測度論的確率論 2018 S1S2

Homework 3

経済学研究科現代経済コース修士1年 / 池上 慧 (29186009) / sybaster.x@gmail.com May 5, 2018

1 Ex2.3

両方向の包含関係が成立することを以下で示す。

1.1 $\mathcal{B}(\mathbb{R}^2) \subset \mathcal{B}^2$ を示す。

$$(a_1,b_1)\times(a_2,b_2)=\bigcup_{n=1}^{\infty}(a_1,b_1-\frac{1}{n}]\times(a_2,b_2-\frac{1}{n}]$$
 である。なぜなら、

$$\forall (x,y) \in (a_1,b_1) \times (a_2,b_2) \quad a_1 < x < b_1, a_2 < y < b_2 \Rightarrow \exists \ n_1, n_2 \text{ s.t. } x \leq b_1 - \frac{1}{n_1}, \ y \leq b_2 - \frac{1}{n_2}$$

なので、 $N = \max(n_1, n_2)$ とおけば、 $\forall n \geq N \ (x, y) \in (a_1, b_1 - \frac{1}{n}] \times (a_2, b_2 - \frac{1}{n}]$ となるので、 $(a_1, b_1) \times (a_2, b_2) \subset$

は、 $N = \max(h_1, h_2)$ このがは、N = 1 (a, y) このがは、N = 1 (a, y)

sigma field の定義より $(a_1,b_1) \times (a_2,b_2) \in (B)^2$ である。

ここで、「 \mathbb{R}^2 の任意の開集合は \mathbb{R}^2 の開区間の可算和でかける(主張 1)」とすると、 sigma field の性質から (a_1,b_1) × (a_2,b_2) の可算和で表現される任意の集合は $(B)^2$ に含まれているので、 $\mathcal{B}\left(\mathbb{R}^2\right)\subset\mathcal{B}^2$ が示された。

よって以下では(主張1)を証明する。to be written

$\mathcal{B}^2\subset\mathcal{B}\left(\mathbb{R}^2 ight)$ を示す。

まず、 $(a_1,b_1] imes(a_2,b_2]=igcap_{n=1}^\infty(a_1,b_1+\frac{1}{n}) imes(a_2,b_2+\frac{1}{n})$ を示す。左辺が右辺に含まれることは以下のように確認でる。 任意に $(x,y)\in(a_1,b_1] imes(a_2,b_2]$ をとると、

$$\forall n \ge 1 \begin{cases} a_1 < x < b_1 + \frac{1}{n} \\ a_2 < x < b_2 + \frac{1}{n} \end{cases} \Rightarrow \forall n \ge 1 \ (x, y) \in (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \Rightarrow (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y) \in \bigcap_{n=1}^{\infty} (a_1, b_2 + \frac{1}{n}) = (x, y$$

である。

逆向きの包含関係は以下のように確認できる。任意に $(x,y)\in \bigcap_{n=1}^\infty (a_1,b_1+\frac{1}{n})\times (a_2,b_2+\frac{1}{n})$ をとると、 $\forall n\geq 0$ $1(x,y) \in (a_1,b_1+\frac{1}{n}) \times (a_2,b_2+\frac{1}{n})$ である。この時、

$$a_1 < x < b_1 + \frac{1}{n} \implies a_1 < x \le \inf\left(b_1 + \frac{1}{n}\right) \implies a_1 < x \le b_1$$

である。y についても同様にできるので、 $(x,y) \in (a_1,b_1] \times (a_2,b_2]$ であることがわかる。

これより、 \mathcal{B}^2 を生成する集合の要素は \mathbb{R}^2 上の開区間全体を含む最小の sigma field に含まれることがわかる。これ はつまり、 \mathcal{B}^2 が \mathbb{R}^2 上の開区間全体を含む最小の sigma field に含まれることを意味する。また、 \mathcal{B} (\mathbb{R}^2) を生成する開集 合全体には明らかに \mathbb{R}^2 上の開区間全体が含まれているため、 \mathbb{R}^2 上の開区間全体を含む最小の sigma field は $\mathcal{B}(\mathbb{R}^2)$ に 含まれる。したがって $\mathcal{B}^2 \subset \mathcal{B}(\mathbb{R}^2)$ である。

