

DOCUMENT NUMBER: ENG-RPT-585
DOCUMENT TITLE: ZIP ACE Modified, 6-Pack Ship Test, 3 yr. Accelerated Aging
DOCUMENT NOTES:

Document Information

Revision: 001	Vault: MEG-Rel
Status: Release	Document Type: ENG-RPT

Date Information

Effective Date: 22 Jun 2018	Expiration Date:
Release Date: 22 Jun 2018	Next Review Date:

Control Information

Author: TSKINNER	Owner: TSKINNER
Previous Number:	Change Number: 2018-ENG-DCO-111

Revision: 001

Signature Manifest

Document Number: ENG-RPT-585

Title: ZIP ACE Modified, 6-Pack Ship Test, 3 yr. Accelerated Aging

All dates and times are in Mountain Standard Time.

ZIP ACE Mod 3 yr Acc Aging RPT

Change Request

Name/Signature	Title	Date	Meaning/Reason
Lucy Richards (LRICHARDS)		10 May 2018, 08:24:24 AM	Approved

Collaboration

Name/Signature	Title	Date	Meaning/Reason
Darlene Hull (DHULL)	Regulatory	30 May 2018, 04:42:39 PM	Complete
Paul Borgmeier (PBORGMEIER)		01 Jun 2018, 01:05:00 PM	Complete
Joni Stegeman (JSTEGEMAN)	Ethicon Quality	19 Jun 2018, 06:04:18 PM	Complete
Tyler Skinner (TSKINNER)	Project Engineer	20 Jun 2018, 09:21:52 AM	Complete

Document Review

Name/Signature	Title	Date	Meaning/Reason
Lucy Richards (LRICHARDS)		20 Jun 2018, 02:22:23 PM	Complete

RA-Approval

Name/Signature	Title	Date	Meaning/Reason
Darlene Hull (DHULL)	Regulatory	20 Jun 2018, 03:06:31 PM	Approved

QA-Approval

Name/Signature	Title	Date	Meaning/Reason
Joni Stegeman (JSTEGEMAN)	Ethicon Quality	20 Jun 2018, 04:50:07 PM	Approved

ENG-Approval

Name/Signature	Title	Date	Meaning/Reason
Paul Borgmeier (PBORGMEIER)		21 Jun 2018, 03:31:06 PM	Approved

Training Review

Name/Signature	Title	Date	Meaning/Reason
Stacey Castaneda (SCASTANEDA)	Associate Complaint Analyst		
Lucy Richards (LRICHARDS)		22 Jun 2018, 09:15:45 AM	Approved

Final Release

Printed on: 21 Jan 2020, 11:15:29 pm; Printed by: .

The user must ensure that they are using the correct/current revision of this document. Document: ENG-RPT-585 Rev: 001 Effective: 22 Jun 2018

Name/Signature	Title	Date	Meaning/Reason
Lucy Richards (LRICHARDS)		22 Jun 2018, 09:15:58 AM	Approved

Megadyne Medical	Megadyne TEST REPORT Medical	
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 1 of 28

Authored By: Tyler Skinner

1.	ABSTRACT	2
2.	REFERENCES	2
3.	OBJECTIVE	2
4.	APPENDICIES	2
5.	RESULTS	3
6.	DISCUSSION	5
7.	CONCLUSIONS	6
8.	RECOMMENDATIONS	7
9.	APPENDIX I – 2X EO Sterilization	8
10.	APPENDIX II – Accelerated Aging	10
11.	APPENDIX III – Thermal Cycling	11
12.	APPENDIX IV – Ship Conditioning	19
13.	APPENDIX V – Bubble Leak Testing	21
14.	APPENDIX VI – Dye Testing	22
15.	APPENDIX VII – Burst Testing	23
16.	APPENDIX VIII – Minimum Seal Width Testing	24
17.	APPENDIX IX – Product Damage Inspection	25
18.	APPENDIX X – Tubing Strength Testing	26

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585	
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001	
Inc.	Accelerated Aging Report	Page 2 of 28	

1. ABSTRACT

Test Protocol ENG-PRT-466 was completed successfully. Testing included 2x EO Sterilization, Accelerated Aging, Thermal Cycling, Ship Conditioning, Bubble Leak testing, Dye testing, Burst testing, Minimum Seal Width testing, Product Damage Inspection and Tubing Strength Testing. All testing was completed successfully.

These results demonstrate that the proposed 6-Pack shipping configuration (ME725M1C and ME725M1E) does not damage the Tyvek pouch seal and protects the product from damage. The results also provide confidence that the product will withstand the anticipated shipping environment and meet DMR requirements in ENG-DMR-012 after EO Sterilization and 3 yr. Real Time Aging.

2. REFERENCES

ENG-DMR-012	DMR, Smoke Evacuation Pencil and Accessories
ENG-RMF-045	Risk Analysis, Smoke Evacuation Accessories
ENG-PRT-466	ZIP ACE Modified, 6-Pack Ship Test, 3 yr. Accelerated Aging Protocol
ME725M1C	Ace Blade 700, 2.5" Zip Pen, "C" Connector, 10 ft. Tubing
ME725M1E	Ace Blade 700, 2.5" Zip Pen, EC Connector, 10 ft. Tubing

3. OBJECTIVE

This Test Report provides confidence that Zip ACE Modified product packaged in the proposed 6-Pack shipping configuration (ME725M1C and ME725M1E) will withstand the anticipated shipping environment and meet DMR requirements in ENG-DMR-012 after EO Sterilization and 3 yr. Real Time Aging.

