Práctica 1

Anabel Gómez Ríos

1. Ejercicio de Generación y Visualización de datos.

1. Construir una función lista = simula_unif(N, dim, rango) que calcule una lista de longitud N de vectores de dimensión dim conteniendo números aleatorios uniformes en el intervalo rango.

Lo primero que hago es fijar una semilla para toda la práctica, puesto que la generación aleatoria se va a utilizar mucho y es conveniente que los resultados se puedan repetir. Fijo la semilla a 237 con la función set.seed().

Como pide una lista, utilizo la función lapply(), que itera sobre una lista o un vector (en este caso un vector de la longitud pedida) y devuelve una lista en la que vamos a meter los números aleatorios uniformes generados con la función runif(), en la que ya le decimos la dimensión y el rango en el que tiene que muestrear (de forma que si la dimensión es 2 genera los números de dos en dos y los mete de dos en dos en cada elemento de la lista).

```
set.seed(237)
simula_unif <- function(N, dim, rango) {
   lapply(1:N, function(x) runif(dim, min = rango[1], max = rango[2]))
}</pre>
```

Por ejemplo, vamos a obtener una lista de longitud 4 de vectores de dimensión 3 en el rango (0,1) y la mostramos después:

```
1 <- simula_unif(4,3,c(0,1))

## [[1]]
## [1] 0.5921064 0.5576325 0.4955501
##
## [[2]]
## [1] 0.3277974 0.5416440 0.8203180
##
## [[3]]
## [1] 0.48786829 0.05446795 0.74735277
##
## [[4]]
## [1] 0.4940525 0.5267060 0.2230311</pre>
cat("Presione una tecla para continuar")
```

Presione una tecla para continuar

```
t <- readline()
```

2. Construir una función lista = simula_gauss(N, dim, sigma) que calcule una lista de longitud N de vectores de dimensión dim conteniendo números aleatorios gaussianos de media 0 y varianzas dadas por el vector sigma.

Utilizo el mismo procedimiento del apartado anterior, utilizando lapply() sobre un vector de la longitu pedida pero utilizando en este caso la función rnorm() para que genere los números en la distribución normal (que es la gaussiana) que acepta como parámetros el número de números que tiene que general, la media y la desviación típica.

```
simula_gauss <- function(N, dim, sigma) {
  lapply(1:N, function(x) rnorm(dim, mean = 0, sigma))
}</pre>
```

Vamos a obtener por ejemplo una lista de longitud 3 de vectores de dimensión 2 y vector de desviaciones (1,7):

```
simula_gauss(3,2,c(1,7))

## [[1]]
## [1] -0.8273568 -3.3738051
##
## [[2]]
## [1] -0.6827164 -15.3826366
##
```

```
cat("Presione una tecla para continuar")
```

Presione una tecla para continuar

[1] -1.094434 -3.823909

[[3]]

```
t <- readline()
```

Como vemos, la desviación 1 se coge para la primera coordenada de los vectores y la desviación 7 para la segunda coordenada. Si ponemos por ejemplo c(1,7,3) como vector de desviaciones y la dimensión de los vectores es 2, ignora el número 3.

3. Suponer N = 50, dim = 2, rango = [-50, 50] en cada dimensión. Dibujar una gráfica de la salida de la función correspondiente.

Como nos dicen el rango, lo hacemos con la generación uniforme, por lo que le pasamos a la función $simula_unif()$ que acabamos de hacer los tres datos que nos dan y obtenemos las coordenadas x e y de los datos (que serán la primera y segunda columna respectivamente) con la función rapply(), a la que le pasamos como función que devuelva la primera y la segunda coordenada de cada elemento de la lista. De esta forma obtenemos dos vectores, uno con todas las primeras coordenadas y otro con las segundas. Estos dos vectores es lo que le pasamos a la función plot() para que los pinte, junto con el tipo de punto que queremos (en este caso un círculo alrededor del punto) y los títulos de los ejes, con lo que obtenemos una gráfica en la que aparecen los puntos entre -50 y 50 en cada eje, como nos pedían.

```
lista <- simula_unif(50, 2, c(-50,50))
# Obtenemos las coordenadas x e y, que son la primera y segunda columna
# de la lista (primera componente y segunda componente de cada vector en la lista)
x <- rapply(lista, function(x) x[1])
y <- rapply(lista, function(x) x[2])
plot(x, y, type = "p", xlab = "Eje X", ylab = "Eje Y")</pre>
```



```
cat("Presione una tecla para continuar")
```

Presione una tecla para continuar

```
t <- readline()
```

4. Suponer N = 50, dim = 2, sigma = [5,7]. Dibujar una gráfica de la salida de la función correspondiente.

En este caso utilizamos la función $simula_gauss()$ que acabamos de crear y utilizamos rapply() de nuevo para obtener las coordenadas x e y en vectores, que serán los que le pasemos a plot(), obteniendo de nuevo una gráfica, esta vez con una desviación de 5 en el eje X y una desviación de 7 en el eje Y.

```
lista2 <- simula_gauss(50, 2, c(5,7))

# Obtenemos las coordenadas x e y, que son la primera y segunda columna

# de la lista (primera componente y segunda componente de cada vector en la lista)
```

```
x <- rapply(lista2, function(x) x[1])
y <- rapply(lista2, function(x) x[2])
plot(x, y, type = "p", xlab = "Eje X", ylab = "Eje Y")</pre>
```


Como vemos la gráfica tiene sentido puesto que la mayoría de los puntos están en el intervalo (-5,5) en el eje X y en el (-7,7) en el Y.

5. Construir la función $v = simula_recta(intervalo)$ que calcula los parámetros v = (a,b) de una recta aleatoria y = ax + b que corte al cuadrado $[-50,50] \times [-50,50]$ (Ayuda: Para calcular la recta simular las coordenadas de dos puntos del cuadrado y calcular la recta que pasa por ellos).

