Obučavanje Neuronskih Mreža Prvi Deo

Predavač: Aleksandar Kovačević

Slajdovi preuzeti sa CS 231n, Stanford

http://cs231n.stanford.edu/

Šta smo do sada naučili...

Stohastički Gradijentni Spust sa Mini-Podskupovima (*Mini-batch SGD*)

Loop:

- 1. Semplujemo podskup obučavajućeg skupa
- 2. Za svaki primer iz podskupa
 - izračunavamo izlaz iz mreže ("guramo" ga unapred kroz mrežu feed forward)
 - 2. kada dobijemo izlaz za primer, izračunamo vrednost funkcije greške i tu vrednost dodajemo na ukupnu grešku za taj podskup
 - 3. izračunavamo gradijente za svaki parametar pomoću Backpropagation. Za svaki parametar dodajemo gradijent na zbir gradijenata koje on čuva.
- 3. Izračunavamo prosek gradijenta za svaki parametar. Prosek je zbir gradijenata (dobijen iz koraka 2.3) za ceo podskup podeljen sa veličinom podskupa.
- 4. Menjamo vrednosti parametara pomoću proseka gradijenta koji mu odgovara.

Šta smo do sada naučili...

Implementacija: forward/backward API

Graf (ili Net) objekat. (Pseudo kod)

```
class ComputationalGraph(object):
    # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Implementacija: forward/backward API


```
class MultiplyGate(object):
    def forward(x,y):
       z = x*y
        self.x = x # must keep these around!
       self.y = y
        return 7
    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

(x,y,z su skalari)

