Exercise 1 Universal Guide: All Terminologies and Exam Patterns

CRITICAL CORRESPONDENCES (MEMORIZE THIS)

Equivalent Terminologies

Concept	Terminology 1	Terminology 2	Function
Decidable	Decidable Predicate	Recursive Set	Characteristic χ_A
Semi-Decidable	Semi-Decidable Predicate	Recursively Enumerable (r.e.) Set	Semi-Characteristic sc_A
Computable	Computable Function	Recursive Function	-

UNIVERSAL RULE: Exercise 1 always tests these fundamental concepts regardless of terminology used.

STANDARD STRUCTURE (Always Parts a, b, c)

VARIATION A: Predicate Terminology

Part a: Definition of decidable predicate

Part b: Definition of semi-decidable predicate

Part c: Theoretical question about predicates

VARIATION B: Set Terminology

Part a: Definition of recursive set

Part b: Definition of recursively enumerable (r.e.) set

Part c: Theoretical question about sets

VARIATION C: Mixed Terminology

Part a: Any of the above

Part b: Any of the above

Part c: Questions mixing predicates, sets, and functions

UNIVERSAL DEFINITIONS (Master ALL Variations)

Decidable Predicate / Recursive Set

Predicate Version: A predicate $P(\vec{x}) \subseteq \mathbb{N}^k$ is decidable if the characteristic function $\chi_P : \mathbb{N}^k \to \mathbb{N}$ defined by

```
\chi_P(\vec{x}) = \{
1 if P(\vec{x})
0 otherwise
}
```

is computable.

Set Version: A set $A \subseteq \mathbb{N}$ is recursive if the characteristic function $\chi_A : \mathbb{N} \to \mathbb{N}$ defined by

```
x_A(x) = {
    1 if x ∈ A
    0 otherwise
}
```

is computable.

Semi-Decidable Predicate / Recursively Enumerable Set

Predicate Version: A predicate $P(\vec{x}) \subseteq \mathbb{N}^k$ is semi-decidable if the semi-characteristic function $sc_P : \mathbb{N}^k \to \mathbb{N}$ defined by

```
sc_P(\bar{x}) = \{
1 \text{ if } P(\bar{x})
\uparrow \text{ otherwise}
```

is computable.

Set Version: A set $A \subseteq \mathbb{N}$ is recursively enumerable (r.e.) if the semi-characteristic function $sc_A : \mathbb{N} \to \mathbb{N}$ defined by

```
sc_A(x) = {
   1 if x ∈ A
   ↑ otherwise
}
```

is computable.

COMPLETE PART C PATTERN ANALYSIS

Pattern 1: Structure/Projection Theorem Applications

Applies to: Both predicates and sets

Common Questions:

- "Show if Q semi-decidable then ∃y.Q(x,y) semi-decidable"
- "Show if A r.e. then $\{f(x) \mid x \in A\}$ r.e. for computable f"

Solution Framework:

- 1. Apply Structure Theorem (semi-decidable $\iff \exists t.H(...)$)
- 2. Use Projection Theorem (closure under ∃)
- 3. Construct appropriate semi-characteristic function

Pattern 2: Closure Properties

Applies to: Both predicates and sets

Key Questions:

Logical operations: ∧, ∨, ¬, ⇒

• Set operations: ∪, ∩, complement

Quantification: ∃, ∀

Universal Closure Table:

Operation	Recursive/Decidable	R.E./Semi-Decidable
Union/Disjunction ∪/∨	√ CLOSED	√ CLOSED
Intersection/Conjunction ∩/∧	√ CLOSED	√ CLOSED
Complement/Negation c/¬	√ CLOSED	X NOT CLOSED
Existential Quantification 3	X NOT CLOSED	√ CLOSED
Universal Quantification ∀	X NOT CLOSED	X NOT CLOSED

Pattern 3: Set Operations and Transformations

Exam Examples: 2024-02-02, 2023-07-21, 2022-02-04

Question Types:

• "If A recursive and $B = A \cap P$, is B recursive?" (P = even numbers)

• "If A r.e. and B = $\{z^2 \mid z \in A\}$, is B r.e.?"

• "If A and Ā both r.e., is A recursive?"

Solution Template:

For Set Transformations:

- 1. Identify the transformation T: A → B
- 2. Show T preserves computability properties
- 3. Construct characteristic/semi-characteristic function for B
- 4. Use composition, bounded search, or encoding as needed

For Closure Under Operations:

- 1. Apply closure properties from table above
- 2. Construct explicit functions when needed
- 3. Use counterexamples for non-closure (K and \bar{K})

Pattern 4: Function-Set Relationships

Exam Examples: Function computability ⇔ Set properties

Question Types:

- "f computable iff $Q_f(x,y) = 'f(x) = y'$ semi-decidable"
- "Show there exists non-computable f with specific image properties"

Solution Strategy:

- 1. Use semi-decidability for "search" operations
- 2. Apply diagonalization for non-computability
- 3. Use encoding for image characterization

