Jnified Conceptual Mod	el – Guideline fo	r Validation	
Questionnair	e – DeltaE	Ecore	

1 UNIFIED CONCEPTUAL MODEL

The unified conceptual model (Figure 1) describes essential concepts for modeling variability of a software system in space (variants) and time (revisions). It follows an open-world assumption (descriptive) instead of a closed-world assumption (prescriptive).

In Table 1, we provide a definition of the involved concepts.

Figure 1: The Reference Model with common and unified Concepts for Variability in Space and Time.

Table 1: Definition of concepts in the Conceptual Model.

Concept	Relation to other	Definition
	Concepts	
Fragment	Product, Unified	Fragments are the essential concept to describe a system on
	System, Mapping	implementation level. A Fragment can either be an atom or
		an aggregate, e.g. a single file, character or the node of an
		AST. We explicitly do not specify the level of granularity for
		an atom or aggregate to remain as generic as possible. A
		hierarchical structure of containments is not enforced.
		Instead, Fragments can be composed to various
		combinations.

Product	Configuration,	A <i>Product</i> is implied by a configuration. A <i>Product</i> is not part
	(consists of *)	of the system's state but can be computed from it based on
	Fragment	the configuration. + Implementation level
Unified System	(Contains *) Fragment,	The Unified System represents the unified configurable
	Mapping,	space regarding spatial and temporal variability. It subsumes
	Configuration,	concepts from both solution and problem space.
	Constraint, Feature,	
	System Revision	
Mapping	Unified System, (has *)	A <i>Mapping</i> is an arbitrary expression (e.g., Boolean formula)
	Option variables,	that consists of <i>Option</i> variables that are mapped to
	(references 1*)	fragments. Therefore, the Mapping connects concepts from
	Fragment	the solution space (fragments) to concepts in the problem
		space (options).
Option	Configuration,	An Option expresses the variability of a system. This can
	Mapping, Feature	either manifest as variability in space (i.e., Feature) or
	Option, System	variability in time (i.e. System Revision or Feature Revision).
	Revision	
Feature Option	(Extends) Option,	A Feature Option represents the configurable space on
	Constraint, System	feature level.
	Revision, Feature,	
	Feature Revision	
Feature	(Contains *) Feature	" A prominent or distinctive user-visible aspect, quality, or
	Revision	characteristic of a software system or systems [1]"
Revision	(Has *) predecessor	A Revision evolves along the time dimension and is intended
	and successor	to supersede its predecessor by an increment, e.g., due to a
	Revision	bug fix or refactoring. This relation forms a revision graph,
		which is a directed acyclic graph (DAG) with each node
		representing a unique revision.
System	(Extends) Revision,	A System Revision extends the Revision and represents the
Revision	(defines *) Feature	evolutionary state of the entire system at one point in time.
	Option, (enables *)	This state involves the definition of Features and Feature
	Constraint	Revisions (e.g., System Revision 2 involves feature A in
		revision 1 and Feature B in revision 2) along with Constraints
		that are valid for the respective System Revision.
Feature	(has 1 base) Feature,	A Feature Revision extends the Revision and represents an
Revision	(extends) Feature	evolutionary state of one particular <i>Feature</i> at one point in
	Option, (extends)	time.
	Revision	

(Has a selection of *)	A Configuration implies one particular Product of the Unified			
Options, implies	System and consists of a selection of Option variables. It is			
Product	not part of the system's state. + Conceptual level			
Unified System,	The Constraint is an arbitrary expression (e.g., Boolean			
System Revision, (has	formula) that constrains Feature Options that can be			
*) Feature Option	combined in a Configuration.			
	Options, implies Product Unified System, System Revision, (has			

2 MAPPING

To assess the mapping between concepts and relations of the unified conceptual model regarding the selected tool, each concept and relation is considered separately. For the sake of simplicity, we omit inheritance relationships.

2.1 CONCEPTS

For each concept of the conceptual model listed in Table 3, please inspect whether an equivalent construct exists in your tool and complete the form according to the following scheme in Table 2:

Table 2: Exemplary Mapping of ECCO (incomplete).

Concept in	Maps to Construct	Does not map /	Please comment, if concept is only
Model	(Name)	Does not exist	partially reflected
Fragment	Artifact	-	-
Product	-	✓	Because it is not part of the state of the
			system but exists as output in the form
			of files in the file system.
System Revision	-	√	ECCO considers Feature Revisions
			only.

Table 3: Concept Mapping between Conceptual Model and Tool.

