MODULE 9

GRAPHS AND GRAPH MODELS

PATHS AND CIRCUITS

EULER PATHS AND CIRCUITS

HAMILTON PATHS AND CIRCUITS

TREES

MODULE 9

GRAPHS AND GRAPH MODELS

DEFINITION AND EXAMPLES

A graph G = (V, E) consists of a nonempty set of vertices, V, and a set of edges, E connecting pairs of vertices.

Suppose a network is made up of computer centers and communication links between computers. We can represent each location with a vertex and each communication link with an edge.

San Francisco

Chicago

Washington

Los Angeles

Notice that each edge connects two different vertices, i.e. no edge connects a vertex to itself. Also, no two different edges connect the same pair of vertices.

A graph in which each edge connects two different vertices, and no two edges connect the same pair of vertices is called a *simple graph*

A computer network may contain multiple links between computer centers. In this case we would need more than one edge connecting two vertices.

Graphs that have multiple edges connecting the same vertices are called *multigraphs*

MORE EXAMPLES

Now consider a computer network where a communication link connects a data center with itself, perhaps a feedback loop for diagnostic purposes.

An edge that connects a vertex to itself is called a <u>loop</u>

In an undirected graph, edges are sometimes denoted $\{u,v\}$ indicating the order does not matter.

So far, the examples have been <u>undirected graphs</u>. However, there may be the situation in our computer network example where links may only operate in one direction.

In this example we now have a <u>directed graph</u> that indicates the direction that the links will operate.

A <u>directed graph</u>, sometimes called a digraph, G = (V, E) consists of a nonempty set of vertices V and a set of directed edges E.

In a directed graph the edges are sometimes denoted (u, v) indicating order does matter.

TERMINOLOGY

Two vertices u and v in an undirected graph G are called adjacent in G if u and v are endpoints of an edge e of G. Such an edge e is called incident with the vertices u and v and is said to connect u and v.

For example, Chicago and New York are adjacent vertices.

The degree of Chicago is 9

The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of a vertex v is typically denoted deg(v).

Handshaking Theorem

Let G = (V, E) be an undirected graph with m edges. Then

$$2m = \sum_{v \in V} \deg(v)$$

TERMINOLOGY

When (u, v) is an edge of the directed graph G, the vertex u is called the initial vertex of (u, v) and v is called the terminal or end vertex of (u, v). The initial vertex and terminal vertex of a loop are the same.

For the directed edge between San Francisco and Los Angeles, San Francisco is the initial vertex and Los Angeles is the terminal vertex.

There are two directed edges connecting Denver and Chicago. In one direction Chicago is the initial vertex. In the other direction Chicago is the terminal vertex.

The in-degree of a vertex v, denoted $deg^-(v)$, is the number of edges with v as their terminal vertex. The out-degree of v, denoted $deg^+(v)$, is the number of edges with v as their initial vertex.

The in-degree of Chicago is 3 and the out-degree of Chicago is 4

<u>Theorem</u>

Let G = (V, E) be a graph with directed edges. Then

$$\sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v) = |E|$$

MODULE 9

PATHS AND CIRCUITS

PATHS AND CIRCUITS

A <u>path</u> is a sequence of edges that begins at a vertex and travels from vertex to vertex along the edges of a graph.

A path of length greater than zero that begins and ends at the same vertex is called a *circuit*.

An example of a path from c to a would be cda or cfba

An example of a circuit would be *cdabc*

This is a connected graph

An undirected graph is connected if there is a path between every pair of distinct vertices of the graph.

This is a disconnected graph since no path exists between d and any other vertex.

WEIGHTED GRAPHS

Occasionally, weights are assigned to the edges of a graph. For example, distances, costs, etc.

DIJKSTRA'S ALGORITHM

What is the shortest path between a and z?

Approach: Find the length of a shortest path from a to successive vertices until z is reached

Set of vertices	Adjacent vertices	Paths to consider	New set of vertices
{a}	$\{b,d\}$	ab = 4 $ad = 2$	$\{a,d\}$
$\{a,d\}$	$\{b,e\}$	ab = 4 $ade = 5$	$\{a,d,b\}$
$\{a,d,b\}$	<i>{c,e}</i>	abc = 7 abe = 7 ade = 5	$\{a,d,b,e\}$
$\{a,d,b,e\}$	$\{c,z\}$	abc = 7 $adez = 6$	$\{a,d,b,e,z\}$

Shortest path is *adez*

YOUR TURN

Use Dijkstra's Algorithm to find the shortest path from a to z in the given graph and find the length of that path

Answer: The shortest path is acdegz with a length of 16

MODULE 9

EULER PATHS AND CIRCUITS

DEFINITIONS

A path or circuit is called simple if it does not contain the same edge more than once

An $\underline{Euler\ path}$ in G is a simple path containing every edge of G

An $\underline{\textit{Euler circuit}}$ in G is a simple circuit containing every edge of G

Note: If *G* has an Euler circuit, then *G* necessarily has an Euler path

Which of these graphs have an Euler path? Which have an Euler circuit?

