Homework 5. Solutions

1 Consider function f = xy and differential forms $\sigma = xdy + ydx$ and $\omega = zdx + xdy$. Calculate differential forms $d(f\omega)$, $\sigma \wedge \omega$ and $d(\sigma \wedge \omega)$.

 $d(f\omega) = df\omega + fd\omega = d(xy)(zdx + xdy) + xyd(zdx + xdy) = (ydx + xdy) \wedge (zdx + xdy) + xy(dz \wedge dx + dx \wedge dy) = xzdy \wedge dx + yxdx \wedge dy + xydz \wedge dx + xydx \wedge dy = (2xy - xz)dx \wedge dy + xydz \wedge dx.$

$$\sigma \wedge \omega = (xdy + ydx) \wedge (zdx + xdy) = xzdy \wedge dx + yxdx \wedge dy = (xy - xz)dx \wedge dy$$
$$d(\sigma \wedge \omega) = d((xy - xz)dx \wedge dy) = -xdz \wedge dx \wedge dy$$

Note that $\sigma = df$, hence $d(\sigma \wedge \omega) = d(df \wedge \omega) = -df \wedge dw$. Here this does not simplify much calculations but in the next exercise it will help.

- **2** Consider embedding $\iota: S^2 \to \mathbf{R}^3$ of the sphere to \mathbf{R}^3 given by the equation $x = a \sin \theta \cos \varphi$, $y = a \sin \theta \sin \varphi$, $z = a \cos \theta$. Calculate pull-backs
 - $a) \iota^*(f),$
 - b) $\iota^*(\sigma)$,
 - $c) \iota^*(\omega),$
 - $d) \iota^*(\sigma \wedge \omega),$
 - $e) \iota^* (d(\sigma \wedge \omega))$

where function f and forms ω and σ were defined in previous exercise.

We have that $x = a \sin \theta \cos \varphi$, $y = a \sin \theta \sin \varphi$, $z = a \cos \theta$. Hence

$$\iota^*(f) = \iota^*(xy) = (a\sin\theta\cos\varphi)(a\sin\theta\sin\varphi) = a^2\sin^2\theta\sin\varphi\cos\varphi$$

b)

 $\iota^*(\sigma) = \iota^*(xdy + ydx) = a\sin\theta\cos\varphi d(a\sin\theta\sin\varphi) + a\sin\theta\sin\varphi d(a\sin\theta\cos\varphi) =$ $a\sin\theta\cos\varphi (a\cos\theta\sin\varphi d\theta + a\sin\theta\cos\varphi d\varphi) + a\sin\theta\sin\varphi d(a\cos\theta\cos\varphi d\theta - a\sin\theta\sin\varphi d\varphi)$ Long calculations... More wise to note that $\sigma = xdy + ydx = d(xy) = df$, hence

$$\iota^*(\sigma) = \iota^*(df) = d\iota^*(f)$$

But we already calculated $\iota^*(f) = a^2 \sin^2 \theta \sin \varphi \cos \varphi$. Hence

$$\iota^*(\sigma) = \iota^*(df) = d\iota^*(f) = d\left(a^2 \sin^2 \theta \sin \varphi \cos \varphi\right) = d\left(a^2 \sin^2 \theta \sin \varphi \cos \varphi\right) = a^2 \frac{d((1 - \cos 2\theta) \sin 2\varphi}{4} = a^2 \frac{\sin 2\theta \sin 2\varphi}{2} d\theta + a^2 \frac{((1 - \cos 2\theta) \cos 2\varphi}{2} d\varphi$$
c)
$$\iota^*(\omega) = \iota^*(zdx + xdy)$$

 $z = a\cos\theta$, $x = a\sin\theta\cos\varphi$, $dx = d(a\sin\theta\cos\varphi)$, $dy = d(\sin\theta\sin\varphi)$. Hence

$$\iota^*(\omega) = \iota^*(zdx + xdy) = a\cos\theta d(a\sin\theta\cos\varphi) + a\sin\theta\cos\varphi d(a\sin\theta\sin\varphi)$$

d)
$$\iota^*(\sigma \wedge \omega) = \iota^*((xy - xz)dx \wedge dy) =$$

 $= (a\sin\theta\cos\varphi \ a\sin\theta\sin\varphi - a\sin\theta\cos\varphi \ a\cos\theta)d(a\sin\theta\cos\varphi) \wedge d(a\sin\theta\sin\varphi) =$

 $a^4 \sin \theta \cos \varphi (\sin \theta \sin \varphi - \cos \theta) (\cos \theta \cos \varphi d\theta - \sin \theta \sin \varphi d\varphi) \wedge (\cos \theta \sin \varphi d\theta + \sin \theta \cos \varphi d\varphi) =$ $a^4 \sin \theta \cos \varphi (\sin \theta \sin \varphi - \cos \theta) \sin \theta \cos \theta d\theta \wedge d\varphi$

e) $d(\sigma \wedge \omega)$ is 3-form.

Hence $\iota^*(d(\sigma \wedge \omega))$ as a form on is equal to zero. Answer: $\iota^*(d(\sigma \wedge \omega)) = 0$.

