

Empirical Analysis for Strategy

Professor McDevitt Winter 2021 Class 2

Announcements	Agenda	Roadmap
OA1 feedback	Case Nike Vaporfly 4% Better?	Last Experimental Design
OA2 graded next week	Lecture Fixed Effects	Next Matching Models
OA3 due Feb 27 8:59am	Case Low Birth Weights	
Status check on class so far		

Are Nike Vaporfly 4% Really 4% Faster?

The New York Times

Nike Says Its \$250 Running Shoes Will Make You Run Much Faster. What if That's Actually True?

Key Facts

- distinctive and controversial Nike The Vaporfly 4% running shoe is supposed to improve running ease and speed by as much as 4%
- Using public race reports and shoe records from Strava, *The Times* found that runners in Vaporflys ran 3 to 4% faster than similar runners wearing other shoes, and more than 1% faster than the next-fastest racing shoe
- Runners choose to wear Vaporflys they are not randomly assigned them

Conceptual Questions

- Would finding that runners who wore Vaporflys ran faster than those who wore other shoes be enough to conclude that the Vaporfly causes faster times?
- What are the other explanations for faster times ruled out in the article?
- Consider the Colorado study where runners wore 3 shoes in terms of fixed effects — is this a credible research design?
- What would be the ideal experiment to test the shoe's effectiveness?
- Compare the merits of each of the four methods for measuring the shoe's effectiveness that are described in the article 4

How the Nike Vaporflys compare with other popular running shoes ...

When we use a statistical model, based on runners' ages, genders, race histories and other information, to measure the effect of shoes

When we compare changes in race times among groups of runners who ran the same pairs of races

When we measure finish times after runners switch to new shoes

When we see how common a personal record is when switching shoes

Approach #1: Regression May Have Selection Bias

Measuring shoe effects using statistical models

Pros of this approach: Tries to control for race conditions, weather, gender, age, pre-race training and a runner's previous race times.

Cons of this approach: Still not a randomized controlled trial.

Approach #2: Matching Runners Reduces Some Bias, Not All (Next Class)

Comparing groups of runners who completed the same two races

Pros of this approach: Follows athletes of similar ability who ran in identical conditions.

Cons of this approach: Runners could save their special shoes for when they expect to have a fast race.

Approach #3: Runner Fixed Effect Better, But Still Some Selection Bias

Following runners as they switch to a new kind of racing shoe

Pros of this approach: Accounts for runners of varying skills over several races.

Cons of this approach: Runners could save Vaporflys for when they expect to be faster than normal, or Vaporfly wearers could be different in some way from other kinds of runners.

Approach #4: PR Differences-in-Differences an Intriguing Idea (Class 6)

Measuring the likelihood of a personal best

Pros of this approach: A measure of race performance most runners know by heart.

Cons of this approach: Doesn't account for race conditions, increased training miles or aging. Runners who switch to Vaporflys could be different from other runners.

Share of sub-3 marathons in which a runner reported wearing Vaporflys or Next%

Going from Nikes to ICDs → Outcomes Improve

EXHIBIT 1
Major Trials Of Implantable Cardioverter Defibrillators (ICDs), 1996-2004

rial Year published		Number of patients randomized	Hazard ratio (confidence limits		
Secondary prevention					
AVID	1997	1,016	0.62 (0.47-0.81)		
CIDS	2000	659	0.82 (0.61-1.1)		
CASH	2000	288	0.82 (0.6-1.1)		
Primary prevention					
MADIT-I	1996	196	0.46 (0.26-0.82)		
CABG-Patch	1997	900	1.07 (0.81-1.42)		
MADIT-II	2002	1,242	0.69 (0.51-0.93)		
DEFINITE	2004	458	0.65 (0.40-1.06)		
COMPANION	2004	903	0.64 (0.48-0.86)		
DINAMIT	-	674	1.08 (0.76-1.55)		
SCD-HeFT	-	1,676	0.77 (0.62-0.96)		

SOURCE: See Note 8 in text for an article summarizing the major trials. Individual citations for the trials are available from the authors.

NOTE: For more details on these trials, see descriptions in text.

Going from Nikes to ICDs → Is It Cost Effective?

