Sedmá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK)

Zimní semestr 2025

Sedmá přednáška

Program

- extenze teorií, extenze o definice
- definovatelnost a databázové dotazy
- vztah výrokové a predikátové logiky
- tablo metoda v predikátové logice, jazyky s rovností

Materiály

Zápisky z přednášky, Sekce 6.7-6.9 z Kapitoly 6, Sekce 7.1-7.3 z Kapitoly 7

6.7 Extenze teorií

Stejně jako ve výrokové logice, je-li ${\mathcal T}$ teorie v jazyce L:

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

• extenze: T' v jazyce $L' \supseteq L$ splňující $Csq_L(T) \subseteq Csq_{L'}(T')$

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L'\supseteq L$ splňující $\mathsf{Csq}_L(T)\subseteq \mathsf{Csq}_{L'}(T')$
- jednoduchá: L' = L

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L'\supseteq L$ splňující $\operatorname{Csq}_L(T)\subseteq\operatorname{Csq}_{L'}(T')$
- jednoduchá: L′ = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L'\supseteq L$ splňující $\mathsf{Csq}_L(T)\subseteq \mathsf{Csq}_{L'}(T')$
- jednoduchá: L′ = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L'\supseteq L$ splňující $\mathsf{Csq}_L(T)\subseteq \mathsf{Csq}_{L'}(T')$
- jednoduchá: L' = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Jsou-li T, T' ve stejném jazyce L:

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L' \supseteq L$ splňující $Csq_L(T) \subseteq Csq_{L'}(T')$
- jednoduchá: L' = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Jsou-li T, T' ve stejném jazyce L:

• T' je extenze T, právě když $M_L(T') \subseteq M_L(T)$

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L' \supseteq L$ splňující $Csq_L(T) \subseteq Csq_{L'}(T')$
- jednoduchá: L' = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Jsou-li T, T' ve stejném jazyce L:

- T' je extenze T, právě když $M_L(T') \subseteq M_L(T)$
- T' je ekvivalentní s T, právě když $M_L(T') = M_L(T)$

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L' \supseteq L$ splňující $Csq_L(T) \subseteq Csq_{L'}(T')$
- jednoduchá: L' = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Jsou-li T, T' ve stejném jazyce L:

- T' je extenze T, právě když $M_L(T') \subseteq M_L(T)$
- T' je ekvivalentní s T, právě když $M_L(T') = M_L(T)$

Zvětšíme-li jazyk:

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L'\supseteq L$ splňující $\mathsf{Csq}_L(T)\subseteq \mathsf{Csq}_{L'}(T')$
- jednoduchá: L' = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Jsou-li T, T' ve stejném jazyce L:

- T' je extenze T, právě když $M_L(T') \subseteq M_L(T)$
- T' je ekvivalentní s T, právě když $M_L(T') = M_L(T)$

Zvětšíme-li jazyk:

 ve výrokové logice: přidáváme/zapomínáme hodnoty pro nové prvovýroky

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce $L' \supseteq L$ splňující $Csq_L(T) \subseteq Csq_{L'}(T')$
- jednoduchá: L' = L
- konzervativní: $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Jsou-li T, T' ve stejném jazyce L:

- T' je extenze T, právě když $M_L(T') \subseteq M_L(T)$
- T' je ekvivalentní s T, právě když $M_L(T') = M_L(T)$

Zvětšíme-li jazyk:

- ve výrokové logice: přidáváme/zapomínáme hodnoty pro nové prvovýroky
- v predikátové logice: expandujeme/redukujeme modely (přidáváme/zapomínáme nové relace, funkce, konstanty)

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

(i) T' je extenzí $T\Leftrightarrow L$ -redukt každého modelu T' je model T

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T \Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T \Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \rightsquigarrow *L*-sentence platná v T ale ne v T')

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T \Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \rightsquigarrow *L*-sentence platná v T ale ne v T')

Důkaz:

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T \Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \leadsto *L*-sentence platná v T ale ne v T')

 $Důkaz:(i) \Rightarrow Buď A' model T', A jeho L-redukt.$

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T\Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \rightsquigarrow *L*-sentence platná v T ale ne v T')

Důkaz:(i) \Longrightarrow Buď \mathcal{A}' model T', \mathcal{A} jeho L-redukt. Protože T' je extenzí, platí v ní, tedy i v \mathcal{A}' , každý axiom $\varphi \in \mathcal{T}$. Ten ale obsahuje jen symboly z L, tedy platí i v \mathcal{A} .

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T\Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \leadsto *L*-sentence platná v T ale ne v T')

Důkaz:(i) \Longrightarrow Buď \mathcal{A}' model T', \mathcal{A} jeho L-redukt. Protože T' je extenzí, platí v ní, tedy i v \mathcal{A}' , každý axiom $\varphi \in T$. Ten ale obsahuje jen symboly z L, tedy platí i v \mathcal{A} .

(i) \leftarrow Mějme: *L*-sentenci φ , $T \models \varphi$. Chceme: $T' \models \varphi$.

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T\Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \leadsto *L*-sentence platná v T ale ne v T')

- **Důkaz:**(i) \Longrightarrow Buď \mathcal{A}' model T', \mathcal{A} jeho L-redukt. Protože T' je extenzí, platí v ní, tedy i v \mathcal{A}' , každý axiom $\varphi \in \mathcal{T}$. Ten ale obsahuje jen symboly z L, tedy platí i v \mathcal{A} .
- (i) \leftarrow **Mějme:** L-sentenci φ , $T \models \varphi$. **Chceme:** $T' \models \varphi$. Pro lib. model $\mathcal{A}' \in \mathsf{M}_{L'}(T')$ víme, že jeho L-redukt \mathcal{A} je modelem T, tedy $\mathcal{A} \models \varphi$. Z toho plyne i $\mathcal{A}' \models \varphi$ (opět φ je v L).

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T \Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \leadsto *L*-sentence platná v T ale ne v T')

 $\begin{array}{l} \textbf{Důkaz:(i)} \Longrightarrow \text{Bud'} \ \mathcal{A}' \ \text{model} \ T', \ \mathcal{A} \ \text{jeho} \ \textit{L}\text{-redukt.} \ \text{Protože} \ T' \ \text{je} \\ \text{extenzí, platí v ní, tedy i v } \mathcal{A}', \ \text{každý axiom} \ \varphi \in \mathcal{T}. \ \text{Ten ale} \\ \text{obsahuje jen symboly z } \textit{L}, \ \text{tedy platí i v } \mathcal{A}. \end{array}$

- (i) \leftarrow **Mějme:** L-sentenci φ , $T \models \varphi$. **Chceme:** $T' \models \varphi$. Pro lib. model $\mathcal{A}' \in \mathsf{M}_{L'}(T')$ víme, že jeho L-redukt \mathcal{A} je modelem T, tedy $\mathcal{A} \models \varphi$. Z toho plyne i $\mathcal{A}' \models \varphi$ (opět φ je v L).
- (ii) \leftarrow Mějme: *L*-sentenci φ , $T' \models \varphi$. Chceme: $T \models \varphi$.

Mějme jazyky $L \subseteq L'$, L-teorii T a L'-teorii T':

- (i) T' je extenzí $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí $T \Leftrightarrow T'$ je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

Poznámka: Důkaz (ii) \Rightarrow vynecháme (technický problém: model, který nelze expandovat \rightsquigarrow *L*-sentence platná v T ale ne v T')

Důkaz:(i) \Longrightarrow Buď \mathcal{A}' model T', \mathcal{A} jeho L-redukt. Protože T' je extenzí, platí v ní, tedy i v \mathcal{A}' , každý axiom $\varphi \in T$. Ten ale obsahuje jen symboly z L, tedy platí i v \mathcal{A} .

- (i) \leftarrow **Mějme:** L-sentenci φ , $T \models \varphi$. **Chceme:** $T' \models \varphi$. Pro lib. model $\mathcal{A}' \in \mathsf{M}_{L'}(T')$ víme, že jeho L-redukt \mathcal{A} je modelem T, tedy $\mathcal{A} \models \varphi$. Z toho plyne i $\mathcal{A}' \models \varphi$ (opět φ je v L).
- (ii) \leftarrow **Mějme:** L-sentenci φ , $T' \models \varphi$. **Chceme:** $T \models \varphi$. Každý $\mathcal{A} \in \mathsf{M}_L(T)$ lze expandovat na nějaký $\mathcal{A}' \in \mathsf{M}_{L'}(T')$. Víme, že $\mathcal{A}' \models \varphi$, takže i $\mathcal{A} \models \varphi$. Tím jsme dokázali $T \models \varphi$.

 přidáme nový symbol, jehož význam je jednoznačně daný definující formulí (jako procedura/funkce v programování)

- přidáme nový symbol, jehož význam je jednoznačně daný definující formulí (jako procedura/funkce v programování)
- pro relační symboly jednoduché, pro funkční symboly musíme navíc zaručit existenci a jednoznačnost funkční hodnoty

- přidáme nový symbol, jehož význam je jednoznačně daný definující formulí (jako procedura/funkce v programování)
- pro relační symboly jednoduché, pro funkční symboly musíme navíc zaručit existenci a jednoznačnost funkční hodnoty

Ukážeme:

- přidáme nový symbol, jehož význam je jednoznačně daný definující formulí (jako procedura/funkce v programování)
- pro relační symboly jednoduché, pro funkční symboly musíme navíc zaručit existenci a jednoznačnost funkční hodnoty

Ukážeme:

 je to konzervativní extenze, dokonce každý model původní teorie lze jednoznačně expandovat na model nové teorie

- přidáme nový symbol, jehož význam je jednoznačně daný definující formulí (jako procedura/funkce v programování)
- pro relační symboly jednoduché, pro funkční symboly musíme navíc zaručit existenci a jednoznačnost funkční hodnoty

Ukážeme:

