Nombre dérivé

f est une fonction définie sur un intervalle / contenant le réel a et $\mathscr C$ est la courbe représentative de f dans un repère orthogonal.

On suppose que $\mathscr C$ admet en son point A d'abscisse a une tangente T non parallèle à l'axe des ordonnées.

On appelle nombre dérivé de f en a le coefficient directeur de la tangente T à & au point A(a; f(a)).

On dit que f est dérivable en a (ou dérivable

On le note f'(a).

Fonction dérivée

au point a).

Fonction f

 $f(x) = e^x$

f est une fonction définie sur un intervalle /.

Si pour tout réel x de / la fonction f est dérivable, on dit que f est dérivable sur /.

On appelle alors fonction dérivée de f la fonction qui associe à tout réel x de I le nombre dérivé f'(x). On la note f'.

Dérivées des fonctions usuelles

Fonction dérivée f'

 $f'(x) = e^x$

f(x) = ax + b a, b réels	f'(x) = a
$f(x) = ax^2 + bx + c$ a, b, c réels	f'(x) = 2ax + b
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = x^n$	$f'(x) = nx^{n-1}$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$

Fonction f	Fonction dérivée f'
$f(x) = \sin x$	$f'(x) = \cos x$
$f(x) = \cos x$	$f'(x) = -\sin x$
$f(x) = u^n(x)$ n entier naturel non nul	$f'(x) = n(u(x))^{n-1} \times u'(x)$
$f(x) = \ln (u(x))$	$f'(x) = \frac{u'(x)}{u(x)}$
$f(x) = e^{u(x)}$	$f'(x) = e^{u(x)} \times u'(x)$
· · · · · · · · · · · · · · · · · · ·	