Le pasamos a la función como parámetro el cuadrado que queremos que la recta corte, que será el intervalo que le pasaremos a la función simula_unif(). Una vez hecho esto calculamos a y b como la recta que pasa por los puntos que hemos generado con simula_unif(): si (x_1,y_1) y (x_2,y_2) son los puntos por los que pasa la recta, entonces $a=\frac{y_2-y_1}{x_2-x_1}$ la pendiente de la recta y con a despejamos b con el primer punto $b=y_1-ax_1$. Por último devolvemos un vector con a y b.

```
simula_recta <- function(intervalo) {
  l <- simula_unif(2, 2, intervalo)
  a <- (1[[2]][2] - 1[[1]][2]) / (1[[2]][1] - 1[[1]][1])
  b <- 1[[1]][2] - a * 1[[1]][1]
  c(a,b)
}</pre>
```

Simulamos la recta pedida que corta al cuadrado $[-50, 50] \times [-50, 50]$

```
simula_recta(c(-50,50))
```

```
## [1] -1.427238 -3.351577
```

6. Generar una muestra 2D de puntos usando simula_unif() y etiquetar la muestra usando el signo de la función f(x,y) = y - ax - b de cada punto a una recta simulada con simula_recta(). Mostrar una gráfica con el resultado de la muestra etiquetada junto con la recta usada para ello.

Vamos primero a construir una función que nos devuelva la etiqueta +1 o -1 según el signo de la f dada (suponiendo que la evaluación ya ha sido hecha):

```
etiquetar <- function(valor) {
   if (valor > 0) {
      return(+1)
   }
   else {
      return(-1)
   }
}
```

Ahora generamos la recta con la función indicada y utilizamos la función anterior para etiquetar los puntos haciendo uso también de la función lapply(), iterando sobre un vector del tamaño de la lista que serán las posiciones, de forma que en cada iteración nos quedamos con el elemento i de la lista (el punto i-ésimo) y para cada punto evaluamos en la recta dada y etiquetamos con la función anterior:

```
r <- simula_recta(c(-50,50))
etiquetas <- lapply(1:length(lista), function(i) {
    # Obtenemos los puntos uno a uno y los etiquetamos
    p <- lista[[i]]
    f <- p[2] - r[1]*p[1] - r[2]
    etiquetar(f)
})</pre>
```

Esto nos devuelve en etiquetas una lista de 50 vectores, todos con una componente. Lo vamos a pasar a un vector con las 50 componentes con la función unlist()

```
etiquetas <- unlist(etiquetas)
# Mostramos las etiquetas
etiquetas</pre>
```

Vamos a dibujar el resultado. Pintamos en una misma gráfica los puntos etiquetados con +1 (en rojo) y los puntos etiquetados con -1 (en azul), esto lo hacemos utilizando el mismo vector de etiquetas que ya teníamos, sumándole una cantidad positiva (puesto que los colores empiezan en 1 y en nuestro vector tenemos

almecenados muchos -1). Pintamos también la recta que hemos utilizado para etiquetar los puntos utilizando la función contour(), que junto con outer() permite dibujar una gráfica dando la expresión implícita de la misma (lo que nos va a venir muy bien para el apartado 7 de este ejericio). Vamos también a dar la opción de no pintar gráfica junto con los puntos para que sea más general la función y nos sirva para más cosas, utilizando los valores por defecto:

```
pinta particion <- function(lista puntos, etiquetas=NULL, visible=FALSE, f=NULL,
                             rango = c(-50,50)) {
  x <- rapply(lista_puntos, function(x) x[1])</pre>
  y <- rapply(lista_puntos, function(x) x[2])
  if(is.null(etiquetas))
     etiquetas=1
  else etiquetas = etiquetas+3
  plot(x, y, type = "p", col = etiquetas, xlab = "Eje X", ylab = "Eje Y",
       xlim = rango, ylim = rango)
  # Si queremos pintar función junto con los datos
  if(visible) {
    sec \leftarrow seq(-60, 60, length.out = 1500)
    z <- outer(sec, sec, f)</pre>
    contour(sec, sec, z, col = "violet", levels = 0, add = TRUE, drawlabels = F)
 }
}
```

Utilizamos la función para pintar la recta junto con los puntos:

```
pinta_particion(lista, etiquetas, TRUE, function(x,y) r[1]*x-y+r[2])
```


7. Usar la muestra generada en el apartado anterior y etiquetarla con +1,-1 usando el signo de cada una de las siguiente funciones y visualizar el resultado del etiquetado de cada función junto con su gráfica y comparar el resultado con el caso lineal. ¿Qué consecuencias extrae sobre la forma de las regiones positiva y negativa?:

Vamos a utilizar la función para etiquetar que hemos hecho en el apartado anterior y la función para dibujar que acabamos de hacer también. En todos los subapartados hacemos lo mismo: etiquetamos los datos según la función del mismo modo que antes y se los pasamos a la función anterior para que los pinte.

a)
$$f(x,y) = (x-10)^2 + (y-20)^2 - 400$$

```
etiquetasFA <- lapply(1:length(lista), function(i) {
   # Obtenemos los puntos uno a uno y los etiquetamos
   p <- lista[[i]]
   f1 <- (p[1]-10)^2 + (p[2] - 20)^2 - 400
   etiquetar(f1)
})
etiquetasFA <- unlist(etiquetasFA)

pinta_particion(lista, etiquetasFA, TRUE, function(x,y) (x-10)^2 + (y-20)^2 - 400)</pre>
```


b)
$$f(x,y) = 0.5 * (x+10)^2 + (y-20)^2 - 400$$

```
etiquetasFB <- lapply(1:length(lista), function(i) {
   # Obtenemos los puntos uno a uno y los etiquetamos
   p <- lista[[i]]
   f2 <- 0.5*(p[1]+10)^2 + (p[2] - 20)^2 - 400
   etiquetar(f2)
})
etiquetasFB <- unlist(etiquetasFB)

pinta_particion(lista, etiquetasFB, TRUE, function(x,y) 0.5*(x+10)^2 + (y-20)^2 - 400)</pre>
```


c)
$$f(x,y) = 0.5 * (x-10)^2 - (y+20)^2 - 400$$

```
etiquetasFC <- lapply(1:length(lista), function(i) {
   # Obtenemos los puntos uno a uno y los etiquetamos
   p <- lista[[i]]
   f3 <- 0.5*(p[1]-10)^2 - (p[2] + 20)^2 - 400
   etiquetar(f3)
})
etiquetasFC <- unlist(etiquetasFC)

pinta_particion(lista, etiquetasFC, TRUE, function(x,y) 0.5*(x-10)^2 - (y+20)^2 - 400)</pre>
```


d)
$$f(x,y) = y - 20x^2 - 5x + 3$$

```
etiquetasFD <- lapply(1:length(lista), function(i) {
   # Obtenemos los puntos uno a uno y los etiquetamos
   p <- lista[[i]]
   f4 <- p[2] - 20*(p[1]^2) - 5*p[1] + 3
   etiquetar(f4)
})
etiquetasFD <- unlist(etiquetasFD)
pinta_particion(lista, etiquetasFD, TRUE, function(x,y) y - 20*x^2 - 5*x + 3)</pre>
```


Como vemos, al ser ahora las funciones cuadráticas y no lineales, los datos no son linealmente separables (los que caen dentro de las gráficas se quedan en el centro o a ambos lados) y por tanto el perceptron no será capaz de separar totalmente estas clasificaciones.

