## MSiA 400 Lab Basic Statistics with R

Oct 6, 2014

Young Woong Park

### Data Set

Average heights of men and women of 71 countries (collected from Wikipedia)

|    | A                           | В     | С      | D |  |
|----|-----------------------------|-------|--------|---|--|
| 1  |                             | Male  | Female |   |  |
| 2  | Argentina                   | 1.735 | 1.608  |   |  |
| 3  | Australia                   | 1.784 | 1.645  |   |  |
| 4  | Austria                     | 1.792 | 1.676  |   |  |
| 5  | Azerbaijan                  | 1.718 | 1.654  |   |  |
| 6  | Bahrain                     | 1.651 | 1.542  |   |  |
| 7  | Belgium                     | 1.786 | 1.681  |   |  |
| 8  | Bolivia                     | 1.6   | 1.422  |   |  |
| 9  | Brazil                      | 1.707 | 1.588  |   |  |
| 10 | Bulgaria                    | 1.752 | 1.632  |   |  |
| 11 | Cameroon                    | 1.706 | 1.613  |   |  |
| 12 | Canada                      | 1.76  | 1.633  |   |  |
| 13 | Chile                       | 1.71  | 1.591  |   |  |
| 14 | China, People's Republic of | 1.663 | 1.57   |   |  |
| 15 | Colombia                    | 1.706 | 1.587  |   |  |
| 16 | Côte d'Ivoire               | 1.701 | 1.591  |   |  |
| 17 | Croatia                     | 1.805 | 1.663  |   |  |
| 18 | Cuba                        | 1.68  | 1.56   |   |  |
| 19 | Czech Republic              | 1.803 | 1.672  |   |  |
| 20 | Denmark                     | 1.826 | 1.687  |   |  |
| 21 | Dinaric Alps                | 1.856 | 1.711  |   |  |
| วว | Fount                       | 1 703 | 1 590  |   |  |

- Load height.txt from the last lab
  - > height = read.table("z:\\ msia400lab1 \\height.txt", header=T)

# **Numerical Summary of Data**

- Definitions
  - Data: the numeric observations of a phenomenon of interest
  - Population: the complete set of objects of interest
  - Sample: A subset of the population, or a portion used for analysis
- Description of population or sampled data
  - o center: measured by the mean
  - spread: measured by the variance



<sup>\*</sup> Source: Applied Statistics and Probability for Engineers, Montgomery and Runger

### Mean

• Sample mean: n observations  $x_1, x_2, \dots, x_n$  in a random sample

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

■ Population mean: N observations  $x_1, x_2, \dots, x_N$  in a population

$$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$$

R: Calculate the sample mean of male and female

```
> M = height$Male;
> F = height$Female;
> n = length(F);
> mean(M);  # equivalent to mean(height[,1]) or mean(height[, "Male"])
> mean(F);
```

### Variance

Sample variance

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Population variance

$$\sigma^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

R: Calculate the variance of male and female

```
> var(M);  # sample variance
> var(F);  # sample variance
> (n-1)/n*var(M);  # population variance if we assume data is from population
> (n-1)/n*var(F);  # population variance if we assume data is from population
> sd(F);  # standard deviation
```

### Covariance

- Covariance of two variables x and y
  - measures how the two are linearly related
- Sample covariance of x and y

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• Population covariance of x and y

$$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)$$

- R: Calculate covariance of male and female heights
  - > cov(M,F);

## Histogram

- Histogram (Frequency Distribution)
  - presents the counts of observations grouped within pre-specified classes or groups





R: Generate histograms

```
> hist(M);
> hist(F);
> hist(F, breaks=4); # Try
> hist(F, breaks=seq(1.40,1.75,by=0.03); # Try
```

# Point estimation of population mean

■ Sample mean: n observations  $x_1, x_2, \dots, x_n$  in a random sample

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

R: Find a point estimation of women's height

```
> mean(F);
```

## Confidence Interval

• Confidence interval (CI) on  $\mu$  with known population variance  $(\sigma^2)$   $(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$ ,  $\bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}})$ 

- Interpretation of CI
  - Note: The confidence interval is a random interval!!
  - Yes: The observed interval includes the true value of  $\mu$  with confidence  $100(1-\alpha)$
  - $\circ$  No: The true value of  $\mu$  lies in the observed interval with confidence 100(1-lpha)



