Response Theory

Mike Reppert

September 28, 2020

Previously on CHM676...

In homogeneous dielectric materials, the dynamics of ${m E}$ and ${m B}$ are determined by the polarization density ${m P}$.

Today: How does *P* respond to the field?

Outline for Today:

Physical Guidelines

Mathematical Framework

3 Symmetry and Invariance of Response Tensors

We study $oldsymbol{P}$ as a functional of $oldsymbol{E}$ and $oldsymbol{B}$:

$$P(x,t) = P[E(x',t'),B(x',t')].$$

We study P as a functional of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

Physically, we expect:

ullet Response to $oldsymbol{B}$ is negligible

We study $m{P}$ as a functional of $m{E}$ and $m{B}$:

$$P(x,t) = P[E(x',t'),B(x',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- ullet Response is *local*: $oldsymbol{P}(oldsymbol{x})$ depends only on $oldsymbol{E}(oldsymbol{x})$.

We study P as a functional of E and B:

$$\mathbf{P}(\mathbf{x},t) = \mathbf{P}[\mathbf{E}(\mathbf{x}',t'),\mathbf{B}(\mathbf{x}',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- ullet Response is *local*: $oldsymbol{P}(oldsymbol{x})$ depends only on $oldsymbol{E}(oldsymbol{x})$.
- Response is *causal*: P(t) depends only on $E(t' \le t)$.

We study P as a functional of E and B:

$$\mathbf{P}(\mathbf{x},t) = \mathbf{P}[\mathbf{E}(\mathbf{x}',t'),\mathbf{B}(\mathbf{x}',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- ullet Response is *local*: $oldsymbol{P}(oldsymbol{x})$ depends only on $oldsymbol{E}(oldsymbol{x})$.
- Response is *causal*: P(t) depends only on $E(t' \le t)$.
- Response is *stable*:

We study $oldsymbol{P}$ as a functional of $oldsymbol{E}$ and $oldsymbol{B}$:

$$\mathbf{P}(\mathbf{x},t) = \mathbf{P}[\mathbf{E}(\mathbf{x}',t'),\mathbf{B}(\mathbf{x}',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- ullet Response is *local*: $oldsymbol{P}(oldsymbol{x})$ depends only on $oldsymbol{E}(oldsymbol{x})$.
- Response is *causal*: P(t) depends only on $E(t' \le t)$.
- Response is *stable*:
 - Must exist a time scale δt below which ${m P}$ no longer cares about variations in ${m E}(t+\delta t)$

We study $oldsymbol{P}$ as a functional of $oldsymbol{E}$ and $oldsymbol{B}$:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

Physically, we expect:

- ullet Response to $oldsymbol{B}$ is negligible
- ullet Response is *local*: $oldsymbol{P}(oldsymbol{x})$ depends only on $oldsymbol{E}(oldsymbol{x})$.
- Response is *causal*: P(t) depends only on $E(t' \le t)$.
- Response is *stable*:
 - Must exist a time scale δt below which ${m P}$ no longer cares about variations in ${m E}(t+\delta t)$
 - Must exist a time scale T beyond which ${m P}$ doesn't remember ${m E}(t-T)$.

Take-Home Point

Physical constraints:

- locality
- causality
- stability

strongly limit the possible forms for the **mathematical** dependence of P on E.

The *response theory* framework is essentially a Taylor series expansion for functionals.

The *response theory* framework is essentially a Taylor series expansion for functionals.

The *response theory* framework is essentially a Taylor series expansion for functionals.

$$f(x) \approx f(0)$$

The *response theory* framework is essentially a Taylor series expansion for functionals.

$$f(x) \approx f(0) + \left. \frac{df}{dx} \right|_{x=0} x$$

The *response theory* framework is essentially a Taylor series expansion for functionals.

$$f(x) \approx f(0) + \left. \frac{df}{dx} \right|_{x=0} x + \frac{1}{2} \left. \frac{d^2 f}{dx^2} \right|_{x=0} x^2$$

◆□▶◆□▶◆■▶◆■▶ ■ 夕久○

The *response theory* framework is essentially a Taylor series expansion for functionals.

$$f(x) \approx f(0) + \left. \frac{df}{dx} \right|_{x=0} x + \frac{1}{2} \left. \frac{d^2 f}{dx^2} \right|_{x=0} x^2 + \frac{1}{6} \left. \frac{d^3 f}{dx^3} \right|_{x=0} x^3 \dots$$

