

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Практикум

«Стохастический анализ и моделирование»

Студент 415 группы К.Ю. Егоров

Руководитель практикума к.ф.-м.н., доцент С. Н. Смирнов

Содержание

1	Зад	Задание №1																3									
	1.1	Задача №1															 										3
	1.2	Задача №2															 										4
	1.3	Задача №3																					•	•			4
2																8											
	2.1	Задача №1															 										8
	2.2	Задача №2															 										10
	2.3	Задача №3															 										10
3	Зад	Задание №3																12									
	'	Задача №1															 										12

1 Задание №1

- 1. Реализовать генератор схемы Бернулли с заданной вероятностью успеха p. На основе генератора схемы Бернулли построить датчик для биномиального распределения.
- 2. Реализовать генератор геометрического распределения. Проверить для данного распределения свойство отсутствия памяти.
- 3. Рассмотреть игру в орлянку бесконечную последовательность испытаний с бросанием правильной монеты. Выигрыш S_n определяется как сумма по всем n испытаниям значений 1 и -1 в зависимости от выпавшей стороны. Проиллюстрировать (в виде ломаной) поведение нормированной суммы $Y(i) = \frac{S_i}{\sqrt{n}}$ как функции от номера испытания $i = 1, \ldots, n$ для одной отдельно взятой траектории. Дать теоретическую оценку для Y(n) при $n \to \infty$.

1.1 Задача №1

Определение 1.1. Схемой Бернулли называется последовательность испытаний, в каждом из которых возможны два исхода — «успех» и «неудача», при этом «успех» в каждом испытании происхоит с одной и той же вероятностью $p \in (0, 1)$, а «неудача» — с вероятностью $q \equiv 1 - p$. На испытания в схеме Бернулли налагаются следующие требования: отсутствие взаимного влияния, воспроизводимость, а также сходные — но не идентичные — условия проведения.

Определение 1.2. Будем говорить, что случайная величина X имеет *распределение* Бернулли, если она принимает всего два значения: 1 и 0 с вероятностями p и $q \equiv 1-p$ соответственно. Таким образом,

$$\mathbb{P}(X=1) = p \qquad \text{и} \qquad \mathbb{P}(X=0) = q,$$

то есть событие $\{X=1\}$ соответствует «успеху», а $\{X=0\}$ — «неудаче». Будем обозначать такую случайную величину

$$X \sim \text{Bern}(p)$$
.

Реализуем генератор схемы Бернулли с заданной вероятностью успеха p следующим образом: пусть нам дана случайная величина ξ , равномерно распределённая на отрезке [0, 1]. Тогда случайная величина $X \sim \text{Bern}(p)$ задаётся следующим образом:

$$X = \mathbb{I}(\xi < p) = \begin{cases} 1, & \text{при } 0 \leqslant \xi < p, \\ 0, & \text{при } p \leqslant \xi \leqslant 1. \end{cases}$$

Определение 1.3. Будем говорить, что случайная величина X имеет биномиальное распределение с параметрами n и p, если

$$\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k},$$
 где $k \in \mathbb{N}_0.$

В таком случае X интерпретируют как число «успехов» в серии из n испытаний схемы Бернулли с вероятностью успеха p. Будем обозначать такую случайную величину

$$X \sim \text{Bi}(n, p).$$

Пусть теперь $X \sim \text{Bi}(n, p)$, а $Y_i \sim \text{Bern}(p)$, $i = \overline{1, n}$. Тогда, как видно из интерпретации биномиального распределения, датчик биномиальной случайной величины будет иметь вид:

$$X = \sum_{i=1}^{n} Y_i.$$

1.2 Задача №2

Определение 1.4. Будем говорить, что случайная величина X имеет *геометрическое распределение*, если

$$\mathbb{P}(X=k) = (1-p)^k p = q^k p$$
, где $k \in \mathbb{N}_0$.

Геометрически распределенная случайная величина интерпретируется как количество «неудач» до первого «успеха» в схеме испытаний Бернулли с вероятностью p. Будем обозначать такие случайные величины

$$X \sim \text{Geom}(p)$$
.

Зная интерпретацию, мы легко строим датчик и для геометрического распределения.

Утверждение 1.1 (Свойство отсутствия памяти). Пусть $X \sim Geom(p)$, тогда для любых $n, m \in \mathbb{N}_0$ справедливо

$$\mathbb{P}(X \geqslant m + n \mid X \geqslant m) = \mathbb{P}(X \geqslant n),$$

то есть количество прошлых «неудач» не влияет на количество будущих «неудач».

