

BIG DATA PROCESSING

Machine Learning: Evaluations

Evaluation Process

- The evaluation are usually different on training and testing data
- The model that you have created normally will fit the value better
- The test set tell you how the model is actually performed

Python for data spilting

```
• (trainingData, testData) =
  df.randomSplit([0.8,0.2], seed = 13234 )
```


Error Rate for model performance

- Sum of square Error (SSE,ESS)
 - Estimate overall error

$$E = \sum (y - t)^2$$

- Mean square Error (MSE)
 - To normalised to the number of data

$$E = \frac{1}{N} \sum (y - t)^2$$

- Root mean square Error (RMS)
 - To measure the precision more common for regression

$$E = \sqrt{\frac{1}{N} \sum (y - t)^2}$$

Regression Evaluators

Define choice of evaluation
 from pyspark.ml.evaluation import RegressionEvaluator
 evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")

Display the result from prediction

rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

Classification

- Classification rate is more common
- Confusion Matrix is usually used

Examples

- Binary Classification
 - Binary output
 - 1 set of parameter output
 - Binary classification
- Multi class Classification
 - Multiclass Output
 - <u>C</u> sets of paremeter output
 - Covert string -> class

Binary classification:

Multi-class classification:

ROC Curve

Classification: Binary

Binary Classification

- from pyspark.ml.evaluation import BinaryClassificationEvaluator
- from pyspark.mllib.evaluation import BinaryClassificationMetrics
- evaluator = BinaryClassificationEvaluator (rawPredictionCol="rawPrediction", labelCol="Outcome", MetricName="areaUnderROC")
- AUC = evaluator.evaluate(predictions)

Confusion matrix(expand)

Accuracy rate:

The correct prediction value

- Use only correctly predicted data to compute
- From the example: (5+6)/20*100=55%

$$Acc = \frac{TP + TN}{TP + FP + TN + FN}$$

Rredict Actual	0	1
0	5	5
1	4	6

True Positive/Negative

• True Positive

- The value that is truly positive and being predicted correctly
- True Positive Rate (sensitivity)
 - The rate of true positive from all actual positive values
 - **Example** TPR=5 /10 =0.5 or 50% = $\frac{TP}{TP+FN}$

True Negative

- The value that is truly negative and being predicted correctly
- True Negative(spacifity)
 - The rate of true negative from all negative values
 - **Example** TN=6/10 =0.6 or $60\% = \frac{T\bar{N}}{TN+FP}$

False Positive/Negative

- False Positive
 - The value that is truly negative and being predicted as positive
- False Positive Rate
 - The rate of false positive from all
 - Example FPR=5/10 =0.5 or 50%= $\frac{FP}{FP+TN}$
- False Negative
 - The value that is truly positive but being predicted as negative
- False Negative
 - The percentage of the incorrectly predicted value as negative
 - Example FN=4/10 =0.4 or 40%= $\frac{FN}{FN+TP}$

Example 2

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Example 3

Precision/Recall

Precision

- Precision is the rate of correctly positive values compared to overall positive prediction
- Example precision (0)=5/9, precision (1)=6/11

Recall

- True positive rates (or true negative rate)
- **Example** recall(0)=5/10 ,recall(1) =6/10

Average / Weighted average

Average Precision

```
Example precision (0)=5/9 ,precision (1) =6/11
Average = 0.5 * (5/9 + 6/11) = 0.5*(0.556+0.5454) = 0.55
Weight Average = (9*0.556+11*0.5454) / 20 = 0.55
```

Average Recall → same as accuracy
 Example recall (0)=5/10 ,recall (1) =6/10
 Average =0.5 * (0.5+0.6) =0.55
 Weight Average = (the same)

F-Measure

• F₁ is a harmonic mean between precision and recall

•
$$F_1 = 2 \frac{recall.precision}{recall+precision}$$

Confusion Matrix 2

Predict True	0	1	undefined
0	4	3	4
1	6	4	2

Classification: Multiclass

Binary Classification

Multi class confusion Matrix

Confusion matrix for multi class problem

	Predicted				
Actual		Cat	Dog	Rabbit	
	Cat	5	2	0	
	Dog	3	3	2	
	Rabbit	0	1	11	

Question?

Accuracy

Recall

• Precision

