Sound and Music Computing

L5: Automatic Speech Recognition (ASR)

Wang Ye

www.comp.nus.edu.sg/~wangye

wangye@comp.nus.edu.sg

Office: AS6-04-08

Topics to Cover (<u>selective approach</u>)

Part A: The Core

- Introduction
- Review of DFT, Audio Representation, and Machine Learning
- Music Representation, Analysis and Transcription
- Automatic Music Transcription (AMT)
- ➤ Automatic Speech Recognition (ASR)
- Generative Models for Text-to-Speech (TTS) & Singing Voice Synthesis (SVS)

Midterm break

Part B: The Breadth

- Spoken language assessment
- Singing voice processing
- Music production audio effects
- Automatic Music Generation
- Synthesis of sound & music a DSP approach
- Project presentations/demo

Topics Today

Part A: Overview of Automatic Speech Recognition (ASR)

Part B: Development of ASR System

Part C: End-to-End ASR System

Part D: Automatic Lyric Transcription (ALT)

What is Automatic Speech Recognition (ASR)?

- ASR task aims to transcribe a speech waveform into a text transcript
- Also known as speech-to-text (STT); the reverse is known as TTS
- Variants keyword spotting (KWS), voice command recognition
- Speaker identification/verification
- Variants e.g, speaker diarization
- Large vocabulary continuous speech recognition (LVCSR)

Draw an analogy between speech and music

Speech is usually represented as a sequence of acoustic features

Acoustic Features
$$X = \{x_t \in R^D | t = 1, 2, ..., T\}$$

Raw waveform:

- ➤ 1-D Temporal domain representation
- > Sampling rate, channels
- High-dimensional

Spectral features:

- Time-frequency domain representation
- > MFCC, STFT, filter bank
- Low-dimensional

IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

Vocabulary (types of tokens):

- > Word
- > Character
- > Phoneme
- > Sub-word

Text transcript
$$W = \{w_n \in V | n = 1, 2, ..., N\}$$

IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

- > Word
- > Character
- > Phoneme
- Sub-word

IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

- > Word
- Character
- > Phoneme
- Sub-word

IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

/n/ /ao/ /t/ \ *W*_i

- > Word
- Character
- Phoneme
- > Sub-word

IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

- > Word
- Character
- > Phoneme
- Sub-word

How to build an ASR system?

Modeling ASR task as a machine learning problem:

Supervised learning dominates the paradigm

Semi-supervised and unsupervised learning are being investigated for ASR

Word Error Rate (WER): most widely used metric

Ref. IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

Out. IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN KINGDOM

S

Substitutions

Word Error Rate (WER): most widely used metric

Ref. IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

Out. IF I DO NOT BELIEVE IN DOGMA IT BECAUSE I BELIEVE IN FREEDOM

D

Deletions

Word Error Rate (WER): most widely used metric

Ref. IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I BELIEVE IN FREEDOM

Out. IF I DO NOT BELIEVE IN DOGMA IT IS BECAUSE I AM BELIEVE IN FREEDOM

I

Insertions

Word Error Rate (WER): most widely used metric

$$WER = \frac{S+D+I}{N} = \frac{S+D+I}{S+D+C}$$

- S is the number of word substitutions
- D is the number of word deletions
- I is the number of word insertions
- C is the number of correct words
- N is the total number of words in the reference

Similarly, we can define:

Character Error Rate (CER)

Phoneme Error Rate (PER), etc.

Topics Today

Part A: Overview of Automatic Speech Recognition (ASR)

Part B: Development of ASR System

Part C: End-to-End ASR System

Part D: Automatic Lyric Transcription (ALT)

Development of ASR System over the years

ASR Performance on Switchboard dataset (Benchmark English Corpus)

HMM/GMM framework dominated ASR for half a century

DL based methods have emerged in the past decade

Template-based ASR

Training phase:

- Build a database for referenced templates
- Each template is the representation of an actual speech segment together with its transcription, neighboring templates, metainformation, etc.