$\mathbf{2}$ Ex2.5

両方向の包含関係が成立することを以下で示す。

2.1 $\mathcal{B}(X) \times \mathcal{B}(Y) \subset \mathcal{B}(X \times Y)$

開集合 $A \subset X$ を任意にとる。まず、 $A \times Y$ が $X \times Y$ の開集合であることを示す。まず、直積空間 $X \times Y$ 上に以下のように距離 (d) が定義できる。

let
$$x = (x_1, x_2), y = (y_1, y_2),$$
 where $x_1, y_1 \in X, x_2, y_2 \in Y$ then $d(x, y) \equiv d_1(x_1, y_1) + d_2(x_2, y_2)$

すなわち $(X \times Y, d)$ は距離空間とできる。以下ではこの距離 d について $A \times Y$ が開集合であることを確認する。全体集合 Y が開かつ閉集合であることより、 $(p,q) \in A \times Y$ について以下の二つが成立する。

$$\exists \epsilon > 0 \text{ s.t. } \{x \in X \mid d_1(x, p) < \epsilon\} \subset A$$

 $\exists \eta > 0 \text{ s.t. } \{y \in Y \mid d_2(y, q) < \eta\} \subset Y$

ここで、上の集合に含まれる (x,y) について、

$$d((x,y),(p,q)) = d_1(x,p) + d_2(y,q) < \epsilon + \eta$$

が成立する。従って、(p,q) を任意にとっても、 $\{(x,y)\in X\times Y\mid d((x,y),(p,q))<\delta\}$ なる集合が δ を十分小さくすることによって $A\times Y$ に含まれることがわかる。これより $A\times Y$ は開集合である。

これより Borel sigma field の定義から、 $A \times Y \in \mathcal{B}(X \times Y)$ である。ここで、 $\mathcal{C} = \{A \subset X \mid A \times Y \in \mathcal{B}(X \times Y)\}$ とする。先の議論より任意の開集合 $A \subset X$ について $A \times Y \in \mathcal{B}(X \times Y)$ であるので、 $\{X \text{ の開集合全体 }\} \subset \mathcal{C}$ である。

また、 $\{c_i\}_{i=1}^{\infty} \in \mathcal{C}$ をとる。明らかに $\bigcup_{i=1}^{\infty} c_i \times Y$ が開集合であり、 $\mathcal{B}(X \times Y)$ に含まれることから、 \mathcal{C} は sigma field、それも X の開集合全体を含む sigma field である。Borel sigma field の定義より $\mathcal{B}(X) \subset \mathcal{C}$ である。

これより、 $A \in \mathcal{B}(X) \subset \mathcal{C}$ なので、任意の $A \in \mathcal{B}(X)$ について $A \times Y \in \mathcal{B}(X \times Y)$ である。Y 上の開集合 B についても同様の議論が適用できて、任意の $B \in \mathcal{B}(Y)$ について $X \times B \in \mathcal{B}(X \times Y)$ である。

従って、以下が成立する。

$$\forall A \in \mathcal{B}(X), B \in \mathcal{B}(Y) \ A \times B = (A \times Y) \cap (X \times B) \subset \mathcal{B}(X \times Y)$$

2.2 $\mathcal{B}(X \times Y) \subset \mathcal{B}(X) \times \mathcal{B}(Y)$

 $\lceil X, Y$ が可分ならば $X \times Y$ も可分 (主張 2)」を所与とすると、以下のように証明できる。

任意に開集合 $A\times B\subset X\times Y$ をとる。開集合の定義より、任意の $(x,y)\in A\times B$ について、距離 d を用いた ϵ -ball を $B_{\epsilon}((x,y))$ と書くと以下が成立する。

