

Skript Höhere Algebra I

Mitschrift der Vorlesung "Höhere Algebra I" von Prof. Dr. Dr. Katrin Tent

Jannes Bantje

31. Mai 2014 Erstellt mit X₃ET_EX

Inhaltsverzeichnis

1.	Grup	pentheorie: Wiederholung, Sylow-Sätze, Kompositionsreihen	2
	1.1.	Definition: Gruppenwirkung	2
	1.2.	Bemerkung über eine Abbildung $G/G_x o G(x)$	2
	1.3.	Beispiele für Gruppenwirkungen	2
	1.4.	Bahnengleichung	3
	1.5.	Klassengleichung	3
	1.6.	Korollar: p-Gruppen haben eine nichttriviales Zentrum	3
	1.7.	Definition: p-Sylowgruppe	3
	1.8.	Satz (Sylow)	3
	1.9.	Satz (Frattini-Argument)	4
		Bemerkung zu p-Sylowgruppen in Normalteilern und Faktorgruppen	4
		Definition: Normalreihe und Kompositionsreihe	5
		Beispiel zu Normalreihen	5
	1.13.	Ziel: Satz von Jordan-Hölder	5
	1.14.	Schmetterlings-Lemma (Zassenhaus)	5
	1.15.	Satz von Schreier	6
	1.16.	Definition: Auflösbare und nilpotente Gruppen	6
		Bemerkung: Nilpotente Gruppen sind auflösbar, Umkehrung gilt nicht	6
	1.18.	Satz: Auflösbarkeit von Untergruppen, Quotienten und Produkten auflösbarer Gruppen	7
		Korollar: Auflösbarkeit ist äquivalent zur Auflösbarkeit von Normalteilern und Quotienten	7
		Korollar: Das Produkt auflösbarer Normalteiler ist auflösbar	7
		Satz: Untergruppen und Quotienten nilpotenter Gruppen	7
		Satz: Endliche p -Gruppen sind nilpotent	8
		Definition: Kommutator	8
		Satz: Eigenschaften der Kommutatorgruppe	8
		Definition: Konstruktion weiterer Kommutatorgruppen	9
		Satz: Auflösbarkeit einer Gruppe G	9
		Definition: Untere Zentralreihe	9
	1.28.	Satz: Charakterisierung von Nilpotenz über die untere Zentralreihe	9

	1.29.	Einschub über direkte und semidirekte Produkte	9		
2. Moduln: Halbeinfache Moduln, freie Moduln					
	2.1.	Satz: Jeder Ring ist isomorph zu einem Endomorphismenring	11		
	2.2.	Definition: Modul	11		
	2.3.	Beispiele für Moduln	11		
	2.4.	Definition: Untermodul, einfache Moduln und Ringe	12		
	2.5.	Definition: erzeugte Untermoduln	12		
	2.6.	Bemerkung zu Modulstrukturen auf Quotienten	12		
	2.7.	Definition: Klasse der R -Moduln, R -Modul-Homomorphismen	12		
	2.8.	Bemerkung zu $\operatorname{Hom}_R(M,N)$	12		
	2.9.	Satz (Isomorphiesätze)	13		
		Definition: Exakte Sequenz	13		
		Definition: noethersch und artinsch	13		
		Proposition: noethersch \iff alle Untermoduln endlich erzeugt	14		
		Satz: noethersch (artinsch) innerhalb einer kurzen exakten Sequenz	14		
		Korollar: Endliche Summen noetherscher Moduln sind noethersch (artinsch)	14		
		Korollar: Moduln über einen noetherschen Ring sind noethersch	14		
		Korollar: Endlich erzeugte Moduln über einem Hauptidealring	15		
		Definition: Halbeinfacher Modul	15		
		Beispiele halbeinfacher Moduln	15		
		Satz: Äquivalenzen zu halbeinfach durch Summen aus einfachen Untermoduln	15		
		Lemma: Jeder halbeinfache Modul hat einen einfachen Untermodul	16		
		Satz: Äquivalenzen zu halbeinfachen R -Moduln	16		
	2.22.	Korollar: M direkte Summe einfacher Untermoduln \Rightarrow Untermodul isomorph zu Teil-	10		
	2 22	summe	16		
		Korollar (Krull-Remak-Schmidt)	17 17		
		Bemerkung: M endlich erzeugt $\Leftrightarrow M$ endliche direkte Summe einfacher Untermoduln	17 17		
		Satz über Ideale einen Ringes R und Ideale in $M_k(R)$	18		
		Satz (Schurs Lemma)	18		
		Definition: Entgegengesetzter Ring R^{op}	18		
	2.20.	Satz (Wedderburn, 1. Struktursatz)	18		
		Bemerkung: Einfache, nicht-isomorphe R -Moduln	19		
		Satz (2. Struktursatz von Wedderburn)	19		
		Definition: linear unabhängig und Basen	20		
		Definition: Freier Modul	20		
	2.34.	Definition: Freier R -Modul mit Basis der Mächtigkeit $ I $			
		Satz: Universelle Eigenschaft der freien R -Moduln	20		
		Korollar: Über das Spalten einer kurzen Sequenz von R-Moduln	21		
		Satz: Jeder R-Modul ist Quotient eines freien R-Moduls	21		
		Satz: Äquivalenzen zu: M ist R -Moduln über einem Schiefkörper R	21		
		Definition: Invariante Basislänge (IBL)	22		
		Lemma: Charakterisierung von IBL mit Matrizen	22		
	2.41.	Satz: Kommutative, noethersche Ringe und Urbilder von Ringhomomorphismen haben			
		IBL	23		
	2.42.	Satz: Für R HIR sind Untermoduln freier R -Moduln frei	23		
	2.43.	Satz: (Smith-Normalform) Invariante Faktoren einer Matrix über einem Hauptidealring .	24		
	2.44.	Definition: <i>i</i> -Minoren und Rang	25		
	2.45.	Satz (Elementarteilersatz)	25		
		Beispiel: Elementarteilersatz	25		
	2.47.	Definition: Annulatorideal und Torsionselement	26		

| Inhaltsverzeichnis

	2.49.	Satz: Struktursatz für endlich erzeugte Moduln über HIR	26 26
		Definition und Satz: Torsionsmodul	26
		Satz: Zerlegung eines endlich erzeugten Moduls in Torsionsmodul und freien Modul	27
		Beispiele für Zerlegungen mit dem Torsionsmodul	27
	2.53.	Satz: Umformulierung des Struktursatzes für endl. erzeugte abelsche Gruppen	27
3.	Tens	orprodukte und Algebren	28
	3.1.	Satz: Universelle Eigenschaft des Tensorproduktes	28
	3.2.	Bemerkung: Elemente des Tensorprodukts	29
	3.3.	Proposition: Operationen auf ${}_R\operatorname{Mod}$ durch das Tensorprodukt	29
	3.4.	Beispiele zu Tensorprodukten	30
	3.5.	Satz: Tensorprodukt eines R -Moduls und R^n	30
	3.6.	Korollar: Tensorprodukt von freien Moduln	30
	3.7.	Korollar: Darstellung der Elemente eines Tensorprodukts mit freiem Modul	30
	3.8.	Definition: Algebra	31
	3.9.	Beispiele für Algebren	31
		Weitere Beispiele für Algebren	31
		Definition: Darstellung einer R -Algebra	32
		Korollar: Jede n -dimensionale K -Algebra ist isomorph zu Unteralgebra von $M_n(K)$	32
		Satz: Tensorprodukt von Algebren ist eine Algebra	33
	3.14.	Beispiel: Erweiterung der Skalare	33
4.	Dars	tellungstheorie endlicher Gruppen	34
Α.	Anha	ing	35
	A.1.	Alternative Definition von Gruppenwirkungen	35
Inc	lex		Α
Ab	bildu	ngsverzeichnis	В

Literatur:

• P.M. Cohn: Basic Algebra, (Further Algebra) Springer

• N. Jacobsen: Basic Algebra I + II

• S. Lang: Algebra, Wiley

• F. Lorenz: Algebra III, Springer

Inhaltsverzeichnis 1

1. Gruppentheorie: Wiederholung, Sylow-Sätze, Kompositionsreihen

1.1. Definition: Gruppenwirkung

- Sei G eine Gruppe, $X \neq \emptyset$ Menge. Eine **Gruppenwirkung** von G auf X ist (gegeben durch) einen Gruppenhomomorphismus $\varphi: G \to \operatorname{Sym}(X)$. $\ker \varphi$ heißt **Kern der Wirkung**. Wir schreiben auch kurz g(x) für $\varphi(g)(x)$.
- Für $x \in X$ heißt $G_x = \{g \in G \mid g(x) = x\} \leq G$ der **Stabilisator** von x.
- Die Bahn von $x \in X$ unter G ist $G(x) = \{g(x) \mid g \in G\} \subseteq X$.
- Eine Gruppenwirkung heißt **transitiv**, wenn G(x) = X für ein $x \in X$.
- Eine Gruppenwirkung heißt **treu**, falls $\ker \varphi = \{1_G\}$.

Für eine alternative Definition siehe Anhang A.1 auf Seite 35.

1.2. Bemerkung

Für jedes $x \in X$ ist die Abbildung $G/G_x \to G(x)$, $gG_x \mapsto g(x)$ eine Bijektion.

Beweis

HN =

 $\{hn \mid h \in H, n \in N\}$ ist Untergruppe, da

HN = NH für N

Es ist $g(x) = h(x) \iff (h^{-1}g)(x) = (h^{-1}h)(x) = x \iff h^{-1}g \in G_x \iff gG_x = hG_x$. Daher ist die Abbildung wohldefiniert und injektiv. Surjektiv ist klar.

Wiederholung Isomorphiesätze¹

- **1. Isomorphiesatz:** Ist $\varphi:G \to H$ surjektiv, dann ist $H \simeq G/\ker \varphi$. Allgemein ist für jeden Homomorphismus $\varphi:G \to H$ dann $\operatorname{Im} \varphi \simeq G/\ker \varphi$. (Homomorphiesatz)
- **2.** Isomorphiesatz: Ist $H \leq G, N \leq G$, dann ist $H/(H \cap N) \simeq HN/N$.

("erweitern mit N")

3. Isomorphiesatz: Sind $N, K \subseteq G, N \subseteq K$, dann ist $G/N/K/N \simeq G/K$.

("kürzen mit N")

Die letzten beiden Sätze lassen sich mit dem ersten beweisen!

1.3. Beispiel

(i) (a) G wirkt durch Rechtsmultiplikation auf sich selbst (X=G). Dann ist $G_x=\{1\}$ für alle $x\in X$, d.h. die Wirkung ist treu und transitiv. Solche Wirkungen heißen **regulär**.

$$\varphi: G \to \operatorname{Sym}(G), \quad g \mapsto \rho_q \quad \operatorname{mit} \quad \rho_q(x) = x \cdot g$$

Gruppenhomomorphismus²: $\rho_{gh}(x) = x \cdot g \cdot h = \rho_h \circ \rho_g(x)$.

(b) G wirkt durch Linksmultiplikation auf sich selbst (regulär) $\lambda_g(x) = g^{-1} \cdot x$.

¹siehe auch http://de.wikipedia.org/wiki/Isomorphiesatz௴

²Beachte: Die Addition in $\mathrm{Sym}(X)$ ist die $\mathit{linksseitige}$ Komposition von Abbildungen! Wir wollen also, dass $g \cdot h$ folgendermaßen wirkt: Zuerst g wirken lassen und dann h.

(ii) G operiert durch Konjugation auf sich selbst, d.h. $\kappa:G\to \operatorname{Aut}(G)\le \operatorname{Sym}(G),\,g\mapsto \kappa_g$, wobei $\kappa_g(x)=g^{-1}\cdot x\cdot g$

$$g \cdot h \mapsto \kappa_{g \cdot h} \quad \kappa_{g \cdot h}(x) = h^{-1} \cdot g^{-1} \cdot x \cdot g \cdot h = \kappa_h \circ \kappa_g(x)$$

Dann ist $G_x=\left\{g\in G\,\middle|\, g^{-1}\cdot x\cdot g=x\right\}=Z_G(x)$ der **Zentralisator** von x in G. Der Kern der Wirkung ist das **Zentrum** von G $Z(G)=\left\{g\in G\,\middle|\, x\cdot g=g\cdot x \text{ für alle } x\in G\right\}.$

Bemerkung: $\ker \varphi = \bigcap_{x \in X} G_x$ gilt für alle Gruppenwirkungen $\varphi : G \to \operatorname{Sym}(X)$.

(iii) $G = Gl_n(K)$, K Körper, operiert auf K^n durch lineare Abbildungen.

1.4. Bahnengleichung

Es gilt: $X = \bigcup \{G(x) \mid x \in X\}$, denn für jedes $x \in X$ ist $x \in G(x)$. Falls X endlich ist gilt also

$$|X| = \sum |G(x)| = \sum |G/G_x| = \sum [G:G_x].$$

Insbesondere ist $|G(x)|=|G/G_x|=[G:G_x]=\frac{|G|}{|G_x|}$ falls G endlich ist. (Bijektion aus 1.2) **Spezialfall:** Wirkung von G durch Konjugation auf sich selbst. $\kappa_g(x)=g^{-1}\cdot x\cdot g$.

1.5. Klassengleichung

Sei $K_G = \{G(x) \mid x \in G\}$ die Menge der Konjugationsklassen. Sei $K_G^* = \{G(x) \mid x \in G \setminus Z(G)\} = \{G(x) \mid |G(x)| \ge 2\}$. Für jede endliche Gruppe G gilt dann nach 1.4

$$|G| = \sum_{K_G} [G : Z_G(x)] = |Z(G)| + \sum_{K_G^*} [G : Z_G(x)].$$

1.6. Korollar

G endlich, $|G| = p^m$, p prim, $m \ge 1 \Rightarrow Z(G) \ne 1$. Also haben p-Gruppen ein nicht-triviales Zentrum.

Beweis

Nach Lagrange³ gilt für jedes $x \in G$, dass $|Z_G(x)| = p^k$ für ein $k \le m$, also ist $[G: Z_G(x)] = p^{m-k}$. Wegen $p \mid |G|$ und $|Z(G)| \ge 1$ folgt $p \mid |Z(G)|$.

1.7. Definition

Sei G eine endliche Gruppe, $|G|=p^a\cdot m$ mit (m,p)=1 und p prim. Dann heißt eine Untergruppe $H\leq G$ mit $|H|=p^a$ eine p-Sylowgruppe von G.