8. Considerar de nuevo la muestra etiquetada en el apartado 6. Modifique las etiquetas de un 10% aleatorio de muestras positivas y otro 10% de muestras negativas.

Visualice los puntos con las nuevas etiquetas y la recta del apartado 6.

Primero hacemos una función que cambia el 10% de etiquetas de cada parte, para ello nos creamos un vector con las posiciones en las que hay etiquetas positivas y otro con las posiciones en las que hay etiquetas negativas y utilizamos la función sample() para elegir de cada uno de estos dos vectores el 10%, que serán las posiciones que cambiaremos:

```
cambiar_etiquetas <- function(etiquetas) {
  num <- 1:length(etiquetas)
  etiquetas_cambiadas <- etiquetas
  # Cogemos las posiciones de las etiquetas positivas y negativas
  positivos <- num[etiquetas > 0]
  negativos <- num[etiquetas < 0]
  # Comprobamos que hay algún elemento que cambiar y obtenemos el 10%
  # de posiciones aleatorias
  if(length(positivos)*0.1 > 0) {
    cambiar1 <- sample(positivos, length(positivos)*0.1)</pre>
```

```
# Cambiamos las etiquetas que hemos obtenido antes
  etiquetas_cambiadas[cambiar1] <- -1
}
if(length(negativos)*0.1 > 0) {
  cambiar2 <- sample(negativos, length(negativos)*0.1)
  # Cambiamos las etiquetas que hemos obtenido antes
  etiquetas_cambiadas[cambiar2] <- +1
}
# Devolvemos las etiquetas cambiadas
etiquetas_cambiadas
}
# Llamamos a esta función para cambiar las etiquetas y pintamos los datos con
# estas nuevas etiquetas
etiquetas2 <- cambiar_etiquetas(etiquetas)
pinta_particion(lista, etiquetas2, TRUE, function(x,y) r[1]*x-y+r[2])</pre>
```


Podemos ver como dentro de la región de puntos azules hay dos rojos y dentro de la región roja hay dos azules, haciendo los datos no linealmente separables.

En una gráfica aparte visualice de nuevo los mismos puntos pero junto con las funciones del apartado 7.

Lo único que tenemos que hacer es llamar a la función para pintar cambiando las etiquetas y junto con las funciones del apartado 7.

```
pinta_particion(lista, cambiar_etiquetas(etiquetasFA), TRUE, function(x,y) (x-10)^2 + (y-20)^2 - 400)
```


2. Ejercicio de Ajuste del Algoritmo Perceptron

1. Implementar la función sol = ajusta_PLA(datos, label, max_iter, vini) que calcula el hiperplano solución a un problema de clasificación binaria usando el algoritmo PLA. La entrada de datos es una matriz donde cada item con su etiqueta está representado por una fila de la matriz, label el vector de etiquetas (cada etiqueta es un valor +1 o -1), max_iter es el número máximo de iteraciones permitidas y vini el valor inicial del vector. La salida sol devuelve los coeficientes del hiperplano.

Aunque pide que la salida sean los coeficientes del hiperplano, en el segundo apartado pide también el número de iteraciones que han sido necesarias para converger, por lo que vamos a devolver una lista cuya primera componente tenga w, los coeficientes del hiperplano, y la segunda componente sea el número de iteraciones necesario para converger, es decir, la iteración en la que se para.

Lo que hacemos es seguir el algoritmo dado en clase de teoría: iteramos sobre todos los datos mientras no se superen el máximo de iteraciones que le pasamos como parámetro o mientras no se haya encontrado una solución ya. Se considera que se ha encontrado una solución cuando se pasa una vez por todos los datos y no ha habido cambios (es decir, todos estaban correctamente clasificados), que es algo que controlamos con dos variables booleanas. Sabemos si los datos están bien clasificados porque nos quedamos con el signo del producto escalar entre el ω actual y cada punto. En caso de que el signo no coincida con la etiqueta para ese punto, movemos la recta sumándole el valor real de la etiqueta por el punto.

```
ajusta_PLA <- function(datos, label, max_iter, vini) {</pre>
  parada <- F
  fin <- F
  w <- vini
  iter <- 1
  # Mientras no hayamos superado el máximo de iteraciones o
  # no se haya encontrado solución
  while(!parada) {
    # iteramos sobre los datos
    for (j in 1:nrow(datos)) {
      if (sign(crossprod(w, datos[j,])) != label[j]) {
        w <- w + label[j]*datos[j,]</pre>
        # La variable fin controla si se ha entrado en el if
        fin <- F
      }
    }
    # Si no se ha entrado en el if, todos los datos estaban bien
    # clasificados y podemos poner a TRUE la variable parada.
    if(fin == T) {
      parada = T
    else {
     fin = T
    }
    iter <- iter + 1
    if (iter >= max_iter) parada = T
  # Devolvemos el hiperplano y el número máximo de iteraciones al que hemos
  # llegado.
  list(w, iter)
}
```

2. Ejecutar el algoritmo PLA con los valores simulados en el apartado 6 del ejercicio 1, inicializando el algoritmo con el vector cero y con vectores de número aleatorios en [0,1] (10 veces). Anotar el número medio de iteraciones necesarias en ambos para converger. Valorar el resultado.

El algoritmo anterior opera con los datos dentro de una matriz. Lo que hacemos es pasar los datos, que teníamos en una lista, a una matriz con la función matrix(), a la que le pasamos los datos, el número de filas y columnas y si queremos que meta los datos por filas, que en nuestro caso sí queremos, puesto que los tenemos almacenados así. Además, le añadimos a cada punto una tercera coordenada a 1 para pasarlos a coordenadas homogéneas, lo que se traduce en una tercera columna en la matriz toda puest a 1's.

