(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 March 2002 (21.03.2002)

PCT

(10) International Publication Number WO 02/22635 A1

- (51) International Patent Classification⁷: C07H 21/02, 21/04, A61K 48/00, C12Q 1/68, C12P 19/34, C12N 15/85, 15/86
- (21) International Application Number: PCT/US01/28235
- (22) International Filing Date:

10 September 2001 (10.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/659,791

11 September 2000 (11.09.2000) US

- (71) Applicant (for all designated States except US): ISIS PHARMACEUTICALS, INC. [US/US]; 2292 Faraday Avenue, Carisbad, CA 92008 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MONIA, Brett, P. [US/US]; 7605 Nueva Castilla Way, La Costa, CA 92009 (US). FREIER, Susan, M. [US/US]; 2946 Renault Street, San Diego, CA 92122 (US).
- (74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell P.C., 66 E. Main Street, Marlton, NJ 08053 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, **ZW**. .
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ANTISENSE MODULATION OF CLUSTERIN EXPRESSION

(57) Abstract: Antisense compounds, compositions and methods are provided for modulating the expression of clusterin. The compositions comprise antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding clusterin. Methods of using these compounds for modulation of clusterin expression and for treatment of diseases associated with expression of clusterin are provided.

-1-

ANTISENSE MODULATION OF CLUSTERIN EXPRESSION

FIELD OF THE INVENTION

The present invention provides compositions and methods for modulating the expression of clusterin. In particular, this invention relates to compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding clusterin. Such compounds have been shown to modulate the expression of clusterin.

BACKGROUND OF THE INVENTION

30

Clusterin is an amphipathic glycoprotein that was first isolated from the male reproductive system (Bettuzzi et al., Biochem. J., 1989, 257, 293-296; O'Bryan et al., J. Clin. Invest., 1990, 85, 1477-1486). Subsequently, it has been shown that clusterin is ubiquitously distributed among tissues, having a wide range of biologic properties. Investigators from several disciplines, therefore, have isolated clusterin homologs under more than ten different names reviewed in (Bailey and Griswold, Mol. Cell. Endocrinol., 1999, 151, 17-23; Koch-Brandt and Morgans, Prog. Mol. Subcell. Biol., 1996, 16, 130-149; Meri and Jarva, Vox. Sang., 1998, 74, 291-302; Silkensen et al.,

The clusterin protein consists of two non-identical subunits of 34 kDa and 47 kDa, designated alpha and beta, respectively. Clusterin expression is induced almost exclusively as a result of cellular injury, death, or pathology.

Among its many roles, clusterin is a component of the soluble SCb-5 complement complex which is assembled in the plasma upon activation of the complement cascade (Choi et al., Mol. Immunol., 1989, 26, 835-840; Kirszbaum et al.,

35 Embo J., 1989, 8, 711-718; Murphy et al., Int. Immunol.,

1989, 1, 551-554; Tschopp and French, Clin. Exp. Immunol., 1994, 97 Suppl 2, 11-14). Binding of clusterin has been shown to abolish the membranolytic potential of complement complexes and it has therefore been termed complement lysis inhibitor (CLI) (Jenne and Tschopp, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 7123-7127).

Further investigations of clusterin demonstrated that it circulates in plasma as a high density lipoprotein (HDL) complex which serves not only as an inhibitor of the lytic complement cascade, but as a regulator of lipid transport 10 and local lipid redistribution (Jenne et al., J. Biol. Chem., 1991, 266, 11030-11036). In this capacity, clusterin isolated and characterized by de Silva et al. and was given the name Apolipoprotein J (ApoJ) (de Silva et al., Biochemistry, 1990, 29, 5380-5389; de Silva et al., J. Biol. Chem., 1990, 265, 13240-13247; de Silva et al., J. Biol. Chem., 1990, 265, 14292-14297). In these studies, clusterin (ApoJ) was shown to play a role in cholesterol transport in the liver and in the regulation of vascular smooth muscle cell differentiation (de Silva et al., J. 20 Biol. Chem., 1990, 265, 13240-13247; Moulson and Millis, J. Cell. Physiol., 1999, 180, 355-364). A link between the modulation of HDL and complement activity is provided by studies by James et al. that characterize the association of a high density lipoprotein, NA1/NA2, with apolipoprotein A-I (ApoA-I). This novel protein NA1/NA2, was subsequently shown to be clusterin (James et al., Arterioscler. Thromb., **1991**, *11*, 645-652).

Clusterin has also been shown to participate in the cellular process of programmed cell death or apoptosis. Clusterin expression demarcates cells undergoing apoptosis (Buttyan et al., Mol. Cell. Biol., 1989, 9, 3473-3481) and in studies of the kidney, the onset of hydronephrosis following unilateral obstruction is associated with the

increased expression of proteins encoded by the clusterin gene (Connor et al., Kidney Int., 1991, 39, 1098-1103). In both of these studies, clusterin is referred to by two other synonyms, sulfated glycoprotein-2 gene (SGP-2) and testosterone-repressed prostate message-2 (TRPM-2) (Buttyan et al., Mol. Cell. Biol., 1989, 9, 3473-3481; Connor et al., Kidney Int., 1991, 39, 1098-1103).

-3-

Sensibar et al. showed that cell death in the prostate, induced by tumor necrosis factor alpha, could be prevented by overexpressing clusterin. In these studies, transfection of LNCaP cells with any of four 21-mer antisense phosphorothicate oligonucleotides targeting the clusterin coding region resulted in an increase of cell death (Sensibar et al., Cancer Res., 1995, 55, 2431-2437).

10

20

25

30

35

Miyake et al. further demonstrated the role of clusterin as an anti-apoptotic gene in the Shionogi tumor model, a model used for the study of castration-induced apoptosis (Miyake et al., Cancer Res., 2000, 60, 170-176).

In this model, androgen-dependent mammary carcinoma

xenograft tumors in male mice undergo regression after castration but recur as apoptosis-induced tumors after one month. Using a phosphorothicate 21-mer antisense oligonucleotide to the mouse clusterin gene targeting the translation initiation site, Miyake et al. were able to

show that treatment with the clusterin antisense oligonucleotide of mice with Shionogi tumors resulted in a more rapid onset of apoptosis and time to complete regression. There was also a significant delay of emergence of androgen-independent recurrent tumors compared to control oligonucleotide treated controls.

Using the same oligonucleotide in an experiment designed to test the efficacy of the oligonucleotide in combination with paclitaxel, Miyake et al. showed that the combination of antisense oligonucleotide and paclitaxel induced apoptosis in Shionogi tumors better than either

WO 02/22635 -4-

15 Taxol or mitoxantrone.

agent alone. These studies suggest that the antisense oligonucleotide may be useful in enhancing the effects of cytotoxic chemotherapy in hormone-refractory prostate cancer (Miyake et al., Cancer Res., 2000, 60, 2547-2554).

PCT/US01/28235

5 Ten antisense oligodeoxynucleotides targeted to human TRPM-2 (clusterin) were designed by Miyake et al. (Clin. Cancer Res., 2000, 6, 1655-1663) to identify potent oligonucleotides that specifically inhibit TRPM-2 expression in human androgen-independent prostate cancer 10 PC-2 cells. Seven of the ten oligonucleotides had little or no effect on TRPM-2 mRNA expression. The other three oligonucleotides were described by the authors as having moderate effects. The most active oligonucleotide was also tested for ability to enhance the response of PC-3 cells to

Another antisense oligonucleotide, targeting the AUG initiation codon of clusterin was used to investigate the role of clusterin in endothelial cell activation. In these studies, it was shown that clusterin expression is upregulated upon laminar shear stress and that reduction of clusterin levels via antisense treatment increased endothelial cell activation (Urbich et al., Circulation, 2000, 101, 352-355).

The level of clusterin is increased in the hippocampus and frontal cortex of the brains of Alzheimer's disease patients. It is currently believed that clusterin, by binding to beta-amyloid, a protein known to aggregate in the brains of these patients, acts to link the progression of this disease to the complement system (Choi-Miura and Oda, Neurobiol. Aging, 1996, 17, 717-722).

Most recently, clusterin has been isolated as a KU70 binding protein. KU binding proteins (KUBs) are involved in DNA repair pathways. Clusterin (KUB1) was identified as an autoantigen in serum of patients with scleroderma-

35 polymyositis syndrome and shown to dimerize with KUP80 to

·

WO 02/22635

-5-

PCT/US01/28235

form an ATP dependent helicase and a regulatory component of a DNA dependent protein kinase (PRKDC) involved in double-strand break repair and V(D)J recombination (Yang et al., Nucleic Acids Res., 1999, 27, 2165-2174).

Clusterin is overexpressed in many disease states including neurodegenerative disorders, gliomas, retinitis pigmentosa and expression is induced in acute and chronic models of renal injury and disease, following ureter obstruction, ischemia/reperfusion, and atherosclerosis reviewed in (Silkensen et al., Biochem. Cell. Biol., 1994, 72, 483-488). The pharmacological modulation of clusterin activity and/or expression may therefore be an appropriate point of therapeutic intervention in pathological conditions.

15 The expression of clusterin, or variants thereof, has been used as a means of differentiating normal versus abnormal cells in the study of male infertility. A method of assessing acrosomal status of sperm morphology comprising contacting a sperm sample with an 20 immunologically reactive molecule which binds to one form of clusterin and not another is disclosed in WO 95/16916.

Currently, there are no known therapeutic agents which effectively inhibit the synthesis of clusterin and to date, investigative strategies aimed at modulating clusterin function have involved the use of antibodies, antisense oligonucleotides and chemical inhibitors.

There remains, however, a long felt need for additional agents capable of effectively inhibiting clusterin function.

Antisense technology is emerging as an effective means for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of clusterin expression.

The present invention provides compositions and methods for modulating clusterin expression, including modulation of the alpha and/or beta subunits.

-6-

5 SUMMARY OF THE INVENTION

WO 02/22635

The present invention is directed to compounds, particularly antisense oligonucleotides, which are targeted to a nucleic acid encoding clusterin, and which modulate the expression of clusterin. Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of modulating the expression of clusterin in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention.

15 Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of

particularly a human, suspected of having or being prone to a disease or condition associated with expression of clusterin by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric compounds, particularly antisense oligonucleotides, for use in

25 modulating the function of nucleic acid molecules encoding clusterin, ultimately modulating the amount of clusterin produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding clusterin. As used herein, the

30 terms "target nucleic acid" and "nucleic acid encoding clusterin" encompass DNA encoding clusterin, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This

-7-

modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense". The functions of DNA to be interfered with include replication and transcription. 5 functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or 10 facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of clusterin. In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the 15 expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene expression and mRNA is a preferred target.

It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a 20 particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding clusterin. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the 35

Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even 10 though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more 15 alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set In the context of the invention, "start of conditions. codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate 20 translation of an mRNA molecule transcribed from a gene encoding clusterin, regardless of the sequence(s) of such codons.

It is also known in the art that a translation

25 termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene

35 that encompasses from about 25 to about 50 contiguous

WO 02/22635

nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

-9-

The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the 5 translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including 10 nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus 15 including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an 20 mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It

has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

-10-

Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In the context of this invention, "hybridization"

means hydrogen bonding, which may be Watson-Crick,

Hoogsteen or reversed Hoogsteen hydrogen bonding, between

complementary nucleoside or nucleotide bases. For example,

adenine and thymine are complementary nucleobases which

pair through the formation of hydrogen bonds.

"Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. The oligonucleotide and the

DNA or RNA are complementary to each other when a

sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is

understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or

RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

-11-

Antisense and other compounds of the invention which

10 hybridize to the target and inhibit expression of the
 target are identified through experimentation, and the
 sequences of these compounds are hereinbelow identified as
 preferred embodiments of the invention. The target sites to
 which these preferred sequences are complementary are

15 hereinbelow referred to as "active sites" and are therefore
 preferred sites for targeting. Therefore another embodiment
 of the invention encompasses compounds which hybridize to
 these active sites.

Antisense compounds are commonly used as research

reagents and diagnostics. For example, antisense
oligonucleotides, which are able to inhibit gene expression
with exquisite specificity, are often used by those of
ordinary skill to elucidate the function of particular
genes. Antisense compounds are also used, for example, to
distinguish between functions of various members of a
biological pathway. Antisense modulation has, therefore,
been harnessed for research use.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that

30

35

-12-

oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of 15 nucleases.

While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described The antisense compounds in accordance with this invention preferably comprise from about 8 to about 50 nucleobases (i.e. from about 8 to about 50 linked nucleosides). Particularly preferred antisense compounds 25 are antisense oligonucleotides, even more preferably those comprising from about 12 to about 30 nucleobases. Antisense compounds include ribozymes, external guide sequence (EGS) oligonucleotides (oligozymes), and other short catalytic RNAs or catalytic oligonucleotides which hybridize to the target nucleic acid and modulate its expression.

20

30

35

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the Nucleotides are nucleosides that further pyrimidines.

WO 02/22635 PCT/US01/28235 -13 -

include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

15 Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones 20 include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkyl-phosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphorates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and

WO 02/22635

those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do 15 not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short 20 chain heteroatomic or heterocyclic internucleoside These include those having morpholino linkages linkages. (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289;

5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

In other preferred oligonucleotide mimetics, both the 5 sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such 10 oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular 15 an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited 20 to, U.S.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, **1991**, 254, 1497-1500.

Most preferred embodiments of the invention are oligonucleotides with phosphorothicate backbones and oligonucleosides with heteroatom backbones, and in particular -CH2-NH-O-CH2-, -CH2-N(CH3)-O-CH2- [known as a methylene (methylimino) or MMI backbone], -CH2-O-N(CH3)-CH2-, -CH2-N(CH3)-N(CH3)-CH2- and -O-N(CH3)-CH2-CH2- [wherein the native phosphodiester backbone is represented as -O-P-O-CH2-] of the above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. patent 5,034,506.

