Correction de la feuille 7 : applications linéaires

Exercice 1.

(a) Pour tous $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$,

$$f(\lambda P + Q) = \lambda P(2) + Q(2) = \lambda f(P) + f(Q).$$

Donc f est linéaire.

- (b) $g(2X) = 4X^2 \neq 2X^2 = 2g(X)$, donc g n'est pas linéaire.
- (c) Pour tous $A, B \in M_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$,

$$\operatorname{Tr}(\lambda A + B) = \sum_{i=1}^{n} (\lambda a_{ii} + b_{ii}) = \lambda \operatorname{Tr}(A) + \operatorname{Tr}(B).$$

Donc Tr est linéaire.

(d) Si $n \ge 2$, $\det(2I_n) = 2^n \ne 2 = 2\det(I_n)$, donc det n'est pas linéaire. Si n = 1, det est l'application identité de \mathbb{R} , donc det est linéaire.

Exercice 2. Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$
. Alors $f = f_A$. Donc f est linéaire. C'est un

isomorphisme si et seulement si le système linéaire f(X) = AX = B admet une unique solution X pour tout $B \in \mathbb{R}^3$. On cherche donc à inverser A, par la méthode du pivot de Gauss.

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & -4 & -15 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{pmatrix} \qquad (L_3 \leftarrow L_3 - 5L_1)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 4 & 1 \end{pmatrix} \qquad (L_3 \leftarrow L_3 + 4L_2)$$

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 16 & -12 & -3 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{pmatrix} \qquad (L_1 \leftarrow L_1 - 3L_3, L_2 \leftarrow L_2 - 4L_3)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{pmatrix} \qquad (L_1 \leftarrow L_1 - 2L_2)$$

Comme on a pu obtenir la matrice I_3 à gauche, la matrice A est inversible et son inverse A^{-1} est la matrice en bas à droite. Cela prouve que f est un isomorphisme. En outre, sa réciproque est $f_{A^{-1}}$ (l'équation $X = f^{-1}(B)$ signifie f(X) = B, soit AX = B ou encore $X = A^{-1}B$, de sorte que $f^{-1}(B) = A^{-1}B$). Donc la réciproque de f est donnée par :

$$\forall x, y, z \in \mathbb{R}, \quad f^{-1}(x, y, z) = (-24x + 18y + 5z, 20x - 15y - 4z, -5x + 4y + z).$$

Exercice 3.

- (a) La matrice $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est de déterminant $-2 \neq 0$ donc elle est inversible. Son noyau est donc $\{0\}$, de dimension 0, et son image est \mathbb{R}^2 , de dimension 2. Une base du noyau est la famille vide, une base de l'image est la base canonique de \mathbb{R}^2 , par exemple.
- (b) On applique l'algorithme du pivot de Gauss au système linéaire AX = B avec $A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & -1 & 4 \\ 2 & 3 & -2 \end{pmatrix}$ et $B = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$:

$$\begin{pmatrix} 1 & -2 & 3 \\ 4 & -1 & 4 \\ 2 & 3 & -2 \end{pmatrix} \qquad \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 3 \\ 0 & 7 & -8 \\ 0 & 7 & -8 \end{pmatrix} \qquad \begin{pmatrix} a \\ b - 4a \\ c - 2a \end{pmatrix} \qquad (L_2 \leftarrow L_2 - 4L_1, L_3 \leftarrow L_3 - 2L_1)$$

$$\begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -\frac{8}{7} \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} a \\ \frac{b - 4a}{7} \\ -2a + b - c \end{pmatrix} \qquad (L_3 \leftarrow L_3 - L_2, \text{puis } L_2 \leftarrow \frac{L_2}{7})$$

$$\begin{pmatrix} 1 & 0 & \frac{5}{7} \\ 0 & 1 & -\frac{8}{7} \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} \frac{-a + 2b}{7} \\ \frac{b - 4a}{7} \\ -2a + b - c \end{pmatrix} \qquad (L_1 \leftarrow L_1 + 2L_2)$$

Comme la matrice obtenue à gauche est échelonnée réduite, on en déduit tout. Il y a 2 pivots, donc l'image est de dimension 2 et le noyau de dimension 3-2=1. L'image est l'ensemble des (a,b,c) tels que -2a+b-c=0. Elle contient par exemple les deux premières colonnes de A, qui ne sont pas colinéaires : comme l'image est de dimension 2, une base de l'image est donc ((1,4,2),(-2,-1,3)). Quant au noyau, c'est l'ensemble des (x,y,z) tels que $x+\frac{5z}{7}=0$ et $y-\frac{8z}{7}=0$, c'est-à-dire $\{(-5t,8t,7t)\mid t\in\mathbb{R}\}$. Une base du noyau est donc ((-5,8,7)).