4. APPENDICIES

Appendix I – 2X EO Sterilization

Appendix II – Accelerated Aging

Appendix III – Thermal Cycling

Appendix IV – Ship Conditioning

Appendix V – Bubble Leak Testing

Appendix VI – Dye Testing

Appendix VII – Burst Testing

Appendix VIII - Minimum Seal Width Testing

Appendix IX – Product Damage Inspection

Appendix X – Tubing Strength Testing

Megadyne TEST REPORT Medical		Document Number ENG-RPT-585	
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001	
Inc.	Accelerated Aging Report	Page 3 of 28	

5. RESULTS

5.1. 2X EO Sterilization

36 Zip Pen samples (6 boxes) SKU: ME725M1C Lot # 170323 were EO sterilized twice per Sterigenics Cycle 115. See Appendix I for EO sterilization documentation.

5.2. Accelerated Aging

36 Zip Pen samples (6 boxes) SKU: ME725M1C Lot # 170323 were subjected to accelerated aging per ENG-PRT-049 to simulate 3 years aging. The aging temperature was 55°C and the aging duration per the protocol was 111 days. See Appendix II for Accelerated Aging documentation.

5.3. Thermal Cycling

36 Zip Pen samples (6 boxes) SKU: ME725M1C Lot # 170323 were subjected to Thermal Cycling per ENG-PRT-466 and followed the schedule below. See Appendix III for Thermal Cycling Data.

CONDITIONS	DURATION		
Transition from ambient to -40°C	Based on Chamber Capability		
Hold -40°C no humidity control	4 hours		
Transition from -40°C to55°C	Set time to 0:00 and set the standard deviation to 1°C		
PTransition from 55°C to 55°C and 95%RH	Set time to 0:00 and set the standard deviation to 1°C and 2% RH		
CHold 55°C and 95%RH	4 hours		
OTransition from 55°C and 95% RH nto 55°C and 15% RH	Set time to 0:00 and set the standard deviation to 1°C and 2% RH		
dHold 55°C and 15%RH	4 hours		
Transition to 23°C and 50%RH	Set time to 0:00 and set the standard deviation to 1°C and 2% RH		
Hold 23°C and 50%RH	72 hours		

oning

36 Zip Pen Samples (6 boxes) SKU: ME725M1C Lot # 170323 were ship conditioned/tested as outlined in ENG-PRT-466. See Appendix IV for a complete summary of testing.

It should be noted that tests were performed under typical warehouse conditions, which are:

Temperature: 23°C ±5°C

Relative Humidity: 50% ±35%

5.4.1. Manual Handling - Manual (Drop Test)

The Manual Handling (Drop Test) was performed using a drop height of 15 in as outlined in ENG-PRT-466.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585 Revision: 001	
Products, Inc.	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001	
	Accelerated Aging Report	Page 4 of 28	

5.4.2. Vehicle Stacking (Compression Test)

The Vehicle Stacking (Compression Test) was performed using a computed load (L) of 210 lb as outlined in ENG-PRT-466.

5.4.3. Loose Load Vibration and Vehicle Vibration Tests

The Loose Load Vibration Test was performed for 40 min as outlined in ENG-PRT-466. Following the Loose Load Vibration test, the Vehicle Vibration test was performed for 10 min as outlined in ENG-PRT-466.

5.4.4. Concentrated Impact Test

The Concentrated Impact Test was performed as outlined in ENG-PRT-466.

5.4.5. Manual - Handling (2nd Drop Test)

The Manual Handling (2nd Drop Test) was performed using a drop height of 15 in with the final drop at a height of 30 in as outlined in ENG-PRT-466.

5.4.6. Each box remained intact and did not break open during the test.

5.5. Bubble Leak Testing

The Bubble Leak test was performed on 35 samples as outlined in ENG-PRT-466. There were no tears, holes, or open seals in any pouch. See Appendix V for Bubble Leak Testing Raw Data.

5.6. Dye Testing

The Dye Test was performed on 35 samples as outlined in ENG-PRT-466. There were no breaches in the seal and no signs of separation or degradation. See Appendix VI for Dye Testing Raw Data.

5.7. Burst Testing

The Burst Test was performed on 36 samples as outlined in ENG-PRT-466. All samples burst pressure exceeded the passing criteria of 19 in. H₂O with a minimum of 23.7 in. H₂O. See Appendix VII for Burst Testing Raw Data.

5.8. Minimum Seal Width Testing

The Minimum Seal Width Test was performed on 35 samples as outlined in ENG-PRT-466. The minimum seal width of all edges exceeded the passing criteria of 0.20" with a minimum of 0.26". See Appendix VIII for Minimum Seal Width Testing Raw Data.

Megadyne TEST REPORT Medical		Document Number ENG-RPT-585	
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001	
Inc.	Accelerated Aging Report	Page 5 of 28	

5.9. Product Damage Inspection

Product Damage Inspection was performed on 35 samples as outlined in ENG-PRT-466. No damage to the electrode, coating, or any other part of the Zip Pen was observed. See Appendix IX for Product Damage Inspection Raw Data.

5.10. Tubing Strength Test

The Tubing Strength Test was performed on 35 samples as outlined in ENG-PRT-466. All samples tubing strength exceeded the passing criteria of 4 lbs. tensile force with a minimum of 5.66 lbs. See Appendix X for Tubing Strength Testing Raw Data.

6. DISCUSSION

6.1. 2X EO Sterilization

Product was 2X EO Sterilized as outlined by ENG-PRT-466.

6.2. Accelerated Aging

Product was Accelerated Aged as outlined by ENG-PRT-466.

