Welkom bij Biochemie 1

Aminozuurtoets

Cijfers staan maandag op Blackboard.

Hoofdstuk 6

Enzymen

- Enzymen zijn eiwitten die chemische reacties kunnen katalyseren
- Het zijn katalysatoren, ze kunnen een reactie die normaal nauwelijks verloopt in een cel tot 10²⁰ x sneller maken
- Enzymen kunnen zeer specifiek zijn. Onderscheid tussen reacties die slechts enkele atomen verschillen is mogelijk
- Enzymen worden ingedeeld in klassen afhankelijk van de reactie die ze katalyseren

Enzymen versnellen reacties

Table 6.1 Rate enhancement by selected enzymes

Enzyme	Nonenzymatic half-life	Uncatalyzed rate $(k_{un} s^{-1})$	Catalyzed rate $(k_{cat} s^{-1})$	Rate enhancement $(k_{cat} s^{-1}/k_{un} s^{-1})$
OMP decarboxylase	78,000,000 years	2.8×10^{-16}	39	1.4×10^{17}
Staphylococcal nuclease	130,000 years	1.7×10^{-13}	95	5.6×10^{14}
AMP nucleosidase	69,000 years	1.0×10^{-11}	60	6.0×10^{12}
Carboxypeptidase A	7.3 years	3.0×10^{-9}	578	1.9 × 10 ¹¹
Ketosteroid isomerase	7 weeks	1.7×10^{-7}	66,000	3.9×10^{11}
Triose phosphate isomerase	1.9 days	4.3×10^{-6}	4,300	1.0 × 10°
Chorismate mutase	7.4 hours	2.6×10^{-5}	50	1.9×10^6
Carbonic anhydrase	5 seconds	1.3×10^{-1}	1 × 10 ⁶	7.7×10^6

Abbreviations: OMP, orotidine monophosphate; AMP, adenosine monophosphate. Source: Data from A.Radzicka and R.Wolfenden, *Science* 267:90–93, 1995.

Table 6.1

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Enzymen kunnen heel specifiek zijn

$$\begin{array}{c} R_1 \\ H \\ \hline \\ R_2 \\ \hline \\ \end{array} \\ \begin{array}{c} H \\ \hline \\ \\ \end{array} \\ \begin{array}{c} R_1 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} H \\ \hline \\ \\ \end{array} \\ \begin{array}{c} H \\ \hline \\ \\ \end{array} \\ \begin{array}{c} H \\ \hline \\ \end{array} \\ \begin{array}{c} H \\ \hline \\ \\ \end{array} \\ \begin{array}{c} H \\ \hline \\ \end{array} \\ \begin{array}{c} H \\ \end{array} \\ \begin{array}{c} H$$

Hydrolysis site

Trypsine Thrombine

Zes enzymklassen

- 1. Oxidoreductases
- 2. Transferases
- 3. Hydrolyases
- 4. Lyases
- 5. Isomerases
- 6. Ligases

Enzymklassen - oxidoreductases

catalyze oxidation-reduction reactions

$$A^{e-} + B \longleftrightarrow A + B^{e-}$$

Enzymklassen - transferases

move functional groups between molecules

$$AX + B \rightarrow A + BX$$

Enzymklassen - hydrolases

cleave bonds with the addition of water

$$A-X + H_2O \rightarrow HA + X-OH$$

Enzymklassen - lyases

addition of atoms/ functional groups to a double bond **or** removal of atoms/ functional groups to form a double bond

$$X-A-B-Y \rightarrow A=B+X-Y$$

Enzymklassen - isomerases

move functional groups within a molecule

$$A \rightarrow B$$

Enzymklassen - ligases

join two molecules at the expense of ATP

Zes enzymklassen

- 1. Oxidoreductases: catalyze oxidation-reduction reactions.
- Transferases: move functional groups between molecules.
 A-X+B↔BX+A
- 3. Hydrolyases: cleave bonds with the addition of water. $A-X+H_2O\longleftrightarrow X-OH+HA$
- **4. Lyases:** remove atoms to form double bonds or add atoms to double bonds. X-A-B-Y → A=B+X-Y
- 5. Isomerases: move functional groups within a molecule
- 6. Ligases: join two molecules at the expense of ATP

Opdracht

Koppel de reacties (zie Blackboard) aan de verschillende klassen

Antwoorden in de volgende slides

Voorbeeld oxidoreductase

D

Redoxreactie! Pyruvaat wordt gereduceerd tot lactaat, NADH wordt geoxideerd tot NAD+.

