Chapitre 1. Random Variables

Prof. REMITA Mohamed Riad

National School of Artificial Intelligence.

2023-2024

Example

A coin is tossed twice. The possible results are $\{PP, PF, FP \text{ et } FF\}$. We define variable X representing the number of tails P obtained. Then the values of X are $\{0,1 \text{ and } 2\}$.

Example

A die is rolled until a 6 is rolled. The possible outcomes are $\{6, (1, 6), (2, 6), \cdots, (5, 6), (1, 1, 6), \cdots, (5, 5, 6), \cdots\}$. We define a variable X representing the number of throws needed until a 6 is obtained. Then the values of X are $\{1, 2, 3, \cdots\} = \mathbb{N}^*$.

Example

The service life of a spare part can be represented by a r.r.v.

We have a probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ and a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition

We call a real random variable, noted r.r.v. any application X of (Ω,\mathcal{A}) in $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ such that:

$$\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}.$$

B can be presented in several forms

- If $B =]a, b] : X^{-1}(B) = \{a < X \le b\}$
- If $B = \{a\} : X^{-1}(B) = \{X = a\}$
- If $B = [a, +\infty[: X^{-1}(B) = \{X \ge a\}]$
- If $B =]-\infty$, $a]: X^{-1}(B) = \{X \le a\}$

Since the Borel σ -algebra is generated by all the intervals $]-\infty,x]$, then a random variable can be defined by the following definition:

Definition

The application X of (Ω, \mathcal{A}) in $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ is a real random variable if for all $x \in \mathbb{R}$ and $\forall B \in \mathcal{B}_{\mathbb{R}}$ the subset

$$A_{x}=X^{-1}\left(\left]-\infty,x\right]\right)=\left\{ \omega\in\Omega:X\left(\omega\right)\leq x\right\} \in\mathcal{A}.$$

Example

We throw two coins and let X be the number of tails obtained. We know that $\Omega = \{(F,F); (F,P); (P,F); (P,P)\}$ and the values of X are $\{0,1,2\}$.

- 1. Show that X is a random variable on Ω endowed with the algebra $\mathcal{P}\left(\Omega\right)$.
- 2. Show that X is not a random variable on Ω endowed with the algebra $\mathcal{A}_1 = \{\Omega, \emptyset, \{(F, F)\}, \{(F, F); (F, P); (P, F)\}\}$.

Let Ω be the space of trials associated to a Bernoulli random experiment and let $I_A\left(\cdot\right)$ be the function from Ω to $\left\{0,1\right\}$ defined by

$$I_{A}\left(\cdot\right)=\left\{ \begin{array}{l} 1 \text{ if }\omega\in A\\ 0 \text{ if }\omega\notin A \end{array} \right.$$

 $I_{A}\left(\cdot\right)$ is called indicator function (or Dirac measure) of the event A.

We can show easily that $I_{A}\left(\cdot\right)$ is a random variable for the algebra $\mathcal{A}_{I_{A}\left(\cdot\right)}=\left\{ \Omega,\varnothing,A,\overline{A}\right\}$.

Properties. The indicator function $I_A\left(\cdot\right)$ satisfies the following properties:

- 1. $I_A(\omega) = 1 I_{\overline{A}}(\omega)$, $\forall A \in A$,
- 2. $I_{\cap A_i}(\omega) = \prod_i I_{A_i}(\omega)$, $\forall A_i \in \mathcal{A}$,
- 3. $\mathbb{P}\left(I_{A}\left(\omega\right)=1\right)=\mathbb{P}\left(A\right)$, $\forall A\in\mathcal{A}$,
- **4**. $\mathbb{P}\left(I_A\left(\omega\right)=0\right)=1-\mathbb{P}\left(A\right)=\mathbb{P}\left(\overline{A}\right)$, $\forall A\in\mathcal{A}$.

Induced probability

Theorem

Let X be a r.r.v. defined on probabilized space $(\Omega, \mathcal{A}, \mathbb{P})$ with values in a probabilizable space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. The application \mathbb{P}_X of $\mathcal{B}_{\mathbb{R}}$ in \mathbb{R} defined by $\mathbb{P}_X(B) = \mathbb{P}\left(X^{-1}(B)\right)$, is a probability on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Remark

The definition is due to the existence of \mathbb{P} on (Ω, \mathcal{A}) , hence the notion of induced probability.

Induced probability

Proof.