6.3. Thermal Cycling

Due to chamber and availability restraints the product was moved between several environmental chambers. Despite the product being moved, it was successfully exposed to all chamber conditions for the appropriate duration. As such product was thermally cycled as outlined by ENG-PRT-466.

6.4. Ship Conditioning

The acceptance criteria per ENG-PRT-466 were satisfied.

6.5. Bubble Leak Testing

The acceptance criteria per ENG-PRT-466 were satisfied.

6.6. Dye Testing

The acceptance criteria per ENG-PRT-466 were satisfied.

6.7. Burst Testing

The acceptance criteria per ENG-PRT-466 were satisfied.

6.8. Minimum Seal Width Testing

The acceptance criteria per ENG-PRT-466 were satisfied.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 6 of 28

6.9. Product Damage Inspection

The acceptance criteria per ENG-PRT-466 were satisfied.

6.10. Tubing Strength Test

The acceptance criteria per ENG-PRT-466 were satisfied.

7. CONCLUSIONS

7.1. 2X EO Sterilization

Product was successfully 2X EO Exposed

7.2. Accelerated Aging

Product was successfully 3 yr. Accelerated Aged.

7.3. Thermal Cycling

Product was successfully Thermal Cycled.

7.4. Ship Conditioning

The 2x EO Sterilized, 3 yr. Accelerated Aged, Thermally Cycled, and Ship Conditioned 6-Pack shipping configuration meets ASTM D4169.

7.5. Bubble Leak Testing

The 6-Pack shipping configuration does not add additional risk of leaks in the product packaging post 3 yr. Accelerated Aging.

7.6. Dye Testing

The 6-Pack shipping configuration does not add additional risk of breaches in the seal of the product packaging post 3 yr. Accelerated Aging.

7.7. Burst Testing

The 6-Pack shipping configuration does not add additional risk to bursts in the seal of the product packaging post 3 yr. Accelerated Aging.

7.8. Minimum Seal Width Testing

The 6-Pack shipping configuration does not reduce the seal width of the product packaging post 3 yr. Accelerated Aging.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585	
Products, Inc.	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001	
	Accelerated Aging Report	Page 7 of 28	

7.9. Product Damage Inspection

The 6-Pack shipping configuration does not add additional risk of damage to the product post 3 yr. Accelerated Aging.

7.10. Tubing Strength Test

The Tubing Tensile Strength remains acceptable post 2x EO Sterilization, 3 yr. Accelerated Aging, Thermal Cycling, and Ship Conditioning. Tubing meets DMR requirements post 2X EO Sterilization and 3 yr. Accelerated aging.

8. RECOMMENDATIONS

It is recommended that product codes ME725M1C and ME725M1E be released for distribution in the 6-Pack shipping configuration. Additionally, data gathered for ME725M1C and ME725M1E was found to meet all DMR requirements after EO sterilization and 3 yr. Accelerated Aging and should be considered substantial evidence to support a shelf life of 3 years post EO Sterilization upon release.

Document Number Megadyne TEST REPORT ENG-RPT-585 Medical **Revision: 001** Products. ZIP ACE Modified, 6-Pack Ship Test, 3 yr. Inc. **Accelerated Aging Report Page 8 of 28**

APPENDIX I – 2X EO STERILIZATION 9.

Sponsor: Christian Crook MegaDyne Medical Products, Inc. 11506 S. STATE ST DRAPER, UT 84020-9453

Ethylene Oxide (EO) Exposure (BIER Vessels and STERIS® EO Sterilizers) Final Report

Test Article: Ref: ME725M1C

Lot: S170323

Description: Megadyne Ace Blade 700

Purchase Order: 29299 Study Number: 992275-S01 Study Received Date: 26 Sep 2017

Testing Facility: Nelson Laboratories, LLC, a Business Unit of Sterigenics International

6280 S. Redwood Rd.

Salt Lake City, UT 84123 U.S.A.

Test Procedure(s): Standard Test Protocol (STP) Number: STP0107 Rev 08

Customer Specification Sheet (CSS) Number: 201703061 Rev 01

Deviation(s):

Summary: This report describes the exposure of the above mentioned test article(s) to EO. The sterilizer was programmed using the set points below. All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820. Following the exposure process, the test articles were picked up by the sponsor

The exposed test articles are not for human use. Because the sterilization of the test articles has not been validated using additional fractional or half cycles, the delivered sterility assurance level (SAL) cannot be determined. The test articles should only be used for functionality, biocompatibility or other physical evaluations not involving human patients.

Procedure: The six boxes submitted for EO exposure were processed twice using the following set points:

Preconditioning Phase:

Temperature: 43.3°C Relative Humidity (RH):

66 hours 7 minutes (Cycle 1) Time: 25 hours 19 minutes (Cycle 2)

Conditioning Phase:

Temperature: 48.9°C

RH: 50%

Vacuum Set Point: 1.0 pounds per square inch absolute (psia)

Humidity Set Point: 1.8 psia Conditioning Time: 60 minutes Vacuum Ramp Rate: 25 psia/minute

Study Director

Tori Dieffenbacher

11 06+ 2017 Study Completion Date

992275-S01

FRT0107-0001 Bay 7

Page 1 of 2

These results relate only to the test article libted in this report. Reports may not be reproduced except in their entirety. Subject to NL terms and conditions at www.netsonlabs.com

Megadyne
Medical
Products,
Inc.TEST REPORT
ENG-RPT-585Document Number
ENG-RPT-585ZIP ACE Modified, 6-Pack Ship Test, 3 yr.
Accelerated Aging ReportRevision: 001
Page 9 of 28

