COMP3251 Lecture 4: Selection (Chapter 2.4)

Input: A set *S* of *n* integers $x_1, x_2, ..., x_n$, and an integer $1 \le k \le n$.

Output: The k-th smallest integer x^* among x_1, x_2, \ldots, x_n .

Input: A set *S* of *n* integers $x_1, x_2, ..., x_n$, and an integer $1 \le k \le n$.

Output: The k-th smallest integer x^* among x_1, x_2, \ldots, x_n .

A straight-forward selection algorithm:

1) Find the smallest integer. (O(n) time)

2) Find the 2nd smallest integer. (O(n-1)) time)

. . .

k) Find the k-th smallest integer. (O(n-k+1) time)

Input: A set *S* of *n* integers $x_1, x_2, ..., x_n$, and an integer $1 \le k \le n$.

Output: The k-th smallest integer x^* among x_1, x_2, \ldots, x_n .

A straight-forward selection algorithm:

1) Find the smallest integer. (O(n) time)

2) Find the 2nd smallest integer. (O(n-1)) time)

. . .

k) Find the k-th smallest integer. (O(n-k+1) time)

Running time: O(nk)

Input: A set *S* of *n* integers $x_1, x_2, ..., x_n$, and an integer $1 \le k \le n$.

Output: The k-th smallest integer x^* among x_1, x_2, \ldots, x_n .

Another straight-forward selection algorithm:

- 1) Sort the input integers in ascending order (e.g., Merge Sort); Let y_1, \ldots, y_n be the sorted list.
- 2) Output y_k .

Example:

Select the 3rd smallest integer among 73, 44, 34, 18, 29, 27.

- 1) $x_1, x_2, \ldots, x_6 = 73, 44, 34, 18, 29, 27$;
- 2) $y_1, y_2, \ldots, y_6 = 18, 27, 29, 34, 44, 73$;
- 3) k = 3 and $x^* = y_3 = 29$.

Input: A set *S* of *n* integers $x_1, x_2, ..., x_n$, and an integer $1 \le k \le n$.

Output: The k-th smallest integer x^* among x_1, x_2, \ldots, x_n .

Another straight-forward selection algorithm:

- 1) Sort the input integers in ascending order (e.g., Merge Sort); Let y_1, \ldots, y_n be the sorted list.
- 2) Output y_k .

Example:

Select the 3rd smallest integer among 73, 44, 34, 18, 29, 27.

- 1) $x_1, x_2, \ldots, x_6 = 73, 44, 34, 18, 29, 27$;
- 2) $y_1, y_2, \ldots, y_6 = 18, 27, 29, 34, 44, 73$;
- 3) k = 3 and $x^* = y_3 = 29$.

Running time: O(n log n)

Select(S, k)

Divide: Pick an arbitrary value v among x_1, x_2, \ldots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_v : The subset of integers that are equal to v;

- *S_R*: The subset of integers that are greater than *v*;

Recurse: Recurse on the subset that contains x^* .

Note: The ranks are for explanation only; we don't need to sort the numbers.

Select(S, k)

Divide: Pick an arbitrary value v among x_1, x_2, \ldots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_v : The subset of integers that are equal to v;

- S_R : The subset of integers that are greater than v;

Recurse: Recurse on the subset that contains x^* .

Note: The ranks are for explanation only; we don't need to sort the numbers.

Key questions: Which subset contains x^* ? What is the rank of x^* in the subset?

Case 1: $k \leq |S_L|$.

- x^* is the k-th smallest integer in S_L .
- Output **Select**(S_L , k).

Case 1: $k \leq |S_L|$.

- x^* is the k-th smallest integer in S_L .
- Output **Select**(S_L , k).

Case 2: $|S_L| < k \le |S_L| + |S_V|$.

- x^* is in S_v .
- Output v. (Note that all numbers in S_v are equal to v.)

Case 1: $k \leq |S_L|$.

- x^* is the k-th smallest integer in S_L .
- Output **Select**(S_L , k).

Case 2: $|S_L| < k \le |S_L| + |S_V|$.

- x^* is in S_v .
- Output v. (Note that all numbers in S_v are equal to v.)

