

AFOSR TN-56-190
ASTIA DOCUMENT No. AD 87063

NEW YORK UNIVERSITY
INSTITUTE OF MATHEMATICAL SCIENCES
Division of Electromagnetic Research
25 Waverly Place, New York 3, N.Y.

NEW YORK UNIVERSITY
Institute of Mathematical Sciences
Division of Electromagnetic Research

RESEARCH REPORT No. BR-18

Addition Theorems for the Functions of the Paraboloid of Revolution

HARRY HOCHSTADT

Mathematics Division
Air Force Office of Scientific Research
Contract No. AF 18(600)-367
File No. 2.2

MAY, 1956

BK-
e. 1

S NEW YORK UNIVERSITY
Institute of Mathematical Sciences
Division of Electromagnetic Research

Research Report No. BR-18

^{2a}
ADDITION THEOREMS FOR THE FUNCTIONS
OF THE PARABOLOID OF REVOLUTION

^{2a}
Harry Hochstadt

Harry Hochstadt
Harry Hochstadt

Morris Kline
Morris Kline
Project Director

May, 1956

The research reported in this document has been made possible through support and sponsorship extended by the Office of Scientific Research, H.Q., Air Research and Development Command, U.S.A.F., Baltimore, Maryland, under Contract No. AF 18(600)-367, File No. 2.2. It is published for technical information only, and does not necessarily represent recommendations or conclusions of the sponsoring agency.

^{2a}
New York, 1956

Abstract

Expansions or 'addition theorems' for the functions of the paraboloid of revolution have been obtained in terms of the functions of the paraboloid of revolution with reference to a new coordinate system which differs from the original one by a translation or a rotation.

Table of Contents

	<u>Page</u>
1. Introduction	1
2. The functions of the paraboloid of revolution	2
3. The addition theorem resulting from a translation of the axes along the axis of symmetry	11
4. The addition theorem resulting from a translation of the axes perpendicular to the axis of symmetry	13
5. The addition theorem resulting from a rotation of coordinates	16
6. The infinitesimal transformations	17
References	22
Distribution List	

1. Introduction

The wave equation

$$\Delta U + k^2 U = 0$$

admits solutions of the form

$$U_{x,\mu} = A_{x,\mu}(\xi) B_{x,\mu}(\eta) C_{x,\mu}(\phi)$$

if the coordinate system is such that separation of variables is possible.

ξ , η and ϕ are the three independent variables, and x and μ represent arbitrary complex parameters. In general $U_{x,\mu}$ will not be regular and one-valued over the whole space, but will be so for special values of x and μ . Let ξ' , η' and ϕ' be functions of ξ , η , and ϕ resulting from a translation or rotation of the coordinate system; then a relation which expresses $U_{x,\mu}(\xi', \eta', \phi')$ as a summation of terms of the form $U_{x,\mu}(\xi, \eta, \phi)$ is called an addition theorem.

Addition theorems for cylindrical and spherical coordinate systems are well known. These are the addition theorems for Bessel and Hankel functions, Legendre polynomials, spherical harmonics, Mathieu functions and spheroidal wave functions (see Meixner and Schäfke [1] and Erdelyi [2]).

It is proposed to derive such addition theorems for those functions of the paraboloid of revolution which are regular and one-valued in the whole space. As will be seen subsequently, these restrictions are not always necessary. That such theorems should exist can be inferred from the invariance of ΔU under rotations and translations of the space, and from the fact that the family of solutions that are everywhere regular and one-valued will be mapped onto itself by motions of space.

It is possible to derive several of these theorems by using known addition theorems. For example, it is possible to derive linear relations between the functions of the paraboloid of revolution and spherical harmonics. Since an addition theorem under a rotation of coordinates is known for the latter

functions, it is possible to derive one for the functions of the paraboloid of revolution.

2. The functions of the paraboloid of revolution

The introduction of the parabolic coordinates

$$x = 2\sqrt{\xi\eta} \cos \phi$$

$$y = 2\sqrt{\xi\eta} \sin \phi$$

$$z = \xi - \eta$$

into the wave equation

$$\Delta U + k^2 U = 0$$

leads to the equation

$$\frac{1}{2(\xi+\eta)} \left\{ \frac{\partial}{\partial\xi} 2\xi \frac{\partial U}{\partial\xi} + \frac{\partial}{\partial\eta} 2\eta \frac{\partial U}{\partial\eta} + \frac{\xi+\eta}{2\xi\eta} \frac{\partial^2 U}{\partial\phi^2} \right\} + k^2 U = 0.$$

The application of the method of separation of variables then leads to the three ordinary differential equations

$$\frac{d}{d\xi} \xi \frac{df_1(\xi)}{d\xi} + \left(k^2 \xi - \frac{\mu^2}{4\xi} - 2ikx \right) f_1(\xi) = 0,$$

$$\frac{d}{d\eta} \eta \frac{df_2(\eta)}{d\eta} + \left(k^2 \eta - \frac{\mu^2}{4\eta} + 2ikx \right) f_2(\eta) = 0,$$

$$\frac{d^2 f_3(\phi)}{d\phi^2} + \mu^2 f_3(\phi) = 0,$$

where x and μ are arbitrary complex parameters. In the notation of Buchholz [3],

the two linearly independent solutions of the first of these are

$$f_1(\xi) = m_\chi^\mu (-2ik\xi) = \frac{(-2ik\xi)^{\mu/2} e^{ik\xi} {}_1F_1(\frac{1+\mu}{2} - \chi; 1+\mu; -2ik\xi)}{\Gamma(1+\mu)},$$

where the Kummer function is defined as usual, i.e.,

$${}_1F_1(a; b; z) = \sum_{n=0}^{\infty} \frac{(a)_n}{(b)_n} \frac{z^n}{n!}$$

$$(a)_n = a(a+1) \dots (a+n-1)$$

$$(a)_0 = 1,$$

and

$$f_1(\xi) = w_\chi^\mu (-2ik\xi) = \frac{\pi}{\sin \pi\mu} \left[\frac{m_\chi^{-\mu} (-2ik\xi)}{\Gamma(\frac{1+\mu}{2} - \chi)} - \frac{m_\chi^\mu (-2ik\xi)}{\Gamma(\frac{1-\mu}{2} - \chi)} \right].$$

In case μ is an integer, $w_\chi^\mu (-2ik\xi)$ must be derived by a limit process from the above definition. Similarly the two linearly independent solutions of the second differential equation are given by

$$f_2(\gamma) = m_\chi^\mu (2ik\gamma) = \frac{(2ik\gamma)^{\mu/2} e^{-ik\gamma} {}_1F_1(\frac{1+\mu}{2} - \chi; 1+\mu; 2ik\gamma)}{\Gamma(1+\mu)}$$

and

$$f_2(\gamma) = w_\chi^\mu (2ik\gamma) = \frac{\pi}{\sin \pi\mu} \left[\frac{m_\chi^{-\mu}(2ik\gamma)}{\Gamma(\frac{1+\mu}{2} - \chi)} - \frac{m_\chi^\mu(2ik\gamma)}{\Gamma(\frac{1-\mu}{2} - \chi)} \right].$$

When μ is an integer the function $m_\chi^\mu(z)$ is regular and single-valued over

the entire space; $w_\chi^\mu(z)$ in general is neither single-valued nor regular.

