Table of Contents

X15 Overview	. 1
Trim Flight Condition	. 1
Aircraft Parameters	. 2
Linearized Longitudinal Equations of Motion	. 3
Linearized Lateral Equations of Motion	4
Longitudinal OpenLoop Eigenvalues	5
Lateral OpenLoop Eigenvalues	
OpenLoop Elevator Step Response	. 8
Response to a Longitudinal Gust	9
Lateral-Directional Response to a Cross-Wind Perturbation	10
Longitudinal Stability Augmentation System (SAS)	11
Lateral Stability Augmentation System (SAS)	13
Longitudinal ClosedLoop Eigenvalues	15
Lateral ClosedLoop Eigenvalues	16
All OpenLoop and ClosedLoop Eigenvalue plot	
ClosedLoop Response to Pilot Step Command	19

X15 Overview

The X-15 was a hypersonic research airplane First flown in 1960. The rocket powered airplane could fly up to Mach 6 at altitudes of up to 300,000 ft above sea level. Prior to launch, the X-15 would be mounted under a B-52 aircraft and carried up to an altitude of approximately 45,000 ft. Once at altitude, the X-15 would be launched with an initial speed of Mach 0.8, quickly accelerating to full speed and a higher altitude. Following the powered phase of fight, the vehicle would enter a glide for eventual landing and recovery. Further details about the X-15 can be found at http://z.umn.edu/x15fs

```
% Author: Jyot Buch
% Ph.D. Student in Aerospace Engineering and Mechanics
% Ref: NASA CR-2144 by Heffley and Jewell technical report.
clear;clc;close all;
```

Trim Flight Condition

Trim corrosponds to equilibrium condition in which we are using small perturbation theory to obtain LTI model of an aircraft from nonlinear equations of motion.

```
% Mach Number
M0 = 2.0;

% Altitude
h0 = 60000; % [ft]

% Pitch Angle (Steady Level Flight but given in the table)
theta0 = deg2rad(4); % [rad]

% Trim Speed
u0 = 1936*cos(theta0); %[ft/s]
```

```
% Acceleration due to gravity on planet Earth g = 32.17405; %[ft/s^2]
```

Aircraft Parameters

Aerodynamic, stability, and mass properties data provided in NASA CR-2144 by Heffley and Jewell [Starting Page 114 in PDF]

```
% Physical Parameters
W
        = 15560;
                  % [lb]
Ιx
        = 3650;
                    % [slugs-ft^2]
        = 80000;
                    % [slugs-ft^2]
Iу
Ιz
        = 82000;
                    % [slugs-ft^2]
Ixz
        = 590;
                    % [sluqs-ft^2]
S
        = 200;
                    % [ft^2]
b
        = 22.36;
                    % [ft]
        = 10.27;
                    % [ft]
cbar
        = 0.22*cbar;% [ft]
Xcq
        = 424;
                   % [PSF]
        = 703;
                    % [PSF]
Qc
alpha
        = 4;
                    % [deq]
        = 18.8;
                    % [ft]
Lxp
                    % [ft]
Lzp
        = -2.2;
                    % [lb]
        = W;
m
% LONGITUDINAL PARAMETERS (Page: 131) (Notations Page: 330)
XuS
        = -0.00871; %[1/sec]
        = -0.0117; %[1/sec]
ZuS
MuS
        = 0.000471; %[1/(sec-ft)]
        = -0.0190; %[1/sec]
Χw
Zw
        = -0.311;
                    %[1/sec]
        = -0.00673; %[1/(sec-ft)]
Mw
Zwdot
        = 0;
                    %[1/sec^2]
                    %[1/sec]
Zσ
        = 0;
Mwdot
      = 0;
                    %[1/(sec-ft)]
Mq
        = -0.182;
                  %[1/sec]
Xde
        = 6.24;
Zde
        = -89.2;
        = -9.8;
Mde
% LATERAL-DIRECTIONAL PARAMETERS (Page: 135) (Notations Page: 331)
Υv
        = -0.127;
                   %[1/sec]
        = -246.0;
Yb
        = 0;
Υp
        = 0;
Yr
LbS
        = -2.36;
                    %[1/sec^2]
NbS
        = 11.1;
                    %[1/sec^2]
LpS
        = -1.02;
                    %[1/sec]
NpS
        = -0.00735; %[1/sec]
LrS
        = 0.103;
                    %[1/sec]
NrS
       = -0.186;
                    %[1/sec]
Yda
        = -0.00498; %[1/sec]
LdaS
        = 28.7;
                  %[1/sec^2]
```

```
NdaS
      = 0.993; %[1/sec^2]
     = 0.0426;
YdrS
LdrS
      = 5.38;
NdrS
       = -6.9;
% Anonymous Functions for star to regular conversion and vice-versa
factor = 1 - Ixz^2/(Ix*Iz);
S2R = @(x) x*factor;
% Required values
Xu = S2R(XuS);
Zu = S2R(ZuS);
Mu = S2R(MuS);
Ydr = S2R(YdrS);
```

Linearized Longitudinal Equations of Motion

```
Alon = [...
                           0
                                       -g*cos(theta0);
   Xu
               Χw
               Zw
                           u0
                                       -g*sin(theta0);
   Mu+Mwdot*Zu Mw+Mwdot*Zw Mq+Mwdot*u0 0;
               0
                           1
                                       0];
Blon = [...]
   Xde;
    Zde;
   Mde+Mwdot*Zde;
    0];
Glon = ss(Alon, Blon, eye(4), 0)
Glon.InputName = {'\Delta\delta_e'};
Glon.StateName = {'\Deltau','\Deltaw','\Deltaq','\Delta\theta'};
Glon.OutputName = {'\Deltau','\Deltaw','\Deltaq','\Delta\theta'};
Glon =
  A =
                      x2
                                  x3
                                            x4
             x1
                  -0.019
-0.311
  x1
        -0.0087
                                  0
                                          -32.1
      -0.01169
                                          -2.244
                                1931
  x2
  x3 0.0004705
                 -0.00673
                              -0.182
                                             0
  x4
              0
                        0
                                   1
                                               0
  B =
        u1
       6.24
  x1
  x2 - 89.2
       -9.8
  x3
  x4
          0
  C =
      x1 x2 x3 x4
      1 0
              0
                  0
  у1
  y2 0 1 0 0
```

```
y3 0 0 1 0
y4 0 0 0 1

D =

u1
y1 0
y2 0
y3 0
y4 0
```

Continuous-time state-space model.