35

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or Nalkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C₂ to C₁₀ alkenyl and alkynyl. Particularly preferred are $O[(CH_2)_nO]_mCH_3$, $O(CH_2)_nOCH_3$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred oligonucleotides 10 comprise one of the following at the 2' position: C₁ to C₁₀ lower alkyl, substituted lower alkyl, alkaryl, aralkyl, Oalkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, 15 substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred 20 modification includes 2'-methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., $2'-O-CH_2-O-CH_2-N(CH_2)_2$, also described in examples hereinbelow. 30

Other preferred modifications include 2'-methoxy (2'- $O-CH_3$), 2'-aminopropoxy (2'- $OCH_2CH_2CH_2CH_2NH_2$) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in

WO 02/22635

PCT/US01/28235

2'-5' linked oligonucleotides and the 5' position of 5'
terminal nucleotide. Oligonucleotides may also have sugar
mimetics such as cyclobutyl moieties in place of the
pentofuranosyl sugar. Representative United States patents
that teach the preparation of such modified sugar
structures include, but are not limited to, U.S.:
4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878;
5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811;
5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053;
10 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920,
certain of which are commonly owned with the instant
application, and each of which is herein incorporated by
reference in its entirety.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or 15 substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine 20 (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-30 methylguanine and 7-methyladenine, 8-azaguanine and 8azaadenine, 7-deazaguanine and 7-deazaadenine and 3deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in United States Patent No.

35 3,687,808, those disclosed in The Concise Encyclopedia Of

Polymer Science And Engineering, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S.,

- Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B., ed., CRC Press, 1993.

 Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines,
- 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds.,
- Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. 3,687,808, as well as U.S.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; and 5,681,941, certain of which are

5,596,091; 5,614,617; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and United States patent 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which

25

enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic 10 chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., dihexadecyl-rac-glycerol or triethylammonium 1,2-di-Ohexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid 20 (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylaminocarbonyl-oxycholesterol moiety (Crooke et al., J.

Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 30 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830;

Pharmacol. Exp. Ther., 1996, 277, 923-937.

WO 02/22635

35

-20-

PCT/US01/28235

5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.

It is not necessary for all positions in a given 10 compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the 15 context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically 20 contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target 25 nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing 30 the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate

deoxyoligonucleotides hybridizing to the same target

-21-

region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S.: 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 15 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis.

Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules.

30

35

The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral,

WO 02/22635

rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting

-22-

PCT/US01/28235

5 formulations include, but are not limited to, U.S.:
5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291;
5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330;
4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170;
5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978;
10 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259;
5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 and U.S. 5,770,713 to Imbach et al.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the

35

desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

-23-

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the Examples of suitable amines are N, N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et 10 al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-19). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be 15 regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent 20 to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic 30 acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, 35

succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, 10 methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable 20 cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid,

tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid,

polygalacturonic acid, and the like; and (d) salts formed

-25-

from elemental anions such as chlorine, bromine, and iodine.

The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of clusterin is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful

prophylactically, e.g., to prevent or delay infection,

20 inflammation or tumor formation, for example.

35

The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding clusterin, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding clusterin can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of clusterin in a sample may also be prepared.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical

-26-

compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including 5 ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, 10 subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-0-methoxyethyl modification are believed to be particularly useful for oral administration. 15

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

20

Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and

liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

-27-

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams,

30 jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may

be applied to the formulation of the compositions of the present invention.

-28-

Emulsions

WO 02/22635

The compositions of the present invention may be 5 prepared and formulated as emulsions. Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 µm in diameter. (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 301). Emulsions are often biphasic systems comprising of two immiscible liquid phases intimately mixed and dispersed with each other. 20 general, emulsions may be either water-in-oil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily 25 phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases and the active drug which may be 30 present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and

anti-oxidants may also be present in emulsions as needed.

Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous provides an o/w/o emulsion.

Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into 15 the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be 20 incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are

typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (Rieger, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o 15 emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such 20 as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

-31-

Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), 5 cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

10

Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides 15 that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added 20 to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.

The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature 30 (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation, efficacy from an absorption and 35

bioavailability standpoint. (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.

In one embodiment of the present invention, the 10 compositions of oligonucleotides and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, in Pharmaceutical Dosage Forms, 15 Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, 20 generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules 25 (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, 30 cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar

heads and hydrocarbon tails of the surfactant molecules

(Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 271).

The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a

5 comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, nonionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol 20 monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DAO750), alone or in combination with The cosurfactant, usually a short-chain 25 alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant Microemulsions may, however, be prepared 30 molecules. without the use of cosurfactants and alcohol-free selfemulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives 35

35

of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.

Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w 10 and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, 20 improved clinical potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be articularly advantageous when formulating thermolabile drugs, peptides or oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical It is expected that the microemulsion applications. 30 compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the

gastrointestinal tract, as well as improve the local

cellular uptake of oligonucleotides and nucleic acids

within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.

Microemulsions of the present invention may also contain additional components and additives such as

5 sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present

10 invention may be classified as belonging to one of five broad categories - surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed

15 above.

Liposomes

30

There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

WO 02/22635 PCT/US01/28235

-36-

In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.

Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

15

3.0

35

Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

15

30

35

Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).

Liposomes which are pH-sensitive or negatively-charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs.

Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean

PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g. as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising NovasomeTM I (glyceryl

dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and
NovasomeTM II (glyceryl distearate/
 cholesterol/polyoxyethylene-10-stearyl ether) were used to
 deliver cyclosporin-A into the dermis of mouse skin.
 Results indicated that such non-ionic liposomal systems

were effective in facilitating the deposition of
 cyclosporin-A into different layers of the skin (Hu et al.
 S.T.P.Pharma. Sci., 1994, 4, 6, 466).

Liposomes also include "sterically stabilized"
liposomes, a term which, as used herein, refers to
liposomes comprising one or more specialized lipids that,
when incorporated into liposomes, result in enhanced
circulation lifetimes relative to liposomes lacking such
specialized lipids. Examples of sterically stabilized
liposomes are those in which part of the vesicle-forming

lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside G_{M1} , or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to 5 be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) 10 (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765). Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 64) reported the ability of monosialoganglioside Gm1, 15 galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Patent No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes 20 comprising (1) sphingomyelin and (2) the ganglioside G_{M1} or a galactocerebroside sulfate ester. U.S. Patent No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sndimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al.).

Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. 30 Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C₁₂15G, that contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood

half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Patent Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, 10 e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Patent Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Patent No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number 20 of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Patent No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al.). U.S. Patent Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.

A limited number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Patent No. 5,264,221 to Tagawa et al. discloses protein-bonded liposomes and asserts that the contents of such liposomes may include an antisense RNA. U.S. Patent No. 5,665,710 to Rahman et al.

describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising antisense oligonucleotides targeted to the raf gene.

5 Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g. they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. make transfersomes it is possible to add surface edge-15 activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum 20 albumin.

Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the "head") provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in *Pharmaceutical Dosage Forms*, Marcel Dekker, Inc., New York, NY, 1988, p. 285).

If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In

35

general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, Nalkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, NY, 1988, p. 285).

Penetration Enhancers

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

15 Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92). Each of the above 20 mentioned classes of penetration enhancers are described below in greater detail.

Surfactants: In connection with the present invention, surfactants (or "surface-active agents") are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of oligonucleotides through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92); and perfluorochemical

emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).

Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, 5 oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, 10 C_{1-10} alkyl esters thereof (e.g., methyl, isopropyl and tbutyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

20 Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic 25 derivatives, act as penetration enhancers. Thus the term "bile salts" includes any of the naturally occurring components of bile as well as any of their synthetic The bile salts of the invention include, for derivatives. example, cholic acid (or its pharmaceutically acceptable 30 sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium

glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-5 fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co.,

10 Easton, PA, 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).

Chelating Agents: Chelating agents, as used in 15 connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligonucleotides through the mucosa is With regards to their use as penetration 20 enhanced. enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). 25 Chelating agents of the invention include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-30 diketones (enamines) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).

WO 02/22635

Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This

-46-

unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacycloalkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and nonsteroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al.,

class of penetration enhancers include, for example,

15 J. Pharm. Pharmacol., 1987, 39, 621-626).

Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Patent No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al.,

polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.

Other agents may be utilized to enhance the

25 penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.

30 Carriers

Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, "carrier compound" or "carrier" can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized

as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a 10 common receptor. For example, the recovery of a partially phosphorothicate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'isothiocyano-stilbene-2,2'-disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183).

Excipients

20 In contrast to a carrier compound, a "pharmaceutical carrier" or "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, 35

WO 02/22635 PCT/US01/28235

-48-

talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc.).

Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.

Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Other Components

10

15

20

30

35

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the

30

35

compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic 15 substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include, but are not limited to, anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds.,

1987, Rahway, N.J., pages 1206-1228). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the 20 skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models. general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. 35

Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

15

EXAMPLES

Example 1

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

- 2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling VA). Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein
- incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazole and base was increased to 360 seconds.
- Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to published methods [Sanghvi, et. al., Nucleic Acids Research, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

2'-Fluoro amidites

2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides were synthesized as described previously [Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841] and United States patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-Darabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro 10 atom is introduced by a S_N2-displacement of a 2'-beta-trityl Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine was selectively protected in moderate yield as the 3',5'ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using 15 standard methodologies and standard methods were used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'phosphoramidite intermediates.

20 2'-Fluorodeoxyguanosine

The synthesis of 2'-deoxy-2'-fluoroguanosine was accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyryl-arabinofuranosylguanosine. Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

2'-Fluorouridine

accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by 10 selective protection to give N4-benzoyl-2'-deoxy-2'fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-0-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, P., *Helvetica Chimica Acta*, **1995**, 78, 486-504.

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine]

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved 25 carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 h) to

give a solid that was crushed to a light tan powder (57 g, 85% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid, mp 222-4°C).

2'-O-Methoxyethyl-5-methyluridine

10 2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2methoxyethyl) borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH 15 (200 mL).The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CH₃CN (600 mL) and evaporated. A silica 20 gel column (3 kg) was packed in CH₂Cl₂/acetone/MeOH (20:5:3) containing 0.5% Et₃NH. The residue was dissolved in CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the reaction stirred for an additional one

WO 02/22635 PCT/US01/28235

-55-

hour. Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH₃CN (200 mL). The residue was dissolved in CHCl₃ (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase was dried over Na₂SO₄, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/acetone (5:5:1) containing 0.5% Et₃NH. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and 20 stirred at room temperature for 24 hours. The reaction was monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) was added and the mixture evaporated at 35°C. The residue was dissolved in CHCl₃ (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl3. The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). 30 The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/hexane(4:1). Pure product fractions were evaporated to yield 96 g (84%). An additional 1.5 g was recovered from later fractions.

15

3'-0-Acetyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5-methyl-4-triazoleuridine

A first solution was prepared by dissolving 3'-0acetyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 h using an overhead stirrer. was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture 10 stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the latter The resulting reaction mixture was stored solution. overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO3 and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound. . 20

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O
dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M)

in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room

temperature for 2 hours. The dioxane solution was

evaporated and the residue azeotroped with MeOH (2x200 mL).

The residue was dissolved in MeOH (300 mL) and transferred

to a 2 liter stainless steel pressure vessel. MeOH (400

mL) saturated with NH₃ gas was added and the vessel heated

to 100°C for 2 hours (TLC showed complete conversion). The

vessel contents were evaporated to dryness and the residue

was dissolved in EtOAc (500 mL) and washed once with

saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5-methylcytidine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, TLC showed the 10 reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl₃ (700 mL) and extracted with saturated $NaHCO_3$ (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO4 and evaporated to give a residue (96 15 The residue was chromatographed on a 1.5 kg silica column using EtOAc/hexane (1:1) containing 0.5% Et3NH as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the title compound.

20

N4-Benzoyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5-methylcytidine-3'-amidite

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine (74 g, 0.10 M) was dissolved in CH₂Cl₂ (1 L). Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-25 tetra(isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (TLC showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO3 (1x300 mL) and 30 saturated NaCl (3x300 mL). The aqueous washes were backextracted with CH₂Cl₂ (300 mL), and the extracts were combined, dried over MgSO4 and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc/hexane (3:1) as the eluting solvent.

15

fractions were combined to give 90.6 g (87%) of the title compound.

2'-0-(Aminooxyethyl) nucleoside amidites and 2'-0-(dimethylaminooxyethyl) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites [also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except the exocyclic amines are protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.

5'-O-tert-Butyldiphenylsilyl-O²-2'-anhydro-5-methyluridine

0²-2'-anhydro-5-methyluridine (Pro. Bio. Sint., Varese, 20 Italy, 100.0g, 0.416 mmol), dimethylaminopyridine (0.66g, 0.013eq, 0.0054mmol) were dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring. tert-Butyldiphenylchlorosilane (125.8g, 119.0mL, 1.1eq, 0.458mmol) was added in one The reaction was stirred for 16 h at ambient TLC (Rf 0.22, ethyl acetate) indicated a temperature. complete reaction. The solution was concentrated under reduced pressure to a thick oil. This was partitioned between dichloromethane (1 L) and saturated sodium bicarbonate (2x1 L) and brine (1 L). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to a thick oil. The oil was dissolved in a 1:1 mixture of ethyl acetate and ethyl ether (600mL) and the solution was cooled to

-10°C. The resulting crystalline product was collected by filtration, washed with ethyl ether (3x200 mL) and dried (40°C, 1mm Hg, 24 h) to 149g (74.8%) of white solid. TLC and NMR were consistent with pure product.

5

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine

In a 2 L stainless steel, unstirred pressure reactor was added borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 mL). In the fume hood and with manual stirring, ethylene 10 glycol (350 mL, excess) was added cautiously at first until the evolution of hydrogen gas subsided. 5'-O-tert-Butyldiphenylsilyl-02-2'-anhydro-5-methyluridine (149 g, 0.311 mol) and sodium bicarbonate (0.074 g, 0.003 eq) were added with manual stirring. The reactor was sealed and heated in an oil bath until an internal temperature of 160 °C was reached and then maintained for 16 h (pressure < 100 psig). The reaction vessel was cooled to ambient and TLC (Rf 0.67 for desired product and Rf 0.82 for 20 ara-T side product, ethyl acetate) indicated about 70% conversion to the product. In order to avoid additional side product formation, the reaction was stopped, concentrated under reduced pressure (10 to 1mm Hg) in a warm water bath (40-100°C) with the more extreme conditions used to remove the ethylene glycol. [Alternatively, once the low boiling solvent is gone, the remaining solution can be partitioned between ethyl acetate and water. product will be in the organic phase.] The residue was purified by column chromatography (2kg silica gel, ethyl acetate-hexanes gradient 1:1 to 4:1). The appropriate 30 fractions were combined, stripped and dried to product as a white crisp foam (84g, 50%), contaminated starting material (17.4g) and pure reusable starting material 20g. The yield based on starting material less pure recovered starting

material was 58%. TLC and NMR were consistent with 99% pure product.