The generating function for the function

$$\sum_n^\mu(P) = \frac{\Gamma(1+n+\mu)}{n!} m_{n+\frac{1+\mu}{2}}^\mu (-2ik\xi) m_{n+\frac{1+\mu}{2}}^\mu (2ik\eta) e^{-i\phi} \quad n = 0, 1, 2, \dots$$

can be derived in the following manner. From the integral representation for the Kummer function (cf. Magnus and Oberhettinger [4])

$$m_\chi^\mu(z) = \Gamma(\frac{1}{2} - \chi - \frac{\mu}{2}) \exp\left[\frac{z}{2} - \pi i\left(\frac{1+\mu}{2} + \chi\right)\right] \frac{1}{2\pi i} \int_0^\infty e^{-u} J_\mu(2\sqrt{uz}) u^{\chi - \frac{1+\mu}{2}} du$$

and from the series expansion for the Bessel function it follows that

$$\begin{aligned} G_\mu(P, t) &= \sum_{n=0}^\infty \sum_n^\mu(P)(-t)^n \\ &= \frac{e^{-ik(\xi-\eta)} e^{-i\phi} e^{-2\pi i \mu}}{t^{\mu/2} \sin^2 \mu \pi} \frac{1}{(2\pi i)^2} \\ &\quad \int_0^\infty \int_0^\infty e^{-(u+v)} \cdot J_\mu(2\sqrt{-2ik\xi u}) J_\mu(2\sqrt{2ik\eta v}) J_\mu(2\sqrt{uvt}) du dv. \end{aligned}$$

The symbol $G_\mu(P, t)$ denotes the generating function of the product

$$\sum_n^\mu(P) = \frac{\Gamma(1+n+\mu)}{n!} m_{n+\frac{1+\mu}{2}}^\mu (-2ik\xi) m_{n+\frac{1+\mu}{2}}^\mu (2ik\eta) e^{-i\phi}$$

evaluated at the point P , whose coordinates are ξ , η , and ϕ . Repeated application of the integral (cf. Watson [5])

$$\frac{\pi e^{-\mu\pi i}}{\sin \pi\mu} \frac{1}{2\pi i} \int_{\infty}^{(0+)} e^{-u} J_{\mu}(2\sqrt{\varepsilon u}) J_{\mu}(2\sqrt{bu}) du = e^{-(a+b)} I_{\mu}(2\sqrt{ab})$$

yields

Theorem 1: For $|t| < 1$ and $\mu \neq -1, -2, \dots$,

$$(1) \quad G_{\mu}(P, t) = \sum_{n=0}^{\infty} \Omega_n^{\mu} (-t)^n = \frac{\exp\left[ik(\xi - \gamma)\frac{1-t}{1+t}\right] J_{\mu}\left(\frac{4ik\sqrt{\xi n t}}{1+t}\right) e^{-i\mu\phi}}{t^{\mu/2} (1+t)}$$

The derivation of $G_{\mu}(P, t)$ required that μ not be an integer, but as can be seen from the result, it holds for positive integers as well. The case where μ is a negative integer must be treated with some care. From the limit relationship [3]

$$\begin{aligned} \mu \xrightarrow{L} -m \quad & \frac{m^{\mu}}{n+\frac{1+\mu}{2}} (-2ik\xi)^m \frac{\mu}{n+\frac{1+\mu}{2}} (2ik\gamma) = \left[\frac{n!}{(n-m)!} \right]^2 \frac{m^m}{n+\frac{1-m}{2}} (-2ik\xi)^m \frac{m}{n+\frac{1-m}{2}} (2ik\gamma), \quad n \geq m \\ & = 0, \quad n < m \end{aligned}$$

it follows that

$$\mu \xrightarrow{L} -m \quad G_{\mu}(P, t) = (-t)^m G_m(P, t) e^{+2im\phi}.$$

That the series for $G_{\mu}(P, t)$ converges for $|t| < 1$ can be seen from the asymptotic formula [3]

$$m_x^{\mu} (z) \approx \sqrt{\frac{1}{\pi \sqrt{zx}}} \pi^{-\mu/2} \cos(2\sqrt{zx} - \frac{\mu\pi}{2} - \frac{\pi}{4}) \quad |x| \rightarrow \infty.$$

A relationship between the spherical wave functions and the parabolic functions can now be established. The Fourier expansions of a plane wave in cylindrical and spherical coordinates respectively are [4]

$$\exp(ik[z \cos \Psi + \rho \cos \phi \sin \Psi]) = \sum_{m=0}^{\infty} i^m \epsilon_m J_m(k\rho \sin \Psi) e^{ikz \cos \Psi} \cos m\phi,$$

$$e^{ikr \cos \gamma} = \sqrt{\frac{\pi}{2kr}} \sum_0^{\infty} (2n+1) i^n J_{n+1/2}(kr) P_n(\cos \gamma),$$

$$\cos \gamma = \cos \theta \cos \Psi + \sin \theta \sin \Psi \cos \phi,$$

$$P_n(\cos \gamma) = \sum_{m=0}^n \epsilon_m \frac{(n-m)!}{(n+m)!} P_n^m(\cos \theta) P_n^m(\cos \Psi) \cos m\phi.$$

Comparison of coefficients of $\cos m\phi$ leads to

$$\exp(ikz \cos \Psi) J_m(k\rho \sin \Psi) = \sum_{n=|m|}^{\infty} i^{n-m} (2n+1) \frac{(n-m)!}{(n+m)!} j_n(kr) P_n^m(\cos \theta) P_n^m(\cos \Psi),$$

$$m = 0, \pm 1, \pm 2, \dots,$$

where

$$j_n(kr) = \sqrt{\frac{\pi}{2kr}} J_{n+1/2}(kr).$$

If we substitute $\frac{1-t}{1+t}$ for $\cos \Psi$ here, introduce parabolic coordinates, and then use Theorem 1, we obtain an expression for $G_m(P,t)$ in terms of spherical harmonics:

$$(2) \quad G_m(P,t) = \sum_{n=m}^{\infty} i^{n-m} (2n+1) \frac{(n-m)!}{(n+m)!} j_n(kr) P_n^m(\cos \theta) \frac{P_n^m\left(\frac{1-t}{1+t}\right) e^{-im\phi}}{t^{m/2} (1+t)},$$

$$r = \xi + \eta, \quad \cos \theta = \frac{\xi - \eta}{\xi + \eta}.$$

The right-hand side of (2) can be expanded into a power series in t by using

$$\frac{P_n^m\left(\frac{1-t}{1+t}\right)}{t^{m/2} (1+t)} = \frac{(-)^m \frac{(n+m)!}{(n-m)!} {}_2F_1\left(m-n, m+n+1; 1+m; \frac{t}{1+t}\right)}{m! (1+t)^{m+1}},$$

The left-hand side of (2) has been defined as a power series in t by equation (1). Comparing coefficients of equal powers of t in this series leads to

$$(3) \quad \Omega_s^m(P) = \sum_{n=m}^{\infty} a(n; m, s) j_n(kr) P_n^m(\cos \theta) e^{-im\phi},$$

$$a(n; m, s) = \frac{i^{n+m}(2n+1)}{m!} \sum_{r=0}^s \frac{(-)^r (m-n)_{(r)} (m+n+1)_{(r)} (r+m+1)_{(s-r)}}{(m+1)_{(r)} (s-r)! r!}, \quad m = 0, 1, 2, \dots.$$

That the above series converges everywhere follows from the fact that $a(n; m, s) P_n^m(\cos \theta)$ behaves like a power of n for large n , but $j_n(kr)$ is $O(\frac{1}{n!})$.

