Esercizi su valutazioni e tautologie

1 Valutazioni

1.
$$[\varphi \to (\psi \to \varphi)]_v = 1$$

Per ogni valutazione v:

$$\begin{split} \llbracket \varphi \to (\psi \to \varphi) \rrbracket_v &= 1 \iff \llbracket \varphi \rrbracket_v = 0 \quad \text{oppure} \quad \llbracket \psi \to \varphi \rrbracket_v = 1 \\ &\iff \llbracket \varphi \rrbracket_v = 0 \quad \text{oppure} \quad \llbracket \psi \rrbracket_v = 0 \quad \text{oppure} \quad \llbracket \varphi \rrbracket_v = 1 \\ &\iff \llbracket \varphi \rrbracket_v = 0 \quad \text{oppure} \quad \llbracket \varphi \rrbracket_v = 1 \end{split}$$

2.
$$\varphi \vDash \varphi \lor \psi$$

Per ogni valutazione v:

$$\varphi \vDash \varphi \lor \psi \iff \forall v (\llbracket \varphi_v \rrbracket = 1 \to \llbracket \varphi \lor \psi \rrbracket_v = 1)$$

$$\iff \forall v (\llbracket \varphi_v \rrbracket = 1 \to (\llbracket \varphi \rrbracket_v = 1 \text{ oppure } \llbracket \psi \rrbracket_v = 1))$$

3. $\varphi \lor \psi \not\models \varphi$

Quindi:

$$\begin{split} \varphi \vee \psi \not\vDash \varphi &\iff \llbracket \varphi \vee \psi \rrbracket_v = 1 \quad \mathrm{e} \quad \llbracket \varphi \rrbracket_v = 0 \\ &\iff \llbracket \psi \rrbracket_v = 1 \quad \mathrm{e} \quad \llbracket \varphi \rrbracket_v = 0 \end{split}$$

$$4. \models \neg(\varphi \land \psi) \leftrightarrow \neg(\varphi) \lor \neg(\psi)$$

Per ogni valutazione v:

$$\begin{split} &\models \neg(\varphi \wedge \psi) \leftrightarrow \neg(\varphi) \vee \neg(\psi) \iff \llbracket \neg(\varphi \wedge \psi) \rrbracket_v = 1 \quad \text{e} \quad \llbracket \neg(\varphi) \vee \neg(\psi) \rrbracket_v = 1 \\ &\iff (\llbracket \varphi \rrbracket_v = 0 \text{ oppure } \llbracket \psi \rrbracket_v = 0) \quad \text{e} \\ &\qquad \qquad (\llbracket \neg \varphi \rrbracket_v = 1 \text{ oppure } \llbracket \neg \psi \rrbracket_v = 1) \\ &\iff \llbracket \varphi \rrbracket_v = 0 \text{ oppure } \llbracket \psi \rrbracket_v = 0 \end{split}$$

5.
$$\models \bot \leftrightarrow \varphi \land \neg \varphi$$

Per ogni valutazione v:

$$\begin{split} \vdash \bot \leftrightarrow \varphi \land \neg \varphi &\iff \llbracket \bot \rrbracket_v = 0 \quad \text{e} \quad \llbracket \varphi \land \neg \varphi \rrbracket_v = 0 \\ &\iff \llbracket \bot \rrbracket_v = 0 \quad \text{e} \quad \llbracket \varphi \rrbracket_v = 0 \quad \text{e} \quad \llbracket \neg \varphi \rrbracket_v = 0 \\ &\iff \llbracket \varphi \rrbracket_v = 0 \quad \text{oppure} \quad \llbracket \varphi \rrbracket_v = 1 \end{split}$$

2 Tabelle di verità

1. $p \rightarrow (q \rightarrow p)~$, è una tautologia.

2.
$$\underbrace{(p \to (q \to r))}_{\alpha} \to \underbrace{((p \to q) \to (p \to r)}_{\beta}$$
 , è una tautologia.

р	q	r	$q \rightarrow r$	$p \to q$	$p \to r$	α	β	$\alpha \to \beta$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	1	0	0	0	1	1
1	0	1	1	0	1	1	1	1
1	1	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1	1

3. $p \lor q \to p$, non è una tautologia.

p	q	$p \vee q$	$p \lor q \to p$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	1	1