	Friedrich-Alexander Universität Erlangen-Nürnberg	
Klausur in Grundlagen der Elektrotechnik I am 28. September 2010		

Bearbeitungszeit: 120 Minuten

6 Aufgaben (100 Punkte)

Aufgabe 1: (20 Punkte)

Das Bild zeigt den Querschnitt zweier Metallkugeln. Die Dielektrizitätskonstante des umgebenden Raums sei ε_0 .

Die linke Metallkugel mit dem Radius r_1 trägt auf der Oberfläche die Ladung Q und ist konzentrisch um den Ursprung eines kartesischen Koordinatensystems (x, y, z) angeordnet. Der Mittelpunkt der rechten Metallkugel mit dem Radius r_2 und der Ladung -Q auf der Oberfläche befindet sich auf der x-Achse bei x = a.

Für den Abstand a gilt $a >> r_1$ und $a >> r_2$, so dass die Ladungen auf den Oberflächen der Kugeln homogen verteilt sind.

- a) Ermitteln Sie die elektrische Feldstärke $\vec{\bf E}$ auf der x-Achse im Intervall $r_1 < x < a r_2$ durch Überlagerung der Beiträge von beiden Metallkugeln. (6 Punkte)
- b) Berechnen Sie die Spannung U_{12} zwischen den beiden Metallkugeln. (6 Punkte)
- c) Welche Kraft wirkt auf die Kugel mit dem Radius r_2 ?

 Hinweis: Die Kugeln können durch Punktladungen ersetzt werden. (2 Punkte)
- d) Welche Arbeit muss geleistet werden, um den Abstand zwischen den Kugeln auf 2a zu verdoppeln? (6 Punkte)

Aufgabe 2:

(15 Punkte)

Zwei Materialstücke (Querschnittsfläche A, Länge l_1 bzw. l_2 , Leitfähigkeit κ_1 bzw. κ_2) werden von einem bekannten Gleichstrom I in der gezeichneten Weise durchflossen. Innerhalb der Materialstücke kann die Stromdichte $\vec{\mathbf{J}}$ als homogen angenommen werden. Die Zuleitungen und die Verbindung zwischen den beiden Materialstücken können bei allen Rechnungen vernachlässigt werden.

- a) Geben Sie die Stromdichte \vec{J} innerhalb der Materialien an. (2 Punkte)
- b) Wie groß ist die elektrische Feldstärke $\vec{\mathbf{E}}$ im Bereich der Materialstücke? (2 Punkte)
- c) Welche Spannung U tritt zwischen den beiden Anschlussklemmen auf? Es soll vom Verbraucherzählpfeilsystem ausgegangen werden. (3 Punkte)
- d) Bestimmen Sie den Gesamtwiderstand R der Anordnung. (2 Punkte)

Hinweis: Teilaufgabe e) ist unabhängig von den vorherigen Teilaufgaben lösbar!

e) Berechnen Sie den Wert der spezifischen Leitfähigkeit κ für Aluminium bei 100 °C. (6 Punkte)

Aufgabe 3: (10 Punkte)

An eine Autobatterie mit der Leerlaufspannung $U_0=12\,\mathrm{V}$ und dem Innenwiderstand $R_i=0.5\,\Omega$ wird über einen Transformator mit der primären Windungszahl N_1 und der sekundären Windungszahl N_2 ein Lastwiderstand $R_L=120\,\Omega$ angeschlossen.

- a) Stellen Sie die Maschengleichungen zur Beschreibung dieser Anordnung auf. Tragen Sie die verwendeten Bezeichnungen für Ströme und gegebenenfalls weitere Spannungen in das Bild ein. (6 Punkte)
- b) Welche Leistung gibt die Batterie ab? (3 Punkte)
- c) Welche Leistung nimmt der Lastwiderstand auf? (1 Punkt)

Name:	Matrikelnummer:
-------	-----------------

Aufgabe 4: (19 Punkte)

Gegeben sind zwei metallische Platten, die in y- und z-Richtung unendlich ausgedehnt sind und sich gemäß untenstehender Abbildung parallel gegenüber stehen. Pro Längeneinheit l (markierter Bereich) werden die Platten von einem Gleichstrom I_0 in y-Richtung durchflossen.

