Partiel S3 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Répondre exclusivement sur le document réponse.

Exercice 1 (4 points)

Remplir le tableau présent sur le <u>document réponse</u>. Donnez le nouveau contenu des registres (sauf le **PC**) et/ou de la mémoire modifiés par les instructions. <u>Vous utiliserez la représentation hexadécimale</u>. <u>La mémoire et les registres sont réinitialisés à chaque nouvelle instruction.</u>

```
Valeurs initiales: D0 = $FFFF0020 A0 = $00005000 PC = $00006000 D1 = $00000004 A1 = $00005008 D2 = $FFFFFFF A2 = $00005010 $005000 54 AF 18 B9 E7 21 48 C0 $005008 C9 10 11 C8 D4 36 1F 88 $005010 13 79 01 80 42 1A 2D 49
```

Exercice 2 (3 points)

Remplissez le tableau présent sur le <u>document réponse</u>. Donnez le résultat des additions ainsi que le contenu des bits **N**, **Z**, **V** et **C** du registre d'état.

Exercice 3 (4 points)

Soit le programme ci-dessous. Complétez le tableau présent sur le <u>document réponse</u>.

```
Main
            move.l #$9507,d7
            moveq.l #1,d1
next1
                    d7
            tst.l
            bpl
                    next2
            moveq.l #2,d1
            moveq.l #1,d2
next2
                    #$80,d7
            cmp.b
                    next3
            moveq.l #2,d2
next3
            clr.l
                    d3
            move.w
                    #$255,d0
            addq.l #1,d3
loop3
            subq.b #1,d0
                    loop3
                    d4
next4
            clr.l
                    #$93524,d0
            move.l
            addq.l #1,d4
loop4
                                   ; DBRA = DBF
                    d0,loop4
            dbra
quit
            illegal
```

Partiel S3 – Corrigé

Exercice 4 (9 points)

Toutes les questions de cet exercice sont indépendantes. À l'exception des registres utilisés pour renvoyer une valeur de sortie, aucun registre de donnée ou d'adresse ne devra être modifié en sortie de vos sous-programmes. Une chaîne de caractères se termine toujours par un caractère nul (la valeur zéro). On suppose pour tout l'exercice que les chaînes ne sont jamais vides (elles possèdent au moins un caractère non nul).

1. Réalisez le sous-programme **IsNumber** qui détermine si une chaîne de caractères contient uniquement des chiffres.

Entrée : A0.L pointe sur une chaîne qui n'est pas vide.

<u>Sortie</u>: Si la chaîne contient uniquement des chiffres, **D0.L** renvoie 0. Autrement, **D0.L** renvoie 1.

2. Réalisez le sous-programme **GetSum** qui additionne tous les chiffres présents dans une chaîne de caractères.

Entrée : **A0.L** pointe sur une chaîne qui n'est pas vide et qui contient uniquement des chiffres.

Sortie : **D0.L** renvoie la somme de tous les chiffres de la chaîne.

Exemple:

D0 doit renvoyer la valeur 37 (37 = 7 + 0 + 4 + 8 + 9 + 4 + 2 + 0 + 3).

Indications:

Réalisez une boucle qui pour chaque caractère de la chaîne :

- → Copie le caractère en cours dans le registre **D1.B** :
- → Convertit le caractère en une valeur numérique ;
- → Ajoute la valeur numérique du caractère au registre **D0.L**.
- 3. À l'aide des sous-programmes **IsNumber** et **GetSum**, réalisez le sous-programme **CheckSum** qui renvoie la somme des chiffres d'une chaîne de caractères.

Entrée : A0.L pointe sur une chaîne qui n'est pas vide.

<u>Sortie</u> : Si la chaîne contient uniquement des chiffres : **D0.L** renvoie 0 et **D1.L** renvoie la somme.

Autrement: **D0.I**, renvoie 1 et **D1.I**, renvoie 0.

