Tensioning device for a transmission with endless flexible member of an auxiliary apparatus

Publication number: EP1420192

Publication date:

2004-05-19

Inventor:

LEMBERGER HEINZ (DE); JUNGJOHANN

RAINHARDT (DE)

Applicant:

BAYERISCHE MOTOREN WERKE AG (DE)

Classification: - international:

F16H7/12; F16H7/08; F16H7/12; F16H7/08; (IPC1-7):

F16H7/12

- european:

F16H7/12D1

Application number: EP20030022993 20031010 Priority number(s): DE20021053450 20021116 Also published as:

EP1420192 (A3) DE10253450 (A1)

Cited documents:

DE19926647 US4758208 WO0077422

US4416647 EP1236931

more >>

Report a data error here

Abstract of **EP1420192**

Tension device (1) for an envelope drive of a device, especially a belt drive of a starter generator (3) of an internal combustion engine (4), comprises a support part (14) arranged on the outer periphery of the device housing (5) and having a bearing bushing (16) parallel to the device shaft (15). A torsion spring device (7) rotationally fixed to tension arms (8, 9) aids the bearing. The torsion spring device is inserted in the bearing bushing and pushes against this or the support part and is secured in the bearing bushing so that it rotates by a damping device active on changing from the taut strand (12, 12') to the idle strand (13, 13') and vice versa.

Data supplied from the esp@cenet database - Worldwide

http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=EP1420192&F=0

9/27/2006

Europäisches Patentamt European Patent Office Office européen des brevets

11) EP 1 420 192 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 19.05.2004 Patentblatt 2004/21

(51) Int Cl.7: F16H 7/12

(21) Anmeldenummer: 03022993.4

(22) Anmeldetag: 10.10.2003

(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK

(30) Priorität: 16.11.2002 DE 10253450

(71) Anmelder: Bayerische Motoren Werke Aktiengesellschaft 80809 München (DE)

(72) Erfinder:

- Lemberger, Heinz 85774 Unterföhring (DE)
- Jungjohann, Rainhardt 83620 Feldkirchen (DE)

(54) Spannvorrichtung für einen Hülltrieb eines Aggregates

(57) Für eine Spannvorrichtung (1) eines Riementriebes eines Starter-Generators an einer Brennkraftmaschine wird zur Erzielung eines geringen Platzbedarfes bzw. Bauraumes vorgeschlagen, dass die Spannvorrichtung (1) ein am Außenumfang des Generator-Gehäuses (5) angeordnetes Tragteil umfasst mit einer zur Generator-Welle (15) parallel gerichteten Lagerbuchse, die der Lagerung einer mit Spannrollen (10,11) tragenden Spannarmen (8,9) drehfest verbundenen

Torsionsfedereinrichtung (7) dient, die in die Lagerbuchse (16) angeordnet einerseits gegen diese oder das Tragteil (14) anschlägt und die andererseits mittels einer beim Wechsel von Zugtrum (12,12') auf Leertrum (13,13') und umgekehrt wirksamen Dāmpfungseinrichtung (17) in der Lagerbuchse (16) gesichert drehbeweglich gehalten ist, wobei die Torsionsfedereinrichtung (7) eine zylindrische oder eine aus geschichteten Federblechstreifen gebildete Drehstabfeder (21) umfasst.

Printed by Jouve, 75001 PARIS (FR)

30

[0001] Die Erfindung bezieht sich auf eine Spannvorrichtung für einen Hülltrieb eines Antriebsaggregates, insbesondere Riementrieb eines Starter-Generators einer Brennkraftmaschine, wobei die an einem Gehäuse des Aggregates angeordnete Spannvorrichtung um eine gemeinsame Drehachse gegen die Wirkung einer Feder verschwenkbare Spannarme für Spannrollen zur jeweiligen Anlage am wechselnden Zugtrum und Leertrum des Hülltriebes umfasst.

1

[0002] Eine Spannvorrichtung der Bauart mit den vorgenannten Gattungsmerkmalen ist z.B. aus der US 4 758 208 bekannt für den Riementrieb einer Starter-Generator-Anordnung, wobei die Spannrollen tragenden Spannarme auf einem zur Generatorwelle koaxialen Fortsatz an der Stirnseite des Starter-Generator-Gehäuses schwenkbeweglich gelagert und mittels einer den Fortsatz umschließend angeordneten Schraubendrehfeder bzw. Schenkelfeder relativ zueinander in Vförmiger, belastungsabhängig veränderlicher Position gehalten sind. Des weiteren ist das Generator-Gehäuse unter der Wirkung wechselnder Antriebsmomente begrenzt drehwinkelbeweglich relativ zur Brennkraftmaschine angeordnet zur Steuerung eines Gesperres, das mit an den Spannarmen vorgesehenen Verzahnungen derart zusammenwirkt, dass jeweils der Spannarm mit der auf das Zugtrum einwirkenden Spannrolle fixiert ist und lediglich der Spannarm mit der am Leertrum wirksamen Spannrolle schwenkbeweglich ist.

