

Datasheet

APM32F405xG APM32F407xExG

Arm® Cortex® -M4 core-based 32-bit MCU

Chip version: Version A

Manual version: V1.5

1 Product Characteristics

Core

- 32-bit Arm® Cortex®-M4 core with FPU
- Up to 168MHz working frequency

Memory and interface

- Flash: The capacity is up to 1MB
- SRAM: System (192KB) + backup (4KB)
- EMMC: Support CF card, SRAM, PSRAM, SDRAM, NOR and NAND memories

Clock

- HSECLK: 4~26MHz external crystal/ceramic oscillator supported
- LSECLK: 32.768KHz crystal/ceramic oscillator supported
- HSICLK: 16MHz RC oscillator calibrated by factory
- LSICLK: 28KHz RC oscillator supported
- PLL1: Phase locked loop; output frequency is configured by four parameters
- PLL2: Phase locked loop specially used to provide clock signals to I2S; output frequency is configured by three parameters

Reset and power management

- V_{DD} range: 1.8 \sim 3.6V
- V_{DDA} range: $1.8\sim3.6V$
- V_{BAT} range of backup domain power supply: 1.65V∼3.6V
- Power-on/power-down/brown-out reset (POR/PDR/BOR) supported
- Programmable power supply voltage detector (PVD) supported

Low-power mode

 Sleep, stop and standby modes supported

DMA

 Two DMA; each DMA has 8 data streams, 16 in total

Debugging interface

- JTAG
- SWD

I/O

- Up to 140 I/O
- All I/O can be mapped to external interrupt vector
- Up to 138 FT input I/O

Communication peripherals

- 4 USART, 2 UART, supporting ISO7816, LIN and IrDA functions
- 3 I2C, supporting SMBus/PMBus
- 3 SPI (2 reusable I2S)
- 2 CAN
- 3 USB OTG controllers
- 1 SDIO interface

Analog peripherals

- 3 12-bit ADCs
- 2 12-bit DACs

Timer

- 2 16-bit advanced timers TMR1/8 that can provide 7-channel PWM output, support dead zone generation and braking input functions
- 2 32-bit general-purpose timers TMR2/5, each with up to 4 independent channels to support input capture, output comparison, PWM, pulse count and other functions
- 8 16-bit general-purpose timers TMR/3/4/9/10/11/12/13/14, each with up to 2 independent channels to support input capture, output comparison, PWM, pulse count and other functions
- 2 16-bit basic timers TMR6/7
- 2 watchdog timers: one independent watchdog IWDT and one window watchdog WWDT
- 1 24-bit autodecrement SysTick Timer

RTC

- Support calendar function
- Alarm and regular wake-up from stop/standby mode

CRC computing unit

96-bit unique device ID

Contents

1	Product Characteristics	1
2	Product Information	6
3	Pin Information	7
3.1	Pin distribution	7
3.2	Pin function description	10
3.3	GPIO Multiplexing Function Configuration	28
4	Function Description	46
4.1	System architecture	47
4.1.1	System block diagram	47
4.1.2	Address mapping	48
4.1.3	Startup configuration	50
4.2	Core	50
4.3	Interrupt controller	50
4.3.1	Nested Vector Interrupt Controller (NVIC)	50
4.3.2	External Interrupt/Event Controller (EINT)	51
4.4	On-chip memory	51
4.4.1	Configurable external memory controller (EMMC)	51
4.4.2	LCD parallel interface (LCD)	51
4.5	Clock	52
4.5.1	Clock tree	52
4.5.2	Clock source	54
4.5.3	System clock	54
4.5.4	Bus clock	54
4.5.5	Phase locked loop	54
4.6	Power and power management	54
4.6.1	Power supply scheme	54
4.6.2	Voltage regulator	55
4.6.3	Power supply voltage monitor	55

4.7	Low-power mode	55
4.8	DMA	56
4.9	GPIO	56
4.10	Communication peripherals	56
4.10.1	USART/UART	56
4.10.2	12C	57
4.10.3	SPI/I2S	57
4.10.4	CAN	57
4.10.5	USB_OTG	57
4.10.6	Ethernet	57
4.10.7	SDIO	58
4.11	Analog peripherals	58
4.11.1	ADC	58
4.11.2	DAC	58
4.12	Timer	59
4.13	RTC	60
4.13.1	Backup domain	61
4.14	RNG	61
4.15	DCI	61
4.16	CRC	61
5	Electrical Characteristics	61
5.1	Test conditions of electrical characteristics	61
5.1.1	Maximum and minimum values	61
5.1.2	Typical value	61
5.1.3	Typical curve	61
5.1.4	Power supply scheme	62
5.1.5	Load capacitance	63
5.2	Test under general operating conditions	63
5.3	Absolute maximum ratings	64
5.3.1	Maximum temperature characteristics	64

6	Packago Information	20
	DAC	
	ADC	
	Analog peripherals	
	SPI peripheral characteristics	
	I2C peripheral characteristics	
5.10	Communication peripherals	
5.10	NRST pin characteristics	
5.9	I/O port characteristics	
5.8	Wake-up time in low-power mode	
	Backup Domain Power Consumption	
	Power consumption in standby mode	
	Power consumption in stondby mode	
	Power consumption in sleep mode	
	Power consumption in run mode	
5.7.1	Power consumption test environment	
5.7	Power consumption	
5.6.1	Test of Embedded Reset and Power Control Module Characteristics	
5.6	Reset and power management	
	PLL Characteristics	
	Characteristics of internal clock source	
5.5.1	Characteristics of external clock source	66
5.5	Clock	66
5.4.1	Flash characteristics	65
5.4	On-chip memory	65
5.3.5	Static latch-up (LU)	65
5.3.4	Electro-static discharge (ESD)	65
5.3.3	Maximum rated current characteristics	64
5.3.2	Maximum rated voltage characteristics	64

10	Version History	106
9	Commonly Used Function Module Denomination	. 105
8	Ordering Information	. 103
7.2	Tray packaging	. 101
7.1	Reel packaging	. 100
7	Packaging Information	. 100
6.4	LQFP64 package information	97
6.3	LQFP100 package information	94
6.2	LQFP144 package information	91
6.1	LQFP176 package information	89

2 Product Information

See the following table for APM32F405xG 407xExG product functions and peripheral configuration.

Table 1 Functions and Peripherals of APM32F405xG 407xExG Series Chips

Pr	roduct					2F407					APM32F40	5
N	RET6	RGTx	VET6	VGTx	ZET6	ZGT6	IET6	IGT6	RGT6	VGT6	ZGT6	
Package		LQF	P64	LQFI	P100	LQFI	P144	LQFP	176	LQFP64	LQFP100	LQFP144
Core and maximu	Core and maximum working frequency		Arm® 32-bit Cortex®-M4@168MHz							I		
Worki	ng voltage		1.8~3.6V									
Fla	Flash(KB)		512 1024 512 1024 512 1024 512 1024				1024					
System + ba	System + backup SRAM(KB)		192+4									
	SMC	()				1			0		1
]	DMC			C)			1			0	
G	SPIOs	5	51	8	2	1′	14	14	0	51	82	114
	USART/UART							4/2				
	SPI/I2S		3/2									
	I2C							3				
Communication	OTG_FS							1				
interface	OTG_HS		2									
	CAN							2				
	Ethernet	(0				1				0	
	SDIO		1									
	16-bit advanced		2									
	32-bit general							2				
Timer	16-bit general							8				
Timer	16-bit basic							2				
	System tick timer							1				
	Watchdog							2				
Real-	time clock							1				
	DCI	(0				1				0	
ļ ļ	RNG							1				
	Unit							3				
12-bit ADC	External channel		1	3			2	21			13	21
	Internal channel							3				
12 位 DAC	Unit							2				
.2 2.510	Channel							2				
Operatino	g temperature	Ambient temperature: -40°C to 85°C/-40℃ to 105℃										
op a same			Junction temperature: -40℃ to 105℃/-40℃ to 125℃									

Note: When x=6, the ambient temperature: -40°C to 85°C, the junction temperature: -40°C to 105°C;

When x=7, the ambient temperature: -40°C to 105°C, the junction temperature: -40°C to 125°C;

3 Pin Information

3.1 Pin distribution

Figure 1 Distribution Diagram of APM32F407xExG Series LQFP176 Pins

Figure 2 Distribution Diagram of APM32F405xG 407xExG Series LQFP144 Pins

Figure 3 Distribution Diagram of APM32F405xG 407xExG Series LQFP100 Pins

Figure 4 Distribution Diagram of APM32F405xG 407xExG Series LQFP64 Pins

3.2 Pin function description

Table 2 Legends/Abbreviations Used in Output Pin Table

	Name	Abbreviation	Definition			
	Din nama	Unless otherwi	se specified in parentheses below the pin name, the pin functions			
	Pin name	duri	ng and after reset are the same as the actual pin name			
		Р	Power pin			
	Pin type	I	Only input pin			
		I/O	I/O pin			
		5T	FT I/O			
		STDA	3.3V standard I/O, directly connected to ADC			
	I/O structure	STD	3.3V standard I/O			
		В	Dedicated Boot0 pin			
		RST	Bidirectional reset pin with built-in pull-up resistor			
	Notes	Unless otherwi	se specified in the notes, all I/O is set as floating input during and			
	Notes	after reset				
Pin	Default multiplexing	Function directly selected/enabled through peripheral register				
function	function					

Name	Abbreviation	Definition
Redefining function	5	Select this function through AFIO remapping register

Table 3 Description of APM32F405xG 407xExG by Pin Number

		'	11011 01711 111021 400AC	,				
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			TRACECK, SMC_A23,					
PE2	I/O	5T	ETH_MII_TXD3,	-	-	1	1	1
			EVENTOUT					
DE0			TRACEDO,					0
PE3	I/O	5T	SMC_A19,	-	-	2	2	2
			EVENTOUT TRACED4					
			TRACED1,					
PE4	I/O	5T	SMC_A20,	-	-	3	3	3
			DCI_D4,					
			EVENTOUT					
			TRACED2,					
			SMC_A21,					
PE5	I/O	5T	TMR9_CH1,	-	-	4	4	4
			DCI_D6,					
			EVENTOUT					
			TRACED3,					
			SMC_A22,					
PE6	I/O	5T	TMR9_CH2,	-	-	5	5	5
			DCI_D7,					
			EVENTOUT					
VBAT	Р	-	-	-	1	6	6	6
			EVENTOUT	RTC_TAMP1,				
PI8	I/O	5T	EVENTOUT,	RTC_TAMP2,	-	-	-	7
			DMC_CAS	RTC_TS				
				RTC_OUT,				
PC13	I/O	5T	EVENTOUT	RTC_TAMP1,	2	7	7	8
				RTC_TS				
PC14- OSC32_IN (PC14)	I/O	5T	EVENTOUT	OSC32_IN	3	8	8	9
PC15- OSC32_OUT (PC15)	I/O	5T	EVENTOUT	OSC32_OUT	4	9	9	10
			CAN1_RX,					
PI9	I/O	5T	EVENTOUT,	-	_	-	-	11
			DMC_RAS					
PI10	I/O	5T	ETH_MII_RX_ER,	-	-	-	-	12

							SEMICONDO	
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			EVENTOUT,					
			DMC_CS					
			OTG_HS_ULPI_DIR,					
PI11	I/O	5T	EVENTOUT,	-	-	-	-	13
			DMC_BA					
VSS	Р	-	-	-	-	-	-	14
VDD	Р	-	-	-	-	-	-	15
			SMC_A0,					
DEO	1/0	ET.	DMC_A10,				10	16
PF0	I/O	5T	I2C2_SDA,	-	-	-	10	16
			EVENTOUT					
			SMC_A1,					
DE4	1/0	6 T	DMC_A0,				44	47
PF1	I/O	5T	I2C2_SCL,	-	-	-	11	17
			EVENTOUT					
			SMC_A2,					
DEO	1/0	5.7	DMC_A1,				12	40
PF2	I/O	5T	I2C2_SMBAI,	-	-	-		18
			EVENTOUT					
			SMC_A3,					
PF3	I/O	5T	DMC_A2,	ADC3_IN9	-	-	13	19
			EVENTOUT					
			SMC_A4,					
PF4	I/O	5T	DMC_A3,	ADC3_IN14	-	-	14	20
			EVENTOUT					
DEF	1/0	C.T.	SMC_A5,	ADC2 IN45			45	04
PF5	I/O	5T	EVENTOUT	ADC3_IN15	-	-	15	21
VSS	Р	-	-	-	-	10	16	22
VDD	Р	-	-	-	-	11	17	23
			TMR10_CH1,					
DEC	1/0		SMC_NIORD,	ADOS INIA			40	0.4
PF6	I/O	5T	DMC_A4,	ADC3_IN4	-	-	18	24
			EVENTOUT					
			TMR11_CH1,					
DE7	1/0	ET	SMC_NREG,	ADOS INC			40	0.5
PF7	I/O	5T	DMC_A5,	ADC3_IN5	-	-	19	25
			EVENTOUT					
PF8	I/O	5T	TMR13_CH1,	VDC3 ING			20	26
FF0 	1/0	31	SMC_NIOWR,	ADC3_IN6		-	20	26

Nome								
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			DMC_A6, EVENTOUT					
PF9	I/O	5T	TMR14_CH1, SMC_CD, DMC_A7 EVENTOUT	ADC3_IN7	-	-	21	27
PF10	I/O	5T	SMC_INTR, DMC_A8 EVENTOUT	ADC3_IN8	-	-	22	28
PH0-OSC_IN (PH0)	I/O	5T	EVENTOUT	OSC_IN	5	12	23	29
PH1-OSC_OUT (PH1)	I/O	5T	EVENTOUT	OSC_OUT	6	13	24	30
NRST	I/O	RST	1	-	7	14	25	31
PC0	I/O	5T	OTG_HS_ULPI_STP, EVENTOUT	ADC123_IN10	8	15	26	32
PC1	I/O	5T	ETH_MDC, EVENTOUT	ADC123_IN11	9	16	27	33
PC2	I/O	5T	SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, I2S2ext_SD, EVENTOUT	ADC123_IN12	10	17	28	34
PC3	I/O	5T	SPI2_MOSI, I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, EVENTOUT	ADC123_IN13	11	18	29	35
VDD	Р	-	-	-	-	19	30	36
VSSA	Р	-	-	-	12	20	31	37
VREF+	Р	-	-	-	-	21	32	38
VDDA	Р	-	-	-	13	22	33	39
PA0-WKUP (PA0)	I/O	5T	USART2_CTS, UART4_TX, ETH_MII_CRS, TMR2_CH1_ETR, TMR5_CH1, TMR8_ETR, EVENTOUT	WKUP, ADC123_IN0	14	23	34	40

						I	SEMICONDU	
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
PA1	I/O	5T	USART2_RTS, UART4_RX, ETH_RMII_REF_CLK, ETH_MII_RX_CLK, TMR5_CH2, TMR2_CH2, EVENTOUT	ADC123_IN1	15	24	35	41
PA2	I/O	5T	USART2_TX, TMR5_CH3, TMR9_CH1, TMR2_CH3, ETH_MDIO, EVENTOUT	ADC123_IN2	16	25	36	42
PH2	I/O	5T	ETH_MII_CRS, EVENTOUT	-	-	-	-	43
PH3	I/O	5T	ETH_MII_COL, EVENTOUT, DMC_A9	-	-	-	-	44
PH4	I/O	5T	I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT	-	-	-	ı	45
PH5	I/O	5T	I2C2_SDA, EVENTOUT DMC_CKE	-	-	-	-	46
PA3	I/O	5T	USART2_RX, TMR5_CH4, TMR9_CH2, TMR2_CH4, OTG_HS_ULPI_D0, ETH_MII_COL, EVENTOUT,	ADC123_IN3	17	26	37	47
VSS	Р	-	-	-	18	27	38	-
BYPASS_REG	I	5T	-	-	-	-	-	48
VDD	Р	-	-	-	19	28	39	49
PA4	I/O	STDA	SPI1_NSS, SPI3_NSS, USART2_CK, DCI_HSYNC, OTG_HS_SOF, I2S3_WS,	DAC_OUT1, ADC12_IN4	20	29	40	50

		1						
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			EVENTOUT					
PA5	I/O	STDA	SPI1_SCK, OTG_HS_ULPI_CK, TMR2_CH1_ETR, TMR8_CH1N, EVENTOUT	DAC_OUT2, ADC12_IN5	21	30	41	51
PA6	1/0	5T	SPI1_MISO, TMR8_BKIN, TMR13_CH1, DCI_PIXCLK, TMR3_CH1, TMR1_BKIN, EVENTOUT	ADC12_IN6	22	31	42	52
PA7	1/0	5T	SPI1_MOSI, TMR8_CH1N, TMR14_CH1, TMR3_CH2, ETH_MII_RX_DV, TMR1_CH1N, ETH_RMII_CRS_DV, EVENTOUT	ADC12_IN7	23	32	43	53
PC4	I/O	5T	ETH_RMII_RX_D0, ETH_MII_RX_D0, EVENTOUT	ADC12_IN14	24	33	44	54
PC5	I/O	5T	ETH_RMII_RX_D1, ETH_MII_RX_D1, EVENTOUT	ADC12_IN15	25	34	45	55
PB0	I/O	5T	TMR3_CH3 TMR8_CH2N, OTG_HS_ULPI_D1, ETH_MII_RXD2, TMR1_CH2N, EVENTOUT	ADC12_IN8	26	35	46	56
PB1	I/O	5T	TMR3_CH4 TMR8_CH3N, OTG_HS_ULPI_D2, ETH_MII_RXD3, TMR1_CH3N, EVENTOUT	ADC12_IN9	27	36	47	57
PB2-BOOT1	I/O	5T	EVENTOUT	-	28	37	48	58