- je to konzervativní extenze, dokonce každý model původní teorie lze jednoznačně expandovat na model nové teorie
- každou formuli používající nové symboly lze přepsat na formuli v původním jazyce (tak, že jsou v extenzi ekvivalentní)

nový *n*-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

nový n-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

• teorii v jazyce s rovností lze rozšířit o symbol \neq definovaný formulí $\neg x_1 = x_2$; tj. požadujeme, aby: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$

nový n-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

- teorii v jazyce s rovností lze rozšířit o symbol \neq definovaný formulí $\neg x_1 = x_2$; tj. požadujeme, aby: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$
- teorii uspořádání lze rozšířit o < definovaný formulí
 x₁ ≤ x₂ ∧ ¬x₁ = x₂; tj. platí: x₁ < x₂ ↔ x₁ ≤ x₂ ∧ ¬x₁ = x₂

nový n-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

- teorii v jazyce s rovností lze rozšířit o symbol \neq definovaný formulí $\neg x_1 = x_2$; tj. požadujeme, aby: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$
- teorii uspořádání lze rozšířit o < definovaný formulí
 x₁ ≤ x₂ ∧ ¬x₁ = x₂; tj. platí: x₁ < x₂ ↔ x₁ ≤ x₂ ∧ ¬x₁ = x₂
- v aritmetice | ze zavést \leq takto: $x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$

nový n-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

- teorii v jazyce s rovností lze rozšířit o symbol \neq definovaný formulí $\neg x_1 = x_2$; tj. požadujeme, aby: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$
- teorii uspořádání lze rozšířit o < definovaný formulí $x_1 \le x_2 \land \neg x_1 = x_2$; tj. platí: $x_1 < x_2 \leftrightarrow x_1 \le x_2 \land \neg x_1 = x_2$
- v aritmetice | ze zavést \leq takto: $x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$
- v uspořádaném stromu lze zavést unární predikát $\operatorname{Leaf}(x)$: $\operatorname{Leaf}(x) \leftrightarrow \neg(\exists y)(x <_T y)$

nový n-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

- teorii v jazyce s rovností lze rozšířit o symbol \neq definovaný formulí $\neg x_1 = x_2$; tj. požadujeme, aby: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$
- teorii uspořádání lze rozšířit o < definovaný formulí
 x₁ ≤ x₂ ∧ ¬x₁ = x₂; tj. platí: x₁ < x₂ ↔ x₁ ≤ x₂ ∧ ¬x₁ = x₂
- v aritmetice | ze zavést \leq takto: $x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$
- v uspořádaném stromu lze zavést unární predikát $\operatorname{Leaf}(x)$: $\operatorname{Leaf}(x) \leftrightarrow \neg(\exists y)(x <_T y)$

Mějme teorii T a formuli $\psi(x_1, \ldots, x_n)$ v jazyce L. Označme jako L' rozšíření jazyka L o nový n-ární relační symbol R.

nový n-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

- teorii v jazyce s rovností lze rozšířit o symbol \neq definovaný formulí $\neg x_1 = x_2$; tj. požadujeme, aby: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$
- teorii uspořádání lze rozšířit o < definovaný formulí
 x₁ ≤ x₂ ∧ ¬x₁ = x₂; tj. platí: x₁ < x₂ ↔ x₁ ≤ x₂ ∧ ¬x₁ = x₂
- v aritmetice | ze zavést \leq takto: $x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$
- v uspořádaném stromu lze zavést unární predikát $\operatorname{Leaf}(x)$: $\operatorname{Leaf}(x) \leftrightarrow \neg(\exists y)(x <_T y)$

Mějme teorii T a formuli $\psi(x_1, \ldots, x_n)$ v jazyce L. Označme jako L' rozšíření jazyka L o nový n-ární relační symbol R. Extenze teorie T o definici R formulí ψ je L'-teorie:

nový n-ární relační symbol R lze definovat lib. formulí $\psi(x_1,\ldots,x_n)$

- teorii v jazyce s rovností lze rozšířit o symbol \neq definovaný formulí $\neg x_1 = x_2$; tj. požadujeme, aby: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$
- teorii uspořádání lze rozšířit o < definovaný formulí
 x₁ ≤ x₂ ∧ ¬x₁ = x₂; tj. platí: x₁ < x₂ ↔ x₁ ≤ x₂ ∧ ¬x₁ = x₂
- v aritmetice | ze zavést \leq takto: $x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$
- v uspořádaném stromu lze zavést unární predikát $\operatorname{Leaf}(x)$: $\operatorname{Leaf}(x) \leftrightarrow \neg(\exists y)(x <_T y)$

Mějme teorii T a formuli $\psi(x_1, \ldots, x_n)$ v jazyce L. Označme jako L' rozšíření jazyka L o nový n-ární relační symbol R. Extenze teorie T o definici R formulí ψ je L'-teorie:

$$T' = T \cup \{R(x_1, \ldots, x_n) \leftrightarrow \psi(x_1, \ldots, x_n)\}\$$

Tvrzení:

(i) T' je konzervativní extenze T.

Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz:

Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz: (i) ihned ze sémantického popisu extenzí, neboť zřejmě každý model T lze jednoznačně expandovat na model T'

Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz: (i) ihned ze sémantického popisu extenzí, neboť zřejmě každý model T lze jednoznačně expandovat na model T'

(ii) atomickou podformuli s novým symbolem R, tj. tvaru $R(t_1, \ldots, t_n)$, nahradíme formulí

$$\psi'(x_1/t_1,\ldots,x_n/t_n)$$

Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz: (i) ihned ze sémantického popisu extenzí, neboť zřejmě každý model T lze jednoznačně expandovat na model T'

(ii) atomickou podformuli s novým symbolem R, tj. tvaru $R(t_1, \ldots, t_n)$, nahradíme formulí

$$\psi'(x_1/t_1,\ldots,x_n/t_n)$$

kde ψ' je varianta ψ zaručující substituovatelnost všech termů (např. přejmenujeme všechny vázané proměnné ψ na zcela nové) \square

```
vztah f(x_1,\ldots,x_n)=y definujeme formulí \psi(x_1,\ldots,x_n,y); pro každý vstup (x_1,\ldots,x_n) musí existovat jednoznačný výstup y
```

vztah
$$f(x_1,\ldots,x_n)=y$$
 definujeme formulí $\psi(x_1,\ldots,x_n,y)$; pro každý vstup (x_1,\ldots,x_n) musí existovat jednoznačný výstup y

1. Teorie grup: binární funkční symbol -b pomocí + a unárního -

$$x_1 -_b x_2 = y \leftrightarrow x_1 + (-x_2) = y$$

vztah $f(x_1,...,x_n)=y$ definujeme formulí $\psi(x_1,...,x_n,y)$; pro každý vstup $(x_1,...,x_n)$ musí existovat jednoznačný výstup y

1. Teorie grup: binární funkční symbol -b pomocí +a unárního -b

$$x_1 -_b x_2 = y \leftrightarrow x_1 + (-x_2) = y$$

zřejmě pro každá x, y existuje jednoznačné z splňující definici

7

vztah $f(x_1,\ldots,x_n)=y$ definujeme formulí $\psi(x_1,\ldots,x_n,y)$; pro každý vstup (x_1,\ldots,x_n) musí existovat jednoznačný výstup y

1. Teorie grup: binární funkční symbol -b pomocí +a unárního -b

$$x_1 -_b x_2 = y \leftrightarrow x_1 + (-x_2) = y$$

- zřejmě pro každá x, y existuje jednoznačné z splňující definici
- 2. Teorie lineárních uspořádání: binární funkční symbol min

$$\min(x_1, x_2) = y \leftrightarrow y \le x_1 \land y \le x_2 \land (\forall z)(z \le x_1 \land z \le x_2 \rightarrow z \le y)$$

vztah $f(x_1,...,x_n)=y$ definujeme formulí $\psi(x_1,...,x_n,y)$; pro každý vstup $(x_1,...,x_n)$ musí existovat jednoznačný výstup y

1. Teorie grup: binární funkční symbol -b pomocí + a unárního -

$$x_1 -_b x_2 = y \leftrightarrow x_1 + (-x_2) = y$$

- zřejmě pro každá x, y existuje jednoznačné z splňující definici
- 2. Teorie lineárních uspořádání: binární funkční symbol min

$$\min(x_1, x_2) = y \leftrightarrow y \le x_1 \land y \le x_2 \land (\forall z)(z \le x_1 \land z \le x_2 \rightarrow z \le y)$$

• existence a jednoznačnost platí díky linearitě $(x \le y \lor y \le x)$

vztah
$$f(x_1,...,x_n)=y$$
 definujeme formulí $\psi(x_1,...,x_n,y)$; pro každý vstup $(x_1,...,x_n)$ musí existovat jednoznačný výstup y

1. Teorie grup: binární funkční symbol -b pomocí + a unárního -

$$x_1 -_b x_2 = y \leftrightarrow x_1 + (-x_2) = y$$

- zřejmě pro každá x, y existuje jednoznačné z splňující definici
- 2. Teorie lineárních uspořádání: binární funkční symbol min

$$\min(x_1, x_2) = y \leftrightarrow y \le x_1 \land y \le x_2 \land (\forall z)(z \le x_1 \land z \le x_2 \rightarrow z \le y)$$

- existence a jednoznačnost platí díky linearitě $(x \le y \lor y \le x)$
- pouze v teorii uspořádání by nešlo o dobrou definici: $\min^{\mathcal{A}}(a_1, a_2)$ nemusí existovat

Mějme teorii T a formuli $\psi(x_1, \ldots, x_n, y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

•
$$T \models (\exists y)\psi(x_1,\ldots,x_n,y)$$
 (existence)

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$ (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (jednoznačnost)

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$ (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (jednoznačnost)