A esta matriz es a la que le hacemos el PLA y nos quedamos con la solución ω y con el número de iteraciones que necesita para converjer, y pintamos los puntos junto con la solución dada por el algoritmo. El PLA devuelve en ω en la última componente el término independiente (en este caso b). Como lo que tenemos es una recta, vamos a dejar con coeficiente a 1 la y, que será la segunda componente de ω y además la vamos a despejar, por lo que tenemos que dividir la solución del PLA entre menos la segunda componente de la solución.

```
# Metemos los datos, que teníamos en una lista llamada "lista" en
# una matriz.
m <- matrix(unlist(lista), 50, 2, byrow=TRUE)</pre>
```

```
datos <- matrix(1, 50, 3)
datos[1:50, 1:2] <- m
sol <- ajusta_PLA(datos, etiquetas, 20, c(0,0,0))
iter1 <- sol[[2]]
iter1

## [1] 11

w <- sol[[1]]
w <- -w / w[2]
pinta_particion(lista, etiquetas, TRUE, function(x,y) y-w[3]-w[1]*x)</pre>
```


En este caso el número de iteraciones necesario para que el algoritmo converja es 11. Vamos a hacerlo ahora generando números aleatorios entre 0 y 1, 10 veces. Lo que he hecho ha sido meter en una lista gracias a la función lapply las iteraciones que hacen falta en cada una de las 10 veces que vamos a llamar el algoritmo y hacer la media de todos ellos con la función mean().

```
waleatorios <- simula_unif(10, 3, c(0,1))
iteraciones <- lapply(1:10, function(i) {
    wi <- waleatorios[[i]]
    sol <- ajusta_PLA(datos, etiquetas, 200, wi)
    sol[[2]]
})
iteraciones <- unlist(iteraciones)
mean(iteraciones)</pre>
```

```
## [1] 10.9
```

Generando números aleatorios entre 0 y 1 para el w inicial, el número medio de iteraciones que son necesarias para que el algoritmo converja es 10.9. Hay que tener en cuenta que las iteraciones que necesita para converjer dependen de los datos (en mi caso, de que he fijado la semilla a 237). Con otros datos podría ser mucho más o incluso menos. En mi caso se justifica que tarde tan poco porque el vector inicial es el (0,0,0) y los datos son separables por una recta que está próxima a la inicial.

3. Ejecutar el algoritmo PLA con los datos generados en el apartado 8 del ejercicio 1, usando valores de 10, 100 y 1000 para max_iter. Etiquetar los datos de la muestra usando la función solución encontrada y contar el número de errores respecto de las etiquetas originales. Valorar el resultado.

Vamos a hacer primero una función que cuente las diferencias entre dos vectores de etiquetas, es decir, la cantidad de posiciones en los que dos vectores de etiquetas tienen valores distintos.

```
cuenta_diferencias <- function(etiquetas1, etiquetas2) {
   vf <- etiquetas1 == etiquetas2
   length(vf[vf == FALSE])
}</pre>
```

Vamos a hacer ahora una función que nos devuelva el número de errores respecto de las etiquetas originales, utilizando la función anterior. Esta función recibe como parámetro la lista que devuelve como solución el PLA y el vector de etiquetas originales:

```
cuenta_errores <- function(sol_PLA, etiquetas_originales) {
    w <- sol_PLA[[1]]
    w <- -w / w[2]

# Recordemos que los datos que hay en la matriz "datos" son los mismos

# puntos que hay en la matriz "lista"

etiquetas_cambiadas <- lapply(1:length(lista), function(i) {
    # Obtenemos los puntos uno a uno y los etiquetamos
    p <- lista[[i]]
    f <- -w[1]*p[1] + p[2] - w[3]
    etiquetar(f)
})

# Devolvemos el número de errores que da la solución
    cuenta_diferencias(etiquetas_originales, etiquetas_cambiadas)
}</pre>
```

Vamos a ejecutarlo ahora con 10, 100 y 1000 iteraciones y vamos a pintar también la solución que da.

```
sol1 <- ajusta_PLA(datos, etiquetas2, 10, c(0,0,0))
cuenta_errores(sol1, etiquetas2)

## [1] 5

w1 <- sol1[[1]]
w1 <- -w1/w1[2]
pinta_particion(lista, etiquetas2, TRUE, function(x,y) w1[1]*x-y+w1[3])</pre>
```



```
sol2 <- ajusta_PLA(datos, etiquetas2, 100, c(0,0,0))
cuenta_errores(sol2, etiquetas2)</pre>
```

```
## [1] 5
```

```
w2 <- sol2[[1]]
w2 <- -w2/w2[2]
pinta_particion(lista, etiquetas2, TRUE, function(x,y) w2[1]*x-y+w2[3])</pre>
```



```
sol3 <- ajusta_PLA(datos, etiquetas2, 1000, c(0,0,0))
cuenta_errores(sol3, etiquetas2)</pre>
```

```
## [1] 5
```

```
w3 <- sol3[[1]]
w3 <- -w3/w3[2]
pinta_particion(lista, etiquetas2, TRUE, function(x,y) w3[1]*x-y+w3[3])
```


Como vemos, en los tres casos el número de puntos mal clasificados es 5. Esto es porque al cambiar etiquetas al azar, los datos han dejado de ser linealmente separables, con lo que el perceptron no puede llegar a una solución en la que todos los puntos estén bien clasificados, da igual el número de iteraciones que le pongamos.

