Comp 341/441 - HCI

Spring Semester 2019 - Week 6

Dr Nick Hayward

Human memory - Recap

retrieval and transfer of new knowledge and skills

- not sufficient to simply add new knowledge to long-term memory
 - new knowledge needs to be easily retrieved in context
- retrieval of new skills essential for successful transfer of knowledge and experience
- knowledge successfully stored in long-term memory
 - no use unless we may successfully recall later, as required
- interface design necessarily needs to incorporate context to help retrieval
 - examples and practice exercises

Human memory - Recap

retrieval and mnemonics

- interface design necessarily needs to incorporate context to help retrieval
 - examples and practice exercises
 - simple mnemonics as a child
- mnemonics to help with easier recall
 - e.g. N.E.C.E.S.S.A.R.Y, SOHCAHTOA
- might ask users to apply their new knowledge relevant to actual scenarios
 - job learning and training scenarios, role play, troubleshooting exercises...
- often see this example within games or education applications
 - a skill is demonstrated and then the user is asked to practice
 - before moving on to the main application or game
- link or hook new knowledge to long-term memory

Video - Human memory

Sherlock Holmes' Mind Palace trick

Source - Critical Commons

Human memory

our brain forgets

- less frequently accessed chunks of information or skill processes
 - more likely to be forgotten
 - natural aspect of our brain's memory structure
- recency effect tends to protect daily routines...
- older facts more easily become hazy or unclear
- loss of long-term information is not universal
- highly developed motor & cognitive skills with sense of easy repetition
- some things are simply like riding a bike

Video - Human memory

Ten Second Tom

Ten Second Tom from 50 First Dates
Source - YouTube

- ensure interface is designed to reduce or eliminate need to memorise and recall
- interface elements etc within structure
- Don Norman outlines this concept as the notion of
 - knowledge in the world vs knowledge in the head
- eg: creating menus or lists of options for users is a good example of
 - · knowledge in the world
- user will be able to view the menu, read and recognise options, make selection
 - no need to recall or memorise related information beyond the basics...
- this same option on the command line requires memory of command...
 - user would need to recall knowledge in the head
 - increases potential for error and application issues

- we can guide users through sequenced tasks
 - provision of defined sequence of steps
 - guide user through the task flow step by step
- present forms and controls in a logical and sequential order
- might even consider a wizard style interface
 - user can navigate multiple pages with standard **next** & **previous** links
- trying to reduce the amount of navigation details required by the user
- thereby reducing the amount the user needs to memorise and recall

- interface design enhanced with recognisable icons and names
 - user can easily find interface elements as they scan a list, menu...
- icons can act as clarifying elements
 - icons should represent concrete and recognisable things
- goal is to make it easier for users to create hooks from working to long-term memory
- user should not have to memorise or struggle to recognise unfamiliar icons
 - defeats the point of using simpler graphical representations
- if you use abstract, original icons then add some accompanying text to help the user

- naming schemes & patterns in UIs are also important
 - helps users remember & recall information
 - arbitrary names are harder to recall than representative names
- non-representative naming schemes may add to user's cognitive burden
- command line interfaces violate this principle on a regular basis
 - consider Unix commands more & less

- good help system and search tool
 - allows a user to quickly check and recall lost or forgotten information
 - user can quickly reference documentation, check usage pattern or concept...
- in search and index systems
 - allow users to use variations, synonyms
 - user may not remember the exact term, query, spelling...
- try to avoid personalised terminology for standard UI elements, interaction concepts
- try to avoid using abbreviations or acronyms unless they are obvious or standard practice
 - eg: GUI, WYSIWYG are well known examples...
- be consistent in your UIs application of actions and methods
 - eg: an action should perform in the same manner from one context to another

Video

Progress Bars

TED: How the progress bar keeps you sane Source - YouTube

Cognitive Load

intro

- consider the physical act of interacting with a computer
 - using a mouse, keyboard, touchscreen...touching, swiping, shaking
- physical actions incur a cost of time and effort
 - varying degrees of effort, both physical and mental
- cognitive load refers to the mental taxation exerted on a user
 - whilst performing a given task
 - refers to amount of sustained attention and cognitive effort required per task
- the more complex the task, the higher the level of focused attention
 - cognitive load will be higher as a result
- good design strategy to try to reduce a user's cognitive load
- try reducing the amount a user has to think about
 - general concepts, points of interaction, basic navigation, interface elements...
- "Don't make me think, revisited: A common sense approach to web usability."
 - Steve Krug, 2014.

Cognitive Load

impact of interactions

Cognitive load may be impacted by the following interactions:

- scrolling, navigating, searching within an application
- choosing options such as menus, lists, forms...
- reading instructions, labels, titles...
- switching contexts (eg: switching between windows, tabs, pages...)
- switching visual attention
 - reading text, then referring to an image, and then back to the text
- memory recall for a specific ID, name, action, task sequence...
- simply waiting for the system or application to respond...
- recovering from a specific distraction
 - such as an interruption not relevant to the current task at hand...

Image - Xerox

big green button...

Source - Fuji Xerox Printers

Image - Cognitive Load

Weather.com

Source - Weather.com

Image - Cognitive Load

Yahoo Weather app

Source - Yahoo! Weather Mobile App

Cognitive Load

thinking

- reduce cognitive loads by awareness of types of user thinking an app requires
- for example:
 - working out the next step in a procedure
 - using working memory to help complete an ongoing task
 - recall of commands, facts, procedures from long-term memory
 - memorising commands, facts, procedures etc for long-term memory
 - referencing information from another source
 - making decisions or considering judgements
 - mental integration of information from disparate sources
 - o including research, reference, or simply general peripheral sources...