G₁ has an Euler circuit, i.e. aecdeba

 G_2 has no Euler path and hence no Euler circuit G_3 has and Euler path, i.e. acdebdab, but no Euler circuit

Your turn: Which of these graphs have an Euler path? Which have an Euler circuit?

Answer: H_1 has neither, H_2 has an Euler path but no Euler circuit, H_3 has an Euler circuit and hence an Euler path.

EXISTENCE

A connected graph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree A connected graph has an Euler path but not an Euler circuit if and only if it has exactly two vertices of odd degree

Summary: An Euler path exists if exactly 0 or 2 vertices have odd degree. An Euler circuit exists if 0 vertices have odd degree

Which of these graphs have an Euler path? Which have an Euler circuit?

The degrees of the vertices in G_1 are 2,3,2,3. So an Euler path exists, but no Euler circuit

The degrees of the vertices in G_2 are 2, 3, 4, 3, 2, 4, 4. So an Euler path exists, but no Euler circuit.

There are 6 vertices with odd degree in G_3 so no Euler path exists and hence, no Euler circuit.

Your turn: Find an Euler path for G_1 and G_2 . [Hint: Any Euler path must have the two vertices of odd degree as its endpoints]

Answers will vary, but one Euler path for G_1 is dabcdb and one Euler path for G_2 is bagfedcgbcfd

FLEURY'S ALGORITHM

- 1. If finding an Euler path and the graph has two vertices of odd degree, begin at one of those vertices. If finding an Euler circuit, begin and any vertex.
- 2. Choose any edge leaving your current vertex, provided deleting that edge will not separate the graph into two disconnected sets of edges.
- 3. Add that edge to your circuit (path) and delete it from the graph.
- 4. Repeat 2 & 3 until a circuit (path) is found.

Find an Euler circuit

$$a \rightarrow b \rightarrow c \rightarrow f \rightarrow i \rightarrow h \rightarrow e \rightarrow f \rightarrow h \rightarrow g \rightarrow d \rightarrow e \rightarrow b \rightarrow d \rightarrow a$$

EULERIZATION

<u>Eulerization</u> is the process of adding edges to a graph so that an Euler circuit exists.

Edges are duplicated to connect vertices with odd degree. When two vertices of odd degree are not directly connected (not adjacent), duplicate edges in a path connecting the two.

Vertices with odd degree are shown in black

EXAMPLE

Eulerize the graph shown

Not permitted

Inefficient

Optimal

MODULE 9

HAMILTON PATHS AND CIRCUITS

DEFINITIONS

A $\underline{Hamilton\ path}$ is a simple path in a graph G that passes through every vertex exactly once.

A $\underline{Hamilton\ circuit}$ is a simple circuit in a graph G that passes through every vertex exactly once.

Note: The term "simple" implies we cannot repeat edges. However, we do not have to use every edge like Euler paths and circuits.

Which of these graphs have a Hamilton circuit or, if not, a Hamilton path?

*G*₁ has a Hamilton circuit and hence, a Hamilton path, i.e. *abcdea*

G₂ has no Hamilton circuit, but does have a Hamilton path, i.e. abcd

G₃ does not have aHamilton path and hence,no Hamilton circuit

EXISTENCE

There are no known simple necessary and sufficient criteria for the existence of Hamilton circuits.

However, there are many theorems that provide sufficient conditions for the existence of a Hamilton circuit.

A graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex is incident with two edges in the circuit.

If G is a simple graph with n vertices where $n \ge 3$ and the degree of every vertex in G is at least n/2, then G has a Hamilton circuit.

If G is a simple graph with n vertices where $n \ge 3$ and $\deg(u) + \deg(v) \ge n$ for every pair of nonadjacent vertices u and v in G, then G has a Hamilton circuit.

Which of these graphs have Hamilton paths or circuits?

 G_1 has 5 vertices and the sum of the degrees of each pair of nonadjacent vertices is ≥ 5

 G_2 and G_3 each have at least one vertex with degree one, so no Hamilton circuit exists

TRAVELING SALESPERSON PROBLEM

What is the shortest route a traveling salesperson should take to visit a set of cities?

This problem reduces to finding a Hamilton circuit in a complete graph, i.e. a graph that contains one edge between each pair of vertices.

This graph shows five cities with the weights of each edge given by the distance in miles between each city

How can we find a Hamilton circuit that has the shortest length?

BRUTE FORCE ALGORITHM

The <u>brute force algorithm</u> lists all Hamilton circuits and selects the one with the minimum total length.

