

0. Quiz 2

- ***** 15%
- ❖ 40 mins
- Restrict open book: one hand writing A4 paper

0. Lecture 6-8

Control:

- Linear Continuous-Time Systems
- Linear Discrete-Time Systems
- Nonlinear Discrete-Time Systems

0. Lecture 6

Control Part 1:

- Linear Continuous-Time Systems
- Formulation
- Stability
- Pole Placement
- Controllability
- Linear quadratic optimal control

0. Lecture-7

Lecture:

- Linear discrete-time Systems
- Discretization
- Stability
- State feedback control
- Optimal control

Active hands on:

- Examples
- Solve problem using Matlab

Introduction:

- Discrete-time models describe relationships between sampled variables $x(kT_s)$, $u(kT_s)$, $y(kT_s)$, k = 0, 1, ...
- The value $x(kT_s)$ is kept **constant** during the sampling interval $[kT_s, (k+1)T_s]$
- A discrete-time signal can either represent the sampling of a continuous-time signal, or be an intrinsically discrete

5

Difference equation:

Consider the first order difference equation (autonomous system)

$$\begin{cases} x(k+1) = ax(k) \\ x(0) = x_0 \end{cases}$$

The solution

is
$$x(k) = a^k x_0$$
.

Example - Wealth of a bank account:

- k: year counter; ρ: interest rate
- x(k): wealth at the beginning of year k
- u(k): money saved at the end of year k
- x0: initial wealth in bank account

Discrete-time model:

$$\begin{cases} x(k+1) = (1+\rho)x(k) + u(k) \\ x(0) = x_0 \end{cases}$$

x_0	10 k€
u(k)	5 k€
ρ	10 %

$$x(k) = (1.1)^k \cdot 10 + \frac{1 - (1.1)^k}{1 - 1.1} = 60(1.1)^k - 50$$

- Linear discrete-time system:
 - Consider the set of n first-order linear difference equations forced by the input $u(k) \in \mathbb{R}^n$

$$\begin{cases} x_1(k+1) &= a_{11}x_1(k) + \dots + a_{1n}x_n(k) + b_1u(k) \\ x_2(k+1) &= a_{21}x_1(k) + \dots + a_{2n}x_n(k) + b_2u(k) \\ \vdots &\vdots &\vdots \\ x_n(k+1) &= a_{n1}x_1(k) + \dots + a_{nn}x_n(k) + b_nu(k) \\ x_1(0) = x_{10}, &\dots & x_n(0) = x_{n0} \end{cases}$$

In compact matrix form:

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ x(0) = x_0 \end{cases}$$

where
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
.

- Comparing to Linear continuous-time system:
 - Discrete-time system:

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ x(0) = x_0 \end{cases}$$

Continuous-time system:

$$\begin{array}{lcl} \dot{x}(t) & = & Ax(t) + Bu(t) & \quad x(t_0) = x_0 \\ y(t) & = & Cx(t) + Du(t) \end{array}$$

- Comparing to Linear continuous-time system:
 - Continuous-time system:

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(t_0) = x_0
y(t) = Cx(t) + Du(t)$$

Solution:

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$$

- Linear discrete-time system:
 - In compact matrix form:

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ x(0) = x_0 \end{cases}$$

The solution is

$$x(k) = \underbrace{A^{k}x_{0}}_{\text{natural response}} + \underbrace{\sum_{i=0}^{k-1} A^{i}Bu(k-1-i)}_{\text{forced response}}$$

Example:

Consider the linear discrete-time system

$$\begin{cases} x_1(k+1) &= \frac{1}{2}x_1(k) + \frac{1}{2}x_2(k) \\ x_2(k+1) &= x_2(k) + u(k) \end{cases} \begin{cases} x(k+1) &= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ x_1(0) &= -1 \\ x_2(0) &= 1 \end{cases}$$

