WEBSITE TRAFFIC ANALYSIS

ADVANCE VISUALIZATION USING IBM COGNOS

PHASE 4: DEVELOPMENTPART 2

STEP1: Creating Dashboard

Create the dashboard with dataset.

STEP 2: Using Google colab

Out[1]:

	Row	Day	Day.Of.Week	Page.Loads	Unique.Visits	First.Time.Visits	Returning.Visits
Date							
2014-09-14	1	Sunday	1	2146	1582	1430	152
2014-09-15	2	Monday	2	3621	2528	2297	231
2014-09-16	3	Tuesday	3	3698	2630	2352	278
2014-09-17	4	Wednesday	4	3667	2614	2327	287
2014-09-18	5	Thursday	5	3316	2366	2130	236
			***			***	***
2020-08-15	2163	Saturday	7	2221	1696	1373	323
2020-08-16	2164	Sunday	1	2724	2037	1686	351
2020-08-17	2165	Monday	2	3456	2638	2181	457
2020-08-18	2166	Tuesday	3	3581	2683	2184	499
2020-08-19	2167	Wednesday	4	2064	1564	1297	267

Activ

```
In [3]:
whole_dataset.describe()
```

Out[3]:

	Row	Day.Of.Week	Page.Loads	Unique.Visits	First.Time.Visits	Returning.Visits
count	2167.000000	2167.000000	2167.000000	2167.000000	2167.000000	2167.000000
mean	1084.000000	3.997231	4116.989386	2943.646516	2431.824181	511.822335
std	625.703338	2.000229	1350.977843	977.886472	828.704688	168.736370
min	1.000000	1.000000	1002.000000	667.000000	522.000000	133.000000
25%	542.500000	2.000000	3114.500000	2226.000000	1830.000000	388.500000
50%	1084.000000	4.000000	4106.000000	2914.000000	2400.000000	509.000000
75%	1625.500000	6.000000	5020.500000	3667.500000	3038.000000	626.500000
max	2167.000000	7.000000	7984.000000	5541.000000	4616.000000	1036.000000

```
import matplotlib.pyplot as plt

fig, axs = plt.subplots(3, figsize=(12, 5))

axs[0].plot(whole_dataset['First.Time.Visits'])
axs[1].plot(whole_dataset['Unique.Visits'])
axs[2].plot(whole_dataset['Returning.Visits'])
plt.show()
```



```
In [5]:
    target_column = whole_dataset['Returning.Visits']
    target_column
```

```
Out[5]:
       Date
       2014-09-14
                   152
       2014-09-15
                    231
       2014-09-16
                    278
       2014-09-17
                   287
       2014-09-18
                   236
       2020-08-15
                    323
       2020-08-16
                    351
```

2020-08-17

2020-08-18

457

499

2020-08-19 267 Name: Returning.Visits, Length: 2167, dtype: int64

```
In [6]:
    target_column.plot(figsize=(15, 3))
    plt.show()
```



```
In [7]:
          len(target_column)
Out[7]:
       2167
In [8]:
       TEST_DATA_PERCENTAGE = 0.1
       TEST_DATA_BOUNDARY_INDEX = int((1 - TEST_DATA_PERCENTAGE) * len(target_column))
       print(f"Train data:\tReturning Visits [:{TEST_DATA_BOUNDARY_INDEX}] ({TEST_DATA_BOUNDARY_INDEX +
       1})")
       print(f"Test data:\tReturning Visits [{TEST_DATA_BOUNDARY_INDEX}:] ({len(target_column) - TEST_DATA_B
       OUNDARY_INDEX})")
       print(f"\nLast target on train data: {target_column[TEST_DATA_BOUNDARY_INDEX]}")
          Train data:
                                 Returning Visits [:1950] (1951)
                                  Returning Visits [1950:] (217)
          Test data:
          Last target on train data: 441
In [11]:
        target_column[TEST_DATA_BOUNDARY_INDEX-10:TEST_DATA_BOUNDARY_INDEX+10].values, (list(train_dataset)[-
        1][0][-1].numpy(), list(train_dataset)[-1][1][-1].numpy())
 Out[11]:
           (array([429, 423, 442, 464, 372, 253, 277, 515, 434, 394, 441, 413, 246,
                   314, 443, 484, 473, 490, 353, 249]),
            (array([277, 515, 434]), 394))
```

```
In [12]:
                                      test_dataset = timeseries_dataset_from_array(target_column[TEST_DATA_BOUNDARY_INDEX - WINDOW_SIZE:],
                                                                                                                                                                                                                                target_column[TEST_DATA_BOUNDARY_INDEX:],
                                                                                                                                                                                                                                  sequence_length=WINDOW_SIZE
                                      len(test_dataset), len(list(test_dataset.unbatch()))
    Out[12]:
                                     (2, 217)
  In [13]:
                                    target\_column[TEST\_DATA\_BOUNDARY\_INDEX-10:TEST\_DATA\_BOUNDARY\_INDEX+10]. \\ values, \ \ list(test\_dataset)[0] \\ list(test\_data
                                   [0][0].numpy(), list(test_dataset)[0][1][0].numpy()
  Out[13]:
                                   (array([429, 423, 442, 464, 372, 253, 277, 515, 434, 394, 441, 413, 246,
                                                               314, 443, 484, 473, 490, 353, 249]),
                                       array([515, 434, 394]),
                                       441)
In [14]:
                                 # First point in test dataset
                                 \underline{list}(\mathtt{test\_dataset})[\emptyset][\emptyset][\emptyset].\underline{numpy}(),\ \underline{list}(\mathtt{test\_dataset})[\emptyset][1][\emptyset].\underline{numpy}()
      Out[14]:
                                            (array([515, 434, 394]), 441)
  In [15]:
                                   # Last point in test dataset
                                   \underline{list}(\texttt{test\_dataset})[-1][\emptyset][-1].\underline{numpy}(), \ \underline{list}(\texttt{test\_dataset})[-1][1][-1].\underline{numpy}()
```

```
In [20]:
```

