

Third place solution: Liverpool Ion Switching

Gilles Vandewiele

- 1) My Journey on Kaggle
- 2) The Liverpool Competition
 - a) Problem Statement
 - b) Data Processing Ic) Baseline
 - d) HMMs
 - e) Data Processing II f) "Advanced" HMMs
 - The Leak
 - h) Conclusion/Summary
- 3) Bis: Kaggle General Tips & Tricks

My Journey on Kaggle

My background

- Postdoctoral researcher @ IDLab
- Computer & Data Scientist, not an engineer
- Kaggle Master

Gilles Vandewiele

Postdoc at Ghent University Ghent, Flanders, Belgium Joined 6 years ago · last seen in the past day

Followers 189

Kaggle - the home of data science

Over 5 million registered data scientists

Four different categories:

1) Competitions

Prediction / Code / Analysis / Simulation

Merit-based achievements

- 2) Datasets
- 3) Notebooks
- 4) Discussion

popularity-based achievements

Novice

Contributor

Expert

Master

Grandmaster

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

in https://www.gillesyandewiele.com/

Competition

Followers 189

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

O in https://www.gillesvandewiele.com/

Followers 189

18 •1 Group 1	3 9	0.27099	11	6у
19 🔺 3 Group 22	4 9 0	0.27380	43	6у
20 ▼ 2 Group 16	(i) 4)	0.27975	17	6у
21 — Group 15	(a) (a) (b)	0.28356	38	6у
22 • 8 Group 7	9 9 9	0.29378	16	6у

Oct. 2015 - created account for ML project at UGent (rank 20/31)

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

O

in https://www.gillesvandewiele.com/

Competitions

Followers 189

#	∆pub	Team Name	Notebook	Team Members	Score @	Entries	Last
1	-	Victor Kasatkin overfits PLB		•	1.00000	57	5у
2	-	anokas and his overfitting ba.			0.80718	86	5у
3	-	HangYu		(1)	0.77504	73	5у
4		Daqi's overfitting Bazinga			0.77315	29	5у
5		the 10 minute overfit			0.76937	26	5у
6		DDerek		9	0.76748	46	5у
7		Jeans		9	0.76748	45	5у
8	-	exCite		999	0.76559	24	5у
9	-	victor		4	0.76370	5	5у
10	-	Ghost		4	0.76370	5	5у
11	-	Prakhar Agarwal			0.76370	22	5у
12		Gilles Vandewiele			0.76181	70	5у

Oct. 2016 - halloween playground competition (rank 12/762)

Gilles Vandewiele

Postdoc at Ghent University Ghent, Flanders, Belgium Joined 6 years ago · last seen in the past day

Followers 189

∩ ▶ in https://www.gillesvandewiele.com/

#	∆pub	Team Name	Notebook	Team Members	Score @	Entries	Las
1	_	BDS_David_Lorenz			0.56997	55	4)
9		Majority voting of stacking sol		(b)			
2	7.7	BDS_Nathan_Len		99	0.54766	14	4
3	777	Dieter Roger De Witte			0.54361	11	4
4		Baekelandt_Nagels_Tuytschae		9 0	0.54361	42	4
5	-	Alluyn_Mathijs		99	0.53752	22	4
9		Majority voting of multiple mo		(i)			
6		BDS_AntonVM		•	0.52941	10	4
7	200	Bauwens_Greniers_Tijtgat		9 9 0	0.52738	54	4
8	227	Decroos_Delefortrie		99	0.52332	33	4
9		BDS_MathieuSamaey		9	0.51926	12	4
10	575	DB_F_A		9	0.51926	6	4
9		Public Kaggle #1 Solution		(i)			
11		BDS_RobinAntheunis		9	0.51724	8	4
12		BDS_Vandevyvere_Vercauteren		99	0.51521	11	4
13		BDS_Goemaere_VanGheluwe		99	0.50912	4	4
14	225	BDS_Bonnaerens_VanRoose			0.50912	9	4
15	-	DBS_Jan_Vermeulen_Louis_Sc		4	0.50912	3	4

Jan. 2017 - hosted own inClass comp

Gilles Vandewiele

Postdoc at Ghent University Ghent, Flanders, Belgium Joined 6 years ago · last seen in the past day O in https://www.gillesvandewiele.com/

