

Proceedings of A Workshop on

INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS

held at the

**Massachusetts Institute of Technology
Cambridge, MA 02139**

March 21-22, 1994

**Sponsored by
U.S. Army Research Office**

This document has been approved
for public release and sale; its
distribution is unlimited.

"The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation."

19950203 004

WORKSHOP ON INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS

Day 1 - Monday, March 21, 1994

- 7:45 Registration
8:30 Welcome and Introduction
 - A. Epstein, MIT & D. Mann, ARO

Advanced Control for Gas Turbines: Industry and Government Perspective

- 9:00 Army View of Rotor Craft Turbine Engine Controls - Present & Future Applications
 - V. Edwards, Aviation R&D Engineering Center
9:30 Army Ground-Based Gas Turbine Engines
 - R. McClelland, USA Tank-Automotive Center
10:00 Experience and Potential for Advanced Engine Controls
 - J. Kulberg, Pratt & Whitney, E. Hartford
10:30 Break
10:50 Advanced Engine Control
 - S. Carpenter, GE Aircraft Engines
11:20 NASA Research in Engine Control
 - W. Merrill, NASA Lewis Research Center
11:50-13:00 Lunch

Overview of Active Control in Gas Turbine Engines

- 13:00 The Promise of Active Control for Helicopter and Tank Engines
 - A. Sehra, Textron Lycoming
13:30 MIT Research in Active Compressor Stabilization
 - J. Paduano, MIT
14:00 GE Research in Active Control
 - A. Spang, GE Research Center
14:30 Break
14:50 Progress in Modeling & Control of Compressor Stall
 - C. Nett, UTRC
15:20 A Systems Study of the Impact of Active Compressor Stabilization
 - K. Tow, GE Aircraft Engines, Lynn
16:00 Tour of MIT Gas Turbine Laboratory, Active Control Facilities
18:30 Dinner

Day 2 - Tuesday, March 22, 1994

8:30 Panel Discussion on Intelligent Engine Control
 – Industry-Government-Academia

9:30 Change to Breakout Panels

9:45-12:00 Breakout Discussions

- a) Engine Systems & Applications
- b) Components
- c) Control Theory

12:00 Lunch

13:00 Reports from the Breakout Panels
 Open Discussion

14:30 Closing Remarks - ARO Interests in Intelligent Engines
 – D. Mann, ARO

15:00 Adjourn

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	Nov 94	Final 28 Feb 94 - 27 Aug 94	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Intelligent Turbine Engines for Army Applications		<i>DAAH04-94-G-0038</i>	
6. AUTHOR(S)			
Professor Alan H. Epstein			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211		<i>ARO 33005.1-EG-CF</i>	
11. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution unlimited.			
13. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the integration of active control into helicopter and ground vehicle gas turbines.			
14. SUBJECT TERMS		15. NUMBER OF PAGES	
Gas turbines, active control and control			
		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

"INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS" Workshop
March 21-22, 1994
Attendee List

Mr. Raymond A. Adomaitis
Assistant Research Scientist
University of Maryland
Institute for Systems Research
A.V. Williams (115)
College Park, MD 20742
TEL: (301) 405-2969
FAX: (301) 314-9920

Mr. Sean Borror
Gas Turbine laboratory, MIT
31-215
77 Massachusetts Ave.
Cambridge, MA 02139
TEL: (617) 253-7154
FAX: (617) 258-6093

Mr. Sheldon Carpenter
General Electric
1000 Western Avenue
Lynn, MA 01910
TEL: (617) 594-8985
FAX: (617) 594-4141

Professor John Deyst
Dept. of Aero/Astro, MIT
33-115
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-1644

Mr. Diego Diaz
Dept. of Aero/Astro, MIT
31-257
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-5607
FAX: (617) 258-6093

Mr. Vernon Edwards
Aviation Research & Development
Engineering Center
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798
TEL: (314) 263-1012
FAX: (314) 263-1640

Professor Alan H. Epstein
Gas Turbine Lab, MIT
31-266
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-2485
FAX: (617) 258-6093

Dr. Robert Fagen
Allison Gas Turbines
P.O. Box 420
Indianapolis, IN 46206-0420
TEL: (317) 230-5304
FAX: (317) 230-5600

Major Daniel B. Fant
Program Manager
AFOSR/NA
110 Duncan Avenue, Suite B115
Bolling AFB, DC 20332-0001
TEL: (202) 767-0471
FAX: (202) 767-4988

Professor Edward M. Greitzer
Gas Turbine laboratory, MIT
31-264
77 Massachusetts Ave.
Cambridge, MA 02139
TEL: (617) 253-2128
FAX: (617) 258-6093

Dr. Gerald Guenette
Gas Turbine laboratory, MIT
31-214
77 Massachusetts Ave.
Cambridge, MA 02139
TEL: (617) 253-3764
FAX: (617) 258-6093

Dr. Robert J. Hansen
Chief Scientist, applied Research Laboratory
The Pennsylvania State University
P.O. Box 30
State College, PA 16804
TEL: (814) 865-1419
FAX: (814) 865-1615

Mr. Don Hoying
Gas Turbine Lab, MIT
31-256
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-5608
FAX: (617) 258-6093

Mr. David Hughs
Aviation Week
32 Holstein Ave.
Londonderry, NH 03053
TEL: (603) 434-3861
FAX: (603) 432-4543

Mr. Satya Kodali
Applied Research Laboratory
The Pennsylvania State University
P.O. Box 30
State College, PA 16804
TEL: (814) 863-3051
FAX: (814) 865-3287

Mr. Joel Kulberg
Pratt & Whitney Aircraft
400 Main St.
E. Hartford, CT 06108
TEL: (203) 565-5247
FAX: (203) 564-4321

Dr. David M Mann
Associate Director, Engineering
& Environmental Sciences Division
US Army Research Office
PO Box 12211
Research Triangle Park, NC 27709-2211
TEL: (919) 549-4249
FAX: (919) 549-4310

Dr. Henry McDonald
Applied Research Laboratory
The Pennsylvania State University
P.O. Box 30
State College, PA 16804

Dr. Walt Merrill
NASA Lewis Research Center
21000 Brookpark Rd.
Cleveland, OH 44135
TEL: (216) 433-6328
FAX: (216) 433-8000

Professor Richard M. Murray
Caltech
Mail Code 104-44
Pasadena, CA 91125
TEL: (818) 395-6460
FAX: (818) 568-2719

Mr. SNB Murthy
Purdue University
1003 Chaffee Hall
West Lafayette, IN 47907-1003
TEL: (317) 494-1509
FAX: (317) 494-0530

Dr. Carl N. Nett
United Technologies Research Center
Silver Lane
E. Hartford, CT 06108
TEL: (203) 727-7000
FAX: (203) 727-7909

Dr. Karl Owen
Vehicle Propulsion Directorate
Army Research Laboratory
NASA Lewis Research Center
Cleveland, OH 44135-3127
TEL: (216) 433-5895
FAX: (216) 433-3270

Professor James D. Paduano
Dept. of Aero/Astro, MIT
33-103
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-6047
FAX: (617) 258-6093

Mr. Greg Pentek
Senior Project Engineer
MOOG Inc., Engine Controls Div.
East Aurora, NY 14052-0018
TEL: (716) 687-4295
FAX: (716) 687-4869

Mr. Stephen J. Przybylko
Wright Laboratory
WL/POTA Building 18
1950 Fifth St.
Wright Patterson AFB, OH 45433-7251
TEL: (513) 255-6690
FAX: (513) 255-1759

Dr. Arun K. Sehra
Manager, Compressor Aerodynamics
Textron Lycoming
Dept. LSD-10
550 Main St.
Stratford, CT 06497
TEL: (203) 385-3028
FAX: (203) 385-1781

Dr. H. Austin Spang, III
General Electric Corporation
Corporate Research & Development
P.O. Box 8, Bldg. KW, Rm. D220
Schenectady, NY 12301
TEL: (518) 387-6490
FAX: (518) 387-5164

Dr. Choon Tan
Gas Turbine Lab, MIT
31-267
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-7524
FAX: (617) 258-6093

Mr. Keven Tow
General Electric Aircraft Engines
1000 Western Ave.
Lynn, MA 01910
TEL: (617) 594-9423
FAX: (617) 594-6426

Mr. Michael Tryfonidis
Gas Turbine Lab, MIT
31-215
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-7154
FAX: (617) 258-6093

Dr. Lena Valavani
Volpe National Transportation Center
DTS-73
55 Broadway
Cambridge, MA 02142
TEL: (617) 494-2246
FAX: (617) 494-2318

Mr. Chris Van Schalkwyk
Gas Turbine Lab, MIT
31-254
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-1760
FAX: (617) 258-6093

Professor Vigor Yang
Pennsylvania State University
111 Research Bldg. East
Bigler Road
University Park, PA 16802-1400
TEL: (814) 863-1502
FAX: (814) 865-3389

Mr. Harald Weigl
Gas Turbine Lab, MIT
31-215
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-7154
FAX: (617) 258-6093

Professor J.E. Ffowcs Williams
University Engineering Department
Trumpington St.
Cambridge CB2 1PZ
ENGLAND
TEL: 011-44-223-332-629
FAX: 011-44-223-464-815

Accession For	
NTIS	CRA&I
DTIC	TAB
Unannounced	
Justification _____	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

