PG AIML- Deep Learning with Tensorflow and Keras

Course-End Project Problem Statement

Course-End Project: Lending Club Loan Data Analysis

Problem statement:

For companies like Lending Club correctly predicting whether or not a loan will be a default is very important. In this project, using the historical data from 2007 to 2015, you have to build a deep learning model to predict the chance of default for future loans. As you will see later this dataset is highly imbalanced and includes a lot of features that makes this problem more challenging.

Dataset description:

Dataset name: loan_data.csv

- **credit.policy:** 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise.
- **purpose:** The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all_other").
- **int.rate:** The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates.
- **installment:** The monthly installments owed by the borrower if the loan is funded.
- **log.annual.inc:** The natural log of the self-reported annual income of the borrower.
- **dti:** The debt-to-income ratio of the borrower (amount of debt divided by annual income).
- **fico:** The FICO credit score of the borrower.
- days.with.cr.line: The number of days the borrower has had a credit line.
- **revol.bal:** The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle).
- **revol.util:** The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available).
- **inq.last.6mths:** The borrower's number of inquiries by creditors in the last 6 months.
- **deling.2yrs:** The number of times the borrower had been 30+ days past due on a payment in the past 2 years.
- **pub.rec:** The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).

Task to be performed:

Perform exploratory data analysis and feature engineering and then apply feature engineering. Follow up with a deep learning model to predict whether or not the loan will be default using the historical data.

Tasks:

- 1. Feature Transformation
 - Transform categorical values into numerical values (discrete)
- 2. Exploratory data analysis of different factors of the dataset.
- 3. Additional Feature Engineering
 - You will check the correlation between features and will drop those features which have a strong correlation
 - This will help reduce the number of features and will leave you with the most relevant features
- 4. Modeling
 - After applying EDA and feature engineering, you are now ready to build the predictive models
 - In this part, you will create a deep learning model using Keras with Tensorflow backend

Solution:

- 1. Feature Transformation
 - Transform categorical values into numerical values (discrete)

Import libraries and read file

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

import tensorflow
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Input
from sklearn.metrics import confusion_matrix, accuracy_score ,
classification_report

import warnings
warnings.filterwarnings('ignore')
```

```
#reading the data set
               pd.read csv("C:/Users/david/Desktop/personal/AI/course-
4 PC
                                             Learning/project/1596018188 datasets
            AIML
                                Deep
(1)/loan data.csv")
data.head()
df.head()
#reading the data set
data = pd.read_csv("C:/Users/david/Desktop/personal/AI/course-4_PC AIML - Deep Learning/project/1596018188_datasets (1)/loan_data
data.head()
                purpose int.rate installment log.annual.inc dti fico days.with.cr.line revol.bal revol.util inq.last.6mths delinq.2yrs pub.rec not.i
  credit.policy
    1 debt_consolidation 0.1189 829.10 11.350407 19.48 737
                                                      5639.958333
                                                                28854
             credit_card 0.1071
                              228.22 11.082143 14.29 707
                                                      2760.000000 33623
                                                                        76.7
                                                                                          0
        1 debt_consolidation 0.1357 366.86 10.373491 11.63 682
                                                      4710.000000 3511 25.6
                                                                                          0
                                                                                                0
         1 debt_consolidation 0.1008
                              162.34
                                     11.350407 8.10 712
                                                      2699.958333
                                                                 33667
                                                                        73.2
                                                                                          0
                                                                                                0
                             102.92 11.299732 14.97 667
               credit_card 0.1426
                                                      4066.000000 4740
                                                                        39.5
                                                                                          1
                                                                                                0
# Transform categorical values into numerical values (discrete)
df= pd.get dummies(data, columns = ["purpose"])
df.head()
```

<pre>df= pd.get_dummies(data, columns = ["purpose"]) df.head()</pre>														
	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delinq.2yrs	pub.rec	not.fully.paid	purpose_
0	1	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	52.1	0	0	0	0	
1	1	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	76.7	0	0	0	0	
2	1	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	25.6	1	0	0	0	
3	1	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	73.2	1	0	0	0	
4	1	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	39.5	0	1	0	0	
4 @														•

2. Exploratory data analysis of different factors of the dataset.

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 20 columns):
   Column
                             Non-Null Count Dtype
                             -----
                                           int64
   credit.policy
                             9578 non-null
   int.rate
                                          float64
1
                             9578 non-null
2 installment
                             9578 non-null float64
3 log.annual.inc
                            9578 non-null float64
                            9578 non-null float64
   dti
   fico
                             9578 non-null int64
   days.with.cr.line
                           9578 non-null
                                           float64
7
   revol.bal
                            9578 non-null
                                          int64
8 revol.util
                            9578 non-null float64
    ing.last.6mths
                           9578 non-null int64
10 delinq.2yrs
                           9578 non-null int64
11 pub.rec
                            9578 non-null
                                          int64
                                          int64
12 not.fully.paid
                            9578 non-null
                            9578 non-null uint8
13 purpose_all_other
14 purpose_credit_card
                           9578 non-null uint8
15 purpose_debt_consolidation 9578 non-null uint8
16 purpose_educational 9578 non-null uint8
17 purpose_home_improvement
                             9578 non-null
                                           uint8
18 purpose_major_purchase 9578 non-null uint8
19 purpose_small_business
                             9578 non-null uint8
dtypes: float64(6), int64(7), uint8(7)
memory usage: 1.0 MB
```

