CURSUL 12

INTEGRABILITATE îN \mathbb{R}^n

Integralele multiple sunt o extensie naturală a integralei Riemann la cazul funcțiilor de mai multe variabile. În particular, atunci când funcția ce trebuie integrată are două variabile, vorbim despre integrala dublă; în cazul în care avem de a face cu trei variabile, vorbim de integrala triplă. În acest fel, putem calcula unele caracteristici numerice ale obiectelor 3D (volum, masă, etc.)

1. Măsura Jordan

Deoarece noțiunea de integrală (chiar în R) este puternic legată de măsura unei mulțimi (precum lungimea, aria sau volumul), vom începe prin a defini un astfel de concept în \mathbb{R}^n .

DEFINIȚIE.

a) Fie $a_1, a_2, \ldots, a_n \in \mathbb{R}$ și $b_1, b_2, \ldots, b_n \in \mathbb{R}$ astfel încât $a_k < b_k, \forall k \in \overline{1, n}$. Mulțimea

$$I_0 = [a_1, b_1] \times \cdots \times [a_n, b_n] = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid a_k \le x_k \le b_k, \ \forall k \in \overline{1, n}\}$$

se numeste un interval compact n-dimensional (dacă n=2 sau n=3, îl numim de asemenea dreptunghi, respectiv paralelepiped cu laturile, respectiv fețele paralele la axele de coordonate).

Măsura (Jordan a) lui este numărul

$$\mu(I_0) := (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n).$$

 $(\text{dacă } n = 2 \text{ sau } n = 3, \text{ aceasta este } aria, \text{ respectiv } volumul \text{ dreptunghiului sau paralelipipedului } I_0).$

b) Numim multime elementară (măsurabilă Jordan) orice multime din \mathbb{R}^n ce poate fi scrisă ca o reuniune finită de intervale compacte n-dimensionale ce nu au puncte interioare comune, adică o mulțime de forma

$$E = \bigcup_{l=1}^{q} I_l$$

astfel încât $I_l = \begin{bmatrix} a_1^l, b_1^l \end{bmatrix} \times \begin{bmatrix} a_2^l, b_2^l \end{bmatrix} \times \cdots \times \begin{bmatrix} a_n^l, b_n^l \end{bmatrix}, l = \overline{1, q}$ și astfel încât $\mathring{I}_i \cap \mathring{I}_l = \emptyset, \forall j, l \in \{1, 2, \dots, q\}, j \neq l$. Măsura Jordan a mulțimii E este definită ca

$$\mu(E) \coloneqq \sum_{l=1}^{q} \mu(I_l),$$

unde
$$\mu(I_l) = \prod_{k=1}^{n} (b_k^l - a_k^l)$$

unde $\mu(I_l) = \prod_{k=1}^n (b_k^l - a_k^l)$. Vom nota \mathcal{E}_I^n familia tuturor mulțimilor elementare din \mathbb{R}^n .

Măsura unei mulțimi elementare este bine definită din cauză că se poate arăta ca ea nu depinde (exercițiu!) de reprezentarea ei (ce nu este unică) ca o reuniune finită de intervale compacte ce nu au puncte interioare comune.

Definitie. Fie $A \subseteq \mathbb{R}^n$ o multime mărginită.

a) Numim măsura Jordan interioară a mulțimii A numărul

$$\mu_*(A) = \sup \{ \mu(E) \mid E \subseteq A, E \in \mathcal{E}_J^n \}$$

(dacă nu există o multime elementară inclusă în A, $\mu_*(A)$ este atunci 0).

b) Măsura Jordan exterioară a mulțimii A este numărul

$$\mu^*(A) = \inf \{ \mu(E) \mid E \supseteq A, E \in \mathcal{E}_I^n \}.$$

c) Spunem că A este măsurabilă Jordan dacă $\mu_*(A) = \mu^*(A)$. Valoarea ei comună se numește măsura Jordan a mulțimii A și se notează $\mu_I(A)$ (se obișnuiește să o numim *arie* dacă n=2 sau volum dacă n=3)

Este evident că pentru o mulțime mărginită $A \subseteq \mathbb{R}^n$, $\mu_*(A)$ și $\mu^*(A)$ sunt numere reale pozitive ce satisfac $\mu_*(A) \le$ $\mu^*(A)$.

Observații.

1. Orice mulțime elementară $E \in \mathcal{E}_I^n$ este măsurabilă Jordan, prin definiție.

1

2. Nu orice mulțime mărginită din \mathbb{R}^n este măsurabilă Jordan. De exemplu, în \mathbb{R}^2 considerăm

$$A_D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le f_D(x)\}$$

unde $f_D: \mathbb{R} \to \mathbb{R}$ este funcția lui Dirichlet function, definită de

$$f_D(x) := \begin{cases} 1, & x \in \mathbb{Q}; \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Atunci $\mu_*(A_D) = 0$, deoarece nu există mulțime elementară $E \subseteq A_D$; pe de altă parte, $\mu^*(A_D) = 1$, deoarece orice mulțime elementară $E \supseteq A$ trebuie să includă dreptunghiul $[0,1] \times [0,1]$. De aceea, E nu este măsurabilă Jordan.

3. Există mulțimi ne-elementare ce sunt măsurabile Jordan. De exemplu, subgraficul unei funcții integrabile Riemann $f:[a,b] \to \mathbb{R}_+$, adică mulțimea

$$\Gamma_f = \left\{ (x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ 0 \le y \le f(x) \right\},\,$$

este măsurabilă Jordan, cu $\mu_J(\Gamma_f)$ = aria (Γ_f) = $\int_a^b f(x)dx$.

Într-adevăr, dacă $f \in \mathcal{R}[a,b]$, atunci $f \in \mathcal{B}[a,b]$. Pentru orice partiție $\Delta = \{a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b\}$ a intervalului [a,b], fie numerele reale $m_i \coloneqq \inf_{x \in [x_{i-1},x_i]} f(x)$ și $M_i = \sup_{x \in [x_{i-1},x_i]} f(x)$, pentru orice $i = \overline{1,n}$.

Dacă definim $E'_{\Delta} := \bigcup_{i=1}^n [x_{i-1}, x_i] \times [0, m_i]$, avem: $E'_{\Delta} \in \mathcal{E}^2_f$, $E'_{\Delta} \subseteq \Gamma_f$ şi $\mu(E'_{\Delta}) = \sum_{i=1}^n m_i (x_i - x_{i-1}) = s_f(\Delta)$ (suma Darboux inferioară ce corespunde lui f şi Δ). În consecință, rezultă că $s_f(\Delta) \le \mu_*(\Gamma_f)$.

În mod similar, dacă definim $E''_{\Delta} = \bigcup_{i=1}^n [x_{i-1}, x_i] \times [0, M_i]$, observăm că $E''_{\Delta} \in \mathcal{E}_f^2$, $E''_{\Delta} \supseteq \Gamma_f$ şi $\mu^*(\Gamma_f) \le \mu(E''_{\Delta}) = \sum_{i=1}^n M_i(x_i - x_{i-1}) = \mathcal{S}_f(\Delta)$ (suma Darboux inferioară ce corespunde lui f şi Δ).