SUMMARY VIEWGRAPHS OF BREAKOUT PANELS

**(Parenthetical remarks are
those of the Editor)**

Vehicle Systems & Components Panel

SYSTEMS

<u>Risk</u>	<u>Potential Reward</u>	
L	H	<ul style="list-style-type: none">• Identify active control benefit to small engines vs. large engines• Diagnostics – condition-based maintenance
M	H	<ul style="list-style-type: none">• New sensor / actuator systems• Reconfigurable smart engine (For battle damage component failure)
H	H	<ul style="list-style-type: none">• Simplicity (Of active control system)• Passive control (Same dynamic behavior without computer actuators)• Totally Silent engine
M	M	<ul style="list-style-type: none">• Active avoidance of distortion (Manipulate inflow to engine)• Active control of inlets
L	L	<ul style="list-style-type: none">• Integration – adaptive propulsion control (Integration of helicopter flight & propulsion controls)

L = Low, M = Medium, H = High

Vehicle Systems & Components Panel

COMPONENTS

<u>Risk</u>	<u>Potential Reward</u>	
H	H	<ul style="list-style-type: none">• Active blade control – shape, flutter, forced vibration damping• Active combustion control<ul style="list-style-type: none">– Emissions– Pattern factor– Life cycle cost• Tip clearance control (Now done open loop in large engines)• Active control of separation• High lift / max lift airfoil
L	M	<ul style="list-style-type: none">• Optimized turbine cooling / performance (Control of turbine cooling)
H	M	<ul style="list-style-type: none">• Katzmeier effect – unsteady blading (Unsteady lift would increase loading capability)

Vehicle Systems & Components Panel

PROCESS

Potential <u>Risk</u>	Reward	
L	H	<ul style="list-style-type: none">• System identification (Of fluid & structure dynamics)• Identify low hanging fruit beyond compressor stability<ul style="list-style-type: none">– Risk vs. reward• Strategy for technology insertion• Multidisciplinary w/ in-depth teams
M	H	<ul style="list-style-type: none">• Stall line prediction - accurate<ul style="list-style-type: none">– Passive– With active control
H	H	<ul style="list-style-type: none">• Active control of flutter
L	M	<ul style="list-style-type: none">• Active control as a demo tool
L	L	<ul style="list-style-type: none">• Active control of surge only<ul style="list-style-type: none">– Not including rotating stall
L	H	<ul style="list-style-type: none">• Inverse optimization technique<ul style="list-style-type: none">– Better modelling
Generic		<ul style="list-style-type: none">• Closed loop control of unsteady flow

Control Panel Summary

ENGINE CONTROL USING “CONVENTIONAL” ACTUATORS/SENSORS

- Nonlinear control (NL) techniques are needed – CONTEXT is very important
- To understand the “class” of NL systems, a standardized NL model structure for engines, similar to the flight dynamics standard
 - Must involve industry
 - Recognize noise and NL
 - Be flexible (for inclusion of new concepts)
 - Be built around experimental testbed
- Wish list – a testbed with complexity/dynamics between: a simple compressor rig and engine
- Airframe/engine integration in helicopters
 - Situation awareness/feedforward
 - Rotor aerodynamics in transient maneuvers
 - Performance seeking in new context
 - Vibration as well as fuel burn
 - Rotor speed as variable
 - Hardware/know-how is ripe

Control Panel Summary (Cont.)

- **Recognition**
 - Use of control theory relies on context
- **Recommendations depend on context of fruitful work to be done**
- **Unsteady fluid mechanics**
 - New system identification tools for fluid systems
 - Noise environment far worse
 - Techniques from fluid theory should be exploited
 - Length scale, time scale concepts
 - Ensemble averaging
 - Converting distributed fluids model to control form
 - Many structural dynamic, nonlinear dynamics techniques available
 - CFD to ODE } Create low order
 - PDE to ODE } aggregate models
 - Collaboration with experiments is vital

Control Panel Summary (Cont.)

- Other nonlinear control issues
 - Multivariable mode selection
 - Transient performance improvement through NL control
 - How to measure, insure safety during design
 - Engine companies should talk to academia about their problems
 - Disturbance rejection
 - Characterizing disturbances/uncertainty/noise
- Advanced concepts
 - Sponsoring organizations should explicitly fund control work which collaborates with experimental application

SPEAKERS' PRESENTATIONS

WORKSHOP
ON
INTELLIGENT TURBINE ENGINES

DAVID M. MANN
ARMY RESEARCH OFFICE

21-22 MARCH 1994
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

INTELLIGENT TURBINE ENGINES

MOTIVATION

Reduced Fuel Consumption

Example: Mechanized Infantry Division

58 M1 tanks, 21 Attack helicopters

Fuel use: 673,000 gal/day

Reduced Volume/Increased Power

Faster Deployment

Increased Range/Payload

Improved Reliability

Reconfigurable/Adaptable

INTELLIGENT TURBINE ENGINES

Application of Artificial Intelligence-based Advanced Control Strategies to
Gas Turbine Engines for Improved Economy and Reliability

AI ALGORITHMS

- Fuzzy Logic
- Genetic Algorithms
- Rule-based Control
- Model-based Control
- Hybrid Systems

ENGINE MODELS

- Turboshaft
- Simple (T-800)
- Recoupled (AGT-1500)

CONTROL METHODOLOGY

- Diagnostics/Prognostics
- Adaptive Reconfiguration
- Optimization

APPLICATIONS

- Tanks
- Rotorcraft
- Civilian Aircraft

WORKSHOP ON INTELLIGENT TURBINE ENGINES PRODUCTS

Assessment of current status

Identification of opportunities

Identification of enabling technologies

Identification of basic research requirements

A NEW RESEARCH PARADIGM

A University-Army-Industry Partnership for Research

ARO WILL FACILITATE THE PARTNERSHIP WITH SUPPORT AND COORDINATION

INTELLIGENT TURBINE ENGINE

WORKSHOP

FOR ARMY APPLICATIONS

VERNON R. EDWARDS
CHIEF, PROPULSION
TECHNOLOGY DIVISION
ATCOM

ARMY VIEW OF ROTORCRAFT TURBINE CONTROLS PRESENT AND FUTURE CONSIDERATIONS

- o CURRENT ARMY FLEET HAS DIVERSITY OF TECHNOLOGIES
 - UH-1/T53 FLY BALL GOVERNOR
 - MH-47E/T55 FULL AUTHORITY DIGITAL ELEC CONTROL
 - DIAGNOSTICS HUMAN DEPENDENT
 - HISTORY RECORDING AND VARIOUS DEGREES OF FAULT MONITORING
- o ARMY'S MOST MODERN SYSTEMS
 - UH-60/T700 & AH-64/T700 HYDROMECHANICAL SUPERVISORY DIGITAL ELECTRONIC CONTROL
 - OH-58/250C30R PNEUMATIC-MECHANICAL SUPERVISORY DIGITAL ELECTRONIC CONTROL
 - MH-47E/T55 FADEC

ARMY VIEW OF ROTORCRAFT TURBINE CONTROLS PRESENT AND FUTURE CONSIDERATIONS

o TYPICAL CURRENT TECHNOLOGY CAPABILITIES

- ISOCRONOUS POWER TURBINE GOVERNING
- TORQUE MATCHING IN MULTI-ENGINE APPLICATIONS
- TEMPERATURE LIMITING/START OVER TEMP ABORT
- OVERTSPEED PROTECTION
- RUDIMENTARY SURGE RECOGNITION/AVOIDANCE
- FLIGHT CONTROL ANTICIPATION (COLLECTIVE)
- AUTOMATIC START/RELIGHT CAPABILITY
- NOTCH FILTER FOR TORSIONAL STABILITY
- TORQUE RATE ATTENUATION (UNCOMPENSATED)

TYPICAL PROBLEMS & SHORTCOMINGS

- o ENGINE/DRIVE TRAIN/AIRFRAME INTERACTIONS
 - TORSIONAL MODE OSCILLATIONS
 - TRANSIENT ROTOR DROOP
 - TORQUE SPLITTING
 - TORQUE PREDICTABILITY
- o UNABLE TO AUTOMATICALLY MANAGE FAILURE MODES
- o NO ANTICIPATION FOR UNCOMPENSATED INPUTS
- o LIMITED ADAPTIVE CAPABILITIES (ENG/OPER CONDITIONS)
- o UNABLE TO SELF-DIAGNOSE ENGINE HEALTH
NO PROGNOSTICS
- o EXTENSIVE FLT TEST TO OPTIMIZE EACH INSTALLATION

PROBLEM DEFINITION UNPREDICTABLE Q

PROBLEM DEFINITION ROTOR DROOP.