EXHIBIT 2
Cost-Effectiveness Of Implantable Cardioverter Defibrillators (ICDs)

Indication	Life years added by ICD	Cost added by ICD (\$)	Cost-effectiveness ratio (\$)		
Secondary prevention	0.69	37,400	54,000		
Primary prevention					
EF < 30	1.01	53,600	53,000		
EF 31-40	0.51	53,100	104,000		
EF>40	0.26	59,800	230,000		

SOURCE: See Notes 12 and 13 in text.

NOTE: EF is ejection fraction.

Fixed Effects Regressions

Regression Overview

Regression is a statistical technique used to compare treatment and control groups while accounting for observed characteristics

- Causal inference requires that when key observed variables have been made equal across treatment and control groups, selection bias from the things we can't see has been mostly eliminated
- For instance, since the decision to have health insurance isn't made randomly, we must control for <u>all</u> factors that determine both health insurance status <u>and</u> health
 - For example, income, education, gender, etc.

Regression Setup

Consider the standard regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i$$

- Observations are indexed by i = 1,...,n
- Y is the dependent variable, or outcome of interest (e.g., health status)
- X_1 and X_2 are the independent variables (e.g., health insurance, income)
- β_0 is the unknown intercept
- β_1 is the effect on Y of a change in X_1 , holding X_2 constant
- β_2 is the effect on Y of a change in X_2 , holding X_1 constant
- ε_i is the regression error, which reflects all omitted factors
 - That is, anything that affects Y other than X_1 and X_2
 - $\varepsilon_i = "\epsilon \text{verything } \epsilon \text{lse}"$

Interpreting Coefficients

Consider changing X_1 by $\triangle X_1$ while holding X_2 constant

- Estimated line before the change is Y = β_0 + $\beta_1 X_{1i}$ + $\beta_2 X_{2i}$
- Estimated line after the change is Y + \triangle Y = β_0 + β_1 (X₁ + \triangle X₁) + β_2 X₂

So the difference is $\triangle Y = \beta_1 \triangle X_1$

- $\beta_1 = \triangle Y / \triangle X_1$, holding X_2 fixed
- β_0 = predicted value of Y when $X_1 = X_2 = 0$

Example: Alcohol Related Traffic Deaths in 1988

Regression Output

. reg deaths_per_mil beertax if year==1988

Source	SS +	df	MS		er of obs	=	48
Model Residual	2834.25114 25429.2467	1 46	2834.25114 552.809711	Prob R-sq	> F lared	=	5.13 0.0283 0.1003
Total	+ 28263.4978	47		_	R-squared MSE	=	0.0807 23.512
deaths_per~l	Coef.	Std. Err.	t	P> t	[95% Con	 f.	Interval]
β1 beertax β0 _cons		7.887029 5.083102		0.028	1.982725 43.04345		33.73426 63.50696

Regression Best-Fit Line

Omitted Variable Bias

Omitted variable bias occurs when we omit a variable from the regression that affects both X and Y

- Omitting that variable denoted W means the error term is correlated with the regressors (a technicality → violates assumptions for OLS)
 - We often refer to W as a confound
 - We wish we had data for W but we don't :(
- Example: regression of health insurance on health outcomes omits income, finds positive effect
 - higher income → more likely to have insurance (↑X)
 - higher income \rightarrow better health (\uparrow Y) irrespective of health insurance

By omitting W, we will mistakenly conclude that all of the impact on Y comes from X, even though part of it actually came from W

Omitted Variable Bias

CORONAVIRUS | 130,196 views | Jun 6, 2020, 11:26am EDT

Bald Men At Higher Risk Of Severe Coronavirus Symptoms

Marla Milling Contributor (i)

Healthcare

I am a Forbes.com Contributor specializing in geriatric health and women's health articles.

Omitted Variable Bias

Updated (6/8/20) This piece has been clarified to note that the study did not control for age, which is a risk factor for hair loss and severe Covid-19.