Study Number 992275-S01 Ethylene Oxide (EO) Exposure (BIER Vessels and STERIS® EO Sterilizers) Final Report

EO Exposure Phase:

Gas Type: 100% EO
Gas Concentration: 804 mg/L
Temperature: 48.9°C
Sterilant Set Point: 8.9 psia
Exposure Time: 240 minutes
Vacuum Ramp Rate: 25 psia/minute

Aeration Phase:

Temperature: 43.3 ± 5°C

Time: 41 hours 52 minutes (Cycle 1)

88 hours 32 minutes (Cycle 2)

buto

Page 2 of 2

Megadyne Medical	Megadyne TEST REPORT Medical	
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 10 of 28

10. APPENDIX II – ACCELERATED AGING

Accelerated Aging In Process Owner: Christian Crook ext. 807 Product to be removed on: January 28, 2018

Product: ME7251C, ACE 700

Lot Number(s): S17637.3

Quantity: 6 box, 6 ea.

Aging Temperature: 55°C

Humidity: Ambient

Total Time Required: 111 days

Expected Completion: 09 Oct 2017

Additional Description: Product to be removed at 3

years accelerated aging.

Record any time lost to removing product from chamber or cycle interruption below.

Start	Time	Initials	Stop	Time	Total	Initials
09 Oct. 2017	6:43	CC	Jan 29 2018	13:32	111 days	TS
24 Jun 2018	13:32	TS.	-		20 Hrs 49 min	

Thermotron ID Number	2810 5-Serial #
Last Calibration Date	11 May 2017
Calibration Due Date	31 May 2018

If this aging needs to be interrupted for any reason, Contact Christian Crook at ext. 807

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 11 of 28

11. APPENDIX III – THERMAL CYCLING

The user must ensure that they are using the correct/current revision of this document.

Document: ENG-PRT-486 Rev: 001 Effective: 22 Mar 2018

Megadyne Medical Products, Inc.	TEST PROTOCOL	Document Number ENG-PRT-466
	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Froducis, Inc.	Accelerated Aging	Page 20 of 26

11. APPENDIX II - THERMAL CYCLE DATA

Appendix II: Thermal Cycle Data

	· · · · · · · · · · · · · · · · · · ·	
Maximum Temperature (°C):	55C	
Minimum Towns (900)	~40.1	
Minimum Temperature (°C):	~40+1	
Maximum Temperature (%RH):	95.1	
international rempetation (voice):		
Minimum Temperature (%RH):	42.9	
Chamber conditions held @ -40°C		
and no humidity control for a	201	
duration of 4 hours:	yes - PV	
Chamber conditions held @ 55°C	yes - PV	
and 95%RH for a duration of 4	DV	
hours:	yes-tv	
Chamber conditions held @ 55°C	yes-PV yes-PV	
and 15%RH for a duration of 4	LIGG DV	
hours:	yes-IV	
Chamber conditions held @ 23°C and 50%RH for a duration of 72		
hours:	Vas PV	
- /	yes- 1V	
Paul Valpreda f	aul Valore da	4-17-2018
Test Technician Name	Signature	Date
The Cityler Stringer	W/-	4.30.18
Engineer Name	Signature	Date
	18, 39912 - Dueon 2-28-2019	
Thermotron SN	Calibra	ation Due Date

Possession of this document is an acknowledgment that the contents berein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 22 Mar 2018, 11:38:00 am; Printed by: TSKINNER.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 12 of 28

Date	Time	Temperature	Humidity
28-Mar	0:10	22.6	22.9
	0:58	22.6	22.8
	1:46	22.6	22.8
	2:34	22.6	22.7
	3:22	22.7	22.6
	4:10	22.8	22.5
	4:58	22.8	22.4
	5:46	22.8	22.4
	6:34	22.9	22.3
	7:22	22.9	22.3
	8:10	22.9	22.3
	8:58	22.6	23.6
	9:46	-40.1	37
	10:34	-40	42.7
	11:22	-40	42.9
	12:10	-40	42.6
	12:58	-40	42.2
	13:46	23.1	35.4
	14:34	23	36.6
	15:22	23	32.6
	16:10	23.1	26.4
	16:58	23	21.9
	17:46	23	19.1
	18:34	23	17
	19:22	23	15.6

Megadyne
Medical
Products,
Inc.TEST REPORT
ENG-RPT-585Document Number
ENG-RPT-585ZIP ACE Modified, 6-Pack Ship Test, 3 yr.
Accelerated Aging ReportRevision: 001
Page 13 of 28

Date	Time	Air	Humidity
		Temp	
4/1/2018	8:00:02	19.9	96.8
	8:30:02	20	96.8
	9:00:02	20.1	96.6
	9:30:02	20.1	96.4
	10:00:02	20.1	96.1
	10:30:02	20.2	95.9
	11:00:02	55	90.6
	11:30:02	55	95.1
	12:00:02	55	95.1
	12:30:02	55	95
	13:00:02	55	94.9
	13:30:02	55	94.9
	14:00:02	55	95
	14:30:02	55	95
	15:00:02	55	95
	15:30:02	55	27.5
	16:00:02	55	18.5
	16:30:02	55	15.2
	17:00:02	55	14.9
	17:30:02	55	14.9
	18:00:02	55	15
4/2/2018	18:30:02	55	14.9
	19:00:02	55	14.8

