청년 AI 아카데미 22기 알고리즘 실습

그리디기법 & 동적계획법

Today

- 그리디 기법
 - 세금 징수
 - 무거운 용액
- 다이나믹 프로그래밍
 - 피보나치 수열 2 (1차원 DP)
 - 세계암기대회 (2차원 DP)

Greedy Method?

Greedy의 기본: 현재 상황만 보고 가장 이득을 취할 수 있는 방향으로 움직인다!

- 특정 상황에서 최적의 값을 찾는다.

PAI인공지능연구원

- 알고리즘이 단순하고 빠르기 때문에 근사 알고리즘을 설계할 때 자주 채택한다.

Greedy Method?

Greedy의 기본: 현재 상황만 보고 가장 이득을 취할 수 있는 방향으로 움직인다!

- 특정 상황에서 최적의 값을 찾는다.

PAI인공지능연구원

- 알고리즘이 단순하고 빠르기 때문에 근사 알고리즘을 설계할 때 자주 채택한다.

특정 금액이 주어졌을 때, 해당 금액을 만드는 동전(지폐)의 최소 개수를 구합니다.

동전 단위: 50000, 10000, 5000, 1000, 500, 100

예시: 74100

VS

× 741

특정 금액이 주어졌을 때, 해당 금액을 만드는 동전(지폐)의 최소 개수를 구합니다.

Greedy: 작은 단위에서부터? 큰 단위에서부터?

*Hint: 하나씩 빼기보다는 나누기와 나머지를 활용!

$$9 = 5 + 1 + 1 + 1 + 1$$

```
t = int(input())
for _ in range(t):
    n = int(input())
```

가격이 높은 동전부터 최대한 많이 사용!

주의!!

그리디 기법이 최적값을 항상 도출하는지 생각해야한다. Ex1: 사용 가능한 동전 [100,500]

800원을 지불하는 방법->800=500+100x3 (4개)

Ex2: 사용 가능한 동전 [100,400,500]

800원을 지불하는 방법->800=400*2 (2개)

02. 무거운 용액

여러 용액의 총 부피와 총 무게가 주어졌을 때, 주어진 용액을 합성하여 특정 부피의 용액을 만들 때 합성 용액의 최대 무게를 계산합니다.

PAV인공지능연구원

02. 무거운 용액

무거운 용액을 만들 때 가장 좋은 용액은 무엇인가요?

- → 보다 작은 공간을 차지하면서, 보다 더 무거운 용액
- → 같은 공간을 차지할 때 더 무거운 용액
- → **부피당 질량**이 무거운 용액

10

02. 무거운 용액

- 1. 질량 / 부피 로 내림차순 정렬
- 2. 질량 / 부피가 큰 용액부터 차례대로 넣는다.
- → 그 용액을 온전히 다 넣을 수 있다면?
- → 그 용액을 다 못 넣는다면?

Dynamic Programming?

작은 부분 문제를 풀고, 그것들을 이용해 큰 전체 문제를 해결!

- Bottom Up 방식
- 분할한 문제 간의 연관성 O

c.f. Divide & Conquer

- Top Down 방식
- 분할한 문제 간의 연관성 X

Dynamic Programming?

- 1. 부분 문제를 명확하게 정의합니다.
 - 원래 문제에서 보통 데이터의 크기만 줄이는 경우로 생각
 - 예외적인 케이스도 존재 → 기존 부분 문제 + 제한 조건을 추가
- 2. 원래 답의 위치를 파악합니다.
 - 부분 문제가 곧 답의 힌트!
 - 부분 문제의 해답을 모아둘 **배열** 등을 생성 가능
 - 부분 문제가 틀림을 알아내는 데에도 주요한 포인트

사람이 해결해야 함!

