ND

Nobody

2022年12月9日

目录

1 definition		nition	1
	1.1	Language part	1
	1.2	The 推理过程	1
	1.3	演绎序列	3
	1.4	例子	3
	1.5	定理	3

1 definition

1.1 Language part

$$\Sigma = \{(,), \leftrightarrow, \rightarrow, \neg, \vee, \wedge, \text{Propositional letters}\}$$

the definition of the Propositions the definition is similar to those in the PC.

1.2 The 推理过程

Axiom.

$$\Gamma \cup \{A\} \vdash A \tag{1}$$

注意这里只有一条公理.

Definition 1.1 (推理的表示). 我们使用类似分号的形式进行表示. 比如说这里是第一条推理规则: 引入规则.

$$\frac{\Gamma \vdash B}{\Gamma \cup \{A\} \vdash B} \tag{2}$$

上面为条件,下面为结果.

Proposition 1.1 (假设引入).

$$\frac{\Gamma \vdash B}{\Gamma \cup \{A\} \vdash B} \tag{3}$$

记为 (+)

Proposition 1.2 (假设消除).

$$\frac{\Gamma \cup \{A\} \vdash B \quad \Gamma \cup \{\neg A\} \vdash B}{\Gamma \vdash B} \tag{4}$$

记为 (-)

Example 1.1 (证明反证法). 需要使用蕴含消除, 等之后就会讲了.

$$(\neg A \to A) \to A \tag{5}$$

Proposition 1.3 (析取引入).

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \tag{6}$$

Proposition 1.4 (析取消除).

$$\frac{\Gamma \cup A \vdash C \quad \Gamma \cup B \vdash C \quad \Gamma \vdash A \lor B}{\Gamma \vdash C} \tag{7}$$

Proposition 1.5 (合取引入).

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \tag{8}$$

比较简单. 我们使用 PC 中的东西可以证明这个, 我们已经证明 PC 的完备性了, 所以说, 可以使用 PC 来证明这些推理规则是否合理.

Proposition 1.6 (合取消除).

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \tag{9}$$

Proposition 1.7 (\rightarrow 引人).

Proposition 1.8 $(\rightarrow$ 消除).

$$\frac{\Gamma \vdash A \quad \Gamma \vdash A \to B}{\dots} \tag{10}$$

Proposition 1.9 (\neg 引入).

$$\frac{\Gamma \cup A \vdash B \quad \Gamma \cup A \vdash \neg B}{\Gamma \vdash \neg A} \tag{11}$$

Proposition 1.10 $(\neg 消除)$.

$$\frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash B} \tag{12}$$

Proposition 1.11 $(\neg \neg +)$. 略

Proposition 1.12 $(\neg \neg -)$.

Proposition 1.13 $(\leftrightarrow +)$. 略

Proposition 1.14 $(\leftrightarrow -)$.

1.3 演绎序列

我们说,演绎序列是下面这样的序列:

$$\Gamma_1 \vdash A_1, \Gamma_2 \vdash A_2, \cdots, \Gamma_m \vdash A_m$$
 (13)

其中 $\Gamma_i \vdash A_i$ 是 axiom, 或者是 $\Gamma_i \vdash A_i = \Gamma_j \vdash A_j$, 或者是 $\Gamma_i \vdash A_i$ 是一个推理结果.

1.4 例子

值得注意的是, 上面几个推理规则之中, 有 2 4 9 10 是比较重要的. 例子 1: 反证法证明 2.

1.5 定理

记得看 ppt