Tensors and Probability: An Intriguing Union

Nikos Sidiropoulos (joint work with Nikos Kargas, Xiao Fu)

December 6, 2017

Arxiv version

N. Kargas, N.D. Sidiropoulos, X. Fu, "Tensors, Learning, and 'Kolmogorov Extension' for Finite-alphabet Random Vectors," arXiv:1712.00205.

N. Kargas and N.D. Sidiropoulos, "Completing a joint PMF from projections: a low-rank coupled tensor factorization approach", in Proc. IEEE ITA 2017, San Diego, CA, Feb. 12-17, 2017.

Motivation

- Infer missing values from the observed ones
- Low-rank data matrix/tensor completion

Motivation

Why settle for burger when you can have steak?

Can we learn the joint PMF of X_1, \ldots, X_N ?

PMF estimation vs. data completion.

Joint PMF estimation

- Without structural assumptions, joint PMF estimation is often considered impossible (10 variables, 10 values each $\rightarrow 10^{10}$).
- Generic way to control joint PMF complexity?
- Is it possible to discover the underlying structure?
- Joint PMF recovery by observing subsets of variables? Is it possible?

Sneak preview

We will see that:

- Full joint PMF can be recovered from third-order marginal PMFs under certain conditions.
- Rank of the higher order PMF; interp. random rvs 'reasonably (in)dependent'.

Kolmogorov extension theorem:

• Consistent specification of lower-order distributions induces a unique probability measure for the entire process.

Joint PMF from marginals ('projections')?

Graphical models? — Structure?

Linear vs. statistical (in)dependence

 $\text{Most commonly used measure of Dependence:} \quad D := \sum_{i,j} \Pr_{X,Y}(i,j) \ln \left(\frac{\Pr_{X,Y}(i,j)}{\Pr_{X}(i) \Pr_{Y}(j)} \right)$

R=1 D=0 Statistically independent R=2 D=ln(2) partial statistical dependence R=4 D=ln(4) Complete statistical dependence

R=1 statistically independent

R=2 can model strong statistical dependence, yields 50% of D of fully dependent case

R=4 maximal statistical dependence

Canonical Polyadic Decomposition (CPD)

N-way tensor (multi-way array) $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ admits a CPD of rank F if it can be decomposed as a sum of F rank-1 tensors.

$$\underline{\mathbf{X}} = \sum_{f=1}^{F} \boldsymbol{\lambda}(f) \mathbf{A}_1(:,f) \circ \mathbf{A}_2(:,f) \circ \cdots \circ \mathbf{A}_N(:,f)$$

F is the smallest number for which such a decomposition exists.

Canonical Polyadic Decomposition (CPD)

Different ways of writing a CPD model $\underline{\mathbf{X}} = [\![\boldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N]\!]$

• Element-wise

$$\underline{\mathbf{X}}(i_1,\ldots,i_N) = \sum_{f=1}^F \boldsymbol{\lambda}(f) \prod_{n=1}^N \mathbf{A}_n(i_n,f)$$

• Matrix (unfolding)

$$\mathbf{X}^{(n)} = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_{n+1} \odot \mathbf{A}_{n-1} \odot \cdots \odot \mathbf{A}_1) \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{A}_n^{\mathrm{T}}$$

Vector

$$\operatorname{vec}(\underline{\mathbf{X}}) = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_1) \boldsymbol{\lambda}$$

Link between naive Bayes model and CPD

Assume that $\{X_n\}_{n=1}^N$ are conditionally independent given a variable H that takes F distinct values.

$$\Pr(X_1 = i_1, \dots, X_N = i_N) = \sum_{f=1}^F \Pr(H = f) \prod_{n=1}^N \Pr(X_n = i_n | H = f).$$

A special non-negative polyadic decomposition $\underline{\mathbf{X}} = [\![\boldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N]\!]$ with

$$\lambda(f) = \Pr(H = f),$$

 $\mathbf{A}_n(i_n, f) = \Pr(X_n = i_n | H = f),$

where $\mathbf{1}^T \boldsymbol{\lambda} = 1$, $\mathbf{1}^T \mathbf{A}_n = \mathbf{1}^T$.

Naive Bayes Model.

