Nome e Cognome:	□LUN Data:	□MAR □GIO	1
-----------------	---------------	-----------	---

Uso dei multimetri e partitore di tensione

Tutte le misure devono ovviamente essere <u>corredate da unità di misura e incertezza,</u> da valutare secondo la vostra sensibilità di sperimentatori! Tutti gli errori devono essere debitamente determinati e <u>propagati q</u>uando necessario!

- 1. Misurate la d.d.p. V₀ prodotta dal generatore "a circuito aperto" (cioè senza nessun "carico" se non lo strumento di misura) usando sia il multimetro digitale che quello analogico. Ricordate di selezionare i corretti fondo-scala prima di collegare gli strumenti al generatore e fate attenzione alla polarità dei collegamenti (la boccola nera del generatore si trova a potenziale minore e va collegata al "COM" oppure al "=" dello strumento di misura).
- 2. Misurate con il multimetro digitale la resistenza R_j di alcuni (almeno 3 o 4) resistori del banco e confrontatela con il valore nominale $R_{j,\text{nom}}$ (il codice dei colori è appeso alle porte del laboratorio), riportando i valori in tabella assieme a quelli della tolleranza dichiarata. Si consiglia di selezionare resistenze di valori appartenenti a <u>diverse</u> decadi (almeno 4): tenete anche conto che il fusibile del generatore si fonde per uso continuativo oltre 100 mA.
- 3. Costruite il circuito di figura, usando di volta in volta una resistenza R_j prima selezionata e misurando i corrispondenti valori V_i (con <u>multimetro analogico</u>) e I_i (con <u>multimetro digitale</u>), da riportare in tabella.
- 4. Riportate in tabella il valore del prodotto $R_i I_i$ (e la sua incertezza) e confrontatelo con la misura di V_i .
- 5. Ripetete le stesse operazioni (misure di V_j e I_j) scambiando il ruolo dei multimetri.
- 6. Commentate nel riquadro eventuali discrepanze tra valore atteso e quello misurato e commentate anche sull'eventuale differenza tra la misura di V_i e quella di V_0 , e sulle differenze dovute all'uso dei diversi multimetri.

di A	Misure	e a circuito aperto
$R_{i} \stackrel{+}{\rightleftharpoons} R_{i} {\rightleftharpoons} V$	$V_0 =$	(multimetro analogico)
The state of the s	$V_0 =$	(multimetro digitale)

j	$R_{j,\mathrm{nom}}[\]$ (nominale)	Toller. [%]	$R_j[]$	$I_{j}\left[\ \ ight]$ digitale	$R_{I_j}[V]$ (atteso)	$V_{j}\left[V ight]$ analogico
1			±	±	±	±
2			±	±	±	±
3			±	±	±	±
4			±	±	±	±
5			±	±	±	±

j	$R_{j,\mathrm{nom}}[\]$ (nominale)	Toller. [%]	$R_j[$]	$I_{j}\left[\ \ ight]$ analogico	$R_{i}I_{j}\left[V ight]$ (atteso)	$V_{j}\left[\mathrm{V} ight]$ digitale
1			±	±	±	±
2			±	±	±	±
3			±	±	±	±
4			±	±	±	±
5			±	±	±	±

			<u> </u>	±	±	±
Comme	nti (segue a p	pagina succes	siva e, se non basta	, usate un altro fo	glio bianco):	
						Page 1 of 2

								E_10001.	0 – aa 16/17
segue Commen	ti:								1
una d.d.p. V_I che serie di due resisto Avete libertà di so disponibile. Poteto	è frazione ori, come n cegliere il e eventualr	zzare un partitore d di V_{TOT} secondo ur nostrato nello scher rapporto di partizio nente usare collegat g: la corrente erogata	n rapporto α na. one α e du menti in se	di partizione α nque di scegli- rie e/o parallelo	$u = V_1/V$ iere i volo tra pi	Z _{TOT} . Allo alori delle ù resistori	e resistenz	serete un coll	egamento in
		determinate la relaz di partizione α.	zione attesa	tra i valori del	lle	α =			Relazione attesa
 Determinate i prescelte e ter Misurate con il rapporto di Montate il cir R₁ + R₂ e di R Misurate la ca 	il valore at nendo cont il multime partizione rcuito e mi A ₁ . Determ aduta di ter	teso per il rapporto to della tolleranza ir etro digitale le resis	ndicata dal R_1 e R_2 e netro digita ra il rapport R_2 (guardat	costruttore (pro R_2 e determina ale i valori di toto di partizione te la figura) e c	opagate ate sulla censione e α e co confron	e correttar a base delle V_{TOT} e V_{TOT} on frontatel atate la sor	nente l'er le misure I_I rispettivo con i va nma (V_I)	rore!). e delle relativ vamente ai cap alori attesi. $V_{TO} = V_{TO}$	ve incertezze pi della serie
$R_{I,\text{nom}}[$] (nominale)	Toller. [%]	$R_{2,\text{nom}}[$] (nominale)	Toller. [%]	$\alpha_{ m att,nom}$			$R_2 \lesssim$	V	V_2
						+	R_{I}	V)	V_I V_{TO}
$R_I[$]		R ₂ []		a _{atteso}		modo oppo collegandol	rtuno, oppu i di volta in	collegandolo di vo ure i due tester a volta (indicate e i la vostra scelta)	olta in volta in disposizione
V _{TOT} [V]		<i>V</i> ₁ [V]	$\alpha = V$	1/V _{TOT}		<i>V</i> ₂ [V]		$(V_1 + V_2)$	√₂) [V]
Commenti (inclu	udata ancha	il confronto tra V_{TOT}	o V. misurat	ro a circuito ano	erto in n	agina proce	adanta):		
Comment (meia	idete afficile	ii comfonto tra v _{TOT}	e v _o misurat	o a circuito apei	irto iii pa	авша ргесе	edentej.		
									Page 2 of 2