Particle Physics II Lecture 12: The Higgs boson

Lesya Shchutska

June 1, 2023

Fermion masses

- Higgs mechanism gives masses not only to W and Z bosons but also to fermions
- due to different transformation of LH and RH chiral states the mass term of the Dirac lagrangian

$$-m\bar{\psi}\psi = -m(\bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R)$$

is not symmetric under $SU(2)_L \times U(1)_Y$ gauge symmetry

- ⇒ cannot be in the SM lagrangian
- therefore the fermion fields are introduced to the SM as massless states and they acquire their mass thanks to the interaction with Higgs field

Transformations of left doublet

- in the SM, LH chiral fermions are placed in SU(2) doublets (L)
- RH chiral fermions in SU(2) singlets (R)
- since two complex scalar Higgs fields are in an SU(2) doublet $\phi(x)$, a local gauge transformation affects it as:

$$\phi \to \phi' = (I + ig_W \vec{\epsilon}(x) \cdot \vec{T})\phi$$

- ullet the same local gauge transformation applies to the LH fermion doublet L
- for $\bar{L} \equiv L^{\dagger} \gamma^0$:

$$\bar{L} \to \bar{L}' = \bar{L}(I - ig_W \vec{\epsilon}(x) \cdot \vec{T})$$

• $\Longrightarrow \bar{L}\phi$ is invariant under SU(2)_L gauge transformations

Invariant form

- combined with a RH singlet: $\bar{L}\phi R \implies$ invariant under SU(2)_L and U(1)_Y gauge transformations
- its Hermitian conjugate is invariant too:

$$\left(\bar{L}\phi R\right)^{\dagger} = \bar{R}\phi^{\dagger}L$$

• \implies such term satisfies the SU(2)_L×U(1)_Y gauge symmetry:

$$-g_f \Big(\bar{L}\phi R + \bar{R}\phi^{\dagger} L \Big)$$

Electron case

• lagrangian part for electrons would look like:

$$\mathcal{L}_e = -g_e \left[\begin{pmatrix} \bar{\nu}_e & \bar{e} \end{pmatrix}_L \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} e_R + \bar{e}_R \begin{pmatrix} \phi^{+*} & \phi^{0*} \end{pmatrix} \begin{pmatrix} \nu_e \\ e \end{pmatrix}_L \right]$$

- g_e is a constant Yukawa coupling of the electron to the Higgs field
- after spontaneous symmetry breaking the Higgs doublet in the unitary gauge is:

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}$$

• electron term in the lagrangian becomes:

$$\mathcal{L}_e = -\frac{g_e}{\sqrt{2}}v(\bar{e}_L e_R + \bar{e}_R e_L) - \frac{g_e}{\sqrt{2}}h(\bar{e}_L e_R + \bar{e}_R e_L)$$

• first term there has exactly the form needed for the fermion masses

Electron case

• the Yukawa coupling g_e is not predicted by the Higgs mechanism but can be chosen to be consistent with the observed electron mass:

$$g_e = \sqrt{2} \frac{m_e}{v}$$

• then electron mass lagrangian becomes:

$$\mathcal{L}_e = -m_e \bar{e}e - \frac{m_e}{v} \bar{e}eh$$

- first term (giving the mass to electron) is a coupling of electron to the **Higgs** field through its non-zero v
- second term is a coupling between the electron and the **Higgs boson**

Up-type fermions

- term $\bar{L}\phi R + \bar{R}\phi^{\dagger}L$ can generate masses only for down-type fermions:
 - this happens since non-zero vacuum expectation value v exists only in the lower (neutral) component of the Higgs doublet
- to have masses for up-type fermions, use the conjugate doublet ϕ_c formed as:

$$\phi_c = -i\sigma_2 \phi^* = \begin{pmatrix} -\phi^{0*} \\ \phi^- \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -\phi_3 + i\phi_4 \\ \phi_1 - i\phi_2 \end{pmatrix}$$

- the conjugate doublet ϕ_c transforms in the same way as ϕ under SU(2)
- this is similar to the representation of up- and down-quarks and anti-up and anti-down quarks in SU(2) isospin symmetry

Up-type fermions

• a gauge-invariant mass term for up-type quarks comes from the term:

$$\bar{L}\phi_c R + \bar{R}\phi_c^{\dagger} L$$

• as an example, for u quark:

$$\mathcal{L}_u = g_u (\bar{u} \quad \bar{d})_L \begin{pmatrix} -\phi^{0*} \\ \phi^- \end{pmatrix} u_R + H.C.$$

• after symmetry breaking it becomes:

$$\mathcal{L}_u = -\frac{g_u}{\sqrt{2}}v(\bar{u}_L u_R + \bar{u}_R u_L) - \frac{g_u}{\sqrt{2}}h(\bar{u}_L u_R + \bar{u}_R u_L)$$