AUTOROTATION RECOVERY

2 SECOND PULL

INTELLIGENT ENGINE & CONTROL OPPORTUNITIES

- o HI-FIDELITY TOTAL SYSTEM SIMULATION
- o RECONFIGURABLE CONTROL LOGIC
- o FAIL SMART, RAPID IDENT & AUTO SELECT BASED ON SYSTEM PARAMETERS
- o TRANSPARENT FAULT/FAILURE DETECTION/RECOVERY TO ALLOW CONTINUED MISSION CAPABILITY
- o ADAPTABILITY TO DEGRADED OPERATING CONDITIONS
- o OPTIMIZE ROTORCRAFT PERFORMANCE - SELF TUNING/PERFORMANCE SEEKING CONTROLS
- o SELF DIAGNOSIS FOR ALL ON-BOARD ENGINE SYSTEMS & INTERFACES
- o CONSIDER INTEGRATED FLIGHT & ENGINE CONTROLS

POWER LOSS SURVIVALITY

**HELO AT MAX GROSS WEIGHT
SEA LEVEL STANDARD DAY.
ONE OF TWO ENGINES FLAME
OUT AT HOVER**

ENGINE RELATED CONCEPTS MINIMUM FUEL CONSUMPTION

- OPERATE ROTOR AT OTHER THAN 100% SPEED
 - SEARCH OUT OPTIMUM SPEED

SUMMARY OF EXPECTED BENEFITS

- o ENHANCED FLIGHT SAFETY
- o ENHANCED ROTORCRAFT SYSTEM PERFORMANCE
- o REDUCED LIFE CYCLE COST
 - REDUCED ANNUAL O & S COSTS
 - IMPROVED ENGINE OPERATION
 - REDUCED ENGINE MISHAPS
- o REDUCED PILOT WORK LOAD
- o IMPROVED MAINTAINABILITY & DIAGNOSTIC CAPABILITY

Propulsion Systems Division

ARMY GROUND-BASED GAS TURBINE ENGINES

BY

SATYA KODALI

PROPULSION SYSTEMS DIVISION
U.S. ARMY, TACOM

TARDEC

ARMY/N.G. GROUND VEHICLE INVENTORY

<u>Vehicle</u>	Army	QTY	N.G.	Engine Model	Manufacturer	HP
<u>TRACKED VEHICLES</u>						
M60 Fam	1190		66	AVDS-1790	TCM	750
M728 CEV	728		89	AVDS-1790	TCM	750
M88 MRV	1560		697	AVDS-1790	TCM	750
M1	5841		2246	AGT-1500	Textron/Lycoming	1500
M2/3	5488		957	VTA-903T	Cummins	600
M113	27,416		10,071	6V-53T	Detroit Diesel	275
M9ACE	430		18	V - 903	Cummins	295
M551	1070		0	6V-53T	Detroit Diesel	300
M109	4000		0	8V-71T	Detroit Diesel	405
<u>WHEELED VEHICLES</u>						
HET	749			8V92TA	Detroit Diesel	430
HEMTT	9663		2632	8V92TA	Detroit Diesel	445
PLS	120			8V92TA	Detroit Diesel	500
M35A2	44058			LDT-465-1D	Hercules	140
FMTV	0			3116	CAT	225
M809	15850			NH 250	Cummins	250
M939	11414		2507	6CTA8.3	Cummins	240
M880	2655			318 (Gas)	Chrysler	140
HMMWV	79000			GM6.2	GM	150
CUCV	35653		20205	GM6.2	GM	150
M915 Fam	4099			NTC 400	Cummins	400
M915 A1A2	3252			Series 60	Detroit Diesel	400

GROUND VEHICLE GAS TURBINE ENGINES

- AGT 1500
- LV 100

AGT 1500 CONFIGURATION

AVCO LYCOMING DIVISION
STRATFORD, CONN.

Main Internal Components

Figure 6-0

AGT1500 AND LV100 FEATURES

	AGT1500	LV100
PRESSURE RATIO	14:1	12:1
AIR INDUCTION RATR(LB/SEC)	12.5	7.5
BSFC (LB/BRAKE HP HR)	0.5	0.4
IDLE FUEL ECONOMY(LB/HR)	33	74
TIT (0 F)	2180	2470

LV100 VERSUS AGT 1500 SFC CHARACTERISTICS

GEMINI
Transparency Mounts

KEUFFEL & ESSER

A KRATOS Company

GROUND VEHICLE ENGINE FEATURES

- AIR FILTRATION
- MODULAR DESIGN
- RECOVERY
- IDLE FUEL ECONOMY

REGENERATOR SCHEMATIC

TANK ENGINE REQUIREMENTS

- POWER DENSITY
- FUEL ECONOMY
- MULTI FUEL OPERATION
- SIGNATURES
- ENVIRONMENTAL TOLERANCE
- RUGGED DESIGN- SOLDIER PROOF

ENGINE PERFORMANCE REQUIREMENTS

- QUICK ACCELERATION
- MAX SPEED CAPABILITY
- SPEED ON GRADE CAPABILITY
- POWER AT HIGH ALTITUDE

AGT1500 AND LV100 ENGINES

	AGT1500	LV100
DEVELOPER	TEXTRON	GE/TEXTRON
POWER (HP)	1500	1500
VOLUME (CU.FT)	31	25
PROP SYS VOL(CU FT)	291	175
PROP SYS WT(LB)	15191	12696
BFD FUEL (GAL)	500	300
SPROCKET POWER(HP)	950	1050

TANK ENGINE ELECTRONIC CONTROLLERS

VEHICLE-ENGINE CONTROLLER

M1A1-AGT1 500

ECU

M1A2-AGT1 500

DECU

FUTURE-LV100

FADEC

XA-1246-78

FIGURE 6-4. ELECTRONIC CONTROL UNIT

CONCLUSIONS

- VOLUME 40% LESS
- WEIGHT 16% LESS
- BFD FUEL 40% LESS
- SPROCKET POWER 11% MORE
- USER FRIENDLY VEHICLE
- IMPROVEMENTS IN PROGNOSTIC AND DIAGNOSTICS
- IMPROVED RAM-D 70% HIGHER
- CONTROLS PLAY A SIGNIFICANT ROLE IN ALL THESE

ELECTRONIC CONTROL SYSTEMS FOR AIRCRAFT TURBINE ENGINES

- EXPERIENCE
- POTENTIAL

INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MARCH 21, 1994

Joel F. Kuhlberg

CHRONOLOGY

1980 - PW2037 ENGINE

1994 - PW4084 ENGINE

2000 - ADVANCED ENGINE

ADVANTAGES OF FULL AUTHORITY ELECTRONIC ENGINE CONTROL

- REDUCTION IN FUEL BURN
- IMPROVEMENT IN CONTROL OPERATIONAL RELIABILITY
- REDUCTION IN WEIGHT
- REDUCTION IN CONTROL MAINTENANCE COSTS
- SIMPLIFIED COCKPIT PROCEDURES

PW2037 CONTROL SYSTEM — FUNCTIONAL CONFIGURATION

ELECTRONIC ENGINE CONTROL FEATURES

- MAINTAIN FIXED ENGINE RATINGS AT UNIQUE THROTTLE POSITIONS
- PROVIDE CONSTANT IDLE SPEED CONTROL
- PROVIDE ACCELERATION AND DECELERATION CONTROL
- PROVIDE ENGINE STARTING CAPABILITY
- PROVIDE ENGINE OVERSPEED AND OVERPRESSURE LIMITING
- POSITION HIGH COMPRESSOR VARIABLE STATOR VANES

ELECTRONIC ENGINE CONTROL FEATURES (CONTINUED)

- CONTROL COMPRESSOR BLEED AIRFLOW
- PROVIDE ACTIVE CLEARANCE AIRFLOW CONTROL AND TURBINE COOLING AIR CONTROL
- MODULATE OIL COOLER AIRFLOW
- PROVIDE THRUST REVERSER CONTROL AND THROTTLE INTERLOCK
- PROVIDE ENGINE PERFORMANCE DATA TO COCKPIT DISPLAYS AND CONDITION MONITORING SYSTEMS

ELECTRONIC ENGINE CONTROL

ELECTRONIC CONTROL SYSTEM EXPERIENCE

1984 - 1994

13 AIRPLANE MODELS

15 MILLION HOURS

HIGHS

RELIABILITY

ROBUST SOFTWARE

LOWS

WIRING

VIBRATION

NUISANCE MESSAGES

PW4000 FADEC FUNCTIONAL COMPARISON

FUNCTION	CURRENT ENGINE	GROWTH ENGINE	COMMENTS
Wf Control	X	X	
Stator Vane Control	X	X	
LPC Bleed Control	X	X	
HPC Bleed Control	X	X	
Reverse Fn Limiting	X	X	
Overspeed Protection	X	X	
Engine Heat Management Control	X	X	
Turbine Case Cooling Control	X	X	
Nacelle Cooling Control	X	X	
IDG AOCV Override	X		
TRC System	X	X	
TVBCA System	X	X	
Modulated TCA System	X	X	P&W Requirement
ARINC Receiver #1	X	X	
ARINC Receiver #2		X	Airframer Requirement
ARINC Transmitter #1	X	X	
ARINC Transmitter #2		X	Airframer Requirement
High-Speed ARINC 429 Transmitter		X	Airframer Requirement
Reverser Control	A/C	X	Airframer Requirement
Probe Heat Control	A/C	X	Airframer Requirement
Fuel On/Off Control	A/C	X	Airframer Requirement
Ignition Control	A/C	X	Airframer Requirement
Full Autostart	SCU	X	Airframer Requirement
MINIMUX Features	SCU	X	Airframer Requirement
Power convert (115 VAC)	N/A	X	Airframer Requirement
Mass Wf Transmission	EBU	X	Airframer Requirement
Oil Quantity Transmission	EBU	X	Airframer Requirement
NAC Temperature Transmission	EBU	X	Airframer Requirement
Pon Transmission	EBU	X	Airframer Requirement
TIDG Oil Transmission	EBU	X	Airframer Requirement
IDG Heat Management Control	EBU	X	Airframer Requirement
VSCF Heat Management Control	N/A	X	Airframer Requirement
Low NOX Burner System Control	N/A	X	Airframer Requirement
Oil ΔP Transmission	EBU	X	Airframer Requirement
Fuel ΔP Transmission	EBU	X	Airframer Requirement
Ram Air Turbine Deploy Signal	A/C	X	Airframer Requirement
HP Customer Bleed Valve Override	ECS	X	Airframer Requirement
Holdup Power	SCU	X	Airframer Requirement
PMA Health Monitor	N/A	X	Airframer Requirement

