Data Analysis of the Pay Gap Between Genders

Matsik, Kelsey

Dataset Background and Description

Summary and Motivation for Choosing this Dataset

- I chose this dataset in order to examine the pay gap differences between males and females across several different professions. This data was collected through Glassdoor.
- 9 variables
- 1,000 observations

Description of Variables

- 1. *JobTitle*: Profession
- 2. Gender
- 3. Age
- 4. *PerfEval*: Performance Evaluation Score on a scale of 1-5 (1 being "Excellent" and 5 being "Poor")
- 5. *Degree*: Highest degree achieved
- 6. *Dept*: Department in which He/She Works
- 7. Seniority: Number of years worked
- 8. *BasePay*: Annual Base Pay in Dollars
- 9. *Bonus*: Annual Bonus Pay in Dollars
- 10. *TotalPay*: Annual Base Pay + Annual Bonus Pay in Dollars

Summary of Dataset

- Categorical Variables
 - JobTitle
 - Gender
 - o Dept
 - Education
 - PerfEval
- Numeric Variables
 - o Age
 - Seniority
 - BasePay
 - Bonus
 - o TotalPay

Data Preparation and Summary

Data Cleaning

- Clean dataset
 - o 0 rows containing nonresponse (NA) values
 - Good variable names
- PerfEval: Converted numeric values (1-5) to corresponding categorical value.
 - \circ 5 \rightarrow Excellent
 - \circ 4 \rightarrow Very Good
 - \circ 3 \rightarrow Good
 - \circ 2 \rightarrow Weak
 - \circ 1 \rightarrow Poor
- Education \rightarrow Degree
 - High School → Diploma
 - \circ College \rightarrow Bachelors
- Addition of TotalPay (BasePay+Bonus)
- *After* Data Cleaning:
 - o **10 variables** (5 categorical, 5 numeric)
 - o 1,000 observations

Summary Measures of Numeric Variables

Female Total Pay	Male Total Pay	Male Age	Female Age
Min. : 40828 1st Qu.: 80866 Median : 96571 Mean : 96417 3rd Qu.:112660	Min. : 41030 1st Qu.: 87792 Median :105100 Mean :104919 3rd Qu.:121617	Min. :18.00 1st Qu.:28.00 Median :40.00 Mean :41.01 3rd Qu.:55.00 Max. :65.00	Min. :18.00 1st Qu.:30.00 Median :42.00 Mean :41.83 3rd Qu.:54.00 Max. :65.00
Max. :168968	Max. :184010	Max. :65.00	Max. :65.00

Female Average Seniority 3.01

Male Average Seniority 2.93

Summary Measures of Categorical Variables

Total Counts of M	ales and Females	<u>Distribution o</u>	f Female Professions		
Female Male 468 532		Data Scientist 53	Driver 46	Financial Analyst 49	Graphic Designer 48
		IT	Manager M	Marketing Associate	Sales Associate
		50	18	107	43
		Software Engineer W	larehouse Associate		
Distribution of Ma	ale Professions	8	46		
Data Scientist	Driver	Financial Analyst	Graphic Designer	1	
54	45	58	3 50)	
IT	Manager	Marketing Associate	e Sales Associate	9	
46	72	11	L 51	Ĺ	
Software Engineer	Warehouse Associate				
101	44				

Summary Measures of Categorical Variables (ctd.)

What departments do males work in?

Administration	Engineering	Management	Operations	Sales
98	103	111	114	106

What departments do females work in?

Administration	Engineering	Management	Operations	Sales
95	89	87	96	101

<u>Highest Degree Achieved - Female</u>

Bachelors	Diploma	Masters	PhD
123	132	107	106

<u>Highest Degree Achieved - Male</u>

Bachelors	Diploma	Masters	PhD
118	133	149	132

Summary Measures of Categorical Variables (ctd.)

Female Performance Evaluation Scores

Excellent	Good	Poor Ver	y Good	Weak
88	88	106	96	90

Male Performance Evaluation Scores

Excellent	Good	Poor Very	Good	Weak
121	106	92	111	102

Data Visualization

Histogram - What is the distribution of ages in the dataset?

Highest Degree Achieved - Female vs. Male

Bar Graph - What is the highest degree achieved between males and females?

Performance Evaluation Score - Female vs. Male

Bar Graph - How were males and females ranked on their performance evaluations?

