Chapter 7

Eigenvalue and Eigenvector

Exercise 7.1

Solution.

Given,
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$

Now, Au =
$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} 6-30 \\ 30-10 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -4u$$
Hence, u is eigenvector of A.

Let
$$A = \begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$$
, $u = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$

Au =
$$\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -3+4 \\ -3+32 \end{bmatrix} = \begin{bmatrix} 1 \\ 29 \end{bmatrix} \neq \lambda u$$

So, u is not eigenvector of A.

Let
$$A = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

Now,
$$\operatorname{Au} = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 6+4 \\ 4-4 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix} \neq \lambda \mathbf{u}$$

Now,
$$Au = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 6+4 \\ 4-4 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix} \neq \lambda u$$

So, u is not eigenvector of A.
4. Let $A = \begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix}$, $u = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$
Now, $Au = \begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 12 - 21 + 9 \\ -16 + 15 + 1 \\ 8 - 12 + 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0u$

Hence, u is eigenvector of A and 0 is eigen value

Let
$$A = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$$
, $\lambda = 1$

Since,
$$[A - \lambda I \quad 0] = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -2 & 0 \end{bmatrix}$$
 Since there is no free varial

 $\begin{bmatrix} 1 & 2 & 0 \\ 0 & -2 & 0 \end{bmatrix}$ Since there is no free variables

So, 1 is not eigen value of $\begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -2 & 0 \end{bmatrix}$$
 Since there is no free variables which shows that $Ax = 1x$ has trivial solution. So, 1 is not eigen value of $\begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$

50 A Complete solution of Mathematics-II for B Sc CSIT

Given,
$$\lambda = 5$$
, $A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$
we have, $\begin{bmatrix} A - 5I & 0 \end{bmatrix}$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 2 & -4 & 0 \end{bmatrix}$$

 $\sim \begin{bmatrix} 2 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ There is free variables so

 $2x_1 - 4x_2 = 0$ Ax = 5x has non trivial solution. So 5 is eigen value of A. So,

 $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is eigen vector of A.

7. Given,
$$\lambda = 3$$
, $A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} -2 & 2 & 2 & 0 \\ 3 & -5 & 1 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ 3 & -5 & 1 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & -2 & 4 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ \end{bmatrix}$$

Here,
$$[A - 3I \ 0]$$

$$= \begin{bmatrix} -2 & 2 & 2 & 0 \\ 3 & -5 & 1 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \end{bmatrix}$$

 $R_1 \rightarrow -\frac{1}{2}R_1$

 $R_2 \rightarrow R_2 - 3R_1$

$$R_2 \rightarrow -\frac{1}{2}R_2$$

which shows that x_3 is free variables so

Ax = 3x has no trivial solution. So 3 is an eigen value of A

and $x_1 - x_2 - x_3 = 0$

$$\therefore \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 + x_3 \\ 2x_3 \end{bmatrix} = \begin{bmatrix} 3x_3 \\ 2x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3 \\ 2 \\ x_3 \end{bmatrix}$$

 $\begin{vmatrix} 2 \\ 1 \end{vmatrix}$ is eigen vector of A.

52

Given,
$$\lambda = 2$$
, $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$
Here, $[A - 2I \ 0]$

which shows that x_2 and x_3 are free variables so Ax = 2x has non trivial

Given, hint is book So, 2 is eigen value of A.

Given,
$$A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$$
, $\lambda = 1$
low, $[A - \lambda I \ 0]$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Now, $[A - \lambda I \ 0]$ $= \begin{bmatrix} 4 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ Here x_2 is free variable so $x_1 = 0$ x_2 free

$$So x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} 0\\1 \end{bmatrix}$ is basis for the eigen space.

Given,
$$A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$
, $\lambda = 4$
Now, $\begin{bmatrix} A - \lambda I & 0 \end{bmatrix}$

$$\begin{bmatrix} 6 & -9 & 0 \\ 4 & -6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 4 & -6 & 0 \\ 4 & -6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 & -9 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$6x_1 - 9x_2 = 0$$

$$x_2 \text{ free}$$

$$\begin{bmatrix} \frac{9}{6}x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} \frac{3}{2} \\ 1 \end{bmatrix} = \frac{x_2}{2} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - \frac{4}{5} R_1$$

$$\left[\begin{bmatrix} 3\\2 \end{bmatrix}\right] \text{ is basis for the eigen space.}$$

c. Given,
$$A = \begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}, \lambda = 10$$

Now, $[A - \lambda I & 0]$

$$= \begin{bmatrix} -6 & -2 & 0 \\ -3 & -1 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 3 & 1 & 0 \\ -3 & -1 & 0 \end{bmatrix}$$

$$R_1 \rightarrow$$

$$x = \begin{bmatrix} -1/3 \times_2 \\ x_2 \end{bmatrix} = \frac{1}{3} \times_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\} \text{ is basis for eigen space.}$$

d. Given,
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}, \lambda = 2$$

Now, $[A - \lambda I \ 0]$

Given,
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}, \lambda = 2$$

Now, $[A - \lambda I \ 0]$

$$= \begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_2$$
 and x_3 are free

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \mathbf{x}_2 - 3\mathbf{x}_3 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \frac{1}{2} \mathbf{x}_2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \mathbf{x}_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 1 \\ \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix} \end{bmatrix}$$

$$\begin{cases} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \end{bmatrix} \text{ is basis for eigen space.} \\ 0 \end{bmatrix}, \begin{cases} \begin{bmatrix} -3 \\ 0 \end{bmatrix} \text{ is basis for eigen space.} \\ 0 \end{bmatrix}, \lambda = 1, \lambda = 2 \end{cases}$$

$$\text{Now, for } \lambda = 1.$$

$$\begin{bmatrix} A - \lambda I & 0 \\ 1 & 0 & -2 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$

$$\left\{\begin{array}{c} 1\\1 \end{array}\right\} \text{ is basis for eigen space for } \lambda=1.$$

For
$$\lambda = 2$$
,

$$\begin{bmatrix} A - \lambda I & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 & -2 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$R_1 \rightarrow -\frac{1}{2}R_1$$

$$R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$$

x₂ and x₃ is free variables

$$\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is basis for eigen space corresponding to $\lambda = 2$.