Link between naive Bayes model and CPD

Proposition 1 (Kargas & Sidiropoulos, 2017)

Every joint PMF can be written as

$$\Pr(X_1 = i_1, \dots, X_N = i_N) = \sum_{f=1}^F \Pr(H = f) \prod_{n=1}^N \Pr(X_n = i_n | H = f)$$

with
$$F \le \min_{k} (\prod_{\substack{n=1 \ n \ne k}}^{N} I_n)$$

- \rightarrow Every joint PMF can be represented by a naive Bayes model with a bounded number of latent states.
- \rightarrow Even when there is no physically meaningful H.

We naturally prefer
$$F \ll \min_k (\prod_{\substack{n=1 \\ n \neq k}}^N I_n)$$

Reasonable in practice: random variables are not fully dependent.

Uniqueness of CPD

Definition 1 (Essential uniqueness)

For a tensor $\underline{\mathbf{X}}$ of rank F, we say that a decomposition

 $\underline{\mathbf{X}} = [\![\mathbf{A}_1, \dots, \mathbf{A}_N]\!]$ is essentially unique if the factors are unique up to a common permutation and scaling / counter-scaling of columns.

This means that if there exists another decomposition

 $\underline{\mathbf{X}} = [\![\widehat{\mathbf{A}}_1, \dots, \widehat{\mathbf{A}}_N]\!]$, then, there exists a permutation matrix $\mathbf{\Pi}$ and and diagonal scaling matrices $\mathbf{\Lambda}_n$ such that

$$\widehat{\mathbf{A}}_n = \mathbf{A}_n \mathbf{\Pi} \mathbf{\Lambda}_n \text{ and } \prod_{n=1}^N \mathbf{\Lambda}_n = \mathbf{I}.$$

There is no scaling ambiguity for the nonnegative column-normalized representation $\underline{\mathbf{X}} = [\![\boldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N]\!]$.

Uniqueness of CPD

Let $\underline{\mathbf{X}} = [\![\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3]\!]$, where $\mathbf{A}_1 \in \mathbb{R}^{I_1 \times F}$, $\mathbf{A}_2 \in \mathbb{R}^{I_2 \times F}$, $\mathbf{A}_3 \in \mathbb{R}^{I_3 \times F}$ with $I_1 \leq I_2 \leq I_3$.

Theorem 1 (Chiantini & Ottaviani 2012)

If $\min(I_1, I_2) \geq 3$ and $F \leq I_3$, then, $rank(\underline{\mathbf{X}}) = F$ and the decomposition of $\underline{\mathbf{X}}$ is essentially unique, almost surely, if and only if $F \leq (I_1 - 1)(I_2 - 1)$.

Theorem 2 (Chiantini & Ottaviani 2012)

Let α, β be the largest integers such that $2^{\alpha} \leq I_1$ and $2^{\beta} \leq I_2$. If $F \leq 2^{\alpha+\beta-2}$ then the decomposition of $\underline{\mathbf{X}}$ is essentially unique almost surely. The condition also implies that if $F \leq \frac{(I_1+1)(I_2+1)}{16}$, then $\underline{\mathbf{X}}$ has a unique decomposition almost surely.

Joint PMF indentifiability from marginals?

Is a PMF identifiable from lower-order marginals? Let

$$\underline{\mathbf{X}}(i_1,\ldots,i_N) = \Pr(X_1 = i_1,\ldots,X_N = i_N)$$

For brevity, let's focus on triples of random variables.

Assume that third-order marginal distributions are available i.e.,

$$\underline{\mathbf{X}}_{jkl}(i_j, i_k, i_l) = \Pr(X_j = i_j, X_k = i_k, X_l = i_l)$$

A key observation

We saw that every PMF can be decomposed as

$$\Pr(i_1,\dots,i_N) = \sum_{f=1}^F \Pr(f) \prod_{n=1}^N \Pr(i_n|f).$$

• The PMF of any subset of rvs is also a non-negative CPD model. e.g., every marginal PMF of 3 variables X_j, X_k, X_l can be decomposed as

$$\Pr(i_j, i_k, i_l) = \sum_{f=1}^F \Pr(f) \Pr(i_j|f) \Pr(i_k|f) \Pr(i_l|f),$$

since $\sum_{i_n=1}^{I_n} \Pr(i_n|f) = 1$.

• A non-negative CPD model that depends only on 3 factors and the same hidden variable.