Доказательство. Рассмотрим левую часть равенства из условия утверждения:

$$\mathbb{P}(X \geqslant m+n \mid X \geqslant m) = \frac{\mathbb{P}(X \geqslant m+n, X \geqslant m)}{\mathbb{P}(X \geqslant m)} = \frac{\mathbb{P}(X \geqslant m+n)}{\mathbb{P}(X \geqslant m)} = \frac{\sum_{i=m+n}^{\infty} q^{i}p}{\sum_{i=m}^{\infty} q^{i}p} = \frac{q^{m+n}}{q^{m}} = q^{n}.$$

Теперь рассмотрим правую часть равенства:

$$\mathbb{P}(X \geqslant n) = \sum_{i=n}^{\infty} q^{i} p = p \frac{q^{n}}{1 - q} = q^{n}.$$

Таким образом, утверждение доказано.

1.3 Задача №3

Рассмотрим игру Орлянка, правила которой описаны в формулировке задания и построим траекторию заданного процесса Y(i).

В данной нормированной сумме Y фигурируют независимые одинаково распределенные случйные величины X_i . Посчитаем их математическое ожидание и дисперсию.

$$\mathbb{E} X_i = 1 \cdot \frac{1}{2} - 1 \cdot \frac{1}{2} = 0,$$

$$\mathbb{V}\text{ar} X_i = \frac{1}{2} \cdot (1 - 0)^2 + \frac{1}{2} \cdot (-1 - 0)^2 = \frac{1}{4}.$$

Теперь можем воспользоваться следующей теоремой.

Теорема 1.1 (Центральная предельная теорема). Пусть X_1, \ldots, X_n, \ldots есть бесконечная последовательность независимых одинаково распределенных случайных величин, имеющих конечное математическое ожидание μ и дисперсию σ^2 . Пусть также $S_n = \sum_{i=1}^n X_i$. Тогда

$$\frac{S_n - \mu n}{\sigma \sqrt{n}} \longrightarrow N(0, 1)$$

по распределению при $n \to \infty$.

Получается, что

$$2\lim_{n\to\infty} Y(n) \xrightarrow{dist.} N(0, 1).$$

Для оценки этого значения воспользуемся «правилом трёх сигм».

Теорема 1.2. Практически все значения нормально распределённой случайной величины $\xi \sim N(\mu, \sigma^2)$ лежат в интервале $(\mu - 3\sigma, \mu + 3\sigma)$. Более строго — приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале.

Таким образом, приблизительно с вероятностью 0,9973

$$-\frac{3}{2} \leqslant \lim_{n \to \infty} Y(n) \leqslant \frac{3}{2}.$$

Рис. 1.1: Гистограмма биномиального распределения случайной величины с параметрами $n=50,\,p=\frac{3}{10}$ при 10^3 (слева) и 10^5 (справа) испытаний.

Рис. 1.2: Гистограмма геометрического распределения случайной величины с параметром $p=\frac{3}{10}$ при 10^3 (слева) и 10^5 (справа) испытаний.

Рис. 1.3: Гистограмма геометрического распределения, демонстрирующая его свойство отсутствия памяти. Здесь задан параметр геометрического распределения $p=\frac{2}{10},$ а также «сдвиг» m=10.

Рис. 1.4: Иллюстрация варианта поведения нормированной суммы Y(i) игры в орлянку на отрезке $1\leqslant i\leqslant 10^3$.

2 Задание №2

- 1. Построить датчик сингулярного распределения, имеющий в качестве функции распределения канторову лестницу. С помощью критерия Колмогорова убедиться в корректности работы датчика.
- 2. Для канторовых случайных величин проверить свойство симметричности относительно $\frac{1}{2}$ (X и (1-X) распределены одинаково) и самоподобия относительно деления на 3 (условное распределение Y при условии $Y \in [0, \frac{1}{3}]$ совпадает с распределением $\frac{Y}{3}$) с помощью критерия Смирнова.
- 3. Вычислить значение математического ожидания и дисперсии с эмпирическими для разного объема выборок. Проиллюстрировать сходимость.

2.1 Задача №1

Определение 2.1. Пусть дано вероятностное пространство (\mathbb{R} , \mathcal{F} , \mathbb{P}), и на нем определена случайная величина ξ с распределением \mathbb{P}_{ξ} . Тогда функцией распределения случайной величины X называется функция $F_{\xi}: \mathbb{R} \to [0, 1]$, задаваемая формулой:

$$F_{\xi}(x) = \mathbb{P}(\xi \leqslant x) \equiv \mathbb{P}_{\xi}((-\infty, x]).$$

Определение 2.2. Функция распределения некоторой случайной величины называется *сингулярной*, если она непрерывна и ее множество точек роста имеет нулевую меру Лебега.