Given,
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

Here, $\lambda = 0, 2, \sim 1$ are eigen value.

Given,
$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

Given,
$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

Here, $\lambda = 4$, 0, 3 are eigen value.

We have,
$$Ax = \lambda x$$

So, $A^2x = A(Ax) = A(\lambda x) = \lambda(Ax) = \lambda(\lambda x) = \lambda^2 x$

Similarly, $A^3x = \lambda^3x$

We have,
$$A^3x = \lambda^3x$$

$$= (-4)^3 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -64 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = 64 \begin{bmatrix} -6 \\ 5 \end{bmatrix} = \begin{bmatrix} -384 \\ 320 \end{bmatrix}$$

A Complete solution of Mathematics-II for B Sc CSIT

Exercise 7.2

$$\text{h.} \quad \text{Given, A} = \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

the characteristic polynomial is

$$\begin{bmatrix} 2-\lambda & 7 \\ 7 & 2-\lambda \end{bmatrix}$$

$$= 4 + \lambda^2 - 4\lambda - 49$$

For eigen value, $|A - \lambda I| = 0$

 $\lambda^2 - 4\lambda - 45$

$$\lambda^2 - 4\lambda - 45 = 0$$

$$\lambda^2 - 9\lambda + 5\lambda - 45 = 0$$

$$\lambda (\lambda - 9) + 5 (\lambda - 9) = 0$$

 $(\lambda - 9) (\lambda + 5) = 0$

(b), (c), (d) do similar as (a).

 $\lambda = -5, 9$

Given,
$$A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$

The characteristic polynomial is

$$|A - \lambda I|$$

$$\begin{vmatrix} 2 - \lambda & 2 & -1 \\ 1 & 3 - \lambda & -1 \\ -1 & -2 & 2 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 2 - \lambda & 2 & -1 \\ -1 + \lambda & 3 - \lambda & 0 \\ -1 & -2 & 2 - \lambda \end{vmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ \lambda & 3 - \lambda & 0 \\ -2 & 2 - \lambda \end{bmatrix}$$

$$(1-\lambda) \begin{vmatrix} 4-\lambda & 2 & -1 \\ 0 & 1 & 0 \\ -3 & -2 & 2-\lambda \end{vmatrix}$$

$$\begin{array}{c|c} (1-\lambda)\times 1\times & \begin{array}{c|c} 4-\pi & -1 \\ -3 & 2-\lambda \end{array}$$

$$= (1 - \lambda) (8 + \lambda^2 - 6\lambda - 3)$$

$$= (1 - \lambda) (\lambda^2 - 6\lambda + 5)$$

$$= (1 - \lambda) (\lambda - 1) (\lambda - 5)$$

$$= (\lambda - 1)^2 (\lambda - 5)$$

$$= (1-\lambda)(\lambda-1)(\lambda-5)$$

For eigen value,
$$|A - \lambda I| = 0$$

 $(\lambda - 1)^2 (\lambda - 5) = 0$

$$(\lambda - 1)^2 (\lambda - 5) = 0$$

A Complete solution of Mathematics-II for B Sc CSIT

Given,
$$A = \begin{bmatrix} -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$

For characteristic polynomial

$$\begin{vmatrix} A - \lambda I \\ -1 - \lambda & 4 & -2 \\ -3 & 4 - \lambda & 0 \\ -3 & 1 & 3 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} -1 - \lambda & 4 & -2 \\ -3 & 1 & 3 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} -1 - \lambda & 4 & -2 \\ 0 & 3 - \lambda & -3 + \lambda \\ -3 & 1 & 3 - \lambda \end{vmatrix}$$

$$= (3 - \lambda) \begin{vmatrix} -1 - \lambda & 4 & -2 \\ 0 & 1 & -1 \\ -3 & 1 & 3 - \lambda \end{vmatrix}$$

$$= (3 - \lambda) \begin{vmatrix} -1 - \lambda & 4 & 2 \\ 0 & 1 & 0 \\ -3 & 1 & 4 - \lambda \end{vmatrix}$$

$$R_2 \rightarrow R_2 - R_3$$

$$= (3-\lambda) \times 1 \times \begin{bmatrix} -1-\lambda & 2\\ -3 & 4-\lambda \end{bmatrix}$$

$$C_3 \rightarrow C_3 + C_3$$

=
$$(3 - \lambda) (\lambda^2 - 3\lambda - 4 + 6)$$

= $(3 - \lambda) (\lambda^2 - 3\lambda + 2)$
= $(3 - \lambda) (\lambda - 1) (\lambda - 2)$
For eigen value: $(3 - \lambda) (\lambda - 1)$

For eigen value: $(3 - \lambda) (\lambda - 1) (\lambda - 2) = 0$

$$\lambda = 1, 2, 3$$

 $\therefore \qquad \lambda = 1, 2, 3$ Given, $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$

So, characteristic polynomial is

$$|A - \lambda I|$$

$$= \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 0 \\ -3 & 5 & 2 - \lambda \end{vmatrix}$$

$$= (2 - \lambda) \begin{vmatrix} -1 - \lambda & 0 \\ -3 & 4 - \lambda \end{vmatrix}$$

$$= (2 - \lambda) (-1 - \lambda) (4 - \lambda)$$
For eigen value, $|A - \lambda I| = 0$

Similarly, for (i) and (j) they are triangular matrix. $\lambda = -1, 2, 4$

See in book similar as examples.