In order to find the inverse to the above relationship, the variable t is replaced by $\frac{w}{1-w}$ in (2). From the resulting power series expansion it now follows that

$$(4) \quad \sum_{s=0}^{\ell} (-)^s \frac{\ell! [(m+\ell)!]^2}{(\ell-s)! (m+s)!} \Omega_s^m(P) = \sum_{n=\ell+m}^{\infty} i^{n+m+2\ell} (2n+1) \frac{(n-m)!}{(n+m)!} b(n; m, \ell) j_n(kr) \cdot P_n^m(\cos \theta) e^{-im\phi},$$

where

$$b(n; m, \ell) = \frac{(n+m+\ell)!}{(n-m-\ell)!}, \quad m = 0, 1, 2, \dots$$

The following vectors and matrices can now be defined:

$$a_{\ell}(m) = \sum_{s=0}^{\ell} (-)^{s+\ell} \frac{\ell! [(m+\ell)!]^2}{(\ell-s)! (m+s)!} \Omega_s^m(P),$$

$$A(m) = \begin{pmatrix} a_0(m) \\ a_1(m) \\ a_2(m) \\ \vdots \\ \vdots \end{pmatrix}$$

$$\beta_n^{(m)} = i^{n+m} (2n+1) \frac{(n-m)!}{(n+m)!} j_n(kr) P_n^m(\cos \theta) e^{-im\phi},$$

$$B(m) = \begin{pmatrix} \beta_m^{(m)} \\ \beta_{m+1}^{(m)} \\ \beta_{m+2}^{(m)} \\ \vdots \\ \vdots \\ \vdots \end{pmatrix},$$

$$C(m) = \begin{pmatrix} b(m;m,0) & b(m+1;m,0) & b(m+2;m,0) & \dots \\ 0 & b(m+1;m,1) & b(m+2;m,1) & \dots \\ 0 & 0 & b(m+2;m,2) & \dots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

With this notation the system of equations represented by (4) can be written as

$$(5) \quad A(m) = C(m) B(m), \quad m = 0, 1, \dots .$$

In order to express the spherical functions in terms of parabolic functions it is necessary to invert the system (5). The inverse of the matrix $C(m)$ is given by

$$C^{-1}(m) = \begin{pmatrix} \gamma(m;m,0) & \gamma(m;m,1) & \gamma(m;m,2) & \dots \\ 0 & \gamma(m+1;m,1) & \gamma(m+1;m,2) & \dots \\ 0 & 0 & \gamma(m+2;m,2) & \dots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

where

$$\gamma(n;m,\ell) = \frac{(-)^{n+m+\ell} (2n+1)}{(m-n+\ell)! (m+\ell+n+1)!} .$$

To prove the assertion that this matrix is really the inverse of $C(m)$, it must be shown that

$$\sum_{i=j}^k \gamma(m+j; m, i) b(m+k; m, i) = \delta_{jk}.$$

We have

$$\begin{aligned} \sum_{i=j}^k \gamma(m+j; m, i) b(m+k; m, i) &= \sum_{i=j}^k \frac{(-)^{i+j}}{(i-j)!} \frac{(2m+2j+1)(2m+k+i)!}{(2m+j+i+1)!(k-i)!} \\ &= \frac{(2m+k+j)!}{(k-j)!(2m+2j)!} {}_2F_1(j-k, 2m+k+j+1; 2m+2j+2; 1) \\ &= \frac{(2m+k+j)!}{(k-j)!(2m+2j)!} \frac{\Gamma(2m+2j+2)\Gamma(1)}{\Gamma(2m+k+j+2)\Gamma(1+j-k)} = \begin{cases} 0, & k \geq l+j \\ 1, & k = j. \end{cases} \end{aligned}$$

Use of the inverse matrix allows one to write

$$(6) \quad j_n(kr) P_n^m(\cos \theta) e^{-im\phi} = \frac{(n+m)!}{(n-m)!} \sum_{j=n-m}^{\infty} \frac{i^{n+m} [(m+j)!]^2}{(j-n+m)!(m+n+j+1)!} \sum_{s=0}^j (-)^s \frac{j!}{(j-s)!(m+s)!} \Omega_s^m(P).$$

One can now state

Theorem 2: For $m = 0, 1, 2, \dots$,

$$\Omega_s^m(P) = \sum_{n=m}^{\infty} a(n; m, s) j_n(kr) P_n^m(\cos \theta) e^{-im\phi},$$

$$a(n; m, s) = \frac{i^{n+m}(2n+1)}{m!} \sum_{r=0}^s \frac{(-)^r (m-n)_{(r)} (n+m+1)_{(r)} (r+m+1)_{(s-r)}}{(m+1)_{(r)} (s-r)! r!},$$

$$j_n(kr) P_n^m(\cos \theta) e^{-im\phi} = \frac{(n+m)!}{(n-m)!} \sum_{j=n-m}^{\infty} \frac{i^{n+m} [(m+j)!]^2}{(j-n+m)!(m+n+j+1)!} \sum_{s=0}^j (-)^s \frac{j!}{(j-s)!(m+s)!} \Omega_s^m(P).$$

It is not permissible to interchange the two summations in (6) because the coefficient of the inner summation is $O(\frac{1}{j})$. Although the series does not converge absolutely it can be shown to converge conditionally. The inverse

Laplace transform of the Kummer function is given by [2]

$${}_1F_1(-\sigma; 1+m; -2ik\xi) = \frac{m!(-2ik\xi)^{-m}}{2\pi i} \int_C \frac{\exp[-2ik\xi z(1 - \frac{1}{z})^\sigma]}{z^{m+1}} dz$$

where C is a circle enclosing the origin and $z = 1$. If $\sum_s^m (P)$ is expressed in terms of Kummer functions, then (6) can be rewritten as

$$\begin{aligned} j_n(kr) P_n^m(\cos \theta) e^{-im\theta} &= \sum_{n=-m}^{\infty} \frac{(n+m)!}{(n-m)!} \frac{i^{n+m} e^{-im\theta} [(m+j)!]^2 (2k \sqrt{\xi \eta})^{-m} e^{ik(\xi-\eta)}}{(j-n+m)! (m+n+j+1)!} \\ &\cdot \frac{1}{(2\pi i)^2} \int_C \int_C \frac{e^{2ik(\eta \zeta - \xi z)}}{(\zeta z)^{m+1}} \left[\frac{1}{z} + \frac{1}{\zeta} - \frac{1}{\zeta z} \right]^j dz d\zeta. \end{aligned}$$

On sufficiently large circles the quantity $\left[\frac{1}{z} + \frac{1}{\zeta} - \frac{1}{\zeta z} \right]$ becomes sufficiently small so that an interchange of summation and integrations is permissible and the series converges. One then obtains the double integral

$$\begin{aligned} j_n(kr) P_n^m(\cos \theta) e^{-im\theta} &= \frac{(n+m)!}{(n-m)!} \frac{e^{-im\theta} e^{ik(\xi-\eta)} i^{n+m} n! m!}{(2k \sqrt{\xi \eta})^{m+1} (2n+1)!} \\ &\cdot \frac{1}{(2\pi i)^2} \int_C \int_C \frac{e^{2ik(\eta \zeta - \xi z)}}{(\zeta z)^{m+1}} \left[\frac{1}{z} + \frac{1}{\zeta} - \frac{1}{\zeta z} \right]^j {}_2F_1(n+1, n+1; 2n+2; \frac{1}{\zeta} + \frac{1}{z} - \frac{1}{\zeta z}) dz d\zeta. \end{aligned}$$