1.8. Satz (Sylow)

Sei G eine endliche Gruppe, p prim, $|G|=p^a\cdot m$ mit (p,m)=1. Dann gilt

- (i) Jede p-Untergruppe von G ist in einer p-Sylowgruppe enthalten. Insbesondere existieren p-Sylowgruppen immer.
- (ii) Ist $n_p = \# p$ -Sylowgruppen von G, dann gilt: $n_p \mid m$ und $n_p \equiv 1 \mod p$.
- (iii) Alle p-Sylowgruppen sind konjugiert.

³Ordnung einer Untergruppe teilt die Gruppenordnung. Die Umkehrung gilt nicht!

Beweis

Bahnengleichung

Sei $S := \{X \subset G \mid |X| = p^a\}$. G operiert auf S durch Rechtsmultiplikation. Es ist

$$|S| = \binom{p^a \cdot m}{p^a} = \frac{p^{\mathscr{A}} \cdot m \cdot (p^a \cdot m - 1) \cdot \ldots \cdot \left(p^a \cdot m - (p^a - 1)\right)}{1 \cdot 2 \cdot \ldots \cdot p^a - 1 \cdot p^{\mathscr{A}}}.$$

Behauptung: $p \nmid |S|$. Betrachte dazu $k_i := \frac{p^a \cdot m - i}{i}$, für $1 \leq i < p^a$. Wenn $p^j \mid p^a \cdot m - i$, dann ist j < a und $p^j \mid i$. Daher sind $p^a \cdot m - i$ und i durch dieselbe Potenz von p teilbar, d.h. $p \nmid k_i$. Damit ist $p \nmid m \cdot k_1 \cdots k_{p^a-1} = |S|$.

Daher existiert eine G-Bahn $S_1\subseteq S$ mit $p\nmid |S_1|$. Wähle $X\in S_1$, d.h. $|X|=p^a$. Setze $P:=G_X$. Dann ist

$$|S_1| = [G:G_X] = [G:P]$$

Daher gilt $p \nmid |G/P|$, also $p^a \mid |P|$. Andererseits ist $|P| \leq p^a$, denn für $x \in X, g \in P$ ist $x \cdot g \in X$ und die $x \cdot g$ für $g \in P$ sind paarweise verschieden. Daher ist $|P| = p^a$ und P eine p-Sylowgruppe.

Sei nun $T\subseteq S$ die Menge aller Konjugierten von P unter der Konjugationswirkung. Dann operiert auch P durch Konjugation auf T. Nach der Bahnengleichung (1.4) hat jede Bahn die Länge p^i für ein $i\le a$. Offensichtlich ist P ein Fixpunkt dieser Wirkung. Ist $P_1\in T$ ein weiterer Fixpunkt, dann ist $P\subseteq N_G(P_1)$, daher ist $P\cdot P_1\le G$. Wegen $^4|P\cdot P_1|=\frac{|P|\cdot|P_1|}{|P\cap P_1|}$ ist $P\cdot P_1$ eine p-Untergruppe von G. Wegen $P\le P\cdot P_1$ und $p\nmid m$ folgt $P=P\cdot P_1=P_1$. Daher ist $|T|=1\mod p$.

Noch zu zeigen: T enthält alle Sylowgruppen und jede p-Gruppe ist in einer p-Sylowgruppe enthalten. Sei $P_2 \leq G$ eine p-Sylowgruppe mit $P_2 \not\in T$. Dann operiert auch P_2 durch Konjugation auf T. Wenn P_2 auf T einen Fixpunkt $P' \in T$ hat, dann ist wie eben $P_2 \cdot P'$ eine p-Untergruppe und dann $P_2 = P_2 \cdot P' = P' \in T \not\downarrow$. Daher hat P_2 auf T keinen Fixpunkt. Dann folgt aber $p \mid |T| \not\downarrow$ Damit sind alle p-Sylowgruppen in T enthalten, d.h. $|T| = n_p = 1 \mod p$.

Ist $H \leq G$ eine p-Untergruppe, dann operiert auch H durch Konjugation auf T. Wegen $p \nmid |T|$ muss H einen Fixpunkt $P' \in T$ besitzen, dann folgt $H \cdot P' = P'$, d.h. $H \leq P'$.

Weil G durch Konjugation transitiv auf T operiert, folgt

$$n_p = |T| = [G: N_G(P)] \mid [G: P] = m.$$

Bemerkung

Wenn G nur eine p-Sylowgruppe $P \leq G$ besitzt, dann ist $P \leq G$.

1.9. Satz (Frattini-Argument)

Ist G eine beliebige Gruppe, $H \subseteq G$ endlich und $P \subseteq H$ eine p-Sylowgruppe von H. Dann ist $G = N_G(P) \cdot H$, wobei $N_G(P) = \big\{ g \in G \, \big| \, P^g = g^{-1} \cdot P \cdot g = P \big\}.$

Beweis

Sei $g \in G$. Dann ist $P^g \le H^g = H$ eine p-Sylowgruppe von H. Daher existiert ein $h \in H$ mit $P^g = P^h$. Dann ist $P = P^{g \cdot h^{-1}}$, d.h. $g \cdot h^{-1} \in N_G(P)$. Damit ist

$$g = \underbrace{g \cdot h^{-1}}_{\in N_G(P)} \cdot \underbrace{h}_{\in H}$$

Bemerkung

Sind $H_1, H_2 \leq G$, $H_2 \leq N_G(H_1)$, dann ist $H_1 \cdot H_2 = H_2 \cdot H_1 \leq G$.

1.10. Bemerkung

Offensichtlich gilt für eine endliche Gruppe $G, P \leq G$ p-Sylowgruppe, $N \leq G$

 $^{^4}P\cdot P_1$ ist Untergruppe, da P P_1 normalisiert

(i) $P \cap N$ ist p-Sylowgruppe von N

(ii) $P \cdot N/N$ ist p-Sylowgruppe von G/N.

Beweis

Es ist $|N:P\cap N|\stackrel{\text{2. Iso}}{=}|PN:P|$ teilerfremd zu p und $P\cap N$ ist p-Untergruppe von N. Wegen ${}^{G/N/PN/N}\simeq {}^{G/PN}$ ist $|G:PN|\mid |G:P|$ teilerfremd zu p. Wegen $|PN:N|=|P:(P\cap N)|$ ist ${}^{PN}/N$ eine p-Gruppe. \square

1.11. Definition

Eine Folge von Untergruppen $(H_i)_{0 \le i \le n}$ mit $H_0 = G$, $H_n = \{1_G\}$, $H_{i+1} \le H_i$ heißt **Normalreihe** in G. Ist H_i/H_{i+1} einfach für alle i < n, dann heißt die Folge **Kompositionsreihe**. Zwei Normalreihen $(H_i)_{i \le n}$, $(K_j)_{j \le m}$ heißen **äquivalent**, falls n = m und die auftretenden Quotienten $(H_i/H_{i+1})_{i \le n-1}$ nach geeigneter Permutation isomorph sind zu dem Quotienten $(K_i/K_{i+1})_{i \le n-1}$.

1.12. Beispiel

$$\mathbb{Z}_6 \simeq \mathbb{Z}_3 \times \mathbb{Z}_2 \rhd \mathbb{Z}_3 \rhd \{1\}$$
$$\rhd \mathbb{Z}_2 \rhd \{1\}$$

Bemerkung

- (i) Nicht jede Gruppe besitzt eine Kompositionsreihe, zB. $\mathbb Z$ hat keine Kompositionsreihe.
- (ii) Eine Normalreihe ist genau dann Kompositionsreihe, wenn es keine echte Verfeinerung gibt. Insbesondere hat also jede endliche Gruppe eine Kompositionsreihe.

1.13. Ziel: Satz von Jordan-Hölder

Sei G eine Gruppe mit Kompositionsreihen $(H_i)_{i \leq n}$ und $(K_j)_{j \leq m}$. Dann sind die Reihen äquivalent.

Für den Beweis brauchen wir

1.14. Schmetterlings-Lemma (Zassenhaus)

Sei G eine Gruppe, $H, K \leq G$ und $H' \subseteq H, K' \subseteq K$. Dann ist

$$H'(H \cap K') \leq H'(H \cap K)$$
 und $K'(K \cap H') \leq K'(K \cap H)$

und die Quotienten sind isomorph.

Beweis

Setze $N:=H\cap K$ und $M:=H'(H\cap K')$. Dann gilt $N\leq N_G(M)$ wegen $H'\unlhd H,K'\unlhd K$ und daher $M\unlhd N\cdot M=H'(H\cap K)$.

Behauptung: Es ist $N \cap M = (H \cap K) \cap (H'(H \cap K')) = (H' \cap K)(H \cap K')$.

" \subseteq ": Sei $h' \cdot k \in H \cap K$ mit $h' \in H'$ und $k \in H \cap K' \Rightarrow h' \cdot k \in (H' \cap K)(H \cap K')$

" \supseteq ": $h' \cdot k$ mit $h' \in H' \cap K$ und $k \in H \cap K'$, dann ist $h' \cdot k \in H \cap K$.

Daher ist

$$NM/M = H'(H \cap K')(H \cap K)/H'(H \cap K) \cong N/N \cap M \cong (H \cap K)/(H' \cap K)(H \cap K')$$

(so steht es in den Notizen). Besser finde ich:

$$NM/M \stackrel{\text{2. Iso}}{\simeq} N/N \cap M = (H \cap K)/(H' \cap K)(H \cap K')$$

Damit zeigen wir nun folgenden Satz: Die rechte Seite ist symmetrisch in H und K. Daher sind beide Quotienten im Lemma isomorph zu $N/N\cap M$ und das Lemma ist bewiesen. \square

1.15. Satz von Schreier

Sind $(H_i)_{i \leq n}$, $(K_j)_{j \leq m}$ Normalreihen in G, dann existieren äquivalente Verfeinerungen.

Beweis

Für j = 1, ..., m - 1, i = 0, ..., n - 1 setze

$$H'_{im+j} := H_{i+1}(H_i \cap K_j)$$

und für $i = 0, \ldots, n$ sei

$$H'_{im} := H_i = H_{i+1}(H_i \cap K_0) = H_i(H_{i-1} \cap K_m).$$

Für $i=1,\ldots,n-1$, $j=0,\ldots,m-1$ setze dementsprechend $K'_{jn+i}:=K_{j+1}(K_j\cap H_i)$ und $K'_{jn}:=K_j(=K_{j+1}(K_j\cap H_0)=K_j(K_{j-1}\cap H_n))$ für $j=0,\ldots,m$.

Nach dem Zassenhaus-Lemma (1.14) sind dann

$$H'_{im+j}/H'_{im+j+1} \simeq K'_{jn+i}/K'_{in+j+1}$$

reviewed 22.4.14

und damit sind diese Verfeinerungen äquivalent. Damit folgt der Satz von Jordan-Hölder: Kompositionsreihen haben keine echten Verfeinerungen, müssen also bereits äquivalent sein! □

1.16. Definition

Eine Gruppe heißt **auflösbar**, wenn sie eine abelsche Normalreihe besitzt, d.h. eine Normalreihe mit abelschen Quotienten. Eine Gruppe heißt **nilpotent**, wenn es eine Normalreihe $(H_i)_{i \leq n}$ gibt mit $H_i \leq G$ und $H_i/H_{i+1} \leq Z(G/H_{i+1})$.

1.17. Bemerkung

Jede nilpotente Gruppe ist auflösbar, aber nicht umgekehrt: S_3 ist auflösbar $1 \le \langle (123) \rangle \le S_3$, aber $Z(S_3) = 1$, d.h. S_3 ist nicht nilpotent.

1.18. Satz

Untergruppen und Quotienten auflösbarer Gruppen sind auflösbar, direkte Produkte auflösbarer Gruppen sind ebenfalls auflösbar.

Beweis

Ist $1=G_0\unlhd G_1\unlhd\ldots\unlhd G_n=G$ abelsche Normalreihe, $H\subseteq G$, dann ist $1=G_0\cap H\unlhd G_1\cap H\unlhd\ldots\unlhd G_n\cap H=H$ abelsche Normalreihe in H, denn

$$(G_{i+1}\cap H)/G_i\cap H\simeq G_i(G_{i+1}\cap H)/G_i< G_{i+1}/G_i$$
 ist abelsch.

Ist $N \subseteq G$, dann ist (G_iN/N) abelsche Normalreihe für G/N, denn es ist

$$(G_{i+1}N/N)/(G_{i}N/N) \simeq G_{i+1}N/G_{i}N \simeq G_{i+1}/G_{i+1}\cap (G_{i}N)$$

ein Quotient von G_{i+1}/G_i und daher abelsch. (Da $G_i \leq G_{i+1} \cap (G_iN)$, ist $G_{i+1}/G_i \to G_i+1/G_{i+1} \cap G_iN$ ein Epimorphismus und daher ist die rechte Seite abelsch.)

1.19. Korollar

Sei $N \triangleleft G$. Dann ist G auflösbar genau dann, wenn N und G/N auflösbar sind.

Beweis

"⇒": 1.18

" \Leftarrow ": klar: Wir können die abelschen Normalreihen für N und G/N zusammensetzen:

$$1 = H_0 \leq H_1 \leq \ldots \leq H_k = N, \qquad K_0/N = N \leq K_1/N \leq \ldots \leq K_m/N = G/N$$

Setze
$$1 = H_0 \unlhd \ldots \unlhd H_k = K_0 \unlhd K_1 \unlhd \ldots \unlhd K_m = G$$
. Wegen $\binom{K_{i+1/N}}{K_{i/N}} \simeq \binom{K_{i+1/N}}{K_i}$.

1.20. Korollar

Sind $M, N \triangleleft G$ auflösbar, dann auch MN auflösbar.

Beweis

 $MN/N \simeq M/M \cap N$ ist auflösbar. Nach 1.19 ist MN auflösbar.

Einschub: Direktes Produkt

Sind G,H Gruppen, dann ist das direkte Produkt $G\times H$ die Gruppe mit Multiplikation

$$(q,h) \cdot (q',h') = (q \cdot q, h \cdot h')$$

1.21. Satz

Untergruppen und Quotienten nilpotenter Gruppen sind wieder nilpotent, die Produkte nilpotenter Gruppen sind nilpotent.

Beweis

Wie Satz 1.18:

Ist $1=G_0\unlhd G_1\unlhd\ldots\unlhd G_n=G$ Zentralreihe, $H\subseteq G$, dann ist $1=G_0\cap H\unlhd G_1\cap H\unlhd\ldots\unlhd G_n\cap H=H$ Zentralreihe in H, denn

$$(G_{i+1}\cap H)/G_i\cap H\stackrel{\text{2. Iso}}{\simeq} G_i(G_{i+1}\cap H)/G_i\leq G_{i+1}/G_i$$
 ist abelsch.

