02-613 Week 4

Algorithms and Advanced Data Structures

Aidan Jan

September 17, 2025

A-Star Algorithm

Suppose we have a GPS, and we want to get from Pittsburgh to Philly. Currently, we have discussed how to do that with Dijkstra's algorithm, however:

- This requires us to explore paths to nodes on the whole map!
- Slow, and most calculations are unnecessary.
- Is there a better way?

In our GPS case, we would want to tell the algorithm, somehow, you should search paths going east.

- At the same time though, depending on where you are, not every path should go east. Maybe a highway starts slightly to the west, and it will save time.
- How do we decide how far west is allowed?

What if we use the straight line distance as an estimate to which node (city) to visit next?

- In addition to the $d[] = \infty$ for the start of Dijkstra's, we also initialize every city with a h[] = (straight line distance to destination).
- The h[] is called a heuristic.

```
for u in V, d[u] = INTEGER_MAX, p[u] = 0, F = V
d[s] = 0
while F != Q:
    f[u] = d[u] + h[u]
    u = (vertex in F with min f[u])
    remove u from F
    for v in Neighbor(u):
        if d[u] + h[v] < d[v]:
        p[v] = u
        d[v] = d[u] + h[v]</pre>
```

 \bullet Note that F is a heap, which allows for quick removal of the minimum item.

Heuristics

What do we choose the h[] function to be? We chose distance in this case, but what else may be good?

- Theorem: A* is guaranteed to find the optimal route if h(u) is admissable.
- In this case, the best heuristic we can come up with is the time to travel from one city to another, since that instantly finds a solution.

- The worst heuristic we can come up with is h(u) = 0, since that would cause us to explore every node just like Dijkstra's.
- In other words, the heuristic is always an underestimate of the correct solution.
 - If it wasn't an underestimate, it may cause us to miss the optimal path!
- We want to show that with a good enough heuristic, A* would find the optimal route, even without exploring every node.

Proof

Let P* be the optimal path from point A to point B. This path includes nodes w_0, \ldots, w_m , with w_0 also being the start, and w_m is the last node before the end, t.

- Lemma: When each node w_0 to w_{m-1} was last removed from the heap, $d(w_1) = d^*(w_1)$
- This is provable by induction.
 - Base: $d[s] d[w_0] = 0$
 - Hypothesis: We assume that every next node is also on the optimal path. Therefore,

$$d(w_{k+1}) = d(w_k) + len(w_k, w_{k+1})$$

= $d^*(w_k) + len$
= $d^*(w_{k+1})$

Suppose for the purpose of contradiction, the A* algorithm found a non-optimal solution. Let w_m be a node that we decided to visit over t, the ending node.

$$f[t] = d[t] + h[t]$$

$$= d[t]$$

$$\leq f[w_m]$$

$$= d[w_m] + h[w_m]$$

$$= d^*[w_m] + h[w_m]$$

$$\leq d^*[w_m] + h^*[w_m]$$

$$= len qth(p^*)$$

 p^* is the known optimal solution, and h^* is the optimal heuristic.

- Remember that h[t] is just 0, since it is the ending node.
- Since we visited w_m instead of t, that means $f[w_m]$ must have been lower, hence step 3.
- $d^*[w_m]$ gives the same value as $d[w_m]$, since we assume the path we took to get there was optimal. This is based on the lemma.
- We know that $h[w_m] \leq h^*[w_m]$, since the heuristic is an underestimate. $h[w_m]$ was an estimate from w_m to t, $h^*[w_m]$ was the actual distance.
- Since the sum of the optimal distance plus the optimal heuristic is just the length of the optimal path, this path through w_m must be optimal. However, this is a contradiction since this path was defined as non-optimal.

Bellman-Ford Algortihm

What if our graph contains negatively weighted edges? Now Dijkstra's doesn't work since for Dijkstra's, once a node is visited, it is not visited again.

However, with the introduction of negatively weighted edges, we have a problem to address first: **Negative Weight Cycles**

- What if a cycle on a graph has a negative weight overall? In this case, the solution would be infinitely long since it is always "worth it" to go around the cycle one more time.
- To fix this, we need to first detect the negative weight cycles before attempting to solve for the lowest weight path between two points.

Now, we can start. The problem statement: Given a directed graph with edge weights $(u, v) \in \mathbb{R}$:

- 1. Determine if it contains a negative cycle
- 2. If so, return infinity. If not, find the shortest $s \to t$ path.

The algorithm goes as follows:

- Let $d_s[\mathbf{u}]$ be the current estimated $s \to ud$
- d[s] = 0, $d[u] = \infty \forall u \neq s$
- Ford Step: Find edge (u, v) such that $d_s[v] > d_s[u] + d(u, v)$. Set $d_s[v] = d_s[u] + d(u, v)$.

Theorem

If you cannot relax (via Ford), then $d_s[\mathbf{u}]$ is the shortest $s \to u$ path $\forall u$

Proof

We first need some lemmas:

<u>Lemma 1:</u> After Step i, either for any $v \in V$, $d_s[v] = \infty$, or there exists an $s \to v$ path of length $d_s[v]$.

To prove this lemma, we can use induction. First, if $d_s[v] = \infty$, we can't say anything. For the other case:

- When i=0 (base case), $d_s[s]=0$ (which is less tha infinity), there exists an $s\to s$ path of weight 0.
- Let's assume (inductive step) the lemma is true for i-1. In the i-th step, we update edge (u, v) where $d_s[v] = d_s[u] + d(u, v)$.
- From here, we know that since $d_s[\mathbf{u}]$ was updated at step i-1 or earlier, there exists a path from $s \to u$ of length $d_s[\mathbf{u}]$.
- Therefore, there exists a path $s \to u \to v$ of distance $d_s[\mathbf{u}] + \mathbf{d}(\mathbf{u}, \mathbf{v})$.

<u>Lemma 2:</u> When no more Ford steps are possible, for all paths P_{sv} , $s \to v$, length $(P_{sv}) \ge d_s[v]$

Thie lemma can also be proven by induction:

- When $|P_{sv}| = 1$ (base case), then the path is a single edge. Therefore, it cannot be relaxed. $d_s[v] \le d(s, v)$.
- Assume the lemma is true for all $|P_{sv}| \leq (k-1)$. (Inductive case).
- Let P_{sv} be an $s \to v$ path of length k edges. $P_{sv} = P_{su} + (u, v)$ (Note that P_{su} has length 1.)
- $cost(P_{sv}) = cost(P_{su}) + d(u, v)$
- Inductive Hypothesis $\geq d_s[\mathbf{u}] + \mathbf{d}(\mathbf{u}, \mathbf{v}) \geq d_s[\mathbf{v}].$

Implementation

```
Initialize d[u] = infinity forall u, d[s] = 0
for i in [n]:
    for (u, v) in E:
        if d[v] > d[u] + d(u, v):
            d[v] = d[u] + d(u, v)
        parent[v] = u
```

Shortest Paths Summary

- \bullet BFS, O(n + m), unweighted graphs
- Dijkstra, O(m log(n)), positive edge weights, single source all paths
- A-Star, O(m log(n)), needs heuristic
- Bellman-Ford, O(mn), arbitrary large weights (incl. negatives)