

Различие плотности газообразных и жидких веществ

Вещество	Давление, МПа	Плотность пара*, кг/м ³	Плотность жидкости*, кг/м ³	Отношение плотностей*	Плотность пара**, кг/м ³	Отношение плотностей**
Гелий	0,08	13,2	129,3	9,8		779,4
	0,1	16,5	125,2	7,6	0,2	755,0
	0,15	25,8	114,3	4,4		689,2
Водород	0,08	1,1	71,7	66,6		858,6
	0,1	1,3	70,9	53,9	0,1	848,8
	0,15	1,9	69,2	36,4		828,2
Кислород	0,08	3,6	1152	320,3		867,8
	0,1	4,4	1141,8	258,7	1,3	860,0
	0,15	6,4	1121,4	175		844,7
Азот	0,08	3,7	814,9	219,7		701,4
	0,1	4,6	806,6	177,0	1,2	694,3
	0,15	6,6	790,0	119,2		680,0

^{* -} насыщенное состояние, ** - при НУ (293К, 0,101 МПа), данные *REFPROP NIST*

Коэффициент сжимаемости

- компенсация отклонения термодинамических свойств реальных газов от свойств газа, описанного идеальной моделью.

Уравнение МК для 1 моля газа:

$$p \cdot V = z \cdot R \cdot T \Rightarrow z = \frac{p \cdot V}{R \cdot T}$$

Интерпретации

1. Если z > 1, то при сжатии в фиксированный объем поместится меньше газа:

$$z \approx \frac{V_{_{\mathrm{ИД}}}(T_{0}, p_{0})^{*}}{V_{_{\mathrm{Л}}}(T_{0}, p_{0})^{*}} \Rightarrow V_{_{\mathrm{Д}}} = \frac{V_{_{\mathrm{ИД}}}}{z} = \frac{1}{z} \cdot V_{_{\mathrm{ИД}}}$$

2. Если z > 1, то при сжатии реальный газ сопротивляется сильнее, чем идеальны:

$$zpprox rac{\Delta_{_{
m I\!\!\!/}}}{\Delta_{_{
m I\!\!\!/}}}$$

^{*} Одинаковые условия - температура и давление

Построение зависимости коэффициента сжимаемости

В библиотеке *REFPROP*, подключенной к Mathcad 15, коэффициент сжимаемости определяется функцией:

$$z = z_{Tdx}(T, \rho, X)$$

Т.е. является функцией температуры T и плотности ho, что соответствует опытным данным [1].

Удобный для анализа вид представления зависимости:

$$z = z_{Tdx}(T, \rho(p, T), X)_{|T=const|}$$

Вспомните нормальные температуры кипения, концентрации в воздушной смеси и области применения основных криогенных веществ:

 N_2 , O_2 , Ar, CO_2 , Ne, He, CH_4 , Kr, H_2 , Xe, Rn

Коэффициент сжимаемости He, Ar, CH_4 от давления при $T=293\ K$

Какое количество ГЕЛИЯ будет в баллоне (40 л) при давлении 100 бар при температуре 293 К?

3

Чем объясняется поведение функции коэффициента сжимаемости в области относительно низких значений давления?

Продолжите список веществ, которые могут иметь коэффициент сжимаемости больше или меньше 1 в широком диапазоне значений давления?

Какие вещества или смеси могут иметь коэффициент сжимаемости близкий к 1 в широком диапазоне значений давления?

^{*} Для одноатомных газов z может быть представлено через коэффициенты в степенном ряду [3]

Нормальные условия

Нормальные условия (НУ) регламентируются **ГОСТ 8.395-80** «Нормальные условия измерений при поверке», согласно которому:

Влияющая величи	Значение, допускаемое к ограниченному применению в качестве номинального					
Наименование/Размерность	Номинальное значение					
Температура						
К	293	273; 90; 4,2				
°C	20	23; 25; 27				
Атмосферное давление						
кПа	101,3	100				
Па	-	101325				
мм рт.ст. (торр)	760	750				
Относительная влажность, %	60	0, 55, 58, 65				

Приведение объемных расходов к «нормальным» единицам

Вариант 1. Через уравнение МК:

$$V_{\mathrm{Hy} \to \mathrm{p}} = V_{\mathrm{Hy}} \cdot \frac{p_{\mathrm{Hy}}}{p_{\mathrm{p}}} \cdot \frac{T_{\mathrm{p}}}{T_{\mathrm{Hy}}}$$

$$V_{\mathrm{p}
ightarrow\mathrm{Hy}} = V_{\mathrm{p}} \cdot rac{p_{\mathrm{p}}}{p_{\mathrm{Hy}}} \cdot rac{T_{\mathrm{Hy}}}{T_{\mathrm{p}}}$$

6

Предложите вещества и диапазоны рабочих давлений, для которых расчет по уравнению МК будет достаточно точен.

