20	Segmentda bir xil taqsimlangan tasodifiy miqdorning dispersiyasini toping	((a-b)^2)/12
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping? X: 0; 1; 2; 3 Y: 3; 7; 1; 5	0
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping? X: 4; 1; 2; 3 Y: 3; 7; 1; 5	-0.4
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping? X: 4; 1; 2; 3 Y: 3; 2; 1; 5	~0.53
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping? X: 3; 1; 2; 5 Y: 0; 2; 1; 5	0.63
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping? X: -3; 1; 2; -2 Y: 0; 2; 1; -1	0.76
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping? X: 0; -1; 2; -2 Y: 4; 2; 1; -1	0.33
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping?	

	X: 0; 1; 2; -2	
	Y: 4; 2; 1; -1	
20	Berilgan jadval bo'yicha tanlanma korrelatsiya koeffitsientini toping? X: 0; 1; 2; -2 Y: 3; 2; 1; -1	0.54
20	Tanlanma korrelyatsiya koeffitsienti formulasi	$r_{T} = \frac{\sum x_{i}y_{i} - n\overline{x}y}{n\sigma_{x}\sigma_{y}}$
19	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping x: {-1; 1; 2; 3} {2; 0; 1; 4}	3.57
19	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping x: {0; 1; 2; -3} {5; 1; 2; 3}	3.45
19	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping x: {0; 2; 3; 1} {4; 1; 2; 3}	1.43
19	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping x: {-2; 2; -1; 1} {3; 1; 1; 2}	
19	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping	

	x: {-2; 3; -1; 1}	
	{3; 0; 1; 2}	
	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping	
19	x: {-1; 1; 2; 0}	1.5
	{2; 0; 1; 2}	
	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping	
19	x: {-1; 3; 2; 4}	3.9
	{2; 3; 1; 0}	
	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping	
19	x: {-1; 3; 5; 0}	4.09
	{2; 3; 1; 5}	
	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping	
19	x: {-1; 3; 1; 0}	0.41
	{2; 0; 1; 5}	
	Tanlanmaning berilgan taqsimoti bo'yicha bosh to'plam dispersiyasining siljimagan bahosini toping	
19	x: {0; 3; 1; 4}	3.43
	: {4; 2; 1; 3}	
18	Yoʻlovchining poyezd joʻnashiga kechikib qolish ehtimoli 0,003 ga teng. 800 yoʻlovchidan 3 tasi kechikish ehtimolini toping.	(2.4 ³ /6)e ⁽⁻²⁴⁾

18	Xaridorning sotib olish ehtimoli p=0.2. Uchta xaridordan faqat bittasi sotib olish ehtimolini toping.	0.384
18	Giptoeza H ₀ : Matematik kutilishi M = 20 bo'lsa. Alternativ Gipoteza sifatida qabul qilish mumkin bolgan qiymat.	M 20ga teng emas
18	To'la ehtimollik formulasini toping.	$P(A) = \sum_{j=1}^{n} P(B_j) \cdot P_{B_j}(A)$
18	Bayes formulasini aniqlang	$P_A(B_j) = \frac{P(B_j) \cdot P_{B_j}(A)}{P(A)}$
18	Nishonga tegish ehtimolligi P=0.5. 4 ta urinishdan 2 marta nishonga tegish ehtimolini toping	0.375
18	Kompyuter laboratoriyasi uchun to'qqizta kompyuter sotib olindi va bitta kompyuterning nuqsonli bo'lish ehtimoli 0,1 ga teng. Ikkita kompyuterni almashtirish ehtimoli qanday?	0.053
18	Variantlarning juft yoki toq soniga qarab mediana quyidagicha aniqlanadi	
18	Polinomilal sxema formulani aniqlang	
18	Variatsiya koeffitsienti V	namunaviy standart ogʻishning oʻrtacha tanlamaga nisbatining foizdagi ifodasidir
17	2,2,3,3,4,4,5 variatsiya qatorining dispersiyasini toping.	0,9375
17	10 ta chiptadan 2 tasi g'olib. 3 ta chiptadan kamida bittasi yutish ehtimolini toping	8/15