$$\exists \epsilon > 0 \text{ s.t. } B_{\epsilon}((x,y)) \subset A \times B$$

ここで $X \times Y$ について稠密な可算集合を D と書く。この時、任意の $(x,y) \in A \times B$ について

$$(s,t)_{(x,y)} \in B_{\frac{\epsilon}{2}}((x,y)) \cap D \subset A \times B$$

が必ず取れる。ここで $\epsilon_{(x,y)} = \frac{\epsilon}{2}$ とすると、

$$(x,y) \in B_{\epsilon_{(x,y)}}((s,t)_{(x,y)})$$

が必ず成立する。

つまり、 $A\times B$ の任意の要素は、 $D\cap (A\times B)$ の要素を中心として、それ自身も $A\times B$ に含まれるような ϵ -ball に入れることができる。今、 $\bigcup_{(s,t)\in D\cap (A\times B)} B_{\epsilon_{(s,t)}}((s,t))$ を考える。ただしここで $B_{\epsilon_{(s,t)}}((s,t))$ はそれ自身が $A\times B$ に含まれるように取られている。先の議論より、 $A\times B\subset \bigcup_{(s,t)\in D\cap (A\times B)} B_{\epsilon_{(s,t)}}((s,t))$ である。逆向きの包含関係については、 $\exists (s,t)$ s.t. $(x,y)\in B_{\epsilon_{(s,t)}}((s,t))$ の時、 $B_{\epsilon_{(s,t)}}((s,t))$ がもともと $A\times B$ に含まれるように取られているので当然 $(x,y)\in A\times B$ であることから確認できる。

従って $A \times B = \bigcup_{(s,t) \in D \cap (A \times B)} B_{\epsilon_{(s,t)}}((s,t))$ である。ここで、左辺は open ball の可算個の和集合となっている。 $X \times Y$ の任意の開集合は $X \times Y$ 上の open ball の可算個の和集合で表現できる。これは、

$$\mathcal{B}(X \times Y) \subset X \times Y$$
 の open ball が生成する最小の sigma field

を意味する。

さらに、 $X \times Y$ の open ball 全体は、明らかに $\left\{A^{'} \times B^{'} \mid A^{'} \in \mathcal{B}(X), \ B^{'} \in \mathcal{B}(Y) \right\}$ に含まれているので、

$$\mathcal{B}(X\times Y)\subset\sigma\left(\left\{\boldsymbol{A}^{'}\times\boldsymbol{B}^{'}\mid\boldsymbol{A}^{'}\in\mathcal{B}(X),\ \boldsymbol{B}^{'}\in\mathcal{B}(Y)\right\}\right)=\mathcal{B}(X)\times\mathcal{B}(Y)$$

が成立する。

$3 \quad \text{Ex2.6}$

前間後半と同様の議論により、開集合 $A \subset X$ に対して以下が成立する。

$$A = \bigcup_{s \in A \cap D} B_{\epsilon_s}(s)$$

これより、 $\mathcal{B}(X) \subset \sigma(\{B_{\epsilon_s}(s) \mid s \in D\})$ である。open ball は必ず開集合なので、明らかに $\sigma(\{B_{\epsilon_s}(s) \mid s \in D\}) \subset \mathcal{B}(X)$ であるので、 $\mathcal{B}(X) = \sigma(\{B_{\epsilon_s}(s) \mid s \in D\})$ である。ここで、D が可算集合なので、 $\{B_{\epsilon_s}(s) \mid s \in D\}$ は可算集合。また、明らかに $\{B_{\epsilon_s}(s) \mid s \in D\} \subset \mathcal{B}(X)$ であるので、 $\mathcal{B}(X)$ は countably generated である。

4 Ex3.3

 \mathcal{B}^* を拡張実数 \mathbb{R} に入っている sigma field であるとする。この時、任意に $B \in \mathcal{B}^*$ を取ってくると、

$$h^{-1}(B) = \left\{ \left\{ f^{-1}(B) \right\} \cap A \right\} \cup \left\{ \left\{ g^{-1}(B) \right\} \cap A^c \right\}$$

であり、f,g が可測関数であることから、 $f^{-1}(b),g^{-1}(B)$ は A に入っており、仮定より $A,A^c\in A$ であるので、 $h^{-1}(B)\in A$ である。よって定義より $h(x):X\to \mathbb{R}$ は可測関数である。

$5 \quad \text{Ex}3.4$

- 1. $f: X \to \mathbb{R}$ が $\sigma(\{A_1, \cdots, A_m\})$ 可測
- 2. $\exists b_1, \dots, b_m \in \mathbb{R} \text{ s.t. } f = \sum_{i=1}^m b_i \cdot 1_{A_i}$