Linearized Lateral Equations of Motion

```
Alat = [...
   Yb/u0
                     Yp/u0
                                       -(1-Yr/u0)
g*cos(theta0)/u0;
   LbS+(Ixz/Ix)*NbS LpS+(Ixz/Ix)*NpS LrS+(Ixz/Ix)*NrS 0;
   NbS+(Ixz/Iz)*LbS NpS+(Ixz/Iz)*LpS NrS+(Ixz/Iz)*LrS 0;
                                                         0];
Blat = [...
                       Ydr/u0;
   LdaS+(Ixz/Ix)*NdaS LdrS+(Ixz/Ix)*NdrS;
   NdaS+(Ixz/Iz)*LdaS NdrS+(Ixz/Iz)*LdrS;
                       0];
Glat = ss(Alat,Blat,eye(4),0)
Glat.InputName = {'\Delta\delta_a','\Delta\delta_r'};
Glat.StateName = {'\Delta\beta','\Deltap','\Deltar','\Delta\phi'};
Glat.OutputName = {'\Delta\beta','\Deltap','\Deltar','\Delta\phi'};
% NOTE: It is assumed that the longitudinal and lateral-directional
% dynamics are fully decoupled.
Glat =
  A =
            x1
                      x2
                                x3
                                          x4
       -0.1274
                      0
                                -1 0.01662
  x1
       -0.5658
                  -1.021
                           0.07293
  x2
         11.08 -0.01469
                          -0.1853
  x3
                                           0
             0
  x4
                      1
                               0
  B =
             u1
             0 2.203e-05
           28.86
                    4.265
  x2
  x3
            1.2
                    -6.861
              0
  x4
  C =
      x1 x2 x3 x4
```

```
y1 1 0 0 0
   0 1
y2
   0 0 1 0
у3
y4
D =
   u1 u2
у1
   0 0
   0
      0
y2
у3
    0
y4
```

Continuous-time state-space model.

Longitudinal OpenLoop Eigenvalues

```
fprintf('=========n');
fprintf('Longitudinal Eigen Analysis\n');
fprintf('=========\n');
[Vlon,Dlon] = eig(Alon);Dlon = diag(Dlon);
Eigenvalues = Dlon %#ok<*NOPTS,*NASGU>
% Normalize evecs by theta direction and non-dimensionalize
for ii = 1:4
   Vlon(:,ii) = Vlon(:,ii)./(Vlon(4,ii));
end
Vlon(1,:) = Vlon(1,:)/u0;
Vlon(2,:) = Vlon(2,:)/u0;
Vlon(3,:) = Vlon(3,:)*(cbar/2/u0);
EigenvectorsMagnitude = abs(Vlon)
EigenvectorsPhase = angle(Vlon)
lamsp = Dlon(1:2);
disp('### Short Period Mode:')
Tsp = 2*pi/imag(lamsp(1));
wnsp = sqrt(lamsp(1)*lamsp(2));
zetasp = -(lamsp(1)+lamsp(2))/2/wnsp;
disp(['Period: ' num2str(Tsp) ' seconds'])
disp(['Natural Frequency: ' num2str(wnsp) ' rad/s'])
disp(['Damping Ratio: ' num2str(zetasp)])
lamp = Dlon(3:4);
disp('### Long Period (Phugoid) Mode:')
Tp = 2*pi/imag(lamp(1));
wnp = sqrt(lamp(1)*lamp(2));
zetap = -(lamp(1)+lamp(2))/2/wnp;
disp(['Period: ' num2str(Tp) ' seconds'])
disp(['Natural Frequency :' num2str(wnp) ' rad/s'])
disp(['Damping Ratio: ' num2str(zetap)]);
fprintf(newline);
```

```
Longitudinal Eigen Analysis
Eigenvalues =
 -0.2459 + 3.6045i
 -0.2459 - 3.6045i
 -0.0050 + 0.0227i
 -0.0050 - 0.0227i
EigenvectorsMagnitude =
   0.0099
           0.0099
                     0.7140
                             0.7140
                    0.0496
                             0.0496
   1.0021
            1.0021
   0.0096
            0.0096 0.0001
                             0.0001
   1.0000
            1.0000
                     1.0000
                              1.0000
EigenvectorsPhase =
                    1.7882
   1.5513 -1.5513
                             -1.7882
   0.0865 \quad -0.0865 \quad 1.7874 \quad -1.7874
           -1.6389
   1.6389
                     1.7873
                             -1.7873
### Short Period Mode:
Period: 1.7432 seconds
Natural Frequency: 3.6129 rad/s
Damping Ratio: 0.068049
### Long Period (Phugoid) Mode:
Period: 276.4526 seconds
Natural Frequency: 0.023271 rad/s
Damping Ratio: 0.21485
```

