonably good agreement with the experimentally derived conditions (2). Inclusion of beam spreading would effectively increase θ (Linson and Papadopoulos, 1981) and improve the agreement, providing ever stronger arguments which deny the original notion that $\omega_p = \omega_c$ described BPD threshold

ACKNOWLEDGMENTS

This work was supported in part by NASA/NOAA Contract No. NA79RAA04487. Support for analyses was supplemented by the Office of Naval Research under Program Element 61153N-33 in Task Area RR033-02. The authors would like to thank W. Bernstein for suggesting the experiment and helping make possible the NRL participation in the JSC experiments. We also wish to thank J.C. Holmes for his critical care in electronics design and L. Kegley for diligence and professionalism in instrument fabrication and technical assistance in experiment execution.

REFERENCES

Bernstein, W., H. Leinbach, H. Cohen, P.S. Wilson, T.N. Davis, T. Hallinan, B. Baker, J. Martz, R. Zeimke, and W. Huber, "Laboratory observations of RF emissions at ω_{pe} and $(N + 1/2)\omega_{ce}$ in electron beam-plasma and beam-beam interactions", *J. Geophys. Res.* 80, 4375, 1975.

Bernstein, W., H. Leinbach, P. Kellogg, S. Manson, T. Hallinan, O.K. Garriott, A. Konradi, J. McCoy, P. Daly, B. Baker, and H.R. Anderson, "Electron beam injection experiments: The beam-plasma discharge at low pressures and magnetic field strengths", *Geophys. Res. Lett.* 5, 127, 1978.

Bernstein, W., H. Leinbach, P.J. Kellogg, S.J. Monson and T. Hallinan, "Further laboratory measurements of the beam-plasma discharge", *J. Geophys. Res.* 84, 7271, 1979.

Bernstein, W., B.A. Whalen, F.R. Harris, A.G. McNamara and A. Konradi, "Laboratory studies of the charge neutralization of a rocket payload during electron beam emission", *Geophys. Res. Lett.* 7, 93, 1980.

Cambou, F., V.S. Dokoukine, V.N. Ivchenko, G.G. Managadze, V.V. Migulin, O.K. Nazarenko, A.T. Nesmyanovich, A.Kh. Pyatsi, R.Z. Sagdeev and I.A. Zhulin, "The Narnitza rocket experiment on electron injection", *Space Research XV*, 491-500, Akademie-Verlag, Berlin 1975.

Cambou, F., J. Lavergnat, V.V. Migulin, A.I. Morozov, B.E. Paton, R. Pellat, A. Pyatsi, H. Reme, R.Z. Sagdeev, W.R. Sheldon and I.A. Zhulin, "ARADS-Controlled or puzzling experiment"? *Nature* 271, 723, 1978.

Chen, F.F., in *Plasma Diagnostic Techniques*, Ch. 4, edited by R.H. Huddlestone and S.L. Leonard, Academic, New York 1965.

Hendrickson, R.A. and J.R. Winckler, "Echo III: The study of electric and magnetic fields with conjugate echoes from artificial electron beams injected into the auroral zone ionosphere", *Geophys. Res. Lett.*, 3, 409, 1976.

Hess, W.N., M.C. Trichel, T.N. Davis, W.C. Beggs, G.E. Kraft, E. Strasinoopoulos, and E.J.R. Maier, "Artificial aurora experiment: Experiment and principal results". *Geophys. Res.*, 76, 6067, 1971.

Holmes, J.C. and E.P. Szuszczewicz, "A versatile plasma probe", *Rev. Sci. Instr.* 46, 592, 1975.

Holmes, J.C. and E.P. Szuszczewicz, "A plasma probe system with automatic sweep adjustment", Rev. Sci. Instr., (1981, in press).

Jost, R.J., H.R. Anderson and J.O. McGarity, "Measured electron energy distributions during electron beam-plasma interactions", Geophys. Res. Lett. 7, 509, 1981.

Monson, S.J. and P.J. Kellogg, "Ground observations of waves at 2.96 MHz generated by an 8- to 40-KEV electron beam in the ionosphere", J. Geophys. Res., 83, 121, 1978.

Rowland, H. L., C.L. Chang, and K. Papadopoulos, "Sealing of the beam plasma discharge", J. Geophys. Res. (1981, in press).

