

Oposicions 2020

Cos: 0590 Professors Ensenyament Secundari

Especialitat: 006 Matemàtiques
Tribunal 1 Illa: Menorca

PART B DE LA PRIMERA PROVA: PROVA PRÀCTICA

OPCIÓ A

Tots el problemes tenen la mateixa puntuació

PROBLEMA 1:

- a) Prova que, per a tot $n \ge 1$, $n \in \mathbb{Z}$, $n(n^2 + 5)$ és divisible entre 6.
- b) Demostra que la fracció $\frac{4n+5}{2n+3}$ és irreductible per a qualsevol $n \in \mathbb{N}$.

PROBLEMA 2:

Dues persones A i B juguen un partit de tennis entre ells. Per tal de guanyar un joc en tennis, s'han de guanyar un mínim de quatre punts i s'ha d'aconseguir que la diferència de punts entre els dos jugadors sigui de dos o més punts. En aquest partit concret, la probabilitat que el jugador A guanyi un punt és constant i igual a p (i, per tant, la probabilitat que el jugador B guanyi un punt és constant i igual a p (i, calcula:

- a) Les probabilitats que A guanyi un joc per 4-0, per 4-1 i per 4-2.
- b) La probabilitat que s'arribi a un resultat 3-3 (deuce).
- c) La probabilitat que A guanyi un joc sabent que el marcador és 3-3-i que s'ha de guanyar per dos punts de diferència.
- d) La probabilitat que A guanyi un joc, amb qualsevol resultat.

PROBLEMA 3:

La regió R queda compresa entre la part positiva dels eixos coordinats i la corba $y = \cos x$ para $0 \le x \le \frac{\pi}{2}$. Troba el valor del paràmetre a per tal que la corba $y = a \cdot \sin x$ divideixi la regió R en dues parts d'igual àrea.

PROBLEMA 4:

En la figura següent, calcula el radi de la circumferència pintada en funció del radi de la circumferència major.

Les dues semicircumferències mitjanes tenen el mateix radi i tots els arcs són tangents entre sí.

PROBLEMA 5:

En \mathbb{R}^3 es considera el pla π d'equació x+y+z=0. Es considera la transformació lineal $f:\mathbb{R}^3\to\mathbb{R}^3$ que a cada punt P li fa correspondre un punt f(P) de manera que el punt mitjà del segment $\overline{Pf(P)}$ és el punt P', simètric de P respecte el pla π .

- a) Interpreta geomètricament la transformació f.
- b) Determina una base ortonormal en la qual la matriu associada a f sigui diagonal. Determina també la matriu associada a f en aquesta base.
- c) Calcula la matriu de f en la base canònica.
- d) Es considera el punt P de coordenades P(2,2,3). Calcula les coordenades del punt $f^{10}(P)$.
- e) Es considera la qüestió:

A partir del punt P(2,2,3), calcula les coordenades de f(P). Ubica aquesta qüestió en el currículum de batxillerat, resol la qüestió en aquest context, de manera detallada i tot indicant els coneixements previs necessaris.