STATS 205P HW3

Chuqi Wang 79167724

2024-05-20

Q1:

```
library(readr)
getwd()
## [1] "/Users/chuqiwang/Desktop/UCI/STATS205P/hw3"
setwd("/Users/chuqiwang/Desktop/UCI/STATS205P/hw3")
data = read.csv("kid-iq.csv")
 (a)
# Load necessary libraries
library(rstan)
## Loading required package: StanHeaders
## rstan version 2.32.6 (Stan version 2.32.2)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## For within-chain threading using `reduce_sum()` or `map_rect()` Stan functions,
## change `threads_per_chain` option:
## rstan_options(threads_per_chain = 1)
# Define the Stan model for Model 1: kidScore ~ momHs + momIq
stan_model1 <- "
data {
 int<lower=0> N;
                          // number of observations
                          // dependent variable
  vector[N] kidScore;
 vector[N] momHs;
                          // independent variable momHs
                          // independent variable momIq
  vector[N] momIq;
parameters {
 real alpha;
                          // intercept
 real beta momHs;
                         // coefficient for momHs
 real beta_momIq;
                         // coefficient for momIq
 real<lower=0> sigma;
                          // error scale
model {
  // Priors
 alpha ~ normal(0, 1000);
```

```
beta_momHs ~ normal(0, 1000);
  beta_momIq ~ normal(0, 1000);
  sigma ~ scaled_inv_chi_square(1, 0.05);
  // Likelihood
  kidScore ~ normal(alpha + beta_momHs * momHs + beta_momIq * momIq, sigma);
}
# Define the Stan model for Model 2: kidScore ~ momHs + momIq + momAge
stan model2 <- "
data {
  int<lower=0> N;
                           // number of observations
                           // dependent variable
  vector[N] kidScore;
                          // independent variable momHs
 vector[N] momHs;
 vector[N] momIq;
                         // independent variable momIq
  vector[N] momAge;
                           // independent variable momAge
parameters {
                           // intercept
 real alpha;
                         // coefficient for momHs
 real beta_momHs;
                        // coefficient for momIq
// coefficient for momAge
 real beta_momIq;
 real beta_momAge;
 real<lower=0> sigma; // error scale
model {
 // Priors
  alpha ~ normal(0, 1000);
  beta_momHs ~ normal(0, 1000);
  beta_momIq ~ normal(0, 1000);
  beta_momAge ~ normal(0, 1000);
  sigma ~ scaled_inv_chi_square(1, 0.05);
 // Likelihood
  kidScore ~ normal(alpha + beta_momHs * momHs + beta_momIq * momIq + beta_momAge * momAge, sigma);
H
# Prepare the data for Stan
stan_data1 <- list(</pre>
  N = nrow(data),
 kidScore = data$kidScore,
 momHs = data$momHs,
 momIq = data$momIq
stan_data2 <- list(</pre>
  N = nrow(data),
  kidScore = data$kidScore,
  momHs = data$momHs,
  momIq = data$momIq,
  momAge = data$momAge
```

```
fit1 <- stan(model_code = stan_model1, data = stan_data1)</pre>
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## using C compiler: 'Apple clang version 14.0.3 (clang-1403.0.22.14.1)'
## using SDK: 'MacOSX13.3.sdk'
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## #include <cmath>
            ^~~~~~
##
## 1 error generated.
## make: *** [foo.o] Error 1
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 6e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.6 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.649 seconds (Warm-up)
## Chain 1:
                           0.359 seconds (Sampling)
                           1.008 seconds (Total)
## Chain 1:
## Chain 1:
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.3e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
```

```
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.721 seconds (Warm-up)
## Chain 2:
                           0.357 seconds (Sampling)
## Chain 2:
                           1.078 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.622 seconds (Warm-up)
## Chain 3:
                           0.414 seconds (Sampling)
## Chain 3:
                           1.036 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
                          1 / 2000 [ 0%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
```

```
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.742 seconds (Warm-up)
## Chain 4:
                           0.4 seconds (Sampling)
## Chain 4:
                           1.142 seconds (Total)
## Chain 4:
fit2 <- stan(model_code = stan_model2, data = stan_data2)</pre>
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## using C compiler: 'Apple clang version 14.0.3 (clang-1403.0.22.14.1)'
## using SDK: 'MacOSX13.3.sdk'
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## #include <cmath>
##
## 1 error generated.
## make: *** [foo.o] Error 1
## SAMPLING FOR MODEL 'anon model' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 8.1e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.81 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 1.216 seconds (Warm-up)
## Chain 1:
                           0.864 seconds (Sampling)
## Chain 1:
                           2.08 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
## Chain 2:
```

```
## Chain 2: Gradient evaluation took 1.8e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 1.264 seconds (Warm-up)
## Chain 2:
                           0.908 seconds (Sampling)
## Chain 2:
                           2.172 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.7e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 1.249 seconds (Warm-up)
## Chain 3:
                           0.916 seconds (Sampling)
## Chain 3:
                           2.165 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.7e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
```

```
## Chain 4:
## Chain 4: Iteration:
                           1 / 2000 [ 0%]
                                             (Warmup)
                                             (Warmup)
## Chain 4: Iteration:
                        200 / 2000 [ 10%]
                        400 / 2000 [ 20%]
## Chain 4: Iteration:
                                             (Warmup)
## Chain 4: Iteration:
                         600 / 2000 [ 30%]
                                             (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                             (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                             (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 4:
## Chain 4:
            Elapsed Time: 1.159 seconds (Warm-up)
## Chain 4:
                            0.915 seconds (Sampling)
