- 1. Set notation
- 2. Fields, vector spaces, normed vector spaces, inner product spaces
- 3. More notation
- 4. Vectors in \mathbf{R}^n , \mathbf{C}^n , norms
- 5. Matrix Facts (determinants, inversion formulae)
- 6. Normed vector spaces, inner product spaces
- 7. Linear transformations
- 8. Matrices, matrix multiplication as linear transformation
- 9. Induced norms of matrices
- 10. Schur decomposition of matrices
- 11. Symmetric, Hermitian and Normal matrices
- 12. Positive and Negative definite matrices
- 13. Singular Value decomposition
- 14. Hermitian square roots of positive semidefinite matrices
- 15. Schur complements
- 16. Matrix Dilation, Parrott's theorem
- 17. Completion of Squares

- 1. \mathbf{R} is the set of real numbers. \mathbf{C} is the set of complex numbers.
- 2. \mathbf{N} is the set of integers.
- 3. The set of all $n \times 1$ column vectors with real number entries is denoted \mathbf{R}^n . The *i*'th entry of a column vector x is denoted x_i .
- 4. The set of all $n \times m$ rectangular matrices with complex number entries is denoted $\mathbb{C}^{n \times m}$. The element in the *i*'th row, *j*'th column of a matrix M is denoted by M_{ij} , or m_{ij} .
- 5. Set notation:
 - (a) $a \in A$ is read: "a is an element of A"
 - (b) $X \subset Y$ is read: "X is a subset of Y"
 - (c) If A and B are sets, then $A \times B$ is a new set, consisting of all ordered-pairs drawn from A and B,

$$A \times B := \{(a, b) : a \in A, b \in B\}$$

(d) The expression $\{A : B\}$ is read as:

"The set of all <u>insert expression</u> \mathcal{A} such that insert expression \mathcal{B} ."

Hence

$$\left\{ x \in \mathbf{R}^3 : \sum_{i=1}^3 x_i^2 \le 1 \right\}$$

is the ball of radius 1, centered at the origin, in 3-dimensional euclidean space.

6. The notation $f: X \to Y$ implies that X and Y are sets, and f is a function mapping X into Y

A field consists of: a set \mathcal{F} (which must contain at least 2 elements) and two operations, addition (+) and multiplication (·), each mapping $\mathcal{F} \times \mathcal{F} \to \mathcal{F}$. Several axioms must be satisfied:

• For every $a, b \in \mathcal{F}$, there corresponds an element $a + b \in \mathcal{F}$, the addition of a and b. For all $a, b, c \in \mathcal{F}$, it must be that

$$a+b=b+a$$
$$(a+b)+c=a+(b+c)$$

- There is a unique element $\theta \in \mathcal{F}$ (or $0_{\mathcal{F}}$, $\theta_{\mathcal{F}}$, or just 0) such that for every $a \in \mathcal{F}$, $a + \theta = a$. Moreover, for every $a \in \mathcal{F}$, there is a unique element labled -a such that $a + (-a) = \theta$.
- For every $a, b \in \mathcal{F}$, there corresponds an element $a \cdot b \in \mathcal{F}$, the multiplication of a and b. For every $a, b, c \in \mathcal{F}$

$$a \cdot b = b \cdot a$$

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c.$

- There is a unique element $1_{\mathcal{F}} \in \mathcal{F}$ (or just 1) such that for every $a \in \mathcal{F}, 1 \cdot a = a \cdot 1 = a$. Moreover, for every $a \in \mathcal{F}, a \neq \theta$, there is a unique element, labled $a^{-1} \in \mathcal{F}$ such that $a \cdot a^{-1} = 1_{\mathcal{F}}$.
- For every $a, b, c \in \mathcal{F}$, $a \cdot (b+c) = a \cdot b + a \cdot c$

Example: The real numbers \mathbf{R} , the complex numbers \mathbf{C} , and the rational numbers \mathbf{Q} are three examples of fields.

A vector space consists of:

- \bullet a set \mathcal{V} , whose elements are called "vectors," and
- ullet a field $\mathcal F$ (often just $\mathbf R$ or $\mathbf C$, and then denoted $\mathbf F$) whose elements are "scalars."

Two operations,

- addition of vectors, and
- scalar multiplication

are defined and must satisfy the following relationships:

- For every $u, w \in \mathcal{V}$, there corresponds a vector $u + w \in \mathcal{V}$ such that for all $u, v, w \in \mathcal{V}$
 - 1. u + w = w + u
 - 2. (u+w)+v=u+(w+v)

There is a unique vector $\theta_{\mathcal{V}}$ (or $0_{\mathcal{V}}$, θ , or just 0) such that for every $w \in \mathcal{V}$, $w + \theta_{\mathcal{V}} = w$. Moreover, for every $w \in \mathcal{V}$, there is a unique vector labled -w such that $w + (-w) = \theta_{\mathcal{V}}$.

- For every $\alpha \in \mathbf{F}$ and $w \in \mathcal{V}$ there corresponds a vector $\alpha w \in \mathcal{V}$. The operation must satisfy 1w = w for all $w \in \mathcal{V}$ and for every $u, w \in \mathcal{V}, \alpha, \beta \in \mathbf{F}$ the distributive laws
 - 1. $\alpha(u+w) = \alpha u + \alpha w$
 - 2. $(\alpha + \beta)u = \alpha u + \beta u$

must hold.

If Z and W are vector spaces over the same \mathcal{F} , then $Z \times W$ is also a vector space (field \mathcal{F}), with addition and scalar multiplication defined "coordinatewise."

Specifically, if $q_1, q_2 \in Z \times W$, then each q_i is of the form

$$q_i = (z_i, w_i).$$

For $\alpha \in \mathcal{F}$, define

$$\alpha q_1 := (\alpha z_1, \alpha w_1), \quad q_1 + q_2 := (z_1 + z_2, w_1 + w_2)$$

• n > 0, $\mathcal{V} = \mathbf{R}^n$, $\mathcal{F} = \mathbf{R}$, addition and scalar multiplication defined in terms of components

$$(x+y)_i := x_i + y_i, \quad (\alpha x)_i := \alpha x_i$$

- n > 0, $\mathcal{V} = \mathbb{C}^n$, $\mathcal{F} = \mathbb{C}$, addition and scalar multiplication again defined in terms of components.
- n > 0, $\mathcal{V} = \mathbf{C}^n$, $\mathcal{F} = \mathbf{R}$, addition and scalar multiplication again defined in terms of components.
- $n, m > 0, \mathcal{V} = \mathbf{F}^{n \times m}, \mathcal{F} = \mathbf{F}$, addition and scalar multiplication defined entrywise

$$(A + B)_{i,j} := A_{i,j} + B_{i,j}, \quad (\alpha A)_{i,j} := \alpha A_{i,j}$$

• \mathcal{V} := all continuous, real – valued functions defined on [0 1], \mathcal{F} = \mathbf{R} . Addition and scalar multiplication defined pointwise: for $f, g \in \mathcal{V}, \alpha \in \mathbf{R}$

$$(f+g)(x) := f(x) + g(x), \quad (\alpha f)(x) := \alpha f(x)$$

- \mathcal{V} := all piecewise continuous, real-valued functions defined on $[0 \infty)$, with a finite number of discontinuities in any finite interval, $\mathcal{F} = \mathbf{R}$. Addition and scalar multiplication defined pointwise, as before. For future, call this space $PC[0, \infty)$.
- Same function space as above, with further restriction that

$$\max_{x>0} |f(x)| < \infty$$
 or $\int_0^\infty |f(\eta)| d\eta < \infty$

Call these $PC_{\infty}[0,\infty)$, and $PC_1[0,\infty)$, respectively.

