Homework 3, Section 1.3: 1-11 odd, 17-25 odd

Alex Gordon

January 27, 2014

Homework

1.

$$u = \begin{bmatrix} -1 & 2 \end{bmatrix} v = \begin{bmatrix} -3 & -1 \end{bmatrix}$$

3.

$$u = \begin{bmatrix} -1 & 2 \end{bmatrix} v = \begin{bmatrix} -3 & -1 \end{bmatrix}$$

5.

$$3x_1 + 5x_2 = 2 - 2x_1 + 0x_2 = -3 8x_1 + -9x_2 = 8$$

7.

$$a = u - 2v$$
 $b = 2u - 2v$ $c = 2u - 2.5v$ $d = 3u - 4v$

9.

$$x_1\begin{bmatrix}0&4&-1\end{bmatrix}+x_2\begin{bmatrix}1&6&3\end{bmatrix}+x_3\begin{bmatrix}5&-1&-8\end{bmatrix}=\begin{bmatrix}0&0&0\end{bmatrix}$$

11.

The linear system corresponding to M has a solution so 1 has a solution and b is therefore a linear combination of a_1, a_2 and a_3 .

17.

The weights are 1 and -1

19.

If v_1 and v_2 are nonzero vectors then $Span\{v_1, v_2\}$ for the given vectors is the set of points on a line through v_1 and 0.

21.

The matrix corresponds to a consistent system for all h and k, so y is in Span of $\{u, v\}$

23.

 $\mathrm{Span}\ \{u,v\}=\mathrm{span}\ \{u\}$

25. A)

There are only three vectors in the set of columns $\{a_1, a_2, a_3\}$ in A and b is not one of them.

25. B)

There are infinitely many vectors in $W = Span\{a_1, a_2, a_3\}$

25. C)

 a_1 is in W.