

## CSE322 ALGEBRIC METHODS USING ARDEN'S THEORM

Lecture #8

## **ALGEBRIC METHOD ISUNG ARDEN'S THEORM**



The following method is an extension of the Arden's theorem (Theorem 5.1). This is used to find the r.e. recognized by a transition system.

The following assumptions are made regarding the transition system:

- (i) The transition graph does not have  $\Lambda$ -moves.
- (ii) It has only one initial state, say  $v_1$ .
- (iii) Its vertices are  $v_1 \dots v_n$ .
- (iv)  $V_i$  the r.e. represents the set of strings accepted by the system even though  $v_i$  is a final state.
- (v)  $\alpha_{ij}$  denotes the r.e. representing the set of labels of edges from  $v_i$  to  $v_j$ . When there is no such edge,  $\alpha_{ij} = \emptyset$ . Consequently, we can get the following set of equations in  $V_1 \dots V_n$ :

$$\mathbf{V}_{1} = \mathbf{V}_{1}\boldsymbol{\alpha}_{11} + \mathbf{V}_{2}\boldsymbol{\alpha}_{21} + \cdots + \mathbf{V}_{n}\boldsymbol{\alpha}_{n1} + \Lambda$$

$$\mathbf{V}_{2} = \mathbf{V}_{1}\boldsymbol{\alpha}_{12} + \mathbf{V}_{2}\boldsymbol{\alpha}_{22} + \cdots + \mathbf{V}_{n}\boldsymbol{\alpha}_{n2}$$

$$\vdots$$

$$\mathbf{V}_{n} = \mathbf{V}_{1}\boldsymbol{\alpha}_{1n} + \mathbf{V}_{2}\boldsymbol{\alpha}_{2n} + \cdots + \mathbf{V}_{n}\boldsymbol{\alpha}_{nn}$$

By repeatedly applying substitutions and Theorem 5.1 (Arden's theorem), we can express  $V_i$  in terms of  $\alpha_{ii}$ 's.

## **ALGEBRIC METHOD ISUNG ARDEN'S THEORM**



Consider the transition system given in Fig. 5.13. Prove that the strings recognized are  $(\mathbf{a} + \mathbf{a}(\mathbf{b} + \mathbf{a}\mathbf{a})^*\mathbf{b})^* \mathbf{a}(\mathbf{b} + \mathbf{a}\mathbf{a})^*\mathbf{a}$ .



Fig. 5.13

## ALGEBRIC METHOD ISUNG ARDEN'S THEOR

P U

The three equations for  $q_1$ ,  $q_2$  and  $q_3$  can be written as

$$q_1 = q_1a + q_2b + \Lambda,$$
  $q_2 = q_1a + q_2b + q_3a,$   $q_3 = q_2a$ 

It is necessary to reduce the number of unknowns by repeated substitution. By substituting  $q_3$  in the  $q_2$ -equation, we get by applying Theorem 5.1

$$q_2 = q_1 a + q_2 b + q_2 a a$$
  
=  $q_1 a + q_2 (b + a a)$   
=  $q_1 a (b + a a)^*$ 

Substituting  $\mathbf{q}_2$  in  $\mathbf{q}_1$ , we get

$$\mathbf{q}_{l} = \mathbf{q}_{l}\mathbf{a} + \mathbf{q}_{l}\mathbf{a}(\mathbf{b} + \mathbf{a}\mathbf{a})*\mathbf{b} + \Lambda$$
$$= \mathbf{q}_{l}(\mathbf{a} + \mathbf{a}(\mathbf{b} + \mathbf{a}\mathbf{a})*\mathbf{b}) + \Lambda$$

Hence,

$$q_1 = \Lambda(a + a(b + aa)*b)*$$
 $q_2 = (a + a(b + aa)*b)* a(b + aa)*$ 
 $q_3 = (a + a(b + aa)*b)* a(b + aa)*a$ 

Since  $q_3$  is a final state, the set of strings recognized by the graph is given by

$$(a + a(b + aa)*b)*a(b + aa)*a$$