Graphentheoretische Konzepte und Algorithmen SoSe~2013

Probeklausur vom 17. Juni 2013 Deckblatt

J. Padberg

Bitte prüfen Sie zuerst, dass Ihr Klausurexemplar 10 Seiten hat.

Bitte heften Sie die Lösungen an das ausgefüllte Deckblatt.

Bitte schreiben Sie auf **jedes** Blatt, dass Sie abgeben, Ihren Namen und Matrikelnummer und vermerken Sie bitte an der Aufgabe, falls Sie zusätzliche Blätter zur Lösung benutzt haben

1100011.		
Name		
Matrikelnummer		

DAUER: Für die Bearbeitung sind 90 Minuten vorgesehen.

Bewertung:

Klausurpunkte	Leistungspunkte
> 100	15
≥ 96	14
≥ 91	13
≥ 86	12
≥ 81	11
	10
≥ 71	9
≥ 66	8
≥ 61	7
≥ 56	6
≥ 50	5
< 50	0-4

Erreichte Leistungspunkte:

Erlaubte Hilfsmittel:

- 3 doppelseitig beschriftete Seiten mit Notizen
- Papier und Schreibgerät
- und sonst nichts:
 - keine Folienkopien
 - kein Skript
 - keine elektronischen Geräte (kein Taschenrechner, kein Laptop, kein PDA, kein Handy, etc.)

Name	
Matrikelnummer	

Gegeben sei dieser gewichtete Graph: Berechnen Sie mit Hilfe des Dijkstra-Algorithmus den kürzesten Weg von v0 nach v8.

	Name	
	Matrikelnummer	
Aufgabe II:		15 Punkte
Wahr oder Falsch?? Jeweils Bitte begründen Sie Ihre Aussage	e. Jeweils	
1. Es gibt bipartite 5-reguläre Begründung:	Graphen.	wahr oder falsch
2. In einem vollständigen Gra mindestens so viele Eule Begründung:		wahr oder falsch
3. Es gibt Bäume mit genau e Begründung:	inem Blatt.	wahr oder falsch
4. In jedem Netzwerk ist der l der jeder Kante den We Begründung:	,	wahr oder falsch
5. Es gibt <i>k</i> -reguläre Graphen Begründung:	mit $k > 1$, die Bäume sind.	wahr oder falsch

Name	
Matrikelnummer	

Gegeben die folgende Adjazenzmatrix:

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

1. Geben Sie bitte den dazugehörigen Graphen G an. 5 Punkte

Name	
Matrikelnummer	

Fortsetzung der Aufgabe III:

2. Geben Sie bitte die dazugehörige Inzidenzmatrix M(G) an. 5 Punkte

3. Was bedeutet die Addition zweier Adjazenzmatrizen, also $A(G_1)+A(G_2)$? 5 **Punkte**

Name	
Matrikelnummer	

1. Färben Sie den gegebenen Graph G bitte mit dem einfachen Greedy-Algorithmus, wobei sich die Ordnung aus der Indizierung der Knoten ergibt, also $v_1, v_2, ..., v_9$.

. 6 Punkte

 ${\bf Ordnung:}$

Name	
Matrikelnummer	

Beweisen Sie bitte, dass für einen ungerichteten, schlichten Graphen G mit Maximalgrad $\Delta(G)$ die chromatische Zahl $\chi(G) \leq \Delta(G) + 1$ ist.

Tip: Induktion!

Name	
Matrikelnummer	

Gegeben dieser vollständige und gewichtete Graph K_6 . Finden Sie mit dem "Nächstgelegener Knoten"-Algorithmus einen möglichst kurze Rundreise, die bei v1 beginnt.

Name	
Matrikelnummer	

Erläutern Sie, die Mächtigkeit von Graphgrammatiken. Nehmen Sie Bezug auf die Turingmaschinen und erläutern Sie die zugrunde liegenden Konstruktionen. .. 15 Punkte

Name	
Matrikelnummer	

2. Gibt es

- mindestens so viele schwache wie starke Komponenten oder
- mindestens so viele starke wie schwache Komponenten?