Followers 189

Santander Customer Transaction Prediction

Can you identify who will make a transaction? Featured · 2 years ago

#	∆pub	Team Name	Notebook	Team Members	Score @	Entries	La
1	_ 2	Thomas Rohwer	HOUSEON	a)	1.0000	14	2
2	35	markyff		*	0.9928	17	
3	1 8	prith189			0.9914	32	
4	▼ 2	Reza		①	0.9857	30	
5	▼ 1	Vincent L.			0.9753	8	3
6	- 4	Error 404: Surface Not Found			0.9213	51	18
7	4 5	jiiteecee			0.9019	49	
8	- 14	openmark		4)	0.8986	42	
9	2 3	ericricky			0.8702	17	
10	10	Ivan Batalov			0.8441	16	

Oct. 2015

Apr. 2019 - first bronze medal (Santander comp) and rank 6/1443 (+ swag) in CareerCon comp.

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

in https://www.gillesvandewiele.com/

Followers 189

Jan 2020 - first silver medal and competition <u>expert!</u>

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

The past day

The past day

Followers 189

In the m	oney	Gold Silver Bronze					
#	∆pub	Team Name	Notebook	Team Members	Score @	Entries	Last
1	1 5	Office Club		3	0.98509	103	1y
2	- 9	Realm of OVERFIT		©	0.95824	188	1y
3	▼ 2	Gilles & Kha Vo & Zidmie		(a) (b)	0.94568	333	1у
4	- 10	Helgi			0.94560	156	1y
5	▼ 1	Into the Wild			0.94555	426	1y
6	a 3	TES			0.94552	137	1y
7	- 4	The Zoo			0.94545	326	1y
8	▼ 1	fakeplastictrees			0.94539	71	1y
9	4	[ods.ai] noname			0.94526	255	1y
10	_	NO1			0.94526	149	1y
11	▼ 9	Rob Mulla			0.94515	309	1y
12	~ 21	Last Dance			0.94513	315	1y

May 2020 - third place, first gold medal & first time in the money

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

in https://www.gillesvandewiele.com/

Followers 189

In the	money	Gold Silver Bronze					
#	b⊔opub	Team Name	Notebook	Team Members	Score @	Entries	Last
1	1 5	Office Club		3	0.98509	103	1y
2	- 9	Realm of OVERFIT			0.95824	188	1y
3	3 ₹2	Gilles & Kha Vo & Zidmie		3	0.94568	333	1у
4	- 10	Helgi		(1)	0.94560	156	1y
5	≠ 1	Into the Wild			0.94555	426	1y
6	a 3	TES			0.94552	137	1y
7	- 4	The Zoo			0.94545	326	1y
8	- 1	fakeplastictrees			0.94539	71	1y
9	- 4	[ods.ai] noname			0.94526	255	1y
10	_	NO1			0.94526	149	1y
11	▼ 9	Rob Mulla		•	0.94515	309	1y
12	- 21	Last Dance			0.94513	315	1y

May 2020 - third place, first gold medal & first time in the money

Focus of today's presentation!

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

in https://www.gillesvandewiele.com/

Followers 189

ratan rohith 0.9415 107 1y Mohamad Merchant 0.9415 196 14 Kha, Bram, Gilles, Chris, J... 98 - 88 0.9415 341 1y Nat Bel ML Fun 0.9414 100 1y Richard Xiao 0.9414 121 14 101 Blender's pride 0.9414 46 1y

Aug. 2020 - silver medal and competition master!

Gilles Vandewiele

Postdoc at Ghent University
Ghent, Flanders, Belgium
Joined 6 years ago · last seen in the past day

The past day

The past day

Followers 189

Gilles Vandewiele

Postdoc at Ghent University Ghent, Flanders, Belgium Joined 6 years ago · last seen in the past day O in https://www.gillesvandewiele.com/

Followers 189

Liverpool - Ion Switching Competition

Problem statement

Teamwork makes the dream work

Time for biology... Cells, Ion Channels & Patch Clamps

ion channel = gate that regulates flow of ions across cell membrane

- → encode learning and memory
- → help fight infections
- → enable pain signals
- $\rightarrow \dots$

Studying how these ion channels behave within cells could have great impact on many areas of research.

Patch clamp techniques allow us to study the behaviour of the ion channels by measuring electrical current.

Analyzing this data manually is cumbersome and susceptible to human error & bias...