Primer: Torch Slojevi

R Losfignoid/se	Add THMN convention of (ELU, Lewiy/NeLU, LogSignoid, LogSidMho, Leolis.	7 days ag
E) LogSolMax.tva	Add THNN committee of (ELU, LewsyReLU, LogSigmoid, LogSofMax, Looku	7 days ag
El Lookup/Tattin Aga	Harmonice Lookup Table signature with outer impt.	5 days ag
Milus	Recurse unpack to table unpack for Lue 5.2	8 regnitie ap
MMI Orientes Aux	Add Starkverage to orderions in the combractor	2 months ag
Margin Criterion has	modernized MargarCriterius	a year ag
MarginRankingCHarronikus	Fix batch mode in Margin Rasking Citiennal	4 days so
Macket	Merge pull request #464 from vigin insular	Z mooths ag
Montos	Add support for negative dimension and both batch and not batch input.	Z months sq
Minha	Marge pull request #464 horn-vigorimasker	2 months ag
Michael Table Ave	cancel unused varietie and qualees impression	.29 days ag
Module lue	Nevert 'Don't re-Reben parameters if they are already flattered'	15 hours ag
Malien	recovery the requirement for providing size in tro-Mild	a year ag
MuConstanting	Sprore updateGodropul if self-gradition in	3 mosths ag
Matchenicka	asserts in MuliCriterius and PassilalCriterios witil	2 munths ag
MultiLabelMargir Creeron (un	Mills owenp of torpt7 tree	4 years oc
McKMarsinDriterion las	multimargin supports pm2	TT mooths ag
Narrow/sus	trouAs in Namow not done in place.	E months ag
Nattw/Table.lus	Narcos/Table	Emetha is
Normaliza has	Remove brown and beddfrom from Normalize, because they allocate memory,	20 den ac
PReLU/um	Buffers for PRIACU cada implementation.	Emela a
Principlus Paddinglus	Buffers for PRIACU cada implementation. Asset triplem on Packing: input was returned in bestupping.	S countries on
Parting lus Parting Distance lus		
Paratellus	Merge pull request #532 from swgengimenter	29 dayn ag
	fix a bug in conditional expression	a month of
ParallelCriterion lus:	asserts in MultiCriterion and PanallelCriterion add	2 months as
Parele/Table los	Paradel optinization, ParadelTable inherbs Container, unit tests	a year as
Power/us	She UNIX line and rigin	7 months sq
READNE ma	do nadifeitos	5 months ag
RFIeLU law	Add nerdunized leaky redified linear unit (RRALU)	3 contra a
RelAtion	withs in-place ResUI and flare a patential divide-by-part in or.Sign	S records as
Replicaterius	Replicate balchMode	I noste s
Restage ka	Added now informative pretty printing.	a year o
Select lus	Initial revising of forch? these	4 3 6 6 7
SelectTable.lue	in Module preserve type sharing semantics (#187); add in Module apply	A importhe ag
Sequential has	Berry September zoner saus	E months as
Sigmoid.tus	Initial reversp of toruti? Inse	A years as
Smooth.1Driefonles	Add Son-Average to criterions in the constructor.	2 months as
Soffiles.tux	Fix verious unused variables in on	a year ap
SelMinter	Fix venous sessed verifies in m	in year or
Sofficeion	fixed a numerical issue in the SoffPlus module (It treaks for input g	2 144/15 70
SolShiva tue	hittal revenip of forch? Inse	4 years to
Sottlign ka	initial revenue of specin7 trees	#years.og
Sparse Jacobian Nai	Fig. springs property aptidates in on	a year a
SparseCirear Na	Using sparse implementation of zeroGradFarameters for SparseLinear	a rooth a
Spatial Adjust wilder Passing	Added Spatial-Operation Profess	1 100 0
Spatial Average Prolong Los	Spatia Powerges Pooling supports pastifing, call mode and austicate past div	29 days as
Speta/Betch/kornalization tue		Zdayna
Souther Comments alternate	Make type() truly recurren.	9 months as
Speta/Constitution has	Fix type) in Spatial Consolution	3 months is
	Fix type) in Spatial Consolution	
Spata/ConvolutionMM.luq		3 months a
Spetial Consolution Mag It is	Ramove unused and expensive nitralization logic from no SpatialConvo.	8 months as
Spatial CrossMapi, RN: tax	code consistency	16 days a
Spetia/DivisiveNermalizatio	Spalle Construtive, Divisive, Subtractive (Normalization work with but	Emerica
Spatia/Dropost/ua	anuli fa on error message	E months as
Spatia/FractionalMailPoolin .	Adding Preclanal Man Posing	2 months is
SpelleFulConvolution/ue	Add adjustment term to SpatialFullConvolution to control the size of	S days n
SpelaiFulConvolutorMap (us		2 years n
Spatial_PPooling/us	Spatia/Average/hooling divides by kill*kiH	10 months a
Spatia Max Pooling lua	SpatisRitarFooling supports padding and cell mode	6 months a
Spatia Martingooling kia	Add SpatialMarCirpooling	20 days o
Speta/SofMax.lue	Updata SnRMax to work in spatial mode.	4 months as
	Merge branch for, feet, revel	3 years ag
Spetiatilub@emplrig.lua		
	Spatial/Combrattive Division Subtractive/Normalization work with but	
Spatial Submach who make	Spatial(Constraines Disnova, Subtractive)Normalization work with bot.	E cromba is
Speta SubSempling Iva Speta SubsectiveNormalis Speta Upillar plingNewed I Speta ZemPadding Iva		E contin of T contin of A year of

Neuronske Mreže: prvo bez analogije sa ljudskim mozgom

(Ranije) Linearna skor funkcija:

$$f = Wx$$

(**Sada**) Neuroska mreža sa dva sloja: $f = W_2 \max(0, W_1 x)$

Neuroska mreža sa tri sloja:

$$f = W_3 \max(0, W_2 \max(0, W_1 x))$$

Neuronske Mreže: Arhitekture

Lecture 4 - 11

Obučavanje Neuronskih Mreža

Malo istorije...

 $\sigma(x) = 1/(1 + e^{-x})$

max(0.1x, x)

Leaky ReLU

Sigmoid

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

tanh(x) tanh

Maxout ELU

max(0,x)ReLU

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- "Skuplja" ulaz na raspon [0,1]
- Istorijski najpopularniji izbor za aktivaciju

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- "Skuplja" ulaz na raspon [0,1]
- Istorijski najpopularniji izbor za aktivaciju

Tri Problema:

 Neuroni u saturaciji (jako male ili velike vrednosti) "ubijaju" gradijent

Šta se dešava kad je x = -10?

Šta se dešava kad je x = 0?

Šta se dešava kad je x = 10?

