Functional-Dependency Theory Roadmap

- We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies.
- We then develop algorithms to generate lossless decompositions into BCNF and 3NF
- We then develop algorithms to test if a decomposition is dependency-preserving

FD Theory

- Closure of Set of Functional Dependencies F*
- Closure of α set of Attributes α+
- Cover of F set of functional dependencies F_c

Closure of a Set of Functional Dependencies

- Given a set *F* set of functional dependencies, there are certain other functional dependencies that are logically implied by *F*.
 - If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- We denote the closure of F by F⁺.

Closure of a Set of Functional Dependencies

- We can compute F+, the closure of F, by repeatedly applying
 Armstrong's Axioms:
 - **Reflexive rule:** if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - Augmentation rule: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
 - Transitivity rule: if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$
- These rules are
 - Sound -- generate only functional dependencies that actually hold,
 and
 - Complete -- generate all functional dependencies that hold.

Example of F⁺

•
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H\}$

- Some members of F⁺
 - $-A \rightarrow H$
 - by transitivity from A → B and B → H
 - $-AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - CG \rightarrow HI
 - by augmenting CG → I to infer CG → CGI, and augmenting of CG → H to infer CGI → HI, and then transitivity

Closure of Functional Dependencies (Cont.)

- Additional rules:
 - **Union rule**: If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta$ γ holds.
 - **Decomposition rule**: If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds.
 - **Pseudotransitivity rule**: If $\alpha \to \beta$ holds and $\gamma \not \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds.
- The above rules can be inferred from Armstrong's axioms.

Procedure for Computing F⁺

To compute the closure of a set of functional dependencies F:

```
F^+ = F
repeat

for each functional dependency f in F^+
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F^+
for each pair of functional dependencies f_1 and f_2 in F^+
if f_1 and f_2 can be combined using transitivity
then add the resulting functional dependency to
F^+
until F^+ does not change any further
```

• **NOTE**: We shall see an alternative procedure for this task later

Closure of set of Functional Dependencies F⁺

F ={A->C,AC->D,E->AD,E->H} G= {A_>CD, E-> AH}

Evaluate: F implies G and/or vice versa

Hint: Given F prove G and vice versa

Closure of set of Functional Dependencies F⁺

```
F ={A->C,AC->D,E->AD,E->H}
G= {A_>CD, E-> AH}
```

Evaluate: F implies G and/or vice versa

Hint: Given F prove G and vice versa

A->C, AC->D implies A->D A->D & A->C implies **A->CD**

E->AD implies E->A, E->D $\{E->H\} \cup \{E->A\} = \{E->AH\}$

Closure of Attribute Sets

- Given a set of attributes α , define the **closure** of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F
- Algorithm to compute α^+ , the closure of α under F

```
result := \alpha;

while (changes to result) do

for each \beta \to \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma

end
```

Example of Attribute Set Closure

```
    R = (A, B, C, G, H, I)
    F = {A → B
 A → C
 CG → H
 CG → I
 B → H}
```

- (AG)+
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. result = ABCGH ($CG \rightarrow H$ and $CG \subseteq AGBC$)
 - 4. result = ABCGHI (CG \rightarrow I and CG \subseteq AGBCH)
- Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is R \supseteq (AG)⁺
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is R \supseteq (A)⁺
 - 2. Does $G \rightarrow R$? == Is R \supseteq (G)⁺
 - 3. In general: check for each subset of size *n-1*

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - For each γ ⊆ R, we find the closure γ⁺, and for each S ⊆ γ⁺, we output a functional dependency γ → S.

R (A,B,C,D,E) F= {A->BC, CD->E, B->D, E->A}

Find Candidate Key CK of R

Hint: Find Attribute closure for each subset of R.

R (A,B,C,D,E) F= {A->BC, CD->E, B->D, E->A}

Find Candidate Key CK of R

Hint: Find Attribute closure for each subset of R.

