# Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning

Yuyan Wang, <a href="mailto:yuyanw@google.com">yuyanw@google.com</a> with Xuezhi Wang, Alex Beutel, Flavien Prost, Jilin Chen, Ed H. Chi



#### **Fairness**





#### Objective:

Subgroups are treated equally.

Why: Critical for decision making in employment, education, and criminal justice etc.

Mostly studied in **single-task learning** problems.

# **Multi-Task Learning**



Figure 1: Shared-bottom architecture for a multi-task model.

#### Objective:

Jointly optimize the performance of multiple tasks.

**Why:** Transfer learning / regularization / model efficiency/...

Mostly only focused on optimizing **accuracy** across multiple tasks.

A largely unexplored question:

How does **fairness** play out in **multi-task learning** (MTL) scenarios?

Google Research

#### Fairness in MTL: Why do we care?

A content recommendation platform should treat different groups of users / content creators equally...



... And there are multiple types of user response (click, like, rating etc.) to be modeled [1].



In an MTL setting, can we ensure fairness of each individual task?



# Fairness comes at a cost of accuracy

For a **single task**, there exists a Pareto frontier for fairness-accuracy trade-off.

$$\hat{\mathcal{L}}_{\mathrm{task}}( heta) = \hat{\mathcal{L}}( heta) + \lambda \hat{\mathcal{F}}( heta)$$

accuracy loss fairness loss



# MTL comes with an accuracy trade-off

There exists a Pareto frontier for accuracies across different tasks.

$$\hat{\mathcal{L}}(\theta) \coloneqq \sum_{t=1}^{T} w_t \hat{\mathcal{L}}_t(\theta)$$

weight for accuracy loss for task t



Multi-MNIST Dataset [2].



Accuracy trade-off between predicting **left** and **right** digits [2].

Google Research

# Fairness in MTL: A multi-dimensional Pareto Frontier

Fairness is mostly studied in **single-task** settings.

MTL research mostly focused on optimizing **only the accuracy** across multiple tasks.



With *T* tasks each with a fairness objective and an accuracy objective, there is a *2T*-dimensional Pareto frontier.

#### Research Questions:

- 1. How does fairness play out in the multi-task scenario?
- 2. How to characterize the multi-dimensional fairness-accuracy trade-off?
- 3. Can we improve the Pareto frontier?

#### **Problem Framing**

# Fairness implications in Multi-Task Learning



## Fairness implications in multi-task learning

| N          | T1 Error | T1 FPR Gap | T2 Error | T2 FPR Gap |
|------------|----------|------------|----------|------------|
| STL-T1     | 0.2030   | 0.2716     | -        | _          |
| STL-T2     | -        | -          | 0.0784   | 0.0145     |
| MTL        | 0.2035   | 0.2846     | 0.0783   | 0.0137     |
| Difference | +0.24%   | +4.78%     | -0.08%   | -5.39%     |

(a) CelebA: MTL hurts Task 1 fairness but improves Task 2 fairness.

|            | T1 Error | T1 FPR Gap | T2 Error | T2 FPR Gap |
|------------|----------|------------|----------|------------|
| STL-T1     | 0.1659   | 0.1200     | .=.      | -          |
| STL-T2     | -        | -          | 0.1313   | 0.0661     |
| MTL        | 0.1656   | 0.1205     | 0.1299   | 0.0738     |
| Difference | -0.20%   | +0.34%     | -1.10%   | +11.60%    |

(b) UCI-Adult: MTL improves Task 2 accuracy but hurts its fairness.

STL-T1: single-task learning for Task 1;

**STL-T2**: single-task learning for Task 2;

MTL: multi-task learning with equal task weight.

