

Digital Signal Processing

EE 453 / CE 352 Saad Baig

- A function of one or more independent variables.
- Contains information about the behavior/nature of some phenomenon.

For a function f:

$$y = f(x_1, x_2, \dots, x_n)$$

Each of $x_1, x_2, ..., x_n$ are called *independent variables*. y is a *dependent variable*.

- Analog Signal
 - Continuous-Time $\{x(t)\}$
 - Continuous-Valued

- Digital Signal
 - Discrete-Time $\{x[n]\}$
 - Discrete Valued

Operations designed for:

- Extracting useful information from a signal.
- Transforming or enhancing the useful information in a signal.

Examples

- Speech recognition.
- Speaker verification.
- Target detection.
- Image enhancement.
- Noise removal

- Operations on signal that are designed for:
 - Extracting useful information from a signal (Signal Analysis).
 - Transforming or enhancing the useful information in a signal (Signal Filtering).

Signal Processing: Analog vs Digital

Analog signal: $x_a(t) \longrightarrow$ Analog signal processor $\longrightarrow y_a(t)$: Analog signal

Sampling

- Conversion from continuous-time to discrete-time by taking "samples" at discrete time instants.
- E.g., uniform sampling: $x(n) = x_a(nT)$
 - Where T is the sampling period and $n \in Z$

Quantization

- Conversion from discrete-time, continuous-valued signal to discrete-time, discrete-valued signal by taking "samples" at discrete time instants.
- Quantization error: $e_q(n) = x_q(n) x(n)$ for all $n \in Z$

	x(n)	$x_q(n)$	$x_q(n)$	$e_q(n) = x_q(n) - x(n)$
n	Discrete-time signal	(Truncation)	(Rounding)	(Rounding)
0	1	1.0	10	0.0
1	0.9	0.9	0.9	00
2	0.81	08	0.8	-0.01
3	0.729	0.7	0.7	-0.029
4	0.6561	0.6	0.7	0.0439
5	059049	05	0.6	0.00951
6	0.531441	0.5	0.5	-0.031441
7	0.4782969	0.4	0.5	0.0217031
8	0.43046721	0.4	04	-0.03046721
9	0.387420489	03	0.4	0.012579511

• Coding:

- Representation of each discrete-value $x_q(n)$ by a b-bit binary sequence
- If for any $n, x_q(n) \in \{0, 1, ..., 6, 7\}$, then the coder may use the following mapping to code the quantized amplitude:

Example coder:

0	000	4	100
1	001	5	101
2	010	6	110
3	011	7	111

Digital-to-Analog Conversion

- Common Interpolation Approaches:
 - Zero-order hold, linear interpolation, higher-order interpolation.
 - In practice, "cheap" interpolation along with a smoothing filter is employed.

Digital signal processing is not always applied in conjunction with A/D conversion.

For Example: Stock analysis computer program

Advantages of Digital Signal Processing?

- Flexibility in reconfiguration
- Accuracy
 - Tolerances in analog circuit components
 - A digital system provides much better control of accuracy requirements by choosing appropriate A/D converter and the digital signal processor.
- More sophisticated signal processing algorithms
 - Difficult to perform precise mathematical operations in analog form (through active and passive circuit components).
- Cost
- Size/Weight

Limitations of Digital Signal Processing?

- Signals having extremely wide bandwidth require fast sampling-rate A/D converters and digital signal processors.
 - Example: Terahertz communication and sensing
- Digital signals take on values from a finite set of possible values, dictated by the word length (8, 16, 32 bit) of a digital computer, which causes complications in the analysis.
 - Finite-precision arithmetic effect
 - To avoid these complications, we initially neglect the quantized nature of digital signals and consider them as discrete time, continuous valued signals.

- Speech Processing
- Image and Video Processing
- Telecommunication
- Biomedical Signal Processing
- Financial Signal Processing

- Signal processing and machine learning techniques work together in many applications.
 - Example: Speaker Identification

- Theory/algorithms
 - Fourier Analysis
 - Z-Transform
 - Filter Design
- Application domains
 - Speech processing
 - Image/video processing
 - Financial signal processing
- Implementation platforms
 - General purpose computers
 - Microcontrollers
 - Digital signal processors
 - FPGAs

The TX-2 Computer, Circa 1967

