C3-Nested/Mutual

IR scheme

Course 3: Nested and Mutual Algorithms in Coq

Dominique Larchey-Wendling https://github.com/DmxLarchey/PC19

LORIA (Nancy), TU & WPI (Vienna), CNRS

PC'19, Herrsching, September 20, 2019

What is nested recursion (McCarthy's F91)

let rec f91 n = if n > 100 then n - 10else f91(f91(n+11))

- Why are nested (mutual) algorithms more difficult:
 - need semantic info. for termination
 - hard to separate correctness and termination
- Mutual can hyde nesting (Knuth's F91)

let rec k91 x =if $x \le a$ then $k91^c(x+d)$ else x-band $k91^n x =$ if n = 0 then x else k91ⁿ⁻¹ (f x)

- Another Example
 - Paulson's normalization

Wise

Suppose we already now the full spec of f91

$$\mathbb{S}_{\text{f91}} \ n \ r := 100 < n \land r = n - 10$$

 $\lor \ n \leqslant 100 \land r = 91$

- ▶ And a decreasing measure: $n \mapsto 101 n$
- Then extracting f91 is easy:

```
Definition f91_sem_full n: \{r \mid \mathbb{S}_{f91} \ n \ r\}.
Proof.
 induction on n as f91 with measure (101 - n).
```

Defined.

But are we that smart?

let rec f91 $n = \text{if } n > 100 \text{ then } n - 10 \text{ else f91(f91(}n + 11))}$

▶ The graph $\mathbb{G}_{\mathtt{f91}}:\mathtt{nat} \to \mathtt{nat} \to \mathtt{Prop}$ from the algo.

$$\frac{n > 100}{\mathbb{G}_{\text{f91}} \ n \ (n-10)} \qquad \frac{n \leqslant 100 \qquad \mathbb{G}_{\text{f91}} \ (n+11) \ m \qquad \mathbb{G}_{\text{f91}} \ m \ r}{\mathbb{G}_{\text{f91}} \ n \ r}$$

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Wise Dumb

f91_full IR scheme Properties

Paulson's

Inductive domain nm.full Logical content

IR scheme Extraction

Term&correct.
postponed
Partial correct. of nm
Totality of nm

let rec f91 n = if n > 100 then n - 10 else f91(f91(n + 11))

 \blacktriangleright The graph $\mathbb{G}_{\mathtt{f91}}:\mathtt{nat}\to\mathtt{nat}\to\mathtt{Prop}$ from the algo.

$$\frac{n > 100}{\mathbb{G}_{\text{f91}} \ n \ (n-10)} \qquad \frac{n \leqslant 100 \qquad \mathbb{G}_{\text{f91}} \ (n+11) \ m \qquad \mathbb{G}_{\text{f91}} \ m \ r}{\mathbb{G}_{\text{f91}} \ n \ r}$$

 $ightharpoonup \mathbb{G}_{f91}$ is functional (induction/inversion)

$$\forall n r_1 r_2, \mathbb{G}_{f91} n r_1 \rightarrow \mathbb{G}_{f91} n r_2 \rightarrow r_1 = r_2$$

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchey/PC19

Introduction

McCarthy's F91

Wise Dumb

f91_full IR scheme

Paulson's

Inductive domain
Inductive domain
Inm_full
Logical content
IR scheme

xtraction erm&correct. ostponed

Totality of nm

C3-Nested/Mutual

Dominique Larchev-Wendling https: //github.com/ DmxLarchev/PC19

Dumb

let rec f91 n = if n > 100 then n - 10 else f91(f91(n + 11))

▶ The graph \mathbb{G}_{f91} : nat \rightarrow nat \rightarrow Prop from the algo.

$$\frac{n > 100}{\mathbb{G}_{\text{f91}} \ n \ (n-10)} \qquad \frac{n \leqslant 100 \qquad \mathbb{G}_{\text{f91}} \ (n+11) \ m \qquad \mathbb{G}_{\text{f91}} \ m \ r}{\mathbb{G}_{\text{f91}} \ n \ r}$$

 $ightharpoonup \mathbb{G}_{f91}$ is functional (induction/inversion)

$$\forall n r_1 r_2, \mathbb{G}_{f91} n r_1 \rightarrow \mathbb{G}_{f91} n r_2 \rightarrow r_1 = r_2$$

► The domain D_{f91} as a bar predicate:

$$\frac{n>100}{\mathbb{D}_{\text{f91}} \ n} \qquad \frac{n\leqslant 100 \qquad \mathbb{D}_{\text{f91}} \ (n+11) \qquad \forall m, \mathbb{G}_{\text{f91}} \ (n+11) \ m \rightarrow \mathbb{D}_{\text{f91}} \ m}{\mathbb{D}_{\text{f91}} \ n}$$

let rec f91 $n = \text{if } n > 100 \text{ then } n - 10 \text{ else f91(f91(}n + 11))}$

 \blacktriangleright The graph $\mathbb{G}_{\mathtt{f91}}:\mathtt{nat}\to\mathtt{nat}\to\mathtt{Prop}$ from the algo.

$$\frac{n > 100}{\mathbb{G}_{\text{f91}} \ n \ (n-10)} \qquad \frac{n \leqslant 100 \qquad \mathbb{G}_{\text{f91}} \ (n+11) \ m \qquad \mathbb{G}_{\text{f91}} \ m \ r}{\mathbb{G}_{\text{f91}} \ n \ r}$$

 $ightharpoonup \mathbb{G}_{f91}$ is functional (induction/inversion)

$$\forall n r_1 r_2, \mathbb{G}_{f91} n r_1 \rightarrow \mathbb{G}_{f91} n r_2 \rightarrow r_1 = r_2$$

▶ The domain \mathbb{D}_{f91} as a bar predicate:

$$\frac{n>100}{\mathbb{D}_{\text{f91}} \ n} \qquad \frac{n\leqslant 100 \qquad \mathbb{D}_{\text{f91}} \ (n+11) \qquad \forall m, \mathbb{G}_{\text{f91}} \ (n+11) \ m \rightarrow \mathbb{D}_{\text{f91}} \ m}{\mathbb{D}_{\text{f91}} \ n}$$

▶ and then f91_full : $\forall n$, \mathbb{D}_{f91} $n \rightarrow \{r \mid \mathbb{G}_{\text{f91}} \ n \ r\}$

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Wise Dumb

f91_full IR scheme Properties

Paulson's normalisation

nm_full
Logical content
IR scheme
Extraction
Term&correct.
postponed

C3-

Nested/Mutual

f91_full

Let $f91_full : \forall n, \mathbb{D}_{f91} \ n \to \{r \mid \mathbb{G}_{f91} \ n \ r\}.$ refine (fix loop $n D_n$ {struct D_n } := match $100 <_7 n$ as r return $100 <_7 n = r \rightarrow$ with | true \Rightarrow fun $E \Rightarrow$ exist (n-10) \mathbb{G}_1^2 false \Rightarrow fun $E \Rightarrow$ let $(f_1, H_1) :=$ loop (n + 11) \mathbb{T}_1^7 in let $(f_2, H_2) := \text{loop } f_1 \mathbb{T}_2^?$ in exist $_{-}f_{2}$ $\mathbb{G}_{2}^{?}$

Proof.

end eq_refl).

provide proofs for $\mathbb{T}_1^2, \mathbb{T}_2^2, \mathbb{G}_1^2, \mathbb{G}_2^2$

Qed.