- 1. In a statement, if \mathbf{F} appears, it means that the statement is true with \mathbf{F} replaced by either \mathbf{R} or \mathbf{C} throughout the statement.
- 2. The set of all $n \times 1$ column vectors with real number entries is denoted \mathbf{R}^n .
- 3. The set of all $n \times m$ rectangular matrices with complex number entries is denoted $\mathbb{C}^{n \times m}$. The element in the *i*'th row, *j*'th column of a matrix M is denoted by M_{ij} , or m_{ij} .
- 4. If $x \in \mathbb{C}$, $\bar{x} \in \mathbb{C}$ is the complex conjugate of x.
- 5. If $M \in \mathbf{F}^{n \times m}$, then M^T is the transpose of M; M^* is the complex-conjugate transpose of M
- 6. If $Q \in \mathbf{F}^{n \times n}$, and $Q^*Q = I_n$, then Q is called *unitary*.
- 7. $\mathbf{R}_{+} := \{ \alpha \in \mathbf{R} : \alpha \ge 0 \}, \, \mathbf{N}_{+} := \{ k \in \mathbf{N} : k \ge 0 \}$

1. Eigenvalues: $\lambda \in \mathbf{C}$ is an *eigenvalue* of $M \in \mathbf{F}^{n \times n}$ if there is a vector $v \in \mathbf{C}^n$, $v \neq 0_n$, such that

$$Mv = \lambda v$$

The vector v is called an eigenvector associated with eigenvalue λ .

2. The eigenvalues of $M \in \mathbf{F}^{n \times n}$ are the roots of the equation

$$p_M(\lambda) := \det(\lambda I_n - M) = 0$$

- 3. **Fact:** Every matrix has at least one eigenvalue and associated eigenvector, since the polynomial $p_M(\lambda)$ has at least one root.
- 4. **Fact:** The eigenvalues of a matrix are continuous functions of the entries of the matrix
- 5. For any $n \times m$ matrix A, and $m \times n$ matrix B, the nonzero eigenvalues of AB are equal to the nonzero eigenvalues of BA.
- 6. A matrix $M \in \mathbf{F}^{n \times n}$ is called *Hurwitz* if all of its eigenvalues have negative real parts.
- 7. A matrix $M \in \mathbf{F}^{n \times n}$ is called *Schur* if all of its eigenvalues have absolute value less than 1.

1. If A and B are square matrices, then

(a)
$$\det(AB) = \det(BA) = \det(A)\det(B)$$

- (b) $\det(A) = \det(A^T)$
- (c) $\det(A^*) = \overline{\det(A)}$
- 2. For any $n \times m$ matrix A, and $m \times n$ matrix B,
 - (a) $\det(I_n + AB) = \det(I_m + BA)$
 - (b) $(I_n + AB)$ is invertible if and only if $(I_m + BA)$ is invertible, and moreover,

(c)
$$(I_n + AB)^{-1} A = A (I_m + BA)^{-1}$$

3. If X and Z are square, Y compatible, then

$$\det\left(\left[\begin{array}{cc} X & Y \\ 0 & Z \end{array}\right]\right) = \det(X)\det(Z)$$

4. If X and Z are square, invertible, Y compatible, then

$$\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix}^{-1} = \begin{bmatrix} X^{-1} & 0 \\ -Z^{-1}YX^{-1} & Z^{-1} \end{bmatrix}$$

5. If A and D are square, D invertible, B, C compatible dimensions, then

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ C & D \end{bmatrix}$$

so that

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det (A - BD^{-1}C) \det(D)$$

1. Suppose A and D are square, D invertible, B,C compatible dimensions. If $A-BD^{-1}C$ is invertible then

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -D^{-1}C & D^{-1} \end{bmatrix} \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C (A - BD^{-1}C)^{-1} & D^{-1}C (A - BD^{-1}C)^{-1}BD^{-1} + D^{-1} \end{bmatrix}$$

2. If A and D are square, invertible, B, C compatible dimensions, then

$$\det(D)\det\left(A - BD^{-1}C\right) = \det(A)\det\left(D - CA^{-1}B\right)$$

and if not 0, then

$$(A - BD^{-1}C)^{-1} = A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}$$

3. If A is square and invertible, and B, C and D are compatibly dimensioned, then vectors d_1, d_2, e_1 and e_2 satisfy

$$\left[\begin{array}{c} e_1 \\ e_2 \end{array}\right] = \left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \left[\begin{array}{c} d_1 \\ d_2 \end{array}\right]$$

if and only if they satisfy

$$\begin{bmatrix} d_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} A^{-1} & -A^{-1}B \\ CA^{-1} & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} e_1 \\ d_2 \end{bmatrix}$$

In reparametrizing some optimization problems involving feedback, the following is useful: Let $T \in \mathbf{F}^{n \times m}$ be given. Define

$$S_1 := \left\{ K \left(I - TK \right)^{-1} : K \in \mathbf{F}^{m \times n}, \det \left(I - TK \right) \neq 0 \right\}$$
$$S_2 := \left\{ Q \in \mathbf{F}^{m \times n} : \det \left(I - QT \right) \neq 0 \right\}$$

Then $S_1 = S_2$, and S_2 is dense in $\mathbf{F}^{m \times n}$; that is, for any $\tilde{Q} \in \mathbf{F}^{m \times n}$, and any $\epsilon > 0$, there is a $Q \in S_2$ such that

$$\max_{\substack{1 \le i \le m \\ 1 \le j \le n}} |\tilde{q}_{ij} - q_{ij}| < \epsilon$$

Suppose $(\mathcal{V}, \mathbf{F})$ is a vector space (again, \mathbf{F} is either \mathbf{R} or \mathbf{C}). If there is a function $\|\cdot\| : \mathcal{V} \to \mathbf{R}$ such that for any $u, v \in \mathcal{V}$, and $\alpha \in \mathbf{F}$

- $\bullet \|u\| \ge 0$
- $\bullet \|u\| = 0 \Leftrightarrow u = 0_n$
- $\bullet \|\alpha u\| = |\alpha| \|u\|$
- $||u + v|| \le ||u|| + ||v||$

then the function $\|\cdot\|$ is called a norm on \mathcal{V} , and $(\mathcal{V}, \mathbf{F})$ is a normed vector space

For a vector $v \in \mathbf{F}^n$, let v_i be the *i*'th component. Define

$$||v||_1 := \sum_{i=1}^n |v_i|$$

$$||v||_2 := \left(\sum_{i=1}^n |v_i|^2\right)^{1/2}$$

$$||v||_{\infty} := \max_{1 \le i \le n} |v_i|$$

Each of these separate definitions satisfy all of the 4 axioms that a *norm* must satisfy (all axioms are easy to check except triangle inequality for $\|\cdot\|_2$, which we will verify in a few slides).

Hence each of $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_{\infty}$ are norms on \mathbf{F}^n .

We will pretty much exclusively use the $\|\cdot\|_2$ norm and often drop the subscript 2, simply using $\|\cdot\|$. Some easy facts are

1. For
$$v \in \mathbf{F}^n$$
, $||v||^2 = v^*v$

2. For
$$v \in \mathbf{F}^n$$
, $w \in \mathbf{F}^m$, $\left\| \begin{array}{c} v \\ w \end{array} \right\|^2 = \left\| v \right\|^2 + \left\| w \right\|^2$.

3. If
$$Q \in \mathbf{F}^{n \times n}$$
, $Q^*Q = I_n$, then for all $v \in \mathbf{F}^n$, $||Qv|| = ||v||$

4. Given
$$Q \in \mathbf{F}^{n \times n}, Q^*Q = I_n$$
,

$${x : x \in \mathbf{F}^n, ||x|| \le 1} = {Qx : x \in \mathbf{F}^n, ||x|| \le 1}$$

and

$${x: x \in \mathbf{F}^n, ||x|| = 1} = {Qx: x \in \mathbf{F}^n, ||x|| = 1}$$

Inner Product Spaces

A vector space $(\mathcal{V}, \mathbf{F})$ is an *inner product* space if there is a function $\langle \cdot, \cdot \rangle \colon \mathcal{V} \times \mathcal{V} \to \mathbf{C}$ such that for every $u, v, w \in \mathcal{V}$ and $\alpha \in \mathbf{F}$ the following hold:

1.
$$\langle u, v \rangle = \overline{\langle v, u \rangle}$$

2.
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

3.
$$\langle \alpha u, w \rangle = \bar{\alpha} \langle u, w \rangle$$

$$4. \langle u, u \rangle \geq 0$$

5.
$$\langle u, u \rangle = 0$$
 if and only if $u = \mathbf{0}$.

