

Professor: Douglas Nunes de Oliveira
Curso: Engenharia de Computação
Disciplina: IA – Inteligência Artificial
Trabalho: Trabalho RNA 3 - Prático 1

Nome: ______ Data: ___/___

Utilizar o **Perceptron** simples (de uma única camada) feito na sala de aula para treinar 4 bases de dados triviais. As três primeiras bases descrevem o comportamento da porta lógica "e", porta lógica "ou" e porta lógica "xor", estas bases se encontram nas tabelas 1, 2 e 3 respectivamente. Uma quarta base descreve o comportamento de um robô mediante obstáculos que podem aparecer em sua frente, seja à sua esquerda, direita ou frente, esta base se encontra na tabela 4.

Tabela 1: Porta lógica "e"

	x_0	x_1	y_0
a_1	0	0	0
a_2	0	1	0
a_3	1	0	0
a_4	1	1	1

Tabela 3: Porta lógica "xor"

	x_0	x_1	y_0
a_1	0	0	0
a_2	0	1	1
a_3	1	0	1
a_4	1	1	0

Tabela 2: Porta lógica "ou"

	x_0	x_1	y_0
a_1	0	0	0
a_2	0	1	1
a_3	1	0	1
a_4	1	1	1

Tabela 4: Movimentação do robô

	x_0	x_1	x_2	y_0	y_1
a_1	0	0	0	1	1
a_2	0	0	1	0	1
a_3	0	1	0	1	0
a_4	0	1	1	0	1
a_4	1	0	0	1	0
a_4	1	0	1	1	0
a_4	1	1	0	1	0
a_4	1	1	1	1	0

Treinar o **Perceptron** por 10.000 épocas e em cada época de treino, o algoritmo deverá imprimir uma saída no seguinte padrão:

n^{ro} da época - erro de aproximação da época.

O erro de aproximação de uma amostra é dada pela equação 1 e o erro de aproximação de uma época inteira é dada pelo somatório dos erros de todas as amostras conforme a equação 2. Este erro de aproximação mostra ao projetista se está ocorrendo a aproximação da função geradora dos dados pelo Perceptron.

Em todas esta equações envolvidas, a letra j representa o número de saídas do Perceptron; y_{aj} é a saída desejada j da amostra de índice a; o_{aj} é a saída j obtida pelo Perceptron quando a amostra

 \boldsymbol{a} foi executa; \boldsymbol{n} é o número de amostras;

$$E_a^{ap} = \sum_{j=1}^k |y_{aj} - o_{aj}| \tag{1}$$

$$E_e^{ap} = \sum_{a=1}^n E_a^{ap} \tag{2}$$