R

Jeff Lin

2020-09-16

Contents

			5
1	\mathbf{R}		7
	1.1	R	7
	1.2	RSudio	7
	1.3		8
	1.4	Object	9
	1.5		9
	1.6		11
	1.7		11
	1.8		11
	1.9	RStudio	12
	1.10		13
	1.11	Packages	14
	1.12		14
	1.13		15
2	Vec	ctor	17
	2.1		17
	2.2		17
	2.3		20
	2.4		21
	2.5		23
	2.6		24
	2.7		25
	2.8	Inxex	26
	2.0		
			$\frac{20}{27}$
	2.9 2.10	() Missing Values	
3	2.9	() Missing Values	27 28
3	2.9 2.10	() Missing Values	27 28 33
3	2.9	() Missing Values	27 28

4 CONTENTS

	3.4	Data Frame
	3.5	data.frame()
4		49
	4.1	
	4.2	ASCII R :
	4.3	ASCII R :
	4.4	R
	4.5	$\{R\}$
	4.6	$\{R\}$
5		55
	5.1	
	5.2	ggplot2
	5.3	
	5.4	
	5.5	
	5.6	
6		113
	6.1	
	6.2	
	6.3	
	6.4	$: rep() \dots \dots$
	6.5	Arithmetic Computing Function
	6.6	: choose() factorial()
	6.7	$: all(), any(), which() \dots 122$
	6.8	Ranking and Sorting
	6.9	
7		127
	7.1	
	7.2	
	7.3	
	7.4	$sample() \dots \dots$
_		- 40
8		143
	8.1	readr
	8.2	Tidy Data
	8.3	Tibble Data Frame
	8.4	Pipe
	8.5	
	8.6	dplyr
	8.7	

 6 CONTENTS

Chapter 1

\mathbf{R}

```
R Ross Ihaka Robert Gentleman S , . . R , R , , , , . . S 1980 , AT&T , Rick Becker, John Chambers, Allan
Wilks , 1990 , Insightful S , , Splus. R S ( Splus) , R S , , , S , SAS, SPSS .
R (open-source, GNU General Public License), R {R}
(R core-development team) , , , {R}
1.1
           \mathbf{R}
R , Microsoft Window, Unix/Linux, Apple Mac OS , windows
. windows , , " '', (User), , . R ,
R (Reproducible Research, Dynamic Documentation),
Rtools, RStudio, Tex System, Pandoc, Git . (PATH) , PATH
. R ,
R , R Rtools : 1. http://www.r-project.org 2.
Download CRAN. 3. CRAN Mirrors (CRAN Mirrors), https://cloud.r-project.org/ 4. Download R for Windows. 5. R for Windows base. 6. , Download R X.Y.Z for Windows, X.Y.Z R ,
Linux , google Youtube , .
1.2
           RSudio
  \{R\} \{R\} . , , , , \{R\} . \{R\} , RStudio \{R\} , RStudio \{R\} , http://www.rstudio.com/, Product
```

8 CHAPTER 1. R

```
, R premier IDE for R, Rstudio Desktop, RStudio. Rstudio , . . , (User Name), , . RSudio , , , . Tex/LaTeX, Rstudio PDF , Tex system, Pandoc, Git, TeX/LaTeX/XeLaTex , https://www.latex-project.org/get/, MikTeX: http://miktex.org/. Pandoc, http://pandoc.org/, http://pandoc.org/installing.html. Git, https://git-scm.com/. GitHub , . , (Xie, 2015), Xie (2020) https://bookdown.org/yihui/rmarkdown/, https://rmarkdown.rstudio.com/ .
```

1.3

 $\{R\}$ $\{R\}$, google R Introduction, R Tutorial , YouTube .

```
factorial(4)
sin(pi)
x.vec <- c(2:5)
exp(x.vec)
matrix(c(1:6), nrows=2, ncols=3)
weight = c(50, 45, 67, 53)
mean(weight)
sd(weight)</pre>
```

 $\{R\}$, , , , , , . . $\{R\}$.

```
## demo
demo(graphics)
demo(image)
example(contour)
demo(persp)
example(persp3d)
demo(plotmath)
demo(Hershey)
install.packages("lattice") # install package
library("lattice") # load package
demo(lattice)
```

1.4. OBJECT 9

```
example(wireframe)
install.packages("rgl")
library("rgl")
demo(rgl)
                       # Interact using your mouse.
\{R\}
                \{R\} , , 0.5$ $1.0 ,
\{R\}
                                     . {R} :
                          google,
      , Big5 utf-8 .
      : / , , $, }, ], ).
     , , , , , . . .
       Object
1.4
          , (Object-Oriented Programming Language), \ \{R\} ,
   (object). {R} (vector), (matrix), (array), (Lists), (data
frames)
          (function) .
        \{R\}
                                (A-Z a-z), (0-9), /,
name)
\cdot, _ (underscore) -, .
{R}
      , , c, s, C, T, F , (reserved names). :
FALSE Inf NA NaN NULL TRUE
break else for function if in next repeat while
FΤ
cqstCDI
diff mean pi range rank var
  , , , , , , . .
1.5
       , 2, (expression), ,
\{R\}
1+2
log(x)
mean(x)
       (assignment), ,
```

10 CHAPTER 1. R

```
x <- 1+2
x = 4-5
options(prompt = "R>")
           > R>.
, \qquad , \qquad \mathtt{print()}, \qquad ,
## asign
x \leftarrow 1 # assign object x
x # show x
## [1] 1
print(x) # print()
## [1] 1
msg <- "hello"
msg # show x
## [1] "hello"
             , \{R\} , \{R
## input at the same line, use ;
x < -1 + 2; y < -3 + 4
## input 2 lines separately
x < -1 + 2
y < -3 + 4
                 , \{ \ \ \},  (compound expression),
                                                                           (\mathbf{commands}), \qquad \# \ (\ ) \quad , \qquad \qquad , \quad \{\mathrm{R}\} \ \ ,
      \{R\} , , ,
                                                            ,##, #.
 ## This is my R code
log(pi)
 ## [1] 1.145
 ## simple calculation
3+4 # calculator: two plus one
 ## [1] 7
     \begin{cases} R \} & Console \ , & , & , & \uparrow ( \ ) & , & , & , \\ & . & , & \{R\} & . & , \\ \end{cases} 
                                                                                                                                                                                                             <DEL>
```

1.6.

```
# This is my R code
x = 1 + 2 # one plus two
## [1] 3
x + 4
## [1] 7
x - 1
## [1] 2
1.6
            (\mathbf{object}), \qquad , \quad , \quad , \quad \  \  \, . \, \left\{ R \right\} \quad \, \mathsf{object()} \quad \, \mathsf{ls()} \qquad \qquad \left\{ R \right\}
 \{R\}
## show objects
object() # shiow all objects
ls() # show all obkects
ls(x, y) # show x and y object
  rm(), , ,
## delete objects: x.vec and y.vec
rm(x.vec, y.vec)
   x.vec y.vec.
1.7
   , \{R\} . , \langle Esc \rangle . ,
for (i in 1:1000000) print (i) # press <Esc>
 <Esc>
1.8
                     (working directory). {R} (PATH) //
. .
getwd() # show your current working directory
setwd("C:/RData/")
getwd()
## [1] "C:/RData"
```

12 CHAPTER 1. R

```
setwd("C:/RData")
getwd()
setwd("C:/RData/")
getwd()
   \{R\}
                                                               age, gender,
{\tt m1.lm}, \ {\tt m2.lm} \ ,
     RStudio (project),
                    (version control), (Xie, 2015), Xie (2020)
GitHub .
https://bookdown.org/yihui/rmarkdown/, https://rmarkdown.rstudio.com/,
https://happygitwithr.com/ .
                  RStudio
1.9
            , . RStudio:
                                   Tools, Global Options.....
   • General, Restore .RData, Save workspace to .RData on exit:
       Never.
    Default text encoding: UTF-8.
       Appearance, , , Zoom: 140\%, Font size: 14,
         Sweave, Waeve Rnw file using:
                                               knitr, Typest LaTeX into
     PDF using: XeLaTeX'.
         Apply OK.
   \{RStudio\} R.
       {RStudio}, {RStudio}
       \mathtt{File} \to \mathtt{New} \ \mathtt{File} \to \mathtt{R} \ \mathtt{Script}, \qquad R \quad .
        ,\quad \mathtt{File}, \rightarrow \quad \mathtt{Save \ as}, \quad \  \mathrm{C:} \backslash \mathrm{RData},
                                                      Rlab00.r .
      .r .R , \{\mathrm{R}\} .
     \verb"source", \qquad .
      , File, Save.
     R ,
## Rlab00.r
x <- 1
print(x)
х
msg <- "hello"
msg
y <- 1:20
У
rm(x, msg, y)
R , , , , (copy) {RSudio} Console , 
 <code>control>+<Enter></code> , . {R} , {R} , .
                             (copy) \{RSudio\} Console ,
                                                              {RStudio}
```

1.10. FUNCTION 13

```
{\tt Rlab00.r} \quad , \quad , \quad \{ {\tt RSudio} \} \; {\tt Consol} \quad .
  • {RStudio}, {RStudio}
    File \rightarrow New File, \rightarrow R Notebook R Markdown, {RStudio}
               (template).
```{r}
2.4*3.8
x.vec = rnorm(50)
y.vec = rnorm(50)
plot(x.vec, y.vec)
 , , copy \rightarrow
 R Notebook R Markdown
paste word . , knit,
 . R Notebook R
Markdown , knit .
1.10
 Function
\{R\} \qquad (\text{function}), \qquad , \qquad , \qquad , \quad , \quad , \quad , \quad \{R\}
 (argument).
\{R\} (base)
 \{R\} (contribution), \{R\} .,
 mean(), var(), sd(), log(). R.
function
function c() = concatenate elements, return a vector x.vec
x.vec = c(1:5)
x.vec # show x.vec
[1] 1 2 3 4 5
mean(x = x.vec) # function mean() calculate mean, return a scalar
[1] 3
var(x = x.vec) # function mean() calculate variance
[1] 2.5
log(x = x.vec) # take log for all elements in vector x.vec
[1] 0.0000 0.6931 1.0986 1.3863 1.6094
 (argument) , , (formals).
 (required
 , , (required (ellipsis argument)
argument), , (optional argument),
 \{R\} . \{R\} . \{S\} . \{S\}
log(x, base = exp(1))
. base = exp(1) ,
log function
x.vec \leftarrow c(1, 2, 3, 4, 5)
log(x = x.vec)
[1] 0.0000 0.6931 1.0986 1.3863 1.6094
```

14 CHAPTER 1. R

```
log(x = x.vec, base = 2)
[1] 0.000 1.000 1.585 2.000 2.322
1.11
 Packages
 .\quad \} \ (\mathbf{package}). \qquad \quad , \qquad \{R\} \quad ,
 (package),
 , survival , , , tidyverse .
 , . \{R\} , () base \{R\}, \{R\} . , (contributed package).
{R}
 \{R\}
 , , , , , (1) {RStudio} . Packages \rightarrow Install. , , tidyverse, MASS .
 . {RStu-
dio
 (2)
 install.packages()
install.packages("PackageName", dependencies = TRUE)
 PackageName` . , `Console .
install.packages("survival")
library(survival)
 \{R\} , , ,
 library() require()
 library(), library() = loads a package, , require() =
 , error , , foo() paa
tries to load a package,
 paa
 paa
 library(package.name) , package.name
 function.name().
 , , , f::} package.name function.name():
package.name::function.name()
 package.name function.name().
ggplot2::ggplot()
 ggplot2 ggplot().
1.12
```

 $\{R\}$  , Google  $\{R\}$  .  $\{R\}$  help.start(). Console

help.start()

1.13.

```
\label{eq:funName} \texttt{funName} \ , \ \{R\} \\ \hspace*{0.5cm} , \texttt{help(funName)}, \texttt{?funName}, \texttt{help.search("funName")}, \\
{\tt apropos("funName")} \quad . \quad , \qquad {\tt mean()} \quad . \quad \{R\}
help(mean)
?mean
help.search("mean")
apropos("mean")
 args("funName").
1.13
\{R\}
 \{R\}
 \{R\}
 \{R\}
 {R}
 sessionInfo()
sessionInfo()
 version()
 {R} version[['version.string']], Sys.getlocale()
 LC_COLLATE=Chinese (Traditional)_Taiwan.950;LC_CTYPE=Chinese
(Traditional)_Taiwan.950;LC_MONETARY=Chinese (Traditional)_Taiwan.950;LC_NUMERIC=C;LC_TIME=C
(Traditional) Taiwan.950.
 cp950 (big5).
 . Sys.timezone()
 \{R\}
 Asia/Taipei. {R}
 (local time)
 NA.
 Sys.setlocale("LC_TIME", "C"),
(Universal Time, Coordinated).
 ISO
Sys.setlocale("LC_CTYPE", "en_US.UTF-8")
system("defaults write org.R-project.R force.LANG en_US.UTF-8") # linux/mac
Sys.setlocale(category = "LC_ALL", locale = "cht")
system("defaults write orq.R-project.R force.LANG zh_TW.UTF-8") # linux/mac
 \{R\}
```

16 CHAPTER 1. R

# Chapter 2

## Vector

#### 2.1 Vector

 $\{R\}$  ,  $(\mbox{mode})$  .  $\{R\}$   $(\mbox{basic mode})$  numeric, integer, logical, complex, character.

- $\label{eq:conde} \begin{array}{lll} \{R\} & , & (\textbf{mode}) & . & \{R\} & & (\textbf{basic mode}) & \textbf{numeric}, \\ \textbf{integer}, \textbf{logical}, \textbf{complex}, \textbf{character}, & \textbf{class()} & . \end{array}$ 
  - numeric, ( ), single double .

```
numeric
x1 <- 10.1
x1
[1] 10.1
class(x1)
[1] "numeric"
x2 <- 10
x2
[1] 10</pre>
```

```
class(x2)
[1] "numeric"
is.numeric(x2)
[1] TRUE
 (1L, 2L, ...).
 • integer,
integer
y1 <- 1L
у1
[1] 1
class(y1)
[1] "integer"
is.integer(y1)
[1] TRUE
is.numeric(y1)
[1] TRUE
 (true or false), \mathbf{TRUE}(\mathbf{T}) \mathbf{FALSE}(\mathbf{F}) , 1 0
 • logical,
 \mathbf{T} \mathbf{F}.
logic
yes_id <- TRUE</pre>
yes_id
[1] TRUE
no_id <- FALSE</pre>
no_id
[1] FALSE
class(no_id)
[1] "logical"
is.logical(no_id)
[1] TRUE
2 == 3
[1] FALSE
2 != 3
[1] TRUE
2 > 3
[1] FALSE
2 <= 3
[1] TRUE
4 >= 1
[1] TRUE
TRUE + 5
[1] 6
TRUE * 5
[1] 5
FALSE * 5
```

2.2.

