# Second-order solutions in the sequence space

Adrien Auclert

NBER heterogeneous-agent workshop, 2025

\* Het. agent models with aggregate risk are difficult to solve

- \* Het. agent models with aggregate risk are difficult to solve
  - \* Moll critique: "nonsensical problem"

- \* Het. agent models with aggregate risk are difficult to solve
  - \* Moll critique: "nonsensical problem"
- \* Common work around: solve under perfect foresight

- \* Het. agent models with aggregate risk are difficult to solve
  - \* Moll critique: "nonsensical problem"
- \* Common work around: solve under perfect foresight
- \* No loss of generality to first order, but surely to higher order?

- \* Het. agent models with aggregate risk are difficult to solve
  - \* Moll critique: "nonsensical problem"
- \* Common work around: solve under perfect foresight
- \* No loss of generality to first order, but surely to higher order?
- \* We argue: actually no

- \* Het. agent models with aggregate risk are difficult to solve
  - \* Moll critique: "nonsensical problem"
- \* Common work around: solve under perfect foresight
- \* No loss of generality to first order, but surely to higher order?
- \* We argue: actually no
  - \* Perfect foresight is gateway to full aggregate risk solution

- \* Het. agent models with aggregate risk are difficult to solve
  - \* Moll critique: "nonsensical problem"
- \* Common work around: solve under perfect foresight
- \* No loss of generality to first order, but surely to higher order?
- \* We argue: actually no
  - \* Perfect foresight is gateway to full aggregate risk solution
  - \* Unless shocks are huge, nonlinearities tend to be modest

#### Plan

#### Plan

- 1. Aggregate risk solution in the sequence space
- 2. First and second order perturbations
- 3. Implementation in canonical HANK model

## Aggregate risk solution in sequence space

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

$$X_t \left( \left\{ Z_s \right\}_{s=0}^{\infty}, D_{ss} \right), \quad t \ge 0$$
 (1)

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

$$X_t \left( \left\{ Z_s \right\}_{s=0}^{\infty}, D_{ss} \right), \quad t \ge 0$$
 (1)
Steady-state distribution of the model

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

$$X_t \left( \left\{ Z_s \right\}_{s=0}^{\infty}, D_{ss} \right), \quad t \ge 0$$
 (1)
Steady-state distribution of the model

\* Now suppose that  $Z_s$  is a stochastic process described by the MA

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

$$X_t \left( \left\{ Z_s \right\}_{s=0}^{\infty}, D_{ss} \right), \quad t \ge 0$$
 (1)
Steady-state distribution of the model

\* Now suppose that  $Z_s$  is a stochastic process described by the MA

$$Z_t = Z + \sum_{s=0}^{\infty} z_s \epsilon_{t-s} = Z + z_0 \epsilon_t + z_1 \epsilon_{t-1} + \dots$$
  $\epsilon_t \sim N(0, \sigma^2)$ 

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

$$X_t \left( \left\{ Z_s \right\}_{s=0}^{\infty}, D_{ss} \right), \quad t \ge 0$$
 (1)

Steady-state distribution of the model

\* Now suppose that  $Z_s$  is a stochastic process described by the MA

$$Z_t = Z + \sum_{s=0}^{\infty} z_s \epsilon_{t-s} = Z + z_0 \epsilon_t + z_1 \epsilon_{t-1} + \dots$$
  $\epsilon_t \sim N(0, \sigma^2)$ 

\* We want to find the stochastic solution, which is a nonlinear MA

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

$$X_t \left( \left\{ Z_s \right\}_{s=0}^{\infty}, D_{ss} \right), \quad t \ge 0$$
 (1)
Steady-state distribution of the model

\* Now suppose that  $Z_s$  is a stochastic process described by the MA

$$Z_t = Z + \sum_{s=0}^{\infty} z_s e_{t-s} = Z + z_0 e_t + z_1 e_{t-1} + \dots$$
  $e_t \sim N(0, \sigma^2)$ 

\* We want to find the stochastic solution, which is a nonlinear MA

$$X_t = \mathcal{X}\left(\epsilon_t, \epsilon_{t-1}, \ldots\right) \tag{2}$$

\* Consider a HA model w. perfect-foresight solution  $X_t$  given shocks  $Z_t$ 

$$X_t \left( \left\{ Z_s \right\}_{s=0}^{\infty}, D_{ss} \right), \quad t \ge 0$$
 (1)
Steady-state distribution of the model

\* Now suppose that  $Z_s$  is a stochastic process described by the MA

$$Z_t = Z + \sum_{s=0}^{\infty} z_s e_{t-s} = Z + z_0 e_t + z_1 e_{t-1} + \dots$$
  $e_t \sim N(0, \sigma^2)$ 

\* We want to find the stochastic solution, which is a nonlinear MA

$$X_t = \mathcal{X}\left(\epsilon_t, \epsilon_{t-1}, \ldots\right) \tag{2}$$

\* **Q**: How are (1) and (2) related?

