Ejercicio 1

Sean $f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$, con U un abierto de \mathbb{R}^n . Si existen las derivadas parciales de f y como funciones son continuas en U entonces f es diferenciable.

Demostración.

Sean $\overline{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ fijo y $f = (f_1, f_2, \dots, f_n)$.

$$\operatorname{P.d.} \lim_{\overline{x} \to \overline{y}} \frac{\left| f_i(\overline{x}) - f_i(\overline{y}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\overline{x}) (x_j - y_j) \right|}{\|\overline{x} - \overline{y}\|} = 0 \quad \forall i = 1, 2, \dots, m.$$

Para todo $i=1,2,\ldots,m$ y $j=1,2,\ldots,n$, sea $g:\mathbb{R}\to\mathbb{R}$ dada por $g_j(x)=f_i\left(x_1,\ldots,x_{j-1},x,y_{j+1},\ldots,y_n\right)$, donde $\overline{x}=(x_1,x_2,\ldots,x_n)\in U$. Luego, para cada $i=1,2,\ldots,m$, se tiene que

$$f_{i}(\overline{x}) - f_{i}(\overline{y}) = f_{i}(x_{1}, x_{2}, \dots, x_{n}) - f_{i}(x_{1}, x_{2}, \dots, y_{n}) + f_{i}(x_{1}, x_{2}, \dots, y_{n}) - f_{i}(x_{1}, x_{2}, \dots, y_{n-1}, y_{n}) + f_{i}(x_{1}, x_{2}, \dots, y_{n-1}, y_{n}) - \dots - f_{i}(x_{1}, \dots, x_{j-1}, y_{j}, y_{j+1}, \dots, y_{n}) + f_{i}(x_{1}, \dots, x_{j-1}, y_{j}, y_{j+1}, \dots, y_{n}) - \dots - f_{i}(x_{1}, y_{2}, \dots, y_{n}) + f_{i}(x_{1}, y_{2}, \dots, y_{n}) - f_{i}(y_{1}, y_{2}, \dots, y_{n}) = g_{n}(x_{n}) - g_{n}(y_{n}) + g_{n-1}(x_{n-1}) - g_{n-1}(y_{n-1}) + g_{n-2}(x_{n-1}) - \dots - g_{j}(y_{j}) + g_{j-1}(x_{j-1}) - \dots - g_{2}(y_{2}) + g_{1}(x_{1}) - g_{1}(y_{1})$$

Ya que f_i es diferenciable en U, se tiene que, para todo $j=1,2,\ldots,n$, g_j también lo es. Así, por el Teorema del Valor Medio, para cada $j=1,2,\ldots,n$ existe $a_j\in \left[\min\left\{x_j,y_j\right\},\max\left\{x_j,y_j\right\}\right]$ tal que $g_j(x_j)-g_j(y_j)=g_j(a_j)\left(x_j-y_j\right)$. De este modo,

$$f_{i}(\overline{x}) - f_{i}(\overline{y}) = g'_{n}(a_{n}) (x_{n} - y_{n}) + g'_{n-1}(a_{n-1}) (x_{n-1} - y_{n-1}) + \dots + g'_{j}(a_{j}) (x_{j} - y_{j}) + \dots + g'_{1}(a_{1}) (x_{1} - y_{1})$$

$$= \frac{\partial f_{i}}{\partial x_{1}} (\overline{z_{1}}) (x_{1} - y_{1}) + \frac{\partial f_{i}}{\partial x_{2}} (\overline{z_{2}}) (x_{2} - y_{2}) + \dots + \frac{\partial f_{i}}{\partial x_{j}} (\overline{z_{j}}) (x_{j} - y_{j}) + \dots + \frac{\partial f_{i}}{\partial x_{n}} (\overline{z_{n}}) (x_{n} - y_{n})$$

donde $\overline{z_i} = (x_1, \dots, x_{j-1}, a_j, y_{j+1}, \dots, y_n)$. Posteriormente,

