

Einführung

Die Idee hinter Splitting-Verfahren ist, in günstigen Fällen, Teile einer gewöhnlichen Differentialgleichung einzeln exakt zu berechnen und diese Information zur Lösung des gesamten Systems zu nutzen. Eine grosse Sparte sind *Hamiltonsche Systeme*, zu denen die Schrödingergleichung und das Fermi-Pasta-Ulam Problem gehören.

Vorteil dieser Verfahren ist unter anderem eine aussergewöhnlich einfache Implementierung. Für die Analyse qualitativer Merkmale ist die gute Energieerhaltung zudem von Wichtigkeit.

Ausgangslage und Verfahren

Wir betrachten eine gewöhnliche Differentialgleichung in $\mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$, die sich in zwei Komponenten aufspalten lässt deren Flüsse man exakt berechnen kann. Gegeben ist demnach

$$\dot{y} = f^{[1]}(y) + f^{[2]}(y)$$

und der jeweilige exakte Fluss $\varphi_t^{[j]}$ der Gleichung $\dot{y} = f^{[j]}(y)$. Mit einer Schrittweite h ergibt sich daraus das Lie-Trotter Splitting-Verfahren

$$\Phi_h = \varphi_h^{[1]} \circ \varphi_h^{[2]}$$

und das dazu adjungiert Verfahren $\Phi_h^* = \varphi_h^{[2]} \circ \varphi_h^{[1]}$. Eine mögliche Variante ist, das Verfahren

$$\Psi_h = \varphi_{h/2}^{[1]} \circ \varphi_h^{[2]} \circ \varphi_{h/2}^{[1]}$$

zu betrachten, bekannt unter dem Namen Strang Splitting. Letzteres lässt sich allerdings zurückführen auf die Verknüpfung beider Lie Splitting-Verfahren:

$$\Psi_h = \varphi_{h/2}^{[1]} \circ \varphi_{h/2}^{[2]} \circ \varphi_{h/2}^{[2]} \circ \varphi_{h/2}^{[1]} = \Phi_{h/2} \circ \Phi_{h/2}^*.$$

Ordnung

Mittels Taylorentwicklung sehen wir dass Lie-Trotter erste Ordnung besitzt:

$$\Phi_h(y_0) = y_0 + h(f^{[1]}(y_0) + f^{[2]}(y_0)) + \mathcal{O}(h^2)$$

$$= (\varphi_h^{[1]} \circ \varphi_h^{[2]})(y_0) + \mathcal{O}(h^2).$$

Allgemein kann man Verfahren höherer Ordnung bilden mittels Verknüpfung adjungierter Verfahren und geeignet gewählten Koeffizienten $a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{R}$:

$$\Psi_h := \Phi_{b_m h} \circ \Phi_{a_m h}^* \circ \cdots \Phi_{b_1 h} \circ \Phi_{a_1 h}^*$$

mit $\sum (a_i + b_i) \stackrel{!}{=} 1$ und $\sum (a_i^{p+1} + (-1)^p b_i^{p+1}) \stackrel{!}{=} 0$. Sind letztere Bedingungen erfüllt, kann man zeigen dass, für Φ_h der Ordnung p, Ψ_h die Ordnung p + 1 haben wird. Hieraus folgt unter anderem, dass das *Strang Splitting* ein numerisches Verfahren der Ordnung 2 ist.

Weitere Möglichkeiten

Zum Einen lassen sich weitere Verfahren finden, unter der schwächeren Voraussetzung, dass nur einer der beiden exakten Flüsse berechenbar ist. Zum Beispiel besitzt

$$\Phi_h = \varphi_h^{[1]} \circ \Phi_h^{[2]}$$

ebenfalls erste Ordnung für einen Integrator $\Phi_h^{[2]}$ der Ordnung eins.

Eine andere naheliegende Überlegung ist, das Vektorfeld in mehr als zwei Terme aufzuteilen: $\dot{y} = f^{[1]}(y) + \cdots + f^{[N]}(y)$. Unter anderem lässt sich wieder die offensichtliche Methode erster Ordnung bilden:

$$\Phi_h = \varphi_h^{[1]} \circ \cdots \circ \varphi_h^{[N]}.$$

Erinnerung: Hamilton-Gleichungen

Wir betrachtem von jetzt an Gleichungen gegeben unter der Form

$$\dot{y} = J^{-1} \nabla H(y)$$

mit y=(p,q), der dazugehörigen Hamilton-Funktion $H:\mathbb{R}^{2d}\to\mathbb{R}$ und der Matrix $J=\begin{pmatrix} 0 & I_d \\ -I_d & 0 \end{pmatrix}=-J^{-1}=-J^T$. Voraussetzung ist demnach, dass H=T+P so dass sich die exakten Flüsse φ_t^T und φ_t^P des jeweiligen Hamilton-Systems explizit berechnen lassen.

Für den exakten Fluss φ_t^H der Hamiltonschen Gleichung gilt die Eigenschaft der Energieerhaltung:

$$H(\varphi_t^H(y)) = H(y).$$

Beispiel: Schrödingergleichung

Ein prominentes Beispiel aus der Physik ist die Schrödingergleichung

$$i\partial_t u(t,x) = -\Delta u(t,x) + V(x)u(t,x) + \lambda |u(t,x)|^2 u(t,x)$$

mit periodischen Randbediungungen $u(0,x) = u_0(x)$ und $t \in \mathbb{R}, x \in \mathbb{T}^d$, dessen Hamilton-Funktion folgende Form besitzt:

$$H(u,\bar{u}) = \int_{\mathbb{T}^d} (|\nabla u(x)|^2) dx + \int_{\mathbb{T}^d} (V(x)|u(x)|^2 + \frac{\lambda}{2}|u(x)|^4) dx =: P + T$$

wobei $P(u, \bar{u})$ die potentielle und $T(u, \bar{u})$ die kinetische Energie ist.

