Uniwerystet Jagielloński

Pytania do egzaminu licencjackiego na kierunku Informatyka

Małgorzata Dymek

Rok akademicki 2019/2020

Spis treści

1	Zasada indukcji matematycznej.	2
2	Porządki częściowe i liniowe. Elementy największe, najmniejsze, maksymalne i minimalne.	- 3
3	Relacja równoważności i zbiór ilorazowy.	4
4	Metody dowodzenia twierdzeń: wprost, nie wprost, przez kontrapozycję.	5
5	Metody numeryczne rozwiązywania równań nieliniowych: bisekcji, siecznych, Newtona.	6
6	Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa, metody iteracyjne Jacobiego i Gaussa-Seidla. 6.1 Metoda eliminacji Gaussa	77 77 88 88 88 88 88
7	Wartości i wektory własne macierzy: numeryczne algorytmy ich wyznaczania.	9
8	Interpolacja wielomianowa: metody Lagrange'a i Hermite'a. Efekt Rungego.	10
9	Zmienne losowe dyskretne. Definicje i najważniejsze rozkłady.	11
10	Zmienne losowe ciągłe. Definicje i najważniejsze rozkłady.10.1 Rozkład jednostajny10.2 Rozkład wykładniczy10.3 Rozkład normalny10.4 Rozkład Gamma, Wzór Gamma-Poisona	12 12 12 13 14
11	Łancuchy Markowa, Rozkład stacionarny,	15

12	Testy statystyczne: test z, test t-Studenta, test chi-kwadrat. 12.1 Z-test	17 17
13	Wzór Bayesa i jego interpretacja.	19
14	Istnienie elementów odwrotnych względem mnożenia w strukturze $(Zm,+,*)$ w zależności od liczby naturalnej m. Rozszerzony algorytm Euklidesa.	20
15	Ortogonalność wektorów w przestrzeni R_n ; związki z liniową niezależnością. Metoda ortonormalizacji Grama-Schmidta.	20
16	Liczby Stirlinga I i II rodzaju i ich interpretacja.	21
17	Twierdzenia Eulera i Fermata; funkcja Eulera.	22
18	Konfiguracje i t-konfiguracje kombinatoryczne.	2 3
19	Cykl Hamiltona, obwód Eulera, liczba chromatyczna - definicje i twierdzenia.	24
20	${\bf Algorytm~Forda-Fulkersona~wyznaczania~maksymalnego~przepływu.}$	2 5
21	Rozwiązywanie równan rekurencyjnych przy użyciu funkcji tworzących (generujących) oraz przy użyciu równania charakterystycznego.	25
22	Ciąg i granica ciągu liczbowego, granica funkcji.	2 6
23	Ciągłość i pochodna funkcji. Definicja i podstawowe twierdzenia.	27
24	Ekstrema funkcji jednej zmiennej. Definicje i twierdzenia.	28
25	Całka Riemanna funkcji jednej zmiennej.	2 9
26	Pochodne cząstkowe funkcji wielu zmiennych; różniczkowalność i różniczka funkcji.	30
27	Ekstrema funkcji wielu zmiennych. Definicje i twierdzenia.	31

28	Twierdzenie o zmianie zmiennych w rachunku całkowym; współrzędne walcowe i sferyczne.	32
29	Metody dowodzenia poprawności pętli.	33
30	Odwrotna Notacja Polska: definicja, własności, zalety i wady, algorytmy.	33
31	Modele obliczen: maszyna Turinga.	33
32	Modele obliczen: automat skończony, automat ze stosem.	33
33	Złożoność obliczeniowa - definicja notacji: $O,\Omega,\Theta.$	3 4
34	Złożoność obliczeniowa - pesymistyczna i średnia.	35
35	Metoda "dziel i zwyciężaj"; zalety i wady.	36
36	Lista: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.	36
37	Kolejka i kolejka priorytetowa: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.	36
38	Algorytmy sortowania QuickSort i MergeSort: metody wyboru pivota w QS; złożoności.	37
39	Algorytm sortowania bez porównań (sortowanie przez zliczanie, sortowanie kubełkowe oraz sortowanie pozycyjne).	38
40	Reprezentacja drzewa binarnego za pomocą porządków (preorder, inorder, postorder).	39
41	Algorytmy wyszukiwania następnika i poprzednika w drzewach BST usuwanie węzła.	; 40
42	B-drzewa: operacje i ich złożoność.	40
43	Drzewa AVL: rotacje, operacje z wykorzystaniem rotacji i ich złożoność.	40
44	Algorytmy przeszukiwania wszerz i w głąb w grafach.	40