The function $\langle \cdot, \cdot \rangle$ is called the inner product on \mathcal{V} .

Two vectors $u, w \in \mathcal{V}$ are said to be *perpindicular*, written $u \perp w$ if $\langle u, w \rangle = 0$.

The most important inner product spaces that we will use in this section are $(\mathbf{R}^n, \mathbf{R})$ and $(\mathbf{C}^n, \mathbf{C})$, with inner products defined as

$$u, w \in \mathbf{R}^n, \langle u, w \rangle := \sum_{i=1}^n u_i w_i = u^T w$$

$$u, w \in \mathbf{C}^n, \langle u, w \rangle := \sum_{i=1}^{n} \bar{u}_i w_i = u^* w$$

On $(\mathcal{V}, \mathbf{F})$, define a function using by the inner-product. For each $v \in \mathcal{V}$ define

$$N(v) := \sqrt{\langle v, v \rangle}$$

The Schwarz inequality relates inner products and N.

Theorem: For each $u, w \in \mathcal{V} |\langle u, w \rangle| \leq N(u)N(w)$.

Proof: Given u and w, find complex number α with $|\alpha| = 1$, and $\alpha \langle u, w \rangle = |\langle u, w \rangle|$. Then for any real number t,

$$0 \le \langle u + t\alpha w, u + t\alpha w \rangle = N(u)^2 + 2t |\langle u, w \rangle| + t^2 N(w)^2.$$

This is a quadratic function. Characterizing that the minimum (over the real variable t) is non-negative gives the result.

$$|\langle u, w \rangle| \le N(u)N(w)$$

The triangle inequality follows for N as well: Given any $u, w \in \mathcal{V}$,

$$N(u+w)^{2} = \langle u+w, u+w \rangle$$

$$= N(u)^{2} + 2\operatorname{Re}(\langle u, w \rangle) + N(w)^{2}$$

$$\leq N(u)^{2} + 2|\langle u, w \rangle| + N(w)^{2}$$

$$\leq N(u)^{2} + 2N(u)N(w) + N(w)^{2}$$

$$= (N(u) + N(w))^{2}$$

Hence, N is actually a norm on \mathcal{V} , so every inner-product space is in fact a normed vector space, using N, the norm induced from the inner product. So, unless otherwise notated, using the symbol $\|\cdot\|$ when working with a inner-product space means the norm induced from the inner product.

Note, if u and w are perpindicular, then $||u + w||^2 = ||u||^2 + ||w||^2$, which is the "Pythagorean" theorem.

Take $A \in \mathbb{C}^{n \times m}$. Then

- 1. The m columns of $\begin{bmatrix} I_m \\ A \end{bmatrix}$ are linearly independent, and are perpindicular to the n linearly independent columns of $\begin{bmatrix} -A^* \\ I_n \end{bmatrix}$
- 2. Take n > m, and assume the columns of A are linearly independent. Suppose A_{\perp} is $n \times (n-m)$, has linearly independent columns, and $A_{\perp}^*A = 0$. If X is $n \times n$, and invertible, then XA and $X^{-*}A_{\perp}$ each have linearly independent columns, and are perpindicular to one another.

Suppose V and W are vector spaces over the same field F. If $\mathcal{L}: V \to W$ satisfies

$$\mathcal{L}(\alpha v + \beta u) = \alpha \mathcal{L}(v) + \beta \mathcal{L}(u)$$

for all $\alpha, \beta \in \mathcal{F}$, and all $v, u \in \mathcal{V}$, then \mathcal{L} is a linear transformation on \mathcal{V} to \mathcal{W} .

Examples:

1. $\mathcal{V} = \mathbf{C}^m$, $\mathcal{W} = \mathbf{C}^n$, $M \in \mathbf{C}^{n \times m}$, and \mathcal{L} defined by matrix-vector multiplication: For $v \in \mathcal{V}$, define $\mathcal{L}(v)$ as

$$\mathcal{L}(v) := Mv,$$
 or componentwise $(\mathcal{L}(v))_i := \sum_{j=1}^m M_{ij}v_j$

2. $\mathcal{V} = \mathbf{R}^{n \times n}$, $\mathcal{W} = \mathbf{R}^{n \times n}$, $A \in \mathbf{R}^{n \times n}$, and \mathcal{L} defined by a Lyapunov operator, For $P \in \mathcal{V}$, define $\mathcal{L}(P)$ as

$$\mathcal{L}(P) := A^T P + P A$$

3. $\mathcal{V} = \mathrm{PC}_{\infty}[0, \infty), \ \mathcal{W} = \mathrm{PC}_{\infty}[0, \infty), \ g \in \mathrm{PC}_{1}[0, \infty), \ \mathrm{and} \ \mathcal{L}$ defined by convolution, For $v \in \mathcal{V}$, define $\mathcal{L}v$ as

$$(\mathcal{L}v)(t) := \int_0^t g(t-\tau)v(\tau)d\tau$$

For the remainder of this handout, focus on the linear operator defined by matrix-vector multiplication, and other results about matrices. If $M \in \mathbf{F}^{n \times m}$, then M naturally defines a linear transformation $\mathcal{L}_M : \mathbf{F}^m \to \mathbf{F}^n$ via standard matrix-vector multiplication.

For any $v \in \mathbf{R}^m$

$$\mathcal{L}_M(v) := Mv$$

Typically, we will not take care to distingush the matrix from the operation. Simply note that matrix-vector multiplication in a linear transformation on the vector, namely, for all $u, v \in \mathbf{F}^m$, $\alpha, \beta \in \mathbf{F}$,

$$M\left(\alpha u + \beta v\right) = \alpha M u + \beta M v$$

Using norms in \mathbf{F}^m and \mathbf{F}^n , the norm of the matrix transformation can be characterized

Define

$$||M||_{\alpha \leftarrow \beta} := \max_{u \in \mathbf{F}^m, u \neq 0_m} \frac{||Mu||_{\alpha}}{||u||_{\beta}}$$

This is the maximum amplification obtainable, via matrix-vector multiplication, measuring sizes in the domain and range with norms.

Easy Facts: For $M \in \mathbf{F}^{n \times m}$,

1. Other characterizations are possible

$$\|M\|_{\alpha \leftarrow \beta} = \max_{u \in \mathbf{R}^m, \|u\|_{\beta} \le 1} \|Mu\|_{\alpha} = \max_{u \in \mathbf{R}^m, \|u\|_{\beta} = 1} \|Mu\|_{\alpha}$$

- 2. Easily proven: $||M||_{1 \leftarrow 1} = \max_{1 \le j \le m} \sum_{i=1}^{n} |M_{ij}|$
- 3. Easily proven: $||M||_{\infty \leftarrow \infty} = \max_{1 \le i \le n} \sum_{j=1}^{m} |M_{ij}|$
- 4. Later: $||M||_{2\leftarrow 2}$ is characterized in terms of the eigenvalues of M^*M .
- 5. Interchanging rows and/or columns of M does not change $||M||_{1\leftarrow 1}$, $||M||_{2\leftarrow 2}$, or $||M||_{\infty\leftarrow\infty}$.
- 6. Given $U \in \mathbf{F}^{n \times n}$, $V \in \mathbf{F}^{m \times m}$ both unitary (ie., $U^*U = I_n$, $V^*V = I_m$), then for any $M \in \mathbf{F}^{n \times m}$,

$$||UMV||_{2\leftarrow 2} = ||M||_{2\leftarrow 2}$$

- 7. If $||M||_{\alpha \leftarrow \alpha} < 1$, then $\det(I M) \neq 0$
- 8. For matrices A, B, C of appropriate dimensions,

$$||AB||_{\alpha \leftarrow \gamma} \le ||A||_{\alpha \leftarrow \beta} ||B||_{\beta \leftarrow \gamma}$$
$$||A + C||_{\alpha \leftarrow \gamma} \le ||A||_{\alpha \leftarrow \gamma} + ||C||_{\alpha \leftarrow \gamma}$$

9. Deleting rows and/or columns does not increase $\|\cdot\|_{p\leftarrow p}$. Specifically, for matrices A, B, C of appropriate dimensions,

$$\left\| \begin{bmatrix} A & B \end{bmatrix} \right\|_{p \leftarrow p} \ge \left\| A \right\|_{p \leftarrow p}, \qquad \left\| \begin{bmatrix} A \\ C \end{bmatrix} \right\|_{p \leftarrow p} \ge \left\| A \right\|_{p \leftarrow p}$$

Theorem: Given a matrix $A \in \mathbb{C}^{n \times n}$. There exists a matrix $Q \in \mathbb{C}^{n \times n}$ with

- $Q^*Q = I_n$, and
- $Q^*AQ =: \Lambda$ upper triangular.

