Plant Monitoring Report

Plant ID: 102

Date: 2024-12-16

Summary

This report provides a detailed analysis of the plant monitoring data for plant ID 102. The data covers the period from N/A to N/A.

Averages

Parameter	Average Value	Unit
Light	250.82	μmol/m²/s
Temperature	47.52	°C

Trends

The following trends have been observed in the data:

- Light: increasing

- Temperature: decreasing

Anomalies

Detected anomalies are listed below with their corresponding timestamps:

Light: 0 anomalies detected

Temperature: 1 anomalies detected

Value: 30.0, Timestamp: 2024-12-10T16:49:34Z

Comparisons

Comparison of plant data with other plants in the room data (if applicable):

- Light: Difference = 0.00 μmol/m²/s

- Temperature: Difference = 0.00 °C

Correlations

The following correlations between different parameters were found:

- Light and Temperature: Correlation = -0.80

Daily Summary

Date	Parameter	Average Value	Unit
2024-12-10	Light	250.82	μmol/m²/s
2024-12-10	Temperature	47.52	°C

Insights

1. Key Findings:

- * The lettuce plants are experiencing a decreasing temperature trend, which could be beneficial for growth.
- * The light level is increasing, which is essential for photosynthesis and plant growth.
- * No anomalies were detected in the light data, indicating a stable light environment.
- * One anomaly was detected in the temperature data, which may be beneficial but should be monitored.

2. Actionable Insights:

- * Since temperature is decreasing, monitor the plants for optimal growth without risking cold stress. Regularly inspect the plants to prevent potential stress or damage.
- * Maintain the increasing trend of light levels to ensure continued healthy growth. Consider adjusting the light intensity or duration based on plant responses.
- * Investigate the temperature anomaly to understand its cause and impact on the plants. Consider adjusting any environmental controls to prevent such anomalies in the future.

3. Potential Issues:

- * Overcooling: If the temperature drops too low, the plants may experience stress or damage. Regularly monitor temperature levels to prevent this.
- * Light toxicity: While high light levels are beneficial for photosynthesis, excessive light intensity can cause plant damage. Monitor the plants for signs of light toxicity, such as leaf scorch or discoloration.
- * pH and Soil Moisture: The lack of data on pH and soil moisture limits the ability to diagnose potential issues in these areas. Regularly measure these parameters to ensure optimal growing conditions.