4. Repetir el análisis del punto anterior usando la primera función del apartado 7 del ejercicio 1.

La función es $f(x,y) = (x-10)^2 + (y-20)^2 - 400$ y tenemos las etiquetas originales guardadas en un vector llamado etiquetasFA.

```
sol1 <- ajusta_PLA(datos, etiquetasFA, 10, c(0,0,0))
cuenta_errores(sol1, etiquetasFA)</pre>
```

```
w1 <- sol1[[1]]
w1 <- -w1 / w1[2]
pinta_particion(lista, etiquetasFA, TRUE, function(x,y) w1[1]*x-y+w1[3])</pre>
```



```
sol2 <- ajusta_PLA(datos, etiquetasFA, 100, c(0,0,0))
cuenta_errores(sol2, etiquetasFA)</pre>
```

```
w2 <- sol2[[1]]
w2 <- -w2 / w2[2]
pinta_particion(lista, etiquetasFA, TRUE, function(x,y) w2[1]*x-y+w2[3])</pre>
```



```
sol3 <- ajusta_PLA(datos, etiquetasFA, 1000, c(0,0,0))
cuenta_errores(sol3, etiquetasFA)</pre>
```

```
## [1] 17
```

```
w3 <- sol3[[1]]
w3 <- -w3 / w3[2]
pinta_particion(lista, etiquetasFA, TRUE, function(x,y) w3[1]*x-y+w3[3])</pre>
```


En este caso los datos no eran linealmente separables de entrada, ya que se habían clasificado en base a una función cuadrática, con lo que el perceptron no va a llegar a una solución en la que todos los datos estén bien clasificados, de nuevo, da igual el número de iteraciones que le pongamos.

5. Modifique la función ajusta_PLA para que le permita visualizar los datos y soluciones que va encontrando a lo largo de las iteraciones. Ejecute con la nueva versión el apartado 3 del ejericio 2.

Lo que hacemos es utilizar la función Sys.sleep(x), que para la ejecución durante x segundos. Añadimos esta función cuando el perceptrón ha dado una vuelta entera a los datos.

```
ajusta_PLA_sol <- function(datos, label, max_iter, vini) {
  parada <- F
  fin <- F
  w <- vini
  iter <- 1
  # Mientras no hayamos superado el máximo de iteraciones o
  # no se haya encontrado solución
  while(!parada) {
    # iteramos sobre los datos
    for (j in 1:nrow(datos)) {
        if (sign(crossprod(w, datos[j,])) != label[j]) {
            w <- w + label[j]*datos[j,]
            # La variable fin controla si se ha entrado en el if
            fin <- F</pre>
```

```
}
  # Pintamos la gráfica
 w2 < - -w / w[2]
 pinta_particion(lista, label, TRUE, function(x,y) -w2[1]*x + y - w2[3])
  # Paramos la ejecución para que se pueda ver la gráfica durante medio segundo
  #cat("Presione una tecla para continuar")
  #t <- readline()
 Sys.sleep(0.5)
  # Si no se ha entrado en el if, todos los datos estaban bien
  # clasificados y podemos poner a TRUE la variable parada.
  if(fin == T) {
    parada = T
 else {
   fin = T
 }
 iter <- iter + 1
  if (iter >= max_iter) {parada = T}
# Devolvemos el hiperplano y el número máximo de iteraciones al que hemos
# llegado.
list(w, iter)
```

Llamamos ahora a esta función con 10, 100 y 1000 como número de iteraciones

```
# Llamamos a la función
ajusta_PLA_sol(datos, etiquetas2, 10, c(0,0,0))
ajusta_PLA_sol(datos, etiquetas2, 100, c(0,0,0))
ajusta_PLA_sol(datos, etiquetas2, 1000, c(0,0,0))
```

6. A la vista de la conducta de las soluciones observadas en el apartado anterior, proponga e implemente una modificación de la función original sol = ajusta_PLA_MOD(...) que permita obtener soluciones razonables sobre datos no linealmente separables. Mostrar y valorar el resultado encontrado usando los datos del apartado 7 del ejercicio 1.

Lo que vamos a hacer es ir contando los errores (con la función que hemos hecho en apartados anteriores) que hay al etiquetar con la solución que va devolviendo el algoritmo en cada iteración (una pasada a los datos) y quedarnos con aquella que tenga menos errores. Además devolvemos como tercer elemento de la lista el número de errores de la mejor solución, que es la que estamos devolviendo como primer elemento de la lista. El resto del algoritmo continúa igual:

```
ajusta_PLA_MOD <- function(datos, label, max_iter, vini) {
  parada <- F
  fin <- F
  w <- vini</pre>
```

```
wmejor <- w
iter <- 1
errores_mejor <- nrow(datos)
# Mientras no hayamos superado el máximo de iteraciones o
# no se haya encontrado solución
while(!parada) {
  # iteramos sobre los datos
 for (j in 1:nrow(datos)) {
    if (sign(crossprod(w, datos[j,])) != label[j]) {
      w <- w + label[j]*datos[j,]</pre>
      # La variable fin controla si se ha entrado en el if
      fin \leftarrow F
    }
 }
  # Contamos el número de errores que hay en la solución actual y si
  # es menor que el número de errores en la mejor solución de las que
  # llevamos, nos quedamos con la actual
 1 <- list(w, 1)
 errores_actual <- cuenta_errores(1, label)</pre>
 if(errores_actual < errores_mejor) {</pre>
    wmejor <- w
    errores_mejor <- errores_actual</pre>
 }
  # Si no se ha entrado en el if, todos los datos estaban bien
  # clasificados y podemos poner a TRUE la variable parada.
  if(fin == T) {
    parada = T
 else {
    fin = T
 iter <- iter + 1
  if (iter >= max_iter) parada = T
# Devolvemos el hiperplano, el número máximo de iteraciones al que hemos
# llegado y el número de errores de la mejor solución que hemos encontrado
list(wmejor, iter, errores_mejor)
```

Vamos a probarlo ahora con las funciones del ejercicio 7 (es decir, con las etiquetas que tenemos almacenadas en etiquetasFA, etiquetasFB, etiquetasFC y etiquetasFD)

```
sol1_MOD <- ajusta_PLA_MOD(datos, etiquetasFA, 1000, c(0,0,0))
w1 <- sol1_MOD[[1]]
errores <- sol1_MOD[[3]]
w1 <- -w1 / w1[2]
pinta_particion(lista, etiquetasFA, TRUE, function(x,y) -w1[1]*x + y - w1[3])</pre>
```



```
sol2_MOD <- ajusta_PLA_MOD(datos, etiquetasFB, 1000, c(0,0,0))
w2 <- sol2_MOD[[1]]
errores <- sol2_MOD[[3]]
w2 <- -w2 / w2[2]
pinta_particion(lista, etiquetasFB, TRUE, function(x,y) -w2[1]*x + y - w2[3])</pre>
```



```
sol3_MOD <- ajusta_PLA_MOD(datos, etiquetasFC, 1000, c(0,0,0))
w3 <- sol3_MOD[[1]]
errores <- sol3_MOD[[3]]
w3 <- -w3 / w3[2]
pinta_particion(lista, etiquetasFC, TRUE, function(x,y) -w3[1]*x + y - w3[3])</pre>
```



```
sol4_MOD <- ajusta_PLA_MOD(datos, etiquetasFD, 1000, c(0,0,0))
w4 <- sol4_MOD[[1]]
errores <- sol4_MOD[[3]]
w4 <- -w4 / w4[2]
pinta_particion(lista, etiquetasFD, TRUE, function(x,y) -w3[1]*x + y - w3[3])</pre>
```


[1] 0

Como vemos, en la mayoría de los casos la mejor solución es la recta que se queda a un lado porque sale mejor (en tanto a que hay menos errores) no clasificar bien únicamente los que se quedaban dentro de las regiones de las funciones cuadráticas que clasificar bien algunos de ellos pero a la vez clasificar mal algunos de los que se quedaban fuera.