Statement: Every square matrix A satisfies its characteristic equation i.e., $|A - \lambda I| = 0$

$$A = \begin{bmatrix} 0 & 2 & -1 \\ -6 & -1 & 2 \\ 7 & 2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 6 & 2 & -1 \\ -6 & -1 & 2 \\ 7 & 2 & -2 \end{bmatrix}$$
For characteristic polynomial is $|A - \lambda I|$

$$\begin{vmatrix} 6 - \lambda & 2 & -1 \\ -6 & -1 - \lambda & 2 \\ 7 & 2 & -2 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 6 - \lambda & 2 & -1 \\ -6 & -1 - \lambda & 2 \\ 1 + \lambda & 0 & -1 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 5 - \lambda & 2 & -1 \\ 1 + \lambda & 0 & -1 - \lambda \\ 0 & 0 & -1 - \lambda \end{vmatrix}$$

$$= -1 - \lambda \begin{vmatrix} 5 - \lambda & 2 \\ -4 & -1 - \lambda & 2 \\ -4 & -1 - \lambda \end{vmatrix}$$

$$= (-1 - \lambda) (\lambda^2 - 4\lambda + 3)$$

Now, replacing λ by A and show, $= -\lambda^3 + 3\lambda^2 + \lambda - 3$

$$-A^3 + 3A^2 + A - 3I = 0$$

Given,
$$P = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$
We have, $A^5 = P D^5 P^{-1}$

$$= \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}^{5} \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 32 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} ^{\wedge} \begin{bmatrix} 1 & ... \\ 32 & 1 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -96 + 4 & 384 - 12 \\ -32 + 1 & 128 - 3 \end{bmatrix}$$

$$\begin{bmatrix} -92 & 372 \\ -31 & 125 \end{bmatrix}$$

Given,
$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda I| = 0$

$$\begin{vmatrix} 7 - \lambda & 2 \\ -4 & 1 - \lambda \end{vmatrix}$$

$$\lambda^2 - 8\lambda + 7 + 8 = 0$$

$$\lambda^2 - 8\lambda + 15 = 0$$

$$\lambda^2 - 8\lambda + 15 = 0$$
$$\lambda^2 - 5\lambda - 3\lambda + 15 = 0$$

Scanned with CamScanner

$$\lambda(\lambda - 5) - 3 (\lambda - 5) = 0$$

 $(\lambda - 5) (\lambda - 3) = 0$
 $\lambda = 3, 5$

For $\lambda = 3$, corresponding to eigen vector $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

For $\lambda = 5$, corresponding to eigen vector $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

So,
$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$$
, $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$
So, $A^4 = PD^4P^{-1}$

$$= \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5^4 & 0 \\ 0 & 3^4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 5^4 & 3^4 \\ -5^4 & -2 \times 3^4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 2 \times 5^4 - 3^4 \\ -2 \times 5^4 + 2 \times 3^4 & -5^4 + 2 \times 3^4 \end{bmatrix}$$

See in answer

Given, $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$

For eigen value, $|A - \lambda I| = 0$

 $\begin{vmatrix} 1-\lambda & 0 \\ 6 & -1-\lambda \end{vmatrix} = 0$

 $(1 - \lambda) (-1 - \lambda) = 0$ $\lambda = 1, -1$

For $\lambda = 1$, the eigen vector is

 $[A - \lambda I \quad 0]$

Here x2 is free variables sc $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \mathbf{x}_2 \\ \mathbf{x}_2 \end{bmatrix} = \frac{1}{3} \mathbf{x}_2 \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

A Complete solution of Mathematics-II for B Sc CSIT

or
$$\lambda = -1$$
, $\begin{bmatrix} 2 & 0 & 0 \\ 6 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\therefore \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{x}_2 \end{bmatrix} = \mathbf{x}_2 \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$
$$\therefore \mathbf{v}_2 = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

So,
$$P = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

So,
$$AP = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$$

$$PD = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$$
Since, $AP = PD$. So A is diagonalizable.

Given,
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$$

For eigen values, $|A - \lambda I| = 0$

$$\begin{vmatrix} 2 - \lambda & 3 \\ 4 & 1 - \lambda \end{vmatrix} = 0$$

$$\lambda^2 - 3\lambda + 2 - 12 = 0$$

$$\lambda^2 - 3\lambda - 10 = 0$$

$$(2-3) - 10 = 0$$
$$(2-5) + 2) - 10 = 0$$

$$\lambda^2 - 5\lambda + 2\lambda - 10 = 0$$

 $\lambda (\lambda - 5) + 2(\lambda - 5) = 0$

$$\lambda^{2} - 5\lambda + 2\lambda - 10 = 0$$
$$\lambda (\lambda - 5) + 2(\lambda - 5) = 0$$
$$(\lambda - 5) (\lambda + 2) = 0$$

diagonalizable. Since, A is 2×2 matrix and there are two distinct eigen values. So A is

 $\lambda = -2, 5$

c. Given,
$$A = \begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$$

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 3 - \lambda & -1 \\ 1 & 5 - \lambda \end{vmatrix} = 0$$

$$\lambda^2 - 8\lambda + 15 + 1 = 0$$

$$\lambda^2 - 8\lambda + 16 = 0$$

$$(\lambda - 4)^2 = 0$$

$$\lambda = 4$$

For eigen vector, [A - 4I 0]

 $\begin{bmatrix} -1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

60

Since, A is 2×2 matrix so we need two linearly independent eigen vectors but here is only one eigen vector.

