УДК 81'322

АЛГОРИТМИЧЕСКОЕ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ОБРАБОТКИ КОЛИЧЕСТВЕННЫХ ЧИСЛИТЕЛЬНЫХ ЕСТЕСТВЕННЫХ ЯЗЫКОВ И РЕЗУЛЬТАТЫ ИХ РАБОТЫ

А. В. Пруцков, д.т.н., доцент, профессор кафедры ВПМ РГРТУ; mail@prutzkow.com **Д. М. Цыбулько**, аспирант кафедры ВПМ РГРТУ; mail@prutzkow.com

Рассматривается решение актуальной задачи преобразования и перевода количественных числительных естественных языков. Целью работы является разработка алгоритмического и программного обеспечения обработки количественных числительных естественных языков. В соответствии с предложенным методом все преобразования над количественными числительными выполняются через промежуточный этап, описанный трехуровневой обобщенной моделью числительного. Для каждого преобразования разработан соответствующий алгоритм. Алгоритмы преобразований реализованы в Интернет-приложении для обработки количественных числительных. Каждый запрос от пользователя сети Интернет записывается в протоколе работы Интернет-приложения. На основе анализа более 200 000 записей этого протокола был сделан вывод о том, что наибольшее число запросов связано с преобразованием количественных числительных испанского языка. Наибольшее количество запросов поступило от пользователей из США и России. Для обработки протокола работы Интернет-приложения использовался программный инструментарий с гибким языком выборки данных.

Ключевые слова: компьютерная лингвистика, автоматическая обработка текстов, перевод количественных числительных, алгоритмы обработки количественных числительных, сеть Интернет, Интернет-приложение, лингвистическое программное обеспечение, обработка протокола работы Интернет-приложения, результаты работы Интернет-приложения.

DOI: 10.21667/1995-4565-2017-59-1-93-98

Введение

Автоматическая обработка текстов является динамично развивающейся научной отраслью. Это обусловлено двумя факторами:

- 1) представлением знаний человечества в виде текста, а не в строго формальном виде;
- 2) недостаточной обработкой текста существующими методами (например, ограниченная функциональность методов преобразования текста в смысл).

Текст – это многомерный объект, который может рассматриваться на разных уровнях, например на уровне букв, слов, текста целиком (для сравнения с другими текстами) [1]. Уровень слов текста обычно связывают с морфологическим анализом и синтезом форм слов. Также при морфологической обработке текстов необходимо обрабатывать числительные, в том числе и количественные, употребленные в тексте. Тексты на естественных языках анализируются и синтезируются лингвистическими процессорами (ЛП).

«ЛП включает в себя три вида обеспечения: лингвистическое, математико-алгоритмическое и программное. Математико-алгоритмическое

обеспечение — это формальные языки представления данных в ЭВМ и алгоритмы переработки этих данных, а программное обеспечение — набор программ, реализующих алгоритмы» [2]. Лингвистическое обеспечение «включает в себя словари и грамматические правила» [2].

Будем продолжать использовать следующую терминологию [3, 4]. Числительное — это символьное (словесное) представление количественного числительного, например *«триста пятьдесят два»*. Число — это цифровое представление количественного числительного, например «352».

В работе [3] предложен метод обработки количественных числительных. Метод формализует машинный перевод числительных одного естественного языка на другой язык, преобразование чисел в числительные и числительных в числа.

Все преобразования выполняются через промежуточный этап (см. рисунок). Структура числительного промежуточного этапа описана трехуровневой обобщенной моделью числительного [3, 4].

Стрелки на рисунке соответствуют алгоритмам преобразований числительных и чисел.

Количественные числительные естественных языков

Схема преобразования числительных с предложенным методом их обработки

Алгоритмическое обеспечение обработки количественных числительных

В качестве алгоритмической модели для записи алгоритмов преобразований числительных и чисел использовались нормальные алгоритмы Маркова [5]. Выбор нормальных алгоритмов Маркова обоснован достаточностью имеющихся у них операций и лаконичностью записи.

Алгоритмы синтеза и анализа целой и дробной частей числительных приведены в работе [3]. В этой работе задачи синтеза и анализа названы задачами генерации и определения соответственно. В этой статье приведем некоторые алгоритмы преобразований «язык — модель» и «модель — язык», преобразующие числительные в обозначениях трехуровневой обобщенной модели и числительные естественных языков.