3. Ejercicio sobre Regresión Lineal

- 1. Abra el fichero zip.info disponible en la web del curso y lea la descripción de la representación numérica de la base de datos de números manuscrito que hay en el fichero zip.train
- 2. Lea el fichero zip.
train dentro de su código y visualice las imágenes. Seleccione sólo las instancias de los números 1 y 5. Guárde
las como matrices de tamaño 16×16

```
data <- read.table("datos/zip.train", sep=" ")</pre>
```

Warning in scan(file, what, nmax, sep, dec, quote, skip, nlines,
na.strings, : número de items leídos no es múltiplo del número de columnas

```
numero <- data$V1</pre>
frame_num1 <- data[numero==1,]</pre>
frame_num5 <- data[numero==5,]</pre>
#Eliminamos de cada uno la primera columna, que quarda el número del que
\#son\ los\ datos, y\ la\ \'ultima, que tiene NA
frame_num5 <- frame_num5[,-258]</pre>
frame_num1 <- frame_num1[,-258]</pre>
frame_num5 <- frame_num5[,-1]</pre>
frame_num1 <- frame_num1[,-1]</pre>
#Las dos siguientes líneas pasan estos dos data.frame a matrices
#y los siguen dejando por filas (para poder utilizar apply sobre una matriz)
datos_num1 <- data.matrix(frame_num1)</pre>
datos_num5 <- data.matrix(frame_num5)</pre>
\#Lo siguiente hace una lista de matrices, una por cada instancia de número 1 o 5
lista_num5 <- lapply(split(datos_num5, seq(nrow(datos_num5))), function(x) {</pre>
    matrix(x, 16, 16, T)
})
lista_num1 <- lapply(split(datos_num1, seq(nrow(datos_num1))), function(x) {</pre>
    matrix(x, 16, 16, T)
})
#Mostramos una imagen de un 1 y una imagen de un 5
image(lista_num1[[1]])
```


image(lista_num5[[1]])

3. Para cada matriz de números calcularemos su valor medio y su grado de simetría vertical. Para calcular la simetría calculamos la suma del valor absoluto de las diferencias en cada píxel entre la imagen original y la imagen que obtenemos invirtiendo el orden de las columnas. Finalmente le cambiamos el signo.

Hacemos una función para calcular la simetría vertical presente en las imágenes.

```
calcular_simetria <- function(mat) {
    #Invertimos la matriz por columnas
    mat_invertida = apply(mat, 2, function(x) rev(x))
    #Calulamos el valor absoluto de la diferencia de cada elemento entre las dos
    #matrices
    dif = abs(mat - mat_invertida)
    #Sumamos los elementos de la matriz
    suma <- sum(dif)
    #Devolvemos el signo cambiado de la suma
    -suma
}</pre>
```

4. Representar en los ejes {X=Intensidad Promedio, Y=Simetría} las instancias seleccionadas de 1's y 5's.

Vamos a hacer primero una variante de la función pinta_particion de los dos ejercicios anteriores, que ahora recibirá los datos de los ejes X e Y en vectores

```
pinta_grafica <- function(coordX, coordY, etiquetas=NULL, visible=FALSE, a=NULL, b=NULL, xlab="Intensid
   if(is.null(etiquetas))
      etiquetas=1
   else etiquetas = etiquetas+3

plot(coordX, coordY, type = "p", col = etiquetas, xlab = xlab, ylab = ylab)

if(visible) {
   abline(b,a)
   }
}</pre>
```

La intensidad promedio es la media de los valores de la matriz, que se puede calcular simplemente con mean(m) siendo m una matriz. Vamos a representar entonces en una gráfica las instancias.

```
#Calculamos primero las intensidades y las simetrías de todas las matrices,
#es decir, de todas las instancias de 1's y 5's
simetria_1 <- lapply(lista_num1, function(m) calcular_simetria(m))</pre>
simetria_5 <- lapply(lista_num5, function(m) calcular_simetria(m))</pre>
intensidad_1 <- lapply(lista_num1, function(m) mean(m))</pre>
intensidad_5 <- lapply(lista_num5, function(m) mean(m))</pre>
#Ponemos las listas anteriores como vectores
simetria_1 <- unlist(simetria_1)</pre>
simetria_5 <- unlist(simetria_5)</pre>
intensidad_1 <- unlist(intensidad_1)</pre>
intensidad 5 <- unlist(intensidad 5)</pre>
#Pintamos en una gráfica la intensidad y simetría de las instancias de ambos
#números
intensidad <- c(intensidad_1, intensidad_5)</pre>
simetria <- c(simetria_1, simetria_5)</pre>
color <- c(rep.int(0, length(intensidad_1)), rep.int(2, length(intensidad_5)))</pre>
pinta_grafica(intensidad, simetria, color)
```


5. Implementar la función sol = Regress_Lin(datos, label) que permita ajustar un modelo de regresión lineal (usar SVD). Los datos de entrada se interpretan igual que en clasificación.

