

Introduction

AnubhabMajumdar, ShubhamMunot, ToshalPhene

Introduction

Problem statement

Bag Binocular Eiffel Tower Fried egg

Challenges

Large variety

Clutter, illumination

Scale, orientation, occlusion

Traditional approach

Feature engineering

- Gabor filters
 - Provides texture of an image
 - Similar to how human distinguish texture

Method 1: KNN

- Important parameters
 - Distance measure
 - Suitable value of K

Sample representation

KNN: Results

k	Distance measure	Test accuracy		
1	euclidean	55.71		
5	euclidean	56.9755		
25	euclidean	51.9138		
50	euclidean	53.1792		
1	cosine	54.4446		
5	cosine	55.71		
25	cosine	50.6483		
50	cosine	48.1175		
1	cityblock	55.71		
5	cityblock	60.7718		
25	cityblock	54.4446		
50	cityblock	51.9138		
1	correlation	54.4446		
5	correlation	55.71		
25	correlation	50.6483		
50	correlation	48.1175		

AnubhabMajumdar, ShubhamMunot, ToshalPhene

Method 2: SVM

- Important parameters
 - Kernel (linear, polynomial, Radial Basis Function, sigmoid)
 - C (error penalty) and gamma (relax constraint)

SVM: Results

С	gamma	Kernel	Train accuracy	Test accuracy	
128	3.05175E-05	linear		42.50%	
128	3.05175E-05	poly	42.80%	25%	
128	3.05175E-05	RBF	66.59%	56.25%	
128	3.05175E-05	sigmoid	62.22%	57.50%	

Method 3: ANN

- Method 1: Gabor filter
- Method 2: Linearization
- Hidden layers use sigmoid activation function
- Neurons in output layer use softmax activation function

ANN: Results

Method	Input Size	Hidden layer	# of neurons in hidden layer	Train	Test	
Gabor filter	4096	1	2048	81.10%	50.60%	
Gabor filter	4096	1	4096	63.60%	54.30%	
Gabor filter	4096	1	8192	81.10%	50.60%	
Linear	784	1	1024	99%	70.40%	
Linear	784	1	2048	92%	71%	

A State of the art technique: Deep Convolutional Neural Network

- Popularized by LeCun et. al. in their pioneering work LeNet-5, a 7-level network by that classifies digits
- A convolutional neural network (CNN, or ConvNet) is a type of feed-forward artificial neural network (ANN)
- The connectivity pattern between its neurons is inspired by the organization of the animal visual cortex

Typical ConvNet architecture

Typical ConvNet architecture

Typical ConvNet architecture

NC STATE UNIVERSITY

Results

Index	Input Image Size	# of conv layer	conv laver 1	# of features in conv layer 2	# of features in conv layer 3	# of fully connected layer	Fully connected layer 1	Fully connected layer 2	Train Accuracy	Test Accuracy
CNN 1	28x28	2	32	64	NA	1	64	NA	45.43%	26.25%
CNN 2	28x28	2	32	64	NA	1	1024	NA	79.78%	27.50%
CNN 3	64x64	3	32	64	128	1	1024	NA	91%	42.50%
CNN 4	28x28	2	64	128	NA	2	1024	1024	96.82%	69.69%
CNN 5	28x28	2	128	256	NA	2	1024	1024	96.54%	67.81%

Comparison

 Handcrafted features for large variety of images is unreliable and fragile

- Handcrafted features for large variety of images is unreliable and fragile
- Featureless approach to computer vision problem is more robust

- Handcrafted features for large variety of images is unreliable and fragile
- Featureless approach to computer vision problem is more robust
- Deep convolutional neural nets trained with large dataset yield better accuracy than learning algorithm with traditional hand crafted feature (Ref: ImageNet)

- Handcrafted features for large variety of images is unreliable and fragile
- Featureless approach to computer vision problem is more robust
- Deep convolutional neural nets trained with large dataset yield better accuracy than learning algorithm with traditional hand crafted feature (Ref: ImageNet)
- Modern computer vision research is moving towards featureless approach with ConvNet
 - ImageNet
 - GoogLeNet

References

- Zhang et. al. SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition
- Lecun et. al. Backpropagation Applied to Handwritten Zip Code Recognition
- Krizhevsky et. al. ImageNet Classification with Deep Convolutional Neural Networks
- Zeiler et. al. Visualizing and Understanding Convolutional Networks
- Deep MNIST for Experts using TensorFlow