GATE 2022 EE 28

EE23BTECH11032 - Kaustubh Parag Khachane *

Question GATE 22 EE 28:

The network shown below has a resonant frequency of 150 kHz and a bandwidth of 600 Hz. The *Q*-factor of the network is _____ (GATE EE 2022)

Solution:

In the state of resonance,

Parameter	Description	Values
f_0	Resonant Frequency	
ω_0	Resonant angular frequency	$2\pi f_0$
R	Given resistance	
С	Given capacitance	
L	Given inductancce	
V	Voltage applied	
I_0	Peak current	$\frac{V}{R}$

TABLE 0 Parameter Table

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{1}$$

1

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{2}$$

Bandwidth is range of frequencies where power is \geq maximum power.

Hence it is the range of frequencies between the two points where power is half.

Power is half
$$\implies I = \frac{I_0}{\sqrt{2}}$$
 (3)

Current at any point is given by,

$$\frac{V}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{V}{R\sqrt{2}} \tag{4}$$

Solving the above equation, we will get two solution ω_1 and ω_2 which will satisfy

$$\left(\omega L - \frac{1}{\omega C}\right) = \pm R \tag{5}$$

$$\implies \omega_2 - \omega_1 = \frac{R}{L} \tag{6}$$

$$\therefore \text{ Bandwidth } = \frac{R}{L} \tag{7}$$

$$Q \text{ factor } = 2\pi \frac{\text{Peak energy stored}}{\text{Energy disspated in one cycle}}$$
(8)

 $=\frac{\frac{1}{2}LI^2}{\frac{1}{2}I^2R\frac{1}{f_0}}\tag{9}$

$$=\frac{\omega_0}{\frac{R}{L}}\tag{10}$$

(11)

Using equations (1) and (7),

$$Q = \frac{150000}{600}$$
 (12)
= 250 (13)

$$= 250 \tag{13}$$