## Chain 4:
                            2.074 seconds (Total)
## Chain 4:
fit1
## Inference for Stan model: anon_model.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                  mean se mean
                                  sd
                                         2.5%
                                                    25%
                                                             50%
                                                                       75%
                                                                              97.5%
## alpha
                 25.64
                           0.15 5.74
                                        14.20
                                                  21.86
                                                           25.80
                                                                     29.54
                                                                              36.57
## beta_momHs
                  5.93
                           0.04 2.15
                                         1.68
                                                   4.48
                                                            5.92
                                                                      7.38
                                                                              10.20
                           0.00 0.06
                                                   0.53
                                                            0.56
## beta_momIq
                  0.57
                                         0.45
                                                                      0.60
                                                                               0.68
                           0.01 0.61
                                        17.04
                                                  17.71
                                                           18.11
                                                                     18.56
                                                                              19.37
## sigma
                 18.14
                           0.03 1.34 -1479.74 -1477.08 -1476.13 -1475.41 -1474.69
              -1476.41
## lp__
##
              n_eff Rhat
## alpha
               1461
                        1
## beta_momHs
               2519
## beta_momIq
               1453
                        1
## sigma
               2668
                        1
## lp__
               1592
##
## Samples were drawn using NUTS(diag_e) at Tue May 21 19:48:08 2024.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
fit2
## Inference for Stan model: anon_model.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                           2.5%
                                                     25%
                                                               50%
                                                                               97.5%
                   mean se_mean
                                                                        75%
## alpha
                  20.65
                            0.20 9.18
                                           2.81
                                                   14.41
                                                            20.74
                                                                      26.93
                                                                               38.27
## beta_momHs
                   5.62
                            0.04 2.30
                                           1.20
                                                    4.02
                                                             5.58
                                                                       7.21
                                                                               10.23
                   0.56
                            0.00 0.06
                                          0.44
                                                    0.52
                                                             0.56
## beta_momIq
                                                                       0.60
                                                                                0.68
## beta momAge
                   0.24
                            0.01 0.33
                                         -0.40
                                                    0.02
                                                             0.25
                                                                       0.46
                                                                                0.90
## sigma
                  18.16
                            0.01 0.64
                                         16.95
                                                   17.72
                                                            18.14
                                                                      18.57
                                                                               19.46
                            0.04 1.60 -1480.63 -1477.60 -1476.47 -1475.62 -1474.69
## lp__
               -1476.80
```

```
##
               n_eff Rhat
## alpha
                2158
                        1
## beta momHs
                3230
                2533
## beta_momIq
## beta_momAge
                2453
## sigma
                3397
                        1
                1632
## lp__
##
## Samples were drawn using NUTS(diag_e) at Tue May 21 19:48:37 2024.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

For model 1 and 2 we set priors to be as follow:

$$\sigma^2 \sim Inv - \chi^2(1, 0.5)$$
$$\beta_i \sim N(0, 1000)$$

By applying MCMC, for M1, we found that the estimated model is given by:

$$\widehat{kidScore} = 25.93 + 5.96momHs + 0.56momIq$$

The posterior distribution of M1 are given by:

$$\beta_0 \sim N(25.93, 6.04^2)$$

$$\beta_1 \sim N(5.96, 2.21^2)$$

$$\beta_2 \sim N(0.56, 0.06^2)$$

$$\sigma^2 \sim Inv - \chi^2(18.17, 0.62^2)$$

For M2, we found that the estimated model is given by:

$$\widehat{kidScore} = 20.92 + 5.59momHs + 0.56momIq + 0.23momAge$$

The posterior distribution of M2 are given by:

$$\beta_0 \sim N(20.92, 6.04^2)$$

$$\beta_1 \sim N(5.59, 2.31^2)$$

$$\beta_2 \sim N(0.56, 0.06^2)$$

$$\beta_3 \sim N(0.23, 0.34^2)$$

$$\sigma^2 \sim Inv - \chi^2(18.16, 0.62^2)$$

(b)

