(6)	
3)	
	hapitreos Rappels et notation
	I-Préliminures
	montrons que (IRXIR, +, x) est un corps.
3	mq (IRx IR, +) est un groupe commutatif
3	i) [(a,b)+(c,d)]+(e,B) = (a+c,b,d)+(e,B)
	= (a+c+e, b+d+f)
3)	= (a,b)+(c+e,d+f)
3)	=(a,b)+[(c,d)+(e,8)]
3	
	ii) $(a,b)_{+}(o,o) = (o,o)_{+}(a,b)_{+}(a,b)_{+}(a,b)_{+}$
3	(a,b) + $(-a,-b)$ = $(a-a,b-b)$ = $(0,0)$
9	(a,b)+(c,d)=(a+c,b+d)
3	= (c-a, d-b)
3	=(c,d)+(a,b)
	ma x est distributive par napporta ra gauche.
_5	(a,b) x [(c,d)+(e,f)] = (a,b) x (c+e,d+f)
	=(a(c+e)-b(d+f),a(d+f)+b(c+e))
4	= (ac+ae-bd-bg, ad+ag+bc+be)
	= (ac-bd, ad+bc) + (ae-bf, af+be)
	$= (a,b) \cdot (c,d) + (a,b) \cdot (e,\theta)$
	mq (IRAIR,x) est un groupe commutatif
	i) [(a, b) x(c,d)]x(e, f) = (ac - bd, ad + bc) x(e, f)
-	= ((ac-bd)e-bd+bc)f, (ac-bd)f+(ad+bc)e)
	= (ace_bde_adf_bcf,acf-bdf-ade_bce
9	=(a(ce ag) -b(cf+de), a(cf+de)+b(ce df
9	= (a,b)x(ce-df,cf+de)
9	=(a,b) x [(c,d) x(e,f)]
9	
9	(a,b) \times (1,0) = (1,0) \times (a,b) = (a,b)
9	iii) (a,b)×(a',b')=(4,0) (=> (aa'-bb', ab'+ a'b)=(1,0)
	(=) Lab'+ a'b = 0
	$(a + b^2) = 4$
	$\Leftrightarrow \begin{cases} a'(a + \frac{b^2}{a}) = 1 \\ b' = -a'b \end{cases}$
-	
9	
1,3047	Scanné avec CamScanner

```
d'o\dot{a}: (a_1b) \times \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right) = (4,0)
    iv) (a,b) x (c,d) = (ac - bd, ad + bc)
                            = (ca-db, cb+da)
                             = (c,d)x (a,b)
    *mq x est distributive par rapport à , à droite
          puisque (IRxIR, x) est commutatif:
          donc: [(a,b)+(c,d)] x (e, f) = (e, f) x [(a,b)+(c,d)]
                                           = (e, f) x (a, b) + (e, f) x (c, d)
                                            = (a,b)x(e,B)+ (c,d)x(e,B)
Résondre dans IRx IR l'équation: (a,b)2 = (-1,0)
          (a,b)2=(-1,0) (=> (a,b) (a,b) = (-1,0)
                               (=) (a^2 - b^2, 2ab) = (-1, 0)

(=) \begin{cases} a^2 - b^2 = -1 \\ 2ab = 0 \end{cases}
                                (=) \begin{cases} a^2 - b^2 = -1 \\ a = 0 \text{ on } b = 0 \end{cases}
                                (=) \begin{cases} a^2 - b^2 = -1 \\ a = 0 \end{cases} \text{ ou } \begin{cases} a^2 - b^2 = -1 \\ b = 0 \end{cases}
                                (=) \begin{cases} -b^2 = -1 \\ a = 0 \end{cases} Ou \begin{cases} a^2 = -1 \\ b = 0 \end{cases} Impossible (dans |Rx|R)
                                = [b=1 on [b=-1
                                 (a,b)= (0,1) on (a,b) = (0,-1)
Exercice &
                                                                                                      ()
     Résondre dans C:
                                                                                                      T.
           z^4 = 16\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)
                                               22+221-41-1=0
                                                                                                      0
           z2 = 3\12 + 2 3\12
                                               422+32+7=0
                                                                                                      0
           z^2 = 16i
                                                                                                      4
                                                                                                      (1)
                                                                                                      0
```