	I							
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
(PB2)								
PF11	I/O	5T	DCI_D12, EVENTOUT, DMC_UDQM	-	-	-	49	59
PF12	I/O	5T	SMC_A6, EVENTOUT	-	-	-	50	60
VSS	Р	-	-	-	-	-	51	61
VDD	Р	_	-	_	_	_	52	62
PF13	I/O	5T	SMC_A7, EVENTOUT	-	-	-	53	63
PF14	I/O	5T	SMC_A8, EVENTOUT	-	-	-	54	64
PF15	I/O	5T	SMC_A9, EVENTOUT	-	-	-	55	65
PG0	I/O	5T	SMC_A10, EVENTOUT	-	-	-	56	66
PG1	I/O	5T	SMC_A11, DMC_CK, EVENTOUT	-	-	-	57	67
PE7	I/O	5T	SMC_D4, TMR1_ETR, EVENTOUT	-	-	38	58	68
PE8	I/O	5T	SMC_D5, TMR1_CH1N, EVENTOUT	-	-	39	59	69
PE9	I/O	5T	SMC_D6, TMR1_CH1, EVENTOUT	-	-	40	60	70
VSS	Р	-	-	-	-	-	61	71
VDD	Р	-	-	-	-	-	62	72
PE10	I/O	5T	SMC_D7, TMR1_CH2N, EVENTOUT	-	-	41	63	73
PE11	I/O	5T	SMC_D8, TMR1_CH2, EVENTOUT	-	-	42	64	74
PE12	I/O	5T	SMC_D9, TMR1_CH3N, EVENTOUT	-	-	43	65	75

		1					SEMICONDUCTO	
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
PE13	I/O	5T	SMC_D10, TMR1_CH3, EVENTOUT	-	-	44	66	76
PE14	I/O	5T	SMC_D11, TMR1_CH4, EVENTOUT	-	-	45	67	77
PE15	I/O	5T	SMC_D12, TMR1_BKIN, EVENTOUT	-	-	46	68	78
PB10	I/O	5T	SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_TX, OTG_HS_ULPI_D3, ETH_MII_RX_ER, TMR2_CH3, EVENTOUT	-	29	47	69	79
PB11	I/O	5T	I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_RMII_TX_EN, ETH_MII_TX_EN, TMR2_CH4, EVENTOUT	-	30	48	70	80
VCAP_1	Р	-	-	-	31	49	71	81
VDD	Р	-	-	-	32	50	72	82
PH6	I/O	5T	I2C2_SMBAI, TMR12_CH1, ETH_MII_RXD2, EVENTOUT	-	-	-	-	83
PH7	I/O	5T	I2C3_SCL, ETH_MII_RXD3, EVENTOUT	-	-	-	-	84
PH8	I/O	5T	I2C3_SDA, DCI_HSYNC, EVENTOUT, DMC_DQ8	-	-	-	-	85
PH9	I/O	5T	I2C3_SMBAI, TMR12_CH2, DCI_D0,	-	-	-	-	86

	1			T	1	1	SEMICONDU	
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			EVENTOUT					
PH10	I/O	5T	TMR5_CH1, DCI_D1, EVENTOUT, DMC_DQ9	-	-	-	-	87
PH11	I/O	5T	TMR5_CH2, DCI_D2, EVENTOUT	-	-	-	-	88
PH12	I/O	5T	TMR5_CH3, DCI_D3, EVENTOUT	-	-	-	-	89
VSS	Р	-	-	-	-	-	-	90
VDD	Р	-		-	-	-	-	91
PB12	I/O	5T	SPI2_NSS, I2S2_WS, I2C2_SMBAI, USART3_CK, TMR1_BKIN, CAN2_RX, OTG_HS_ULPI_D5, ETH_RMII_TXD0, OTG_HS_ID, EVENTOUT	-	33	51	73	92
PB13	I/O	5T	SPI2_SCK, I2S2_CK, USART3_CTS, TMR1_CH1N, CAN2_TX, OTG_HS_ULPI_D6, ETH_RMII_TXD1, ETH_MII_TXD1, EVENTOUT	OTG_HS_VBUS	34	52	74	93
PB14	I/O	5T	SPI2_MISO, TMR1_CH2N, TMR12_CH1, OTG_HS_DM, USART3_RTS, TMR8_CH2N, I2S2ext_SD,	-	35	53	75	94

Name (Function after	Туре	Structure	Multiplexing	Additional	LQFP	LQFP	LQFP	LQFP
reset)	Турс	Otractare	function	function	64	100	144	176
10001)			EVENTOUT		1			
			SPI2_MOSI,					
			I2S2_SD,					
			TMR1_CH3N,					
PB15	I/O	5T	TMR8_CH3N	RTC_REFIN	36	54	76	95
			TMR12_CH2,					
			OTG_HS_DP,					
			EVENTOUT					
			SMC_D13,					
PD8	I/O	5T	USART3_TX,	-	-	55	77	96
			EVENTOUT					
			SMC_D14,					
PD9	I/O	5T	USART3_RX,	-	-	56	78	97
			EVENTOUT					
			SMC_D15,					
PD10	I/O	5T	DMC_DQ10	-	_	57	79	98
1 010	1/0	31	USART3_CK,			37	7.5	90
			EVENTOUT					
			SMC_CLE,					
PD11	I/O	5T	SMC_A16,			58	80	99
PUII	1/0	1/0 51	USART3_CTS,	-	-	30		99
			EVENTOUT					
			SMC_ALE,					
			SMC_A17,					
DD40	1/0	- T	DMC_DQ11,			50	0.4	400
PD12	I/O	5T	TMR4_CH1,	-	_	59	81	100
			USART3_RTS,					
			EVENTOUT					
			SMC_A18,					
DD42	1/0	- T	DMC_DQ12			60	00	404
PD13	I/O	5T	TMR4_CH2,	-	_	60	82	101
			EVENTOUT					
VSS	Р	-	-	-	-	-	83	102
VDD	Р	-	-	-	-	-	84	103
			SMC_D0,					
5544	110		DMC_DQ13,			0.4	0.5	40.1
PD14	I/O	O 5T	TMR4_CH3,	3,	_	61	85	104
			EVENTOUT					
PD15	I/O	5T	SMC_D1,	-	-	62	86	105
·		•	•		•	•		

	SEMICONDUCTOR							
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			DMC_DQ14,					
			TMR4_CH4,					
			EVENTOUT					
			SMC_A12,					
PG2	I/O	5T	DMC_DQ15,	-	-	-	87	106
			EVENTOUT					
			SMC_A13,					
PG3	I/O	5T	DMC_DQ0,	-	-	-	88	107
			EVENTOUT					
			SMC_A14,					
PG4	I/O	5T	DMC_DQ1,	-	-	-	89	108
			EVENTOUT					
			SMC_A15,					
PG5	I/O	5T	DMC_DQ2,	-	-	-	90	109
			EVENTOUT					
			SMC_INT2,					
PG6	I/O	5T	DMC_DQ3	-	-	-	91	110
			EVENTOUT					
			SMC_INT3,					
PG7	I/O	5T	USART6_CK,	-	-	-	92	111
			EVENTOUT					
			DMC_DQ4					
PG8	I/O	5T	USART6_RTS,	_	_	_	93	112
1 60	1/0	01	ETH_PPS_OUT,				30	112
			EVENTOUT					
VSS	Р	-	-	-	-	-	94	113
VDD	Р	-	-	-	-	-	95	114
			I2S2_MCK,					
			TMR8_CH1,					
			SDIO_D6,					
PC6	I/O	5T	USART6_TX,	-	37	63	96	115
			DCI_D0,					
			TMR3_CH1,					
			EVENTOUT					
			I2S3_MCK,					
			TMR8_CH2,					
507	1/0		SDIO_D7,		00	0.4	07	440
PC7	I/O	5T	USART6_RX,	-	38	64	97	116
			DCI_D1,					
			TMR3_CH2,					

SEMICOI							I	I
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			EVENTOUT					
PC8	I/O	5T	TMR8_CH3, SDIO_D0, TMR3_CH3, USART6_CK, DCI_D2, EVENTOUT	-	39	65	98	117
PC9	I/O	5T	I2S_CKIN, MCO2, TMR8_CH4, SDIO_D1, I2C3_SDA, DCI_D3, TMR3_CH4, EVENTOUT	-	40	66	99	118
PA8	I/O	5T	USART1_CK, TMR1_CH1, MCO, I2C3_SCL, OTG_FS_SOF, EVENTOUT	-	41	67	100	119
PA9	I/O	5T	USART1_TX, TMR1_CH2, I2C3_SMBAI, DCI_D0, EVENTOUT	OTG_FS_VBUS	42	68	101	120
PA10	I/O	5T	USART1_RX, TMR1_CH3, OTG_FS_ID, DCI_D1, EVENTOUT	-	43	69	102	121
PA11	I/O	5T	USART1_CTS, CAN1_RX, TMR1_CH4, OTG_FS_DM, EVENTOUT	-	44	70	103	122
PA12	I/O	5T	USART1_RTS, CAN1_TX, TMR1_ETR, OTG_FS_DP,	-	45	71	104	123

Name Function after reset Type Structure Function Function after reset Type Structure Function Functi									
PA13		Туре	Structure						LQFP 176
VCAP_2				EVENTOUT					
VSS		I/O	5T		PA13	46	72	105	124
VDD	VCAP_2	Р	-	-	-	47	73	106	125
PH13	VSS	Р	-	-	-	-	74	107	126
PH13	VDD	Р	-	-	-	48	75	108	127
PH14	PH13	I/O	5T	CAN1_TX, EVENTOUT,	-	-	-	-	128
PH15 I/O 5T DCI_D11, EVENTOUT, DMC_DQ6 PI0 I/O 5T I2S2_WS, DCI_D13, EVENTOUT PI1 I/O 5T SPI2_SCK, I2S2_CK, DCI_D8, EVENTOUT PI2 I/O 5T DCI_D9, 133 PI3 I/O 5T DCI_D9, 133 PI3 I/O 5T DCI_D9, 133 PI3 I/O 5T DCI_D9, DCI_D10, EVENTOUT PI3 I/O 5T DCI_D10, EVENTOUT PI3 I/O 5T DCI_D10, EVENTOUT, DMC_DQ7 VSS P 135	PH14	I/O	5T	DCI_D4,	-	-	-	-	129
PIO I/O 5T SPI2_NSS, - 131	PH15	I/O	5T	DCI_D11, EVENTOUT,	-	-	-	-	130
PI1	PI0	I/O	5T	SPI2_NSS, I2S2_WS, DCI_D13,	-	-	-	-	131
PI2 I/O 5T DCI_D9, 133 I2S2ext_SD, EVENTOUT PI3 I/O 5T TMR8_ETR, SPI2_MOSI, I2S2_SD, DCI_D10, EVENTOUT, DMC_DQ7 VSS P 135	Pl1	I/O	5T	I2S2_CK, DCI_D8,	-	-	-	-	132
PI3 I/O 5T SPI2_MOSI,	PI2	I/O	5T	SPI2_MISO, DCI_D9, I2S2ext_SD,	-	-	-	-	133
VSS P 135	PI3	I/O	5T	SPI2_MOSI, I2S2_SD, DCI_D10, EVENTOUT,	-	-	-	-	134
VDD P 136	VSS	Р	-	-	-	-	-	-	135
	VDD	Р	-	-	-	-	-	-	136

						1		
Name (Function after	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
reset)			idiletion	idiletion	04	100	1	170
PA14	1/0	C.T.	JTCK-SWCLK,		40	70	100	107
(JTCK/SWCLK)	I/O	5T	EVENTOUT	-	49	76	109	137
			JTDI,					
			SPI3_NSS,					
PA15	I/O	ET.	12S3_WS,		50	77	110	120
(JTDI)	1/0	5T	TMR2_CH1_ETR,	-	50	77	110	138
			SPI1_NSS,					
			EVENTOUT					
			SPI3_SCK,					
			I2S3_CK,					
			UART4_TX,					
PC10	I/O	5T	SDIO_D2,	-	51	78	111	139
			DCI_D8,					
			USART3_TX,					
			EVENTOUT					
			UART4_RX,					
			SPI3_MISO,					
			SDIO_D3,					
PC11	I/O	5T	DCI_D4,	-	52	79	112	140
			USART3_RX,					
			I2S3ext_SD,					
			EVENTOUT					
			UART5_TX,					
			SDIO_CK,					
			DCI_D9,					
PC12	I/O	5T	SPI3_MOSI,	-	53	80	113	141
			I2S3_SD,					
			USART3_CK,					
			EVENTOUT					
			SMC_D2,					
PD0	I/O	5T	CAN1_RX,	-	-	81	114	142
			EVENTOUT					
			SMC_D3,					
PD1	I/O	5T	CAN1_TX,	-	-	82	115	143
			EVENTOUT					
			TMR3_ETR,					
			UART5_RX,					
PD2	I/O	5T	SDIO_CMD,	-	54	83	116	144
			DCI_D11,					
			EVENTOUT					

	SEMICONDUCTOR							
Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
PD3	I/O	5T	SMC_CLK, USART2_CTS, EVENTOUT	-	-	84	117	145
PD4	I/O	5T	SMC_NOE, USART2_RTS, EVENTOUT	-	-	85	118	146
PD5	I/O	5T	SMC_NWE, USART2_TX, EVENTOUT	-	-	86	119	147
VSS	Р	-	-	-	-	-	120	148
VDD	Р	-	-	-	-	-	121	149
PD6	I/O	5T	SMC_NWAIT, USART2_RX, EVENTOUT	-	-	87	122	150
PD7	I/O	5T	SMC_NE1, SMC_NCE2, USART2_CK, EVENTOUT	-	-	88	123	151
PG9	I/O	5T	SMC_NE2, SMC_NCE3, USART6_RX, EVENTOUT	-	-	-	124	152
PG10	I/O	5T	SMC_NCE4_1, SMC_NE3, EVENTOUT	-	-	-	125	153
PG11	I/O	5T	SMC_NCE4_2, ETH_MII_TX_EN, ETH_RMII_TX_EN, EVENTOUT	-	-	-	126	154
PG12	I/O	5T	SMC_NE4, USART6_RTS, EVENTOUT	-	-	-	127	155
PG13	I/O	5T	SMC_A24, USART6_CTS, ETH_MII_TXD0, ETH_RMII_TXD0, EVENTOUT	-	-	-	128	156
PG14	I/O	5T	SMC_A25, USART6_TX, ETH_MII_TXD1,	-	-	-	129	157

Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176
			ETH_RMII_TXD1,					
			EVENTOUT					
VSS	Р	-	-	-	-	-	130	158
VDD	Р	-	-	-	-	-	131	159
			DMC_LDQM,					
PG15	I/O	5T	USART6_CTS,	_	_	_	132	160
1 013	1/0	31	DCI_D13,	-	_	_	102	100
			EVENTOUT					
			JTDO,					
			TRACESWO,					
PB3			SPI3_SCK,					
(JTDO/TRACESWO)	I/O	5T	I2S3_CK,	-	55	89	133	161
			TMR2_CH2,					
			SPI1_SCK,					
			EVENTOUT					
			NJTRST,					
			SPI3_MISO,					162
PB4	I/O	5T	TMR3_CH1,	-	56	90	134	
(NJTRST)			SPI1_MISO,					
			I2S3ext_SD,					
			EVENTOUT					
			I2C1_SMBAI,					
			CAN2_RX,					
			OTG_HS_ULPI_D7,					
			ETH_PPS_OUT,					
PB5	I/O	-	TMR3_CH2, SPI1_MOSI,	-	57	91	135	163
			SPI3_MOSI,					
			DCI_D10,					
			I2S3_SD,					
			EVENTOUT					
			I2C1_SCL,					
			TMR4_CH1,					
			CAN2_TX,					
PB6	I/O	5T	DCI_D5,	-	58	92	136	164
			USART1_TX,					
			EVENTOUT					
			I2C1_SDA,					
PB7	I/O	5T	SMC_NL,	-	59	93	137	165
		31	DCI_VSYNC,					

M								
Name	T	Chmichin	Multiplexing	Additional	LQFP	LQFP	LQFP	LQFP
(Function after	Туре	Structure	function	function	64	100	144	176
reset)								
			USART1_RX,					
			TMR4_CH2,					
			EVENTOUT					
воото	I	В	-	VPP	60	94	138	166
			TMR4_CH3,					
			SDIO_D4,					
			TMR10_CH1,					
PB8	I/O	5T	DCI_D6,		61	95	139	167
PD0	1/0	31	ETH_MII_TXD3,	-	01	95	139	107
			I2C1_SCL,					
			CAN1_RX,					
			EVENTOUT					
			SPI2_NSS,					
			12S2_WS,					
			TMR4_CH4,	-				
			TMR11_CH1,					
PB9	I/O	5T	SDIO_D5,		62	96	140	168
			DCI_D7,					
			I2C1_SDA,					
			CAN1_TX,					
			EVENTOUT					
			TMR4_ETR,					
DE0			SMC_NBL0,			07		400
PE0	I/O	5T	DCI_D2,	-	-	97	141	169
			EVENTOUT					
			SMC_NBL1,					
PE1	I/O	5T	DCI_D3,	-	-	98	142	170
			EVENTOUT					
VSS	Р	-	-	-	63	99	-	-
PDR_ON	I	5T	-	-	-	-	143	171
VDD	Р	-	-	-	64	100	144	172
			TMR8_BKIN,					
PI4	I/O	5T	DCI_D5,	-	-	-	-	173
			EVENTOUT					
			TMR8_CH1,					
PI5	I/O	5T	DCI_VSYNC,	-	-	-	-	174
			EVENTOUT					
DIC	1/0	<u></u>	TMR8_CH2,					475
PI6	I/O	5T	DCI_D6,	-	-	-	-	175

Name (Function after reset)	Туре	Structure	Multiplexing function	Additional function	LQFP 64	LQFP 100	LQFP 144	LQFP 176	
			EVENTOUT						
				TMR8_CH3,					
PI7	I/O	O 5T	DCI_D7,	-	-	-	-	176	
	1/0		EVENTOUT,					170	
		DMC_WE							

Note:

- (1) PC13, PC14 and PC15 are powered through the power switch. Since the switch only sinks limited current (3mA), the use of GPIO from PC13 to PC15 in output mode is limited:
 - ① The speed shall not exceed 2MHz when the heavy load is 30pF;
 - ② Not used for current source (e.g. driving LED).

