

# Solving Partial Differential Equations with Uncertainties Using Neural-Networks (A surrogate forward model)

Sajed N. Zarrinpour

Dr Khadijeh Nedaiasl, Dr Parvin Razaghi sa.zarrinpour@iasbs.ac.ir

Institute for Advanced Studies in Basic Sciences

May 2020

# Outline

Introduction

**Background Information** 

Problem Definition & Results

Conclusion

References





"The key is in not spending time, but in investing it" - Stephen R. Covey.



**Use Case Example** *Breast Cancer* 

# MRI-guided biopsy



 $Figure: \ https://healthmanagement.org/products/view/breast-biopsy-mri-coil-sentinelle-hologic$ 



# MRI-guided biopsy sample image



 $\label{lem:procedure} Figure: \ https://www.cedars-sinai.edu/Patients/Programs-and-Services/Imaging-Center/For-Patients/Exams-by-Procedure/MRI/MR-Guided-Breast-Biopsy/$ 



## Ultra sound imaging



Figure: https://www.philips.com/a-w/about/news/archive/standard/news/press/2018/20181025-philips-debuts-integrated-breast-ultrasound-solution-to-make-exams-easier-and-faster-for-patients-and-clinicians.html



# Ultra sound sample image



Figure: https://www.radiology.pitt.edu/node/225

## FEM Model $\sim$ 2 hours



Figure: https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.12673



### FEM - ML Model $\sim$ 0.2 seconds



 $Figure: \ {\tt https://www.sciencedirect.com/science/article/abs/pii/S0010482517303177}$ 



What are the bottlenecks?



# Finite Element Method

## Poisson Equation on Unit Square - Strong Form

$$\begin{array}{ll} -\Delta \textit{u} = & \textit{f(x)} & \text{,in } \Omega = [0 \times 1] \times [0 \times 1] - [0, 1) \\ \textit{u} = & 0 & \text{,on } \partial \Omega \end{array}$$



# Finite Element Method

# Poisson Equation on Unit Square - Weak Form

$$\begin{split} \sum_{i=1}^{M} c_{i} < \phi_{i}, \phi_{j} > = < f, \phi_{j} > & i = 1, ..., M, \\ \text{where} \\ u_{h} = \sum_{i=1}^{M} c_{i} \phi_{i} \ \ \text{and} \in V_{h} = \textit{span}\{\phi_{i}\}_{i=1}^{M} \end{split}$$



Removing the bottleneck. *Is It Possible?* 

Sajed N. Zarrinpour

5th October 2020

# Possibility

# Universal Approximation Theorem

Let  $\phi:\mathbb{R}\to\mathbb{R}$  be a non-constant, bounded, and continuous function. Let  $I_m$  denote the m-dimensional unit hypercube  $[0,1]^m$ . The space of real-valued continuous functions on  $I_m$  is denoted by  $C(I_m)$ . Then, given any  $\epsilon>0$  and any function  $f\in C(I_m)$ , there exist an integer N, real constants  $v_i,b_i\in\mathbb{R}$  and real vectors  $w_i\in\mathbb{R}^m$  for i=1,...,N, such that we may have define :  $F(x)=\sum_{i=1}^N v_i\phi(w_i^Tx+b_i)$  as an approximate realization of the function f; that is,  $|F(x)-f(x)|<\epsilon$  for all  $x\in I_m$ .

# Possibility

## Universal Approximation Theorem

For any Lebesgue-integrable function  $f\colon\mathbb{R}^n\to\mathbb{R}$  and any  $\epsilon>0$ , there exists a fully-connected ReLU network  $\mathcal A$  with width  $d_m\le n+4$ , such that the function  $F_{\mathcal A}$  represented by this network satisfies:

$$\int_{\mathbb{R}} \|f(x) - F_A(A)\| dx < \epsilon$$

Alright. Where to begin?!



## **Artificial Neuron**

• Weight, bias



## **Artificial Neuron**

- Weight, bias
- Activation function  $(\psi)$



## Artificial Neuron

$$\psi(WX+b)$$



# Different Combinations ∼ Different Networks Let's see it in action!



# Deep Ritz Method

# Poisson Equation - Neural Networks Form

$$u_{\theta}(x) = a.f_{n}(x) \circ ... \circ f_{1}(x) + b$$
 where  $f_{i}(x) = \phi(W_{i}2.\phi(W_{i}1.x + b_{i1}) + b_{i2}) + x$  and  $a \in \mathbb{R}^{m}, b \in \mathbb{R}$  and  $\phi(x) = \max\{x^{3}, 0\}$ 



# Deep Ritz Method





# How It Works

structure



## How It Works

- structure
- loss function



### Are You READY?!

Let's dive deep!



effective conductance in inhomogeneous media



#### Effective Conductance

$$\begin{array}{ll} A_{\mathrm{eff}}(a) = & \min_{u(x)} \int_{[0,1]^d} a(x) ||\nabla u(x) + \xi||_2^2 \mathrm{d}x. \quad \text{,in } \Omega = [0 \times 1] \\ u(0) = & u(n) & \text{,on } \partial\Omega \end{array}$$

#### Final result

$$mean(A_{\rm eff}(a)) = 0.76800650,$$
 With  $1.021 \times 10^{-3} L^2$ -Error

# Steps

Data Set Generation



#### Minimization Form

$$\begin{array}{ll} A_{\mathrm{eff}}(a) = & \min_{u(x)} \int_{[0,1]^d} a(x) ||\nabla u(x) + \xi||_2^2 \mathrm{d}x. \quad \text{,in } \Omega = [0 \times 1] \\ u(0) = & u(n) & \text{,on } \partial\Omega \end{array}$$

## Equivalent PDE Form

$$-\nabla \cdot (a(x)(\nabla u(x) + \xi)) = 0$$



## Calculate $u_a$

$$(L_{a}u)_{i} := \sum_{k=1}^{d} \frac{-a_{i+\frac{1}{2}e_{k}}u_{i+e_{k}} + (a_{i-\frac{1}{2}e_{k}} + a_{i+\frac{1}{2}e_{k}})u_{i} - a_{i-\frac{1}{2}e_{k}}u_{i-e_{k}}}{h^{2}}$$
$$(b_{a})_{i} := \sum_{k=1}^{d} \frac{\xi_{k}(a_{i+\frac{1}{2}e_{k}} - a_{i-\frac{1}{2}e_{k}})}{h}$$

#### Effective Conductance

$$A_{\text{eff}}(a) = h^d(u_a^T L u_a - 2u_a^T b_a + a^T 1)$$

# Steps

- Data Set Generation
- Neural-Network Model





Figure: Neural-Network architecture



Figure: committed error per sample over the prediction set



Figure: committed error per sample over the prediction set distribution



#### **Nonlinear Case**

Nonlinear Shrödinger equation with inhomogeneous background potential



## Shrödinger Equation

$$-\Delta u(x) + a(x)u(x) + \sigma u(x)^3 = E_0 u(x) \quad , \text{in } \Omega = [0 \times 1]^2$$
 
$$\int_{[0,1]^2} u(x)^2 \mathrm{d}x = 1$$
 
$$u(0) = u(n) \quad , \text{on } \partial\Omega$$

#### Final result

$$mean(E) = 10.17474556$$
, With  $7.235 \times 10^{-5} L^2$ -Error

# Steps

Data Set Generation

#### **FDM**

$$(Lu)_{i} + a_{i}u_{i} + \sigma u_{i}^{3} = E_{0}u_{i},$$

$$\sum_{i=1}^{n^{2}} u_{i}^{2}h^{2} = 1,$$

$$(Iu)_{i} := \sum_{k=1}^{d} \frac{-u_{i+e_{k}} + 2u_{i} - u_{i-e_{k}}}{h^{2}}$$

# Steps

- Data Set Generation
- Neural-Network Model





Figure: Single convolutional layer.



## Periodic Padding Psudo Code

```
class PeriodicPadding2D(layers.Layer):
  def wrap_pad(self, input, size):
    M1 = tf.concat([
           input[:,:, -size:],
           input, input[:,:, 0:size]
           1, 2)
    M1 = tf.concat([
           M1[:,-size:, :],
           M1,
           M1[:,0:size, :]
           ], 1)
    return M1
  . . .
```



Figure: committed error per sample over the prediction set



Figure: committed error per sample over the prediction set



## Conclusion

• Bypassing the calculation of the basis





## Conclusion

- Bypassing the calculation of the basis
- Better accuracy in less cost

## Conclusion

- Bypassing the calculation of the basis
- Better accuracy in less cost
- Almost the same for Linear and Nonlinear



## **Future Works**

• Studying methods for label scaling/normalization



## **Future Works**

- Studying methods for label scaling/normalization
- Incorporating more physical knowledge to the model



## **Future Works**

- Studying methods for label scaling/normalization
- Incorporating more physical knowledge to the model
- Using this method for simulation of soft tissue deformation





"Ask, and it shall be given you!"

Matthew 7:7

## References

- Solving PDE problems with uncertainty using neural-networks
- The Deep Ritz Method
- A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time
- Universal Approximation Theorem
- Quotes about the time