FICHE 05-02 : Majoration de la primorielle ALG? MET-1 1.5.1. K-12-2-8

Yvann Le Fay Juin 2019

Enoncé

Soit $k \geq 1$, montrer que $\binom{2k+1}{k} < 4^k$ et en déduire que $P_n = \prod_{p \leq n} p < 4^n$.

Solution

On a directement,

$$2\binom{2k+1}{k} = \binom{2k+1}{k} + \binom{2k+1}{k+1} < \sum_{k=0}^{2k+1} \binom{2k+1}{j} = 2 \times 4^k$$

Montrons par récurrence que $P_n < 4^n$. La propriété est initialisée en n=2, supposons celle-ci vraie pour tout $j \le n-1$. On vérifie par Gauss que pour $k+2 \le p \le 2k+1$, $p \mid \binom{2k+1}{k}$, donc $p \le 4^k$. Si n est pair alors $P_n = P_{n-1} < 4^{n-1} < 4^n$. Si n=2k+1 alors

$$P_n = \prod_{1 \le p \le k+1} p \prod_{k+2 \le p \le 2k+1} p < 4^{k+1} \times 4^k = 4^n$$

Ce qui conclut la récurrence.