# Confidence Interval of population mean

• Known population variance  $(\sigma^2)$ 

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 $\circ$  R: Confidence interval of men's height with known  $\sigma$  =0.0036 and  $\alpha=0.05$ 

```
> sigma = 0.0036; Mbar = mean(M);
> E = qnorm(0.975)*sigma/sqrt(n); # margin of error
```

 $> CI_M = Mbar + c(-E,E);$ 

• Unknown population variance  $(s^2)$ 

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

 $\circ$  R: interval estimation of men's height with unknown  $\sigma$  and  $\alpha=0.05$ 

```
> S = sd(M);
> E = qt(0.975, df=n-1)*S/sqrt(n); # margin of error
> CI_M = Mbar + c(-E,E);
```

# Hypothesis testing

### Statistical hypotheses

Two-tailed alternative hypothesis

$$H_0$$
:  $\mu_m = 1.728$   $H_1$ :  $\mu_m \neq 1.728$ 

Lower-tailed alternative hypothesis

$$H_0$$
:  $\mu_m = 1.728$   
 $H_1$ :  $\mu_m < 1.728$ 

- Hypothesis testing
  - Obtains information in a random sample from the population
  - If the information is consistent with the hypothesis, we conclude the hypothesis is true, otherwise, false.



Figure 9-7 The *P*-value for a *z*-test. (a) The two-sided alternative  $H_1: \mu \neq \mu_0$ . (b) The one-sided alternative  $H_1: \mu > \mu_0$ . (c) The one-sided alternative  $H_1: \mu < \mu_0$ .

\* Source: Applied Statistics and Probability for Engineers, Montgomery and Runger

## Two tailed test with known variance

Two-tailed test with known variance

$$H_0$$
:  $\mu_m = 1.729$   
 $H_1$ :  $\mu_m \neq 1.729$ 

Test statistics

$$z_0 = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

\* Fail to reject  $H_0$  if  $-z_{\alpha/2} \le z_0 \le z_{\alpha/2}$ 

• R: Test the hypothesis with  $\alpha = 0.05$ 

- > z = (Mbar 1.729)/(sigma/sqrt(n));
- > z.half.alpha = qnorm(1-0.05/2);
- > c(-z.half.alpha, z.half.alpha); # check if z is inside the interval

### Lower-tailed test with known variance

Two-tailed test with known variance

$$H_0$$
:  $\mu_m = 1.729$   
 $H_1$ :  $\mu_m < 1.729$ 

Test statistics

$$z_0 = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

\* Fail to reject  $H_0$  if  $z_0 \leq -z_\alpha$ 

• R: Test the hypothesis with  $\alpha = 0.05$ 

```
> z = (Mbar - 1.729)/(sigma/sqrt(n));
```

> z.alpha = -qnorm(1-0.05);

### Two tailed test with unknown variance

Two-tailed test with unknown variance

$$H_0$$
:  $\mu_m = 1.729$   
 $H_1$ :  $\mu_m \neq 1.729$ 

Test statistics

$$t_0 = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}}$$

\* Fail to reject  $H_0$  if  $-t_{\alpha/2} \le t_0 \le t_{\alpha/2}$ 

• R: Test the hypothesis with  $\alpha = 0.05$ 

```
> t = (Mbar – 1.729)/(sd(M)/sqrt(n));
> t.half.alpha = qt(1-0.05/2, df=n-1);
> c(-t.half.alpha, t.half.alpha); # check if t is inside the interval
```

## **Example: Tensile Strength**

### Tensile Strength

A manufacturer of paper used for making grocery bags is interested in improving the tensile strength of the product. Product engineering thinks that tensile strength is a function of the hardwood concentration in the pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%. A team of engineers decided to investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decided to make up six test specimens at each concentration level, using a pilot plant. All 24 specimens are tested on a laboratory tensile tester, in random order.

