Universidad Tecnológica Nacional Facultad Regional Córdoba

Ingeniería Electrónica

CATEDRA

Titulo

SUBTITULO

DOCENTES XXXXXXXXXX XXXXXXXX.

XXXXXXXXXX XXXXXXXX...

COMISIÓN XRX

ALUMNOS XXXXX XXXXX, XXXXX XXXXX. XXXXX

XXXXX XXXXX, XXXXX XXXXX. XXXXX

Córdoba, 2 de octubre de 2023

CONTENIDO

1.	Introducción	3
2.	Marco teorico	3
3.	Primera Parte 3.1. Circuito	3
4.	Segunda Parte4.1. Circuito4.2. Procedimiento4.3. Simulación4.4. Experimental	5 5 5 6 7
5.	Tercer Parte	7
6.	Conclusión	7

1. Introducción

2. Marco teorico

3. Primera Parte

3.1. Circuito

3.2. Procedimiento

- 1. Armar el circuito seleccionando un correcto valor de las resistencias en función del datasheet del UJT.
- 2. Abrir el interruptor L1 y cerrar el interruptor L2.
- 3. Variar la V_{EE} desde 0-30V y medir la corriente I_E .
- 4. Completar la tabla propuesta modificándola si fuera necesario.
- 5. Graficar la curva $I_E = f(V_{EE})$ con los datos relevados de la tabla.
- 6. Abrir el interruptor L2 y cerrar el interruptor L1.
- 7. Variar la VCC desde 0-30V y medir la corriente IB.
- 8. Completar la tabla propuesta modificándola si fuera necesario.

3.3. Simulación

3.4. Experimental

V_{EE}	V_E	I_E
0	0	0
0.5	0.52	0.007
1	0.79	0.23
1.5	0.88	0.69
2	0.94	1.11
4	1.03	3.03
6	1.06	5.12
8	1.09	7
10	1.12	9.03
12	1.15	11.17
14	1.17	13.09
16	1.20	15.19
18	1.22	16.87
20	1.24	19.37
22	1.26	21.06
24	1.28	23.5
26	1.30	25.8
28	1.32	28.1
30	1.34	30
		_

V_{CC}	V_{B_2}	I_B
0	0	0
2	1.71	0.30
4	3.57	0.62
6	5.23	0.89
8	6.96	1.16
10	8.90	1.44
12	10.69	1.69
14	12.37	1.91
16	14.27	2.14
18	16.29	2.38
20	17.82	2.54
22	19.67	2.75
24	22.2	2.89
26	23.8	3.03
28	25.6	3.20
30	27.4	3.36

4. Segunda Parte

4.1. Circuito

4.2. Procedimiento

- 1. Armar el circuito.
- 2. Medir y graficar la señal en OUT1
- 3. Medir y graficar la señal en OUT2

4. Variar el potenciómetro y observar el efecto sobre la OUT1 y la OUT2

4.3. Simulación

4.4. Experimental

5. Tercer Parte

Parametro	Valor
η	
R_{BBO}	
$V_{EB1(SAT)}$	
$V_{(BR)B1E}$	
P_D	
I_J	

6. Conclusión

Página 7 de 7