[0003] Nachteilig bei dieser bekannten Spannvorrichtung ist die bauaufwändige Gestaltung des Generator-Gehäuses sowie die Fixierung der jeweiligen Zugtrum-Spannrolle.

[0004] Ferner ist aus der DE 199 26 615 A1 eine gattungsgemäße Spannvorrichtung mit einem diesbezüglich mit dem Gegenstand der oben genannten US 4 758 208 vergleichbaren Aufbau bekannt, wobei zur Vermeidung eines am Generator-Gehäuses angeordneten Fortsatzes dieser gemäß den Beispielen der Figuren 4 und 5 an einem gesonderten Flansch zum stirnseitigen Anschluss am Generator-Gehäuse ausgebildet ist. Nachteilig hierbei ist der stirnseitig des Starter-Generators erforderliche Bauraum für die Spannvorrichtung.

Schließlich ist aus gattungsfremden DE-Osen 4001689 und 4345150 jeweils ein Riemenspanner mit einer Drehstabfeder bekannt.

[0005] Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Spannvorrichtung von geringerem Platzbedarf bzw. Bauraum aufzuzeigen.

[0006] Diese Aufgabe ist mit dem Patentanspruch 1 dadurch gelöst, dass die Spannvorrichtung ein am Au-Benumfang des Aggregat-Gehäuses angeordnetes Tragteil umfasst mit einer zur Aggregat-Welle parallel gerichteten Lagerbuchse, die der Lagerung einer mit den Spannarmen drehfest verbundenen Torsionsfedereinrichtung dient, die in die Lagerbuchse eingeschoben einerseits gegen diese oder das Tragteil anschlägt und

die andererseits mittels einer beim Wechsel von Zugtrum auf Leertrum wirksamen Dämpfungseinrichtung in der Lagerbuchse gesichert drehbeweglich gehalten ist. [0007] Mit der erfindungsgemäß abschnittsweisen Nutzung des Gehäuse-Außenumfanges zur Anordnung eines die federbelasteten Spannarme tragenden Tragteils ist in Verbindung mit einer eine Torsionsfeder aufweisenden Einrichtung zur Steuerung V-förmig vorgesehener Spannarme in vorteilhafter Weise eine Spann-10 vorrichtung von geringem Platzbedarf bzw. Bauraum erzielt. Eine aufwändige Anpassung des Generator-Ge-

häuses ist mit der Erfindung nicht erforderlich.

[0008] Eine einfache Abwandlung des Generator-Gehäuses durch Anordnung zweier fluchtender Laschen mit Durchbrechungen ermöglicht es in Ausgestaltung der Erfindung am Aggregat-Gehäuse ein gesondert ausgebildetes Tragteil vorzusehen mit einer an Tragarmen angeordneten Lagerbuchse, deren mit der Drehachse der Spannarme identische Längsachse im Schnittpunkt zweier Hilfsgeraden liegt, die zum jeweiligen Zugtrum des Hülltriebe im Abstand des halben Durchmessers der Spannrollen parallel angeordnet sind.

[0009] Mit dieser Ausgestaltung kann ein dem Starter-Generator eng benachbarter Bauraum vorteilhaft genutzt werden. Weiter vorteilhaft ist, dass auf das jeweilige Zugtrum die entsprechende Spannrolle aufgrund der erfindungsgemäß festgelegten Spannarm-Drehachse quergerichtet einwirkt auf das dem jeweiligen Antriebsrad tangential zugeführte Zugtrum.

[0010] Anstelle des gesonderten Tragteils kann am Aggregat-Gehäuse auch ein integriertes Auge als Tragteil einer Lagerbuchse dienen.

[0011] In weiterer Ausgestaltung der Erfindung ist eine im Aufbau besonders einfache Torsionsfedereinrichtung dadurch erzielt, dass diese ein mit einem der Spannarme drehfest verbundenes und in der Lagerbuchse drehbar gelagertes Rohr umfasst, das im spannarmfernen Endbereich drehfest verbunden ist mit einer im Rohr angeordneten Torsionsfeder, die im anderen Endabschnitt mit dem anderen Spannarm drehfest zusammenwirkt.

