

数字图像处理

与分析

刘定生 中科院中国遥感卫星地面站 2005年春季学期

■ 课程目标

- 》基本理解数字图像处理与分析的基本理论与研究方法,从"数字化"角度建立图像处理的基本概念
- >初步掌握进行数字图像处理与分析的基本技术
- > 具备一定的实际处理能力与技巧
- ▶从研究角度,提高处理、分析与理解数字图像的能力
- > 奠定开展数字图像处理与分析技术研究的理论 与技术基础

■ 课程特色

- > 多学科交叉: 光学、电子学、数学、摄影测量、 计算机技术等,是一个高度综合的技术学科。
- >系统性不强,知识面宽但不很深
- > 需要出色的分析与综合能力
- > 需要很强的动手能力和程序设计能力

- 课程内容安排
 - > 侧重于数字图像处理的基本原理与方法
 - > 着重讲解数字图象特征与分析方法
 - >适当介绍三维数字图像处理与分析的技术与方法
 - ▶本课程只讲述基本原理和一般方法,不涉及具体领域中的特殊方法,如医学图象处理、遥感图像处理等已经成为一个专门的研究领域,有许多特殊的处理方法。

- 教学大纲安排—两大部分
 - >上半部分—数字图像处理基本原理为主

第一章 图像处理与分析导论

第二章 图像及其数字处理基本概念

第三章 数字图像处理基本运算

第四章 图像处理中的正交变换

第五章 图像增强

第六章 图像压缩编码

- 教学大纲安排—两大部分
 - >下半部分—数字图像分析为主

第七章 图像复原

第八章 图像重建

第九章 数字图像分析基础

第十章 模式识别的理论与方法概述

第十一章 三维图像处理与分析概述

■ 基本教材

> 《数字图像处理学》, 阮秋琦, 电子工业出版社, 2001

■ 基本参考书

- 》《数字图像处理》(第二版),冈萨雷斯等,电子工业 出版社,2003
- 》《图像处理、分析与机器视觉》(第二版),Milan Sonka等,人民邮电出版社,2003
- ▶ 《图像处理与分析》,徐建华,科学出版社,1992
- 》《数字图像处理》, K.R. Castleman, 朱志刚等译, 电子工业出版社, 1998

- ■上课方式
 - > 关键知识讲解与广泛的文献阅读相结合
 - > 书本知识学习与上机实验相结合
 - ▶课后思考题、练习题与课堂互动式专题讨论相结合
- 上机实验方式
 - > 利用通用或教学辅助软件
 - ▶自己动手编制实验小程序

- ■图像处理实验软件
 - ▶通用软件—Photoshop
 - >学习软件—数字图像处理演示软件
- ■学习动手编程
 - ▶Windows环境下,C++
 - >Matlab软件

第一章: 图像处理与分析导论

第一章: 图像处理与分析导论

- 数字图像处理与分析概述
 - > 数字图像处理基本概念
 - > 数字图像处理历史发展
 - > 理论基础与学科关系

- 什么是图像
 - >"图"是物体投射或反射光的分布,"象"是人的视觉系统对图的接受在大脑中形成的印象或反映
 - >"一幅图像是一个东西的另一个表示",是其所表示物体的信息的一个浓缩和高度概括
 - > 是客观和主观的结合
 - ▶图像是对客观存在的物体的一种相似性的生动模仿或描述。是物体的一种不完全、不精确,但在某种意义上是适当的表示。

■图像的分类

- 什么是数字图像
 - >模拟图像 —— I= f(x, y, z, λ, t)
 - ✓三维空间连续
 - ✓时间上连续
 - ✓波谱上连续
 - ✓不可见物理图像
 - ✓想象中的虚拟图像

- 什么是数字图像
 - ▶什么是图像?
 - √5th Century B.C. Chinese and Greeks
 - ❖ In the wall of a darkened room, an inverted image of the outside is projected from the pinhole to the wall opposite the small hole.
 - **✓** Aristotle (384-322 B.C.)
 - - One day standing under a tree, Aristotle understood the optical principle due to the partially eclipsed sun projected on the ground through the gaps between the leaves of the tree.
 - ✓ Leonardo da Vinci (1490)
 - Suggested the use for art students
 - The images are very lifelike.