As consequences of Theorem 2 and the integral relations [4]

$$\int_0^\pi P_n^m(\cos \theta) P_{n'}^m(\cos \theta) \sin \theta d\theta = \frac{2(n+m)!}{(2n+1)(n-m)!} \delta_{n,n'}$$

$$\int_0^\pi \frac{[P_n^m(\cos \theta)]^2 d\theta}{\sin \theta} = \frac{(n+m)!}{m(n-m)!}$$

one can state

Corollary 1:

$$\int_0^\pi \left[\sum_s^m (P) \right]^2 \sin \theta \, d\theta = \sum_{n=m}^{\infty} \left[a(n; m, s) j_n(kr) e^{-im\theta} \right]^2 \frac{2(n+m)!}{(2n+1)(n-m)!},$$

$$\int_0^\pi \sum_s^m (P) P_n^m(\cos \theta) \sin \theta \, d\theta = a(n; m, s) j_n(kr) \frac{2(n+m)!}{(2n+1)(n-m)!} e^{-im\theta}$$

$$\int_0^\pi \frac{\sum_s^m (P) P_n^m(\cos \theta) \, d\theta}{\sin \theta} = \sum_{n=m}^{\infty} a(n; m, s) j_n(kr) e^{-im\theta} \frac{(n+m)!}{m(n-m)!}$$

$$\int_0^\pi \sum_s^m (P) \sum_{\sigma}^m (P) \sin \theta \, d\theta = \sum_{n=m}^{\infty} a(n; m, s) a(n; m, \sigma) j_n^2(kr) e^{-2im\theta} \frac{2(n+m)!}{(2n+1)(n-m)!}.$$

3. The addition theorem resulting from a translation of the axes along the axis of symmetry

Since z is the axis of symmetry one can introduce the translated coordinates

$$\begin{aligned} x' &= x \\ y' &= y \\ z' &= z - \xi_0. \end{aligned}$$

It follows from Theorem 1 that

$$(7) \quad G_{\mu}(P, t) = \frac{\exp \left[ikz \frac{1-t}{1+t} \right] J_{\mu} \left(\frac{2kp \sqrt{t}}{1+t} \right) e^{-i\mu\theta}}{t^{\mu/2} (1+t)} = \exp \left[i k \xi_0 \frac{1-t}{1+t} \right] G_{\mu}(P', t).$$

In particular, for $\mu = \eta = 0$, $\xi = \xi_0$ Theorem 1 yields

$$\exp\left[ik\xi_0 \frac{l-t}{l+t}\right] = (l+t) \sum_{n=0}^{\infty} m_{n+1/2}^0 (-2ik\xi_0)(-t)^n.$$

Using this expression in (7), expanding and multiplying the power series in t and comparing coefficients leads to

Theorem 3:

$$\Omega_n^\mu(p) = \sum_{j=0}^n \left[m_{n+1/2-j}^0 (-2ik\xi_0) + m_{n-1/2-j}^0 (-2ik\xi_0) (\delta_{nj}-1) \right] \Omega_j^\mu(p),$$

$\mu \neq -1, -2, \dots$

$n = 0, 1, 2, \dots .$

The case where μ is a negative integer can be handled as a limiting case of Theorem 3. By differentiating both sides with respect to ξ_0 at $\xi_0 = 0$ one obtains

Corollary 2:

$$\frac{d}{d(2ik\xi_0)} \Omega_n^\mu(p') \Big|_{\xi_0=0} = - \sum_{j=0}^n \Omega_j^\mu(p) \left(1 - \frac{\delta_{jn}}{2} \right).$$

In particular for $\gamma = 0$ one obtains from the above

$$\frac{\Gamma(l+\mu+n)}{n!} \frac{d}{d(2ik\xi)} m_{n+(l+\mu)/2}^\mu (-2ik\xi) = \frac{\mu m_{n+(l+\mu)/2}^\mu (-2ik\xi)}{4ik\xi} \frac{\Gamma(l+\mu+n)}{n!}$$

$$+ \sum_{j=0}^n \frac{\Gamma(l+\mu+j)}{j!} m_{j+(l+\mu)/2}^\mu (-2ik\xi) \left(1 - \frac{\delta_{jn}}{2} \right) .$$

It is possible to define a vector

$$v^\mu(P) = \begin{pmatrix} \Omega_0^\mu(P) \\ \Omega_1^\mu(P) \\ \Omega_2^\mu(P) \\ \vdots \\ \vdots \end{pmatrix}$$

and a matrix

$$T(\xi_0) = \begin{pmatrix} a_{00} & 0 & 0 & \cdots \\ a_{10} & a_{11} & 0 & \cdots \\ a_{20} & a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \vdots & \\ \vdots & \vdots & \vdots & \end{pmatrix},$$

where

$$a_{nj} = \left[m_{n+1/2-j}^0 (-2ik\xi_0) + m_{n-1/2-j}^0 (-2ik\xi_0) (\delta_{nj} - 1) \right], \quad n \geq j,$$

$$= 0, \quad n < j,$$

such that Theorem 3 can be restated as

$$\text{Theorem 3':} \quad v^\mu(P) = T(\xi_0)v^\mu(P') \quad \mu \neq -1, -2, -3, \dots .$$

4. The addition theorem resulting from a translation of axes perpendicular to the axis of symmetry

The translation can be assumed to be in the x-direction without loss of generality. Introducing the new coordinates

$$x = x' - \delta, \quad y = y', \quad z = z',$$

$$R = \sqrt{\rho^2 + \delta^2 - 2\rho\delta \cos \phi'},$$

$$e^{2i(\phi - \phi')} = \frac{\rho - \delta e^{-i\phi'}}{\rho + \delta e^{i\phi'}},$$

$$P = (x, y, z),$$

$$P' = (x', y', z'),$$

one obtains from Theorem 1

$$G_\mu(P, t) = \frac{\exp\left[ikz \frac{1-t}{1+t}\right] J_\mu\left(\frac{2kR \sqrt{t}}{1+t}\right) e^{-i\mu\phi}}{t^{\mu/2} (1+t)}.$$

Under the condition $\rho > \delta$ one can take advantage of the addition theorem for the Bessel functions

$$J_\mu(kR)e^{-i\mu\phi} = \sum_{-\infty}^{\infty} J_n(k\delta) J_{n+\mu}(kr) e^{-i(n+\mu)\phi'}$$

and obtain

$$(8) \quad G_\mu(P, t) = \sum_{-\infty}^{\infty} J_n\left(\frac{2k\delta \sqrt{t}}{1+t}\right) t^{n/2} \frac{\exp\left[ikz \frac{1-t}{1+t}\right] J_{n+\mu}\left(\frac{2k\rho \sqrt{t}}{1+t}\right) e^{-i(n+\mu)\phi'}}{t^{(n+\mu)/2} (1+t)}$$

$$= \sum_{-\infty}^{\infty} J_n\left(\frac{2k\delta \sqrt{t}}{1+t}\right) t^{n/2} G_{\mu+n}(P', t) \quad \mu \neq \pm 1, \pm 2, \dots$$

