

[60pts]

Departamento de Matemática, Universidade de Aveiro

Cálculo II- C — Exame Final (V1)

11 de junho de 2024 Duração: **2h45**

N.º Mec.:			_ Noi	me:								
(Declaro q	ue desis	sto:)		N. folk	as suple	mentares:
Questão [Cotação]	1 [60pts]	2 [20pts]	3a [12pts]	3b [13pts]	4a [15pts]	4b [15pts]	5a [13pts]	5b [07pts]	6 [15pts]	7 [15pts]	8 [15pts]	Classificação (valores)
	-		sitar de	continu	ıar uma	respos	-	folha s	supleme	entar, in	dique, no	efetuados – o sítio assinalado
segu (i) re (ii) r (iii)	inte: esposta esposta ausênci	correta: errada: a de res	10 por -3 pon posta o	itos; tos; u respo	sta nula	a: 0 pon	tos.					cada resposta é a domínio de con-
	vergêr	ıcia é:										[{0}
	ab ab ur	es de Fou esolutan esolutan informen em abso	nente e nente m nente n lutamer	uniform as não nas não nte, nen	nemente uniform absolu n unifor	e. nemente tamente rmemen	e. e. ite.					ode dizer sobre o
	conjur É É	nto de m uma ret o plano	ível \mathcal{N}_k a de de definid	de f ? clive m o por z	$x = \frac{1}{2}.$ $= x + \frac{1}{2}$	2y - k.		ÉÉ	uma ret o plano	a de de definid	clive $m = 0$	$= -\frac{1}{2}.$ $= k e x + 2y = k.$
(d)	Se a d	${\cal D}$ um lerivada $b)=3,$	direcio	onal de	f no p	onto ($f:\mathcal{D}(a,b)$ seg	$ ightarrow \mathbb{R}$ \mathfrak{t} gundo \mathfrak{t}	ima fur o vetor $\frac{4}{\sqrt{2}}$	nção de $U =$	classe ($\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$	C^1 e $(a,b) \in \mathcal{D}$.) é igual a $\frac{1}{\sqrt{2}}$ e

		equação do plano tangente ao gráfico da função f no
	ponto $P = (0, 1, 2)$ é:	x - 3y + z = -5
	(f) Seja $f:\mathbb{R}^2 o \mathbb{R}$ a função definida por $f(x,y)$	$y) = x^2 - 2y^3$. Podemos afirmar que:
	$\int f$ não tem pontos críticos	(0,0) é maximizante local de f
	$(0,0)$ é minimizante local de f	(0,0) é maximizante local de $f(0,0)$ é ponto de sela de f
[20pts]	2. Considere a função f definida em \mathbb{R}^+ por $f(x)$ 3 da função f em torno do ponto $c=1$, calcuerro absoluto cometido nessa aproximação é	lle um valor aproximado de $\ln(2)$ e mostre que o

N ° Mec:	Nome:
11 111001	10110

3. Estude a natureza das seguintes séries, indicando, em caso de convergência, se se trata de convergência simples ou absoluta.

[12pts]

(a) $\sum_{n=1}^{+\infty} \frac{1}{n + \ln n}$

Continua na folha suplementar No

[13pts]

(b)
$$\sum_{n=1}^{+\infty} \left(-\frac{1}{2}\right)^n \frac{(n+2)!}{n^{n+1}}$$

1	Considere a série de potências	$\sum_{+\infty}$	$(x-1)^n$
4.	Considere à serie de potericias	$\sum_{n=1}^{\infty}$	$n3^n$

[15pts] (a) Determine o intervalo de convergência da série, I_c .

Continua na folha suplementar Nº

[15pts]

(b) Sendo $f(x) = \sum_{n=1}^{+\infty} \frac{(x-1)^n}{n3^n}$, para $x \in I_c$, determine, justificando, o valor de f'(2).

Continua na folha suplementar Nº

5.	Seja g a função	2π -periódica,	definida en	n $[-\pi,\pi]$ por	$g(x) = \pi($	$1 - 2x^2).$
----	-------------------	--------------------	-------------	--------------------	---------------	--------------

[13pts]

(a) Justifique que a série de Fourier associada a g é uma série da forma

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx), \quad a_n \in \mathbb{R}$$

e determine o valor de a_0 .

Continua na foll	a suplementar Nº
------------------	------------------

[07pts]

(b) Calcule, justificando, a soma da série de Fourier de g no ponto $x=-3\pi.$

Continua na folha suplementar Nol

[15pts]	6.	$ \text{Considere a função } f: \mathbb{R}^2 \to \mathbb{R} \text{ definida por } f(x,y) = \begin{cases} \frac{x^2 + y^2}{x^4 + y^2} & \text{se} x \neq 0 \\ \\ \sin(y) & \text{se} x = 0. \end{cases} $ Indique, justificando, se f é contínua no ponto $(0,0)$.
		Continua na folha suplementar N°
[15pts]	7.	Mostre que existe uma função real de variável real g definida num intervalo I contendo 0, tal que $g(0)=e,$ g é de classe C^1 e $\ln(x+g(x))=e^{xg(x)}$
		para todo o $x \in I$. Determine $g'(0)$.

<u> </u>	1 3			y) = 2x - 3y	

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva
$ \begin{array}{c} u^r u' \\ (r \neq -1) \end{array} $	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u' \sec u$	$ \ln \sec u + \operatorname{tg} u $
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot g u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$

Algumas fórmulas trigonométricas

$\sec x = \frac{1}{\cos x}$	$sen(x \pm y) = sen x cos y \pm cos x sen y$ $cos(x \pm y) = cos x cos y \mp sen x sen y$	$\cos^2 x = \frac{1 + \cos(2x)}{2}$	$1 + tg^2 x = \sec^2 x$
$\cos x$ $\csc x = \frac{1}{\sin x}$		$ sen^2 x = \frac{1 - \cos(2x)}{2} $	_