Szuszczewicz, E.P. and J.C. Holmes, "Surface contamination of active electrodes in plasmas: Distortion of conventional Langmuir probe measurements", J. Appl. Phys. 46, 5134, 1975.

Szuszczewicz, E.P. and J.C. Holmes, "Reentry plasma diagnostics with a pulsed plasma probe", AIAA Paper No. 76-393, AIAA 1th Fluid and Plasma Dynamics Conference (San Diego, CA/July 1976).

Szuszczewicz, E.P., "Plasma diffusion in a space-simulation beam-plasma-discharge", Geophys. Res. Lett. 6, 201, 1979.

Winckler, J.R., R.L. Arnoldy, and R.A. Hendrickson, "Echo 2: A study of electron beams injected into the high-latitude ionosphere from a large sounding rocket", J. Geophys. Res., 80, 2083, 1975.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT & INTELL
WASHINGTON, D.C. 20301
01CY ATTN J. BABCOCK
01CY ATTN M. EPSTEIN

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R820
01CY ATTN CODE R410 JAMES W. MCLEAN
01CY ATTN CODE R720 J. WORTHINGTON

DEPT. OF THE AIR FORCE
HEADQUARTERS SPACE DIVISION
(AFSC) LOS ANGELES AIR FORCE STATION
P.O. BOX 92960
LOS ANGELES, CA 90009
01CY DIRECTOR, STP,
COL D.E. THURSBY
01CY MAJ C. JUND

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, D.C. 20301
01CY ATTN DT-18
01CY ATTN DB-4C E. O'FARRELL
01CY ATTN DIAAP A. WISE
01CY ATTN DIAST-5
01CY ATTN DT-1BZ R. MORTON
01CY ATTN HQ H-TR J. STEWART
01CY ATTN W. WITTIG DC-7D

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DDST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NB 68113
01CY ATTN JLTW-2
01CY ATTN JPST G. GOETZ

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WMMCCS EVALUATION
OFFICE

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P. O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPR

DIRECTOR
NATIONAL SECURITY AGENCY
DEPARTMENT OF DEFENSE
FT. GEORGE G. MEADE, MD 20755
01CY ATTN JOHN SKILLMAN R52
01CY ATTN FRANK LEONARD
01CY ATTN W14 PAT CLARK
01CY ATTN OLIVER H. BARTLETT W32
01CY ATTN R5

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT.. HUACHUCA, AZ 85613
01CY ATTN CCC-EMEO GEORGE LANE

WMMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P. O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, D.C. 20310
01CY ATTN C-E-SERVICES DIVISION

COMMANDER
FRADCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
01CY ATTN DRSEL-NL-RD H. BENNET
01CY ATTN DRSEL-PL-ENV H. BOMKE
01CY ATTN J. E. QUIGLEY

COMMANDER
HARRY DIAMOND LABORATORIES
DEPARTMENT OF THE ARMY
2800 POWDER MILL ROAD
ADELPHI, MD 20783
(CNWDL-INNER ENVELOPE: ATTN: DELHD-RBH)
01CY ATTN DELHD-TI M. WEINER
01CY ATTN DELHD-RB R. WILLIAMS
01CY ATTN DELHD-NP F. WIMENITZ
01CY ATTN DELHD-NP C. MOAZED

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. HUACHUCA, AZ 85613
01CY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
01CY ATTN DRXST-SD
01CY ATTN R. JONES

COMMANDER
U.S. ARMY MATERIEL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J. A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
01CY ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH LABS
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN TECH LIB EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
01CY ATTN DOCUMENT CONTROL

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
01CY ATTN JIM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN ATAA-SA
01CY ATTN TCC/F. PAYAN JR.
01CY ATTN ATAA-TAC LTC. J. HESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, D.C. 20360
01CY ATTN NAVALEX 034 T. HUGHES
01CY ATTN NAVALEX CODE 615 J. A. KOEING
01CY ATTN NAVALEX CODE 615 R. THOMPSON
01CY ATTN PME 117
01CY ATTN PME 117-T
01CY ATTN CODE 5011
01CY ATTN PME-106-T

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUTLAND ROAD, BLDG. 5
WASHINGTON, D.C. 20390
01CY ATTN MR. DUBBIN STIC 12
01CY ATTN NISC-50
01CY ATTN CODE 5404 J. GALET