Potom extenze teorie T o definici f formulí ψ je L'-teorie:

$$T' = T \cup \{f(x_1, \ldots, x_n) = y \leftrightarrow \psi(x_1, \ldots, x_n, y)\}\$$

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$ (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (jednoznačnost)

Potom extenze teorie T o definici f formulí ψ je L'-teorie:

$$T' = T \cup \{f(x_1, \ldots, x_n) = y \leftrightarrow \psi(x_1, \ldots, x_n, y)\}\$$

• ψ definuje v modelu (n+1)-ární relaci, ta musí být funkcí

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$ (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (jednoznačnost)

Potom extenze teorie T o definici f formulí ψ je L'-teorie:

$$T' = T \cup \{f(x_1, \ldots, x_n) = y \leftrightarrow \psi(x_1, \ldots, x_n, y)\}\$$

- ψ definuje v modelu (n+1)-ární relaci, ta musí být funkcí
- je-li ψ tvaru $t(x_1,\ldots,x_n)=y$ pro term t, vždy to platí

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$ (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (jednoznačnost)

Potom extenze teorie T o definici f formulí ψ je L'-teorie:

$$T' = T \cup \{f(x_1, \ldots, x_n) = y \leftrightarrow \psi(x_1, \ldots, x_n, y)\}\$$

- ψ definuje v modelu (n+1)-ární relaci, ta musí být funkcí
- je-li ψ tvaru $t(x_1, \dots, x_n) = y$ pro term t, vždy to platí

Tvrzení:

(i) T' je konzervativní extenze T.

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$ (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (jednoznačnost)

Potom extenze teorie T o definici f formulí ψ je L'-teorie:

$$T' = T \cup \{f(x_1, \ldots, x_n) = y \leftrightarrow \psi(x_1, \ldots, x_n, y)\}\$$

- ψ definuje v modelu (n+1)-ární relaci, ta musí být funkcí
- je-li ψ tvaru $t(x_1, \dots, x_n) = y$ pro term t, vždy to platí

Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Mějme teorii T a formuli $\psi(x_1,\ldots,x_n,y)$ v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$ (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (jednoznačnost)

Potom extenze teorie T o definici f formulí ψ je L'-teorie:

$$T' = T \cup \{f(x_1, \ldots, x_n) = y \leftrightarrow \psi(x_1, \ldots, x_n, y)\}\$$

- ψ definuje v modelu (n+1)-ární relaci, ta musí být funkcí
- je-li ψ tvaru $t(x_1, \dots, x_n) = y$ pro term t, vždy to platí

Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz: (i) modely T lze jednoznačně expandovat na modely T'

(ii) stačí pro jediný výskyt symbolu f, jinak induktivně (je-li více vnořených výskytů $f(\ldots f(\ldots))$, potom od vnitřních k vnějším)

- (ii) stačí pro jediný výskyt symbolu f, jinak induktivně (je-li více vnořených výskytů $f(\ldots f(\ldots))$, potom od vnitřních k vnějším)
 - 1. nahradíme term $f(t_1,\ldots,t_n)$ novou proměnnou z: výsledek φ^*

- (ii) stačí pro jediný výskyt symbolu f, jinak induktivně (je-li více vnořených výskytů $f(\ldots f(\ldots))$, potom od vnitřních k vnějším)
 - 1. nahradíme term $f(t_1,\ldots,t_n)$ novou proměnnou z: výsledek φ^*
 - 2. φ zkonstruujeme takto: $(\exists z)(\varphi^* \land \psi'(x_1/t_1, \dots, x_n/t_n, y/z))$ (kde ψ' je varianta ψ zaručující substituovatelnost)

- (ii) stačí pro jediný výskyt symbolu f, jinak induktivně (je-li více vnořených výskytů $f(\ldots f(\ldots), potom od vnitřních k vnějším)$
 - 1. nahradíme term $f(t_1,\ldots,t_n)$ novou proměnnou z: výsledek φ^*
 - 2. φ zkonstruujeme takto: $(\exists z)(\varphi^* \land \psi'(x_1/t_1, \dots, x_n/t_n, y/z))$ (kde ψ' je varianta ψ zaručující substituovatelnost)

Ukážeme, že pro libovolný model $\mathcal{A} \models \mathcal{T}'$ a ohodnocení e platí:

$$\mathcal{A} \models \varphi'[e]$$
 právě když $\mathcal{A} \models \varphi[e]$

- (ii) stačí pro jediný výskyt symbolu f, jinak induktivně (je-li více vnořených výskytů $f(\ldots f(\ldots), potom od vnitřních k vnějším)$
 - 1. nahradíme term $f(t_1,\ldots,t_n)$ novou proměnnou z: výsledek φ^*
 - 2. φ zkonstruujeme takto: $(\exists z)(\varphi^* \land \psi'(x_1/t_1, \dots, x_n/t_n, y/z))$ (kde ψ' je varianta ψ zaručující substituovatelnost)

Ukážeme, že pro libovolný model $\mathcal{A} \models \mathcal{T}'$ a ohodnocení e platí:

$$\mathcal{A} \models \varphi'[e] \;\; \mathsf{právě} \; \mathsf{když} \;\; \mathcal{A} \models \varphi[e]$$

Označme $a = (f(t_1, ..., t_n))^{A}[e]$. Díky existenci a jednoznačnosti:

$$\mathcal{A} \models \psi'(x_1/t_1, \dots, x_n/t_n, y/z)[e]$$
 právě když $e(z) = a$

- (ii) stačí pro jediný výskyt symbolu f, jinak induktivně (je-li více vnořených výskytů $f(\ldots f(\ldots))$, potom od vnitřních k vnějším)
 - 1. nahradíme term $f(t_1,\ldots,t_n)$ novou proměnnou z: výsledek φ^*
 - 2. φ zkonstruujeme takto: $(\exists z)(\varphi^* \wedge \psi'(x_1/t_1, \dots, x_n/t_n, y/z))$ (kde ψ' je varianta ψ zaručující substituovatelnost)

Ukážeme, že pro libovolný model $\mathcal{A} \models \mathcal{T}'$ a ohodnocení e platí:

$$\mathcal{A} \models \varphi'[e]$$
 právě když $\mathcal{A} \models \varphi[e]$

Označme $a = (f(t_1, ..., t_n))^{\mathcal{A}}[e]$. Díky existenci a jednoznačnosti:

$$\mathcal{A} \models \psi'(x_1/t_1, \dots, x_n/t_n, y/z)[e]$$
 právě když $e(z) = a$

Máme tedy:
$$\mathcal{A} \models \varphi'[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi[e]$$

Definice konstantního symbolu

speciální případ: funkční symbol arity 0

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

• musí platit $T \models (\exists y)\psi(y)$ a $T \models \psi(y) \land \psi(z) \rightarrow y = z$

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

- musí platit $T \models (\exists y)\psi(y)$ a $T \models \psi(y) \land \psi(z) \rightarrow y = z$
- platí stejná tvrzení

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

- musí platit $T \models (\exists y)\psi(y)$ a $T \models \psi(y) \land \psi(z) \rightarrow y = z$
- platí stejná tvrzení

1. teorie v jazyce aritmetiky, rozšíříme o definici symbolu 1 formulí $\psi(y)$ tvaru y = S(0), přidáme tedy axiom $1 = y \leftrightarrow y = S(0)$

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

- musí platit $T \models (\exists y)\psi(y)$ a $T \models \psi(y) \land \psi(z) \rightarrow y = z$
- platí stejná tvrzení
- 1. teorie v jazyce aritmetiky, rozšíříme o definici symbolu 1 formulí $\psi(y)$ tvaru y = S(0), přidáme tedy axiom $1 = y \leftrightarrow y = S(0)$
- 2. teorie těles, nový symbol $\frac{1}{2}$, definice formulí $y \cdot (1+1) = 1$, tj. přidáním $\frac{1}{2} = y \leftrightarrow y \cdot (1+1) = 1$?

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

- musí platit $T \models (\exists y)\psi(y)$ a $T \models \psi(y) \land \psi(z) \rightarrow y = z$
- platí stejná tvrzení
- 1. teorie v jazyce aritmetiky, rozšíříme o definici symbolu 1 formulí $\psi(y)$ tvaru y = S(0), přidáme tedy axiom $1 = y \leftrightarrow y = S(0)$
- 2. teorie těles, nový symbol $\frac{1}{2}$, definice formulí $y \cdot (1+1) = 1$, tj. přidáním $\frac{1}{2} = y \leftrightarrow y \cdot (1+1) = 1$?
 - není extenze o definici! neplatí existence: v tělese charakteristiky 2, např. \mathbb{Z}_2 , nemá rovnice $y \cdot (1+1) = 1$ řešení

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí $\psi(y)$:

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

- musí platit $T \models (\exists y)\psi(y)$ a $T \models \psi(y) \land \psi(z) \rightarrow y = z$
- platí stejná tvrzení
- 1. teorie v jazyce aritmetiky, rozšíříme o definici symbolu 1 formulí $\psi(y)$ tvaru y=S(0), přidáme tedy axiom $1=y \leftrightarrow y=S(0)$
- 2. teorie těles, nový symbol $\frac{1}{2}$, definice formulí $y \cdot (1+1) = 1$, tj. přidáním $\frac{1}{2} = y \leftrightarrow y \cdot (1+1) = 1$?
 - není extenze o definici! neplatí existence: v tělese
 charakteristiky 2, např. Z₂, nemá rovnice y · (1+1) = 1 řešení
 - ale v teorii těles charakteristiky různé od 2, tj. přidáme-li axiom $\neg (1+1=0)$, už ano; např. v \mathbb{Z}_3 máme $\frac{1}{2}^{\mathbb{Z}_3}=2$

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

Tvrzení: (snadno indukcí)

• Každý model T lze jednoznačně expandovat na model T'.