 $\mathbb{G}_{1}^{?}//\ldots, D_{n}: \mathbb{D}_{1}^{1} n, E: 100 <_{?} n = \text{true} \vdash \mathbb{G}_{1}^{1} n (n-10)$ $\mathbb{T}'_1//\ldots, D_n: \mathbb{D}_{f91} \ n, E: 100 <_? \ n = false \vdash \mathbb{D}_{f91} \ (n+11)$

► From f91_full we simulate the IR scheme

```
\begin{array}{l} \text{Inductive } \mathbb{D}_{\text{f91}}: \text{nat} \to \text{Prop} := \\ \mid \text{d}_{\text{-}}\text{f91}\_{\text{0}} : \forall n, \, 100 < n \to \mathbb{D}_{\text{f91}} \, n \\ \mid \text{d}_{\text{-}}\text{f91}\_{\text{1}} : \forall n, \, n \leqslant 100 \to \forall D, \mathbb{D}_{\text{f91}} \, (\text{f91} \, (n+11) \, D) \\ & \to \mathbb{D}_{\text{f91}} \, n \\ \text{with Fixpoint f91} \, n \, (D:\mathbb{D}_{\text{f91}} \, n) := \\ \text{match } D \, \text{with} \\ \mid \text{d}_{\text{-}}\text{f91}\_{\text{0}} \, n \, H_n \qquad \Rightarrow n-10 \\ \mid \text{d}_{\text{-}}\text{f91}\_{\text{1}} \, n \, H_n \, D_1 \, D_2 \, \Rightarrow \text{f91} \, (\text{f91} \, (n+11) \, D_1) \, D_2 \\ \text{end.} \end{array}
```

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F93

Dumb f91_full

IR scheme

Paulson's

normalisation

nm_full Logical content IR scheme

xtraction erm&correct

postponed Partial correct. of m Totality of nm ► From f91_full we simulate the IR scheme

```
\begin{array}{l} \text{Inductive } \mathbb{D}_{\text{f91}}: \text{nat} \to \text{Prop} := \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{O} : \forall n, \, 100 < n \to \mathbb{D}_{\text{f91}} \, n \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{1} : \forall n, \, n \leqslant 100 \to \forall D, \mathbb{D}_{\text{f91}} \, (\text{f91} \, (n+11) \, D) \\ & \to \mathbb{D}_{\text{f91}} \, n \\ \text{with Fixpoint f91} \, n \, (D: \mathbb{D}_{\text{f91}} \, n) := \\ \text{match } D \, \text{with} \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{O} \, n \, H_n \qquad \Rightarrow n-10 \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{1} \, n \, H_n \, D_1 \, D_2 \, \Rightarrow \text{f91} \, (\text{f91} \, (n+11) \, D_1) \, D_2 \\ \text{end.} \end{array}
```

constructors, fixpoint equations

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Dumb f91_full

Properties

normalisation

m_full ogical content R scheme

Extraction Ferm&correct

Partial correct. of n Totality of nm

```
\begin{array}{l} \text{Inductive } \mathbb{D}_{\text{f91}}: \text{nat} \to \text{Prop} := \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{O} : \forall n, \, 100 < n \to \mathbb{D}_{\text{f91}} \, n \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{1} : \forall n, \, n \leqslant 100 \to \forall D, \mathbb{D}_{\text{f91}} \, (\text{f91} \, (n+11) \, D) \\ & \to \mathbb{D}_{\text{f91}} \, n \\ \text{with Fixpoint f91} \, n \, (D: \mathbb{D}_{\text{f91}} \, n) := \\ \text{match } D \, \text{with} \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{O} \, n \, H_n \qquad \Rightarrow n-10 \\ \mid \text{d}_{\text{-}}\text{f91}_{\text{-}}\text{1} \, n \, H_n \, D_1 \, D_2 \, \Rightarrow \text{f91} \, (\text{f91} \, (n+11) \, D_1) \, D_2 \\ \text{end.} \end{array}
```

- constructors, fixpoint equations
- ▶ proof irrelevance (PIRR) : f91 n $D_n =$ f91 n D'_n

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchey/PC19

Introduction

McCarthy's F91

Wise Dumb f91_full

Properties

Paulson's normalisation

ductive domair n_full ogical content R scheme

R scheme xtraction

Term&correct. postponed Partial correct. o

Totality of nm

IR scheme

▶ From f91 full we simulate the IR scheme

```
Inductive \mathbb{D}_{\mathsf{f91}}: nat \rightarrow \mathsf{Prop} :=
      d_{f91_0} : \forall n, 100 < n \rightarrow \mathbb{D}_{f91_n}
      d_{f}91_{-1}: \forall n, n \leq 100 \rightarrow \forall D, \mathbb{D}_{f}91} (f91 (n+11) D)
                                          \rightarrow \mathbb{D}_{\mathsf{fg1}} n
with Fixpoint f91 n(D: \mathbb{D}_{f91} n) :=
  match D with
      d_f91_0 n H_n \Rightarrow n-10
      d_f91_1 n H_n D_1 D_2 \Rightarrow f91 (f91 (n+11) D_1) D_2
  end.
```

- constructors, fixpoint equations
- ▶ proof irrelevance (PIRR) : f91 n $D_n = f91$ n D'_n
- ▶ a Type-bounded dependent elimination scheme
 - for PIRR predicates $P: \forall n, \mathbb{D}_{f91} \ n \to \mathsf{Type}$

$$HP_{pirr}: \forall n D_n D'_n, P n D_n \rightarrow P n D'_n$$

► First, partial correctness by induction (PIRR):

$$\forall n(D_n: \mathbb{D}_{\text{f91}} n), \, \mathbb{S}_{\text{f91}} n \text{ (f91 } n \, D_n)$$

C3: Nested/Mutual

Dominique

Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Wise Dumb f91_full IR scheme