17	x1 x2x n . Tanlanma o'rtachasi uchun to'g'ri formulani keltiring	
17	Tanlamaning -2, 1, 0, 2, 4, -2, 0, -1, -2 tanlama oʻrtacha qiymatini toping.	
17	4, 1, 1, 3, 2, 4, 4, 1 Tanlanma uchun variatsion qatorini tuzing va uning tanlanma dispersiyasini ni toping.	
17	4, 1, 1, 3, 2, 4, 4, 1 Tanlanma uchun variatsion qatorini tuzing va uning tanlanma dispersiyasini ni toping.	
17	Shaharda 5 ta tijorat banki mavjud. Har bir bankning bir yil ichida bankrot bo'lish ehtimoli 20%. Kelgusi yil davomida 2 bankning bankrot bo'lishi ehtimolini toping	0.256
17	4,5,7 raqamlari yordamida nechta yetti xonali son yozish mumkin agar 5 soni har bir sonda uch marta, 4 va 7 raqamlari ikki marta takrorlansa,?	210
17	5 soni har bir sonda uch marta, 4 va 7 raqamlari ikki marta takrorlansa, 3,5,9 raqamlari yordamida nechta yetti xonali son yozish mumkin?	210
17	Pochta bo'limida 4 turdagi otkritkalar sotiladi. Bu yerda 9 ta otkritkani necha xil usulda sotib olishingiz mumkin	220
16	O'nta lotareyadan ikkitasi yutuqli. Tasodifiy tanlangan uchta lotareyadan kamida bittasi yutuq chiqish ehtimolini toping.	8/15
16	Mashinaning siljish vaqtida ishlamay qolish ehtimoli 0,4 ga teng. Bir smenada 6 ta mashinadan 2 tasi ishlamay qolish ehtimolini toping.	0,31104
16	Tanlanma Medianasini toping x _i 1 3 6 16	3

	1						1
	n _i	4	10	5	1		
	Tanlann	na o'rtac	hasini topir	ng			
16	Xi	1	3	6	16		
	$n_{\rm i}$	4	10	5	1		
16	Kvadrat	ichiga t	-	_	aylana chiz nuqta aylana	-	
16]	Ifodaning	nomi nima		
16	Diskret tasodifiy miqdorning matematik kutilmasi (oʻrta qiymati) deb, uning mumkin boʻlgan barcha qiymatlarini bu qiymatlar mos ehtimollariga koʻpaytmasining yigʻindisiga aytiladi, ya'ni						
16	X Diskret tasodifiy miqdorning dispersiyasi				D(X) = M (X2) - M(X)2		
	-Tanlanma o'rtachasini toping						
16	x 2	3	4 5	7			3.9
	n 2	2	3 2	1			
	Tanlann	na Media	anasini topi	ing			
16	Xi	1.5	3.2	6.1	8.4	9	6.1

	n _i 3 2 5 3 2	
15	Uch tanga tashlandi. Ikki "Gerb" va bitta "Raqam" tushish ehtimoli qanday?	0.375
15	Birinchi merganning nishonga tushish ehtimoli 90%, ikkinchisi 80%, uchinchisi esa 70%. Uchta Merganining har biri nishonga bir martadan o'q uzadi Uchala o'qning ham nishonga tegish ehtimoli qanday?	0.504
15	Tanlangan ikki xonali sonning 12 ga boʻlinish ehtimoli qanday?	
15	Litseyga kirish imtihonlari uch turdan iborat. 1-Turdan o'tish ehtimoli 60%, ikkinchisida - 40%, uchinchida - 30%. Litseyga kirish ehtimoli qanday?	0.168
15	Tanlanma dispersiyasini toping 2,3,3,3,4,4,4	24/49
15	2,2,2,2,2,2 Tanlanma dispersiyani toping	0
15	3,3,3,5,5,7,7,8,8,9 variatsion qatorning dispersiyasini toping.	4.85
15	Uzluksiz t.m. matematik kutilmasi deb integral X uzluksiz tasodifiy miqdorning matematik kutilma ya'ni $M(X) = \int_{-\infty}^{\infty} xf(x) \ dx.$	$M(X) = \int_{-\infty}^{\infty} x * f(x) dx$
15	Savatda 5 ta oq, 10 ta qora va 15 ta yashil shar bor. Savatdan tavakkaliga qaytarib solish sharti bilan ketma- ket 6 ta shar olindi. Olingan sharlarning bittasi oq, ikkitasi qora va uchtasi yashil boʻlishi ehtimolini toping	$P_6(1,2,3) = \frac{6!}{1!2!3!} \left(\frac{1}{6}\right)^3 \left(\frac{1}{3}\right)^2 \left(\frac{1}{2}\right)^3$
15	Savatda 6 ta oq, 8 ta qora va 12 ta qizil sharlar bor. Savatdan tavakkaliga qaytarib solish sharti bilan ketma-	