$$f_{i}(\overline{x}) - f_{i}(\overline{y}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(\overline{x}) (x_{j} - y_{j}) = \frac{\partial f_{i}}{\partial x_{1}}(\overline{z_{1}}) (x_{1} - y_{1}) - \frac{\partial f_{i}}{\partial x_{1}}(\overline{x}) (x_{1} - y_{1}) + \frac{\partial f_{i}}{\partial x_{2}}(\overline{z_{2}}) (x_{2} - y_{2}) - \frac{\partial f_{i}}{\partial x_{2}}(\overline{x}) (x_{2} - y_{2}) + \dots + \frac{\partial f_{i}}{\partial x_{j}}(\overline{z_{j}}) (x_{j} - y_{j}) - \frac{\partial f_{i}}{\partial x_{j}}(\overline{x}) (x_{j} - y_{j}) + \dots + \frac{\partial f_{i}}{\partial x_{n}}(\overline{z_{n}}) (x_{n} - y_{n}) - \frac{\partial f_{i}}{\partial x_{n}}(\overline{x}) (x_{n} - y_{n})$$

$$= \left(\frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_1 - y_1) + \left(\frac{\partial f_i}{\partial x_2}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_2 - y_2) + \dots + \left(\frac{\partial f_i}{\partial x_j}(\overline{z_2}) - \frac{\partial f_i}{\partial x_j}(\overline{x})\right) (x_j - y_j) + \dots + \left(\frac{\partial f_i}{\partial x_j}(\overline{z_n}) - \frac{\partial f_i}{\partial x_n}(\overline{x})\right) (x_n - y_n)$$

$$\Longrightarrow \left| f_i(\overline{x}) - f_i(\overline{y}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\overline{x}) (x_j - y_j) \right| = \left| \left(\frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x})\right) (x_1 - y_1) + \left(\frac{\partial f_i}{\partial x_2}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_2 - y_2) + \dots + \left(\frac{\partial f_i}{\partial x_j}(\overline{z_j}) - \frac{\partial f_i}{\partial x_j}(\overline{x})\right) (x_j - y_j) + \dots + \left(\frac{\partial f_i}{\partial x_j}(\overline{z_n}) - \frac{\partial f_i}{\partial x_n}(\overline{x})\right) (x_n - y_n) \right|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_1 - y_1| + \left| \frac{\partial f_i}{\partial x_2}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x}) \right| |x_2 - y_2| + \dots + \left| \frac{\partial f_i}{\partial x_j}(\overline{z_j}) - \frac{\partial f_i}{\partial x_j}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$\leq \left| \frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$= \left(\frac{\partial f_i}{\partial x_1}(\overline{x_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) \right| |x_n - y_n|$$

$$= \left(\frac{\partial f_i}{\partial x_1}(\overline{x_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x_1}) \right| + \frac{\partial f_i}{\partial x_2}(\overline{x_1}) - \frac{\partial f_i}{\partial x_2}(\overline{z_2}) \right| + \dots + \left| \frac{\partial f_i}{\partial x_2}(\overline{x_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x_2}) \right| |x_n - y_n|$$

$$= \left(\frac{\partial f_i}{\partial x_1}(\overline{x_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x_1}) \right| + \frac{\partial f_i}{\partial x_2}(\overline{x_1}) - \frac{\partial f_i}{\partial x_2}(\overline{x_2}) \right| + \dots + \left| \frac{\partial f_i}{\partial x_2}(\overline{x_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x_2}) \right| + \dots + \left| \frac{\partial f_i}{\partial x_2}(\overline{x_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x_2}) \right| + \dots + \left|$$

$$\implies \frac{\left| f_{i}(\overline{x}) - f_{i}(\overline{y}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(\overline{x}) \left(x_{j} - y_{j} \right) \right|}{\|\overline{x} - \overline{y}\|} \leq \left| \frac{\partial f_{i}}{\partial x_{1}}(\overline{x}) - \frac{\partial f_{i}}{\partial x_{1}}(\overline{z_{1}}) \right| + \left| \frac{\partial f_{i}}{\partial x_{2}}(\overline{x}) - \frac{\partial f_{i}}{\partial x_{2}}(\overline{z_{2}}) \right| + \dots + \left| \frac{\partial f_{i}}{\partial x_{n}}(\overline{x}) - \frac{\partial f_{i}}{\partial x_{n}}(\overline{z_{n}}) \right|$$

