6 Statistical Decision Theory

6.1 Basics

Let $\theta \in \Theta$ be an unknown quantity of interest. We will take a decision (or an action) d based on the observed data $x \in \mathcal{X}$, such as $d = \delta(x)$.

- The set \mathcal{D} of all possible decisions is called a decision space.
- The function $\delta(x)$ is called a decision rule.

Example 1. Classification: Consider the problem of predicting $y_i \in \{0, 1\}$.

- The decision space is $\mathcal{D} = \{0, 1\}$ for 0-1 classification.
- The decision space is $\mathcal{D} = [0, 1]$ for probabilistic classification.

Example 2. Estimation: Let $\theta \in \Theta \subseteq \mathbb{R}^p$ be the parameter vector. We are interested in θ . The decision space is $\mathcal{D} = \Theta \subseteq \mathbb{R}^p$.

Definition 1 (Loss function). A loss function $L(\theta, d)$ is any non-negative function $L: \Theta \times \mathcal{D} \rightarrow [0, \infty)$.

For example:

$$L_2 \text{ loss}:$$
 $L(\theta - d) = (\theta - d)^2$
 $L_1 \text{ loss}:$ $L(\theta - d) = |\theta - d|$.

Once we apply the loss function to $\delta(x)$, we should treat $L(\theta, \delta(x))$ as a realization from the random variable $L(\theta, \delta(X))$.

Definition 2 (Risk and Posterior Risk). The (frequentist) risk is

$$R(\theta, \delta) = E[L(\theta, \delta(X)) | \theta].$$

The posterior risk is $E[L(\theta, \delta) \mid X = x]$.

Example 3. Let $X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}^T$ be a vector of iid random variables from Bernoulli (p). We are interested in p.

- The sample space is $\mathcal{X} = [0,1]$. The parameter space is $\Theta = [0,1]$. The decision space is $\mathcal{D} = [0,1]$.
- If we choose the loss function $L(\theta d) = (\theta d)^2$ and decision rule $\delta(X) = \bar{X}$, the frequentist risk is

$$R(\theta, \delta) = \mathbb{E}\left[L(p, \delta(X)) \mid p\right] = \mathbb{E}\left[\left(p - \bar{X}\right)^2 \mid p\right] = \frac{p(1-p)}{n},$$

where $\theta = p$ is treated as a fixed quantity when evaluating expectation.

• If the prior of p is $p \sim \text{Beta}(a_0, b_0)$, then the posterior is

$$p \mid x \sim \text{Beta}\left(a_0 + \sum_{i=1}^n x_i, b_0 + n - \sum_{i=1}^n x_i\right).$$

The posterior risk is

$$\mathrm{E}\left[L\left(p,\delta\right)\mid X=x\right] \ = \ \mathrm{E}\left[\left(p-\bar{X}\right)^2\mid X=x\right].$$

Definition 3 (Integrated Risk). The integrated risk is the expectation of the risk with respect to the prior $\Lambda(\theta)$, given by

$$\mathrm{E}\left[L\left(\theta,\delta\right)\right] \ = \ \int R\left(\theta,\delta\right) d\Lambda\left(\theta\right) = \int \mathrm{E}\left[L\left(\theta,\delta\left(X\right)\right) \mid \theta\right] d\Lambda\left(\theta\right).$$

The decision that minimizes the integrated risk is called the Bayes decision rule (or Bayes estimator). The minimal integrated risk

$$\inf_{\delta} \mathrm{E}\left[L\left(\theta,\delta\right)\right]$$

is called the Bayes risk.

Theorem 1 (Find Bayes decision rule via posterior risk). Suppose that

- 1. there exists a decision rule with finite risk,
- 2. for almost all x, there exists a $\delta(x)$ minimizing the posterior risk $E[L(\theta, \delta) \mid X = x]$.

Then, $\delta(x)$ is a Bayes decision rule.