It is obvious that \mathbb{P}_X is an application with values in [0,1]. Moreover \mathbb{P} verifies these conditions:

$$\mathbb{P}_{X}\left(\mathbb{R}\right) = \mathbb{P}\left(X^{-1}\left(\mathbb{R}\right)\right) = \mathbb{P}\left(\Omega\right) = 1$$

Let $(B_i)_{i\geq 1}$ be two by two incompatible borelean sequences. Then

$$\mathbb{P}_{X}\left(\bigcup_{i\geq1}B_{i}\right) = \mathbb{P}\left(X^{-1}\left(\bigcup_{i\geq1}B_{i}\right)\right) = \mathbb{P}\left(\bigcup_{i\geq1}X^{-1}\left(B_{i}\right)\right) \\
= \sum_{i>1}\mathbb{P}\left(X^{-1}\left(B_{i}\right)\right) = \sum_{i>1}\mathbb{P}_{X}\left(B_{i}\right),$$

noting that $X^{-1}(B_i)$ and $X^{-1}(B_i)$ are incompatible $\forall i \neq j$.

Cumulative distribution function of a random variable

Definition

The cumulative ditribution function of a r.r.v. is the function F or F_X defined by:

$$F(x) = F_X(x) = \mathbb{P}(X \le x)$$
.

Properties of a cumulative distribution function

Definition

A sequence of events $(A_n)_{n\geq 1}$ is increasing (resp. decreasing) if $A_n \subset A_{n+1}$ (resp. $A_{n+1} \subset A_n$) for all $n\geq 1$.

 $(A_n)_{n\geq 1}$ is said to be monotonic if it is increasing or decreasing. In this case we put $\lim_{n\to\infty}A_n=\bigcup_{n\geq 1}A_n$ if it is increasing (resp.

 $\lim_{n\to\infty} A_n = \bigcap_{n\geq 1} A_n \text{ if it is decreasing}.$

Cumulative distribution function of a random variable

Remark

 $\lim_{n\to\infty}A_n$ exists if and only if the sequence $(A_n)_{n\geq 1}$ is monotonic.

Lemma

(Property of the continuity of \mathbb{P}) If $(A_n)_{n>1}$ is a monotonic sequence of events, then we have:

$$\underset{n\to\infty}{\lim}\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\underset{n\to\infty}{\lim}A_{n}\right).$$

Cumulative distribution function of a random variable

Theorem

If F is the cumulative distibution function of X then

- 1. $\forall x \in \mathbb{R} \ 0 \le F(x) \le 1$;
- 2. F is an increasing function;
- 3. F is right continuous;
- 4. $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$.

Cumulative distribution function of a random variable Proof.

- 1. Obvious because $F(X) = \mathbb{P}(X \le x)$ so $0 \le F(X) \le 1$.
- 2. Suppose that $x_1 < x_2$, hence $]-\infty, x_1] \subset]-\infty, x_2]$ and $X^{-1}(]-\infty, x_1]) \subset X^{-1}(]-\infty, x_2])$. It follows that $\mathbb{P}(X^{-1}(]-\infty,x_1]) \leq \mathbb{P}(X^{-1}(]-\infty,x_2])$ hence $F(x_1) < F(x_2)$.
- 3. Let us show that for any real sequence (ε_n) decreasing and converging to 0, $\lim_{n\to\infty} F(x+\varepsilon_n) = F(x)$. We set $A_n =$ $[x, x + \varepsilon_n]$. The (A_n) are decreasing and $\lim_{n\to\infty} A_n = \emptyset$, hence from the lemma

$$\lim_{n \to \infty} \mathbb{P}_X \left(A_n \right) = \mathbb{P}_X \left(\lim_{n \to \infty} A_n \right) = \mathbb{P}_X \left(\emptyset \right) = 0.$$
 Since

$$\begin{split} \mathbb{P}_{X}\left(A_{n}\right) &= \mathbb{P}\left(x < X \leq x + \varepsilon_{n}\right) = \mathbb{P}\left(X \leq x + \varepsilon_{n}\right) - \mathbb{P}\left(X \leq x\right) \\ &= F\left(x + \varepsilon_{n}\right) - F\left(x\right), \end{split}$$

then
$$\lim_{n\to\infty} F(x+\varepsilon_n) = F(x)$$
.

Cumulative distribution function of a random variable Proof.