Hinweis: Die magnetische Feldstärke $\vec{\mathbf{H}} = \vec{\mathbf{e}}_z H(\mathbf{x})$ besitzt aus Symmetriegründen nur eine z-Komponente und es gilt $H(|\mathbf{x}| > b) = 0$.

a) Wie groß ist die elektrische Stromdichte \vec{J} in den beiden Platten? (2 Punkte)

Für Teilaufgabe b) und c) wird nun die Kontur C_1 mit $|x_1| \le a$ betrachtet.

- b) Welcher Strom wird von der Kontur C_1 rechtshändig umschlossen? (1 Punkt)
- c) Werten Sie das Oersted'sche Gesetz entlang der Kontur C_1 aus und berechnen Sie damit die magnetische Feldstärke zwischen den beiden Platten für $|\mathbf{x}| < a$. (3 Punkte)

Für Teilaufgabe d) und e) wird nun die Kontur C_2 mit $a \le x_2 \le b$ betrachtet.

- d) Welcher Strom wird von der Kontur C_2 rechtshändig umschlossen? (3 Punkte)
- e) Werten Sie das Oersted'sche Gesetz entlang der Kontur C_2 aus und berechnen Sie damit die magnetische Feldstärke in der rechten Platte für $a \le x \le b$. (2 Punkte)
- f) Geben Sie die magnetische Feldstärke in der linken Platte für $-b \le x \le -a$ an. (2 Punkte)
- g) Zeichnen Sie den Betrag der magnetischen Feldstärke in Abhängigkeit der x-Koordinate. (3 Punkte)
- h) Welche magnetische Energie ist im Volumen $V = \int_{-l-a-a}^{l} \int_{-a-a}^{a} dx dy dz$ gespeichert? (3 Punkte

Aufgabe 6: (16 Punkte)

Gegeben sei das unten dargestellte Netzwerk. Es wird von den idealen Spannungsquellen U_1 und U_2 sowie den idealen Stromquellen I_1 und I_2 gespeist.

a) Berechnen Sie die Ströme I_a , I_b , I_c und I_d mithilfe des Überlagerungssatzes in Abhängigkeit von den Quellen U_1 , U_2 , I_1 , I_2 . (6 Punkte)

Es gelten jetzt folgende Daten: $U_1 = 4 \, \mathrm{V}$, $U_2 = 10 \, \mathrm{V}$, $I_1 = 10 \, \mathrm{A}$, $I_2 = 2 \, \mathrm{A}$ und $R = 5 \, \Omega$.

- b) Berechnen Sie die Werte der Ströme I_a , I_b , I_c und I_d sowie die gesamte von den Widerständen aufgenommene Leistung P_R . (5 Punkte)
- c) Berechnen Sie die Leistungsaufnahme bzw. –abgabe für alle Quellen. Entscheiden Sie für jede Quelle, ob sie Leistung aufnimmt oder abgibt. Stellen Sie die Leistungsbilanz des gesamten Netzwerks auf.
 (5 Punkte)

Lehrstuhl für Elektromagnetische Felder Prof. DrIng. M. Albach	Friedrich-Alexander Universität Erlangen-Nürnberg
Klausur in Grundlagen der Elektrotechnil	k I am 28. September 2010

MUSTERLÖSUNG

Aufgabe 1: (20 Punkte)

Eine geladene Metallkugel mit der Ladung Q erzeugt in ihrem Außenraum das gleiche Feld wie eine Punktladung Q im Mittelpunkt der Metallkugel (vgl. Kap. 1.12).

Elektrisches Feld $\vec{\mathbf{E}}_1$ infolge der linken Metallkugel auf der x-Achse im Intervall $r_1 < \mathbf{x} < a - r_2 : \vec{\mathbf{E}}_1 \stackrel{(1.3)}{=} \frac{Q}{4\pi\varepsilon_0\mathbf{x}^2}\vec{\mathbf{e}}_{\mathbf{x}}$

Elektrisches Feld $\vec{\mathbf{E}}_2$ infolge der rechten Metallkugel auf der x-Achse im Intervall $r_1 < \mathbf{x} < a - r_2 \colon \vec{\mathbf{E}}_2 = -\frac{Q}{4\pi\varepsilon_0(a - \mathbf{x})^2} \vec{\mathbf{e}}_{\mathbf{x}} = \frac{Q}{4\pi\varepsilon_0(a - \mathbf{x})^2} \vec{\mathbf{e}}_{\mathbf{x}}$

Überlagerung der beiden Beiträge: $\vec{\mathbf{E}} = \vec{\mathbf{E}}_1 + \vec{\mathbf{E}}_2 = \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{\mathbf{x}^2} + \frac{1}{(a-\mathbf{x})^2} \right] \vec{\mathbf{e}}_x$

b)
$$U_{12} \stackrel{\text{(1.30)}}{=} \int_{P_1}^{P_2} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$$

$$d\,\vec{\mathbf{s}} = \vec{\mathbf{e}}_{\mathbf{x}} d\mathbf{x}$$

$$P_1$$
: Punkt bei $x = r_1$

$$P_2$$
: Punkt bei $x = a - r_2$

$$U_{12} = \int_{r_1}^{a-r_2} \vec{\mathbf{E}} \cdot \vec{\mathbf{e}}_{\mathbf{x}} d\mathbf{x} = \frac{Q}{4\pi\varepsilon_0} \left[-\frac{1}{\mathbf{x}} + \frac{1}{a-\mathbf{x}} \right]_{r_1}^{a-r_2} = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{a-r_2} + \frac{1}{r_2} - \frac{1}{a-r_1} \right)$$

$$U_{12} \approx \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} + \frac{1}{r_2} - \frac{2}{a} \right)$$

(Angabe nicht erforderlich)

c)
$$\vec{\mathbf{F}} = \vec{\mathbf{e}}_{x} \frac{Q(-Q)}{4\pi\varepsilon_{0}a^{2}} = -\vec{\mathbf{e}}_{x} \frac{Q^{2}}{4\pi\varepsilon_{0}a^{2}}$$

d) Wenn die rechte Kugel von der Position bei x = a zur Position x = 2a verschoben werden soll, dann gilt mit Gl. (1.20)

$$W_e = -\int_{a}^{2a} \left(-\vec{\mathbf{e}}_x \frac{Q^2}{4\pi\varepsilon_0 x^2} \right) \cdot \vec{\mathbf{e}}_x dx = \frac{Q^2}{4\pi\varepsilon_0} \int_{a}^{2a} \frac{1}{x^2} dx = \frac{Q^2}{4\pi\varepsilon_0} \left(-\frac{1}{x} \right) \Big|_{a}^{2a} = \frac{Q^2}{8\pi\varepsilon_0 a}$$

Oder bei Gl. (1.26) $Q_1 = -Q$, $r_2 = 2a$ und $r_1 = a$ einsetzen.

Aufgabe 2: (15 Punkte)

a)
$$\vec{\mathbf{J}}_1 = -\vec{\mathbf{e}}_y \frac{I}{A}$$
 $\vec{\mathbf{J}}_2 = \vec{\mathbf{e}}_x \frac{I}{A}$

b)
$$\vec{\mathbf{E}}_1 = \frac{\vec{\mathbf{J}}_1}{\kappa_1} = -\vec{\mathbf{e}}_y \frac{I}{A\kappa_1}$$
 $\vec{\mathbf{E}}_2 = \frac{\vec{\mathbf{J}}_2}{\kappa_2} = \vec{\mathbf{e}}_x \frac{I}{A\kappa_2}$

c)
$$U = \int \vec{\mathbf{E}}_1 \cdot d\vec{\mathbf{s}}_1 + \int \vec{\mathbf{E}}_2 \cdot d\vec{\mathbf{s}}_2 = \int -\vec{\mathbf{e}}_y \frac{I}{A\kappa_1} \cdot d\vec{\mathbf{s}}_1 + \int \vec{\mathbf{e}}_x \frac{I}{A\kappa_2} \cdot d\vec{\mathbf{s}}_2 = \frac{I}{A} \left(\frac{l_1}{\kappa_1} + \frac{l_2}{\kappa_2} \right)$$

- d) $R = \frac{U}{I} = \frac{l_1}{\kappa_1 A} + \frac{l_2}{\kappa_2 A}$ Reihenschaltung zweier Widerstände.
- e) $\rho_R(T) = \rho_{R,20^{\circ}C}[1 + \alpha(T 20^{\circ}C)]$

Spezifischer Widerstand von Aluminium bei 20°C: $\rho_{R,20^{\circ}C} = 0.0287 \frac{\Omega \text{mm}^2}{\text{m}}$

Temperaturkoeffizient von Aluminium: $\alpha = 3.8 \cdot 10^{-3} \frac{1}{^{\circ}\text{C}}$

$$\rho_R(100^{\circ}\text{C}) = 0.0287 \frac{\Omega \text{mm}^2}{\text{m}} [1 + 3.8 \cdot 10^{-3} \frac{1}{^{\circ}\text{C}} 80^{\circ}\text{C}] = 0.0374 \frac{\Omega \text{mm}^2}{\text{m}}$$

Daraus ergibt sich die spezifische Leitfähigkeit von Aluminium bei 100°C zu:

$$\kappa(100^{\circ}\text{C}) = \frac{1}{\rho_{R}(100^{\circ}\text{C})} = 26,72 \frac{\text{m}}{\Omega\text{mm}^{2}}$$

Aufgabe 3: (10 Punkte)

a) Gl. (6.81):
$$U_0 = R_i I_1 + L_{11} \frac{dI_1}{dt} \pm M \frac{dI_2}{dt}$$

$$0 = R_L I_2 \pm M \frac{dI_1}{dt} + L_{22} \frac{dI_2}{dt}$$

Die Ströme sind zeitlich konstant $\rightarrow \frac{d}{dt} = 0 \rightarrow U_0 = R_i I_1$ und $0 = R_L I_2$

- b) Batterieleistung $P = U_0 I_1 = \frac{U_0^2}{R_i} = 288 \text{ W}$
- c) Leistung am Lastwiderstand $P_L = 0 \text{ W}$

Aufgabe 4: (19 Punkte)

- a) Linke Platte: $\vec{\mathbf{J}} = \vec{\mathbf{e}}_y \frac{I_0}{(b-a)l}$ Rechte Platte: $\vec{\mathbf{J}} = -\vec{\mathbf{e}}_y \frac{I_0}{(b-a)l}$
- b) Rechtshändig umschlossener Strom: $I(x_1) = I_0$
- c) Oersted'sches Gesetz: $\oint_{C_1} \vec{\mathbf{H}} \cdot d\vec{\mathbf{s}} = I_0$,

 nur der Abschnitt bei x_1 liefert einen Beitrag (s. Hinweis) $H(x)\vec{\mathbf{e}}_z \cdot l(-\vec{\mathbf{e}}_z) = I_0 \quad \rightarrow \quad \vec{\mathbf{H}} = -\frac{I_0}{l}\vec{\mathbf{e}}_z$
- d) Rechtshändig umschlossener Strom:

$$I(x_2) = \iint_A \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} = \int_{x_2}^b \int_0^l \frac{-I_0}{(b-a)l} \vec{\mathbf{e}}_y \cdot \vec{\mathbf{e}}_y dx dz = -I_0 \frac{b-x_2}{b-a}$$

- e) Oersted'sches Gesetz: $\oint_{C_2} \vec{\mathbf{H}} \cdot d\vec{\mathbf{s}} = I(\mathbf{x})$ $H(\mathbf{x})\vec{\mathbf{e}}_z \cdot l\vec{\mathbf{e}}_z = I(\mathbf{x}) \rightarrow \vec{\mathbf{H}} = \frac{I(\mathbf{x})}{l}\vec{\mathbf{e}}_z = -\frac{I_0}{l}\frac{b \mathbf{x}}{b a}\vec{\mathbf{e}}_z$
- f) Linke Platte analog: $\vec{\mathbf{H}} = -\frac{I_0}{l} \frac{b + x}{b a} \vec{\mathbf{e}}_z$
- g) Betrag der magnetischen Feldstärke:

h) $W_m = \int_{-l-a-a}^{l} \int_{-a-a}^{a} \frac{1}{2} \mu_0 |\vec{\mathbf{H}}|^2 dx dy dz = \frac{1}{2} \mu_0 \left(-\frac{I_0}{l} \right)^2 \cdot 2l \cdot 2a \cdot 2a = \mu_0 I_0^2 \frac{4a^2}{l}$

Aufgabe 6: (16 Punkte)

a) Betrachtung von U_1 : Restliche Stromquellen werden ersetzt durch einen Leerlauf und restliche Spannungsquellen werden ersetzt durch einen Kurzschluss.

Betrachtung von I_2 : Restliche Stromquellen werden ersetzt durch einen Leerlauf und restliche Spannungsquellen werden ersetzt durch einen Kurzschluss.

Der Widerstand R wird durch den Kurzschluss überbrückt, d.h. durch ihn fließt kein Strom. Der Strom I_2 teilt sich gleichmäßig auf die beiden Widerstände der Größe 2R auf. Unter Berücksichtigung der eingezeichneten Stromrichtungen gilt somit:

$$I_{a}'' = I_{b}'' = -\frac{I_{2}}{2}, \qquad I_{c}'' = 0, \qquad I_{d}'' = \frac{I_{2}}{2}.$$

Wird nur die Quelle I_1 betrachtet und dabei die Spannungsquelle U_1 durch einen Kurzschluss ersetzt, dann sieht man sofort, dass I_1 kurzgeschlossen wird und somit keinen Beitrag zu den Strömen I_a , I_b , I_c und I_d liefert.

Ähnliches gilt auch für die Beiträge der Quelle U_2 . Indem I_2 durch einen Leerlauf ersetzt wird ist keine leitende Verbindung zwischen U_2 und dem Rest der Schaltung mehr vorhanden. Durch Überlagerung ergibt sich also:

$$I_a = \frac{5U_1}{4R} - \frac{I_2}{2}, \qquad I_b = \frac{U_1}{4R} - \frac{I_2}{2}, \qquad I_c = \frac{U_1}{R}, \qquad I_d = \frac{U_1}{4R} + \frac{I_2}{2}.$$

- b) $I_a = 1A 1A = 0A$, $I_b = 0.2 A 1A = -0.8 A$, $I_c = 0.8 A$, $I_d = 0.2 A + 1A = 1.2 A$ $P_R = I_b^2 2R + I_c^2 R + I_d^2 2R = 6.4 W + 3.2 W + 14.4 W = 24 W$
- c) Abgegebene Leistung der Quelle U_1 : $P_{U_1} = U_1(I_a I_1)$ mit Teilaufgabe a): $I_a = 1A - 1A = 0A$ \rightarrow $P_{U_1} = 4 \text{ V} \cdot (-10 \text{ A}) = -40 \text{ W}$ Die Spannungsquelle U_1 nimmt 40 W auf.

Abgegebene Leistung der Quelle I_1 : $P_{I_1} = U_1I_1 = 4 \text{ V} \cdot 10 \text{ A} = 40 \text{ W}$ Die Stromquelle I_1 gibt 40 W ab.

Abgegebene Leistung der Quelle U_2 : $P_{U_2} = U_2I_2 = 10\,\mathrm{V}\cdot 2\,\mathrm{A} = 20\,\mathrm{W}$ Die Spannungsquelle U_2 gibt 20 W ab.

Abgegebene Leistung der Quelle I_2 : $P_{I_2} = (I_d \cdot 2R - U_2) \cdot I_2 = (12 \text{ V} - 10 \text{ V}) \cdot 2 \text{ A} = 4 \text{ W}$ Die Stromquelle I_2 gibt 4 W ab.

Leistungsbilanz:

Abgegebene Leistungen: $P_{I_1} + P_{I_2} + P_{U_3} = 40 \text{ W} + 4 \text{ W} + 20 \text{ W} = 64 \text{ W}$

Aufgenommene Leistungen: $P_R + P_{U_1} = 24 \text{ W} + 40 \text{ W} = 64 \text{ W}$