Econ 626: Quantitative Methods II

Fall 2018

Lecture 7: Back to Dynamic Programming

Lecturer: Prof. Daniel Levy Scribes: Zhikun Lu

Disclaimer: Zhikun is fully responsible for the errors and typos appeared in the notes.

Date: September 6, 2018

7.1 Stochastic Model

$$\max_{\{C_t, K_{t+1}\}} \quad \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u(C_t) \right]$$
 (7.1)

s.t.
$$C_t + K_{t+1} = Z_t f(K_t)$$
 (7.2)

where $\mathbb{E}_0 = E\{\cdot | \Omega_0\}$. Optimal choices here are contingency plans.

 $\{K_t, Z_t\}$ are state variables. K_{t+1} and C_t will be a function of K_t and Z_t . Since Z is a r.v., K_{t+1} and C_t will also be r.v.'s.

Bellman's Equation

$$V(K_t, Z_t) = \begin{cases} \max \left[u(C_t) + \beta \mathbb{E}_t V(K_{t+1}, Z_{t+1}) \right] \\ \text{s.t.} \quad C_t + K_{t+1} = Z_t f(K_t) \end{cases}$$
 (7.3)

i.e.

$$V(K_t, Z_t) = \begin{cases} \max \left[u(C_t) + \beta \int V(K_{t+1}, Z_{t+1}) h(Z_{t+1}) dZ_{t+1} \right] \\ \text{s.t.} \quad C_t + K_{t+1} = Z_t f(K_t) \end{cases}$$
(7.4)

where $h(\cdot)$ is the conditional p.d.f. of Z_{t+1} , given that the p.d.f. conditional on Ω_t exists.

Lagrangian

$$V(K_t, Z_t) = u(C_t) + \beta \mathbb{E}_t V(K_{t+1}, Z_{t+1}) + \lambda_t [Z_t f(K_t) - C_t - K_{t+1}]$$
(7.5)

FONC

$$\mathbb{E}_t[u'(C_t) - \lambda_t] = 0 \Longrightarrow \lambda_t = u'(C_t) \tag{7.6}$$

$$\mathbb{E}_{t}[\beta V_{K_{t+1}}'(K_{t+1}, Z_{t+1}) - \lambda_{t}] = 0 \Longrightarrow \lambda_{t} = \beta \mathbb{E}_{t} V_{K_{t+1}}'(K_{t+1}, Z_{t+1})$$
(7.7)

 \Longrightarrow

$$u'(C_t) = \beta \mathbb{E}_t V'_{K_{t+1}}(K_{t+1}, Z_{t+1})$$
(7.8)

Note:

$$\Omega_t = \{ K_{t-j}, C_{t-j}, Z_{t-j} | j = 0, 1, \dots \}$$
(7.9)

Based on the B-S Theorem, we can write

$$V'_{K_t}(K_t, Z_t) = \lambda_t Z_t f'(K_t) = u'(C_t) Z_t f'(K_t)$$
(7.10)

¹Visit http://www.luzk.net/misc for updates.

Lead (7.10)
$$\Longrightarrow$$
 $u'(C_t) = \beta \mathbb{E}_t u'(C_{t+1}) Z_{t+1} f'(K_{t+1})$ (7.11)

Assumption

$$f(K_t) = K_t^{\alpha} \tag{7.12}$$

$$u(C_t) = \ln C_t \tag{7.13}$$

 \Longrightarrow

$$\frac{1}{C_t} = \beta \mathbb{E}_t \frac{1}{C_{t+1}} Z_{t+1} \alpha (K_{t+1})^{\alpha - 1}$$
(7.14)

Guess

$$K_{t+1} = \theta Z_t K_t^{\alpha}$$

$$C_t = (1 - \theta) Z_t K_t^{\alpha}$$

$$(7.15)$$

$$(7.16)$$

$$C_t = (1 - \theta) Z_t K_t^{\alpha} \tag{7.16}$$

(7.14) and $(7.16) \Longrightarrow$

$$\frac{1}{(1-\theta)Z_tK_t^{\alpha}} = \beta \mathbb{E}_t \frac{1}{(1-\theta)Z_{t+1}K_{t+1}^{\alpha}} Z_{t+1}\alpha (K_{t+1})^{\alpha-1}$$

$$(7.17)$$

$$\frac{1}{(1-\theta)Z_tK_t^{\alpha}} = \alpha\beta\mathbb{E}_t \frac{1}{(1-\theta)K_{t+1}} \tag{7.18}$$