	ket 6 ta shar olindi. Olingan sharlarning bittasi oq, ikkitasi qora va uchtasi yashil boʻlishi ehtimolini toping	$P_6(1,2,3) = \frac{6!}{1!2!3!} \left(\frac{1}{6}\right)^1 \left(\frac{1}{3}\right)^2 \left(\frac{1}{2}\right)^3$
14	Tanlanma dispersiyasini toping 2,3,3,3,4,4,4	24/49
14	Tanlanma chastotalar taqsimoti koʻrinishda berilgan. xi 1.2 1.7 2.8 4.5 5 n 2 7 5 8 3 Nisbiy chastotalar taqsimotini tuzing	2/25; 7/25; 5/25; 8/25; 3/25;
14	O'yin toshi tashlandi: A={ ochko tushish} B={juft sonli ochko tushish} Ehtimolni toping: P(A+B)	2/3
14	O'yin toshi tashlandi: A={ ochko tushish} B={juft sonli ochko tushish} Ehtimolni toping: P(A*B)	1/12
14	Kvadratga tasodifiy nuqta tashlanadi. Nuqtaning kvadratga ichki chizilgan aylanaga tushish ehtimolini toping	pi/4
14	Talabaning bitta oraliq nazorat masalasini yechish ehtimoli 0,6 ga teng. Talaba 4 ta masaladan 2 tasini yechish ehtimolini toping.	
14	Ishonch oralig'i bu	noma'lum parametrni o'z ichiga olgan interval tarqatish

	Agar ixtiyoriy $\gamma \in (0,1)$ son uchun $P(\theta_1 < \theta < \theta_2)$ qanoatlantiruvchi, shunday $\theta_1 < \theta_2$ son topish mumkin $(\theta_1; \theta_2)$ oraliq γ ishonchlilik ehtimoliga mos keluvoraligʻi deyiladi. Koʻpincha $\theta_1; \theta_2$ sonlar x_1, x_2, \dots	
14	Zavod bazaga 500 dona mahsulot joʻnatdi. Tranzitda mahsulotning shikastlanish ehtimoli 0,015 ga teng. Yoʻlda 2 ta mahsulotga zarar yetishi ehtimolini toping.	$\frac{7.5^2}{2!}e^{-7.5}$
14	X Diskret tasodifiy miqdorning matematik kutilmasi	$M(X) = \sum_{k=1}^{\infty} x_i p_i$
14	Kompyuter laboratoriyasi uchun to'qqizta kompyuter sotib olindi va bitta kompyuterning nuqsonli bo'lish ehtimoli 0,1 ga teng. Ikkita kompyuterni almashtirish ehtimoli qanday?	0.053
13	Mashinaning siljish vaqtida ishlamay qolish ehtimoli 0,4 ga teng. Bir smenada 6 ta mashinadan 2 tasi ishlamay qolish ehtimolini toping.	0,31104
13	2,2,3,3,4,4,5 variatsiya qatorining dispersiyasini toping.	0,9375
13	10 ta chiptadan 2 tasi yutuqli! 3 ta chiptadan kamida bittasi yutish ehtimolini toping.	8/15
13	F(x) taqsimot funksiyasi uchun qaysi xossa toʻgʻri emas?	
13	"Favorit" bosmaxonasining texnik nazorat boʻlimi tomonidan kitob mahsulotlarida nuqson borligi tekshirildi. Kitobning nuqsonli emasligi ehtimoli 0,9 ga teng. Tekshirilgan ikkita kitobdan faqat bittasi nuqsonli bo'lish ehtimolini toping.	0.18
13	Bitta uzluksiz tasodifiy miqdorning taqsimlanish qonunining statistik analogi	

