8.4 Acid-Base Theories

Definitions

• Hydrogen polyatomic ion

• Hydronium ion

Strong base

Weak base

Acid base

Amphiprotic

Conjugate base

Conjugate acid

Conjugate acid-base pair

General Properties

• Know the properties of acids and bases from Table 1.

Strong and Weak Acids

- Strong acid has a much greater than 99% ionization.
 - \circ E.g. HCl \rightarrow H⁺ + Cl⁻ (>>90% ionization)
 - o Hydrochloric, sulfuric, nitric
- Weak Acids have a less than 50% ionization
 - E.g. $HC_2H_3O_2 \rightarrow H^+ + C_2H_3O_2^-$ (1.3% ionization)
 - Acetic acid
- Review summary on page 379

The Arrhenius Concept of Acids and Bases

- Ionic compounds ionize in water. Compounds that release H⁺_(aq) ions are acids and compounds that release OH⁻_(aq) ions are bases.
- General equations:

 $\circ \quad Acids \qquad HA_{(aq)} \rightarrow H^{+}_{(aq)} + A^{-}_{(aq)}$

o Bases $BOH_{(aq)} \rightarrow B^{+}_{(aq)} + OH^{-}_{(aq)}$

 \circ Salts ionization without the productions of $H^+_{(aq)}$ or $OH^-_{(aq)}$

Revision of Arrhenius' Definitions

- The Arrhenius definition falls apart for some compounds: hydrogen polyatomic ions (NaHCO₃), oxides of metals and nonmetals (CaO_(aq)), non-hydroxide bases (NH_{3(aq)}), non-hydrogen acids (Al(NO₃)_{3(aq)}).
- $H^{+}_{(aq)}$ actually does not exist in solution because when it comes in contact with $H_2O_{(l)}$ a new ion is formed, the Hydronium ion $H_3O^{+}_{(aq)}$.

 \circ Acids $HA_{(aq)} + H_2O_{(aq)} \rightarrow H_3O^+_{(aq)} + A^-_{(aq)}$

o Bases $B_{(aq)} + H_2O_{(aq)} \rightarrow HB^+_{(aq)} + OH^-_{(aq)}$

Strong and Weak Bases

• Strong base: NaOH_(s) \rightarrow Na⁺_(aq) + OH⁻_(aq)

• Weak base: $Na_2CO_{3(s)} \rightarrow 2Na^+_{(sq)} + CO_3^{2-}_{(aq)}$

 $CO_3^{2-}_{(aq)} + H_2O_{(1)} \rightarrow OH^{-}_{(aq)} + HCO_3^{-}_{(aq)}$

• Review Summary on page 385.

The Brønsted-Lowry Concept

- A redefinition of acids and bases
- A Brønsted-Lowry acid is a proton donor and a Brønsted-Lowry base is a proton acceptor.
- E.g. $H_2O_{(l)} + HCl_{(g)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$ (water forms the hydronium ion)

- H₂O_(l) is the Brønsted-Lowry base and HCl_(g) Brønsted-Lowry acid.
- E.g. $NH_{3(g)} + H_2O_{(l)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$ (water forms the hydroxide ion) $H_2O_{(l)}$ is the Brønsted-Lowry acid and $NH_{3(g)}$ Brønsted-Lowry base.
- Water is amphoteric (amphiprotic) which is a substance capable of acting as an acid or a base in different chemical reactions.

Reversible Acid-Base Reactions

• In a reversible reaction there is an acid and a base in each of the 2 reactions. They are known as conjugate acid-base pairs (difference of only a single proton)

- In the reaction above the acetic acid is a weak acid and the reactants are favoured. HCl is a strong acid and products are favoured.
- The stronger the acid, the weaker its conjugate base, and conversely, the weaker an acid, the stronger its conjugate base.
- Review the summary on page 388.

Changing Ideas on Acids and Bases/Changes in Knowledge

• Read and review the history of acid-base chemistry

Homework

• Practice Q's: 1-9, 12-16, 17-20

• Section Q's: 1-11