- 3. 재귀 식(점화 식)을 부분 문제의 정의와 수학적 논리에 따라 잘 세웁니다.
 - 부분 문제를 해결하기 위해선, 더 작은 부분 문제들의 답을 이용
 - Backward Analysis: 이 문제의 답이 어디서 올 수 있었는가를 분석
 - 식에 나오게 되는 변수들을 통해 반복 문을 어떻게 해야 할지 분석
 - 식이 제대로 세워지지 않는다면, 1번으로 돌아감
- 4. 기저 조건(초기값)을 세웁니다.

PAV인공지능연구원

- 문제 조건으로 주어진 초기 값
- 3번 식에서는 값을 구할 수 없는 예외적인 경우

Dynamic Programming?

자연수 N이 주어지면, 1~N까지의 합을 더하는 프로그램

- **1. 부분 문제를 명확하게 정의** T[i]: 1~i 까지의 합
- 2. 원래 답의 위치

T[N]일 것

- → print(T[N])
- → 답이 들어갈 T 배열을 생성
- 3. 재귀 식(점화 식)

T[i] = i + T[i-1]

- → for문이 i로 돈다. (N까지)
- 4. 기저 조건(초기값)

i가 1일 때 T[i] = 1

- → for문 내에 조건이 들어간다.
- → 조건이 아닌 경우는 3번

03. 피보나치 수열 2

n번째 피보나치 수를 계산합니다.

Dynamic Programming의 핵심은 대부분 펜과 노트에서 완성됩니다.

```
FIB[1] = 1

FIB[2] = 1

FIB[3] = 2

....

FIB[n] = FIB[n-1] + FIB[n-2]
```

15

03. 피보나치 수열 2

- 1. 부분 문제를 명확하게 정의
 - FIB[i]: i번째 피보나치 수
- 2. 원래 답의 위치
 - FIB[n]
- 3. 재귀 식(점화 식)
 - FIB[i] = FIB[i-1] + FIB[i-2]
- 4. 기저 조건(초기값)
 - i=1일 때, FIB[i] = 1
 - i=2일 때, FIB[i] = 1

03. 피보나치 수열 2

```
1 t = int(input())
3 for _ in range(t):
n = int(input())
        부분문제를 저장할 리스트를 선언하고, 부분 문제를 해결합니다
10
11
```

04. 세계 암기대회

지우가 오른쪽 아래로 가면서 잃을 수 있는 가장 적은 점수를 계산해주세요!

1-	- 0	1	0	1
Ŏ	1	1	1	0
0	1	0	1	1

04. 세계 암기대회

각 칸으로 가면서 잃을 수 있는 최저 점수를 저장한다면?

1	0	1	0	1
0	1	1	1	0
0	1	0	1	1

1	1	2	2	3
1	2	2	~•	?
1	2	?	?	??

04. 세계 암기대회

mp(i,j) : (i,j)까지 가면서 얻을 수 있는 최고 점수 p(i,j) : (i,j)에 있는 점수 $(0 \ \Sigma 는 1)$

```
 \begin{aligned} mp(i,j) \\ &= \begin{cases} p(i,j) & \text{if } i = 0, j = 0 \\ mp(i,j-1) + p(i,j) & \text{elif } i = 0, j > 0 \\ mp(i-1,j) + p(i,j) & \text{elif } i > 0, j = 0 \\ min(mp(i-1,j), mp(i,j-1), mp(i-1,j-1)) + p(i,j) & \text{elif } i > 0, j > 0 \end{aligned}
```


부산에서 서울까지 갈 때 최소 횟수로 주유소에서 기름 채우기

*Hint

- 이미 지난 주유소는 다시 갈 필요가 없다. (선형 탐색)
- 서울을 기름 안 넣는 주유소처럼 취급해보자!

