

Algoritmid ja andmestruktuurid

- Dünaamiline planeerimine
 - Floyd lühimate teede algoritm
 - Maatriksite korrutamise järjekord

Dünaamiline planeerimine

 Paljude ülesannete puhul võib "jaga ja valitse" strateegia anda küll tulemuse, aga see on väga ebaefektiivne

```
int fib( int n ) {
   if ( n < 2 ) return n;
   else
     return fib(n-1) + fib(n-2);
}</pre>
```

• $W(n) = W(n-1) + W(n-2) \in O(1.68...^n)$

Fibonacci arvud parem algoritm

Algoritmi aegluse põhjus - lahendame samu alamprobleeme korduvalt

```
F(5)

/ \
F(4) F(3)

/ \
/ \
F(3) F(2) F(2) F(1)

/ \
F(2) F(1)
```

Alustame arvutamist väiksematest argumentidest, peame tulemused meeles ja arvutame järjest tulemusi suurematele argumentidele

Fibonacci: dünaamiline planeerimine

```
• int fib(int n)
{
    int f[n+1];
    f[1] = f[2] = 1;
    for (int i = 3; i <= n; i++)
        f[i] = f[i-1] + f[i-2];
    return f[n];
}</pre>
```

- Alustame alamülesannetest
- Salvestame kõik alamülesannete tulemused
- $W(n) \in O(n)$

Tasuta lõunasöök?

- Võimaldab lahendada efektiivsemalt probleeme, kus alamülesannete alamülesanded kattuvad.
- Maksta tuleb alamülesannete lahenduste meelespidamisega.

Markide paigutamise probleem

- Meil on kasutada 10, 40 ja 50 sendised margid. Leida millises kombinatsioonis tuleks marke panna mingi summa maksmiseks, et markide arv oleks minimaalne.
- Algoritm stiilis "võta suurimaid münte niipalju kui saad ja siis sellele järgneva suurusega jne" (ahne algoritm) ei tööta!
- Sisuliselt otsime lahendust võrrandile a*50 + b*40 + c*10 = summa või a*5 + b*4 + c*1 = summa/10 nii et a+b+c oleks minimaalne

2.70 minimaase arvu markidega

50 sendiste markide	40 sendiste markide	10 sendiste markide	vajalike markide
arv	arv	arv	arv kokku
5	0	2	7
4	1	3	8
3	3	0	6

Täielik algoritm (jõumeetod, *brute force*)

```
findStamps(N):
    n = N/10;
    min = n+1
     for a in 0 ... n:
       for b in 0 ... n:
         for c in 0 ... n:
            if a*5 + b*4 + c*1 == n:
              if a+b+c < min
                min = a+b+c
                 save \langle a,b,c \rangle
  print saved <a, b, c>
Keerukus O(n^3)
```


Idee 😽

- Tuleb defineerida ülesande lahendus alamülesannete jadana
- Alamülesanne on mingi väiksema summa kokkusaamine.

```
markide_arv(27) =
markide_arv(22) + 1 | // kui lisati 5
markide_arv(23) + 1 | // kui lisati 4
markide_arv(26) + 1 // kui lisati 1
```


Kasutame rekursiooni

$$M(i) = \min egin{cases} 0 & i=0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases}$$

Time: $> 3^{N/5}$

Korduvad alamülesanded

Alustame alamprobleemidest

for i = 0, ..., N do
$$M(i) = \min \begin{cases} 0 & i=0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases}$$
;

Time: O(N)

$$1+Min(3,1,3)=2$$

Võrdlus

- Jaga ja valitse,
 Tagasivõtmisega algoritm
 - rekursiivne programm
 - top down
 - jagab ülesande sõltumatuteks alamülesanneteks
 - kasutab rekursiivset seost alamülesannete vahel edaspidi põhiülesanne enne alamülesandeid

- Dünaamiline programmeerimine
 - iteratiivne programm
 - bottom up
 - kasutab alamülesannete lahendusi korduvalt
 - kasutab rekursiivset seost alamülesannete vahel tagurpidi alamülesanded enne põhiülesannet

- Defineeri optimaalse lahendi saamine rekursiivselt alamülesannetest
 - määratle alamülesannete jada
 - leia seos ülesande ja tema alamülesande vahel
 - defineeri alamülesannete lahenduste hoidmiseks vajalik andmestruktuur

for i = 0, ..., N do
$$M(i) = \min \begin{cases} 0 & i=0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases}$$
;

