Photogrammetry & Robotics Lab Machine Learning for Robotics and Computer Vision Tutorial

Transformer

Jens Behley

Pre-exam Q&A

- We offer an additional Q&A session:
 August 12, 2021@10:00-12:00
- Send us questions before the session, we will then discuss questions in the Q&A session
- (But will also answer ad hoc questions)
- All lectures & exercises relevant for the exam (invited talks are not relevant!)

Exam Dates

- Oral Exam via Zoom in English
- Webcam must be on all the time and alone in room
- No other windows besides Zoom open.
- Date from the voting: Wed, 25.08.2021
- If this date still doesn't fit, contact us and we provide one alternative date

This week's lecture

- Going beyond convolutions with Transformers
- Key building block: Self-Attention
- Promising results on various vision tasks
- Hot topic in computer vision & robotics

Transformer Block

- Each block consists of attention module and fullyconnected layers with non-linearity (MLP)
- Skip-connections

[Vaswani, 2017] 5

- Weighted combination of the inputs (= complete sequence!)
- Enables to adapt compute on-the-fly depending on similarity between query and key
- Projections learn similarity function [Vaswani, 2017]

Multi-Head Attention

- Use multiple self attention blocks in parallel
 → multi-head attention (#heads = H)
- Use D/H as dimension of projections to keep compute independent of H
- Each SDA defines different attention pattern (similar to convolutional kernel)

Example: Positional Encoding

Vision Transformer

- Motivated by the success of Transformer in NLP, many works tried to use ideas for vision tasks
- Vision Transformer (ViT) achiev state-of-the-art results with minimal adjustments to the encoder

Patches instead of Pixels

- Split image in patches of size 16×16
- Treat each image patch as $3 \cdot 16 \cdot 16$ vector and project to D = 768/1024/1280

Positional Encoding

Use 1D linear index as position with standard positional encoding

Class Token

- Use special class token [CLS] as "aggregator" to gather information for classification
- Fully-connected layer (MLP) maps feature to classes

Pretraining with large datasets

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	$76.29 \pm \textbf{1.70}$	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

- Essential for achieving state-of-the-art: pretraining with large-scale dataset → JTF dataset with 300M images for supervised pre-training
- ViT-Huge with 32 Transformer layers and 632M parameters

Receptive field of ViT

- Even in lower layers, attention weights cover a large range in the image
- Long-range dependencies can be exploited in early layers.

Training of Vision Transformer

How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers

Andreas Steiner*, Alexander Kolesnikov*, Xiaohua Zhai* Ross Wightman[†], Jakob Uszkoreit, Lucas Beyer*

Google Research, Brain Team; †independent researcher {andstein,akolesnikov,xzhai,usz,lbeyer}@google.com,rwightman@gmail.com

- Data Augmentation and Regularization key to achieve good performance
- Large-scale study on trade-offs between regularization, data augmentation, training data size and compute budget → over 50k experiments!

[Steiner, 2021] 15

AugReg vs. Pre-training size

 Right amount of regularization and image augmentation leads to similar gains as increasing dataset size

Transfer is the better option

- Transfer learning leads to better performance with less compute
- Warning: For small datasets training from scratch will not result in models as good as transfer!

Self-supervision for ViT

- Student and teacher have same architecture
- Student tries to replicate outputs of teacher of augmented views
- As in MoCo and BYOL, teacher parameters are updated via momentum

Emerging Properties of ViT

- Interestingly, self-supervised training leads to class-specific features
- Visualization of attention from [CLS] token leads to unsupervised object segmentation

MLP-Mixer

- Replace self-attention with MLP on transposed feature vectors
- All operations are MLPs on image patches

How to start a project?

How to start a project?

How to create own approach?

- 1. Start simple, small! Take existing architectures.
- Test/steal one idea at a time! (Look always at validation error)
- 3. Evaluate progress. Try to understand why something works/not works. Does it support your hypothesis?
- 4. Not only metrics. Visualize results.
- 5. Add data augmentation/mor reularization

See you next week!