1 nalen

מובן שלא ניתן להגיע למצב כזה בקבוצות סופיות. נקח אפוא קבוצות אינסופיות.

פתרון ממיין 14

אחרי קצת ניסוי וטעיה אפשר למצוא קבוצות שמקיימות את הנדרש.

. $B = \{0, -1, -2, -3, ...\} = \{-n \mid n \in \mathbb{N}\}$ ותהי $A = \mathbb{N}$

אז $A \cup B = \mathbf{Z}$ (קבוצת המספרים השלמים),

 $A \oplus B = \mathbf{Z} - \{0\}$, $A - B = \mathbf{N} - \{0\}$

כל חמש הקבוצות האלה שונות זו מזו . למשל:

. $A \oplus B \neq A - B$ לכן A - B ואינן שייך ל- $A \oplus B \neq A - B$

בדומה לגבי השאר.

. |B|=|A| אכן B על A על חחייע של A הפונקציה f(n)=-n הפונקציה הפונקציה

|A-B|=|A| הפונקציה A-B על A על A היא פונקציה חחייע של B היא פונקציה B

 $. \, \aleph_0 \,$ היא A עוצמת A היא א

. $|A\cup B|=\aleph_0$ כלומר $|\mathbf{Z}|=\aleph_0$ בעמי 119 בספר, גם לפי שאלה 4.4 בעמי

נותר להראות שגם א זה מתקבל משלה . $|A \oplus B| = \aleph_0$ נותר להראות נותר להראות יותר א זה מתקבל וותר להראות שגם א זה מתקבל למשל אחרות).

2 nolen

א. בחוברת "אוסף תרגילים פתורים" קבוצה 3 שאלה 10ה", מראים כי קבוצת **הסדרות** הסופיות של טבעיים היא בת-מניה. בשאלה שלפנינו עוסקים לא בסדרות אלא בתת-קבוצות של

N. נתאים לכל קבוצה סופית של מספרים טבעיים - סדרה סופית: פשוט נסדר את אברי הקבוצה בסדר עולה. בכך הגדרנו פונקציה של הקבוצה K שבשאלה אל קבוצת הסדרות הסופיות של טבעיים. פונקציה זו אינה על (מדועי) אך מובן שהיא חד-חד-ערכית.

 $|K| \leq \aleph_0$ לפיכך

. טבעי, n היא אינסופית, מכיון שהיא מכילה את כל הקבוצות מהצורה $\{n\}$, לכל מכאן לפי משפט קנטור-שרדר-ברנשטיין $|K|=lephi_0$ (למעשה אין כאן צורך במשפט הנייל, שהוא בגדר ייתותח כבדיי. ניתן להראות בלעדיו, שקבוצה אינסופית המוכלת בקבוצה בת-מניה היא בת מניה).

היא חחייע ועל N הפונקציה את המשלים לכל המתאימה פונקציה $g:L \to K$ היא הפונקציה $. \aleph_0$ איז זאת!). לפיכך |L| = |K|, ולפי סעיף אי עוצמה זו היא (הוכיחו זאת!).

3 nalen

 $K\cup L\cup M=P(\mathbf{N})$ ורות זו לזו, ו- K, א. נשים לב שהקבוצות אורות זו לזו, ו-

כעת, אילו M היתה בת-מניה, היינו מקבלים ש- $P(\mathbf{N})$ היא איחוד של 3 קבוצות זרות בנות-מניה הוא מניה. עייי שימוש חוזר בשאלה 4.3 בעמי 119 בספר (איחוד שתי קבוצות זרות בנות-מניה הוא בר-מניה) היינו מקבלים כי $P(\mathbf{N})$ היא בת-מניה - בסתירה למשפט 5.25 , וכן בסתירה למשפט 5.6 (משפט קנטור). לכן M אינה בת-מניה.

 $A = P(\mathbf{N}) - B$, נסמן הקודם, פתרון המעיף האמור בתחילת מהאמור ב $B = K \cup L$ נסמן.

בנוסף, B היא בת-מנייה, ו- $P(\mathbf{N})$ היא קבוצה אינסופית שאינה בת-מנייה.

עבור ייפרק פיי) עבור (עמי 16 בחוברת ייפרק B , $P(\mathbf{N})$ הקבוצות אפוא את תנאי משפט B , A בהתאמה.

.
$$|P(\mathbf{N}) - B| = |P(\mathbf{N})| = C$$
 לכן

|M|=C כאמור $M=P(\mathbf{N})-B$ כאמור

4 22162

. $k_1,\,k_2$, m_1,m_2 בהתאמה בהתאמה שעוצמותיה A_1,A_2 , B_1,B_2 א.

 $,k_{1}\,$ אעוצמתה, $A_{2}\,$ שעוצה חלקית לפיה של לפיה ניעזר בשאלה 5.1, לפיה ניעזר בשאלה לפיה על את ההוכחה ניעזר בשאלה

 $B_1 \subseteq B_2$, $A_1 \subseteq A_2$ נניח ב.ה.כ. נניח B_2 שעוצמתה B_1 שעוצמתה B_2 שעוצמתה ויש קבוצה חלקית של

. $k_2 \cdot m_2 = |A_2 \times B_2|$, $k_1 \cdot m_1 = |A_1 \times B_1|$ כעת מהגדרת כפל עוצמות

. $A_{\rm l}\times B_{\rm l}\subseteq A_{\rm 2}\times B_{\rm 2}$ אבל מהנחתנו ומהגדרת מכפלה קרטזית מהנחתנו

. $k_1 \cdot m_1 \le k_2 \cdot m_2$, בהסתמך על שאלה 5.1 בהסתמך, לכן

. א $C \leq C \cdot C = C$, מצד אחד, אולכן בעזרת סעיף א ולכן בעזרת אחד, אחד, ב. מצד אחד,

. $C = 1 \cdot C \le \aleph_0 \cdot C$ מצד שני $1 \le \aleph_0$ ולכן בדומה

משני הכיוונים יחד, בעזרת קנטור-שרדר-ברנשטיין, נובע המבוקש.

 $C^C = (2^{\aleph_0})^C = 2^{\aleph_0 \cdot C} = 2^C$ ג. לפי משפט 5.26, נציב זאת ונקבל . $2^{\aleph_0} = C$,5.26 ג.

במעברים נעזרנו במשפט 5.27ג ובסעיף ב של שאלה זו.

איתי הראבן