De aceea,

$$s_f(\Delta) \le \mu_*(\Gamma_f) \le \mu^*(\Gamma_f) \le S_f(\Delta), \ \forall \Delta \in \mathcal{D}[a,b].$$

Pe de altă parte, deoarece f este integrabilă pe [a,b], avem $\underline{I} = \sup_{\Delta} s_f(\Delta) = \inf_{\Delta} S_f(\Delta) = \overline{I} = \int_a^b f(x) dx$. Combinând cele două relații, obținem $\mu_*(\Gamma_f) = \mu^*(\Gamma_f) = \int_a^b f(x) dx$, adică Γ_f este măsurabilă Jordan și aria ei este egală cu $\int_a^b f(x) dx$.

4. Mai general, putem afirma că dacă $f,g:[a,b]\to\mathbb{R}$ sunt două funcții Rieman integrabile pe [a,b] astfel încât $f(x)\leq g(x),\ \forall x\in[a,b],$ atunci mulțimea $\Gamma_{f,g}=\left\{(x,y)\in\mathbb{R}^2\mid a\leq x\leq b,\ f(x)\leq y\leq g(x)\right\}$ este măsurabilă Jordan cu

$$\mu_J\left(\Gamma_{f,g}\right) = \int_a^b \left(g(x) - f(x)\right) dx.$$

Ca o aplicație, vom calcula aria unei elipse. Fie $\tilde{a},\tilde{b}>0$ și $a:=-\tilde{a},b:=\tilde{a}$. Definim funcțiile $f,g:[a,b]\to\mathbb{R}$ prin $f(x):=-\frac{\tilde{b}}{\tilde{a}}\sqrt{\tilde{a}^2-x^2}$ și $g(x):=\frac{\tilde{b}}{\tilde{a}}\sqrt{\tilde{a}^2-x^2}, x\in[a,b]=[-\tilde{a},\tilde{a}]$. Reuniunea graficelor lor determină o elipsă de ecuație $\frac{x^2}{\tilde{a}^2}+\frac{y^2}{\tilde{b}^2}-1=0$; de aceea, domeniul mărginit de această elipsă este dat de

$$\Gamma_{f,g} = \left\{ (x,y) \in \mathbb{R}^2 \mid -\tilde{a} \le x \le \tilde{a}, \ -\frac{\tilde{b}}{\tilde{a}} \sqrt{\tilde{a}^2 - x^2} \le y \le \frac{\tilde{b}}{\tilde{a}} \sqrt{\tilde{a}^2 - x^2} \right\},$$

Prin calcul integral, găsim $\mu_J(\Gamma_{f,g}) = \frac{2\tilde{b}}{\tilde{a}} \int_{-\tilde{a}}^{\tilde{a}} \sqrt{\tilde{a}^2 - x^2} dx = \pi \tilde{a} \tilde{b}$. În consecință aria unei elipse de semiaxe \tilde{a} și \tilde{b} este $\pi \tilde{a} \tilde{b}$.

5. Din definiție, o mulțime $B \subseteq \mathbb{R}^n$ este măsurabilă și are măsura Jordan nulă dacă pentru orice $\varepsilon > 0$, există $E_{\varepsilon} \in \mathcal{E}_J^n$ astfel încât $B \subseteq E_{\varepsilon}$ și $\mu_I(E_{\varepsilon}) < \varepsilon$.

Unele condiții necesare și suficiente pentru ca o mulțime din \mathbb{R}^n să fie măsurabilă Jordan se regăsesc în rezultatul următor:

Teorema 1.1. Fie $A \subseteq \mathbb{R}^n$ o mulțime mărginită. Atunci următoarele afirmații sunt echivalente:

- (i) A este măsurabilă Jordan;
- (ii) $\forall \varepsilon > 0$, $\exists E'_{\varepsilon}, E''_{\varepsilon} \in \mathcal{E}_{I}^{n} : E'_{\varepsilon} \subseteq A \subseteq E''_{\varepsilon}$ şi $\mu_{J}(E'_{\varepsilon}) \mu_{J}(E''_{\varepsilon}) < \varepsilon$;
- (iii) ∂A este măsurabilă Jordan și $\mu_I(\partial A) = 0$;

(iv) există şiruri
$$(\tilde{E}_m)_{m \in \mathbb{N}^*} \subseteq \mathcal{E}_J^n$$
 şi $(\hat{E}_m)_{m \in \mathbb{N}^*} \subseteq \mathcal{E}_J^n$ astfel încât $\tilde{E}_m \subseteq A \subseteq \hat{E}_m$, $\forall m \in \mathbb{N}^*$ şi $\lim_{m \to \infty} \mu_J(\tilde{E}_m) = \lim_{m \to \infty} \mu_J(\hat{E}_m)$.

Observație. Pentru o mulțime măsurabilă Jordan A, $\mu_I(A) \neq 0$ este echivalentă cu $\mathring{A} \neq \emptyset$.

Fie \mathcal{M}_I^n familia tuturor mulțimilor din \mathbb{R}^n ce sunt măsurabile Jordan.

Teorema 1.2 (Proprietăți ale măsurii Jordan).

- i) $\mu_J(A) \ge 0$, $\forall A \in \mathcal{M}_I^n$ (pozitivitate).
- *ii)* $\mu_J(A \cup B) = \mu_J(A) + \mu_J(B), \forall A, B \in \mathcal{M}_I^n \ cu \ \mathring{A} \cap \mathring{B} = \emptyset$ (aditivitate).
- iii) $\forall A, B \in \mathcal{M}_I^n : B \subseteq A \Rightarrow A \setminus B \in \mathcal{M}_I^n$ şi $\mu_J(A \setminus B) = \mu_J(A) \mu_J(B)$ (substracţie).
- *iv*) $\forall A, B \in \mathcal{M}_I^n : B \subseteq A \Rightarrow \mu_J(B) \leq \mu_J(A)$ (monotonie).
- $\forall A \in \mathcal{M}_I^n, \forall B \subseteq \mathbb{R}^n : \mu_I(A) = 0, B \subseteq A \Longrightarrow B \in \mathcal{M}_I^n \text{ și } \mu_I(B) = 0 \text{ (completitudine)}.$

DEMONSTRATIE.

- $i) \ \ \text{Această proprietate este evidentă, deoarece pentru orice mulțime } A \subseteq \mathbb{R}^n, \mu_*(A) \geq 0.$ $ii) \ \ \text{Deoarece } A \in \mathcal{M}_J^n, \ \text{pentru orice } \varepsilon > 0, \ \text{există } E_\varepsilon', E_\varepsilon'' \in \mathcal{E}_J^n \ \text{astfel încât } E_\varepsilon' \subset A \subset E_\varepsilon'' \ \text{și } \mu_J(E_\varepsilon'') \mu_J(E_\varepsilon') < \frac{\varepsilon}{2}. \ \text{De asemenea,} \\ B \in \mathcal{M}_J^n \ \text{implică faptul că pentru orice } \varepsilon > 0, \ \text{există } F_\varepsilon', F_\varepsilon'' \in \mathcal{E}_J^n \ \text{astfel încât } F_\varepsilon' \subset B \subset F_\varepsilon'' \ \text{și } \mu_J(F_\varepsilon'') \mu_J(F_\varepsilon') < \frac{\varepsilon}{2}. \ \text{Atunci}$

$$\mu_J(E_{\varepsilon}') + \mu_J(F_{\varepsilon}') \le \mu_J(A) + \mu_J(B) \le \mu_J(E_{\varepsilon}'') + \mu_J(F_{\varepsilon}''),$$

 $E_\varepsilon' \cup F_\varepsilon', E_\varepsilon'' \cup F_\varepsilon'' \in \mathcal{M}_I^n$ (exercițiu!) și

$$\mu_I(E_{\varepsilon}' \cup F_{\varepsilon}') \le \mu_*(A \cup B) \le \mu^*(A \cup B) \le \mu_I(E_{\varepsilon}'' \cup F_{\varepsilon}'').$$