New research is showing why a larger percentage of men—particularly hald men—are

Omitted Variable Bias Simulation

Simulate data to resemble typical regression

- W, our confounding variable, can be equal to 0 or 1
- X, our explanatory variable, depends on W in the following way:

$$X = 5 + 3 \cdot W + NORM(0,1)$$

- Y, our outcome variable, depends on X & W in the following way:

$$Y = -1 \cdot X + 6 \cdot W + 10 + NORM(0,1)$$

- Notice that W affects both X and Y, so omitting it from a regression biases our results
- The causal effect of X on Y is -1
 - What we want to recover from our regression after controlling for W

Simulated Data Not Accounting for W

Omitted Variable W Biases Our Regression

```
. reg y x
  Source | SS df MS Number of obs = 200
 F(1, 198) = 17.64
   Model \mid 68.7438135 \qquad 1 \quad 68.7438135 \quad Prob > F \qquad = 0.0000
 y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
   x | <u>.3214736</u> .0765518 4.20 0.000 .170512 .4724351
   _cons | 4.480085 .5155686 8.69 0.000 3.463374 5.496795
. req y x w
  Source | SS df MS Number of obs = 200
 ------ F(2, 197) = 317.21
   ------ Adj R-squared = 0.7607
   y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
     x | <u>-.9861896</u> .0673704 -14.64 0.000 -1.119049 -.8533298

    w | 5.848274
    .2457287
    23.80
    0.000
    5.363678
    6.33287

    cons | 10.03389
    .3512761
    28.56
    0.000
    9.341145
    10.72663
```

OVB = 0.321 - (-0.986) = 1.308

Need to Correct for Effect of W

W = 1 makes both X & Y larger, but it looks like \uparrow X leads to \uparrow Y

Regression with W Removes Differences in X Explained by W

... As Well As the Differences in Y Explained by W

Controlling for W takes out the part of Y driven by W

...Which Allows Us to Estimate the Causal Impact of X on Y

Final Regression Output: Include W or De-Mean X & Y Gives Same Result

. reg y x w							
Source	SS		MS				
Model			320.701289	F(2, 1	197) > F		317.21 0.0000
'	199.167526						0.7631
Residual	199.10/320				ared -squared		0.7631
Total	840.570103						1.0055
у	Coef.	Std. Err.	t I	P> t	[95% Co	nf.	Interval]
x	9861896	.0673704	-14.64	0.000	-1.11904	9	8533298
	5.848274						
_cons							
. reg demeanY	demeanX						
Source	SS	df	MS		r of obs 198)		200 215.37
Model I	216.637881	1	216 637881		> F		
	199.167525				ared		
+				_	-squared		0.5186
Total	415.805406	199	2.0894744		MSE		1.0029
demeanY	Coef.	Std. Err.	t I	P> t	[95% Co	nf.	Interval]
	9861896						
_cons	1.25e-07	.0709188	0.00	1.000	139853	1	.1398533

Panel Data

A panel dataset contains observations on multiple entities (e.g., individuals, states, hospitals), where each entity is observed at two or more points in time

Person	Year	Age	Sex	Income	Education	Cancer
1	2010	45	F	\$40,000	College	No
1	2011	46	F	\$42,000	College	Yes
1	2012	47	F	\$44,000	College	No
2	2010	53	М	\$30,000	High School	No
2	2011	54	М	\$30,000	High School	No
2	2012	55	М	\$31,000	High School	No

Benefits of Panel Data

With panel data we can control for factors that

- Vary across entities but do not vary over time within entity (e.g., eye color)
- Could cause omitted variable bias if they are left out
- Are unobserved and therefore cannot be included in the regression directly

If an omitted variable does not change over time, then any changes in Y that occur over time could not have been caused by the omitted variable

→ this is the key idea of a fixed effects regression

Unobserved Heterogeneity

Unobserved heterogeneity refers to omitted factors that vary across individuals, like race, gender, family background, or innate ability

- If these factors affect both treatment and outcome, they will cause OVB
- Can see this in regression form

Fixed effects account for the **time-invariant** portion of unobserved heterogeneity, α_i , to reduce omitted variable bias

Example: Alcohol Related Traffic Deaths from 1982-1988

We have panel data for 48 states across 7 years

- i = state, n = 48
- t = 1982, ..., 1988
- Balanced panel, so total # observations = 7•48 = 336
- Variables include
 - Traffic fatality rate (# traffic deaths per capita in that state in that year)
 - Tax on a case of beer
 - Other factors that might be important, like legal driving age, income, etc.

Recall Regression Using Cross-Section from 1988

Many Omitted Variables Affect Both Taxes & Drunk Driving

Many other factors affect drunk driving death rate that may also be correlated with tax rate

- Quality of roads
 - States with high beer taxes have bad roads, bad roads kill people?
- Traffic density
 - States with high beer taxes have bad traffic, bad traffic kills people?
- Culture around drinking and driving
 - States with high beer taxes have bad culture, bad culture kills people?

