Update on Target Simulations of the Undulator Based e⁺ Source

A. Ushakov, S. Riemann, F. Dietrich, P. Sievers, G. Moortgat-Pick

POSIPOL 2015

2 September 2015 Cockcroft Institute, United Kingdom

Outline

- Source parameters
- Deposited energy in target
- Thermal stress at 250 GeV e⁻ beam
 - Bunch-by-bunch simulations
 - Temperature and stress after 1st pulse
 - Background temperature and stress of radiative cooled target
 - Peak stress for 250 GeV e⁻ beam
- Thermal stress for high luminosity case at 250 GeV e⁻ beam
- Thermal stress at 120 GeV e⁻ beam
- Summary

Schematic Layout of e⁺ Source

- SC Helical Undulator: 231 m length, 11.5 mm period, $K \le 0.92$ ($B \le 0.86$ T)
- (Optional) Photon Collimator: exist principal design (to improve polarization)
- Target: 0.4X₀ thickness, Ti6Al4V rim rotated with 100 m/s tangential speed
- Flux Concentrator: 12 cm length, $B_{\text{max}} = 3.2 \text{ T}$, $B_{\text{end}} = 0.5 \text{ T}$
- \bullet NC Capture RF: 1.3 GHz, $\approx \! 10$ m length, 14.5 MeV/m and 8.5 MeV/m

Nominal Undulator Source Parameters at 500 GeV

e ⁻ Energy [GeV]	250
Number e ⁻ per Bunch	2 · 10 ¹⁰
Number of Bunches per Pulse	1312
Bunch Spacing [ns]	554
Pulse Repetition Rate [Hz]	5
Undulator Field [T] (Undulator K value)	0.42 (0.45)
e ⁺ Polarization [%]	30
Photon Energy (1st harmonic) [MeV]	42.9
Required Undulator Length [m]	147
Average Photon Power [kW]	43
Relative Energy Deposition in Target [%]	5.3
Average Deposited Power in Target [kW]	2.3
Max. Thermal Stress in Target [MPa]	?

Energy Deposited in Target by Bunch (FLUKA)

Deposited Energy Distribution

Bunch-by-Bunch Simulations: Temperature

Temperature at "Pulse End"

 ΔT_{max} per pulse \approx 85 $^{\circ}$ C

Bunch-by-Bunch Simulations: Thermal Stress

- Dynamic (transient) thermal stress "follows" the temperature
- Dynamic effects induced by individual bunches are small

T and σ in Rotated (100 m/s) Target after 1st Pulse

 t_{pulse} = 0.727 ms; Pulse Length = 7.27 cm Absorbed Energy = 456 J; Average during Pulse Power = 627 kW Peak Power Density = 276 kW/cm³

 $PEDD_{pulse}/\Delta PEDD_{bunch} = 37.8$ $PEDD_{pulse} = 45.3 \text{ J/g}$

 $\max \sigma_{vM} = 108 \text{ MPa}$

What stress in target can be expected after long irradiation time?

- Background target temperature could play an important (?) role
- Background temperature depends on choice of cooling system
- Design studies of radiative cooled target are ongoing (Felix talk)
- Simplified model of target cooled by radiation has been used below

Radiative Cooled Target

Case 1:

Equal (homogeneous) heating Ti 2280 W / 1.3949E-3 m³ = 1.6346E+6 W/m³

Ti-alloy (ANSYS Data Source):

Radius = 50 cm Thickness = 1.48 cm

Width = 3 cm

Thermal Conductivity = 21.9 W/(m °C)

Specific Heat = 522 J/(kg $^{\circ}$ C)

Coef. Thermal Expansion = $9.4E-6 \circ C^{-1}$

Young' Modulus = 96 GPa

Poisson'S Ratio = 0.36

Tensile Yield Strength = 930 MPa

Emissivity = 0.25 (not in ANSYS database)

Cu-alloy (ANSYS Data Source):

Radius = 49.5 cm

Thermal Conductivity = 401 W/(m °C)

Specific Heat = 385 J/(kg °C)

Coef. Thermal Expansion = $1.8E-5 \circ C^{-1}$

Young' Modulus = 110 GPa

Poisson'S Ratio = 0.34

Tensile Yield Strength = 280 MPa

Emissivity = 0.7 (not in ANSYS database)

Ti-Cu Contact:

Thermal Conductance = 4000 W/(m² °C) Contact type: frictionless

Temperature for Homogeneous Ti Heating

Thermal contact resistance results in difference between minimal T_{Ti} (orange) and maximal T_{Cu} (green).

Equilibrium Temperature

$$T_{max} = 239 \, ^{\circ}\text{C}$$

Stress for Homogeneous Ti Heating

$$\sigma_{max}$$
 = 37 MPa

 σ_{max} = 21 MPa

Temperature for Inhomogeneous Ti Heating

Background Temperature vs Time

Equal Ti-alloy heating and real profile of energy deposition result in same equilibrium background temperature

Temperature and Stress Induced by Pulse

Max. background thermal stress in the beam area is \approx 10 MPa

Temperature and Stress Induced by Pulse

Equivalent Stress at Pulse End $(T_{max} \approx 320 \, ^{\circ}\text{C})$

$$\sigma_{max}(T_{max} = 320^{\circ}C) = 116 \text{ MPa}$$

Background Temperature for High Luminosity Case

High luminosity operation mode with 250 GeV e $^-$ beam: 2625 bunches; 366 ns bunch spacing; 961 μ s pulse length; doubled average heat power \approx 4.6 kW

Background Temperature vs Time

Equilibrium Temperature

Temperature and Stress Induced by Pulse

Equivalent Stress at Pulse End $(T_{max} \approx 500 \, ^{\circ}\text{C})$

$$\sigma_{max}(T_{max}=500^{\circ}C)=230 \text{ MPa}$$

Safety Factor at $T_{max} = 500 \,^{\circ}\text{C}$

Min. Safety Factor = 4

Temperature for 120 GeV e⁻ Beam

Operation mode with 120 GeV e^- beam: 1312 bunches; 554 ns bunch spacing; average heat power \approx 5 kW

Background Temperature

Temperature at Pulse End

 $T_{max} = 393 \, ^{\circ}\text{C}$

 $T_{max} = 459 \, ^{\circ}\text{C}$

Equivalent Stress and Safety Factor

Eq. Stress at Peak Temperature

 $\sigma_{max} = 101 \text{ MPa}$

Safety Factor at Peak Temperature

Min. Safety Factor = 3.6

Summary

- Dynamic effects induced by bunches are small.
- Peak equivalent thermal stress in simplified target model with radiative cooling at 250 GeV e[−] is ~116 MPa.
- Maximal stress for high luminosity case at 250 GeV e^- is \simeq 230 MPa.
- \bullet At 120 GeV e^- beam the maximal background temperature is the highest ($\simeq\!393~^\circ\text{C}).$
 - The maximal equivalent von Mises stress is $\simeq 100$ MPa.
- Optimization of the target model will be continued.