df.shape

```
df.shape
```

(9578, 20)

df.describe().T

]: df.describe().T]: 25% 50% 75% 1.000000 1.000000e+00 9578.0 0.804970 0.396245 0.000000 1.000000 credit.policy 1.000000 int.rate 9578.0 0.122640 0.026847 0.060000 0.103900 0.122100 0.140700 2.164000e-01 installment 9578.0 319.089413 207.071301 15.670000 163.770000 268.950000 432.762500 9.401400e+02 log.annual.inc 9578.0 10.932117 0.614813 7.547502 10.558414 10.928884 11.291293 1.452835e+01 9578.0 12.606679 6.883970 0.000000 7.212500 12.665000 17.950000 2.996000e+01 612.000000 682.000000 9578.0 710.846314 37.970537 707.000000 737.000000 8.270000e+02 fico days.with.cr.line 9578.0 4560.767197 2496.930377 178.958333 2820.000000 4139.958333 5730.000000 1.763996e+04 revol.bal 9578.0 16913.963876 33756.189557 0.000000 3187.000000 8596.000000 18249.500000 1.207359e+06 revol.util 9578.0 46.799236 29.014417 0.000000 22,600000 46.300000 70.900000 1.190000e+02 ing.last.6mths 9578.0 1.577469 2.200245 0.000000 0.000000 1.000000 2.000000 3.300000e+01 0.163708 0.546215 0.000000 0.000000 deling.2yrs 9578.0 0.000000 0.000000 1.300000e+01 pub.rec 9578.0 0.062122 0.262126 0.000000 0.000000 0.000000 0.000000 5.000000e+00 not.fully.paid 9578.0 0.160054 0.366676 0.000000 0.000000 0.000000 0.000000 1.000000e+00 purpose_all_other 0.243370 0.429139 0.000000 0.000000 0.000000 0.000000 1 000000e+00 purpose_credit_card 0.131760 0.338248 0.000000 0.000000 0.000000 0.000000 1.000000e+00

here categorical columns are: 'credit.policy','not.fully.paid','inq.last.6mths','delinq.2yrs','pub.rec','purpose_all_other', 'purpose_credit_card','purpose_debt_consolidation', 'purpose_educational','purpose_home_improvement', 'purpose_major_purchase','purpose_small_business'

0.492422

0.000000

0.000000

0.000000

1.000000 1.000000e+00

checking if balanced or not:

purpose_debt_consolidation

```
df['not.fully.paid'].value counts()
```

```
df['not.fully.paid'].value_counts()
```

80451533

Name: not.fully.paid, dtype: int64

0.413134

```
plt.figure(figsize=(5,5))
sns.countplot(x='not.fully.paid',data=df)
```

```
plt.figure(figsize=(5,3))
sns.countplot(x='not.fully.paid',data=df)
```

: <Axes: xlabel='not.fully.paid', ylabel='count'>

imbalanced class, we have more samples of fully paid borrowers versus not fully paid borrowers.

