Harley Patton

WORK EXPERIENCE

MAY 2018 - AUG 2018

Amazon

Software Development Engineer Intern

- Created a framework to measure the quality of neural machine translation models for the AWS Translate team.
- Conducted experiment to determine which translation quality metrics best correlated with human evaluations from a team of professional translators.
- Trained multilayer perceptron regression model to predict human evaluation scores of machine translations, where input features were derived from semantic and grammatical analysis of the source and target sentences.
- Shipped data pipeline to ingest customer requests and corresponding machine-translated responses, and then generate quality report to gauge how well the translation models perform on production data.

AUG 2016 - PRESENT

Lawrence Berkeley National Laboratory *Research Apprentice*

- Trained generative adverserial networks to simulate the effects of particle collision events in a way indistinguishable from events measured at CERN, motivated by the fact that feed-forward networks are much more efficient than the current state-of-the-art simulators.
- Developed a heuristic that can be used to classify particle types from measured energy-loss readouts, and proved its optimality.
- Developed a regression model for extracting exclusive quark/gluon probability distributions from mixed particle jet distributions measured at CERN.

AUG 2016 - PRESENT

UC Berkeley Computer Science Division **Student Instructor**

- Student instructor for Computer Science 170 (Efficient Algorithms and Intractable Problems). Course details at cs170.org.
- Teaches a discussion section of 50 students how to think about and develop algorithms.
- Leads development of the course's final project, which includes creating solvers, internal documentation, and a cloud autograding framework that can handle requests from over 700 students.

MAY 2017 - AUG 2017

Rigetti Computing Software Engineer Intern

- Contributed to a python library (pyquil.readthedocs.io) that allow users to connect to and run programs on in-house quantum processing units over the cloud.
- Wrote and deployed an interactive website to demonstrate the ability of quantum algorithms to find approximate solutions to NP-complete problems.
- Deployed a data lake to AWS servers in order to store readout values from control system calibrations.

EDUCATION

AUG 2015 - PRESENT

University of California, Berkeley

B.A. in Computer Science, Applied Mathematics

GPA: 3.943

Relevant Coursework: Efficient Algorithms and Intractable Problems, Machine Learning, Artifical Intelligence, Database Systems, Computer Security, Data Structures, Machine Architecture, Probability and Random Processes, Optimization Models

AWARDS

2018 Jim and Donna Grey Endowment

University of California, Berkeley Awarded to 7 computer science students for high academic acheivement

2018 **Outstanding Student Instructor**University of California, Berkeley

University of California, Berkeley
Awarded to top 9% of student instructors

PROJECTS

Optimal Particle Identification

Heuristic to classify particle types (pion, kaon, proton) based off energy-loss readouts measured at CERN. Showed that a classifier using this heuristic outperforms the previous standard, and performs as well as a neural network with access to the full enery-loss distribution.

Check it out at github.com/harleypatton/particle_id

Quark/Gluon Regression Model

Regression model for extracting exclusive quark and gluon probability distributions from mixed particle jets. Demonstrated the effectiveness of this method on simulated particle-level data.

Read more at harleypatton.com/papers/regression.pdf

Open-Source Contributions to Forest API

Contributed to *Forest*, an open-source quantum computing platform. Implemented the Duestch-Jozsa Algorithm and Shor's Algorithm, and added functionality to measure multiple quibits into classical memory concurrently.

See my contributions at github.com/rigetticomputing/grove and github.com/rigetticomputing/pyquil

PUBLICATIONS

Harley Patton, Benjamin Nachman (2018). The Optimal Use of Silicon Pixel Charge Information for Particle Identification. arXiv:1803.08974 (preprint)