Mike Reppert Response Theory 8 / 19 September 28, 2020 8 / 19

The Taylor series of a multi-variable function $g(x_1,...,x_N)$ looks like:

$$\begin{split} g(x_1,...,x_N) &= g(0,...,0) \\ &+ \left. \frac{\partial g}{\partial x_1} \right|_{\boldsymbol{x}=\boldsymbol{0}} x_1 + \left. \frac{\partial g}{\partial x_2} \right|_{\boldsymbol{x}=\boldsymbol{0}} x_2 + ... + \left. \frac{\partial g}{\partial x_N} \right|_{\boldsymbol{x}=\boldsymbol{0}} x_N \\ &+ \left. \frac{1}{2!} \left. \frac{\partial^2 g}{\partial x_1^2} \right|_{\boldsymbol{x}=\boldsymbol{0}} x_1^2 + \left. \frac{\partial g}{\partial x_1 \partial x_2} \right|_{\boldsymbol{v}=\boldsymbol{0}} x_1 x_2 + ... + \left. \frac{1}{2!} \left. \frac{\partial^2 g}{\partial x_N^2} \right|_{\boldsymbol{x}=\boldsymbol{0}} x_N^2 \\ &+ ... \end{split}$$

What is the corresponding expansion for a functional like P[E]?

Since the response is stable, we can sample $m{E}$ at a finite number of time points:

$$P_I(t) \approx f_I(E_x(t_0), E_y(t_0), E_z(t_0), E_x(t_1), ..., E_z(t_N); t, \delta t, T).$$

Expanding in a Taylor series:

$$\begin{split} P_{I}(t) &\approx f_{I}(0,...,0;t,\delta t,T) \\ &+ \left. \frac{\partial f_{I}}{\partial E_{x}(t_{0})} \right|_{\boldsymbol{E}=\boldsymbol{0}} E_{x}(t_{0}) + ... + \left. \frac{\partial f_{I}}{\partial E_{z}(t_{N})} \right|_{\boldsymbol{E}=\boldsymbol{0}} E_{z}(t_{N}) \\ &+ \left. \frac{1}{2!} \left. \frac{\partial^{2} f_{I}}{\partial [E_{x}(t_{0})]^{2}} \right|_{\boldsymbol{E}=\boldsymbol{0}} [E_{x}(t_{0})]^{2} + \left. \frac{\partial^{2} f_{I}}{\partial E_{x}(t_{0})\partial E_{y}(t_{0})} \right|_{\boldsymbol{E}=\boldsymbol{0}} E_{x}(t_{0})E_{y}(t_{0}) + ... \end{split}$$

As our sampling points get closer together, the sums converge to integrals:

$$\begin{split} \boldsymbol{P}(t) &= \sum_{n=0}^{\infty} \sum_{\alpha_{1},...,\alpha_{n}} \int_{-\infty}^{t} dt_{n} \int_{-\infty}^{t_{n}} dt_{n-1} ... \int_{-\infty}^{t_{2}} dt_{1} \\ &\times E_{\alpha_{1}}(t_{1}) E_{\alpha_{2}}(t_{2}) ... E_{\alpha_{n}}(t_{n}) \\ &\times R_{\alpha_{1}...\alpha_{n}\alpha}^{(n)}(t,t_{n},t_{n-1},...,t_{1}) \end{split}$$

where $R_{\alpha_1...\alpha_n\alpha}^{(n)}(t,t_n,t_{n-1},...,t_1)$ is the n^{th} -order response function* – the target of n^{th} -order spectroscopies.

*Almost. Actually $\mathbb{R}^{(n)}$ depends only on time differences. Stay tuned!

Symmetry and Invariance of Response Tensors

Symmetry and Invariance of Response Tensors

Time-translation Invariance

All systems we study will satisfy **time-translation invariance**: Only time differences matter!

$$R_{\alpha_1...\alpha_n\alpha}^{(n)}(t,t_n,t_{n-1},...,t_1) \Rightarrow R_{\alpha_1...\alpha_n\alpha}^{(n)}(t-t_n,t_n-t_{n-1},...,t_2-t_1)$$

Time-translation Invariance

All systems we study will satisfy **time-translation invariance**: Only time *differences* matter!

$$R_{\alpha_{1}...\alpha_{n}\alpha}^{(n)}(t,t_{n},t_{n-1},...,t_{1}) \Rightarrow R_{\alpha_{1}...\alpha_{n}\alpha}^{(n)}(t-t_{n},t_{n}-t_{n-1},...,t_{2}-t_{1})$$

Rearranging:

$$P_{\alpha}^{(n)}(t) = \sum_{\alpha_1, ..., \alpha_n} \int_{-\infty}^{\infty} d\tau_n ... \int_{-\infty}^{\infty} d\tau_1 R_{\alpha_1 ... \alpha_n \alpha}^{(n)}(\tau_1, ..., \tau_n) \times E_{\alpha_1}(t - \tau_1 - ... - \tau_n) E_{\alpha_2}(t - \tau_2 - ... - \tau_n) ... E_{\alpha_n}(t - \tau_n).$$

Time-translation Invariance

All systems we study will satisfy **time-translation invariance**: Only time *differences* matter!