Ist $N \subseteq G$, dann ist $(G_i N/N)$ Zentralreihe für G/N, denn es ist

$$(G_{i+1}N/N)/(G_{i}N/N) \simeq G_{i+1}N/G_{i}N \simeq G_{i+1}/G_{i+1}\cap (G_{i}N)$$

ein Quotient von G_{i+1}/G_i und daher abelsch. (Da $G_i \leq G_{i+1} \cap (G_iN)$, ist $G_{i+1}/G_i \to G_i+1/G_{i+1} \cap G_iN$ ein Epimorphismus und daher ist die rechte Seite abelsch.)

1.22. Satz

Endliche p-Gruppen sind nilpotent.

Beweis

Nach Satz 1.6 ist $H_1 := Z(G) \neq 1$. Da G/Z(G) wieder p-Gruppe ist, ist $Z(G/Z(G)) \neq 1$. Setze

$$H_2 := \pi_{Z(G)}^{-1} \big(Z(G/Z(G)) \big)$$
 usw.

Nach endlich vielen Schritten ist $H_k=G$. Es gilt dann

$$H_{i+1}/H_i = Z(G/H_i)$$

d.h. die H_i bilden die **obere Zentralreihe**.

1.23. Definition

Für $a,b \in G$ heißt $[a,b] = a^{-1} \cdot b^{-1} \cdot a \cdot b$ der **Kommutator** von a und b.

- (i) Es ist $a\cdot b=b\cdot a\cdot [a,b]$ und [a,b]=1, genau dann wenn $a\cdot b=b\cdot a$.
- (ii) Ist $\varphi: G \to H$, dann ist $\varphi([a,b]) = [\varphi(a), \varphi(b)]$.
- (iii) Produkte von Kommutatoren sind nicht unbedingt selber wieder ein Kommutator!

Für Untergruppen $H,K \leq G$ setze $[K,H] := \langle [k,h]|k \in K, h \in H \rangle$. Ist $K \leq N_G(H)$, dann ist $[K,H] \leq H$, denn $k^{-1} \cdot h^{-1} \cdot k \cdot h = \left(h^{-1}\right)^k \cdot h \in H$. Die Gruppe $G' = [G,G] = \langle [g,h]|g,h \in G \rangle$ heißt **Kommutatorgruppe** von G.

1.24. Satz

- (i) $G' \subseteq G$
- (ii) G/G' ist abelsch.
- (iii) Ist $\varphi: G \to A$ ein Gruppenhomomorphismus und A abelsch, dann ist $G' \leq \ker \varphi$.

Beweis

- (i) Es ist $g^{-1}[a,b]g=[a^g,b^g]$ nach 1.23 (ii).
- (ii) Klar nach 1.23 (i).

(iii) Es ist
$$\varphi([a,b]) = [\varphi(a), \varphi(b)] = 1$$
, d.h. $G' \leq \ker \varphi$.

Bemerkung

Mit anderen Worten: G' ist der kleinste Normalteiler von G mit G' abelsch, denn ist G' abelsch, dann ist nach (iii) mit $\varphi: G \to G/N$, $G' \le \ker \varphi = N$

1.25. Definition

Wir setzen $G^{(0)} = G$, $G^{(i+1)} = [G^{(i)}, G^{(i)}]$. Dann ist $G^{(1)} = G'$ und $G^{(i+1)} \unlhd G^{(i)}$, $G^{(i)}/G^{(i+1)}$ abelsch.

1.26. Satz

G ist auflösbar genau dann, wenn $G^{(k)} = 1_G$ für ein $k \ge 0$.

Beweis

" \Leftarrow ": Die $G^{(i)}$ bilden eine abelsche Normalreihe.

" \Rightarrow ": Ist $(N_i)_{i\leq n}$, $N_0=G$, $N_n=\{1\}$, dann ist mit Induktion $G^{(i)}\leq N_i$ nach voriger Bemerkung, also $G^{(n)}\leq \{1\}=N_n$

Bemerkung

Damit ist $(\bar{G}^{(i)})_{i \leq k}$ die am schnellsten absteigende untere Normalreihe für G.k heißt **auflösbare Länge** von G.

1.27. Definition

Die **untere Zentralreihe** einer nilpotenten Gruppe G ist definiert durch $G^{[0]} = G$, $G^{[i]} = [G^{[i-1]}, G]$. Es ist $G^{[i]}/G^{[i+1]} \leq Z(G/G^{[i+1]})$ nach Definition.

1.28. Satz

Eine Gruppe G ist nilpotent genau dann, wenn $G^{[k]} = 1_G$ für ein $k \ge 0$.

Beweis

" \leftarrow ": Klar nach voriger Bemerkung: $(G^{[i]})_{i < k}$ bilden Zentralreihe.

">": Ist $1=N_0\leq N_1\ldots\leq N_n=G$ eine Zentralreihe, dann ist $G^{[1]}\leq N_{n-1}$, denn G/N_{n-1} ist abelsch. Zeige $G^{[i]}\leq N_{n-i}$ für $i=1,\ldots,n$, denn dann folgt $G^{[n]}=1$. Weil $N_{n-i}/N_{n-(i+1)}\leq Z(G/N_{n-(i+1)})$ folgt $[N_{n-i},G]\leq N_{n-(i+1)}$. Nach Induktion ist wegen $G^{[i]}\leq N_{n-i}$ dann

$$G^{[i+1]} = [G^{[i]}, G] \le [N_{n-i}, G] \le N_{n-(i+1)}$$

1.29. Einschub über direkte und semidirekte Produkte

a) Sei G eine Gruppe, $H \leq G$, $N \unlhd G$ ein Normalteiler mit $H \cap N = \{1\}$ und $N \cdot H = G$. Dann ist die Abbildung $\varphi : N \times H \to G$, $(n,h) \mapsto n \cdot h$ bijektiv, d.h. für jedes $g \in G$ existiert ein eindeutig bestimmtes $n \in N, h \in H$ mit $n \cdot h = g$. Denn ist

$$n_1 \cdot h_1 = n_2 \cdot h_2 \iff \underbrace{n_2^{-1} n_1}_{\in N} = \underbrace{h_2 \cdot h_1^{-1}}_{\in H} \in N \cap H = 1$$

Aber: Im Allgemeinen ist φ kein Gruppenhomomorphismus, denn es ist

$$(n_1, h_1)(n_2h_2) = (n_1 \underbrace{h_1n_2h_1^{-1}}_{\in N}) \underbrace{(h_1h_2)}_{\in H} = (n_1n_2)(n_2^{-1}h_1n_2h_2)$$

Daher ist φ ein Gruppenhomomorphismus genau dann, wenn H die Elemente aus N zentralisiert $(n \cdot h = h \cdot n)$, d.h. wenn $H \subseteq G$. In dem Fall ist dann $G \simeq N \times H$.

Ist $H \subseteq G$, dann gilt $\varphi(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot n_2, h_1 \cdot h_2)$

b) Sind $H,N,G,\varphi:H\to \operatorname{Aut}(N)$ ein Homomorphismus, dann definiere eine Verknüpfung auf der Menge $G=N\times H$ durch

$$(n_1, h_1) \cdot (h_2, h_2) = (n_1 \cdot \varphi(h_1)(n_2), h_1 \cdot h_2)$$

Mit dieser Verknüpfung wird G zu einer Gruppe mit Untergruppen $\{1\} \times H \simeq H, \ N \times \{1\} \simeq N.$ Man schreibt $G = N \rtimes H = N \rtimes_{\varphi} H$ für das **semidirekte Produkt**. Mit $\{1\} \times H$ und $N \times \{1\}$ können wir G wie in a) beschreiben. Dabei ist $\varphi: H \to \operatorname{Aut}(N), \ h \mapsto \kappa_h$ (Konjugation mit h).

2. Moduln: Halbeinfache Moduln, freie Moduln

Erinnerung

Ringe in Algebra I kommutativ:

- a) Körper, Polynomringe, $\mathbb Z$
- b) nicht kommutative Ringe: R Ring, Matrizenring $M_n(R) = R^{n \times n}$. Sei A abelsche Gruppe, dann ist $\operatorname{End}(A) = \operatorname{Hom}(A, A)$ ein Ring

$$(\varphi + \psi)(x) = \varphi(x) + \psi(x)$$
$$(\varphi \cdot \psi)(x) = \varphi(\psi(x))$$

 $\operatorname{End}(A)$ heißt der **Endomorphismenring** von A. Dies ist das allgemeinste Beispiel, denn es gilt:

2.1. Satz

Jeder Ring R ist isomorph zu einem Ring von Endomorphismen einer abelschen Gruppe.

Beweis

Ist $(R,+,\cdot)$ gegeben, dann ist A=(R,+) eine abelsche Gruppe. Die Abbildung $R \to \operatorname{End}(A), a \mapsto \lambda_a$ mit $\lambda_a:A\to A, x\mapsto a\cdot x$ ist ein injektiver Ringhomomorphismus, eingeschränkt auf das Bild also ein Isomorphismus.

2.2. Definition

Sei R ein Ring, (M,+) eine abelsche Gruppe. Eine R-(Links-)**Modulstruktur** auf M ist eine Verknüpfung $R \times M \to M, (r,m) \mapsto r \cdot m$ mit

(i)
$$r(x+y) = r \cdot x + r \cdot y$$

(ii)
$$(r+s) \cdot x = r \cdot x + s \cdot x$$

(iii)
$$(r \cdot s)x = r \cdot (s \cdot x)$$

(iv)
$$1_R \cdot x = x$$

für alle $r,s\in R,\,x,y\in M$. Ist R ein Körper, dann sind R-Moduln genau die R-Vektorräume. Mit anderen Worten: Eine R-Modulstruktur auf M ist (gegeben durch) einen Ringhomomorphismus $\varphi:R\to \operatorname{End}(M,+)$ mit $r\cdot x=\varphi(r)(x)$.

2.3. Beispiele

- (i) Ist R ein Körper, dann ist ein R-Modul ein R-Vektorraum.
- (ii) (R,+) ist R-Modul durch Produktwirkung, d.h. $\varphi: R \to \operatorname{End}(R), r \mapsto \lambda_r$.
- (iii) Ist $I \leq R$ ein **Ideal** (d.h. für alle $i, j \in I$, $r \in R$ ist $i + j, i \cdot r, r \cdot i \in I$), dann ist auch (I, +) ein R-Modul, ein R-Untermodul von (R, +).
- (iv) Jede abelsche Gruppe ist ein \mathbb{Z} -Modul.

2.4. Definition

Ist M ein R-Modul, $N \leq M$ Untergruppe mit $r \cdot x \in N$ für alle $x \in N$, $r \in R$, dann heißt N ein R-Untermodul von M.

Beispiel

 $\{0\}, M$ sind immer Untermoduln. Ein Modul $M \neq \{0\}$ heißt **einfach** (oder **irreduzibel**), wenn 0, M die einzigen Untermoduln sind. Ein Ring R heißt (links-)**einfach**, wenn er als (Links-)R-Modul einfach ist.

Bemerkung

Einfache kommutative Ringe sind genau die Körper. Jedes Ideal in ${\cal R}$ ist Untermodul, aber nicht jedes Untermodul ist ein Ideal.

2.5. Definition

- Ist $\{N_{\alpha}\}_{\alpha\in I}$ Menge von Untermoduln von M, dann ist $\bigcap_{\alpha\in I}N_{\alpha}$ ein Untermodul.
- Ist $\emptyset \neq S \subseteq M$, dann ist $\langle S \rangle = \bigcap_{N \supseteq S} N$ der von S **erzeugte Untermodul**. Der von einer Summe erzeugte Modul ist gegeben durch

$$\sum_{\alpha \in I} N_{\alpha} = \langle n_{\alpha_1} + \ldots + n_{\alpha_k} : \alpha_i \in I, n_{\alpha_i} \in N_{\alpha_i} \rangle$$

Ist S endlich, dann heißt $\langle S \rangle$ endlich erzeugt. Ist |S|=1, dann heißt $\langle S \rangle = M$ zyklisch.

• Ein einfacher Modul ist zyklisch, aber nicht umgekehrt (zB. \mathbb{Z}).

2.6. Bemerkung

- (i) Ist M ein zyklischer R-Modul, dann ist $M \simeq R/I$ für ein Ideal $I \subseteq R$. (siehe Blatt 3)
- (ii) Ist $N \leq M$ ein R-Untermodul, dann ist auch M/N ein R-Modul durch

$$r(m+N) = r \cdot m + N$$

2.7. Definition

 φ ist R-linear

Die Klasse aller R-Links-Moduln bezeichnen wir mit R Mod. Sind $M,N\in R$ Mod und $\varphi:(M,+)\to (N,+)$ ein Homomorphismus (der additiven Gruppen), dann ist φ ein R-Modul-Homomorphismus, falls

$$\varphi(r \cdot m) = r \cdot \varphi(m)$$
 $\varphi(\lambda_r(m)) = \lambda_r(\varphi(m)).$

2.8. Bemerkung

Kerne und Bilder von R-Modul-Homomorphismen sind R-Untermoduln. Die Menge $\mathrm{Hom}_R(M,N):=\{\varphi:M\to N\,|\,\varphi \text{ ist }R\text{-Modul-Homomorphismus}\}$ ist eine abelsche Gruppe mit

$$(\psi + \varphi)(m) = \psi(m) + \varphi(m)$$

und $\operatorname{End}_R(M) := \operatorname{Hom}_R(M,M)$ ist mit $(\varphi \cdot \psi)(m) = \varphi(\psi(m))$ der Endomorphismenring von M. Die Homomorphie- und Isomorphiesätze für Gruppen gelten auch für Moduln:

2.9. Satz (Isomorphiesätze)

(i) Ist $f:M\to N$ ein R-Modul-Homomorphismus, $M'\subseteq M$ Untermodul mit $M'\subseteq \ker f$, dann existiert ein eindeutiger R-Modul-Homomorphismus $f':M/M'\to N$ mit

und f' ist injektiv genau dann, wenn $M' = \ker f$.