Any of these unobserved confounds that remain constant within a state over time can be addressed using state fixed effects

Fixed Effects Intuition Using Two Years

Consider the regression

And the difference between 1988 and 1982

$$Y_{i,1988} - Y_{i,1982} = \beta_1 (X_{i,1988} - X_{i,1982}) + (u_{i,1988} - u_{i,1982})$$

$$\alpha_i Z_i$$
 cancels out

Any change in Y_i from 1982 to 1988 cannot be caused by Z_i because Z_i does not change between 1982 and 1988

First-Differences Regression Using 1982 & 1988 Data

State fixed effects capture constant unobserved heterogeneity
→ corrects OVB → now have negative relationship btwn death & taxes

Back to Regression Model: Consider OLS without Controls

. reg mraidall beertax

Source	SS	df	MS		r of obs	=	336 30.89
Model Residual	1.9121e-08 2.0678e-07 2.2590e-07		6.1910e-10	Prob R-squ Adj R	> F ared -squared	= = =	0.0000 0.0846
mraidall	Coef.	Std. Err.	 t 	 P> t	_	 nf.	Interval]
beertax _cons	.0000158	2.84e-06 1.99e-06	5.56	0.000	.0000102		.0000214

Even with 7 years of panel data it still looks like beer taxes have a statistically significant, positive effect on drunk driving deaths

Adding Controls Brings Down Effect of Beer Tax

. reg mraidall beertax unrate perinc mlda vmiles

Source	SS	df	MS	Number $F(5,$	er of obs	=	336 33.11
Model Residual	7.5466e-08 1.5043e-07	5 330	1.5093e-08 4.5586e-10	Prob R-squ	> F	=	0.0000 0.3341 0.3240
Total	2.2590e-07	335	6.7432e-10	Root	_	=	2.1e-05
mraidall	Coef.	Std. Err.	t P	· ·> t ·	[95% Cor	 nf.	Interval]
beertax unrate perinc mlda vmiles _cons	4.26e-06 6.57e-07 -5.20e-09 -1.66e-06 3.23e-09 .0001395	2.73e-06 6.19e-07 7.16e-10 1.35e-06 8.61e-10 .0000325	1.06 0 -7.26 0 -1.23 0 3.75 0	.119 .289 .000 .219 .000	-1.10e-06 -5.60e-07 -6.61e-09 -4.31e-06 1.54e-09	7 9 6 9	9.63e-06 1.87e-06 -3.79e-09 9.90e-07 4.93e-09 .0002035

Adding proper controls makes beer tax statistically insignificant because they reduce OVB → income and miles driven matter more

State Fixed Effects Capture Constant Unobserved Factors for Each State

. reg mraidall beertax unrate perinc mlda vmiles i.state

Source	SS	df	MS		er of obs		336
	+				283)	=	18.48
Model	1.7450e-07	52	3.3557e-09	9 Prob	> F	=	0.0000
Residual	5.1401e-08	283	1.8163e-10) R-sqı	ıared	=	0.7725
	+			- Adj E	R-squared	. =	0.7306
Total	2.2590e-07	335	6.7432e-10	Root	MSE	=	1.3e-05
mraidall	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
	+						
beertax	0000187	.000014	-1.33	0.185	00004	63	9.00e-06
unrate	-1.22e-06	7.84e-07	-1.56	0.120	-2.77e-	06	3.21e-07
perinc	-2.99e-09	1.65e-09	-1.81	0.072	-6.24e-	09	2.65e-10
mlda	-2.50e-06	1.45e-06	-1.72	0.086	-5.36e-	06	3.55e-07
vmiles	-1.10e-09	7.45e-10	-1.48	0.141	-2.57e-	09	3.66e-10
state							
AZ	0000342	.0000196	-1.75	0.082	00007	28	4.32e-06
AR	-5.85e-06	.0000164	-0.36	0.722	00003	82	.0000265
CA	0000438	.000023	-1.91	0.058	0000	89	1.43e-06
	OTHER	STATES EST	TIMATED BUT	RESULTS	OMITTED		
WI	0000517	.0000218	-2.37	0.018	00009	46	-8.77e-06
WY	2.41e-06	.000023	0.10	0.917	00004	28	.0000476
_cons	.0002167	.0000437	4.96	0.000	.00013	08	.0003026