Backward Error Analysis

Um den Fehler des Lie-Trotter Verfahren über lange Zeit zu beschreiben sucht man eine Hamilton-Funktion H_h so dass das Verfahren die dazugehörige Gleichung an den Zeitpunkten nh exakt löst:

$$(\Phi_h)^n = (\varphi_h^T \circ \varphi_h^P)^n \stackrel{!}{=} \varphi_{nh}^{H_h}.$$

Wir werden uns allerdings damit zufrieden geben müssen, dass dieses H_h nur bis auf ein Fehler $\mathcal{O}(h^N)$ für ein beliebiges N die nötigen Bedingungen erfüllt und schreiben deshalb H_h^N . Im Folgenden bezeichne Φ_h das Lie-Trotter-Splitting:

Resultate der Fehlerrechnung

Satz: Seien $N \in \mathbb{N}$, M > 0 und h_0 fix und H = P + T wie oben. Dann existiert eine Konstante $C = C_{M,N,h_0}$ so dass für alle $h < h_0$ eine glatte Hamilton-Funktion H_h^N existiert die für jedes $y \in \mathbb{R}^{2d}$ mit $||y|| \leq M$ folgende Ungleichungen erfüllt:

$$|H(y) - H_h^N(y)| \le Ch$$

 $\|\varphi_h^{H_h^N}(y) - \Phi_h(y)\| \le Ch^{N+1}.$

Corollar: Seien $y_0 \in \mathbb{R}^{2d}$ und M, N > 0 gegeben. Definiere die Folge $y_{n+1} := \Phi_h(y_n)$ und verlange, dass $||y_n|| \leq M \ \forall n \geq 0$. Dann existiert ein h_0 so dass für alle $h < h_0$ folgendes gilt:

$$|H_h^N(y_n) - H_h^N(y_0)| \le Cnh^{N+1}$$

 $|H(y_n) - H(y_0)| \le ch$ für $n \le h^{-N}$

mit Konstanten C und c in Abhängigkeit von N und M.

Der Fehler des Strang-Splitting lässt sich auf ähnliche Art beschreiben. Da das Verfahren die Ordnung 2 besitzt, kann man in den beiden obigen Aussagen den Term h verbessern zu h^2 .

Numerisches Beispiel: Das FPU-Problem

Zur Veranschaulichung der Erhaltungseigenschaften des *Strang-Splitting* im Vergleich mit dem expliziten und symplektischen Euler-Verfahren betrachten wir das gestörte *Fermi-Pasta-Ulam* Problem, das durch die Hamiltonfunktion

$$H = \frac{1}{2m} \sum_{i=1}^{N-1} p_i^2 + \frac{\kappa}{2} \sum_{i=1}^{N-1} (q_{i+1} - q_i)^2 + \frac{\varepsilon \lambda}{s} \sum_{i=1}^{N-1} (q_{i+1} - q_i)^s$$

gegeben ist, mit $q_0 = q_N = 0$. Für die Implementierung werden die Konstanten N = 32, $m = \kappa = 1$, $\lambda = 1/4$, $\varepsilon = 1$ und s = 3 gewählt. Die Anfangsbedingungen lauten $q_i = \sqrt{2/N} \sin(i\pi/N)$ und $p_i = 0$. Das betrachtete Zeitintervall hat die Länge 200T mit $T = \pi/\sin(\pi/2N)$. Das Gleichungssystem wird in folgende Teile zerlegt:

$$\begin{array}{ll}
(1) \begin{cases} \dot{p}_i = -2q_i + q_{i+1} + q_{i-1} \\ \dot{q}_i = p_i \end{cases} & \text{und} \quad (2) \begin{cases} \dot{p}_i = \frac{1}{4}(q_{i+1} - q_i)^2 - \frac{1}{4}(q_i - q_{i-1})^2 \\ \dot{q}_i = 0. \end{cases}
\end{array}$$

Wir können (2) exakt lösen. Für (1) lautet der Fluss $\varphi_t(y_0) = e^{At} \cdot y_0$, wobei A die Matrix ist, die das linke Gleichungssystem beschreibt.

Da die Energie H(p,q) eine Erhaltungsgrösse ist, zeichnen wir die Evolution der Energie der numerischen Lösung in der Zeit. Das *Splitting-Verfahren* erhält die Energie besser als $St\"{o}rmer-Verlet$ bereits ab einem Zehnfachen der Schrittweite.

Bemerkung: Ein Nachteil ist, dass Splitting-Verfahren bei gewissen resonanten Schrittweiten die Energie stark verfälschen können. Das Problem kann teilweise umgangen werden, wenn man die Splitting-Verfahren mit geeigneten impliziten Integratoren kombiniert. Die zweite Grafik zeigt eine solche Situation bei dem vorgestellten Problem. Störmer-Verlet kann übrigens ebenfalls Resonanzprobleme aufweisen, hier dient die blaue Kurve aus der oberen Grafik lediglich als Vergleich.

Literatur

[1] E. Hairer, C. Lubich, G. Wanner: Geometric Numerical Integration

[2] B. Leimkuhler, S. Reich: Simulating Hamiltonian Dynamics

[3] E. Faou: Geometric numerical integration of semilinear Hamiltonian PDEs (http://www.irisa.fr/ipso/perso/faou/ETH/ETH.html)