Proof. Let a be any decision rule with finite risk (existence by Assumption 1). Then, $E[L(\theta, a(X)) \mid X = x]$ is finite almost everywhere. Then, by Assumption 2,

$$\begin{array}{rcl} \mathbf{E}\left[L\left(\theta,a\left(X\right)\right)\mid X=x\right] & \geq & \mathbf{E}\left[L\left(\theta,\delta\left(X\right)\right)\mid X=x\right] \\ & & \downarrow & \mathbf{Law} \ \mathrm{of} \ \mathrm{total} \ \mathrm{expectation} \\ & \mathbf{E}\left[L\left(\theta,a\left(X\right)\right)\right] & \geq & \mathbf{E}\left[L\left(\theta,\delta\left(X\right)\right)\right], \end{array}$$

which means that $\delta(X)$ is Bayes.

Theorem 2. Suppose that there exists a decision rule with finite risk.

1. Consider the weighted L_2 loss

$$L_W(\theta, d) = (\theta - d)^T W(\theta - d).$$

Then, the Bayes decision rule is the posterior mean $E[\theta \mid X = x]$, where W does not depend on θ .

2. Consider the absolute error loss

$$L(\theta, d) = |\theta - d|$$
.

Then, the Bayes decision rule is the posterior median.

Example 4. Consider the L_2 loss. Find the Bayes estimator.

1. Let $X_1, ..., X_n$ be an iid sample from Bernoulli (θ) . Suppose that $\theta \sim \text{Beta}(a, b)$. Then, the posterior is proportional to

$$\theta^{\sum_{i=1}^n x_i} \left(1-\theta\right)^{n-\sum_{i=1}^n x_i} \frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \theta^{a-1} \left(1-\theta\right)^{b-1} \quad \propto \quad \theta^{a+\sum_{i=1}^n x_i-1} \left(1-\theta\right)^{b+n-\sum_{i=1}^n x_i-1},$$

a Beta distribution Beta $(a + \sum_{i=1}^{n} x_i, b + n - \sum_{i=1}^{n} x_i)$. The posterior mean is

$$\delta = \frac{\alpha}{\alpha + \beta} = \frac{a + \sum_{i=1}^{n} x_i}{a + b + n}.$$

If a decision rule has a finite risk, then it is the Bayes rule by the theorem. Consider the decision rule $\delta(x) = \bar{X}$. It has finite risk since

$$\mathrm{E}\left[L\left(\theta,\delta\right)\mid\theta\right] \ = \ \mathrm{E}\left[\left(\bar{X}-\theta\right)^2\mid\theta\right] = \frac{\theta\left(1-\theta\right)}{n},$$

which is finite for any θ .

2. Let $X_1, ..., X_n$ be an iid sample from $N(\theta, 1)$. Suppose that $\theta \sim N(\mu_0, \sigma_0^2)$. The posterior is

$$\theta \mid x \sim N\left(\frac{\sigma_0^2 \sum_{i=1}^n x_i + \mu_0}{n\sigma_0^2 + 1}, \frac{\sigma_0^2}{n\sigma_0^2 + 1}\right).$$

The Bayes rule under the L_2 loss is $\frac{\sigma_0^2 \sum_{i=1}^n x_i + \mu_0}{n\sigma_0^2 + 1}$. We only need to find an estimator with finite risk. Consider just \bar{X} such that $\mathrm{E}\left[\left(\bar{X} - \theta\right)^2 \mid \theta\right] = \theta/n$.

6.2 Point Estimation

We want our estimator to have a small frequentist risk.

Theorem 3 (Rao-Blackwell Theorem). Let T be a sufficient statistic for $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$. Let δ be an estimator of $g(\theta)$. Define $\eta(T) = E[\delta(X) \mid T]$. If $R(g(\theta), \delta) < \infty$, and $L(\theta, \cdot)$ is convex for all θ , then $R(g(\theta), \eta(T)) \leq R(g(\theta), \delta)$.

