Status of Preparations for a 10 µs Laser-Assisted H⁻Beam Stripping Experiment

S. Cousineau, A. Aleksandrov,

V.V. Danilov, F. Garcia, T. Gorlov,

D. Johnson, Y. Liu, N. Luttrell,

A. Menshov, M. Plum, A. Rakhman,

A. Shishlo, Y. Takeda, Y. Wang

Motivation

- Injection foils may not survive in beam powers >1.5 MW.
- Seeing many cases of foil damage at SNS.
- Laser-assisted H- stripping under development as a potential alternative for foils.

Bracket melted, fell off

"Successful" foil after 5 months in the beam.

S

Motivation

- Injection foils may not survive in beam powers >1.5 MW.
- Seeing many cases of foil damage at SNS.
- Laser-assisted H- stripping under development as a potential alternative for foils.

Bracket melted, fell off

"Successful" foil after 5 months in the beam.

S

Review of 2006 Laser Stripping Experiment

- Demonstrated at SNS for a 6 ns H⁻ beam.
- Straightforward scaling from 6 ns to full duty cycle requires 600 kW average UV laser power. Not achievable.

Project Description

Goal: Demonstrate H⁻ laser-assisted stripping with 90% efficiency for a 5 – 10 μs, 1 GeV H⁻ beam.

- Experiment will employ methods to minimize the laser power requirement.
- Supported in part by a DOE HEP grant* that includes 1 postdoc, 1 graduate student, several undergraduates.
- A collaboration between ORNL, University of Tennessee, and Fermilab.

Part I: Experimental Configuration

Design goals:

- 1. Achieve high efficiency stripping for 5 10 μs.
- 2. Protect the laser from radiation damage.
- 3. Prevent disruptions to production beam operations.
- 4. Provide schedule flexibility for the experiment.

Interaction Point Location

- IP is downstream of arc in empty drift.
- Has good optics flexibility.
- Diagnostics are 20 40 m upstream.
- Low radiation region.
- Reasonable waste beam scenario.

Stripping Magnet Design

Magnet Design:

- Permanent magnet Halbach array.
- 1.2 T field in stripping region.
- 40 T/m gradient (minimize emittance growth during stripping).
- Insertable + retractable from vacuum pipe.

See A. Aleksandrov, TUPRO117

Laser Stripping Experimental Station

Remote Placement of Laser

UV laser will be located in the Ring Service Building

- Advantages:
 - ✓ Protects laser
 - ✓ No moving laser in & out of tunnel for every measurement
 - Experiment schedule flexibility
- Challenges:
 - Space availability
 - Laser power loss in transport
 - Laser pointing stability

Transport pipe ~70 m long, and requires ≥ 9 mirrors.

Part II: Parameter Optimization

For the proposed configuration, need to minimize the required laser power and verify the available laser power:

- Laser-ion beam temporal matching (✓ Complete).
- Longitudinal bunch squeezing (✓ Complete).
- Dispersion tailoring (✓ Complete).
- 4. Twiss optimization (In progress).
- Assess laser power loss in transport (✔ Complete).

Laser-Ion Beam Temporal Matching

- Laser is a master oscillator power amplification (MOPA) system.
- Frequency tripled (1064 -> 355 nm)
- Macropulse structure: 10 μs @ 10 Hz
- Micropulse structure: 30-55 ps @ 402.5 MHz

UV Laser Power Measurement

- Detector bandwidth not high enough to measure UV pulse directly.
- Optical correlator built to automate this measurement.

Measured Laser Parameters

UV Peak Power	Pulse structure (micro / macro)
3.0 MW	32 ps / 10 μs
1.3 MW	54 ps / 10 μs
2.1 MW	54 ps / 5 μs

Sufficient to provide ~90% stripping efficiency.

Y. Liu, WEPME002

Laser Transport Mock-Ups

- Mirror losses measured to be ≤1%.
- ~48 m mock-up constructed to mimic laser transport line.
- Results: Expect ~ 1/3 power loss (Fresnel diffraction, higher order mode loss).

Conclusion: Remote laser placement is feasible.

Ion Beam Optics: Longitudinal

- Need to squeeze microbunch by factor of ~6 compared to nominal.
- Done by reconfiguring last 10 SCL cavities.

T. Gorlov, MOPRI103

Ion Beam Optics: Longitudinal

- H- micropulse width is limited by space charge: 3.45 ps per mA of charge.
- For 1 mA, we get 3.28 deg = 26.6 ps.
- Result is sufficient to ensure full coverage by laser pulse.

Progress on Ion Beam Transverse Optics

- 1. D = 0, D'= -2.6.: Eliminate majority of transition frequency spread. ✔ Complete
- 2. $\alpha_x = 0$, $\beta_x \approx$ large: Eliminate remaining transition frequency spread. In progress
- 3. $\beta_y \approx \text{tiny}$, $\epsilon_y \approx \text{small}$: Small beam spot \longleftarrow high laser power density. In progress

Measurement of Dispersion Function

Outline of Project Schedule

Due to DOE HEP grant, project is tied to a three year schedule (2013 – 2016).

Task	Comment
Year 1 (05/2013 - 04/2014)	
Parameter realization experiments (laser and ion beam)	Nearly complete
Choose location for IP and laser station, feasibility studies	Complete
Year 2 (05/2014 - 04/2015)	
Design of hardware	Ongoing
Fabrication of equipment	Ongoing
Installation of diagnostics	January 2015
Year 3 (05 2015 - 04/2016)	
Installation of remaining equipment	August 2015 & January 2016
Experiment	January – March, 2016

Stay Tuned!