(c) On effectue l'algorithme du pivot de Gauss sur le système linéaire AX = B avec $A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 5 & 2 & -1 & -3 \\ -3 & -4 & 3 & 2 \\ 6 & 1 & 0 & -2 \end{pmatrix}$ et $B = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$. Pour écourter le calcul, on

cherche seulement une forme échelonnée :

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 5 & 2 & -1 & -3 \\ -3 & -4 & 3 & 2 \\ 6 & 1 & 0 & -2 \end{pmatrix} \qquad \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 7 & -6 & -8 \\ 0 & -7 & 6 & 5 \\ 0 & 7 & -6 & -8 \end{pmatrix} \qquad \begin{pmatrix} a \\ b - 5a \\ c + 3a \\ d - 6a \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 7 & -6 & -8 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} a \\ b - 5a \\ -2a + b + c \\ -a - b + d \end{pmatrix} \qquad (L_3 \leftarrow L_3 + L_2, L_4 \leftarrow L_4 - L_2)$$

On trouve donc 3 pivots : l'image est de dimension 3 et le noyau de dimension 4-3=1. L'image est l'ensemble des (a,b,c,d) tels que -a-b+d=0. Elle contient donc les vecteurs de la famille ((1,0,0,1),(0,1,0,1),(0,0,1,0)), qui est libre et compte 3 éléments : c'est donc une base de l'image. Le noyau est l'ensemble des (x,y,z,t) tels que x-y+z+t=0, 7y-6z-8t=0 et -3t=0, c'est-à-dire $\{(-s,6s,7s,0)\mid s\in\mathbb{R}\}$. Une base du noyau est ((-1,6,7,0)).

(d) Pour étudier la matrice $A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$, on peut suivre la même méthode... ou observer que les trois premières colonnes de A sont linéairement indépendantes (vérification rapide); ce sont des éléments de l'image, donc l'image est un sousespace de \mathbb{R}^3 de dimension au moins 3: l'image est \mathbb{R}^3 tout entier. Le théorème du rang dit alors que le noyau est de dimension 4-3=1. Et on voit que

(1,1,1,-4) est un élément non nul du noyau de A (si on ne le voit pas, on résout le système AX=0) : une base du noyau est donc ((1,1,1,-4)).

Exercice 4.

- (a) Pour tous $u, v \in \mathbb{C}^{\mathbb{N}}$ et $\lambda \in \mathbb{C}$, $f(\lambda u + v) = (\lambda u_0 + v_0, \dots, \lambda u_{p-1} + v_{p-1}) = \lambda(u_0, \dots, u_{p-1}) + (v_0, \dots, v_{p-1})$ de sorte que $f(\lambda u + v) = \lambda f(u) + f(v)$. Donc f est linéaire.
- (b) Le noyau de f est l'ensemble des suites u telles que $u_0 = \cdots = u_{p-1} = 0$. Il n'est pas réduit à $\{0\}$ donc f n'est pas injective. Pour tout $(a_0, \ldots, a_{p-1}) \in \mathbb{C}^p$, la suite u définie par $u_n = a_n$ si $0 \le n \le p-1$ et $u_n = 0$ sinon vérifie $f(u) = (a_0, \ldots, a_{p-1})$. Donc l'image de f est \mathbb{C}^p . Ainsi, f est surjective.

Exercice 5.

(a) Soit $w \in F$. Par surjectivité de f, il existe $v \in E$ tel que f(v) = w. Comme (v_1, \ldots, v_p) est une famille génératrice de E, il existe des scalaires a_1, \ldots, a_p tels que $v = a_1v_1 + \ldots a_pv_p$. Alors :

$$w = f(v) = f(a_1v_1 + \dots a_pv_p) = a_1f(v_1) + \dots a_pf(v_p).$$

Donc $(f(v_1), \ldots, f(v_p))$ est une famille génératrice de F.