This will always produce an optimum result, but is inefficient in most cases

Route	Total Distance (miles)
Detroit-Toledo-Grand Rapids-Saginaw-Kalamazoo-Detroit	610
Detroit-Toledo-Grand Rapids-Kalamazoo-Saginaw-Detroit	516
Detroit-Toledo-Kalamazoo-Saginaw-Grand Rapids-Detroit	588
Detroit-Toledo-Kalamazoo-Grand Rapids-Saginaw-Detroit	458
Detroit-Toledo-Saginaw-Kalamazoo-Grand Rapids-Detroit	540
Detroit-Toledo-Saginaw-Grand Rapids-Kalamazoo-Detroit	504
Detroit-Saginaw-Toledo-Grand Rapids-Kalamazoo-Detroit	598
Detroit-Saginaw-Toledo-Kalamazoo-Grand Rapids-Detroit	576
Detroit-Saginaw-Kalamazoo-Toledo-Grand Rapids-Detroit	682
Detroit-Saginaw-Grand Rapids-Toledo-Kalamazoo-Detroit	646
Detroit-Grand Rapids-Saginaw-Toledo-Kalamazoo-Detroit	670
Detroit-Grand Rapids-Toledo-Saginaw-Kalamazoo-Detroit	728

In a graph with n vertices, once a starting point has been selected, there will be (n-1)! different Hamilton circuits to examine Half of those are duplicates (in reverse order), so we only need to examine (n-1)!/2 to find the answer but this can still be quite a large number

NEAREST NEIGHBOR ALGORITHM

For the <u>nearest neighbor algorithm</u> (NNA), we select a starting point and move to the nearest unvisited neighbor. Repeat this until the circuit is complete.

Recall, the shortest circuit starting with Detroit was:

Detroit-Toledo-Kalamazoo-Grand Rapids-Saginaw-Detroit

Using the NNA:

- 1. The closest neighbor to Detroit is Toledo
- 2. The closest unvisited neighbor to Toledo is Kalamazoo
- 3. The closest unvisited neighbor to Kalamazoo is Grand Rapids
- 4. The closest unvisited neighbor to Grand Rapids is Saginaw
- 5. Return to Detroit

With the <u>repeated nearest neighbor algorithm</u>, we work the the NNA at each vertex then choose the optimum circuit

MODULE 9

TREES

TREES

A $\underline{\textit{tree}}$ is a connected undirected graph with no simple circuits

Recall: A simple circuit does not contain the same edge more than once

Which of these graphs are trees?

 G_1 and G_2 are trees because both are connected with no simple circuits

 G_3 is not a tree because *ebade* is a simple circuit

 G_4 is not a tree because it is not connected

Note: This implies a tree cannot contain multiple edges or loops. So any tree must be a simple graph

Your turn: Which of these graphs are trees?

Answer: a, c, and e

SPANNING TREES

A <u>spanning tree</u> of a graph G is a tree containing every vertex of G

Road system in Maine

Highway department wants to plow the fewest roads so that there is always a cleared road between any two towns

Spanning tree of roads to plow

EXAMPLE

Find a spanning tree of the graph shown

This graph is not a tree because it contains simple circuits

Remove edge $\{a, e\}$ to eliminate one of the simple circuits

Remove edge $\{e, f\}$ to eliminate another simple circuit

Remove edge $\{c, g\}$ to produce a simple graph with no simple circuits

Other spanning trees of the original graph

MINIMUM COST SPANNING TREES

A minimum (cost) spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges

Weighted graph showing monthly lease costs for lines in a computer network

KRUSKAL'S ALGORITHM

- 1. Order the edges in ascending order based on their weights
- 2. Repeatedly select unused edges provided the edge will not create a circuit
- 3. Repeat until a spanning tree is formed

$\{c,d\}$	1	
$\{k,l\}$	1	
$\{b,f\}$	1	
$\{c,g\}$	2	
$\{a,b\}$	2	
$\{f,j\}$	2	
{ <i>b</i> , <i>c</i> }	3	
$\{f,g\}$	3	Adding $\{f,g\}$ creates a circuit
$\{j,k\}$	3	3 0 10 7
$\{g,h\}$	3	
$\{i,j\}$	3	
$\{a,e\}$	3	All vertices have been used
$\{h,l\}$	3	
{ <i>e</i> , <i>f</i> }	4	
$\{e,i\}$	4	
$\{g,k\}$	4	
$\{d,h\}$	5	

$\{c,d\}$	1
$\{k,l\}$	1
{ <i>b</i> , <i>f</i> }	1
$\{c,g\}$	2
$\{a,b\}$	2
{ <i>f</i> , <i>j</i> }	2
{ <i>b</i> , <i>c</i> }	3
$\{j,k\}$	3
$\{g,h\}$	3
$\{i,j\}$	3
{a, e}	3
total = 24	

PRIM'S ALGORITHM

- 1. Select an edge with minimal weight
- 2. Select an edge of minimum weight incident to a vertex in the tree that does not create a simple circuit.
- 3. Repeat step 2 until a spanning tree is found

{ <i>b</i> , <i>f</i> }	1
$\{a,b\}$	2
$\{f,j\}$	2
{ <i>a</i> , <i>e</i> }	3
$\{i,j\}$	3
{ <i>f</i> , <i>g</i> }	3
$\{c,g\}$	2
$\{c,d\}$	1
$\{g,h\}$	3
$\{h,l\}$	3
$\{k,l\}$	1

total = 24

Compare to Kruskal's algorithm

$\{k,l\}$	1
$\{b,f\}$	1
$\{c,g\}$	2
$\{a,b\}$	2
$\{f,j\}$	2
$\{b,c\}$	3
$\{j,k\}$	3
$\{g,h\}$	3
$\{i,j\}$	3
$\{a,e\}$	3

total = 24

 $\{c,d\}$

QUESTIONS?