

Heller Ehrman White & McAuliffe

Title: Use of Computationally Derived Protein Structures of Genetic
Polymorphisms in Pharmacogenomics for Drug Design
and Clinical Application

Serial No.: 09/709,905 Applicants: Ramnarayan et al.
Filing Date: 11/10/00 Attorney Docket No. 24737-1906C

HIV PROTEASE INHIBITORS APPROVED BY FDA

FIG. 6

Heller Ehrman White & McAuliffe.

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Application

Serial No.: 09/709,905 Applicants: Ramnarayan et al.

Filing Date: 11/10/00 Attorney Docket No. 24737-1906C

Heller Ehrman White & McAuliffe Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

and Clinical Application
Serial No.: 09/709,905
Filing Date: 11/10/00
Attorney Docket No. 24737-1906C

Correlation between Experimental and Calculated Changes of Binding Energy upon Ligand Modifications in the Binding Site of NS3

Expected $\Delta E_{binds} \, kcal/mol$

Heller Ehrman White & McAuliffe

Sheet 1 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	1	N	PRO A	. 1		-3.433	7.956	34.152
MOTA	2	CA	PRO A	. 1		-2.653	6.918	34.784
ATOM	3	С	PRO A	. 1		-1.242	7.005	34.259
ATOM	4	0	PRO A			-0.950	7.638	33.216
ATOM	5	CB	PRO A			-3.281	5.601	34.262
ATOM	6	CG	PRO A			-4.191	5.995	33.118
ATOM	7	CD	PRO A			-4.547	7.461	33.339
ATOM	8	1H	PRO A			-2.845	8.493	33.547
ATOM	9	2H	PRO A			-3.824	8.552	34.853
ATOM	10	N	GLN A			-0.259	6.464	
ATOM	11	H	GLN A			-0.239	6.057	35.001
ATOM	12	CA	GLN A					35.889
ATOM	13	C	GLN A			1.115	6.443	34.568
						1.452	4.993	34.301
ATOM	14	0	GLN A			1.379	4.106	35.173
ATOM	15	CB	GLN A			2.070	6.966	35.653
ATOM	16	CG	GLN A	_		3.549	6.859	35.240
ATOM	17	CD	GLN A			4.490	7.744	36.054
ATOM	18	OE1	GLN A			4.771	8.888	35.719
ATOM	19	NE2	GLN A			4.980	7.190	37.144
ATOM	20	1HE2	GLN A			5.605	7.702	37.734
ATOM	21	2HE2	GLN A			4.731	6.253	37.390
ATOM	22	N	ILE A			1.784	4.644	33.037
ATOM	23	H	ILE A			1.876	5.351	32.336
MOTA	24	CA	ILE A			2.013	3.257	32.665 [°]
MOTA	25	C	ILE A			3.505	3.028	32.473
MOTA	26	0	ILE A	3		4.242	3.777	31.787
ATOM	27	CB	ILE A	3		1.226	2.944	31.370
ATOM	28	CG1	ILE A	3		-0.274	3.239	31.603
ATOM	29	CG2	ILE A			1.427	1.480	30.901
MOTA	30	CD1	ILE A	3		-1.089	3.219	30.322
ATOM	31	N	THR A	4		4.071	2.032	33.177
ATOM	32	Н	THR A	4		3.525	1.525	33.844
ATOM	33	CA	THR A	4		5.451	1.661	33.007
ATOM	34	C	THR A	4		5.515	0.637	31.901
ATOM	35	Ö	THR A	. 4		4.490	0.143	31.397
ATOM	36	CB	THR A	4		6.051	1.125	34.324
ATOM	37	OG1	THR A	4		5.224	0.069	34.791
ATOM	38	HG1	THR A	. 4		5.589	-0.299	35.646
ATOM	39	CG2	THR A	4		6.085	2.212	35.431
ATOM	40	N	LEU A	5		6.677	0.281	31.405
ATOM	41	H	LEU A	. 5		7.518	0.530	
ATOM	42	CA	LEU A	5		6.754	-0.464	31.885
ATOM	43	C	LEU A	5		7.432	-1.813	30.177
ATOM	44	0	LEU A	5		7.432		30.356
ATOM							-2.464	29.426
	45	CB CG	LEU A	5		7.459	0.394	29.128
ATOM	46		LEU A	5		6.668	1.671	28.775
ATOM	47	CD1	LEU A	5		7.493	2.649	27.939
ATOM	48	CD2	LEU A	5		5.345	1.307	28.099
ATOM	49	N	TRP A	6		7.420	-2.351	31.594
ATOM	50	H	TRP A	6	•	7.030	-1.833	32.356
ATOM	51	CA	TRP A	6		7.958	-3.669	31.865
ATOM	52	C	TRP A	6		7.071	-4.697	31.204
ATOM	53	0	TRP A	6		7.520	-5.798	30.828
ATOM	54	CB	TRP A	6		8.099	-3.913	33.367
ATOM	55	CG	TRP A	6		9.041	-2.974	34.070

Heller Ehrman White & McAuliffe, P Sheet 2 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C									
ATOM	56	CD1	TRP	Α	6	8.745	-1.769	34.646	
ATOM	57	CD2	TRP	Α	6	10.449	-3.171	34.273	
MOTA	58	NE1	TRP	Α	6	9.875	-1.209	35.190	
ATOM	59	HE1	TRP	A	6	9.930	-0.332	35.668	
ATOM	60	CE2	TRP	A	6	10.932	-2.048	34.974	
MOTA	61	CE3	TRP	A	6	11.334	-4.190	33.924	
ATOM	62	CZ2	TRP	Α	6	12.257	-1.917	35.333	
ATOM	63	CZ3	TRP	A	6	12.650	-4.065	34.278	
MOTA	64	CH2	TRP	A	6	13.106	-2.942	34.974	
ATOM	65	N		A	7	5.773	-4.448	30.973	
ATOM	66	Н		A	7	5.354	-3.619	31.343	
ATOM	67	CA		A	7	4.952	-5.339	30.205	
ATOM	68	C		A	7	4.438	-4.569	29.033	
ATOM	69	0	GLN		7	4.433	-3.321	29.000	
ATOM	70	СВ		A	7	3.712	-5.693	30.969	
ATOM	71	CG		A	7	4.015	-6.467	32.210	
ATOM	72	CD		A	7	2.734	-6.678	32.210	
ATOM	73	OE1		A	7	2.053	-7.681	32.712	
	74	NE2	GLN	A	7	2.356	-5.682	33.736	
MOTA			GLN	A	7	1.501	-5.748	34.251	
ATOM	75	1HE2 2HE2	GLN	A	. 7	2.926	-4.867	33.837	
MOTA	76					3.777	-5.239	28.078	
MOTA	77	N		A	8	3.688	-6.233	28.142	
ATOM	78	H		A	8	3.183	-6.233	26.142	
MOTA	79	CA		A.	8	2.117	-3.648	27.461	
ATOM	80	C	ARG	A	8				
MOTA	81	0		A.	8	1.333	-3.965	28.387	
ATOM	82	CB		A	8	2.574	-5.555	25.975	
ATOM	83	CG	ARG		8	3.532	-6.593	25.437	
ATOM	84	CD		A	8	2.842	-7.610	24.579	
ATOM	85	NE		A	8	3.787	-8.487	23.900	
ATOM	86	HE		A	8	4.762	-8.279	23.982	
ATOM	87	CZ		A	8	3.405	-9.541	23.185	
ATOM	88	NH1	ARG	A	8	2.125	-9.871	23.052	
ATOM	89	2HH1	ARG	A.	8	1.418	-9.321	23.496	
ATOM	90	1HH1	ARG	A	- 8	1.869	-10.670	22.508	
ATOM	91	NH2	ARG	A	8	4.332	-10.286	22.589	
ATOM	92	1HH2	ARG	A	8	4.062	-11.082	22.048	
MOTA	93	2HH2	ARG	A	8	5.299	-10.050	22.682	
ATOM	94	N	PRO	A	9	1.990	-2.428	26.938	
ATOM	95	CA	PRO		9	1.001	-1.462	27.440	
MOTA	96	C	PRO	A	9	-0.365	-1.697	26.821	
ATOM	97	0		A	9	-0.918	-0.935	26.008	
ATOM	98	CB		A	9	1.572	-0.112	27.041	
ATOM	99	CG		A	9	2.553	-0.404	25.931	
ATOM	100	CD	PRO		9	3.024	-1.820	26.084	
ATOM	101	N	LEU		10	-1.028	-2.803	27.227	
ATOM	102	H	LEU		10	-0.616	-3.404	27.912	
ATOM	103	CA	LEU		10	-2.319	-3.143	26.698	
ATOM	104	C	LEU		10	-3.390	-2.565	27.591	
ATOM	105	0	LEU		10	-3.336	-2.632	28.831	
MOTA	106	CB		A	10	-2.451	-4.651	26.709	
ATOM	107	CG	LEU	A	10	-1.483	-5.316	25.756	
ATOM	108	CD1	LEU	A	10	-1.159	-6.740	26.212	
MOTA	109	CD2	LEU	A	10	-2.083	-5.262	24.322	
ATOM	110	N	VAL		11	-4.447	-1.952	27.033	
ATOM	111	H	VAL	A	11	-4.507	-1.875	26.038	

Heller Ehrman White & McAuliffe Sheet 3 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	112	CA	VAL A	11		-5.506	-1.398	27.835
MOTA	113	С	VAL A	11		-6.827	-1.857	27.268
ATOM	114	0	VAL A	11		-6.924	-2.490	26.198
ATOM	115	CB	VAL A			-5.420	0.143	27.897
ATOM	116	CG1	VAL A					
						-4.117	0.595	28.551
MOTA	117	CG2	VAL A			-5.549	0.787	26.497
ATOM	118	N	THR A			-7.954	-1.592	27.978
ATOM	119	H	THR A	12		-7.884	-1.141	28.868
MOTA	120	CA	THR A	12		-9.301	-1.942	27.496
MOTA	121	С	THR A	12		-9.889	-0.726	26.795
ATOM	122	0	THR A			-9.856	0.436	27.247
ATOM	123	СВ	THR A			-10.225	-2.385	28.659
ATOM	124							
		OG1	THR A			-9.596	-3.458	29.338
ATOM	125	HG1	THR A			-10.170	-3.766	30.096
ATOM	126	CG2	THR A			-11.579	-2.895	28.156
ATOM	127	N	ILE A	13		-10.449	-0.932	25.594
ATOM	128	H	ILE A	. 13		-10.409	-1.841	25.178
ATOM	129	CA	ILE A	. 13		-11.112	0.133	24.882
ATOM	130	C	ILE A			-12.553	-0.292	24.693
ATOM	131	0	ILE A			-12.935		
							-1.469	24.821
ATOM	132	CB	ILE A		•	-10.432	0.364	23.511
ATOM	133	CG1	ILE A			-10.466	-0.896	22.628
ATOM	134	CG2	ILE A	. 13		-8.986	0.806	23.747
MOTA	135	CD1	ILE A	. 13		-9.755	-0.745	21.294
ATOM	136	N	LYS A	. 14		-13.470	0.658	24.438
ATOM	137	Н	LYS A			-13.209	1.622	24.481
ATOM	138	CA	LYS A			-14.838	0.330	24.100
ATOM	139	C	LYS A			-15.088	0.877	
								22.719
ATOM	140	0	LYS A			-14.859	2.059	22.375
ATOM	141	CB	LYS A			-15.855	0.916	25.099
ATOM	142	CG	LYS A	. 14		-17.325	0.518	24.864
MOTA	143	CD	LYS A	. 14		-18.078	0.146	26.166
MOTA	144	CE	LYS A	14		-18.826	1.342	26.810
ATOM	145	NZ	LYS A	14		-19.316	0.929	28.173
ATOM	146	1HZ	LYS A	14		-19.801	1.693	28.599
ATOM	147	3HZ	LYS A			-18.536	0.670	28.743
ATOM	148	2HZ	LYS A			-19.936	0.150	28.082
ATOM	149	N	ILE A			-15.535		
							0.005	21.798
ATOM	150	H	ILE A			-15.806	-0.916	22.078
ATOM	151	CA	ILE A			-15.642	0.347	20.400
ATOM	152	С	ILE A			-16.894	-0.328	19.887
ATOM	153	0	ILE A	15		-17.115	-1.542	20.041
ATOM	154	CB	ILE A	15		-14.382	-0.132	19.639
ATOM	155	CG1	ILE A	15		-14.478	0.148	18.125
ATOM	156	CG2	ILE A			-14.082	-1.623	19.880
ATOM	157	CD1	ILE A			-14.237	1.603	17.796
ATOM	158	N						
			GLY A			-17.843	0.435	19.308
ATOM	159	H	GLY A			-17.720	1.426	19.260
ATOM	160	CA	GLY A			-19.053	-0.143	18.745
ATOM	161	С	GLY A			-19.897	-0.817	19.789
MOTA	162	0	GLY A	16		-20.774	-1.668	19.516
ATOM	163	N	GLY A			-19.712	-0.493	21.088
ATOM	164	Н	GLY A			-19.038	0.204	21.334
ATOM	165	CA	GLY A			-20.464	-1.126	22.160
ATOM	166	C	GLY A			-19.718	-2.335	22.160
ATOM		0	GLY A			-20.147		
ATOM	167	U	GDI A	17		20.14/	-3.098	23.540

Heller Ehrman White & McAuliff Sheet 4 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan *et al.* Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	168	N	GLN	Α	18	-18.507	-2.591	22.121
ATOM	169	H	GLN	Α	18	-18.059	-1.900	21.554
ATOM	170	CA	GLN	Α	18	-17.806	-3.830	22.326
MOTA	171	С	GLN	Α	18	-16.552	-3.549	23.123
ATOM	172	0	GLN	Α	18	-15.887	-2.508	22.945
MOTA	173	CB	GLN	Α	18	-17.393	-4.294	20.928
ATOM	174	CG	GLN	Α	18	-16.911	-5.734	20.788
ATOM	175	CD	GLN		18	-18.018	-6.728	20.613
MOTA	176	OE1		Α	18	-19.131	-6.574	21.152
ATOM	177	NE2		A	18	-17.722	-7.773	19.857
ATOM	178	1HE2		Α	18	-18.404	-8.484	19.689
ATOM	179	2HE2	GLN		18	-16.814	-7.860	19.448
ATOM	180	N	LEU		19	-16.133	-4.397	24.087
ATOM	181	H		A	19	-16.682	-5.202	24.312
ATOM	182	CA	LEU		19	-14.909	-4.178	24.808
	183	CA	LEU		19	-13.799	-4.178	24.090
ATOM			LEU	A	19	-13.989	-6.018	23.558
ATOM	184	O		A	19	-14.982	-4.714	26.254
ATOM	185	CB					-3.778	27.374
MOTA	186	CG		A	19	-15.490		
ATOM	187	CD1		A	19	-16.392	-2.639	26.856
MOTA	188	CD2	LEU	A	19	-16.208	-4.516	28.465
MOTA	189	N	LYS	Α	20	-12.603	-4.372	23.978
MOTA	190	H	LYS	A	20	-12.442	-3.448	24.324
MOTA	191	CA	LYS	A	20	-11.507	-5.082	23.365
ATOM	192	С	LYS	Α	20	-10.266	-4.618	24.062
MOTA	193	0	LYS	Α	20	-10.228	-3.611	24.816
ATOM	194	CB	LYS	Α	20	-11.397	-4.798	21.875
ATOM	195	CG	LYS	Α	20	-12.558	-5.356	21.100
MOTA	196	CD	LYS	A	20	-12.537	-4.988	19.615
ATOM	197	CE	LYS	A	20	-13.414	-5.958	18.827
ATOM	198	NZ	LYS	Α	20	-12.681	-7.208	18.639
ATOM	199	1HZ	LYS	Α	20	-13.247	-7.852	18.123
ATOM	200	3HZ	LYS	Α	20	-12.458	-7.601	19.531
MOTA	201	2HZ	LYS	Ą	20	-11.837	-7.027	18.134
ATOM	202	N	GLU	A	21	-9.150	-5.357	23.893
ATOM	203	Н	GLU	Α	21	-9.185	-6.188	23.338
ATOM	204	CA		Α	21	-7.890	-4.997	24.486
ATOM	205	С		Α	21	-7.001	-4.462	23.390
ATOM	206	0	GLU	Α	21	-6.970	-4.992	22.258
ATOM	207	СВ	GLU		21	-7.268	-6.260	25.051
ATOM	208	CG	GLU		21	-5.835	-6.140	25.480
ATOM	209	CD	GLU		21	-5.405	-7.352	26.275
ATOM	210	OE1	GLU		21	-5.624	-7.343	27.508
ATOM	211	OE2	GLU		21	-4.852	-8.309	25.684
ATOM	212	N	ALA		22	-6.239	-3.369	23.595
ATOM	213	Н	ALA		22	-6.223	-2.938	24.497
ATOM	214	CA	ALA		22	-5.419	-2.781	22.520
ATOM	215	C	ALA		22	-4.138	-2.255	23.114
ATOM	216	0	ALA		22	-3.985	-1.914	24.314
ATOM	217	CB	ALA		22	-6.134	-1.657	21.821
ATOM	217	N	LEU		23	-3.121	-2.091	22.240
	219	H	LEU		23	-3.279	-2.236	21.263
ATOM		CA	LEU		23	-1.797	-1.712	22.640
ATOM	220				23	-1.660	-0.230	22.443
ATOM	221	C	LEU		23	-2.020		
ATOM	222	O	LEU				0.349	21.402
MOTA	223	CB	LEU	А	23	-0.814	-2.486	21.732

