Самоприменимость

Определение

Пусть ξ — формула с единственной свободной переменной x_1 . Тогда: $\langle \ulcorner \xi \urcorner, p \rangle \in W_1$, если $\vdash \xi(\ulcorner \overline{\xi} \urcorner)$ и p — номер доказательства.

Определение

Отношение W_1 рекурсивно, поэтому выражено в Ф.А. формулой ω_1 со свободными переменными x_1 и x_2 , причём:

- 1. $\vdash \omega_1(\overline{\ulcorner \varphi \urcorner}, \overline{p})$, если p гёделев номер доказательства самоприменения φ ;
- 2. $\vdash \neg \omega_1(\overline{\ulcorner \varphi \urcorner}, \overline{p})$ иначе.

Определение

Определим формулу $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$

Определение

Если для любой формулы $\phi(x)$ из $\vdash \phi(0)$, $\vdash \phi(\overline{1})$, $\vdash \phi(\overline{2})$, ... выполнено $\not\vdash \exists x. \neg \phi(x)$, то теория омега-непротиворечива.

Теорема

Первая теорема Гёделя о неполноте арифметики

- \blacktriangleright Если формальная арифметика непротиворечива, то $\forall \sigma(\overline{\ulcorner \sigma \urcorner})$.
- ightharpoonup Если формальная арифметика ω -непротиворечива, то $ot \forall \neg \sigma(\overline{\ } \sigma \overline{\ })$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\overline{ \ulcorner \sigma \urcorner})$. Значит, p — номер доказательства.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

lacktriangle Пусть $\vdash \sigma(\overline{\ulcorner \sigma \urcorner})$. Значит, p — номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\overline{\ulcorner \sigma \urcorner})$. Значит, p — номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p — номер доказательства. Тогда $\langle \lceil \sigma \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p — номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p.\neg\omega_1(\lceil \overline{\sigma} \rceil, p)$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p — номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\lceil \sigma \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \sigma \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \sigma \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \sigma \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \sigma \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$?

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ▶ Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. То есть $\vdash \exists p.\omega_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{0}), \vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{1}), \dots$

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.
- ▶ Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. То есть $\vdash \exists p.\omega_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{1})$, ... По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.
- ▶ Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. То есть $\vdash \exists p.\omega_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ▶ Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \sigma \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \sigma \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \sigma \urcorner, \overline{1})$, ... По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \sigma \urcorner, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$.

Напомним: $\sigma(x_1):=\forall p.\neg\omega_1(x_1,p).\ W_1(\ulcorner\xi\urcorner,p)-p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.
- ▶ Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. То есть $\vdash \exists p.\omega_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{0})$, $\vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{1})$, ... По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$. То есть, $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$

Напомним: $\sigma(x_1):=\forall p.\neg\omega_1(x_1,p).\ W_1(\ulcorner\xi\urcorner,p)-p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ▶ Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. То есть $\vdash \exists p.\omega_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ▶ Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{1})$, ... По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$. То есть, $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$ То есть, p — доказательство самоприменения $W_1 : \vdash \sigma(\overline{\ulcorner \sigma \urcorner})$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ▶ Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{1})$, ... По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. То есть, $\langle \lceil \sigma \rceil, p \rangle \in W_1$ То есть, p — доказательство самоприменения $W_1 : \vdash \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.

Теорема

Формальная арифметика с классической моделью — неполна

Теорема

Формальная арифметика с классической моделью — неполна

Доказательство.

Полная теория — теория, в которой любая общезначимая формула доказуема.

Теорема

Формальная арифметика с классической моделью — неполна

Доказательство.

Полная теория — теория, в которой любая общезначимая формула доказуема. Рассмотрим Ф.А. с классической моделью.

Теорема

Формальная арифметика с классической моделью — неполна

Доказательство.

Полная теория — теория, в которой любая общезначимая формула доказуема. Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $ot \forall \sigma (\ \ \ \ \ \ \ \ \ \ \ \ \)$.

Теорема

Формальная арифметика с классической моделью — неполна

Доказательство.

Полная теория — теория, в которой любая общезначимая формула доказуема. Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $\not\vdash \sigma(\ulcorner \sigma \urcorner)$. Рассмотрим $\sigma(\ulcorner \sigma \urcorner) \equiv \forall p. \neg \omega_1(\ulcorner \sigma \urcorner), p$: нет числа p, что p — номер доказательства $\sigma(\ulcorner \sigma \urcorner)$.

Теорема

Формальная арифметика с классической моделью — неполна

Доказательство.

