

A3 Architectural Enhancement of Apollo

Cisc 322 Group 20

Youtube: https://youtu.be/qSVKOYytgaY

Presenter: Xuchuan Mu, Mukun Liu

Intro

Members:

Yucan Li 18yl259@queensu.ca

Yuzhe He 18yh46@queensu.ca

Xuchuan Mu 18xm24@queensu.ca

Yiming Zheng 19yz38@queensu.ca

Wenran Hou 18wh10@queensu.ca

Mukun Liu 19ml13@queensu.ca

Introduction

- Features
- Two Approaches
- SAAM Analysis
- Use Case
- Impacted Subsystems
- Limitation & Potential Risk
- Testing
- Lession Learned & Limitation

Feature

- Mode Control
- Maximize energy efficiency /reduce the energy consumption
- Automatically detected and take actions

Enhancement module: Mode Control

Implementation 1

- 1. Mainly focus on the modification of Plannning module
- 2. Mode Control asks Planning to save energy
- 3. Routing —the paths to desination \rightarrow Planning
- 4. Planning will choose the most energy-saving path. (wide and less cars)

Implementation 2

- 1. Reducing shifts.
- 2. Avoid unnecessary acceleration.
- 3. Engine shut down temporary.
- 4. Kinetic energy store.

Non-Functional Requirement	Implementation 1	Implementation 2
Maintainability	Easier to maintain by optimizing algorithm. Stakeholders: Development team, operation department.	Errors caused by different factors. Need to time to fully understand the causes. Stakeholders: Development team, operation department.
Evolvability	Better at evolvability. Improving by changing algorithm. Stakeholders: Development team.	Constrained to improve the software due to the limits of the hardwares. Stakeholders: Development team.

Non-Functional Requirement	Implementation 1	Implementation 2
Testability	Require substantial amount of testing. Stakeholders: Development teams.	Require a large amount of testing to check the stability. Stakeholders: Development teams.
Performance	Only perform route selecting. Stakeholders: Users, Development teams, operation departments.	Optimizing the vehicle in speed, gears and road conditions. Stakeholders: Users, Development teams, operation departments.

- mode_control_command_topic
- Canbus chassis_topic & chassis_detail_topic
- Planning planning_trajectory_topic
- Perception traffic_light_detection_topic & obstacle
- Prediction
 prediction_topic
- Monitor & HMI mode_control_command_topic

Testing

- Black box testing
 - input coverage
- White box testing
 - code coverage
 - method coverage
 - path coverage

Potential Risks and limitation

Potential Risks

- Reliability.
- User Experience

Limitations

- Topic
- Petrol or Electronic?
- Hardware assistance

Lesson Learned

- Develop a stronger and deeper understanding of the interaction between original Apollo modules
- Diverse and interesting vehicle related features that were and will be applied into vehicles

Conclusion

- Driving Experience
- Pub-sub Architecture
- Efficiency

Reference

[1] apollo developers's centre. Apollo. (n.d.). Retrieved February 19, 2022, from https://apollo.auto/developer/index_cn.html#/

[2]https://github.com/ApolloAuto/apollo/blob/master/docs/cyber/CyberRT_Terms.md

Thanks for watching