

Student's Name:	End of Semester	Time :1h30
	English Exam	January 2022
Section:Group:	4 th Year	

I. Read the text then guess the missing words (see the choices in the table) to fill in the gaps.

PROPERTIES AND USES OF METAL

	Very rarely do Steelworkers work with (0)) in their pure state. We primarily
VIETAL)	work with (1) and have to und	lerstand their features. The (2)
METAL	of elements and alloys are explained in ter	rms of physical, chemical, electrical, and
	mechanical properties. (3)prop	perties relate to colour, density, weight,
TETAL V	and heat conductivity. (4) prop	erties involve the behaviour of the metal
	when placed in contact with the atmosph	here, salt water, or other substances. (5)
	properties encompass the ele-	ectrical conductivity, resistance, and
nagnetic qualities of the metal.	The (6)properties relate to	o load-carrying ability, wear resistance,
nardness, and elasticity. When sel	lecting stock for a job, your main concern	is the mechanical properties of the metal.
The various properties of (7)	and alloys were determined in th	ne laboratories of manufacturers and by
various societies interested in (8)	development. Charts presenting	ng the properties of a particular metal or
alloy are available in many con	mmercially published reference books.	The charts provide information on the
(9), tensile strength,	electrical conductivity, (10)	properties, and other properties of a
particular metal or alloy. Simple	tests can be conducted to determine some	of the properties of a metal; however, we
normally use a metal test only a	as an aid for identifying apiece of stock.	. Some of these methods of testing are
liscussed later in this chapter. P	roperties like strength, hardness, toughne	ess, elasticity, plasticity, brittleness, and
luctility and malleability are all n	nechanical properties used as (11)	of how metals behave under a load.
These properties are described in	terms of the types of force or stress that	the metal must withstand and how these
are (12)Common ty	pes of (13) are compression,	tension, shear, torsion, impact, or a
combination of these stresses, suc	h as fatigue. Compression stresses develop	within a material when forces compress
or crush the material. A column	that supports an overhead beam is in con	mpression, and the internal stresses that
levelop within the column are (1	4) Tension (or tensile) stresses	s develop when a material is subject to a
(15)load; for example,	when using a wire rope to lift a load or who	en using it as a guy to anchor an antenna.
'Tensile strength" is defined as	resistance to (16)stress or p	oull and can be measured in pounds per
square inch of cross section. (17)	stresses occur within a materia	al when external forces are applied along
parallel lines in opposite directio	ns. Shearing forces can separate material	by sliding part of it in one direction and
he rest in the opposite direction	n. Some materials are equally strong in	compression, (18), and shear.
However, if the same force is ap	plied in a steady motion (not bent back ar	nd forth), the rod cannot be broken. The
endency of a material to fail afte	r repeated (19)at the same point is	s known as (20)

NB: Only Answers Reported in the Appropriate Tables will be Considered

^{*}Before you start, note that this exam is comprised only of two sections; please report all your answers in the tables that appear at the end of each:

Name:	Group:
	- · · · · · · · · · · · · · · · · · · ·

N°					Answers
0	<mark>a. Element</mark> s	b. components	c. problems	d. variables	A
1	a. Iron	b. silver	c. copper	d. <mark>alloys</mark>	
2	a. characteristics	b. components	c. number	d. danger	
3	a. Electrical	b. physiological	C . physical	d. biological	
4	a. Non organic	b <mark> chemical</mark>	c. Electrical	d. physical	
5	a. Electrical	b. biological	c. physical	d. Electronic	
6	a. physical	b. electrical	c. mechanical	d. Anthological	
7	a. textile	b. Fabric	c. material	d. <mark>metals</mark>	
8	a. material	b. metallurgical	c. matter	d. substance	
9	a. melting point	b. turning point	c. checking point	d. boiling point	
10	a. magnificent	b. majestic	c. magic	d. <mark>magnetic</mark>	
11	a. measures	b. tool box	c. measurements	d. hammer	
12	a. calculated	b. resisted	c. numbered	d. quantified	
13	a <mark>. stress</mark>	b. pressured	c. resistance	d. existence	
14	a. comprehension	b. combustion	c. consumption	d. compression	
15	a. heavy	b. dragging	c. pulling	d. thrust	
16	a. short term	b <mark>. longitudinal</mark>	c. temporary	d. momentous	
17	a. <mark>shearing</mark>	b. caring	c. sharing	d. pulling	
18	a. timber	b. time	c. tenderness	d. tension	
19	a. beaming	b. bending	c. bounding	d. binding	
20	a. foundling	b. fountain	c. <mark>fatigue</mark>	d. factory	