4. Let $B_n =]-\infty, x_n]$ where the x_n is decreasing and converging to $-\infty$. We deduce that (B_n) is a decreasing sequence and $\lim B_n = \emptyset$, and according to the lemma

$$\lim_{n\to\infty}\mathbb{P}_{X}\left(B_{n}\right)=\mathbb{P}_{X}\left(\lim_{n\to\infty}B_{n}\right)=\mathbb{P}_{X}\left(\emptyset\right)=0$$

or
$$\lim_{n\to\infty} \mathbb{P}_X (B_n) = \lim_{n\to\infty} \mathbb{P}_X (X \le x_n) = \lim_{n\to\infty} F(x_n) = 0.$$

Let us consider the sequence defined by $C_n =]-\infty, y_n]$ where (y_n) is an increasing real sequence such that $\lim_{n\to\infty} y_n = +\infty$. We deduce that the (C_n) are increasing and $\lim_{n\to\infty} C_n = \mathbb{R}$.

We have
$$\lim_{n\to+\infty} F(y_n) = \lim_{n\to+\infty} \mathbb{P}(X \leq y_n) = \lim_{n\to+\infty} \mathbb{P}_X(C_n) = \mathbb{P}_X(\lim_{n\to+\infty} C_n) = \mathbb{P}_X(\mathbb{R}) = 1.$$

Support of a real random variable

We call the support of an r.v. X the set $X(\Omega)$. This support comes in several forms:

- If X (Ω) is finite or infinite countable X is said to be a discrete (or discontinuous) random variable, denoted d.r.v.
- If X (Ω) is infinite uncountable X is said to be a continuous random variable, denoted c.r.v.
 Moreover a c.r.v. is said to be absolutely continuous if it admits a continuous and derivable distribution function (except possibly at some points).

Definition

The random variable X is said to be discrete if it takes a finite or infinite countable number of values.

Notation: When the r.v. X takes the value x we write $\{X=x\}$ to describe the event $\{\omega \in \Omega, X(\omega)=x\}$.

Example

In the example of tossing a coin twice X=0 correspond to the case where there is no tail P, this means that $\{X=0\}=\{FF\}$. In the same way we have $\{X=1\}=\{PF,FP\}$ and $\{X=2\}=\{PP\}$.

Probability distribution of a discrete random variable

Definition

Let X be a d.r.v. one calls probability distribution or mass function of the r.v. X the application

$$\rho : \mathbb{R} \longrightarrow [0,1]$$
$$x \longmapsto \rho(x) = \mathbb{P}(X = x).$$

Properties:

- **1.** $\forall x \in \mathbb{R}, p(x) \geq 0;$
- **2.** $\sum_{x \in \mathbb{R}} p(x) = 1$.

Example. When we throw a coin twice, we have

$$p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{FF\}) = \frac{1}{4};$$

$$p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\{PF, FP\}) = \frac{2}{4} = \frac{1}{2};$$

$$p(2) = \mathbb{P}(X = 2) = \mathbb{P}(\{PP\}) = \frac{1}{4}.$$

The distribution is usually written in the following form

X	0	1	2	$\sum_{x=0}^{x=2} p(x)$
$\mathbb{P}\left(X=x\right)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

Cumulative distribution function

1. If X is a discrete r.v. then

$$F_X(x) = \sum_{x_i \le x} \mathbb{P}(X = x_i) = \sum_{x_i \le x} p(x_i).$$

2. The cumulative distribution function allows to determine the probability law of the r.v. X. Indeed, $\forall x_i \in X\left(\Omega\right)$

$$\mathbb{P}(X = x_j) = \sum_{i=1}^{j} \mathbb{P}(X = x_i) - \sum_{i=1}^{j-1} \mathbb{P}(X = x_i) = F_X(x_j) - F_X(x_{j-1}).$$

Example

We throw 3 dice and define the r.v. X as the number of 6 obtained.

The probability law of X is

X	0	1	2	3	$\sum_{x=0}^{x=2} p(x)$
$\mathbb{P}\left(X=x\right)$	$\frac{5^3}{6^3}$	$\frac{3.5^2}{6^3}$	$\frac{3.5}{6^3}$	$\frac{1}{6^3}$	1

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{125}{216} & \text{if } 0 \le x < 1\\ \frac{200}{216} & \text{if } 1 \le x < 2\\ \frac{215}{216} & \text{if } 2 \le x < 3\\ 1 & \text{if } 3 \le x \end{cases}$$

Definition

A real random variable X is said to be absolutely continuous if its cumulative distribution function $F_X(\cdot)$ satisfy the two following conditions:

- 1. F_X is continuous on \mathbb{R} ;
- 2. F_X is derivable in every point $x \in \mathbb{R}$ except perhaps on a finite set D.

