- 1. Determine if each statement below is always true or sometimes false.
 - (a) $\int f(x)g(x)dx = \int f(x)dx \int g(x)dx$.
 - (b) To evaluate $\int \sin^{-1}(x) dx$ by part, choose $u = \sin^{-1}(x)$ and dv = dx.
 - (c) To evaluate $\int x \ln(x) dx$ by part, choose u = x and $dv = \ln(x) dx$.
 - (d) To evaluate $\int \cot(x)dx$, integrate by substitution choosing $u = \sin(x)$.
- 2. evaluate the integrals.
 - (a) $\int x^2 e^{x^3}$.
 - (b) $\int x^3 e^{x^2} dx$.
 - (c) $\int 4^{-x} dx$.
 - (d) $\int x^2 4^x dx$.
- 3. Determine if each integral below can be evaluated using a method we have learned so far (formula, u-substitution, integration by parts, or trig identities). If so, evaluate the integral. If not, explain why it cannot be evaluated.
 - (a) $\int x^5 \ln(x) dx$.
 - (b) $\int \sin^5(2x) \cos^3(2x) dx$.
 - (c) $\int \cos^3(2x) dx$.
 - (d) $\int \tan(x) \ln(\cos(x)) dx$.