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN LABORATORY
DAHLGREN, VA 22448
01CY ATTN CODE DF-14 R. BUTLER

OFFICE OF NAVAL RESEARCH
ARLINGTON, VA 22217
01CY ATTN CODE 465
01CY ATTN CODE 461
01CY ATTN CODE 402
01CY ATTN CODE 420
01CY ATTN CODE 421

COMMANDER
AEROSPACE DEFENSE COMMAND/DC
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
01CY ATTN DC MR. LONG

COMMANDER
AEROSPACE DEFENSE COMMAND/XPD
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
01CY ATTN XPDQQ
01CY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY
HANSOM AFB, MA 01731
01CY ATTN OPR HAROLD GARDNER
01CY ATTN OPR-1 JAMES C. ULWICK
01CY ATTN LKB KENNETH S. W. CAMPION
01CY ATTN OPR ALVA T. STAIR
01CY ATTN PHD JURGEN BUCHAU
01CY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY
KIRTLAND AFB, NM 87117
01CY ATTN SUL
01CY ATTN CA ARTHUR H. GUENTHER
01CY ATTN NYTC 1 LT KRAUCI

AFTAC
PATRICK AFB, FL 32925
01CY ATTN TF/MAJ WILEY
01CY ATTN TN

AIR FORCE WRIGHT AERONAUTICAL LABS
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN AAD WADE HUNT
01CY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACQ
DEPARTMENT OF THE AIR FORCE
WASHINGTON, D.C. 20330
01CY ATTN AFRDQ

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/XR
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01731
01CY ATTN XR J. DEAS

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/YSEA
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01732
01CY ATTN YSEA

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
01CY ATTN CODE 532 J. RICHTER

COMMANDING OFFICER
NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
01CY CODE 4100
01CY CODE 4101
01CY CODE 4120
01CY CODE 4701 JACK D. BROWN
20CY CODE 2628
01CY CODE 4732 E. MCLEAN
01CY CODE 6000
01CY CODE 7000
01CY CODE 7500
01CY CODE 7580
01CY CODE 7551
01CY CODE 7555
01CY CODE 7900

COMMANDER
NAVAL SEA SYSTEMS COMMAND
WASHINGTON, D.C. 20362
01CY ATTN CAPT R. PITKIN

COMMANDER
NAVAL SPACE SURVEILLANCE SYSTEM
DAHLGREN, VA 22448
01CY ATTN CAPT J. H. BURTON

OFFICER-IN-CHARGE
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MD 20910
01CY ATTN CODE F31

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20376
01CY ATTN NSP-2141
01CY ATTN NSSP-2722 FRED WIMBERLY

NAVAL SPACE SYSTEM ACTIVITY
P.O. BOX 96960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN LCDR DONALD SNOODY
01CY ATTN COMMANDING OFFICER

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/DC
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731
01CY ATTN DCKC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN NICD LIBRARY
01CY ATTN ETDP B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE V. COYNE

SAMSO/SZ
POST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
01CY ATTN SZU

STRATEGIC AIR COMMAND/XPFS
OFFUTT AFB, NB 68113
01CY ATTN XPFS MAJ B. STEPHAN
01CY ATTN ADWATE MAJ BRUCE BAUER
01CY ATTN NRT
01CY ATTN DOK CHIEF SCIENTIST

SAMSO/YA.
P. O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN YAT CAPT L. BLACKWELDER

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN SKA (SPACE COMO SYSTEMS)
M. CLAVIN

SAMSO/MN
NORTON AFB, CA 92409
(MINUTEMAN)
01CY ATTN MNML LTC KENNEDY

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSOM AFB, MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P. O. BOX 5400
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR D. SHERWOOD

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
01CY ATTN DOC CON FOR A. LABOWITZ

EG&G, INC.
LOS ALAMOS DIVISION
P. O. BOX 809
LOS ALAMOS, NM 87544
01CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P. O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR TECH INFO DEPT
01CY ATTN DOC CON FOR L-389 R. OTT
01CY ATTN DOC CON FOR L-31 R. HAGER
01CY ATTN DOC CON FOR L-46 F. SEWARD