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 14 of 28

<u> </u>		
19:30:02	55	14.7
20:00:02	55	14.7
20:30:02	23	43.3
21:00:02	23	47.4
21:30:02	23	49.7
22:00:02	23	50.1
22:30:02	23	49.9
23:00:02	23	49.9
23:30:02	23	50.1
0:00:02	23	50.1
0:30:02	23	50.1
1:00:02	23	50
1:30:02	23	50
2:00:02	23	50.2
2:30:02	23	50
3:00:02	23	50
3:30:02	23	50.1
4:00:02	23	50
4:30:02	23	50.1
5:00:02	23	50
5:30:02	23	50
6:00:02	23	48.9
6:30:02	23	47.7
7:00:02	23	49.5
7:30:02	23	50.1
8:00:02	23	49.5
8:30:02	23	50.2
9:00:02	23	49.6
9:30:02	23	49.3
10:00:02	23	50
10:30:02	23	49.9
11:00:02	23	49.9
11:30:02	23	50
12:00:02	23	52.2
12:30:02	23	49.7
13:00:02	23	49.8
13:30:02	23	49.6
14:00:02	23	51.3

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 15 of 28

	14:30:02	23	49.2
	15:00:02	23	50.3
	15:30:02	23	50.9
	16:00:02	23	49.9
	16:30:02	23	49.3
	17:00:02	23	50.2
	17:30:02	23	49.6
	18:00:02	23	48.8
4/3/2018	18:30:02	23	49.8
	19:00:02	23	49.8
	19:30:02	23	49.9
	20:00:02	23	50.2
	20:30:02	23	51.3
	21:00:02	23	49.7
	21:30:02	23	49.4
	22:00:02	23	50.7
	22:30:02	23	50.4
	23:00:02	23	50.1
	23:30:02	23	50
	0:00:02	23	50.3

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 16 of 28

Date	Time	Air	Humidity
		Temp	
4/11/2018	14:00:05	23	50.1
	14:30:05	23	50.1
	15:00:05	23	49.5
	15:30:05	23	48.4
	16:00:05	23	50.7
	16:30:05	23	50.2
	17:00:05	23	49.6
	17:30:05	23	51.2
	18:00:05	23	49.9
	18:30:05	23	50.3
	19:00:05	23	49.8
	19:30:05	23	50.5
	20:00:05	23	49.5
	20:30:05	23	49.8
	21:00:05	23	50.2
	21:30:05	23	49.9
	22:00:05	23	50.1
	22:30:05	23	50.1
	23:00:05	23	50
	23:30:05	23	49.1
	0:00:05	23	49.4
	0:30:05	23	50
4/12/2018	1:00:05	23	49.9
	1:30:05	23	51
	2:00:05	23	50
	2:30:05	23	49.5
	3:00:05	23	49.8
	3:30:05	23	50.8
	4:00:05	23	49.4
	4:30:05	23	49.6
	5:00:05	23	49.9
	5:30:05	23	50.2
	6:00:05	23	50
	6:30:05	23	50.5
	7:00:05	23	49.3
	7:30:05	23	46.8

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 17 of 28

	8:00:05	23	49.9
	8:30:05	23	49.6
	9:00:05	23	50.3
	9:30:05	23	49.4
	10:00:05	23	49.5
	10:30:05	23	50.3
	11:00:05	23	50
	11:30:05	23	50.5
	12:00:05	23	49.8
	12:30:05	23	49.7
	13:00:05	23	50.2
	13:30:05	23	49.4
	14:00:05	23	50.1
	14:30:05	23	49.9
	15:00:05	23	50
	15:30:05	23	50.2
	16:00:05	23	49.9
	16:30:05	23	50
	17:00:05	23	50.3
	17:30:05	23	49.3
	18:00:05	23	52.4
	18:30:05	23	49.6
	19:00:05	23	49.5
	19:30:05	23	49.9
	20:00:05	23	49.3
	20:30:05	23	50.6
	21:00:05	23	49.1
	21:30:05	23	50.2
	22:00:05	23	50.1
	22:30:05	23	50.1
	23:00:05	23	50.1
	23:30:05	23	49.5
	0:00:05	23	50.1
	0:30:05	23	49.5
4/13/2018	1:00:05	23	49.8
	1:30:05	23	50.1
	2:00:05	23	50.3
	2:30:05	23	50.8
-			

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 18 of 28

3:00:05	23	50.3
3:30:05	23	50.2
4:00:05	23	50
4:30:05	23	50.2
5:00:05	23	50.1
5:30:05	23	49.8
6:00:05	23	50.1
6:30:05	23	49.4
7:00:05	23	50.8
7:30:05	23	50.4
8:00:05	24.1	32

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 19 of 28

APPENDIX IV - SHIP CONDITIONING 12.

The user must ensure that they are using the correct/current revision of this document. Document: ENG-PRT-468 Rev: 001 Effective: 22 Mar 2018

Megadyne	TEST PROTOCOL	Document Number ENG-PRT-466
Medical Products, Inc.	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
	Accelerated Aging	Page 21 of 26

12. APPENDIX III – SHIPPING TEST

Preconditioning:

Start Date: 3-28-2018

Chamber Number: 01095 and 01514

Completion Date: 4-13-2018

Last Calibration: 5-23-2017 and 2-20-2018

Signature/Date: Paul Valgueda 4-17-2018

Calibration due: 5-31-2018 and 2-28-2019

Drop Test:

Catalog Number: ME725M1C

Weight: 3.5 lbs.

Drop Height: 15"

Drop Sequence	Orientation	Specific face, edge or corner	Initials/Date
1	Тор	Face 1	PV 4-17-18
2	Edge	Edge 5-3	PV 4-17-18
3	Edge	Edge 6-3	PV 4-17-18
4	Corner	Corner 2-3-5	PV 4-17-18
5	Corner	Corner 4-3-6	PV 4-17-18
6	Bottom	Face 3	PV 4-17-18

Comments: All six identical boxes passed .- PV

Signature: Paul Valgrado

Date: 4-17-2018

Compression Test: All six identical boxes passed. - PV

Catalog Number: ME 725M1C

Pounds Force: 210

Comments: All passed . - PV

Signature: Paul Valpreda

Date: 4-17-2018

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 22 Mar 2018, 11:38:00 am; Printed by: TSKINNER.