A key observation

$$oldsymbol{\lambda}(f) = \Pr(H = f)$$

 $oldsymbol{\mathbf{A}}_n(i_n, f) = \Pr(X_n = i_n | H = f)$

$$\Pr(X_1 = i_1, X_2 = i_2, X_3 = i_3)$$

$$X_{123}$$

$$\Pr(X_1 = i_1, X_2 = i_2, X_4 = i_4)$$

$$\boxed{\underline{\mathbf{X}}_{124}}$$

$$\underline{\mathbf{X}}_{124} = [\![\boldsymbol{\lambda}, \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_4]\!]$$

$$\underline{\mathbf{X}}_{124} = (\mathbf{A}_4 \odot \mathbf{A}_2) \operatorname{diag}(\boldsymbol{\lambda})$$

$$\mathbf{X}_{124}^{(1)} = (\mathbf{A}_4 \odot \mathbf{A}_2) \mathrm{diag}(\boldsymbol{\lambda}) \mathbf{A}_1^{\mathrm{T}}$$

- Sufficient conditions for coupled CPD with one common factor: [Sørensen & De Lathauwer, 2015]
- Lower-order marginal distributions (tensors) share multiple factors.
- \rightarrow Better approach: Consider third-order marginals for random variables X_1 , X_2 , and a third random variable.

$$\begin{bmatrix} \mathbf{X}_{123}^{(1)} \\ \mathbf{X}_{124}^{(1)} \\ \vdots \\ \mathbf{X}_{12N}^{(1)} \end{bmatrix} = \begin{bmatrix} (\mathbf{A}_3 \odot \mathbf{A}_2) \mathrm{diag}(\boldsymbol{\lambda}) \mathbf{A}_1^{\mathrm{T}} \\ (\mathbf{A}_4 \odot \mathbf{A}_2) \mathrm{diag}(\boldsymbol{\lambda}) \mathbf{A}_1^{\mathrm{T}} \\ \vdots \\ (\mathbf{A}_N \odot \mathbf{A}_2) \mathrm{diag}(\boldsymbol{\lambda}) \mathbf{A}_1^{\mathrm{T}} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \mathbf{A}_3 \\ \mathbf{A}_4 \\ \vdots \\ \mathbf{A}_N \end{bmatrix} \odot \mathbf{A}_2 \end{pmatrix} \mathrm{diag}(\boldsymbol{\lambda}) \mathbf{A}_1^{\mathrm{T}}$$

It can be seen as an individual CPD model!

More generally, consider a partition of the variables into 3 disjoint subsets S_1, S_2, S_3 such that the third-order marginals $\Pr(i_j, i_k, i_l), \ \forall j \in S_1, \forall k \in S_2, \forall l \in S_3$ are available. Define the following factors

$$\widehat{\mathbf{A}}_1 = [\mathbf{A}_{u_1}^T, \cdots, \mathbf{A}_{u_{|\mathcal{S}_1|}}^T]^T$$

$$\widehat{\mathbf{A}}_2 = [\mathbf{A}_{v_1}^T, \cdots, \mathbf{A}_{v_{|\mathcal{S}_2|}}^T]^T$$

$$\widehat{\mathbf{A}}_3 = [\mathbf{A}_{w_1}^T, \cdots, \mathbf{A}_{w_{|\mathcal{S}_N|}}^T]^T$$

with $u_t \in \mathcal{S}_1$, $v_t \in \mathcal{S}_2$, $w_t \in \mathcal{S}_3$.

We obtain a single non-negative CPD model

$$\underline{\widehat{\mathbf{X}}}^{(1)} = (\widehat{\mathbf{A}}_3 \odot \widehat{\mathbf{A}}_2) \mathrm{diag}(\boldsymbol{\lambda}) \widehat{\mathbf{A}}_1^T$$

Assuming that $I_1 = \ldots = I_N = I$, $\widehat{\underline{\mathbf{X}}} \in \mathbb{R}^{I|\mathcal{S}_1|\times I|\mathcal{S}_2|\times I|\mathcal{S}_3|}$.

Application of the uniqueness results for 3-way tensors gives

Theorem 3

- $I \leq N$ The joint PMF is almost surely identifiable from the third-order marginals if $F \leq I(N-2)$.
- $N \leq I$ The joint PMF is almost surely identifiable from the third-order marginals if $F \leq \left(\lfloor \frac{\sqrt{NI-1}}{I} \rfloor I 1 \right)^2$.