LOS ALAMOS SCIENTIFIC LABORATORY
P. O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN DOC CON FOR J. WOLCOTT
01CY ATTN DOC CON FOR R. F. TASCHEK
01CY ATTN DOC CON FOR E. JONES
01CY ATTN DOC CON FOR J. MALIK
01CY ATTN DOC CON FOR R. JEFFRIES
01CY ATTN DOC CON FOR J. ZINN
01CY ATTN DOC CON FOR P. KEATON
01CY ATTN DOC CON FOR D. WESTERVELT
01CY ATTN DOC CON FOR M. PONGRATZ

SANDIA LABORATORIES
P. O. BOX 5800
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR J. MARTIN
01CY ATTN DOC CON FOR W. BROWN
01CY ATTN DOC CON FOR A. THORNBROUGH
01CY ATTN DOC CON FOR T. WRIGHT
01CY ATTN DOC CON FOR D. DAHLGREN
01CY ATTN DOC CON FOR 3141
01CY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P. O. BOX 969
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR B. MURPHY
01CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
01CY ATTN DOC CON FOR D. GALE

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY
ATTN RD/SI, RM 5G48, HQ BLDG
WASHINGTON, D.C. 20505
01CY ATTN OSI/PSID RM 5F 19

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234
(ALL CORRES: ATTN SEC OFFICER FOR)
01CY ATTN R. MOORE

DEPARTMENT OF TRANSPORTATION
OFFICE OF THE SECRETARY
TAD-44.1, ROOM 10402-B
400 7TH STREET, S.W.
WASHINGTON, D.C. 20590
01CY ATTN R. LEWIS
01CY ATTN R. DOHERTY

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
01CY ATTN A. JEAN (UNCLASS ONLY)
01CY ATTN W. UTLAUT
01CY ATTN D. CROMBIE
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
01CY ATTN R. GRUBB
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P. O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN I. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN N. STOCKWELL
01CY ATTN SMFA FOR PWW
01CY ATTN J. FENNEL
01CY ATTN C. RICE
01CY ATTN H. KOONS

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

BERKELEY RESEARCH ASSOCIATES, INC.
P. O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN

BOEING COMPANY, THE
P. O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CALIFORNIA AT SAN DIEGO, UNIV OF
IPAPS, B-019
LA JOLLA, CA 92093
01CY ATTN HENRY G. BOOKER
01CY ATTN E.C. WHIPPLE

BROWN ENGINEERING COMPANY, INC.
CUMMINGS RESEARCH PARK
HUNTSVILLE, AL 35807
01CY ATTN ROMEO A. DELIBERIS

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D. B. COX
01CY ATTN J. P. GILMORE

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
01CY ATTN G. HYDE

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

ESL INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN J. ROBERTS
01CY ATTN JAMES MARSHALL
01CY ATTN C. W. PRETTIE

FORD AEROSPACE & COMMUNICATIONS CORP
3939 FABIAN WAY
PALO ALTO, CA 94303
01CY ATTN J. T. MATTINGLEY

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P. O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M. H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P. O. BOX 1122
SYRACUSE, NY 13201
01CY ATTN F. REIBERT

GENERAL ELECTRIC COMPANY
TEMPO-CENTER FOR ADVANCED STUDIES
816 STATE STREET (P.O. DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIAK
01CY ATTN DON CHANDLER
01CY ATTN TOM BARRETT
01CY ATTN TIM STEPHANS
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM McNAMARA
01CY ATTN B. GAMBILL
01CY ATTN MACK STANTON

GENERAL ELECTRIC TECH SERVICES CO., INC.
HMS
COURT ST.
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN

GENERAL RESEARCH CORPORATION
SANTA BARBARA DIVISION
P. O. BOX 6770
SANTA BARBARA, CA 93111
01CY ATTN JOE TSE JR
01CY ATTN JOEL GARBARINO

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICERS)
01CY ATTN T. N. DAVIS (UNCL ONLY)
01CY ATTN NEAL BROWN (UNCL ONLY)
01CY ATTN TECHNICAL LIBRARY
01CY ATTN T. HALLINAN

ILLINOIS, UNIVERSITY OF
ATTN: DAN MCCLELLAN FOR K.C. YEH
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820

INSTITUTE FOR DEFENSE ANALYSES
400 ARMY-NAVY DRIVE
ARLINGTON, VA 22202
01CY ATTN J. M. AEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFHARD
01CY ATTN JOFL BENGSTON