The case where μ is an integer must be handled as a limiting case. To determine the addition theorem one must expand both sides in powers of t and compare coefficients. Using

$$t^{-n/2} J_n \left(\frac{2k\delta \sqrt{t}}{1+t} \right) = \sum_{s=0}^{\infty} g_{s,n} t^s,$$

$$g_{s,n} = \sum_{r=0}^s \frac{(k\delta)^{2s-2r+n} (-)^s (2s-2r+n)_{(r)}}{(s-r)! r! (n+s-r)!},$$

one obtains

Theorem 4:

$$(-)^s \Omega_s^{\mu}(P) = \sum_{n=1}^s \sum_{j=0}^s g_{s-j,n} \Omega_j^{\mu+n}(P') + \sum_{n=0}^{\infty} (-)^n \sum_{j=0}^s g_{s-j,n} \Omega_j^{\mu-n}(P'),$$

for $\mu \neq \pm 1, \pm 2, \dots$. For $\mu = m$, with m a positive integer,

$$(-)^s \Omega_s^m(P) = \sum_{j=0}^s \sum_{n=0}^s g_{s-j,n} \Omega_j^{n+m}(P') + \sum_{j=0}^s \sum_{n=m}^{j+m} g_{s-j,n} (-)^n \Omega_{j+m-n}^{n-m}(P') e^{2i(n-m)\theta'}.$$

For $\mu = -m$

$$\mu \xrightarrow{L} -m \quad \Omega_n^{\mu}(P) = \Omega_{n-m}^m e^{+2im\theta}, \quad n \geq m$$

$$= 0, \quad n < m.$$

Another method by which such addition theorems can be derived is to take advantage of a theorem by Friedman [6], which is an addition theorem for spherical harmonics under translations of the coordinate system. This theorem in combination with Theorem 2 will yield an addition theorem, but in a very cumbersome form. Conversely the theorem for spherical harmonics could be derived by using Theorems 2 and 4.

A similar plan will be used in the next section. The addition theorem for spherical harmonics under rotations of the coordinate system in combination with Theorem 2 yields the corresponding theorem for parabolic functions.

5. The addition theorem resulting from a rotation of coordinates

Since a rotation about the axis of symmetry, namely the z-axis, yields trivial results, a rotation about the y-axis will be used without loss of generality. Let

$$(9) \quad \begin{aligned} z &= z' \cos \Upsilon - x' \sin \Upsilon \\ x &= x' \cos \Upsilon + z' \sin \Upsilon \\ y &= y' . \end{aligned}$$

Under this rotation the following addition theorem holds for the spherical harmonics [2] :

$$P_n^m(\cos \theta) e^{-im\phi} = \sum_{\ell=-n}^n g_\ell \frac{(n-|\ell|)!}{(n+|\ell|)!} s_{2n}^{n+m, n+\ell}(\Upsilon) P_n^{|\ell|}(\cos \theta') e^{-i\ell\phi'},$$

where

$$s_{2n}^{n+m, n+\ell}(\Upsilon) = (-)^{n+m} \binom{n-m}{n+\ell} (\cos \frac{\Upsilon}{2})^{-m-\ell} (i \sin \frac{\Upsilon}{2})^{m-\ell} {}_2F_1(-n-\ell, n-\ell+1; l-m-\ell; \cos^2 \frac{\Upsilon}{2})$$

for $m + \ell \leq 0$, and

$$s_{2n}^{n+m, n+\ell}(\Upsilon) = - \binom{n+m}{n-\ell} (\cos \frac{\Upsilon}{2})^{m+\ell} (-i \sin \frac{\Upsilon}{2})^{\ell-m} {}_2F_1(\ell-n, n+\ell+1; l+m+\ell; \cos^2 \frac{\Upsilon}{2})$$

for $m + \ell > 0$, and where

$$\begin{aligned} g_\ell &= 1, & \ell \geq 0 \\ &= (-1)^\ell, & \ell \leq 0 . \end{aligned}$$

Using the above in conjunction with Theorem 2 one can state the full addition theorem.

Theorem 5: Under a rotation of coordinates (9) the following statement holds:

$$\Omega_s^m(P) = \sum_{n=m}^{\infty} a(n; m, s) \sum_{\ell=-n}^n g_{\ell} S_{2n}^{n+m, n+\ell}(Y) \sum_{j=n-|\ell|}^{\infty} \frac{i^{n+|\ell|} [(j+|\ell|)!]^2}{(j-n+|\ell|)! (j+n+|\ell|+1)!} \\ \cdot \sum_{s=0}^j (-)^s \frac{j!}{(j-s)! (m+s)!} \Omega_s^{|\ell|}(P') e^{i(|\ell|-s)\theta'}$$

6. The infinitesimal transformations

It is possible to restate the addition theorems for infinitesimal transformations. The theorem for a translation along the z-axis can be rewritten from Theorem 3:

$$a_{n,j} = \left[{}_n^m {}_{n+1/2-j}^0 (-2ik\xi_0) + {}_{n-1/2-j}^m (-2ik\xi_0) (\delta_{nj}-1) \right], \quad n \geq j,$$

where

$${}_k^m(z) = e^{-z/2} {}_1 F_1 \left(\frac{1}{2} - k; 1; z \right).$$

For small values of ξ_0 , namely $d\xi_0$, it follows that

$$a_{n,j} = \delta_{nj} + 2ikd\xi_0 \left(1 - \frac{\delta_{nj}}{2} \right), \quad n \geq j \\ = 0, \quad n < j$$

and that

$$(10) \quad T(d\xi_0) = I + ikd\xi_0 \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 2 & 1 & 0 & 0 & \dots \\ 2 & 2 & 1 & 0 & \dots \\ 2 & 2 & 2 & 1 & \dots \\ \vdots & \ddots & \ddots & \ddots & \\ \vdots & \ddots & \ddots & \ddots & \end{pmatrix},$$

where I is the identity matrix.

Theorem 3': Consider an infinitesimal translation along the z-axis such that

$$\begin{aligned}x' &= x, \\y' &= y, \\z' &= z - d\xi_0.\end{aligned}$$

Then

$$v^\mu(P) = T(d\xi_0) v^\mu(P'), \quad \mu \neq -1, -2, \dots,$$

where $T(d\xi_0)$ is given by (10) and $v^\mu(P)$ is as defined in Theorem 3'.

Similarly one can find the addition theorem for translations in the x-direction from expression (8):

$$G_\mu(P, t) = \sum_{-\infty}^{\infty} J_n \left(\frac{2k\delta \sqrt{t}}{1+t} \right) t^{n/2} G_{\mu+n}(P', t).$$

For a differential translation $d\delta$ this expression reduces to

$$G_\mu(P, t) = G_\mu(P', t) + \frac{k d\delta}{1+t} \left[t G_{\mu+1}(P', t) - G_{\mu-1}(P', t) \right]$$

from which it is possible to state

Theorem 4': For an infinitesimal translation of coordinates given by

$$x = x' - d\delta$$

$$y = y'$$

$$z = z'$$

the following holds:

$$\Omega_n^\mu(P) = \Omega_n^\mu(P') - k d\delta \left\{ \sum_{\ell=0}^n \Omega_\ell^{\mu-1}(P') + \sum_{\ell=-G}^{n-1} \Omega_\ell^{\mu+1}(P') \right\}, \quad \mu \neq 0, -1, -2, \dots$$

For negative integral values of μ one can use limit processes.