State + Time Fixed Effects More Robust → Now Estimate Negative Tax Effect

	. reg mraidall	beertax unra	ate perinc	mlda vmiles	s i.stat	te i.year		
	Source	SS	df	MS		per of obs 3, 277)	=	336 20.17
	Model Residual	4.3242e-08	277	3.1493e-09 1.5611e-10	Prok	p > F quared	=	0.0000 0.8086
	Total	2.2590e-07		6.7432e-10	_	R-squared MSE	=	0.7685 1.2e-05
	mraidall	Coef.	Std. Err.	t	P> t	[95% Con	 f.	Interval]
		-3.66e-06 3.85e-10	.0000132 8.47e-07 1.71e-09 1.43e-06	-4.32 0.22	0.061 0.000 0.822 0.796	0000509 -5.33e-06 -2.99e-09 -3.18e-06		
	vmiles				0.568	-1.79e-09		9.82e-10
	state AZ	0000575 OTHER STATES WY 0000	-	BUT RESULT		'ED		0000205 45 .000021
↓ trend in deaths	1985	-7.11e-06 000015 0000202 0000181 0000245 0000279		-6.54 -5.44 -6.42	0.006 0.000 0.000 0.000 0.000	0000121 0000208 0000262 0000246 0000321 0000363		-2.07e-06 -9.08e-06 0000141 0000115 000017 0000194
	_cons	.0001813	.0000428	4.24	0.000	.0000971		.0002656

Fixed Effects Regression Simulation

Simulate data to resemble typical fixed effects regression

- W can be equal to 0, 1, 2, or 3 (we have four individuals in the data)
- X, our explanatory variable, varies across W in the following way

$$X = 5 + 1 \cdot W + NORM(0,1)$$

- Y, our outcome variable, depends on X & W in the following way

$$Y = -1 \cdot X + 3 \cdot W + 10 + NORM(0,1)$$

- W affects both X and Y, so omitting it from a regression will bias our results
 - We would mistakenly conclude that all of the impact on Y comes from X, even though part of it actually came from differences across individuals
- The causal effect of X on Y is -1
 - This is what we want to recover from our regression after controlling for the underlying differences across the four individuals

Simulated Data: Looks Like Positive Effect of X on Y without FE

Omitted Differences Across Individuals Bias Regression

reg y x							
Source	SS	df	MS		per of obs 398)		400
Model	418.922132	1	418 922132	Prob) > F	_	0.0000
Residual	2369.49599	398	5.95350751	L R-sc	quared	=	0.1502
+-					R-squared		
Total	2788.41812	399	6.9885166				
у	Coef.	Std. Err.	t	P> t	[95% Co	 nf.	Interval]
×	.6477044	.0772141	8.39	0.000	.495905	 9	.7995028
cons	3.892196				2.88852		
3 1							
reg y x i.w							
3 1	SS	df 	MS		per of obs 395)		
Source + Model	2379.58005	4	594.895012	F(4, 2)	395) > F	=	574.76 0.0000
Source + Model		4	594.895012	F(4, Prob R-sq	395) > F quared	= =	574.76 0.0000 0.8534
Source +- Model Residual	2379.58005 408.838075	4 395	594.895012 1.0350331	F(4, Prob R-sq Adj	395) > F quared R-squared	= = =	574.76 0.0000 0.8534 0.8519
Source Model Residual	2379.58005	4 395	594.895012 1.0350331	F(4, Prob R-sq Adj	395) > F quared	= = =	574.76 0.0000 0.8534 0.8519
Source +- Model Residual	2379.58005 408.838075 	4 395 399	594.895012 1.0350331 	F(4, 2 Prob L R-sq - Adj 6 Root	395) > F quared R-squared	= = = = =	574.76 0.0000 0.8534 0.8519 1.0174
Source +- Model Residual +- Total	2379.58005 408.838075 	4 395 399 Std. Err.	594.895012 1.0350331 	F (4, 2 Prob L R-sq - Adj 6 Root P> t	395) > > F quared R-squared : MSE	= = = = = nf.	574.76 0.0000 0.8534 0.8519 1.0174 Interval]
Source Model Residual Total y x w	2379.58005 408.838075 2788.41812 Coef.	4 395 399 Std. Err.	594.895012 1.0350331 	F (4, 2 Prob L R-sq - Adj 6 Root P> t	395) > > F quared R-squared : MSE [95% Co: -1.11092	= = = = = nf.	574.76 0.0000 0.8534 0.8519 1.0174
Source	2379.58005 408.838075 2788.41812 Coef. -1.012382 3.224634	4 395 399 Std. Err. .0501237	594.895012 1.0350331 	F (4, 2 Prob L R-sq - Adj 6 Root P> t 0.000	395) > > F quared R-squared MSE [95% Co: -1.11092	= = = = = nf.	574.76 0.0000 0.8534 0.8519 1.0174 Interval] 9138395
Source	2379.58005 408.838075 2788.41812 Coef. -1.012382 3.224634 6.294948	4 395 399 Std. Err. .0501237 .1577151 .1788431	594.895012 1.0350331 6.9885166 t 	F(4, 2 Prob L R-sq - Adj - Root P> t 0.000 0.000	395) > > F quared R-squared : MSE [95% Co: -1.11092 2.91456 5.94334	= = = = nf. 5	574.76 0.0000 0.8534 0.8519 1.0174
Source	2379.58005 408.838075 2788.41812 Coef. -1.012382 3.224634	395 399 Std. Err0501237 .1577151 .1788431 .2200774	594.895012 1.0350331 	F(4, 2 Prob L R-sq - Adj - Root P> t 0.000 0.000 0.000 0.000	395) > > F quared R-squared : MSE [95% Co: -1.11092 2.91456 5.94334	= = = = nf. 5	574.76 0.0000 0.8534 0.8519 1.0174 Interval] 9138395