Score

Side-by-Side Box Plot - What is the difference in total pay based on performance evaluation scores between males and females?

Violin Plot - How does total pay vary across profession between males and females?

Total Pay Across Profession - Male vs. Female Female Male 160000 -JobTitle Data Scientist Driver Financial Analyst Total Pay Graphic Designer Manager Marketing Associate Sales Associate Software Engineer 80000 -Warehouse Associate 40000 -

Scatterplot - What is the relationship between total pay and age between males and females?

Word Cloud - What are the most common professions among males and females?

Males: Females:

Regression

Simple Linear Regression - Predicting Total Pay from Age

Scatterplot - Age vs. Total Pay

Building the SLR Model

Coefficients:
(Intercept) Age
62061.4 939.3

$$TotalPay = 62,061.40 + 939.3*Age$$

Interpretation in Context:

- Slope⇒ For every 1 year older the worker is, his/her total pay will increase by approximately \$939.30.
- Y-intercept ⇒ When the worker is 0 years old, they will earn \$62,061.40 as their total pay.

Simple Linear Regression - Predicting Total Pay from Age (ctd.)

Making a Prediction:

- \rightarrow Age (predictor) = 43
- ightharpoonup Total Pay = \$102,449.20
- ➤ If a worker is 43 years old, our model predicts that they will earn \$102,449.20 as their total pay.

Multiple Linear Regression - Predicting Bonus from Age, Base Pay, and Seniority

Building the MLR Model

1. "Kitchen sink" model

Coefficients:

(Intercept) BasePay Age Seniority 8.025e+03 1.208e-03 -5.877e+01 2.560e+02

2. Check for multicollinearity.

BasePay Age Seniority 2.441507 1.804566 1.669267

- a. All values $<5 \Rightarrow$ multicollinearity is not an issue.
- 3. "Kitchen sink" model = Best model

MLR Model:

Bonus = 8025 + 0.0012*BasePay - 58.77*Age + 256*Seniority

Multiple Linear Regression - Predicting Bonus from Age, Base Pay, and Seniority (ctd.)

Making a Prediction

- Predictor Variables
 - \circ Age = 37
 - \circ BasePay = \$89,792
 - \circ Seniority = 2.75
- Response Variable
 - \circ Bonus = \$6,663.08
- ➤ If a worker is 37 years old, earns \$89,792 as their base pay, and has 2.75 years of experience, our model predicts that they will earn approximately a \$6,663.08 bonus.

Logistic Regression - Predicting Gender from Performance Evaluation Score, Base Pay and Bonus

Using PayGap.Orig...

I used the original dataset (before cleaning) for my logistic regression analysis in order to use PerfEval (performance evaluation score) as a numeric variable.

Building the LR Model

- 1. Predictor Variables:
 - a. BasePay
 - b. Bonus
 - c. PerfEval
- 2. Coefficients:

(Intercept)	Bonus	BasePay	PerfEval
-9.152e-01	-1.818e-04	1.297e-05	3.294e-01

Predicting Gender

- 1. Sample Data:
 - a. BasePay=\$109,118
 - b. Bonus=\$10,578
 - c. PerfEval=4
- 2. Prediction (Male or Female) \Rightarrow Female

Bonus BasePay PerfEval

- 3. Check for multicollinearity. 3.896111 1.025748 3.845815
- 4. "Kitchen sink" model = best model

Classification

KNN - Predicting Performance Evaluation Score Based on Bonus and Seniority

Using KNN, what would be the performance evaluation score of a worker who has 2.89 years of experience and earns a \$7,342 bonus?

Visualize It: Scatterplot - Seniority vs. Bonus

In order to maximize accuracy, the model uses 9 neighbors to predict performance evaluation score (PerfEval).

Performance Evaulation Score Prediction: "Very Good"

Thank You!

References

https://www.datanovia.com/en/blog/the-a-z-of-rcolorbrewer-palette/

https://www.r-bloggers.com/2013/09/how-to-expand-color-palette-with-ggplot-and-rcolorbrewer/

https://ggplot2.tidyverse.org/reference/#plot-basics

https://r-graph-gallery.com/colors.html

https://www.statology.org/glm-fit-algorithm-did-not-converge/

https://www.performyard.com/articles/performance-review-ratings-scales-examples