ROHAN V KASHYAP

Indian Institute of Science, Bangalore

+91 9632145522 || rohanvkashvap.github.io || linkedin.com/in/rohanvkashvap || github.com/RohanVKashvap

EDUCATION

Bangalore Institute of Technology

August 2016 - August 2020

Bachelor of Engineering in Electronics and Communication Engineering

GPA: 8.81/10 / Rank: 5/180

Advisor: Dr. Narendra C.P. Research: Gaussian Process and Neural Networks using limit theorems.

PUBLICATIONS

Pavan S.K.*, Rohan V Kashyap*, Prathosh A.P. Neural discovery of permutation subgroups. Artificial Intelligence and Statistics (AISTATS) 2023. [Paper]

Pavan S.K.*, Rohan V Kashyap*, Prathosh A.P, Aditya Gopalan. A Unified Framework for Discovering Discrete Symmetries. Artificial Intelligence and Statistics (AISTATS) 2024 (under review). [Paper]

Rohan V Kashyap. A Survey of Deep Learning Optimizers – First and Second Order Methods. IEEE Transactions on Neural Networks and Learning Systems (under review). [Paper

Rohan V Kashyap*, Vivek V Kashyap, Narendra C.P. GPT–Neo for Commonsense Reasoning - a Theoretical and Practical lens. ACM Transactions on Audio, Speech and Language Processing (under review). [Paper]

EXPERIENCE

Indian Institute of Science

Bangalore, India

Research Assistant, Deep Representation Learning Lab, Advisor: Dr. Prathosh A.P.

Jan 2022 - Present

- Designed and implemented novel methodologies to incorporate invariance symmetries into neural networks. We provide strong theoretical results for discovering permutation, cyclic and dihedral groups when the underlying group is unknown; **accepted** at AISTATS 2023.
- Proposed a unified architecture for automatic symmetry discovery of discrete groups using tensor-valued functions in a multi-armed bandit setting. We devised a theoretical framework to handle invariance symmetries for a generic class of permutation subgroups and product groups with 95% accuracy; **under review** at AISTATS 2024.
- Conducted research on the analysis of orbit separation of group symmetries using invariant polynomial rings and devised a novel methodology to learn matrix lie groups using their corresponding lie subalgebras for equivariant MLPs.
- Working on single-step dataset condensation methods (1-example per-class) using diffusion-based models. We utilize the probability-flow ODE trajectories and the consistency distillation objective for high-resolution sample generation on the ImageNet, CIFAR-10 and LSUN dataset.

Gupshup Bangalore, India

Machine Learning Engineer

Jan 2021 - Dec 2021

- Migrated workflows to AWS SageMaker Studio for Transformer-based models (BERT, GPT-2) using large-scale EC2 servers for data processing, model training, batch predictions on GPU's and deployed model endpoints using AWS lambda.
- Implemented GraphSAGE graph neural networks (GNN) using the Deep Graph Library (DGL) and PyTorch for handling prompt queries and aggregating relevant semantic parsers from web crawls with a recall @3 (R@3) of 0.223.
- Designed and evaluated sparse attention-based Transformer models (Reformer) for adaptive transfer learning on question-answering, autocompletion and later devised a model distillation procedure with a 22.3% increase in model perplexity.

Needl.AI Bangalore, India

Research Intern, Advisor: Vikram Srinivasan

Mar 2020 - Nov 2020

- Worked on BERT model optimization for reduced latency and accelerated inference on GPU's using adaptive model pruning and knowledge distillation to obtain a 5x smaller model size for numerous NLP tasks with 94% accuracy.
- Investigated meta-learning and unsupervised domain adaptation of language models (LMs) using a plug-and-play crosslingual decoder model for efficient feature-transfer using custom financial dataset on downstream tasks.

Honeywell Bangalore, India

Research Intern

July 2019 - Aug 2019

· Implemented the facial recognition task using GANs which was successfully integrated into the product pipeline.

TEACHING EXPERIENCE

• Provided office hours, designed and graded assignments and quizzes for 3 consecutive semesters for the following graduate-level courses: Advanced Deep Representation Learning (Fall 2022, Fall 2023 (current); Dr. Prathosh A.P.) and Pattern Recognition and Neural Networks (Spring 2023; Dr. Prathosh A.P.).

ACHIEVEMENTS

- First student in the VTU University to secure 100/100 in Signals and Systems (Fourth Semester).
- Selected for Google's Tensorflow Dev Summit at Sunnyvale, California (2020).
- Selected for AI Summer School Workshop at IIT Madras Research Park (2019).
- · Served as a reviewer for AISTATS and NeurIPS conferences under Prof. Prathosh A.P.
- Selected for the AIS Lie groups and Lie algebras 2023 workshop conducted in the Department of Mathematics, Indian Institute of Science (IISc), India.

RESEARCH PROJECTS

Group Equivariance for Matrix Lie groups / Advisor: Dr. Prathosh A.P., Dr. Aditya Gopalan

- Implemented Group Equivariant neural network for discovering simply-connected lie groups using their correspondence with the finite-dimensional representations of the lie subalgebra.
- Examined the equivariant MLP and L-conv architectures for model implementation and obtained interpretable lie algebra basis representations for SO(3), SO(1, 3)+, SE(2) and the affine group.

Generalized Flow-based models / Advisor: Dr. Prathosh A.P.

- Examined continuous normalizing flows (CNF) and diffusion-based models for supervised training using generalized probability path trajectories to study its influence on the number of inference steps against sample-quality for image generation tasks.
- Investigated the sampling path trajectories of the score function for these models using a gaussian source distribution in both the class-conditional and unconditional setting with an FID of 6.72 on the ImageNet (32*32) dataset.

TECHNICAL SKILLS

- Languages: Python, C++
- **Libraries**: Pytorch, Tensorflow, Scikit-learn
- Software: Git, Docker, AWS Cloud
- **IISc Coursework**: Probability Theory (MA 361), Real Analysis (MA 221), Abstract Algebra (MA 212), Differential Manifolds (MA 235), Advanced Deep Representation Learning (E1-285).

BLOGS

Group Equivariance for Matrix Lie groups.

[Article]

· Score-based generative modeling.

[Article]