Testing phase:

➤ Match the speech segments of test data with referenced templates through DTW (Dynamic Time Warping) algorithm

e.g., digit recognition

Statistical ASR

Statistical Approach:

During the testing (or called decoding): Aims to find the most likely sequence of tokens (W) given the sequence of acoustic features (X)

Statistical ASR

Statistical Approach:

- During the testing (or called decoding): Aims to find the most likely sequence of tokens (W) given the sequence of acoustic features (X)
- \blacktriangleright During the training: Aims to train the model Φ to maximize the probability given the pairs of W and X

Statistical ASR: HMM-based ASR

Hidden Markov Model (HMM)-based ASR:

- ➤ Adopt Bayes' Theorem to optimize the posterior
- Model the likelihood via Acoustic Model and prior via Language Model

Statistical ASR: HMM-based ASR

HMM-based ASR:

- ➤ Adopt Bayes' Theorem to optimize the posterior
- Model the likelihood via Acoustic Model and prior via Language Model
- > Split word sequence into phoneme sequence via Pronunciation Model

HMM based Automatic Speech Recognition (ASR) System

Basic ASR Formulation (Bayes Method)

Statistical ASR: HMM-based ASR

HMM-based ASR:

- Acoustic Model is HMM-based
- \triangleright State can be the phoneme s_t

State sequence (hidden) s_t

Emission distribution $p(x_t|s_t)$

Observation sequence (feature vectors) x_t

Statistical ASR: HMM-based ASR

GMM-HMM ASR

- Model the emission probability density via Gaussian Mixture Model (GMM)
- GMM is a linear combination of Gaussian distribution

$$p(\mathbf{x}) = \sum_{m=1}^{M} P(m)p(\mathbf{x}|m) = \sum_{m=1}^{M} P(m)N(\mathbf{x}; \boldsymbol{\mu}_{m}, \sigma_{m}^{2} \boldsymbol{I})$$

DNN-HMM ASR

Model the emission probability density via Deep Neural Network (DNN)

Statistical ASR: End-to-End ASR

End-to-End ASR:

- Directly optimize the following objective
- Achieve State-of-the-art Performance on benchmark ASR datasets

Focus of this lecture and assignment 3!

Topics Today

Part A: Overview of Automatic Speech Recognition (ASR)

Part B: Development of ASR System

Part C: End-to-End ASR System

Part D: Automatic Lyric Transcription (ALT)

Overview of End-to-End ASR System

Modeling ASR task as a sequence-to-sequence classification problem

Problems:

- $\succ X$ and W can vary in length, normally $T \gg N$
- \blacktriangleright The ratio of the lengths of X and W can very, $\frac{T}{N}$ is different for each pair
- Accurate alignment of X and W is absent

Overview of End-to-End ASR System

Problems:

- \triangleright X and W can vary in length, normally $T \gg N$
- \blacktriangleright The ratio of the lengths of X and W can very, $\frac{T}{N}$ is different for each pair
- ➤ Accurate alignment of *X* and *W* is absent

Solutions:

- Connectionist Temporal Classification (CTC)
- Encoder/Decoder with Attention
- Hybrid CTC-Attention
- > Transducer

Connectionist Temporal Classification (CTC)

- > CTC is introduced to label unsegmented sequences directly
- CTC adopts an encoder to predict frame-level text transcript, or called alignment

Motivation of CTC

- Figure 3.2. Given acoustic features $X = [x_1, x_2, ..., x_T]$ and output text transcription $W = [w_1, w_2, ..., w_N]$, how can we align them?
- Naïve Method: remove the repeated tokens

- [1] Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 23rd international conference on Machine learning. 2006: 369-376.
- [2] Hannun A. Sequence modeling with ctc[J]. Distill, 2017, 2(11): e8.

How does CTC work?

 \succ CTC introduces a **blank token** ε (different from space token), which is removed after merging the repeated predicted tokens

How to compute CTC loss?

> A correct text transcript corresponds to multiple alignments

 \triangleright The probability P(W|X) can be represented as

$$P(W|X) = \sum_{\pi \in B^{-1}(W)} \prod_{t=1}^{T} p(\pi_t | \mathbf{x}_t)$$

Loss function can be written as:

$$L_{CTC} = -\log \sum_{\pi \in B^{-1}(W)} \prod_{t=1}^{T} p(\pi_t | \mathbf{x}_t)$$

Encoder/Decoder with Attention

- Encoder: transform the acoustic features into a sequence of hidden features
- Attention: allows the decoder to pay attention to different parts of hidden features when predicting each token

Decoder: accepts previous tokens and hidden features, decodes them

[1] Bahdanau D, Chorowski J, Serdyuk D, et al. End-to-end attention-based large vocabulary speech recognition[C]//2016 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2016: 4945-4949.

Encoder/Decoder with Attention

- Encoder: transform the acoustic features into a sequence of states
- Decoder: autoregressively predict the output tokens
- ➤ Attention: allows the decoder to pay attention to different parts of hidden states when predicting each token
- Attention type: content-aware attention / location-aware attention / multi-head attention

[3] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.

^[1] Bahdanau D, Chorowski J, Serdyuk D, et al. End-to-end attention-based large vocabulary speech recognition[C]//2016 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2016: 4945-4949.