3.3 **GPIO Multiplexing Function Configuration**

Table 4 GPIOA Multiplexing Function Configuration

Po rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF 14	AF15
PA 0	-	TMR2_C H1 ETR	TMR5 CH1	TMR8_ ETR	-	-	-	USART 2_CTS	UART 4_TX	-	-	ETH_MII_C RS	-	-	-	EVEN TOUT
PA 1	-	TMR2_C H2	TMR5 _CH2	-	-	-	-	USART 2_RTS	UART 4_RX	-	-	ETH_MII_R X_CLK ETH_RMII_ REF_CLK	-	-	-	EVEN TOUT
PA 2	1	TMR2_C H3	TMR5 _CH3	TMR9_ CH1	-	-	-	USART 2_TX	-	-	-	ETH_MDIO	-	-	1	EVEN TOUT
PA 3	ı	TMR2_C H4	TMR5 _CH4	TMR9_ CH2	-	-	-	USART 2_RX	-	-	OTG_HS_ ULPI_D0	ETH_MII_C OL	DMC_C KE	-	1	EVEN TOUT
PA 4	1	-	-	-	-	SPI1_ NSS	SPI3_ NSS I2S3_ WS	USART 2_CK	-	-	-	-	OTG_H S_SOF	DCI_H SYNC	-	EVEN TOUT
PA 5	-	TMR2_C H1_ETR		TMR8_ CH1N	-	SPI1_ SCK	-	-	-		OTG_HS_ ULPI_CK	-	-	-	-	EVEN TOUT
PA 6	1	TMR1_B KIN	TMR3 _CH1	TMR8_ BKIN	-	SPI1_ MISO	-	-	-	TMR13 _CH1	-	-	-	DCI_PI XCK	-	EVEN TOUT
PA 7	1	TMR1_C H1N	TMR3 _CH2	TMR8_ CH1N	-	SPI1_ MOSI	-	-	-	TMR14 _CH1	-	ETH_MII_R X_DV ETH_RMII_ CRS_DV	-	-	1	EVEN TOUT

Po rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF 14	AF15
PA 8	MCO1	TMR1_C H1	-	-	I2C3_ SCL	-	-	USART 1_CK	-	-	OTG_FS_ SOF	-	-	-	-	EVEN TOUT
PA 9	-	TMR1_C H2	-	-	I2C3_ SMBA	-	-	USART 1_TX	-	-	-	-	-	DCI_D 0	-	EVEN TOUT
PA 10	-	TMR1_C H3	-	-	-	-	-	USART 1_RX	-	-	OTG_FS_I D	-	-	DCI_D 1	-	EVEN TOUT
PA 11	-	TMR1_C H4	-	-	-	-	-	USART 1_CTS	-	CAN1_ RX	OTG_FS_ DM	-	-	-	-	EVEN TOUT
PA 12	-	TMR1_E TR	-	-	-	-	-	USART 1_RTS	-	CAN1_ TX	OTG_FS_ DP	-	-	-	-	EVEN TOUT
PA 13	JTMS_ SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
PA 14	JTCK_S WCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
PA 15	JTDI	TMR2_C H1 TMR2_E TR	-	-	-	SPI1_ NSS	SPI3_ NSS I2C3_ WS	-	-	-	-	-	-	-	-	EVEN TOUT

Table 5 GPIOB Multiplexing Function Configuration

Ро									Α						AF	
rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	F	AF9	AF10	AF11	AF12	AF13	AF 14	AF15
T C									8						14	
РВ	_	TMR1_	TMR3	TMR8_	_	_	_	_	_	_	OTG_HS_	ETH_MII	_	_		EVEN
0	_	CH2N	_CH3	CH2N	_	_	_	_		_	ULPI_D1	_RXD2	_	_		TOUT
РВ	_	TMR1_	TMR3	TMR8_	_	_	_	_	_	_	OTG_HS_	ETH_MII	_	_		EVEN
1	_	CH3N	_CH4	CH3N	_	_	_	_	_	_	ULPI_D2	_RXD3	_	_		TOUT
РВ	_	_	_	_	_	_	_	_	_	_	_	_	_	_		EVEN
2	_	_			_	_	_	_		_	_		_	_		TOUT
РВ	JTDO/TR	TMR2_	_	_	_	SPI1_SCK	SPI3_SCK	_	_	_	_	_	_	_		EVEN
3	ACESWO	CH2			_	0111_00K	12S3_CK	_		_	_		_	_		TOUT
РВ	NJTRST	_	TMR3	_	_	SPI1_MIS	SPI3_MIS	I2S3ext	_	_	_	_	_	_		EVEN
4	NOTIVOT	_	_CH1		_	0	0	_SD		_	_		_	_		TOUT
РВ	_	_	TMR3	_	I2C1_	SPI1_MOS	SPI3_MOS	_	_	CAN2_	OTG_HS_	ETH_PP	_	DCI_D	_	EVEN
5			_CH2		SMBA	I	II2S3_SD			RX	ULPI_D7	S_OUT		10		TOUT
РВ	_	_	TMR4	_	I2C1_	_	_	USART	_	CAN2_	_	_	_	DCI_D	_	EVEN
6			_CH1		SCL			1_TX		TX				5		TOUT
РВ			TMR4		I2C1_			USART					SMC	DCI_V		EVEN
7	-	-	_CH2		SDA	-	-	1_RX	-	-	-	-	NL	SYNC	-	TOUT
,			_0112		OD/			1_100					142	01110		1001
РВ	_	_	TMR4	TMR10	I2C1_	_	_	_	_	CAN1_	_	ETH_MII	SDIO_	DCI_D		EVEN
8	_	_	_CH3	_CH1	SCL	_	_	_	_	RX	_	_TXD3	D4	6		TOUT
РВ	_	_	TMR4	TMR11	I2C1_	SPI2_NSS	_	_		CAN1_	_	_	SDIO_	DCI_D		EVEN
9	-	-	_CH4	_CH1	SDA	12S2_WS	-	-	_	TX	-	-	D5	7	_	TOUT
РВ	_	TMR2_	_	_	I2C2_	SPI2_SCK		USART		-	OTG_HS_	ETH_MII	_	_		EVEN
10	•	CH3	•	_	SCL	12S2_CK	-	3_TX	_		ULPI_D3	_RX_ER	-	-	_	TOUT

Po rt	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	A F 8	AF9	AF10	AF11	AF12	AF13	AF 14	AF15
PB 11	-	TMR2_ CH4	-	-	I2C2_ SDA	-	-	USART 3_RX	-	-	OTG_HS_ ULPI_D4	ETH_MII _TX_EN ETH _RMII_T X_EN	-	-	-	EVEN TOUT
PB 12	-	TMR1_ BKIN	-	-	I2C2_ SMBA	SPI2_NSS I2S2_WS	-	USART 3_CK	-	CAN2_ RX	OTG_HS_ ULPI_D5	ETH_RM II_TXD0 ETH_MII _TXD0	OTG_H S_ID	-	-	EVEN TOUT
PB 13	-	TMR1_ CH1N	-	-	-	SPI2_SCK I2S2_CK	-	USART 3_CTS	-	CAN2_ TX	OTG_HS_ ULPI_D6	ETH_RM II_TXD1 ETH_MII _TXD1	-	-	-	EVEN TOUT
PB 14	-	TMR1_ CH2N	-	TMR8_ CH2N	-	SPI2_MIS	I2S2ext_S D	USART 3_RTS	-	TMR1 2_CH1	-	-	OTG_H S_DM	-	-	EVEN TOUT
PB 15	RTC_REF IN	TMR1_ CH3N	-	TMR8_ CH3N	-	SPI2_MOS II2S2_SD	-	-	-	TMR1 2_CH2	-	-	OTG_H S_DP	-	-	EVEN TOUT

Table 6 GPIOC Multiplexing Function Configuration

Por t	AF0	AF 1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF 9	AF10	AF11	AF12	AF13	AF 14	AF15
PC 0	-	-	-	-	-	-	-	-	-	-	OTG_HS_U LPI_ STP	-	-	-	-	EVENT OUT
PC 1	-	-	-	-	-	-	-	-	-	-	-	ETH_MDC	-	-	1	EVENT OUT
PC 2	-	1	1	1	-	SPI2_MI SO	I2S2ext_ SD	-	-	-	OTG_HS_U LPI_ DIR	ETH_MII_T XD2	-	1	1	EVENT OUT
PC 3	-	-	-	-	-	SPI2_M OSI I2S2_S D	-	-	-	-	OTG_HS_U LPI_ NXT	ETH _MII_TX_CL K	-	-	-	EVENT OUT
PC 4	-	1	1	1	-	-	-	-	-	-	-	ETH_MII_R XD0 ETH_RMII_ RXD0	-	-	1	EVENT OUT
PC 5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_R XD1 ETH_RMII_ RXD1	-	-	-	EVENT OUT
PC 6	-	-	TMR3_ CH1	TMR8_ CH1	-	I2S2_M CK	-	-	USART6 _TX	-	-	-	SDIO_ D6	DCI_ D0	-	EVENT OUT
PC 7	-	-	TMR3_ CH2	TMR8_ CH2	-	-	12S3_M CK	-	USART6 _RX	-	-	-	SDIO_ D7	DCI_ D1	-	EVENT OUT

Por t	AF0	AF 1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF 9	AF10	AF11	AF12	AF13	AF 14	AF15
PC 8	-	-	TMR3_ CH3	TMR8_ CH3	-	-	-	-	USART6	-	-	-	SDIO_ D0	DCI_ D2	-	EVENT OUT
PC 9	MC O2	-	TMR3_ CH4	TMR8_ CH4	I2C3_S DA	I2S_CKI N	-	-	_CK -	-	-	-	SDIO_ D1	DCI_ D3	-	EVENT OUT
PC 10	-	-	-	-	-	-	SPI3_S CK/ I2S3_CK	USART3 _TX/	UART4_ TX	-	-	-	SDIO_ D2	DCI_ D8	-	EVENT OUT
PC 11	-	-	-	-	-	I2S3ext _SD	SPI3_MI SO/	USART3 _RX	UART4_ RX	-	-	-	SDIO_ D3	DCI_ D4	-	EVENT OUT
PC 12	-	-	-	-	-	-	SPI3_M OSI I2S3_SD	USART3 _CK	UART5_ TX	-	-	-	SDIO_ CK	DCI_ D9	-	EVENT OUT
PC 13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PC 14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PC 15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

Table 7 GPIOD Multiplexing Function Configuration

Port	AF 0	AF 1	AF2	AF 3	AF 4	AF 5	AF 6	AF7	AF8	AF9	AF1	AF1 1	AF12	AF13	AF1	AF15
PD0	-	ı	-	1	-	-	-	-	-	CAN1_R X	-	-	SMC_D2	-	-	EVENTOU T
PD1	-	-	-	1	-	-	-	-	-	CAN1_T X	-	-	SMC_D3	-	-	EVENTOU T
PD2	-	-	TMR3_ET	-	-	-	-	-	UART5_R X	-	-	-	SDIO_CMD	DCI_D1	-	EVENTOU T
PD3	-	-	-	1	-	-	-	USART2_CT S	-	-	-	-	SMC_CLK	-	-	EVENTOU T
PD4	-	-	-	-	-	-	-	USART2_RT S	-	-	-	-	SMC_NOE	-	-	EVENTOU T
PD5	-	-	-	1	-	-	-	USART2_TX	-	-	-	-	SMC_NWE	-	-	EVENTOU T
PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	SMC_NWAIT	-	-	EVENTOU T
PD7	-	ı	-	1	-	-	-	USART2_CK	-	-	-	-	SMC_NE1/SMC_NC E2	-	-	EVENTOU T
PD8	-	-	-	1	-	-	-	USART3_TX	-	-	-	-	SMC_D13	-	-	EVENTOU T

Port	AF 0	AF 1	AF2	AF 3	AF 4	AF 5	AF 6	AF7	AF8	AF9	AF1 0	AF1 1	AF12	AF13	AF1 4	AF15
PD9	ı	-	-	-	1	1	-	USART3_RX	1	-	-	-	SMC_D14	1	-	EVENTOU T
PD1 0	ı	-	-	-	1	1	-	USART3_CK	ı	-	-	-	SMC_D15 DMC_DQ10	1	-	EVENTOU T
PD1	1	-	-	-	•	1	-	USART3_CT S	-	-	-	-	SMC_A16	1	-	EVENTOU T
PD1	1	-	TMR4_CH	-	-	-	-	USART3_RT S	-	-	-	-	SMC_A17 DMC_DQ11	-	-	EVENTOU T
PD1	-	-	TMR4_CH	-	-	-	-	-	-	-	-	-	SMC_A18 DMC_DQ12	-	-	EVENTOU T
PD1	ı	-	TMR4_CH	-	-	1	-	-	-	-	-	-	SMC_D0 DMC_DQ13	-	-	EVENTOU T
PD1 5	-	-	TMR4_CH 4	_	-	-	-	-	-	-	-	-	SMC_D1 DMC_DQ14	-	-	EVENTOU T

Table 8 GPIOE Multiplexing Function Configuration

					AF	AF	AF	AF	AF	AF	AF1				AF1	
Port	AF0	AF1	AF2	AF3	4	5	6	7	8	9	0	AF11	AF12	AF13	4	AF15
			TMR4_ET										SMC_NBL	DCI_D		EVENTOU
PE0	-	-	R	-	-	-	-	-	-	-	-	-	0	2	-	Т
DE4													SMC_NBL	DCI_D		EVENTOU
PE1	-	-	-	-	-	-	-	-	-	-	-	-	1	3	-	Т
PE2	TRACECL	_			_	_	_	_		_	_	ETH_MII_TXD	SMC A22			EVENTOU
PEZ	K	-	-	-	-	-	-	-	-	-	-	3	SMC_A23	-	-	Т
PE3	TRACED0							_		-			SMC A10			EVENTOU
PES	TRACEDO	-	-	-	-	-	-	-	-	-	-	-	SMC_A19	-	-	Т
PE4	TRACED1				_				_		_		SMC_A20	DCI_D		EVENTOU
Г <u>С</u> 4	TRACEDT	-	1	_	-	-	-	_	-	•	-	-	SIVIC_A20	4	•	Т
PE5	TRACED2		_	TMR9_CH	_	_		_	_	_	_	_	SMC_A21	DCI_D		EVENTOU
FEJ	TRACEDZ	-	-	1	-	-	-	_	-	•	-	-	SIVIC_AZ I	6	-	Т
PE6	TRACED3		_	TMR9_CH	_	_			-		_		SMC_A22	DCI_D		EVENTOU
FEO	TRACEDS	-	-	2	-	-	-	-	-	•	-	-	SIVIC_AZZ	7	-	Т
PE7	_	TMR1_ETR	_	_	_	_	_	_	_	_	_	_	SMC_D4	_	_	EVENTOU
1 1	_	TWINT_LTIN		_	_	_	_	_	_		_	_	31/10_D4			Т
PE8	_	TMR1_CH1	_	_	_	_	_	_	_	_	_	_	SMC_D5	_	_	EVENTOU
1 20	_	N	_	_								_	ONO_D3			T
PE9	_	TMR1_CH1	_	_	_	_	_	_	_	_	_	_	SMC_D6	_	_	EVENTOU
1 23		1WIK1_0111											OWO_BO			Т
PE1	_	TMR1_CH2	_	_	_	_	_	_	_	_	_	_	SMC_D7	_	_	EVENTOU
0		N											OWO_D7			Т
PE1	_	TMR1_CH2	_	_	_	_	_	_	_	_	_	_	SMC_D8	_	_	EVENTOU
1		1.01111	_										3WO_D0			Т

Port	AF0	AF1	AF2	AF3	AF 4	AF 5	AF 6	AF 7	AF 8	AF 9	AF1 0	AF11	AF12	AF13	AF1	AF15
PE1	-	TMR1_CH3 N	-	-	-	-	-	-	-	-	-	-	SMC_D9	-	-	EVENTOU T
PE1	-	TMR1_CH3	-	-	-	-	-	-	-	-	-	-	SMC_D10	-	-	EVENTOU T
PE1 4	-	TMR1_CH4	-	-	-	-	-	-	-	-	-	-	SMC_D11	-	-	EVENTOU T
PE1 5	-	TMR1_BKI N	-	-	-	-	-	-	-	-	-	-	SMC_D12	-	-	EVENTOU T

Table 9 GPIOF Multiplexing Function Configuration

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PF0	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	SMC_A0 DMC_A10	-	-	EVENTOUT
PF1	-	-	-	-	I2C2_SCL	-	-	-	-	-	-	-	SMC_A1 DMC_A0	-	-	EVENTOUT
PF2	-	-	-	-	I2C2_SMBA	-	-	-	-	-	-	-	SMC_A2 DMC_A1	-	-	EVENTOUT
PF3	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A3 DMC_A2	-	-	EVENTOUT
PF4	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A4 DMC_A3	-	-	EVENTOUT
PF5	-	-	1	-	-	-	-	-	-	-	-	-	SMC_A5	-	-	EVENTOUT
PF6	-	-	-	TMR10_CH1	-	-	-	-	-	-	-	-	SMC_NIORD DMC_A4	-	-	EVENTOUT
PF7	-	-	-	TMR11_CH1	-	-	-	-	-	-	-	-	SMC_NREG DMC_A5	-	-	EVENTOUT
PF8	-	-	-	-	-	-	-	-	-	TMR13_CH1	-	-	SMC_NIOWR DMC_A6	-	-	EVENTOUT
PF9	-	-	-	-	-	-	-	-	-	TMR14_CH1	-	-	SMC_CD DMC_A7	-	-	EVENTOUT
PF10	-	-	1	-	-	-	-	-	-	-	-	-	SMC_INTR DMC_A8	-	-	EVENTOUT
PF11	-	-	-	-	-	-	-	-	-	-	-	-	DMC_UDQM	DCI_D12	-	EVENTOUT
PF12	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A6	-	-	EVENTOUT
PF13	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A7	-	-	EVENTOUT
PF14	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A8	-	-	EVENTOUT

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PF15	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A9	-	-	EVENTOUT