Formamos primero una matriz con los datos y le calculamos la pseudoinversa haciendo uso de la descomposición en valores singulares y devolvemos después $w = X^{-1}y$ donde X^{-1} es la pseudoinversa de X.

```
Regress_Lin <- function(datos, label) {
    descomp <- La.svd(datos)
    vt <- descomp[[3]]
    diag <- matrix(0, length(descomp[[1]]), length(descomp[[1]]))
    for (i in 1:length(descomp[[1]])) {
        diag[i,i] = descomp[[1]][i]
        if (diag[i,i] != 0) {
            diag[i,i] = 1/(diag[i,i]^2)
        }
    }
    prod_inv <- t(vt) %*% diag %*% vt
    pseud_inv <- prod_inv %*% t(datos)

    w <- pseud_inv %*% label
    w
}</pre>
```

6. Ajustar un modelo de regresión lineal a los datos de (Intensidad Promedio, Simetría) y pintar la solución junto con los datos. Valorar el resultado.

```
w <- Regress_Lin(cbind(intensidad, 1), simetria)
pinta_grafica(intensidad, simetria, color, TRUE, w[1], w[2])</pre>
```


- 7. En este ejercicio exploramos cómo funciona la regresión lineal en problemas de clasificación. Para ello generamos datos usando el mismo procedimiento que en ejercicios anteriores. Suponemos $X = [-10,10] \times [-10,10]$ y elegimos muestras aleatorias uniformes dentro de X. La función f en cada caso será una recta aleatoria que corta a X y que asigna etiqueta a cada punto con el valor de su signo. En cada ejecución generamos una nueva función f.
- a) Fijar el tamaño de muestra N = 100. Usar regresión lineal para encontrar g y evaluar E_{in} , (el porcentaje de puntos incorrectamente clasificados). Repetir el experimento 1000 veces y promediar los resultados. ¿Qué valor obtiene para E_{in} ?

Generamos los datos en el intervalo pedido, generamos también f de manera aleatoria y etiquetamos los datos con esa recta.

```
N <- 100
datos <- simula_unif(N, 2, c(-10,10))
```

```
#Pasamos la lista de datos una matriz con la tercera columna a 1
datos <- unlist(datos)
datos <- matrix(datos, N, 2, T)
datos <- cbind(datos, 1)

generaEtiquetas <- function() {
    r <- simula_recta(c(-10,10))
    etiquetas <- lapply(1:nrow(datos), function(i) {
        #Obtenemos los puntos uno a uno y los etiquetamos
        p <- datos[i,]
        f <- p[2] - r[1]*p[1] - r[2]
        etiquetar(f)
})

etiquetas <- unlist(etiquetas)
etiquetas
}</pre>
```

Usamos ahora regresión lineal para encontar g 1000 veces y calculamos E_{in} como el porcentaje de puntos mal clasificados.

```
errores <- 0
for (i in 1:1000) {
   etiquetas <- generaEtiquetas()
   w <- Regress_Lin(datos, etiquetas)
   etiquetas_cambiadas <- unlist(lapply(1:nrow(datos), function(i) {
      p <- datos[i, ]
      sign(crossprod(w,p))
   }))
   errores <- errores + cuenta_diferencias(etiquetas, etiquetas_cambiadas)/N
}

w <- -w / w[2]
#Pintamos la última de las rectas
pinta_grafica(datos[,1], datos[,2], etiquetas, TRUE, w[1], w[3], "Eje X", "Eje Y")</pre>
```


Calculamos ahora el porcentaje de puntos mal clasificados E_{in}

```
Ein <- errores/1000
Ein
```

[1] 0.03884

b) Fijar el tamaño de muestra N=100. Usar regresión lineal para encontrar g y evaluar E_{out} . Para ello generar 1000 puntos nuevos y usarlos para estimar el error fuera de la muestra, E_{out} (porcentaje de puntos mal clasificados). De nuevo, ejecutar el experimento 1000 veces y tomar el promedio. ¿Qué valor obtiene de E_{out} ? Valore los resultados.

Generamos un conjunto de datos nuevo, como en el apartado anterior. Vamos a generar una nueva recta aleatoria, etiquetar los datos en base a esta recta y obtener g por regresión lineal. Después generamos 1000 puntos nuevos en datos_out y vamos a calcular E_{out} repitíendolo 1000 veces y quedándonos con la media de los errores, como hemos hecho en el apartado anterior

```
N <- 100
datos <- simula_unif(N, 2, c(-10,10))
#Pasamos la lista de datos una matriz con la tercera columna a 1
datos <- unlist(datos)
datos <- matrix(datos, N, 2, T)
datos <- cbind(datos, 1)

r <- simula_recta(c(-10,10))</pre>
```

```
etiquetas_f <- unlist(lapply(1:nrow(datos), function(i) {</pre>
  #Obtenemos los puntos uno a uno y los etiquetamos
  p <- datos[i,]</pre>
  f \leftarrow p[2] - r[1]*p[1] - r[2]
  etiquetar(f)
}))
#Obtenemos q por regresión
g <- Regress_Lin(datos, etiquetas)
#Contamos los errores
errores <- 0
for (i in 1:1000) {
  #Generamos los nuevos datos (los de fuera de la muestra) y los pasamos a
  #una matriz
  datos_out <- simula_unif(1000, 2, c(-10,10))
  datos_out <- unlist(datos_out)</pre>
  datos_out <- matrix(datos_out, 100, 2, T)</pre>
  datos_out <- cbind(datos_out, 1)</pre>
  etiquetas_originales <- unlist(lapply(1:nrow(datos_out), function(i) {
    #Obtenemos los puntos uno a uno y los etiquetamos
    p <- datos_out[i,]</pre>
    f \leftarrow p[2] - r[1]*p[1] - r[2]
    etiquetar(f)
  }))
  etiquetas_g <- unlist(lapply(1:nrow(datos_out), function(i) {</pre>
    #Obtenemos los puntos uno a uno y los etiquetamos
    p <- datos_out[i,]</pre>
    sign(crossprod(g,p))
  }))
  errores <- errores + cuenta_diferencias(etiquetas_originales, etiquetas_g)/N
Eout = errores / 1000
Eout
```