M[i] - optimaalne markide arv väärtuse *i* jaoks

V[i] - viimasena valitud margi väärtus

- Lahenda see rekursioon altpoolt alates elementaarsetest alamülesannetest
 - Salvesta vajalikud alamülesannete tulemused

```
void stamps(int value) {
  int M[value], V[value];
  for(int i=1; i <= value; i++) {
    M[i] = \infty;
    if((i >= 5) \&\& (M[i] > M[i-5]+1))
      \{ M[i] = M[i-5]+1; V[i]=5 \}
    if((i >= 4) \&\& (M[i] > M[i-4]+1))
      \{ M[i] = M[i-4]+1; V[i]=4 \}
    if((i >= 1) \&\& (M[i] > M[i-1]+1))
      \{ M[i] = M[i-1]+1; V[i]=1 \}
```


① Konstrueeri lahend salvestatud tulemuste alusel

Prindib summa n saamiseks viimasena lisatud margi V[n] ja optimaalse markide komplekti lahendi viimase margi võrra väiksema ülesande jaoks kuni kogu summa on kaetud

```
void printstamps(int n) {
    while( n > 0 ) {
        print V[n];
        print ",";
        n = n - V[n];
    }
}
```


Alamülesannete optimaalsusprintsiip

- Dünaamiline programmeerimine sobib paljude ülesannete jaoks, kus on vaja leida optimaalne lahend.
- Sobib ainult juhul kui on täidetud alamülesannete optimaalsusprintsiip:

Kui lahend on optimaalne, siis on kõik selle saamiseks kasutatud alamülesannete lahendid optimaalsed oma alamülesande jaoks.

Optimaalsusprintsiip ei kehti iga probleemi korral.
 Kehtivust tuleb igal juhul eraldi näidata!

Tõestus markide paigutamise algoritmile

- Teoreem: Kui viimane kleebitud mark väärtusega v moodustas optimaalse lahenduse väärtuse S jaoks, siis moodustasid eelmised margid optimaalse lahenduse väärtuse S-v jaoks.
- Tõestus: Kui lahend ilma viimasena valitud margita (summa S-v) poleks olnud optimaalne, siis saaksime parandada ka lõpptulemust (summa S), mis on vastuolus algtingimusega

Kõikide alamülesannete lahendid on optimaalsed

Eeldades et

- Meie lahend on optimaalne
- Kasutatud alamülesande lahend ei olnud optimaalne
- ⇒ Kasutades alamülesande paremat lahendit peaksime saama veel parema lahenduse

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
M(i)	0	1	2	3	1	1	2	3	2						
				~	1			T	A						

1+Min(3,1,3)=2

Floyd'i lühimate teede algoritm

- On antud suunatud märgendatud graaf, mis on esitatud naabrusmaatriksina W[i][j].
- Kõigi tippude vahel ei pruugi serva olla.
- Leida lühimad teed igast tipust igasse teise tippu
- Naiivne algoritm vaatame läbi kõikide tippude kohta kõik võimalikud teed kõigisse tippudesse ja leiame parima.
 - n tipuga täieliku graafi puhul umbes n! teed
- Floyd'i algoritm töötab $O(n^3)$ keerukusega

Graafi esitus naabrusmaatriksina

- n tipuga graafi jaoks on n x n maatriks
- maatriksi elemendi W[i][j] väärtus tähistab serva tipust i tippu j märgendi väärtust
- kui kahe tipu vahel serva ei ole, siis -(või ∞, maxInt)
- maatriksi peadiagonaali (W[i][i]) väärtused on 0
- vastuseks tahame lühimate teede pikkusi maatriksis D[i][j]
- Kuidas defineerida alamülesandeid nii et optimaalsusprintsiip oleks täidetud?
- Graafi tippude lisamine ühekaupa?
- ei tööta hästi kuna
 - tipu lisamisel tuleb senine töö ümber arvutada
 - leida kõik teed uude tippu ja sellest mujale

