深度學習基礎概論

0325

目錄

• CNN model

• Code :

CNN Model

Why use CNN model?

在進行影像辨識時,將所有圖片壓成一維,再使用 fully connected 可能會產生下列問題

- pattern 會出現在圖片中的某個位置,且 pattern 是由相鄰的 pixels 所構成,若壓成一維可能會破壞 pattern 的結構
- 面對高 pixel 的圖片,會大幅增加計算成本
- 事實上,CNN model 是 fully connected 的子集,有較少的參數,因此有較大的 model bias

CNN model

第一個CNN model Lenet-5(1998)

整個 CNN model 主要可以分為三個部分

- 卷積層(Convolutional layer)
- 池化層(Pooling layer)
- 全連接層(fully connected layer)

Receptive fields

• Model 每次看多大的區域

 以 3*3 為例,在這個 size 下, 共會有 3*3 個 weights 可以 train

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Filter

• 每個 receptive field 都有一組參數可以去訓練

• 同一個 receptive field 可以有多個 filter 去監看

Convolutional layer

• Convolution 是由兩個步驟組組成的運算: 滑動(stride) + 內積

• Stride:每次 filter 移動距離

• Convolution 的結果成為 feature map

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Zero Padding

• 從右下角的圖可以發現 feature map 較原本圖小了一圈

• 透過在最外圈向外補一圈 0 的方式使做完 convolution 後有和原圖相同大小的 feature map

原始影像

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

零填充

0	0	0	0	0	0	0	0
0	1	0	1	1	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0

同質填充

1	1	0	1	1	0	1	1
1	1	0	1	1	0	1	1
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
1	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1
1	1	1	0	0	1	1	1

Parameter sharing

•當 filter 滑動的時候,也表示同一組 filter 的權重正在不同區域裡面運作,這樣的過程中 filter 沒有改變,也就是權重是不會改變的

一次 convolution 後有幾張圖片?

•以 LeNet-5 model 為例,單看第一層 input 32*32 的圖片,經過 5 個 filter,形成五張 feature maps,但其實還必須將這五張 feature maps 疊合成為一張圖片,才會是第一層的output

• 可以想成輸出一張圖片,但變厚了,或是深度變深了

Max Pooling

• 和 convolution layer 相同也是有一個 filter 在圖片上滑動運算,不同的點在於,滑動的區域不重複

• 以左上角為例

• Max(110, 256, 12, 89)= 256

• 做完 max Pooling 後圖片會 長寬會縮成一半

Max Pooling

- 也就是說在 filter 不變的情況下,透過 Max pooling,每個 filter 會從先看到 圖片細節,在看到圖片的全貌
- Convolution 其實也有相同效果
- 使用 max pooling 效果比 average pooling 好
- 因為圖片尺寸減少 $\frac{1}{2}$,所以計算成本也減少 $\frac{1}{2}$

CNN Model

Code