\* Given (2), let's define the (generalized) impulse response of  $X_t$  given  $\epsilon_t$ 

\* Given (2), let's define the (generalized) impulse response of  $X_t$  given  $\epsilon_t$ 

$$IRF_{t}^{X}\left(\nu,\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right) \equiv \mathbb{E}\left[X_{t} | \varepsilon_{0} = \nu,\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right] - \mathbb{E}\left[X_{t},\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right] \quad t \geq 0$$

\* Given (2), let's define the (generalized) impulse response of  $X_t$  given  $\epsilon_t$ 

$$IRF_{t}^{X}\left(\nu,\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) \equiv \mathbb{E}\left[X_{t} \mid \epsilon_{0}=\nu,\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right] - \mathbb{E}\left[X_{t},\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right] \quad t \geq 0$$

\* Given (2), let's define the (generalized) impulse response of  $X_t$  given  $\epsilon_t$ 

$$IRF_{t}^{X}\left(\nu,\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) \equiv \mathbb{E}\left[X_{t} \mid \epsilon_{0}=\nu,\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right] - \mathbb{E}\left[X_{t},\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right] \quad t \geq 0$$

expected time path of X following innovation of size  $\nu$  at date 0

\* In principle, this impulse response:

\* Given (2), let's define the (generalized) impulse response of  $X_t$  given  $\epsilon_t$ 

$$IRF_{t}^{X}\left(\nu,\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) \equiv \mathbb{E}\left[X_{t} \mid \epsilon_{0}=\nu,\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right] - \mathbb{E}\left[X_{t},\left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right] \quad t \geq 0$$

- \* In principle, this impulse response:
  - 1. is nonlinear in  $\nu$  ("nonlinearity")

\* Given (2), let's define the (generalized) impulse response of  $X_t$  given  $\epsilon_t$ 

$$IRF_{t}^{X}\left(\nu,\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right) \equiv \mathbb{E}\left[X_{t} \mid \varepsilon_{0}=\nu,\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right] - \mathbb{E}\left[X_{t},\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right] \quad t \geq 0$$

- \* In principle, this impulse response:
  - 1. is nonlinear in  $\nu$  ("nonlinearity")
  - 2. depends on past innovations  $\{\epsilon_{-k}\}_{k=1}^{\infty}$  ("state-dependence")

\* Given (2), let's define the (generalized) impulse response of  $X_t$  given  $\epsilon_t$ 

$$IRF_{t}^{X}\left(\nu,\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right) \equiv \mathbb{E}\left[X_{t} \mid \varepsilon_{0}=\nu,\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right] - \mathbb{E}\left[X_{t},\left\{\varepsilon_{-k}\right\}_{k=1}^{\infty}\right] \quad t \geq 0$$

- \* In principle, this impulse response:
  - 1. is nonlinear in  $\nu$  ("nonlinearity")
  - 2. depends on past innovations  $\{\epsilon_{-k}\}_{k=1}^{\infty}$  ("state-dependence")
- \* What is the generalized IRF for a linear MA?

$$\mathbb{E}_0\left[Z_t\right] \equiv \mathbb{E}\left[Z_t \mid \left\{\epsilon_{-k}\right\}_{k=0}^{\infty}\right] = Z + z_t \epsilon_0 + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

$$\mathbb{E}_{0} \left[ Z_{t} \right] \equiv \mathbb{E} \left[ Z_{t} | \left\{ \epsilon_{-k} \right\}_{k=0}^{\infty} \right] = Z + z_{t} \epsilon_{0} + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

$$\mathbb{E}_{-1} \left[ Z_{t} \right] \equiv \mathbb{E} \left[ Z_{t} | \left\{ \epsilon_{-k} \right\}_{k=1}^{\infty} \right] = Z + 0 + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

$$\mathbb{E}_{0} [Z_{t}] \equiv \mathbb{E} [Z_{t} | \{ \epsilon_{-k} \}_{k=0}^{\infty}] = Z + z_{t} \epsilon_{0} + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

$$\mathbb{E}_{-1} [Z_{t}] \equiv \mathbb{E} [Z_{t} | \{ \epsilon_{-k} \}_{k=1}^{\infty}] = Z + 0 + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

\* For a linear MA such as our shock  $Z_t$ , we have:

$$\mathbb{E}_{0} \left[ Z_{t} \right] \equiv \mathbb{E} \left[ Z_{t} | \left\{ \epsilon_{-k} \right\}_{k=0}^{\infty} \right] = Z + z_{t} \epsilon_{0} + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

$$\mathbb{E}_{-1} \left[ Z_{t} \right] \equiv \mathbb{E} \left[ Z_{t} | \left\{ \epsilon_{-k} \right\}_{k=1}^{\infty} \right] = Z + 0 + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

SO

$$IRF_t^Z\left(\nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = z_t \cdot \nu$$

\* For a linear MA such as our shock  $Z_t$ , we have:

$$\mathbb{E}_{0} \left[ Z_{t} \right] \equiv \mathbb{E} \left[ Z_{t} | \left\{ \epsilon_{-k} \right\}_{k=0}^{\infty} \right] = Z + z_{t} \epsilon_{0} + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

$$\mathbb{E}_{-1} \left[ Z_{t} \right] \equiv \mathbb{E} \left[ Z_{t} | \left\{ \epsilon_{-k} \right\}_{k=1}^{\infty} \right] = Z + 0 + z_{t+1} \epsilon_{-1} + z_{t+2} \epsilon_{-2} + \cdots$$

SO

$$IRF_t^Z\left(\nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = z_t \cdot \nu$$

\* Linear in  $\nu$ , not dependent of past  $\epsilon$ 's, and equal to  $z_t$  for size-1 shock!