Después, como las derivadas parciales son continuas en U se da que $\lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_j}(\overline{x}) - \frac{\partial f_i}{\partial x_j}(\overline{y}) \right| = 0$, y puesto que $\overline{z_j} = (x_1, \dots, x_{j-1}, a_j, y_{j+1}, \dots, y_n)$ con $a_j \in [\min\{x_j, y_j\}, \max\{x_j, y_j\}]$, se tiene que $\overline{z_j}$ tiende a \overline{y} conforme \overline{x} tiende a \overline{y} , para todo $j = 1, 2, \dots, n$. De esta manera,

$$0 \leq \lim_{\overline{x} \to \overline{y}} \frac{\left| f_i(\overline{x}) - f_i(\overline{y}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\overline{x}) \left(x_j - y_j \right) \right|}{\|\overline{x} - \overline{y}\|} \leq \lim_{\overline{x} \to \overline{y}} \left(\left| \frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_1}(\overline{z_1}) \right| + \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{z_2}) \right| + \dots + \left| \frac{\partial f_i}{\partial x_n}(\overline{x}) - \frac{\partial f_i}{\partial x_n}(\overline{z_n}) \right| \right)$$

$$= \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_1}(\overline{z_1}) \right| + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{z_2}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_n}(\overline{x}) - \frac{\partial f_i}{\partial x_n}(\overline{z_n}) \right|$$

$$= \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_1}(\overline{y}) \right| + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{y}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{y}) - \frac{\partial f_i}{\partial x_2}(\overline{y}) \right| + \dots + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{$$

De esta manera, $\lim_{\overline{x} \to \overline{y}} \frac{\left| f_i(\overline{x}) - f_i(\overline{y}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\overline{x}) \left(x_j - y_j \right) \right|}{\|\overline{x} - \overline{y}\|} = 0 \quad \forall i = 1, \dots, m.$

Por último,

$$0 \leq \lim_{\overline{x} \to \overline{y}} \frac{\left\| f(\overline{x}) - f(\overline{y}) - Df(\overline{y}) (\overline{x} - \overline{y}) \right\|}{\|\overline{x} - \overline{y}\|} \leq \sum_{i=1}^{m} \lim_{\overline{x} \to \overline{y}} \frac{\left| f_{i}(\overline{x}) - f_{i}(\overline{y}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} (\overline{x}) (x_{j} - y_{j}) \right|}{\|\overline{x} - \overline{y}\|} = 0$$

Ya que \overline{y} fue arbitrario, se concluye que f es diferenciable en U.

Ejercicio 2

Sean $A, B \subseteq \mathbb{R}$ no vacíos. Si $a \le b$ para todo $a \in A$ y para todo $b \in B$, entonces A está acotada superiormente y B está acotado inferiormente, y además, $\sup(A) \le \inf(B)$.

Demostración.

Sea $b \in B$, ya que $a \le b$ para todo $a \in A$, se tiene que A está acotado superiormente. De igual forma, sea $a \in A$ como $a \le b$ para todo $b \in B$, se da que B está acotado inferiormente. Además, dado que A y B son no vacíos, se obtiene que el supremo y el ínfimo de A y B existen, respectivamente. Como todo elemento de B es cota superior de A se tiene que $\sup(A)$ es una cota inferior de B. Por lo tanto, $\sup(A) \le \inf(B)$, pues $\inf(B)$ es la mayor cota inferior de B.

Ejercicio 3

Si $f \in \mathcal{R}(\alpha)$ en [a, b] y a < c < b entonces $f \in \mathcal{R}(\alpha)$ en [a, c] y en [c, b] y

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha$$

Demostración.

Afirmación. $f \in \mathcal{R}(\alpha)$ en [a, c] y en [c, b].

Sea $\varepsilon > 0$. Ya que $f \in \mathcal{R}(\alpha)$ en [a,b] existe $P_{\varepsilon} = \{a = x_0, x_1, \ldots, x_n = b\} \in \gamma_{[a,b]}$ tal que $U(f,P_{\varepsilon},\alpha) - L(f,P_{\varepsilon},\alpha) < \varepsilon$. Luego, para cada $j=1,\ldots,n$ sean $M_j = \sup \{f(x): x \in [x_{j-1},x_j]\}$ y $m_j = \inf \{f(x): x \in [x_{j-1},x_j]\}$. Ya que a < c < b, existe $i=1,\ldots,n$ tal que $x_{i-1} < c \le x_i$, por lo que se definen $M'_c = \sup \{f(x): x \in [x_{i-1},c]\}$, $M''_c = \sup \{f(x): x \in [c,x_i]\}$, $m'_c = \inf \{f(x): x \in [x_{i-1},c]\}$ y $m''_c = \inf \{f(x): x \in [c,x_i]\}$.

Después, considerando las particiones $P'_{\varepsilon} = \{a = x_0, x_1, \dots, x_{i-1}, c\} \in \gamma_{[a,c]}$ y $P''_{\varepsilon} = \{c, x_i, x_{i+1}, \dots, x_n\} \in \gamma_{[c,b]}$, se tiene que

$$\mathcal{U}(f, P'_{\varepsilon}, \alpha) = \sum_{j=1}^{i-1} M_j \Delta \alpha_j + M'_{c} \left[\alpha(c) - \alpha(x_{i-1})\right],$$

$$\mathcal{U}(f, P''_{\varepsilon}, \alpha) = M''_{c} \left[\alpha(x_i) - \alpha(c)\right] + \sum_{j=i+1}^{n} M_j \Delta \alpha_j,$$

$$\mathcal{L}(f, P'_{\varepsilon}, \alpha) = \sum_{j=1}^{i-1} m_j \Delta \alpha_j + m'_{c} \left[\alpha(c) - \alpha(x_{i-1})\right] \qquad y$$

$$\mathcal{L}(f, P''_{\varepsilon}, \alpha) = m''_{c} \left[\alpha(x_i) - \alpha(c)\right] + \sum_{j=i+1}^{n} m_j \Delta \alpha_j.$$

Puesto que $[x_{i-1}, c] \cup [c, x_i] = [x_{i-1}, x_i]$ se da que $M'_c \le M_i, M''_c \le M_i, m_i \le m'_c$ y $m_i \le m''_c$. Así,

$$\mathcal{U}(f, P'_{\varepsilon}, \alpha) + \mathcal{U}(f, P''_{\varepsilon}, \alpha) = \sum_{j=1}^{i-1} M_{j} \Delta \alpha_{j} + M'_{c} [\alpha(c) - \alpha(x_{i-1})] + M''_{c} [\alpha(x_{i}) - \alpha(c)] + \sum_{j=i+1}^{n} M_{j} \Delta \alpha_{j}$$

$$\leq \sum_{j=1}^{i-1} M_{j} \Delta \alpha_{j} + M_{i} [\alpha(c) - \alpha(x_{i-1})] + M_{i} [\alpha(x_{i}) - \alpha(c)] + \sum_{j=i+1}^{n} M_{j} \Delta \alpha_{j}$$

$$= \sum_{j=1}^{n} M_{j} \Delta \alpha_{j}$$

$$= U(f, P_{\varepsilon}, \alpha)$$

y

$$-\mathcal{L}(f, P'_{\varepsilon}, \alpha) - \mathcal{L}(f, P''_{\varepsilon}, \alpha) = -\sum_{j=1}^{i-1} m_{j} \Delta \alpha_{j} - m'_{c} [\alpha(c) - \alpha(x_{i-1})] - m''_{c} [\alpha(x_{i}) - \alpha(c)]$$

$$-\sum_{j=i+1}^{n} m_{j} \Delta \alpha_{j}$$

$$\leq -\sum_{j=1}^{i-1} m_{j} \Delta \alpha_{j} - m_{i} [\alpha(c) - \alpha(x_{i-1})] - m_{i} [\alpha(x_{i}) - \alpha(c)] -$$

$$\sum_{j=i+1}^{n} m_{j} \Delta \alpha_{j}$$

$$= \sum_{j=1}^{n} m_{j} \Delta \alpha_{j}$$

$$= -\mathcal{L}(f, P_{\varepsilon}, \alpha)$$

De esta manera,

$$\begin{split} & \mathcal{U}\left(f,P_{\varepsilon}',\alpha\right) + \mathcal{U}\left(f,P_{\varepsilon}'',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}'',\alpha\right) \leq U(f,P_{\varepsilon},\alpha) - \mathcal{L}(f,P_{\varepsilon},\alpha) < \varepsilon \\ & \Longrightarrow \mathcal{U}\left(f,P_{\varepsilon}',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}',\alpha\right) + \mathcal{U}\left(f,P_{\varepsilon}'',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}'',\alpha\right) < \varepsilon \\ & \Longrightarrow \mathcal{U}\left(f,P_{\varepsilon}',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}',\alpha\right) < \varepsilon \quad \text{y} \quad \mathcal{U}\left(f,P_{\varepsilon}'',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}'',\alpha\right) < \varepsilon \end{split}$$

Por lo que $f \in \mathcal{R}(\alpha)$ en [a, c] y en [c, b].

Ahora, sea $P = \{a = x_0, x_1, \ldots, x_n = b\} \in \gamma_{[a,b]}$, procediendo como antes, se da que existen $P' = \{a = x_0, x_1, \ldots, x_{i-1}, c\} \in \gamma_{[a,c]}$ y $P'' = \{c, x_i, x_{i+1}, \ldots, x_n = b\} \in \gamma_{[c,b]}$ tales que $\mathcal{U}(f, P', \alpha) + \mathcal{U}(f, P'', \alpha) \leq \mathcal{U}(f, P, \alpha)$ y $\mathcal{L}(f, P', \alpha) + \mathcal{L}(f, P'', \alpha) \geq \mathcal{L}(f, P, \alpha)$. Posteriormente, se tiene que

$$\mathcal{L}(f, P', \alpha) \leq \int_{a}^{c} f \, d\alpha \leq \mathcal{U}(f, P', \alpha) \quad y \quad \mathcal{L}(f, P'', \alpha) \leq \int_{c}^{b} f \, d\alpha \leq \mathcal{U}(f, P'', \alpha)$$

$$\Longrightarrow \mathcal{L}(f, P', \alpha) + \mathcal{L}(f, P'', \alpha) \leq \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha \leq \mathcal{U}(f, P', \alpha) + \mathcal{U}(f, P'', \alpha)$$

$$\Longrightarrow \mathcal{L}(f, P, \alpha) \leq \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha \leq \mathcal{U}(f, P, \alpha)$$

Como P fue arbitraria, se obtiene que $\int_a^b f \, d\alpha = \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$.

Ejercicio 4

Sea $f:(X, d_X) \to (Y, d_Y)$. Si f es continua y $\{p_n\}_{n \in \mathbb{N}}$ es una sucesión en X tal que $p_n \to p$, entonces $f(p_n) \to f(p)$.

Demostración.

Sea $\varepsilon > 0$. Como f es continua, existe $\delta > 0$ tal que si $x \in X$ y $\mathrm{d}_X(x,p) < \delta$ entonces $\mathrm{d}_Y \big(f(x), f(p) \big) < \varepsilon$. Luego, ya que $p_n \to p$, para δ existe $N \in \mathbb{N}$ tal que $\mathrm{d}_X(p_n,p) < \delta$, para todo $n \geq N$. Así, $\mathrm{d}_Y \big(f(p_n), f(p) \big) < \varepsilon$, para todo $n \geq N$.

Por lo tanto, $f(p_n) \to f(p)$.

Definición 1

Sea $f:(X, d_X) \to (Y, d_Y)$ una función entre espacios métricos. Se dice que f es **contractiva** si existe $c \in [0, 1)$ tal que

$$d_Y(f(x), f(y)) \le c d_X(x, y) \quad \forall x, y \in X$$

Ejercicio 5

Si $f:(X, d_X) \to (Y, d_Y)$ es contractiva entonces f es uniformemente continua.

Demostración.