• with Yukawa coupling $g_u = \sqrt{2}m_u/v$ leading to:

$$\mathcal{L}_u = -m_u \bar{u}u - \frac{m_u}{v} \bar{u}uh$$

Fermion masses

• so for all Dirac fermions gauge invariant mass terms can be constructed from:

$$\mathcal{L} = -g_f \left[\bar{L}\phi R + \left(\bar{L}\phi R \right)^{\dagger} \right] \text{ or } \mathcal{L} = g_f \left[\bar{L}\phi_c R + \left(\bar{L}\phi_c R \right)^{\dagger} \right]$$

- these terms produce masses of the fermions and the interactions between the Higgs boson and the fermion
- the Yukawa couplings of the fermions to the Higgs field are given by:

$$g_f = \sqrt{2} \frac{m_f}{v},$$

where v = 246 GeV

- e.g. for the top quark with $m_t \approx 173.1 \pm 0.9$ GeV, the Yukawa coupling is almost exactly 1, resonating with a notion that maybe Yukawa couplings of the fermions should be $\mathcal{O}(1)$
- a special case is neutrinos where Yukawa couplings are $< 10^{-12}$: other mechanisms are suggested for neutrino masses

Properties of the Higgs boson

- the SM Higgs boson H is a neutral scalar particle
- its mass is a free parameter of the SM $m_H = 2\lambda v^2$
- H couples to all fermions with a coupling strength proportional to the fermion mass, vertex factor is:

$$-i\frac{m_f}{v} \equiv -i\frac{m_f}{2m_W}g_W$$

- ullet H decays as H o far f to all kinematically allowed decay modes $m_H>2m_f$
- for vector bosons, coupling is also proportional to boson mass:

• for a discovered H boson with m = 125 GeV the largest BF is to $b\bar{b}$:

$$\mathcal{B}(H \to b\bar{b}) = 57.8\%$$

- we can compute partial decay width:
 - vertex is known
 - H is scalar \implies no polarization 4-vector is needed
 - matrix element is simply:

$$\mathcal{M} = \frac{m_b}{v}\bar{u}(p_2)v(p_3) = \frac{m_b}{v}u^{\dagger}\gamma^0v$$

- can take b-quark momentum along the z-axis
- $m_H \gg m_b$: can neglect b mass and take

$$p_2 \approx (E, 0, 0, E)$$
 and $p_3 \approx (E, 0, 0, -E)$, where $E = m_H/2$

• in the ultra-relativistic limit the spinors for two possible helicity state for each of the b $(\theta = 0, \phi = 0)$ and the \bar{b} $(\theta = \phi, \phi = \pi)$ are:

$$u_{\uparrow}(p_2) = \sqrt{E} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, u_{\downarrow}(p_2) = \sqrt{E} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix},$$

$$v_{\uparrow}(p_3) = \sqrt{E} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}, v_{\downarrow}(p_3) = \sqrt{E} \begin{pmatrix} 0\\-1\\0\\-1 \end{pmatrix}$$

• due to $u^\dagger \gamma^0 v$ form of the ME only two of the possible four helicity combinations give non-0 matrix element:

$$\mathcal{M}_{\uparrow\uparrow} = -\mathcal{M}_{\downarrow\downarrow} = \frac{m_b}{v} 2E$$

- these correspond to spin configurations where $b\bar{b}$ are produced in a spin-0 state
- since H is a spin-0 scalar, it decays isotropically and ME does not have angular dependence
- and since there is only one spin state for H, the spin-averaged ME is:

$$\langle |\mathcal{M}|^2 \rangle = |\mathcal{M}_{\uparrow\uparrow}|^2 + |\mathcal{M}_{\downarrow\downarrow}|^2 = \frac{m_b^2}{v^2} 8E^2 = \frac{2m_b^2 m_H^2}{v^2}$$

• the partial decay width:

$$\Gamma(H \to b\bar{b}) = 3 \times \frac{m_b^2 m_H}{8\pi v^2},$$

where factor 3 accounts for three colors of $b\bar{b}$ pair

• for SM H: $\Gamma(H \to b\bar{b}) \approx 2 \text{ MeV}$

• partial H decay rate to fermions is $\propto m_f^2$:

$$\Gamma(H \to b\bar{b}) : \Gamma(H \to c\bar{c}) : \Gamma(H \to \tau^+\tau^-) \approx 3m_b^2 : 3m_c^2 : m_\tau^2$$

- m_q run with q^2 similarly to α_S : masses should be taken at $q^2=m_H^2$
- there $m_c(m_H^2) \approx 0.6 \text{ GeV}$ and $m_b(m_H^2) \approx 3.0 \text{ GeV}$
- ullet decay to massless particles γ and g happen via loops:

Branching ratio
57.8%
21.6%
6.4%
8.6%
2.9%
2.7%
0.2%

Higgs boson decays measurements

• example of measurements by the ATLAS experiment, testing H couplings to all particles:

