(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Syllabus

B. Tech Computer Engineering (Last Year Semester VII and VIII)

From Academic Year 2023-24 (Revision-1)

(Approved by FOET 10/01/2023 and AC 24/02/2023, With Amendment as per Approval in 10th Meeting of BOS Dated 22/4/2024)

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 1 of 125

Page 2 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Preamble

KJSCE as a constituent college of Somaiya Vidyavihar University has the academic flexibility to develop and implement its own curriculum *KJSCE-SVU-2020* with features such as inclusion of choice based Open Elective Courses, Audit Courses, Add on Credit Courses, Exposure Courses, etc. Distinct assessment and evaluation methods are also designed based on focus of individual courses. The outcome of this entire exercises; either by way of student placements or the feedback received from all stakeholders is quite encouraging.

At present, Industry is moving towards Industrial revolution 4.0. Knowing very well that every country's education system forms the basis of its progress and the groundwork for its future, we need to be making engineering graduates equipped to take industrial challenges. A common feature in successful education systems is the balance between tradition and the capacity to be flexible and able to adapt to current social trends. To achieve this, Somaiya Vidyavihar University allows for the undergraduate courses to have a focus on the changing industrial scenario.

Our new revision in syllabus *KJSCE-SVU-2020*, introduced from the academic year 2020-21, has been designed based on the revised guidelines from various accrediting bodies.

The said syllabus is a result of expert advice from members of Board of Studies, Faculty of Engineering & Technology and Academic Council; both having due representation from academia as well as appropriate industries. Subsequently faculty members of the college have put in efforts to document it in the form which has been presented here.

Some of the highlights of the *KJSCE-SVU-2020* syllabus are: Introduction of wide choice for branch specific electives, more number of open or interdisciplinary electives, opportunity for internships, etc. Courses like Object Oriented Programming Methodology, Full Stack Development and Digital Design are designed as laboratory oriented courses and pay more attention to hands-on learning.

Focus of academic processes in KJSCE is such that, by the time student completes the requirements of the degree, he/ she will be able to acquire attributes required for profession as an engineer. Outcomes are defined to acquire these attributes which lead to development of curriculum, pedagogy and assessment tools. These tools need to be updated based on experiences of teacher and learner. Hence teaching -learning -evaluation paradigm is going to be a mix of traditional as well as use of ICT tools. Role of the faculty member changes from tutor to trainer / instructor/ facilitator / mentor based on the outcomes targeted.

For measuring learning outcomes of students, traditional methods like tests, laboratory work and End Semester Examinations (ESE) are implemented. Continuous Assessment (CA) is carried out through tests and internal assessment (IA) like quizzes, case studies, mini projects etc. These IA tools enable the students to develop competencies through solutions discussed, improvisations suggested, feedbacks given by faculty members. Through these assessment methods students get opportunity for reading research papers, presenting ideas and working in a team.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 3 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Since the assessments are distributed throughout the term the learning process is continuously monitored and graded.

The Department of Computer Engineering courses focus on thrust areas of Department. These areas are Intelligent System and Data Processing, Network System and Security, Image Analysis and Interpretation and System & Software Engineering.

College promotes co-curricular, extra-curricular activities as well as sports; making life outside classroom exciting and rewarding. What makes these activities very effective is the fact that these do not focus only on winning trophies but try to nurture generic skills such as leadership, effective communication, teamwork etc. which are essential skills for a bright professional career.

Along with my colleagues, I welcome you to Department of Computer Engineering and look forward to lead you towards professional career.

Dr. Prasanna Shete Head Department of Computer Engineering

Dr. Shubha Pandit Principal and Dean Faculty of Engineering and Technology

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 4 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Vision

To become a center of excellence in discipline of Computer Engineering for developing technically adept professionals with ethical and leadership qualities in service of society.

Mission

- Provide sound technical foundation in Computer Engineering through comprehensive curriculum and application oriented learning.
- Provide ambience for professional growth and lifelong learning for adapting to challenges in rapidly changing technology
- Inculcate social and ethical values and leadership qualities

Program Educational Outcomes (PEO)

A graduate of Computer Engineering will

- **PEO1.** Solve problems in diverse fields using knowledge of Computer Engineering.
- **PEO2.** Excel in professional career, exhibit leadership qualities with ethics &soft skills.
- **PEO3.** Pursue higher education, research or entrepreneurship, engage in professional development, adapt to emerging technologies.

Program Outcomes (PO)

After successful completion of the program Computer Engineering Graduate will be able to:

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development
- PO7. Multidisciplinary Competence: Recognize/ study/ analyze/ provide solutions to real-life

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

problems of multidisciplinary nature from diverse fields

- **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSO)

- **PSO1:** Design, construct and implement hardware and software based modern Computing / Information systems with varying complexities
- **PSO2:** Demonstrate competence in designing, implementation and maintenance of computer based applications, computer-controlled equipment and networks of intelligent devices.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 6 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Acro	nym for category of courses	Acron	yms used in syllabus document
Acronym	Definition	Acronym	Definition
BS	Basic Science Courses	CA	Continuous Assessment
ES	Engineering Science	ESE	End Semester Exam
HS	Humanities and Social Sciences including Management Courses	IA	Internal Assessment
PC	Professional Core Courses	0	Oral
PE	Professional Elective courses	P	Practical
OE	Open Elective Courses	P&O	Practical and Oral
LC	Laboratory Courses	TH	Theory
PR	Project	TUT	Tutorial
AC	Audit Course	TW	Term work
AOCC	Add on Credit Course	ISE	In- Semester Examination
AOAC	Add on Audit Course	CO	Course Outcome
AVAC	Add on Value Audit Course	PO	Program Outcome
EX	Exposure Course	PSO	Program specific Outcome
I	Interdisciplinary courses		

Acronyms used for type of Course

Acronym used	Definition		
C	Core Course		
E	Elective Course		
0	Open Elective Technical		
H	Open Elective Humanities/Management/SWAYAM-NPTEL		
P	Project		
L	Laboratory Course		
T	Tutorial		
X	Exposure course		
A	Audit course		

Acronyms used in Eight Digit Course code e.g. 116U06C101

Acronym	Definition	
Serially as per code		
1	SVU 2000 First revision	
16	College code	
U	Alphabet code for type of programme	
06	Programme code	
C	Type of course	
1	Semester I – semester number	
01	First course of semester – course serial number	
	It will be XX for the elective/choice based courses	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 7 of 125

SVU_LY_2020 Semester VII - Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH	Total (Hrs.)	Credits Assigned	Total credits	Course Category
		TH – P- TUT		TH-P-TUT		
116U01C701	Software Architecture and Design Thinking	3- 0- 0	3	3-0-0	3	PC
116U01E73X	Departmental Elective-III	3-0-0	3	3-0-0	3	PE
116U01E74X	Departmental Elective-IV	3-0-0	3	3-0-0	3	PE
116U06O7xx	OE Technical	3-0-0	3	2-0-0	2	OE
116U01L701	Software Architecture and Design Thinking Lab	0-2-0	2	0-1-0	1	PC
116U01L73X	Departmental Elective-III Lab	0-2-0	2	0-1-0	1	PE
116U01L74X	Departmental Elective-IV Lab	0-2-0	2	0-1-0	1	PE
116U01P701	Project -1	0-8-0	8	0-4-0	4	PR
116U01A701	MNCC	1-0-0	1	0-0-0	0	MNCC
	Total	13-14-0	27	11-7-0	18	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 8 of 125

SVU_LY_2020 Semester VII-Examination Scheme

Course	Course			Exa	mination	Schen	1e		
Code	Name	Theory Marks							
		_	ontinuoi essment (End Sem. Exam	TW	V Oral	Pract. and Oral	Total
		ISE	IA	Total	Exam				
116U01C701	Software Architecture and Design Thinking	30	20	50	50				100
116U01E73X	Departmental Elective-III	30	20	50	50	-1			100
116U01E74X	Departmental Elective-IV	30	20	50	50				100
116U06O7xx	OE Technical	30	20	50					50
116U01L701	Software Architecture and Design Thinking Lab					25	25		50
116U01L73X	Departmental Elective-III Lab					25	25		50
116U01L74X	Departmental Elective-IV Lab					25	25		50
116U01P701	Project -1					50	50		100
	Total	120	80	200	150	125	125		600

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 9 of 125

Departmental Elective - III for VII Semester

Sr. No.	Course Code	Name of Elective	Remarks
1	116U01E731	Big Data Analytics	Not available to students with Honours in Data Science and Analytics
2	116U01E732	Cyber Security, Forensics and Cyber Law	Not available to Honours in Cyber Security and Forensics
3	116U01E733	Geographic Information System and Spatial Computing	Not available to Honours in Geospatial Computing
4	116U01E734	<u>User Experience Design</u>	
5	116U01E735	Reinforcement Learning	
6	116U01E736	Secure Coding	Not available to Honours in Cyber Security and Forensics
7	116U01E737	Adv. Cloud Computing	With pre-requisite of previous CC course

Departmental Elective - IV for VII Semester

Sr. No.	Course Code	Name of Elective	Remarks
1	116U01E741	Data Science	Not available to students with Honours in Data Science and Analytics
2	116U01E742	Block Chain Technology	Not available to Honours in Cyber Security and Forensics
3	116U01E743	Computer Vision	
4	116U01E744	Computer Simulation and Modelling	
5	116U01E745	C# Programming and. Net Technology	
6	116U01E746	Agile Project Management	
7	116U01E747	<u>DevOps</u>	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 10 of 125

Open Electives Technical for VII Semester

Sr. No.	Course Code	Name of the Elective
1	116U06O701	Genetics Algorithm and Applications
2	116U06O702	Reinforcement Learning
3	116U06O703	Web Analytics and Web Intelligence
4	116U06O704	Massive Graph Analysis

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 11 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

SVU_LY_2020 Semester VIII - Credit Scheme (With Project)

Course Code	Course Name	Teaching Scheme (Hrs.)	Total	Credits Assigned	Total	Course
Course Code		TH-P-TUT	(Hrs.)	TH- P- TUT	credits	Category
116U01P801	Project -II	0-16-0	16	0-8-0	8	PR
116U01E85x	Departmental Elective-V	2-0-0	2	2-0-0	2	PE
116U01E86x	Departmental Elective-VI	2-0-0	2	2-0-0	2	PE
116U01L85x	Departmental Elective-V Laboratory	0-2-0	2	0-1-0	1	PE
116U01L86x	Departmental Elective-VI Laboratory	0-2-0	2	0-1-0	1	PE
	Total	4-20-0	24	4-10-0	14	

SVU_LY_2020 Semester VIII - Examination Scheme (With Project)

Course	Course	Examination Scheme							
Code	Name		Theory M	Aarks					
		\		End Sem. Exam	TW	Oral	Pract. and Oral	Total	
		ISE	IA	Total	Exam				
116U01P801	Project II					50	50		100
116U01E85x	Departmental Elective-V	30	20	50	50				100
116U01E86x	Departmental Elective-VI	30	20	50	50				100
116U01L85x	Departmental Elective-V Laboratory	-	-	-	-	25	25		50
116U01L86x	Departmental Elective-VI Laboratory	-	-	-	-	25	25		50
	Total	60	40	100	100	100	100		400

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 12 of 125

Departmental Elective – V for VIII Semester

Sr. No.	Course Code	Name of Electives	Remarks
1	116U01E851	<u>Bioinformatics</u>	
2	116U01E852	Advanced Algorithms: Design and Analysis	
3	116U01E853	Internet of Everything	
4	116U01E854	Deep Learning	Not available to students with Honours in Data Science and Analytics
5	116U01E855	Business Analytics	Not available to students with Honours in Data Science and Analytics

Departmental Elective – VI for VIII Semester

Sr. No.	Course Code	Name of Electives	Remarks
1	116U01E861	Game Programming	
2	116U01E862	<u>IoT Security</u>	
3	116U01E863	Cyber Physical Systems	
4	116U01E864	Natural Language Processing	
5	116U01E865	High Performance Computing	
6	116U01E866	Blockchain Architecture and Application Development	Not available to students with Honours in cyber Security and forensics

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 13 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Credit Scheme (With Semester Long Internship for Selected Students)

	Course Name	Teaching Scheme (Hrs.)	Total	Credits Assigned	Total	Course	
Course Code	Course Name	TH-P-TUT	(Hrs.)	TH- P- TUT	credits	Category	
116U01P801	Semester long Internship\$	-	-	0-11-0	11	PR	
116U01E85x	Departmental Elective: Online NPTEL / Coursera course*	-	-	3-0-0	3	PE	
	Total	-	-	3-11-0	14		

SVU_LY_2020 Examination Scheme (With Semester Long Internship)

Course	Course Name			Exa	minatio	n Schen	1e		
Code			Theory	Marks					
		Continuous Assessment (CA)			End Sem. Exa		Oral	Pract. and Oral	Total
		ISE	IA	Total	m				
116U01P801	Semester long Internship \$	100			200	1	-	-	300
116U01E85x	Departmental Elective: Online NPTEL / Coursera course *	-	-	-	-	-	-	-	-
	Total								300

^{\$- \$-} Will be evaluated by Internal and external examiners at two stages along with feedback from Industry

For details of Semester long internships, refer to Internship cell policy and Documents. Note:

As per college internship policy, it is mandatory for every student to complete 10 weeks of Internship spanning over the four years of B.Tech Programme which is over and above the academic credits.

Students can take up internships in community services / socially relevant projects (optional and limited to 4 weeks) and in the technical domain (minimum 6 weeks or more). Students will be awarded an internship completion certificate along with their graduation.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 14 of 125

 $^{^{*}}$ Marks/ grade will not be considered for SGPI calculations. Credits will be awarded on successful completion of online course

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

SEMESTER - VII

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 15 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01C701	Softw	Software Architecture and Design Thinking						ıg
	TH			P	١	ŗ	TUT	Total
Teaching Scheme(Hrs.)							03	
Credits Assigned		03					03	
				Marks				
Examination	0.12		ESE	TW	0	P P&O		Total
Scheme			ESE	1 44		I	IWO	Total
	30	20	50		-	-		100

Course prerequisites (if any): Students should be familiar with basic concepts of Software Engineering

Course Objectives

- 1. Develop architectural thinking applicable in building large and complex systems.
- 2. Structural and behavioral models in design notations such as Architecture description languages (ADLs).
- 3. Analyzing role of architectures in various environments.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Design the architecture of software systems in various architectural styles
CO2	Analyze software architecture using analysis techniques
CO3	Apply the concepts of Design thinking for development of product/ service
CO4	Refinement, Prototyping, Implementation of product/ service

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 16 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
1		iction to Software Architecture	12	CO1
	1.1	Basic Concepts, Elements of an Architecture		
		Design, Designing Architectures		
		Conventional Architectural styles : Concepts of Software Architecture, Models, Processes,		
		Stakeholders		
		Creating An Architecture Design		
	1.2	Styles and Architectural Patterns, Pipes and Filters,		
		Event- based		
	1.3	Implicit Invocation, Layered systems, Repositories,		
	1 /	Interpreters		
	1.4	Architectural Design process		
		LEARNING : Logic Building for development of a		
2	Connec	re System	06	CO1
<u> </u>			00	COI
	2.1	Connector Foundations, Connector Roles		
	2.2	Connector Types and Their Variation Dimensions	10	~~~
3		ng , Analysis :	10	CO2
	3.1	Modeling Concepts, Ambiguity, Accuracy, and		
		Precision,		
	3.2	Complex Modeling: Mixed Content and Multiple		
		Views. Analysis Goals, Scope of Analysis,		
	3.3	Architectural Concern being		
	3.3	Analyzed, Level of Formality of Architectural		
	2.4	Models, Type of Analysis, Analysis Techniques		
	3.4	Designing for Non-Functional Properties and		
	#CELE	implementation LEARNING: SAAM		
4			10	GO2
4		action to design thinking	10	CO3
	4.1	The Power of Design Thinking		
		Stages of thinking: The design process: Define,		
		Research, Ideate, Prototype, Select, Implement,		
	4.2	Learn, Example project Research: Identifying drivers, Information		
	7.2	gathering, Target groups, Samples and feedback		
	4.3	Idea generation: Basic design directions, Themes of		
		thinking, Inspiration and references, Brainstorming,		
		Value, Inclusion, Sketching, Presenting ideas		
5	Refinen	nent, Prototyping, Implementation	07	CO4
	5.1	Refinement: Thinking in images and signs,		
		Appropriation, Modification, Thinking in shapes and		
		colours		
	5.2	Prototyping : Developing designs, 'Types' of		
		prototype, Vocabulary		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 17 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

#Self-I	Learning: Introduction to Design Parallax Total	
5.3	Implementation: Format, Materials, Finishing, Media, Scale, Series/Continuity	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Richard N. Taylor, Nenad Medvidovic, Eric Dashofy	, "Software Architecture: Foundations, Theory, and Practice"	Publisher: Wiley. ISBN: 978-0- 470-16774-8	10th Edition, 2010
2.	Alan Dennis, Barbara Haley Wixom, Roberta M. Roth	System Analysis And Design	John Wiley & Sons, Inc.	7 th Edition
3.	M. Shaw	"Software Architecture Perspectives on an Emerging Discipline"	Prentice-Hall of India Pvt.Ltd	1996, 1st Edition
4.	Len Bass, Paul Clements, Rick Kazman	Software Architecture in Practice	O Reilly	3rd Edition
5.	Gavin Ambrose Paul Harris	Design thinking	Published by AVA Publishing SA	1 St Edition
6.	Tim Brown with Barry Katz	Change by Design	Harper Collins e-books	1 st Edition