To derive the analogous theorem for a rotation of coordinates it is first necessary to derive the addition theorem for the spherical harmonics. This can be done conveniently by starting with the following definition of the spherical harmonics [2]:

$$(11) \quad D_1^{n-m} (D_2 z \pm i D_3) \frac{1}{r} = \frac{(-)^{n-m} (n-m)!}{r^{n+1}} P_n^m (\cos \theta) e^{\pm im\phi},$$

where

$$D_1 = \frac{d}{dz}$$

$$D_2 = \frac{d}{dx}$$

$$D_3 = \frac{d}{dy} .$$

Under the rotation

$$x' = z \sin \Psi + x \cos \Psi$$

$$y' = y$$

$$z' = z \cos \Psi - \sin \Psi$$

these differential operators are also transformed:

$$D_1 = D'_1 \cos \Psi + D'_2 \sin \Psi$$

$$D_2 = -D'_1 \sin \Psi + D'_2 \cos \Psi$$

$$D_3 = D'_3 .$$

Let

$$D_2 - i D_3 = Q, \quad D_2 + i D_3 = \bar{Q} .$$

Then it follows that

$$(12) \quad D_1^{n-m} Q^m = \left[D_1' \cos \Psi + \frac{1}{2} \sin \Psi (Q' + \bar{Q}') \right]^{n-m} \left[-D_1' \sin \Psi + \frac{1}{2} \cos \Psi (Q' + \bar{Q}') + \frac{1}{2} (Q' - \bar{Q}') \right]^m.$$

The existence of the operational equivalence

$$Q \bar{Q} \frac{1}{r} \equiv -D_1^2 \frac{1}{r}$$

follows from

$$(D_1^2 + Q \bar{Q}) \frac{1}{r} = \Delta \frac{1}{r} = 0.$$

If Ψ is taken to be a differential angle $d\Psi$ in (12) then one obtains from (11)

$$(13) \quad e^{-im\phi'} P_n^m (\cos \theta) = e^{-im\phi'} P_n^m (\cos \theta') - \frac{d\Psi}{2} \left[e^{-i(m+1)\phi'} P_n^{m+1} (\cos \theta') \right. \\ \left. - (n+m)(n-m+1) e^{-i(m-1)\phi'} P_n^{m-1} (\cos \theta') \right].$$

Equation (2) written in the form

$$G_m(P, t) = \sum_{n=m}^{\infty} i^{n+m} (2n+1) j_n(kr) P_n^m (\cos \theta) e^{-im\phi'} \frac{2F_1(m-n, m+n+1; m+1; \frac{t}{1+t})}{m! (1+t)^m}$$

combined with (13) yields

$$(14) \quad G_m(P, t) = G_m(P', t) - \frac{d\Psi}{2} \sum_{n=m}^{\infty} i^{n+m} (2n+1) j_n(kr) P_n^{m+1} (\cos \theta') e^{-i(m+1)\phi'} \\ \cdot \frac{2F_1(m-n, m+n+1; m+1; \frac{t}{1+t})}{m! (1+t)^m} \\ + \frac{d\Psi}{2} \sum_{n=m}^{\infty} i^{n+m} (2n+1) j_n(kr) P_n^{m-1} (\cos \theta') e^{-i(m-1)\phi'} \\ \cdot \frac{(n+m)(n-m+1) 2F_1(m-n, m+n+1; m+1; \frac{t}{1+t})}{m! (1+t)^m}$$

In order to be able to rewrite the above as generating functions one can make use of the differentiation formulas [2]

$$\frac{d}{dz} \left[z^{m+1} (1-z)^{m+1} {}_2F_1(m-n+1, m+n+2; m+2; z) \right] = (m+1) z^m (1-z)^m {}_2F_1(m-n, m+n+1; m+1; z),$$

$$\frac{d}{dz} \left[{}_2F_1(m-n-1, m+n; m; z) \right] = \frac{-(n+m)(n-m+1)}{m} {}_2F_1(m-n, m+n+1; m+1; z).$$

Using these in (14) one obtains

$$G_m(P, t) = G_m(P', t) + \frac{id\psi}{2} \left\{ \frac{(1+t)^{m+2}}{t^m} \frac{d}{dt} \left[\left(\frac{t}{1+t} \right)^{m+1} G_{m+1}(P', t) \right] - (1+t)^{2-m} \frac{d}{dt} \left[(1+t)^{m-1} G_{m-1}(P', t) \right] \right\}$$

from which one derives

$$G_m(P, t) = G_m(P', t) + \frac{id\psi}{2} \left[(m+1)G_{m+1}(P', t) + t(1+t) \frac{d}{dt} G_{m+1}(P', t) - (m-1)G_{m-1}(P', t) - (1+t) \frac{d}{dt} G_{m-1}(P', t) \right].$$

One can now state

Theorem 5': Under the infinitesimal rotation

$$x' = x + zd\psi$$

$$y' = y$$

$$z' = z - x d\psi$$

one has the formula

$$\begin{aligned} \Omega_n^m(P) &= \Omega_n^m(P') + \frac{id\psi}{2} \left[(m+1+n) \Omega_n^{m+1}(P') - (n-1) \Omega_{n-1}^{m+1}(P') - (m+n-1) \Omega_n^{m-1}(P') \right. \\ &\quad \left. + (n+1) \Omega_{n+1}^{m-1}(P') \right]. \end{aligned}$$

Acknowledgement

The author wishes to express his thanks to Prof. W. Magnus for suggesting the problem considered here and for his help and interest during the course of the investigation.

References

- [1] J. Meixner and F.W. Schäfke - Mathieusche Funktionen und Sphäroidfunktionen; Springer, 1954.
- [2] A. Erdelyi, et al. - Higher Transcendental Functions; Vol. 1 and 2, McGraw Hill, 1953.
- [3] H. Buchholz - Die Konfluente Hypergeometrische Funktion; Springer, 1953.
- [4] W. Magnus and F. Oberhettinger - Formulas and Theorems for the Special Functions of Mathematical Physics; Chelsea, 1949.
- [5] G.N. Watson - A Treatise on the Theory of Bessel Functions, Macmillan, 1948.
- [6] B. Friedman and J. Russek - Addition Theorems for Spherical Waves; New York University, Mathematics Research Group, Research Report No. EM-44, June, 1952.

DISTRIBUTION LIST FOR RESEARCH REPORTS

Contract No. AF 18(600)-367

(ONE copy unless otherwise noted)

The Air University Libraries
 Maxwell Air Force Base, Alabama

Applied Mathematics and Statistics Lab.
 Stanford University
 Stanford, California

Department of Mathematics
 University of California
 Berkeley, California

Commander
 Air Force Flight Test Center
 ATTN: Technical Library
 Edwards Air Force Base, California

The Rand Corporation
 Technical Library
 1700 Main Street
 Santa Monica, California

Director, Office for Advanced Studies
 Air Force Office of Scientific Research
 Post Office Box 2035
 Pasadena 2, California

Commander
 Western Development Division
 ATTN: WDSIT
 P.C. Box 262
 Inglewood, California

Department of Mathematics
 Yale University
 New Haven, Connecticut

Commander
 Air Force Armament Center
 ATTN: Technical Library
 Eglin Air Force Base, Florida

Commander
 Air Force Missile Test Center
 ATTN: Technical Library
 Patrick Air Force Base, Florida

Department of Mathematics
 Northwestern University
 Evanston, Illinois

Institute for Air Weapons Research
 Museum of Science and Industry
 University of Chicago
 Chicago 37, Illinois

Department of Mathematics
 University of Chicago
 Chicago 37, Illinois

Department of Mathematics
 University of Illinois
 Urbana, Illinois

Institute for Fluid Dynamics & Applied Math.
 University of Maryland
 College Park, Maryland

Mathematics and Physics Library
 The Johns Hopkins University
 Baltimore, Maryland