Алгоритм преобразования «модель – русский язык» І преобразует дробную часть числительного, добавляя названия порядков триад и удаляя нули в начале дробной части. Алгоритм включает следующие подстановки:

1)
$$C_k \gamma_1^j \rightarrow \gamma_2^j C_k M_j$$
;
 $j = 1, 2, ...; k = 1, 2, ..., 9$
 $C_k \gamma_1^0 \rightarrow \gamma_2^0 C_k$; $k = 1, 2, ..., 9$

2) $C_k \gamma_2^j \rightarrow \gamma_3^j C_k D_1;$ j = 0, 1, 2, ..., k = 1, 2, ..., 9

3) $C_k \gamma_3^j \rightarrow \gamma_1^{j+1} C_k D_2;$ j = 0, 1, 2, ...; k = 1, 2, ..., 9

4) $C_0C_0C_0\gamma_1^j \rightarrow \gamma_1^{j+1}; \quad j=0,1,2,...$

5) $C_0 \gamma_1^j \to \gamma_2^j M_j; j = 1, 2, ...$ $C_0 \gamma_1^0 \to \gamma_2^0$

6) $C_0 \gamma_2^j \rightarrow \gamma_3^j$; j = 0, 1, 2, ...

7) $C_0 \gamma_3^j \rightarrow \gamma_1^{j+1}; j = 0, 1, 2, ...$

8) $E\gamma_i^j \to E \bullet$; i = 1, 2, 3; j = 0, 1, 2, ...

9)
$$E\lambda_i C_0 \to E\lambda_{i+1}$$
; $i = 0, 1, ...$
 $10)\lambda_i C_k \to C_k \lambda_{i+1}$; $i = 1, 2, ...; k = 0, 1, ..., 9$
 $11)\lambda_i B \to \gamma_1^0 B_i$; $i = 1, 2, ...$
 $12)\lambda_i \to \gamma_1^0 B_i$; $i = 1, 2, ...$
 $13)E \to E\lambda_0$

Алгоритм преобразования *«русский язык – модель»* І выполняет обратные действия: удаляет названия порядков триад и добавляет нули в начало дробной части. Алгоритм состоит из следующих подстановок:

1)
$$M_j \gamma_i^L B_t \rightarrow \gamma_1^j B_t [C_0]_{(4-i)+3\times(j-L-1)};$$

 $i = 1, 2, 3; L = 0, 1, 2, ...;$
 $j = L, L+1, L+2, ...$

2) $C_k \gamma_1^j B_t \rightarrow \gamma_2^j B_t C_k$; j = 0, 1, 2, ..., k = 1, 2, ..., 9

3) $C_k D_1 \gamma_i^j B_t \rightarrow \gamma_3^j B_t C_k [C_0]_{2-i};$ i = 1, 2; j = 0, 1, 2, ...;k = 1, 2, ..., 9

4) $C_k D_2 \gamma_i^j B_t \rightarrow \gamma_1^{j+1} B_t C_k [C_0]_{3-i};$ i = 1, 2, 3; j = 0, 1, 2, ...;k = 1, 2, ..., 9

5) $E \gamma_i^j B_t \to E[C_0]_{t-((i-1)+3\times j)} \bullet$ i = 1, 2, 3; j = 0, 1, 2, ...;t = 1, 2, ...

6) $B_t \to \gamma_1^0 B_t$; t = 1, 2, ...

Выражения $(4-i)+3\times (j-L-1)$ (подстановка 1) и $t-((i-1)+3\times j)$ (подстановка 5) используются для определения количества нулей в дробной части.

Алгоритм преобразования *«модель – немец-кий язык»* II меняет местами единицы и десятки и вставляет между ними связку *«und»*:

1)
$$C_iD_1C_j \rightarrow C_j \text{und} C_iD_1;$$

 $i = 2, 3, ..., 9; j = 1, 2, ..., 9$

В алгоритмах использованы следующие обозначения:

– названия цифр (простые непроизводные числительные): $C = \{C_0, C_1, C_2, ..., C_9\}$;

— названия десятков и сотен: $D = \{D_1, D_2\}$, где D_1 — обозначение десятков; D_2 — обозначение сотен;

— названия порядков триад: *«тысячи»*, *«миллионы»*, *«миллиарды»* и т.д.: $M = \{M_1, M_2, M_3, \dots\}$, где M_i — название i+1-го порядка триады числительного;

- название разделителя целой и дробной частей: E;

— названия окончания дробной части: B, B_1 , B_2 , ... (например, для русского языка «*десятых*», «*сотых*» и т.д.).