```
[1] 0
TRUE + FALSE
[1] 1
TRUE * FALSE
[1] 0
 • complex, .
x = 3+5i
X
[1] 3+5i
class(x)
[1] "complex"
 ('').
 • character,
character
ca <- "yes"
ca
[1] "yes"
cb <- "this is a book."
[1] "this is a book."
class(cb)
[1] "character"
is.character(cb)
[1] TRUE
"abc" > "abd"
[1] FALSE
"date" < "dates"
[1] TRUE
 'Date, POSIXct POSIXt , , Sys.Date()'
Sys.Date()
[1] "2020-09-16"
date1 <- as.Date("2020-09-17")</pre>
[1] "2020-09-17"
class(date1)
[1] "Date"
as.numeric(date1)
[1] 18522
date2 <- as.POSIXct("2020-09-17 18:30")</pre>
class(date2)
[1] "POSIXct" "POSIXt"
as.numeric(date2)
```

```
[1] 1.6e+09
2.2.1
 c()
 c() . c() concatenate (),
c()
numerical
x.vec \leftarrow c(1/1, 1/2, 1/3, 1/4, 1/5)
x.vec
[1] 1.0000 0.5000 0.3333 0.2500 0.2000
integer
x.vec \leftarrow c(1L, 2L, 3L)
x.vec
[1] 1 2 3
character
flavors.vec <- c("chocolate", "vanilla", "strawberry") # character</pre>
flavors.vec
[1] "chocolate" "vanilla" "strawberry"
y.vec <- c("Hello", "What's your name?", "Your email?")</pre>
y.vec
 "What's your name?" "Your email?"
[1] "Hello"
logical
z.vec \leftarrow c(F, T, T, F, F)
z.vec
[1] FALSE TRUE TRUE FALSE FALSE
complex
x.complex.vec \leftarrow c(8+3i, 9+0i, 2+4i)
x.complex.vec
[1] 8+3i 9+0i 2+4i
numerical
x.vec \leftarrow c(1/1, 1/2, 1/3, 1/4, 1/5)
y.vec \leftarrow c(1, 2, 3, 4, 5)
z.vec <- c(x.vec, 11, 12, y.vec)
z.vec
[1] 1.0000 0.5000 0.3333 0.2500 0.2000 11.0000 12.0000 1.0000 2.0000
[10] 3.0000 4.0000 5.0000
```

2.4.

. .

Table 2.1:

```
(Substraction, can be unary or binary)
+
 (Addition, can be unary or binary)
!
 (Unary not)
 (Multiplication, binary)
 (Division, binary)
 (Exponentiation, binary)
%%
 (Modulus, binary)
%/%
 (Integer divide, binary)
%*%
 (Matrix product, binary)
%o%
 (Outer product, binary)
%x\%
 Kronecker (Kronecker product, binary)
\%in\%
 (Matching operator, binary, in model formulae: nesting)
<
 Less than, binary
>
 Greater than, binary
==
 Equal to, binary
 Not equal to
! =
>=
 Greater than or equal to, binary
 Less than or equal to, binary
<=
&
 (Logical AND, binary, vectorized)
 (Logical AND, binary, not vectorized)
&&
 (Logical OR, binary, vectorized)
(Logical OR, binary, not vectorized)
 , 1 TRUE
xor
```

```
\{R\}
 (arithmetic operator)
 , +, -, !, *, /, \^, %%, %/%, %*%, %o%,
%x%, %in%
 : , , , , ,
Arithmetic Operator
1 + 2
[1] 3
1 + 2 + 3
[1] 6
3 * 7 * 2
[1] 42
4/2
[1] 2
4/3
[1] 1.333
```

```
2 * 3 + 4
[1] 10
2 * (3 + 4)
[1] 14
(3 + 11 * 2)/4
[1] 6.25
x.complex <- (8+3i)+(1+2i)
x.complex
[1] 9+5i
x.vec <- 1:5
y.vec \leftarrow c(-1, -2, 0, 2, 4)
z.vec \leftarrow c(2, 2, 3, 3, 4)
x.vec + y.vec
[1] 0 0 3 6 9
x.vec - y.vec
[1] 2 4 3 2 1
x.vec * 2
[1] 2 4 6 8 10
x.vec * y.vec
[1] -1 -4 0 8 20
x.vec/2
[1] 0.5 1.0 1.5 2.0 2.5
x.vec/y.vec
x.vec²
[1] 1 4 9 16 25
x.vec^z.vec
[1] 1 4 27 64 625
y.vec/2
[1] -0.5 -1.0 0.0 1.0 2.0
y.vec/x.vec
[1] -1.0 -1.0 0.0 0.5 0.8
y.vec %% 3 # modular arithmetic remainder
[1] 2 1 0 2 1
y.vec %/% 3 # integer division
[1] -1 -1 0 0 1
y.vec %/% x.vec
[1] -1 -1 0 0 0
```

2.5.

```
T F. \{R\} ,
 TRUE, FALSE.
 (logic vector)
(relation/comparison operator)
 <, <=, >, >=.
Relation/Comparison Operator
x.vec <- 1:5
y.vec \leftarrow (x.vec > 2)
y.vec
[1] FALSE FALSE TRUE TRUE TRUE
any(x.vec > 2)
[1] TRUE
all(x.vec > 2)
[1] FALSE
x.vec <- 1:5
y.vec \leftarrow c(0, 2, 4, 6, 8)
x.vec < 2
[1] TRUE FALSE FALSE FALSE FALSE
x.vec<= 2
[1] TRUE TRUE FALSE FALSE FALSE
x.vec == 2
[1] FALSE TRUE FALSE FALSE
x.vec != 2
[1] TRUE FALSE TRUE TRUE TRUE
x.vec < y.vec</pre>
[1] FALSE FALSE TRUE TRUE TRUE
x.vec < (y.vec - 2)
[1] FALSE FALSE FALSE FALSE TRUE
x.vec <= y.vec</pre>
[1] FALSE TRUE TRUE TRUE TRUE
x.vec \leftarrow (y.vec - 2)
[1] FALSE FALSE FALSE TRUE TRUE
x.vec == y.vec
[1] FALSE TRUE FALSE FALSE
x.vec == (y.vec - 2)
[1] FALSE FALSE FALSE TRUE FALSE
x.vec != y.vec
[1] TRUE FALSE TRUE TRUE TRUE
x.vec != (y.vec - 2)
[1] TRUE TRUE TRUE FALSE TRUE
```

```
\{R\} ,
 (logical operator)
 . {R}
 ! (), &, &&
 y & !x
 xor(x, y)
(AND), | , | | (OR),
Logical Operator: AND OR XOR
x.vec <- 1:5
y.vec <- c(0, 2, 4, 6, 8)
(x.vec > 0) & (y.vec > 0) # return vector AND
[1] FALSE TRUE TRUE TRUE TRUE
(x.vec > 0) && (y.vec > 0) # return scalar AND
[1] FALSE
(x.vec > 0) & ((y.vec - 3) > 0)
 # return vector AND
[1] FALSE FALSE TRUE TRUE TRUE
((x.vec-2) > 0) && ((y.vec - 3) > 0) # return scalar AND
[1] FALSE
(x.vec > 0) & ((y.vec + 3) > 0)
 # return vector AND
[1] TRUE TRUE TRUE TRUE TRUE
((x.vec-2) > 0) && ((y.vec + 3) > 0) # return scalar AND
[1] FALSE
(x.vec > 0) | (y.vec > 0) # return vector OR
[1] TRUE TRUE TRUE TRUE TRUE
((x.vec-2) > 0) | ((y.vec-3) > 0)
[1] FALSE FALSE TRUE TRUE TRUE
(x.vec > 0) || (y.vec > 0) # return scalar OR
[1] TRUE
((x.vec-2) > 0) | | ((y.vec - 3) > 0)
[1] FALSE
(x.vec > 0) \mid \mid ((y.vec + 3) > 0) \# return scalar OR
[1] TRUE
((x.vec-2) > 0) | | ((y.vec + 3) > 0)
```

2.7.

```
[1] TRUE
xor((x.vec > 0), (y.vec > 0)) # return vector exclusive OR
[1] TRUE FALSE FALSE FALSE
xor(((x.vec - 2) > 0), ((y.vec - 3) > 0))
[1] FALSE FALSE FALSE FALSE
xor(((x.vec - 2) > 0), ((y.vec + 3) > 0))
[1] TRUE TRUE FALSE FALSE FALSE
xx.vec \leftarrow (x.vec \leftarrow 3)
yy.vec \leftarrow (y.vec >= 4)
xx.vec
[1] TRUE TRUE TRUE FALSE FALSE
yy.vec
[1] FALSE FALSE TRUE TRUE TRUE
xx.vec && yy.vec
[1] FALSE
xx.vec & yy.vec
[1] FALSE FALSE TRUE FALSE FALSE
xx.vec || yy.vec
[1] TRUE
xx.vec | yy.vec
[1] TRUE TRUE TRUE TRUE TRUE
xor(xx.vec, yy.vec)
[1] TRUE TRUE FALSE TRUE TRUE
```

```
x.vec <- c(55, 236, 80, 140)
names(x.vec) <- c("age", "chol", "sbp", "dbp")
#
y.vec.name <- names(x.vec)
y.vec <- c(60, 214, 90, 144)
names(y.vec) <- y.vec.name
y.vec
age chol sbp dbp
60 214 90 144</pre>
```

#### 2.8 Inxex

```
(length)
 (index) , (index)
 [i],
() .
Vector Indexing
positive integer
x.vec <- 1:50
x.vec[7]
[1] 7
x.vec[11:15]
[1] 11 12 13 14 15
y.vec <- x.vec[11:15]
y.vec
[1] 11 12 13 14 15
negative integer
z.vec <- 6:10
z.vec[-c(2, 4)]
[1] 6 8 10
character string
fruit.vec \leftarrow c(5, 10, 1, 20)
fruit.vec
[1] 5 10 1 20
names(fruit.vec) <- c("orange", "banana", "apple", "peach")</pre>
fruit.vec
orange banana apple peach
5 10 1
 20
lunch.vec <- fruit.vec[c("apple", "orange")]</pre>
lunch.vec
apple orange
1 5
logical index
x.vec \leftarrow c(NA, -2, -1, NA, 1, 2, NA) # NA = missing value
x.vec
[1] NA -2 -1 NA 1 2 NA
```

### 2.9 ( ) Missing Values

```
, (missing value, incomplete data**), R , , NA , (NA = Not Available), R NaN = Not a Number , NULL 0. (NA) , (NA) . is.na(), is.nan() , na.omit(), na.fail(), na.exclude(), na.action() . complete.cases() . , , R .
```

```
missing value
z.vec \leftarrow c(1:2, NA)
is.na(z.vec)
[1] FALSE FALSE TRUE
log(z.vec)
[1] 0.0000 0.6931
z.vec / 0
[1] Inf Inf NA
0 / 0
[1] NaN
Inf - Inf
[1] NaN
is.na(z.vec)
[1] FALSE FALSE TRUE
is.nan(z.vec)
[1] FALSE FALSE FALSE
is.nan(0 / 0)
[1] TRUE
x.vec \leftarrow c(1, 2, NA, 4, NA, 5, 6)
bad <- is.na(x.vec)</pre>
x.vec[!bad]
[1] 1 2 4 5 6
```

```
x.vec \leftarrow c(1, 2, NA, 4, NA, 5, 6)
y.vec <- c("a", "b", NA, "d", NA, "f", "g")
good <- complete.cases(x.vec, y.vec)</pre>
good
[1] TRUE TRUE FALSE TRUE FALSE TRUE TRUE
x.vec[good]
[1] 1 2 4 5 6
y.vec[good]
[1] "a" "b" "d" "f" "q"
data(airquality)
airquality[1:6,]
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5
 62
 5 4
5 NA NA 14.3 56
6 28 NA 14.9 66
 5
good <- complete.cases(airquality)</pre>
airquality[good,][1:6,]
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
 118 8.0 72 5 2
2
 36
 5 3
3 12
 149 12.6 74
4
 18 313 11.5
 62 5
 4
 65 5
7 23
 299 8.6
 7
```

#### 2.10 Factor

2.10. FACTOR 29

```
factor(x = character(), levels, labels = levels,
 exclude = NA, ordered = is.ordered(x), nmax = NA)
 • x , , , \{R\}
 • levels
 • labels
 • exclude = NA
 • ordered = is.ordered(x)
 • nmax = NA
factor()
sex <- c("male", "female", "male", "male", "female")</pre>
[1] "male" "female" "male" "female"
class(sex)
[1] "character"
sex <- factor(sex)</pre>
sex
[1] male female male female
Levels: female male
class(sex)
[1] "factor"
factor() + levels
sex <- c("male", "female", "male", "male", "female")</pre>
sex <- factor(sex, levels = c("female", "male"))</pre>
[1] male female male female
Levels: female male
factor() + levels + labels
x.chr = c("male", "male", "female", "female")
factor(x.chr, levels = c("male", "female", "bisex"))
[1] male male female female
Levels: male female bisex
factor(x.chr, levels = c("male", "female", "bisex"),
 labels = c("m", "f", "b"))
[1] m m f f
Levels: m f b
factor() + exclude
factor() + exclude
pain <- c("none", "mild", "moderate", "severe", NA)</pre>
factor(pain) # NA is NOT a level.
[1] none
 mild
 moderate severe
Levels: mild moderate none severe
factor(pain, exclude = NA) # NA is NOT a level.
[1] none mild moderate severe <NA>
```

```
Levels: mild moderate none severe
factor(pain, exclude = c(NA)) # NA is NOT a level.
 moderate severe <NA>
[1] none mild
Levels: mild moderate none severe
factor(pain, exclude = NULL) # NA is a level.
[1] none
 mild
 moderate severe <NA>
Levels: mild moderate none severe <NA>
factor(pain, exclude = "mild") # NA is a level.
[1] none
 <NA>
 moderate severe <NA>
Levels: moderate none severe <NA>
pain <- factor(pain, exclude = c("mild", NA))</pre>
pain # mild and NA are NOT levels.
[1] none <NA>
 moderate severe <NA>
Levels: moderate none severe
{R} factor()
 (unordered factor),
 (nominal variable),
 (level),
 , \qquad . \quad \{R\} \qquad ,
 levels()
 levels()
 \{R\}
 levels() ,
 (reference level),
(contrast comparison). relevel(),
unorder
level()
gender <- c("M", "F", "M", "M", "F")</pre>
gender <- factor(gender)</pre>
gender
[1] M F M M F
Levels: F M
levels(gender)
[1] "F" "M"
levels(gender) <- c("Female", "Male")</pre>
gender
[1] Male Female Male Female
Levels: Female Male
hypertension <- c("Lo", "Mod", "Hi", "Mod", "Lo", "Hi", "Lo")
hypertension <- factor(hypertension)</pre>
hypertension
[1] Lo Mod Hi Mod Lo Hi Lo
Levels: Hi Lo Mod
relevel()
relevel(hypertension, ref = "Lo") # reset a reference level
[1] Lo Mod Hi Mod Lo Hi Lo
Levels: Lo Hi Mod
 as.integer() , 1 ,
```

2.10. FACTOR 31

```
convert to numerical values
hypertension <- c("Lo", "Mod", "Hi", "Mod", "Lo", "Hi", "Lo")
hypertension <- factor(hypertension)</pre>
levels(hypertension)
[1] "Hi" "Lo" "Mod"
hypertension
[1] Lo Mod Hi Mod Lo Hi Lo
Levels: Hi Lo Mod
as.integer(hypertension)
[1] 2 3 1 3 2 1 2
levels(hypertension) <- list("Low" = "Lo",</pre>
 "Moderate" = "Mod",
 "High" = "Hi")
hypertension
[1] Low
 Moderate High
 Moderate Low
 High
 Low
Levels: Low Moderate High
as.integer(hypertension)
[1] 1 2 3 2 1 3 1
convert to numerical values
pain \leftarrow c(7, 8, 6, 6, 8, 7)
pain <- factor(pain)</pre>
pain
[1] 786687
Levels: 6 7 8
as.integer(pain)
[1] 2 3 1 1 3 2
pain.chr = as.character(pain)
pain.chr
[1] "7" "8" "6" "6" "8" "7"
pain.num = as.integer(pain.chr)
pain.num
[1] 7 8 6 6 8 7
```

### Chapter 3

```
3.1 Matrix
 , 2- (array).
 dim() .
3.1.1 matrix()
 , \times (\times), matrix().
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
 • nrow = r , (row numbers).
 • ncol = c , (column number).
 • byrow = FALSE: \{R\} , () (column) . , byrow = TRUE. • dimnames = obj.list .
 dim()
numeric
x.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), nrow = 2) # one row first
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

34 CHAPTER 3.

```
dim(x.mat)
[1] 2 3
y.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
y.mat
 [,1] [,2]
##
[1,] 1 4
 2 5
[2,]
[3,] 3 6
z.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, byrow = T)
z.mat
 [,1] [,2] [,3]
##
[1,] 1 2 3
[2,] 4 5 6
p.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), ncol = 2, byrow = T)
p.mat
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
w.mat \leftarrow matrix(c(1:18), nrow = 3)
w.mat
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 4 7 10 13 16
[2,] 2 5 8 11 14 17
 3 6 9 12
 15
[3,]
 18
dim(y.mat)
[1] 3 2
character
x.vec <- c("a", "b", "c", "d", "e", "f")
x.vec
[1] "a" "b" "c" "d" "e" "f"
y.mat <- matrix(x.vec, nrow = 2, ncol = 3) # byrow = F
y.mat
##
 [,1] [,2] [,3]
[1,] "a" "c" "e"
[2,] "b" "d" "f"
y.mat <- matrix(x.vec,
 nrow = 2,
 ncol = 3,
 byrow = T)
y.mat
##
 [,1] [,2] [,3]
[1,] "a" "b" "c"
[2,] "d" "e" "f"
dim(y.mat)
```

3.1. MATRIX 35

```
[1] 2 3
dim
m.vec.mat <- 1:10
dim(m.vec.mat) <- c(2, 5)
m.vec.mat
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
dim(m.vec.mat)
[1] 2 5</pre>
```

#### 3.1.2 dimnames()

```
, (column name) (row name), dimnames() . dimnames() matrix . (row name) (column name), rownames() colnames().
```

```
dimnames
x.mat \leftarrow matrix(1:6, nrow = 2, ncol = 3)
dimnames(x.mat) <- list(c("A1", "A2"),</pre>
 c("B1", "B2", "B3"))
x.mat
B1 B2 B3
A1 1 3 5
A2 2 4 6
dim(x.mat)
[1] 2 3
dimnames(x.mat)
[[1]]
[1] "A1" "A2"
##
[[2]]
[1] "B1" "B2" "B3"
rownames(x.mat)
[1] "A1" "A2"
colnames(x.mat)
[1] "B1" "B2" "B3"
m.mat <- matrix(</pre>
 c(1, 2, 3, 11, 12, 13),
 nrow = 2,
 ncol = 3,
 byrow = TRUE,
 dimnames = list(c("row1", "row2"),
 c("C1", "C2", "C3"))
```

CHAPTER 3.