	8
donc. zo = 4 e 4 ; z1 = 4 e 4 54	6/1
Rême methode: on pose: z=a+1b	10/5
	W.
$2^2 = 16i = (a+1b)^2 = 16i$	6
$a^2 + 2iab - b^2 = 16i$	6
$\begin{cases} a^2 - b^2 = 0 \\ 2ab = 16 \end{cases}$	F
[2ab=16	6
$\begin{cases} a^2 = b^2 \\ ab = 8 \end{cases}$	8
	6
(=) $\begin{cases} a = b \\ ab = 8 \end{cases}$ (an a et b in signe)	- E
lab=8 (caraetb m signe)	(A)
⇔ a=b=±2√2	8
done: z1 = 252, 252 i ; z2 = 252 2 25 i	
22, Riz - 4i - 1 = 0	A
$\Delta = (2i)^2 - 4(-4i-1)$	G G
= -4+161+4	
= 16 i	
on pose: +2= 16i	
$a' \circ a$: $r_0 = 4 e^{i\frac{\pi}{4}} = 4 \sqrt{2} + i 4\sqrt{2}$	9
$\frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} $	6
$t_1 = 4e^{i\frac{5\pi}{4}} - 4^{\frac{7}{12}} = 4^{\frac{7}{12}}$	6
denc: $z_1 = -b + t_0$ $z_2 = -b + t_1$	6
21 - 6+ 10 20 45 + 1 45 2 20 45 - 1 452 - 1 452	6
	0
=-1+52+152 =-1-52-152	0
= 52 + (52-1) 1 7 = -52 - (52+1)1	- 6
2ème méthode: z2+2iz-4i-1=0	6
z2+21z-1-41=0	
$(z+1)^2-4i=0$	0
$(z+i)^2 + z^2 = 0$ and $z=4i$	0
$(z_{+i-x})(z_{+i+x}) = 0$	6
Z+i-t=0 ou z-i+t=0	9
2 = \$ - i ou z - t - i	0
25 2 2 7 1	6
	6
	6

1 Rappel et Notations Chapitre préliminaire : I - Z'ensemble des nombres complères: 1 Un nombre complexed: Un nombre complexe peut être veu de différente manière, il provient de l'imposibilité de trouver une solution dans 12 de l'équation x2=-1 On peut définir C comme l'ensemble des couples (a, b) de 182 muni des opérations: Addition: (a,b)+(c,d)=(a+c,b+d) Multiplication. (a,b)x(c,d) = (ac-bd, ad+bc) Algibriquement, mous pouvons montrer que C muni de ces deusc low est un corps commutate (contragrême non constant à coefficient dons (admer on mains une rolution). De plus, on a: (0,1)2=(0,1)x(0,1) en posant i = (0,1) et en définissant un homomorphisme surjectif on identifie IR par p(IR2): P1(1,0) =1 , P2(0,1) =1 (x,y) = (x,0) + (0, y) = x(1,0) + y(0,1) = x + iy IR2 ~ C Géométriquement, lorsqu'en rapportale plan complexe à un repene (0, I, J) avec 0 = 1 et 0 = -1, Ze nombre compleace z = x + iy est représenté par un point unique M tel que M2(1,0) est la projetection de M sur (0,01) et M2(0,y) est la projection de M sur (0,05) (n,y) sont les affires de M, notons: x= Re(z) et y= Im(z) C est un C-espace vectoriel de dimension 1; C'est aussi un IR-espace vectoriel de diension 2, engendré par {(1,0), (0,1)}

