Introduction to Statistical Methods in Political Science

Lecture 12: Small-Sample Inference for Means: Student-*t* Toolbox

Ignacio Urbina

Ph.D. Candidate

Why Do We Need New Tools?

Motivating example: Tiny Exit Poll

A survey team intercepts **12** early voters leaving a rural precinct. They record time-in-booth (minutes) to study wait-time equity. Longer time-in-booth may signal inefficiencies, understaffing, or barriers to quick voting (e.g., confusing ballots, slow machines).

- Population SD σ is *unknown*.
- Sample histogram shows minor right-skew and an outlier at 14 min.
- Question: Can we still make a reasonably justified inference about the true mean wait time?

Z procedures from last week assume:

Either $n \ge 30$ **or** σ is known.

Neither is true here \implies enter Student-t.

What actually changes when n is small?

- We swap σ for the noisier estimate s.
- That extra "plug-in" noise fattens the tails of our test statistic.
- We can't rely on the "plug-in principle" (Law of Large Numbers doesn't hold).
- Student-t distribution captures this inflation with degrees of freedom:

$$T = rac{ar{X} - \mu}{s / \sqrt{n}} \sim t_{df=n-1}$$

(visual: t_4 , t_{15} , and N(0,1))

Checklist before using a small-sample t method

Data-shape diagnostics come first

- With n < 30 a single high outlier can wreck validity.
- Always inspect a histogram and QQ-plot.
- Rule of thumb: mild skew is tolerable for n ≥ 15; heavy skew/outliers call for non-parametrics or resampling.

Intuition Behind a Q-Q Plot

What is a Q-Q plot?

- Compares your data's quantiles (y-axis) to theoretical quantiles (x-axis).
- If data follow the chosen distribution, points lie roughly on the 45° line.
- Deviations highlight skew, heavy tails, or outliers.
- Think of "lining up" your sample against the ideal.

One-Sample CI for a Mean

Sampling Distribution of Standardized \bar{x} (Small Sample)

Goal: Understand the behavior of \bar{x} as an estimator of μ when sample size is small (n < 30).

Common assumptions:

- Data are collected via SRS.
- The population distribution is approximately Normal (key for small n inference).
- Population SD (σ) is unknown.

Result:

$$\frac{\bar{x}-\mu}{s/\sqrt{n}} \sim t_{df=n-1}$$

- Use s to estimate $\sigma \rightarrow$ introduces extra variability.
- The t distribution accounts for this with heavier tails than Normal.

Confidence Interval for μ in Small Samples – The recipe

$$\bar{x} \pm t^*_{df=n-1, 1-\alpha/2} \times \frac{s}{\sqrt{n}}$$

- Degrees of freedom df = n 1.
- Critical value t^* comes from a table or software. It depends on both df and α .
- Interpretation follows the familiar "We are 95% confident
 ...".

Question – How does t^* compare with z^* ?

Suppose $\alpha = 0.05$.

- A. t_{19}^* is **smaller** than $z^* = 1.96$
- B. t_{19}^* is equal to z^*
- C. t_{19}^* is larger than z^*
- D. It cannot be determined because t^* depends on the sample's standard deviation, whereas z^* does not

(Answer: C; heavier tails)

Worked example: Local campaign donors

Goal: assess mean contributions, based on our sample of 18 local donors, by constructing a 90% confidence interval for the mean donation.

- n = 18, $\bar{x} = 42.8 , s = \$9.2.
- 90% confidence wanted $(\alpha = 0.10)$.

Solution:

$$t_{n-1, 1-\frac{\alpha}{2}}^* = t_{17, 0.95}^* = 1.740$$

$$SE = \frac{9.2}{\sqrt{18}} = 2.17$$

$$ME = 1.740 \times 2.17 = 3.77$$

Hypothesis Testing for

Means

Five-Step Road Map

- 1. State H_0 and H_a (parameter language, direction one or two tailed)
- 2. **Choose** α (tolerable Type I risk)
- 3. Compute test statistic $T = \frac{\text{estimate} \text{null}}{SE}$ $T \sim t_{df}$ if checklist passes.
- 4. **Decision rule** compare either |T| to a critical value t_{df}^* or use a p-value.
- Conclusion in context. (plain-English, mention evidence strength)

Worked Example — Average Time in Booth

Rural exit-poll revisit.

