Práctica 3

Ejercicio 1. Sea (X, d) un espacio métrico y sea $(x_n)_{n \in \mathbb{N}} \subset X$. Probar:

- i) $\lim_{n\to\infty} x_n = x$ si y sólo si para toda subsucesión $(x_{n_k})_{k\in\mathbb{N}}$, $\lim_{k\to\infty} x_{n_k} = x$
- ii) Si existe $x \in X$ para el cual toda subsucesión $(x_{n_k})_{k \in \mathbb{N}}$ de $(x_n)_{n \in \mathbb{N}}$ tiene una subsucesión $(x_{n_{k_j}})_{j \in \mathbb{N}}$ tal que $\lim_{j \to \infty} x_{n_{k_j}} = x$, entonces $(x_n)_{n \in \mathbb{N}}$ converge y $\lim_{n \to \infty} x_n = x$
- iii) Si $(x_n)_{n\in\mathbb{N}}$ es convergente, entonces $(x_n)_{n\in\mathbb{N}}$ es de Cauchy. ¿Vale la recíproca?
- iv) Si $(x_n)_{n\in\mathbb{N}}$ es de Cauchy, entonces es acotada.
- v) Si $(x_n)_{n\in\mathbb{N}}$ es de Cauchy y tiene una subsucesión $(x_{n_k})_{k\in\mathbb{N}}$ tal que $\lim_{k\to\infty} x_{n_k} = x \in X$, entonces $(x_n)_{n\in\mathbb{N}}$ converge y $\lim_{n\to\infty} x_n = x$

Ejercicio 2. Probar que si toda bola cerrada de un espacio métrico X es un subespacio completo de X, entonces X es completo.

Ejercicio 3. Sean A y B subespacios de un espacio métrico. Probar que si A y B son completos, entonces $A \cup B y A \cap B$ son completos.

Ejercicio 4. Sea (X, d) un espacio métrico.

- i) Probar que todo subespacio completo de (X, d) es un subconjunto cerrado de X.
- ii) Probar que si X es completo, entonces todo subconjunto $F\subseteq X$ cerrado, es un subespacio completo de X.

Ejercicio 5. Sean (X, d) e (Y, d') espacios métricos. Consideramos en $X \times Y$ la métrica d_{∞} definida por

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), d'(y_1, y_2)\}.$$

Probar que $(X \times Y, d_{\infty})$ es completo si y sólo si (X, d) e (Y, d') son completos.

Ejercicio 6.

- i) Sea X un espacio métrico y sea $B(X) = \{f : X \to \mathbb{R} \mid f \text{ es acotada } \}$. Probar que $(B(X), d_{\infty})$ es un espacio métrico completo, donde $d_{\infty}(f, g) = \sup_{x \in X} |f(x) g(x)|$.
- ii) Sean $a,b \in \mathbb{R}$, a < b. Probar que $(C[a,b],d_{\infty})$ es un espacio métrico completo, donde $d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|.$
- iii) Probar que $C_0 := \{(a_n)_{n \in \mathbb{N}} \subset \mathbb{R} / a_n \to 0\}$ es un espacio métrico completo con la distancia $d_{\infty}((a_n), (b_n)) = \sup_{n \in \mathbb{N}} |a_n b_n|$.

Ejercicio 7. Sea (X,d) un espacio métrico y sea $\mathcal{D} \subset X$ un subconjunto denso con la propiedad que toda sucesión de Cauchy $(a_n)_{n \in \mathbb{N}} \subset \mathcal{D}$ converge en X. Probar que X es completo.

Ejercicio 8. Teorema de Cantor.

Probar que un espacio métrico (X,d) es completo si y sólo si toda familia $(F_n)_{n\in\mathbb{N}}$ de subconjuntos de X cerrados, no vacíos tales que $F_{n+1} \subset F_n$ para todo $n \in \mathbb{N}$ y diam $(F_n) \longrightarrow 0$ tiene un único punto en la intersección.

Ejercicio 9. Sea (X, d) un espacio métrico completo sin puntos aislados. Probar que X tiene cardinal mayor o igual que c. Deducir que si además X es separable, entonces #X = c. (Para esto último, puede servir un ejercicio de la práctica anterior.)