Heller Ehrman White & McAuliffe

Sheet 5 of 33 Title: Use of Computationally Derived Protein Structures of Genetic

Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan *et al.* Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

			-					
ATOM	224	CG	LEU	Α	23	0.705	-2.448	21.991
ATOM	225	CD1	LEU	Α	23	1.088	-3.400	23.124
MOTA	226	CD2	LEU	Α	23	1.462	-2.878	20.708
ATOM	227	N	LEU	Α	24	-1.192	0.530	23.463
MOTA	228	H	LEU	A	24	-1.015	0.110	24.353
MOTA	229	CA	LEU	Α	24	-0.935	1.952	23.305
MOTA	230	С	LEU	Α	24	0.403	2.089	22.609
MOTA	231	0	LEU	Α	24	1.471	1.717	23.130
ATOM	232	CB	LEU	Α	24	-0.921	2.609	24.681
ATOM	233	CG	LEU	Α	24	-2.220	2.492	25.477
ATOM	234	CD1	LEU	Α	24	-2.063	3.291	26.772
ATOM	235	CD2	LEU	Α	24	-3.419	3.000	24.691
ATOM	236	N	ASP	Α	25	0.454	2.590	21.397
ATOM	237	H	ASP	Α	25	-0.334	3.085	21.032
ATOM	238	CA	ASP	Α	25	1.642	2.423	20.605
ATOM	239	C		Α	25	2.130	3.750	20.059
ATOM	240	0	ASP	Α	25	1.568	4.320	19.110
ATOM	241	CB	ASP	Α	25	1.263	1.435	19.486
ATOM	242	CG	ASP	Α	25	2.428	1.051	18.561
ATOM	243	OD1	ASP	Α	25	3.546	1.540	18.729
MOTA	244	OD2	ASP	Α	25	2.164	0.241	17.658
MOTA	245	N		A	26	3.203	4.337	20.605
MOTA	246	H	THR		26	3.694	3.880	21.346
MOTA	247	CA	ŢHR		26	3.691	5.652	20.144
MOTA	248	С	THR		26	4.397	5.583	18.778
MOTA	249	0	THR		26	4.642	6.587	18.079
ATOM	250	CB	THR		26	4.596	6.219	21.217
ATOM	251	OG1	THR		26	5.716	5.324	21.386
ATOM	252	HG1	THR		26	6.332	5.676	22.091
ATOM	253	CG2	THR		26	3.878	6.320	22.577
ATOM	254	N	GLY		27	4.757	4.377	18.298
MOTA	255	H		A	27	4.526	3.550	18.811
ATOM	256	CA		A	27	5.481	4.233	17.040
ATOM	257	С	\mathtt{GLY}	\mathbf{A}_{j}	27	4.520	4.190	15.886
ATOM	258	0	GLY	Α	27	4.908	4.242	14.696
ATOM	259	N	ALA		28	3.197	4.084	16.117
MOTA	260	H	ALA		28	2.856	4.091	17.057
MOTA	261	CA	ALA		28	2.213	3.955	15.018
MOTA	262	C.	ALA		28	1.598	5.299	14.750
MOTA	263	0	ALA		28	1.062	5.982	15.650
MOTA	264	CB	ALA		28	1.117	2.980	15.390
ATOM	265	N		A	29	1.503	5.744	13.490
ATOM	266	H	ASP		29	1.912	5.216	12.746
ATOM	267	CA	ASP		29	0.810	6.984	13.213
ATOM	268	C			29	-0.666	6.724	13.327
MOTA	269	0		A	29	-1.488	7.637	13.568
ATOM	270	CB	ASP	A	29	1.009	7.433	11.775
MOTA	271	CG	ASP	A	29	2.439	7.882	11.412
ATOM	272	OD1	ASP	A	29	3.360	7.856	12.269 10.252
ATOM	273	OD2	ASP	A	29	2.606	8.253 5.517	10.252
ATOM	274	N	ASP	A N	30	-1.143	4.769	12.990
ATOM	275	H	ASP	A v	30 30	-0.508 -2.579	5.245	12.887
ATOM	276	CA	ASP ASP	A A	30	-3.057	4.208	13.867
ATOM	277	C	_	A	30	-2.284	3.483	14.546
ATOM	278	O CB		A	30	-2.896	4.758	11.456
MOTA	279	CB	HOF	~	20	-2.030	7.730	11.470

Heller Ehrman White & McAuliffe, LLP
Sheet 6 of 33

Title: Use of Computationally Derived Protein Structures of Genetic
Polymorphisms in Pharmacogenomics for Drug Design
and Clinical Applications
Applicants: Ramnarayan et al.
Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	280	CG	ASP	Α	30		-2.495	5.768	10.425
MOTA	281	OD1	ASP	Α	30		-3.067	6.871	10.423
ATOM	282	OD2		A	30		-1.596	5.494	9.618
MOTA	283	N		Α	31		-4.393	4.076	14.002
ATOM	284	Н	THR	Α	31		-5.004	4.700	13.515
ATOM	285	CA	THR	Α	31		-5.059	3.062	14.829
ATOM	286	C		A	31		-5.565		13.913
ATOM	287	0	THR		31		-6.223	2.169	12.870
ATOM	288	CB	THR		31		-6.212	3.725	15.5 6 6
ATOM	289	OG1	THR	Α	31		-5.668	4.667	16.474
MOTA	290	HG1	THR	Α	31		-6.403	5.122	16.976
ATOM	291	CG2	THR		31		-7.044	2.702	16.389
ATOM	292	N		A	32		-5.187	0.713	14.235
MOTA	293	H		Α	. 32		-4.649	0.555	15.063
ATOM	294	CA	VAL	Α	32		-5.517	-0.462	13.437
ATOM	295	С	VAL	Α	32		-6.092	-1.506	14.365
MOTA	296	Ö	VAL		32		-5.502	-1.957	15.365
ATOM	297	CB	VAL		32		-4.260	-1.064	12.757
ATOM	298	CG1	VAL	A	32		-4.667	-2.136	11.735
ATOM	299	CG2	VAL	Α	32		-3.422	0.017	12.032
ATOM	300	N	LEU		33		-7.352	-1.923	14.119
ATOM	301	Н		A	33		-7.867	-1.523	13.361
ATOM	302	CA		A	33		-7.982	-2.940	14.929
ATOM	303	C		Α	33		-8.174	-4.203	14.107
ATOM	304	0	LEU	Α	33		-8.268	-4.247	12.853
ATOM	305	CB	LEU	Α	33		-9.336	-2.477	15.408
MOTA	306	CG	LEU	Α	33		-9.292	-1.149	16.127
ATOM	307	CD1		Α	33	_	10.710	-0.747	16.485
	308	CD2		A	33		-8.348	-1.139	17.347
ATOM									
MOTA	309	N		Α	34		-8.296	-5.319	14.782
ATOM	310	Н		А	34		-8.244	-5.302	15.780
ATOM	311	CA	GLU	Α	34		-8.503	-6.551	14.086
ATOM	312	С	${ t GLU}$	Α	34		-9.909	-6.549	13.510
MOTA	313	0		Α	34	_	10.808	-5.717	13.795
ATOM	314	CB		A	34		-8.265	-7.750	15.010
					34		-9.259	-7.791	16.165
ATOM	315	CG		A					
MOTA	316	CD		Α	34		-8.763	-8.552	17.404
ATOM	317	OE1		Α	34		-7.670	-9.193	17.368
ATOM	318	OE2	GLU	Α	34		-9.482	-8.497	18.407
MOTA	319	N	GLU	Α	35	-	10.152	-7.480	12.568
ATOM	320	Н	GLU		35		-9.485	-8.208	12.407
ATOM	321	CA	GLU		35	_	11.352	-7.466	11.773
									12.571
MOTA	322	C	GLU		35		12.631	-7.520	
ATOM	323	0	GLU		35		12.814	-8.294	13.528
ATOM	324	CB	GLU	Α	35	-	11.237	-8.536	10.707
ATOM	325	CG	GLU	Α	35		-9.945	-8.280	9.907
ATOM	326	CD	GLU	Α	35		-9.872	-8.872	8.486
ATOM	327	OE1	GLU		35	_	10.612	-8.401	7.603
					35		-9.024	-9.776	8.261
ATOM	328	OE2	GLU						
ATOM	329	N		A	36		13.580	-6.598	12.278
ATOM	330	H		А	36		13.439	-5.967	11.515
ATOM	331	CA	MET	Α	36	-	14.819	-6.495	13.052
ATOM	332	С	MET	Α	36	-	15.826	-5.635	12.271
ATOM	333	0		Α	36		15.514	-4.828	11.371
ATOM	334	CB		Α	36		14.593	-5.845	14.428
MOTA	335	CG		A	36		14.279	-4.353	14.417
VIOL	223	CG			50				

FIG. 11 A-5

Heller Ehrman White & McAuliffe, LLP

Sheet 7 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	336	SD	MET	Α	36	-14.251	-3.718	16.099
ATOM	337	CE	MET	A	36	-12.487	-3.846	16.409
MOTA	338	N	SER	Α	37	-17.130	-5.776	12.590
MOTA	339	H	SER	Α	37	-17.399	-6.431	13.296
ATOM	340	CA	SER		37	-18.155	-5.005	11.940
ATOM	341	C	SER		37	-18.286	-3.693	12.657
ATOM	342	Ō	SER		37	-18.593	-3.624	13.865
MOTA	343	CB	SER		37	-19.506	-5.688	12.032
ATOM	344	OG	SER		37	-19.455	-7.054	11.716
ATOM	345	HG		A	37	-20.367	-7.457	11.791
ATOM	346	N		Α	38	-18.185	-2.569	11.933
ATOM	347	H		Α	38	-17.956	-2.625	10.952
ATOM	348	CA		A	38	-18.557	-1.247	12.465
ATOM	349	C		Α	38	-19.630	-0.605	11.572
ATOM	3 5:0	Ō		Α	38	-19.706	-0.939	10.391
ATOM	351	CB		A	38	-17.315	-0.346	12.588
ATOM	352	ĊĠ	LEU		38	-16.246	-0.818	13.596
ATOM	353	CD1		A	38	-14.998	0.073	13.489
ATOM	354	CD2		A	38	-16.756	-0.787	15.046
MOTA	355	N		A	39	-20.455	0.321	12.108
ATOM	356	CA		Α	39	-21.460	1.053	11.339
ATOM	357	C		Α	39	-20.824	2.176	10.502
ATOM	358	0		Α	39	-19.654	2.519	10.685
ATOM	359	CB		A	39	-22.430	1.607	12.389
ATOM	360	CG		Α	39	-21.531	1.845	13.600
ATOM	361	CD		Α	39	-20.539	0.686	13.517
MOTA	362	N		Α	40	-21.620	2.749	9.586
ATOM	363	Н		A	40	-22.569	2.417	9.493
ATOM	364	CA		A	40	-21.203	3.811	8.678
ATOM	3.65	C		Α	40	-20.836	3.262	7.298
ATOM	366	Ö		A	40	-21.405	2.268	6.845
ATOM	367	N		A	41	-19.895	3.945	6.631
ATOM	368	Н		A	41	-19.496	4.761	7.071
ATOM	369	CA		A	41	-19.323	3.558	5.343
ATOM	370	C		A	41	-17.798	3.757	5.371
ATOM	371	0		Α	41	-17.263	4.462	6.229
ATOM	372	CB		A	41	-20.025	4.352	4.224
ATOM	373	CG		Α	41	-19.703	3.839	2.810
ATOM	374	CD		A	41	-20.610	4.486	1.757
ATOM	375	CE	LYS		41	-20.240	3.964	0.366
ATOM	376	NZ		Α	41	-21.097	4.552	-0.678
ATOM	377	1HZ	LYS	Α	41	-20.824	4.189	-1.580
MOTA	378	3HZ		Α	41	-20.993	5.556	-0.673
ATOM	379	2HZ	LYS	Α	41	-22.061	4.311	-0.498
ATOM	380	N	TRP	Α	42	-17.104	3.091	4.439
MOTA	381	H	TRP	Α	42	-17.620	2.548	3.762
ATOM	382	CA	TRP	Α	42	-15.654	2.932	4.423
ATOM	383	C	TRP	Α	42	-15.105	2.852	2.994
ATOM	384	0	TRP .	Α	42	-15.845	2.702	2.021
ATOM	385	CB	TRP .	Α	42	-15.279	1.675	5.236
MOTA	386	CG		Α	42	-16.214	0.514	5.094
ATOM	387	CD1		Α	42	-16.230	-0.402	4.101
ATOM	388	CD2		Α	42	-17.355	0.203	5.942
ATOM	389	NE1	TRP .	Α	42	-17.297	-1.260	4.281
MOTA	390	HE1	TRP .	Α	42	-17.504	-2.015	3.644
MOTA	391	CE2	TRP .	Α	42	-18.045	-0.914	5.389

Heller Ehrman White & McAuliffe, LLP Sheet 8 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan *et al.* Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	392	CE3	TRP	Α	42	-17.896	0.792	7.103
ATOM	393	CZ2	TRP	Α	42	-19.224	-1.421	5.959
MOTA	394	CZ3	TRP	Α	42	-19.077	0.298	7.675
ATOM	395	CH2	TRP	Α	42	-19.741	-0.806	7.112
ATOM	396	N	LYS	Α	43	-13.771	2.932	2.911
ATOM	397	Н	LYS	Α	43	-13.260	3.058	3.773
ATOM	398	CA	LYS	Α	43	-12.951	2.802	1.713
ATOM	399	C	LYS	A	43	-11.773	1.859	2.012
ATOM	400	Ö	LYS	A	43	-11.359	1.760	3.166
MOTA	401	СВ	LYS	A	43	-12.451	4.193	1.270
ATOM	402	CG	LYS	A	43	-11.724	4.979	2.383
ATOM	403	CD	LYS	A	43	-11.060	6.267	1.873
MOTA	404	CE	LYS	A	43	-9.784	6.001	1.065
ATOM	405	NZ	LYS	A	43	-8.700	- 1	1.903
		1HZ	LYS	A	43	-7.876	5.315	1.338
MOTA	40.6				43	-8.993	4.576	2.300
MOTA	407	3HZ	LYS	A			6.108	
ATOM	408	2HZ	LYS	A	43	-8.493		2.647
ATOM	409	N	PRO		44	-11.177	1.197	1.004
MOTA	410	CA		A	44	-9.947	0.435	1.187
MOTA	411	C		A	44	-8.760	1.392	1.379
ATOM	412	0		Α	44	-8.711	2.434	0.720
ATOM	413	CB	PRO	Α	44	-9.808	-0.393	-0.095
MOTA	414	CG		Α	44	-10.501	0.458	-1.159
MOTA	415	CD		Α	44	-11.630	1.132	-0.380
MOTA	416	N	LYS	А	45	-7.790	1.030	2.240
MOTA	417	H	LYS	A	45	-7.912	0.227	2.824
ATOM	418	CA	LYS	Α	45	-6.547	1.747	2.314
MOTA	419	С	LYS	Α	45	-5.493	0.683	2.507
ATOM	420	0	LYS	Α	45	-5.780	-0.470	2.869
ATOM	421	CB	LYS	Α	45	-6.594	2.699	3.524
ATOM	422	CG	LYS	Α	45	-5.463	3.744	3.609
ATOM	423	CD	LYS	Α	45	-5.340	4.289	5.052
MOTA	424	CE	LYS	Α	45	-4.262	5.383	5.204
MOTA	425	NZ	LYS	Α	45	-2.907	4.911	4.916
ATOM	426	1HZ	LYS	À	45	-2.260	5.664	5.032
MOTA	427	3HZ	LYS	Α	45	-2.864	4.577	3.975
ATOM	428	2HZ	LYS	Α	45	-2.672	4.169	5.544
ATOM	429	N		Α	46	-4.224	0.949	2.193
MOTA	430	H		A	46	-3.998	1.805	1.728
ATOM	431	CA		Α	46	-3.157	0.027	2.509
ATOM	432	C	MET		46	-2.417	0.701	3.627
MOTA	433	Ö		Α	46	-2.259	1.937	3.634
ATOM	434	СB		Α	46	-2.166	-0.088	1.379
ATOM	435	CG		Α	46	-2.782	-0.366	0.053
ATOM	436	SD	MET		46	-3.076	-2.108	-0.118
ATOM	437	CE	MET		46	-1.417	-2.652	-0.186
ATOM	438	N	ILE		47	-1.827	-0.016	4.586
ATOM	439	H	ILE		47	-2.010	-0.997	4.655
ATOM	440	CA	ILE		47	-0.922	0.586	5.539
	441	C	ILE		47	0.233	-0.372	5.654
ATOM	441	0	ILE		47	0.135	-1.584	5.356
ATOM	443	CB	ILE		47	-1.550	0.836	6.923
ATOM		CG1	ILE		47	-2.459	-0.301	7.354
ATOM	444	CG1	ILE		47	-2.433	2.164	6.995
ATOM	445				47	-1.724	-1.336	8.111
ATOM	446	CD1	ILE GLY			1.420	0.089	6.043
ATOM	447	N	GUI	Н	48	1.420	0.003	0.043