### 3.2 Matrix Index

```
matrix index
x.mat <- matrix(c(1:12), 3, 4)
x.mat
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
x.mat[2, 3] \leftarrow 30
x.mat
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 30 11
[3,] 3 6 9 12
x.mat[2,]
[1] 2 5 30 11
x.mat[, 3]
[1] 7 30 9
x.mat[c(1, 3), c(2, 4)]
[,1] [,2]
[1,] 4 10
[2,] 6 12
```

```
m.mat <- matrix(</pre>
 c(1, 2, 3, 11, 12, 13),
 nrow = 2,
 ncol = 3,
 byrow = TRUE,
 dimnames = list(c("row1", "row2"),
 c("C1", "C2", "C3"))
)
m.mat
C1 C2 C3
row1 1 2 3
row2 11 12 13
m.mat[, c("C1", "C2")]
C1 C2
row1 1 2
row2 11 12
m.mat[c("row2"),]
C1 C2 C3
11 12 13
m.mat[c("row1"), c("C1", "C3")]
C1 C3
1 3
 , , drop = FALSE.
 1 \quad 1 \quad ,
dimension reduction
x.mat <- matrix(1:8, 2, 4)
x.mat[1,] # reduces to a vector
[1] 1 3 5 7
x.mat[1, , drop = FALSE] # remains as a matrix
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
3.2.1
 : rbind() cbind()
 (no dimension), , 1 \times k / , k \times 1 / , ,
 \{R\}
 ({\rm row\ number}) \qquad ({\rm column\ number}) \qquad , \qquad {\rm recycle}
matrix cbind() and rbind()
x.vec <- c(1, 2, 3)
y.vec <- c(8, 9, 10)
rbind(x.vec, y.vec) # vector as row vector
[,1] [,2] [,3]
```

38 CHAPTER 3.

```
x.vec 1 2 3
y.vec 8 9 10
cbind(x.vec, y.vec) # vector as col vector
x.vec y.vec
[1,] 1 8
[2,] 2 9
[3,] 3 10
x.mat <- matrix(c(11:16), 2, 3)</pre>
rbind(x.mat, x.vec) # vector as row vector
[,1] [,2] [,3]
 11 13 15
##
##
 12 14 16
x.vec 1 2 3
cbind(x.mat, y.vec) # warning
Warning in cbind(x.mat, y.vec): number of rows of result is not a multiple of
vector length (arg 2)
y.vec
[1,] 11 13 15 8
[2,] 12 14 16 9
x.vec <- c(1, 2)
y.vec <-c(8, 9)
rbind(x.vec, y.vec) # vector as row vector
[,1] [,2]
x.vec 1 2
y.vec 8 9
cbind(x.vec, y.vec) # vector as col vector
x.vec y.vec
[1,] 1 8
[2,]
 2 9
x.mat <- matrix(c(11:14), 2, 2)
z.mat <- rbind(x.mat, x.vec) # vector as row vector</pre>
z.mat
##
 [,1] [,2]
10
x.vec 1 2
cbind(x.mat, y.vec) # vector as col vector
y.vec
[1,] 11 13 8
[2,] 12 14 9
rbind(z.mat, y.vec) # vector as row vector
[,1] [,2]
```

```
##
 11 13
 12 14
x.vec 1 2
y.vec 8 9
cbind(z.mat, y.vec) # warning
Warning in cbind(z.mat, y.vec): number of rows of result is not a multiple of
vector length (arg 2)
y.vec
 11 13 8
12 14 9
##
##
x.vec 1 2 8
3.2.2
 Array
 (mode) p- , p- . array() .
 (array)
dimnames()
 . dimnames() array
array()
a.vec <- 1:24
a.vec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
b.array \leftarrow array(a.vec, dim = c(4, 3, 2),
 dimnames = list(c("x1", "x2", "x3", "x4"),
 c("y1", "y2", "y3"),
 c("z1", "z2")))
b.array
, , z1
##
y1 y2 y3
x1 1 5 9
x2 2 6 10
x3 3 7 11
x4 4 8 12
##
, , z2
##
y1 y2 y3
x1 13 17 21
x2 14 18 22
x3 15 19 23
x4 16 20 24
```

40 CHAPTER 3.

```
mode(b.array)
[1] "numeric"
dim(b.array)
[1] 4 3 2
length(b.array)
[1] 24
dimnames(b.array)
[[1]]
[1] "x1" "x2" "x3" "x4"
##
[[2]]
[1] "y1" "y2" "y3"
##
[[3]]
[1] "z1" "z2"
rownames(b.array)
[1] "x1" "x2" "x3" "x4"
colnames(b.array)
[1] "y1" "y2" "y3"
array index
a.vec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
b.array \leftarrow array(a.vec, dim = c(4, 3, 2),
 dimnames = list(c("x1", "x2", "x3", "x4"),
 c("y1", "y2", "y3"),
 c("z1", "z2")))
b.array
, , z1
##
y1 y2 y3
x1 1 5 9
x2 2 6 10
x3 3 7 11
x4 4 8 12
##
, , z2
##
y1 y2 y3
x1 13 17 21
x2 14 18 22
x3 15 19 23
x4 16 20 24
b.array[3, 2, 1]
[1] 7
b.array[4, 3, 2]
```

3.3. LIST 41

```
[1] 24
b.array[2, c(1, 3), 1]
y1 y3
2 10
b.array[3, c(2, 3), 1]
y2 y3
7 11
b.array[2, ,]
z1 z2
y1 2 14
y2 6 18
y3 10 22
b.array[, 2,]
z1 z2
x1 5 17
x2 6 18
x3 7 19
x4 8 20
b.array[, , 2]
y1 y2 y3
x1 13 17 21
x2 14 18 22
x3 15 19 23
x4 16 20 24
3.3
 List
(order sequence), , ,
3.3.1
 list()
 list()
 . {R}
 , , , , , ,
list()
list w/o component names
x.vec <- 1:4
y.vec <- c("Male", "Female")</pre>
```

z.mat <- matrix(1:9, nrow = 3, ncol = 3)
xyz.list <- list(x.vec, y.vec, z.mat)</pre>

xyz.list ## [[1]] ## [1] 1 2 3 4 42 CHAPTER 3.

```
[[2]]
[1] "Male" "Female"
[[3]]
 [,1] [,2] [,3]
[1,] 1 4 7
 2 5
[2,]
 8
[3,] 3 6 9
mode(xyz.list)
[1] "list"
length(xyz.list)
[1] 3
dim(xyz.list)
NULL
names(xyz.list)
NULL
class(xyz.list)
[1] "list"
list w/ component names
x.num \leftarrow c(1, 3, 6)
y.str <- c("chocolate", "vanilla", "strawberry")</pre>
xy.list <- list(x.num.var = x.num, y.str.var = y.str)</pre>
xy.list
$x.num.var
[1] 1 3 6
$y.str.var
[1] "chocolate" "vanilla" "strawberry"
list = data matrix
id.vec \leftarrow c(1, 2, 3, 4)
age.vec <-c(35, 55, 45, 25)
sex.vec <- c("Male", "Male", "Female", "Female")</pre>
disease.vec <- c("Yes", "No", "No", "Yes")</pre>
x.list <- list(</pre>
 id = id.vec,
 age = age.vec,
 sex = sex.vec,
 disease = disease.vec
)
x.list
$id
[1] 1 2 3 4
##
$age
[1] 35 55 45 25
```

3.3. LIST 43

#### 3.3.2 List Index

```
List.Name , list i.number ,
, , List.Name , list : List.Name[[3]]. , , [[i.number]] [i.number] .
list index
list w/o component names
x.vec <- 1:4
y.vec <- c("Male", "Female")</pre>
z.mat <- matrix(1:9, nrow = 3, ncol = 3)
xyz.list <- list(x.vec, y.vec, z.mat)</pre>
xyz.list
[[1]]
[1] 1 2 3 4
##
[[2]]
[1] "Male" "Female"
##
[[3]]
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
xyz.list[1]
[[1]]
[1] 1 2 3 4
xyz.list[[1]]
[1] 1 2 3 4
xyz.list[2]
[[1]]
[1] "Male" "Female"
xyz.list[[3]]
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,]
 3 6 9
xyz.list[3]
[[1]]
[,1] [,2] [,3]
```

44 CHAPTER 3.

## [1,] 1

```
[2,]
 2
 5 8
[3,] 3 6 9
 (component) comp.name,
 List.Name\$comp.name
List.Name[[comp.name]] . List.Name\$comp.name List.Name[[comp.name]]
 , List.Name\$comp.name . [[i.number]]
list w/ component names
x.vec <- 1:4
y.vec <- c("Male", "Female")</pre>
z.mat <- matrix(1:9, nrow = 3, ncol = 3)
xyz.list <- list(class = x.vec,</pre>
 gender = y.vec,
 score = z.mat)
xyz.list
$class
[1] 1 2 3 4
##
$qender
[1] "Male" "Female"
$score
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3
 6 9
xyz.list$class
[1] 1 2 3 4
xyz.list[["class"]]
[1] 1 2 3 4
xyz.list[["class"]][2]
[1] 2
xyz.list$gender
[1] "Male" "Female"
xyz.list[["gender"]][1]
[1] "Male"
xyz.list$score
[,1] [,2] [,3]
[1,] 1 4 7
[2,]
 2 5 8
[3,] 3
 6 9
xyz.list[["score"]][2, 3]
```

```
[1] 8
```

#### 3.4 Data Frame

```
, \quad \{R\} \qquad , \qquad , \qquad , \quad \{R\} \qquad (\textbf{list}) \qquad \texttt{list()}, . \qquad (\textbf{data frame}) \qquad . \qquad (\quad) \quad , \quad , \qquad , \quad , \\ (\textbf{data matrix}), \qquad . \quad . \quad : \{R\} \qquad \{R\} \quad , \quad \{R\} \qquad \{R\} \quad .
```

### 3.5 data.frame()

```
\{R\}
 data.frame()
 () , ,
data frame
id.vec \leftarrow c(1, 2, 3, 4)
age.vec <-c(35, 55, 45, 25)
sex.vec <- c("Male", "Male", "Female", "Female")</pre>
disease.vec <- c("Yes", "No", "No", "Yes")</pre>
x.df <- data.frame(</pre>
 id = id.vec,
 age = age.vec,
sex = sex.vec,
 disease = disease.vec
)
mode(x.df)
[1] "list"
class(x.df)
[1] "data.frame"
x.df
id age sex disease
1 1 35 Male Yes
2 2 55 Male
 No
3 3 45 Female
 No
4 4 25 Female
x.df$age
[1] 35 55 45 25
x.df$disease
[1] "Yes" "No" "No" "Yes"
```

#### 3.5.1 Data Frame Index

46 CHAPTER 3.

```
, (index) , . data.Name , 'i.num' (), data.Name[[3]]. , , , [[i.number]] [i.number] .
 variable.name,
 dataframe.Name[variable.name] dataframe.Name[variable.name]
 . dataframe.Name\$variable.name dataframe.Name[[variable.name]]
 [i] , dataframe.Name\$variable.name . [[i.number]]
data frame index
data(Puromycin)
Puromycin
conc rate
 state
1 0.02 76
 treated
2 0.02 47 treated
3 0.06 97 treated
4 0.06 107 treated
5 0.11 123
 treated
6 0.11 139 treated
7 0.22 159 treated
8 0.22 152 treated
9 0.56 191 treated
10 0.56 201 treated
11 1.10 207 treated
12 1.10 200 treated
13 0.02 67 untreated
14 0.02 51 untreated
15 0.06 84 untreated
16 0.06 86 untreated
17 0.11 98 untreated
18 0.11 115 untreated
19 0.22 131 untreated
20 0.22 124 untreated
21 0.56 144 untreated
22 0.56 158 untreated
23 1.10 160 untreated
Puromycin$rate
[1] 76 47 97 107 123 139 159 152 191 201 207 200 67 51 84 86 98 115 131
[20] 124 144 158 160
Puromycin$state
[1] treated treated treated
 treated treated treated treated
[8] treated treated treated treated untreated untreated
[15] untreated untreated untreated untreated untreated untreated
[22] untreated untreated
Levels: treated untreated
Puromycin[1]
conc
1 0.02
```

'i.number''

```
2 0.02
3 0.06
4 0.06
5 0.11
6 0.11
7 0.22
8 0.22
9 0.56
10 0.56
11 1.10
12 1.10
13 0.02
14 0.02
15 0.06
16 0.06
17 0.11
18 0.11
19 0.22
20 0.22
21 0.56
22 0.56
23 1.10
Puromycin[1][[1]]
[1] 0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10 1.10 0.02 0.02 0.06
[16] 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10
Puromycin$state[1:3]
[1] treated treated treated
Levels: treated untreated
Puromycin[1:3, 1:2]
conc rate
1 0.02 76
2 0.02 47
3 0.06 97
```

48 CHAPTER 3.

# Chapter 4

Table 4.1: DMTKRtabsep.txt DMTKRblanksep.txt:

No	age	sex	DM	DMyr	preAC	prePC	postAC	postPC	Med	SIDE	PREKS	POSKS	ABS	I
1	67	0	0	10	120	160	140	180	0	0	56	92	1	(
2	67	0	0	11	100	150	150	220	0	1	62	62	0	1
3	72	1	0	4	150	200	120	150	2	0	60	94	1	(
4	82	1	0	8	150	200	160	250	0	1	47	90	1	(
5	73	1	0	3	85	110	140	200	0	0	44	88	0	(

, .