(ii) Sind $A, B \subseteq M$ Untermoduln, dann gilt

$$(A+B)/B \simeq A/A \cap B$$

(iii) Ist $M'\subseteq M$ ein Untermodul, dann existiert ein **Verbandsisomorphismus** zwischen den Untermoduln von M, die M' enthalten und den Untermoduln von M/M', nämlich $N\mapsto N/M'$ und es gilt (vgl. 1.2)

$$(M/M')/(N/M') \simeq M/N$$

Beweis für (i)

Es ist nur nachzurechnen, dass der (einzige mögliche) Gruppenhomomorphismus $f': M/M' \to N$, $m+M' \mapsto f(m)$ R-linear ist. Das folgt sofort

$$f'(r(m+M')) = f'(r \cdot m + M') = f(r \cdot m) = r \cdot f(m) = r \cdot f'(m+M')$$

(ii), (iii) Übungsaufgabe.

2.10. Definition (Sprechweise)

Eine Folge von R-Moduln (M_i) und Homomorphismen $f_i:M_i\to M_{i-1}$ heißt **exakt in** M_i , falls $\ker f_i=\operatorname{Im} f_{i+1}$.

Eine exakte Sequenz ist eine Folge, die überall exakt ist. Eine exakte Sequenz von der Form

$$0 \to M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \to 0$$

heißt **kurze exakte Sequenz**. Dieses bedeutet f_1 injektiv, f_2 surjektiv und daher ist dann $M_3 \simeq M_2/M_1$.

2.11. Definition

Ein (Links)R-Modul M heißt (links-)**noethersch**⁵, wenn es keine unendliche echt aufsteigende Kette von Untermoduln gibt. M heißt (links-)**artinsch**⁶, wenn es keine unendliche echt absteigende Kette von Untermoduln gibt.

Ein Ring R heißt **noethersch** (bzw. **artinsch**), wenn er als R-Modul noethersch (bzw. artinsch) ist.

Beispiel

 $\mathbb Z$ ist noethersch aber nicht artinsch. Allgemein gilt: HIR sind noethersch. Körper sind artinsch und noethersch.

⁵nach Emmy Noether, 1882-1935, siehe http://de.wikipedia.org/wiki/Emmy Noether ☑

⁶nach Emil Artin, 1898-1962, siehe http://de.wikipedia.org/wiki/Emil_Artin ☑

2.12. Proposition

Ein R-Modul M ist noethersch genau dann, wenn alle Untermoduln endlich erzeugt sind.

Beweis

- " \Rightarrow ": Sei $N\subseteq M$, wähle induktiv $x_1,x_2,\ldots\in N$ mit $x_i\not\in\langle x_1,\ldots,x_{i-1}\rangle=:N_{i-1}$. Dann ist (N_i) eine echt aufsteigende Kette und muss da M noethersch ist nach endlich vielen Schritten mit $\langle x_1,\ldots,x_k\rangle=N$ enden. Das heißt N ist endlich erzeugt.
- " \Leftarrow ": Sei $N_0 \subseteq N_1 \subseteq \ldots$ eine echt aufsteigende Kette von Untermoduln in M und $N := \sum N_i$. Da N endlich erzeugt ist, existieren $x_1, \ldots, x_r \in N$ mit $N = \langle x_1, \ldots, x_r \rangle$. Dann existiert ein k mit $x_1, \ldots, x_r \in N_k$; d.h. $N = N_k$ und die Kette ist endlich.

Bemerkung

Offensichtlich gilt: Ist M noethersch (bzw. artinsch) R-Modul, $N \subseteq M$ Untermodul. Dann sind auch N und M/N noethersch (bzw. artinsch). Dies gilt nach den Isomorphiesätzen.

2.13. Satz

Ist $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ eine kurze exakte Sequenz von R-Moduln, dann gilt: M noethersch (bzw. artinsch) genau dann, wenn M' und M'' noethersch (bzw. artinsch).

Beweis

"⇒": klar nach voriger Bemerkung.

" \Leftarrow ": (artinsch) Sei $P_0 \supseteq P_1 \supseteq P_2 \supseteq \dots$ eine echt absteigende Kette in M. Dann betrachte

$$P_0 \cap M' \supset P_1 \cap M' \supset \dots$$

in M^\prime und

$$(P_0+M')/M'\supset (P_1+M')/M'\supset\ldots$$

in M/M'. Nach Vorraussetzung existiert $k \in \mathbb{N}$ mit $P_k \cap M' = P_l \cap M'$ für $l \ge k$ und $(P_k + M')/M' = (P_l + M')/M'$ für $l \ge k$. Wegen

$$(P_l+M')/M' \simeq P_l/(P_l\cap M')$$

folgt $P_l = P_k$ für $l \ge k$. Entsprechend für aufsteigende Ketten.

2.14. Korollar

Endliche Summen von noetherschen (bzw. artinschen) Moduln sind wieder noethersch (bzw. artinsch).

Beweis

Ist M=N+P und N,P noethersch, dann betrachte $0\to N\hookrightarrow M \twoheadrightarrow M/N\to 0$. Wegen $M/N=(N+P)/N\simeq P/(N\cap P)$ ist M/N noethersch, also ist nach Satz 2.13 auch M noethersch. Entsprechend für artinsch

2.15. Korollar

Ist R ein noetherscher (bzw. artinschen) Ring, dann ist jeder endlich erzeugte R-Modul noethersch (bzw. artinsch).

Beweis

Durch Induktion über die Anzahl der Erzeuger. Ist M zyklisch, dann ist $M \simeq {}^R\!/{}_J$ und ${}^R\!/{}_J$ noethersch (bzw. artinsch) nach Satz 2.13. Sei nun

$$M = \langle x_1, \dots, x_n \rangle$$
, $M' = \langle x_1, \dots, x_{n-1} \rangle$

Nach Induktionsvorraussetzung ist M' noethersch (artinsch) und M/M' ist zyklisch, daher auch noethersch (artinsch), nach 2.13 ist M noethersch (artinsch).

2.16. Korollar

Ist R ein Hauptidealring, dann ist jeder endlich erzeugte R-Modul noethersch.

2.17. Definition

Ein R-Modul M heißt **halbeinfach** (oder vollständig zerlegbar), wenn jeder Untermodul N ein Komplement hat, d.h. wenn $N' \subseteq M$ existiert mit $M = N \oplus N'$, d.h. $N \cap N' = \{0\}, N + N' = M$.

2.18. Beispiele

- (i) \mathbb{Z} (als \mathbb{Z} -Modul) ist *nicht* halbeinfach. $m\mathbb{Z} \subseteq \mathbb{Z}, m \neq 0$ hat kein Komplement, denn für $k \cdot \mathbb{Z}$ ist $k \cdot \mathbb{Z} \cap m \cdot \mathbb{Z} \ni k \cdot m \neq 0$.
- (ii) Ist R ein Körper, dann sind alle R-Vektorräume halbeinfach nach dem Basisergänzungssatz.
- (iii) Untermoduln und Quotienten halbeinfacher Moduln sind halbeinfach.
- (iv) Einfache Moduln sind halbeinfach.
- (v) $\mathbb{Z}_6 \simeq \mathbb{Z}_2 \times \mathbb{Z}_3$ ist halbeinfach, weil $\mathbb{Z}_2, \mathbb{Z}_3$ die einzigen nicht-trivialen Untermoduln sind.

Ein Ring R heißt (links-)halbeinfach, wenn er als R-Modul halbeinfach ist.

2.19. Satz

Für einen R-Modul M sind äquivalent:

- (i) M ist halbeinfach.
- (ii) M ist Summe von einfachen Moduln, d.h. es existiert Familie $(N_{\alpha})_{\alpha \in I}$ von einfachen Untermoduln, die M erzeugen, also $M = \sum_{\alpha \in I} N_{\alpha}$.
- (iii) M ist direkte Summe von einfachen Untermoduln, d.h. es existiert eine Familie $(N'_{\alpha})_{\alpha \in I'}$ von einfachen Untermoduln mit

$$M = \bigoplus_{\alpha \in I'} N'_{\alpha}$$

d.h.
$$N'_{\alpha} \cap \sum_{\beta \neq \alpha} N'_{\beta} = 0$$

Beweis (mit Lemma 2.20)

"(i) \Rightarrow (ii)": Sei $\{N_{\alpha}\}_{\alpha\in I}$ die Menge aller einfachen Untermoduln von M. Diese ist nach Lemma 2.20 nicht leer. Setze $M_1:=\sum N_{\alpha}$.

Behauptung: $M_1=M$. Sonst existiert ein Komplement $P\subseteq M$ mit $P\neq 0$, $P\oplus M_1=M$. Dann ist P halbeinfach und enthält daher einen einfachen Untermodul $N\subseteq P\nleq \operatorname{zu} N\in\{N_\alpha\}_{\alpha\in I}$.

"(iii)⇒(ii)": Klar.

"(ii) \Rightarrow (i)": Sei $P \subseteq M$ Untermodul. Betrachte die Menge aller $J \subseteq I$ mit

(a)
$$N_i \cap \sum_{j \neq i, j \in J} N_j = 0$$
 für alle $i \in J$

(b)
$$P \cap \sum_{i} N_{i} = 0$$

Weil $J=\emptyset$ die Bedingungen (a) und (b) erfüllt, können wir Zorns Lemma anwenden und finden eine maximale Teilmenge $J\subseteq I$ mit (a) und (b).

Behauptung:

$$M_1 := P \oplus \sum_{j \in J} N_j = P \oplus \bigoplus_{j \in J} N_j = M$$

Für $\alpha \in I$ ist $N_{\alpha} \cap M_1 \in \{0, N_{\alpha}\}$, da N_{α} einfach. Ist $N_{\alpha} \cap M_1 = 0$, dann erfüllt $J \cup \{\alpha\}$ die Bedingungen (a) und (b). \not Maximalität von J. Daher ist $N_{\alpha} \subseteq M_1$, also $M_1 = M$.

"(ii) \Rightarrow (iii)": folgt aus dem Beweis "(i) \Rightarrow (ii)" mit P = 0.

2.20. Lemma

Ist $M \neq 0$ halbeinfach, dann hat M einen einfachen Untermodul.

Beweis

Sei $m \in M, m \neq 0$. Betrachte $N := \langle m \rangle \subseteq M$. Nach Zorns Lemma existiert ein maximaler Untermodul $P \leq N$ mit $m \notin P$ (denn 0 ist ein solcher Untermodul). Sei Q ein Komplement von P in N, also $P \oplus Q = N$, $Q \neq 0$, da $m \notin P$.

Behauptung: Q ist einfach. Beweis: $Q \subseteq N \subseteq M$. Ist $0 \neq Q' \subseteq Q$ ein Untermodul, dann ist ja $Q' \oplus P \supseteq P$, also wegen der Maximalität von $P \colon m \in Q' \oplus P$, also $Q' \oplus P = N$ und daher Q = Q'. \square

2.21. Satz

Für einen Ring R sind äquivalent:

- (i) Alle R-Moduln sind halbeinfach.
- (ii) Alle endlich erzeugten R-Moduln sind halbeinfach.
- (iii) Alle zyklischen R-Moduln sind halbeinfach.
- (iv) (R, +) ist als R-Modul halbeinfach.

Beweis

"(i)⇒(ii)⇒(iii)⇒(iv)" Klar.

"(iv)⇒(iii)": Jeder zyklische R-Modul ist von der Form R/I und Quotienten halbeinfacher Moduln sind halbeinfach. siehe 2.6 bzw. Blatt 3

"(iii) \Rightarrow (i)": Sei $M \in {}_R\operatorname{Mod}$, dann ist $M = \sum_{m \in M} R \cdot m$ Summe zyklischer Moduln. Da jeder zyklische R-Modul halbeinfach ist und Summen halbeinfacher Moduln wieder halbeinfach sind, folgt die Behauptung.

2.22. Korollar

Sei $M=\bigoplus_{\alpha\in I}N_{\alpha}$ mit N_{α} einfach. Ist $P\subseteq M$ Untermodul, dann existiert $J\subseteq I$ mit

$$P \simeq \bigoplus_{\alpha \in J} N_{\alpha}.$$

aber nicht unbedingt gleich Ist P einfach, dann ist $P \simeq N_{\alpha}$ für ein $\alpha \in I$.

Beweis

Nach Satz 2.19 existiert $J'\subseteq J$ mit $P\oplus\bigoplus_{j\in J'}N_j=M$ (Beweis "(i) \Rightarrow (ii)"). Daher ist

$$P \simeq M/\bigoplus_{j \in J'} N_j \simeq \bigoplus_{j \in J \setminus J'} N_j \qquad \Box$$

2.23. Korollar (Krull-Remak-Schmidt)

Ist

$$M = \bigoplus_{i \in I} N_i = \bigoplus_{k \in K} L_k,$$

mit N_i, L_k einfach und I endlich. Dann ist |I| = |K| und es existiert ein $\pi \in \mathrm{Sym}(K)$ mit $L_k \simeq N_{\pi(k)}$.

Beweis

Durch Induktion über n=|I|. Für n=1 folgt k=1, weil M einfach. Im Allgemeinen existiert ein $j\in I$ mit $L_i\simeq N_j$ (nach Korollar 2.22). Dann ist

$$\bigoplus_{j\neq i} L_j \simeq {}^{M\!/L_i} \simeq {}^{M\!/N_j} \simeq \bigoplus_{i\neq j} N_i$$

Nach Induktionsvorraussetzung folgt die Behauptung.

2.24. Bemerkung

Sei $M = \bigoplus_{i \in I} S_i$ mit S_i einfach. Dann ist M endlich erzeugt genau dann, wenn |I| endlich.

Beweis

" \Leftarrow ": klar, weil S_i zyklisch.

">": Ist $M = \langle x_1, \dots, x_r \rangle$, dann existiert für jedes $j = 1, \dots, r$ endlich viele S_{j1}, \dots, S_{jk} mit $x_j \in \bigoplus_{i=1}^k S_{ji}$, also ist M die Summe von endlich vielen S_i , d.h. |J| endlich.

Das heißt wenn R halbeinfach als R-Modul, dann noethersch und artinsch.

2.25. Satz

Sei R ein Ring. Die Ideale in $M_k(R)$ sind genau von der Form $M_k(I)$ für ein Ideal $I \leq R$. Insbesondere ist $M_k(R)$ einfach genau dann, wenn R einfach ist.

