CSCI 320-54 – Assignment 7: X86 Lab 1

Created by: Thomas Hoerger

Objectives

Analyze, edit, assemble, link and run the programs. Write a program to display a "?", read two decimal digits whose sum is less than 10, and display them and their sum on the next line, with an appropriate message.

Equipment Used

GUI Turbo Assembler 5.1

Procedure

To edit a program use notepad Save with .asm extension.

To assemble the program

C: tasm pgm4_1; or masm pgm4_1

To link

C:tlink pgm4_1;

To run

Pgm4_1

1.Edit, assemble, link and run the above x86 programs. Make sure to fix the errors.

2. Write a program to (a) display a "?", (b) read two decimal digits whose sum is less than 10, (c) Display them and their sum on the next line, with an appropriate message. Sample Execution:

?27

THE SUM OF 2 AND 7 IS 9 Submit your .docx report.

New Operations Learned

MOV AX: Moves into the AX register.

MOV DS, AX: Set the data segment register (DS) to point to the data segment.

MOV AH: Move the value into the AH register.

MOV DX, OFFSET msgPrompt: Move the offset address of msgPrompt into the DX register.

INT 21h: Call interrupt 21h used to display a string or read a character.

SUB AL, '0': Subtract the ASCII value of '0' from AL to convert the character to its corresponding numerical value.

ADD AL, num2: Add the value in num2 to AL.

CMP sum, 10: Compare the value of sum with 10.

JAE overflow: Jump to the overflow label if sum is greater than or equal to 10.

LEA DX,MSG2: get message MSG2.

Program Description

PGM4_1: This program displays a ?.

PGM4_2: This program displays "Hello!".

PGM4_3: This program takes a lower-case letter in as an input then out puts it as a upper case letter.

DISPLAY.ASM: This program displays a ?, then reads two decimal digits whose sum is less than 10 and displays them and their sum on the next line.

SOURCE CODE

Figure 1 shows the source code for PGM4_1 and the terminal output after execution.

```
1 TITLE PGM4 2: PRINT STRING PROGRAM
                                        GUI Turbo Assembler x64
                                                                                                              Χ
3
   .MODEL SMALL
5 .STACK 100H
                                        Press any key to exit...
7 DATA
8 MSG DB 'HELLO!$'
10 .CODE
11
12 MAIN PROC
13
14 ;initialize DS
15 MOV AX, @DATA
16 MOV DS, AX ;initialize DS
17
18 ;display message
19 LEA DX,MSG ;get message
20 MOV AH,9 ; display string function
21 INT 21H ; display message
22
23 | ;return to DOS
24 MOV AH, 4CH
25 INT 21H ; DOS exit
26
27 MAIN ENDP
28
29 END MAIN
```

Figure 2 shows the source code for PGM4_2 and the terminal output after execution.

Figure 3 shows the source code for PGM4_3 and the terminal output after execution.