$$\begin{cases} G_{\rm p} = V_{\rm p} \cdot \rho_{\rm p}(T_{\rm p}, p_{\rm p}) \\ G_{\rm Hy} = V_{\rm Hy} \cdot \rho_{\rm Hy}(T_{\rm Hy}, p_{\rm Hy}) \Rightarrow \\ G_{\rm p} = G_{\rm cr} \end{cases} \begin{cases} V_{\rm p} = V_{\rm cr} \cdot \frac{\rho_{\rm Hy}(T_{\rm Hy}, p_{\rm Hy})}{\rho_{\rm p}(T_{\rm p}, p_{\rm p})} \\ V_{\rm Hy} = V_{\rm p} \cdot \frac{\rho_{\rm p}(T_{\rm p}, p_{\rm p})}{\rho_{\rm Hy}(T_{\rm Hy}, p_{\rm Hy})} \end{cases}$$

Здесь: $T_{\rm Hy}$ = 293,14 K (20°C), $p_{\rm Hy}$ =760 торр (101,3 кПа)

Пример приведения объемных единиц

Задача 7. Объемный расход воздуха на всасывании во вторую ступень компрессора составляет 10 м^3 при давлении 8 бар и температуре 300 K, определить нормальное количество газа, проходящее через эту ступень.

Решение:

Вариант 1. Воспользуемся уравнением МК, тогда:

$$V_{\mathrm{Hy}}^{I} = V_{\mathrm{p}} \cdot \frac{p_{\mathrm{p}}}{p_{\mathrm{Hy}}} \cdot \frac{T_{\mathrm{Hy}}}{T_{\mathrm{p}}} = 10 \cdot \frac{800 \text{ кПа}}{101,3 \text{ кПа}} \cdot \frac{293,14}{300} \approx 77,2 \text{ нм}^{3}$$

Вариант 2. Определим плотность воздуха при нормальных и рабочих условиях:

$$\rho_{\text{Hy}} = 1.2 \frac{\text{K}\Gamma}{\text{M}^3}, \qquad \rho_{\text{p}} = 9.3 \frac{\text{K}\Gamma}{\text{M}^3}$$

Тогда:

$$V_{\rm Hy}^{II} = V_{
m p} \cdot rac{
ho_{
m p} (T_{
m p}, p_{
m p})}{
ho_{
m Hy} (T_{
m Hy}, p_{
m Hy})} = 10 \cdot rac{9.3}{1.2} pprox 77.5 \ {
m HM}^3$$

Относительная погрешность расчета:

$$\Delta = \frac{\left|V_{\text{Hy}}^{I} - V_{\text{Hy}}^{II}\right|}{\max(V_{\text{Hy}}^{I}, V_{\text{Hy}}^{II})} = \frac{\left|77,2 - 77,5\right|}{77,5} = \frac{0,3}{77,5} \approx 0,4\%$$

Газовые баллоны

Баллоны для хранения и транспортировки газов под давлением изготавливают по **ГОСТ 949-57** «Баллоны стальные для газов»

Рабочее давление в баллонах может быть в зависимости от материала 100, 150 и 200 бар.

Емкость баллонов классифицируется как:

- малой емкости: 0,4; 0,7; 1 ; 1,3 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 10 ; 12
- средней емкости: 20; 25; 27; 30; 33; 36; 40; 45; 50; 55

По умолчанию вращательное движение маховика вентиля ПО часовой стрелке закрывает проходное сечение.

Для жидкого хлора и некоторых других веществ в баллон дополнительно помещается сифонная трубка, через которую происходит заправка и опорожнение баллона.

Общий вид газового баллона

Маркировка газового баллона

(*):

- 1. Символы «ЛМ» или «ПМ» тип наполнителя баллонов (ЛМ литая масса, ПМ пористая масса);
- 2. Заводской номер баллона;
- 3. Фактическая вместимость баллона по воде при изготовлении в литрах;
- 4. Фактическая масса корпуса баллона при изготовлении.
- 5. Рабочее «Р» и проверочное «П» давления баллона в атмосферах;
- 6. Дата изготовления и следующей переаттестации в формате «ММ.ГГ.АААА». Буква «N» клеймо завода, свидетельствующее о том, что запись относится к сведениям об изготовлении баллона.
- 7. Буквенно-цифровой шифр, обведенный в круг клеймо завода или лаборатории, где проводилась переаттестация;
- 8. Сведения о дальнейшей переаттестации баллона в формате «ММ.ГГ.АААА».

(**)

- 1. Рабочее давление баллона в МПа;
- 2. Проверочное (испытательное) давление баллона в МПа;
- 3. Фактический объем баллона при изготовлении в литрах;
- 4. Заводской номер баллона;
- 5. Дата изготовления баллона в формате «ММ.ГГ.АА»
- 6. Масса порожнего баллона при изготовлении в кг;
- 7. Номинальная масса баллона, полностью заполненного газом;
- 8. Сведения о дальнейшей переаттестации баллона в формате «R-AA», где «R» клеймо участка переаттестации баллонов.