13	X da Y ning regressiyasi borligidan shunday xulosa kelib chiqadi		
13	X-Uzluksiz tasodifiy miqdor uchun ko'rsatkichli (eksponensial) taqsimot qonuni matematik kutilmasini aniqlang $M(X) = \lambda \int_{0}^{\pi} x e^{-\lambda x} dx = \begin{cases} x = u, du = dx \\ v = \int e^{-\lambda x} dx = -\frac{1}{\lambda} e^{-\lambda x} \end{cases} = \lambda \left[-\frac{x}{\lambda} e^{-\lambda x} \right]_{0}^{\pi} + \frac{1}{\lambda} \int_{0}^{\pi} e^{-\lambda x} dx = \frac{1}{\lambda} e^{\lambda} dx = \frac{1}{\lambda} e^{-\lambda x} dx = \frac{1}{\lambda} e^{-\lambda x} dx = \frac{1}{\lambda} e^{-\lambda$		
13	Chebishev tengsizligi qaysi birida toʻgʻri yozilgan? $P\{X \ge \varepsilon\} \le \frac{M(X)}{\varepsilon}$		
13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹ / ₄ ; 1/10; 3/20; ¹ / ₂ ;	
12	Uzluksiz tasodifiy miqdorlar uchun to'gri tarifi 3-ta'rif. Uzluksiz tasodifiy miqdor deb, chekli yoki cheksiz oraliqdagi barcha qiymatlarni qabul qilishi mumkin bo'lgan miqdorga aytiladi.		
12	Sportchining sport ustasi normasini bajarish ehtimoli birinchi sportchi uchun 0,8 ga, ikkinchi sportchi uchun 0,6 ga teng. Ikki sportchidan faqat bittasi sport ustasi normasini bajarishi ehtimolini toping.		
12	O'nta chiptadan ikkitasi yutuqli. Tasodifiy olingan beshta chiptadan kamida bittasi yutuq chiqish ehtimolini toping.		
12	Quyidagi munosabatlarning qaysi biri bog'liq bo'lmagan		

	erkli hodisalarni bildiradi.	
12	8 ta mustaqil sinovning har birida sodir bo'ladigan hodisaning ehtimoli 0,4 ga teng. Voqea sodir bo'lishining eng ehtimoliy sonini toping. 12	3
12	Har bir talaba o'rtacha 0,6 ehtimollik bilan ma'lum vazifabi bir daqiqada bajaradi. Topshiriqni bajargan 10 o'quvchidan topshiriqni muvaffaqiyatli bajargan o'quvchilar soni 7 ta bo'lishi ehtimolligi qancha?	
12	Mobil telefoningizga maxfiy kodni kiritish uchun 6 ta raqamni tanlashingiz kerak. Bir kishi blokdan chiqarish uchun qancha urinish qilishi mumkin?	
12	Institut konsultativ boʻlimiga A, B, va C shaharlardan test topshiriqlari solingan paketlar keladi. A va B shaharlardan paketlarni olish ehtimoli mos ravishda 0,5 va 0,2 ga teng. Keyingi paketning C shahridan kelishi ehtimolini toping.	
12	8 ta erkli sinovning har birida sodir bo'ladigan hodisaning ehtimoli 0,4 ga teng. Hodisa sodir bo'lishining eng ehtimoliy sonini toping 12 ang ehtimoli sen: 13 np-9 = ko = np+p 15 n = 8 p = 0,4 9 = 0,6 = 1-p 16 s, 4 + 0,6 = ko = 8.04+04 17 s, 6 = ko = 3,2+9,4 28 de ko = 3,6	3
11	Kvadratga tasodifiy nuqta tashlanadi. Nuqtaning kvadratga	

