High Performance
Computing for Weather
and Climate (HPC4WC)

Content: Wrapup

Lecturers: Oliver Fuhrer, Christophe Müller

Block course 701-1270-00L

Summer 2025

Pace: GT4Py based FV3

GFDL Finite-Volume Cubed-Sphere Dynamical Core (FV3)

Finite volume transport on a cubed sphere grid

- Integrated into several models, including
 - Operational weather models (Global Forecast System)
 - Next Generation Global Prediction
 System

The Pace Model

Full program optimization

DSL coverage of all main numerical computation

Custom code for halo updates

New DSL concepts for FV3specific motifs

Separation of Concerns

Productive Performance Engineering for Weather and Climate Modeling with Python

Tal Ben-Nun*, Linus Groner¹, Florian Deconinck¹, Tobias Wicky¹, Eddie Davis¹, Johann Dahm¹, Oliver D. Elbert¹, Rhea George¹, Jeremy McGibbon¹, Lukas Trümper², Elynn Wu¹, Oliver Fuhrer², Thomas Schulbes³, Torsten Hoeffer⁴ * Department of Computer Science, ETH Zurich, Switzerland

† Swiss National Supercomputing Centre, Switzerland
† Allen Institute for Artificial Intelligence, WA, USA
{talbn, lakashans.truemper, htor)@inf.etb..ch, {linus.groner, schulthess}@cscs.ch,
{Boriand, tobiasw, eddied, johannd, olivere, rheag, jeremym, clynnw, oliver[]@allenai.org

Advance—Earth years models are developed with a dispension complete in tear between, often containing specialised cole predicated on precision developed to the production precessor dispersion. The coupless stems from the production of the contract production. The coupless stems from the production of the contract pro

Lines of Code vs. FORTRAN: 0.42x Speedup: 3.92x (P100), 8.48x (A100)

Fig. 1: System overview. while maintaining the algorithms. To this end, we leverage a domain-specific language (DSL) embedded in Python, called

improvement

Leveraging the Python ecosystem

The rich python ecosystem is valuable – new options for development

Credit: Jake VanderPlas, "The Unexpected Effectiveness of Python in Science", PyCon 2017

Example: Integration of ML emulator

```
class Physics:
. . .
prepare_microphysics(physics_state)
microph_state = physics_state.microphysics
                                                         GT4Py stencil-based
microphysics(microph_state)
emulation_model = tf.keras.models.load_model("model.tf")
                                                           ML-based microphysics
emulation_dict = prepare_emulation_data(physics_state.microphysics)
predictions = emulation_model(emulation_dict)
model_outputs = unpack_predictions(predictions, emulation_model.output_names, ...)
```

EXCLAIM Project

Six year (2021-27) open ETH project aiming to develop an ICON infrastructure capable of running km-scale climate simulations

EXCLAIM: Rewriting ICON in GT4Py

High-Level Programming

Proof of concept: Aquaplanet with GT4Py

Visualization of low level clouds

ICON OpenACC R2B6 (40 km)

ICON GT4Py R2B9 (5 km)

Performance & Portability

Supercomputer Architecture

(Numbers are for Alps and vary from system to system)

Day 3

- Multi-node performance
- Distributed memory parallelism
- MPI

Day 2

- Single node performance
- Shared memory parallelism
- OpenMP

Day 1

- Single core performance
- Caches

Cabinet

Blade

56/cabinet

Distributed Memory

Day 4

- Hybrid node architectures
- Graphics processing units (GPUs)
- CuPy

Weather and Climate Models

ICON, COSMO, WRF, LFRic, SHIELD, GEOS, ... all are

- large, Fortran-dominated code-bases
- stencil-dominated and memory bandwidth bound
- optimizing cache efficiency using blocking, tiling, loop fusion, ...
- using MPI to decompose the computational domain along xy
- using OpenMP to parallelize using threads
- using OpenACC compiler directives to leverage GPUs
- run on a range of different supercomputing architectures
- exploring or already using domain-specific languages

You can apply everything you've learnt with stencil2d!

Goals of Course

- Understand high performance computing concepts relevant for weather and climate simulations
- Able to work with weather and climate simulation codes that run on large supercomputers

2016-08-11 18:00Z 258 Forecast Hours FV3 3km

Visualization Xi Chen@FV3 team