A is not diagonalizable.

Given,
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

For eigen value, $|A - \lambda I| = 0$

$$\begin{vmatrix} -\lambda & 0 & -2 \\ 1 & 2 - \lambda & 1 \\ 1 & 0 & 3 - \lambda \end{vmatrix} = 0$$

$$(2-\lambda) \begin{vmatrix} -\lambda & -2 \\ 1 & 3-\lambda \end{vmatrix} = 0$$

$$(2-\lambda) (\lambda^2 - 3\lambda + 2) = 0$$

$$(2-\lambda) (\lambda - 2) (\lambda - 1) = 0$$

$$\lambda = 1, 2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

For $\lambda = 2$, the eigen vector

For $\lambda = 1$, the eigen vector,

$$\begin{bmatrix} -1 & 0 & -2 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

[A - I 0]

0000

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
s free variable so
$$\begin{bmatrix} -2 & 7 & 7 \\ 7 & 7 & 7 \end{bmatrix}$$

$$\begin{array}{ccccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}$$
the variable so

$$\begin{array}{c|cccc}
 & 1 & 0 & 2 & 0 \\
 & 0 & 1 & -1 & 0 \\
 & 0 & 0 & 0 & 0
\end{array}$$
evariable so

For $\lambda = 2$

x3 is free variable,

A Complete solution of Mathematics-II for B Sc CSIT

$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
and $PD = AP$. So A is diagonalizable.
$$Given, A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$

For eigen value, Since, the matrix is triangular matrix. So $\lambda = 1, 2, 2$

For eigen vector,

 x_3 free, $8x_2 = -x_3$ $x_1 + x_2 = 0$ $x_2 = -\frac{1}{8}x_3 \ x_1 = -x_2 \ x_1 = \frac{1}{8}x_3$

 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{8}x_3 \\ \frac{-1}{8}x_3 \end{bmatrix} = \frac{1}{8}x_3 \begin{bmatrix} 1 \\ -1 \\ 8 \end{bmatrix}$

Scanned with CamScanner

$$\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

vector. So A is not diagonalizable. Since, A is 3×3 matrix and there are only two linearly independent eigen

f, g, h, i, j do similar as above.

Given,
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
, $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Here,
$$Av_1 = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3v_1$$
.

 $\lambda = 3$ is eigen value corresponding to v_1 .

Similarly,
$$Av_2 = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 v_2$$

 λ = -1 is eigen value corresponding to v_2

$$P = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

$$AP = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 6 & -1 \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \end{bmatrix}$$

A is diagonalizable

Exercise 7.4

Given, $T(b_1) = 3c_1 - 2c_2 + 5c_3$

$$[T(b_1)]_c = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix}$$

Similarly,
$$[T(b_2)]_c = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

$$[T]_{BC} = [[T(b_1)]_c [T(b_2]_c]$$

$$= \begin{bmatrix} 3 & 4 \\ -2 & 7 \\ 5 & -1 \end{bmatrix}$$

Similar as 1.

Given, T(x, y) = (y, -5x + 13y, -7x + 16y)A Complete solution of Mathematics-II for B Sc CSIT

Let
$$T(b_1) = a_1 c_1 + a_2 c_2 + a_3 c_3$$
 where, $[T(b_1)]_c = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

Let
$$T(b_1) = a_1 c_1 + a_2 c_2 + a_3 c_3$$
 where, $[T(b_1)]_c = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

$$T(31) = a_1 (1, 0, -1) + a_2 (-1, 2, 2) + a_3 (0, 1, 2)$$

$$(1, -5 \times 3 + 13 \times 1, -7 \times 3 + 16 \times 1) = (a_1 - a_2, 2a_2 + a_3, -a_1 + 2a_2 + 2a_3)$$

$$a_1 - a_2 = 1$$
 (1)
 $2a_2 + a_3 = -2$ (2)
 $-a_1 + 2a_2 + 2a_3 = -5$

Solving (1) and (3), we get
$$a_2 + 2a_3 = -4$$
 (4)

$$a_2 + 2a_3 = -4$$
 (4)

$$2a_2 + a_3 = -2$$

 $2a_2 + 4a_3 = -8$

$$-3a_3 = 6$$
 $a_3 = -2$

$$2a_2 + a_3 = -2$$

 $2a_2 - 2 = -2$

$$a_2 = 0$$

$$a_2 = 0$$

$$a_1 = 1$$

Hence,
$$[T(b_1)]_c = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

Similarly we get
$$[T(b_2)]_c = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

$$T_{BC} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

4. Given,
$$T(x, y) = {x - y \choose x + y}$$

Let $T(b_1) = c_1b_1 + c_2b_2$
 $T(1, 1) = c_1(1, 1) + c_2(-1, 0)$
 $(0, 2) = (c_1 - c_2, c_1)$
 \vdots $c_1 = 2, c_1 - c_2 = 0$
 $c_2 = 2.$

So,
$$[T(b_1)]_B = \begin{bmatrix} 2\\2 \end{bmatrix}$$

Similarly, $[T(b_2)]_B = \begin{bmatrix} -1\\0 \end{bmatrix}$

 $T(t^2) = T(0+0.t+1.t^2) = 0+2.1.t = 2t$ $T(t) = T(0+1 \cdot t + 0 \cdot t^2) = 1 + 0 = 1$ $= \left[\left[T(1) \right]_{\mathbb{B}} \left[T(t) \right]_{\mathbb{B}} \left[T(t^2) \right]_{\mathbb{B}} \right]$