Theorem

Let X be an absolutely continuous random variable, with cumulative distribution function F_X , then for any pair $(a,b) \in \mathbb{R}^2$ such that a < b, we have

- 1. $\mathbb{P}(X = a) = 0$.
- 2. $\mathbb{P}(X \in]a, b]) = \mathbb{P}(X \in]a, b[) = \mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b]) = F_X(b) F_X(a)$.
- 3. $\mathbb{P}(X \in]a, \infty[) = \mathbb{P}(X \in [a, \infty[) = 1 F_X(a))$.
- 4. $\mathbb{P}(X \in]-\infty, b]) = \mathbb{P}(X \in]-\infty, b[) = F_X(b)$.

Definition

A real random variable X defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with cumulative distribution function F_X is said to be absolutely continuous random variable, if there exists a real function f_X satisfying the following conditions:

- 1. $f_X(x) \geq 0$; $\forall x \in \mathbb{R}$;
- 2. f_X is continuous on \mathbb{R} , except perhaps on a finite number of points where it has a finite left limit and finite right limit.
- 3. The integral $\int_{-\infty}^{+\infty} f_X(x) dx$ exists and is equal to 1.
- 4. The cumulative distribution function F_X can be written, for all $x \in \mathbb{R}$ in the form

$$F_X(x) = \int_{-\infty}^x f_X(s) ds.$$

Definition

A function f that satisfies the four previous conditions is called a probability density function or distribution function of an absolutely continuous random variable X.

Example

Let X be a random variable with cumulative distribution function F_X given by

$$F_X\left(x\right) = \left\{ \begin{array}{ll} 0 & \text{if } x < 0 \\ 1 - \frac{1}{2}\left(x + 2\right)e^{-\frac{x}{2}} & \text{if } x \geq 0 \end{array} \right.$$

- 1. Show that the random variable X is absolutely continuous.
- 2. Find the constant C such that the function f defined by

$$f(x) = \begin{cases} Cxe^{-\frac{x}{2}} & \text{if } x \ge 0\\ 0 & \text{elsewhere} \end{cases}$$

be the probability density of the random variable X.

3. Verify that

$$F_{X}(x) = \int_{-\infty}^{x} f(s) ds.$$

Solution

1. F_X is continuous on $]-\infty$, 0[and on $]0, +\infty[$ show that it is continuous in 0. We have $\lim_{x\to 0}\left(1-\frac{1}{2}\left(x+2\right)e^{-\frac{x}{2}}\right)=0$ hence F_X is continuous in 0.

 F_X is derivable on $]-\infty,0[$ and on $]0,+\infty[$ show that it is derivable in 0. We have $\lim_{x\to 0}\left(\frac{F_X(x)-F_X(0)}{x}\right)=0$

 F_X is derivable on \mathbb{R} , hence X is an absolutely continuous variable.

Solution

2. To show that f is a density function we determine first the constant C using the condition 3 of the definition i.e. $\int_{-\infty}^{+\infty} f(x) \, dx = 1$, then we verify the other conditions.

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{+\infty} Cx e^{-\frac{x}{2}} dx = C \left(\left[-2x e^{-\frac{x}{2}} \right]_{0}^{\infty} + 2 \int_{0}^{+\infty} e^{-\frac{x}{2}} dx \right)$$
$$= C \left[-4e^{-\frac{x}{2}} \right]_{0}^{\infty} = 4C = 1.$$

hence $C = \frac{1}{4}$ and

We have

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{x}{4}e^{-\frac{x}{2}} & \text{if } x \ge 0 \end{cases}$$

We have $f_X(x) \ge 0$; $\forall x \in \mathbb{R}$.

It is a continuous fuction in 0 and then continuous on \mathbb{R} .

