ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO

P.PORTO

Matemática Discreta 2022/2023

Estruturas Fundamentais, Relações e Indução

Definição 1:

Um conjunto é uma coleção não ordenada de objetos.

Os objetos de um conjunto são chamados os elementos do conjunto.

Diz-se que os elementos pertencem ao conjunto.

Notação:

Os conjuntos representam-se por letras maiúsculas e os objetos por letras minúsculas.

Escrevemos $a \in A$ para denotar que a é um elementos do conjunto A.

Exemplo 1:

O conjunto dos números naturais menores que 5 pode ser escrito como

$$A = \{1, 2, 3, 4\}.$$

Exemplo 2:

O conjunto das vogais pode ser escrito como

$$V = \{a, e, i, o, u\}.$$

Exemplo 3:

O conjunto de todos os números inteiros não negativos menores do que 1000 pode denotado por

$$X = \{0, 1, 2, \dots, 999\}.$$

A descrição dos elementos de um conjunto pode ser feita por:

ullet extensão - enumerando explicitamente todos os elementos.

$$A = \{1, 2, 3\}$$

$$B = \{a, d, g, t\}$$

$$C = \{amarelo, azul, castanho\}$$

A descrição dos elementos de um conjunto pode ser feita por:

 $\bullet \ compreens \tilde{a}o$ - especificando uma propriedade que caracteriza todos os elementos.

$$X = \{x \in \mathbb{N} : x < 4\}$$

conjunto de todos os números naturais menores do que 4.

$$Y = \{ n \in \mathbb{N} : n \text{ \'e impar e } n \leq 7 \},$$

conjunto de todos os números ímpares menores ou iguais a 7.

A descrição dos elementos de um conjunto pode ser feita por:

• recursividade - especificamos o primeiro elemento do conjunto e a regra que permite determinar os restantes.

O conjunto, S, de todos os números positivos pares pode ser descrito como:

(i)
$$2 \in S$$
;

(ii) se
$$x \in S$$
 então $x + 2 \in S$.

$$S = \{2, 2 + 2 = 4, 4 + 2 = 6, ...\}$$

Alguns conjuntos usualmente utilizados

• $\mathbb{N} = \{1, 2, \dots\}$, conjunto dos números naturais;

Exemplo 7:

Podemos também considerar conjuntos cujos elementos são eles próprios conjuntos.

O conjunto

$$\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$$

contém 5 elementos

cada um deles é um conjunto

Definição 2:

O conjunto vazio (ou conjunto nulo) é um conjunto que não tem elementos e representa-se por \emptyset ou $\{\}$.

Atenção!

conjunto formado pelo conjunto vazio

$$\{\emptyset\} \neq \emptyset$$

Definição 3:

O conjunto universo é formado por todos os elementos em consideração e representa-se por U.

Definição 4:

Dado um conjunto A com exatamente n elementos distintos, em que n é um número inteiro não negativo, dizemos que A é um conjunto finito e que n é o cardinal de A. O cardinal de A representa-se por #A, card(A) ou |A|.

Exemplo 8:

$$\#(\{1,2,3\}) = e \#\emptyset = .$$

Exemplo 9:

O conjunto $\{\emptyset\}$ é um conjunto unitário uma vez que $\#(\{\emptyset\}) = 1$.

Definição 7:

Dois conjuntos A e B dizem-se iguais se todo o elemento de A está em B e todo o elemento de B está em A. Escreve-se A=B.

Exemplo 10:

Sejam
$$A = \{a, e, i, o, u\}$$
 e $B = \{e, i, a, o, u\}$.

Tem-se que A = B.

Exemplo 11:

Sejam $X = \{x : x \text{ \'e positivo e divide 5}\}$ e $Y = \{1, 5\}$.

Temos que X = Y.

Definição 8:

O conjunto A é um subconjunto de B se e somente se todo o elemento de A também for um elemento de B. Escreve-se $A \subseteq B$ e diz-se que A é um subconjunto do conjunto B.

Exemplo 12:

Sejam
$$X = \{1, 2, 4, 9\}$$
 e $Y = \{2, 4\}$.

Temos que

$$2 \in Y \in 2 \in X$$

$$4 \in Y e 4 \in X$$

todos os elementos de Y são elementos de X

Então $Y \subseteq X$.

Definição 8:

O conjunto A é um subconjunto de B se e somente se todo o elemento de A também for um elemento de B. Escreve-se $A \subseteq B$ e diz-se que A é um subconjunto do conjunto B.