Remarks:

- 1. Proof is straightforward induction along with Gram-Schmidt Orthonormalization process.
- 2. The matrix Q has orthonormal rows and columns (since $Q^*Q = QQ^* = I_n$)
- 3. Since Q^*AQ is upper triangular, the eigenvalues of Q^*AQ are the diagonal entries.
- 4. In this case, $Q^{-1} = Q^*$, so the eigenvalues of Q^*AQ are the same as the eigenvalues of A. The order that the eigenvalues appear is arbitrary (they can be sorted in any order). This will be clear from the proof.
- 5. The Matlab command **schur** computes (reliably and quickly) a Schur decomposition.

Note that the theorem is true for 1×1 matrices, ie., n = 1, simply take Q := 1, and $\Lambda = A$.

Now, suppose that the theorem statement is true for n = k, ie., suppose it is true for $k \times k$ matrices. Furthermore, let $A \in \mathbf{F}^{(k+1)\times(k+1)}$. Let $v \in \mathbf{C}^{k+1}$ be an eigenvector of A, with corresponding eigenvalue $\lambda \in \mathbf{C}$ (possible since every matrix has at least one eigenvalue). By definition, $v \neq 0_{k+1}$, and hence we can (by dividing) assume that $v^*v = 1$. Now, using the Gram-Schmidt orthogonalization procedure, choose vectors v_1, v_2, \ldots, v_k each in \mathbf{C}^{k+1} such that

$$\{v, v_1, v_2, \dots, v_k\}$$

is a set of mutually orthonormal vectors. Stack these into a square, $(k+1) \times (k+1)$ matrix $V := [v \ v_1 \ v_2 \ \cdots \ v_k].$

Note that $V^*V = I_{k+1}$. Moreover, there is a matrix $\Gamma \in \mathbf{C}^{k \times k}$, and a vector $w \in \mathbf{C}^k$ such that

$$AV = V \begin{bmatrix} \lambda & w^* \\ 0 & \Gamma \end{bmatrix}$$

By then induction hypothesis, since Γ is of dimension k, there is a matrix $P \in \mathbf{C}^{k \times k}$ and upper triangular $\Psi \in \mathbf{C}^{k \times k}$ with $P^*P = I_k$ and $P^*\Gamma P = \Psi$. Hence, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & P^* \end{bmatrix} V^*AV \begin{bmatrix} 1 & 0 \\ 0 & P \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & P^* \end{bmatrix} \begin{bmatrix} \lambda & w^* \\ 0 & \Gamma \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & P \end{bmatrix} = \begin{bmatrix} \lambda & w^*P \\ 0 & \Psi \end{bmatrix}$$

which is indeed upper triangular. Moreover

$$Q := V \left[\begin{array}{cc} 1 & 0 \\ 0 & P \end{array} \right]$$

has $Q^*Q = I_{k+1}$ as desired. \sharp

Definition: The set of real, symmetric $n \times n$ matrices is denoted $\mathcal{S}^{n \times n}$, and defined as

$$\mathcal{S}^{n\times n} := \left\{ M \in \mathbf{R}^{n\times n} : M^T = M \right\}$$

Definition: The set of complex, Hermitian $n \times n$ matrices is denoted $\mathcal{H}^{n \times n}$, and defined as

$$\mathcal{H}^{n\times n} := \{ M \in \mathbf{C}^{n\times n} : M^* = M \}$$

Definition: The set of complex, normal $n \times n$ matrices is denoted $\mathcal{N}^{n \times n}$, and defined as

$$\mathcal{N}^{n\times n} := \{ M \in \mathbf{C}^{n\times n} : M^*M = MM^* \}$$

Note that

$$\mathcal{S}^{n\times n} \subset \mathcal{H}^{n\times n} \subset \mathcal{N}^{n\times n}$$

Fact: Hermitian matrices have real eigenvalues:

Proof: Let $\lambda \in \mathbf{C}$ be an eigenvalue of a Hermitian matrix $M = M^*$, and let $v \neq 0_n$ be a corresponding eigenvector, so that $Mv = \lambda v$.

Note that

$$2\operatorname{Re}(\lambda) \|v\|^{2} = \lambda \|v\|^{2} + \bar{\lambda} \|v\|^{2}$$

$$= v^{*}(\lambda v) + (\lambda v)^{*} v$$

$$= v^{*} M v + (M v)^{*} v$$

$$= v^{*} M v + v^{*} M^{*} v$$

$$= v^{*} M v + v^{*} M v \qquad \text{using } M = M^{*}$$

$$= 2v^{*} M v$$

$$= 2\lambda \|v\|^{2}$$

Since $v \neq 0_n$, the norm is positive, divide out leaving

$$\operatorname{Re}(\lambda) = \lambda$$

as desired.

Remark: If $M \in \mathcal{H}^{n \times n}$, the eigenvalues of M are real, and can be ordered

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$$

and it makes sense to write

$$\lambda_{\max}(M)$$
 and $\lambda_{\min}(M)$

without confusion

Fact: An upper triangular, normal matrix is actually diagonal. Check it out...

Fact: Given $Q \in \mathbf{C}^{n \times n}$ satisfying $Q^*Q = I_n$, then for any $M \in \mathbf{C}^{n \times n}$,

$$M \in \mathcal{N} \iff Q^*MQ \in \mathcal{N}$$

The proof is simple:

$$M^*M = MM^* \leftrightarrow Q^* (M^*M) Q = Q^* (MM^*) Q$$

$$\leftrightarrow Q^*M^*MQ = Q^*MM^*Q$$

$$\leftrightarrow Q^*M^* \underbrace{QQ^*}_{I} MQ = Q^*M \underbrace{QQ^*}_{I} M^*Q$$

$$\leftrightarrow Q^*M^*QQ^*MQ = Q^*MQQ^*M^*Q$$

$$\leftrightarrow (Q^*MQ)^* Q^*MQ = Q^*MQ (Q^*MQ)^*$$

Hence,

Fact: A normal matrix M has an orthonormal set of eigenvectors, ie., there exists a matrices $Q, \Lambda \in \mathbf{C}^{n \times n}$ with

- $\bullet \ Q^*Q = I_n,$
- A diagonal
- $\bullet \ M = Q \Lambda Q^*$

If $M = M^*$, then

$$\{x^*Mx : ||x||_2 = 1\} = [\lambda_{\min}(M), \lambda_{\max}(M)]$$

Proof: Basic idea:

- Let $Q\Lambda Q^* = M$ be a Schur decomposition of M
- Since $M = M^*$, Λ is diagonal and real
- Notate $\xi := Q^*x$, noting $||Q\xi||_2 = ||\xi||_2$ for all ξ ,

Then

For any $\alpha \in [0, 1]$, define

$$\xi_1 := \sqrt{\alpha}, \ \xi_2 = \xi_3 = \dots = \xi_{n+1} = 0, \ \xi_n := \sqrt{1 - \alpha}$$

yielding

$$\sum_{i=1}^{n} \lambda_i \left| \xi_i \right|^2 = \alpha \lambda_1 + (1 - \alpha) \lambda_n$$

which shows by proper choice of α , anything in between λ_1 and λ_n can be achieved.