2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5methyluridine (20g, 36.98mmol) was mixed with triphenylphosphine (11.63g, 44.36mmol) and Nhydroxyphthalimide (7.24g, 44.36mmol). It was then dried over P2O5 under high vacuum for two days at 40°C. The 10 reaction mixture was flushed with argon and dry THF (369.8mL, Aldrich, sure seal bottle) was added to get a clear solution. Diethyl-azodicarboxylate (6.98mL, 44.36mmol) was added dropwise to the reaction mixture. The rate of addition is maintained such that resulting deep red coloration is just discharged before adding the next drop. After the addition was complete, the reaction was stirred for 4 hrs. By that time TLC showed the completion of the reaction (ethylacetate:hexane, 60:40). The solvent was evaporated in vacuum. Residue obtained was placed on a 20 flash column and eluted with ethyl acetate: hexane (60:40), to get 2'-O-([2-phthalimidoxy)ethyl]-5'-tbutyldiphenylsilyl-5-methyluridine as white foam (21.819 g, 86%).

25

5'-0-tert-butyldiphenylsilyl-2'-0-[(2-formadoximinooxy)ethyl]-5-methyluridine

2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine (3.1g, 4.5mmol) was dissolved in dry CH₂Cl₂ (4.5mL) and methylhydrazine (300mL, 4.64mmol) was added dropwise at -10°C to 0°C. After 1 h the mixture was filtered, the filtrate was washed with ice cold CH₂Cl₂ and the combined organic phase was washed with water, brine and dried over anhydrous Na₂SO₄. The solution was concentrated

to get 2'-O-(aminooxyethyl) thymidine, which was then dissolved in MeOH (67.5mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq.) was added and the resulting mixture was strirred for 1 h. Solvent was removed under vacuum; residue chromatographed to get 5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy) ethyl]-5-methyluridine as white foam (1.95 g, 78%).

5'-0-tert-Butyldiphenylsily1-2'-0-[N,N-dimethylaminooxyethyl]-5-methyluridine

5'-O-tert-butyldiphenylsilyl-2'-O-[(2formadoximinooxy)ethyl]-5-methyluridine (1.77g, 3.12mmol) was dissolved in a solution of 1M pyridinium ptoluenesulfonate (PPTS) in dry MeOH (30.6mL). Sodium cyanoborohydride (0.39g, 6.13mmol) was added to this 15 solution at 10°C under inert atmosphere. The reaction mixture was stirred for 10 minutes at 10°C. After that the reaction vessel was removed from the ice bath and stirred at room temperature for 2 h, the reaction monitored by TLC (5% MeOH in CH₂Cl₂). Aqueous NaHCO₃ solution (5%, 10mL) was 20 added and extracted with ethyl acetate (2x20mL). acetate phase was dried over anhydrous Na2SO4, evaporated to dryness. Residue was dissolved in a solution of 1M PPTS in MeOH (30.6mL). Formaldehyde (20% w/w, 30mL, 3.37mmol) was added and the reaction mixture was stirred at room temperature for 10 minutes. Reaction mixture cooled to 10°C in an ice bath, sodium cyanoborohydride (0.39g, 6.13mmol) was added and reaction mixture stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture was removed from the ice bath and stirred at room temperature 30 To the reaction mixture 5% NaHCO₃ (25mL) for 2 hrs. solution was added and extracted with ethyl acetate (2x25mL). Ethyl acetate layer was dried over anhydrous Na_2SO_4 and evaporated to dryness . The residue obtained was purified by flash column chromatography and eluted with 5% MeOH in CH_2Cl_2 to get 5'-O-tert-butyldiphenylsilyl-2'-O- [N,N-dimethylaminooxyethyl]-5-methyluridine as a white foam (14.6g, 80%).

5

2'-O-(dimethylaminooxyethyl)-5-methyluridine

Triethylamine trihydrofluoride (3.91mL, 24.0mmol) was dissolved in dry THF and triethylamine (1.67mL, 12mmol, dry, kept over KOH). This mixture of triethylamine-2HF was then added to 5'-O-tert-butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine (1.40g, 2.4mmol) and stirred at room temperature for 24 hrs. Reaction was monitored by TLC (5% MeOH in CH₂Cl₂). Solvent was removed under vacuum and the residue placed on a flash column and eluted with 10% MeOH in CH₂Cl₂ to get 2'-O- (dimethylaminooxyethyl)-5-methyluridine (766mg, 92.5%).

5'-0-DMT-2'-0-(dimethylaminooxyethyl)-5-methyluridine

2'-O-(dimethylaminooxyethyl)-5-methyluridine (750mg, 2.17mmol) was dried over P₂O₅ under high vacuum overnight at 40°C. It was then co-evaporated with anhydrous pyridine (20mL). The residue obtained was dissolved in pyridine (11mL) under argon atmosphere. 4-dimethylaminopyridine (26.5mg, 2.60mmol), 4,4'-dimethoxytrityl chloride (880mg, 2.60mmol) was added to the mixture and the reaction mixture was stirred at room temperature until all of the starting material disappeared. Pyridine was removed under vacuum and the residue chromatographed and eluted with 10% MeOH in CH₂Cl₂ (containing a few drops of pyridine) to get 5'-O-DMT-2'-O-(dimethylamino-oxyethyl)-5-methyluridine (1.13g, 80%).

5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine (1.08g, 1.67mmol) was co-evaporated with toluene (20mL). To the residue N, N-diisopropylamine tetrazonide (0.29g, 1.67mmol) was added and dried over P2O5 under high vacuum overnight at 40°C. Then the reaction mixture was dissolved in anhydrous acetonitrile (8.4mL) and 2-cyanoethyl- N, N, N^1, N^1 -tetraisopropylphosphoramidite (2.12mL, 6.08mmol) 10 was added. The reaction mixture was stirred at ambient temperature for 4 hrs under inert atmosphere. The progress of the reaction was monitored by TLC (hexane:ethyl acetate The solvent was evaporated, then the residue was dissolved in ethyl acetate (70mL) and washed with 5% aqueous NaHCO3 (40mL). Ethyl acetate layer was dried over anhydrous Na₂SO₄ and concentrated. Residue obtained was chromatographed (ethyl acetate as eluent) to get 5'-O-DMT-2'-O-(2-N, N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam 20 (1.04g, 74.9%).

2'-(Aminooxyethoxy) nucleoside amidites

- 2'-(Aminooxyethoxy) nucleoside amidites [also known in 25 the art as 2'-O-(aminooxyethyl) nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and thymidine nucleoside amidites are prepared similarly.
- N2-isobutyryl-6-0-diphenylcarbamoyl-2'-0-(2-ethylacetyl)-5'-0-(4,4'-dimethoxytrityl)guanosine-3'[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

The 2'-O-aminooxyethyl guanosine analog may be obtained by selective 2'-O-alkylation of diaminopurine

- riboside. Multigram quantities of diaminopurine riboside may be purchased from Schering AG (Berlin) to provide 2'-O-(2-ethylacetyl) diaminopurine riboside along with a minor amount of the 3'-O-isomer. 2'-O-(2-ethylacetyl)
- diaminopurine riboside may be resolved and converted to 2'-0-(2-ethylacetyl)guanosine by treatment with adenosine deaminase. (McGee, D. P. C., Cook, P. D., Guinosso, C. J., WO 94/02501 Al 940203.) Standard protection procedures should afford 2'-0-(2-ethylacetyl)-5'-0-(4,4'-
- dimethoxytrityl)guanosine and 2-N-isobutyryl-6-0-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine which may be reduced to provide 2-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine. As before the
- hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may phosphitylated as usual to yield 2-N-isobutyryl-6-0-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-disopropylphosphoramidite].

2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites

- 2'-dimethylaminoethoxyethoxy nucleoside amidites (also known in the art as 2'-O-dimethylaminoethoxyethyl, i.e., 2'-O-CH₂-O-CH₂-N(CH₂)₂, or 2'-DMAEOE nucleoside amidites) are prepared as follows. Other nucleoside amidites are prepared similarly.
- 2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine

 2[2-(Dimethylamino)ethoxy]ethanol (Aldrich, 6.66 g, 50

 mmol) is slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL

 bomb. Hydrogen gas evolves as the solid dissolves. 0²-,2'
 anhydro-5-methyluridine (1.2 g, 5 mmol), and sodium

bicarbonate (2.5 mg) are added and the bomb is sealed, placed in an oil bath and heated to 155°C for 26 hours. bomb is cooled to room temperature and opened. solution is concentrated and the residue partitioned between water (200 mL) and hexanes (200 mL). The excess phenol is extracted into the hexane layer. The aqueous layer is extracted with ethyl acetate (3x200 mL) and the combined organic layers are washed once with water, dried over anhydrous sodium sulfate and concentrated. residue is columned on silica gel using methanol/methylene chloride 1:20 (which has 2% triethylamine) as the eluent. As the column fractions are concentrated a colorless solid forms which is collected to give the title compound as a white solid.

15

25

5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy) ethyl)]-5-methyl uridine

To 0.5 g (1.3 mmol) of 2'-O-[2(2-N,N-dimethylamino-ethoxy)ethyl)]-5-methyl uridine in anhydrous pyridine (8 mL), triethylamine (0.36 mL) and dimethoxytrityl chloride (DMT-Cl, 0.87 g, 2 eq.) are added and stirred for 1 hour. The reaction mixture is poured into water (200 mL) and extracted with CH₂Cl₂ (2x200 mL). The combined CH₂Cl₂ layers are washed with saturated NaHCO₃ solution, followed by saturated NaCl solution and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica gel chromatography using MeOH:CH₂Cl₂:Et₃N (20:1, v/v, with 1% triethylamine) gives the title compound.

5'-O-Dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite

Diisopropylaminotetrazolide (0.6 g) and 2-cyanoethoxy-N,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) are added

to a solution of 5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl)]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH_2Cl_2 (20 mL) under an atmosphere of argon. The reaction mixture is stirred overnight and the solvent evaporated. The resulting residue is purified by silica gel flash column chromatography with ethyl acetate as the eluent to give the title compound.

Example 2

30

10 Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothioates (P=S) are synthesized as for the 15 phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 sec and was followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 h), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl Phosphinate oligonucleotides are prepared as solution. described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent

5,366,878, herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

15

30

35

10

Example 3

Oligonucleoside Synthesis

Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Patents 5,378,825, 5,386,023,5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

Example 4

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in

5 accordance with any of the various procedures referred to
in Peptide Nucleic Acids (PNA): Synthesis, Properties and
Potential Applications, Bioorganic & Medicinal Chemistry,
1996, 4, 5-23. They may also be prepared in accordance
with U.S. Patents 5,539,082, 5,700,922, and 5,719,262,
10 herein incorporated by reference.

Example 5

20

25

Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-O-Me] -- [2'-deoxy] -- [2'-O-Me] Chimeric Phosphorothicate Oligonucleotides

Chimeric oligonucleotides having 2'-0-alkyl phosphorothicate and 2'-deoxy phosphorothicate oligonucleotide segments are synthesized using an Applied

Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-0-phosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-0-methyl-3'-0-phosphoramidite for 5' and 3' wings. The

standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-0-methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2' positions. The reaction is then quenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2'-0-(2-Methoxyethyl)]--[2'-deoxy]--[2'-0(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides

[2'-O-(2-methoxyethyl)]--[2'-deoxy]--[-2'-O-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-0-(2-Methoxyethyl)Phosphodiester]--[2'-deoxyPhosphorothioate]--[2'-0-(2-Methoxyethyl)Phosphodiester] Chimeric Oligonucleotides

[2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methoxyethyl) phosphodiester]

chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate

WO 02/22635

the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleosides sides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

10

Example 6

Oligonucleotide Isolation

After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The 20 relative amounts of phosphorothicate and phosphodiester linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy; and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

30 Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences

WO 02/22635 PCT/US01/28235

-71-

simultaneously in a standard 96 well format.

Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected beta-cyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated NH₄OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

20

30

10

15

Example 8

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACETM MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACETM 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate

were at least 85% full length.

Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following 4 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

T-24 cells:

The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

30

A549 cells:

The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells were routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville MD). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville MD) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

20

HEK cells:

Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville MD). HEKs were routinely maintained in Keratinocyte Growth Medium

25 (Clonetics Corporation, Walkersville MD) formulated as recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

30 Treatment with antisense compounds:

When cells reached 80% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 200 μ L OPTI-MEMTM-1 reduced-serum medium (Gibco BRL) and then treated with 130 μ L of

10

15

OPTI-MEMTM-1 containing 3.75 μg/mL LIPOFECTINTM (Gibco BRL) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

oligonucleotide treatment. The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is ISIS 13920, TCCGTCATCGCTCCTCAGGG, SEQ ID NO: 1, a 2'-0-methoxyethyl gapmer (2'-0-methoxyethyls shown in bold) with a phosphorothicate backbone which is targeted to human H-ras. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAGGA, SEQ ID NO: 2, a 2'-0-methoxyethyl gapmer (2'-0-methoxyethyls shown in bold) with a phosphorothicate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or c-raf (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell If 80% inhibition is not achieved, the lowest

line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-raf mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments.

Example 10

Analysis of oligonucleotide inhibition of clusterin expression

Antisense modulation of clusterin expression can be assayed in a variety of ways known in the art. For example, clusterin mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A) + mRNA. Methods of RNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, 15 F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Realtime quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISMTM 7700 Sequence 20 Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. Prior to quantitative PCR analysis, primerprobe sets specific to the target gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. In multiplexing, both the 25 target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only ("single-plexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the

& Sons, Inc., 1997.

slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed as multiplexable. Other methods of PCR are also known in the art.

Protein levels of clusterin can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell 10 sorting (FACS). Antibodies directed to clusterin can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of 15 polyclonal antisera are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., Current Protocols in 20 Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al.,

25 Current Protocols in Molecular Biology, Volume 2, pp.
10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.130 10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.111.2.22, John Wiley & Sons, Inc., 1991.

Example 11

Poly(A) + mRNA isolation

Poly(A) + mRNA was isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A) + mRNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was 10 washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room 15 temperature for five minutes. 55 µL of lysate was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Plates were incubated for 60 minutes at room Irvine CA). temperature, washed 3 times with 200 µL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the 20 final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

transferred to a fresh 96-well plate.