45	Algorytmy wyszukiwania najkrótszej ścieżki (Dijkstry oraz Bellmana Forda).	40
46	Programowanie dynamiczne: podział na podproblemy, porównanie z metodą "dziel i zwyciężaj".	40
47	Algorytm zachłanny: przykład optymalnego i nieoptymalnego wykorzystania.	40
48	Kolorowania wierzchołkowe (grafów planarnych) i krawędziowe grafów, algorytmy i ich złożoności.	40
49	Algorytmy wyszukiwania minimalnego drzewa rozpinającego: Boruvki, Prima i Kruskala.	40
50	Najważniejsze algorytmy wyznaczania otoczki wypukłej zbioru punktów w układzie współrzędnych (Grahama, Jarvisa, algorytm przyrostowy (quickhull)).	40
51	Problemy P, NP, NP-zupełne i zależności między nimi. Hipoteza P vs. NP.	40
52	Automat minimalny, wybrany algorytm minimalizacji.	40
53	Lemat o pompowaniu dla języków regularnych.	40
54	Warunki równoważne definicji języka regularnego: automat, prawa kongruencja syntaktyczna, wyrażenia regularne.	40
55	Automaty niedeterministyczne i deterministyczne (w tym ze stosem); determinizacja.	40
56	Problemy rozstrzygalne i nierozstrzygalne w teorii języków.	40
57	Klasy języków w hierarchii Chomsky'ego oraz ich zamkniętość ze względu na operacje boolowskie, homomorfizmy, itp.	40
58	Reprezentacja liczb całkowitych; arytmetyka.	41
5 9	Reprezentacja liczb rzeczywistych; arytmetyka zmiennopozycyjna.	41

60	Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych w $\mathrm{C}{++}.$	41
61	Sposoby przekazywania parametrów do funkcji (przez wartość, przez referencję). Zalety i wady.	41
62	Wskaźniki, arytmetyka wskaźników, różnica między wskaźnikiem a referencją w C++.	41
63	Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm.	- 41
64	Funkcje zaprzyjaźnione i ich związek z przeładowaniem operatorów w $\mathrm{C}{++}.$	41
65	Programowanie generyczne na podstawie szablonów w języku $\mathrm{C}++.$	41
66	Podstawowe kontenery w STL z szerszym omówieniem jednego z nich.	41
67	Obsługa sytuacji wyjątkowych w C++.	41
68	Obsługa plików w języku C.	41
69	Model wodospadu a model spiralny wytwarzania oprogramowania.	41
70	Diagram sekwencji i diagram przypadków użycia w języku UML.	41
71	Klasyfikacja testów.	41
72	Model Scrum: struktura zespołu, proces wytwarzania oprogramowania, korzyści modelu.	41
73	Wymagania w projekcie informatycznym: klasyfikacja, źródła, specyfikacja, analiza.	41
74	Analiza obiektowa: modele obiektowe i dynamiczne, obiekty encjowe, brzegowe i sterujące.	41
	Wzorce architektury systemów.	41