 $=2-t+3t^2-t^3+t^4$ For next,

 $=2-t+t^2+2t^2-t^3+t^4$

Given, $T(P(t)) = P(t) + t^2 P(t)$

 S_0 , $T(2-t+t^2) = 2-t+t^2+t^2(2-t+t^2)$

Let B = {1, t, t2}, C = {1, t, t2, t3, t4}

 $T(1) = 1 + t^2 \cdot 1 = 1 + t^2 = 1 \cdot 1 + 0 \cdot t + 1 \cdot t^2 + 0 \cdot t^3 + 0 \cdot t^4$

$$[T(t)]_{c} = \begin{cases} 1\\0\\0\\1\\1\\1\\0\\0\\1 \end{cases}$$

$$[T(t)]_{c} = \begin{cases} 0\\1\\1\\0\\0\\1\\1\\0\\0 \end{cases}$$

$$T(t^{2}) = t^{2} + t^{2} \cdot t^{2}$$

 $=0.1+0.t+1.t^2=0.t^3+1.t^4$ = 12+4

$$[T(t^2)]_c = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$[T]_{BC} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Given, $T(a_0 + a_1 t + a_2 t^2) = 3a_0 + (5a_0 - 2a_1) t + (4a_1 + a_2) t^2$ $T(1) = 3.1 + (5.1 - 2.0) t + (4.0 + 0) t^2$ $=3+5t+0t^2$ = 3 + 5t

$$\begin{split} & [T(1)]_{6} = \begin{bmatrix} 3 \\ 5 \\ 0 \end{bmatrix} \\ & T(t) &= 3.0 + (5.0 - 2.1) t + (4.1 + 0) t^{2} \\ &= -2t + 4t^{2} \\ &= 0 - 2t + 4t^{2} \end{split}$$

Chapter 6

 $T(t^2) = 3.0 + (5.0 - 2.0) t + (4.0 + 1) t^2$

 $[T(t^2)]_{\mathbb{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $= 0 + 0 \cdot t + 1 \cdot t^2$

 $[T]_{B} = [\{T(1)]_{B} [T(t)]_{B} [T(t^{2})]_{B}]$ $= \begin{bmatrix} 3 & 0 & 0 \\ 5 & -2 & 0 \\ 0 & 4 & 1 \end{bmatrix}$

Given, $A = \begin{bmatrix} 5 & -3 \\ -7 & 1 \end{bmatrix}$

We know, $D = [T]_B = P^{-1} AP$, where $B = [b_1 \ b_2]$ is basis for R^2 . So $P = [b_1 \ b_2]$

The characteristic equation $|A - \lambda I| = 0$

$$\begin{vmatrix} 5-\lambda & -3 \\ -7 & 1-\lambda \end{vmatrix} = 0$$

 $\lambda^2 - 8\lambda + 2\lambda - 16 = 0$ $\lambda^2 - 6\lambda - 16 = 0$

 $\lambda (\lambda - 8) + 2 (\lambda - 8) = 0$ $(\lambda - 8) (\lambda + 2) = 0$

 $\lambda = -2, 8$

For $\lambda = -2$, $[A + 2I \ 0]$

 \therefore $7x_1 - 3x_2 = 0 \Rightarrow x_1 = \frac{3x_2}{7}$, x_2 free

Similarly, for $\lambda = 8$ [A - 8I 0]

A Complete solution of Mathematics-II for B Sc CSIT

Scanned with CamScanner

$$\begin{bmatrix}
-3 & -3 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
x_1 = -x_2 & x_2 \text{ free} \\
x_2 \end{bmatrix} = \begin{bmatrix}
-x_2 \\
x_2
\end{bmatrix} = x_2 \begin{bmatrix}
-1 \\
1
\end{bmatrix}$$
is basis for

$$B = \left\{ \begin{bmatrix} 3 \\ 7 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \text{ is basis for } \mathbb{R}^2.$$

Given, $A = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix}$, $b_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

We have,
$$P = [b_1 \ b_2] = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

We have,

We have, B-matrix = D = P-1 AP

$$= \frac{1}{5} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 11 \\ -1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -5 & 1 & 2 & -1 & -3 \\ 1 & 5 & 25 & 5 \end{bmatrix}$$

Exercise 7.5

Given,
$$A = \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$$

 $|A - \lambda I| = 0$

$$\begin{vmatrix} 1 - \lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda^2 - 4\lambda + 3 + 2 = 0 \\ \lambda^2 - 4\lambda + 5 = 0 \end{vmatrix}$$

$$\therefore \lambda = 2 \pm i$$

For
$$\lambda = 2 - i$$

$$\begin{pmatrix} -1 + i & -2 \\ 1 & 1 + i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

66 A Complete solution of Mathematics-II for B Sc CSIT
$$(-1+i) x_1 - 2x_2 = 0$$
 (i)

$$x_1 + (1 + i) x_2 = 0 \dots (ii)$$

Since both equations are identical. So from equation (ii) $x_1 = -(1+i)x_2$

Let
$$x_2 = -1$$
, then $x_1 = 1 + i$

$$x = \begin{bmatrix} 1+i \\ -1 \end{bmatrix}$$
 similarly for $\lambda = 2+i$, we get $x = \begin{bmatrix} 1-i \\ -1 \end{bmatrix}$

Hence,
$$\lambda = 2 \pm i$$
, $x = \begin{bmatrix} 1 \pm i \\ -1 \end{bmatrix}$

Similarly solve for (ii) and iii)