Heller Ehrman White & McAuliffe, LLP Sheet 9 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan *et al.*Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	448	Н	GLY	A	48	1.509	1.040	6.339
ATOM	449	CA	GLY	Α	48	2.584	-0.753	6.048
ATOM	450	С	GLY	Α	48	3.280	-0.657	7.376
MOTA	451	0	GLY	Α	48	3.050	0.190	8.265
ATOM	452	N	GLY	Α	49	4.197	-1.617	7.603
ATOM	453	Н	GLY	Α	49	4.375	-2.308	6.902
MOTA	454	CA		Α	49	4.936	-1.684	8.828
ATOM	455	C		Α	49	6.105	-2.589	8.533
ATOM	456	0		Α	49	6.482	-2.807	7.370
ATOM	457	N		Α	50	6.761	-3.173	9.552
ATOM	458	Н		Α	50	6.552	-2.908	10.493
ATOM	459	CA	ILE	Α	50	7.772	-4.184	9.344
ATOM	460	С	ILE	Α	50	7.148	-5.317	8.566
MOTA	461	0	ILE	Α	50	5.981	-5.734	8.772
ATOM	462	CB		Α	50	8.258	-4.686	10.722
ATOM	463	CG1		Α	50	9.257	-3.714	11.382
ATOM	464	CG2		Α	50	8.813	-6.134	10.693
ATOM	465	CD1		Α	50	10.580	-3.498	10.628
ATOM	466	N	GLY	Α	51	7.847	-5.891	7.596
ATOM	467	Н	GLY	Α	51	8.772	-5.569	7.395
ATOM	468	CA	GLY		51	7.265	-6.966	6.850
ATOM	469	C	GLY		51	6.519	-6.559	5.591
ATOM	470	Ō		A	.51	6.430	-7.318	4.634
ATOM	471	N	GLY	A	52	5.886	-5.375	5.517
ATOM	472	Н		A	52	5.990	-4.710	6.257
ATOM	473	CA	GLY	A	52	5.108	-5.227	4.320
ATOM	474	C	GLY	A	52	3.832	-4.415	4.516
ATOM	475	Õ		A	52	3.654	-3.624	5.467
ATOM	476	Ň		Α	53	2.886	-4.518	3.559
MOTA	477	Н		A	53	3.013	-5.161	2.804
ATOM	478	CA		A	53	1.653	-3.720	3.566
ATOM	479	C		A	53	0.494	-4.651	3.783
MOTA	480	0	PHE	A	53	0.448	-5.816	3.336
ATOM	481	CB	PHE	A	- -	1.424	-3.022	2.221
ATOM	482	CG	PHE	A	53	2.363	-1.896	2.008
MOTA	483	CD1	PHE	A	53	3.615	-2.135	1.447
ATOM	484	CD2		Α	53	2.011	-0.608	2.414
ATOM	485	CE1		A	53	4.514	-1.087	1.275
ATOM	486	CE2		A	53	2.925	0.446	2.237
ATOM	487	CZ	PHE		53	4.172	0.202	1.668
ATOM	488	N	ILE		54	-0.554	-4.173	4.439
ATOM	489	H	ILE		54	-0.491	-3.285	4.895
ATOM	490	CA	ILE		54	-1.789	-4.911	4.509
ATOM	491	C	ILE		54	-2.903	-3.995	4.033
ATOM	492	0	ILE		54	-2.751	-2.770	3.855
			ILE		54		-5.535	5.904
MOTA	493 494	CB CG1	ILE		54	-2.343	-4.481	6.988
ATOM					54	-0.799	-6.318	6.314
ATOM	495 496	CG2		A A	54	-3.010	-5.089	8.246
MOTA		CD1	LYS		55	-4.029	-4.577	3.560
ATOM	497	N		A N				
ATOM	498	H		A N	55	-4.084	-5.574	3.501
MOTA	499	CA		A N	55	-5.177	-3.798	3.129
ATOM	500	C		A	55	-6.115	-3.726	4.300
MOTA	501	O	LYS		55 55	-6.422 -5.929	-4.707	5.023
ATOM	502	CB		A N	55 55	-5.928 -6.953	-4.461	1.938
ATOM	503	CG	LYS	A	55	-6.853	-3.547	1.106

Heller Ehrman White & McAuliffe, LLP Sheet 10 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	504	CD	LYS A	A 55	-8.267	-3.332	1.714
ATOM	505	CE		A 55	-9.303	-4.392	1.301
ATOM	506	NZ		A 55	-10.521	-4.453	2.192
					-11.142	-5.162	1.859
ATOM	507	1HZ					
ATOM	508	3HZ		A 55	-10.987	-3.569	2.180
MOTA	509	2HZ	LYS A	A 55	-10.240	-4.669	3.127
ATOM	510	N	VAL A	A 56	-6.599	-2.509	4.619
MOTA	511	Н	VAL A	A 56	-6.337	-1.713	4.073
ATOM	512	CA		A 56	-7.494	-2.311	5.735
ATOM	513	C		A 56	-8.711	-1.584	5.236
					-8.767	-1.029	4.114
ATOM	514	0	VAL A				
ATOM	515	CB	VAL A		-6.759	-1.475	6.812
MOTA	516	CG1	VAL A	A 56	-5.569	-2.209	7.385
MOTA	517	CG2	VAL A	A 56	-6.287	-0.108	6.268
ATOM	518	N	ARG A	A 57	-9.784	-1.539	6.005
ATOM	519	Н		A 57	-9.835	-2.117	6.819
ATOM	520	CA	ARG A		-10.855	-0.648	5.638
		C	ARG A		-10.738	0.534	6.554
ATOM	521						
MOTA	522	0	ARG A		-10.558	0.449	7.789
MOTA	523	CB	ARG A		-12.219	-1.271	5.835
MOTA	524	CG	ARG A	A 57	-12.480	-2.452	4.952
ATOM	525	CD	ARG A	A 57	-13.834	-3.051	5.195
MOTA	526	NE	ARG A	A 57	14.122	-4.137	4.270
MOTA	527	HE		A 57	-13.442	-4.347	3.568
ATOM	528	CZ		A 57	-15.243	-4.851	4.324
		NH1		A 57	-16.175	-4.624	5.243
ATOM	529						
ATOM		2HH1	ARG A		-16.044	-3.899	5.920
ATOM	531	1HH1	ARG A		-17.008	-5.178	5.258
MOTA	532	NH2	ARG A	A 57	-15.433	-5.822	3.434
ATOM	533	1HH2	ARG A	A 57	-16.270	-6.368	3.461
ATOM	534	2HH2	ARG A	A 57	-14.738	-6.006	2.738
ATOM	535	N	GLN A	,	-10.881	1.741	6.036
ATOM	536	H		A 58	-11.030	1.844	5.053
MOTA	537	CA		A 58	-10.830	2.922	6.839
						3.342	7.205
ATOM	538	C			-12.231		
ATOM	539	0		A 58	-13.106	3.608	6.359
ATOM	540	CB	GLN A		-10.208	4.038	6.030
ATOM	541	CG	GLN A	A 58	-10.055	5.293	6.817
MOTA	542	CD	GLN A	A 58	-9.632	6.411	5.927
ATOM	543	OE1	GLN A	A 58	-10.379	7.334	5.662
ATOM	544	NE2	GLN A		-8.412	6.303	5.437
ATOM	545	1HE2	GLN A		-8.047	7.009	4.830
ATOM	546	2HE2	GLN A		-7.843	5.514	5.668
					-12.527	3.514	8.509
MOTA	547	N	TYR A				
ATOM	548	H	TYR A		-11.877	3.219	9.209
MOTA	549	CA	TYR A		-13.769	4.125	8.933
ATOM .	550	С	TYR A	A 59	-13.411	5.452	9.565
ATOM	551	0	TYR A	A 59	-12.416	5.592	10.310
MOTA	552	CB	TYR A		-14.517	3.252	9.957
ATOM	553	CG	TYR A		-14.287	1.770	9.723
MOTA	554	CD1	TYR A		-13.007	1.269	9.457
			TYR A		-15.346	0.865	9.766
ATOM	555	CD2					
ATOM	556	CE1	TYR A		-12.797	-0.092	9.240
MOTA	557	CE2	TYR A		-15.148	-0.494	9.551
ATOM	558	CZ	TYR A		-13.873	-0.972	9.287
ATOM	559	OH	TYR A	A 59	-13.721	-2.311	9.079

Heller Ehrman White & McAulifte, LLP

Sheet 11 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

and Clinical Applications

Applicants: Ramnarayan et al.
Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	560	HH	TYR	A 59	-14.606	-2.771	9.154
ATOM	561	N	ASP	A 60	-14.151	6.542	9.300
ATOM	562	Н		A 60			8.709
ATOM	563	CA		A 60			9.846
ATOM	564	C		A 60			10.947
ATOM	565	0		A 60			11.053
ATOM	566	CB		A 60			8.769
ATOM	567	CG	– .	A 60			7.725
MOTA	568	OD1	ASP	A 60	-11.545	8.874	8.0 <i>7</i> 5
ATOM	569	OD2	ASP	A 60	-13.060	8.702	6.544
ATOM	570	N	GLN	A 63	-14.339	9.154	11.833
ATOM	571	Н	GLN				11.804
ATOM	572	CA	GLN				12.885
ATOM	573	C		A 61			13.802
ATOM	574	0					14.229
MOTA	575	CB	_	A 63			12.338
MOTA	576	CG		A 61			13.262
MOTA	577	CD		A 61			12.629
ATOM	578	OE1	GLN	A 61	-16.509	13.854	11.586
ATOM	579	NE2	GLN	A 61	-17.937	13.887	13.292
ATOM	580	1HE2	GLN	A 61	-18.416	14.689	12.934
ATOM	581	2HE2		A 61			14.155
ATOM	582	N		A 62			14.175
ATOM	583	H		A 62			13.862
ATOM	584	CA		A 62			15.002
		C					
ATOM	585						16.447
ATOM	586	0		A 62			16.837
ATOM	587	CB		A 62			14.653
MOTA	588	CG1		A 62			13.258
MOTA	589	CG2	ILE	A 62	-15.106	4.271	15.675
MOTA	590	CD1	ILE	A 62	-16.779	4.788	13.116
ATOM	591	N	LEU	A 63	-16.242	6.807	17.320
MOTA	592	H	LEU	A 63	-17.089	6.383	17.000
ATOM	593	CA	LEU	A 63			18.719
ATOM	594	C		A 63			19.425
ATOM	595	Õ		A 63			19.269
ATOM	596	CB	LEU				19.282
ATOM	597	CG		A 63			20.813
MOTA	598	CD1	LEU				21.404
ATOM	599	CD2	LEU				21.201
ATOM	600	N	ILE				20.219
ATOM	601	H	ILE	A 64	-14.185	7.153	20.305
ATOM	602	CA	ILE	A 64	-13.862	5.178	20.972
ATOM	603	С	ILE	A 64	-13.529	5.744	22.325
MOTA	604	0		A 64			22.602
ATOM	605	CB		A 64			20.231
ATOM	606	CG1		A 64			20.949
ATOM	607	CG2		A 64			19.950
ATOM	608	CD1	ILE				20.062
ATOM							
	609	N	GLU				23.294
ATOM	610	H	GLU				23.059
ATOM	611	CA	GLU				24.670
MOTA	612	С		A 65			25.165
ATOM	613	0		A 65			25.056
MOTA	614	CB	GLU				25.405
MOTA	615	CG	GLU	A 69	-14.739	5.610	26.646

Heller Ehrman White & McAulific

Sheet 12 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	616	CD	GLU	Δ	65	-16.131	5.353	27.115
ATOM	617	OE1		A	65	-17.090	5.785	26.413
ATOM	618	OE2		A	65	-16.269	4.708	28.163
ATOM				A	66	-10.203	5.008	25.610
	619	N				-11.009		
ATOM	620	H		Α	66		6.002	25.717
MOTA	621	CA		Α	66	-9.762	4.317	25.947
ATOM	622	C		A	66	-9.571	4.586	27.413
ATOM	623	0		A	66	-9.422	5.732	27.880
MOTA	624	CB		Α	66	-8.600	4.907	25.126
ATOM	625	CG1		Α	66	-8.838	4.669	23.633
MOTA	626	CG2		Α	66	-7.231	4.326	25.554
MOTA	627	CD1	•	Α	66	-8.951	5.982	22.856
MOTA	628	N		Α	67	-9.776	3.567	28.261
ATOM	629	H		Α	67	-9.989	2.659	27.902
ATOM	63.0	CA	CYS	Α	67	-9.698	3.740	29.687
ATOM	631	С	CYS	Α	67	-10.673	4.871	30.088
ATOM	632	0	CYS	Α	67	-10.393	5.716	30.958
MOTA	633	CB	CYS	Α	67	-8.251	4.003	30.156
ATOM	634	SG	CYS	Α	67	-7.170	2.529	30.217
ATOM	635	N	GLY	Α.	68	-11.877	4.947	29.499
ATOM	636	Н		Α	68	-12.125	4.286	28.791
ATOM	637	CA		Α	68	-12.788	5.984	29.903
ATOM	638	C		Α	68	-12.581	7.322	29.241
ATOM	639	Õ		Α	68	-13.404	8.253	29.376
ATOM	640	N		Α	69	-11.504	7.545	28.471
ATOM	641	H		A	69	-10.817	6.827	28.360
ATOM	642	CA		Α	69	-11.305	8.800	27.793
ATOM	643	C		A	69	-11.838	8.679	26.399
ATOM	644	0		Α	69	-11.516	7.742	25.630
ATOM	645	CB		A	69	-9.831	9.128	27.724
MOTA	646	CG		A	69	-9.276	9.286	29.081
ATOM	647	ND1		A	69	-9.317	10.484	29.778
				A	69	-9.688	11.347	29.436
ATOM	648	HD1		A	69	-8.723	8.352	29.912
ATOM	649	CD2				-8.783	10.254	30.947
ATOM	650	CE1 NE2		A	69 60	-8.405	8.990	31.091
ATOM	651			A	69			
ATOM	652	N		A	70	-12.768	9.561	25.973
ATOM	653	H		A	70	-13.084	10.284	26.588
ATOM	654	CA		A	70	-13.325	9.492	24.646
ATOM	655	C	LYS		70	-12.346	10.074	23.653
ATOM	656	0		A	70	-11.587	11.055	23.864
ATOM	657	CB		A	70	-14.645	10.285	24.536
ATOM	658	CG		A	70	-15.837	9.703	25.330
ATOM	659	CD		A	70	-17.105	10.593	25.286
ATOM	660	CE		A	70	-18.293	10.011	26.092
ATOM	661	NZ		Α	70	-18.802	8.702	25.608
ATOM	662	1HZ		Α	70	-19.563	8.406	26.185
ATOM	663	3HZ		A	70	-18.069	8.023	25.650
ATOM	664	2HZ		Α	70	-19.116	8.795	24.663
ATOM	665	. N	ALA		71	-12.323	9.485	22.446
MOTA	666	H	ALA		71	-12.813	8.625	22.305
ATOM	667	CA	ALA		71	-11.616	10.044	21.333
MOTA	668	C	ALA		71	-12.529	9.795	20.171
ATOM	669	0	ALA		71	-13.351	8.850	20.146
MOTA	670	CB	ALA		71	-10.292	9.358	21.143
MOTA	671	N	ILE	Α	72	-12.559	10.685	19.149

Heller Ehrman White & McAuliffe, LLP Sheet 13 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

