





# Supersampler

 Efficient subsampling strategy for metagenomic data analysis

> Timothé Rouzé, Camille Marchet, Antoine Limasset 17/11/2022 SegBim 2022 Uni

### **Context**

# **Orders of magnitude**

#### **SRA Growth**



# **Sketching**



# **Sketching**





## **Sketching**



#### Mash

**Table 1** Example Mash error bounds for a k-mer size of 21 and increasing sketch sizes

|             | Mash distan | Mash distance |        |        |        |                  |                    |             |  |
|-------------|-------------|---------------|--------|--------|--------|------------------|--------------------|-------------|--|
| Sketch size | 0.05        | 0.10          | 0.15   | 0.20   | 0.25   | 0.30             | 0.35               | 0.40        |  |
| 100         | 0.0271      | 0.0868        |        | _      | -      | 5 <del></del>    | 6 <del>-</del> 8   | <del></del> |  |
| 500         | 0.0098      | 0.0245        | 0.0473 | -      | _      | -                | _                  | -           |  |
| 1000        | 0.0068      | 0.0158        | 0.0323 | 0.0630 | -      | -                | ) <b>—</b> )       |             |  |
| 5000        | 0.0029      | 0.0065        | 0.0124 | 0.0235 | 0.0460 | 10 <del>70</del> | 30 <del>-</del> 30 | <del></del> |  |
| 10,000      | 0.0020      | 0.0046        | 0.0086 | 0.0159 | 0.0300 | 0.0726           | _                  |             |  |
| 50,000      | 0.0009      | 0.0020        | 0.0037 | 0.0065 | 0.0116 | 0.0219           | 0.0396             | 0.0822      |  |
| 100,000     | 0.0006      | 0.0014        | 0.0026 | 0.0046 | 0.0081 | 0.0143           | 0.0250             | 0.0492      |  |
| 500,000     | 0.0003      | 0.0006        | 0.0011 | 0.0020 | 0.0035 | 0.0060           | 0.0105             | 0.0187      |  |
| 1,000,000   | 0.0002      | 0.0004        | 0.0008 | 0.0014 | 0.0024 | 0.0042           | 0.0072             | 0.0128      |  |

Ondov et al. (2016)

#### **Drawback**



#### **Jaccard index vs Containment index**



## **Subsampling**



- > Sketch size adaptable to dataset size
- Containment index

[1] Ondov et al. (2016)

[2] Baker et al. (2019)

[3] Irber et al. (2022)

# **Sourmash**<sup>[1]</sup>

#### sketch



#### **FracMinHash**

- K-mer selected with fixed probability P
- Selected k-mers are stored in a 32 bits hash

[1] Irber et al. (2022)

### Minimizers and Super-k-mers

Minimizer: smallest sequence of size m of a k-mer

```
...GAACTCAAATGTCTGCTT...
                                       GAACTCAAATGTCTGCTT...
GAACTCA
                                       GAACTCA
                                        AACTCAA
 AACTCAA
               k-mers (size 7)
                                                      k-mers (size 7)
                                         ACTCAAA
  ACTCAAA
   CTCAAAT
                                          CTCAAAT
               49 nucleotides
                                                      49 nucleotides
    TCAAATG
                                            TCAAATG
     CAAATGT
                                             CAAATGT
      AAATGTC
                                              AAATGTC
               super k-mers (m= 3)
GAACTCAA
                                       GAACTCAA
                                                      super k-mers (m= 4)
  ACTCAAATGTC 19 nucleotides
                                                      23 nucleotides
                                         ACTCAAA
                                          CTCAAATGTC
```

### Maximal super-k-mers

Maximal super-k-mer size = 2k-m

# **GACGAATG**

GACGA

CGAATG

K = 4, m = 2

# **Supersampler**

### **Scaled superkmers**



### **Sketch comparison**



sketch 1

#### **TAGTAA**

ATGCTAGTmTGTAGTGAC

ATCGTC

**AGTCGATmCGATCTA** 

#### CTTCTG

**GCTAGCAmTACTTGCAT** 



sketch 2

#### **TAGTAA**

CGTCGAmCATCGAT

**ATGTAT** 

**TGATGMATGTG** 

#### CTTCTG

GCTAGCATGmACTACTGC

# **Color map**



### **Comparator**

- Outputs containment index and Jaccard index
- Outputs shared kmers
- O(#hits) complexity.
- Light RAM usage (one bucket at a time)

