Álgebra de Boole e Portas Lógicas

Yuri Kaszubowski Lopes Éverlin Fighera Costa Marques

UDESC

YKL e EFCM (UDESC) Álgebra de Boole e Portas Lógicas 1/19

Álgebra de Boole

- $\bullet\,$ Na álgebra de Boole variáveis e constantes podem assumir apenas os valores 0 ou 1
- Temos uma relação direta com nossos circuitos lógicos
- Temos apenas três operações básicas: NOT ("negação"), AND ("e") e OR ("ou")
- Essas são chamadas de operações lógicas
- Dadas variáveis booleanas, expressamos a saída em função da entrada
- Apresentamos todas as combinações de entradas e as saídas geradas
 Com n variáveis booleanas podemos gerar 2ⁿ combinações no total
- ullet Logo, uma tabela verdade para n variáveis conterá é 2^n linhas

Anotaçoes			

YKL e EFCM (UDESC)

Álgebra de Boole e Portas Lógicas

2/19

Anotações

Anotações

Função e Porta NOT

- - A negação inverte a entrada

Tabela Verdade		
	$\begin{array}{c c} A & \overline{A} \\ \hline 0 & 1 \\ \hline 1 & 0 \end{array}$	

KL e EFCM (UDESC) Álgebra de Boole e Portas Lógicas

Função e Porta OR

- Dadas duas variáveis A e B, a operação OR ("ou") nessas variáveis é representada pelos sinais $+, \vee$
 - ► A saída é 1 se A ou B, ou ambos são 1

YKL e EFCM (UDESC)

Álgebra de Boole e Portas I ógicas

4/19

Anotações

Anotações

Função e Porta AND

- \bullet Dadas duas variáveis A e B, a operação <code>AND</code> ("e") nessas variáveis é representada pelo sinal . (às vezes omitido), \land
 - ► A saída é 1 somente se A e B são 1

YKL e EFCM (UDESC)

Álgebra de Boole e Portas Lógicas

5/19

Expressões Booleanas

- Podemos combinar as operações/portas para formar expressões booleanas complexas.
 - Exemplo: Qual a expressão representada pelas portas a seguir?

Anotações		

Precedência de Operadores Anotações Caso não hajam parêntesis, a precedência é: NOT AND OR São resolvidos primeiro NOTs, depois ANDs e então ORs. Expressões dentro de parêntesis são resolvidas primeiro. Exercício Anotações Faça a tabela verdade para o circuito abaixo • Expressão: x = A.B + CTabela Verdade $A \mid B \mid C \parallel A.B \mid A.B + C$

Exercício

2	As expressões	a seguir	são	equivalentes à	do	exercício	anterior'	?
----------	---------------	----------	-----	----------------	----	-----------	-----------	---

- X = C + A.B X = A.(B + C)

Anotações			

Portas com múltiplas entradas

É comum desenharmos portas com mais de duas entradas (exceto para NOT) para simplificar os circuitos.

Ano	tações						

NAND e NOR

- \bullet NAND: O mesmo que um ${\tt AND}$ seguido de um ${\tt NOT}$
 - ► NAND entre A e B é dado por $\overline{A.B}$
- NOR: O mesmo que um OR seguido de um NOT
 - NOR entre $A \in B$ é dado por $\overline{A + B}$
- Podemos representar essas operações com um AND/OR seguido de um NOT, ou colocar um círculo logo após a saída

Anotações

Função e Porta XOR

- Ou exclusivo (eXclusive-OR)
- Dadas duas variáveis A e B, a operação XOR nessas variáveis é representada pelo sinal \oplus
 - A saída é 1 somente se uma, e apenas uma, das entradas é 1

Anotações		

XNOR

XNOR

- A saída é 1 se ambas as entradas são 0 ou ambas são 1
- Oposto de XOR: A ⊕ B

Α	В	$A \oplus B$	$\overline{A \oplus B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Porta lógica

ra de Boole e Portas Lógicas	13/1

Equivalência lógica

- \Leftrightarrow significa equivalência. Complete a tabela verdade Mostre que: $A \oplus B \Leftrightarrow \overline{A}.B + A.\overline{B}$

Tabela Verdade

Α	В	Ā.B	$A.\overline{B}$	$\overline{A}.B + A.\overline{B}$	$A \oplus B$
0	0				0
0	1				1
1	0				1
1	1				0

• Mostre que: $\overline{A \oplus B} \Leftrightarrow A.B + \overline{A}.\overline{B}$

Tabela Verdade

Α	В	A.B	$\overline{A}.\overline{B}$	$A.B + \overline{A}.\overline{B}$	$\overline{A \oplus B}$
0	0				1
0	1				0
1	0				0
1	1				1

Anotações

Exercícios

Qual a expressão booleana representada pelas portas lógicas a seguir? Faça a tabela verdade para cada circuito.

Anotações

Exercícios

Qual a expressão booleana representada pelas portas lógicas a seguir? Faça a tabela verdade para cada circuito.

Anotações

YKL e EFCM (UDESC)	Álgebra de Boole e Portas Lógicas	16/1

		os

- Desenhe o circuito e faça a tabela verdade para as seguintes expressões:
 - $\begin{array}{l} * \text{ a) } (A+B).(B+C) \\ * \text{ b) } A+B.C \\ * \text{ c) } \overline{A}B+A.\overline{B} \\ * \text{ d) } \overline{A}B\oplus A.\overline{B} \\ \end{array}$
- Qual a porta lógica única é equivalente ao Item c da questão anterior?
- $\overline{A+B}$ é o mesmo que $\overline{A}+\overline{B}$? Verifique através de tabelas verdades.

YKL e EFCM (UDESC)	Álgebra de Boole e Portas Lógicas	1

Referências

- TOCCI, R.J.; WIDMER,N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011.
- RUGGIERO, M.; LOPES, V. da R. Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil, 1996.
- NULL, L.; LOBUR, J. Princípios Básicos de Arquitetura e Organização de Computadores. 2014. Bookman, 2009. ISBN 9788577807666.

Anotações		
3		
Anotações		
πιοιαζόσο		
-		
	 	