(ii)
$$\lambda = 2 \pm 3i$$
, $\begin{bmatrix} 1 \pm 3i \\ 2 \end{bmatrix}$

(iii)
$$\lambda = 2 \pm 2i$$
, $\begin{bmatrix} 1 \\ 2 \pm 2i \end{bmatrix}$

i. Given,
$$A = \begin{pmatrix} 5 & -2 \\ 1 & 3 \end{pmatrix}$$

For eigen value,

$$\begin{vmatrix} 5 - \lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix} = 0$$

$$\lambda^2 - 8\lambda + 15 + 2 = 0$$

$$\lambda^2 - 8\lambda + 17 = 0$$

$$\lambda = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 1 \cdot 17}}{2 \times 1}$$

$$\lambda = \frac{8 \pm \sqrt{-4}}{2}$$

$$\lambda = 4 \pm i$$

For basis,
$$\lambda = 4 + i$$

$$(A - \lambda I) \times = 0$$

$$\begin{bmatrix} 1 - i & -2 \\ 1 & -1 - i \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$(1 - i) x_1 - 2x_2 = 0 \dots (i)$$

$$(1-i) x_1 - 2x_2 = 0 \dots (i)$$

$$x_1 - (1 + i) x_2 = 0 \dots (ii)$$

$$x_1 - (1 + i) x_2 = 0$$
 (ii)
both are identical equation so
 $x_1 = (1 + i) x_2$

Let $x_2 = 1$ then $x_1 = 1 + i$

$$\therefore \begin{bmatrix} 1+i \\ 1 \end{bmatrix} \text{ is basis corresponding to } \lambda = 4+i.$$

Similarly, we get
$$\begin{bmatrix} 1-i\\1 \end{bmatrix}$$
 fro $\lambda = 4-i$

Given,
$$A = \begin{pmatrix} 1.52 & -0.7 \\ 0.56 & 0.4 \end{pmatrix}$$

For eigen value,
 $|A - \lambda I| = 0$
 $\begin{bmatrix} 1.52 - \lambda & -0.7 \\ 0.56 & 0.4 - \lambda \end{bmatrix} = 0$
 $\begin{bmatrix} 1.92 - \lambda & -0.7 \\ 0.92 & 0.608 + 0.392 = 0 \end{bmatrix}$
 $\lambda^2 - 1.92 & \lambda + 1 = 0$
 $\lambda^2 - 1.92 & \lambda + 1 = 0$
 $\lambda = \frac{1.92 \pm \sqrt{(-1.92)^2 - 4.1.1}}{2.1}$

$$= \frac{1.92 \pm 0.56 i}{2}$$

$$\lambda = 0.96 \pm 0.28 i$$

For
$$\lambda = 0.96 + 0.28$$
 i, $(A - \lambda I) \times = 0$
 $\begin{pmatrix} 0.56 - 0.28 & i & -0.7 & i & /x_1 \end{pmatrix}$

Both are identical equation so
$$0.56 x_1 = (0.56 + 0.28i) x_2$$

Similarly
$$\begin{bmatrix} 2-i \\ 2 \end{bmatrix}$$
 is basis for $\lambda = 0.96 - 0.28i$

$$\lambda = -0.6 + 0.8i$$
, $\begin{bmatrix} 2+i \\ 5 \end{bmatrix}$, $\lambda = -0.6 - 0.8i$, $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value,
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

 $|5 - \lambda - 5|$

$$\begin{vmatrix} 3-\lambda & -5 \\ 1 & 1-\lambda \end{vmatrix} = 0$$

$$\lambda^2 - 6\lambda + 5 + 5$$

or
$$\lambda^2 - 6\lambda + 10 = 0$$

 $\lambda = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1}}{100}$

$$\lambda = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1}}{2}$$

$$\lambda = 3 \pm i$$
For

$$\frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 10}}{2}$$
= 3 \pm i

\tau \tau = 3 - i

e have,

\tau = 3, b = 1

$$\lambda = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2}$$

$$\frac{(x^2-6)x+10=0}{2}$$

 $\frac{6\pm\sqrt{(-6)^2-4\cdot1\cdot10}}{2}$

$$\lambda^{2} - 6\lambda + 10 = 0$$

$$\lambda = \frac{6 \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 10}}{2}$$

$$\lambda = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2}$$

$$\lambda = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2}$$

$$\begin{vmatrix} 1 & 1-\lambda & | & =0 \\ 1 & 1-\lambda & | & =0 \end{vmatrix}$$

$$\begin{vmatrix} \lambda^2 - 6\lambda + 5 + 5 \end{vmatrix}$$

$$\begin{vmatrix} -6\lambda + 10 = 0 \end{vmatrix}$$

$$\begin{vmatrix} 5-\lambda & -5 \\ 1 & 1-\lambda \end{vmatrix} = 0$$

$$\lambda^2 - 6\lambda + 5 + 5$$

$$\begin{vmatrix} 5-\lambda & -5 \\ 1 & 1-\lambda \end{vmatrix} = 0$$
$$\lambda^2 - 6\lambda + 5 + 5 = 0$$

$$\begin{vmatrix} 5-\lambda & -5 \\ 1 & 1-\lambda \end{vmatrix} = 0$$

$$\lambda^2 - 6\lambda + 5 + \frac{1}{2}$$

or eigen value,
$$|A - \lambda I| = 0$$

 $\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = 0$

For eigen value,
$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

or eigen value,
$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

or eigen value,
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

$$\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

For eigen value,
$$|A - \lambda I| =$$

$$\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

eigen value,
$$|A - \lambda I| = 0$$

 $\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = 0$
 $\begin{vmatrix} \lambda^2 - 6\lambda + 5 + 5 = 0 \\ \lambda^2 - 6\lambda + 5 \end{vmatrix}$

For eigen value,
$$|A - \lambda I| = 0$$

$$\begin{vmatrix}
5 - \lambda & -5 \\
1 & 1 - \lambda
\end{vmatrix} = 0$$
or
$$\lambda^2 - 6\lambda + 10 = 0$$

$$\lambda = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 10}}{2}$$

$$\lambda = 3 + i$$

For eigen value,
$$|A - \lambda|$$

$$\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

Given,
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
For eigen value, $|A - \lambda I|$

