

Search Informed Algorithms

Introduction to Artificial Intelligence

Chandra Gummaluru University of Toronto

Version W22.1

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Informed Search: Example

- An ideal search algorithm would explore "more promising" paths first.
- Example: Informed Search in a Superstore
 - You enter a super-store and want a T-shirt. Where would you look first?

You would probably check the "Apparel" section even though it is farther away.

Informed Algorithms and Heuristics

- We want to develop a metric to guide the order in which paths are explored.
- We will represent this metric as a function, f, of the path; paths with smaller f-values should be explored earlier.
- So far, we have been defining the f-value of a path in terms of its length/cost.
- However, we now also want to use info about the states traversed by the path. In particular, we want to measure how "good" the final state in the path is.
- Such algorithms are said to be **informed**.

Heuristics (continued)

- We define a function, h, called a **heuristic**, so that h(s) ideally estimates the minimum cost of getting from a state, s, to some goal state.
- We extend h to operate on paths by defining $h(p) = h(s_n)$ where $p = \langle s_0, \dots, s_n \rangle$.
- In other words, the *h*-value of a path is the *h*-value of its terminal state.
- We can now use h as part of f. Two common choices include:
 - ① f(p) = h(p), which is called **greedy best-first search** (GBFS)
 - ② f(p) = c(p) + h(p), which is called **A-star** (A*)

Informed Search: Example

- Example: Informed Search in a Superstore
 - You want to minimize the total estimated cost, i.e., f(p) = c(p) + h(p).

• Although $c(\langle Doors, Electronics \rangle)$, $c(\langle Doors, Produce \rangle) < c(\langle Doors, Apparel \rangle)$, we check "Apparel" first since we feel $h(Apparel) \ll h(Electronics)$, h(Produce).

Toy Search Graph for Informed Search

• To compare the effects of different *f*-functions, we will run the corresponding algorithms on the following search graph (starting at *A* and looking for *E*):

We will use path-checking and break ties alphabetically.

Tree of Possible Paths: Example

• Recall that the generalized search algorithm explores a tree of possible paths.

- We wish to determine the properties of the various search algorithm in terms of b, d, ε , m and c^* , where:
 - b, m, and ε , be the branching factor, depth, and minimum edge weight of the tree
 - d and c^* denote the length and cost of the optimal solution

Greedy Best-First Search: Example

• In greedy best-first search (GBFS), we use f(p) = h(p). In other words, a partial path is more promising if we estimate that the remaining cost to the goal is lower.

			(8)
Itr.	D	0	B_{1} (2) (0)
1	_	A 12	1 (2) (0)
2	Α	AB 8, AC 2, AD 2	A C E
		AD 2, AB 8, ACB 8, ACD 2, ACE 0	(12) 6 3
4	ACE	AD 2, AB 8, ACB 8, ACD 2	2
			(D)
			(2)

 Notice that this particular heuristic yielded a sub-optimal solution, but it did reduce the number iterations needed to find a solution (relative to UCS).

Properties of GBFS

- **Complete** for $b, d < \infty$ if path-checking is used.
 - There are at most $1 + b + \dots b^d$ paths in the tree.
 - The search will never explore any path more than once.
 - The search must explore all paths reachable from the root.
- Optimal never¹.
 - f does not incorporate c.
- Time Complexity: $O(b^m)$.
 - In the worst-case, we will need to explore every path.
- Space Complexity: O(bm).
 - In the worst-case, we will need to explore every path.

¹except by chance.

A-Star Search: Example

• In A-Star (A*), we use f(p) = c(p) + h(p). In other words, a partial path is more promising if we estimate its total cost to the goal to be lower.