 $\text{Dar } \mathring{A} \cap \mathring{B} = \varnothing \text{ implică } \mathring{E}'_{\varepsilon} \cap \mathring{F}'_{\varepsilon} = \varnothing, \text{ deci } \mu_{J}(E'_{\varepsilon} \cup F'_{\varepsilon}) = \mu_{J}(E'_{\varepsilon}) + \mu_{J}(F'_{\varepsilon}) \text{ (exercițiu!)}. \text{ Pe de altă parte, } \mu_{J}(E''_{\varepsilon} \cup F''_{\varepsilon}) \leq \mu_{J}(E''_{\varepsilon} \cup F''_{\varepsilon}) = \mu_{J}(E''_{\varepsilon} \cup F''_{\varepsilon}) = \mu_{J}(E''_{\varepsilon}) + \mu_{J}(E''_{\varepsilon}) + \mu_{J}(E''_{\varepsilon}) = \mu_{J}(E''_{\varepsilon}) + \mu_{J}(E'$ $\mu_J(E_\varepsilon'') + \mu_J(F_\varepsilon'')$ (exercițiu!). Combinând cele două relații obținem

$$\mu^*(A \cup B) - \varepsilon \le \mu_J(A) + \mu_J(B) \le \mu_*(A \cup B) + \varepsilon.$$

Lasând $\varepsilon \searrow 0$, deducem

$$\mu^*(A \cup B) = \mu_*(A \cup B) = \mu_I(A) + \mu_I(B),$$

adică $A \cup B$ este măsurabilă Jordan și $\mu_J(A \cup B) = \mu_J(A) + \mu_J(B)$.

 $\begin{array}{ll} \emph{iii)} \ \ \text{Din nou, pentru orice} \ \varepsilon > 0, \\ \text{putem găsi mulțimi} \ E_{\varepsilon}', E_{\varepsilon}'', F_{\varepsilon}', F_{\varepsilon}'' \in \mathcal{E}_{J}^{n} \ \text{astfel încât} \ E_{\varepsilon}' \subset A \subset E_{\varepsilon}'', F_{\varepsilon}' \subset B \subset F_{\varepsilon}'', \\ \mu_{J}(E_{\varepsilon}'') - \mu_{J}(E_{\varepsilon}'') - \mu_{J}(F_{\varepsilon}'') - \mu_{J}(F_{\varepsilon}'') < \frac{\varepsilon}{2}. \ \text{Atunci} \ E_{\varepsilon}' \times F_{\varepsilon}'' \times F_{\varepsilon}' \in \mathcal{M}_{J}^{n} \ \text{(exercițiu!)} \ \text{și} \end{array}$

$$\mu_I(E_\varepsilon') - \mu_I(F_\varepsilon'') \leq \mu_I(E_\varepsilon' \setminus F_\varepsilon'') \leq \mu_*(A \setminus B) \leq \mu^*(A \setminus B) \leq \mu_I(E_\varepsilon'' \setminus F_\varepsilon') = \mu_I(E_\varepsilon'') - \mu_I(F_\varepsilon')$$

De aceea, cu un argument similar celui din punctul precedent,

$$\mu^*(A \setminus B) = \mu_*(A \setminus B) = \mu_I(A) - \mu_I(B),$$

ce arată că $A \setminus B$ este măsurabilă Jordan și $\mu_I(A \setminus B) = \mu_I(A) - \mu_I(B)$.

- iv) Rezultă din prima și a treia proprietate.
- v) Deoarece $\mu_I(A)=0$, pentru orice $\varepsilon>0$ putem găsi $E_\varepsilon\in\mathcal{E}_I^n$ astfel încât $A\subseteq E_\varepsilon$ și $\mu(E_\varepsilon)<\varepsilon$. Prin urmare, $B\subseteq E_\varepsilon$, $\forall \varepsilon>0$; împreună cu inegalitatea $\mu(E_{\varepsilon}) < \varepsilon$, aceasta implică $B \in \mathcal{M}_{I}^{n}$ și $\mu_{I}(B) = 0$.

П

Observații.

- 1. Din demonstrația acestei teoreme putem de asemenea vedea că dacă $A, B \in \mathcal{M}_I^n$, atunci $A \cup B \in \mathcal{M}_I^n$ și $A \setminus B \in \mathcal{M}_I^n$. Mai mult, are loc proprietatea de subaditivitate: $\mu_I(A \cup B) \le \mu_I(A) + \mu_I(B)$.
- 2. graficul unei funcții continue $f:[a,b] \longrightarrow \mathbb{R}_+$ are aria nulă (adică are măsura Jordan 0). Într-adevăr, deoarece $f \in \mathcal{C}[a,b] \subset \mathcal{R}[a,b]$ și $\Gamma_f = \{(x,y) \in \mathbb{R}^2 \mid a \leq x \leq b, 0 \leq y \leq f(x)\}$ este măsurabilă Jordan. Așadar, din echivalența între primul și al treilea punct al teoremei 1.1, mulțimea ∂A are arie nulă. Deoarece $G_f \subseteq \partial(\Gamma_f)$, G_f este de asemenea măsurabilă Jordan și are arie nulă.
- 3. Orice mulțime din \mathbb{R}^2 a cărei frontieră se poate scrie ca o reuniune finită de grafice ale unor funcții continue pe intervale compacte este măsurabilă Jordan.

2. Integrala Riemann multiplă pe multimi compacte

Fie $D \subseteq \mathbb{R}^n$ o mulțime compactă nevidă (deci, mărginită și închisă) astfel încât $D \in \mathcal{M}_I^n$. Vom considera de asemenea funcția $f: D \to \mathbb{R}$ ce trebuie integrată.

DEFINIȚIE.

a) Numim diviziune a lui D orice familie finită $\{D_i\}_{1 \le i \le p}$ de submulțimi ale lui D astfel încât:

$$i) \ D_i \in \mathcal{M}_J^n, \, \forall i \in \overline{1,p};$$

3

ii) $\mathring{D}_i \cap \mathring{D}_j = \emptyset$, $\forall i, j \in \{1, ..., p\}$ cu $i \neq j$;

iii) $D = \bigcup_{i=1}^{\tilde{p}} D_i$.

Notăm $\mathcal{D}(D)$ familia tuturor diviziunilor lui D.

b) Pentru o diviziune Δ definim norma ei $\|\Delta\| := \max_{1 \le i \le p} \{ \operatorname{diam}(D_i) \}$, unde $\operatorname{diam}(D_i)$ este diametrul lui D_i .

Observație. Din proprietatea de aditivitate a măsurii Jordan, avem $\mu_J(D) = \sum_{i=1}^p \mu_J(D_i)$.

Definiție. Fie $\Delta = \{D_i\}_{1 \le i \le p}$ o diviziune a lui D.