Запись $[X]_k$ означает последовательность k символов X.

Буквы греческого алфавита в алгоритмах используются как вспомогательные символы, необходимые для решения задачи.

Названия цифр в каждом естественном языке имеют конкретное представление. Например, названия цифр для испанского языка:

 $C_1 = \text{``uno"};$ $C_2 = \text{``dos"};$ $C_3 = \text{``tres"};$ $C_4 = \text{``cuatro"};$ $C_5 = \text{``cinco"};$ $C_6 = \text{``seis"};$ $C_7 = \text{``siete"};$ $C_8 = \text{``coho"};$ $C_9 = \text{``nueve"}.$

Использование нормальных алгоритмов Маркова позволило без труда определить трудоемкость алгоритмов преобразований «язык — модель» и «модель — язык», «число — модель» и «модель — число». В данном случае трудоемкость алгоритмов можно считать мерой близости правил описания количественных числительных естественного языка и трехуровневой обобщенной модели числительного.

Метод обработки количественных числительных и алгоритмы преобразования числительных реализованы на практике в виде программного Интернет-приложения.

Интернет-приложение метода обработки количественных числительных

В 2012 году авторами статьи было разработано Интернет-приложение для обработки количественных числительных естественных языков (далее Интернет-приложение) [6],которое информационнодоступно пользователям Интернет телекоммуникационной сети различных стран ПО адресам: http://prutzkow.com/ru-ru/numbers/ (русскоязычная версия) и http://prutzkow.com/en-us/numbers/ (англоязычная версия).

Интернет-приложение реализует на практике метод обработки числительных и решает следующие основные задачи:

- 1) перевод количественных числительных русского, английского, немецкого, испанского и финского языков в любом направлении;
- 2) преобразования «число числительное» и «числительное число»;
- 3) склонение количественных числительных русского языка.

Интернет-приложение использовалось в качестве составной части инструментария экспертной сети для переводчиков My-Polyglot.com.

Каждый запрос к Интернет-приложению фиксируется в протоколе работы. Протокол работы служит для отладки Интернет-приложения и получения статистики запросов. Каждая запись протокола включает следующие данные о запросе:

- дата и время;
- IP-адрес;
- введенная строка;
- желаемое направление перевода;
- определяемый тип введенной строки (число или числительное; для числительных определяется также естественный язык);
 - результат перевода;
- строка UserAgent, передаваемая программой просмотра веб-страниц.

В случае наличия ошибок во введенной строке вместо определяемого типа введенной строки в запись добавляется кодовое наименование ошибки «error», а вместо результата перевода — описание ошибки. Такой запрос считается ошибочным.

К моменту написания статьи объем протокола достиг 200 000 записей. Обработка и выборка записей по определенным фильтрам выполнялись с помощью специального программного инструментария.

Программный инструментарий обработки протокола работы Интернет-приложения

Первоначально протокол работы Интернетприложения [7, 8] хранился и обрабатывался в электронной таблице. Электронная таблица достаточна для обработки данных протокола работы Интернет-приложения. Также были написаны несколько программ-утилит, выполняющих некоторые операции по обработке статистики, например выделение пользователей из списка запросов.

Для получения статистики по странам необходимо добавить данные о географическом положении IP-адреса. Автоматизировать этот процесс в электронных таблицах затруднительно. Поэтому было принято решение о разработке программного инструментария обработки протокола работы Интернет-приложения.

К данному программному инструментарию предъявлялись следующие основные требования:

- 1) добавлять к существующей записи данных о географическом положении IP-адреса;
- 2) использовать гибкий язык выборки и упорядочивания данных, в том числе для построения диаграмм и графиков.

Данные о географическом положении IP-адреса хранились во внешних базах данных. Эти базы использовались при выборке данных по заданным фильтрам. В качестве языка выборки и упорядочивания данных использовался язык SQL.