Properties

Paulson's normalisation

Inductive domain nm_full Logical content

IR scheme Extraction

Term&correct. postponed Partial correct. of

Totality of nm

$$\forall n (D_n : \mathbb{D}_{\text{f91}} n), \, \mathbb{S}_{\text{f91}} n (\text{f91} n D_n)$$

- ▶ then totality/termination:
 - with constructors for $\mathbb{D}_{\mathsf{f91}}$
 - ▶ by induction on 101 n
 - we get f91_terminates : $\forall n, \mathbb{D}_{\text{f91}} n$

C3: Nested/Mutual

Dominique

Larchey-Wendling
https:
//github.com/
DmxLarchey/PC19

Introduction

McCarthy's F91

Dumb f91_full

Properties

Paulson's

Inductive domain
nm_full
Logical content

IR scheme Extraction

Partial correct. of nr Totality of nm

$$\forall n (D_n : \mathbb{D}_{\texttt{f91}} \ n), \, \mathbb{S}_{\texttt{f91}} \ n \ (\texttt{f91} \ n \ D_n)$$

- then totality/termination:
 - with constructors for $\mathbb{D}_{\mathsf{f91}}$
 - ▶ by induction on 101 n
 - we get f91_terminates : $\forall n, \mathbb{D}_{\text{f91}} n$
- ▶ total fun. as fun $n \Rightarrow$ f91 n (f91_terminates n)

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Wise

Dumb f91_full

Properties

Paulson's

Inductive domain nm_full

R scheme

erm&correct. ostponed artial correct.

Totality of nm

► First, partial correctness by induction (PIRR):

$$\forall n (D_n : \mathbb{D}_{\text{f91}} n), \, \mathbb{S}_{\text{f91}} n (\text{f91} n D_n)$$

- then totality/termination:
 - with constructors for $\mathbb{D}_{\mathbf{f}91}$
 - ▶ by induction on 101 n
 - we get f91_terminates : $\forall n, \mathbb{D}_{\text{f91}} n$
- ▶ total fun. as fun $n \Rightarrow$ f91 n (f91_terminates n)
- Extraction as intended
 - with nat as unary/Peano natural numbers...

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchev/PC19

ntroduction

McCarthy's F91

Dumb f91_full IR scheme

Properties

Paulson's normalisation

Inductive domain nm_full Logical content

R scheme Extraction

Term&correct. postponed Partial correct. of m Totality of nm

rotality of imi

 $\verb|let rec nm| e = \verb|match| e with$

$$\begin{array}{l} \mid \alpha & \rightarrow \alpha \\ \mid \omega(\alpha,y,z) & \rightarrow \omega(\alpha,\operatorname{nm}\,y,\operatorname{nm}\,z) \\ \mid \omega(\omega(\mathbf{a},\mathbf{b},\mathbf{c}),y,z) \rightarrow \operatorname{nm}(\omega(\mathbf{a},\operatorname{nm}(\omega(\mathbf{b},y,z)), \\ & \operatorname{nm}(\omega(\mathbf{c},y,z)))) \end{array}$$

- Expressions in $\Omega: b, x, y ::= \alpha \mid \omega \ b \ x \ y$
 - $ightharpoonup \alpha$ is atomic expression
 - ω b x y denotes "if b then x else y"

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchey/PC19

Introductio

McCarthy's F91

Wise Dumb f91_full IR scheme

Paulson's normalisation

Inductive domain nm_full Logical content

R scheme Extraction Ferm&correct.

postponed Partial correct. of nr Totality of nm

- Expressions in $\Omega: b, x, y := \alpha \mid \omega \mid b \mid x \mid y$
 - $ightharpoonup \alpha$ is atomic expression
 - $\triangleright \omega b \times y$ denotes "if b then x else y"
- Interest of this algorithm:
 - recurring example (Giesl 97, B&C 05...)
 - has nested recursion but still compact
 - idealized but meaningful

C3-Nested/Mutual

Dominique Larchev-Wendling https: //github.com/ DmxLarchev/PC19

Paulson's normalisation

Inductive capture of $\mathbb{D}:\Omega \to \mathtt{Prop}$

▶ Using the graph $\mathbb{G}: \Omega \to \Omega \to \mathtt{Prop}$

$$\frac{\mathbb{G} y n_{y}}{\mathbb{G} \alpha \alpha} \frac{\mathbb{G} z n_{z}}{\mathbb{G} (\omega \alpha y z) (\omega \alpha n_{y} n_{z})}$$

$$\mathbb{G} (\omega b y z) n_{b} \mathbb{G} (\omega c y z) n_{c} \mathbb{G} (\omega a n_{b} n_{c}) n_{a}$$

$$\mathbb{G} (\omega (\omega a b c) y z) n_{a}$$

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Vise Dumb 91_full R scheme

Paulson's normalisation

nm_full

Inductive domain

Logical content IR scheme Extraction Term&correct.

postponed Partial correct. of nm Totality of nm ▶ Using the graph $\mathbb{G}: \Omega \to \Omega \to \mathtt{Prop}$

$$\frac{\mathbb{G} y n_{y}}{\mathbb{G} \alpha \alpha} \frac{\mathbb{G} z n_{z}}{\mathbb{G} (\omega \alpha y z) (\omega \alpha n_{y} n_{z})}$$

$$\mathbb{G} (\omega b y z) n_{b} \mathbb{G} (\omega c y z) n_{c} \mathbb{G} (\omega a n_{b} n_{c}) n_{a}$$

$$\mathbb{G} (\omega (\omega a b c) y z) n_{a}$$

▶ Define $\mathbb{D} = \text{fun } e \mapsto \exists n, \mathbb{G} \ e \ n \text{ inductively by:}$

$$\frac{\mathbb{D} \ y}{\mathbb{D} \ \alpha} \frac{\mathbb{D} \ z}{\mathbb{D} \ (\omega \ \alpha \ y \ z)}$$

$$\mathbb{D} \ (\omega \ b \ y \ z) \quad \mathbb{D} \ (\omega \ c \ y \ z)$$

$$\forall n_b \ n_c, \mathbb{G} \ (\omega \ b \ y \ z) \ n_b \to \mathbb{G} \ (\omega \ c \ y \ z) \ n_c \to \mathbb{D} \ (\omega \ a \ n_b \ n_c)$$

$$\mathbb{D} \ (\omega \ (\omega \ a \ b \ c) \ y \ z)$$

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Vise Dumb 191_full R scheme

Paulson's normalisation

Inductive domain

Logical content
IR scheme
Extraction
Term&correct.
postponed
Partial correct. of nm