• Eigenvalues of A: $\lambda_1 = \frac{1}{2}$, $\lambda_2 = 1$. Solution:

$$x(k) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^{k} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \sum_{i=0}^{k-1} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^{i} \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k-1-i)$$

$$= \begin{bmatrix} \frac{1}{2^{k}} & 1 - \frac{1}{2^{k}} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \sum_{i=0}^{k-1} \begin{bmatrix} 1 - \frac{1}{2^{i}} \\ 1 \end{bmatrix} u(k-1-i)$$

$$= \begin{bmatrix} 1 - (\frac{1}{2})^{k-1} \\ 1 \end{bmatrix} + \sum_{i=0}^{k-1} \begin{bmatrix} 1 - \frac{1}{2^{i}} \\ 1 \end{bmatrix} u(k-1-i)$$

$$= \text{natural response}$$
 forced response

simulation for $u(k) \equiv 0$

Discrete-time linear system:

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \\ x(0) = x_0 \end{cases}$$

- Given the initial condition x(0) and the input sequence u(k), $k \in \mathbb{N}$, it is possible to predict the entire sequence of states x(k) and outputs y(k)
- The state x(0) summarizes all the past history of the system
- The dimension n of the state $x(k) \in R^n$ is called the order of the system
- The system is called proper (or strictly causal) if D = 0
- General multivariable case:

- Activity-1: Student dynamics
- Problem Statement:
 - 3-years undergraduate course
 - percentages of students promoted, repeaters, and dropouts are roughly constant
 - direct enrollment in 2nd and 3rd academic year is not allowed
 - students cannot enroll for more than 3 years

Notation:

k	Year
$x_i(k)$	Number of students enrolled in year i at year k , $i = 1, 2, 3$
<i>u</i> (<i>k</i>)	Number of freshmen at year <i>k</i>
y(k)	Number of graduates at year k
α_i	promotion rate during year i , $0 \le \alpha_i \le 1$
eta_i	failure rate during year $i, 0 \le \beta_i \le 1$

- Activity-1: Student dynamics
- 3rd-order linear discrete-time system:

$$\begin{cases} x_1(k+1) &= \beta_1 x_1(k) + u(k) \\ x_2(k+1) &= \alpha_1 x_1(k) + \beta_2 x_2(k) \\ x_3(k+1) &= \alpha_2 x_2(k) + \beta_3 x_3(k) \\ y(k) &= \alpha_3 x_3(k) \end{cases}$$

In matrix form

$$\begin{cases} x(k+1) &= \begin{bmatrix} \beta_1 & 0 & 0 \\ \alpha_1 & \beta_2 & 0 \\ 0 & \alpha_2 & \beta_3 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(k) \\ y(k) &= \begin{bmatrix} 0 & 0 & \alpha_3 \end{bmatrix} x(k) \end{cases}$$

Activity-1: Student dynamics

Simulation and Solution:

$\alpha_1 = .60$	$\beta_1 = .20$
$a_2 = .80$	$\beta_2 = .15$
$a_3 = .90$	$\beta_3 = .08$

$$u(k) \equiv 50, k = 2012, \dots$$

- Activity-2: Supply chain
- Problem Statement:
 - S purchases the quantity u(k) of raw material at each month k
 - A fraction δ_1 of raw material is discarded, a fraction α_1 is shipped to producer P
 - A fraction α_2 of product is sold by P to retailer R, a fraction δ_2 is discarded
 - retailer R returns a fraction β_3 of defective products every month, and sells a fraction γ_3 to customers

Activity-2: Supply chain

$$\begin{cases} x_1(k+1) &= (1-\alpha_1-\delta_1)x_1(k)+u(k) \\ x_2(k+1) &= \alpha_1x_1(k)+(1-\alpha_2-\delta_2)x_2(k)+\beta_3x_3(k) \\ x_3(k+1) &= \alpha_2x_2(k)+(1-\beta_3-\gamma_3)x_3(k) \\ y(k) &= \gamma_3x_3(k) \end{cases}$$
where $x_1(k+1) = (1-\alpha_1-\delta_1)x_1(k)+u(k)$

k month counter $x_1(k)$ raw material in S $x_2(k)$ products in P $x_3(k)$ products in R y(k) products sold to customers