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro L'-formuli φ' existuje L-formule φ , že $T' \models \varphi' \leftrightarrow \varphi$.

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro L'-formuli φ' existuje L-formule φ , že $T' \models \varphi' \leftrightarrow \varphi$.

Příklad:
$$T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \to y = z\}$$

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro L'-formuli φ' existuje L-formule φ , že $T' \models \varphi' \leftrightarrow \varphi$.

Příklad:
$$T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$$

 $L = \langle +, 0, \leq \rangle$ s rovností, zavedeme \leq a unární $-$ přidáním axiomů:

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro L'-formuli φ' existuje L-formule φ , že $T' \models \varphi' \leftrightarrow \varphi$.

Příklad:
$$T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$$

$$L = \langle +, 0, \leq \rangle \text{ s rovností, zavedeme } < \text{a unární } - \text{přidáním axiomů:}$$

$$T' = T \cup \{-x = y \leftrightarrow x + y = 0,$$

$$x < y \leftrightarrow x \leq y \land \neg (x = y)\}$$

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

Tvrzení: (snadno indukcí)

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro L'-formuli φ' existuje L-formule φ , že $T' \models \varphi' \leftrightarrow \varphi$.

Příklad:
$$T = \{ (\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z \}$$

 $L=\langle +,0,\leq \rangle$ s rovností, zavedeme < a unární — přidáním axiomů:

$$T' = T \cup \{-x = y \leftrightarrow x + y = 0, x < y \leftrightarrow x \le y \land \neg(x = y)\}\$$

Formule -x < y v jazyce $L' = \langle +, -, 0, \leq, < \rangle$ s rovností je v T' ekvivalentní formuli:

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

Tvrzení: (snadno indukcí)

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro L'-formuli φ' existuje L-formule φ , že $T' \models \varphi' \leftrightarrow \varphi$.

Příklad:
$$T = \{ (\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z \}$$

 $L=\langle +,0,\leq
angle$ s rovností, zavedeme < a unární - přidáním axiomů:

$$T' = T \cup \{-x = y \leftrightarrow x + y = 0, \\ x < y \leftrightarrow x \le y \land \neg(x = y)\}$$

Formule -x < y v jazyce $L' = \langle +, -, 0, \leq, < \rangle$ s rovností je v T' ekvivalentní formuli: $(\exists z)((z \leq y \land \neg (z = y)) \land x + z = 0)$

6.8 Definovatelnost ve struktuře

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že φ platí při ohodnocení kde e(x)=a)

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že φ platí při ohodnocení kde e(x) = a)
- $\varphi(x,y)$ definuje binární relaci, atp.

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že φ platí při ohodnocení kde e(x) = a)
- $\varphi(x,y)$ definuje binární relaci, atp.

Množina definovaná $\varphi(x_1,...,x_n)$ ve struktuře \mathcal{A} (v témž jazyce): $\varphi^{\mathcal{A}}(x_1,...,x_n) = \{(a_1,...,a_n) \in \mathcal{A}^n \mid \mathcal{A} \models \varphi[e(x_1/a_1,...,x_n/a_n)]\}$

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že φ platí při ohodnocení kde e(x) = a)
- $\varphi(x,y)$ definuje binární relaci, atp.

Množina definovaná $\varphi(x_1, \ldots, x_n)$ ve struktuře \mathcal{A} (v témž jazyce):

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in\mathcal{A}^n\mid\mathcal{A}\models\varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}$$

Zkráceně píšeme: $\varphi^{\mathcal{A}}(\bar{x}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a})]\}$

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že φ platí při ohodnocení kde e(x) = a)
- $\varphi(x,y)$ definuje binární relaci, atp.

Množina definovaná
$$\varphi(x_1,...,x_n)$$
 ve struktuře \mathcal{A} (v témž jazyce):
$$\varphi^{\mathcal{A}}(x_1,...,x_n) = \{(a_1,...,a_n) \in \mathcal{A}^n \mid \mathcal{A} \models \varphi[e(x_1/a_1,...,x_n/a_n)]\}$$

Zkráceně píšeme: $\varphi^{\mathcal{A}}(\bar{x}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a})]\}$

• formule $\neg(\exists y)E(x,y)$ definuje v daném grafu množinu všech izolovaných vrcholů

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že φ platí při ohodnocení kde e(x) = a)
- $\varphi(x,y)$ definuje binární relaci, atp.

Množina definovaná
$$\varphi(x_1,...,x_n)$$
 ve struktuře \mathcal{A} (v témž jazyce):
$$\varphi^{\mathcal{A}}(x_1,...,x_n) = \{(a_1,...,a_n) \in \mathcal{A}^n \mid \mathcal{A} \models \varphi[e(x_1/a_1,...,x_n/a_n)]\}$$

Zkráceně píšeme: $\varphi^{\mathcal{A}}(\bar{x}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a})]\}$

- formule $\neg(\exists y)E(x,y)$ definuje v daném grafu množinu všech izolovaných vrcholů
- $(\exists y)(y \cdot y = x) \land \neg(x = 0)$ definuje v tělese \mathbb{R} množinu všech kladných reálných čísel

- formule φ s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že φ platí při ohodnocení kde e(x) = a)
- $\varphi(x,y)$ definuje binární relaci, atp.

Množina definovaná $\varphi(x_1, \ldots, x_n)$ ve struktuře \mathcal{A} (v témž jazyce):

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}$$

Zkráceně píšeme: $\varphi^{\mathcal{A}}(\bar{x}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a})]\}$

- formule $\neg(\exists y)E(x,y)$ definuje v daném grafu množinu všech izolovaných vrcholů
- $(\exists y)(y \cdot y = x) \land \neg(x = 0)$ definuje v tělese \mathbb{R} množinu všech kladných reálných čísel
- $x \le y \land \neg(x = y)$ definuje v uspořádané množině $\langle S, \le^S \rangle$ relaci ostrého uspořádání $<^S$

 vlastnosti prvků relativně k jiným prvkům? nelze čistě syntakticky, ale můžeme dosadit prvky jako parametry

- vlastnosti prvků relativně k jiným prvkům? nelze čistě syntakticky, ale můžeme dosadit prvky jako parametry
- zápis $\varphi(\bar{x},\bar{y})$: volné proměnné $x_1,\ldots,x_n,y_1,\ldots,y_k$

- vlastnosti prvků relativně k jiným prvkům? nelze čistě syntakticky, ale můžeme dosadit prvky jako parametry
- zápis $\varphi(\bar{x},\bar{y})$: volné proměnné $x_1,\ldots,x_n,y_1,\ldots,y_k$

Mějme $\varphi(\bar{x}, \bar{y})$ (kde $|\bar{x}| = n$, $|\bar{y}| = k$), strukturu \mathcal{A} (v témž jazyce), $\bar{b} \in A^k$. Množina definovaná $\varphi(\bar{x}, \bar{y})$ s parametry \bar{b} ve struktuře \mathcal{A} :

$$\varphi^{\mathcal{A},\bar{b}}(\bar{x},\bar{y}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a},\bar{y}/\bar{b})]\}$$

- vlastnosti prvků relativně k jiným prvkům? nelze čistě syntakticky, ale můžeme dosadit prvky jako parametry
- zápis $\varphi(\bar{x},\bar{y})$: volné proměnné $x_1,\ldots,x_n,y_1,\ldots,y_k$

Mějme $\varphi(\bar{x}, \bar{y})$ (kde $|\bar{x}| = n$, $|\bar{y}| = k$), strukturu \mathcal{A} (v témž jazyce), $\bar{b} \in A^k$. Množina definovaná $\varphi(\bar{x}, \bar{y})$ s parametry \bar{b} ve struktuře \mathcal{A} :

$$\varphi^{\mathcal{A},\bar{b}}(\bar{x},\bar{y}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a},\bar{y}/\bar{b})]\}$$

Pro $B \subseteq A$ označíme $\mathrm{Df}^n(\mathcal{A},B)$ množinu všech množin definovatelných v \mathcal{A} s parametry pocházejícími z B.

- vlastnosti prvků relativně k jiným prvkům? nelze čistě syntakticky, ale můžeme dosadit prvky jako parametry
- zápis $\varphi(\bar{x},\bar{y})$: volné proměnné $x_1,\ldots,x_n,y_1,\ldots,y_k$

Mějme $\varphi(\bar{x}, \bar{y})$ (kde $|\bar{x}| = n$, $|\bar{y}| = k$), strukturu \mathcal{A} (v témž jazyce), $\bar{b} \in A^k$. Množina definovaná $\varphi(\bar{x}, \bar{y})$ s parametry \bar{b} ve struktuře \mathcal{A} :

$$\varphi^{\mathcal{A},\bar{b}}(\bar{x},\bar{y}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a},\bar{y}/\bar{b})]\}$$

Pro $B \subseteq A$ označíme $\mathrm{Df}^n(\mathcal{A},B)$ množinu všech množin definovatelných v \mathcal{A} s parametry pocházejícími z B.

Pozorování: $\mathrm{Df}^n(\mathcal{A}, \mathcal{B})$ je uzavřená na doplněk, průnik, sjednocení, a obsahuje \emptyset a \mathcal{A}^n : je to podalgebra potenční algebry $\mathcal{P}(\mathcal{A}^n)$.

- vlastnosti prvků relativně k jiným prvkům? nelze čistě syntakticky, ale můžeme dosadit prvky jako parametry
- zápis $\varphi(\bar{x},\bar{y})$: volné proměnné $x_1,\ldots,x_n,y_1,\ldots,y_k$

Mějme $\varphi(\bar{x}, \bar{y})$ (kde $|\bar{x}| = n$, $|\bar{y}| = k$), strukturu \mathcal{A} (v témž jazyce), $\bar{b} \in A^k$. Množina definovaná $\varphi(\bar{x}, \bar{y})$ s parametry \bar{b} ve struktuře \mathcal{A} :

$$\varphi^{\mathcal{A},\bar{b}}(\bar{x},\bar{y}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a},\bar{y}/\bar{b})]\}$$

Pro $B \subseteq A$ označíme $\mathrm{Df}^n(\mathcal{A},B)$ množinu všech množin definovatelných v \mathcal{A} s parametry pocházejícími z B.