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 18 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title						
116U01L701	Software Architecture and Design Thinking Lab.						Lab.
	7	P		TUT	Total		
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
				Marks			
Examination	CA	CA		CDXX.		D.O.O.	T-4-1
Scheme	ISE	IA	ESE	TW	0	P&O	Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Software Architecture and Design Thinking". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 19 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

DEPARTMENTAL ELECTIVES - III and IV

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 20 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E731				Big Da	ata Ana	lytics	,		
			ГН		F		1	TUT	Total
Teaching Scheme(Hrs.)	03								03
Credits Assigned			03		_	-			03
		Marks							
Examination		CA		ECE	TW	0		P&O	Total
Scheme	T-1	T-2	IA	ESE	1 77	U	P	rau	Total
	15	15	20	50					100

Course prerequisites (if any):

Database management system, Data mining

Course Objectives

- 1. To provide an overview of an exciting growing field of big data analytics.
- 2. To introduce the tools required to manage and analyze big data like Hadoop, NoSQL MapReduce.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Interpret the fundamental enabling techniques like Hadoop, MapReduce in achieving Big data analytics
- CO2 Illustrate techniques used for finding similarity and dimensionality reduction in large dataset
- CO3 Interpret business models, scientific computing paradigm and apply scalable algorithms for Big data analytics.
- CO4 Demonstrate the perspective of big data analytics in various applications like recommender systems, social media applications etc.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 21 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
110.		luction to Big Data and mining large scale system		
	1.1	Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Case Study of Big Data Solutions.		
	1.2	Introduction to Hadoop and its components		
1	1.3	Distributed File Systems: Physical Organization of Compute Nodes, Large-Scale File-System Organization MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.	11	CO1
	1.4 C C A	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step.		
2	Findi	ng Similar Items and Dimensionality Reduction		
	2.1	Applications of Near-Neighbor Search- Jaccard Similarity of Sets, Similarity of Documents, Collaborative Filtering as a Similar-Sets Problem.		
	2.2	Distance Measures: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.		
	2.3	Shingling of Documents, Similarity-Preserving Summaries of Sets, Locality-Sensitive Hashing for Documents, Applications of Locality-Sensitive Hashing	08	CO2
	2.4	Dimensionality Reduction: Eigenvalues and Eigenvectors of Symmetric Matrices, Principal-Component Analysis, Singular-Value Decomposition CUR Decomposition		
		#Self-learning: Latent factor models, Methods of High		
	N # · ·	degree of similarity		
	3.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Query, Issues in Stream Processing.		
3	Sampling Data in a Stream: Obtaining a Representation Sample, The General Sampling Problem, Varying to Sample Size.		06	CO3
	3.3	Filtering Streams: The Bloom Filter, Analysis		
	3.4	Counting Distinct Elements in a Stream: The Count- Distinct Problem, The Flajolet-Martin Algorithm, Combining Estimates, Space Requirements. Estimating Moments		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 22 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

		Counting Ones in a Window: The Cost of Exact Counts,		
		The Datar-Gionis-Indyk-Motwani Algorithm.		
		Self-learning: Query Answering in the DGIM Algorithm, Decaying Windows.		
	Link	Analysis And Frequent Item sets		
	4.1	PageRank Definition, Structure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector. Topic sensitive Page Rank, Hubs and Authorities		
4	4.2	Handling Larger Datasets in Main Memory Algorithm of Park, Chen, and Yu, All or Most frequent itemsets in two passes.	08	CO3
		The SON Algorithm and MapReduce, Toivonen's Algorithm		
		Self-learning: link spam, The Multistage Algorithm, The Multihash Algorithm. Counting Frequent Items in a Stream Sampling Methods for Streams, Frequent Item sets in Decaying Windows		
	Cluste	ering and Mining Social Network and graphs		
	5.1	CURE Algorithm, Clustering in Non-Euclidean Spaces		
	5.2	Recommendation Systems – A model for Recommendation systems, Content based recommendation, Collaborative Filtering		
5	5.3	Mining Social-Network Graphs – Social networks as graphs, Clustering, Direct discovery of communities, Partitioning of Graphs, Finding overlapping of communities, SimRank, Counting Triangles	12	CO4
		#Self-learning: Stream-Computing , A Stream-Clustering Algorithm, Initializing & Merging Buckets, Answering Queries Neighborhood properties of graph, Adverting on Web		
Total	1		45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 23 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Anand Rajaraman	Mining of Massive	Cambridge	Second
	and Jeff Ullman	Datasets	University	Edition, 2014
			Press	
2.	Alex Holmes	Hadoop in Practice	Manning Press,	Second
			Dreamtech	Edition, 2015
			Press.	
3.	Bill Franks	Taming The Big Data	Wiley	2012
		Tidal Wave: Finding		
		Opportunities In Huge		
		Data Streams With		
		Advanced Analytics		
4.	Chuck Lam	Hadoop in Action	Dreamtech	2011
		_	Press	
5.	Radha Shankarmani	Big Data Analytics	Wiley	2st edition,
	M. Vijaylakshmi			2018

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 24 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L731		Big Data Analytics Lab.							
	[TH P TUT Total							
Teaching Scheme(Hrs.)		-			02		02		
Credits Assigned		-		01		-	01		
		Marks							
Examination	CA	CA		TENNY.		De-O	Total		
Scheme	ISE	IA	ESE	TW	O	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Big Data Analytics". Students will be graded based on continuous assessment of their term work.

L Y B. Tech COMP. SVU 2020 - R 1.0 Page 25 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E732		Cyber Security, Forensics & Cyber Law						
		TH		Р Т		ГUТ	Total	
Teaching Scheme(Hrs.)		03						03
Credits Assigned		03						03
	Marks							
Examination Scheme	(CA		TW	0	D	P&O	Total
Zammadon Scheme	ISE	IA	ESE	1 44	J	P	TWO	Total
	30	20	50					100

Course prerequisites (if any): Computer Organization & Architecture, System Security, Computer Networks.

Course Objectives: The objective of the course is to enable students to understand the basic principles of information security, computer crimes and methods of defense. The course introduces the process of digital forensic investigation, extraction of evidence using appropriate tools. It covers the techniques of data hiding, recovery, disk analysis, volatile data extraction. Further, it explores different network based attacks, tools to monitor/mitigate such attacks. Tools such as metasploit, interfaces to dark web and deep web explore the conducive environment for attackers. Cyber laws, IT Acts enable the student to understand the legal aspects of various cyber-crimes.

Course Outcomes:

At the end of successful completion of the course the student will be able to:

CO1	Identify various security goals, computer crimes & methods of defence.
CO2	Understand the fundamentals of digital forensics.
CO3	Analyze and interpret the results of disk forensic operations.
CO4	Apply forensic tools to extract and investigate the evidences from network.
CO5	Relate the corresponding computer security acts with the crimes.

Page 26 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO		
1		luction to Security Architecture	03	CO1		
_	1.1	Introduction to information security, security goals, security services, attacks & its types, security mechanism.				
	1.2	Introduction to cyber security, cyber-crimes, its origins, classification of cyber-crimes, cyberspace and cyber profiling.				
2	Data 1	Privacy and Theft	10	CO2		
	2.1	Data theft - Adwares, malwares, ransomwares, trojans, spywares, keyloggers, phishing & its types, SQL injection attacks.				
		#Self-Learning - Data privacy law in India.				
	2.2	Identity theft, its types, prevention techniques, software piracy.				
		#Self-Learning – Case study on identity theft.				
	2.3 Data privacy, issues surrounding data privacy, guidelines for data privacy, data privacy vs data security, data privacy mechanisms, legislations on data privacy - local and global.					
		#Self-Learning - GDPR Compliance				
3	Digita	l Forensics Fundamentals	10	CO3		
	3.1	Introduction, six A's of digital forensics, digital evidence, digital investigations, incident response, incident response methodology.				
	3.2	Classification of digital evidence - volatile and non-volatile, rules and guidelines for extraction of digital evidence, forensic duplicates, establishing chain of custody, admissibility of evidence in the court of law.				
		#Self-Learning – CERT and its role in digital investigation				
	 investigation. 3.3 Information retrieval and recovery, cloning techniques, password cracking, data recovery from file systems and mobile devices, forensics audit, tools for forensic investigation, anti-forensics. 					
4	Netwo	ork Forensics	12	CO4		
	4.1	Network based attacks – MITM, OWASP, ARP spoofing, IP and MAC spoofing, DNS attacks, SYN flooding attacks, port scanning, DOS, DDOS.				
	4.2	Sources of Digital Evidence from Emails, Web usage, Network Traffic, Email forensic and investigations.				
		Network Forensic Tools & Applications – Browser forensics, Nmap, Nessus, Wireshark, Metasploit, Kali-Linux, Deep-Web, Dark-Web.				

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 27 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

	#Self-Learning : Criminal cases strongly based on digital evidences		
5 Cyb	er Law	10	CO5
5.1	Fundamentals of Cyber Law-Legislative, Judicial, Quasijudicial, Investigative and International Cyber Law Framework. #Self-learning: Cyber-crime cases studies- sample list but not limited to: Shreya Singhal v Union Of India, Syed Asifuddin v The State of Andhra Pradesh, Chambers v. Director of Public Prosecutions (UK), Riley v California (US), US v Ross William Ulbricht Carpenter v US, Packingham v North Carolina, Reno v ACLU, In Re: Nickelodeon Consumer Privacy Litigation, In Re: Google Inc. Cookie Placement Consumer Privacy Litigation, Memorandum of	10	- 000
5.2	Decision - Google warrant case Intellectual Property Issues & Cyberspace - Computer Software & Copyright Law, Software Licenses, Computer Databases & the Law, Domain Names & the Law, Trademark issues in Cyberspace and Semiconductor Layout & Design Law.		
5.3			
	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 28 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Bill Nelson, Amelia Phillips, Christopher Steuart.	Guide to Computer Forensics and Investigations.	Cengage Learning, USA.	3rd Edition paperback, 2002.
2.	Jason T. Luttgens, Mathew Pepe, Kevin Mandia	Incident Response and Computer Forensics.	Tata McGraw Hill Education	3rd Edition, 2014.
3.	Marie-Helen Maras	Computer Forensics: Cybercriminals, Laws and Evidences	Jones and Bartlett Learning	2nd Edition, 2014
4.	Davidoff Ham	Network Forensics Tracking Hackers through Cyberspace	Pearson India	1st Edition, 2013.
5.	Adv. Prashant Mali	Cyber Law and Cyber Crimes Simplified	Cyber Infomedia	January 2017.
6.	Asian School of Cyber	https://www.asianlaws.org/		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 29 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L732	Cybe	Cyber Security, Forensics & Cyber Law Lab.							
	,	TH				TUT	Total		
Teaching Scheme(Hrs.)		-			02		02		
Credits Assigned		-		01		-	01		
	Marks								
Examination	CA	CA		(DXX/		De O	T-4-1		
Scheme	ISE	IA	ESE	TW	O	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Cyber Security, Forensics & Cyber Law". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 30 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E733	Geographic	Geographic Information System and Spatial Computing							
	Г	H		P		ľ	TUT	Total	
Teaching Scheme(Hrs.)							03		
Credits Assigned)3						03	
	Marks								
Examination	CA	CA		TDXX/		D	De o	Total	
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total	
	30	20	50					100	

Course prerequisites: Database

Course Objectives:

The objective of this course

- 1. Identify principles and functional issues pertaining to physical geography applications of GIS
- 2. To collect, analyse and manipulate spatial data.
- 3. Provide efficient means to produce maps and other products in the standard formats for different uses.
- 4. To support research activities using spatial as well as non-spatial data.
- 5. Complex analysis/queries involving geographical reference data to generate new information

Course Outcomes

On completion of the course students will be expected to

- 1. Understand of core concept that define the Geographical Information System
- 2. Perform spatial analysis on Vector and Raster data models
- 3. Use terrain and spatial interpolation methods for surface analysis.
- 4. Examine linear features and movement on spatial data using network analysis
- 5. Use spatial regression models for modelling GIS data.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 31 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Funda	mentals of GIS	6	CO 1
	1.1	Introduction, Definition of GIS, Evolution of GIS,		
		components of GIS		
	1.2	Geospatial Data, Geographic Coordinate System,		
		Map Projections, Commonly Used Map Projections,		
		UTM grid system, Map Scale		
	1.3	Cartographic Symbolization, Types of Maps,		
		Typography, Map Design, Map Production		
2	Data N	Management, Models and Quality Issues	9	CO 2
	2.1	Vector Data Model: Topology, Non topological Vector		
		models, Attribute Data in GIS, Attribute Data Entry,		
		Vector Data Query, Manipulation of Fields		
		and Attribute Data		
	2.2	Raster Data Model: Elements of Raster Data Model,		
		Types of Raster Data, Raster Data Structure, Raster Data		
		Query, Data Compression, Data		
		Conversion, Integration of Raster and Vector data		
	2.3	Data input and editing, Data quality Issues: Accuracy,		
		Consistency, Precision and Resolution, Completeness;		
		source s of error in GIS		
3	GIS D	ata Exploration and Analysis	10	CO 3
	3.1	Data exploration: Descriptive statistics, Graphs, Dynamic		
		Graphics		
	3.2	Vector Data Analysis: Buffering, Overlay, Distance		
		Measurement, Pattern Analysis, Map Manipulation		
	3.3	Raster Data Analysis: Local Operations, Neighborhood		
		Operations, Zonal Operations, Data Extraction, Data		
		Generalization, Comparison of Vector and Raster Based		
		Data		
4	Surfa	ce Mapping and Analysis	9	CO 4
	4.1	Terrain Analysis: Data for Terrain Mapping and analysis,		
		Terrain Mapping, slope and aspect, Surface curvature,		
		Raster vs TIN, View shed and water shed analysis.		
	4.2	Spatial Interpolation: Elements of Spatial Interpolation,		
		Global methods, Local Methods, Kriging, Comparison of		
		Spatial Interpolation Methods		
5	Spatia	al Modeling & applications	6	CO 5
	5.1	GIS Model and Modeling: Basic Elements of GIS		
		Modeling		
	5.2	Types of Model: Binary Model, Index Model, Regression		
	<u> </u>	Model, Process Model and their Applications		
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 32 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Kang-tsung Chang	"Introduction to	Tata McGraw	Third Edition,
		Geographical Information	Hill	2003
		Systems",		
2.	P. A. Burrough and	Principles of Geographic	Oxford	1999
	R. A. McDonnell	Information Systems	University	
			Press	
3.	Basudeb Bhatta	"Remote Sensing and	,Oxford	2nd Edition
		GIS"	University	
			Press	
4.	Ian Heywood, Sarah	"An Introduction to	Pearson	2nd Edition
	Cornelius &etal	Geographical	Education	
		Information Systems"		
5.	S Chandra	"Remote Sensing"	Narosa	
			Publications	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 33 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L733	Geographical Information Systems and Spatial								
		Computing Lab.							
	ŗ	TH P TUT Total							
Teaching Scheme(Hrs.)	-			02		-	02		
Credits Assigned		-		0	1	-	01		
	Marks								
Examination	CA		ECE	TTXX7		De O	T-4-1		
Scheme	ISE	IA	ESE	TW	0	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Geographical Information Systems and Spatial Computing". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 34 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E734		User Experience Design							
		TH				P		TUT	Total
Teaching Scheme(Hrs.)	03								03
Credits Assigned	03								03
		Marks							
Examination	CA		ECE	/DXX/		D	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW	O	P	Pau	Total
	15	15	20	50	-				100

Course prerequisites: Fundamentals of Software Engineering.

