الجمهورية الجزائرية الديمقراطية الشعبية

الديران الوطئ للامتحانات والمسابقات

وزارة التربية الوطنية

دررة: جران 2010

امتحان بكالوريا التعليم الثانوي

الشعبة : عارم تجريبية

المنة: 03 ساعات و تعبف

الحيار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين

المرضوع الأبل

التعرين الأول: (05 نقط)

نعتبر في المستري المنسوب إلى المعلم المتعامد المتجانس (ق. آد)) التقطئين 1 و 6 اللئين الاحقتيما على الترتيب: 1+1= 2 و 3 - 3.

- اکثب علی لشکل الأسی: برد و برد.
- 2) ليكن ؟ التشابه المباشر الذي يرفق بكل نشلة M المقتها ع النقطة 'M ذات اللاحقة' ع حيث:

$$z' = 2iz + 6 + 3i$$

- أ) عن العامس المعيزة للتشابه المباشر 2.
- ب) حين م2 لاحقة للنقطة C مسورة النقطة بر بالنشابه المباشر S.
 - ج) استنتج طبيعة المثلث ABC.
 - $\{(A;2),(B;-2),(C;2)\}$ مرجع الجملة D مرجع الجملة (3
 - |} عين م 2 لاحقة النقطة D .
 - ب) عين مع الكرير طبيعة الرباعي ABCD.
- لتكن M تقطة من المستوي تخلف عن B وعن D الحقتها π ولتكن (Δ) سجموعة اللقط M ذات Δ
 - اللاحقة z التي يكون من لجلها $\frac{z_{p}-z}{z_{n}-z}$ عددا حقيقيا موجبا تماما.
 - ا) تمثق أن النفطة E ذات اللاحقة $z_E=6+3$ تنشي إلى $z_E=6+3$
 - $-(\Delta)$ أعط تضيرا عندسيا لمدة العند المركب $rac{z_{p}-z}{z_{p}-z}$. عن حينند المجموعة $-(\Delta)$

<u>ئتيرين للآتي:</u> (05 نفط)

نعتير في الغضاء المنسوب إلى المعام المتعامد المتجانس $(O; ar{I}, ar{f}, ar{k})$ ، النقط (1; 1; 0)، م

B(2;1;1)

- إلىن أن النقط A B و C ليست في استقامية.
- -x+y-x-2=0 بين أن قمعادلة قديكارتية للمستوي (ABC) هي: 0=2-x+y-x
 - (Q) و (Q) اللذين معادلتيهما على الغرنيوب: (P)

(Q):
$$2x + y - x - 1 = 0$$
 $(P): x + 2y - 3x + 1 = 0$

والسنظيم $\hat{u}(-1;5;3)$ الذي يشمل الناسلة F(0;4;3) و F(0;4;3) تماع توجيه له.

- أ) تكتب تمثيلا وسيطيا للمستقيم (D).
- $\cdot(D)$ ب(Q) و (Q) هو المستقيم (D)
 - $\cdot(Q)$ عين تقاطع المستريات الثلاث $(ABC)\cdot(P)\cdot(Q)$ و (Q)

التمرين الثقاف: (10 نقط)

 $\cdot (C_f)$ مُعَيِّلُها البَولَاي في فمستري المنسوب إلى المعلم المتعامد المتجانس $(ar{I},ar{I})$.

