

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring

Målform:	NYNORSK
Eksamensdato:	2. desember 2014
Varighet/eksamenstid:	5 timer
Emnekode:	TDAT2005
Emnenamn:	Algoritmar og datastrukturer
Klasse(r):	2ING
Studiepoeng:	10
Faglærer(e): (namn og telefonnr. på eksamensdagen)	Helge Hafting \$\mathbb{\alpha}73 55 95 44 \\ Mildrid Ljosland \$\mathbb{\alpha}73 55 95 56
Kontaktperson(adm.) (fylles ut ved behov – bare ved kursemnar)	
Hjelpemiddel:	Eit stempla A4-ark med valfritt innhold
Oppgåvesettet består av: (talet på oppgåver og talet på sider inkl. forsida)	8 oppgåver og 5 sider inkludert forside
Vedlegg består av: (talet på sider)	Ingen sider

Merknad:

Oppgåveteksten kan behaldas av studentar som sit eksamenstida ut.

NB! Les gjennom hele oppgåvesettet før du begynner arbeidet, og disponer tida.

Dersom noe verkar uklart i oppgåvsettet, skal du gjere dine egne antakingar og forklare dette i svaret.

Lykke til!

Oppgåve 1 (15%)

Finn kompleksiteten til føljande programkode. Bruk Θ om mulig, elles O og Ω .

```
a)
public void a(int[] tab, int m, int n) {
   for (int i=0; i<n; ++i) {
     tab[i] = i;
   }
  for (int j=1; j<m; ++j) {
     tab[j] += tab[j-1];
   for (int i=0; i<n; ++i) {
     for (j=i; j<m; ++j) {
        tab[i] -= tab[j];
     }
}
b)
public void b(int[] tab, int m, int n) {
   if(m<n) {
     for (int i=0; i<m; ++i) {
        tab[i] = i;
     }
   else if (m>n) {
     for (int i=0; i<n; ++i) {
        tab[i]=i;
   else return;
}
public void c(int[] tab, int m, int n) {
  if (m <=0) return;
   else {
     for (int i=0; i<m; ++i) {
        tab[i] += n;
     c(tab, m/2, n*2);
     c(tab, m/2, n/2);
  }
}
```

Oppgåve 2 (10%)

Gitt mengda M = $\{-1, 0, 1\}$. La R være definert på M ved at $(x,y) \in R$ viss og berre viss $y=x^2$.

- a) Tekne R og R⁻¹. Er noen av disse funksjoner? Kvifor (ikkje)?
- b) Er R refleksiv? Symmetrisk? Transitiv? Antisymmetrisk? Hugs å grunngje svaret.
- c) La S være den relasjonen du får når du tar R og legg til ein eller fleire kantar slik at S blir ein partiell ordning. Skriv opp elementa i S.
- d) Finn (om mogleg) maksimale og minimale element samt det største og minste elementet i S.

Oppgåve 3 (10%)

- a) List opp (minst) seks isomorfi-invariantar.
- b) Bruk isomorfi-invariantar til å bevise at følgjande grafar ikkje er isomorfe.

c) Her er ytterlegare fire grafar. Noen av dei er isomorfe med dei i b, andre er det ikkje. Finn ut kven som er isomorfe med kven.

Oppgåve 4 (10%)

Gitt alfabetet $A=\{0,1\}$ og språka $L_1=\{0\}$ og $L_2=\{1\}$

- a) Skriv opp alle strengar i språket $L_3=L_1L_2\cup L_2L_1$.
- b) Lag ein endelig automat M slik at M produserer L₃.

La vidare $L_4 = L_3^*$.

- c) Skriv opp fire strengar som er med i L₄ og fire strengar som ikkje er med i L₄.
- d) Lag ein endelig automat som aksepterer strengane i L_4 . Lag eit regulært uttrykk basert på dette.

Oppgåve 5 (15%)

Gitt strengen «dette er en helt annen tekst enn den forrige».

- a) Lag eit huffmantre for strengen.
- b) Skriv opp bitstrengen for den komprimerte teksten.
- c) Kor mye sparer du viss alternativet er å skrive teksten med eit konstant tal på bits per teikn (men så få som mogleg)?
- d) Kor høgt er det lågaste huffmantreet det er mogleg å lage med 15 ulike teikn? Kor høgt er det høgast moglege?

Oppgåve 6 (10%)

- a) Forklar omgrepa P, NP, NP-komplett og NP-hard.
- b) Anta at du har n positive og negative heiltall og skal finne et utval (ei delmengd) av dei som gir sum lik 0. I kva for ein av mengdene gitt i a) vil du plassere dette problemet?

Oppgåve 7 (15%)

- a) Shellsort har vist seg vanskeleg å analysere, men kompleksitet kan også målast i eksperiment. Sei litt om kva slags kompleksitet vi forventar for shellsort.
- b) Vil det være mogleg å lage ein sorteringsalgoritme med kompleksiteten $O(\sqrt{n})$? Forklar korleis, eller kvifor dette ikkje er mogleg.
- c) Forklar kort korleis quicksort fungerer, og demonstrer med denne talrekka: 3, 9, 6, 7, 8, 2, 1, 5

Oppgåve 8 (15%)

- a) Beskriv forskjellane mellom Dijkstras algoritme og A*-algoritmen.
- b) Finn maksimum flyt frå K til S i grafen under. Bruk flytaukande veger, og skriv opp dei vegane du bruker og kor mykje flyten aukar med kvar veg.
- c) Korleis kan du vere sikker på at det ikkje er mogleg å få meir flyt gjennom grafen i den førige deloppgåva?