Three datasets: train, public test and private test

the data is from discrete batches of 50 seconds long sampled at 10 kHz

Three datasets: train, public test and private test

Goal: create model to predict open channels in public & private

Competition metric: macro F₁ score

For each class, calculate its F₁ score and take the mean of class F₁ scores (equal weight for each class)

$$F_1 = \, 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Competition metric: macro F₁ score

For each class, calculate its F₁ score and take the mean of class F₁ scores (equal weight for each class)

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

The small number of samples with open channels = 10 have the same impact on F1 score as the many samples with open channels = 0.

Identifying different groups in open channels...

Identifying different groups in open channels...

Max Value?

^{*} Between the groups with a range of 0 to 1 open channels, there is one group (1*) with more zeroes.

Liverpool - Ion Switching Competition

Synthetic Noise Removal

Identifying different groups in signal...

Identifying different groups in signal...

Weird Shape?*

^{*} the signal values in some groups of data do not range from min-max across the entire range (more on this later)

- $\rightarrow \text{Continuously increasing trend?}$
- → Parabola?

Each pair of two groups (based on open channels) has data with and without the weird shape!

Fit sine function A * sin(w * t + p)

 \rightarrow t = time

 \rightarrow A = amplitude

 \rightarrow w = frequency

 \rightarrow p = phase

We use the sine function for the "linear" drift parts as well.

Result after cleaning data

Result after cleaning data

1 weird part remains \rightarrow only in training data \rightarrow ignore during modeling

Grouping train and test data

Grouping train and test data

Some of the 0/1 test data actually contains many spikes (2, 3 or 4 open channels), but impact on macro F1 will be minimal (so we will ignore for this presentation)

Liverpool - Ion Switching Competition

Simple Baseline: "Gaussian Mixture Model"

1. Take a group of train data

1. Take a group of train data (here: 0-5 open channels)

1. Take a group of train data (here: 0-5 open channels)

2. For each open channel value (0, ... k), take all corresponding signal values & fit gaussian (calc mean and std)

$$\rightarrow \boldsymbol{N_0},\,...,\,\boldsymbol{N_k}$$

```
from scipy.stats import norm
X = <SIGNAL OF GROUP OF DATA>
y = <OPEN CHANNELS OF GROUP OF DATA>

gaussians = []
for i in range(max(y) + 1):
    gaussians.append(norm(np.mean(X[y == i]), np.std(X[y == i])))
```

1. Take a group of train data (here: 0-5 open channels)

- 2. For each open channel value (0, ... k), take all corresponding signal values & fit gaussian (calc mean and std) \to $N_{_0},$..., $N_{_k}$
- 3. For a new signal value x:

 Prediction corresponds to gaussian that gives us highest probability f(x)

$$\underset{i=0,\dots,k}{\operatorname{argmax}} f_{\mathcal{N}_i}(x)$$

Liverpool - Ion Switching Competition

Hidden Markov Models

Hidden Markov Models: intuition

- Open channel values are temporally correlated.
- Going from 0 open channels at time t to 10 open channels at time t + 1 is very unlikely.
- Markov property: we'll assume time t + 1 only depends on 1 previous timestep t

Hidden Markov Models: theory

https://web.stanford.edu/~jurafsky/slp3/A.pdf

emission probability: what is the probability that class is i if we observe x ($P(y_t = i \mid x_t)$)

→ our baseline!

0 -	0.353	0.420	0.180	0.043	0.004	0.001
	0.033	0.421	0.388	0.137	0.020	0.001
- 5	0.003	0.077	0.506	0.331	0.077	0.006
m -	0.000	0.011	0.134	0.574	0.251	0.029
4 -	0.000	0.001	0.024	0.199	0.636	0.139
<u>د</u> د	0.000	0.000	0.004	0.047	0.279	0.670
	ò	i	2	å	4	5

transition probabilities: what is the probability that class is j if prev. class was i ($P(y_{t+1} = j | y_t = i)$)

$$P(y_{t+1} = j) = \sum_{i=0}^{k} P(y_t = i) * P(y_{t+1} = j | y_t = i) * P(y_{t+1} = j | x)$$

prev. step

transition

emission

*edges are directional!

hidden states (Markov Chain)

hidden states (Markov Chain)

observable data (Gaussians)

t = 0

 $x \sim N(0, 0.15)$

hidden states (Markov Chain)

observable data (Gaussians)

t = 1

 $x \sim N(2, 0.15)$

hidden states (Markov Chain)

observable data (Gaussians)

t = N

hidden states (Markov Chain)

observable data (Gaussians)

transition

hmmlearn/ hmmlearn

Hidden Markov Models in Python, with scikit-learn like API

A 31 Contributors 1k Used by

☆ 2k Stars

∜ 671 Forks

We use k + 1 hidden states for the HMM with k the maximum number of open channels.