In response to concerns about unequal voting experiences, electoral officials assert that average time spent in the voting booth should not exceed **6 minutes**. They claim that rural polling stations are operating efficiently and equitably.

Activists, skeptical of this claim, conduct an informal audit by collecting a small **simple random sample** of n=12 early voters at a rural precinct. Each voter is asked how long they spent in the booth, from entry to casting their ballot.

- Sample mean: $\bar{x} = 7.8$ minutes
- Sample standard deviation: s = 3.1 minutes
- Officials' claim: $\mu = 6$ minutes (true average time)

Goal: Test whether the true mean booth time μ differs from 6 minutes. Use a two-sided t test at significance level $\alpha=0.05$.

Worked Example – 5-Step Procedure

Step 1: State hypotheses

```
H_0: \mu = 6 minutes (official claim) 
 H_a: \mu \neq 6 minutes (activists suspect difference)
```

Step 2: Set significance level

lpha= 0.05 (two-tailed test). Hence, Critical value: $t_{0.975,\,11}^*=$ 2.201.

Step 3: Compute test statistic

Sample mean: $\bar{x}=7.8$, sample SD: s=3.1, n=12 Standard error: $SE=\frac{3.1}{\sqrt{12}}=0.90$ Test statistic: $T=\frac{7.8-6}{0.00}=2.00$

Step 4: Make decision

Degrees of freedom: df = 12 - 1 = 11. Critical value: $t_{0.975, 11}^* = 2.201$ Since |T| = 2.00 < 2.201, we **fail to reject** H_0

Step 5: Conclusion in context

Evidence is insufficient (at the 5% level) to conclude that the true average booth time differs from the official 6-minute claim.

Inference for Means in

Paired-Samples

Why Use Paired Measurements?

Context: In many research settings, it's hard to detect a treatment effect when individual baseline differences are large.

Solution: Pairing allows each subject (or unit) to serve as their own control.

Common examples of pairing:

- Before vs. after a treatment or policy change (e.g., turnout before/after voter ID law)
- Twin studies in medical or behavioral research (genetically matched units)
- Matched groups or regions e.g., similar counties, classrooms, or districts

Why Use Paired Measurements?

Why it works:

- Controls for individual-level variability (age, baseline attitudes, income, etc.)
- Focuses analysis on the within-pair difference d_i
- Turns the problem into a simpler one-sample inference on $\mu_d=$ mean change
- Usually improves precision and statistical power

Sampling Distribution of the Mean Difference

Data: For each of n units we observe a before/after (or matched) pair and compute the difference $d_i = x_{after,i} - x_{before,i}$.

Assumptions:

- Differences d_i are independent draws.
- Distribution of d_i is approximately Normal (key when n < 30).

Estimator	Sampling Distribution	Sample SD
$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$	$rac{ar{d}-d}{s_d/\sqrt{n}} \sim t_{df=n-1}$	$s_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2}$

- s_d estimates the unknown σ_d , inflating tail thickness.
- Degrees of freedom df = n 1 adjust for that extra noise.

Sampling Distribution of the Mean Difference

Data: For each of n units we observe a before/after (or matched) pair and compute the difference $d_i = x_{after,i} - x_{before,i}$.

Assumptions:

- Differences d_i are independent draws.
- Distribution of d_i is approximately Normal (key when n < 30).

Estimator	Sampling Distribution	Sample SD
$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$	$rac{ar{d}-d}{s_d/\sqrt{n}}\sim t_{df=n-1}$	$s_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2}$

- s_d estimates the unknown σ_d , inflating tail thickness.
- Degrees of freedom df = n 1 adjust for that extra noise.