Кроме реализации перечисленных требований программный инструментарий имеет следующие возможности:

- задание формата входных данных статистики работы Интернет-приложения на языке разметки XML; эта возможность позволяет обрабатывать статистику работы любого Интернет-приложения, а не только рассматриваемого в работе;
- обновление баз данных о географическом положении IP-адресов;
- экспорт выборок данных в формате CSV (comma-separated values); эта возможность позволяет строить на основе выборок данных диаграммы и графики в специализированных программах;
- сохранение и быстрый вызов наиболее часто используемых запросов на языке SQL для выборки и упорядочивания данных.

Программный инструментарий обработки протокола работы Интернет-приложения разработан Александром Александровичем Музалевым [9, 10] в его магистерской диссертации, выполненной под научным руководством А.В. Пруцкова.

Результаты работы программного обеспечения обработки количественных числительных

Данная статья продолжает публикацию результатов работы Интернет-приложения, начатую в работах [7, 8]. В этих статьях были представлены результаты работы Интернет-приложения за 2012-2014 годы. В данной статье будут представлены результаты работы Интернет-приложения по обработке количественных числительных в 2014-2016 годах.

Будем продолжать, как и в работе [8], использовать следующую терминологию.

Посетитель Интернет-приложения — это пользователь сети Интернет, который зашел на страницу Интернет-приложения по адресу, указанному выше.

Пользователь Интернет-приложения — это посетитель Интернет-приложения, который отправлял запрос Интернет-приложению на обработку количественных числительных.

Результаты работы Интернет-приложения представлены в таблицах 1 и 2.

Наиболее популярными направлениями преобразования количественных числительных в 2014-2016 годах были направления «число – испанский язык», «число – русский язык», «число –

немецкий язык» и «число – английский язык» (таблица 1). Все остальные направления не превысили по отдельности 1 %. Необходимо отметить, что в 2016 году направление «испанский язык – английский язык» составило 1,3 %. Наиболее популярными языками в запросах являются (в порядке убывания популярности) испанский, русский, немецкий и английский языки

В таблице 1 в каждой ячейке указаны три значения. Верхнее значение соответствует 2014 году, среднее значение — 2015 году, а нижнее значение — 2016 году.

Основное количество пользователей Интернет-приложения проживают в США и России (таблица 2). Эта тенденция не изменяется уже на протяжении трех последних лет. Пользователи Интернет-приложения проживают в более чем 100 странах на всех постоянно обитаемых континентах. Данные для таблицы 2 получены на основе всех запросов, включая ошибочные.

Данные, приведенные в таблицах статьи, получены с помощью разработанного программного инструментария обработки статистики работы Интернет-приложения.

Заключение

В статье изложены следующие результаты.

- Представлены некоторые разработанные алгоритмы преобразований количественных числительных, реализующие метод их обработки. В качестве алгоритмической модели использовались нормальные алгоритмы Маркова.
- Приведено краткое описание функциональности Интернет-приложения для обработки количественных числительных и формата протокола его работы. Вместе с программным инструментарием обработки протокола работы они составляют программное обеспечение метода обработки количественных числительных.
- Представлены результаты работы Интернет-приложения за 2014-2016 годы. Наиболее популярными направлениями преобразования количественных числительных являются направления, связанные с испанским, русским, немецким и английским языками. Пользователи Интернет-приложения проживают в более чем 100 странах мира. Большинство из них проживают в США и России.

Большое число пользователей Интернетприложения подтверждает актуальность изложенных в статье научных разработок.

Планируется разработка других лингвистических Интернет-приложений.

