OS-01 INTRODUCTION AUX SYSTEMES D'EXPLOITATION

Debut Christophe 2025

TABLE DES MATIÈRES

- Définition d'un OS
- Exemples d'OS
- Gestion de la mémoire (un peu)
- Type d'OS
- Classement
- Noyau Monolithique vs Micro-noyau
- Architecture et noyau
- Processus et thread
- Sécurité

OBJECTIFS

- Références
- Modern Operating Systems (Tanenbaum).
- Operating Systems: Three Easy Pieces (gratuit en ligne).

Chef d'orchestre

- Chef d'orchestre
- 4 Rôles principaux :
 - o Gestionnaire de ressources

- Chef d'orchestre
- 4 Rôles principaux :
 - o Gestionnaire de ressources
 - o Gestion des fichiers

- Chef d'orchestre
- 4 Rôles principaux :
 - o Gestionnaire de ressources
 - o Gestion des fichiers
 - Gestion des processus

- Chef d'orchestre
- 4 Rôles principaux :
 - Gestionnaire de ressources
 - o Gestion des fichiers
 - Gestion des processus
 - Interface utilisateur

Exemples d'OS

- Windows
- macOS
- Linux
- Android
- iOS

GESTION DE LA MÉMOIRE

Pourquoi la gestion de la mémoire est importante ?

GESTION DE LA MÉMOIRE

Concepts clés de la gestion de la mémoire

Mémoire physique ou mémoire virtuelle

GESTION DE LA MÉMOIRE

Critère	Mémoire Réelle (Physique)	Mémoire Virtuelle
Définition	Mémoire RAM physique installée sur la machine.	Espace d'adressage simulé par l'OS (RAM + disque).
Taille	Limitée par la RAM disponible (ex : 16 Go).	Apparente bien plus grande (ex : 64 Go sur un PC 16 Go).
Vitesse	Ultra-rapide (nanosecondes).	Lente pour la partie stockée sur disque (millisecondes).
Gestion par l'OS	Utilisée directement par les processus.	Divisée en pages (ou segments) gérées par le MMU (Memory Management Unit).
Fragmentation	Peut être fragmentée (blocs non contigus).	Fragmentation masquée (adresses virtuelles contiguës).
Coût	Chère (coût du matériel RAM).	"Bon marché" (utilise l'espace disque en complément).
Sécurité	Accès direct possible (risque de corruption).	Isolation des processus (chaque processus a son propre espace d'adressage).
Exemple concret	Un jeu vidéo charge ses textures en RAM.	Un navigateur utilise de la mémoire virtuelle quand la RAM est saturée.

GESTION DE LA MÉMOIRE

Avantages/Inconvénients

Mémoire Physique	Mémoire Virtuelle	
✓ Rapidité extrême.	Permet d'exécuter plus d'applications que la RAM ne peut en contenir.	
X Coût élevé / limite de capacité.	X Ralentissements si trop de swap est utilisé ("thrashing").	
X Gestion manuelle parfois nécessaire (ex : serveurs).	Sécurité accrue (isolation des processus).	

GESTION DE LA MÉMOIRE

Méthodes avancées

Mémoire non volatile

- Oridnateur Personnel
 - Windows
 - MacOS
 - Linux

- OS mobiles
 - o Android
 - \circ iOS
 - $\circ \ Harmony OS$

- OS temps réel (RTOS)
 - o FreeRTOS
 - VxWorks
 - \circ QNX

- Embarqué

- o Contiki
- o TinyOS
- o RTEMS
- Wear OS

- OS répartis (ou distribués)
 - o Google's Borg
 - o Apache Hadoop
 - o Tanenbaum's Amoeba

- Superordinateur -Supercalculateur
 - Cray Operating System
 - o IBM AIX
 - Linux (HPC)

https://fr.wikipedia.org/wiki/Superordinateur

- Comparatif
 - o OS Distribués
 - Superordinateur

Critère	OS Distribué	Superordinateur
Coût	Économique (machines standards).	Très cher (matériel spécialisé).
Flexibilité	Hautement adaptable.	
Performance	Limitée par le réseau.	Maximale (optimisation matérielle).
Résilience	Résiste aux pannes.	

- Hyperviseur

- VMware ESXi
- o Hyper-V
- o KV5M

- Serveur

- o Windows server
- \circ Linux
- o Unix

- OS Cloud
 - o Google Cloud OS
 - Amazon AWS (EC2)
 - Microsoft Azure

- Mainframe

- o z/OS (IBM)
- \circ z/VM
- \circ z/VSE
- \circ z/TPF
- o Linux on IBM Z
- o UNIX System Services
- o ...

Types d'OS Comparatif

Critère	Mainframe	Cloud (Public/Hybride)	Serveur Standard (On-Premise)
Définition	Ordinateur central ultra-fiable pour tâches critiques.	Ressources informatiques virtualisées et mutualisées (ex: AWS, Azure).	Serveur physique dédié (ex: Dell, HPE) installé en local.
Coût	Très élevé (CAPEX + licences).		
Performance	Optimisé pour transactions massives (millions/sec).	Variable (dépend de la configuration virtualisée).	Prévisible, mais limitée par le matériel.
Scalabilité	Verticale (ajout de CPU/mémoire).		
Disponibilité	99.999% ("five nines").	99.9% à 99.99% (selon le SLA).	99.9% si redondance locale.
Sécurité	Normes strictes (ex: EAL5+). Chiffrement natif.		
Cas d'Usage	Transactions bancaires, systèmes legacy.	Applications modernes (web, SaaS), big data.	Bases de données locales, ERP.
Exemples	IBM Z16, Unisys ClearPath.		

Classement Desktop

Classement Desktop

Classement Smartphone

Classement Smartphone

Classement....

- https://gs.statcounter.com/