Course Objectives: The focus of this course is to introduce the learner to User Experience (UX) Design. User Experience design is design that is user centered. The goal is to design artifacts that allow the users to meet their needs in the most effective efficient and satisfying manner. Every digital interface/interaction (e.g. web and mobile application, car dashboard, smart appliance) is designed to solve a problem or to make our lives better, easier, more successful. User Interface (UI) design refers to the way the interface looks (the actual layout of its elements). User Experience (UX) design tackles how it feels to use the product (what do we do? how do we feel?). This course teaches the principles and practice of UI/UX design.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Understand the fundamentals of human-computer interaction and its impact on UX design.
- CO2 Outline the importance of user centric design.
- CO3 Illustrate the working of UX design process.
- CO4 Analyze tools and techniques for prototyping and designing applications.
- CO5 Summarize the applications of UX design.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 35 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.		0.6	004
1	1.1	What is user experience design? What makes up user experience? Evolution of UX Design, Elements of user experience, requirements, strategy, design principles, user centric design.	06	CO1
2	User I	Research and Journey	12	CO2
	2.1	Types of users, problem formulation for users (stakeholders), need finding, planning and execution for a user centered design.		
	2.2	5S model, User research, user research goals, heuristic analysis, user personas, identifying and recruiting users for the research.		
	2.3	User research methodologies - Qualitative and Quantitative analysis, user interviews, focused group discussion, expert reviews, tools for user research.		
3	UX Design Process		10	CO3
	3.1	Defining the UX Design Process and its Methodology, Understanding user needs, Flow chart, Six stages of UX Design process.		
	3.2	The four quadrants of empathy map, emotional mapping using an empathy map, Design Thinking, Wicked problems, Ideation.		
4	Wire framing and Prototyping.		12	CO4
	4.1	Visual design principles, Interaction design, Information design and data visualization, Information architecture.		
	4.2	Wire framing and storyboards, Digital Designs, Elements and Widgets, Screen design and layout, prototyping tools.		
	4.3	Usability testing – types and process.		
5	Appli	cations and Future of UXD	5	CO5
	5.1	Introduction to Augmented Reality (AR) and Virtual Reality (VR), UXD and XR, present and future of XR. #Self-learning: Case studies on UXD.		
		Total	45	

Students should prepare all Self-Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 36 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	Don Bradman	The Design of Everyday Things	Basic Books	Reprint Edition 2002.
2	Allan Cooper, Robert Reimann, David Cronin, Christopher Noessel.	About Face: The Essentials of Interface Design, 4ed (WILEY)	Wiley Publications.	4 th Edition, 2016.
3	Steve Krug	Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability	Pearson Education	Third Edition, 2015.
4	Daniel Kahneman	Thinking, Fast And Slow	Penguin Press	2012 Edition
5	Russ Unger, Carolyn Chandler	A Project Guide to UX Design: For user experience designers in the field or in the making (Voices That Matter)	New Riders	2 nd Edition, 2012.

Term-Work will consist of Practical experiments covering the entire syllabus. Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 37 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title						
116U01L734	User Experience Design Lab.						
	Т	ГН]	P	TUT	Total
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		0	1	-	01
		Marks					
Examination	CA		ECE	TEXX/	0	P&O	T-4-1
Scheme	ISE	IA	ESE	TW	0		Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "User Experience Design". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 38 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E735		Reinforcement Learning							
		TH				P			Total
Teaching Scheme(Hrs.)			03		-	-			03
Credits Assigned			03						03
	Marks								
Examination		CA			CENTAL C		Ъ	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	O	P	TWO	Total
	15	15	20	50					100

Course prerequisites:

Linear algebra

Probability and statistics

Multivariate calculus

Algorithms

Programming language such as Python

Course Objectives

- 1. Comprehension of fundamentals of reinforcement learning
- 2. Application of various RL methods for
- 3. Analysis using temporal difference and deep learning methods
- 4. Evaluation of various methods of RL for application development

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Interpret fundamentals of Reinforcement learning methods
- CO2. Apply various dynamic programming and Monte-Carlo methods
- CO3. Apply different temporal difference learning policies
- CO4. Use n-step bootstrapping policies
- CO5. Apply planning and learning for different methods

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 39 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	duction to Reinforcement Learning	08	CO 1
	1.1	Elements of Reinforcement Learning, Limitations and		
		scope		
	1.2	Markov Decision Processes to solve real-world		
		problems, Goals and rewards, Policies and value		
		functions		
	1.3	Bellman equations for Markov Decision Processes		
2	Dynai	mic Programming and Monte Carlo Methods	10	CO2
	2.1	Iterative policy evaluation, Policy improvement, Policy		
		iteration and value iteration		
	2.2	Asynchronous Dynamic Programming, Generalized		
		Policy Iteration, Efficiency of Dynamic Programming		
	2.3	Classic Monte Carlo prediction and control methods,		
		Greedy and epsilon-greedy policies, Exploration-		
		Exploitation Dilemma and its solutions		
3	Temp	oral Difference Learning	10	CO3
	3.1	TD Prediction ,Advantages of TD Prediction Methods		
	3.2	Sarsa: On-policy TD Control		
	3.3	Q-learning: Off-policy TD Control		
4	n-step	Bootstrapping	08	CO4
	4.1	n-step TD Prediction, n-step Sarsa, n-step Off policy		
	4.2	Off policy Learning Without Importance Sampling: The		
		n-step Tree Backup Algorithm		
5	Plann	ing and Learning	09	CO 5
	5.1	Models and Planning, Dyna: Integrated Planning,		
		Acting, and Learning		
	5.2	When the Model Is Wrong, Prioritized Sweeping,		
		Expected vs. Sample Updates		
	5.3	Trajectory Sampling, Real-time Dynamic Programming,		
		Planning at Decision Time		
		earning Topic: Deep learning model design using Python		
	library	y functions from PyTorch, Tensorflow and Keras		
		Total	45	

Laboratory experiments are stated for added credit is given in the Laboratory scheme

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 40 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Richard S. Sutton and	Reinforcement Learning:	The MIT Press	Second
	Andrew G. Barto	An Introduction		Edition, 2018
2.	Stuart Russell and Peter Norvig	Artificial Intelligence: A Modern Approach	Pearson	3 rd edition, 2010
3.	Robert Tibshirani, and Jerome Friedman	The Elements of Statistical Learning, Trevor Hastie	Springer	2nd edition, 2009
4.	M. Gopal	Applied Machine Learning	Mc-Graw Hill Education India Pvt. Ltd.	Print edition: ISBN-13: 978-93-5316- 025-8,
5.	Chris Bishop	Pattern recognition and machine learning (PRML)	Springer	ISBN-13: 978-0387- 31073-2, 2006

Term-Work will consist of Practical experiments covering the entire syllabus. Students will be graded based on continuous assessment of their term work

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 41 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title						
116U01L735	Reinforcement Learning Lab.						
	7	TH P TUT Total					
Teaching Scheme(Hrs.)	-			0)2	-	02
Credits Assigned		-		0	1	-	01
		Marks					
Examination	CA		ECE	TW		P&O	7D . 4 . 1
Scheme	ISE	IA	ESE		0		Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Reinforcement Learning". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 42 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code		Course Title							
116U01E736		Secure Coding							
		TH				P		TUT	Total
Teaching Scheme(Hrs.)	03								03
Credits Assigned		(03						03
	Marks								
Examination Scheme		CA					ъ	D.O.O.	T-4-1
LAMITHMUOH SCHOHL	T-1	T-2	IA	ESE	TW	О	P	P&O	Total
	15	15	20	50					100

Course Prerequisites (if any):

Knowledge of programming languages, cryptography, web development

Course Objectives:

Understanding Application Security, Threats, and attacks. Learning the security coding Practices and architecture.

Course Outcomes

At the end of successful completion of the course the student will be able to

- **CO1** Understand secure coding best practices, procedures, policies and software vulnerabilities
- CO2 Apply secure coding practices to address malicious and non-malicious program errors.
- CO3 Use appropriate techniques and tools to analyze and test software applications for weaknesses and vulnerabilities
- CO4 Design and implement software applications using secure architecture concepts

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 43 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1		duction	08	
	1.1	The Philosophy of Secure Programming, Defining Secure		
		Programming, Robust vs. Secure Programming, Security		
		Policies and Procedures, Secure Programming General		
		Philosophy, Where to Look for Vulnerabilities, Secure		
		Programming best practices,		
	1.2	Vulnerabilities in various programming languages,		CO1
		Vulnerabilities in various domains: Web Application, Mobile		
		Applications and Database Applications		
	1.0	Dangers of Vulnerable Components/Programs		
	1.3	Understanding secure SDLC model, Methodologies for		
		developing secure code: Risk analysis, threat modelling,		
	_	and guidelines for secure coding practice.		
2		e programming techniques	14	
	21	*Malicious Program Errors; Worms, Viruses, Trojan,		
		Trapdoor, Salami Attack and Other Malware, , ClientState		
	2.2	Manipulation E B CC C C N		
	2.2	*Non-Malicious Program Errors; Buffer Overflows, Numeric		
		Overflow, Incomplete Mediations, Race Conditions/Time-of-		
		Check to Time-of-Use Errors, SQL Injection, Password		
	2.3	generation and storage Security Controls against Melicious and Non-Melicious Program		CO2
	2.3	Controls against Malicious and Non- Malicious Program		
		Errors: Developmental Control, OS Controls on user program, Administrative Control and Program Controls in general.		
	2.4	Secure Programming Tools (Secure Code Warrior or any		
	2.4	other/s)		
		#Self-Learning secure coding practices for C, C++, Java,		
		python, and PHP		
3	Cross	-Domain Security in Web Applications	08	
		Interaction Between Web Pages from Different Domains,		
		Introduction to session management in web applications,		
		secure coding practices for error handling, session hijacking,		
		session fixation: attacks, vulnerabilities and controls		
	3.2	Attack patterns, preventing XSRF attack, preventing		CO3
		XSSI, XSSI vs XSRF		
	3.3	Using OWASP tool for : injection, broken authentication,		
		sensitive data exposure, cross-site scripting		
		website security audit tools		
		Self-study: Using OWASP tool for: broken access control,		
		security misconfiguration, insufficient logging and monitoring		
		Secure Code Warrior		
5		e architecture and Principles of secure designing	10	
	5.1	What is security architecture?		
	5.2	Principles of security architecture, principles of secure		CO4
		software development, case study: Java sandbox		
	5.3	Secure design steps, Secure deployment and maintenance,		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 44 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Security Auditing		
Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 45 of 125

^{*}Suggestive list of Malicious and Non-Malicious Program Errors, Teachers might Add more errors based on latest research findings.

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
	Mark G. Graaff,	Secure Coding: Principles	O'Reilly	2003, First
	Kenneth R. van Wyk	and Practices	•	Edition
1.	Pfleeger and Pfleeger	Security in computing	Pearson	Third Edition
			Education	
2.	Michael Howard,	Writing secure code	Microsoft Press	Second Edition
	David LeBlanc			
3.	Neil Daswani,	Foundations of Security	Apress	2007,First
	Christoph Kern, and			Edition
	Anita Kesavan.			

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 46 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Department of Computer Engineering

Course Code	Course Title							
116U01L736	Secure Coding Lab.							
	,	TH		I	P	TUT	Total	
Teaching Scheme(Hrs.)			0	2	-	02		
Credits Assigned		-		0	1	-	01	
	Marks							
Examination	CA	CA		(B) X X /	0	De O	T-4-1	
Scheme	ISE	IA	ESE	TW	O	P&O	Total	
				25	25		50	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Secure Coding". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 47 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E737	Advanced Cloud Computing								
	,	ТН					TUT	Total	
Teaching Scheme(Hrs.)	03			-	_			03	
Credits Assigned		03						03	
	Marks								
Examination Scheme	CA					_	D 0 0	TD 4 1	
Examination Scheme	ISE	IA	ESE	TW	O	P	P P&O	Total	
	30	20	50					100	

Course Prerequisites (if any):

- Fundamental knowledge on Operating system.
- Basics of client/server programming and network protocols.
- Basics of cloud computing

Course Objectives:

- 1. To introduce basic computing models and functions of those models.
- 2. To understand the current practices in cloud computing.
- 3. To understand the distributed computing models and technologies.
- 4. To understand the other advanced and research topics in cloud computing.
- 5. To understand cloud challenges related to AI, ML, IoT and edge computing.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Describe basics of cloud computing and its fundamentals.

CO2: Explain cloud infrastructure management and server less computing.

CO3: Describe the cloud challenges related to AI and ML.

CO4: Explain cloud for IoT and edge computing.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 48 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO		
No.	No.					
1	Introd	uction to Cloud Computing	7			
	1.1	Introduction to cloud computing, Computing platforms and technologies, Types of clouds.		CO1		
2	Cloud	Computing Fundamentals	8			
	2.1	Cloud service models, Data centers, cloud infrastructure, VM, and containers, Elasticity and auto scaling, Cloud applications and workloads		CO1		
3	Cloud	Infrastructures	8			
	3.1	Large-scale cluster management. i.e., resource sharing, scheduling, provisioning. Container orchestration and microservice management Serverless computing and cloud functions		CO2		
4	Cloud	Computing and ML/AI	10			
	4.1	Large-scale machine learning service on clouds, Resource management for production-scale machine learning. Applied machine learning research in clouds. i.e., workload and error prediction, Current and future (system specific) research challenges for AI and ML		CO3		
5	Cloud	IoT and Edge	12			
	5.1 5.2	Cloud IoT and edge computing fundamentals, Edge computing applications. Future research direction/opportunity in the cloud and edge computing.		CO4		
Self-Lear	Self-Learning Component: Other advanced cloud computing applications					
		Total	45			

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 49 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Rajkumar Buyya, Christian Vecchiola, S Thamarai Selvi	Mastering Cloud Computing	McGraw Hill Education Private Limited	2013
2.	Judith Hurwitz, R.Bloor,M.Kanfman, F.Halper	OpenStack Cloud Computing Cookbook	PACKT Publishing BIRMINGHAM - MUMBAI	Third Edition
3.	J.Vette, Toby J. Vette, Robert Elsenpeter	Cloud Computing: A Practical Approach	Tata McGraw Hill	1st, 2009
4.	Rajkumar Buyya, James Broberg, Andrzej Goscinski	Cloud Computing, Principles and Paradigms	Wiley	1st ,2013

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 50 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title						
116U01L737	Advanced Cloud Computing Lab.						
	TH]	P	TUT	Total
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
		Marks					
Examination	CA	CA		TPXX7	0	De O	T-4-1
Scheme	ISE	IA	ESE	TW	О	P&O	Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Advanced Cloud Computing". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 51 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E741	Data Science							
	ТН			P T			TUT	Total
Teaching Scheme(Hrs.)				1			03	
Credits Assigned	03							03
	Marks							
Examination	CA		ECE	TW	0	P	P&O	Total
Scheme	ISE	IA	ESE	1 44	U	P	100	Total
	30	20	50					100

Course prerequisites (if any):

Students are expected to have basic knowledge of algorithms and programming experience.

Course Objectives

To develop practical data analysis skills, which can be applied to practical problems.

To develop fundamental knowledge of mathematical concepts needed for data science applications.

To develop practical skills needed in data analytics.

To explain how math and information sciences can be used for developing better algorithms and software.

To develop applied experience with data science software, programming, applications and Processes.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Describe the Data Science Process and how the components interact
CO2	Use R Programming to carry out basic statistical modelling and analysis.
CO3	Apply basic tools to carry out EDA for the Data Science process. CO4
CO4	Build data models and assess the data-based models
CO5	Apply data wrangling and feature selection and generation methods.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 52 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Modul	Uni	Details	Hrs.	CO
e No.	t			
	No.			
1	-	duction to Data Science	06	CO1
	1.1	Introduction to Applied Data Science: What is Data Science? -		
		Big Data and Data Science, Datafication - Current landscape of		
		perspectives - Skill sets needed and various application areas.		
	1.0	Challenges and skill Sets needed and various applications areas.		
	1.2	Data Science process, Impact of applying Data Science in		
	1.2	business scenario.		
	1.3	Introduction to need of estimation and validation for		
	T ,	added value due to data science	10	002
2		duction to Mathematical Foundation	10	CO2
	2.1	Use R language for Data Science		
	2.2	Linear algebra for data science: Matrix view for linear algebra,		
		Solving linear equations, Eigen values and Eigen vectors		
	2.2			
	2.3	Statistical inference: Population, samples, Statistical modeling,		
		random variables and probability distribution, Sample statistics,		
3	Evol	Hypothesis testing	10	CO3
3	3.1	oratory Data Analysis Introduction to Evaluatery Data Analysis Posis tools	10	COS
	3.1	Introduction to Exploratory Data Analysis Basic tools		
	2.2	(plots, graphs and summary statistics) of EDA		
	3.2	Data Visualization - Basic principles, ideas and tools for data		
4	Traduca	visualization and its applications	12	CO4
4		duction to Basic Machine Learning Algorithms	12	CO4
	4.1	Linear Regression, k-nearest neighbors		
	4.2	Naïve Bayes classifier, Logistic regression		
		Hierarchical clustering, Decision tree and random forest		
5	Data	a Wrangling ,Feature selection and feature generation	07	C05
	5.1			
		Data Wrangling, Data Transformation and Data Profiling		
		APIs and other tools for scrapping the Web,		
	5.2	Feature Generation and Feature Selection methods		
		# Self Learning –Mini Project		
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 53 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Han, J., Kamber, M., Pei, J.	Data mining concepts and techniques	Morgan Kaufmann	2011
2.	James, G., Witten, D., Hastie, T., Tibshirani, R.	An introduction to statistical learning with applications in R	Springer	2013
3.	Cathy O'Neil and Rachel Schutt	Doing Data Science, Straight Talk From The Frontline	O'Reilly	2014
4.	Kevin P. Murphy	Machine Learning: A Probabilistic Perspective	ISBN 0262018020	2013
5.	Ragunathan Rengaswamy, Resmi Suresh	Data Science for engineers	CRC press	2022
6.	Avrim Blum, John Hopcroft, and RavindranKannan	Foundations of Data Science	ONLINE	2014

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 54 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L741		Data Science Lab.							
		TH			P		Total		
Teaching Scheme(Hrs.)	_			02		-	02		
Credits Assigned		-		01		-	01		
		Marks							
Examination	CA	CA		TIXX/	0	DO O	TD 4.1		
Scheme	ISE	IA	ESE	TW	TW O	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Data Science". Students will be graded based on continuous assessment of their term work.