-F							
Куда пере-	Доли от общего числа запросов в каждый год, %						
водится							
Откуда переводится	Русский	Английский	Испанский	Немецкий	Финский	Число	Общий итог
	< 1	< 1	< 1	< 1	< 1	< 1	1,2
Русский	< 1	< 1	< 1	< 1	< 1	< 1	0,7
	< 1	< 1	< 1	< 1	< 1	< 1	1,1
	< 1	< 1	< 1	< 1	< 1	< 1	0,7
Английский	< 1	< 1	< 1	< 1	< 1	< 1	0,6
	< 1	< 1	< 1	< 1	< 1	< 1	0,5
	< 1	< 1	< 1	< 1	< 1	< 1	1,1
Испанский	< 1	< 1	< 1	< 1	< 1	< 1	1,4
	< 1	1,3	< 1	< 1	< 1	< 1	1,8
	< 1	< 1	< 1	< 1	< 1	< 1	0,4
Немецкий	< 1	< 1	< 1	< 1	< 1	< 1	0,1
	< 1	< 1	< 1	< 1	< 1	< 1	0,1
	< 1	< 1	< 1	< 1	< 1	< 1	< 0,01
Финский	< 1	< 1	< 1	< 1	< 1	< 1	< 0,01
	< 1	< 1	< 1	< 1	< 1	< 1	< 0,01
	15,7	6,9	58,9	13,7	< 1	< 1	96,6
Число	8,4	4,8	76,9	6,0	< 1	< 1	97,2
	15,5	6,6	63,7	9,4	< 1	< 1	96,5
	16,7	7,8	59,5	14,1	0,7	1,1	100,0
Общий итог	8,8	6,0	77,6	6,3	0,5	0,9	100,0
	16,1	8,0	64,3	10,1	0,6	0,9	100,0

Таблица 1 — Процентное соотношение запросов на обработку числительных Интернет-приложения по направлениям преобразования и по годам

Таблица 2 — Процентное соотношение пользователей Интернет-приложения по странам мира и по годам

	* *					
	Доли от общего числа					
Страны мира	пользователей в каждый					
Страны мира	год, %					
	2014	2015	2016			
США	53,7	68,9	52,2			
Россия	26,6	14,3	21,9			
Украина	4,8	2,6	3,3			
Великобритания	1,3	1,8	2,6			
Канада	1,5	1,3	1,5			
Индия	0,8	1,0	1,5			
Мексика	0,3	0,6	1,4			
Беларусь	1,9	0,8	1,1			
Остальные	9,1	8,7	14,5			
страны						

Библиографический список

1. **Ломакина Л. С.**, **Суркова А. С.** Информационные технологии анализа и моделирования текстовых данных: монография. Воронеж: Изд-во «Научная книга», 2015.-208 с.

- 2. **Кулагина О. С.** Об аспекте меры в лингвистическом знании // Вопросы языкознания. 1991. № 1. С. 49-60.
- 3. **Пруцков А. В.** Обработка числительных естественных языков с помощью формальных грамматик и нормальных алгоритмов Маркова // Вестник Рязанского государственного радиотехнического университета. 2009. № 28. С. 49-55.
- 4. **Пруцков А. В.** Трехуровневая обобщенная модель числительного и ее прикладное приложение // В сборнике: Задачи системного анализа, управления и обработки информации: межвуз. сб. науч. тр. М., 2015. С. 121-128.
- 5. **Марков А. А.**, **Нагорный Н. М.** Теория алгорифмов. М.: Наука, 1984. 432 с.
- 6. **Пруцков А. В.**, **Цыбулько Д. М.** Интернетприложение метода обработки количественных числительных естественных языков // Вестник Рязанского государственного радиотехнического университета. 2012. N 41. С. 70-74.
- 7. **Пруцков А. В.**, **Цыбулько Д. М.** Анализ статистики использования Интернет-приложения обработки количественных числительных естественных языков // Вестник Рязанского государственного радиотехнического университета. 2013. № 4-1 (46). С. 130-134.

- 8. **Пруцков А. В.**, **Цыбулько Д. М.** Теоретикомножественное представление метода обработки количественных числительных естественных языков и особенности их перевода в различных странах // Вестник Рязанского государственного радиотехнического университета. 2014. № 50-2. С. 69-75.
- 9. **Музалев А. А.** Реализация программной системы для анализа журналов учета Интернетзапросов // Проблемы передачи и обработки инфор-
- мации в сетях и системах телекоммуникаций: материалы 18-й Междунар. науч.-техн. конф. М.: Горячая линия Телеком, 2015. С. 181-183.
- 10. **Музалев А. А.** Функциональность и структура информационно-программной системы для анализа журналов регистрации Интернет-ресурса // Интеллектуальные и информационные системы: материалы Всерос. науч.-техн. конф. / Тульск. гос. ун-т. Тула, 2015. С. 112-114.

