Corte, deslize, compare e conclua

Alguns problemas de Geometria podem ser resolvidos com...tesoura, cola e xerox! Numa prova, talvez estes não sejam os instrumentos mais adequados; então vamos recortar, colar, ampliar e reduzir no papel mesmo e tentar enxergar o que acontece sem realmente fazermos essas operações.

Não poderíamos deixar de lado o teorema mais famoso da Matemática.

1. Duas demonstrações do teorema de Pitágoras

Todos conhecem o teorema de Pitágoras.

Teorema 1.1. (Teorema de Pitágoras) Num triângulo retângulo, o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.

Vamos demonstrar o teorema de duas maneiras: uma na forma de um poema em inglês e outra recortando e colando...uma rosquinha!

Primeira demonstração.

A demonstração e o poema a seguir é de George Biddle Airy, que foi astrônomo real britânico de 1836 a 1881.

Tradução:

Aqui, estou, como você pode ver,

$$a^2 + b^2 - ab$$

Quando dois quadrados em mim se apóiam,

O quadrado da hipotenusa é evidente;

Mas se sou eu quem neles se apóia

Os quadrados de ambos os lados são lidos.

Segunda demonstração.

A figura a seguir mostra como recortar dois quadrados de um quadrado só.

O triângulo retângulo em questão é o que tem como hipotesuna o lado esquerdo do quadrado.

Vamos demonstrar que os polígonos que temos realmente são dois quadrados. Primeiro, note que os dois triângulos retângulos com hipotenusas iguais ao lado esquerdo e ao lado superior do quadrado são congruentes. Então, considerando os catetos correspondentes, os dois polígonos mostrados na figura da direta são quadrados com lados iguais aos catetos do triângulo retângulo.

Mas o que é mais interessante foi o que motivou essa demonstração. Um problema muito interessante é tentar cortar um quadrado em vários quadrados menores, todos de tamanhos diferentes (se os lados pudessem ser iguais, teríamos um problema nada interessante!). Só que podemos estender o problema: por exemplo, como cobrir a superfície de um cubo com quadrados de lados diferentes? E a de uma "rosquinha"?

Primeiro, temos que entender como construir um toro (a "rosquinha") a partir de um quadrado (feito de material elástico). Primeiro, colamos os lados opostos do quadrado, obtendo um cilindro. Depois, colamos as bordas de um cilindro, obtendo o toro.

Agora, suponha que exista um planeta muito, muito distante com a forma de um toro (como seria viver numa rosquinha? Um dia tenho que perguntar isso às formigas!). Esse planeta, assim como o planeta Terra,

pode ter um mapa. Como seria esse mapa? A própria maneira como construímos o toro nos responde: seria um quadrado! Os dois lados horizontais representam os mesmos lugares, assim como os dois lados verticais. Note a diferença com os mapas da Terra: o mapa "dá a volta" pela horizontal, mas não pela vertical (a não ser que você acredite que o Pólo Norte e o Pólo Sul sejam o mesmo lugar!).

Calma! A pessoa e o cachorro estão inteiros!

Suponha que nesse planeta existam dois países, a Quadradãolândia e a República Quadradinhense. Ambos os países orgulham-se de sua forma quadrada. Olhe a primeira figura dessa demonstração: esse é o mapa desse planeta! A República Quadradinhense está em cinza e a Quadradãolândia, em branco. Com isso, conseguimos cobrir o toro com dois quadrados de lados diferentes. Incrível, não?

2. Paralelogramos e triângulos retângulos

Paralelogramos são quadriláteros cujos lados opostos são paralelos. Um teorema bastante importante é

Teorema 2.1. As diagonais de um paralelogramo cortam-se em seus respectivos pontos médios.

Demonstração

Uma maneira de obter um paralelogramo a partir de um triângulo é duplicá-lo e girá-lo 180° em torno do ponto médio de um de seus lados. Os ângulos marcados asseguram o paralelismo dos lados opostos.

E se, antes de girarmos o triângulo, ligarmos o ponto médio ao vértice? Esse segmento, cujo nome é

mediana, também gira 180° em torno do ponto médio:

Mas ao girarmos um segmento 180° em torno de uma de suas extremidades e unirmos ao segmento antes de girado, obtemos um segmento com o dobro do tamanho. Logo o ponto médio do lado também é ponto médio do segmento.