Table 10 GPIOG Multiplexing Function Configuration

Port	AF	AF8	AF	AF1	AF11	AF12	AF13	AF1	AF15							
	0	1	2	3	4	5	6	7		9	0				4	
PG0	-	-	-	-	-	-	-	-	-	-	-	-	SMC_A10	-	-	EVENTOU T
													SMC_A11			EVENTOU
PG1	-	-	-	-	-	-	-	-	-	-	-	-	DMC_CK	-	-	Т
DOO													SMC_A12			EVENTOU
PG2	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ15	-	-	Т
DOO													SMC_A13			EVENTOU
PG3	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ0	-	-	Т
DO4													SMC_A14			EVENTOU
PG4	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ1	-	-	Т
D05													SMC_A15			EVENTOU
PG5	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ2	-	-	Т
DOG													SMC_INT2			EVENTOU
PG6	-	-	-	-	-	-	-	-	-	-	-	-	DMC_DQ3	-	-	Т
PG7									LICADTO OK				CMC INTO			EVENTOU
PG/	-	-	-	-	-	-	-	-	USART6_CK	-	-	-	SMC_INT3	-	-	Т
PG8									USART6_RT			ETH DDC OUT	DMC DO4			EVENTOU
PG8	-	-	-	-	-	-	-	-	S	-	-	ETH_PPS_OUT	DMC_DQ4	-	-	Т
DCO									LICADTO DV				CMC NEO/OMO NOEO			EVENTOU
PG9	-	-	-	-	-	-	-	-	USART6_RX	-	-	-	SMC_NE2/SMC_NCE3	-	-	Т
PG1													SMC_NCE4_1/SMC_N			EVENTOU
0	-	-	-	-	-	-	-	-	-	-	-	-	E3	-	-	Т
DC1												ETH_MII_TX_EN				EVENTOU
PG1	-	-	-	-	-	-	-	-	-	-	-	ETH_RMII_TX_E	SMC_NCE4_2	-	-	EVENTOU
1												N				Т

Port	AF 0	AF 1	AF 2	AF 3	AF 4	AF 5	AF 6	AF 7	AF8	AF 9	AF1 0	AF11	AF12	AF13	AF1 4	AF15
PG1 2	-	-	-	-	-	-	-	-	USART6_RT S	-	-	-	SMC_NE4	-	-	EVENTOU T
PG1	-	-	-	-	-	-	-	-	USART6_CT S	-	-	ETH_MII_TXD0 ETH_RMII_TXD0	SMC_A24	-	-	EVENTOU T
PG1 4	-	-	-	-	-	-	-	-	USART6_TX	-	-	ETH_MII_TXD1 ETH_RMII_TXD1	SMC_A25	-	-	EVENTOU T
PG1 5	-	-	-	-	-	-	-	-	USART6_CT S	-	-	-	DMC_LDQM	DCI_D1	-	EVENTOU T

Table 11 GPIOH Multiplexing Function Configuration

Por t	AF 0	AF 1	AF2	AF3	AF4	AF 5	AF 6	AF 7	AF 8	AF9	AF10	AF11	AF12	AF13	AF1	AF15
PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTO UT
PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTO UT
PH2	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_C RS	-	-	-	EVENTO UT
РН3	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_C OL	DMC_A 9	-	-	EVENTO UT
PH4	-	-	-	-	I2C2_SC L	-	-	-	-	-	OTG_HS_ULPI_ NXT	-	-	-	-	EVENTO UT
PH5	-	-	-	-	I2C2_SD A	-	-	-	-	-	-	-	-	-	-	EVENTO UT
РН6	1	-	-	-	I2C2_SM BA	-	-	-	-	TMR12_C H1	-	ETH_MII_R XD2	-	-	-	EVENTO UT
PH7	1	-	-	-	I2C3_SC L	-	-	-	-	-	-	ETH_MII_R XD3	-	-	-	EVENTO UT
РН8	-	-	-	-	I2C3_SD A	-	-	-	-	-	-	-	DMC_D Q8	DCI_HSY NC	-	EVENTO UT
РН9	1	-	-	-	I2C3_SM BA	-	-	-	-	TMR12_C H2	-	-	-	DCI_D0	-	EVENTO UT
PH1 0	-	1	TMR5_C H1	-	-	1	-	-	-	-	-	-	DMC_D Q9	DCI_D1	-	EVENTO UT
PH1 1	-	-	TMR5_C H2	-	-	1	-	-	-	-	-	-	-	DCI_D2	-	EVENTO UT

Por t	AF 0	AF 1	AF2	AF3	AF4	AF 5	AF 6	AF 7	AF 8	AF9	AF10	AF11	AF12	AF13	AF1	AF15
PH1	1	1	TMR5_C	-	-	-	-	-	-	-	_	-	-	DCI_D3	_	EVENTO
2			H3											_		UT
PH1		_	_	TMR8_CH	_	_	_	_	_	CAN1_TX	_	_	DMC_D	_	_	EVENTO
3	_	_	-	1N	-	_	-	_	_	CANI_IX	-	_	Q5	-	_	UT
PH1				TMR8_CH										DCI D4		EVENTO
4	-	-	-	2N	-	-	-	-	-	-	-	-	-	DCI_D4	-	UT
PH1				TMR8_CH									DMC_D	DCL D44		EVENTO
5	-	-	1	3N	1	1	1	1	-	1	-	-	Q6	DCI_D11	-	UT

Table 12 GPIOI Multiplexing Function Configuration

								1								
Po rt	AF 0	AF 1	AF2	AF3	AF 4	AF5	AF6	AF 7	AF 8	AF9	AF10	AF11	AF12	AF13	AF1	AF15
PI0	1	-	TMR5_C H4	-	1	SPI2_NS S I2S2_W S	-	-	-	1	-	-	-	DCI_D13	-	EVENTO UT
PI1	-	-	-	-	-	SPI2_SC K I2S2_CK	-	-	-	-	-	-	-	DCI_D8	-	EVENTO UT
PI2	-	-	-	TMR8_C H4	-	SPI2_MI SO	I2S2ext_ SD	-	-	-	-	-	-	DCI_D9	-	EVENTO UT
PI3	-	-	-	TMR8_E TR	-	SPI2_M OSI I2S2_SD	-	-	-	-	-	-	DMC_D Q7	DCI_D10	-	EVENTO UT
PI4	-	-	-	TMR8_B KIN	-	-	-	-	-	-	-	-	-	DCI_D5	-	EVENTO UT
PI5	1	-	-	TMR8_C H1	1	-	-	-	-	-	-	-	-	DCI_VSY NC	-	EVENTO UT
PI6	ı	ı	-	TMR8_C H2	ı	-	ı	-	ı	ı	-	-	-	DCI_D6	-	EVENTO UT
PI7	-	-	-	TMR8_C H3	-	-	-	-	-	-	-	-	DMC_W E	DCI_D7	-	EVENTO UT
PI8	ı	-	-	-	ı	-	-	-	-	-	-	-	DMC_C AS	-	-	EVENTO UT
PI9	1	-	-	-	-	-	-	-	-	CAN1_ RX	-	-	DMC_R AS	-	-	EVENTO UT

Po rt	AF 0	AF 1	AF2	AF3	AF 4	AF5	AF6	AF 7	AF 8	AF9	AF10	AF11	AF12	AF13	AF1 4	AF15
PI1	1	1	-	-	-	-	-	-	-	-	-	ETH_MII_RX	DMC_C	-	-	EVENTO
0												_ER	S			UT
PI1		_	_	_	_	_	_	_	_	_	OTG_HS_ULPI	_	DMC_B	_	_	EVENTO
1	-	_	-	-	_	-	-	_	_	-	_DIR	-	Α	-	_	UT

4 Function Description

This chapter mainly introduces the system architecture, interrupt, on-chip memory, clock, power supply and peripheral features of APM32F405xG 407xExG series products; for information about the Arm® Cortex®-M4 core, please refer to the *Arm® Cortex®-M4 Technical Reference Manual*, which can be downloaded from Arm's website.

This version is applicable to APM32F405 and APM32F407 series A models.

4.1 System architecture

4.1.1 System block diagram

Figure 5 APM32F405xG 407xExG System Block Diagram

4.1.2 Address mapping

表格 13 APM32F405xG 407xExG Series Address Mapping Diagram

Region	Start Address	Peripheral Name
Code	0x0000 0000	Code mapping area
Code	0x0800 0000	FLASH
Code	0x0810 0000	Reserve
Code	0x1FFF 0000	System memory area
Code	0x1FFF C000	Option byte
Code	0x1FFF C008	Reserve
SRAM	0x2000 0000	SRAM
_	0x2002 0000	Reserve
APB1 bus	0x4000 0000	TMR2
APB1 bus	0x4000 0400	TMR3
APB1 bus	0x4000 0800	TMR4
APB1 bus	0x4000 0C00	TMR5
APB1 bus	0x4000 1000	TMR6
APB1 bus	0x4000 1400	TMR7
APB1 bus	0x4000 1800	TMR12
APB1 bus	0x4000 1C00	TMR13
APB1 bus	0x4000 2000	TMR14
APB1 bus	0x4000 2400	Reserve
APB1 bus	0x4000 2800	RTC
APB1 bus	0x4000 2C00	WWDT
APB1 bus	0x4000 3000	IWDT
APB1 bus	0x4000 3400	I2S2ext
APB1 bus	0x4000 3800	SPI2/I2S2
APB1 bus	0x4000 3C00	SPI3/I2S3
APB1 bus	0x4000 4000	I2S3ext
APB1 bus	0x4000 4400	USART2
APB1 bus	0x4000 4800	USART3
APB1 bus	0x4000 4C00	UART4
APB1 bus	0x4000 5000	UART5
APB1 bus	0x4000 5400	I2C1
APB1 bus	0x4000 5800	I2C2
APB1 bus	0x4000 5C00	I2C3
APB1 bus	0x4000 6000	Reserve
APB1 bus	0x4000 6400	CAN1
APB1 bus	0x4000 6800	CAN2
APB1 bus	0x4000 6C00	Reserve

Region	Start Address	Peripheral Name
APB1 bus	0x4000 7000	PMU
APB1 bus	0x4000 7400	DAC
APB1 bus	0x4000 7800	Reserve
_	0x4000 8000	Reserve
APB2 bus	0x4001 0000	TMR1
APB2 bus	0x4001 0400	TMR8
APB2 bus	0x4001 0800	Reserve
APB2 bus	0x4001 1000	USART1
APB2 bus	0x4001 1400	USART6
APB2 bus	0x4001 1800	Reserve
APB2 bus	0x4001 2000	ADC1/2/3
APB2 bus	0x4001 2400	Reserve
APB2 bus	0x4001 2C00	SDI0
APB2 bus	0x4001 3000	SPI1
APB2 bus	0x4001 3400	Reserve
APB2 bus	0x4001 3800	SYSCFG
APB2 bus	0x4001 3C00	EINT
APB2 bus	0x4001 4000	TMR9
APB2 bus	0x4001 4400	TMR10
APB2 bus	0x4001 4800	TMR11
APB2 bus	0x4001 4C00	Reserve
_	0x4001 5800	Reserve
AHB bus	0x4002 0000	GPIOA
AHB bus	0x4002 0400	GPIOB
AHB bus	0x4002 0800	GPIOC
AHB bus	0x4002 0C00	GPIOD
AHB bus	0x4002 1000	GPIOE
AHB bus	0x4002 1400	GPIOF
AHB bus	0x4002 1800	GPIOG
AHB bus	0x4002 1C00	GPIOH
AHB bus	0x4002 2000	GPIOI
AHB bus	0x4002 2400	Reserve
AHB bus	0x4002 3000	CRC
AHB bus	0x4002 3400	Reserve
AHB bus	0x4002 3800	RCM
AHB bus	0x4002 3C00	FMC Reg.
AHB bus	0x4002 4000	Backups SRAM
AHB bus	0x4002 5000	Reserve

Region	Start Address	Peripheral Name
AHB bus	0x4002 6000	DMA1
AHB bus	0x4002 6400	DMA2
AHB bus	0x4002 6800	Reserve
AHB bus	0x4002 8000	MAC
AHB bus	0x4002 9400	Reserve
AHB bus	0x4004 0000	USB OTG_HS1/2
AHB bus	0x4008 0000	Reserve
AHB bus	0x5000 0000	USB OTG_FS
AHB bus	0x5004 0000	Reserve
AHB bus	0x5005 0000	DCI
AHB bus	0x5005 0400	Reserve
AHB bus	0x5006 0800	RNG
AHB bus	0x5006 0C00	Reserve
AHB bus	0xA000 0000	EMMC Reg.
_	0xA000 1000	Reserve
Core	0xE000 0000	Core peripheral
_	0xE010 0000	Reserve

4.1.3 Startup configuration

At startup, the user can select one of the following three startup modes by setting the high and low levels of the Boot pin:

- Startup from main memory
- Startup from BootLoader
- Startup from built-in SRAM

The user can use serial interface to reprogram the user Flash if starting up from BootLoader.

4.2 **Core**

The core of APM32F405xG 407xExG is Arm® Cortex®-M4 with FPU computing unit. Based on this platform, the development cost is low and the power consumption is low. It can provide excellent computing performance and advanced system interrupt response, and is compatible with all Arm tools and software.

4.3 Interrupt controller

4.3.1 Nested Vector Interrupt Controller (NVIC)

It embeds a nested vectored interrupt controller (NVIC) that can handle up to 82 maskable interrupt channels (not including 16 interrupt lines of Cortex®-M4) and 8 priority levels. The interrupt vector entry address can be directly transmitted to the core, so that the interrupt response processing with low delay can give priority to the late higher priority interrupt.

4.3.2 External Interrupt/Event Controller (EINT)

The external interrupt/event controller consists of 23 edge detectors, and each detector includes edge detection circuit and interrupt/event request generation circuit; each detector can be configured as rising edge trigger, falling edge trigger or both and can be masked independently. Up to 140 GPIOs can be connected to 16 external interrupt lines.

4.4 On-chip memory

On-chip memory includes main memory area, SRAM and information block; the information block includes system memory area and option byte; the system memory area stores BootLoader, 96-bit unique device ID and capacity information of main memory area; the system memory area has been written into the program when leaving the factory and cannot be erased.

Memory **Maximum capacity Function** Main memory area 1MB Store user programs and data **SRAM** 192 KB CPU can access at 0 wait cycle (read/write) Store BootLoader, 96-bit unique device ID, and main memory System memory area 30KB area capacity information Configure main memory area read-write protection and MCU Option byte 16Bytes working mode

Table 14 On-chip Memory Area

4.4.1 Configurable external memory controller (EMMC)

APM32F405xG 407xExG series integrates EMMC module, consists of SMC (static memory controller), DMC (dynamic memory controller), and supports PC card, SRAM, SDRAM, PSRAM, NorFlash and NandFlash.

Function introduction:

- Three EMMC interrupt sources, connected to NVIC unit through logic or
- Write FIFO
- The code can run in off-chip memories except NAND flash and PC card
- Connect to LCD

4.4.2 LCD parallel interface (LCD)

EMMC can be configured to seamlessly connect with most graphic LCD controllers, and supports the modes of Intel 8080 and Motorola 6800, and can flexibly connect with specific LCD interface. This LCD parallel interface can be used to easily build a simple graphics application environment or the high-performance scheme of the special acceleration controller can be used.

4.5 **Clock**

4.5.1 Clock tree

Clock tree of APM32F405xG 407xExG is shown in the figure below:

Figure 6 APM32F405xG 407xExG Clock Tree

4.5.2 Clock source

Clock source is divided into high-speed clock and low-speed clock according to the speed; the high-speed clock includes HSICLK and HSECLK, and the low-speed clock includes LSECLK and LSICLK; besides, some modules may have additional clock source pins to obtain the required clock frequency through external circuits.

4.5.3 System clock

HSICLK, PLLCLK and HSECLK can be selected as system clock; the clock source of PLLCLK can be HSICLK or HSECLK; the required system clock can be obtained by configuring PLL clock multiplier factor and frequency division factor.

When the product is reset and started, HSICLK is selected as the system clock by default, and then the user can choose one of the above clock sources as the system clock. When HSECLK failure is detected, the system will automatically switch to the HSICLK, and if an interrupt is enabled, the software can receive the related interrupt.

4.5.4 Bus clock

AHB, APB1 and APB2 buses are built in. The clock source of AHB is SYSCLK, and the clock source of APB1 and APB2 is HCLK; the required clock can be obtained by configuring the frequency division factor. The maximum frequency of AHB is 168MHz, the maximum frequency of APB2 is 84MHz, and the maximum frequency of APB1 is 42MHz.

4.5.5 Phase locked loop

APM32F405xG 407xExG series product has two PLL, one is PLL (PLL1), and the other is PLL (PLL2) specially used to provide specific clock frequency for I2S. They all need to generate different clock frequencies by configuring parameters. Please refer to the *User Manual* for specific parameters and configuration registers.

4.6 Power and power management

4.6.1 Power supply scheme

Table 15 Power Supply Scheme

Name	Voltage range	Description			
\/	1.9 - 2.6\/	I/O (see pin distribution diagram for specific IO) and internal voltage regulator			
V _{DD} 1.8∼3.6V		are powered through V _{DD} pin.			
V _{DDA} /V _{SSA} 1.8∼3.6V		Supply power for ADC, DAC, reset module, RC oscillator and PLL analog part;			
		when ADC or DAC is used, V_{DDA} and V_{SSA} must be connected to V_{DD} and $V_{\text{SS}}.$			
10.20		When V _{DD} is disabled, RTC, external 32KHz oscillator and backup register are			
VBAT	1.8∼3.6V	powered through internal power switch.			

4.6.2 Voltage regulator

Table 16 Regulator Operating Mode

Name	Description
Master mode (MR)	Used in run mode
Low-power mode (LPR)	Used in stop mode
Power-down mode	Used in standby mode; when the voltage regulator has high-impedance output, the core circuit is powered down, the power consumption of the voltage regulator is zero, and all data of registers and SRAM will be lost.

Note: The voltage regulator is always in working state after reset, and outputs with high impedance in power-down mode.

4.6.3 Power supply voltage monitor

Power-on reset (POR), power-down reset (PDR) and brown-out reset circuits are integrated inside the product. These three circuits are always in working condition. When the power-down reset circuit monitors that the power supply voltage is lower than the specified threshold value (V_{POR/PDR}), even if the external reset circuit is used, the system will remain reset.