Megadyne
Medical
Products,
Inc.TEST REPORT
ENG-RPT-585Document Number
ENG-RPT-585ZIP ACE Modified, 6-Pack Ship Test, 3 yr.
Accelerated Aging ReportRevision: 001
Page 20 of 28

The user must ensure that they are using the correct/current revision of this document. Document: ENG-PRT-466 Rev: 001 Effective: 22 Mar 2018

Megadyne	TEST PROTOCOL	Document Number ENG-PRT-466
Medical Products, Inc.	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Froducts, the.	Accelerated Aging	Page 22 of 26

		Appendix III Continued Shipping Test Log Sheet	
Vibration:			
Low Frequency, 4	0 minutes, Initia	uls:PV	
High frequency 10	minutes, Initia	ls:PV	
Completion Date:	4-17-2018	3	
Signature: Pau	Valpreda	Date:	4-17-2018
Concentrated Im	1		
Completion Date:	4-17-201	8	
Signature: Paul	Valprede	Date:	4-17-2018
Second Drop Tes			
Catalog Number:	ME725M1C	Weight: 3-5 lbs.	Drop Height: 15"+30"
Drop Sequence	Orientation	Specific face, edge or corner	Initials/Date
1	Edge	Edge 4-6	PV 4-17-18
2	Face	Face 4	PV 4-17-18
3	Face	Face 6	PV 4-17-18
4	Corner	Corner 2-1-5	PV 4-17-18
5	Edge	Edge 2-1	PV 4-17-18
6	Bottom	Face 3, Increase height to 30 inches.	PV 4-17-18
Comments:			

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Signature: Paul Valprela

Printed on: 22 Mar 2018, 11:38:00 am; Printed by: TSKINNER.

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Date: 4-17-2018

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 21 of 28

13. APPENDIX V – BUBBLE LEAK TESTING

The user must ensure that they are using the correct/current revision of this document. Document: ENG-PRT-466 Rev: 001 Effective: 22 Mar 2018

Megadyne Medical Products, Inc.	TEST PROTOCOL	Document Number ENG-PRT-466
	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
	Accelerated Aging	Page 23 of 26

13. APPENDIX IV – BUBBLE LEAK TEST

Catalog# ME725M1C

Lot# \$170323

Sample	Pass	Fail	Comment	Sample	Pass	Fail	Comment
1.	X			19	X		
2	X			20	X		
3	X			21	X		
4	Χ			22	X	141	
5	X			23	X		
6	X			24	X		
7	X			25	X		
8	X			26	X		
9	X			27	X		
10	X			28	X		
11	X			29	X		
12	X			30	X		
13	X			31	X		
14	X			32	X		
15	X			33	Χ		
16	X			34	X		
17	X			35	X		
18	X						

Signature: Paul Valpredo Date: 4-18-2018

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 22 Mar 2018, 11:38:00 am; Printed by: TSKINNER.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585		
Products, Inc.	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001		
	Accelerated Aging Report	Page 22 of 28		

14. APPENDIX VI – DYE TESTING

The user must ensure that they are using the correct/current revision of this document. Document: ENG-PRT-466 Rev: 001 Effective: 22 Mar 2018

Megadyne Medical Products, Inc.	TEST PROTOCOL	Document Number ENG-PRT-466		
	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001		
	Accelerated Aging	Page 24 of 26		

14. APPENDIX V - DYE PENETRATION TEST

Catalog# ME725M1C

Lot# S170323

Sample	Pass	Fail	Comment
1	X		
2	X		
3	X		
4	χ		
5	X		
6	Χ		
7	Χ		
8	X		
9	X		
10	X		
11	χ		
12	X		
13	X		
14	X		
15	X		_
16	χ		
17	Х		
18	X		

Sample	Pass	Fail	Comment
19	X		
20	X		
21	Χ		
22	Х		
23	X		
24	X		
25	X		
26	X		
27	X		
28	Х		
29	X		
30	Χ		
31	Χ		
32	Χ		
33	X		
34	χ		
35	Х		

Signature: Paul Valgrade Date: 4-23-2018

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 22 Mar 2018, 11:38:00 am; Printed by: TSKINNER.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 23 of 28

APPENDIX VII - BURST TESTING 15.

