Física Nuclear e de Partículas

Ricardo Mendes Ribeiro

1 de Maio de 2017

Física Nuclear

Uma amostra de linho contém 1 átomo de ${}^{14}_{6}$ C por 2×10^{12} átomos de ${}^{12}_{6}$ C. Qual é a idade do tecido, sabendo que a meia vida do ${}^{14}_{6}$ C é de 5730 anos e que a proporção de ${}^{14}_{6}$ C na atmosfera é de 1 para 10^{12} ?

R: ¹

2. Numa amostra de um litro de dióxido de carbono detectam-se em média 5 desintegrações por minuto. Calcule a fracção atómica de $^{14}_{6}$ C, sabendo que a vida média deste núcleo é de 8267 anos.

PISTA: Use a expressão dos gases perfeitos PV = nRT para determinar o número de moléculas de CO_2 .

$$(1 \text{ atm} = 10^5 \text{ Pa}; R = 8.314 \text{J} \cdot \text{K}^{-1} \text{mol}^{-1})$$

 \mathbf{R} : 2

- 3. Indique se é verdadeiro ou falso que estas reacções são possíveis:
 - (a) $^{124}_{51}\text{Sb} \rightarrow ^{124}_{50}\text{Sn} + e^+ + \nu_e$
 - (b) $^{228}_{90}\text{Th} \rightarrow ^{224}_{88}\text{Ra} + \alpha$
 - (c) $^{144}_{58}\text{Ce} \rightarrow ^{144}_{57}\text{La} + \text{e}^- + \nu_e$
 - (d) $^{53}_{25}\text{Mn} + e^- \rightarrow ^{53}_{24}\text{Cr} + \bar{\nu}_e$
 - (e) $^{60}_{27}\text{Co} \rightarrow ~^{60}_{28}\text{Ni} + \text{e}^- + \bar{\nu}_e$
 - (f) $^{131}_{53}I + e^- \rightarrow ^{131}_{54}Xe + \bar{\nu}_e$

 \mathbf{R} : 3

- 4. Indique as reacções possíveis:
 - (a) $e^+ + e^- \rightarrow \gamma + \gamma$
 - (b) $^{139}_{93}\text{Np} \rightarrow ^{139}_{94}\text{Pu} + e^- + \nu_e$
 - (c) $\alpha +_{28}^{60} \text{Ni} \rightarrow_{30}^{64} \text{Zn}$
 - (d) $^{64}_{30}$ Zn \rightarrow n + n $+^{62}_{30}$ Zn

R: ⁴

- 5. Considere um núcleo de $^{124}_{51}$ Sb, que decai por decaímento β^- . Quais são os produtos da reacção (assinale a verdadeira)?
 - (a) $^{124}_{50}\text{Sn} + e^+ + \nu_e$
 - (b) $^{124}_{50}\mathrm{Sn} + \mathrm{e}^- + \nu_e$
 - (c) $^{124}_{51}Sb + \gamma$
 - (d) $^{124}_{52}\text{Te} + \text{e}^- + \bar{\nu}_e$

R: 5

6. Considere uma reacção em cadeia com factor multiplicativo k, energia libertada por fissão $E_0 = 1$ MeV, tempo médio que um neutrão demora a atingir um núcleo t_0 , e que inicia com n neutrões.

- (a) Qual é a potência libertada na reacção em função do tempo?
- (b) Assumindo que inicia a reacção com apenas um neutrão, que o tempo médio t_0 é de 0.1 ns e a energia libertada, calcule a potência libertada em $t=1~\mu s$, para k=1.001,~k=1.01,~k=0.99999.
- (c) Discuta os resultados, tendo em conta as escalas de tempo e os valores de potência libertada.

R: ⁶

Física de Partículas

7. Indique se é verdadeiro ou falso que estas reacções são possíveis, sabendo que as partículas K e π são mesões e as Σ são bariões:

(a)
$$\bar{K}^0 + p \to K^- + \bar{p} + \pi^+$$

(b)
$$\pi^+ + p \to K^0 + \Sigma^0 + \pi^+ + K^+ + \bar{K}^0$$

(c)
$$K^- + p \to \Sigma^+ + n + \pi^-$$

(d)
$$\pi^- + p \to \Sigma^+ + \Sigma^- + K^0 + \bar{p} + \bar{\Sigma}^+ + n$$

(e)
$$n + \nu_{\mu} \rightarrow p + \mu^{-}$$

 \mathbf{R} : 7

8. Indique as reacções possíveis, sabendo que π , K são mesões e Λ , Ξ , Σ e Ω são bariões:

(a)
$$\pi^- + p \rightarrow K^0 + \Lambda$$

(b)
$$\Xi^- + p \to \Lambda + \Lambda$$

(c)
$$K^- + p \to K^+ + K^0 + \Omega^-$$

(d)
$$p + p \rightarrow K^+ + \Sigma^+ + n$$

R: 8

9. Assinale com um () quais das reacções seguintes podem ocorrer:

(a)
$$K^- + p \to \bar{K}^0 + n$$

(b)
$$\pi^- + p \rightarrow \bar{\Sigma}^- + \Sigma^0 + p$$

(c)
$$\pi^+ + p \to K^+ + \Sigma^+$$

(d)
$$\pi^- + p \to K^+ + \Sigma^0 + \pi^-$$

(e)
$$\bar{p} + p \rightarrow \pi^+ + \pi^+ + \pi^- + \pi^- + \pi^+$$

(f)
$$\pi^- + p \to K^- + \Sigma^+$$

(g)
$$\bar{K}^0 + p \to K^- + p + \pi^+$$

(h)
$$\pi^+ + p \to K^0 + \Sigma^0 + \pi^+ + K^+ + \bar{K}^0$$

(i)
$$K^- + p \rightarrow \Sigma^+ + n + \pi^-$$

(j)
$$\pi^- + p \to \Sigma^+ + \Sigma^- + K^0 + \bar{p} + \bar{\Sigma}^+ + n$$

R: ⁹

Soluções

Notes

```
\begin{array}{l} ^{1}5730 \text{ anos.} \\ ^{2}8.9 \times 10^{-14} \\ ^{3}a) \text{ V; b) V; c) F; d) F; e) V; f) F \\ ^{4}a) \text{ V; b) F; c) V; d) V \\ ^{5}d \\ ^{6}P(t) = \frac{E_{0}}{t_{0}}nk^{t/t_{0}}, 35 \text{ W, } 2.56 \times 10^{40} \text{ W, } 1.45 \times 10^{-3} \text{ W} \\ ^{7}a) \text{ F; b) V; c) F; d) F; e) V \\ ^{8}a) \text{ V; b) V; c) V; d) V \\ ^{9}a) \text{ V; b) F; c) V; d) V; e) F; f) V; g) V; h) V; i) F; j) F \end{array}
```