→ 1 hidden state per open channel

0 -	0.353	0.420	0.180	0.043	0.004	0.001
-	0.033	0.421	0.388	0.137	0.020	0.001
- 2	0.003	0.077	0.506	0.331	0.077	0.006
m -	0.000	0.011	0.134	0.574	0.251	0.029
4 -	0.000	0.001	0.024	0.199	0.636	0.139
٠ د	0.000	0.000	0.004	0.047	0.279	0.670
	ò	i	2	å	4	5

	precision	recall	f1-score	support
0	0.998	0.997	0.997	1233097
1	0.993	0.994	0.993	933948
2	0.980	0.981	0.980	423392
3	0.980	0.979	0.980	558113
4	0.970	0.968	0.969	403410
5	0.946	0.943	0.945	277877
6	0.878	0.880	0.879	188112
7	0.882	0.889	0.885	265015
8	0.885	0.891	0.888	245183
9	0.886	0.889	0.888	136120
10	0.914	0.856	0.884	35733
accuracy			0.966	4700000
macro avg	0.937	0.933	0.935	4700000
weighted avg	0.967	0.966	0.966	4700000

Submission and Description	Private Score	Public Score	Use for Final Score
sub_vanilla_hmm.csv	0.92755	0.93421	
a faur accorde ago by Cillas Vandawiele			

add submission details

Liverpool - Ion Switching Competition

Power Line Interference Removal

Did we already remove all noise?

$$x_t = f(y_t) + e$$

- → The observed signal values are a function of the ground truth with added noise (e).
- \rightarrow Isolate e by calculating x_t $f(y_t)$ with $f(y_t)$ the predictions of our strongest model.

Did we already remove all noise?

$$x_t = f(y_t) + e$$

- → The observed signal values are a function of the ground truth with added noise (e).
- \rightarrow Isolate e by calculating x_t $f(y_t)$ with $f(y_t)$ the predictions of our strongest model.
- → Take rolling avg (window size = 50)

Did we already remove all noise?

$$x_t = f(y_t) + e$$

5 peaks per 1000 values

- → periodicity = 200 values
- → sampling rate = 10 kHz
- → frequency of this pattern = 50 Hz

Power line interference!

 $x_t = f(y_t) + e$

5 peaks per 1000 values

- → periodicity = 200 values
- → sampling rate = 10 kHz
- → frequency of this pattern = 50 Hz

Impact of power line interference removal

- → Reuse our sine fitter to remove power line interference
- → Re-fit our "vanilla" HMM

	precision	recall	f1-score	support
0	0.998	0.997	0.997	1233097
1	0.993	0.994	0.994	933948
2	0.982	0.982	0.982	423392
3	0.982	0.981	0.981	558113
4	0.972	0.970	0.971	403410
5	0.949	0.946	0.947	277877
6	0.882	0.884	0.883	188112
7	0.886	0.892	0.889	265015
8	0.889	0.894	0.892	245183
9	0.890	0.893	0.891	136120
10	0.916	0.863	0.889	35733
accuracy			0.968	4700000
macro avg	0.940	0.936	0.938	4700000
veighted avg	0.968	0.968	0.968	4700000

Submission and Description	Private Score	Public Score	Use for Final Score
sub_vanilla_hmm_cleaned_data.csv a few seconds ago by Gilles Vandewiele	0.93120	0.93737	
add submission details			

Quick recap

Method	Train	Public	Private
Baseline	0.924	0.925	0.915
Vanilla HMM	0.935	0.934	0.928
Power Line + Vanilla HMM	0.938	0.937	0.931

Good correlation between train, public & private scores!

