Previously.

- Mappings
- Codomain vs Range
- Image and Inverse Image
- One-to-One, Onto, Bijection
- Identity Map
- Inverse Mappings
- Invertibility Theorem

This Section.

- Relations
- Equivalence Relations
- Equivalence Classes

Definition. If A is a set, any subset of $A \times A$ is called a **relation** on A.

Note. We often call this set R and we denote the elements as $a \equiv b$ or $a \sim b$.

Exercise 1. Describe the relation. That is, determine the subset R of $A \times A$ that is being described, and write it in set notation.

- (a) $A = \mathbb{Z}$, every integer is related to every other integer
- (b) $A = \mathbb{R}$, $a \sim b$ exactly when a > b
- (c) $A = \{0, 1, 2\}, a \equiv b \text{ exactly when } a = b$

Definition. A relation \equiv on a set A is called an equivalence relation if it satisfies all of the following conditions for all $a, b, c \in A$,

- 1. $a \equiv a \text{ (reflexivity)},$
- **2.** If $a \equiv b$ then $b \equiv a$ (symmetric),
- **3.** If $a \equiv b$ and $b \equiv c$, then $a \equiv c$ (transitive).

Exercise 2. For integers m and n, say $m \equiv n$ if and only if m - n is even. Show that \equiv defines an equivalence relation.

Last Updated: February 2, 2024

Definition. Given an equivalence relation \equiv on a set A, we define the equivalence class of a to be the set

$$[a] = \{ x \in A \mid x \equiv a \}.$$

Exercise 3. What are the equivalence classes from the previous exercise? $(m \equiv n \text{ if and only if } m - n \in 2\mathbb{Z})$

Exercise 4. What are the equivalence classes for each of the following relations?

(a) Equivalence given by equality.

(b) $A = \mathbb{R}$, $a \equiv b$ if and only if $a^2 = b^2$.

Notation. The book uses A_{\equiv} to be the set of unique equivalence classes of A under the equivalence relation \equiv . We may also call this set the quotient set of A by \equiv .

Exercise 5. Let $U = \{1, 2, 3\}$ and $A = U \times U$. Define the relation \equiv on A by $(a, b) \equiv (c, d)$ if b = d.

- (a) First, let's write down all of A. You should find that |A| = 9.
- (b) Assuming that \equiv is an equivalence relation on A, determine
 - (i) [(1,1)]
 - (ii) [(1,2)]

(iii) [(1,3)]

(c) What do you notice about [(1,1)], [(1,2)], and [(1,3)]?

Definition. Given an equivalence \equiv on a set A, the natural map is the mapping $\phi: A \to A_{\equiv}$ given by $\phi(a) = [a]$ for all $a \in A$.

Exercise 6. Fill in the arrows for the natural map for the relation described in exercise 5.

A	$\xrightarrow{\phi}$	A_{\equiv}
(1,1) $(1,2)$		[(1,1)]
(1,3) $(2,1)$		
(2,2)		[(1,2)]
(2,3) $(3,1)$		
(2,3) $(3,3)$		[(1,3)]

Theorem 0.4.1 Let \equiv be an equivalence relation on a set A and let a and b denote elements of A. Then

- **1.** $a \in [a]$ for all $a \in A$.
- **2.** [a] = [b] if and only if $a \equiv b$.
- **3.** If $a \in [b]$ then [a] = [b].
- **4.** If $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$.

Exercise 7. Let's prove part (c) of this theorem. Note that [a] and [b] are sets, so we will probably have the best time if we use the Principle of Set Equality.

Proof. Let \equiv be an equivalence relation on a set A and let a and b denote elements of A. Assume $a \in [b]$. We will show that [a] = [b].

Note. We say that an equivalence relation partitions a set because every element of that set will appear in *exactly one* equivalence class.

We call the collection of distinct equivalence classes the quotient set of A by \equiv .

Exercise 8. Explore this property for the equivalence relation on \mathbb{Z} given by $a \equiv b$ if and only if $a^2 = b^2$. What is the partition of \mathbb{Z} given by this relation?

Definition. Two sets X and Y are disjoint if $X \cap Y = \emptyset$, and a collection of sets is pairwise disjoint if any two distinct sets in the family are disjoint.

Definition. If A is a nonempty set and \mathcal{P} is a family of subsets of A, we say that \mathcal{P} partitions A if

- (a) $\emptyset \notin \mathcal{P}$
- (b) \mathcal{P} is pairwise disjoint
- (c) The union of the sets in \mathcal{P} is A

Exercise 9. What are all of the partitions of $\{a, b, c\}$?

Theorem 0.4.2 If \equiv is any equivalence on a nonempty set A, then the collection of all equivalence classes of A under \equiv partitions A.

Exercise 10. What is the partition of \mathbb{Z} given by $m \equiv n$ if and only if m - n is even?

Exercise 11. How does this partitioning question change if we use $m \equiv n$ if and only if m-n is divisible by 3?