CONTROL REQUIREMENTS GROWTH

Doubling per decade

TO DATE, THE CONTROL STRATEGY
HAS NOT CHANGED

- OPEN LOOP SCHEDULING
- CLOSED LOOP CONTROL

ADVANCED ENGINE CONTROLS

- GREATER ENGINE EFFICIENCY
- SIMPLIFIED EXTERNALS
- REDUCED WEIGHT
- LONGER SERVICE LIFE

ADVANCED ENGINE CONTROL POTENTIAL ACTIVE CONTROL ENGINE

<u>BENEFIT</u>	
TOTAL SYSTEM BLEED MANAGEMENT	FUEL BURN
AIRCRAFT/ENGINE DRAG OPTIMIZATION	FUEL BURN
NACELLE BOUNDARY LAYER CONTROL	FUEL BURN
CLOSED LOOP CLEARANCE CONTROL	FUEL BURN
CLOSED LOOP TURBINE COOLING CONTROL	FUEL BURN
ACTIVE COMPRESSOR STABILITY CONTROL	FUEL BURN

ADVANCED ENGINE CONTROL POTENTIAL

MORE ELECTRIC ENGINE

BENEFIT

INTEGRAL STARTER/GENERATOR

WEIGHT

DISTRIBUTED ELECTRONICS

WEIGHT

ELECTRICAL ACTUATION

WEIGHT

DEMAND CONTROL FUEL PUMP

WEIGHT

MAGNETIC BEARING

GE Aircraft Engines

Advanced Engine Control Issues

RS Carpenter
3/21/94

Overview of Topics

- Overall Technology Base
- Technology Trends in Controls Functionality
- Design Methods
- Unique Helicopter Issues
- Unique Land Vehicle Issues
- Conclusions

GEAE CONTROLS TECHNOLOGY BASE

GE Aircraft Engines

GEAE Controls Technology

- In last decade GEAE has made major commitment to introduce "State of the Art" controls on all new product engines
- GEAE Experience on all product lines directly relates to future new product control needs
- Emphasis on appropriate application of advanced control concepts, and I&RD/ demonstrator program spin offs to meet real world design requirements

GEAE COMMITTED TO BE LEADER
IN ENGINE CONTROL SYSTEM TECHNOLOGY

COMMERCIAL ENGINE TECHNOLOGY

FIGHTER ENGINE TECHNOLOGY

DUAL CHANNEL FADEC RED. MGMT
 $< 2/10^6$ IFSD
POWER MANAGEMENT
PERFORMANCE SEEKING CONTROL
AUTO STARTING

40 MILLION+ HOURS
FLIGHT EXPERIENCE
ON DIGITAL ENGINE
CONTROLS

NEW
ENGINE
APPLICATION

ENGINE DESIGN FOR RAPID SHIP
RESPONSE
MAX TORQUE RATE ATTENUATOR
GENERATION AND RESPONSE TO LOAD
DEMAND SIGNAL
CLOSED LOOP GAS GENERATOR TRANS.
CONTROL

TURBOSHAFT/TURBOPROP ENGINE TECHNOLOGY

GENERIC TECHNOLOGY

ADVANCED CONTROL LAW TECHNOLOGIES

	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
--	------	------	------	------	------	------	------	------	------	------	------	------

TECHNOLOGIES WHICH CAN IMPACT FUTURE SYSTEMS
BASED ON CUSTOMER REQUIREMENTS

GE Aircraft Engines

Intelligent Engine Control (IEC) Concept.

GLOSSARY OF TERMS

CONTRACTS

ARTERI ANALYTICAL REDUNDANCY TECHNOLOGY FOR ENGINE RELIABILITY IMPROVEMENT

ASTEC ADVANCED SIMULATION TECHNOLOGY FOR ENGINE CONTROL

DMICS DESIGN METHODS FOR INTEGRATED CONTROL SYSTEMS

FOCSI FIBER OPTIC CONTROL SYSTEM INTEGRATION

ICLE INTEGRATED CONTROL LAW EVALUATION

IEC INTELLIGENT ENGINE CONTROL

INTERFACE INTEGRATED, RELIABLE, FAULT TOLERANT CONTROL FOR LARGE ENGINES

PROLIFIC PROPULSION CRITICAL INTEGRATED CONTROL

PSC PERFORMANCE SEEKING CONTROL

SUBEC SURVIVABILITY BASED ENGINE CONTROL

OTHER TERMS

PMC POWER MANAGEMENT CONTROL

Control Technology Trends

Capability for "Intelligent" Control

Processor capability
Memory Affordability
Design Methodology

System & S/W process

16 Bit > 32 Bit > Fast 32 Bit floating point with CACHE
>16 X growth in digital control memory capacity
Great advances in multivariable design methods,
simulation capability, computer horsepower, and
smorgasboard of "intelligent" concepts
Integrated control law design/analysis with pictures to code
system allows affordable usage of complex control laws

**Great advances in ability to develop/incorporate
intelligent engine control features**

EVOLUTION OF INTELLIGENCE

- NATURAL EVOLUTION OF CONTROL FUNCTIONALITY TO RELY ON INTELLIGENT CONTROL TECHNIQUES TO HELP MEET EVER TIGHTER PERFORMANCE REQUIREMENTS

GOVERNOR LOOP DESIGN

BENEFITS

COMMENT

<div style="border: 1px solid black; padding: 5px; margin-bottom: 10px;"> HIGH PERFORMANCE DIGITAL MIMO W/GAIN SCHEDULING </div> <div style="border: 1px solid black; padding: 5px; margin-bottom: 10px;"> SOPHISTICATED GAIN SCHEDULING </div> <div style="border: 1px solid black; padding: 5px; margin-bottom: 10px;"> DIGITAL ELECTRONIC ISOCHRONOUS </div> <div style="border: 1px solid black; padding: 5px; margin-bottom: 10px;"> ANALOG ELECTRONIC ISOCHRONOUS </div> <div style="border: 1px solid black; padding: 5px; margin-bottom: 10px;"> HYDROMECHANICAL DROOP (PROPORTIONAL) </div>	<p>CONSISTENT HIGH PERFORMANCE OVER OPERATING REGIME, SS SFC</p> <p>CONSISTENT HIGH PERFORMANCE OVER OPERATING REGIME</p> <p>IMPROVED ACCURACY / PERFORMANCE</p> <p>IMPROVED ACCURACY / PERFORMANCE</p> <p>NO EMI OR ELECTRICAL POWER LOSS ISSUES</p>	<p>CURRENT APPROACH ON DEV/DEMO PROGRAMS</p> <p>CURRENT APPROACH WHEN MIMO N/A</p> <p>ADDED FLEXIBILITY FOR GAIN / DYNAMICS TAILORING</p>
<p>INTL INE NCE</p>		<p>TIME</p>

CONTROL SCHEDULING

BENEFITS	COMMENT
OPTIMIZED SYSTEM SFC, FN, NOISE, EMISSIONS	PART OF IFFC STUDY
HIGHER PERFORMANCE, W/MARGIN, W/O FUTRA SENSORS	ON GE CERTIFIED ENGINES
EXHAUST ENGINE FERF WHILE HOLDING STALL/SFC, MARGIN SENSOR SET	CONTROL CYCLE PARAM BEYOND JUST SENSOR SET
SET REQUIRED POWER FOR MISSION PHASES AUTOMATICALLY	GE COMMERCIAL PRODUCTION
IMPROVED FLEXIBILITY TO TAILOR SCHEDULING	ALLOWED SCHEDULING TO NON-CONSTANT LIMITS
MULTI-VARIATE	TIME
SIMPLE MONO-VARIATE	

INTERNAL ENGINE

TRANSIENT CONTROL STRATEGY

BENEFITS	COMMENT
<p>OPTIMIZED TRANS VG/AIRFLOW CONTROL</p>	<p>MORE RAPID POWER RESPONSE / DISTURBANCE REJECTION</p> <p>SHARPER FF REDUCES "UNCOMPENSATED" MANEUVERS</p>
<p>BASIC CORE NDOT CONTROL</p>	<p>IN PRODUCTION.</p> <p>OPTIMIZED PERFORMANCE, COMBINED WITH ALL BELOW FOR MIXED MODE TRANS CONTROL</p>
<p>SIMPLE COLLECTIVE BASED FEEDFORWARD FOR TURBOSHAFT</p>	<p>THAT FULLY EXPLOITS ENGINE CYCLE CAPABILITY</p>
<p>WF/PST CONTROL</p>	<p>EFFECTIVE LOAD ANTICIPATION FOR MOST COLLECTIVE TYPE MANEUVERS</p>
	<p>GOOD BASIC STALL/BLOWOUT PROTECTION AND TRANSIENT HANDLING</p> <p>TIME</p>