Pozorování: $\mathrm{Df}^n(\mathcal{A}, B)$ je uzavřená na doplněk, průnik, sjednocení, a obsahuje \emptyset a A^n : je to podalgebra potenční algebry $\mathcal{P}(A^n)$.

Např. pro $\varphi(x,y) = E(x,y)$ a vrchol $v \in V(\mathcal{G})$ je $\varphi^{\mathcal{G},v}(x,y)$ množina všech sousedů vrcholu v.

• relační databáze: jedna nebo více tabulek, také relace

- relační databáze: jedna nebo více tabulek, také relace
- řádky tabulky jsou záznamy (records), také tice (tuples)

- relační databáze: jedna nebo více tabulek, také relace
- řádky tabulky jsou záznamy (records), také tice (tuples)
- struktura v čistě relačním jazyce

- relační databáze: jedna nebo více tabulek, také relace
- řádky tabulky jsou záznamy (records), také tice (tuples)
- struktura v čistě relačním jazyce

Movies

title	director	actor
Forrest Gump	R. Zemeckis	T. Hanks
Philadelphia	J. Demme	T. Hanks
Batman Returns	T. Burton	M. Keaton
:	:	:

- relační databáze: jedna nebo více tabulek, také relace
- řádky tabulky jsou záznamy (records), také tice (tuples)
- struktura v čistě relačním jazyce

Movies

title	director	actor
Forrest Gump	R. Zemeckis	T. Hanks
Philadelphia	J. Demme	T. Hanks
Batman Returns	T. Burton	M. Keaton
•		
:	:	:

Program

cinema	title	time
Atlas	Forrest Gump	20:00
Lucerna	Forrest Gump	21:00
Lucerna	Philadelphia	18:30

 SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

"Kdy a kde můžeme vidět film s Tomem Hanksem?"

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

• výsledek je množina $\varphi^{\text{Database, 'T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

- výsledek je množina $\varphi^{\text{Database}, \text{`T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$
- definovaná ve struktuře $Database = \langle D, Program, Movies \rangle$

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

- výsledek je množina $\varphi^{\text{Database}, \text{`T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$
- definovaná ve struktuře $Database = \langle D, Program, Movies \rangle$
- jejíž doména je $D = \{$ 'Atlas', 'Lucerna', ..., 'M. Keaton' $\}$

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

- výsledek je množina $\varphi^{\text{Database}, \text{`T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$
- definovaná ve struktuře $Database = \langle D, Program, Movies \rangle$
- jejíž doména je $D = \{ \text{`Atlas'}, \text{`Lucerna'}, \dots, \text{`M. Keaton'} \}$
- s parametrem 'T. Hanks',

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

- výsledek je množina $\varphi^{\text{Database, 'T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$
- definovaná ve struktuře $Database = \langle D, Program, Movies \rangle$
- jejíž doména je $D = \{ \text{`Atlas'}, \text{`Lucerna'}, \dots, \text{`M. Keaton'} \}$
- s parametrem 'T. Hanks',
- definující formule $\varphi(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$:

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

- výsledek je množina $\varphi^{\text{Database, 'T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$
- definovaná ve struktuře $Database = \langle D, Program, Movies \rangle$
- jejíž doména je $D = \{ \text{`Atlas'}, \text{`Lucerna'}, \dots, \text{`M. Keaton'} \}$
- s parametrem 'T. Hanks',
- definující formule $\varphi(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$:

```
(\exists z_{\mathrm{title}})(\exists z_{\mathrm{director}})(\operatorname{Program}(x_{\mathrm{cinema}}, z_{\mathrm{title}}, x_{\mathrm{time}}) \land \\ \operatorname{Movies}(z_{\mathrm{title}}, z_{\mathrm{director}}, y_{\mathrm{actor}}))
```

6.9 Vztah výrokové a predikátové

logiky

Teorie Booleových algeber

$$L = \langle -, \wedge, \vee, \perp, \top \rangle$$
 s rovností

■ asociativita ∧ a ∨:

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
$$x \vee (y \vee z) = (x \vee y) \vee z$$

■ komutativita ∧ a ∨:

$$x \wedge y = y \wedge x$$

$$x \lor y = y \lor x$$

• distributivita \wedge vůči \vee , \vee vůči \wedge : $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$

$$x \wedge (x \vee y) = x$$

 $x \vee (x \wedge y) = x$

komplementace:

$$x \wedge (-x) = \bot$$

 $x \vee (-x) = \top$

netrivialita:

$$-(\bot = \top)$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

 $x \vee (y \vee z) = (x \vee y) \vee z$

■ komutativita ∧ a ∨:

$$x \wedge y = y \wedge x$$

$$x \lor y = y \lor x$$

■ distributivita ∧ vůči ∨, ∨ vůči ∧:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

absorpce:

$$x \wedge (x \vee y) = x$$

 $x \vee (x \wedge y) = x$

komplementace:

$$x \wedge (-x) = \bot$$

$$x \vee (-x) = \top$$

netrivialita:

$$-(\bot = \top)$$

dualita: záměnou ∧ s ∨ a ⊥ s ⊤ získáme tytéž axiomy

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

 $x \vee (y \vee z) = (x \vee y) \vee z$

■ komutativita ∧ a ∨:

$$x \wedge y = y \wedge x$$

$$x \lor y = y \lor x$$

■ distributivita ∧ vůči ∨, ∨ vůči ∧:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

absorpce:

$$x \wedge (x \vee y) = x$$

 $x \vee (x \wedge y) = x$

komplementace:

$$x \wedge (-x) = \bot$$

 $x \vee (-x) = \top$

netrivialita:

$$-(\bot = \top)$$

- dualita: záměnou ∧ s ∨ a ⊥ s ⊤ získáme tytéž axiomy
- nejmenší model: 2-prvková B. algebra $\langle \{0,1\}, f_{\neg}, f_{\wedge}, f_{\vee}, 0, 1 \rangle$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

 $x \vee (y \vee z) = (x \vee y) \vee z$

■ komutativita ∧ a ∨:

$$x \wedge y = y \wedge x$$

$$x \lor y = y \lor x$$

■ distributivita ∧ vůči ∨, ∨ vůči ∧:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

absorpce:

$$x \wedge (x \vee y) = x$$

 $x \vee (x \wedge y) = x$

komplementace:

$$x \wedge (-x) = \bot$$

$$x \vee (-x) = \top$$

netrivialita:

$$-(\bot = \top)$$

- dualita: záměnou ∧ s ∨ a ⊥ s ⊤ získáme tytéž axiomy
- nejmenší model: 2-prvková B. algebra $\langle \{0,1\}, f_{\neg}, f_{\wedge}, f_{\vee}, 0, 1 \rangle$
- konečné modely, až na izomorfismus (fⁿ je f po složkách):

$$\langle \{0,1\}^n, f_{\neg}^n, f_{\wedge}^n, f_{\vee}^n, (0,\ldots,0), (1,\ldots,1) \rangle$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

 $x \vee (y \vee z) = (x \vee y) \vee z$

■ komutativita ∧ a ∨:

$$x \land y = y \land x$$
$$x \lor y = y \lor x$$

■ distributivita ∧ vůči ∨, ∨ vůči ∧:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

absorpce:

$$x \wedge (x \vee y) = x$$

 $x \vee (x \wedge y) = x$

komplementace:

$$x \wedge (-x) = \bot$$

 $x \vee (-x) = \top$

netrivialita:

$$-(\bot = \top)$$

- dualita: záměnou \land s \lor a \bot s \top získáme tytéž axiomy
- nejmenší model: 2-prvková B. algebra $\langle \{0,1\}, f_{\neg}, f_{\wedge}, f_{\vee}, 0, 1 \rangle$
- konečné modely, až na izomorfismus (f^n je f po složkách):

$$\langle \{0,1\}^n, f_{\neg}^n, f_{\wedge}^n, f_{\vee}^n, (0,\dots,0), (1,\dots,1) \rangle$$

• jsou izomorfní potenčním algebrám $\mathcal{P}(\{1,\ldots,n\})$ pomocí bijekce mezi podmnožinami a charakteristickými vektory

 výrokovou logiku lze 'simulovat' v predikátové logice v teorii Booleových algeber

- výrokovou logiku lze 'simulovat' v predikátové logice v teorii
 Booleových algeber
- výroky jsou Booleovské termy, konstanty ⊥, ⊤ představují pravdu a lež

- výrokovou logiku lze 'simulovat' v predikátové logice v teorii Booleových algeber
- výroky jsou Booleovské termy, konstanty ⊥, ⊤ představují pravdu a lež
- pravdivostní hodnota výroku (při daném pravdivostním ohodnocení) je hodnota termu v 2-prvkové Booleově algebře

- výrokovou logiku lze 'simulovat' v predikátové logice v teorii
 Booleových algeber
- výroky jsou Booleovské termy, konstanty ⊥, ⊤ představují pravdu a lež
- pravdivostní hodnota výroku (při daném pravdivostním ohodnocení) je hodnota termu v 2-prvkové Booleově algebře
- kromě toho, algebra výroků daného výrokového jazyka nebo teorie je Booleovou algebrou (i pro nekonečné jazyky)

• máme-li otevřenou formuli φ (bez rovnosti), můžeme reprezentovat atomické formule pomocí prvovýroků, a získat tak výrok, který platí, právě když platí φ