- Datasets: MTL classification problems
  - CelebA: Attractive (T1) & Smiling (T2)
  - UCI-Adult: Income > \$50k (T1) & Capital Gain > 0 (T2)
- Fairness attribute: Gender
- Accuracy metric: prediction error rate
- Fairness metric: Equal opportunity [4] for group fairness
  - False Positive Rate (FPR) gap between male and female



## Fairness implications in multi-task learning (cont'd)

|            | T1 Error | T1 FPR Gap | T2 Error | T2 FPR Gap |
|------------|----------|------------|----------|------------|
| STL-T1     | 0.2030   | 0.2716     | -        | _          |
| STL-T2     | -        | -          | 0.0784   | 0.0145     |
| MTL        | 0.2035   | 0.2846     | 0.0783   | 0.0137     |
| Difference | +0.24%   | +4.78%     | -0.08%   | -5.39%     |

(a) CelebA: MTL hurts Task 1 fairness but improves Task 2 fairness.

|            | T1 Error | T1 FPR Gap | T2 Error | T2 FPR Gap |
|------------|----------|------------|----------|------------|
| STL-T1     | 0.1659   | 0.1200     | .=.      | =          |
| STL-T2     | -        | -          | 0.1313   | 0.0661     |
| MTL        | 0.1656   | 0.1205     | 0.1299   | 0.0738     |
| Difference | -0.20%   | +0.34%     | -1.10%   | +11.60%    |

(b) UCI-Adult: MTL improves Task 2 accuracy but hurts its fairness.

**STL-T1**: single-task learning for Task 1;

STL-T2: single-task learning for Task 2;

MTL: multi-task learning with equal task weight.

MTL may have **larger** impacts on fairness goals than on accuracy goals...

.. or **hurt** the fairness of some tasks while benefiting from its accuracy gains

Training multiple tasks together by simply pooling the accuracy objectives may lead to **unwanted fairness consequences.** 

Google Research

#### **New Metrics**

Measuring fairness-accuracy trade-offs in MTL



#### Measuring fairness in multi-task learning

- It's hard to visualize a Pareto frontier with > 3 dimensions
- Even with 2 tasks, we have a 4-dim Pareto frontier for fairness-accuracy trade-off
- Can we efficiently summarize and visualize this multi-dimensional Pareto frontier?
  - Moreover, fairness/accuracy metrics could differ largely across different tasks (e.g. some tasks are intrinsically harder to learn / have more bias)

Measuring **relative change** normalized by single-task learning (STL) baselines, and **average** across tasks:

Average Relative Fairness Gap (ARFG)

$$ARFG := \frac{1}{T} \sum_{t=1}^{T} FPRGap^{(t)} / FPRGap^{(t)}_{S},$$
 single-task FPR gap w/o fairness remediation 
$$ARE := \frac{1}{T} \sum_{t=1}^{T} Err^{(t)} / Err^{(t)}_{S}.$$

single-task error w/o fairness remediation

## Measuring fairness in multi-task learning (cont'd)

- ARFG and ARE are always positive, and
  - can be either smaller or greater than 1 as MTL could either improve or hurt accuracy / fairness for individual tasks;
  - ARFG < 1 (ARE < 1) suggests that MTL reduces relative FPR gap (error) on average, and vice versa.</li>
- ARFG-ARE Pareto frontier: overall fairness-accuracy trade-off across all tasks.

Average Relative Fairness Gap (ARFG)

Average Relative Error (ARE)

$$ARFG := \frac{1}{T} \sum_{t=1}^{T} FPRGap^{(t)} / FPRGap^{(t)}_{S},$$
 single-task FPR gap w/o fairness remediation 
$$ARE := \frac{1}{T} \sum_{t=1}^{T} Err^{(t)} / Err^{(t)}_{S}.$$

single-task error w/o fairness remediation

#### **New Mitigation**

Improving fairness-accuracy trade-offs in MTL



## Fairness loss: single-task learning (STL)

Using **FPR gap** for equal opportunity as the measure for group fairness...



<sup>[5]</sup> Beutel et al. Fairness in recommendation ranking through pairwise comparisons. KDD 2019.