- 什么是数字图像
 - ▶单幅图像—平面、单色、静止: I=f(x,y)
 - ▶数字图像—单幅图像的数字表示I=f[x,y]

■形成数字图像的基本过程

■ 数字图像处理与分析基本系统

■ 数字图像的表示——二维矩阵

101	89	110	101	98	99	103	123
100	67	98	95	89	95	99	110
101	56	87	89	87	93	95	97
96	65	76	78	85	89	91	92
67	56	67	78	74	83	86	86
56	54	65	76	76	78	82	83
67	34	56	56	73	74	79	79
56	45	54	45	65	68	73	75

- 数字图像的基本要素—像素
 - 图像的像素 0000000000

- 数字图像的基本要素
 - >像素坐标系—对图像分布进行二维空间采样

- 数字图像的基本要素
 - 》像数值—对单个像素灰 度值进行数字化采样
 - 4 bits/pixel
 - 6 bits/pixel
 - 8 bits/pixel
 - 12 bits/pixel
 - 16 bits/pixel

•

~不同灰度图像的比较

- 数字图像的基本要素
 - ▶图像尺寸——一幅数字图像矩阵的大小
 - ✓32X32、64X64、128X128、256X256、512X512、1024X1024、......
 - ✓5280X6940、6000X6000、10000X10000、.....
 - **✓**
 - ~不同尺寸图像的比较

- 数字图像处理与分析定义?
 - > 利用计算机对数字图像进行各种目的的处理
- 数字图像处理方式:
 - 》<u>将一幅图像变为另一幅经过加工的图像</u>,图像到 图像的过程
 - ▶ <u>将一幅图像转化为一种非图像的表示</u>,分析、识别与理解的过程

- 数字图像处理与分析研究的实质
 - →研究如何对一幅连续图像取样、量化以产生包含 全部或所需信息的数字图像
 - > 如何对数字图像做各种变换以方便处理
 - > 如何滤去图像中的无用噪声
 - > 如何压缩图像数据以便存储和传输
 - >如何从图像中提取所需信息,从而形成对图像所 含信息的的理解与识别
 - >如何形成抽象事物的模拟图像,从而帮助人类更 好地认识客观事物

- 数字图像处理与分析研究的内容(一)
 - > 图像变换
 - ✓ 改变图像的空间或频谱分布, 获取或突出感兴趣信息
 - ✓空域变换: 放大、缩小、旋转、.....
 - ✓空域—频域变换:傅立叶变换、Walsh变换、离散余弦变换、小波变换、.....
 - > 图像编码
 - ✓减少描述图像的数据量,节省图像传输、处理时间, 减少存储空间
 - ✓熵编码、预测法编码、变换编码、分形编码.....

- 数字图像处理与分析研究的内容(二)
 - > 图像增强和恢复
 - ✓提高图像质量(去除噪声、提高图像的清晰度)
 - ✓灰度修正、平滑、几何校正、图像锐化、频域增强、 维纳滤波、卡尔曼滤波、.....
 - > 图像分割
 - ✓提取出感兴趣的对象,为进一步的理解和识别做准备
 - √灰度阀值分割、基于纹理的分割、区域生长法......
 - > 图像的理解和识别
 - ✓从图像中提取抽象化的特定信息
 - ✓统计模式分类和句法模式分类