7 6	Relacyjny model danych, normalizacja relacji (w szczególności algorytm doprowadzenia relacji do postaci Boyce'a-Codda), przykłady.	42
77	Indeksowanie w bazach danych: drzewa B+, tablice o organizacji indeksowej, indeksy haszowe, mapy binarne.	42
78	Podstawowe cechy transakcji (ACID). Metody sterowania współbieżnością transakcji, poziomy izolacji transakcji, przykłady.	42
7 9	Złączenia, grupowanie, podzapytania w języku SQL.	42
80	Szeregowalność harmonogramów w bazach danych.	42
81	Definicja cyfrowego układu kombinacyjnego - przykłady układów kombinacyjnych i ich implementacje.	42
82	Definicja cyfrowego układu sekwencyjnego - przykłady układów sekwencyjnych i ich implementacje.	42
83	Minimalizacja funkcji logicznych.	42
84	Programowalne układy logiczne PLD (ROM, PAL, PLA).	42
85	Schemat blokowy komputera (maszyna von Neumanna).	42
86	Zarządzanie procesami: stany procesu, algorytmy szeregowania z wywłaszczaniem.	42
87	Muteks, semafor, monitor jako narzędzia synchronizacji procesów.	42
88	Pamięć wirtualna i mechanizm stronicowania.	42
89	Systemy plikowe - organizacja fizyczna i logiczna (na przykładzie wybranego systemu uniksopodobnego).	42
90	Model ISO OSI. Przykłady protokołów w poszczególnych warstwach	42
91	Adresowanie w protokołach IPv4 i IPv6.	42
92	Najważniejsze procesy zachodzące w sieci komputerowej od momentu wpisania adresu strony WWW do wyświetlenia strony w prze-	

	glądarce (komunikat HTTP, segment TCP, system DNS, pakiet IP,	
	ARP, ramka).	42
93	Działanie przełączników Ethernet, sieci VLAN, protokół STP.	42
94	Rola routerów i podstawowe protokoły routingu (RIP, OSPF).	42
95	Szyfrowanie z kluczem publicznym, podpis cyfrowy, certyfikaty.	42
96	Wirtualne sieci prywatne, protokół IPsec.	42

Matematyczne podstawy informatyki

1 Zasada indukcji matematycznej.

Przykład: $2^1+2^2+\cdots+2^n=2^{n+1}-2$, Nierówność Bernoulliego $dla\ h\geqslant -1\ (1+h)^2\geqslant 1+n*h,\ \forall n\in\mathbb{N}^+,\ 1+2+\cdots+n=\frac{n(n+1)}{2}\forall n\in\mathbb{N}$

2 Porządki częściowe i liniowe. Elementy największe, najmniejsze, maksymalne i minimalne.

Przykłady - sprawdź czy porządek: $xRy \Leftrightarrow x|y$

3 Relacja równoważności i zbiór ilorazowy.

Przykład: $xRy \Leftrightarrow x \equiv_3 y$.

4 Metody dowodzenia twierdzeń: wprost, nie wprost, przez kontrapozycję.

5 Metody numeryczne rozwiązywania równań nieliniowych: bisekcji, siecznych, Newtona.

6 Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa, metody iteracyjne Jacobiego i Gaussa-Seidla.

6.1 Metoda eliminacji Gaussa

Obliczając rząd macierzy metodą Gaussa należy za pomocą operacji elementarnych na wierszach sprowadzić macierz do macierzy schodkowej. Wtedy wszystkie niezerowe wiersze są liniowo niezależne i można łatwo odczytać rząd macierzy.

$$\begin{bmatrix} 1 & -1 & 2 & 2 \\ 2 & -2 & 1 & 0 \\ -1 & 2 & 1 & -2 \\ 2 & -1 & 4 & 0 \end{bmatrix} \xrightarrow{w_2 - 2w_1, w_3 + w_1, w_4 - 2w_1} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & -4 \end{bmatrix} \xrightarrow{w_2 \leftrightarrow w_3} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 0 & -4 \end{bmatrix} \sim$$

$$\overset{w_{4-w_{2}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & -3 & -4 \end{bmatrix} \overset{w_{4-w_{3}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Metody iteracyjne

Ogólna postać metody iteracyjnej:

$$Ax = b$$

$$Qx^{n+1} = (Q - A)x^n + b = \tilde{b}$$

$$x^0 = (0, 0, 0)$$

$$\begin{bmatrix} 5 & -2 & 3 \\ 2 & 4 & 2 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 5x_1 + (-2)x_2 + 3x_3 = 10 \\ 2x_1 + 4x_2 + 2x_3 = 0 \\ 2x_1 + (-1)x_2 + (-4)x_3 = 0 \end{cases}$$