(2) Commander
 Air Force Office of Scientific Research
 ATTN: SROAM
 Post Office Box 1395
 Baltimore 3, Maryland

Commander
 Air Force Office of Scientific Research
 ATTN: SRRI
 Post Office Box 1395
 Baltimore 3, Maryland

Department of Mathematics
 Harvard University
 Cambridge, Massachusetts

Commander
 Air Force Cambridge Research Center
 ATTN: Geophysics Research Library
 Cambridge 39, Massachusetts

Commander
 Air Force Cambridge Research Center
 ATTN: Electronic Research Library
 Cambridge 39, Massachusetts

Commander
 Air Force Cambridge Research Center
 ATTN: CRRBA
 Cambridge 39, Massachusetts

Department of Mathematics
 Wayne University
 Detroit 1, Michigan
 ATTN: Dr. Y.W. Chen

Willow Run Research Center
 University of Michigan
 Ypsilanti, Michigan

Department of Mathematics
 Folwell Hall
 University of Minnesota
 Minneapolis, Minnesota

Department of Mathematics
 Institute of Technology
 Engineering Building
 University of Minnesota
 Minneapolis, Minnesota

Department of Mathematics
 Washington University
 Saint Louis 5, Missouri

Department of Mathematics
 University of Missouri
 Columbia, Missouri

Commander
 Strategic Air Command
 ATTN: Operations Analysis
 Offutt Air Force Base
 Omaha, Nebraska

The James Forrestal Research Center Library
 Princeton University
 Princeton, New Jersey

Library
 Institute for Advanced Study
 Princeton, New Jersey

Department of Mathematics
 Fine Hall
 Princeton University
 Princeton, New Jersey

Commander
 Holloman Air Development Center
 ATTN: Technical Library
 Holloman Air Force Base, New Mexico

Commander
 Air Force Special Weapons Center
 ATTN: Technical Library
 Kirtland Air Force Base
 Albuquerque, New Mexico

Prof. J. Wolfowitz
 Mathematics Department
 White Hall
 Cornell University
 Ithaca, New York

Department of Mathematics
 Syracuse University
 Syracuse, New York

Commander
 Rome Air Development Center
 ATTN: Intelligence and Analysis Section of
 Electronic Warfare
 Rome, New York

Institute of the Aeronautical Sciences
 ATTN: Library Acquisitions
 2 East 64th Street
 New York 21, N.Y.

Department of Mathematics
 Columbia University
 New York 27, New York
 ATTN: Professor B.O. Koopman

Department of Mathematical Statistics
 Fayerweather Hall
 Columbia University
 New York 27, New York
 ATTN: Dr. Herbert Robbins

Commander
 Rome Air Development Center
 ATTN: Technical Library
 Griffiss Air Force Base
 Rome, New York

Institute of Statistics
 North Carolina State College of A & E
 Raleigh, North Carolina

Department of Mathematics
 University of North Carolina
 Chapel Hill, North Carolina

Office of Ordnance Research
 Box CM
 Duke Station
 Durham, North Carolina

Department of Mathematics
 Duke University
 Duke Station
 Durham, North Carolina

Commander
 Air Technical Intelligence Center
 ATTN: ATIAE-4
 Wright-Patterson Air Force Base, Ohio

Commander
Wright Air Development Center
ATTN: Technical Library
Wright-Patterson Air Force Base, Ohio

(2) Commander
Wright Air Development Center
ATTN: ARL Technical Library, WCRR
Wright-Patterson Air Force Base, Ohio

(2) Commandant
USAF Institute of Technology
ATTN: Technical Library, MCLI
Wright-Patterson Air Force Base, Ohio

(5) Chief, Document Service Center
Armed Services Technical Information Agency
Knott Building
Dayton 2, Ohio

Department of Mathematics
Carnegie Institute of Technology
Pittsburgh, Pennsylvania

Department of Mathematics
University of Pennsylvania
Philadelphia, Pennsylvania

Commander
Arnold Engineering Development Center
ATTN: Technical Library
Tullahoma, Tennessee

Defense Research Laboratory
University of Texas
Austin, Texas

Department of Mathematics
Rice Institute
Houston, Texas

Commander
Air Force Personnel & Training Research
Center
ATTN: Technical Library
Lackland Air Force Base
San Antonio, Texas

Department of Mathematics
University of Wisconsin
Madison, Wisconsin

Human Factors Operations Research Labs.
Air Research and Development Command
Bolling Air Force Base
Washington 25, D.C.

(2) Chief of Naval Research
Department of the Navy
ATTN: Code 432
Washington 25, D.C.

Department of Commerce
Office of Technical Services
Washington 25, D.C.

Director National Security Agency
ATTN: Dr. H.H. Campaigne
Washington 25, D.C.

Library
National Bureau of Standards
Washington 25, D.C.

National Applied Mathematics Labs.
National Bureau of Standards
Washington 25, D.C.

Headquarters, USAF
Director of Operations
Washington 25, D.C.
ATTN: Operations Analysis Division, AFOPP

Commander
European Office ARDC
60 Rue Ravenstein
Brussels, Belgium

Naval Electronics Laboratory
San Diego 52, California

Research Laboratory of Electronics
Massachusetts Institute of Technology
Rm. 2OB-221
Cambridge 39, Massachusetts

Signal Corps Engineering Laboratories
Technical Documents Center
Evans Signal Laboratory
Belmar, New Jersey

Commanding General
Signal Corps Engineering Laboratories
ATTN: Technical Reports Library
Fort Monmouth, New Jersey

Chief of Staff
HQ United States Air Force
Pentagon, Washington 25, D.C.
ATTN: AFMRD - 5

Naval Research Laboratory
Washington 25, D.C.
ATTN: Technical Data Section

Central Radio Propagation Laboratory
 National Bureau of Standards
 Washington 25, D.C.
 ATTN: Technical Reports Library

Air Force Development Field Representative
 Naval Research Laboratory
 Code 1110
 Washington 25, D.C.

Ballistics Research Laboratory
 Aberdeen Proving Ground
 Aberdeen, Maryland
 ATTN: Dr. Keats Pullen

Massachusetts Institute of Technology
 Lincoln Laboratory
 P.O. Box 390
 Cambridge 39, Massachusetts
 ATTN: Dr. T.J. Carroll

Mr. Keeve Siegel
 Willow Run Research Center
 Willow Run Airport
 Ypsilanti, Michigan

Willow Run Research Center
 Willow Run Airport
 Ypsilanti, Michigan
 ATTN: Dr. C.L. Dolph

Director, Naval Research Lab.
 Code 3480
 Washington 25, D.C.
 ATTN: Dr. L.C. van Atta

Director, Naval Research Lab.
 Washington 25, D.C.
 ATTN: Mr. Robert E. Roberson

Director, Naval Research Lab.
 Washington 25, D.C.

National Bureau of Standards
 Computation Laboratories
 Washington 25, D.C.
 ATTN: Dr. John Todd

Dr. A.G. McNish
 National Bureau of Standards
 Washington 25, D.C.