Uma aplicação desse importante fato é outro importante teorema:

Teorema 2.2. As três distâncias do ponto médio da hipotenusa de um triângulo retângulo a seus vértices são iguais.

Demonstração

Um triângulo retângulo pode ser entendido como a "metade" de um retângulo. Assim, é só lembrar que um retângulo é um paralelogramo com diagonais congruentes e observar a figura.

3. O baricentro

O baricentro é um dos pontos notáveis do triângulo. É o encontro das medianas de um triângulo.

Como temos três medianas, não é óbvio que elas passam por um mesmo ponto. Isso deve ser demonstrado.

Teorema 3.1. As três medianas de um triângulo passam por um mesmo ponto, chamado baricentro do triângulo. Além disso, o baricentro divide cada mediana na razão 2:1.

Demonstração

Demonstraremos que o encontro G de duas medianas divide ambas na razão 2:1. Considere um triângulo T e desenhe duas medianas m_a e m_b . Em seguida, faça três cópias de T: em uma, T_a , copie também m_a ,

mas somente m_a ; em outra, T_b , copie m_b , mas somente m_b ; e na outra, T', não copie mais nada. Com T e suas três cópias, monte um triângulo M maior, como mostra a figura.

Observe que o quadrilátero formado por T e T_a é um paralelogramo. Logo uma das diagonais contém m_a . O mesmo vale para o paralelogramo formado por T e T_b e m_b . Portanto essas diagonais dos paralelogramos são medianas do triângulo maior M. Ou seja, as medianas de M contêm as medianas de T. Note que o triângulo maior é uma cópia ampliada de T; isso é verdade porque todas as suas dimensões são o dobro das dimensões correspondentes de T. Em outras palavras, M e T são semelhantes, com razão de semelhança igual a 2.

Agora, desenhe T mas, em vez de m_a e m_b , desenhe esses segmentos desde os vértices do triângulo até o ponto de interseção. Faça uma cópia M de T duas vezes maior. Encaixe esses dois triângulos como na figura anterior, obtendo

Note que o pedaço da mediana de T e o pedaço correspondente na cópia ampliada, duas vezes maior, unidas por G, formam a mediana do triângulo M. Logo, em todo triângulo M, a interseção entre duas medianas as cortam na razão 2:1.

A partir desse fato, se considerarmos a interseção G' de uma dessas duas medianas com a terceira mediana, ela dividirá também ambas na razão 2:1. Em particular, essa interseção divide a primeira mediana na razão 2:1, então G'=G e o teorema segue.

4. Um problema da IMO 2005

Todos os teoremas que demonstramos são conhecidos. Mas alguns problemas de Olimpíada podem ser resolvidos com as idéias que vimos. Em particular, o seguinte problema:

Problema 1, IMO 2005. Escolhemos seis pontos sobre os lados do triângulo equilátero ABC: A_1 , A_2 sobre BC; B_1 , B_2 sobre AC; C_1 , C_2 sobre AB. Essa escolha é feita de modo que $A_1A_2B_1B_2C_1C_2$ é um hexágono convexo com todos os seus lados iguais. Prove que A_1B_2 , B_1C_2 e C_1A_2 são concorrentes.

Resolução

Ao desenhar o hexágono, podemos pensar em recortá-lo! Se tirarmos o hexágono e rearranjarmos a figura, obtemos

Ou seja, obtemos um triângulo equilátero dentro do outro. Mas será que as peças se encaixam direitinho mesmo? Sim! É só deslizar cada um dos triângulos C_2A_1B e A_2B_1C ao longo de AB e AC, respectivamente. Cada lado "diminui" de x, então encaixam-se perfeitamente num triângulo equilátero.

Vamos calcular alguns ângulos. Considere o vértice P na figura abaixo e sejam α , e β as medidas dos ângulos em torno desse vértice. Temos $\alpha + 60^{\circ} + \beta = 180^{\circ}$.

Observando os dois triângulos cinzas com P como um de seus vértices, nota-se que no triângulo superior estão marcados os ângulos internos de medidas α e 60°, ou seja, o outro ângulo mede β ; no triângulo da

direita estão marcados os ângulos internos de medidas β e 60°, sendo que o outro ângulo mede α . Isso quer dizer que os triângulos cinzas são todos congruentes!