Partiel S3 – Corrigé

	ASy68K Quick Reference v1.8 http://www.wowgwep.com/EASy68K.htm Copyright © 2004-2007 By: Chuck Kelly																	
Opcode	Size	Operand	CCR	-	Effe	ctive	Addres	S=2 2	ource,	urce, d=destination, e=either, i=displacement		Operation	Description					
	BWL	s,d	XNZVC	Dn	An	(An)	(An)+	-(An)	(i,An)	(i,An,Rn)	abs.W	abs.L	(i,PC)	(i,PC,Rn)	#n	•		
ABCD	В	Dy,Dx	*U*U*	9	-	-	-	-	-	-	-	-	-	-	-	$Dy_{10} + Dx_{10} + X \rightarrow Dx_{10}$	Add BCD source and eXtend bit to	
4 DD Å	DIW.	-(Ay),-(Ax)	****	-	-	-	-	9	-	-	-	-	-	-	- A	$-(Ay)_{10} + -(Ax)_{10} + X \rightarrow -(Ax)_{10}$	destination, BCD result	
ADD ⁴	BWL	s,Dn	****	9	S	S	S	S	S	S	S	S	S	S	l	s + Dn → Dn	Add binary (ADDI or ADDQ is used when	
		Dn,d		9	ď	d	d	d	d	d	d	d	-	-	-	$Dn + d \rightarrow d$	source is #n. Prevent ADDQ with #n.L)	
ADDA 4	WL	s,An		S	9	S	S	S	S	S	S	S	S	S		s + An → An	Add address (.W sign-extended to .L)	
ADDI ⁴		#n,d	****	d	-	d	d	d	d	d	d	d	-	-	_	#n + d → d	Add immediate to destination	
ADDQ 4		#n,d	****	d	d	d	d	d	d	d	d	d	-	-	S	#n + d → d	Add quick immediate (#n range: 1 to 8)	
ADDX	BWL	Dy,Dx	****	9	-	-	-	-	-	-	-	-	-	-	-	$Dy + Dx + X \rightarrow Dx$	Add source and eXtend bit to destination	
		-(Ay),-(Ax)		-	-	-	-	9	-	-	-	-	-	-	-	$-(Ay) + -(Ax) + X \rightarrow -(Ax)$		
AND 4	BWL	s,Dn	-**00	9	-	S	2	S	S	S	S	S	S	2	S ⁴	s AND Dn → Dn	Logical AND source to destination	
		Dn,d		9	-	d	d	d	d	d	d	d	-	-	-	Dn AND d \rightarrow d	(ANDI is used when source is #n)	
ANDI ⁴	BWL	#n,d	-**00	d	-	d	d	d	d	d	d	d	-	-		#n AND d \rightarrow d	Logical AND immediate to destination	
ANDI ⁴	В	#n,CCR	=====	-	-	-	-	-	-	-	-	-	-	-	2	#n AND CCR → CCR	Logical AND immediate to CCR	
ANDI 4	W	#n,SR	=====	-	-	-	-	-	-	-	-	-	-	-	S	#n AND SR → SR	Logical AND immediate to SR (Privileged)	
ASL	BWL	Dx,Dy	****	9	-	-	-	-	-	-	-	-	-	-	-	X - 0	Arithmetic shift Dy by Dx bits left/right	
ASR		#n,Dy		d	-	-	-	-	-	-	-	-	-	-	S		Arithmetic shift Dy #n bits L/R (#n:1 to 8)	
	W	d		-	-	d	d	d	d	d	d	d	-	-	-	↓ C	Arithmetic shift ds I bit left/right (.W only)	
Всс	BM ₃	address ²		-	-	-	-	-	-	-	-	-	-	-	-	if cc true then	Branch conditionally (cc table on back)	
