Module 1:

Part 1 - Course introduction

Manuela Zucknick
Oslo Center for Biostatistics and Epidemiology, UiO
manuela.zucknick@medisin.uio.no

MF9130E – Introductory Statistics April 24, 2023

Course Introduction

Course schedule

Week 1	Monday (24-04)	Tuesday (25-04)	esday (25-04) Wednesday (26-04) Thursday (27-04)		Friday (28-04)
Location	DM Lille auditorium	DM Auditorium 13	DM Store auditorium	DM Runde auditor.	DM Store auditorium
08:30-11:45		C and M A C		С	
		SEM*	SEM*	SEM*	SEM*
12:45-16:00	M	A	V	V	
	FOR*	FOR*	FOR*	FOR*	

Week 2	Monday (08-05)	Tuesday (09-05)	Wednesday (10-05)	Thursday (11-05)	Friday (12-05)
Location	DM Lille auditorium	auditorium Helga Engs hus Aud 3 D		DM Auditorium 13	
08:30-10:00	С	J	M	M	
	FOR	FOR	FOR	FOR	
10:15-11:45	С	J	M and C	M and C	
	SEM	FOR	SEM	SEM	
12:45-14:15	V	M	M	M	
	FOR	FOR	FOR	FOR	
14:30-16:00	V and C	M and C	M and C	M	
	SEM	SEM	SEM	SEM	

Course schedule

Week 1	Monday (24-04)	Tuesday (25-04)	25-04) Wednesday (26-04) Thursday (27-04)		Friday (28-04)
Location	DM Lille auditorium	DM Auditorium 13	DM Store auditorium	DM Runde auditor.	DM Store auditorium
08:30-11:45		C and M A C		С	
		SEM*	SEM*	SEM*	SEM*
12:45-16:00	M	Α	V	V	
	FOR*	FOR*	FOR*	FOR*	

Week 2	Monday (08-05)	Tuesday (09-05)	Wednesday (10-05) Thursday (11-05)		Friday (12-05)
Location	DM Lille auditorium	Helga Engs hus Aud 3	DM Auditorium 13	DM Auditorium 13	
08:30-10:00	C J		M	M	
	FOR	FOR	FOR	FOR	
10:15-11:45	С	J	M and C	M and C	
	SEM	FOR	SEM	SEM	
12:45-14:15	V	M	M	M	
	FOR	FOR	FOR	FOR	
14:30-16:00	V and C	M and C	M and C	M	
	SEM	SEM	SEM	SEM	

Topic
Course introduction; Data and descriptive statistics
Foundations: probability, Bayes law and diagnostic tests,
statistical distributions (normal and binomial distribution)
Statistical inference: hypothesis testing and confidence intervals,
t-tests, tests for contingency tables
Transformations, non-parametric methods
Sample size and statistical power
Study designs: epidemiological designs and concepts, principles
of clinical trials
Regressions: simple and multiple regression, confounding and
interactions, linear and logistic regression
Survival analysis; Course summary

Le	cturer
М	= Manuela Zucknick
Α	= Alvaro Köhn-Luque
٧	= Valeria Vitelli
J=	Jo S Stenhjem
C	= Chi Zhang

Overview for Module 1 "Data and Descriptive Statistics"

This afternoon: Lectures in flipped classroom style (FOR*)

- Introduction to this course
- Data and statistics in medicine
 - Introduction and motivation
- Descriptive statistics
 - Data presentation
 - Central measures
 - Measures of variation
 - Graphical presentation of data

Tomorrow morning: Labs in flipped classroom style (SEM)

- Introduction to statistical computing with R
- Course textbook chapters:
 - ► Kirkwood and Sterne chapters 2-4
 - Aalen chapters 1 and 2

Links and Course Material

- Course webpages: https://ocbe-uio.github.io/teaching_mf9130e/
- We will mainly use the course webpages for all information and access to material. The webpages will be continuously updated throughout the course.
- Canvas room: We will not use the Canvas room a lot, but Canvas is used for **emails** and general communication. Please let us know asap, if you do not have access to Canvas!
- Official UiO course pages with schedule, literature and details on admission rules, exam etc: https: //www.uio.no/studier/emner/medisin/med/MF9130E/

Computer exercises in R (starting tomorrow morning)

- You will need to have a laptop computer with access to R and RStudio for the labs.
- We advise that you install R/RStudio on your own laptop.
- Alternatively, you could register for a (free trial) account on a Posit Cloud server.
- See here for instructions: https://ocbe-uio.github.io/ teaching_mf9130e/get_started/get_started.html
- Note: You can also access R/RStudio through the UiO Programkiosk: https: //www.uio.no/english/services/it/home-away/kiosk/.

Homework for tomorrow morning

 Go through the instructions above to get working access to R and RStudio. There will be a detailed introduction to R and RStudio tomorrow morning.

Note

It is recommended to have R and Rstudio installed on your laptop, this is because you have a better control of where you prefer to download data and course material. This is also useful when you want to analyse your own datasets. For example, you might have to upload datafiles to the server for Posit Cloud to work.

However, if there is a problem with the installation, you can use Posit Cloud as an alternative.

On Tuesday morning we will see if most people can successfully make R run on their laptop and make necessary adjustments.

Exam

- Take-home exam.
- Will be published via Inspera at the end of the course.
- To be submitted within a specified deadline (4 weeks after the end of the course).
- A passed exam is required to get the course approved.
- More details on the last day of this course.