Given,
$$A = \begin{bmatrix} 3 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda|$

For eigen value,
$$|A - \lambda I| =$$

For eigen value,
$$|A - \lambda I| =$$

For eigen value,
$$|A - \lambda I| =$$

For eigen value,
$$|A - \lambda I|$$

Given,
$$A = \begin{bmatrix} 3 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda I|$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda I| = 0$

Given,
$$A = \begin{bmatrix} 3 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda I| = 1$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda I|$

Given,
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
For eigen value, $|A - \lambda I|$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda|$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$
For eigen value, $|A - Y|$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A -$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$
For eigen value, $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda|$

Given,
$$A = \begin{bmatrix} 3 & -5 \\ 1 & 1 \end{bmatrix}$$

For eigen value, $|A - \lambda I|$

Given,
$$A = \begin{bmatrix} 3 & -5 \\ 1 & 1 \end{bmatrix}$$
For eigen value, $A = \begin{bmatrix} 3 & -5 \\ 1 & 1 \end{bmatrix}$

For eigen value,
$$|A - A|$$

For eigen value,
$$\begin{vmatrix} 5 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix}$$

For eigen value,
$$|A = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$\begin{vmatrix} 5 - \lambda & -5 \end{vmatrix}$$

$$\lambda = \frac{6 \pm \sqrt{(-6)^2 - 4}}{10}$$

$$\begin{bmatrix} 1.52 - \lambda & -0.7 \\ 0.56 & 0.4 - \lambda \end{bmatrix} = 0$$

$$\begin{bmatrix} 1.52 - \lambda & -0.7 \\ 0.56 & 0.4 - \lambda \end{bmatrix} = 0$$

$$\lambda^2 - 1.92 \lambda + 0.608 + 0.392$$

$$\lambda^2 - 1.92 \lambda + 1 = 0$$

$$\vdots$$

$$\lambda = \frac{1.92 \pm 0.56 i}{2}$$

$$\lambda = \frac{1.92 \pm 0.56 i}{2}$$

$\lambda = 0.96 \pm 0.28 i$

$$\begin{pmatrix} 0.56 - 0.28 i & -0.7 \\ 0.56 & -0.56 - 0.28 i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$
$$(0.56 - 0.28i) x_1 - 0.7 x_2 = 0$$

$$0.56x_1 - (0.56 + 0.28i) x_2 = 0$$

Soth are identical equation so
 $0.56x_1 = (0.56 + 0.28i) x_2$

h are identical equation so
$$x_1 = (0.56 + 0.28i) x_2$$

$$0.56 x_1 = (0.56 + 0.28i) x_2$$

Let $x_2 = 2$ then $x_1 = 2 + i$

$$\begin{bmatrix} 2+i \\ 2 \end{bmatrix} \text{ is basis for } \lambda = 0.96 + 0.28i$$

$$\begin{bmatrix} 2+i \\ 2 \end{bmatrix}$$
 is basis for $\lambda = 0.96 + 0.28i$

$$\begin{bmatrix} 2+1 \\ 2 \end{bmatrix}$$
 is basis for $\lambda = 0.96 + 0.28i$

Similar as (ii)
$$\begin{bmatrix} 2 & \text{Is Dasis for } \lambda = 0.96 - 0.28i \\ \text{Similar as } \end{bmatrix}$$

$$\lambda = -0.6 + 0.8i$$
, $\begin{bmatrix} 2+i \\ 5 \end{bmatrix}$, $\lambda = -$

$$\lambda = -0.6 + 0.8i, \begin{bmatrix} 2+i \\ 5 \end{bmatrix}, \lambda = -0.6 - 0.8i, \begin{bmatrix} 2+i \\ 5 \end{bmatrix}$$

$$\lambda = -0.6 + 0.8i, \begin{bmatrix} 2+i \\ 5 \end{bmatrix}, \quad \lambda = -0.6 - 0.8i, \begin{bmatrix} 2-i \\ 5 \end{bmatrix}$$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$

Given,
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$
For eigen value, $|A - 3|$

or
$$\lambda$$
e have

$$\lambda = 3 \pm i$$
For

$$\lambda = 3 \pm i$$
For

$$\lambda = 3 \pm i$$
For

C= [3 -1]

- 67

- 68
- For eigen vector corresponding to $\lambda = 3 i$ A Complete solution of Mathematics-II for B Sc CSIT

$$\begin{pmatrix} 2+i & -5 \\ 1 & -2+i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$
$$(2+i) x_1 - 5x_2 = 0$$

$$\begin{pmatrix} 1 & -2+1 \end{pmatrix} \begin{pmatrix} x_2 \end{pmatrix}$$

$$(2+i) x_1 - 5x_2 = 0$$

$$x_1 + (-2+i) x_2 = 0$$

both are identical equation so
$$x_1 = -(-2 + i) x_2$$
Let $x_2 = 1$ then $x_1 = 2 - i$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 - i \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 2 - \mathbf{i} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{i}$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{Re} \mathbf{x} & \mathbf{Im} \mathbf{x} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$

$$P = [Re \times Im \times] = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
For check

For check
$$AP = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -5 \\ 3 & -1 \end{bmatrix}$$

$$PC = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -5 \\ 3 & -1 \end{bmatrix}$$

