Name:

Class:

EE2T21 Telecommunicatie B (2015-2016 Q4): 37543-151604

Section #:

Instructor: Koos Dijkhuis

Class #:

Assignment: Huiswerkopdracht 14

Question 1: (4 points)

Een digitaal transmissiesysteem maakt gebruik van een speciale vorm van Amplitude Shift Keying (ASK). De transmissiesnelheid bedraagt R_s = 770 kbit/sec. Het uitgezonden signaal wordt gegeven door:

$$x_{\mathcal{C}}(t) \ = \ A_{\mathcal{C}} \ [\alpha \ + \ \beta \ d(t)] \ \cos \omega_{\mathcal{C}} \ t$$

met $\alpha = 3.8$, $\beta = 2$ en d(t) is een binair datasignaal, $d(t)\varepsilon$ { -1,1}. De enkelzijdige spectrale ruisvermogensdichtheid is N_0 = -91 dBm/Hz, en de equivalente ruisbandbreedte van de coherente matched-filter detector is $R_s/2$. De signaal-ruisverhouding aan de ingang van de ontvanger op basis van de 0-0 transmissiebandbreedte bedraagt SNR_{in} = 10.5 dB.

- a. Bepaal het signaalvermogen aan de ingang van de ontvanger. $S_{in} =$ ______ dBm
- b. Bepaal de bitfoutenkans P_e .

 $P_e =$

c. Bepaal de bitfoutenkans P_e indien in plaats van het matched filter, een filter met equivalente ruisbandbreedte $1.1*R_s$ gebruikt wordt.

 $P_e =$

Kleine getallen, zoals 0.000357 vul je in als 3.57E-4 of 3.57e-4. De foutmarge in de bitfoutenkansen is op +/- 30% gezet. Dit vereist nog steeds nauwkeurig berekenen/aflezen van de Q-functie. Gebruik zonodig Matlab.

Question 2: (3 points)

Een digitaal banddoorlaatsysteem is geschikt voor zowel BPSK als FSK modulatie. De coherente ontvanger is voorzien van een filter met variabele bandbreedte; de datasnelheid bedraagt R_b = 350 kbit/sec. De witte ruis op de ontvangeringang heeft een Gaussische amplitudeverdeling met ruisvermogensdichtheid N_0 = 20 pW/Hz.

a. Bereken het ontvangen vermogen dat nodig is voor een bitfoutenkans $P_e = 9*10^{-4}$ als BPSK modulatie wordt toegepast en de equivalente ruisbandbreedte van de ontvanger $1*R_b$ bedraagt.

$$P_{ontv} =$$
_____dBm

b. Bereken het ontvangen vermogen dat nodig is voor een bitfoutenkans $P_e = 8*10^{-4}\,$ als FSK modulatie wordt toegepast en de equivalente ruisbandbreedte van de ontvanger $2.5*R_b$ bedraagt

$$P_{ontv} =$$
 dBm

Question 3: (3 points)

Een digitaal transmissiesysteem maakt gebruik van een ongebalanceerde vorm van QPSK-modulatie. De transmissiesnelheid bedraagt $R_b = 190$ kbit/sec verzonden. Het uitgezonden signaal wordt gegeven door :

$$s(t) \, = \, A_c \, \left[lpha \, d_I(t) \, \cos \, \omega_c t \, + \, eta \, d_Q(t) \, \sin \, \omega_c t \,
ight]$$

a. Bepaal de signaal-ruisverhouding *SNR*_I van het in-fase signaal na het matched-filter, indien op de ingang van de ontvanger geldt dat:

$$\frac{A_c^2}{2}$$
 = -29 dBm bedraagt.

$$SNR_I = dB.$$

b. Bepaal de gemiddelde bitfoutenkans P_e van het ongebalanceerde QPSK signaal indien de SNR na het in-fase matched-filter

$$SNR_I = 9.5 dB$$

$$P_e = \underline{\hspace{1cm}}$$