6.2 Metoda iteracyjna Jacobiego

6.2.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^N) \\ x_3^{N+1} = -\frac{1}{4}(x_2^N - 2x_1^N) \end{cases}$$

6.2.2 Macierzowo

$$Q = D$$
 (diagonalna)

6.3 Metoda iteracyjna Gaussa-Seidla

6.3.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^{N+1}) \\ x_3^{N+1} = -\frac{1}{4}(x_2^{N+1} - 2x_1^{N+1}) \end{cases}$$

6.3.2 Macierzowo

$$Q = L + D$$
 (diagonalna i dolnotrójkątna)

Wartości i wektory własne macierzy: numeryczne algorytmy ich wyznaczania. 8 Interpolacja wielomianowa: metody Lagrange'a i Hermite'a. Efekt Rungego.

9 Zmienne losowe dyskretne. Definicje i najważniejsze rozkłady.

10 Zmienne losowe ciągłe. Definicje i najważniejsze rozkłady.

10.1 Rozkład jednostajny

Zadanie 10.1 Zmienna losowa X ma rozkład jednostajny na odcinku [2, 6]. Wykonaj polecenia:

- 1. zapisz wzór na gęstość zmiennej losowej X
- 2. oblicz prawdopodobieństwo zdarzenia że $X \in [3, 3.5]$
- 3. oblicz prawdopodobieństwo zdarzenia że $X \in (3,3.5)$

Rozwiązanie:

1. wzór na gęstość zmiennej losowej X to

$$\chi_{[2,6]}(x) = \begin{cases} \frac{1}{4} & \text{gdy } x \in [2,6] \\ 0 & \text{gdy } x \notin [2,6] \end{cases}$$

2. prawdopodobieństwo zdarzenia, że $X \in [3, 3.5]$ to

$$P(X \in [3, 3.5]) = \int_3^{3.5} \frac{1}{4} dx = \frac{1}{4} (3.5 - 4) = \frac{1}{8}$$

3. prawdopodobieństwo zdarzenia że $X \in 3, 3.5$ to

$$P(X \in (3, 3.5)) = P(X \in [3, 3.5]) = \frac{1}{8}$$

10.2 Rozkład wykładniczy

Zadanie 10.2 Zmienna losowa X ma rozkład wykładniczy z parametrem $\lambda =$

- 1. Wykonaj polecenia:
 - 1. narysuj gęstość/ zapisz wzór na gęstość zmiennej losowej X
 - 2. na powyższym rysunku przedstaw prawdopodobieństwo zdarzenia że $X \in [0,1]$
 - 3. oblicz prawdopodobieństwo zdarzenia że $X \in [0,1]$

Rozwiązanie:

Punkty 1 i 2:

Punkt 3 - prawdopodobieństwo zdarzenia że $X \in [0,1]$ wynosi

$$P(X \in [0,1]) = \int_0^1 f(x)dx = \int_0^1 e^{-x}dx = [-e^{-x}]_{x=0}^{x=1} = 1 - e^{-1}$$

10.3 Rozkład normalny

Zadanie 10.3 Zmienna losowa X ma rozkład normalny o parametrach $\mu=0$ oraz $\sigma=1$. Podaj prawdopodobieństwo, że X osiąga wartości dodatnie.

Rozwiązanie:

Wykres tej funkcji jest parzysty, a pole calego wykresu wynosi 1 więc z połowy jest $\frac{1}{2}$.

$$P(X>0) = \int_0^\infty f(x)dx = \frac{1}{2}$$

10.4 Rozkład Gamma, Wzór Gamma-Poisona

Zadanie 10.4 Kompilacja programu składa się z 3 części przetwarzanych przez kompilator sekwencyjnie, jedna po drugiej. Czas przetwarzania każdej z części ma rozkład wykładniczy ze średnim czasem 5 minut, niezależnym od czasu przetwarzania pozostałych części.

