离散数学作业 14-循环群与群同构

Problem 1

对以下各小题给定的群 G_1 和 G_2 ,以及 $f:G_1\to G_2$,说明 f 是否为群 G_1 到 G_2 的同态,如果是,说明是否为单同态、满同态和同构。求同态像 $f(G_1)$ 。

(1) $G_1 = \langle \mathbb{Z}, + \rangle$, $G_2 = \langle \mathbb{R}^*, \cdot \rangle$, 其中 \mathbb{R}^* 为非零实数集合,+ 和 · 分别表示数的加法和乘法。

$$f: \mathbb{Z} \to \mathbb{R}^*, f(x) =$$

$$\begin{cases} 1 & x \text{ 是偶数} \\ -1 & x \text{ 是奇数} \end{cases}$$

(2) $G_1 = \langle \mathbb{Z}, + \rangle$, $G_2 = \langle A, \cdot \rangle$, 其中 + 和 · 分别表示数的加法和乘法, $A = \{x | x \in \mathbb{C} \land |x| = 1\}$, 其中 \mathbb{C} 为复数集合。

$$f: \mathbb{Z} \to A, f(x) = \cos x + i \sin x$$

Problem 2

证明循环群一定是阿贝尔群,说明阿贝尔群是否一定是循环群,并证明你的结论。

Problem 3

设 G_1 为循环群,f 是群 G_1 到 G_2 的同态,证明 $f(G_1)$ 也是循环群。

Problem 4

设G=<a>是15阶循环群。

- (1) 求出 G 的所有生成元;
- (2) 求出 G 的所有子群。

Problem 5

证明: 三阶群必为循环群.

Problem 6

设群 < G, * > 除单位元外每个元素的阶均为 2,则 < G, * > 是阿贝尔群。

Problem 7

设 G 是无限循环群,G' 是循环群,证明存在从 G 到 G' 的满同态映射。

Problem 8

证明:整数加群 Z 不与有理数加群 Q 同构。