Data oddania projektu: 08.05.2019

Prowadzący: mgr inż. Marcin Ochman Wykonawca: Julia Krzeszowska 241615

SPRAWOZDANIE

PROJEKT nr 3 - Grafy

1. Cel projektu

Zapoznanie się z algorytmem Dijkstrty oraz algorytmem Bellmana-Forda służącymi do rozwiązania problemu najkrótszej drogi (ścieżki) w grafie.

2. Przebieg projektu

Został napisany program, w którym zostały zaimplementowane wyżej wymienione algorytmy dla dwóch sposobów przechowywania informacji o wierzchołkach w grafie. W projekcie znajdują się następujące klasy:

- klasa NeighbourList, która implementuje listę sąsiadów
- klasa NeighbourMatrix, która implementuje macierz sąsiedztwa
- klasa Pair, która przechowuje parę dowolnych obiektów
- klasa Timer służąca do pomiaru czasu
- klasa Tests służąca do pojedynczych testów obu algorytmów
- klasa *Algorythms*, w której zostały zaimplementowane algorytmy wyszukujące Dodatkowo w projekcie znajduje się plik *main.cpp*, w którym wykonano zadane testy dla wybranego algorytmu (algorytm Bellmana-Forda).

Dla pięciu różnych liczb wierzchołków V = {50, 100, 150, 200, 250} oraz gęstości grafu E = {25%, 50%, 75%, 100%} została zbadana efektywność algorytmu Bellmana-Forda. Wygenerowano po 100 losowych instancji, a wyniki uśredniono. Poniższa tabele zawierają uśrednione wyniki czasu działania algorytmu dla różnej liczby wierzchołków oraz gęstości grafu. W tabeli *Tab.1* zamieszczono wyniki dla listy sąsiadów, a w tabeli *Tab.2* dla macierzy sąsiedztwa. Czasy podane są w sekundach.

	50	100	150	200	250
25%	0,006533	0,087111	0,0425149	1,410529	3,536144
50%	0,02125	0,320066	1,67996	5,775814	14,449422
75%	0,043874	0,699003	3,903159	13,310085	58,815426
100%	0,074871	1,258657	7,132448	23,888158	66,647557

Tab.1

	50	100	150	200	250
25%	0,000748	0,005861	0,019639	0,047069	0,09322
50%	0,00148	0,011868	0,039259	0,093598	0,183848
75%	0,002193	0,017398	0,060168	0,139411	0,274036
100%	0,002904	0,023254	0,077999	0,185345	0,362434

Tab.2

Na podstawie *Tab.1* i *Tab.2* wygenerowano wykresy *Wyk.1* i *Wyk.2*.

Wykres zależności czasu trwania algorytmu od liczby wierzchołków

Wyk.1 - wykres dla listy sąsiadów

Wykres zależności czasu trwania algorytmu od liczby wierzchołków

Wyk.2 - wykres dla macierzy sąsiedztwa

3. Wnioski

Zaobserwowano, że algorytm Bellmana-Forda działa dużo szybciej dla macierzy sąsiedztwa niż dla listy sąsiadów. Z wykresów można odczytać, że złożoność obliczeniowa algorytmu zgadza się ze złożonością podaną w literaturze, tj. O(VE).