8 ПРЯТ

Ковалев Алексей

1. Преобразуем грамматику: $S \to bX|aB|\varepsilon, X \to aS, B \to S|aB|\varepsilon$. НКА, соответствующей этой грамматике:

2. Праволинейная грамматика, соответствующая даному автомату:

$$S \to bA, A \to aB, B \to bB|aC|\varepsilon, C \to aC|bB|\varepsilon$$

3.

(а) Грамматика для языка $L = \Sigma^* \setminus \{a^n b^n : n \in \mathbb{N}\}$:

$$S \to aSb|P|a|b$$

$$P \to bRa|bRb|aRa$$

$$R \to aRa|bRb|aRb|bRa|a|b|\varepsilon$$

Заметим, что во всех словах вида $a^nb^n, n \in \mathbb{N}$ на позициях, симметричных относительно центра слова, слева от него стоит буква a, а справа – буква b.

Понятно, что любое слово, порождаемое грамматикой, лежит в L, так как при порождении любого неоднобуквенного слова будет использовано правило $P \to bRa|bRb|aRa$, то есть в слове будут симметричные от его середины позиции, на которых стоят другие буквы.

Чтобы показать, что все слова из L также порождаются грамматикой, проведем доказательство по индукции. База: слова из L длины 1 и 2 очевидно порождаются грамматикой. Переход: пусть слово $w \in L$, |w| = n порождается грамматикой, тогда слова awa, awb, bwa, bwb также лежат в языке. Эти же слова порождаются грамматикой, так как нам нужно либо применить правило $S \to aSb$, а затем вывести слово w как раньше, либо применить правило $S \to P$, затем одно из правил $P \to bRa|bRb|aRa$ и потом вывести слово w, пользуясь только правилами вида $R \to \alpha$, что возможно, так как ими можно вывести любое слово. То есть если все слова длины n из L порождаются грамматикой, то и все слова из L длины n+2 также порождаются грамматикой.

Таким образом, приведенная выше грамматика действительно задает язык L.

Грамматика однозначна, потому что для любого слова, порождаемого грамматикой, существует единственный левый вывод, так как в каждый момент при выводе в слове находится не более одного нетерминала, и при этом применяемое правило однозначно определяется тем, какие буквы должны стоять вместо него.

(b) Грамматика для языка $L = \{a^n b^m c^k : n + k = m; \ n, \ m, \ k \in \mathbb{N}\}$:

$$S \to NK$$

$$N \to aNb|\varepsilon$$

$$K \to bKc|\varepsilon$$

Ясно, что любое слово, порождаемое грамматикой, действительно лежит в L, так как при порождении любого слова мы ставим буквы a и b или b и c только одновременно, то есть количество букв b равно суммарному количеству букв a и b.

В то же время, любое слово из L порождается грамматикой, так как если слово имеет вид $a^nb^mc^k$, $n+k=m;\;n,\;m,\;k\in\mathbb{N}$, оно может быть порожденно грамматикой применением n раз правила $N\to aNb$ и k раз правила $K\to bKc$.

Таким образом, приведенная выше грамматика действительно задает язык L.

Грамматика однозначна, потому что для любого слова $a^nb^mc^k$, $n+k=m;\ n,\ m,\ k\in\mathbb{N}$ существует единственный левый вывод, который представляет из себя единственное использование первого правила, n+1 использование второго правила и k+1 использование третьего правила.

4. Для слово ab^2c :

Из начального состояния в финальное есть переход по аксиоме, значит слово ab^2c порождается грамматикой.

Для слова a^2b^3 :

Никакое из правил грамматики больше не прочитывается ни из одного состояния автомата, но из начального состояния в финальное перехода по аксиоме нет. Значит слово a^2b^3 не порождается грамматикой.