- $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$
- 2) بين أن الدقاة مر منز فيدة نعاما على العجال 1 ثم شكل جدول تغير انها.
- ني عين فاصلة النقطة من (C_p) التي يكون فيها المماس موالايا المستقيم (D) ذي المعادلة y=y
 - f(x)) اثبت آنه من لجل کل x من t بمکن کتابهٔ f(x) علی الشکل f(x) اثبت آنه من لجل کل $f(x) = \ln(x+a) + b$ موث: $f(x) = \ln(x+a) + b$
- (C_f) السنتنج أنه يمكن رسم (C_f) الطلاقا من (C) متحلى قدالة اللوغازيتمية النيبيرية (C_f) الم ارسم (C_f) و (C_f) .
 - g(x) = f(x) x نعتبر للدقة المعدية في المعرفة على المجال f(x) x = x (I) نعتبر الدقة المعدية في المعرفة على المجال $f(x) = -\infty$ (1) المعدي $f(x) = -\infty$ (2) المعدي $f(x) = -\infty$ (3) المعدي المعرفة في المعرفة على المعرفة المعرفة
 - 2) فرس اتجاء تغير الدقة ج على 1 ثم شكل جدول تغير اتها.
- (3) أي المسبب (1) π ثم بين أن المعادلة $0 = (\pi)$ تقبل في المجال $\pi = \frac{3}{2}$ علا وحيدا π . ثحقق أن $\pi > 2 > 2$.
 - ب) أرسم (C_g) ملحثى الدالة g على المجال $\frac{1}{2}$: 5
 - 4) فستنتج للمارة (x) بالنسبة إلى (d) ، ثم عند وضَّعية المأحلى (x) بالنسبة إلى (d)
 - وَ بَرِ مِنْ قَامَ مِنْ لَجِلْ كُلُ عَدَدَ سَقِيقِي x مِنْ الْمَجِلْ $[1:\alpha]$ فَإِنْ: f(x) بَنْتَمِي الْمِن f(x) وينتَمِي الْمِن f(x) . f(x) أن ينتَمِي الْمِن f(x) المَجِلُ f(x) . f(x)
 - $_{N}=f\left(1+rac{1}{2n}
 ight)$ نيسي $\left(u_{n}
 ight)$ المثقالية السنوية المعرفة على N كما يأتي: $\left(1+rac{1}{2n}
 ight)$
 - ا) عين قيمة فحد فلطبوعي ٣ قتى من أجلها يكون: 3ln2 2ln3 + 1 = يع .
 - $S_n = u_1 + u_2 + ... + u_n$: غيث: $S_n = u_1 + u_2 + ... + u_n$ (2) لعسب بدلالة n المجموع (2)

تموضوع فثقي

ني السنوي المنسوب إلى سطم متعامد ومتجانس مثّلنا (Δ) و (D) معادلتيهما على الترتيب:

$$-y = \frac{1}{2}x + \frac{1}{3}$$
, $y = x$

1) لَنكن المنتظرة (١١١) المعرفة على مجموعة الأعداد

 $u_{n+1} = \frac{1}{2} u_n + \frac{1}{3}$ الطبيعية $u_n = 6$: $u_n = 6$ الطبيعية $u_n = 6$: $u_n = 6$ الطبيعية

أ ـ يَكُلُ الشَّكُلُ ثُمْ مِثْلُ على محور الفواصل الجنود الثالية: عنه ، ينه ، ينه ، ينه و ينه ، دون حسلها ميرز اختلوط الرسم.

 $m{\psi}$ - عَيْنِ إحداثينِ نَشِئَة تَقَلَمُع المستقيمين (Δ) و (D) .

ج. . أعط تضيئا حول الجاء تغير المتثانية (س) -

-2 ا - ياستعمال الاستدلال بالتراجع، لابت أنه من أجل كل عند طبيعي $n = rac{2}{3} < n^{2}$. n

ب ، استنتج اثجاء تغير المتثقبة (🕊) .

 $-v_{n}=u_{n}-\frac{2}{3}$: المعرفة من أجل كل عدد طبيعي n بالملاكة (v_{n}) المعرفة من أجل كل عدد طبيعي n بالملاكة (v_{n})

أ - بين أنَّ المتالبة (وه) عندسية يطلب تحدد لساسها وحدَّها الأول-

ب. الكتب بدلالة بر عيارة الحد العنم إلا، واستنتج عبارة إلا الدلالة ١٠٠

جـ - لسبب بدلالة به الموموع $S_n = V_0 + v_0 + v_0 + v_0 + v_0$ واستنتج الموموع $S_n^* = u_0 + u_1 + ... + u_n$

التمرين الثاني: (44 تالط)

على في مجموعة الأعداد المركبة ۞ المعادلة 0=18+62-2 ، ثمّ اكتب العلين على الشكل الأسنى.