			(8)
1+		0	(B)
ltr.	р	0	2 (2) (0)
1	_	A 12	4 2 1 3
2	Α	AB 10, AC 6, AD 8	A C E
3	AC	<i>AB</i> 10, <i>AD</i> 8, <i>ACB</i> 13, <i>ACD</i> 9, <i>ACE</i> 5	(12) $\stackrel{6}{\smile}$ $\stackrel{1}{\smile}$ $\stackrel{3}{\smile}$
4	ACE	AD 8, AB 10, ACB 13, ACD 9	$\frac{1}{2}$
			(D)
			(2)

 Notice that this particular heuristic yielded a sub-optimal solution, but it did reduce the number iterations needed to find a solution (relative to UCS).

Properties of Heuristics

- The optimal path from A to E is $\langle A, B, C, E \rangle$.
- However, both GBFS and A* found the same sub-optimal path, $\langle A, C, E \rangle$.
- This is expected in GBFS since it does not make use of the costs.
- Since A* does make use of the costs, ideally the path it finds would be optimal.
- The problem was that the heuristic we used over-estimated the cost to get from B to E, making the partial path $\langle A, B \rangle$ seem far less promising.

Admissible and Consistent Heuristics

- If $h^*(s)$ is the true cost from s to the nearest goal, then ideally, our heuristic would be such that $h(s) \le h^*(s)$ for all s, i.e., h never over-estimates the true cost.
- Such a heuristic is said to be admissible.
- If a heuristic does not over-estimate the cost of individual actions, i.e.,

$$h(s) - h(a(s)) \le c(a), \forall s, a \in A(s),$$

we say that the heuristic is **consistent** or **monotone**.

Admissibility and Consistency

• Any consistent heuristic, h, where h(s) = 0 for every $s \in G$, is also admissible.

• Proof:

- Pick an arbitrary initial state, s₀.
- If no goal-terminating path from s_0 exists, then $h^*(s_0)$ is infinite and the claim trivially holds.
- Otherwise, let $\langle s_0, \ldots, s_n \rangle$ be resulting state sequence of the optimal goal-terminating path, $\langle a_{0,1}, \ldots, a_{n-1,n} \rangle$ from s_0 .
- Since $s_n \in \mathcal{G}$, it follows that $h(s_n) = 0 = h^*(s_n)$. Thus, $h(s_n) \leq h^*(s_n)$.
- Assume $h(s_{i+1}) \leq h^*(s_{i+1})$ for some i. Then, $h(s_i) \leq h^*(s_i)$:

$$h(s_i) \leq c(a_{i,i+1}) + h(s_{i+1}) \leq c(a_{i,i+1}) + h^*(s_{i+1}) = h^*(s_i).$$

• Since s_0 was arbitrary, it follows that $h(s) \leq h^*(s)$ for all s, i.e., h is admissible.

- It turns out that if *h* is consistent, then A-star satisfies the condition needed to use global path checking.
- We prove this in three parts, all of which rely on h being consistent:
 - ① If $f \equiv c + h$, then f must be non-decreasing along any path.
 - ② The f-values of paths explored in A* are non-decreasing.
 - 3 The first time A* finds a path to a state, it has found the optimal path.

- ① If $f \equiv c + h$, then the f-value must be non-decreasing along any path.
 - Let $(s_0, \langle a_{0,1}, \ldots, a_{n-1,n} \rangle)$ be a path, and $\langle a_0, \ldots, s_n \rangle$.
 - By the definition of f in A*,

$$f(s_i) = c(a_{0,1}, \ldots, a_{i-1,i}) + h(s_i).$$

- If h is consistent, then by definition, $h(s_i) \le c(a_{i,i+1}) + h(s_{i+1})$.
- It follows that $f(s_i) \leq c(a_{0,1},\ldots,a_{i,i+1}) + h(s_{i+1}) = f(s_{i+1})$

- ② The f-values of paths explored in A* are non-decreasing.
 - If p' is explored after p, then either:
 - p' was already on the open when p was explored
 - p' is an extension of p
 - p' is an extension of a path, p'' such that $f(p'') \ge f(p)$.
 - In any case $f(p') \geq f(p)$.