Beweis

Klar ist: Wenn $I \subseteq R$, dann $M_k(I) \subseteq M_k(R)$. Sei nun $I \subseteq M_k(R)$ ein Ideal, $\overline{I} := \{x_{11} \mid (x_{ij}) \in I\}$ die Menge aller (1,1)-Koeffizienten in $X \in I$. Man rechnet leicht nach, dass $\overline{I} \subseteq R$ ein beidseitiges Ideal ist:

$$\underbrace{\begin{pmatrix} j & * \\ * & * \end{pmatrix}}_{\in I} \cdot \underbrace{\begin{pmatrix} r & \\ 0 \end{pmatrix}}_{\in M_k(R)} = \underbrace{\begin{pmatrix} j \cdot r & \\ & 0 \end{pmatrix}}_{\in I}$$

Sei $E(s,t)_{\mu,\nu} \in M_k(R)$ mit

$$E(s,t)_{\mu,\nu} = \begin{cases} 1, & \text{falls } s = \mu, t = \nu \\ 0, & \text{sonst} \end{cases}$$

eine Elementarmatrix. Dann ist $E(s,t)XE(u,v)=x_{t,u}E(s,v)$. Für $X\in I$ folgt wegen $E(1,s)XE(t,1)=x_{s,t}E(1,1)$, also $x_{s,t}\in \overline{I}$. Daher ist $I\subseteq M_k(\overline{I})$.

Noch zu zeigen: $M_k(\overline{I})\subseteq I$. Sei also $Y\in M_k(\overline{I})$. Dann existiert für s,t ein $X\in I$ mit $y_{s,t}=x_{1,1}$. Das heißt $y_{s,t}E(s,t)=x_{1,1}E(s,t)=E(s,1)XE(1,t)\in I$. Daher ist

$$Y = \sum y_{s,t} E(s,t) \in I$$

d.h. $I=M_k(\overline{I})$.

Matrizenringe über Körpern und Schiefkörpern sind einfache Ringe.

2.26. Satz (Schurs Lemma)

Ist $M \in {}_R\operatorname{Mod}$ einfach, dann ist $\operatorname{End}_R(M)$ ein Schiefkörper.

Beweis

Wegen $M \neq 0$ ist $\operatorname{End}_R(M) \neq 0$. Ist $\varphi \in \operatorname{End}_R(M) \setminus \{0\}$, dann ist $\varphi(M) \neq 0$, also $\varphi(M) = M$, da M einfach. Ebenso $\ker \varphi \neq M$, daher $\ker \varphi = 0$. Daher ist φ ein Isomorphismus und hat ein Inverses in $\operatorname{End}_R(M)$.

2.27. Lemma

Ist $M=\bigoplus_{i\leq k}M_i$, $\varphi\in\operatorname{End}_R(M)$, dann existieren $\varphi_{i,j}\in\operatorname{Hom}(M_i,M_j)$ $1\leq i,j\leq k$, so dass für alle $x=(x_1,\ldots,x_k)\in M_1\oplus\ldots\oplus M_k$ gilt

$$\varphi(x) = \begin{pmatrix} \varphi_{1,1} & \cdots & \varphi_{i,k} \\ \vdots & & \vdots \\ \varphi_{k,1} & \cdots & \varphi_{k,k} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix}$$

Insbesondere ist

$$\operatorname{End}_R(M^k) \simeq M_k(\operatorname{End}_R(M))$$

Beweis

Seien $e_j:M_j\to M$ die Einbettungen, $\pi_i:M\to M_i$ die Projektionen. Dann ist für jeden Endomorphismus $\varphi\in\operatorname{End}_R(M)$ mit $\varphi_{i,j}:=\pi_i\circ\varphi\circ e_j\in\operatorname{Hom}(M_j,M_i)$ und es gilt

$$\varphi = \sum e_i \circ \varphi_{i,j} \circ \pi_j$$

Es ist leicht nachzurechnen, dass die Verknüpfung von Endomorphismen der Multiplikation von Matrizen entspricht, d.h. $\varphi\psi=\sum \varphi_{i,j}\psi_{j,k}$. Damit folgt die Behauptung.

2.28. Definition + Lemma

Ist $(R,+,\cdot,1)$ ein Ring, dann ist $R^{\mathrm{op}}:=R(+,*,1)$ ein Ring mit $r*s=s\cdot r$, der **entgegengesetze Ring**. Klar: Ist R kommutativ, dann ist $R^{\mathrm{op}}\simeq R$. Jeder Links-R-Modul lässt sich als Rechts-R-Modul auffassen. Es gilt

$$\operatorname{End}_R(R,+) \simeq R^{\operatorname{op}}$$

Beweis

Setze $\rho: R^{\mathrm{op}} \to \operatorname{End}_R(R,+)$, $\rho(r) = \rho_r: x \mapsto x \cdot r$. Homomorphie: $\rho_{r*s}: x \mapsto x \cdot s \cdot r$. Dann ist ρ ein Ringhomomorphismus mit $\ker \rho = 0$, also injektiv. Ist $\varphi \in \operatorname{End}_R(R,+)$, so betrachte $\varphi(1) = r \in R$. Dann ist

$$\varphi(r)(x) = x \cdot r = x \cdot \varphi(1) = \varphi(x \cdot 1) = x \cdot r$$

d.h. $\varphi = \rho_r$. Daher ist ρ ein Isomorphismus.

2.29. Satz (Wedderburn, 1. Struktursatz)

Sei R ein Ring. Dann sind äquivalent:

- (i) R ist einfach als Ring und links-artinsch als R-Modul.
- (ii) Alle einfachen R-Moduln sind isomorph und R ist halbeinfach als Modul.

(iii) $R \simeq M_k(D)$ für einen Schiefkörper D und ein $k \geq 1$. Darüber hinaus sind k und D eindeutig bestimmt und der einfache R-Modul ist $\simeq D^k$

Beweis

"(i) \Rightarrow (ii)": Sei $0 \neq I \subseteq R$ ein minimales Linksideal (existiert, da R linksartinsch als Modul). Das heißt $I = Rc \neq 0$ für ein $c \in R$ (zyklisch!). Dann ist

$$\sum_{r \in R} Rc \cdot r = J$$

ein beidseitiges Ideal im Ring R, also $R = \sum_{r \in R} Rc \cdot r$, da R einfach. Ist $Rcr \neq 0$, dann ist $Rc \to Rcr$, $s \cdot c \mapsto s \cdot c \cdot r$ ein Epimorphismus, also Rcr = Rc wegen der Minimalität von Rc. Daher ist (R, +) Summe von einfachen Untermoduln, also halbeinfach nach Satz 2.19.

Noch zu zeigen: Alle einfachen R-Moduln sind isomorph.

Ist M ein einfacher R-Modul, dann ist $M=R\cdot m$ zyklisch und also $M\simeq R/I$ für ein maximales Linksideal I in (R,+). Weil R halbeinfach ist, ist M isomorph zu einem minimalen Linksideal in (R,+) und wegen $R=\bigoplus_{i=1}^k Rc_i$ nach Satz 2.19 ist dann $M\simeq Rc_i=:Rc$. Die direkte Summe ist endlich, da R artinsch ist nach Bemerkung 2.24.

"(ii) \Rightarrow (iii)": (R, +) ist als Links-R-Modul endlich erzeugt (sogar zyklisch, $R = R \cdot 1$). Daher ist nach Vorraussetzung

$$(R,+) \simeq \bigoplus_{i=1}^{k} L_i$$

mit L_i minimale Linksideale in $R,L_1\simeq\ldots\simeq L_k$ und nach Schurs Lemma (2.26) ist $\mathrm{End}_R(L_1)\simeq D'$ ein Schiefkörper. Daher ist

$$R^{\mathrm{op}} \simeq \mathrm{End}_R(R,+) \simeq M_k(D')$$

nach 2.27 und damit $R \simeq M_k(D)$ mit $D = (D')^{\operatorname{op}}$ (Da $M_k(R)^{\operatorname{op}} = M_k(R^{\operatorname{op}})$).

"(iii) \Rightarrow (i)": $M_k(D)$ ist ein k^2 -dimensionaler D-Vektorraum. Linksideale sind D-Untervektorräume, also ist $M_k(D)$ noethersch und artinsch und einfach nach Satz 2.25. Die Eindeutigkeit von k und D folgt aus Korollar 2.23 (Krull-Remak-Schmidt) und Schurs Lemma (2.26).

Bemerkung

(R,+) ist also auch noethersch (rechts und links). Achtung: Es gibt Ringe, die link-noethersch aber nicht rechts-noethersch sind!

2.30. Bemerkung

Sind M, N einfache, nicht-isomorphe R-Moduln, dann ist $\operatorname{Hom}_R(M, N) = 0$. (Klar!)

2.31. Satz (2. Struktursatz von Wedderburn)

Sei $R \neq 0$ ein Ring, halbeinfach als R-Modul. Dann existieren Schiefkörper D_1, \ldots, D_l paarweise nicht isomorph und $k_1, \ldots, k_l \in \mathbb{N}$, so dass

$$R \simeq M_{k_1}(D_1) \oplus \ldots \oplus M_{k_l}(D_l).$$

als Ringisomorphismus.

nach Bemerkung

Bewei

 $(R,+)\simeq L_1^{k_1}\oplus\ldots\oplus L_l^{k_l}$ mit $L_i\subseteq R$ minimale Linksideale, L_i paarweise nicht isomorph. Dann ist $R^{\mathrm{op}}\simeq\mathrm{End}_R(R,+)\simeq\mathrm{End}_R(L_1^{k_1})\oplus\ldots\oplus\mathrm{End}_R(L_l^{k_l})\simeq M_{k_1}(\tilde{D}_1)\oplus\ldots\oplus M_{k_l}(\tilde{D}_l)$

mit $\tilde{D}_i = \operatorname{End}_R(L_i)$. Setze $D_i := \tilde{D}_i^{\operatorname{op}}$. Damit ist dann

$$R \simeq M_{k_1} \oplus \ldots \oplus M_{k_l}(D_l)$$

Freie Moduln

2.32. Definition

Sei M ein Links-R-Modul. Elemente $x_1,\ldots,x_n\in M$ heißen R-linear unabhängig, wenn gilt: Sind $\alpha_1,\ldots,\alpha_n\in R$ mit $\sum \alpha_i\cdot x_i$, dann ist $\alpha_i=0$ für $i=1,\ldots,n$.

Sonst heißen x_1, \ldots, x_n linear abhängig. Eine (beliebige Menge) $X \subseteq M$ heißt linear unabhängig, wenn jede endliche Teilmenge linear abhängig ist. Eine linear unabhängige Menge von Erzeugern heißt **Basis** für M.

2.33. Definition

Sei R ein Ring. Ein R-Modul heißt **frei**, wenn er eine Basis hat.

Achtung: Die Mächtigkeit einer Basis ist nicht notwendig eindeutig bestimmt!

Beispie

- (i) Wenn R=K Körper, dann sind alle R-Moduln frei.
- (ii) R als R-Modul ist frei mit der Basis 1.
- (iii) \mathbb{R}^n für beliebiges n ist frei.

2.34. Definition

Für eine beliebige Menge I heißt der (Links-)R-Modul $\mathcal{F}_I = \bigoplus_I R \ der$ freie R-Modul mit Basis der Mächtigkeit |I|.

Elemente von \mathcal{F}_I sind von der Form $(a_i)_{i\in I}$ mit $a_i=0$ für fast alle $i\in I$, d.h. $a_i=0$ für alle bis auf endlich viele $i\in I$. Jeder andere freie R-Modul mit Basis der Mächtigkeit |I| ist isomorph zu \mathcal{F}_I via Bijektion der Basen: $(u_i)_{i\in I}$, $(v_i)_{i\in I}$ induziert einen Isomorphismus durch

$$\sum_{i \in I} \alpha_i \cdot u_i \mapsto \sum_{i \in I} \alpha_i \cdot v_i$$

Achtung: Umkehrung gilt nicht! (siehe 2.33)

Freie Moduln können durch ihre universelle Eigenschaft charakterisiert werden:

2.35. Satz

Sei R ein Ring. Dann existiert für jede Menge I ein R-Modul \mathcal{F}_I und eine Abbildung $\varphi:I\to \mathcal{F}_I$, die universell ist für R-Moduln. D.h. für jede Abbildung $f:I\to M$ in einen R-Modul M existiert ein eindeutiger Homomorphismus $f':\mathcal{F}_i\to M$ mit $f=f'\circ\varphi$. Also

Beweis

Sei $\mathcal{F}_I = \bigoplus_I R$ mit Basis $(u_i)_{i \in I}$ und $\varphi(i) = u_i$. Ist $f: I \to M$ eine Abbildung, dann gilt für $f': \mathcal{F}_I \to M$ mit $f = f' \circ \varphi$ offensichtlich $f'(u_i) = f(i)$. Also muss gelten

$$f'\left(\sum \alpha_i u_i\right) = \sum \alpha_i f(i) \tag{*}$$

Daher folgt die Existenz von f' und die Eindeutigkeit ebenfalls.

Bemerkung

Aus der universellen Eigenschaft folgt, dass der freie R-Modul mit Basis der Mächtigkeit |I| bis auf Isomorphie eindeutig bestimmt ist.

2.36. Korollar

Ist $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ eine kurze exakte Sequenz, M'' ein freier R-Modul, dann **spaltet** die Sequenz, d.h. es existiert ein R-Modulhomomorphismus $\sigma: M'' \to M$ mit $\beta \circ \sigma = \mathrm{id}_{M''}$. Dann ist $M \cong M' \oplus M''$.

Bemerkung

M'' heißt **projektiv** genau dann, wenn jede kurze Sequenz mit M'' an dritter Stelle spaltet. Das heißt, dass dieses Korollar bedeutet: Freie R-Moduln sind projektiv.

Beweis

Sei I Basis für M''. Da β surjektiv ist, existiert für jedes $i \in I$ ein $u_i \in M$ mit $\beta(u_i) = i$. Die Abbildung $f: I \to M$, $i \mapsto u_i$ lässt sich fortsetzen zu $\sigma: M'' \to M$ (2.35) und dann gilt $\beta \circ \sigma = \mathrm{id}_{M''}$. Damit ist $M = \mathrm{Im}\, \alpha \oplus \mathrm{Im}\, \sigma \simeq M' \oplus M''$.

2.37. Satz

Jeder R-Modul ist Quotient (also homom Bild) eines freien R-Moduls.

Beweis

Ist $M \in {}_R\operatorname{Mod}$, setze $\mathcal{F}_M = \bigoplus_{m \in M} R$. Dann lässt sich die Abbildung $f: M \to M$ fortsetzen zu einem Epimorphismus $f': \mathcal{F}_M \to M$, d.h. $M \simeq \mathcal{F}_M/\ker f'$. Daher sind Quotienten von freien Moduln im Allgemeinen nicht frei!

2.38. Satz

Sei R ein nicht-trivialer Ring. Dann sind äquivalent:

- (i) Jeder (Links-)R-Modul ist frei.
- (ii) Jeder zyklischer (Links-)R-Modul ist frei.
- (iii) R ist einfach als Links-R-Modul.
- (iv) Jedes $x \in R \setminus \{0\}$ hat ein Linksinverses.
- (v) R ist ein Schiefkörper.
- (i) (v) sind auch äquivalent zu (i) $_{R}$ (iv) $_{R}$ für Rechts-R-Moduln.