	1
7. 1	1
Je disque ouvert de centre a et de ray on rest:	10
$D(a,r) = \int z e C/ z-a \langle r \rangle (a \in D(a,r))$	1
. Ze disque fermé de centre a et de rayon r'est:	6
$\overline{D}(a,r) = \{z \in \mathbb{C}/ z = a \mid \langle r \rangle \mid (a \in \overline{D}(a,r))$	10
¿ Le disque pointé de centre a et de rayon r est:	6
D'(a,r) = fze (/o(z-a (r} (a 4 0 (a,r))	6
II - Fonction continue:	1
1-Zimite de fonction:	15
On dit que f(z) tend vers une limite l'Porsque z tend vers zo, et	6
on Ecrit: lim B(z)= ? (=> YE>0,38>0, YZEC, z-z01(8=) B(z)-P1(E	6
Proposition:	6
· Quand la limite exciste, elle est unique.	80
Soit fine fonction complexe,	80
Soit zoe C,	-
Supposons que fadmet l'et l'comme	8
limites en zo avec l + l',	8
Seit $\varepsilon = \frac{ \ell - \ell' }{v} > 0$,	8
35,>c, Vze C, 12-201 (8, =>18(2)-81 (E	
382>0, 42 El, 12-201 (62=>18(2)-8'1 (E	8
on pose: $S = min(S_1, S_2)$	6
donc: pour tout z E C to que 12-2014 5:	8
18-8,1= 18-8(5)+8(5)-0,1	6
< f(z)€1+18(z)€1]	<u>e</u> -
3-3>	6
128	0
d'où 18-81 "Absurde"	6
Alens P = P1	6
d'où l'unicité.	6
	6
Zes propriétés Classiques concernant la limite d'une somme, d'un prochuit,	e
d'un rapporteur de deux fonctions, s'étendent du cas réel au cas complesce	-6-
(Voire Recherche)	8
	6
	6
Scanné avec CamSca	nner

D	
3	
-	2. Fonction continues
	Soit zo un point où la fonction o prend la valeur b(zo)
-	On dit que f(z) est continue en zo si et seulement si: lim b(z) = b(zo)
	C-a-d, VE>0, 38>0, YZEC, 12-201(8 => 1P(z)-B(Z0) (E
	Ea fonction g(z) est continue dans 12 si et scislement si elle est continu
	Sa fonction g(2) est continue dans 12 m a
	en tout point de r, où r est une partie de C.
	Bemarque:
9	Ze point à l'infini est définie par l'image de l'origine par la
3	
2	transformation t = 1
	lim B(z) = P si et seulement si VE>0, 38>0, VZEC, z >8=> B(z)-P (E
	2-100 lim β(z) = co si et seulement si ∀ε>0, 38>0, ∀z∈ €, z-20 ⟨8=> β(z) > €
-	Z-72 ((Z) = co si el settement
9	Notons que: Si lim B(2) = P aloro: lim B(2) = P (Von Recherche)
3	Proposition:
	Soient ECC un ensemble, ZoEE, et B: E - C,
9	
-	Zes énoncés serivants sont équivalents:
-3	11 YESO, 3m(E,Zo) & IN, YZE C, Z-Zo (m => B(Z) - B(Zo)) (E
	2/ Pour toute suite (Zm) de points de E convergeant vers zo, la
-3	The contract of the contract o
-3	suite (B(Zm1) converge vers f(Zo)
-3-	3/ 2'image réciproque de tout ouvert de f(E) est un ouvert de E.
6	Remarque
	Si le nombre n(E, zo) peut être choisi indépendamment de zo,
-9-	1
_9	on dit que g est uniformément continue sur E
9	
5	
-9	
2	
2	
9	
9	
9	
9	
9	
100	

Charrenda C	01.0	4
Chaputre 1: Forme dif	Hérentelle et Holomorphe	4
I_Dérivé et forme différencelle:		4
1 - Dérisé d'une fonction complexe		4
Soit il un ouvert de C et zel		4
		4
Noe fonction $\beta: \mathcal{U} \rightarrow \mathbb{C}$ est dite \mathbb{C} - $\lim_{z \to z} \frac{\beta(z) - \beta(z_0)}{z - z_0} = \lim_{k \to 0} \frac{\beta(z_0 + k) - \beta(z_0)}{k}$ et fini.	(telque ZE C1 Z, f, et le C1 i) esciste	0
		1
Cette limite, notée g'(20), estappe	les la derivée de f en zo.	-
2 - Différentiabilité d'une fonction	complexe:	-
Za fonction fest différentiable	e en z s'il esciste un nombre complexes	6
f'(z) tel que, the C, f(z+h) =	B(2)+B'(2)h+0(121)	
		0
aus coller ut During	es, produit, quotient) sout les même	6
que celles utilisées en analyse	neexe.	-6
I-Horomorphe:		E
1-Définition		É
une from cron f est dite holomi	exphe dans I si elle est dérivable en	É
lout point de 52.		ę
Remarque:		ę
Exercice:	sentle de fonctions helemenphes.	
	space vectoriel.	•
oH(II) est un a		E
		Ę
	sous-algèbre de C1(x).	Ę
Proposition		ŧ
	art on to the	Ę
and the second	est continue; la réciproque est fours.	Ę
to a market su	٠,٠,٠	ę
d'où frest décisable	entant fount de C,	Ę
Sout Zo E.C.		É
		e
		-