A->BC implies A->B, A->B and B->D implies A->D
A->BC implies A->C, A->C and A->D implies A->CD
A-CD and CD->E implies A->E

A->ABCDE

E->A implies E-> ABCDE

CD->E implies CD->ABCDE
No subset of CD implies ABCDE

B->D, BC->CD implies **BC->ABCDE**No subset of BC implies ABCDE

CK: A, E, CD, BC

R(A,B,C,D,E) F= {A->C, B->E,DE->C} R1(A,B,C)

What FDs hold on R1?

Hint: Find attribute closure of each subset of R1

R(A,B,C,D,E) F= {A->D, B->E,DE->C} R1(A,B,C)

What FDs hold on R1?

Hint: Find attribute closure of each subset of R1

Calculate attribute closures of:

A,B,C AB,BC,AC ABC

 $\{AB\}$ + adds AB-> C to FDs on R1.

Ans. AB->C

Canonical Cover

- Suppose that we have a set of functional dependencies F on a relation schema. Whenever a user performs an update on the relation, the database system must ensure that the update does not violate any functional dependencies; that is, all the functional dependencies in F are satisfied in the new database state.
- If an update violates any functional dependencies in the set *F*, the system must roll back the update.
- We can reduce the effort spent in checking for violations by testing a simplified set of functional dependencies that has the same closure as the given set.
- This simplified set is termed the canonical cover
- To define canonical cover we must first define extraneous attributes.
 - An attribute of a functional dependency in F is extraneous if we can remove it without changing F+

Extraneous Attributes

- Removing an attribute from the left side of a functional dependency could make it a stronger constraint.
 - For example, if we have $AB \to C$ and remove B, we get the possibly stronger result $A \to C$. It may be stronger because $A \to C$ logically implies $AB \to C$, but $AB \to C$ does not, on its own, logically imply $A \to C$
- But, depending on what our set F of functional dependencies happens to be, we may be able to remove B from AB → C safely.
 - For example, suppose that
 - $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow C\}$
 - Then we can show that F logically implies $A \rightarrow C$, making B extraneous in $AB \rightarrow C$.

Extraneous Attributes (Cont.)

- Removing an attribute from the right side of a functional dependency could make it a weaker constraint.
 - For example, if we have AB → CD and remove C, we get the possibly weaker result AB → D. It may be weaker because using just AB → D, we can no longer infer AB → C.
- But, depending on what our set F of functional dependencies happens to be, we may be able to remove C from AB → CD safely.
 - For example, suppose that $F = \{AB \rightarrow CD, A \rightarrow C.\}$
 - Then we can show that even after replacing AB \rightarrow CD by AB \rightarrow D, we can still infer AB \rightarrow C and thus AB \rightarrow CD.

Extraneous Attributes

- An attribute of a functional dependency in F is extraneous if we can remove it without changing F+
- Consider a set F of functional dependencies and the functional dependency α → β in F.
 - Remove from the left side: Attribute A is extraneous in α if
 - $A \in \alpha$ and
 - *F* logically implies $(F \{\alpha \to \beta\}) \cup \{(\alpha A) \to \beta\}$.
 - Remove from the right side: Attribute A is extraneous in β if
 - $A \in \beta$ and
 - The set of functional dependencies

$$F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}\$$
 logically implies F .

 Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one

Testing if an Attribute is Extraneous

- Let R be a relation schema and let F be a set of functional dependencies that hold on R. Consider an attribute in the functional dependency α → β.
- To test if attribute $A \in \beta$ is extraneous in β
 - Consider the set:

$$\mathsf{F}' = (\mathsf{F} - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\},\$$

- check that α^+ contains A; if it does, A is extraneous in β
- $-(\alpha^+)_{F'}$
- To test if attribute $A \in \alpha$ is extraneous in α
 - Let $\gamma = \alpha \{A\}$. Check if $\gamma \to \beta$ can be inferred from F.
 - Compute γ^+ using the dependencies in F
 - If γ^+ includes all attributes in β then , A is extraneous in α
 - (γ⁺)_F

Examples of Extraneous Attributes

- Let $F = \{AB \rightarrow CD, A \rightarrow E, E \rightarrow C\}$
- To check if C is extraneous in $AB \rightarrow CD$, we:
 - Compute the attribute closure of AB under $F' = \{AB \rightarrow D, A \rightarrow E, E \rightarrow C\}$
 - The closure is ABCDE, which includes CD
 - This implies that C is extraneous

