Practice problems:

1. [DPV] Problem 7.10 (max-flow = min-cut example)

Here is a max flow in the given flow network:

flow,capacity

The residual network G^f is the following:

Looking at the residual network G^f , the set L of vertices reachable from s in G^f is $L = \{s, c, f\}$. This set L has capacity 13 = 6 + 1 + 2 + 4. Note the capacity of the cut is determined by the original capacities, it does not depend on the flow. The capacity of this st-cut matches the size of the flow f and hence f is a max-flow and L defines a min-st-cut. Here is an illustration of this min-st-cut:

2. [DPV] Problem 7.17 (bottleneck edges)

Parts (a) and (b):

Here is the max flow in the given flow network:

Here is the residual graph G^f for the above flow:

In G^f the set of vertices reachable from s is $\{s, a, b\}$ and the set of vertices that can reach t is $\{c, t\}$. This gives the following min-st-cut [an alternative would be $(\{s, a, b, d\}, \{c, t\})$]:

Notice that the set $\{s, a, b\}$ has capacity 11 = 4 + 2 + 2 + 3 which matches the size of the above flow.

Part (c):

An edge \overrightarrow{uv} in the original flow network G is a bottleneck edge if increasing its capacity results in an increase in the size of the maximum flow.

There are two bottleneck edges in the above network, they are the edges \overrightarrow{ac} and \overrightarrow{bc} .

Part (d):

Here is an example of a flow network with 4 vertices and no bottleneck edges:

Alternatively, in the flow network from question 7.17, if the capacity of the edge \overrightarrow{ct} was reduced from 9 to 6 then there will be no bottleneck edges in this flow network.

Part (e):

Here is the general algorithm for finding all of the bottleneck edges in the flow network G.

We start by finding a maximum flow f for the flow network G. Consider an edge \overrightarrow{vw} in the flow network G. Increasing the capacity of \overrightarrow{vw} results in an increase in maximum flow value if and only if there exists a path from s to v and a path from w to t in G^f . This is because if there exists these two paths then more flow can be sent from s to u, then along the edge \overrightarrow{vw} , and finally from v to t.

Therefore, our algorithm for finding bottleneck edges is as follows:

- 1. Find a maximum flow f on G.
- 2. Run Explore from s in G^f . Let S be the set of vertices reachable from s in G^f .
- 3. Run Explore from t in the reverse graph of G^f . Let T be the set of vertices reachable from t in the reverse graph of G^f ; note the set T are those vertices which can reach t in G^f .
- 4. For each $\overrightarrow{vw} \in E(G)$, output \overrightarrow{vw} as a bottleneck edge if $v \in S$ and $w \in T$.

Since steps 2, 3, and 4 take O(|V| + |E|) time, the running time is dominated by the running time of the maximum flow algorithm in step 1.

Note that this algorithm looks for a path $s \to v$ and $w \to t$. What if these two paths share one or more edges? Then, the joined path will have one or more cycles. So, we can drop that cycle (or cycles) and get a shorter path from $s \to t$, but will this path still go through (v, w)? If one of the cycles contains edge e = (v, w), then we have an augmenting path in G^f not using e, which would mean f is not a max flow. Hence, e cannot be in any of the cycles, so our algorithm works.

3. [DPV] Problem 7.19 (verifying max-flow)

Given a flow network G and a flow f, note that f is a maximum flow iff there is no augmenting path from s to t in the residual graph. Hence to verify that f is of maximum size we first construct the residual graph G^f . We then run Explore from s on G^f to check if there is a path from s to t. If t is reachable from s then there is an augmenting path and hence f is not of maximum size. On the other hand if t is not reachable from s in G^f then we know that f is a max-flow.

4. Bipartite perfect matching

For a bipartite graph $G = (V_1 \cup V_2, E)$ where $|V_1| = |V_2| = n$ a perfect matching is a subset S of edges where each vertex is incident exactly 1 edge in S. In other words, it's a matching of size n. Given a bipartite graph G show how to determine if G has a perfect matching by a reduction to the max-flow problem. In other words, given G define an input flow network to the max-flow problem. Then given a max-flow for this input how do you determine if the original graph G has a perfect matching or not? What is the running time of your algorithm?

(For hints see [DPV] Chapter 7.3 (Bipartite matching) and the beginning of Problem 7.24.)

Given the bipartite graph G we define the following flow network \overrightarrow{G} :

- Add a source node s and add an edge from s to each vertex in V_1 . Each of these edges is given capacity 1.
- For each edge $(v, w) \in E$ in the original bipartite graph G where $v \in V_1$ and $w \in V_2$ we direct the edge from v to w and assign it capacity 1. Thus all edges of G now point from V_1 to V_2 .
- Add a sink node t and add an edge from each vertex in V_2 to t. Each of these edges is given capacity 1.

Given a max-flow on this flow network, each of the directed edges from V_1 to V_2 that have flow along them are put in the matching M. Note that each vertex $v \in V_1$ has at most one edge incident to it in M since v has one incoming edge and this incoming edge has capacity 1 so at most one unit of flow comes out of v. Similarly each $w \in V_2$ has at most one edge incident to it in M since w has one outgoing edge and it is of capacity 1.

If the size of the flow is = n then |M| = n and M is a perfect matching.

We run a max-flow algorithm. We can use the Edmonds-Karp algorithm which takes time $O(nm^2)$. Alternatively since all the capacities are integers we can use the Ford-Fulkerson algorithm which takes time O(mC) where C is the size of the max-flow. Notice that $C \leq n$ and hence the Ford-Fulkerson algorithm takes time O(nm) which is faster than Edmonds-Karp in this case.