																address → PC	(8 or 16-bit ± offset to address)	
BCHG	ВL	Dn,d	*	e¹	-	d	d	d	d	d	d	d	-	-	-	NOT(bit number of d) \rightarrow Z	Set Z with state of specified bit in d then	
	-	#n,d		ď	-	ď	ď	ď	ď	ď	ď	ď	-	-	s	NOT(bit n of d) \rightarrow bit n of d	invert the bit in d	
BCLR	B L	Dn,d	*	el	-	d	Ч	d	Ч	d	Ч	d	-	-	-	NDT(bit number of d) \rightarrow Z	Set Z with state of specified bit in d then	
DDLIN	-	#n,d		ď	_	ď	ď	ď	ď	ď	ď	ď	_	-	s	0 → bit number of d	clear the bit in d	
BRA	BW3	address ²		-	-	-	-	-	-	-	-	-	-	-	-	address → PC	Branch always (8 or 16-bit ± offset to addr)	
BSET		Dn,d	*	el	-	d	ф	d	d	d	d	d	-	_	-	NOT(bit n of d) \rightarrow Z	Set Z with state of specified bit in d then	
UULI	" "	#n,d		ď		ď	ď	d	ď	ď	ď	d	_	_		I → bit n of d	set the bit in d	
BSR	BW3	address ²		u	-	- u	- u	- u	- u	-	- u	-	-	-	-	$PC \rightarrow -(SP)$; address $\rightarrow PC$	Branch to subroutine (8 or 16-bit ± offset)	
BTST			*	-	-					d					-			
8191	lp r	Dn,d		e ¹	-	d	d	d	d d		d	d	d	d	-	NOT(bit On of d) \rightarrow Z	Set Z with state of specified bit in d	
DUIV	w	#n,d	-*UUU	ď	-	d	d	d		d	d	d	d	d		NOT(bit #n of d) → Z	Leave the bit in d unchanged	
CHK	W	s,Dn		9	-	2	2	S	2	2	S	S	S	S	-	if Dn <o dn="" or="">s then TRAP</o>	Compare On with O and upper bound (s)	
CLR	BWL	d	-0100	d	-	d	d	d	d	d	d	d	-	-	-	□ → d	Clear destination to zero	
CMP 4		s,Dn	_***	9	s4	S	S	S	S	2	S	S	S	S	s4	set CCR with Dn - s	Compare On to source	
CMPA 4	WL	s,An	_***	S	9	S	2	2	S	S	2	S	S	S	_	set CCR with An - s	Compare An to source	
CMPI ⁴	BWL	#n,d	_***	d	-	d	d	d	d	d	d	d	-	-	_	set CCR with d - #n	Compare destination to #n	
CMPM ⁴	BWL	(Ay)+,(Ax)+	-***	-	-	-	9	-	-	-	-	-	-	-	-	set CCR with (Ax) - (Ay)	Compare (Ax) to (Ay); Increment Ax and Ay	
DBcc	W	Dn,addres ²		-	-	-	-	-	-	-	-	-	-	-	-	if cc false then { Dn-1 → Dn if Dn <> -1 then addr → PC }	Test condition, decrement and branch (16-bit ± offset to address)	
DIVS	W	s,Dn	-***0	9	-	S	S	S	S	S	S	S	S	S	S	±32bit Dn / ±16bit s → ±Dn	On= (16-bit remainder, 16-bit quotient)	
DIVU	W	s,Dn	-***0	9	-	S	S	S	S	S	S	S	S	S	_	32bit Dn / 16bit s → Dn	On= (16-bit remainder, 16-bit quotient)	
EOR 4		Dn,d	-**00	9	-	d	d	d	d	d	d	d	-	-		Dn XOR d → d	Logical exclusive DR On to destination	
