计算神经科学的背景和使命

- 两大目标
 - (What is Computational Neuroscience:Be a bridge from brain science to brain_inspired intelligence)
 - 用计算建模的方法来阐明大脑功能的计算原理
 - 发展类脑智能的模型和算法
- Prehistory of Computational Neuroscience
 - 1907:LIF model
 - 1950s:HH model(fudamental model)
 - 1960s: Roll's cable equation(涉及轴突和树突,精细神经元)
 - 1970s:Amari, Wilson, Cowan et al. (Wilson-Cowan model mean-field-model, neuron population)
 - 1982:Hopfield model(Amari-Hopfield model,吸引子模型,动力学系统方法进入 计算神经科学)
 - 1988:Sejnowski et al. "Computational Neuroscience"(science)
 - 对应于物理学的第谷-伽利略时代,大脑工作原理还缺乏清晰的理论!
- Three Levels of Brain Science(\rightarrow Brain Science \rightarrow Computaional)
 - Computational theory(大脑做什么)→ Psychology & Cognitive Science→ Human-like Cogntive function
 - Representation & Algorithm (大脑该怎么做) \to Computational Neuroscience \to Brain-inspired model&algorithm
 - $\bullet \ \ \text{Implementation} \to \text{Neuroscience} \to \text{Neuronmorphic computing}$
- Mission of Computational Neurosicence
 - What I can not create,I do not understand --Richard Philips Fetnman
 - What I can not create a computational model,I do not understand

神经计算建模的目标和挑战

- Success of Deep Learning
- limitation of Deep learning
 - 对抗样本
 - 图像理解
 - 全局认知
 - 运动识别
 - 小样本学习
 - 举一反三

- Brain is for Processing Dynamical information (We never see a "static" thing)
 - 动态视觉光流信号
 - 动态脉冲序列传播
 - 动态交互的信息加工
 - 动态跨脑区信息整合
- Brain is a dynamical system targeted for Processing Dynamical information
 - Baby sea squirt swim, have brain
 - Adult sea squirt no movement, without brain
- 类脑智能的钱学森之问
 - 钱学森之问
 - 为什么我们的学校总是培养不出杰出的科技创新人才?
 - 类脑职能的钱学森之问
 - 为什么我们拿不出ChatGPT、Alpha Go这种杀手级应用
- The missing link(a computational model of higher cognitive function)
 - 数据驱动,用生物学做约束
 - 任务驱动,用大模型用工科思路,用端到端的训练网络

The missing link:

a computational model of higher cognitive function

神经计算建模的工具

- 工欲行其事,必先利其器
 - We need "PyTorch/TensorFlow" in Computational Neurosciece
- Challeges in neural modelling

Challenges in neural modelling

- (Frontiers, Mahta, et, al. 2022)
- The modeling targets and methods are extremely complex, and we need a general-purpose framework.
- Limitations of Existiong Brain Simulators

Limitations of Existing Brain Simulators

范式	软件	发源地	编程语言	开发 历史	学习 难度	灵活 性	运行 速度	透明 程度	模型 分析	模型 训练
低级编 程语言	NEURON	Yale University	Hoc, NMODL, Python	>24年	ョ	差	较好	差	无	无
	NEST	Blue Brain Project	SLI, Python	>14年	高	差	较好	差	无	无
	CARLsim	UC, Irvine	C++, CUDA, Python	>11年	高	差	峘	好	无	无
描述性语言	Brian2	Sorbonne Université	Python, Cython, C++	>13年	低	好	较好	差	无	无
	вмтк	Allen Brain Institute	Python	>3年	低	差	较好	差	无	无
	GENN	University of Sussex	C++ / CUDA, Python	>6年	间	差	高	差	无	无

- What are needed for a brain simulator
 - Efficiency
 - High-speed simulation on parallel conputing devices,etc.
 - integration
 - Integrated modeling of simulation, training, and analysis

- Flexiblity
 - New models at all scales can be accommodated
- Extensibility
 - Extensible to new modeling methods(machine learning)
- It's time to change the programming framework in Computational Neuroscience!
- Our solution:BrainPy

Our solution: BrainPy

计算建模举例

- Global vs. Local Information Processing
- DNNs mimic the feedforward, hierarchical architecture of the ventral visual pathway
- DNNs extract local rather than global feature of objects
- What does brainscience tell us
 - You see what you want to see
- Image understanding: an ill-posed problem

Image understanding: an ill-posed problem

Image Understanding =image segmentation + object recognition

Chicken vs. Egg dilemma

- · Without segmentation, how to recognize
- · Without recognition, how to segment
- The solution of brain: Analysis-by-synthesis
- Abundant feedback connections in visual pathway: Sillito et al, Trends in Neuroscience 2006
- Contour integration in V4 is earlier than that in V1: Chen et al., **Neuron** 2014

Reverse Hierarchy theory

Reverse Hierarchy Theory

Hochstein et al. Neuron 2002

The Subcortical pathway

The Subcortical pathway

Blind Sight

The Subcortical pathway

Innate Response

Huang et al, Nat. Comm., 2016

Two pathways for visual information processing

Two pathways for visual information processing

- •
- Key Computational Issues for Global-to-local Neural Information Processing
 - What are global and local feature
 - How to rapidly extract blobal feature
 - How to generate global hypotheses
 - How to implement from global to local processing
 - The interplay between global and local features
 - others
- How to extract global feature
 - Global first = Topolgy first
 - DNNs has difficulty to recognize topology
 - A retina-SC network for topology detection(White,Brain J.,et al.1980;Rizzolatti,G.,et al.2017)
 - Gap junction coupling: integration+Segregation
 - ConnectivityDetection
 - Hole Detection
- How to discriminate Motion
 - a Model for Motion Pattern Recognition
 - 库网络→上丘 (dicision making)
 - a motion-recognition model
 - Gait Recognition(小样本、生物系统、少量参数)
- How to generate "global" hypotheses in the representatino space
 - Attractor neural network(大脑是地形图, local minimum是记忆点)

- Levy Flight in Animal Behaviors(mixer, 快速jump+local search)
- Neural Mechanism of Levy Flight(海马睡眠时仍运行的功能)
- Free memory recall in Human
- How to process informatino from glabal to local
 - Push-pull Feedback(A. G.Neuron.78,389-402(2013))
 - A hierarchical hopfield Model(local→Global,什么样的feedback可以优化 child layer)
 - The form&function of push-feedback
 - The form&effect of pull Feedback
 - Dynamical Push-pull Feedback
 - Real image with hierarchical constructure
- Interplay
 - two pathways for visual information processing

A two-pathway model for object recognition

- improved performance of FineNet
- Modeling visual making(Tang et al.,PANS,2018,影响识别,和实验data匹配)

解答问题

- 突触短时程可塑性:抑制和易化本质是滤波 (计算功能研究promising)
- 快速通路和慢速通路同时进行