50 CHAPTER 4.

```
• 1 (, row), (variable names)
 1 \text{ (row)}, \text{ (column label)}, 2 \text{ (row)}.
 1 (, row).
 1 (, column) (label, identification), (row label).
 () , , .
 (column) (row label).
 , \hspace{1cm} , \hspace{1cm} underscore \hspace{1cm} \underline{\hspace{1cm}}.
 , , , , , , , ,
 , \{R\}
4.2
 ASCII R :
 ASCII . (raw data) ,
 , ASCII , \{R\} ,
 ASCII
 ASCII
\{R\}
 ASCII
 ,\{R\} read.table() read.csv()
\{R\}
 (data frame)
 \{R\} \{R\} , ASCII
 , , scan()
 (variable names) , (column name)
 (the first row)
 (column label).
 (the first column) (row label) (row name).
 (row), .
 () (blank space) , 'Tab' .
 ASCII , comma-separated-variable format CSV
 , ()
 format,
 .csv
 \mbox{(variable name)} \qquad , \quad , \quad \ \ . \ \ (\; , \; \mbox{dot}), \quad \ \ _ \; \mbox{(underscore)}. \quad , \qquad .
 (observed value).
 2 ASCII . , CSV format.
DMTKRblanksep.txt = " " single space separate
Rblanksep.df = read.table("C:/RData/DMTKRblanksep.txt",
```

```
header = TRUE,
 row.names = NULL,
 dec = ".")
head(Rblanksep.df)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67
 0 0 10
 0
 120
 160
 140
 180
 0
 56
 92
 1
2 2 67
 0 0
 11
 100
 150
 150
 220
 0
 1
 62
 62
 0
3 3 72 1 0
 150
 200
 120
 150 2
 0
 60
 94
 1
 0
 4
4 4 82 1 0
 150
 200
 160
 250
 0 1
 47
 90
 1
 0
 8
5 5 73 1 0
 200
 0
 3
 85
 140
 0 0
 88
 0
 110
 44
 0 1
6 6 76
 0 0
 1
 120
 150
 120
 200
 94
 1
str(Rblanksep.df)
 78 obs. of 15 variables:
'data.frame':
$ No
 : int 12345678910...
$ age
 : int 67 67 72 82 73 76 76 77 64 64 ...
$ sex : int 0 0 1 1 1 0 0 0 0 0 ...
 : int 0000000100...
$ DM
$ DMyr : int 10 11 4 8 3 1 1 35 5 5 ...
$ preAC : int 120 100 150 150 85 120 120 200 130 130 ...
$ prePC : int 160 150 200 200 110 150 150 250 180 180 ...
$ postAC: int 140 150 120 160 140 120 120 230 100 100 ...
$ postPC: int 180 220 150 250 200 200 200 300 150 150 ...
$ Med
 : int 002000100...
$ SIDE : int 0 1 0 1 0 1 0 1 0 1 ...
$ PREKS : int 56 62 60 47 44 52 48 42 40 45 ...
$ POSKS : int 92 62 94 90 88 94 96 90 94 96 ...
 : int 1011010110...
$ ABS
$ INFECT: int 0 1 0 0 0 0 0 0 0 0 ...
complete read.table
DMTKRblanksep.txt = " " single space separate
Rblanksep.df = read.table("C:/RData/DMTKRblanksep.txt",
 header = TRUE,
 sep = " ",
 quote = "\"'",
 dec = ".",
 row.names = NULL,
 # col.names,
 as.is = TRUE,
 # as.is = !stringsAsFactors,
 na.strings = c(".", "NA"))
head(Rblanksep.df)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67 0 0 10
 120
 160
 140
 180 0 0
 56
 92
 1
2 2 67
 0 0
 11
 100
 150
 150
 220
 0
 1
 62
 62
 0
 1
3 3 72
 1 0
 150
 200
 120
 150
 2
 0
 60
 94
 1
```

52 CHAPTER 4.

```
4 4 82
 1 0
 150
 200
 160
 250
 90
5 5 73
 1 0
 3
 85
 110
 140
 200
 88
 0
 0
 44
6 6 76
 0 0
 1
 120
 150
 120
 200
 0
 1
 52
 94
 1
 0
str(Rblanksep.df)
'data.frame':
 78 obs. of 15 variables:
 : int 12345678910...
##
 $ No
 $ age
 : int 67 67 72 82 73 76 76 77 64 64 ...
 : int 0011100000...
$ sex
$ DM
 : int 0000000100...
$ DMyr : int 10 11 4 8 3 1 1 35 5 5 ...
$ preAC : int 120 100 150 150 85 120 120 200 130 130 ...
$ prePC : int 160 150 200 200 110 150 150 250 180 180 ...
 $ postAC: int 140 150 120 160 140 120 120 230 100 100 ...
$ postPC: int 180 220 150 250 200 200 200 300 150 150 ...
$ Med : int 002000100...
$ SIDE : int 0 1 0 1 0 1 0 1 0 1 ...
$ PREKS : int 56 62 60 47 44 52 48 42 40 45 ...
$ POSKS : int 92 62 94 90 88 94 96 90 94 96 ...
 : int 101101010...
$ ABS
 $ INFECT: int 0 1 0 0 0 0 0 0 0 0 ...
```

#### 4.3 ASCII R

```
, (comma) ASCII ,
 csv format (comma-
separated-variable format),
 .csv. read.table()
 read.csv()
read data file: DMTKRcsv.csv
read_table.df <- read.table("C:/RData/DMTKRcsv.csv",</pre>
 header = TRUE,
 row.names = NULL,
 sep = ", ",
 dec = ".")
head(read_table.df, n = 3)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
 92
 56
1 1 67 0 0
 10
 120
 160
 140
 180
 0
 0
 1
 0
 100
2 2 67
 0 0
 11
 150
 150
 220
 0
 1
 62
 62
 0
 1
3 3 72
 1 0
 94
 0
 4
 150
 200
 120
 150
 2
 60
 1
simple one
read_csv.df <- read.csv("C:/RData/DMTKRcsv.csv")</pre>
head(read_csv.df, n = 3)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67
 0 0
 10
 120
 160
 140
 180
 0
 0
 56
 92
 1
 0
2 2 67
 0 0
 11
 100
 150
 150
 220
 0
 1
 62
 62
 0
 1
 150
 0
3 3 72
 1 0
 4
 200
 120
 150
 2
 0
 60
 94
 1
```

4.4. R 53

```
read_csv.df <- read.csv("C:/RData/DMTKRcsv.csv",</pre>
 header = TRUE,
 row.names = NULL,
 sep = ",",
 dec = ".")
head(read csv.df, n = 3)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67 0 0 10
 120 160
 140 180 0 0
 56
 0
2 2 67 0 0 11
 100
 150
 220
 62
 1
 150
 1
 62
 0
3 3 72 1 0 4
 150
 200
 120
 150
 2 0 60 94
```

#### 4.4 R

```
, (contributed packages)
 , data() \{\mathrm{R}\}
library(help = "datasets") {R}
 package.name
 data(package = "package.name")
{\tt data(data.name)} \qquad \{R\} \qquad {\tt data.name} \qquad , \quad {\tt data(package.data.name,}
data() # check names of datasets
data(Orange) # use {R} build-in dataset = Orange
help(Orange)
head(Orange)
Grouped Data: circumference ~ age / Tree
Tree age circumference
1 1 118
2 1 484
 58
3 1 664
 87
 1 1004
4
 115
5
 1 1231
 120
6 1 1372
 142
#
library(MASS)
help(package = MASS)
data(package = "MASS") # check MASS package data set
data(VA, package = "MASS") # use MASS package dataset = VA
help(VA)
head(VA)
stime status treat age Karn diag.time cell prior
 1 1 69
 7 1
1 72
 60
 1
2 411
 1
 1 64
 70
 5
 10
3 228
 1
 1 38
 60
 3
 1
 0
 1 1 63
4 126
 60
 10
```

54 CHAPTER 4.

```
5 118 1 1 65
 70
 11 1
6 10
 1 49
 20
 {R}
4.5
 \{R\}
 , . write.table() write.csv(). .
 \bullet \quad x = \{R\}
 • file =
 • append = FALSE
 • quote = "\""
 • sep = " "
 • eol = "n"
 • na = NA NA
 • dec = '.'
 • row.names = TRUE row names
 • col.names = TRUE
 (column names)
 • qmethod = c("escape", "double")
 • fileEncoding = ""
 write.csv()
 write.table() , sep = ",".
 \{R\}
4.6
 \texttt{saveRDS()} \qquad \{R\} \qquad . \qquad \texttt{readRDS()} \qquad \{R\}
 \{R\} . readRDS() , . \{R\} save()
 data frame
 load()
saveRDS() and save()
x < -c(1:5)
saveRDS(x, file = "C:/RData/x.Rds")
save(x, file = "C:/RData/x.Rda") # working directory
readRDS()
new_x <- readRDS(file = "C:/RData/x.Rds")</pre>
new_x
[1] 1 2 3 4 5
load() -- note the result
new_x <- load(file = "C:/RData/x.Rda")</pre>
new_x
[1] "x"
Х
```

## [1] 1 2 3 4 5

### Chapter 5

```
. \ Leland Wilkinson (1999), The Grammar of Graphics.
{R}
 . {R}
 (interactive) \{R\} ,
\{R\}
 ,\,\{\mathrm{R}\}
 graphic device),
 , pdf,
ps, jpg, png .
 , \, {\tt grid} \ \, , \quad {\tt Splus} \quad {\tt Trellis} \quad . \quad {\tt grid} \quad , \qquad \qquad {\tt lattice},
\{R\}
5.1
Edward Tufte (2006) Beautiful Evidence
 ggplot2
5.2
 , \qquad \mathsf{ggplot2} \qquad , \qquad , \qquad \mathsf{ggplot2}
 ggplot2
 R base .
```

, , https://www.r-graph-gallery.com/index.html.

```
ggplot2
 . ggplot2
 (layers),
 • data:
 • mapping (aes):
 - x- \, , y- \, , treat, fill, shape, size, etc.
 • geoms: geometric object
 - point, line, bar, shapes, ribbon, polygon, smooth, text etc.
 • stat: / , statistics
 • position:
 position adjustments.
Table: ggplot2
 ggplot()
ggplot(data = data_name,
 aes(x = variable_name,
 y = variable_name,
 ... <other variable_name mappings>)) +
 geom_<type}() +</pre>
 , %
Prentice (1973)
 Veteran's Administration
 survVATrial.csv.
 treat (therapy)
 : 0 = : 1 =
 cellcode
 ; 1 = ; 2 = ; 3 = ; 4 =
 time
 : 0 = : 1 =
 \operatorname{censor}
 diagtime
 Karnofsky performance score,
 diagtime
 age
 ()
 ; 0 = ; 1 =
 prior
dd <- read.table("./Data/survVATrial.csv",</pre>
 header = TRUE,
 sep = ",",
 quote = "\""",
 dec = ".",
 row.names = NULL,
 # col.names,
 as.is = TRUE,
 # as.is = !stringsAsFactors,
 na.strings = c(".", "NA"))
head(dd)
treat cellcode time censor diagtime kps age prior
```

5.3.

```
1
 72
 60
 7 69
 0
 0
 411
 1
 70
 5
 64
 10
 1
3
 0
 1
 228
 1
 60
 3
 38
 0
4
 0
 1 126
 60
 9
 63
 10
 1
5
 0
 1 118
 1
 70
 11
 65
 10
6
 0
 10
 5
 1
 1
 20
 49
 0
str(dd)
'data.frame':
 137 obs. of 8 variables:
$ treat : int 0000000000...
$ cellcode: int 1 1 1 1 1 1 1 1 1 ...
$ time : int 72 411 228 126 118 10 82 110 314 100 ...
$ censor : int 1 1 1 1 1 1 1 1 0 ...
$ diagtime: int 60 70 60 60 70 20 40 80 50 70 ...
 : int 75391151029186...
$ kps
$ age
 : int 69 64 38 63 65 49 69 68 43 70 ...
$ prior : int 0 10 0 10 10 0 10 0 0 ...
dd$treat <- factor(dd$treat, labels = c("placebo", "test"))</pre>
dd$cellcode <- factor(dd$cellcode,
 labels = c("squamous", "small", "adeno", "large"))
dd$censor <- factor(dd$censor, labels = c("survival", "dead"))</pre>
dd$prior <- factor(dd$prior, labels = c("no", "yes"))</pre>
head(dd)
 treat cellcode time censor diagtime kps age prior
1 placebo squamous
 72 dead
 60
 7 69
 70
2 placebo squamous 411
 dead
 5 64
 yes
3 placebo squamous
 228
 dead
 60
 3 38
 no
 9 63
4 placebo squamous 126
 dead
 60
 yes
5 placebo squamous 118
 dead
 70 11 65
 yes
6 placebo squamous
 dead
 5 49
 10
 20
 no
str(dd)
 137 obs. of 8 variables:
'data.frame':
$ treat : Factor w/ 2 levels "placebo", "test": 1 1 1 1 1 1 1 1 1 1 ...
$ cellcode: Factor w/ 4 levels "squamous", "small",..: 1 1 1 1 1 1 1 1 1 1 1 ...
$ time : int 72 411 228 126 118 10 82 110 314 100 ...
$ censor : Factor w/ 2 levels "survival", "dead": 2 2 2 2 2 2 2 2 1 ...
$ diagtime: int 60 70 60 60 70 20 40 80 50 70 ...
$ kps
 : int 75391151029186...
$ age
 : int 69 64 38 63 65 49 69 68 43 70 ...
$ prior : Factor w/ 2 levels "no","yes": 1 2 1 2 2 1 2 1 1 1 ...
```

#### 5.3

```
(distribution), . (frequency table), (bar plot) (pie chart).
```

, . (Table) .

#### 5.3.1

• : .

```
pie chart: ggplot2 do not have a simple geom_pie()
use R base pie()
cellcode.tab <- table(dd$cellcode)</pre>
cellcode.tab
##
squamous small
 adeno large
35 48 27
 27
prop.table(cellcode.tab)
squamous
 adeno large
 small
0.2555 0.3504
 0.1971 0.1971
barplot(cellcode.tab)
round(barplot(cellcode.tab), 4)
```



```
[,1]
[1,] 0.7
[2,] 1.9
[3,] 3.1
[4,] 4.3
```

5.3.

pie(cellcode.tab)



```
library(ggplot2)
bar chart
ggplot(data = dd, aes(x = cellcode)) +
 geom_bar()
```



```
ggplot(data = dd, aes(x = cellcode)) +
geom_bar(fill = "blue") +
coord_flip()
```

5.3.







```
pie chart: no simple solution
clar.freq <- data.frame(cellcode.tab)
names(clar.freq)[1] <- "cellcode"
clar.freq
cellcode Freq
1 squamous 35
2 small 48
3 adeno 27
4 large 27
ggplot(data = clar.freq, aes(x = "", y = Freq, fill = cellcode)) +
 geom_bar(width = 1, stat = "identity") +
 coord_polar("y", start = 0)</pre>
```



Freq

```
ggplot(data = clar.freq, aes(x = "", y = Freq, fill = cellcode)) +
 geom_bar(stat = "identity", width = 1) +
 coord_polar(theta = "y", start = 0) +
 theme_void() # remove background
```

5.3.



#### 5.3.2

```
two categorical vtriables
table(dd$treat)
##
placebo test
69 68
table(dd$cellcode)
##
squamous small adeno large
35 48 27 27
twoway.tab <- table(dd$treat, dd$cellcode)</pre>
twoway.tab
 squamous small adeno large
##
placebo 15 30 9 15
test 20 18 18 12
cell proportion
cell.prop <- prop.table(twoway.tab, margin=NULL)</pre>
round(cell.prop, 3)
##
##
 squamous small adeno large
```

```
placebo 0.109 0.219 0.066 0.109
test 0.146 0.131 0.131 0.088
conditional on row sum to 1
cond_row_prop <- prop.table(twoway.tab, margin = 1)</pre>
round(cond_row_prop, 3)
##
 squamous small adeno large
##
placebo 0.217 0.435 0.130 0.217
test 0.294 0.265 0.265 0.176
apply(cond_row_prop, 1, sum) # rows sum to 1
placebo test
1 1
conditional on column sum to 1
cond_col_prop <- prop.table(twoway.tab, margin = 2)</pre>
round(cond_col_prop, 3)
##
##
 squamous small adeno large
placebo 0.429 0.625 0.333 0.556
test 0.571 0.375 0.667 0.444
apply(cond_col_prop, 2, sum) # cols sum to 1
squamous small adeno large ## 1 1 1 1
side-by-side bar plot
barplot(twoway.tab,
 beside = TRUE,
 main = "treat By cellcode",
 xlab = "clarty")
```

5.3.