Dehydrogenases zijn voorbeelden van oxdoreductases

Voorbeeld hydrolase

C

Lactose wordt gesplitst en er wordt H₂O gebruikt.

Voorbeeld lyase

B

Fumarase

H₂O wordt toegevoegd (aan de dubbele binding) Fumaraat wordt <u>niet</u> gesplitst.

Voorbeeld isomerase

G

Functionele groepen worden binnen het molecuul verplaatst.

Ander voorbeeld isomerase

Voorbeeld ligase

F

Twee moleculen (OSB en Coa) worden met elkaar verbonden. Energie komt van ATP.

Ander voorbeeld ligase

van ATP.

Voorbeelden transferase

A

Functonele groepen gaan van het ene molecuul naar het andere molecuul

E

Fosfaatgroep van ATP wordt overgedragen op F-6-P. Dit is GEEN ligatie.

Uitleg enzymklassen

In deze video worden de verschillen tussen de enzymklassen uitgelegd.

https://www.youtube.com/watch?v=AD3-v1oKjSk

Cofactoren

Sommige enzymen hebben hulp nodig van kleine moleculen om hun functie uit te voeren

Cofactoren:

- Metaal(ionen)
- Coenzymen: kleine organische moleculen afgeleid van vitaminen
 - Prosthetische groep: sterk gebonden coenzymen
 - Cosubstraat: los geassocieerde coenzymen die binden en loslaten tijdens reactie

Apoenzym: enzym zonder cofactor

Holoenzym: enzym met cofactor

Voorbeeld prosthetische groep

Table 6.2 Enzyme cofactors

Cofactor	Enzyme*
Coenzyme [†]	
Thiamine pyrophosphate (TPP)	Pyruvate dehydrogenase
Flavin adenine dinucleotide (FAD)	Monoamine oxidase
Nicotinamide adenine dinucleotide (NAD+)	Lactate dehydrogenase
Pyridoxal phosphate (PLP)	Glycogen phosphorylase
Coenzyme A (CoA)	Acetyl CoA carboxylase
Biotin	Pyruvate carboxylase
6'-Deoxyadenosyl cobalamin	Methylmalonyl mutase
Tetrahydrofolate	Thymidylate synthase
Metal	
Zn²+	Carbonic anhydrase
Mg ²⁺	EcoRV
Ni ²⁺	Urease
Мо	Nitrogenase
Se	Glutathione peroxidase
Mn²+↔³+	Superoxide dismutase
K ⁺	Acetoacetyl CoA thiolase

^{*}The enzymes listed are examples of enzymes that employ the indicated cofactor.

[†]Often derived from vitamins, coenzymes can be either tightly or loosely bound to the enzyme.

Enzymen

- Enzymen zijn eiwitten die chemische reacties kunnen katalyseren
- Het zijn katalysatoren, ze kunnen een reactie die normaal nauwelijks verloopt in een cel tot 10²⁰ x sneller maken
- Enzymen kunnen zeer specifiek zijn. Onderscheid tussen

Hoe doen enzymen dit?

reactie die ze katalyseren

Wat weet je nog? (3 minuten)

ΔG is het tussen product en reactanten

- ΔG < 0 energie nodig/komt vrij exergoon/ endergoon spontaan/ niet spontaan
- ΔG > 0 energie nodig/komt vrij exergoon/ endergoon spontaan/ niet spontaan

Wat kun je zeggen over ΔG wanneer een reactie in evenwicht is?

