

INSTITUTO TECNOLÓGICO DE BUENOS AIRES - ITBA ESCUELA DE INGENIERÍA Y TECNOLOGÍA

SISTEMA INTEGRAL DE MONITOREO DE FAUNA SILVESTRE

AUTORES: Mechoulam, Alan (Leg. Nº 58438)

Lambertucci, Guido Enrique (Leg. Nº 58009) Rodriguez Turco, Martín Sebastian (Leg. Nº 56629) Londero Bonaparte, Tomás Guillermo (Leg. Nº 58150)

DOCENTES: Orchessi, Walter

Pingitore, Ricardo Ugarte, Alejandro Gasparini, Ignacio

TRABAJO FINAL PRESENTADO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO ELECTRÓNICO

BUENOS AIRES

Proyecto final de Ingeniería Electrónica

Sistema Integral de Monitoreo De Fauna Silvestre

Autores: Mechoulam, Alan (58438)

Lambertucci, Guido Enrique(58009)Rodriguez Turco, Martín Sebastian(56629)Londero Bonaparte, Tomás Guillermo(58150)

Tutores: Orchessi, Walter

Pingitore, Ricardo Ugarte, Alejandro Gasparini, Ignacio

Fecha: 12/05/2021

Índice de Contenidos

1	Resume	en 2
2		ntecedentes
	2.2 Co	ontexto del proyecto
3	Objetiv	os 2
		nalidad del Proyecto
	3.2 Pl	anteamiento del Problema a Resolver
	3.3 Al	cance
4	Dofinici	ón de Producto
4		equerimientos del Cliente
		1.1 Relevamiento de Datos
		1.2 Requerimientos Finales para Trazabilidad
		agrama Funcional de Interfaces
		pecificaciones de Diseño
		3.1 Especificaciones Funcionales
	4.	3.2 Especificaciones de Interfaz
	4.	3.3 Especificaciones de Performance
	4.	3.4 Especificaciones de Implementación
	4.	3.5 Especificaciones de Servicio (RAMS)
_	Diam da	المائية منذه
5		Validación 10 epecificación de Test 11
		pecificación de Test
	3.2 IVI	atriz de Trazabilidad de Validacion
6	Referen	ocias 14
Lis	sta de	Figuras
	4.2.1	Diagrama Funcional de Interfaces
Lis	sta de	Tablas
	4.1.2.1	Requerimientos de máxima
	4.3.1.1	Leyendas para las especificaciones
	4.3.1.2	Especificaciones funcionales
	4.3.2.1	Especificaciones de interfaz MEC
	4.3.2.2	Especificaciones de interfaz COM1
	4.3.2.3	Especificaciones de interfaz COM2
	4.3.3.1	Especificaciones de performance
	4.3.3.2	Especificaciones de dimensionales y de peso
	4.3.4.1	Especificaciones de operación
	4.3.4.2	Especificaciones de almacenamiento y transporte
	4.3.4.3	Especificaciones de costos
	4.3.4.4	Especificaciones de compatibilidad electromagnética
	4.3.5.1	Especificaciones de seguridad
	4.3.5.2	Especificaciones de mantenibilidad
	4.3.5.3	Especificaciones de disponibilidad
	4.3.5.4	Especificaciones de confiabilidad
	5.1.1	Tabla de plan de validación
	5.2.1	Matriz de trazabilidad (Parte 1)
	5.2.2	iviati iz ue trazavilluau (rarte z)

1. Resumen

En este informe se introduce brevemente al estado del arte de la adquisición de datos en la naturaleza y al sistema propuesto que opera en el hábitat particular de aves pequeñas, en este caso diseñado pero no limitado a la especie *Campephilus Magellanicus*.

Se detalla el diseño de una plataforma de adquisición de datos autónoma que permitirá conocer con profundidad el comportamiento y hábitat de las aves. Esta debe tener una autonomía de tres meses, periodo que concuerda con la fase de anidamiento del ave y capacidad de almacenar diversos datos de dentro y del entorno del nido por una duración de entre una y dos semanas. El sistema debe además ser capaz de transmitir estos datos de manera inalámbrica para no perturbar el comportamiento de la especie estudiada.

Se analizan los requerimientos y especificaciones de producto considerando a los clientes involucrados, entre ellos el equipo de biólogos que realizarán las observaciones, los entes reguladores de vida silvestre, el estado, los fabricantes de circuitos impresos, entre otros.

Luego se presentan los procedimientos tomados para las pruebas, los criterios de aceptación, las precondiciones, postcondiciones, y el banco de pruebas, haciendo especial énfasis en el bienestar de los organismos que se encuentran en las cercanías del dispositivo.

2. Introducción

2.1. Antecedentes

A gran escala e ignorando ciertos detalles, la idea principal del proyecto no es una novedad. Existen diversos productos similares al que se desarrollará, pero todos se caracterizan por poseer ciertos detalles que los torna inválidos a la hora de emplearse para el estudio del pájaro carpintero gigante.

Actualmente se utilizan unidades de adquisición de datos sobre las aves para recoger información sobre posición, temperatura, etc. Estos dispositivos requieren de una antena para la transmisión de datos mediante tecnología celular. La antena no presenta dificultad alguna para aves que duermen y anidan en el exterior. Por el contrario, para el caso de las aves que viven en el interior de los árboles, tal como los pájaros carpinteros, sí es un inconveniente. Además, este tipo de tecnología está diseñada para operar en zonas donde existe cobertura telefónica. Esta razón no solo es una limitante sino que también generan costos de comunicación. Por otro lado, los productos existentes que están pensados para especies de menor tamaño, no contemplan la naturaleza territorial y violenta del Campephilus Magellanicus.

Por último, se puede conseguir en el mercado diseños del estilo hogareño: pequeños nidos de fácil instalación que poseen ciertos sensores. Nuevamente, ese tipo de productos no contemplan el comportamiento del ave en cuestión, ya que dicha especie fabrica su propio nido en lugar de tomar alguno ya construido.

2.2. Contexto del proyecto

El pájaro Campephilus Magellanicus es un vector de referencia para analizar el estado de otros elementos de la vida silvestre en el bosque andino-patagónico [1]. El estudio de los patrones de alimentación y movimiento de este pueden alertar sobre diversos factores que están cambiando en el ambiente.

Hoy en día se necesita una solución que permita utilizar baterías más pequeñas montadas sobre las aves. Se debe reducir el consumo de energía y aumentar la capacidad de transmisión de información. Es necesario también poder operar en áreas donde las comunicaciones celulares no están disponibles.

En el mercado actual solo se comercializan unidades de adquisición de datos móviles que van montadas sobre las especies de estudio y equipo de tipo hobbista. Sin embargo es de interés poder obtener mediciones y extraer contenido visual dentro y fuera de los nidos, aun cuando estos se encuentren en alturas de difícil acceso para una persona. Actualmente no se encuentra disponible una solución integral que permita satisfacer esta necesidad de poder captar esta información y distribuirla hacia los investigadores.

3. Objetivos

3.1. Finalidad del Proyecto

La ornitología, el estudio de las aves, es una rama muy importante de la biología, con varios aportes diversos al conocimiento colectivo como conceptos claves sobre la evolución, comportamiento y conservamiento de ecosistemas. Siendo esta última de especial importancia, dado que las aves controlan las poblaciones de roedores e

insectos, dispersan semillas que ayuda a la conservación de bosques, son fuente de alimento de otras especies y son indicadores de la calidad de un ecosistema.

Este proyecto, el equipo electrónico, le permitirá a un grupo de ornitólogas del CONICET realizar un estudio sobre las aves del territorio argentino, especialmente pero no limitado a las de la especie Campephilus magellanicus.

3.2. Planteamiento del Problema a Resolver

El estudio de investigación involucra la adquisición de distintos parámetros de la vida del ave. Estos parámetros forman parte tanto del entorno del ave (variables dentro o en las cercanías del nido) como del comportamiento mismo de esta (tiempo de vuelo, ubicación a lo largo del tiempo, etc.). El primer grupo de parámetros deberá ser adquirido por nuestro producto, mientras que el segundo grupo será adquirido por un dispositivo ajeno al proyecto que irá sujetado al ave en todo momento.

Para librar al dispositivo del ave de limitaciones dimensionales o de peso, la mayor parte del almacenamiento de datos se hará en el nido, siendo necesario por consiguiente incorporar al producto la posibilidad de recibir datos de manera inalámbrica desde el equipo del ave. Con anterioridad se pactó con el grupo de ornitólogas que una vez por semana se acercará una persona a la base del árbol para descargar también de manera inalámbrica todos los datos almacenados en el equipo del nido para no afectar en el comportamiento al ave.

Por otra parte, como el equipo del ave debe ser lo más pequeño posible, su fuente de alimentación constará solamente de baterías que deberán poder ser recargadas mientras el pájaro se encuentre dentro del nido. Por lo general, el carpintero gigante macho suele dormir entre seis y ocho horas en el nido, para luego tomar turnos de dos a tres horas con la hembra para cuidar a los pichones.

Una gran limitación del proyecto se basa en que las aves suelen hacer mantenimiento del nido picoteando las paredes y el suelo del nido para tapar los restos de comida o las heces de los pichones. Esto imposibilita la colocación de electrónica en el suelo o las paredes del nido. Sin embargo, la excepción de esto es la bóveda, o techo, del nido, la cual es excavada primero para permitir luego la progresión hacia abajo del nido.

El desafío del trabajo se centra en la complejidad de las condiciones de uso del dispositivo dado por el comportamiento destructivo de las aves dentro del nido, la necesidad de transferencia de energía inalámbrica y el requisito de lograr mantener energizado al sistema sin intervención humana durante todo el periodo de anidamiento del ave sin la posibilidad de una conexión a la red eléctrica.

3.3. Alcance

Este proyecto involucrará el diseño de un dispositivo capaz de recolectar información para ser utilizado en el ámbito de la investigación como detallado en la Sección (3.2). Se realizarán los análisis relevantes para asegurar la viabilidad financiera del proyecto según los requisitos del cliente. La verificación de la calidad del diseño estará basada en un único prototipo no comercial, el cual buscará cumplir los requerimientos definidos y adquirir las validaciones posibles dentro del marco económico actual y las limitaciones del cliente.

Por otro lado, en este trabajo no se contemplará la instalación del producto final in situ, la electrónica que irá situada en la mochila, exceptuando el receptor de energía y un prototipo con el cual se comprobarán las funcionalidades del nido, ni el procesamiento de los datos recibidos, solo aquellos relacionados con el almacenamiento y retransmisión.

Por ser un proyecto con bajo volumen de producción no se considera el desarrollo de tecnologías de adquisición de datos, almacenamiento o extracción de energía, sino en un proceso de integración de tecnologías preexistentes.

4. Definición de Producto

4.1. Requerimientos del Cliente

4.1.1. Relevamiento de Datos

La adquisición de datos para fijar los requerimientos del cliente fue realizada mediante sucesivas reuniones con el equipo de ornitólogas que nos informaron de las necesidades del producto para llevar a cabo su investigación, dado que son nuestro único cliente principal.

Además, se tuvieron en cuenta las diversas normas que rigen los equipos electrónicos vigentes en Argentina como se detalla en la Sección (4.3).

4.1.2. Requerimientos Finales para Trazabilidad

ID	Descripción	Origen	
REQ-01	El producto estará colgado de un árbol a (4 m \sim 14 m) y se instalará	Cliente	
KEQ-UI	parcialmente dentro del nido del ave.	Cilente	
	El producto debe poder mantenerse energizado sin		
REQ-02	intervención humana, minimizando	Cliente	
	pérdidas de alimentación.		
REQ-03	El producto no debe requerir conexión a la red eléctrica	Tácito	
NEQ-03	para su funcionamiento.	Tacito	
REQ-04	El producto debe ser capaz de adquirir los siguientes	Cliente	
MEQ 04	datos dentro del nido: Imágenes, temperatura, humedad, (TBD)	Cilcrite	
REQ-05	Un dispositivo ajeno al proyecto que irá sobre el ave debe poder	Cliente	
NEQ-03	transmitirle los datos que adquirió durante el día al nido.	Cherice	
REQ-06	El producto debe poder almacenar los datos adquiridos	Tácito	
NLQ-00	por el nido y el ave.	Tacito	
REQ-07	Una persona debe poder recibir los datos almacenados en el nido a la	Cliente	
NLQ-07	distancia.	Cheffice	
REQ-08	El producto no debe llamar la atención de humanos	Cliente	
NLQ-08	desde el nivel del piso.	Cliente	
REQ-09	El producto o su instalación no debe dañar	Tácito	
NLQ-03	significativamente al árbol donde estará el nido.	Tacito	
REQ-10	El producto debe soportar las condiciones meteorológicas del sur	Tácito	
NLQ-10	Argentino, específicamente los alrededores de Bariloche, Rio Negro.	10000	
REQ-11	El producto debe costar menos de (TBD) USD.	Cliente	
REQ-12	El producto debe cumplir la norma (TBD) : seguridad eléctrica.	Estado	
REQ-13	El producto debe cumplir la norma (TBD) : compatibilidad electromagnética.	Estado	
REQ-14	El producto debe cumplir la norma (TBD) : seguridad ambiental.	Estado	
REQ-15	El producto debe poder cargar las baterías del dispositivo del ave.	Cliente	
	El producto debe perturbar lo mínimo posible a las aves dentro del		
REQ-16	nido o cambiar lo menos posible su comportamiento, el cual	Cliente	
	es el objeto de estudio.		
REQ-17	El producto desarmado debe soportar las condiciones de traslado	Tácito	
KEQ-17	impuestas por los caminos rurales hasta llegar a la zona de instalación.	Tacito	
DEO 10	La tasa de adquisición de datos debe ser sensata y dependerá de cada	Tácito	
REQ-18	variable a medir.		
REQ-19	La vida útil del producto deberá ser de por lo menos 2 años.	Cliente	

Tabla 4.1.2.1: Requerimientos de máxima.

4.2. Diagrama Funcional de Interfaces

Figura 4.2.1: Diagrama Funcional de Interfaces.

4.3. Especificaciones de Diseño

4.3.1. Especificaciones Funcionales

Leyenda para especificaciones				
Aplicabilidad Validación				
P: Prototipo	I: Inspección Visual			
	D: Documentación de Diseño			
F: Producto Final	S: Simulación			
1. FIOUUCIO FIIIAI	T: Test			

Tabla 4.3.1.1: Leyendas para las especificaciones.

ID	Descripción	Origen	Aplicabilidad Validación
INT-FUN-01	El dispositivo deberá tener un espacio de almacenamiento de datos de por lo menos (TBD) GBy, equivalente a la suma de los datos adquiridos en el nido y por el dispositivo del ave a lo largo de siete días.	REQ-06, REQ-04	PF-D
INT-FUN-02	El producto deberá funcionar correctamente con alimentación eléctrica de como mínimo (TBD) Watts y (TBD) Volts y como máximo (TBD) Watts y (TBD) Volts.	REQ-02, REQ-03	F-IDT
INT-FUN-03	El producto deberá poder recuperarse totalmente de una pérdida de alimentación eléctrica sin intervención humana y sin pérdida de datos almacenados. Se entiende por pérdida de alimentación eléctrica como tensión de entrada o potencia de entrada menor a la mínima definida.	REQ-02, REQ-03	F-IT
INT-FUN-04	El producto deberá poder almacenar suficiente energía como para poder seguir funcionando correctamente sin pérdida de alimentación (según lo definido en INT-FUN-03) por (TBD) días, cuando la fuente de energía principal se encuentre en condiciones de hasta un (TBD) % inferiores a las mínimas definidas.	REQ-02, REQ-03	P F - D
INT-FUN-05	El producto debe ser capaz de obtener el siguiente dato del entorno: Temperatura	REQ-04	PF-IDT
INT-FUN-06	El producto debe ser capaz de obtener el siguiente dato del entorno: Humedad	REQ-04	PF-IDT
INT-FUN-07	El producto debe ser capaz de obtener el siguiente dato del entorno: (TBD)	REQ-04	PF-IDT
INT-FUN-08	El producto debe poder transmitir de manera inalámbrica los datos almacenados en el nido a un dispositivo según las especificaciones INT-COM2.	REQ-07	PF-IDT
INT-FUN-09	El producto debe poder recibir de manera inalámbrica datos almacenados en un dispositivo ajeno al proyecto que irá sobre el ave según las especificaciones INT-COM1.	REQ-05	PF-IDT
INT-FUN-10	Capacidad de recargar completamente de manera inalámbrica en 6 horas las baterías de un dispositivo ajeno al proyecto que irá sobre el ave.	REQ-15	PF-IDT
INT-FUN-11	El sistema de carga del dispositivo del ave debe entregar al menos 7.5 mW y hasta 10 mW.	REQ-15	PF-ID
INT-FUN-12	El sistema obtendrá valores del sensor (TBD) cada (TBD) minutos.	REQ-18	PF-IDT
INT-FUN-13	El sistema obtendrá valores del sensor de temperatura cada (TBD) minutos.	REQ-18	PF-IDT
INT-FUN-14	El sistema obtendrá valores del sensor de humedad cada (TBD) minutos.	REQ-18	PF-IDT
INT-FUN-15	El sistema utilizará (TBD) paneles solares para cargar una batería principal de (TBD) tecnología	REQ-02	PF-IDT

Tabla 4.3.1.2: Especificaciones funcionales.

4.3.2. Especificaciones de Interfaz

ID	Descripción	Origen	Aplicabilidad Validación
INT-MEC-01	El equipo deberá poder sujetarse con (TBD) tornillos tipo (TBD) distanciados entre sí (TBD)	REQ-01, REQ-10	F-ID
INT-MEC-02	El sistema de montaje de la unidad de energía deberá ser capaz de soportar un peso de (TBD)	REQ-01, REQ-10	F - D T

Tabla 4.3.2.1: Especificaciones de interfaz MEC.

ID	Descripción	Origen	Aplicabilidad Validación
INT-COM1-01	La transmisión de datos desde el ave al nido debe poder ser interrumpida en cualquier momento sin pérdidas de información considerables.	REQ-05, REQ-16	PF-IDT
INT-COM1-02	La transmisión de datos deberá tener un alcance mínimo de 50 cm.	REQ-05	PF-IDT
INT-COM1-03	La transmisión de datos deberá comenzar de manera automática en cuanto el dispositivo del ave se encuentre dentro del alcance y con el nivel de carga suficiente para sostener la transmisión.	REQ-05, REQ-16	PF-IDT
INT-COM1-04	La transmisión de datos deberá efectuarse por medio del protocolo (TBD) .	REQ-05	PF-IDT

Tabla 4.3.2.2: Especificaciones de interfaz COM1.

ID	Descripción	Origen	Aplicabilidad Validación
INT-COM2-01	La transmisión de datos desde el nido hacia una persona deberá ser del tipo flush, descargándose al dispositivo de la persona todos los datos almacenados en el nido, liberando a la vez todo el espacio de almacenamiento de datos del nido.	REQ-07	PF-IDT
INT-COM2-02	La transmisión de datos deberá tener un alcance mínimo de 15 metros, la cual concuerda con la altura máxima observada de los nidos del Campephilus Magellanicus.	REQ-16	PF-IDT
INT-COM2-03	La transmisión de datos deberá ser inicializada por la persona.	REQ-07	PF-IDT
INT-COM2-04	La transmisión de datos deberá efectuarse por medio del protocolo (TBD) .	REQ-07	PF-IDT
INT-COM2-05	El descarte de los datos almacenados en el nido sucederá una vez completa la transmisión sin interrupciones prematuras.	REQ-07	PF-IDT
INT-COM2-06	Ante una interrupción prematura de la comunicación, la persona deberá reiniciar la transmisión de datos desde el comienzo.	REQ-07	PF-IDT

Tabla 4.3.2.3: Especificaciones de interfaz COM2.

4.3.3. Especificaciones de Performance

ID	Descripción	Origen	Aplicabilidad Validación
PER-01	El equipo deberá realizar la carga de la batería del ave con una eficiencia no menor al TBD %.	REQ-15	F - D T
PER-02	El equipo no deberá consumir más de TBD Watts mientras no se esté recargando al dispositivo del ave ni transmitiendo datos.	REQ-02	F - D T
PER-03	El equipo no deberá consumir más de TBD Watts mientras se está recargando al dispositivo del ave y recibiendo datos de este.	REQ-02, REQ-15	F - D T
PER-04	El equipo no deberá consumir más de TBD Watts mientras se está transmitiendo datos al dispositivo de la persona.	REQ-02, REQ-7	F - D T

Tabla 4.3.3.1: Especificaciones de performance.

ID	Descripción	Origen	Aplicabilidad Validación
IMP-DIM-01	El dispositivo del nido no deberá exceder las siguientes dimensiones Largo < 26 cm Ancho < 8,79 cm Alto < 4,55 cm	REQ-01	F-IDT
IMP-DIM-02	La unidad de energía no deberá exceder las siguientes dimensiones Largo < TBDAncho < TBDAlto < TBD	REQ-01, REQ-09	F-IDT
IMP-DIM-03	El equipo dentro del nido no deberá exceder los TBD gramos.	REQ-01, REQ-09	F-IDT
IMP-DIM-04	La unidad de energía no deberá exceder los TBD kilos.	REQ-01, REQ-09	F-IDT

Tabla 4.3.3.2: Especificaciones de dimensionales y de peso.

4.3.4. Especificaciones de Implementación

ID	Descripción	Origen	Aplicabilidad Validación
IMP-OPE-01	El sistema deberá poder operar normalmente cuando la temperatura ambiente sea -20°C < TAMB < 30°C. Si bien la temperatura más baja observada en el territorio argentino es de -25°C, se acepta que son circunstancias excepcionales. Si bien la temperatura máxima histórica de la zona observada fue de 34.6°C la media es menor.	REQ-10	F-ID
IMP-OPE-02	Deberá poder operar normalmente cuando la humedad sea: 0 % < RH < 100 %, valores normales de humedad relativa ambiente.	REQ-10	F-ID
IMP-OPE-03	El dispositivo deberá poder operar normalmente cuando la presión atmosférica sea: 84 kPa < PATM < 90 kPa. Esto equivale a 1500 m de altura para el mínimo de presión, y un máximo de 1100 m.	REQ-10	F-ID
IMP-OPE-04	El dispositivo deberá tener un grado de protección IPXX (TBD)	REQ-10	F-ID

Tabla 4.3.4.1: Especificaciones de operación.

ID	Descripción	Origen	Aplicabilidad Validación
IMP-AYT-01	No se deberán sufrir daños cuando, estando desenergizado, la temperatura ambiente sea -20°C < TAMB < 40°C.	REQ-17, REQ-10	PF-ID
IMP-AYT-02	No se deberán sufrir daños cuando, estando desenergizado, la humedad sea 0 % < RH < 100 %.	REQ-17, REQ-10	P(TBD) F - I D
IMP-AYT-03	No se deberán sufrir daños cuando, estando desenergizado, la presión atmosférica sea 84 kPa < PATM < 101 kPa.	REQ-17, REQ-10	P(TBD) F - I D
IMP-AYT-04	El equipo deberá tolerar vibraciones mecánicas del siguiente modo (TBD)	REQ-17, REQ-10	P(TBD) F - I D

Tabla 4.3.4.2: Especificaciones de almacenamiento y transporte.

ID	Descripción	Origen	Aplicabilidad Validación
IMP-COS-01	La suma del costo de las partes que conforman al producto no deberá ser superior a (TBD) USD.	REQ-11	F - D
IMP-COS-02	La suma del costo de las partes que conforman el prototipo no deberá ser superior a (TBD) USD.	REQ-11	P - D

Tabla 4.3.4.3: Especificaciones de costos.

ID	Descripción	Origen	Aplicabilidad Validación
IMP-EMC-01	El dispositivo deberá poder operar normalmente con inmunidad al ruido electromagnético de acuerdo a la norma TBD	REQ-13	F - D

Tabla 4.3.4.4: Especificaciones de compatibilidad electromagnética.

4.3.5. Especificaciones de Servicio (RAMS)

ID	Descripción	Origen	Aplicabilidad Validación
RAM-SEG-01	La máxima temperatura que podrá tener la carcasa será de (TBD) °C	REQ-12, REQ-16	PF-IDT (TBD)
RAM-SEG-02	Si en algún lugar (accesible o no) hay tensiones peligrosas, deberá haber un cartel que lo advierta.	(TBC)	P (TBD) F - I
RAM-SEG-03	El dispositivo contará con un sistema de autenticación ante el pedido de transmisión de datos definido por INT-COM2.	REQ-07	F - I D T (TBD)
RAM-SEG-04	(TBD) según la norma (TBD) : seguridad ambiental.	REQ-14	
RAM-SEG-05	(TBD) según la norma (TBD) : seguridad eléctrica.	REQ-12	

Tabla 4.3.5.1: Especificaciones de seguridad.

ID	Descripción	Origen	Aplicabilidad Validación
RAM-MAN-01	En caso de utilizar software o firmware, deberá ser posible para técnicos calificados realizar actualizaciones del mismo.	(TBC)	(TBC)
RAM-MAN-02	En caso de utilizar software o firmware, no deberá ser posible	(TBC)	(TBC)
	para el usuario acceder al mismo.	, ,	` ,
	El equipo deberá contener la siguiente documentación:		
RAM-MAN-03	Manual de Usuario	(TBC)	(TBC)
IVAIVI-IVIAIV-03	Esquemáticos de circuitos	(TBC)	(TBC)
	Esquemáticos de placas		

Tabla 4.3.5.2: Especificaciones de mantenibilidad.

ID	Descripción	Origen	Aplicabilidad Validación
RAM-DIS-01	(TBD)	(TBD)	(TBD)

Tabla 4.3.5.3: Especificaciones de disponibilidad.