	ichki chizilgan aylanaga tushish ehtimolini toping.
	$S_{\kappa\sigma} = a^{2}$ $S_{\alpha y} = \pi \epsilon^{2}$ $S_{\alpha y} = \pi \left(\frac{a}{2}\right)^{2}$ $P(H) = \frac{S_{\alpha y}}{S_{\kappa\sigma}} = \frac{\pi}{a^{2}}$
11	n ta elementni k tadan o'rinlashtirishda tanlashlar qaytariladigan bo'lsa , tanlab olishlar soni O'rinlashtirish deb, n ta turli xil eleme bir-biridan elementlarining tartibi, yoki ta kombinatsiyalarga aytiladi. Mumkin bo'lgan $A_n^m = \frac{n!}{(n-m)!}$ yoki $A_n^m = n(n-1)(n-2) \cdots$
11	Nishonga otilgan 18 ta o'qdan 15 tasi nishonga tekkan bo'lsa, o'qlarning nishonga tegish nisbiy chastotasini toping m=15, n=18 w(A)=m/n=15/18
11	X – diskret tasodifiy miqdor 4 ta mumkin bo`lgan qiymatni qabul qilishi mumkin X: x1
11	Laplasning integral teoremasi qaysi holda qoʻllaniladi? 1). Erkli sinashlar soni n yetarlicha katta A hodisaning

ehtimoli sinashlarda oʻzgaruvchan boʻlsa;
2). Sinashlar soni n≥30 boʻlib, sinashdan sinashga oʻtganda A hodisaning ehtimoli oʻzgaruvchan boʻlsa
3). Erkli sinashlar soni katta boʻlib, har bir sinashda P(A) ehtimollik oʻzgarmas va 0 bilan 1 dan farqli boʻlsa
Diskret tasodifiy miqdorlarning mumkin bo'lgan qiymatlari va ularning ehtimolliklari o'rtasidagi muvofiqlik
Tajriba natijasida yuzaga kelishi mumkin bo'lgan, noma'lum va tasodifiy qiymatlardan faqat bittasini va faqat bittasini oladigan miqdor.
Agar har bir tajribada A hodisaning ro'y berish ehtimoli p o'zgarmas bo'lib, 0 va 1 dan farqli bo'lsa, u holda n ta tajribada A hodisaning rosa k marta ro'y berish ehtimoli (n qancha katta bo'lsa, shuncha aniq) keltirilgan formulalarning qaysi birida hisoblanadi boshqa bir taqribiy formula yoruannua hisoblashga 1-teorema. (Muavr- Laplasning lokal teoremas tajribada A hodisaning ro'y berish ehtimoli p o'z va birdan farqli bo'lsa, u holda n ta tajribada n marta ro'y berish ehtimoli (n qancha katta bo'lsa, sh $P_{s}(k) \approx \frac{1}{\sqrt{npq}} \varphi\left(\frac{k-np}{\sqrt{npq}}\right)$ ga teng. Bu yerda $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$
Agar tajribalar soni n katta bo'lib, har bir tajribada hodisaning ro'y berish ehtimolini P juda kichik bo'lsa, u holda:

	Eslatma. Muavr-Laplasning taqribiy formulalaridan odatda boʻlgan hollarda foydalangan ma'qul. Agar tajribalar soni kathar bir tajribada hodisaning roʻy berish ehtimolini p jud boʻlsa, u holda quyidagi $P_{_{n}}(k) \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$
11	Har birida hodisaning ro'y berish ehtimoli p $(0 ga teng bo,,lgan n ta tajribada hodisaning kamida K1 marta va ko'pi bilan K2 marta ro'y berish ehtimoli 2- teorema. (Muavr-Laplasning integral teorema hodisaning ro'y berish ehtimoli p (0 ga teng tajribada hodisaning kamida k_1 marta va ko'pi bilan berish ehtimoli P_n(k_1; k_2) \approx \Phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - np}{\sqrt{npq}}\right)$