Lateral OpenLoop Eigenvalues

```
fprintf('=========\n');
fprintf('Lateral Eigen Analysis\n');
fprintf('=========\n');
[Vlat,Dlat] = eig(Alat);Dlat = diag(Dlat);
Eigenvalues = Dlat
% Normalize evecs by phi direction and non-dimensionalize
for ii = 1:4
    Vlat(:,ii) = Vlat(:,ii)./(Vlat(4,ii));
Vlon(1,:) = Vlon(1,:)*(b/2/u0);
Vlon(2,:) = Vlon(2,:)/u0;
Vlon(3,:) = Vlon(3,:)/u0;
EigenvectorsMagnitude = abs(Vlat)
EigenvectorsPhase = angle(Vlat)
dutchr = Dlat(1:2);
disp('### Dutch Roll Mode:')
Tp = 2*pi/imag(dutchr(1));
wnd = sqrt(dutchr(1)*dutchr(2));
zetad = -(dutchr(1)+dutchr(2))/2/wnd;
disp(['Period: ' num2str(Tp) ' seconds'])
disp(['Natural Frequency :' num2str(wnd) ' rad/s'])
disp(['Damping Ratio: ' num2str(zetad)]);
```

```
% Plot
figN = 1;
fiqN = fiqN+1;fiqure(fiqN);clf;
subplot(3,2,[1 2 3 4]);hold on;box on;grid on;
plt1 = plot(real(Dlon(1:2)),imag(Dlon(1:2)),'bs',...
real(Dlon(3:4)),imag(Dlon(3:4)),'b^','MarkerSize',10,'LineWidth',2);
plt2 =
 plot(real(Dlat(1:2)), imag(Dlat(1:2)), 'r*', real(Dlat(3)), imag(Dlat(3)), ...
  'ro',real(Dlat(4)),imag(Dlat(4)),'rx','MarkerSize',10,'LineWidth',2);
title('Longitudinal and Lateral OpenLoop Eigenvalues', 'FontSize', 14);
xlabel('Real(\lambda)','FontSize',14);
ylabel('Imag(\lambda)','FontSize',14);
% Put a Ractangle
r = rectangle('Position', [-0.1 -0.5 0.20]
1],'LineStyle','--','LineWidth',1);
% Put a new axis for zoomed plot
subplot(3,2,5);
box on; hold on; grid on;
plt3 =
plot(real(Dlon(3:4)),imag(Dlon(3:4)),'b^','MarkerSize',10,'LineWidth',2);
plot(real(Dlat(4)),imag(Dlat(4)),'rx','MarkerSize',10,'LineWidth',2);
title('Zoomed Plot Near Origin', 'FontSize', 14); ylim([-0.04 0.04]);
xlabel('Real(\lambda)','FontSize',14);
ylabel('Imag(\lambda)','FontSize',14);
% Legend plot
sh=subplot(3,2,6);
p=get(sh,'position');
lh=legend(sh,[plt1; plt2],...
    'Short Period Mode', 'Long Period (Phugoid) Mode',...
    'Dutch Roll Mode', 'Roll Subsidence Mode', 'Spiral
Mode','FontSize',12);
set(lh,'position',p);
axis(sh,'off');
print(gcf,'-dpdf','-fillpage','EigenValuesOL');
______
Lateral Eigen Analysis
Eigenvalues =
  -0.1556 + 3.3295i
  -0.1556 - 3.3295i
  -1.0236 + 0.0000i
   0.0010 + 0.0000i
EigenvectorsMagnitude =
   18.6838
           18.6838
                        0.0024
                                  0.0003
    3.3331
             3.3331
                                  0.0010
                        1.0236
             62.2004
   62.2004
                        0.0144
                                  0.0166
```

```
1.0000
           1.0000
                     1.0000 1.0000
EigenvectorsPhase =
   -0.6144 0.6144
                   3.1416
                                    0
   1.6175 -1.6175 3.1416
                                    0
   -2.1765
           2.1765
                          0
                                    0
                 0
                           0
                                    0
### Dutch Roll Mode:
Period: 1.8871 seconds
Natural Frequency :3.3331 rad/s
Damping Ratio: 0.046695
```

OpenLoop Elevator Step Response

```
fprintf('=========\n');
fprintf('Elevator Step Response\n');
fprintf('=========\n');
figN = figN+1; figure(figN); clf;
opt = stepDataOptions('StepAmplitude',deg2rad(0.5));
step(Glon,opt);grid on;title('OpenLoop Elevator Step Response')
[y,t] = step(Glon,opt);
S = stepinfo(y,t);
StateNames = {'Delta u', 'Delta w', 'Delta q', 'Delta theta'};
for i = 1:numel(S)
    fprintf('Stepinfo Data for Longitudinal State %s:
\n',StateNames{i});
   disp(S(i))
end
L = findobj(gcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b'; end
pp(gcf);print(gcf,'-dpdf','-fillpage','LonStepRespOL');
_____
Elevator Step Response
_____
Stepinfo Data for Longitudinal State Delta u:
       RiseTime: 50.0514
   SettlingTime: 729.5855
    SettlingMin: 71.5114
    SettlingMax: 145.9100
      Overshoot: 51.9636
     Undershoot: 0
           Peak: 145.9100
       PeakTime: 128.2599
Stepinfo Data for Longitudinal State Delta w:
       RiseTime: 0.1897
   SettlingTime: 569.4075
    SettlingMin: -22.8587
    SettlingMax: -2.5304
      Overshoot: 281.2706
     Undershoot: 0
           Peak: 22.8587
       PeakTime: 0.8696
Stepinfo Data for Longitudinal State Delta q:
```

```
RiseTime: 5.3282e-05
   SettlingTime: 174.9189
    SettlingMin: -0.0228
    SettlingMax: 0.0155
       Overshoot: 4.1183e+05
      Undershoot: 2.7973e+05
            Peak: 0.0228
       PeakTime: 0.4348
Stepinfo Data for Longitudinal State Delta theta:
        RiseTime: 7.3210
   SettlingTime: 802.3177
    SettlingMin: -0.0693
    SettlingMax: 0.0034
      Overshoot: 231.1629
      Undershoot: 16.1086
            Peak: 0.0693
        PeakTime: 68.6951
```