ENGINE OPERABILITY CONTROL

BENEFITS
STALL LINE, SFC,
DISTORTION
TOLERANCE

COMMENT
IN
RESEARCH
PHASE

ACTIVE
COMPRESSOR
STABILIZATION

ENHANCED
STALL
RECOVERY

INTELLIGENT
INLET BUZZ
PREVENTION

FASTER
SUPersonic
DEVELS

HIGH-BANDWIDTH
PRESSURE RATIO
CONTROL

IGHT OF-LINE
CONTROL FOR
REDUCED STALL
MARGIN LOSS

UNIQUE TRANSIENT
VS SCHEDULING

BLEND OF
INDEPENDENT
BLEED ON
AXI-CENTRIF
MACHINES
NOZZLE

BLEND OF
WF/PST, NDOT
TRAJECTORY
AS APPROPRIATE

WF/PST ACCEL/
DECCEL AND SIMPLE
VS SCHEDULING

BASIC OPERABILITY,
STALL RECOVERY,
BLW OUT PROTECTION

TE LL TG EN CE

TI ME

STARTING

BENEFITS	COMMENT
ADAPTIVE START FLOW SCHEDULING	HANDLES BROAD RANGE OF FUEL TYPES, NATURAL GAS FOR M&I
FULLY AUTOMATIC STARTING	FULLY HANDS OFF, EYES OUT OF COCKPIT
HUNG START PREVENTION	SUCCESSFUL START FOR WEAK STARTER, LEAN FUEL SCHEDULE
NOOT STARTING AND VARIABLE MIN FLOW	COOL, CONSISTENT, RELIABLE STARTS OVER ENHANCED START ENVELOPE
HOT START PREVENTION	HOT PARTS PROTECTION
AUTO RESTART / RELIGHT	RAPID RECOVERY FROM FLAMEOUT
FIXED MIN FLOW PLUS WF/PSS SCHEDULE	GOOD BASIC AUTOMATIC START FUEL SCHEDULING

I N T E L L I G E N C E

T I M E

FAULT DETECTION AND RESPONSE

<u>BENEFITS</u>	<u>COMMENT</u>
FUZZY LOGIC INPUT SIGNAL SELECTION	INTELLIGENT IN-RANGE FAULT ACCOMMODATION PHASING IN DEVELOPMENT PROGRAMS
ANALYTIC REDUNDANCY	ADDED FAIL-OFF CAPABILITY IF ALL SOURCES OF A SIGNAL FAILED ADDED FAIL-OFF CAPABILITY
PHYSICAL REDUNDANCY	CURRENT FADECs USE ALL BELOW
SOPHISTICATED SYSTEM LEVEL ERROR CHECKING	INCREASED FAULT COVERAGE OUTPUT WRAPS, SERVO TRACKING, CYCLE RELATIONSHIPS
BASIC BIT: CPU TESTS, RANGE TESTS	GOOD COVERAGE OF "COMPUTER" PART OF CONTROL, AND INPUTS
SIMPLE FAILSAFE RESPONSE	MAINTAINS ENGINE IN A SAFE CONDITION PRIMARILY FOR HYDRO AND ANALOG CONTROLS

I N T E L L I G E N C E

T I M E

Maintainability/Fault Diagnostics

BENEFITS

COMMENT

I N T E L L I G E N C E

<p>SOPHISTICATED ON-BOARD FAULT ISOLATION</p>	<p>ISOLATES TO FAULTY COMPONENT (WRA) OR SRA</p>	<p>PROCESSES RAW BIT INFO, INITs ADDED TESTS AND APPLIES "KNOWLEDGE" BASED TYPE REASONING</p>	<p>RECORDS WHAT WAS HAPPENING IN VICINITY OF FAULT EVENTS</p>	<p>INTEGRATION W/ COCKPIT DISPLAY, GROUND BASED DIAG SYSTEM</p>	<p>COMMUNICATE RESULTS OF BIT FOR TROUBLESHOOTING</p>	<p>MEASURE CONTROL PARAMS W/O DISASSEMBLY</p>	<p>ANALOG AND DIGITAL CONTROLS</p>
	<p>MORE EXTENSIVE RECORD/REPORT OF FAULT EVENTS</p>		<p>DIGITAL COMMUNICATION OF FAULT INFO</p>	<p>EXTERNAL VISUAL FAULT INDICATION</p>		<p>DIAGNOSTIC TEST CONNECTOR</p>	TIME

SURVIVABILITY

I N T E L L I G E N C E

COMMENT

BENEFITS

MAINTAIN SAFE
ENGINE THRUST
FOR ENGINE
DAMAGE
DETECTION %/
ADAPTIVE /
MODEL BASED
CONTROL

SURVIVABILITY
PHASED ENGINE
CONTROL

CONTROL FAULT
TOLERANCE (AND)
REDUNDANCY

MINIMIZE /
CONTROL
DAMAGE
CAUSED
LEAKS

REDUCED
FIRE HAZARD

FUEL SYSTEM
DESIGN

REDUCED
COMPONENT
VULNERABILITY

T I M E

EMISSIONS

BENEFITS

COMMENT

GE HEAVILY COMMITTED TO TECHNOLOGIES
TO MEET EVER MORE STRINGENT EMISSIONS
REQUIREMENTS, CONTROL TECHNOLOGY IS KEY

MULTI-ANNULAR
COMBUSTOR, ACTIVE
FLAME TEMP. CONTROL

CONTROLLED NO_x
AND CO W/O STEAM
TO M&I &
AIRCRAFT

STEAM INJECTION

REDUCED NITROUS
OXIDE EMISSIONS
TO M&I ONLY

APPLICABLE
TO M&I &
AIRCRAFT

AFTERBURNER
VAPOR PUFF
PREVENTION

REDUCED INCIDENCE
OF VISIBLE VAPOR
PUFF DURING A/B
START/SHUTDOWN

FUEL
RECYCLE
UNIT

ADDRESSES LIQUID
FUEL DISCHARGE
DURING SHUTDOWN

SMOKELESS
COMBUSTOR

BURNS CLEAN W/O
VISIBLE SMOKE
(CONTROL
ENGINEERS DREAM)
NO
SPECIAL
CONTROL
STRATEGIES!

I N T E L L I G E N C E

TIME

MODEL BASED CONTROL

- CRITICAL PART OF TODAY'S DESIGNS... SOME EXAMPLES:

- MODELS USED TO ACHIEVE SENSOR TIME CONSTANT CORRECTION, AFTERBURNER FUEL SCHEDULING, AND LOW EMISSIONS BY CONTROLLING PREDICTED FLAME TEMPERATURE
- INPUT SENSOR AND SERVO LOOP FAILURE DETECTION, SENSOR VOTING, AND SENSOR SUBSTITUTION IMPLIES T41 AND STALL MARGIN BUILT INTO SMART REFERENCE SCHEDULES
- SIMPLE MAP MODELS OR MORE COMPLEX COMPONENT LEVEL EMBEDDED MODELS USED DEPENDING ON ACCURACY REQUIREMENTS

- INCREASING ROLE IN THE FUTURE:

- INCREASED EMPHASIS ON DESIGN FOR SURVIVABILITY (DETECTION AND RECONFIGURATION FOR BATTLE DAMAGE)
- INTEGRAL PART OF PERFORMANCE SEEKING CONTROL
- DIRECT CONTROL TO MODEL BASED PARAMETERS
- GREATER USE OF ANALYTIC REDUNDANCY
- TREND MONITORING AND DIAGNOSTICS
- INCREASED VEHICLE SYSTEM INTEGRATION/OPTIMIZATION

CONCLUSIONS ON EVOLUTION

- SUBSTANTIAL EVOLUTION IN CONTROL STRATEGIES HAS BEEN OCCURRING, WITH ASPECTS OF INTELLIGENT CONTROL PHASING INTO PRODUCT AND NEAR TERM DEVELOPMENT PROGRAMS
- GENERALLY DRIVEN BY SPECIFIC PROGRAM NEEDS AS CUSTOMERS CONTINUE TO ASK FOR MORE FROM THEIR ENGINES

REGARDING TOOLS

- COMPREHENSIVE TOOLSETS FOR DESIGN, ANALYSIS,
AND SIMULATION HELP MAKE INTELLIGENT CONTROL MANAGEABLE

GE DRAWS ON A VARIETY OF ADVANCED SIMULATION METHODS
FOR INTEGRATED TOTAL CONTROL/ENGINE SYSTEM DEVELOPMENT

BENEFITS	COMMENT
FULL CONTROL SYSTEM H/W IN THE LOOP FACILITY	COMPREHENSIVE CONTROL SYSTEM TEST PRIOR TO ENGINE
HIGH FREQUENCY MODELLING: FUEL SYSTEM, ENGINE	NON-LINEAR, COMPRESSIBLE EFFECTS
AUTO-GENERATED COMPLETE CONTROL MODEL	TEST PRIOR TO ENGINE
CLOSED LOOP FADEC TEST WITH REAL TIME MODEL	RAPID AVAILABILITY OF ERROR FREE COMPLETE CONTROL MODEL
INTEGRATED ENGINE/VEHICLE SYSTEM MODEL	VERIFICATION OF CONTROL LAW IMPLEMENTATION
COMPONENT LEVEL ENGINE MODEL	VEHICLE/ENGINE INTERACTIONS, AND PREDICTION OF HANDLING QUALITIES
PIECE-WISE LINEAR ENGINE MODEL	VITAL FOR HELICOPTER, TILTROTOR, VSTOL, AND LAND VEHICLES
	MOST ACCURATE FOR OPTIMIZATION/ PREDICTIONS
	TYPICALLY CYCLE WORK-STATION SYS

GE'S BEACON SYSTEM:
PROVIDES INTEGRATED CONTROL LAW DESIGN, IMPLEMENTATION, AND TEST,
WITH DRAMATIC TOTAL PROCESS COST AND CYCLE TIME REDUCTION,
QUALITY ENHANCEMENT, AND SIGNIFICANT REDUCTION IN MANUAL STEPS

SIMPLIFIED PROCESS DIAGRAM

OLD PROCESS

BEACON BASED PROCESS

* = AUTOMATED COMPUTER UTILITIES AND BEACON OUTPUT USED TO ACCOMPLISH THIS TASK

NOTE: FOR CLARITY, DESIGN ITERATION IS NOT SHOWN, NOR ARE ALL DETAILED PROCESS STEPS

LINEAR ISSUES:

NEED TOOLS THAT ALLOW CONSTRAINED STRUCTURE CONTROL LAW SYNTHESIS.

