QNN

1 Deep Neural Networks(DNN)

A DNN consists of (1) an input layer, (2) multiple hidden layers, and (3) an output layer.

A DNN with d layers is a non-linear multivariate function $\mathcal{N}: \mathbb{R}^n \to \mathbb{R}^s$.

- Input: $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} = \mathbf{x}^1$.
- Hidden layer: $\mathbf{x}^i = \phi(\mathbf{W}^i \mathbf{x}^{i-1} + \mathbf{b}^i)$.
 - Activation function: ϕ , e.g. ReLU $(x) = \max(x, 0)$.
 - Weight matrix: \mathbf{W}^i , $2 \le i \le d$.
 - Bias vector: \mathbf{b}^i , $2 \le i \le d$.
- Output: $\mathcal{N}(\mathbf{x}) = \mathbf{x}^d$.
- Notations:
 - $\quad n_1 = n, n_2, \dots, n_d = s$

2 Quantization

Symmetric uniform quantization is considered here.

Quantization Configuration. A quantization configuration \mathcal{C} is a tuple $\langle \tau, Q, F \rangle$, where Q and F are the total bit size and the fractional bit size allocated to a value, respectively, and $\tau \in \{+, \pm\}$ indicates if the quantized value is unsigned or signed.

Example. Given a real number $x \in \mathbb{R}$ and a quantization configuration $\mathcal{C} = \langle \tau, Q, F \rangle$, its quantized integer counterpart \hat{x} and the fixed-point counterpart \tilde{x} under the symmetric uniform quantization scheme are: $\hat{x} = \text{clamp}(\lfloor 2^F \cdot x \rceil, \mathcal{C}^{\text{ub}}, \mathcal{C}^{\text{lb}})$ and $\tilde{x} = \hat{x}/2^F$, where:

• C^{ub} , C^{lb}

$$\mathcal{C}^{ ext{lb}} = egin{cases} 0, & au = + \ -2^{Q-1}, & ext{otherwise} \end{cases}$$

$$\mathcal{C}^{\mathrm{ub}} = egin{cases} 2^Q - 1, & au = + \ 2^{Q-1} - 1, & ext{otherwise} \end{cases}$$

- $[\cdot]$ is the round-to-nearest integer operator
- The clamping function $\operatorname{clamp}(x,a,b)$ with a lower bound a and an upper bound b

$$\operatorname{clamp}(x,a,b) = \begin{cases} a, & \text{if } x < a; \\ x, & \text{if } a \le x \le b; \\ b, & \text{if } x > b. \end{cases}$$

Definition (Quantized Neural Network). Given quantization configurations for the weights, biases, output of the input layer and each hidden layer as $C_w = \langle \tau_w, Q_w, F_w \rangle$, $C_b = \langle \tau_b, Q_b, F_b \rangle$, $C_{in} = \langle \tau_{in}, Q_{in}, F_{in} \rangle$, $C_h = \langle \tau_h, Q_h, F_h \rangle$, the quantized version (i.e., QNN) of a DNN $\mathcal N$ with d layers is a function $\widehat{\mathcal N} : \mathbb Z^n \to \mathbb R^s$ such that $\widehat{\mathcal N} = \hat{l}_d \circ \hat{l}_{d-1} \circ \cdots \circ \hat{l}_1$. Then, given a quantized input $\hat{\mathbf x} \in \mathbb Z^n$, the output of the QNN $\hat{\mathbf y} = \mathcal N(\hat{\mathbf x})$ can be obtained by the following recursive

computation:

- Input layer $\hat{l}_1: \mathbb{Z}^n \to \mathbb{Z}^{n_1}$ is the identity function;
- Hidden layer $\hat{l}_i: \mathbb{Z}^{n_{i-1}} \to \mathbb{Z}^{n_i}$ for $2 \leq i \leq d-1$ is the function such that for each $j \in [n_i]$,

$$\hat{\mathbf{x}}_{j}^{i} = \operatorname{clamp}(\lfloor 2^{F_{i}} \widehat{\mathbf{W}}_{j,:}^{i} \cdot \hat{\mathbf{x}}^{i-1} + 2^{F_{h} - F_{b}} \hat{\mathbf{b}}_{j}^{i} \rceil, 0, \mathcal{C}_{h}^{\mathrm{ub}}),$$

where F_i is $F_h - F_w - F_{in}$ if i = 2, and $-F_w$ otherwise;

• Output layer $\hat{l}_d: \mathbb{Z}^{n_{d-1}} \to \mathbb{R}^s$ is the function such that

$$\hat{\mathbf{y}} = \hat{\mathbf{x}}^d = \hat{l}_d(\hat{\mathbf{x}}^{d-1}) = 2^{-F_w} \widehat{\mathbf{W}}^d \hat{\mathbf{x}}^{d-1} + 2^{F_h - F_b} \hat{\mathbf{b}}^d.$$

where for every $2 \leq i \leq d$ and $k \in [n_{i-1}]$, $\hat{\mathbf{W}}_{j,k}^i = \operatorname{clamp}(\lfloor 2^{F_w} \hat{\mathbf{W}}_{j,k}^i, \mathcal{C}_w^{\text{ub}}, \mathcal{C}_w^{\text{lb}})$ is the quantized weight and $\hat{\mathbf{b}}_j^i = \operatorname{clamp}(\lfloor 2^{F_b} \hat{\mathbf{b}}_j^i, \mathcal{C}_b^{\text{ub}}, \mathcal{C}_b^{\text{lb}})$ is the quantized bias.

Definition (Quantization Error Bound). Given a DNN $\mathcal{N}: \mathbb{R}^n \to \mathbb{R}^s$, the corresponding QNN $\widehat{\mathcal{N}}: \mathbb{Z}^n \to \mathbb{R}^s$, a quantized input $\hat{\mathbf{x}} \in \mathbb{Z}^n$, a radius $r \in \mathbb{N}$ and an error bound $\epsilon \in \mathbb{R}$. The QNN $\widehat{\mathcal{N}}$ has a quantization error bound of ϵ w.r.t. the input region $R(\hat{\mathbf{x}}, r) = {\hat{\mathbf{x}}' \in \mathbb{Z}^n \mid ||\hat{\mathbf{x}}' - \hat{\mathbf{x}}||_{\infty} \le r}$ if for every $\hat{\mathbf{x}}' \in R(\hat{\mathbf{x}}, r)$, we have $||2^{-F_h}\mathcal{N}(\hat{\mathbf{x}}') - \mathcal{N}(\mathbf{x}')||_{\infty} < \epsilon$, where $\mathbf{x}' = \hat{\mathbf{x}}'/(\mathcal{C}_{in}^{\text{lb}} - \mathcal{C}_{in}^{\text{lb}})$.