Response to a Longitudinal Gust

```
fprintf('========\n');
fprintf('Response to a Longitudinal Gust\n');
fprintf('========\n');
figN = figN+1;figure(figN);clf;
x0lon = [10;10;deg2rad(5);deg2rad(5)];
initial(Glon,x0lon);[y,t] = initial(Glon,x0lon);Ip = lsiminfo(y,t);
title('OpenLoop Response to a Longitudinal gust');
L = findobj(gcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b'; end
pp(gcf);print(gcf,'-dpdf','-fillpage','LonGustOL');
for i = 1:numel(Ip)
   fprintf('I.C. Response to a Longitudinal gust %s:\n',...
       StateNames{i});
   disp(Ip(i))
end
______
Response to a Longitudinal Gust
_____
I.C. Response to a Longitudinal gust Delta u:
   SettlingTime: 796.0854
           Min: -86.8492
        MinTime: 63.0430
           Max: 43.5138
        MaxTime: 201.2158
I.C. Response to a Longitudinal gust Delta w:
   SettlingTime: 383.5749
           Min: -34.4454
        MinTime: 1.2174
           Max: 43.8318
        MaxTime: 0.3478
I.C. Response to a Longitudinal gust Delta q:
   SettlingTime: 16.6815
```

```
Min: -0.0722
MinTime: 0.7826
Max: 0.0873
MaxTime: 0

I.C. Response to a Longitudinal gust Delta theta:
SettlingTime: 733.0728
Min: -0.0425
MinTime: 141.7380
Max: 0.1066
MaxTime: 0.3478
```

Lateral-Directional Response to a Cross-Wind Perturbation

```
fprintf('-----
\n');
fprintf('Lateral-directional response to a cross-wind perturbation
fprintf('-----
figN = figN+1;figure(figN);clf;
x0lat = deg2rad([5;5;5;10]);
initial(Glat,x0lat);[y,t] = initial(Glat,x0lat);Ip = lsiminfo(y,t);
title('OpenLoop Response to a Lateral cross-wind perturbation');
L = findobj(gcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b';end
pp(qcf);print(qcf,'-dpdf','-fillpage','LatGustOL');
for i = 1:numel(Ip)
   fprintf('I.C. Response to a Lateral cross-wind perturbation %s:
\n',...
      StateNames{i});
   disp(Ip(i))
end
______
Lateral-directional response to a cross-wind perturbation
______
I.C. Response to a Lateral cross-wind perturbation Delta u:
   SettlingTime: 5.6309e+04
          Min: -0.0053
       MinTime: 17.9163
          Max: 1.0698e+21
       MaxTime: 5.6329e+04
I.C. Response to a Lateral cross-wind perturbation Delta w:
   SettlingTime: 5.6309e+04
          Min: 1.2757e-04
       MinTime: 26.8744
           Max: 3.9270e+21
       MaxTime: 5.6329e+04
I.C. Response to a Lateral cross-wind perturbation Delta q:
   SettlingTime: 5.6309e+04
           Min: -0.0675
```

```
MinTime: 8.9581

Max: 6.3337e+22

MaxTime: 5.6329e+04

I.C. Response to a Lateral cross-wind perturbation Delta theta:

SettlingTime: 5.6309e+04

Min: 0.1745

MinTime: 0

Max: 3.8195e+24

MaxTime: 5.6329e+04
```

Longitudinal Stability Augmentation System (SAS)

Longitudinal Dynamics full state-feedback SAS

```
dzetap = 0.707; % Desired phugoid damping
dzetasp = 0.707; % Desired short-period damping
% Desired Poles
dPlon = [...]
   wnp*(-dzetap + 1i*sqrt(1-dzetap^2));
   wnp*(-dzetap - li*sqrt(1-dzetap^2));
   wnsp*(-dzetasp + 1i*sqrt(1-dzetasp^2));
   wnsp*(-dzetasp - 1i*sqrt(1-dzetasp^2));
% Pole Placement
Klon = place(Alon,Blon,dPlon)
% Obtain ClosedLoop
GlonCL = ss(Alon-Blon*Klon,Blon,eye(4),0);
GlonCL.StateName = {'\Deltau','\Deltaw','\Deltaq','\Delta\theta'};
GlonCL.OutputName = {'\Deltau','\Deltaw','\Deltaq','\Delta\theta'};
GlonCL.InputName = {'\Delta\delta_e'};
% Analysis
fprintf('========\n');
fprintf('ClosedLoop Response to a Longitudinal Gust\n');
fprintf('=======|n');
figN = figN+1;figure(figN);clf;
x0lon = [10;10;deg2rad(5);deg2rad(5)];
initial(GlonCL,x0lon);[y,t] = initial(GlonCL,x0lon);Ip =
lsiminfo(y,t);
title('ClosedLoop Response to a Longitudinal gust');
L = findobj(gcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b'; end
pp(gcf);print(gcf,'-dpdf','-fillpage','LonGustCL');
for i = 1:numel(Ip)
    fprintf('ClosedLoop I.C. Response to a Longitudinal gust %s:
\n',...
       StateNames{i});
   disp(Ip(i))
```

```
end
% Control Effort
ulon = zeros(length(y),1);
for i = 1:length(y)
   ulon(i) = -Klon*y(i,:)';
end
ulon = rad2deg(ulon);
figN = figN+1;figure(figN);clf;
plot(t,ulon,'b');
title('Control Effort to a Longitudinal gust'); xlabel('Time (s)');
ylabel('\Delta\delta_e(t) (deg)')
pp(gcf);print(gcf,'-dpdf','-bestfit','LonGustCLKEffort');
% Wrap into timeseries and obtain per second diff
tsulon = timeseries(ulon,t,'Name','Elevator Deflection');
tsulon = resample(tsulon,0:1:t(end));
ulonrate = max(diff(tsulon.Data)); % deg/s
fprintf('Maximum Elevator Deflection = %2.2f deg\n',max(ulon));
fprintf('Elevator Max Commanded Rate = %2.2f deg/s\n',ulonrate);
dPlon =
  -0.0165 + 0.0165i
  -0.0165 - 0.0165i
  -2.5543 + 2.5551i
  -2.5543 - 2.5551i
Klon =
   -0.0000
             0.0001
                      -0.4746 -0.1287
_____
ClosedLoop Response to a Longitudinal Gust
______
ClosedLoop I.C. Response to a Longitudinal gust Delta u:
   SettlingTime: 311.8141
            Min: -37.2775
        MinTime: 52.2124
            Max: 10
        MaxTime: 0
ClosedLoop I.C. Response to a Longitudinal gust Delta w:
   SettlingTime: 210.5334
            Min: -16.9671
        MinTime: 1.4063
            Max: 23.6782
        MaxTime: 0.1803
ClosedLoop I.C. Response to a Longitudinal gust Delta q:
   SettlingTime: 1.4467
            Min: -0.0320
        MinTime: 0.5409
            Max: 0.0873
        MaxTime: 0
ClosedLoop I.C. Response to a Longitudinal gust Delta theta:
   SettlingTime: 213.9027
            Min: -0.0077
        MinTime: 122.7424
            Max: 0.0953
```

```
MaxTime: 0.2163

Maximum Elevator Deflection = 2.96 deg

Elevator Max Commanded Rate = 0.34 deg/s
```