ID	Descripción	Origen	Aplicabilidad Validación
RAM-CON-01	El producto deberá tener una vida útil no menor a 2 años.	REQ-18	PF-D

Tabla 4.3.5.4: Especificaciones de confiabilidad.

5. Plan de Validación

5.1. Especificación de Test

Aspecto	ID del test
Adquisicion de datos de Temperatura	T-INT-FUN-01
Adquisicion de datos de (TBD)	T-INT-FUN-02
Periodo activación sensor (TBD)	T-INT-FUN-03
Periodo activación sensor temperatura	T-INT-FUN-04
Periodo activación sensor humedad	T-INT-FUN-09
Adquisicion de datos de humedad	T-INT-FUN-07
Operacion rango de tensiones	T-INT-FUN-05
Recuperación ante pérdida de alimentación	T-INT-FUN-06
Tiempo de carga inalambrica	T-INT-FUN-08
Recolección de energía en condiciones similares a las de instalacion	T-INT-FUN-09
Consumo Estado 1 (Sin comunicaciones ni carga)	T-PER-01
Consumo Estado 2 (carga y recepción de datos)	T-PER-02
Consumo Estado 3 (solo transmitiendo datos)	T-PER-03
Eficiencia de carga de batería remota	T-PER-04
Interrupción transmisión ave-nido	T-INT-COM1-01
Alcance transmisión ave-nido	T-INT-COM1-02
Comienzo automático transmisión ave-nido	T-INT-COM1-03
Validación protocolo transmisión ave-nido	T-INT-COM1-04
Validación general transmisión ave-nido	T-INT-COM1-05
Funcionalidad transmisión nido-persona	T-INT-COM2-01
Alcance transmisión nido-persona	T-INT-COM2-02
Inicialización manual transmisión nido-persona	T-INT-COM2-03
Validación protocolo transmisión nido-persona	T-INT-COM2-04
Descarte de datos transmisión nido-persona	T-INT-COM2-05
Reinicio ante corte prematuro de transmisión nido-persona	T-INT-COM2-06
Validación general transmisión nido-persona	T-INT-COM2-07
Validación dimensiones totales	T-IMP-DIM-01
Validación peso total	T-IMP-DIM-02
Autorización transmisión nido-persona	T-RAM-SEG-01

Tabla 5.1.1: Tabla de plan de validación

5.2. Matriz de Trazabilidad de Validación

٥.	REQ ID	500.10	TECT 10
Origen	Descripción corta	ESP ID	TEST ID
	REQ 01	INT-MEC-01	
Cliente		INT-MEC-02	(TBC)
	El producto estará colgado de un árbol a	IMP-DIM-01	T-IMP-DIM-01
Cheffice	(entre 4 m y 14 m) y se instalará	IMP-DIM-02	T-IMP-DIM-01
	parcialmente dentro del nido del ave.	IMP-DIM-03	T-IMP-DIM-02
		IMP-DIM-04	T-IMP-DIM-02
	REQ 02	INT-FUN-02	T-INT-FUN-05
		INT-FUN-03	T-INT-FUN-06
Cliente	El producto debe poder mantenerse	PER-02	T-PER-01
Cheffic	energizado sin intervención humana,	PER-03	T-PER-02
	minimizando pérdidas de alimentación.	PER-04	T-PER-03
		INT-FUN-15	T-INT-FUN-10
Tácito	REQ 03	INT-FUN-02	T-INT-FUN-05
Tacito	El producto no debe requerir conexión	INT-FUN-03	T-INT-FUN-06
	a la red eléctrica para su funcionamiento.	1141-1 014-03	1-1141-1 014-00
	REQ 04		
Cliente	El producto debe ser capaz de adquirir	INT-FUN-05	T-INT-FUN-01
Cheffic	los siguientes datos dentro del nido:	INT-FUN-06	T-INT-FUN-07
	temperatura, humedad, (TBD)	INT-FUN-07	T-INT-FUN-02
	REQ 05	INT-FUN-09	T-INT-COM1-05
	Un dispositivo ajeno al proyecto que irá	INT-COM1-01	T-INT-COM1-01
Cliente	sobre el ave debe poder transmitirle los	INT-COM1-02	T-INT-COM1-02
	datos que adquirió durante el día al nido.	INT-COM1-03	T-INT-COM1-03
	datos que daquirio darante el dia al mao.	INT-COM1-04	T-INT-COM1-04
Tácito	REQ 06		
Tacito	El producto debe poder almacenar los	INT-FUN-01	
	datos adquiridos por el nido y el ave.	INTI ON OI	
	REQ 07	INT-FUN-08	T-INT-COM2-07
		INT-COM2-01	T-INT-COM2-01
		INT-COM2-03	T-INT-COM2-03
Cliente	Una persona debe poder recibir los datos	INT-COM2-04	T-INT-COM2-04
Circinco	almacenados en el nido a la distancia.	INT-COM2-05	T-INT-COM2-05
	amagenades en er mag a la distancia.	INT-COM2-06	T-INT-COM2-06
		PER-04	T-PER-03
		RAM-SEG-03	T-RAM-SEG-01
Cliente	REQ 08	INT-AMB-01	
Chemic	El producto no debe llamar la atención	INT-AMB-02	
	de humanos desde el nivel del piso.		
Cliente	REQ 08	INT-AMB-01	
Cheffie	El producto no debe llamar la atención	INT-AMB-02	
	de humanos desde el nivel del piso.		