De ΔG van een reactie is **afhankelijk/ onafhankelijk** van de route (moleculair mechanisme) van de omzetting

De ΔG geeft wel/geen informatie over de snelheid van de reactie

Wat weet je nog? (3 minuten)

ΔG is het verschil in vrije energie ussen product en reactanten

- ΔG < 0 energie komt vrij
 exergoon
 spontaan (geen 'toevoeging' energie nodig)
- **ΔG > 0** energie nodig endergoon niet spontaan

Bijvoorbeeld: △G van glucose → CO₂ en H₂O is bij verbranding door een vuurtje hetzelfde als bij "verbranding" in je cellen

Wat kun je zeggen over ΔG wanneer een reactizin evenwicht is? $\Delta G = 0$

De ΔG van een reactie is onafhankelijk van de route (moleculair mechanisme) van de omzetting

De ΔG geeft **geen** informatie over de snelheid van de reactie

$\Delta G \text{ vs } \Delta G^0 \text{ vs } \Delta G^{0'}$

Vrije energie: ΔG onder <u>werkelijke</u> condities

Maar: concentraties weet je vaak niet

Daarom \(\Delta G^0 \) bedacht:

 ΔG^0 : standaard condities = pH 0 , 25 °C, 1 atmosfeer, concentraties 1M pH 0 lijkt natuurlijk niet op condities in cel!

Daarom $\Delta G^{0'}$ bedacht:

condities = pH 7, 25 °C, 1 atmosfeer, concentraties 1M

ΔG vs ΔG^{0}

$$aA + bB \rightleftharpoons cC + dD$$

$$\Delta G = \Delta G^{0'} + RT \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

dus: of ΔG groter, kleiner of gelijk is aan $\Delta G^{0'}$ hangt af van de concentraties van de reactanten en producten

ΔG vs ΔG^{0}

$$aA + bB \rightleftharpoons cC + dD$$

$$\Delta G = \Delta G^{0'} + RT \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Hoe bepaal je $\Delta G^{0'}$?

In evenwicht: $\Delta G = 0$

$$\Delta G^{0'} = -RT \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

 $\Delta G^{0'} = -RT \ln K'_{eq}$

K'_{eq} is de evenwichtsconstante onder standaard condities

deze concentraties kun je meten

Table 6.3 Relation between $\Delta G^{\circ\prime}$ and K'_{eq} (at 25°C)

	∆ G°′		
K'	kJ mol⁻¹	kcal mol⁻¹	
10 ⁻⁵	28.53	6.82	
10-4	22.84	5.46	
10 ⁻³	17.11	4.09	
10-2	11.42	2.73	
10 ⁻¹	5.69	1.36	
1	0	0	
10	-5.69	-1.36	
10 ²	-11.42	-2.73	
10 ³	-17.11	-4.09	
10 ⁴	-22.84	-5.46	
10 ⁵	-28.53	-6.82	

Table 6.3Biochemistry: A Short Course, Third Edition
© 2015 Macmillan Education

$$\Delta G^{0'} = -RT \ln \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

Vraag

Stel: de $\Delta G^{0'}$ van een reactie is > 0 Kan deze reactie spontaan verlopen?

Vraag + antwoord

Stel: de $\Delta G^{0'}$ van een reactie is > 0 Kan deze reactie spontaan verlopen?

 ΔG bepaalt of een reactie kan verlopen. Als de concentraties van de product(en) heel laag zijn, is het mogelijk dat ΔG <0 terwijl $\Delta G^{0'}$ >0

$$\Delta G = \Delta G^{0'} + RT \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Of ΔG groter, kleiner of gelijk is aan 0 hangt af van de concentraties van de reactanten en producten!

Waar of niet waar?

Een enzym zorgt ervoor dat het evenwicht van een reactie meer aan de kant van het product komt te liggen.