- 1. oblicz wartość oczekiwaną i wariancję całkowitego czasu kompilacji
- 2. oblicz prawdopodobieństwo, że cały proces kompilacji zostanie przeprowadzony w czasie mniejszym niż 12 minut.

Rozwiazanie:

Całkowity czas kompilacji opisuje zmienna losowa o rozkładzie $Gamma(T \sim \Gamma(\alpha = 3, \lambda = \frac{1}{5}))$. Wartość oczekiwana i wariancja całkowitego czasu kompilacji to

$$E(X) = \frac{\alpha}{\lambda} = \frac{3}{\frac{1}{5}} = 15$$

$$Var(x) = \frac{\alpha}{\lambda^2} = \frac{3}{\frac{1}{25}} = 75$$

Prawdopodobieństwo, że cały proces kompilacji zostanie przeprowadzony w czasie mniejszym niż 12 minut liczymy korzystając z formuły Gamma-Poisona.

$$P(T < t) = P(X \geqslant \alpha),$$

gdzie $X \sim Poisson(\lambda * t = \frac{1}{5} * 12 = 2.4)$ oraz $\alpha = 3, t = 12$. Mamy więc:

$$P(T < 12) = P(X \ge 3) = 1 - P(0) - P(1) - P(2) = 1 - F_X(2) = 1 - 0.5697 = 0.43$$

11 Lancuchy Markowa. Rozkład stacjonarny.

Zadanie 11.1 W pewnym mieście każdy dzień jest słoneczny albo deszczowy. Po dniu słonecznym dzień słoneczny następuje z prawdopodobieństwem 0.7, a po dniu deszczowym z prawdopodobieństwem 0.4.

- 1. Narysuj łańcuch markowa oraz wyznacz macierz przejścia dla niego.
- 2. W poniedziałek padało. Stwórz prognozę na wtorek, środę i czwartek.
- 3. Meteorolodzy przewidują 80% szans na deszcz w poniedziałek. Stwórz proqnozę na wtorek, środę i czwartek.
- 4. Znajdź rozkład stacjonarny.

1. Łańcuch Markowa:

Macierz przejść:

$$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

2.

Wtorek:

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$$

Środa:

$$\begin{bmatrix} 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.52 & 0.48 \end{bmatrix}$$

Czwartek:

$$\begin{bmatrix} 0.52 & 0.48 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.556 & 0.444 \end{bmatrix}$$

3.

Wtorek:

$$\begin{bmatrix} 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.46 & 0.54 \end{bmatrix}$$

Środa:

$$\begin{bmatrix} 0.46 & 0.54 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.538 & 0.462 \end{bmatrix}$$

Czwartek:

$$\begin{bmatrix} 0.538 & 0.462 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.5614 & 0.4386 \end{bmatrix}$$

4. Macierz przejść:

$$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

Rozwiązujemy układ równań:

$$\begin{cases} \pi P = \pi \\ \pi_1 + \pi_2 = 1 \end{cases}$$

$$\pi P = \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.7\pi_1 + 0.4\pi_2 & 0.3\pi_1 + 0.6\pi_2 \end{bmatrix}$$

$$\begin{cases} 0.7\pi_1 + 0.4\pi_2 = \pi_1 \\ 0.3\pi_1 + 0.6\pi_2 = \pi_2 \\ \pi_1 + \pi_2 = 1 \end{cases}$$

Stąd otrzymujemy

$$\begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{7} & \frac{3}{7} \end{bmatrix}$$

12 Testy statystyczne: test z, test t-Studenta, test chi-kwadrat.

Generalnie:

- Z-testów używamy do sprawdzenia czy testowana próba pasuje do zadanej populacji lub do porównywania dwóch **dużych** (n ¿ 30) prób
- T-testów używamy do porównywania dwóch **małych** (n ; 30) prób testowych ze sobą
 - Próby mogą być niezależne np. wyniki sprawdzianów w dwóch grupach
 - Mogą byc również zależne (dotyczyć jednej i tej samej grupy) np. waga przed zastosowaniem diety i po
 - Może również służyć do porównywania próby do zadanej wartości (np. średniej) podobnie jak Z-testy (?)
- Chi-kwadrat używamy do ustalania goodness of fit dla próbki względem populacji

