Hunting dark matter signals with deep learning at the LHC

Dr. Andres D. Perez IFLP-CONICET, Argentina

Work in colaboration with: Ernesto Arganda, Anibal Medina, and Alejandro Szynkman

Plan

Models and sample generation

- Simplified models
- Kinematic features
- Benchmark models

Neural Network algorithms

- Event-by-even data
- Data as 2D histograms → DNNs and CNNs

Flexibility of the method

- Performance invariance with the number of background events
- Testing under incorrect training hypothesis: coupling values
 - benchmark model

Multimodel Classifiers

- Binary classifier
- Multiclass classifier

Conclusions

What we want

- Study several simplified dark matter models and their signatures at the LHC using Neural Networks
 - → monojet plus missing transverse energy channel.

- Determine the **viability** of deep learning methods and analyze **flexible** they are
 - → different neural networks and different data representations

Models and sample generation

Simplified models Kinematic features Benchmark models

- DM with a spin-0 mediator
- DM with a spin-1 mediator
- DM with a spin-2 mediator

m_{DM}: DM mass m_Y: mediator mass DM-mediator couplings SM-mediator coupling

Axion-Like Particle (ALP) as DM

 m_a : axion mass (DM) f_a : axion scale SM-axion couplings

monojet plus missing transverse energy channel

DM with a spin-0 mediator

pp → DM DM j

monojet plus missing transverse energy channel

• DM with a spin-1 mediator

pp → DM DM j

monojet plus missing transverse energy channel

DM with a spin-2 mediator

 $pp \rightarrow DM DM j$

monojet plus missing transverse energy channel

Axion-Like Particle (ALP) as DM

monojet plus missing transverse energy channel

SM background

$$pp \rightarrow Zj(Z \rightarrow vv)$$

$$Y \rightarrow Z$$
 $DM \rightarrow V$

Kinematic distributions

Input data for our deep learning algorithms

- **1.** The coupling values do not modify the kinematic distributions
 - → models with a mediator defined by (m_{DM}, m_{V})
- **2.** ALPs distributions are independent of m_a and f_a.
- **3.** The azimuthal angle distribution does not show any useful structure.

Kinematic distributions

Models with a mediator

1. The coupling values do not modify the kinematic distributions \rightarrow models with a mediator defined by (m_{DM}, m_Y)

But if the parameter space is divided according to the mediator status:

Mediator status	Relevant parameter
Off-shell	$m_{\scriptscriptstyleDM}^{\scriptscriptstyleDM}$
On-shell	m_{Y}
Off-shell PS (by phase space)	m_{\scriptscriptstyleDM}

Benchmark models

			Label		
	Benchmark Model		Individual Multimodel		
			Binary	Binary	Multiclass
1.5M events	◀	SM only	0	0	0
		ALPs	1	1	1
	Spin-0 mediator	$m_Y^{s=0}=m_Z$, $m_{DM}=300~{\rm GeV}$	1	1	2
		$m_Y^{s=0}=1000~{\rm GeV}$, $m_{DM}=10~{\rm GeV}$	1	1	3
		$m_Y^{s=0}=10~{\rm TeV}$, $m_{DM}=10~{\rm GeV}$	1	-	-
0.5M events	Spin-1 mediator	$m_Y^{s=1}=m_Z$, $m_{DM}=300~{\rm GeV}$	1	1	4
		$m_Y^{s=1}=1000~{\rm GeV}$, $m_{DM}=10~{\rm GeV}$	1	-	-
		$m_Y^{s=1}=10~{\rm TeV}$, $m_{DM}=10~{\rm GeV}$	1	1	5
	Spin-2 mediator	$m_Y^{s=2}=m_Z$, $m_{DM}=300~{\rm GeV}$	1	-	-
		$m_Y^{s=2}=1000~{\rm GeV}$, $m_{DM}=10~{\rm GeV}$	1	1	6
		$m_Y^{s=2}=10~{\rm TeV}$, $m_{DM}=10~{\rm GeV}$	1	1	7

MadGraph5_aMC@NLO to generate events with monojets plus missing energy at parton level. Parton shower and hadronization are performed with **Pythia**.