The product has a built-in programmable power supply voltage monitor (PVD) that can monitor V_{DD} and compare it with V_{PVD} threshold. When V_{DD} is outside the V_{PVD} threshold range and the interrupt is enabled, the MCU can be set to a safe state through the interrupt service program.

4.7 Low-power mode

APM32F405xG 407xExG supports three low-power modes, namely, sleep mode, stop mode and standby mode, and there are differences in power, wake-up time and wake-up mode among these three modes. The low-power mode can be selected according to the actual application requirements.

Table 17 Low-power Mode

Mode	Description
Sleep mode	The core stops working, all peripherals are working, and it can be woken up through interrupts/events
	Under the condition that SRAM and register data are not lost, the lowest power consumption can be achieved in stop mode;
	The clock of the internal 1.3V power supply module will stop, HSECLK crystal resonator, HSICLK
Stop mode	and PLL will be disabled, and the voltage regulator can be configured in normal mode or low-power
	mode;
	Any external interrupt line can wake up MCU, and the external interrupt lines include one of the 16
	external interrupt lines, PVD output, RTC and USB_OTG.
	The power consumption in this mode is the lowest;
Standby mode	Internal voltage regulator is turned off, all 1.3V power supply modules are powered down, HSECLK
Standby mode	crystal resonator, and HSICLK clocks are disabled, SRAM and register data disappear, RTC area
	and backup register contents remain, and the standby circuit still works;

Mode	Description					
	The external reset signal on NRST, IWDT reset, rising edge on WKUP pin or RTC event will wake					
	MCU out of standby mode.					

4.8 **DMA**

2 built-in DMA, 16 data streams in total. Each data stream corresponds to 8 channels, but each data stream can only use 1 channel at the same time. The peripherals supporting DMA requests are ADC, SPI, USART, I2C, and TMRx. Four levels of DMA channel priority can be configured. Support "memory→memory, memory→peripheral, peripheral→memory" data transmission (the memory includes Flash、SRAM、SDRAM).

4.9 **GPIO**

GPIO can be configured as general input, general output, multiplexing function and analog input and output. The general input can be configured as floating input, pull-up input and pull-down input; the general output can be configured as push-pull output and open-drain output; the multiplexing function can be used for digital peripherals; and the analog input and output can be used for analog peripherals and low-power mode; the enable and disable pull-up/pull-down resistor can be configured; the speed of 2MHz, 10MHz,50MHz and 100MHz can be configured; the higher the speed is, the greater the power and the noise will be.

4.10 Communication peripherals

4.10.1 USART/UART

Up to 6 universal synchronous/asynchronous transmitter receivers are built in the chip. The USART1/6 interfaces can communicate at a rate of 10.5Mbit/s, while other USART/UART interfaces can communicate at a rate of 5.25Mbit/s. All USART/UART interfaces can configure baud rate, parity check bit, stop bit, and data bit length; they all can support DMA. USART/UART function differences are shown in the table below:

Table 18 USART/UART Function Differences

USART mode/function	USART1	USART2	USART3	UART4	UART5	USART6
Hardware flow control of modem	√	$\sqrt{}$	$\sqrt{}$	_	_	\checkmark
Smart card mode	√	√	√	_	_	√
IrDA SIR coder-encoder functions	√	√	√	√	√	√
LIN mode	√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
Standard characteristics	√	√	√	√	√	√
SPI host	√	√	√	_	_	√
Maximum baud rate under 16-time oversampling (Mbit/s)	5.25	2.62	2.62	2.62	2.62	5.25

USART mode/function	USART1	USART2	USART3	UART4	UART5	USART6
Maximum baud rate under 8-time oversampling (Mbit/s)	10.50	5.25	5.25	5.25	5.25	10.5
APB mapping	APB2	APB1	APB1	APB1	APB1	APB2

Note: $\sqrt{\ }$ = support.

4.10.2 I2C

I2C1/2/3 bus interfaces are built-in and they all can work in multiple-master or slave modes, support 7-bit or 10-bit addressing, and support dual-slave addressing in 7-bit slave mode; the communication rate supports standard mode (up to 100kbit/s) and fast mode (up to 400kbit/s); hardware CRC generator/checker are built in; they can operate with DMA and support SMBus 2.0 version/PMBus.

4.10.3 SPI/I2S

3 built-in SPI, support full-duplex and half-duplex communication in master mode and slave mode, can use DMA controller, and can configure 4~16 bits per frame, and 3 SPI can communicate at a rate of up to 42Mbit/s, 21MBit/s and 21MBit/s respectively.

2 built-in I2S (multiplexed with SPI2 and SPI3 respectively), support half-duplex communication in master mode and slave mode, support synchronous transmission, and can be configured with 16-bit, 24-bit and 32-bit data transfer with 16-bit or 32-bit resolution. The configurable range of audio sampling rate is 8kHz~192kHz; when one or two I2S interfaces are configured as the master mode, the master clock can be output to external DAC or decoder (CODEC) at 256-time sampling frequency.

4.10.4 CAN

2 built-in CAN, compatible with 2.0A and 2.0B (active) specification, and can communicate at a rate of up to 1Mbit/s. It can receive and transmit standard frame of 11-bit identifier and extended frame of 29-bit identifier. It has 3 sending mailboxes and 2 receiving FIFO, and 14 3-level adjustable filters.

4.10.5 USB OTG

Three USB controllers, namely, one OTG_FS and two OTG_HS, are embedded in the product. They all can support both host and slave functions to comply with the On-The-Go supplementary standard of USB 2.0 specification, and can also be configured as "Host only" or "Slave only" mode, to fully comply with USB 2.0 specification. OTG_FS clock (48MHz) is output by specific PLL, and OTG_HS clock (60MHz) is provided by external PHY.

4.10.6 Ethernet

Provides an IEEE-802.3-2002 compatible MAC for Ethernet LAN communication over MII or RMII. This MCU requires a PHY connection to a physical LAN bus. The PHY connects to the MII port, uses 17 signals for MII or 9 signals for RMII, and can use a 25MHz clock (MII) from the kernel.

4.10.7 SDIO

The secure digital input/output interface can connect SD card, SD I/O card, multi-media card (MMC) and CE-ATA card master interfaces, and provide data transmission between APB2 system bus and SD memory card, SD I/O card, MMC and CE-ATA device.

4.11 Analog peripherals

4.11.1 ADC

3 built-in ADC with 12-bit accuracy, up to 21 external channels and 3 internal channels for each ADC. The internal channels measure the temperature sensor voltage, reference voltage and backup voltage respectively. A/D conversion mode of each channel has single, continuous, scan or intermittent modes, ADC conversion results can be left aligned or right aligned and stored in 16-bit data register; they support analog watchdog, and DMA.

4.11.1.1 Temperature sensor

1 temperature sensor (TSensor) is built in, which is internally connected with ADC_IN16 channel. The voltage generated by the sensor changes linearly with temperature and the converted voltage value can be obtained by ADC and converted into temperature.

 Calibration Value Name
 Description
 Memory Address

 V_{sensor_CAL1}
 Tsensor ADC raw data acquied at V_{DDA}=3.3V under 30°C
 0x1FFF 7A2C - 0x1FFF 7A2S

 V_{sensor_CAL2}
 Tsensor ADC raw data acquied at V_{DDA}=3.3V 0x1FFF 7A2E - 0x1FFF 7A2F

under 110°C

Table 19 Calibration Value of Tsensor Voltage

4.11.1.2 Internal reference voltage

Built-in reference voltage V_{REFINT}, internally connected to ADC_IN17 channel; V_{REFINT} can be obtained through ADC; V_{REFINT} provides stable voltage output for ADC.

Table 20 Calibration Value of Internal Reference Voltage

Calibration Value Name	Description	Memory Address
V	Original data collected at V _{DDA} =3.3V(±10mV)	0x1FFF 7A2A - 0x1FFF 7A2B
VREFINT_CAL	under 25°C (±5°C)	UXIFFF TAZA - UXIFFF TAZB

4.11.2 DAC

2 built-in 12-bit DAC, each corresponding to an output channel, which can be configured as 8-bit and 12-bit modes, and the DMA function is supported. The waveform generation supports noise wave and triangle wave. The conversion mode supports independent or simultaneous conversion and the trigger mode supports external signal trigger and internal timer update trigger.

4.12 **Timer**

2 built-in 16-bit advanced timers (TMR1/8), 8 16-bit general-purpose timers (TMR3/4/9/10/11/12/13/14), 2 32-bit general timers (TMR2/5), 2 16-bit basic timers (TMR6/7), 1 independent watchdog timer, 1 window watchdog timer and 1 system tick timer.

Watchdog timer can be used to detect whether the program is running normally.

The system tick timer is the peripheral of the core with automatic reloading function. When the counter is 0, it can generate a maskable system interrupt, which can be used for real-time operating system and general delay.

Table 21 Function Comparison between Advanced/General-purpose/Basic and System Tick Timers

Timer type	System tick timer	Basic timer	General-purpose timer		Advanced timer	
Timer name	Sys Tick Timer	TMR6/7	TMR2/5	TMR3/4/9/10/1 1/12/13/14	TMR1/8	
Counter resolution	24 bits	16 bits	32 bits	16 bits	16 bits	
Counter type	Down	Up	Up, do	wn, up/down	Up, down, up/down	
Prescaler factor	-	Any integer between 1 and 65536	, ,	r between 1 and 65536	Any integer between 1 and 65536	
Generate DMA request	-	OK		ОК	ОК	
Capture/comp are register	1	-	4		4	
Complementar y output	-	None	None		Yes	
Pin characteristics	-	-	1-way exte signal inpu 4-way non- channel pir	t pin; complementary	1-way external trigger signal input pin; 1-way braking input signal pin; 3-pair complementary channel pins; 1-way non-complementary channel pin.	
Function Description	Special for real- time operating system. Automatic reloading function supported.	Used to generate DAC trigger signals. Can be used as a 16- bit general-purpose timebase counter.	chaining fu Timers in d be frozen.	eation or event nction provided. lebug mode can ed to generate ut.	It has complementary PWM output with dead band insertion. When configured as a 16- bit standard timer, it has the same function as the TMRx timer.	

Timer type	System tick timer	Basic timer	General-purpose timer	Advanced timer
	When the		Each timer has	When configured as a 16-
	counter is 0, it		independent DMA request	bit PWM generator, it has
	can generate a		mechanism.	full modulation capability
	maskable		It can handle incremental	(0~100%).
	system interrupt.		encoder signals.	In debug mode, the timer
	Can program			can be frozen, and PWM
	the clock			output is disabled.
	source.			Synchronization or event
				chaining function provided.

Table 22 Function Comparison between IWDT and WWDT

Name	Counter	Country turns	Prescaler	Function description
Name	resolution	Counter type	factor	Function description
				The clock is provided by an internally
				independent RC oscillator of 28KHz, which is
				independent of the master clock, so it can run in
				stop and standby modes.
Indopondent			Any integer	The whole system can be reset in case of
Independent	12 bits	Down	between 1	problems.
watchdog			and 256	It can provide timeout management for
				applications as a free-running timer.
				It can be configured as a software or hardware
				startup watchdog through option bytes.
				Timers in debug mode can be frozen.
				Can be set for free running.
				The whole system can be reset in case of
Window	7 bits	Down		problems.
watchdog	7 5115	DOWII	-	Driven by the master clock, it has early interrupt
				warning function;
				Timers in debug mode can be frozen.

4.13 **RTC**

1 RTC is built in, and there are LSECLK signal input pins (OS32_IN and OS32_OUT) and 2 TAMP input signal detection pins (RTC_TAMP1/2); the clock source can select external 32.768kHz crystal oscillator, resonator or oscillator, LSICLK and HSECLK/128; it is powered by V_{DD} by default; when V_{DD} is powered off, it can be automatically switched to V_{BAT} power supply, and RTC configuration and time data will not be lost; RTC configuration and time data will not be lost in case of system reset, software reset and power-on reset; it supports clock and calendar functions.

4.13.1 Backup domain

4KB backup SRAM and 20 backup registers are built in, and are powered by V_{DD} by default; when V_{DD} is powered off, it can be automatically switched to V_{BAT} power supply, and the data in backup register will not be lost; the data in backup register will not be lost in case of system reset, software reset and power-on reset.

4.14 **RNG**

A RNG is embedded, and it provides 32-bit random number generated by the integrated simulation.

4.15 **DCI**

DCI is used to receive high-speed data streams from CMOS camera. It supports different data formats and is applicable to black-and-white cameras, X24 cameras and so on.

4.16 **CRC**

1 CRC (cyclic redundancy check) computing unit is built in, which can generate CRC codes and operate 8-bit, 16-bit and 32-bit data.

5 Electrical Characteristics

5.1 Test conditions of electrical characteristics

5.1.1 Maximum and minimum values

Unless otherwise specified, all products are tested on the production line at T_A =25 $^{\circ}$ C. Its maximum and minimum values can support the worst environmental temperature, power supply voltage and clock frequency.

In the notes at the bottom of each table, it is stated that the data are obtained through comprehensive evaluation, design simulation or process characteristics and are not tested on the production line; on the basis of comprehensive evaluation, after passing the sample test, take the average value and add and subtract three times the standard deviation (average $\pm 3\Sigma$) to get the maximum and minimum values.

5.1.2 Typical value

Unless otherwise specified, typical data are measured based on $T_A=25^{\circ}C$, $V_{DD}=V_{DDA}=3.3V$. These data are only used for design guidance.

5.1.3 Typical curve

Unless otherwise specified, typical curves will only be used for design guidance and will not be tested.

5.1.4 Power supply scheme

Figure 7 Power Supply Scheme

Notes: $V_{\text{DD}x}$ in the figure means the number of V_{DD} is x

5.1.5 Load capacitance

Figure 8 Load conditions when measuring pin parameters

Figure 9 Pin Input Voltage Measurement Scheme

Figure 10 Power Consumption Measurement Scheme

5.2 Test under general operating conditions

Table 23 General Operating Conditions

Symbol	Parameter	Conditions		Maximum value	Unit
f _{HCLK}	Internal AHB clock frequency	-	-	168	
f _{PCLK1}	Internal APB1 clock frequency	-	-	42	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	-	84	
V_{DD}	Main power supply voltage	-	1.8	3.6	٧
V_{DDA}	Analog power supply voltage	Must be the same	1.8	2.4	V

Symbol	Parameter	Conditions	Minimum value	Maximum value	Unit
	(When neither ADC nor DAC is used)	as V _{DD}			
	Analog power supply voltage (When ADC and DAC are used)		2.4	3.6	
V _{BAT}	Power supply voltage of backup domain	-	1.65	3.60	V
T _A	Ambient temperature (temperature number 6)	Maximum power	-40	85	\mathbb{C}
IA	Ambient temperature (temperature number 7)	dissipation	-40	105	$^{\circ}$

5.3 Absolute maximum ratings

If the load on the device exceeds the absolute maximum rating, it may cause permanent damage to the device. Here, only the maximum load that can be borne is given, and there is no guarantee that the device functions normally under this condition.

5.3.1 Maximum temperature characteristics

Table 24 Temperature Characteristics

Symbol	Description	Value	Unit
T _{STG}	Storage temperature range	-65 ~ +150	$^{\circ}$
TJ	Maximum junction temperature	125	$^{\circ}$ C

5.3.2 Maximum rated voltage characteristics

All power supply (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the power supply within the external limited range.

Table 25 Maximum Rated Voltage Characteristics

Symbol	Description	Minimum value	Maximum value	Unit
V _{DD} - V _{SS}	External main power supply voltage	-0.3	4.0	
V	Input voltage on FT pins	V _{SS} -0.3	V _{DD} +4	V
V_{IN}	Input voltage on other pins	V _{SS} -0.3	4.0	
ΔV_{DDx}	Voltage difference between different power supply pins	-	50	m\/
Vssx-Vss	Voltage difference between different grounding pins	-	50	mV

5.3.3 Maximum rated current characteristics

Table 26 Current Characteristics

Symbol	Description		Unit
I _{VDD}	Total current through V_{DD}/V_{DDA} power line (supply current) $^{(1)}$	240	mA

Symbol	Description	Maximum value	Unit
Ivss	Total current through V _{SS} ground line (outflow current) ⁽¹⁾	240	
ı	Sink current on any I/O and control pin	25	
lio	Source current on any I/O and control pin	25	
J(2)	Injection current of 5T pin	-5/+0	
I _{INJ(PIN)} ⁽²⁾	Injection current of other pins	±5	
$\Sigma I_{\text{INJ(PIN)}}^{(2)}$	Total injection current on all I/O and control pins (4)	±25	

- 1. All power supply (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) must always be within the allowed range.
- 2. The outflow current will interfere with the analog performance of the device.
- 3. I/O cannot be injected positively: when V_{IN}<V_{SS}, I_{INJ(PIN)} cannot exceed the maximum allowable input voltage value.
- 4. If V_{IN} exceeds the maximum value, IINJ(PIN) must be externally limited not to exceed the maximum value. When $V_{IN} > V_{DD}$, the current flows into the pins; when $V_{IN} < V_{SS}$, the current flows out of the pins.
- 5. When the current is injected into several I/O ports at the same time, the maximum value of Σ IINJ(PIN) is the sum of instantaneous absolute value of inflow current and outflow current.

5.3.4 Electro-static discharge (ESD)

Table 27 ESD Absolute Maximum Ratings

Symbol	Parameter	Conditions	Range	Unit
\/	Electrostatic discharge voltage (human	TA=+25 °C, conforming to	. 4000	\/
VESD(HBM)	body model)	ANSI/ESDA/JEDEC JS-001-2017	±4000	V

Note: The samples are measured by a third-party testing organization and are not tested in production.

5.3.5 Static latch-up (LU)

Table 28 Static Latch-up

Symbol	Parameter	Conditions	Туре
Class of static		T _A =+105℃, conforming to JEDEC JESD78F-2022	Class II A
	latch-up	1A-1100 C, 00111011111119 to 02020 0200101 2022	Clade II / C

Note: The samples are measured by a third-party testing organization and are not tested in production.