CI & Test for Mean Difference μ_d

Confidence Interval:
$$ar{d} \pm t^*_{df=n-1,\,1-lpha/2} rac{s_d}{\sqrt{n}}$$

Test statistic:
$$T = \frac{ar{d} - \mu_{d,0}}{s_d/\sqrt{n}} \sim t_{df=n-1}$$

• $\mu_{d,0}$ is the *null hypothesized* mean difference (often 0 for "no change").

Key assumptions

- Differences d_i are independent.
- Sample size for df is the count of pairs, not raw observations.
- The distribution of d_i is approximately Normal (check histogram/QQ-plot).
- For CI: same as test, plus choice of confidence level 1α .

Example: Turnout before vs after voter-ID law

Ten matched counties $\rightarrow n=10$. $\bar{d}=-1.8$ pp, $s_d=2.7$ pp; **Task:** Compute 95 % confidence interval.

$$t_{9,\,0.975}^*=2.262,$$
 $SE=rac{2.7}{\sqrt{10}}pprox 0.85,$ $ME=2.262 imes 0.85pprox 1.9$

CI:
$$-1.8 \pm 1.9 = (-3.7, 0.1)$$
 pp

Take-away: 95% CI = (-3.7 pp, +0.1 pp): a zero increase can't be excluded.

Example – Interpreting the 95% CI

- CI for mean change: (-3.7 pp, 0.1 pp) (pp.=percentage points).
- All values in this range are equally compatible with the data at the 5% significance level
- You cannot assign greater "plausibility" to negative vs. positive values
- Conclusion: Data support a decrease, no change, or a small increase — nothing beyond this interval is consistent at 95%

Practice Problem 2 - Paired Data, Small Sample

$$T = \frac{\bar{d} - \mu_{d,0}}{s_d / \sqrt{n}} \sim t_{n-1}$$

Context

- n = 9 individuals measured before and after a training program.
- Goal: Test if mean improvement μ_d differs from 0.
- Use a **paired** t test small sample, assume differences \approx normal.

Quick practice (think-pair-share):

$$ar{d} = 4.1, \; s_d = 5.4, \; lpha = 0.10 \; ext{(two-sided)}.$$
 Reject $H_0? \to T = 2.27 > t_8^* = 1.86 \to ext{Yes}.$

Addendum – Inference for Paired Differences (Large n)

Scenario: You observe two measurements on each unit (e.g., before vs after treatment) and compute the difference $d_i = x_{after,i} - x_{before,i}$.

When *n* is large, we invoke the Central Limit Theorem:

$$ar{d} \sim \mathcal{N}\left(\mu_d, \; rac{\sigma_d^2}{n}
ight)$$
 (approximately, by CLT).

Use Z procedures if:

- $n \ge 30$ (number of *pairs*),
- Independence: pairs are randomly sampled or randomly assigned,
- You estimate σ_d with sample SD (s_d) .

CI for
$$\mu_d: \bar{d} \pm z_{1-\alpha/2}^* \cdot \frac{s_d}{\sqrt{n}}$$
 Test stat: $Z = \frac{\bar{d} - \mu_{d,0}}{s_d/\sqrt{n}}$

Comparing Two Small

Samples

Comparing Means Using Small Samples

Core Question: Do two distinct groups differ *on average* in some key outcome?

- Do 12 rural precincts using new machines have shorter average wait times than 12 using the old ones?
- Do honors students in a pilot class (n = 14) outperform regular students (n = 15) on a civics quiz?
- Are turnout rates different across two small counties in a special election (n = 10 precincts each)?

Comparing Means Using Small Samples

What makes this different from one-sample inference?

- Two samples = two sources of variability
- Independence between groups is critical
- Assumptions about spread (equal vs unequal variance) influence the method

Our goal: Infer whether population means μ_1 and μ_2 are different, using small samples.

Why Variance Matters More with Small Samples

In large samples, we relied on the Law of Large Numbers:

$$SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 (plug-in with s_1, s_2)

But with small samples:

- Estimates s_1 and s_2 are noisy not reliable stand-ins for σ_1, σ_2
- This extra uncertainty fattens the tails of our test statistic
- We need to adjust using a t distribution with carefully chosen degrees of freedom

When & How to Pool Variances

Equal-variance assumption $\sigma_1^2 = \sigma_2^2 = \sigma^2$ in the populations. A quick screen: variance (or SD) ratio < 2 *and* similar histograms.

