第二节 数列的极限

- 一、数列的概念及性质
- 二、数列极限的定义
- 三、收敛数列的性质

一、数列的概念及性质

1. 形如 $x_1, x_2, \dots, x_n, \dots$ 的一列数称为数列,记为 $\{x_n\}$

数列中的每一个数叫做数列的项,

第 n 项 x_n 叫做数列的一般项或通项.

例如:
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, ..., $\frac{1}{2^n}$, ...; $\left\{\frac{1}{2^n}\right\}$ $x_n = \frac{1}{2^n}$

数列 $\{x_n\}$ $x_1, x_2, \dots, x_n, \dots$

数列的通项 $x_n = f(n)$. 定义域为正整数

整标函数

2. 单调数列

数列 $\{x_n\}$ 若满足 $x_1 \le x_2 \le x_3 \le \cdots \le x_n \le x_{n+1} \le \cdots$,

称数列 $\{x_n\}$ 为单调增数列。

若满足 $x_1 \ge x_2 \ge x_3 \ge \cdots \ge x_n \ge x_{n+1} \ge \cdots$,

称数列 $\{x_n\}$ 为单调减数列。

单调增数列与单调减数列统称为单调数列。

$$\left\{ n \right\} \qquad \left\{ \frac{1}{n} \right\} \qquad \left\{ \frac{n}{n+1} \right\} \qquad \left\{ (-1)^{n+1} \right\}$$
 递增 递减 递增 无单调性

3. 有界数列、无界数列

数列 $\{x_n\}$ 有界: $\exists M > 0, \forall n \in N, \exists M \in N, \exists M$.

数列 $\{x_n\}$ 无界:

$$\forall M > 0, \exists n_0 \in N, \overleftarrow{q} | x_{n_0} | > M.$$

如果存在实数A,对所有的n都满足 $x_n \ge A$,

则称 $\{x_n\}$ 为有下界,A是 $\{x_n\}$ 的一个下界。 有上界 上界

判断下列数列的有界性

 $\{a\}$

有界: M = |a|

 $\{n\}$

无界

 $\left\{\frac{1}{n}\right\}$

有界: $\left|\frac{1}{n}\right| \leq 1$

 $\left\{ \left(-1\right)^{n+1}\right\}$

有界: M=1

4. 子列

数列 $\{x_n\}$ 在保持原有顺序的情况下,任取其中无穷多

项所构成的新数列称为数列 $\{x_n\}$ 的子数列,简称子列。

$$x_1, x_2, x_3, x_4, x_5, x_6, \dots, x_{2n-1}, x_{2n}, \dots$$

取其中偶数项

 $egin{aligned} X_2,X_4,X_6,\cdots,X_{2n},\cdots \ X_1,X_3,X_5,\cdots,X_{2n-1},\cdots \end{aligned}$ 子列 取其中奇数项

二、数列极限的定义

观察数列

$$x_n = \left\{\frac{1}{2^n}\right\},\,$$

随着n增大,数列值x,有什么变化?

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots, \frac{1}{2^n}, \cdots;$$

结论:

当n无限增大时, $x_n = \frac{1}{2^n}$ 无限接近于 0.

一个确定的常数

观察数列 $\{1+\frac{(-1)^{n-1}}{n}\}$ 当 $n\to\infty$ 时的变化趋势.

当
$$n$$
 无限增大时, $x_n = 1 + \frac{(-1)^{n-1}}{n}$ 无限接近于 1.

一个确定的常数

1. 极限定义

对于数列 $\{x_n\}$, 当 n 无限增大时, x_n 无限逼近于唯

一确定的常数 a ,则称 a 是数列 $\{x_n\}$ 的极限,记作

$$\lim_{n\to\infty} x_n = a \qquad \text{if } x_n \to a(n\to\infty)$$

并称数列 $\{x_n\}$ 收敛于a.

性质:

1)若极限存在,则极限必唯一.

2)若 $\{x_n\}$ 没有极限,则称数列 $\{x_n\}$ 是发散的.

$$\lim_{n \to \infty} x_n = a \otimes b$$

$$\lim_{n \to \infty} x_n = \infty$$

例1 常数列 $\{x_n\} = \{a\}$, 则 $\lim_{n \to \infty} x_n = ?$ $\lim_{n \to \infty} x_n = a$.