(b) Soient des scalaires $\lambda_1, \ldots, \lambda_p$ tels que $\lambda_1 f(v_1) + \cdots + \lambda_p f(v_p) = 0$. Soit $v = \lambda_1 v_1 + \ldots \lambda_p v_p$. Alors :

$$f(v) = f(\lambda_1 v_1 + \dots \lambda_p v_p) = \lambda_1 f(v_1) + \dots + \lambda_p f(v_p) = 0.$$

Donc v est dans $\operatorname{Ker} f = \{0\}$ (injectivité de f). Donc v = 0, c'est-à-dire $\lambda_1 v_1 + \ldots \lambda_p v_p = 0$. Comme la famille (v_1, \ldots, v_p) est libre, cela veut dire que les coefficients $\lambda_1, \ldots, \lambda_p$ sont tous nuls. Cela prouve que $(f(v_1), \ldots, f(v_p))$ est libre.

Exercice 6.

(a) Le produit de deux matrices de $M_n(\mathbb{R})$ est bien dans $M_n(\mathbb{R})$: f envoie bien $M_n(\mathbb{R})$ dans $M_n(\mathbb{R})$. De plus, pour tous $M, N \in M_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$,

$$f(\lambda M + N) = A(\lambda M + N) = \lambda AM + AN = \lambda f(M) + f(N).$$

Donc f est linéaire et c'est finalement un endomorphisme de $M_n(\mathbb{R})$.

(b) Supposons A inversible. Soit $M \in M_n(\mathbb{R})$ telle que f(M) = 0. Alors AM = 0. En multipliant à gauche par l'inverse de A, on obtient M = 0. Le noyau de f est donc trivial, donc f est injective. Comme f est un endomorphisme, c'est donc un isomorphisme.

Réciproquement, supposons que f est un isomorphisme. Par surjectivité, il existe $M \in M_n(\mathbb{R})$ telle que $AM = I_n$. Alors $\det A \times \det M = \det(AM) = 1$. Donc $\det A$ n'est pas nul : A est inversible.

Cela prouve l'équivalence.

- (c) Soit $M \in M_n(\mathbb{R})$. Notons $C_1(M), \ldots C_n(M)$ ses colonnes. Alors AM = 0 si et seulement si $AC_j(M) = 0$ pour $j = 1, \ldots, n$. Le noyau de f est donc formé des matrices dont toutes les colonnes sont dans Ker A.
- (d) On reprend les notations ci-dessus et on les amplifie en notant

$$C: M_n(\mathbb{R}) \to \mathbb{R}^n \times \cdots \times \mathbb{R}^n$$

l'application définie par $C(M) = (C_1(M), \ldots, C_n(M))$. Par définition des opérations sur les matrices, C est linéaire. Et c'est une bijection (la donnée d'une matrice équivaut à la donnée de ses colonnes). Donc c'est un isomorphisme.

Or on a montré ci-dessus que $C(\operatorname{Ker} f) = \operatorname{Ker} A \times \cdots \times \operatorname{Ker} A$ (n fois). Puisque C est un isomorphisme, la dimension de $\operatorname{Ker} f$ est donc celle du membre de droite, soit $n \dim \operatorname{Ker} A$ (formule pour la dimension d'un produit cartésien). Avec le théorème du rang,

$$\operatorname{rg}(f) = \dim M_n(\mathbb{R}) - \dim \operatorname{Ker} f = n^2 - n \dim \operatorname{Ker} A = n(n - \dim \operatorname{Ker} A).$$

Exercice 7.

(a) Soit $x \in E$. Alors x = x - p(x) + p(x), avec $p(x) \in \text{Im } p$ et

$$p(x - p(x)) = p(x) - p \circ p(x) = p(x) - p(x) = 0$$

donc $x - p(x) \in \text{Ker } p$. Cela prouve : E = Ker p + Im p.

En outre, si x est dans $\operatorname{Ker} p \cap \operatorname{Im} p$, on a p(x) = 0 et x = p(y) pour un vecteur y de E. Alors $0 = p(x) = p \circ p(y) = p(y)$, donc p(y) = 0, i.e. x = 0. Cela prouve que $\operatorname{Ker} p \cap \operatorname{Im} p$ est réduit à $\{0\}$.

Donc $E = \operatorname{Ker} p \oplus \operatorname{Im} p$.

(b) Soit $x \in E$. D'après (a), on a une écriture unique $x = x_1 + x_2$ avec $x_1 \in \text{Ker } p$ et $x_2 \in \text{Im } p$. En fait, on a même vu ci-dessus que $x_2 = p(x)$. Ainsi, p(x) est bien la composante $x_2 \in \text{Im } p$ dans cette décomposition et cela prouve que p est la projection sur Im p, parallèlement à Ker p.