						-			
MOTA	672	H	ILE	Α	72		-12.006	11.517	19.200
MOTA	673	CA	ILE	Α	72		-13.376	10.474	17.963
MOTA	674	С	ILE	Α	72		-12.480	10.662	16.771
MOTA	675	0	ILE	Α	72		-11.858	11.720	16.550
ATOM	676	CB		Α	72		-14.541	11.464	17.882
MOTA	677	CG1		Α	72		-15.306	11.455	19.196
ATOM	678	CG2		A	72		-15.429	11.203	16.651
ATOM	679	CD1		A	72		-16.446	12.415	19.176
ATOM	680	N		A	73		-12.252	9.633	15.958
ATOM	681	H		A	73 .		-12.778	8.789	16.067
ATOM	682	CA		A	73		-11.253	9.755	14.938
		CA	GLY		73		-11.283	8.554	14.034
ATOM	683	0	GLY		73		-12.211	7.706	14.006
ATOM	684				73 74		-12.211	8.428	13.182
ATOM	685	N	THR						
MOTA	68.6	H	THR		74		-9.471	9.055	13.250
MOTA	687	CA	THR		74		-10.201	7.416	12.158
MOTA	688	C	THR		74		-9.674	6.134	12.760
MOTA	689	0	THR		74		-8.670	6.034	13.497
MOTA	690	CB	THR		74		-9.298	7.895	11.048
MOTA	691	OG1		Α	74		-9.910	9.019	10.441
MOTA	692	HG1		A	74		-9.335	9.362	9.698
MOTA	693	CG2	THR		74		-9.088	6.823	9.946
MOTA	694	N	VAL		75		-10.318	5.027	12.327
MOTA	695	H	VAL		75		-11.066	5.114	11.669
MOTA	696	CA	VAL	Α	75		-9.968	3.717	12.778
MOTA	697	C	VAL	A	75		-9.906	2.843	11.551
MOTA	698	0	VAL	Α	75		-10.803	2.807	10.681
MOTA	699	CB	VAL	Α	75		-11.044	3.250	13.737
MOTA	700	CG1	VAL	Α	75		-11.021	1.721	13.943
MOTA	701	CG2	VAL	Α	75		-10.915	4.019	15.034
MOTA	702	N	LEU	Α	76		-8.768	2.139	11.366
MOTA	703	Н	LEU	Α	76		-8.002	2.260	11.998
ATOM	704	CA	LEU	Α	76		-8.566	1.183	10.276
ATOM	705	С	LEU		76		-8.848	-0.211	10.808
MOTA	706	0	LEU		76		-8.514	-0.582	11.958
MOTA	707	СВ	LEU		76		-7.103	1.270	9.798
MOTA	708	CG		A	76		-6.608	2.684	9.443
MOTA	709	CD1		A	76		-5.151	2.645	9.087
MOTA	710	CD2		A	76		-7.396	3.302	8.296
MOTA	711	N	VAL		77		-9.569	-1.062	10.042
MOTA	712	H	VAL		77		-9.894	-0.766	9.144
MOTA	713	CA	VAL		77		-9.899	-2.428	10.485
MOTA	714	C	VAL		77		-9.298	-3.412	9.482
MOTA	715	Ö	VAL		77		-9.450	-3.300	8.253
ATOM	716	CB	VAL		77		-11.436	-2.592	10.506
ATOM	717	CG1	VAL		77		-11.830	-4.021	10.682
ATOM	718	CG2	VAL		77		-12.072	-1.765	11.634
ATOM		N N	GLY		78		-8.560	-4.402	9.928
	719 720	H	GLY		78		-8.445	-4.530	10.913
ATOM	720 721		GLY		78		-7.930	-5.285	8.987
MOTA	721	CA			78		-7.228	-6.380	9.732
ATOM	722	C	GLY						10.970
MOTA	723	0	GLY		78 70		-7.292	-6.524	
ATOM	724	N	PRO		79 79		-6.512 -5.880	-7.271 -8.467	9.003
ATOM	725	CA	PRO		79 70		-5.880	-8.467	9.602
ATOM	726	C	PRO		79 70		-4.599	-8.107	10.340
MOTA	727	0	PRO	A	79		-3.449	-8.489	10.032

Heller Ehrman White & McAulitte, LLP Sheet 14 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

and Clinical Applications
Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C MOTA 728 CB PRO A 79 -5.613 -9.379 8.400 79 -5.529 -8.416 7.210 729 CG PRO A MOTA -7.225 7.537 79 -6.415 MOTA 730 CD PRO A -4.759 -7.304 11.408 **ATOM** 731 N THR A 80 -5.664 -6.935 11.619 THR A 80 MOTA 732 Η -6.957 MOTA 733 CA THR A 80 -3.658 12.263 734 C THR A 80 -3.490 -8.075 13.308 MOTA THR A 80 -4.447 -8.642 13.857 735 0 MOTA -3.868 -5.572 12.927 736 CB THR Α 80 MOTA 80 -2.770-5.303 13.787 737 THR A ATOM OG1 -2.889 -4.412 14.225 THR A 80 MOTA 738 HG1 -5.464 13.678 MOTA 739 CG2 THR A 80 -5.210MOTA N 740 PRO Α 81 -2.243-8.496 13.589 741 PRO A 81 -1.986 -9.476 14.660 CA MOTA -2.499 -8.952 16.001 **ATOM** 742 C PRO Α 81 -9.720 -2.944 16.866 743 O PRO A 81 ATOM -9.549 -0.444 14.732 744 CB PRO A 81 MOTA 0.069 -8.951 13.429 ATOM 745 CG PRO A 81 PRO A -1.029 -8.105 12.842 **ATOM** 746 CD 81 16.276 -2.474 -7.621 747 VAL A 82 MOTA Ν -6.975 15.571 -2.180 VAL A 82 ATOM 748 Η -7.091 17.591 **ATOM** VAL A 82 -2.869 749 CA -5.761 17.379 750 VAL A 82 -3.605 MOTA С -5.004 16.429 -3.349 MOTA 751 Ο VAL A 82 -1.595-6.858 18.443 **ATOM** 752 CB VAL A 82 -0.650 -5.824 17.803 **ATOM** 753 CG1 VAL A 82 VAL A -1.907 -6.418 19.890 ATOM 754 CG2 82 -4.548 -5.371 18.260 **ATOM** 755 N ASN Α 83 -4.810 -5.981 19.007 **ATOM** 756 Η ASN A 83 -5.181 -4.067 18.123 MOTA 757 CA ASN A 83 -3.01918.565 -4.195 ATOM 758 C ASN A 83 -3.064 19.665 ATOM 759 0 ASN A 83 -3.605 -6.436 -3.942 18.982 ATOM 760 CB ASN A 83 -7.502 -4.930 18.631 CG ASN Α 83 ATOM 761 -5.049 17.488 OD1 ASN Α 83 -7.899 ATOM 762 ASN A 83 -7.980 -5.662 19.628 ATOM 763 ND2 ASN A 83 -8.695 -6.341 19.459 ATOM 764 2HD2 -7.630 -5.541 20.557 1HD2 ASN Α 83 MOTA 765 766 ILE -4.007 -1.951 17.770 Α 84 ATOM N -4.583 -1.82716.962 ILE Α ATOM 767 Η 84 -2.993 -0.954 18.032 768 CA ILE Α 84 ATOM 0.387 18.114 **ATOM** 769 C ILE Α 84 -3.679 84 0.797 17.240 770 0 ILE A -4.460MOTA -2.021 -0.922 16.833 ILE A 84 ATOM 771 CB -2.15016.859 ILE A 84 -1.162 **ATOM** 772 CG1 -1.2190.387 16.747 773 CG2 ILE A 84 MOTA -0.375 -2.360 15.579 774 CD1 ILE Α 84 ATOM -3.471 1.155 19.203 ILE **ATOM** 775 Ν Α 85 -2.972 0.781 19.985 ILE 85 **ATOM** 776 Η Α -3.951 2.518 19.281 ILE Α 85 777 CA ATOM -2.784 3.425 18.949 ILE A 85 ATOM 778 C 3.515 19.663 -1.767 779 O ILE 85 **ATOM** ILE A -4.522 2.825 20.676 **ATOM** 780 CB 85 1.865 -5.673 21.050 781 ILE Α 85 CG1 ATOM 4.274 20.716 85 ILE Α -5.000 ATOM 782 CG2 1.808 20.059 CD1 ILE A 85 -6.828 **ATOM** 783

Heller Ehrman White & McAulin

Sheet 15 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	784	N	GLY Z	A 86	-2.820	4.123	17.792
MOTA	785	Н	GLY A			4.087	17.217
ATOM	786	CA	GLY A		-1.690	4.936	17.351
ATOM	787	C	GLY A			6.393	17.704
MOTA	788	Ö	GLY A		-2.760	6.864	18.390
MOTA	789	N	ARG A		-0.881	7.229	17.230
ATOM	790	H	ARG A		-0.204	6.890	16.577
	791	CA	ARG A				
ATOM	792	CA			-0.810	8.623	17.643
ATOM ATOM		0	ARG A		-2.027	9.445	17.277
	793				-2.365	10.430	17.963
MOTA	794	CB	ARG A		0.450	9.275	17.057
MOTA	795	CG	ARG A		1.735	8.496	17.205
ATOM	796	CD	ARG A		2.762	8.916	16.207
MOTA	797	NE	ARG A		3.875	7.961	16.117
MOTA	7 9.8	HE	ARG A		4.035	7.353	16.895
ATOM	799	CZ	ARG A		4.660	7.893	15.035
MOTA	800	NH1	ARG A		4.463	8.675	13.975
ATOM	801	2HH1	ARG A		3.712	9.335	13.974
MOTA	802	1HH1	ARG A		5.066	8.602	13.181
MOTA	803	NH2	ARG A		5.656	7.019	15.023
MOTA	804	1HH2	ARG A	A 87	6.254	6.953	14.224
MOTA	. 805	2HH2	ARG A	A 87	5.810	6.426	15.813
MOTA	806	N	ASN A	88 <i>A</i>	-2.780	9.120	16.214
MOTA	807	H	ASN A	88 <i>A</i>	-2.504	8.361	15.625
ATOM	808	CA	ASN A	88 <i>A</i>	-4.015	9.860	15.890
MOTA	809	С	ASN A	88	-4.963	9.921	17.069
ATOM	810	0	ASN A		-5.613	10.954	17.345
MOTA	811	CB	ASN A		-4.712	9.315	14.617
ATOM	812	CG	ASN A		-5.475	8.001	14.827
ATOM	813	OD1	ASN A		-4.922	6.996	15.245
ATOM	814	ND2	ASN A		-6.758	7.998	14.506
ATOM	815	2HD2	ASN A		-7.306	7.169	14.622
ATOM	816	1HD2	ASN A		-7.190	8.824	14.145
ATOM	817		LEU A		-5.130	8.847	17.848
ATOM	818	H	LEU A		-4.637	8.002	17.640
ATOM	819	CA	LEU A		-6.024	8.865	19.013
ATOM	820	C	LEU A		-5.275	9.091	20.309
ATOM	821	0	LEU A		-5.834	9.632	21.283
ATOM	822	CB	LEU A		-6.840	7.592	19.140
ATOM	823	CG	LEU A		-7.759	7.352	17.957
MOTA	824	CD1	LEU A		-8.369	5.980	18.088
ATOM	825	CD2	LEU A		-8.817	8.457	17.801
ATOM							
	826	N	LEU A		-3.983	8.745	20.428
ATOM	827	H	LEU A		-3.525	8.274	19.674
MOTA	828	CA	LEU A		-3.242	9.057	21.664
ATOM	829	C	LEU A		-3.155	10.555	21.932
ATOM	830	0	LEU A		-3.202	11.020	23.092
MOTA	831	CB	LEU A		-1.817	8.453	21.661
ATOM	832	CG	LEU A		-1.766	6.914	21.587
MOTA	833	CD1	LEU A		-0.343	6.494	21.396
MOTA	834	CD2	LEU F		-2.339	6.230	22.812
MOTA	835	N	THR A		-3.031	11.407	20.926
MOTA	836	H	THR A		-2.982	11.063	19.988
MOTA	837	CA	THR A		-2.964	12.834	21.155
MOTA	838	С	THR A		-4.309	13.331	21.635
MOTA	839	0	THR A	91	-4.422	14.315	22.398

Heller Ehrman White & McAuline, LLF

Sheet 16 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	840	CB	THR	Α	91	-2.555	13.543	19.848
MOTA	841	OG1		A	91	-3.459	13.214	18.802
MOTA	842	HG1	THR	A	91	-3.188	13.677	17.958
ATOM	843	CG2		A	91	-1.153	13.122	19.395
ATOM	844	N		Α	92	-5.435	12.704	21.258
ATOM	845	Н		A	92	-5.379	11.892	20.677
ATOM	846	CA		A	92	-6.763	13.186	21.682
ATOM	847	C	GLN		92	-6.942	12.975	23.153
ATOM	848	0		A	92	-7.554	13.797	23.871
	849	CB	GLN		92	-7.890	12.479	20.964
MOTA			GLN		92	-7.937	12.862	19.517
ATOM	850	CG CD		A	92	-9.251	12.515	18.886
MOTA	851			A	92	-10.270	12.424	19.546
MOTA	852	OE1	GLN	A	92	-9.202	12.323	17.588
ATOM	853	NE2	GLN	A	92	-10.031	12.087	17.080
ATOM	854	1HE2	GLN		92	-8.336	12.411	17.000
ATOM	855	2HE2	_	A	93	-6.472	11.846	23.721
ATOM	856	N	ILE	A		-6.014	11.160	23.721
ATOM	857	H		A	93		11.578	25.165
ATOM	858	CA		A	93	-6.608		25.163
ATOM	859	C	ILE		93	-5.472	12.189	
ATOM	860	0_	ILE		93	-5.342	12.031	27.171
MOTA	861	СВ	ILE	A	93	-6.820	10.073	25.484
ATOM	862	CG1	ILE	A	93	-5.536	9.221	25.286
ATOM	863	CG2	ILE	A	93	-8.022	9.486	24.735
MOTA	864	CD1	ILE	A	93	-5.754	7.740	25.693
ATOM	865	N		A	94	-4.594	12.993	25.330
MOTA	866	H	GLY	A	94	-4.617	13.079	24.334
MOTA	867	CA		A	94	-3.613	13.742	26.063
MOTA	868	C		Α	94	-2.448	12.895	26.512
MOTA	869	0	GLY	Α	94	-1.764	13.158	27.519
MOTA	870	N	CYS	A	95	-2.117	11.849	25.797
MOTA	871	H	CYS	A	95	-2.619	11.644	24.957
MOTA	872	CA	CYS	Α	95	-1.036	10.994	26.214
MOTA	873	C	CYS	A	95	0.362	11.566	25.925
ATOM	874	0	CYS	Α	″ 95	0.588	12.254	24.907
MOTA	875	CB	CYS	Α	95	-1.260	9.655	25.550
ATOM	876	SG	CYS		95	-0.254	8.307	26.125
ATOM	877	N		Α	96	1.346	11.297	26.803
MOTA	878	H	THR		96	1.135	10.738	27.618
MOTA	879	CA	THR		96	2.728	11.779	26.664
MOTA	880	С	THR		96	3.729	10.784	27.264
MOTA	881	0	THR		96	3.498	10.249	28.345
MOTA	882	CB	THR		96	2.925	13.154	27.346
MOTA	883	OG1	THR		96	2.594	13.109	28.721
MOTA	884	HG1	THR		96	2.784	13.966	29.109
MOTA	885	CG2	THR		96	2.139	14.300	26.698
MOTA	886	N	LEU		97	4.882	10.603	26.599
ATOM	887	H	LEU		97	5.016	11.071	25.714
MOTA	888	CA ·	LEU		97	6.040	9.910	27.166
MOTA	889	C	LEU		97	6.751	10.824	28.175
MOTA	890	0	LEU		97	6.705	12.046	28.044
MOTA	891	CB	LEU		97	7.013	9.497	26.049
MOTA	892	CG	LEU		97	6.452	8.449	25.065
MOTA	893	CD1	LEU		97	7.360	8.355	23.828
MOTA	894	CD2		A	97	6.345	7.065	25.724
MOTA	895	N	ASN	A	98	7.412	10.221	29.175

