Plane including point
$$P = (1, 2, -3)$$
and including line $L = \begin{cases} x = 1 \\ y = -2t \end{cases}$

Find \vec{n}

Find \vec{n}

Plane including point $P = (1, 2, -3)$
 $\begin{cases} x = 1 \\ y = -2t \end{cases}$
 $\begin{cases} x = 1 \\ y = -2t \end{cases}$

and $\begin{cases} x = 1 \\ y = -2t \end{cases}$

$$\vec{n} = \langle 0, -2, 1 \rangle \times \vec{QP}$$
 where $Q = (1, 0, 1)$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & 1 \end{vmatrix} = \langle 6, 0, 0 \rangle.$$

2) Plane
$$\pm t_0$$
 line $\frac{x}{3} = \frac{y+1}{2} = \frac{z+2}{-1}$.
 $\vec{n} = \vec{u}$ of line! line: $t = \frac{x}{3}$, $t = \frac{z+1}{2}$.
 $\Rightarrow (x = 3t)$

$$|\vec{n} = \langle 3, -1, -1 \rangle \iff \begin{cases} x = 3t \\ y = -1+t \\ z = -t-2 \end{cases}$$

3) Line
$$\perp$$
 to plane $3x - y + \frac{1}{2}z = 2$
Find $\vec{u} = \vec{n} = \left[\left\langle 3, -1, \frac{1}{2} \right\rangle \right]$