が同値であることを示す。

5.1 $1 \Rightarrow 2$ を示す。

 $\{A_1,\cdots,A_m\}$ が排反であることから、 $\sigma(\{A_1,\cdots,A_m\})$ の要素は全て $\{A_1,\cdots,A_m\}$ の要素を組み合わせて得られる 和集合、または ϕ である。 $\operatorname{lemma3.5}$ より、任意の $a\in\mathbb{R}$ について $\{x\in X\mid f(x)\leq a\}\in\sigma(\{A_1,\cdots,A_m\})$ であるので、 $\{x\in X\mid f(x)\leq a\}$ が $\{A_1,\cdots,A_m\}$ の要素を組み合わせて得られる和集合、または ϕ でないといけない。

仮に、 $\exists i \in \{1,\cdots,m\}$ s.t. $\sup_{x \in A_i} f(x) > \inf_{x \in A_i} f(x)$ とすると、このような i を i* とすると、 $\inf_{x \in A_{i^*}} f(x) < a < \sup_{x \in A_{i^*}} f(x)$ となるように $a \in \mathbb{R}$ をとったときに、

$$\{x \in A_{i^*} \mid f(x) \le a\} \ne A_{i^*} \{x \in A_{i^*} \mid f(x) \le a\} \subset A_{i^*}$$

であるので、 $\{x\in X\mid f(x)\leq a\}$ は $\{A_1,\cdots,A_m\}$ の要素の和集合では表すことができないため、 $f:X\to\mathbb{R}$ は $\sigma(\{A_1,\cdots,A_m\})$ 可測でなくなる。

従って、1を仮定した時、

$$\forall i \in \{1, \dots, m\} \ \forall x \in A_i \ f(x) \text{ is constant}$$

を得る。これはすなわち2を意味する。

5.2 $2 \Rightarrow 1$ を示す。

任意に $a \in \mathbb{R}$ をとる。この時、

$$\{x \in X \mid f(x) \le a\} = \left\{x \in X \mid \sum_{i=1}^{m} b_i \cdot 1_{A_i}(x) \le a\right\} = \bigcup_{i:b_i < a} \{A_i\} \in \sigma(\{A_1, \dots, A_m\})$$

なので、lemma3.5 より $f: X \to \mathbb{R}$ は $\sigma(\{A_1, \dots, A_m\})$ 可測である。

$6 \quad \text{Ex}3.6$

これは解析数理のノートを参照すること。

$7 \quad \text{Ex} 3.15$

- 1. $\forall p \in X \ \lim \inf_{x \to p} f(x) \ge f(p)$
- 2. $\forall a \in \mathbb{R} \{x \mid f(x) > a\}$

以上の二つが同値であることを示す。

7.1 $1 \Rightarrow 2$

対偶を示す。すなわち「 $\exists a \in \mathbb{R}$ s.t. $\{x \mid f(x) > a\}$ is not open」を仮定する。この時、

$$\exists a \in \mathbb{R} \text{ s.t. } \{x \mid f(x) > a\} \text{ is not open}$$

 $\Leftrightarrow \exists a \in \mathbb{R} \text{ s.t. } \{x \mid f(x) \leq a\} \text{ is not closed}$
 $\Rightarrow \exists a \in \mathbb{R} \text{ s.t. } \exists \{x_n\}_{n=1}^{\infty} \in \{x \mid f(x) \leq a\} \text{ s.t. } x_n \to p \text{ and } p \in \{x \mid f(x) > a\}$

である。従って、このような a と点列 $\{x_n\}_{n=1}^\infty$ について考えると $\liminf_{x\to p} f(x) \le a < f(p)$ であるので、対偶が示された。

7.2 $2 \Rightarrow 1$

 $f(p) = -\infty$ の時は明らカニ成立するので、そうでないときを考える。このとき、任意の $p \in X$ について a < f(p) となるように a を任意にとることができる。仮定より $\{x \mid f(x) > a\}$ は開集合で、かつ $p \in \{x \mid f(x) > a\}$ である。 開集合の定義より以下が成立する。

$$\exists r > 0 \text{ s.t. } B_r(p) \subset \{x \mid f(x) > a\}$$

これを使って、 $\liminf_{x\to p} f(x) = \lim_{r\to 0} \inf_{x\in B_r(p)} f(x)$ と書くことができることから $\liminf_{x\to p} f(x) \geq a$ であることがわかる。