# Perturbation in sequence space

\* We formalize perturbation by introducing parameter  $\sigma$  scaling all shocks

- \* We formalize perturbation by introducing parameter  $\sigma$  scaling all shocks
  - \* primitive shocks are  $(\bar{\epsilon}_t, \bar{\epsilon}_{t-1}, ...)$  with  $\mathbb{E}\bar{\epsilon}_t^2 = 1$ , and  $\epsilon_t = \sigma\bar{\epsilon}_t$

- \* We formalize perturbation by introducing parameter  $\sigma$  scaling all shocks
  - \* primitive shocks are  $(\bar{\epsilon}_t, \bar{\epsilon}_{t-1}, ...)$  with  $\mathbb{E}\bar{\epsilon}_t^2 = 1$ , and  $\epsilon_t = \sigma\bar{\epsilon}_t$
- \* Rewrite (2) as

- \* We formalize perturbation by introducing parameter  $\sigma$  scaling all shocks
  - \* primitive shocks are  $(\bar{\epsilon}_t, \bar{\epsilon}_{t-1}, ...)$  with  $\mathbb{E}\bar{\epsilon}_t^2 = 1$ , and  $\epsilon_t = \sigma\bar{\epsilon}_t$
- \* Rewrite (2) as

$$X_t = \mathcal{X}\left(\sigma, \epsilon_t, \epsilon_{t-1}, \ldots\right) \tag{3}$$

- \* We formalize perturbation by introducing parameter  $\sigma$  scaling all shocks
  - \* primitive shocks are  $(\bar{\epsilon}_t, \bar{\epsilon}_{t-1}, ...)$  with  $\mathbb{E}\bar{\epsilon}_t^2 = 1$ , and  $\epsilon_t = \sigma\bar{\epsilon}_t$
- \* Rewrite (2) as

$$X_t = \mathcal{X}\left(\sigma, \epsilon_t, \epsilon_{t-1}, \ldots\right) \tag{3}$$

\* Depends on  $\sigma$  directly (pure effect of risk), and indirectly via the  $\epsilon_t$ 's

- \* We formalize perturbation by introducing parameter  $\sigma$  scaling all shocks
  - \* primitive shocks are  $(\bar{\epsilon}_t, \bar{\epsilon}_{t-1}, ...)$  with  $\mathbb{E}\bar{\epsilon}_t^2 = 1$ , and  $\epsilon_t = \sigma\bar{\epsilon}_t$
- \* Rewrite (2) as

$$X_t = \mathcal{X}\left(\sigma, \epsilon_t, \epsilon_{t-1}, \ldots\right) \tag{3}$$

- \* Depends on  $\sigma$  directly (pure effect of risk), and indirectly via the  $\epsilon_t$ 's
- \* Recall lecture 3: we have  $\mathcal{X}_{\sigma}=0$ , so first-order Taylor expansion in  $\sigma$

- \* We formalize perturbation by introducing parameter  $\sigma$  scaling all shocks
  - \* primitive shocks are  $(\bar{\epsilon}_t, \bar{\epsilon}_{t-1}, ...)$  with  $\mathbb{E}\bar{\epsilon}_t^2 = 1$ , and  $\epsilon_t = \sigma\bar{\epsilon}_t$
- \* Rewrite (2) as

$$X_t = \mathcal{X}\left(\sigma, \epsilon_t, \epsilon_{t-1}, \ldots\right) \tag{3}$$

- \* Depends on  $\sigma$  directly (pure effect of risk), and indirectly via the  $\epsilon_t$ 's
- \* Recall lecture 3: we have  $\mathcal{X}_{\sigma}=0$ , so first-order Taylor expansion in  $\sigma$

$$X_{t} \simeq X + \frac{\partial \mathcal{X}}{\partial \epsilon} \left( \mathbf{0} \right) \epsilon_{t} + \frac{\partial \mathcal{X}}{\partial \epsilon_{-1}} \left( \mathbf{0} \right) \epsilon_{t-1} + \dots + o(\sigma)$$

$$X_{t} \simeq X + \frac{\partial \mathcal{X}}{\partial \epsilon} \left( \mathbf{0} \right) \epsilon_{t} + \frac{\partial \mathcal{X}}{\partial \epsilon_{-1}} \left( \mathbf{0} \right) \epsilon_{t-1} + \dots + o(\sigma)$$

