주제/단락	내용
학습 목표	컴퓨터의 기본 구조와 동작 원리 학습
학습 목표	CPU와 기억 장치 및 I/O 장치 등 전체 컴퓨터시스템의 구성 학습
학습 목표	컴퓨터 분류 방법 학습
학습 목표	컴퓨터 발전 동향 학습
학습 순서	컴퓨터의 기본 구조
학습 순서	시스템의 구성
학습 순서	정보의 표현과 저장
학습 순서	컴퓨터 구조의 발전 과정
하드웨어 정의	컴퓨터에서 각종 정보의 전송 통로를 제공하고, 정보 처리가 실제 일어나게 해주는 물 리적인 실체들
소프트웨어 정의	정보들이 이동하는 방향과 정보 처리의 종류, 동작 시간을 지정해주는 명령(command) 들의 집합
주요 하드웨어 요 소	중앙 처리 장치(Central Processing Unit, CPU)
주요 하드웨어 요 소	기억 장치(Memory): 주기억장치, 보조기억장치
주요 하드웨어 요 소	입출력 장치(Input/Output Device, I/O Device): 입력 장치, 출력 장치
주요 하드웨어 요 소	시스템 버스
시스템 버스 역할	컴퓨터 기능을 수행하기 위해 각 구성 요소들은 시스템 버스를 통해 상호 연결됨
CPU 역할	컴퓨터의 특성을 결정하며, 프로그램 실행과 데이터 처리를 담당하는 핵심 기능
CPU 별칭	프로세서(processor) 또는 마이크로프로세서(microprocessor)라고도 부름
ALU 기능	산술 연산, 논리 연산, 보수 연산, 시프트 연산을 수행
제어 장치(CU) 기 능	프로그램의 명령어를 해독하여 명령어 실행에 필요한 제어 신호를 발생시키고 컴퓨터 의 모든 장치를 제어
레지스터 기능	중앙 처리 장치 내부에 있는 데이터를 일시적으로 보관하는 임시 기억 장치로, 프로그 램 실행 중에 고속으로 액세스됨
주기억장치(MM) 구성	반도체 칩으로 구성되어 고속 접근이 가능하지만, 가격이 비싸고 저장 용량에 한계가 존재
주기억장치 특성	프로그램 실행 중에 일시적으로만 사용되는 휘발성 메모리
주기억장치 휘발 성	전원이 꺼지면 데이터가 지워짐

주제/단락	내용
주기억장치 접속 경로	CPU ↔ 시스템 버스 ↔ 주기억장치 (CPU 내부의 레지스터들과 시스템 버스가 직접 연결됨)
보조기억장치 정 의	2차 기억 장치(secondary memory)라고도 불림
보조기억장치 종 류/특성	하드 디스크, SSD, 플래시 메모리 같은 비휘발성 메모리이며, 저장 밀도가 높고 저가이 지만 속도가 느림
보조기억장치 용 도	CPU에서 당장 필요하지 않은 많은 양의 데이터나 프로그램을 저장
보조기억장치 접 근	CPU가 직접 접근(읽기/쓰기)하지 못하고 별도의 제어기를 통해 접근함
보조기억장치 접 속 경로	CPU ↔ 시스템 버스 ↔ 보조기억장치의 제어기 ↔ 보조기억장치
I/O 장치 정의	사용자와 컴퓨터 간의 상호작용(interaction)을 위한 장치
I/O 장치 접근	CPU가 직접 데이터를 교환하지 못하고 별도의 제어기를 통해 접근함
입력 장치 기능	데이터를 전자적인 2진 형태로 변환하여 컴퓨터 내부로 전달
입력 장치 예시	키보드, 마우스, 마이크 등
출력 장치 기능	중앙 처리 장치가 처리한 전자적인 형태의 데이터를 사람이 이해할 수 있는 데이터로 변환하여 출력
출력 장치 예시	모니터, 스피커, 프린터 등
소프트웨어 정의	하드웨어를 잘 동작시킬 수 있도록 제어하고, 지시하는 모든 종류의 프로그램
프로그램 정의	컴퓨터를 사용해 어떤 일을 처리하기 위해 순차적으로 구성된 명령들의 집합
소프트웨어 구분	시스템 소프트웨어와 응용 소프트웨어로 구분
시스템 소프트웨 어	하드웨어를 관리하고 응용 소프트웨어를 실행하는 데 필요한 프로그램
시스템 소프트웨 어 예시	운영체제(OS), 언어 번역 프로그램, 유틸리티 프로그램 등