Beweis

"(i)⇒(ii)": Klar.

"(ii) \Rightarrow (iii)": Sei I ein maximales Links-Ideal in (R, +). Dann ist

$$0 \to I \to R \to \mathcal{F} \to 0$$

mit $\mathcal{F} \simeq R/I$ eine exakte Sequenz mit \mathcal{F} zyklisch und daher frei nach Vorraussetzung. Da I ein maximales war, ist \mathcal{F} einfach. R ist auch zyklisch und daher frei, d.h. $R \simeq \mathcal{F}$ und daher auch R einfach als R-Modul.

"(iii) \Rightarrow (iv)": Sei $c \in R \setminus \{0\}$. Dann ist Rc = R, also existient $b \in R$ mit bc = 1, d.h. c hat ein Linksinverses.

"(iv) \Rightarrow (v)": Sei $c \in R \setminus \{0\}$ mit Linksinversem b und a Linksinverses von b, also

$$bc = 1 = ab$$
.

Dann ist also a=a(bc)=(ab)c=C. Dann folgt a=c und bc=cb=1. Damit ist R ein Schiefkörper.

"(v)⇒(i)": Lineare Algebra I.

Die Äquivalenz von (i) $_R$ - (v) $_R$ folgt entsprechend. Wegen (v)=(v) $_R$ (weil (v) symmetrisch ist), sind also (i)- (v) auch äquivalent zu (i) $_R$ - (iv) $_R$.

Achtung

Auch freie Moduln haben nicht notwendig eine Dimension!

Beispiel: Sei V ein unendlich dimensionaler K-Vektorraum, dann ist $V \simeq V \oplus V$, also ist

$$R = \operatorname{End}_K(V) \simeq \operatorname{End}_K(V^2) \simeq M_2(R) \simeq R^4$$

Das heißt R als freier R-Modul hat eine Basis der Mächtigkeit 1, aber auch Basen jeder anderen Mächtigkeit.

2.39. Definition

Ein Ring hat **invariante Basislänge** (IBL), wenn aus $R^m \simeq R^n$ (als Links-Moduln) schon m=n folgt.

Bemerkuna

Man kann zeigen: R hat IBL genau dann, wenn jeder freie R-Modul eindeutige Basislänge hat.

Beispiel

Körper haben IBL, $\operatorname{End}_R(V)$ nicht immer, 0 nie!

2.40. Lemma

Ein Ring R hat in IBL, wenn für alle $m, n \in \mathbb{N}$ gilt: Ist $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$ mit

$$AB = \mathbb{1}_{m \times m}$$
 , $BA = \mathbb{1}_{n \times n}$

dann ist n=m.

Beweis

Dies ist die Matrizenformulierung der Definition von IBL mit Lemma 2.27.

Folgerung

R hat IBL für Links-R-Moduln genau dann, wenn R IBL für Rechts-R-Moduln hat.

Hier fehlt noch eine

Zeichnung mit

Blockmatrizen!

2.41. Satz

Sei $R \neq 0$ ein Ring.

- (i) Ist R kommutativ, dann hat R IBL.
- (ii) Ist R noethersch (bzw. artinsch), dann hat R IBL. Insbesondere haben halbeinfache Ringe IBL.
- (iii) Ist $\varphi:S\to R$ ein Ringhomomorphismus ($\varphi(1_S)=1_R$) und R hat IBL, dann auch S. Insbesondere vererbt sich IBL auf Unterringe.

Beweis

(i) Angenommen $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$ mit

$$AB = \mathbb{1}_{m \times m}$$
 , $BA = \mathbb{1}_{n \times n}$

und o.B.d.A. m < n. Dann ist

$$\tilde{B} \cdot \tilde{A} = \mathbb{1}$$

Es gilt $\det(\tilde{B}\tilde{A}) = \det \mathbb{1} = 1$ und $\det(\tilde{A}\tilde{B}) = \det(\tilde{B}\tilde{A})$, aber

weitereZeichnung

- (ii) Ist $R^m \simeq R^{m+k}$ mit $k \geq 1$, dann ist $R^m \simeq R^{m+k} \simeq R^{m+2k}$ und man erhält eine unendliche, echt aufsteigende (absteigende) Kette in R^m . Mit R ist auch R^m noethersch (bzw. artinsch). $\not \downarrow$ Halbeinfacher Ring \Rightarrow noethersch und artinsch.
- (iii) Seien $A \in S^{m \times n}$, $B \in S^{n \times m}$ mit AB = 1, BA = 1. Dann gilt

$$\varphi(A)\varphi(B) = 1$$
 , $\varphi(B)\varphi(A) = 1$

das heißt es gilt n=m.

Erinnerung

R ist ein **Hauptidealring** (HIR)⁷, falls R kommutativ und nullteilerfrei ist und jedes Ideal ein Hauptideal ist, das heißt von einem Element erzeugt. In Hauptidealringen hat man eindeutige Primfaktorzerlegung (bis auf Einheiten).

2.42. Satz

Sei D ein Hauptidealring, $L\subseteq D^m$ ein Untermodul, dann $L\simeq D^n$ für ein $n\le m$, d.h. Untermoduln freier Moduln sind frei.

Beweis

Durch Induktion über $m\geq 0$. Für m=0 ist die Aussage klar. Für m=1 ist $L\subseteq D$ ein Linksideal und da D kommutativ ist, ist $L\trianglelefteq D$. Weil D Hauptidealring ist, folgt L=Da für ein $a\in D$, d.h. L ist frei. Weiter ist $D\simeq Da$ via $\varphi:D\to Da$, $s\mapsto s\cdot a$ (Isomorphismus, da D nullteilerfrei).

Induktionsschritt: Sei $L\subseteq D^{m+1}=D\oplus D^m,\,\pi:D\oplus D^m\to D$ die Projektion auf die erste Komponente. Betrachte die exakte Sequenz

$$0 \to \ker \pi\big|_L \to L \xrightarrow{\pi} \pi(L) \to 0$$

⁷englisch: PID, prime ideal domain

Fall 1: $\pi(L)=0$, dann ist $L\subseteq \ker \pi=0\oplus D^m\simeq D^m$ und nach Induktionsvorraussetzung ist L frei, $L\simeq D^n,\, n\le m.$

Fall 2: $\pi(L) \neq 0$, dann ist $\pi(L) \subseteq D$ freier D-Modul. Nach Korollar 2.36 ist

$$L \simeq \ker \pi|_L \oplus \pi(L)$$

Nach Induktionsvorraussetzung ist $\ker \pi\big|_L\subseteq D^m$ ein freier Modul, also $\ker \pi\big|_L\simeq D^n$, $n\le m$, und $\pi(L)\simeq D$, daher ist $L\simeq D\oplus D^n$.

Ist D ein Hauptidealring, M endlich erzeugt über D, $M=Dm_1+\ldots+Dm_s$. Betrachte $\varphi:D^s\to M$ mit $(d_1,\ldots,d_s)\mapsto \sum d_im_i$. Nach Satz 2.42 ist $\ker\varphi\simeq D^t$ für $t\le s$ und $M\simeq {}^{D^s}/\!\!\ker\varphi$. Um M zu beschreiben, müssen wir untersuchen, wie $\ker\varphi\subseteq D^s$

2.43. Satz

Sei $A=(a_{ij})\in D^{m\times n}$, D ein Hauptidealring. Dann gibt es invertierbare Matrizen $P\in D^{m\times m}, Q\in D^{n\times n}$ mit

$$P \cdot A \cdot Q = \begin{pmatrix} d_1 & & 0 & & \\ & \ddots & & & \\ & & d_k & & \\ 0 & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix} \qquad d_1, \dots, d_k \neq 0, d_i \mid d_{i+1}$$

Falls D ein Körper ist, folgt dies aus dem Gauß-Verfahren und $d_i = 1$.

Beweis

Für $a \in D \setminus \{0\}$ sei l(a) = s, falls $a = p_1 \cdot \ldots \cdot p_s$ mit p_i prim (eindeutig, da D HIR). Ist $a \in D^{\times}$ Einheit, setze l(a) = 0 und $l(0) = \infty$. Für A = 0 ist nichts zu zeigen.

<u>Erinnerung:</u> Durch Links- und Rechtsmultiplikation mit geeigneten invertierbaren Matrizen können wir (wie in LA I.)

ullet Zeilen von A vertauschen

• Zeilen/Spalten mit Einheiten multiplizieren

• Spalten von A vertauschen

zu einer Zeile/Spalte beliebige Vielfache einer anderen Zeile/Spalte aufaddieren

Wähle a_{ij} in A mit $l(a_{ij})$ minimal. Durch Zeilen- und Spaltenvertauschungen können wir erreichen, dass a_{ij} links üben steht (vertausche i-te und 1. Zeile, dann j-te und 1. Spalte). Wenn $a_{11} \nmid a_{1k}$ für $k \geq 2$, vertausche 2-te und k-te Spalte, also $a_{1}1 \nmid a_{12}$. Sei $d \in \operatorname{ggT}(a_{11}, a_{12})$, dann $l(d) < l(a_{11})$. Schreibe $d = a_{11} \cdot x + a_{12} \cdot y$, $x, y \in D$ und $d \cdot e = a_{12}$ sowie $d \cdot f = -a_{11}$. Dann ist

$$\begin{pmatrix} -f & e \\ y & -x \end{pmatrix} \cdot \begin{pmatrix} x & e \\ y & f \end{pmatrix} = \begin{pmatrix} -f \cdot x + y \cdot e & 0 \\ 0 & e \cdot y - f \cdot x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

denn $d\cdot e\cdot y-d\cdot f\cdot x=a_{12}\cdot y+a_{11}\cdot x=d$, daher $e\cdot y-fx\cdot =1$. Ebenso

$$\begin{pmatrix} x & e \\ y & f \end{pmatrix} \cdot \begin{pmatrix} -f & e \\ y & -x \end{pmatrix} = \begin{pmatrix} 1 \\ & 1 \end{pmatrix}$$

das heißt $\begin{pmatrix} x & e \\ y & f \end{pmatrix}$ ist invertierbar. Es gilt

$$\begin{pmatrix} a_{11} & a_{12} & * \\ * & * \end{pmatrix} \begin{pmatrix} x & e & 0 \\ y & f & 1 \\ 0 & \ddots & 1 \end{pmatrix} = \begin{pmatrix} d & 0a_{13} \dots & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

Damit transformieren wir nach und nach die Matrix A auf die Gestalt

$$\tilde{A} = \begin{pmatrix} \tilde{a_{11}} & \tilde{a_{12}} & \dots \\ * & * \end{pmatrix}$$

mit $\tilde{a_{11}} \mid \tilde{a_{ik}}$ und $\tilde{a_{11}} \mid \tilde{a_{k1}}$. Durch Addieren von geeigneten Vielfachen der 1-ten Zeile/Spalte erhalten wir die Matrix

Hier fehlen noch ein paar Matrizen

matrixhier

und $l(\tilde{a_1}1) \leq l(b_{ij})$ für $B = (b_{ij})$. Induktiv erhalten wir eine Matrix der Form

matrixhier

mit $l(d_i) \leq l(d_{i+1})$. Ist $d_i \nmid d_{i+1}$, dann transformieren wir weiter:

$$\begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_{i+1} \end{pmatrix} \rightsquigarrow \begin{pmatrix} d_i & d_{i+1} \\ & d_{i+1} \end{pmatrix} \rightsquigarrow \begin{pmatrix} d_i & d_{i+1} \\ & d_{i+1} \end{pmatrix} \begin{pmatrix} x & e \\ y & f \end{pmatrix} = \begin{pmatrix} d'_i & 0 \\ d_{i+1}y & d_{i+1}f \end{pmatrix}$$

mit $d_ix+d_{i+1}y=d_i'\in \mathrm{ggT}(d_i,d_{i+1})$. Wie eben erhalten wir $\begin{pmatrix}d_i'&0\\0&d_{i+1}f\end{pmatrix}\sim\ldots$ fertig. \square Die d_i,\ldots,d_k heißen die **invarianten Faktoren** von A. Diese sind eindeutig (bis auf Einheiten).

2.44. Definition

Ist $A\in D^{m\times n}$ und $i\le m,n$, dann ist die Determinante einer Matrix $A'\in D^{i\times i}$ ein i-Minor von A, wenn A' aus A hervorgeht durch Streichen von m-i Zeilen und n-i Spalten. Der **Rang** von A ist das größte i, für das A einen i-Minor $\ne 0$ besitzt.

2.45. Satz (Elementarteilersatz)

Sei D ein Hauptidealring, $A \in D^{m \times n}$, k der Rang von A. Für $j \neq k$ sei $\delta_j = \delta_j(A)$ ein ggT aller j-Minoren von A. Dann sind die invarianten Faktoren eindeutig bestimmt (bis auf Einheiten) und von der Form $d_1 = \delta_1$, $d_i = \prod_{j < i} \delta_j$.

Beweis

Ist k der Rang von A, dann existiert für alle $i \leq k$ ein i-Minor $\neq 0$ in A (Laplace-Entwicklung der Determinante). Insbesondere ist $\delta_1, \dots, \delta_k \neq 0$, also $d_i \neq 0$ für $i = 1, \dots, k$. Für $P \in D^{m \times m}$ sin die Zeilen von $P \cdot A$ Linearkombinationen der Zeilen von A und die j-Minoren von $P \cdot A$ sind Linearkombinationen der j-Minoren von A. Entsprechend für $Q \in D^{n \times n}$ und $A \cdot Q$. Wenn also $P \in D^{m \times m}, Q \in D^{n \times n}$ invertierbare Matrizen sind, dann folgt $\delta_j(P \cdot A \cdot Q) \mid \delta_j(A)$ und $\delta_j(A) \mid \delta_j(P \cdot A \cdot Q)$ ist. Das heißt $\delta_j(P \cdot A \cdot Q) = u \cdot \delta_j(A)$ für eine Einheit $u \in D^{\times}$. Ist

$$P \cdot A \cdot Q = \begin{pmatrix} d_1 & 0 \\ \ddots & \\ 0 & d_k \\ 0 & \ddots \\ 0 & 0 \end{pmatrix}$$

mit $d_i \mid d_{i+1}$, dann ist $\delta_j(A) = d_i \cdot \ldots \cdot d_j$. Dies zeigt, dass die invarianten Faktoren bis auf Einheiten eindeutig sind.

