Petroleum University of Technology

Petroleum Faculty of Ahwaz

Final Exam of 1st Term of 89-90

Course Title: Applied Mathematics/Numerical Methods

Exam Date: Bahman 2, 1389

Exam Time: 180 Min.

OPEN BOOK

Level: B.Sc ✓ M.Sc ○ Ph.D. ○

Student Full Name:

Student Number:

1. Use Müller's method to determine the positive root of $f(x) = x^3 + x^2 - 3x - 5 = 0$

2. Determine the root of the following system

$$\int x^2 + 1 - y^2 = 0$$

$$\int 2\cos(x^2) - y = 0$$

In the box $0 \le x \le 2$, $0 \le y \le 2$

3. Use Gauss – Saidel method to solve the following system

$$\int 2x - 6y - z = -38$$

$$\{-3x - y + 7z = -34\}$$

$$-8x + y - 2z = -20$$

4. Calculate $A = 2x + y' + \int_{0}^{1} y \, dx$

as accurate as possible, y is given in the following table

X	0	0.2	0.4	0.6	0.8	1
у	1	0.64	0.36	0.16	0.04	0

5. Calculate the integral $\int_{0}^{1} (1 + x + y + y')^{2} dx$

y is the solution of the following initial value problem.

$$y' = 3y - x + 2$$
 $y(0) = 5$

6. Solve the following boundary value problems to calculate y at x = 3 and x = 6

$$7y'' - 2y' - y + x = 0$$

$$y(0) = 5$$
 , $y(9) = 10$

7. The following data can be modeled by the equation

$$k = \frac{ac^2}{b + c^2}$$

Use a transformation to linearise this equation. Then use linear regression to estimate a and b and predict k at c=2.

c	0.5	0.8	1.5	2.5	4
\overline{k}	1.1	2.4	5.3	7.6	8.9