Exemplo 13:

Considerem-se os conjuntos

$$A = \{1, 3, 4, 5, 8, 9\}, B = \{1, 2, 3, 5, 7\} \in C = \{1, 5\}.$$

$$C \mid A, \quad C \mid B, \quad A \mid C, \quad B \mid C$$

Diagrama de Venn

 $A \subseteq B$

Teorema 1:

Sejam A, B e C conjuntos quaisquer. Tem-se que:

- (i) $\emptyset \subseteq A \subseteq U$;
- (ii) $A \subseteq A$;
- (iii) Se $A\subseteq B$ e $B\subseteq C$ então $A\subseteq C;$
- (iv) A = B se e só se $A \subseteq B$ e $B \subseteq A$.

Quando se pretende enfatizar que A é um subconjunto de B mas $A \neq B$

escreve-se
$$A \subset B$$

A é um subconjunto estrito de B.

Se $A \subseteq B$ então é possível que A = B.

Note-se ainda que, um conjunto A pode ser elemento de um conjunto B, nesse caso faz sentido escrever $A \in B$.

$$\mathbb{N} \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$$

Operações com conjuntos

A U B

Definição 9:

Sejam A e B dois conjuntos.

A $uni\tilde{a}o$ ou reuni $\tilde{a}o$ dos conjuntos A e B, representada por $A \cup B$, é o conjunto de todos os elementos que pertencem a A ou a B, i. e.,

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

Exemplo 14:

Considere os conjuntos $A = \{1, 2, 4, 9\}$ e $B = \{2, 4, 6\}$.

Tem-se que

$$A \cup B =$$

Operações com conjuntos

Definição 10:

Sejam A e B dois conjuntos.

A intersecção dos conjuntos A e B, representada por $A \cap B$, é o conjunto de todos os elementos que pertencem simultaneamente a A e a B, i. e.,

$$A \cap B = \{x : x \in A \land x \in B\}.$$

Exemplo 14:

Considere os conjuntos $A = \{1, 2, 4, 9\}$ e $B = \{2, 4, 6\}$.

Tem-se que

$$A \cap A \cap B =$$

Operações com conjuntos

Definição 11:

Dois conjuntos são disjuntos se a sua intersecção é um conjunto vazio.

Exemplo 16:

Considere os conjuntos $A = \{2, 4, 6\} \in B = \{1, 3, 5\}.$

Tem-se que

$$A \cap B =$$

Portanto, os conjuntos A e B são

Operações com conjuntos

Exemplo 17:

Sejam
$$A = \{1, 2, 3\}$$
 e $B = \{3\}$.

$$A \cup B =$$

$$A \cap B =$$

Teorema 2:

Sejam A e B dois conjuntos tais que $A \subseteq B$. Então,

$$A \cup B = B \in A \cap B = A$$
.

Operações com conjuntos

Teorema 3:

Sejam A e B dois conjuntos. Então,

$$\#(A \cup B) = \#A + \#B - \#(A \cap B).$$

Exemplo 18:

Sejam $A = \{1, 2, 3\}$ e $B = \{3, 4\}$.

Temos que #A = e #B = 1

$$A \cup B = \emptyset, \#(A \cup B) = \emptyset$$

$$A \cap B = (A \cap B) =$$

Portanto, $\#(A \cup B) = \#A + \#B - \#(A \cap B)$.

Operações com conjuntos

Definição 12:

Sejam A e B dois conjuntos.

A diferença entre A e B, representada por A-B ou $A\backslash B$, é o conjunto que contém aqueles elementos que estão em A mas não estão em B, i. e.,

$$A - B = \{x : x \in A \land x \notin B\}.$$

A diferença ente A e B é também designada por complemento de B em relação a A.

Exemplo 19:

Considerem-se os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{2, 4, 6\}$.

Tem-se que,

$$A - B = \{x : x \in A \land x \notin B\} =$$

$$B - A = \{x : x \in B \land x \notin A\} =$$

$$A - B \neq B - A$$

Operações com conjuntos

Definição 13:

Sejam $A \in B$ dois conjuntos.

A diferença simétrica entre A e B, representada por $A \oplus B$, é o conjunto de todos os objetos que são membros de exatamente um dos conjuntos A e B, i.e.

$$A \oplus B = (A \cup B) - (A \cap B).$$

Exemplo 20:

Considerem-se os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{2, 4, 6\}$.

Tem-se que,

$$A \oplus B =$$

Operações com conjuntos

Definição 14:

Considere-se U como sendo o conjunto universo. O complementar absoluto, ou simplesmente, complementar do conjunto A, representado por \bar{A} ou A^c ou ainda A', é o conjunto de elementos que pertencem ao conjunto universal U mas que não pertencem ao conjunto A, i. e.,

$$\bar{A} = \{x : x \in U \land x \notin A\}$$

Exemplo 21:

Considere $A = \{a, e, i, o, u\}$ e o conjunto universo formado por todas as letras do alfabeto Português.