Theorem 4

The joint PMF is almost surely identifiable from the third-order marginals if $F \leq \frac{(\lfloor \frac{N}{3} \rfloor I + 1)^2}{16}$.

Note: F can be of order $O(N^2I^2)$.

What about higher order marginals?

Assume that fourth-order marginals are available. Similar to the 3-way case

$$\underline{\mathbf{X}}^{(1)} = (\widehat{\mathbf{A}}_4 \odot \widehat{\mathbf{A}}_3 \odot \widehat{\mathbf{A}}_2) \mathrm{diag}(\boldsymbol{\lambda}) \widehat{\mathbf{A}}_1^T,$$

which is a fourth-order tensor $\widehat{\underline{\mathbf{X}}} \in \mathbb{R}_{+}^{I|\mathcal{S}_1|\times I|\mathcal{S}_2|\times I|\mathcal{S}_3|\times I|\mathcal{S}_4|}$. A fourth-order tensor can be viewed as a third-order tensor

$$\underline{\widehat{\mathbf{X}}}^{(1)} = (\bar{\mathbf{A}}_3 \odot \widehat{\mathbf{A}}_2) \operatorname{diag}(\boldsymbol{\lambda}) \widehat{\mathbf{A}}_1^T,$$

where $\bar{\mathbf{A}}_3 = \hat{\mathbf{A}}_4 \odot \hat{\mathbf{A}}_3$.

In this case, identifiability can be guaranteed for much higher rank.

Algorithmic approach

Assume that we are given incomplete vector realizations possible with many missing entries.

Estimate third-order marginal distributions from sample averages.

$$\underline{\mathbf{X}}_{jkl}(i_j,i_k,i_l) = \widehat{\Pr}(X_j = i_j, X_k = i_k, X_l = i_l)$$

Joint PMF Recovery From Triples

[S1] Estimate $\underline{\mathbf{X}}_{jk\ell}$ from data;

[S2] Jointly factor $\underline{\mathbf{X}}_{jkl} = [\lambda, \mathbf{A}_j, \mathbf{A}_k, \mathbf{A}_l]$ to estimate

 λ , A_j , A_k , $A_l \forall j, k, l$ using a CPD model with rank F;

[S3] Synthesize the joint PMF $\underline{\mathbf{X}}$ via $\Pr(i_1, i_2, \dots, i_N) = \sum_{f=1}^F \Pr(f) \prod_{n=1}^N \Pr(i_n|f)$, w/ $\Pr(i_n|f) = \mathbf{A}_n(i_n, f)$, $\Pr(f) = \boldsymbol{\lambda}(f)$.

Low-rank joint PMF?

Does the low-rank assumption hold in practice?

The empirical joint PMF of 3 randomly selected variables from different datasets was factored using a non-negative CPD model with various ranks.

Relative error for different joint PMFs of 3 variables.

	$\operatorname{Rank}(F)$			
	5	10	15	
INCOME	2.1×10^{-2}	5.5×10^{-3}	5.1×10^{-3}	
MUSHROOM	4.3×10^{-2}	2.4×10^{-2}	1.9×10^{-2}	
MOVIELENS	1.8×10^{-2}	7.5×10^{-3}	4.1×10^{-3}	

Problem formulation

[S2] We propose solving the following optimization problem

$$\min_{\{\mathbf{A}_n\}_{n=1}^N, \boldsymbol{\lambda}} \quad \sum_{j} \sum_{k>j} \sum_{l>k} \frac{1}{2} \| \underline{\mathbf{X}}_{jkl} - [\![\boldsymbol{\lambda}, \mathbf{A}_j, \mathbf{A}_k, \mathbf{A}_l]\!] \|_F^2$$
subject to $\boldsymbol{\lambda} \geq \mathbf{0}, \ \mathbf{1}^T \boldsymbol{\lambda} = 1,$ (1)
$$\mathbf{A}_n \geq \mathbf{0}, \ n = 1, \dots, N,$$

$$\mathbf{1}^T \mathbf{A}_n = \mathbf{1}^T, \ n = 1, \dots, N.$$

It is an instance of coupled tensor factorization.

