Prüfung aus

Diskrete und geometrische Algorithmen (Hetzl)

Arbeitszeit: 100 Minuten

TU Wien, Zoom, 28.4.2021

1) (5 P.) Lösen Sie die Rekursionsgleichung $a_n = 3a_{n-1} - \frac{5}{4}a_{n-2}$ (für $n \ge 2$) mit den Anfangswerten $a_0 = 0$ und $a_1 = 2$.

2) (7 P.) Ein Datenfeld A der Länge $n \geq 2$ wird als verschoben sortiert bezeichnet falls es ein $k \in \{1, \ldots, n-1\}$ gibt so dass $A[k+1] \leq \cdots \leq A[n] \leq A[1] \leq \cdots \leq A[k]$. Geben Sie einen Algorithmus an der ein verschoben sortiertes Datenfeld der Länge $n \geq 2$ erhält und in Zeit $O(\log n)$ dessen maximales Element zurückliefert. Neben Sie dabei zur Vereinfachung an dass A kein Element zwei Mal enthält.

3) (7 P.) Ein Präfixbaum ist ein Binärbaum der eine Menge $S\subseteq\{0,1\}^*$ von binären Zeichenketten repräsentiert. Jeder Knoten in einem Präfixbaum hat einen Status der entweder + oder – ist. Dabei ist $w\in S$ genau dann wenn der durch w im Baum beschriebene Pfad zu einem Knoten mit Status + führt. Dabei steht 0 für "links" und 1 für "rechts". Zum Beispiel wird die Menge $\{0,00,10,11\}$ durch den Präfixbaum

repräsentiert. Geben Sie Algorithmen für die folgenden Operationen an

- a) $Enth\ddot{a}lt(v,s)$ gibt wahr zurück wenn die Zeichenkette s im Baum mit Wurzel v enthalten ist und falsch sonst.
- b) Hinzufügen(v,s) fügt die Zeichenkette s zum Baum mit Wurzel v hinzu.
- c) Entfernen(v, s) löscht die Zeichenkette s aus dem Baum mit Wurzel v.

Dabei steht jeweils Zeit O(h) zur Verfügung wobei h die Höhe des Präfixbaums ist.

4) (5 P.) Aus der linearen Algebra ist die Leibniz-Formel

$$\det A = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

für die Determinante einer Matrix $A=(a_{i,j})_{1\leq i,j\leq n}$ bekannt. Die Determinante eines endlichen gerichteten Graphen sei die Determinante "seiner" Adjazenzmatrix.

a) Zeigen Sie dass dieser Begriff wohldefiniert ist.

Ein gerichteter Graph heißt azyklisch falls er keinen gerichteten Zyklus enthält.

- b) Zeigen Sie: Falls ein endlicher gerichteter Graph G azyklisch ist, dann ist det G = 0.
- c) Gilt auch die Umkehrung? D.h. sind alle endlichen gerichteten Graphen G mit det G = 0 azyklisch?