Heller Ehrman White & McAulme, LLP

Sheet 17 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

		Date of I	Filing: 11	10/00	Atto	ney Docket No. 24737-1906	iC	
MOTA	896	H	ASN	Α	98	7.413	9.212	29.205
MOTA	897	CA	ASN	Α	98	8.065	10.897	30.292
MOTA	898	С	ASN	Α	98	9.220	10.029	30.800
ATOM	899	0		Α	98	8.995	9.079	31.550
MOTA	900	CB		Α	98	7.057	11.177	31.423
ATOM	901	CG		A	98	6.084	12.305	31.083
ATOM	902	OD1		A	98	4.983	12.062	30.594
ATOM	903	ND2		A	98	6.493	13.549	31.342
ATOM	904	2HD2	ASN	A	98	5.888	14.331	31.136
ATOM	905	1HD2		A	98	7.406	13.707	31.742
ATOM	906	N		A	99	10.451	10.369	30.389
ATOM	907	H		A	99	10.547	11.177	29.792
ATOM	908	CA		A	99	11.679	9.620	30.666
ATOM	909	C	LEU		99	12.711	10.437	31.454
ATOM	910	0	LEU		99	12.487	11.652	31.651
	911	CB		Ā	99	12.233	8.989	29.369
ATOM					99	12.833	9.873	28.248
MOTA	912	CG	LEU	A.			10.947	27.705
MOTA	913	CD1	LEU	A	99	11.876		28.623
MOTA	914	CD2	LEU	A	99	14.183	10.505	31.869
ATOM	915	OXT	LEU	A	99	13.716	9.819	31.869
TER			220	-	-	10 600	34 007	20 106
ATOM	916	N	PRO	В	1	12.600	14.237	30.106
MOTA	917	CA	PRO	В	1.	11.842	15.268	29.363
MOTA	918	C	PRO	В	1	10.430	14.773	29.138
MOTA	919	0	PRO	В	1	10.054	13.695	29.618
MOTA	920	CB	PRO	В	1	12.622	15.412	28.035
MOTA	921	CG	PRO	В	1	13.817	14.470	28.131
ATOM	922	CD	PRO	В	1	13.966	14.227	29.603
MOTA	923	1H	PRO	В	1	12.175	13.343	29.964
MOTA	924	2H	PRO	В	1	12.594	14.457	31.081
MOTA	925	N	GLN	В	. 2	9.513	15.542	28.523
MOTA	926	H	GLN	В	2	9.751	16.474	28.251
MOTA	927	CA	GLN	В	2	8.186	15.058	28.242
ATOM	928	С	GLN	В	2	8.066	15.151	26.749
MOTA	929	0	GLN	В "	_	8.523	16.140	26.133
MOTA	930	CB	GLN	В	2	7.155	15.976	28.856
MOTA	931	CG	GLN	В	2	5.739	15.732	28.373
ATOM	932	CD	GLN	В	2	4.744	16.365	29.284
ATOM	933	OE1	GLN	В	2	4.628	15.962	30.431
ATOM	934	NE2	GLN	В	2	4.024	17.367	28.784
ATOM	935	1HE2	GLN	В	2	3.341	17.830	29.349
ATOM	936	2HE2	GLN	В	2	4.160	17.665	27.839
MOTA	937	N	ILE	В	3	7.499	14.176	26.036
MOTA	938	H	ILE	В	3	7.102	13.386	26.504
MOTA	939	CA	ILE	В	3	7.435	14.216	24.601
ATOM	940	C	ILE	В	3	5.956	14.097	24.184
ATOM	941	0	ILE	В	3	5.150	13.290	24.710
ATOM	942	CB	ILE	В	3	8.299	13.058	24.029
MOTA	943	CG1	ILE	В	3	9.743	13.232	24.534
ATOM	944	CG2	ILE	В	3	8.269	12.985	22.496
ATOM	945	CD1	ILE	В	3	10.621	12.068	24.143
ATOM	946	N	THR	В	4	5.462	15.108	23.453
ATOM	947	H	THR	В	4	6.046	15.887	23.226
ATOM	948	CA	THR	В	4	4.107	15.115	22.976
MOTA	949	C		В	4	4.039	14.193	21.765
ATOM	950	Ō	THR		4	5.066	13.755	21.203

Heller Ehrman White & McAumie, LLP Sheet 18 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

	Date of F	iling: 11/10/00	Attorney	Docket No. 24737-1906	С	
ATOM 95	1 CB	THR B	4	3.616	16.548	22.647
ATOM 95		THR B	4	4.450	17.157	21.645
ATOM 95	HG1	THR B	4	4.123	18.080	21.442
ATOM 95	4 CG2	THR B	4	3.644	17.454	23.876
ATOM 95		LEU B	5	2.872	13.781	21.324
ATOM 95		LEU B	5	2.033	14.151	21.723
ATOM 95		LEU B	5	2.837	12.795	20.265
ATOM 95	3 C	LEU B	5	2.183	13.415	19.047
ATOM 95	9 0	LEU B	5	1.677	12.720	18.142
ATOM 96) CB	LEU B	5	2.093	11.577	20.762
ATOM 96	l CG	LEU B	5	2.819	10.856	21.892
ATOM 96	2 CD1	LEU B	5 .	1.889	9.885	22.602
ATOM 96	CD2	LEU B	5 `	4.108	10.159	21.416
ATOM 96	4 N	TRP B	6	2.209	14.742	18.880
ATOM 96	5 H	TRP B	6	2.601	15.323	19.593
ATOM 96	5 CA	TRP B	6	1.683	15.364	17.690
ATOM 96	7 C	TRP B	6	2.581	14.978	16.509
ATOM 96	3 0	TRP B	6	2.159	14.851	15.349
ATOM 96	9 CB	TRP B	6	1.587	16.879	17.833
ATOM 97	CG	TRP B	6	0.652	17.339	18.921
ATOM 97		TRP B	6	0.955	17.584	20.232
ATOM 97		TRP B	6	-0.750	17.612	18.783
ATOM 97	NE1	TRP B	6	-0.167	17.989	20.913
ATOM 97		TRP B	6	-0.217	18.230	21.882
ATOM 97	5 CE2	TRP B	6	-1.224	18.013	20.048
ATOM 97		TRP B	6	-1.637	17.550	17.709
ATOM 97		TRP B	6	-2.544	18.352	20.266
ATOM 97		TRP B	6	-2.947	17.885	17.921
ATOM 97		TRP B	6	-3.394	18.281	19.185
ATOM 98		GLN B	7	3.896	14.809	16.738
ATOM 98		GLN, B	7	4.267	14.985	17.650
ATOM 98		GLN B	7	4.794	14.376	15.689
ATOM 98		GLN B	7	5.361	13.043	16.096
ATOM 98		GLN B	7	5.221	12.586	17.243
ATOM 98		GLN B		5.880	15.430	15.505
ATOM 98		GLN B	7	5.353	16.704	14.804
ATOM 98		GLN B	7	6.197	17.912	15.137 15.404
ATOM 98		GLN B	7	7.400 5.553	17.802 19.083	15.121
ATOM 98		GLN B	7		19.003	15.330
ATOM 99		GLN B	7	6.040 4.579	19.121	14.900
ATOM 99		GLN B	7	5.979	12.274	15.189
ATOM 99		ARG B	8 8	6.073	12.597	14.247
ATOM 99		ARG B ARG B	8	6.505	10.985	15.573
ATOM 99		ARG B	8	7.577	11.198	16.610
ATOM 99 ATOM 99		ARG B	8	8.395	12.130	16.515
		ARG B	8	7.092	10.238	14.384
		ARG B	8	6.132	10.018	13.237
ATOM 99 ATOM 99		ARG B	8	6.802	9.4.02	12.046
ATOM 100		ARG B	8	5.846	9.005	11.023
ATOM 100		ARG B	8	4.872	9.080	11.237
ATOM 100		ARG B	8	6.217	8.552	9.828
ATOM 100		ARG B	8	7.496	8.442	9.486
ATOM 100		ARG B	8	8.211	8.703	10.134
ATOM 100		ARG B	8	7.744	8.098	8.580
ATOM 100	_	ARG B	8	5.279	8.202	8.952

Heller Ehrman White & McAnnife, LLP Sheet 19 of 33

Sheet 19 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

3.0004			.mng. 11/10/00		5 540	7 060	0 050
ATOM	1007	1HH2	ARG B	8	5.540	7.860	8.050
MOTA	1008	2HH2	ARG B	8	4.312	8.281	9.196
ATOM	1009	N	PRO B	9	7.663	10.381	17.682
ATOM	1010	CA	PRO B	9	8.666	10.587	18.746
ATOM	1011	С	PRO B	9	10.065	10.196	18.315
ATOM	1012	Ö	PRO B	9	10.678	9.215	18.778
				9	8.148	9.682	19.878
ATOM	1013	CB	PRO B				
ATOM	1014	CG	PRO B	9	7.315	8.607	19.206
MOTA	1015	CD	PRO B	9	6.708	9.323	18.004
MOTA	1016	N	LEU B	10	10.685	10.969	17.400
ATOM	1017	H	LEU B	10	10.201	11.746	16.998
MOTA	1018	CA	LEU B	10	12.040	10.706	16.978
ATOM	1019	C	LEU B	10	12.976	11.498	17.850
ATOM	1020	Ö	LEU B	10	12.880	12.733	18.018
					12.250		15.554
MOTA	1021	CB	LEU B	10		11.170	
MOTA	1022	CG	LEU B	10	11.427	10.386	14.551
ATOM	1023	CD1	LEU B	10	11.385	11.175	13.276
MOTA	1024	CD2	LEU B	10	11.956	8.947	14.355
MOTA	1025	N	VAL B	11	14.030	10.843	18.384
ATOM	1026	Н	VAL B	11	14.148	9.866	18.206
ATOM	1027	CA	VAL B	11	15.018	11.517	19.223
MOTA	1028	C	VAL B	11	16.400	11.111	18.740
		0	VAL B	11	16.581	10.201	17.911
ATOM	1029				· · · · · · · · · · · · · · · · · · ·		
ATOM	1030	CB	VAL B	11	14.857	11.100	20.699
MOTA	1031	CG1	VAL B	11	13.514	11.586	21.293
ATOM	1032	CG2	VAL B	11	15.038	9.573	20.903
MOTA	1033	N	THR B	12	17.485	11.739	19.232
MOTA	1034	H	THR B	12	17.370	12.507	19.862
ATOM	1035	CA	THR B	12	18.843	11.325	18.868
ATOM	1036	С	THR B	12	19.377	10.284	19.837
ATOM	1037	Ö	THR B	12	19.237	10.352	21.082
ATOM	1038	CB	THR B	12	19.830	12.520	18.820
		OG1	THR B	12	19.389	13.483	17.876
MOTA	1039			12		14.252	17.848
ATOM	1040	HG1	THR B		20.028		
MOTA	1041	CG2	THR B	.12	21.234	12.075	18.399
ATOM	1042	N	ILE B	13	20.044	9.234	19.338
ATOM	1043	H	ILE B	13	20.135	9.130	18.348
MOTA	1044	CA	ILE B	13	20.641	8.239	20.176
ATOM	1045	C	ILE B	13	22.119	8.226	19.855
ATOM	1046	0	ILE B	13	22.579	8.817	18.865
MOTA	1047	CB	ILE B	13	19.993	6.870	19.879
ATOM	1048	CG1	ILE B	13	20.192	6.464	18.415
ATOM	1049	CG2	ILE B	13	18.482	6.893	20.206
					19.829	5.035	18.106
ATOM	1050	CD1	ILE B	13	22.973		20.661
ATOM	1051	N	LYS B	14		7.618	
MOTA	1052	H	LYS B	14	22.652	7.243	21.531
ATOM	1053	CA	LYS B	14	24.364	7.480	20.317
MOTA	1054	С	LYS B	14	24.680	6.029	20.477
ATOM	1055	0	LYS B	14	24.353	5.353	21.484
MOTA	1056	CB	LYS B	14	25.266	8.263	21.242
MOTA	1057	CG	LYS B	14	24.947	9.729	21.236
ATOM	1058	CD	LYS B	14	25.664	10.498	22.339
MOTA	1059	CE	LYS B	14	26.758	11.441	21.807
		NZ	LYS B	14	28.026	10.781	21.440
MOTA	1060				28.674	11.466	21.440
ATOM	1061	1HZ	LYS B	14			
MOTA	1062	3HZ	LYS B	14	27.855	10.107	20.722

Heller Ehrman White & McAuntfe, LLP

Sheet 20 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	1063	2HZ	LYS B	14	28.408	10.323	22.243
ATOM	1064	N	ILE B	15	25.214	5.390	19.425
MOTA	1065	H	ILE B	15	25.434	5.901	18.594
MOTA	1066	CA	ILE B	15	25.489	3.989	19.434
ATOM	1067		ILE B	15	26.832	3.981	18.750
ATOM	1068		ILE B	15	27.104	4.869	17.933
ATOM	1069		ILE B	15	24.435	3.220	18.606
ATOM	1000		ILE B	15	24.893	1.824	
ATOM	1070	CG2	ILE B	15	24.048	3.977	18.347 17.309
ATOM	1071	CD1	ILE B	15			
ATOM	1072				23.830	0.996	17.645
		N	GLY B	16	27.812	3.212	19.202
ATOM	1074	H	GLY B	16	27.623	2.535	19.913
ATOM	1075	CA	GLY B	16	29.175	3.336	18.677
ATOM	1076	C	GLY B	16	29.771	4.754	18.619
MOTA	1077	0	GLY B	16	30.737	4.970	17.902
ATOM	1078	N	GLY B	17	29.273	5.791	19.335
MOTA	1079	H	GLY B	17	28.453	5.660	19.892
ATOM	1080	CA	GLY B		29.924	7.105	19.302
MOTA	1081	С	GLY B	17	29.468	8.043	18.176
ATOM	1082	0	GLY B	17	29.984	9.155	17.933
MOTA	1083	N	GLN B	18	28.433	7.621	17.411
MOTA	1084	Н	GLN B	18	28.046	6.711	17.560
MOTA	1085	CA	GLN B	18	27.834	8.449	16.348
ATOM	1086	С	GLN B	18	26.407	8.755	16.736
MOTA	1087	0	GLN B	18	25.678	7.953	17.353
ATOM	1088	CB	GLN B	18	27.810	7.645	15.045
MOTA	1089	CG	GLN B	18	27.247	6.204	15.146
ATOM	1090	CD	GLN B	18	27.572	5.333	13.924
ATOM	1091	OE1	GLN B	18	26.771	4.501	13.464
MOTA	1092	NE2	GLN B	18	28.766	5.531	13.393
ATOM	1093	1HE2	GLN B	18	29.057	5.005	12.594
ATOM	1094	2HE2	GLN B	18	29.388	6.209	13.786
ATOM	1095	N	LEU B	19	25.873	9.933	16.337
ATOM	1096	Н	LEU B	19	26.446	10.602	15.863
ATOM	1097	CA	LEU B	19	24.467	10.267	16.578
ATOM	1098	C	LEU B	19	23.633	9.622	15.490
ATOM	1099	Õ	LEU B	19	23.912	9.707	14.284
ATOM	1100	CB	LEU B	19	24.207	11.777	16.457
ATOM	1101	CG	LEU B	19	24.857	12.756	17.454
ATOM	1102	CD1	LEU B	19	24.739	12.736	18.880
ATOM	1102	CD2	LEU B	19	26.299	13.072	17.130
ATOM	1103	N N	LYS B	20	22.450	9.085	15.850
ATOM	1104	H	LYS B	20	22.430		16.819
ATOM	1105					8.948	
		CA	LYS B	20	21.472	8.702	14.867
ATOM	1107	C	LYS B	20	20.121	9.105	15.417
ATOM	1108	O	LYS B	20	19.957	9.572	16.569
ATOM	1109	CB	LYS B	20	21.496	7.200	14.560
MOTA	1110	CG	LYS B	- 20	22.904	6.653	14.507
ATOM	1111	CD	LYS B	20	23.052	5.366	13.677
ATOM	1112	CE	LYS B	20	23.069	5.603	12.145
MOTA	1113	NZ	LYS B	20	23.893	6.758	11.699
MOTA	1114	1HZ	LYS B	20	23.847	6.836	10.703
MOTA	1115	3HZ	LYS B	20	24.843	6.617	11.978
MOTA	1116	2HZ	LYS B	20	23.544	7.597	12.116
MOTA	1117	N	GLU B	21	19.068	9.022	14.591
MOTA	1118	Н	GLU B	21	19.200	8.712	13.650

Heller Ehrman White & McAuliffe, Sheet 21 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

and Clinical Applications
Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM ATOM	1119 1120	CA	GLU B	21	17.735	9.366	15.008
ATOM	1121	C O		21	16.937	8.095	15.119
		-		21	17.117	7.103	14.376
MOTA	1122	CB	GLU B	21	17.143	10.314	13.983
MOTA	1123	CG	GLU B	21	15.714	10.706	14.162
MOTA	1124	CD	GLU B	21	15.304	11.607	13.036
ATOM	1125	OE1		21	14.971	11.051	11.957
MOTA	1126	OE2		21	15.338	12.854	13.174
MOTA	1127	N	ALA B	22	16.025	7.999	16.072
MOTA	1128	H	ALA B	22	15.825	8.792	16.648
MOTA	1129	CA	ALA B	22	15.300	6.783	16.315
MOTA	1130	С	ALA B	22	13.981	7.132	16.952
MOTA	1131	0	ALA B	22	13.756	8.153	17.632
MOTA	1132	CB	ALA B	22	16.095	5.865	17.235
MOTA	1133	N	LEU B	23	12.994	6.230	16.743
MOTA	1134	Н	LEU B	23	13.195	5.379	16.257
MOTA	1135	CA	rén B	23	11.639	6.408	17.180
MOTA	1136	C	LEU B	23	11.476	5.740	18.534
MOTA	1137	0	LEU B	23	11.814	4.564	18.746
MOTA	1138	CB	LEU B	23	10.775	5.665	16.192
MOTA	1139	CG	LEU B	23	9.267	5.810	16.237
MOTA	1140	CD1	LEU B	23	8.807	7.142	15.664
MOTA	1141	CD2	LEU B	23	8.648	4.625	15.482
MOTA	1142	N	LEU B	24	10.948	6.455	19.553
MOTA	1143	H	LEU B	24	10.775	7.433	19.435
ATOM	1144	CA	LEU B	24	10.613	5.838	20.849
ATOM	1145	С	LEU B	24	9.271	5.160	20.687
ATOM	1146	O	LEU B	24	8.208	5.764	20.418
MOTA	1147	CB	LEU B	24	10.564	6.878	21.971
ATOM	1148	CG	LEU B	24	11.828	7.750	22.075
ATOM	1149	CD1	LEU B	24	11.580	8.859	23.077
ATOM	1150	CD2	LEU B	24	13.099	6.955	22.388
ATOM	1151	N	ASP B	25	9.246	3.822	20.809
ATOM	1152	H	ASP B	25	10.025	3.347	21.218
ATOM	1153	CA		25	8.122	3.030	20.366
MOTA	1154	C	ASP B	25	7.637	2.136	21.484
ATOM	1155	Ö	ASP B	25	8.189	1.048	21.759
MOTA	1156	CB	ASP B	25	8.613	2.196	19.189
ATOM	1157	CG	ASP B	25	7.528	1.421	18.511
ATOM	1158	OD1	ASP B	25	6.422	1.339	19.058
ATOM	1159	OD2	ASP B	25	7.800	0.897	17.426
MOTA	1160	N	THR B	26	6.547	2.465	22.157
ATOM	1161	H	THR B	26	6.067	3.314	21.938
ATOM	1162	CA	THR B	26	6.025	1.621	23.212
MOTA	1163	C	THR B	26	5.347	0.369	22.694
ATOM	1164	Õ	THR B	26	4.976	-0.550	23.451
ATOM	1165	CB	THR B	26	5.027	2.389	24.046
ATOM	1166	OG1	THR B	26	3.927	2.853	23.239
ATOM	1167	HG1	THR B	26	3.277	3.359	23.239
ATOM	1168	CG2	THR B	26	5.703		
ATOM	1169	N N	GLY B	27	5.090	3.603 0.245	24.650 21.382
ATOM	1170	H	GLY B	27	5.341	0.243	
ATOM	1171	CA	GLY B	27	4.457	-0.938	20.756
ATOM	1171	CA	GLY B	27			20.867
ATOM	1172	0	GLY B	27	5.475	-1.992 -3.109	20.458
ATOM	1173	N	ALA B	28	5.121	-3.108 -1.717	20.055
ATOM	TT / 4	TA	WIW D	20	6.792	-1.717	20.495