[0012] Eine einfache relative Lagesicherung der beiden Spannarme zueinander ist ferner dadurch erreicht, dass der mit der Torsionsfeder drehfest verbundene Spannarm in einem gabelartigen Endabschnitt des anderen Spannarmes mit Spiel angeordnet ist, wobei der mit dem Torsionsfeder-Rohr drehfest verbundene Spannarm-Endabschnitt mit auf einen freien Durchgang der Torsionsfeder abgestellten Durchbrechungen versehen ist.

[0013] Vorteilhaft für die Erzielung einer Spannvorrichtung von geringem Platzbedarf ist, dass die Torsionsfeder eine zylindrische Drehstabfeder oder eine aus geschichteten Federblechstreifen gebildete Drehstabfeder ist, wobei die jeweilige Drehstabfeder zur Dämpfung der Spannrollen tragenden Spannarme mit der Innenwandung des Rohres über eine gummielastische

25

30

45

Drehschubfeder in Verbindung steht zur sogenannten inneren Dämpfung der Spannvorrichtung.

[0014] Gemäß einer anderen Gestaltung ist die Torsionsfeder eine Schraubenfeder, deren bei Torsionsbeanspruchung sich aufweitende Windungen mit der Innenwandung des Rohres reibschlüssig zwecks innerer Dämpfung zusammenwirken.

[0015] Im Rahmen der Erfindung mit dem Ziel einer Spannvorrichtung von geringem Platzbedarf ist von weiterem Vorteil, dass die bei Lastwechsel im Hülltrieb wirksame äußere Dämpfungseinrichtung eine am spannarmfernen Tragarm des Tragteils anliegende Reibscheibe aufweist, die mittels einer über eine mit dem Tosionsfeder-Rohr zusammenwirkenden Verschraubung vorgespannten Wellscheibe beaufschlagt ist.

[0016] Schließlich ermöglicht die erfindungsgemäße Spannvorrichtung in vorteilhafter Weise, dass jeder Spannarm relativ zu seiner Spannrolle derart gekröpft ausgebildet ist, dass jeder Spannarm mit der Torsionsfedereinrichtung im wesentlichen frei von Biegemomenten zusammenwirkt.

[0017] Die Erfindung ist anhand eines in der Zeichnung dargestellten, bevorzugten Ausführungsbeispiels erläutert. Es zeigt

- Fig.1 eine Stirnansicht der erfindungsgemäßen Spannvorrichtung,
- Fig.2 ein System zur Ermittlung der Drehachse der V-förmig angeordneten Spannarme,
- Fig.3 eine Seitenansicht der Spannvorrichtung mit in einem Halbschnitt gezeigter Torsionsfedereinrichtung.

[0018] Eine Spannvorrichtung 1 für einen Hüll-bzw. Riementrieb 2 eines Starter-Generators 3 einer nicht näher dargestellten Brennkraftmaschine 4 mit einer kurbelwellenseitigen Antriebsscheibe 4' und einer Antriebsscheibe 4" eines Klimakompressors ist an einem Gehäuse 5 des Aggregates bzw. Generators 3 angeordnet. Die Spannvorrichtung 1 umfasst um eine gemeinsame Drehachse 6 gegen die Wirkung einer Feder 7 verschwenkbare Spannarme 8,9 für Spannrollen 10,11 zur jeweiligen Anlage am betriebsartbedingt wechselnden Zugtrum 12,12' und Leertrum 13,13' des Riementriebes 2

[0019] Zur Erzielung einer erfindungsgemäß einen geringen Platzbedarf beanspruchenden Spannvorrichtung 1 umfasst diese ein am Außenumfang des Generator-Gehäuses 5 angeordnetes Tragteil 14 mit einer zur Generator-Welle 15 parallel gerichteten Lagerbuchse 16, die der Lagerung einer mit den Spannarmen 8,9 drehfest verbundenen Torsionsfedereinrichtung 7 dient. Diese schlägt beim Einschieben in die Lagerbuchse 16 einerseits gegen diese oder das Tragteil 14 an und ist andererseits mittels einer beim Wechsel von Zugtrum auf Leertrum und umgekehrt wirksamen Dämpfungs-

einrichtung 17 in der Lagerbuchse 16 gesichert drehbeweglich gehalten.