2. Discretization

Approximate sampling: Euler's method

Approximation

$$\dot{x}(kT_s) \approx \frac{x((k+1)T_s) - x(kT_s)}{T_s}$$

Sampling

$$\dot{x}(t) = Ax(t) + Bu(t):$$

$$x((k+1)T_s) = (I + T_sA)x(kT_s) + T_sBu(kT_s)$$

$$\bar{A} \triangleq I + AT_s$$
, $\bar{B} \triangleq T_s B$, $\bar{C} \triangleq C$, $\bar{D} \triangleq D$

2. Discretization

- Approximate sampling: Tustin's discretization method
 - Approximation by applying the trapezoidal rule

$$x(k+1) - x(k) = \int_{kT_s}^{(k+1)T_s} \dot{x}(t)dt = \int_{kT_s}^{(k+1)T_s} (Ax(t) + Bu(t))dt$$

$$\approx \frac{T_s}{2} (Ax(k) + Bu(k) + Ax(k+1) + Bu(k)) \text{ (trapezoidal rule)}$$

Then

$$(I - \frac{T_s}{2}A)x(k+1) = (I + \frac{T_s}{2})x(k) + T_sBu(k)$$
$$x(k+1) = \left(I - \frac{T_s}{2}A\right)^{-1} \left(I + \frac{T_s}{2}A\right)x(k) + \left(I - \frac{T_s}{2}A\right)^{-1} T_sBu(k)$$

The continuous-time system

$$\dot{x}(t) = Ax(t) \qquad x(t_0) = x_0$$

is called asymptotically stable if for any initial state, the state x(t) converges to zero as t increases indefinitely.

Simple example 1
$$\dot{x}=-x,\quad x(0)=x_0$$
 The solution is
$$x(t)=e^{-t}x_0$$
 Simple example 2
$$\dot{x}=x,\quad x(0)=x_0$$
 The solution is
$$x(t)=e^{t}x_0$$

Condition of stability: all the eigenvalues of A have negative real parts.

Consider the first-order linear system

$$x(k+1) = ax(k) + bu(k)$$

• For $u(k) \equiv 0, \forall k = 0,1,...$ the solution is

$$x(k) = a^k x_0$$

- The initial $x_0 = 1$ is
 - unstable if |a| > 1
 - stable if $|a| \le 1$
 - asymptotically stable if |a| < 1

Stability of discrete-time linear systems

• Since the natural response of x(k+1) = Ax(k) + Bu(k) is $x(k) = A^k x_0$ the stability properties depend only on A. We can therefore talk about system stability of a discrete-time linear system (A,B,C,D)

Theorem:

Let $\lambda_1, ..., \lambda_m, m \le n$ be the eigenvalues of $A \in \mathbb{R}^{n \times n}$. The system x(k+1) = Ax(k) + Bu(k) is

- asymptotically stable iff $|\lambda_i| < 1, \forall i = 1, ..., m$
- (marginally) stable if $|\lambda_i| \le 1$, $\forall i = 1,...,m$, and the eigenvalues with unit modulus have equal algebraic and geometric multiplicity a
- unstable if $\exists i$ such that $|\lambda_i| > 1$

 The stability properties of a discrete-time linear system only depend on the modulus of the eigenvalues of matrix A

^aAlgebraic multiplicity of λ_i = number of coincident roots λ_i of det($\lambda I - A$). Geometric multiplicity of λ_i = number of linearly independent eigenvectors v_i , $Av_i = \lambda_i v_i$

Activity-4:

$$\begin{cases} x(k+1) = \begin{bmatrix} 0 & 0 \\ 1 & \frac{1}{2} \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases}$$

- Solution?
- Stability?

Activity-4:

$$\begin{cases} x(k+1) = \begin{bmatrix} 0 & 0 \\ 1 & \frac{1}{2} \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases}$$

Solution?

$$\begin{cases} x_1(k) = 0, k = 1, 2, \dots \\ x_2(k) = \left(\frac{1}{2}\right)^{k-1} x_{10} + \left(\frac{1}{2}\right)^k x_{20}, k = 1, 2, \dots \end{cases}$$

- Stability?
- Eigenvalues of A: {0,1/2}
- asymptotically stable

Activity-5:

$$\begin{cases} x(k+1) = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases}$$

- Solution?
- Stability?