Currently, most multivariable designs are done using Model Matching (KQ) because company developed software allow controller structure constraints to be entered before optimization. Other toolboxes such as H Infinity do not provide this capability.

Linear analysis tools such as Structured Singular Values are well developed and meet our needs better than the linear design tools.

NONLINEAR ISSUES:

NEED A MORE ANALYTICAL APPROACH TO NONLINEAR DESIGN

Currently depend solely on transient simulations to evaluate nonlinear stability.

Multivariable/Multimode Selection Logic (Limit Protection, Stability).

How to guarantee that approaching a linear governor from a new direction will not cause limit cycling due to nonlinearities such as gain kickers.

Unique Helicopter Issues

- **Background**

- Extensive GE Experience on Helicopter applications through T58/T64/T700 product line
- Numerous military/commercial applications, including single/dual/triple engines

- **Unique Issues**

- Helicopter applications inherently a challenging load disturbance rejection problem
- Increasingly aggressive maneuvers, low rotor inertia, low transmission torque limit, and eyes out of cockpit flying result in increased performance demands on engine/ control and drive control law complexity
- Multiple engines coupled through rotor system drivetrain drives need for load share function & good OEI strategies
- New VSTOL designs require mode transition
- Difficult to specify aircraft handling qualities drivers on engine system performance

- **Past Approach**

- Highly refined supervisory electrical control architecture **cost effectively meets today's performance demands**
- NP and load share loops spectrally separated
- Collective based load anticipation signal
- Np governor adapts gains based on rotor coupled/decoupled, and Np error/rate conditions
- Torque trajectory shaping employed to control rate of torque rise at power

- **Relevant Technologies For Future Application**

- FADIEC for stringent performance requirements, cockpit integration, and fail operational capability
- Higher bandwidth Np governing (with combustive damping) for load rejection in light of continued trend of aggressive maneuvers and low rotor inertias
- True Np/Q mimo design with optimized gain scheduling for tight loadshare and torque trajectory performance
- Intelligent load factor allowing compensation for pedal and cyclic inputs
- Multi-mode transient control for fastest/consistent accels
- VG overclosure during autorotation to enhance axi-centrif machine power vs. ng characteristic
- Integrated vehicle management allowing interchange of limits and other info for optimal vehicle system control
- Integrated vehicle/engine PSC for optimizing total system (E.G. tailor Nr for best cruise fuel burn, noise, maneuver load capability, etc.)

GE will continue to draw on Experience across product lines and appropriate advanced technologies to provide cost effective helicopter controls that meet operational needs

Unique Land Vehicle Issues

- **Background**
 - LV100 Demonstrator program ongoing since early 80's sponsored by US ARMY Tank-Automotive Command
 - Technology Demonstration of Electric Actuation/Fuel pump and multivariable control
- **Unique Issues**
 - Minimizing idle fuel flow and attaining great SFC are key
 - Engine cycle utilizes recuperator to help achieve above
 - Variable area turbine nozzle (VATN) allows greatest realization of recuperator benefits
 - Multivariable control of core speed and turbine discharge temperature allow near minimum SFC over power range
 - Normal control operation is analogous to turboprop control, throttle controls engine power, "load" controls power turbine speed

RECUPERATED ENGINE CYCLE AND BENEFITS

Comparison of Engine Cycles; Benefit of Recuperator and VATN. The sfc of a recuperated turboshaft is significantly lower than that of a standard turboshaft.

Hydro-Kinetic Transmission

Transmission Shifts Gears

Electric Drive Train

Horsepower

N_p

- **Unique issues (cont'd)**

- Low cost another key requirement, drives reduced sensor set
- Adaptive starting and decel control for range of fuel types and recuperator heat soak conditions
- Multi-mode transient control with varying recuperator heat input back into cycle
- Load loss/management impact on overspeed potential with recuperator
- Engine dynamics with recuperator
- Transient VATN control (opening VATN quickly accels gas generator, but can cause power dip)
- Control of auxiliary functions (e.g. blowers)
- Reflected vehicle inertias impact on Np governor design

- **Potential Future Relevant Technologies**

- PSC for optimal engine performance over life with reduced sensor set

Conclusions

- Advances in methodology and computer horsepower have placed plethora of intelligent control possibilities at disposal of control system developers
- Digital control processor power can be available as needed, but costs \$\$'s and weight... advanced features generally need to buy their way onto engine through life cycle cost savings or addressing stringent performance requirements
- Increased dependency on model based approaches for enhanced performance, better SFC, reduced emissions, and enhanced fault tolerance
- Fuzzy logic concepts providing benefits in area of soft fault tolerance
- Performance seeking control holds promise for turbofan/turboprop SFC/thrust benefits, and helicopter cruise fuel burn/noise reduction
- Integrated system design and control/engine/vehicle simulation tools help make complexity manageable
- Additional work needed on multivariable design techniques to better address real world constraints

“Intelligent” Control Concepts will continue to play a vital role in meeting ever more demanding performance requirements

THE PROMISE OF ACTIVE CONTROL FOR HELICOPTER AND TANK ENGINES

ARUN K. SEHRA
MANAGER, COMPRESSOR AERODYNAMICS
TEXTRON LYCOMING, STRATFORD, CT 06468

WORKSHOP ON INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATION
MARCH 21-22, 1994
M.I.T., CAMBRIDGE, MASS

AGENDA

- COMPRESSOR/ENGINE OPERABILITY
- OPERABILITY ENHANCEMENT
- ACTIVE STABILIZATION - PAYOFFS & APPLICATION
 - HELICOPTER ENGINE APPLICATION
 - TANK ENGINE APPLICATION
- ISSUES & CONCERNs
- CONCLUDING MESSAGE

COMPRESSOR OPERATING ENVELOPE

STABILITY AUDIT

COMPRESSOR PRESSURE RATIO

COMPRESSOR REFERRED FLOW

SURGE MARGIN ENHANCEMENTS

SM ENHANCEMENT DEVICE	ENGINE	IMPACT
ADD MORE STAGE(S)		INC. SIZE, WT., & COMPLEXITY, REDUCED RELIABILITY
INCREASED SPEED		INC. WT., REDUCED EFF.
VARIABLE GEOMETRY *	AGT1500 & T53	INC. WT. & COMPLEXITY, REDUCED EFF.
BLEEDS *	ALL ENGINES	INC. WT. & COMPLEXITY, REDUCED EFF. & POWER
CASING TREATMENT *		REDUCED EFF.
DUAL SPOOLING *	AGT1500	INC. WT., SIZE, & COMPLEXITY
OTHER DEVICES	LTS101	

* Primarily for part speed surge margin

ACTIVE STABILIZATION

PAYOFFS

- IMPROVED OPERABILITY RANGE

- IMPROVED SPECIFIC FUEL CONSUMPTION
- HIGHER CYCLE PRESSURE RATIO
- HIGHER EFFICIENCY

ACTIVE STABILIZATION

APPLICATION TO HELICOPTER & VEHICULAR ENGINES

Results of an In-house study corresponding to a 10% reduction of surge margin requirement for the following Lycoming engines

- T55
- COMMON CORE (T55 DERIVATIVE)
- LTS101
- AGT1500

ACTIVE SURGE CONTROL PAYOFFS

T55

DESIGN PT. SFC REDUCTION: 4.0%

IDLE FUEL CONSUMPTION REDUCTION: 5.6%

OPERABILITY FROM 25 K TO 39 K FEET ALTITUDE

STEADY STATE INLET PRESSURE DISTORTION
CAPABILITY DI FROM 0.03 TO 0.23

$$\text{where } DI = \frac{PT_{MEAN} - PT_{LOW\ MEAN}}{PT_{MEAN}} \times KP$$

$$KP = \sqrt[MER]{\text{Factor to account for shape, extent, \& radial content}}$$

T55 COMPRESSOR MAP

ACTIVE STABILIZATION OF T55 ENGINE

TEST RIG

ACTIVE STABILIZATION OF T55 ENGINE

OBJECTIVE: DEVELOP AN A.S. SYSTEM FOR LOW/HIGH SPEED APPLICATION ON AN ENGINE USING AXIAL-CENT. COMPRESSOR

PROGRAM STATUS:

- RIG TESTING WITH DYNAMIC INSTRUMENTATION
COMPLETED (AVPD/NASA T55 STRAT-UP STALL
PROGRAM)
- DYNAMIC MODELING UNDERWAY AT MIT
- PROPOSALS SENT TO NAVY/NASA FOR A.S. SYSTEM
DEVELOPMENT

COMMON CORE COMPRESSOR

ACTIVE SURGE CONTROL PAYOFFS

COMMON CORE

DESIGN POINT SFC REDUCTION: 3.3%

MAX. CRUISE SFC REDUCTION: 2.4%

IDLE FUEL CONSUMPTION = -6.6%

OPERABILITY: FROM 30 K TO 50 K FEET ALTITUDE

ACTIVE STABILIZATION OF LTS101 ENGINE

(JOINTLY SPONSORED BY NAVY)

OBJECTIVE: DEVELOP AN A.S. SYSTEM FOR HIGH SPEED OPERATION ON AN ENGINE HAVING A HIGH PRESSURE RATIO CENTRIFUGAL STAGE

PROGRAM STATUS:

- MODIFIED AN LTS101 ENGINE FOR ACTIVE STABILIZATION APPLICATION
- DYNAMIC MODELING COMPLETED
- FORCED RESPONSE TESTING USING INBLED AT ROTOR INLET COMPLETED
- FORCED RESPONSE TESTING USING THROAT INBLED UNDERWAY

