1FC3 Theorem List

JK

April 5, 2012

Contents

1	Equivalence	1
2	Negation	1
3	Disjunction	1
4	Conjunction	1
5	Implication	2
6	Substitution	3
7	Quantification	3

1 Equivalence

- (3.1) Axiom, Associativity of \equiv : $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$
- (3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv p$
- (3.3) Axiom, Identity of \equiv : $true \equiv q \equiv q$
- (3.4) true
- (3.5) Reflexivity of $\equiv: p \equiv p$
- (3.7) Metatheorem: Any two theorems are equivalent.

2 Negation

- (3.8) Axiom, Definition of false: false $\equiv \neg true$
- (3.9) Axiom, Distributivity of \neg over \equiv : $\neg(p \equiv q) \equiv (\neg p \equiv q)$
- (3.10) Axiom, Definition of $\not\equiv$: $(p \not\equiv q) \equiv \neg (p \equiv q)$
- $(3.11) \ \neg p \equiv q \equiv p \equiv \neg q$
- (3.12) Double negation: $\neg \neg p \equiv p$
- (3.13) Negation of false: $\neg false \equiv true$
- $(3.14) \ (p \not\equiv q) \equiv \neg p \equiv q$
- $(3.15) \neg p \equiv p \equiv false$
- (3.16) Symmetry of $\not\equiv$: $(p \not\equiv q) \equiv (q \not\equiv p)$
- (3.17) Associativity of $\not\equiv$: $((p \not\equiv q) \not\equiv r) \equiv (p \not\equiv (q \not\equiv r))$
- (3.18) Mutual associativity: $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$
- (3.19) Mutual interchangeability: $p \neq q \equiv r \equiv p \equiv q \neq r$

3 Disjunction

- (3.24) Axiom, Symmetry of \forall : $p \lor q \equiv q \lor p$
- (3.25) Axiom, Associativity of \vee : $(p \vee q) \vee r \equiv p \vee (q \vee r)$
- (3.26) Axiom, Idempotency of \forall : $p \lor p \equiv p$
- (3.27) Axiom, Distributivity of \vee over \equiv : $p \vee (q \equiv r) \equiv p \vee q \equiv p \vee r$
- (3.28) Axiom, Excluded Middle: $p \vee \neg p$
- (3.29) Zero of \vee : $p \vee true \equiv true$
- (3.30) Identity of \vee : $p \vee false \equiv p$
- (3.31) Distributivity of \vee over \vee : $p \vee (q \vee r) \equiv (p \vee q) \vee (p \vee r)$
- (3.32) $p \lor q \equiv p \lor \neg q \equiv p$

4 Conjunction

- (3.35) Axiom, Golden Rule: $p \land q \equiv p \equiv q \equiv p \lor q$
- (3.36) Symmetry of \wedge : $p \wedge q \equiv q \wedge p$
- (3.37) Associativity of \wedge : $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- (3.38) Idempotency of \wedge : $p \wedge p \equiv p$
- (3.39) Identity of \wedge : $p \wedge true \equiv p$
- (3.40) Zero of \wedge : $p \wedge false \equiv false$
- **(3.41)** Distributivity of \wedge over \wedge : $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge (p \wedge r)$
- (3.42) Contradiction: $p \land \neg p \equiv false$
- (3.43) Absorption:

$$p \land (p \lor q) \equiv p$$
$$p \lor (p \land q) \equiv p$$

(3.44) Absorption:

$$p \wedge (\neg p \vee q) \equiv p \wedge q$$
$$p \vee (\neg p \wedge q) \equiv p \vee q$$

- (3.45) Distributivity of \vee over \wedge : $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
- (3.45) Distributivity of \wedge over \vee : $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- (3.47) De Morgan:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

```
\neg (p \lor q) \equiv \neg p \land \neg q
```

- (3.48) Axiom, Golden Rule:
- (3.49) Axiom, Golden Rule:
- (3.50) Axiom, Golden Rule:
- (3.51) Replacement: $(p \equiv q) \land (r \equiv p) \equiv (p \equiv q) \land (r \equiv q)$
- (3.52) Definition of $\equiv: p \equiv q \equiv (p \land q) \lor (\neg p \land \neg q)$
- (3.53) Definition of $\not\equiv$ (Exclusive or): $p \not\equiv q \equiv (\neg p \land q) \lor (p \land \neg q)$

