```
In [1]: import pandas as pd

df = pd.read_csv("ecommerce.csv")
    df.head()
```

Out[1]:

	Customer ID	Gender	Age	City	Membership Type	Total Spend	Items Purchased	Average Rating	Disco App
0	101	Female	29	New York	Gold	1120.20	14	4.6	
1	102	Male	34	Los Angeles	Silver	780.50	11	4.1	F
2	103	Female	43	Chicago	Bronze	510.75	9	3.4	
3	104	Male	30	San Francisco	Gold	1480.30	19	4.7	F
4	105	Male	27	Miami	Silver	720.40	13	4.0	
									•

```
In [2]: print(df.isnull().sum())

df.fillna(df.median(numeric_only=True), inplace=True)

df.fillna(df.select_dtypes(include='object').mode().iloc[0], inplace=True)
```

```
Customer ID
Gender
                             0
Age
                             0
                             0
City
Membership Type
                            0
Total Spend
                            0
Items Purchased
                            0
Average Rating
                            0
Discount Applied
                            0
Days Since Last Purchase
                             0
Satisfaction Level
                            2
dtype: int64
```

```
In [3]: numerical_cols = df.select_dtypes(include=['int64', 'float64']).columns
    categorical_cols = df.select_dtypes(include=['object']).columns

print("Numerical columns:", numerical_cols.tolist())
print("Categorical columns:", categorical_cols.tolist())
```

Numerical columns: ['Customer ID', 'Age', 'Total Spend', 'Items Purchased', 'Aver age Rating', 'Days Since Last Purchase']
Categorical columns: ['Gender', 'City', 'Membership Type', 'Satisfaction Level']

```
In [4]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()

df_scaled = df.copy()
    df_scaled[numerical_cols] = scaler.fit_transform(df[numerical_cols])
    df_scaled.head()
```

Out[4]:

		Customer ID	Gender	Age	City	Membership Type	Total Spend	Items Purchased	Averag Ratin
	0	-1.727109	Female	-0.945152	New York	Gold	0.760130	0.337346	1.00198
	1	-1.717212	Male	0.082826	Los Angeles	Silver	-0.179459	-0.385538	0.13947
	2	-1.707314	Female	1.933185	Chicago	Bronze	-0.925570	-0.867461	-1.06802
	3	-1.697417	Male	-0.739557	San Francisco	Gold	1.756144	1.542153	1.17448
ı	4	-1.687519	Male	-1.356343	Miami	Silver	-0.345692	0.096385	-0.03302
	4								

```
In [5]: import matplotlib.pyplot as plt
import seaborn as sns

for col in numerical_cols:
    plt.figure(figsize=(6, 4))
    sns.histplot(df[col], kde=True)
    plt.title(f'Distribution of {col}')
    plt.show()
```



```
In [7]: for col in numerical_cols:
    plt.figure(figsize=(6, 4))
    sns.boxplot(x=df[col])
    plt.title(f'Boxplot of {col}')
    plt.show()
```


Boxplot of Age

Boxplot of Total Spend

Boxplot of Items Purchased

Boxplot of Average Rating

Boxplot of Days Since Last Purchase


```
In [8]: from sklearn.decomposition import PCA

pca = PCA(n_components=2)
pca_result = pca.fit_transform(df_scaled[numerical_cols])

df_pca = pd.DataFrame(pca_result, columns=['PC1', 'PC2'])

sns.scatterplot(x='PC1', y='PC2', data=df_pca)
plt.title('PCA - First Two Principal Components')
plt.show()
```


In [10]: sns.pairplot(df[numerical_cols])
 plt.suptitle("Pairplot of Numerical Features", y=1.02)
 plt.show()

Pairplot of Numerical Features

In [11]: plt.figure(figsize=(10, 6))
 sns.heatmap(df[numerical_cols].corr(), annot=True, cmap='coolwarm', fmt=".2f")
 plt.title("Correlation Heatmap")
 plt.show()


```
import itertools
import matplotlib.pyplot as plt
import seaborn as sns
numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns
col_pairs = list(itertools.combinations(numeric_cols, 2))

for x_col, y_col in col_pairs:
    plt.figure(figsize=(6, 4))
    sns.scatterplot(data=df, x=x_col, y=y_col)
    plt.title(f'Scatter plot: {x_col} vs {y_col}')
    plt.show()
```


Age

In []: