Then IMI2= et tr [P3 yt p1 y + me P3 yt y + me y p1 y + me 2 y y]

. tr [P4 y p2 y + m p 94 y p y + m p y p2 y + m p 2 y p y]

$$\Rightarrow |\mathcal{M}|^{2} = \frac{e^{4}}{4t^{2}} tr \left[\beta_{3} \rho_{1\sigma} \gamma^{2} \gamma^{2} \gamma^{4} + 0 + 0 + m_{e}^{2} \gamma^{4} \gamma^{7} \right] tr \left[\rho_{3}^{2} \gamma^{2} \gamma^{2} \gamma^{4} + 0 + 0 + m_{e}^{2} \gamma^{4} \gamma^{7} \right] tr \left[\rho_{3}^{2} \gamma^{2} \gamma^{2} \gamma^{4} + 0 + 0 + m_{e}^{2} \gamma^{4} \gamma^{7} \right] tr \left[\rho_{3}^{2} \gamma^{2} \gamma^{4} \gamma^{4} \gamma^{4} + 0 + 0 + m_{e}^{2} \gamma^{4} \gamma^{7} \right] tr \left[\rho_{3}^{2} \gamma^{2} \gamma^{4} \gamma$$

+ P3 · P2 P1 · P4 - P3 · P1 P4 · P2 + P3 · P4 P1 · P2 + mp P3 · P1 + me P4 · P2 - me 4 P4 · P2 + me P4 · P2 + me mp · · 4]

= 4et [2 P1. P2 P3. P4 + 2 P1. P4 P2. P3 - 2 me P2. P4 - 2 mp P1. P3 + 4 me mp]

= 8e4 [P1. P2 P3. P4 + P1. P4 P2. P3 - me P2. P4 - mp- P1. P3 + 2 me mp-]

Useful relations

Σ [ū(β3) γ u(β,)] [ū(β3) γ u(β,)]* = tr [(β3+m)γ n(β,+m)γ]

ερins

ερίη

ξ_{spins} [ū(ρ₄)γ^mν(ρ₃)] [ū(ρ₄)γ^{*}ν(ρ₃])*= tr [(ρ₄+m)γ^m(ρ₃-m)γ^{*}]

[ρ₄

[α(ρ₄)γ^mν(ρ₃)] [ū(ρ₄)γ^{*}ν(ρ₃]]*= tr [(ρ₄+m)γ^m(ρ₃-m)γ^{*}]

5 [ν(ρ,) χμν(ρ3)] [ν(ρ,) χν(ρ3)] = tr [(p,-m) χμ(β3-m)χ]

PI P3

We can use these relations to quickly write the expressions for squared amplitudes (with sum over final spins, average over initial spins)

Examples

$$\begin{array}{lll}
e^{\frac{1}{2}} & \frac{1}{2} & \frac{$$

In the squared amplitude we have summed over final spins and averaged (factor of 1) over initial spins

note the relative minus sign between the two terms

Antisymmetrization rule: insert a minus sign when combining amplitudes with interchange of two identical external fermions