

CET-225 Operating Systems Experiment # 08

Experiment Title

CPU Scheduling Algorithm-FCFS ,SJF

Assessment of CLO(s): 04

Performed on _____

Student Name:		
Roll No.	Group	
Semester	Session	

Total (Max)	Performance (03)	Viva (03)	File (04)	Total (10)
Marks Obtained				
Remarks (if any)				

Experiment evaluated by

Instructor's Name	Engr. Bushra Aziz							
Date		Signature						

FCFS CPU SCHEDULING ALGORITHM

First Come First Serve is a Non-preemptive Scheduling algorithm where each process is executed according to its arrival time.

Step 1: Input the number of processes required to be scheduled using FCFS, burst time for each process and its arrival time.

Step 2: Using enhanced bubble sort technique, sort the all given processes in ascending order according to arrival time in a ready queue.

Step 3: Calculate the Finish Time, Turnaround Time and Waiting Time for each process which in turn help to calculate Average Waiting Time and Average Turnaround Time required by CPU to schedule given set of process using FCFS.

Step 4: Process with less arrival time comes first and gets scheduled first by the CPU.

Step 5: Calculate the Average Waiting Time and Average Turn Around Time.

Step 6: Stop.

Sample Run:

Enter total number of processes (maximum 20):3

Enter Process Arrival Time and Burst time.

Calculate Waiting time and turnaround time for each process

Process			Arr	ival time	•	Burst time		
P1			0 ms			18 ms		
P2			2 ms			7 ms		
P3			2 ms			10 ms		
Santt Ch	art							
	P1			P2			P3	
0 ms		18 ms	18 ms		25 ms	25 ms		35 ms

Calculate Waiting time and turnaround time for each process

Process	Waiting	Time		Turnaround	Time	
 	 		-			
P1	0ms			18ms		
P2	16ms			23ms		
Р3	23ms			33ms		
 	 		_			

Total waiting time: (0 + 16 + 23) = 39msAverage waiting time: (39/3) = 13ms

Lab Experiment 8

```
Total turnaround time: (18 + 23 + 33) = 74ms
Average turnaround time: (74/3) = 24.66ms
```

SJF CPU SCHEDULING ALGORITHM

Shortest job first (SJF) or shortest job next, is a scheduling policy that selects the waiting process with the smallest execution time to execute next. SJN is a non-preemptive algorithm.

- **Step 1:** Input the number of processes required to be scheduled using SJF, burst time for each process and its arrival time.
- **Step 2:** Using selection sort technique, sort the all given processes in ascending order according to burst time in ascending order.
- **Step 3:** Calculate the Finish Time, Turnaround Time and Waiting Time for each process which in turn help to calculate Average Waiting Time and Average Turnaround Time required by CPU to schedule given set of process
- Step 4: Process with less Burst and arrival time comes first and gets scheduled first by the CPU.
- **Step 5:** Calculate the Average Waiting Time and Average Turn Around Time.
- Step 6: Stop.

Sample Run:

Enter number of process: 4

Enter Process Arrival Time and Burst time.

Process	Arrival time				Burst time			
P1	3 ms				5 ms			
P2	0 ms			4 ms				
P3	4 ms			2 ms				
P4	5 ms			4 ms				
Santt Chart P2		P3			P4		P1	
0ms 4ms	4ms		6ms	6ms		10ms	10ms	15ms

Calculate Waiting time and turnaround time for each process

Process	Waiting	Time	Turnaround Ti	me	
P1	7ms		12ms		
P2	0ms		4ms		
P3	0ms		2ms		
P4	1ms		5ms		

Lab Experiment 8

```
Total waiting time: (7 + 0 + 0 + 1) = 8ms

Average waiting time: (8/4) = 2ms

Total turnaround time: (12 + 4 + 2 + 5) = 23ms

Average turnaround time: (23/4) = 5.75ms
```

Terms and formulas used in above scheduling algorithms:

Completion Time: Time at which process completes its execution.

Turn Around Time: Time Difference between completion time and arrival time.

Turn Around Time = Completion Time – Arrival Time

Waiting Time (W.T): Time Difference between turnaround time and burst time.

Waiting Time = Turn Around Time – Burst Time.

Lab Experiment 8

Exercises

- 1. Write a Python program to implement and simulate the FCFS Algorithm.
- 2. Write a Python program to implement and simulate the SJF Algorithm.
- 3. Modify both algorithms for the different arrival time.