<sup>[6]</sup> Beutel et al. Putting fairness principles into practice: Challenges, metrics, and improvements. AIES 2019.

<sup>[7]</sup> Prost et al. Toward a better trade-off between performance and fairness with kernel-based distribution matching. NeurIPS 2019 "ML with Guarantees" workshop.

<sup>[8]</sup> Feldman et al. Certifying and removing disparate impact. KDD 2015.

<sup>[9]</sup> Menon et al. The cost of fairness in binary classification. FAccT 2018.

## Baseline: Fairness loss generalized to MTL

#### 2-task learning as an example



$$(x, y^1, y^2)$$
  
 $y^1 \in \{0, 1\}$ : Label for Task 1  
 $y^2 \in \{0, 1\}$ : Label for Task 2

- Baseline: Fairness loss computed on 
   &
- However, is only relevant to Task 1 fairness;
- Likewise, is only relevant to Task 2 fairness;
- But Baseline method does not distinguish between them => A suboptimal
   use of model capacity!

#### Our proposal: A redistribution of fairness losses



#### MTA-F: Multi-task-aware fairness treatment

Let's address the fairness in a more targeted way:

- Head layers address fairness issues that are **specific** to the task itself;
- Shared layers address fairness issues that are common to more than 1 tasks.



#### MTA-F: Multi-task-aware fairness treatment



#### MTA-F: Multi-task-aware fairness treatment







(b) Backpropagation with MTA-F: We backpropagate task-specific fairness losses  $\hat{\mathcal{F}}_t^{head}$  to head layers, and the remaining fairness loss  $\hat{\mathcal{F}}_t^{shared}$  to shared layers (t = 1, 2).

#### MTA-F: Multi-task-aware fairness treatment

```
Algorithm 1: MTA-F Update Rule
   Input: Mini-batch \{(x_i, y_i^1, ..., y_i^T)\}_{i=1}^n, model parameters
                \theta = (\theta_{sh}, \theta_1, ..., \theta_T), task weights \{w_t\}_{t=1}^T, fairness
                weights \{\lambda_t\}_{t=1}^T, head-to-shared ratio \{r_t\}_{t=1}^T, and
                learning rate n
1 for t = 1, ..., T do
                                                                                                                             iteratively update T tasks
         \hat{\mathcal{L}}_t(\theta_{sh}, \theta_t) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}_t(f_t(x_i; \theta_{sh}, \theta_t), y_i^t)
                                                             ▶ Compute accuracy losses
         \hat{\mathcal{F}}_{t}^{head}(\theta_{sh}, \theta_{t}) and \hat{\mathcal{F}}_{t}^{shared}(\theta_{sh}, \theta_{t}) as in Eq. (10) / (11)
                                                               ▶ Compute fairness losses
       \theta_t = \theta_t - \eta(w_t \nabla_{\theta_t} \hat{\mathcal{L}}_t(\theta_{sh}, \theta_t) + \lambda_t r_t \nabla_{\theta_t} \hat{\mathcal{F}}_t^{head}(\theta_{sh}, \theta_t))
                                        ▶ Gradient descent on head parameters
5 end
                                                                                                                                MTA-F differs from baseline method
\theta_{sh} = \theta_{sh} - \eta \left[ \sum_{t=1}^{T} w_t \nabla_{\theta_{sh}} \hat{\mathcal{L}}_t(\theta_{sh}, \theta_t) \right]
                                                                                                                               in these places.
                                                     + \lambda_t \nabla_{\theta_{sh}} \hat{\mathcal{F}}_t^{shared}(\theta_{sh}, \theta_t)
                                     ▶ Gradient descent on shared parameters
   Output: Updated model parameters \theta = (\theta_{sh}, \theta_1, ..., \theta_T)
```

# Experiments

- Datasets:
  - UCI-Adult: Income > \$50k (T1), Capital Gain > 0 (T2)
  - German Credit Data: Good Ioans (T1), Credit > 2000 (T2)
  - LSAC Law School: Pass bar (T1), high GPA (T2)
- Methods:
  - Vanilla MTL: plain MTL without fairness mitigation
  - Baseline: Per-task fairness treatment
  - MTA-F: our proposed method
- Fairness loss: correlation loss / MMD loss / FPR gap loss
- Fairness metric: Equal Opportunity between females and males

#### Experiments: UCI-Adult

#### Marginal Pareto frontiers (lower left is better)





(a) Fairness-accuracy Pareto frontier for Task 1.