Dو C ، B ، A المتبوب إلى المعلم المتعلمة والمتجلس $(0:\widehat{u},\widehat{v})$ ، تعتبر النقط $(2:\widehat{u},\widehat{v})$

 $z_0 = -z_0$ و $z_0 = -z_1$ و $z_0 = -z_1$ و $z_0 = 3+3$

أ - بيّن أنّ النقط C.B.A و C تنتشي في نفس الدائرة ذات العركز O مبدأ المعلم.

ب. عين زارية للدوران R الذي مركزه O ويحرل النقطة A إلى النقطة B.

 $D \circ O \circ B$ بين أنَّ النقط $A \circ O \circ O$ على استقامية وكذلك النقط $A \circ O \circ O \circ O$

د ـ استنتج طبيعة الرياعي ABCD .

<u> (144 04) (144 144)</u>

في الفضاء المنسوب إلى المعلم المنتعلم والمشهائس $(O;\overline{I},\overline{f},\overline{k})$ معتبر المستوي (\mathfrak{P}) الذي معادلته:

x-2y+z+3=0

y=0 يَدَكُرُ أَنْ حَسُلُ مَحَوِرَ الْغُواسِيلُ $(O;\tilde{I})$ يَعَرِفُ بِالْجَمَّلَةُ y=0 .

 $oldsymbol{a}_{i}$ ى عَيْنَ إِمِدَاثِهُاتِ إِمْ يَقْطُهُ تَقَاطِع العَمَلِ $oldsymbol{a}_{i}(O;\widetilde{s})$ مع المستوي $oldsymbol{arphi}_{i}(oldsymbol{arphi})$.

أ ـ تحقُّق أنَّ النقطة ﴿ تَنْمُسَ إِلَى الْمُسْتُومِي (14).

عود الحسب الطول 48 ،

Cب نصب المباقة بين النقطة C والمستوى C

C). يَكِتَبُ تَسَيِّلًا وَسَيِطُوا لِلْمَسَنَفِيمِ Δ) العالَ بالنفطة C والعمودي على المستوي C

 $m{\psi}$. رَجُلُق لَنْ النفطة $m{A}$ لتثمي إلى المستقيم (Δ) .

ج. . العسب مسلحة المثلث ABC .

الترين الرابع: (07 ناله)

 $\cdot f(x) = x - rac{1}{x-x}$ يعبُر الدالة السندية f السعرفة على \mathbb{R}^* كما يلي: $rac{1}{1-x} - x = 0$

 $\cdot(O; ar{t}, ar{f})$ المُتَلِقِها البياني في فسنوي العنسوب إلى العظم فعنعامد العنجاني (C_{f}) .

(1) ا) العبب $(x) = \lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ العبب $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ و التابعة.

2) ادرس انجاء بَغیر الدقّة / علی کل مجل من مجانی نعریفها ثم شکل جدول تعیر انها.

- (Δ') و (Δ') وقبل مبتغیمین مقاربین ماثلین (Δ') و (Δ') مستغیمها علی الترتیب: .y = x +1 _ y = x
 - $\cdot(\Delta')$ و (Δ) بالنسبة إلى كل من (Δ) و (Δ')

 (C_r) البيت أن النشاة $\left(rac{1}{2}; rac{1}{2}
ight)$ هي مركز تناظر المنطق (C_r) .

 $-1.4 < \beta < -1.3$ و $\alpha < 1$ میث: $\alpha < 1$ این ان المعادلة f(x) = 0 نقبل علین $\alpha \in \beta$ میث: $\alpha < 1$ این ان المعادلة $\alpha = 0$ $\P(\Delta)$ برای السنگم (C_r) برازي السنگم (Δ)

 (C_r) برسم (Δ) ، (Δ) ثم العنجني (C_r) .

د) فاقش بيانيا حسب قيم الرسوط المقبقي m عند وإشارة طاول المعادلة: m=1 وm=1 -