■历史发展

- >二十世纪二十年代: 压缩图像以传输
- ▶五十年代: <u>开始利用计算机处理图像</u>
- ▶六十年代: 阿波罗登月计划实施过程中发挥巨大作用,初步形成数字图像处理与分析学科
- 少七十年代: 医学<u>X射线图像</u>处理、<u>CT图像处</u>理上的成功应用,<u>带动数字图像处理与分析技术的深入发展</u>
- >八十年代: 普及
- ▶九十年代: 多媒体
- ▶二十一世纪:

- 数字图像处理与分析的哲学观点(一)
 - >连续与离散
 - ✓物理图像—时、空与辐射强度均连续的自然物体的表示—— $I=f(x,y,z,\lambda,t)$
 - ✓数字图像—物理图象某一时刻二维空间离散采样点的集合——I=f[x,y]
 - >表示与处理
 - ✓物理图像—可用连续函数进行较好地描述、分析与 处理
 - ✓数字图像—时空与幅度均为离散的数据矩阵,常借助于连续函数的分析结果与处理方法进行离散处理

- 数字图像处理与分析的哲学观点(二)
 - > 结果与效应
 - ✓结果一致—进行连续处理和离散处理的结果相一致
 - ✓显著不同—采样效应
 - > 不同观点
 - ✓以连续的观点看待数字图像处理与分析—危险
 - ✓局限于离散数学与逻辑运算——不明智

基本出发点:用离散技术处理连续世界的图像,处理的结果一般地也要以连续的形式演绎

"数字图像处理"不是指"处理数字图像",而是指"图像的数字处理"

第一章: 图像处理与分析导论

■总结

- > 方法前提
 - ✓能够刻画对连续形式的图像进行离散化后的影响
 - ✓寻求从模拟到数字、再由数字到模拟的转换过程中, 保证我们感兴趣内容不丢失或不明显损失的方法
 - ✓能够预测采样效应,并能采取有效措施消除它们的 影响,或降低到可以容忍的地步
- > 我们所处理的数字图像在本质上等价于它所表示的连续图像
- >本课程中对数字图像处理与分析的定义:
- 对一个物体的数字表示——二维矩阵——施加一系列的操作,以得到所期望的结果

- 数字图像处理过程中的退化
 - >图像处理流程中的对应——每一步中可能产生的误差

- 基础理论与技术沿袭
 - >信息与通讯理论
 - ✓ Shannon"通信中的数学理论"(A Mathematical Theory of Communication)的发表
 - ✓图像信息论属于信息论科学中的一个分支
 - ✓图像处理理论将通信理论中的一维问题推广到二维 空间
 - ✓<u>通信理论研究一维空间的信息,图像理论则研究二</u> 维空间的信息
 - ✓通信中的一维问题大都可以推广到二维,尽管有些地方还不是很贴切,但对于图像处理理论体系的新词句有极大的借鉴意义

- 基础理论与技术沿袭
 - ➤色彩学——色彩理论、色彩构成、色彩应用 ✓认识色彩、色彩体系、色彩混合与原色、 色彩对比、色彩感觉、色彩应用
 - ▶图形学
 - > 独有技术

- 与图形学的关系
 - ▶图像处理——重点研究自然图像的处理
 - ▶图形学——重点研究怎样用数字计算机生成、处理和 显示图形
- 发展特点:交叉、界线模糊、相互渗透

第一章: 图像处理与分析导论

- 数字图像处理与分析特点
 - ▶图像中信息量大: "一幅图像胜过1000个单词"
 - > 图像处理数据量大

512×512=256 KB

 $1024 \times 1024 = 1 \text{ MB}$

•

- 一景TM图像≈260 MB
- 一幅QuickBird图像≈700 MB~1.4 GB
- > 处理过程重复性运算量大
- > 处理技术综合性强

数字图像处理与分析概述

- 数字图像处理与分析发展趋势
 - > 高速度、高分辨率、立体化、多媒体化、智能化和标准化
 - > 三维与多维图像的成像与处理
 - > 与图形学研究、人工智能研究等相结合,形成新的研究领域和开拓新的应用
 - ✓图像处理:图像进→图像出
 - ✓图像分析:图像进→测量结果出
 - ✓图像理解:图像进→高级描述出
 - ✓虚拟景观、智能机器人、......
 - > 软件固化、高速处理芯片化
 - > 新理论与新算法研究

