Exercise Sheet 3 COMS10017 Algorithms 2022/2023

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$.

Example Question: Loop Invariants

Question. Prove that the stated invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 1

Require: Array A of length $n \ (n \ge 2)$

1: $S \leftarrow A[0] - A[1]$

2: for $i \leftarrow 1 \dots n-2$ do

3: $S \leftarrow S + A[i] - A[i+1]$

4: end for

5: return S

Invariant:

At the beginning of iteration i, the statement S = A[0] - A[i] holds.

Which value is returned by the algorithm (use the Terminiation property for this)?

Solution. Let S_i be the value of S at the beginning of iteration i.

- 1. Initialization (i=1): We need to show that the statement of the loop invariant holds for i=1, i.e., the statement $S_1 = A[0] A[1]$ holds before iteration i=1. Observe that, in Line 1, S_1 is initialized as $S_1 \leftarrow A[0] A[1]$. The loop invariant thus holds for i=1.
- 2. Maintenance: Assume that the loop invariant holds for value i, i.e., $S_i = A[0] A[i]$. We need to show that the loop invariant then also holds for value i + 1, i.e., we need to show that $S_{i+1} = A[0] A[i+1]$ holds. To this end, observe that in iteration i we execute the operation $S_{i+1} = S_i + A[i] A[i+1]$. Since $S_i = A[0] A[i]$, we obtain $S_{i+1} = A[0] A[i] + A[i] A[i+1] = A[0] A[i+1]$.
- 3. Termination: We have that, after the last iteration (or before the (n-1)th iteration that is never executed), $S_{n-1} = A[0] A[n-1]$ holds. The algorithm thus returns the value A[0] A[n-1].

√

1 Warm up: Proof by Induction

Consider the following sequence: $s_1 = 1$, $s_2 = 2$, $s_3 = 3$, and $s_n = s_{n-1} + s_{n-2} + s_{n-3}$, for every $n \ge 4$. Prove that the following holds:

$$s_n \leq 2^n$$
.

2 Loop Invariant

Prove that the stated loop invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

```
Algorithm 2

Require: Array A of n positive integers

1: B \leftarrow empty array of n integers

2: B[0] \leftarrow A[0]

3: for i = 1 \dots n - 1 do

4: if A[i] > B[i - 1] then

5: B[i] \leftarrow A[i]

6: else

7: B[i] \leftarrow B[i - 1]

8: end if

9: end for

10: return B[n - 1]
```

Loop Invariant: At the beginning of iteration i, the following statement holds: For every $0 \le j < i$: B[j] is the maximum of the subarray A[0,j], i.e., $B[j] = \max\{A[0], \ldots, A[j]\}$.

Which value is returned by the algorithm (use the Terminiation property for this)?

Hint: The Maintenance part requires a case distinction in order to deal with the if-else statement.

3 Insertionsort

What is the runtime (in Θ -notation) of Insertionsort when executed on the following arrays of lengths n:

- 1. $1, 2, 3, 4, \ldots, n-1, n$
- 2. $n, n-1, n-2, \ldots, 2, 1$
- 3. The array A such that A[i] = 1 if $i \in \{1, 2, 4, 8, 16, ...\}$ (i.e., when i is a power of two) and A[i] = i otherwise.
- 4. The array B such that B[i] = 1 if $i \in \{10, 20, 30, 40...\}$ (i.e., when i is a multiple of 10) and B[i] = i otherwise.
- 5. The array C such that C[i] = 1 if $i \in \{n^{\frac{1}{10}}, 2 \cdot n^{\frac{1}{10}}, 3 \cdot n^{\frac{1}{10}}, \dots\}$ (i.e., when i is a multiple of $n^{\frac{1}{10}}$) and C[i] = i otherwise. We assume here that $n^{\frac{1}{10}}$ is an integer.

4 Runtime Analysis

```
Algorithm 3

Require: Integer n \ge 2
x \leftarrow 0
i \leftarrow n
while i \ge 2 do
j \leftarrow \lceil n^{1/4} \rceil \cdot i
while j \ge i do
x \leftarrow x + 1
j \leftarrow j - 10
end while
i \leftarrow \lfloor i/\sqrt{n} \rfloor
end while
return x
```

Determine the runtime of Algorithm 3 in Θ -notation.

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Proof by Induction

Let n be a positive number that is divisible by 23, i.e., $n = k \cdot 23$, for some interger $k \ge 1$. Let $x = \lfloor n/10 \rfloor$ and let y = n % 10 (the rest of an integer division). Prove by induction on k that 23 divides x + 7y.

Example: Consider k=4. Then n=92, x=9 and y=2. Observe that the quantity $x+7y=9+7\cdot 2=23$ is divisible by 23.