The Rao-Blackwell Theorem in the Estimation section is a special case of the above Rao-Blackwell theorem, where we only consider unbiased estimators, the loss is the L_2 loss, and the frequentist risk is the variance.

Theorem 4 (Lehmann-Scheffé Theorem). Let T be a complete and sufficient statistic for a parameter θ . Let $\delta(X)$ be any unbiased estimator of $g(\theta)$. Then $\eta(T) = E[\delta(X) \mid T]$ is the unique unbiased of $g(\theta)$ that minimizes the frequentist risk $R(g(\theta), d)$, if $L(\theta, \cdot)$ is convex for all θ .

Example 5. Consider $X_1, ..., X_n$ from Bernoulli (θ) . Note that

$$p(X \mid \theta) = \prod_{i=1}^{n} \theta^{X_i} (1 - \theta)^{1 - X_i} = \exp \left\{ \sum_{i} X_i \log \left(\frac{\theta}{1 - \theta} \right) + n \log (1 - \theta) \right\}$$

Hence, $T = \sum_{i} X_{i}$ is sufficient and complete. Note that $\mathrm{E}\left[n^{-1}T \mid \theta\right] = \theta$. Hence, \bar{X} is the unique unbiased of θ that minimizes any convex loss function.

In practice, we usually cannot compute the closed form expression of $E[L(\theta, \delta(X)) | \theta]$. In supervised learning, we want to learn a function $h: x \to y$ from the data $\{(x_i, y_i), i = 1, ..., n\}$. The corresponding frequentist risk is $E[L(Y, h(X)) | \theta]$. Hence we often minimize the empirical risk to estimate θ :

$$\hat{\theta} = \arg \inf_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(y_i, h(x_i)).$$

Example 6. Some examples are

$$\arg\inf_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left[\log q(y_i) - \log p(y_i \mid \theta(x_i)) \right] = \arg\inf_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{q(y_i)}{p(y_i \mid \theta(x_i))} \right)$$

$$\arg\inf_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_1 - \theta_2 x_i)^2$$

$$\arg\inf_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_1 - \theta_2 x_i) \left[\tau - 1(y_i - \theta_1 - \theta_2 x_i < 0) \right], \quad \text{known } \tau,$$

$$\arg\inf_{\theta} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, \ 1 - y_i (\theta_1 + \theta_2 x_i) \right\}.$$

6.3 Admissible Estimator and Minimax

Definition 4 (Admissible Estimator). A decision rule δ_0 is called inadmissible if there exits a decision rule δ_1 such that

$$R(\theta, \delta_0) \geq R(\theta, \delta_1)$$
, for all $\theta \in \Theta$, $R(\theta, \delta_0) > R(\theta, \delta_1)$, for some $\theta \in \Theta$.

We say that δ_1 dominates δ_0 . Otherwise, the decision rule δ_0 is called admissible.

Example 7. Let $X_1, ..., X_n$ be independent random variables where $X_i \sim N(\theta_i, 1)$. The parameter is $\theta = \begin{bmatrix} \theta_1 & \cdots & \theta_n \end{bmatrix}^T \in \mathbb{R}^n$.

- An unbiased estimator of θ is $\delta_0(X) = X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}^T$.
- The James-Stein estimator is

$$\delta_1(x) = \left(1 - \frac{n-2}{x^T x}\right) x.$$

ullet If we consider the L_2 loss, then the difference in the risk satisfies

$$\mathrm{E}\left[L\left(\theta,\delta_{0}\left(X\right)\right)\mid\theta\right]-\mathrm{E}\left[L\left(\theta,\delta_{1}\left(X\right)\right)\mid\theta\right]\geq\frac{\left(n-2\right)^{2}}{n-2+\theta^{T}\theta}>0,$$

for all θ .