UDC 81'322

ALGORITHMS AND SOFTWARE FOR NATURAL LANGUAGE CARDINAL NUMBER PROCESSING AND ITS RESULTS

A. V. Prutzkow, PhD (technical sciences), assistant professor, RSREU, Ryazan; mail@prutzkow.com **D. M. Tsybulko**, post-graduate student, RSREU, Ryazan; mail@prutzkow.com

We research an urgent problem of conversion and translation of natural language cardinal numbers. The research aim is to develop algorithmic and software provision of a natural language cardinal number processing. According to the method all numerals are processed via an intermediate step formalized by three-level abstract model of numeral. We develop algorithms for every kind of numeral conversion. The conversion algorithms are used in an Internet-application for cardinal number processing. Every Internet-application user request is stored in its working log. On the basis of the 200 000 record log analysis we come to a conclusion that the largest user query amount is related to the Spanish cardinal numbers. The largest user query number was sent by Internet-application from the USA and the Russian Federation. For Internet-application working log record processing we use special software tools with flexible language of data selection.

Keywords: computational linguistics, natural language processing, cardinal number translation, cardinal number processing algorithms, Internet network, Internet-application, working results of Internet-application.

DOI: 10.21667/1995-4565-2017-59-1-93-98

References

- 1. **Lomakina L. S.**, **Surkova A. S.** Informatsionnye tehnologii analiza i modelirovanija tekstovyh dannyh (Information technologies for text data analysis and modelling): monografija. Voronezh: Izdatelstvo «Nauchnaja kniga», 2015. 208 pp. (in Russian).
- 2. **Kulagina O. S.** Ob aspekte mery v lingvisticheskom znanii. Voprosy jazykoznanja. 1991, no. 1, pp. 49-60 (in Russian).
- 3. **Prutzkow A. V.** Obrabotka chislitelnyh estestvennyh jazykov s pomoschju formalnyh grammatik i normalnyh algoritmov Markova. Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2009, no. 28, pp. 49-55 (in Russian).
- 4. **Prutzkow A. V.** Trehurovnevaja obobschennaja model chislitelnogo I eje prikladnoe prilozhenie. V sbornike: Zadachi sistemnogo analiza, upravlenija i obrabotki informatsii: mezhvuzovskij sbornik nauchnyh trudov. Moscow, 2015, pp. 121-128 (in Russian).
- 5. **Markov A. A.**, **Nagornyj N. M.** Teorija algorit-mov (The Theory of Algorithms). Moscow, Nauka, 1984, 432 pp. (in Russian).
- 6. **Prutzkow A. V.**, **Tsybulko D. M.** Internet-prilozhenie metoda obrabotki kolichestvennyh chislitelnyh estestvennyh jazykov. Vestnik Rjazanskogo gosudarst-

- vennogo radiotekhnicheskogo universiteta. 2012, no. 41, pp. 70-74 (in Russian).
- 7. **Prutzkow A. V**, **Tsybulko D. M.** Ananliz statistiki ispolzovanija Internet-prilozhenija obrabotki kolichestvennyh chislitelnyh estestvennyh jazykov. Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2012, no. 4-1 (46), pp. 130-134 (in Russian).
- 8. **Prutzkow A. V**, **Tsybulko D. M.** Teoretikomnozhestvennoe predstavlenie metoda obrabotki kolichestvennyh chislitelnyh estestvennyh jazykov i osobennosti ih perevoda v razlichnyh stranah. Vestnik Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2014, no. 50-2, pp. 60-75 (in Russian).
- 9. **Muzalev A. A.** Realizatsija programmnoj sistemy dlja analiza zhurnalov ucheta Internet-zaprosov. Problemy peredachi i obrabotki informatsii v setjah i sistemah telekommunikatsij: materialy 18 Mezhdunarodnoj nauchnotehnicheskoj konferentsii. Moscow, Gorjachaja linija Telekom, 2015, pp. 181-183 (in Russian).
- 10. **Muzalev A. A.** Funktsionalnost i struktura informatsionno-programmnoj sistemy dlja analiza zhurnalov registratsii Internet-resursa. Intellectualnye I informatsionnye sistemy: materialy Vserossijskoj nauchnotehnicheskoj konferentsii. Tula, TSU, 2015, pp. 112-114 (in Russian).