
Chapter 12

Basic Cement Chemistry

BASIC CEMENT CHEMISTRY CHEMICAL COMPOSITION

1. CHEMICAL FORMULAE.....	254
2. MINERALOGICAL COMPOSITION	255
3. CHEMICAL PARAMETERS FOR CEMENT-SPECIFIC MATERIALS	255
3.1 Titration	255
3.2 Lime Saturation	256
3.3 Silica Ratio	256
3.4 Alumina Ratio	256
3.5 Na ₂ O-equivalent	257
4. CONTENT OF CLINKER MINERALS ACCORDING TO BOGUE.....	257
4.1 Applied for	257
5. SIGNIFICANCE OF CLINKER MINERALS FOR CEMENT PROPERTIES	257
6. SIGNIFICANCE OF CLINKER MINERALS FOR ASTM CEMENT TYPES	258
7. RELATIONSHIPS BETWEEN CHEMICAL MODULI AND CLINKER MINERALS	258
8. EXERCISE FOR CALCULATION.....	262

Elemental composition in weight percentage. By convention, the elements are expressed in form of their oxides (exception: Cl, F).

Table 1 Usual sequence of elements in cement analysis:

	Examples	
	Limestone	Clinker
L.o.I. ¹⁾	42.2	0.24
SiO ₂	1.9	22.7
Al ₂ O ₃	0.81	5.7
Fe ₂ O ₃	0.52	1.9
CaO	52.2	66.0
MgO	1.4	2.0
SO ₃	0.56	0.33
K ₂ O	0.22	0.74
Na ₂ O	0.08	0.09
TiO ₂	0.05	0.18
Cr ₂ O ₃		
Mn ₂ O ₃	0.02	0.03
P ₂ O ₅	0.01	0.05
Cl	0.01	0.01
F		

¹⁾ loss on ignition, e.g. at 1050°C
mainly due to H₂O, CO₂

1. CHEMICAL FORMULAE

The chemical formula indicates the elements occurring in a chemical compound:

- ◆ for a molecular compound, type and absolute number of elements in a molecule are given

- ◆ for a mineralogical compound, type and relative number of elements are given

Note: In mineralogical compounds, the elements need not necessarily occur in simple numerical ratios (impurities, solid solution)

- ◆ in the cement chemistry, shorthand's are often used:

Examples:

C₃S for Ca₃SiO₅ (alite)

C₂S for Ca₂SiO₄ (belite)

C₃A for Ca₃Al₂O₆ (aluminate)

C₄AF for Ca₄Al₂Fe₂O₁₀ (ferrite)

2. MINERALOGICAL COMPOSITION

Table Composition of a material, expressed in weight-percentage of the occurring minerals

Example:

Limestone

Calcite	CaCO ₃	90%
Dolomite	CaMg(CO ₃) ₂	5%
Quartz	SiO ₂	5%

Clinker

Alite	C ₃ S	58%
Belite	C ₂ S	23%
Aluminate	C ₃ A	9%
Ferrite	C ₄ AF	7%
Periclase	MgO	1%
Arcanite	K ₂ SO ₄	1%
Free lime	CaO	1%

Table Difference between chemical and mineralogical composition:

Limestone

Mineralogical	comp.	Chemical	comp.
Calcite	CaCO ₃	L.O.I.(CO ₂)	40,0%
Dolomite	CaMg(CO ₃) ₂	SiO ₂	5,0%
Quartz	SiO ₂	CaO	53,9%
		MgO	1,1%

(simplified, minor elements not included)

3. CHEMICAL PARAMETERS FOR CEMENT-SPECIFIC MATERIALS

3.1 Titration

Content of carbonates as determined by acid-base titration, expressed as CaCO₃

$$\% \text{ Titration} = 1.786 \text{ CaO} + 2.48 \text{ MgO}$$

Applied for:

- ◆ Limestone
- ◆ Marl
- ◆ Raw Meal

3.2 Lime Saturation

$$LS = \frac{CaO \times 100}{2.80SiO_2 + 1.18Al_2O_3 + 0.65Fe_2O_3}$$

or

$$LSF = \frac{CaO}{2.8SiO_2 + 1.2Al_2O_3 + 0.65Fe_2O_3}$$

The LS is a measure to which extent the CaO-richest compounds C₃S, C₃A and C₄AF can be formed without the necessary presence of free lime. At LS > 100, free lime will unavoidably be present after burning.

Applied for:

- ◆ Raw meal
 - ◆ Clinker
 - ◆ Cement: neat OPC only
- $$CaO = CaO_{total} - 0.7 SO_3$$

Usual range in clinker: 85 - 100

Note: The influence of MgO can be accounted for

$$LS = \frac{(CaO + 0.75MgO) \times 100}{2.80SiO_2 + 1.18Al_2O_3 + 0.65Fe_2O_3}$$

max. 2 % MgO may be introduced in formula (not applied in cement specifications)