Pattern 5: Recursive vs R.E. Characterizations

Exam Examples: 2022-02-04

Key Theorem: $A \cap \bar{A}$ both r.e. \Longrightarrow A recursive

Solution Template:

```
Given: A and \bar{A} both r.e. Want: A recursive 
Proof: 
1. sc_A and sc_\bar{A} computable with indices e<sub>1</sub>, e<sub>0</sub> 
2. Define: 1 - sc_\bar{A}(x) = {0 if x \in A, ↑ otherwise} 
3. \chi_A(x) = \langle \mu w.(S(e_0,x,\langle w \rangle_1,\langle w \rangle_2) \vee S(e_1,x,\langle w \rangle_1,\langle w \rangle_2)) \rangle_1 
4. This is computable, therefore A recursive
```

Pattern 6: Advanced Set Classifications

Exam Examples: Using Rice's theorem, Rice-Shapiro theorem

Question Types:

- "Classify A = {x | W_x = E_x} from recursiveness viewpoint"
- "Establish if A and Ā are recursive/r.e."

Solution Framework:

- 1. Check if set is saturated (functional property)
- 2. Apply Rice's theorem (not recursive)
- 3. Apply Rice-Shapiro theorem (r.e. classification)
- 4. Use reduction from K when needed

COMPREHENSIVE SOLUTION TEMPLATES

Template A: Set Intersection/Union with Recursive Sets

```
Given: A recursive, P recursive (e.g., P = even numbers)

Want: B = A ∩ P recursive

Proof:

X_B(x) = X_A(x) · X_P(x) is computable

Therefore B recursive

Counterexample for converse:

A = {2x+1 | x ∈ K}, P = even numbers

B = A ∩ P = Ø (recursive)

But A not recursive (K ≤_m A via f(x) = 2x+1)
```

Template B: Transformation Preservation

```
Given: A r.e., T(A) = \{f(x) \mid x \in A\} for computable f Want: T(A) r.e. 
Proof: Let e_1, e_2 be indices for sc\_A, f respectively sc\_T(A)(y) = 1(\mu(x,t).H(e_1,x,t) \land S(e_2,x,y,t)) This is computable, therefore T(A) r.e.
```

Template C: Non-Closure Counterexamples

```
For Complement/Negation:
    K = {x | x ∈ W_x} is r.e.
    Ř = {x | x ∉ W_x} is not r.e.
    Tf Ñ were r.e., then K recursive (contradiction)

For Universal Quantification:
    R(t,x) = ¬H(x,x,t) is decidable
    ∀t.R(t,x) = "x ∉ K" is not semi-decidable
```

EXAM-SPECIFIC VARIATIONS

2024-02-02: Set Operations

Parts a,b: Recursive set, r.e. set definitions **Part c**: A recursive, $B = A \cap P \Longrightarrow B$ recursive? Converse?

2023-07-21: Set Transformations

Parts a,b: Recursive set, r.e. set definitions

Part c: A recursive, $B = \{z^2 \mid z \in A\} \Longrightarrow B$ recursive? Generalize to r.e.?

2022-02-04: Fundamental Characterization

Parts a,b: Recursive set, r.e. set definitions

Part c: A and \bar{A} both r.e. \Longrightarrow A recursive

2024-06-20: Predicate Logic

Parts a,b: Decidable predicate, semi-decidable predicate

Part c: Logical implication closure

2025-01-28: Quantification

Parts a,b: Semi-decidable predicate definition (note: missing part a)

Part c: Universal quantification implications

STRATEGIC APPROACH FOR ANY EXERCISE 1

Step 1: Terminology Recognition (30 seconds)

- 1. Identify if using predicate or set terminology
- 2. Note any mixed terminology
- 3. Recall corresponding definitions

Step 2: Pattern Classification (30 seconds)

- 1. Structure/Projection application
- 2. Closure properties
- 3. Set operations/transformations
- 4. Function-set relationships
- 5. Recursive vs r.e. characterization
- 6. Advanced set classification

Step 3: Template Application (4-6 minutes)

- 1. Apply appropriate solution template
- 2. Use correct terminology consistently
- 3. Include all technical details

Step 4: Counterexample Construction (if needed)

- 1. Use K and K for non-closure
- 2. Use diagonalization for non-computability
- 3. Use reduction techniques when appropriate

UNIVERSAL SUCCESS CHECKLIST

Definitions Mastery

All four definition variations (predicate/set × decidable/semi-decidable)
Characteristic vs semi-characteristic functions
☐ Terminology correspondences
Theoretical Tools
Structure and Projection theorems
Closure properties table
Rice's and Rice-Shapiro theorems
_
Reduction techniques
Technical Skills
☐ Function composition and encoding
Semi-characteristic function construction
☐ Counterexample patterns
☐ Index notation and step predicates

Common Mistakes to Avoid

- 1. **Mixing terminologies** within same answer
- 2. Forgetting converse questions always check if bidirectional
- 3. **Incomplete closure analysis** check all relevant operations
- 4. Wrong characteristic function χ vs sc distinction
- 5. Missing technical details indices, computability statements

FINAL FORMULA FOR UNIVERSAL SUCCESS

Exercise 1 Mastery = Terminology Fluency + Pattern Recognition + Template Library + Technical Precision

This guide covers ALL possible Exercise 1 variations across different computability courses and exam styles. Master these patterns and you can handle any Exercise 1 regardless of terminology or specific theoretical focus.