Niet waar:

Enzymen kunnen het reactie evenwicht niet veranderen. Ze veranderen alleen de snelheid waarmee dit evenwicht wordt bereikt

In beide reacties wordt zelfde evenwicht bereikt, maar met enzym in seconden, zonder enzym in uren

Waarom stopt reactie?

Enzymen en de transitietoestand

Een reactie van S naar P gaat via transitietoestand X[‡]

$$S \rightleftharpoons X^{\ddagger} \rightarrow P$$

X[‡] is instabiele toestand met hogere vrije energie (G_X[‡]) dan S of P

 ΔG^{\dagger} = activeringsenergie

$$\Delta G^{\ddagger} = G_X^{\ddagger} - G_S^{\dagger}$$

Opdracht (5 minuten)

Teken in een grafiek:

- Het vrije energie verloop van een <u>exergone</u> reactie die via een <u>transitietoestand</u> verloopt
- Het verloop van dezelfde reactie in aanwezigheid van een enzym

Geef aan:

- ΔG van de reactie zonder enzym
- ΔG van de reactie met enzym
- ΔG[‡] van de reactie zonder enzym
- ΔG[‡] van de reactie met enzym

Vrije energie

Enzymen en de transitietoestand

Een reactie van S naar P gaat via transitietoestand X[‡]

$$S \rightleftharpoons X^{\ddagger} \rightarrow P$$

X[‡] is instabiele toestand met hoogste vrije energie (G_x[‡])

 ΔG^{\dagger} = activeringsenergie

Enzymen faciliteren de vorming van X^{\ddagger} door G_X^{\ddagger} (en dus ΔG_X^{\ddagger}) te verlagen

Resultaat: snellere vorming van product

Binding energy

- wanneer het substraat zwakke bindingen aangaat met het enzym komt er vrije energie vrij (→ bindingsenergie)
- de sterkste interacties ontstaan als het substraat in de transitietoestand verandert → max. hoeveelheid bindingsenergie komt vrij
- → verlaging activeringsenergie

Enzym-substraat complex

Vorming enzym-substraat complex is de eerste stap in katalyse

Active site: deel van het enzym waar substraten binden (m.b.v. van niet-covalente krachten zoals waterstofbruggen, electrostatische interacties, van der Waals interacties)

Daarnaast bevat de active site aminozuren die direct bijdragen aan het maken of verbreken van bindingen (katalytische groepen)

Interactie tussen enzym en substraat in de active site stimuleert de vorming van de transitiestaat.

Eigenschappen active site

1. 3D "kloof" of opening in enzym

Residuen die deel uitmaken van de active site zitten meestal niet naast elkaar in sequentie

<u>link</u>

Eigenschappen active site

2. Is maar een klein deel van het totale volume van een enzym. Rest van enzym heeft meerdere functies: o.a. positioneren van katalytische groepen door beweging van totaal enzym.

3. Uniek *microenvironment*:

- meestal geen water aanwezig
- speciaal gepositioneerde polaire residuen zijn specifiek voor binding of katalyse

Eigenschappen active site

- 4. Substraten binden door zwakke, niet covalente bindingen.
 - → Waterstofbruggen, elektrostatische interacties en van der Waals bindingen.
 - → Deze laatste zijn sterker bij veel contacten tussen atomen. Als de "vorm" van substraat en enzym overeenkomstig zijn, is de binding sterker.
- 4. De specificiteit van de binding is afhankelijk van de ordening van de atomen in de active site. Een enzym bindt alleen specifiek als alle atomen goed gearrangeerd zijn rondom het substraat.

Substraatbinding: lock-and-key model

substraat en active site hebben complementaire vorm (Emil Fischer 1890)

Maar inmiddels weten we dat enzymen dynamisch zijn en meerdere vormen kunnen aannemen.

Substraatbinding: induced fit model

binding van het substraat leidt tot een conformatieverandering, waardoor de actieve site een complementaire vorm krijgt

Soms ook nog conformation selection: substraat bindt alleen aan bepaalde conformaties

Oefenopgaven

Staan op Blackboard en in je boek.

Suggestie: 10, 11, 13, 18.