Äquivalenzrelationen (Forts.)

Erinnerung

M Menge

Partition von M: $\mathcal{P} \subseteq \text{Pot}(M)$ mit

- ▶ Ø ∉ P,
 - ▶ $C \cap C' = \emptyset$ für $C \neq C' \in \mathcal{P}$,
 - $M = \cup_{C \in \mathcal{P}} C.$

Beispiel

 $\{\{1,2,4\},\{3\}\}$ ist Partition von $\{1,2,3,4\}$

Äquivalenzrelationen (Forts.)

Satz

Es sei M Menge, C Äquivalenzrelation auf M. Dann ist M/C eine Partition von M.

Äquivalenzrelationen (Forts.)

Hauptsatz über Äquivalenzrelationen

Es sei *M* eine Menge.

Dann exisitiert eine Bijektion

$$\{C \mid C \text{ ist Äq.rel. auf } M\} \to \{\mathcal{P} \mid \mathcal{P} \text{ ist Partition von } M\}$$

$$C \mapsto M/C$$

Homomorphiesatz für Mengen

Beispiel

Es sei $f: M \rightarrow N$ Abbildung.

- ► Nicht-leere Fasern von f bilden Partition von M (frühere Folie).
- ► Welche Äquivalenzrelation?
- ▶ Bildgleichheit: $xR_fx' \Leftrightarrow f(x) = f(x')$.

Homomorphiesatz für Mengen (Forts.)

Homomorphiesatz für Mengen

Es sei $f: M \rightarrow N$ Abbildung, und

$$\kappa: M \to M/R_f$$

die Quotientenabbildung zur Bildgleichheit R_f .

Dann existiert "wohldefinierte Abbildung"

$$\bar{f}: M/R_f \to N, [x]_{R_f} \mapsto f(x)$$

mit

$$f = \bar{f} \circ \kappa$$

- $ightharpoonup \bar{f}$ injektiv
- $ightharpoonup \operatorname{Im} \bar{f} = \operatorname{Im} f$

Homomorphiesatz für Mengen (Forts.)

Beispiel

 $f \colon \{1,2,3,4\} \to \mathbb{Z}$, $1 \mapsto 1$, $2 \mapsto 1$, $3 \mapsto 3$, $4 \mapsto 1$

Homomorphiesatz für Mengen (Forts.)

Beispiel

P: farbige Glasperlen in Dose

F: Farben

 $f: P \rightarrow F$: Zuordnung der zugehörigen Farbe zu jeder Glasperle

Ordnungen

Definition

X Menge

- ► Präordnung auf X: transitive, reflexive Relation auf X
- ightharpoonup Ordnung auf X: antisymmetrische Präordnung auf X
- ► Totalordnung auf X: vollständige Ordnung auf X

Ordnungen (Forts.)

- ► Präordnung:
 - ► reflexiv
 - ► transitiv
- ► Ordnung:
 - ► reflexiv
 - ► antisymmetrisch
 - ▶ transitiv
- ► Totalordnung:
 - ► reflexiv
 - ► antisymmetrisch
 - ► transitiv
 - vollständig

Ordnungen (Forts.)

Beispiele

- ightharpoonup \leq auf \mathbb{N} :
- ► *M* Menge

```
\subseteq auf Pot(M):
```

- ightharpoonup < auf \mathbb{N} :
- ► "|" auf ℤ:

Geordnete Mengen

Definition

- ► *Prägeordnete Menge*: besteht aus
 - ► *M* Menge
 - ▶ o Präordnung auf M

Missbrauch von Notation: bezeichne prägeordnete Menge wieder mit M

Terminologie und Notationen:

- ▶ Präordnung von M: o Notation: ≤ := o
- ► geordnete Menge: prägeordn. Mge M mit: ≤ Ordnung
- ► totalgeordnete Menge: prägeordn. Mge M mit: ≤ Totalordn.

Geordnete Mengen (Forts.)

Beispiel

- ▶ N mit üblicher Ordnung
- ► *M* Menge

Pot(M) mit Teilmengenrelation

Definition

M geordnete Menge

Striktordnung von M: für $x, y \in M$: $x < y :\Leftrightarrow x \le y$ und $x \ne y$

Geordnete Mengen (Forts.)

Bemerkung

M prägeordnete Menge, $U\subseteq M$

U wird zu prägeordneter Menge mit: für $u, v \in U$: $u \leq^U v :\Leftrightarrow u \leq^M v$

Beispiele

- ► <u>n</u>
- ► *M* Menge

 $\mathrm{Pot}(M)\setminus\{\emptyset\}$

Geordnete Mengen (Forts.)

Bemerkung

M prägeordnete Menge Definiere Relation ⋄ auf M durch

$$x \diamond y :\Leftrightarrow x \leq y \text{ und } y \leq x.$$

Dann ist \diamond eine Äquivalenzrelation auf M.

Beispiel

Sei "|" die Teilbarkeitsrelation auf \mathbb{Z} .

Was ist ⋄?

Extremale Elemente

Definition

M prägeordnete Menge, $x \in M$

- ▶ x ist minimales Element: für $y \in M$: $y \le x \Rightarrow x \le y$
- ▶ x ist maximales Element: für $y \in M$: $x \le y \Rightarrow y \le x$

Bemerkung

M geordnete Menge, $x \in M$

- ▶ $x \text{ minimal } \Leftrightarrow \text{ (für } y \in M: \quad y \leq x \Leftrightarrow x = y\text{)}$
- ▶ $x \text{ maximal} \Leftrightarrow (\text{für } y \in M: x \leq y \Leftrightarrow x = y)$

Beispiel

- **▶** in ℕ:
 - ▶ minimal:
 - ▶ maximal:
- ► *M* Menge
 - in Pot(M):
 - ► minimal:
 - ▶ maximal:
- ▶ $Pot({1,2,3}) \setminus {\emptyset}$:
 - ► minimal:
 - ▶ maximal:
- ▶ $Pot({1,2,3}) \setminus {\{1,2,3\}}$:
 - ► minimal:
 - ► maximal:

Definition

M prägeordnete Menge, $x \in M$

- ▶ x ist *kleinstes* Element (oder *Minimum*): für $y \in M$: $x \le y$
- ▶ x ist größtes Element (oder Maximum): für $y \in M$: $y \le x$

Bemerkung

M prägeordnete Menge, $x \in M$

x kleinstes Element $\Rightarrow x$ minimales Element

Beispiel

- **▶** in N:
 - ► kleinst:
 - ► größt:
- ► *M* Menge
 - in Pot(M):
 - kleinst:
 - ► größt:
- ▶ $Pot({1,2,3}) \setminus {\emptyset}$:
 - ► kleinst:
 - ► größt:
- ▶ $Pot({1,2,3}) \setminus {\{1,2,3\}}$:
 - ► kleinst:
 - ► größt:

Bemerkung

M prägeordnete Menge, x kleinstes Element, $y \in M$

äquivalent:

- ▶ y kleinstes Element
- ► y minimales Element
- ▶ $x \le y$ und $y \le x$
- ▶ $y \le x$

Korollar

M geordnete Menge

es gibt höchstens ein kleinstes Element in M

Notation

M geordnete Menge

► es gebe kleinstes Element x in M

$$min M := x$$

ightharpoonup es gebe größtes Element x in M

$$\max M := x$$

Proposition

M total geordnete Menge, $x \in M$

x minimales Element in $M \Leftrightarrow x$ kleinstes Element in M