Detector-level data is simulated using **Delphes** with the default ATLAS card.

 \sqrt{s} = 14TeV generation level cuts: p_i^T ≥130GeV and $|\eta_i|$ ≤5 for the leading jet.

Neural Networks algorithms

Event-by-even data
Data as 2D histograms → DNNs and CNNs

DNN: Deep Neural Networks

All the algorithms are constructed in **Python** using the library **Keras** along with **TensorFlow** for backend implementation

Supervised Learning

Trained to discriminate data samples with Signal and No Signal

Trained each benchmark model vs SM **individually**.

DNN: Deep Neural Networks

All the algorithms are constructed in **Python** using the library **Keras** along with **TensorFlow** for backend implementation

Supervised Learning

Threshold: 0.5 → Output > threshold

→ The DNN predicted '1'Signal → New Physics

DNN with Event-by-event data

We simulated 1.5M SM events and 0.5M New Physics events

Each event has the monojet kinematic information $(p_{\tau}^{j}, \eta^{j}, \Phi^{j})$

Data samples are divided with a 0.64:0.20:0.16 train-test-validation ratio

DNN with Event-by-event data

Receiver Operating Characteristic (ROC) curves:

The area under the ROC curve (AUC), a conventional metric to test the performance of binary classifiers

AUC=1 is a perfect classifier, and **AUC=0.5** represents a random classifier

DNN with Event-by-event data

Receiver Operating Characteristic (ROC) curves:

The area under the ROC curve (AUC), a conventional metric to test the performance of binary classifiers

AUC=1 is a perfect classifier, and **AUC=0.5** represents a random classifier

S: # NP events B: # SM events

The jet azimuthal angle Φ^j does not provide any useful information.

We can construct 2D histograms made from the pair $(\mathbf{p}_{\mathbf{r}}^{\mathbf{j}}, \mathbf{n}^{\mathbf{j}})$

- . 20k histograms with only SM events
- . 20k histograms with NP + SM events

per benchmark model and per S/B ratio

We simulated

20k SM only histograms and

20k New Physics + SM histograms (per benchmark model and per S/B ratio)

DNN trained to discriminate:
histograms with SM only events vs
histograms with NP+SM events

Trained each benchmark model vs SM individually.

We simulated

20k SM only histograms and

20k New Physics + SM histograms (per benchmark model and per S/B ratio)

Each point represents a DNN trained with a data set with a specific benchmark, S and B

Huge performance boost w.r.t. event-by-event representation!

AUC=1 is a perfect classifier, and **AUC=0.5** represents a random classifier

CNN: Convolutional Neural Networks

- Image recognition.
- Have other structure (kernel layers, etc).
- Scan the image by parts looking for patterns.
- Demand significantly more computing time than DNN

Differences are within ~5% for all the models considered

→ no improvement with respect to the DNN is found

Flexibility of the method

Performance invariance with the number of background events Testing under incorrect training hypothesis: - coupling values

- benchmark model

S: # NP events B: # SM events

Performance invariance with B

Performance is not modified significantly for different values of B, if the results are presented as a function of S/VB.

Performance invariance with B

Performance invariance with B

To know if a DNN or CNN with 2D histograms could distinguish a particular new physics model from the SM background, we only need to:

- Identify the curve of the corresponding benchmark model
- Calculate the model cross section for the chosen couplings
- Calculate the SM background cross section
- Calculate SI√B for any luminosity, and check the corresponding AUC

Also, we can have an idea of the luminosity needed to obtain a given efficiency. Change the last step for:

• Identify the SI√B value for the corresponding AUC you would like to get and calculate the luminosity needed

events = cross section * luminosity * detector efficiency

Performance invariance with B

S: # NP events B: # SM events

SI√B is a histogram parameter ⊥

each 2D histogram constructed with B SM events + S New Physics events

It is not the significance in an usual counting experiment

(1 data sample = 1 histogram)

Preguntas abiertas

¿Cuál es la relación entre AUC y la significancia de excluir la hipótesis nula?

