Building an ALU (Part 1):

Today's lecture

- We start building our computer!
 - We'll start with the arithmetic/logic unit (ALU)
- Adding single bits
 - Half Adders and Full Adder
- Multi-bit Arithmetic
 - Hierarchical design
 - Subtraction
- Building a Logic Unit
 - Multiplexors

Arithmetic Logic Units (ALUs)

- The computation in a computer processor takes place in the arithmetic logic unit. This unit performs:
 - Arithmetic operations
 - e.g., addition and subtraction
 - Bit-wise logical operations
 - e.g., AND, OR, NOT, XOR

- Typically these operations are performed on multi-bit words
 - The MIPS-subset processor we will build uses 32-bit words

In Lab 3 you will build a 32-bit ALU with the above operations

Binary Addition Review

	1	1	1	0		Carries
		1	0	1	1	Augend
+		1	1	1	0	Addend
	1	1	0	0	1	Sum

First Bit Position

First Bit Position's Truth Table

Half Adder

Adds two input bits to produce a sum and carry out.

Χ	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

carry out is worth twice as much as the sum bit

Second Bit Position

(and every subsequent position)

Second Bit Position's Truth Table

Adding 3 bits together to get a two bit number

0	+ 0	+ 0	= 00
0	+ 0	+ 1	= 01
0	+ 1	+ 0	= 01
0	+ 1	+ 1	= 10
1	+ 0	+ 0	= 01
1	+ 0	+ 1	= 10
1	+ 1	+ 0	= 10
1	+ 1	+ 1	= 11

Χ	Υ	C_{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

Adds three input bits to produce a sum and carry out.

$$S = X \oplus Y \oplus C_{in}$$

 $C_{out} = XY + (X \oplus Y)C_{in}$

Χ	Υ	C _{in}	C_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder Circuit

A Full Adder can be built with two half adders

Building multi-bit adders

- Recall our discussion about hierarchical design
 - (The stop lights to prevent train collisions...)
- We're going to build multi-bit adders by chaining full adders

Example: 4-bit adder

An example of 4-bit addition

Let's try our initial example: A=1011 (eleven), B=1110 (fourteen).

An example of 4-bit addition

Let's try our initial example: A=1011 (eleven), B=1110 (fourteen).

- 1. Fill in all the inputs, including CI=0
- 2. The circuit produces C1 and S0 (1 + 0 + 0 = 01)
- 3. Use C1 to find C2 and S1 (1 + 1 + 0 = 10)
- 4. Use C2 to compute C3 and S2 (0 + 1 + 1 = 10)
- 5. Use C3 to compute CO and S3 (1 + 1 + 1 = 11)

Woohoo! The final answer is 11001 (twenty-five) if we consider it a 5-bit output.

Implementing Subtraction

- We said last time that we implement subtraction
 - By negating the second input and then adding

$$A - B = A + (-B)$$

- Negating in 2's complement is
 - Inverting the bits and adding one

$$-B = {^{\sim}B} + 1$$

Substituting in:

$$A - B = A + (-B) =$$

Implementing Subtraction, cont.

Addition + Subtraction in one circuit

XOR gates let us selectively complement the B input.

$$X \oplus o = X$$

- When Sub = O, Y = B and Cin = O. Result = A + B + O = A + B.
- When Sub = 1, $Y = ^B$ and Cin = 1. Result $= A + ^B + 1 = A B$.

Data vs. Control

We'll delineate two groups of signals in the hardware

Datapath

- These generally carry the numbers we're crunching
- E.g., the X and Y inputs and the output S

Control

- These generally control how data flows and what operations are performed
- E.g., the SUB signal.

Logical Operations

- In addition to ADD and SUBTRACT, we want our ALU to perform bit-wise AND, OR, NOT, and XOR.
- This should be straight forward.
 - We have gates that perform each of these operations.

X

Υ

Selecting the desired logical operation

- We need a control signal to specify the desired operation:
 - We'll call that sign R
 - 4 operations means R is 2 bits

R_1	R_0	Output	
0	0	$G_i = X_i Y_i$	AND
0	1	$G_i = X_i + Y_i$	OR
1	0	$G_i = X_i'$	NOR
1	1	$G_i = X_i \oplus Y_i$	XOR

We need a circuit to perform the selection:

Multiplexors

A multiplexor is a circuit that (logically) selects one of its inputs to connect to its output

Consider a 2-to-1 multiplexor. It has:

- 2 data inputs (I₀, I₁)
- a 1-bit control input (S)
- 1 data output (Y)

5	У
0	IO
1	I1

The control input selects which data input is output:

$$Y = S'I_0 + SI_1$$

Multiplexors, cont.

- In general, a multiplexor (mux) has:
 - 2^N data inputs $(I_0 I_{2^{N-1}})$
 - an N-bit control input (S)
 - 1 data output (Y)
- If S = K then $Y = I_K$
- Examples:
 - 4-to-1 mux: 4 data inputs, 2-bit control input

$$Y = S_0'S_1'I_0 + S_0S_1'I_1 + S_0'S_1I_2 + S_0S_1I_3$$

16-to-1 mux: 16 data inputs, 4-bit control input

Complete 1-bit Logic Unit

R_1	R_0	Output
0	0	$G_i = X_i Y_i$
0	1	$G_i = X_i + Y_i$
1	0	$G_i = X_i'$
1	1	$G_i = X_i \oplus Y_i$