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- "Skuplja" ulaz na raspon [0,1]
- Istorijski najpopularniji izbor za aktivaciju

Tri Problema:

- 1. Neuroni u saturaciji (jako male ili velike vrednosti) "ubijaju" gradijent
- 2. Izlaz nema srednju vrednost 0 tj. nije *zero-centered*

$$f\left(\sum_{\pmb{i}} w_{\pmb{i}} x_{\pmb{i}} + b
ight)$$

Kako tada izgledaju gradijenti w?

$$f\left(\sum_{\pmb{i}} w_{\pmb{i}} x_{\pmb{i}} + b
ight)$$

Kako tada izgledaju gradijenti w?

Svi su uvek pozitivni ili su svi negativni :(jedan od narednih slajdova objašnjava zašto

(zato želimo da su vrednosti centrirane oko 0!)

Da bi pronašli hipotetički optimalni w sa slike, backprop mora u isto vreme da povećava w₁ i smanjuje w₂.

To neće biti moguće jer mu gradijenti to ne dozvoljavaju pošto su istog znaka.

To će onda rezultovati time da će backprop menjati w_1 i w_2 jedno po jedno.

Prvo će malo da smanji w₂, pa posle poveća w₁.

Tako dobijamo cik-cak patern.

Naravno neće bukvalno menjati samo jedan, već će promene jednog biti toliko male da deluje kao da se ne menja.

Da još malo diskutijemo:

Šta dobijamo ako bi izlaz funkcije aktivacije bio centriran oko 0?

Znači da bi onda neki izlazi bili negativni, a neki pozitivni.

To znači da bi onda ulazi u neke od narednih neurona bili malo negativni malo pozitvni.

To bi nam onda omogućilo da gradijenti težina budu malo negativni malo pozitivni.

Tako bi izbegli cik-cak patern jer bi mogli da u isto vreme jednu težinu povećavamo, a drugu smanjujemo i da se tako krećemo do idealnog w.

Zašto su gradijenti w svi uvek pozivini ili uvek negativni:

$$f = \sum w_i x_i + b$$
 $rac{df}{dw_i} = x_i$ $rac{dL}{dw_i} = rac{dL}{df} rac{df}{dw_i} = rac{dL}{df} x_i$

L bi bila neka funkcija od f, npr. sigmoid.

Ako su svi x pozitivni onda su gradijenti ili pozitivni ili negativni, a to zavisi samo od izvoda dL/df

za sigmoid važi da je dl/df:

(1-f)*f

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- "Sabija" ulaz na raspon [0,1]
- Istorijski najpopularniji izbor za aktivaciju

Tri Problema:

- Neuroni u saturaciji (jako male ili velike vrednosti) "ubijaju" gradijent
- 2. Izlaz nema srednju vrednost 0 tj. nije *zero-centered*
- 3. Računanje exp može biti skupo

- "Sabija" ulaz na raspon [-1,1]
- izlaz je centiran oko 0
- i dalje "ubija" gradjent prilikom staturacije :(

[LeCun et al., 1991]

ReLU (Rectified Linear Unit)

- Izračunava f(x) = max(0,x)
- Nema stauracije (u + regionu)
- Vrlo brzo izračunavanje
- Praksa je pokazala da GD mnogo brže konvergira nego kad koristimo sigmoid ili tanh (npr. nekad i do 6x brže)

[Krizhevsky et al., 2012]

ReLU (Rectified Linear Unit)

- Izračunava f(x) = max(0,x)
- Nema saturacije (u + regionu)
- Vrlo brzo izračunavanje
- Praksa je pokazala da GD mnogo brže konvergira nego kad koristimo sigmoid ili tanh (npr. nekad i do 6x brže)
 - Izlaz nije centriran oko 0
 - Problem:

koji je gradijent kad je x < 0?

Šta se dešava kad je x = -10? Šta se dešava kad je x = 0?

Šta se dešava kad je x = 10?

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

- Nema stauracije (u + regionu)
- Vrlo brzo izračunavanje
- Praksa je pokazala da GD mnogo brže konvergira nego kad koristimo sigmoid ili tanh (npr. nekad i do 6x brže)
- neće "umreti".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

- Nema stauracije (u + regionu)
- Vrlo brzo izračunavanje
- Praksa je pokazala da GD mnogo brže konvergira nego kad koristimo sigmoid ili tanh (npr. nekad i do 6x brže)
- neće "umreti".