EORI 4		#n,d	-**00	_	-	d	Ч	ф	q	ф	4	ď	_	_		#n XOR d → d	Logical exclusive OR #n to destination	
EORI 4	В	#n,CCR	=====	u -	-	-	- u	- u	-	-	-	-	-	-		#n XDR CCR → CCR	Logical exclusive DR #n to CCR	
EORI 4	W	#n,SR		-	-	-	-	-	-	-	-	-	-	-		#n XOR SR → SR	Logical exclusive OR #n to SR (Privileged)	
EXG		Rx,Ry		-	-	-	-	-	-	-	-	-	-	-	S		Exchange registers (32-bit only)	
EXT			-**00	9	9	-	_	-		-		-	-		-	register ←→ register		
	WL	Dn	00	d	-	-	-	-	-	-	-	-	-	-	-	$Dn.B \rightarrow Dn.W \mid Dn.W \rightarrow Dn.L$	Sign extend (change .B to .W or .W to .L)	
ILLEGAL				-	-	-	-	-	-	-	-	-	-	-	-	PC →-(SSP); SR →-(SSP)	Generate Illegal Instruction exception	
JMP		d		-	-	d	-	-	d	d	d	d	d	d	-	↑d → PC	Jump to effective address of destination	
JSR		d		-	-	d	-	-	d	d	d	d	d	d	-	PC → -(SP); ↑d → PC	push PC, jump to subroutine at address d	
LEA	L	s,An		-	9	2	-	-	2	S	S	2	S	S	-	↑s → An	Load effective address of s to An	
LINK		An,#n		-	-	-	-	-	-	-	-	-	-	-	-	$An \rightarrow -(SP)$; $SP \rightarrow An$;	Create local workspace on stack	
																SP + #n → SP	(negative n to allocate space)	
LSL	BWL	Dx,Dy	***0*	9	-	-	-	-	-	-	-	-	-	-	-	X - 0	Logical shift Dy, Dx bits left/right	
LSR		#n,Dy		d	-	-	-	-	-	-	-	-	-	-	S	- X	Logical shift Dy, #n bits L/R (#n: 1 to 8)	
	W	d		-	-	d	d	d	d	d	d	d	-	-	-	□ → C X	Logical shift d I bit left/right (.W only)	
MOVE 4	BWL	s,d	-**00	9	s ⁴	е	е	9	В	В	е	В	S	S	s ⁴	s → d	Move data from source to destination	
MOVE	W	s,CCR	=====	S	-	S	S	S	S	S	s	2	S	2	S	s → CCR	Move source to Condition Code Register	
MOVE	W	s,SR	=====	S	-	S	S	S	S	S	S	S	S	S	S	s → SR	Move source to Status Register (Privileged)	
MOVE		SR,d		d	-	d	d	d	ď	d	ď	d	-	-	-	SR → d	Move Status Register to destination	
MOVE	"	USP,An		-	d	-	-	- u	-	-	-	-	-	-	-	USP → An	Move User Stack Pointer to An (Privileged)	
MUTL	'	An,USP			S			-	_		_	_	_			An → USP	Move An to User Stack Pointer (Privileged)	
	BWL		XNZVC	Da	An	(An)	(An)+	-(An)	(i An)	(i,An,Rn)	abs.W	aha I	(; DP)	(i,PC,Rn)	#	MII -7 UUF	MOVE All to oser otack Fulliter (Frivilegeo)	
	DWL	b,z	A112 V C	υII	AII	(AII)	(AII)*	-(AII)	(IJAII)	(IIX,IIA,I)	du5.11	ang.t	(1,14)	(I,Fu,KII)	#II		<u>l</u>	