(b) Fairness-accuracy Pareto frontier for Task 2.

#### **AFRG-ARE Pareto frontier**



(c) ARFG-ARE Pareto frontier.

MTA-F improves **per-task** as well as **overall** fairness-accuracy Pareto frontiers.

Google Research

#### Experiments: Numerical results

| Overall fairness gap |        |        | Overall error rate |          |         |          |
|----------------------|--------|--------|--------------------|----------|---------|----------|
|                      | ţ      | 1      |                    |          |         |          |
| Dataset              | UCI-   | Adult, | Germai             | n Credit | LSAC La | w School |
| Metric               | ARFG   | ARE    | ARFG               | ARE      | ARFG    | ARE      |
| Vanilla MTL          | 0.3444 | 1.1040 | 0.1336             | 0.8367   | 0.3497  | 0.9778   |
| Baseline             | 0.0871 | 1.1032 | 0.0999             | 0.8356   | 0.1126  | 0.9864   |
| MTA-F                | 0.0437 | 1.0820 | 0.0364             | 0.8264   | 0.0310  | 0.9731   |

**Table 3:** Average relative fairness gap (*ARFG*) and average relative error (*ARE*) on **UCI-Adult**, **German Credit Data** and **LSAC Law School** datasets, as defined in Section 4. Lower metric values indicate better overall fairness / accuracy across all tasks.

|           |             | Task 1             |                       | Task 2             |                       |
|-----------|-------------|--------------------|-----------------------|--------------------|-----------------------|
|           |             | ,1                 | N.                    | ,1                 | K.                    |
|           |             |                    | `.                    |                    | ``                    |
| 0         | à           | T <sub>1</sub> Err | T <sub>1</sub> FPRGap | T <sub>2</sub> Err | T <sub>2</sub> FPRGap |
| UCI-      | Vanilla MTL | 0.1911             | 0.0715                | 0.1359             | 0.0091                |
| 970007307 | Baseline    | 0.1938             | 0.0186                | 0.1336             | 0.0020                |
| Adult     | MTA-F       | 0.1891             | 0.0083                | 0.1319             | 0.0016                |
| German    | Vanilla MTL | 0.205              | 0.0150                | 0.220              | 0.0084                |
|           | Baseline    | 0.255              | 0.0879                | 0.180              | 0.0069                |
| Credit    | MTA-F       | 0.200              | 0.0033                | 0.220              | 0.0034                |
| LSAC      | Vanilla MTL | 0.1555             | 0.0503                | 0.1565             | 0.0004                |
| Law       | Baseline    | 0.1568             | 0.0119                | 0.1580             | 0.0006                |
| School    | MTA-F       | 0.1540             | 0.0015                | 0.1565             | 0.0004                |

Table 4: Per-task metrics for UCI-Adult, German Credit Data and LSAC Law School datasets.

MTA-F improves **per-task** as well as **overall** fairness-accuracy metrics, across all three datasets and with different fairness losses.

#### **Key Takeaways**

- Optimizing only for accuracy trade-off in MTL may lead to unwanted fairness implications.
- Quantify the multi-dimensional trade-off: we propose Average relative fairness gap (ARFG) and average relative error (ARE).
- MTA-F: a data-dependent multi-task fairness mitigation approach, which decomposes fairness losses for different model components by exploiting task relatedness and the shared architecture for multi-task models.





Yuyan Wang

Google Research, Brain Team

yuyanw@google.com