30 Example 12

25

Total RNA Isolation

Total mRNA was isolated using an RNEASY 96TM kit and buffers purchased from Qiagen Inc. (Valencia CA) following

-78-

the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 µL cold PBS. 100 µL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 100 μL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96TM well plate attached to a QIAVACTM manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 15 seconds. 1 mL of Buffer RW1 was added to each well of the RNEASY 96TM plate and the vacuum again applied for 15. seconds. 1 mL of Buffer RPE was then added to each well of the RNEASY 96TM plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash was then repeated and the 15 vacuum was applied for an additional 10 minutes. The plate was then removed from the QIAVACTM manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVACTM manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 60 µL water into each well, incubating 1 minute, The elution and then applying the vacuum for 30 seconds. step was repeated with an additional 60 µL water.

The repetitive pipetting and elution steps may be
25- automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc.,
Valencia CA). Essentially, after lysing of the cells on
the culture plate, the plate is transferred to the robot
deck where the pipetting, DNase treatment and elution steps
are carried out.

30

Example 13

Real-time Quantitative PCR Analysis of clusterin mRNA Levels

Ouantitation of clusterin mRNA levels was determined by real-time quantitative PCR using the ABI PRISMTM 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they This is accomplished by including in the PCR accumulate. reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE, FAM, or VIC, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, (CA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During 25 amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by 35

laser optics built into the ABI PRISMTM 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

PCR reagents were obtained from PE-Applied Biosystems, Foster City, CA. RT-PCR reactions were carried out by adding 25 µL PCR cocktail (1x TAQMANTM buffer A, 5.5 mM 10 MgCl₂, 300 µM each of dATP, dCTP and dGTP, 600 µM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLDTM, and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 µL poly(A) mRNA solution. The RT reaction 15 was carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLDTM, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

- Probes and primers to human clusterin were designed to hybridize to a human clusterin sequence, using published sequence information (GenBank accession number M64722, incorporated herein as SEQ ID NO:3). For human clusterin the PCR primers were:
- forward primer: TCCGTACGAGCCCCTGAA (SEQ ID NO: 4)
 reverse primer: TGAGCCTCGTGTATCATCTCAAG (SEQ ID NO: 5) and
 the PCR probe was: FAM-TCCACGCCATGTTCCAGCCCT-TAMRA
 (SEQ ID NO: 6) where FAM (PE-Applied Biosystems, Foster
 City, CA) is the fluorescent reporter dye) and TAMRA (PE-
- 30 Applied Biosystems, Foster City, CA) is the quencher dye. For human GAPDH the PCR primers were:

forward primer: CAACGGATTTGGTCGTATTGG (SEQ ID NO: 7)
reverse primer: GGCAACAATATCCACTTTACCAGAGT (SEQ ID NO: 8)

and the PCR probe was: 5' JOE-CGCCTGGTCACCAGGGCTGCT- TAMRA 3' (SEQ ID NO: 9) where JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Eighteen hours after antisense treatment, cell

5

25

30

Example 14

Northern blot analysis of clusterin mRNA levels

monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOLTM (TEL-TEST "B" Inc., Friendswood, TX). 10 was prepared following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, OH). RNA was transferred from the gel to HYBONDTM-N+ 15 nylon membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, TX). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKERTM UV Crosslinker 2400 (Stratagene, Inc, La Jolla, CA) and then robed using QUICKHYBTM hybridization solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions.

To detect human clusterin, a human clusterin specific probe was prepared by PCR using the forward primer TCCGTACGAGCCCCTGAA (SEQ ID NO: 4) and the reverse primer TGAGCCTCGTGTATCATCTCAAG (SEQ ID NO: 5). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER TM and $IMAGEQUANT^{TM}$ Software V3.3

(Molecular Dynamics, Sunnyvale, CA). Data was normalized to GAPDH levels in untreated controls.

Example 15

Antisense inhibition of human clusterin expression by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human clusterin RNA, using published sequences (GenBank accession number M64722, incorporated herein as SEQ ID NO: 3, GenBank accession number L00974, incorporated herein as SEQ ID NO: 10, GenBank accession number M63377, incorporated herein as SEQ ID NO: 11, GenBank accession number M63376, incorporated herein as SEQ ID NO: 12, and 15 GenBank accession number M25915, incorporated herein as SEQ ID NO: 13). The oligonucleotides are shown in Table 1. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on human clusterin mRNA levels by quantitative real-time PCR as described in other examples 30 herein. Data are averages from two experiments. present, "N.D." indicates "no data".

5

Table 1
Inhibition of human clusterin mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

ISIS #	REGION	TARGET	TARGET	SEQUENCE	%INHIB	SEQ II
		SEQ ID NO	SITE	•		МО
129045	5'UTR	3	18	gtctttgcacgcctcggtca	64	14
129046	5'UTR	3	26	attctggagtctttgcacgc	64	15
129047	Start	3	44	gtcttcatcatgcctccaat	68	16
	Codon	_		-	. ~	
129048	Coding	3	82	tctcccaggtcagcagcagc	67	17
129049	Coding	3	106	tctggtcccccaggacctgc	46	18
129050	Coding	3	127	ggagctcattgtctgagacc	59	19
129052	Coding	3	154	acttacttccctgattggac	77	20
129053	Coding	3 .	171	aatttccttattgacgtact	68	21
129054	Coding	3	206	gtctttatctgtttcacccc	85	. 22
129055	Coding	3	. 286	gggcatcctctttcttcttc	64	23
129056	Coding	3	291	atttagggcatcctcttct	31	24
129057	Coding	3	303	ttccctggtctcatttaggg	68	25
129058	Coding	3	312	tgtctctgattccctggtct	79	26
129059	Coding	3	329	gggagctccttcagctttgt	49	27
129060	Coding	.3	364	cccagagggccatcatggtc	45	28
129061	Coding	3	369	ctcttcccagagggccatca	36	29
129062	Coding	3	385	tcaggcagggcttacactct	70	30
129063	Coding	3	412	gtgcgtagaacttcatgcag	60	.31
129064	Coding	3	448	ggcggccaaccaggcctgag	42	32
129065	Coding	. 3	449	tggcggccaaccaggcctga	32	33
129066	Coding	3	460	actcctcaagctggcggcca	67	34
129067	Coding	3	487	agtagaagggcgagctctgg	63	35
129068	Coding	3	497	ttcatccagaagtagaaggg	41	36
129069	Coding	3	522	cagcagggagtcgatgcggt	60	37
129070	Coding	3	538	gctgccggtcgttctccagc	51	38
129071	Coding	3	556	catccagcatgtgcgtctgc	69	39
129072	Coding	3.	558	gacatccagcatgtgcgtct	55	40
129073	Coding	3	570	gtggtcctgcatgacatcca	62	41
129074	Coding	3	572	aagtggtcctgcatgacatc	41	42
129075	Coding	3 ·	609	ctggaagagctcgtctatga	67.	43
129076	Coding	3	613	tgtcctggaagagctcgtct	69	44
129077	Coding	. 3	618	gaacctgtcctggaagagct	68	45
129078	Coding	3	695	ggaaagaagaagtgaggcct	44	46
129079	Coding	3	726	gggcatcaagctgcggacga	65	47
129080	Coding	. 3	780	ctcaaggaagggctggaaca	81	48
129081	Coding	3	781	tctcaaggaagggctggaac	81	49
129082	Coding	3	788	tgtatcatctcaaggaaggg	38	50
129083	Coding	3	825	gctgtggaagtggatgtcca	. 48	51
129084	Coding	3	853	attctgttggcgggtgctgg	50	52
129085	Coding	3	858	tatgaattctgttggcgggt	.36	53
129086	Coding	3	898	ggatctcccggcacacagtc	68.	54
129087	Coding	3	899	cggatctcccggcacacagt	70	55

				, , , , , , , , , , , , , , , , , , , 		
129088	Coding	3	911	gtggagttgtggcggatctc	69	56
129089	Coding	3	933	gtccttcatccgcaggcagc	56	57
129090	Coding	3	972	acagtccacagacaagatct	49	58
129092	Coding	3	1014	gagctcccgccgcagcttag	22	59
129093	Coding	3	1027	ggagggattcgtcgagctcc	55	60
129094	Coding	3	1088	atcttccactggtaggactt	50	61
129095	Coding	. 3	1096	tgttgagcatcttccactgg	62	62
129096	Coding	3	1118	agctgctccagcaaggagga	46	63
129097	Coding	З	1126	gctcgttcagctgctccagc	43	64
129098	Coding	3	1153	ttgccagccgggacacccag	72	65
129099	Coding	3	1187	cgcagatagtactggtcttc	61	. 66
129100	Coding	3	1199	accgtggtgacccgcagata	73	67
129101	Coding	3	1221	cgagtcagaagtgtgggaag	24	68
129102	Coding	. 3	1280	gtgatgggatcagagtcaaa	38	69
129103	Coding	3	1305	ggagacttctacagggaccg	63	70
129104	Coding	3	1337	gccacggtctccataaattt	70	71
129106	3'UTR	3	1403	gcaaaagcaacatccacatc	74	72
129107	3'UTR	3	1550	tagagtgcaggatccagagc	71	. 73
129108	3'UTR	3	1605	attagttgcatgcaggagca	71	74
129109	3 'UTR	3	1620	agacagttttattgaattag	11	75
129118	Intron	10	2819	cgagatagagccactgtacg	44	76
129119	Intron	10	4646	tgccaccaccccgggtgat	13	-77
129091	Intron-	10	5849	gttgttggtggaacagtcca	40	78
	Exon					-
	Junction					
129120	Intron-	10	7384	tgcttaccggtgctttttgc	46	79
	Exon					
	Junction					8
129105	Intron-	10	7600	acatctcactcctcccggtg	70	80
•	Exon					
	Junction	_				
129121	3 'UTR	10	7855	gaccctccaagcgatcagct	20	81
129122	3 'UTR	10	7863	aaaaagaggaccctccaagc	39	82
129115	Intron-	11	322	tgtgtccccttttcacctgg	54	83
	Exon					
	Junction					
129116	Intron	11	445	attaccaatggagcatggca	43	84
129117	Intron	11	810	caacatggccaaaccccatg	55	85
129112	Intron	12	1766	gcggcaggtctccaggtctc	43	86
129110	Intron	12	4813	ttcccttcggagagtagaga	44	87
129113	Intron	12	5848	tgcttgggaaatgcctgcaa	34	88
129114	Intron	12	6936	agctggatgccagaaaggcc	40	89
129111	5'UTR	13	39	tggaagtagtggaagccagg	11	90
					•	

As shown in Table 1, SEQ ID NOs 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88 and 89 demonstrated at least 30%

inhibition of human clusterin expression in this assay and are therefore preferred. The target sites to which these preferred sequences are complementary are herein referred to as "active sites" and are therefore preferred sites for targeting by compounds of the present invention.

Example 16

Western blot analysis of clusterin protein levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to clusterin is used, with a radiolabelled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGERTM (Molecular Dynamics, Sunnyvale CA).

What is claimed is:

- 1. A compound 8 to 50 nucleobases in length which is targeted to the 3' UTR, an intron, an intron-exon junction, or nucleobases 106-1402 of the coding region of a nucleic acid molecule encoding clusterin, wherein said compound specifically hybridizes with and inhibits the expression of clusterin.
 - 2. The compound of claim 1 which is an antisense oligonucleotide.
 - 3. The compound of claim 2 wherein the antisense oligonucleotide has a sequence comprising SEQ ID NO: 18,
- 15 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
 - 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
 - 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64,
 - 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88 or 89.
- 4. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
 - 5. The compound of claim 4 wherein the modified internucleoside linkage is a phosphorothicate linkage.
- 6. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
 - 7. The compound of claim 6 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
- 30 8. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
 - 9. The compound of claim 8 wherein the modified nucleobase is a 5-methylcytosine.
- 10. The compound of claim 2 wherein the antisense oligonucleotide is a chimeric oligonucleotide.

- 11. A compound 8 to 50 nucleobases in length which specifically hybridizes with at least an 8-nucleobase portion of an active site on a nucleic acid molecule encoding clusterin.
- 12. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
 - 13. The composition of claim 12 further comprising a colloidal dispersion system.
- 14. The composition of claim 12 wherein the compound 10 is an antisense oligonucleotide.
 - 15. A method of inhibiting the expression of clusterin in cells or tissues comprising contacting said cells or tissues with the compound of claim 1 so that expression of clusterin is inhibited.
- 16. A method of treating an animal having a disease or condition associated with clusterin comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of clusterin is inhibited.
- 17. The method of claim 16 wherein the disease or condition is a hypercholesterolemia.
 - 18. The method of claim 16 wherein the disease or condition is a cardiovascular disorder.
- 19. The method of claim 16 wherein the disease or 25 condition is a hyperproliferative disorder.
 - 20. The method of claim 16 wherein the disease or condition is a hyperlipidemic disorder.

```
SEQUENCE LISTING
<110> Isis Pharmaceuticals, Inc.
     Brett P. Monia
      Susan M. Freier
<120> ANTISENSE MODULATION OF CLUSTERIN EXPRESSION
<130> RTSP-0177
<150> 09/659,791
<151> 2000-09-11
<160> 90
<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 1
                                                                      20
tccgtcatcg ctcctcaggg
<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 2
atgcattctg cccccaagga
                                                                      20
<210> 3
<211> 1648
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (53)...(1402)
<400> 3
cgcggacagg gtgccgctga ccgaggcgtg caaagactcc agaattggag gc atg atg
                                                                      58
                                                           Met Met
                                                             1
aag act ctg ctg ttt gtg ggg ctg ctg ctg acc tgg gag agt ggg
                                                                     106
```