	danc & est dérivable en e.
	on a: $\frac{1}{z-z_0}(\beta(z)-\beta(z_0)) = \frac{1}{z-z_0}\frac{\beta(z)-\beta(z_0)}{z-z_0}(z-z_0)$ = $\left(\frac{1}{z-z_0}\frac{\beta(z)-\beta(z_0)}{z-z_0}\right)\left(\frac{1}{z-z_0}z-z_0\right)$
	= (lim B(21-B(2)) (lim z-z.)
	= 8'(20)-0
	d'ou. ling (8(2) 8(2)) = 0
	done, lim B(=) = B(=0)
	Alors: Best continue
	Exemples:
	Soit. P. C . C (Rest continue)
	2, 5
	montrer que 8 n'est pas dérivable en zo:
	$\lim_{R \to 0} \frac{\beta(z_0 + R) - \beta(z_0)}{R} = \lim_{R \to 0} \frac{\overline{z_0 + R} - \overline{z_0}}{R}$ $\lim_{R \to 0} \frac{\beta(z_0 + R) - \beta(z_0)}{R} = \lim_{R \to 0} \frac{\overline{z_0 + R} - \overline{z_0}}{R}$ $\lim_{R \to 0} \frac{\overline{z_0 + R} - \overline{z_0}}{R}$
	8-0 B = 0: \(\overline{Z_0 + \overline{K} - \overline{Z_0}} \)
	3000
	(1 ni Re(k) = 0) 1 1-(h) i 1-(h)
	= (-1 si Im(R) = 0 = (R(R) R(R) - 1
	donc: fin'est pas dérivable en 20,
	Remarque:
	Malgné que C 2182, la dérivabilité d'une forction en 182 n'implique
	par qu'elle est dérivable en C.
	III Operations sur la fonctions Rolamorphes:
	Soit U un guvert de C,
	Soient Bet g deux Conctions Rolamorphes sur U,
)	ARON
0	1/ f+g est holomorphe sur U;
2	21 fg est holomorphe sur U;
9	31 & est Rolomorphe sur UNA avec A=fzec/g(z)=0];
9	u/ Si f est holomorphe au voisinage de zo, et y au voisinage de f(zo),
9	alors goß est holomorphe au voisinage de zo;
_	5/ Zes règles usuelles de dérivation s'appliquant.

(0, 1) = 01 = 01 = 01 = 02 = (40.1 40.1	W
$(\beta+8)'=\beta'+8'$ $(\beta 3)'=\beta'3+\beta 3'$ $(^{\wedge}\beta)'=^{\wedge}\beta'$	W
$\left(\frac{4}{3}\right)' = -\frac{3}{3^2} \qquad \left(\frac{6}{3}\right)' = \frac{63-3}{3^2} \qquad \left(3 \circ \theta\right)' = \theta' \cdot 8' \circ \theta$	WA.
2- Ensemble com ses	VA
 on dit qu'une partie E c C est connecce si elle vérifie l'une de	N V
 propositions equivalentes suivantes:	-
 1/ Il n'exciste pas de partition de E en deux ouverts disjoints non	6
vides.	-
 21 Il n'existe pas de partition de E en deux fermés disjoints non s	rides
 3/ Bes seules parties ouvertes et fermés de E sont de E	
4/ Toute application continue de E dans (0,13 est constante	- 16
3. Théorème :	6
	6
Soient U un ouvert connecce de C et f. U . o un holomorph	e, 6
Si g'= 0, alors f est constante sus U.	8
W_Corollaire:	8
Soit U un ouvert de C,	8
 Une fonction holomorphe sur u dont la dérivée est nulle et consi	ante
sur chaque composante Connesce de U.	- G
 N- Sinéarité de la différentielle &	
Soit of une fonction sur C holomorphe, et considérons l'application	=
	4
0	e
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- C
Cette application of est linéaire	0
Trois espaces d'applications linéaires interviennent:	- 0
· LIR (C, C) espace vectoriel sur IR:	600
Zes applications IR-linéaires de C dans C (où C est identifié à 16	اعر
 en effet: (~ 1R2). Donc, c'est identique à l'espace des applicati	one on
IR- ameaines de IR dans IR mote L. (IR2 IR2)	
Za différentielle df (20, 40) d'une application f: 12 -> 12, déf	
par: 8/2+R14+R2) = 8/2,42+d8/2,42/8 82 20/48 82	inic 6
par: β(x+R1,y+h2) = β(x,y)+dβ(x0,y0)(h1,h2)+0(k1, h2) appartient	A C
	0
Lik (a, c) espace vectoriel sur C:	-6
	0