Biased Effect of X on Y Due to Differences Across Individuals

True Effect of X on Y Is Negative

Individual Fixed Effects De-Mean X and Y, Recover True Effect

Individual Fixed Effects De-Mean X and Y, Recover True Effect

	reg y x i.w							
	Source	SS	df	MS		per of obs		
_	Model	2379.58005	4	594.895012		395) > F		574.76
	· ·	408.838075		1.0350331		quared		
-	+				_	R-squared	=	0.8519
	Total	2788.41812	399	6.9885166	5 Root	MSE	=	1.0174
_								
_	у	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
	х	-1.012382	.0501237	-20.20	0.000	-1.110925	5	9138395
	I							
	W	0.004604	4 4	0.0 4.5	0 000	0 01 45 66		0 5045
Dorce	on FE $\begin{cases} 1 & 1 \\ 2 & 1 \end{cases}$	3.224634 6.294948	.1577151	20.45 35.20	0.000	2.914568 5.943345		3.5347 6.646551
Persc		9.207425	.2200774	41.84	0.000			9.640094
		J.207125	• 2200771	11.01	0.000	0.771700	,	3.010031
_	_cons	9.868695	.2583439	38.20	0.000	9.360794	l - – – -	10.3766

Fixed effects reflect that each individual has Y about 3 times her index

→ person 1 is about 3 more than person 0, person 2 is 6 more

Summary of Fixed Effects Regressions

- With panel data and fixed effects we can control for factors that
 - Vary across entities but do not vary over time (e.g., state fixed effects)
 - Vary across time but do not vary across entities (i.e., time fixed effects)
- One caveat: you need variation in other key variables within entity
 - If beer tax is constant within states over time, you couldn't estimate its effect while also using state fixed effects
- One limitation: you can't tell the effect of that omitted variable
 - If eye color matters for health outcomes, a person fixed effect will account for that factor but won't tell you how much it matters
- This is very easy to implement using software
 - Just create a dummy variable for each entity and/or time period

The Cost of Low Birth Weight

The Cost of Low Birth Weight

Almond, Chay, & Lee (2005)

Key Facts

- Low-birth-weight infants experience severe health and developmental difficulties that can impose enormous costs on society
- It's not clear that efforts to prevent low-birthweight infants would lead to commensurate cost savings and health improvements some causes of low birth weight may be invariant to policy changes

Conceptual Questions

- What observable characteristics would be important to include in a regression of healthcare expenses on low birth weight?
- Would this regression likely provide a credible causal estimate of how low birth weights affect healthcare expenses?
- Why might estimates of the returns from preventing low birth weight using crosssectional data be potentially biased? Why is this important for health policies?
- How does this study account for omitted variable bias to estimate a causal link between low birth weight and health care expenses?

