# Fairness In Al

Alex Wollam and David Sarpong

# Introduction: Fairness In Society





Source: Machine Bias: There's software used across the country to predict future criminals. And it's biased against blacks.

#### Discussion #1

**Defining Fairness** 

Q1: Briefly in your own words, describe what it means to you for something to be fair. What properties might this have?

Q2: The previous anecdotes don't seem very fair. How does it violate your definition?

Q3: Can you think of other ways in which fairness could be violated?

#### **COMPAS Fairness**



Source: A computer program used for bail and sentencing decisions was labeled biased against blacks. It's actually not that clear.

Source: Machine Bias: There's software used across the country to predict future criminals. And it's biased against blacks.

#### What is Fairness

• ProPublica authors argue imbalanced risk scores (classification) in each group

 Rebuttal: Scores are well-calibrated; i.e., if there is a 60% of recidivism; 60% of observed persons re-offend.

Which definition of fairness do we use?

#### **Proposed Metrics for Fairness**

Some measures of fairness are:

- Calibration within groups
- Balance for the positive class
- Balance for the negative class

Some measures of unfairness are:

- Disparate treatment
- Disparate impact
- Disparate mistreatment

Inherent trade-offs in the fair determination of risk scores. Kleinberg et al.

Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment. Zafar et al.

#### **Proposed Metrics for Fairness**

- Calibration within groups:
  - If the algorithm identifies a set of people as having a probability z of constituting positive instances, then approximately a z fraction of this set should indeed be positive instances
- Balance for the positive class:
  - The average score received by people constituting positive instances should be the same in each group
- Balance for the negative class
  - The average score received by people constituting negative instances should be the same in each group

#### **Calibration Within Groups**

Before calibration:



#### **Calibration Within Groups**

After calibration:



#### **Balance For Positive (& Negative) Class**

Two (sensitive) groups: blue & orange



Imbalance between groups



#### **Proposed Metrics for Unfairness**

- Disparate treatment:
  - The probability in predicting a specific label y given a feature x changes after observing the sensitive feature z
  - $P(\hat{y}|\mathbf{x},z) \neq P(\hat{y}|\mathbf{x})$
- Disparate impact:
  - The probability in assigning a user to the positive class, y = 1, is not the same across sensitive features z
  - $P(\hat{y} = 1|z = 0) \neq P(\hat{y} = 1|z = 1)$
- Lack of disparate mistreatment:
  - The misclassification rates for different groups of people having different values of the sensitive feature z are not the same

# **Disparate Treatment:** $P(\hat{y}|\mathbf{x}, z) \neq P(\hat{y}|\mathbf{x}),$

| User Attributes |                              |   |  |  |
|-----------------|------------------------------|---|--|--|
| Sensitive       | Non-sensitive                |   |  |  |
| Gender          | Clothing Bulge   Prox. Crime |   |  |  |
| Male 1          | 1                            | 1 |  |  |
| Male 2          | 1                            | 0 |  |  |
| Male 3          | 0                            | 1 |  |  |
| Female 1        | 1                            | 1 |  |  |
| Female 2        | 1                            | 0 |  |  |
| Female 3        | 0                            | 0 |  |  |

|   | Ground Truth (Has Weapon) |
|---|---------------------------|
| - | <b>/</b>                  |
| - | X                         |
| - | X                         |
|   | ✓                         |

| Classifier's                                                            |   |   |  |  |
|-------------------------------------------------------------------------|---|---|--|--|
| Decision to Stop                                                        |   |   |  |  |
| $egin{array}{ c c c c c } \hline C_1 & C_2 & C_3 \\ \hline \end{array}$ |   |   |  |  |
| 1                                                                       | 1 | 1 |  |  |
| 1                                                                       | 1 | 0 |  |  |
| 1                                                                       | 0 | 1 |  |  |
| 1                                                                       | 0 | 1 |  |  |
| 1                                                                       | 1 | 1 |  |  |
| 0                                                                       | 1 | 0 |  |  |