Exercice 8.

(a) Pour tout $x \in E$, (f+g)(x) = f(x) + g(x). Donc $\text{Im}(f+g) \subset \text{Im} f + \text{Im} g$ et $\text{rg}(f+g) = \dim \text{Im}(f+g) \leq \dim(\text{Im} f + \text{Im} g)$. Avec la formule pour la dimension d'une somme de sous-espaces, il vient alors :

$$\operatorname{rg}(f+g) \le \dim(\operatorname{Im} f) + \dim(\operatorname{Im} g) = \operatorname{rg} f + \operatorname{rg} g.$$

(b) Pour tout $x \in E$, $(f \circ g)(x) = f(g(x)) \in \text{Im } f$. Donc $\text{Im}(f \circ g) \subset \text{Im } f$ et $\text{rg}(f \circ g) \leq \text{rg}(f)$.

Soit $h: \text{Im } g \to E$ l'application linéaire définie par h(y) = f(y); c'est en fait la restriction de f à l'image de g. En lui appliquant le théorème du rang, on trouve

 $\dim \operatorname{Im} h = \dim \operatorname{Im} g - \dim \operatorname{Ker} h = \operatorname{rg}(g) - \dim \operatorname{Ker} h.$

Les éléments de $\operatorname{Im} h$ sont exactement les f(y) avec $y \in \operatorname{Im} g$, c'est-à-dire les f(g(x)) avec $x \in E$. Autrement dit, $\operatorname{Im} h = \operatorname{Im} f \circ g$. L'égalité ci-dessus implique donc

$$rg(f \circ g) = rg(g) - \dim Ker h.$$

D'une part, cette égalité donne $rg(f \circ g) \leq rg(g)$ et donc finalement

$$rg(f \circ g) \le min(rg(f), rg(g)).$$

D'autre part, elle permet de minorer $rg(f \circ g)$ en majorant dim Ker h. Or le noyau de h est inclus dans celui de f (par construction, si h(y) = 0, f(y) = 0!), donc

$$\dim \operatorname{Ker} h \le \dim \operatorname{Ker} f = n - \operatorname{rg}(f)$$

en utilisant le théorème du rang pour f. En reportant dans l'égalité ci-dessus, il vient

$$\operatorname{rg}(f \circ q) = \operatorname{rg}(q) - \dim \operatorname{Ker} h > \operatorname{rg}(q) - n + \operatorname{rg}(f).$$

Exercice 9.

- (a) Comme f(1,0) = (2,0,3) et f(0,1) = (7,-1,-2), la matrice de f dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 est $\begin{pmatrix} 2 & 7 \\ 0 & -1 \\ 3 & -2 \end{pmatrix}$.
- (b) Pour vérifier que \mathcal{B} et \mathcal{B}' sont des bases, il suffit par exemple d'observer que les déterminants det $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2$ et det $\begin{pmatrix} 1 & 1 & 5 \\ 0 & -1 & -1 \\ 0 & 1 & -5 \end{pmatrix} = 6$ ne sont pas nuls.
- (c) Puisque f(1,1) = (9,-1,1) = 8(1,0,0) + (1,-1,1) et f(1,-1) = (-5,1,5) = -(5,-1,-5), la matrice de f dans les bases \mathcal{B} et \mathcal{B}' est $\begin{pmatrix} 8 & 0 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Exercice 10. La dérivation est une opération linéaire et elle transforme tout polynôme en un polynôme de degré plus petit, donc elle définit en particulier une application linéaire de $\mathbb{R}^3[X]$ dans $\mathbb{R}^3[X]$, i.e. un endomorphisme D de $\mathbb{R}^3[X]$. Pour tout entier naturel k, $(X^k)' = kX^{k-1}$, donc la matrice de D dans la base

$$(1, X, X^2, X^3) \text{ est } \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Exercice 11.

- (a) Le trinôme $X^2 2X + 1 = (X 1)^2$ admet comme seule racine complexe 1. Une base de E est donc ((1), (n)).
- (b) Pour tous $\lambda \in \mathbb{C}$, $a, b \in E$, $f(\lambda a + b) = (\lambda a_{n+1} + b_{n+1}) = \lambda(a_{n+1}) + (b_{n+1}) = \lambda f(a) + f(b).$ Donc f est linéaire. De plus, f((1)) = (1) et f((n)) = (n+1) = (1) + (n) sont des éléments de E, donc f est un endomorphisme de E. Et sa matrice dans la base \mathcal{B} est $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- (c) Par la définition de f, f(u) = (n+4). On peut aussi écrire u = 3(1) + (n). Comme $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, on en déduit f(u) = 4(1) + (n) = (n+4).