Inductive capture of $\mathbb{D}: \Omega \to \mathtt{Prop}$

▶ Using the graph $\mathbb{G}: \Omega \to \Omega \to \mathtt{Prop}$

$$\frac{\mathbb{G} \ y \ n_{y}}{\mathbb{G} \ \alpha \ \alpha} = \frac{\mathbb{G} \ y \ n_{y}}{\mathbb{G} \ (\omega \ \alpha \ y \ z) \ (\omega \ \alpha \ n_{y} \ n_{z})}$$

$$\frac{\mathbb{G} \ (\omega \ b \ y \ z) \ n_{b}}{\mathbb{G} \ (\omega \ c \ y \ z) \ n_{c}} = \mathbb{G} \ (\omega \ a \ n_{b} \ n_{c}) \ n_{a}$$

▶ Define $\mathbb{D} = \text{fun } e \mapsto \exists n, \mathbb{G} \ e \ n \text{ inductively by:}$

$$\frac{\mathbb{D} \ y}{\mathbb{D} \ \alpha} \frac{\mathbb{D} \ z}{\mathbb{D} \ (\omega \ \alpha \ y \ z)}$$

$$\mathbb{D} \ (\omega \ b \ y \ z) \quad \mathbb{D} \ (\omega \ c \ y \ z)$$

$$\forall n_b \ n_c, \mathbb{G} \ (\omega \ b \ y \ z) \ n_b \to \mathbb{G} \ (\omega \ c \ y \ z) \ n_c \to \mathbb{D} \ (\omega \ a \ n_b \ n_c)$$

$$\mathbb{D} \ (\omega \ (\omega \ a \ b \ c) \ y \ z)$$

▶ Define nm_full by structural induction on D_e : \mathbb{D} e

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introductioi

McCarthy's F91

Wise
Dumb
f91_full
IR scheme

Paulson's normalisation

Inductive domain

Logical content
IR scheme
Extraction
Term&correct.
postponed
Partial correct. of nm

```
Let nm_full: \forall e, \mathbb{D} \ e \to \{n \mid \mathbb{G} \ e \ n\}. refine(fix loop e \ D_e {struct D_e} := match e as e' return \mathbb{D} \ e' \to \{n \mid \mathbb{G} \ e' \ n\} with \mid \alpha \qquad \Rightarrow \text{fun } D \Rightarrow \qquad \text{exist } \_\alpha \ \mathbb{G}_0^? \mid \omega \ \alpha \ y \ z \qquad \Rightarrow \text{fun } D \Rightarrow \qquad \text{let } (n_y, H_y) := \text{loop } y \ \mathbb{T}_y^? in \text{let } (n_z, H_z) := \text{loop } z \ \mathbb{T}_z^? in \text{exist } \_(\omega \ \alpha \ n_y \ n_z) \ \mathbb{G}_1^? \mid \omega \ (\omega \ a \ b \ c) \ y \ z \Rightarrow \text{fun } D \Rightarrow \qquad \text{let } (n_b, H_b) := \text{loop } (\omega \ b \ y \ z) \ \mathbb{T}_b^? in \text{let } (n_c, H_c) := \text{loop } (\omega \ c \ y \ z) \ \mathbb{T}_c^? in \text{let } (n_a, H_a) := \text{loop } (\omega \ a \ n_b \ n_c) \ \mathbb{T}_a^? in \text{exist } \_n_a \ \mathbb{G}_2^? end D_e); simpl in *.
```

Proof. of certificates $\mathbb{T}^{?}_{v}$, $\mathbb{T}^{?}_{z}$, $\mathbb{T}^{?}_{b}$, $\mathbb{T}^{?}_{c}$, $\mathbb{T}^{?}_{a}$ and post-conditions $\mathbb{G}^{?}_{0}$, $\mathbb{G}^{?}_{1}$, $\mathbb{G}^{?}_{2}$ Qed.

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

introduction

McCarthy's F91

Wise Dumb f91_full IR scheme

normalisation

Inductive domain

nm_full

R scheme
Extraction
Ferm&correct.

Partial correct. of Totality of nm

```
Let nm_full: \forall e, \mathbb{D} \ e \to \{n \mid \mathbb{G} \ e \ n\}. refine(fix loop e \ D_e {struct D_e} := match e as e' return \mathbb{D} \ e' \to \{n \mid \mathbb{G} \ e' \ n\} with \mid \alpha \qquad \Rightarrow \text{fun } D \Rightarrow \qquad \text{exist } \_\alpha \ \mathbb{G}_0^? \mid \omega \ \alpha \ y \ z \qquad \Rightarrow \text{fun } D \Rightarrow \qquad \text{let } (n_y, H_y) := \text{loop } y \ \mathbb{T}_y^? \ \text{in} \qquad \text{let } (n_z, H_z) := \text{loop } z \ \mathbb{T}_z^? \qquad \text{in exist } \_(\omega \ \alpha \ n_y \ n_z) \ \mathbb{G}_1^? \qquad \text{in exist } \_(\omega \ \alpha \ n_y \ n_z) \ \mathbb{G}_2^? \qquad \text{let } (n_c, H_c) := \text{loop } (\omega \ c \ y \ z) \ \mathbb{T}_c^? \ \text{in} \qquad \text{let } (n_z, H_a) := \text{loop } (\omega \ c \ y \ z) \ \mathbb{T}_a^? \ \text{in exist } \_n_a \ \mathbb{G}_2^? \qquad \text{end } D_e); simpl in *.
```

 $\text{Proof. of certificates $\mathbb{T}_y^?$, $\mathbb{T}_z^?$, $\mathbb{T}_b^?$, $\mathbb{T}_c^?$, $\mathbb{T}_a^?$ and post-conditions $\mathbb{G}_0^?$, $\mathbb{G}_1^?$, $\mathbb{G}_2^?$ Qed. }$

use of dependent pattern matching

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Dumb f91_full IR scheme

normalisation

Inductive domain

nm_full

R scheme
Extraction
Ferm&correct.