Liverpool - Ion Switching Competition

Advanced HMMs (~ Factorial Hidden Markov Models)

Insight 1: data with 0/1 channels, has more than 2 hidden states

Insight 1: data with 0/1 channels, has more than 2 hidden states

Produce longer sequence of 0's and 1's

Insight 1: data with 0/1 channels, has more than 2 hidden states

Small experiment on 0/1 data

Insight 1: data with 0/1 channels, has more than 2 hidden states

hmmlearn with 4 states

https://emilemathieu.fr/files/fhmmreport.pdf

These Factorial HMMs were not trivial to implement...

→ We converted each of our "vanilla" k-state processes to n-state processes with

$$\begin{pmatrix} \bar{4} \\ k \end{pmatrix} = \begin{pmatrix} 4+k-1 \\ k \end{pmatrix}$$

These Factorial HMMs were not trivial to implement...

→ We converted each of our "vanilla" k-state processes to n-state processes with

$$\begin{pmatrix} \bar{4} \\ k \end{pmatrix} = \begin{pmatrix} 4+k-1 \\ k \end{pmatrix}$$

These Factorial HMMs were not trivial to implement...

→ We converted each of our "vanilla" k-state processes to n-state processes with

$$\begin{pmatrix} \bar{4} \\ k \end{pmatrix} = \begin{pmatrix} 4+k-1 \\ k \end{pmatrix}$$

These Factorial HMMs were not trivial to implement...

→ We converted each of our "vanilla" k-state processes to n-state processes with

$$\begin{pmatrix} \bar{4} \\ k \end{pmatrix} = \begin{pmatrix} 4+k-1 \\ k \end{pmatrix}$$

Data with 10 open channels has 286 hidden states!

- → hmmlearn becomes slow
- → implement our own custom algorithm

$$\alpha(t) = P_{\text{sig}}(t) * (\alpha(t-1) * P_{\text{tran}})^c * \beta(t)^{(1-c)}$$

$$\beta(t) = P_{\text{sig}}(t) * (\beta(t+1) * P_{\text{tran}}^T)^c * \alpha(t)^{(1-c)}$$

Final results...

precision 0.998

0.996

0.983

0.982

0.972

0.950

0.885

0.890

0.893

0.894

0.908

0.941

0.970

8

10

accuracy

macro avg weighted avg

iteration 1

recall f1-score

0.998

0.995

0.983

0.982

0.972

0.949

0.885

0.892

0.895

0.896

0.897

0.940

0.970

0.999

0.995

0.983

0.982

0.971

0.948

0.885

0.893

0.897

0.898

0.887

0.940

0.970

up	por	t	
23	309	7	
93	394	8	
42	339	12	
55	811	3	
40	341	0	
27	787	7	
18	811	2	
26	501	5	
24	518	13	
13	612	0	
3	573	3	

4700000

4700000

4700000

iteration 2

	precision	recall	f1-score	support
О	0.998	0.999	0.999	1233097
1	0.996	0.996	0.996	933948
2	0.984	0.984	0.984	423392
3	0.984	0.983	0.983	558113
4	0.975	0.973	0.974	403410
5	0.953	0.951	0.952	277877
6	0.892	0.892	0.892	188112
7	0.896	0.900	0.898	265015
8	0.900	0.903	0.901	245183
9	0.901	0.904	0.902	136120
10	0.916	0.892	0.904	35733
ассигасу			0.971	4700000
macro avg	0.945	0.943	0.944	4700000
weighted avg	0.972	0.971	0.972	4700000

iteration 3

	precision	recall	f1-score	support
0	0.998	0.999	0.999	1233097
1	0.996	0.996	0.996	933948
2	0.984	0.984	0.984	423392
3	0.984	0.983	0.984	558113
4	0.975	0.973	0.974	403410
5	0.953	0.951	0.952	277877
6	0.892	0.892	0.892	188112
7	0.896	0.900	0.898	265015
8	0.899	0.903	0.901	245183
9	0.900	0.904	0.902	136120
10	0.916	0.892	0.904	35733
ассигасу			0.972	4700000
macro avg	0.945	0.943	0.944	4700000
weighted avg	0.972	0.972	0.972	4700000

Submission and Description Private Score Public Score
submission_0.94409.csv 0.94570 0.94680

a few seconds ago by Gilles Vandewiele

add submission details

Submission and Description	Private Score	Public Score
submission_0.94034.csv a few seconds ago by Gilles Vandewiele	0.94023	0.94168
add submission datails		

Submission and Description

Private Score

Public Score 0.94706

submission_0.94413.csv

a few seconds ago by Gilles Vandewiele

add submission details

0.94582

Liverpool - Ion Switching Competition

The leak

Two teams managed to obtain an extremely high private score. Kudos to them!