5 Implication

- (3.57) Axiom, Definition of Implication: $p \Rightarrow q \equiv p \lor q \equiv q$
- (3.58) Axiom, Consequence: $p \Leftarrow q \equiv q \Rightarrow p$
- (3.59) (Alternative) Definition of Implication: $p \Rightarrow q \equiv \neg p \lor q$
- (3.60) (Dual) Definition of Implication: $p \Rightarrow q \equiv p \land q \equiv p$
- (3.61) Contrapositive: $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
- Ex. 3.45 $p \Rightarrow q \equiv \neg p \lor \neg q \equiv \neg p$
- **Ex.** 3.46 $p \Rightarrow q \equiv \neg p \land \neg q \equiv \neg q$
- (3.62: $p \Rightarrow (q \equiv r) \equiv p \land q \equiv p \land r$
- (3.63) Distributivity of \Rightarrow over \equiv : $p \Rightarrow (q \equiv r) \equiv p \Rightarrow q \equiv p \Rightarrow r$
- (3.64) Self-distributivity of \Rightarrow : $p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$
- (3.65) Shunting: $p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$
- (3.66) $p \land (p \Rightarrow q) \equiv p \land q$
- $(3.67) \ p \land (q \Rightarrow p) \equiv p$
- (3.68) $p \lor (p \Rightarrow q) \equiv true$
- (3.69) $p \lor (q \Rightarrow p) \equiv q \Rightarrow p$
- $(3.70) \ p \lor q \Rightarrow p \land q \equiv p \equiv q$
- (3.71) Reflexivity of \Rightarrow : $p \Rightarrow p \equiv true$
- (3.72) Right zero of \Rightarrow : $p \Rightarrow true \equiv true$
- (3.73) Left identity of \Rightarrow : $true \Rightarrow p \equiv p$
- (3.74) $p \Rightarrow false \equiv \neg p$
- (3.75) $false \Rightarrow p \equiv true$
- (3.76) Weakening/strengthening:
 - (a) $p \Rightarrow p \lor q$
 - **(b)** $p \wedge q \Rightarrow p$
 - (c) $p \land q \Rightarrow p \lor q$
 - (d) $p \lor (q \land r) \Rightarrow p \lor q$
 - (e) $p \wedge q \Rightarrow p \wedge (p \vee r)$
- (3.77) Modus ponens: $p \land (p \Rightarrow q) \Rightarrow q$
- (3.78) Case analysis: $(p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q \Rightarrow r)$
- (3.79) Case analysis: $(p \Rightarrow r) \land (\neg p \Rightarrow r) \equiv r$
- (3.80) Mutual implication: $(p \Rightarrow q) \land (q \Rightarrow p) \equiv p \equiv q$
- (3.80b) Reflexivity wrt. Equivalence: $(p \equiv q) \Rightarrow (p \Rightarrow q)$
- (3.81) Antisymmetry: $(p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow p \equiv q$
- (3.82) Transitivity:
 - (a) $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$
 - **(b)** $(p \equiv q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$
 - (c) $(p \Rightarrow q) \land (q \equiv r) \Rightarrow (p \Rightarrow r)$
- **Ex.** 6.3.A $p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$
- **Ex. 6.3.B** $(p \land q) \lor (\neg p \land r) \equiv (p \Rightarrow q) \land (\neg p \Rightarrow r)$
- **Ex.** 6.3.C $(p \land q) \lor (\neg p \land r) \equiv (\neg p \lor r) \land (p \lor r)$
- **Ex.** 6.3.D $\neg p \lor (p \Rightarrow q) \equiv p \Rightarrow q$
- **Ex.** 6.3.E $p \lor (\neg p \Rightarrow q) \equiv \neg p \Rightarrow q$
- $\textbf{(4.1)} \ \ p \Rightarrow (q \Rightarrow p)$
- **(4.2) Monotonicity of** \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- **(4.3)** Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow p \land r \Rightarrow q \land r$
- (4.4) (Extended) Deduction Theorem: Suppose adding P_1, \ldots, P_n as axioms to propositional

logic **E**, with the variables of the Pi considered to be constants, allows Q to be proved. Then $P_1 \wedge \ldots \wedge P_n \Rightarrow Q$ is a theorem.

```
(4.6) (p \lor q \lor r) \land (p \Rightarrow s) \land (q \Rightarrow s) \land (r \Rightarrow s) \Rightarrow s
```

6 Substitution

```
(3.84a) (e = f) \land E[z := e] \equiv (e = f) \land E[z := f]

(3.84b) (e = f) \Rightarrow E[z := e] \equiv (e = f) \Rightarrow E[z := f]

(3.84c) q \land (e = f) \Rightarrow E[z := e] \equiv q \land (e = f) \Rightarrow E[z := f]

(3.85a) Replace by true: p \Rightarrow E[z := p] \equiv p \Rightarrow E[z := true]

(3.85b) Replace by true: q \land p \Rightarrow E[z := p] \equiv \land p \Rightarrow E[z := true]

(3.86a) Replace by false: E[z := p] \Rightarrow p \equiv E[z := false] \Rightarrow p

(3.86b) Replace by false: E[z := p] \Rightarrow p \lor q \equiv E[z := false] \Rightarrow p \lor q

(3.87) Replace by false: p \land E[z := p] \equiv p \land E[z := true]

(3.88) Replace by false: p \lor E[z := p] \equiv p \lor E[z := false]

(3.89) Shannon: E[z := p] \equiv (p \land E[z := true]) \lor (\neg p \land E[z := false])

(4.5) Metatheorem Case Analysis (Shannon):

If E[z := true] and E[z := false] are theorems, then so is E[z := p]
```

7 Quantification

```
(8.11) Substitution: Provided \neg occurs(`y", `x, F"), (\star y \mid R \bullet P)[x := F] = (\star y \mid R[x := F] \bullet P[x := F])
```