Algèbre 2

Algèbre linéaire

Question 1/13

Si E est un espace vectoriel et $F \subset E$ Caractérisation(s) des sous-espaces vectoriels

Réponse 1/13

$$0 \in F$$

$$\forall (x, y, \lambda) \in F^2 \times \mathbb{K}, \lambda x + y \in F$$

Question 2/13

$$Vect(X) + Vect(Y)$$

Réponse 2/13

$$Vect(X \cup Y)$$

Question 3/13

Famille génératrice de E

Réponse 3/13

$$\forall x \in E \ \exists (\lambda_i)_{i \in I}, \ x = \sum_{i \in I} (\lambda_i x_i)$$
$$\operatorname{Vect}((x_i)_{i \in I}) = E$$

Question 4/13

$$\varphi : E \times F \to G$$
 est bilinéaire

Réponse 4/13

$$\forall (x, x', y, y', \lambda) \in E^2 \times F^2 \times \mathbb{K}$$
$$\varphi(\lambda x + x', y) = \lambda \varphi(x) + \varphi(y)$$
$$\varphi(x, \lambda y + y') = \lambda \varphi(x, y) + \varphi(x, y')$$

Question 5/13

Structure de $\mathcal{L}(E,F)$

Réponse 5/13

 $\mathbb{K}\text{-}\mathrm{ev}$

Question 6/13

Si E est un \mathbb{K} -ev Un sous-ensemble F de E est un sous-espace vectoriel de E

Réponse 6/13

F est stable par les lois + et \cdot et les lois induites définissent sur F une structure d'espace-vectoriel

Question 7/13

Si
$$E$$
 est un \mathbb{K} -ev et $X \subset E$

$$\operatorname{Vect}(X)$$

Réponse 7/13

Plus petit sous-espace vectoriel de E contenant X

Question 8/13

Soit E et F deux \mathbb{K} -ev $f:E\to F$ est une application linéaire

Réponse 8/13

$$\forall (\lambda, x) \in \mathbb{K} \times E, \ f(\lambda x) = \lambda f(x)$$

$$\forall (x, y) \in E^2, \ f(x + y) = f(x) + f(y)$$

Question 9/13

Base de E

Réponse 9/13

Famille libre maximale de EFamille génératrice minimale de E

Question 10/13

Famille libre de E

Réponse 10/13

$$\forall (\lambda_i)_{i \in I}, \ \sum_{i \in I} (\lambda_i x_i) = 0 \Rightarrow \forall i \in I, \ \lambda_i = 0$$

$$\forall x \in E \; \exists ! (\lambda_i)_{i \in I}, \; x = \sum (\lambda_i x_i)$$

Question 11/13

Un ensemble E est un espace vectoriel sur \mathbb{K} E est un \mathbb{K} -ev

Réponse 11/13

(E,+) est un groupe abélien E est muni d'une loi de composition externe · avec $\forall (\lambda,\mu,x,y) \in \mathbb{K}^2 \times E^2$

avec
$$\forall (\lambda, \mu, x, y) \in \mathbb{R}^2 \times E^2$$

 $(\lambda \mu) x = \lambda(\mu x)$ (associativité externe ou pseudo-associativité)
 $1_{\mathbb{K}} x = x$ (compatibilité du neutre de (\mathbb{K}, \times)

 $1_{\mathbb{K}}x = x$ (compatibilité du neutre de (\mathbb{K}, \times)) $\lambda(x+y) = \lambda x + \lambda y$ (distributivité de $\cdot \text{sur } +_{\mathbb{K}}$) $(\lambda + \mu)x = \lambda x + \mu x$ (distributivité de $\cdot \text{sur } +_{\mathbb{K}}$)

Question 12/13

Somme directe

Réponse 12/13

$$E \oplus F$$
 est directe si et seulement si $E \cap F = \{0\}$

Question 13/13

Soit E et F deux \mathbb{K} -ev Caractérisation des applications linéaires

Réponse 13/13

$$\forall (\lambda, x, y) \in \mathbb{K} \times E^2, \ f(\lambda x + y) = \lambda f(x) + f(y)$$