Idea: 갈 수 있는 가장 먼 주유소를 가자

유지하는 변수: 지금까지 주유한 횟수, 가장 마지막에 주유한 주유소

기름 용량: 20

부산: 0

7 14 19

29

36

51

71

81

서울: 100

기름 용량: 20

부산: 0 7 14 19

36

51

71

81

서울: 100

기름 용량: 20

부산: 0

7 14 19

36

51

71

81

서울: 100

기름 용량: 20

부산: 0

7 14 19

36

51

71

81

서울: 100

기름 용량: 20

부산: 0

7

14 19

29

36

51

71

 (\blacksquare)

81

서울: 100

주유 횟수: 1

기름 용량: 20

부산: 0

7

14 19

29

36

51

71

81

서울: 100

V

주유 횟수: 1

기름 용량: 20

부산: 0

7 14 19

36

51

71

81

서울: 100

주유 횟수: 2

기름 용량: 20

부산: 0

7 14 19

36

51

71

81

서울: 100

주유 횟수: 3

기름 용량: 20

36

부산: 0

7 14 19

51

71

81

서울: 100

주유 횟수: 4

기름 용량: 20

부산: 0

7 14 19

36

51

71

81

서울: 100

주유 횟수: 5

생각해봐야할 문제

- 부산에서 서울까지 주유소를 한 번도 거치지 않고 갈 수도 있다.
- 마지막 주유소까지 도달했으나, 서울까지 가지 못할 수 있다.

여러 가지 상황을 잘 고려하면서 해결해야 하는 문제!

ADD02. MST (Minimum Spanning Tree)

최소 신장 트리(MST)를 구하고, 그 가중치의 합을 출력하는 프로그램을 작성합니다. Graph + Greedy!

두 가지 방법

- Prim 알고리즘 (Dijkstra 알고리즘과 유사)
- Kruskal 알고리즘 (Union-Find 자료구조)

ADD02. MST

< Prim Algorithm > 의 Idea: 확장

어느 한 정점에서 시작해서 그 정점과 연결된 노드 중에 가장 연결 비용이 작은 것을 연결!

- → 간선의 가중치로 우선순위 큐를 만든다
 - 우선순위 큐에서 나온 간선의 필요성 확인
 - 이미 연결된 두 정점이라면 이 간선도 필요 없다

가장 작은 걸 연결하다 보면 전체 합도 가장 작을 것!

ADD02. MST

A에서 부터 시작!

간선목록	(4,B)	(1,C)	(2,D)				
연결완료	А						
간선목록	(4,B)	(2,D)	(3,D)	(9,F)			
연결완료	Α	C					
간선목록	(4,B)	(3,D)	(9,F)	(5,F)			
연결완료	Α	C	D				
간선목록	(4,B)	(9,F)	(5,F)				
연결완료	Α	C	D				
간선목록	(9,F)	(5,F)	(6,E)	(2,F)			
연결완료	Α	C	D	В			
간선목록	(9,F)	(5,F)	(6,E)	(3,E)			
연결완료	Α	C	D	В	F		
간선목록	(9,F)	(5,F)	(6,E)				
연결완료	Α	C	D	В	F	Е	

< Kruskal Algorithm > 의 Idea: 최소는 무조건

그래프 상에서 가장 가중치가 작은 간선들을 고른다

- 트리여야 하므로 사이클이 생기는지 확인
- 연결된 트리여야 하므로 모두가 연결되었는지 확인

사이클에서 가중치가 제일 큰 간선은 필요 없다! 알고리즘이 이를 걸러내므로 전체 합이 가장 작을 것!

PAI인공지능연구원

가장 작은 간선부터 연결해보자!

V	Α	В	C	D	Е	F
root[v]	Α	В	C	D	E	F
rank[v]	0	0	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- $\mathsf{rank}(x) \leftarrow 0$

Algorithm find(x)

- while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- return x

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
- then return
- 5. **if** $rank(r_x) > rank(r_y)$
- then $\pi(r_y) \leftarrow r_x$
- else $\pi(r_x) \leftarrow r_y$ if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- **then** $\mathsf{rank}(r_y) \leftarrow \mathsf{rank}(r_y) + 1$

PAI인공지능연구원

가장 작은 간선부터 연결해보자!

