Combo 5

July 2, 2024

1 Lema 9

1.1 Enunciado

Sean $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ conjuntos Σ -efectivamente enumerables. Entonces $S_1 \cap S_2$ es Σ -efectivamente enumerable.

Nota: es ejercicio de la guía 3 y en el apunte está probado.

1.2 Demostración

El caso en el que alguno de los conjuntos es vacío es trivial, al igual que $S_1 \cap S_2 = \emptyset$.

Supongamos que ambos conjuntos y su intersección son no vacíos. Sean \mathbb{P}_1 y \mathbb{P}_2 procedimientos que enumeran a S_1 y S_2 respectivamente, y $e_0 \in S_1 \cap S_2$ un elemento fijo de la intersección. Sea \mathbb{P} un procedimiento que enumere a $\omega \times \omega$, consideraremos el siguiente procedimiento \mathbb{Q} :

Etapa1 Realizar \mathbb{P} con dato de entrada x, para obtener un par $(x_1, x_2) \in \omega \times \omega$

Etapa2 Realizar \mathbb{P}_1 con dato de entrada x_1 para obtener un elemento $e_1 \in S_1$

Etapa3 Realizar \mathbb{P}_2 con dato de entrada x_2 para obtener un elemento $e_2 \in S_2$

Etapa4 Si $e_1 = e_2$, entonces dar como dato de salida e_1 . En caso contrario, dar como dato de salida e_0 .

Luego, lo que tenemos que hacer es demostrar que \mathbb{Q} enumera a $S_1 \cap S_2$. Para eso, sabemos por lema que se debe cumplir que:

- (1) El conjunto de datos de entrada de $\mathbb Q$ es ω
- (2) \mathbb{Q} se detiene para cada $x \in \omega$
- (3) El conjunto de datos de salida de \mathbb{Q} es igual a $S_1 \cap S_2$. (Es decir, siempre que \mathbb{Q} se detiene, da como salida un elemento de $S_1 \cap S_2$, y para cada elemento $(\vec{x}, \vec{\alpha}) \in S_1 \cap S_2$, hay un $x \in \omega$ tal que \mathbb{Q} da como salida a $(\vec{x}, \vec{\alpha})$ cuando lo corremos con x como dato de entrada)

Veamos cada uno de ellos:

- (1) Se cumple. Es trivial.
- (2) Se cumple. Es trivial.
- (3) Tenemos que ver las dos posibilidades:
 - (a) Dado $x \in \omega$, \mathbb{Q} se detiene y da como salida un elemento de $S_1 \cap S_2$: Esto se comprueba notando que en el caso que $e_1 = e_2$ entonces se devuelve e_1 , el cual claramente cumple que $e_1 \in S_1 \cap S_2$. Sin embargo, si la igualdad no se cumple, se devuelve e_0 , el cual está en la intersección por cómo lo definimos.
 - (b) Dado s ∈ S₁ ∩ S₂, ∃x ∈ ω tal que ℚ da como salida a s cuando lo corremos con x como dato de entrada: Como por definición sabemos que ℙ₁, ℙ₂ son procedimientos que enumeran a S₁, S₂, digamos que y₁, y₂ son los valores de entrada a estos procedimientos para obtener s. Luego, como ℙ enumera a ω × ω, digamos que x es el valor tal que ℙ se detiene y da como salida (y₁, y₂). Finalmente, es sencillo notar que, entonces, ℚ da como salida a s cuando se corre con x como dato de entrada.

Luego, claramente demostramos que \mathbb{Q} enumera a $S_1 \cap S_2$. Luego, por Lema tenemos que esto significa que $S_1 \cap S_2$ es Σ -efectivamente enumerable.

2 Lema 10: Lema de cuantificación acotada

2.1 Enunciado

Sea Σ un alfabeto finito. Sea $P: S \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$ un predicado Σ -p.r., con $S, S_1, ..., S_n \subseteq \omega$ y $L_1, ..., L_m \subseteq \Sigma^*$ no vacios. Supongamos $\bar{S} \subseteq S$ es Σ -p.r.. Entonces $\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -p.r..

2.2 Demostración

Sea

$$\bar{P} = P|_{\bar{S} \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m} \cup C_1^{1+n,m}|_{(\omega - \bar{S}) \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m}$$

Notese que \bar{P} tiene dominio $\omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ y es Σ -p.r.. Ya que

$$\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \le x} P(t, \vec{x}, \vec{\alpha}) \right] = \lambda x \vec{x} \vec{\alpha} \left[\prod_{t=0}^{t=x} \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$$
$$= \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{t=y} \bar{P}(t, \vec{x}, \vec{\alpha}) \right] \circ \left[C_0^{1+n, m}, p_1^{1+n, m}, \dots, p_{1+n+m}^{1+n, m} \right]$$

el Lema de que la productoria es Σ -p.r. implica que $\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \leq x} \ P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -p.r..