

CLAIMS

What is claimed is:

1 1. A method comprising:
2 predicting a next micro-operation address;
3 storing the predicted address into a first memory;
4 retrieving the predicted address from the first memory;
5 accessing a second memory at the retrieved address to get a next micro-
6 operation.

1
1 2. The method of claim 1, wherein storing the predicted address comprises
2 programming the address into a read-only memory.

1
1 3. The method of claim 1, further comprising determining whether the micro-
2 operation address is correctly predicted.

1
1 4. The method of claim 3, further comprising correcting the predicted address if
2 the address is mispredicted.

1
1 5. The method of claim 4, wherein the next micro-operation indicates whether
2 there is a jump present.

1
1 6. The method of claim 5, wherein the next micro-operation comprises one or
2 more jump bits.

1 7. The method of claim 6, wherein determining whether the address is correctly
2 predicted comprises checking the jump bit of the next micro-operation.

1

1 8. The method of claim 7, wherein the next micro-operation address comprises a
2 plurality of bits.

1

1 9. The method of claim 8, wherein determining whether the address is correctly
2 predicted further comprises checking the two least significant bits of the next micro-
3 operation address to determine if a jump was executed.

1

1 10. The method of claim 9, wherein correcting the predicted address comprises
2 zeroing out the two least significant bits of the next micro-operation address.

1

1 11. The method of claim 1, further comprising storing the next micro-operation for
2 use in an instruction pipeline.

1

1 12. The method of claim 11, wherein storing the next micro-operation comprises
2 writing the micro-operation into a register.

1

1 13. A system comprising:

2 a first memory to store microcode, wherein the first memory is accessed at a
3 next address to get a next micro-operation;

4 a second memory to store predicted micro-operation addresses;

5 misprediction recovery logic coupled to the first memory to determine if the
6 predicted address is correct and to determine a recovery address; and

7 a selector coupled to the first memory, the second memory, and the

8 misprediction recovery, to select either the predicted address or the recovery address

9 as the next address at which to access the first memory based on the determination
10 by the misprediction recovery logic as to whether the predicted address is correct.

1

1 14. The system of claim 13, wherein the misprediction recovery logic to determine
2 if the predicted address is correct comprises the misprediction recovery logic to
3 determine whether there is a jump present and whether a jump was executed.

1

1 15. The system of claim 14, wherein each address comprises a plurality of bits.

1

1 16. The system of claim 15, wherein the next micro-operation comprises at least
2 one jump bit.

1

1 17. The system of claim 16, wherein the misprediction recovery logic to determine
2 whether there was a jump present comprises the misprediction recovery logic to
3 check the jump bit of each micro-operation.

1

1 18. The system of claim 17, wherein the misprediction recovery logic to determine
2 whether there was a jump executed comprises the misprediction recovery logic to
3 check the two least significant bits of the next address.

1

1 19. The system of claim 18, wherein the misprediction recovery logic to determine
2 the recovery address comprises the misprediction recovery logic to zero out the two
3 least significant bits of the next address.

1

1 20. The system of claim 19, wherein the misprediction recovery logic to determine
2 the recovery address further comprises the misprediction recovery logic to add the
3 number of micro-operations per line to the next address.

1 21. The system of claim 13, further comprising a register coupled to the first
2 memory to store the next micro-operation.

1

1 22. The system of claim 13, further comprising a register coupled to the first
2 memory to store the next address for use by the misprediction recovery logic.

1

1 23. The system of claim 13, wherein the selector is a multiplexer.

1

1 24. A method comprising:
2 predicting a next micro-operation address;
3 determining a recovery address;
4 determining whether the predicted address is correct;
5 selecting between the predicted address and the recovery address based on
6 whether the predicted address is correct; and
7 accessing a memory with the selected address to get the next micro-operation.

1

1 25. The method of claim 24, further comprising storing the predicted address.

1

1 26. The method of claim 25, wherein storing the predicted address comprises
2 storing the predicted address in a read-only memory.

1

1 27. The method of claim 24, wherein determining whether the predicted address is
2 correct comprises determining whether there is a jump present and whether a jump
3 was executed.

1

1 28. The method of claim 24, wherein the memory stores microcode.

1

- 1 29. The method of claim 24, further comprising storing the next micro-operation.
- 1
- 1 30. The method of claim 24, further comprising storing the selected address.