Math 55a, Fall 2004

Second Assignment, due October 5

- 1. The completeness of \mathbb{R} , considered as a metric space in the usual way, is equivalent to the the least upper bound axiom equivalent modulo the various algebraic properties of \mathbb{R} and properties of the order \geq . Prove this equivalence. You may substitute the "Dedekind cut" axiom for the least upper bound axiom, if you wish.
- **2.** Let (X, d_X) , (Y, d_Y) be metric spaces, and $F: X \to Y$ a map between them. Establish the equivalence of the following properties of F. a) For every open set $U \subset Y$, the inverse image $F^{-1}(U)$ is open in X (this is the usual definition of continuity).
- b) For every closed set $S \subset Y$, the inverse image $F^{-1}(S)$ is closed.
- c) For every $x_0 \in X$ and every $\epsilon > 0$, there exists $\delta > 0$ such that $d_X(x, x_0) < \delta$ implies $d_Y(F(x), F(x_0)) < \epsilon$ (this is the ϵ - δ definition of continuity).
- d) For every convergent sequence $\{x_k\}$ in X, the image sequence $\{F(x_k)\}$ converges, and $\lim_{k\to\infty} F(x_k) = F(\lim_{k\to\infty} x_k)$ (this is the definition of continuity in terms of sequences).
- **3.** Let $C \subset [0,1]$ denote the Cantor set you can find the definition in *Simmons*, and in many other textbooks. By construction, the complement U = [0,1] C is a disjoint union of a countable number of open intervals I_k .
- a) Compute the total length of the I_k .
- **b)** Let $\chi_U : [0,1] \to \mathbb{R}$ denote the characteristic function of U; i.e., $\chi_U(x) = 1$ if $x \in U$ and $\chi_U(x) = 0$ if $x \in C$. Prove that χ_U is Riemann integrable, in the technical sense, over the interval [0,1], and compute the integral.