12.1 **Z**-test

Zadanie 12.1 Inżynier jakości znajduje 10 wadliwych produktów w próbie 500 egzemplarzy pewnego komponentu od wytwórcy A. Wśród 400 egzemplarzy od wytwórcy B znajduje 12 wadliwych. Firma komputerowa, korzystająca z tych komponentów twierdzi, że jakość wyrobów od obu producentów jest taka sama. Sprawdź, czy na 5% poziomie istotności istnieją wystarczające dowody do odrzucenia tego twierdzenia.

 H_0 : Jakość wyrobów obu producentów jest taka sama H_a : Jakość wyrobów obu producentów jest różna Obliczamy proporcje dla obu prób:

$$p_1 = \frac{10}{500} = \frac{1}{50}$$

$$p_2 = \frac{12}{400} = \frac{3}{100}$$

oraz proporcję dla próby połączonej:

$$\bar{p} = \frac{10 + 12}{500 + 400} = \frac{11}{450}$$

Następnie używamy wzoru:

$$Z = \frac{p_1 - p_2}{\sqrt{\bar{p}(1 - \bar{p})(\frac{1}{n_1 + \frac{1}{n_2}})}}$$

$$Z = \frac{\frac{1}{50} - \frac{3}{100}}{\sqrt{\frac{11}{450}(1 - \frac{11}{450})(\frac{1}{500} + \frac{1}{400})}} = \frac{-\frac{1}{100}}{\sqrt{\frac{4829}{45000000}}} \approx -0.9653$$

Odczytujemy z tablic dla Z-testów wartość dla -0.9653i jest to $\boldsymbol{0.1685}$

W naszej hipotezie mamy pytanie o równość więc bierzemy pod uwagę obie końcówki przedziału (?). Mamy sprawdzić prawdziwość naszej hipotezy na 5% poziomie istotności, więc na każdą końcówkę mamy po 2.5%.

0.1685 < 2.5 więc możemy odrzucić hipotezę zerową twierdząc, że jakość wyrobów obu producentów jest różna

13 Wzór Bayesa i jego interpretacja.

- 14 Istnienie elementów odwrotnych względem mnożenia w strukturze (Zm,+,*) w zależności od liczby naturalnej m. Rozszerzony algorytm Euklidesa.
- 15 Ortogonalność wektorów w przestrzeni R_n ; związki z liniową niezależnością. Metoda ortonormalizacji Grama-Schmidta.

16 Liczby Stirlinga I i II rodzaju i ich interpretacja.

17 Twierdzenia Eulera i Fermata; funkcja Eulera.

18 Konfiguracje i t-konfiguracje kombinatoryczne. 19 Cykl Hamiltona, obwód Eulera, liczba chromatyczna - definicje i twierdzenia.

- 20 Algorytm Forda-Fulkersona wyznaczania maksymalnego przepływu.
- 21 Rozwiązywanie równan rekurencyjnych przy użyciu funkcji tworzących (generujących) oraz przy użyciu równania charakterystycznego.

22 Ciąg i granica ciągu liczbowego, granica funkcji.

23 Ciągłość i pochodna funkcji. Definicja i podstawowe twierdzenia.

24 Ekstrema funkcji jednej zmiennej. Definicje i twierdzenia.

25 Całka Riemanna funkcji jednej zmiennej.

Pochodne cząstkowe funkcji wielu zmiennych; różniczkowalność i różniczka funkcji.

27 Ekstrema funkcji wielu zmiennych. Definicje i twierdzenia.

28 Twierdzenie o zmianie zmiennych w rachunku całkowym; współrzędne walcowe i sferyczne.

Teoretyczne podstawy informatyki

- 29 Metody dowodzenia poprawności pętli.
- 30 Odwrotna Notacja Polska: definicja, własności, zalety i wady, algorytmy.
- 31 Modele obliczen: maszyna Turinga.
- 32 Modele obliczen: automat skończony, automat ze stosem.

