引水入城

【问题描述】

在一个遥远的国度, 一侧是风景秀美的湖泊, 另一侧则是漫无边际的沙漠。该国的行政区划十分特殊, 刚好构成一个 N 行 M 列的矩形,如上图所示, 其中每个格子都代表一座城市,每座城市都有一个海拔高度。

为了使居民们都尽可能饮用到清澈的湖水, 现在要在某些城市建造水利设施。水利设施 有两种, 分别为蓄水厂和输水站。蓄水厂的功能是利用水泵将湖泊中的水抽取到所在城市的 蓄水池中。因此, 只有与湖泊毗邻的第 1 行的城市可以建造蓄水厂。而输水站的功能则是通 过输水管线利用高度落差, 将湖水从高处向低处输送。故一座城市能建造输水站的前提, 是 存 在比它海拔更高且拥有公共边的相邻城市,已经建有水利设施。

由于第 N 行的城市靠近沙漠,是该国的干旱区,所以要求其中的每座城市都建有水利设施。那么, 这个要求能否满足呢? 如果能, 请计算最少建造几个蓄水厂; 如果不能, 求干 旱区中不可能建有水利设施的城市数目。

【输入】

输入文件的每行中两个数之间用一个空格隔开。 输入的第一行是两个正整数 N 和 M ,表示矩形的规模。

接下来 N 行,每行 M 个正整数,依次代表每座城市的海拔高度。

【输出】

输出有两行。如果能满足要求,输出的第一行是整数 1,第二行是一个整数,代表最少 建造几个蓄水厂;如果不能满足要求,输出的第一行是整数 0,第二行是一个整数,代表有 几座干旱区中的城市不可能建有水利设施。

【输入输出样例 1】

flow.in	flow. out
2 5	1
9 1 5 4 3	1
8 7 6 1 2	

【样例 1 说明】

只需要在海拔为 9 的那座城市中建造蓄水厂,即可满足要求。

【输入输出样例 2】

flow.in	flow.out
3 6	1
8 4 5 6 4 4	3
7 3 4 3 3 3	
3 2 2 1 1 2	

【样例 2 说明】

湖泊						
8	4	5	6	4	4	
7	3	4	3	3	3	
3	2	2	1	1	2	
	沙漠					

上图中, 在3个粗线框出的城市中建造蓄水厂, 可以满足要求。以这3个蓄水厂为源头在干旱区中建造的输水站分别用3种颜色标出。当然,建造方法可能不唯一。

【数据范围】

本题共有 10 个测试数据,每个数据的范围如下表所示:

测试数据编号	能否满足要求	N	M
1	不能	≤ 10	≤ 10
2	不能	≤ 100	≤ 100
3	不能	≤ 500	≤ 500
4	能	= 1	≤ 10
5	能	≤ 10	≤ 10
6	能	≤ 100	≤ 20
7	能	≤ 100	≤ 50
8	能	≤ 100	≤ 100
9	能	≤ 200	≤ 200
10	能	≤ 500	≤ 500

对于所有的 10 个数据,每座城市的海拔高度都不超过 10^6 。