\* X is steady state value, and  $\frac{\partial \mathcal{X}}{\partial \epsilon_{-k}}$  (0) is the (deterministic) effect on  $X_k$  from a small shock at date 0, with all other shocks turned off ( $\sigma=0$ ,  $\epsilon=0$ )

$$X_{t} \simeq X + \frac{\partial \mathcal{X}}{\partial \epsilon} \left( \mathbf{0} \right) \epsilon_{t} + \frac{\partial \mathcal{X}}{\partial \epsilon_{-1}} \left( \mathbf{0} \right) \epsilon_{t-1} + \dots + o(\sigma) \qquad \text{An MIT shock!}$$
\*\*  $X$  is steady state value, and  $\frac{\partial \mathcal{X}}{\partial \epsilon_{-k}} \left( \mathbf{0} \right)$  is the (deterministic) effect on  $X_{k}$  from

a small shock at date 0, with all other shocks turned off ( $\sigma = 0$ ,  $\epsilon = 0$ )

$$X_{t} \simeq X + \frac{\partial \mathcal{X}}{\partial \epsilon} \left( \mathbf{0} \right) \epsilon_{t} + \frac{\partial \mathcal{X}}{\partial \epsilon_{-1}} \left( \mathbf{0} \right) \epsilon_{t-1} + \dots + o(\sigma)$$
An MIT shock

 $X_{t} \simeq X + \frac{\partial \mathcal{X}}{\partial \epsilon} \left( \mathbf{0} \right) \epsilon_{t} + \frac{\partial \mathcal{X}}{\partial \epsilon_{-1}} \left( \mathbf{0} \right) \epsilon_{t-1} + \dots + o(\sigma) \qquad \text{An MIT shock!}$ \*\* X is steady state value, and  $\frac{\partial \mathcal{X}}{\partial \epsilon_{-k}} \left( \mathbf{0} \right)$  is the (deterministic) effect on  $X_{k}$  from a small shock at date 0, with all other shocks turned off ( $\sigma = 0$ ,  $\epsilon = 0$ )

$$\frac{\partial \mathcal{X}}{\partial \epsilon_{-k}}(\mathbf{0}) = x_k$$

\* Keep going and look for the second order term in (3)

\* Keep going and look for the second order term in (3)

\* By symmetry of  $\epsilon'$ s, we have  $\frac{\partial^2 \mathcal{X}}{\partial \sigma \partial \epsilon_{-j}} = 0$ , so we are left with

- \* Keep going and look for the second order term in (3)
- By symmetry of  $\epsilon$ 's, we have  $\frac{\partial^2 \mathcal{X}}{\partial \sigma \partial \epsilon_{-i}} = 0$ , so we are left with

$$X_{t} \simeq X + \sum_{j=0}^{\infty} \frac{\partial \mathcal{X}}{\partial \epsilon_{-j}} \overline{\epsilon}_{t-j} \sigma + \frac{1}{2} \left( \mathcal{X}_{\sigma \sigma} + \sum_{j,k \geq 0} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j} \partial \epsilon_{-k}} \overline{\epsilon}_{t-j} \overline{\epsilon}_{t-k} \right) \sigma^{2} + o(\sigma^{2})$$

- \* Keep going and look for the second order term in (3)
- By symmetry of  $\epsilon$ 's, we have  $\frac{\partial^2 \mathcal{X}}{\partial \sigma \partial \epsilon_{-i}} = 0$ , so we are left with

$$X_{t} \simeq X + \sum_{j=0}^{\infty} \frac{\partial \mathcal{X}}{\partial \epsilon_{-j}} \overline{\epsilon}_{t-j} \sigma + \frac{1}{2} \left( \mathcal{X}_{\sigma \sigma} + \sum_{j,k \geq 0} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j} \partial \epsilon_{-k}} \overline{\epsilon}_{t-j} \overline{\epsilon}_{t-k} \right) \sigma^{2} + o(\sigma^{2})$$

Per result above, we have  $\frac{\partial \mathcal{X}}{\partial \epsilon_{-j}} = x_j$ . Let's rearrange...

$$X_{t} \simeq X + \underbrace{\sum_{j=0}^{\infty} x_{j} \epsilon_{t-j}}_{\text{Anticipation of aggregate risk}} + \underbrace{\frac{1}{2} \sum_{j=0}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j}^{2}} \epsilon_{t-j}^{2}}_{\text{Size dependence}} + \underbrace{\sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j} \partial \epsilon_{-k}} \epsilon_{t-j} \epsilon_{t-k}}_{\text{State dependence}}$$

$$X_{t} \simeq X + \underbrace{\sum_{j=0}^{\infty} x_{j} \epsilon_{t-j}}_{\text{Anticipation of aggregate risk}} + \underbrace{\frac{1}{2} \sum_{j=0}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j}^{2}} \epsilon_{t-j}^{2}}_{\text{Size dependence}} + \underbrace{\sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j} \partial \epsilon_{-k}} \epsilon_{t-j} \epsilon_{t-k}}_{\text{State dependence}}$$

$$X_{t} \simeq X + \underbrace{\sum_{j=0}^{\infty} x_{j} \epsilon_{t-j}}_{\text{Anticipation of aggregate risk}} + \underbrace{\frac{1}{2} \sum_{j=0}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j}^{2}} \epsilon_{t-j}^{2}}_{\text{Size dependence}} + \underbrace{\sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j} \partial \epsilon_{-k}} \epsilon_{t-j} \epsilon_{t-k}}_{\text{State dependence}}$$