Heller Ehrman White & McAuliffe, L Sheet 22 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

					, 2001101110121101 1900		
ATOM	1175	Н	ALA B	28	7.104	-0.832	20.841
MOTA	1176	CA	ALA B	28	7.800	-2.690	20.037
ATOM	1177	С	ALA B	28	8.371	-3.444	21.259
MOTA	1178	0	ALA B	28	8.840	-2.807	22.213
MOTA	1179	CB	ALA B	28	8.924	-1.936	19.358
ATOM	1180	N	ASP B	29	8.459	-4.787	21.289
MOTA	1181	Н	ASP B	29	8.082	-5.325	20.535
MOTA	1182	CA	ASP B	29	9.121	-5.441	22.452
MOTA	1183	C	ASP B	29	10.608	-5.219	22.404
MOTA	1184	0	ASP B	29	11.345	-5.264	23.412
MOTA	1185	CB	ASP B	29	8.965	-6.975	22.447
MOTA	1186	CG	ASP B	29	7.551	-7.477	22.774
MOTA	1187	OD1		29	6.683	-6.693	23.169
MOTA	1188	OD2		29	7.350	-8.686	22.616
MOTA	1189	N	ASP B	30	11.164	-5.157	21.171
MOTA	1190	Н	ASP B	30	10.577	-5.063	20.367
ATOM	1191	CA	ASP B	30	12.609	-5.217	20.880
MOTA	1192	С	ASP B	30	13.048	-3.886	20.335
MOTA	1193	0	ASP B	30	12.269	-3.055	19.817
MOTA	1194	CB	ASP B	30	12.833	-6.226	19.735
MOTA	1195	CG	ASP B	3.0	12.477	,-7.675	20.099
MOTA	1196	OD1	ASP B	30	13.197	-8.272	20.908
MOTA	1197	OD2	ASP B	30	11.494	-8.237	19.569
MOTA	1198	N	THR B	31	14.387	-3.692	20.227
MOTA	1199	H	THR B	31	15.018	-4.380	20.586
ATOM	1200	CA	THR B	31	14.981	-2.530	19.614
MOTA	1201	C	THR B	31	15.578	-2.979	18.260
MOTA	1202	0	THR B	31	16.246	-4.020	18.123
ATOM	1203	CB	THR B	31	16.036	-2.004	20.557
ATOM ATOM	1204	OG1	THR B	31	15.378	-1.376	21.645
ATOM	1205 1206	HG1 CG2	THR B	31 31	16.052 16.944	-1.016	22.290 19.904
ATOM	1206	N	THR B VAL B	32	15.237	-0.960 -2.283	17.150
ATOM	1207	Н	VAL B	32	14.703	-1.442	17.130
MOTA	1208	CA	VAL B	″ 32	15.626	-2.722	15.806
ATOM	1210	C	VAL B	32	16.303	-1.566	15.132
ATOM	1211	0	VAL B	32	15.779	-0.428	14.995
ATOM	1212	CB	VAL B	32	14.407	-3.126	14.964
ATOM	1213	CG1	VAL B	32	14.820	-3.703	13.596
ATOM	1214	CG2	VAL B	32	13.556	-4.102	15.703
ATOM	1215	N	LEU B	33	17.563	-1.756	14.720
ATOM	1216	H	LEU B	33	17.984	-2.658	14.814
ATOM	1217	CA	LEU B	33	18.347	-0.697	14.138
ATOM	1218	С	LEU B	33	18.610	-1.009	12.685
MOTA	1219	0	LEU B	33	18.685	-2.162	12.205
MOTA	1220	CB	LEU B	33	19.679	-0.628	14.856
MOTA	1221	CG	LEU B	33	19.698	0.363	16.031
ATOM	1222	CD1	LEU B	33	18.425	0.321	16.891
MOTA	1223	CD2	LEU B	33	20.929	0.179	16.889
MOTA	1224	N	GLU B	34	18.786	0.078	11.899
MOTA	1225	H	GLU B	34	18.619	0.991	12.271
MOTA	1226	CA	GLU B	34	19.218	0.041	10.488
MOTA	1227	С	GLU B	34	20.478	-0.774	10.399
MOTA	1228	0	GLU B	34	21.374	-0.835	11.272
MOTA	1229	CB	GLU B	34	19.536	1.460	9.996
ATOM	1230	CG	GLU B	34	20.722	2.088	10.761

Heller Ehrman White & McAuliffe, CoP Sheet 23 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C									
ATOM	1231	CD	ĞLU		34	21.085	3.512	10.314	
ATOM	1232	OE1		В	34	20.285	4.466	10.500	
ATOM	1233	OE2		В	34	22.211	3.703	9.775	
ATOM	1234	N		В	35	20.673	-1.367	9.205	
ATOM	1235	Н		B	35	20.011	-1.227	8.468	
ATOM	1236	CA	GLU		35	21.802	-2.205	8.930	
ATOM	1237	C		В	35	23.096	-1.520	9.321	
ATOM	1238	Õ		В	35	23.391	-0.379	8.916	
ATOM	1239	CB		В	35	21.741	-2.479	7.439	
ATOM	1240	CG		В	35	22.795	-3.380	6.883	
ATOM	1241	CD		В	35	22.987	-4.587	7.744	
MOTA	1242	OE1		В	35	21.980	-5.258	8.118	
MOTA	1243	OE2		В	35	24.149	-4.860	8.048	
MOTA	1244	N	MET	B	36	23.926	-2.106	10.157	
MOTA	1245	Н	MET	B	36	23.654	-2.953	10.613	
MOTA	1246	CA	MET	В	36	25.232	-1.559	10.441	
MOTA	1247	C	MET	В	36	26.146	-2.687	10.815	
ATOM	1248	0	MET	В	36	25.731	-3.783	11.257	
ATOM	1249	CB	MET	В	36	25.251	-0.424	11.497	
ATOM	1250	CG	MET	В	36	24.626	-0.724	12.881	
ATOM	1251	SD	MET	В	36	24.722	0.719	13.988	
ATOM	1251	CE	MET	В	36	23.132	1.586	13.692	
ATOM	1253	N		В	37	27.441	-2.551	10.593	
ATOM	1254	Н		В	37	27.783	-1.726	10.144	
ATOM	1255	CA		В	37	28.321	-3.608	11.011	
ATOM	1256	CA		В	37	28.721	-3.352	12.442	
ATOM	1257	0		В	37	29.402	-2.369	12.788	
ATOM	1258	CB	SER		37	29.567	-3.622	10.109	
MOTA	1259	OG	SER		37	29.231	-3.908	8.750	
MOTA	1260	HG		В	37	30.057	-3.911	8.187	
ATOM	1261	N		В	38	28.469	-4.295	13.366	
MOTA	1262	H		В	38	27.948	-5.123	13.117	
ATOM	1263	CA	LEU	В	38	29.073	-4.232	14.714	
ATOM	1264	C	LEU	В	38	30.132	-5.342	14.895	
ATOM	1265	0	LEU	B		30.070	-6.357	14.197	
ATOM	1266	СВ	LEU	В	38	27.986	-4.237	15.802	
ATOM	1267	CG		В	38	27.005	-3.039	15.750	
ATOM	1268	CD1		В	38	25.885	-3.214	16.788	
ATOM	1269	CD2			38	27.707	-1.696	16.017	
ATOM	1270	N	PRO		39	31.119	-5.160	15.804	
ATOM	1271	CA	PRO	В	39	32.199	-6.116	16.052	
ATOM	1272	C		В	39	31.767	-7.223	17.028	
ATOM	1273	Ö		В	39	31.448	-6.942	18.185	
ATOM	1274	СВ		В	39	33.347	-5.276	16.625	
MOTA	1275	CG	PRO	В	39	32.634	-4.148	17.370	
ATOM	1276	CD		В	39	31.385	-3.916	16.523	
ATOM	1277	N	GLY		40	31.770	-8.481	16.559	
ATOM	1278	H	GLY		40	32.036	-8.641	15.598	
ATOM	1279	CA	GLY		40	31.420	-9.658	17.353	
ATOM	1280	C	GLY		40	30.679	-10.723	16.539	
ATOM	1281	Ö	GLY		40	30.647	-10.671	15.308	
ATOM	1282	N	LYS	В	41	30.098	-11.699	17.255	
ATOM	1283	Н		В	41	30.164	-11.656	18.261	
ATOM	1284	CA	LYS	В	41	29.399	-12.861	16.702	
ATOM	1285	C	LYS	В	41	27.971	-12.923	17.245	
ATOM	1286	0	LYS	В	41	27.743	-12.700	18.436	

Heller Ehrman White & McAuliffe, Sheet 24 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

and Clinical Applications
Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

		Date of F	iling: 11/1	0/00	Attorr	ney Docket No. 24737-1906C	
MOTA	1287	CB	LYS	В	41	30.154 -14.152	17.048
ATOM	1288	CG	LYS	В	41	31.537 -14.221	16.384
ATOM	1289	CD	LYS	В	41	32.192 -15.580	16.651
ATOM	1290	CE		В	41	33.566 -15.642	15.983
ATOM	1291	NZ	LYS	В	41	34.198 -16.956	16.183
			LYS	В	41	35.102 -16.968	15.732
ATOM	1292	1HZ			41	33.612 -17.674	15.782
ATOM	1293	3HZ	LYS	В		34.312 -17.128	17.172
ATOM	1294	2HZ	LYS	В	41		16.351
ATOM	1295	N	TRP	В	42		
ATOM	1296	H	TRP	В	42	27.307 -13.458	15.411
MOTA	1297	CA	TRP	В	42	25.597 -12.929	16.521
ATOM	1298	С	TRP	В	42	24.723 -14.179	16.405
MOTA	1299	0	TRP	В	42	25.210 -15.277	16.131
MOTA	1300	CB	TRP	В	42	25.192 -11.856	15.491
MOTA	1301	CG	TRP	В	42	26.127 -10.687	15.390
MOTA	1302	CD1	TRP	В	42	26.651 -10.197	14.244
MOTA	1303	CD2	TRP	В	42	26.739 -9.913	16.467
MOTA	1304	NE1	TRP	В	42	27.548 -9.191	14.533
ATOM	1305	HE1	TRP	В	42	28.067 -8.702	13.818
ATOM	1306	CE2	TRP	В	42	27.664 -8.995	15.893
ATOM	1307	CE3	TRP	В	42	26.640 -9.923	17.875
ATOM	1308	CZ2	TRP	В	42	28.443 -8.136	16.680
ATOM	1309	CZ3	TRP	В	42	27.426 -9.075	18.673
ATOM	1310	CH2	TRP	В	42	28.318 -8.171	18.077
ATOM	1311	N	LYS	В	43	23.416 -13.980	16.617
ATOM	1312	H	LYS	В	43	23.105 -13.044	16.840
ATOM	1313	CA	LYS	В	43	22.378 -14.995	16.526
ATOM	1314	C		В	43	21.368 -14.507	15.478
ATOM	1315	0	LYS	В	43	20.743 -13.472	15.706
MOTA	1316	CB	LYS	В	43	21.694 -15.196	17.893
MOTA	1317	CG -	LYS	В	43	22.641 -15.623	19.034
MOTA	1318	CD	LYS	В	43	22.409 -14.814	20.323
ATOM	1319	CE	LYS	В	43	22.767 -13.327	20.182
MOTA	1320	NZ	LYS	В	43	24.214 -13.113	20.015
ATOM	1321	1HZ	LYS		43	24.400 -12.125	19.924
ATOM	1322	3HZ	LYS	В	43	24.532 -13.593	19.185
ATOM	1323	2HZ	LYS	В	43	24.702 -13.476	20.821
	1323	N	PRO	В	44	21.175 -15.204	14.341
ATOM	1324	CA		В	44	20.139 -14.835	13.382
ATOM			PRO		44	18.765 -14.997	14.044
ATOM	1326	C		В	44	18.573 -15.902	14.860
ATOM	1327	0		В	44	20.341 -15.761	12.180
ATOM	1328	CB				20.999 -16.999	12.787
MOTA	1329	CG		В	44	21.837 -16.434	13.933
ATOM	1330	CD	PRO	В	44	17.825 -14.101	13.712
MOTA	1331	N	LYS	В	45	17.994 -13.483	12.944
ATOM	1332	H		В	45		14.339
MOTA	1333	CA	LYS	В	45		
MOTA	1334	C		В	45	15.519 -13.590	13.329 12.379
MOTA	1335	0		В	45	15.829 -12.838	
MOTA	1336	CB		В	45	16.558 -13.149	15.560
MOTA	1337	CG	LYS	В	45	15 469 -13 442	16.579
ATOM	1338	CD	LYS	В	45	15.256 -12.254	17.501
ATOM	1339	CE	LYS	В	45	14.131 -12.461	18.469
ATOM	1340	NZ	LYS	В	45	14.549 -13.442	19.474
ATOM	1341	1HZ	LYS	В	45	13.805 -13.588	20.126
MOTA	1342	3HZ	LYS	B	45	15.355 -13.101	19.958

Heller Ehrman White & McAuliffe, Sheet 25 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

and Clinical Applications Applicants: Ramnarayan et al.

