Versuchsbericht zu

M5 - Jo-Jo und Kreisel

Gruppe 6Mi

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 13.12.2017 betreut von Kristina Mühlenstrodt

Inhaltsverzeichnis

1	Kurzfassung	3		
2		3 4		
3	Ergebnisse und Diskussion 3.1 Beobachtung	4 4 7		
4	Schlussfolgerung			
5	Beantwortung der Aufgaben zur Vorbereitung			

Abbildung 1: Maxwell'sches Fallrad

1 Kurzfassung

Um das Prinzip von Jo-Jos und Kreiseln zu untersuchen wurden zwei Experimente durchgeführt. Das Erste untersucht das Maxwell'sche Fallrad. Dabei wurde einmal mithilfe des Trägheitsmoments und einmal durch Messung der Falldauer in Abhängigkeit von der Fallhöhe der Abrollradius bestimmt und die beiden Ergebnisse verglichen. Dabei war zu erwarten, dass die Unsicherheiten der beiden Ergebnisss überschneiden.

Im zweiten Versuch wurde die Präzession eines schweren, symmetrischen Kreisels untersucht. Daraus wurde das Trägheitsmoment bestimmt und mit dem Trägheitsmoment, das aus Masse und Abmessungen bestimmt wurde, verglichen. Auch hier war zu erwarten, dass die Werte innerhalb der Vertrauensbereiche übereinstimmen.

2 Methoden

2.1 Maxwell'sches Fallrad

Zunächst wurde die Fallzeit eines Maxwell'schen Fallrads in Abhängigkeit vom Fallweg für fünf verschiedene Fallhöhen je fünf mal gemessen. Der Aufbau eines Maxwell'schen Fallrads ist in Abb. 1 dargestellt ¹. Dann wurde das Rad gewogen und mit einer Schieblehre ausgemessen, um daraus das Trägheitsmoment bestimmen zu können. Dabei wurde Dicke, Außenradius und Innenradius sowie die Dicke des Aufhängefadens an fünf verschiedenen Stellen gemessen, um dann über diese Werte mitteln zu können, da diese Werte besonders bedeutend für das Trägheitsmoment bzw. den Abrollradius sind.

¹Jo-Jo und Kreisel Einführung, Zugriff am 18.12.2017

2.2 Kreisel

Dann wurde ein schwerer, symmetrischer Kreisel untersucht. Dieser hatte die Form einer Metallkugel, in der in radialer Richtung eine Stange eingeschraubt war, auf der sich eine verschiebbare Zusatzmasse befand. Um die eine möglichst reibungsfreie Bewegung des Kreisels und die Eigenschaft der Schwere zu ermöglichen, war dabei die Kugel auf einem durch Pressluft in einer Hohlhalbkugel erzeugten Luftpolster gelagert. Die Eigenfrequenz der Kugel wurde dabei mit einem Pressluftstrahl aus einer Düse manuell kontrolliert. Zunächst wurde die Kugel gewiegt und ihr Durchmesser mit einer Schieblehre bestimmt. Dann wurde bei waagerechter Achse die Kraft bestimmt, mit der das Gewicht der Achse und des Zusatzgewichtes im Abstand l die Achse nach unten zieht, um die Größe amqbestimmen zu können. Diese Messung wurde für drei Abstände der Zusatzmasse von der Kugel je fünf mal durchgeführt. Nachdem die Kugel mit dem Pressluftstrahl beschleunigt wurde, wurde die Eigenfrequenz mit einem Stroboskop mit verstellbarer Frequenz bestimmt. Dazu wurde die Frequenz des Stroboskop solange verringert, bis der Kreisel im Licht der Stroboskoplampe scheinbar stillsteht und die Markierung auf der Kugel nur einmal sichtbar ist. Sobald dies erfüllt war wurde die Frequenz vom Stroboskop abgelesen und mit der Pressluftdüse versucht diese möglichst konstant zu halten, was dadurch erkennbar war, ob die Markierung auf der Kugel sich scheinbar bewegte. Dann wurde mit einer Stoppuhr die Präzessionszeit der Kreiselachse bestimmt. Dabei wurde nur eine Umdrehung gemessen, um die Abweichung der Eigenfrequenz gering halten zu können. Diese Messung wurde für dieselben drei Abstände der Zusatzmasse von der Kugel wie zuvor durchgeführt.

3 Ergebnisse und Diskussion

3.1 Beobachtung

3.1.1 Fallrad

Fallzeitbetrachtung

In den Graphen Abb. 2 und Abb. 3 sind die Fallhöhen gegen die Fallzeiten, bzw deren Quadrate, aufgetragen. Abb. 4 zeigt das Verhältnis der Fallhöhen zu den Fallzeitquadraten in Abhängigkeit von der Fallzeit. Der lineare Zusammenhang ist beim Betrachten der Werte bereits erkennbar und außerdem sollte dieser auch der Theorie zufolge auftreten (Gleichung (1)).

$$h(t) = \frac{1}{2}g\frac{mR^2}{mR^2 + J_S}t^2 = \frac{1}{2}g^*t^2 \tag{1}$$

Deshalb haben wir einen Fit mit dem "Scaled Levenberg-Marquardt"-Algorithmus, welcher die Methode der kleinsten Quadrate verwendet, durchgeführt. Für den Fit wurde die folgende Funktion zugrunde gelegt:

$$f(x) = A * x + B \tag{2}$$

Abbildung 2: Die Fallhöhe des Fallrads ist gegen die Fallzeit aufgetragen.

Tabelle 1: Trägheitsmomente von (Hohl-)Zylindern zu verschiedenen Achsen.