유틸리티 프로그 램	각종 주변 장치(보조기억장치, 입출력 장치)들을 구동하는 데 필요한 드라이버 프로그 램, 백신 프로그램, 압축 프로그램, 디스크 조각 모음 등
운영체제 역할	컴퓨터 하드웨어 자원(CPU, 기억 장치, I/O 장치, 네트워크 장치) 등을 제어하고 관리
운영체제 종류	유닉스(UNIX), 리눅스(LINUX), 윈도우(Windows), 맥 OS(MAC OS), iOS, 안드로이드 등
언어 번역 프로그 램	고급 언어 프로그램을 컴퓨터가 이해할 수 있는 기계어로 변환하는 프로그램
인터프리터 특징	소스 프로그램을 한 줄씩 해석하고 실행하기 때문에 실행 속도가 컴파일러보다 느릴 수 있음 ([예] JavaScript, HTML, SQL, Python 등)

주제/단락	내용
컴파일러 특징	전체 소스 프로그램을 한 번에 기계어로 번역하여 실행하기 때문에 실행 속도가 빠름 (C, C++, JAVA 등)
장치 드라이버 기 능	컴퓨터에 연결된 주변 장치를 제어하는 운영체제 모듈
링커 기능	여러 개로 분할해 작성된 프로그램에 의해 생성된 목적 프로그램 또는 라이브러리 루틴 을 결합하여 실행 가능한 하나의 프로그램으로 연결하는 프로그램
로더 기능	저장 장치에 보관된 프로그램을 읽어 주기억장치에 적재한 후 실행 가능한 상태로 만드 는 프로그램
로더 수행 기능	할당, 연결, 재배치, 적재 기능을 수행
응용 소프트웨어 별칭	애플리케이션, 앱, 어플 등으로 불림
응용 소프트웨어 정의	컴퓨터 시스템을 일반 사용자들이 특정한 용도에 활용하기 위해 만든 프로그램
사무용 소프트웨 어 예	한글, MS-office 군
그래픽용 소프트 웨어 예	포토샵, 일러스트레이터
멀티미디어용 소 프트웨어 예	팟플레이어, 꿀뷰
게임용 소프트웨 어 예	LOL, 발로란트, 원신, 로스트아크, 메이플
통신/네트워크 소프트웨어 예	크롬, 엣지, 카카오톡, 페이스북, 인스타그램
시스템 버스 정의	CPU와 기억 장치 및 입출력 장치 사이에 정보를 교환하는 통로
시스템 버스 기본 구성	주소 버스(address bus), 데이터 버스(data bus), 제어 버스(control bus)
주소 버스 기능	CPU가 기억 장치나 입출력 장치를 지정하는 주소 정보를 전송하는 신호 선들의 집합
주소 버스 전송 방향	단방향(uni-directional) 전송: 주소는 CPU로부터 기억 장치 혹은 I/O 장치로 전송되는 정보
주소 버스 결정 요소	주소 선의 수는 CPU와 접속될 수 있는 최대 기억 장치 용량을 결정함
주소 버스 용량 계산 예시	주소 버스의 비트 수가 12비트라면, 최대 2^12 = 4K 개의 기억 장소들의 주소를 지정 가능
데이터 버스 기능	CPU가 기억 장치나 입출력 장치 사이에 데이터를 전송하기 위한 신호선들의 집합

주제/단락	내용
데이터 버스 전송 방향	양방향(bi-directional) 전송: 읽기와 쓰기 동작을 모두 지원
데이터 버스 결정 요소	데이터선의 수는 CPU가 한 번에 전송할 수 있는 데이터 비트의 수를 결정함
데이터 버스 폭 예시	데이터 버스 폭이 32비트라면, CPU와 기억 장치 간의 데이터 전송은 한 번에 32비트씩 가능
제어 버스 기능	CPU가 시스템 내의 기억 장치 및 I/O 등 각종 요소의 동작을 제어하는 데 필요한 신호선 들의 집합
제어 버스 주요 신호	기억 장치 읽기/쓰기(Memory Read/Write), I/O 읽기/쓰기(I/O Read/Write), 인터럽트 (Interrupt), 버스 제어(Bus Control) 신호
제어 버스 방향	설계는 양방향이지만, 주로 단방향 사용
액세스 정의	CPU가 데이터를 기억 장치의 특정 장소에 저장하거나, 이미 저장된 내용을 읽는 동작