- a) Un p-uplu $\xi_{\Delta} = (\xi^1, \xi^2, ..., \xi^p) \in (\mathbb{R}^n)^p$ se numește un sistem de puncte intermediare ale lui Δ dacă $\xi^i \in D_i$, $\forall i = \overline{1, n}$. Mulțimea tuturor sistemelor de puncte intermediare ale lui Δ este notată Ξ_{Δ} .
- **b**) Numim suma Riemann a funcției $f: D \to \mathbb{R}$ în raport cu Δ și un sistem de puncte intermediare $\xi_{\Delta} = (\xi^1, \xi^2, \dots, \xi^n)$, numărul

$$\sigma_f(\Delta, \xi_{\Delta}) = \sum_{i=1}^n f(\xi^i) \mu_J(D_i).$$

Definiție. Spunem că funcția $f:D\to\mathbb{R}$ este integrabilă Riemann dacă există $I\in\mathbb{R}$ astfel încât pentru orice $\varepsilon>0$, există $\delta_{\varepsilon}>0$ astfel încât pentru orice diviziune $\Delta=\{D_i\}_{1\leq i\leq p}$ a lui D cu $\|\Delta\|<\delta_{\varepsilon}$ și orice sistem de puncte intermediare $\xi_{\Delta}=(\xi^1,\xi^2,\ldots,\xi^p)$ ale lui Δ , să avem

$$|\sigma_f(\Delta, \xi_{\Delta}) - I)| < \varepsilon.$$

Numărul I se numește integrala multiplă (dacă n = 2 sau n = 3, integrala dublă, respectiv triplă) a lui f și se notează

$$\int \cdots \int_D f(x_1, x_2, \ldots, x_n) dx_1 dx_2 \ldots dx_n.$$

Ca în cazul unu-dimensional, se poate arăta că o funcție integrabilă Riemann pe o mulțime compactă este mărginită. Putem de asemenea defini sumele Darboux inferioară și superioară a unei funcții $f: D \to \mathbb{R}$ prin

$$s_f(\Delta) \coloneqq \sum_{i=1}^p m_i \mu_J(D_i);$$

$$S_f(\Delta) \coloneqq \sum_{i=1}^p M_i \mu_J(D_i),$$

unde $\Delta = \{D_i\}_{1 \le i \le p}$ este o diviziune a lui D și $m_i := \inf_{x \in D_i} f(x), M_i := \sup_{x \in D_i} f(x), i = \overline{1,p}$.

Este ușor de văzut că are loc următoarea relație:

$$m \cdot \mu_J(D) \le s_f(\Delta) \le S_f(\Delta) \le M \cdot \mu_J(D),$$

unde Δ este o diviziune arbitrară a lui D și $m := \inf_{x \in D} f(x), M := \sup_{x \in D} f(x).$

 $\operatorname{Dac\check{a}} \operatorname{not\check{a}m} \underline{I} \coloneqq \sup_{\Delta \in \mathcal{D}(D)} s_f(\Delta) \operatorname{si} \overline{I} \coloneqq \inf_{\Delta \in \mathcal{D}(D)} s_f(\Delta), \operatorname{integrala} \operatorname{Darboux} \operatorname{inferioar\check{a}}, \operatorname{respectiv} \operatorname{superioar\check{a}} \operatorname{a} \operatorname{lui} f, \operatorname{deducem} \operatorname{deducem} f$

$$m \cdot \mu_J(D) \leq \underline{I} \leq \overline{I} \leq M \cdot \mu_J(D).$$

Ca și în cazul n = 1, putem arăta următorul rezultat:

Propoziția 2.1. Fie $D \subseteq \mathbb{R}^n$ o mulțime compactă nevidă ce este măsurabilă Jordan și $f: D \to \mathbb{R}$ o funcție mărginită. Atunci f este integrabilă Riemann dacă și numai dacă $I = \overline{I}$, condiție ce este echivalentă cu

$$\forall \varepsilon > 0, \ \exists \Delta \in \mathcal{D}(D) : S_f(\Delta_{\varepsilon}) - s_f(\Delta_{\varepsilon}) < \varepsilon.$$

În acest caz,
$$\underline{I} = \overline{I} = \int \cdots \int_{D} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$
.

Putem acum demonstra următorul rezultat:

Teorema 2.2. Fie $D \subseteq \mathbb{R}^n$ o mulțime compactă nevidă care este măsurabilă Jordan și $f: D \to \mathbb{R}$ o funcție continuă. Atunci f este integrabilă Riemann.

Demonstrație. Deoarece D este compactă, f este uniform continuă, deci pentru orice $\varepsilon > 0$, există $\delta_{\varepsilon} > 0$ astfel încât pentru orice $x', x'' \in D$ cu $\|x' - x''\| < \delta_{\varepsilon}$, avem $|f(x') - f(x'')| < \frac{\varepsilon}{\mu_I(D)}$.

Fie $\Delta = \{D_i\}_{1 \le i \le p}$ o diviziune arbitrară a lui D cu $\|\Delta\| < \delta(\varepsilon)$. Atunci

$$S_f(\Delta) - s_f(\Delta) = \sum_{i=1}^p (M_i - m_i) \mu_J(D_i),$$

unde $m_i := \inf_{x \in D_i} f(x)$, $M_i := \sup_{x \in D_i} f(x)$, $i = \overline{1,p}$. Datorită continuității lui f pe D, deoarece D_i sunt submulțimi compacte ale lui D, rezultă că există $\xi^i, \eta^i \in D_i$ astfel încât $m_i = f(\xi^i)$ și $M_i = f(\eta^i)$. De aceea,

$$S_f(\Delta) - s_f(\Delta) = \sum_{i=1}^p (f(\eta^i) - f(\xi^i)) \mu_J(D_i) < \frac{\varepsilon}{\mu_J(D)} \sum_{i=1}^p \mu_J(D_i) = \frac{\varepsilon}{\mu_J(D)} \mu_J(D) = \varepsilon.$$

Din propoziția precedentă, f este integrabilă Riemann.

O generalizare a rezultatului de mai sus este dată de următoarea teoremă:

Teorema 2.3. Fie $D \subseteq \mathbb{R}^n$ o multime compactă nevidă care este măsurabilă Jordan și $f: D \to \mathbb{R}$ o funcție continuă în orice element al lui D cu excepția unei mulțimi măsurabile Jordan de măsură nulă. Atunci f este integrabilă Riemann.

Proprietățile unei funcții integrabile Riemann sunt similare cu cele din cazul n = 1:

Propoziția 2.4. Fie $D \subseteq \mathbb{R}^n$ o mulțime compactă nevidă ce este măsurabilă Jordan. Atunci:

$$i) \int \cdots \int_{D} 1 \cdot dx_1 dx_2 \dots dx_n = \mu_J(D);$$

i) $\int \cdots \int_D 1 \cdot dx_1 dx_2 \dots dx_n = \mu_J(D)$; ii) pentru orice funcții integrabile Riemann $f, g: D \to \mathbb{R}$ și orice $\alpha, \beta \in \mathbb{R}$, $\alpha f + \beta g$ este integrabilă Riemann și

$$\int \cdots \int_{D} (\alpha f(x_1, \dots, x_n) + \beta g(x_1, \dots, x_n)) dx_1 \dots dx_n =$$

$$\alpha \int \cdots \int_{D} f(x_1, \ldots, x_n) dx_1 \ldots dx_n + \beta \int \cdots \int_{D} g(x_1, \ldots, x_n) dx_1 \ldots dx_n;$$

iii) pentru orice funcții integrabile Riemann $f, g: D \to \mathbb{R}$ cu $f(x) \le g(x), \forall x \in D$, avem:

$$\int \cdots \int_{D} f(x_{1}, \ldots, x_{n}) dx_{1} \ldots dx_{n} \leq \int \cdots \int_{D} g(x_{1}, \ldots, x_{n}) dx_{1} \ldots dx_{n};$$

iv) pentru orice funcție integrabilă Riemann $f: D \to \mathbb{R}$, |f| este de asemenea integrabilă Riemann și

