Chapter 1

Chow Rings

It is time now to delve into the world of algebra, developing the notion of a Chow ring of a matroid. This section that will be more challenging to parse without at least some background in abstract algebra.

Much of this section will be presenting results of Adiprasito-Huh-Katz that establish the link between the Chow ring and the characteristic polynomial, forming a necessary bridge

1.1 Defining a Chow Ring

We will, for example, be taking the notion of a ring entirely for granted. Really though, even for those with some background, we don't expect Chow rings to be are somewhat specialized. a development of intersection theory in algebraic geometry. Not something everyone has seen for sure. Luckily, we can exploit the structure of matroids to define a Chow ring without having to go the long way through intersection theory.

A Chow ring is "a generalization of cohomology for alegbraic geometry" 1.Introduce the Chow Ring of a matroid. From lattice of flats to quotient ring 2.Use our example matroid and construct its Chow Ring

1.1.1 Properties of Chow Rings

3.Use words like homogeneous polynomial, graded ring, etc...

1.1.2 The Degree Map

4. How do I explain this? I guess I can at least say it's linear and sends terms of full degree to 1. Maybe I'll understand it this time around

1.2 Relationship with the Characteristic Polynomial

5.Come up with a nice way of relating the reduced characteristic polynomial with our ring (and therefore fan) 6.Define α and β . Here or in a subsection? Or should it be up when we introduce the ring itself?