LTS101 COMPRESSOR

4.0 % SAVING IN IDLE FUEL CONSUMPTION
3.7 % INCREASE IN SPECIFIC POWER

ACTIVE STABILIZATION OF LTS101 ENGINE

TEST RIG

AGT 1500 HIGH PRESSURE COMPRESSOR

2.6 % SAVING IN IDLE FUEL CONSUMPTION
($P_{OTENTIAL} \approx \tau_0 / 10\%$)

INLET REFERRED FLOW

ACTIVE STABILIZATION ISSUES AND CONCERN

SEVERAL UNKNOWNNS ABOUT ACTIVE STABILIZATION
SYSTEM:

- EFFECTIVENESS IN ENGINE ENVIRONMENT
- RELIABILITY
- ACTUATOR DEVELOPMENT SCHEDULE
- DEVELOPMENT COST AND SCHEDULE
- PRODUCTION COST
- WEIGHT

CONCLUDING MESSAGE

AN EARLY CONCEPT DEMO ON AN ENGINE IS VERY
IMPORTANT PRIOR TO A MAJOR INVESTMENT BY
ENGINE COMPANIES

AND

BASIC RESEARCH MUST CONTINUE

MIT RESEARCH IN ACTIVE COMPRESSOR STABILIZATION

**Presented to the Workshop on
Intelligent Turbine Engines for Army Applications
March 21-22, 1994**

A. H. Epstein E. M. Greitzer G. R. Guennette J. D. Paduano C. S. Tan

OUTLINE

- **Background**
 - Goal of Active Control
 - Surge and Rotating Stall in Compressors
- **Surge Control**
 - Results - High-Speed Centrifugal Turbocharger
 - Current Research - Centrifugal Gas Turbine Surge Control
- **Rotating Stall Control**
 - Results in Low Speed Axial Compressors
 - Modeling and Detection in High Speed Compressors
 - Current Research in Control of R/S in High Speed Compressors

GOAL OF ACTIVE STABILIZATION

- Safe Operation at Higher Performance Levels -

- System study projects 8% reduction in GTOW or 11% longer range

NATURAL OSCILLATORY MODES OF COMPRESSORS

Lowest Order

Surge

Rotating Stall

Higher Order

SURGE AND ROTATING STALL IN GAS TURBINES

- Rotating Stall Generally Precedes Surge
 - Often eventually leads to surge
- Depending on Machine, May Choose to Control Surge and Not R/S
 - Centrifugals, axicentrifugals: surge control alone may pay off rugged compressors
'progressive', recoverable rotating stall
surge is first debilitating instability
 - Axial, multistage compressors - R/S control required
rotating stall is abrupt, debilitating
control surge alone \Rightarrow deep, nonrecoverable stall

COMPARISON OF RECOVERABLE AND DEEP ROTATING STALL

— Compressor test, *no surge*
- - - Unstable axisymmetric map, *no rotating stall*
..... Rotating stall

Centrifugal Compressors,
Fans, and Blowers

Axial Compressors

EARLY SURGE CONTROL RESULTS

- Rig Demonstration (Pinsely et al., 1988)
 - High speed (90,000 Rpm) centrifugal supercharger
 - 100 Hz valve actuating downstream or plenum bleed
 - Demonstrated 20-25% operating range extension
- Dynamic Control Through Tailored Structures (Gysling, 1991)
 - Movable plenum wall w/ tailored structural dynamics
 - Tuned to act as passive damper for surge oscillations
 - Demonstrated 25% operating range extension
- Detailed Sensor/Actuator Placement Studies (Simon, 1991)
 - Sensor and actuator type, placement are pivotal
 - Close-coupled actuation is a key to success
 - Highly multidisciplinary endeavor

STUDYING ALTERNATE IMPLEMENTATION STRATEGIES

Integrates control theory, engine design, fluid mechanics, experimentation, aeroelastics

CURRENT EFFORTS - ACTIVE SURGE STABILIZATION IN SMALL GAS TURBINES

- Two 650 HP engines on test stands
 - Textron LTS-101 gas producer (turbojet w/ variable area nozzle)
 - Allison 250-C30 turboshaft (power turbine and water break)
- Surge Model Extended to Include:
 - Combustor energy dynamics
 - Compressor/turbine shaft dynamics
 - Compressibility
 - Candidate actuation strategies
- Sensor/Actuator Effectiveness Study Complete
 - Diffuser throat injection very promising
 - Fuel modulation least effective
- LTS-101 Modified for Diffuser Throat Injection

LTS-101 INSTRUMENTATION LAYOUT

LTS-101 INSTRUMENTATION LAYOUT

GAS TURBINE PRESENTS NEW CHALLENGES TO ACTIVE CONTROL DESIGN/MODELLING

Turbocharger System

- $\pi_C \sim 2, M_T \sim 0.8$
- Simple compact geometry
- "Shallow" characteristics
- Low Helmholtz frequency

G.T. Helicopter Engine

- $\pi_C \sim 8, M_T > 1.0$
- Complex geometry
- "Steep" characteristics
- High Helmholtz frequency
- Combustion
- Shaft dynamics
- Very noisy

ROTATING STALL

A Distributed Fluid-Mechanical Instability

Small amplitude circumferential traveling waves:

Large amplitude nonlinear 'rotating stall' cell:

- Rotating Stall Causes Damage, Leads to Surge
- Engine Performance Compromised to Avoid Stall/Surge

ROTATING STALL STABILIZATION

"Distributed" Sensors and Actuators

- stator vanes (IGVs) individually servo-controlled
- wave stabilization increases compressor operating range

ROTATING STALL CONTROL DEMONSTRATIONS

- Low Speed Compressors -

- Single-Stage Axial
 - Original demonstration
 - Modeling, identification, and control concepts & techniques developed
- Three-Stage Axial
 - Verification of 1-stage results on Pratt-designed rig
 - Detailed identification, refinement of fluids models
 - Testbed for advanced modeling and control
- Dynamic Control Using Aeromechanical Feedback
 - Tailored structures coupled to fluid mechanics
 - Proof of passive control concept
 - Close-coupled actuation concept tested

SINGLE-STAGE DEMONSTRATION 18% Operating Range Increase with Active Control

-Control Circumferential Harmonics Independently

Moore-Greitzer dynamics borne out

-Additional Range For Each Add'l Harmonic

ACTIVELY STABILIZED THREE-STAGE COMPRESSOR

Design Characteristics:

Low Speed
High Reaction
No Surge

$\omega = 2400 \text{ RPM}$
 $R = 0.74$
 $B = 0.16$

$$\phi = C_x/U = 0.6$$

PARAMETER IDENTIFICATION RESULTS and Refined Theoretical Predictions

NONLINEAR MODEL VALIDATED AGAINST STALL INCEPTION DATA

AEROMECHANICAL CONTROL OF ROTATING STALL

- 'Passive' system
 - Feedback through dynamic coupling between unsteady flow and structure
- Deflection of structure causes flow injection into annulus
- Circumferential array of 24 reed valves control injection
- Phase of injection set by interaction between stall precursors (pressure perturbations) and reed dynamics
- 10% change in stall point

DYNAMIC CONTROL OF ROTATING STALL USING AEROMECHANICAL FEEDBACK

RANGE INCREASE DUE TO AEROMECHANICAL FEEDBACK

HIGH SPEED COMPRESSOR STALL CONTROL RESEARCH

- Modeling
 - Compressible 2D Hydrodynamic Stability Model In Place
 - Applied to Industrial Compressor Test Rig Geometries
 - Compressible Modes Explain Experimental Results
 - Control, Sensor/Actuator Studies Underway
- Detection
 - Data from 10 high speed compressors reduced
 - Pre-stall traveling wave energy present in all cases
 - 'Compressible mode' important to stall inception
- Actuation
 - Mass injection currently the most promising
 - Valve hardware designed (Moog and NASA Lewis)
 - Currently investigating fluid mechanics of unsteady blowing
- Initial Control Design Studies Underway

COMPRESSIBLE MODELING OF ROTATING STALL

- 1D Compressible Flow in Blade Passages
- 2D Compressible Flow in Gaps
- Boundary Conditions Link Volumes
- Result - Hydrodynamic Model for Circumferential Harmonics
- Actuation and Sensing Added to Study Control

**MODEL PREDICTS
COMPRESSIBLE MODE AT ROTOR FREQUENCY
- this mode can limit operating range -**

HIGH SPEED COMPRESSOR PRE-STALL SPECTRA

CURRENT EFFORTS - ACTIVE CONTROL OF ROTATING STALL

- Control With Inlet Distortion on 3-Stage Rig
 - High priority for implementation
 - Modeling, control much more complicated
 - We will 'close the loop' with distortion this Spring
- Mass Flow Injection on 3-Stage Rig
 - Replace inlet guide vanes with injectors
 - Significant performance improvement predicted by 2D modeling
 - Details of implementation will effect performance achieved
- Application of Advanced Control Techniques
 - Robust controller design and implementation
 - demonstrated on 3-stage
 - developing techniques for use at NASA Lewis
 - Nonlinear analysis and control law design
 - goal: enhance large disturbance stability
 - applying Lyapunov, absolute stability theory