handling imbalanced dataset - using resample:

```
not_fully_paid_0 = df[df['not.fully.paid'] == 0]
not_fully_paid_1 = df[df['not.fully.paid'] == 1]
print('not_fully_paid_0', not_fully_paid_0.shape)
print('not_fully_paid_1', not_fully_paid_1.shape)
```

```
#handling imbalanced dataset - using resample
 not fully paid 0 = df[df['not.fully.paid'] == 0]
 not_fully_paid_1 = df[df['not.fully.paid'] == 1]
 print('not_fully_paid_0', not_fully_paid_0.shape)
 print('not_fully_paid_1', not_fully_paid_1.shape)
 not fully paid 0 (8045, 20)
 not fully paid 1 (1533, 20)
from sklearn.utils import resample
df minority upsampled = resample(not fully paid 1, replace =
True, n \text{ samples} = 8045)
df = pd.concat([not fully paid 0, df minority upsampled])
from sklearn.utils import shuffle
df = shuffle(df)
df['not.fully.paid'].value counts()
 #imbalanced data handled
 df['not.fully.paid'].value_counts()
 0
       8045
 1
       8045
 Name: not.fully.paid, dtype: int64
imbalanced data handled.
Is there any outliers?
cols 1=['int.rate', 'installment', 'log.annual.inc',
'dti', 'fico', 'days.with.cr.line', 'revol.bal', 'revol.util']
sns.set style('whitegrid')
```

```
plt.figure(figsize = (15,7))
sns.boxplot(data=df[cols_1])
```


outliers are present in the dataset.

```
from scipy.stats import norm
import seaborn as sns
cols_1=['int.rate', 'installment', 'log.annual.inc',
'dti','fico', 'days.with.cr.line', 'revol.bal', 'revol.util']

for i in range(0,len(cols_1),2):
  plt.figure(figsize=(8,4))
  plt.subplot(121)
  sns.distplot(df[cols_1[i]], kde=True,fit = norm, color =
'crimson')
  plt.subplot(122)
  sns.distplot(df[cols_1[i+1]], kde=True,fit = norm, color =
'crimson')
  plt.tight_layout()
  plt.show()
```


Handling outliers:

```
# Detect outliers in combined data set
def detect outlier(feature):
   outliers = []
    data = df[feature]
    mean = np.mean(data)
    std =np.std(data)
    for y in data:
        z score= (y - mean)/std
        if np.abs(z score) > 3:
            outliers.append(y)
    print(f"\nOutlier caps for {feature}")
    print(' --95p: {:.1f} / {} values exceed
that'.format(data.quantile(.95),
len([i for i in data
if i > data.quantile(.95)])))
    print(' --3sd: {:.1f} / {} values exceed that'.format(mean
+ 3*(std), len(outliers)))
    print(' --99p: {:.1f} / {} values exceed
that'.format(data.quantile(.99),
```

```
len([i for i in data
if i > data.quantile(.99)])))
# Determine what the upperbound should be for continuous
features in dataframe.
for feat in df:
     detect outlier(feat)
   Outlier caps for credit.policy
    --95p: 1.0 / 0 values exceed that
    --3sd: 2.1 / 0 values exceed that
    --99p: 1.0 / 0 values exceed that
   Outlier caps for int.rate
    --95p: 0.2 / 805 values exceed that
    --3sd: 0.2 / 36 values exceed that
    --99p: 0.2 / 158 values exceed that
   Outlier caps for installment
    --95p: 807.6 / 801 values exceed that
    --3sd: 983.4 / 0 values exceed that
    --99p: 878.9 / 157 values exceed that
   Outlier caps for log.annual.inc
    --95p: 11.9 / 800 values exceed that
    --3sd: 12.8 / 168 values exceed that
    --99p: 12.6 / 156 values exceed that
   Outlier caps for dti
    --95p: 23.8 / 800 values exceed that
    --3sd: 33.5 / 0 values exceed that
    --99p: 26.8 / 160 values exceed that
   Outlier caps for fico
    --95p: 777.0 / 672 values exceed that
# Lower and Upper bounded outliers
for var in df:
     df[var].clip(lower = df[var].quantile(.05), upper =
df[var].quantile(0.95), inplace=True)
cols1 = ['int.rate', 'installment', 'log.annual.inc', 'dti',
         'fico', 'days.with.cr.line', 'revol.bal', 'revol.util',
'pub.rec']
sns.set style('whitegrid')
plt.figure(figsize = (21,6))
sns.boxplot(data=df[cols1])
```


After capping off outliers, we can see that outliers are now elimited in the variables except revol.bal because it standard deviation is extremely high.