V	Α	В	C	D	E	F
root[v]	Α	В	Α	D	Е	F
rank[v]	1	0	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- $\mathsf{rank}(x) \leftarrow 0$

Algorithm find(x)

- while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- return x

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
- then return
- 5. **if** $rank(r_x) > rank(r_y)$
- then $\pi(r_y) \leftarrow r_x$
- else $\pi(r_x) \leftarrow r_y$ if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- **then** $\mathsf{rank}(r_y) \leftarrow \mathsf{rank}(r_y) + 1$

가장 작은 간선부터 연결해보자!

V	Α	В	C	D	Е	F
root[v]	Α	В	Α	Α	Ε	F
rank[v]	1	0	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- $\mathsf{rank}(x) \leftarrow 0$

Algorithm find(x)

- while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- return x

Algorithm union(x, y)

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
- then return
- 5. **if** $rank(r_x) > rank(r_y)$
- then $\pi(r_y) \leftarrow r_x$
- else $\pi(r_x) \leftarrow r_y$ if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- **then** $\mathsf{rank}(r_y) \leftarrow \mathsf{rank}(r_y) + 1$

PAV인공지능연구원

가장 작은 간선부터 연결해보자!

V	Α	В	C	D	Е	F
root[v]	Α	В	Α	Α	Е	В
rank[v]	1	1	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- $\mathsf{rank}(x) \leftarrow 0$

Algorithm find(x)

- while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- return x

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
 - then return
- 5. **if** $rank(r_x) > rank(r_y)$
- then $\pi(r_y) \leftarrow r_x$
- else $\pi(r_x) \leftarrow r_y$ if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- **then** $\mathsf{rank}(r_y) \leftarrow \mathsf{rank}(r_y) + 1$

가장 작은 간선부터 연결해보자!

V	Α	В	С	D	Е	F
root[v]	Α	В	Α	Α	Е	В
rank[v]	1	1	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- $\mathsf{rank}(x) \leftarrow 0$

Algorithm find(x)

- while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- return x

Algorithm union(x, y)

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
- then return
- 5. **if** $rank(r_x) > rank(r_y)$
- then $\pi(r_y) \leftarrow r_x$
- else $\pi(r_x) \leftarrow r_y$ if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- then $\mathsf{rank}(r_y) \leftarrow \mathsf{rank}(r_y) + 1$

PAV인공지능연구원

가장 작은 간선부터 연결해보자!

V	Α	В	C	D	Е	F
root[v]	Α	В	Α	Α	В	В
rank[v]	1	1	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- $\mathsf{rank}(x) \leftarrow 0$

Algorithm find(x)

- while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- return x

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
- then return
- 5. **if** $rank(r_x) > rank(r_y)$
- then $\pi(r_y) \leftarrow r_x$
- else $\pi(r_x) \leftarrow r_y$ if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- **then** $\mathsf{rank}(r_y) \leftarrow \mathsf{rank}(r_y) + 1$

가장 작은 간선부터 연결해보자!

V	Α	В	C	D	E	F
root[v]	Α	Α	Α	Α	В	В
rank[v]	2	1	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- $\mathsf{rank}(x) \leftarrow 0$

Algorithm find(x)

- while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- return x

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
- then return
- 5. **if** $rank(r_x) > rank(r_y)$
- then $\pi(r_y) \leftarrow r_x$
- else $\pi(r_x) \leftarrow r_y$ if $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- then $\mathsf{rank}(r_y) \leftarrow \mathsf{rank}(r_y) + 1$

PAV인공지능연구원

가장 작은 간선부터 연결해보자!