CURRENT EFFORTS - ACTIVE CONTROL OF ROTATING STALL - NASA Lewis Project -

- Industrial scale compressor stages
 - Stage 37 - High speed compressor stage ($U_{tip} = 454$ m/s, $h/t=.7$)
 - Stage 67 - Low hub/tip fan stage ($U_{tip} = 430$ m/s, $h/t=.36$)
- Mass flow injection, high-bandwidth actuation (300-500 Hz)
 - NASA Lewis & Moog designing linear actuators
 - MIT designing valves and injectors
 - Scale wind tunnel tests ($M=0.5$) of injection underway
- 3D hydrodynamic stability analysis of rotating stall
- System procedures for eigenvector identification
- Testing at NASA to begin Late 1994

SUMMARY

Stall and Surge Control are Maturing Rapidly

- Evolution of apparatus complexity
 - Surge control concept \Rightarrow surge rig \Rightarrow small engines
 - R/S control concept \Rightarrow 1 stage \Rightarrow 3 stage \Rightarrow high speed/industrial
- Evolution of maturity of understanding
 - Surge control:
 - Lumped model \Rightarrow model w/ actuation \Rightarrow engine scale, environment
 - Rotating stall control:
 - Moore-Greitzer \Rightarrow unsteady losses \Rightarrow distortion \Rightarrow high speed, 3D, nonlinear
- Each evolutionary stage has been successful to date
 - Still much to do, but confidence is high
- New multidisciplinary concepts are emerging out of necessity:
 - 'Close-coupled' actuation
 - System Identification of fluid processes
 - Passive aeromechanical control
 - Wave energy for detection
 - Interaction of compressible and acoustic modes

Progress in Modeling & Control of Compressor Stall

Dr. Carl N. Nett

Technology Area Leader,
Dynamic Systems & Controls

PW Joint Program Subelement Manager,
Fans & Compressors

United Technologies Research Center

Mail Stop 129-15
411 Silver Lane
E. Hartford, CT 06108

Phone: (203) 727-7957 , Fax: (203) 727-7909

E-mail: cnn@utrc.utc.com

Intelligent Turbine Engines for Army Applications
Cambridge, MA (MIT)
March 21, 1994

Key UTRC Contributors

Formerly Georgia Tech LICCHUS

Dr. Kevin M. Erekter

Dr. Carl N. Nett

Formerly MIT GTL

Dr. Daniel L. Gysling

Dr. Gavin J. Hendricks

Dr. Philip L. Lavrich

Formerly U. Maryland ISR

Dr. Hua O. Wang

Key P&W Point-of-Contact: Dr. Om P. Sharma

Obstacles and Related Issues

- ▶ Highly nonlinear phenomena characterized by bifurcations
 - relevancy of linear perspective
- ▶ 3D distributed unsteady compressible flow phenomena
 - model uncertainty (unknown physics and parameters)
 - model complexity
 - number, locations, and types of actuators and sensors
- ▶ Relatively high frequency phenomena
 - sensor and actuator bandwidths
 - digital processor throughput
- ▶ Inherently noisy and hostile operating environment
 - sensing and actuation constraints
- ▶ Complex interactions with overall system and operating environment

Stability Enhancing Control Concepts

Active Control Proof-of-Concept Demos

Active Surge Control Demo: 2-Way Actuation

Active Surge Control Demo: 1-Way Actuation

Active Surge Control Demos

Active Rotating Stall Control Demo

Active Rotating Stall Control Demo

Integrated Control Proof-of-Concept Demo

Active Rotating Stall / Surge Control Demo

Active Rotating Stall / Surge Control Demo

Stall Inception Models

Span-wise Uniform,
Long Wavelength Inception

Part-span, Short Wavelength
Inception

DATA

MODE L

Model (- -) vs. Experiment (---)

Model-Based Surge Controllers

Proportional Feedback Controller		
Model	Experiment	
Gain	+ 6.6 dB	+ 5.6 dB
Margins	- 2.0 dB	- 4.4 dB

Dynamic Feedback Controller		
Model	Experiment	
Gain	+ 7.3 dB	+ 5.5 dB
Margins	- 4.0 dB	- 6.3 dB

Required Extensions

- Low speed to high speed (compressibility effects)
- Few stage to many stage
- Single spool to multiple spool
- Compressors to cores to engines
- Low pressure ratio to high pressure ratio
- Extensions required for both models and controls

Parting Comments...

Nonlinear perspective provides a real edge

Much fruitful work can yet be accomplished in low speed environments

Carry out parallel efforts in high speed environments

Deployable hardware issues yet to be considered

A Systems Study of the Impact of Active Compressor Stabilization

3/21/94

Kevin R. Tow
General Electric Aircraft Engines
Lynn, MA.

A Systems Study of the Impact of Active Compressor Stabilization

- Overview of Assumptions
- Potential Benefits of Active Stabilization
- Engine System Level Benefits
- Aircraft System Level Benefits
- Summary of Design Options

Overview of Assumptions

- Active control provides assumed levels of additional stability margin.
- The specific method of active control is not studied.
- Potential effects of the active control hardware on efficiency or weight are not included.
- Active stabilization is used as an upgrade to both existing configurations and entirely new designs.

The systems level study assesses the bottom line benefit of having more stall margin

Advantages of Active Control Stabilization

- Current advanced control technologies are designed to avoid stall.
- Active stabilization suppresses the initiation of stall and increases the acceptable region of compressor operation.
- Active control has the potential for more widespread application over stall avoidance technologies.

Active stabilization includes and potentially exceeds the performance benefits of stall avoidance control technologies.

Active Control Provides Potential Benefits on Different Levels

- **Compressor Component Level**
 - Improved adiabatic efficiency
 - Higher pressure ratio capability
 - Weight reduction
- **Engine System Level**
 - Improved cycle thermal efficiencies
 - Improved steady state and transient performance
 - Improved hardware durability
- **Aircraft System Level**
 - Improved distortion tolerance capability
 - Reduced installed drag
 - Increased aircraft range

Active Stabilization Implemented as a Retrofit Upgrade to an Existing Configuration

Design Scenario

- Low, bypass ratio afterburning turbofan typical for military fighter applications.
 - Additional 5%-20% stall margin available
 - Other cycle limits (temperatures, pressures, rotor speeds, physical geometries) remain constant
-

Typical Engine Design Limits

Parameters other than stall margin may limit cycle performance

Active Stabilization Implemented as a Retrofit Upgrade to an Existing Configuration

Method of Implementation

- Additional stall margin used by raising the compressor pressure ratio at constant corrected speed.
- High pressure compressor is actively controlled; the fan is not.

Active Stabilization Implemented as a Retrofit Upgrade to an Existing Configuration

Engine Performance Figures of Merit

• Specific Fuel Consumption (SFC)

SFC= Fuel Flow/Net Thrust

• Specific Ideal Gross Thrust

FG= (airflow)(exhaust velocity)

FG/airflow= function (exhaust total temperature,
exhaust total pressure, gas properties)

The steady state systems performance improves if the additional stall margin results in lower fuel flow, higher exhaust temperature and/or higher exhaust pressure.

Active Stabilization Implemented as a Retrofit Upgrade to an Existing Configuration

Results

- Cruise Operation

- Significant fuel consumption benefits

- High Power Operation

- Higher pressure ratio results in lower turbine exhaust temperature due to temperature limits.
 - Intermediate Rated Power: thrust penalty at all flight conditions
 - Max AB: thrust benefit/penalty depending on the flight condition.

For this application, performance benefits and penalties are associated with the higher pressure ratio

**Specific Fuel Consumption Benefit for Cruise Operation
35,000 ft/.85 MN**

Net Thrust Normalized to a Reference Point

High Power Thrust Penalty Driven by Temperature Limits

T2 Normalized to a Reference Point

The presence of existing cycle constraints may compromise potential active control benefits on existing configurations.

T3 Limited Operation Covers a Larger Portion of the Flight Envelope as Core Pressure Ratio is Raised

The severity of the performance penalty depends on the location of the aircraft's critical flight conditions.

Summary of Results:
Benefits of 5% Additional Stall Margin on an Existing Configuration

- Raise core pressure ratio
Cruise SFC improves by - .74% to -.82%
Max AB thrust changes from -4.3 % to +.8% depending on the flight condition.
- Raise fan pressure ratio
Max AB thrust improves from 0.0 % to 5.4% depending on the flight condition.
No impact on cruise performance.
- Optimize efficiency using variable stators
Cruise SFC improves by -0.21% to -0.41%

Additional stability margin above 5% could not effectively be utilized on the existing configuration.

Active Stabilization Incorporated on a New Engine Design (J. C. Seymour- MIT MS Thesis)

Design scenario

- Configuration: low bypass, mixed flow afterburning turbofan
- Implementation: higher pressure ratio operation
- 20% available stall margin

Results:

- 11.2% increase in mission radius
- 8.3% decrease in takeoff gross weight
- 7.3% decrease in aircraft operating weight

The benefits of 20% additional stall margin are maximized when active stabilization is incorporated early in the engine design process.

Aircraft System Benefit:
Active Stabilization on a New Aircraft Design
(Northrop)

Design Scenario

- Configuration: high performance fighter aircraft
- Implementation: Higher compressor stall margin can accommodate larger inlet flow distortion.

Results

- Inlet capture area reduction
- Reduced spillage drag
- Increased aircraft range

Aircraft System Benefit: Larger Inlet Distortion Tolerance Allows Reductions in the Inlet Capture Area

The reduction in inlet area results in significant improvements in range.

Design Options for Implementing Active Control

- Performance improvements must be compared to the associated penalties. Higher stall margin capability is not simply a win-win situation.
- The presence of other cycle design constraints limits the benefits of additional stall margin on existing configurations.
- Active stabilization is likely to provide the greatest benefits on new aircraft/engine designs.
- The manner of implementation of active control is dependent on the particular aircraft application.