← Recurrent Neural Networks

9/10 points (90.00%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $x^{(i) < j >}$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $igcap x^{< i > (j)}$
- $\bigcirc \quad x^{(j) < i >}$
- $x^{< j > (i)}$

1/1 points

Consider this RNN:

This specific type of architecture is appropriate when:

$$\bigcap T_x = T_y$$

Correct

It is appropriate when every input should be matched to an output.

$$\bigcap T_x < T_y$$

$$\bigcap T_x > T_y$$

$$T_x = 1$$

1/1 points

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

← Recurrent Neural Networks

9/10 points (90.00%)

Speech recognition (input an audio clip and output a transcript)

Un-selected is correct

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct

Correct!

Image classification (input an image and output a label)

Un-selected is correct

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Correct

Correct!

1/1 points

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \quad \text{Estimating } P(y^{<1>},y^{<2>},\dots,y^{< t-1>}) \\$
- $igcap ext{Estimating } P(y^{< t>})$
- $\bigcirc \quad \text{Estimating } P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

 $\bigcirc \quad \text{Estimating } P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>}) \\$

1/1 points

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii)) Then
pass the ground-truth word from the training set to the next time-step.	

- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct Yes!

1/1 points

6.

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

- Vanishing gradient problem.
- Exploding gradient problem.

Correct

- ReLU activation function g(.) used to compute g(z), where z is too large.
- Sigmoid activation function g(.) used to compute g(z), where z is too large.

← 7. Recurrent Neural Networks

9/10 points (90.00%)

Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t}$. What is the dimension of Γ_u at each time step?

- 1
- 100

Correct

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

- 300
- 10000

0/1 points

8.

Here're the update equations for the GRU.

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[\ c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

This should not be selected

No. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be dependent on $c^{< t-1>}$.

Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Betty's model (removing Γ_r), because if $\Gamma_upprox 0$ for a timestep, the gradient can propagate back through that

\leftarrow

Recurrent Neural Networks

Quiz, Betty/es:nooslel (removing Γ_r), because if $\Gamma_upprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

1/1 points

9.

Here are the equations for the GRU and the LSTM:

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\ c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{< t>} = c^{< t>}$$

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[\,a^{< t-1>},x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[\ a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

 Γ_u and $1-\Gamma_u$

Correct

Yes, correct!

- Γ_u and Γ_r
- \bigcap $1-\Gamma_u$ and Γ_u
- Γ_r and Γ_u

1/1

points

←	past 36	ve a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the 55 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your Gold The Lagrange of the collected data on your which you have y should a model to map from $x \to y$ should you (see 60%)
	Unidire	ectional RNN or Bidirectional RNN for this problem?
		Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
		Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
	0	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$
	Corre Yes!	
		Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

