# 3BIT

з лабораторної роботи №4 з дисципліни «Аналіз даних»

Склад команди: Піковець Артем КМ-22

### 1 Вступ

Підвищений артеріальний тиск є одним із головних факторів ризику серцево-судинних захворювань. Це дослідження спрямоване на дослідження наступного питання:

- Як вісцеральний жир впливає на систолічний тиск людини?
- Гіпотеза: збільшення маси вісцерального жиру призводить до підвищення систолічного тиску.

## 2 Результати

Варто зауважити, що для оцінювання непараметричних моделей початкова вибірка була розділена на тренувальну та тестову вибірки. Ширини вікон оцінювалися на тренувальній вибірці, а прогнози робилися на тестовій вибірці. Розмір обох вибірок склав 50% від розміру початкової вибірки.

#### 2.1 Модель 1

Спочатку розглянемо модель тільки з кількістю вісцерального жиру в непараметричній частині:

$$y = m(visceral\ fat) + \varepsilon$$

Маємо наступні результати для локально-сталої та локально-лінійної оцінок:



• Зі збільшенням кількості вісцерального жиру систолічний тиск помітно підвищується.

#### 2.2 Модель 2

Додамо ще вік до непараметричної частини:

$$y = m(visceral\ fat, age) + \varepsilon$$

Зафіксувавши іншу змінну на медіанному рівні, маємо наступні результати для локальносталої та локально-лінійної оцінок:



- Зі збільшенням кількості вісцерального жиру систолічний тиск підвищується, але вже менш помітно.
- Тепер підвищення систолічного тиску більш ассоційовано зі збільшенням віку.

#### 2.3 Частково лінійна модель

Розглянемо частково-лінійну модель, контролюючи стать, расу та кількість нежирової маси:  $y = m(visceral\ fat, age) + \beta_{is\ male} \cdot is\ male + \beta_{is\ black} \cdot is\ black + \beta_{lean\ mass} \cdot \ln(lean\ mass) + \varepsilon$  Зафіксувавши інші змінні на медіанному рівні, маємо наступні результати для локальнолінійної оцінки:





- Зі збільшенням кількості вісцерального жиру систолічний тиск підвищується, але вплив став ще меншим.
- Підвищення систолічного тиску помітно зі збільшенням віку.

Порівняємо коефіцієнти з лінійної частини з коефіцієнтами з лінійної моделі:

|                                         | (1)       | (2)       |
|-----------------------------------------|-----------|-----------|
| <b>(T.</b> )                            |           | (2)       |
| (Intercept)                             | -4.557    |           |
|                                         | (5.193)   |           |
| genderMale                              | 1.471***  | 1.475***  |
|                                         | (0.219)   | (0.337)   |
| raceNon-Hispanic Black                  | 3.611***  | 3.746***  |
| •                                       | (0.233)   | (0.328)   |
| log(lean mass g)                        | 10.582*** | 10.752*** |
| 8( *** _ 8/                             | (0.491)   | (0.775)   |
| log(visceral fat g)                     | -1.162+   | (01110)   |
| 108(11500141_101_8)                     | (0.675)   |           |
| 0.00                                    | -1.132*** |           |
| age                                     |           |           |
| 1/ 00)                                  | (0.270)   |           |
| $I(age^2)$                              | 0.006     |           |
|                                         | (0.005)   |           |
| I(age^3)                                | 0.000***  |           |
|                                         | (0.000)   |           |
| $log(visceral fat g) \times age$        | 0.332***  |           |
|                                         | (0.053)   |           |
| $log(visceral fat g) \times I(age^2)$   | -0.005*** |           |
| 13(111111111111111111111111111111111111 | (0.001)   |           |
| Num.Obs.                                | 16788     | 8394      |

Вони дуже схожі, стандартна похибка виявилась вищою через менший розмір тренувальної вибірки.

#### 2.4 PCA

Для РСА було взято 12 змінних. Отримано наступний результат:



Перші 6 компонент пояснюють 87.8% дисперсії. Значного зменшення розмірності непомітно.

Також отримані наступні графіки проєкцій змінних на створені змінні.



Можна припустити, що перша компонента відповідає розміру людини. А друга компонента відповідає статі:



Але перші дві компоненти не дуже добре розрізняють артеріальний тиск:



Третя та п'ята компоненти розрізняють расу:





## 3 Висновки

- Непараметричні моделі дали дещо схожий результат з попередньою лабораторною роботою: зі збільшенням кількості вісцерального жиру підвищується артеріальний тиск, але сам вплив незначний. Але побудовані непараметричні моделі не враховували деякі важливі фактори взаємодії (наприклад, між кількість жиру та статтю).
- Непараметричні моделі дали змогу побачити нелінійні зв'язки (такі як між віком та тиском).
- Значного зменшення розмірності досягнути за допомогою РСА не вдалось, але можна використати деякі компоненти як змінні які характеризують певні характеристики людини (такі як її розмір).

## 4 Використані джерела

[1] Лекції 11, 12 з дисципліни "Аналіз даних"