- máme-li otevřenou formuli φ (bez rovnosti), můžeme reprezentovat atomické formule pomocí prvovýroků, a získat tak výrok, který platí, právě když platí φ
- viz Kapitola 8: Rezoluce v predikátové logice, kde se nejprve zbavíme kvantifikátorů pomocí tzv. Skolemizace

- máme-li otevřenou formuli φ (bez rovnosti), můžeme reprezentovat atomické formule pomocí prvovýroků, a získat tak výrok, který platí, právě když platí φ
- viz Kapitola 8: Rezoluce v predikátové logice, kde se nejprve zbavíme kvantifikátorů pomocí tzv. Skolemizace
- výrokovou logiku lze také zavést jako fragment logiky predikátové, pokud povolíme nulární relace

- máme-li otevřenou formuli φ (bez rovnosti), můžeme reprezentovat atomické formule pomocí prvovýroků, a získat tak výrok, který platí, právě když platí φ
- viz Kapitola 8: Rezoluce v predikátové logice, kde se nejprve zbavíme kvantifikátorů pomocí tzv. Skolemizace
- výrokovou logiku lze také zavést jako fragment logiky predikátové, pokud povolíme nulární relace
- $A^0=\{\emptyset\}$, tedy na libovolné množině jsou právě dvě nulární relace $R^A\subseteq A^0\colon R^A=\emptyset=0$ a $R^A=\{\emptyset\}=\{0\}=1$

Kapitola 7: Tablo metoda v predikátové logice

7.1 Neformální úvod

Úvodní příklady: dva tablo důkazy

Úvodní příklady: dva tablo důkazy

Úvodní příklady: dva tablo důkazy

 opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:
 - typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:
 - typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
 - typ "všichni": položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:
 - typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
 - typ "všichni": položky tvaru $\mathrm{T}(\forall x) \varphi(x)$ a $\mathrm{F}(\exists x) \varphi(x)$
- kvantifikátor nelze odstranit, $\varphi(x)$ by typicky nebyla sentence

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:
 - typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
 - typ "všichni": položky tvaru $T(\forall x)\varphi(x)$ a $F(\exists x)\varphi(x)$
- kvantifikátor nelze odstranit, $\varphi(x)$ by typicky nebyla sentence
- místo toho za x substituujeme konstantní term t: $\varphi(x/t)$

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:
 - typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
 - typ "všichni": položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$
- kvantifikátor nelze odstranit, $\varphi(x)$ by typicky nebyla sentence
- místo toho za x substituujeme konstantní term t: $\varphi(x/t)$
- jaký? podle typu položky ("svědek" vs. "všichni")

• jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- **typ** "svědek": dosadíme nový $c \in C$ (dosud na větvi není)

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- typ "svědek": dosadíme nový c ∈ C (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- typ "svědek": dosadíme nový c ∈ C (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- typ "svědek": dosadíme nový c ∈ C (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'
- typ "všichni": substituujeme libovolný konstantní L_C-term

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- typ "svědek": dosadíme nový c ∈ C (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'
- typ "všichni": substituujeme libovolný konstantní L_C-term
 - pro $T(\forall x)\varphi(x)$ tedy máme $T\varphi(x/t)$

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- typ "svědek": dosadíme nový c ∈ C (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'
- typ "všichni": substituujeme libovolný konstantní L_C-term
 - pro $T(\forall x)\varphi(x)$ tedy máme $T\varphi(x/t)$
 - bezesporná větev je dokončená jen pokud dosadíme všechny t ('použijeme vše, co víme')

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- **typ** "svědek": dosadíme nový $c \in C$ (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'
- typ "všichni": substituujeme libovolný konstantní L_C-term
 - pro $T(\forall x)\varphi(x)$ tedy máme $T\varphi(x/t)$
 - bezesporná větev je dokončená jen pokud dosadíme všechny t
 ('použijeme vše, co víme')
- konvence: kořeny atomických tabel nekreslíme kromě položek typu "všichni" (po jednom dosazení ještě nejsme hotovi!)

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- typ "svědek": dosadíme nový c ∈ C (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'
- typ "všichni": substituujeme libovolný konstantní L_C-term
 - pro $T(\forall x)\varphi(x)$ tedy máme $T\varphi(x/t)$
 - bezesporná větev je dokončená jen pokud dosadíme všechny t ('použijeme vše, co víme')
- konvence: kořeny atomických tabel nekreslíme kromě položek typu "všichni" (po jednom dosazení ještě nejsme hotovi!)
- typický postup: nejprve zredukujeme položky typu "svědek", poté zjistíme, co 'o svědcích říkají' položky typu "všichni"

7.2 Formální definice

buď L spočetný jazyk bez rovnosti.

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$
- ullet mějme nějakou L-teorii T a L-sentenci arphi

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$
- ullet mějme nějakou L-teorii T a L-sentenci arphi
- položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je L_{C} -sentence

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$
- ullet mějme nějakou L-teorii T a L-sentenci arphi
- položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je L_C -sentence
- položky tvaru $\mathrm{T}(\exists x)\varphi(x)$ a $\mathrm{F}(\forall x)\varphi(x)$ jsou typu "svědek"

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$
- ullet mějme nějakou L-teorii T a L-sentenci arphi
- položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je L_C -sentence
- položky tvaru $\mathrm{T}(\exists x)\varphi(x)$ a $\mathrm{F}(\forall x)\varphi(x)$ jsou typu "svědek"
- položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$ jsou typu "všichni"

- buď L spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$
- ullet mějme nějakou L-teorii T a L-sentenci arphi
- položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je L_C -sentence
- položky tvaru $\mathrm{T}(\exists x)\varphi(x)$ a $\mathrm{F}(\forall x)\varphi(x)$ jsou typu "svědek"
- položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$ jsou typu "všichni"
- atomická tabla jsou násl. položkami označkované stromy:

Atomická tabla pro kvantifikátory

 φ je libovolná L_C -sentence, x proměnná, t_i konstantní L_C -term, $c_i \in C$ je nový pomocný konstantní symbol (při konstrukci tabla nesměl dosud být na dané větvi)

Atomická tabla pro logické spojky

 φ a ψ jsou libovolné L_C -sentence

	_ ¬	_ ^	\ \	\rightarrow	\leftrightarrow
True	$\begin{array}{ c c c c }\hline & T \neg \varphi & & & \\ & \downarrow & & & \\ & F \varphi & & & \end{array}$	$ \begin{array}{c c} & T\varphi \wedge \psi \\ & T\varphi \\ & \downarrow \\ & T\psi \end{array} $	$ \begin{array}{c c} T\varphi \lor \psi \\ / & \\ T\varphi & T\psi \end{array} $	$ \begin{array}{c c} T\varphi \to \psi \\ / & \\ F\varphi & T\psi \end{array} $	$ \begin{array}{c cc} & T\varphi \leftrightarrow \psi \\ & / & \\ & T\varphi & F\varphi \\ & & \\ & T\psi & F\psi \end{array} $
False		$\begin{array}{c c} F\varphi \wedge \psi \\ / & \\ F\varphi & F\psi \end{array}$		$ \begin{array}{c c} F\varphi \to \psi \\ & \\ T\varphi \\ & \\ F\psi \end{array} $	$ \begin{array}{c cccc} F\varphi \leftrightarrow \psi \\ / & \\ T\varphi & F\varphi \\ & \\ F\psi & T\psi \end{array} $

Formální definice tabla

Formální definice tabla

konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:

Formální definice tabla

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen $c_i \in C$, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C -term t_i)

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen $c_i \in C$, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C -term t_i)
 - na konec libovolné větve můžeme připojit položku $\mathrm{T}\alpha$ pro libovolný axiom $\alpha \in \mathcal{T}$

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen $c_i \in C$, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C -term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i \geq 0} \tau_i$, kde:

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen c_i ∈ C, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C-term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i>0} \tau_i$, kde:
 - τ_i jsou konečná tabla z T

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen c_i ∈ C, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C-term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i>0} \tau_i$, kde:
 - τ_i jsou konečná tabla z T
 - au_0 je jednoprvkové tablo

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen c_i ∈ C, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C-term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i>0} \tau_i$, kde:
 - τ_i jsou konečná tabla z T
 - au_0 je jednoprvkové tablo
 - τ_{i+1} vzniklo z τ_i v jednom kroku

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen c_i ∈ C, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C-term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i>0} \tau_i$, kde:
 - τ_i jsou konečná tabla z T
 - au_0 je jednoprvkové tablo
 - τ_{i+1} vzniklo z τ_i v jednom kroku
- tablo pro položku P je tablo, které má položku P v kořeni

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen c_i ∈ C, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C-term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i \geq 0} \tau_i$, kde:
 - τ_i jsou konečná tabla z T
 - au_0 je jednoprvkové tablo
 - τ_{i+1} vzniklo z τ_i v jednom kroku
- tablo pro položku P je tablo, které má položku P v kořeni

• Tablo je sporné, pokud je každá jeho větev sporná.

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $\mathrm{T} \alpha$ pro každý axiom $\alpha \in \mathcal{T}.$

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in \mathcal{T}.$
- Položka P je redukovaná na větvi V procházející P, pokud

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in \mathcal{T}$.
- Položka P je redukovaná na větvi V procházející P, pokud
 - je tvaru $\mathrm{T}\psi$ resp. $\mathrm{F}\psi$ pro atomickou sentenci, nebo

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in \mathcal{T}$.
- Položka P je redukovaná na větvi V procházející P, pokud
 - je tvaru $T\psi$ resp. $F\psi$ pro atomickou sentenci, nebo
 - není typu "všichni" a vyskytuje se na V jako kořen atomického tabla (tj., typicky, již došlo k jejímu rozvoji na V), nebo

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in \mathcal{T}.$
- Položka P je redukovaná na větvi V procházející P, pokud
 - je tvaru $T\psi$ resp. $F\psi$ pro atomickou sentenci, nebo
 - není typu "všichni" a vyskytuje se na V jako kořen atomického tabla (tj., typicky, již došlo k jejímu rozvoji na V), nebo
 - je typu "všichni" a všechny její výskyty na větvi V jsou na V redukované.