**Disparate Impact:**  $P(\hat{y} = 1 | z = 0) \neq P(\hat{y} = 1 | z = 1)$ 

| User Attributes |                              |   |  |  |
|-----------------|------------------------------|---|--|--|
| Sensitive       | Non-sensitive                |   |  |  |
| Gender          | Clothing Bulge   Prox. Crime |   |  |  |
| Male 1          | 1                            | 1 |  |  |
| Male 2          | 1                            | 0 |  |  |
| Male 3          | 0                            | 1 |  |  |
| Female 1        | 1                            | 1 |  |  |
| Female 2        | 1                            | 0 |  |  |
| Female 3        | 0                            | 0 |  |  |

|   | Ground Truth (Has Weapon) |
|---|---------------------------|
| - | <i>J</i>                  |
|   | X                         |
| - | × /                       |

| Classifier's                                         |   |   |  |  |
|------------------------------------------------------|---|---|--|--|
| Decision to Stop                                     |   |   |  |  |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$ |   |   |  |  |
| 1                                                    | 1 | 1 |  |  |
| 1                                                    | 1 | 0 |  |  |
| 1                                                    | 0 | 1 |  |  |
| 1                                                    | 0 | 1 |  |  |
| 1                                                    | 1 | 1 |  |  |
| 0                                                    | 1 | 0 |  |  |

# **Disparate Mistreatment**

| User Attributes |                |             |  |
|-----------------|----------------|-------------|--|
| Sensitive       | Non-sensitive  |             |  |
| Gender          | Clothing Bulge | Prox. Crime |  |
| Male 1          | 1              | 1           |  |
| Male 2          | 1              | 0           |  |
| Male 3          | 0              | 1           |  |
| Female 1        | 1              | 1           |  |
| Female 2        | 1              | 0           |  |
| Female 3        | 0              | 0           |  |

|   | Ground Truth (Has Weapon) |
|---|---------------------------|
| - |                           |
|   | <u> </u>                  |
|   | X                         |
|   | X                         |
| L | ✓                         |

| Classifier's      |   |   |  |  |
|-------------------|---|---|--|--|
| Decision to Stop  |   |   |  |  |
| $C_1$ $C_2$ $C_3$ |   |   |  |  |
| 1                 | 1 | 1 |  |  |
| 1                 | 1 | 0 |  |  |
| 1                 | 0 | 1 |  |  |
| 1                 | 0 | 1 |  |  |
| 1                 | 1 | 1 |  |  |
| 0                 | 1 | 0 |  |  |

#### Discussion #2

Fairness Tradeoffs

Q1: Given these different measures of fairness, what considerations should be made when choosing how to balance them?

Q2: What fairness measures do you think are most important for COMPAS?

Q3: Under these new considerations, do you now believe COMPAS to be fair or unfair?

# Can We Develop Theory For Fairness In Data-Driven Systems?

A simple model to investigate fairness

#### **Tradeoffs in Fairness**

Characterization Theorem:

It's impossible to satisfy fairness in all three "notions" of fairness non-trivially

Pick at most two; drop at least one:

- Calibration within groups
- Balance for the positive class
- Balance for the negative class



#### **Tradeoffs in Fairness**

ProPublica complaint and the characterization theorem







Source: A computer program used for bail and sentencing decisions was labeled biased against blacks. It's actually not that clear.

#### **Tradeoffs in Fairness**

Achieving balance between positive (or negative) class results in a loss in calibration



Source of Image: NIPS'17 Tutorial on Fairness in Machine Learning.

#### When Can We Achieve Fairness

#### Two special cases:

Perfect Prediction: can we ever learn a perfect classifier?

 Non-informative Prediction: same prediction across the board; tells me nothing!

#### **Proposed Metrics for Fairness**

Notions of fairness and unfairness talked about earlier:

- Calibration within groups
- Balance for the positive class
- Balance for the negative class

- Lack of disparate treatment
- Lack of disparate impact
- Lack of disparate mistreatment

# Discussion #3

Designing a fair classification algorithm

Q1: Given the different notions of fairness; how would you design a fair classifier in risk assessment such as COMPAS? What design decisions would you make or emphasize?

Q2: How would you balance the aforementioned metrics in your model?

# Designing A \*Fair\* & Intelligent System

How to design a "fair" classifier that avoids disparate mistreatment, disparate treatment and balances the misclassification rates across the positive and negative classes

## Approaches To Fairness In Systems For Social Use

#### Machine Learning Workflow



Source of Image: https://towardsdatascience.com/pipelines-automated-machine-learning-with-hyperparameter-tuning-part-1-b9c06a99d3c3

#### Approaches To Fairness In Systems For Social Use

Two approaches to designing fair systems

 Algorithmic approaches (Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment)

• Data cleaning & preprocessing (Unequal Representation and Gender Stereotypes in Image Search Results for Occupations)

