

Gli intervalli

Sottoinsieme di R di numeri compresi fra due estremi *a* e *b*, non necessariamente numerici. Presi due numeri all'interno dell'intervallo, tutti i numeri compresi fra questi due appartengono all'intervallo.

Se le parentesi sono tonde () l'estremo è escluso, se quadre [] è incluso. Con l'infinito si usa escluso.

Un intervallo che al suo interno contiene un infinito non è limitato. Se non contiene un infinito è limitato dalla parte in cui è presente il numero finito.

Un intervallo A è superiormente limitato se $\exists~K\in\mathbb{R}:a\leq K, \forall a\in A$, K si chiama maggiorante

Un intervallo A è inferiormente limitato se $\exists~H\in\mathbb{R}:H\leq a, orall a\in A$, H si chiama **minorante**

Un intervallo A è limitato se è sia superioremente che inferiormente limitato

Es.
$$A = \{1, 2, 5\}$$

$$M_a$$
 = $\{K \in \mathbb{R}: K \geq 5\}$ m_a = $\{K \in \mathbb{R}: K \leq 1\}$

Gli intervalli 1

Maggiorante e Minorante:

Maggiorante:

Un qualsiasi numero, anche appartenente all'insieme, che sia più grande di tutti gli altri i numeri all'interno dell'insieme. Ha sempre un minimo

Minorante:

Un qualsiasi numero, anche appartenente all'insieme, che sia più piccolo di tutti gli altri i numeri all'interno dell'insieme. Ha sempre un massimo

Massimo e Minimo:

$$A\subseteq \mathbb{R}, A
eq \emptyset$$

• Si dia che $M\in A$ è **massimo** di A se $a\leq M, \forall a\in A$ M è un numero contenuto nell'insime e ne è il MAGGIORE, il più piccolo. (sono infiniti)

es.

$$[1, 4, 9]M = 9$$

[1, 4, 9) M = non esiste in quanto preso un numero è sempre possibile trovarne uno più vicino a 9 che però è escluso

• Si dia che $m\in A$ è **minimo** di A se $m\leq a, \forall a\in A$ m è un numero contenuto nell'insime e ne è il MINORE, il più grande. (sono infiniti) es.

$$[1, 4, 9]m = 1$$

(1, 4, 9] M = non esiste in quanto preso un numero è sempre possibile trovarne uno più vicino a 1 che però è escluso

Estremo Superiore:

È il numero a destra nelle parentesi, sia che sia compreso che non sia compreso. Se c'è più infinito si dice che più infinito è l'estremo superiore, anche se non è numerico, e si indica con $sup(A) = +\infty$.

Si dice che i è estremo superiore di A se i è il più piccolo in M_A ed $i \in \mathbb{R}$ oppure

Gli intervalli 2

Sia
$$A\subseteq\mathbb{R}, A
eq\emptyset$$
 A sup. limitato allora L = sup A se e solo se: $\{$ L è un maggiorante e $\forall \epsilon>0$ \exists $\overline{L}\in A: L-\epsilon<\overline{L}\leq L\}$

Estremo Inferiore:

È il numero a sinsitra nelle parentesi, sia che sia compreso che non sia compreso. Se c'è meno infinito si dice che meno infinito è l'estremo inferiore, anche se non è numerico, e si indica con $inf(A) = -\infty$.

Si dice che i è estremo superiore di A se i è il più grande in m_A ed $i \in \mathbb{R}$ oppure

Sia $A\subseteq\mathbb{R}, A
eq\emptyset$ A inf. limitato allora L = inf A se e solo se: $\{$ I è un minorante e $\forall \epsilon>0\ \exists\ \overline{l}\in A: l<\overline{l}\leq l+\epsilon\}$

Assioma di completezza:

$$egin{aligned} A \subseteq \mathbb{R}, A
eq \emptyset, Sup \ Limitato \ M_a
eq \emptyset \ \land \ M_a \ Inf \ Limitato \end{aligned}$$

 M_a ha sempre un MINIMO, cioè esiste sempre il più piccolo dei maggioranti

In altre parole: ogni sottoinsieme non vuoto di R superiormente limitato ammette estremo superiore in R

In modo speculare vare per A inferiormente limitato

Definizione di Intorno aperto:

$$I_r(x_0) = \{x \in \mathbb{R} : x_0 - r \le x \le x_0 + r\}$$

Insime dei punti tra x-r ed x+r

In R valgono queste due proprietà:

• Proprietà archimedea:

Siano
$$0 < a < b$$
 allora: $\exists \; n \in \mathbb{N} : na > b$

• Densità di $\mathbb Q$ in $\mathbb R$:

$$orall a, b \in \mathbb{R}, a < b \ \exists \ rac{p}{q} \in \mathbb{Q} : a < rac{p}{q} < b$$

Gli intervalli 3