Opcode	Size	Operand	CCR	E	Effec	ctive	Addres	s s=si	ource.	d=destina	tion, e:	eithe=	r. i=dis	placemen	t	Operation	Description
Броссо	BWL	s,d	XNZVC	-	An	(An)	(An)+	-(An)	(i,An)		abs.W	abs.L	(i,PC)	(i,PC,Rn)		270. 2.12.1	2000
MOVEA4		s,An		s	е	S	S	S	S	S	S	S	S	S	_	s → An	Move source to An (MOVE s,An use MOVEA)
MOVEM4		Rn-Rn,d		-	-	d	-	d	d	d	d	d	-	-	-	Registers → d	Move specified registers to/from memory
		s,Rn-Rn		-	-	S	S	-	S	S	S	S	S	S	-	s → Registers	(.W source is sign-extended to .L for Rn)
MOVEP	WL	Dn,(i,An)		S	-	-	-	-	d	-	-	-	-	-	-	Dn → (i,An)(i+2,An)(i+4,A.	Move Dn to/from alternate memory bytes
		(i,An),Dn		d	-	-	-	-	S	-	-	-	-	-	_		(Access only even or odd addresses)
MOVEQ ⁴	L	#n,Dn	-**00	d	-	-	-	-	-	-	-	-	-	-	s	#n → Dn	Move sign extended 8-bit #n to Dn
MULS	W	s,Dn	-**00	9	-	S	S	S	S	S	S	S	S	S	S	±16bit s * ±16bit Dn → ±On	Multiply signed 16-bit; result: signed 32-bit
MULU	W	s,Dn	-**00	е	-	S	S	S	S	S	S	S	S	S	S	16bit s * 16bit Dn → Dn	Multiply unsig'd 16-bit; result: unsig'd 32-bit
NBCD	В	d	*U*U*	ф	-	d	d	d	ф	d	d	d	-	-	-	0 - d ₁₀ - X → d	Negate BCD with eXtend, BCD result
NEG	BWL	d	****	d	-	d	d	d	ď	d	ď	d	-	-	-	0 - d → d	Negate destination (2's complement)
NEGX		d	****	d	-	ď	ď	d	ď	d	ď	d	-	-	-	0 - d - X → d	Negate destination with eXtend
NOP		-		-	-	-	-	-	-	-	-	-	-	-	-	None	No operation occurs
NOT	BWL	d	-**00	d	-	ф	d	d	ф	d	d	d	-	-	-	NOT(d) → d	Logical NOT destination (I's complement)
OR ⁴		s,Dn	-**00	9	-	S	S	S	S	S	S	S	S	S	s ⁴	s OR On → On	Logical OR
lan.		Dn,d		9	_	ď	ď	ď	ď	ď	ď	ď	-	-	-	Dn OR d → d	(DRI is used when source is #n)
ORI 4	BWL	#n,d	-**00	d	-	d	d	d	ď	d	ď	d	-	-		#n OR d → d	Logical OR #n to destination
ORI ⁴	В	#n,CCR	=====	-	_	-	-	-	-	-	-	-	_	-		#n OR CCR → CCR	Logical OR #n to CCR
ORI ⁴	W	#n,SR	=====	-	_	_	-	_	-	-	-	-	-	-		#n OR SR → SR	Logical OR #n to SR (Privileged)
PEA	"1	S		_	_	S	-	_	S	S	S	S	S	S	-	↑s → -(SP)	Push effective address of s onto stack
RESET		۵			_	-	-	-	-	-	-	-	-	-	-	Assert RESET Line	Issue a hardware RESET (Privileged)
ROL	DWI	Dx,Dy	-**0*	9	-	<u> </u>	-	_	-	-	-	_	-	-	-		Rotate Dy, Dx bits left/right (without X)
ROR	DWL	#n,Dy		d e		_	-	-	_	_	-	-			s	C	Rotate Dy, #n bits left/right (#n: 1 to 8)
KUK	W	#11,Dy		u		d	d	d	d	d	d	d	_	_	-		Rotate d 1-bit left/right (.W only)
ROXL		Dx,Dy	***0*	9	-	-	- u	- u	- u	-	- u	- u	-	-	-	X	Rotate Dy, Dx bits L/R, X used then updated
ROXR	DIVL	#n,Dy		q	_	_	_	_	_	_	_	_	_	_	S	C - X	Rotate Dy, #n bits left/right (#n: 1 to 8)