\*X: nonstochastic steady state

$$X_{t} \simeq X + \underbrace{\sum_{j=0}^{\infty} x_{j} \epsilon_{t-j}}_{\text{Anticipation of aggregate risk}} + \underbrace{\frac{1}{2} \sum_{j=0}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j}^{2}} \epsilon_{t-j}^{2}}_{\text{Size dependence}} + \underbrace{\sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j} \partial \epsilon_{-k}} \epsilon_{t-j} \epsilon_{t-k}}_{\text{State dependence}}$$

\*X: nonstochastic steady state

\* 
$$X + \frac{1}{2} \mathcal{X}_{\sigma\sigma} \sigma^2$$
: risky steady state (anticipate agg. risk, never materializes)

$$X_{t} \simeq X + \underbrace{\sum_{j=0}^{\infty} x_{j} \epsilon_{t-j}}_{\text{Anticipation of aggregate risk}} + \underbrace{\frac{1}{2} \sum_{j=0}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j}^{2}} \epsilon_{t-j}^{2}}_{\text{Size dependence}} + \underbrace{\sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty} \frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-j} \partial \epsilon_{-k}} \epsilon_{t-j} \epsilon_{t-k}}_{\text{State dependence}}$$

\*X: nonstochastic steady state

\* 
$$X + \frac{1}{2} \mathcal{X}_{\sigma\sigma} \sigma^2$$
: risky steady state (anticipate agg. risk, never materializes)

\* 
$$X + \frac{1}{2} \mathcal{X}_{\sigma\sigma} \sigma^2 + \frac{1}{2} \sum_{j=0}^{\infty} \frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-j}^2} \sigma^2$$
: ergodic mean

\* What is the GIRF of this process? Calculate  $\mathbb{E}_0[X_t] - \mathbb{E}_{-1}[X_t]$ , find

\* What is the GIRF of this process? Calculate  $\mathbb{E}_0[X_t] - \mathbb{E}_{-1}[X_t]$ , find

$$IRF_{t}\left(\epsilon_{0} = \nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = x_{t}\nu + \frac{1}{2}\frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}^{2}}\left(\nu^{2} - \sigma^{2}\right) + \sum_{k=1}^{\infty} \frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}\partial\epsilon_{-(t+k)}}\nu\epsilon_{-k}$$

\* What is the GIRF of this process? Calculate  $\mathbb{E}_0[X_t] - \mathbb{E}_{-1}[X_t]$ , find

$$IRF_{t}\left(\epsilon_{0} = \nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = x_{t}\nu + \frac{1}{2}\frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}^{2}}\left(\nu^{2} - \sigma^{2}\right) + \sum_{k=1}^{\infty} \frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}\partial\epsilon_{-(t+k)}}\nu\epsilon_{-k}$$

\* We already know how to get the  $x_t$ 

\* What is the GIRF of this process? Calculate  $\mathbb{E}_0[X_t] - \mathbb{E}_{-1}[X_t]$ , find

$$IRF_{t}\left(\epsilon_{0} = \nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = x_{t}\nu + \frac{1}{2}\frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}^{2}}\left(\nu^{2} - \sigma^{2}\right) + \sum_{k=1}^{\infty} \frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}\partial\epsilon_{-(t+k)}}\nu\epsilon_{-k}$$

- \* We already know how to get the  $x_t$
- For the IRF, we need the terms  $\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2}$  and  $\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}}$

\* What is the GIRF of this process? Calculate  $\mathbb{E}_0[X_t] - \mathbb{E}_{-1}[X_t]$ , find

$$IRF_{t}\left(\epsilon_{0} = \nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = x_{t}\nu + \frac{1}{2}\frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}^{2}}\left(\nu^{2} - \sigma^{2}\right) + \sum_{k=1}^{\infty} \frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}\partial\epsilon_{-(t+k)}}\nu\epsilon_{-k}$$

\* We already know how to get the  $x_t$ 

For the IRF, we need the terms  $\frac{\partial \mathcal{L}}{\partial \epsilon_{-t}^2}$  and  $\frac{\partial \mathcal{L}}{\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}}$ 

MIT shocks again!

$$\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}$$

\* What is the GIRF of this process? Calculate  $\mathbb{E}_0[X_t] - \mathbb{E}_{-1}[X_t]$ , find

$$IRF_{t}\left(\epsilon_{0} = \nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = x_{t}\nu + \frac{1}{2}\frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}^{2}}\left(\nu^{2} - \sigma^{2}\right) + \sum_{k=1}^{\infty} \frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}\partial\epsilon_{-(t+k)}}\nu\epsilon_{-k}$$

MIT shocks again!

