

CENTRO PRE UNIVERSITARIO UNIVERSIDAD NACIONAL DEL ALTIPLANO

PRIMERA SEMANA

Lógica proposicional

Ejercicio 1 "La Tierra y Venus son planetas". Esta proposición es:

- I. Simple
- II. Compuesta
- III. Conjuntiva
 - A) Solo I
- B) Solo II
- C) Solo III

D) II y III

E) I y III

Ejercicio 2 "El soldado no se rinde, vence o muere", es una proposición:

- A) Conjuntiva
- B) Condicional
- C) Disyuntiva
- D) Negativa
- E) Bicondicional

Ejercicio 3 Dada la siguiente tabla:

p	q	$(p \to q) \longleftrightarrow (q)$
V	V	
V	F	(2)
F	V	$\overline{3}$
F	F	$\overline{4}$

Los valores de verdad que se deben escribir en los círculos en el orden indicado (1; 2; 3; 4) son

- A) VFVF
- B) FVFV
- C) FFFV

D)VVVF

E) VVVV

Ejercicio 4 ¿Qué alternativa se obtendría al negar la siguiente proposición?

- "O es virus, o es bacteria"
 - A) Es virus y es bacteria
 - B) Es virus o es bacteria
 - C) Si es virus, es bacteria
 - D) Es virus si y solo si es bacteria
 - E) Ni es virus ni es bacteria

Ejercicio 5 Al evaluar el siguiente esquema molecular

$$(p \to q) \land \sim (q * \sim p),$$

el valor de verdad de su matriz principal resultó FFFF. ¿Cuál será el valor de verdad al evaluar ($p*\sim$ p)?

- A) VFVV
- B) VVFF
- C) FFFV

D) VVVV

E) FVFV

Ejercicio 6 Si la proposición $(p\Delta q) \rightarrow (q \rightarrow r)$ es falsa.

Luego

- I. $p \leftrightarrow q$ no es falsa.
- II. $q \vee s$ no es verdadera.
- III. $q \rightarrow \sim p$ es verdadera.

Son ciertas:

- A) Solo I
- B) II y III
- C) Solo III

D) I v III

E) I, II y III

Ejercicio 7 Si las siguientes proposiciones no son falsas

$$\sim p \land \sim (r \to s)$$
$$\sim (p \to q) \leftrightarrow q$$

Determine el valor de

- I. $(p \lor q) \land (r \leftrightarrow s)$
- II. $(p \lor q) \lor (s \to \sim r)$
- III. $(p \rightarrow q) \Delta q$
 - A) VFV
- B) FFV
- C) FVF

D) FVV

E) VVV

Ejercicio 8 Expresar simbólicamente el siguiente teorema: "si un número es impar, entonces su cuadrado es impar". Luego indique su contrarreciproco.

- A) Si el cuadrado de un entero es par, entonces dicho entero es par.
- B) Si un entero es par, entonces su cuadrado es par.
- C) Si el cuadrado de un entero es impar, entonces dicho entero es impar
- D)Si el cuadrado de un entero es par, entonces dicho entero es impar
- E) Si un entero es impar, entonces su cuadrado es par.

Ejercicio 9 Si la siguiente proposición es falsa: "Si él bebe, fuma, y si no bebe entonces no come; por lo tanto, si no fuma, come".

A) Bebe

Es correcto afirmar:

- B) Fuma
- C) Come
- D) Fuma y no come
- E) No bebe o come

Ejercicio 10 Simplifique

$$q \land \{(\sim p \lor q) \lor [(p \to q) \land r]\}$$

A)q

 $B) \sim p$

 $C) \sim q$

 $D)q \rightarrow p$

 $E) p \rightarrow q$

Ejercicio 11 Se definen:

$$p\#q \equiv [(p \lor \sim q) \land (\sim q \to p)]$$
$$p \oplus q \equiv q \lor [(p \leftrightarrow q) \land (q\Delta p)]$$

Halle la proposición equivalente de

 $(q\#p)\oplus (q\oplus p)$

 $A)_{p}$

B) q

 $C) \sim p$

D)V

 $E) \sim q$

Ejercicio 12 Utilizando leyes lógicas, simplificar la proposición compuesta:

$$\big[\sim (p \to q) \to \sim (q \to p) \big] \wedge (p \vee q)$$

A)p

 $B)_{a}$

C) Tautología

D) Contradicción

E) $p \vee q$

Ejercicio 13 Dadas las proposiciones $S \equiv p \land \sim p$ y $R \equiv \sim [(p \land q) \rightarrow p]$, entonces:

- A) Son tautológicos
- B) Son contingentes
- C) Son contradictorios
- D) Sólo una es contingente
- E) Sólo uno es contradictorio

Ejercicio 14 "Aunque no estudie aprobaré matemática".

Esta proposición es equivalente a:

- A) No apruebo matemática
- B) Estudio y apruebo matemática
- C) No estudio y no apruebo
- D) Apruebo matemática
- E) Estudio y no apruebo

Ejercicio 15 Determine la conclusión del siguiente razonamiento:

"Si llueve, la pista está mojada. Ha llovido".

Por lo tanto

- A) No llueve.
- B) <mark>No lluev</mark>e y <mark>la piesta no e</mark>stá mojada.
- C) La pista no esta mojada.
- D) La pista esta mojada.
- E) No llueve o la pista no esta mojada.

Ejercicio 16 Si:

- a) Hay contaminación o el clima es muy húmedo.
- b) Pero el clima no es muy húmedo.

Luego

- A) No hay contaminación.
- B) El clima es muy húmedo y no hay contaminación.
- C) Hay contaminación y el clima es muy húmedo.
- D) Hay contaminación.
- E) El clima es muy húmedo o no hay contaminación.

Ejercicio 17 Si $(p*q) \rightarrow F$ es equivalente a $(p \land \sim q)$, entonces $(p * q) \leftrightarrow (p \rightarrow \sim q)$ es equivalente a:

- $A) \sim p \wedge q$ B) p * q
- $C) \sim p$

D)p

E) $q \wedge p$

Ejercicio 18 Halle el circuito equivalente a la siguiente proposición

$$\sim q \leftrightarrow (p \rightarrow \sim q)$$

A)

C)

E)

Ejercicio 19 Si p y q son proposiciones, definimos la operación p * q mediante la tabla siguiente:

$$\begin{array}{c|cccc} p & q & p*q \\ \hline V & V & F \\ V & F & F \\ F & V & F \\ F & F & V \\ \end{array}$$

Expresar $(p \to q)$ sólo en términos del conectivo *.

- A) [(p * p) * q] * [(p * p) * q]
- B) (p * p) * q
- C) [(p*q)*p]*[(p*q)*q]
- D) [(p * p) * p] * [(q * q) * q]
- E) p * (p * q)

Ejercicio 20 Dada la siguiente tabla de verdad

p	q	$(\sim p)$		q)	\Diamond	$(\sim q$	\Diamond	p)
V	V		(1)		F		F	
V	F		$\overset{\smile}{F}$		F		(2)	
F	V		V		F		$\overline{(3)}$	
F	F		$\overline{(4)}$		(5)		$\overset{\smile}{F}$	

Donde \square ; \lozenge son operadores diferentes que pueden representar \vee ; \triangle o \wedge ; indique el valor de verdad de (1), (2), (3), (4), (5), respectivamente.

- A) VVFFV
- B) VVFFF
- C) FVVFF

D) VVVFF

E) VVFVF