L Y B. Tech COMP. SVU 2020 - R 1.0 Page 55 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title									
116U01E742	Block Chain Technology									
	TH			P		r	ГUТ	Total		
Teaching Scheme(Hrs.)	03					03				03
Credits Assigned	03							03		
			N	Iarks						
Examination	CA		ECE	TXX7	_	Ъ	De-O	Total		
Scheme	ISE	IA	ESE	TW	0	P	P&O	Total		
	30	20	50					100		

Course prerequisites:

Networking Concepts, Object Oriented Programming Skills, Cryptography and Network Security Concepts.

Course Objectives:

The objective of the Course is to explore the Bitcoin protocol followed by the Ethereum protocol – to lay the foundation necessary for developing applications and programming. Course will give the idea about the decentralized peer-to-peer network, an immutable distributed ledger and the trust model that defines a Blockchain.

This course explains basic components of a Blockchain (transaction, block, block header, and the chain) its operations (verification, validation, and consensus model) underlying algorithms, and essentials of trust (hard fork and soft fork).

Course Outcomes:

- CO1 Describe the basic concepts of Blockchain and Distributed Ledger Technology
- CO2 Apply cryptographic hash required for Blockchain.
- CO3 Categorize and discuss the consensus in Blockchain.
- CO4 Infer the components of Ethereum ecosystem.
- CO5 Design a private Blockchain platforms

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 56 of 125

Department of Computer Engineering

Module	Unit		Hrs.	CO
No.	No.	Details		
		Block Chain Technology		
1	1.1	Challenges Faced by Modern Businesses, What is Blockchain? , Building Blocks of Blockchain, Types of Blockchain,	8	
	1.2	Introduction to Blockchain Pillars, Cryptography, Consensus, Distributed Ledger:		CO1
	1.3	A Block in a Blockchain: Structure of a Block, Block Header, Block Identifiers: Block Header Hash and Block Height, The Genesis Block, Linking Blocks in the Blockchain.		
2	Bitco	in Blockchain	12	
	2.1	Introduction to Bitcoin, Bitcoin Wallets, Bitcoin Block, Bitcoin Transaction, Bitcoin Scripts, Bitcoin Attacks, Bitcoin Network, Bitcoin Mining. Basic Crypto Primitives: Cryptographic Hash Function,		CO2
		Properties of a hash function, Hash pointer and Markel tree, Digital Signature, Public Key Cryptography, A basic cryptocurrency.		CO2
3	Cons	sensus and Mining	10	
	3.1	Problem, Independent Verification of Transactions, Mining Nodes, Aggregating Transactions into Blocks, Constructing the Block header, Mining the Block, Successfully Mining the Block, validating a New Block, Assembling and Selecting Chains of Blocks, to different consensus algorithms Proof of Work and Proof of Stake, PBFT.		CO3
	3.2	Working with Consensus in Bitcoin: Distributed consensus in open environments, Consensus in a Bitcoin network, Proof of Work (PoW) — basic introduction, Hashcash PoW, Bitcoin PoW, Attacks on PoW and the monopoly problem, Proof of Stake, Proof of Burn and Proof of Elapsed Time, The life of a Bitcoin Miner, Mining Difficulty, Mining Pool.		
4	Publ	ic / Ethereum Blockchain	8	
	4.1	Ethereum components: miner and mining node, Ethereum virtual machine, Ether, Gas, Transactions, accounts, Solidity and smart contract development. Introduction to Swarm and whisper, Remix IDE, Truffle		CO4
	D .	Framework, Ethereum Networks, Ethereum Wallets Ethereum Clients, Web3.js, NFT.	-	
5		te Blockchain	8	
	5.1	Introduction, Key characteristics, Need of Private Blockchain, Smart Contract in a Private Environment, State Machine Replication, Consensus Algorithms for Private Blockchain - PAXOS and RAFT, Byzantine Faults:		CO5

Page 57 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

		Byzantine Fault Tolerant (BFT) and Practical BFT.		
6	Appl	4		
	6.1	Blockchain in IOT, banking and Finance, Government, Healthcare system, AI, Blockchain in Education, Energy, Supply chain, Real-state.		CO1, 2,5
		Total	45	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 58 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Andreas M. Antonopoulos	Mastering the Bitcoin: Programming the Open Blockchain	O' Reilly	2 nd Edition, 2017
2.	Melanie Swan	BlockChian	O'Reilly	2015
3.	Nitin Gaur, Luc Desrosiers, Petr Novotny, Venkatraman Ramakrishna	Hands-On Blockchain with Hyperledger: Building decentralized applications with Hyperledger Fabric and Composer	Packt	Kindle Edition, 2018
4.	Stephen Fleming business ecosystems	Blockchain Technology: Introduction to Blockchain Technology and its impact on	Stephen Fleming	2017
5.	Zeeshan-ul- hassan Usmani	Introduction to lockchain with Case Studies	Guhftgu Publication	2018

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 59 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code		Course Title					
116U01L742		Bloc	k Chain	Techn	ology L	ab.	
	r	ГН]	P	TUT	Total
Teaching Scheme(Hrs.)		-			02		02
Credits Assigned		-		01		-	01
				Marks			
Examination	CA	CA				De O	T-4-1
Scheme	ISE IA ESE			TW	0	P&O	Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Block Chain Technology". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 60 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code		Course Title						
116U01E743			Comp	uter V	Visio	1		
		TH	_	F	P TU		TUT	Total
Teaching Scheme(Hrs.)			-	-			03	
Credits Assigned		03		-				03
				Marks				
Examination	CA		ECE	TXX7		Ъ	De-O	Total
Scheme	ISE IA		ESE	TW	O	P	P&O	Total
	30	20	50					100

Course prerequisites (if any):

Linear algebra, differential calculus, matrices, determinants

Course on Digital signal and Image Processing

Course Objectives

- Comprehension of Computer Vision techniques
- Introduction to camera model system, introduction to image matching and 3D reconstruction
- Overview of Image and video processing techniques
- Scene understanding and recognition.
- Applications to Computer Vision methodologies for atomization of various tasks.

Course Outcomes

000000000000000000000000000000000000000	
At the end o	f successful completion of the course the student will be able to
CO1	Relate various Computer Vision method for designing innovative
	applications.
CO2	Apply camera model for binocular imaging systems
CO3	Experiment on different interest point detectors and descriptors for feature
	extractions.
CO4	Analyze and implement object recognition techniques from images and
	video frames.
CO5	Design customized algorithms for real world application using Computer
	Vision techniques.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 61 of 125

Department of Computer Engineering

Modul	Unit	Details	Hrs.	CO
e No.	No.			
1	Introd	luction to Computer Vision	06	CO1
	1.1	Introduction to image enhancement techniques in spatial and frequency domain, Image features and different levels, Overview of Diverse Computer Vision Applications from various domains such as Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing		
2	Image	Formation Models	12	CO2
	2.1	Digital Image Formation and low-level processing, Overview fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective, etc., Fourier Transform, Convolution and Filtering, Optimized thresholding Otsu's method and other Image Enhancement and representation techniques, Binary Machine Vision, Connected component labelling,		
	2.2	Camera model and Camera calibration, Binocular imaging systems, Epipolar geometry for stereo vision, from shading, Stereo Image analysis, Image matching techniques. #Self-learning: 3D transformations and projections.		
3	Footu	re Extraction, Shape representation and Segmentation	12	CO3
3	3.1	Boundary extraction and boundary descriptors, Gray level moments, Edge detectors - Canny, LOG, DOG, Corner detectors - Harris and Hessian Affine, Advanced feature detectors: SIFT, SURF, HOG, GLOH, Scale-Space Analysis-Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT. Contour based representation, Region based representation,	12	COS
	3.2	Deformable curves and surfaces, Snakes and active contours, Level set representations, Region Growing, Edge Based approaches to segmentation, Gray level Co-occurrence matrix and Texture features.		
4	Motio	n Estimation and Object Recognition	10	CO4
	4.1	Regularization theory, Optical computation, Stereo Vision, Motion estimation, Structure from motion		
	4.2	Introduction to Object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition.		
5		cations	5	CO5
	5.1	Applications: Face detection, Face recognition, 3D generations 3D shape models for various applications Application: Surveillance foreground background separation – particle filters Chamfer matching, tracking, and occlusion detection, Combining views from multiple cameras: In-vehicle vision system: locating roadway, road markings, identifying road signs		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 62 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

The second secon

Total

45

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 63 of 125

Department of Computer Engineering

Recommended Books

Recommended Books: Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Robert Haralick and Linda Shapiro	Computer and Robot Vision", Vol. I, II,	Addison-Wesley	2001
2.	Richard Szeliski	Computer Vision: Algorithms and Applications	electronic copy available at (http://szeliski.o rg/Book)	2010
3.	Forsyth and J. Ponce	Computer Vision: A Modern Approach, D.	Prentice-Hall	Second Edition, 2011.
4.	R. Jain, R. Kasturi, B. G.Schunck	Machine Vision	McGraw Hill	1995

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 64 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code		Course Title					
116U01L743		(Compute	er Visio	n Lab.		
	7	ГН]	P	TUT	Total
Teaching Scheme(Hrs.)		-			02		02
Credits Assigned		-		01		-	01
				Marks			
Examination	CA	CA FOR THE O					T-4-1
Scheme	ISE IA ESE			TW	0	P&O	Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Computer Vision". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 65 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E744	C	omput	er Simu	ılation	and	Mod	deling	
	7	ТН		P	P		TUT	Total
Teaching Scheme(Hrs.)				•			03	
Credits Assigned		03						03
				Marks				
Examination	CA	CA				D	P&O	Total
Scheme	ISE IA		ESE	TW	O	P	rau	Total
	30	20	50					100

Course prerequisites (if any):

Understanding of basic concepts of probability theory, algorithms and data structures.

Course Objectives:

This computer simulation and modeling course presents an introduction to discrete event simulation systems. The course discusses the modeling techniques of entities, queues, resources and entity transfers in discrete event environment. The course will teach the students the necessary skills to formulate and build valid models, implement the model, perform simulation analysis of the system and analyze results properly.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1 Understand the concepts of discrete event simulation and its importance in business, science, engineering, industry and other services.
- CO2 Analyse and apply general principles of event scheduling algorithm & various statistical methods on different applications.
- CO3 Generate pseudorandom numbers and perform statistical tests to measure the quality of a pseudorandom number generator.
- CO4 Analyze the systems for input modeling and validation.
- CO5 Estimate the different parameters of absolute and relative performance of different simulation systems.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 66 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1		luction to Simulation, Simulation Examples & general		
	princi			001
	1.1	Introduction to Simulation: advantages, disadvantages, types		CO1 &
	1.2	of models & steps in simulation study. Simulation Examples: Manual Simulation: Queuing and	12	CO2
	1.2	Inventory problems		
	1.3	General Principles: Event Scheduling Algorithm/Time		
	1.5	advance algorithm, Simulation using time advance algorithm.		
2	Statis	tical & Queuing Models		
		Cara Cara		
	2.1	Statistical Models in simulation: Discrete and Continuous	08	CO2
		Distributions.	Uð	CO2
	2.2	Queuing Models: M/G/1, M/M/1		
		#Self-learning: Simulation tools		
3	Rande	om Number Generation		
	3.1	Random Number Generation Techniques		
	3.1	random ramber denoration reciniques		
	3.2	Testing random numbers: Chi square, K-S, Runs up and Down	10	CO3
		test.		
	3.3	Random Variate Generation: Inverse transform technique,		
		Convolution Method & Acceptance-Rejection Technique		
	Analy	sis of simulation data		
	4.1	Input Modeling : Data collection, Identifying the Distribution		
4	7.1	with Data, Parameter Estimation, Goodness-of-Fit Tests,		
			08	CO4
	4.2	Selecting Input Models without Data and Multivariate and		
		Time-Series Input Models		
	4.3	Verification and Validation of Simulation Models:		
		Verification, Calibration and Validation of Simulation models.		
5	Estim	ation of Absolute & Relative Performance:		
	5.1	Output Analysis: Estimation of absolute performance, Output		
	3.1	Analysis Concepts, output analysis for steady state simulation.		
	5.2	Comparison of two and multiple system designs,	07	CO5
	J. <u>2</u>	metamodeling & optimization via simulation.		
		#Self-learning: Simulation application on manufacturing		
		& material handling, networked computer systems.		
	1	Total	45	

[#] Students should prepare all Self-Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 67 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Jerry Banks, John Carson, Barry Nelson, and David M. Nicol	Discrete Event System Simulation	Prentice-Hall	Third Edition
2.	Jerry Banks, John Carson, Barry Nelson, and David M. Nicol	Discrete Event System Simulation	Prentice-Hall	Fifth Edition
3.	Averill M Law	System Modeling & Analysis;	Tata McGraw Hill	Fourth Edition
4.	Lawrence M. Leemis Stephen K. Park	Discrete-Event Simulation: A First Course	Pearson	First Edition
5.	Banks C M , Sokolowski J A	Principles of Modeling and Simulation	Wiley	2010

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 68 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title						
116U01L744	Con	nputer	Simulat	tion and	d Mode	ling Lab	•
	Т	ТН		P		TUT	Total
Teaching Scheme(Hrs.)		-		02		-	02
Credits Assigned		-		01		-	01
				Marks			
Examination	CA	CA PGF			0	De O	T-4-1
Scheme	ISE IA		ESE	TW	О	P&O	Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Computer Simulation and Modeling". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 69 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E745		# Progr	amming	g and.	Net	Tech	nology	
		ТН			P		TUT	Total
Teaching Scheme(Hrs.)		03						03
Credits Assigned		03					03	
				Marks				
Examination	CA	CA ESE				D	P&O	Total
Scheme	ISE IA		ESE	TW	O	P	rau	Total
	30*	20	50*					100

^{*} The ISE and End Semester Exam is conducted in Lab for with Onscreen Mode with guidelines and instructions provided during/before the examination.

Course prerequisites (if any):

Fundamentals of Object Oriented Programming concepts.

Course Objectives:

- Creating Form based application using WPF and .net Controls.
- Creating ASP.Net applications using standard .net controls.
- Connecting to data sources and managing them.
- Understand the fundamentals of developing modular application by using object oriented methodologies

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Understand .NET framework & fundamentals.
CO2	Utilize the .NET framework to build distributed enterprise applications.
CO3	Implement ADO.NET and LINQ concept along with ASP.NET
CO4	Develop web applications using a combination of client-side (JavaScript, HTML, XML, WML) and server-side technologies (ASP.NET, ADO.NET).
CO5	Develop ASP.NET Web Services, secure web services, and .NET remoting applications

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 70 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introduction to .NET technologies		05	CO 1
	1.1	Features of .NET, .NET Framework, CLR, what is		
		ASP.NET? Difference between ASP and ASP.NET.		
		Design View, HTML View, Default Files used in		
		ASP.NET		
	1.2	Concept of Master pages, Intrinsic Objects of ASP.Net,		
		Structure of ASP.NET page, Cascading Style Sheet:		
		Embedded, Inline, External.		
2	Controls in ASP.NET		12	CO 2
	2.1	Overview of Dynamic Web page, Understanding		
		ASP.NET Controls, Applications, Web servers,		
		Installation of IIS. Web forms, web form controls -server		
		controls, client controls		
	2.2	Adding controls to a web form, Buttons, Text Box,		
		Labels, Checkbox, Radio Buttons, List Box. Adding		
		controls at runtime. Running a web Application, creating a		
		multiform web project. Form Validation.		
	2.3	Client side validation, server Side validation, validation		
		Controls: Required Field Comparison Range.		
		Self-Learning: Calendar control, Ad rotator Control,		
		Internet Explorer Control.		
3	Overview of ADO.NET and XML		13	CO 3
	3.1	ADO.NET Fundamentals: Understanding Databases,		
		Configuring Your Database, Understanding SQL Basics,		
		Understanding the Data Provider Model, Using Direct		
		Data Access, Using Disconnected Data Access.		
	3.2	Data Binding: Introducing Data Binding, Using Single-		
		Value Data Binding, Using Repeated-Value Data Binding,		
		Working with Data Source Controls, The Data Controls:		
		The GridView, Formatting the GridView, Selecting a		
		GridView Row, Editing with the GridView, Sorting and		
		Paging the GridView, Using GridView Templates, The		
		Details View and Form View.		
	3.3	LINQ Architecture, LINQ to object, LINQ to SQL, LINQ		
		to Dataset		
4		NET Applications	07	CO 4
	4.1	Creating, tracking, caching, error handling, Securing		
		ASP.NET applications- form based applications, window		
		based applicationNET Remoting.		
5	Web services		08	CO5
	5.1	Introduction, State management- View state, Session state,		
		Application state, Building ASP.NET web services,		
		working with ASP.NET applications, creating custom		
		controls, Invoking COM/COM+, Active X Components		
	5.2	Self-Learning: Deployment of ASP.NET application		
		Total	45	

Page 71 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 72 of 125

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Peter Harrington	Machine Learning In	DreamTech	1 st , 2012
		Action	Press	
2.	Ethem Alpaydın	Introduction to Machine	MIT Pres	3 rd ,2014
		Learning		
3.	Tom M.Mitchell	Machine Learning	McGraw Hill	1 st , 2017
4.	Stephen Marsland	Machine Learning An	CRC Press	1 st , 2011
		Algorithmic Perspective		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 73 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Department of Computer Engineering