# treat By cellcode



```
Stacked Bar Plot
barplot(twoway.tab,
 beside = FALSE,
 main = "treat By cellcode",
 xlab = "treat")
```

### treat By cellcode



```
ggplot2
Automatically stack
library(ggplot2)
ggplot(data = dd, aes(x = cellcode, fill = treat)) +
 geom_bar()
```

5.3.







```
side-by-side
ggplot(data = dd, aes(x = cellcode, fill = treat)) +
 geom_bar(position = "dodge")
```



geom\_bar(position = "fill")

5.4.



### **5.4**

### 5.4.1

```
use R base pie()
histogram
hist(dd$time,
 freq = TRUE,
 main = "time histogram",
 xlab = "time")
```

# time histogram



```
hist(dd$time,
 freq = FALSE,
 main = "time histogram",
 xlab = "time")
```

5.4.

# time histogram





time

5.4.

# **Normal QQ Plot: time**



**Theoretical Quantiles** 

```
density plot
plot(density(dd$time),
 pch = 16,
 main = "Density Plot",
 xlab = "time",
 ylab = "density")
```

# **Density Plot**



```
ggplot2
histogram
ggplot(data = dd, aes(x = time)) +
 geom_histogram()
```

5.4. 75



```
box plot
ggplot(dd, aes(x = "", y = time)) +
 geom_boxplot()
```



```
violin plot
ggplot(dd, aes(x = "", y = time)) +
 geom_violin()
```

5.4.



```
density plot
ggplot(data = dd, aes(x = time)) +
 geom_freqpoly()
```



ggplot(data = dd, aes(x = time)) +
stat\_bin(geom = "area")



5.4.

```
ggplot(data = dd, aes(x = time)) +
 stat_bin(geom = "line")
```



#### 5.4.2



## formulat y ~ x, data = data\_name)
plot(time ~ diagtime, data = dd)



5.4. 81

```
ggplot
ggplot(data = dd, aes(x = diagtime, y = time)) +
 geom_point()
```



```
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_point(size = 5)
```







5.4. 83

```
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_jitter(size = 5, alpha = 1/2)
```



```
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_jitter(size = 5, alpha = 0.3) +
geom_rug(col = "steelblue", alpha = 0.1, size = 1.5)
```



```
add linear line or smoothing line
ggplot(data = dd, aes(x = diagtime, y = time)) +
 geom_point() +
 geom_smooth(method = "lm")
```

5.4. 85



```
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_point() +
geom_smooth(se = FALSE)
```



```
ggplot(data = dd, aes(x = diagtime, y = time)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 geom_smooth(se = FALSE)
scatter plot + marginal distribution
library(ggExtra)
classical
p <- ggplot(dd, aes(x = diagtime, y = time)) +</pre>
 geom_point() +
 theme(legend.position = "none")
scatter plot + marginal histogram
ggMarginal(p, type = "histogram", color = "purple")
scatter plot + marginal density
ggMarginal(p, type = "density")
scatter plot + marginal boxplot
ggMarginal(p, type = "boxplot")
```



# 5.5

```
++++
```

```
one continuous + one categorical
ggplot(data = dd, aes(x = time)) +
 geom_histogram(aes(fill = treat))
```









```
#
ggplot(data = dd, aes(x = treat, y = time, fill = treat)) +
 geom_boxplot()
```



```
ggplot(data = dd, aes(x = treat, y = time, fill = treat)) +
 geom_boxplot() +
 geom_jitter(color = "purple", size = 2, alpha = 0.8)
```



```
#
ggplot(data = dd, aes(x = treat, y = time, fill = treat)) +
 geom_violin()
```



```
ggplot(data = dd, aes(x = treat, y = time, fill = treat)) +
 geom_violin() +
 geom_jitter(color = "purple", size = 2, alpha = 0.8) +
 ggtitle("Violin chart by treatment") +
 xlab("treatment")
```





```
ggplot2
two continuous + one categorical
ggplot(data = dd, aes(x = diagtime, y = time, color = treat)) +
 geom_point(size = 4)
5.5.2 +
```

















```
, , , .
pairwise scatter plot
R base
con.df = dd[, c("time", "diagtime", "kps", "age")]
cor.mat = cor(con.df, use = "complete", method = "pearson")
round(cor.mat, 3)
 time diagtime
##
 kps age
time
 1.000 0.382 -0.046 -0.068
diagtime 0.382
 1.000 -0.184 -0.095
 -0.184 1.000 -0.033
kps
 -0.046
 -0.068
age
 -0.095 -0.033 1.000
pairs(con.df)
```



## ggplot2

library(GGally)

GGally::ggpairs(data = con.df)





method = c("complete", "pearson"))

### 1. VA Lung Cancer Trial



# 2. VA Lung Cancer Trial



# 3. VA Lung Cancer Trial



• Try by yourself!

```
more advanced
my_fn <- function(data, mapping, ...){
 p <- ggplot(data = data, mapping = mapping) +
 geom_point() +
 geom_smooth(method = loess, se = FALSE, fill = "red", color = "red", ...) +
 geom_smooth(method = lm, se = FALSE, fill = "blue", color = "blue", ...)
 p
}
GGally::ggpairs(data = con.df,
 lower = list(continuous = my_fn))</pre>
```



```
Bubble plot
ggplot(data = dd, aes(x = diagtime, y = time, size = age)) +
geom_point(alpha = 0.3) +
scale_size(range = c(.1, 15), name = "Age Bubbles")
```



```
ggplot(data = dd, aes(x = diagtime, y = time, size = age)) +
geom_point(alpha = 0.3) +
scale_size(range = c(.1, 15), name = "Age Bubbles")
```



```
ggplot(data = dd, aes(x = diagtime, y = time, size = age, color = treat)) +
 geom_point(alpha = 0.3) +
scale_size(range = c(.1, 24), name = "")
```



# 5.6

```
plot by treat
ggplot(data = dd, aes(x = diagtime, y = time)) + geom_jitter() +
facet_grid(. ~ treat)
```

5.6.







110 CHAPTER 5.

```
plot by cellcode
ggplot(data = dd, aes(x = diagtime, y = time)) + geom_jitter() +
facet_grid(. ~ cellcode)
```



ggplot(data = dd, aes(x = diagtime, y = time)) + geom\_jitter() +

facet\_grid(treat ~ cellcode)

5.6.



112 CHAPTER 5.

## Chapter 6

```
\{R\} \qquad (\textbf{function}), \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad \{R\} \qquad \qquad .
 (argument).
\{R\} (base) ,
 \{R\} (contribution), \{R\} .,
 mean(), var(), sd(), log().
6.1
\begin{array}{cccc} (\textbf{argument}) & , & , & (\textbf{formals}). & , & , & (\textbf{required} \\ \textbf{argument}), & , & & (\textbf{optional argument}), & & & (\textbf{ellipsis argument}) \end{array}
 , , , , \{R\} . , log() :
log(x, base = exp(1))
basic function
x.vec = c(1:5)
x.vec # show x.vec
[1] 1 2 3 4 5
mean(x = x.vec) # function mean() calculate mean, return a scalar
var(x = x.vec) # function mean() calculate variance
[1] 2.5
sd(x.vec)
 # function mean() calculate standard deviation
[1] 1.581
summary(x.vec) # summarized statistics
Min. 1st Qu. Median Mean 3rd Qu.
1 2 3 3 4 5
log(x = x.vec) # take log for all elements in vector x.vec
```

CHAPTER 6.

```
[1] 0.0000 0.6931 1.0986 1.3863 1.6094
log function
x.vec <- c(1, 2, 3, 4, 5)
log(x = x.vec)
[1] 0.0000 0.6931 1.0986 1.3863 1.6094
log(x = x.vec, base = 2)
[1] 0.000 1.000 1.585 2.000 2.322</pre>
```

#### 6.2

```
\{R\}
 S3 classes
 S4 classes ,
 \{R\}
 , function.name(),
 methods("function.name"),
 .
getAnywhere("function.name"), stats:::function.name ,
methods()
sd
function (x, na.rm = FALSE)
sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x),
 na.rm = na.rm))
<bytecode: 0x000000014558130>
<environment: namespace:stats>
function (x)
UseMethod("t")
<bytecode: 0x000000010d8dd38>
<environment: namespace:base>
methods(t)
[1] t, ANY-method
 t, CsparseMatrix-method t, dqCMatrix-method
[4] t,dgeMatrix-method
 t, diagonal Matrix-method\ t, dpp Matrix-method
[7] t,dsCMatrix-method
 t, dspMatrix-method
 t,dsTMatrix-method
[10] t,dsyMatrix-method
 t,dtpMatrix-method
 t, dtrMatrix-method
 t, lqeMatrix-method
[13] t, dtTMatrix-method
 t, indMatrix-method
[16] t, lspMatrix-method
 t, lsTMatrix-method
 t, lsyMatrix-method
[19] t, ltpMatrix-method
 t, ltrMatrix-method
 t, ltTMatrix-method
[22] t, Matrix-method
 t,nqeMatrix-method
 t, nspMatrix-method
[25] t,nsTMatrix-method
 t, ntpMatrix-method
 t,nsyMatrix-method
[28] t,ntrMatrix-method
 t,ntTMatrix-method
 t,pMatrix-method
[31] t,RsparseMatrix-method t,sparseVector-method
 t, TsparseMatrix-method
[34] t.data.frame
 t.fractions*
 t.default
[37] t.gtable*
 t.trellis*
 t.ts*
[40] t.vctrs_sclr*
 t.vctrs_vctr*
see '?methods' for accessing help and source code
methods(class = "ts")
[1] [
 as.data.frame as_tibble
 aggregate
```

6.3.

```
diff
[6] cbind
 coerce
 cycle
 diffinu
[11] filter
 initialize
 kernapply
 lines
 Math
[16] Math2
 monthplot
 na.omit
 Ops
 plot
[21] print
 slotsFromS3
 show
 t
 time
[26] window
 window<-
see '?methods' for accessing help and source code
 S4 classes , showClass("function.namme"), showMethods("function.namme"),
getMethod("function.namme"), selectMethod(), existsMethod(),
hasMethod(), removeClass(), removeMethod(), getClass(), getSlots(),
slotNames(), slot().
download.packages(pkgs = "package.name",
 destdir = "C:/RData",
 type = "source")
6.3
\{R\}
 , :, sequence(), rep() .
 : seq() sequence()
6.3.1
 [1,2,3,4,5], [1,3,5,7,9] , : (), seq() sequence()
:
1:5
[1] 1 2 3 4 5
5:1
[1] 5 4 3 2 1
- 1:3
[1] -1 0 1 2 3
 seq() sequence() ,
seq(from = 1, to = 1,
 by = ((to - from)/(length.out - 1)),
 length.out = NULL,
 along.with = NULL, ...)
 • from = 1
 • to = 1
 • by
 • length.out ()
seq()
seq(from = 1, to = 5, by = 0.5)
```

CHAPTER 6.

```
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
seq(1, 5, 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
seq(1, 5, length = 3)
[1] 1 3 5
seq(from = 0, to = 1, by = 0.1)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
seq(from = 0, to = 2, by = 0.33)
[1] 0.00 0.33 0.66 0.99 1.32 1.65 1.98
sequence(c(3, 4, 5))
[1] 1 2 3 1 2 3 4 1 2 3 4 5
```

## 6.4 : rep()

• x

times

X

```
seq() rep(), . :
rep(x, times = 1, length.out = NA, each = 1)
```

```
each
 • length.out = NA
rep()
rep(0, times = 3)
[1] 0 0 0
rep(1, 5)
[1] 1 1 1 1 1
x.vec <- c(4, 5, 6)
rep(x.vec, times = 2)
[1] 4 5 6 4 5 6
rep(x.vec, each = 2)
[1] 4 4 5 5 6 6
rep(x.vec, each = 2, times = 3)
[1] 4 4 5 5 6 6 4 4 5 5 6 6 4 4 5 5 6 6
rep(x.vec, times = c(2, 2, 2))
[1] 4 4 5 5 6 6
rep(x.vec, times = c(1, 2, 3))
[1] 4 5 5 6 6 6
rep(x.vec, each = 2, len = 4) # first 4 only.
[1] 4 4 5 5
```

### 6.5 Arithmetic Computing Function

 $\{R\} \hspace{1cm} (\textbf{arithmetic function}), \quad , \ , Gamma \ , Beta \ , \quad , \quad , \quad , \quad ,$ 

Table 6.1: Arithmetic Computing Function

```
(Substraction, can be unary or binary)
+
 (Addition, can be unary or binary)
 (Unary not)
 (Multiplication, binary)
 (Division, binary)
 (Exponentiation, binary)
%%
 (Modulus, binary)
%/%
 (Integer divide, binary)
%*%
 (Matrix product, binary)
%o%
 (Outer product, binary)
%x\%
 Kronecker (Kronecker product, binary)
%in%
 (Matching operator, binary, in model formulae: nesting)
round(x, digits = 0)
signif(x, digits = 6)
 0
trunc(x)
ceiling(x)
 х
floor(x)
 х
sign(x)
 1, 0, -1.
 х
abs(x)
 х
sqrt(x)
 \sqrt{x}
exp(x)
 |x| << 1, \quad e^x - 1
expm1(x)
log(x)
 \log(x)
log10(x)
 log_{10}(x)
log2(x)
 \log_2(x)
logb(x, base = z)
 \log_{z}(x)
 \begin{split} &|\tilde{x}|<<1,\quad \log(1+x)\\ &\Gamma(x)=(x-1)!=\int_0^\infty t^{(x-1)}\exp(-t)dt \end{split}
log1p(x)
gamma(x)
lgamma(x)
 \log_e[\Gamma(x)]
beta(a, b)
 B(a,b) = (\Gamma(a)\Gamma(b)) / (\Gamma(a+b))
 = _0^1 t^{(a-1)} (1-t)^{(b-1)} d t
lbeta(a, b)
 \log_{a}[B(a,b)]
 \frac{\frac{d}{dx}\log_e[\Gamma(x)]}{\frac{d^2}{dx^2}\log_e[\Gamma(x)]}
digamma(x)
trigamma(x)
 \frac{d^p}{dx^p}\log_e[\Gamma(x)]
psigamma(x, deriv = 0)
sin(x) cos(x) tan(x)
 (trigonometric functions)
asin(x) acos(x) atan(x)
 (inverse functions)
```