V	Α	В	C	D	Е	F
root[v]	Α	Α	Α	Α	В	В
rank[v]	2	1	0	0	0	0

Algorithm makeset(x)

- 1. $\pi(x) \leftarrow x$
- 2. $\operatorname{rank}(x) \leftarrow 0$

Algorithm find(x)

- 1. while $x \neq \pi(x)$
- do $x \leftarrow \pi(x)$
- 3. return x

- 1. $r_x \leftarrow \mathsf{find}(x)$
- 2. $r_y \leftarrow \mathsf{find}(y)$
- $3. \quad \text{if } r_x = r_y$
- 4. then return
- 5. **if** $rank(r_x) > rank(r_y)$
- 5. then $\pi(r_y) \leftarrow r_x$
- 7. **else** $\pi(r_x) \leftarrow r_y$
- 3. **if** $\operatorname{rank}(r_x) = \operatorname{rank}(r_y)$
- 9. **then** $\operatorname{rank}(r_y) \leftarrow \operatorname{rank}(r_y) + 1$

ADD03. 더블로 가

ADD03. 더블로 가

1. 한 칸만 이동하는 방법

ADD03. 더블로 가 시작 1 2 3 4 5 6 7 8 9(n)

- 1. 한 칸만 이동하는 방법
- 2. 두 칸을 이동하는 방법

- 1. 한 칸만 이동하는 방법
- 2. 두 칸을 이동하는 방법
- 3. 더블로 이동하는 방법

PAV인공지능연구원

- 1. 한 칸만 이동하는 방법
- 2. 두 칸을 이동하는 방법
- 3. 더블로 이동하는 방법

PAV인공지능연구원

ADD03. 더블로 가

현재 어떤 발판 i 에 있을 때, 최대점수

- 한칸 전 발판에서 온 경우
- 두칸 전 발판에서 온 경우
- 더블 이동해서 온 경우 (?)
- → {(각 경우) + (현재 발판의 점수)}의 최대점수

ADD03. 더블로 가

- **1. 부분 문제를 명확하게 정의** T[i]: i번 발판을 밟았을 때의 최대 점수
- 2. 원래 답의 위치

T[N]일 것

- → print(T[N])
- → 답이 들어갈 T 배열을 생성
- 3. 재귀 식(점화 식)

(i가 홀수면) T[i]=max(T[i-1], T[i-2]) + data[i] (i가 짝수면) T[i]=max(T[i-1], T[i-2], T[i//2]) + data[i]

- → for문이 i로 돈다. (N까지)
- 4. 기저 조건(초기값)

i가 1일 때 T[i] = data[i]

→ for문 내에 조건이 들어간다.

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

무게: 0 (MAX 10) 가치: 0

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

무게: 6+1+3=10

가치: 10+30+200=240

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

무게: 1+5+3=9 (MAX 10) 가치: 30+100+200=330

아이디어

D[i][j] = i 번째까지의 물건을 가지고 무게 j를 채울 때 가치 합의 최대값

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0										
3	0										
4	0										??

아이디어

D[i][j] = i번째까지의 물건을 가지고 무게를 j 이하로 채울 때 가치 합의 최대값 첫번째 물건을 가지고 무게 0부터 C까지 만들 때 가치의 최대값을 저장. i-1번째까지의 물건을 가지고 j 이하의 무게를 만드는 최대 가치에 i번째 물건이 추가된 경우.

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0	30									
3	0										
4	0										??

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0	30	30								
3	0										
4	0										??

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0	30	30	30	30	30	30				
3	0										
4	0										??

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0	30	30	30	30	30	30	40			
3	0										
4	0										??

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0	30	30	30	30	30	30	40	40	40	40
3	0	30	30	30	30	100					
4	0										??

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0	30	30	30	30	30	30	40	40	40	40
3	0	30	30	30	30	100	130				
4	0										??

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

$$D[i][j] = \begin{cases} D[i-1][j] & \text{if } w_i > j \\ \max(D[i-1][j], D[i-1][j-w_i] + v_i) & \text{if } w_i \le j \end{cases}$$

j i	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	10	10	10	10	10
2	0	30	30	30	30	30	30	40	40	40	40
3	0	30	30	30	30	100	130	130	130	130	130
4	0	30	30	200	230	230	230	230	300	330	330

	1	2	3	4
무게	6	1	5	3
가치	10	30	100	200