$$\frac{1}{(1-\theta)Z_tK_t^{\alpha}} = \alpha\beta\mathbb{E}_t \frac{1}{(1-\theta)K_{t+1}}$$

$$\frac{1}{(1-\theta)Z_tK_t^{\alpha}} = \alpha\beta\mathbb{E}_t \frac{1}{(1-\theta)\theta Z_tK_t^{\alpha}}$$
(7.18)

$$1 = \alpha \beta \frac{1}{\theta} \tag{7.20}$$

$$\implies \theta = \alpha \beta \tag{7.21}$$

$$K_{t+1}^* = \alpha \beta Z_t K_t^{\alpha}$$

$$C_t^* = (1 - \alpha \beta) Z_t K_t^{\alpha}$$

$$(7.22)$$

$$C_t^* = (1 - \alpha \beta) Z_t K_t^{\alpha} \tag{7.23}$$

To say something about the properties of K_{t+1}^* and C_t^* , we need to know the properties of Z_t .

Example:

$$ln Z_t \sim N(\mu, \sigma^2) \Longrightarrow Z_t \sim LN$$
(7.24)

Recall The MGF of $x \sim N(\mu, \sigma^2)$ is given by

$$M_x(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}} \tag{7.25}$$

Since $\ln Z_t \sim N(\mu, \sigma^2)$, PDF of $\ln Z_t$ is given by

$$f(\ln Z_t) = \frac{1}{Z_t \sigma \sqrt{2\pi}} e^{-\frac{(\ln Z_t - \mu)^2}{2\sigma^2}}$$
 (7.26)

Recall

$$M_y(t) = \mathbb{E}\left[e^{ty}\right] = \mathbb{E}\left[e^{t \ln Z}\right] = \mathbb{E}\left[Z^t\right]$$
 (7.27)

$$M_{\ln Z}(t) = \mathbb{E}\left[Z^t\right] \tag{7.28}$$

$$\mathbb{E}[Z] = M_{\ln Z}(1) = e^{\mu + \frac{\sigma^2}{2}} \tag{7.29}$$

$$Var(Z) = \mathbb{E}\left[Z^2\right] - (\mathbb{E}\left[Z\right])^2 = M_{\ln Z}(2) - (M_{\ln Z}(1))^2 = e^{2\mu + 2\sigma^2} - (e^{\mu + \frac{\sigma^2}{2}})^2 = e^{2\mu + \sigma^2}(e^{\sigma^2} - 1)$$
 (7.30)

Since Z_t is log-normal, so are K_{t+1}^* and C_t^* .

$$K_{t+1} = \alpha \beta Z_t K_t^{\alpha} \tag{7.31}$$

$$\ln K_{t+1} = \ln \alpha \beta + \ln Z_t + \alpha \ln K_t \tag{7.32}$$

$$\ln K_t = \ln \alpha \beta + \ln Z_{t-1} + \alpha \ln K_{t-1} \tag{7.33}$$

$$\ln K_{t-1} = \ln \alpha \beta + \ln Z_{t-2} + \alpha \ln K_{t-2} \tag{7.34}$$

$$\ln K_t = \ln \alpha \beta + \ln Z_{t-1} + \alpha (\ln \alpha \beta + \ln Z_{t-2} + \alpha \ln K_{t-2})$$
(7.35)

$$= (1+\alpha)\ln\alpha\beta + \ln Z_{t-1} + \alpha\ln Z_{t-2} + \alpha^2\ln K_{t-2}$$
 (7.36)

$$= (1 + \alpha + \alpha^2) \ln \alpha \beta + \ln Z_{t-1} + \alpha \ln Z_{t-2} + \alpha^2 \ln Z_{t-3} + \alpha^3 \ln K_{t-3}$$
 (7.37)

:

$$= \ln \alpha \beta \sum_{i=0}^{t-1} \alpha^i + \sum_{i=0}^{t-1} \alpha^i \ln Z_{t-i-1} + \alpha^t \ln K_0$$
 (7.38)

As $t \to \infty$, $\alpha^t \ln K_0 \to 0$.

$$\lim_{t \to \infty} \mathbb{E}(\ln K_t) = \frac{1}{1 - \alpha} \ln \alpha \beta + \sum_{i=0}^{\infty} \alpha^i \mathbb{E} \ln Z_{t-i-1} = \frac{1}{1 - \alpha} \ln \alpha \beta + \frac{1}{1 - \alpha} \mu$$
 (7.39)

$$Var[\lim_{t \to \infty} \ln K_t] = \mathbb{E}[\lim_{t \to \infty} \ln K_t]^2 - \left\{ \mathbb{E}\left[\lim_{t \to \infty} \ln K_t\right] \right\}^2 = \dots = \frac{\sigma^2}{1 - \alpha^2}$$
 (7.40)

7.2 Funtionals

Functionals: A function that maps from any set X to \mathbb{R} , $f: X \to \mathbb{R}$ is called a functional.