- The first time A* finds a path to a state, it has found the optimal path.
 - Let $p = \langle s_0, s_1, \dots, s_{n-1}, s_n \rangle$ and $p' = \langle s_0, s'_1, \dots, s'_{n-1}, s_n \rangle$ be two state sequences to the goal state, s_n found by A*.
 - If p was found before p', then by (2), $f(p') \ge f(p)$.
 - Using the definition of f in A^* , we have

$$c(p')+h(p')\geq c(p)+h(p).$$

• Since h is consistent (so admissible), h(p') = h(p) = 0, and so $c(p') \ge c(p)$.

A-Star Search: Example 2

(0)

• Let us reconsider A* using a consistent heuristic.

			(2)
ltr.	р	O	$ \begin{array}{c} B \\ 1 & (1) \end{array} $
1	_	<i>A</i> 3	
2	Α	AB 4, AC 5, AD 7	A C C C
3	AB	AC 5, AD 7, ABC 4	
4	ABC	AC 5, AD 7, ABCE 5, ABCD 7	(3) $3/2$
5	ABCE	AC 5, AD 7, ABCD 7	\sim
			D
			(1)

• Notice that this particular heuristic yielded the optimal solution.

Properties of A*

- Complete for $b, d < \infty$, $\varepsilon > 0$.
 - There are at most $1 + b + \dots b^d$ paths in the tree.
 - The search will never explore any path more than once.
 - The search must explore all paths reachable from the root.
- **Optimal** if $h(\cdot)$ is admissible.
 - Let s_n be a goal state and $p = \langle s_0, \dots, s_n \rangle$ be the path found by A*.
 - Recall that for A*, $f(\cdot) = c(\cdot) + h(\cdot)$.
 - If h is admissible, then $h(s_n) = h(s_n) = 0$, and so f(p) = c(p).
 - If p is sub-optimal, i.e., $c(p) \ge h^*(s_0)$, then $f(p) \ge h^*(s_0)$.
 - Let $p^* = \langle s_0^*, \dots s_m^* \rangle$ where $s_0^* = s_0$ and $s_m^* = s_n$ be the optimal path to s_n .
 - A subpath of p^* , say $p_{0:i}^*$ must still be on the frontier.
 - We compute $f(p_{0:i}^*) = c(p_{0:i}^*) + h(s_i^*) \le c(p_{0:i}^*) + h^*(s_i^*) = h^*(s_0) \le f(p)$.
 - However, this means that we should have explored $p_{0:i}^*$ before p.

Properties of A*

- Time Complexity: $O(b^{c^*/\varepsilon})$.
 - In the worst-case, the time-complexity of A* is the same as UCS.
- Space Complexity: $O(b^{c^*/\varepsilon})$.
 - In the worst-case, the space-complexity of A* is the same as UCS.

Iterative Deepening A-Star Search

- Like IDDFS, we can implement an iterative version of A*.
- We start with an f-limit of $f_{max} = h(s_0)$, and repeatedly perform A*, increasing the f-limit each time, until a solution is found
- In each iteration of IDA*, we increase f_{max} to the minimum f-value of all pruned paths in the previous iteration.
- This is called iterative-deepening A-star search (IDA*).

Iterative-Deepening A-Star Search: Example

• IDA* is like performing A* multiple times on a sub-tree of possible paths.

Iterative-Deepening A-Star Search: Example

• IDA* is like performing A* multiple times on a sub-tree of possible paths.

ltr.	p	O
1	_	Α
2	Α	AB
3	AB	ABC
4	ABC	

Iterative-Deepening A-Star Search: Example

• IDA* is like performing A* multiple times on a sub-tree of possible paths.

ltr.	p	0
1	_	
2	Α	AB, AC
3	AB	AC, ABC
4	ABC	AC
5	AC	

Summary of Search Properties

• Below, we summarize the properties of GBFS, A*, and IDA*:

Property	GBFS	A*
Complete	$b,d<\infty$, PC	$b<\infty, \varepsilon>0$
Optimal	never ²	h admissible
Time Complexity	$O(b^m)$	$O(b^{c^*/arepsilon})$
Space Complexity	O(bm)	$O(b^{c^*/arepsilon})$

²except by chance.

