∢Volver a la sem ana 3

XLecciones

Anterior

Sġu ente

Regularized Logistic Regression

We can regularize logistic regressionia similiar way that we regularize litear regression As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pilk lite, is less likely to overfit than the non-regularized function represented by the blue lite:

Regularized logistic regression.

Cost function:
$$J(\theta) = -\left[\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log h_{\theta}(x^{(i)}) + (1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m}\sum_{j=1}^{n}\bigotimes_{j=1}^{n}\bigotimes_{j=1}^{n}\sum_{j=1}$$

CostFu rcton

Recall that our cost function for logistic regression was:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \, \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \, \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

We can regularize this equation by adding a term to the end:

$$J(\theta) = -\tfrac{1}{m} \textstyle \sum_{i=1}^m \big[y^{(i)} \, \log \big(h_\theta(x^{(i)}) \big) + \big(1 - y^{(i)} \big) \, \log \big(1 - h_\theta(x^{(i)}) \big) \big] + \frac{\lambda}{2m} \textstyle \sum_{j=1}^n \theta_j^2$$

The second sum $\int_{j=1}^{n} \theta_{j}^{2}$ means to explicitly excludine basterm θ_{0} . I.e. the θ vector θ_{0} indexed from 0 to n(holding n+1 values, θ_{0} through θ_{n}), and this sum explicitly skips θ_{0} , by running from 1 to n skipping 0. Thus, whencome puting the equation, we should continuously update the two following equations:

Gradient descent

Repeat {
$$\Rightarrow \quad \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\Rightarrow \quad \theta_j := \theta_j - \alpha \underbrace{\left[\frac{1}{m} \sum_{i=1}^m (\underline{h_\theta(x^{(i)})} - y^{(i)}) x_j^{(i)} + \frac{\lambda}{M} \otimes_j \right]}_{\{j = \mathbf{X}, 1, 2, 3, \dots, n\}}$$

$$\}$$

$$\underbrace{\left[\frac{\lambda}{\lambda \otimes_j} \underbrace{\sum_{i=1}^m (\underline{h_\theta(x^{(i)})} - y^{(i)}) x_j^{(i)} + \frac{\lambda}{M} \otimes_j \right]}_{\{j \in \mathbf{X}, 1, 2, 3, \dots, n\}} }_{\{j \in \mathbf{X}, 1, 2, 3, \dots, n\}}$$

1 de 1 13/6/17 23:51