

Sets Ex 1.4 Q9

(i) We know that, if a set has n elements, then its power set has 2^n elements.

Here, n = 1, so there $2^1 = 2$ subsets of the given set.

The possible subsets are ϕ , $\{a\}$.

- (ii) The set has two elements, so power set has $2^2 = 4$ elements, namely ϕ , $\{0\}$, $\{1\}$, $\{0,1\}$.
- (iii) The set has 3 elemets , so power set has $2^3 = 8$ elements, namely $\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}$.
- (iv) The set has 2 elements, so power set has $2^2 = 4$ elements, namely, ϕ , $\{1\}$, $\{\{1\}\}$, $\{1,\{1\}\}\}$.
- (v) The set has 1 element, so power set has 1 = 2 elements, namely ϕ , $\{\phi\}$.

Sets Ex 1.4 Q10

(i) We know that if A is a set and B a subset of A, then B is called a proper subset of A if $B \subseteq A$ and $B \neq A$, ϕ and is written as $B \subset A$ or $B \subseteq A$.

Hence, the proper subsets are given by $\{1\}$, $\{2\}$.

- (ii) The proper subsets are given by $\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\}$.
- (iii) The only subsets of the given set are $\emptyset \ \& \ \{1\}$. Hence, there are no proper subsets.

Sets Ex 1.4 Q11

We know that, if A is a set having n elements then power set of A, namely P(A) has 2^n elements. Out of this A is not proper subset.

Hence, the total number of proper subsets of a set consisting of n elements in 2^n - 1

Sets Ex 1.4 Q12

The symbol $'\Leftrightarrow$ 'stands for if and only if (in short if).

In order to show that two sets A and B are equal we show that $A \subseteq B$ and $B \subseteq A$.

We have $A \subseteq \phi$. $\cdot \cdot \cdot \phi$ is a subset of every set

 $\therefore \ \phi \subseteq A$

Hence $A = \delta$

To show the backward implication, suppose that $A = \phi$

 $\cdot\cdot$ every set is a subset of itself

 $\therefore \phi = A \subseteq \phi$

Hence, proved.

******* END *******