Definition 5 (Minimax). A decision rule is minimax if it minimizes the maximum risk as

$$\inf_{d \in \mathcal{D}} \left[\sup_{\theta \in \Theta} R\left(\theta, d\right) \right] \quad = \quad \inf_{d \in \mathcal{D}} \left[\sup_{\theta \in \Theta} \mathrm{E}\left[L\left(\theta, d\left(X\right)\right) \mid \theta \right] \right].$$

Example 8. Suppose $X \mid \theta$ follows a 5-category multinomial distribution and $\theta \in \Theta = \{1, 2, 3\}$ indicates which distribution it is. The candidate distributions are

	x						
θ	1	2	3	4	5		
1	0	0.05	0.05	0.8	0.1		
2	0.05	0.05	0.8	0.1	0		
3	0.9	0.05	0.05	0	0		

Suppose that our decision space $\mathcal{D} = \Theta$. Consider

Our decision rule						Loss function				
Observed x					_	Decision d				
δ	1	2	3	4	5	_	θ	1	2	3
δ_1	d=3	3	2	2	1	_	1	$L\left(\theta,d\right) = 0$	0.8	1
δ_2	3	2	2	1	1		2	0.3	0	0.8
δ_3	1	1	1	1	1	_	3	0.3	0.1	0

The frequentist risk is $R(\theta, \delta) = E[L(\theta, d) \mid \theta]$ as

$$R(\theta, \delta) = E[L(\theta, d) \mid \theta] = \sum_{x=1}^{5} L(\theta, \delta(x)) P(X = x \mid \theta)$$

For example,

$$R(\theta_1, \delta_1) = 1 \cdot 0 + 1 \cdot 0.05 + 0.8 \cdot 0.05 + 0.8 \cdot 0.8 + 0 \cdot 0.1 = 0.73$$

$$R(\theta_1, \delta_2) = 1 \cdot 0 + 0.8 \cdot 0.05 + 0.8 \cdot 0.05 + 0 \cdot 0.8 + 0 \cdot 0.1 = 0.08$$

Hence, the risk matrix is

		δ	
θ	1	2	3
1	0.73	0.08	0
2	0.08	0.07	0.3
3	0.005	0.01	0.3

The maximum risk $\sup_{\theta\in\Theta}R\left(\theta,d\right)$ is attained as

		δ	
	1	2	3
$\sup_{\theta \in \Theta} R\left(\theta, d\right)$	$0.73 \; (\theta = 1)$	$0.08 \; (\theta = 1)$	$0.3 \ (\theta = 2, 3)$

The minmiax decision rule is δ_2 .

Theorem 5 (Relation between minimax rule and admissible rule). 1. If there exists a unique minimax decision rule, then it is also admissible.

- 2. If δ is admissible and has constant risk, then δ is minimax.
- 3. Suppose that \mathcal{D} is convex and, for all $\theta \in \Theta$, the loss function $L(\theta, \cdot)$ is strictly convex. If δ_0 is admissible and has constant risk, then δ_0 is unique minimax.

Proof. We only prove Part I and Part II of the theorem.

1. Minimax \Rightarrow admissible: Let δ^* be the minimax decision rule. Suppose that it is not admissible. Then, there exists another decision rule δ such that

$$R(\theta, \delta^*) \geq R(\theta, \delta)$$
, for all $\theta \in \Theta$, $R(\theta_0, \delta^*) > R(\theta_0, \delta)$, for a $\theta_0 \in \Theta$.

This implies that

$$\sup_{\theta \in \Theta} R(\theta, \delta^*) \geq \sup_{\theta \in \Theta} R(\theta, \delta).$$

Since δ^* is minimax, we should have

$$\inf_{d \in \mathcal{D}} \left[\sup_{\theta \in \Theta} R\left(\theta, d\right) \right] \quad = \quad \sup_{\theta \in \Theta} R\left(\theta, \delta^*\right) \stackrel{\text{ab ove result}}{\geq} \sup_{\theta \in \Theta} R\left(\theta, \delta\right).$$

The only possible way for this to happen is that δ is also minimax, since the LHS is the minimal and should be \leq RHS. This contradicts the assumption that δ^* is the unique minimax decision rule.