Здесь: ММ – месяц изготовления, ГГ – две последние цифры года изготовления или переаттестации, АААА – год следующей переаттестации.

(*) Большинство газовых баллонов

(**) Пропановые баллоны

Маркировка газового баллона

Газ	Цвет баллона	Цвет надписи	Цвет полосы	Пример
Азот	Чёрный	Жёлтый	Коричневый	Азот
Аммиак	Жёлтый	Чёрный	_	Аммиак
Аргон сырой	Чёрный	Белый	Белый	Аргон сырой
Аргон технический	Чёрный	Синий	Синий	Аргон технический
Аргон чистый	Серый	Зелёный	Зелёный	Аргон чистый
Ацетилен	Белый	Красный	_	Ацетилен
Бутилен	Красный	Жёлтый	Чёрный	Бутилен
Водород	Тёмно-зелёный	Красный	_	Водород
Гелий	Коричневый	Белый	_	Гелий
Закись азота	Серый	Чёрный	_	Закись азота
Кислород	Голубой	Чёрный	_	Кислород
Нефтегаз	Серый	Красный	_	Нефтегаз
Сернистый ангидрид	Чёрный	Белый	Жёлтый	Сернистый ангидрид
Сжатый воздух	Чёрный	Белый	_	Сжатый воздух
Углекислота	Чёрный	Жёлтый	_	Углекислота
Хлор	Защитный	Чёрный	Зелёный	Хлор
Циклопропан	Оранжевый	Чёрный	_	Циклопропан
Этилен	Фиолетовый	Красный	_	Этилен
все остальные горючие газы (Метан, Этан, Пропан, Бутан)	Красный	Белый	_	Метан Этан Пропан Бутан
все остальные негорючие газы (Неон, Криптон, Ксенон)	Чёрный	Жёлтый	_	Неон Криптон Ксенон

Маркировка газового баллона

Следует запомнить следующие правила цветовой маркировки баллонов:

– окисляющий газ

– удушающий инертный газ

– инертный газ

Ручная транспортировка баллонов

Хранение и транспортировка баллонов

Список источников

- 1. Кочетков А.В., Федотов П.В. Интерпретация опытных данных по сжимаемости газов при различных условиях. Атомно-фотонный газ. Интернет-журнал «НАУКОВЕДЕНИЕ» Том 8, №2 (2016).
- 2. Лапшин В.И., Волков А.Н., Шафиев И.М. Коэффициент сжимаемости газов и газоконденсатных смесей: экспериментальное определение и расчеты. Актуальные вопросы исследований пластовых систем месторождений углеводородов. Часть І.
- 3. Малков М.П. и др. Справочник по физико-техническим основам глубокого охлаждения.
- 4. ГОСТ 8.395-80 «Нормальные условия измерений при поверке».
- 5. ГОСТ 949-57 «Баллоны стальные для газов»

Ответы на задачи

Задача 1

Вещество	Температура кипения, К	Концентрация в воздушной смеси, мольных долей	Число стабильных изотопов
Азот	78,09	77,36	2
Кислород	20,95	90,19	3
Аргон	0,93	87,29	3
Углекислота	0,03	194,6	-
Неон	18 ppm	27,11	3
Гелий	5,24 ppm	4,22	2
Метан	1,5 ppm	111,7	-
Криптон	1,14 ppm	119,8	5
Водород	0,5 ppm	20,39	2
Ксенон	80 ppb	165,05	8-9
Радон	6· 10 ^{−18}	211,35	-

Задача 2

Какое количество ГЕЛИЯ будет в баллоне (40 л) при давлении 100 бар при температуре 293 К?

Решение: Если принять газ идеальным, то в баллоне содержится:

$$V_{\scriptscriptstyle \mathrm{M} \Pi} = 100 \cdot 40 = 4000$$
 нл

По диаграмме коэффициент сжимаемости гелия при давлении 100 бар:

$$z = 1.05$$

Тогда:

$$V_{\mathrm{Д}} = \frac{1}{z} \cdot V_{\mathrm{ИД}} = \frac{1}{1,05} \cdot 4000 = 3809,5$$
 нл

Вывод: при сжатии атомы гелия находятся в отталкивающем взаимодействии на всем диапазоне значений давления, поэтому в конечном объеме гелия всегда будет меньше, чем идеального газа. Это свойственно только гелию, поскольку минимальное расстояние между атомами превышает размер самого атома в более чем 10 раз [1].

Задача 3, 4, 5, 6

Рис. 4.1. Коэффициенты сжимаемости газов при 15°C