TA SPUTTERING TARGET AND ITS PRODUCTION

Patent number:

JP6264232

Publication date:

1994-09-20

Inventor:

SHIMIZU FUMIYUKI; YANO TOSHIHIRO; UMEMOTO YASUSHI

Applicant:

NIKKO KINZOKU KK

Classification:

- International:

C23C14/34; C22C27/02; C22F1/18

- european:

Application number: JP19930079055 19930312 Priority number(s): JP19930079055 19930312

Report a data error here

Abstract of JP6264232

PURPOSE:To form a thin film excellent in uniformity by using a target formed from a plastically worked material of Ta having a specified content of gaseous components and a specified average grain diameter. CONSTITUTION:This Ta sputtering target is formed from a plastically worked material of refined Ta having <=100ppm total content of gaseous components and <=1mm average grain diameter. A Ta ingot having <=100ppm total content of gaseous components is cold-worked at >=90% rate of working and recrystallized by heat treatment at 900-1,300 deg.C heating temp. in <=0.1mmbar vacuum. The target can be expected to contribute largely toward improving the performance of a member utilizing a thin Ta or Ta alloy film.

Data supplied from the **esp@cenet** database - Worldwide

IIIO FAUE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-264232

(43)公開日 平成6年(1994)9月20日

(51) Int.Cl. ⁶	
---------------------------	--

識別記号 庁内整理番号

技術表示箇所

C 2 3 C 14/34

A 9046-4K

C 2 2 C 27/02

103

C 2 2 F 1/18

G

審査請求 未請求 請求項の数2 FD (全 4 頁)

(21)出願番号

特願平5-79055

(22)出願日

平成5年(1993)3月12日

(71)出願人 592258063

FΙ

日鉱金属株式会社

東京都港区虎ノ門2丁目10番1号

(72)発明者 清水 史幸

茨城県日立市宮田町3453番地 日鉱金属株

式会社日立精錬所内

(72)発明者 矢野 俊宏

茨城県日立市宮田町3453番地 日鉱金属株

式会社日立精錬所内

(72)発明者 梅本 靖

茨城県日立市宮田町3453番地 日鉱金属株

式会社日立精錬所内

(74)代理人 弁理士 今井 毅

(54) 【発明の名称】 Ta製スパッタリングターゲットとその製造方法

(57) 【要約】

【目的】 Ta製スパッタリングターゲットを用いたスパッタリングにて、均一で高性能の薄膜を安定して得られる手立てを確立する。

【構成】 Ta製スパッタリングターゲットを、合計のガス成分含有量が100ppm以下で、かつ平均結晶粒径が1mm以下であるところの溶製したTaの塑性加工材にて構成する。また、このTa製スパッタリングターゲットを製造するため、合計のガス成分含有量が100ppm以下であるTa鋳塊を加工率:90%以上で冷間鍛造した後、0.1mmbar以下の真空中にて加熱温度:900~1300℃で熱処理し再結晶させる工程を採用する。

1

【特許請求の範囲】

【請求項1】 合計のガス成分含有量が100ppm 以下 で、かつ平均結晶粒径が1㎜以下であるところの、溶製 したTaの塑性加工材から成ることを特徴とするTa製スパ ッタリングターゲット。

【請求項2】 合計のガス成分含有量が100ppm 以下 であるTa鋳塊を加工率:90%以上の条件で冷間鍛造し た後、0.1mmbar以下の真空中にて加熱温度:900~1 300℃で熱処理し再結晶させる工程を含むことを特徴 とする、請求項1に記載のTa製スパッタリングターゲッ 10 研究を重ねた結果、次のような知見を得るに至った。 トの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、半導体デバイスの製 造や自動車等の熱線吸収ガラス被覆用として好適なTa (タンタル) 製スパッタリングターゲット、並びにその 製造方法に関するものである。

[0002]

【従来技術とその課題】従来、半導体デバイスにおける 電極配線層間の絶縁膜にはSiO2 膜が適用されていた 20 が、近年、LSIの高集積化が進んでSiO2 膜に対する 不満が出てきたこともあって、SiO2 膜に代わり Ta2O 5 薄膜を適用する試みが進んでいる。

