L.S. mensure: is it complete?

The Every mensure can be completed.

Construction: H, M(H) = BR

Example: F step fn. $\mathcal{M}^{\star} \quad \mathcal{M}^{\star} = \mathcal{P}(\mathbb{R})$

general F: M* = P(R)

Any $F = F_1 + F_2$

(X, M, m)

Example

Interesting case: M = o-alg of dide 4 co-dile sets M= country mensure (on M).

(*)

define
$$E \subset X$$
 is cocally measurable if $E \cap A \in M$
for any $A \in M$ by $\mu(A) < \infty$.

 $\tilde{M}=$ collection of locally menomble sels $M\subset \tilde{M}, \text{ and if } M=\tilde{M} \text{ we say } n \text{ is saturated.}$

- (a) u o-finite -> u saturated.
- (b) \tilde{M} is a σ -algebra.
- (c) Def $\tilde{\mu}$ on \tilde{M} by $\tilde{\mu}(E) = \{ \mu(E) \mid E \in M \}$ or there is a
- (d) if u is complete than in is complete.
- (e) Suppose u is semifinite. define u on M

 M(E) = Sup {u(A) | AEM, ACE}

In the example (X), $\tilde{\mu} = \mu$.

(f)
$$X_1 = [0, 1], X_2 = [1, 2]$$

 $X = X_1 \cup X_2 = [0, 2].$

$$X = X_1 \cup X_2 = [0, 2].$$

 M_{\circ} = country measure on $P(X_{\circ})$ $M(E) = M_{\circ}(E \cap X_{\circ})$. find $M \neq \hat{M}$