Warning: Take $M = M^*$. Then

$$\{x^*Mx : ||x||_2 \le 1\} \ne [\lambda_{\min}(M), \lambda_{\max}(M)]$$

Now, return to expression for $||M||_{2\leftarrow 2}$.

$$||M||_{2\leftarrow 2}^{2} := \max_{\|x\| \le 1} ||Mx||^{2}$$

$$= \max_{\|x\|=1} ||Mx||^{2}$$

$$= \max_{\|x\|=1} x^{*}M^{*}Mx$$

$$= \lambda_{\max} (M^{*}M)$$

Hence, $||M||_{2\leftarrow 2}$ is often denoted by $\bar{\sigma}(M)$, called the maximum singular value of M. Since the nonzero eigenvalues of AB equal the nonzero eigenvalues of BA, it follows that

$$\bar{\sigma}\left(M\right) = \bar{\sigma}\left(M^*\right)$$

Definition: A matrix $M \in \mathcal{H}^{n \times n}$ is

- 1. positive definite (denoted $M \succ 0$) if $u^*Mu > 0$ for every $u \in \mathbb{C}^n, u \neq 0_n$.
- 2. positive semi-definite (denoted $M \succeq 0$) if $u^*Mu \geq 0$ for every $u \in \mathbb{C}^n$.
- 3. negative definite (denoted $M \prec 0$) if $u^*Mu < 0$ for every $u \in \mathbb{C}^n, u \neq 0_n$.
- 4. negative semi-definite (denoted $M \leq 0$) if $u^*Mu \leq 0$ for every $u \in \mathbb{C}^n$.

For $A, B \in \mathcal{H}^{n \times n}$, write $A \leq B$ if $A - B \leq 0$. Similarly for \prec, \succ and \succeq .

Easy Facts:

- 1. If $A \leq B$ and $B \leq A$, then indeed, A = B. If $A \leq B$ and $C \leq D$, then $A + C \leq B + D$.
- 2. $L \in \mathbf{F}^{n \times n}$ invertible, $M \in \mathcal{H}^{n \times n}$, then

$$M \succ 0 \Leftrightarrow L^*ML \succ 0$$

3. $L \in \mathbf{F}^{n \times m}$ full column rank (so $n \geq m$), $M \in \mathcal{H}^{n \times n}$, then

$$M \succ 0 \Rightarrow L^*ML \succ 0$$

- 4. For any $W \in \mathbf{F}^{n \times m}$, $W^*W \succeq 0$.
- 5. For any $W \in \mathbf{F}^{n \times m}$, if rankW = m, then $W^*W \succ 0$.
- 6. $M \succ 0$ if and only if $\lambda_{\min}(M) > 0$.

- 7. If $M \in \mathcal{H}^{n \times n}$, then $M \prec 0 \iff (-M) \succ 0$
- 8. If $A_1, A_2 \in \mathcal{H}^{n \times n}$, $A_1 \succ 0$, $A_2 \succ 0$, then for each $t \in [0, 1]$,

$$(1-t)A_1 + tA_2 \succ 0$$

9. Given $X \in \mathcal{H}^{n \times n}$, $Z \in \mathcal{H}^{m \times m}$ and $Y \in \mathbf{F}^{n \times m}$

$$\begin{bmatrix} X & Y \\ Y^* & Z \end{bmatrix} \succ 0 \implies X \succ 0, Z \succ 0$$

10. $\bar{\sigma}(\cdot)$ bounds are easily converted into definiteness relations. For any matrix $M \in \mathbb{C}^{n \times m}$,

$$\bar{\sigma}(M) < \beta \iff M^*M - \beta^2 I_m < 0$$

 $\Leftrightarrow MM^* - \beta^2 I_n < 0$
 $\Leftrightarrow \bar{\sigma}(M^*) < \beta$

- 11. If M is invertible, and $M^* = M$, then $M \succ 0$ if and only if $M^{-1} \succ 0$.
- 12. **Warning:** If $M \neq M^*$, then M having positive, real eigenvalues does not guarantee $x^*Mx > 0$. Instead, check $M + M^*$, since it is Hermitian, and $x^*Mx = \frac{1}{2}x^*(M + M^*)x$. For example,

$$M = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix}$$

- 13. If $M + M^* \prec 0$, then eigenvalues of M have negative real-part
- 14. If $M = M^* \prec 0$, then for any $\Delta = \Delta^*$, there is an $\epsilon > 0$ such that $M + t\Delta \prec 0$ for all $|t| < \epsilon$.

Theorem: Let $T_{i=0}^k$ be a family of matrices, with each $T_i \in \mathbb{C}^{n \times n}$, and $T_i^* = T_i$. If there exist scalars $\{d_i\}_{i=1}^k$ with $d_i \geq 0$, and

$$T_0 - \sum_{i=1}^k d_i T_i \succ 0$$

then for all $x \in \mathbb{C}^n$ which satisfy $x^*T_ix > 0$ for $1 \le i \le k$, it follows that $x^*T_0x > 0$.

Proof: Let $x \in \mathbb{C}^n$ satisfy $x^*T_ix > 0$ for all $1 \le i \le k$. Hence, $x \ne 0$. By hypothesis, we have

$$x^* \left[T_0 - \sum_{i=1}^k d_i T_i \right] x > 0$$

which implies

$$x^*T_0x > \sum_{i=1}^k d_i x^*T_i x \ge 0$$

as desired. #

Remark: Easily replace > with \ge in above statement.

Theorem: Given $M \in \mathbf{F}^{n \times m}$. Then there exists

- $U \in \mathbf{F}^{n \times n}$, with $U^*U = I_n$,
- $V \in \mathbf{F}^{m \times m}$, with $V^*V = I_m$,
- integer $0 \le k \le \min(n, m)$, and
- real numbers $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k > 0$

such that

$$M = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^*$$

where $\Sigma \in \mathbf{R}^{k \times k}$ is

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}$$

Proof: Clearly $M^*M \in \mathcal{H}^{m \times m}$ is positive semi-definite. Since it is Hermitian, it has a full set of orthonormal eigenvectors, and the eigenvalues are real, and nonnegative. Let $\{v_1, v_2, \ldots, v_m\}$ denote an orthonormal choice of eigenvectors, associated with the eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > \lambda_{k+1} = \lambda_{k+2} = \cdots = \lambda_m = 0$$

For any $1 \leq j \leq m$, we have

$$||Mv_j||^2 = v_j^* M^* M v_j$$
$$= \lambda_j v_j^* v_j$$
$$= \lambda_j$$

Hence, for j > k, it follows that $Mv_j = 0_n$.

For $1 \leq j \leq k$, define $\sigma_j := \sqrt{\lambda_j}$. Next, for $1 \leq j \leq k$, define vectors $u_j \in \mathbf{F}^n$ via

$$u_j := \frac{1}{\sigma_j} M v_j$$

Note that for any $1 \le j, h \le k$,

$$u_h^* u_j = \frac{1}{\sigma_h \sigma_j} v_h^* M^* M v_j$$
$$= \frac{1}{\sigma_h \sigma_j} v_h^* (\lambda_j v_j)$$
$$= \frac{\sigma_j}{\sigma_h} v_h^* v_j$$

This implies that $u_h^* u_j = \delta_{hj}$. Hence the set $\{u_1, \ldots, u_k\}$ are mutually orthonormal vectors in \mathbf{F}^n . Using Gram-Schmidt, construct vectors u_{k+1}, \ldots, u_n to fill this out, so

$$\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$$

is a mutually orthonormal set if vectors in \mathbf{F}^n . Now we want to consider $u_h^* M v_j$ for 4 cases (depending on how h, j compare to k.