Pooled estimate of the common SD

$$s_{pooled}^2 = s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}, \qquad s_p = \sqrt{s_p^2}.$$
 $SE_{pooled} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \qquad df = n_1 + n_2 - 2.$

Use pooled t only when:

- Boxplots / histograms show comparable spread;
- Sample sizes are not wildly unequal;
- A formal test (e.g. Levene) does not reject equal variances.

Otherwise, default to Welch's unpooled procedure.

Welch t statistic (safer default)

$$\mathcal{T} \;=\; rac{(ar{X}_1 - ar{X}_2) - \Delta_0}{\sqrt{rac{S_1^2}{n_1} + rac{S_2^2}{n_2}}} \quad \sim \quad t_{df_{\mathsf{Welch}}}$$

Welch degrees of freedom (software reports this)

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{S_1^4}{n_1^2(n_1 - 1)} + \frac{S_2^4}{n_2^2(n_2 - 1)}}.$$

Use pooled-SD version only when diagnostics support equal population variances.

Pooled vs. Welch decision tree

Example — Civics Quiz Scores: Honors vs Regular

- Research context: Instructor wants to know if an enriched honors curriculum leads to higher civics-quiz performance than the standard curriculum
- **Data:** 20-question multiple-choice quiz (0–100 scale), administered simultaneously to two sections in Spring term
- Goal: Estimate and test the difference in true mean scores between honors vs. regular students
- Honors class: $n_1 = 12$, $\bar{x}_1 = 77.3$, $s_1 = 8.4$
- Regular class: $n_2 = 15$, $\bar{x}_2 = 70.1$, $s_2 = 7.1$
- Hypothesis test: H_0 : $\mu_1 \mu_2 = 0$ vs. two-sided H_a at $\alpha = 0.05$

Calculations

$$SE = \sqrt{\frac{8.4^2}{12} + \frac{7.1^2}{15}} = 3.29, \quad T = \frac{77.3 - 70.1}{3.29} = 2.19$$

$$df_{\text{Welch}} = \frac{(8.4^2/12 + 7.1^2/15)^2}{\frac{8.4^4}{12^2 \cdot 11} + \frac{7.1^4}{15^2 \cdot 14}} \approx 20.7$$

Two-tailed critical value: $t_{0.975, 20}^* = 2.086$. Since 2.19 > 2.086 we reject H_0 .

Conclusion: Honors students score significantly higher (≈ 7 pts).

Common traps with two-sample t

- Heteroskedasticity: ignoring unequal variances shrinks SE.
- **Imbalanced** *n*: smaller group sample size drives *df*; watch power.
- **Multiple testing**: comparing many sub-groups inflates Type I error (adjust α or use FDR).

Key Formulas and

Takeaways

Cheat-Sheet – Small Sample Inference

Scenario	Confidence Interval	Test Statistic (Δ_0 or μ_0 in numerator)
One mean μ	$ar{x}\pm t_{n-1}^*rac{s}{\sqrt{n}}$	$T = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} (df = n - 1)$
Paired mean μ_d	$ar{d}\pm t_{n-1}^*rac{s_d}{\sqrt{n}}$	$T = \frac{\bar{d} - \mu_{d,0}}{s_d/\sqrt{n}} (df = n - 1)$
Two means $\mu_1 - \mu_2$ (Welch)	$(ar{ ilde{x}}_1 - ar{ ilde{x}}_2) \pm t_{df}^* \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$	$T = rac{(ar{x}_1 - ar{x}_2) - \Delta_0}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}} (df = Welch)$
Two means $\mu_1 - \mu_2$ (Pooled)	$(\bar{x}_1 - \bar{x}_2) \pm t^*_{n_1+n_2-2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$T = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} (df = n_1 + n_2 - 2)$

- Always check independence and approximate Normal shape.
- Use Welch unless equal-variance assumption is defensible.
- Report df and p-value to two decimals.