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

koristimo backprop dá odredimo parametar alfa kao i sve ostale

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- Sve dobre strane ReLU
- Ne "umire"
- Izlaz bliži centriranosti oko 0
- Moramo da izračunavamo exp()

TLDR: U praksi:

- Koristite ReLU. Korak učenja (*learning rate*) je nešto na šta treba obratiti pažnju
- Probajte Leaky ReLU / Maxout / ELU
- Probajte tanh, ali ne očekujte puno
- Ne koristite sigmoid

Predprocesiranje podataka Data Preprocessing

Korak 1: Predprocesirati podatke

(X [NxD] je matrica podataka, svaki primer je jedan red)

TLDR: U praksi, za slike: samo centriranje

Npr. CIFAR-10 skup podataka sa [32,32,3] slikama

- Oduzimamo srednju sliku (npr. AlexNet)
 (za svaki piksel srednja vrednost po celom skupu podataka = srednja slika [32,32,3])
- Oduzimamo srednju sliku po svakoj boji (npr. VGGNet) (srednja vrednost svih piksela u celom skupu podataka za svaku boju R, G, B posebno = 3 broja)

Inicijalizacija težina

- Šta se dešava kada je W=0 na početku?

- Prva ideja: **Mali slučajno odabrani brojevi** (Gausijana sa srednjom vrednosti 0 i standardnom devijacijom od 1e-2)

W = 0.01* np.random.randn(D,H)

- Prva ideja: **Mali slučajno odabrani brojevi** (Gausijana sa srednjom vrednosti 0 i standardnom devijacijom od 1e-2)

$$W = 0.01* np.random.randn(D,H)$$

Radi dobro za manje mreže. Kod većih mreža aktivacije brzo postaju previše male da bi backprop mogao da bilo šta uradi.

Pogledajmo statistike aktivacija za jednu mrežu

Npr. Mreža od 10 slojeva sa 500 neurona u svakom sloju, koristi se tanh i inicijializacija kao na prethodnom slajdu

```
# assume some unit gaussian 10-D input data
D = np.random.randn(1000, 500)
hidden layer sizes = [500]*10
nonlinearities = ['tanh']*len(hidden layer sizes)
act = {'relu':lambda x:np.maximum(0,x), 'tanh':lambda x:np.tanh(x)}
Hs = \{\}
for i in xrange(len(hidden layer sizes)):
   X = D if i == 0 else Hs[i-1] # input at this layer
    fan in = X.shape[1]
    fan out = hidden layer sizes[i]
   W = np.random.randn(fan in. fan out) * 0.01 # layer initialization
   H = np.dot(X. W) # matrix multiply
   H = act[nonlinearities[i]](H) # nonlinearity
    Hs[i] = H # cache result on this layer
# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i.H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
    print 'hidden layer %d had mean %f and std %f' % (i+1, layer means[i], layer stds[i])
# plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot(Hs.keys(), layer means, 'ob-')
plt.title('layer mean')
plt.subplot(122)
plt.plot(Hs.keys(), layer stds, 'or-')
plt.title('layer std')
# plot the raw distributions
plt.figure()
for i,H in Hs.iteritems():
    plt.subplot(1,len(Hs),i+1)
    plt.hist(H.ravel(), 30, range=(-1,1))
```


Sve aktivacije postaju 0!

Šta se onda dešava sa gradijentima?

Pomoć: razmislite o propagaciji unazad kroz W*X deo.

Skoro svi neuroni su saturirani, vrednosti su -1 ili 1. Gradijenti će svi biti 0.

"Xavier inicijalizacija" [Glorot et al., 2010]

Razumna inicijalizacija.

Rešava problem koji smo imali u prethodnim slajdovima. Ne radi dobro sa Rel U

He et al., 2015 (autori su samo dodali /2 gore)

He et al., 2015 (note additional /2)

ReLU sa Xavier ima grešku 100%, a ako dodamo /2 sve radi

Inicijalizacija težina (kao i sve kod Deep Learning) je aktivna oblast istraživanja...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

. . .