Partial correct. of : Totality of nm

```
Let \operatorname{nm\_full}: \forall e, \mathbb{D}\ e \to \{n \mid \mathbb{G}\ e\ n\}. refine(fix loop e\ D_e {struct D_e} := match e as e' return \mathbb{D}\ e' \to \{n \mid \mathbb{G}\ e'\ n\} with \mid \alpha \qquad \Rightarrow \operatorname{fun}\ D \Rightarrow \qquad \operatorname{exist}\ \_\alpha\ \mathbb{G}_0^2 \qquad \mid \omega\ \alpha\ y\ z \qquad \Rightarrow \operatorname{fun}\ D \Rightarrow \qquad \operatorname{let}\ (n_y, H_y) := \operatorname{loop}\ y\ \mathbb{T}_y^2\ \operatorname{in} \qquad \operatorname{let}\ (n_z, H_z) := \operatorname{loop}\ z\ \mathbb{T}_z^2 \qquad \qquad \operatorname{in}\ \operatorname{exist}\ \_(\omega\ \alpha\ n_y\ n_z)\ \mathbb{G}_1^2 \qquad \qquad \mid \omega\ (\omega\ a\ b\ c)\ y\ z \Rightarrow \operatorname{fun}\ D \Rightarrow \qquad \operatorname{let}\ (n_b, H_b) := \operatorname{loop}\ (\omega\ b\ y\ z)\ \mathbb{T}_b^2\ \operatorname{in} \qquad \qquad \operatorname{let}\ (n_z, H_z) := \operatorname{loop}\ (\omega\ c\ y\ z)\ \mathbb{T}_c^2\ \operatorname{in} \qquad \qquad \operatorname{let}\ (n_a, H_a) := \operatorname{loop}\ (\omega\ a\ n_b\ n_c)\ \mathbb{T}_a^2 \qquad \qquad \operatorname{in}\ \operatorname{exist}\ \_n_a\ \mathbb{G}_2^2 end D_e); simpl in *.
```

- use of dependent pattern matching
- ▶ LC (i.e. proof obligations) separated from CC

Proof. of certificates $\mathbb{T}^{?}_{v}, \mathbb{T}^{?}_{z}, \mathbb{T}^{?}_{h}, \mathbb{T}^{?}_{c}, \mathbb{T}^{?}_{a}$ and post-conditions $\mathbb{G}^{?}_{0}, \mathbb{G}^{?}_{1}, \mathbb{G}^{?}_{2}$ Qed.

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Dumb f91_full IR scheme

Paulson's normalisation

Inductive domain

nm_full

R scheme Extraction Term&correct.

postponed
Partial correct. of

tality of nm

 \Rightarrow fun $D \Rightarrow$ let $(n_v, H_v) := \text{loop } y \mathbb{T}_v^?$ in

in exist $n_a \mathbb{G}_2^?$

 $|\omega(\omega a b c) y z \Rightarrow \text{fun } D \Rightarrow \text{let } (n_b, H_b) := \text{loop } (\omega b y z) \mathbb{T}_b^? \text{ in }$

Proof. of certificates $\mathbb{T}^{?}_{v}, \mathbb{T}^{?}_{z}, \mathbb{T}^{?}_{h}, \mathbb{T}^{?}_{c}, \mathbb{T}^{?}_{a}$ and post-conditions $\mathbb{G}^{?}_{0}, \mathbb{G}^{?}_{1}, \mathbb{G}^{?}_{2}$ Qed.

let $(n_z, H_z) := \text{loop } z \mathbb{T}_z^2$ in exist $(\omega \alpha n_v n_z) \mathbb{G}_1^?$

Let $nm_full : \forall e, \mathbb{D} \ e \to \{n \mid \mathbb{G} \ e \ n\}.$

end D_e); simpl in *.

refine(fix loop $e D_e$ {struct D_e } :=

match e as e' return \mathbb{D} $e' \to \{n \mid \mathbb{G} \ e' \ n\}$ with \Rightarrow fun $D \Rightarrow$ exist $\alpha \mathbb{G}_0^?$

nm full

let $(n_c, H_c) := \text{loop } (\omega \ c \ y \ z) \mathbb{T}_c^7$ in let $(n_a, H_a) := \text{loop} (\omega \ a \ n_b \ n_c) \ \mathbb{T}_a^?$

► LC (i.e. proof obligations) separated from CC

use of dependent pattern matching

▶ LC divided: termination certificates, post-conditions

lacktriangle Post-conditions by the constructors of $\mathbb G$

```
\begin{array}{c} \mathbb{G}_{0}^{?} \ /\!/ \ \ldots \vdash \mathbb{G} \ \alpha \ \alpha \\ \mathbb{G}_{1}^{?} \ /\!/ \ \ldots, H_{y} : \mathbb{G} \ y \ n_{y}, H_{z} : \mathbb{G} \ z \ n_{z} \vdash \mathbb{G} \ (\omega \ \alpha \ y \ z) \ (\omega \ \alpha \ n_{y} \ n_{z}) \\ \mathbb{G}_{2}^{?} \ /\!/ \ \ldots, H_{b} : \mathbb{G} \ (\omega \ b \ y \ z) \ n_{b}, H_{c} : \mathbb{G} \ (\omega \ c \ y \ z) \ n_{c}, \ldots \\ \ldots H_{a} : \mathbb{G} \ (\omega \ a \ n_{b} \ n_{c}) \ n_{a} \vdash \mathbb{G} \ (\omega \ (\omega \ a \ b \ c) \ y \ z) \ n_{a} \end{array}
```

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchev/PC19

Introduction

McCarthy's F91

Wise Dumb f91_full IR scheme

Paulson's normalisation

Inductive domain nm_full

nm..full Logical content

IR scheme Extraction Term&correct. postponed

Partial correct. of Totality of nm

rotality of im

```
\begin{array}{c|c} \mathbb{G}_0^? \ /\!/ \ \ldots \vdash \mathbb{G} \ \alpha \ \alpha \\ \mathbb{G}_1^? \ /\!/ \ \ldots , H_y : \mathbb{G} \ y \ n_y, H_z : \mathbb{G} \ z \ n_z \vdash \mathbb{G} \ (\omega \ \alpha \ y \ z) \ (\omega \ \alpha \ n_y \ n_z) \\ \mathbb{G}_2^? \ /\!/ \ \ldots , H_b : \mathbb{G} \ (\omega \ b \ y \ z) \ n_b, H_c : \mathbb{G} \ (\omega \ c \ y \ z) \ n_c, \ldots \\ \ \ldots H_a : \mathbb{G} \ (\omega \ a \ n_b \ n_c) \ n_a \vdash \mathbb{G} \ (\omega \ (\omega \ a \ b \ c) \ y \ z) \ n_a \end{array}
```

Termination certificates

```
\begin{array}{c|c} \mathbb{T}^{?}_{y} \ /\!/ \ \ldots, D : \mathbb{D} \ (\omega \ \alpha \ y \ z) \vdash \mathbb{D} \ y \\ \mathbb{T}^{?}_{b} \ /\!/ \ \ldots, D : \mathbb{D} \ (\omega \ (\omega \ a \ b \ c) \ y \ z) \vdash \mathbb{D} \ (\omega \ b \ y \ z) \\ \mathbb{T}^{?}_{a} \ /\!/ \ \ldots, D : \mathbb{D} \ (\omega \ (\omega \ a \ b \ c) \ y \ z), H_{b} : \mathbb{G} \ (\omega \ b \ y \ z) \ n_{b}, \ldots \\ \ldots H_{c} : \mathbb{G} \ (\omega \ c \ y \ z) \ n_{c} \vdash \mathbb{D} \ (\omega \ a \ n_{b} \ n_{c}) \end{array}
```