Rekursiivne lahendamine

Animatsioon

- Lähendusprotseduur
 - D^(k)[i][j]
 mis läbivad tippe 1 ... k
 - $-D^{(0)}[i][j] = W[i][j]$
 - $-D^{(n)}[i][j] = D[i][j]$
- Variandid tee tipust i tippu j läbi tippude 1 ... k
 - $-D^{(k)}[i][j] = D^{(k-1)}[i][j]$

tee ei läbi tippu k

lühimad teed,

 $-D^{(k)}[i][j] = D^{(k-1)}[i][k] + D^{(k-1)}[k][j]$

tee läbib tippu k

- Rekursiivne seos
 - $-D^{(k)}[i][j] = min (D^{(k-1)}[i][j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j])$

State in the second of the

```
void floyd (int n, const number W[][], number D[][])
{ index i, j, k;
 D = W;
  for ( k = 1; k \le n; k++) // D^{(1)} ... D^{(k)}
    for ( i = 1; i <= n; i++) // D[1][1] ... D[n][n]
      for ( j = 1; j \le n; j++)
        D[i][j] = min(D[i][j], D[i][k] + D[k][j]);
```

D^(k) väärtused arvutatakse D^(k-1) väärtuste kaudu. Kas ja miks võime muuta massiivi D^(k) väärtusi D^(k) arvutamise käigus?

State in the second of the

```
void floyd (int n, const number W[][], number D[][])
{ index i, j, k;
 D = W;
  for ( k = 1; k \le n; k++) // D^{(1)} ... D^{(k)}
    for ( i = 1; i <= n; i++) // D[1][1] ... D[n][n]
      for ( j = 1; j \le n; j++)
        D[i][j] = min(D[i][j], D[i][k] + D[k][j]);
```

Tulemuseks lühima tee pikkus igast punktist teise, aga mitte teekonda ennast

State of the st

```
void floyd (int n, const number W[][], number D[][],
        index P[][] ) // suurima indeksiga läbitud tipp
{ index i, j, k;
  for ( i = 1; i <= n; i++)
    for ( j = 1; j \le n; j++)
        P[i][j] = 0;
 D = W;
  for ( k = 1; k \le n; k++) // D^{(1)} ... D^{(k)}
    for ( i = 1; i <= n; i++) // D[1][1] ... D[n][n]
      for (j = 1; j \le n; j++)
        if (D[i][k] + D[k][j] < D[i][j])
        \{ P[i][j] = k;
          D[i][i] = D[i][k] + D[k][i];
```

Lisame massiivi P, mis võimaldab leida ka teekonna

Floyd'i algoritm -Lühimate teede leidmine

```
void path (index i, j) {
  if( P[i][j] != 0 ) {
    path(i, P[i][j]);
    print P[i][j];
    print ",";
    path(P[i][j], j);
  }
}
```

 Dünaamilise planeerimise algoritmid kodeerivad lahenduse tihti vahetulemuste massiivi ja tulemus tuleb sealt peale põhialgoritmi lõppu konstrueerida või üles otsida.

Floyd'i algoritm - optimaalsusprintsiip

Kui alamülesandele D^(k-1) leiduks parem lahendus, siis võiks saaksime parema lahenduse ka oma ülesandele D^(k).

 \Rightarrow Kui $D^{(k)}$ on optimaalne, siis on seda ka $D^{(k-1)}$.

Floyd vs Dijkstra lühima tee algoritmid

Floyd

- Igast tipust igasse tippu
- Keerukus O(|V|³)

 Leiab õige teepikkuse ka negatiivse kaaluga servadega

Negatiivse kaaluga tsüklid pole lubatud

Dijkstra

- Uhest tipust igasse tippu
- O(|E| + |V| log |V|) või O(|V|²)
 Igast tipust
 O(|V|(|E| + |V| log |V|)) või O(|V|³)
- Negatiivse kaaluga servad pole lubatud

Maatriksite ahela korrutamine

On vaja korrutada rida maatrikseid:

Maatriksite korrutamine on assotsiatiivne, st

$$A1 (A2 A3) = (A1 A2) A3$$

- Tulemuse võib saada kahel erineval viisil. Erinevalt täisarvude korrutamisest on järjekorral tähtsus
 - nxm ja mxp mõõtudega maatriksite korrutamise hind on O(nmp) elementaarset korrutamisoperatsiooni
 - nxm, mxp ja pxr maatriksite korrutamise hinnaks on O(mpr + nmr) või O(nmp + npr)