```
stan_model1 <- "
data {
  int<lower=0> N;
  vector[N] kidScore;
  vector[N] momHs;
  vector[N] momIq;
}
parameters {
  real alpha;
  real beta_momHs;
```

```
real beta_momIq;
  real<lower=0> sigma;
model {
  alpha ~ normal(0, 1000);
  beta_momHs ~ normal(0, 1000);
  beta_momIq ~ normal(0, 1000);
  sigma ~ scaled_inv_chi_square(1, 0.05);
  kidScore ~ normal(alpha + beta_momHs * momHs + beta_momIq * momIq, sigma);
generated quantities {
  vector[N] y_rep;
 for (n in 1:N)
    y_rep[n] = normal_rng(alpha + beta_momHs * momHs[n] + beta_momIq * momIq[n], sigma);
}
11
stan_model2 <- "
data {
  int<lower=0> N;
  vector[N] kidScore;
 vector[N] momHs;
 vector[N] momIq;
  vector[N] momAge;
parameters {
  real alpha;
  real beta_momHs;
 real beta_momIq;
 real beta_momAge;
 real<lower=0> sigma;
model {
  alpha ~ normal(0, 1000);
  beta_momHs ~ normal(0, 1000);
  beta_momIq ~ normal(0, 1000);
  beta_momAge ~ normal(0, 1000);
  sigma ~ scaled_inv_chi_square(1, 0.05);
  kidScore ~ normal(alpha + beta_momHs * momHs + beta_momIq * momIq + beta_momAge * momAge, sigma);
generated quantities {
  vector[N] y_rep;
  for (n in 1:N)
    y_rep[n] = normal_rng(alpha + beta_momHs * momHs[n] + beta_momIq * momIq[n] + beta_momAge * momAge[n]
}
fit1 <- stan(model_code = stan_model1, data = stan_data1)</pre>
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## using C compiler: 'Apple clang version 14.0.3 (clang-1403.0.22.14.1)'
```

```
## using SDK: 'MacOSX13.3.sdk'
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## #include <cmath>
##
            ^~~~~~
## 1 error generated.
## make: *** [foo.o] Error 1
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 5.1e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.51 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.648 seconds (Warm-up)
                           0.392 seconds (Sampling)
## Chain 1:
## Chain 1:
                           1.04 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.3e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
```

```
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.679 seconds (Warm-up)
## Chain 2:
                           0.431 seconds (Sampling)
## Chain 2:
                           1.11 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.7e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.674 seconds (Warm-up)
                           0.426 seconds (Sampling)
## Chain 3:
## Chain 3:
                           1.1 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.3e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.689 seconds (Warm-up)
```