Exercice 12.

- (a) Puisque det $\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 3 & 1 & 7 \end{pmatrix} = -14 \neq 0$, \mathcal{B}' est une base de \mathbb{R}^3 . Et la matrice de passage de \mathcal{B} à \mathcal{B}' est $\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 3 & 1 & 7 \end{pmatrix}$.
- (b) Comme $\deg e'_k = k$ pour $0 \le k \le 4$, $\mathcal{B}' = (e'_0, \dots, e'_4)$ est une base $\deg \mathbb{R}_4[X]$.

 La matrice de passage $\deg \mathcal{B} \ \text{à} \ \mathcal{B}' \ \text{est} \ \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.

Exercice 13.

(a) On sait que $E^* = L(E, \mathbb{R})$ est de dimension $\dim(E) \times \dim(\mathbb{R}) = n$, donc il suffit de vérifier que la famille est libre. Soient des réels $\lambda_1, \dots, \lambda_n$ tels que $\sum_{k=1}^n \lambda_k e_k^* = 0$. Pour tout entier i entre 1 et n, on en déduit

$$0 = \sum_{k=1}^{n} \lambda_k e_k^*(e_i) = \sum_{k=1}^{n} \lambda_k \delta_{ik} = \lambda_i.$$

Donc tous les coefficients λ_i sont nuls. Cela prouve que (e_1^*, \dots, e_n^*) est une base de E^* .

(b) Si on écrit $x = \sum_{i=1}^{n} x_i e_i$, on a par linéarité :

$$e_k^*(x) = \sum_{i=1}^n x_i e_k^*(e_i) = \sum_{i=1}^n x_i \delta_{ik} = x_k.$$

(c) Pour tout $f \in E^*$, $\phi^*(f) = f \circ \phi$ est une application de E dans \mathbb{R} et elle est linéaire comme composée d'applications linéaires. Donc ϕ^* est une application de E^* dans E^* . Soient $\lambda \in \mathbb{R}$ et $f, g \in E^*$. Pour tout $x \in E$, on a :

$$\phi^*(\lambda f + g)(x) = \lambda f(\phi(x)) + g(\phi(x)) = (\lambda(\phi^* f) + \phi^* g)(x).$$

Donc $\phi^*(\lambda f + g) = \lambda(\phi^* f) + \phi^* g$. Cela prouve que ϕ^* est linéaire. C'est donc un élément de $L(E^*)$.

Notons $A = (a_{ij})$ la matrice de ϕ dans la base (e_1, \ldots, e_n) et $B = (b_{ij})$ celle de ϕ^* dans la base (e_1^*, \ldots, e_n^*) . Ces matrices sont caractérisées par les relations suivantes : pour tout entier $j \in [1, n]$,

$$\phi(e_j) = \sum_{i=1}^n a_{ij} e_i$$
 et $\phi^*(e_j) = \sum_{i=1}^n b_{ij} e_i^*$.

Soit un entier $j \in [1, n]$. Tout vecteur x de E s'écrit $x = \sum_{i=1}^{n} x_i e_i$ avec $x_i = e_i^*(x)$ pour tout indice i. On calcule :

$$\phi^*(e_j^*)(x) = e_j^* \circ \phi(x) = e_j^* \left(\phi\left(\sum_{i=1}^n x_i e_i\right) \right) = \sum_{i=1}^n \underbrace{x_i}_{e_i^*(x)} \underbrace{e_j^*(\phi(e_i))}_{a_{ii}}.$$

Comme c'est vrai pour tout vecteur x, on en déduit que $\phi^*(e_j^*) = \sum_{i=1}^n a_{ji} e_i^*$.

Par identification, il vient $b_{ij} = a_{ji}$ pour tous indices i et j. Donc $B = {}^tA$: la matrice de ϕ^* est la transposée de la matrice de ϕ .

