LES SUITES GÉOMÉTRIQUES

1 - CARACTÉRISTIQUES D'UNE SUITE GÉOMÉTRIQUE

DÉFINITION

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est une **suite géométrique** s'il existe un nombre réel q tel que :

pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = q \times u_n$

Le réel q s'appelle la **raison** de la suite géométrique (u_n) .

REMARQUE

Pour démontrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ dont les termes sont non nuls est une suite géométrique, on pourra calculer le rapport $\frac{u_{n+1}}{u_n}$.

Si ce rapport est une constante q, on pourra affirmer que la suite est une suite géométrique de raison q.

EXEMPLE

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{3}{2^n}$.

Les termes de la suite sont tous strictement positifs et

$$\frac{u_{n+1}}{u_n} = \frac{3}{2^{n+1}} \times \frac{2^n}{3} = \frac{2^n}{2^{n+1}} = \frac{2^n}{2 \times 2^n} = \frac{1}{2}$$

La suite (u_n) est une suite géométrique de raison $\frac{1}{2}$

PROPRIÉTÉ

Pour n et k quelconques entiers naturels, si la suite (u_n) est géométrique de raison $q:u_n=u_k\times q^{n-k}$.

En particulier $u_n = u_0 \times q^n$.

PROPRIÉTÉ

Réciproquement, soient a et b deux nombres réels. La suite (u_n) définie par $u_n = a \times b^n$ suite est une suite géométrique de raison q = b et de premier terme $u_0 = a$.

DÉMONSTRATION

$$u_{n+1} = a \times b^{n+1} = a \times b^n \times b = u_n \times b$$

et

$$u_0 = a \times b^0 = a \times 1 = a$$

THÉORÈME

Soit (u_n) une suite géométrique de raison q>0 et de premier terme strictement positif :

- Si q >1, la suite (u_n) est strictement croissante
- Si 0 < q < 1, la suite (u_n) est strictement décroissante
- Si q=1, la suite (u_n) est constante

THÉORÈME

Si (u_n) et (v_n) sont deux suites géométriques de raison respectives q et q' alors le produit (w_n) de ces deux suites défini par :

$$w_n = u_n \times v_n$$

est une suite géométrique de raison $q'' = q \times q'$

2 - SOMME DES PUISSANCES SUCCESSIVES D'UN NOMBRE

THÉORÈME

Soit q un nombre réel différent de 1 :

$$1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$$

REMARQUE

Cette formule n'est pas valable pour q=1. Mais dans ce cas le calcul est immédiat car tous les termes sont égaux à 1.

EXEMPLE

Soit à calculer la somme $S = 1 + 2 + 4 + 8 + 16 + ... + 2^n$

Donc:

$$S = \frac{1 - 2^{n+1}}{1 - 2} = \frac{1 - 2^{n+1}}{-1} = 2^{n+1} - 1$$

3 - LIMITE DE LA SUITE $\left(Q^N\right)$ OÙ $Q\geqslant 0$

THÉORÈME

Soit q un nombre réel positif.

• Si q > 1: alors q^n est aussi grand que l'on veut dès que n est suffisamment grand. On dit que la suite (q^n) tend vers $+\infty$ et on écrit :

$$\lim_{n \to +\infty} q^n = +\infty \text{ (ou } \lim_{n \to +\infty} (q^n) = +\infty)$$

• Si $0 \le q < 1$: alors q^n est aussi proche de zéro que l'on veut dès que n est suffisamment grand. On dit que la suite (q^n) tend vers 0 et on écrit :

$$\lim_{n\to+\infty} q^n = 0 \text{ (ou } \lim_{n\to+\infty} (q^n) = 0)$$

REMARQUE

Pour q = 1 $q^n = 1^n = 1$; la suite est constante, égale à 1, et tend donc vers 1;

4 - SUITES ARITHMÉTICO-GÉOMÉTRIQUES

DÉFINITION

Une suite arithmético-géométrique u_n est définie par son premier terme u_0 et une relation de récurrence du type :

$$u_{n+1} = a \times u_n + b$$
 pour tout entier n

où a et b sont deux nombres réels.

REMARQUE

Attention: Ces suites ne sont **ni arithmétiques** (sauf si a = 1) **ni géométriques** (sauf si b = 0).

PROPRIÉTÉ

Il existe un nombre réel k tel que la suite v_n définie, pour tout entier n, par $v_n = u_n + k$ soit une suite géométrique de raison a.

REMARQUES

• En général, dans les exercices, le nombre k vous sera donné (et si ce n'est pas le cas on vous indiquera une démarche pour le trouver). On vous demandera de prouver que v_n est une suite géométrique de raison a.

- Puisque $v_n = u_n + k$, pour tout entier n, on a en particulier $v_0 = u_0 + k$ ce qui permet de connaître le premier terme de la suite v_n .
- $v_n = u_n + k$ signifie aussi que $u_n = v_n k$.

Donc une fois que l'on connaît v_n on peut trouver u_n (voir exemple ci-dessous)

EXEMPLE DÉTAILLÉ

Soit la suite (u_n) définie par $u_0 = 5$ et $u_{n+1} = 0, 6u_n + 4$.

- 1. Montrer que la suite (v_n) définie par $v_n = u_n 10$ est une suite géométrique.
- 2. En déduire l'expression de u_n en fonction de n.
- 1. **Montrons que la suite** (v_n) **est une suite géométrique** Pour montrer que la suite (v_n) est géométrique on va calculer v_{n+1} en fonction de v_n .

 $v_n = u_n - 10$ pour tout entier n donc :

$$v_{n+1} = u_{n+1} - 10$$

or on sait que

$$u_{n+1} = 0.6u_n + 4$$

donc

$$v_{n+1} = 0,6u_n + 4 - 10 = 0,6u_n - 6$$

Ici, une petite astuce consiste à mettre 0,6 en facteur (on peut également dire que $u_n = v_n + 10$ et remplacer u_n par $v_n + 10$)

$$v_{n+1} = 0.6u_n - 0.6 \times 10 = 0.6(u_n - 10) = 0.6v_n$$

On a bien une relation du type $v_{n+1} = q \times v_n$ avec q = 0.6 ce qui montre que **la suite** (v_n) **est une suite géométrique de raison** 0.6.

2. Expression de u_n en fonction de n Par ailleurs, $v_0 = u_0 - 10 = 5 - 10 = -5$

 (v_n) est une suite géométrique de premier terme $v_0=5$ et de raison q=0,6 donc pour tout entier n:

$$v_n = v_0 \times q^n = -5 \times 0,6^n$$

Comme $u_n = v_n + 10$, on obtient finalement :

$$u_n = -5 \times 0, 6^n + 10$$