Lecture 11: Field Effect Transistors (FETs) (2)

MOSFET structure, Characteristics and parameters, Biasing of MOSFET, examples

MOSFET Transistor

Drain

p substrate

Source

SiO₂

The metal oxide semiconductor FET uses an insulated gate to isolate the gate from the channel. Two types are the enhancement mode (E-MOSFET) and the depletion mode (D-MOSFET).

An E-MOSFET has no channel until it is induced by a voltage applied to the gate, so it operates only in enhancement mode. An *n*-channel type is illustrated here; a positive gate voltage induces the channel.

D-MOSFET

The D-MOSFET has a channel that can be controlled by the gate voltage. For an *n*-channel type, a negative voltage depletes the channel; and a positive voltage enhances the channel.

D-MOSFET

A D-MOSFET can operate in either mode, depending on the gate voltage.

Circuit Symbols of MOSFETs

MOSFET symbols are shown. Notice the broken line representing the E-MOSFET that has an induced channel. The n channel has an inward pointing arrow.

Transfer Curves of E-MOSFET

The transfer curve for a MOSFET has the same parabolic shape as the JFET but the position is shifted along the *x*-axis. The transfer curve for an *n*-channel E-MOSFET is entirely in the first quadrant as shown

The curve starts at $V_{\rm GS(th)}$, which is a nonzero voltage that is required to have channel conduction. The equation for the drain current is $I_{\rm D} = K \left(V_{\rm GS} - V_{\rm GS(th)} \right)^2$

Example for E-MOSFET Drain Current

Problem 1: The datasheet for an E-MOSFET gives $I_{D(ON)}$ = 500 mA (minimum) at V_{GS} =10 V and $V_{GS(th)}$ =1 V. Determine the drain current for V_{GS} = 5 V.

Solution 1:

$$K = \frac{I_{D(ON)}}{\left(V_{GS} - V_{GS(th)}\right)^2}$$

$$I_{D(ON)}=I_{D1}$$

$$K = \frac{500 \, mA}{(10V - 1V)^2} = 6.17 \, mA/V^2$$

Using V_{GS}=5 V,

$$I_{D2} = K(V_{GS} - V_{GS(th)})^2 = (6.17 \text{ mA/V}^2)(5V - 1V)^2$$

$$I_{D2} = (6.17 \, mA/V^2)(5V - 1V)^2 = 98.7 \, mA$$

Transfer Curves of D-MOSFET

Recall that the D-MOSFET can be operated in either mode. For the *n*-channel device illustrated, operation to the left of the *y*-axis means it is in depletion mode; operation to the right means is in enhancement mode.

As with the JFET, I_D is zero at $V_{GS(off)}$. When V_{GS} is 0, the drain current is I_{DSS} , which for this device is *not* the maximum current. The equation for drain current is

$$I_{\rm D} \cong I_{\rm DSS} \left(1 - \frac{V_{\rm GS}}{V_{\rm GS(off)}} \right)^2$$

Example for D-MOSFET Drain Current

Problem 2: For a certain D-MOSFET, I_{DSS} = 10 mA and $V_{GS(off)}$ = - 8V Is this an n-channel or a p-channel? Calculate I_D at V_{GS} = ± 3 V.

Solution 2:

This is an n-channel MOSFET because it has negative V_{GS} . $I_{D1} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(off)}} \right)^2$ $I_{D1} = 10 \ mA \times \left(1 - \frac{-3 \ V}{O \ V}\right)^2$ $I_{D1} = 3.91 \, mA$ I_{DSS} $I_{D2} = 10 \ mA \times \left(1 - \frac{+3 \ V}{-8 \ V}\right)^2$ $+V_{GS}$ $I_{D2} = 18.9 \ mA$ $V_{GS(off)}$ -3 V+3V-8 V

Biasing of E-MOSFET

E-MOSFETs can be biased using bias methods like the JFETS and BJTs. Voltage-divider bias and drain-feedback bias are illustrated for *n*-channel devices.

Voltage-divider bias

Drain-feedback bias

Example for Drain Current and V_{DS}

Problem 3: The datasheet for this E-MOSFET shows that I_D = 10 mA when $V_{GS} = V_{DS}$. Find I_D and V_{DS} .

Solution 3:

Since no current flows in R_G

$$V_{GS} = V_{DS}$$
 $I_D = 10 mA$

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_{DS} = 20V - 10mA \times 1k\Omega = 10 V$$

$$V_{DS} = V_{GS} = 10 V$$

Biasing of a D-MOSFET

The simplest way to bias a D-MOSFET is with zero bias. This works because the device can operate in either depletion or enhancement mode, so the gate can go above or below 0 V.

Example for Drain to Source Voltage

Problem 4: Determine the drain-to-source voltage in the given circuit. The MOSFET datasheet gives $V_{GS(off)} = -8 \text{ V}$ and $I_{DSS} = 12 \text{ mA}$.

Solution 4:

No current flows in R_G

$$V_{GS} = 0$$
 $I_D = I_{DSS}$

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_{DS} = 18V - 12mA \times 620\Omega = 10.56 V$$

$$V_{DS} = 10.56 V$$