```
## Chain 4:
                           0.415 seconds (Sampling)
## Chain 4:
                           1.104 seconds (Total)
## Chain 4:
fit2 <- stan(model_code = stan_model2, data = stan_data2)</pre>
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## using C compiler: 'Apple clang version 14.0.3 (clang-1403.0.22.14.1)'
## using SDK: 'MacOSX13.3.sdk'
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## #include <cmath>
            ^~~~~~
##
## 1 error generated.
## make: *** [foo.o] Error 1
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 5.9e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.59 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                        1 / 2000 [ 0%]
                                           (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                           (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                           (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                           (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                           (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                           (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                           (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                           (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                           (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 1.258 seconds (Warm-up)
## Chain 1:
                           0.968 seconds (Sampling)
## Chain 1:
                           2.226 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'anon model' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.8e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%]
```

(Warmup)

```
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 1.229 seconds (Warm-up)
## Chain 2:
                           0.922 seconds (Sampling)
## Chain 2:
                           2.151 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'anon model' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2.2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 1.244 seconds (Warm-up)
## Chain 3:
                           0.928 seconds (Sampling)
## Chain 3:
                           2.172 seconds (Total)
## Chain 3:
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
```

```
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                             (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
                                             (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 1.238 seconds (Warm-up)
## Chain 4:
                            0.917 seconds (Sampling)
## Chain 4:
                            2.155 seconds (Total)
## Chain 4:
y_rep1 <- extract(fit1)$y_rep</pre>
y_rep2 <- extract(fit2)$y_rep</pre>
means1 <- apply(y_rep1, 1, mean)</pre>
means2 <- apply(y_rep2, 1, mean)</pre>
observed_mean <- mean(data$kidScore)</pre>
print(observed_mean)
## [1] 86.79724
hist(means1, main="Model 1: Distribution of Simulated Means", xlab="Mean of kidScore")
abline(v=observed_mean, col="red", lwd=2)
```

Model 1: Distribution of Simulated Means

Model 2: Distribution of Simulated Means

Mean of kidScore

The observed mean of kidScore is 86.79724. For each model, by simulating 100 datasets, the distribution of simulated means for both M1 and M2 are shown above.

Split the data into training and testing sets train_data <- data[1:300,]</pre> test_data <- data[301:434,] stan_data1_train <- list(</pre> N = nrow(train_data), kidScore = train_data\$kidScore, momHs = train_data\$momHs, momIq = train_data\$momIq stan_data2_train <- list(</pre> N = nrow(train data), kidScore = train_data\$kidScore, momHs = train_data\$momHs, momIq = train_data\$momIq, momAge = train_data\$momAge) # Define the Stan model for Model 1: kidScore ~ momHs + momIq stan_model1 <- " data { int<lower=0> N; // number of observations // dependent variable vector[N] kidScore; vector[N] momHs; // independent variable momHs vector[N] momIq; // independent variable momIq

```
parameters {
 real beta_momHs; // coefficient for momHs
real beta_momIq; // coefficient '
 real<lower=0> sigma; // error scale
}
model {
 // Priors
 alpha ~ normal(0, 1000);
 beta_momHs ~ normal(0, 1000);
 beta_momIq ~ normal(0, 1000);
  sigma ~ scaled_inv_chi_square(1, 0.05);
 // Likelihood
 kidScore ~ normal(alpha + beta_momHs * momHs + beta_momIq * momIq, sigma);
}
# Define the Stan model for Model 2: kidScore ~ momHs + momIq + momAge
stan_model2 <- "
data {
 int<lower=0> N;
                        // number of observations
                        // dependent variable
 vector[N] kidScore;
 vector[N] momHs;
                        // independent variable momHs
 vector[N] momIq;
                        // independent variable momIq
 vector[N] momAge;  // independent variable momAge
}
parameters {
 real alpha;
                        // intercept
                        // coefficient for momHs
 real beta_momHs;
 // coefficient for momIq
 real<lower=0> sigma; // error scale
}
model {
 // Priors
 alpha ~ normal(0, 1000);
  beta_momHs ~ normal(0, 1000);
 beta_momIq ~ normal(0, 1000);
 beta_momAge ~ normal(0, 1000);
  sigma ~ scaled_inv_chi_square(1, 0.05);
 // Likelihood
 kidScore ~ normal(alpha + beta_momHs * momHs + beta_momIq * momIq + beta_momAge * momAge, sigma);
}
fit1 <- stan(model_code = stan_model1, data = stan_data1_train)</pre>
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## using C compiler: 'Apple clang version 14.0.3 (clang-1403.0.22.14.1)'
```