HSS, INC.
24 FREE CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

INT'L TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JANUS
141 SUMMIT AVE.
NEW YORK, NY 10014
01CY ATTN C. R. GOLDMAN

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

LOCKHEED MISSILES & SPACE CO INC
P. O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D. R. CHURCHILL

LOCKHEED MISSILES AND SPACE CO INC
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-10
01CY ATTN RICHARD G. JOHNSON DEPT 52-12
01CY ATTN W. L. IMHOF DEPT 52-12
01CY ATTN D. CAUFMAN

KAMAN SCIENCES CORP
P. O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS
01CY ATTN I. ROTHEMUELLER

LOWELL RSCH FOUNDATION, UNIVERSITY OF
450 AIKEN STREET
LOWELL, MA 01854
01CY ATTN K. BIBL
01CY ATTN B. REINISCH

MARTIN MARIETTA CORP
ORLANDO DIVISION
P. O. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

MCDONNELL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
01CY ATTN N. HARRIS
01CY ATTN J. MOULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
01CY ATTN R. W. HALPRIN
01CY ATTN TECHNICAL LIBRARY SERVICES

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
01CY ATTN W. F. CREVIER
01CY ATTN STEVEN L. GUTSCHE
01CY ATTN D. SAPPENFIELD
01CY ATTN R. BOGUSCH
01CY ATTN R. HENDRICK
01CY ATTN RALPH KILB
01CY ATTN DAVE SOWLE
01CY ATTN F. FAJEN
01CY ATTN M. SCHEIBE
01CY ATTN CONRAD L. LONGMIRE
01CY ATTN WARREN A. SCHLUETER

MITRE CORPORATION, THE
P. O. BOX 208
BEDFORD, MA 01730
01CY ATTN JOHN MORGANSTERN
01CY ATTN G. HARDING
01CY ATTN C. E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
01CY ATTN W. HALL
01CY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
1456 CLOVERFIELD BLVD.
SANTA MONICA, CA 90404
01CY ATTN E. C. FIELD JR

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASSIFIED TO THIS ADDRESS)
01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
442 MARRETT ROAD
LEXINGTON, MA 02173
01CY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS INC.
P. O. BOX 3027
BELLEVUE, WA 98009
01CY ATTN E. J. FREMOUW

PHYSICAL DYNAMICS INC.
P. O. BOX 1069
BERKELEY, CA 94701
ATTN: A. THOMPSON

R & D ASSOCIATES
P. O. BOX 9695
MARINA DEL REY, CA 90291
01CY ATTN FORREST GILMORE
01CY ATTN BRYAN GABBARD
01CY ATTN WILLIAM B. WRIGHT JR
01CY ATTN WILLIAM J. KARZAS
01CY ATTN ROBERT F. LELEVIER
01CY ATTN H. ORY
01CY ATTN C. MACDONALD
01CY ATTN R. TURCO

RAND CORPORATION, THE
1700 MAIN STREET
SANTA MONICA, CA 90406
01CY ATTN CULLEN CRAIN
01CY ATTN ED BEDROZIAN

RIVERSIDE RESEARCH INSTITUTE
80 WEST END AVENUE
NEW YORK, NY 10023
01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.
P. O. BOX 2351
LA JOLLA, CA 92038
01CY ATTN LEWIS M. LINSON
01CY ATTN DANIEL A. HAMLIN
01CY ATTN D. SACHS
01CY ATTN E. A. STRAKER
01CY ATTN CURTIS A. SMITH
01CY ATTN JACK McDougall

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY, MA 01776
01CY ATTN BARBARA ADAMS

SCIENCE APPLICATIONS, INC.
HUNTSVILLE DIVISION
2109 W. CLINTON AVENUE
SUITE 700
HUNTSVILLE, AL 35805
01CY ATTN DALE H. DAVIS

SCIENCE APPLICATIONS, INC.
80 MISSION DRIVE
PLEASANTON, CA 94566
01CY ATTN SZ

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025

01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN L. L. COBB
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN M. BARON
01CY ATTN R. LIVINGSTON
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN J. PETERSON
01CY ATTN R. HAKE, JR.
01CY ATTN V. GONZALES
01CY ATTN D. McDANIEL
01CY ATTN R. TSUNODA