Two teams managed to obtain an extremely high private score. Kudos to them!

Something peculiar about the 0-10 data...

- 1) The stddevs of all gaussians are around 0.28, except for the 0-10 data, the stddevs are around 0.40
- \rightarrow sqrt(0.28 ** 2 + 0.28 ** 2) ~ 0.40
- 2) The mean of the all 0-10 data is roughly twice the mean of other data

- \rightarrow Turns out the 0-10 data is actually (0-5 data) + (0-5 data)
- → Organisers generated synthetic data using a matlab scripts, but they did it across multiple sessions and matlab is seeded BY DEFAULT (like C) so calls to random() will always give same results...

Let's look at correlations between the data

Let's look at correlations between the data

Let's look at correlations between the data

and one part is from the training data

Rounding signal values gets 2nd spot!

```
# <READ YOUR SIGNAL>
# This is the leak (part 1)
signal[5700000:5800000] = signal[5700000:5800000] - signal[4000000:4100000]
# Below is our sophisticated model: we round the aligned values.
sub['open_channels'] = np.round(signal[5000000:])
# An amazing F1 score of 0.71 on the training set. Very promising solution!
print(f1_score(train['open_channels'].values, np.round(signal[:5000000]), average='macro'))
# This is the leak (part 2)
train_channels = train['open_channels'].values[4000000:4100000]
test_predictions = sub.loc[list(range(700000, 800000)), 'open_channels']
sub.loc[list(range(700000, 800000)), 'open_channels'] = test_predictions + train_channels
# Private = 0.96880, enjoy your 2nd place and $8000
```

Conclusion / Summary

1. Start from the original data

2. Remove the low-frequency sine noise

Conclusion / Summary

3. Create a HMM with $\binom{4}{k}$ hidden states that represents k independent Markov Processes / Chains with 4 hidden states for each of our 5 (6) categories of data

Conclusion / Summary

4. Generate predictions & use these to isolate the error signal. From this signal, remove power line interference by fitting a sine function

5. Repeat steps 3 & 4 until convergence. Optionally, introduce the leak for a big boost.

Liverpool - Ion Switching Competition

1. Join for the learning experience, the community and the fun. Not the medals

- 1. Join for the learning experience, the community and the fun. Not the medals
- 2. Priority: set up local evaluation that correlates with LB score

- 1. Join for the learning experience, the community and the fun. Not the medals
- 2. Priority: set up local evaluation that correlates with LB score
- → adversarial validation
- → identify "lottery" competitions

- 1. Join for the learning experience, the community and the fun. Not the medals
- 2. Priority: set up local evaluation that correlates with LB score
- → adversarial validation
- → identify "lottery" competitions
- 3. Strategies

- 1. Join for the learning experience, the community and the fun. Not the medals
- 2. Priority: set up local evaluation that correlates with LB score
- → adversarial validation
- → identify "lottery" competitions
- 3. Strategies
- → Join early vs late
- → Focus on one vs multiple competitions
- → Solo & Team

- 1. Join for the learning experience, the community and the fun. Not the medals
- 2. Priority: set up local evaluation that correlates with LB score
- → adversarial validation
- → identify "lottery" competitions
- 3. Strategies
- → Join early vs late
- → Focus on one vs multiple competitions
- → Solo & Team
- 4. Embrace the sharing mentality (discussions & notebooks)

Code, blog post & kaggle resources

https://github.com/GillesVandewiele/Liverpool-Ion-Switching

https://towardsdatascience.com/identifying-the-number-of-open-ion-channels-with-hidden-markov-models-334fab86fc85

https://www.kaggle.com/group16/lb-0-936-1-feature-forward-backward-vs-viterbi

https://www.kaggle.com/group16/private-0-9688-a-better-but-useless-solution

These slides will be published online shortly!

Thank You!

kaggle.com/group16

kaggle.com/zidmie

kaggle.com/khahuras

gilles.vandewiele@ugent.be

yves-miehe-184808b4

kha-vo-phd-b91a38126

twitter.com/Gillesvdwiele

linkedin.com/in/gillesvandewiele

www.gillesvandewiele.com