3. Additional Feature Engineering

- You will check the correlation between features and will drop those features which have a strong correlation

```
df.corr()
```

df.corr()

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delin
credit.policy	1.000000	-0.282765	0.053693	0.019055	-0.072089	0.367873	0.086316	-0.096409	-0.084485	-0.584724	-0.0
int.rate	-0.282765	1.000000	0.259678	0.077954	0.197713	-0.702432	-0.111021	0.105973	0.427965	0.197232	0.
installment	0.053693	0.259678	1.000000	0.477643	0.027296	0.112259	0.196378	0.327932	0.057627	-0.003825	0.0
log.annual.inc	0.019055	0.077954	0.477643	1.000000	-0.030829	0.105569	0.373146	0.496275	0.083805	0.031435	0.
dti	-0.072089	0.197713	0.027296	-0.030829	1.000000	-0.208458	0.101486	0.294946	0.318520	0.017553	-0.0
fico	0.367873	-0.702432	0.112259	0.105569	-0.208458	1.000000	0.249862	-0.016108	-0.492924	-0.187073	-0.2
days.with.cr.line	0.086316	-0.111021	0.196378	0.373146	0.101486	0.249862	1.000000	0.342745	0.023656	-0.013847	0.0
revol.bal	-0.096409	0.105973	0.327932	0.496275	0.294946	-0.016108	0.342745	1.000000	0.346329	-0.005507	-0.0
revol.util	-0.084485	0.427965	0.057627	0.083805	0.318520	-0.492924	0.023656	0.346329	1.000000	-0.040142	-0.0
inq.last.6mths	-0.584724	0.197232	-0.003825	0.031435	0.017553	-0.187073	-0.013847	-0.005507	-0.040142	1.000000	-0.0
delinq.2yrs	-0.047963	0.164196	0.003193	0.015278	-0.021818	-0.229699	0.081987	-0.058498	-0.030781	-0.000095	1.0
pub.rec	-0.064586	0.102742	-0.028703	0.010706	0.030215	-0.162760	0.083195	-0.049377	0.080320	0.102095	-0.0
not.fully.paid	-0.193486	0.217160	0.078110	-0.044045	0.041874	-0.209217	-0.034872	0.054858	0.103689	0.190637	0.0
purpose_all_other	-0.025119	-0.120703	-0.205774	-0.084775	-0.124782	0.054284	-0.077735	-0.119198	-0.120135	0.009150	0.0
purpose_credit_card	0.012249	-0.043799	-0.000311	0.076602	0.078221	-0.007528	0.047579	0.115706	0.089308	-0.044536	-0.0
purpose debt consolidation	0.024277	0.089997	0.116552	-0.047857	0.181831	-0.140818	0.001324	0.047707	0.204263	-0.058960	-0.0

```
plt.figure(figsize = (15,12))
sns.heatmap(data = data.corr(), annot = True)
plt.show()
```


from the correlation heatmaps we can observe that no two features have positive corelation of more than 0.7, so we will not remove any feature.

4. Modeling

- After applying EDA and feature engineering, you are now ready to build the predictive models
- In this part, you will create a deep learning model using Keras with Tensorflow backend

```
#Identify X and Y
X = df.drop("not.fully.paid", axis = 1)
```

```
y = df["not.fully.paid"]
# Split X and Y
X train, X test, y train, y test =
train test split(X,y,test size = 0.10, stratify = y,
random state = 987)
X train, X val, y train, y val =
train test split(X train, y train, test size = 0.15, stratify =
y train, random state = 987)
print(X train.shape, y train.shape)
print(X val.shape, y val.shape)
print(X test.shape, y test.shape)
# feature scaling
scaler = StandardScaler()
X train scale = scaler.fit transform(X train)
X val scale = scaler.transform(X val)
X test scale = scaler.transform(X test)
# Lets build the Model
model = Sequential()
\# No of Input will be == (total number of train examples , 8)
# where 8 = feature
model.add(Input(shape=(X_train_scale.shape[1],)))
# Hidden Layer 1
model.add(Dense(units=200,activation='relu'))
model.add(Dropout(0.2))
# Hidden Layer 2
model.add(Dense(units=200,activation='relu'))
model.add(Dropout(0.2))
# Hidden Layer 3
model.add(Dense(units=200,activation='relu'))
model.add(Dropout(0.2))
# Output Layer - this is a binary classification
model.add(Dense(units=1,activation='sigmoid'))
```

model.summary()