Tabla 5.2.1: Matriz de trazabilidad (Parte 1).

Origon	REQ ID	ECD ID	TEST ID
Origen	Descripción corta	ESP ID	TEST ID
	REQ 09	IMP-DIM-01	T-IMP-DIM-01
Tácito	El producto o su instalación no debe dañar	IMP-DIM-02	T-IMP-DIM-01
	significativamente al árbol donde estará el nido.	IMP-DIM-03	T-IMP-DIM-02
	significativamente ai arboi donde estara ei fildo.	IMP-DIM-04	T-IMP-DIM-02
	REQ 10	IMP-AYT-01	
		IMP-AYT-02	
		IMP-AYT-03	
	El producto debe soportar las condiciones	IMP-AYT-04	
Tácito	meteorológicas del sur Argentino,	IMP-OPE-01	
Tacito	específicamente los alrededores de Bariloche,	IMP-OPE-02	
	·	IMP-OPE-03	
	Rio Negro.	IMP-OPE-04	
		INT-MEC-01	
		INT-MEC-02	(TBC)
Cliente	REQ 11	IMP-COS-01	
Cliente	El producto debe costar menos de TBD USD.	IMP-COS-02	
	REQ 12	RAM-SEG-01	(TBC)
F-4	El anadonte dels en multiple a conseTDD	RAM-SEG-04	
Estado	El producto debe cumplir la normaTBD:	IMP-EMC-01	
	seguridad eléctrica.		
Estado	REQ 14		
Estado	El producto debe cumplir la norma TBD:	INT-AMB-04	
	seguridad ambiental.	IINT-AIVID-04	
	REQ 15		
Cliente	El producto debe poder cargar las baterias	PER-01	T-PER-04
	del dispositivo del ave.	INT-FUN-10	T-INT-FUN-08
	REQ 16	INT-AMB-01	
	El producto dobo porturbar la mínima	INT-AMB-02	
	El producto debe perturbar lo mínimo posible a las aves dentro del nido o	INT-AMB-03	
Cliente	•	INT-COM1-01	T-INT-COM1-01
	cambiar lo menos posible, su	INT-COM1-03	T-INT-COM1-03
	comportamiento, el cual es el objeto	INT-COM2-02	T-INT-COM2-02
	de estudio.	RAM-SEG-01	(TBC)
	REQ 17	IMP-AYT-01	
T4 =:4 =	El producto desarmado debe soportar las	IMP-AYT-02	
Tácito	condiciones de translado impuestas por los	IMP-AYT-03	
	caminos rurales hasta llegar a la zona de instalación.	IMP-AYT-04	
	REQ 18	INT-FUN-12	T-INT-FUN-03
Tácito	La tasa de adquisión de datos debe ser sensata y	INT-FUN-13	T-INT-FUN-04
	dependerá de cada variable a medir.	INT-FUN-14	T-INT-FUN-09
GI: .	REQ 19	RAM-CON-01	
Cliente -	La vida útil del producto deberá ser de	1	
	por lo menos 2 años.		
	1	1	

Tabla 5.2.2: Matriz de trazabilidad (Parte 2).

6. Referencias

[1] V. Ojeda, M. L. Chazarreta, C. M. Pozzi. *El Carpintero Gigante: Especie Clave Del Bosque Andino Paatagónico*. Difundiendo Saberes, Vol. 8, 2011.