Lot disposition: Quantity Tested, Comments:	Calibration Due Date	Burst Test Equipment:	FLO	Burst Test Settings:		B/M/E		B/M/E		B/M/E		B/M/E		B/M/E		B/M/E		S170323	Lı	
tion: Qua	Due Dat	Equipme	FLOW (#)	Settings:	Value	C#	Value	C#	Value	C#	Value	C#	Value	C#	Value	C#		\$23	Lot Number	
intity Tester	0	nt:		Note							35.3	25	37.5	13	29.2	-			Ì	
36	1/3/18		2	: C- Cavity							40.5	26	37.3	h	29.2 40.7	12		ME725MIC	Catalog Number	
Accept	,			(MultiVac ca							41.7	27	42.0	ī	32.2	500		MIC	Number	
Reje	Equip. Id.		SENSIT (#)	wity location							39.5	2.8	36.0	16	26.3	4	,	Megac		×
	Id. #		T(#)), B/M/E=B							35.3	29	27.9	17	27.2	5	Burst 7	Megadyne ACE Blade	Desc	Appendix I MultiVac Test Samples
25	11610			eginning/M							33.9	30	24.8	18	31-6	6	Burst Test Data	E Blad	Description	Appendix I Vac Test Samj
Company Compan	TA	00	_	Note: C= Cavity (MultiVac cavity location), B/M/E=Beginning/Middle/End, Value=Measured Burst Value							32.4	31	35.7	١٩	43.5	7		000		les
			P	/alue-Meas							36.7	32	35.7 40.1	20	24.4 31.1	90		4-20	Date Tested	
			PREFILL (Y/N)	ured Burst \							35.5	33	25.7	21	31.1	9		8102-02-4	rested	
NA SA			3	Value							39.9	34	37.6	22	23.7	10		36	Lot Size	
PN 4-20			~								33-6	25	24.3	23	25.5	13		23.7	Min Pressu	
0-2018											40.6	36	25.4	24	25.6	12		.7	Min. Burst Pressure (in H ₂ 0)	

The user must ensure that they are using the correct/current revision of this document Document: OPER-FRM-4014 Rev: 302 Effective: 30 May 2017 FORM OPER-FRM-004 Revision: 002

PEEL POUCH - SEAL BURST TEST FORM

Page 3 of 5

Megadyne
Medical
Products,
Inc.TEST REPORT
ENG-RPT-585Document Number
ENG-RPT-585ZIP ACE Modified, 6-Pack Ship Test, 3 yr.
Accelerated Aging ReportRevision: 001
Page 24 of 28

16. APPENDIX VIII – MINIMUM SEAL WIDTH TESTING

The user must ensure that they are using the correct/current revision of this document. Document: ENG-PRT-466 Rev: 001 Effective: 22 Mar 2018

Megadyne Medical Products, Inc.	TEST PROTOCOL	Document Number ENG-PRT-466
	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
	Accelerated Aging	Page 25 of 26

15. APPENDIX VI - MINIMUM SEAL WIDTH TESTING

Sample	Cavity	1 Front	3 Back	2. Right	4 Le
1	2			-32	
2	2			.29	RICE CONTRACTOR
3	1			-30	100
4				.29	THE REAL PROPERTY.
5	2			•30	
6	2			•2.7	
7	2			-32	
8	2			-31	
9	2			.30	
10	2			-28	5
. 11				.30	
12	2			-30	
13				.32	6
14	[•31	
15	1	CHAPTER ST		•31	
16	2			•30	
17	(1	-31	
18	2			-30	
19	2	-30		W \$16 5 (15E)	
20	2			-31	District of
21	2.			.26	19
22	2	CONTRACTOR OF STREET		.29	
23	2			.29	
24	2			.32	
25				-3	
26	(•31 •28	Marine .
27	1			•31	
28		Cartago (E. pre		.3(
29				-29	
30				.32	
31				•32	
32	i	WALLSALAN		.32	
33	2		373402	•30	_
34	2			•3	8
35	2			.30	

Possession of this document is an acknowledgment that the contents berein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 22 Mar 2018, 11:38:00 am; Printed by: TSKINNER.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585		
Products, Inc.	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001		
	Accelerated Aging Report	Page 25 of 28		

17. APPENDIX IX – PRODUCT DAMAGE INSPECTION

The user must ensure that they are using the correct/current revision of this document. Document: ENG-PRT-466 Rev: 001 Effective: 22 Mar 2018

Megadyne Medical Products, Inc.	TEST PROTOCOL	Document Number ENG-PRT-466
	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
	Accelerated Aging	Page 26 of 26

16. APPENDIX VII - PRODUCT DAMAGE INSPECTION

Inspect the product per the protocol and enter the number of units that pass or fail in the box below.

Catalog # ME725MIC	Pass	Fail	
Damage None visible	36	Ø	
Comments: All packages look of smeared text. visible damage.	ed good only The product !	one had a very minim. ooked good as well wi-	al amount th no
Signature: Paul Valgra	do	Date: 4-17-201	8

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written pennission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 22 Mar 2018, 11:38:00 am; Printed by: TSKINNER.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 26 of 28

18. APPENDIX X – TUBING STRENGTH TESTING

Tuesday, May 01, 2018

ME725M1C LOT S170323 Tubing Strength.is_tens

Testing performed by Paul Valpreda on 5/1/2018

5-1-2018

Specimen 1 to 25

Specimen 26 to 35

26
27
28
29
30
31
32
33
34
35

	Specimen label	Maximum Load (lbf)	Load at Break (Standard) (lbf)	Peak to peak
1	Sample 1	> 7.24	< -0.07	> 7.31
2	Sample 2	> 6.20	> 0.01	> 6.19
3	Sample 3	> 6.17	> 0.02	> 6.15
4	Sample 4	> 7.39	> 0.20	> 7.20
5	Sample 5	> 7.90	> 0.41	> 7.49
6	Sample 6	> 6.69	> 2.24	> 4.46
7	Sample 7	> 6.87	< -0.18	> 7.04
			Page 1 of 3	

Megadyne
Medical
Products,
Inc.TEST REPORT
ENG-RPT-585Document Number
ENG-RPT-585ZIP ACE Modified, 6-Pack Ship Test, 3 yr.
Accelerated Aging ReportRevision: 001
Page 27 of 28

