Mathematische Grundlagen der Informatik WiSe 2023/2024

KAPITEL II: Zahlbereiche

2. Die ganzen Zahlen und der euklidische Algorithmus

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Menge der ganzen Zahlen

Erinnerung

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}$$

"Menge der ganzen Zahlen"

Teilbarkeit

Definition

 $a \in \mathbb{Z}$ heißt durch $b \in \mathbb{Z}$ teilbar, beziehungsweise b teilt a, falls es ein $z \in \mathbb{Z}$ gibt mit $a = z \cdot b$.

Notation: $\begin{cases} b \mid a, & \text{falls } a \text{ durch } b \text{ teilbar}, \\ b \nmid a, & \text{sonst.} \end{cases}$

Division mit Rest

Bemerkung

Sind $a \in \mathbb{Z}$ und $m \in \mathbb{N}^*$, so gibt es eindeutig bestimmte Zahlen $q \in \mathbb{Z}$ und $r \in \{0, \dots, m-1\}$, so dass

$$a = q \cdot m + r$$
.

Dabei ist r der Rest.

Notation: $r = a \mod m$

Beachten Sie, dass der Rest nicht negativ ist!

größter gemeinsamer Teiler

Definition

Seien $a, b \in \mathbb{Z}$ und a und b nicht beide = 0.

- (a) Der größte gemeinsame Teiler ggT(a, b) von a und b ist die größte Zahl $k \in \mathbb{N}$ mit k|a und k|b.
- (b) Ist ggT(a, b) = 1, so heißen a und b teilerfremd.

Bemerkung

Wie findet man den ggT?

Problem:

Gegeben: $a, b \in \mathbb{Z} \setminus \{0\}$

Gesucht: ggT(a, b)

Euklidischer Algorithmus

Satz

Seien $a, b \in \mathbb{Z} \setminus \{0\}$. Folgendes Verfahren endet nach einer endlichen Anzahl von Schritten und liefert ggT(a, b):

Schritt 0:

$$\begin{cases} a_0 := |a|, & a_1 := |b|, & \text{falls } |a| > |b|; \\ a_0 := |b|, & a_1 := |a|, & \text{sonst.} \end{cases}$$

Schritt k, k > 1:

("Führe so lange Division mit Rest aus, bis Rest 0 auftaucht.")

- ▶ Bestimme $q_{k-1} \in \mathbb{N}$, $a_{k+1} \in \mathbb{N}$ mit $0 \le a_k$, so dass $a_{k-1} = q_{k-1}a_k + a_{k+1}$.
- Ist $a_{k+1} = 0$, dann ist $ggT(a, b) = a_k$ und das Verfahren endet.
- lst $a_{k+1} \neq 0$, dann weiter mit Schritt k+1.

Wieso funktioniert der euklidische Algorithmus?

Beobachtung

- Da die Reste immer kleiner werden und nicht negativ sind $(0 \le r < |b|)$, endet der Algorithmus nach endlich vielen Schritten.
- Da

$$ggT(|a|,|b|) = ggT(|b|,r)$$

gilt, liefert der euklidische Algorithmus tatsächlich den ggT(a, b).

Satz von Lamé (1844)

Satz

Seien mit F_k die Fibonacci-Zahlen bezeichnet, das heißt, $F_0 = 0, F_1 = 1, F_k = F_{k-1} + F_{k-2}, k \ge 2$.

Falls der euklidische Algorithmus angewandt auf $a>b\geq 1$ insgesamt $n\in\mathbb{N}^*$ Schritte benötigt, dann ist $b\geq F_{n+1}$ und $a\geq F_{n+2}$.

Bemerkung

Die Umkehrung gilt im Allgemeinen nicht! Aus $a \ge F_{n+2}$, $b \ge F_{n+1}$ folgt im Allgemeinen nicht, dass n Schritte nötig sind.

Beispiel: a = 2000, b = 1000; im ersten Schritt erhält man 2000 = 2 * 1000 + 0, und das Verfahren endet.

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL II: Zahlbereiche

3. Rationale Zahlen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

rationale Zahlen

Erinnerung

$$\mathbb{Q}=\left\{ rac{m}{n}:m,n\in\mathbb{Z},n
eq0
ight\}$$
 "Menge der rationalen Zahlen"

Bemerkung (ohne Beweis)

- ▶ Jede rationale Zahl lässt sich als
 - Dezimalzahl mit endlicher Ziffernfolge oder als
 - periodische Dezimalzahl darstellen.
- Umgekehrt ist jede Dezimalzahl mit endlicher Ziffernfolge und jede periodische Dezimalzahl eine rationale Zahl.

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL II: Zahlbereiche

4. Reelle Zahlen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Menge der reellen Zahlen

Erinnerung

 $\mathbb{R} = \mathsf{Menge} \ \mathsf{aller} \ \mathsf{Dezimalzahlen}$ "Menge der reellen Zahlen"

Beispiel

$$\bullet 6,345 = 6 \cdot 10^{0} + 3 \cdot 10^{-1} + 4 \cdot 10^{-2} + 5 \cdot 10^{-3}$$

$$> 53,742 \cdots = 5 \cdot 10^{1} + 3 \cdot 10^{0} + 7 \cdot 10^{-1} + 4 \cdot 10^{-2} + 2 \cdot 10^{-3} + \cdots$$

$$\begin{array}{l} \blacktriangleright \ \, -53,742\cdots = \\ -\left(5\cdot 10^{1} + 3\cdot 10^{0} + 7\cdot 10^{-1} + 4\cdot 10^{-2} + 2\cdot 10^{-3} + \cdots\right) \end{array}$$

Menge der reellen Zahlen

Bemerkung (ohne Beweis)

Mit einer Dezimalzahl

$$x=\pm a_{-m}\cdots a_0, a_1a_2a_3\cdots$$

wobei $a_k \in \{0, \dots, 9\}$, ist der "Grenzwert der unendlichen Reihe"

$$\pm \sum_{k=-m}^{\infty} a_k 10^{-k}$$

gemeint. $(\rightarrow \text{später})$

- ► Eine reelle Zahl kann beliebig gut durch eine rationale Zahl approximiert werden.
- $ightharpoonup \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}.$

wichtige Eigenschaften / Rechenregeln in \mathbb{R}

Für $x, y, z \in \mathbb{R}$ gelten:

- Summe x + y, Differenz x y, Produkt $x \cdot y$ und Quotient $\frac{x}{y}$, $y \neq 0$, ergeben wieder reelle Zahlen.
- $> x + (y + z) = (x + y) + z, x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (Assoziativität)
- $\triangleright x + y = y + x, x \cdot y = y \cdot x$ (Kommutativität)
- $x \cdot 0 = 0 \cdot x = 0$
- $x \cdot y = 0$ genau dann, wenn x = 0 oder y = 0
- Notation (falls $x \neq 0$): $x^{-1} = \frac{1}{x}$.
- Notation: $xy = x \cdot y$ (Der Malpunkt kann weggelassen werden.)

Anordnung der reellen Zahlen

Trichotomie

Für alle $x, y \in \mathbb{R}$ gilt genau eine der drei Beziehungen

$$x < y$$
 oder $x > y$ oder $x = y$.

Anschaulich:

x < y bedeutet, dass x auf der Zahlengeraden links von y liegt.

Weitere Festlegungen

Für zwei reelle Zahlen x und y schreibe

$$x \le y$$
 falls $x < y$ oder $x = y$;

$$x \ge y$$
 falls $x > y$ oder $x = y$.

Rechenregeln für Ungleichungen

Seien $x, y, z \in \mathbb{R}$ mit x < y. Dann gilt:

- 1. **Addieren einer Zahl** auf beiden Seiten ändert nichts, d.h. x + z < y + z;
- 2. **Multiplizieren mit einer positiven Zahl** ändert nichts, d.h. xz < yz falls z > 0;
- 3. Multiplizieren mit einer negativen Zahl ändert die Richtung der Ungleichung, d.h. xz > yz falls z < 0;
- 4. **Multiplizieren mit einer Unbekannten** erfordert daher eine Fallunterscheidung;
- 5. **Kehrwertbildung** ist komplizierter:
 - 5.1 Ist 0 < x < y oder x < y < 0, so gilt $\frac{1}{x} > \frac{1}{y}$;
 - 5.2 Ist x < 0 < y, so ist jedoch $\frac{1}{x} < \frac{1}{y}$.

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL II: Zahlbereiche

5. Beträge von Zahlen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Absolutbetrag

Definition

Für $x \in \mathbb{R}$ ist der (Absolut-)Betrag definiert durch

$$|x| := \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0. \end{cases}$$

Anschaulich: Für $x \in \mathbb{R}$ ist |x| der *Abstand* zwischen x und 0 auf der Zahlengeraden, und für $x,y \in \mathbb{R}$ ist |x-y| der Abstand zwischen x und y.

Absolutbetrag

Definition

Für $x \in \mathbb{R}$ ist der (Absolut-)Betrag definiert durch

$$|x| := \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0. \end{cases}$$

Rechenregeln

Für alle $x, y \in \mathbb{R}$ gilt:

- 1. $|x| \ge 0$, sowie $|x| = 0 \Leftrightarrow x = 0$;
- 2. $|x \cdot y| = |x| \cdot |y|$ (Multiplikativität);
- 3. $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$, falls $y \neq 0$;
- 4. |-x| = |x|
- 5. Sei $C \in \mathbb{R}$, $C \ge 0$. Dann gilt $-C \le x \le C$ genau dann, wenn $|x| \le C$.

Dreiecksungleichung

Satz

Für beliebige $x,y\in\mathbb{R}$ gilt

$$|x+y| \le |x| + |y|.$$

Beweis.

Da $x \le |x|$ und $y \le |y|$ gilt, folgt mit den Rechenregeln für reelle Zahlen

$$x + y \le |x| + |y|. \tag{1}$$

Desweiteren gelten $-x \le |-x| = |x|$ und $-y \le |-y| = |y|$ und deshalb auch

$$-(x+y) = -x + (-y) \le |x| + |y|. \tag{2}$$

Aus (1) und (2) folgt die Behauptung.