Výskyt položky P typu "všichni" na V je i-tý, má-li právě i-1 předků označených P, a i-tý výskyt je redukovaný na V, pokud

Výskyt položky P typu "všichni" na V je i-tý, má-li právě i-1 předků označených P, a i-tý výskyt je redukovaný na V, pokud

• P má (i+1)-ní výskyt na V, a zároveň

Výskyt položky P typu "všichni" na V je i-tý, má-li právě i-1 předků označených P, a i-tý výskyt je redukovaný na V, pokud

- P má (i+1)-ní výskyt na V, a zároveň
- na V je položka $\mathbf{T}\varphi(x/t_i)$ (je-li $P=\mathbf{T}(\forall x)\varphi(x)$) resp. $\mathbf{F}\varphi(x/t_i)$ (je-li $P=\mathbf{F}(\exists x)\varphi(x)$), kde t_i je i-tý konstantní L_C -term (tj., typicky, už jsme za x substituovali t_i)

Výskyt položky P typu "všichni" na V je i-tý, má-li právě i-1 předků označených P, a i-tý výskyt je redukovaný na V, pokud

- P má (i+1)-ní výskyt na V, a zároveň
- na V je položka $\mathbf{T}\varphi(x/t_i)$ (je-li $P=\mathbf{T}(\forall x)\varphi(x)$) resp. $\mathbf{F}\varphi(x/t_i)$ (je-li $P=\mathbf{F}(\exists x)\varphi(x)$), kde t_i je i-tý konstantní L_C -term (tj., typicky, už jsme za x substituovali t_i)

 ${f NB:}$ je-li položka typu "všichni" na V redukovaná, má na V nekonečně výskytů, a dosadili jsme všechny konstantní L_C -termy

• tablo důkaz sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni

- tablo důkaz sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni
- pokud existuje, je φ (tablo) dokazatelný z T, píšeme $T \vdash \varphi$

- tablo důkaz sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni
- pokud existuje, je φ (tablo) dokazatelný z T, píšeme $T \vdash \varphi$
- podobně, tablo zamítnutí je sporné tablo s $\mathrm{T} \varphi$ v kořeni

- tablo důkaz sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni
- pokud existuje, je φ (tablo) dokazatelný z T, píšeme $T \vdash \varphi$
- ullet podobně, tablo zamítnutí je sporné tablo s $\mathrm{T} arphi$ v kořeni
- existuje-li, je φ (tablo) zamítnutelný z T, tj. platí $T \models \neg \varphi$

Příklad: tablo důkaz (v logice)

Ještě příklad $(\varphi, \psi$ jsou formule s jedinou volnou proměnnou x)

(c_0 lze použít jako nový ve všech případech: na dané větvi se dosud nevyskytuje)

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T = \{\alpha_0, \alpha_1, \alpha_2, \dots\}$ pro položku R je $\tau = \bigcup_{i>0} \tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i \geq 0$:

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T=\{\alpha_0,\alpha_1,\alpha_2,\dots\}$ pro položku R je $\tau=\bigcup_{i\geq 0}\tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i\geq 0$:

 buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P (resp. je-li typu "všichni", její výskyt není redukovaný)

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T=\{\alpha_0,\alpha_1,\alpha_2,\dots\}$ pro položku R je $\tau=\bigcup_{i\geq 0}\tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i\geq 0$:

- buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P (resp. je-li typu "všichni", její výskyt není redukovaný)
- nejprve definujeme τ_i' vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P, kde

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T=\{\alpha_0,\alpha_1,\alpha_2,\dots\}$ pro položku R je $\tau=\bigcup_{i>0}\tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i\geq 0$:

- buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P (resp. je-li typu "všichni", její výskyt není redukovaný)
- nejprve definujeme τ'_i vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P, kde je-li P typu "všichni" a má-li ve vrcholu k-tý výskyt, dosadíme k-tý L_C-term t_k, je-li typu "svědek", substituujeme c_i ∈ C s nejmenším i, které na větvi zatím není

Systematické tablo

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T=\{\alpha_0,\alpha_1,\alpha_2,\dots\}$ pro položku R je $\tau=\bigcup_{i>0}\tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i\geq 0$:

- buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P (resp. je-li typu "všichni", její výskyt není redukovaný)
- nejprve definujeme τ'_i vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P, kde je-li P typu "všichni" a má-li ve vrcholu k-tý výskyt, dosadíme k-tý L_C-term t_k, je-li typu "svědek", substituujeme c_i ∈ C s nejmenším i, které na větvi zatím není
- pokud taková položka P neexistuje, potom $au_i' = au_i$

Systematické tablo

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T=\{\alpha_0,\alpha_1,\alpha_2,\dots\}$ pro položku R je $\tau=\bigcup_{i\geq 0}\tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i\geq 0$:

- buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P (resp. je-li typu "všichni", její výskyt není redukovaný)
- nejprve definujeme τ_i' vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P, kde je-li P typu "všichni" a má-li ve vrcholu k-tý výskyt, dosadíme k-tý L_C -term t_k , je-li typu "svědek", substituujeme $c_i \in C$ s nejmenším i, které na větvi zatím není
- pokud taková položka P neexistuje, potom $\tau_i' = \tau_i$
- τ_{i+1} vznikne z τ'_i připojením $T\alpha_{i+1}$ na vš. bezesporné větve (pokud už jsme použili všechny axiomy, definujeme $\tau_{i+1} = \tau'_i$)

Lemma: Systematické tablo je dokončené.

Lemma: Systematické tablo je dokončené.

Důkaz: k-tý výskyt položky typu "všichni" redukujeme když na něj narazíme: připojíme (k+1)-ní výskyt a dosadíme k-tý L_C -term t_k . Zbytek důkazu jako ve výrokové logice.

Lemma: Systematické tablo je dokončené.

Důkaz: k-tý výskyt položky typu "všichni" redukujeme když na něj narazíme: připojíme (k+1)-ní výskyt a dosadíme k-tý L_C -term t_k . Zbytek důkazu jako ve výrokové logice.

Neprodlužujeme-li sporné větve (což nemusíme), je sporné tablo vždy konečné. Důkaz stejný jako ve výrokové logice:

Lemma: Systematické tablo je dokončené.

Důkaz: k-tý výskyt položky typu "všichni" redukujeme když na něj narazíme: připojíme (k+1)-ní výskyt a dosadíme k-tý L_C -term t_k . Zbytek důkazu jako ve výrokové logice.

Neprodlužujeme-li sporné větve (což nemusíme), je sporné tablo vždy konečné. Důkaz stejný jako ve výrokové logice:

Důsledek (Konečnost důkazů): Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ z T.

Lemma: Systematické tablo je dokončené.

Důkaz: k-tý výskyt položky typu "všichni" redukujeme když na něj narazíme: připojíme (k+1)-ní výskyt a dosadíme k-tý L_C -term t_k . Zbytek důkazu jako ve výrokové logice.

Neprodlužujeme-li sporné větve (což nemusíme), je sporné tablo vždy konečné. Důkaz stejný jako ve výrokové logice:

Důsledek (Konečnost důkazů): Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ z T.

Stejně jako ve výrokové logice z důkazu plyne:

Lemma: Systematické tablo je dokončené.

Důkaz: k-tý výskyt položky typu "všichni" redukujeme když na něj narazíme: připojíme (k+1)-ní výskyt a dosadíme k-tý L_C -term t_k . Zbytek důkazu jako ve výrokové logice.

Neprodlužujeme-li sporné větve (což nemusíme), je sporné tablo vždy konečné. Důkaz stejný jako ve výrokové logice:

Důsledek (Konečnost důkazů): Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ z T.

Stejně jako ve výrokové logice z důkazu plyne:

Důsledek (Systematičnost důkazů): Pokud $T \models \varphi$, potom systematické tablo je (konečným) tablo důkazem φ z T.

7.3 Jazyky s rovností

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{A}$ má být identita na A. Jak toho docílit?

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{A}$ má být identita na A. Jak toho docílit?

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{\mathcal{A}}$ má být identita na A. Jak toho docílit?

•
$$c_2^{\mathcal{A}} = {}^{\mathcal{A}} c_1^{\mathcal{A}}$$

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{\mathcal{A}}$ má být identita na A. Jak toho docílit?

- $c_2^{\mathcal{A}} =^{\mathcal{A}} c_1^{\mathcal{A}}$
- $f^{\mathcal{A}}(c_1^{\mathcal{A}}) = {}^{\mathcal{A}} f^{\mathcal{A}}(c_2^{\mathcal{A}})$

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{\mathcal{A}}$ má být identita na A. Jak toho docílit?

- $c_2^{\mathcal{A}} = {}^{\mathcal{A}} c_1^{\mathcal{A}}$
- $f^{\mathcal{A}}(c_1^{\mathcal{A}}) =^{\mathcal{A}} f^{\mathcal{A}}(c_2^{\mathcal{A}})$
- $c_1^{\mathcal{A}} \in P^{\mathcal{A}}$ právě když $c_2^{\mathcal{A}} \in P^{\mathcal{A}}$

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{\mathcal{A}}$ má být identita na A. Jak toho docílit?