Sea $\varepsilon > 0$. Ya que f es contractiva, para todo $x, y \in X$ tal que $d_X(x, y) < \varepsilon$, existe $c \in [0, 1)$ tal que $d_Y(f(x), f(y)) \le c d_X(x, y) < c \varepsilon < \varepsilon$.

Por lo tanto, f es uniformemente continua.

Definición 2

Sea $f: A \to B$ y $x \in A$. Se dice que x es un **punto fijo** si f(x) = x.

Ejercicio 6

Sea X un espacio completo. Si $f:(X,d)\to(X,d)$ es contractiva entonces f tiene un único punto fijo.

Demostración.

Primero se demostrará que f tiene punto fijo. Sea $x_0 \in X$, se define la sucesión $\{x_n\}_{n \in \mathbb{N} \cup \{0\}}$ como $x_{n+1} = f(x_n)$.

Afirmación 1. Para cada $n \in \mathbb{N}$ existe $c \in [0, 1)$ tal que $d(x_{n-1}, x_n) \leq c^n d(x_0, x_1)$.

Procediendo por inducción:

Para n = 1 se da que $d(x_0, x_1) \le c d(x_0, x_1)$, para cualquier $c \in [0, 1)$.

Luego, suponiendo que para n=k existe $c_0 \in [0,1)$ tal que $\mathrm{d}(x_{k-1},x_k) \leq c_0^k \mathrm{d}(x_0,x_1)$. Como f es contractiva, para n=k+1 se tiene que

$$\begin{aligned} \operatorname{d}(x_k, x_{k+1}) &= \operatorname{d}\big(f(x_{k-1}), f(x_k)\big) \\ &\leq c_1 \operatorname{d}(x_{k-1}, x_k) & \left(\operatorname{para alg\'{u}n} c_1 \in [0, 1)\right) \\ &\leq c_1 c_0^k \operatorname{d}(x_0, x_1) & \left(\operatorname{por hip\'{o}tesis de inducci\'{o}n}\right) \\ &\leq c^{k+1} \operatorname{d}(x_0, x_1) & \left(\operatorname{donde} c = \operatorname{m\'{a}x}\{c_1, c_0\}\right) \end{aligned}$$

Por lo tanto, para cada $n \in \mathbb{N}$ existe $c \in [0, 1)$ tal que $d(x_{n-1}, x_n) \leq c^n d(x_0, x_1)$.

Afirmación 2. Para cada $n, m \in \mathbb{N} \cup \{0\}$ tal que n < m, existe $c \in [0, 1)$ tal que $d(x_n, x_m) \le \frac{d(x_0, x_1)}{1 - c} c^{n+1}$.

Sean $n, m \in \mathbb{N} \cup \{0\}$ tales que n < m, se tiene que

$$d(x_n, x_m) \le \sum_{i=n+1}^m d(x_{i-1}, x_i)$$

Por la afirmación anterior, para cada $i=n+1,n+2,\ldots,m$ existe $c_i\in[0,1)$ tal que

$$d(x_{n}, x_{m}) \leq \sum_{i=n+1}^{m} c_{i}^{i} d(x_{0}, x_{1})$$

$$\leq \sum_{i=n+1}^{m} c^{i} d(x_{0}, x_{1}) \qquad \text{donde } c = \max\{c_{n+1}, c_{n+2}, \dots, c_{m}\}$$

$$= d(x_{0}, x_{1}) \frac{c^{n+1} - c^{m+1}}{1 - c}$$

$$\leq \frac{d(x_{0}, x_{1})}{1 - c} c^{n+1}$$

Por lo tanto, para cada $n, m \in \mathbb{N} \cup \{0\}$ tal que n < m, existe $c \in [0, 1)$ tal que $d(x_n, x_m) \le \frac{d(x_0, x_1)}{1 - c} c^{n+1}$.

Afirmación 3. Para cada $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que $\frac{\mathrm{d}(x_0, x_1)}{1 - c} c^N < \varepsilon$ para cualquier $c \in [0, 1)$.