Batch Normalizacija

"Želite da aktivacije budu Gausijane? Transformišite ih u Gausijane ."

recimo da sačuvamo aktivacije jednog podskupa (*batch*) za jedan sloj. Da bi od njih dobili Gausijanu sa sredjom vrednosti 0 i st.dev. 1 treba da primenimo:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

ovo je diferencijabilna fukcija, backprop neće imati problema...

Batch Normalizacija

"Želite da aktivacije budu Gausijane? Transformišite ih u Gausijane ."

N X

 izračunavamo srednju vrednost i st. dev. po svakoj dimenziji (atributu) za N primera u podskupu.

2. Normalizujemo

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Batch Normalizacija

Obično se ubacuje posle svakog potpuno povezanog (ili konvolutivnog) sloja pre funkcije aktivacije

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Normalizacija:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Dozvoljavamo mreži da "zgnječi" i pomeri aktivacije ako želi:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Mreža čak može i da nauči:

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \operatorname{E}[x^{(k)}]$$

i time poništi Batch Norm.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

- Poboljšava tok gradijenata (gradient flow) kroz mrežu
- Dozvoljava veće korake učenja
- Mreža više nije toliko osetljiva na inicijalizacije težina

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

Napomena: kada primenjujemo mrežu na test podatke BatchNorm slojevi funkcionišu drugačije:

Srednja vrednost i st. dev se sad ne izračunavaju. Koriste se one koje su dobijene tokom obučavanja. – mreža je "naučila" na te vrednosti, dok bi vrednosti iz test podataka pokvarile predikcije

(npr. možemo uzeti prosek srednjih vrednosti i st.dev. za jedan BN sloj tokom obučavanja)

Kako Pratiti Proces Obučavanja Babysitting the Learning Process

Korak 1: Predprocesirati podatke

(X [NxD] je matrica podataka, svaki primer je jedan red)

Korak 2: Odabrati Arhitekturu Mreže:

recimo da krenemo sa mrežom sa jednim skrivenim slojem od 50 neurona:

Proveravamo da li smo dobro implementirali funkciju greške: puštamo na ulaz ceo skup podataka, ali na ne-obučenu mrežu

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

Treba da dobijemo skoro maksimalnu vrednost koja je moguća za tu funkciju greške.

Proveravamo da li smo dobro implementirali funkciju greške: puštamo na ulaz ceo skup podataka, ali na ne-obučenu mrežu

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

Treba da dobijemo skoro maksimalnu vrednost koja je moguća za tu funkciju greške.

```
model = init_two_layer_model(32*32*3, 50, 10) # input_size, hidden size, number of classes loss, grad = two_layer_net(X_train, model, y_train, le3) povećamo regularizaciju print loss

3.06859716482 greška je porasla, što je dobro
```

Savet: Za početak probajte da overfitujete (dobijete training grešku od skoro 0%) mali podskup podataka. To je još jedan znak da je implementacija dobra.

Kod gore:

- uzimamo prvih 20 primera iz CIFAR-10
- isključimo regularizaciju (reg = 0.0)
- koristimo običan SGD

Savet: Za početak probajte da overfitujete (dobijete training grešku od 0%) mali podskup podataka.

Vrlo mala greška, train tačnost je 1.00 (100%), što je dobro!

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples
v tiny = v train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
                                  model, two layer net,
                                  num epochs=200, reg=0.0,
                                  update='sqd', learning rate decay=1.
                                  sample batches = False,
                                  learning rate=1e-3, verbose=True)
Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03
      Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03
      finished optimization. best validation accuracy: 1.000000
```

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                  model, two layer net.
                                  num epochs=10, reg=0.000001.
                                  update='sqd', learning rate decay=1,
                                  learning rate=le-6, verbose=True)
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06
Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06
Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06
Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06
```

Greška jedva pada

finished optimization, best validation accuracy: 0.192000

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

greška ne pada: korak učenja je previše mali model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes trainer = ClassifierTrainer() best model, stats = trainer.train(X train, y train, X val, y val, model, two layer net. num epochs=10, reg=0.000001. update='sqd', learning rate decay=1, learning rate=le-6, verbose=True) Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06 Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06 Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06 Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06 Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06 Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06 Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06 Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06 Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06 Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06