Main course textbook: Kirkwood and Sterne (2003)

- Betty R. Kirkwood and Jonathan A. C. Sterne. Essential Medical Statistics. Second edition, Blackwell Science Ltd, 2003
- www.blackwellpublishing.com/essentialmedstats/

Norwegian alternative: Aalen (ed) et al (2006)

- Odd O. Aalen (red), Arnoldo Frigessi, Tron Anders Moger, Ida Scheel, Eva Skovlund, Marit B. Veierød. Statistiske metoder i medisin og helsefag. Gyldendal Akademisk 2006
- www.med.uio.no/imb/studier/ressurser/statistikk/ statistikkressurser-shs/aalen.html

Methods in this course

Many of the methods we cover can be seen as linear models.

- https://lindeloev.github.io/tests-as-linear/
- Regression models as well as most statistical tests:

	ommon stati	stical tests are	linear models	See worked examples and more details at the accompanying notebook: https://lindeloev.github.lo/tests-as-linear		
	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
x +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	for N >14	One number (intercept, i.e., the mean) predicts y. - (Same, but it predicts the signed rank of y.)	- 12 m
: Im(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y1, y2, paired=TRUE) wilcox.test(y1, y2, paired=TRUE)	$lm(y_2 - y_1 \sim 1)$ $lm(signed_rank(y_2 - y_1) \sim 1)$	for N > 14	One intercept predicts the pairwise y-y- differences. - (Same, but it predicts the signed rank of y-y-,)	Ø.+
regression	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	$lm(y\sim 1+x) \\ lm(rank(y)\sim 1+rank(x))$	for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with ranked x and y)	بمليم
Simple re	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$lm(y \sim 1 + G_2)^A$ $gls(y \sim 1 + G_2, weights=^B)^A$ $lm(signed_rank(y) \sim 1 + G_2)^A$	for N >11	An intercept for group 1 (plus a difference if group 2) predicts y. - (Same, but with one variance per group instead of one common.) - (Same, but it predicts the aligned rank of y.)	Y
Multiple regression: Im(y ~ 1 + x ₁ + x ₂ +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$lm(y \sim 1 + G_2 + G_3 + + G_n)^n$ $lm(rank(y) \sim 1 + G_2 + G_3 + + G_n)^n$	√ for N >11	An intercept for group 1 (plus a difference if group × 1) predicts y . - (Same, but it predicts the rank of y .)	iş†
	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	1	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	4
	P: Two-way ANOVA	nov(y ~ group * sex)	$\begin{split} & Im(y \sim 1 + G_2 + G_3 + + G_N + \\ & S_2 + S_3 + + S_K + \\ & G_2^* S_2 + G_3^* S_3 + + G_{N}^* S_K) \end{split}$	*	Interaction term: changing sex changes the y – group parameters. Note: G _{has} is an <u>installer (Bor 1)</u> for each non-intercept levels of the group variable. Similarly for S _{has} for sex. The first fine (with G) is made effect of group, the second (with S _i) for sex and the third is the group x sex interaction. For two levels (e.g., male/fermale), and 2 would yet the S _i ' and fine 3 would be S _i multiple with each G.	[Coming]
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model glm(y ~ 1 + G_2 + G_3 + + G_{N} + S_{N} + S	~	Interaction term: (Same as Two-way ANOVA.) Note: Run girn using the following arguments: \$\pi_{\infty} \text{singular}(\pi_{\infty} \text{singular}) \text{final}(\pi_{\infty} \text{singular}) \text{Note}(\pi_{\infty} \text{singular}) \text{As final}(\pi_{\infty} \text{singular}) \text{hospile}(\pi_{\infty} \text{singular}) \text{and}(\pi_{\infty} \text{singular}) \text{singular}) \text{and}(\pi_{\infty} \text{singular}) \text{and}(\pi_{\infty	Same as Two-way ANOVA
Š	N: Goodness of fit	chisq.test(y)	$gIm(y \sim 1 + G_2 + G_3 + + G_{No} family=)^n$	4	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

List of common parametric (P) non-parametric (P) no

[^] See the note to the two-way ANOVA for explanation of the notation.

B Same model, but with one variance per group: gla(value ~ 1 + G₂, weights = varident(form = ~1(group), method="ML").

Why do we need statistics?

"Statistics is the science of collecting, summarizing, presenting and interpreting data, and of using them to estimate the magnitude of associations and test hypotheses"

Kirkwood and Sterne p. 1

The build-up of a research project

- Planning
- Design
- Execution (data collection)
- Data analysis
- Presentation
- Interpretation
- Publication

Statistics in <u>all</u> points

Critical reading of publications

- Research design
- Inclusion and exclusion criteria
- Sample size
- Exposure (risk factor) and confounding factors
- Outcome (response)
- Statistical analysis
- Bias
- Interpretation of results

Statistics in all points

Pyramid of evidence

- Grading the evidence for practice guidelines after susceptibility of threats to internal validity
- Health literacy guide designed to help students find and assess sources of quality health information: https: //libraryguides.unh.edu/c.php?g=326606&p=2191225

Oslo Centre for Biostatistics and Epidemiology (OCBE)

- ... is a joint centre of UiO (Department of Biostatistics, IMB) and OUS (Biostatistics and Epidemiology group at Forskningsstøtte). Approx. 80 people in total.
- Research: Methodological research in several areas, e.g.
 - Statistical genomics
 - Epidemiological research
 - Infectious disease research
 - Clinical Trials Unit (CTU)
- Statistical advising for researchers at the Medical Faculty, OUS and Helse-Sør-Øst
- Teaching at MedFak: professional study programme for Medicine, Master's programmes in Clinical Nutrition and International Community Health, PhD courses

OCBE Statistical Advising Service

https://www.med.uio.no/imb/english/research/centres/ocbe/advising/