Laboratorio di Fisica - A.A. 2020/2021

Docenti: A. Garfagnini - M. Lunardon

Fotodiodo

Cerrone Vanessa 1200361 vanessa.cerrone@studenti.unipd.it Cigagna Simone 1193992 simone.cigagna@studenti.unipd.it Lai Nicolò 1193976 nicolo.lai@studenti.unipd.it

1 Introduzione

Si vuole analizzare lo spettro dei fotoni emessi dall'Americio-241 con un rivelatore al Silicio tipo PIN, dotato di preamplificatore di carica. L'hardware, cioè i moduli di elettronica, sono stati pre-impostati in condizioni standard, con shaping time pari a 3μ s, in modo da ottimizzare il rapporto segnale rumore. Preliminarmente, tramite il software di acquisizione, si registra uno spettro per identificare i picchi principali, a 60keV e 14-18keV.

Nella Sez. 3 si analizzerà il picco a 59.5keV in presenza di materiali di diverso spessore, al fine di calcolare i relativi coefficienti di assorbimento. Nella Sez. 4, si effettueranno misure al variare della distanza della sorgente, per verificare che i dati seguano l'andamento atteso. Un'analisi dettagliata dello spettro verrà presentata nella sezione Sez. 5.

2 Calibrazione e risoluzione energetica

3 Coefficiente di assorbimento

Ci si propone di effettuare delle misure in presenza di materiali di diverso spessore, nello specifico rame e argento, con lo scopo di calcolarne il coefficiente di assorbimento μ , che si ricava dalla relazione:

$$I(x) = I_0 e^{-\mu x} \tag{1}$$

dove I è l'intensità della radiazione incidente e x lo spessore attraversato.

Si inseriscono gli assorbitori di spessore variabile e si acquisiscono gli spettri per un intervallo di tempo sufficiente a garantire una precisione migliore del 3% sul picco a 59.5keV. La precisione in percentuale si ottiene ricavando il numero di eventi N, cioè l'area, al di sotto del picco di interesse... Si calcola il rate degli eventi nel picco a 60 keV per tutte le misure effettuate come rapporto tra numero di eventi rilevati e tempo di acquisizione, che come prima è stato adattato in modo da avere precisioni di almeno il 3% Considerando

Ag		Cu	
Spessore [µm]	Rate [Hz]	Spessore [µm]	Rate [Hz]
60	5.4 ± 0.1	92	6.97 ± 0.13
120	3.80 ± 0.08	184	6.1 ± 0.1
180	2.42 ± 0.07	276	5.5 ± 0.1
240	1.93 ± 0.06	368	4.7 ± 0.1

Table 1. Dati fit esponenziale per il calcolo del coefficiente di assorbimento

la relazione Eq. 1 si effettua un fit esponenziale del rate in funzione dello spessore del materiale, separatamente per rame e argento. Si sottolinea che il rapporto N/t rappresenta l'intensità della radiazione incidente per unità di superficie: il rivelatore a disposizione ha un'area di 1 cm², dunque ok (???).

4 Misure in funzione della distanza

Distanza [cm]	Rate [Hz]	
1.2	316.4 ± 0.9	
2.0	185.2 ± 0.7	
3.0	107.8 ± 0.5	
4.0	70.1 ± 0.4	
5.0	49.1 ± 0.3	
6.0	36.2 ± 0.2	
5.0	49.1 ± 0.3	

Table 2. Dati fit per verifica della legge dell'inverso del quadrato della distanza

- 5 Fit multipicco
- 6 Stima dell'efficienza relativa