Neighborhoods In Pittsburgh with the most Health Complications

Introduction

For this project we decided to find out which neighborhoods in Pittsburgh had the most health complications/worst access to healthcare. Initially, our goal was to find the neighborhood with the most fast-food restaurants, the poorest air quality, and other factors which might affect the health of an individual. However, after researching for viable datasets, we learned that there was far more data on actual health complications and accessible healthcare facilities. In the effort of using the best data, we decided to use the metrics: obesity rates, diabetes rates, and proximity to hospitals.

Metric no 1. Obesity Rates

The First Dataset we used was the **Obesity Rates in Allegheny County**. This data set provided us with the estimated percentage of residents that struggle with obesity. The process of determining the neighborhood with the highest estimated obesity rate required that we create a new data frame from the original to only include neighborhoods in the Pittsburgh municipality and then sort the data frame to provide the organized data.

```
import pandas as pd
# Load the data from a CSV file
df = pd.read csv('ObesityData.csv')
# strip the data frame so it only contains the data (columns) that I want
stripped df = df[['City Neighborhood', '2006-2010 estimate of obesity']]
#sort the data frame so that the obesity rates are in descending order.
new df sorted = stripped df.sort values(by='2006-2010 estimate of obesity', ascending=False)
# Reset the index to apply weight to eat Neighborhood (Find 1st place)
new df sorted = new df sorted.reset index(drop=True)
pd.set option('display.max rows', None)
# Print the entire dataframe
new_df sorted.head(10)
```

[1]:		City Neighborhood	2006-2010 estimate of obesity
	0	Northview Heights	0.922932
	1	Fairywood	0.820311
	2	Terrace-Village	0.793133
	3	California-Kirkbride	0.771046
	4	Saint-Clair	0.699500
	5	Central-Business-District	0.668012
	6	Homewood-South	0.660585
	7	Lincoln-Lemington-Belmar	0.637099
	8	Bedford-Dwellings	0.636222
	9	Homewood-North	0.619584

: <matplotlib.axes._subplots.AxesSubplot at 0x7fe71a92a5b0>

Metric no. 1 Conculsion

Many of the neighborhood towards the top of our list in terms of estimated rate of obesity are neighborhoods that I am not familiar with. The Neighborhood that I enjoy the most definetly Oakland.

Metric no. 2 Hospitals

The second data set we used for this project was the approximate loactions of hospitals in Pittsburgh. I will be using how many hospitals in each neighboorhood and will be ranking them from the most hospitals to the least. I will be using the data set called "Hospitals 2015 Data", which will have the compiled locations of hospitals and their neighborhoods.

```
import pandas as pd

# loading in data set

HD = pd.read_csv("Hospital_Data.tsv", sep = '\t')

# specifying the city I am looking for

word = 'Pittsburgh, PA'

# making it so that only the rows that have the word Pittsburgh, PA and

HDTSV = HD.head(10)[HD['Address'].str.contains(word)]

# printing

print(HDTSV)
```

```
Facility
                                                            Address \
     UPMC Children's
                              4401 Penn Avenue Pittsburgh, PA 15224
0
1
           UPMC Magee
                            300 Halkett Street Pittsburgh, PA 15213
                            1400 Locust Street Pittsburgh, PA 15219
           UPMC Mercy
       UPMC Passavant 9100 Babcock Boulevard Pittsburgh, PA 15237
4
    UPMC Presbyterian
                            3601 Fifth Avenue Pittsburgh, PA 15213
5
       UPMC Shadyside
                              5230 Center Ave Pittsburgh, PA 15232
  UPMC St. Margaret's
                             815 Freeport Road Pittsburgh, PA 15215
  40.467315 -79.953590
  40.436889 -79.960700
  40.436137 -79.985285
  40.573319 -80.014525
  40.441544 -79.959356
  40.454845 -79.939793
  40.489286 -79.895994
<ipython-input-53-add7b1208f99>:13: UserWarning: Boolean Series key will be reindexed to match DataFrame index.
 HDTSV = HD.head(10)[HD['Address'].str.contains(word)]
```

0 = Bloomfield 1 = North Oakland 3 = Central Business District 4 = Borough of Franklin Park 5 = North Oakland 6 = Shadyside 7 = Downtown

Conlusion:

From what I can see from the data above, it seems that out of the 90 suburbs in Pittsburgh, there is only 7 that have a hospital in their neighborhood. It also seems that North Oakland has the most hospitals out of all other neighborhoods.

Metric no. 3 diabetes

df grouped

The metric used to determine the best neighborhood in Pittsburgh is the diabetes rate. This is calculated by summing up the number of people in each neighborhood who have been diagnosed with diabetes or have high blood pressure or high body weight, which are risk factors for diabetes. The dataset used for this project is the diabetes_all_2016.csv file, which contains information about diabetes prevalence in different neighborhoods of Pittsburgh.

```
import pandas as pd
import matplotlib.pyplot as plt
# Load the diahetes data
df diabetes = pd.read csv('Data/diabetes all 2016.csv', index col='CT')
# Load the CT to Neighborhood mapping data
df_places = pd.read_csv('Data/CT2Place.csv')
# merge the diabetes data with the CT to Neighborhood mapping data
df merged = pd.merge(df diabetes, df places, on='CT', how='left')
# drop the rows where the Neighborhood value is missing
df merged = df merged.dropna(subset=['Neighborhood'])
# group by neighborhood and calculate the mean value of each column within each group
df grouped = df merged.groupby('Neighborhood').mean()
# reset the index to make "Neighborhood" a regular column
df cleaned = df grouped.reset index()
```