¿Cómo estimar la significancia del método?

¿Cómo es el proceso de aplicación del método?

¿Tiene sentido construir más de 1 histograma con los datos experimentales?

Disminuye S/√B → i.e. disminuye el AUC de la red, pero ¿tengo más estadística?

Testing under incorrect training hypothesis

A DNN is prepared to handle the same kind of data that it has been trained with, i.e. matching train and test data samples (same underlying model).

What is the performance when we apply a test data set to a DNN trained with a different underlying model?

DNN results with matching data samples are called ${\rm AUC_{true}}$ DNN results with non-matching data samples are called ${\rm AUC_{wrong}}$

Testing under incorrect training hypothesis: coupling values

Train and test data samples are generated with the **same benchmark models**, but with **different S/B ratios**, i.e. a same model with **different coupling values.**

Testing under incorrect training hypothesis: coupling values

Train and test data samples are generated with the **same benchmark models**, but with **different S/B ratios**, i.e. a same model with **different coupling values**.

variation in the coupling values is acceptable

Testing under incorrect training hypothesis: **benchmark model**

Train and test data samples are generated with **different benchmark models**, but with the **same S/B ratios**.

Intermediate S/√B values discrepancies can be huge, up to 25%

Testing under incorrect training hypothesis: **benchmark model**

Another example

Performance variations within ~10%

The DNN classifies "kinematic distributions" not "models"

The DNN classifies "kinematic distributions" not "models"

Benchmark models with "similar" kinematic distributions result in "similar" DNN performances

Multimodel classifiers

Binary classifier Multiclass classifier

A single DNN per S/B value to discriminate, regardless the underlying model, between

SM background (labeled '0')

vs non-SM processes (labeled '1')

One DNN trained with several benchmark models

Test the DNN

ROC curve → AUC as performance

Testing with training models

improvement, up to ~15%, w.r.t. individual DNNs, but in regions with low AUC

S/√B (B=50k)

Models completely new to the DNN

Testing with non-training models

improvement, up to ~15%, w.r.t. individual DNNs, but in regions with low AUC

Some

Info about many models → helps the discrimination of NP + SM vs SM only

A single DNN per S/B value to discriminate between:

a single DNN trained with **several** new physics models

Test the DNN

Test the network
with only one
benchmark model
at a time to
evaluate its
performance,
denoted
AUC
7-models

(trained with **7 NP+SM** models and **SM only**)

Array of 8 elements between [0,1]

Each element is the probability that the histogram belongs to a training model

For example

Convert the output array in a **binary result**: **positive class** → the element corresponding to the model we are testing, **negative classes** → the other elements

The discrimination power is between a particular model and the rest of the 7 selected models

Can discriminate **SM only** histograms (or **ALP + SM** histograms) from the rest

One count is assigned to the output array element if its probability fulfills two conditions:

- 1. it is the element with the highest value,
- 2. its **value is above** a threshold equal to **0.25**, defined as two times the probability that would be obtained for a completely random classifier. (there are 8 training models \rightarrow 2 * 1/8)

Then, a histogram of the frequency of occurrence can be constructed

Testing with training models

The DNN classifies "kinematic distributions" not "models"

Predicts compatible kinetic distribution of the underlying model.

Conclusions

Conclusions

Search for dark matter signatures at the LHC using deep learning

Models:

- Monojet plus missing transverse energy channel of four simplified dark matter frameworks: ALP and spin-0, spin-1, and spin-2 mediator models
- One usual drawback of supervised techniques: the need of a specific data set per model We take kinematic features as input data
 - Independent of the coupling values
 - In models with a mediator, considering its status is key to reduce the free parameters
 - → we describe a family of models with a single data set

Neural Networks (individual classifiers):

- Discerning new physics signatures from SM background, two data representations:

 - → event-by-event data
 → 2D histograms
 → poor performance
 → huge performance
 - **→ 2D histograms**

- → huge performance boost
- CNN no significant improvement w.r.t. DNN results
- The method is quite robust.
 - The DNN can handle small errors in the coupling values,
 - and test an incorrect model as long as their kinematic distributions are similar,

Conclusions

Search for dark matter signatures at the LHC using deep learning

- Histogram approach drawback: construct histograms for every S/B ratio
 - → DNN performance independent of the number of background event if we choose S/√B as variable

Easy to check if a DNN could discriminate a particular model from the SM, for any luminosity. Or to **estimate the luminosity needed** to achieve a certain performance level.