Course Code	Course Title						
116U01L745	C# Pı	C# Programming and. Net Technology Lab.					
	TH]	P	TUT	Total
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
	Marks						
Examination	CA	CA		TIXX/		Dag	T-4-1
Scheme	ISE	IA	ESE	TW	O	P&O	Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "C# Programming And. Net Technology". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 74 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E746	Agile Project Management							
	TH			P		TUT	Total	
Teaching Scheme(Hrs.)	03					-		03
Credits Assigned	03							03
	Marks							
Examination	CA		ESE	CDXX/		P	P&O	Total
Scheme	ISE	IA	ESE	TW	O	ľ	100	1 Otal
	30	20	50					100

Course prerequisites (if any):

Software Engineering

Course Objectives

This course includes agile methodology, in different steps of project management like lifecycle, planning scheduling estimates etc.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1 U	Understand difference between traditional and agile methodology
CO2 U	Understand business case change in agile methodology
CO3	Apply planning and budget in agile development
CO4	Acquire skills for working in the team in agile development

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 75 of 125

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
1	ł	luction to Agile Project management	05	CO 1
	1.1	History, Background, and the Manifesto		
	1.2	Traditional Lifecycle		
	1.3	Agile Lifecycle		
	1.4	Scaling for Enterprise Agile		
	1.5	Four Agile Methodologies		
2	The A	agile Business Case, Quality in the Agile Space	09	CO2
	2.1	The Business Case		
	2.2	Business Value Models		
	2.3	Project Balance Sheet		
	2.4	Building the Business Case by Levels		
	2.5	Quality Values and Principles		
	2.6	Thought Leaders and Agile Quality		
	2.7	Sampling for Quality Validation		
		#Self-Learning - Preparation of a business case		
3		in the Waterfall, Developing the Scope and	10	CO3
	3.1	rements First Principles and Requisite Conditions		
	3.2	First Principles and Requisite Conditions The Black Box, Interfaces, and Connectivity		
	3.3	Governing		
	3.4	Agile Scope		
	3.5	Envisioning		
	3.6	Requirements		
	3.7	Planning at a Distance		
		#Self-Learning: Application development by using		
		Agile in waterfall model		
4	Plann	ing and Scheduling, Estimating Cost and Schedule.	11	CO3
	4.1	Planning in the Enterprise Context		
	4.2	Scheduling		
	4.3	Other Plans in the Enterprise Agile Project		
	4.4	The Nature of Estimates		
	4.5	Drivers on Cost and Schedule		
	4.6	Building Estimates		
	4.7	The Social Unit		
	4.8	Principle and Values Guide Teams		
	4.9	Teams Are Building Blocks		
	4.10	Matrix Management in the Agile Space		
		#Self-Learning: Preparation of cost and schedule for		
		the model.		
5		nance, Managing Value, Transitioning to Agile	10	CO4
	5.1	Quality Principles		
	5.2	Governance Verifies Compliance		
	5.3	Defining and Accounting for Value		

Page 76 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

5.4	Burn-down Charts and Value Scorecards		
5.5	Virtual Teams		
5.6	Expand Throughput		
5.7	Agile-by-contract Enables Scale		
5.8	Business Leadership Transition		
5.9	Customer Relationship Transition Project Management Transition Portfolio Management Transition Agile Transition in the Public Sector		
	Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 77 of 125

Department of Computer Engineering

Recommended Books:

1.	Project management	John C Goodpasture, PMP	J. Ross	USA, Second
	the Agile way		publication	edition
2.	Making Sense of	Charles G. Cobb, PMP	2011 by John	First Edition
	Agile Project		Wiley & Sons,	
	Management		I	
3.	Agile project	Rob Cole and Edward	2015, Rob Cole	First Edition
	management	Scotcher	and Edward	
	A practical guide to		Scotcher	
	using Agile, Scrum			
	and Kanban			
4.	Agile for	Denise Canty	2015, CRC	First Edition
	Project		Press	
	Managers			
5.	The Agile Enterprise:	Mario E. Moreira	2017, Apress	First Edition
	Building And			
	Running Agile			
	Organizations			

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 78 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title						
116U01L746		Agile Project management Lab.					
]	P		TUT	Total		
Teaching Scheme(Hrs.)	-			02		-	02
Credits Assigned		-		01		-	01
	Marks						
Examination	CA		EGE			DO O	Total
Scheme	ISE	IA	ESE	TW	О	P&O	Total
				25	25		50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Agile Project management". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 79 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01E747		DevOps						
	ТН			P TUT		TUT	Total	
Teaching Scheme(Hrs.)	03			-				03
Credits Assigned		03						03
	Marks							
Examination	CA	CA		TOXX/		Ъ	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	rau	1 Otal
	30	20	50	-	-	-	-	100

Course prerequisites (if any):

Software Engineering

Course Objectives

This course focuses on the different concepts of DevOps to shorten the system development life cycle. It further covers how DevOps affects the software architecture. It encompasses on code workflows from code control to building, testing, deploying and monitoring the code to accelerate your entire software development life cycle

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Understand the basic concept and stakes of DevOps.
- CO2 Expound the influence of DevOps on software architecture
- **CO3** Comprehend the effective code building and testing process.
- **CO4** Explain code deployment and monitoring systems and their tool support.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 80 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Found	dational Terminology and Concepts	06	CO1
	1.1	Introduction of DevOps, an overview of The DevOps		
		process and continuous delivery		
	1.2	The DevOps Equation, DevOps as Folk Model, The Old		
		View and the New View, The DevOps Compact		
	1.3	Software Development Methodologies, Operations		
		Methodologies, Systems Methodologies		
	1.4	Development, Release, and Deployment Concepts,		
		Infrastructure Concepts, Cultural Concepts		
2	Pillar	s of Effective DevOps	10	CO2
	2.1	Defining Collaboration, Mentorship, Cultivating mindset,		
		Mindsets and Learning Organizations, The Role of		
		Feedback, Review and ranking, Conflict Resolution		
		Styles, Empathy and trust		
	2.2	Defining Affinity, Benefits of Improved Affinity,		
		Requirements for Affinity, Measuring Affinity		
	2.3	Tools Ecosystem Overview, Software Development,		
		Automation, Monitoring, Right Tools for Real Problem,		
		Embracing Open Source, Standardization of Tools,		
		Consistent Processes for Tool Analysis, Exception to Standardization, Selection and elimination of		
		Tools		
	2.4	Understanding Scaling, Scaling for Teams, Scaling for	-	
		Organization		
3	Effect	of DevOps on Software Architecture and Code Control	10	CO3
	3.1	The monolithic scenario, Architecture rules of thumb		
	3.2	Three-tier systems, MicroServices, DevOps, architecture,		
		and resilience		
	3.3	The need for source code control, Roles and code		
	3.4	Source code management system and source code		
		Management, system migrations		
4	Build	ing the code and testing	10	CO4
	4.1	Build code, The Jenkins build server, Managing build		
		dependencies, The final artifact, Continuous Integration,		
		Continuous Delivery		
	4.2	The host server, Build slaves, Software on the host,		
		Triggers, Job chaining and build pipelines, Build servers		
		and infrastructure as code, Build phases, Collating quality		
		measures, build status visualization, Robustness		
	4.3	Pros and cons with test automation, JUnit, Mocking, Test		
		Coverage, A complete test automation scenario		
5	Deple	ving and Manitaring the gods	09	COA
<u> </u>	Dep10	ying and Monitoring the code	リソ	CO4

Page 81 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

Department of Computer Engineering

5.1	Need of many deployment systems and challenges: Configuring the base OS, Describing clusters, Delivering packages to a system		
5.2	Executing code on the client, The Puppet master and Puppet agents, Ansible, PalletOps, Deploying with Chef, Deploying with SaltStack, Vagrant, Deploying with Docker, Cloud solution: AWS, Azure		
5.3	Monitoring the Code-Nagios, Munin, Ganglia, Graphite Log handling		
	Total	45	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 82 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
6.	Jennifer Davis, Ryn	Effective DevOps:	O'Reilly Media	June 2016
	Daniels	Building a Culture of	June 2016	
		Collaboration, Affinity,		
		and Tooling at Scale		
7.	Joakim Verona	Practical DevOps:	Packt	2nd
		Implement DevOps in	Publishing	Edition,2016
		your organization by		
		effectively building,		
		deploying, testing, and		
		monitoring code		
8.	Sanjeev Sharma	DevOps for Dummies	John Wiley &	Sept 2019
		_	Sons, Inc	_
9.	Mandi Walls	Building a DevOps	O'Reilly Media	1st
		Culture	-	Edition,2013

Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 83 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L747		DevOps Lab.							
	ŗ	TH P TUT Total							
Teaching Scheme(Hrs.)		-			2	-	02		
Credits Assigned		-		0	1	-	01		
				Marks	arks				
Examination	CA	CA		TW	0	De-O	Total		
Scheme	ISE IA		ESE	1 77	U	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "DevOps". Students will be graded based on continuous assessment of their term work.

L Y B. Tech COMP. SVU 2020 - R 1.0 Page 84 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Open Electives Technical

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 85 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U06O701	Genetic Algorithm and Applications							
	r	TH P TUT Total						
Teaching Scheme(Hrs.)			-				03	
Credits Assigned		02						02
				Marks				
Examination	CA	CA			TIME O		P&O	Total
Scheme	ISE IA		ESE	TW	O	P	rau	Total
	30	20						50

Course prerequisites (if any):

Basics of Python Programming.

Course Objectives

The objective of this course is to introduce optimization techniques and application of genetic algorithms. The course also familiarizes students with the concepts of various operators and their implementation. Course mainly focuses on applying the genetic algorithm for a real life application.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Describe the concept of optimization
CO2	Understand the concept of genetic algorithms
CO3	Implement the component of GA to solve the problems.
CO4	Illustrate the application of GA in various domains.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 86 of 125

Department of Computer Engineering

Modul	Uni t	Details	Hrs.	СО
e No.	No.	Details	1115.	
	Intro	duction To Optimization		
	1.1	Finding the Best Solution - What Is Optimization? , Root Finding versus Optimization, Categories of Optimization		
1	1.2	Minimum-Seeking Algorithms - Exhaustive Search, Analytical Optimization, Nelder-Mead Downhill Simplex Method, Optimization Based on Line Minimization	03	CO1
	1.3	Natural Optimization Methods, Biological Optimization: Natural Selection		
	Intro	duction to Genetic Algorithms	08	
2	2.1	What are genetic algorithms? Analogy of GA, Robustness of Traditional Optimization and Search methods – Goals of optimization-GA versus Traditional methods		CO1,
	2.2	Mathematical foundations: The fundamental theorem - Schema processing at work. – The 2-armed & k-armed Bandit problem. – The building Block Hypothesis. – Minimal deceptive problem		CO2
	The l	Basic of Genetic Algorithm		
	3.1	Basic flow of a genetic algorithm, Selection Methods – Roulette wheel selection, stochastic universal sampling, rank-based selection, fitness scaling, tournament selection Crossover Methods Single Two and k point crossover		
3	3.2			CO2
3	3.3	Mutation Methods – Flip bit mutation, swap mutation, inversion mutation, scramble mutation	12	002
	3.4	Real-coded genetic algorithms – blend crossover and simulated binary crossover Understanding elitism		
	Solvi	ng Problems with Genetic Algorithms		
	3.1	Using the DEAP Framework – Introduction to DEAP, Using the creator module (fitness class), Using the Toolbox class (genetic operators), OneMax Problem		
4	3.2	Search Problems and Combinatorial Optimization – Knapsack and TSP	12	CO2,C O3
	4.1	Constraint Satisfaction in search problems, Solving scheduling and N-queens problems		
	4.2	Optimizing Continuous Functions – chromosomes and genetic operators for real numbers, Using DEAP with continuous functions		
	Appl	ications of Genetic Algorithms		
5	5.1	Enhancing Machine Learning Models Using Feature Selection	10	CO3,C O4
	5.2	Hyperparameter Tuning of Machine Learning Models		
		Total	45	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 87 of 125

Department of Computer Engineering

Recommended books

Sr. No	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	Eyal Wirsansky	Hands-On Genetic Algorithms with Python	Packt Publishing ISBN: 9781838557744	Released January 2020
2	David E. Goldberg	Genetic Algorithms in Search, Optimization and Machine Learning	Pearson Education	2001
3	S.Rajesekaran, G. A.Viijayalakshmi Pai	Neural Networks, Fuzzy Logic and Genetic Algorithms	Pearson Education	2003
4	Banzhaf, Nordin, Keller and Francone, Morgan- Kaufmann	Genetic Programming: An Introduction	Morgan Kaufmann	February 1998
5	Riccardo Poli, Willian B. Langdon, Nicholas Freitag McPhee	A Field Guide to Genetic Programming	Lulu.com	March 2008
6	Clinton Sheppard	Genetic Algorithms With Python	Createspace Independent Pub	April 2016

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 88 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U06O702		Reinforcement Learning							
		TH P TUT Total							Total
Teaching Scheme(Hrs.)								03	
Credits Assigned			03						03
					Marks				
Examination	CA		ECE	CENTAL C			P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW	O	P	rau	1 otal
	15	15	20						50

Course prerequisites:

Linear algebra

Probability and statistics

Multivariate calculus

Algorithms

Programming language such as Python

Course Objectives

- 1. Comprehension of fundamentals of reinforcement learning
- 2. Application of various RL methods for
- 3. Analysis using temporal difference and deep learning methods
- 4. Evaluation of various methods of RL for application development

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Interpret fundamentals of Reinforcement learning methods
- CO2. Apply various dynamic programming and Monte-Carlo methods
- CO3. Apply different temporal difference learning policies
- CO4. Use n-step bootstrapping policies
- CO5. Apply planning and learning for different methods

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 89 of 125

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO			
No.	No.						
1	Introd	luction to Reinforcement Learning	08	CO 1			
	1.1	Elements of Reinforcement Learning, Limitations and					
		scope					
	1.2	Markov Decision Processes to solve real-world					
		problems, Goals and rewards, Policies and value					
		functions					
	1.3	Bellman equations for Markov Decision Processes					
2	Dynai	mic Programming and Monte Carlo Methods	10	CO2			
	2.1	Iterative policy evaluation, Policy improvement, Policy					
		iteration and value iteration					
	2.2	Asynchronous Dynamic Programming, Generalized					
		Policy Iteration, Efficiency of Dynamic Programming					
	2.3	Classic Monte Carlo prediction and control methods,					
	Greedy and epsilon-greedy policies, Exploration-						
		Exploitation Dilemma and its solutions					
3	Temp	oral Difference Learning	10	CO3			
	3.1	TD Prediction ,Advantages of TD Prediction Methods					
	3.2	Sarsa: On-policy TD Control					
	3.3	Q-learning: Off-policy TD Control					
4	n-step	Bootstrapping	08	CO4			
	4.1	n-step TD Prediction, n-step Sarsa, n-step Off policy					
	4.2	Off policy Learning Without Importance Sampling: The					
		n-step Tree Backup Algorithm					
5	Plann	ing and Learning	09	CO 5			
	5.1	Models and Planning, Dyna: Integrated Planning,					
		Acting, and Learning					
	5.2	When the Model Is Wrong, Prioritized Sweeping,					
		Expected vs. Sample Updates					
	5.3	Trajectory Sampling, Real-time Dynamic Programming,					
		Planning at Decision Time					
		earning Topic: Deep learning model design using Python					
	library	functions from PyTorch, Tensorflow and Keras					
		Total	45				

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 90 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with country	Year of Publication
1.	Richard S. Sutton and Andrew G. Barto	Reinforcement Learning: An Introduction	The MIT Press	Second Edition, 2018
2.	Stuart Russell and Peter Norvig	Artificial Intelligence: A Modern Approach	Pearson	3 rd edition, 2010
3.	Robert Tibshirani, and Jerome Friedman	The Elements of Statistical Learning, Trevor Hastie	Springer	2nd edition, 2009
4.	M. Gopal	Applied Machine Learning	Mc-Graw Hill Education India Pvt. Ltd.	Print edition: ISBN-13: 978-93-5316- 025-8,
5.	Chris Bishop	Pattern recognition and machine learning (PRML)	Springer	ISBN-13: 978-0387- 31073-2, 2006

Term-Work will consist of Practical Experiments covering the entire syllabus. Students will be graded based on continuous assessment of their term work

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 91 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U06O703	Web Analytics and Web Intelligence							
	Л	F)	TUT		Total		
Teaching Scheme(Hrs.)	03			-	-			03
Credits Assigned	(02			-			02
		Marks						
Examination Scheme	CA	CA		TXX		Ъ	D.0.0	T . 1
Liammation Scheme	ISE	IA	ESE	TW	O	P	P&O	Total
	30	20						50

Course Objectives:

Web Analytics is the measurement, collection, analysis, and reporting of Internet data for purposes of understanding and optimizing Web usage. Web Analytic is a tool that can measure Web site traffic. Businesses can also use it as a tool for business and market research.

Course includes definition and categories of Web Analytics, some examples of Web-based Analytics such as Google Analytics, and usage of EDDIE Tool.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand the concepts and terminologies related to web analytics.

