Lab 2, Discreet Math VT2015.

Subscripts (m, n)	1	2	3	4	5
1	0	4	5	0	0
2	4	0	0	1	7
3	5	0	0	2	0
4	0	1	2	0	1
5	0	7	0	1	0

Step 1. Transform all 0:s to infinite(INF->), so can we seek minimal values without zero.

Subscripts (m, n)	1	2	3	4	5
1		4	5		
2	4			1	7
3	5			2	
4		1	2		1
5		7		1	

Step 2. Stand at point [1], check points [2 3 4 5] for the edge of minimal value. Get 4. (m, n)4 = (1, 2).

4	5		
---	---	--	--

Step 3. Stand at point [1 2], check points [3 4 5] for the edge of minimal value. Get 1. (m, n)1 = (2, 4).

5		
	1	7

Lab 2, Discreet Math VT2015.

Step 4. Stand at point [1 2 4], check points [3 5] for the edge of minimal value. Get 1. (m, n)1' = (4, 5).

5	
	7
2	1

Step 5. Stand at point [1 2 4 5], check points [3] for the edge of minimal value. Get 2. (m, n)2 = (4, 3).

		5																																	
																				-		2													