- \* We already know how to get the  $x_t$
- For the IRF, we need the terms  $\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2}$  and  $\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}}$
- \* For the steady state, we'll also need to get  $\frac{1}{2} \mathcal{X}_{\sigma\sigma} \sigma^2$

\* What is the GIRF of this process? Calculate  $\mathbb{E}_0[X_t] - \mathbb{E}_{-1}[X_t]$ , find

$$IRF_{t}\left(\epsilon_{0} = \nu, \left\{\epsilon_{-k}\right\}_{k=1}^{\infty}\right) = x_{t}\nu + \frac{1}{2}\frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}^{2}}\left(\nu^{2} - \sigma^{2}\right) + \sum_{k=1}^{\infty} \frac{\partial^{2}\mathcal{X}}{\partial\epsilon_{-t}\partial\epsilon_{-(t+k)}}\nu\epsilon_{-k}$$

- \* We already know how to get the  $x_t$
- For the IRF, we need the terms  $\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2}$  and  $\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}}$

MIT shocks again!

That's "it"!

\* For the steady state, we'll also need to get  $\frac{1}{2} \mathcal{X}_{\sigma\sigma} \sigma^2$ 

#### Implementation: canonical HANK model

\* Leverage MIT shocks, but now nonlinear!

- \* Leverage MIT shocks, but now nonlinear!
- \* Compute  $X_t(\{Z_s\}, D_{ss})$  nonlinearly in Z, then use central finite differences

- \* Leverage MIT shocks, but now nonlinear!
- \* Compute  $X_t(\{Z_s\}, D_{ss})$  nonlinearly in Z, then use central finite differences

$$\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2} = \frac{X_t \left( \left\{ Z + z_s \nu \right\}, D_{ss} \right) + X_t \left( \left\{ Z - z_s \nu \right\}, D_{ss} \right) - 2X}{\nu^2}$$
Coefficients on the MA on z

- \* Leverage MIT shocks, but now nonlinear!
- \* Compute  $X_t(\{Z_s\}, D_{ss})$  nonlinearly in Z, then use central finite differences

$$\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2} = \frac{X_t \left( \left\{ Z + z_s \nu \right\}, D_{ss} \right) + X_t \left( \left\{ Z - z_s \nu \right\}, D_{ss} \right) - 2X}{\nu^2}$$
Coefficients on the MA on z

\* Two issues with direct implementation:

### Size dependence term

- \* Leverage MIT shocks, but now nonlinear!
- \* Compute  $X_t(\{Z_s\}, D_{ss})$  nonlinearly in Z, then use central finite differences

$$\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2} = \frac{X_t \left( \left\{ Z + z_s \nu \right\}, D_{ss} \right) + X_t \left( \left\{ Z - z_s \nu \right\}, D_{ss} \right) - 2X}{\nu^2}$$
Coefficients on the MA on z

- \* Two issues with direct implementation:
  - \* requires smooth underlying HA model to get second derivative

### Size dependence term

- \* Leverage MIT shocks, but now nonlinear!
- \* Compute  $X_t(\{Z_s\}, D_{ss})$  nonlinearly in Z, then use central finite differences

$$\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2} = \frac{X_t \left( \left\{ Z + z_s \nu \right\}, D_{ss} \right) + X_t \left( \left\{ Z - z_s \nu \right\}, D_{ss} \right) - 2X}{\nu^2}$$
Coefficients on the MA on z

\* Two issues with direct implementation:

See previous lecture!

\* requires smooth underlying HA model to get second derivative

### Size dependence term

- \* Leverage MIT shocks, but now nonlinear!
- \* Compute  $X_t(\{Z_s\}, D_{ss})$  nonlinearly in Z, then use central finite differences

$$\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2} = \frac{X_t \left( \left\{ Z + z_s \nu \right\}, D_{ss} \right) + X_t \left( \left\{ Z - z_s \nu \right\}, D_{ss} \right) - 2X}{\nu^2}$$
Coefficients on the MA on z

\* Two issues with direct implementation:

See previous lecture!

- \* requires smooth underlying HA model to get second derivative
- \* requires nonlinear fixed point algorithm to get the  $X_t$

