Texas A&M University

Computing Galois groups of Fano problems

Fano Problems

Enumerating r-planes on a complete intersection.

- Fix $d_{\bullet} = (d_1, \ldots, d_s)$.
- $X_F \subseteq \mathbb{P}^n$ is defined by homogeneous polynomials $F = (f_1, \dots, f_s)$ with deg $f_i = d_i$
- The Fano scheme $V_r(X_F)$ is the subscheme of $\mathbb{G}(r,\mathbb{P}^n)$ of r-planes that lie on X_F .
- This is a Fano problem of type (r, n, d_{\bullet}) when $V_r(X_F)$ is finite.

Figure: 27 lines on a cubic surface

Theorem (Debarre, Manivel)

The combinatorial data (r, n, d_{\bullet}) determines a Fano problem when $n-s-2r \geq 0$ and

$$(r+1)(n-r) - \sum_{i=1}^{s} {d_i + r \choose r} = 0.$$

Denote the number of solutions to a general Fano problem of type (r, n, d_{\bullet}) by $N(r, n, d_{\bullet})$.

 /	· ·	· , , , , ,	
r	n	d_{ullet}	$N(r,n,d_{ullet})$
1	4	(2,2)	16
1	3	(3)	27
2	6	(2,2)	64
3	8	(2,2)	256
1	7	(2, 2, 2, 2)	512
1	6	(2, 2, 3)	720

All Fano problems with ≤ 1000 solutions

Galois groups of Fano problems

Write $\mathbb{C}^{(r,n,d_{\bullet})}$ for the parameter space of systems F. There is an incidence correspondence:

The Galois group, $\mathcal{G}_{(r,n,d_{\bullet})}$, of the Fano problem of type (r,n,d_{\bullet}) is the monodromy group of $\pi_{(r,n,d_{\bullet})}$.

- $\mathcal{G}_{(r,n,d_{\bullet})}$ is a Galois group in the algebraic sense.
- $\mathcal{G}_{(r,n,d_{\bullet})}$ is transitive.
- If $d_{\bullet} \neq (3), (2, 2)$, then $\mathcal{G}_{(r,n,d_{\bullet})}$ is 2-transitive.

Theorem (Jordan, Harris, Hashimoto, Kadets)

The following is known:

- [J],[Har] $\mathcal{G}_{(1,3,(3))} = E_6$.
- [Has,K] $\mathcal{G}_{(r,2r+2,(2,2))} = D_{2r+3}$.
- [Has,K] All other $\mathcal{G}_{(r,n,d_{\bullet})}$ contain the alternating group.

Finding a simple transposition

Goal: Find $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ such that $V_r(X_F)$ is one point of multiplicity 2 and $N(r,n,d_{\bullet})-2$ smooth points.

Plan:

- 1) Choose general $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ such that $V_r(X_F)$ contains a multiple point.
- 2) Point of multiplicity 2 exists by exact computation.
- 3) Remaining points smooth by numerical certification.
- 4) Local monodromy is generated by a transposition.

Choose F by presecribing a subscheme of $V_r(X_F)$.

- Fix $\ell \in \mathbb{G}(r, \mathbb{P}^n)$ and tangent vector $v \in T_{\ell}\mathbb{G}(r, \mathbb{P}^n)$.
- Choose general F satisfying $\ell \in V_r(X_F)$ and $v \in T_\ell V_r(X_F)$.

When ℓ and v are chosen exactly, F can be chosen exactly.

- Simple double points are isolated.
- Remaining solutions enumerated and isolated.
- \bullet α -theory
- interval arithmetic

Results and timings

Theorem (Y.)

The Fano problems with $d_{\bullet} \neq (3), (2, 2)$ and less than 50,000 solutions have full symmetric Galois group.

Timings for verifying the simple double point and certifying remaining solutions is given below. (alphaCertified, HomotopyContinuation.jl)

r	$\mid n \mid$	d_{ullet}	$N(r,n,d_{ullet})$	alCer (h)	HomCo (s)
1	7	(2, 2, 2, 2)	512	2.66	.61
1	6	(2, 2, 3)	720	2.88	.87
2	8	(2, 2, 2)	1024	27.32	1.57
1	5	(3,3)	1053	2.69	.32
1	5	(2,4)	1280	6.09	.73
1	10	(2,2,2,2,2,2)	20480	_	15.44
1	9	(2,2,2,2,3)	27648	_	25.97
2	10	(2,2,2,2)	32768	_	36.67
1	8	(2,2,3,3)	37584	_	38.23
1	8	(2,2,2,4)	47104	_	111.88

Data and code available at:

github.com/tjyahl/FanoGaloisGroups