Sea $\varepsilon > 0$ y $c \in [0,1)$ para $\varepsilon \frac{1-c}{\operatorname{d}(x_0,x_1)} > 0$, existe un $N \in \mathbb{N}$ tal que $c^N < \varepsilon \frac{1-c}{\operatorname{d}(x_0,x_1)}$. Por lo tanto, $\frac{\operatorname{d}(x_0,x_1)}{1-c}c^N < \varepsilon$.

Ahora, sea $\varepsilon > 0$, por la afirmación anterior, existe $N \in \mathbb{N}$ tal que $\frac{\mathrm{d}(x_0, x_1)}{1 - c} c^N < \varepsilon$ para todo $c \in [0, 1)$. Luego, para todo $m > n \ge N$, y por la Afirmación 2, existe $c \in [0, 1)$ tal que

$$d(x_n, x_m) \le \frac{d(x_0, x_1)}{1 - c} c^{n+1} \le \frac{d(x_0, x_1)}{1 - c} c^{N+1} < \frac{d(x_0, x_1)}{1 - c} c^N < \varepsilon$$

De este modo, $\{x_n\}_{n\in\mathbb{N}\cup\{0\}}$ es de Cauchy y como X es un espacio completo $x_n\to x$, para algún $x\in X$. Luego, por el Ejercicio 5, f es uniformemente continua, lo cual implica que es continua. Así, $f(x_n)\to f(x)$, pero por cómo se definió $\{x_n\}_{n\in\mathbb{N}\cup\{0\}}$, se tiene que $\{x_n\}_{n\in\mathbb{N}}=\{f(x_n)\}_{n\in\mathbb{N}\cup\{0\}}$, por lo que $f(x_n)\to x$. De esta forma, f(x)=x, de modo que f tiene un punto fijo.

Posteriormente, suponiendo que f tiene dos puntos fijos distintos, x y y, se da que

$$d(x, y) = d(f(x), f(y)) \le cd(x, y)$$
 para algún $c \in [0, 1)$

y como d(x, y) > 0, se da que $1 \le c$, lo cual no puede ser. Por lo tanto, f tiene un único punto fijo.

Ejercicio 7

Sean C el conjunto de Cantor, $f:[0,1]\to\mathbb{R}$ acotada y continua en $[0,1]\setminus C$. Demostrar que $f\in\mathcal{R}$ en [0,1].

Demostración.

Sean $\epsilon > 0$, $M = \sup\{|f(x)| : x \in [0,1]\}$ y $U = \bigcup_{i=1}^{m} (a_i, b_i)$ una cubierta abierta finita de C tal que

 $\sum_{i=1}^{m} (b_i - a_i) < \frac{\varepsilon}{4M}$. Ya que $[0,1] \setminus C$ es cerrado y acotado, se obtiene que $[0,1] \setminus C$ es cerrado, por lo

cual f es uniformemente continua en $[0,1] \setminus C$. Así, para $\frac{\varepsilon}{2} > 0$, existe $\delta > 0$ tal que si $x,y \in [0,1] \setminus C$ y $|x-y| < \delta$ entonces $|f(x)-f(y)| < \frac{\varepsilon}{2}$.

Luego, sea $P = \{0 = t_0, t_1, ..., t_n = 1\}$ una partición de [0, 1] tal que $t_j - t_{j-1} < \delta$ y $a_j, b_j \in P$ para todo j = 1, ..., n y sea $A = \{j \in \{1, ..., n\} : [t_{j-1}, t_j] \subseteq [0, 1] \setminus U\}$ se tiene que

$$\mathcal{U}(f,P) - \mathcal{L}(f,P) = \sum_{j=1}^{n} (M_j - m_j)(t_j - t_{j-1})$$

$$= \sum_{j \in A} (M_j - m_j)(t_j - t_{j-1}) + \sum_{j \notin A} (M_j - m_j)(t_j - t_{j-1})$$

$$\leq \frac{\varepsilon}{2} \sum_{j \in A} (t_j - t_{j-1}) + 2M \sum_{j \notin A} (t_j - t_{j-1})$$

$$< \frac{\varepsilon}{2} + 2M \frac{\varepsilon}{4M}$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Por lo tanto, $f \in \mathcal{R}$ en [0, 1].

