

Optimization

Minimize total costs (minimize losses)

- Generation costs Economic dispatch
  - · Lossless and lossy formulations
- · Optimal power-flow
- · Hydrothermal coordination

Washington State University



Optimal power-flow

Minimize  $\sum_{i=1}^{N} f_i(P_{Gi})$ 

 $P_{Gi}$ ,  $i=1,...N_G+1$ 

subject to:

 $P_{Gi}-P_{Li}-\sum_{j=1}^{N}Y_{ij}\;V_{i}\;V_{j}\;cos\bigl(\delta_{i}-\delta_{j}-\theta_{ij}\bigr){=}0$  $Q_{Gi} - Q_{Li} - \sum_{j=1}^{N} Y_{ij} V_i V_j \sin(\delta_i - \delta_j - \theta_{ij}) = 0$  $\begin{aligned} P_{Gi,min} &< P_{Gi} < P_{Gi,max} \\ V_{i,min} &< V_i < V_{i,max} \end{aligned}$  $I_{ij,min} < I_{ij} < I_{ij,max}$ 

4



Hydrothermal coordination Min f(P<sub>GT</sub>) over a season while meeting constraints on q and x, and making sure that  $P_{GT}+P_{GH}=P_{D}$ .

6

5