Concept in	Maps to Construct	Does not map /	Please comment, if concept is only
Model	(Name)	does not exist	partially reflected
Fragment	Configuration Delta		There are also dedicated fragments,
	Modules,		i.e., implementation artifacts
	Evolution Delta		represented as models. These are not
	Modules		defined as part of DeltaEcore but they
			are modified in the course of SPL
	Addition based on		management.
	Skype Call with all		
	delta-based tool-		
	experts: Fragments		
	are represented by		
	a Core Model and		

	Delta Modules that		
	modify that Core		
	Model.		
Product	Product		
Unified System	Product Line		
Mapping	Mapping		
	(Mapping Model)		
Option (abstract)	Configuration		In DeltaEcore, a configuration consists
	Selection		of a combination of feature selections
			and feature version selections. These
			"configuration selections" can be
			considered an option.
Feature Option	Feature Selection		s.o.
(abstract)	r outai o coloculon		
Feature	Feature		
reature	reature		
Davisian			No country part on the treat level
Revision			No counter part on abstract level.
(abstract)			Feature Versions and Baselines (see
			below) are considered fundamentally
			different.
System Revision	-	✓	DeltaEcore considers Feature
			Revisions only.
			There is no direct counterpart to this
			construct, however, it can be emulated
			by the use of a "baseline": a collection
			of feature versions that should be used
			together to form a system revision.
Feature Revision	Feature Version		
Configuration	Configuration		
	Somgaration		

Constraint	(Version-aware
	Cross-tree)
	Constraint
Remarks	Might need a phone call to clarify some of the more obscure features of DeltaEcore.
Unmapped	
constructs in tool	

2.2 RELATIONS

For each relation of the conceptual model listed in Table 5, please inspect whether an equivalent relation exists in your tool and complete the form according to the following scheme in Table 4:

Table 4: Exemplary Mapping of ECCO (incomplete).

Name of	Maps to Relation	Does not map /	If relation is only partially mapped,
Relation in		Does not exist	please name divergence (source,
Conceptual			target, multiplicity, direction and kind)
Model			
Graph-based	Tree-based	-	Uses strong containment instead of weak
Fragment	Fragment		containment for children of fragments. To
structure	structure with		mitigate this limitation, ECCO uses cross-
	cross-tree		tree references.
	references		
Mapping has 1*	equivalent	-	
Fragments			
System Revision	-	✓	ECCO considers Feature Revisions only.
defines * Feature			
Options			

Table 5: Relation Mapping between Conceptual Model and Tool.

Name of Relation in	Maps to	Does not map /	If relation is only partially mapped,	
Conceptual Model	Relation	Does not exist	please name divergence (source, target,	
			multiplicity, direction and kind)	
Graph-based	equivalent		Dictated by EMF Ecore, which has a	
Fragment structure			containment tree but a reference graph, so	
			equivalent.	
Product consists of *	equivalent		True but, practically speaking, a product	
Fragment			consists of 1* fragments.	
Mapping has 1*	equivalent		True	
Fragment				

Configuration implies	equivalent		True, via the use of delta modules to
Product			manifest variability (both in space and
			time).
Configuration has a	equivalent		True but, practically speaking, a
selection of * Option			configuration consists of 1* options.
Unified System has *	equivalent		1*
Fragment			
Unified System has *	equivalent		True
Mapping			
Unified System has *	equivalent		True
Constraint			
Unified System has *			Not exactly. It has 1* features (needs at
Featur			least one when feature model is used but
			can be operated without feature model
			altogether as well, i.e., manual selection of
			delta modules at will).
Unified System has *		✓	DeltaEcore considers Feature Revisions
System Revisions			only.
			See comment above on baselines.
Mapping has * Option	Addendum		Do not understand this, sorry.
	after		
	discussion:		
	equivalent		
Feature has * Feature	equivalent		True
Revision			
Constraint has *	Addendum		Do not understand this, sorry.
Feature Option	after		
	discussion:		
	equivalent		
System Revision		✓	DeltaEcore considers Feature Revisions
defines * Feature			only.
Option			See comment above on baselines.
System Revision		✓	DeltaEcore considers Feature Revisions
enables * Constraint			only.
			See comment above on baselines.
Revision has *	equivalent		True but has * successors (not sure if this
successor	Sequence of		was in the original comment).

(Branching/Forking)	revisions		
and predecessor	(subsumed		
(Merging)	by DAG)		
Remarks		1	
All unmapped relations			
in tool			

A. REFERENCES

- [1] K. Kang, J. Hess W. Novak, and A. Peterson, "Feature-Oriented Domain Analysis (FODA) Feasibility Study.," Carnegie Mellon University, 1990.
- [2] G. Guizzardi, L. F. Pires and M. van Sinderen, "An Ontology-Based Approach for Evaluating the Domain Appropriateness and Comprehensibility Appropriateness of Modeling Languages," *Proceedings of the International Conference on Model Driven Engineering Languages and Systems*, 2005.
- [3] S. Ananieva, T. Kehrer, H. Klare, A. Koziolek, H. Lönn, S. Ramesh, A. Burger, G. Taentzer and B. Westfechtel, "Towards a conceptual model for unifying variability in space and time," *Proceedings of the 2nd International Workshop on Variability and Evolution of Software-Intensive Systems*, 2019.