Multimodel classifiers:

- Supervised algorithms but instead of training one benchmark model per DNN, several ones are used.
 - a **multimodel binary classifier**, prepared to discriminate between: SM only histograms vs SM background plus any kind of new physics events
 - a **multiclass classifier** prepared to identify between: SM only and several benchmark models, pointing out the most likely underlying model
- A more challenging task, but a good performance is achieved.
 - misleading model properties can be predicted (e.g. incorrect dark sector masses or spin).
 - But result points towards a compatible kinetic distribution, a key tool to guide further analysis

Thank you!

Back-ups

NNS parameters

	DNN		CNN			
Input data						
Format	event-by-event	2D histogram				
Features	(p_T^j,η^j,ϕ^j)	p_T^j vs η^j				
Sample size	400k per model	20k l	20k histograms per model			
Train:Test:Validation	0.64:0.20:0.16					
Neural Network						
Layers	3 dense layers		Convolutional 2D layer $(3\times3, 32)$			
	Hidden layers nodes = 20		Max pooling 2D layer (2×2)			
	Dropout in every	hidden layer: 0.2	Convolutional 2D layer $(3\times3,\ 64)$			
			Max pooling 2D layer (2×2)			
			Flatten layer			
			Dense layer			
Activation function	Hidden layers: relu					
	Output layer: sigmoid					
Compilation						
Loss function	$binary_crossentropy$					
Optimizer	adam (initial learning rate = 0.0001)					
Metric	accuracy					
Batch size	128					
Max epochs	1500-2500					
Patience	100-300 epochs					

SM background

Process	σ (pb)	D	PRC	Same b diagrams replacing Z → W v → I
$Zj\left(Z ightarrow uar{ u} ight)$	53.6	0.78	1	
$Wj(W \to \tau \nu)$	24.8	0.20	0.12	
$Wj(W \to l\nu), l = e, \mu$	49.7	0.049	0.058	
$Zj(Z \to ll), l = e, \mu, \tau$	19.1	0.013	0.006	
$t ar{t}$	217	0.021	0.11	V -7 I
		$0.014 \ (b_{tag} \le 1)$	0.073	
		$0.004 \ (b_{tag} = 0)$	0.021	
diboson (WW, WZ, ZZ)	5.18	0.12	0.014	

$$PRC = \frac{N_{\text{process}}}{N_{pp \to Zj(Z \to \nu\bar{\nu})}},$$

Parton vs detectorlevel data

Logarithmic vs linear bins

Bin number per histogram

Minimum jet transverse momentum (p_T cut)

With individual DNNs

If signal indicates the presence of non-SM processes, we would like to identify the underlying new physics model.

DNN performance to distinguish between histograms with:

Benchmark model 1 plus SM vs Benchmark model 2 plus SM

ALP plus SM

VS
the other benchmark models
plus SM

The ALP model takes the role of the SM, because both kinematic distributions are similar.

SM only
VS
Benchmark model plus SM

Spin-2 mediator plus SM VS the other benchmark models plus SM

The **spin-2 model** has the hardest spectrum

→ highest efficiency achieve when we try to disentangle between the spin-2 model and the model with the softer spectrum, ALP.

Monojet and dijet + MET processes

Monojet \rightarrow 3 kinematic variables: p_T^j , η^j , Φ^j

Dijet → 8 kinematic variables:

 p_T^{j1} , η^{j1} , (j1: leading jet)

 p_{T}^{j2} , η^{j2} , (j2: sub-leading jet)

 p_{τ}^{MET} missing transverse momentum

 $\Delta\Phi^{j1\,j2}$, $\Delta\Phi^{j1}_{MET}$, $\Delta\Phi^{j2}_{MET}$