2. Admissible \Rightarrow Minimax: From 2), we already know that δ_0 satisfying the assumptions must be minimax. We only need to show that it is unique. Suppose that δ_0 is not unique minimax, that is, we can find a $\delta_1 \neq \delta_0$ such that δ_1 is also minimax as

$$\sup_{\theta \in \Theta} R\left(\theta, \delta_{1}\right) \hspace{2mm} = \hspace{2mm} \sup_{\theta \in \Theta} R\left(\theta, \delta_{0}\right) \underset{R\left(\theta, \delta_{0}\right) \text{ is constant}}{=} R\left(\theta_{0}, \delta_{0}\right) \text{ for any } \theta_{0} \in \Theta.$$

Thus,

$$R(\theta_0, \delta_1) \le \sup_{\theta \in \Theta} R(\theta, \delta_1) = R(\theta_0, \delta_0) \text{ for any } \theta_0 \in \Theta.$$

First consider the case where the equality holds: $R(\theta_0, \delta_1) = R(\theta_0, \delta_0)$. We define a new decision rule

$$\delta_2 = \frac{\delta_1 + \delta_0}{2}.$$

Such $\delta_2 \in \mathcal{D}$ if we assume \mathcal{D} is convex. Thus,

$$\begin{split} 0 &\leq R\left(\theta_{0}, \delta_{2}\right) &= & \operatorname{E}\left[L\left(\theta_{0}, \delta_{2}\left(x\right)\right) \mid \theta_{0}\right] \\ L \text{ is strictly convex} &< & \operatorname{E}\left[\frac{1}{2}L\left(\theta_{0}, \delta_{0}\left(x\right)\right) + \frac{1}{2}L\left(\theta_{0}, \delta_{1}\left(x\right)\right) \mid \theta_{0}\right] \\ &= & \frac{1}{2}R\left(\theta_{0}, \delta_{0}\right) + \frac{1}{2}R\left(\theta_{0}, \delta_{1}\right) \\ &= & R\left(\theta_{0}, \delta_{0}\right) \end{split}$$

This means that $R(\theta_0, \delta_2) < R(\theta_0, \delta_0)$, for any $\theta_0 \in \Theta$, which contradicts the assumption δ_0 is admissible. Hence, we must have

$$R(\theta_0, \delta_1) < \sup_{\theta \in \Theta} R(\theta, \delta_1) = R(\theta_0, \delta_0) \text{ for any } \theta_0 \in \Theta.$$

But this also contradicts the assumption δ_0 is admissible. Thus, we cannot find such δ_1 .

6.4 Why Bayesian Statistics?

Theorem 6. The Bayes decision rule is admissible if either set of the following conditions hold.

1. $\lambda(\theta) > 0$ for all $\theta \in \Theta$, $R(\theta, \delta)$ is continuous in θ for all δ , and

$$\inf_{\delta \in \mathcal{D}} \int R(\theta, \delta) d\Lambda(\theta) < \infty.$$

- 2. The Bayes decision rule is unique.
- 3. \mathcal{D} is convex, the loss function $L(\theta,\cdot)$ is strictly convex for all $\theta \in \Theta$, and

$$\inf_{\delta \in \mathcal{D}} \int R(\theta, \delta) d\Lambda(\theta) < \infty.$$

Proof. We only prove the first set of conditions. Condition set 1: Suppose that the Bayes rule δ_B is not admissible. Then there exists a δ_1 such that

$$R(\theta, \delta_B) \geq R(\theta, \delta_1)$$
, for all $\theta \in \Theta$, $R(\theta_1, \delta_B) > R(\theta_1, \delta_1)$, for some $\theta_1 \in \Theta$.