$$\left| \int \cdots \int_{D} f(x_{1}, \ldots, x_{n}) dx_{1} \ldots dx_{n} \right| \leq \int \cdots \int_{D} \left| f(x_{1}, \ldots, x_{n}) \right| dx_{1} \ldots dx_{n};$$

v) pentru orice funcție integrabilă Riemann $f: D \to \mathbb{R}$, există $\lambda \in \left[\inf_{x \in D} f(x), \sup_{x \in D} f(x)\right]$ astfel încât:

$$\int \cdots \int_D f(x_1,\ldots,x_n)dx_1\ldots dx_n = \lambda \mu_J(D).$$

Dacă, în plus, $f \in C(D)$ și D este conexă (adică nu poate fi împărțită în două mulțimi închise disjuncte), atunci există $\xi \in D$ astfel încât

$$\int \cdots \int_D f(x_1,\ldots,x_n)dx_1\ldots dx_n = f(\xi)\mu_J(D);$$

vi) dacă D este reuniunea a două mulțimi compacte nevide D_1 și D_2 ce sunt măsurabile Jordan, cu $\overset{\circ}{D_1} \cap \overset{\circ}{D_2} = \varnothing$, și feste integrabilă Riemann și pe D_1 și pe D_2 , atunci f este integrabilă Riemann pe D și

$$\int \cdots \int_{D} f(x_1, \ldots, x_n) dx_1 \ldots dx_n = \int \cdots \int_{D_1} f(x_1, \ldots, x_n) dx_1 \ldots dx_n + \int \cdots \int_{D_2} f(x_1, \ldots, x_n) dx_1 \ldots dx_n;$$

vii) pentru orice $f, g \in C(D)$ cu $g(x) \ge 0$, $\forall x \in D$, există $\eta \in D$ astfel încât

$$\int \cdots \int_D f(x_1, \ldots, x_n) g(x_1, \ldots, x_n) dx_1 \ldots dx_n = f(\eta) \int \cdots \int_D g(x_1, \ldots, x_n) dx_1 \ldots dx_n.$$

2.1. Integrala dublă pe mulțimi compacte.

După cum am menționat deja, în cazul particular n = 2, integrala multiplă se mai numește integrala dublă. Dacă $f:D\to\mathbb{R}$ este o funcție integrabilă Riemann pe o mulțime compactă nevidă și măsurabilă Jordan $D\subseteq\mathbb{R}^2$, vom nota integrala ei dublă prin $\iint_D f(x,y) dx dy$. În cele ce urmează vom prezenta câteva metode de a o calcula.

Propoziția 2.5 (cazul dreptunghiului). Dacă pentru orice $x \in [a,b]$, $f(x,\cdot)$ este integrabilă Riemann și funcția $x \mapsto \int_{c}^{d} f(x,y) dy$ este de asemenea Riemann integrabilă pe [a,b], atunci

$$\iint_{[a,b]\times[c,d]} f(x,y)dxdy = \int_a^b \left(\int_c^d f(x,y)dy\right)dx.$$

Mai mult, dacă $f(x,y) = f_1(x)f_2(y)$, $\forall (x,y) \in [a,b] \times [c,d]$ şi $f_1 \in \mathcal{R}[a,b]$, $f_2 \in \mathcal{R}[c,d]$, atunci avem

$$\iint_{[a,b]\times[c,d]} f_1(x)f_2(y)dx\,dy = \int_a^b f_1(x)dx\cdot\int_c^d f_2(y)dy.$$

Observatii.

1. Un rezultat similar obținem inversând rolurile lui x și y, prin egalitatea

$$\iint_{[a,b]\times[c,d]} f(x,y)dxdy = \int_c^d \left(\int_a^b f(x,y)dx\right)dy.$$

2. O condiție suficientă pentru ca ipoteza rezultatului de mai sus să fie îndeplinită este $f \in C([a,b] \times [c,d])$.

DEFINIȚIE.

a) O submulțime $D \subseteq \mathbb{R}^2$ se numește *simplă în raport cu axa Oy* dacă există funcțiile continue $\varphi, \psi : [a, b] \to \mathbb{R}$ cu $\varphi(x) \le \psi(x), \ \forall x \in [a, b]$, astfel încât

$$D = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ \varphi(x) \le y \le \psi(x)\}.$$

b) O submulţime $D \subseteq \mathbb{R}^2$ se numeşte *simplă în raport cu axa Ox* dacă există funcţiile continue $\gamma, \omega : [c, d] \to \mathbb{R}$ cu $\gamma(y) \le \omega(y), \forall y \in [c, d]$, astfel încât

$$D = \{(x, y) \in \mathbb{R}^2 \mid \gamma(y) \le x \le \omega(y), \ c \le y \le d\}.$$

Teorema 2.6. Fie $D \subseteq \mathbb{R}^2$ un domeniu simplu în raport cu axa Oy şi $f \in C(D)$. Atunci

$$\iint_D f(x,y)dxdy = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy\right)dx,$$

unde funcțiile $\varphi, \psi : [a, b] \to \mathbb{R}$ cu $\varphi(x) < \psi(x)$ sunt astfel încât $D = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ \varphi(x) \le y \le \psi(x)\}.$

Observație. Dacă $f \in C(D)$, cu D simplă în raport cu axa Ox, adică având forma

$$D = \{(x, y) \in \mathbb{R}^2 \mid \gamma(y) \le x \le \omega(y), \ c \le y \le d\},\$$

atunci are loc egalitatea

$$\iint_D f(x,y)dxdy = \int_c^d \left(\int_{\gamma(y)}^{\omega(y)} f(x,y)dx \right) dy.$$

Exemplu. Fie $D = \{(x, y) \in \mathbb{R}^2_+ | 1 \le xy \le 3, \ 1 \le \frac{y}{x} \le 4\}$. Vom calcula aria lui D. Aplicând punctul i) al propoziției 2.4, avem

$$aria(D) = \mu_J(D) = \iint_D 1 dx \, dy.$$

Deoarece $D = D_1 \cup D_2 \cup D_3$, cu $\overset{\circ}{D}_i \cap \overset{\circ}{D}_j = \emptyset$, $\forall i, j \in \{1, 2, 3\}$, $i \neq j$, unde $D_1 = \{(x, y) \in \mathbb{R}^2 \mid \gamma_1(y) = \frac{1}{y} \le x \le \omega_1(y) = y, 1 \le y \le \sqrt{3}\}$, $D_2 = \{(x, y) \in \mathbb{R}^2 \mid \gamma_2(y) = \frac{1}{y} \le x \le \omega_2(y) = \frac{3}{y}$, $\sqrt{3} \le y \le 2\}$ şi $D_3 = \{(x, y) \in \mathbb{R}^2 \mid \gamma_3(y) = \frac{y}{4} \le x \le \omega_3(y) = \frac{3}{y}$, $2 \le y \le 2\sqrt{3}\}$, obţinem, deoarece D_1 , D_2 , D_3 sunt domenii simple în raport cu axa Ox:

$$aria(D) = \iint_{D} 1 dx \, dy = \iint_{D_{1}} 1 dx \, dy + \iint_{D_{2}} 1 dx \, dy + \iint_{D_{3}} 1 dx \, dy =$$

$$= \int_{1}^{\sqrt{3}} \left(\int_{1/y}^{y} 1 dx \right) dy + \int_{\sqrt{3}}^{2} \left(\int_{1/y}^{3/y} 1 dx \right) dy + \int_{2}^{2\sqrt{3}} \left(\int_{y/4}^{3/y} 1 dx \right) dy =$$

$$= \int_{1}^{\sqrt{3}} \left(y - \frac{1}{y} \right) dy + \int_{\sqrt{3}}^{2} \frac{2}{y} dy + \int_{2}^{2\sqrt{3}} \left(\frac{3}{y} - \frac{y}{4} \right) dy =$$

$$= \left(\frac{y^{2}}{2} - \ln y \right) \Big|_{1}^{\sqrt{3}} + 2 \ln y \Big|_{\sqrt{3}}^{2} + \left(3 \ln y - \frac{y^{2}}{8} \right) \Big|_{2}^{2\sqrt{3}} =$$

$$= \frac{3}{2} - \frac{1}{2} \ln 3 - \frac{1}{2} + 2 \ln 2 - \ln 3 + 3 \ln 2 + \frac{3}{2} \ln 3 - \frac{3}{2} - 3 \ln 2 + \frac{1}{2} = 2 \ln 2.$$