Empirical Strategy

Use twin fixed effect to control for stable unobservable characteristics because twins have same mother, same environment, etc.

$$- Y_{i1} = \beta bw_{i1} + \gamma X_{i1} + \alpha_i + \epsilon_{i1}$$

$$- Y_{i2} = \beta bw_{i2} + \gamma X_{i2} + \alpha_i + \epsilon_{i2}$$

$$\triangle Y = Y_{i2} - Y_{i1} = \beta (bw_{i2} - bw_{i1}) + \gamma (X_{i2} - X_{i1}) + (\epsilon_{i2} - \epsilon_{i1})$$

Fixed Effects Allow Us to Distinguish Birth Weight from Other Factors

FIGURE Ia
Hospital Costs and Birth Weight
Note: 1995–2000 NY/NJ Hospital Discharge Microdata.

Unobserved Factors Lead Us to Overstate Effect of Birth Weight

FIGURE Ib Infant Mortality (1-year) and Birth Weight Note: Linked Birth-Death certificate data, 1989.

All Effects Fall Considerably with a Fixed Effects Specification → OVB Matters

Birth weight		congenital nalies	Excluding congenital anomalies			
coefficient	Pooled OLS	Fixed effects	Pooled OLS	Fixed effects		
Hospital costs	-29.95	-4.93	_	_		
(in 2000 dollars)	(0.84)	(0.44)	_	_		
	[-0.506]	[-0.083]	_	_		
$\mathrm{Adj.}\ R^2$	0.256	0.796	_	_		
Sample size	44,410	44,410	_	_		
Mortality, 1-year	-0.1168	-0.0222	-0.1069	-0.0082		
(per 1000 births)	(0.0016)	(0.0016)	(0.0017)	(0.0012)		
	[-0.412]	[-0.078]	[-0.377]	[-0.029]		
$\mathrm{Adj.}\ R^{2}$	0.169	0.585	0.164	0.629		
Sample size	189,036	189,036	183,727	183,727		
Mortality, 1-day	-0.0739	-0.0071	-0.0675	-0.0003		
(per 1000 births)	(0.0015)	(0.0010)	(0.0015)	(0.0006)		
	[-0.357]	[-0.034]	[-0.326]	[-0.001]		
$\mathrm{Adj.}\ R^{2}$	0.132	0.752	0.127	0.809		
Sample size	189,036	189,036	183,727	183,727		
Mortality, neonatal	-0.105	-0.0154	-0.0962	-0.0041		
(per 1000 births)	(0.0016)	(0.0013)	(0.0016)	(0.0008)		
	[-0.415]	[-0.061]	[-0.38]	[-0.016]		
$Adj. R^2$	0.173	0.683	0.169	0.745		
Sample size	189,036	189,036	183,727	183,727		
5-min. APGAR score	0.1053	0.0117	0.1009	0.0069		
(0-10 scale,	(0.0011)	(0.0012)	(0.0011)	(0.0011)		
divided by 100)	[0.506]	[0.056]	[0.485]	[0.033]		
Adj. \mathbb{R}^2	0.255	0.663	0.248	0.673		
Sample size	159,070	159,070	154,449	154,449		

Estimated Effect of Birth Weight on Mortality Falls by a Factor of 10!

Birth weight	_	congenital nalies	Excluding congenital anomalies			
coefficient	Pooled OLS	Fixed effects	Pooled OLS	Fixed effects		
Mortality, neonatal (per 1000 births)	-0.105 (0.0016) $[-0.415]$	-0.0154 (0.0013) [-0.061]	-0.0962 (0.0016) [-0.38]	-0.0041 (0.0008) [-0.016]		
Adj. \mathbb{R}^2 Sample size	0.173 $189,036$	0.683 189,036	0.169 $183,727$	0.745 $183,727$		

And Fixed Effects Explain Large Portion of Variation (the Unobserved Factors)

Birth weight	_	congenital nalies	Excluding congenital anomalies			
coefficient	Pooled OLS	Fixed effects	Pooled OLS	Fixed effects		
Mortality, neonatal	-0.105	-0.0154	-0.0962	-0.0041		
(per 1000 births)	(0.0016)	(0.0013)	(0.0016)	(0.0008)		
	[-0.415]	[-0.061]	[-0.38]	[-0.016]		
$\mathrm{Adj}.\ R^{2}$	0.173	0.683	0.169	0.745		
Sample size	189,036	189,036	183,727	183,727		

