Decentralized System Implementation (Using MATLAB)

1. Algorithm Description

Centralized SOMP

Inputs: $\{y_l, B_l\}_{l=0}^{L-1}$, and sparsity level k

- (1) Initialize t = 1, $\hat{u}(0) = \emptyset$, residual vector $r_{l,0} = y_l$
- (2) Find the index $\lambda(t)$ such that

$$\lambda(t) = arg \max_{\omega} \sum_{l=1}^{L} |\langle r_{l,t-1}, b_{l,\omega} \rangle|$$

- (3) Set $\widehat{u}(t) = \widehat{u}(t-1) \cup {\lambda(t)}$
- (4) Compute the orthogonal projection operator:

$$P_l(t) = B_l(\widehat{u}(t)) \left[B_l(\widehat{u}(t))^H B_l(\widehat{u}(t)) \right]^{-1} B_l(\widehat{u}(t))^H$$

Update the residual: $r_{l,t} = [I - P_l(t)]y_l$

(5) Increment t = t + 1 and go to step (2) if $t \le k$, otherwise, stop and set $\hat{u} = \hat{u}(t-1)$

We would like to modify the previous centralized SOMP method to Decentralized DC-OMP-TA Algorithm

DC-OMP-TA Algorithm as the following

At Sensor l

- (1) Compute scores $f_{l,\omega}(t) = |\langle r_{l,t-1}, b_{l,\omega} \rangle|$ for $\omega = 1, 2, \dots N_G$, and sort $f_{l,\omega}(t)$ in descending order, and denote the sorted scores as $g_{l,i}$ and their corresponding index as $\omega_l(i)$
- (2) Set i = 1, index set $v_{0} = \emptyset$, sum score array $s = \emptyset$
- (3) Communication

Sensor l send $g_{l,i}$ and $\omega_l(i)$ to its neighbors $g \setminus \{l\}$

Sensor l receive $g_{m,i}$ and $\omega_m(i)$ from its neighbors $m \in g \setminus \{l\}$

- (4) Update index set $v_{i=}v_{i-1}\cup\{\omega_1(i), \omega_2(i), \cdots, \omega_L(i)\}$
- (5) Compute the threshold $\eta_i = \sum_{l=1}^L g_{l,i}$
- (6) For any newly appearing index $\omega \in \overline{v_{i-1}} \cap \{\omega_1(i), \omega_2(i), \cdots, \omega_L(i)\}$

Transmit $f_{l,\omega}$ to $g\setminus\{l\}$

Receive $f_{m,\omega}$ from $g \setminus \{l\}$

Update sum score array $s = [s \sum_{l=1}^{L} f_{l,\omega}]$

(7) If the cardinality $|s \ge \eta_i| \ge 1$, return the index with largest sum score, stop; otherwise, i = i + 1, go to step (3)

- $\, \stackrel{\bullet}{\bullet} \,$ First, each sensor sorts its local $f_{l,\omega}$ values in descending order.
- **❖** Then TA goes down the sorted lists in parallel, one position at a time, and calculates the sum of the values at that position across all the lists.
- ***** This sum is called "threshold",.
- **Every time a new state grid index (object) appears, TA looks up in all the lists to find its sum value (aggregate value) over the lists.**
- **❖** The threshold sets an upper bound on the aggregate values of all the newly appearing objects at the current iteration
- \Rightarrow TA stops when it finds k objects (indices) whose sum values are higher than the current threshold.
- \bullet In the worst case scenario, the communication cost per iteration is $O(L^2)$

An example for TA Algorithm is shown below:

Position	Series 1	Series 2	Series 3
1	$\langle O_1, 10 \rangle$	$\langle O_2, 10 \rangle$	$\langle O_3, 10 \rangle$
2	$\langle O_3, 8 \rangle$	$\langle O_4, 9 \rangle$	$\langle O_1, 9 \rangle$
3	$\langle O_5, 8 \rangle$	$\langle O_6, 8 \rangle$	$\langle O_7, 8 \rangle$
4	$\langle O_6, 8 \rangle$	$\langle O_8, 6 \rangle$	$\langle O_9,7 angle$
5	$\langle O_2,7 angle$	$\langle O_7, 5 \rangle$	$\langle O_6, 6 \rangle$
6	$\langle O_4, 5 \rangle$	$\langle O_3, 2 \rangle$	$\langle O_4, 5 \rangle$
7	$\langle O_9, 1 angle$	$\langle O_1, 1 angle$	$\langle O_2, 1 \rangle$

- > TA first checks objects in Row 1 of all lists, which are O1, O2, and O3, and set the row sum as threshold (30)
- It then finds objects' sum values over series/lists (aggregate values), e.g. $V(O_1) = 10 + 1 + 9 = 20$, $V(O_2) = 10 + 1 + 7 = 18$, $V(O_3) = 10 + 8 + 2 = 20$, all less than threshold (30), TA moves to Row 2
- > In Row 2, new threshold is 26, O_4 is new, $V(O_4) = 9 + 5 + 5 = 19$, all aggregate values are less than 26, TA moves to Row 3
- \succ TA finally stops at Row 5 and finds the top 2 objects are O_6 with value 22 and O_1 with value 20

So, right now, the whole TA algorithm has the global standpoint of view.

2. Task Description

A MATLAB implementation is required. Actually, we already have a MATLAB version of the "distributed" DC-OMP-TA. But the global-variable-based method on a single computer is not strictly distributed. We need the algorithm to run on at least three computers (such as i5, i7 CPUs), which are connected via a WIFI router.

[Reference]

- Joint-Sparse Heterogeneous Data Fusion for Target State Estimation with Weak Signals, R Niu, P Zulch, M Distasio, G Chen, D Shen, J Lu, 2020 IEEE Aerospace Conference, 1-11
- Joint-Sparse Decentralized Heterogeneous Data Fusion for Target Estimation, R Niu, P Zulch, M Distasio, G Chen, D Shen, Z Wang, J Lu, 2019 IEEE Aerospace Conference, 1-10
- 3. Joint Sparsity Based Heterogeneous Data-Level Fusion for Multi-Target Discovery, JL R. Niu, P. Zulch, M. Distasio, E. Blasch, G. Chen, D. Shen, Z. Wang, 2018 IEEE Aerospace Conference,
- 4. Wimalajeewa, Thakshila, and Pramod K. Varshney. "OMP based joint sparsity pattern recovery under communication constraints." IEEE Transactions on Signal Processing 62.19 (2014): 5059-5072.