În anumite condiții, o integrală dublă pe o mulțime compactă nevidă, măsurabilă Jordan, poate fi calculată printr-o schimbare de variabilă, scopul fiind în principal transformarea domeniului şi/sau funcției de integrat astfel încât calculele să se simplifice.

DEFINIȚIE. Fie $\Omega \subseteq \mathbb{R}^2$ o mulțime compactă nevidă, măsurabilă Jordan și $F:\Omega \to D \subseteq \mathbb{R}^2$, definită de $F(u,v)=(x(u,v),y(u,v)),(u,v)\in\Omega$ o funcție bijectivă ce poate fi extinsă la o funcție de clasă C^1 pe o mulțime deschisă $\Omega'\supseteq\Omega$ astfel încât

$$\det(J_F)(u,v) = \frac{D(x,y)}{D(u,v)}(u,v) \neq 0, \forall (u,v) \in \Omega$$

(reamintim că J_F este matricea jacobiană a lui F, în timp ce determinantul său, $\frac{D(x,y)}{D(u,v)}$ se numește jacobianul lui F). Atunci D este de asemenea o mulțime compactă, măsurabilă Jordan, iar F se numește o schimbare de variabile (coordonate) de la Ω la D.

Următorul rezultat ne spune cum poate o integrală pe D poate fi transformată într-una pe Ω printr-o schimbare de coordonate.

Propoziția 2.7. Fie $F: \Omega \to D$, F(u,v) = (x(u,v),y(u,v)), $(u,v) \in \Omega$ o schimbare de variabile și $f:D \to \mathbb{R}$ o funcție continuă. Atunci

$$\iint_D f(x,y)dx\,dy = \iint_{\Omega} f(x(u,v),y(u,v)) \left| \frac{D(x,y)}{D(u,v)} \right| (u,v)dudv.$$

Observații.

1. Pentru exemplul precedent am fi putut aplica de asemenea o schimbare de variabile. Să considerăm schimbarea de variabile dată de xy = u și $\frac{y}{x} = v$, echivalent $x = \sqrt{\frac{u}{v}}$ și $y = \sqrt{uv}$, cu $u \in [1, 3]$ și $v \in [1, 4]$. Atunci avem

$$\operatorname{aria}(D) = \iint_D 1 dx dy = \iint_{\Omega} \left| \frac{D(x,y)}{D(u,v)} \right| (u,v) du dv,$$

unde $\Omega = \{(u, v) \in \mathbb{R}^2 \mid 1 \le u \le 3, 1 \le v \le 4\} = [1, 3] \times [1, 4]$ şi

$$\frac{D(x,y)}{D(u,v)}(u,v) = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} (u,v) = \det \begin{bmatrix} \frac{1}{2\sqrt{uv}} & -\frac{\sqrt{u}}{2v\sqrt{v}} \\ \frac{\sqrt{v}}{2\sqrt{u}} & \frac{\sqrt{u}}{2\sqrt{v}} \end{bmatrix} = \frac{1}{2v}.$$

Astfel

$$\operatorname{aria}(D) = \int_{1}^{3} du \cdot \int_{1}^{4} \left| \frac{1}{2v} \right| dv = \left(\left| u \right|_{1}^{3} \right) \left(\frac{1}{2} \ln v \right|_{1}^{4} \right) = 2 \frac{1}{2} \ln 4 = 2 \ln 2,$$

ceea ce confirmă valoarea obținută mai sus.

2. O schimbare de variabile des întâlnită este dată de trecerea de la coordonatele carteziene (x, y) la coordonatele polare (r, θ) , prin relațiile

$$\begin{cases} x = r\cos\theta; \\ y = r\sin\theta, \end{cases} \text{ with } r \in [r_1, r_2] \subseteq [0, \infty), \ \theta \in [\theta_1, \theta_2] \subseteq [0, 2\pi].$$

Jacobianul acestei transformări este $\frac{D(x,y)}{D(r,\theta)}(r,\theta) = \det \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix} = r(\sin^2 \theta + \cos^2 \theta) = r.$

3. Câteodată putem folosi coordonatele polare generalizate:

$$\begin{cases} x = ar \cos^{\alpha} \theta; \\ y = br \sin^{\alpha} \theta, \end{cases}$$

cu $r \in [r_1, r_2] \subseteq [0, \infty)$ și $\theta \in [\theta_1, \theta_2] \subseteq [0, 2\pi]$, cu a, b și α parametri potriviți. Dacă $\alpha = 1$, r și θ sunt numite coordonate eliptice, corespunzând ecuației elipsei $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$ (în coordonate eliptice, această ecuației devine r = 1).

Exemplu. Să calculăm
$$\iint_D (y-x+2)dxdy$$
, unde $D=\{(x,y)\in\mathbb{R}^2\mid \frac{x^2}{4}+\frac{y^2}{9}<1\}$.

Folosind transformarea eliptică $(x,y) \rightarrow (r,\theta)$ dată de $x=2r\cos\theta, y=3r\sin\theta$, cu $0 \le r < 1$ și $0 \le \theta \le 2\pi$, găsim

$$\iint_{D} (y - x + 2) dx \, dy = \int_{0}^{2\pi} \left[\int_{0}^{1} (3r \sin \theta - 2r \cos \theta + 2) \left| \frac{D(x, y)}{D(r, \theta)} \right| (r, \theta) dr \right] d\theta =$$

$$= \int_{0}^{2\pi} \left[\int_{0}^{1} (3r \sin \theta - 2r \cos \theta + 2) 6r dr \right] d\theta = \int_{0}^{2\pi} (6 \sin \theta - 4 \cos \theta + 6) d\theta =$$

$$= (-6 \cos \theta - 4 \sin \theta + 6\theta) \Big|_{0}^{2\pi} = 12\pi.$$

O altă aplicație a integralei duble este calculul masei unui obiect material D în plan, cu densitate de masă cunoscută ρ . Aceasta este dată de formula

$$\mathrm{mass}(D) = \iint_D \rho(x, y) dx dy.$$

Putem de asemenea determina coordonatele centrului de greutate (x_G, y_G) al lui D, prin formulele

$$x_G = \frac{\iint_D x \rho(x, y) dx dy}{\iint_D \rho(x, y) dx dy}$$
 şi $y_G = \frac{\iint_D y \rho(x, y) dx dy}{\iint_D \rho(x, y) dx dy}$

2.2. Integrala triplă pe mulțimi compacte.

Integrala triplă reprezintă integrala multiplă în cazul n = 3. Se notează

$$\iiint_D f(x,y,z)dxdydz$$

unde $f: D \to \mathbb{R}$ și $D \subseteq \mathbb{R}^3$ este o mulțime compactă nevidă, măsurabilă Jordan. Prin analogie cu cazul n = 2, metodele de calcul ale integralei triple sunt similare.