例2
$$\lim_{n\to\infty}\frac{1}{n}=0$$
 $\lim_{n\to\infty}\frac{1}{n^2}=0$ $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$

$$\therefore 数列\{x_n\} = \left\{\frac{1}{n^k}\right\} (k > 0 为常数) 的极限为 0$$

例3
$$\lim_{n\to\infty}\frac{1}{2^n}=0$$
 $\lim_{n\to\infty}(-\frac{1}{2})^n=0$

数列
$$\{x_n\} = \{q^n\}(|q| < 1, 为常数), 则 \lim_{n \to \infty} x_n = 0$$

例4 考察数列
$$\{x_n\}=\{(-1)^{n+1}\}$$
的敛散性.

- :: 数列各项为1,-1,1,-1,1,-1,...
- $\therefore \lim_{n \to \infty} x_n$ 不是无限趋近于一个确 定的常数,极限

不存在,数列是发散的.

例5 数列 $\{x_n\} = \{2n-1\}$. 发散

极限定义

数列 $\{x_n\}$,当 n 无限增大时, x_n 无限逼近于唯一确定的常数 a ,则称 a 是数列 $\{x_n\}$ 的极限,记作

$$\lim_{n\to\infty} x_n = a \qquad \text{if } x_n \to a(n\to\infty)$$

几何解释

n无限增大时,对应的动点 x_n 与定点a的距离无限的小,

$$\mathbb{P}_{x_n}-a<\varepsilon\to 0.$$

2. 几何解释

n无限增大时,对应的动点 x_n 与定点a的距离无限的小,

$$\mathbb{R}|x_n-a|<\varepsilon\to 0.$$

 $\lim_{n\to\infty} x_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N > 0, \notin n > N$ 时, 恒有 $|x_n - a| < \varepsilon$.

 \mathcal{K} N+1 项开始,有 $a-\varepsilon < x_n < a+\varepsilon$.

当n > N时,所有的点 x_n 都落在 $(a - \varepsilon, a + \varepsilon)$ 内,只有有限个 (至多只有 N个)落在其外 .

三、数列极限的性质

- 1. 唯一性 收敛的数列极限唯一.
- 2. 收敛数列一定有界.

证:设
$$\lim_{n\to\infty} x_n = a$$
, 取 $\varepsilon = 1$, 则 $\exists N$, 当 $n > N$ 时, 有

$$|x_n-a|<1$$
,从而有

$$a-1 < x_n < a+1$$

取
$$M = \max\{|x_1|, |x_2|, \dots, |x_N|, |a-1|, |a+1|\}$$

则有
$$|x_n| \leq M (n=1,2,\cdots)$$
.

由此证明收敛数列必有界.

推论(逆否命题) 无界数列必发散.

例如:数列 $\{n\}$ 无界,故其发散.

limn不存在.

收敛数列一定有界.

思考: (逆命题) "有界数列必收敛"成立吗?

例如: {(-1)"+1} 有界但发散

3. 收敛数列具有保号性.

若
$$\lim_{n\to\infty} x_n = a$$
,且 $a > 0$,则 $\exists N \in \mathbb{N}^+$,当 $n > N$ 时,有 $x_n > 0$ (< 0)

推论: 若数列从某项起 $x_n \ge 0$, 且 $\lim_{n \to \infty} x_n = a$, 则 $a \ge 0$ (≤ 0)

4. 收敛数列与其子数列间的关系:

如果数列 $\{x_n\}$ 收敛于a,那么它的任一子数列也 收敛,且极限也是a.

- 说明 1、若数列有一个子数列发散,则原数列一定发散
 - 2、若数列有两个子数列收敛于不同的极限, 则原数列一定发散.

例如,

$$x_n = (-1)^{n+1} (n = 1, 2, \dots)$$
 发散!

$$\lim_{k \to \infty} x_{2k-1} = 1; \qquad \lim_{k \to \infty} x_{2k} = -1$$

内容小结

- 1. 数列极限的定义及应用
- 2. 收敛数列的性质:

唯一性; 有界性; 保号性;

任一子数列收敛于同一极限