5.4 On-chip memory

5.4.1 Flash characteristics

Table 29 Flash Memory Characteristics

	Table 20 : Ident Mellinery Charlestoneries						
Symbol	Parameter		Conditions	Minimum value	Typical value	Maximum value	Unit
t _{prog}	8/16/32-bit programming time		$T_A = -40 \sim 105$ °C $V_{DD} = 2.4 \sim 3.6$ V	-	43	60	μs
t	Page (16KBytes) erase	8 bits	T _A = -40~105°C	-	60	120	mo
terase1	time	16 bits	V _{DD} =2.4~3.6V	-	60	120	ms

Symbol	Parameter	Parameter		Minimum value	Typical value	Maximum value	Unit
		32 bits		-	60	120	
	- 4	8 bits		-	250	500	
terase2	Page (64KBytes) erase time	16 bits		-	250	500	
		32 bits		-	250	500	
	Page (128KBytes) erase	8 bits		-	500	1000	
terase3		16 bits		-	500	1000	
		32 bits		-	500	1000	
		8 bits	_	-	10	20	
t _{ME}	Mass erase time	16 bits	$T_A = -40 \sim 105^{\circ}C$ $V_{DD} = 2.4 \sim 3.6V$	-	10	20	ms
		32 bits	V00-2.1 0.0 V	-	10	20	
	Voltage of 8-bit progra	programming		1.8	-	3.6	
V_{prog}	Voltage of 16-bit progra	amming	T _A = -40~105℃	2.1	-	3.6	V
	Voltage of 32-bit programming			2.7	-	3.6	

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.5 **Clock**

5.5.1 Characteristics of external clock source

5.5.1.1 High-speed external clock generated by crystal resonator

For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please consult the corresponding manufacturer.

Table 30 HSECLK4~26MHz Oscillator Characteristics

Symbol	Parameter	Conditions	Minimum value	Typical value	Maximum value	Unit
fosc_in	Oscillator frequency	-	4	8	26	MHz
R _F	Feedback resistance	-	-	200	-	kΩ
I _{DD(HSECLK)}	HSECLK current consumption	V_{DD} =3.3 V , C_L =10pF@8MHz	-	-	0.5	mA
tsu(HSECLK)	Start-up Time	V _{DD} is stable	-	2	-	ms
Gm	Oscillator transconductance	Startup	5.65	-	-	mA/V

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.5.1.2 Low-speed external clock generated by crystal resonator

For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please consult the corresponding manufacturer.

Table 31 LSECLK Oscillator Characteristics (f_{LSECLK} =32.768KHz)

Symbol	Parameter	Conditions	Minimum value	Typical value	Maximum value	Unit
f _{OSC_IN}	Oscillator frequency	-	-	32.768	-	KHz
IDD(LSECLK)	LSECLK current consumption	-	-	-	1	μΑ
tsu(LSECLK) ⁽¹⁾	Start-up Time	V _{DD} is stable	-	2	-	S

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.5.2 Characteristics of internal clock source

5.5.2.1 High-speed internal (HSICLK) RC oscillator

Table 32 HSICLK Oscillator Characteristics

Symbol	Parameter		Conditions		Typical value	Maximum value	Unit
fhsiclk	Frequency		-	-	16	-	MHz
	Accuracy of	Factory	V _{DD} =3.3V, T _A =25℃	-1	-	1	%
Acc(hsiclk)	HSICLK oscillator	calibration	V _{DD} =2-3.6V, T _A =-40~105℃	-2	-	4	%
I _{DDA(HSICLK)}	Power consumption of HSICLK oscillator		-	-	100	120	μА
tsu(HSICLK)	Startup time of HSICLK oscillator	V _{DD} :	=3.3V,T _A =-40~105℃	-	3.7	5	μs

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.5.2.2 Low-speed internal (LSICLK) RC oscillator

Table 33 LSICLK Oscillator Characteristics

Symbol	Parameter	Minimum value	Typical value	Maximum value	Unit
flsiclk	Frequency (V _{DD} =2-3.6V, T _A =-40~105 $^{\circ}$ C)	20	28	35	KHz
I _{DD(LSICLK)}	Power consumption of LSICLK oscillator	-	0.4	0.6	μA
tsu(LSICLK)	Startup time of LSICLK oscillator, (V _{DD} =3.3V, T _A =- $40\sim105^{\circ}$ C)	-	16	40	μs

⁽¹⁾ tsu(LSECLK) is the startup time, which is measured from the time when LSECLK is enabled by software to the time when stable oscillation at 32.768KHz is obtained. This value is measured by using a standard crystal resonator, which may vary greatly due to different crystal manufacturers.

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.5.3 PLL Characteristics

Table 34 PLL1 Characteristics

Symbol	Parameter	Minimum value	Typical value	Maximum value	Unit
4	PLL1 input clock	0.92	1	2.1	MHz
fPLL1_IN	PLL1 input clock duty cycle	40	-	60	%
fPLL1_OUT	PLL1 frequency multiplier output clock (V _{DD} =3.3V, T _A =-40~105 $^{\circ}$ C)	24	-	168	MHz
f _{PLL1_48_OUT}	PLL1 frequency multiplier output 48MHz clock (V _{DD} =3.3V, T _A =-40~105°C)	-	48	75	MHz
tLOCK1	PLL1 phase locking time	60	-	120	μs

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

Table 35 PLL2 Characteristics

Symbol	Parameter	Minimum value	Typical value	Maximum value	Unit
f	PLL2 input clock	0.92	1	2.1	MHz
f _{PLL2_IN}	PLL2 input clock duty cycle	40	-	60	%
f _{PLL2_OUT}	PLL2 frequency multiplier output clock (V _{DD} =3.3V, T _A =- $40\sim105^{\circ}\mathrm{C}$)	20	-	144	MHz
t _{LOCK1}	PLL phase locking time	82	-	150	μs

5.6 Reset and power management

5.6.1 Test of Embedded Reset and Power Control Module Characteristics

Table 36 Embedded Reset and Power Control Module Characteristics

Symbol	Parameter	Conditions	Minimum value	Typical value	Maximum value	Unit
V	Power-on/power-down	Falling edge	1.68	1.70	1.70	V
Vpor/pdr	reset threshold	Rising edge	1.71	1.72	1.73	V
\/ ·	Under-voltage	Falling edge	2.19	2.21	2.24	V
V _{BOR1}	threshold level 1	Rising edge	2.27	2.29	2.30	V
V _{BOR2}	Under-voltage	Falling edge	2.49	2.51	2.55	V
	threshold level 2	Rising edge	2.56	2.58	2.59	V
VBOR3	Under-voltage	Falling edge	2.81	2.84	2.87	V
V BOR3	threshold level 3	Rising edge	2.89	2.91	2.92	V

Symbol	Parameter	Conditions	Minimum value	Typical value	Maximum value	Unit
V _{BORhyst}	BOR hysteresis	-	-	100	-	mV
VPDRhyst	PDR hysteresis	-	-	40.00	50.00	mV
T _{RSTTEMPO}	Reset duration	-	0.70	0.95	1.48	ms

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

Table 37 Programmable Power Supply Voltage Detector Characteristics

Symbol	Parameter	Conditions	Minimum value	Typical value	Maximum value	Unit
		PLS[2:0]=000 (rising edge)	2.14	-	2.18	V
		PLS[2:0]=000 (falling edge)	2.03	-	2.10	V
		PLS[2:0]=000 (PVD hysteresis)	80.00	-	120.00	mV
		PLS[2:0]=001 (rising edge)	2.30	-	2.34	V
		PLS[2:0]=001 (falling edge)	2.18	-	2.23	V
		PLS[2:0]=001 (PVD hysteresis)	90.00	-	120.00	mV
		PLS[2:0]=010 (rising edge)	2.44	-	2.48	V
		PLS[2:0]=010 (falling edge)	2.32	-	2.37	V
		PLS[2:0]=010 (PVD hysteresis)	110.00	-	120.00	mV
	Programmable power	PLS[2:0]=011 (rising edge)	2.58	-	2.63	V
		PLS[2:0]=011 (falling edge)	2.49	-	2.53	V
V		PLS[2:0]=011 (PVD hysteresis)	90.00	-	100.00	mV
V_{PVD}	supply voltage detector voltage level selection	PLS(2:01-100 (rising edge) 2.75	-	2.80	V	
		PLS[2:0]=100 (falling edge)	2.64	-	2.68	V
		PLS[2:0]=100 (PVD hysteresis)	110.00	-	120.00	mV
		PLS[2:0]=101 (rising edge)	2.91	-	2.97	V
		PLS[2:0]=101 (falling edge)	2.81	-	2.86	V
		PLS[2:0]=101 (PVD hysteresis)	100.00	-	110.00	mV
		PLS[2:0]=110 (rising edge)	3.02	-	3.08	V
		PLS[2:0]=110 (falling edge)	2.90	-	2.96	V
		PLS[2:0]=110 (PVD hysteresis)	110.00	-	120.00	m.V
		PLS[2:0]=111 (rising edge)	3.12	-	3.19	V
		PLS[2:0]=111 (falling edge)	3.00	-	3.07	V
		PLS[2:0]=111 (PVD hysteresis)	110.00	-	120.00	mV

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.7 **Power consumption**

5.7.1 Power consumption test environment

- (1) The values are measured by executing Dhrystone 2.1, with the Keil.V5 compilation environment and the L0 compilation optimization level.
- (2) All I/O pins are in analog input mode and are connected to a static level at V_{DD} or V_{SS} (no load)
- (3) Unless otherwise specified, all peripherals are disabled
- (4) The relationship between Flash wait cycle setting and f_{HCLK}:

• 0~30MHz: 0 wait cycle

• 30~60MHz: 1 wait cycle

• 60~90MHz: 2 wait cycles

• 90~120MHz: 3 wait cycles

• 120~150MHz: 4 wait cycles

• 150~168MHz: 5 wait cycles

(5) When the peripherals are enabled: f_{PCLK1}=f_{HCLK}/4, f_{PCLK2}=f_{HCLK}/2

5.7.2 Power consumption in run mode

Table 38 Power Consumption in Run Mode when the Program is Executed in Flash (ART is turned on)

			Typical	value (1)	Maximum value (1)		
Parameter	Conditions	fhcLk	T _A =25℃,	$T_A=25^{\circ}C$, $V_{DD}=3.3V$		T _A =105℃, V _{DD} =3.6V	
			I _{DDA} (µ A)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)	
		168MHz	751.56	67.70	802.20	74.02	
		144MHz	693.94	52.75	745.20	57.66	
		120MHz	637.4	44.49	691.10	49.39	
		90MHz	780.88	34.37	831.70	39.375	
		60MHz	636.86	23.86	689.60	28.7	
	HSECLK bypass ⁽²⁾ , enabling all peripherals ⁽³⁾	30MHz	636.62	13.29	689.40	18.099	
	periprierais	25MHz	115.372	10.83	127.76	15.627	
		16MHz	115.42	7.21	127.93	11.905	
		8MHz	115.36	3.93	127.77	8.587	
		4MHz	115.33	2.31	127.78	6.967	
Power		2MHz	115.36	1.49	127.82	6.17	
consumption in run mode		168MHz	750.88	28.35	801.40	34.352	
		144MHz	692.84	22.02	744.70	26.958	
		120MHz	636.82	18.54	691.10	23.48	
		90MHz	779.80	14.45	831.90	19.302	
		10.04	689.80	14.924			
	HSECLK bypass ⁽²⁾ , disabling all peripherals	30MHz	636.40	5.75	690.20	10.563	
	portpriordio	25MHz	115.32	4.38	128.66	9.115	
		16MHz	115.34	3.01	128.44	7.673	
		8MHz	115.36	1.86	127.80	6.481	
		4MHz	115.35	1.27	127.84	5.93	
		2MHz	115.36	0.99	127.86	5.65	

Note:

⁽¹⁾ The data are obtained from a comprehensive evaluation and are not tested in production.

⁽²⁾ The external clock is 4MHz; when $f_{HCLK}>25MHz$, turn on PLL; otherwise, turn off PLL.

⁽³⁾ When the analog peripherals such as ADC, DAC, HSECLK, LSECLK, HSICLK and LSICLK are turned on, extra power consideration needs to be considered.

Table 39 Power Consumption in Run Mode when the Program is Executed in Flash (ART is turned off)

			Typical	value ⁽¹⁾	Maximum	ı value (1)
Parameter	Conditions	fHCLK	T _A =25℃,	V _{DD} =3.3V	T _A =105℃,	V _{DD} =3.6V
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)
		168MHz	751.66	64.25	802.00	70.52
		144MHz	693.58	51.09	745.30	56.05
		120MHz	637.26	43.99	690.20	48.92
		90MHz	780.86	34.91	831.40	39.97
	HSECLK bypass ⁽²⁾ , enabling all peripherals ⁽³⁾	60MHz	636.78	25.02	689.40	29.90
		30MHz	636.66	14.33	689.00	19.32
		25MHz	115.36	11.80	127.72	16.725
		16MHz	115.36	7.83	127.75	12.53
		8MHz	115.35	4.27	127.80	8.99
		4MHz	115.35	2.45	127.88	7.13
Power consumption		2MHz	115.362	1.57	127.76	6.28
in run mode		168MHz	750.94	24.71	801.40	30.85
		144MHz	692.82	20.21	744.70	25.18
		120MHz	636.76	17.96	689.80	22.91
		90MHz	780.46	15.03	831.60	20.01
	(0)	60MHz	636.46	11.19	689.80	16.13
	HSECLK bypass ⁽²⁾ , disabling all peripherals	30MHz	636.38	6.79	689.90	11.68
	ponprioraio	25MHz	115.33	5.26	128.50	10.15
		16MHz	115.32	3.65	127.96	8.46
		8MHz	115.36	2.14	127.82	6.80
		4MHz	115.35	1.43	127.68	6.11
		2MHz	115.53	1.07	127.90	5.82

Note:

⁽¹⁾ The data are obtained from a comprehensive evaluation and are not tested in production.

⁽²⁾ The external clock is 4MHz; when $f_{HCLK}>25MHz$, turn on PLL; otherwise, turn off PLL.

⁽³⁾ When the analog peripherals such as ADC, DAC, HSECLK, LSECLK, HSICLK and LSICLK are turned on, extra power consideration needs to be considered.

Table 40 Power Consumption in Run Mode when the Program is Executed in RAM

			Typical	value (1)	Maximum	ı value (1)
Parameter	Conditions	fHCLK	T _A =25℃,	V _{DD} =3.3V	T _A =105℃,	V _{DD} =3.6V
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)
		168MHz	752.14	70.29	803.80	76.51
		144MHz	693.74	54.73	745.50	59.73
		120MHz	637.60	46.22	690.40	51.16
	HSECLK bypass ⁽²⁾ , enabling all peripherals ⁽³⁾	90MHz	781.00	35.67	832.00	40.53
		60MHz	637.02	24.70	689.8	29.65
		30MHz	636.74	13.74	689.2	18.596
		25MHz	115.42	11.23	127.85	16.02
		16MHz	115.374	7.42	127.88	12.21
		8MHz	115.37	4.05	127.81	8.836
		4MHz	115.376	2.38	127.72	7.12
Power consumption		2MHz	115.347	1.53	127.76	6.28
in run mode		168MHz	751.38	31.03	802.4	37.29
		144MHz	693.00	24.11	744.7	29.11
		120MHz	636.88	20.30	689.80	25.23
		90MHz	780.56	15.81	931.60	20.74
	(0)	60MHz	636.68	10.92	690.00	15.80
	HSECLK bypass ⁽²⁾ , disabling all peripherals	30MHz	636.62	6.19	689.70	11.02
	poriprioraio	25MHz	115.36	4.75	128.42	9.48
		16MHz	115.35	3.26	128.79	8.07
		8MHz	115.38	1.97	127.76	6.71
		4MHz	115.36	1.33	127.73	6.04
		2MHz	115.34	1.02	127.74	5.70

Note:

⁽¹⁾ The data are obtained from a comprehensive evaluation and are not tested in production.

⁽²⁾ The external clock is 4MHz, and when f_{HCLK} >25MHz, turn on PLL, otherwise, turn off PLL.

⁽³⁾ When the analog peripherals such as ADC, DAC, HSECLK, LSECLK, HSICLK and LSICLK are turned on, extra power consideration needs to be considered.

5.7.3 Power consumption in sleep mode

Table 41 Power Consumption in Sleep Mode when the Program is Executed in Flash (ART is turned off)

			Typical	value (1)	Maximun	n value (1)
Parameter	Conditions	fhcLk	T _A =25℃,	V _{DD} =3.3V	T _A =105℃,	V _{DD} =3.6V
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)
		168MHz	751.34	54.18	802.1	60.33
		144MHz	693.26	42.25	745.00	47.12
		120MHz	637.24	35.75	689.80	40.53
		90MHz	780.60	27.69	831.20	32.539
	HSECLK bypass ⁽²⁾ , enabling all peripherals	60MHz	636.72	19.33	689.20	24.149
		30MHz	636.46	11.02	689.20	15.8
		25MHz	115.356	8.96	127.77	13.7
		16MHz	115.34	5.99	127.71	10.68
		8MHz	115.334	3.33	127.78	8.01
		4MHz	115.332	2.00	127.84	6.669
Power consumption		2MHz	115.352	1.34	127.82	6.017
in sleep mode		168MHz	750.52	13.91	801.00	19.86
		144MHz	692.58	10.82	743.90	15.64
		120MHz	636.46	9.20	689.00	13.99
		90MHz	780.24	7.44	830.60	12.21
	(2)	60MHz	636.42	5.33	689.00	10.07
	HSECLK bypass ⁽²⁾ , disabling all peripherals	30MHz	636.36	3.38	688.80	8.10
	Patricials	25MHz	115.37	2.41	127.84	7.08
		16MHz	115.35	1.79	127.74	6.46
		8MHz	115.35	1.23	127.83	5.91
		4MHz	115.36	0.96	127.86	5.63
		2MHz	115.42	0.83	127.84	5.54

Note:

⁽¹⁾ The data are obtained from a comprehensive evaluation and are not tested in production.

⁽²⁾ The external clock is 4MHz; when $f_{HCLK}>25MHz$, turn on PLL; otherwise, turn off PLL.