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

$$\mathbf{H}\left(\mathbf{X}(\nu),\mathbf{Z}(\nu)\right)=0$$

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

$$\mathbf{H}\left(\mathbf{X}(\nu),\mathbf{Z}(\nu)\right)=0$$

\* The first order solution x solves

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

$$\mathbf{H}\left(\mathbf{X}(\nu),\mathbf{Z}(\nu)\right)=0$$

\* The first order solution x solves

$$\mathbf{X} = -\mathbf{H}_{\mathbf{X}}^{-1}\mathbf{H}_{\mathbf{Z}}\mathbf{Z}$$

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

$$\mathbf{H}\left(\mathbf{X}(\nu),\mathbf{Z}(\nu)\right)=0$$

\* The first order solution **x** solves Already know this inverse from it

 $\mathbf{x} = -\mathbf{H}_{\mathbf{x}}^{-1}\mathbf{H}_{\mathbf{7}}\mathbf{Z}$ 

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

$$\mathbf{H}\left(\mathbf{X}(\nu),\mathbf{Z}(\nu)\right)=0$$

\* The first order solution x solves

Already know this inverse from it

$$\mathbf{x} = -\mathbf{H}_{\mathbf{X}}^{-1}\mathbf{H}_{\mathbf{Z}}\mathbf{Z}$$

\* Can show that we also have

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

$$\mathbf{H}\left(\mathbf{X}(\nu),\mathbf{Z}(\nu)\right)=0$$

\* The first order solution x solves

Already know this inverse from it

$$\mathbf{x} = -\mathbf{H}_{\mathbf{X}}^{-1}\mathbf{H}_{\mathbf{Z}}\mathbf{Z}$$

\* Can show that we also have

$$\left[\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2}\right] = -\mathbf{H}_{\mathbf{X}}^{-1} \left(\frac{\mathbf{H} (X + \nu \mathbf{x}, Z + \nu \mathbf{z})}{\nu^2}\right)$$

\* The nonlinear solution  $\mathbf{X}(\nu)$  solves

$$\mathbf{H}\left(\mathbf{X}(\nu),\mathbf{Z}(\nu)\right)=0$$

\* The first order solution x solves

Already know this inverse from it

$$\mathbf{x} = -\mathbf{H}_{\mathbf{X}}^{-1}\mathbf{H}_{\mathbf{Z}}\mathbf{Z}$$

\* Can show that we also have

Nonlinear error from first-order impulse

$$\left[\frac{\partial^2 \mathcal{X}}{\partial \epsilon_{-t}^2}\right] = -\mathbf{H}_{\mathbf{X}}^{-1} \left(\frac{\mathbf{H} (X + \nu \mathbf{X}, Z + \nu \mathbf{Z})}{\nu^2}\right)$$

\* Canonical HANK model with only bonds

\* Canonical HANK model with only bonds

$$\mathcal{A}_t \left( Y_s - T_s \right) = B_t$$

\* Canonical HANK model with only bonds

$$\mathscr{A}_t \left( Y_S - T_S \right) = B_t$$

\* Canonical HANK model with only bonds

$$\mathscr{A}_t \left( Y_s - T_s \right) = B_t$$

$$B_t = B + \epsilon_t + \rho \epsilon_{t-1} + \rho^2 \epsilon_{t-2} + \dots$$

\* Canonical HANK model with only bonds

$$\mathscr{A}_t \left( Y_s - T_s \right) = B_t$$

$$B_t = B + \epsilon_t + \rho \epsilon_{t-1} + \rho^2 \epsilon_{t-2} + \dots$$

and 
$$T_t = (1 + r)B_{t-1} - B_t + G$$

\* Canonical HANK model with only bonds

$$\mathscr{A}_t \left( Y_s - T_s \right) = B_t$$

\* Assume G constant, bonds follow AR(1) process

$$B_t = B + \epsilon_t + \rho \epsilon_{t-1} + \rho^2 \epsilon_{t-2} + \dots$$

and 
$$T_t = (1 + r)B_{t-1} - B_t + G$$

\* First order solution is  $y - t = A_Y^{-1}b$ 

\* Canonical HANK model with only bonds

$$\mathscr{A}_t \left( Y_s - T_s \right) = B_t$$

$$B_t = B + \epsilon_t + \rho \epsilon_{t-1} + \rho^2 \epsilon_{t-2} + \dots$$

and 
$$T_t = (1 + r)B_{t-1} - B_t + G$$

- \* First order solution is  $y t = A_Y^{-1}b$
- \* To get size dep. impulse, compute  $1/\nu^2 \mathbf{A}_{\mathbf{Y}}^{-1} \left( \mathbf{A} \left( \mathbf{Z} + \nu \mathbf{A}_{\mathbf{Y}}^{-1} \mathbf{b} \right) \mathbf{B} \nu \mathbf{b} \right)$

# Size dependence impulse response visualized



# Size dependence impulse response visualized



\* Why? Nonlinear iMPCs! Large shock: lower MPC today, higher MPC tomorrow

# Size dependence impulse response visualized



\* Why? Nonlinear iMPCs! Large shock: lower MPC today, higher MPC tomorrow

\* Again leverage MIT shocks. Now consider two shocks in a row!