Lateral Stability Augmentation System (SAS)

Lateral Dynamics full state-feedback SAS

```
dzetaDR = 0.707; % Desired DutchRoll damping
dwnDR = 1; % Desired DutchRoll Natural Frequency
% Desired Poles
sprialP = -0.4;
dPlat = [...]
   dwnDR*(-dzetaDR + 1i*sqrt(1-dzetaDR^2));
   dwnDR*(-dzetaDR - 1i*sqrt(1-dzetaDR^2));
   Dlat(3); % Keep the Roll-Subsidance as it is
   sprialP;
   1
% Pole Placement
Klat = place(Alat,Blat,dPlat)
% Obtain ClosedLoop
GlatCL = ss(Alat-Blat*Klat,Blat,eye(4),0);
GlatCL.StateName = {'\Delta\beta','\Deltap','\Deltar','\Delta\phi'};
GlatCL.OutputName = {'\Delta\beta','\Deltap','\Deltar','\Delta\phi'};
GlatCL.InputName = {'\Delta\delta_a','\Delta\delta_r'};
% Analysis
fprintf('ClosedLoop Lateral-directional response to a cross-wind
perturbation\n');
fprintf('-----
figN = figN+1;figure(figN);clf;
x0lat = deg2rad([5;5;5;10]);
initial(GlatCL,x0lat);[y,t] = initial(GlatCL,x0lat);Ip =
lsiminfo(y,t);
title('ClosedLoop Response to a Lateral cross-wind perturbation');
L = findobj(gcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b';end
pp(gcf);print(gcf,'-dpdf','-fillpage','LatGustCL');
for i = 1:numel(Ip)
   fprintf('ClosedLoop I.C. Response to a Lateral cross-wind
perturbation %s:\n',...
       StateNames{i});
   disp(Ip(i))
end
% Control Effort
ulatdeltaa = zeros(length(y),1);
```

```
ulatdeltar = zeros(length(y),1);
for i = 1:length(y)
   ulatdeltaa(i) = -Klat(1,:)*y(i,:)';
   ulatdeltar(i) = -Klat(2,:)*y(i,:)';
end
ulatdeltaa = rad2deg(ulatdeltaa);ulatdeltar = rad2deg(ulatdeltar);
figN = figN+1;figure(figN);clf;
plot(t,ulatdeltaa,'b',t,ulatdeltar,'r');
legend('\Delta\delta_a','\Delta\delta_r');
title('Control Effort to a Lateral-directional cross-wind
perturbation');
xlabel('Time (s)');ylabel('Control Effort (deg)');
pp(qcf);print(qcf,'-dpdf','-bestfit','LatGustCLKEffort');
% Wrap into timeseries and obtain per second diff
tsulatdeltaa = timeseries(ulatdeltaa,t,'Name','Elevator Deflection');
tsulatdeltaa = resample(tsulatdeltaa,0:1:t(end));
ulatdeltaarate = max(diff(tsulatdeltaa.Data)); % deg/s
fprintf('Maximum Ailerons Deflection = %2.2f deq\n', max(ulatdeltaa));
fprintf('Ailerons Max Commanded Rate = %2.2f deg/s\n',ulatdeltaarate);
tsulatdeltar = timeseries(ulatdeltar,t,'Name','Elevator Deflection');
tsulatdeltar = resample(tsulatdeltar,0:1:t(end));
ulatdeltarrate = max(diff(tsulatdeltar.Data)); % deq/s
fprintf('Maximum Rudder Deflection = %2.2f deg\n',max(ulatdeltar));
fprintf('Rudder Max Commanded Rate = %2.2f deg/s\n',ulatdeltarrate);
dPlat =
  -0.7070 + 0.7072i
  -0.7070 - 0.7072i
  -1.0236 + 0.0000i
  -0.4000 + 0.0000i
Klat =
            0.0140
   0.1967
                     0.0248
                                0.0139
   -1.4592
            -0.0002
                     -0.1562
                                0.0020
______
ClosedLoop Lateral-directional response to a cross-wind perturbation
______
ClosedLoop I.C. Response to a Lateral cross-wind perturbation Delta u:
   SettlingTime: 4.6681
            Min: -0.0079
        MinTime: 2.6995
            Max: 0.0873
        MaxTime: 0
ClosedLoop I.C. Response to a Lateral cross-wind perturbation Delta w:
   SettlingTime: 11.3224
            Min: -0.0434
        MinTime: 2.1596
            Max: 0.0873
        MaxTime: 0
ClosedLoop I.C. Response to a Lateral cross-wind perturbation Delta q:
   SettlingTime: 4.4540
            Min: -0.0019
        MinTime: 4.0492
```

```
Max: 0.0873
MaxTime: 0

ClosedLoop I.C. Response to a Lateral cross-wind perturbation Delta theta:
SettlingTime: 11.5438
Min: 2.5871e-04
MinTime: 18.5364
Max: 0.1993
MaxTime: 0.6299

Maximum Ailerons Deflection = 0.02 deg
Ailerons Max Commanded Rate = 0.90 deg/s

Maximum Rudder Deflection = 8.06 deg

Rudder Max Commanded Rate = 0.27 deg/s
```

