Homework

Stochastic Models and Adaptive Algorithms

Réda Vince Z697LX CONTENTS Réda Vince

Contents

1	Linear regression	2
	1.1 Function approximation with least squares	2
	1.2 Approximating auto-regressive series	3
2	Kernel methods	5
3	Reinforcement learning	6

1 Linear regression

1.1 Function approximation with least squares

Ordinary least-squares

At first, a noisy sample of $x \to y$ is generated. Let $[\Phi]_{ij} = f_j(x_i)$ be the transformed input vector and \mathbf{y} the output, where f_j is a basis function. We have to find the $\boldsymbol{\theta}$ parameter vector, for which $\Phi \boldsymbol{\theta} = \mathbf{y}$. From this the $\Phi(x)$ matrix can be generated after selecting a suitable f. A number of these were tried, and the best one seemed to be the polynomial one, that is $f_i(x) = x^{i-1}$. As a parameter, d = 10 was used. The Φ matrix of the sampled inputs and of the LS estimate are the same, so the function is evaluated at the same x values.

For the QR decomposition problem, the "economic" mode of scipy's qr function is used, then $\hat{\theta}$ is found with $\hat{\theta} = \mathbf{R}^{-1}\mathbf{Q}^{T}\mathbf{y}$. Because the pseudoinverse of a matrix is unique, this method gives the same result as the previous one.

The results are shown in figure 1a.

Recursive least-squares

The equation for $\hat{\theta}$ can be reformulated in the following way:

$$\hat{\boldsymbol{\theta}} = \underbrace{\left[\sum_{i=1}^{n} \boldsymbol{\varphi} \, \boldsymbol{\varphi}^{\mathrm{T}}\right]^{-1}}_{\boldsymbol{\Psi}_{n}} \underbrace{\sum_{i=1}^{n} y_{i} \, \boldsymbol{\varphi}_{i}}_{z_{n}}.$$
(1)

Now we have an update rule for both $\Psi_{n+1} = (\Psi + \varphi_{n+1}\varphi_{n+1}^T)^{-1}$, and $z_{n+1} = z_n + \varphi_{n+1}\mathbf{y}_{n+1}$. Both Ψ_0 and z_0 are set to zero. Also, in the code θ_n is calculated only when plotted for speed.

The resulting plots are shown in figure 1c., taken at $n \in [25, 50, 75, 100]$.

Least-norm problem

Now let's make d > n, which makes Φ fat, specifically n = 100 and d = 200. We make the assumption that Φ is still full-rank. The solution is the same, except we are going to use singular value decomposition (SVD) for the pseudoinverse of Φ .

The SVD is calculated like this: $\Phi_{d\times n} = \mathbf{U}_{d\times d} \mathbf{\Sigma}_{d\times n} \mathbf{V}_{n\times n}^{\mathrm{T}}$. Let's denote the matrix of column vectors of the normalized eigen-vectors of matrix Φ by $\mathrm{eig}(\Phi)$. Let's denote the eigenvalues by $\mathrm{eigval}(\Phi)$. Then, $\mathbf{U} = \mathrm{eig}(\Phi \Phi^{\mathrm{T}})$, $\mathbf{V} = \mathrm{eig}(\Phi^{\mathrm{T}}\Phi)$ and $\mathbf{\Sigma} = \mathrm{diag}(\mathrm{eigval}(\Phi \Phi^{\mathrm{T}}))_{d\times n}$. Then, the pseudoinverse is $\Phi^+ = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^{\mathrm{T}}$. For $\mathbf{\Sigma}^+$, we take the inverse of the non-zero elements of $\mathbf{\Sigma}$, and add zeros such that it has the shape of $d\times n$.

The resulting plots are shown in figure 1b.

Figure 1: Experiments with ordinary least-squares

1.2 Approximating auto-regressive series

A recursive time-series is generated from the give equation: $y_t = a\,y_{t-1} + b\,y_{t-2} + \epsilon_t$. Let's calculate the least-squares estimate using $\Phi_{i=t} = \varphi_t = \left[y_{t-1}, y_{t-2}\right]$, then $\hat{\theta} = \Phi^+ \mathbf{y}$.

The time plots can be seen on figure 2a.

Now let's calculate the inverse of the covariance matrix: $\Gamma_n = \frac{1}{n} \Phi^T \Phi$. Now define $\Delta \theta := (\theta - \hat{\theta}_n)$. The confidence ellipsoid is given by

$$\Delta \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\Gamma}_{n} \Delta \boldsymbol{\theta} \leq \frac{q \, \hat{\sigma}_{n}^{2}}{n},\tag{2}$$

where q is calculated from the inverse of the cumulative χ^2 distribution function given the p probabilities $(q = F(p)_{\chi^2(d)}^{-1})$. This means that if the optimal θ^* is at most $\Delta\theta$ distance from $\hat{\theta}$ with probability p.

Now we assume that $\hat{\sigma}_n = 1$, and let $\Gamma_{ij}/n = [\Gamma_n]_{ij}$. Then we have an equation that outputs an ellipse for a p probability. Written out:

$$\Delta\theta_1^2 \, \Gamma_{11} + 2 \, \Delta\theta_1 \, \Delta\theta_2 \, \Gamma_{12} + \Delta\theta_2^2 \, \Gamma_{22} = q. \tag{3}$$

For the plotting, this equation is transformed so that the axis distances and the rotation angle is known with the function ellipse_transform[1].

Figure 2: Experiments with auto-regressive series

2 Kernel methods

3 Reinforcement learning

REFERENCES Réda Vince

References

[1] Ellipse equation: https://www.maa.org/external_archive/joma/Volume8/Kalman/General.html#:~:text=Applying%20the%20methods%20of%20%EF%BF%BD,rotated%20through%20an%20angle%20%CE%B1%20.&text=which%20is%20in%20the%20form,with%20A%20and%20C%20positive.