[0020] Bei am Aggregat- bzw. Generator-Gehäuse 5 bereits vorhandenen oder in einfacher Abwandlung des Gehäuses 5 nachträglich ausgebildeten, miteinander fluchtenden und Durchbrechungen aufweisenden Laschen 5' können diese der Anordnung eines gesondert ausgebildeten Tragteils 14 dienen, das an Tragarmen 18,18' angeordnet die Lagerbuchse 16 trägt. Deren Anordnung ist derart getroffen, dass die mit der Drehachse 6 der Spannarme 8,9 identische Buchsen-Längsachse im Schnittpunkt "Z" zweier Hilfsgeraden 19,19' liegt, die zum jeweils betriebartbedingten Zugtrum 12,12' des Hüll- bzw. Riementriebes 2 im Abstand des halben Durchmessers der Spannrollen 10,11 parallel angeordnet sind, wie aus Fig. 2 ersichtlich.

[0021] Eine nicht dargestellte Variante umfasst ein am Aggregat-Gehäuse 5 integriertes Auge als Tragteil einer Lagerbuchse, deren Längsachse ebenfalls im Schnittpunkt "Z" zweier, zum jeweiligen Zugtrum im Abstand der halben Spannrollen-Durchmesser angeordneter Parallelen liegt.

[0022] Wie Fig. 3 verdeutlicht, umfasst die Torsionsfedereinrichtung 7 ein mit dem Spannarm 8 drehfest verbundenes und in der Lagerbuchse 16 drehbar gelagertes Rohr 20, das im spannarmfernen Endbereich drehfest verbunden ist mit einer im Rohr 20 angeordneten Torsionsfeder 21. Diese wirkt im anderen Endabschnitt mit dem weiteren Spannarm 9 drehfest zusammen. Weiter ist aus Fig.3 ersichtlich, dass der mit der Torsionsfeder 21 drehfest verbundene Spannarm 9 in einem gabelartigen Endabschnitt 8' des anderen Spanarmes 8 mit Spiel angeordnet ist, wobei der mit dem Torsionsfeder-Rohr 20 drehfest verbundene Spannarm-Endabschnitt 8' mit auf freien Durchgang der Torsionsfeder 21 abgestellten Durchbrechungen 22 versehen ist.

[0023] Zur Erzielung eines bauraumgünstigen Durchmessers der Lagerbuchse 16 und des Torsionsfeder-Rohres 20 ist die Torsionsfeder 21 eine zylindrische Drehstabfeder oder eine aus geschichteten Federblattstreifen gebildete Drehstabfeder. Zur Erzielung einer inneren Dämpfung der Spannvorrichtung 1 mittels gedämpfter Spannarme 8,9 ist die jeweilige Torsions-bzw. Drehstabfeder 21 mit der Innenwandung des Torsionsfeder-Rohres 20 über eine gummielastische Drehschubfeder 23 verbunden.

[0024] Als Torsionsfeder 21 kann auch eine nicht gezeigte Schraubenfeder Verwendung finden, deren bei Torsionsbeanspruchung sich aufweitende Windungen mit der Innenwandung des Rohres 20 reibschlüssig zwecks innerer Dämpfung zusammenwirken.

[0025] Eine für einen betriebsartbedingten Einsatzwechsel der Spannarme 8,9 der Spannvorrichtung 1 zweckmäßige äußere Dämpfung ist dadurch erreicht, dass die bei Lastwechsel im Hüll- bzw. Riementrieb 2 wirksame äußere Dämpfungseinrichtung 17 eine am spannarmfernen Tragarm 18' anliegende Reibscheibe

25

30

35

40

 24 aufweist, die mittels einer über eine mit dem Torsionsfeder-Rohr 20 zusammenwirkenden Verschraubung 25 vorgespannten Wellscheibe 26 beaufschlagt ist.

[0026] Eine den Bauaufwand reduzierende und die Betriebssicherheit der Spannvorrichtung 1 erhöhende Maßnahme ist schließlich dadurch erreicht, dass jeder Spannarm 8,9 relativ zu seiner Spannrolle 10,11 derart gekröpft ausgebildet ist, dass jeder Spannarm 8,9 mit der Torsionsfedereinrichtung 7 im wesentlichen biegemomentenfrei zusammenwirkt.

Patentansprüche

- Spannvorrichtung für einen Hülltrieb eines Aggregates, insbesondere Riementrieb eines Starter-Generators einer Brennkraftmaschine,
 - wobei die an einem Gehäuse (5) des Aggregates (3) angeordnete Spannvorrichtung (1) um eine gemeinsame Drehachse (6) gegen die Wirkung einer Feder (7) verschwenkbare Spannarme (8,9) für Spannrollen (10,11) zur jeweiligen Anlage am wechselnden Zugtrum (12,12') und Leertrum (13,13') des Hülltriebes (2) umfasst,