$$R^{(n)}_{\alpha_1...\alpha_n\alpha}(t,t_n,t_{n-1},...,t_1) \Rightarrow R^{(n)}_{\alpha_1...\alpha_n\alpha}(t-t_n,t_n-t_{n-1},...,t_2-t_1)$$

Rearranging:

$$P_{\alpha}^{(n)}(t) = \sum_{\alpha_1, ..., \alpha_n} \int_{-\infty}^{\infty} d\tau_n ... \int_{-\infty}^{\infty} d\tau_1 R_{\alpha_1 ... \alpha_n \alpha}^{(n)}(\tau_1, ..., \tau_n) \times E_{\alpha_1}(t - \tau_1 - ... - \tau_n) E_{\alpha_2}(t - \tau_2 - ... - \tau_n) ... E_{\alpha_n}(t - \tau_n).$$

Causality dictates that $R_{\alpha_1,...,\alpha_n,\alpha}^{(n)}$ is non-zero only for positive time delays.

Neumann's Principle: Spatial symmetries of the material *must* be reflected in the response tensor.

This **dramatically** simplifies the analysis of nonlinear experiments!

Neumann's Principle: Spatial symmetries of the material *must* be reflected in the response tensor.

This **dramatically** simplifies the analysis of nonlinear experiments!

NB: Only *macroscopic* symmetry is relevant!

https://commons.wikimedia.org/wiki/File:

A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

Example: $R_{xy}^{(1)}$ in an isotropic sample

Suppose E is polarized along the y-axis. What happens to $P_x^{(1)}$ when we invert the y-axis?

Example: $R_{xy}^{(1)}$ in an isotropic sample

Suppose E is polarized along the y-axis. What happens to $P_x^{(1)}$ when we invert the y-axis?

Nothing!

Under *y*-axis inversion:

$$\bullet y \rightarrow -y$$

$$\bullet \ P_x^{(1)} \to P_x^{(1)}$$

•
$$E_y \rightarrow -E_y$$
 • $R_{xy} \rightarrow R_{xy}$

$$\bullet \ R_{xy} \to R_{xy}$$

Under *y*-axis inversion:

$$\bullet y \rightarrow -y$$

•
$$P_x^{(1)} \to P_x^{(1)}$$

•
$$E_y \to -E_y$$

 $\bullet \ E_y \to -E_y \qquad \bullet \ R_{xy} \to R_{xy} \Leftarrow$ Neumann's **Principle**

Under *y*-axis inversion:

- $y \to -y$ $P_x^{(1)} \to P_x^{(1)}$ $E_y \to -E_y$ $R_{xy} \to R_{xy} \Leftarrow \frac{\text{Neumann's}}{\text{Principle}}$

But response theory says:

$$P_x^{(1)}(t) = \int_{-\infty}^{\infty} d\tau_1 R_{xy}^{(1)}(\tau_1) E_y(t - \tau_1) = -P_x^{(1)}(t).$$

Under *y*-axis inversion:

- $y \to -y$ $P_x^{(1)} \to P_x^{(1)}$ $E_y \to -E_y$ $R_{xy} \to R_{xy} \Leftarrow \frac{\text{Neumann's}}{\text{Principle}}$

But response theory says:

$$P_x^{(1)}(t) = \int_{-\infty}^{\infty} d\tau_1 R_{xy}^{(1)}(\tau_1) E_y(t - \tau_1) = -P_x^{(1)}(t).$$

The only possible conclusion is that $R_{xu}^{(1)} = 0!$

More generally: In isotropic media

• All tensor elements with an odd number of any index vanish (e.g., $R_{xxxy}^{(3)}=0$)

More generally: In isotropic media

- All tensor elements with an odd number of any index vanish (e.g., $R_{xxxy}^{(3)} = 0$)
- Corollary: all even-order response functions vanish(!)

More generally: In isotropic media

- All tensor elements with an odd number of any index vanish (e.g., $R_{xxxy}^{(3)} = 0$)
- Corollary: all even-order response functions vanish(!)
- Response tensor elements are symmetry-related (e.g., $R_{xxyy}^{(3)} = R_{yyxx}^{(1)}$)

But remember: Not all materials are isotropic

But remember: Not all materials are isotropic

Even-order spectroscopies are *specifically sensitive* to material boundaries

But remember: Not all materials are isotropic

Even-order spectroscopies are *specifically sensitive* to material boundaries \Rightarrow Imaging!

But remember: Not all materials are isotropic

Even-order spectroscopies are *specifically sensitive* to material boundaries ⇒ Imaging!

Garth Simpson

Coefficient colormar

Mike Reppert Response Theory 18 / 19 September 28, 2020 18 / 19

Take-Home Points

Time-translation invariance and **causality** dictate that response functions depend only on *positive time delays* between interactions.

Spatial symmetries in the material must be reflected in the response tensors.

In isotropic media:

- Response elements with unpaired axes vanish
- Surviving elements are symmetry-related
- Even-order spectroscopies are forbidden hence useful for detecting defects