5.7.4 Power consumption in stop mode

Table 42 Power Consumption in Stop Mode

		Typical value ⁽¹⁾ , (T _A =25℃)						Maximum value ⁽¹⁾ , (V _{DD} =3.6V)	
	Conditions	V _{DD} =	V _{DD} =2.4V V _{DD} =3.3V		V _{DD} =	3.6V	T _A =105℃		
			I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)
The regulator is in run mode, and all oscillators are in off state	Flash is in stop mode, and RC internal oscillator and high-speed oscillator are turned off (with no independent watchdog)	9.28	0.69	9.80	0.70	10.05	0.71	12.36	20.00
	Flash is in power-down mode, and RC internal oscillator and high-speed oscillator are turned off (with no independent watchdog)	9.23	0.69	9.72	0.70	10.00	0.70	12.35	20.00
The regulator is in low-power mode, and all oscillators are in off state	Flash is in stop mode, and RC internal oscillator and high-speed oscillator are turned off (with no independent watchdog)	4.18	0.21	4.65	0.21	4.87	0.21	5.91	15.00
	Flash is in power-down mode, and RC internal oscillator and high-speed oscillator are turned off (with no independent watchdog)	4.19	0.20	4.64	0.20	4.86	0.20	5.86	15.00

Note: It is tested in comprehensive evaluation instead of in production.

5.7.5 Power consumption in standby mode

Table 43 Power Consumption in Standby Mode

			Typical value ⁽¹⁾ , (T _A =25℃)						n value ⁽¹⁾ , =3.6V)
Conditions		V _{DD} =2.4V		V _{DD} =3.3V		V _{DD} =3.6V		T _A =105℃	
		I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}
			(µA)	(µA)	(µA)	(µA)	(μΑ)	(µA)	(µA)
	The backup SRAM is								
	turned on, and the low-	2.15	8.38	2.56	9.73	2.83	10.19	3.76	59.39
Power supply	speed oscillator and RTC	2.13	5 0.30	2.50	9.73	2.03	10.19	3.70	59.59
current in	are turned on								
standby	The backup SRAM is								
mode	turned off, and the low-	2.15	3.52	2.62	4.46	2.81	5.11	3.48	32.00
	speed oscillator and RTC	2.13	3.52	2.02	4.40	.40 2.81	5.11	5.40	32.00
	are turned on								

Conditions			Турі	cal val	Maximum value ⁽¹⁾ , (V _{DD} =3.6V)				
		V _{DD} =2.4V		V _{DD} =3.3V		V _{DD} =3.6V		T _A =105℃	
			I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}
		(µA)	(μΑ)	(μΑ)	(µA)	(µA)	(µA)	(µA)	(μΑ)
	The backup SRAM is								
	turned on, and the RTC is	2.13	7.33	2.62	8.24	2.81	8.64	3.45	58.24
	turned off								
	The backup SRAM is								
	turned off, and the RTC is	2.13	2.51	2.61	3.31	2.78	3.68	3.45	19.2
	turned off								

Note: (1) The data are obtained from a comprehensive evaluation and are not tested in production.

5.7.6 Peripheral power consumption

Peripheral power consumption = current that enables the peripheral clock-current that disables the peripheral clock.

Table 44 Peripheral Power Consumption

Demonster	Deviate and	Typical value (1) T	Γ _A =25℃, V _{DD} =3.3V	11-26
Parameter	Peripheral	168MHz	144MHz	Unit
	DMA1	5.4	4.21	
	DMA2	5.56	4.3	
	ETH	3	2.35	
	OTG_HS	4.21	3.26	
	GPIOA	0.32	0.25	
	GPIOB	0.31	0.24	
	GPIOC	0.32	0.24	
AHB1 (up to 168MHz)	GPIOD	0.3	0.23	
	GPIOE	0.31	0.25	
	GPIOF	0.33	0.26	μA/MHz
	GPIOG	0.3	0.24	
	GPIOH	0.3	0.24	
	GPIOI	0.3	0.24	
	CRC	0.03	0.03	
	BAKPR	0.07	0.05	
	OTG_FS	3.12	2.41	
AUD2 (up to 160MU=\	DCI	0.79	0.61	
AHB2 (up to 168MHz)	RNG	0.16	0.12	
	HASH	1.3	1	

D	D. S. Louis	Typical value (1) T	^a=25℃, V _{DD} =3.3V	Linit
Parameter	Peripheral	168MHz	144MHz	Unit
	CRYP	0.25	0.19	
AHB3 (up to 168MHz)	EMMC	1.68	1.3	
	TMR2	0.46	0.36	
	TMR3	0.35	0.27	
	TMR4	0.34	0.27	
	TMR5	0.46	0.35	
	TMR6	0.08	0.07	
	TMR7	0.08	0.06	
	TMR12	0.19	0.15	
	TMR13	0.14	0.11	
	TMR14	0.14	0.1	
	WWDT	0.02	0.02	
APB1 (up to 42MHz)	SPI2/I2S2	0.12	0.1	
	SPI3/I2S3	0.12	0.1	
	USART2	0.11	0.09	
	USART3	0.12	0.09	
	UART4	0.11	0.08	
	UART5	0.11	0.08	
	I2C1	0.12	0.09	
	I2C2	0.12	0.09	
	I2C3	0.12	0.1	
	CAN1	0.18	0.14	
	CAN2	0.16	0.13	
	PMU	0.01	0.01	
	DAC	0.08	0.06	
	SDIO	0.41	0.32	
	TMR1	0.99	0.77	
	TMR8	0.97	0.77	
APB2 (up to 84MHz)	TMR9	0.41	0.32	
	TMR10	0.27	0.21	
	TMR11	0.26	0.22	
	ADC1	0.27	0.22	7

Parameter	Dorinhaval	Typical value (1) T	_A=25℃, V _{DD} =3.3V	l loit
Parameter	Peripheral	168MHz	144MHz	Unit
	ADC2	0.27	0.22	
	ADC3	0.28	0.23	
	SPI1	0.12	0.11	
	USART1	0.22	0.18	
	USART6	0.21	0.18	
	SYSCFG	0.05	0.05	

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.7.7 Backup Domain Power Consumption

Table 45 V_{BAT} Power Consumption

Symbol	Parameter	Conditions	Typical value	e ⁽¹⁾ , T _A =25℃	Maximui V _{BA}	Unit	
			V _{BAT} =2.4V	V _{BAT} =3.3V	T _A =85℃	T _A =105℃	
	LSECLK	The backup SRAM is turned on, and the low-speed oscillator and RTC are turned on The backup SRAM is turned off, and the low-speed	1.894	2.262	6	11	
I _{DD_VBAT}	and RTC are in ON	oscillator and RTC are turned on	1.08	1.412	3	5	μΑ
	state	The backup SRAM is turned on, and the RTC is turned off	0.926	1.116	5	10	
		The backup SRAM is turned off, and the RTC is turned off	0.02	0.128	2	4	

Note: (1) The data are obtained from a comprehensive evaluation and are not tested in production.

5.8 Wake-up time in low-power mode

The measurement of wake-up time in low-power mode is from the start of wake-up event to the time when the user program reads the first instruction, in which $V_{DD}=V_{DDA}$.

Table 46 Wake-up Time in Low-power Mode

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
twusleep	Wake-up from	_	39.00	59	61.20	ns
	sleep mode		00.00	3	01.20	113

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		The regulator is in run mode, and Flash is in stop state	12.51	13.602	14.99	
		-				
Wake up from		The regulator is in low-power mode, and Flash	15.51	19.552	22.93	μs
	Wake up from	is in stop state				
WUSTOP	the stop mode	The regulator is in run mode, and Flash is in	105.60	133.156	135.16	
		deep power-down mode	125.63			
		The regulator is in low-power mode, and Flash	400.50	400.050	400.00	
		is in deep power-down mode	133.52	136.956	139.60	ı
_	Wake up from		470.00	244.050	227.00	
twustdby	standby mode	-	173.03	214.056	227.96	

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.9 **I/O port characteristics**

Table 47 DC Characteristics (T_A=-40 $^{\circ}$ C-105 $^{\circ}$ C, V_{DD}=2~3.6V)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		STD and STDA I/O	-	-	0.3V _{DD} -0.04	
V_{IL}	Low-level input voltage	5T and 5Tf I/O	-	-	0.3V _{DD}	V
	voltago	Boot0 pin	-	-	0.1V _{DD} +0.1	
		STD and STDA I/O	0.45V _{DD} +0.3	-	-	
VIH	V _{IH} High-level input voltage	5T and 5Tf I/O	0.7V _{DD}	-	-	V
		Boot0 pin	0.17V _{DD} +0.7	-	-	
1/.	Schmidt trigger	STD, STDA and 5T, 5Tf I/O	10% V _{DD}	-	-	mV
V hys	V _{hys} hysteresis	Boot0 pin	0.1	-	-	IIIV
I _{Ikg}	Input leakage current	STDA in digital mode, V _{DDIOX} ≤V _{IN} ≤V _{DDA}	-	-	±1	μA
		5T and 5Tf I/O, V _{DDIOx} ≤V _{IN} ≤5V	-	-	3	
	Weak pull-up	Except PA10 and PB12, V _{IN} =V _{SS}	30	40	50	
Rpu	equivalent resistance	PA10 and PB12	7	10	14	10
Weak pull-dow RPD equivalent resistance	Weak pull-down	Except PA10 and PB12, V _{IN} =V _{DD}	30	40	50	kΩ
	·	PA10 and PB12	7	10	14	
Сю	I/O pin capacitance	-	-	5	-	pF

Table 48 AC Characteristics (T_A=25℃)

SPEED[1:0]	Symbol	Parameter	Conditions	Min	Max	Unit
			CL=50pF,V _{DD} >2.7V	-	4	
			CL=50pF,V _{DD} >1.8V	-	2	
	f _{max(IO)out}	Maximum frequency	CL=10pF,V _{DD} >2.7V	-	8	MHz
00			CL=10pF,V _{DD} >1.8V		4	
	$t_{f(IO)out}/t_{r(IO)out}$	Fall time of output from high to low level and rise time of output from low to high level	C _L =50 pF,V _{DD} =1.8 V-3.6V	-	100	ns
			CL=50pF,V _{DD} >2.7V	-	25	
	f (10)	Maximum frequency	CL=50pF,V _{DD} >1.8V	-	12.5	MUz
	f _{max(IO)out}	Maximum frequency	CL=10pF,V _{DD} >2.7V	-	50	IVIIIZ
01			CL=10pF,V _{DD} >1.8V	-	20	ns MHz ns MHz
01		Fall time of output from	CL=30pF,V _{DD} >2.7V	-	10	ns
	$t_{f(IO)out}/t_{r(IO)out}$	high to low level and rise	CL=30pF,V _{DD} >1.8V	-	20	
		time of output from low	CL=10pF,V _{DD} >2.7V	-	6	
		to high level	CL=10pF,V _{DD} >1.8V	-	10	
			CL=30pF,V _{DD} >2.7V	-	50	MHz
	f _{max(IO)} out		CL=30pF,V _{DD} >1.8V	-	25	
		Maximum frequency	CL=10pF,V _{DD} >2.7V	- 100	IVITZ	
40			CL=10pF,V _{DD} >1.8V	-	50	
10		Fall time of output from	CL=30pF,V _{DD} >2.7V	-	6	
	tues // ues	high to low level and rise	CL=30pF,V _{DD} >1.8V	-	10	20
	$t_{f(IO)out}/t_{r(IO)out}$	time of output from low	CL=10pF,V _{DD} >2.7V	-	4	ns
		to high level	CL=10pF,V _{DD} >1.8V	-	6	
			CL=30pF,V _{DD} >2.7V	-	100	
		Maximum for according	CL=30pF,V _{DD} >1.8V	-	50	N 41 1-
11	f _{max(IO)out}	Maximum frequency	CL=10pF,V _{DD} >2.7V	-	180	IVITZ
			CL=10pF,V _{DD} >1.8V	-	100	
		Fall time of output from	CL=30pF,V _{DD} >2.7V	1	4	
	$t_{f(IO)out}/t_{r(IO)out}$	high to low level and rise time of output from low	CL=30pF,V _{DD} >1.8V	-	6	ns
		time of output from low to high level	CL=10pF,V _{DD} >2.7V	-	2.5	

SPEED[1:0]	Symbol	Parameter	Conditions	Min	Max	Unit
			CL=10pF,V _{DD} >1.8V	-	4	
-	teintipw	Pulse width of external signal detected by EINT controller	-	10	-	

Figure 11 I/O AC Characteristics Definition

Table 49 Output Drive Voltage Characteristics (T_A=25 °C)

Symbol	Parameter	Conditions	Min	Max	Unit
VoL	I/O pin outputs low voltage	CMOS port, IIO =8mA,	-	0.4	
V _{OH}	I/O pin outputs high voltage	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -0.4	-	V
Vol	I/O pin outputs low voltage	TTL port, Iıo =20mA,	-	0.4	V
V _{OH}	I/O pin outputs high voltage	2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL}	I/O pin outputs low voltage	I _{IO} =20mA,	-	1.3	
Vон	I/O pin outputs high voltage	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -1.3	-	V
Vol	I/O pin outputs low voltage	I _{IO} =6mA,	-	0.4	V
V _{OH}	I/O pin outputs high voltage	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -0.4	-	

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.10 NRST pin characteristics

The NRST pin input drive adopts CMOS process, which is connected with a permanent pull-up resistor RPU.

Table 50 NRST Pin Characteristics (T_A=-40~105℃, V_{DD}=2~3.6V)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL(NRST)	NRST low-level input voltage	TTL port,	-	-	0.8	
VIH(NRST)	NRST high-level input voltage	2.7V≤V _{DD} ≤3.6V	2	-	-	V
V _{IL(NRST)}	NRST low-level input voltage	CMOS port,	-	-	0.3V _{DD}	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH(NRST)}	NRST high-level input voltage	1.8V≤V _{DD} ≤3.6V	0.7V _{DD}	-	-	
V _{hys(NRST)}	NRST Schmidt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistance	V _{IN} =V _{SS}	30	40	50	kΩ
V _{F(NRST)}	NRST input filter pulse	-	-	-	100	20
V _{NF} (NRST)	NRST input unfiltered pulse	V _{DD} >2.7V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Reset internal source	20	-	-	μs

5.11 Communication peripherals

5.11.1 I2C peripheral characteristics

To achieve maximum frequency of I2C in standard mode, f_{PCLK1} must be greater than 2MHz. To achieve maximum frequency of I2C in fast mode, f_{PCLK1} must be greater than 4MHz.

Table 51 I2C Interface Characteristics (T_A=25℃, V_{DD}=3.3V)

0	Barrantar	Standa	ard I2C	Fast I2	Hnit	
Symbol	Parameter	Min	Max	Min	Max	Unit
$t_{\text{w}(\text{SCLL})}$	SCL clock low time	4.7	-	1.3	-	
tw(SCLH)	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	-	0	900]
$t_{r(\text{SDA})}/t_{r(\text{SCL})}$	SDA and SCL rise time	-	1000	20+0.1C _b	300	ns
$t_{f(\text{SDA})}/t_{f(\text{SCL})}$	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Setup time of repeated start condition	4.7	-	0.6	-	
t _{su(STO)}	Setup time of stop condition	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Time from stop condition to start condition (the bus is idle)	4.7	-	1.3	-	
Сь	Capacitive load of each bus	-	400	-	400	pF

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

Figure 12 Bus AC Waveform and Measurement Circuit

Note: The measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

5.11.2 SPI peripheral characteristics

Table 52 SPI Characteristics (T_A=25 °C, V_{DD}=3.3V)

Symbol	Parameter	Conditions	Min	Max	Unit
		Master mode, SPI1,	_	42	
fsck		2.7V <v<sub>DD<3.6V</v<sub>	-	72	
ISCK		Slave mode, SPI1,	_	42	
	SPI clock frequency	2.7V <v<sub>DD<3.6V</v<sub>		72	MHz
	of Follock frequency	Master mode, SPI1/2/3,	_	21	IVII IZ
1/t _{c(SCK)}		1.7V <v<sub>DD<3.6V</v<sub>	_	21	
T/tc(SCK)		Slave mode, SPI1/2/3,	_	21	
		1.7V <v<sub>DD<3.6V</v<sub>	_	21	
$t_{r(SCK)}$	SI clock rise and fall time	Load capacitance: C=15pF	_	6	
t _{f(SCK)}	of clock fise and fall time	Load capacitance. 0=15pi		0	
$t_{\text{su}(\text{NSS})}$	NSS setup time	Slave mode	4T _{PCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2T _{PCLK} + 10	-	
t _{w(SCKH)}	SCK high and low time	Master mode, f _{PCLK} =36MHz,	T _{PCLK} /2-2	T _{PCLK} /2+1	
tw(SCKL)	CORTINGITATION WITH	Prescaler factor=4	IPCLN Z Z	I PCLN Z I I	ns
t _{su(MI)}	Data input actus time	Master mode	4	-	
$t_{\text{su}(\text{SI})}$	Data input setup time	Slave mode	5	-	
t _{h(MI)}	Data input hold time	Master mode	4	-	
t _{h(SI)}	Data input hold time	Slave mode	5	-	

Symbol	Parameter	Conditions	Min	Max	Unit
t _{a(SO)}	Data output access time	Slave mode, f _{PCLK} =20MHz	0	3T _{PCLK}	
t _{dis(SO)}	Disable time of data output	Slave mode	0	18	
t _{v(SO)}	Effective time of data output	Slave mode (after enabling the edge)	-	22.5	
t _{v(MO)}	Effective time of data output	Master mode (after enabling the edge)	-	6.97	
t _{h(SO)}	Data autout hald time	Slave mode (after enabling the edge)	11.5	-	
t _{h(MO)}	Data output hold time	Master mode (after enabling the edge)	1	-	
DuCy(sck)	SPI clock frequency duty cycle	Slave mode	25	75	%

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

NSS input -t_{c (SCK)} -t_{h (NSS)} $t_{SU\,(NSS)}$ CPHA=0 CPOL=0 $t_{h\,(SCKH)}$ CPHA=0 CPOL=1 tw(sckl) SCK input t_{r (SCK)} t_{dls(S0)} t_{V(S0)} t_{h(SO)} t_{a(S0)} MISO output Output the most Output the least Output Bits 6~1 significant bit significant bit t_{SU(SI)} Input the least significant bit Input the most Input Bits 6~1 significant bit MOSI input t_{h(SI)}