Canonical Cover

A canonical cover for F is a set of dependencies F_c such that

- F logically implies all dependencies in F_c, and
- F_c logically implies all dependencies in F, and
- No functional dependency in F_c contains an extraneous attribute, and
- Each left side of functional dependency in F_c is unique. That is, there are no two dependencies in F_c

```
\alpha_1 \rightarrow \beta_1 and \alpha_2 \rightarrow \beta_2 such that \alpha_1 = \alpha_2
```

Canonical Cover

• To compute a canonical cover for *F*:

$$F_C = F$$
 repeat

Use the union rule to replace any dependencies in F_c of the form

$$\alpha_1 \rightarrow \beta_1$$
 and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$

Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β

/* Note: test for extraneous attributes done using F_{c} , not F*/

If an extraneous attribute is found, delete it from $\alpha \to \beta$ in F_c

until (F_c does not change)

 Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Example: Computing a Canonical Cover

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow BC$
 $B \rightarrow C$
 $A \rightarrow B$
 $AB \rightarrow C\}$

- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - Check if the result of deleting A from $AB \rightarrow C$ is implied by the other dependencies
 - Yes: in fact, $B \rightarrow C$ is already present!
 - Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in $A \rightarrow BC$
 - Check if $A \rightarrow C$ is logically implied by $A \rightarrow B$ and the other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$ $B \rightarrow C$

Example: Computing a Canonical Cover

- $F = \{A \rightarrow BC, B \rightarrow AC, C \rightarrow AB\}$
- Check A->BC
- Both B and C are extraneous under F
- Algorithm picks up one of these two
- If C is deleted, we get the set F' = {A → B, B → AC, and C → AB}. Now, B is not extraneous on the right side of A → B under F'. Continuing the algorithm, we find A and B are extraneous in the right side of C → AB, leading to two choices of canonical cover:
- $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$
- $F = \{A \rightarrow B, B \rightarrow AC, C \rightarrow B\}.$
- If B is deleted, we get the set {A → C, B → AC, and C → AB}. This case
 is symmetrical to the previous case, leading to two more choices of canonical
 cover:
- $F = \{A \rightarrow C, C \rightarrow B, \text{ and } B \rightarrow A\}$
- $F = \{A \rightarrow C, B \rightarrow C, \text{ and } C \rightarrow AB\}.$

Dependency Preservation

- Let F_i be the set of dependencies F + that include only attributes in R_i .
 - A decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

$$(F')^+ = F^+$$

- Since all functional dependencies in a restriction involve attributes of only one relation schema, it is possible to test such a dependency for satisfaction by checking only one relation.
- Using the above definition, testing for dependency preservation take exponential time.
- Not that if a decomposition is NOT dependency preserving then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Dependency Preservation (Cont.)

- Let F be the set of dependencies on schema R and let R₁, R₂,
 ..., R_n be a decomposition of R.
- The restriction of F to R_i is the set F_i of all functional dependencies in F that include **only** attributes of R_i .
- Since all functional dependencies in a restriction involve attributes of only one relation schema, it is possible to test such a dependency for satisfaction by checking only one relation.
- Note that the definition of restriction uses all dependencies in in F+, not just those in F.
- The set of restrictions F_1 , F_2 , ..., F_n is the set of functional dependencies that can be checked efficiently.

Testing for Dependency Preservation

■ To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into $R_1, R_2, ..., R_n$, we apply the following test (with attribute closure done with respect to F)

```
• result = \alpha

repeat

for each R_i in the decomposition

t = (result \cap R_i)^+ \cap R_i

result = result \cup t

until (result \text{ does not change})
```

- If *result* contains all attributes in β , then the functional dependency $\alpha \to \beta$ is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup ... \cup F_n)^+$

Example

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow B$
 $B \rightarrow C\}$
 $Key = \{A\}$

- R is not in BCNF
- Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - $-R_1$ and R_2 in BCNF
 - Lossless-join decomposition
 - Dependency preserving