Ejercicio 8

Sea f una función real definida sobre [0,1] tal que $f \in \mathcal{R}$ sobre [c,1] para cada c>0. Se define $\int_0^1 f(x) \, \mathrm{d}x = \lim_{c \to 0} \int_c^1 f(x) \, \mathrm{d}x \text{ si el límite existe y es finito.}$ Si $f \in [0,1]$ mostrar que esta definición de la integral coincide con la definición antigua.

Demostración.

Sean $\varepsilon > 0$, $M = \sup\{|f(x)| : x \in [0,1]\}$ y $c \in (0,1) \cap \left(0,\frac{\varepsilon}{6M}\right)$ fijo. Como $f \in \mathcal{R}$ en [0,1] existe $P_{\varepsilon} = \{0 = t_0, t_1, \ldots, t_n = 1\}$ una partición de [0,1] tal que $\mathcal{U}(f, P_{\varepsilon}) - \mathcal{L}(f, P_{\varepsilon}) < \frac{\varepsilon}{3}$. Supongamos, sin pérdida de generalidad, que $c \in P_{\varepsilon}$, es decir, que $c = t_j$ para algún $j = 1, 2, \ldots, n-1$.

Luego, sea $Q = \{c = t_j, t_{j+1}, \dots, t_n = 1\}$, Q es partición de [0, 1] y se tiene que:

$$\begin{aligned} \left| \mathcal{U}(f,Q) - \mathcal{L}(f,Q) \right| &= \left| \sum_{i=j+1}^{n} (M_i - m_i)(t_i - t_{i-1}) \right| \\ &\leq \sum_{i=j+1}^{n} \left(|M_i| + |m_i| \right) (t_i - t_{i-1}) \\ &\leq \sum_{i=j+1}^{n} 2M(t_i - t_{i-1}) \\ &< 2M \\ &< 2\frac{\varepsilon}{6c} \\ &= \frac{\varepsilon}{3c} \\ &< \frac{\varepsilon}{3} \end{aligned} \qquad \left(\text{pues } c < \frac{\varepsilon}{6M} \Longrightarrow M < \frac{\varepsilon}{6c} \right) \\ &= \frac{\varepsilon}{3c} \\ &< \frac{\varepsilon}{3} \end{aligned}$$

Después,

$$|\mathcal{L}(f,Q) - \mathcal{U}(f,P_{\varepsilon})| = \left| \sum_{i=j+1}^{n} m_{i}(t_{i} - t_{i-1}) - \sum_{i=1}^{n} M_{i}(t_{i} - t_{i-1}) \right|$$

$$\leq \sum_{i=j+1}^{n} |m_{i}| (t_{i} - t_{i-1}) + \sum_{i=1}^{n} |M_{i}| (t_{i} - t_{i-1})$$

$$\leq \sum_{i=j+1}^{n} M(t_{i} - t_{i-1}) + \sum_{i=1}^{n} M(t_{i} - t_{i-1})$$

$$< 2M$$

$$< \frac{\varepsilon}{3}$$

Así,

$$\left| \int_{c}^{1} f(x) \, \mathrm{d}x - \int_{0}^{1} f(x) \, \mathrm{d}x \right| \leq \left| \int_{c}^{1} f(x) \, \mathrm{d}x - \mathcal{L}(f, Q) \right| + \left| \mathcal{L}(f, Q) - \mathcal{U}(f, P_{\varepsilon}) \right| + \left| \mathcal{U}(f, P_{\varepsilon}) - \int_{0}^{1} f(x) \, \mathrm{d}x \right|$$

$$\leq \left| \mathcal{U}(f, Q) - \mathcal{L}(f, Q) \right| + \left| \mathcal{L}(f, Q) - \mathcal{U}(f, P_{\varepsilon}) \right| + \left| \mathcal{U}(f, P_{\varepsilon}) - \mathcal{L}(f, P_{\varepsilon}) \right|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

Por lo tanto,
$$\lim_{c \to 0} \int_{c}^{1} f(x) dx = \int_{0}^{1} f(x) dx$$
.