Korrutamise järjekord on oluline

- Valesti valitud järjekord võib olla kallis, näiteks:
 A1 (10x100), A2 (100x5), A3 (5x50)
- (A1 A2) A3 hind on A1A2 10x100x5=5000 => A1 A2 (10x5)(A1A2)A3 10x5x50 = 2500 => A1A2A3 (10x50)Kokku = 7500
- A1 (A2 A3) hind on $A2A3 100x5x50 = 25000 \Rightarrow A2A3 (100x5)$ $A1(A2A3) 10x100x50 = 50000 \Rightarrow A1A2A3 (10x50)$ Kokku = 75000
- Korrutamise järjekord on võimalik enne tegelikku korrutamistpaika panna maatriksite suuruse järgi

Optimaalsusprintsiip kehtib

 Kui jagame oma korrutamiste ahela kahe alamahela korrutamiseks:

(A₁ A₂ A₃ ... A_k) (A_{k+1} ... A_n) siis saab tulemus olla optimaalne ainult juhul, kui alamahelad on korrutatud optimaalses järjekorras. Kui kumbagi alamahelat saaks korrutada odavamalt, siis muutuks odavamaks ka lõpptulemus.

- Optimaalse tulemuse leidmiseks peame võrdlema kõiki paare(k=1...n).
 - Võrdlemiseks on vaja teada optimaalseid lahendusi alamahelatele A₁ ... A_k ja A_k ... A_n

Rekursiivne seos

- $(A_1 A_2 A_3 ... A_k) (A_{k+1} ... A_n)$ optimaalse lahenduse saamiseks on vaja teada optimaalseid lahendusi alamahelatele $A_1 ... A_k$ ja $A_k ... A_n$
- m(i,k) optimaalne korrutamise järjekord ahelale A_i ... A_j
 m(1,n) probleemi lahendus
 - -m(i,i)=0
 - $-m(i,j) = \min_{i < k < j} (m(i,k) + m(k+1,j) + \dim_{i-1} * \dim_{k} * \dim_{j}), i < j$
- Valime minimaalse korrutamiste arvu kõigist k võimalikest väärtustest kasutades väiksemate ülesannete tulemusi.

Keerukus

- -m(i,i)=0
- $-m(i,j) = \min_{i < k < j} (m(i,k) + m(k+1,j) + \dim_{i-1} * \dim_{k} * \dim_{j}), i < j$
- Rekursiivse lahenduse keerukus on O(2ⁿ⁻¹).
- Vale lähenemine, kasutame alamülesannete lahendusi
 - m(i,j) erinevaid väärtusi on $O(n^2)$ (i,j = 1...n)
 - Iga m(i,j) arvutamise keerukus on O(n)
 - Kokku O(n³)

Algoritm

```
int minmult (int n, const int d[], index P[][])
{ index i, j, k, diagonal;
 int M[1...n][1...n];
 for (i = 0; i \le n; i++)
  M[i][i] = 0;
 for (diagonal = 1; diagonal <= n - 1; diagonal++)
  for (i = 1; i \le n - diagonal; i++)
  {j = i + diagonal;}
   M[i][j] = min_k (M[i][k] + M[k+1][j] + dim[i-1] *
     \dim[k] * \dim[i]
   P[i][j] = minimumi andnud k väärtus
 return M[1][n]
```

Animatsioon

Memoization

- Top-down lahendamine vahetulemuste salvestamisega
- Rekursiivselt väljakutsutud alamülesannete tulemused salvestatakse
- Enne uue alamülesande lahendamist kontrollitakse vastuse olemasolu.
- Võrdlus
 - on vaja teada tulemuste indekseerimise struktuuri võimalik on kasutada ka paisksalvestust (hash tabelit)
 - + vähendab vahetulemuste arvu, kui kõikvõimalikke alamülesandeid pole vaja lahendada
- Võimaldab elegantse lahenduse DP keerukusega

Memoization markide ülesandel

for i = 0, ..., N do
$$M(i) = \min \begin{cases} 0 & i=0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases}$$
;

Rakendame seost rekursiivselt Puhverdame M(i) väljakutseid

- Analüüsi, kuidas ülesande lahendus sõltub alamülesannetest. Kas on korduvaid alamülesandeid?
- Kirjuta välja rekursiivne seos suurema ülesande lahendus jaoks alamülesannete kaudu
- Planeeri andmestruktuur alamülesannete tulemuste hoidmiseks
- Lahenda alamülesanded väiksemast suuremani