Example

Assume that we want to estimate a joint PMF of 4 variables given third-order marginals. In this case, the cost function will be

$$f(\{\mathbf{A}_n\}_{n=1}^4, \boldsymbol{\lambda}) = \frac{1}{2} \left(\|\underline{\mathbf{X}}_{123} - [\![\boldsymbol{\lambda}, \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3]\!] \|_F^2 + \|\underline{\mathbf{X}}_{124} - [\![\boldsymbol{\lambda}, \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_4]\!] \|_F^2 + \|\underline{\mathbf{X}}_{134} - [\![\boldsymbol{\lambda}, \mathbf{A}_1, \mathbf{A}_3, \mathbf{A}_4]\!] \|_F^2 + \|\underline{\mathbf{X}}_{234} - [\![\boldsymbol{\lambda}, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4]\!] \|_F^2 \right)$$

Algorithm

We solve probelm (1) using an alternating optimization approach. Cyclically update variables \mathbf{A}_n and $\boldsymbol{\lambda}$.

The optimization problem with respect to \mathbf{A}_j becomes

$$\begin{aligned} & \min_{\mathbf{A}_j} \sum_{k \neq j} \sum_{\substack{l \neq j \\ l > k}} & \frac{1}{2} \left\| \mathbf{X}_{jkl}^{(1)} - (\mathbf{A}_l \odot \mathbf{A}_k) \mathrm{diag}(\boldsymbol{\lambda}) \mathbf{A}_j^T \right\|_F^2 \\ & \text{subject to} & \mathbf{A}_j \geq \mathbf{0}, \ \mathbf{1}^T \mathbf{A}_j = \mathbf{1}^T. \end{aligned}$$

Note that we have dropped the terms that do not depend on \mathbf{A}_{j} .

Algorithm

Similarly, the optimization problem with respect to λ becomes

$$\min_{\boldsymbol{\lambda}} \sum_{j} \sum_{k>j} \sum_{l>k} \frac{1}{2} \left\| \operatorname{vec}(\underline{\mathbf{X}}_{jkl}) - (\mathbf{A}_{l} \odot \mathbf{A}_{k} \odot \mathbf{A}_{j}) \boldsymbol{\lambda} \right\|_{2}^{2}$$
subject to
$$\boldsymbol{\lambda} \geq \mathbf{0}, \ \mathbf{1}^{T} \boldsymbol{\lambda} = 1.$$

Both problems are linearly constrained quadratic programs, and can be solved to optimality by standard solvers e.g., ADMM.

K = 20 Monte Carlo simulations with randomly generated low-rank tensors

- Number of variables: N=5.
- Alphabet size: $I_n = 10, n = 1, ..., 5$.
- Rank: $F \in \{5, 10, 15\}$.
- Exact marginals of pairs triples and quadruples of variables are available

$$\begin{aligned} \text{MRE}_{\text{fact}} &= \mathbb{E}\left(\frac{1}{N}\sum_{n=1}^{N}\frac{\|\mathbf{A}_{n}-\widehat{\mathbf{A}}_{n}\mathbf{\Pi}\|_{F}}{\|\mathbf{A}_{n}\|_{F}}\right),\\ \text{MRE}_{\text{ten}} &= \mathbb{E}\left(\frac{\|\underline{\mathbf{X}}-\widehat{\underline{\mathbf{X}}}\|_{F}}{\|\underline{\mathbf{X}}\|_{F}}\right), \end{aligned}$$

where Π is a permutation matrix to fix the permutation ambiguity.

Rank		MRE_{fact}	MRE_{ten}
	Pairs	0.277	0.148
F = 5	Triples	1.18×10^{-7}	4.58×10^{-8}
	Quadruples	3.39×10^{-8}	1.19×10^{-8}
	Pairs	0.440	0.187
F = 10	Triples	3.58×10^{-7}	8.70×10^{-8}
	Quadruples	1.26×10^{-7}	2.58×10^{-8}
	Pairs	0.466	0.184
F = 15	Triples	6.77×10^{-7}	1.52×10^{-7}
	Quadruples	1.78×10^{-7}	3.57×10^{-8}

K=20 Monte Carlo simulations with randomly generated low-rank tensors

- $I_n = 10, n = 1, \ldots, 5$
- $F \in \{5, 10, 15\}$
- Generate M 5-dimensional data points by drawing samples from the PMF. For each data point \mathbf{s}_m :
 - First draw a sample h_m according to λ .
 - Then the data point \mathbf{s}_m is generated by drawing its elements independently from $\{\mathbf{A}_n\}(:,h_m)_{n=1}^N$.

