Examen Final

May 17, 2021

Dentro de su carpeta personal Alumnos/<nombre de usuario>, generar una nueva carpeta con el nombre de ExamenFinal.

- Dentro de esta carpeta introducir su código para la parte práctica y un documento que tenga las respuestas a la parte teórica.
- La duración del examen es de 2 horas y 45 minutos.
- Y el método de entrega es un Pull Request al repositorio del curso.

1 Teoría (40pts)

1.1 Gradiente Conjugado

• Demuestre que si los vectores no nulos $p_1, p_2, ..., p_l$ satisfacen que :

$$p_i^T A p_j = 0, \forall i \neq j,$$

y A es simétrica y positiva definida, entonces los vectores son linealmente independientes.

• Dado este resultado, ¿Por qué el gradiente conjugado converge en a lo más n iteraciones?.

1.2 **BFGS**

• Verifique que B_{k+1} y H_{k+1} son inversas una de la otra.

2 Code (60 puntos)

Los algoritmos que se piden correr a continuación tienen que ser propios (con excepción de los que de hecho hicimos en clase). Lo hecho en clase y modificaciones a los mismos es lo que se espera. No se espera que usen las funciones de optimización de scipy.

2.1 DFP (20 puntos)

Corre el Algoritmo BFGS, pero con la actualización DFP con la función cuadrados en dimensión 10 con punto inicial:

```
x0 = [(-1)**i*10 \text{ for i in range}(10)]
```

2.2 Gradiente Conjugado (40 puntos)

Con TU clave única como semilla, genera una matriz diagonal con 10^6 números aleatorios en la diagonal, después de esto, genera un vector del mismo tamaño. I.e.

```
import random
random.seed(108683) # Cambien a su propia clave
Diag_A = [random.randint(1,1000) for x in range(1000000)]
b = [random.randint(1,1000) for x in range(1000000)]
```

Ahora resuelve el sistema lineal Ax = b con el algoritmo de Gradiente Conjugado.

• NOTAS:

- No intentes generar la matriz completa , ya que se requieren 7.28
 TiB de memoria para almacenarlo.
- La matriz tiene 10^{12} entradas, pero sólo 10^6 de ellas son distintas de cero :).
- Sólo se puede usar una implementación propia de matriz rala.