Nome/cognome rosizione. Niga rosizione. Niga coi	Nome/cognome	N. di matricola (10 cifre)	Posizione: Riga Col	
--	--------------	----------------------------	---------------------	--

UNIVERSITA' DI BOLOGNA - CORSO DI LAUREA IN INFORMATICA CORSO DI SISTEMI OPERATIVI - ANNO ACCADEMICO 2004/2005 COMPITO PARTE GENERALE – 22 Luglio 2005

Esercizio -1: essersi iscritti correttamente per svolgere questa prova.

Esercizio 0: Su entrambi i fogli, scrivere correttamente nome, cognome, matricola e posizione prima di svolgere ogni altro esercizio.

Esercizio 1

Dato il seguente stato dei processi A, B, C, D, E, tale situazione è safe? Nel caso sia safe, mostrare una sequenza. In caso contrario, spiegare perchè.

Risorse esistenti: [4,4,3,2]

	Risorse Assegnate Risorse necessarie									
	R1	R2	R3	R4		R1	R2	R3	R4	
Processo A	0	0	1	1		0	0	2	0	
Processo B	2	1	0	0		0	2	1	1	
Processo C	0	0	1	0		2	1	0	0	
Processo D	2	0	0	1		0	1	1	0	
Processo E	0	2	0	0		3	0	1	0	

Esercizio 2

Si consideri una memoria di 256KB la cui gestione è basata su buddy list (con dimensione minima di blocco 1KB). Mostrate una sequenza di allocazioni e deallocazioni di memoria tale per cui il fenomeno della frammentazione esterna impedisce di soddisfare l'ultima richiesta di allocazione della sequenza, nonostante la memoria disponibile totale sia sufficiente.

Esercizio 3

In un sistema real-time basato su scheduling rate-monotonic, mostrate un esempio con almeno tre processi che non sia schedulabile secondo la condizione di Liu and Layland e che in realtà sia schedulabile. Mostrate lo schedule completo come prova del fatto che sia schedulabile.

Esercizio 4

Individuate le domande a cui dovete rispondere utilizzando il seguente algoritmo. Sia x la penultima cifra e y l'ultima cifra del vostro numero di matricola. Se x è diverso da y, dovete rispondere alle domande x e y (e solo a quelle). Se y è uguale a y, dovete rispondere alle domande y e y (y-1)%10 (e solo a quelle). Le risposte non richieste non verranno considerate. Indicate chiaramente a quale domanda state rispondendo.

- 0. Descrivere concisamente il concetto di aging
- 1. Descrivere concisamente il concetto di microkernel
- 2. Descrivere concisamente l'algoritmo del banchiere
- 3. Descrivere concisamente il meccanismo RAID livello 0
- 4. Descrivere concisamente le tecniche di allocazione dinamica first fit, next fit, best fit, worst fit
- 5. Descrivere concisamente il concetto di allocazione indicizzata nei file system
- 6. Descrivere concisamente il concetto di journaled file system (file system basato su log)
- 7. Descrivere concisamente il supporto hardware per la paginazione
- 8. Descrivere concisamente il concetto di thread
- 9. Descrivere concisamente il meccanismo di gestione degli interrupt