Figure 13 SPI Timing Diagram - Slave Mode and CPHA=0

NSS input t_{SU (NSS)} t_{h (NSS)} CPHA=1 CPOL=0 tw(SCKH) CPHA=1 CPOL=1 tw(sckl) SCK input tr (SCK) t_{f(SCK)} t_{V(S0)}! t_{h(S0)} MISO output Output the most Output the least Output Bits 6~1 significant bit significant bit t_{h(SI)} t_{SU(SI)}→¦ Input the most significant Input the least Input Bits 6~1 significant bit bit MOSI input

Figure 14 SPI Timing Diagram - Slave Mode and CPHA=1

Note: The measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 15 SPI Timing Diagram - Master Mode

Note: The measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

5.12 **Analog peripherals**

5.12.1 ADC

Test parameter description:

- Sampling rate: the number of conversion of analog quantity to digital quantity by ADC per second
- Sample rate=ADC clock/(number of sampling periods + number of conversion periods)

5.12.1.1 12-bit ADC characteristics

Table 53 12-bit ADC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Power supply voltage	-	1.8	-	3.6	V
I _{DDA}	ADC power consumption	-	-	1.6	1.8	mA
f _{ADC}	ADC frequency	V _{DDA} =1.8~2.4V	0.6	15	18	MHz
IADC	ADC frequency	V _{DDA} =2.4~3.6V	0.6	30	36	IVII IZ
C_{ADC}	Internal sampling and holding capacitance	-	-	4	-	pF
R _{ADC}	Sampling resistor	-	-	-	6000	Ω
ts	Sampling time	f _{ADC} =30MHz	0.1		16	μs
ıs	Sampling time	-	3		480	1/f _{ADC}
		f _{ADC} =30MHz 12-bit resolution	0.50	-	16.40	μs
T	Occupios and conversion time	f _{ADC} =30MHz 10-bit resolution	0.43	-	16.34	μs
T _{CONV}	Sampling and conversion time	f _{ADC} =30MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} =30MHz 6-bit resolution	0.30	-	16.20	μs
lvref	ADC VREF DC current consumption in conversion mode	-	-	300	500	μΑ

Table 54 12-bit ADC Accuracy

Symbol	Parameter	Conditions	Тур	Max	Unit
Eτ	Composite error		±2	±5	
Eo	Offset error	f _{РСLК} =56МНz,	±1.5	±2.5	
Eg	Gain error	f _{ADC} =14MHz,	±1.5	±3	LSB
E _D	Differential linear error	V _{DDA} =2.4V-3.6V	±1	±2	
EL	Integral linear error	T _A =-40℃~105℃	±1.5	±3	

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.12.1.2 Test of Built-in Reference Voltage Characteristics

Table 55 Built-in Reference Voltage Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VREFINT	Built-in Reference Voltage	-40°C < T _A < +105°C	1.19	1.20	1.20	V
$T_{S_vrefint}$	Sampling time of ADC when reading out internal reference voltage	-	10	-	-	μs
Vrerint	Built-in reference voltage extends to temperature range	V _{DD} =3V	-	3	5	mV
T _{coeff}	Temperature coefficient	-	-	30	50	ppm/℃

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

5.12.2 DAC

Test parameter description:

- DNL differential non-linear error: the deviation between two consecutive codes minus
 1LSB
- INL integral non-linear error: the difference between the measured value at code i and the value at code i on the connection between code 0 and the last code 4095

Table 56 DAC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog power supply voltage	-	1.8	-	3.6	٧
RLOAD	Resistive load	The buffer is turned on	5	-	-	kΩ
Ro	Output impedance	The resistive load between DAC_OUT and V_{SS} is 1.5M Ω with buffer off	-	-	15	kΩ
C _{LOAD}	Capacitive load	Maximum capacitive load at DAC_OUT pin with buffer on	-	-	50	pF
DAC_OUT min	Low DAC_OUT voltage with buffer	Maximum output offset of DAC, (0x0E0) corresponding to 12-bit input	0.2	-	-	٧
DAC_OUT max	Higher DAC_OUT voltage with buffer	code to $V_{REF+}=(0xF1C)$ at 3.6V and $V_{REF+}=(0x1C7)$ at 1.8V and $(0xE38)$	-	-	V _{DDA} -0.2	V
DAC_OUT min	Low DAC_OUT voltage without buffer	Maximum autout affect of DAC	-	0.5	-	mV
DAC_OUT max	Higher DAC_OUT voltage without buffer	Maximum output offset of DAC	-	-	V _{REF+} - 1LSB	V
DNL	Differential non- linear error	Configured with 12-bit DAC	-	-	±2	LSB
INL	Integral non-linear error	Configured with 12-bit DAC	-	-	±4	LSB
Offset	Offset error	V _{REF+} =3.6V, configuring 12-bit DAC	-	-	±12	LSB

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Gain error	Gain error	Configured with 12-bit DAC	-	-	±0.5	%

Note: The data are obtained from a comprehensive evaluation and are not tested in production.

6 Package Information

6.1 **LQFP176 package information**

Figure 16 LQFP176 Package Diagram

- (1) The figure is not drawn to scale.
- (2) All pins should be soldered to the PCB.

Table 57 LQFP176 Package Data

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX. 1.600	OVERALL HEIGHT
2	A2	1.400±0.050	PKG THICKNESS
3	D	26.000±0.200	LEAD TIP TO TIP
4	D1	24.000±0.100	PKG LENGTH
5	E	26.000±0.200	LEAD TIP TO TIP
6	E1	24.000±0.100	PKG WDTH
7	L	0.600±0.150	FOOT LENGTH
8	L1	1.000 REF	LEAD LENGTH
9	е	0.500 BASE	LEAD PITCH
10	H (REF)	(21.50)	CUM LEAD PITCH
11	b	0.22±0.050	LEAD WIDTH

Note: Dimensions are marked in millimeters.

Figure 17 LQFP176 -176 Pins, 24 x24mm Welding Layout Recommendations

Figure 18 LQFP176 -176 Pins, 24 x24mm Schematic Diagram

6.2 LQFP144 package information

Figure 19 LQFP144 Package Diagram

- (1) The figure is not drawn to scale.
- (2) All pins should be soldered to the PCB.

Table 58 LQFP144 Package Data

S/N	SYM	DIMENSIONS	REMARKS			
1	А	MAX. 1.600	OVERALL HEIGHT			
2	A2	1.400±0.050	PKG THICKNESS			
3	D	22.000±0.200	LEAD TIP TO TIP			
4	D1	20.000±0.100	PKG LENGTH			
5	E	22.000±0.200	LEAD TIP TO TIP			
6	E1	20.000±0.100	PKG WDTH			
7	L	0.600±0.150	FOOT LENGTH			
8	L1	1.000 REF	LEAD LENGTH			
9	е	0.500 BASE	LEAD PITCH			
10	H (REF)	(17.50)	CUM LEAD PITCH			
11	b	0.22±0.050	LEAD WIDTH			

Note: Dimensions are marked in millimeters.

1.35

Figure 20 LQFP144-144 Pins, 20 x 20mm Welding Layout Recommendations

Note: Dimensions are marked in millimeters.

Figure 21 LQFP144 -144 Pins, 20 x20mm Schematic Diagram

- 19.9 -

- 22.6 -

6.3 LQFP100 package information

Figure 22 LQFP100 Package Diagram

- (1) The figure is not drawn to scale.
- (2) All pins should be soldered to the PCB.

Table 59 LQFP100 Package Data

	DIMENSION LIST (FOOTPRINT: 2.00)							
S/N	SYM	DIMENSIONS	REMARKS					
1	Α	MAX. 1.600	OVERALL HEIGHT					
2	A2	1.400±0.050	PKG THICKNESS					
3	D	16.000±0.200	LEAD TIP TO TIP					
4	D1	14.000±0.100	PKG LENGTH					
5	Е	16.000±0.200	LEAD TIP TO TIP					
6	E1	14.000±0.100	PKG WDTH					
7	L	0.600±0.150	FOOT LENGTH					
8	L1	1.000 REF	LEAD LENGTH					
9	е	0.500 BASE	LEAD PITCH					
10	H (REF)	(12.00)	CUM LEAD PITCH					
11	b	0.22±0.050	LEAD WIDTH					

Note: Dimensions are marked in millimeters.

Figure 23 LQFP100 - 100 Pins, 14 x 14mm Welding Layout Recommendations

Note: Dimensions are marked in millimeters.

Figure 24 LQFP100 - 100 Pins, 14 x 14mm Package Schematic Diagram

6.4 **LQFP64** package information

Figure 25 LQFP64 Package Diagram

- (1) The figure is not drawn to scale.
- (2) All pins should be soldered to the PCB.

Table 60 LQFP64 Package Data

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.600	OVERALLHEIGHT
2	A2	1.400±0.050	PKGTHICKNESS
3	D	12.000±0.200	LEADTIPTOTIP
4	D1	10.000±0.100	PKGLENGTH
5	Е	12.000±0.200	LEADTIPTOTIP
6	E1	10.000±0.100	PKGWIDTH
7	L	0.600±0.150	FOOTLENGTH
8	L1	1.000REF.	LEADLENGTH
9	е	0.500BASE	LEADPITCH
10	H(REF.)	(7.500)	GUM.LEADPITCH
11	b	0.220±0.050	LEADWIDTH

Note: Dimensions are marked in millimeters.

Figure 26 LQFP64 Welding Layout Recommendations

Note: Dimensions are marked in millimeters.

Figure 27 LQFP64 - 64 Pins, 10 x 10mm Package Schematic Diagram

7 Packaging Information

7.1 Reel packaging

Figure 28 Specification Drawing of Reel Packaging

Quadrant Assignments for PIN1 Orientation in Tape

All photos are for reference only, and the appearance is subject to the product.

Table 61 Reel Packaging Parameter Specification Table

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	Pin1 Quadrant
APM32F407RET6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F407RGT6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F405RGT6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F407RET7	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F407RGT7	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F405RGT7	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1

7.2 Tray packaging

Figure 29 Tray Packaging Diagram

Tray Dimensions

All photos are for reference only, and the appearance is subject to the product

Table 62 Tray Packaging Parameter Specification Table

Device	Package Type	Pins	SPQ	X-Dimension (mm)	Y-Dimension (mm)	X-Pitch (mm)	Y-Pitch (mm)	Tray Length (mm)	Tray Width (mm)
APM32F407IET6	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407IGT6	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407ZET6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407ZGT6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407VET6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407VGT6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407RET6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F407RGT6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F405ZGT6	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F405VGT6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F405RGT6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F407IET7	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407IGT7	LQFP	176	400	27	27	30.4	31.5	322.6	135.9
APM32F407ZET7	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407ZGT7	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F407VET7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407VGT7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F407RET7	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F407RGT7	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F405ZGT7	LQFP	144	600	22.06	22.06	25.4	25.2	322.6	135.9
APM32F405VGT7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F405RGT7	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9

8 Ordering Information

I=176pins

Figure 30 APM32F405xG 407xExG Series Ordering Information Diagram APM32 407 Z G Т XXX Option XX=Programmed device code Product series R=Reel package APM32=Arm-based 32-bit MCU Blank=Tray package Temperature range Product type 6=Industrial-grade temperature F=Foundation range, -40°C-85°C 7=Industrial-grade temperature range, $-40^{\circ}C-105^{\circ}C$ Product subseries 405/407=High-performance and Package T=LQFP DSP with FPU Number of pins R=64 pins Flash memory capacity V=100pinsE =512 KB Z=144pins G =1 MB

Table 63 Ordering Information Table

Order code	FLASH (KB)	SRAM (KB)	Package	SPQ	Range of temperature
APM32F407IGT6	1024	192+4	LQFP176	400	Industrial grade -40°C~85°C
APM32F407IET6	512	192+4	LQFP176	400	Industrial grade -40°C~85°C
APM32F407ZGT6	1024	192+4	LQFP144	600	Industrial grade -40°C~85°C
APM32F407ZET6	512	192+4	LQFP144	600	Industrial grade -40°C~85°C
APM32F407VGT6	1024	192+4	LQFP100	900	Industrial grade -40°C~85°C
APM32F407VET6	512	192+4	LQFP100	900	Industrial grade -40°C~85°C
APM32F407RGT6	1024	192+4	LQFP64	1600	Industrial grade -40°C~85°C
APM32F407RET6	512	192+4	LQFP64	1600	Industrial grade -40°C~85°C
APM32F407RGT6-R	1024	192+4	LQFP64	1000	Industrial grade -40°C~85°C
APM32F407RET6-R	512	192+4	LQFP64	1000	Industrial grade -40°C~85°C
APM32F405ZGT6	1024	192+4	LQFP144	600	Industrial grade -40°C~85°C
APM32F405VGT6	1024	192+4	LQFP100	900	Industrial grade -40°C~85°C
APM32F407RGT6	1024	192+4	LQFP64	1600	Industrial grade -40°C~85°C
APM32F405RGT6-R	1024	192+4	LQFP64	1000	Industrial grade -40°C~85°C
APM32F407IGT7	1024	192+4	LQFP176	400	Industrial grade -40°C~105°C
APM32F407IET7	512	192+4	LQFP176	400	Industrial grade -40°C~105°C
APM32F407ZGT7	1024	192+4	LQFP144	600	Industrial grade -40°C~105°C
APM32F407ZET7	512	192+4	LQFP144	600	Industrial grade -40°C~105°C

Order code	FLASH (KB)	SRAM (KB)	Package	SPQ	Range of temperature
APM32F407VGT7	1024	192+4	LQFP100	900	Industrial grade -40°C~105°C
APM32F407VET7	512	192+4	LQFP100	900	Industrial grade -40°C~105°C
APM32F407RGT7	1024	192+4	LQFP64	1600	Industrial grade -40°C~105°C
APM32F407RET7	512	192+4	LQFP64	1600	Industrial grade -40°C~105°C
APM32F407RGT7-R	1024	192+4	LQFP64	1000	Industrial grade -40°C~105°C
APM32F407RET7-R	512	192+4	LQFP64	1000	Industrial grade -40°C~105°C
APM32F405ZGT7	1024	192+4	LQFP144	600	Industrial grade -40°C~105°C
APM32F405VGT7	1024	192+4	LQFP100	900	Industrial grade -40°C~105°C
APM32F407RGT7	1024	192+4	LQFP64	1600	Industrial grade -40°C~105°C
APM32F405RGT7-R	1024	192+4	LQFP64	1000	Industrial grade -40°C~105°C

9 Commonly Used Function Module Denomination

Table 64 Commonly Used Function Module Denomination

Chinese description	Abbreviations
Reset management unit	RMU
Clock management unit	CMU
Reset and clock management	RCM
External interrupt	EINT
General-purpose IO	GPIO
Multiplexing IO	AFIO
Wake-up controller	WUPT
Buzzer	BUZZER
Independent watchdog timer	IWDT
Window watchdog timer	WWDT
Timer	TMR
CRC controller	CRC
Power Management Unit	PMU
DMA controller	DMA
Analog-to-digital converter	ADC
Real-time clock	RTC
External memory controller	EMMC
Controller local area network	CAN
I2C Interface	I2C
Serial peripheral interface	SPI
Universal asynchronous transmitter receiver	UART
Universal synchronous and asynchronous transmitter receiver	USART
Flash interface control unit	FMC

10 **Version History**

Table 65 Document Version History

Date	Version	Change History			
2021.10	1.0	New creation			
2022.4.1	1.1	(1) Modify pin definitions			
2022.4.1	1.1	(2) The APM32F405xG model is added			
		(1) Add 3.3 GPIO Multiplexing Function Configuration			
2022.7.12	1.2	(2) Modify the Arm trademark			
2022.7.12	1.2	(3) Add the statement			
		(4) Add DMC pin description			
		(1) Modified SPI electrical parameters			
2022.8.5	1.3	(2) Increase the order code			
		(3) Modify Clock Tree			
2022.9.21	1.4	(1) Modify GPIOB multiplexing function configuration table			
		(1) Modify the manual version to apply to chip version A			
		(2) Add HSECLK oscillator transconductance G _m parameter			
		(3) Add ADC Vref DC power consumption data			
		(4) Add the order code for T7			
		(5) Modify the ESD parameters			
2023.1.16	1.5	(6) Modify the Pin function description			
		(7) Add the internal reference voltage and Tsensor calibration			
		value			
		(8) Modify the description of NVIC function			
		(9) Modify address mapping and timer format			
		(10) Modify GPIOF/G/H address mapping			

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as "Geehy"). The contents in this document are protected by laws and regulations of trademark, copyright and software copyright. Geehy reserves the right to make corrections and modifications to this document at any time. Please read this document carefully before using Geehy products. Once you use the Geehy product, it means that you (hereinafter referred to as the "users") have known and accepted all the contents of this document. Users shall use the Geehy product in accordance with relevant laws and regulations and the requirements of this document.

1. Ownership

This document can only be used in connection with the corresponding chip products or software products provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this document for any reason or in any form.

The "极海" or "Geehy" words or graphics with "®" or "TM" in this document are trademarks of Geehy. Other product or service names displayed on Geehy products are the property of their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party's products, services or intellectual property are involved in this document, it shall not be deemed that Geehy authorizes users to use the aforesaid third party's products, services or intellectual property, unless otherwise agreed in sales order or sales contract.

3. Version Update

Users can obtain the latest document of the corresponding models when ordering Geehy products.

If the contents in this document are inconsistent with Geehy products, the agreement in thesales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or cooperative third-party testing organization. However, clerical errors in correction or errors caused by differences in testing environment may occur inevitably. Therefore, users should understand that Geehy does not bear any responsibility for such errors that may occur in this document. The relevant data in this document are only used to guide users as performance

parameter reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test the applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding standards, safety or other reliability requirements. If loses are caused to users due to the user's failure to fully verify and test Geehy products, Geehy will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-EXPORT OR OTHER LAWS OF THE COUNTIRIES OF THE PRODUCTS SUPPLIERS, GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF, SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDE THE DOCUMENT "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE DOCUMENT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR THIRD PARTIES).

8. Scope of Application

The information in this document replaces the information provided in all previous versions of the document.

© 2021-2023 Geehy Semiconductor Co., Ltd. - All Rights Reserved