Clustering:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns e.g. in
 - Group emails or search results
 - Customer shopping patterns
 - Regions of images
- Useful when don't know what you're looking for
- But: can get gibberish

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small Euclidean distance (squared)

$$\operatorname{dist}(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||_2^2$$

 Clustering results are crucially dependent on the measure of similarity (or distance) between "points" to be clustered

Clustering algorithms

- Partition algorithms (Flat)
 - K-means
 - Mixture of Gaussian
 - Spectral Clustering

- Hierarchical algorithms
 - Bottom up agglomerative
 - Top down divisive

Clustering examples

Image segmentation

Goal: Break up the image into meaningful or perceptually similar regions

Clustering examples

Clustering gene expression data

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

 Pick K random points as cluster centers (means)

Shown here for *K*=2

Iterative Step 1

 Assign data points to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

 Repeat until convergence

Properties of K-means algorithm

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
 - 1. Assign data points to closest cluster center

O(KN) time

2. Change the cluster center to the average of its assigned points

O(N)

What properties should a distance measure have?

- Symmetric
 - -D(A,B)=D(B,A)
 - Otherwise, we can say A looks like B but B does not look like A
- Positivity, and self-similarity
 - D(A,B)≥0, and D(A,B)=0 iff A=B
 - Otherwise there will different objects that we cannot tell apart
- Triangle inequality
 - $D(A,B)+D(B,C) \ge D(A,C)$
 - Otherwise one can say "A is like B, B is like C, but A is not like C at all"

Kmeans Convergence

Objective

$$\min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

Fix μ , optimize C:

optimize *C*:
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2 = \min_{C} \sum_{i} |x_i - \mu_{x_i}|^2$$
Step 1 of kmeans

2. Fix C, optimize μ :

$$\min_{\mu} \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2$$

– Take partial derivative of μ_i and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Step 2 of kmeans

Kmeans takes an alternating optimization approach, each step is guaranteed to decrease the objective - thus guaranteed to converge

Example: K-Means for Segmentation

K=2

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Original

Example: K-Means for Segmentation

K=2

K=3

Original

Example: K-Means for Segmentation

Example: Vector quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 – 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

[Figure from Hastie et al. book]

Initialization

- K-means algorithm is a heuristic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics

K-Means Getting Stuck

A local optimum:

Would be better to have one cluster here

K-means not able to properly cluster

Changing the features (distance function) can help

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

 How should we define "closest" for clusters with multiple elements?

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
- Different choices create different clustering behaviors

 How should we define "closest" for clusters with multiple elements?

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

[Pictures from Thorsten Joachims]

Clustering Behavior

Mouse tumor data from [Hastie et al.]

Agglomerative Clustering Questions

- Will agglomerative clustering converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
- Do people ever use it?
- How many clusters to pick?

Reconsidering "hard assignments"?

- Clusters may overlap
- Some clusters may be "wider" than others
- Distances can be deceiving!