12th Annual UK Rasch User Group Meeting March 23, 2018
Loughborough

Investigating the effect of the threshold distribution in polytomous items on measurement error in computer adaptive testing

Thomas Salzberger¹ thomas.salzberger@wu.ac.at

Mike Horton² m.c.horton@leeds.ac.uk

¹ University of Economics and Business, Vienna, Austria (WU WIEN)

² University of Leeds, UK

Background: Measurement Precision

$$SE(\beta) = \frac{1}{\sqrt{I(\beta)}}$$

Polytomous items provide more information (Linacre, 2005; Stone, 2008)

$$I_i(\beta) = \sum_{k=0}^{m} (k - E(\beta))^2 P_k(\beta)$$

(for equivalent formulae: Dodd and Koch, 1994; Muraki, 1993)

Computer adaptive testing

Administer the smallest possible number of items while obtaining a predefined level of the standard error of measurement.

Min # of items given S.E.

Measurement precision

Threshold distances

Fixed scale

Obtaining the smallest possible standard error of measurement while administering a fixed number of items in a scale

Min S.E. given the # of items

Threshold distances

Narrowly distributed thresholds?
Broadly distributed thresholds?
Mix?

Computer adaptive testing

Precision (S.E.)

Fixed scale

Information Provided by Polytomous Items

Shape of information curve depends on threshold distribution

- Broadly distributed thresholds ("wide items")
- Narrowly distributed thresholds ("narrow items")
 Information curves

Narrow item: thresholds at -0.75, -0.25, 0.25, and 0.75 (mean 0; Δ 0.5) Wide item: thresholds at -2.25, -0.75, 0.75, and 2.25 (mean 0; Δ 1.5)

- In CAT, at the beginning, when nothing is known about β, wide items should be more efficient.
 - Provide information over a broader range.
- Subsequently, when β can be narrowed down, narrow items should be more efficient.
 - Provide more information at the item location.

Caveat:

- Information depends on person location and item location
- Efficiency of wide versus narrow thresholds depends on person distribution
- Targeting

Information Provided by Polytomous Items

Information curves 1.6 1.4 1.2 0.8 0.8 0.4 0.2 0-6 -4 -2 0 2 4 6 Logits

Approach

Computer adaptive testing

- Item bank consisting of 16 items
 - Mean 0, evenly distributed between -3 and +3
- CAT simulation using Firestar (Choi, 2009)
 - Stopping criterion: SE=0.3 (never achieved in simulations reported here)
- S.E. after each item administered (up to all 16 items)

Approach

Computer adaptive testing

Threshold distance

of response categories

Targeting

Fixed item overall locations between -3 and +3

- Wide items (threshold $\Delta = 1.5$) [1]
- Narrow items (threshold $\Delta = 0.5$) [2]

[1] implies a broader coverage of the latent continuum (\pm 4.5) than [2] (\pm 3.5)

Narrow items II ($\Delta = 0.5$) with items located between -4.5 and +4.5

Four versus five response categories

Targeted population (mean 0, sd 2) versus Mis-targeted population (mean 3, sd 2)

Satting	Response categories	Item locations and threshold distance	Respondent
Setting A – wide items	(thresholds) 5 (4)	(16 items) -3 to +3; 1.5	distribution normal (0,2)
A - Wide Items	J (¬)	3 to 13, 1.3	110111141 (0,2)
B – narrow items	5 (4)	-3 to +3; 0.5	normal (0,2)
C – narrow items II	5 (4)	- 4.5 to + 4.5; 0.5	normal (0,2)
D – wide items	4 (3)	-3 to +3; 1.5	normal (0,2)
E – narrow items	4 (3)	-3 to +3; 0.5	normal (0,2)
F – narrow items II	4 (3)	- 4.5 to + 4.5; 0.5	normal (0,2)
G – wide items	5 (4)	-3 to +3; 1.5	normal (3,2)
H - narrow items	5 (4)	-3 to +3; 0.5	normal (3,2)
I – narrow items II	5 (4)	- 4 to + 4; 0.5	normal (3,2)
J – wide items	4 (3)	-3 to +3; 1.5	normal (3,2)
K – narrow items	4 (3)	-3 to +3; 0.5	normal (3,2)
L - narrow items II	4 (3)	- 4 to + 4; 0.5	normal (3,2)

Results: 5 Response Categories, Targeted Population

Narrow items always perform better

Results: 4 Response Categories, Targeted Population

Narrow items perform better

Results: 5 Response Categories, Mis-targeted Population

Narrow items perform better

Results: 4 Response Categories, Mis-targeted Population

Narrow items perform better

Conclusions

- Narrowly distributed thresholds appear to contribute more to test information than broadly distributed thresholds
 - No indication that items with broadly distributed thresholds add to the efficiency of CAT
- Implication for fixed scales
 - Up to about 8 to 10-item-scales, narrowly distributed thresholds preferable
 - Beyond 10 items, there is hardly any difference
- In the scenarios investigated, effects do not depend on targeting

Limitations and Further Research

- Conclusions based on average S.E.
 - Distribution?
- Realisation of optimum threshold distribution difficult in practice
 - Aiming for narrow thresholds might lead to indistinguishable response categories (implying threshold reversals)

Limitations and Further Research

- Scenarios limited to 1.5 versus 0.5 distance between thresholds
 - Distance < 0.5?
- Scenarios limited to scales showing broad variation in terms of item locations
 - In practice, some scales exhibit relatively small variation
 - Are narrowly distributed thresholds still preferable?
- Scenarios based on a uniform distribution of item locations
 - In practice rarely the case

Further Investigations Preliminary Results

- Very narrowly distributed thresholds (distance 0.25)
 - No noticeable difference between distance of 0.5 and 0.25
- Small variation in item locations (-1 to +1 [average distance 0.13] as opposed to -3 to +3 [0.40])
 - Broadly distributed thresholds perform better
 - Due to targeting and coverage
- Superiority of polytomous items with narrowly distributed thresholds contingent on sufficient coverage and good targeting
 - Broadly distributed threshold compensate for limited variation in item locations (from a precision point of view)
- Large variation in item locations and rather narrowly distributed thresholds appear to be optimum

Computation of information and S.E. at the test level

	Test (16 items)		
	S.E.		
beta	wide	narrow	
-8	2.32021806	4.80288789	
-6.85714286	1.36455434	2.70233114	
-5.71428571	0.85538021	1.51071579	
-4.57142857	0.5970876	0.83720528	
-3.42857143	0.4665712	0.48714009	
-2.28571429	0.39564693	0.36017802	
-1.14285714	0.35732225	0.32918361	
-1.7764E-15	0.3449644	0.32335335	
1.14285714	0.35732225	0.32918361	
2.28571429	0.39564693	0.36017802	
3.42857143	0.4665712	0.48714009	
4.57142857	0.5970876	0.83720528	
5.71428571	0.85538021	1.51071579	
6.85714286	1.36455434	2.70233114	
8	2.32021783	4.80288565	

- Polytomous response scale adds information
 - Intensify item content (e.g., somewhat or strongly agree instead of just agree)
- But they do not contribute to characterising the latent variable
 - Item stem lends meaning to the latent variable