· .	Lys	Thr	Leu 5	Leu	Leu	Phe	Val	Gly 10	Leu	Leu	Leu	Thr	Trp 15	Glu	Ser	Gly	-	
· ·	_	gtc Val 20			-	_	-	-						•	_	_	:	154
		aat Asn			_	_		_		_	_				_	_	2	202
		gly aaa	_		-						_				_			250
		aag Lys															2	298
· .	_	gcc Ala						_				_		_			3	346
		gga Gly 100		_				_	_	_			_		_	_		394
	Pro 115	tgc Cys	Leu	Lys	Gln	Thr 120	Cys	Met	Lys	Phe	Tyr 125	Ala	Arg	Val	Cys	Arg 130	-	142
	Ser	Gly	Ser	Gly	Leu 135	Val	Gly	Arg	Gln	Leu 140	Glu	Glu	Phe	Leu	Asn 145	Gln	4	490 -
		tcg Ser										-					. į	538 -
		gag Glu												_				586
	_	ttc Phe 180					_			_	_			_	_		•	634
•	_	ttc Phe											_					682
		ccc Pro													•			730
	cgc	agc	ttg	atg	ccc	ttc	tct	ccg	tac	gag 2	ccc	ctg	aac	ttc	çac	gcc		778
		-	-													. ·		
																		· ·

Arg	Ser	Leu	Met 230	Pro	Phe	Ser	Pro	Tyr 235	Glu	Pro	Leu	Asn	Phe 240	His	Ala	,
												_	_	gcc Ala		826
														gaa Glu		874
	Arg											_		cgc Arg		922
					_		_	_	_	_	_	_	_	tgc Cys 305		970
					_	_							_	gct Ala	_	1018
		Arg	Glu	Leu	Asp		Ser	Leu	Gln	Val	Ala		Arg	ttg Leu		1066
										_		_	_	ctc Leu		1114
										-				gtg Val		1162
										_			_	cgg Arg 385		1210
								_		_	_			ggt Gly		1258
			-							_				gtg Val		1306
														acc Thr		1354
	gag Glu													gag Glu	tga	1402
gat	gtgg	atg 1	ttgci	tttt	gc a	cctta	acgg	g gg(catc	ttga	gtc	cagc	taa (ccca	aagatg	1462

agergeagee	ccccagagag	agetetgeae	greaceaagr	aaccaggccc	cagcetecag	1522
gcccccaact	ccgcccagcc	teteceeget	ctggatcctg	cactctaaca	ctcgactctg	1582
ctgctcatgg	gaagaacaga	attgctcctg	catgcaacta	attcaataaa	actgtcttgt	1642
gagctg			·			1648
<210> 4 <211> 18 <212> DNA <213> Artis	ficial Seque	ence			-بر <i>ت</i>	
<220> <223> PCR 1	Primer		· .			
<400> 4 tccgtacgag	cccctgaa					18
<210> 5 <211> 23 <212> DNA <213> Arti	ficial Seque	ence	-		,	-
<220> <223> PCR 1	Primer			•		
<400> 5 tgagcctcgt	gtatcatctc	aag .				23
<210> 6 <211> 21 <212> DNA <213> Arti:	ficial Sequ	ence	·			
<220> <223> PCR	Probe		•	:		
<400> 6 tccacgccat	gttccagccc	t				21
<210> 7 <211> 21 <212> DNA <213> Arti	ficial Sequ	ence				
<220> <223> PCR	Primer			•		
<400> 7	ggtcgtattg	q				21

<210> 8						
<211> 26						
<212> DNA	• • • • •					
<213> Artii	icial Seque	ence				
<220>				-		
<223> PCR I	rimer					
<400> 8		•				
	tccactttac	cagagt				26
<210> 9						
<211> 21				•		
<212> DNA						
<213> Artif	icial Seque	ence				
<220>						
<223> PCR I	Probe					
<400> 9						
	ccagggctgc	t.				21
-500055500						
<210> 10 <211> 8133				-		
<211> 0133						-
<213> Homo	sapiens					
<400> 10						
•	ccaggctggt	ctcaaactcc	taagctcaag	taatcctcct	accttggcct	60
	+	~				700
CCCaaactgt	tgggattata	gatgtgtgte	actatgeeca	gccaacgcaa	gattttgtag	120
tatattagtg	ttgctcctgt	cctctgctgc	agggcttttt	tgattgggac	tcagtgaatt.	180
getecaatee	ctgaagtcac	atcagttggc	ccttagccga	acaaaataa	atatcattoo	240
5000000000				3~33333	~~~~~~~	
tggccaaaga	tgacagtgaa	tgaacctgaa.	atgttgggcc	ttgtgacttt	tgggcctcca	300
ggtgtctcaa	aactgtcccc	catggaggga	gataaaagga	aagagcatgg	acctgacaga	360
		· ·			*	
tggggtgctg	ggggctggtc	ccagctgggc	tgttggtcac	ttgctgtgtg	actgttacag	420
ccatgggcag	ggcctggcct	ggctcaccag	ggggtgggag	qccaqqaqqc	cataacctta	480
-	•	•				
gtgagcttct	cctaactgtg	cccatgctgg	ctgtcccagc	ttgaggagtt	cctgaaccag	540
agetegeeet	tctacttctg	gatqaatqqt	qaccqcatcq	actccctqct	qqaqaacqac	600
				•		
cggcagcaga	cgcacatgct	ggatgtcatg	caggaccact	tcagccgcgc	gtccagcatc	660
atagacgagc	tcttccagga	caggttcttc	acccgggagc	cccaggatac	ctaccactac	720
		-		- -		

780 ctgcccttca gcctgcccca ccggaggcct cacttcttct ttcccaagtc ccgcatcgtc 840 cgcagcttga tgcccttctc tccgtacgag cccctgaact tccacgccat gttccagccc ttccttgaga tgatacacga ggctcagcag gccatggaca tccacttcca cagcccggcc 900 ttccagcacc cgccaacaga attcatacga ggtgagaagg ggtggaagct catggccttt 960 tgagcaactc gttagatgct gagaaccatg ccgagggctc agcgggtgtc atctcgattt 1020 ttctccagca atatcacaag ggtgatatta tccttattta aagaggaaaa aaactgagct 1080 gggcatggtg gctcatgcct gtgatgccag cactttgaga ggccaaggcg ggaggatcat 1140 ttgaggccag gagtttgaga ccagcctggc caagatagtg agaccctgtc tctacaaaaa 1200 taaaaactta aaaaattagc cgggtgtggt ggtgcacacc tgtagtctca gctactcggg 1260 aggctgaggc aagagagtca cctgagcctg gaagttggag gctgcagtga gctatgattg 1320 caccattgca ttccagcctg ggcaacagag tgagaccctg tctctaaatt aaaaaataaa 1380 taaaaataac aataggaatc agtggagtcc atctctgcat ggctggatga ctgactcttc 1440 ttccctcgtg tgtccccaga aggcgacgat gaccggactg tgtgccggga gatccgccac 1500 1560 aactccacgg gctgcctgcg gatgaaggac cagtgtgaca agtgccggga gatcttgtct 1620 gtgggtgagt cggggtccag accacaagcc gtccccctg atcccttgtg tcctggggtc 1680 actggggcct cactggtgct gcctttatgg agtcagacag ataagcgttt ggattccagc tctgcagcct ttgagctgtg tcccggggca ggtcctgagc ctcatgcagc ttcggttcct 1740 catcttagaa tgagatgatg atgcgaggct gtccctgaag tcggtgagat gtcgttagag 1800 atgcaaaagt gccctccacc tggtcggccc catgttgaaa aaagcttgtt gaaaaaagtc 1860 atccccctgg gactccccgg tgattctgtt cccaagcgcc aagcagtagg catcttcatt 1920 ttcctctgca gattatgaca ttgcagacag tatgtgtttt gtttaacaaa actgaccaga 1980 ggccaggcac tgttctaaac actcgacata catttcctca tttcctcaga atgaccctct gaggaaactg agccacagaa aggttaataa cttatccaag attgaccccg acatgggcga gctgggcttc aatcctaggg cgctgtgttc tctcctgggg cccctcgcag cctctgccac 2160 agaagtcacg ggtctcagta cctgggcatc caagcaatag tccctttggt cggttggttg 2220 gtcccctagg caaagggaat atttcccttt aactgtcccc ctccgtttca ccagctctgg 2280 ttatgggtta acttcttcc acttagagat aacagctgtg acagtatttg gactagttcc 2340 tggtacacag cagttcatac tcacaaagag ttaattgttt ccccttgttc aacagcttat 2400

cgatctggtg	gctttgctct	tacttaatgc	ttagtttgag	tttgccatgg	caggccgcca	2460
gggtctagtt	aaacattcct	agcctcactc	ctataatttt	agaagccact	gcaaaataaa	2520
cagttgtgct	ttaacaggct	gaagtataag	ttgctgtaga	tgagtgcaca	accaggcctt	2580
ggggcttttt	ctataaaaaa	tatcatagag	tggcatcaat	tacatggtac	ctcaccacaa	2640
gaaagtcatg	ttagggtctg	agaaaagatg	tcagatgcct	gtgcccagat	tggacctctt	2700
atagctgatt	tttactctgt	tgcccaggct	gggtcaggtc	tggcccaatc	ttaacagtca	2760
ttgattacag	ttgagagtgc	agccagcgcc	agtcttatca	gtcattgatt	atagctggcg	2820
tacagtggct	ctatctcggc	tcactgcgac	ctccgcctcc	tgggttcaag	tgattctcct	2880
gcctcagcct	cccaagtagc	tgggagtgca	ggtgtgcacc	accacaccca	gctaattttt	2940
gtatttttag	tagagacagc	atttcactat	gttggccagg	ctggtcttga	actcctgacc	3000
tcaagtaatc	teceegeete	ggcctcccaa	agttctggga	ttacaggtgt	gagccactgt	3060
gcctgacctg	agatagattc	ttagagaatt	attggtaaga	ataattctct	aagctgagct	3120
aaatagtcta	cactgaagag	gactgcctac	tgttatttaa	ggtgcttgca	accatataag	3180
catgtactgc	ctgggaactc	tagatgagga	tttctcaatt	tcagcgctgt	tgatttttt	3240
tttttttt	gagacagggt	ctctctctat	cacccaġcct	ggagtgcagt	ggcaccatta	3300
cagctcactg	cagcctagac	ctcttgggct	gaagtcatcc	tcctgcctca	gcctcctgag	3360
taacagacta	caggtgtgct	ccaccatgct	tggctaattt	ttttatttt	agtagagatg	3420
gggtcttgct	acattgccca	agctggtctc	taactcctgg	gctcaagtga	tcctcctacc	3480
tcagcctccc	agagtgctgg	gattacaggt	gtgagcagtg	ctgacatttt	ggaccaggtc	3540
attctttgtc	gttgggggct	gtcctgagca	gttcagggtg	tttggcagca	ttcctggcct	3600
ctgcccacta	gaggtcagca	gctcccttcc	ctttgttgtg	acaaccagct	tcagaacttg	3660
ctaaatctcc	ctgggtgaca	gcgtccacag	tagagaacct	ctattctaga	ctaagcctca	3720
gctcttaagg	atttttctta	ttttattatt	attttttaa	gacagggtct	cgctctatca	3780
cccaggctgg	agcgtagtgg	cgcaatcttt	gctcactgca	acctctgctt	cctgggttca	3840
agcgatttct	cctgccccag	cctcctgagt	agctgggatt	acaggcgtgc	accgccacgc	3900
ctggctaatt	tttatatttt	tagtagagac	agggtttcac	catattggcc	aggctggtct	3960
caaactcttg	acctcaagtg	atcagcctgc	ctcagcctcc	caaagtgctg	ggattacagg	4020
tgtgagccag	cacgcctggc	tagtttttct	tatttttaaa	ttttttttg	gtaaaataat	4080

gatgtttatt tattacatat ttattttcaa actggcatct tgttagtaat tctgtttctt 4200 tccccaccta acattttgtt tactataaat gatttcagtc atcatcctaa agcatatgca aaatctccct tcccctgact cacgtttgat gtacctgcct ctggatattt ttgaaatacc 4260 4320 ttagggggag aaaaacagta gttttaagag ctagtggaca gtttccaggt cttaatgaat ctgacaacct gcagcccagg gccaagagga atgaattctc ttttccctgc tctcttgatg 4380 aactcactga ccagccatgg gcggcaggtg ggcaggcaag gacccctggc caccaggtgc 4440 cagtgcatca gctgcatgaa ctcctggcac cagaactgcc acctctacag acatgctcaa 4500 4560 aagacaagtt tggaccgggt gcattggctc acacctgtaa tcccagcacc ttgagaggcc gaggtgggtg gacccctgag gtcaggagtt tgagaccagc ctagccaaca tggtgaaacc 4620 ctgtctctcc taaaaataca aaaaaatcac ccgggggtgg tggcaggcac ctgtaatccc 4680 aactactctg gaggctgagg caggagaatt gcttgaaccc gggaggtgga ggttgcagtg 4740 4800 agctgagctc gcgccattgc actccagcct gggaaacaag agcgaaattc tgtctcaaaa aaaagacaag cttggaggat tgtccagaac cacagatcca gggtaggaaa agcccaagct 4860 4920 taggagetga agaeeetggt teaateeegg geeeagagat eatttattet atggetttag 4980 gtaagctatt tattgatact tctgtgggcc tcagtttcat tattggtaaa aattatttca 5040 ttattggtaa aattaggact taagtcctaa tccttaagtc agaacagatc caattcttag 5100 agaaaaagga tatccagaga gaactttctg cggtgtctgg gacgcaggca gtgccacacg aatggcagct gtgagtaata ttcctcctct ctggaaatga ttcccgggag gactagggca 5160 acgagagcca ctccaggtct gagaacatgg agaacttgag atcagtgctt ttggaagtgt 5220 5280 ggtcaacaca gtttgtcacc aaagagataa gggtctggca cccaaagata aatgaatgat 5340 gttacgaagc acactgttta ggtcagttgg cgtatttttc cagagcaagg cttctcaggc tgggcgtggt ggctcacacc agtaatccca gcactttttg ggcagatggg ttgagcccag 5400 gagttcgaga ccagcctgga caacacagag aaaccccgtg tctacaaaaa atacaaaaat tagctgggca tggtagcatg tgcctatagt cccagctact caggaggctg aggttggagg 5520 acagcctgag cctgggaagt caaggctgca gtgagccgag atctcaccac tgtattccag 5580 cctaggcaac agagcaaaac tctgtctcaa aaaaacaaaa acaaaaacaa aaaacccaaa 5640 agactttctg gatgacggaa gcagtgtcta gattcacatt ctgaggcaaa acctttattt 5700 tgtcgtggac aattccagtt tgtggccctt cccttaggga agcactgctt ttgttcccgc 5760