KUAK	W	d d		-	_	d	d	d	d	d	d	d	_	_	-	X 📥 C	Rotate destination 1-bit left/right (.W only)
RTE	-"	u	=====	-	_	-	-	-	-	-	-	-	-	-	_	$(SP)+ \rightarrow SR; (SP)+ \rightarrow PC$	Return from exception (Privileged)
RTR				-	-	_	_	_	-	-	-	_	-	-	-	$(SP)^+ \rightarrow CCR, (SP)^+ \rightarrow PC$	Return from subroutine and restore CCR
RTS						-	-	_	_	_	-	_	-	-	_	(SP)+ → PC	Return from subroutine
SBCD	В	Dy,Dx	*U*U*	е	_	-	-	_	-	_	-	_	-	-	-	$Dx_{10} - Dy_{10} - X \rightarrow Dx_{10}$	Subtract BCD source and eXtend bit from
0000		-(Ay),-(Ax)		-			_	е	_	_	_	_		_	_	$-(Ax)_{10}(Ay)_{10} - X \rightarrow -(Ax)_{10}$	destination, BCD result
Scc	В	d		d	_	ф	d	d	d	ф	Ь	d	-	-		If cc is true then I's \rightarrow d	If cc true then d.B = 11111111
ULL		u		u		"	u	u	u	u	u	u	_		_	else O's → d	else d.B = 00000000
STOP		#n	=====	_		_	_	_	_	_	-	_	-	-	S	#n → SR; STOP	Move #n to SR, stop processor (Privileged)
SUB 4	BWL	s,Dn	****	9	-	S	S	S	S	S	S	S	S	S		Dn - s → Dn	Subtract binary (SUBI or SUBQ used when
000	DIVL	Dn,d		6	s d ⁴	ď	q	q	q	q	ď	q	-	-	١.	d - Dn → d	source is #n. Prevent SUBQ with #n.L)
SUBA 4	WL	s,An		S	e	S	S	S	S	S	S	S	S	S	S	An - s → An	Subtract address (.W sign-extended to .L)
SUBI 4		#n,d	****	q	-	d	q	q	q	q	q	q	-	-		d - #n → d	Subtract immediate from destination
SUBQ 4		#n,d	****	d	d	d	d	d	d	d	d	d	-	-		d - #n → d	Subtract quick immediate (#n range: 1 to 8)
SUBX		Dy,Dx	****	е	ш	u	u -	u -	- u	- U	u -	u -	-	-	- 2	Dx - Dy - X → Dx	Subtract source and eXtend bit from
PUDY	DWL	-(Ay),-(Ax)		В	-	-	-		-	-	-	-	-	-	-	$-(Ax)(Ay) - X \rightarrow -(Ax)$	destination
SWAP	W	-(Ay),-(AX)	-**00	-	-	-	-	9	-	-	-	-	-	-	-	bits[31:16] ← → bits[15:0]	Exchange the 16-bit halves of Dn
TAS	В	d	-**00	d	-	- d	d	d	- d	٠ ـ	ď	d	-	-	-	test d→CCR: 1 →bit7 of d	N and Z set to reflect d, bit7 of d set to 1
	В			u	-	u	u	a	u	d	u	a	-	-	-		
TRAP		#n		-	-	-	-	-	-	-	-	-	-	-	S	PC →-(SSP); (VSP)-(SSP);	Push PC and SR, PC set by vector table #n
TDADV					Н											(vector table entry) → PC	(#n range: 0 to 15) If overflow, execute an Overflow TRAP
TRAPV	DWI		-**00	-	-	-	-	-	-	-	-	-	-	-	-	If V then TRAP #7	
TST	BWL			d	-	d	d	d	d	d	d	d	-	-	-	test d → CCR	N and Z set to reflect destination
UNLK	DWI	An		- D-	d An	- /A-1	(Ac):	- //->	/: A=>	/: A = N = \	ahr W	ab- I	/: DO	/: DC D_1	#-	$An \rightarrow SP; (SP)+ \rightarrow An$	Remove local workspace from stack
	BWL	s,d	XNZVC	Dn	An	(AII)	(An)+	-(An)	(i,An)	(i,An,Rn)	ads.W	ads.L	(1,26)	(i,PC,Rn)	#n		

