20210930_Supplier_Management_MB7

September 30, 2021

```
[4]: # Visualization of Data
     # shift + enter
[2]: # Install and import certain Packages
[3]: !pip install seaborn
    Requirement already satisfied: seaborn in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (0.11.1)
    Requirement already satisfied: scipy>=1.0 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from seaborn) (1.6.2)
    Requirement already satisfied: matplotlib>=2.2 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from seaborn) (3.3.4)
    Requirement already satisfied: pandas>=0.23 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from seaborn) (1.2.4)
    Requirement already satisfied: numpy>=1.15 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from seaborn) (1.19.5)
    Requirement already satisfied: kiwisolver>=1.0.1 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from
    matplotlib>=2.2->seaborn) (1.3.1)
    Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from
    matplotlib>=2.2->seaborn) (2.4.7)
    Requirement already satisfied: pillow>=6.2.0 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from
    matplotlib>=2.2->seaborn) (8.3.2)
    Requirement already satisfied: python-dateutil>=2.1 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from
    matplotlib>=2.2->seaborn) (2.8.1)
    Requirement already satisfied: cycler>=0.10 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from
    matplotlib>=2.2->seaborn) (0.10.0)
    Requirement already satisfied: six in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from
    cycler>=0.10->matplotlib>=2.2->seaborn) (1.15.0)
    Requirement already satisfied: pytz>=2017.3 in
    /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from pandas>=0.23->seaborn)
```

(2021.1)

```
[5]: import seaborn as sns # by calling seaborn as "sns" I am creating a variable

→ "sns",

# everytime I write "sns" Python understands "seaborn"
```

```
[6]: # load a dataset "anscombe"

anscombe = sns.load_dataset('anscombe') # shift + enter
```

[7]: print(anscombe)

	dataset	x	у
0	I	10.0	8.04
1	I	8.0	6.95
2	I	13.0	7.58
3	I	9.0	8.81
4	I	11.0	8.33
5	I	14.0	9.96
6	I	6.0	7.24
7	I	4.0	4.26
8	I	12.0	10.84
9	I	7.0	4.82
10	I	5.0	5.68
11	II	10.0	9.14
12	II	8.0	8.14
13	II	13.0	8.74
14	II	9.0	8.77
15	II	11.0	9.26
16	II	14.0	8.10
17	II	6.0	6.13
18	II	4.0	3.10
19	II	12.0	9.13
20	II	7.0	7.26
21	II	5.0	4.74
22	III	10.0	7.46
23	III	8.0	6.77
24	III	13.0	12.74
25	III	9.0	7.11
26	III	11.0	7.81
27	III	14.0	8.84
28	III	6.0	6.08
29	III	4.0	5.39
30	III	12.0	8.15
31	III	7.0	6.42
32	III	5.0	5.73
33	IV	8.0	6.58
34	IV	8.0	5.76

```
36
                        8.84
             ΙV
                  8.0
     37
                        8.47
             ΙV
                  8.0
     38
             ΙV
                  8.0
                        7.04
     39
                  8.0
                        5.25
             ΙV
     40
             ΙV
                19.0 12.50
     41
             ΙV
                  8.0
                        5.56
     42
             ΙV
                  8.0
                        7.91
     43
             ΙV
                  8.0
                        6.89
 [8]: # create a subset of the dataset
      # we choose the data only from class I
      dataset_1 = anscombe[anscombe['dataset'] == 'I']
 [9]: print(dataset_1)
        dataset
                    X
                           У
     0
              I 10.0
                        8.04
     1
              Ι
                  8.0
                        6.95
     2
              Ι
                13.0
                        7.58
     3
              Ι
                  9.0
                        8.81
     4
              I 11.0
                        8.33
              I 14.0
     5
                        9.96
     6
                  6.0
                        7.24
              Ι
     7
              Ι
                  4.0
                        4.26
     8
                12.0 10.84
              Ι
     9
              Ι
                  7.0
                        4.82
                        5.68
     10
              Ι
                  5.0
[10]: # for visualization we use also "matplotlib"
      !pip install matplotlib
      import matplotlib.pyplot as plt
     Requirement already satisfied: matplotlib in
     /Users/h4/opt/anaconda3/lib/python3.8/site-packages (3.3.4)
     Requirement already satisfied: cycler>=0.10 in
     /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from matplotlib) (0.10.0)
     Requirement already satisfied: python-dateutil>=2.1 in
     /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from matplotlib) (2.8.1)
     Requirement already satisfied: numpy>=1.15 in
     /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from matplotlib) (1.19.5)
     Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in
     /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from matplotlib) (2.4.7)
     Requirement already satisfied: pillow>=6.2.0 in
     /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from matplotlib) (8.3.2)
```