Model: "sequential 2"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 200)	4000
dropout (Dropout)	(None, 200)	0
dense_1 (Dense)	(None, 200)	40200
dropout_1 (Dropout)	(None, 200)	0
dense_2 (Dense)	(None, 200)	40200
dropout_2 (Dropout)	(None, 200)	0
dense_3 (Dense)	(None, 1)	201

Total params: 84601 (330.47 KB)
Trainable params: 84601 (330.47 KB)
Non-trainable params: 0 (0.00 Byte)

model.compile(optimizer='adam',loss='binary_crossentropy',metric
s=['accuracy'])

```
0.8923
   Epoch 95/100
   385/385 [===========] - 2s 4ms/step - loss: 0.2043 - accuracy: 0.9170 - val_loss: 0.3175 - val_accuracy:
   0.8790
   Epoch 96/100
   385/385 [===========] - 2s 4ms/step - loss: 0.2034 - accuracy: 0.9180 - val_loss: 0.3220 - val_accuracy:
   0.8840
   0.8873
   Epoch 98/100
   385/385 [============= ] - 2s 4ms/step - loss: 0.1941 - accuracy: 0.9211 - val_loss: 0.3277 - val_accuracy:
   0.8808
   Epoch 99/100
   385/385 [===========] - 2s 4ms/step - loss: 0.2003 - accuracy: 0.9207 - val_loss: 0.3371 - val_accuracy:
   0.8813
   Epoch 100/100
   385/385 [===========] - 2s 4ms/step - loss: 0.1973 - accuracy: 0.9183 - val_loss: 0.3008 - val_accuracy:
```

```
X train pred= model.predict(X train scale)
X test pred=model.predict(X test scale)
cm = confusion matrix(y pred=X train pred > 0.5,y true=y train)
cm
cm = confusion matrix(y pred=X test pred > 0.5, y true=y test)
cm
X_train_pred= model.predict(X_train_scale)
X test pred=model.predict(X test scale)
385/385 [=========== ] - 1s 2ms/step
51/51 [======== ] - Os 2ms/step
cm = confusion_matrix(y_pred=X_train_pred > 0.5,y_true=y_train)
cm
array([[6049, 105],
       [ 41, 6113]], dtype=int64)
cm = confusion_matrix(y_pred=X_test_pred > 0.5,y_true=y_test)
cm
array([[658, 146],
       [ 26, 779]], dtype=int64)
from matplotlib import pyplot
pyplot.plot(history.history['accuracy'], label='train')
pyplot.plot(history.history['val accuracy'], label='test')
pyplot.legend()
pyplot.show()
```



```
#training score
model.evaluate(X_train_scale,y_train)
#validatn score
```

#testing score
model.evaluate(X_test_scale,y_test)

model.evaluate(X_val_scale,y_val)

```
#training score
model.evaluate(X_train_scale,y_train)
[0.0628020241856575, 0.9881377816200256]
#validatn score
model.evaluate(X_val_scale,y_val)
68/68 [============== ] - 0s 2ms/step - loss: 0.3008 - accuracy: 0.8942
[0.3008177578449249, 0.8941555619239807]
#testing score
model.evaluate(X_test_scale,y_test)
[0.33529841899871826, 0.8931013345718384]
predictions = (model.predict(X test scale) > 0.5)
predictions2 = (model.predict(X val scale)>0.5)
accuracy score(y test, predictions)
accuracy score(y val, predictions2)
predictions =(model.predict(X_test_scale)>0.5)
predictions2 =(model.predict(X_val_scale)>0.5)
51/51 [======== ] - 0s 2ms/step
68/68 [========= ] - 0s 2ms/step
accuracy_score(y_test, predictions)
0.8931013051584835
accuracy_score(y_val,predictions2)
0.8941555453290382
print(classification report(y test, predictions))
print(classification report(y val, predictions2))
```

print(classification_report(y_test, predictions))

	precision	recall	f1-score	support	
0	0.96	0.82	0.88	804	
1	0.84	0.97	0.90	805	
accuracy			0.89	1609	
macro avg	0.90	0.89	0.89	1609	
weighted avg	0.90	0.89	0.89	1609	

print(classification_report(y_val, predictions2))

	precision	recall	f1-score	support	
0	0.95	0.83	0.89	1087	
1	0.85	0.96	0.90	1086	
accuracy			0.89	2173	
macro avg	0.90	0.89	0.89	2173	
weighted avg	0.90	0.89	0.89	2173	