Vector Spaces

Definition: Vector Space

Let \mathbb{F} be a field (usually either \mathbb{R} or \mathbb{C}) called *scalars* and let E be a set of objects called *vectors* that is equipped with two binary operators:

Vector Addition: $+: E \times E \to E$ where $(\vec{x}, \vec{y}) \mapsto \vec{x} + \vec{y}$ Scalar Multiplication: $: \mathbb{F} \times E \to E$ where $(\alpha, \vec{x}) \mapsto \alpha \vec{x}$

To say that E is a *vector space* (over \mathbb{F}) means that the following axioms hold $\forall \vec{x}, \vec{y} \in E$ and $\forall \alpha, \beta \in \mathbb{F}$:

- 1). (E, +) is an abelian group
 - a). Closure
 - b). Commutative
 - c). Associative
 - d). $\exists \vec{z}, \vec{x} + \vec{z} = \vec{y}$
- 2). Left Distributive: $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$
- 3). Right Distributive: $(\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x}$
- 4). Associative Multiplication: $\alpha(\beta \vec{x}) = (\alpha \beta) \vec{x}$
- 5). Multiplicative Identity: $1\vec{x} = \vec{x}$

Theorem: Additive Identity

Let E be a vector space over a scalar field $\mathbb{F} \colon$

$$\exists \, \vec{0} \in E, \forall \, \vec{x} \in E, \vec{x} + \vec{0} = \vec{x}$$

Moreover, $\vec{0}$ is unique.

This $\vec{0}$ is called the *additive identity* for E.

Proof

Assume $\vec{x} \in E$.

Since (E,+) is an abelian group, $\exists \vec{0} \in E, \vec{x} + \vec{0} = \vec{x}$.

Assume $\vec{y} \in E$.

$$\exists \vec{z} \in E, \vec{x} + \vec{z} = \vec{y}$$

$$\vec{y} + \vec{0} = (\vec{x} + \vec{z}) + \vec{0} = \vec{x} + (\vec{z} + \vec{0}) = \vec{x} + (\vec{0} + \vec{z}) = (\vec{x} + \vec{0}) + \vec{z} = \vec{x} + \vec{z} = \vec{y}$$

Now, assume $\vec{0}, \vec{0}' \in E$ are both additive identities.

$$\vec{0} + \vec{0}' = \vec{0}$$

$$\vec{0} + \vec{0}' = \vec{0}' + \vec{0} = \vec{0}'$$

$$\vec{0} = \vec{0}'$$

Theorem

Let E be a vector space over a scalar field \mathbb{F} :

$$\forall \vec{x}, \vec{y} \in E, \exists ! \vec{z} \in E, \vec{x} + \vec{z} = \vec{y}$$

(i.e., the \vec{z} is unique)

Proof

Assume $\vec{x}, \vec{y} \in E$.

Since E is an abelian group, $\exists \vec{z} \in E, \vec{x} + \vec{z} = \vec{y}$.

Assume $\exists \vec{z}' \in E, \vec{x} + \vec{z}' = \vec{y}$.

$$\exists \vec{u} \in E, \vec{z}' + \vec{u} = \vec{z}$$

$$\vec{y} = \vec{x} + \vec{z} = \vec{x} + (\vec{z}' + \vec{u}) = (\vec{x} + \vec{z}') + \vec{u} = \vec{y} + \vec{u}$$

Thus \vec{u} is the unique additive identity and:

$$\therefore \vec{z} = \vec{z}' + \vec{u} = \vec{z}' + \vec{0} = \vec{z}'$$

Theorem: Additive Inverses

Let E be a vector space over a scalar field \mathbb{F} :

$$\forall \vec{x} \in E, \exists (-\vec{x}) \in E, \vec{x} + (-\vec{x}) = \vec{z}$$

Moreover, $(-\vec{x})$ is unique.

 $(-\vec{x})$ is called the *additive inverse* for \vec{x} .

Proof

Assume $\vec{x} \in E$.

Since E is an abelian group, $\exists (-\vec{x}) \in E, \vec{x} + (-\vec{x}) = \vec{0}$.

By previous theorem, $(-\vec{x})$ is unique.

Notation

$$\vec{x} + (-\vec{y}) = \vec{x} - \vec{y}$$

Theorem: Vector Space Properties

Let E be a vector space over a scalar field \mathbb{F} . $\forall \vec{x} \in E$ and $\forall \lambda \in \mathbb{F}$:

- 1). $\vec{0} = -\vec{0}$
- 2). $0\vec{x} = \vec{0}$
- 3). $\lambda \vec{0} = \vec{0}$
- 4). $0 \vec{x} = -\vec{x}$
- 5). (-1)x = -x
- 6). $\lambda \vec{x} = 0 \implies \lambda = 0 \text{ or } \vec{x} = \vec{0}$

Proof

1).
$$-\vec{0} = -\vec{0} + \vec{0} = \vec{0} + (-\vec{0}) = \vec{0}$$

2).
$$0\vec{x} = (0+0)\vec{x} = 0\vec{x} + 0\vec{x}$$

Thus $0\vec{x}$ is the unique additive identity, and:

$$\therefore 0\vec{x} = \vec{0}$$

3).
$$\lambda \vec{0} = \lambda (\vec{0} + \vec{0}) = \lambda \vec{0} + \lambda \vec{0}$$

Thus $\lambda \vec{0}$ is the unique additive identity, and:

$$\lambda \vec{0} = \vec{0}$$

4).
$$0 - \vec{x} = 0 + (-\vec{x}) = (-\vec{x}) + \vec{0} = (-\vec{x})$$

5).
$$\vec{x} + (-1)\vec{x} = 1\vec{x} + (-1)\vec{x} = [1 + (-1)]\vec{x} = 0\vec{x} = \vec{0}$$

This $(-1)\vec{x}$ is the unique additive inverse for \vec{x} , and:

$$\therefore (-1)\vec{x} = (-\vec{x})$$

6). Assume
$$\lambda \vec{x} = \vec{0}$$
.

Trivial if $\vec{x} = 0$, so AWLOG $\vec{x} \neq 0$

ABC:
$$\lambda \neq 0$$

$$\lambda \vec{x} = \vec{0}$$

$$\frac{1}{\lambda} (\lambda \vec{x}) = \frac{1}{\lambda} \cdot \vec{0}$$

$$(\frac{1}{\lambda} \cdot \lambda)\vec{x} = \vec{0}$$

$$1\vec{x} = \vec{0}$$

$$\vec{x} = \vec{0}$$

CONTRADICTION!

$$\lambda = 0$$

Examples

- 1). $E = {\vec{0}}$ is called the trivial vector space.
- 2). $E=\mathbb{R}^n$ with $\mathbb{F}=\mathbb{R}$ equipped with component-wise addition and scalar multiplication.
- 3). $E=\mathbb{C}^n$ with $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ equipped with component-wise addition and scalar multiplication.
- 4). Let E be a vector space over a field F and let X be a non-empty set. The set of functions:

$$\mathcal{F} = \{ f : X \to E \}$$

equipped with the standard operations:

$$(f+g)(x) = f(x) + g(x)$$

$$(\lambda f)(x) = \lambda f(x)$$

is a vector space.