7.71

35

ΙV

8.0

Requirement already satisfied: kiwisolver>=1.0.1 in /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from matplotlib) (1.3.1) Requirement already satisfied: six in /Users/h4/opt/anaconda3/lib/python3.8/site-packages (from cycler>=0.10->matplotlib) (1.15.0)

```
[12]: # by default plt plots a 2D line
plt.plot(dataset_1['x'], dataset_1['y'])
```

[12]: [<matplotlib.lines.Line2D at 0x7fcdcfd4a280>]


```
[15]: # change the plot to a scatterplot (points)

plt.plot(dataset_1['x'], dataset_1['y'],'o')
```

[15]: [<matplotlib.lines.Line2D at 0x7fcdd00a5c70>]

```
[16]: # Excercise. Please represent following dataset graphically:
      dataset_2 = anscombe[anscombe['dataset'] == 'II']
      dataset_3 = anscombe[anscombe['dataset'] == 'III']
      dataset_4 = anscombe[anscombe['dataset'] == 'IV']
[17]: # representation of statistical datsets
[18]: tips = sns.load_dataset('tips')
[19]: print(tips.head()) # if I call "head()" then I get only the first 5 positions
        total bill
                     tip
                             sex smoker
                                         day
                                                time
                                                      size
     0
             16.99 1.01 Female
                                         Sun Dinner
                                                         2
                                     No
     1
             10.34 1.66
                            Male
                                              Dinner
                                                         3
                                     No
                                         Sun
             21.01 3.50
                                                         3
     2
                            Male
                                              Dinner
                                     No
                                         Sun
     3
             23.68 3.31
                            Male
                                     No
                                         Sun Dinner
                                                         2
             24.59 3.61 Female
                                     No
                                         Sun Dinner
[20]: # Histogram (1 Variable representation)
[24]: # Example: plot the frequency of Total_Bills
      fig = plt.figure() # reserve some memory for the plot by creating a variable
      axes1 = fig.add_subplot(1,1,1) # created a mosaic of 1 picture
```

```
axes1.hist(tips['total_bill'], bins=100) # we tell Python to plot a Histogram

→of the colum

# "total_bill" with 100 groups

axes1.set_title('Histogram of Total Bill') # Title of the histogram

axes1.set_xlabel('Frequency') # label for x-Axis

axes1.set_ylabel('Total Bill') # label for y-Axis

fig.show() # show the Figure # shift+Enter
```

<ipython-input-24-d7d273859594>:10: UserWarning: Matplotlib is currently using
module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot
show the figure.

fig.show()

show the Figure # shift+Enter


```
[25]: # Scatterplot (2 Variable representation)
```

```
[26]: # Example: Total Bill (x-axis) and Tip (y-axis)

scatter_plot = plt.figure()
axes1 = scatter_plot.add_subplot(1,1,1)
axes1.scatter(tips['total_bill'], tips['tip'])
axes1.set_title('Scatterplot of Total Bill vs Tip')
axes1.set_xlabel('Total Bill')
axes1.set_ylabel('Tip')
```

```
scatter_plot.show()
```

<ipython-input-26-5a3fa8c26df1>:9: UserWarning: Matplotlib is currently using
module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot
show the figure.

scatter_plot.show()


```
[27]: # Boxplots (Plot one categorical variable and a numerical variable)
```

<ipython-input-30-2f1e27df3786>:11: UserWarning: Matplotlib is currently using
module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot
show the figure.

