Vordiplomprüfung Analysis 3 – HM 4 (Physik)

Bearbeitungszeit: 90 Minuten Hilfsmittel: Keine

Aufgabe 1 (ca. 7 Punkte)

Man löse die Differentialgleichung $yy'(x^2 + 3x + 2) = 1$, $y(-3/2) = \sqrt{\ln 2}$ und bestimme das größte Intervall, auf dem die Lösung zu dem gegebenen Anfangswert existiert.

Aufgabe 2 (ca. 2+2+1 Punkte) Gegeben sei die Differentialgleichung y'(t) + f(t)y(t) = g(t), $t \in \mathbb{R}$, wobei $f, g : \mathbb{R} \to \mathbb{R}$ stetige Funktionen sein mögen.

- a) Seien y_1, y_2 zwei verschiedene Lösungen der Differentialgleichung. Man gebe mit Hilfe von y_1, y_2 sämtliche Lösungen der Differentialgleichung ohne die Verwendung eines Integrals an.
- b) Seien u_1, u_2 Lösungen der Differentialgleichung mit g = 0. Man beweise oder widerlege durch Angabe eines Gegenbeispiels:
- (i) u_1u_2 ist Lösung der Differentialgleichung mit g=0.
- (ii) $u_1 u_2$ ist Lösung der Differentialgleichung mit g = 0.

Aufgabe 3 (ca. 5 Punkte)

Man löse die Differentialgleichung $y' = (x+y-1)^2$, y(0) = 2 und bestimme das größte Intervall, auf dem Lösung zu dem gegebenen Anfangswert existiert. (Hinweis: Geeignet substituieren.)

Aufgabe 4 (ca. 10 Punkte)

Man berechne die Lösungsmenge des Systems

$$y'(t) = \begin{pmatrix} -1 & 1 \\ -5 & 3 \end{pmatrix} y(t) + \begin{pmatrix} 0 \\ e^t \end{pmatrix}.$$

Aufgabe 5 (ca. 5+4+4 Punkte)

Sei $G \subset \mathbb{C}$ ein Gebiet, $f : G \to \mathbb{C}$ holomorph.

- a) Man zeige: Ist $|f|^2$ konstant, so ist f konstant.
- b) Man entwickle $f(z) = \frac{i}{(z-1)(z+1)}$ in eine Potenzreihe um $z_0 = 2$. (Hinweis: Geometrische Reihe).
- c) Man berechne $\int_{|z|=2}^{\infty} \frac{z}{z^2 2z + 2} dz.$