

定点数 v.s. 浮点数

定点数: 小数点的位置固定

Eg: 996.007

——常规计数

浮点数: 小数点的位置不固定

Eg: 9.96007*10²

——科学计数法

二进制的定点数、浮点数也类似

无符号数的表示

通常只有无符 号整数,而没 有无符号小数

无符号数:整个机器字长的全部二进制位均为数值位,没有符号位,相当于数的绝对值。

1001 1100B

$$=1\times2^7 + 0\times2^6 + 0\times2^5 + 1\times2^4 + 1\times2^3 + 1\times2^2 + 0\times2^1 + 0\times2^0$$

=156D

2 ¹⁶	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰
65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

表示范围

8位二进制数: 28种不同的状态

$$S_n = a_1 \cdot \frac{1 - q^n}{1 - q}$$

n位的无符号数<mark>表示范围</mark>为: $0 \sim 2^n - 1$

有符号数的表示

应固定好小数点的位置

有符号数的定点表示

定点整数

定点小数

注:可用原码、反码、补码三种方式来表示定点整数和定点小数。还可用移码表示定点整数。

若真值为x,则用 $[x]_{\mathbb{R}}$ 、 $[x]_{\mathbb{Q}}$ 、 $[x]_{\mathbb{A}}$ 、 $[x]_{\mathbb{R}}$ 分别表示真值所对应的原码、反码、补码、移码

原码

定点<mark>整数</mark>

原码: 用尾数表示真值的绝对值,符号位"0/1"对应"正/负"

尾数的位权

常写为: [x]_原 = 1,0010011

若未指明机器字长,也可写为: [x]原=1,10011

定点<mark>小数</mark>

若机器字长为n+1位,则尾数占n位

常写为: [x]原= **1.**1100000

如: 机器字长为8位

<注公众号【研途小时】获取后续课程完整更新 !</p>

王道考研/CSKAOYAN.COM

原码

定点整数

原码: 用尾数表示真值的绝对值,符号位"0/1"对应"正/负"

符 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

若机器字长n+1位,<mark>原码整数</mark>的表示范围: $-(2^{n}-1) \le x \le 2^{n}-1$ (关于原点对称)

真值0有 +0 和 -0 两种形式

定点小数

若机器字长为n+1位,则尾数占n位

符 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷

若机器字长n+1位, 原码小数的表示范围: $-(1-2^{-n}) \le x \le 1-2^{-n}$ (关于原点对称)

真值0有+0和-0两种形式

反码

反码: 若符号位为0,则反码与原码相同

若符号位为1,则数值位全部取反

x= +19D [x]_原 =**0**,0010011

[x]_反 **=0**,0010011

x= -19D [x]_□ =1,0010011

 $[x]_{\boxtimes} = 1,1101100$

定点整数 的表示 "反码"只是"原码"转变为 "补码"的一个中间状态,实 际中并没什么卵用

若机器字长n+1位,<mark>反码整数</mark>的表示范围: $-(2^{n}-1) \le x \le 2^{n}-1$ (关于原点对称)

真值0有+0和-0两种形式

[+0]_原=00000000 [-0]_原=10000000

 $[+0]_{\cancel{\boxtimes}} = 00000000$ $[-0]_{\cancel{\boxtimes}} = 11111111$

x = +0.75D $[x]_{\text{fi}} = 0.1100000$

 $[x]_{\text{1}} = 0.1100000$

x = -0.75D $[x]_{\text{$\mathbb{R}}$} = 1.1100000$

 $[x]_{\text{1}} = 1.0011111$

定点小数 的表示 若机器字长n+1位,<mark>反码小数</mark>的表示范围: $-(1-2^{-n}) \le x \le 1-2^{-n}$ (关于原点对称)

真值0有+0和-0两种形式

补码

补码: 正数的补码 = 原码

负数的补码 = 反码末位+1(要考虑进位)

将负数补码转回原码的方法相同:尾数取反,末位+1

x= +19D [x]_原 =**0**,0010011

[x]_反 =**0**,0010011

 $[x]_{\hat{x}} = 0,0010011$

x= -19D [x]_□ =1,0010011

[x]_反 =**1**,1101100

 $[x]_{\stackrel{?}{\uparrow}} = 1,1101101$

[+0]_原=00000000

[+0]反=000000000

[-0]_原=10000000

[-0]_反=11111111

 $[+0]_{\dot{\gamma}\dot{\gamma}} = [-0]_{\dot{\gamma}\dot{\gamma}} = 000000000$

注意!补码的真值0 只有一种表示形式

定点整数补码 $[x]_{\stackrel{}{\uparrow}} = 1,0000000$ 表示 $x = -2^7$ 若机器字长n+1位,<mark>补码整数</mark>的表示范围: $-2^n \le x \le 2^n-1$ (比原码多表示一个 -2^n)

定点小数补码 $[x]_{\uparrow h} = 1.00000000$ 表示 x = -1 若机器字长n+1位, <mark>补码小数</mark>的表示范围: $-1 \le x \le 1-2^{-n}$ (比原码多表示一个 -1)

x = +0.75D $[x]_{\text{$\mathbb{R}}$} =$ **0.**1100000

 $[x]_{\text{1}} = 0.1100000$

 $[x]_{\hat{a}\hat{b}} = 0.1100000$

x = -0.75D $[x]_{\text{fi}} = 1.1100000$

 $[x]_{\bowtie} = 1.0011111$

 $[x]_{\hat{x}} = 1.0100000$

定点小数 的表示

定点整数

的表示

关注公众号【研途小时】获取后续课程完整更新 !

