

测绘遥感信息工程国家重点实验室

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing

基于时空图卷积网络的地震预测

团队:神奇宝可梦

2020年9月4日

01 整体框架

02 数据处理和特征构建

03 样本构建

04 时空图卷积网络

05 模型训练和检验

06 总结

整体框架

数据处理和特征构建

2 数据处理和特征构建

> 数据处理

若有缺失,则缺失处数据补为0;

地声数据

若有在操作修改表中有被修改记录,则修改处数据置0。

> 特征构建

电磁数据 电磁每小时最小值 电磁每小时最小值 电磁每小时最小值 地声每小时最大值 地声每小时最小值 地声每小时最小值

N=168 N=168 C=3+3=6

168个地震监测站点的7天(168小时)的6个地声电磁特征作为预测模型的输入,构成168×168×6的特征矩阵,用以预测未来一周是否会发生地震。

样本构建

> 样本标签生成

地震记录

Day	Time	Magnitud	Latitude	Longitude
16	19:20:53	_	28.14	104.73
16	18:05:35	4.2	28.16	104.72
19	22:35:13	4.3	28.1	104.76
26	14:38:03	3.6	30.1	103.61
29	2:46:32	4.9	28.09	104.72

筛选目标区内发生的3.5

级以上地震

归一化: 将地震要素规范到0-1之间

$$lon' = (lon - 98)/(107 - 98)$$

$$lat' = (lat - 22)/(34 - 22)$$

$$mag' = (mag - 0)/(7 - 0)$$

> 样本标签生成

举例

未来一周目标区发生了2次及以上3.5级以上地震:

 $(1, lon1, lat1, mag1, lon2, lat2, mag2) \rightarrow (1, lon1', lat1', mag1', lon2', lat2', mag2')$

未来一周目标区发生了1次3.5级以上地震:

 $(1, lon1, lat1, mag1, 0, 0, 0) \rightarrow (1, lon1', lat1', mag1', 0, 0, 0)$

未来一周目标区没有发生3.5级以上地震:

(0,0,0,0,0,0,0)

> 样本集处理

考虑到样本不平衡问题,生成样本集时,根据样本标签,分别取**等量**正负样本构成数据集。

训练集与验证集中正负样本比例为 1: 1。

训练集与验证集样本总数比例为 9: 1。

正样本(标签为发生地震的样本) 本) 负样本(标签为未发生地震的样本)

正样 本 负样 本

训练集 9 : 1 验证集

预测模型:

时空图卷积网络

基本概念介绍

定义图 $G = (V, \mathcal{E})$, $V \to N$ 个节点的集合, \mathcal{E} 为边的集合, 节点之间的空间邻近矩阵

 $W \in \mathbb{R}^{N \times N}$,归一化的拉普拉斯矩阵 $L = I_n - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$ (其中 I_n 是单位阵, $D \in \mathbb{R}^{N \times N}$ 是

对角度矩阵, $D_{ii} = \sum_{i} W_{ij}$)

切比雪夫图卷积层 (图卷积的切比雪夫多项式近似)

$$Y = concat[T_k(\tilde{L})X]_{k=0,\dots,K-1}\Theta$$
 (1)

图卷积提取空间特征

输入特征 $X \in \mathbb{R}^{N \times C_{in}}$,输出特征 $Y \in \mathbb{R}^{N \times C_{out}}$,模型参数 $\Theta \in \mathbb{R}^{(k \times C_{in}) \times C_{out}}$,比例拉普

拉斯矩阵 $\tilde{L} \in \mathbb{R}^{N \times C_{in}}$, $\tilde{L} = \frac{2L}{\lambda_{max}} - I_n$, λ_{max} 为L的最大特征值。

参考文献: Yu, B., Yin, H., and Zhu, Z. 2018. Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), July 13-19 2018, Stockholm, Sweden.

> 基本概念介绍

在时间维度上进行一维卷积以提取时间特征。在时空图卷积网络中,一维卷积后跟随了门控非线性单元GLU。

$$[P,Q] = 1Dconv(X)$$

$$Y = P \odot \sigma(Q)$$
(2)

输入特征 $X \in \mathbb{R}^{T_{in} \times C_{in}}$,输出特征 $Y \in \mathbb{R}^{T_{out} \times C_{out}}$, $P,Q \in \mathbb{R}^{T_{out} \times C_{out}}$, T_{out} 的大小和一维 卷积的卷积核大小与卷积步长有关。 \odot 表示哈达玛积, $\sigma(\cdot)$ 可用sigmoid,控制P与时 序相关的输出。

一维卷积提取时间特征

4 预测模型

➤ 时空图卷积网络(Spatio-temporal graph convolutional neural network, STGCN)

参考文献: Yu, B., Yin, H., and Zhu, Z. 2018. Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), July 13-19 2018, Stockholm, Sweden.

▶ 时空图卷积网络(Spatio-temporal graph convolutional neural network, STGCN)

参考文献: Yu, B., Yin, H., and Zhu, Z. 2018. Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), July 13-19 2018, Stockholm, Sweden.

▶ 时空图卷积网络(Spatio-temporal graph convolutional neural network, STGCN)

Output Block

参考文献: Yu, B., Yin, H., and Zhu, Z. 2018. Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence* (IJCAI-18), July 13-19 2018, Stockholm, Sweden.

模型训练和检验

5 模型训练和检验

> 损失函数

$$MSELoss = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$
 y_i, \hat{y}_i 分别是模型预测值,真实值, m 为参与**训练**的样本量。

通过梯度下降法最小化MSELoss,实现模型训练

> 模型评价指标

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$
 y_i, \hat{y}_i 分别是模型预测值,真实值, m 为参与**测试**的样本量。

$$CSI = \frac{TP}{TP + FP + FN}$$
 TP 正确预测的地震数目, FP 误报为地震的无地震数目, FN 没有预测到的地震事件数目。

通过两个指标选取表现良好的模型作为预测模型。

> 模型表现

根据 5月10日0点——5月16日24点台站数据,准确预测了5月

18日0点——5月24日24点的地震

实际地震信息: 27.18°N, 103.16°E, 5.0级

团队预测结果: 26.50°N, 103.12°E, 5.2级

根据8月16日0点——8月22日24点台站数据,预测了8月23

日0点——8月29日24点没有地震

图 5.18-5.24各队预测结果

- 在样本标签生成时,参考了目标检测标签的格式。
- 在样本集构建过程中考虑到了地震事件的不平衡问题。
- 运用时空图卷积网络实现了地震预测。

- 数据预处理和特征构建比较简单,有待改进。
- 时空图卷积网络在节点变化时其效果会受到影响,考虑其他深度学习方法。
- 只利用了地声和电磁数据,没有利用地震历史信息,没有利用地形及断层等数据。

谢谢!