CO2: Explore various parameters used for web analytics and their impact.

CO3: Explore the use of tools and techniques used in web analytics.

CO4: Develop experience on building websites, analysing web data insights and conversions.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 92 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction to Web Analytics	08	CO 1
	1.1	Basics, Traditional Ways, Expectations		
	1.2	Data Collection , Clickstream Data , Weblogs , Beacons		
	1.3	JavaScript Tags, Packet Sniffing		
	1.4	Outcomes data, Competitive data, Search Engine Data		
2	Quali	tative Analysis	08	CO1
	2.1	Customer Centricity, Site Visits		
	2.2	Surveys, Questionnaires, Website Surveys, Post visits, Creating and Running, Benefits of surveys		
	2.3	Critical components of successful strategy		
3	Web A	Analytics	10	CO2
	3.1	URLS, Cookies, Time on site, Page views, Understand standard reports		
	3.2	Website content quality, Navigation reports (top pages, top destinations, site overlay)		
	3.3	Search Analytics, Internal search, SEO and PPC, Measuring Email and Multichannel Marketing		
	3.4	Competitive intelligence and Web 2.0 Analytics – Segmentation – Connectable reports		
4	Googl	e Analytics	10	CO3
	4.1	Analytics, Cookies, Accounts vs. Property		
	4.2	Tracking Code, Tracking Unique Visitors ,Demographics		
	4.3	Page Views & Bounce Rate Acquisitions ,Custom Reporting		
5	Goals	& Funnels	09	CO4
	5.1	Filters , Ecommerce Tracking ,Real Time Reports, Customer Data Alert		
	5.2	Adwords Linking, AdSense Linking, Attribution Modeling		
	5.3	Segmentation ,Campaign Tracking , Multi-Channel Attribution		
#Self-lear	rning:	Web Intelligence 4.1 EDDIE Tool		
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 93 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Avinash Kaushik	Web Analytics 2.0: The Art of Online Accountability and Science Of Customer Centricity	Sybex	1st edition, 2009
2.	Michael Beasley	Practical Web Analytics for User Experience: How Analytics can help you Understand your Users	Morgan Kaufmann	2013
3.	Magy Seif El-Nasr, Anders Drachen, Alessandro Canossa, eds.	Game Analytics: Maximizing the Value of Player Data	Springer	2013
4.	Bing Liu	Web Data Mining: Exploring Hyperlinks, Content, and Usage Data	Springer	2nd Edition, 2011
5.	Justin Cutroni	Google Analytics	O'Reilly	2010
6.	Eric Fettman, Shiraz Asif, Feras Alhlou	Google Analytics Breakthrough	John Wiley & Sons	2016

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 94 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U06O704	Massive Graph Analysis							
		TH	P		TUT		Total	
Teaching Scheme(Hrs.)		03						03
Credits Assigned		03						03
	Marks							
Examination Scheme	CA		ESE	TW		D	P&O	Total
Zammación Seneme	ISE	IA	ESE	TW	О	P	rau	Total
	30	20						50

Course Prerequisites (if any):

Advanced database, data mining and Business Intelligence

Course Objectives:

- 1. To explore basic concepts of graph structured data and its Algorithms.
- 2. To learn different ways of modeling to store, retrieve and analyze the graph structured data.
- 3. To understand the applications of graph analytic techniques and advanced concepts in graph analytics

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: To explore the concept of Graphs and to learn modeling and storing graph-structured data and related algorithms

CO2: To retrieve and analyze graph-structured data.

CO3: To understand the advanced concepts in graph analytic techniques

CO4: To understand applications of graph analytics.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 95 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	duction - Large Scale Graphs	7	CO1
	1.1	Support for Graph Processing, Mapping Graph Algorithms to		
		Architectures, applications of large Characteristics of large		
		scale graph, Complex data sources, Social Networks,		
		Simulations, Bioinformatics; Categories- Social, Endorsement,		
		Location, Co-occurrence graphs; Graph Data structures,		
		Parallel, Multicore, & Multithreaded Architectural		
		scale graphs		
2		-scale Graph Analysis	12	CO2
	21	Parallel Prefix & List Ranking, Link Analysis, Page Ranking Algorithms		
	2.2	Parallel BFS, Spanning Tree, Connected Components, Minimum Spanning Tree Matroid Algorithm		
	2.3	Social Networking Algorithms, Parallel Betweeness Centrality.		
3	Dyna	mic Parallel Algorithms	10	CO2
	3.1	Streaming Data Analysis -Data Structures for Streaming Data - Tracking Clustering Coefficients -		
	3.2	Tracking Connected Components -Anomaly Detection,		
		Massive-Graphs in Computational Biology, Genome		
		Assembly.		
4	Distri	buted Computation for Massive Data Sets	8	CO3
	4.1	Spectral, Modularity-based Clustering, Random Walks; Large		
		Graph Representation and Implementation- V-Graph		
		Representation, Map Reduce, Surfer, Graph Lab.		
5	Advar	nced Massive Graph Analysis topics	08	CO4
		Power Law Distribution, Game-Theoretic Approach, Rank		
	5.1	Aggregation and Voting Theory, Recommendation Systems,		
		Social network analysis: case study -Facebook, LinkedIn,		
		Google+, and Twitter.		
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 96 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Matthew O. Jackson	Social and Economic Networks	Princeton University Press	2010
2.	Stanley Wasserman, Katherine Faust	Social Network Analysis: Methods and Applications	Cambridge University Press	1995
3.	Tanja Falkowski,	Community Analysis in Dynamic Social Networks	University Magdeburg	2009
4.	Ladislav Novak, Alan Gibbons	Hybrid Graph Theory and Network Analysis	Cambridge Tracts in Theoretical Computer Science	2009
5.	Eric D. Kolaczyk	Statistical Analysis of Network Data Methods and Models	Springer Series in Statistics	2009

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 97 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

SEMESTER - VIII

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 98 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title								
116U01E851	Bioinformatics								
	r	TH P TUT Total						Total	
Teaching Scheme(Hrs.)			-	•			02		
Credits Assigned		02						02	
				Marks					
Examination	CA		ESE	(DXX)	TIME O	P	P&O	Total	
Scheme	ISE IA		ESE	TW	O	I I WO		1 Otal	
	30	20	50					100	

Course prerequisites (if any):

Basic concepts of Programming

Course Objectives

The objective of this course will be to introduce students to the fundamentals of molecular biology and recent advances in genomics technology. The development of bioinformatics as an interdisciplinary field has introduced many sophisticated tools and techniques, to organize the information associated with biological molecules and contribute to our understanding of biological processes. On a larger scale, this has led to many practical applications, not only providing greater depth to biological research but also adding other dimensions to engineering applications. This course also aims to provide students with a practical and hands-on experience with common bioinformatics tools and databases.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Understand the scope of Bioinformatics
- CO2 Understand popular bioinformatics database
- CO3 Learn Fundamentals of Databases and Sequence alignment
- CO4 Process, analyze, and manage biological information through Machine Learning Algorithms.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 99 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1		duction to Bioinformatics	06	CO 1
	1.1	Bioinformatics- History, Computational biology,		
		Biological computing, Applications		
	1.2	Human Genome Project: History, Significance &		
		applications. Introduction to important bioinformatics		
_		databases (NCBI, Uniprot, PDB and others)		
2		ithms for biological sequence analysis	07	CO2
	2.1	Introduction to python for bioinformatics, Visualization		
		of Genomics, Sequencing technologies: Overview,		
		Genome Assembly, Genome Annotation, Comparing		
		Genomes		
	2.2	Pairwise sequence analysis, Multiple sequence analysis		
3	Introd	duction to protein structure prediction	07	CO3
	3.1	Predictive methods using protein sequences – protein		
		identification, physical properties, motifs and patterns		
	3.2	3D structure prediction techniques, structure		
		classification, Secondary structure prediction, Tertiary		
		structure prediction		
4	Mach	ine Learning for Bioinformatics	06	CO4
	4.1	Intelligent systems, Hidden Markov model(HMM),		
		Bayesian network(BN), Symbolic machine		
		learning(Decision and identification trees), Application		
		of Artificial intelligence(AI) for bioinformatics,		
	4.0	A 1' (' C A ('C' ' 1 ' (11' (AT) C		
	4.2	Application of Artificial intelligence (AI) for		
		bioinformatics, Artificial neural network (ANN), and		
		Stochastic context free grammar (SCFG), Genetic and		
		Lamarckian algorithms.		
5	Appli	cations of Bioinformatics	04	CO4
	5.1	Secondary Structure Prediction of Protein		
		Secondary structure: basic principles on which the		
		prediction methods of first, second and third generation		
		are based		
	5.2	Algorithm of Chou-Fasman, GOR methods, other		
		methods, predicting secondary structures using these		
		methods and analysis		<u> </u>
		#Self-learning: Comparative and Functional		
		Genomics, Concepts in measuring the accuracy of		
		prediction (Q3, segment overlap, Mathew's		
		correlation coefficient etc.)		
		Total	30	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 100 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Pierre Baldi	Bioinformatics: The Machine Learning Approach (Adaptive Computation and Machine Learning series	Bradford	2008
2.	Dan E. Krane	Fundamental Concepts of Bioinformatics	Pearson	2009
3.	Andreas Baxevanis	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins	Wiley- Interscience	2001

Page 101 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01L851	Bioinformatics							
	7	TH P TUT Total						
Teaching Scheme(Hrs.)	-			02		-	02	
Credits Assigned		-		01		-	01	
				Marks				
Examination	CA	CA		(DXX)		De o	TD 4 1	
Scheme	ISE	IA	ESE	TW	О	P&O	Total	
				25	25		50	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Bioinformatics". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 102 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code		Course Title								
116U01E852	Ac	Advanced Algorithms: Design and Analysis								
	Т	TH		P)	,	TUT	Total		
Teaching Scheme(Hrs.)							02			
Credits Assigned		02						02		
				Marks						
Examination	CA		ECE	/DXX/	0	D	P&O	Total		
Scheme	ISE IA		ESE	TW	O	P	rau	Total		
	30	20	50					100		

Course prerequisites (if any): Data structures, Analysis of algorithms

Course Objectives

This course is concerned with the study of algorithms for solving practical problems efficiently, and the theoretical analysis of their performance. There will also be an introduction to complexity theory, the formal study of algorithm performance. The algorithm categories considered for study are greedy algorithms, dynamic programming, network flow algorithms, graph algorithms, and approximation algorithms.

The goal of this course is to develop the appropriate background, foundation and experience for advanced study in Computer algorithms and their performance. Students will develop the necessary skills from both a theoretical perspective as well as applying their knowledge on various problem solving strategies.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Derive complexity of algorithms using various techniques
CO2	Analyze and solve problems for various problem solving strategies
CO3	Solve path computation and network flow problems using various approaches
CO4	Acquire knowledge of advanced data structures like trees and heaps
CO5	Analyze performance Approximation algorithms over traditional solutions

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 103 of 125

Department of Computer Engineering

Modul e No.	Unit No.	Details of Topic	Hrs.	СО
1		Introduction to analysis of Algorithms		CO 1
	1.1	Design and Analysis Fundamentals, Performance analysis, space and time complexity.	04	
	1.2	Algorithm analysis and Problem Solving: Master's theorem, Substitution method		
2		Algorithmic strategies for problem solving		CO 2
	2.1	Comparison of algorithmic strategies: Divide and Conquer, Greedy strategy, Dynamic Algorithms, backtracking, branch and bound.	06	
	2.2	Demonstrate best algorithmic strategy for Traveling Salesman problem (greedy, dynamic, backtracking, branch and bound), Knapsack problem (greedy, dynamic, backtracking, branch and bound)		
3		Graph Algorithms		CO 3
	3.1	Johnson's method for shortest path in graphs	06	
	3.2	Flow Networks in Graphs: The Ford Fulkerson method, Push relabel algorithms, The relabel to front algorithm		
4		Advanced Data Structures		CO 4
	4.1	Introduction to trees and heap Red-Black Trees: properties of red-black trees ,Operations on Red-black trees	06	
	4.2	Binomial Heaps: Binomial trees and binomial heaps, Operation on Binomial heaps	-	
	4.3	Applications of advanced data structures		
5		Approximation Algorithms		CO 5
	5.1	P, NP, NP Complete, NP HARD complexity classes, Reduction method for NP class problems to NP Complete class	08	
	5.2	Approximation Algorithms: The vertex cover problem, The set covering problem, The traveling salesman problem, sum of subsets problem.		
		Total	30	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 104 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein	Introduction to Algorithms	PHI, India	Second Edition
2	Rajeev Motwani, Prabhakar Raghavan,	Randomize d Algorithm	Cambridge University Press	First Edition/ South Asia Edition
3	Peter Norvig and Stuart J. Russell	Artificial Intelligence: A Modern Approach	Pearson Educatio n	5 th Edition
4	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,	Introduction to Algorithms	РНІ	2 nd Edition
5	Horowitz, Sahani and Rajsekaran	Fundamental s of Computer Algorithms	Galgotia	2 nd Edition
6	Harsh Bhasin,	Algorithms – Design and Analysis ,	Oxford	1 st Edition, 2015

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 105 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title							
116U01L852	Advanced Algorithms: Design and Analysis							
	7	ГН]	P	TUT	Total	
Teaching Scheme(Hrs.)	-			02		-	02	
Credits Assigned		-		0	1	-	01	
		Marks						
Examination	Examination CA Scheme ISE I		ECE	TEXX/	0	De O	T-4-1	
Scheme			ESE	TW	0	P&O	Total	
				25	25		50	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Advanced Algorithms: Design and Analysis". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 106 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E853	Internet of Everything								
	Т	TH P TUT Total						Total	
Teaching Scheme(Hrs.)							02		
Credits Assigned	(02						02	
				Marks					
Examination	CA		ECE	TEXX?	0	D	P&O Total		
Scheme	ISE IA		ESE	TW	U	P	rau	1 Otal	
	30	20	50					100	

Course prerequisites (if any):Microcontroller and Embedded system

Course Objectives

The objectives of this course are to

Learn concepts of Internet of things and analyze IoT application data using Analytics for designing and developing small IOT applications.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Interpret the Internet of Things concepts and c challenges
- CO2 Evaluate the software and hardware platforms for IoT Technologies
- CO3 Analyze IoT application data using IoT Analytics.
- CO4 Design and develop small IoT applications.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 107 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Module	Unit	Details	Hr	CO
No.	No.		S.	
1		Introduction to Internet of Things	03	CO1
	1.1	Physical Design		
	1.2	Logical Design		
	1.3.	IoT Enabling Technologies		
2		Domain Specific IoTs	05	CO1
	2.1	Home Automation.		
	2.2	Environment, Energy		
	2.3	Health & Life Style		
3		IoT & M2M	05	CO2
	3.1	Difference Between IoT & M2M		
	3.2	SDN & NFV for IoT		
4		IoT Physical Devices	05	CO2
	4.1	Basic Arduino Programming		
	4.2	Arduino – Based Internet Communication,		
	4.3	Raspberry PI		
	4.4	Sensors and Interfacing.		
5		IoT design Methodology	05	CO4
	5.1	Generic Design Methodology		
	5.2	Application Development Steps		
6		IOT Analytics	05	CO3
	6.1	Business Process in IoT		
	6.2	IoT Analytics with cloud		
	6.3	Edge analytics		
7		Self-learning :Case Study	02	CO4
	7.1	Agriculture		
	7.2	Industrial Application		
		Total	30	

Page 108 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with country	Year of Publication
10.	Arshdeep Bhaga and Vijay Madisetti	"Internet of Things (A Hands-on-Approach)",University Press	Tata McGraw- Hill ,India	4 th edition ,2015
11.	Hakima Chaouchi	"The Internet of Things (Connecting objects to the web)"	Wiley publication	1 st edition,2014
12.	Hakim Cassimally and Adrian McEwen	"Designing the Internet of things"	Wiley publication	1 st edition,2013
13.	Marina Ruggieri, Homayoun Nikookar,	"Internet of Things - From Research and Innovation to Market"	River Publisher,	1 st edition,2014
14.	Ahriram K Vasudevan,Abhishek Nagarajan,RMD Sundaram	Internet of Things	Wiley Publication	1 st edition ,2019

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 109 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title									
116U01L853	Internet of Everything									
	[TH P TU								
Teaching Scheme(Hrs.)	-			02		-	02			
Credits Assigned		-		01		-	01			
		Marks								
Examination	CA	CA		(DXX)		De-O	Total			
Scheme	ISE	IA	ESE	TW	О	P&O	Total			
				25	25		50			

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Internet of Everything". Students will be graded based on continuous assessment of their term work.

L Y B. Tech COMP. SVU 2020 - R 1.0 Page 110 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E854	Deep Learning								
	TH				P		TUT	Total	
Teaching Scheme(Hrs.)	02							02	
Credits Assigned		02						02	
	Marks								
Examination Scheme _	CA		EGE			D	P&O	Total	
Examination Scheme	ISE	IA	ESE	TW	O	P	1 &0	Total	
	30	20	50					100	

Course prerequisites:

Linear Algebra, Calculus (vectors, matrices, basic integrals), Probability (Bayes theorem, expectation, variance) & basic machine learning (linear models, regression, decision trees).