DEFINIȚIE. O submulțime $D \subseteq \mathbb{R}^3$ se numește simplă în raport cu axa Oz dacă există o mulțime compactă, măsurabilă Jordan $\tilde{D} \subseteq \mathbb{R}^2$ și două funcții continue $\varphi, \psi : \tilde{D} \to \mathbb{R}$ cu $\varphi(x,y) \le \psi(x,y), \ \forall (x,y) \in \tilde{D}$, astfel încât

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid \varphi(x, y) \le z \le \psi(x, y), \ (x, y) \in \tilde{D}\}.$$

Un astfel de domeniu în \mathbb{R}^3 are *volum* (adică măsură Jordan) dat de formula

$$\operatorname{vol}(D) = \mu_J(D) = \iint_{\tilde{D}} \psi(x, y) dx dy - \iint_{\tilde{D}} \varphi(x, y) dx dy.$$

Mai general, putem formula un rezultat similar teoremei 2.6 pentru cazul 3D:

Propoziția 2.8. Fie $D \subseteq \mathbb{R}^3$ o mulțime simplă în raport cu Oz și fie $f: D \to \mathbb{R}$ o funcție continuă. Atunci

$$\iiint_D f(x,y,z)dxdy z = \iint_{\widetilde{D}} \left(\int_{\varphi(x,y)}^{\psi(x,y)} f(x,y,z)dz \right) dxdy.$$

Exemplu. Să calculăm $\iiint_D \sqrt{x^2 + y^2} dx dy dz$, unde D este domeniul mărginit de suprafețele z = 0, z = 1 și $z = \sqrt{x^2 + y^2}$. Observăm că

$$D = \big\{ \big(x, y, z \big) \in \tilde{D} \times \mathbb{R} \; \big| \; \sqrt{x^2 + y^2} \leq z \leq 1 \big\}.$$

unde $\tilde{D} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Luăm $\varphi(x,y) := \sqrt{x^2 + y^2}$ și $\psi(x,y) := 1$, așa că obținem

$$\iiint_{D} \sqrt{x^2 + y^2} dx dy dz = \iint_{\tilde{D}} \left(\int_{\sqrt{x^2 + y^2}}^{1} dz \right) \sqrt{x^2 + y^2} dx dy = \iint_{\tilde{D}} \sqrt{x^2 + y^2} \left(1 - \sqrt{x^2 + y^2} \right) dx dy.$$

Pentru a calcula această integrală dublă, vom folosi coordonatele polare (r, θ) :

$$\iint_{\tilde{D}} \sqrt{x^2 + y^2} (1 - \sqrt{x^2 + y^2}) dx dy = \int_0^{2\pi} \left(\int_0^1 r(1 - r) r dr \right) d\theta =$$

$$= 2\pi \int_0^1 (r^2 - r^3) dr = 2\pi \left(\frac{r^3}{3} - \frac{r^4}{4} \right) \Big|_0^1 = \frac{\pi}{6}.$$

O formulă de schimbare de variabilă asemănătoare are loc și în cazul n = 3:

Propoziția 2.9. Fie $F: \Omega \to D$, $F(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)), (u, v, w) \in \Omega$ o schimbare de variabile între mulțimi compacte, măsurabile Jordan, Ω și D. Dacă $f: D \to \mathbb{R}$ este o funcție continuă, atunci

$$\iiint_D f(x,y,z)dxdydz = \iiint_{\Omega} f(x(u,v,w),y(u,v,w),z(u,v,w)) \left| \frac{D(x,y,z)}{D(u,v,w)} \right| (u,v,w)dudvdw.$$

Observații.

1. Cea mai folosită schimbare de variabile în \mathbb{R}^3 este trecerea de la coordonatele carteziene x, y, z la coordonatele sferice r, θ, φ , dată de

$$\begin{cases} x = r \sin \theta \cos \varphi, & r \in [r_1, r_2] \subseteq [0, +\infty], \\ y = r \sin \theta \sin \varphi, & \theta \in [\theta_1, \theta_2] \subseteq [0, \pi], \\ z = r \cos \theta, & \varphi \in [\varphi_1, \varphi_2] \subseteq [0, 2\pi]. \end{cases}$$

Jacobianul acestei transformări este

$$\frac{D(x,y,z,)}{D(r,\theta,\varphi)}(r,\theta,\varphi) = \det \begin{bmatrix} \sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\ r\cos\theta\varphi & r\cos\theta\sin\varphi & -r\sin\theta \\ -r\sin\theta\sin\varphi & r\sin\theta\cos\varphi & 0 \end{bmatrix} = r^2\sin\theta.$$

2. Un alt tip de schimbare de variabile este dat de coordonatele cilindrice, transformare definită de

$$\begin{cases} x = r \cos \theta, & r \in [r_1, r_2] \subseteq [0, +\infty], \\ y = r \sin \theta, & \theta \in [\theta_1, \theta_2] \subseteq [0, 2\pi], \\ z = z, & z \in [z_1, z_2] \subseteq \mathbb{R}. \end{cases}$$

În acest caz avem $\frac{D(x,y,z)}{D(r,\theta,z)}(r,\theta,z) = r$.

Întorcându-ne la exemplul de mai sus, putem calcula integrala

$$\iiint_D \sqrt{x^2 + y^2} dx dy dz,$$

unde $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z \le 1, (x, y) \in \tilde{D}\}$ și $\tilde{D} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$; folosind această ultimă schimbare de variabile obținem

$$\iiint_{D} \sqrt{x^{2} + y^{2}} dx \, dy \, dz = \int_{0}^{1} \left(\int_{0}^{2\pi} \left(\int_{r}^{1} r dz \right) d\theta \right) r dr = 2\pi \int_{0}^{1} (1 - r) r^{2} dr = \frac{\pi}{6}.$$

Din nou, integrala triplă poate fi folosită pentru a calcula masa și centrul de greutate a unui corp material D, cu densitate de masă ρ , prin formulele

$$\max(D) = \iiint_D \rho(x, y, z) dx dy dz$$

şi

$$x_G = \frac{\iiint_D x \rho(x, y, z) dx dy dz}{\iiint_D \rho(x, y, z) dx dy dz}, \ y_G = \frac{\iiint_D y \rho(x, y, z) dx dy dz}{\iiint_D \rho(x, y, z) dx dy dz}, \ z_G = \frac{\iiint_D z \rho(x, y, z) dx dy dz}{\iiint_D \rho(x, y, z) dx dy dz}.$$

2.3. Întorcându-ne acum la cazul general al integralei multiple pe un domeniu compact, măsurabil Jordan, calculul ei poate fi făcut de obicei cu ajutorul a două formule:

$$\int \cdots \int_{D} f(x_1, \ldots, x_n) dx_1 \ldots dx_n = \int \cdots \int_{\tilde{D}} \left(\int_{\varphi(x_1, \ldots, x_{n-1})}^{\psi(x_1, \ldots, x_{n-1})} f(x_1, x_2, \ldots, x_n) dx_n \right) dx_1 \ldots dx_n$$

(când D este simplă în raport cu Ox_n , adică $D = \{(x_1, \dots, x_{n-1}, x_n) \in \mathbb{R}^n \mid \varphi(x_1, \dots, x_{n-1}) \leq x_n \leq \psi(x_1, \dots, x_{n-1}), (x_1, \dots, x_{n-1}) \in \tilde{D}\}$, unde \tilde{D} este un domeniu compact, măsurabil Jordan din \mathbb{R}^{n-1} , iar φ și ψ sunt două funcții reale definite pe \tilde{D} cu $\varphi \leq \psi$) și

$$\int \cdots \int_{D} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n} =$$

$$= \int \cdots \int_{\Omega} f(x_{1}(y_{1}, \dots, y_{n}), \dots, x_{n}(y_{1}, \dots, y_{n})) \left| \frac{D(x_{1}, x_{2}, \dots, x_{n})}{D(y_{1}, y_{2}, \dots, y_{n})} \right| (y_{1}, y_{2}, \dots, y_{n}) dy_{1} \dots dy_{n}$$

(pentru o schimbare de variabile de la $(x_1, \ldots, x_n) \in D$ la coordonatele $(y_1, \ldots, y_n) \in \Omega$).

