Tarea 2. Serie para suavizamiento exponencial de Brown.

Tema: Suavizamiento exponencial de Brown

Proporcionados los siguientes datos (24), calcular el suavizamiento exponencial (α = .5, que fue la que mejor ajustó al modelo) y la métrica de evaluación ECM respecto a la serie de tiempo.

t	Yt
1	143
2	152
3	161
4	139
5	137
6	174
7	142
8	141
9	162
10	180
11	164
12	171
13	206
14	193
15	207
16	218
17	229
18	225
19	204
20	227
21	223
22	242
23	239
24	266

Tabla 1 Serie para ajustar suavizamiento exponencial de Brown.

Suavizamiento exponencial de Brown.

Este suavizamiento, a diferencia del suavizamiento exponencial, toma en cuenta y proyecta la tendencia de la serie a estudiar. Para ello, se calcular 2 nuevos valores:

$$S_{t}' = \alpha Y_{t} + (1 - \alpha) S_{t-1}'$$

Similar al cálculo del exponencial:

Alfa =	0.50
Yt	S't
143	143
=\$E\$4*D7+(1	-\$E\$4)*E6

Tarea 2. Serie para suavizamiento exponencial de Brown.

Tema: Suavizamiento exponencial de Brown

$$S_{t}^{"} = \alpha S_{t}^{'} + (1 - \alpha) S_{t-1}^{"}$$

Se aplica la misma mecánica de S't, solo que ahora se aplica la igualdad en función de la misma:

Alfa =	0.50	
Yt	S't	S"t
143	143	143
152	=\$E\$4*E7+(1	-\$E\$4)*F6

Cabe mencionar que para los S´1 y S''1 se van a tomar los valores de Y1:

Valores Iniciales		
S'1=	Y1	
S"1=	Y1	

En seguida, se calculan los valores at y bt:

$$a_{t} = 2S_{t}^{'} - S_{t}^{''}$$

S't S"t at

143 143 143

147.50 145.25 = 2*E7-F7

$$b_{t} = \frac{\alpha}{1-\alpha} (S_{t}^{'} - S_{t}^{"})$$

Alfa =	0.50			
Yt	S't	S"t	at	bt
143	143	143	143	0.00
152	147.50	145.25	=\$E\$4/(1-\$E	\$4)*(<mark>E7</mark> -F7)

Tarea 2. Serie para suavizamiento exponencial de Brown.

Tema: Suavizamiento exponencial de Brown

Finalmente, calcular el valor de Y estimada:

$$\hat{Y}_{t+m} = a_t + b_t m$$

at	bt	Yt est
143	0.00	143.00
149.75	2.25	=G7+H7

Métricas de evaluación.

Después, para poder evaluar el modelo, se va a recurrir a 3 métricas:

• Error Cuadrático Medio.

$$ECM = \sqrt{\frac{\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2}{n - K}}$$

En donde n es el número de datos que forman la serie de tiempo (24) y K el número de periodos que se utilizan para hacer el suavizamiento, en nuestro caso con valor 0.

Para hacer más sencillos estos cálculos, se efectúan las siguientes operaciones:

Yt	S't	S"t	at	bt	Yt est	(Yt-Yest)2
143	143	143	143	0.00	143.00	0.00
152	147.50	145.25	149.75	2.25	=POWER(D	<mark>7-</mark> 17,2)

En donde Y es el valor real de la serie y Ytest es el valor calculado por el suavizamiento.

Así, se obtiene el error cuadrático medio:

ECM 5.37	ECM	5.37
----------	-----	------

Carecen de sentido tratar de interpretar este resultado pues no se tiene otro modelo contra al cual comparar.

Después, la tabla con todos los cálculos efectuados se muestra a continuación:

Tarea 2. Serie para suavizamiento exponencial de Brown.

Tema: Suavizamiento exponencial de Brown

	Alfa =	0.50					
							(Yt-
t	Yt	S't	S"t	at	bt	Yt est	Yest)2
1	143	143	143	143	0.00	143.00	0.00
2	152	147.50	145.25	149.75	2.25	152.00	0.00
3	161	154.25	149.75	158.75	4.50	163.25	5.06
4	139	146.63	148.19	145.0625	-1.56	143.50	20.25
5	137	141.81	145.00	138.625	-3.19	135.44	2.44
6	174	157.91	151.45	164.359375	6.45	170.81	10.16
7	142	149.95	150.70	149.203125	-0.75	148.45	41.64
8	141	145.48	148.09	142.863281	-2.61	140.25	0.56
9	162	153.74	150.91	156.5625	2.82	159.39	6.83
10	180	166.87	158.89	174.84668	7.98	182.82	7.98
11	164	165.43	162.16	168.706055	3.27	171.98	63.64
12	171	168.22	165.19	171.244385	3.03	174.27	10.70
13	206	187.11	176.15	198.067871	10.96	209.03	9.16
14	193	190.05	183.10	197.006775	6.95	203.96	120.10
15	207	198.53	190.81	206.239807	7.71	213.95	48.34
16	218	208.26	199.54	216.988113	8.72	225.71	59.48
17	229	218.63	209.09	228.178162	9.55	237.72	76.12
18	225	221.82	215.45	228.181133	6.37	234.55	91.13
19	204	212.91	214.18	211.636593	-1.27	210.37	40.52
20	227	219.95	217.07	222.84131	2.89	225.73	1.62
21	223	221.48	219.27	223.682161	2.21	225.89	8.34
22	242	231.74	225.51	237.971834	6.23	244.21	4.86
23	239	235.37	230.44	240.301294	4.93	245.23	38.85
24	266	250.68	240.56	260.808335	10.12	270.93	24.33

