AMENDMENT TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (currently amended) An ultrasonic flow sensor, including comprising
- at least one ultrasonic transducer (A, B) for transmitting and receiving ultrasonic signals (A0, B0), and
- a receiver unit (4) that is connected to the ultrasonic transducer (A, B) and that detects a predetermined event (N) of the ultrasonic signal (A0, B0) as the \underline{a} reception time (t_0) ,

wherein the receiver unit (4) is embodied in such a way that it determines the \underline{a} time (t₁) of a value (Amp_{max}, T_S) characteristic of the ultrasonic signal (A0, B0)and determines the \underline{a} s well as \underline{a} time shift (Δt) of the time (t₁) in relation relative to the reception time (t₀) \underline{a} nd

uses the time shift (Δt) to determine a correct time value for the reception time (t_0).

- 2. (currently amended) The ultrasonic flow sensor as recited in claim 1, wherein the receiver unit (4) determines a maximum amplitude (Amp_{max}) of the ultrasonic signal (A0, B0) as a characteristic value.
- 3. (currently amended) The ultrasonic flow sensor as recited in claim 1, wherein the receiver unit (4) determines the \underline{a} chronological position (T_S) of the focal point of either the ultrasonic signal (A0, B0) or its envelope curve (6) as the characteristic value.
- 4. (currently amended) The ultrasonic flow sensor as recited in claim 1, wherein the receiver unit (4) includes a comparator (10) whose input is supplied with a transducer output signal (5) and a reference signal (SW), and the receiver unit (4) determines a piece of information about the time (t_1) of the characteristic value (Amp_{max}, T_s) from the output signal of the comparator (10).
- 5. (currently amended) The ultrasonic flow sensor as recited in claim 4,

wherein the reference signal supplied to the comparator (10) is a threshold (SW) not equal to zero and the output signal of the comparator (10) is a pulse width modulated signal (K1) from which the time (t_1) of the characteristic value (Ampmax, T_S) is determined.

- 6. (previously presented) The ultrasonic flow sensor as recited in claim 1, wherein the reception time (t_0) is corrected as a function of the time shift (Δt) .
- 7. (currently amended) A method for detection of an ultrasonic signal (A0, B0) in an ultrasonic transducer (A, B) by means of a receiver unit (4), which detects a predetermined event (N) of the ultrasonic signal (A0, B0) as a reception time (t_0), wherein the receiver unit (4) determines the <u>a</u> time (t_1) of a value (Amp_{max}, T_s) characteristic of the ultrasonic signal (A0, B0) and determines the <u>a</u> time shift (Δt) of the time (t_1) in relation to the reception time (t_0) and uses the time shift (Δt) to determine a correct time value for the reception time (t_0).
- 8. (currently amended) The method as recited in claim 7, wherein the receiver unit (4) determines a maximum amplitude (Amp_{max}) of the ultrasonic signal (A0, B0) as a characteristic value.
- 9. (currently amended) The method as recited in claim 7, wherein the receiver unit (4) determines the <u>a</u> chronological position of the <u>a</u> focal point of the ultrasonic signal (A0, B0) or its envelope curve (6) as a characteristic value.