Zeitharmonische Maxwell-Gleichungen

für anisotrope, homogene Medien

$$\nabla \times \underline{\vec{H}} = \underline{\vec{J}} + j\omega\varepsilon\underline{\vec{E}} \qquad \iff \qquad \oint_{\partial A} \underline{\vec{H}} \cdot d\vec{s} = \iint_{A} \left(\underline{\vec{J}} + j\omega\varepsilon\underline{\vec{E}}\right) \cdot d\vec{A}$$

$$-\nabla \times \underline{\vec{E}} = \underline{\vec{M}} + j\omega\mu\underline{\vec{H}} \qquad \iff \qquad -\oint_{\partial A} \underline{\vec{E}} \cdot d\vec{s} = \iint_{A} \left(\underline{\vec{M}} + j\omega\mu\underline{\vec{H}}\right) \cdot d\vec{A}$$

$$\nabla \cdot \underline{\vec{H}} = \underline{\rho}_{m}/\mu \qquad \iff \qquad \oiint_{\partial V} \underline{\vec{H}} \cdot d\vec{A} = \frac{1}{\mu} \iiint_{V} \underline{\rho}_{m} dV$$

$$\nabla \cdot \underline{\vec{E}} = \underline{\rho}_{e}/\varepsilon \qquad \iff \qquad \oiint_{\partial V} \underline{\vec{E}} \cdot d\vec{A} = \frac{1}{\varepsilon} \iiint_{V} \underline{\rho}_{e} dV$$

für Freiraumausbreitung und allgemein Vakuum: $\underline{\rho}_e=\underline{\rho}_m=0$ und $\underline{\vec{J}}=\underline{\vec{M}}=\vec{0}$ Poynting-Vektor; Wirkleistung

$$\underline{\vec{S}} = \frac{1}{2}\underline{\vec{E}} \times \underline{\vec{H}}^* \quad ; \quad P = \oiint \Re \left\{ \underline{\vec{S}} \right\} \mathrm{d}\vec{A} = \frac{1}{2} \oiint \Re \left\{ \underline{\vec{E}} \times \underline{\vec{H}}^* \right\} \mathrm{d}\vec{A}$$

EM-Wellen: allgemeine Zusammenhänge

Wellenleiter (konstanter Querschnitt)

$$\lambda = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\beta_c}{\beta_0}\right)^2}} = \frac{\lambda_0}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_c}\right)^2}}$$

Phasengeschwindigkeit

$$v_{\rm p} = \frac{c}{\sqrt{1 - \left(\frac{\beta_c}{\beta_0}\right)^2}} = \frac{c}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} = \frac{c}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_c}\right)^2}}$$

Gruppengeschwindigkeit

$$v_{\rm g} = c\sqrt{1 - \left(\frac{\beta_c}{\beta_0}\right)^2} = c\sqrt{1 - \left(\frac{f_c}{f}\right)^2} = c\sqrt{1 - \left(\frac{\lambda_0}{\lambda_c}\right)^2}$$

Zusammenhang Geschwindigkeiten

$$c_0^2 = v_{\rm g} \cdot v_{\rm p}$$

Kritische Frequenzen (a > b)

$$f_{c,m,n} = \frac{c}{2} \cdot \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

Zweileitersysteme

Gruppen- und Phasengeschwindigkeit

$$v_{\rm g} = v_{\rm p} = \frac{1}{\sqrt{\varepsilon\mu}} = \frac{1}{\sqrt{L'C'}} = c$$

Leitungsbeläge Koaxialleitung

$$C' = \frac{C}{l} = \frac{2\pi\varepsilon}{\ln\left(\frac{D}{d}\right)}$$
 $L' = \frac{\varepsilon\mu}{C'} = \frac{\mu\ln\left(\frac{D}{d}\right)}{2\pi}$

Feldwellenwiderstand

TEM-Wellen

$$\begin{vmatrix} \frac{\vec{E}_x}{\vec{H}_y} = -\frac{\vec{E}_y}{\vec{H}_x} = \pm \frac{\omega \mu}{\beta} = \pm \sqrt{\frac{\mu}{\varepsilon}} = \pm Z_F \\ Z_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega = 377\Omega \end{vmatrix}$$

TE-Wellen

$$Z_{FH} = \pm \frac{\vec{\underline{E}}_x}{\vec{\underline{H}}_y} = \mp \frac{\vec{\underline{E}}_y}{\vec{\underline{H}}_x} = \frac{\omega\mu}{\beta} = \frac{\omega\mu}{\beta_0 \sqrt{1 - \left(\frac{\beta_c}{\beta_0}\right)^2}} = \frac{Z_F}{\sqrt{1 - \left(\frac{\beta_c}{\beta_0}\right)^2}} = \frac{Z_F}{\sqrt{1 - \left(\frac{f_c}{f_0}\right)^2}} = \frac{Z_F}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_c}\right)^2}} = \frac{Z_F}{\sqrt{1 - \left(\frac{\lambda_0}{\beta_0}\right)^2}} = \frac{Z_F$$

TM-Wellen

$$Z_{FE} = \pm \frac{\vec{\underline{E}}_x}{\vec{\underline{H}}_y} = \mp \frac{\vec{\underline{E}}_y}{\vec{\underline{H}}_x} = \frac{\beta}{\omega \varepsilon} = \frac{\beta_0 \sqrt{1 - \left(\frac{\beta_c}{\beta_0}\right)^2}}{\omega \varepsilon}$$
$$= Z_F \sqrt{1 - \left(\frac{\beta_c}{\beta_0}\right)^2} = Z_F \sqrt{1 - \left(\frac{f_c}{f_0}\right)^2} = Z_F \sqrt{1 - \left(\frac{\lambda_0}{\lambda_c}\right)^2}$$

Antennentheorie

Kenngrößen von Antennen

Strahlungsleistungsdichte (Kugel/Dipol)

$$S_0 = \frac{P}{4\pi r^2}$$
 $S(\vartheta, \varphi) = \frac{1}{2} Z_F \left(\frac{\beta |\underline{I}_0| l \sin(\vartheta)}{4\pi r}\right)^2$

Richtfaktor

$$D = \frac{S_{\text{max}}}{S_0} = \frac{S_{\text{max}}}{P} \cdot 4\pi r \qquad \text{bzw.} \qquad D(\vartheta, \varphi) = \frac{S(\vartheta, \varphi)}{S_0}$$

Gewinn

$$G = \eta D$$

Zusammenhang zwischen Wirkfläche und Gewinn für alle Antennen

$$\frac{A}{G} = \frac{\lambda^2}{4\pi}$$

Richcharakteristik

$$C(\vartheta,\varphi) = \frac{\left\|\underline{\vec{E}}(\vartheta,\varphi)\right\|}{\left\|\underline{\vec{E}}\right\|_{\text{max}}} = \frac{\left\|\underline{\vec{H}}(\vartheta,\varphi)\right\|}{\left\|\underline{\vec{H}}\right\|_{\text{max}}} = \sqrt{\frac{S(\vartheta,\varphi)}{S_{\text{max}}}}$$

Abgestrahlte Leistung

$$P = \iint S dA = \iint S_0 DC^2(\vartheta, \varphi) dA$$

Fußpunktimpedanz und Strahlungswiderstand

$$\underline{Z}_{A} = \frac{\underline{U}_{0}}{\underline{I}_{0}} \qquad R_{S} = \frac{2P}{|\underline{I}_{0}|^{2}}$$

$$R_{\rm S} = \frac{2P}{|\underline{I}_0|^2}$$