• $1 \le h \le k$ and $1 \le j \le k$. Substituting gives

$$u_h^* M v_j = \frac{1}{\sigma_h} v_h^* M^* M v_j$$
$$= \frac{\sigma_j}{\sigma_h} v_h^* v_l$$
$$= \sigma_h \delta_{hj}$$

• any h, with j > k. Substituting gives

$$u_h^* M v_j = u_h^* (M v_j)$$
$$= u_h^* 0$$
$$= 0$$

• h > k, and $1 \le j \le k$. Substituting gives

$$u_h^* M v_j = u_h^* (\sigma_j u_j)$$
$$= \sigma_j u_h^* u_j$$
$$= 0$$

Defining matrices U and V with columns made up of the $\{u_h\}_{h=1}^n$ and $\{v_j\}_{j=1}^m$ completes the proof. \sharp

If $M = M^* \succeq 0$, then there is a unique matrix S satisfying

- $\bullet \ S = S^*$
- $S \succeq 0$ (moreover, $S \succ 0 \Leftrightarrow M \succ 0$)
- $\bullet \ S^2 = M$

S is called the Hermitian square-root of M and denoted $M^{\frac{1}{2}}$. Facts:

- 1. Calculating the Hermitian square root of M:
 - (a) Do a Schur decomposition of M, so $M = Q\Lambda Q^*$.
 - (b) Since $M = M^*$, Λ is diagonal and real.
 - (c) Since $M \succeq 0$, the diagonal entries of Λ are non-negative, denote them as $\lambda_1, \lambda_2, \ldots, \lambda_n$.
 - (d) Define

$$S := Q \begin{bmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{bmatrix} Q^*$$

- (e) Note that $S = S^* \succeq 0$, and $S^2 = M$.
- 2. If $M = M^* \succ 0$, then M is invertible, and M^{-1} is Hermitian and positive definite. Hence it has a Hermitian square root. In fact

$$\left(M^{-1}\right)^{\frac{1}{2}} = \left(M^{\frac{1}{2}}\right)^{-1}$$

so write $M^{-\frac{1}{2}}$ without any confusion as to its meaning.

Fact: Given $M \in \mathcal{H}^{n \times n}$ and $L \in \mathbb{C}^{n \times n}$, with L invertible. Then

$$M \succ 0 \Leftrightarrow L^*ML \succ 0$$

Fact: Given $X \in \mathcal{H}^{n \times n}$, $Y \in \mathcal{H}^{m \times m}$,

$$\begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix} \succ 0 \iff X \succ 0 \text{ and } Y \succ 0$$

Fact: Given $X \in \mathcal{H}^{n \times n}$, $Z \in \mathbf{F}^{n \times m}$,

$$\begin{bmatrix} X & Z \\ Z^* & I_m \end{bmatrix} \succ 0 \iff X - ZZ^* \succ 0$$

Proof: Use $L := \begin{bmatrix} I_n & 0 \\ -Z^* & I_m \end{bmatrix}$.

This leads to what is typically called the "Schur complement" theorem.

Fact: Given $X \in \mathcal{H}^{n \times n}$, $Y \in \mathcal{H}^{m \times m}$, $Z \in \mathbf{C}^{n \times m}$,

$$\begin{bmatrix} X & Z \\ Z^* & Y \end{bmatrix} \succ 0 \iff Y \succ 0, \text{ and } X - ZY^{-1}Z^* \succ 0$$

Proof: Note that if $Y \succ 0$,

$$\begin{bmatrix} I_n & 0 \\ 0 & Y^{-\frac{1}{2}} \end{bmatrix} \begin{bmatrix} X & Z \\ Z^* & Y \end{bmatrix} \begin{bmatrix} I_n & 0 \\ 0 & Y^{-\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} X & ZY^{-\frac{1}{2}} \\ Y^{-\frac{1}{2}}Z^* & I_m \end{bmatrix}$$

Lemma: Suppose $X_{11} \in \mathbf{F}^{n \times n}$, $Y_{11} \in \mathbf{F}^{n \times n}$, with $X_{11} = X_{11}^* \succ 0$, and $Y_{11} = Y_{11}^* \succ 0$. Let r be a non-negative integer. Then there exist $X_{12} \in \mathbf{F}^{n \times r}$, $X_{22} \in \mathbf{F}^{r \times r}$ such that $X_{22} = X_{22}^*$, and

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{12}^* & X_{22} \end{bmatrix} \succ 0 \quad , \quad \begin{bmatrix} X_{11} & X_{12} \\ X_{12}^* & X_{22} \end{bmatrix}^{-1} = \begin{bmatrix} Y_{11} & ? \\ ? & ? \end{bmatrix}$$

if and only if

$$\begin{bmatrix} X_{11} & I_n \\ I_n & Y_{11} \end{bmatrix} \succeq 0 \quad \text{and} \quad \operatorname{rank} \begin{bmatrix} X_{11} & I_n \\ I_n & Y_{11} \end{bmatrix} \le n + r$$

These last two conditions are equivalent to $X_{11} \succeq Y_{11}^{-1}$ and rank $(X_{11} - Y_{11}^{-1}) \leq r$.

Proof: Apply Schur Complement and Matrix inversion Lemmas...

 \Leftarrow By assumption, there is a matrix $L \in \mathbf{F}^{n \times r}$ such that $X_{11} - Y_{11}^{-1} = LL^*$. Defining $X_{12} := L$, and $X_{22} := I_r$ and note that

$$\begin{bmatrix} X_{11} & L \\ L^* & I_r \end{bmatrix}^{-1} = \begin{bmatrix} (X_{11} - LL^*)^{-1} & -(X_{11} - LL^*)^{-1} L \\ -L^* (X_{11} - LL^*)^{-1} & L^* (X_{11} - LL^*)^{-1} L + I_r \end{bmatrix} = \begin{bmatrix} Y_{11} & ? \\ ? & ? \end{bmatrix}$$

 \Rightarrow Using the matrix inversion lemma (item 1), it must be that

$$Y_{11}^{-1} = X_{11} - X_{12}X_{22}^{-1}X_{12}^*.$$

Hence, $X_{11} - Y_{11}^{-1} = X_{12}X_{22}^{-1}X_{12}^* \succeq 0$, and indeed,

$$\operatorname{rank}\left(X_{11} - Y_{11}^{-1}\right) = \operatorname{rank}\left(X_{12}X_{22}^{-1}X_{12}^*\right) \le r.$$

The other rank condition follows because

$$\begin{bmatrix} I_n & -Y_{11}^{-1} \\ 0 & I_n \end{bmatrix} \begin{bmatrix} X_{11} & I_n \\ I_n & Y_{11} \end{bmatrix} \begin{bmatrix} I_n & 0 \\ -Y_{11}^{-1} & I_n \end{bmatrix} = \begin{bmatrix} X_{11} - Y_{11}^{-1} & 0 \\ 0 & Y_{11} \end{bmatrix}$$

Lots of the control design algorithms we will study (\mathcal{H}_{∞} , for instance) hinge on the following result from linear algebra:

- 1. Given $R \in \mathbf{F}^{l \times l}$, $U \in \mathbf{F}^{l \times m}$ and $V \in \mathbf{F}^{p \times l}$, where $m, p \leq l$.
- 2. We want to minimize $\bar{\sigma}[R + UQV]$ over $Q \in \mathbf{F}^{m \times p}$.

- 3. Suppose $U_{\perp} \in \mathbf{F}^{l \times (l-m)}$ and $V_{\perp} \in \mathbf{F}^{(l-p) \times l}$ have
 - $\bullet \left[\begin{array}{cc} U & U_{\perp} \end{array} \right], \left[\begin{array}{c} V \\ V_{\perp} \end{array} \right]$ are both invertible
 - $U^*U_{\perp} = 0_{m \times (l-m)}, VV_{\perp}^* = 0_{p \times (l-p)}$

Then

$$\inf_{Q \in \mathbf{F}^{m \times p}} \bar{\sigma} \left[R + UQV \right] < 1$$

if and only if

$$\begin{array}{ccc} V_{\perp} \left(R^*R - I \right) V_{\perp}^* & \prec & 0 \\ U_{\perp}^* \left(RR^* - I \right) U_{\perp} & \prec & 0 \end{array}$$

Remark: Essentially, R must be smaller than 1 on the directions that U and V are perpendicular to.