Ejercicio 10. Sean (X,d) e (Y,d') espacios métricos y sea $f:X\longrightarrow Y$. Probar que:

- i) f es continua en $x_0 \in X$ si y sólo si para toda sucesión $(x_n)_{n \in \mathbb{N}} \subset X$ tal que $x_n \longrightarrow x_0$, la sucesión $(f(x_n))_{n \in \mathbb{N}} \subset Y$ converge a $f(x_0)$.
- ii) Son equivalentes:
 - (a) f es continua
 - (b) Para todo $G \subset Y$ abierto, $f^{-1}(G)$ es abierto en X
 - (c) Para todo $F \subset Y$ cerrado, $f^{-1}(F)$ es cerrado en X

Ejercicio 11. Decidir cuáles de las siguientes funciones son continuas:

- i) $f:(\mathbb{R}^2,d) \longrightarrow (\mathbb{R},|\cdot|), f(x,y)=x^2+y^2$, donde d representa la métrica euclídea.
- ii) $id_{\mathbb{R}^2}: (\mathbb{R}^2, \delta) \longrightarrow (\mathbb{R}^2, d_{\infty})$, la función identidad, donde δ representa la métrica discreta.
- iii) $id_{\mathbb{R}^2}: (\mathbb{R}^2, d_{\infty}) \longrightarrow (\mathbb{R}^2, \delta)$, la función identidad, donde δ representa la métrica discreta.
- iv) $i:(E,d)\longrightarrow (X,d)$, la inclusión, donde $E\subset X$
- v) $f: (C([0,1]), d_{\infty}) \longrightarrow (\mathbb{R}, |\cdot|), f(\varphi) = \varphi(0)$

Ejercicio 12. Sean $f, g, h : [0, 1] \longrightarrow \mathbb{R}$ definidas por

$$f(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q} \\ 1 & \text{si } x \in \mathbb{Q} \end{cases} \qquad g(x) = x \cdot f(x) \qquad h(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q} \\ \frac{1}{n} & \text{si } x = \frac{m}{n} \\ 1 & \text{si } x = 0 \end{cases}, \ (m:n) = 1$$

Probar que:

- i) f es discontinua en todo punto
- ii) g sólo es continua en x=0
- iii) h sólo es continua en $[0,1]-\mathbb{Q}$

Ejercicio 13. Probar que un espacio métrico X es discreto si y sólo si toda función de X en un espacio métrico arbitrario es continua.

2

Ejercicio 14. Considerando en cada \mathbb{R}^n la métrica euclídea, probar que:

- i) $\{(x,y) \in \mathbb{R}^2 / x^2 + y \operatorname{sen}(e^x 1) = -2\}$ es cerrado.
- ii) $\{(x,y,z) \in \mathbb{R}^3 / -1 \le x^3 3y^4 + z 2 \le 3\}$ es cerrado.
- iii) $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 / 3 < x_1 x_2\}$ es abierto.

Mencione otras dos métricas para las cuales siguen valiendo estas afirmaciones.

Ejercicio 15. Sean X, Y espacios métricos y sea $f: X \longrightarrow Y$ una función continua. Probar que el gráfico de f, definido por

$$G(f) = \{(x, f(x)) \in X \times Y : x \in X\}$$

es cerrado en $X \times Y$. ¿Es cierta la afirmación recíproca?

Ejercicio 16. Sea $f:(X,d)\longrightarrow (Y,d')$ una función. Analizar la validez de las siguientes afirmaciones:

- i) Si $X = \bigcup_{i \in I} U_i$, con cada U_i abierto y $f|_{U_i}$ continua para todo $i \in I$, entonces $f: X \longrightarrow Y$ es continua.
- ii) Si $X = \bigcup_{i \in I} F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para todo $i \in I$, entonces $f: X \longrightarrow Y$ es continua.
- iii) Si $X=\bigcup_{i=1}^m F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para cada $i=1,\ldots,m,$ entonces $f:X\longrightarrow Y$ es continua.
- iv) Si $X = \bigcup_{i=1}^{m} X_i$ y $f|_{X_i}$ continua para cada i = 1, ..., m, entonces $f: X \longrightarrow Y$ es continua.