Because $R(\theta, \delta)$ is continuous in θ for all δ , then there exists a neighborhood C of θ_1 such that

$$R\left(\theta_{1},\delta_{B}\right) > R\left(\theta_{1},\delta_{1}\right), \text{ for all } \theta \in C \subset \Theta,$$
 and
$$\int_{\theta \in C} R\left(\theta,\delta_{B}\right) d\Lambda\left(\theta\right) > \int_{\theta \in C} R\left(\theta,\delta_{1}\right) d\Lambda\left(\theta\right).$$

For $\theta \in C^c$, we should have

$$\int_{\theta \in C^{c}} R(\theta, \delta_{B}) d\Lambda(\theta) \geq \int_{\theta \in C^{c}} R(\theta, \delta_{1}) d\Lambda(\theta).$$

Hence,

$$\int R(\theta, \delta_{1}) d\Lambda(\theta) = \int_{\theta \in C} R(\theta, \delta_{1}) d\Lambda(\theta) + \int_{\theta \in C^{c}} R(\theta, \delta_{1}) d\Lambda(\theta)
< \int_{\theta \in C} R(\theta, \delta_{B}) d\Lambda(\theta) + \int_{\theta \in C^{c}} R(\theta, \delta_{B}) d\Lambda(\theta)
= \int R(\theta, \delta_{B}) d\Lambda(\theta) < \infty,$$

where the last inequality holds since $\inf_{\delta \in \mathcal{D}} \int R(\theta, \delta) d\Lambda(\theta) < \infty$. This contradicts the fact that δ_B is Bayes.

Theorem 7 (Blyth Theorem). Let Θ be an open set. Suppose that the set of decision rules with continuous $R(\theta,d)$ in θ forms a class C such that for any $d' \notin C$ we can find a $d \in C$ such that d dominates d'. Let δ be an estimator such that $R(\theta,\delta)$ is continuous of θ . Let $\{\Lambda_n\}$ be a sequence of priors such that

- 1. $\int R(\theta, \delta) d\Lambda_n(\theta) < \infty \text{ for all } n$,
- 2. for every nonemptry open set $\Theta_0 \in \Theta$, there exist constants B > 0 and N such that

$$\int_{\Theta_{n}} d\Lambda_{n} (\theta) \geq B, \text{ for all } n \geq N,$$

3. $\int R(\theta, \delta) d\Lambda_n(\theta) - \int R(\theta, \delta_n) d\Lambda_n(\theta) \to 0$ as $n \to \infty$, where δ_n is the Bayes rule under the prior Λ_n .

Then, δ is admissible.

We have shown that the Bayes decision rule is admissible under some assumption. The Blyth theorem says that the admissible decision can be obtained such that

$$\lim_{n \to \infty} \int R(\theta, \delta) d\Lambda_n(\theta) - \int R(\theta, \delta_n) d\Lambda_n(\theta) = 0.$$

We can in fact claim that every admissible estimator is either a Bayes estimator or a limit of Bayes estimators as

$$\lim_{n \to \infty} \delta_n(x) = \delta_B(x), \text{ almost everywhere,}$$

under quite mild assumptions (e.g., $f(x \mid \theta) > 0$ for any $(x, \theta) \in \mathcal{X} \times \Theta$, $L(\theta, d)$ is continuous and strictly convex in d for every θ , among others). See Lehmann Theory of Point estimation Theorem 5.7.15 or Bayesian Choice Theorem 8.3.9.

Definition 6. A prior distribution Λ is least favorable if

$$\int R(\theta, \delta_B(\Lambda)) d\Lambda(\theta) \geq \int R(\theta, \delta_B(\Lambda')) d\Lambda'(\theta)$$

for all prior distributions Λ' .

Theorem 8. Let δ_B be the Bayes decision rule with respect to the prior $\pi(\theta)$. Suppose that

$$\int R(\theta, \delta_B) d\Lambda(\theta) = \sup_{\theta} R(\theta, \delta_B).$$

Then, δ_B is minimax and $\pi(\theta)$ is least favorable. Further, if δ_B is the unique Bayes decision rule with respect to the prior $\pi(\theta)$, then it is the unique minimax estimator.

