Functional Dependencies

1. Introduction:

- In a relational database, functional dependencies (FDs) are crucial for understanding the relationships between attributes within a table.
- A functional dependency between two attribute sets, X and Y, denoted as $X \rightarrow Y$, indicates that the values of X uniquely determine the values of Y.

2. Armstrong's Axioms:

Armstrong's axioms are fundamental rules used for reasoning about functional dependencies. These axioms guide us in deriving and understanding the relationships between attributes.

- a. Reflexivity Axiom:
- If Y is a subset of X, then $X \rightarrow Y$.
- This axiom reflects the idea that any subset of attributes is functionally dependent on the whole set of attributes.

Example:

Consider a relation R with attributes A, B, and C. If A \rightarrow B holds, then it's also true that AC \rightarrow B.

- b. Augmentation Axiom:
- If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any attribute set Z.
- This axiom shows that adding attributes to both sides of a functional dependency maintains its validity.

Example:

If Name \rightarrow Age, then Name Address \rightarrow Age Address holds true.

- c. Transitivity Axiom:
- If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$.
- This axiom implies that if a functional dependency can be derived indirectly, it can be inferred directly.

Example:

If Course \rightarrow Department and Department \rightarrow Faculty, then Course \rightarrow Faculty can be inferred.

3. Example Scenarios:

a. Student Table:

٠.,

```
| Roll No | Name | Age | Course |
|------|
| 101 | Alice | 20 | CS |
| 102 | Bob | 22 | ECE |
| 103 | Carol | 21 | CS |
```

- In the above table, Roll No \rightarrow Name because each Roll No corresponds to a unique student's name.

- Roll No \rightarrow Age because each student's Roll No uniquely determines their age.
- Course \rightarrow Roll No because each course maps to multiple Roll Nos.
- b. Course Enrollment Table:

...

```
| Roll No | Course |
|------|
| 101 | DBMS |
| 102 | OS |
| 103 | DBMS |
```

- In this table, Roll No \rightarrow Course because each Roll No maps to a specific course.

4. Inference Rules:

a. Union Rule:

- If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.

Example:

If Roll No \rightarrow Name and Roll No \rightarrow Age, then Roll No \rightarrow Name Age.

- b. Decomposition Rule:
- If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$.

Example:

If Roll No \rightarrow Name Age, then Roll No \rightarrow Name and Roll No \rightarrow Age.

- c. Pseudo-Transitivity Rule:
- If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$.

Example:

If Course \rightarrow Department and CourseFaculty \rightarrow Office, then CourseFaculty \rightarrow Office can be inferred as Course \rightarrow DepartmentOffice.

5. Conclusion:

- Functional dependencies play a pivotal role in maintaining the accuracy and integrity of relational databases.
- Armstrong's axioms provide a systematic approach to understanding and deriving functional dependencies.
- These concepts are essential for database normalization and the efficient design of relational databases.