Referencias de polaridad

Si se considera una linterna portátil constituida por una batería, una lampara, un interruptor y cables de conexión, tal y como se representa en la Figura 1, cuando el interruptor se cierra, se establece un recorrido eléctrico cerrado conocido como **circuito**.

Figura 1. Ejemplo de circuito.

La tensión de la batería obliga a que se produzca una circulación de cargas (conocida como corriente eléctrica) de uno de sus terminales a su otro terminal a través de la lampara y los cables. Las cargas en movimiento transfieren energía de la batería a la lampara, en la que la potencia eléctrica se convierte en calor y luz.

Se van a estudiar a continuación las relaciones básicas y unidades de carga, corriente, tensión y potencia eléctrica, así como las referencias de polaridad.

Carga y corriente eléctrica:

Una carga eléctrica, denominada como q, posee dos características: cantidad y polaridad.

La cantidad se expresa en culombios (C) en el sistema internacional.

La polaridad de la carga puede ser positiva o negativa.

Siempre que una carga neta circula más allá de un punto dado existe una corriente eléctrica.

Si se tiene una carga positiva $q_1=8\ C$ y otra negativa $q_2=-3\ C$ desplazándose hacia la derecha y otra carga positiva $q_3=1\ C$ lo hace hacia la izquierda, tal como se muestra en la Figura 2.

Figura 2. Polaridad en la corriente eléctrica.

La trasferencia de carga de izquierda a derecha es:

$$\Delta q = q_1 + q_2 - q_3 = 8 + (-3) - 1 = 4 C$$

Si la trasferencia de carga se realiza en un intervalo de tiempo Δt , entonces el flujo o corriente es $\frac{\Delta q}{\Delta t}$.

En teoría de circuitos se define la corriente instantánea como:

$$i(t) = \frac{\partial q}{\partial t}$$

que es el valor límite de $\frac{\Delta q}{\Delta t}$ cuando $\Delta t \rightarrow 0$.

La unidad de corriente eléctrica en sistema internacional es el amperio (A):

$$1A = 1\frac{C}{s}$$

La dirección de una corriente positiva *i* es la dirección de una trasferencia de carga positiva equivalente entre dos puntos.

Se establece un sentido arbitrario mediante una flecha tal y como se muestra en la Figura 3.

Figura 3. Corriente eléctrica en un circuito.

Si las cargas ideales positivas circulan en el sentido de la flecha, se considera corriente **positiva** y si circulan en sentido contrario corriente **negativa**.

En este caso representado en la Figura 3 también se podría poner i_{AB} . En este caso, si i=-7~A circula una corriente de 7~A de B a A y $i_{AB}=-7~A$ o $i_{BA}=7~A$.

Energía y tensión eléctrica o tensión entre dos puntos A y B.

La corriente que circula por una lámpara produce calor y luz porque las cargas en movimiento ceden energía a la lampara. Cada carga experimenta un cambio de energía potencial y por tanto existe una **diferencia de potencial** entre los terminales. La variable eléctrica asociada con la diferencia de potencial es la **tensión**.

Si la carga ∂q cede energía al ir del punto A al B, entonces la tensión es $\frac{\partial w}{\partial q}$.

La tensión en el sistema internacional se mide en voltios (V):

$$1 V = 1 \frac{J}{C}$$

Entonces la tensión eléctrica o tensión entre dos puntos A y B es:

$$u_{AB} = u_A - u_B$$

Esto se puede ver representado en un circuito eléctrico en la Figura 4.

Figura 4. Tensión en un circuito eléctrico.

Donde se establece que $u=u_A-u_B$. De esta manera, si $u=-23\ V$, el potencial en B excede al de A en 23 V, con lo que $u_{BA}=23\ V$ o $u_{AB}=-23\ V$.

Potencia eléctrica.

Es la velocidad con la que se realiza un trabajo o la velocidad de trasferencia de energía, se puede definir de la forma:

$$p(t) = \frac{\partial w(t)}{\partial t}$$

Si se consideran la intensidad y la tensión en el mismo sentido, tal y como se muestra en la Figura 5, la expresión de la potencia entrante es:

$$p(t) = u(t) \cdot i(t)$$

Esto se representa en la Figura 5.

Figura 5. Sentidos de intensidad y tensión para la consideración de la potencia eléctrica.

Para valores positivos corresponde a una potencia consumida y para valores negativos corresponde a una potencia suministrada.

La unidad en el sistema internacional es el vatio (W):

$$1 W = 1V \cdot A$$