Introduction to Causal Inference

Sesiones de Estadística DAP-Cat

Aleix Ruiz de Villa (aleixrvr@gmail.com)

Main Objective of these 2 sessions

ICU ingress model due to covid

https://www.cancer.org/es/noticias-recientes/preguntas-comunes-acerca-del-brote-del-nuevo-coronavirus.html

STATISTICS / CAUSAL INFERENCE

MACHINE LEARNING

Objective: ¿do age and healthcare affect ICU ingress?

Objective: Predict the risk

Decision: design public health strategies

Decision: patient ranking

Model: finding the correct model

Model: finding the most accurate

Machine Learning main assumption

Past and Future behave the same

https://www.cancer.org/es/noticias-recientes/preguntas-comunes-acerca-del-brote-del-nuevo-coronavirus.html

Machine Learning limitation

What if we behave in a different manner?

https://www.alpinerecoverylodge.com/intervention-assistance/

CAUSALITY = RCTS + CAUSAL INFERENCE

The birth of new fields

STATISTICS

Initially: What is random and what it is not?

The birth of causal inference

WELL KNOWN IN STATISTICS

- Correlation is not Causation
- Intervention is not observation

FOUNDATIONS OF

CAUSAL INFERENCE

The birth of machine learning

WELL KNOWN IN STATISTICS

- Parsimonia Principle
- "All models are wrong, but some useful" (Box)

FOUNDATIONS OF

> MACHINE LEARNING

Introduction to Machine Learning

What are we talking about when we talk about machine learning? **Predictive Modelling**

Source: https://becominghuman.ai/time-series-forecasting-7ac3344a8588

What are we talking about when we talk about machine learning? **Task Automation**

Source:

https://medium.com/@naveeen.kumar.k/naive-bayes-spam-detection-7d087cc96d9d

Learning through example

0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0
1	l	1	1	1	/	1	(1	1	1	1	1	1	/	1
2	J	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	#	4	4	4	4	4	4	4
5	5	5	5	5	S	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	77	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	P	9	9	9	9	9	9

0,0,0, ... 1,1,1, ... 2,2,2, ... 3,3,3, ... 4,4,4, ... 5,5,5, ... 6,6,6, ... 7,7,7, ... 8,8,8, ... 9,9,9, ...

Applications

Medical Diagnosis: detecting illness, chances of complications

Input: patients description

Output: Is ill?

Management: resource allocation

Input: hospital resources distribution and current demand

Output: Tomorrow's level of congestion

Applications

Medical Diagnosis through image: radiography

Input: image

Output: Is ill?

Medical Diagnosis through sensors:

Input: patients current health data

Output: Is ill?

Applications

Personalized Medicine: using genomics data

Input: genome + treatment

Output: Is ill?

Note: this can be tricky, combines causality!

The history of Machine Learning

k Nearest Neighbors - Fix, Hodges (1951)

The most natural way of thinking about machine learning

Perceptron - Rosenblatt (1958)

- Linear Model
- Incremental Learning Classification Problem

Perceptron - Rosenblatt (1958)

Smoothing problem Logistic Regression

80's

Decision Trees

- Leo Breiman: "The two cultures"
- Automating the creation of decision rules
- (are unstable with small changes of data)

First Neural Networks

LeCun - Currently Facebook
Hinton - Currently Google Brain
Bengio - Currently University
Montreal

90's

More techniques and more theory

- Random Forests (1995), Boosting (1996): currently highly used
- Vapnik's Machine Learning Theory
- Probably Approximate Correct -Valiant's theory (1984)
- Vapnik's Support Vector Machines
- Winter AI (neural networks)

2010's

More techniques and more theory

- Deep Learning
- Reinforcement Learning

Classical Models

Building decision trees

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Boosting

Boosting

Round 1

$$\epsilon_1 = 0.30$$
 $\alpha_1 = 0.42$

Boosting

Round 1

Machine Learning Theory

How do we use a model? How can we evaluate it?

Model Complexity - Parsimonia Principle

Error evolution

Cross validation: simulating the future

Simple Cross Validation

Machine Learning Theory

60's-90's Vapnik & Chervonenkis Theory

- No assumption on the distribution (different than traditional statistics)
- Main assumption: data is independent identically distributed

 The past & the future have the same distribution

Occam's Razor Theorem

VC Dimension

- Number of variables in linear regression
- Magnitude of coefficients in linear regression (lasso)
- Depth in decision trees
- Number of parameters in polinomial interpolation
- Number of parameters in neural nnetworks

Occam's Razor Theorem

Confidence interval relating error on the data set, error in the future data, complexity of your models and sample size

- err_e: error training set
- err error future set (validation)
- d: dimension (complexity) of the family model
- n: sample size
- C: constant

$$err_e - \sqrt{Cd/n} \le err_v \le err_e + \sqrt{Cd/n}$$

No Free Lunch Theorem

For any machine learning algorithm you can think of, you can always create a data set where it fails miserably

Deep Learning

Perceptron

Feedforward Neural Network

FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

ILSVRC & ImageNet 2012

ILSVRC top-5 error on ImageNet

Dealing with images

```
0000000
01111110
00000010
00000100
00000100
00001000
00001000
0000000
```

Convolutional Neural Networks

Dealing with text

for	you	and	for	me	
1	0	0	1	0	2
0	1	0	0	0	1
0	0	1	0	0	1
0	0	0	0	1	1

Word Level

Sentence Level -Bag of Words

LSTM

Hard to train

Comments about Deep Learning

- Usually it is harder to code closer to computer engineering
- Very large model take lots of time, implying high costs (BERT NLP model costed several million US dollars
- Specially designed for image, text, sound, ...

Advanced Machine Learning

Reinforcement Learning

- Exploring new alternatives
- You need to be able to simulate
- Suggest new states based on the past (predicting its reward using machine learning)