# **Results**

# **Results: lowering memory footprint**

| Subsampling 1/1000 |         |                   |                    |                |  |  |
|--------------------|---------|-------------------|--------------------|----------------|--|--|
|                    |         | Genome size (.gz) | Supersampler (.gz) | Sourmash (.gz) |  |  |
|                    | Axolotl | 8.6 GBytes        | 12.7 MBytes        | 126 MBytes     |  |  |
|                    | Human   | 928 MBytes        | 1.5 MBytes         | 19 MBytes      |  |  |

| Subsampling 1/10000 |         |                   |                    |                |  |
|---------------------|---------|-------------------|--------------------|----------------|--|
|                     |         | Genome size (.gz) | Supersampler (.gz) | Sourmash (.gz) |  |
|                     | Axolotl | 8.6 GBytes        | 1.58 MBytes        | 13 MBytes      |  |
|                     | Human   | 928 MBytes        | 159 kBytes         | 1.8 MBytes     |  |

### **Results: time and memory footprints**

# Human 3 billion k-mers



|                                | Supersampler<br>K=31, m=11, s=1000 | Supersampler<br>K=31, m=11, s=10000 | Sourmash<br>(k = 31, s=1000) | Sourmash<br>(k=31, s=10000) |
|--------------------------------|------------------------------------|-------------------------------------|------------------------------|-----------------------------|
| Maximal<br>super-k-mer<br>rate | 0.943                              | 0.999                               | NA                           | NA                          |
| bits/ k-mer                    | 3.45                               | 2.43                                | 32                           | 32                          |
| Time (min:sec)                 | 0:41                               | 0:36                                | 1:39                         | 1:42                        |

### **Results: time and memory footprints**

# **Axolotl assembled genome** 32 billion k-mers



|                          | Supersampler<br>K=31, m=11, s=1000 | Supersampler<br>K=31, m=11, s=10000 | Sourmash<br>k=31, s=1000 | Sourmash<br>K=31, s=10000 |
|--------------------------|------------------------------------|-------------------------------------|--------------------------|---------------------------|
| Maximal super-k-mer rate | 0.968                              | 0.999                               | NA                       | NA                        |
| bits/ k-mer              | 3.56                               | 3.53                                | 32                       | 32                        |
| Time (min:sec)           | 17:01                              | 16:32                               | 18:54                    | 18:24                     |

### Take home messages

#### **Supersampler**

- ➤ As fast as sourmash + up to 10X less memory usage
- > Accurate sketch comparison, results consistent with current knowledge [1]

#### **Future**

- Seed indexing strategy
- > Faster sketch comparison
- ➤ Add less accurate (FP) but lighter version



#### References

- Ondov, B.D., Treangen, T.J., Melsted, P. *et al.* Mash: fast genome and metagenome distance estimation using MinHash. *Genome Biol* **17**, 132 (2016). <a href="https://doi.org/10.1186/s13059-016-0997-x">https://doi.org/10.1186/s13059-016-0997-x</a>
- Baker, D.N., Langmead, B. Dashing: fast and accurate genomic distances with HyperLogLog. *Genome Biol* 20, 265 (2019).
  https://doi.org/10.1186/s13059-019-1875-0
- David Koslicki, Hooman Zabeti, Improving MinHash via the containment index with applications to metagenomic analysis, Applied Mathematics and Computation, Volume 354, 2019, Pages 206-215, ISSN 0096-3003, <a href="https://doi.org/10.1016/j.amc.2019.02.018">https://doi.org/10.1016/j.amc.2019.02.018</a>.
- Lightweight compositional analysis of metagenomes with FracMinHash and minimum metagenome covers, Luiz Irber, Phillip T. Brooks, Taylor Reiter, N. Tessa Pierce-Ward, Mahmudur Rahman Hera, David Koslicki, C. Titus Brown, bioRxiv 2022.01.11.475838; doi: https://doi.org/10.1101/2022.01.11.475838
- Debiasing FracMinHash and deriving confidence intervals for mutation rates across a wide range of evolutionary distances Mahmudur Rahman Hera, N. Tessa Pierce-Ward, David Koslicki bioRxiv 2022.01.11.475870; doi: https://doi.org/10.1101/2022.01.11.475870