移码

移码: 补码的基础上将符号位取反。注意: 移码只能用于表示整数

[x]_反 =**0**,0010011

 $[x]_{\hat{x}} = 0,0010011$

[x]₁₈ = **1**,0010011

x= -19D [x]原=**1**,0010011

[x]_反 =**1**,1101100

 $[x]_{\hat{x}} = 1,1101101$

[x]₁₈ =**0**,1101101

[+0]原=00000000

[-0]_原=10000000

[+0]_反=00000000

[-0]_反=11111111

 $[+0]_{\hat{x}\hat{b}} = [-0]_{\hat{x}\hat{b}} = 00000000$

注意!补码的真值0只有一种表示形式

[+0]₈= [-0]₈= 10000000

若机器字长n+1位,<mark>移码整数</mark>的表示范围: $-2^n \le x \le 2^{n}-1$ (与补码相同)

定点整数

的表示

移码

	((21))	-11				
真值(十进制)	补码	移码				
-128	1000 0000	0000 0000				
-127	1000 0001	0000 0001				
-126	1000 0010	0000 0010				
3	1111 1101	0111 1101				
-2	1111 1110	0111 1110				
-1	1111 1111	0111 1111				
0	0000 0000	1000 0000				
1	0000 0001	1000 0001				
2	0000 0010	1000 0010				
3	0000 0011	1000 0011				
		···				
124	0111 1100	1111 1100				
125	0111 1101	1111 1101				
126	0111 1110	1111 1110				
127	0111 1111	1111 1111				

真值增大

移码表示的整数 很方便对比大小

关注公众号【研途小时】获取后续课程完整更新 !

用几种码表示定点整数

					1 4				
 行数	 机器数	真值(十进制)							
1 分数	17166 安义	无符号数	原码	反码	补码	移码			
1	0000 0000	0	+0	+0	+0,-0	-128			
2	0000 0001	1	+1	+1	+1	-127			
3	0000 0010	2	+2	+2	+2	-126			
		((20)						
126	0111 1101	125	+125	+125	+125	-3			
127	0111 1110	126	+126	+126	+126	-2			
128	0111 1111	127	+127	+127	+127	-1			
129	1000 0000	128	-0	-127	-128	0			
130	1000 0001	129	-1	-126	-127	1			
131	1000 0010	130	-2	-125	-126	2			
	74/101.				4	A			
253	1111 1100	252	-124	-3	-420	124			
254	1111 1101	253	-125	-2	-3	125			
255	1111 1110	254	-126	-1	-2	126			
256	1111 1111	255	-127	-0	-1	127			

原码和反码的真值0有两种表示

补码和移码的真值0只有一种表示补码和移码可以多表示一个负数

练习

定点整数 x=50, 用8位原码、反码、补码、移码表示。

 $[x]_{\bar{\mathbb{R}}} = \mathbf{0}0110010; \quad [x]_{\bar{\mathbb{R}}} = \mathbf{0}0110010; \quad [x]_{\bar{\mathbb{R}}} = \mathbf{1}0110010;$

定点整数 x=-100, 用8位原码、反码、补码、移码表示。

 $[x]_{\bar{\mathbb{R}}} = 11100100; \quad [x]_{\bar{\mathbb{R}}} = 10011011; \quad [x]_{\bar{\mathbb{A}}} = 10011100; \quad [x]_{\bar{\mathbb{R}}} = 00011100;$

求下列各种码对应的真值:

[x]原= 1 0001101	→ x=-13	[x] _原 = 0 0001101
[x] _反 = 1 0001101	→ x=-114	[x] _反 = 0 0001101
	\ . .	

$$[x]_{\begin{subarray}{l} | x| \\ \begin{subarray}{l} | x| \\ \bext{subarray} \\ \begin{subarray}{l} | x| \\ \begin{subarray}{l} | x$$

$$[x]_{8} = 10001101 \rightarrow x=13$$
 $[x]_{8} = 00001101 \rightarrow x=-115$

技巧:由[x]补快速求[-x]补的方法

符号位、数值位全部取反,末位+1

 \rightarrow x=13

 \rightarrow x=13

知识回顾

知识回顾

原码和反码的真值0有两种表示;补码和移码的真值0只有一种表示。若<mark>机器字长为n+1位</mark>,则:

原码和反码

——整数表示范围- $(2^{n}-1) \le x \le 2^{n}-1$; 小数表示范围- $(1-2^{-n}) \le x \le 1-2^{-n}$

补码

——整数表示范围 $-2^n \le x \le 2^{n-1}$; 小数表示范围 $-1 \le x \le 1-2^{-n}$

移码

——整数表示范围 $-2^{n} \le x \le 2^{n}-1$; 移码全0真值最小,移码全1真值最大

△ 公众号: 王道在线

b站: 王道计算机教育

抖音:王道计算机考研