数字图像处理与分析应用概述

- ■遥感
- 医疗诊断
- 工业检测与测量
- 视觉监视、保安
- 宇宙探险、军事国防
- 通讯广播
- 影视业、娱乐、公众服务
- • • •

数字图像处理与分析应用概述

数字图像处理与分析 在遥感领域的应用 概述

■ 历史发展

- ▶ 1839—第一架照相机诞生
- ▶ 1858—从气球上首次获得80米空中的照片
- ▶ 1903—第一架飞机诞生
- ▶ 1906—利用风筝首次获得2000英尺高空大面积照片
- ▶ 19世纪末最新奇的遥感平台—<u>欧洲著名的鸽子飞行队</u>
- ▶ 1910~45—<u>第一、二次世界大战中,利用航空照片解</u> <u>译进行空中侦察</u>
- ▶ 1957—前苏联第一颗人造卫星上天
- ▶ 1960—第一颗气象卫星上天
- ▶ 1972—<u>美国 Landsat-1 上天</u>

- 遥感系统组 成的三要素
 - ▶目标物体
 - 》从目标物体 传过来的光 线
 - ▶感受光线的 传感器

■ 光——可看作为自由空间中的电磁波

■波——可由其波长或频率来描述

■遥感图像的波谱范围

紫外 (0.3-0.4mm)

可见光(0.4-0.7mm)

〔近红外(0.7-1.3mm) 反射红外(0.7-3mm) 短波红外(1.3-3mm)

红外 (0.7-14mm)

中红外(3-6mm)

远红外 (6-15mm) 热红外 (8-14mm)

微波 (0.1-100cm)

第一章:图像处理与分析导论

■ 光学遥感数据获取

第一章: 图像处理与分析导论

- 大气层对遥感数据获取 的影响
 - >分为4层
 - ✓对流层—troposphere
 - ✓平流层—stratosphere
 - ✓中间层—mesosphere
 - ✓热电离层—thermosphere
 - > 对数据获取的影响
 - ✓大气吸收
 - ✓大气散射
 - ✓大气噪声

■遥感过程

第一章: 图像处理与分析导论

Roll Pitch 遥感图 Image acquired 像获 取过程 Over-sampling The scale of the images will be changed as the followin 中 的 失真

Smaller

scale

Yaw

- 遥感图像的基本描述
 - >频谱分辨率
 - ✓ 遥感器在接收目标辐射的光谱时,实际能分辨的最小波长间隔。
 - >频谱采样率
 - ✓ 遥感器在接收目标辐射的光谱时,对光谱进行采样时的最小波长间隔。

- 遥感图像的基本描述
 - ▶辐射分辨率
 - ✓传感器在接收波谱信号时,能分辨的最小 辐射度差。
 - >辐射采样率
 - ✓对传感器接收信号进行量化时,每个像素 所采用的比特数。

8-bit quantization (256 levels)

6-bit quantization (64 levels)

4-bit quantization (16 levels)

3-bit quantization (8 levels)

2-bit quantization (4 levels)

1-bit quantization (2 levels)

第一章: 图像处理与分析导论

- 遥感图像处理基本内容
 - > 遥感图像的辐射和几何纠正
 - ✓ 遥感图像的辐射纠正,遥感图像的几何变形分析,几何纠正的基本技术方法。
 - > 遥感信息增强处理
 - ✓彩色合成,信息融合,主成分分析,遥感图像变换,遥感图像专题特征提取。
 - > 遥感信息提取及图像分类
 - ✓ 遥感图像目视判读,监督分类,非监督分类,相关分类模型,分类结果评估。

第一章结束

Dsliu@ne.rsgs.ac.cn 62652103