- \* Again leverage MIT shocks. Now consider two shocks in a row!
- \* At date -k, size- $\nu$  shock to Z implies path  $Z_t = Z + z_{t+k}\nu$ , distribution  $D_0^{-k,\nu}$

- \* Again leverage MIT shocks. Now consider two shocks in a row!
- \* At date -k, size- $\nu$  shock to Z implies path  $Z_t = Z + z_{t+k}\nu$ , distribution  $D_0^{-k,\nu}$
- \* At date 0, add additional size- $\nu$  shock to Z, starting from  $D_0^{-k,\nu}$

- \* Again leverage MIT shocks. Now consider two shocks in a row!
- \* At date -k, size- $\nu$  shock to Z implies path  $Z_t = Z + z_{t+k}\nu$ , distribution  $D_0^{-k,\nu}$
- \* At date 0, add additional size- $\nu$  shock to Z, starting from  $D_0^{-k,\nu}$
- \* Then, use a version of:

- \* Again leverage MIT shocks. Now consider two shocks in a row!
- \* At date -k, size- $\nu$  shock to Z implies path  $Z_t = Z + z_{t+k}\nu$ , distribution  $D_0^{-k,\nu}$
- \* At date 0, add additional size- $\nu$  shock to Z, starting from  $D_0^{-k,\nu}$
- \* Then, use a version of: Impulse response with earlier shock on Imp. response without

$$\frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}} \simeq \frac{X_{t} \left( \left\{ Z + z_{t+k} \nu + z_{t} \nu \right\}, D_{0}^{-k, \nu} \right) - X_{t} \left( \left\{ Z + z_{t+k} \nu \right\}, D_{0}^{-k, \nu} \right) - X_{t} \left( \left\{ Z + z_{t} \nu \right\}, D_{ss} \right) + X}{\nu^{2}}$$

- \* Again leverage MIT shocks. Now consider two shocks in a row!
- \* At date -k, size- $\nu$  shock to Z implies path  $Z_t = Z + z_{t+k}\nu$ , distribution  $D_0^{-k,\nu}$
- \* At date 0, add additional size- $\nu$  shock to Z, starting from  $D_0^{-k,\nu}$
- \* Then, use a version of: Impulse response with earlier shock on Imp. response without

$$\frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}} \simeq \frac{X_{t} \left( \left\{ Z + z_{t+k} \nu + z_{t} \nu \right\}, D_{0}^{-k, \nu} \right) - X_{t} \left( \left\{ Z + z_{t+k} \nu \right\}, D_{0}^{-k, \nu} \right) - X_{t} \left( \left\{ Z + z_{t} \nu \right\}, D_{ss} \right) + X}{\nu^{2}}$$

\* Can again avoid the fixed point, using similar trick to above

- \* Again leverage MIT shocks. Now consider two shocks in a row!
- \* At date -k, size- $\nu$  shock to Z implies path  $Z_t = Z + z_{t+k}\nu$ , distribution  $D_0^{-k,\nu}$
- \* At date 0, add additional size- $\nu$  shock to Z, starting from  $D_0^{-k,\nu}$
- \* Then, use a version of: Impulse response with earlier shock on Imp. response without

$$\frac{\partial^{2} \mathcal{X}}{\partial \epsilon_{-t} \partial \epsilon_{-(t+k)}} \simeq \frac{X_{t} \left( \left\{ Z + z_{t+k} \nu + z_{t} \nu \right\}, D_{0}^{-k, \nu} \right) - X_{t} \left( \left\{ Z + z_{t+k} \nu \right\}, D_{0}^{-k, \nu} \right) - X_{t} \left( \left\{ Z + z_{t} \nu \right\}, D_{ss} \right) + X}{\nu^{2}}$$

- \* Can again avoid the fixed point, using similar trick to above
- \* Note that we need 2K impulse responses for history terms up to *K*

### History dependence terms visualized



## History dependence terms visualized



\* Similar mechanism: output effect lower if positive shock in recent past

## History dependence terms visualized



\* Similar mechanism: output effect lower if positive shock in recent past

\* Now want  $\mathcal{X}_{\sigma\sigma}$ : the effect of aggregate risk on the risky steady state

- \* Now want  $\mathcal{X}_{\sigma\sigma}$ : the effect of aggregate risk on the risky steady state
- \* This can computed from the perfect-foresight solution too!

- \* Now want  $\mathcal{X}_{\sigma\sigma}$ : the effect of aggregate risk on the risky steady state
- \* This can computed from the perfect-foresight solution too!
- \* Idea in words:

- \* Now want  $\mathcal{X}_{\sigma\sigma}$ : the effect of aggregate risk on the risky steady state
- \* This can computed from the perfect-foresight solution too!
- \* Idea in words:
  - \* anticipation of **next-period size dependence** creates shift in aggregate asset demand (just like precautionary savings for idiosyncratic risk)

- \* Now want  $\mathcal{X}_{\sigma\sigma}$ : the effect of aggregate risk on the risky steady state
- \* This can computed from the perfect-foresight solution too!
- \* Idea in words:
  - \* anticipation of **next-period size dependence** creates shift in aggregate asset demand (just like precautionary savings for idiosyncratic risk)
  - \* use s.s. routines to get effect of this shift on equilibrating variables



\* Effect on steady state *r* similar to what you would get from RA formula



\* Effect on steady state *r* similar to what you would get from RA formula

#### Conclusion

#### Conclusion

- \* Perfect foresight is a gateway to getting the solution with full aggregate risk
  - \* Size dependence
  - \* History dependence
  - \* Anticipation effect
- \* Implementation can be done with numerical differentiation (or fancier)
- \* Small nonlinearities unless shocks are huge, but interesting (nonlinear iMPCs)
- \* Many potential other exciting applications!