Hints and Answers: Tutorial Sheet-1

Autumn 2024

- 1. Apply first the Intermediate Value Theorem, and then the Rolle's Theorem.
- 2. (a) The conditions of LMVT are not satisfied.
 - (b) The conditions of LMVT are not satisfied.
 - (c) The conditions of LMVT are not satisfied.
- 3. (a) $\xi = \frac{\pi}{2}$.
 - (b) $\xi = \frac{\sqrt{6}-1}{6}$.
- 4. Limit $\lim_{h\to 0} \theta$ in each case is 1/2.
- 5. (a) Apply LMVT to f on [1,2]. The largest possible value of f(1) is -3.
 - (b) Consider $f(x) = x^{\frac{1}{3}}$ on [27, 28]. By LMVT, deduce that $3 < \sqrt[3]{28} < 3.037037037...$
 - (c) Apply LMVT to f on $\left[x_1, \frac{x_1+x_2}{2}\right]$ and $\left[\frac{x_1+x_2}{2}, x_2\right]$ resectively.
- 6. (a) Consider $f(x) = \frac{\sin x}{x}$ on $0 < x < \pi/2$. By considering f'(x) on $[\delta, \pi/2]$ for any $0 < \delta < \pi/2$, show that f(x) is a strictly decreasing function on $[\delta, \pi/2]$.
 - (b) Apply LMVT to $f(x) = x^n a^n$ on [a, b].
 - (c) Consider $f(x) = \ln(1+x) \frac{x}{1+x}$ and $g(x) = x \ln(1+x)$ on $[0, \infty)$. Considering their derivatives, test the monotonicity.
- 7. (a) Let P = (c, f(c)). Apply LMVT to f on [a, c] and [c, b] respectively. Then further apply LMVT to f'(x).
 - (b) Consider the 2nd function $g(x) = x^2$ to apply CMVT.
 - (c) Apply LMVT to f on $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$ respectively.
- 8. (a) Consider $g(x) = \begin{vmatrix} f(x) & f(b) \\ \phi(x) & \phi(b) \end{vmatrix}$ and apply LMVT.
 - (b) Along with f, consider the 2nd function g(x) as x, x^2 and x^3 separately, and apply CMVT in each case.

- 9. (a) Consider $f(x) = 1 \cos x$ and $g(x) = \frac{x^2}{2}$ for all $x \in \mathbb{R}$.
 - (b) Consider $g(x) = \frac{f(x)}{x^2}$ and $h(x) = \frac{1}{x^2}$ for all $x \in [a, b]$.
 - (c) Consider $f(x) = \ln x$ for all x > 0 and $g(x) = \sin^{-1}(x)$ for all $x \in \mathbb{R}$. Apply CMVT on the interval [x, 1] for some 0 < x < 1.
- 10. Apply LMVT to f(x) on two intervals $[a, x_0]$ and $[x_0, b]$ respectively, to get two points $c_1 \in (a, x_0)$ and $c_2 \in (x_0, b)$. Next apply LMVT to f'(x) on $[c_1, c_2]$.