Mějme dokončenou bezespornou větev tabla s položkou $Tc_1 = c_2$. V kanonickém modelu musí platit nejen $(c_1^A, c_2^A) \in =^A$, ale také:

- $c_2^{\mathcal{A}} = ^{\mathcal{A}} c_1^{\mathcal{A}}$
- $f^{\mathcal{A}}(c_1^{\mathcal{A}}) =^{\mathcal{A}} f^{\mathcal{A}}(c_2^{\mathcal{A}})$
- $c_1^{\mathcal{A}} \in P^{\mathcal{A}}$ právě když $c_2^{\mathcal{A}} \in P^{\mathcal{A}}$

To vynutíme přidáním axiomů rovnosti, $=^{\mathcal{A}}$ bude kongruence \mathcal{A} (ekvivalence, která se chová dobře k funkcím a relacím).

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{\mathcal{A}}$ má být identita na A. Jak toho docílit?

Mějme dokončenou bezespornou větev tabla s položkou $Tc_1 = c_2$. V kanonickém modelu musí platit nejen $(c_1^A, c_2^A) \in =^A$, ale také:

- $c_2^{\mathcal{A}} = {}^{\mathcal{A}} c_1^{\mathcal{A}}$
- $f^{\mathcal{A}}(c_1^{\mathcal{A}}) =^{\mathcal{A}} f^{\mathcal{A}}(c_2^{\mathcal{A}})$
- $c_1^{\mathcal{A}} \in P^{\mathcal{A}}$ právě když $c_2^{\mathcal{A}} \in P^{\mathcal{A}}$

To vynutíme přidáním axiomů rovnosti, $=^{\mathcal{A}}$ bude kongruence \mathcal{A} (ekvivalence, která se chová dobře k funkcím a relacím).

Poté vezmeme faktorstrukturu $\mathcal{B} = \mathcal{A}/_{=\mathcal{A}}$, v ní už je $=^{\mathcal{B}}$ identita.

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

■ kongruence pro f, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $f(a_1, \ldots, a_n) \sim f(b_1, \ldots, b_n)$

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

- kongruence pro f, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $f(a_1, ..., a_n) \sim f(b_1, ..., b_n)$
- kongruence pro R, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $R(a_1, \ldots, a_n) \Leftrightarrow R(b_1, \ldots, b_n)$

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

- kongruence pro f, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $f(a_1, \ldots, a_n) \sim f(b_1, \ldots, b_n)$
- kongruence pro R, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $R(a_1, \ldots, a_n) \Leftrightarrow R(b_1, \ldots, b_n)$

Kongruence struktury \mathcal{A} je ekvivalence na A, která je kongruencí pro všechny funkce a relace \mathcal{A} .

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

- kongruence pro f, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $f(a_1, \ldots, a_n) \sim f(b_1, \ldots, b_n)$
- kongruence pro R, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $R(a_1, \ldots, a_n) \Leftrightarrow R(b_1, \ldots, b_n)$

Kongruence struktury \mathcal{A} je ekvivalence na A, která je kongruencí pro všechny funkce a relace \mathcal{A} .

Faktorstruktura (podílová struktura) \mathcal{A} podle \sim je struktura $\mathcal{A}/_{\sim}$ v témž jazyce, doména $A/_{\sim}$ je množina všech rozkladových tříd A podle \sim , funkce a relace definujeme pomocí reprezentantů:

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

- kongruence pro f, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $f(a_1, ..., a_n) \sim f(b_1, ..., b_n)$
- kongruence pro R, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $R(a_1, \ldots, a_n) \Leftrightarrow R(b_1, \ldots, b_n)$

Kongruence struktury \mathcal{A} je ekvivalence na A, která je kongruencí pro všechny funkce a relace \mathcal{A} .

Faktorstruktura (podílová struktura) \mathcal{A} podle \sim je struktura $\mathcal{A}/_{\sim}$ v témž jazyce, doména $A/_{\sim}$ je množina všech rozkladových tříd A podle \sim , funkce a relace definujeme pomocí reprezentantů:

•
$$f^{\mathcal{A}/\sim}([a_1]_{\sim},\ldots,[a_n]_{\sim})=[f^{\mathcal{A}}(a_1,\ldots,a_n)]_{\sim}$$

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

- kongruence pro f, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $f(a_1, \ldots, a_n) \sim f(b_1, \ldots, b_n)$
- kongruence pro R, pokud pro všechna $a_i, b_i \in A$ taková, že $a_i \sim b_i \ (1 \le i \le n)$, platí $R(a_1, \ldots, a_n) \Leftrightarrow R(b_1, \ldots, b_n)$

Kongruence struktury \mathcal{A} je ekvivalence na A, která je kongruencí pro všechny funkce a relace \mathcal{A} .

Faktorstruktura (podílová struktura) \mathcal{A} podle \sim je struktura $\mathcal{A}/_{\sim}$ v témž jazyce, doména $A/_{\sim}$ je množina všech rozkladových tříd A podle \sim , funkce a relace definujeme pomocí reprezentantů:

- $f^{\mathcal{A}/\sim}([a_1]_{\sim},\ldots,[a_n]_{\sim})=[f^{\mathcal{A}}(a_1,\ldots,a_n)]_{\sim}$
- $R^{\mathcal{A}/\sim}([a_1]_{\sim},\ldots,[a_n]_{\sim}) \Leftrightarrow R^{\mathcal{A}}(a_1,\ldots,a_n)$

Axiomy rovnosti pro jazyk *L* s rovností:

Axiomy rovnosti pro jazyk *L* s rovností:

(i)
$$x = x$$

Axiomy rovnosti pro jazyk L s rovností:

- (i) x = x
- (ii) pro každý *n*-ární funkční symbol *f* jazyka *L*:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

Axiomy rovnosti pro jazyk *L* s rovností:

- (i) x = x
- (ii) pro každý n-ární funkční symbol f jazyka L:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

(iii) pro každý *n*-ární relační symbol *R* jazyka *L* včetně rovnosti:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \ldots, x_n) \rightarrow R(y_1, \ldots, y_n))$$

Axiomy rovnosti pro jazyk L s rovnosti:

- (i) x = x
- (ii) pro každý *n*-ární funkční symbol *f* jazyka *L*:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

(iii) pro každý *n*-ární relační symbol *R* jazyka *L* včetně rovnosti:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \ldots, x_n) \rightarrow R(y_1, \ldots, y_n))$$

symetrie a tranzitivita plynou z (iii) pro = (dokažte si)

Axiomy rovnosti pro jazyk *L* s rovností:

- (i) x = x
- (ii) pro každý n-ární funkční symbol f jazyka L:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

(iii) pro každý n-ární relační symbol R jazyka L včetně rovnosti:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \ldots, x_n) \rightarrow R(y_1, \ldots, y_n))$$

- symetrie a tranzitivita plynou z (iii) pro = (dokažte si)
- z axiomů (i) a (iii) tedy plyne, že relace $=^{\mathcal{A}}$ je ekvivalence

Axiomy rovnosti pro jazyk L s rovnosti:

- (i) x = x
- (ii) pro každý n-ární funkční symbol f jazyka L:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

(iii) pro každý n-ární relační symbol R jazyka L včetně rovnosti:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \ldots, x_n) \rightarrow R(y_1, \ldots, y_n))$$

- symetrie a tranzitivita plynou z (iii) pro = (dokažte si)
- z axiomů (i) a (iii) tedy plyne, že relace $=^{A}$ je ekvivalence
- axiomy (ii) a (iii) vyjadřují, že $=^{\mathcal{A}}$ je kongruence

Axiomy rovnosti pro jazyk *L* s rovností:

- (i) x = x
- (ii) pro každý n-ární funkční symbol f jazyka L:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

(iii) pro každý *n*-ární relační symbol *R* jazyka *L* včetně rovnosti:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$$

- symetrie a tranzitivita plynou z (iii) pro = (dokažte si)
- z axiomů (i) a (iii) tedy plyne, že relace $=^{A}$ je ekvivalence
- axiomy (ii) a (iii) vyjadřují, že $=^{\mathcal{A}}$ je kongruence

V tablo metodě pro jazyk s rovností implicitně přidáme axiomy rovnosti (přesněji jejich generální uzávěry, potřebujeme sentence).

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

■ tablo důkaz z teorie *T* je tablo důkaz z *T**

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

- tablo důkaz z teorie T je tablo důkaz z T*
- podobně pro tablo zamítnutí, a obecně jakékoliv tablo z T

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

- tablo důkaz z teorie T je tablo důkaz z T*
- podobně pro tablo zamítnutí, a obecně jakékoliv tablo z T

Pozorování:

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

- tablo důkaz z teorie T je tablo důkaz z T*
- podobně pro tablo zamítnutí, a obecně jakékoliv tablo z T

Pozorování:

■ Je-li $\mathcal{A} \models T^*$, potom i $\mathcal{A}/_{=\mathcal{A}} \models T^*$, a ve struktuře $\mathcal{A}/_{=\mathcal{A}}$ je symbol rovnosti interpretován jako identita.

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

- tablo důkaz z teorie T je tablo důkaz z T*
- podobně pro tablo zamítnutí, a obecně jakékoliv tablo z T

Pozorování:

- Je-li $\mathcal{A} \models T^*$, potom i $\mathcal{A}/_{=\mathcal{A}} \models T^*$, a ve struktuře $\mathcal{A}/_{=\mathcal{A}}$ je symbol rovnosti interpretován jako identita.
- Na druhou stranu, v každém modelu, ve kterém je symbol rovnosti interpretován jako identita, platí axiomy rovnosti.

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

- tablo důkaz z teorie T je tablo důkaz z T*
- podobně pro tablo zamítnutí, a obecně jakékoliv tablo z T

Pozorování:

- Je-li $\mathcal{A} \models T^*$, potom i $\mathcal{A}/_{=\mathcal{A}} \models T^*$, a ve struktuře $\mathcal{A}/_{=\mathcal{A}}$ je symbol rovnosti interpretován jako identita.
- Na druhou stranu, v každém modelu, ve kterém je symbol rovnosti interpretován jako identita, platí axiomy rovnosti.

(Použijeme při konstrukci kanonického modelu v důkazu úplnosti.)