Lab Manual

of

High Performance Computing

(20DS509P)

By

Vaibhav Raval 23MDS010

DEPT. OF COMPUTER SCIENCE & ENGINEERING SCHOOL OF TECHNOLOGY PANDIT DEENDAYAL ENERGY UNIVERSITY GANDHINAGAR, GUJARAT, INDIA JANUARY-MAY, 2024

Index

Sr. No	Problem Statement	Date	Sign.
1.	 Write a program of matrix multiplication to demonstrate the performance enhancement done by parallelizing the code through Open MP threads. Analyze the speedup and efficiency of the parallelized code. Vary the size of your matrices from 5, 50, 100, 500, 750, 1000, and 2000 and measure the runtime with one thread. For each matrix size, change the number of threads from 2, 4, 8, 10, 15, and 20 and plot the speedup versus the number of threads. Compute the efficiency. Display a visualization of performance comparison between serial, parallel and NumPY code. Explain whether or not the scaling behavior is as expected. 	17/1/2024	
2.	Write a program for Leibniz series for PI calculation to demonstrate the performance enhancement done by parallelizing the code through Open MP work-sharing of loops. Display a visualization of performance comparison between serial and parallel, a visual analysis of delay/speedup with the help of varying thread counts and maximum terms in the series for Pi value calculation. • Implement the code with different thread count and different maximum number of terms to be calculated for the series such as thread count 10, 20 and terms 100, 1000, 10000, 1000000. • Display a visualization of performance comparison between serial and parallel, a visual analysis of delay/speedup with the help of varying thread counts and maximum terms in the series for Pi value calculation.	24/1/2024	
3.	Implement Producer-Consumer problem (PCP). Analyze the significance of semaphore, mutex, bounded buffer, producer thread, and consumer thread using the code available on Producer-Consumer Problem in Python - AskPython. Demonstrate how PCP occurs for an application of your choice.	29/1/2024	
4.	Write a program to generate and print Fibonacci series, one thread must generate the series up to number and other thread must print them. Ensure proper synchronization.	31/1/2024	
5.	Consider a scenario where a person visits a supermarket for shopping. S/He purchases various items in different sections such as clothing, grocery, utensils. Write an OpenMP program to process the bill parallelly	31/1/2024	

	in each section and display the final amount to be paid by the customer. Analyze the time take by sequential and parallel processing.	
6.	 Implement the following programs of OpenMPI Print "Welcome to PDPU from process (processno_totalprocesses)". Apply denoising algorithm to a set of n images with 4 processes. (n=4, 8). Analyze time taken by serial and openMPI processes. Try for 100 or more number of images. 	7/2/2024
7.	 Write a program to implement arithmetic calculations using MPI processes. Write a program with different processes to apply following functions to an image in parallel. Read an image. Convert above RGB image to grayscale. Find edges in the image. Show the original image. 	14/2/2024
8.	 Write a program to pass message from one process to another and print output. In synchronous communication In asynchronous communication. Show using overlapping of task in non-blocking mode. 	14/2/2024
9.	Calculate Pi value using openMPI send and receive messages for atleast 35-40 terms. Try the below mentioned commands, explain their task in one line and paste the output for each of them • Change the value on n as 2, 4, 8, 16. • Analyze the performance improvement using number of processes.	14/2/2024
10.	Write a program to show collective communication by taking suitable example such that computing average of n numbers or computing sum or product of two matrices: • Beast function • Scatter function • Gather function	14/2/2024
11.	 Describe Canon's Matrix Multiplication algorithm. Implement Canon's Matrix Multiplication using collective communication. Analyze the efficiency of the code. 	19/2/2024
12.	 Write about derived data types used in MPI programming. Steps to create and use derived data types. Write its uses. 	19/3/2024

	4 local accept a consumination of device	d data vaine and avitable			
	4. Implement communication of derive	d data using one suitable			
10	example.				
13.	lshw (List Hardware)	top			
	lsusb (List USB Devices)	htop			
	Ispci (List PCI Devices)	nvidia-smi			
	Isblk (List Block Devices)	lstopo			
	lscpu (List CPU)	perf			
	df (Disk Free)	numactl			
	dmidecode (DMI Table Decode)	sar			
	ip a (IP Addresse)		44 (0 (000 4		
	For the given Python scripts that queries	_	11/3/2024		
	based system, understand the same an				
	device.				
14.	Image Gray scaling Presentation		20/3/2024		
15.	Perform the following Image Processing	Operations using the given	27/3/2024		
	images:				
	 Image Blurring 				
	 Image Thresholding 				
	 Histogram based image analysis 				
	 Image Filtering/Denoising 				
	 Image Gray scaling 				
16.	Empirically understand and document the	answers to the following:	1/4/2024		
	What is CUDA?				
	 What is the prerequisite for learning 				
	 What are the languages that suppor 				
	What do you mean by a CUDA ready				
	How CUDA works?				
	 What are the benefits and limitation 	s of CUDA programming?			
	 Understand and explain the CUDA 				
	example.	program structure with an			
	 Explain CUDA thread organization 				
	 Install and try CUDA sample prog 	ram and avalain the same			
		rani and explain the same.			
17.	(installation steps) Implement following CUDA programs:		15/4/2024		
'/'	To print hello message on the screen us	ing karnal function	10/4/2024		
	2. To add two vectors of size 100 ar				
	performance comparison between cpu				
	3. To multply two matrix of size 20 X 20 a				
		-			
	performance comparison between cpu				
18.	4. To obtain CUDA device information and		22/4/2024		
10.	Implement the following Image Processing	operations in sequential and	ZZ141ZUZ4		
	parallel using CUDA Programming. 1. Gaussian Blur				
	1. Gaussian Blur				

	Describe Gaussian Blur in brief.	
	Where parallelism can be inserted?	
	Analyze the performance in serial and parallel model.	
	2. FFT- Fast Fourier Transform	
	Describe FFT in brief.	
	Where parallelism can be inserted?	
	Analyze the performance in serial and parallel model.	
19.	Final Learning Synopsis Submission	