2.46. Beispiel

Sei $D=\mathbb{Z}$ und $A=\left(\begin{smallmatrix} 3&1\\0&4\end{smallmatrix}\right)$. Dann ist $\delta_1=1$, $\delta_2=12=d_2$. Damit ist $A\sim_{\mathbb{Z}}\left(\begin{smallmatrix} 1&0\\0&12\end{smallmatrix}\right)$.

2.47. Definition

Ist $M \in {}_R \operatorname{Mod}$, $m \in M$, dann heißt

$$\operatorname{ann}(m) = \{ r \in R \, | \, r \cdot m = 0 \}$$

das Annulatorideal von m in R. $m \in M$ heißt Torsionselement, falls $\operatorname{ann}(m) \neq 0$

2.48. Satz: Struktursatz für endlich erzeugte Moduln über HIR

Sei D ein Hauptidealring, M ein endlich erzeugter D-Modul. Dann ist M die Summe von zyklischen Moduln $M=D_{m_1}\oplus\ldots\oplus D_{m_k}$ mit

$$D \supseteq \operatorname{ann}(m_1) \supseteq \operatorname{ann}(m_2) \supseteq \ldots \supseteq \operatorname{ann}(m_k)$$

Beweis

Schreibe $M \simeq D^s/L$ mit $L \simeq D^t$, $t \leq s$. Dann ist $L = Dl_1 \oplus \ldots \oplus Dl_t$ mit $l_j = (a_{1j}, \ldots, a_{sj}) \in D^s$. Dann erhalten wir eine Matrix $A = (a_{ij}) \in D^{s \times t}$. Die Smith-Normalform

$$P \cdot A \cdot Q = \begin{pmatrix} a_1 & & & & 0 \\ & \ddots & & & \\ & & a_k & & \\ & & & 0 & \\ & & & \ddots & \\ 0 & & & 0 \end{pmatrix}$$

liefert ein neues Erzeugendensystem für D^s , L nämlich $e_1, \ldots, e_s, f_1, \ldots, f_t$ mit

$$D^s = \bigoplus_{i=1}^s Dl_i$$
 , $L = \bigoplus_{j=1}^t Df_j$

 $f_i = d_i e_i$ und

$$D^s/L \simeq D/(d_1) \oplus \ldots \oplus D/(d_k) \oplus D \oplus \ldots \oplus D$$

Für $d_i \in D^{\times}$ Einheit ist $D/(d_i) = 0$, also einfach weglassen.

2.49. Korollar: Struktursatz für endlich erzeugte abelsche Gruppen

Ist A endlich erzeugte abelsche Gruppe, dann ist A direkte Summe von endlich vielen zyklischen Gruppen.

Beweis

Dies folgt unmittelbar aus der Tatsache, dass jede abelsche Gruppe ein \mathbb{Z} -Modul ist, vgl. Bemerkung 2.3 (iv).

2.50. Definition und Satz

Setze $tor_D(M) := \{m \in M \mid ann(m) \neq 0\}$. Ist D kommutativ und nullteilerfrei, dann ist $tor_D(M)$ ein Untermodul, der **Torsionsmodul** von M.

Beweis

Ist $a \cdot m = 0$, dann ist $d \cdot a \cdot m = a \cdot d \cdot m$ also $d \cdot m \in \text{tor}(M)$ für alle $d \in D$. Sind $m_1, m_2 \in \text{tor}(M)$, also $am_1 = bm_2 = 0$, dann ist $ab(m_1 + m_2) = 0$.

2.51. Satz

Ist M ein endlich erzeugter Modul über einem Hauptidealring D, dann ist

$$M \simeq \operatorname{tor}_D(M) \oplus D^k$$

und $tor_D(M)$, k sind eindeutig bestimmt.

Beweis

Nach Satz 2.48 ist

$$M \simeq Dm_1 \oplus \ldots \oplus Dm_s \oplus Dm_{s+1} \oplus \ldots \oplus Dm_{s+k}$$

mit $\operatorname{ann}(m_i) \neq 0$ für $i=1,\ldots,s$ und $\operatorname{ann}(m_i)=0$ für $i=s+1,\ldots,s+k$. Ein Element $d_1m_1+\ldots+d_{s+k}m_{s+k}\in M$ ist ein Torsionselement genau dann, wenn $d_{s+1}=\ldots=d_{s+k}=0$ genau dann, wenn es in $Dm_1\oplus\ldots\oplus Dm_s$ liegt. Damit ist $\operatorname{tor}(M)=Dm_1\oplus\ldots\oplus Dm_s$. Es ist $M/\operatorname{tor}(M)\simeq D^k$ und k ist nach Satz 2.31 eindeutig bestimmt.

ich bin mir nicht sicher, ob die Nummer stimmt

2.52. Beispiel

(i) Sei D=Z, $M=\mathbb{R}/\mathbb{Z}$ $S^1=\{z\in\mathbb{C}\,|\,|z|=1\}$. Dann ist $\mathrm{tor}_{\mathbb{Z}}(\mathbb{R}/\mathbb{Z})=\mathbb{Q}/\mathbb{Z}$, also gilt $(d\cdot r\in\mathbb{Z}\Rightarrow r\in\mathbb{Q})$

$$\mathbb{R}/\mathbb{Z} \simeq \mathbb{Q}/\mathbb{Z} \oplus \bigoplus \mathbb{Q}$$

(ii) $D=\mathbb{Z}$, $M=\mathbb{Q}$, $\mathrm{tor}_{\mathbb{Z}}(\mathbb{Q})=0$, aber $(\mathbb{Q},+)$ ist kein freier \mathbb{Z} -Modul: Seien $\frac{r}{s},\frac{p}{q}\in\mathbb{Q}$. Dann ist $r\cdot p\in\mathbb{Z}\cdot r/s\cap\mathbb{Z}\cdot \frac{p}{q}\neq 0$.

2.53. Satz

Eine endlich erzeugte abelsche Gruppe ist direkte Summe einer endlichen Gruppe, der Torsionsgruppe, und einer freien abelschen Gruppe $\simeq \mathbb{Z}^k$. Dabei heißt k der Rang der Gruppe. Jede endliche abelsche Gruppe ist direkte Summe von zyklischen Gruppen.

3. Tensorprodukte und Algebren

Zuerst Tensorprodukte für Moduln über kommutativen Ringen R. Sind $U,V,W\in_R \operatorname{Mod}$, $f:U\times V\to W$ bilinear, dann suchen wir ein universelles Objekt T und eine bilineare Abbildung φ so, dass es für jedes bilineare f und jedes W einen eindeutigen $\mathbb R$ -Modulhomomorphismus f' gibt, sodass das Diagramm kommutiert.

3.1. Satz

Sei R ein kommutativer Ring, $U, V \in {}_R \operatorname{Mod}$. Dann existiert ein bis auf Isomorphie eindeutiger R-Modul $U \otimes V$ und eine bilineare Abbildung $\varphi: U \times V \to U \otimes V$, die universell für alle bilinearen Abbildungen $f: U \times V \to W$ sind.

Beweis

Eindeutigkeit ist klar: Seien T_1, φ_1 und T_2, φ_2 zwei universelle Objekte. Dann betrachte

also $\varphi_2' \circ \varphi_1' = \mathrm{id}_{T_2}$, $\varphi_1' \circ \varphi_2' = \mathrm{id}_{T_1} \Rightarrow T_1 \simeq T_2$.

Für die Existenz sein $\mathcal{F}_{U\times V}$ der freie R-Modul mit Basis (indiziert durch) $U\times V$ und sei $B\subseteq \mathcal{F}_{U\times V}$ der Untermodul, der von allen Elementen der folgenden Form erzeugt wird

$$(u + u', v) - (u, v) - (u', v)$$

$$(u, v + v') - (u, v) - (u, v')$$

$$(\alpha \cdot u, v) - \alpha(u, v)$$

$$(u, \alpha \cdot v) - \alpha(u, v)$$

für alle $u, u' \in U, v, v' \in V, \alpha \in R$. Sei φ die Hintereinanderausführung

$$0 \to U \times V \hookrightarrow \mathcal{F}_{U \times V} \to \mathcal{F}_{U \times V/B} \to 0$$

Offensichtlich ist φ bilinear: Es ist $\varphi((u,v+v'))=(u,v+v')+B$. Wegen (u,v+v')=(u,v)+(u,v') in $\mathcal{F}_{U\times V}/B$ ist φ bilinear. Setze $U\otimes V:=\mathcal{F}_{U\times V}/B$. Noch zu zeigen: $U\otimes V$, φ erfüllen die universelle Eigenschaft: Sie also $f:U\times V\to W$ bilinear. Dann lässt sich wegen der universellen Eigenschaft des freien Moduls $\mathcal{F}_{U\times V}$ f fortsetzen zu $f_1:\mathcal{F}_{U\times V}\to W$ (Satz 2.35)

Nach Definition von B folgt $B \subseteq \ker f$, denn es ist zB

$$f_1([(u+u',v)-(u,v)-(u',v)]) = f(u+u',v)-f(u,v)-f(u',v) = 0$$

da f bilinear ist. Ebenso ist

$$f_1([(\alpha u, v) - \alpha(u, v)]) = f(\alpha u, v) - \alpha f(u, v) = 0$$

Daher erhalten wir $f': U \otimes V = \mathcal{F}_{U \times V}/B \to W$ und dieses f' ist eindeutig bestimmt, da die Bilder von (u,v) den Modul $U \otimes V$ erzeugen.

3.2. Bemerkung

Das Bild von (u,v) in $U\otimes V$ unter φ wird mit $u\otimes v$ bezeichnet. D.h. $U\otimes V$ ist R-Modul mit Erzeugermenge $\{u\otimes v\mid u\in U, v\in V\}$ und definiert Relationen

$$(u+u') \otimes v = u \otimes v + u' \otimes v$$
$$u \otimes (v+v') = u \otimes v + u \otimes v'$$
$$\alpha u \otimes v = \alpha(u \otimes v) = u \otimes \alpha v$$

für alle $u, u' \in U, v, v' \in V, \alpha \in R$.

Achtung

Nicht jedes Element in $U \otimes V$ ist von der Form $u \otimes v$, $u \in U, v \in V$! Ein allgemeines Element ist von der Form $\sum_{i=1}^k u_i \otimes v_i$ für $u_i \in U$, $v_i \in V$, $k \in \mathbb{N}$.

3.3. Proposition

Sei R ein kommutativer Ring, U, V, W seien R-Moduln. Dann gilt

- (i) $U \otimes V \simeq V \otimes U$
- (ii) $U \otimes (V \otimes W) \simeq (U \otimes V) \otimes W$
- (iii) $U \otimes (V \oplus W) \simeq (U \otimes V) \oplus (U \otimes W)$

Beweis

(i) $f: U \times V \to V \times U$, $(u,v) \mapsto (v,u)$ ist bilinear. Daher existieren Homomorphismen $\alpha: U \otimes V \to V \otimes U$, $u \otimes v \mapsto v \otimes u$, d.h.

$$\alpha \Big(\sum u_i \otimes v_i \Big) = \sum v_i \otimes u_i$$

Ebenso ist $\beta: V\otimes U\to U\otimes V$, $v\otimes u\mapsto u\otimes v$ ein R-Modulhomomorphismus. Dann ist $\beta\circ\alpha=\mathrm{id}_{U\otimes V}$ und $\alpha\circ\beta=\mathrm{id}_{V\otimes U}$, d.h. α,β sind Isomorphismen.

(ii) Betrachte $f: U \times V \times W \to U \otimes (V \otimes W)$, $(u,v,w) \mapsto u \otimes (v \otimes w)$. Für festes $w \in W$ ist f bilinear in u,v und wir erhalten $f'_w: (U \otimes V) \to U \otimes (V \otimes W)$, $(u \otimes v) \mapsto u \otimes (v \otimes w)$. Dann ist f'_w R-linear und wir erhalten eine bilineare Abbildung

$$\tilde{f}: (U \otimes V) \times W \to U \otimes (V \otimes W)$$
, $((u \otimes v), w) \mapsto u \otimes (v \otimes w)$

Daraus erhalten wir $f':(U\otimes V)\otimes W\to U\otimes (V\otimes W)$. Entsprechend erhalten wir Inverses $g':U\otimes (V\otimes W)\to (U\otimes V)\otimes W$

(iii) Sei $\varphi: U \times (V \oplus W) \to (U \otimes V) \oplus (U \otimes W)$, $(u,v,w) \mapsto (u \otimes v,u \otimes w)$. Ist $f: U \times (V \oplus W) \to Z$ eine bilineare Abbildung in einen R-Modul Z, dann ist f(u,v,w) = f(u,v) + f(u,w) und dies kann auch als Abbildung von $(U \otimes V) \oplus (U \otimes W)$ aufgefasst werden. Daher erfüllt $(U \otimes V) \oplus (U \otimes W)$ die erforderliche universelle Eigenschaft, d.h.

$$U \otimes (V \oplus W) \simeq (U \otimes V) \oplus (U \otimes W)$$

3.4. Beispiel

(i) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R}$ via $q \otimes r \mapsto q \cdot r$.

$$\sum_{i=1}^{k} \frac{m_i}{n_i} \otimes r_i = \sum \frac{\prod_{i=1}^{k} m_i}{n_i \prod_{j \neq i} m_j} \otimes r_i = \sum \frac{1}{\prod n_i} \otimes \left(m_i \prod_{j \neq i} n_j \right) = \frac{1}{\prod n_i} \otimes \left(\sum \ldots \right)$$

(ii) Seien $r, s \in \mathbb{N}$, (r, s) = 1 und mr + ns = 1. Dann ist

$$\mathbb{Z}/(r) \otimes_{\mathbb{Z}} \mathbb{Z}/(s) = 0,$$

denn für jeden Erzeuger $a\otimes b$ gilt

$$a \otimes b = (mr + ns)(a \otimes b) = mr(a \otimes b) + ns(a \otimes b) = m(ra \otimes b) + n(a \otimes sb)$$
$$= m(0 \otimes b) + n(a \otimes 0) = 0$$

(iii) Ist A eine abelsche Torsionsgruppe, dann ist $A\otimes_{\mathbb{Z}}\mathbb{Q}=0$. Denn ist $a\in A$ mit ma=0, dann ist

$$a \otimes \frac{p}{q} = a \otimes \frac{p \cdot m}{q \cdot m} = a \cdot m \otimes \frac{p}{q \cdot m} = 0$$

3.5. Satz

Sei R ein kommutativer Ring, $U \in {}_R\operatorname{Mod}$. Dann ist $U \otimes R^n \simeq U^n = U \oplus \ldots \oplus U$.