ここで、a は f(p) よりも小さい任意の実数で良いことに注意する。仮に、 $\liminf_{x\to p} f(x) < f(p)$ とすると、 $\liminf_{x\to p} f(x) < b < f(p)$ を満たす実数 b が必ず存在して、b については上の条件を満たすことができなくなる。従って、 $\liminf_{x\to p} f(x) \geq f(p)$ である。

8 Ex3.16

「 $f^{\delta}(x) = \sup\{f(y) \mid d(x,y) < \delta\}$ 、 $f_{\delta}(x) = \inf\{f(y) \mid d(x,y) < \delta\}$ と置くと、任意の $\delta > 0$ について $f^{\delta}(x), f_{\delta}(x)$ はそれぞれ下半連続、上半連続(主張 3)」と「 $D_f = \{x \mid f^0(x) \neq f_0(x)\}$ (主張 4)」を所与とすると、

$$D_{f} = \left\{ x \mid f^{0}(x) \neq f_{0}(x) \right\}$$

$$= \bigcap_{n \geq 1} \left\{ x \mid f^{\frac{1}{n}}(x) > f_{\frac{1}{n}}(x) \right\}$$

$$= \bigcap_{n \geq 1} \left\{ x \mid f^{\frac{1}{n}}(x) > a \right\} \cap \left\{ x \mid a > f_{\frac{1}{n}}(x) \right\} \text{ for some } a \in \mathbb{R}$$

であり、主張 3 と Ex3.15 の結果から任意の $n \ge 1$ について $\left\{x \mid f^{\frac{1}{n}}(x) > a\right\}$ と $\left\{x \mid a > f_{\frac{1}{n}}(x)\right\}$ は開集合である。従って、不連続点の集合は開集合の可算回の積集合として表現されるため、 $D_f \subset \mathcal{B}(X)$ である。 主張 4 は定義より明らかであるので、主張 3 を証明する。

8.1 主張3の証明

任意に $\delta > 0$ を取り、 $f^{\delta}(x)$ が下半連続であることを示す。Ex3.15 の結果を利用して、任意の実数 a について、

$$\{x \mid a \ge f^{\delta}(x)\}$$
 is closed

を示す。

 $\{x_n\} \in \{x \mid a \geq f^{\delta}(x)\}$ なる収束する点列を取り、収束先を $x^* \in X$ と表記する。このとき、閉集合の定義より、 $x^* \in \{x \mid a \geq f^{\delta}(x)\}$ を示せば題意を示したことになる。

上限の定義より、 x^* における上限がa よりも大きいと仮定すると、

 $\sup \left\{ f(y) \mid d(x^*,y) < \delta \right\} > a \ \Rightarrow \ \exists b \in (a,\sup \left\{ f(y) \mid d(x^*,y) < \delta \right\}) \text{ s.t. } \exists y \in \left\{ y \mid d(x^*,y) < \delta \right\} \text{ s.t. } f(y) > b > a$ でる。 しかし、 $x_n \to x^*$ より、 $\left\{ y \mid d(x^*,y) < \delta \right\} \subset \bigcup_n \left\{ y \mid d(x_n,y) < \delta \right\}$ である。全ての n について

$$a \ge \sup \{ f(y) \mid d(x_n, y) < \delta \}$$

であることから、先ほどの x^* における上限がaよりも大きいという仮定から導かれた、

$$\exists b \in (a, \sup\{f(y) \mid d(x^*, y) < \delta\}) \text{ s.t. } \exists y \in \{y \mid d(x^*, y) < \delta\} \text{ s.t. } f(y) > b > a$$

はと矛盾する。 従って、

$$a \ge \sup \{ f(y) \mid d(x^*, y) < \delta \}$$

である。つまり、 $x^* \in \{x \mid a \geq f^\delta(x)\}$ なので、 $f^\delta(x)$ は下半連続である。 $f_\delta(x)$ についても同様に上半連続であることが示される。