Определение 2.3. Из единичного отрезка $C_0 = [0, 1]$ удалим интервал $(\frac{1}{3}, \frac{2}{3})$. Оставшееся множество обозначим за C_1 . Множество $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю часть, и оставшееся множество обозначим за C_2 . Повторив данную процедуру, то есть удаляя средние трети у всех четырех отрезков, получим C_3 . Дальше таким же образом получаем последовательность замкнутых множеств $C_0 \supset C_1 \supset C_2 \supset \ldots \supset C_i \supset \ldots$ Пересечение

$$C = \bigcap_{i=0}^{\infty} C_i$$

называется канторовым множеством.

Замечание 2.1. Канторово множество так же можно определить как множество всех чисел от нуля до единицы, которые можно представить в троичной записи при помощи только нулей и двоек. То есть

$$C = \{ 0, \alpha_1 \alpha_2 \dots \alpha_i \dots_3 \mid \alpha_i = 0, 2 \}.$$

Утверждение 2.1. Канторово множество имеет нулевую меру Лебега. [1]

Определение 2.4. Рассмотрим функцию K(x) такую, что в точках 0 и 1 значение функции принимается равным соответственно 0 и 1. Далее интервал (0, 1) разбивается на три равные части $(0, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3})$ и $(\frac{2}{3}, 1)$. На среднем сегменте полагаем $K(x) = \frac{1}{2}$. Оставшиеся два сегмента снова разбиваются на три равные части каждый, и на средних сегментах K(x) полагается равной $\frac{1}{4}$ и $\frac{3}{4}$. Каждый из оставшихся сегментов снова делится

на три части, и на внутренних сегментах K(x) определяется как постоянная, равная среднему арифметическому между соседними, уже определенными значениями K(x). На остальных точках единичного отрезка определяется по непрерывности. Полученная функция называется канторовой лестницей.

Замечание 2.2. Из определения канторовой лестницы K(x) следует, что она действует на точки из канторова множества C по следующему правилу:

$$K(0, \alpha_1 \alpha_2 \dots \alpha_i \dots_3) = 0, \frac{\alpha_1}{2} \frac{\alpha_2}{2} \dots \frac{\alpha_i}{2} \dots_2.$$

Теперь рассмотрим случайную величину

$$Y = 0, \xi_1 \, \xi_2 \dots \xi_k \, \dots \, 2 = \sum_{k=1}^{\infty} \frac{\xi_k}{2^k}, \quad \text{где } \xi_k \sim \mathrm{Bern} \left(\frac{1}{2} \right).$$

Такая случайная величина имеет равномерное распределение на откезке [0,1], так как мы равновероятным образом выбираем знаки разложения числа ξ_k в двоичном представлении. Теперь рассмотрим искомую случайную величину X, имеющую в качестве функции распределения $F_X(x)$ канторову лестницу K(x). Образ каждой случайной величины Y для такой функции будет равен

$$K^{-1}(Y) = \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k}.$$

Эта точка лежит в канторовом множестве.

Теорема 2.1. Пусть некоторая функция распределения F имеет обратную F^{-1} . Тогда функцией распределения случайной величины

$$\eta = F^{-1}(\xi),$$

 $\epsilon de \xi$ — равномерно распределенная на отрезке [0,1] случайная величина, является F.

Д о к а з а т е л ь с т в о. Найдем функцию распределения случайной величины η :

$$F_{\eta}(x) = \mathbb{P}(\eta \leqslant x) = \mathbb{P}(F^{-1}(\xi) \leqslant x) = \mathbb{P}(\xi \leqslant F(x)) = F(x).$$

Таким образом, теорема доказана.

Из теоремы вытекает, что при помощи построенного ранее (см. раздел 1) генератора схемы Бернулли мы можем смоделировать случайную величину X, принимающую с вероятностью 1 значения из канторова множества C и имеющую канторову лестницу K(x) в качестве функции распределения $F_X(x)$, следующим образом:

$$X = \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k}$$
, где $\xi_k \sim \mathrm{Bern}\left(\frac{1}{2}\right)$.

В программной реализации будем рассматривать частичные суммы. Для этого этого введем погрешность ε и найдем такое число n, при котором частичная сумма будет отличаться от бесконечной не более, чем на заданную погрешность.

$$\sum_{k=n}^{\infty} \frac{2\xi_k}{3^k} \leqslant 2 \sum_{k=n}^{\infty} \frac{1}{3^k} = \frac{1}{3^{n-1}} \leqslant \varepsilon,$$

$$\downarrow \downarrow$$

$$n \geqslant 1 - \lceil \log_3 \varepsilon \rceil \ \forall \varepsilon < 1.$$

Замечание 2.3. Из выведенной формулы также видно, что для столь малой погрешности как $\varepsilon=10^{-9}$ достаточно использовать всего n=20 первых членов ряда.

Рис. 2.1: Эмпирическая и теоретическая функции распределения «канторовой» случайной величины X при выборке из 100 испытаний (слева) и 10^4 испытаний (справа).