Voltemos agora à figura original e recorte três triângulos do hexágono, ou melhor, trace três de suas diagonais. Pela congruência entre os triângulos AB_2C_1 , BC_2A_1 e CA_2B_1 , os ângulos externos $\angle C_1B_2B_1$, $\angle B_1A_2A_1$ e $\angle A_1C_2C_1$ são congruentes. Portanto, pelo caso LAL, os triângulos $C_1B_2B_1$, $B_1A_2A_1$ e $A_1C_2C_1$ são congruentes e, portanto, $B_1C_1 = A_1B_1 = C_1A_1$, ou seja, o triângulos $A_1B_1C_1$ é equilátero!

Para terminar, note que como $A_1B_1=A_1C_1$ e $B_2B_1=B_2C_1$, a reta A_1B_2 é mediatriz de B_1C_1 . Analogamente, A_2C_1 é mediatriz de A_1B_1 e C_2B_1 é mediatriz de A_1C_1 . Como as mediatrizes de um triângulo são concorrentes, o resultado segue.

Exercícios

- 01. No hexágono ABCDEF, lados opostos são congruentes e paralelos. Prove que os triângulos ACE e BDF têm a mesma área.
- 02. Prove que se $a \in b$ são dois lados de um triângulo, então a sua área não excede ab/2.
- 03. Seja Q um quadrilátero cujoa lados medem a, b, c, d, nessa ordem. Prove que a área de Q não excede (ac + bd)/2.
- 04. Seja ABC um triângulo e M, N e P os pontos médios de BC, CA e AB, respectivamente. Prove que o triângulo cujos lados têm medidas iguais às das medianas AM, BN e CP tem área igual a 3/4 da área de ABC.
- 05. Na última seção, utilizamos um fato que não demonstramos por ser bem conhecido: as mediatrizes dos lados de um triângulo cortam-se num mesmo ponto. Vamos prová-lo neste exercício. A mediatriz de um segmento é a reta perpendicular a ele que passa pelo seu ponto médio.
- (a) Prove que todo ponto P da mediatriz de um segmento AB está à mesma distância até A e B, ou seja, que PA = PB. Dica: desenhe o segmento AB num papel e dobre-o de modo que A coincida com B; desdobre e escolha um ponto P sobre a dobra e trace PA e PB; dobre de volta. O que acontece?
- (b) Prove que as três mediatrizes de um triângulo se encontram em um mesmo ponto. Esse ponto é chamado circuncentro. Dica: é menos difícil do que parece! Considere o encontro O entre duas mediatrizes do triângulo ABC; qual a relação entre OA, OB e OC?
- 06. Prove que as alturas (ou seus prolongamentos) de um triângulo passam por um mesmo ponto. Esse ponto é chamado ortocentro de ABC. Dica: Seja ABC um triângulo e M, N e P os pontos médios de BC, CA e AB, respectivamente. Os que são as mediatrizes de ABC para MNP?

07. (Reta de Euler) Esse é um dos resultados mais interessantes da Geometria:

Teorema 4.1. (Reta de Euler). Em todo triângulo, o ortocentro H, o baricentro G e o circuncentro estão alinhados, nessa ordem. Além disso, $HG = 2 \cdot GO$.

Prove esse teorema.

Dica: observe a figura a seguir, sendo M, N e P os pontos médios de BC, CA e AB, respectivamente. Considere a cópia MNPO reduzida de ABCH. Qual a razão entre AH e MO? Você consegue enxergar alguma semelhança envolvendo O, G e H?

5. Referências bibliográficas

- [1] Ian Stewart, Mania de Matemática. O título original em inglês é Math Hysteria (Fun and Games with Mathematics). Ambas as demonstrações do teorema de Pitágoras foram extraídas desse livro, que é um livro muito divertido sobre assuntos matematicamente inusitados como calendários, Banco ImobiliárioTM, partilhas justas de bolo, o jogo Liga-Ponto, Campo Minado, entre outros.
- [2] Kiran Kedlaya, Notes on Euclidean Geometry. Este arquivo está disponível em http://www.unl.edu/amc/a-activities/a4-for-students/problemtext/geom-080399.ps e em

http://math.mit.edu/kedlaya/geometryunbound/geom-080399.pdf

É essencialmente um curso de geometria para olimpíadas. Muitos exercícios foram retirados da primeira seção desse arquivo.

[3] A demonstração da reta de Euler e muito mais está no livro Geometry Revisited, de H. S. M. Coxeter e S. L. Greitzer. Esse livro tem um ótimo curso de geometria.