Exemplu. Să calculăm $\int \cdots \int_D 1 dx_1 \dots dx_n$, unde D este mulțimea

$$D = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 \ge 0, \ x_2 \ge 0, \ldots x_n \ge 0, \ x_1 + x_2 + \ldots + x_n \le 1\}.$$

Utilizând prima formulă, obținem

$$\int \cdots \int_{D} 1 dx_{1} \dots dx_{n} = \int_{0}^{1} \left(\int_{0}^{1-x_{1}} \dots \left(\int_{0}^{1-x_{1}-\dots-x_{n-1}} 1 dx_{n} \right) \dots dx_{2} \right) dx_{1} =$$

$$= \int_{0}^{1} \left(\int_{0}^{1-x_{1}} \dots \left(\int_{0}^{1-x_{1}-\dots-x_{n-2}} (1-x_{1}-\dots-x_{n-1}) dx_{n-1} \right) \dots dx_{2} \right) dx_{1} =$$

$$= \int_{0}^{1} \left(\int_{0}^{1-x_{1}} \dots \left(\int_{0}^{1-x_{1}-\dots-x_{n-3}} \frac{(1-x_{1}-\dots-x_{n-2})^{2}}{2!} dx_{n-2} \right) \dots dx_{2} \right) dx_{1} = \dots = \frac{1}{n!}.$$

3. Integrale multiple improprii

Ca în cazul unu-dimensional, putem extinde noțiunea de integrală la situațiile în care fie domeniul nu este compact, fie funcția de integrat nu este mărginită.

DEFINIȚIE. Fie $D \subseteq \mathbb{R}^n$ și $f: D \to \mathbb{R}$ o funcție care este integrabilă Riemann pe orice submulțime compactă, măsurabilă Jordan a lui D. Spunem că integrala $\int \cdots \int_D f(x_1, \ldots, x_n) dx_1 \ldots dx_n$ este convergentă dacă pentru orice șir de mulțimi $(D_k)_{k\in\mathbb{N}^*}$ ce sunt mărginite, măsurabile Jordan și satisfac

$$\begin{aligned} &\text{(i)} \ \ \overline{D}_k \subset D_{k+1}, \ \forall k \in \mathbb{N}^*; \\ &\text{(ii)} \ \ \bigcup_{k=1}^{\infty} D_k = D, \end{aligned}$$

(ii)
$$\bigcup_{k=1}^{\infty} D_k = D_k$$

există și este finită limita $\lim_{k\to\infty} \int \cdots \int_{D_k} f(x_1,\ldots,x_n) dx_1 \ldots dx_n$, notată $\int \cdots \int_{D} f(x_1,\ldots,x_n) dx_1 \ldots dx_n$, valoarea ei fiind independentă de alegerea șirului $(D_k)_{k \in \mathbb{N}^*}$.

În cazul în care limita de mai sus nu există sau este infinită, spunem că integrala $\int \cdots \int_{\Gamma} f(x_1,\ldots,x_n) dx_1 \ldots dx_n$ este divergentă.

Ca în cazul n = 1, putem stabili diverse criterii de convergență/divergență.

1. Integrala $\iint_{\mathbb{R}^2} e^{-x^2-y^2} dxdy$ este convergentă și egală cu π , deoarece

$$\iint_{\mathbb{R}^2} e^{-x^2 - y^2} dx dy = \int_0^{2\pi} \left(\int_0^{\infty} e^{-r^2} r dr \right) d\theta = (-2\pi) \lim_{a \to \infty} \left(-\frac{1}{2} e^{-r^2} \Big|_0^a \right) = \pi \lim_{a \to \infty} (1 - e^{-a^2}) = \pi.$$

2. Să calculăm integrala improprie (deoarece funcția de integrat are o singularitate în (0,0))

$$I = \iint_D \frac{1}{(x^2 + u^2)^{\alpha/2}} dx dy,$$

unde $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < \rho^2\}, \rho > 0$ şi $\alpha > 0$: avem

$$I = \lim_{n \to \infty} \iint_{D_n} \frac{1}{(x^2 + y^2)^{\alpha/2}} dx \, dy,$$

unde $D_n = D \setminus B\left(\mathbf{0}_{\mathbb{R}^2}; \frac{1}{n}\right), n \in \mathbb{N}^*$.

Trecând la coordonate polare $(x = r \cos \theta, y = r \sin \theta, \text{ cu } \frac{1}{n} \le r \le \rho, \theta \in [0, 2\pi])$, găsim:

$$\begin{split} I &= \lim_{n \to \infty} \int_0^{2\pi} \left(\int_{1/n}^{\rho} \frac{r}{r^{\alpha}} dr \right) d\theta = (2\pi) \lim_{n \to \infty} \left(\int_{1/n}^{\rho} r^{1-\alpha} dr \right) = \\ &= 2\pi \left\{ \begin{array}{l} \lim_{n \to \infty} \left(\frac{r^{2-\alpha}}{2-\alpha} \Big|_{1/n}^{\rho} \right), & 0 < \alpha \neq 2; \\ \lim_{n \to \infty} \left(\ln r \Big|_{1/n}^{\rho} \right), & \alpha = 2 \end{array} \right. = \left\{ \begin{array}{l} 2\pi \rho^{2-\alpha}, & 0 < \alpha < 2; \\ +\infty, & \alpha \geq 2. \end{array} \right. \end{split}$$

Drept consecință, integrala este convergentă dacă $\alpha \in (0,2)$ și divergentă dacă $\alpha \ge 2$.

BIBLIOGRAFIE SELECTIVĂ

- [1] G. Apreutesei, N. A. Dumitru, Introducere în teoria integrabilității, Editura "Performantica", Iași, 2005.
 [2] I. Bârză, Calcul intégral. Calcul différentiel. Équations différentielles. Éléments de Géométrie différentielle, Edit. Matrix Rom, București, 2010.
- [3] B.M. Budak, S.V. Fomin, Multiple Integrals. Field Theory and Series, Edit. "Mir", 1973.
- [4] Ş. Frunză, Analiză matematică, Edit. Universității "Al. I. Cuza" Iași, 1992..
- [5] C. P. Niculescu, $Calcul\ integral\ pe\ \mathbb{R}^n$, Edit. Universității din Craiova, 2000.
- [6] S. A. Popescu, Mathematical Analysis II. Integral Calculus, Conspress, Bucharest, 2011.
- [7] V. Postolică, Analiză matematică. Eficiență prin matematică aplicată, Edit. Matrix Rom, București, 2006.