שם הקורס: גאומטריה בדידה שם הפקולטה: מדעי הטבע

שם המחלקה: מדעי המחשב מספר הקורס: 2-7092010-1

> שם המרצה: גבריאל ניבש מתכונת הקורס: הרצאה

שנת לימודים: תשפ"ד סמסטר: ב היקף שעות: 1.5 נקודות זכות: 3

א. מטרות הקורס: להקנות היכרות ראשונית וידע בסיסי בתחום הגאומטריה הבדידה.הקורס ניתן ברמה התואמת גם לסטודנטים לתארים מתקדמים.

ב. תוכן הקורס: גיאומטריה בדידה היא חקר התכונות הקומבינטוריות של קבוצות של נקודות, ישרים, מעגלים, מישורים, וכו'. למשל: מהו המספר המרבי של זוגות נקודות במרחק 1 שיכולות להיות בין במרחב d-ממדי? n נקודות במישור? מהו המספר המרבי של פאות בפאון בעל n קודקודים

מהלך השיעורים: בעיקר נלך לפי הספר [4] בביבליוגרפים, ולפעמים ניקח דברים ממקורות אחרים.

במקרה של נוכחות של ולו סטודנט אחד שאיננו דובר עברית, הקורס יועבר כולו באנגלית.

תכנית הוראה מפורטת לכל השיעורים:

הערות	נושא השיעור	יחידת שיעור
[4] Ch. 1	Review of linear algebra, basic notions of	.1
[4] 011. 1	convexity	• •
[4] Ch. 1	Radon's lemma, Helly's theorem, centerpoint	.2
[4] 011. 1	theorem	.2
[4] Ch. 3	Points in convex position, Erdős-Szekeres	.3
[4] CII. 3	• • • • • • • • • • • • • • • • • • • •	.5
	theorem, Horton sets	
[4] Ch. 4	Incidences between points and lines, the	.4
	crossing lemma	
[4] Ch. 5	Convex polytopes, equivalence between V-	.5
	and H-polytopes, faces	
[4] Ch. 6	Arrangements of lines in the plane, numbers	.6
	of faces, levels, the zone theorem	
[4] Ch. 7	Lower envelopes of segments in the plane,	.8 .7
To be	Davenport-Schinzel sequences, the inverse	
omitted	Ackermann function	
[4] Ch. 8	Tverberg's theorem	.9
[4] Ch. 9	The first selection lemma, the stretched grid	.10
	and stretched diagonal	
[4] Ch. 11	<i>k</i> -sets	.12 .11
	Review	.13

ג. חובות הקורס:

דרישות קדם: אלגברה לינארית 1,2, מבנים דיסקרטיים למדעי המחשב

חובות / דרישות / מטלות: במהלך הקורס יהיו 3 מטלות. אין חובה להגיש את המטלות. כל מטלה תקנה עד 2 נקודות בונוס בציון הסופי של הקורס, בתנאי שהציון במבחן יהיה לפחות 60.

מרכיבי הציון הסופי (ציון מספרי / ציון עובר): 100% בחינה + עד 6 נקודות בונוס מהמטלות. מהמטלות. צריך לקבל ציון לפחות 60 במבחן כדי לקבל את נקודות הבונוס מהמטלות.

ד. כללי הגשת המטלות:

- ההגשה היא ביחידים או בזוגות.
- מותר להתייעץ עם מספר מועט של סטודנטים אחרים ולחפש מידע באינטרנט, אך חייבים לכתוב את התשובות לבד עם חומר סגור.
 - . במידה והתייעצתם או חיפשתם מידע, יש לציין את המקורות. ●
 - תשובות דומות אחת לשנייה בצורה לא סבירה ייחשבו כהעתקה.
 בכל מקרה של העתקה הסטודנטים המעורבים יקבלו ציון 0 בקורס.

ה. ביבליוגרפיה:

- [1] J. E. Goodman and J. O'Rourke (eds.), *Handbook of Discrete and Computational Geometry*, Second Edition, CRC Press, 2004.
- [2] B. Grünbaum, Convex Polytopes, Springer, 2003.
- [3] J. Matoušek, Geometric Discrepancy: An Illustrated Guide, Springer, 1999.
- [4] J. Matoušek, Lectures on Discrete Geometry, Springer, 2002.
- [5] J. Matoušek, *Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry*, Springer, 2003.
- [6] J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley, 1995.
- [7] J. Pach and M. Sharir, Combinatorial Geometry and its Algorithmic Applications: The Alcalá Lectures, American Mathematical Society, 2008.
- [8] G. M. Ziegler, Lectures on Polytopes, Springer, 1995.