【0003】そして、この Ta2 O5 薄膜の形成には、有 機反応ガスを用いてのCVD法や、Ta製スパッタリング ターゲット(以降 "Taターゲット"と略称する)を "ア ルゴン-酸素混合ガス"中でスパッタするスパッタリン グ法が用いられるが、総合的観点からはスパッタリング 法が有利であるとされている。

【0004】一方、これまでVLSIの電極としてMoや 30 W等の高融点金属シリサイド薄膜が使われてきている が、近年になってTaシリサイド膜が注目され、次期の電 極材料として有望視されている。このTaシリサイド膜の 形成にも幾つかの方法が考えられるが、その1つとし て、Taターゲットを用いたスパッタリングにより多結晶 シリコン上にTa膜を付着させ、その後シリコンとTaとを 反応させてTaシリサイド膜とする手法がある。

【0005】また、最近では、自動車用ガラス等の表面 を被覆する熱線吸収膜としてTaの薄膜を適用する試みも なされるようになり、このような方面からもTaターゲッ 40 トの需要増が見込まれている。

【0006】ところで、"Ta"や"Taシリサイド"等の 薄膜を形成するために使用される前記Taターゲットは、 現在、工業的には電解法等によって得た金属Taを溶解し てTaインゴットとし、これを加工して所望形状・寸法と する方法により製造されている。

【0007】しかしながら、上述のように適用分野が著 しく拡大しつつある "Ta"及び "Ta合金"の薄膜ではあ るが、本発明者等の詳細な検討によると、スパッタリン グによった場合には、軽微ではあるものの形成される 50 点」に大きな特徴を有し、更には「合計のガス成分含有

"Ta" 又は "Ta合金" の薄膜は均一性に欠けるきらいが あり、これを適用する半導体デバイスや熱線吸収ガラス 等の性能に少なからぬ悪影響を及ぼすことが懸念され

【0008】このようなことから、本発明が目的とした のは、Taターゲットを用いたスパッタリングに指摘され る上記問題を払拭し、均一で高性能の薄膜を安定して得 られる手立てを確立することである。

【0009】本発明者等は、上記目的を達成すべく鋭意

A) Taターゲットを用いたスパッタリングにて形成され る薄膜の均一性に対しては使用するTaターゲットの結晶 粒度が大きく影響しており、該結晶粒度は細かいほど好 ましい傾向となるが、その平均結晶粒径を特に 1 皿以下 に調整した場合に形成される薄膜の均一性改善効果が一 段と顕著になる。

【0010】B) ところが、詳細な検討を進める過程 で、確かに "Taターゲットの結晶粒微細化" は形成され る薄膜の均一化に著効があるものの、結晶粒の微細化だ けでは前記薄膜の均一性改善効果に限界があり、Taター ゲットの平均結晶粒径を1mm以下とした場合であって も、工業的規模での成膜操業の際には半導体デバイス用 や熱線吸収ガラス用等として十分満足できる程度に均一 な薄膜を常時安定に形成するのが困難な場合のあること が明らかとなった。

【0011】C) しかるに、Taターゲット中のO, N, C, S, H等といったガス成分の合計含有量を工業製品 としては類例のない100ppm 以下にまで低減した上 で、その平均結晶粒径を1㎜以下に調整すると、形成さ れる薄膜の均一性は飛躍的に改善され、工業的規模の成 膜操業においても"得られる薄膜の不均一性"に起因し た半導体デバイスや熱線吸収ガラス等の製品性能への悪 影響は殆ど無視できる程度に抑えられる。

【0012】D) なお、ガス成分の合計含有量が100 ppm 以下の前記Taターゲットは、例えば、電子ピーム溶 解した原料溶湯を一旦水冷式のコールドハース内に保持 して不純物を真空環境へ逸散させ、これをモールド内へ オーパーフローさせて連続的に凝固させつつインゴット として下方から引き抜く「電子ビームコールドハースリ メルト法」で得た"Taの鋳造インゴット"を出発材とし て製造することができる。

E) また、平均結晶粒径が1m以下という微細組織のTa ターゲットは、上記ガス成分量の少ない"Taの溶製材" に冷間で強加工を施し、これに特定条件の再結晶熱処理 を施すことによって実現できる。