CHAPTER 6.

```
sinh(x) cosh(x) tanh(x) (hyperbolic functionsx)
asinh(x) acosh(x) atanh(x) (inverse hyperbolic functions)
```

```
Arithmetic Computing
rounding
(x.vec <- 0.5 + c(-2:2))
[1] -1.5 -0.5 0.5 1.5 2.5
round(x.vec) # IEEE rounding
[1] -2 0 0 2 2
(y.vec \leftarrow seq(-2, 2, by = 0.5))
[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
(y.round <- round(y.vec)) # IEEE rounding
[1] -2 -2 -1 0 0 0 1 2 2
(y.trunc <- trunc(y.vec))</pre>
[1] -2 -1 -1 0 0 0 1 1 2
(y.signif <- signif(y.vec))</pre>
[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
(y.ceil <- ceiling(y.vec))</pre>
[1] -2 -1 -1 0 0 1 1 2 2
(y.floor <- floor(y.vec))</pre>
[1] -2 -2 -1 -1 0 0 1 1 2
cbind(y.vec, y.round, y.trunc, y.signif, y.ceil, y.floor)
##
 y.vec y.round y.trunc y.signif y.ceil y.floor
[1,]
 -2.0
 -2
 -2
 -2.0
 -2
 -2
[2,] -1.5
 -2
 -1
 -1.5
 -1
 -2
 -1.0
##
 [3,] -1.0
 -1
 -1
 -1
 -1
##
 [4,] -0.5
 0
 -0.5
 0
 0
 -1
 [5,] 0.0
 0
##
 0
 0.0
 0
 0
 0
 0
[6,] 0.5
 0.5
 1
 0
[7,]
 1.0
 1
 1
 1.0
 1
[8,]
 1.5
 2
 1.5
 2
 1
 1
[9,]
 2
 2.0
 2.0
(x.vec \leftarrow 0.5 + c(-2:3))
[1] -1.5 -0.5 0.5 1.5 2.5 3.5
round(x.vec) # IEEE rounding
[1] -2 0 0 2 2 4
(y.vec \leftarrow seq(-2, 3, by = 0.5))
[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
(y.round <- round(y.vec)) # IEEE rounding
[1] -2 -2 -1 0 0 0 1 2 2 2 3
(y.trunc <- trunc(y.vec))</pre>
[1] -2 -1 -1 0 0 0 1 1 2 2 3
```

```
(y.signif <- signif(y.vec))</pre>
[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
(y.ceil <- ceiling(y.vec))</pre>
[1] -2 -1 -1 0 0 1 1 2 2 3 3
(y.floor <- floor(y.vec))</pre>
[1] -2 -2 -1 -1 0 0 1 1 2 2 3
cbind(y.vec, y.round, y.trunc, y.signif, y.ceil, y.floor)
 y.vec y.round y.trunc y.signif y.ceil y.floor
[1,] -2.0
 -2
 -2
 -2.0
 -2
 -2
[2,] -1.5
 -2
 -1.5
 -2
 -1
 -1
 -1
[3,] -1.0
 -1
 -1
 -1.0
 -1
 0
 0
[4,] -0.5
 -0.5
 0
 -1
[5,] 0.0
 0
 0
 0.0
 0
 0
[6,]
 0.5
 0
 0
 0.5
 1
 0
[7,]
 1.0
 1
 1.0
 1
 1
 1
[8,] 1.5
 2
 1
 1.5
 2
 1
[9,] 2.0
 2
 2
 2.0
 2
 2
 2.5
 2
 2
[10,]
 2.5
 3
 2
 3
 3
 3
[11,] 3.0
 3.0
 3
(y.vec \leftarrow seq(-2, 3, by = 0.5))
[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
y.vec[trunc(y.vec) != floor(y.vec)]
[1] -1.5 -0.5
y.vec[round(y.vec) != floor(y.vec + 0.5)]
[1] -1.5 0.5 2.5
(z.vec \leftarrow pi * 100 ^ (-1:3))
[1] 3.142e-02 3.142e+00 3.142e+02 3.142e+04 3.142e+06
round(z.vec, 3)
[1] 3.100e-02 3.142e+00 3.142e+02 3.142e+04 3.142e+06
signif(z.vec, 3)
[1] 3.14e-02 3.14e+00 3.14e+02 3.14e+04 3.14e+06
siqn() abs()
sign(pi) # == 1
[1] 1
sign(-2:3)# -1 -1 0 1 1 1
[1] -1 -1 0 1 1 1
abs(-2:3)
[1] 2 1 0 1 2 3
log(), exp() calculation
(x.vec <- 1:3)
[1] 1 2 3
```

CHAPTER 6.

```
log(exp(x.vec))
[1] 1 2 3
(y.vec <- 10 ^(x.vec))
[1] 10 100 1000
log10(y.vec)
[1] 1 2 3
log10(1e7) # = 7
[1] 7
options(digits, scipen)
options(digits = 4, scipen = 0)
z.vec <- pi * 100^{(-1:3)}
print(z.vec / 1000, digits = 4)
[1] 3.142e-05 3.142e-03 3.142e-01 3.142e+01 3.142e+03
options(digits = 4, scipen = 100)
print(z.vec / 1000, digits = 4)
[1]
 0.00003142
 0.00314159
 0.31415927 31.41592654 3141.59265359
options(digits = 4, scipen = 100)
x.vec \leftarrow 100 - (1 + 2 * 1:3)
cbind(
 x = x.vec,
 log1px = log(1 + x.vec),
 log1p = log1p(x.vec),
 exp = exp(x.vec) - 1,
 expm1 = expm1(x.vec)
)
##
 log1px
[1,] 0.00000100000000 0.000000999999499918 0.00000099999950
[2,] 0.0000000010000 0.0000000010000008 0.0000000010000
[3,] 0.0000000000001 0.0000000000009992 0.000000000001
##
 exp
[1,] 0.000001000000499962 0.00000100000050
[2,] 0.0000000010000008 0.0000000010000
[3,] 0.000000000000009992 0.0000000000001
options(digits = 4, scipen = 0)
x.vec <- 100^(-(1 + 2 * 1:3))
cbind(
 x = x.vec,
 log1px = log(1 + x.vec),
 log1p = log1p(x.vec),
 exp = exp(x.vec) - 1,
 expm1 = expm1(x.vec)
```

```
x log1px log1p exp expm1

[1,] 1e-06 1.000e-06 1e-06 1.000e-06 1e-06

[2,] 1e-10 1.000e-10 1e-10 1.000e-10 1e-10

[3,] 1e-14 9.992e-15 1e-14
```

## 6.6 : choose() factorial()

```
\{R\} choose(), lchoose(), factorial(), lfactorial(), .
```

```
• choose(n, k) = \binom{n}{k}

• fractorial(x) = x!

• k .

• x n .
```

• factorial(), lfactorial()

```
combination
choose()
choose(n = 5, k = 2)
[1] 10
log(choose(n = 5, k = 2))
[1] 2.303
lchoose(n = 5, k = 2)
[1] 2.303
for (n in 0:5)
print(choose(n, k = 0:n))
[1] 1
[1] 1 1
[1] 1 2 1
[1] 1 3 3 1
[1] 1 4 6 4 1
[1] 1 5 10 10 5 1
factorial
factorial(x = 100)
[1] 9.333e+157
log(factorial(x = 100))
[1] 363.7
lfactorial(x = 100)
[1] 363.7
lfactorial(x = 10000)
[1] 82109
factorial(x = c(1, 3, 5))
[1] 1 6 120
```

122 CHAPTER 6.

#### : all(), any(), which() 6.7all(x) any(x) obj.vec TRUE FALSE. which() obj.vec which.max() which.min() which() . all(..., na.rm = FALSE) any(..., na.rm = FALSE) which(x, arr.ind = FALSE, useNames = TRUE) (scalar) TRUE FALSE. all(x) . all(x) any(x) $\mathbf{x}$ TRUE? , any(x) $\mathbf{x}$ TRUE? which(x)TRUE (index). which(x) arr.ind = TRUE x array (matrix), array (matrix) ## all(), any(), which() (x.vec <- c(-1:2))## [1] -1 0 1 2 all(x.vec > 0)## [1] FALSE any(x.vec > 0)## [1] TRUE which(x.vec > 0) ## [1] 3 4 which.max(x.vec) ## [1] 4 which.min(x.vec) ## [1] 1 # (x.mat <- matrix(c(2, -1, -3,-1, 2, 4, -3, 4, 9),nrow = 3, byrow = T)## [,1] [,2] [,3] ## [1,] 2 -1 -3 ## [2,] -1 2 4 ## [3,] -3 all(x.mat > 0)## [1] FALSE any(x.mat > 0)## [1] TRUE which(x.mat > 0) ## [1] 1 5 6 8 9 which(x.mat $\frac{2}{2} = 0$ ) ## [1] 1 5 6 8

which(x.mat %% 2 == 0, arr.ind = TRUE)

```
row col

[1,] 1 1

[2,] 2 2

[3,] 3 2

[4,] 2 3
```

### 6.8 Ranking and Sorting

```
\{R\} , rev(), sort(), order() rank().
```

Table 6.2:

• na.last:

• rev(x) z, x .

- decreasing = TRUE

• sort(x) z, x .

• % rank(x) z, x , x (rank).

CHAPTER 6.

```
• "average":
 • "first":
 • "last":
 • "random":
 • "max":
 • "min":
reverse, rank, sort and order
rev(): reverse elements
x.vec \leftarrow c(7, 7, 7, 6, 10, 9, 9, 9, NA, 8)
rev(x.vec)
[1] 8 NA 9 9 9 10 6 7 7 7
sort(): from the smallest to the largest
sort(x.vec)
[1] 6 7 7 7 8 9 9 9 10
rank():
rank(x.vec, na.last = TRUE)
[1] 3 3 3 1 9 7 7 7 10 5
rank(x.vec, na.last = FALSE)
[1] 4 4 4 2 10 8 8 8 1 6
set.seed(1)
rank(x.vec, ties.method = "average")
[1] 3 3 3 1 9 7 7 7 10 5
rank(x.vec, ties.method = "first")
[1] 2 3 4 1 9 6 7 8 10 5
rank(x.vec, ties.method = "last")
[1] 4 3 2 1 9 8 7 6 10 5
rank(x.vec, ties.method = "random")
[1] 2 3 4 1 9 7 8 6 10 5
rank(x.vec, ties.method = "max")
[1] 4 4 4 1 9 8 8 8 10 5
rank(x.vec, ties.method = "min")
[1] 2 2 2 1 9 6 6 6 10 5
order(): retrun index
x.vec[] is the smallest one
order(x.vec)
[1] 4 1 2 3 10 6 7 8 5 9
x.vec[order(x.vec)]
[1] 6 7 7 7 8 9 9 9 10 NA
rank(): ties.method = "average"
x \leftarrow c(7, 9, 6, 7, 8, NA)
sort(x, na.last = FALSE)
[1] NA 6 7 7 8 9
```

6.9.

```
rank(x, ties.method = "average", na.last = TRUE)
[1] 2.5 5.0 1.0 2.5 4.0 6.0
(x.ord <- order(x, na.last = FALSE))</pre>
[1] 6 3 1 4 5 2
x[x.ord] # = sort(x)
[1] NA 6 7 7 8 9
\{R\}
 NA , na.last = TRUE \{R\} , NA
6.9
\{R\}
 is.object(),
 is.na(), is.vector() ,
{R}
 as.object(),
 as.vector(), as.matrix(() ,
is() and as()
vector
x.vec \leftarrow c(1 / 1, 1 / 2, 1 / 3, 1 / 4, 1 / 5)
[1] 1.0000 0.5000 0.3333 0.2500 0.2000
is.vector(x.vec)
[1] TRUE
is.character(x.vec)
[1] FALSE
x.vec <- as.character(x.vec)</pre>
x.vec
[17 "1"
 "0.5"
 "0.333333333333333333
 "0.2"
[4] "0.25"
b.df <- as.data.frame(matrix(c(1:24), nrow = 6, byrow = T))
is.matrix(b.df)
[1] FALSE
b.mat <- as.matrix(b.df)</pre>
b.mat
##
 V1 V2 V3 V4
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16
[5,] 17 18 19 20
[6,] 21 22 23 24
b.mat <- as.vector(b.mat)</pre>
[1] 1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15 19 23 4 8 12 16 20 24
```

126 CHAPTER 6.

## Chapter 7

Table 7.1:

```
sum(x)
 (scalar)
cumsum(x)
 (vector)
diff(x)
 x[i+1]-x[i]
 z_i = x_{i+1} - x_i
 z_i = x_{i-k}, \quad \mathbf{x[i]}
lag(x, k)
 x[i-k]
 x[i-k]
 z_i = x_{i+k}, \quad \mathbf{x[i]}
lead(x, k)
 x[i+k]
 x[i+k]
 y = \prod_{i} x_{i}
\$z_{j} = \{i \ j\} \ x_{i}
\bar{x} = \frac{1}{n} \sum_{i} x_{i}
prod(x)
 (product)
cumprod(x)
mean(x)
 (mean)
 0.5 quantile, 50^{th} percentile
median(x)
 (median)
 s^{2} = \frac{1}{n-1} \sum_{i} (x_{i} - \bar{x})^{2}
s = \sqrt{s^{2}}
var(x)
sd(x)
 (SD)
 (\min(x), \max(x))
range(x)
 (range)
min(x)
 min(x)
max(x)
 \max(x)
quantile(x)
fivenum(x)
 (five-number summary)
 (\min, Q_1, \text{median}, Q_3, \max)
sample(x)
 random sample
```

128 CHAPTER 7.

#### 7.1

iqr

```
z \leftarrow range(x), (min(x), max(x));
 quantile(), quantile(x, probs = c(0.05, 0.25, 0.5,
0.75, 0.95). fivenum(x) x (\min, Q_1, \text{median}, Q_3, \text{max}).
basic descriptive statistics
x \leftarrow seq(-2, 3, 0.3)
[1] -2.0 -1.7 -1.4 -1.1 -0.8 -0.5 -0.2 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2
[16] 2.5 2.8
sum(x)
[1] 6.8
cumsum(x)
[1] -2.0 -3.7 -5.1 -6.2 -7.0 -7.5 -7.7 -7.6 -7.2 -6.5 -5.5 -4.2 -2.6 -0.7 1.5
[16] 4.0 6.8
diff(x)
prod(x)
[1] -0.7138
cumprod(x)
[1] -2.00000 3.40000 -4.76000 5.23600 -4.18880 2.09440 -0.41888 -0.04189
[9] -0.01676 -0.01173 -0.01173 -0.01525 -0.02440 -0.04635 -0.10197 -0.25493
[17] -0.71381
mean(x)
[1] 0.4
median(x)
[1] 0.4
var(x)
[1] 2.295
sd(x)
[1] 1.515
range(x)
[1] -2.0 2.8
min(x)
[1] -2
max(x)
[1] 2.8
quantile
y \leftarrow quantile(x, probs = c(0.05, 0.25, 0.5, 0.75, 0.95))
 5% 25% 50% 75% 95%
##
-1.76 -0.80 0.40 1.60 2.56
IQR: inter-quantile range
iqr = y[4] - y[2]
```

7.2.

```
75%
2.4
five numnber summary
fivenum(x)
[1] -2.0 -0.8 0.4 1.6 2.8
missing values
x[3] \leftarrow NA
x[7] \leftarrow NA
[1] -2.0 -1.7 NA -1.1 -0.8 -0.5 NA 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2
[16] 2.5 2.8
mean(x)
[1] NA
mean(na.omit(x))
[1] 0.56
mean(x, na.rm = T)
[1] 0.56
var(x, na.rm = T)
[1] 2.338
7.2
```

```
(contingency table), {R}, (contingency table),
 , table(), xtabs(), as.table(), is.table(); ftable(), read.ftable(),
wirte.ftable(); as.data.frame(); margin.table(), prop.table(),
addmargins() . , \{R\} , xtable, vcd**, reshape2, plyr, dplyr, tidyr, tidyverse,
 , ** ** . ,Epi,epibasix,epiDisplay(epicalc),epifit,epiR,epitools,RC
 . {R}
 2 , (a) (individual data, micro data, case data); (b)
(aggregated data, macro data, summarized data, ecological data).
 , \hspace{1cm} , \hspace{1cm} (\mathbf{raw} \ \mathbf{data},
 (subject, individual),
 original data). , , , , , , , , , , , , , , , , , , (secondary data).
primary data, original data).
 , BMI ,
 () ,
7.2.1
 : table(), xtabs()
 table(), xtabs(),
 (class) table . as.table()
contingency table. {R}
 . as.data.frame() .
 . as.matrix()
```

as.data.frame() xtabs() . is.table() . table()