> Greška jedva pada: korak učenja je previše mali

finished optimization, best validation accuracy: 0.192000

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

greška ne pada: korak učenja je previše mali model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X_val, y_val, model, two_layer_net, num_epochs=10, reg=0.000001, update='sgd', learning_rate_decay=1, sample_batches = True, learning_rate=le-6, verbose=True)

Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06 rinished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06 rinished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.138000, lr 1.000000e-06 rinished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06 rinished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06 rinished epoch 7 / 10: cost 2.302518, train: 0.179000, val 0.176000, lr 1.000000e-06 rinished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06 rinished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06 rinished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06

Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06

Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06

Greška jedva pada:

finished optimization, best validation accuracy: 0.192000

korak učenja je previše mali

Primetite da train/val tačnost stiže do 20%, otkud sad to? (pomoć: ovo je softmax greška)

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

Šta ako povećamo korak učenja na 10^6? Šta bi moglo loše da se dogodi ☺?

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

> NaN vrednosti za grešku vrlo verovatno znače da je korak učenja

Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06 Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06 Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06

preveliki...

greška ne pada:

korak učenja je previše mali greška eksplodira: korak učenja je previše veliki

Finished epoch 2 / 10: cost 2.176230, train: 0.330000, val 0.350000, lr 3.000000e-03 Finished epoch 3 / 10: cost 1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03 Finished epoch 4 / 10: cost 1.827868, train: 0.329000, val 0.310000, lr 3.000000e-03

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

3e-3 je i dalje previše. Greška eksplodira....

Finished epoch 5 / 10: cost inf, train: 0.128000, val 0.128000, lr 3.000000e-03 Finished epoch 6 / 10: cost inf, train: 0.144000, val 0.147000, lr 3.000000e-03

greška ne pada:

korak učenja je previše mali greška eksplodira: korak učenja je previše veliki

=> Na ovaj način došli bi do nekog raspona koji nam se čini dobar i u kome bi trebali da štelujemo korak učenja fino. U ovom slučaju je to [1e-3 ... 1e-5]

Finished epoch 2 / 10: cost 2.176230, train: 0.330000, val 0.350000, lr 3.000000e-03 Finished epoch 3 / 10: cost 1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03 Finished epoch 4 / 10: cost 1.827868, train: 0.329000, val 0.310000, lr 3.000000e-03

Finished epoch 5 / 10: cost inf, train: 0.128000, val 0.128000, lr 3.000000e-03 Finished epoch 6 / 10: cost inf, train: 0.144000, val 0.147000, lr 3.000000e-03

Počinjemo sa malom regularizacijom i tražimo korak učenja na osnovu koga greška kreće da pada

Napomena: val vrednost možemo dobiti pomoću unakrsne validacije ili validacionog skupa. Unakrsna validacija je realnija, ali spora

Sa validacionim skupom izračunavanje

greške je brže, ali greška može biti

nerealna.

greška ne pada:

korak učenja je previše mali greška eksplodira: korak učenja je previše veliki

Optimizacija Hiperparametara Hyperparameter Optimization

Strategija

grubo -> fino u fazama

Prva faza: samo par epoha za svaku vrednost parametara, dok ne dobijemo grubu ideju koji rasponi su dobri

Druga faza: više epoha, fino štelovanje u okviru raspona iz prve faze

... (faze možemo i ponoviti po potrebi)

Savet:

Ako je greška > 3 * greške od koje smo krenuli, prekinuti obučavanje i promeniti nešto

Na primer: radimo grubu pretragu 5 epoha

```
val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 /
                  val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
                  val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
                  val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
                  val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 /
                                                                               100)
dobre
                  val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7
                                                                               100)
vrednosti
                  val acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01,
                                                                                100
                  val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 /
                                                                               100)
                  val acc: 0.079000, lr: 5.401602e-06, req: 1.599828e+04, (10 / 100)
                  val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)
```

