Order Topology

Definition: Partial Ordering

Let X be a set and let \leq be a binary operator on X. So say that \leq is a *partial ordering* on X means that for all $x,y,z\in X,\leq$ is:

Reflexive: $x \le x$

Antisymmetric: $x \le y$ and $y \le x \implies x = y$

Transitive: $x \le y$ and $y \le z \implies x \le z$

A set with such a partial ordering, denoted by (X, \leq) , is called a *poset*.

Definition: Comparable

Let (X, \leq) be a poset. To say that $x, y \in X$ are *comparable* means that $x \leq y$ or $y \leq$.

Example: Subset

Let X be a set. \subset is a partial ordering on 2^X , since some elements of 2^X are not comparable.

Notation

Let (X, \leq) be a poset and let $a \in X$:

$$a < = \{x \in X \mid x < a\}$$

$$a_>=\{x\in X\,|\,x>a\}$$

$$(a,b) = \{x \in X \mid a < x < b\} = a_{>} \cap b_{<}$$

Definition: Total Ordering

Let (X, \leq) be a poset. To say that \leq is a *total ordering* on X means that every $x, y \in X$ is comparable.

Definition: Order Topology

Let (X, \leq) be a total ordering and let:

$$B = \{a < | a \in X\} \cup \{a > | a \in X\} \cup \{(a, b) | a, b \in X\}$$

B is a basis for a topology ${\mathscr T}$ on X called the order topology.

Definition: Lexicographic Order

Let A, \leq_A and B, \leq_B be totally orderings. The *lexicographic* or *dictionary* ordering on $A \times B$ is given by:

$$(a_1, b_1) < (a_2, b_2) \iff a_1 < a_2 \text{ or } a_1 = a_2 \text{ and } b_1 < b_2$$

Definition: Lexicographically Ordered Square

The square $[0,1] \times [0,1]$ with the lexicographic order and its associated order topology is called the *lexicographically ordered square*.

Example

Draw pictures of various open sets in the lexicographically ordered square.

Example

Let \mathcal{S} be the lexicographically ordered square and $A = \left\{ \left(\frac{1}{n}, 0\right) \mid n \in \mathbb{N} \right\} \subset \mathcal{S}$. Determine the closure of A.

$$\bar{A} = A \cup \{(0,y) \, | \, y \in [0,1]\}$$