tgcatgtgct aacttccatt cattcatggt tctatccctt tgtagccttc ccttcacact 5820 5880 tctcacttgc gtttcttcca tctctgggca gactgttcca ccaacaaccc ctcccaggct aagctgcggc gggagctcga cgaatccctc caggtcgctg agaggttgac caggaaatac 5940 6000 aacgagetge taaagteeta eeagtggaag atgeteaaca eeteeteett getggageag ctgaacgagc agtttaactg ggtgtcccgg ctggcaaacc tcacgcaagg cgaagaccag 6060 tactatctgc gggtcaccac ggtgagctgt gtcccggcca catgctgtgg ctcgggagcc 6120 gagctgtgat cgggagcagg ggcatgtgtg cttttgactg agcatttatc acacggcaga 6180 aaatagaaaa ctttaggcgc ccctgttgcc ttgaagcctc atcacccact cagggaaaat 6240 ataaccctgc tttacaaagg agcaaagtaa gagaggttcc acagcttggc caaggtgtga 6300 tagctgacag atgacttgga cgggtatttg aacctgactg cctggctgcc aagcctgtat 6360 tttgttgttg ttgtttttgt tttggtgcac aaatctgtga ataaaccaga agcctctgtt 6420 cttttctcaa agctacaagg ctgccctctg gcatgtaaaa tggcttatga attagtacat 6480 cactctctgc cagtgataaa aacttctctc taggccagac atggtggctc atgcctgtaa 6540 tcccagcact ttgggaggca gaggcaagag gattgcttga ggccaggaat ttgagaccag 6600 cctgggcaac acagcaagat tccctctcta caaaaaatac aaaaatcagt caggtgtggt 6660 6720 ggcacacact tgtagtccca gctattcagg aggctgaggt gggaggattg cctgagccct gaagtggagg ctgcagtgag ctgtgatcac gccactgcac tccagcctgg gtgacagagt 6780 gagactctgt ctcttaaaaa atatatatat ataaaataat aaaataaagt taaaaaatca 6840 aataaaactt atttctagta ctgggaactc ttctttttct tttctttctt ccctccaggc 6900 cctctggatt ccttttctac cctactctga ccaagggctg cctaaagcaa atgtttggaa 6960 accactttta ttctttgggg tgctccctgg ctggtcattt gcagatgaca tttgccccaa 7020 7080 cacatgagtg tetgtgaace aggteegtte tgteeactga getgtaetta egtetagatg tataagaagc atggggtcag ctctctaggt tccttggagg agcaggagga cttccttatc 7140 agaagcctga cttctgttgc agagcgcatg cattttgacc acagtgtttc agctcttccc ttttctcttg ttccatttag gtggcttccc acacttctga ctcggacgtt ccttccggtg 7260 tcactgaggt ggtcgtgaag ctctttgact ctgatcccat cactgtgacg gtccctgtag 7320 aagteteeag gaagaaceet aaatttatgg agaeegtgge ggagaaageg etgeaggaat 7380 accgcaaaaa gcaccggtaa gcaggcgggc ctttcctgcg gcctgcaggg cccagtgagt 7440

ctctgggagc	Cacaaaaaaa	caaacaaagt	gcagactcta	tagcctggtg	ggaacgactc	7500
cgcccggagc	cagagcccaa	gaacaaagcc	aggaagttac	gggggaattt	tatttttcct	7560
ttggaggatg	ttttactttg	gaggataact	gttttttatt	tcagggagga	gtgagatgtg	7620
gatgttgctt	ttgcacctac	gggggcatct	gagtccagct	cccccaaga	tgagctgcag	7680
cccccagag	agagetetge	acgtcaccaa	gtaaaccagg	ccccagcctc	caggccccca	7740
actccgccca	gcctctcccc	gctctggatc	ctgcactcta	acactcgact	ctgctgctca	7800
tgggaagaac	agaattgctc	ctgcatgcaa	ctaattcaat	aaaactgtct	tgtgagctga	7860
tcgcttggag	ggtcctcttt	ttatgttgag	ttgctgcttc	ccggcatgcc	ttcattttgc	7920
tatggggggc	aggcaggggg	gatggaaaat	aagtagaaac	aaaaaagcag	tggctaagat	7980
ggtataggga	ctgtcatacc	agtgaagaat	aaaagggtga	agaataaaag	ggatatgatg	8040
acaaggttga	tccacttcaa	gaattgcttg	ctttcaggaa	gagagatgtg	tttcaacaag	8100
ccaactaaaa	tatattgctg	caaatggaag	ctt			8133

<210> 11

<211> 940

<212> DNA

<213> Homo sapiens

<400> 11 aagcttgaac tggagcaagg gtaggcactt gcatgctggg tggccagcct atgggaaggc 60 tegecetggg geagaggee tggeaceeag eagetetttg agtgeatgag eetgtggtet 120 ctgtgtgctc agccagcctt gtgtcttcct gtaggatgcc ctaaatgaga ccagggaatc 180 agagacaaag ctgaaggagc tcccaggagt gtgcaatgag accatgatgg ccctctggga 240 agagtgtaag ccctgcctga aacagacctg catgaagttc tacgcacgcg tctgcagaag 300 tggctcaggc ctggttggcc gccaggtgaa aaggggacac atgagtggcc aaggctctga 360 gtggggaagg aggggagcct agtgaaatat gcttcattcc gcatgccaga tgcaattgat 420 tagcattggc tggcttgccc agagtgccat gctccattgg taatgtctgg catgagtaga 480 gagagtggag tcatcaaaag gatgtaggcc aggtatctgc cttctcttag aaaactcatg 540 cagcagtgct tagctggatg acataataaa ctgcttcgtg ggatgcagag ccctgtgtca 600 cttatgtgga aggatttaag aattttttt ttttttgag acagggtctc actctgtcac 660 ccaggctgga gtacagtgat gtgatcatgt ttcactgcag cttcgacctc ctgggttcag 720 10

gtgatcctcc cacctcagcc tcccaagtag ctgggactac aggcacgtac caccacaccc

agctaatttt	tgtattttt	ttttgtaaac	atggggtttg	gccatgttgc	ccaggctggt	840
ctcaaactcc	taagctcaag	taatcctcct	accttggcct	cccaaattgt	tgggattata	900
gatgtgtgcc	actagtccca	gccaatgtaa	gattttgtag			940
<210> 12 <211> 7610 <212> DNA <213> Homo	sapiens	·				
<220> <221> unsur <222> 5461 <223> unkno					*	
<220> <221> unsus <222> 5462 <223> unkno	·		-	· .	·	
<400> 12 gacctgcagg	tcaacggatc	cattcccgat	tcctcatcgt	ccagatggaa	gaaactgagg	60
cccaagggca	aagtgattag	tccgaggtca	cccagtgtct	aggggcacac	ctaggactgt	120
aatcagactt	tcatggacct	ggtctgggtt	ctcccactta	gtcatgggcc	ttgaagattc	180
cccgaggctg	cctcctgaaa	aggactgggg	tctagtggcc	cctggacgtt	gggcaagcaa	240
gggactgggc	ctccatgttg	tgcctccata	gtcctgatcc	tgaactggaa	aactcagccc	300
ctgaccacgc	agctctcctt	taagcccctt	tgtttcacat	ggttttcaaa	gtctgccacc	360
cacagtgggg	ctgcctgtac	ccgccctgtc	cacccattgc	cccagctgtc	agccccttga,	420
cttctctcct	ggggcttaaa	catccctggc	tccaaaatgg	gcagctcact	ttcttcccca	480
agaagtagct	gcacctccag	ggttcctaga	tttgcccctc	cttgccaggg	ggaggggtgg	540
ctgcgacagg	agattctccc	tgctctcagc	agaaggaact	ccagcagttg	gagaccagca	600
aacccctctg	gacacagatc	tgatttccta	actgggaagg	ctcagggcaa	aataaaaatt	660
caggtccact	ggttcaaaaa	ctatgaagaa	tttcaagacc	gtcacagtag	cccattaaac	720
caaacgtgga	tctgcaaggg	teccacagee	atgaagccca	ccctgcttgg	ttgggttcca	780
aaaagatggg	gacagtgatt	gcttaagctc	tgtggatcaa	ggaccccgga	gaggccttct	840
gacteteee	atateteete	tgatcactcc	taaacacaat	tetattteet	ccaggcctgg	900

cgggtcagtc	cagggacccc	catcagtgtg	atgtttccag	gagtaggcgt	ttcaatactt	960
cctgtgctct	cttctccagc	acaaggcccc	tctccatccc	accctcatta	tgtctgactc	1020
tttactattt	aaatgggtca	agagaagtgg	cgcttgtgta	atgtgaaggt	taaggtcagt	1080
agggccaggg	aactgtgaga	ttgtgtcttg	gactgggaca	gacagccggg	ctaaccgcgt	1140
gagagggctc	ccagatggca	cgcgagttca	ggctcttccc	tactggaagc	gccagcgccg	1200
cacctcaggg	tctctcctgg	agccagcáca	gctattcgtg	gtgatgatgc	gccccccgc	1260
gccccagccc	ggtgctgcac	cggcccccac	ctcccggctt	ccagaaagct	ccccttgctt	1320
tccgcggcat	tctttgggcg	tgagtcatgc	aggtttgcag	ccagccccaa	aggtgtgtgc	1380
gcgaacggag	cgctataaat	acggcgcctc	ccagtgccca	caacgcggcg	tcgccaggag	1440
cagcagcatg	ggcacagggt	ccgtgaccgg	tgagatgtcc	ccgtcttccc	taccettgag	1500
cagagccaca	ccaggacgga	tgggcgggca	ggggatggca	gccaggcaga	gagggatgac	1560
acagctcgca	gtcacaaccc	ctgcgctttc	gacggagccc	aggaagccag	ggagggagg	1620
tgccggagcc	ccatcaccag	gcagctgagc	caggggccgc	gcaaccgccg	cctgatgagc	1680
acgagcttca	cgcaaccaca	attctgtggt	ggggggtaa	atagaacaga	tataatgatc	1740
atcctttcgc	aaagatgggg	aaactgagac	ctggagacct	gccgcgttgg	cagacccagg	1800
ctagcaggtg	acagagctgg	cctgcaccga	gctccttcct	gcagcatatc	ctctgcgaag	1860
atgcggatct	ctcagttgtg	gctttcggct	tgcatgcatg	agtcatctag	ttttcttcta	1920
aattctctag	ctctctggac	actgttgcct	gtaagtatga	ggctgcggat	ttcagtatat	1980
ctgcaaccac	cgaaatccga	ctttttctgc	ctcctaatgc	atctgaggtg	catcagagaa	2040
aagtcacaca	agatccacca	ggcctcagac	ctctgattcc	acagteteat	tttacagatg	2100
ataatctgag	gcctggagag	gtttaggact	ggtgccaaca	ctaaacagca	aataagtatc	2160
agaattggga	ttcgagccaa	agcctcttga	ccttccagaa	tttctggacc	tagttaaaaa	2220
aaatatgatt	tttattatta	tttttaaac	ggagaggtta	ggaatttaaa	ggaaagtaca	2280
gatactatat	aaaaaaagat	gcccatgaaa	atgttaagtt	ataataatag	tggagcattg	2340
ggcacaactg	aaatggccaa	tettgtgaga	atggtaaaat	aaacttaggt	ccgtgagtaa	2400
gtggagtatt	acatagccat	aaaagtatgc	ccttaaagaa	tatttgaaga	tggtgaatgt	2460
gaagaatctt	gtataaactg	catggaagac	agaaggaaat	ataccacagt	gctaaccttt	2520
gcctctgggt	gatatgaatt	accggtgatt	atttttctta	ttttcctttt	ggtttagttt	2580
					=	

tctccatttg aagaagcaga taggagccgg ggctttggga ttgaaaccct caccatctgt 2700 gtgccctctt cactgtcttc ccatcctccc cacggctccc tgttcacagt cattgatttt ctttctttct tttctctttt tttttttt tcctgagacc aagtctcact ctqttgccca 2760 ggctggagta gagtagcgcc atctcggctc actgcaacct ccgccatccg ggttcaagca 2820 gttctcatgc ctcagcctct gagtagctgg gactacagcc gcatgctgct acatccggct 2880 aatttttgta tttttagtag agacatggtt tcaccacctt ggccaggctg gtctcgaact 2940 cctgatctca agtaatccag cctgtcttgg cctcccaaag tgctggggtg acaggtgtga 3000 atcaatgcgt ccctgccagg tcattgattt tcttaagcct ctagccctgc cctgcttgga 3060 aacgttttgg gaagctgctc agttcaaagt tcccaggagg gtgtgcctgg aggggagttg 3120 ctcccaaagt ctgcctgctc ccccgcccc ccctgccccc cacccccgc catcttctcc 3180 3240 tectectett eccetgagea geceettigt ecacagaace ggeettitet ggtagaagga gcaaggccaa gtggtttaag ccttcttagg gagaatgagg ctgtgtggta gtgctgggga 3300 3360 ctcgagggcc ttgcgttggc atggctcttc cacccagggc agctggcagc caggctccca ggaggcagag gagatgaggg gggaggtgag tccgagcaaa ggaaaggagg tcggctgtgc 3420 agtcacggtt ctagaacatt cattggatca gcagcatcca tatcacctgc agactggctg 3480 gaaaagcagt ctcagaacca acattataac cagccctgca gtgattcata agtactttaa 3540 aaagtggtca atcatttcag caaagcagag ccacacagtc cgggggacca caggtggcct 3600 ctgtgtgctt gtctcggttt tcctgcccct ctccagacat gttgattaga cactgccaat 3660 gcccagcctc agacctcagt ctaatttgga agtagtcaga atttactatg attacataag 3720 accetegtgt ttacagaaca catteceete tetgaggtet ggattagate cattttacag 3780 atgaagaaac tgaggctcag atatttaagt gacttggaat caaggaaaga atactggaca tggggctggg agggctgggc tctcatccca gggttaccat gagcatgctg tggactctag ggagtccatg ccctctctgg cgttcagctc accgctaggt agagaggttg ggtgagagaa cgacctcctt cccaggtctg agctggatgg ttcaccaggg accccaggct ccctggacga gactctgtgc ccgctgctga gtctggaatt cctttcctgt atcttgcctt tgcgtgcccc 4080 attetteatg geceageace etgtettetg gteagaacet agttetgaat gggtttttee 4140 agaagttgtt gctttcaggg gcccctggca gagaggtgtt tctggctggc tttgtctctc 4200 tggcatgaca aaggctctgt tcctgctgga ggcatttcag ggctcagtgg gcagctgggg 4260

