

ICPC

Graphen 3

Tobias, Julian, Jakob, Tobias | 6. Juni 2018

Outline/Gliederung

- Einführung
- Max-Flow Algorithmen
 - Ford-Fulkerson
 - Edmonds-Karp
- Min-Cut
- Sonderfälle
- Max-Flow Modellierung

Max-Flow Algorithmen

Bipartite Matching

Gegeben gerichteter Graph

Max-Flow Algorithmen

s: source, t:sink

6. Juni 2018

Max-Flow Algorithmen

Fluss

Max-Flow Algorithmen

Einführung

Min-Cut

Flusserhaltung

Max-Flow Algorithmen

Wert eines s-t-Flusses

Max-Flow Algorithmen

Max-Flow Algorithmen

Max-Flow Algorithmen

Max-Flow Algorithmen

Max-Flow Algorithmen

Sonderfälle

Max-Flow Algorithmen

Exzess: Werte entsprechend der Kantenkapazität abzüglich bereits vorhandener Flüsse

6. Juni 2018

Max-Flow Algorithmen

6. Juni 2018

Max-Flow Algorithmen

Flussprobleme

Schwierigeit im Erkennen der Aufgaben

Max-Flow Algorithmen

Flussprobleme

- Schwierigeit im Erkennen der Aufgaben
- Seit 2013 vermehrtes vorkommen in contests decider Problem

Bestimmung des maximalen Flusses

ldee:

- Starte mit dem leeren Fluss
- Bestimme erweiternden Pfad (augmenting path) P
 - ⇒ Ein erweiternder Pfad ist ein einfacher Pfad, der nur Kanten mit positiver Kapazität enthält
- Erweitere die Lösung um P
- Wiederhole so oft, wie es einen passenden Pfad P gibt

Frage: Wie kann P gefunden werden?

Bestimmung des maximalen Flusses

Idee:

- Starte mit dem leeren Fluss
- Bestimme erweiternden Pfad (augmenting path) P
 - ⇒ Ein erweiternder Pfad ist ein einfacher Pfad, der nur Kanten mit positiver Kapazität enthält
- Erweitere die Lösung um P
- Wiederhole so oft, wie es einen passenden Pfad P gibt

Frage: Wie kann P gefunden werden?

- Greedy Algorithmus veröffentlicht in 1956 von L. R. Ford, Jr. und D. R. Fulkerson
- Verwendet Tiefensuche um den erweiternden Pfad P zu bestimmen
- Die Lösung wird um P erweitert indem,
 - die geringste Kapazität f der Kanten in P bestimmt wird
 - die Kapazitäten aller Kanten in P um f verringert werden
 - die Kapazitäten aller Gegenkanten um f erhöht werden
 - der maximale Fluss um f erhöht wird

- Greedy Algorithmus veröffentlicht in 1956 von L. R. Ford, Jr. und D. R. Fulkerson
- Verwendet Tiefensuche um den erweiternden Pfad P zu bestimmen
- Die Lösung wird um P erweitert indem,
 - die geringste Kapazität f der Kanten in P bestimmt wird
 - die Kapazitäten aller Kanten in P um f verringert werden
 - die Kapazitäten aller Gegenkanten um f erhöht werden
 - der maximale Fluss um f erhöht wird

- Greedy Algorithmus veröffentlicht in 1956 von L. R. Ford, Jr. und D. R. Fulkerson
- Verwendet Tiefensuche um den erweiternden Pfad P zu bestimmen
- Die Lösung wird um P erweitert indem,
 - die geringste Kapazität f der Kanten in P bestimmt wird
 - die Kapazitäten aller Kanten in P um f verringert werden
 - die Kapazitäten aller Gegenkanten um f erhöht werden
 - der maximale Fluss um f erhöht wird

- Greedy Algorithmus veröffentlicht in 1956 von L. R. Ford, Jr. und D. R. Fulkerson
- Verwendet Tiefensuche um den erweiternden Pfad P zu bestimmen
- Die Lösung wird um P erweitert indem,
 - die geringste Kapazität f der Kanten in P bestimmt wird
 - die Kapazitäten aller Kanten in P um f verringert werden
 - die Kapazitäten aller Gegenkanten um f erhöht werden
 - der maximale Fluss um f erhöht wird