Ejercicio 17. Sea (X, d) un espacio métrico y sea $f: X \to \mathbb{R}$. Probar que f es continua si y sólo si para todo $\alpha \in \mathbb{R}$, los conjuntos $\{x \in X : f(x) < \alpha\}$ y $\{x \in X : f(x) > \alpha\}$ son abiertos.

Ejercicio 18. Sea (X, d) un espacio métrico y sea A un subconjunto de X. Probar que la función $d_A: X \longrightarrow \mathbb{R}$ definida por $d_A(x) = d(x, A) = \inf_{a \in A} d(x, a)$ es (uniformemente) continua.

Ejercicio 19. Teorema de Urysohn.

Sea (X, d) un espacio métrico y sean A, B cerrados disjuntos de X.

i) Probar que existe una función $f: X \longrightarrow \mathbb{R}$ continua tal que:

$$f|_A \equiv 0$$
 , $f|_B \equiv 1$ y $0 \le f(x) \le 1 \quad \forall x \in X$

Sugerencia: Considerar la función $f(x) = \frac{d_A(x)}{d_A(x) + d_B(x)}$.

ii) Deducir que existen abiertos $U, V \subset X$ disjuntos tales que $A \subset U$ y $B \subset V$.

Ejercicio 20. Sea $f: \mathbb{Z} \longrightarrow \mathbb{Q}$ una función.

- i) Probar que f es continua. ¿Sigue valiendo si f toma valores irracionales?
- ii) Suponiendo que f es biyectiva, ¿puede ser un homeomorfismo?

Ejercicio 21. Sea (X, d) un espacio métrico, y sea $\Delta : X \longrightarrow X \times X$ la aplicación diagonal definida por $\Delta(x) = (x, x)$. Probar que:

- i) Δ es un homeomorfismo entre X y $\{(x,x):x\in X\}\subset X\times X$.
- ii) $\Delta(X)$ es cerrado en $X \times X$.

Ejercicio 22. Sean (X,d) e (Y,d') espacios métricos. Una aplicación $f:X\longrightarrow Y$ se dice abierta si f(A) es abierto para todo abierto $A\subset X$ y se dice cerrada si f(F) es cerrado para todo cerrado $F\subset X$.

- i) Probar que si f es biyectiva entonces, f es abierta (cerrada) si y sólo si f^{-1} es continua.
- ii) Dar un ejemplo de una función de IR en IR continua que no sea abierta.
- iii) Dar un ejemplo de una función de IR en IR continua que no sea cerrada.
- iv) Mostrar con un ejemplo que una función puede ser biyectiva, abierta y cerrada pero no continua.

Ejercicio 23. Sean (X,d) e (Y,d') espacios métricos y sea $f:X\longrightarrow Y$ una función.

- i) Probar que f es continua si y sólo $f(\overline{E}) \subset \overline{f(E)}$ para todo subconjunto $E \subset X$. Mostrar con un ejemplo que la inclusión puede ser estricta.
- ii) Probar que f es continua y cerrada si y sólo si $f(\overline{E}) = \overline{f(E)}$ para todo subconjunto $E \subset X$.

Ejercicio 24.

- i) Sean (X,d) e (Y,d') espacios métricos y sea $D\subset X$ denso. Sean $f,g:X\longrightarrow Y$ funciones continuas. Probar que si $f|_D=g|_D$, entonces f=g.
- ii) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función continua tal que f(x+y) = f(x) + f(y) para todo $x, y \in \mathbb{Q}$. Probar que existe $\alpha \in \mathbb{R}$ tal que $f(x) = \alpha x$ para todo $x \in \mathbb{R}$.

Ejercicio 25. Sean (X,d) e (Y,d') espacios métricos. Consideramos en $X \times Y$ la métrica d_{∞} .

- i) Probar que las proyecciones $\pi_1: X \times Y \longrightarrow X$ y $\pi_2: X \times Y \longrightarrow Y$ son continuas y abiertas. Mostrar con un ejemplo que pueden no ser cerradas.
- ii) Sea (Z, d'') un espacio métrico y sea $f: Z \longrightarrow X \times Y$ una aplicación. Probar que f es continua si y sólo si $f_1 = \pi_1 \circ f$ y $f_2 = \pi_2 \circ f$ lo son.

