Test Emulation

define areas of incerease, decrease, concavity based on a graph of f(x) define areas of incerease, decrease, concavity based on a graph of f(x)

given f'(x) determine the shape of critical points (including slope vertical line / cusp ones)

- sketch a rational
- \bullet sketch an irrational

determine asymptotes when given a function of the form $\frac{x^3...}{x^2...}$

use the second derivative test

determine the inflection points of a second derivative

be able to determine a b c and d in $ax^3 + bx^2 + cx + d$

draw a graph given information about zeros, where critical points are / aren't, where the graph is increasing / decreasing, concavity...