^[2] Chorowski J K, Bahdanau D, Serdyuk D, et al. Attention-based models for speech recognition[J]. Advances in neural information processing systems, 2015, 28.

Encoder/Decoder with Attention

 \triangleright The probability P(W|X) can be represented as

$$P(W|X) = \prod_{n=1}^{N} p(w_n|w_{1:n-1}, X)$$

Loss function can be written as:

$$L_{S2S} = -\log \prod_{n=1}^{N} p(w_n | w_{1:n-1}, X)$$

Hybrid CTC-Attention

- Multi-task learning: combining CTC and Encoder/Decoder Attention
- Training Loss function

$$L_{Hybrid} = \lambda L_{CTC} + (1 - \lambda)L_{S2S}$$

$$= -\lambda \log \sum_{\pi \in B^{-1}(W)} \prod_{t=1}^{T} p(\pi_t | \mathbf{x}_t)$$

$$-(1 - \lambda) \log \prod_{n=1}^{N} p(w_n | w_{1:n-1}, X)$$

[1] Kim S, Hori T, Watanabe S. Joint CTC-attention based end-to-end speech recognition using multi-task learning[C]//2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017: 4835-4839.

Transducer

- ➤ Encoder: transform the acoustic features into a sequence of hidden features
- Predictor: autoregressively predict the output tokens by only taking previous tokens
- ➤ Joiner: combine the hidden features and predictor outputs and outputs the distribution over possible tokens (including a Ø token)

$$p_{t,u} = P(w_{t,n}|w_{1:n-1}, X)$$

[1] Lugosch, Loren. "Sequence-to-sequence learning with Transducers", 2020. https://lorenlugosch.github.io/posts/2020/11/transducer/

How to Implement an End-to-End ASR system?

Encoder, Decoder, Predictor, Joiner are implemented by deep learning models:

- Multi-layer Perceptron (MLP)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
- > Transformer
- Representative variants: Jasper, Conformer, wav2vec 2.0, etc.

Encoder performs representation learning, which makes it an important part of the whole model

Example 1: Jasper

- Implemented the CTC encoder as a 1D-CNN
- Residual blocks and Dense blocks design

[1] Li J, Lavrukhin V, Ginsburg B, et al. Jasper: An end-to-end convolutional neural acoustic model[J]. arXiv preprint arXiv:1904.03288, 2019.

Example 2: Speech-Transformer

- Motivated by the success of Transformer in NLP field
- CNN are used to exploit the structure locality of inputs

Output

[1] Dong L, Xu S, Xu B. Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 5884-5888.

Example 3: Conformer

- Conformer combines both CNN and Transformer
- Fully exploit local/global dependencies among features of different frames

[1] Gulati A, Qin J, Chiu C C, et al. Conformer: Convolution-augmented transformer for speech recognition[J]. arXiv preprint arXiv:2005.08100, 2020.

Example 4: wav2vec 2.0 architecture

- wav2vec 2.0 can be adopted as the encoder to extract deep representations from raw audio
- wav2vec 2.0 includes a CNN and a Transformer

[1] Baevski A, Zhou Y, Mohamed A, et al. wav2vec 2.0: A framework for self-supervised learning of speech representations[J]. Advances in Neural Information Processing Systems, 2020, 33: 12449-12460.

Example 4: wav2vec 2.0 training

Training wav2vec 2.0 has two stages:

Stage I: Self-supervised Contrastive Learning

Stage II: Supervised Fine-tuning

Language Model (LM)

HMM-based ASR: LM participates in the testing phase

$$\widehat{W} = \operatorname*{argmax}_{W \in V} P_{\Theta}(X|W) P_{\Theta}(W)$$
Language Model

➤ End-to-End ASR: LM can serve as *regularization* to original optimization objective, empirically improve ASR performance

$$\widehat{W} = \underset{W \in V}{\operatorname{argmax}} P_{\Phi}(W|X)$$

$$\mathbb{L} \text{anguage Model}$$

$$\widehat{W} = \underset{W \in V}{\operatorname{argmax}} P_{\Phi}(W|X) P_{\Theta}(W)^{\beta}$$

What is LM?

