

A Portable Electrochemical Measurement Platform for Wearable-Flexible Sweat Sensors

Mahdi Saleh¹, Zixin Wang¹, John C. Batchelor², Alexander J. Casson¹

- ¹ University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- ² University of Kent, Giles Lane, Kent, Manchester, CT2 7NZ, UK

1. Introduction

- Wearable sweat sensors: non-invasive and continuous monitoring of biomarkers
- Our novel screen-printed sweat sensor contains: Na+, K+ Ion Selective Electrodes (ISEs), pH, and lactate sensing elements
- This work presents a unified, portable, and compact electrochemical measurement platform that can perform potentiometric, amperometric, and impedimetric measurements to interface different types of flexible sweat sensors

2. Sweat Sensor Fabrication

C) Sensor assembling

microfluidic channels with Laser-cut inlets and adhesives assembled on the flexible electrode array.

3. Measurement Electronics

device is measurement based Electrochemical Front End (EFE) AD5940 (Analog Devices) controlled by a low-power microcontroller MSP430 (Texas Instruments).

It performs two types of measurements:

4. Experimental Evaluation – OCP

LOx

5. Experimental Evaluation – Amperometry

Different levels of electric current for different concentrations of Lactate

6. Conclusions

- The portable electrochemical sensing platform performed most electrochemical sensing methods required by wearable biosensors
- This includes amperometric, voltametric, and impedance measurements
- The experimental evaluation measured concentrations of sweat components: Na⁺, K⁺, pH, and lactate

Acknowledgments

Contact: mahdi.saleh@manchester.ac.uk

This work is funded by the UK Engineering the Physical Science Research Council (EPSRC) under grant number EP/S020179/1.