[1] 0.50862

c) Ahora fijamos N=10, ajustamos regresión lineal y usamos el vector de pesos encontrado como un vector inicial de pesos para PLA. Ejecutar PLA hasta que converja a un vector de pesos final que separe completamente la muestra de entrenamiento. Anote el número de iteraciones y repita el experimento 1000 veces. ¿Cuál es el valor promedio de iteraciones que tarda PLA en converger? (En cada iteración de PLA elija un punto aleatorio del conjunto de mal clasificados). Valore los resultados.

```
N <- 10
datos <- simula_unif(N, 2, c(-10,10))
#Pasamos la lista de datos una matriz con la tercera columna a 1
datos <- unlist(datos)</pre>
```

```
datos <- matrix(datos, N, 2, T)</pre>
datos <- cbind(datos, 1)
iteraciones <- 0
for (i in 1:1000) {
  #Obtenemos una recta aleatoria, etiquetamos los datos en base a esa recta y
  #obtenemos g, un vector de pesos inicial para el PLA
  r \leftarrow simula recta(c(-10,10))
  etiquetas_f <- unlist(lapply(1:nrow(datos), function(i) {</pre>
    #Obtenemos los puntos uno a uno y los etiquetamos
    p <- datos[i,]</pre>
    f \leftarrow p[2] - r[1]*p[1] - r[2]
    etiquetar(f)
  }))
  g <- Regress_Lin(datos, etiquetas_f)</pre>
  #Le pasamos al PLA q como vector inicial y nos quedamos con el número de
  #iteraciones que tarda en converger
  sol <- ajusta_PLA(datos, etiquetas_f, 1000, g)</pre>
  iteraciones <- iteraciones + sol[[2]]</pre>
}
iteraciones <- iteraciones / 1000
iteraciones
```

[1] 9.398

- 8. En este ejercicio exploramos el uso de transformaciones no lineales. Consideremos la función objetivo $f(x_1,x_2)=sign(x_1^2+x_2^2-25)$. Generar una muestra de entrenamiento de N=1000 puntos a partir de $X=[-10,10]\times[-10,10]$ muestreando cada punto $x\in X$ uniformemente. Generar las salidas usando el signo de la función en los puntos muestreados. Generar ruido sobre las etiquetas cambiando el signo de las salidas a un 10% de puntos del conjunto aleatorio generado.
- a) Ajustar regresión lineal, para estimar los pesos ω . Ejecutar el experimento 1000 veces y calcular el valor promedio del error de entrenamiento E_{in} . Valorar el resultado.

```
errores <- 0
for (i in 1:1000) {
  N <- 1000
  #Generamos la muestra de puntos
  datos <- simula_unif(N, 2, c(-10,10))
  #Pasamos la lista de datos una matriz con la tercera columna a 1
  datos <- unlist(datos)
  datos <- matrix(datos, N, 2, T)
  datos <- cbind(datos, 1)

#Etiquetamos los puntos en base a la f dada</pre>
```

```
etiquetas_f <- unlist(lapply(1:nrow(datos), function(i) {</pre>
    #Obtenemos los puntos uno a uno y los etiquetamos
    p <- datos[i,]</pre>
    f \leftarrow p[1]^2 + p[2]^2 - 25
    etiquetar(f)
  }))
  #Generamos ruido sobre estas etiquetas cambiando el signo a un 10% de estas
  #etiquetas con la función que ya tenemos
  etiquetas_f <- cambiar_etiquetas(etiquetas_f)</pre>
  #Generamos w por regresión
  w <- Regress_Lin(datos, etiquetas_f)</pre>
  etiquetas_cambiadas <- unlist(lapply(1:nrow(datos), function(i) {</pre>
    p <- datos[i, ]</pre>
    sign(crossprod(w,p))
  }))
  errores <- errores + cuenta_diferencias(etiquetas_f, etiquetas_cambiadas)/N
E_{in} = errores/1000
E_in
```

[1] 0.257007

b) Ahora, consideremos N=1000 datos de entrenamiento y el siguiente vector de variables: $(1,x_1,x_2,x_1x_2,x_1^2,x_2^2)$. Ajustar de nuevo regresión lineal y calcular el nuevo vector de pesos $\widehat{\omega}$. Mostrar el resultado.

```
N <- 1000
#Generamos la muestra de puntos
lista_puntos <- simula_unif(N, 2, c(-10,10))</pre>
x1 <- rapply(lista_puntos, function(x) x[1])</pre>
x2 <- rapply(lista_puntos, function(x) x[2])</pre>
datos \leftarrow cbind(1, x1, x2, x1*x2, x1^2, x2^2)
#Etiquetamos los puntos en base a la f dada
coord <- cbind(x1, x2)</pre>
etiquetas_f <- unlist(lapply(1:nrow(coord), function(i) {</pre>
  \#Obtenemos\ los\ puntos\ uno\ a\ uno\ y\ los\ etiquetamos
  p <- coord[i,]</pre>
  f \leftarrow p[1]^2 + p[2]^2 - 25
  etiquetar(f)
#Generamos ruido sobre las etiquetas
etiquetas_f = cambiar_etiquetas(etiquetas_f)
#Hacemos regresión
w <- Regress_Lin(datos, etiquetas_f)</pre>
```


c) Repetir el experimento anterior 1000 veces calculando en cada ocasión el error fuera de la muestra. Para ello generar en cada ejecución 1000 puntos nuevos y valorar sobre ellos la función ajustada. Promediar los valores obtenidos. ¿Qué valor obtiene? Valorar el resultado.

```
N <- 1000
errores <- 0
for (i in 1:1000) {
    #Generamos los nuevos 1000 puntos con los que calcular el error fuera
    lista_puntos <- simula_unif(N, 2, c(-10,10))
    x1 <- rapply(lista_puntos, function(x) x[1])
    x2 <- rapply(lista_puntos, function(x) x[2])
    datos_out <- cbind(1, x1, x2, x1*x2, x1^2, x2^2)</pre>
```

```
etiquetas_originales <- unlist(lapply(1:nrow(datos_out), function(i) {</pre>
    #Obtenemos los puntos uno a uno y los etiquetamos
    p <- datos_out[i,]</pre>
   f \leftarrow p[1]^2 + p[2]^2 - 25
    etiquetar(f)
  }))
  #Generamos ruido sobre las etiquetas originales
  etiquetas_originales <- cambiar_etiquetas(etiquetas_originales)</pre>
  #Hacemos regresión
  w <- Regress_Lin(datos_out, etiquetas_originales)</pre>
  etiquetas_w <- unlist(lapply(1:nrow(datos_out), function(i) {</pre>
    #Obtenemos los puntos uno a uno y los etiquetamos
    p <- datos_out[i,]</pre>
    sign(crossprod(w,p))
  }))
  #Contamos los errores
  errores <- errores + cuenta_diferencias(etiquetas_originales, etiquetas_w)/N
}
Eout = errores/1000
Eout
```

[1] 0.162214