3.3 Silica Ratio

$$SR = \frac{SiO_2}{Al_2O_3 + Fe_2O_3}$$

Applied for

- ◆ Siliceous-argillaceous raw components
- ◆ Raw meal
- ◆ Clinker
- ◆ Cement

Usual range in clinker: 1.8 - 3.6 *2 2.4 liquidus*

3.4 Alumina Ratio

$$AR = \frac{Al_2O_3}{Fe_2O_3}$$

Applied for

- ◆ Siliceous-argillaceous raw components
- ◆ Raw meal
- ◆ Clinker
- ◆ Cement

Usual range in clinker: 1 - 3 *1.7 liquidus*

ideal 1.5 ; 1.3

3.5 Na₂O-equivalent

Total alkali content, expressed as Na₂O
Na₂O-equivalent = Na₂O + 0.658 K₂O

Note: Limit for low alkali cement

Na₂O-equiv. < 0.6 %

Applied for Clinker

Cement

4. CONTENT OF CLINKER MINERALS ACCORDING TO BOGUE

Percentage content of clinker minerals, assuming that chemical equilibrium is attained, and that no impurities are present

$$C_3S = 4.07CaO - 7.6SiO_2 - 6.73Al_2O_3 - 1.43Fe_2O_3$$

$$C_2S = 8.6SiO_2 + 5.07Al_2O_3 + 1.08Fe_2O_3 - 3.07CaO$$

or 2.87SiO₂ - 0.754C₃S

$$C_3A = 2.65Al_2O_3 - 1.69Fe_2O_3$$

$$C_4AF = 3.04Fe_2O_3$$

In reality, the mineralogical composition of industrial clinkers differs to some extent from that calculated according to Bogue.

4.1 Applied for

- ◆ Cement:
 - OPC only (excl. blended cements)
 - correction for CaO in CaSO₄:
$$CaO = Ca_{tot} - 0.70 SO_3$$
 - For ASTM: TiO₂ and P₂O₅ to be added to Al₂O₃
- ◆ Clinker:
 - CaO can be corrected for "CaSO₄" or for free lime, depending on objective of calculation

5. SIGNIFICANCE OF CLINKER MINERALS FOR CEMENT PROPERTIES

C₃S Contributes to early and late strength (1 d - ...)
 Increases heat of hydration

C₂S Contributes to late strength (28 d - ...)

C₃A Contributes to early strength (1 - 3 d)
 Increases heat of hydration
 Impairs resistance to sulphate attack

C₄AF Little effect (*isolate*)

6. SIGNIFICANCE OF CLINKER MINERALS FOR ASTM CEMENT TYPES

Type I	Portland no restrictions regarding clinker minerals
Type II	Portland with moderate sulphate resistance C_3A max. 8 %
Type III	Portland with high early strength C_3A max. 15 %
Type IV	Portland with low heat of hydration C_3S max. 35 % C_2S min 40% C_3A max. 7 %
Type V	Portland with high sulphate resistance C_3A max. 5.0 % $C_4AF + 2 C_3A$ max. 25 % or $C_4AF + C_2F$ max. 25 %

7. RELATIONSHIPS BETWEEN CHEMICAL MODULI AND CLINKER MINERALS

The following relationships are calculated for simplified clinker compositions, i.e. only containing the main elements SiO_2 , Al_2O_3 , Fe_2O_3 , CaO

Fig: Clinker Minerals as Function of LS
SR=2.5 AR=1.5

Fig: Clinker Minerals as Function of SR
LS=95 AR=1.5

Fig: Clinker Minerals as Function of AR
LS=95 SR=2.5

8. EXERCISE FOR CALCULATION

	Raw Mix	Potential clinker composition
L.o.I.	35.1
SiO ₂	14.3	22.....
Al ₂ O ₃	3.6	5,55.....
Fe ₂ O ₃	2.0	3,08.....
CaO	42.0	67,7.....
MgO	1.8	2,22.....
SO ₃	0.25	0,38.....
K ₂ O	0.63	0,94.....
Na ₂ O	0.22	0,37.....
TiO ₂	0.17	0,26.....
Mn ₂ O ₃	0.10	0,15.....
P ₂ O ₅	0.06	0,09.....
Cl	0.01	0,01.....

Titration

LS	32,12	33,22
SR
AR

Na₂O-equiv.

C ₃ S	33,4.....
C ₂ S
C ₃ A
C ₄ AF

$$CK \text{ factor} = \frac{100}{100 - L o I}$$

$$CK = 1,54$$

"Hölderbank" Management and Consulting Laboratory - Analytical Laboratory

Loss on Ignition	22.03
SiO₂	5.55
Al₂O₃	3.08
Fe₂O₃	64.71
CaO	2.77
MgO	0.39
SO₃	0.96
K₂O	0.34
Na₂O	0.26
TiO₂	0.15
Mn₂O₃	0.09
P₂O₅	0.02
Cl	
F	
TOTAL	100.35
Freelite	
Insoluble Residue	

LS	92.13
SR	2.55
AR	1.80
C₃S	54.3
C₂S	22.2
C₃A	9.5
C₄AF	9.4
C₃S	54.3
C₂S	22.2
C₃A	9.5
C₄AF	9.4
Titration	-
Clinkerfactor	-
Na₂O-eq.	0.97
Mol. Alk./SO₃	3.16

cem-calc.xls

"Holderbank" Management and Consulting Ltd. Analytical Laboratory

Loss on Ignition	35.1
SiO₂	14.3
Al₂O₃	3.6
Fe₂O₃	2.0
CaO	42.0
MgO	1.8
SO₃	0.25
K₂O	0.62
Na₂O	0.22
TiO₂	0.17
Mn₂O₃	0.10
P₂O₅	0.06
Cl	0.01
F	
TOTAL	100.23
Free lime	
Insoluble Residue	

LS	92.13
SR	2.55
AR	1.80
C₃S	54.3
C₂S	22.2
C₃A	9.5
C₄AF	9.4
C₃S	
C₂S	
C₃A	
C₄AF	
Titration	79.48
Clinkerfactor	1.54
Na₂O-eq.	0.97
Mol. Alk./SO₃	3.20