Работа с текстами

Елена Кантонистова

ТЕРМИНОЛОГИЯ

- документ = текст
- корпус набор документов
- токен формальное определение "слова"; токен может не иметь смыслового значения (например, "12fdh" или "авыдшл"), но обычно отделен от остальных токенов пробелами или знаками препинания

ТОКЕНИЗАЦИЯ ТЕКСТА

Чтобы работать с текстом, необходимо разбить его на токены. В простейшем случае токены — это слова (а также наборы букв, знаки препинания и т.д.).

```
Text

"The cat sat on the mat."

Tokens

"the", "cat", "sat", "on", "the", "mat", "."
```

МЕТОДЫ КОДИРОВАНИЯ ТЕКСТОВЫХ ДАННЫХ

BAG OF WORDS (МЕШОК СЛОВ)

• По корпусу создадим словарь из всех встречающихся в нем слов (можно убрать общеупотребительные часто встречающиеся слова и очень редкие слова).

• Каждое слово закодируем вектором, в котором стоит единица на месте, соответствующем месту этого слова в словаре, все остальные компоненты вектора — 0.

• Для кодирования документа сложим коды всех его слов.

BAG OF WORDS (ПРИМЕР)

Пусть корпус состоит из следующих документов:

- D1 "I am feeling very happy today"
- D2 "I am not well today"
- D3 "I wish I could go to play"

Кодировка этих документов будет такой:

	I	am	feeling	very	happy	today	not	well	wish	could	go	to	play
D1	1	1	1	1	1	1	0	0	0	0	0	0	0
D2	1	1	0	0	0	1	1	1	0	0	0	0	0
D3	2	0	0	0	0	0	0	0	1	1	1	1	1

BAG OF WORDS

Используя bag of words (BOW), мы теряем информацию о порядке слов в документе.

<u>Пример:</u> векторы документов "I have no cats" и "No, I have cats" будут идентичны.

N-GRAM BAG OF WORDS

В качестве слов в словаре можно использовать:

- N-граммы из букв (наборы букв длины N в слове)
- N-граммы из слов (наборы фраз длины N в документе)

Такой подход поможет учесть сходственные слова и опечатки.

- слова, которые редко встречаются в корпусе, но присутствуют в документе, могут оказаться важными для характеристики документа.
- слова, которые встречаются во всех документах, наоборот, не важны.

Tf-Idf (term frequency - inverse document frequency):

• tf(t,d) - частота вхождения слова t в документ d:

$$tf(t,d) = rac{n_t}{\sum_k n_k} = rac{$$
число вхождений слова t в документ общее число слов в документе

tf(t,d) показывает важность слова t в документе d.

• tf(t,d) - частота вхождения слова t в документ d:

$$tf(t,d) = \frac{n_t}{\sum_k n_k} = \frac{$$
число вхождений слова t в документ общее число слов в документе

tf(t,d) показывает важность слова t в документе d.

• idf(t,D) - величина, обратная частоте, с которой слово t встречается в документах корпуса D.

$$idf(t,D) = \log \frac{|D|}{|\{d_i \in D \mid t \in d_i\}|},$$

|D| — число документов *в корпусе*,

 $|\{d_i \in D \mid t \in d_i\}|$ - число документов, в которых встречается слово t

Учёт idf уменьшает вес часто используемых в корпусе слов.

Tf-idf слова \boldsymbol{t} в документе \boldsymbol{d} из корпуса \boldsymbol{D} :

$$tfidf(t,d,D) = tf(t,d) \times idf(t,D),$$

Пример:

Дана коллекция D из $10000000 = 10^7$ документов, в 1000 из них встречается слово "заяц". В данном документе d из коллекции 100 слов, и слово "заяц" встречается 3 раза.

$$tf($$
заяц, $d) = \frac{3}{100} = 0.03$

$$idf$$
(заяц, D) = $\log\left(\frac{10^7}{10^3}\right) = 4$

Поэтому tfidf (заяц, d, D) = 0,03 · 4 = 0,12.