Activity-5:

$$\begin{cases} x(k+1) = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases}$$

Solution?

$$\begin{cases} x_1(k) = 2^k x_{10}, k = 0, 1, \dots \\ x_2(k) = 2^{k-1} x_{10}, k = 1, 2, \dots \end{cases}$$

- Stability?
- Eigenvalues of A: {0,2}
- unstable

Summary of stability conditions for linear systems

system		continuous-time	discrete-time
asympt. stable	$\forall i = 1, \dots, n$	$\Re(\lambda_i) < 0$	$ \lambda_i < 1$
unstable	∃i such that	$\Re(\lambda_i) > 0$	$ \lambda_i > 1$
stable	$\forall i, \ldots, n$	$\Re(\lambda_i) \leq 0$	$ \lambda_i \leq 1$
	and $\forall \lambda_i$ such that	$\Re(\lambda_i)=0$	$ \lambda_i = 1$
	algebraic = geometric mult.		

4. Controllability

- Controllability:
 - In order to be able to do whatever we want with the given dynamic system under control input, the system must be controllable.
- Check for Controllability:
 - Theorem: The state space model

$$x(t+1) = Ax(t) + Bu(t), x(t) \in \mathbf{R}^{n}$$

is completely controllable if and only if the matrix

$$C_t = \begin{bmatrix} B & AB & \cdots & A^{t-1}B \end{bmatrix}$$

has full row rank.

4. Controllability

Activity-6:

$$x(t+1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

Is the system controllable?

4. Controllability

Activity-6:

$$x(t+1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

- Is the system controllable?
- Controllability Matrix

$$\mathcal{C} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right]$$

System is not controllable.

5. State Feedback Control

Pole Placement:

Choose state feedback control law

$$u(k) = -Kx(k)$$

Then the closed-loop system becomes

$$x(k+1) = Ax(k) + Bu(k) = Ax(k) - BKx(t) = (A - BK)x(k)$$

• We can design the closed-loop system to have good properties by assigning its poles --- the eigenvalues of matrix A - BK.

6. Optimal Control

- Linear continuous-time system
- Optimal Solution = Optimal K:

Solve P from the Riccati equation:

$$A^{T}P + PA - PBR^{-1}B^{T}P + Q = 0$$

then let

$$K = R^{-1}B^T P$$

So the controller is

$$u = -R^{-1}B^T P x$$

and the minimal performance index

$$J = x^T(0)Px(0)$$

6. Optimal Control

Optimal Control:

A discrete-time linear system

$$x(k+1) = Ax(k) + Bu(k)$$

Design state feedback control

$$u(k) = -Kx(k)$$

Such that the **Performance index**:

$$J(U) = \sum_{\tau=0}^{N-1} (x_{\tau}^{T} Q x_{\tau} + u_{\tau}^{T} R u_{\tau}) + x_{N}^{T} Q_{f} x_{N}$$

- is minimized.
- Where

$$U = (u_0, \dots, u_{N-1})$$

$$Q = Q^T \ge 0,$$
 $Q_f = Q_f^T \ge 0,$ $R = R^T > 0$

6. Optimal Control

- Linear Quadratic Regulator (LQR):
 - The algebraic Riccati equation (ARE)

$$P_{\rm ss} = Q + A^T P_{\rm ss} A - A^T P_{\rm ss} B (R + B^T P_{\rm ss} B)^{-1} B^T P_{\rm ss} A$$

- P can be found by iterating the Riccati recursion, or by direct methods
- LQR optimal input is approximately a linear, constant state feedback

$$u_t = K_{ss}x_t, K_{ss} = -(R + B^T P_{ss}B)^{-1}B^T P_{ss}A$$

It is very widely used in practice.

THANK YOU

Questions?