**Empirical Risk Minimization** 

minimize  $L(\boldsymbol{\theta})$ 

Empirical Risk Minimization Without Disparate Mistreatment

minimize 
$$L(\boldsymbol{\theta})$$
  
subject to  $P(\hat{y} \neq y|z=0) - P(\hat{y} \neq y|z=1) \leq \epsilon$ , (8)  
 $P(\hat{y} \neq y|z=0) - P(\hat{y} \neq y|z=1) \geq -\epsilon$ ,

Bounded difference in the **overall misclassification rate (OMR)** across sensitive groups z

Approximate this:

$$P(\hat{y} \neq y | z = 0) - P(\hat{y} \neq y | z = 1) \le \epsilon, \qquad (8)$$

$$P(\hat{y} \neq y | z = 0) - P(\hat{y} \neq y | z = 1) \ge -\epsilon,$$
Potentially non-convex

By:

$$\operatorname{Cov}(z, g_{\theta}(y, \mathbf{x})) = \mathbb{E}[(z - \bar{z})(g_{\theta}(y, \mathbf{x}) - \bar{g}_{\theta}(y, \mathbf{x}))]$$

$$\approx \frac{1}{N} \sum_{(\mathbf{x}, y, z) \in \mathcal{D}} (z - \bar{z}) g_{\theta}(y, \mathbf{x}), \quad (9)$$

Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment. Zafar et al.

Original Empirical Risk Minimization Without Disparate Mistreatment

$$\begin{array}{ll} \text{minimize} & L(\boldsymbol{\theta}) \\ \text{subject to} & P(\hat{y} \neq y | z = 0) - P(\hat{y} \neq y | z = 1) \leq \epsilon, \\ & P(\hat{y} \neq y | z = 0) - P(\hat{y} \neq y | z = 1) \geq -\epsilon, \end{array}$$

Proxy Empirical Risk Minimization Without Disparate Mistreatment

minimize 
$$L(\boldsymbol{\theta})$$
  
subject to  $\frac{1}{N} \sum_{(\mathbf{x}, y, z) \in \mathcal{D}} (z - \bar{z}) g_{\boldsymbol{\theta}}(y, \mathbf{x}) \leq c,$   
 $\frac{1}{N} \sum_{(\mathbf{x}, y, z) \in \mathcal{D}} (z - \bar{z}) g_{\boldsymbol{\theta}}(y, \mathbf{x}) \geq -c,$ 

Case study with Logistic Regression:

- Disparate mistreatment:
  - OMR vs FPR & FNR

|            |        | Predicted Label                                              |                                                              |                                                   |
|------------|--------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|
|            |        | $\hat{y} = 1$                                                | $\hat{y} = -1$                                               |                                                   |
| True Label | y = 1  | True positive                                                | False negative                                               | $P(\hat{y} \neq y y=1)$<br>False<br>Negative Rate |
|            | y = -1 | False positive                                               | True negative                                                | $P(\hat{y} \neq y   y = -1)$ False Positive Rate  |
|            |        | $P(\hat{y} \neq y   \hat{y} = 1)$<br>False<br>Discovery Rate | $P(\hat{y} \neq y   \hat{y} = -1)$<br>False<br>Omission Rate | $P(\hat{y} \neq y)$<br>Overall<br>Misclass. Rate  |

How does fairness affect accuracy and generalization:



FPR = False Positive Rate

FNR = False Negative Rate

Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment. Zafar et al.

#### **Approach 2: Dataset Preprocessing**

#### Data Preprocessing Questions:

- How does prevalence of sensitive features in the dataset correspond to their prevalence in the actual distribution? Are some sensitive features systematically over- or under-represented across domains, and is there stereotype exaggeration in proportions?
- Are there qualitative differences in how the different groups possessing the sensitive features are portrayed in the data generating distribution?
- Do models trained on biased data perpetuate further biases? Are there systemic over- or under-representations of different sensitive groups in the data?

## **Approach 2: Image Search Dataset Preprocessing**

• Sensitive attribute: Gender and their representation in search results

Filtered image search dataset (with Amazon Turkers) to match "true" population distribution

## **Approach 2: Image Search Dataset Preprocessing**



Unequal Representation and Gender Stereotypes in Image Search Results for Occupations. Kay et. al.

# Discussion #4

Al and Society

Q1: To what extent should AI and Society interact in sensitive disciplines such as resource allocation, criminal justice, etc...

# Conclusion

Thank you!