Longitudinal ClosedLoop Eigenvalues

```
fprintf('==========\n');
fprintf('Longitudinal ClosedLoop Eigen Analysis\n');
fprintf('=======|n');
[VlonCL,DlonCL] = eig(GlonCL.A);DlonCL = diag(DlonCL);
Eigenvalues = DlonCL %#ok<*NOPTS,*NASGU>
% Normalize evecs by theta direction and non-dimensionalize
for ii = 1:4
   VlonCL(:,ii) = VlonCL(:,ii)./(VlonCL(4,ii));
end
VlonCL(1,:) = VlonCL(1,:)/u0;
VlonCL(2,:) = VlonCL(2,:)/u0;
VlonCL(3,:) = VlonCL(3,:)*(cbar/2/u0);
EigenvectorsMagnitude = abs(VlonCL)
EigenvectorsPhase = angle(VlonCL)
lamsp = DlonCL(1:2);
disp('### Short Period Mode:')
Tsp = 2*pi/imag(lamsp(1));
wnsp = sqrt(lamsp(1)*lamsp(2));
zetasp = -(lamsp(1)+lamsp(2))/2/wnsp;
disp(['Period: ' num2str(Tsp) ' seconds'])
disp(['Natural Frequency: ' num2str(wnsp) ' rad/s'])
disp(['Damping Ratio: ' num2str(zetasp)])
lamp = DlonCL(3:4);
disp('### Long Period (Phugoid) Mode:')
Tp = 2*pi/imag(lamp(1));
wnp = sqrt(lamp(1)*lamp(2));
zetap = -(lamp(1)+lamp(2))/2/wnp;
disp(['Period: ' num2str(Tp) ' seconds'])
disp(['Natural Frequency :' num2str(wnp) ' rad/s'])
disp(['Damping Ratio: ' num2str(zetap)]);
fprintf(newline);
_____
Longitudinal ClosedLoop Eigen Analysis
```

15

```
Eigenvalues =
 -2.5543 + 2.5551i
 -2.5543 - 2.5551i
 -0.0165 + 0.0165i
  -0.0165 - 0.0165i
EigenvectorsMagnitude =
                              0.7870
   0.0113
           0.0113
                   0.7870
   1.0386
            1.0386
                     0.0991
                            0.0991
                   0.0001
           0.0096
   0.0096
                              0.0001
   1.0000
                            1.0000
            1.0000
                     1.0000
EigenvectorsPhase =
   0.7230
           -0.7230
                     1.1609
                             -1.1609
                   2.8561
                             -2.8561
   0.0638 -0.0638
   2.3560
           -2.3560
                     2.3560
                              -2.3560
        0
                 0
                          0
                                   Ω
### Short Period Mode:
Period: 2.4591 seconds
Natural Frequency: 3.6129 rad/s
Damping Ratio: 0.707
### Long Period (Phugoid) Mode:
Period: 381.7756 seconds
Natural Frequency :0.023271 rad/s
Damping Ratio: 0.707
```

