17 Архитектура СОМ-портов ПК

В стандартной архитектуре ПК для СОМ1 и СОМ2 зарезервированы следующие диапазоны программных портов в адресном пространстве вводавывода процессора: 3F8h -- 3FFh и 2F8h -- 2FFh соответственно (но возможности Super I/O позволяют сконфигурировать UART 16550 нестандартно).

Регистры UART 16550 отображаются в соответствующий диапазон следующим образом.

Register Address Access (AEN = 0)		Abbreviation	Register Name	Access
Base +	DLAB			
0h	0	THR	Transmit Holding Register	WO
0h	0	RBR	Receiver Buffer Register	RO
0h	1	DLL	Divisor Latch LSB	R/W
1h	1	DLM	Divisor Latch MSB	R/W
1h	0	IER	Interrupt Enable Register	R/W
2h	_	IIR	Interrupt Identification Register	RO
2h	_	FCR	FIFO Control Register	wo
3h		LCR	Line Control Register	R/W
4h	_	MCR	Modern Control Register	R/W
5h	_	LSR	Line Status Register	R/W
6h		MSR	Modern Status Register	R/W
7h		SCR	Scratch Pad Register	R/W

(Регистры данных, как и цепи для передачи и приема данных, в разных документах называют по-разному.)

Отображение частично зависит от значения Divisor Latch Access Bit (DLAB) -- самого старшего (седьмого) бита регистра LCR.

Прикладная программа должна в первую очередь корректно инициализировать соответствующие регистры UART.

При этом предоставлена возможность работы по прерываниям.

Стандартными аппаратными прерываниями COM1 и COM2 являются IRQ4 и IRQ3 соответственно (также можно изменить).

Назначение регистров:

- 1. THR (Transmit Holding Register) -- регистр данных передатчика (точнее буферный регистр сдвигового регистра передатчика).
- 2. RBR (Receiver Buffer Register) -- регистр данных приемника (точнее буферный регистр сдвигового регистра приемника).
- 3. DLL (Divisor Latch Least significant byte) -- младшая часть константы деления бод-генератора.

- 4. DLM (Divisor Latch Most significant byte) -- старшая часть константы деления бод-генератора.
 - 5. IER (Interrupt Enable Register) -- регистр разрешения прерываний.
- 6. IIR (Interrupt Identification Register) -- регистр идентификации прерываний.
- 7. FCR (FIFO Control Register) -- регистр управления очередями FIFO передатчика и приемника.
 - 8. LCR (Line Control Register) -- регистр управления линией.
 - 9. MCR (Modem Control Register) -- регистр управления модемом.
 - 10. LSR (Line Status Register) -- регистр состояния линии.
 - 11. MSR (Modem Status Register) -- регистр состояния модема.
- 12. SCR (Scratch Pad Register) -- дополнительный регистр для временного хранения данных, не связанный с функционированием UART.

Значние битов разных регистров

5. IER (Interrupt Enable Register) -- регистр разрешения прерываний.

Включение «залипания» бита паритета (sticky parity) приводит к передаче соответствующего константного значения.

Включение паузы приводит к приостановке передатчика. При этом передатчик удерживает линию в состоянии логического нуля длительное время, что автоматически переводит в режим паузы и приемник (без уведомления об ошибках).