【0013】本発明は、上記知見事項等に基づいて完成 されたものであり、「Taターゲットを、合計のガス成分 含有量が100ppm 以下で、かつ平均結晶粒径が1mm以 下であるところの溶製したTaの塑性加工材にて構成した 3

量が100ppm 以下であるTa鋳塊を加工率:90%以上の条件で冷間鍛造した後、0.1mmbar以下の真空中にて加熱温度:900~1300℃で熱処理し再結晶させる工程を取り入れることによって、前記合計のガス成分含有量が100ppm 以下で平均結晶粒径が1mm以下のTaターゲットを安定して製造できるようにした点」をも特徴としている。

【0014】ここで、Taターゲット中のガス成分含有量を合計で100ppm以下と限定したのは、合計のガス成分含有量が特に100ppm以下になると高真空中で使用 10 した際のガスの放出量が激減してパーティクル発生が殆どなくなり、平均結晶粒径が1mm以下のTaターゲットにおいてガス成分含有量の合計が100ppm以下であると、スパッタリングして形成される薄膜の均一性(膜厚,膜特性)が飛躍的に改善されて成膜安定性も著しく向上するためである。そして、合計のガス成分含有量100ppm以下のTaターゲットを得るには「電子ピームコールドハースリメルト法」で得た"Taの鋳造インゴット"を出発材とすれば良いことは先に述べた通りであるが、出来ればターゲット中に含有される各ガス成分やその他の不純物成分は次のレベルにまで低減することが望ましい。

〈ガス成分〉

O:50ppm 以下, N:50ppm 以下, C:50ppm 以下, S:10ppm 以下, H:10ppm 以下。

〈その他の不純物成分〉

Nb: 0.01wt%以下, W: 0.05wt%以下, Fe: 0.01wt%以下, Al: 0.01wt%以下, Ni: 0.01wt%以下。

【0015】また、Taターゲットの平均結晶粒径を1m以下と限定したのは、前述したように、平均結晶粒径が301mを超えていると、例えTaターゲット中のガス成分含有量が合計で100ppm以下であったとしてもスパッタリングにより形成される薄膜の均一性が十分でなく、半導体デバイスや熱線吸収ガラス等の製品性能への悪影響を拭い切れなくなるためである。更に、Taターゲットを"溶製材"としたのは、粉末冶金材では前述した微細結晶粒組織やガス成分含有量を達成できないことによる。

【0016】一方、Taターゲットを製造するに際して、まずTa鋳塊を90%以上の加工率で冷間鍛造するのは、該加工率が90%を下回ると、再結晶熱処理を施しても 40均一でかつ平均粒径:1m以下の結晶粒を得ることができないからである。

【0017】また、再結晶熱処理条件を前記の如くに限定したのは次の理由による。

a) 加熱環境

加熱環境の真空程度が0.1mmbarを上回ると、酸素や窒素等のために被処理材表面が汚染され、材料歩留やスパッタリングにて得られる薄膜の性能に悪影響が出るためである。

b) 加熱温度

加熱温度が900℃未満であると十分な再結晶がなされないので均一で微細な結晶粒組織が得られず、一方、1300℃を超えて加熱すると結晶粒の粗大化を招き、やはり均一微細な結晶粒組織を得ることがきない。そして、上記条件で冷間鍛造・再結晶熱処理が施された材料から、機械加工によってTaターゲットが切り出される。

【0018】ところで、冷間鍛造に供するTa鋳塊は合計のガス成分含有量が100ppm以下となるように溶製されたものを用いるが、このような高純度のTa鋳塊を工業的に得るために「電子ピームコールドハースリメルト法」が適用される。この「電子ピームコールドハースリメルト法」とは、図1で例示するように、電子ピーム溶解設備の溶解チャンパー1内に設置された水冷式銅モールド2の前方に銅製水冷式のコールドハース3を設置し、"原料水平装入装置4から供給される原料電極5を電子銃6からの電子ピームで溶解した原料溶湯"を一旦コールドハース3内に保持してからオーバーフローさせ、これを水冷式銅モールド2内に鋳込んで連続的に凝固させつつ下方から鋳塊7として引き抜く溶解・鋳造法である。なお、図中の符号6′は保温用電子銃、符号8は真空ポンプを示す。