Dr. Derrick H. Lehmer
 Department of Mathematics
 University of California
 Berkeley, California

Dr. Joseph Kaplan
 Department of Physics
 University of California
 Los Angeles, California

Division of Electrical Engineering
 Electronics Research Laboratory
 University of California
 Berkeley 4, California
 ATTN: Dr. Samuel Silver

Dr. A. Erdelyi
 California Institute of Technology
 1201 E. California Street
 Pasadena, California

Dr. Robert Kalaba
 Electronics Division
 Rand Corporation
 Santa Monica, California

Stanford Research Institute
 Stanford, California
 ATTN: Dr. J.V.N. Granger
 Head, Radio Systems Laboratory

Dr. Vic Twersky
 Electronics Defense Laboratory
 Box 205
 Mountain View, California

Hughes Aircraft Company
 Research and Development Library
 Culver City, California
 ATTN: M. Bodner

National Bureau of Standards
 Boulder Laboratories
 Boulder, Colorado
 ATTN: Library

Georgia Institute of Technology
 Engineering Experimental Station
 Atlanta, Georgia
 ATTN: Dr. James E. Boyd

Applied Physics Laboratory
 The Johns Hopkins University
 8621 Georgia Avenue
 Silver Spring, Maryland
 ATTN: Mr. F.T. McClure

Dr. Donald E. Kerr
 Department of Physics
 The Johns Hopkins University
 Baltimore 18, Maryland

Dr. A. Weinstein
 Institute of Fluid Dynamics and Applied Math.
 University of Maryland
 College Park, Maryland

Professor J.A. Pierce
 Harvard University
 Cambridge 38, Massachusetts

Mrs. Marjorie L. Cox, Librarian
 Technical Reports Collection
 Room 303 A, Pierce Hall
 Harvard University
 Cambridge 38, Massachusetts

Dr. F.M. Wiener
 Bolt Beranek and Newman Inc.
 16 Eliot Street
 Cambridge 38, Massachusetts

Dr. Arthur A. Oliner
 Microwave Research Institute
 Polytechnic Institute of Brooklyn
 55 Johnson Street
 Brooklyn, New York

Professor J.H. Mulligan
 School of Engineering
 New York University
 New York, N.Y.

Dr. H.G. Booker
 School of Electrical Engineering
 Cornell University
 Ithaca, New York

Professor Bernard Epstein
 Department of Mathematics
 University of Pennsylvania
 Philadelphia 4, Pennsylvania

Professor Albert Heins
 Carnegie Institute of Technology
 Pittsburgh, Pennsylvania

Professor Fred A. Ficken
 University of Tennessee
 Knoxville, Tennessee

Miss Barabara C. Grimes, Librarian
 Federal Communications Commission
 Washington 25, D.C.

Carnegie Institute of Washington
 Department of Terrestrial Magnetism
 5241 Broad Branch Road, N.W.
 Washington 15, D.C.
 ATTN: Library

Mathematical Reviews
 80 Waterman Street
 Brown University
 Providence, Rhode Island

Mr. Martin Katzin
 154 Fleetwood Terrace
 Silver Spring, Maryland

Prof. B.H. Bissinger
 Lebanon Valley College
 Annville, Pennsylvania

Applied Physics Laboratory
 The Johns Hopkins University
 8621 Georgia Avenue
 Silver Spring, Maryland
 ATTN: Dr. B.S. Gourary

Professor C.A. Woonton, Director
 Eaton Electronics Research Laboratory
 McGill University
 Montreal, Canada

Science Abstracts
 Institute of Electrical Engineers
 Savoy Place
 London W.C. 2, England
 ATTN: R.M. Crowther

Dr. D.S. Jones
 Department of Mathematics
 University of Manchester
 Manchester 13, England

Dr. Jean-Claude Simon
 Centre de Recherches techniques
 Compagnie generale de T.S.F.
 Paris 19, France

Professor A. van Wijngaarden
 Mathematisch Centrum
 2^e Boerhaavestraat 49
 Amsterdam-Zuid, Holland

Dr. C.J. Bouwkamp
 Philips Research Laboratories
 Eindhoven, Netherlands

Dr. H. Bremmer
 Philips Research Laboratories
 Eindhoven, Netherlands

Dr. E.T. Copson
 Department of Mathematics
 United College
 University of St. Andrews
 St. Andrews, Scotland

Dr. Charles H. Papas
 Department of Electrical Engineering
 California Institute of Technology
 Pasadena, California

Theoretical Unit
Special Projects Branch
Evans Signal Laboratory
Belmar, New Jersey
ATTN: Dr. Rodman Doll

Mr. Calvin H. Wilcox
Electronics Research Directorate
Air Force Cambridge Research Center
224 Albany Street
Cambridge 39, Massachusetts

Technical Director
Combat Development Dept.
Army Electronic Proving Ground
Fort Huachuca, Arizona

Universite de Paris
Cabinet du Department
des Sciences Mathematiques
Institut Henri Poincare
11 Rue Pierre Curie
Paris 5^e, France

National Bureau of Standards
Boulder, Colorado
ATTN: Dr. W.R. Gallet

Dr. William Bauer
Antenna Research Laboratory
Republic Aviation Corp.
Farmingdale, L.I., N.Y.

Mrs. A.M. Gray
Engineering Library
Plant 5
Grumman Aircraft Corp.
Bethpage, L.I., N.Y.

Dr. W. Elwyn Williams
30 Knoll Rise
Luton
Bedfordshire, England

University of Cambridge
Cavendish Laboratory
Cambridge, England
ATTN: Professor Philip Clemmow

Professor Bernard Friedman
Department of Mathematics
University of California
Berkeley, California

Dr. Jane Scanlon
284 South Street
Southbridge, Massachusetts

Dr. Solomon L. Schwebel
8957 Eames Avenue
Northridge, California

Dr. Bernard Lippmann
Microwave Laboratory
55 Johnson Street
Brooklyn, New York

University of Minnesota
The University Library
Minneapolis 14, Minnesota
ATTN: Exchange Division

Lincoln Laboratory
Massachusetts Institute of Technology
P.O. Box 73
Lexington 73, Massachusetts
ATTN: Dr. Shou Chin Wang, Rm. C-351

The Department of Mathematics
Manchester University
Manchester, England
ATTN: Dr. V.M. Papadopoulos

Mr. K.S. Kelleher
Section Head
Melpar, Inc.
3000 Arlington Boulevard
Falls Church, Virginia

Technical Research Group
17 Union Square West
New York 3, N.Y.
ATTN: Dr. L. Goldmuntz

Antenna Research Section
Microwave Laboratory
Hughes Aircraft Company
Culver City, California
ATTN: Dr. Richard B. Barrar

Institute of Fluid Dynamics & Applied Math.
University of Maryland
College Park, Maryland
ATTN: Dr. Elliott Montroll

Brandeis University
Waltham, Massachusetts
ATTN: Library

General Electric Company
Microwave Laboratory
Electronics Division
Stanford Industrial Park
Palo Alto, California
ATTN: Library

Dr. W.A. Dodid
Hughes Research Laboratories
Hughes Aircraft Company
Culver City, California
Bldg. 12, Rm. 2529

Office of Chief Signal Officer
Signal Plans and Operations Division
Com. Liaison Br., Radio Prop. Section
The Pentagon, Washington 25, D.C.
ATTN: SIGOL - 2 Rm. 20

Dr. John B. Smyth
Smyth Research Associates
3930 4th Avenue
San Diego 3, California

Dr. Georges G. Weill
Electrical Engineering
California Institute of Technology
Pasadena, California

Date Due

SEARCHED

PRINTED IN U. S. A.

NYU
BR-
18

c. l
Hochstadt

Addition theorems for
the functions of the
paraboloid of rev'n.

C. F.

NYU
BR-
18

Hochstadt

Addition theorems for the
functions of the paraboloid
of revolution.