Proof. We only prove the minimax part. The assumption $\int R(\theta, \delta_B) d\Lambda(\theta) = \sup_{\theta} R(\theta, \delta_B)$ means that the minimum integrated risk equals to the maximum of the frequentist risk. Let δ be any other decision rule. Then

$$\sup_{\theta} R(\theta, \delta) = \int \left[\sup_{\theta} R(\theta, \delta) \right] d\Lambda(\theta) \geq \int R(\theta, \delta) d\Lambda(\theta)$$
definition of Bayes rule $\geq \int R(\theta, \delta_B) d\Lambda(\theta)$
assumption $= \sup_{\theta} R(\theta, \delta_B)$. (1)

Hence, δ_B is minimax since any other δ leads to $\sup_{\theta} R(\theta, \delta) \ge \sup_{\theta} R(\theta, \delta_B)$.

Corollary 1. Let δ_B be the Bayes decision rule with respect to the proper prior $\Lambda(\theta)$. If δ_B has constant (frequentist) risk, then it is minimax.

Proof. Since δ_B has constant frequentist risk (e.g., $R(\theta, \delta_B) = c$), then we trivially have

$$\int R\left(\theta,\delta_{B}\right)d\Lambda\left(\theta\right) \ = \ c\int d\Lambda\left(\theta\right) = c, \text{ we need Λ to be a proper prior.}$$

$$\sup_{\theta} R\left(\theta,\delta_{B}\right) \ = \ c.$$

Hence, the condition of the theorem (Bayes is minimax) is satisfied. The theorem means that δ_B is minimax.

Example 9 (Minimax Estimator of Binomial Proportion). Let $X_1, ..., X_n$ be an iid sample from Bernoulli (θ) . Suppose that $\theta \sim \text{Beta}(a, b)$. Then, the posterior is Beta $(a + \sum_{i=1}^{n} x_i, b + n - \sum_{i=1}^{n} x_i)$. The Bayes estimator is the posterior mean as

$$\delta_B = \frac{a + \sum_{i=1}^n x_i}{a + b + n}$$

Its risk is

$$R(\theta, \delta_B) = E\left[\left(\frac{a + \sum_{i=1}^n x_i}{a + b + n} - \theta \right)^2 \mid \theta \right] = \frac{\left[(a + b)^2 - n \right] \theta^2 + \left[n - 2a (a + b) \right] p + a^2}{(a + b + n)^2}.$$

The numerator is a polynomial in θ . It is a constant if $(a+b)^2 = n$ and n = 2a(a+b). In such a case,

$$R(\theta, \delta_B) = \frac{a^2}{(a+b+n)^2}$$
 is a constant.

Hence, the Bayes decision rule is minimax. The solutions of a and b are $a = \sqrt{n}/2$ and $b = \sqrt{n}/2$.

Theorem 9. Let $\{\Lambda_m\}$ be a sequence of proper prior distributions, and δ_m be the Bayes decision rule corresponding to the prior Λ_m . If δ is an estimator such that

$$\sup_{\theta} R(\theta, \delta) = \lim_{m \to \infty} \int R(\theta, \delta_m) d\Lambda_m(\theta).$$

Then δ is minimax.

Proof. Suppose that d is any other decision rule. Then,

$$\sup_{\theta} R\left(\theta,d\right) = \int \sup_{\theta} R\left(\theta,d\right) d\Lambda_{m}\left(\theta\right) \text{ we need proper priors here}$$

$$\geq \int R\left(\theta,d\right) d\Lambda_{m}\left(\theta\right)$$

$$\downarrow \downarrow$$

$$\sup_{\theta} R\left(\theta,d\right) \geq \lim_{m \to \infty} \int R\left(\theta,d\right) d\Lambda_{m}\left(\theta\right).$$

By the assumption of the theorem, we have

$$\sup_{\theta} R\left(\theta, \delta\right) = \lim_{m \to \infty} \int R\left(\theta, \delta_{m}\right) d\Lambda_{m}\left(\theta\right)$$
definition of Bayes rule $\leq \lim_{m \to \infty} \int R\left(\theta, d\right) d\Lambda_{m}\left(\theta\right)$

Hence, we have

$$\sup_{\theta} R(\theta, \delta) \leq \lim_{m \to \infty} \int R(\theta, d) d\Lambda_m(\theta) \leq \sup_{\theta} R(\theta, d),$$

which means that δ is minimax.