boxplot.show()


```
[31]: # Excercise. Represent several Boxplots Tip vs. "smoker", "time", "day"

[32]: # Multivariate Datasets (many variables in one plot)

[33]: # Example: Scatterplot the total bill vs. tip, colored by Sex and Sized by → Amount

[34]: # First we need to re-code "sex" to a numerical variable (!)

def recode_sex(sex):
    if sex=='Female':
        return 0
    else:
        return 1

# if the variable "sex" is Female, then transform it to a "0", otherwise → transform it to "1"

[35]: # we add a column to our dataset with the sex re-coded

tips['sex_color'] = tips['sex'].apply(recode_sex) # here we apply the function → "recode_sex"
```

```
# to the column "sex" of
       \hookrightarrow tips
[36]: print(tips.head())
        total bill
                     tip
                             sex smoker day
                                                time size sex color
     0
             16.99 1.01 Female
                                     No
                                         Sun Dinner
                                                          2
                                     No Sun Dinner
     1
             10.34 1.66
                            Male
                                                          3
                                                                    1
     2
             21.01 3.50
                            Male
                                     No
                                         Sun Dinner
                                                          3
                                                                    1
     3
             23.68 3.31
                            Male
                                     No Sun Dinner
                                                          2
                                                                    1
     4
             24.59 3.61 Female
                                     No Sun Dinner
                                                                    0
[37]: # Excercise: recode the variables "smoker", "day", "time" so that you get
       \rightarrownumerical variables
[41]: scatter_plot = plt.figure()
      axes1 = scatter_plot.add_subplot(1,1,1)
      axes1.scatter(x = tips['total_bill'],
                   y = tips['tip'],
                   s = tips['tip']*20, # size
                   c = tips['sex_color'], # color
                   alpha = 0.4) # transparency
      axes1.set_title('Total Bill vs Tip Colored by Sex and Sized by Amount')
      axes1.set_xlabel('Total Bill')
      axes1.set_ylabel('Tip')
      scatter_plot.show()
```

<ipython-input-41-b567227f7fea>:11: UserWarning: Matplotlib is currently using
module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot
show the figure.

scatter_plot.show()


```
[42]: # Excercise: represent Total Bill vs. Tip by daytime
    # Excercise: represent Total Bill vs. Tip by smoker

[44]: # Represent two plots in one figure

[45]: # Example: epresentation of Histogram with a Density Plot (Density function)

[47]: hist, ax = plt.subplots()
    ax = sns.distplot(tips['total_bill']) # density plot + histogram
    ax.set_title('Total Bill Histogram with Density Plot')
    plt.show()
```

/Users/h4/opt/anaconda3/lib/python3.8/sitepackages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a
deprecated function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar flexibility)
or `histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)


```
[48]: hist, ax = plt.subplots()
ax = sns.distplot(tips['total_bill'], hist=False) # density plot without

→ histogram

ax.set_title('Total Bill Histogram with Density Plot')
plt.show()
```

/Users/h4/opt/anaconda3/lib/python3.8/sitepackages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a
deprecated function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar flexibility)
or `kdeplot` (an axes-level function for kernel density plots).
warnings.warn(msg, FutureWarning)


```
[49]: # Bar Plot
[50]: coun, ax = plt.subplots()
    ax = sns.countplot('day', data=tips)
    ax.set_title('Count of days')
    ax.set_ylabel('Days of the week')
    ax.set_ylabel('Frequency')
    plt.show()
```

/Users/h4/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
[51]: # Linear regression with scatterplot
[52]: scatter, ax = plt.subplots()
    ax = sns.regplot(x='total_bill', y='tip', data=tips)
    ax.set_title('Scatterplot of Total Bill and Tip')
    ax.set_xlabel('Total Bill')
    ax.set_ylabel('Tip')
    plt.show()
```



```
[53]: # Jointplot - scatter and histogram in two dimensions

[54]: joint = sns.jointplot(x='total_bill', y='tip', data=tips)
    joint.set_axis_labels(xlabel='Total Bill', ylabel='Tip')
    joint.fig.suptitle('Joint Plot of Total Bill and Tip', fontsize=10, y=1.03)
[54]: Text(0.5, 1.03, 'Joint Plot of Total Bill and Tip')
```



```
[55]: # Hexbin: density of scatterplots with hexagons
hexbin = sns.jointplot(x='total_bill', y='tip', data=tips, kind='hex')
hexbin.fig.suptitle('Hexbin Joint Plot of Total Bill and Tip', fontsize=10)
```

[55]: Text(0.5, 0.98, 'Hexbin Joint Plot of Total Bill and Tip')

/Users/h4/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:1639: FutureWarning: Use `x` and `y` rather than `data` `and `data2`

warnings.warn(msg, FutureWarning)

[56]: Text(0, 0.5, 'Tip')

[]: