Logic Connectives:

¬ negation (¬A, pronounced: not A, it is not the fact that A)

Λ conjunction (A Λ B, pronounced A and B; only True when A, B are both True)
V disjunction, inclusive or (A V B, pronounced: A or B; only False when A, B are both False)

 \bigoplus exclusive or, XOR (A \bigoplus B; true only if A and B are different, e.g., A is True and B is False)

 \Rightarrow implication (A \Rightarrow B, pronounced: if A then B, A implies B; only False when the premise is True but

the conclusion is False)

 \Leftrightarrow equivalence (A \Leftrightarrow B, pronounced: A if and only if B, A is equivalent to B; only True when A, B are

both True or A, B are both False.)

Set notation: {x : x has a property P}

E membership $(a \in A, a \text{ is a member of } A, a \text{ is an element of } A)$

 \notin non-membership ($a \notin A$, a is not a member of A, a is an element of A)

Set A is a **subset** of set B, if, and only if, each element of A is an element of B;

 \subset proper subset (A \subset B, A is a proper subset of B: A is included/contained in B but it is not equal to it)

 $\not\subset$ **not a proper subset** (the opposite of the above, i.e. $\neg(A \subset B)$)

 \subseteq subset (subset equal) (A \subseteq B, A is a subset of B: A is included/contained in B and it may also be equal to B)

 \nsubseteq **not a subset** (the opposite of the above, i.e. $\neg(A \subseteq B)$)

 \supset proper superset (A \supset B, A is a proper superset of B: A includes/contains B and it is not equal to it)

 \supseteq superset (A \supseteq B, A is a superset of B: A includes/contains B and can be equal to it)

Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Thus: $x \in A \cup B \Leftrightarrow x \in A \lor x \in B$

Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B \}$

Thus: $x \in A \setminus B \Leftrightarrow x \in A \land x \notin B$

Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B \}$

Thus: $x \in A \cap B \Leftrightarrow x \in A \land x \in B$

Complement: $\bar{A} = \{ x: x \notin A \}$

Thus: $x \in \bar{A} \Leftrightarrow x \notin A$

Powerset P(A) = $\{X : X \subseteq A\}$, i.e. it is a set containing all the subsets of A.

 $\emptyset = \{\}$ (empty set; \emptyset is a subset of any set)

 $\mathbb{B} = \{0, 1\}$ (binary digits, or bits)

 $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ (natural numbers)

 $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ (integers)

 $\mathbb{Q} = \{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \}$ (rational numbers)

 $\mathbb{R} = \{ x : x \text{ is a real number } \}$ (real numbers)

For intervals, (and) mean that the corresponding elements are not included, [and] means that the corresponding elements are included.

Predicate logic (quantifiers):

 \forall - universal quantifier $(\forall x P(x): for all x P(x))$

 \exists - existential quantifier $(\exists x P(x): \text{there exists } x, \text{ such that } P(x))$

 $\exists !x P(x)$ pronounced "there exists a unique x such that P(x)" logical equivalent to: $\exists x (P(x) \land \neg \exists y (P(y) \land x \neq y))$

Equivalences: $\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$ $\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$

Functions:

Given a subset $S \subseteq A$ of the domain of f, the **image** of S under f is defined by

$$f(S) = \{ f(a) : a \in S \}$$

Given a subset $T \subseteq B$ of the codomain of f, the **preimage** of T under f is defined by

$$f^{-1}(T) = \{ a \in A : f(a) \in T \}$$

A function $f: A \rightarrow B$ can be represented by its **graph**:

$$graph(f) = \{ (a, b) \in A \times B : b = f(a) \}$$

If $f: A \to B$ is a bijection, then the *inverse function* $f^{-1}: B \to A$ is the function that assigns to each $b \in B$ the unique $a \in A$ such that f(a) = b:

$$f^{-1}(b) = a$$
 if, and only if, $f(a) = b$.

Given $f: A \to B$ and $g: B \to C$, the **composition** of g and f is the function $g \circ f: A \to C$ defined by

$$(g \circ f)(x) = g(f(x)).$$

Note In order to form composition of g and f, the codomain of f must be the same as the domain of g.

Relations:

• **reflexive** if, and only if, every element of A is related to itself by R.

That is, $\forall x \in A (x R x)$.

• irreflexive if, and only if, no element of A is related to itself.

That is, $\forall x \in A \neg (x R x)$.

• **symmetric** if, and only if, y is related to x whenever x is related to y.

That is, $\forall x, y \in A ((x R y) \Rightarrow (y R x)).$

• antisymmetric if, and only if, y is never related to x whenever x is related to y, except possibly for when x = y.

That is, $\forall x, y \in A ((x R y) \land (y R x) \Rightarrow x = y)$.

= is both symmetric and antisymmetric

• transitive if, and only if, x is related to z whenever x is related to some y which is related to z.

That is, $\forall x, y, z \in A ((x R y) \land (y R z) \Rightarrow (x R z)).$