Zes applications IR linéaires de C dans C (dimension = 2) Notons dx et dy les applications qui à z = x+14 asocie Re(2) et Im(2) nespectivement, cad: Re(z)=dx(z)=dx(x+14)=x et Im(z)=dy(z)=4 comme: [dx(4)=1 dx(4)=0 1 dy (1)=0 ; dy (1)=1 Ze couple (dx, dy) forme une C-base de Lik (C, C) Sa considération de dz = dx + idy et dz = dx - idy permet de désigner le couple (dz, dz) comme étant a-base du a-espace vectoriel 1, (a, a) La (C, C) espace vectorial sur ((dimension = 1) Zes applications de la forme 2, de avec de C, Donc: dz est une base de La (c,c) Za multiplication par g'(zo) définit une similitude du plan complèxe de rapport (1'(20)1 et d'angle ang 6'(20) 1- Applications O- Prégines Zeo Bonctions de C dans C et C-linéaire sont de la borone 8(2) = dz tel que dz = (ax-by) + i(bx+ay) On peut définir (El (182, 182) par: €: IR2 - IR2 $\begin{pmatrix} x \\ y \end{pmatrix}$ \rightarrow $\begin{pmatrix} a - b \\ b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = cp \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ Une application 8: C - C est C. linéaire se et seulement si l'application F: 1R2 1R2 qui lui est amociés est IR linéaire et dont la matrice dans une base as IR2 est de la Borone (a -b) B. Proposition Soient f: U -> C et zo El lest halamorphe en zo si et seulement si g est IR-différentiable en zo et on différentelle de f au zo est une application C-linéaire. 1 Theoreme: "Cauchy Riemann" Soit UC C un ouvert, et soit zo=xo+ig ell et & une fonction telle que f= P, iQ Zes propriétés suivantes sont équivalentes:

1 Za fonction f: 11 - 122 est 12-differentiable en zo 2 Soptication f: 12 - 1122 est 12-differentiable, et récifie les conditions de Cauchy-Riemann. 3 (xo, yo) = 3 (xo, yo) 3 (xo, yo) = 3 (xo, yo) 3 S'application f est 12 differentiable en (xo, yo), et ra matrice jacobienne est la neprésentation d'une similatible directe: $df_2(x_0, y_0) = \frac{1}{2} (Ref(x_0) - x_0 f(x_0))$								16
2 taplication of 11 - 122 est 1R-differentiable, et vérifie les conditions de Cauchy-Riemann. 2		11 Za fon	ction B:	2- C	st different	iable en z		0
(a) Conclutions of Cauchy-Remains. $ \frac{37}{37}(x_0, y_0) = \frac{32}{30}(x_0, y_0) $ $ \frac{37}{37}(x_0, y_0) = \frac{32}{30}(x_0, y_0) $ 3) S'application \tilde{p} est \mathbb{R}^2 -différentiable en (x_0, y_0) , et x_0 matrice jacobalenne est f_0 acpasementation d'une similatate directe: $df_2(x_0, y_0) = (\frac{x_0}{3}) + \frac{x_0}{3}(x_0) + \frac$		9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ation 8	11 _ 1	22 est 18-4	100 500 5000	at a fail la	10
$\frac{2\pi}{3\pi}(\pi_0, y_0) = \frac{2\pi}{3\pi}(\pi_0, y_0)$ $\frac{2\pi}{3\pi}(\pi_0, y_0) = \frac{2\pi}{3\pi}(\pi_0, y_0)$ 3) 3'application \tilde{p} est the differentiable on (π_0, y_0) , et is matrice jacobienne est la représentation d'une similation d'une et de description $\frac{1}{3\pi}(\pi_0, y_0) = \frac{1}{3\pi}(\pi_0, y_0) = \frac{1}{3\pi}(\pi_0, y_0) = \frac{1}{3\pi}(\pi_0, y_0)$		Para	Art our	de Car	00	- FOOTEN CONTRACTOR		-
matrix galocation, and the proposition of the similar to direct in $dg_2(z_0, y_0) = \begin{pmatrix} Re f(z_0) & -Jef(z_0) \\ Imf(z_0) & Re f(z_0) \end{pmatrix}$		1es con	200	S DE CAU	30 c	nn:	6	1
matrix galocation, and the proposition of the similar to direct in $dg_2(z_0, y_0) = \begin{pmatrix} Re f(z_0) & -Jef(z_0) \\ Imf(z_0) & Re f(z_0) \end{pmatrix}$			5 03	×0140)=	38 (x0 1 A0)			1
matrix galocation, and the proposition of the similar to direct in $dg_2(z_0, y_0) = \begin{pmatrix} Re f(z_0) & -Jef(z_0) \\ Imf(z_0) & Re f(z_0) \end{pmatrix}$			30 C	(0, 40) =	- BQ (x0, y)	,)		-
matrix galocation, and the proposition of the similar to direct in $dg_2(z_0, y_0) = \begin{pmatrix} Re f(z_0) & -Jef(z_0) \\ Imf(z_0) & Re f(z_0) \end{pmatrix}$		3\ Z'appli	cation	g est	IR-diffine	ntable en (xo	(go), et sa	-
		matrice	jacob	ienne es	t la représ	entation d'une	Nimilating	~
		diaget		(~ 11 \ -	(Re 8'(20)	- Imf'(Zo) \		9
			62	(40196) -	Imf'(zo)	Re 8'(2)		1
							4	4
	-							6
								-
								8
								6
								6
							•	6
								0
							(C
			-					
								0
								6
								9
								6
								6
								9
							-	
								0

	1
	W
$(\delta_{g} + \delta_{1})(t) = \begin{cases} \delta_{1}(t) & \text{si } t \in [a_{1}, b_{1}] \\ \delta_{g}(t_{g} + a_{2} - b_{1}) & \text{si } t \in [b_{1}, b_{1} + b_{2} - a_{2}] \end{cases}$	10
\[\delta_2 + a_2 - b_1 \] si te[b_1, b_2 + b_2 - a_2]	60
Dans ce cas Im (82+81) = Im (82) U Im (81) ; Im signifie Pe chemin	6
 b_Cas 2: Ze chemin opposé:	6
Soit 8: [a, b] - C un chemin,	100
On définit le chemin opposé 8 par: 8:[a,b] C	1
(8=-8) + ~ 8(a+b-t)	100
Exemple:	1
Za combe C= seit; te[o, 1] } U s(1-1)i+1(-1+i); te[o,1] } est	10
11 CON 2016 dly 200 et 1 21 g 0 4 (1 - 1/1 + 1 (-2 + 1/) ; re[0,1] g est	8
un composé d'un arc et un segment.	6
4-Définitions	6
Soit 8: [a, b] _ Cun chemin de clane C1 par morceaux,	-
On appelle longueur de & le nombre L(x) = S, /oir) dt	-
II - Intégration le long d'un chemin (ou une courbe ou curviligne)	3
1 Deficition :	6
Soit D un chemin non vide de C, et voit C une courbe paramétrique	e
par un chemin de clarse C1 8: [a, b] _ D	8
+ -, 8(t)	6
et soit & une fonction de D vers C continue sur tout point du chemin	6
C. On appelle intégrale de f le long de la cour be C, et on la note	1
[β(z)dz, le nombre complexe: ∫ β(z)dz = ∫ β(δ(+)) δ'(+) dt	0
2- Propriétés des intégrales :	6
Zes propriétés classiques d'intégration dans IR reste valables pour	6 -
Plintégration sur un chemin dans (:	6 -
	6
1) $\int_{\mathcal{S}} (F_1(z) + F_2(z)) dz = \int_{\mathcal{S}} F_2(z) dz + \int_{\mathcal{S}} F_2(z) dz$	6
2) So AF(z) dz = A So F(z) dz avec AEC	6
$3) \int_{\partial_2 + \delta_2} F(z) dz = \int_{\delta_2} F(z) dz + \int_{\delta_2} F(z) dz$	60
$41 \int_{-8}^{8} F(z) dz = -\int_{8}^{8} F(z) dz$	6
Sous la condition d'existence et & un chemin de O.	C
3-Zemme :	6
ona: [F(z) dz (L(x) Sup F(z))	100
ZEMPP(N)	6
	8