 \triangleright LM is a system which can predict the next token w_{t+1} given a sequence of previous tokens w_1, \dots, w_t

$$P(w_{t+1}|w_1, w_2, ..., w_t)$$

 \triangleright LM can also model the probability of a sequence of tokens w_1, \dots, w_T

$$P(w_1, w_2, \dots, w_T) = \prod_{t=1}^T P(w_t | w_1, \dots, w_{t-1})$$

$$\text{LM's output}$$

LM families: *n-gram LM*, RNNLM, Transformer LM

n-gram LM definition

➤ An *n-gram* is a chunk of n consecutive tokens, take words as examples

Unigrams: "he", "is", "a", "hero"

Bigrams: "he is", "is a", "a hero"

Trigrams: "he is a", "is a hero"

4-grams: "he is a hero"

(n-1)-order Markov assumption: n-gram LM assumes w_{t+1} only depends on the previous n-1 tokens w_{t-n+2} , ..., w_t

$$P(w_{t+1}|w_1, w_2, ..., w_t) = P(w_{t+1}|w_{t-n+2}, ..., w_t)$$
 n-gram prob
$$= \frac{P(w_{t-n+2}, ..., w_t, w_{t+1})}{P(w_{t-n+2}, ..., w_t)}$$
 (n-1)-gram prob

How to build an n-gram LM?

➤ How to compute n-gram probability and (n-1)-gram probability?

$$P(w_{t+1}|w_1, w_2, ..., w_t) = \frac{P(w_{t-n+2}, ..., w_t, w_{t+1})}{P(w_{t-n+2}, ..., w_t)}$$
 (n-1)-gram prob

- Solution: Count the frequencies of n-grams and (n-1)-grams in large corpus of text
- n-gram LM is a probabilistic model without deep learning

RNN LM definition

- \triangleright Directly model the $P(w_{t+1}|w_1, w_2, ..., w_t)$ by deep neural networks
- To enable the inputs with arbitrary length, RNN is adopted

E.g., Given four tokens, predict the next token

RNNLM implementation

- \triangleright Directly model the $P(w_{t+1}|w_1, w_2, ..., w_t)$ by deep neural networks
- > To enable the inputs with arbitrary length, RNN is adopted
- LSTM and GRU can alleviate vanishing gradient problem comparing to vanilla RNN

- ➤ Train an RNNLM: loss function is defined as cross-entropy between predicted probability distribution of next token and true next token
- Evaluate an RNNLM: standard evaluation metric is perplexity

perplexity =
$$\prod_{t=1}^{T} \left(\frac{1}{P_{LM}(w_{t+1}|w_1, w_2, ..., w_t)} \right)^{1/T}$$

Transformer LM

- Model $P(w_{t+1}|w_1, w_2, ..., w_t)$ by Transformer
- Transformer LM is capable of modeling long dependencies among tokens
- Training and evaluation of Transformer LM are like RNNLM

[1] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Advances in neural information processing systems, 2017, 30.

Decoding for ASR

> HMM-based ASR:

$$\widehat{W} = \underset{W \in V}{\operatorname{argmax}} P_{\Phi}(X|W) P_{\Theta}(W) = \underset{W \in V}{\operatorname{argmax}} \log P_{\Phi}(X|W) + \log P_{\Theta}(W)$$

End-to-End ASR:

$$\widehat{W} = \operatorname*{argmax}_{W \in V} P_{\Phi}(W|X) P_{\Theta}(W)^{\beta} = \operatorname*{argmax}_{W \in V} \log P_{\Phi}(W|X) + \beta \log P_{\Theta}(W)$$

➤ But how to optimize the above objectives, thus searching for the optimal *W*?

CTC Decoding

Take the CTC decoding for example. Suppose we use character as the token, X has T frames and the vocabulary has C tokens

Brute Force

- Check all the possible path, combine all identical tokens (merge repeated tokens and remove blank token) and compare the probability of the token sequences
- \triangleright Computational complexity is $O(C^T)$, best performance

Best path Decoding

- Choose the most likely character per frame
- May not be the most probable token sequence (text transcript) because a text transcript corresponds to multiple paths
- \triangleright Computational complexity is O(TC), suboptimal performance

- ➤ At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the text candidates not the alignment candidates

- At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the *text candidates not the alignment candidates*

58

- ➤ At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the *text candidates not the alignment candidates*

- ➤ At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the *text candidates not the alignment candidates*

- ➤ At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the *text candidates not the alignment candidates*

- ➤ At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the *text candidates not the alignment candidates*

- ➤ At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the *text candidates not the alignment candidates*

- ➤ At each frame, choose the *B* text candidates (beams) with highest probability and store them for the next frame
- ➤ NOTE: beams are the *text candidates not the alignment candidates*

- > Finally, choose the best beam as the prediction
- \triangleright Computational Complexity: O(TCB)

Please refer to the following material for detailed explanation

https://towardsdatascience.com/beam-search-decoding-in-ctc-trained-neural-networks-5a889a3d85a7

Topics Today

Part A: Overview of Automatic Speech Recognition (ASR)

Part B: Development of ASR System

Part C: End-to-End ASR System

Part D: Automatic Lyric Transcription (ALT)

What is Automatic Lyric Transcription (ALT)?