- ▶ beware of structural decrease in term. certificates
 - ▶ by the inversion tactic
 - or "small inversion" (J.F. Monin)

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchey/PC19

Introduction

McCarthy's F91

Dumb f91_full IR scheme

Paulson's

Inductive domain

nm_full Logical content

Extraction
Term&correct.
postponed

Partial correct. of Totality of nm

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introductioi

McCarthy's F91

Wise Dumb f91_full

Paulson's

nm_full

Logical content IR scheme

Extraction

Term&correct.
postponed
Partial correct

Totality of nm

```
\begin{array}{lll} & \text{Inductive } \mathbb{D}: \Omega \to \begin{array}{|c|c|c|c|c|c|} \hline \text{Inductive } \mathbb{D}: \Omega \to \begin{array}{|c|c|c|c|} \hline \text{Inductive } \mathbb{D}: \Omega \to \begin{array}{|c|c|c|c|} \hline \text{Inductive } \mathbb{D}: \Omega \to \begin{array}{|c|c|c|} \hline \text{Inductive } \mathbb{D}: \Omega \to \mathbb{D}(\omega \ \alpha \ y \ z) \\ \hline \text{Inductive } \mathbb{D}: \Omega \to \mathbb{D}(\omega \ \alpha \ y \ z) \\ \hline \text{Inductive } \mathbb{D}: \Omega \to \mathbb{D}(\omega \ \alpha \ y \ z) \\ \hline \text{Inductive } \mathbb{D}: \mathbb{D}: \mathbb{D}: \mathbb{D}(\omega \ \alpha \ y \ z) \\ \hline \text{Inductive } \mathbb{D}: \mathbb
```

▶ The domain $\mathbb{D}: \Omega \to \mathsf{Prop}$ is **non-informative**

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchey/PC19

Introductioi

McCarthy's F91

Wise
Dumb
f91_full

Paulson's normalisation

nm_full

Logical content

IR scheme

Extraction Term&correct. postponed Partial correct. of r

```
Inductive \mathbb{D}:\Omega\to \mathsf{Prop}:=
      d_nm_0
     d.nm_0 : \mathbb{D} \alpha
d.nm_1 y z : \mathbb{D} y \to \mathbb{D} z \to \mathbb{D}(\omega \alpha y z)
d.nm_2 a b c y z D_b D_c : \mathbb{D}(\omega a (nm(\omega b y z) D_b))
                                                                   (nm (\omega c y z) D_c))
                                                   \rightarrow \mathbb{D}(\omega (\omega a b c) y z)
with Fixpoint nm e(D_e:\mathbb{D} e):\Omega:=\mathrm{match}\ D_e with
      d nm 0
                                                   \mapsto \alpha
      d_nm_1 y z D_v D_z \mapsto \omega \alpha (nm y D_v) (nm z D_z)
      d_nm_2 a b c y z D_b D_c D_a \mapsto nm (\omega a (nm (\omega b y z) D_b))
                                                                       (nm (\omega c y z) D_c)) D_a
  end.
```

- ▶ The domain $\mathbb{D}: \Omega \to \mathsf{Prop}$ is **non-informative**
- ▶ nm : $\forall e$, \mathbb{D} $e \rightarrow \Omega$ is proof-irrelevant, i.e. $\operatorname{nm} x D_1 = \operatorname{nm} x D_2$

C3-Nested/Mutual

Dominique Larchev-Wendling https: //github.com/ DmxLarchev/PC19

IR scheme

```
\begin{array}{lll} & \text{Inductive } \mathbb{D}:\Omega \to \begin{array}{|c|c|c|c|c|c|} & \text{Inductive } \mathbb{D}:\Omega \to \begin{array}{|c|c|c|c|} & \text{Inductive } \mathbb{D}:\Omega \to \begin{array}{|c|c|c|c|} & \text{Inductive } \mathbb{D}:\Omega \to \begin{array}{|c|c|c|c|} & \text{Inductive } \mathbb{D}:\Omega & \text{Inductive } \mathbb{D}:\Omega & \text{Inductive } \mathbb{D}(\omega \ \alpha \ y \ z) \\ & \text{Inductive } \mathbb{D}:\Omega & \text
```

▶ The domain $\mathbb{D}: \Omega \to \mathsf{Prop}$ is **non-informative**

- ▶ nm : $\forall e$, \mathbb{D} $e \to \Omega$ is proof-irrelevant, i.e. nm $\times D_1 = \text{nm } \times D_2$
- Constructors, dep. elim. scheme and fixpoint equations retrieved

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Wise Dumb f91_full

Properti

Paulson's normalisation

nm_full Logical content

IR scheme

Extraction

Term&correct.
postponed
Partial correct.

Totality of nm

Extraction independent of the domain

▶ In nm e $(D_e : \mathbb{D} \ e)$ extract. erases $D_e : \mathbb{D} \ e : \texttt{Prop}$

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Nise Dumb 191_full R scheme

Paulson's

Inductive domain nm_full Logical content IR scheme

Extraction

Term&correct.
postponed
Partial correct. of nm
Totality of nm

Extraction independent of the domain

- ▶ In nm $e(D_e : \mathbb{D} e)$ extract. erases $D_e : \mathbb{D} e : Prop$
- ▶ Hence Extraction nm gives the intended term:

```
let rec nm e = \operatorname{match} e with \mid \alpha \qquad \rightarrow \alpha 
\mid \omega(x,y,z) \qquad \rightarrow \operatorname{match} x with \mid \alpha \qquad \rightarrow \omega(\alpha,\operatorname{nm} y,\operatorname{nm} z)
\mid \omega(a,b,c) \rightarrow \operatorname{nm}(\omega(a,\operatorname{nm}(\omega(b,y,z)),\operatorname{nm}(\omega(c,y,z))))
```

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchey/PC19

Introduction

McCarthy's F91

Dumb f91_full IR scheme

Paulson's normalisation

Inductive domain nm_full Logical content

IR scheme Extraction

erm&correct. ostponed

Partial correct. of n Totality of nm

Extraction

//github.com/ DmxLarchev/PC19

4 D > 4 P > 4 E > 4 E > 9 Q P

- ▶ In nm $e(D_e : \mathbb{D} e)$ extract. erases $D_e : \mathbb{D} e : \text{Prop}$

