

Technical University of Denmark

42002 Modelling and Analysis of Sustainable Energy Systems
Using Operations Research

Final Project

Sigurd Indrehus s193028

Lorenzo Mininni s192445

Jorge Montalvo Arvizu s192184

Ajinkya Pradip Mahale s192206

Fall 2019

Base Scenario in 2021

- Region: North and South Carolina, USA
- Electricity mix dominated by Natural Gas, Coal and Nuclear
- Low renewable share, huge potential for solar and wind
- Goal for 2021: 12.5% generation from renewables

Wind & Solar

Renewables.ninja Nrel.gov

Implementations

- Non-renewables
- Coal
- Natural Gas
- Diesel
- Nuclear

- Renewables
- Wind
- Solar
- Hydro

Data

- eia.gov
- Investment cost: eia.gov & lazard.com
- Emission cost: worldbank.org

Assumptions

Hydro power: monthly generation production per plant
 Base load generation

Emission costs equal for every non-renewable source

• Rate of return = 10%

No imports/exports

Mathematical Model

Objective function

$$\min \ Z = \sum_{t=1}^{T} \sum_{i=1}^{I} \left(C_i \ P_{it} \right) + \sum_{i=1}^{I} \left(CAPEX_i^{annualized} + OPEX_i \right) \ P_i^{max}$$

Demand Satisfaction

$$\sum_{i=1}^{I} P_{it} = d_t - Pt^{solar} - Pt^{wind}$$

Goal limit

$$\sum_{i=1}^{I} P_i \ge d * 12.5\%$$

Capacity units

Capacity production in unity of a fixed quantity: new variable X_i

Power generation limits

$$0 \le P_{it} \le size_i \ X_i = P_i^{max}$$

Extensions

- Electric vehicles
- From conventional cars to EV
- Adds flexibility in electricity demand
- Effects of demand flexibility

- Hydrogen
- Electrolysis plant storage
- Fuel fuel cell or gas turbines
- Flexible, lots of losses

Results

Installed Capacity (MW)

Baseline Generation

Sensitivity Analysis

- Coal Capacity

- Fuel and Emission cost

\$

- Subsidies

Thank you for your listening.

Questions?