Matrix dilation problems are of the form:

Given a partially specified matrix - when can the unspecified elements be chosen so that the full matrix has some property?

Already seen one type of problem. Next, we derive a main elementary matrix dilation theorem. We start simple and build...

Given $A \in \mathbb{C}^{m \times n}$, it is clear that

$$\min_{X \in \mathbf{C}^{q \times n}} \bar{\sigma} \begin{bmatrix} X \\ A \end{bmatrix} = \bar{\sigma} (A)$$

and this can easily be achieved by choosing X := 0. Pick some $\gamma > \bar{\sigma}(A)$. Characterize all X that give $\bar{\sigma}\begin{bmatrix} X \\ A \end{bmatrix} < \gamma$.

Lemma: Suppose $Y \in \mathbf{F}^{n \times n}$ is invertible. Then

$$\left\{X \in \mathbf{F}^{q \times n} : X^*X \prec Y^*Y\right\} = \left\{WY : W \in \mathbf{F}^{q \times n}, \bar{\sigma}\left(W\right) < 1\right\}$$

Proof:

A simple chain of equivalences

The lemma easily gives

Lemma: Given $A \in \mathbf{F}^{m \times n}$, and $\gamma > \bar{\sigma}(A)$. Then

$$\left\{ X \in \mathbf{F}^{q \times n} : \bar{\sigma} \begin{bmatrix} X \\ A \end{bmatrix} < \gamma \right\} = \\
\left\{ W \left(\gamma^2 I_n - A^* A \right)^{\frac{1}{2}} : W \in \mathbf{F}^{q \times n}, \bar{\sigma} (W) < 1 \right\}$$

Proof:

Another chain of equivalences

$$\bar{\sigma}\left(\begin{bmatrix} X \\ A \end{bmatrix}\right) < \gamma \iff X^*X + A^*A - \gamma^2 I \prec 0$$

$$\Leftrightarrow X^*X \prec \gamma^2 I - A^*A$$

$$\Leftrightarrow X^*X \prec (\gamma^2 I - A^*A)^{1/2} (\gamma^2 I - A^*A)^{1/2}$$

Now apply previous Lemma.

Equivalently, for any $X \in \mathbf{F}^{q \times n}$ and $\gamma > \bar{\sigma}(A)$, we have

$$\bar{\sigma} \begin{bmatrix} X \\ A \end{bmatrix} < \gamma \quad \Leftrightarrow \quad \bar{\sigma} \left[X \left(\gamma^2 I_n - A^* A \right)^{-\frac{1}{2}} \right] < 1$$

Similarly, for $B \in \mathbf{F}^{q \times p}$, and $\gamma > \bar{\sigma}(B)$, we have

$$\left\{X\in\mathbf{F}^{q\times n}:\bar{\sigma}\left[\begin{array}{cc}X&B\end{array}\right]<\gamma\right\}=$$

$$\left\{ \left(\gamma^{2} I_{q} - BB^{*} \right)^{\frac{1}{2}} W : W \in \mathbf{F}^{q \times n}, \bar{\sigma}\left(W\right) < 1 \right\}$$

Along these lines, a corollary follows:

Corollary RV: Given $R \in \mathbf{F}^{n \times n}, V \in \mathbf{F}^{t \times n}$, with V full row rank. Then

$$\min_{Q \in \mathbf{F}^{n \times t}} \bar{\sigma} \left(R + QV \right) = \bar{\sigma} \left(RV_{\perp}^{*} \right)$$

where $V_{\perp} \in \mathbf{F}^{(n-t) \times n}$ satisfies

$$V_{\perp}V_{\perp}^* = I_{n-t}$$
 , $V_{\perp}V^* = 0$, $\det \begin{bmatrix} V \\ V_{\perp} \end{bmatrix} \neq 0$

Proof: let $S \in \mathbf{F}^{t \times t}$ be invertible such that $V_o := SV \in \mathbf{F}^{t \times n}$ satisfies $V_o V_o^* = I_t$. Then, for any $Q \in \mathbf{F}^{n \times t}$, we have

$$R + QV = R + QS^{-1}SV$$
$$= R + QS^{-1}V_o$$

Since S is invertible, by picking Q, we equivalently have complete freedom in picking $Q_o(:=QS^{-1})$. Hence

$$\min_{Q \in \mathbf{F}^{n \times t}} \bar{\sigma} \left(R + QV \right) = \min_{Q_o \in \mathbf{F}^{n \times t}} \bar{\sigma} \left(R + Q_o V_o \right) =$$

Also,

$$T := \left[\begin{array}{c} V_o \\ V_{\perp} \end{array} \right]$$

is a square, unitary matrix. Hence,

$$\min_{Q_o \in \mathbf{F}^{n \times t}} \bar{\sigma} \left(R + Q_o V_o \right) = \min_{Q_o \in \mathbf{F}^{n \times t}} \bar{\sigma} \left(\left(R + Q_o V_o \right) T^* \right)$$

But $(R + Q_o V_o) T^*$ is simply

$$(R + Q_o V_o) T^* = \left[RV_o^* + Q_o RV_\perp^* \right]$$

The minimum (over Q_o) that the maximum singular value can take on is clearly $\bar{\sigma}(RV_{\perp}^*)$, which is achieved when

$$Q_o := -RV_o^* = -RV^*S^*$$

and hence

$$Q = Q_o S$$

$$= -RV^* S^* S$$

$$= -RV^* (VV^*)^{-1}$$

Given $A \in \mathbf{F}^{m \times n}, B \in \mathbf{F}^{q \times p}, C \in \mathbf{F}^{m \times p}$, what is

$$\min_{X \in \mathbf{F}^{q \times n}} \bar{\sigma} \begin{bmatrix} X & B \\ A & C \end{bmatrix}$$

The theorem, independently (and in many different forms) by Sarason, Adamjan-Arov-Krien, Sz Nagy-Foias, Davis-Kahan-Weinberger, and Parrot is:

Theorem: Given A, B and C as above. Then

$$\min_{X \in \mathbf{F}^{q \times n}} \bar{\sigma} \left[\begin{array}{cc} X & B \\ A & C \end{array} \right] = \max \left\{ \bar{\sigma} \left[\begin{array}{cc} A & C \end{array} \right] \;,\; \bar{\sigma} \left[\begin{array}{cc} B \\ C \end{array} \right] \right\}$$

Remark: X = 0 typically does <u>not</u> achieve the minimum cost. Try a simple, real 2×2 example...

Note that the 2×2 block matrix can be written as

$$\begin{bmatrix} X & B \\ A & C \end{bmatrix} = \begin{bmatrix} 0 & B \\ A & C \end{bmatrix} + \begin{bmatrix} I_q \\ 0 \end{bmatrix} X \begin{bmatrix} I_n & 0 \end{bmatrix}$$

which is a special form of the R + UQV expression.