 $\mid \omega(a,b,c) \rightarrow \operatorname{nm}(\omega(a,\operatorname{nm}(\omega(b,y,z)),\operatorname{nm}(\omega(c,y,z))))$

- ▶ Hence Extraction nm gives the intended term:

let rec nm e =match e with

 $| \alpha \rangle \rightarrow \omega(\alpha, \text{nm } y, \text{nm } z)$

has no impact on extracted algorithm

 $\mid \alpha \qquad \rightarrow \alpha \\ \mid \omega(x,y,z) \qquad \rightarrow \mathtt{match} \; x \; \mathtt{with}$

▶ The proof term $D_e : \mathbb{D} \ e$

Dumb f91_full

Paulson's

Inductive domain
nm_full

IR scheme

Extraction

Term&correct.
postponed
Partial correct. of nm

- ▶ In nm $e(D_e : \mathbb{D} e)$ extract. erases $D_e : \mathbb{D} e : Prop$
- ▶ Hence Extraction nm gives the intended term:

let rec nm $e = \operatorname{match} e$ with $\mid \alpha \longrightarrow \alpha \mid \omega(x,y,z) \longrightarrow \operatorname{match} x$ with $\mid \alpha \longrightarrow \omega(\alpha,\operatorname{nm} y,\operatorname{nm} z) \mid \omega(a,b,c) \longrightarrow \operatorname{nm}(\omega(a,\operatorname{nm}(\omega(b,y,z)),\operatorname{nm}(\omega(c,y,z))))$

- ▶ The proof term $D_e : \mathbb{D} e$
 - has no impact on extracted algorithm
 - great complexity does not matter

Extraction

- ▶ In nm $e(D_e : \mathbb{D} e)$ extract. erases $D_e : \mathbb{D} e : \text{Prop}$
- ▶ Hence Extraction nm gives the intended term:

let rec nm e =match e with $\mid \alpha \qquad \rightarrow \alpha \\ \mid \omega(x,y,z) \qquad \rightarrow \mathtt{match} \; x \; \mathtt{with}$ $\mid \alpha \qquad \rightarrow \omega(\alpha, \text{nm } y, \text{nm } z)$ $|\omega(a,b,c)\rightarrow \operatorname{nm}(\omega(a,\operatorname{nm}(\omega(b,y,z)),\operatorname{nm}(\omega(c,y,z))))$

- ▶ The proof term $D_e : \mathbb{D} \ e$
 - has no impact on extracted algorithm
 - great complexity does not matter
 - use high-level tool (lex. prod, WQOs)

Termination postponed after definition

- ▶ Proving termination of nm at e is a term D_e : $\mathbb D$ e
 - lacktriangle a "meaningful" characterization of $\mathbb D$ e
 - ▶ for partial fun.: $P: \Omega \rightarrow Prop$ and $P \subseteq \mathbb{D}$
 - for total functions: a proof of $\forall e, \mathbb{D}$ e

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Vise Dumb 91_full R scheme

Paulson's

Inductive domain nm_full Logical content IR scheme

traction rm&correct.

Term&correct. postponed

artial correct. of nm

Dumb f91_full IR scheme

Paulson's

Inductive domain

Logical conte IR scheme

xtraction

Term&correct. postponed Partial correct. of

rtial correct. of nm

- ▶ Proving termination of nm at e is a term D_e : \mathbb{D} e
 - lacktriangle a "meaningful" characterization of $\mathbb D$ e
 - ▶ for partial fun.: $P: \Omega \to Prop$ and $P \subseteq \mathbb{D}$
 - ▶ for total functions: a proof of $\forall e, \mathbb{D}$ e
- ▶ The proof of $P \subseteq \mathbb{D}$ can be provided:
 - ▶ after $\mathbb{D}: \Omega \to \mathtt{Prop}$ and $\mathtt{nm}: \forall e, \ \mathbb{D} \ e \to \Omega$ are def'd
 - by any means necessary
 - w/o consequences on extracted code
 - including by adding axioms (if necessary)

- Proving termination of nm at e is a term $D_e: \mathbb{D}$ e
 - \triangleright a "meaningful" characterization of \mathbb{D} e
 - ▶ for partial fun.: $P: \Omega \to \texttt{Prop}$ and $P \subseteq \mathbb{D}$
 - for total functions: a proof of $\forall e, \mathbb{D}$ e
- ▶ The proof of $P \subseteq \mathbb{D}$ can be provided:
 - ▶ after $\mathbb{D}: \Omega \to \mathsf{Prop}$ and $\mathsf{nm}: \forall e, \mathbb{D} \ e \to \Omega$ are def'd
 - by any means necessary
 - w/o consequences on extracted code
 - including by adding axioms (if necessary)
- Tools from IR:
 - constructors
 - fixpoint equations

C3-Nested/Mutual

Dominique Larchev-Wendling https: //github.com/ DmxLarchev/PC19

Term&correct. postponed

Partial correction postponed after def.

▶ Partial correction = higher-level charac. of nm e D_e

C3: Nested/Mutual

Dominique Larchey-Wendling

https: //github.com/ DmxLarchey/PC19

ntroduction

M C .1 1 F01

Vise Dumb 91_full R scheme

Paulson's normalisation

Inductive domain nm_full Logical content

IR scheme Extraction

Term&correct. postponed

artial correct. of nm otality of nm

- ▶ Partial correction = higher-level charac. of nm e D_e
 - another spec/post-condition
 - by induction on \mathbb{G} e (nm e D_e)
 - or using dependent elimination on (e, D_e) (IR)

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

ntroduction

MaCauthula E01

Wise Dumb f91_full IR scheme

Paulson's

Inductive domain nm_full Logical content

IR scheme Extraction

Term&correct.

rtial correct. of nm

- ▶ Partial correction = higher-level charac. of nm e D_e
 - another spec/post-condition
 - by induction on \mathbb{G} e (nm e D_e)
 - or using dependent elimination on (e, D_e) (IR)
- ▶ Partial correction: for meaningful S
 - $ightharpoonup \forall e \ (D_e : \mathbb{D} \ e), \mathbb{S} \ e \ (\text{nm } e \ D_e)$

C3: Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchev/PC19

ntroduction

McCartny's F9.