	cagacgctga	gaccacagcc	ttcctggtga	gcccggtctc	cgcccctac	cccatctctg	4320
	ggaaggcgct	gaccccatct	cttctcccac	gctgctccct	ggctctttgc	gcctgattac	4380
	ttctcatgag	aggcactcct	tgttaatgtg	ctactgagtg	tccagatggg	cctgctgggc	4440
	tgagcgggct	ttggatgtga	accatttcag	gaaggggaac	ccatcgtcct	gttggttctg	4500
	tgatggcaaa	tgggtgagct	cagataacga	gttcttggga	ggggcatggt	gggggtggag	4560
	tgcaggggga	ggggtttctg	ttttattgac	aacagcctca	gcttctggga	aagggtccat	4620
	tgtgtaagac	cggggctatg	gctgtgcccc	gtggctcagg	gcagccagcc	agtggtggca	4680
	ggaacactgg	cagggcagcc	tcgtgtcggc	ttagagggga	tgggcagtgt	ggagggcctg	4740
	gcagagcaag	aggactcatc	cttccaaagg	gactttctct	gggaagcctg	ctcctcgggc	4800
	cactgcgaac	cctctctact	ctccgaagga	attgtccttc	ctggcttcca	ctacttccac	4860
	ccctgaatgc	acaggcagcc	cggcccaagt	ctcccactag	gatgcagatg	gattcggtgt	4920
	gaagggctgg	ctgctgttgc	ctccgcgtct	tgaaagtcaa	gttcaggtgg	tgctgagact	4980
	ccctgggggc	tgcagcgctg	tggtgaatgg	ggagcgtctg	ctggggtgaa	ggtttaggtg	5040
	cacattgcag	aggacgtggc	tggtctctgg	gatgcagtcc	ctctgtggag	gtggcatggg	5100
	gagggacgga	tgcatgacct	aagggtggta	ttttcagtgt	ctgacatgat	cgataccact	5160
	ctggacaagg	aggccaggat	gcagaaagcc	tgtgtgcctc	gctgattgtc	ggggaggatg	5220
	tggcttggac	aagagcctgg	ttcctccgat	gccagggttc	ttgtttcttc	cactcaacat	5280
	tgctgtcctg	cagtccctcc	ctccctgcac	ctcctgcctt	cgctttcatt	cgaggtgtcc	5340
	atggcaagtc	tggtcatttc	ccccatttc	ctcaggaata	aaagttgcag	cagtgcctgc	5400
٠	tgtggggaca	gctgagggca	gtgaggctgg	ggagctgctg	cagggcggag	tgggcgggac	5460
	nnagcaggct	gtctagctgt	tcccatgatg	gtctcctgtt	ctctgcagag	gcgtgcaaag	5520
	actccagaat	tggaggcatg	atgaagactc	tgctgctgtt	tgtggggctg	ctgctgacct	,5580
	gggagagtgg	gcaggtcctg	ggggaccaga	cggtctcaga	caatgagctc	cagggtgagt	5640
	agaccaagca	tgatgttcct	ctggccacag	ggtgatgagg	tcagagggca	gggtagctaa	5700
	ttctgctcag	tgcctctcta	tcaggcccca	gtgttacaga	ccgtttttat	cttgtgcact	5760
	gggtctgggt	gcctgtgtct	gggcccactc	tgagcctcag	ctcccaggcc	cctggttcag	5820
	gctctgcgtg	catcagactg	ccggcatttg	caggcatttc	ccaagcactt	tcggctgttg	5880
	catttcattc	agctcttccc	ctcccaggcc	ccttagccca	gctcccaggc	ctcctccaca	5940

aagctgtgtc tggaccaccg gagctcttat ccctctcccc tttggagtgc ccagagctta 6000 tccctcctgt gagctgacgg tttctgcagg atcattgtta aaaacccaga tcagacatgg 6060 gtgtgagtct gtttcacctc ttctcagctg ggtgactttg ggccactatc ttgatctcat 6120 6180 gacactcccc ccacccccca ttttattgag atataattaa caaataaaaa ttgtgtatat ttaaggtata tgacgtgatg ttttgaaatg cacatacatt gaaatgatga ccagttttta 6240 tggtgggacg gtgggaagac ttaaaatcta ctttcttagc aaatttccag ttatgatatg 6300 gtgttattaa ctataagcac cacctgtatg ttagacctcc agaacatact cctcctacct 6360 gatgaacact ttgacccttt atcatatcac acttcccatg tctccctctg cgaagtgggc 6420 acggcggggg gctggagcat tacgtaaact gcacatgaag tgtttggcgc agtgcttggc 6480 atgggataaa caccagtgaa gtagcactta ggtgacacag tgtttcgctg catttgtcac 6540 cagtgctatc cttactcatt tactcatctt cttattcctg tcgcctggca ctgcattgga 6600 acaaagaaat acacatatct gtttaaactg aactctagaa agatttgtgt ccaaaataac 6660 aatattttat attttgatgc tgcaaacgtg acacttctgg gttttttttt tttccttgcc 6720 6780 aagtttcttc tgcacccagc tcattctcca ggggcacatg gcagtggctg ggcataactc tgggtgtgcc ggctcccatg gtctgcattt ctaagcagta gggtgcagtc agcaaggagc 6840 ctgtgatggg agcctgtgcc agggcaaggc tggggcatgc tgctgcctgc tggcaggagt 6900 gggggtccca gccttgacag cccctgaact gaacgggcct ttctggcatc cagctcattc 6960 7020 cagggtcctg aggccacctc ttcctctcgc ctcattctgc ctcttgcact tctcttgcag 7080 aaatgtccaa tcagggaagt aagtacgtca ataaggaaat tcaaaatgct gtcaacgggg 7140 tgaaacagat aaagactctc atagaaaaaa caaacgaaga gcgcaagaca ctgctcagca acctagaaga agccaagaag aagaaagagg tcaggaggag ccgctaccgc ctccctgcct 7200 tgaccatccc actggagggg agggaggggg tcactgcgg gtgccctgct ggttgccatg 7260 gtgacccgca gtcctcccag gctgtgtcag ctgatgctga ggctgcagtt aagaagcagg gaaggttcat ttgcttctga aagcatcagg gagtgagatc ttggatctgg ttttgttatg 7380 agcctggccc agggctaatg ccagattcat ttcaatagat gtttctaagc cctgatcacg 7440 tgctagttcc aagcaggctc tgggtggggt ggcggcaggg gccagacagg cgtggcgtcc 7500 aaccttcagg aagcttctag gagttaggga acagttggat cttgaaggat gagtgggttc 7560 tttaagccag gtgggaaggg gattccaggt gggcgaatga ggggaagctt 7610

<211 <212)> 13 L> 16 !> DN B> Ho	551 VA	sapie	ens												
-	L> CI		(1	L545)	ı										-	
)> 13 gáac		ctct	tacto	et co	gaag	gggaa	a ttg	gtcct	tcc	tgg	cttco	cac 1	tactt	ccacc	60
ccts	gaatç	gca d	caggo	cagco	cc gg	gada	aagto	tec	ccact	agg	gate	gcaga	atg (gatto	eggtgt	. 120
gaag	gggct	gg (ctgct	gtts	gc ct	ccgg	gctct	t tga	aaagt	ccaa	gtto	agag	ggc (gtgca	aaagac	180
tcca	igaat ,	tg g	gaggo	catg								_		ctg Leu 10		231
														tca Ser		279
														aat Asn		327
														ctc Leu		375
											_			gaa Glu	_	423
					_								_	tca Ser 90	· -	47]
							_	_	_				_	atg Met		519
		_		_	_		_			_		_	_	aag Lys	•	56
											_		_	cag Gln		61
														aat Asn		663

													cac His 170		711
											_		ata Ile	_	759
		_											acc Thr		807
_		_				_							ttc Phe		855
	_		_		_	_		_	_			_	tac Tyr		903
											_	_	ata Ile 250		951
		-		_	_		-	~ .		_	_	_	ttc Phe	cag Gln	999
													act Thr		1047
													aag Lys	gac Asp	1095
											_		acc Thr	aac Asn 315	1143
													ctc Leu 330		1191
												_	tcc Ser	tac Tyr	1239
													aac Asn		1287
													gaa Glu		1335

=			_		-		_	_	_		His			Asp	_	1202
	~													gac Asp 410	Ser	1431
													_	aac Asn		1479
						_				•		_		cgc Arg		1527
	_		gag Glu		tga	gat	gtgga	atg 1	ttgct	tttg	gc ac	cctad	.aaa	g gca	atctgag	t 1585
ccaç	gatad	ccc c	ccaag	gatga	ag ct	gcag	gccc	c dà	agaga	agag	ctct	gcad	gt d	cacca	agtaa	1645
ccaç	gc															1651
																-
<213 <212)> 14 L> 20 2> DN 3> An) IA	Lcia:	l Sed	quenc	ce										
<220 <223		ntise	ense	Olig	gonud	cleot	tide									
)> 14 ttg(-	geeto	eggto	ca						-					20
<211 <212)> 15 L> 2(2> DI 3> A)) NA	icial	l Sed	queno	ce	-									
<220 <223		ntise	ense	Oli	gonu	cleo	tide									
)> 15 ctgga		cttt	gcac	gc											20
<213 <212	0> 10 l> 20 2> Di 3> Ai	NA NA	icia	l Sec	quen	ce			·							
-226	١.			•											•	

WO 02/22635	PCT/US01/28235
•	
<223> Antisense Oligonucleotide	, , , , , , , , , , , , , , , , , , ,
.400. 16	
<400> 16 gtcttcatca tgcctccaat	20
·	20
<210> 17	
<211> 20	
<212> DNA _ <213> Artificial Sequence	
and the second sequence	
<220>	
<223> Antisense Oligonucleotide	•
<400> 17	
tctcccaggt cagcagcagc	20
<210> 18 <211> 20	-
<211> 20 <212> DNA	
<213> Artificial Sequence	
-	•
<220>	
<223> Antisense Oligonucleotide	
<400> 18	
tctggtcccc caggacctgc	20
	•
<210> 19	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
•	
<400> 19	
ggagctcatt gtctgagacc	20
<210> 20	•
<211> 20	·
<212> DNA	
<213> Artificial Sequence	•
<220>	
<223> Antisense Oligonucleotide	
<400> 20	· ·
acttacttcc ctgattggac	20
	- · · · · · · · · · · · · · · · · · · ·
<210> 21	
<211> 20	

WO 02/22635	PCT/US01/28235

<212> DNA <213> Artificial Sequence		
•		
<220> <223> Antisense Oligonucleotide		
<400> 21		
aatttcctta ttgacgtact		20
.210. 22		
<210> 22 <211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide	·	
<400> 22	r	
gtctttatct gtttcacccc		20
<210> 23		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 23 gggcatcctc tttcttcttc		20
gggcacccc ccccccc		20
<210> 24		
<211> 20		
<212> DNA <213> Artificial Sequence		
· · · · · · · · · · · · · · · · · · ·	-	
<220> <223> Antisense Oligonucleotide		
<400> 24 atttagggca tcctctttct		20
<210> 25		
<211> 20		
<212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 25 ttccctggtc tcatttaggg		20
		20

<210><211><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tgtcto	26 ctgat tecetggtet		20
<210><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> gggago	27 ctcct tcagctttgt		20
<210><211><212><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> cccaga	28 agggc catcatggtc		20
<210><211><211><212><213>	20	-	
<220> <223>	Antisense Oligonucleotide		
<400>	29 cccag agggccatca		20
<210><211><212><213>	20		
-2205			

WO 02/22635	PCT/US01/28235
<223> Antisense Oligonucleotide	·
<400> 30 tcaggcaggg cttacactct	20
<210> 31 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 31 gtgcgtagaa cttcatgcag	20
<210> 32 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 32 ggcggccaac caggcctgag	20
<210> 33 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 33 tggcggccaa ccaggcctga	· · · · . 20
<210> 34 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 34 actcctcaag ctggcggcca	20
<210> 35 <211> 20	

WO 02/22635

WO 02/22635	PCT/US01/28235	
	•	

	<212> DNA	·	
	<213> Artificial Sequence		
	<220>		
	<223> Antisense Oligonucleotide		•
	<400> 35		
	agtagaaggg cgagctctgg		20
	<210> 36		
	<211> 20	•	
	<212> DNA		
•	<213> Artificial Sequence		
	•		
	<220>		
	<223> Antisense Oligonucleotide		•
		_	
	<400> 36		
	ttcatccaga agtagaaggg		20
	·	-	
	<210>.37		
	<211> 20		
	<211> 20 <212> DNA		
•			
	<213> Artificial Sequence		
	<220>		-
	<223> Antisense Oligonucleotide		
`	1400 > 37		
	<400> 37		2.0
	cagcagggag tcgatgcggt		20
	•		
	. 212. 22		
	<210> 38		
	<211> 20		-
	<212> DNA	•	
	<213> Artificial Sequence		
	•		
	<220>		
	<223> Antisense Oligonucleotide		-
•	•		
	<400> 38		
·	gctgccggtc gttctccagc		20
		•	
			•
	<210> 39		
	<211> 20		
_	<212> DNA		
•	<213> Artificial Sequence	,	
	-		-
	<220>	•	
	<223> Antisense Oligonucleotide		
	3		
	<400> 39		
	catccagcat gtgcgtctgc		20
·			, 20

.

.

.