【0019】この方法では、電子ビーム溶解された溶湯 を適宜の時間コールドハース内へ滞留させながら鋳型に 鋳込むため、コールドハース内に滞留している間に揮発 しやすい不純物が真空環境へ十分に揮散・除去されて高 純度の鋳塊が得られる。そこで、「電子ビームコールド ハースリメルト法」の優れた高純度化作用に着目した本 発明者等は、該方法をTaの溶解・鋳造に適用して溶製材 の製造実験を繰り返したところ、得られるTa溶解材は1 回の溶解操作にもかかわらずガス成分等の不純物が「髙 温・高真空下で使用しても殆どガスを発生しない程度」 にまで十分低減されることを確認した。また、この方法 によってTa溶解材中の合計ガス成分含有量が100ppm 以下となるように溶製すると、Taターゲットへの含有が 忌避される他の不純物 (アルカリ金属や放射性元素等) も半導体デパイス用として容認できるレベルにまで低減 していることも分かった。そして、これらの知見が本発 明の完成に大きく寄与することとなった。なお、電子ビ ームコールドハースリメルトに供する原料としては、Ta パウダーでもTaスクラップでも良い。

【0020】続いて、本発明を実施例によって更に具体的に説明する。

【実施例】まず、商業純度の純Ti製チューブ(外径:120mm×長さ:800mm×肉厚:1mm)にTaスクラップを充填した後、チューブ両端開口に商業純度の純Ti円盤をTIG溶接して溶解電極材を作成した。なお、ここで使用したTaスクラップの成分分析値は、表1に示す通りであった。

[0021]

50 【表1】

É	
- :	

			化 学	成	∌	(12)	割合)				
		%					bba				
	Al	Fe	Ti	W	No	Nb	0	N	С	S	Н
Tif1-7製Ta電極	0.001	0. 005	3.7	10	20	2.0	2700	55	140	1	30
Ta容製鋳塊	0. 0003	< 0. 001	<0,001	10	15	2.0	30	12	27	< 1	<1

【0022】次に、上記溶解電極材を図1に示す如き電 子ピームコールドハースリメルティング設備で、

溶解チャンパー内圧力:10-4 mmbar .

電子ピーム出力: 400 kW.

溶解温度:3200℃.

コールドハース内溶湯の表面積:500cm²,

鋳造速度: 50kg/hr

なる条件にて溶解して水冷式銅モールドに鋳造し、Ta鋳 塊を製造した。そして、このようにして得られたTaイン 20 極めて有用な効果がもたらされる。 ゴットについて成分分析を行ったが、その結果は表1に 併記した通りであった。この表1からも明らかなよう に、上記電子ビームコールドハースリメルティングによ ると揮発ロスしやすいTi分は蒸発除去され、純度の高い Taインゴットを溶製できることが分かる。

【0023】次いで、得られた前記Ta鋳塊を冷間(室 温) にて圧下率: 95%で据え込み鍛造し、板材とし た。そして、これを機械加工し、表面の加工仕上げを行 ってターゲット形状・寸法を整えた後、10-4mmbar の真 空圧力下において1100℃で2時間の真空熱処理を施 30 4 原料水平装入装置 して再結晶させ、ガス成分含有量の合計が表1に示した Ta鋳塊のそれと同じ100ppm 以下で平均結晶粒径が5 00μmの均一な組織を有するTaターゲットを製造し

【0024】このようにして製造されたTaターゲットを 用いてガラス面へのスパッタ試験を実施したところ、パ

-ティクルの発生もなく、膜厚, 膜質が共に極めて均一 なTa薄膜を形成することができた。

[0025]

【効果の総括】以上に説明した如く、この発明によれ ば、従来品と比較して均一性の更に優れた薄膜を形成す ることができるTa製スパッタリングターゲットを安定提 供することが可能となり、Ta又はTa合金薄膜を利用する 部材の性能向上に多大な寄与が期待できるなど、産業上

【図面の簡単な説明】

【図1】本発明法に適用し得る電子ピームコールドハー スリメルト装置例の概要説明図である。

【図2】実施例で使用した溶解電極材の概要説明図であ る。

【符号の説明】

- 1 溶解チャンパー
- 2 水冷式銅モールド
- 3 コールドハース
- 5 原料電極
- 6 電子銃
- 6′電子銃
- 7 鋳塊
- 8 真空ポンプ

【図1】

【図2】