	Environmental of	Mart	Tuesday, May 01, 20		ME725M1C LOT S170323 Tubii Strength.is_te
	Specimen label	Maximum Load (lbf)	Load at Break (Standard) (lbf)	Peak to peak	
8	Sample 8	> 6.54	< -0.36	> 6.90	
9	Sample 9	> 6.92	< -0.01	> 6.93	
10	Sample 10	> 6.51	< -0.27	> 6.77	
11	Sample 11	> 6.67	< -0.14	> 6.81	
12	Sample 12	> 5.66	< -0.02	> 5.68	
13	Sample 13	> 6.15	< -0.05	> 6.20	
14	Sample 14 Sample 15	> 6.94 > 8.13	< -0.18 > 8.12	> 7.12 > 0.00	
16	Sample 16	> 6.98	< -0.20	> 7.18	
17	Sample 17	> 7.40	> 0.26	> 7.14	
18	Sample 18	> 5.95	> 0.01	> 5.94	
19	Sample 19	> 6.84	> 0.19	> 6.65	
20	Sample 20	> 6.54	< -0.18	> 6.72	
21	Sample 21	> 6.96	> 0.25	> 6.71	
22	Sample 22	> 7.00	< -0.06	> 7.06	
23	Sample 23	> 7.36	> 0.17	> 7.19	
24	Sample 24	> 7.50	> 0.27	> 7.23	
25	Sample 25	> 6.41	< -0.15	> 6.56	
26	Sample 26	> 7.44	> 0.19	> 7.25	
27	Sample 27	> 6.06	< -0.18	> 6.23	
28	Sample 28	> 6.37	< -0.05	> 6.43	
29	Sample 29	> 6,60	> 0.04	> 6.56	
30	Sample 30	> 7.42	< -0.04	> 7,46	
31 32	Sample 31 Sample 32	> 6.87	< -0.12	> 6.99	
33	Sample 33	> 7.01 > 7.25	< -0.09 < -0.09	> 7.09	
34	Sample 34	> 6.73	< -0.09	> 7.34 > 6.81	
35	Sample 35	> 7.48	> 0.33	> 7.15	
Maximum	Surriging St.	8.13	8.12	7.49	
Mean		6.86	0.29	6.57	
Minimum		5.66	-0.36	0.00	
Standard		0,55779	1.42560	1.28906	
Deviation					
	De	escription			
1	Tubing came off con	nector - lower			
2	Tubing came off con	nector - upper			
3	Tubing came off con-	nector - upper			
4	Tubing broke just ab				
5	Tubing broke just ab				
6	Tubing broke just ab		tion		
7	Tubing came off con				
8	Tubing came off con				
10	Tubing came off controls Tubing came off controls				
10	Tubing came off con				
12	Tubing came off con				
13	Tubing came off con				
	Tubing came off con				
	Tubing came off con				
	Tubing came off con				
	Tubing broke just ab		tion		
	Tubing came off con				
19	Tubing broke just ab		tion		
20	Tubing broke just ab				
21	Tubing broke just be				
22	Tubing came off cont	nector - upper			
23	Tubing broke just ab				
24	Tubing broke just ab		tion		
	Tubing came off con				
26	Tubing broke just ab		tion		
27	Tubing came off con-				

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-585
Products,	ZIP ACE Modified, 6-Pack Ship Test, 3 yr.	Revision: 001
Inc.	Accelerated Aging Report	Page 28 of 28

Description 28 Tubing came off connector - upper 29 Tubing came off connector - lower 30 Tubing came off connector - lower 31 Tubing came off connector - lower 32 Tubing came off connector - lower 33 Tubing came off connector - lower 34 Tubing came off connector - upper 35 Tubing troke just above lower connection **Macimum** Islandard Deviation**			Tuesday, May 01, 2018	ME725M1C LOT S170323 Tubin Strength.is_ten
28 Tubing came off connector - upper 29 Tubing came off connector - upper 30 Tubing came off connector - lower 31 Tubing came off connector - lower 32 Tubing came off connector - lower 33 Tubing came off connector - lower 34 Tubing came off connector - upper 35 Tubing came off connector - upper 36 Tubing broke just above lower connection Maximum Mean Minimum Standard				Strength.is_ten
30 Tubing came off connector - lower 31 Tubing came off connector - lower 32 Tubing came off connector - lower 33 Tubing came off connector - lower 34 Tubing came off connector - upper 35 Tubing broke just above lower connection Maximum Mean Minimum Standard		Description		
30 Tubing came off connector - lower 31 Tubing came off connector - lower 32 Tubing came off connector - lower 33 Tubing came off connector - lower 34 Tubing came off connector - upper 35 Tubing broke just above lower connection Maximum Mean Minimum Standard	28	Tubing came off connector - upper		
30 Tubing came off connector - lower 31 Tubing came off connector - lower 32 Tubing came off connector - lower 33 Tubing came off connector - lower 34 Tubing came off connector - upper 35 Tubing broke just above lower connection Maximum Mean Minimum Standard		Tubing came off connector - upper		
32 Tubing came off connector - lower 33 Tubing came off connector - lower 34 Tubing came off connector - upwer 35 Tubing broke just above lower connection Maximum Mean Minimum Standard	30	Tubing came off connector - lower		
33 Tubing came off connector - lower 34 Tubing came off connector - upper 35 Tubing broke just above lower connection Maximum Mean Minimum Standard		Tubing came off connector - lower		
33 Tubing came off connector - lower 34 Tubing came off connector - upper 35 Tubing broke just above lower connection Maximum Mean Minimum Standard		Tubing came off connector - lower		
Maximum Mean Minimum Standard		Tubing came off connector - lower		
Maximum Mean Minimum Standard		Tubing came off connector - upper		
Mean Minimum Standard		Tubing broke just above lower conne	ection	
Minimum Standard				
Standard				
Peviation				
	Deviation			