VECTOR CALCULUS, Week 1

1.2 A Catalog of Essential Functions;
1.3 The Limit of a Function;
1.4 Calculating Limits;
1.5 Continuity;
1.6 Limits Involving Infinity

1.2 A Catalog of Essential Functions

Def: We will use the following **basic functions** and their graphs. The domain is **R**, unless otherwise specified.

- constant functions f(x) = c
- basic power functions
 - natural-power functions $f(x) = x^n$ for n = 1, 2, 3, ...
 - \Rightarrow identity function f(x) = x
 - \Rightarrow square function $f(x) = x^2$
 - \Rightarrow cubic function $f(x) = x^3$
 - nth root functions $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ for $n = 2, 3, 4, \dots$ with domain $\begin{cases} [0, \infty) & \text{if } n \text{ is even} \\ \mathbf{R} & \text{if } n \text{ is odd.} \end{cases}$
 - \Rightarrow square root function $f(x) = \sqrt{x}$
 - \Rightarrow cube root function $f(x) = x^{\frac{1}{3}}$.
 - reciprocal functions $f(x) = x^{-n} = \frac{1}{x^n}$ for n = 1, 2, 3, ... with domain $x \neq 0$
 - \Rightarrow inverse/reciprocal function $f(x) = \frac{1}{x}$
 - \Rightarrow inverse square function $f(x) = \frac{1}{x^2}$
- absolute value function $f(x) = |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
- trigonometric functions
 - \Rightarrow cosine $f(x) = \cos x$
 - \Rightarrow sine $f(x) = \sin x$
 - \Rightarrow tangent $f(x) = \tan x = \frac{\sin x}{\cos x}$ for $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$
 - \Rightarrow arctangent/inverse tangent $f(x) = \arctan x = \tan^{-1} x$

1

- exponential function $f(x) = e^x$
- natural logarithm $f(x) = \ln x$ with domain $(0, \infty)$.

Def: Consider the unit circle, and take an angle $\theta \in \mathbf{R}$. Draw a unit line segment ℓ from the origin to the unit circle, such that ℓ makes angle θ counterclockwise from the positive x-axis; note that if θ is negative, we make angle $|\theta|$ clockwise from the positive x-axis. If (x, y) is the point on the unit circle at the end of ℓ , then we define $\cos \theta = x$ and $\sin \theta = y$.

Use the **unit circle graph** to remember the values of cosine and sine at the **basic angles** $\theta = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \dots$

Fact: Basic trigonometric formulas:

•
$$\sin^2 \theta + \cos^2 \theta = 1$$

•
$$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$$

•
$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$$

•
$$\cos(-\theta) = \cos\theta$$

•
$$\sin(-\theta) = -\sin\theta$$

Def: We define the following additional trigonometric functions.

•
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
 for $0 < \theta < \pi$.

•
$$\sec \theta = \frac{1}{\cos \theta}$$
 for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ and $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$.

•
$$\csc \theta = \frac{1}{\sin \theta}$$
 for $0 < \theta < \pi$ and $\pi < \theta < 2\pi$.

These are not basic functions, so you don't need to know their graphs.

Facts: Basic properties of the exponential and natural logarithm.

•
$$\ln e^x = x$$
 for all x , while $e^{\ln x} = x$ for $x > 0$.

•
$$e^{a+b} = e^a e^b$$
 and $(e^a)^b = e^{ab}$.

•
$$\ln(ab) = \ln(a) + \ln(b)$$
 and $\ln(a^b) = b \ln(a)$.

1.3 The Limit of a Function

"Def": Suppose $a \in \mathbf{R}$, and suppose f is defined on an interval containing a, but perhaps not at a.

- If there is $L \in \mathbf{R}$ so that as x approaches a, the value f(x) approaches L, then we say the **limit of** f at a exists and is \mathbf{L} , and write $\lim_{x\to a} f(x) = L$.
- If the value f(x) does not approach any fixed $L \in \mathbf{R}$ as x approaches a, then we say $\lim_{x\to a} f(x)$ does not exist, or DNE.

Def: Suppose $a \in \mathbb{R}$. Near a means on an interval containing a.

Ex: Use the graph of $f(x) = x^{-2}$ to show $\lim_{x\to 2} f(x) = \frac{1}{4}$.

Fact: Suppose f is a basic function. If f is defined near $a \in \mathbf{R}$ and including at a, then $\lim_{x\to a} f(x) = f(a)$.

"Def": We define one-sided limits. Suppose $a \in \mathbf{R}$

- Suppose f is defined on an interval (a, b), where b > a. If there is $L \in \mathbf{R}$ so that $as \ x > a$ approaches a, the value f(x) approaches L, then we say the **right-hand limit of** f **at** a **exists and is** L, and write $\lim_{x\to a^+} f(x) = L$.
- Suppose f is defined on an interval (b, a), where b < a. If there is $L \in \mathbf{R}$ so that as x < a approaches a, the value f(x) approaches L, then we say the **left-hand limit of** f **at** a **exists and is** L, and write $\lim_{x\to a^-} f(x) = L$.

