Regata Solar

Luis Miranda Hernán Serrano Sergio Surís

Regata Solar ou...

como construir un barco gañador sen ter nin p**a idea de barcos

Índice

- Comezando...
- Casco
 - Deseño
 - Fabricación
- Grupo propulsor
 - Motor/hélice
 - Banco de motores
- Electrónica
 - o Aproveitamento enerxía solar
 - o Esquema montaxe
- Problemas
- Conclusións

Comezando - Motivación

Comezando - Primeiros bocetos

Casco - Deseño

Tipos de casco:

Sección del casco:

Redondo - Minimiza superficie de contacto con el agua

Casco - Deseño

Casco - Fabricación

Método de fabricación:

Poliuretano de colada en molde + Recubrimiento de fibra de vidrio y epoxi

Molde modular impreso en 3D:

Casco - Fabricación

Desmoldantes:

3 en 1

Crema

Cera pelo

Cambio de planes:

Casco - Fabricación

Resultado final:

Empuje Motor/Helice

KV = número **TEÓRICO** de revoluciones por minuto (rpm) que será capaz de ofrecernos cuando se le aplique 1V (un voltio) de tensión

Con una batería 4s de 14.8v y un motor de 800KV el valor teórico del motor es:

800KV x 14,8V = 11840 RPM EN VACÍO

KV Bajo (<800kv) → Bajas RPM Elevado PAR → Catalina peq Piñón Grande

KV Alto (>800kv)→ Altas RPM par Bajo → Catalina Grande, Piñón pequeño

Banco prueba de Motores/Helices

Grupo propulsor - Curvas

Fuerza vs Potencia

30	1,00	10,01	00400	0,40	
31	1,16	19,85	63907	0,39	
32	1,32	19,83	70833	0,43	
33	1,51	19,82	78660	0,48	
34	1,67	19,82	84157	0,51	
35	1,87	19,8	97394	0,59	
36	2,07	19,77	104510	0,63	
37	2,28	19,74	114523	0,70	
38	2,5	19,73	116815	0,71	
39	2,7	19,67	119045	0,72	
40	3,02	19,69	134858	0,82	
41	3,2	19,68	128760	0,78	
42	3,48	19,62	145936	0,89	
43	3,65	19,58	143731	0,87	
44	4 07	19 54	166515	1.01	

Tri 52R

55x80R

____Dron 31x41R

Electrónica - Aproveitamento solar

Electrónica - Aproveitamento solar

Electrónica - Esquema simplificado

Problemas atopados

- Demasiado tempo invertido en métodos de fabricación
- Problemas con materiales
 - Retracción espuma
 - Pinturas
- Poucas probas de campo
- Diferencias auga doce auga salgada
- Elementos non esperados o día da regata
 - 40% enerxía solar no momento das probas
 - Algas
- Compras de material Anticipación

Conclusións - Leccións aprendidas

- Acelerar o tempo idea-prototipo
- Pensar, deseñar, construir, probar, probar, probar, probar...
- Non fiarse do instinto
- "Simplifica e alixeira" (Colin Champman)
- Facer probas en escenario real (auga salgada)
- Minimizar elementos que sobresalgan do casco (algas)
- Entrenar ó piloto e que mire para o barco
- E sobre todo... (continúa)