Classification task

- 7 different datasets from the UCI machine learning repository were selected.
- From each dataset select discrete features.
- Estimate lower-order marginal distributions of pairs, triples and quadruples of variables.
- For each dataset let X_N be the label and X_1, \ldots, X_{N-1} the features.
- \bullet 20% used as test set, 10% as validation set and 70% as training set.
- F in the range [1, 20].
- MAP estimator of the label

$$\widehat{l}_{\text{map}}(\mathbf{s}_m) = \underset{i_N \in \{1, \dots, I_N\}}{\text{arg max}} \Pr(i_N | \mathbf{s}_m(1), \dots, \mathbf{s}_m(N-1)).$$

• Return the model that reports highest accuracy in validation set.

Classification task

Misclassification error on different UCI datasets.

			Binary		
Method	INCOME	CREDIT	HEART	MUSHROOM	VOTES
CP (Pairs)	0.177 ± 0.004	0.134 ± 0.019	0.151 ± 0.023	0.010 ± 0.007	0.046 ± 0.024
CP (Triples)	0.175 ± 0.003	0.129 ± 0.018	0.147 ± 0.031	0.006 ± 0.002	0.043 ± 0.024
CP (Quadruples)	0.171±0.003	$0.123 \!\pm\! 0.018$	0.138 ± 0.029	0.002 ± 0.001	0.042 ± 0.020
SVM (Linear)	0.179 ± 0.004	0.146 ± 0.027	0.170 ± 0.053	0 ±0	0.038 ± 0.025
SVM (RBF)	0.174 ± 0.004	0.136 ± 0.018	0.187 ± 0.055	0 ± 0	0.079 ± 0.024
Naive Bayes	0.209 ± 0.005	$0.140 {\pm} 0.018$	$0.166 \!\pm\! 0.026$	$0.044 {\pm} 0.005$	0.096 ± 0.022

	Multiclass		
Method	CAR	NURSERY	
CP (Pairs)	0.128 ± 0.021	0.101 ± 0.009	
CP (Triples)	0.089 ± 0.016	0.069 ± 0.011	
CP (Quadruples)	0.074 ± 0.015	0.061 ± 0.007	
SVM (Linear)	0.065 ± 0.006	0.063 ± 0.004	
SVM (RBF)	0.026 ± 0.008	0.006 ± 0.001	
Naive Bayes	0.151 ± 0.016	0.097 ± 0.007	

Recommender systems

MovieLens is a collaborative filtering dataset that contains 5-star movie ratings. We extracted 3 small datasets.

- 3 Categories were selected; action, romance and animation.
- Extracted ratings for 20 most rated movies of each smaller dataset.
- \bullet 20% used as test set, 10% as validation set and 70% as training set.
- F in the range [1, 30].
- Conditional expectation of a movie's rating is given by

$$\widehat{s}_N = \sum_{i_N=1}^{I_N} i_N \mathsf{Pr}(i_N | \mathbf{s}_m(1), \dots, \mathbf{s}_m(N-1)).$$

• Return the model that reports lowest RMSE in validation set.

Recommender systems

RMSE and MAE of different algorithms on MovieLens.

	MovieLens Dataset 1		MovieLens Dataset 2		MovieLens Dataset 3	
Method	RMSE	MAE	RMSE	MAE	RMSE	MAE
CP (Pairs)	0.802	0.608	0.795	0.611	0.897	0.702
CP (Triples)	0.783	0.591	0.785	0.599	0.887	0.691
CP (Quadruples)	0.778	0.588	0.786	0.600	0.884	0.689
Global Average	0.945	0.693	0.906	0.653	0.996	0.798
User Average	0.879	0.679	0.830	0.625	1.010	0.768
Movie Average	0.886	0.705	0.889	0.673	0.942	0.754
BMF	0.797	0.623	0.792	0.604	0.904	0.701

Take-home points

Concluding remarks

- High dimensional joint PMFs hard to estimate.
- First estimate lower-order marginals.
- Fuse together using coupled CPD to estimate high-order joint.
- Identifiability of full joint PMF when rank is small.
- Analogy to Kolmogorov extension.
- Real-life random variables are never completely dependent.
- Small rank can capture significant statistical dependence.
- Scratched surface lots of exciting research ahead!

Thank you! Questions?