		Date of H	App iliag: 11/10		orney Docket No. 24737-1906C
ATOM	1343	2HZ		B 45	14.772 -14.306 19.023
ATOM	1344	N		B 46	14.240 -14.005 13.416
ATOM	1345	Н		B 46	13.991 -14.705 14.085
ATOM	1346	CA		B 46	13.203 -13.472 12.570
MOTA	1347	C		B 46	12.291 -12.623 13.425
ATOM	1348	Ö		B 46	11.782 -13.063 14.471
ATOM	1349	CB		B 46	12.383 -14.616 12.016
ATOM	1350	CG		B 46	13.153 -15.586 11.187
ATOM	1351	SD		B 46	12.977 -15.188 9.473
MOTA	1351	CE		B 46	13.566 -16.690 8.775
ATOM	1353	N		B 47	11.933 -11.379 13.030
ATOM	1354	H		B 47	12.327 -10.991 12.196
ATOM	1354	CA		B 47	10.971 -10.568 13.797
ATOM	1356	CA		B 47	9.761 -10.233 12.962
MOTA	1357	0		B 47	9.819 -10.048 11.731
				B 47	11.608 -9.294 14.385
ATOM	1358	CB		в 417 В 47	12.345 -8.459 13.318
MOTA	1359	CG1			
ATOM	1360	CG2		B 47	
MOTA	1361	CD1		B 47	
MOTA	1362	N	_	B 48	8.557 -10.136 13.558 8.484 -10.249 14.549
ATOM	1363	H		3 48	
ATOM	1364	CA		B 48	7.365 -9.872 12.800
MOTA	1365	C		3 48	6.826 -8.512 13.141
ATOM	1366	0		B 48	7.136 -7.832 14.149
ATOM	1367	N		B 49	5.940 -8.027 12.306
ATOM	1368	H	GLY I		5.668 -8.562 11.506
MOTA	1369	CA		B 49	5.336 -6.745 12.493
MOTA	1370	C		B 49	4.082 -6.786 11.674
MOTA	1371	0		8 49	3.561 -7.847 11.273
ATOM	1372	N		B 50	3.531 -5.634 11.315
ATOM	1373	H		3 50	4.015 -4.777 11.492
ATOM	1374	CA		B 50	2.247 -5.573 10.673
MOTA	1375	C		3 50	2.118 -6.456 9.420
ATOM	1376	0		3 50	1.175 -7.253 9.215
MOTA	1377	CB	ILE !		1.982 -4.071 10.391
MOTA	1378	CG1		3 50	1.005 -3.539 11.396
ATOM	1379	CG2		3 50	1.610 -3.739 8.922
MOTA	1380	CD1		3 50	-0.391 -4.077 11.252
MOTA	1381	N	GLY I		3.113 -6.410 8.519
ATOM	1382	H	GLY I		3.957 -5.920 8.737
MOTA	1383	CA	GLY I		2.926 -7.075 7.259
MOTA	1384	C	GLY I		3.671 -8.391 7.077
MOTA	1385	0	GLY !		3.716 -8.945 5.973
MOTA	1386	N	GĹY I		4.296 -8.982 8.116
MOTA	1387	H	GLY I		4.227 -8.580 9.029
MOTA	1388	CA	GLY I		5.053 -10.190 7.874
MOTA	1389	C	GLY I		6.334 -10.178 8.678
MOTA	1390	0	GLY !		6.519 -9.421 9.657
MOTA	1391	N	PHE I		7.325 -11.015 8.343
MOTA	1392	H	PHE I		7.227 -11.603 7.540
ATOM	1393	CA	PHE I		8.542 -11.096 9.110
ATOM	1394	C	PHE I		9.727 -10.584 8.315
MOTA	1395	0	PHE !		9.780 -10.618 7.075
MOTA	1396	CB	PHE I		8.804 -12.555 9.542
ATOM	1397	CG	PHE 1		7.850 -13.023 10.592
MOTA	1398	CD1	PHE I	3 53	6.513 -13.277 10.279

Heller Ehrman White & McAuliffe, LLP

Heller Ehrman White & McAuliffe, ELP Sheet 26 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

	Date of Filing: 11/10/00				Attorney Docket No. 24737-1906C				
ATOM	1399	CD2	PHE	В	53	8.279	-13.192	11.918	
MOTA	1400	CE1	PHE	В	5 3	5.620	-13.697	11.253	
ATOM	1401	CE2	PHE	В	53	7.382	-13.615	12.903	
ATOM	1402	CZ	PHE	В	53	6.052	-13.868	12.574	
ATOM	1403	N		В	54	10.758	-10.126	8.985	
MOTA	1404	H		В	54	10.665	-9.922	9.960	
ATOM	1405	CA		В	54	12.029	-9.910	8.338	
ATOM	1406	C		В	54	13.089		9.134	
ATOM	1407	Ö		В	54	12.952		10.325	
ATOM	1408	CB		В	54	12.390		8.236	
ATOM	1409	CG1		В	54	12.386	-7.775	9.611	
MOTA	1410	CG2	ILE	В	54	11.460	-7.770	7.218	
ATOM	1411	CD1		В	54	13.113	-6.438	9.590	
ATOM	1412	N		В	55	14.272	-10.852	8.523	
ATOM	1413	H		В	55	14.383	-10.599	7.562	
ATOM	1414	CA		В	55	15.403		9.216	
ATOM	1415	C	LYS	В	5 5	16.274	-10.324	9.732	
ATOM	1416	Ö	LYS	В	55	16.620	-9.328	9.047	
MOTA	1417	CB		В	55	16.222	-12.237	8.245	
ATOM	1418	CG	LYS	В	55	15.638	-13.596	8.063	
ATOM	1419	CD	LYS	В	55	16.299	-14.348	6.953	
MOTA	1420	CE	LYS		55	15.311	-14.520	5.813	
	1421	NZ	LYS	В	55	15.757	-15.577	4.897	
ATOM	1421	1HZ		В	55	15.095	-15.676	4.154	
ATOM ATOM	1423	3HZ		В	55	15.830	-16.441	5.395	
	1423	2HZ		В	55	16.650	-15.334	4.518	
ATOM	1424	Znz N	VAL		56	16.880	-10.547	10.910	
MOTA		H	VAL		56	16.741	-11.418	11.382	
MOTA	1426		VAL		56	17.732	-9.578	11.534	
ATOM ATOM	1427	CA C	VAL		56	18.884	-10.304	12.184	
	1428		VAL		56	18.884	-11.539	12.367	
ATOM	1429	O	VAL		56	16.912	-8.819	12.609	
ATOM	1430	CB CG1		В	56	15.865	-7.943	11.921	
ATOM	1431 1432	CG2		В	56	16.215	-9.788	13.599	
ATOM ATOM	1432	N CG2		В "		19.958	-9.593	12.591	
ATOM	1433	H	ARG		57	20.030	-8.624	12.353	
ATOM	1434	CA	ARG		57	21.050	-10.193	13.386	
ATOM	1435	C	ARG		57	20.963	-9.608	14.804	
	1430	0	ARG		57	20.814	-8.395	15.053	
ATOM		CB	ARG		57	22.426	-9.873	12.817	
ATOM ATOM	1438	CG	ARG		57	22.664	-10.437	11.439	
ATOM	1439	CD	ARG		57 ⁻	24.012	-10.065	10.899	
ATOM	1440	NE	ARG		57	24.280	-10.697	9.617	
ATOM	1441		ARG		57	23.592	-11.323	9.250	
	1442	$^{ m HE}$	ARG		57	25.392	-10.478	8.921	
ATOM	1443		ARG		57	26.337	-9.650	9.353	
ATOM	1444	2HH1	ARG		57	26.223	-9.171	10.224	
ATOM	1445		ARG		57	27.163	-9.505	8.808	
ATOM	1446	1HH1 NH2	ARG		57	25.561	-11.104	7.760	
ATOM	1447		ARG		57	26.392	-10.950	7.700	
ATOM	1448	1HH2	ARG		57	24.857	-11.729	7.422	
MOTA	1449	2HH2	GLN		58	20.997		15.832	
ATOM	1450	N	GLN		58	21.176	-11.456	15.650	
ATOM	1451	H	GLN		58	20.780	-10.072	17.206	
MOTA MOTA	1452	CA C	GLN		58	22.108	-9.886	17.882	
ATOM	1453 1454	0	GLN		58		-10.815	18.038	
7-7 OL1	エエンエ	_		_					

Heller Ehrman White & McAuliffe, Sheet 27 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

		Date of	ring: 11/	10/00) Attorn	ey Docket No. 24/3/-19	JOC	
MOTA	1455	CB		В	58	20.051	-11.190	17.932
MOTA	1456	CG	GLN	В	58	19.765	-10.845	19.366
MOTA	1457	CD	GLN	В	58	19.179	-12.003	20.112
MOTA	1458	OE1		В	58	19.712	-12.472	21.101
MOTA	1459	NE2		В	58	18.055	-12.476	19.623
MOTA	1460	1HE2		В	58	17.598	-13.249	20.063
MOTA	1461	2HE2	GLN	В	58	17.647	-12.066	18.807
MOTA	1462	N	TYR	В	59	22.416	-8.692	18.422
MOTA	1463	H	TYR	В	59	21.788	-7.921	18.311
MOTA	1464	CA		В	59	23.631	-8.486	19.161
MOTA	1465	C		В	59	23.244	-8.290	20.607
ATOM	1466	0		В	59	22.178	-7.728	20.927
ATOM	1467	CB	TYR	В	59	24.387	-7.241	18.653
ATOM	1468	CG	TYR	В	59	24.271	-7.075	17.149
MOTA	1469	CD1		В	59	23.045	-7.242	16.494
ATOM	1470	CD2	TYR	В	59	25.385	-6.753	16.374
MOTA	1471	CE1	TYR	В	59	22.939	-7.093	15.112
ATOM	1472	CE2	TYR	В	59	25.291	-6.603	14.995
ATOM	1473	CZ	TYR	В	59	24.068	-6.774	14.365
ATOM	1474	OH		В	59	24.018	-6.620	13.010
ATOM	1475	HH		В	59	24.926	-6.394	12.658
MOTA	1476	N	ASP	В	60	24.010	-8.785	21.596
ATOM	1477	H	ASP	В	60	24.852	-9.276	21.372
ATOM	1478	CA		В	60	23.644	-8.624	22.992
ATOM	1479	C		В	60	24.556	-7.595	23.615
ATOM	1480	0		В	60	25.654	-7.261	23.125
MOTA	1481	CB		В	60	23.789	-9.920	23.777
ATOM	1482	CG		В	60	22.803	-10.960	23.332
MOTA	1483	OD1		В	60	21.619	-10.634	23.032
ATOM	1484	OD2		В	60	23.208	-12.126	23.273
ATOM ATOM	1485	N		В	61	24.156	-7.022	24.774
ATOM	1486 1487	H CA		В	61	23.252	-7.234	25.146
ATOM	1488	CA		B B	61 61	25.011	-6.086	25.519
ATOM	1489	0		в В	61	25.411 26.560	-4.866	24.746
ATOM	1490	CB		В	61	26.269	-4.382	24.832
ATOM	1491	CG		В	61	26.269	-6.763	26.028
ATOM	1492	CD		В	61	25.714	-8.038 -7.766	26.753
ATOM	1493	OE1	GLN		61	24.572	-7.455	28.185
ATOM	1494		GLN		61	26.744	-7.433	28.548 29.014
ATOM	1495	1HE2	GLN		61	26.620	-7.675	29.014
ATOM	1496	2HE2	GLN		61	27.654	-8.073	28.669
ATOM	1497	N		В	62	24.539	-4.257	23.933
ATOM	1498	H		В	62	23.628	-4.648	23.801
ATOM	1499	CA		B	62	24.878	-3.047	23.238
ATOM	1500	C		В	62	24.571	-1.885	24.144
ATOM	1501	Ö		В	62	23.515	-1.819	24.819
ATOM	1502	CB		B	62	24.097	-2.922	21.912
ATOM	15.03	CG1		В	62	24.310	-4.170	21.094
ATOM	1504	CG2		В	62	24.568	-1.709	21.054
ATOM	1505	CD1	ILE :		62		-4.479	20.878
ATOM	1506	N	LEU		63	25.485	-0.912	24.304
MOTA	1507	H	LEU		63	26.403	-1.028	23.926
MOTA	1508	CA	LEU		63	25.192	0.322	25.015
MOTA	1509	C	LEU		63	24.630	1.296	24.030
MOTA	1510	Ö	LEU		63	25.239	1.658	22.995
								,

Heller Ehrman White & McAuliffe,

Heller Ehrman White & McAuliffe, ELP Sheet 28 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	1511	CB	LEU E	3 63	26.436	0.970	25.590
ATOM	1512	CG	LEU E	3 63	26.186	2.358	26.226
ATOM	1513	CD1	LEU E		25.486	2.261	27.576
ATOM	1514	CD2	LEU E		27.468	3.162	26.382
				3 64	23.492	1.946	24.358
ATOM	1515	N					
MOTA	1516	H	ILE E		22.958	1.643	25.148
ATOM	1517	CA	ILE E		23.003	3.068	23.617
MOTA	1518	C		3 64	22.872	4.194	24.612
MOTA	1519	0	ILE E	3 64	22.915	4.007	25.846
ATOM	1520	CB	ILE E	3 64	21.634	2.701	22.989
MOTA	1521	CG1	ILE E	3 64	21.825	1.521	22.029
MOTA	1522	CG2	ILE E	3 64	20.982	3.894	22.246
ATOM	1523	CD1	ILE E	3 64	20.593	1.096	21.260
MOTA	1524	N	GLU E		22.803	5.460	24.172
ATOM	1525	H	GLU E		23.013	5.664	23.216
MOTA	1526	CA		3 65	22.432	6.551	25.037
	1527	C	GLU E		21.242	7.194	24.373
ATOM		0	GLU E		21.312	7.729	23.257
ATOM	1528				23.497	7.615	25.131
MOTA	1529	CB	GLU E			7.196	25.761
MOTA	1530	CG	GLU E		24.787		
MOTA	1531	CD		3 65	25.694	8.385	26.076
MOTA	1532	OE1		3 65	25.170	9.510	26.311
MOTA	1533	OE2	GLU I		26.938	8.200	26.092
MOTA	1534	N	ILE E	3 66	20.078	7.240	25.035
ATOM	1535	H	ILE H	3 66	20.010	6.835	25.947
MOTA	1536	CA	ILE E	3 66	18.907	7.865	24.462
ATOM	1537	C	ILE E	3 66	18.777	9.195	25.145
ATOM	1538	0	ILE E	3 66	18.591	9.303	26.379
MOTA	1539	CB		3 66	17.713	6.995	24.790
ATOM	1540	CG1		3 66	17.916	5.583	24.335
ATOM	1541	CG2		3 66	16.405	7.544	24.177
ATOM	1542	CD1		3 66	16.888	4.677	24.884
ATOM	1543	N		3 67	18.965	10.325	24.437
		H		3 67	19.201	10.268	23.467
MOTA	1544			3 67	18.833	11.663	25.049
MOTA	1545	CA			19.637	11.781	26.319
ATOM	1546	C,			19.235	12.400	27.328
MOTA	1547	0		3 67			25.319
MOTA	1548	CB		B 67	17.387	12.023	23.821
MOTA	1549	SG		B 67	16.407	12.259	26.383
MOTA	1550	N		3 68	20.830	11.180	
ATOM	1551	H		B 68	21.158	10.646	25.604
ATOM	1552	CA		3 68	21.654	11.288	27.558
MOTA	1553	C	GLY I		21.464	10.185	28.584
MOTA	1554	0		B 68	22.174	10.128	29.606
ATOM	1555	N		B 69	20.513	9.255	28.425
ATOM	1556	H	HIS I	B 69	19.924	9.282	27.618
ATOM	1557	CA	HIS I	B 69	20.304	8.199	29.391
ATOM	1558	С	HIS I	B 69	20.861	6.936	28.811
MOTA	1559	0	HIS I	B 69	20.589	6.560	27.647
MOTA	1560	CB	HIS I	B 69	18.832	7.992	29.654
ATOM	1561	CG		B 69	18.175	9.203	30.223
ATOM	1562	ND1		B 69	17.504	9.195	31.435
MOTA	1563	HD1		В 69	17.383	8.402	32.032
MOTA	1564	CD2		B 69	18.122	10.470	29.729
ATOM	1565	CE1		B 69	17.070	10,429	31.626
ATOM	1566		HIS I		17.410	11.240	30.635
							

JUN 0 3 2003 JUN 0 3 2003 JUN 0 3 2003

Heller Ehrman White & McAuliffe, LLF Sheet 29 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	1567	N	LYS B	70	21.751	6.217	29.499
MOTA	1568	H	LYS B	70	22.025	6.512	30.414
MOTA	1569	CA	LYS B	70	22.326	5.020	28.945
MOTA	1570	С	LYS B	70	21.386	3.854	29.145
ATOM	1571	Ö	LYS B	70	20.627	3.725	30.120
ATOM	1572	СВ	LYS B	70	23.613	4.678	29.663
ATOM	1573	CG	LYS B	70	24.694	5.655	29.379
ATOM	1574	CD	LYS B	70	25.739	5.524	30.444
ATOM	1575	CE	LYS B	70	27.048	6.090	30.011
MOTA	1576	NZ	LYS B	70	26.948	7.548	30.000
MOTA	1577	1HZ	LYS B	70	27.821	7.940	29.711
MOTA	1578	3HZ	LYS B	70	26.725	7.874	30.919
MOTA	1579	2HZ	LYS B	70	26.230	7.828	29.363
MOTA	1580	N	ALA B	71	21.512	2.849	28.284
MOTA	1581	H	ALA B	71	22.141	2.934	27.512
ATOM	1582	CA	ALA B	71	20.762	1.630	28.432
MOTA	1583.	С	ALA B	71	21.629	0.576	27.805
ATOM	1584	0	ALA B	71	22.463	0.830	26.912
ATOM	1585	CB	ALA B	71	19.452	1.726	27.737
ATOM	1586	N	ILE B	72	21.547	-0.681	28.237
ATOM	1587	Н	ILE B	72	20.864	-0.925	28.926
ATOM	1588	CA	ILE B	72	22.424	-1.698	27.730
ATOM	1589	CA	ILE B	72	21.615		
ATOM	1590			72		-2.938	27.462
		O	ILE B		20.909	-3.490	28.330
ATOM	1591	CB	ILE B	72	23.524	-1.999	28.737
MOTA	1592	CG1	ILE B	72	24.322	-0.735	29.090
MOTA	1593	CG2	ILE B	72	24.442	-3.037	28.153
MOTA	1594	CD1	ILE B	72	25.374	-1.012	30.163
MOTA	1595	N	GLY B	73	21.609	-3.446	26.235
MOTA	1596	Н	GLY B	73	22.204	-3.054	25.534
MOTA	1597	CA	GLY B	73	20.707	-4.545	26.062
MOTA	1598	C	GLY B	73	20.828	-5.084	24.663
MOTA	1599	0	GLY B	73	21.754	-4.831	23.863
MOTA	1600	N	THR B	74	19.856	-5.905	24.271
ATOM	1601	H	THR B	74	19.086	-6.088	24.882
ATOM	1602	CA	THR B	74.	19.869	-6.548	22.988
ATOM	1603	C	THR B	74	19.363	-5.590	21.931
ATOM	1604	Ö	THR B	74	18.338	-4.870	22.053
ATOM	1605	СВ	THR B	74	19.011	-7.801	23.074
ATOM	1606	OG1	THR B	74	19.611	-8.683	24.013
ATOM	1603	HG1	THR B	74	19.068	-9.519	24.013
ATOM							
	1608	CG2	THR B	74	18.817	-8.496	21.705
MOTA	1609	N	VAL B	75	20.028	-5.620	20.762
ATOM	1610	H	VAL B	75	20.835	-6.203	20.666
ATOM	1611	CA	VAL B	75	19.630	-4.837	19.611
ATOM	1612	C	VAL B	75	19.600	-5.771	18.426
ATOM	1613	0	VAL B	75	20.444	-6.673	18.230
MOTA	1614	CB	VAL B	75	20.667	-3.712	19.395
MOTA	1615	CG1	VAL B	75	20.473	-3.002	18.046
ATOM	1616	CG2	VAL B	75	20.679	-2.708	20.567
MOTA	1617	N	LEU B	76	18.557	-5.647	17.565
MOTA	1618	H	LEU B	76	17.822	-5.000	17.767
ATOM	1619	CA	LEU B	76	18.444	-6.427	16.324
MOTA	1620	С	LEU B	76	18.736	-5.487	15.144
MOTA	1621	0	LEU B	76	18.239	-4.343	15.040
MOTA	1622	CB	LEU B	76	17.028	-7.021	16.158
				-			