(d) Soit $x \in \mathbb{R}^n$. Pour tous $\lambda \in \mathbb{R}$ et $y, y' \in \mathbb{R}^n$,

$$\theta(x)(\lambda y + y') = \sum_{i=1}^{n} x_i(\lambda y_i + y_i') = \lambda \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} x_i y_i' = \lambda \theta(x)(y) + \theta(x)(y').$$

Donc $\theta(x)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R} , c'est-à-dire un élément de $(\mathbb{R}^n)^*$. De plus, pour tous $\lambda \in \mathbb{R}$ et $x, x', y \in \mathbb{R}^n$, on a :

$$\theta(\lambda x + x')(y) = \sum_{i=1}^{n} (\lambda x_i + x_i') y_i = \lambda \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} x_i' y_i = (\lambda \theta(x) + \theta(x'))(y).$$

Donc θ est une application linéaire de \mathbb{R}^n dans $(\mathbb{R}^n)^*$. Soit $x \in \mathbb{R}^n$ tel que $\theta(x) = 0$. Alors

$$0 = \theta(x)(x) = \sum_{i=1}^{n} x_i^2.$$

Comme les x_i^2 sont positifs, ils sont tous nuls : x=0. Cela prouve que θ est de noyau trivial, donc injective. Comme \mathbb{R}^n et $(\mathbb{R}^n)^*$ ont la même dimension, θ est un isomorphisme.

Exercice 14.

(a) Pour tout $P \in \mathbb{R}_n[X]$, P(X+1) et donc $\Delta(P)$ sont dans $\mathbb{R}_n[X]$. De plus, pour tous $\lambda \in \mathbb{R}$ et $P, Q \in \mathbb{R}$,

$$\Delta(\lambda P + Q) = \lambda P(X+1) + Q(X+1) - \lambda P(X) - Q(X) = \lambda \Delta(P) + \Delta(Q).$$

Donc Δ est un endomorphisme de $\mathbb{R}_n[X]$.

- (b) Pour tout $k \in \mathbb{N}$, T_k est un polynôme de degré k. Comme on l'a vu dans un exercice précédent, cela assure que (T_0, \ldots, T_n) est une base de $\mathbb{R}_n[X]$.
- (c) Soit $k \in \mathbb{N}^*$.

$$\Delta(T_k) = \frac{(X+1)\dots(X+k-1)(X+k)}{k!} - \frac{X(X+1)\dots(X+k-1)}{k!}$$

$$= \frac{(X+1)\dots(X+k-1)}{k!}(X+k-X)$$

$$= \frac{(X+1)\dots(X+k-1)}{(k-1)!}$$

$$= T_{k-1}(X+1).$$

(d) Soit $P \in \mathbb{R}_n[X]$ tel que P(m) est entier pour tout entier m. Alors le polynôme $\Delta(P)$ vérifie la même propriété. Et par récurrence immédiate, il en de même de $\Delta^k(P) = (\Delta \circ \cdots \circ \Delta)(P)$ pour tout $k \in \mathbb{N}^*$. Par (b), $P = a_0 T_0 + \cdots + a_n T_n$ pour certaines réels a_0, \ldots, a_n . En appliquant (c) à répétition et en observant que $\Delta T_0 = 0$, on obtient pour tout entier $k \in [0, n]$:

$$\Delta^k(P) = a_k T_0(X+k) + \dots + a_n T_{n-k}(X+k)$$

et, en particulier,

$$\Delta^{k}(P)(-k) = a_{k}T_{0}(0) + \dots + a_{n}T_{n-k}(0) = a_{k}.$$

Puisque les polynômes $\Delta^k(P)$ prennent des valeurs entières aux entiers, les coefficients a_k sont donc entiers.

Pour voir la réciproque, il suffit de vérifier que chaque polynôme T_k prend des valeurs entières aux entiers (une combinaison linéaire à coefficients entiers des T_k la vérifiera donc). Soit $k \in \mathbb{N}^*$. Pour tout entier m,

$$T_k(m) = \frac{m(m+1)\dots(m+k-1)}{k!}.$$

On observe d'abord que $T_k(m)=0$ si l'entier m est dans [1-k,0]. Pour $m\geq 1,$ $T_k(m)$ est le coefficient binômial $\binom{m+k-1}{k}$, donc un entier. Reste le cas où m s'écrit m=1-k-p, avec $p\geq 1$. Dans ce cas, on écrit

$$T_k(m) = (-1)^k \frac{(p+k-1)(p+k-2)\dots p}{k!} = (-1)^k \binom{p+k-1}{k}$$

et on voit que c'est encore un entier. Cela prouve la réciproque.