ATASI-Net Architecture

Reconstruction Network for TomoSAR Imaging

For a n layer network

Pre-Calculation of W

Pre-Calcula tion of W

Solves the minimization problem:

$$\left| \operatorname{arg} min_{W \in C^{M imes N}} \left| \left| W^T A \right| \right|^2 s.t. \left(W_{:,i}
ight)^T A_{:,i} \ = \ 1
ight.$$

Where A is given by : $A_{nl} = \exp(j4\pi b_n s_l/\lambda r_0)$

With s_1 the elevation, b_n the baseline length of the n-th observation, λ the wavelength of the emitted signal, (x_0, r_0) a pixel.

For the k-th block we have simply $W_k = \beta_k W$

One Block

Error Propagation Unit D_k

 $D_k = A\gamma_k - y$

The value computed estimates the error, and allows to then build an estimated reconstruction in the next module. γ_k is the distribution of the scattering coefficients

Reconstruction Unit

A two-step process to reconstruct an estimation γ_{k+1} , using the error D_k , the previous estimate γ_k and the weight matrix W_k .

```
First: z^{k+1} = \gamma^k - W_{:,i}^{k}D^k, with W_{:,i}^{k} = \beta^k W_{:,i}

Then the estimate is given by:

\gamma^{k+1} = \eta_{\theta_{-}k+1}(z^{k+1})
```


Thresholding Unit

 θ_i^{k+1} is an element-wise shrinkage thresholding operator, meaning it is trained to use a different value to threshold each element differently.

$$\theta_i^{k+1} = \mu^k / (|z_i^{k+1}| + \epsilon)$$
 ϵ is set to 0.01 according to previous studies.
 μ^k is a learnable parameter (?)