II. Manufacturing Techniques, Tests & Experiments, and Energies. Answer in the table below

1.	is the removal of surface layers with	16.	Flame-cutting is an ideal technique for cutting:
	multiple cutting wheel passes	a.	Pottery
a.	Shearing	b.	Glass
b.	Milling	c.	Metals
c.	Grinding	d.	Ceramics
d.	Casting	17.	Drilling with a bit is especially good for cutting:
2.	A cutting operation that uses oxy fuel is called:	a.	Blind holes
a.	Abrasive waterjet cutting	b.	Through holes
b.	Flame cutting	c.	Black holes
c.	Heat cutting	d.	Dark holes
d.	Melting	18.	is a mechanical joining technique.
3.	What do we call the width of the saw cut?	a.	Gluing
a.	Turf	b.	Bonding
b.	Wide cut	c.	Welding
c.	Kerf	d.	Screwing
d.	Punch	19.	What is the disadvantage of bolts?
4.	is a tool that has a hard and rough	a.	Work loose overtime
	surface and used for cutting or grinding?	b.	Permanent
a.	Guillotine	c.	Are weakened by heat
b.	Abrasive wheel	d.	Are weakened by water
c.	Chainsaw	20.	What does acid test mean?
d.	Rectifier	a.	Testing with acid
5.	What is the disadvantage of adhesive joints?	b.	Testing with chemicals
a.	Work loose overtime	c.	Testing in real conditions
b.	Generate flawed welds	d.	Testing in a wind tunnel
c.	Are weakened by paint	21.	Which statement is correct about the in-use phase?
d.	Difficult subsequent removal	a.	Aluminum lasts longer than steel.
6.	Rolling roads are used in wind tunnel tests to _	b.	It takes less energy to produce steel.
a.	Simulate the speed of a vehicle in a tunnel	c.	It takes more energy to produce aluminum.
b.	Simulate the spinning wheels turbulence	d.	Steel takes less energy to weld.
c.	Simulate the speed of the wind in a tunnel	22.	Which statement is in the post-use phase?
d.	Simulate the spinning wheels friction	a.	Steel cans are cheaply produced.
7.	Something made up of different parts or	b.	Iron is easy to weld.
	materials	c.	It is possible to recover devices made from
a.	Composite		aluminum
b.	Compromise		It takes a lot of energy to produce aluminum
c.	Composure	23.	Conductivity is defined as the ability to carry
d.	Consistence		a) Voltage
8.	What does stainless steel contain in addition to		b) Resistance
	iron?		c) Current
a.	Carbon, chromium, and nickel	24	d) All of the mentioned
b.	Chromium and nickel		Galvanized steel means:
C.	Carbon and chromium	a.	Coated with paint
d.	Carbon and nickel	b.	Coated with point
		C.	Coated with carbon
		d.	Coated with rust

- 9. What is the chemical process by which the extraction of aluminum is done?
- a. Electrocution
- b. Electrification
- c. Electrolysis
- d. Electrolyte
- 10. How do you call the process of inspection of any device's lifespan and its impact on the environment?
- a. Green inspection
- b. Environment audit
- c. Environment inspection
- d. Environmental audit
- 11. Ironmongery is
- a. Small metal items
- b. Rust in metal
- c. Metallic construction
- d. Liquified metal
- **12.** Automotive Engineering is mostly concerned with:
- a. Vehicle manufacturing
- b. Personal motivation
- c. Vehicle speed
- d. Automatic movement
- 13. What is the word that defines extracted metals from earth?
- a. Mineral
- b. Ore
- c. Organic
- d. Metamict
- 14. Which statement describes the pre-use phase?
- a. It takes a lot of energy to produce aluminum.
- b. Aluminum is fully recycled.
- c. Steel is easily corroded
- d. Aluminum lasts longer than steel.
 - 15. What does mock-up mean?
- a. 3D model without internal components
- b. 3D model with internal components
- c. Prototype
- d. Computer model

- 25. Which of the following materials is the lightest?
- a. Iron
- b. Aluminum
- c. steel
- d. Copper
- 26. Which of the following metals is an alloy of tin?
- a. Brass
- b. Bronze
- c. iron
- d. Steel
- 27. Computational fluid dynamics are able to _____ complex problems involving fluid-fluid, fluid-solid or fluid-gas interaction
- a. Eliminate
- b. Replace
- c. Interpret
- d. Convert
- 28. In which of the following are the components of a wind turbine system arranged in the right order in which energy is converted?
- a) Blades rotor electric generator shaft
- b) Blades rotor shaft electric generator
- c) Shaft blades rotor electric generator
- d) Electric generator blades rotor shaft
- 29. ______describes the force that two surfaces exert on each other when they rub against each other
- a) Friction
- b) Tension
- c) Compression
- d) None of the above
 - **30.** Which of these metals will make an alloy ferrous?
- a. Aluminum
- b. Lead
- c. Zinc
- d. Iron

					Answers (30 pts)									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30