What is claimed is:

1	1(Currently amended). A nozzle for injection molding, comprising:
2	a thermally conductive nozzle body defining an internal passage for
3	conveying a flow of heated melt through the nozzle body, wherein the
4	internal passage extends axially along the nozzle body to an axially
5	placed cylindrical hub of a diameter less than a diameter of the nozzle
6	body;
7	a tubular extension from the cylindrical hub, the tubular extension
В	having a wall thickness less than a wall thickness of the cylindrical hub;
9	a nozzle tip on an end of the nozzle body, communicating with the
0	internal passage, wherein the nozzle tip is structured for engagement with a
1	mold for coupling the passage to an injection inlet; and,
	wherein a heat flow blocking configuration is disposed between an extreme
	end of the nozzle tip and a point of the internal passage spaced back from the
,	nozzle tip.
	2(original). The nozzle of claim 1, wherein the heat flow blocking
	configuration comprises a portion having reduced thermal conduction capacity
	between the extreme end and the point spaced backed from the nozzle tip.
	3(original). The nozzle of claim 2, wherein the portion having reduced
	thermal conduction comprises a reduction in wall thickness along the internal
	passage.
	4(original). The nozzle of claim 3, wherein the reduction in wall
	thickness occurs at an extension of the internal passage at the extreme end of
	the nozzle tip.

SN 10/814,000 Amended Claims Response to Action of 06/09/2006

5(original). The nozzle of claim 4, further comprising at least one fin 1 extending laterally from the extension of the internal passage to the nozzle 2 body, for supporting said extension. 3 6(original). The nozzle of claim 5, wherein the fin supporting the 1 extension has a material gap between the extension and the nozzle body. 2 Claims 7 and 8 are canceled. 9(currently amended). The nozzle of claim 1 &, further comprising at 1 least one fin forming a buttress supporting the tubular extension relative to the 2 cylindrical hub. 3 10(original). The nozzle of claim 9, wherein the fin forms at least two 1 radially extending buttresses. 2 11(original). The nozzle of claim 10, wherein the buttresses are 1 diametrically opposite. 2 12(original). The nozzle of claim 9, wherein the fin has a gap between 1 the cylindrical hub and a buttress forming web. 2 13(original). The nozzle of claim 9, wherein the web extends along a 1 2 line of a spherical surface.

Claims 14-17 are canceled.

1	18(New). A nozzle for injection molding, comprising:
2	a thermally conductive nozzle body defining an internal passage for
3	conveying a flow of heated melt through the nozzle body;
4	a nozzle tip on an end of the nozzle body, communicating with the
5	internal passage, wherein the nozzle tip is structured for engagement with a
6	mold for coupling the passage to an injection inlet;
7	a heat flow blocking configuration disposed between an extreme end of
8	the nozzle tip and a point of the internal passage spaced back from the nozzle
9	tip, the heat flow blocking configuration comprising a portion having reduced
0	thermal conduction capacity between the extreme end and the point spaced
1	back from the nozzle tip, said portion including a reduced wall thickness along
2	the internal passage, and a material gap extending radially over an axial span
3	between the extreme end and the point of the internal passage spaced back
4	from the nozzle tip.
1	19(new). The nozzle of claim 18, wherein the material gap is
2	formed by an opening in a fin comprising radially extending buttresses.
1	20(new). The nozzle of claim 18, wherein the material gap
2	comprises a radial groove extending for said axial span.