기억 장치 액세스 필요 버스	주소 버스, 데이터 버스, 제어 신호(기억 장치 읽기/쓰기 신호)
기억 장치 쓰기 동작	CPU가 주소와 데이터를 버스로 보내고, 쓰기 신호를 활성화하여 기억 장치에 데이터가 저장되게 함
기억 장치 쓰기 시간	CPU가 주소와 데이터를 보낸 순간부터 데이터가 기억장치에 저장이 완료될 때까지의 시간
기억 장치 읽기 동작	CPU가 주소를 보내고 읽기 신호를 활성화하면, 일정 지연 시간 후 기억 장치로부터 읽 혀진 데이터가 데이터 버스 상에 실리고 CPU가 읽음
기억 장치 읽기 시간	주소를 발생한 시간부터 기억 장치의 데이터가 CPU에 도착할 때까지의 시간
I/O 액세스 필요 버스	주소 버스, 데이터 버스, 제어 신호(I/O 읽기/쓰기 신호)
I/O 장치 접속 경 로	CPU ↔ 시스템 버스 ↔ I/O 장치 제어기 ↔ I/O 장치
I/O 장치 제어기 역할	CPU로부터 I/O 명령을 받아서, 해당 I/O 장치를 제어하고, 데이터를 이동함으로써 명령 을 수행하는 전자회로 장치
I/O 장치 제어기 예시	키보드 제어기, 프린터 제어기 등
I/O 상태 레지스 터	I/O 장치의 현재 상태를 나타내는 비트들을 저장한 레지스터
상태 레지스터 비 트 예시	준비 상태(IN_RDY) 비트, 데이터 전송 확인(acknowledgment, ACK) 비트 등

주제/단락	내용
I/O 데이터 레지 스터	CPU와 I/O 장치 간에 이동되는 데이터를 일시적으로 저장하는 레지스터(데이터 버퍼)
I/O 레지스터 주 소	상태 레지스터와 데이터 레지스터는 주소를 가짐
키보드 제어기 동 작	키를 누르면 대응되는 ASCII 코드가 데이터 레지스터에 저장되고, 동시에 상태 레지스 터의 In_RDY 비트가 1로 세트됨
CPU 동작(키보 드) - 1	키보드 제어기로부터 상태 레지스터의 내용을 읽어서 In_RDY 비트(데이터 적재 표시) 가 1로 세트 되었는지 검사
CPU 동작(키보 드) - 2	In_RDY가 1로 세트 되었다면, 데이터 레지스터의 내용을 읽음
CPU 동작(키보 드) - 3	In_RDY가 세트 되지 않았으면, ①을 반복하며 대기
보조기억장치 접 속	보조기억장치들(하드 디스크, SSD, 플래시 메모리 등)도 각 장치를 위한 제어기를 통하여 키보드나 프린터와 유사한 방법으로 접속
보조기억장치 접 속 주체	CPU는 보조기억장치의 제어기를 통해서 접속
데이터 전송 단위 (키보드)	Byte 단위 전송
데이터 전송 단위 (보조기억장치)	블록(512Bytes) 혹은 페이지(2K, 4KBytes) 단위로 전송
보조기억장치 버 퍼	제어기 내에 한 블록 이상을 임시 저장할 수 있는 데이터 기억 장치(버퍼) 필요
CPU 기본 수행 기능	프로그램 코드를 정해진 순서대로 수행하며, 데이터를 읽어서(read), 처리(processing) 하고, 저장(store)함
CPU 기본 기능 - 실행	CPU가 주기억장치로부터 프로그램 코드를 읽어서 실행
CPU 기본 기능 - 저장	프로그램 실행 결과를 주기억장치에 저장
CPU 기본 기능 - 이동	하드 디스크나 SSD에 저장되어 있는 명령어와 데이터 블록을 주기억장치로 이동
CPU 기본 기능 - 입출력	사용자가 키보드나 마우스를 통해 입력하는 명령어/데이터를 읽거나, CPU가 처리한 결 과를 모니터/프린터로 출력
CPU 기본 기능 - 제어	프로그램에서 정해진 순서에 따라 실행되도록 각종 제어 신호를 발생하며, 필요에 따라 서 실행 순서를 변경하도록 조정
컴퓨터 정보	2진수 비트들로 표현된 프로그램 코드와 데이터

주제/단락	내용
기계어 정의	컴퓨터 하드웨어 부품들이 이해할 수 있는 언어로 2진수 비트들로 구성
어셈블리 언어 정 의	고급 언어와 기계어 사이의 중간 언어로, 어셈블러에 의해 기계어로 번역되며 기계어와 일대일 대응