 $\verb|plot_time_series| (baseline_predictions.ravel(), start_index=1900)$

Out[15]:

(array([351, 457, 499]), 267)


```
In [21]:
    y_true = target_column[TEST_DATA_BOUNDARY_INDEX : ]
    len(y_true), y_true
```

```
Out[21]:
         (217,
         Date
         2020-01-16
                        441
         2020-01-17
                        413
         2020-01-18
                        246
         2020-01-19
                        314
         2020-01-20
                        443
         2020-08-15
                        323
         2020-08-16
                        351
         2020-08-17
                        457
         2020-08-18
                        499
         2020-08-19
                        267
         Name: Returning. Visits, Length: 217, dtype: int64)
```

```
In [22]:
         from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error
         def evaluate_predictions(y_true, y_preds):
             mae = mean_absolute_error(y_true, y_preds)
             mse = mean\_squared\_error(y\_true, y\_preds)
             rmse = np.sqrt(mse)
             mape = mean_absolute_percentage_error(y_true, y_preds)
             return {
                 'mae': mae,
                  'mse': mse,
                 "rmse": rmse,
                 "mape": mape
         evaluate_predictions(y_true, baseline_predictions)
          {'mae': 72.19815668202764,
           'mse': 8508.622119815669,
           'rmse': 92.24219273096054,
           'mape': 0.16713927858326993}
In [24]:
         evaluate_model(baseline_model)
Out[24]:
                                                                                                                  (=
          {'mae': 72.19815668202764,
          'mse': 8508.622119815669,
          'rmse': 92.24219273096054,
           'mape': 0.16713927858326993}
        800
         700
        600
        500
         400
         300
                                                                                      2020-Jul Activate Windows
                         2020-Jan
```

In [25]:

MODEL_METRICS

Out[25]:

	mae	mse	rmse	mape
model_0	72.198157	8508.62212	92.242193	0.167139

In [28]:
 evaluate_model(model_1)

Out[28]:

{'mae': 75.97736101985527, 'mse': 9384.529501460089, 'rmse': 96.8737812901927, 'mape': 0.16859899052082924}

In [29]:

MODEL_METRICS

Out[29]:

	mae	mse	rmse	mape
model_0	72.198157	8508.622120	92.242193	0.167139
model_1	75.977361	9384.529501	96.873781	0.168599

```
In [30]:
    unbatched_train_dataset = whole_dataset[:TEST_DATA_BOUNDARY_INDEX + 1].copy()
    unbatched_train_dataset
```

Out[30]:

	Row	Day	Day.Of.Week	Page.Loads	Unique.Visits	First.Time.Visits	Returning.Visits
Date							
2014-09-14	1	Sunday	1	2146	1582	1430	152
2014-09-15	2	Monday	2	3621	2528	2297	231
2014-09-16	3	Tuesday	3	3698	2630	2352	278
2014-09-17	4	Wednesday	4	3667	2614	2327	287
2014-09-18	5	Thursday	5	3316	2366	2130	236
2020-01-12	1947	Sunday	1	2762	2238	1961	277
2020-01-13	1948	Monday	2	4298	3242	2727	515
2020-01-14	1949	Tuesday	3	3838	2884	2450	434
2020-01-15	1950	Wednesday	4	3754	2864	2470	394
2020-01-16	1951	Thursday	5	3817	2951	2510	441

```
In [31]:
    dataset_by_day = unbatched_train_dataset.groupby(by=['Day'])
    dataset_by_day['Returning.Visits'].mean()
```

```
Out[31]:
```

Day
Friday 484.697842
Monday 606.512545
Saturday 306.071942
Sunday 390.573477
Thursday 584.627240
Tuesday 617.888889
Wednesday 614.369176

Name: Returning. Visits, dtype: float64

```
In [32]:
DAYS_OF_WEEK = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
pd.DataFrame(dataset_by_day['Returning.Visits'].mean()).loc[DAYS_OF_WEEK].plot(kind='bar')
```



```
In [33]:
    dataset_by_day['Returning.Visits'].hist(legend=True, alpha=0.5)
    plt.show()
```


Out[34]:

	Row	Day	Day.Of.Week	Page.Loads	Unique.Visits	First.Time.Visits	Returning.Visits	Month.Name
Date								
2014-09-14	1	Sunday	1	2146	1582	1430	152	September
2014-09-15	2	Monday	2	3621	2528	2297	231	September
2014-09-16	3	Tuesday	3	3698	2630	2352	278	September
2014-09-17	4	Wednesday	4	3667	2614	2327	287	September
2014-09-18	5	Thursday	5	3316	2366	2130	236	September

2020-01-12	1947	Sunday	1	2762	2238	1961	277	January
2020-01-13	1948	Monday	2	4298	3242	2727	515	January
2020-01-14	1949	Tuesday	3	3838	2884	2450	434	January
2020-01-15	1950	Wednesday	4	3754	2864	2470	394	January
2020-01-16	1951	Thursday	5	3817	2951	2510	441	January

1951 rows × 8 columns

A - 1 * - 1 - 1 A I* - 1