- Diskrete logaritmeproblemet -

La \mathcal{G} være en endelig syklisk gruppe, for eksempel \mathbb{Z}/n , og fiksér en generator g. Dette betyr altså at, hvis $a \in \mathcal{G}$, fins et unikt $k \in \mathbb{Z}$ slik at $a = g^k$. Da er den *diskrete logaritmen til a*, $\log_n(a)$, tallet k.

Det *diskrete logaritmeproblemet* er problemet å finne, gitt \mathcal{G} , $a \in \mathcal{G}$ og g, tallet k slik at $a = g^k$.

Hvis parameterene \mathcal{G} og g er «godt valgt» (for eksempel må vi velge $n\gg 0$) er dette problem antatt å være veldig vanskelig å løse i rimelig tid. Det er å andre siden viktig å observere at vanskelighetsgraden er avhengig av valg av g (for gitt \mathcal{G}). For generelle valg av \mathcal{G} og g fins ikke noen kjent algoritme som har polynomial kompleksitet.

Protokollen som dere skal se på bygger på (den antatte) vanskeligheten av diskrete log-problemet.

- Diffie-Hellman nøkkelutveksling -

Dere er sikkert vel bekjente med Diffie–Hellman når $\mathcal{G}=\mathbb{Z}/n$, men det generaliserer direkte til alle sykliske grupper på følgende måte.

La Alice og Bob være våre protagonister som bruklig er.

- (i) Alice og Bob blir enige om et valg av syklisk gruppe \mathscr{G} av orden $n \gg 0$ og et valg av generator g. Paret (\mathscr{G}, g) er en åpen nøkkel;
- (ii) Alice velger et tall 1 < a < n med noen form av tilfeldighet og sender g^a til Bob;
- (iii) Bob velger et tall 1 < b < n, også under viss tilfeldighet, og sender g^b til Alice;
- (iv) Alice beregner $(g^b)^a$;
- (v) Bob beregner $(g^a)^b$.

Observér at både Alice og Bob har beregnet samme element i ${\mathcal G}$, nemlig

$$(g^b)^a = g^{ba} = g^{ab} = (g^a)^b.$$

Dette bygger selvsagt på at gruppen er abelsk. Dette element

$$\sigma := g^{ab}$$

er Alice og Bobs hemlige nøkkel.

For at Eve skal finne nøkkelen må hon kunne løse diskrete logproblemet for (\mathcal{G}, g) . Tenk på at hon vet \mathcal{G}, g, g^a og g^b , men ikke a eller b. For å finne nøkkelen $\sigma = g^{ab}$ må hon altså kunne beregne $\log_n(g^a)$ og $\log_n(g^b)$.

Dette betyr at, hvis \mathscr{G} og g er godt valgt slik at diskret logproblemet for (\mathscr{G},g) er vanskelig, er nøkkelen sikker og kan sendes på en åpen kanal mellom Alice og Bob.

Det er viktig å være obs på at, gitt \mathcal{G} , kan det finnes dårlige valg av generator g, slik at diskret log-problemet er løsbart i rimelig tid.

- Oppgaver -

- ElGamal -

Krypteringsprotokollet som går under navnet *ElGamal* (etter Taher El Gamal som fant på det 1985) bygger på Diffie–Hellman idén for gruppen¹ $\mathcal{G} = (\mathbb{Z}/p)^{\times}$, $p \in \operatorname{Spec}(\mathbb{Z})$.

Oppgaven deres er å implementere dette protokoll i valgfritt programmeringsspråk. Implementasjonen skal være realistisk i det forstand at man skal kunne bruke store primtall p.

Det er en del av oppgave å finne informasjon om algoritmen. Ett godt startpunkt er Wikipedia-artikkelen.

– Elliptiske kurver –

Her er \mathscr{G} en gruppe som genereres av et punkt på en elliptisk kurve over en endelig kropp. Hvis det er noen som er interessert i å jobbe med dette så ta kontakt med meg så skal dere få litteratur.

Denne oppgave er relativt vanskelig og jeg anbefaler ikke at dere gjør denne hvis dere ikke ønsker å spendere mye tid.

Å andre siden, hvis dere er villige å legge litt ekstra tid, kommer dere å lære veldig mye fin matematikk og få innblikk i et protokoll som brukes i veldig mange sammenheng.

 $^{^{\}scriptscriptstyle 1}$ Man kan bruke vilkårlig syklisk gruppe, men i praksis er det nok $\left(\mathbb{Z}/p\right)^{\times}$ som brukes mest.