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W. P. BOQUIST

UNIVERSITY OF TOKYO
ISAS
KOMABA, MEGURO-KU
TOKYO, JAPAN
01CY ATTN DR. K.I. OYAMA

MAX-PLANCK-INSTITUT
FUR PHYSIK UND ASTROPHYSIK
INSTITUT FUR EXTRATERRESTRICHE PHYSIK
8046 GARCHING B. MUNCHEN, GERMANY
01CY ATTN PROF. GERHARD HAERENDEL

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCHULER
01CY ATTN D. DEE

IONOSPHERIC MODELING DISTRIBUTION LIST
UNCLASSIFIED ONLY

PLEASE DISTRIBUTE ONE COPY (EXCEPT WHERE
NOTED OTHERWISE) TO EACH OF THE FOLLOW-
ING PEOPLE:

ADVANCED RESEARCH PROJECTS AGENCY (ARPA)
STRATEGIC TECHNOLOGY OFFICE
ARLINGTON, VA 22217

CAPT DONALD M. LEVINE

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375

DR. R. MEIER - CODE 4141
DR. TIMOTHY COFFEY - CODE 4000
DR. S. OSSAKOW - CODE 4780
DR. J. GOODMAN - CODE 4180
DR. E. SZUSZCZEWCZ - CODE 4187
(50 COPIES)

DIRECTOR OF SPACE AND ENVIRONMENTAL
LABORATORY, NOAA
BOULDER, COLORADO 80302

DR. A. GLENN JEAN
DR. G. W. ADAMS
DR. D. N. ANDERSON
DR. K. DAVIES
DR. R. F. DONNELLY

AIR FORCES GEOPHYSICS LABORATORY
HANSOM AIR FORCE BASE, MA 01731

DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. J. AARONS
DR. R. NARCISI

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VIRGINIA 22217

U.S. ARMY ABERDEEN RESEARCH AND
DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD

DR. J. HEIMERL

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360

DR. T. CZUBA

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MASS. 02138

DR. M. B. MCELROY
DR. R. LINDZEN

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802

DR. J. S. NISBET
DR. P. R. ROHRBAUGH
DR. D.E. BARAN
DR. L. A. CARPENTER
DR. M. LEE
DR. R. DIVANY
DR. P. BENNETT
DR. E. KLEVANS

UNIVERSITY OF CALIFORNIA, LOS ANGELES
405 HILLGARD AVENUE
LOS ANGELES, CALIFORNIA 90024

DR. R. STENZEL
DR. F. V. CORONITI
DR. C. KENNEL
DR. W. GEKELMAN

UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720

DR. M. HUDSON

UTAH STATE UNIVERSITY
4TH N. AND 8TH STREETS
LOGAN, UTAH 84322

DR. P. M. BANKS
DR. R. HARRIS
DR. V. PETERSON
DR. R. MEGILL
DR. K. BAKER
DR. R. WILLIAMSON

CORNELL UNIVERSITY
ITHACA, NEW YORK 14850

DR. W. E. SWARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771

DR. S.J. BAUER/CODE 600
DR. R. HARTEL CODE 621
DR. R. GOLDBERG/CODE 912
DR. S. CHANDRA
DR. K. MAEDA
DR. R.F. BENSON/CODE 621

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NEW JERSEY 08540

DR. F. PERKINS
DR. E. FRIEMAN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARMY/NAVY DRIVE
ARLINGTON, VIRGINIA 22202

DR. E. BAUER

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742

DR. K. PAPADOPOULOS
DR. E. OTT

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA. 15213

DR. N. ZABUSKY
DR. M. BIONDI

DEFENSE DOCUMENTATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314

(12 COPIES IF OPEN PUBLICATION
OTHERWISE 2 COPIES) 12CY ATTN TC

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-664
LOS ALAMOS, NEW MEXICO 87545

M. PONGRATZ
D. SIMONS
G. BARASCH
L. DUNCAN

OFFICE OF ASSISTANT SECRETARY OF NAVY
FOR RESEARCH, ENGINEERING AND SYSTEMS
PENTAGON RM 4D745
WASHINGTON, D.C.. 20350

03 CY ATTN DR. H. RABIN
DEPUTY ASSISTANT
SEC. OF NAVY