- Greedy Algorithmus veröffentlicht in 1956 von L. R. Ford, Jr. und D. R. Fulkerson
- Verwendet Tiefensuche um den erweiternden Pfad P zu bestimmen
- Die Lösung wird um P erweitert indem,
 - die geringste Kapazität f der Kanten in P bestimmt wird
 - die Kapazitäten aller Kanten in P um f verringert werden
 - die Kapazitäten aller Gegenkanten um f erhöht werden
 - der maximale Fluss um f erhöht wird

Max-Flow Algorithmen

Tobias, Julian, Jakob, Tobias - Graphen 3

Max-Flow Modellierung

Bipartite Matching

- Im Worst-Case wird der maximale Fluss pro Iteration nur um 1 erhöht
- \Rightarrow Laufzeit in $\mathcal{O}(|f^*|\cdot|E|)$, wobei $|f^*|$ der Wert des maximalen Flusses beschreibt
 - Deshalb nicht für ICPC-Aufgaben geeignet!

Max-Flow Algorithmen

Edmonds-Karp Algorithmus

- 1972 von J. Edmonds und R. M. Karp veröffentlicht
- Verwendet Breitensuche um den k\u00fcrzesten erweiternden Pfad P zu bestimmen
- Erweiterung der Lösung um P analog zu Ford-Fulkerson
- Die Länge des erweiternden Pfades ist monoton steigend
- Es sind maximal $|V| \cdot |E|$ Iterationen notwendig
- \Rightarrow Laufzeit in $\mathcal{O}(|V| \cdot |E|^2)$

Edmonds-Karp Implementierung

Algorithm 1: Edmonds-Karp

Function Max-Flow (
$$G = (V, E)$$
, $s, t \in V, c : E \rightarrow \mathbb{R}^+$)

maxFlow = 0

do

find augmenting path P using BFS

 $f = min\{c(u, v)|(u, v) \in P\}$

foreach $(u, v) \in P$ do

 $c(u, v) = f$
 $c(v, u) + f$

end

maxFlow += f

while P exists

401471111111

return maxFlow

Max-Flow Algorithmen

Edmonds-Karp Algorithmus

Max-Flow Algorithmen

Edmonds-Karp Implementierungsdetails

- In Adjazenzliste neben Zielknoten auch Kapazität und Verweis auf die Rückkante speichern
- Nicht vorhandene Rückkanten mit 0 initialisieren und dem Graphen hinzufügen
- Bei der Breitensuche nur Kanten mit positiver Kapazität berücksichtigen
- Breitensuche abbrechen, sobald t erreicht wurde

Min-Cut

Min-Cut

- Definiere Schnitt C = (S Komponente, T Komponente) als Partition von $V \in G$, wobei $s \in S$ – Komponente und $t \in T$ – Komponente
- Weiter sei die Schnittmenge $c = \{(u, v) \in E | u \in S - Komponente \land v \in T - Komponente\}$
- Wähle c so, dass Max Flow von s nach t 0 ist, für $E' = E \setminus c$

Max-Flow-Min-Cut-Theorem

Max-Flow-Min-Cut-Theorem

 Ein maximaler Fluss im Netzwerk hat genau den Wert eines minimalen Schnitts.

Max-Flow Algorithmen

Max-Flow-Min-Cut

Bsp.:

- Hier
 - $C = (\{s, q_1\}, \{t, q_0\})$
 - $c = \{(s, q_0), (q_1, q_0), (q_1, t)\}$

Multi-Quelle/Multi-Abfluss

Gegeben sei folgende Situation:

- Problem: Max-Flow Algorithmus kann nur mit einer Quelle und einer Senke arbeiten.
- Lösung: Ertelle Super-Quelle und Super-Senke und verbinde alle Quellen und Senken mit Kantengewicht ∞

6. Juni 2018

Max-Flow Algorithmen

Multi-Quelle/Multi-Abfluss Lösung

Max-Flow Algorithmen

Max-Flow Modellierung

Knotenkapazität

- Gegeben sind Knoten mit Kapazität.
- Bsp.:

Max-Flow Algorithmen

Knotenkapazität

- Gegeben sind Knoten mit Kapazität.
- Bsp.:

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - ...

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - ...

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung

- Situation: Die Titanic ist gesunken. Es soll ermittelt werden wie viele Menschen gerettet werden können.
- Eingabe: X, Y, P mit X,Y Dimension der Fläche ($1 \le X, Y \le 30$) und P $(P \le 10)$ die Anzahl von Personen, welche gleichzeitig auf ein Holzbrett können.