t[3]:		Neighborhood	ст	BPAD	BPAN	BPAN2	BWAD	BWAN	BWAN2	BMAD	BMAN	BMAN2	SUMLEV	COUNTY	COUSUB	BLK
	0	Allegheny Center	562700.000000	760.000000	57.000000	47.000000	432.000000	33.000000	29.000000	328.000000	24.000000	18.000000	750.0	3.0	61000.0	2.000
	1	Allegheny West	562700.000000	760.000000	57.000000	47.000000	432.000000	33.000000	29.000000	328.000000	24.000000	18.000000	750.0	3.0	61000.0	1.000
	2	Allentown	180300.000000	1254.000000	101.000000	83.000000	735.000000	65.000000	53.000000	519.000000	36.000000	30.000000	750.0	3.0	61000.0	2.000
	3	Arlington - Arlington Heights	160800.000000	1165,000000	80.000000	62.000000	606.000000	46.000000	32.000000	559.000000	34.000000	30,000000	750.0	3.0	61000.0	1.000
	4	Banksville	202300.000000	1934.000000	184.000000	143.000000	1063.000000	87.000000	67.000000	871.000000	97.000000	76.000000	750.0	3.0	61000.0	2.500
						:29				,m				,		
	68	Upper Lawrenceville	101100.000000	1080.000000	97.000000	65.000000	583.000000	48.000000	33.000000	497.000000	49.000000	32.000000	750.0	3.0	61000.0	1.873
	69	West End	532478.378378	1445.054054	130.513514	102.594595	769.108108	62.810811	47.216216	675.945946	67.702703	55.378378	750.0	3.0	61000.0	1.054
	70	West Oakland	40200.000000	487.000000	54.000000	36.000000	286.000000	38.000000	26.000000	201.000000	16.000000	10.000000	750.0	3.0	61000.0	1.515
	71	Westwood	563100.000000	1995.000000	171.000000	128.000000	1061.000000	91.000000	71.000000	934.000000	80.000000	57.000000	750.0	3.0	61000.0	1.500
	72	Windgap	563000.000000	1428.000000	152.000000	116.000000	821.000000	79.000000	64.000000	607.000000	73.000000	52.000000	750.0	3.0	61000.0	2.266
7	∢	ows × 17 colum	000000	_	_	_	_	_	_	_	_	_	_			>
		 CT: census tract identifier BPAD: number of people with high blood pressure, adjusted for age and sex 														
		BPAD: number of people with high blood pressure, adjusted for age and sex BPAN: number of people with high blood pressure, age-adjusted only														
	•	BPAN2: number of people with high blood pressure, age and sex adjusted to the 2000 US population														
	•	BWAD: number of people with obesity, adjusted for age and sex														
			er of people wit	,, 5												
			per of people w				ne 2000 US po	opulation								
			er of people wit		70	77 8										
			er of people wit per of people w	and the second of the			the 2000 LIS	nonulation								
		DITIONIAL HUITE	AT OF PEOPLE W	itii diabetes, t	age and sex	aajastea to	the 2000 03	ροραιατίστι								

```
df merged = df cleaned
```

The Best Neighborhood:

Using the approach outlined above, the best neighborhood in Pittsburgh in terms of diabetes rate is "South Shore", with a diabetes rate of 1. This neighborhood has the lowest diabetes rate of all the neighborhoods in Pittsburgh and is followed closely by "Central Oakland" with a diabetes rate of 5. The two neighborhoods are located near to each other and are the places Pitt Students visit the most.

```
# calculate the diabetes rate for each neighborhood
df_merged['diabetes_rate'] = (df_merged_filter(like='BP').sum(axis=1) + df_merged_filter(like='BW').sum(axis=1) + df_merged_filter(like='BW').sum(axis=1) / 1000(
# sort the neighborhoods by diabetes rate in ascending order
df_sorted = df_merged.sort_values(by='diabetes_rate')
# create a bar plot showing the 10 neighborhoods with the lowest diabetes rate
df top10 = df sorted. head(10)
ax = df top10.plot(kind='bar', x='Neighborhood', y='diabetes rate')
ax. set_xticklabels(df_top10['Neighborhood'], rotation=45, ha='right')
ax. set_title('Top 10 neighborhoods with the lowest diabetes rate')
ax. set_xlabel('Neighborhood')
ax. set vlabel ('Diabetes rate')
plt. show()
# create a bar plot showing the 10 neighborhoods with the highest diabetes rate
df_last10 = df_sorted.tai1(10)
ax = df last10.plot(kind='bar', x='Neighborhood', y='diabetes rate')
ax. set_xticklabels(df_last10['Neighborhood'], rotation=45, ha='right')
ax. set_title('Last 10 neighborhoods with the highest diabetes rate')
ax. set xlabel ('Neighborhood')
ax. set ylabel('Diabetes rate')
plt. show()
```


From Our three datasets, we found the following data:

Highest Obesity Rates:

- 0 Northview Heights
- 1 Fairywood
- 2 Terrace-Village 3 California-Kirkbride
- 4 Central-Buisness-District

Most cases of Diabetes:

- 0 Bluff
- 1 Central-Buisness-District 2 Squirrel Hill South
- 3 Knoxville
- 4 Brookline

Neighborhoods with Hospitals in them: 0 Bloomfield

- 1 North Oakland
- 2 Central-Business-District
- 3 Borough of Franklin
- 4 ShadySide 5 Downtown
- 3 DOWINO

The Neighborhood in Pittsburgh with the most health complications is ... Central-Buisness-District

Although the Central Business District ranked among the few neighborhoods with hospitals in them, the fact that it was the only neighborhood in the top five rankings for both Obesity rate and Diabetes cases outways the third metric.