QC VECTORS AND COMPLEX N QUBIT

SCALARS VS VECTORS

SCALARS

- *A quantity having only magnitude (no direction)
- *Written as: a∈R

VECTORS

- *A quantity with both magnitude and direction
- \star Written as: \overrightarrow{V} ∈ \mathbb{R}^n
- **★Can be described by a list of** scalars (cartesian) or a radius and an angle (polar)

INTRO TO VECTORS

VECTOR REPRESENTATION

General 2D vector notation

$$\overrightarrow{V} = \begin{pmatrix} V_x \\ V_y \end{pmatrix}$$

$$\overrightarrow{AB} \begin{array}{c} \overrightarrow{A} = (1,2) \\ \overrightarrow{B} = (5,6) \end{array} \overrightarrow{V}_{AB} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

VECTOR OPERATIONS

Vector addition

VECTOR PROPERTIES

Cartesian form

VECTOR GENERALIZATION

★ 3D vectors: $\vec{a} \in \mathbb{R}^3$

* Scalars: $\mathbf{a} \in \mathbb{R}^1 \times 4\mathbb{D}$ vectors: $\overrightarrow{\mathbf{a}} \in \mathbb{R}^1$

★ 2D vectors: $\vec{a} \in \mathbb{R}^2$ ★ ND vectors: $\vec{a} \in \mathbb{R}^n$

All vectors have

VECTOR MAGNITUDE

$$\|\overrightarrow{\mathbf{V}}\| = \sqrt{V_{\mathsf{x}}^2 + V_{\mathsf{g}}^2}$$

$$\overrightarrow{V} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$\|\overrightarrow{V}\| = \sqrt{3^2 + 6^2}$$

$$\|\overrightarrow{\mathbf{V}}\| = \sqrt{3^2 + 6^2}$$

$$= \sqrt{45}$$

$$= 9$$

$$\vec{V} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$tan \theta = \frac{6}{3}$$

$$\theta = tan^{-1} \left(\frac{6}{3} \right)$$

$$= 1.1 rad$$

VECTOR DIRECTION

 $\angle \overrightarrow{\mathbf{V}} = \mathsf{tan}^{-1} \left(\frac{\mathsf{V}_{\mathsf{g}}}{\mathsf{V}_{\mathsf{v}}} \right)$

VECTOR DECOMPOSITION

"Every vector in \mbox{R}^2 can be expressed as a linear combination of $\widehat{\mathbf{x}}$ and $\widehat{\mathbf{g}}$ "

Define vectors:

$$\widehat{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \widehat{y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

INTRO TO COMPLEX NUMBERS

WHY COMPLEX N

$$\sqrt{-1} = iii$$

$$\star (bi)^{2} = b^{2}i^{2} = -b^{2}$$

$$b \in \mathbb{R}$$

$$\star \sqrt{-a} = \sqrt{ai}$$

COMPLEX NUMBERS DEFINITION

VECTOR REPRESENTATION

COMPLEX ADDITION

COMPLEX MULTIPLICATION

$$(a+ib)(c+id) = (ac-bd)+i(ad+bc)$$

EULER'S FORMULA AND COMPLEX EXPONENTIALS

Euler's formula: e^{iφ}=cosφ+isinφ

Polar representation: $\mathbf{Z} = \mathbf{X} + i\mathbf{y} = |\mathbf{Z}|(\cos \varphi + i\sin \varphi) = \mathbf{r}e^{i\varphi}$

COMPLEX CONJUGATION

 $|\mathbf{a}+\mathbf{i}\mathbf{b}| = \sqrt{\mathbf{a}^2 + \mathbf{b}^2}$

COMPLEX MODULUS

$$|\mathbf{Z}| = |\mathbf{a} + \mathbf{i}\mathbf{b}| = \sqrt{\mathbf{z} \cdot \overline{\mathbf{z}}}$$
$$= \sqrt{(\mathbf{a} + \mathbf{i}\mathbf{b})(\mathbf{a} - \mathbf{i}\mathbf{b})}$$
$$= \sqrt{\mathbf{a}^2 + \mathbf{b}^2}$$

EULER'S INDENTITY

$$e^{i\pi} + 1 = 0$$

$$= \cos(\pi) + i\sin(\pi) + 1$$

=-1+1=0

COMPLEX OPERATIONS

Complex exp. addition It's good to know the following key identites'

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

 $re^{i\phi} = re^{-i\phi}$

Complex exp. conjugation

Complex exp. multiplication