Lateral ClosedLoop Eigenvalues

```
fprintf('======\n');
fprintf('Lateral ClosedLoop Eigen Analysis\n');
fprintf('=========\n');
[VlatCL,DlatCL] = eig(GlatCL.A);DlatCL = diag(DlatCL);
Eigenvalues = DlatCL
% Normalize evecs by phi direction and non-dimensionalize
for ii = 1:4
   VlatCL(:,ii) = VlatCL(:,ii)./(VlatCL(4,ii));
Vlon(1,:) = Vlon(1,:)*(b/2/u0);
Vlon(2,:) = Vlon(2,:)/u0;
Vlon(3,:) = Vlon(3,:)/u0;
EigenvectorsMagnitude = abs(Vlat)
EigenvectorsPhase = angle(Vlat)
dutchr = DlatCL(1:2);
disp('### Dutch Roll Mode:')
Tp = 2*pi/imag(dutchr(1));
wnd = sqrt(dutchr(1)*dutchr(2));
zetad = -(dutchr(1)+dutchr(2))/2/wnd;
disp(['Period: ' num2str(Tp) ' seconds'])
disp(['Natural Frequency : ' num2str(wnd) ' rad/s'])
disp(['Damping Ratio: ' num2str(zetad)]);
```

```
% ClosedLoop Eigenvalue Plot
fiqN = fiqN+1;fiqure(fiqN);clf;
subplot(3,2,[1 2 3 4]);hold on;box on;grid on;
plt1 = plot(real(DlonCL(1:2)),imag(DlonCL(1:2)),'bs',...
real(DlonCL(3:4)),imag(DlonCL(3:4)),'b^','MarkerSize',10,'LineWidth',2);
plt2 =
plot(real(DlatCL(1:2)),imag(DlatCL(1:2)),'r*',real(DlatCL(3)),imag(DlatCL(3)),...
  'ro',real(DlatCL(4)),imag(DlatCL(4)),'rx','MarkerSize',10,'LineWidth',2);
title('Longitudinal and Lateral ClosedLoop
Eigenvalues','FontSize',14);
xlabel('Real(\lambda)','FontSize',14);
ylabel('Imag(\lambda)','FontSize',14);
% Put a Ractangle
r = rectangle('Position', [-0.1 -0.5 0.20]
1],'LineStyle','--','LineWidth',1);
% Put a new axis for zoomed plot
subplot(3,2,5);
box on; hold on; grid on;
plt3 =
plot(real(DlonCL(3:4)),imag(DlonCL(3:4)),'b^','MarkerSize',10,'LineWidth',2);
title('Zoomed Plot Near Origin', 'FontSize', 14); ylim([-0.04 0.04]);
xlabel('Real(\lambda)','FontSize',14);
ylabel('Imag(\lambda)','FontSize',14);
% Legend plot
sh=subplot(3,2,6);
p=get(sh,'position');
lh=legend(sh,[plt1; plt2],...
    'Short Period Mode', 'Long Period (Phugoid) Mode',...
    'Dutch Roll Mode', 'Roll Subsidence Mode', 'Spiral
Mode','FontSize',12);
set(lh,'position',p);
axis(sh,'off');
print(gcf,'-dpdf','-fillpage','EigenValuesCL');
______
Lateral ClosedLoop Eigen Analysis
Eigenvalues =
  -0.7070 + 0.7072i
  -0.7070 - 0.7072i
  -1.0236 + 0.0000i
  -0.4000 + 0.0000i
EigenvectorsMagnitude =
   18.6838
                       0.0024
                                 0.0003
            18.6838
    3.3331
             3.3331
                       1.0236
                                 0.0010
                                 0.0166
   62.2004
           62.2004
                       0.0144
    1.0000
             1.0000
                       1.0000
                                 1.0000
EigenvectorsPhase =
             0.6144
   -0.6144
                       3.1416
                                      0
```

```
1.6175 -1.6175 3.1416 0
-2.1765 2.1765 0 0
0 0 0 0
### Dutch Roll Mode:
Period: 8.8844 seconds
Natural Frequency: 1 rad/s
Damping Ratio: 0.707
```

All OpenLoop and ClosedLoop Eigenvalue plot

```
figN = figN+1;figure(figN);clf;
subplot(3,2,[1 2 3 4]); hold on; box on; grid on;
% Plot OpenLoop
plt1 = plot(real(Dlon(1:2)),imag(Dlon(1:2)),'cs',...
 real(Dlon(3:4)),imag(Dlon(3:4)),'c^','MarkerSize',10,'LineWidth',2);
 plot(real(Dlat(1:2)),imag(Dlat(1:2)),'c*',real(Dlat(3)),imag(Dlat(3)),...
  'co',real(Dlat(4)),imag(Dlat(4)),'cx','MarkerSize',10,'LineWidth',2);
% Plot CloseLoop
plt3 = plot(real(DlonCL(1:2)),imag(DlonCL(1:2)),'ms',...
 real(DlonCL(3:4)),imag(DlonCL(3:4)),'m^','MarkerSize',10,'LineWidth',2);
plt4 =
 plot(real(DlatCL(1:2)), imag(DlatCL(1:2)), 'm*', real(DlatCL(3)), imag(DlatCL(3)),...
  'mo',real(DlatCL(4)),imag(DlatCL(4)),'mx','MarkerSize',10,'LineWidth',2);
title('Longitudinal and Lateral Eigenvalues', 'FontSize', 14);
xlabel('Real(\lambda)','FontSize',14);
ylabel('Imag(\lambda)','FontSize',14);
% Put a Ractangle
r = rectangle('Position', [-0.1 -0.5 0.20]
 1], 'LineStyle', '--', 'LineWidth',1);
% Put a new axis for zoomed plot
subplot(3,2,5);
box on; hold on; grid on;
plt5 =
plot(real(Dlon(3:4)),imag(Dlon(3:4)),'c^','MarkerSize',10,'LineWidth',2);
plt6 =
 plot(real(Dlat(4)),imag(Dlat(4)),'cx','MarkerSize',10,'LineWidth',2);
plt7 =
plot(real(DlonCL(3:4)),imag(DlonCL(3:4)),'m^','MarkerSize',10,'LineWidth',2);
title('Zoomed Plot Near Origin', 'FontSize', 14); ylim([-0.04 0.04]);
xlabel('Real(\lambda)','FontSize',14);
ylabel('Imag(\lambda)','FontSize',14);
% Legend plot
sh=subplot(3,2,6);
```

```
p=get(sh,'position');
lh=legend(sh,[plt1; plt2; plt3; plt4],...
    'Short Period Mode (OL)','Phugoid Mode (OL)',...
    'Dutch Roll Mode (OL)','Roll Subsidence Mode (OL)','Spiral Mode
(OL)',...
    'Short Period Mode (CL)','Phugoid Mode (CL)',...
    'Dutch Roll Mode (CL)','Roll Subsidence Mode (CL)','Spiral Mode
(CL)','FontSize',12);
set(lh,'position',p);
axis(sh,'off');
print(gcf,'-dpdf','-fillpage','EigenValuesCombined');
```