Weighted A* is a generalization of the A* algorithm where we let

$$f(\cdot) = wc(\cdot) + (1 - w)h(\cdot),$$

for some $0 \le w \le 1$.

- This way, we can interpret UCS as weighted A* with w = 1, GBFS as weighted A* with w = 0, and A* as weighted A* with w = 0.5.
- The weight, w, can be tuned to balance the trade-off between the time required to find a solution versus the quality of the solution found; increasing w results in a better solution, but smaller w results in a quicker solution.

Designing Heuristics

- Designing heuristics is an art.
- There are many techniques used in practice. We shall consider two of them:
 - using a relaxation of the problem
 - using pattern databases

Designing Heuristics via Problem Relaxation

• One way to design a heuristic for a problem is to find the solution of a relaxed problem and use its' cost as a heuristic for the original problem.

Example: Slider Puzzle Relaxation (I₁ distances)

- In the slider puzzle, tiles could only be moved into an unoccupied, horizontally/vertically adjacent space.
- Suppose we can move tiles to any horizontally/vertically adjacent space (including occupied ones).
- In this case, the sum of the l₁ distances between each tile's correct position and its current position gives the number of moves required.
- For the example on the right, this value is 3 + 2 + 0 + 1 + 1 + 2 + 0 + 1 = 10.

6	3
	1
5	8

 s_0

1	2	3	
4	5	6	s
7	8		

Designing Heuristics via Problem Relaxation

Example: Slider Puzzle Relaxation (misplaced tiles)

- In the slider puzzle, tiles could only be moved into an unoccupied, horizontally/vertically adjacent space.
- Suppose we can move tiles to any adjacent space (including diagonally adjacent or occupied ones).
- In this case, the number of misplaced tiles gives the number of moves required.
- For the example on the right, this value is 1 + 1 + 0 + 1 + 1 + 1 + 1 + 0 + 1 = 6.

4	6	3
2		1
7	5	8

 s_0

1	2	3	
4	5	6	
7	8		

 $s \in \mathcal{G}$

Designing Heuristics via Pattern Databases

 Another way to design a heuristic for a problem is to break it up into sub-problem such that solving the original problem is equivalent to solving each of the sub-problems.

• Example: Slider Puzzle Pattern Database

• It turns out that the Slider puzzle can be solved by first moving the '1' tile to the top-left position and then never moving it again.

For this particular example, it takes at least 11 moves to get from s_0 to s_i .

Designing Heuristics via Pattern Databases

- Suppose the costs are reversible, i.e., the cost to get from s_i to s_j is the same as the cost to get from s_i to s_j .
- For each s, we can search backwards from the solution(s) of the sub-problem until we find s. The cost of the resulting path is the cost of solving the sub-problem when the initial state is s.
- We store these values in a table. We can then compute a heuristic for the original problem using this table.

Designing Heuristics via Pattern Databases (continued)

Example: Slider Puzzle Pattern Database

• Suppose we had a function, $h_{0,i}(s)$, which gives the cost of getting from any state, s, to one of the form of s_i , and h_i is a heuristic for the sub-problem of finding g from s_i .

• We can then define $h(p) = h_{0:i}(p) + h_i(p)$ as a heuristic for the original problem.

Dominant Heuristics

- In general, we can create many admissible heuristics for a given problem.
- However, some heuristics are better than others, in the sense that they will allow us to explore less paths.
- Given two admissible heuristics, h_1 , and h_2 , if $h_1(s) \ge h_2(s)$ for all s, then we say that h_1 weakly dominates h_2 .
- If $h_1(s) > h_2(s)$ for some s, then we say that h_1 strongly dominates h_2 .
- A strongly dominant heuristic is guaranteed to explore fewer paths.
- Clearly, if h_1 and h_2 are admissible heuristics, then $h = \max\{h_1, h_2\}$ is also admissible and weakly dominates h_1 and h_2 .