3 Consider the embedding $\iota: M \to \mathbf{R}^2$ of the circle S^1 in \mathbf{R}^2 given by the equation $x = a\cos\theta, y = a\sin\theta$. Find the pull-backs $\iota^*(\sigma)$ and $\iota^*(d\sigma)$ if $\sigma = \frac{xdy-ydx}{x^2+y^2}$

$$\iota^* \sigma = \frac{a \cos \theta d(a \sin \theta) - a \sin \theta d(a \cos \theta)}{(a \cos \theta)^2 + (a \cos \theta)^2} = \frac{(a^2 \cos^2 \theta + a^2 \sin^2 \theta) d\theta}{a^2 \cos^2 \theta + a^2 \sin^2 \theta} = d\theta$$
$$\iota^* (d\sigma) = d(\iota^* (\sigma)) = d(d\theta) = 0$$

4 Consider the embedding $\iota: M \to \mathbf{R}^3$ of the cylinder M in \mathbf{R}^3 given by the equation $x = a\cos\theta, y = a\sin\theta, z = h$. Find the pull-backs $\iota^*(\sigma)$ and $\iota^*(d\sigma)$ for the following forms:

$$\sigma = zdy$$

$$\sigma = xdy + ydx$$

$$\sigma = \frac{xdy - ydx}{x^2 + y^2},$$

$$\sigma = xdy - ydx$$

$$\sigma = xdu - udx$$

$$\iota^*(zdy) = hd(a\sin\theta) = ha\cos\theta d\theta$$

$$\iota^*(xdy + ydx) = \iota^*d(xy) = d(\iota^*(xy)) = d(a^2 \sin \theta \cos \theta) = a^2 \cos 2\theta d\theta$$

$$\iota^* \frac{xdy - ydx}{x^2 + y^2} = \frac{a\cos\theta d(a\sin\theta) - a\sin\theta d(a\cos\theta)}{(a\cos\theta)^2 + (a\cos\theta)^2}$$
$$\iota^* (xdy - ydx) = a^2 d\theta$$

5* Show that $\iota^*(\sigma) = \sin \theta d\theta \wedge d\varphi$, where ι is embedding of the sphere in \mathbf{R}^3 considered in the exercise 2, and the 2-form σ is defined by the formula

$$\sigma = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

Perform calculations

$$\iota^*(xdy \wedge dz) = a^3 \sin \theta \cos \varphi d(\sin \theta \sin \varphi) \wedge d(\cos \theta) = a^3 \sin^3 \theta \cos^2 \varphi d\theta \wedge d\varphi$$
$$\iota^*(ydz \wedge dx) = a^3 \sin \theta \sin \varphi d(\cos \theta) \wedge d(\sin \theta \cos \varphi) = \sin^3 \theta \sin^2 \varphi d\theta \wedge d\varphi$$
$$\iota^*(zdx \wedge dy) = a^3 \cos \theta d(\sin \theta \cos \varphi) \wedge d(\sin \theta \sin \varphi) = a^3 \sin \theta \cos^2 \theta d\theta \wedge d\varphi$$

Hence

$$\iota^*\left(\frac{xdy\wedge dz+ydz\wedge dx+zdx\wedge dy}{(x^2+y^2+z^2)^{3/2}}\right)=\frac{\iota^*(xdy\wedge dz)+\iota^*(ydz\wedge dx)+\iota^*(zdx\wedge dy)}{\iota^*(x^2+y^2+y^2))}=\frac{\iota^*(xdy\wedge dz)+\iota^*(ydz\wedge dx)+\iota^*(zdx\wedge dy)}{\iota^*(x^2+y^2+y^2))}=\frac{\iota^*(xdy\wedge dz)+\iota^*(ydz\wedge dx)+\iota^*(zdx\wedge dy)}{\iota^*(x^2+y^2+z^2)}$$

$$\frac{a^3 \sin^3 \theta \cos^2 \varphi d\theta \wedge d\varphi + a^3 \sin^3 \theta \sin^2 \varphi d\theta \wedge d\varphi + a^3 \sin \theta \cos^2 \theta d\theta \wedge d\varphi}{a^3} = \sin \theta d\theta \wedge d\varphi$$

6 Calculate differential of 1-form $\alpha = p_1 dq^1 + p_2 dq^2 - dp_2 q^2$

$$d\alpha = d(p_1dq^1 + p_2dq^2 - dp_2q^2) = dp_1 \wedge dq^1 + dp_2 \wedge dq^2 + dp_2 \wedge dq^2$$

(Note that $d(dp_2f) = -dp_2df$)

7 Consider in \mathbb{R}^2 a triangle $\triangle ABC$ with vertices at the points A=(5,-1), B=(-1,6), C=(-5,-1) and differential one-form $\omega=xdy-ydx$. By using Stokes' theorem or directly calculate the integral of 1-form ω over the boundary of the $\triangle ABC$.

The integral of the 1-form $\omega = xdy - ydx$ over the boundary of the triangle according to Stokes theorem is equal to the integral of the form $d\omega = d(xdy - ydx) = dx \wedge dy - dy \wedge dx = 2dx \wedge dy$ over the triangle:

$$\int_{\partial\triangle ABC}\omega=\int_{\triangle ABC}d\omega$$

(We suppose that orientation is chosen. The integral on boundary is taken anticlockwise.) Hence

$$\int_{\triangle ABC} d\omega = \int_{\triangle ABC} 2dx \wedge dy = 2 \times \text{Area of triangle } ABC = 2 \times (5 - (-5))(6 - (-1)) \times \frac{1}{2} = 70$$

8 Consider in \mathbb{R}^3 the surface defined by the equation $x^2 + y^2 + z^2 = 4z$. Show that this surface is the sphere.

Using Stokes Theorem calculate the integrals of the 2-forms $\omega_1 = zdx \wedge dy$ and $\omega_2 = dx \wedge dy$

 $x^2+y^2+z^2-4z=0$. Hence $x^2+y^2+(z-2)^2=4$. Hence it is the sphere of the radius 2 with the centre at the point $(0,0,2),\ \int_{S^2}zdx\wedge dy=\int_{\partial B}zdx\wedge dy$, where B is a ball of the radius 2, $B:x^2+y^2+(z-2)^2\leq 4$. Hence by Stokes Theorem

volume of the sphere of the radius $2 = \frac{4}{3}\pi R^3|_{R=2}$