dadurch gekennzeichnet,

- dass die Spannvorrichtung (1) ein am Außenumfang des Aggregat-Gehäuses (5) angeordnetes Tragteil (14) umfasst mit einer zur Aggregat-Welle (15) parallel gerichteten Lagerbuchse (16), die
- der Lagerung einer mit den Spannarmen (8,9) drehfest verbundenen Torsionsfedereinrichtung (7) dient, die
- in die Lagerbuchse (16) eingeschoben einerseits gegen diese oder das Tragteil (14) anschlägt und die
- andererseits mittels einer beim Wechsel von Zugtrum (12,12') auf Leertrum (13,13') und umgekehrt wirksamen Dämpfungseinrichtung (17) in der Lagerbuchse (16) gesichert drehbeweglich gehalten ist.
- Spannvorrichtung nach Anspruch 1, dadurch gekennzeichnet,
 - dass am Aggregat-Gehäuse (5) ein gesondert ausgebildetes Tragteil (14) vorgesehen ist mit einer an Tragarmen (18,18') angeordneten Lagerbuchse (16), deren
 - mit der Drehachse (6) der Spannarme (8,9) identische Längsachse im Schnittpunkt (Z) zweier Hilfsgeraden (19,19') liegt, die
 - zum jeweiligen Zugtrum (12,12') des Hülltrie-

bes (2) im Abstand des halben Durchmessers der Spannrollen (10,11) parallel angeordnet sind

- Spannvorrichtung nach Anspruch 1,dadurch gekennzeichnet,
 - dass am Aggregat-Gehäuse (5) ein integriertes Auge als Tragteil einer Lagerbuchse vorgesehen ist, deren
 - Längsachse im Schnittpunkt (Z) zweier, zum jeweiligen Zugtrum (12,12') im Abstand der halben Spannrollen-Durchmesser angeordneter Parallelen liegt.
 - Spannvorrichtung nach den Ansprüchen 1-3, dadurch gekennzeichnet,
 - dass die Torsionsfedereinrichtung (7) ein mit einem der Spannarme (8) drehfest verbundenes und in der Lagerbuchse (16) drehbar gelagertes Rohr (20) umfasst, das
 - im spannamfernen Endbereich drehfest verbunden ist mit einer im Rohr (20) angeordneten Torsionsfeder (21), die
 - im anderen Endabschnitt mit dem anderen Spannarm (9) drehfest zusammenwirkt.
- Spannvorrichtung nach Anspruch 4, dadurch gekennzeichnet,
 - dass der mit der Torsionsfeder (21) drehfest verbundene Spannarm (9) in einem gabelarligen Endabschnitt (8') des anderen Spannarmes (8) mit Spiel angeordnet ist, wobei
 - der mit dem Torsionsfeder-Rohr (20) drehfest verbundene Spannarm-Endabschnitt (8') mit auf einen freien Durchgang der Torsionsfeder (21) abgestellten Durchbrechungen (22) versehen ist.
 - Spannvorrichtung nach den Ansprüchen 1-5,dadurch gekennzeichnet,
 - dass die Torsionsfeder (21) eine zylindrische Drehstabfeder oder eine aus geschichteten Federblechstreifen gebildete Drehstabfeder ist, wobei
 - die jeweilige Drehstabfeder (21) zur Dämpfung der Spannarme (8, 9) mit der Innenwandung des Rohres (20) über eine gummielastische Drehschubfeder (23) in Verbindung steht.
- 7. Spannvorrichtung nach den Ansprüchen 1-5, dadurch gekennzeichnet,
 - dass die Torsionsfeder (21) eine Schraubenfeder ist "deren

55

15

-	bei Torsionsbeanspruchung sich aufweitende
	Windungen mit der Innenwandung des Rohres
	(20) reibschlüssig zwecks innerer Dämpfung
	zusammenwirken.

- 8. Spannvorrichtung nach den Ansprüchen 1-7, dadurch gekennzeichnet,
 - dass die bei Lastwechsel im Hülltrieb (2) wirksame äußere Dämpfungseinrichtung (17) eine am spannamfernen Tragarm (18') anliegende Reibscheibe (24) aufweist, die
 - mittels einer über eine mit dem Rohr (20) zusammenwirkende Verschraubung (25) vorgespannten Wellscheibe (26) beaufschlagt Ist.
- Spannvorrichtung nach den Ansprüchen 1-8, dadurch gekennzeichnet,
 - dass jeder Spannarm (8,9) relativ zu seiner 20 Spannrolle (10,11) derart gekröpft ausgebildet ist, dass
 - jeder Spannarm (8,9) mit der Torsionsfedereinrichtung (7) im wesentlichen biegemomentenfrei zusammenwirkt.

30

25

35

40

45

50

55

F'15.1

Fig. 2

<u>Tig.3</u>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.