Então,
$$\bar{A} =$$

Operações com conjuntos

Definição 15:

Dados dois conjuntos A e B, chama-se produto cartesiano de A e B, e designa-se por $A \times B$, o conjunto de todos os pares ordenados (a,b) com $a \in A$ e $b \in B$, i. e.,

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

Exemplo 22:

Considere-se os conjuntos $A = \{1, 2\}$ e $B = \{a, b, c\}$.

O produto cartesiano de A por B é

$$A \times B =$$

Exemplo 23:

Considere-se o conjunto $A = \{1, 2\}$. O produto cartesiano de A por A é

$$A \times A = A^2 =$$

Operações com conjuntos

Exemplo 24:

Dados os conjuntos $A=\{1,2\},\,B=\{a,b,c\}$ e $C=\{0,4\},$ o produto cartesiano $A\times B\times C$ é

$$A \times B \times C =$$

Propriedades 1:

• O produto cartesiano não é comutativo.

Exemplo 25:

Vejamos que para $A=\{1,2\}$ e $B=\{a,b,c\}$

se tem $A \times B \neq B \times A$.

$$A \times B =$$

$$B \times A =$$

Operações com conjuntos

Exemplo 26:

Dados os conjuntos $A=\{1,2\},\,B=\{a,b,c\}$ e $C=\{0,4\},$ tem-se

$$\#(A \times B \times C) =$$

Operações com conjuntos

Definição 17:

Dado um conjunto A, o conjunto das partes de A é o conjunto constituído por todos os subconjuntos de A. O conjuntos das partes representa-se por $\mathcal{P}(A)$.

Exemplo 27:

Seja $A = \{1, 2, 3\}$ (conjunto constituído por 3 elementos),

$$\mathcal{P}(A) =$$

Exemplo 28:

Seja $B = \emptyset$ (0 elementos), então $\mathcal{P}(B) = \{\emptyset\}$ (1 elemento).

Operações com conjuntos

Definição 17:

Dado um conjunto A, o conjunto das partes de A é o conjunto constituído por todos os subconjuntos de A. O conjuntos das partes representa-se por $\mathcal{P}(A)$.

Exemplo 29:

Seja $C = \{a, b\}$ (2 elementos), então

- Para qualquer conjunto, o conjunto vazio e o próprio conjunto são elementos do conjunto das partes.
- $\#(\mathcal{P}(A)) = 2^{\#(A)}$

A_1 A_2 A_3 A_4 A_5

Operações com conjuntos

Definição 18:

Seja A um conjunto não vazio. Uma partição de A é um subconjunto de $\mathcal{P}(A)$, cujos elementos $A_i, i=1,\ldots,n$ são tais que:

- (i) A_i são subconjuntos não vazios de A;
- (i) $A_1 \cup A_2 \cup \cdots \cup A_n = A$;
- (ii) A_i são mutuamente disjuntos, i.e., para $i \neq j, A_i \cap A_j = \emptyset$.

A cada A_i chamamos uma célula.

Exemplo 30:

Seja $A = \{a, b, c\}$. Duas partições de A são, por exemplo:

$A \cup \emptyset = A \text{ (P1a)}, A \cap \emptyset = \emptyset \text{ (P1b)}$	Propriedades dos
$A \cap U = A$ (P1c), $A \cup U = U$ (P1d)	elementos neutros
$A \cup A = A \text{ (P2a)}$	Propriedades
$A \cap A = A \text{ (P2b)}$	idempotentes
$\overline{\overline{A}} = A \text{ (P3a)}, \ \overline{\emptyset} = U \text{ (P3b)}, \ \overline{\overline{U}} = \emptyset \text{ (P3c)}$	Propriedades
$A \cup \overline{A} = U \text{ (P3d)}$	dos
$A \cap \overline{A} = \emptyset \text{ (P3e)}$	complementares
$A \cup B = B \cup A \text{ (P4a)}$	Propriedades
$A \cap B = B \cap A \text{ (P4b)}$	comutativas
$(A \cup B) \cup C = A \cup (B \cup C) \text{ (P5a)}$	Propriedades
$(A \cap B) \cap C = A \cap (B \cap C) \text{ (P5b)}$	associativas
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \text{ (P6a)}$	Propriedades
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \text{ (P6b)}$	distributivas
$\overline{A \cup B} = \overline{A} \cap \overline{B} \text{ (P7a)}$	Leis de
$\overline{A \cap B} = \overline{A} \cup \overline{B} \text{ (P7b)}$	De Morgan

Considere os conjuntos $A, B \in C$. Mostre que $\overline{A \cap (B \cup C)} = (\overline{C} \cap \overline{B}) \cup \overline{A}$.