Before execution:

```
1 DATA SEGMENT
                A SEGMENT

msgPrompt DB '?', '$' ; Prompt message to display '?'
msgSumPart1 DB 13, 10, 'THE SUM OF ', '$' ; First part of the message to display sum
msgSumPart2 DB ' AND ', '$' ; Second part of the message to display sum
msgIs DB ' IS ', '$' ; Message to display 'IS'
errorMsg DB 13, 10, 'Sum is not less than 10.', 13, 10, '$' ; Error message to display
                num1 DB ? ; Reserve space for first digit
num2 DB ? ; Reserve space for second digit
sum DB ? ; Reserve space for sum
10
11 DATA ENDS
13 CODE SEGMEN
14 ASSUME CS:CODE, DS:DATA ; Set up code and data segment assumptions
                RT: ; Entry point for the program

MOV AX, DATA ; Load the data segment address into AX

MOV DS, AX ; Set the data segment register to point to the data segment
16 START:
18
               ; Display prompt message

MOV AH, 9 ; Function 9 of interrupt 21h displays a '$'-terminated string

MOV DX, OFFSET msgPrompt ; Load the offset address of msgPrompt into DX

INT 21h ; Call interrupt 21h to display the prompt message
20
21
22
23
24
25
                ; Read two decimal digits from the user

MOV AH, 1 ; Function 1 of interrupt 21h reads a character from standard input
INT 21h ; Call interrupt 21h to read the first decimal digit
SUB AL, '0' ; Convert the ASCII character to its decimal value
MOV num1, AL ; Store the first digit in the variable num1
26
27
28
29
30
31
                MOV AH, 1
INT 21h
SUB AL, '0'
                                                  ; Read the second decimal digit
; Call interrupt 21h to read the second decimal digit
; Convert the ASCII character to its decimal value
; Store the second digit in the variable num2
32
33
34
35
36
                MOV num2, AL
                ; Calculate the sum of the digits
MOV AL, num1 ; Move the first digit into AL
ADD AL, num2 ; Add the second digit to AL
MOV sum, AL ; Store the sum in the variable sum
37
38
39
 40
                ; Check if the sum is less than 10

CMP sum, 10 ; Compare the sum with 10

JAE overflow ; If sum is greater than or equal to 10, jump to the overflow label
41
42
43
44
45
46
47
                 ; Display the sum message on a new line
                 MOV AH, 9 ; Display the first part of the sum message
MOV DX, OFFSET msgSumPart1 ; Load the offset address of msgSumPart1 into DX
INT 21h
49
50
51
                 MOV DL, num1
ADD DL, '0'
MOV AH, 2
                                                 ; Display the first digit of the sum
; Convert the decimal value to ASCII character
; Function 2 of interrupt 21h displays a character
52
53
49
50
51
              MOV DL, num1
                                             ; Display the first digit of the sum
; Convert the decimal value to ASCII character
; Function 2 of interrupt 21h displays a character
              ADD DL, '0'
MOV AH, 2
INT 21h
52
53
54
55
              MOV AH, 9 ; Display the second part of the sum message
MOV DX, OFFSET msgSumPart2 ; Load the offset address of msgSumPart2 into DX
INT 21h
56
57
58
59
60
61
              MOV DL, num2
ADD DL, '0'
MOV AH, 2
INT 21h
                                            ; Display the second digit of the sum
; Convert the decimal value to ASCII character
; Function 2 of interrupt 21h displays a character
62
63
64
65
                                                  ; Display the 'IS' part of the sum message 

gIs ; Load the offset address of msgIs into DX
              MOV AH, 9
              MOV DX, OFFSET msgIs
INT 21h
66
67
68
              MOV DL, sum
ADD DL, '0'
MOV AH, 2
INT 21h
                                                ; Display the calculated sum
; Convert the decimal value to ASCII character
; Function 2 of interrupt 21h displays a character
69
70
71
72
              ; Display newline and carriage return
MOV AH, 2 ; Function 2 of interrupt 21h displays a character
MOV DL, 13 ; ASCII code for carriage return
73
74
75
76
77
78
              MOV AH, 2
MOV DL, 13
INT 21h
              MOV AH, 2
                                            ; Function 2 of interrupt 21h displays a character ; ASCII code for newline
79
80
81
82
              MOV DL, 10
INT 21h
              ; Exit the program MOV AE, 4Ch \, ; Function 4Ch of interrupt 21h terminates the program with the return code in AL INT 21h
83
84
85
              ; Display an error message if the sum is 10 or greater on a new line
MOV AH, 9 ; Display the error message
MOV DM, OFFSET magPrompt + 1 ; Load the offset address of msgPrompt + 1 to skip the '?'
INT 21h
86
89
90
91
92
              MOV AH, 9 ; Display the error message
MOV DX, OFFSET errorMsg ; Load the offset address of errorMsg into DX
INT 21h
93
94
95
96
97
              ; Display newline and carriage return MOV AH,\ 2; Function 2 of interrupt 21h displays a character MOV DL,\ 13; ASCII code for carriage return INT 21h
```

```
MOV AH, 2 ; Function 2 of interrupt 21h displays a character
MOV DL, 10 ; ASCII code for newline

INT 21h

; Exit the program
MOV AH, 4Ch ; Function 4Ch of interrupt 21h terminates the program with the return code in AL
INT 21h

CODE ENDS ; End of the code segment

END START ; End of the program, specifying the starting point
```

Figure 4, 5, 6 shows the source code for DISPLAY.ASM.

Results

After Execution of the program

Figure 7 shows the terminal output for DISPLAY.ASM if the two entered integer's sum is less than 10.

Figure 8 shows the terminal output for DISPLAY.ASM if the two entered integer's sum is 10 or more.