고급 언어 정의	영문자와 숫자로 구성되어 사람이 이해하고 작성하기 쉬운 언어로, 컴파일러나 인터프 리터를 통해 기계어로 변환
고급 언어 예시	C, C++, JAVA, Python 등
프로그램 코드 변 환 순서	고급 언어 → 어셈블리어 → 기계어 순으로 변환
컴파일러 정의	고급 언어로 작성된 프로그램 코드를 기계어 프로그램으로 번역하는 소프트웨어
컴파일러 특징	전체 프로그램을 한 번에 번역하므로, 실행 전에 오류 탐지 가능 ([예] C, C++, JAVA)
인터프리터 정의	고급 언어로 작성된 프로그램 코드를 한 줄씩 해석하여 바로 실행하는 소프트웨어 ([예] Python, JavaScript)
어셈블러 정의	어셈블리 프로그램을 기계어 프로그램으로 번역하는 소프트웨어
니모닉스 정의	어셈블리 명령어가 지정하는 연산을 가리키는 알파벳 기호 ('LOAD', 'ADD', 'STOR' 등)
연산코드(OP code)	CPU가 수행할 연산을 지정해 주는 비트들
OP code 비트 수 와 연산 수	비트 수가 '3'이라면, 지정될 수 있는 최대 연산의 수: 2^3 = 8개
오퍼랜드 (operand)	연산에 사용될 데이터 혹은 데이터가 저장되어 있는 기억 장치 주소(memory address)
오퍼랜드 비트 수 와 주소 수	비트 수가 '5'라면, 주소지정(addressing) 할 수 있는 기억 장소의 최대 수: 2^5 = 32개
정보 저장 위치	프로그램 코드(명령어)와 데이터는 지정된 기억 장소에 저장
단어(word) 정의	각 기억 장소에 저장되는 정보의 기본 단위로서, CPU에 의해 한 번에 처리될 수 있는 비 트들의 그룹
단어 길이 예시	8비트, 16비트, 32비트, 64비트
주소 지정 단위	주소가 지정된 각 기억 장소 당 저장되는 데이터 길이 (단어 단위 혹은 바이트(Byte) 단위)
초기의 계산 도구	주판 (기원전 약 3000년 전 고대 메소포타미아 인들이 사용 추정)
기계식 계산기	톱니바퀴를 이용하여 덧셈과 뺄셈 수행 (1642년, 파스칼)
라이프니츠의 기 여	파스칼의 계산기를 개량하여 곱셈과 나눗셈이 가능한 계산기 발명(1671년) 및 2진법 창 안
차분 기관	표에 있는 수들을 자동적으로 산술연산하고 결과를 프린트하는 최초의 계산 기계 설계 (1823년, 찰스 배비지)

주제/단락	내용
해석 기관	네 가지 산술 연산 기능과 입/출력장치를 모두 갖춘 최초의 일반목적용 계산기계 설계 (1833년, 찰스 배비지)
해석 기관 특징	오늘날 컴퓨터의 기본 요소를 모두 갖춤, 프로그래밍 가능, 프로그램 언어 사용, 제어 카 드로 실행 순서 변경 가능, 수의 부호 검사를 이용한 조건 분기
해석 기관 한계	주요 부품들이 기계적 장치라 속도가 느리고 신뢰도가 낮았음
전기 기계식 계산 기 (MARK-I)	찰스 배비지의 해석 기관을 실현하여 미해군의 탄도 계산 등 수학/과학 문제 해결에 공헌 (1944년, 에이킨 개발)
전자식 계산기 (ENIAC)	진공관을 사용한 최초의 전자식 컴퓨터 (1946년, 에커트와 모클리)
전자식 계산기 (EDSAC)	10진수 체계와 프로그램 내장 방식의 계산기 (1949년, 윌키스)
전자식 계산기 (EDVAC)	2진수 체계와 프로그램 내장 방식을 적용 (1951년, 폰 노이만)
전자식 계산기 (UNIVAC)	최초의 상용 컴퓨터로, 인구조사통계국에 설치됨 (1951년, 에커트와 모클리)
컴퓨터 발전 분기 점	진공관 및 프로그램 내장 방식의 사용은 근대에서 현대로 넘어오게 되는 분기점
주요 부품 발전 과정	릴레이(relay) → 진공관 → 트랜지스터 → 반도체 집적회로(IC)
