12-04-2023 Shift-2

1

EE1030: Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 Shift-2(1-15)

- 1) If $f(x) = \frac{x^3}{x-1} + \frac{x^3}{x+1}$ and $g(x) = \sqrt{x}$, then $f \circ g : [0,2] \{1\} \to \mathbb{R}$ is:
 - a) one-one but not onto
 - b) one-one and onto
 - c) onto but not one-one
 - d) neither one-one nor onto
- 2) The sum of squares of the values of $\alpha \in \mathbb{R}$ such that the argument of $\frac{\alpha+i}{\alpha-i}$ is 60°, $i = \sqrt{-1}$, is:
 - a) 3

 - b) $\frac{10}{3}$ c) $\frac{11}{3}$
 - d) 4
- 3) For the system of equations

$$x + \lambda y - z = 1$$
$$x + 2y + \lambda z = 2$$

$$x + 2y + \lambda z = 2$$

$$x + 2y + z = 2,$$

which one of the following is **NOT** correct?

- a) it has unique solution if λ is not a root of the equation $t^2 3t + 2 = 0$
- b) it has unique solution if λ is not a root of the equation $t^2 t 2 = 0$
- c) it has infinitely many solutions if $\lambda = 1$
- d) it has no solution if $\lambda = 2$
- 4) If $a_n = (2n^2 n + 2)(n!)$ then $\sum_{n=1}^{20} a_n$ is equal to:
 - a) 37(20!) 1
 - b) 37(20!) + 1
 - c) 39(21!) + 1
 - d) 39(21!) 1

5)

$$\lim_{x \to 0^+} \frac{1}{\sqrt{x}} \left(\frac{1}{\sin(x)} - \frac{1}{x} \right)$$

- a) is equal to 0
- b) is equal to $\frac{1}{5}$
- c) is equal to 1
- d) does not exist
- 6) Let x = x(t) be the solution curve of the differential equation $\frac{dx}{dt} = -kx$, and x(0) = 100, $x(\frac{1}{2}) = 80$. If $x(t_{\alpha}) = 5$, then t_{α} is equal to:
 - a) $\frac{\log_e 5 + \log_e 4}{2(\log_e 5 \log_e 4)}$
 - b) $\frac{\log_e 5 + \log_e 4}{\log_e 5 \log_e 4}$
 - c) $\frac{\log_e 5 \log_e 4}{2(\log_e 5 + \log_e 4)}$
 - d) $\frac{\log_e 5 \log_e 4}{\log_e 5 + \log_e 4}$
- 7) The slope of the tangent to the curve

$$= y(x) = \int_{\sin^{-1}(x)}^{\cos^{-1}(x)} \sqrt{1 + 4\sin^2 t} dt, 0 \le x \le 1$$

at the point $\left(\frac{1}{\sqrt{2}}, 0\right)$ on the curve is:

- a) $-2\sqrt{6}$
- b) $2\sqrt{6}$
- c) $-4\sqrt{3}$
- d) $4\sqrt{3}$
- 8) Let $\alpha, \beta, \gamma \left(0 < \alpha, \beta, \gamma < \frac{\pi}{2}\right)$ be the angles between non-zero vectors **a** and **b**, **b** and **c**, **c** and **a** respectively. If θ is the angle that the vector **a** makes with the plane containing **b** and **c**, then
 - a) $\cos^2 \theta = \csc^2 \beta \left(\cos^2 \alpha + \cos^2 \gamma 2\cos \alpha \cos \beta \cos \gamma\right)$
 - b) $\cos^2 \theta = \sec^2 \beta \left(\cos^2 \alpha + \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma\right)$
 - c) $\sin^2 \theta = \csc^2 \beta \left(\cos^2 \alpha + \cos^2 \gamma 2\cos \alpha \cos \beta \cos \gamma\right)$
 - d) $\sin^2 \theta = \sec^2 \beta \left(\cos^2 \alpha + \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma \right)$
- 9) The domain of the function

$$f(x) = \sin^{-1} \left(\log_2 \left((x - 1)(x - 2) \right) \right)$$

is:

a)
$$[0,3]$$

b) $\left[0,\frac{3-\sqrt{3}}{2}\right] \cup \left[\frac{3+\sqrt{3}}{2},3\right]$

c)
$$\left(\frac{3-\sqrt{3}}{2}, 1\right) \cup \left(2, \frac{3+\sqrt{3}}{2}\right)$$

d) $\left[0, \frac{3-\sqrt{6}}{2}\right] \cup \left[\frac{3+\sqrt{6}}{2}, 3\right]$

- 10) Let α and β be the roots of the equation $2x^2 5x 1 = 0$. For $n \in \mathbb{N}$, let $P_n = \alpha^n + \beta^n$. Then $\frac{2P_{11}(2P_{10} 5P_9)}{P_8(5P_{10} + P_9)}$ is equal to:
 - a) $-\frac{1}{2}$
 - b) $\frac{1}{2}$
 - c) -1
 - d) 1
- 11) If the image of the point (1, 1, 2) in the plane 2x y + z + 3 = 0 is the point P, then the distance of P from origin is
 - a) $2\sqrt{3}$
 - b) $3\sqrt{2}$
 - c) 4
 - d) 6
- 12) For three non-coplanar vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, if $(\mathbf{b} + \mathbf{c}) \cdot \{(\mathbf{c} + \mathbf{a}) \times (\mathbf{a} + \mathbf{b})\} = \alpha [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$ and $(\mathbf{a} + \mathbf{b}) \cdot \{(\mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \mathbf{c})\} = \beta [\mathbf{a} \ \mathbf{b} \ \mathbf{c}], \text{ then } \alpha + \beta \text{ is equal to:}$
 - a) -3
 - b) -1
 - c) 1
 - d) 3
- 13) If $I(x) = \int \frac{dx}{1 2\sin^2 x \cos^2 x}$, then $\tan\left(\sqrt{2}\left(I\left(\frac{\pi}{8}\right) I(0)\right)\right)$ is equal to:
 - a) $\frac{1}{\sqrt{2}}$ b) 1

 - c) $\sqrt{2}$
 - d) 2
- 14) Let X have a binomial distribution B(6, p). If the sum of the mean and the variance of X is $\frac{21}{8}$, then $\frac{P(2 \le X < 4)}{P(4 < X < 6)}$ is equal to:
 - a) 65
 - b) 195
 - c) $\frac{195}{2}$ d) $\frac{225}{2}$
- 15) If the statement

$$((p*(\sim q)) \land (p \lor q)) \iff p$$

is a tautology, then * is:

a) \(\Lambda

- $\begin{array}{ccc} b) \ \lor \\ c) & \Longrightarrow \\ d) & \Longleftrightarrow \end{array}$