### Tensile Strength of Paper (psi)

| Hardwood          | Observations |    |    |    |    |    | Totals   | A        |
|-------------------|--------------|----|----|----|----|----|----------|----------|
| concentration (%) | 1            | 2  | 3  | 4  | 5  | 6  | — Totals | Averages |
| 5                 | 7            | 8  | 15 | 11 | 9  | 10 | 60       | 10.00    |
| 10                | 12           | 17 | 13 | 18 | 19 | 15 | 94       | 15.67    |
| 15                | 14           | 18 | 19 | 17 | 16 | 18 | 102      | 17.00    |
| 20                | 19           | 25 | 22 | 23 | 18 | 20 | 127      | 21.17    |

<sup>\*</sup> Source: Applied Statistics and Probability for Engineers, Montgomery and Runger

# ANOVA (1)

- Goal
   Check if the tensile strength for 4 different concentrations are equal
- Hypothesis

$$H_0$$
:  $\mu_1 = \mu_2 = \mu_3 = \mu_4 = 0$   
 $H_1$ :  $\mu_i \neq 0$  for at least one  $i$ 

#### ANOVA table

| Source of<br>Variation | Sum of<br>Squares | Degree of<br>Freedom | Mean Square       | $F_0$                          |
|------------------------|-------------------|----------------------|-------------------|--------------------------------|
| Treatments             | $SS_{Treatments}$ | k-1                  | $MS_{Treatments}$ | $\frac{MS_{Treatments}}{MS_E}$ |
| Error                  | $SS_E$            | k(n-1)               | $MS_E$            |                                |
| Total                  | $SS_T$            | kn-1                 |                   |                                |

## ANOVA (2)

- Import data
  - > tensile = read.table("z:\\ msia400lab1 \\tensile.txt", header=T)
- Constructing ANOVA table

#### Step 1. Turn the data into a single vector

```
> resp = c(t(as.matrix(Tensile)));
```

#### Step 2. Setup values

- > treats = c("HC5","HC10","HC15","HC20");
- > k = 4;

### > n = 6;

- Step 3. Create a vector of treatment factors that corresponds to each element of resp
  > tm = gl(k,1,n\*k,factor(treats));
- Step 4. Apply the function aov and print summary
  - > myANOVA = aov(resp ~ tm);
  - > summary(myANOVA);

#### Note

gl(): generate levels (# levels, # replications, length, labels)

#### Note

as.matrix() : convert table to matrix
t() : transpose

# ANOVA (3)

#### ANOVA table

| Source of Variation | Sum of<br>Squares | Degree of<br>Freedom | Mean<br>Square | $F_0$ | P-value  |
|---------------------|-------------------|----------------------|----------------|-------|----------|
| Treatments          | 382.8             | 3                    | 127.60         | 19.61 | 3.59 E-6 |
| Error               | 130.2             | 20                   | 6.51           |       |          |
| Total               | 513.0             | 23                   |                |       |          |

- Two approaches
  - o  $F_{0.01,3,20} = 4.94 < 19.61 = F_0$ , reject  $H_0$
  - P-value =3.59 E-6 <  $\alpha = 0.01$ , reject  $H_0$

\* Note > qf(1-0.01,df1=3,df2=20)

Conclusion: Hardwood concentration affects the strength of the paper

## Distribution Fitting 1

- Samples from Normal distribution
  - > x.norm = rnorm(n=200,m=10,sd=2); # Generate 200 random samples from N(10,2)
  - hist(x.norm,breaks = 10,main="Histogram of observed data");
  - > plot(density(x.norm), main="Density estimate of data");





## Distribution Fitting 2

### Comparisons

- > h = hist(x.norm,breaks=10);
- > x.hist = c(min(h\$breaks),h\$breaks); y.hist = c(0,h\$density,0);
- > x.fit = seq(min(x.norm),max(x.norm),length=40);
- > y.fit = dnorm(x.fit,mean=mean(x.norm),sd=sd(x.norm));
- > plot(x.hist,y.hist,type="s",ylim=c(0,max(y.hist,y.fit)), main="Normal pdf and histogram")
- > lines(x.fit,y.fit, col="red");
- > plot(density(x.norm),main="Density estimate of data")
- > lines(x.fit,y.fit, col="red")





# Distribution Fitting 3

QQ plot
 A graphical method for comparing two probability distributions by plotting their quantiles against each other



R: QQ plot generation

```
> z.norm = (x.norm-mean(x.norm))/sd(x.norm);
```

- > qqnorm(z.norm);
- > abline(0,1, col ="red");