Heller Ehrman White & McAuliffe, LLP Sheet 30 of 33

Sheet 30 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	1623	CG	LEU	В 76	16.427	-7.612	17.449
						-8.075	
MOTA	1624	CD1		B 76			17.263
MOTA	1625	CD2		B 76		-8.758	18.019
MOTA	1626	N		B 77		-5.900	14.222
MOTA	1627	H	VAL	B 77		-6.824	14.276
MOTA	1628	CA	VAL	B 77	20.027	-5.042	13.133
ATOM	1629	С	VAL	в 77	19.570	-5.662	11.842
MOTA	1630	Ō		в 77		-6.883	11.598
ATOM	1631	СВ		B 77		-4.905	13.191
ATOM	1632	CG1		B 77		-4.202	11.944
	1633	CG2		В 77		-4.166	14.470
MOTA	\						
ATOM	1634	N		B 78		-4.915	10.943
MOTA	1635	H		B 78	18.841	-3.941	11.121
MOTA	1636	CA		B 78	18.523	-5.475	9.705
MOTA	1637	С		B 78	18.019	-4.338	8.874
ATOM	1638	0	GLY	B 78	18.130	-3.142	9.223
ATOM	1639	N	PRO	B 79	17.408	-4.596	7.722
ATOM	1640	CA	PRO	B 79	16.954	-3.535	6.834
ATOM	1641	С		B 79	15.635	-2.872	7.280
ATOM-	1642	Ö		B 79	•	-2.877	6.565
MOTA	1643	CB		B 79	16.804	-4.274	5.492
				B 79	16.463	-5.712	5.881
MOTA	1644	CG					
ATOM	1645	CD		B 79	17.159	-5.959	7.189
MOTA	1646	N	•	B 80	15.574	-2.247	8.458
MOTA	1647	H		B 80	16.374	-2.242	9.058
MOTA	1648	CA	THR	B 80	14.364	-1.583	8.865
ATOM	1649	C	THR	B 80	14.312	-0.189	8.228
MOTA	1650	0	THR :	B 80	15.349	0.471	8.001
MOTA	1651	CB	THR	B 80	14.250	-1.512	10.410
ATOM	1652	OG1		B 80	13.079	-0.802	10.806
ATOM	1653	HG1		B 80	13.022	-0.766	11.804
ATOM	1654	CG2		B 80	15.519	-0.901	11.062
ATOM	1655	N		B 81	13.137	0.354	7.885
ATOM					13.137	1.747	7.379
	1656	CA				2.732	8.484
ATOM	1657	C		B 81	13.363		
ATOM	1658	0		B 81	13.791	3.880	8.250
MOTA	1659	CB	PRO I		11.548	1.912	6.982
ATOM	1660	CG		B 81	10.819	0.674	7.488
MOTA	1661	CD		B 81	11.854	-0.387	7.797
MOTA	1662	N	VAL 1	B 82	13.197	2.368	9.772
ATOM	1663	H	VAL 1	B 82	12.940	1.427	9.992
MOTA	1664	CA	VAL I	B 82	13.380	3.306	10.885
MOTA	1665	C	VAL I	B 82	14.160	2.668	12.010
MOTA	1666	0	VÁL I			1.465	12.293
MOTA	1667	СВ	VAL I		11.996	3.695	11.431
ATOM	1668	CG1	VAL I		12.055	4.961	12.269
ATOM	1669	CG2	VAL 1		10.958	3.857	10.318
							12.775
ATOM	1670	N	ASN I		14.963	3.422	
ATOM	1671	H	ASN I		15.147	4.370	12.516
MOTA	1672	CA	ASN I		15.550	2.846	13.967
MOTA	1673	C		B 83	14.481	2.874	15.022
MOTA	1674	0		B 83	13.814	3.903	15.294
MOTA	1675	CB	ASN I	B 83	16.743	3.639	14.472
MOTA	1676	CG -	ASN I	B 83	17.935	3.574	13.570
ATOM	1677	OD1		B 83	18.409	2.511	13.167
ATOM	1678		ASN I	B 83	18.439	4.735	13.238

Heller Ehrman White & McAuliffe, E.

Sheet 31 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	1679	2HD2		В	83		19.237	4.786	12.638
MOTA	1680	1HD2		В	83		18.030	5.580	13.582
MOTA	1681	N		В	84		14.225	1.749	15.711
MOTA	1682	H		В	84		14.791	0.938	15.564
MOTA	1683	CA		В	84		13.154	1.658	16.667
MOTA	1684	C		В	84		13.740	1.317	18.020
ATOM	1685	0		В	84		14.428	0.300	18.223
ATOM	1686	CB		В	84		12.214	0.517	16.260
ATOM	1687	CG1		В	84		11.656	0.759	14.849
ATOM	1688	CG2		В	84		11.128	0.247	17.315
ATOM	1689	CD1		В	84		10.770	-0.359	14.291
ATOM	1690	N		В	85		13.483	2.157	19.051
ATOM	1691	H		В	85		13.028	3.030	18.877
ATOM	1692	CA		В	85		13.846	1.834	20.408
MOTA	1693	C		В	85		12.596	1.254	21.085
ATOM	1694	O		В	85		11.536	1.903	21.267
ATOM ATOM	1695	CB CC1		В	85		14.308	3.115	21.137
ATOM	1696 1 6 97	CG1 CG2		B B	85 85		15.447 14.673	3.826	20.395
ATOM				В	85		16.730	2.840	22.589
ATOM	1698 1699	CD1 N		В	86		12.617	3.053 -0.052	20.263
ATOM	1700	H		В	86		13.439	-0.032	21.422 21.251
ATOM	1701	CA		В	86		11.481	-0.702	22.028
ATOM	1701	CA		В	86		11.557	-0.748	23.538
ATOM	1702	0		В	86		12.412	-0.748	24.238
ATOM	1704	N		B	87		10.614	-1.489	24.230
ATOM	1705	H	ARG		87		10.012	-2.072	23.604
ATOM	1706	CA		В	87		10.442	1.468	25.584
ATOM	1707	C		В	87		11.627	-2.021	26.326
ATOM	1708	Õ		B	87		11.911	-1.666	27.495
ATOM	1709	CB		B	87		9.200	-2.271	25.949
ATOM	1710	CG		B	87		7.951	-1.960	25.161
ATOM	1711	CD		В	87		6.956	-3.074	25.219
ATOM	1712	NE		В	87		5.906	-2.933	24.205
ATOM	1713	HE		В	87		5.790	-2.039	23.772
ATOM	1714	CZ		В	87		5.119	-3.953	23.856
ATOM	1715	NH1		В	87		5.252	-5.161	24.396
MOTA	1716	2HH1		В	87		5.958	-5.326	25.085
ATOM	1717	1HH1		В	87		4.646	-5.905	24.113
MOTA	1718	NH2	ARG	В	87		4.180	-3.751	22.939
MOTA	1719	1HH2	ARG	В	87		3.580	-4.502	22.664
MOTA	1720	2HH2	ARG	В	87	•	4.073	-2.848	22.524
MOTA	1721	N	ASN	В	88		12.413	-2.937	25.731
MOTA	1722	Η.	ASN	В	88		12.206	-3.237	24.800
MOTA	1723	CA	ASN	В	88		13.582	-3.519	26.415
MOTA	1724	С	ASN	В	88		14.532	-2.429	26.821
MOTA	1725	0	ASN	В	88		15.214	-2.516	27.863
ATOM	1726	CB		В	88		14.285	-4.605	25.559
MOTA	1727	CG		В	88		15.063	-4.031	24.358
MOTA	1728	OD1	ASN		88		14.515	-3.245	23.612
ATOM	1729	ND2	ASN		88		16.333	-4.445	24.180
MOTA	1730	2HD2	ASN		88		16.875	-4.099	23.414
ATOM	1731	1HD2	ASN		88		16.744	-5.102	24.812
ATOM	1732	N	LEU		89		14.695	-1.328	26.061
ATOM	1733	H	LEU		89		14.192	-1.240	25.201
ATOM	1734	CA	LEU	B	89		15.597	-0.234	26.452

Heller Ehrman White & McAuliffe, LLP Sheet 32 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

	I	Date of Fili				y Docket No. 24737-1906C		
ATOM	1735	С	LEU	В	89	14.797	0.937	27.053
MOTA	1736	0	LEU	В	89	15.293	1.734	27.879
ATOM	1737	CB	LEU	В	89	16.421	0.232	25.236
ATOM	1738	CG	LEU	В	89	17.400	-0.754	24.567
MOTA	1739	CD1	LEU	В	89	18.215	0.002	23.573
MOTA	1740	CD2	LEU	В	89	18.352	-1.458	25.570
ATOM	1741	N	LEU	В	90	13.511	1.114	26.705
MOTA	1742	H	LEU	В	90	13.082	0.486	26.056
MOTA	1743	CA	LEU	В	90	12.698	2.221	27.257
MOTA	1744	C	LEU	В	90	12.537	2.060	28.751
MOTA	1745	0		В	90	12.575	3.033	29.533
MOTA	1746	CB		В	90	11.311	2.258	26.628
MOTA	1747	CG		В	90	11.232	2.730	25.168
MOTA	1748	CD1	LEU	В	90	9.808	2.744	24.642
MOTA	1749	CD2	LEU	В	90	11.831	4.105	24.982
MOTA	1750	N	THR	В	91	12.315	0.843	29.271
ATOM	1751	Н		В	91	12.218	0.055	28.663
MOTA	1752	CA	THR	В	91	12.210	0.634	30.699
MOTA	1753	C	THR	В	91	13.537	1.028	31.375
ATOM	1754	0	THR	В	91	13.575	1.525	32.518
MOTA	1755	CB	THR	В	91	11.893	-0.843	31.028
MOTA	1756	OG1	THR	В	91	12.919	-1.676	30.504
ATOM	1757	HG1	THR	В	91	12.722	-2.634	30.713
MOTA	1758	CG2	THR	В	91	10.599	-1.285	30.418
MOTA	1759	N		В	92	14.705	0.852	30.732
ATOM	1760	Н		В	92	14.707	0.497	29.797
MOTA	1761	CA		В	92	15.920	1.190	31.433
MOTA	1762	C		В	92	16.088	2.660	31.633
ATOM	1763	0	GLN		92	16.807	3.137	32.527
ATOM	1764	CB		В	92	17.127	0.680	30.682 30.517
ATOM	1765	CG	GLN		92	17.076 18.336	-0.805 -1.314	29.900
MOTA	1766	CD		В	92 92	19.394	-0.720	30.059
ATOM	1767 1768	OE1	GLN GLN	B B	92 92	18.221	-2.411	29.195
ATOM	1769	NE2			92	19.022	-2.813	28.751
MOTA MOTA	1770	2HE2	GLN	В	92	17.331	-2.856	29.095
ATOM	1771	N	ILE	В	93	15.538	3.512	30.746
MOTA	1772	H	ILE	В	93	15.016	3.153	29.972
ATOM	1773	CA	ILE		93	15.693	4.937	30.899
ATOM	1774	C	ILE		93	14.522	5.549	31.698
MOTA	1775	Ö	ILE		93	14.438	6.773	31.940
ATOM	1776	СВ	ILE		93	15.981	5.657	29.548
ATOM	1777	CG1		В	93	14.746	5.718	28.619
ATOM	1778	CG2		В	93	17.223	5.060	28.874
ATOM	1779	CD1		В	93	14.946	6.734	27.488
MOTA	1780	N	GLY	В	94	13.617	4.731	32.263
MOTA	1781	\mathbf{H}	GLY	В	94	13.639	3.752	32.060
MOTA	1782	CA	GLY	В	94	12.594	5.224	33.170
ATOM	1783	C	GLY		94	11.443	5.846	32.432
ATOM	1784	0	GLY		94	10.766	6.803	32.878
MOTA	1785	N	CYS	В	95	11.134	5.354	31.225
MOTA	1786	Н	CYS	В	95	11.603	4.538	30.888
ATOM	1787	CA	CYS		95	10.134	5.969	30.381
MOTA	1788	С	CYS		95	8.750	5.512	30.764
MOTA	1789	0	CYS		95	8.478	4.309	31.006
MOTA	1790	CB	CYS	В	95	10.456	5.643	28.922

Title: Use of Computationally Derived Protein Structures of Genetic

Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan *et al.* Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	1791	SG	CYS	В	95	9.426	6.512	27.764
MOTA	1792	N	THR	В	96	7.778	6.444	30.764
MOTA	1793	H	THR	В	96	8.014	7.401	30.539
MOTA	1794	CA	THR	В	96	6.379	6.163	31.108
MOTA	1795	С	THR	В	96	5.390	6.970	30.254
MOTA	1796	0	THR	В	96	5.567	8.171	30.066
MOTA	1797	CB	THR	В	96	6.111	6.439	32.604
MOTA	1798	OG1	THR	В	96	6.341	7.794	32.938
MOTA	1799	HG1	THR	В	96	6.111	7.924	33.861
MOTA	1800	CG2	THR	В	96	6.938	5.566	33.554
MOTA	1801	N	LEU	В	97	4.302	6.321	29.809
MOTA	1802	H	LEU	В	97	4.216	5.332	29.997
MOTA	1803	CA	LEU	В	97	3.127	6.986	29.238
MOTA	1804	С	LEU	В	97	2.336	7.681	30.358
MOTA	1805	0	LEU	В	97	2.350	7.221	31.499
MOTA	1806	CB	LEU	В	97	2.226	5.958	28.532
MOTA	1807	ÇG	LEU	В	97	2.860	5.279	27.300
MOTA	1808	CD1	LEU	В	97	2.101	3.986	26.957
MOTA	1809	CD2	LEU	В	97	2.842	6.216	26.085
MOTA	1810	N	ASN	В	98	1.637	8.777	30.024
MOTA	1811	H	ASN	В	98	1.662	9.086	29.063
MOTA	1812	CA	ASN	В	98	0.906	9.631	30.960
MOTA	1813	С	ASN	В	98	-0.251	10.321	30.231
ATOM	1814	0	ASN	В	98	-0.032	11.303	29.522
MOTA	1815	CB	ASN	В	98	1.845	10.678	31.587
MOTA	1816	CG	ASN	В	98	2.783	10.077	32.634
MOTA	1817	OD1	ASN	В	98	3.926	9.739	32.335
MOTA	1818	ND2	ASN	В	98	2.297	9.942	33.870
MOTA	1819	2HD2	ASN	В	98	2.877	9.551	34.599
MOTA	1820	1HD2	ASN	В	98	1.351	10.229	34.074
MOTA	1821	N	LEU	В	99	-1.476	9.808	30.426
MOTA	1822	H	LEU	В	99	-1.568	9.010	31.037
MOTA	1823	CA	LEU	В	99	-2.709	10.288	29.797
MOTA	1824	С	LEU	В	99	-3.816	10.589	30.815
MOTA	1825	0	LEU	В	99	-3.630	10.272	32.011
MOTA	1826	CB	LEU	В	99	-3.146	9.340	28.657
MOTA	1827	CG	LEU	В	99	-3.714	7.932	28.941
MOTA	1828	CD1	LEU	В	99	-2.767	7.057	29.774
MOTA	1829	CD2	LEU	В	99	-5.134	7.943	29.528
MOTA	1830	OXT	LEU	В	99	-4.842	11.156	30.376
TER								

FIG. 11 A-32