Zylinder	Volumen V	Rotationsachse	Trägheitsmoment J
Vollzylinder	$\pi l r^2$	Symmetrieachse	$\frac{1}{2}mr^2$
Vollzylinder	$\pi l r^2$	Querachse	$\frac{1}{4}mr^{2} + \frac{1}{12}ml^{2}$
Hohlzylinder	$\pi l(r_2^2 - r_1^2)$	Symmetrieachse	$\frac{1}{2}m(r_1^2+r_2^2)$

Es ergibt sich ein y-Achsenabschnitt von $(0.01754 \pm 0.00049) \,\mathrm{m/s^2}$, welcher $\frac{1}{2}g^*$ entspricht. Der Fit weißt zwar eine minimale Steigung auf, diese ist jedoch vernachlässigbar, da sie im Verhältnis zur Unsicherheit des y-Achsenabschnitts auf dem Messintervall verschwindet. Folglich ergibt sich ein g^* von $(0.03508 \pm 0.00098) \,\mathrm{m/s^2}$.

Berechnung des Trägheitsmoments

Das Trägheitsmoments des Fallrads setzt sich aus den Trägheitsmomenten der einzelnen Komponenten zusammen. In Tabelle 1 sind Volumen und Trägheitsmoment von Zylindern aufgeführt. Die Masse m ergibt sich jeweils aus

$$m = M \frac{V}{V_{\text{ges}}} \tag{3}$$

wobei M die Masse des gesamten Fallrads und V_{ges} entsprechend das gesamte Volumen ist. Es wird davon ausgegangen, dass der Stoff homogen ist.

Fallhoehe gegen Fallzeitquadrat

Abbildung 3: Die Fallhöhe des Fallrads ist gegen die Fallzeitquadrate aufgetragen.

Es folgt das Trägheitsmoment mit einer Gesamtmasse M von $(0.768\,070\pm0.000\,028)$ kg:

$$J = \frac{1}{2} \frac{M}{2V_S + V_A + V_R} (V_A R_A^2 + V_S (R_S^2 + \frac{1}{3} L_S^2) + V_R (R_{\text{Rad,Außen}}^2 + R_{\text{Rad,Innen}}^2)$$
(4)

$$u(y) = \sqrt{\sum_{i=0}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$
 (5)

Beim Einsetzten aller Größen ergibt sich ein Trägheitsmoment von $J=(42,5500\pm0,1875)\,\mathrm{kgcm^2}$ mit einer relativen Abweichung von 0,441%.

Abbildung 4: Die halbe Beschleunigung des Fallrads ist gegen die Fallzeit aufgetragen.

Tabelle 2: Gemessene Längen.

	ig Länge L	Radius R
Speiche	$(15,576 \pm 0,023) \mathrm{cm}$	$(0.407 \pm 0.006) \mathrm{cm}$
Achse	$(20,210 \pm 0,012) \mathrm{cm}$	$(0.405 \pm 0.006) \mathrm{cm}$
Rad außen	_	$(9,007 \pm 0,001) \mathrm{cm}$
Rad innen	-	$(7,788 \pm 0,012) \mathrm{cm}$
Dicke Rad	$(1,150 \pm 0,004) \mathrm{cm}$	-

Bestimmung des Abrollradius

Aus

$$g^* = \frac{gMR^2}{MR^2 + J_S} \tag{6}$$

$$\Rightarrow R^2 = \frac{J_S g^*}{gM - g^* M} \tag{7}$$

folgt, dass der Abrollradius durch

$$R = \sqrt{\frac{J_S}{M}} \frac{g^*}{g - g^*} \tag{8}$$

berechnet werden kann. Setzt man die zuvor ermittelten Werte von g^* , J_S und M ein erhält man einen Abrollradius von $(0,446\pm0,006)\,\mathrm{cm}$ mit einer Unsicherheit von ca. 1,5%. Der Radius der Achse beträgt $(0,405\pm0,006)\,\mathrm{cm}$ und der Radius des Fadens $(0,052\pm0,002)\,\mathrm{cm}$. Folglich ergibt sich ein Abrollradius von $(0,457\pm0,006)\,\mathrm{cm}$.

3.2 Diskussion

4 Schlussfolgerung

5 Beantwortung der Aufgaben zur Vorbereitung

1.

$$0 = \frac{dE}{dt} = \frac{d}{dt} (\frac{1}{2}mv^2 + \frac{1}{2}J_S\omega^2 - mgh)$$
 (9)

$$= mva + \frac{J_S}{R^2}va - mgv \tag{10}$$

$$\frac{mg}{a} = m + \frac{J_S}{R^2} \tag{11}$$

$$\Rightarrow a(t) = g \frac{mR^2}{mR^2 + J_S} \tag{12}$$

$$\Rightarrow h(t) = \frac{1}{2}g \frac{mR^2}{mR^2 + J_S} t^2 + v_0 t + h_0 \tag{13}$$

2. Die Kraft mit der das abrollende Rad an der Aufhängevorichtung zieht ergibt sich aus

$$F = ma (14)$$

und beträgt folglich $mg\frac{mR^2}{mR^2+J_S}$. Dass die Kraft, bzw. Beschleunigung, konstant ist, ist auch in Abbildung 2 der Einführung zum Versuch dargestellt. Der Unterschied zur Gewichtskraft des Rades besteht in dem Faktor $\frac{mR^2}{mR^2+J_S}$, welcher stets kleiner als 1 ist, somit fällt das Rad langsamer als im freien Fall.

3. Die Kraft wirkt nach wie vor in die gleiche Richtung mit gleichem Betrag.