Expt. No: 04

Name of Experiment: Verification of KCL for dc circuits.

Theory:

Kirchhoff's Current law states that the algebraic sum of currents entering and leaving in a node is equal to zero. Mathematically it states that, $\sum I_m = 0$ in a node.

It can be said in another way, the sum of the currents entering in a node must be equal to the sum of the currents leaving from that node $\sum I_{entering} = \sum I_{leaving}$

Equipments:

- 1. Resistance. (3 pieces)
- 2. Connecting wires.
- 3. DC Voltage source.

- 4. Ammeter.
- 5. Project board
- 6. Multi-meter.

Circuit diagram:

Figure: 1

Procedure:

- (1) According to the circuit diagram that shown in figure: 1, connect the elements properly.
- (2) Measure the Currents I_1 , I_2 and I_3 through R_1 , R_2 and R_3 respectively.
- (3) Complete the calculation and find the percentage of error.

Experimental Data:

SL No.	Supply Voltage V _s (v)	Current through R_1 , $I_1(v)$	Current through R ₂ ,	Current through R ₃ , I ₃ (v)	Apply KCL, $I_1 = I_2 + I_3$ (v)	Percentage of error = (I – I ₁) / I x 100 %
1.						
2.						
3.						
4.						
5.						

Discussion: Write yourself.