130 CHAPTER 7.

```
xtabs()
 (model formula)
 . as.data.frame()
 xtabs() ,
table(variable_name, ...)
xtabs(formula, data)
 formula:
 • data: .
 • na.action = "na.omit":
 • exclude: ,
 • useNA: .
 - "no": .
- "ifany": , (count) .
- "always": 1 . (co
 (count) 0 1
 , %
Prentice (1973)
 Veteran's Administration
 survVATrial.csv.
 treat (therapy) : 0 = ; 1 =
 cellcode
 ; 1 = ; 2 = ; 3 = ; 4 =
 time
 : 0 = : 1 =
 censor
 Karnofsky performance score,
 diagtime
 diagtime
 age
 ()
 ; 0 = ; 1 =
 prior
dd <- read.table("./Data/survVATrial.csv",</pre>
 header = TRUE,
 sep = ",",
 quote = "\"'",
 dec = ".",
 row.names = NULL,
 # col.names,
 as.is = TRUE,
 # as.is = !stringsAsFactors,
 na.strings = c(".", "NA"))
head(dd)
treat cellcode time censor diagtime kps age prior
 60 7 69 0
1 O
 1 72
 1
2
 1 411
 70 5 64
 0
 1
 10
 1
3 0
 1 228
 60 3 38
 0
4
 0
 1 126
 1
 60 9 63
 10
```

7.2.

```
5 0 1 118
 70 11 65
 10
 1
 10
 20
 5 49
 1
str(dd)
'data.frame':
 137 obs. of 8 variables:
$ treat : int 0000000000...
$ cellcode: int 1 1 1 1 1 1 1 1 1 ...
$ time : int 72 411 228 126 118 10 82 110 314 100 ...
$ censor : int 1 1 1 1 1 1 1 1 0 ...
$ diagtime: int 60 70 60 60 70 20 40 80 50 70 ...
$ kps
 : int 7 5 3 9 11 5 10 29 18 6 ...
$ age
 : int 69 64 38 63 65 49 69 68 43 70 ...
$ prior : int 0 10 0 10 10 0 10 0 0 ...
dd$treat <- factor(dd$treat, labels = c("placebo", "test"))</pre>
dd$cellcode <- factor(dd$cellcode,</pre>
 labels = c("squamous", "small", "adeno", "large"))
dd$censor <- factor(dd$censor, labels = c("survival", "dead"))</pre>
dd$prior <- factor(dd$prior, labels = c("no", "yes"))</pre>
head(dd)
 treat cellcode time censor diagtime kps age prior
1 placebo squamous 72 dead
 60 7 69
 70 5 64
2 placebo squamous 411
 dead
 yes
 3 38
3 placebo squamous 228 dead
 60
4 placebo squamous 126 dead
 60 9 63
 yes
5 placebo squamous 118
 dead
 70 11 65
 yes
6 placebo squamous
 5 49
 dead
 10
 20
 no
str(dd)
'data.frame':
 137 obs. of 8 variables:
$ treat : Factor w/ 2 levels "placebo", "test": 1 1 1 1 1 1 1 1 1 1 ...
$ cellcode: Factor w/ 4 levels "squamous", "small", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
$ time : int 72 411 228 126 118 10 82 110 314 100 ...
$ censor : Factor w/ 2 levels "survival", "dead": 2 2 2 2 2 2 2 2 1 ...
$ diagtime: int 60 70 60 60 70 20 40 80 50 70 ...
$ kps : int 7 5 3 9 11 5 10 29 18 6 ...
$ age
 : int 69 64 38 63 65 49 69 68 43 70 ...
$ prior : Factor w/ 2 levels "no", "yes": 1 2 1 2 2 1 2 1 1 1 ...
one-way table
table()
table(dd$censor)
##
survival
 dead
 128
table(dd$cellcode)
##
squamous
 small
 adeno
 large
 35
 27
 27
 48
```

132 CHAPTER 7.

```
xtabs()
xtabs(~ censor, data = dd)
censor
survival dead
9 128
two-way table()
table()
dd.2tab = table(dd$cellcode, dd$censor)
dd.2tab
##
survival dead
squamous 4 31
 3 45
small
adeno 1 26
large 1 26
class(dd.2tab)
[1] "table"
xtabs()
dd.2xtabs = xtabs(~ cellcode + censor, data = dd)
dd.2xtabs
censor
cellcode survival dead
squamous 4 31
small 3 45
adeno 1 26
large 1 26
class(dd.2xtabs)
[1] "xtabs" "table"
three-way table()
table()
dd.3tab = table(dd$treat, dd$censor, dd$cellcode)
dd.3tab
, , = squamous
##
##
survival dead
placebo 2 13
test
 2 18
##
, , = small
##
##
 survival dead
##
placebo 2 28
 1 17
test
```

7.2.

```
##
, , = adeno
##
##
survival dead
placebo 0 9
test 1 17
##
, , = large
##
##
survival dead
placebo 1 14
test 0 12
xtabs()
dd.3xtabs = xtabs(~ treat + censor + cellcode, data = dd)
dd.3xtabs
, , cellcode = squamous
##
##
 censor
treat survival dead
placebo 2 13
test 2 18
##
, , cellcode = small
##
 censor
treat survival dead
placebo 2 28
test 1 17
##
, , cellcode = adeno
##
##
 censor
treat survival dead
placebo 0 9
test 1 17
##
, , cellcode = large
censor
treat survival dead
placebo 1 14
test 0 12
```

134 CHAPTER 7.

```
7.2.2
 : ftable()
 table() xtabs()
 list , , ftable(),
(flat contingency table), ftalbe (class) , (, column)
 (row) (level). ftable() ftable (R)
 xtabs() _contingency table_
three-way table()
ftable()
dd.3ftab = ftable(dd$cellcode, dd$treat, dd$censor)
dd.3ftab
##
 survival dead
##
 2 13
squamous placebo
test
 18
small placebo
 2 28
##
 test
 1 17
adeno placebo
 0 9
 test
##
 17
large placebo
 1 14
 test 0 12
7.2.3
 : margin.table(), prop.table()
 (class) table , (array, matrix)
 margin.table()
(marginal total). prop.table() (array, matrix) , (relative
frequency). addmargins()
 margin.table()
 prop.table()
 (class)
 ftable
addmargins()
 (class) table ftable
margin.table(x, margin = NULL)
prop.table(x, margin = NULL)
addmargins(A, margin, ...)
 • x: table .
 • A: table ftable .
 • margin: (index/vector),
 (cell count/proportion).
 - margin = NULL:
 (row marginal total/proportion).
 - margin = 1:
 (row)
 • margin = 2:
 (column)
 (column marginal total/proportion).
 • margin = k:
one-way table
table()
dd.1tab = table(dd$cellcode)
dd.1tab
```

7.2.

```
##
squamous small adeno large
35 48 27 27
margin.table(dd.1tab)
[1] 137
prop.table(dd.1tab)
##
squamous small adeno large
0.2555 0.3504 0.1971 0.1971
xtabs()
dd.1xtabs = xtabs(~ censor, data = dd)
margin.table(dd.1xtabs)
[1] 137
prop.table(dd.1xtabs)
censor
survival dead
0.06569 0.93431
two-way table()
table()
dd.2tab = table(dd$cellcode, dd$censor)
dd.2tab
##
 survival dead
##
squamous 4 31
small
 3 45
adeno
 1 26
large
 1 26
cell count total and proportion
margin.table(dd.2tab)
[1] 137
prop.table(dd.2tab)
##
##
 survival
 dead
squamous 0.029197 0.226277
small 0.021898 0.328467
adeno 0.007299 0.189781
large 0.007299 0.189781
condition on row
margin.table(dd.2tab, margin = 1)
squamous small adeno large
35 48 27
 27
prop.table(dd.2tab, margin = 1)
##
##
 survival
 dead
```

136 CHAPTER 7.

```
squamous 0.11429 0.88571
small 0.06250 0.93750
adeno 0.03704 0.96296
large 0.03704 0.96296
condition on column
margin.table(dd.2tab, margin = 2)
survival
 dead
9
 128
prop.table(dd.2tab, margin = 2)
##
 survival
 dead
squamous 0.4444 0.2422
small 0.3333 0.3516
adeno 0.1111 0.2031
large 0.1111 0.2031
xtabs()
dd.2xtabs = xtabs(~ cellcode + censor, data = dd)
dd.2xtabs
##
 censor
cellcode survival dead
squamous 4 31
small
 3 45
large 1 26
cell count total and proportion
margin.table(dd.2xtabs)
[1] 137
prop.table(dd.2xtabs)
 censor
cellcode survival dead
squamous 0.029197 0.226277
small 0.021898 0.328467
##
 adeno 0.007299 0.189781
large 0.007299 0.189781
condition on row
margin.table(dd.2xtabs, margin = 1)
cellcode
squamous small adeno large
35 48 27
 27
prop.table(dd.2xtabs, margin = 1)
 censor
cellcode survival dead
squamous 0.11429 0.88571
small 0.06250 0.93750
```

7.3.

```
adeno 0.03704 0.96296
large 0.03704 0.96296
condition on column
margin.table(dd.2xtabs, margin = 2)
survival
 dead
9
 128
prop.table(dd.2xtabs, margin = 2)
 censor
cellcode survival dead
squamous 0.4444 0.2422
small 0.3333 0.3516
adeno
 0.1111 0.2031
large 0.1111 0.2031
```

#### 7.3

$$\{R\}$$
 \ref{tab:RDistFun\*\*,  $X$  (random variable), .

$$\begin{split} f = f(X = x) = & F(x) = \int f(x) dx = \\ p = F(q) = P(X \le q) = & \text{, cumulative distribution function} \\ q = Q(u) = F^{-1}(p) = & \text{, quantile function,} \quad p \le P(X \le q) \\ d = f(x) = F'(x) = P(X = x) = & \text{, probability density function} \\ r = R(r) = f^{-1}(x) = & \text{, random number,} \end{split}$$

Table 7.3:

	{R} (ProbFun)	
beta	beta	shape1, shape2, ncp
binomial	binom	size, prob
Cauchy	cauchy	location, scale
chi-squared	chisq	df, ncp
exponential	exp	rate
F	f	df1, df1, ncp
gamma	gamma	shape, scale
geometric	geom	prob
hypergeometric	hyper	m, n, k
log-normal	lnorm	meanlog, sdlog

138 CHAPTER 7.

```
\{R\}
 (ProbFun)
logistic
 logis
 location, scale
negative binomial
 nbinom
normal
 mean, sd
 norm
Poisson
 lambda
 pois
Student's
 t df, ncp
 t
uniform
 unif
 min, max
Weibull
 weibull
 shape, scale
Wilcoxon
 wilcox
 m, n
```

```
(cumulative distribution function, CDF).
 • p
 (quantile), u \le P(X \le x)
 q
 (probability density function, pdf).
 d
 (pseudo-random number generation function, ran-
 dom number).
 • dProbFun
 pProbFun
 q.
 • qProbFun
 p.
 • rProbFun
 n,
 • pProbFun qProbFun
 lower.tail** log.p'.
 - lower.tail = TRUE (default),
 P(X \le x).
 - lower.tail = FALSE
 P(X > x).
 -\log p = TRUE, p \log(p)
 • dProbFun
 log,
normal distribution
pnorm(1.96)
[1] 0.975
qnorm(0.975)
[1] 1.96
dnorm(1.96)
[1] 0.05844
Poisson distribution
rpois(10, 1)
[1] 0 0 0 1 1 2 1 1 4 1
rpois(10, 2)
[1] 3 4 1 2 0 1 1 0 1 4
rpois(10, 20)
[1] 18 21 16 23 22 24 23 20 11 22
Cumulative distribution
Pr(x <= 2)
ppois(2, 2)
[1] 0.6767
ppois(4, 2)
[1] 0.9473
```

7.3.

```
ppois(6, 2)
[1] 0.9955
t distribution
qt(0.995, df = 2)
[1] 9.925
2*pt(-1.96, df = 2)
[1] 0.1891
2*pt(-1.96, df = 30)
[1] 0.05934
upper 1% point for an F(1, 2) distribution
sqrt(qf(0.99, 1, 2))
[1] 9.925
 (\mathbf{seed}) ,
 , , \{R\}
 (current time),
(uniform random number),
 \{R\},
 set.seed(),
generate random number
set.seed(): set initial value
Caution use set.seed() everytime!
uniform
runif(5)
[1] 0.86121 0.43810 0.24480 0.07068 0.09947
runif(5)
[1] 0.3163 0.5186 0.6620 0.4068 0.9129
set.seed(10)
runif(5)
[1] 0.50748 0.30677 0.42691 0.69310 0.08514
set.seed(10)
runif(5)
[1] 0.50748 0.30677 0.42691 0.69310 0.08514
norm
rnorm(5)
[1] -0.7540 -0.6059 -0.1772 0.1706 0.2428
rnorm(5)
[1] -0.1794 -0.6305 0.9787 0.2933 -0.3703
set.seed(10)
rnorm(5)
[1] 0.01875 -0.18425 -1.37133 -0.59917 0.29455
set.seed(10)
rnorm(5)
[1] 0.01875 -0.18425 -1.37133 -0.59917 0.29455
normal + uniform
set.seed(10)
runif(5)
[1] 0.50748 0.30677 0.42691 0.69310 0.08514
```

140 CHAPTER 7.

```
rnorm(5)
[1] -0.7540 -0.6059 -0.1772 0.1706 0.2428
set.seed(10)
runif(5)
[1] 0.50748 0.30677 0.42691 0.69310 0.08514
rnorm(5)
[1] -0.7540 -0.6059 -0.1772 0.1706 0.2428
set.seed(10)
rnorm(5)
[1] 0.01875 -0.18425 -1.37133 -0.59917 0.29455
runif(5)
[1] 0.6517 0.5677 0.1135 0.5959 0.3580
```

## 7.4 sample()

```
\{R\}
 , sample(), .
 (\mathbf{seed}).
sample(x, size, replace = FALSE, prob = NULL)
 • x 1
 • size = k
 • prob
 • replace = FALSE
random sampling
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
sample(letters, 5)
[1] "g" "j" "b" "m" "h"
sample(letters, 5)
[1] "n" "g" "f" "y" "v"
set.seed(1)
sample(letters, 5)
[1] "y" "d" "q" "a" "b"
sample(letters, 5)
[1] "w" "k" "n" "r" "s"
set.seed(1)
sample(letters, 5)
[1] "y" "d" "g" "a" "b"
sample(letters, 5)
[1] "w" "k" "n" "r" "s"
sampling 5 subjects from 10 subjects
without or with replacement
set.seed(1)
```

7.4. SAMPLE() 141

```
sample(x, size = 5, replace = FALSE) # (a) no resampling
[1] 9 4 7 1 2
sample(x, size = 5, replace = TRUE) # (b) resampling
[1] 7 2 3 1 5
permutation
set.seed(1)
x < -1:10
sample(x, size = 10, replace = FALSE) # no resampling
[1] 9 4 7 1 2 5 3 10 6 8
equal probability
set.seed(1)
x < -1:10
sample(x, size = 5, replace = FALSE, prob = c(1:10))
[1] 9 8 6 2 10
sample(x, size = 5, replace = FALSE, prob = c(rep(1, 10) / 10.0))
[1] 10 1 7 6 2
unequal rpobability
set.seed(1)
x < -1:10
(prob.rs = c(seq(1, 10) / sum(seq(1, 10))))
[1] 0.01818 0.03636 0.05455 0.07273 0.09091 0.10909 0.12727 0.14545 0.16364
[10] 0.18182
sum(prob.rs)
[1] 1
sample(x, size = 5, replace = TRUE, prob = seq(1, 10))
[1] 9 8 7 3 9
 (\mathbf{seed}).
 sample(),
clinical trials or experiments
randomization
random assign to two groups, total 20 subjects
random assigning treatment groups
20 Bernoulli trials
set.seed(1)
sample(c(0, 1), size = 20, replace = TRUE)
sample(2, size = 20, replace = TRUE)
random choose 10 subjects to group 1
set.seed(1)
sample(20, size = 10, replace = FALSE)
[1] 4 7 1 2 13 19 11 17 14 3
block randomization
total 5 blocks, block size 4, choose 2 subjects to group 1
```

142 CHAPTER 7.

```
set.seed(1)
replicate(5, sample(c(1:4), size = 2, replace = FALSE))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 3 2
[2,] 3 2 3 2 3
```

## Chapter 8

```
tidyverse
 \bullet tidyverse
 - ggplot2
 - purrr .
 - tibble
 - dplyr
 - tidyr
 - stringr
 - readr
 (factors).
 - 'forcats
 import
 - readxl - excel - .
 - haven SPSS, Stata SAS .
 - jsonlite \operatorname{JSON}
 - xml2 \mathrm{XML}
 - httr web APIs
 - rvest web scraping
 \bullet \ \ \mathrm{DBI} \qquad , \qquad \mathtt{RSQLite}, \ \mathtt{RPostgres} \quad \mathtt{odbc}.
 tidy/wrangle
 - stringr .

 lubridate

 - forcats
 (factors).
 - hms
 - blob
 program
 - rlang
 tidyverse.
```

144 CHAPTER 8.

%>%.