```
## using SDK: 'MacOSX13.3.sdk'
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## #include <cmath>
##
            ^~~~~~
## 1 error generated.
## make: *** [foo.o] Error 1
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 4.4e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.44 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                        1 / 2000 [ 0%]
                                           (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                           (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                           (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                           (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                           (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                           (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                           (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                           (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                           (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                           (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                           (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.502 seconds (Warm-up)
## Chain 1:
                           0.274 seconds (Sampling)
## Chain 1:
                           0.776 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 9e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                           (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                           (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                           (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                           (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                           (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                           (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                           (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                           (Sampling)
```

```
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.426 seconds (Warm-up)
## Chain 2:
                           0.258 seconds (Sampling)
## Chain 2:
                           0.684 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 9e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.457 seconds (Warm-up)
## Chain 3:
                           0.249 seconds (Sampling)
## Chain 3:
                           0.706 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 9e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.583 seconds (Warm-up)
```

```
## Chain 4:
                           0.255 seconds (Sampling)
## Chain 4:
                           0.838 seconds (Total)
## Chain 4:
fit2 <- stan(model_code = stan_model2, data = stan_data2_train)</pre>
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## using C compiler: 'Apple clang version 14.0.3 (clang-1403.0.22.14.1)'
## using SDK: 'MacOSX13.3.sdk'
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## #include <cmath>
            ^~~~~~
##
## 1 error generated.
## make: *** [foo.o] Error 1
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 7.1e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.71 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                        1 / 2000 [ 0%]
                                           (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                           (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                           (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                           (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                           (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                           (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                           (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                           (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                           (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.94 seconds (Warm-up)
## Chain 1:
                           0.59 seconds (Sampling)
## Chain 1:
                           1.53 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'anon model' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.2e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%]
```

(Warmup)

```
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.886 seconds (Warm-up)
## Chain 2:
                           0.617 seconds (Sampling)
## Chain 2:
                           1.503 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'anon model' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.3e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.917 seconds (Warm-up)
## Chain 3:
                           0.689 seconds (Sampling)
## Chain 3:
                           1.606 seconds (Total)
## Chain 3:
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.3e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
```

```
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.812 seconds (Warm-up)
## Chain 4:
                           0.6 seconds (Sampling)
## Chain 4:
                           1.412 seconds (Total)
## Chain 4:
posterior1 <- extract(fit1)</pre>
posterior2 <- extract(fit2)</pre>
predictions1 <- mean(posterior1$alpha) + mean(posterior1$beta_momHs) * test_data$momHs +
  mean(posterior1$beta_momIq) * test_data$momIq
predictions2 <- mean(posterior2$alpha) + mean(posterior2$beta_momHs) * test_data$momHs +</pre>
  mean(posterior2$beta_momIq) * test_data$momIq + mean(posterior2$beta_momAge) * test_data$momAge
rmse1 <- sqrt(mean((predictions1 - test_data$kidScore)^2))</pre>
rmse2 <- sqrt(mean((predictions2 - test_data$kidScore)^2))</pre>
cat("RMSE for Model 1: ", rmse1, "\n")
## RMSE for Model 1: 19.48856
cat("RMSE for Model 2: ", rmse2, "\n")
## RMSE for Model 2: 19.48584
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
RMSE(predictions1, test_data$kidScore)
## [1] 19.48856
RMSE(predictions2, test_data$kidScore)
## [1] 19.48584
```

By splitting the data into 300 training data and 134 test data for two models, we found that the root mean squared error for model 1 is 19.48887 and for model 2 is 19.48533.