Condition Tests (+ DR, ! NOT, ⊕ XDR; " Unsigned, " Alternate cc)							
CC	Condition	Test	CC	Condition	Test		
T	true	1	VC	overflow clear	!V		
F	false	0	VS	overflow set	V		
ΗI"	higher than	!(C + Z)	PL	plus	!N		
L2 _n	lower or same	C + Z	MI	minus	N		
HS", CCª	higher or same	!C	GE	greater or equal	!(N ⊕ V)		
LO", CS"	lower than	C	LT	less than	(N ⊕ V)		
NE	not equal	! Z	GT	greater than	$![(N \oplus V) + Z]$		
EQ	equal	Z	LE	less or equal	$(N \oplus V) + Z$		

Revised by Peter Csaszar, Lawrence Tech University - 2004-2006

- An Address register (16/32-bit, n=0-7)
- **Dn** Data register (8/16/32-bit, n=0-7)
- Rn any data or address register
- Source, **d** Destination
- Either source or destination #n Immediate data, i Displacement
- BCD Binary Coded Decimal
- Effective address
- Long only; all others are byte only
- Assembler calculates offset
- Branch sizes: .B or .S -128 to +127 bytes, .W or .L -32768 to +32767 bytes Assembler automatically uses A, I, Q or M form if possible. Use #n.L to prevent Quick optimization

Distributed under the GNU general public use license.

SSP Supervisor Stack Pointer (32-bit)

CCR Condition Code Register (lower 8-bits of SR)

N negative, Z zero, V overflow, C carry, X extend * set according to operation's result, = set directly

- not affected, O cleared, 1 set, U undefined

USP User Stack Pointer (32-bit)

SP Active Stack Pointer (same as A7)

PC Program Counter (24-bit)

SR Status Register (16-bit)

DOCUMENT RÉPONSE À RENDRE

Exercice 1

Instruction	Mémoire	Registre
Exemple	\$005000 54 AF 00 40 E7 21 48 C0	A0 = \$00005004 A1 = \$0000500C
Exemple	\$005008 C9 10 11 C8 D4 36 FF 88	Aucun changement
MOVE.L \$5006,(A1)+	\$005008 48 C0 C9 10 D4 36 1F 88	A1 = \$0000500C
MOVE.L #63,2(A1)	\$005008 C9 10 00 00 00 3F 1F 88	Aucun changement
MOVE.B 1(A2),-6(A2,D1.L)	\$005008 C9 10 11 C8 D4 36 79 88	Aucun changement
MOVE.W -8(A1),\$12(A1,D2.W)	\$005008 C9 10 54 AF D4 36 1F 88	Aucun changement

Exercice 2

Opération	Taille (bits)	Résultat (hexadécimal)	N	Z	V	C
\$59 + \$A4	8	\$FD	1	0	0	0
\$7F8C + \$24A6	16	\$A432	1	0	1	0
\$FFFFFFFF + \$EEEEEEEE	32	\$EEEEEED	1	0	0	1

Exercice 3

Valeurs des registres après exécution du programme. Utilisez la représentation hexadécimale sur 32 bits.								
D1 = \$00000001	D3 = \$00000055							
$\mathbf{D2} = \$00000002$	D4 = \$00003525							

Exercice 4

```
IsNumber
                    move.l a0,-(a7)
\loop
                    move.b
                            (a0)+,d0
                            \number
                    beq
                            #'0',d0
                    cmpi.b
                            \notANumber
                            #'9',d0
                    cmpi.b
                    bls
                            \loop
\notANumber
                    moveq.l #1,d0
                            \quit
                    bra
\number
                    clr.l
                            d0
quit
                    movea.l (a7)+,a0
                    rts
```

```
GetSum
                      movem.l a0/d1,-(a7)
                      clr.l
clr.l
                               d0
                               d1
\loop
                      move.b
                               (a0)+,d1
                                \quit
                      beq
                               #'0',d1
d1,d0
                       sub.b
                       add.l
                                \loop
                      bra
\quit
                      movem.l (a7)+,a0/d1
```

```
CheckSum
                     jsr
                             IsNumber
                     tst.l
                     bne
                              \notANumber
\number
                     jsr
                              GetSum
                     move.l
                             d0,d1
                     clr.l
                              d0
                     rts
\notANumber
                     clr.l
                             d1
                     rts
```