How to estimate an RD model

Bill Evans Spring 2011

Problem specifics:

y_i outcome of interest

x_i Treatment dummy variable, =1 if treated, =1 otherwise

z_i assignment or running variable

 $D_i=I(z_i\geq z_0)$ Indicator function that equals 1 if $z_i\geq z_0$ and zero otherwise

 w_i (1 x k) vector of covariates

Fuzzy regression discontinuity design

Structural equation of interest:

(1)
$$y_i = \beta_0 + x_i \beta_1 + w_i \beta_2 + h^1(z_i) + \varepsilon_i$$

First-stage (how does treatment change at the discontinuity?)

(2)
$$x_i = \pi_0 + D_i \pi_1 + w_i \pi_2 + h^2(z_i) + v_i$$

Reduced form (how do outcomes change at the discontinuity?)

(3)
$$y_i = \theta_0 + D_i \theta_1 + w_i \theta_2 + h^3(z_i) + u_i$$

Note that the estimate of $\hat{\beta}_1 = \frac{\hat{\theta}_1}{\hat{\pi}_1}$ (2SLS via indirect least squares). Note this only works if the

structure of $h^m(z_i)$ is the same for all three equations. The key to the exercise is the definition of $h^m(z_i)$ for m=1, 2 or 3. It must be the case that $h^m(z_i = z_0) = 0$.

Note that
$$\lim_{z_i \to z_{o^+}} \hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 + w_i \hat{\theta}_2$$
 and
$$\lim_{z_i \to z_{o^-}} \hat{y}_i = \hat{\theta}_0 + w_i \hat{\theta}_2$$
 and therefore
$$\lim_{z_i \to z_{o^+}} \hat{y}_i - \lim_{z_i \to z_{o^-}} \hat{y}_i = \hat{\theta}_1$$

What value of $h^m(z_i)$ produces $h^m(z_i = z_0) = 0$? This one is the industry standard:

1

$$h^{m}(z_{i}) = \sum_{j=1}^{\rho} [D_{i} \delta_{j}^{m+} (z_{i} - z_{0})^{j} + (1 - D_{i}) \delta_{j}^{m-} (z_{i} - z_{0})^{j}]$$

Sharp regression discontinuity design

$$x_i = D_i = I(z_i \ge z_0)$$
 and as a result, $\hat{\pi}_1 = 1$

Therefore
$$\hat{\beta}_1 = \frac{\hat{\theta}_1}{\hat{\pi}_1} = \hat{\theta}_1$$

And equation (1) functionally equals equation (3).

The effect of treatment is estimated directly by equation (1) – substituting D in for x

$$y_i = \beta_0 + D_i \beta_1 + w_i \beta_2 + h^1(z_i) + \varepsilon_i$$