ClosedLoop Response to Pilot Step Command

```
fprintf('========\n');
fprintf('ClosedLoop Response to Pilot Step Command\n');
fprintf('========\n');
% Elevator
figN = figN+1;figure(figN);clf;
step(GlonCL,opt);grid on;title('ClosedLoop Elevator Step Response')
[y,t] = step(GlonCL,opt);
S = stepinfo(y,t);
StateNames = {'Delta u','Delta w','Delta q','Delta theta'};
for i = 1:numel(S)
    fprintf('Elevator Stepinfo Data for Longitudinal State %s:
\n',StateNames{i});
   disp(S(i))
end
L = findobj(gcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b';end
pp(gcf);print(gcf,'-dpdf','-fillpage','LonStepRespCL');
% Ailerons
figN = figN+1;figure(figN);clf;
step(GlatCL(:,1),opt);grid on;title('ClosedLoop Ailerons Step
Response')
[y,t] = step(GlatCL(:,1),opt);
S = stepinfo(y,t);
StateNames = { 'Delta beta', 'Delta p', 'Delta r', 'Delta phi' };
for i = 1:numel(S)
    fprintf('Ailerons Stepinfo Data for Lateral State %s:
\n',StateNames{i});
   disp(S(i))
end
L = findobj(gcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b';end
pp(gcf);print(gcf,'-dpdf','-fillpage','LatStepRespCL1');
% Rudder
fiqN = fiqN+1;figure(fiqN);clf;
step(GlatCL(:,2),opt);grid on;title('ClosedLoop Rudder Step Response')
[y,t] = step(GlatCL(:,2),opt);
```

```
S = stepinfo(y,t);
StateNames = {'Delta beta', 'Delta p', 'Delta r', 'Delta phi'};
for i = 1:numel(S)
    fprintf('Rudder Stepinfo Data for Longitudinal State %s:
\n',StateNames{i});
   disp(S(i))
end
L = findobj(qcf, 'Type', 'line'); for i = 1:numel(L), L(i).Color
= 'b';end
pp(gcf);print(gcf,'-dpdf','-fillpage','LatStepRespCL2');
_____
ClosedLoop Response to Pilot Step Command
_____
Elevator Stepinfo Data for Longitudinal State Delta u:
       RiseTime: 89.2959
   SettlingTime: 251.2917
    SettlingMin: 86.5507
    SettlingMax: 100.6451
      Overshoot: 4.6651
     Undershoot: 0
           Peak: 100.6451
       PeakTime: 179.8948
Elevator Stepinfo Data for Longitudinal State Delta w:
       RiseTime: 0.2593
   SettlingTime: 205.7061
    SettlingMin: -12.9552
    SettlingMax: -3.0246
      Overshoot: 116.1086
     Undershoot: 0
           Peak: 12.9552
       PeakTime: 1.1899
Elevator Stepinfo Data for Longitudinal State Delta q:
       RiseTime: 3.8149e-05
    SettlingTime: 43.4213
    SettlingMin: -0.0113
    SettlingMax: 2.1747e-04
      Overshoot: 2.9050e+05
     Undershoot: 5.5743e+03
           Peak: 0.0113
       PeakTime: 0.3245
Elevator Stepinfo Data for Longitudinal State Delta theta:
       RiseTime: 9.5398
    SettlingTime: 307.0416
    SettlingMin: -0.0414
    SettlingMax: -0.0187
      Overshoot: 98.8294
     Undershoot: 0
           Peak: 0.0414
       PeakTime: 59.5503
Ailerons Stepinfo Data for Lateral State Delta beta:
       RiseTime: 3.2823
   SettlingTime: 9.9187
    SettlingMin: 0.0042
```

```
SettlingMax: 0.0047
       Overshoot: 0
      Undershoot: 58.1731
            Peak: 0.0047
        PeakTime: 19.6162
Ailerons Stepinfo Data for Lateral State Delta p:
        RiseTime: 5.3448e-04
    SettlingTime: 12.3828
     SettlingMin: 1.5785e-04
     SettlingMax: 0.1347
       Overshoot: 8.5245e+04
      Undershoot: 0
            Peak: 0.1347
        PeakTime: 1.5297
Ailerons Stepinfo Data for Lateral State Delta r:
        RiseTime: 7.3388
   SettlingTime: 11.3723
     SettlingMin: 0.0087
     SettlingMax: 0.0096
       Overshoot: 0
      Undershoot: 0
            Peak: 0.0096
        PeakTime: 19.6162
Ailerons Stepinfo Data for Lateral State Delta phi:
        RiseTime: 6.1196
   SettlingTime: 10.9392
     SettlingMin: 0.5545
     SettlingMax: 0.6147
       Overshoot: 0
      Undershoot: 0
            Peak: 0.6147
        PeakTime: 19.6162
Rudder Stepinfo Data for Longitudinal State Delta beta:
        RiseTime: 2.2067
   SettlingTime: 5.8368
     SettlingMin: 0.0567
     SettlingMax: 0.0644
       Overshoot: 3.7150
      Undershoot: 0
            Peak: 0.0644
        PeakTime: 4.4991
Rudder Stepinfo Data for Longitudinal State Delta p:
        RiseTime: 5.1486e-04
    SettlingTime: 12.3587
     SettlingMin: 2.2431e-05
     SettlingMax: 0.0193
       Overshoot: 8.6067e+04
      Undershoot: 0
            Peak: 0.0193
        PeakTime: 1.4397
Rudder Stepinfo Data for Longitudinal State Delta r:
        RiseTime: 0.0930
   SettlingTime: 6.7427
     SettlingMin: -0.0305
```

SettlingMax: -0.0058 Overshoot: 372.7876

Undershoot: 0

Peak: 0.0305 PeakTime: 1.2598

Rudder Stepinfo Data for Longitudinal State Delta phi:

RiseTime: 6.1355
SettlingTime: 10.9376
SettlingMin: 0.0788
SettlingMax: 0.0874
Overshoot: 0
Undershoot: 0

Peak: 0.0874 PeakTime: 19.6162

Published with MATLAB® R2018b