Sada radimo finiju pretragu...

```
max count = 100
                                         podešavamo raspon
                                                                                max count = 100
for count in xrange(max count):
                                                                                for count in xrange(max count):
      reg = 10**uniform(-5, 5)
                                                                                      reg = 10**uniform(-4, 0)
      lr = 10**uniform(-3, -6)
                                                                                      lr = 10**uniform(-3, -4)
                    val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
                     val acc: 0.492000, lr: 2.279484e-04, req: 9.991345e-04, (1 / 100)
                     val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
                     val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
                     val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
                     val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
                     val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
                    val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
                    val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
                    val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
                    val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03. (10 / 100)
                    val acc: 0.475000, lr: 2.021162e-04, req: 2.287807e-01, (11 / 100)
                     val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
                     val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
                    val acc: 0.531000, lr: 9.471549e-04, req: 1.433895e-03, (14 / 100)
                    val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
                    val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
                    val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
                    val acc: 0.509000, lr: 9.752279e-04, req: 2.850865e-03, (18 / 100)
                     val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
                     val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
```

val acc: 0.516000, lr: 8.039527e-04, req: 1.528291e-02, (21 / 100)

53% - relativno dobra tačnost za 2-slojnu mrežu sa 50 neurona u skrivenom sloju.

Sada radimo finiju pretragu...

```
max count = 100
                                         podešavamo raspon
                                                                                max count = 100
for count in xrange(max count):
      reg = 10**uniform(-5, 5)
      lr = 10**uniform(-3, -6)
                     val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
                     val acc: 0.492000, lr: 2.279484e-04, req: 9.991345e-04, (1 / 100)
                     val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
                     val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
                     val acc: 0.460000, lr: 1.113730e-04, req: 5.244309e-02, (4 / 100)
                     val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
                     val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
                    val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
                     val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
                     val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
                     val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
                     val acc: 0.475000, lr: 2.021162e-04, req: 2.287807e-01, (11 / 100)
                     val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
                     val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
                     val acc: 0.531000, lr: 9.471549e-04, req: 1.433895e-03, (14 / 100)
                     val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
                     val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
                     val acc: 0.502000, lr: 3.921784e-04, req: 2.707126e-04, (17 / 100)
                     val acc: 0.509000, lr: 9.752279e-04, req: 2.850865e-03, (18 / 100)
                     val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
                     val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
```

val acc: 0.516000, lr: 8.039527e-04, req: 1.528291e-02, (21 / 100)

```
for count in xrange(max_count):
    reg = 10**uniform(-4, 0)
    lr = 10**uniform(-3, -4)
```

53% - relativno dobra tačnost za 2-slojnu mrežu sa 50 neurona u skrivenom sloju.

Ovaj rezultat za val od 0.531.. bi trebalo da nas brine. Zašto?

Random Pretraga vs. Pretraga po Mreži (Grid Search)

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Hiperparametri sa kojima se igramo:

- arhitektrura mreže
- korak učenja, kako ga menjamo kroz vreme, način promene parametara
- regularizacija (L2/Dropout)
- Neke od ovih pojmova tek treba da učimo

ovako izgleda štelovanje parametra sa ciljem da smanjimo grešku

Šta bi bilo da imamo klaster od 70 mašina za obučavanje ©

Obavezno vizualizujemo i pratimo krivu funkcije greške

lossfunctions.tumblr.com Primeri funkcija greške

lossfunctions.tumblr.com

lossfunctions.tumblr.com

Obevezno vizualizujemo i pratimo tačnost:

velika razlika = overfitting => povećati uticaj regularizacije

nema razlike tj. i training accuracy ima malu vrednost

=> povećati kapacitet modela (npr. dodavanjem još neurona ili slojeva)?

TI DRs Rezime

Danas smo se bavili sa:

- Aktivacionim Funkcijama (koristite ReLU)
- Predprocesiranjem Podataka (slike: oduzeti srednju sliku)
- Inicijalizacija Težina (koristite Xavier inicijalizaciju sa /2)
- Batch Normalizacije (koristite)
- Praćenje Procesa Učenja
- Optimizacija Hiper-parametara (vrednosti treba slučajno birati, iz log prostora, mada možete uvek probati i bez log)

Šta treba da radimo

- Razne načine promene parametara
- Da se više bavimo korakom učenja
- Provera Gradijenata
- Regularizacija (Dropout)
- Evaluacija (Ansambli)