Video - Cognitive Load

users and interaction - second try...

Filter photographs based on metadata

Source - Adobe Lightroom Tutorials

Cognitive Load

forced, unnecessary thinking

- our goal is not to reduce thinking relative to our application
 - intellectual thinking different from forced, unnecessary thinking due to poor design...
- our app should promote and facilitate thinking, and record results where applicable
- our app should try to limit extraneous cognitive load for activities such as
 - active research activities
 - creative development and output
 - general problem solving and issue resolution
 - reading, note taking, and other general tasks...
- cognitive load reduced by an app's focus upon
 - the task in hand, relevancy of UI information and implementation, reduction in extraneous content...
- reduce interface induced thinking additional to the primary task
 - better contextual support and research

Image - Cognitive Load

distraction free

Source - Amazon Kindle Paperwhite

Image - Cognitive Load

app's Big Green Button

Source - Fuji Xerox Printers

Cognitive Load

quantify cognitive load

- interested in how we can quantify the cognitive load
 - required by a user for performing a given task
- better understanding of load issues within our application and interface
 - helps guide us in apportioning emphasis and control in design
- for a particular task we can compile a list of actions, steps...
 - estimate a score (% etc) which represents our understanding of required effort
 - total all of the action scores to assign an overall score for the effort required
 - evaluate different design options by comparing overall scores...
- KLM-GOMS model
 - Keystroke-Level Model for the Goals, Operators, Methods, and Selection Rules
 - Card et al. "The Psychology of Human-Computer Interaction." 1983.

KLM-GOMS Model

intro

- users divide goals into a series of tasks
 - each task requiring some initial thought and preparation
- preparation known as task acquisition time
 - can be very short for simple, routine tasks
 - may be much longer, perhaps a few minutes, for more creative, original tasks
- user will then continue with their chosen task
 - using a sequence of actions or operations
- total required time to complete the actions is known as
 task execution time
- total time required to complete task is the sum of
 - task acquisition time + task execution time
- modified models for mobile devices, such as phones...
 - eg: Keystroke-level model for advanced mobile phone interaction

KLM-GOMS Model

usage

Code	Operation	Time (in seconds)		
K	Key press & release (keyboard)	Best Typist (135 wpm) = 0.08		
		Good Typist (90 wpm) = 0.12		
		Avg. Skilled Typist (55 wpm) = 0.20		
		Poor Typist (40 wpm) = 0.28		
		Typing Random Letters = 0.50		
		Typing Complex Codes = 0.75		
		Worst Typist = 1.20		
P	Point mouse to an object on screen	1.10		
В	Button press or release (mouse)	0.10		
Н	Hand from keyboard to mouse & vice-versa	0.40		
М	Mental preparation (operation)	1.20		
T(n)	Type string of characters	n x K seconds		

wpm = words per minute

Source: Kieras, D. 1993. Wikipedia

KLM-GOMS Model

example

Example implementation - text search including mental operators

Action	KLM-GOMS Code	Time (in seconds)	
move mouse to search menu	H (hand to mouse)	0.40	
	M + P (search menu)	1.20 + 1.10	
select search menu	BB (select search menu)	2 * 0.10	
click on find text link	M + P (find text menu item)	1.20 + 1.10	
	BB (select menu item)	2 * 0.10	
	H (hand from mouse to keyboard)	0.40	
enter search term et	KK (type et characters)	2 * 0.20 (avg. typist)	
click the OK button	H (hand from keyboard to mouse)	0.40	
	M + P (OK button)	1.20 + 1.10	
	BB (click button)	2 * 0.10	
Total		9.10	

BB = double button press to simulate mouse click and release (0.20 seconds)

Reducing Cognitive Load

a few tips and tricks...

- consistent use of icons, labels, names, and general visual presentation
 - consistency should include design for multiple tasks as well
- clear navigation for process steps...wizards, paged results etc
- include visual cues and clues...saves users having to remember functionality
- avoid popups except for explicit intervention reasons...warnings, errors etc
- avoid redundancy in content and rendering
- relational material should be organised in close proximity to one another
- identify and remove unnecessary steps
- automate processes, steps where possible
- reduce delays and latency as much as possible...use progress updates, bars
- option for templates, tutorials for new documents in productivity apps etc
- video and audio tutorials often easier to follow and understand than text only
- repetitive user data entry can be avoided
 - app should not force a user to continually remember such data and information

Reducing Cognitive Load

flow

Concept of Flow by Mihaly Csikszentmihalyi

- user's creativity and productivity are high
 - performance of activity occurs naturally and unconsciously
- user experiences deep concentration and immersion in their current activity
 - user is effectively both alert and relatively relaxed
- living in the moment
 - sensation of being so engrossed in an activity a user is unaware of the passage of time
- balancing interest and challenge
- user is confident and exhibits a sense of control over their current situation
- user is working progressively towards achieving a specific goal
 - eg: in games this might be as simple as getting to the next level

TED 2004 - Flow, the secret to happiness

Video - Concept of Flow

working memory and the concept of flow

TED 2013 - Peter Doolittle: How your "working memory" makes sense of the world

References

- Card, S.K., Moran, T.P. and Newell, A. The psychology of human-computer interaction. Lawrence Erlbaum Associates. 1983.
- Holleis, P. et al. Keystroke-level model for advanced mobile phone interaction. CHI' 07. New York, USA. 2007.
- Kieras, D. Using the Keystroke-Level Model to Estimate Execution Times. 1993.
 http://courses.wccnet.edu/~jwithrow/docs/klm.pdf
- Krug, S. Don't make me think, revisited: A common sense approach to web usability. 3rd Edition. New Riders. 2014.
- Norman, D. The Design of Everyday Things. Basic Books. 2013.