Dumb 191_full R scheme

Paulson's

normalisation

nm_full Logical content IR scheme

Term&correct.

stponed artial correct. of m

Partial correct. of i Totality of nm

Term&correct. postponed

- ▶ Partial correction = higher-level charac. of nm e D_e
 - another spec/post-condition
 - by induction on \mathbb{G} e (nm e D_e)
 - or using dependent elimination on (e, D_e) (IR)
- Partial correction: for meaningful S
 - $\blacktriangleright \forall e \ (D_e : \mathbb{D} \ e), \mathbb{S} \ e \ (nm \ e \ D_e)$
- Tools from IR:
 - dependent elimination
 - fixpoint equations

Partial correction of nm on \mathbb{D}

▶ dep. elim. d_nm_rect for partial correction

C3-Nested/Mutual

Dominique Larchey-Wendling

https: //github.com/ DmxLarchey/PC19

nm_full

IR scheme

Partial correct, of nm

Partial correction of nm on D

- dep. elim. d_nm_rect for partial correction
- ▶ nm_normal : $\forall e (D_e : \mathbb{D} e)$, normal (nm $e D_e$)
 - ▶ the shape ω (ω _ _ _) _ _ is forbidden

C3: Nested/Mutual

Dominique Larchey-Wendling

https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Wise Dumb f91_full IR scheme

Paulson's

nm..full Logical content IR scheme

xtraction erm&correct.

Partial correct. of nm Totality of nm

Partial correction of nm on D

- dep. elim. d_nm_rect for partial correction
- ▶ nm_normal : $\forall e (D_e : \mathbb{D} e)$, normal (nm $e D_e$)
 - the shape ω (ω _ _ _) _ _ is forbidden
- ▶ nm_equiv : $\forall e (D_e : \mathbb{D} e), e \simeq_{\Omega}$ nm $e D_e$
 - the normal form is computationaly equiv.

C3: Nested/Mutual

Dominique
Larchey-Wendling
https:
//github.com/
DmxLarchev/PC19

Introduction

McCarthy's F91

Dumb f91_full IR scheme

Paulson's

Inductive doma nm_full Logical content IR scheme Extraction

Partial correct. of nm

Partial correct, of nm

- dep. elim. d_nm_rect for partial correction
- ▶ nm_normal : $\forall e (D_e : \mathbb{D} e)$, normal (nm $e D_e$)
 - the shape ω (ω _ _ _) _ _ is forbidden
- ▶ nm_equiv : $\forall e (D_e : \mathbb{D} e), e \simeq_{\Omega} \text{nm } e D_e$
 - the normal form is computationally equiv.
- ▶ nm_dec: $\forall e (D_e : \mathbb{D} e)$, $|\text{nm } e D_e| \leq |e|$
 - ▶ some "size" $|\cdot|: \Omega \rightarrow \text{nat}$ is preserved (Giesl 97)
 - $|\alpha| = 1$ $|\omega \times y \ z| = |x| \cdot (1 + |y| + |z|)$

Totality of \mathbb{D} / Termination of nm

 $d_{nm_total}: \forall e, \mathbb{D} e$

▶ By induction on the size |e|

C3-Nested/Mutual

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

nm_full IR scheme

Totality of \mathbb{D} / Termination of nm

 $d_{nm_total}: \forall e, \mathbb{D} e$

- ▶ By induction on the size |e|
 - we use nm_dec : $\forall e (D_e : \mathbb{D} e)$, $|\text{nm } e D_e| \leq |e|$

C3-Nested/Mutual

Dominique Larchey-Wendling

https: //github.com/ DmxLarchey/PC19

nm_full

IR scheme

Totality of \mathbb{D} / Termination of nm

 $d_nm_total : \forall e, \mathbb{D} e$

- ▶ By induction on the size |e|
 - we use nm_dec : $\forall e (D_e : \mathbb{D} e)$, $|\text{nm } e D_e| \leqslant |e|$
 - ▶ and $|\omega \times y \ z| \le |\omega \times y' \ y' \ z'|$ (monotonic)
 - i.e. when $|x| \le |x'|$, $|y| \le |y'|$, $|z| \le |z'|$

C3: Nested/Mutual

Dominique Larchey-Wendling

Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

McCarthy's F91

Vise Dumb 191_full R scheme

Paulson's

Inductive domain nm_full Logical content

IR scheme Extraction

xtraction erm&correct. ostponed

Partial correct. of Totality of nm $d_{nm_total}: \forall e, \mathbb{D} e$

- ▶ By induction on the size |e|
 - we use nm_dec : $\forall e (D_e : \mathbb{D} e)$, $|\text{nm } e D_e| \leq |e|$
 - ▶ and $|\omega \times y \ z| \le |\omega \times y' \ y' \ z'|$ (monotonic)
 - i.e. when $|x| \le |x'|$, $|y| \le |y'|$, $|z| \le |z'|$
 - ▶ and $|\omega \ u \ y \ z| < |\omega \ v \ y \ z|$ when |u| < |v|

C3-Nested/Mutual

Dominique Larchev-Wendling

https: //github.com/ DmxLarchev/PC19

IR scheme

 $d_{nm_total}: \forall e, \mathbb{D} e$

- ▶ By induction on the size |e|
 - we use nm_dec : $\forall e (D_e : \mathbb{D} e)$, $|\text{nm } e D_e| \leq |e|$
 - ▶ and $|\omega \times y \ z| \le |\omega \times y' \ y' \ z'|$ (monotonic)
 - i.e. when $|x| \le |x'|$, $|y| \le |y'|$, $|z| \le |z'|$
 - ▶ and $|\omega \ u \ y \ z| < |\omega \ v \ y \ z|$ when |u| < |v|
 - ▶ and $|y| < |\omega \times y \ z|$ and $|z| < |\omega \times y \ z|$
 - & $|\omega \ a \ (\omega \ b \ y \ z) \ (\omega \ c \ y \ z)| < |\omega \ (\omega \ a \ b \ c) \ y \ z|$

C3. Nested/Mutual

Dominique Larchev-Wendling https: //github.com/ DmxLarchev/PC19

- ▶ By induction on the size |e|
 - we use nm_dec : $\forall e (D_e : \mathbb{D} e)$, $|\text{nm } e D_e| \leq |e|$
 - ▶ and $|\omega \times y \ z| \le |\omega \times y' \ y' \ z'|$ (monotonic)
 - i.e. when $|x| \le |x'|$, $|y| \le |y'|$, $|z| \le |z'|$
 - ▶ and $|\omega \ u \ y \ z| < |\omega \ v \ y \ z|$ when |u| < |v|
 - ▶ and $|y| < |\omega \times y \ z|$ and $|z| < |\omega \times y \ z|$
 - & $|\omega \ a \ (\omega \ b \ y \ z) \ (\omega \ c \ y \ z)| < |\omega \ (\omega \ a \ b \ c) \ y \ z|$
- Partial correction / termination indep. of definition

paulson_nm: $\forall e : \Omega, \{n_e : \Omega \mid e \simeq_{\Omega} n_e \land \text{normal } e\}$

C3. Nested/Mutual

Dominique Larchev-Wendling https: //github.com/ DmxLarchev/PC19