We otherwise say $\lim_{x\to a^+} f(x)$ DNE or $\lim_{x\to a^-} f(x)$ DNE.

Fact: All appropriate left- and right-hand limits of basic functions exist at each point of their domains, with limit being the value of the function at the point.

Ex: One-sided limits.

- 1. Compute $\lim_{x\to 0^+} \sqrt{x}$.
- 2. $\lim_{x\to 0^-} \sqrt{x}$ DNE.

1.4 Calculating Limits

Thm (Basic Limit Laws): Suppose $a, b, c, L, M \in \mathbf{R}$.

- 1. Simplification Rule: Suppose f(x) = g(x) for all x near a, but perhaps not at a. If $\lim_{x\to a} g(x) = L$, then $\lim_{x\to a} f(x) = L$.
- 2. If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then

Addition Rule: $\lim_{x\to a} f(x) + g(x) = L + M$.

Multiplication Rule: $\lim_{x\to a} f(x)g(x) = LM$.

In particular, $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$.

Division Rule: If $M \neq 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$.

3. *u*-Substitution Rule:

If $\lim_{x\to a} g(x) = b$ and $\lim_{u\to b} f(u) = L$, then

$$\lim_{x \to a} f(g(x)) = \lim_{u \to b} f(u) = L.$$

Similar rules hold for one-sided limits.

Ex: Compute the following limits.

- 1. $\lim_{x\to 0} \sqrt{x+1}$
- 2. $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$; multiply by the **conjugate**.

Def: Suppose $a, L \in \mathbf{R}$, and suppose that as x approaches a, the values f(x) approach L with f(x) > L. Then we write $\lim_{x\to a} f(x) = L^+$.

We similarly define $\lim_{x\to a,a^{\pm}} f(x) = L^{\pm}$ (six combinations).

Ex: Compute $\lim_{x\to 0^+} \sqrt{e^x-1}$.

1.5 Continuity

Def: Suppose $a, b \in \mathbf{R}$.

- We say f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.
- We say f is **left-continuous at** a if and only if $\lim_{x\to a^-} f(x) = f(a)$.
- We say f is **right-continuous at** A if and only if $\lim_{x\to a^+} f(x) = f(a)$.
- We say f is continuous over [a, b] if f is continuous at every $x \in (a, b)$, f is right-continuous at a, and f is left-continuous at b.

We similarly define f is continuous over

$$(a, b), [a, b), (a, b], (a, \infty), [a, \infty), (-\infty, b), (-\infty, b], \text{ or } (-\infty, \infty).$$

Fact: If f is a basic function, then f is appropriately continuous, left-continuous, or right-continuous at every point in its domain.

1.6 Limits Involving Infinity

"Def": Suppose $a, L \in \mathbf{R}$.

- Suppose f is defined near a, but perhaps not at a. If as x approaches a the values of f(x) get larger in the positive direction, then we say the limit of f at a exists in the extended sense and is infinity, and write $\lim_{x\to a} f(x) = \infty$.
 - We similarly define $\lim_{x\to a,a^{\pm}} f(x) = \pm \infty$ (six combinations) in the extended sense.
 - If $\lim_{x\to a,a^{\pm}} f(x) = \pm \infty$, then we say f has a **vertical** asymptote at x = a.
- Suppose f is defined over (a, ∞) . If as x gets larger in the positive direction the values of f(x) get closer to L, then we say **the limit of** f at ∞ exists and is L, and write $\lim_{x\to\infty} f(x) = L$.
 - We similarly define $\lim_{x\to-\infty} f(x) = L$.
 - If either $\lim_{x\to\pm\infty} f(x) = L$, then we say f has horizontal asymptote y = L.
- Suppose f is defined on (a, ∞) . If as x gets larger in the positive direction the values of f(x) get larger in the positive direction, then we say the limit of f at ∞ exists in the extended sense and is ∞ , and write $\lim_{x\to\infty} f(x) = \infty$.
 - We similarly define $\lim_{x\to\pm\infty} f(x) = \pm\infty$ (four combinations).
 - If $\lim_{x\to\pm\infty} f(x) = \pm\infty$, then we appropriately say f blows up/down at $\pm\infty$.

Fact: We can use the graphs of the basic functions to compute their vertical asymptotes, horizontal asymptotes, blow-up, and blow-down behavior.

 $\mathbf{Ex:}\,$ Determine the existence of the following limits in the extended sense.

- 1. $\lim_{x\to 0,0^{\pm}} \frac{1}{x}$
- 2. $\lim_{x\to\pm\infty} \arctan x$
- 3. $\lim_{\theta \to \frac{\pi}{2}^-} \tan \theta$ and $\lim_{\theta \to -\frac{\pi}{2}^+} \tan \theta$
- 4. $\lim_{x\to\infty} \sin x$

Ex: Consider $\lim_{x\to\infty} (x^2 - x)$.