- magrittr

- glue

## 5

# .xls

88

0 ## # ... with 73 more rows

```
model
 - broom
 - modelr
8.1
 readr
tidyverse
 readr
 . read_csv() .csv , read_excel excel
 , read_delim()
 (help(read_delim)).
 .
 • file =
 • delim =
 • quote =
 (
 • escape_backslash = FALSE,
 • escape_double = TRUE,
 • col_names =
 (T F)
 • col_types =
 • na = NA
 • comment =
 • trim ws =
 • skip = (row)
 • n_max =
.csv
library(tidyverse)
library(readr)
dd <- readr::read_csv("C:/RData/DMTKAInfMo.csv")</pre>
print(dd, n = 5, width = Inf)
A tibble: 78 x 16
 DM DMyr preAC prePC postAC postPC medication SIDE PREKS
 No age sex
##
 <dbl>
 <dbl> <dbl> <dbl> <dbl>
1
 1
 67
 0
 0
 10
 120
 160
 140
 180
 0
 0
 56
2
 2
 67
 0
 0
 11
 100
 150
 220
 0
 1
 62
 150
3
 0
 3
 72
 1
 0
 4 150
 200
 120
 150
 2
 60
4
 150 200
 250
 0
 4
 82
 1
 0
 160
 1
 47
5
 0
 0
 5
 73
 1
 0
 3
 85 110
 140
 200
 44
POSKS
 ABS INFECT INFMO
<dbl> <dbl> <dbl> <dbl>
1
 92 1
 0
2
 62
 0
 1
 2
3
 94
 1
 0
4
 90
 1
 0
 0
```

8.2. TIDY DATA 145

```
library(readxl)
dd <- readxl::read_excel("C:/RData/DMTKAInfMo.xls")</pre>
print(dd, n = 5, width = Inf)
A tibble: 78 x 16
 DM DMyr preAC prePC postAC postPC medication SIDE PREKS
 No age sex
<dbl> <dbl> <dbl> <dbl>
1
 1 67 0 0
 10
 120
 160
 140
 180
 0
 0
2
 67
 0
 11
 100
 150
 150
 220
 1
 62
3
 72
 3
 1
 0
 4
 150
 200
 120 150
 2
 0
 60
 160
4
 82
 1
 0
 8
 150
 250
 0
 1
 47
 200
 0
 3
 0
5
 5
 73
 1
 0
 85
 110
 140
 200
 44
POSKS ABS INFECT IOFECTMO
<dbl> <dbl> <dbl>
1
 92
 1
 0
2
 62
 0
 1
3
 94
 1
4
 90
 1
 0
5
 88
 0
... with 73 more rows
```

### 8.2 Tidy Data

#### 8.3 Tibble Data Frame

```
(tibble) , tbl_df, tbl ,
tidyverse
 readr
 , tidyverse
tidyverse tibble
 . tibbles
 data.frame , tidyverse
 . , . \{R\} base
 tibble ,
 as.data.frame()
 \{R\} base data.frame . , tidyverse
 data.frame ,
 tibbles' . 5 survVATrial.csv .
as_tibble() data.frame
data frame object
dd <- read.table("./Data/survVATrial.csv",</pre>
```

146 CHAPTER 8.

header = TRUE,

```
sep = ",",
 quote = "\""",
 dec = ".",
 row.names = NULL,
 # col.names,
 as.is = TRUE,
 # as.is = !stringsAsFactors,
 na.strings = c(".", "NA"))
class(dd)
[1] "data.frame"
library(tibble)
dd <- as tibble(dd)</pre>
class(dd)
[1] "tbl_df" "tbl" "data.frame"
tibble tibble() {R} base data.frame(). tibble() {R} base
 . tibble data.frame 2 .
 1. tibble
 , print() 10 rows, (columns)
 tions(tibble.print_min = Inf), rows, options(tibble.width =
 Inf)
 columns.
 2. \{R\} base (), tibble
 Pipe
8.4
pipe',
short and clean
log(mean(c(1:10)))
[1] 1.705
easily read
x < -c(1:10)
x.mean \leftarrow mean(x)
log.mean <- log(x.mean)</pre>
log.mean
[1] 1.705
pipe %>%
library(magrittr)
c(1:10) %>% mean() %>% log()
[1] 1.705
```

8.5.

8.5

```
\{R\} ,
 5 survVATrial.csv .
dd = dd %>% as_tibble()
print(dd, n = 5, width = Inf)
A tibble: 137 x 8
treat cellcode time censor diagtime kps
 age prior
1
 0
 1 72
 1
 60 7
2
 70
 0
 1
 411
 1
 5
 64
 10
3
 1 228
 3
 0
 1
 60
 38
 0
4
 0
 1 126
 1
 60
 9
 63
 10
5
 0
 1 118
 1
 70
 11
 65
 10
... with 132 more rows
 137 , 8 . time, diagtime, kps, age . treat, cellcode, censor,
 5 survVATrial.csv
 .
dd$treat <- factor(dd$treat, labels = c("placebo", "test"))</pre>
dd$cellcode <- factor(dd$cellcode,</pre>
 labels = c("squamous", "small", "adeno", "large"))
dd$censor <- factor(dd$censor, labels = c("survival", "dead"))</pre>
dd$prior <- factor(dd$prior, labels = c("no", "yes"))</pre>
print(dd, n = 5, width = Inf)
A tibble: 137 x 8
 treat cellcode time censor diagtime
 kps
 age prior
 <fct>
 \langle fct \rangle \langle int \rangle \langle fct \rangle
 <int> <int> <int> <fct>
1 placebo squamous
 72 dead
 60
 7
 69 no
2 placebo squamous
 411 dead
 70
 5
 64 yes
 60
3 placebo squamous
 228 dead
 3
 38 no
4 placebo squamous
 126 dead
 60
 9
 63 yes
5 placebo squamous
 118 dead
 70 11
 65 yes
... with 132 more rows
8.6
 dplyr
 dplyr ,
tidyverse
 • %>% = pipe
 • rename() =
 (column)
 • filter() =
 (rows)
 • arrange() =
 • select() =
 (variables)
 (columns)
 • mutate() =
 • summarise() =
```

148 CHAPTER 8.

```
• group_by() =
 • %>% = pipe
 , (),
 group_by()
 %>% .
8.6.1
 filter()
 . filter()
 5 \quad \mathbf{survVATrial.csv},
 treat
 placebo, cellcode large.
dd %>%
 filter(treat == 'placebo', cellcode == 'large')
A tibble: 15 x 8
 treat cellcode time censor diagtime
 kps
 age prior
 \langle fct \rangle \langle fct \rangle \langle int \rangle \langle fct \rangle
 \langle int \rangle \langle int \rangle \langle int \rangle \langle fct \rangle
##
1 placebo large
 177 dead
 50
 16
 66 yes
 80
2 placebo large
 162 dead
 5
 62 no
 216 dead
3 placebo large
 50
 15 52 no
4 placebo large
 553 dead
 70
 2
 47 no
 60
 12 63 no
5 placebo large
 278 dead
6 placebo large
 12 dead
 40 12 68 yes
7 placebo large
 260 dead
 80
 5
 45 no
 12 41 yes
8 placebo large
 200 dead
 80
9 placebo large
 156 dead
 70 2 66 no
10 placebo large
 182 survival
 90
 2 62 no
11 placebo large
 90
 8 60 no
 143 dead
 11
12 placebo large
 105 dead
 80
 66 no
 80 5
13 placebo large
 103 dead
 38 no
14 placebo large
 250 dead
 70
 8
 53 yes
15 placebo large
 100 dead
 60
 13
 37 yes
 treat
 , age 50, kps
 7
dd %>%
 filter(treat == 'test', age > 50, kps <= 7)</pre>
A tibble: 35 x 8
 treat cellcode time censor diagtime
 kps
 age prior
 <fct> <fct> <fct> <int> <fct> <int> <int> <int> <fct>
1 test squamous
 112 dead
 60 no
 80
 6
2 test squamous
 242 dead
 50
 1
 70 no
3 test squamous
 111 dead
 70
 3
 62 no
4 test squamous 587 dead
 60
 3 58 no
 2
 389 dead
 90
5 test squamous
 62 no
6 test squamous
 33 dead
 30 6 64 no
7 test squamous
 90 2 64 no
 467 dead
```

283 dead

90 2

30 2 69 no

51 no

## 8 test squamous

## 9 test small 25 dead

8.6. DPLYR 149

```
10 test small 21 dead 20 4 71 no
... with 25 more rows
8.6.2
 arrange()
, arrange() , , desc() , , 5 survVATrial.csv , age , time . , , , \{R\} base order(
 , {R} base order(),
sort() rank() .
dd %>%
 arrange(age, desc(time))
A tibble: 137 x 8
 treat cellcode time censor diagtime
 kps
 age prior
 < fct > < fct > < int > < fct > < int > < int > < int > < fct >
1 placebo adeno
 95 dead
 80
 4 34 no
2 placebo small 4 dead
3 test squamous 1 dead
 40
 2
 35 no
 7
 50
 35 no
 small 103 survival
4 test
 70
 22
 36 yes
5 placebo large
 100 dead
 60
 13 37 yes
6 test large
 49 dead
 30
 3 37 no
7 placebo squamous 228 dead
 60
 3
 38 no
 80
 2 38 no
8 placebo adeno 117 dead
9 placebo large
 103 dead
 80 5 38 no
10 test adeno 31 dead
 80 3 39 no
... with 127 more rows
8.6.3
 select()
 , RAM . 5 survVATrial.csv
 , treat, cellcode, censor .
dd %>%
 arrange(treat, cellcode, censor)
A tibble: 137 x 8
##
 treat cellcode time censor diagtime kps
 age prior
 \langle fct \rangle \langle fct \rangle \langle int \rangle \langle fct \rangle
 <int> <int> <int> <fct>
##
 70
1 placebo squamous 100 survival
 6 70 no
2 placebo squamous
 25 survival
 80
 52 yes
3 placebo squamous
 7
 72 dead
 60
 69 no
4 placebo squamous 411 dead
 70
 5
 64 yes
5 placebo squamous 228 dead
 60
 3
 38 no
6 placebo squamous 126 dead
 60
 9
 63 yes
7 placebo squamous 118 dead
 70
 11
 65 yes
 5
 20
8 placebo squamous 10 dead
 49 no
9 placebo squamous 82 dead
 40 10
 69 yes
```

80

29

68 no

## 10 placebo squamous 110 dead

CHAPTER 8.

```
... with 127 more rows
8.6.4
 mutate()
 BMI ().
 5 survVATrial.csv
 , diagtime * age / 100.
dd %>%
 mutate(
 log_age = log(age),
 diag_age = diagtime * age / 100
A tibble: 137 x 10
 treat cellcode time censor
 diaqtime
 kps
 age prior log_age diag_age
##
 \langle fct \rangle \langle int \rangle \langle fct \rangle
 \langle int \rangle \langle int \rangle \langle int \rangle \langle fct \rangle
 <fct>
 <dbl>
1 placebo squamous 72 dead
 60
 7
 69 no
 4.23
 41.4
 70
2 placebo squamous 411 dead
 5
 64 yes
 4.16
 44.8
3 placebo squamous 228 dead
 60
 3
 38 no
 3.64
 22.8
4 placebo squamous 126 dead
 60
 9
 4.14
 37.8
 63 yes
 70 11
5 placebo squamous
 118 dead
 65 yes
 4.17
 45.5
6 placebo squamous
 10 dead
 20
 5
 3.89
 9.8
 49 no
7 placebo squamous
 82 dead
 40
 10
 69 yes
 4.23
 27.6
8 placebo squamous 110 dead
 80 29
 68 no
 4.22
 54.4
9 placebo squamous
 314 dead
 50 18
 43 no
 3.76
 21.5
10 placebo squamous
 100 survival
 70
 6
 70 no
 4.25
 49
... with 127 more rows
8.6.5
 summarise()
 , , , , summarise()
 • Center: mean(), median()
 • Spread: sd(), IQR(), mad(). range()
 • Range: min(), max(), quantile()
 • Position: first(), last(), nth()
 • Count: n(), n_distinct()
 • Logical: any(), all()
 5 survVATrial.csv , n(), age
dd %>%
 summarize(
 count = n().
 age_mean = mean(age, na.rm = TRUE),
 age_sd = sd(age, na.rm = TRUE)
A tibble: 1 x 3
```

8.6. DPLYR 151

```
count age_mean age_sd
 <int> <dbl> <dbl>
1 137 58.3 10.5
8.6.6
 group_by()
 . group_by()
 , 5 survVATrial.csv
 diagtime
dd %>%
 group_by(treat) %>%
 summarise(
 diagtime_mean = mean(diagtime),
 diagtime_sd = sd(diagtime)
A tibble: 2 x 3
\textit{##} \quad \textit{treat} \quad \textit{diagtime_mean diagtime_sd}
 ## <fct>
1 placebo
 59.2
 18.7
 57.9
2 test
 21.4
8.6.7
summarise()
 • summarise all()
 • summarise_each()
 • summarise_at()
 • summarise_if()
dd %>%
 select(time, diagtime, kps, age) %>%
 summarise_all(mean, na.rm = TRUE)
A tibble: 1 x 4
time diagtime kps age
<dbl> <dbl> <dbl> <dbl>
1 122.
 58.6 8.77 58.3
dd %>% select(time, diagtime, kps, age) %>%
 summarise_all(list(mean, sd), na.rm = TRUE)
A tibble: 1 x 8
time_fn1 diagtime_fn1 kps_fn1 age_fn1 time_fn2 diagtime_fn2 kps_fn2 age_fn2
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
 58.6 8.77 58.3
 20.0 10.6 10.5
1
 122.
 158.
dd %>%
summarise_each(list(mean, sd), time, age) # not so useful
A tibble: 1 x 4
```

152 CHAPTER 8.

```
time_fn1 age_fn1 time_fn2 age_fn2
##
 <dbl> <dbl> <dbl> <dbl> <dbl>
1
 122.
 58.3
 158.
 10.5
dd %>%
summarise_at(c("time", "age"), mean, na.rm = TRUE)
A tibble: 1 x 2
time age
<dbl> <dbl>
1 122. 58.3
dd %>%
 summarise_at(vars(time, age), mean, na.rm = TRUE)
A tibble: 1 x 2
time age
<dbl> <dbl>
1 122. 58.3
dd %>%
summarise_if(is.numeric, list(mean, sd), na.rm = TRUE)
A tibble: 1 x 8
{\it \#\#} {\it time_fn1 \ diagtime_fn1 \ kps_fn1 \ age_fn1 \ time_fn2 \ diagtime_fn2 \ kps_fn2 \ age_fn2}
\#\# \qquad <dbl> \qquad <dbl> \qquad <dbl> \qquad <dbl> \qquad <dbl> \qquad <dbl> \qquad <dbl>
1 122.
 58.6 8.77 58.3 158.
 20.0 10.6
 10.5
```

8.7

# **Bibliography**

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.20.