33 Złożoność obliczeniowa - definicja notacji: $O,\Omega,\Theta.$

34 Złożoność obliczeniowa - pesymistyczna i średnia.

- 35 Metoda "dziel i zwyciężaj"; zalety i wady.
- 36 Lista: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.
- 37 Kolejka i kolejka priorytetowa: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.

38 Algorytmy sortowania QuickSort i MergeSort: metody wyboru pivota w QS; złożoności.

39 Algorytm sortowania bez porównań (sortowanie przez zliczanie, sortowanie kubełkowe oraz sortowanie pozycyjne).

40 Reprezentacja drzewa binarnego za pomocą porządków (preorder, inorder, postorder).

- 41 Algorytmy wyszukiwania następnika i poprzednika w drzewach BST; usuwanie węzła.
- 42 B-drzewa: operacje i ich złożoność.
- 43 Drzewa AVL: rotacje, operacje z wykorzystaniem rotacji i ich złożoność.
- 44 Algorytmy przeszukiwania wszerz i w głąb w grafach.
- 45 Algorytmy wyszukiwania najkrótszej ścieżki (Dijkstry oraz Bellmana-Forda).
- 46 Programowanie dynamiczne: podział na podproblemy, porównanie z metodą "dziel i zwyciężaj".
- 47 Algorytm zachłanny: przykład optymalnego i nieoptymalnego wykorzystania.
- 48 Kolorowania wierzchołkowe (grafów planarnych) i krawędziowe grafów, algorytmy i ich złożoności.
- 49 Algorytmy wyszukiwania minimalnego drzewa rozpinającego: Boruvki, Prima i Kruskala.
- Najważniejsze algorytmy wyznaczania otoczki wypukłej zbioru punktów w układzie współrzędnych (Grahama₄₆ Jarvisa, algorytm przyrostowy (quickhull)).
- 51 Problemy P, NP, NP-zupełne i zależności między nimi. Hipoteza P vs. NP.
- 52 Automat minimalny, wybrany algorytm mini-

- 58 Reprezentacja liczb całkowitych; arytmetyka.
- 59 Reprezentacja liczb rzeczywistych; arytmetyka zmiennopozycyjna.
- 60 Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych w C++.
- 61 Sposoby przekazywania parametrów do funkcji (przez wartość, przez referencję). Zalety i wady.
- Wskaźniki, arytmetyka wskaźników, różnica między wskaźnikiem a referencją w C++.
- 63 Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm.
- 64 Funkcje zaprzyjaźnione i ich związek z przeładowaniem operatorów w C++.
- 65 Programowanie generyczne na podstawie szablonów w języku C++.
- 66 Podstawowe kontenery w STL z szerszym omówieniem jednego z nich.
- 67 Obsługa sytuacji wyjątkowych w C++.
- 68 Obsługa plików w języku C.
- 69 Model wodospadu a model spiralny wytwarzania oprogramowania.
- 70 Diagram sekwencji i diagram przypadków użycia w języku UML.

- Relacyjny model danych, normalizacja relacji (w szczególności algorytm doprowadzenia relacji do postaci Boyce'a-Codda), przykłady.
- 77 Indeksowanie w bazach danych: drzewa B+, tablice o organizacji indeksowej, indeksy haszowe, mapy binarne.
- 78 Podstawowe cechy transakcji (ACID). Metody sterowania współbieżnością transakcji, poziomy izolacji transakcji, przykłady.
- 79 Złączenia, grupowanie, podzapytania w języku SQL.
- 80 Szeregowalność harmonogramów w bazach danych.
- 81 Definicja cyfrowego układu kombinacyjnego przykłady układów kombinacyjnych i ich implementacje.
- 82 Definicja cyfrowego układu sekwencyjnego przykłady układów sekwencyjnych i ich implementacje.
- 83 Minimalizacja funkcji logicznych.
- 84 Programowalne układy logiczne PLD (ROM, PAL, PLA).
- 85 Schemat blokowy komputera (maszyna von Neumanna).
- 86 Zarządzanie procesami: stany procesu, algorytmy szeregowania z wywłaszczaniem.