Example 10 (Minimax for Normal Mean). Let $X_1, ..., X_n$ be iid observations from $N\left(\theta, \sigma^2\right)$, where σ^2 is known. Consider the L_2 loss $L\left(\theta, d\right) = \left(\theta - d\right)^2$. The posterior is $\theta \mid x \sim N\left(\frac{\tau^2 \sum_{i=1}^n x_i + \sigma^2 \mu_0}{n\tau_m^2 + \sigma^2}, \frac{\sigma^2 \tau_m^2}{n\tau_m^2 + \sigma^2}\right)$. Let $\delta\left(x\right) = \frac{\tau_m^2 \sum_{i=1}^n x_i + \sigma^2 \mu_0}{n\tau_m^2 + \sigma^2}$. Then

$$E(\theta - \delta)^{2} = E_{X} \left\{ E_{\theta \mid X} \left[(\theta - \delta)^{2} \mid X \right] \right\} = E_{X} \left\{ \frac{\sigma^{2} \tau_{m}^{2}}{n \tau_{m}^{2} + \sigma^{2}} \right\} = \frac{\sigma^{2} \tau_{m}^{2}}{n \tau_{m}^{2} + \sigma^{2}}.$$

If $\tau_m^2 \to \infty$ as $m \to \infty$, then $E\left(\theta - \hat{\theta}\right)^2 \to \sigma^2/n$. By the theorem, \bar{X} is minimax, since

$$R(\theta, \bar{X}) = \int (\theta - \bar{X})^2 N(\theta, \sigma^2/n) d\bar{x} = \frac{\sigma^2}{n}.$$

Let $m(x; \Lambda)$ be the marginal likelihood of x under the prior $\Lambda(\theta)$. We define the frequentist risk between $p(x \mid \theta)$ and $m(x; \Lambda)$ as

$$R_{n}\left(\theta,\Lambda\right) = \mathrm{KL}\left(p\left(x\mid\theta\right),m\left(x;\Lambda\right)\right) = \int p\left(x\mid\theta\right)\log\left[\frac{p\left(x\mid\theta\right)}{m\left(x;\Lambda\right)}\right]d\mu\left(x\right).$$

The integrated risk is then

$$R_{n}\left(\Lambda\right) = \int R_{n}\left(\theta,\Lambda\right) d\Lambda\left(\theta\right) = \mathrm{E}\left[\mathrm{KL}\left(\pi\left(\theta\mid x\right),\pi\left(\theta\right)\right)\right],$$

which is the same as the mutual information of X and θ , and the expected Kullback-Leiber divergence.

Remark 1. Suppose that some regularity conditions are satisfied, including Θ is a compact set, the Fisher information equals to the negative expected Hessian, among others.

• It has been proved that, among all positive and continuous priors,

$$\sup_{\pi} R_n(\Lambda) - \inf_{p(x)} \sup_{\theta \in \Theta} \mathrm{KL}\left(p\left(x \mid \theta\right), p\left(x\right)\right) \rightarrow 0.$$

• It has also been proved that the Jeffreys prior $\lambda^*(\theta)$ is the unique continuous and positive prior such that

$$\sup_{\pi} R_n(\Lambda) - R_n(\lambda^*) \rightarrow 0.$$

Hence, asymptotically, Jeffreys prior maximizes the mutual information, is the least favorable prior, and the integrated risk equals to the minimax risk.