Operations on Functionals

$$(f \pm g)(x) = f(x) \pm g(x) \tag{7.41}$$

$$(\alpha f)(x) = \alpha f(x) \tag{7.42}$$

<u>Lemma</u>: Let X be a set and let F(X) be the set of all functionals on X. Show that F(X) is a linear space.

Proof: $\forall f, g \in F(X)$ and $\forall \alpha \in \mathbb{R}$ we have

$$(f+g)(x) = f(x) + g(x)$$

$$(\alpha f)(x) = \alpha f(x)$$

and therefore

$$(f+q): X \to \mathbb{R}$$
 and $\alpha f: X \to \mathbb{R}$

 $\Longrightarrow F(X)$ is closed under addition and scalar multiplication.

<u>Note</u>: the "zero" element in F(X) is the constant function $f(x) = 0 \ \forall \ x \in X$.

<u>Definition</u> A functional $f \in F(X)$ is <u>bounded</u> if $\exists k \in \mathbb{R}$ s.t. $|f(x)| \leq k \ \forall x \in X$.

<u>Definition</u> For any set X, the B(X) denote the set of all bounded functionals on X.

Note: $B(X) \subseteq F(X)$.

Continuity in Metric Space

Let (X, d_1) and (Y, d_2) be metric spaces and let $f: X \to Y$. Then f is <u>continuous</u> at $x_0 \in X$ if $\forall \epsilon > 0, \exists \delta(x_0, \epsilon) > 0$, s.t.

$$d_1(x, x_0) < \delta(x_0, \epsilon) \Longrightarrow d_2[f(x_0), f(x)] < \epsilon.$$

Uniform Continuity

A function $f:(X,d_1)\to (Y,d_2)$ is uniformly continuous on a subset $A\subset X$ if $\forall x,y\in X$ and $\forall \epsilon>0, \exists \delta(\epsilon)>0$, independent of x and y, s.t.

$$d_1(x,y) < \delta(\epsilon) \Longrightarrow d_2(f(x),f(y)) < \epsilon.$$

Lipschitz Continuity

Let X and Y be normed vactor space. Then, a function $f: X \to Y$ is Lipschitz continuous if $\exists \beta > 0$, s.t. $\forall x, x_0 \in X$,

$$||f(x) - f(x_0)|| \le \beta ||x - x_0||$$

Note:

$$\frac{||f(x) - f(x_0)||}{||x - x_0||} \le \beta \tag{7.43}$$

<u>Lemma</u> (Preservation of Cauchy Property under Uniform Continuity)

Let $f: X \to Y$ be uniformly continuous. If $\{x_n\}$ is Cauchy in X, then $\{f(x_n)\}$ is Cauchy in Y.

Proof: Let $\epsilon > 0$. By uniformly continuity, $\exists \delta > 0$ s.t. $d(f(x_n), f(x_m)) < \epsilon, \forall x_m, x_n \in X$, s.t. $d(x_m, x_n) < \delta$. Suppose that $\{x_n\}$ is Cauchy in $X \Longrightarrow \exists N \in \mathbb{N}$ s.t. $d(x_m, x_n) < \delta \forall m, n > N$. Then by uniform continuity of f, $d(f(x_m), f(x_n)) < \epsilon \ \forall m, n > N \Longrightarrow f(x_n)$ is Cauchy.

Theorem

A continuous function on a compact domain is uniformly continuous.

<u>Lemma</u>

Lipschitz continuity implies uniform continuity.

Proof: Let $f: X \to Y$ be Lipschitz continuous with modulus β . Let $\epsilon > 0$ and let $\delta = \frac{\epsilon}{2\beta}$. Then if $d(x,y) \le \delta$, then

$$d(f(x), f(y)) \le \beta d(x, y) \le \beta \delta = \beta \frac{\epsilon}{2\beta} < \epsilon$$

which means f is uniformly continuous.

Sequences of Functions

Consider sequences $\{f_n\}$ whose terms are real valued functions defined on a common domain \mathbb{R} . For each $x \in \mathbb{R}$, we can form a corresponding sequence $\{f_n(x)\}$, whose terms are the corresponding function values.