Theorem: Given $A \in \mathbf{F}^{m \times n}$, $B \in \mathbf{F}^{q \times p}$, $C \in \mathbf{F}^{m \times p}$. Then

$$\min_{X \in \mathbf{F}^{q \times n}} \bar{\sigma} \begin{bmatrix} X & B \\ A & C \end{bmatrix} = \max \left\{ \bar{\sigma} \begin{bmatrix} A & C \end{bmatrix} , \ \bar{\sigma} \begin{bmatrix} B \\ C \end{bmatrix} \right\}$$

Proof: Clearly, nothing smaller than the right-hand-side is achievable. Take any $\gamma > \bar{\sigma} \begin{bmatrix} A & C \end{bmatrix}$. Then

$$\min_{X} \bar{\sigma} \left[\begin{array}{cc} X & B \\ A & C \end{array} \right] < \gamma \iff \min_{X} \bar{\sigma} \left(\left[\begin{array}{cc} X & B \end{array} \right] S^{-\frac{1}{2}} \right) < 1$$

where

$$S := \gamma^2 I - \left[\begin{array}{c} A^* \\ C^* \end{array} \right] \left[\begin{array}{c} A & C \end{array} \right]$$

Hence there exists an X such that $\bar{\sigma}\begin{bmatrix} X & B \\ A & C \end{bmatrix} < \gamma$ if and only if

$$\min_{X} \bar{\sigma} \left[\underbrace{X}_{Q} \underbrace{\left[\begin{array}{cc} I & 0 \end{array} \right] S^{-\frac{1}{2}}}_{V} + \underbrace{\left[\begin{array}{cc} 0 & B \end{array} \right] S^{-\frac{1}{2}}}_{R} \right] < 1$$

What should V_{\perp} be? It needs to satisfy $V_{\perp}V^* = 0$ and $V_{\perp}V_{\perp}^* = I$. The first condition implies that

$$V_{\perp}V^* = 0 \Longleftrightarrow V_{\perp}S^{-\frac{1}{2}} \begin{bmatrix} I \\ 0 \end{bmatrix} = 0$$

so that V_{\perp} is of the form $V_{\perp} = \begin{bmatrix} 0 & L \end{bmatrix} S^{\frac{1}{2}}$ for some (at this point) arbitrary L. The second condition requires

$$V_{\perp}V_{\perp}^* = I \implies L\left(\gamma^2 I - C^*C\right)L^* = I$$

so that $L = (\gamma^2 I - C^* C)^{-\frac{1}{2}}$ is a suitable choice.

Hence, the original equivalence continues,

$$\min_{X} \bar{\sigma} (QV + R) < 1 \iff \bar{\sigma} (RV_{\perp}) < 1$$

$$\iff \bar{\sigma} \left[B \left(\gamma^{2} I - C^{*} C \right)^{-\frac{1}{2}} \right] < 1$$

$$\iff \bar{\sigma} \left[\begin{matrix} B \\ C \end{matrix} \right] < \gamma$$

Hence, any γ larger than both $\bar{\sigma}[A\ C]$ and $\bar{\sigma}\begin{bmatrix}B\\C\end{bmatrix}$ is achievable, using, for instance

$$X := -B\left(\gamma^2 I - C^*C\right)^{-1} C^*A$$

Moreover (though we do not explicitly use it) the minimum is achieved (compactness argument).

<u>Partial</u> answer to the R+UQV problem when similarity scalings are included:

- 1. Let R, U, V, U_{\perp} and V_{\perp} be given as before.
- 2. Let $\mathcal{Z} \subset \mathbf{F}^{l \times l}$ be a given set of positive definite, Hermitian matrices

Then

$$\inf_{\substack{Q \in \mathbf{F}^{m \times p} \\ Z \in \mathcal{Z}}} \bar{\sigma} \left[Z^{1/2} \left(R + UQV \right) Z^{-1/2} \right] < 1$$

if and only if there is a $Z \in \mathcal{Z}$ such that

$$V_{\perp} (R^* Z R - Z) V_{\perp}^* \prec 0$$

and

$$U_{\perp}^* \left(R Z^{-1} R^* - Z^{-1} \right) U_{\perp} \prec 0.$$

Proof: For each fixed $Z \in \mathcal{Z}$, consider the problem

$$\beta\left(Z\right):=\inf_{Q\in\mathbb{F}^{r\times t}}\bar{\sigma}\left[Z^{\frac{1}{2}}\left(R+UQV\right)Z^{-\frac{1}{2}}\right]$$

Define $\tilde{R}:=Z^{\frac{1}{2}}RZ^{-\frac{1}{2}}, \tilde{U}:=Z^{\frac{1}{2}}U, \tilde{V}=VZ^{-\frac{1}{2}}$. Note that the columns of of $Z^{-\frac{1}{2}}U_{\perp}$ span the space orthogonal to the range (column) of \tilde{U} , since $\left(Z^{-\frac{1}{2}}U_{\perp}\right)^{*}\tilde{U}=0$. Similarly, the rows of $V_{\perp}Z^{\frac{1}{2}}$ span the space orthogonal to the range (row) of \tilde{V} . Therefore, for fixed $Z\in\mathcal{Z},\ \beta\left(Z\right)<\alpha$ if and only if

$$U_{\perp}^* Z^{-\frac{1}{2}} \left(Z^{\frac{1}{2}} R Z^{-\frac{1}{2}} Z^{-\frac{1}{2}} R^* Z^{\frac{1}{2}} - \alpha^2 I \right) Z^{-\frac{1}{2}} U_{\perp} \prec 0,$$

and

$$V_{\perp} Z^{\frac{1}{2}} \left(Z^{-\frac{1}{2}} R^* Z^{\frac{1}{2}} Z^{\frac{1}{2}} R Z^{-\frac{1}{2}} - \alpha^2 I \right) Z^{\frac{1}{2}} V_{\perp}^* \prec 0.$$

These simplify to

$$U_{\perp}^* \left(R Z^{-1} R^* - \alpha^2 Z^{-1} \right) U_{\perp} \prec 0,$$
 (1)

and

$$V_{\perp} \left(R^* Z R - \alpha^2 Z \right) V_{\perp}^* \prec 0 \tag{2}$$

as claimed. #

The previous results are directly useful in discrete-time problems.

Using similar techniques, the analogous theorem for definiteness can be proven:

Theorem: Given $R \in \mathbf{F}^{l \times l}, U \in \mathbf{F}^{l \times m}$ and $V \in \mathbf{F}^{p \times l}$, where $m, p \leq l$. Suppose $U_{\perp} \in \mathbf{F}^{l \times (l-m)}$ and $V_{\perp} \in \mathbf{F}^{(l-p) \times l}$ have

- $\begin{bmatrix} U & U_{\perp} \end{bmatrix}$, $\begin{bmatrix} V \\ V_{\perp} \end{bmatrix}$ are both invertible
- $U^*U_{\perp} = 0_{m \times (l-m)}, VV_{\perp}^* = 0_{p \times (l-p)}$

Then, there exist a $Q \in \mathbf{F}^{m \times p}$ such that

$$[R + UQV] + [R + UQV]^* \prec 0$$

if and only if

$$U_{\perp}^{*}(R+R^{*})U_{\perp} \prec 0, \quad V_{\perp}(R+R^{*})V_{\perp}^{*} \prec 0$$

Lemma: $S = S^* \succ 0$, T given square matrices. For every K,

$$-TK^* - KT^* + KSK \succeq -TS^{-1}T^*.$$

Furthermore, $K_0 := TS^{-1}$ achieves equality.

Proof: Complete squares as

$$\begin{split} -TK^* - KT^* + KSK \\ &= \left(KS^{1/2} - TS^{-1/2}\right) \left(KS^{1/2} - TS^{-1/2}\right)^* - TS^{-1}T^* \\ &\succeq -TS^{-1}T^* \end{split}$$

Note that equality is achieved by making $KS^{1/2} - TS^{-1/2} = 0$, which can be accomplished with $K = TS^{-1}$.

Lemma: $S = S^* \succeq 0$, $\operatorname{Ker} S \subseteq \operatorname{Ker} T$. Let K_0 be any solution of the equation $K_0 S = T$. Then for every K

$$-TK^* - KT^* + KSK \succeq -TK_0^* - K_0T^* + K_0SK_0 (= -K_0SK_0)$$

Proof: For any K,

$$T (K_0 - K)^* + (K_0 - K) T^* - K_0 S K_0^* + K S K$$

= $(K_0 - K) S (K_0 - K)^*$
\(\times 0

To verify the equality, simply substitute for T. Also note that the equation $K_0S = T$ may have many solutions. If $K_{0,1}$ and $K_{0,2}$ are two such solutions, then by making the argument twice above, we have

$$K_{0,1}SK_{0,1}^* = K_{0,2}SK_{0,2}^*$$

Equivalently, $TK_{0,1} = TK_{0,2}$.