<210>					
<211>					
<212>					
<213>	Artificial Sequence				
				-	
<220>					
<223>	Antisense Oligonucleotide				
400.	4.0			,	
<400>	•				20
gacaro	ccagc atgtgcgtct				20
<210>	47		•		
<211>					
<212>					•
	Artificial Sequence				
•					
<220>					
<223>	Antisense Oligonucleotide				
<400>					
gtggt	cctgc atgacatcca				20
010					
<210>					
<211><212>		•			
	Artificial Sequence				
\Z1J>	Artificial bequence				
<220>					
<223>	Antisense Oligonucleotide			• .	
	•				
<400>	42			•	
aagtg	gtcct gcatgacatc				20
<210>					
<211>	•				
	DNA			•	
<213>	Artificial Sequence				
<220>					
	Antisense Oligonucleotide	•			•
1000		•			
<400>	43	,			
	agagc tcgtctatga				20
<210>	44				
<211>					
<212>					
<213>	Artificial Sequence			•	
-220 >					
- 1 1 1 1					

<223>	Antisense Oligonucleotide		,	-		
<400> tgtcct	44 ggaa gagctcgtct				-	20
<210><211><212><212><213>	20		·	-		
<220> <223>	Antisense Oligonucleotide					
<400> gaacct	45 gtcc tggaagagct		•			20
<210><211><212><212><213>	20	•	· ·			
<220> <223>	Antisense Oligonucleotide					
<400> ggaaag	46 gaaga agtgaggcct		. •			20
<210><211><212><213>	20	-				
<220> <223>	Antisense Oligonucleotide		·			- :
<400> gggcat	47 caag ctgcggacga	-		×		20
<210><211><211><212><213>	20					
<220> <223>	Antisense Oligonucleotide					
<400> ctcaag	48 ggaag ggctggaaca					20
<210> <211>				-		

PCT/US01/28235

WO 02/22635

WO 02/22635			PCT/US01/28235
	•	•	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 49 tctcaaggaa gggctggaac	20
<210> 50 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 50 tgtatcatct caaggaaggg	20
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 51 gctgtggaag tggatgtcca	20
<210> 52 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 52 attctgttgg cgggtgctgg	20
<210> 53 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 53 tatgaattct gttggcgggt	20

<210>	54	
<211>	20	
<212>	DNA	
	Artificial Sequence	
<220>		
	Antigongo Oligonuglootido	
<223>	Antisense Oligonucleotide	
<400>	· E4	
		2.0
ggalco	tcccg gcacacagtc	20
.010.		•
<210>		
<211>		
<212>	·	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	55	
cggato	ctccc ggcacacagt	20
-		
<210>	56 ·	
<211>	20	
<212>	DNA	•
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	56	
	gttgt ggcggatctc	20
J - J J		
<210>	57	
<211>	\cdot	
<212>		
	Artificial Sequence	
\24J>	The creation of the contraction of the creation of the creatio	-
<220>		
	Antisense Oligonucleotide	
\ 2237	Antisense Viigondereotide	
<400>		
guddu	tcatc cgcaggcagc	20
-010-	EQ	
<210>	·	
<211>		
<212>		
<213>	Artificial Sequence	
~22A~		

	WO 02/22635	PCT/US01/28235
	<223> Antisense Oligonucleotide	
,	<400> 58	
	acagtccaca gacaagatct	20
	<210> 59	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence)
	<220>	
	<223> Antisense Oligonucleotide	
	<400> 59	
	gageteeege egeagettag	20
	<210> 60	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Antisense Oligonucleotide	•
	<400> 60	
	ggagggattc gtcgagctcc	20
	<210> 61	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	•
	<22.0>	
	<223> Antisense Oligonucleotide	
	<400> 61	
	atcttccact ggtaggactt	20
	<210> 62	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	-
	<223> Antisense Oligonucleotide	
	<400> 62	
	tgttgagcat cttccactgg	20

<210> 63 <211> 20

<212> DNA	
<213> Artificial Sequence	
	·
<220>	
<223> Antisense Oligonucleotide	
<400> 63	
agctgctcca gcaaggagga	20
	·
<210> 64	
<211> 20	,
<212> DNA	
<213> Artificial Sequence	
	_
<220>	
<223> Antisense Oligonucleotide	•
	· · · · · · · · · · · · · · · · · · ·
<400> 64	
getegtteag etgeteeage	20
	•
<210> 65	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
22137 Architetar Sequence	
<220>	•
	•
<223> Antisense Oligonucleotide	
<400> 65	
	20
ttgccagccg ggacacccag	20
• · · · · · · · · · · · · · · · · · · ·	
22105 <i>66</i>	
<210> 66	
<211> 20	•
<212> DNA	
<213> Artificial Sequence	
	_
<220>	•
<223> Antisense Oligonucleotide	
·	•
<400> 66	
cgcagatagt actggtcttc	20
-	
<210> 67	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
- ,	•
<400> 67	
accgtggtga cccgcagata	20

<210>	68					•
<211>	20					
<212>	· DNA				•	
	Artificial Sequence		•			
\Z1J/	merricial beduence					
	•					
<220>						
<223>	Antisense Oligonucleotide					
<400>	68					
caaata	cagaa gtgtgggaag					20
09494	Jugua					20
<210>						
<211>	20					
<212>	DNA					
<213>	Artificial Sequence					
	· •					
<220>					-	
	Antisense Oligonucleotide				•	
4223 7	Ancisense origonacieociae			•		
. 4 0 0 -	60	•				
<400>						
gtgate	gggat cagagtcaaa					20
-						
<210>	70					
<211>	20					
<212>						
		•				
<213>	Artificial Sequence					
000					• =	
<220>						
<223>	Antisense Oligonucleotide					
	•					
<400>	70					
ggaga	cttct acagggaccg					. 20
				•		
<210>	71					
	-	•	•	•		
<211>	•	•				
<212>						
<213>	Artificial Sequence		-			
<220>						
<223>	Antisense Oligonucleotide					
<400>	71					
	ggtct ccataaattt					20
gccac	ggttt ttataattt					20
	•					-
		•			•	
<210>	72					
<211>	20					
<212>	DNA					
	Artificial Sequence					
	·		•			
-220 >						

WO 02/22635	PCT/US01/28235
<223> Antisense Oligonucleotide	
<400> 72	·
gcaaaagcaa catccacatc	. 20
<210> 73	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 73	
tagagtgcag gatccagagc	20
<210> 74	•
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	•
<400> 74	
attagttgca tgcaggagca	. 20
<210> 75	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 75	
agacagtttt attgaattag	20
<210> 76	·
<211> 20 ·	•
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 76	20
cgagatagag ccactgtacg	
	•
<210> 77	
<211> 20	

WO 02/22635	PCT/US01/28235

	<212> DNA		•	
	<213> Artificial Sequence			
	_		-	
	<220>			
	<223> Antisense Oligonucleotide			
	(223) Ancisense Origonacieocide			
	<400> 77			
	tgccaccacc cccgggtgat	•		20
•				
	<210> 78			
	<211> 20			
	<212> DNA		•	
•		•		
	<213> Artificial Sequence			
	<220>			
	<223> Antisense Oligonucleotide			
. •	<400> 78	• '		A**
	gttgttggtg gaacagtcca		•	20
•	gragarg gamangara			
	<210> 79			
	<211> 20			
	<212> DNA	•		
	<213> Artificial Sequence			
•				
	<220>			
•	<223> Antisense Oligonucleotide		•	
	(and) interpense offgonderection			
	<400> 79			
				2.2
	tgcttaccgg tgctttttgc			20
	·			
	-	•		
	<210> 80			
	<211> 20			
	<212> DNA .			
	<213> Artificial Sequence			
•				
	<220>			
	•	_	•	
	<223> Antisense Oligonucleotide			
	<400> 80			
	acatctcact cctcccggtg			20
	·	· .		
,				
•	<210> 81.			
	<211> 20			
	<212> DNA			
	<213> Artificial Sequence			
	ZATAN WIGITIGE		•	
•				
	<220>			
	<223> Antisense Oligonucleotide	·		
	<400> 81			
	gaccctccaa gcgatcagct			20
		32		
•				•

· ·

<210><211><211><212><213>	20				
<220> <223>	Antisense Oligonucleotide	-			
<400> aaaaaa	82 gagga ccctccaagc				20
<210><211><211><212><213>	20				
<220> <223>	Antisense Oligonucleotide		*		
<400> tgtgto	83 cccct tttcacctgg	· · · · · · · · · · · · · · · · · · ·			20
<210><211><211><212><213>	20				
<220> <223>	Antisense Oligonucleotide				
<400> attaco	84 caatg gagcatggca			•	20
<210><211><212><213>	20		·		
<220> <223>	Antisense Oligonucleotide				
<400> caaca	85 tggcc aaaccccatg	· .			_ 20
<210>	·				
<211><212><213>					
<220>					

<223> Antisense Oligonucleotide		
<400> 86		
gcggcaggtc tccaggtctc		20
•		
-210. 97		
<210> 87 <211> 20		
<212> DNA		
<213> Artificial Sequence	• •	
· ·		
<220>	•	
<223> Antisense Oligonucleotide		
400 00		
<400> 87		20
ttcccttcgg agagtagaga		20
	- -	
<210> 88 ~	•	
<211> 20		
<212> DNA	• •	
<213> Artificial Sequence		
1220		
<220> <223> Antisense Oligonucleotide	·	
(223) Ancisense Origonacieociae		
<400> 88		
tgcttgggaa atgcctgcaa		20
	_	
<210> 89 <211> 20		
<211> 20 <212> DNA		
<213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide	·	
14'00> 00 ·		
<400> 89		20
agctggatgc cagaaaggcc		20
<210> 90		
<211> 20	•	
<212> DNA		
<213> Artificial Sequence	• .	
<220>		
<223> Antisense Oligonucleotide		
<400> 90		
taganatagt ganagaga	•	20

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/28235

A. CLA	SSIFICATION OF SUBJECT MATTER		
	Please See Extra Sheet.		
	Please See Extra Sheet. International Patent Classification (IPC) or to bot	h national classification and IDC	
	DS SEARCHED	in national classification and ITC	
	ocumentation searched (classification system followe	d by classification symbols	
	435/6, 91.1, 325, 375; 536/23.1, 23.2, 24.3, 24.31, 2		
Documentat	tion searched other than minimum documentation to	o the extent that such decrements	
searched	and and other than minimum documentation to	o the extent that such documents are 1	ncinded in the fields
Electronic o	lata base consulted during the international search (name of data base and, where practicable	e search terms used)
	edline, caplus, lifesci, embase, uspatfull		and terms and the
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.
X 	WO 00/49937 A2 (THE UNIVERSITY 31 August 2000 (31-08-00), see entire	· 1	1, 2, 4, 5, 11
Y	or subject to the control		3, 6-10, 12-20
X	KANG ET AL. Antisense Oligonuc	leotide of Clusterin mRNA	11
	Induces Apoptotic Cell Death and Pre		
Y	17D Sertoli Cells. Molecules and Cells. No. 2, pages 193-198, see entire docu		1-10, 12-20
		·	
	·		
·	•		
· ,			
·			
		-	
		·	·
·		-	
X Furti	ner documents are listed in the continuation of Box	C. See patent family annex.	
"A" dod	cial categories of cited documents: cument defining the general state of the art which is not considered be of particular relevance	"T" later document published after the inte date and not in conflict with the appl the principle or theory underlying the	ication but cited to understand
"E" ear	lier document published on or after the international filing date	"X" document of particular relevance: the considered novel or cannot be considered.	claimed invention cannot be
cite	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other cial reason (as specified)	when the document is taken alone document of particular relevance; the	
"O" dad	enment referring to an oral disclosure, use, exhibition or other ans	considered to involve an inventive step with one or more other such docum obvious to a person skilled in the art	when the document is combined
"P" doc	document published prior to the international filing date but later "%" document member of the same patent family		
	actual completion of the international search	Date of mailing of the international se	arch report
23 OCTO	BER 2001	FEB 20	N7
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks	Authorized officer KAREN A. LACOURCIERE	-C- Fei-
Facsimile N	o, D.C. 20231 o. (703) 305-3230	Telephone No. (703) 306-0196	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/28235

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	pionages	Resevant to Claim 140
X	MIYAKE ET AL. Antiseuse TRPM-2 Oligodeoxynucleotides	1, 2, 4, 5, 11, 12,
-	Chemosensitize Human Androgen-independent PC-3 Prostate	14, 15
\mathbf{Y}	Cancer Cells Both in Vitro and in Vivo. Clinical Cancer Research.	14, 10
-	May 2000, Vol. 6, pages 1655-1663, see entire document.	3, 6-10, 13, 16-20
	page 2000, not the month	9, 0-10, 19, 10-20
X ·	MIYAKE ET AL. Testosterone-repressed Prostate Message-2 Is an	11
•	Antiapoptotic Gene Involved in Progression to Androgen	
\mathbf{Y}	Independence in Prostate Cancer. Cancer Research. 01 January	1-10, 12-20
	2000, Vol. 60, pages 170-176, see entire document.	
X	MITSTATTI TITL AT A	
	MIYAKE ET AL. Acquisition of Chemoresistant Phenotype by	11
Y	Overexpression of the Antiapoptotic Gene Testosterone-repressed	7 70 70 00
1	Prostate Message-2 in Prostate Cancer Xenograft Models.Cuacer Research. 01 May 2000, Vol. 60, pages 2547-2554, see entire	1-10, 12-20
	document.	
	·	
X	ZWAIN ET AL Clusterin Protects Granulosa Cells from Apoptotic	111
·.	Cell Death during Follicular Atresia. Experimental Cell Research.	
Y	March 2000, Vol. 257, pages 101-110, see entire document.	1-10, 12-20
\mathbf{X}	URBICH ET AL. Laminar Shear Stress Upregulates the	11
- ~~	Complement-Inhibitory Protein Clusterin A Novel Potent Defense	
\mathbf{Y}	Mechanism Against Complement-Induced Endothelial Cell	1-10, 12-20
	Activation. November 1999, Vol.101, pages 352-355, see entire document.	
	document	
\mathbf{X}	SENSIBAR ET AL. Prevention of Cell Death Induced by Tumor	111
·	Necrosis Factor alpha in LNCaP Cells by Overexpression of	
\mathbf{Y}	Sulfated Glycoprotein-2 (Clusterin). Cancer Research. 01 June	1-10, 12-20
	1995, Vol. 55, pages 2431-2437, see entire document.	
.		
Y	US 5,801,154 A (BARACCHINI ET AL.) 01 September 1998 (01-	1-20
	09-98), see especially columns 6-9.	
Y .	MILNER ET AT. Salasting officiality antigange magnitudes	1 00
.	MILNER ET AL Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nature Biotechnology. June	1-20
	1997, Vol. 15, pages 537-541, see entire document.	}
	Lugor ost offi no outlier monthly	
* *		
		-

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/28235

A. CLASSIFICATION OF SUBJECT MATTER: IPC (7):

C07H 21/02, 21/04; A61K 48/00; C12Q 1/68; C12P 19/84; C12N 1/85, 15/86

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/6, 91.1, 325, 375; 536/23.1, 23.2, 24.3, 24.31, 24.33, 24.5; 514/44