Course Objectives:

This course covers the basics of machine learning, neural networks and deep learning. Model for deep learning techniques and the various optimization and generalization mechanisms are included. Major topics in deep learning and dimensionality reduction techniques are covered. The objective of this course is:

- 1. To present the mathematical, statistical and computational challenges of building neural networks
- 2. To study the concepts of deep learning
- 3. To introduce dimensionality reduction techniques
- 4. To enable the students to know deep learning techniques to support real-time applications
- 5. To examine the case studies of deep learning techniques

Course Outcomes:

At the end of successful completion of the course the student will be able to

- 1. Use best practices to train and develop test sets and analyze bias/variance, standard neural network techniques & optimization algorithms for building DL applications.
- 2. Build & analyze CNN architecture and apply it to image detection and recognition tasks.
- 3. Use and apply unsupervised deep learning models on different applications.
- 4. Apply & analyze different RNN models on text applications.
- 5. Understand the concepts of different sequence models & attention mechanisms.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 111 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	1	Name of the subject: Deep Learning	T	1
1	Basic m	achine learning & deep learning concepts		
	1.1	Tr. 1 1. 1. 1. 1.		
	1.1	Introduction to machine learning models.		
	1.2	Intro to Neural Nets: What a shallow network computes-	05	CO1
	1.2	Training a network: loss functions	US	CO1
	1.3	Back propagation and gradient descent concepts.		
	1.4	Learning rates and data normalization, activation		
		functions, Optimizers, Regularization, Dropout,		
	D N.	Momentum & Batch Norm.		
2	Deep No	etworks: Convolutional neural network		
	2.1	History of Deep Learning- A Probabilistic Theory of		
	2.1	1 2	07	CO2
	2.2	Deep Learning, Neural Nets-Deep Vs Shallow Networks- Convolutional Neural Networks: Motivation,		COZ
	2.2			
	2.3	Convolution operations, Pooling Image classification		
	2.4	CNN architectures (VGG, ResNet, etc.)		
3	Auto en			
3	Auto en	coders		
	3.1	Autoencoders, Denoising autoencoders & Sparse	0.6	
	3.1	autoencoders,	06	CO3
	3.2	Generative Adversarial Network		
	3,2	Generative Haverburian ivetwork		
4	Recurre	ent Neural Networks		
	4.1	RNN, back propagation through time, different types of		
		RNN & Vanishing/Exploding gradient problem	08	CO4
	4.2	RNN architectures (LSTM, GRU, etc.)	00	
	4.3	Word embedding, Word2Vec, negative sampling		
	#Self-Lo	earning: Bi directional RNN & LSTM & GloVe		
5	Sequence	ce Models		
		T		
	5.1	Basic sequence model – encoder decoder architecture		
	5.2	Beam search concept, Attention Model Intuition &	04	CO5
	//C *** **	Attention Model.		
		earning topic: Applications of Deep Learning to Computer		
		Image segmentation, object detection, automatic image		
	captioni	ng, video to text with LSTM models	20	
		Total	30	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 112 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
1.	Ian Goodfellow, YoshuaBengio, Aaron Courville	Deep Learning	An MIT Press book	Publication 2016
2.	Deng & Yu	Deep Learning: Methods and Applications	Now Publishers	2013
3.	Michael Nielsen	Neural Networks and Deep Learning	Determination Press	2015
4.	Josh Patterson , Adam Gibson	Deep Learning: A Practitioner's Approach	Shroff/O'Reilly	First edition (2017)
5.	Nikhil Buduma, Nicholas Locascio	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms	O'Reilly Media	First edition (June 29, 2017)

Page 113 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L854	Deep Learning								
	7	TH P TUT Total							
Teaching Scheme(Hrs.)		02		-	02				
Credits Assigned		-		0	1	-	01		
		Marks							
Examination	CA		ECE	TW	О	P&O	T-4-1		
Scheme	ISE	IA	ESE				Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Deep Learning". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 114 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E855	Business Analytics								
	1	P			TUT	Total			
Teaching Scheme(Hrs.)	02							02	
Credits Assigned		02						02	
	Marks								
Examination Scheme	CA			CENTAL C	o	_	D 0 0	(T) 4 1	
Examination Scheme	ISE	IA	ESE	TW		P	P&O	Total	
	30	20	50					100	

Course Prerequisites (if any):

Engineering mathematics and spread sheet

Course Objectives:

- 1. The course is an introduction to Business Analytics. It covers managerial statistical tools in descriptive analytics and predictive analytics for trend line analysis and forecasting with time series, risk analysis, simulation, and data mining, and decision analysis.
- 2. This course provides students with the fundamental concepts and tools needed to understand the emerging role of business analytics in organizations and shows students how to apply basic business analytics tools in a environment, and how to communicate with analytics professionals to effectively use and interpret analytic models and results for making better business decision.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand ad perform Business analytics, Database analytics from a variety of business scenarios

CO2: Applying statistical inference techniques to conduct and interpret result of hypothesis testing

CO3: Use of Trend-lines and Regression analysis to fit models to data

CO4: Understand forecasting model based on time series

CO5: Apply expected values in making the decision.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 115 of 125

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO	
No.	No.				
1	Intro	duction to business analytics			
	1.1	Introduction, Evolution, Types of analytics, Models, Data for			
		Business analytics, problem solving with Analytics	06	CO1	
	1.2	Basic Excel Skills, Database analytics: Data sets and data			
		bases, Data queries, praetor analysis, data base functions			
2	Descr	iptive Analytics			
	Statist	ical Inference- hypothesis testing- one sample, two sample,	06	CO2	
	Analy	sis of variance(ANOVA), Chi-square	00	CO2	
	Case s	study: Customer care			
3	Predic	ctive Analytics			
	Trend	l lines and regression analysis:			
		e linear regression, multiple linear regression, building	06	CO3	
	regres	sion model, regression model with categorical variables,	00	COS	
	regres	sion model with Non-linear terms			
	Case s	study: Revenue management,			
4	Forec	asting Techniques			
	Oualit	ative& Judge mental forecasting, statistical Forecasting models,			
	_	06	CO4		
		sting models for stationary time series, FM for Time series with ear Trend, Forecasting Time series with Seasonality, regression	00	004	
		asting with casual variables			
		study: Sales Performance			
5		ion Analysis			
	Makir	ng decisions			
	Objectives, formulating decision problems, decision strategies				
		at outcome probability, Decision trees, decision with sample	06	CO5	
		nation, utility and decision making			
		study:Mortgage, Sensitivity analysis			
	•	Total	30		

Page 116 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of	Edition and
			Publisher	Year of
			with country	Publication
1.	James R. Evans	Business Analytics	Pearson	3rd Edition,
				2014
2	Sandhya Kuruganti,	Business Analytics	Mc, Graw Hill	1 st Edition
	Hindol Basu	Applications to	Education	2015
		consumer Marketing		
3	Albright, Winston	Business Analytics data	Cenage	5 th Edition
		analysis and decision		2015
		making		

Page 117 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01L855	Business Analytics								
	7	TH P TUT Total							
Teaching Scheme(Hrs.)		02		-	02				
Credits Assigned		-		0	1	-	01		
		Marks							
Examination	CA	CA		(D) X X /		D 0 0	T-4-1		
Scheme	ISE	IA	ESE	TW	О	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Business Analytics". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 118 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E861	Game Programming								
	,	P		TUT		Total			
Teaching Scheme(Hrs.)			-	-			02		
Credits Assigned		02						02	
	Marks								
Examination	CA		ECE	(DXX)		Ъ	P&O	Total	
Scheme	ISE	IA	ESE	TW	O	P	rao	1 Otal	
	30	20	50					100	

Course prerequisites (if any):

Computer Graphics, Mathematics, Basic Physics, Data Structure and Algorithms

Course Objectives

Understand the concepts of Game design and development. Learn the processes, mechanics and issues in Game Design. Be exposed to the Core architectures of Game Programming. Know about Game programming platforms, frame works and engines.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Understand and choose appropriate game architecture
- CO2 Design a game using appropriate development environment
- CO3 Implement a game with detailed components
- CO4 Optimize, debug and publish an ethical games

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 119 of 125

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.		0.4	G 0 1
1		luction to game programing	04	CO1
	1.1	Game Architecture		
		Applying the Game Architecture		
		Application Layer		
		Game Logic		
		Game View for the Human Player Game Views for AI Agents		
		Networked Game Architecture		
		Design Philosophy of DirectX		
2	Harde	core Game Programming		
4	Haruc	ore Game Programming	04	CO 2
	2.1	Introduction to Game Design		
		Data Structures and Algorithms for Game Programming		
		The Mathematical Side of Games		
		Introduction to Physics Modeling		
3	Buildi	ng Your Game	07	CO 2
	3.1	Creating a Project		
		Source Code Repositories and Version Control		
		Building the Game: A Black Art?		
		Creating Build Scripts		
		Game Initialization and Shutdown		
4		Actors and Component Architecture and Controlling the	08	CO3
	Main	Loop	Uð	CO3
	4.1	Game Actors and Component Architecture		
		A First Attempt at Building Game Actors		
		Component Architecture		
		Creating Actors and Components		
		Defining Actors and Components		
		Storing and Accessing Actors		
		Putting It All Together		
		Data Sharing		
	4.2	Controlling the Main Loop		
		Organizing the Main Loop		
		Playing Nicely with the OS		
		Using the DirectX		
		Can I Make a Game Yet?		
		Creating Game Mission**		
		#Self-Learning: Creating Sound		
5		ng and Caching, Optimization, Debugging and Publishing	07	CO 4
	5.1	Loading and Caching Game Data		
		Game Resources: Formats and Storage Requirements		
		Resource Files		
		The Resource Cache		
	7 2	Out of Cache		
	5.3	Optimization and Debugging		
		The Art of Handling Failure		
		Debugging Basics		

Page 120 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	Total	30	
	#Self-learning: Case Studies: Ethical and Unethical games		
	The Ethics of Game Design		
	Unethical Game Content and Effect Studies		
	Applying Ethics		
5.4	The Ethics of Computer Games		
5.3	Game engine, Game Server and Client		
	Game Publishing		
	Profiling		
	Different Kinds of Bugs		
	Building an Error Logging System.		
	Debugging Techniques		
	Graphics and Shader Debugging		

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 121 of 125

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Mike "MrMike"	Game Coding	Cengage	Fourth Edition
	McShaffry and David	Complete	Learning.	2013
	"Rez" Graham		USA	
2.	André LaMoth	Game	Premier Press,	Second
		Programming	Inc, USA	Edition, 2002
		All in One		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 122 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title							
116U01L861	Game Programming							
	7]	P	TUT	Total			
Teaching Scheme(Hrs.)	-			02		-	02	
Credits Assigned		-		0	1	-	01	
	Marks							
Examination	CA	CA		(DXX/	0	De O	Total	
Scheme	ISE	IA	ESE	TW	U	P&O	Total	
				25	25		50	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Game Programming". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 123 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Co			urse Tit	le			
116U01E862	IoT Security				ity			
	TH			P)	,	TUT	Total
Teaching Scheme (Hrs.)	(03	
Credits Assigned	03				-			03
	Marks							
Examination Scheme	CA		ECE	TW		D	De O	T-4-1
L'Admination Scheme	ISE	IA	ESE	TW	О	P	P&O	Total
	30	20	50					100

Course Prerequisites (if any):

Microcontroller and embedded system, Security

Course Objectives:

To expose students to new developments in the areas of cybersecurity for the Internet of Things (IoT).

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Understand IoT background in terms of applications and challenges.
- CO2 Analyze possible approaches and practices to meet IoT security challenges.
- CO3 Comprehend proposed frameworks to address IoT security.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 124 of 125

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.	Ladia da T. M	00	001
1	1.1	Internet of Things Today and Tomorrow	08	CO1
	1.1	The internet of Timigs Today and Tomorrow		
	1.2	Characteristics of IoT		
	1.3	IoT Layered Architecture		
	1.4	IoT Function View		
	1.5	IoT Application Areas and IoT Smart-X Applications		
	1.6	Security, Privacy and Trust		
2	IoT cl	nallenges	06	CO1
	2.1	IoT Threats to Individuals and Organizations		
	2.2	IoT challenges for Governance, Security and Privacy		
	2.3	Challenges to Secure IoT Deployments		
		#Self-Learning —Readings: Internet of Things — New security	1	
		and privacy challenges-Paper by Rolf H. Weber		
3	Recor	nmended Security Approaches	06	CO2
	3.1	Analyze privacy impacts to stakeholders and adopt a Privacy- by-Design approach to IoT development and deployment.		
	3.2	Threat Modeling		
	3.3	Implement layered security protections to defend IoT assets		
	3.4	Define Life Cycle Security Controls for IoT devices		
		#Self-Learning – Readings: IoT System Security Issues and Solution Approaches (Paper)		
4	_	ment data protection best practices to protect sensitive nation	02	CO3
	4.1	Data Management.		
	4.2	Data Identification, Classification, Security		
		#Self-Learning- Readings: Security of Smart Objects in IOT		
5	IoT S	ecurity Framework	05	CO3
	5.1	Dynamic Context- Aware Scalable and trust-based IoT Security, Privacy Framework- Concepts and Motivation of Framework		
	5.2	A Policy-based Framework for Security and Privacy in IoT		
	5.3	An authentication/authorization framework for the organization's IoT Deployments		
	5.4	A Logging and Audit Framework for the Organization's IoT Ecosystem		

Page 125 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

6	OWA	OWASP – IoT					
	6.1	OWASP IoT Top Ten Attacks, IoT Vulnerabilities					
	6.2	IoT Framework assessment					
	6.3	IoT Security Guidance					
		Total	30				

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Page 126 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Marina Ruggieri, Homayoun Nikookar,	"Internet of Things - From Research and Innovation to Market"	River Publisher,	2014
2.	Sebastien Ziegler	"Internet of Things security and data protection"	Springer	2017
3.	Shancang Li, Li Da Xu	"Securing the Internet of Things"	Syngress	April 2015
4.	Sridipta Misra, Salman Hashmi, Muthucumaru Maheswaran	Security Challenges and Approaches in Internet of Things	Springer	Sept 2016
5.	Sunil Cheruvu, Ned Smith, Anil Kumar, David M. Wheeler	Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment	Apress Open	August 2019

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 127 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title							
116U01L862		IoT Security						
	,	TH P					Total	
Teaching Scheme(Hrs.)			02		-	02		
Credits Assigned		-		0	1	-	01	
		Marks						
Examination	CA		ECE	TXX	0	De-O	Total	
Scheme	ISE	IA	ESE	TW	0	P&O	Total	
				25	25		50	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "IoT Security". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 128 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code		Cours	e Titl	le				
116U01E863			r Phys	Physical System				
	TH			P)		TUT	Total
Teaching Scheme(Hrs.)	02							02
Credits Assigned		02						02
				Ma	arks			
Examination Scheme	CA	CA		TT X X 7		O D	De O	Total
Examination Scheme	ISE	IA	ESE	TW	O	P	P&O	Total
	30	20	50					100

Course Objectives

CPS mainly consists of physical systems tightly integrated and/or controlled by software, are ubiquitous in many safety critical domains, including automotive, avionics, railways, healthcare, atomic energy, power, and industrial automation. The principles of design and implementation of cyber-physical systems are remarkably different from that of other embedded systems because of the tight integration of real valued and dense time real time systems with software based discrete automated control. The objective of this course is to develop an exposition of the challenges in implementing a cyber-physical system from a computational perspective, but based equally on the principles of automated control. The course aims to expose the student to real world problems in this domain and provide a walk through the design and validation problems for such systems.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Understand the basic principles of CPS
- CO2 Identify the CPS components and relevant dynamical aspects
- CO3 Develop an exposition of the challenges in implementing a cyber-physical system
- CO4 Understand Intelligent CPS models and controls
- CO5 Understand CPS security and safety aspects

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	luction to Cyber-Physical Systems	4	CO1
	1.1	Cyber-Physical Systems (CPS) in the real world, Basic principles of design and validation of CPS, Industry 4.0, AutoSAR, IIOT implications, Building Automation, Medical CPS.		
2	CPS (Components	8	CO2
	2.1	CPS - Platform components — CPS HW platforms - Processors and Its Types, Sensors:- Types & Working Principle, Actuators- Hydraulic, Neumatic, Pneumatic and Electrical, CPS Network - HART, WirelessHart, CAN, Automotive Ethernet,		

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 129 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

5	4.1 Secure 5.1	Safe Reinforcement Learning- Robot motion control, Autonomous Vehicle control, Gaussian Process Learning- Smart Grid Demand Response, Building Automation e Deployment of CPS Secure Task mapping and Partitioning, State estimation for attack detection, Automotive Case study: Vehicle ABS hacking, Power Distribution Case study: Attacks on SmartGrids #Self-Learning: Latest trends in CPS, Securing CPS systems using ML Total	5 30	CO5
5	Secur	control, Autonomous Vehicle control, Gaussian Process Learning- Smart Grid Demand Response, Building Automation e Deployment of CPS Secure Task mapping and Partitioning, State estimation for attack detection, Automotive Case study: Vehicle ABS hacking, Power Distribution Case study: Attacks on SmartGrids		
5		control, Autonomous Vehicle control, Gaussian Process Learning- Smart Grid Demand Response, Building Automation e Deployment of CPS		
		control, Autonomous Vehicle control, Gaussian Process Learning- Smart Grid Demand Response, Building Automation		
	1		0	COT
4	Intelli	gent CPS	_	CO4
	3.1	From features to automotive software components, Mapping software components to ECUs, CPS Performance Analysis - effect of scheduling, bus latency, sense and actuation faults on control performance, network congestion, BUilding real-time networks for CPS		
3	CPS i	mplementation issues	7	CO3
	2.2	Scheduling Real Time CPS tasks-Fixed & Dynamic Priority Assignments. Principles of Dynamical Systems- Controller Design Techniques:- Without Feedback, With - Feedback Control, Proportional Feedback control:- Feedback control of Wire plant, Operational Amplifiers, Constant gain plants, Dynamical Systems and Stability, Multidimensional Error and Proportional/Integral/Differential Feedback Control, Performance under Packet drop and Noise.		