Ejercicio 26. Sean X, Y espacios métricos. Sea $f: X \longrightarrow Y$ una función continua y survectiva.

- i) Probar que si X es separable, entonces Y es separable.
- ii) ¿Es cierto que si X es completo, entonces Y es completo?

Ejercicio 27. Sea (X, d) un espacio métrico y sea $f: X \longrightarrow \mathbb{R}$ una función. Se dice que f es semicontinua inferiormente (resp. superiormente) en $x_0 \in X$ si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que

$$d(x, x_0) < \delta \Longrightarrow f(x_0) < f(x) + \varepsilon$$
 (resp. $f(x_0) + \varepsilon > f(x)$)

Probar que:

- i) f es continua en x_0 si y sólo si f es semicontinua inferiormente y superiormente en x_0 .
- ii) f es semicontinua inferiormente si y sólo si $f^{-1}(\alpha, +\infty)$ es abierto para todo $\alpha \in \mathbb{R}$.
- iii) f es semicontinua superiormente si y sólo si $f^{-1}(-\infty, \alpha)$ es abierto para todo $\alpha \in \mathbb{R}$.
- iv) Si $A \subset X$ y $\chi_A : X \to \mathbb{R}$ es su función característica, entonces χ_A es semicontinua inferiormente (resp. superiormente) si y sólo si A es abierto (resp. cerrado).

Comparar con el Ejercicio 17.

Ejercicio 28. Sean (X,d) e (Y,d') espacios métricos y sea $f:X\longrightarrow Y$ una función que satisface:

$$d'(f(x_1), f(x_2)) \le c \ d(x_1, x_2)$$

para todo $x_1, x_2 \in X$, donde $c \geq 0$. Probar que f es uniformemente continua.

Ejercicio 29.

- i) Sean (X,d) e (Y,d') espacios métricos, $A\subseteq X$ y $f:X\longrightarrow Y$ una función. Probar que si existen $\alpha>0,\ (x_n)_{n\in\mathbb{N}},\ (y_n)_{n\in\mathbb{N}}\subset A$ sucesiones y $n_0\in\mathbb{N}$ tales que
 - (a) $d(x_n, y_n) \longrightarrow 0$ para $n \to \infty$
 - (b) $d'(f(x_n), f(y_n)) \ge \alpha$ para todo $n \ge n_0$

entonces f no es uniformemente continua en A.

- ii) Verificar que la función $f(x)=x^2$ no es uniformemente continua en \mathbb{R} . ¿Y en $\mathbb{R}_{\leq -\pi}$?
- iii) Verificar que la función f(x) = sen(1/x) no es uniformemente continua en (0,1).

Ejercicio 30.

- i) Sea $f:(X,d) \longrightarrow (Y,d')$ una función uniformemente continua y sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en X. Probar que $(f(x_n))_{n \in \mathbb{N}}$ es una sucesión de Cauchy en Y.
- ii) Sea $f:(X,d) \longrightarrow (Y,d')$ un homeomorfismo uniforme. Probar que (X,d) es completo si y sólo si (Y,d') es completo.

En particular, si un espacio métrico X es completo para una métrica lo es para cualquier otra métrica uniformemente equivalente.

Ejercicio 31.

- i) Dar un ejemplo de una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ acotada y continua pero no uniformemente continua.
- ii) Dar un ejemplo de una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ no acotada y uniformemente continua.

Ejercicio 32. Sea $f:(X,d) \longrightarrow (Y,d')$ una función uniformemente continua, y sean $A,B \subset X$ conjuntos no vacíos tales que d(A,B)=0. Probar que d'(f(A),f(B))=0.

Ejercicio 33. Sean X e Y espacios métricos, Y completo. Sea $D \subset X$ denso y sea $f: D \longrightarrow Y$ una función uniformemente continua. Probar que f tiene una única extensión continua a todo X, es decir, existe una única función $F: X \longrightarrow Y$ continua tal que $F|_D = f$. (Más aún, F es uniformemente continua).