Let S be the set of x's in \mathbb{R} for which $\{f_n(x)\}$ converges.

Limit Function

If $\lim_{n\to\infty} \{f_n(x)\} = f(x)$, $x\in S$, then f(x) is called the <u>limit function</u> of $\{f_n\}$ and we say that $\{f_n\}$ converges pointwisely to f on the set S.

Note: Suppose that $f_n(x)$ is continuous at some $x_0 \in S$, $\forall n$. Does this imply that the limit function f(x) is also continuous at x_0 ? Not necessarily.

Example:

$$f_n(x) = \frac{x^{2n}}{1 + x^{2n}}, \quad x \in \mathbb{R}, \quad n = 1, 2, \dots$$

 \Longrightarrow

$$f(x) = \begin{cases} 0, & \text{if } |x| < 1\\ \frac{1}{2}, & \text{if } |x| = 1\\ 1, & \text{if } |x| > 1 \end{cases}$$

Uniform Convegence of $\{f_n\}$

Let $\{f_n\}$ be a sequence of functions that converges pointwise on a set S to a limit function f, i.e., $\forall x \in S$ and $\forall \epsilon > 0, \exists N \in \mathbb{N}$, where $N = N(x, \epsilon)$, s.t.

$$\forall n > N, |f_n(x) - f(x)| < \epsilon.$$

<u>Definition</u>: A sequence of functions $\{f_n\}$ is said to <u>converge uniformly</u> to f on a set S if $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N}$, s.t.

$$\forall n > N, |f_n(x) - f(x)| < \epsilon, \ \forall x \in S$$

Geometry

If f_n is real-valued $\forall n \in \mathbb{N}$, then $|f_n(x) - f(x)| < \epsilon$ mean

$$f(x) - \epsilon < f_n(x) < f(x) + \epsilon.$$

If this holds for all n > N and for all $x \in S$, then $\{(x,y) \mid y = f_n(x), x \in S\}$, the entire graph, lies within the 2ϵ "bound" around f.

<u>Uniform Bounds</u> $\{f_n\}$ is <u>uniformly bounded</u> on S if $\exists M > 0$, constant, s.t. $|f_n(x)| \leq M$, $\forall x \in S$ and $\forall n$. The number M is called a <u>uniform bound</u> for f_n .

<u>Theorem</u>(Apostol)

If $f_n \to f$ uniformly on S and if each f_n is bounded on S, then f_n is uniformly bounded on S.

Theorem (Uniform Convergence and Continuity, Apostol)

Let $f_n \to f$ uniformly on S. If each f_n is continuous at a point $c \in S$, then the limit function f is also continuous at c.

Theorem (Cauchy Condition for Uniform Convergence)

Let $\{f_n\}$ be defined on S. Then there exists f s.t. $f_n \to f$ uniformly on S iff $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. $\forall m, n > N$,

$$\underbrace{|f_m(x) - f_n(x)|}_{\text{Cauchy Condition}} < \epsilon, \quad \forall x \in S$$

Proof: " \Longrightarrow "

Assume that $f_n \to f$ uniformly on S. Let $\epsilon > 0$. Then $\exists N \in \mathbb{N}$ s.t. $n > N \Longrightarrow |f_n(x) - f(x)| < \frac{\epsilon}{2}, \forall x \in S$. Let m > N. Then $|f_m(x) - f(x)| < \frac{\epsilon}{2}$. Then

$$|f_m(x) - f_n(x)| = |f_m(x) - f(x) + f(x) - f_n(x)| \le |f_m(x) - f(x)| + |f(x) - f_n(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

"⇐="

Suppose that the Cauchy condition is satisfied $\Longrightarrow \forall x \in S, \{f_n(x)\}\$ converges.

Let
$$f(x) = \lim_{n \to \infty} f_n(x) \ \forall \ x \in S$$
.

Let $\epsilon > 0$ and choose $N \in \mathbb{N}$ s.t. $\forall n > N$,

$$|f_n(x) - f_{n+k}(x)| < \frac{\epsilon}{2}, \quad \forall k = 1, 2, 3..., \quad \forall x \in S.$$

Then

$$\lim_{k \to \infty} |f_n(x) - f_{n+k}(x)| = |f_n(x) - f(x)| \le \frac{\epsilon}{2}$$

$$\Longrightarrow \forall n > N,$$

$$|f_n(x) - f(x)| < \epsilon \quad \forall x \in S.$$

 $\Longrightarrow f_n \to f$ uniformly on S.

References