Beweis

Durch Induktion nach n: Wegen Proposition 3.3 (iii) genügt es, die Behauptung für n=1 zu zeigen, also $U\otimes_R R\simeq U\simeq R\otimes_R U$.

Sei $\theta: R \times U \to U$, $(r,u) \mapsto r \cdot u$. Dann ist θ bilinear. Ist $W \in {}_R \operatorname{Mod}$ und $f: R \times U \to W$ bilinear, dann ist $f(r,u) = f(1,r \cdot u)$, also ist mit $f': u \mapsto f(1,u)$ gerade $f = \theta \circ f'$. Offensichtlich ist f' eindeutig bestimmt, d.h. U, θ erfüllen die universelle Eigenschaft aus Satz 3.1, also ist $R \otimes U \simeq U$ wegen der Eindeutigkeit.

3.6. Korollar

Sind U, V freie R-Moduln, R kommutativ, $U \simeq R^m, V \simeq R^n$. Dann ist $U \otimes V \simeq R^{n \cdot m}$.

Bemerkung

Für Vektorräume über Körpern gilt daher $\dim_K(U\otimes V)=\dim_K U\cdot\dim_K V$. Daher gilt $\{e_1,\ldots,e_m\}$, $\{f_1,\ldots,f_n\}$ Basen für U bzw. V, dann ist $\{e_i\otimes f_j\mid i=1,\ldots,m,j=1,\ldots,n\}$ eine Basis für $U\otimes V$.

3.7. Korollar

Ist $U \in {}_R\operatorname{Mod}$, V ein freier R-Modul, R kommutativ. Dann hat jedes Element von $U \otimes V$ eine eindeutige Darstellung der Form $\sum u_i \otimes e_i$ mit $u_i \in U$, $\{e_i\}_{i \in I}$ Basis für V.

Vorsicht

Ist $\sum u_i \otimes v_i = 0$ in $U \otimes V$ und die v_i sind in V linear unabhängig über R. Dann folgt nicht, dass $u_i = 0$ gilt.

Sei $V'=\langle v_1,\ldots,v_k\rangle\subseteq V$. Ist $\sum u_i\otimes v_i=0$ in $U\otimes V'$, dann folgt $u_i=0$. Die Einbettung $V'\hookrightarrow V$ induziert einen Homomorphismus

$$U \otimes V' \to U \otimes V \tag{*}$$

Achtung: Dieser Homomorphismus muss nicht injektiv sein!

Siehe Beispiel 3.4 (iii)

Beispiel

 $2\mathbb{Z} \hookrightarrow \mathbb{Z}$ ist injektiv, aber bleibt *nicht* injektiv in

$$2\mathbb{Z}\otimes\mathbb{Z}/2\to\mathbb{Z}\otimes\mathbb{Z}/(2)\simeq\mathbb{Z}/(2)$$

Seien e, f, f' Erzeuger der zyklischen Moduln $\mathbb{Z}/(2), \mathbb{Z}, 2\mathbb{Z}. 2\mathbb{Z} \hookrightarrow \mathbb{Z}, f' \mapsto 2f$ und dann

$$f' \otimes e \mapsto 2f \otimes e = f \otimes 2e = 0$$

Bemerkung: Ist V' direkter Summand in V, dann bleibt nach Proposition 3.3 (iii) die induzierte Abbildung (*) aber doch eine Einbettung. Über Körpern ist das immer der Fall.

3.8. Definition

Sei R ein kommutativer Ring. Eine R-Algebra ist ein Ring A, der gleichzeitig ein R-Modul ist, sodass die Multiplikation in A R-bilinear ist, d.h. so dass gilt:

$$\alpha(x \cdot y) = x \cdot \alpha y = (\alpha x) \cdot y \quad \forall x, y \in A, r \in R$$

Eine **Unteralgebra** einer R-Algebra A ist ein Unterring, der gleichzeitig ein R-Untermodul ist.

3.9. Beispiel

(i) Ist A eine R-Algebra, dann ist das Zentrum $C(A)=\{z\in A\,|\,x\cdot z=z\cdot x\ \ \forall x\in A\}$ eine Unteralgebra. C(A) ist R-Untermodul: $z\in C(A)$, dann ist für $\alpha\in R, x\in A$

$$x \cdot (\alpha z) = (\alpha x) \cdot z = z \cdot (\alpha x) = (\alpha z) \cdot x$$

- (ii) Jeder Ring R ist auch R-Algebra:
- (iii) Jeder Ring wird zu einer \mathbb{Z} -Algebra durch $nx = x + \ldots + x$, (-n)x = -(nx)

Ein Homomorphismus von R-Algebren ist ein Ringhomomorphismus, der gleichzeitig R-linear ist.

Bemerkung

Für y=1 in Definition 3.8 ergibt sich $x\cdot\alpha 1=\alpha x$ und für x=1 $\alpha 1\cdot y=\alpha \cdot y$. Also gilt $\alpha 1\cdot x=x\cdot\alpha 1=\alpha x$ für alle $x\in A, \alpha\in\mathbb{R}$. Für $\alpha=\beta\cdot 1$ erhalten wir

$$\alpha 1 \cdot \beta \cdot 1 = \alpha(\beta 1) = \alpha \beta \cdot 1,$$

d.h. die Abbildung $R \to A$, $\alpha \mapsto \alpha \cdot 1$ ist ein Algebrahomomorphismus in das Zentrum von A, d.h. $R \cdot 1 \subseteq C(A)$.

Umgekehrt gilt: Ist R ein Ring, $f:R\to C(A)$ ein Ringhomomorphismus. Dann wir A zu einer R-Algebra durch $\alpha\cdot x=f(x)\cdot x$ für $x\in A, \alpha\in R$. Mit anderen Worten: Eine R-Algebra ist ein Ring A zusammen mit einem Homomorphismus $f:R\to C(A)$. Manchmal werden Algebra allgemeiner definiert: Eine R-Algebra ist ein R-Modul A mit einer bilinearen Multiplikation (nicht notwendig assoziativ oder mit Eins). Bei uns sind alle Algebra assoziativ und **unital**, d.h. mit 1.

3.10. Beispiel

Sei ${\cal R}$ ein kommutativer Ring.

(i) $U \in {}_R \operatorname{Mod}, A = \operatorname{End}_R(U)$. Dann ist A ein R-Modul: Für $f \in A, \alpha \in R, x \in U$ ist

$$(\alpha f)(x) = f(\alpha x)$$

Damit wir A zu einer R-Algebra. Ist $V \simeq R^n$, dann ist $A \simeq M_n(R)$ und $C(A) \simeq R$, nämlich $\alpha \cdot \mathbb{1}$, $\alpha \in R$.

- (ii) $B_n(R) = \text{Menge der oberen Dreiecksmatrizen ist Unteralgebra von } M_n(R)$.
- (iii) Sei $M=\{u_i\,|\,i\in I\}$ ein Monoid (= Halbgruppe mit 1) und sei $A=\mathcal{F}_M$ der freie Modul über M mit Multiplikation $u_i\cdot u_j=u_k$ wie in M. Durch lineares Fortsetzen erhalten wir eine Multiplikation auf A, die A zu einer R-Algebra macht. Dann ist A assoziativ und unital, weil M diese Eigenschaften hat. Diese Algebra wird mit RM bezeichnet.

Häufig: M=G eine Gruppe, R=K ein Körper: Dann heißt KG die **Gruppenalgebra** von G über K. Spezialfälle:

(a)
$$M = \{1, X, X^2, X^3, \ldots\}, RM = R[X].$$

(b)
$$G=Z=\langle X \rangle$$
. Dann ist $KG=K[X,X^{-1}]$ der Ring der Laurent-Polynome in X .

(iv) Endlich dimensionale Algebra über einem Körper K: Ist A K-Algebra mit $\{u_1,\ldots,u_n\}$, dann ist die Struktur von A eindeutig bestimmt durch die n^3 Strukturkonstanten c_{ijk} , $i,j,k=1,\ldots,n$ mit $u_i\cdot u_j=\sum_{k=1}^n c_{i,j,k}\cdot u_k$.

Ist $u_1=1_A$, dann ist $c_{1ir}=c_{i1r}=\delta_{ir}$ und die Assoziativität von A ist äquivalent zu

$$\sum_{i} c_{i,j,k} = \sum_{i,l,m} c_{lik} \cdot c_{mji}$$

Die Sätze über einfache Artinsche Ringe(Schur, Wedderburn, \dots) gelten insbesondere für endlich dimensionale einfache K-Algebren.

(v) Ist $U \in {}_R\operatorname{Mod}$, dann sei $T(U) = \bigoplus_{n \in \mathbb{N}} U^{\otimes n}$, mit $U^{\otimes n} = U \otimes \ldots \otimes U$, $U^{\otimes 0} = R$. Dann heißt T(U) die **Tensoralgebra** von U.

Ist U = R, dann ist $T(U) \simeq R[X]$.

3.11. Definition

 $\textit{vgl.} \ G \to \operatorname{Sym}(X)$ in Def. 1.1

Eine **Darstellung** der R-Algebra A ist (gegeben durch) einen R-Algebrenhomomorphismus $A \to \operatorname{End}_R(U)$ für einen R-Modul U. Für jede Algebra A bezeichnet man mit ρ die rechts-reguläre Darstellung A auf sich selbst, d.h.

$$\rho: A \to \operatorname{End}_R(A), \quad a \mapsto \rho_a: x \mapsto x \cdot a$$

Diese Darstellung ist treu, d.h. $\ker \rho = 0$. Ist A endlich dimensionale Algebra über einem Körper K mit Basis $\{u_1,\ldots,u_n\}$, dann ist $\operatorname{End}_K(A) \simeq M_n(K)$. Für $a = \sum \alpha_i u_i \in A$ wird dann ρ_a beschrieben durch die Matrix $(\rho_a)_{ij}$ mit

$$(\rho_a)_{ij} = \sum_{k=1}^n \alpha_k \cdot c_{ijk}$$

mit c_{ijk} wie in 3.10 (iv).

3.12. Korollar

Jede *n*-dimensionale *K*-Algebra ist isomorph zu einer Unteralgebra von $M_n(K)$.

Beweis

$$A \simeq \operatorname{Im} \rho \subseteq \operatorname{End}_K(A) \simeq M_n(K).$$

3.13. Satz

Ist R ein kommutativer Ring, dann ist für R-Algebren A,B auch $A\otimes B$ eine R-Algebra mit $\mu(A\otimes B)\times (A\otimes B)\to A\otimes B$, $(a\otimes b)(a'\otimes b')=aa'\otimes bb'$ und linearer Fortsetzung. Die Tensoralgebra $A\otimes B$ ist genau dann kommutativ, assoziativ bzw. unital, wenn A und B kommutativ, assoziativ und unital sind.

Beweis

Es genügt nachzurechnen, dass diese Multiplikation bilinear ist und die Eigenschaften von A,B sich übertragen. \qed

3.14. Beispiel

Sei K ein Körper, $E\supseteq K$ eine Körpererweiterung und eine K-Algebra A gegeben. Dann ist $A\otimes E$ eine E-Algebra mit $\dim_E(A\otimes E)=\dim_K(A)$ nach Beispiel 3.9, denn $1\otimes E\subseteq C(A\otimes_K E)$ und für eine K-Basis $\{u_1,\ldots,u_n\}$ von A ist $\{u_1\otimes 1,\ldots,u_n\otimes 1\}$ eine E-Basis für $E=:A_E$. Man sagt: A_E entsteht aus A durch Erweiterung der Skalare.

3. Tensorprodukte und Algebren 33

4. Darstellungstheorie endlicher Gruppen

A. Anhang

A.1. Alternative Definition von Gruppenwirkungen

Eine **Gruppenwirkung** von G auf X ist (gegeben durch) eine Abbildung $G \times X \to X$, $(g,x) \mapsto g \cdot x$, mit folgenden Eigenschaften:

•
$$e_G \cdot x = x$$
, und

•
$$g \cdot (h \cdot x) = (gh) \cdot x$$
,

für alle $x \in X$ und alle $g, h \in G$.

Rechts-Gruppenwirkung

Die oben angegebenen Definitionen beschreiben eine linksseitige Gruppenwirkung.

Eine **rechtsseitige Gruppenwirkung** ist (gegeben durch) eine Abbildung $X \times G \to X$, $(x,g) \mapsto x \cdot g$, wobei für alle $x \in X$ und alle $g,h \in G$ die Bedingungen $x \cdot e = x$ und $(x \cdot g) \cdot h = x \cdot (gh)$ erfüllt sind. Alternativ kann eine rechtsseitige Gruppenwirkung durch einen Gruppenhomomorphismus $\varphi : G \to \operatorname{Sym}(X)^{\operatorname{op}}$ beschrieben werden, wobei $\operatorname{Sym}(X)^{\operatorname{op}} := (\operatorname{Sym}(X), *)$ mit $f * g := g \circ f$ ist. (vgl. Definition 2.28).

A. Anhang

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar

R-Modul-Homomorphismus, 11

Annulatorideal, 25 artinsch, 12 auflösbar, 6 auflösbare Länge, 8

Bahn, 2 Basis (Modul), 19

Darstellung, 31

einfach, 11 endlich erzeugt, 11 Endomorphismenring, 10 entgegengesetze Ring, 17 erzeugte Untermodul, 11 exakte Folge, 12 exakte Sequenz, 12

frei, 19

Gruppenalgebra, 31 Gruppenwirkung, 2 reguläre, 2 transitive, 2 treue, 2

halbeinfach, 14 Hauptidealring, 22

Ideal, 10 invariante Basislänge, 21 invarianten Faktoren, 24 irreduzibel, 11

Kern der Wirkung, 2 Kommutator, 8 Kommutatorgruppe, 8 Kompositionsreihe, 5 kurze exakte Sequenz, 12

linear unabhängig in Moduln, 19

Minor, 24 Modulstruktur, 10

nilpotent, 6

noethersch, 12 Normalreihe, 5

obere Zentralreihe, 7

p-Sylowgruppe, 3 projektiv, 20

Rang, 24

semidirektes Produkt, 9 spaltet, 20 Stabilisator, 2

Tensoralgebra, 31 Torsionselement, 25 Torsionsmodul, 25

unital, 30 universelle Eigenschaft, 19 Unteralgebra, 30 untere Zentralreihe, 8 Untermodul, 11

Verbandsisomorphismus, 12

Zentralisator, 2 Zentrum, 2 zyklisch, 11

äquivalent, 5

Index _____

Abbildungsverzeichnis

B