집적 회로(IC) 정 의	수만 개 이상의 트랜지스터들을 하나의 실리콘 반도체 칩에 집적시킨 전자 부품
IC 장점	처리 속도 향상, 저장 용량 증가, 크기 감소, 가격 하락, 신뢰도 향상, 전력 소모 감소
SSI 정의	트랜지스터 수십 개가 집적된 소규모 IC로, 기본 게이트 기능과 플립플롭 포함
MSI 정의	트랜지스터 수백 개가 집적된 중규모 IC로, 디코더, 인코더, 멀티플렉서, 카운터, 레지스터, 소형 기억 장치 등의 기능 포함
LSI 정의	트랜지스터 수천 개가 집적된 대규모 IC로, 8비트 마이크로프로세서나 소규모 반도체 기억 장치 칩이 이에 해당함
VLSI 정의	트랜지스터 수만에서 수십만 개 이상 집적된 초대규모 IC로, 대용량 반도체 메모리, 1만 게이트 이상의 논리 회로, 단일 칩 마이크로프로세서 등
VLSI의 영향	VLSI의 출현으로 개인용 컴퓨터(PC)가 개발됨
ULSI 정의	트랜지스터가 수백만 개 이상 집적된 극대규모 IC로, 수백 메가바이트 이상의 반도체 기 억 장치 칩 등이 해당
세대 구분 기준	새로운 하드웨어 부품의 출현을 기준으로 분류됨
1세대 컴퓨터 특 징	진공관 사용, 컴퓨터 크기가 매우 크고, 열 발생량/전력 소모가 많음

주제/단락	내용
1세대 컴퓨터 개 념	폰 노이만(von neumann)이 제안한 프로그램 내장 개념을 도입
1세대 컴퓨터 사 용	수치 계산, 통계 등에 사용
1세대 컴퓨터 언 어	기계어와 어셈블리어를 사용
1세대 컴퓨터 예 시	ENIAC, EDSAC, EDVAC, UNIVAC
2세대 컴퓨터 특 징	트랜지스터 사용, 컴퓨터는 더 고속화되고 기억 용량이 증가했으며 크기는 소형화
2세대 컴퓨터 기 억장치	자기 드럼이나 자기 디스크 같은 대용량의 보조기억장치가 사용
2세대 컴퓨터 시 스템	운영체제의 개념과 온라인 실시간 처리 방식을 도입, 다중 프로그래밍 기법 사용
2세대 컴퓨터 사 용 용도	과학 계산, 일반 사무용으로 사용됨
2세대 컴퓨터 소 프트웨어	FORTRAN, ALGOL, COBOL 등 소프트웨어 개발에 주력한 시기
3세대 컴퓨터 특 징	집적회로를 기본 회로 소자로 사용
3세대 컴퓨터 기 억장치	캐시(cache) 기억 장치가 등장
3세대 컴퓨터 시 스템	패밀리(family) 개념의 출현에 따라 프로그램의 호환성 제공, 시분할 처리를 통해 멀티 프로그래밍을 지원
4세대 컴퓨터 특 징	마이크로프로세서 등장 (CPU 회로 전체를 하나의 칩에 넣어 제조한 IC)
4세대 컴퓨터 시 스템	가상 기억 장치의 개념이 도입, 컴퓨터 네트워크가 발전
4세대 컴퓨터 대 중화	개인용 컴퓨터(PC)가 등장하여 대중화됨
4세대 컴퓨터 처 리	온라인 실시간 처리 시스템이 보편화 및 기존 시스템에 비해 빠른 처리 속도를 갖춤
5세대 컴퓨터 구 분	아직 명확하게 구분되지 않음 (부품 집적도보다 시스템 규모 또는 인공지능 같은 획기 적인 응용 소프트웨어 출현으로 정의될 가능성 있음)
5세대 컴퓨터 후 보 기술	인공지능 기반 응용 프로그램, 고도화된 다중 프로세서를 사용한 병렬 처리 컴퓨터, 양 자 컴퓨터, 광자 컴퓨터, 신경망 컴퓨터

주제/단락	내용
무어의 법칙	반도체 집적 회로의 트랜지스터 수가 약 18~24개월마다 2배로 증가한다는 법칙 (1965년)
무어의 법칙 영향	반도체 성능 향상 및 가격 하락이 동시에 이루어지며, IT 산업의 급성장에 기여
무어의 법칙 한계	2010년경 기술적 한계(발열)뿐만 아니라 경제적인 한계(미세공정 비용)도 존재하여 한 계에 부딪힘
황의 법칙	메모리의 발전으로 1년에 2배씩 메모리 반도체 용량이 증가할 것이라고 주장 (2002년)
황의 법칙 증명	NAND 플래시 계열 메모리가 지속적으로 발전하면서 실제로 증명되었으나, 2010년경 에 깨짐