III - Fonctions analytiques: 1 Définition s Soient U un ouvert de C et 8: U . C et zoe U on dit que f est analytique en zo si Ir>o, D(zo, r) c U, et il existe une série entière Zaxxx de rayon de convergence > r telle que: \$(2) = \(\sum_{K=0}^{\infty} a_K (2-20)^K , \text{V2} \in D(20, r) on ait que f est analytique sur u si f est analytique en tout point 7 2 - Proposition: Si & est analytique sur U, alors & est différentiable sur U le développement en serie de 8 coincide avec son développement en Taylor, etona. 8(2) = 5 8 (20) (2-20) m 3 - DElimition : Une Conction analytique sur C s'appelle une Conction entrere 4 thénème Scient Wet V deux ouverts de C, B. U , V et g: V . , C deux fonction rel que f (nesp g) est analytique sun u (resp V) Alors, go f est analytique sur U N Primitive sur un ouvert étoilé: L Engante étailé : Soit E une portre de (plus complera). On appelle le centre de E, tout point zo E E qui vérifie la condition surrante: YZE E, [Zo,Z]CE S'il en est ainsi, on dit que E est étoilé par rapport à zo · Un ensemble est dit Étoilé s'ila au moins un centre . Un ensemble convexe est étoilé (un toutes ses points sont des centres) · Un ensemble peut avoir plusieurs centres. Exemple: · C' m'est pas étoilé . Ze disque D(0, r) est étoilé, et tout point de D(0, r) est un centre 2 Primitive d'une Constron s Soit of une fonction complexe défine sur un ouvertre. On appelle

-

_9-

_9

_9

_9

-9

9

-5

-9

2

2

9

- 59

dons it telle que : F'= f	4
 Si Fest une primitive de B, il en est de même pour F+c, Vce C	1
 3- Mopostuca .	1
 Soit & une fonction complexe continue sur un ouvert RCC, et	-
 soit Fune primitive de f. Etant donné un chemin d'origine z	-
 et d'extrémité z, on a $\int_X \beta(z) dz = F(z) - F(z_0)$	+
 4-Remarque	_
 B'intégrale ne dépend pas du chemin parcourus par z	
 5-Proposition:	
 Une fonction admet une primitive Pour tout A un Pacet de C	
dans un ouvert si de () \int \gamma\text{g}\(\beta(z)\dz=0	
6- Changement de paramètre ou changement de circuit:	
Soit un chemin 8: [to, t_] -, C et soit of une fonction de classe C	1
qui, surjectivement sur un intervalle [uo, uz] avec uo (uz, et de	1
sorte que (1/40)=to et (1/41)=t1, on peut lui faire correspondre	1
un autre chemin S= 804. On dit que S est obtenu par changement	+
de paramètre: $\int_{t_0}^{t_1} \beta(t) dt = \int_{u_0}^{u_1} \beta(\varphi(u)) \varphi'(u) du$	+
- F = 1/16/30301 (3)	t
Soit fune fonction complexe continue dans un ouvert étoilé 52	+
Pour que p admette des primitives dans se, il suffit qu'on ait	-
Jo f(z) dz = 0 pour tout circuit triangulaire o trace dans sz	+
T- Primitive sur un domaines	÷
1-Définition d'un donaine	-
On appelle domaine, un ouvert se C tel que deux points quelon	q
 de 52 puissent toujours être relié par un chemin tracé dans 2	
2-Zemane s	
 Si f est une fonction complete continue sur un donaine D,	
 deux primitives de P dans D différent d'une constante.	
? 3-Propositions	ľ
Soit & une fonction complexe continue dans un donaine D. Pour	ļ