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 130 of 125

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and		
No.			Publisher	Year of		
			with country	Publication		
1.	E. A. Lee, Sanjit	Introduction to Embedded	MIT Press	2nd Edition,		
	Seshia	Systems – A Cyber–		2017		
		Physical Systems Approach				
2.	Rajeev Alur	Principles of Cyber-	MIT Press	Kindle Edition,		
		Physical Systems		2015		
3.	Andr'e Platzer	Logical Analysis of Hybrid	Springer	Kindle Edition,		
		Systems: Proving		2010		
		Theorems for Complex				
		Dynamics				
4.	Houbing Song,	Cyber-Physical Systems:	Academic	1st Edition,		
	Danda B. Rawat,	Foundations, Principles and	Press	2016		
	Sabina Jeschke,	Applications				
	Christian Brecher					
5.	Houbing Song,	Security and Privacy in	Wiley-IEEE	1 st Edition, 2017		
	Glenn A. Fink,	Cyber-Physical Systems:	Press			
	Sabina Jeschke	Foundations, Principles,				
		and Applications				
6.	Walid M. Taha.	Cyber Physical System -A	Springer	1 st Edition, 2021		
	Abd-Elhamid	Model based Approach				
	M.Taha John					
	Thunberg					

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 131 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code		Course Title								
116U01L863		Cyber Physical System								
	r	TH P TUT Total								
Teaching Scheme(Hrs.)		-			02		02			
Credits Assigned		-		01		-	01			
				Marks						
Examination	CA		EGE	TEXX/	0	DO O	T-4-1			
Scheme	ISE	IA	ESE	TW	0	P&O	Total			
				25	25		50			

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Cyber Physical System". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 132 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title								
116U01E864	Natural Language Processing								
	Г	TH P					TUT	Total	
Teaching Scheme(Hrs.)	(02		
Credits Assigned	(02		
	Marks								
Examination Scheme	CA		ECE	TW		D	D&O	Total	
	ISE	IA	ESE	TW	О	P	P&O	Total	
	30	20	50					100	

Course Prerequisites (if any):

theory of computer science, probability theory, machine learning concepts & basic python programming.

Course Objectives:

This course starts with the basics of text processing including basic pre-processing, spelling correction, language modeling, Part-of-Speech tagging, Constituency, Lexical Semantics, distributional semantics and topic models. Finally, the course also covers some of the most interesting applications of NLP such as information extraction, topic modeling, text summarization & sentiment analysis

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Learn the fundamentals of natural language processing

CO2: Understand and explore the use of language modeling, POS tagging in NLP.

CO3: Understand & apply syntax analysis in NLP.

CO4: Understand the role of distributional and lexical semantics in NLP.

CO5: Apply NLP techniques to design real world NLP applications.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 133 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

No. No. Introduction to NLP & basic text processing: 1.1 NLP introduction, levels, ambiguity in natural language, stages in NLP, challenges of NLP and empirical laws in NLP. 1.2 Basic text processing: tokenization, sentence segmentation, lemmatization, Porter stemmer algorithm for stemming and Zipf's law. 1.3 One hot encoding, tfidf and computational morphology concepts. 2 Word level analysis & Language Modelling: 5 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 3.1 Syntax - Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional & semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses, WordNet, word sense disambiguation – dictionary based 4.3 Lexical semantics: Relations among lexemes & their senses, WordNet, word sense disambiguation – dictionary based	
1.1 NLP introduction, levels, ambiguity in natural language, stages in NLP, challenges of NLP and empirical laws in NLP. 1.2 Basic text processing: tokenization, sentence segmentation, lemmatization, Porter stemmer algorithm for stemming and Zipf's law. 1.3 One hot encoding, tfidf and computational morphology concepts. 2 Word level analysis & Language Modelling: 5 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
in NLP, challenges of NLP and empirical laws in NLP. 1.2 Basic text processing: tokenization, sentence segmentation, lemmatization, Porter stemmer algorithm for stemming and Zipf's law. 1.3 One hot encoding, tfidf and computational morphology concepts. 2 Word level analysis & Language Modelling: 5 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	CO1
in NLP, challenges of NLP and empirical laws in NLP. 1.2 Basic text processing: tokenization, sentence segmentation, lemmatization, Porter stemmer algorithm for stemming and Zipf's law. 1.3 One hot encoding, tfidf and computational morphology concepts. 2 Word level analysis & Language Modelling: 5 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 3 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
lemmatization, Porter stemmer algorithm for stemming and Zipf's law. 1.3 One hot encoding, tfidf and computational morphology concepts. 2 Word level analysis & Language Modelling: 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
Zipf's law. 1.3 One hot encoding, tfidf and computational morphology concepts. 2 Word level analysis & Language Modelling: 5 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
1.3 One hot encoding, tfidf and computational morphology concepts. 2 Word level analysis & Language Modelling: 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
concepts. 2 Word level analysis & Language Modelling: 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
2 Word level analysis & Language Modelling: 2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
2.1 Edit Distance in spelling correction, weighted edit distance, noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
noisy channel model for spelling correction. 2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	CO2
2.2 N-Gram language models, evaluation of language models and basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
basic smoothing. 2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
2.3 Part of speech tagging problem, Tag set for English (Penn Treebank) and hidden markov model for POS tagging. 3 Syntax analysis 6 3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
Treebank) and hidden markov model for POS tagging. Syntax analysis 3.1 Syntax — Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
3.1 Syntax – Introduction, Constituency, Constituent Phrases & Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
Context free grammar. 3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	CO3
3.2 Parsing, parse tree, top down & bottom up parsing, Dynamic programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
programming, CKY algorithm & PCFGs. Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
Self-learning: Attachment for fragment of English- sentences, noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
noun phrases, Verb phrases and prepositional phrases. 4 Distributional & Lexical Semantics: 7 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
 4.1 What is semantics, computational semantics? The distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses, 	
distributional semantic (Vector space) model, Constructing Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	CO4
Word spaces, distributional vectors. 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
 4.2 Word vectors, word2vec - a distributed representation, word embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses, 	
embedding, learning word vectors CBOW & skip gram models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
models. 4.3 Lexical semantics: Relations among lexemes & their senses,	
4.3 Lexical semantics: Relations among lexemes & their senses,	
, ,	
WordNet word sense disambiguation – dictionary based	
approaches - lesk, walker algorithm & machine learning based	
approaches.	
Self – learning: Doc2Vec, BERT & GloVe word embedding	
techniques.	
5 Discourse Analysis & NLP applications: 7	CO5
5.1 Concept of coherence, discourse structure, discourse	
segmentation, text coherence and reference resolution.	
5.2 Applications: Topic modelling, question answering, machine	
translation, summarization, sentiment analysis.	
Total 30	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 134 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with country	Year of Publication
1.	Daniel Jurafsky, James H. Martin	Speech and Language Processing	Prentice Hall	Second Edition, 2008
2.	Christopher D.Manning and HinrichSchutze	Foundations of StatisticalNatural Language Processing	MIT Press	1999
3.	Siddiqui and TiwaryU.S.	Natural Language Processing and Information Retrieval	Oxford University Press	2008
4.	Bodhisattwa Majumder; Anuj Gupta; Sowmya Vajjala; Harshit SuranaPublished	Practical Natural Language Processing	O'Reilly Media, Inc	2020
5.	Dipanjan Sarkar	Text Analytics with Python: A Practitioner's Guide to Natural Language Processing	Apress publisher	2019

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of 'Natural Language Processing'. Students will be graded based on continuous assessment of their term work. Practical which will demonstrate the Natural Language Processing concepts

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 135 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code		Course Title							
116U01L864		Natural Language Processing							
	r	TH P TUT Total							
Teaching Scheme(Hrs.)		-			02		02		
Credits Assigned		-				-	01		
]	Marks					
Examination	CA	CA		TEXX/		DO O	T-4-1		
Scheme	ISE	IA	ESE	TW	0	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Natural Language Processing". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 136 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title									
116U01E865		High Performance Computing								
		TH					TUT	Total		
Teaching Scheme(Hrs.)		02		-	-			02		
Credits Assigned		02		_	-			02		
				Marks						
Examination	CA		ECE	TXX7	0	Ъ	P&O	Total		
Scheme	ISE	IA	ESE	TW	J	P	rau	1 Otal		
	30	20	50					100		

Course prerequisites (if any): Microprocessor and Fundamentals of computer programming

Course Objectives

Purpose of this course is to study parallel architectures and Design and Development of parallel algorithms and programs. This course introduces parallel programming paradigms using tools like MPICH and OpenMP and multicore program approaches using CUDA platform.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Understand different parallel processing approaches and issues involved in it to
	achieve high computing performance.
CO2	Evaluate the parallel computing performance with different processors
	architectures.
CO3	Design and development on parallel platform.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 137 of 125

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
		Parallel processing approaches		CO1
1			06	
	1.1	Introduction to parallel processing: Levels of parallelism		
		(instruction, transaction, task, thread, memory, and		
		function).		
	1.2	Models (SIMD, MIMD, SIMT, SPMD, Dataflow Models		
	1.2	and Demand-driven Computation etc).		
	1.3	Parallel platforms:		
		Message-passing interface (MPI), Shared-memory		
		thread-based OpenMP programs, and hybrid		
		(MPI/OpenMP) programs, Hadoop, Cloud computing,		
		Multi-core Processors (GPUs), Virtual GPUs, Field		
		programmable gate array(FPGA), Tensor Processing		
		Unit (TPU)		
2	Funde	amental Design Issues and limitations in Parallel	06	
<u> </u>		outing	vv	CO1
	2.1	Issues: Synchronization, Scheduling, Job Allocation, Job		
		Partitioning, Dependency Analysis.		
	2.2	Mapping Parallel Algorithms onto Parallel Architectures,		
		Performance Analysis of Parallel Algorithms.		
	2.3	Limitations: Bandwidth Limitations, Latency		
		Limitations, Latency Hiding/Tolerating Techniques and		
		their limitations.		
3	CUDA	A : GPU Parallel development environment	06	CO2
	3.1	Compute Unified Device Architecture (CUDA)		
		Architecture, CUDA programming model, execution		
		model.		
	3.2	Thread organization: Concept of grid, block and thread.		
	3.3	Thread index generation, warp;		
4		primitives, algorithms and applications	06	CO2
	4.1	GPU primitives: scan (exclusive or inclusive), scatter,		
		gather, reduce, memory model.		
	4.2	Introduction to global, shared, local memories, usage of		
		cache, texture cache, constant memory.		
	4.3	CUDA structure, API and library (CUDPP, CUBLAS,		
	C PT	FFT etc.) details.	0.6	
5		parallel programming and application	06	CO3
	5.1	CUDA example programs (Vector dot product, Matrix		
		multiplication (with the usage of tiling and shared		
		memory) etc.		
	5.2	Graph algorithms, molecular dynamics, n-body		
		simulations, dense linear algebra etc. using GPU. Virtual		
		GPUs.		
		#Self-Learning: Tensor Processing Unit (TPU),		
		Application of AI in HPC	30	
		Total	30	

Page 138 of 125 SVU 2020 - R 1.0 L Y B. Tech COMP.

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 139 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Kai Hwang , Faye A. Briggs	Computer Architecture and Parallel Processing	McGraw-Hill	
2.	Edward Kandrot and Jason Sanders	CUDA by Example: An Introduction to General- Purpose GPU Programming	Addison-Wesley Professional	2010
3.	Alex Holmes	Hadoop in Practice	Manning Press, Dream tech Press	
4.	David Kirk, Wen-mei	UDA: Programming Massively Parallel Processors: A Hands-On Approach Hwu	ELSEVIER Inc	
5.	Michael J. Quinn	Parallel Programming in C with MPI and OpenMP	Tata McGraw- Hill Edition	
6.	Kai Hwang	Scalable Parallel Computing	McGraw Hill	1998
7.	Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar	Introduction to Parallel Computing	Addison-Welsey,	2nd edition, 2003

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 140 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code		Course Title							
116U01L865		High Performance Computing							
	Г	TH P TUT Total							
Teaching Scheme(Hrs.)		-			02		02		
Credits Assigned		-				-	01		
		Marks							
Examination	CA	CA		(DXX/		D.C.	T-4-1		
Scheme	ISE	IA	ESE	TW	О	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "High Performance Computing". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 141 of 125

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Course Code	Course Title									
116U01E866	Blockchain Architecture and Application Development									
	TH				P			Total		
Teaching Scheme(Hrs.)	02			-				02		
Credits Assigned		02		-	-			02		
				Marks						
Examination	CA		ECE	(E)XX/	TIME O	Р	P&O	Total		
Scheme	ISE	IA	ESE	TW	VO	ľ	rau	1 Otai		
	30	20	50					100		

Course prerequisites:

- Basic of Blockchain
- Networking Concepts,
- Object Oriented Programming Skills,
- Cryptography
- Network Security Concepts.

Course Objectives:

The objective of this course is to provide conceptual understanding of how block chain technology can be used to innovate and improve business processes. The course covers the technological underpinning of block Chain operations in both theoretical and practical implementation of solutions using block Chain technology.

Course Outcomes:

- CO1 Develop applications in Solidity language & Multiple Technology-based developments.
- CO2 Develop block chain based solutions and write smart contract using Hyperledger Fabric and Ethereum frameworks.
- CO3 Illustrate in-depth understanding of Blockchain, Smart Contracts & it's working
- CO4 Integrate ideas from various domains and implement them using block chain technology in different perspectives.
- CO5 Use Block chain Technology for Enterprise applications

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 142 of 125

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	СО
	Sma	rt Contract Development and Deployment		
	1.1	Introduction to Smart Contracts, Types of Smart Contracts, Structure of a Smart Contract, Smart Contract Approaches, Limitations of Smart Contracts.		
1	1.2	Programming for Blockchain: Introduction to Programming: Solidity Programming – Basics, functions, Visibility and Activity Qualifiers, Address and Address Payable, Bytes and Enums, Arrays- Fixed and Dynamic Arrays, Special Arrays-Bytes and strings, Struct, Mapping, Inheritance, Error handling.	12	CO2 CO3
	Go Et	hereum		
2	2.1	Introduction to Go Ethereum (Geth), Geth Installation and Geth CLI, Setting up a Private Ethereum Blockchain. Introduction to Truffle: Smart Contract deployment on a Private Blockchain. Introduction to Ganache.	04	CO1
	Enter	prises Blockchain		
	3.1	Hyperledger Fabric Chaincode: Chaincode, Gradle, Chaincode Development Chaincode Package, Install, Approve.		CO2
3	Multichain: Introduction to Multichain, Multichain Installation, Create a Multichain Instance, Multichain Assets, Multichain Streams, Multichain Consensus, Multichain API.		10	CO2 CO5
	Use C	ases		
4	4.1	 Setup Hyperledger Fabric. Set up Multichain in the Local Machine. Create a Private Multichain Blockchain. 	4	CO4
		Total	30	

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 143 of 125

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
4.	Andreas M. Antonopoulos	Mastering the Bitcoin: Programming the Open Blockchain	O' Reilly	2 nd Edition, 2017
5.	Melanie Swan	Blockchain	O'Reilly	2015
6.	Nitin Gaur, Luc Desrosiers, Petr Novotny, Venkatraman Ramakrishna	Hands-On Blockchain with Hyperledger: Building decentralized applications with Hyperledger Fabric and Composer	Packt	Kindle Edition, 2018
4.	Stephen Fleming business ecosystems	Blockchain Technology: Introduction to Blockchain Technology and its impact on	Stephen Fleming	2017
5.	Zeeshan-ul- hassan Usmani	Introduction to lockchain with Case Studies	Guhftgu Publication	2018

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 144 of 125

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Code	Course Title								
116U01L866	Blockchain Architecture and Application Development								
	TH			P		TUT	Total		
Teaching Scheme(Hrs.)	-		02		-	02			
Credits Assigned	-		01		-	01			
		Marks							
Examination	CA		ECE	/DXX/	0	De O	T-4-1		
Scheme	ISE	IA	ESE	TW	0	P&O	Total		
				25	25		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course "Blockchain Architecture and Application Development". Students will be graded based on continuous assessment of their term work.

SVU 2020 - R 1.0 L Y B. Tech COMP. Page 145 of 125