Given,
$$A = \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix}$$

For eigen value, $|A - \lambda I| = 0$
 $\begin{vmatrix} 5 - \lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix} = 0$
 $\lambda^2 - 8\lambda + 15 + 2 = 0$
 $\lambda^2 - 8\lambda + 17 = 0$
 $\lambda = 4 \pm i$
For $\lambda = 4 - i$, $C = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$
For $\lambda = 4 - i$ we get basis

$$\begin{vmatrix} 5-\lambda & -2 \\ 1 & 3-\lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 5-\lambda & -2\\ 1 & 3-\lambda \end{vmatrix} = 0$$
$$-8\lambda + 15 + 2 = 0$$

$$\lambda = 4 - 1 \quad C = \begin{bmatrix} 4 & -1 \end{bmatrix}$$

For
$$\lambda = 4 - i$$
, $C = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} 1 - \mathbf{i} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{1} \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{i}$$

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$
o AP = $\begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ 4 & -1 \end{bmatrix}$

$$PC = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ 4 & -1 \end{bmatrix}$$
ii. Similar as above we get

$$P = \begin{bmatrix} 2 & -1 \\ 5 & 0 \end{bmatrix}$$
, $C = \begin{bmatrix} -0.6 & -0.8 \\ 0.8 & -0.6 \end{bmatrix}$

iv. Similarly as above we get $P = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 0.96 & -0.28 \\ 0.28 & 0.96 \end{bmatrix}$ Exercise 7.6

 $A = \begin{bmatrix} 0.5 & 0.4 \\ -p & 1.1 \end{bmatrix}$, where p = 0.2For eigen values, $|A - \lambda I| = 0$ $\left| \begin{array}{cc} 0.5 - \lambda & 0.4 \\ -0.2 & 1.1 - \lambda \end{array} \right| = 0$

$$\Rightarrow \lambda^{2} - 1.6\lambda + 0.55 + 0.08 = 0$$

$$\Rightarrow \lambda^{2} - 1.6\lambda + 0.63 = 0$$

$$\lambda^{2} - 0.9\lambda - 0.7\lambda + 0.63 = 0$$

$$\Rightarrow (\lambda - 0.9)(\lambda - 0.7) = 0$$

$$\therefore \lambda = 0.9, 0.7$$
For $\lambda_{1} = 0.9$ [A - λ 1 0]

For
$$\lambda_1 = 0.9$$
 [A - λ I 0]
$$= \begin{bmatrix} -0.4 & 0.4 & 0 \\ -0.2 & 0.2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ corresponding } \lambda_1 = 0.9.$$
For $\lambda_2 = 0.7$, we have $[\Delta - 21]$ of

For
$$\lambda_2 = 0.7$$
, we have, $[A - \lambda I \quad 0]$

$$\sim \begin{bmatrix} -0.2 & 0.4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 2x_2 \\ x_2 \end{bmatrix} = \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is eigen vector corresponding to $\lambda_2 = 0.7$.

A Complete solution of Mathematics-II for B Sc CSIT $x_k = c_1 \lambda_1^{"} v_1 + c_2 \lambda_2^{"} v_2$

$$x_k = c_1 (0.9)^k {1 \choose 1} + c_2 (0.7)^k {2 \choose 1}$$

as $k \rightarrow 0$ then $(0.9)^k \rightarrow 0$ and $(0.7)^k \rightarrow 0$. So, $x_k \rightarrow 0$ so owl population decline.

The rat population is also decline?

Solution. The initial $x_0 = c_1 v_1 + c_2 v_2 + c_3 v_3$

$$\begin{bmatrix} 1 \\ 11 \\ 2 \\ -2 \end{bmatrix} = c_1 \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$$

 $\begin{bmatrix} 1 \\ 11 \\ -2 \end{bmatrix} = c_1 \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix}$ Comparing and solving we get $c_1 = 2$, $c_2 = 1$, $c_3 = 3$ and we have, $x_k = c_1 (\lambda_1)^k v_1 + c_2 (\lambda_2)^k v_2 + c_3 (\lambda_3)^k v_3$ $x_k = 2 \cdot (1)^k \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} + 1 \cdot \left(\frac{2}{3}\right)^k \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + 3 \cdot \left(\frac{1}{3}\right)^k \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$

The general solution is
$$x_k = 2\begin{bmatrix} -2\\2\\1 \end{bmatrix} + (\frac{2}{3})^k \begin{bmatrix} 2\\1\\2 \end{bmatrix} + 3 \cdot (\frac{1}{3})^k \begin{bmatrix} 1\\2\\-2 \end{bmatrix}$$

as $k \to \infty$, then we get $\left(\frac{2}{3}\right)^k \to 0$, $\left(\frac{1}{3}\right)^k \to 0$. So $x_k = 2\begin{bmatrix} -2\\2\\1\end{bmatrix} \begin{bmatrix} -4\\4\\2\end{bmatrix}$

Solution. Given, $A = \begin{bmatrix} 4 & -5 \\ -2 & 1 \end{bmatrix}$ For eigen value, $|A - \lambda I| = 0$ $= \begin{vmatrix} 4 - \lambda & -5 \\ -2 & 1 - \lambda \end{vmatrix} = 0$ $\lambda^2 - 5\lambda - 6 = 0 \quad \therefore \quad \lambda = 6, -1$

The eigen vector corresponding to $\lambda_1 = 6$ is $v_1 = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$

The eigen vector corresponding to $\lambda_2 = -1$ is $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Let $x_1(t) = v_1 e^{\lambda_1 t}$ and $x_2(t) = v_2 e^{\lambda_2 t}$ be eigen functions satisfy the differential equations x' = Ax, so their linear combination.

$$x(t) = c_1 v_1 e^{c_1 t} + c_2 v_2 e^{c_2 t}$$
$$x(t) = c_1 \begin{pmatrix} -5 \\ 2 \end{pmatrix} e^{6t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}$$

Since,
$$x_0 = \begin{bmatrix} 2.9 \\ 2.6 \end{bmatrix}$$
, i.e., $x(0) = x_0$. So,