Then f is a probability density function of the random variable X

Solution

3. If x < 0, $\int_{-\infty}^{x} f(s) ds = 0$ since on $]-\infty, 0[$, $F_X(x) = 0$ If $x \ge 0$,

$$\begin{split} \int_{-\infty}^{x} f(s) \, ds &= \int_{-\infty}^{0} f(s) \, ds + \int_{0}^{x} f(s) \, ds = 0 + \int_{0}^{x} \frac{s}{4} e^{-\frac{s}{2}} ds \\ &= \frac{1}{4} \left(\left[-2se^{-\frac{s}{2}} \right]_{0}^{x} + 2 \int_{0}^{x} e^{-\frac{s}{2}} ds \right) \\ &= \frac{1}{4} \left(-2xe^{-\frac{x}{2}} - 4 \left[e^{-\frac{s}{2}} \right]_{0}^{x} \right) \\ &= \frac{1}{4} \left(-2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}} + 4 \right) = 1 - \frac{1}{2} (x+2) e^{-\frac{x}{2}} \end{split}$$

hence $F_X(x) = \int_{-\infty}^x f(s) ds$.

Definition

Let X be a d.r.v. with possible values x_1, x_2, \cdots and mass function p(x). The mathematical expectation of X is

$$\mathbb{E}\left[X\right] = \sum_{i \geq 1} x_i p\left(x_i\right) = \sum_{i \geq 1} x_i \mathbb{P}\left(X = x_i\right)$$

provided that the above serie is absolutely convergent, otherwise we will say that X does not have a mathematical expectation.

Remark

If X has a finite number of values then $\mathbb{E}[X]$ exists.

Definition

Let X be a c.r.v. with distribution function f, the mathematical expectation of X is

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} xf\left(x\right) dx$$

provided that the above integral is absolutely convergent, otherwise we will say that X does not have a mathematical expectation.

Example

Let T be a c.r.v. with distribution function f defined by

$$f\left(t
ight) = \left\{ egin{array}{ll} rac{1}{t^2} & ext{if } t > 1 \ 0 & ext{elswhere} \end{array}
ight.$$

Determine $\mathbb{E}[T]$.

Solution: We have

$$\int_{-\infty}^{+\infty} |tf(t)| dt = \int_{1}^{+\infty} \left| \frac{1}{t} \right| dt$$

$$= \lim_{x \to \infty} \int_{1}^{x} \left| \frac{1}{t} \right| dt = \lim_{x \to \infty} \log x - \log 1 = +\infty$$

hence the expectation doesn't exist.

Definition

Let G be a function of a random variable X, the expectation of $G\left(X\right)$ is given by

$$\mathbb{E}\left[G\left(X\right)\right] = \left\{\begin{array}{l} \sum_{x \in \mathbb{R}} G\left(x\right) p\left(x\right) \text{ if } X \text{ is discrete} \\ \int_{-\infty}^{+\infty} G\left(x\right) f\left(x\right) dx & \text{if } X \text{ is continuous} \end{array}\right.$$

provided that the above serie and integral are absolutely convergent.

Theorem

Let X be a random variable, then

- 1. $\mathbb{E}[c] = c$ where c is a constant,
- 2. $\mathbb{E}\left[\alpha H(X) + \beta G(X)\right] = \alpha \mathbb{E}\left[H(X)\right] + \beta \mathbb{E}\left[G(X)\right]$ where H and G are functions of X and α , β are reals. Provided that the different expectations exist.

Definition

Let X be a random variable, we call moment of order k $(k \in \mathbb{N})$ the following value

$$\mathbb{E}\left[X^{k}\right] = \left\{\begin{array}{l} \sum_{x \in \mathbb{R}} x^{k} p\left(x\right) \text{ if } X \text{ is discrete} \\ \int_{-\infty}^{+\infty} x^{k} f\left(x\right) dx \text{ if } X \text{ is continuous} \end{array}\right.$$

provided that the above serie and integral are absolutely convergent.

Definition

Let X be a random variable, the variance of X, noted σ_X^2 or $Var\left(X\right)$ is

$$\sigma_{X}^{2} = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \mathbb{E}\left[X^{2}\right] - \mathbb{E}\left[X\right]^{2}.$$

We call standard deviation of X the number

$$\sigma_X = \sqrt{Var(X)}.$$

If $\mathbb{E}\left[X
ight]=0$ we say that the random variable is centrend. If $Var\left(X
ight)=1$ we say that the random variable is reduced.

Theorem

Let X be a random variable with expectation $\mathbb{E}\left[X\right]$ and variance σ_X^2 . If Y=aX+b where a and b are real constants, then

$$\mathbb{E}\left[Y\right] = a\mathbb{E}\left[X\right] + b \quad \text{and } \sigma_Y^2 = a^2\sigma_X^2.$$