- ALT task aims to transcribe a singing waveform into lyrics
- A counterpart task of ASR

Relationship between ALT and ASR

Similarity:

- Both ASR and ALT aim to transcript the text from audio
- Singing voice and speech are produced by the same organ
- The target transcription have the same vocabularies

Discrepancies:

- Singing voice is less intelligible and harder to be recognized
- Pitch and duration are different

^[1] Zhang C, Yu J, Chang L C, et al. PDAugment: Data Augmentation by Pitch and Duration Adjustments for Automatic Lyrics Transcription[J]. arXiv preprint arXiv:2109.07940, 2021.

^[2] Gu X, Ou L, Ong D, Wang Y. MM-ALT: A Multimodal Automatic Lyric Transcription System[C]//Proceedings of the 30th ACM International Conference on Multimedia. 2022.

How to build an ALT system?

Take advantage of similarities between ASR and ALT

Adopt the same pipeline to train an ALT system

How to deal with the discrepancies

- Adjust speech data to generate "song-like" data
- Adapt the knowledge from ASR model to ALT model

Example 1: PDAugment

Generate "song-like" training data by adjusting duration of speech

^[1] Zhang C, Yu J, Chang L C, et al. PDAugment: Data Augmentation by Pitch and Duration Adjustments for Automatic Lyrics Transcription[J]. arXiv preprint arXiv:2109.07940, 2021.

Example 1: PDAugment

Generate "song-like" training data by adjusting pitch of speech

^[1] Zhang C, Yu J, Chang L C, et al. PDAugment: Data Augmentation by Pitch and Duration Adjustments for Automatic Lyrics Transcription[J]. arXiv preprint arXiv:2109.07940, 2021.

Example 2: Transfer Learning

- Fetch a wav2vec 2.0 after pre-training and fine-tuning on speech data
- Modify the head network and finetune the model on singing data
- Inherit the low-resource learning property

[1] Gu X, Ou L, Ong D, Wang Y. MM-ALT: A Multimodal Automatic Lyric Transcription System[C]//Proceedings of the 30th ACM International Conference on Multimedia. 2022.

Take home message

To implement ASR and ALT systems, please consider the following platforms:

- SpeechBrain: https://github.com/speechbrain/speechbrain (recommended)
- Fairseq: https://github.com/facebookresearch/fairseq (more powerful but more challenging)

If interested, please also consider the following material:

- Tutorial on SpeechBrain:
 https://colab.research.google.com/drive/1aFgzrUv3udM_gNJNUoLaHm78QHtxdlz?usp=sharing#scrollTo=gzNb1cZzvxUh
- Stanford lecture: https://www.youtube.com/watch?v=3MjlkWxXigM

Appendix 1: A nice introduction to Bayes Theorem, HMM and Viterbi Decoding. You are encouraged to watch it!

A friendly introduction to Bayes Theorem and Hidden Markov Models By Luis Serrano

https://www.youtube.com/watch?v=kqSzLo9fenk

Appendix 2: End-to-End Models for Speech Processing

https://www.youtube.com/watch?v=3MjlkWxXigM

Speech Recognition -- the classical way

Inference: Given audio features X = x₁x₂...x_T infer most likely text sequence Y* = y₁y₂...y_L that caused the audio features

Audio Features HMM-GMM Dictionary **Text**

Here is another nice tutorial on ASR:

https://www.youtube.com/watch?v=q67z7PTGRi8

Appendix 3: An intuitive introduction to language model!

The A.I. Hacker - Michael Phi I Built a Personal Speech Recognition System for my Al Assistant https://www.youtube.com/watch?v=Yerel6Gn3bM

Appendix 4: What is a language model then?

Language modelling is to assign probability values to sequences of words. A subject studied by *computational linguists*.

The probability values help us to answer the following questions, for example:

Which sentence is grammatically correct?

P("he eat pizza") < P("he eats pizza")

Which word order is correct?

P("love I cats") < P("I love cats")

Appendix 5: If we only have an acoustic model

A pronunciation token can be different words!

Appendix 6: Language model explained

Whats a more likely sentence?

Probability(I read a book) = 0.95

Probability(I red a book) = 0.25

Appendix 7: Language model explained

hypothesis (beams)

Probability(i read a book last night i like to read) = 0.95

Probability(i red a book last night i like to read) = 0.35

Probability(i red a book last night i like to reed) = 0.15