$$Y_2 + X4 + 2X_5 = 2$$

$$... L \times 5 = -3$$

rontradict with Xi >0

2. The convex hall for (vi). i.e. I is
$$S_1 = \{ y = 2 + i \text{ i } | 2 + i \text{ i } | 2 + i \text{ i } | 1 \}$$

$$S_2 = \{ y = \sum_{j \in \mathbb{Z}} (j) \mid \forall j \in \mathbb{Z} (j) = 1 \}$$

Sit
$$a_1 \begin{pmatrix} v_1 \\ 1 \end{pmatrix} + a_2 \begin{pmatrix} v_2 \\ 1 \end{pmatrix} + \cdots + a_{1c+2} \begin{pmatrix} v_{1c+2} \\ 1 \end{pmatrix} = 0$$

$$\frac{1}{5} = \frac{1}{5} \cdot \frac{1}$$

$$\frac{-1}{0} = \frac{\alpha_1 V_1}{S^-} + \frac{\alpha_2}{S^-} V_2 + \dots + \frac{\alpha_N}{S^-} V_n$$

$$(7 \times^{7} + y^{7} + A) \times^{7} = 0$$

$$(7 \times^{7} + y^{7} + A) \times^{7} = 0$$

for
$$i \in I$$
 $\chi_i^* = \chi_{Ii}^*$
for $j \in I$ $\chi_j^* = 0$

-. Once we known the X_{2}^{*} , we know the i \in I indicing that rould be non-zero in x^{7} , we set all the indices that $j \notin I$ $X_{j}^{*} = 0$ Then we can get X^{*} from XI