Дописать проверку того, является ли функция распределения X канторовой лестницей при помощи критерия Колмогорова.

2.2 Задача №2

2.3 Задача №3

Вычислим значение математического ожидания для построенной случайной величины X:

$$\mathbb{E} X = \mathbb{E} \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k} = \sum_{k=1}^{\infty} \frac{2}{3^k} \mathbb{E} \xi_k = \sum_{k=1}^{\infty} \frac{2}{3^k} \cdot \frac{1}{2} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}.$$

Теперь, помня о независимости случайных величин ξ_k $k \in \mathbb{N}$, вычислим значение дисперсии

$$\operatorname{\mathbb{V}ar} X = \operatorname{\mathbb{V}ar} \sum_{k=1}^{\infty} \frac{2\xi_k}{3^k} = \sum_{k=1}^{\infty} \left(\frac{2}{3^k}\right)^2 \operatorname{\mathbb{V}ar} \xi_k = \sum_{k=1}^{\infty} \frac{4}{9^k} \cdot \frac{1}{4} = \frac{\frac{1}{9}}{1 - \frac{1}{9}} = \frac{1}{8}.$$

Замечание 2.4. При подсчете мы использовали известные значения для математического ожидания и дисперсии бернуллиевой случайной величины $\xi \sim \text{Bern}(p)$:

$$\mathbb{E}\,\xi = p$$
 и $\mathbb{V}\mathrm{ar}\,\xi = p(1-p).$

Рис. 2.2: Эмпирическое значение математического ожидания «канторовой» случайной величины X.

Рис. 2.3: Изменение эмпирическое значения математического ожидания «канторовой» случайной величины X в зависимости от количества экспериментов: $5\cdot 10^3-10^4$ — слева, $5\cdot 10^4-10^5$ — справа.

3 Задание №3

- 1. Построить датчик экспоненциального распределения. Проверить для данного распределения свойство отсутствия памяти. Пусть X_1, X_2, \ldots, X_n независимо распределенные случайные величины с параметрами $\lambda_1, \lambda_2, \ldots, \lambda_n$ соответственно. Найти распределение случайной величины $Y = \min\{X_1, X_2, \ldots, X_n\}$.
- 2. На основе датчика экспоненциального распределения построить датчик пуассоновского распределения.
- 3. Построить датчик пуассоновского распределения как предел биномеального распределения. С помощью критерия хи-квадрат Пирсона убедиться, что получен датчик распределения Пуассона.
- 4. Построить датчик стандартного распределения методом моделирования случайных величин парами с переходом в полярные координаты. Проверить при помощи t-критерия Стьюдента равенство математических ожиданий, а при помози критерия Фишера равенство дисперсий.

3.1 Задача №1

Определение 3.1. Случайная величина X имеет экспоненциальное распределение с параметром λ , если ее функция распределения имеет вид

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & \text{при } x \geqslant 0, \\ 0, & \text{при } x < 0. \end{cases}$$

Будем обозначать такие случайные величины

$$X \sim \text{Exp}(\lambda)$$
.

Для того чтобы построить датчик экспоненциально распределенной с параметром λ случайной величины X, воспользуемся доказанной ранее теоремой 2.1. Получается, что такую случайную величину можно представить в виде:

$$X = F_x^{-1}(\xi) = \frac{1}{\lambda} \ln(1 - \xi),$$

где ξ — равномерно распределенная на отрезке [0, 1] случайная величина.

Утверждение 3.1 (Свойство отсутствия памяти). Пусть $X \sim Exp(\lambda)$, тогда для любых $t \neq 0$ и s справедливо:

$$\mathbb{P}(X \geqslant s + t \mid X \geqslant t) = \mathbb{P}(X \geqslant s).$$

Доказательство. Рассмотрим левую часть равенства:

$$\mathbb{P}(X \geqslant s+t \,|\, X \geqslant t) = \frac{\mathbb{P}(X \geqslant s+t,\, X \geqslant t)}{\mathbb{P}X \geqslant t} = \frac{\mathbb{P}(X \geqslant s+t)}{\mathbb{P}(X \geqslant t)}.$$

Таким образом получаем, утверждение эквивалентно тому, что

$$\mathbb{P}(X \geqslant s + t) = \mathbb{P}(X \geqslant t)\mathbb{P}(X \geqslant s).$$

Из определения функции распределения $F_X(t) = \mathbb{P}(X < t) = 1 - \mathbb{P}(X \geqslant t)$ получаем, что $e^{-\lambda(s+t)} = e^{-\lambda s}e^{-\lambda t}.$

Последнее равенство точно верно. Таким образом, утверждение доказано.

Список литературы

[1] Ширяев А. Н. Вероятность, в 2-х кн. — 4-е изд., переработанное и дополненное — М.: МЦНМО, 2007.