Полная теория — теория, в которой любая общезначимая формула доказуема. Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $\not\vdash \sigma(\ulcorner \sigma \urcorner)$. Рассмотрим $\sigma(\ulcorner \sigma \urcorner) \equiv \forall p. \neg \omega_1(\ulcorner \sigma \urcorner), p$: нет числа p, что p — номер доказательства $\sigma(\ulcorner \sigma \urcorner)$. То есть, $[\![\forall p. \neg \omega_1(\ulcorner \sigma \urcorner), p)]\!] = \mathsf{M}$.

Теорема

Формальная арифметика с классической моделью — неполна

Доказательство.

Полная теория — теория, в которой любая общезначимая формула доказуема. Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $\not\vdash \sigma(\ulcorner \sigma \urcorner)$. Рассмотрим $\sigma(\ulcorner \sigma \urcorner) \equiv \forall p. \neg \omega_1(\ulcorner \sigma \urcorner), p$: нет числа p, что p — номер доказательства $\sigma(\ulcorner \sigma \urcorner)$. То есть, $\llbracket \forall p. \neg \omega_1(\ulcorner \sigma \urcorner), p \rangle \rrbracket = \mathsf{И}$. То есть, $\sqsubseteq \sigma(\ulcorner \sigma \urcorner)$.

Определение

$$heta_1 \leq heta_2 \equiv \exists extbf{\textit{p}}. extbf{\textit{p}} + heta_1 = heta_2 \qquad heta_1 < heta_2 \equiv heta_1 \leq heta_2 \& \neg heta_1 = heta_2$$

Определение

$$heta_1 \leq heta_2 \equiv \exists extbf{\textit{p}}. extbf{\textit{p}} + heta_1 = heta_2 \qquad heta_1 < heta_2 \equiv heta_1 \leq heta_2 \& \neg heta_1 = heta_2$$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \neg \xi (\overline{\ulcorner \xi \urcorner})$. Пусть ω_2 выражает W_2 в формальной арифметике

Определение

$$\theta_1 \le \theta_2 \equiv \exists p.p + \theta_1 = \theta_2$$
 $\theta_1 < \theta_2 \equiv \theta_1 \le \theta_2 \& \neg \theta_1 = \theta_2$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \neg \xi(\overline{\ulcorner \xi \urcorner})$. Пусть ω_2 выражает W_2 в формальной арифметике

Теорема

Рассмотрим $ho(x_1) = \forall p.\omega_1(x_1,p)
ightarrow \exists q.q \leq p \& \omega_2(x_2,q).$

Определение

$$heta_1 \leq heta_2 \equiv \exists extbf{\textit{p}}. extbf{\textit{p}} + heta_1 = heta_2 \qquad heta_1 < heta_2 \equiv heta_1 \leq heta_2 \& \neg heta_1 = heta_2$$

Определение

Пусть $\langle \lceil \xi \rceil, p \rangle \in W_2$, если $\vdash \neg \xi(\overline{\lceil \xi \rceil})$. Пусть ω_2 выражает W_2 в формальной арифметике

Теорема

Рассмотрим $\rho(x_1) = \forall p.\omega_1(x_1,p) \to \exists q.q \leq p \& \omega_2(x_2,q)$. Тогда $\not\vdash \rho(\overline{\ \rho})$ и $\not\vdash \neg \rho(\overline{\ \rho})$.

Определение

$$\theta_1 \le \theta_2 \equiv \exists p.p + \theta_1 = \theta_2 \qquad \theta_1 < \theta_2 \equiv \theta_1 \le \theta_2 \& \neg \theta_1 = \theta_2$$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \neg \xi(\overline{\ulcorner \xi \urcorner})$. Пусть ω_2 выражает W_2 в формальной арифметике

Теорема

Рассмотрим $\rho(x_1) = \forall p.\omega_1(x_1,p) \to \exists q.q \leq p \& \omega_2(x_2,q)$. Тогда $\not\vdash \rho(\lceil \rho \rceil)$ и $\not\vdash \neg \rho(\lceil \rho \rceil)$. «Меня легче опровергнуть, чем доказать»

Формальное доказательство

Неполнота варианта теории, изложенной выше, формально доказана на Coq, Russell O'Connor, 2005:

"My proof, excluding standard libraries and the library for Pocklington's criterion, consists of 46 source files, 7 036 lines of specifications, 37 906 lines of proof, and 1 267 747 total characters. The size of the gzipped tarball (gzip -9) of all the source files is 146 008 bytes, which is an estimate of the information content of my proof."

```
Theorem Incompleteness : forall T : System,
   Included Formula NN T ->
   RepresentsInSelf T ->
   DecidableSet Formula T ->
   exists f : Formula,
   Sentence f/\(SysPrf T f \/ SysPrf T (notH f) -> Inconsistent LNN T).
```

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1=0})$

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1=0})$

Неформальный смысл: «формальная арифметика непротиворечива»

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально)

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ».