Symbol	Bedeutung
*	Menschen auf Treibeis
~	Eiskaltes Wasser
	Treibeis
@	Großer Eisberg
#	Großes Holzbrett

• Gegeben sei nun folgende Eingabe:

```
* ~ ~ #
. . . @
. ~ . *
```

Wandle in Graphen um...

• Gegeben sei nun folgende Eingabe:

```
* ~ ~ #
. . . @
. ~ . *
```

Wandle in Graphen um...

Verbinde alle Knoten, über die ein Weg möglich ist...

Max-Flow Algorithmen

Einführung

Bipartite Matching

Max-Flow Algorithmen

Verbinde alle Knoten, über die ein Weg möglich ist...

Einführung

■ Füge Knotengewichte hinzu...

■ Füge Knotengewichte hinzu...

Verbinde alle Menschen mit s und alle Holzbretter mit t...

Max-Flow Algorithmen

Einführung

Bipartite Matching

Verbinde alle Menschen mit s und alle Holzbretter mit t...

Bem.: Knotengewichte müssen noch aufgelöst werden

Max-Flow Algorithmen

Einführung

Bipartiter Graph

Bipartiter Graph

Ein Graph G = (V, E) heißt bipartit, wenn sich V = A ∪ B in 2 disjunkte Knotenmengen A und B aufteilen lässt, sodass zwischen den Knoten innerhalb der Teilmengen keine Kanten existieren.

Matching

Matching

- Sei G = (V, E) ein Graph. Ein **Matching** $M \subseteq E$ ist eine Menge paarweise knotendisjunkter Kanten, d.h.
- $\forall e_1 = \{u_1, v_1\}, e_2 = \{u_2, v_2\} \in M, e_1 \neq e_2 : e_1 \cap e_2 = \emptyset$
- Analog f
 ür gerichtete Graphen

Matching

Matching

- Sei G = (V, E) ein Graph. Ein **Matching** $M \subseteq E$ ist eine Menge paarweise knotendisjunkter Kanten, d.h.
 - $\forall e_1 = \{u_1, v_1\}, e_2 = \{u_2, v_2\} \in M, e_1 \neq e_2 : e_1 \cap e_2 = \emptyset$
- Analog f
 ür gerichtete Graphen

Maximales Matching

Ein Matching heißt maximales Matching, wenn nicht durch Hinzufügen einer Kante ein größeres Matching erstellt werden kann. (D.h. es gibt keine Kante e = {u, v}, wobei u und v nicht Teil des Matchings sind.)

Sonderfälle

6. Juni 2018

Perfektes Matching

Kardinalitätsmaximales Matching

Ein Matching $M \subseteq E$ heißt kardinalitätsmaximales Matching, wenn es kein größeres Matching gibt. (D.h. \forall Matchings $M': |M| \ge |M'|$).

Perfektes Matching

Kardinalitätsmaximales Matching

■ Ein Matching $M \subseteq E$ heißt **kardinalitätsmaximales Matching**, wenn es kein größeres Matching gibt. (D.h. \forall Matchings $M' : |M| \ge |M'|$).

Perfektes Matching

■ Ein Matching M heißt **perfekt**, falls 2 * |M| = |V|, d.h. jeder Knoten $v \in V$ kommt in M vor.

Maximales Matching

Max-Flow Algorithmen

Einführung

Perfektes Matching

Max-Flow Algorithmen

Einführung

- Finden von kardinalitätsmaximalen Matchings in bipartiten Graphen $G = (V, E = A \cup B)$:
 - Einfügen von neuen Knoten s und t
 - Einfügen von Kanten zwischen s und allen Knoten v_A ∈ A, und zwischen allen Knoten v_B ∈ B und t.
 - Jede Kante im Graph (alte und neu eingefügte) hat Kapazität 1.
 - Berechnen des maximalen Flusses von s nach t.

Tobias, Julian, Jakob, Tobias - Graphen 3

Sonderfälle

Beispiel

- Kurz auf Laufzeit eingehen
- Beispiel: Primzahlen (Competitive Programming 3, Seite 180)
- Definitionen: Max Independent Set, Min Vertex Cover, Königs
 Theorem: —Min Vertex Cover— = —grtes Matching—

6. Juni 2018

Tobias, Julian, Jakob, Tobias - Graphen 3

- Beispiel: Guardian of Decency (Competitive Programming 3, Seite 182)
- (Je nach verbleibender Zeit:) noch mehr Graphentheorie: bipartit
 keine ungeraden Kreise, ...

6. Juni 2018