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \sigma \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \sigma \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \sigma \rceil)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. σ 0 есть σ 1 есть σ 3 есть σ 4 соль σ 5 есть σ 6 есть σ 6 есть σ 6 есть σ 7 есть σ 8 есть σ 9 есть

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$, — и это можно доказать, то есть \vdash Consis $\rightarrow \sigma(\lceil \overline{\sigma} \rceil)$. Однако, если формальная арифметика непротиворечива, то $\not\vdash \sigma(\lceil \overline{\sigma} \rceil)$.

Условия выводимости Гильберта-Бернайса-Лёфа

Определение

Будем говорить, что формула ψ , выражающая отношение Proof, формула π и формула Consis соответствуют условиям Гильберта-Бернайса-Лёфа, если следующие условия выполнены для любой формулы α :

- 1. $\vdash \alpha$ влечет $\vdash \pi(\overline{\ulcorner \alpha \urcorner})$
- 2. $\vdash \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \pi(\overline{\lceil \alpha \rceil}) \rceil})$
- 3. $\vdash \pi(\overline{\lceil \alpha \to \beta \rceil}) \to \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \beta \rceil})$

Первая теорема Гёделя о неполноте ещё раз

Лемма

Лемма об автоссылках. Для любой формулы $\phi(x_1)$ можно построить такую замкнутую формулу α (не использующую неаксиоматических предикатных и функциональных символов), что $\vdash \phi(\ulcorner \overline{\alpha} \urcorner) \leftrightarrow \alpha$.

Теорема

Существует такая замкнутая формула γ , что если Ф.А. непротиворечива, то $\not\vdash \gamma$, а если Ф.А. ω -непротиворечива, то и $\not\vdash \neg \gamma$.

Доказательство.

Рассмотрим $\phi(x_1) \equiv \neg \pi(x_1)$. Тогда по лемме об автоссылках существует γ , что $\vdash \gamma \leftrightarrow \neg \pi(\overline{\ } \gamma \overline{\ })$.

- ▶ Предположим, что $\vdash \gamma$. Тогда $\vdash \gamma \to \neg \pi(\overline{\lceil \gamma \rceil})$, то есть $\not\vdash \gamma$
- ▶ Предположим, что $\vdash \neg \gamma$. Тогда $\vdash \pi(\overline{\ulcorner \gamma \urcorner})$, то есть $\vdash \exists p. \psi(\overline{\ulcorner \gamma \urcorner}, p)$. Тогда по ω -непротиворечивости найдётся p, что $\vdash \psi(\overline{\ulcorner \gamma \urcorner}, \overline{p})$, то есть $\vdash \gamma$.

Доказательство второй теоремы Гёделя

- 1. Пусть γ таково, что $\vdash \gamma \leftrightarrow \neg \pi(\overline{\lceil \gamma \rceil})$.
- 2. Покажем $\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\overline{\lceil 1 = 0 \rceil})$.
 - 2.1 По условию 2, $\vdash \pi(\overline{\ \ \gamma}) \to \pi(\overline{\ \ }\pi(\overline{\ \ \gamma}))$. По теореме о дедукции $\pi(\overline{\ \ \gamma}) \vdash \pi(\overline{\ \ }\pi(\overline{\ \ \gamma}))$.
 - 2.2 Так как $\vdash \pi(\overline{\ulcorner \gamma \urcorner}) \to \neg \gamma$, то по условию $1 \vdash \pi(\overline{\ulcorner \pi \urcorner}) \to \neg \gamma \urcorner$
 - 2.3 По условию 3, $\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\lceil \pi(\overline{\lceil \gamma \rceil}) \rceil) \to \pi(\lceil \pi(\overline{\lceil \gamma \rceil}) \to \neg \gamma \rceil) \to \pi(\overline{\lceil \neg \gamma \rceil})$ 2.4 Таким образом, $\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\overline{\lceil \neg \gamma \rceil})$.
 - 2.5 Однако, $\vdash \gamma \to \neg \gamma \to 1=0$. Условие 3 (применить два раза) даст $\pi(\ulcorner \gamma \urcorner) \vdash \pi(\ulcorner 1=0 \urcorner)$
- 3. $\neg \pi(\overline{\lceil 1 = 0 \rceil}) \rightarrow \neg \pi(\overline{\lceil \gamma \rceil})$ (т. о дедукции, контрапозиция)
- 4. $\vdash \neg \pi(\overline{\ }1 = 0 \overline{\ }) \to \gamma$ (определение γ)