Case 3: $|S_L| + |S_V| < k \le n$.

- x^* is the $(k |S_L| |S_V|)$ -th smallest integer in S_R .
- Output **Select**(S_R , $k |S_L| |S_V|$).

The 1st number in S_R is the $(|S_L| + |S_V| + 1)$ -th number in S.

So the *i*-th number in S_R is the $(|S_L| + |S_v| + i)$ -th number in S.

Thus x^* is the $(k - |S_L| - |S_V|)$ -th smallest integer in S_R .

Select(S, k)

Divide: Pick an arbitrary value v among x_1, x_2, \ldots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_{ν} : The subset of integers that are equal to ν ;

- S_R: The subset of integers that are greater than v;

- **Recurse:** 1) If $k \leq |S_L|$, output **Select**(S_L , k).
 - 2) If $|S_L| < k \le |S_L| + |S_v|$, output *v*.
 - 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

 S_L

 S_v

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

 S_L S_V S_R

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1 27

 S_L S_V S_R

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1 27

 S_L S_V S_R

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

27

73 44 34

 S_L

 S_{v}

- 1) If $k \leq |S_L|$, output **Select**(S_L, k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

- 1) If $k \leq |S_L|$, output **Select**(S_L, k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

73 44 34

 S_L

 S_{v}

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output V.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

73 44 34

 S_L

 S_{v}

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

S 73 44 34 18 29 27

level 1

18

27

73 44 34 29

 S_L

 S_{v}

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

73 44 34 29

Sı

 S_{v}

•
$$|S_L| = 1$$

- $|S_v| = 1$
- $k = 3 > |S_L| + |S_V|$ and $k |S_L| + |S_V| = 1$
- So x^* is the 1st number is S_R .
- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_v|$, output *v*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

S

73 44 34 29

level 2

 S_L

S

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

73 44 34 29

level 2

Sı

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

S

 S_L

73 44 34 29

level 2

S

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

S

73 44 34 29

level 2

 S_L

<u> 29</u>

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

73 44 34 29

level 2

 S_L

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

S

73 **44** 34 29

level 2

 S_L

29

/3

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

S

73 44 34 29

level 2

 S_L

29

73 44

 S_{v}

 S_{R}

1) If
$$k \leq |S_L|$$
, output **Select**(S_L , k).

2) If
$$|S_L| < k \le |S_L| + |S_V|$$
, output *V*.

3) If
$$|S_L| + |S_V| < k$$
, output **Select**(S_R , $k - |S_L| - |S_V|$).

level 1

18

27

S

73 44 **34** 29

level 2

 S_L

29

73 44

 S_{ν}

 S_{R}

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

level 1

18

27

S

73 44 34 29

level 2

 S_L

29

73 44 34

 S_{V}

- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

Sample Run

level 1

18

27

S

73 44 34 29

level 2

$$S_L$$

- $|S_L| = 0$
- $|S_v| = 1$
- $|S_L| < k = 1 \le |S_L| + |S_V|$
- So x^* is in S_v and output $x^* = v = 29$.
- 1) If $k \leq |S_L|$, output **Select**(S_L , k).
- 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
- 3) If $|S_L| + |S_V| < k$, output **Select** $(S_R, k |S_L| |S_V|)$.

Divide: Pick an arbitrary value v among x_1, x_2, \ldots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_{ν} : The subset of integers that are equal to ν ;

- S_R: The subset of integers that are greater than v;

- **Recurse:** 1) If $k \leq |S_L|$, output **Select**(S_L , k).
 - 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
 - 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).

Divide: Pick an arbitrary value v among x_1, x_2, \ldots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_{ν} : The subset of integers that are equal to ν ;

- S_R: The subset of integers that are greater than v;

Recurse: 1) If $k \leq |S_L|$, output **Select**(S_L , k).

2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.

3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k - |S_L| - |S_V|$).

Divide takes *O(n)* time.

Divide: Pick an arbitrary value v among x_1, x_2, \ldots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_{ν} : The subset of integers that are equal to ν ;

- S_R: The subset of integers that are greater than v;

- **Recurse:** 1) If $k \leq |S_L|$, output **Select**(S_L , k).
 - 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
 - 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).
- **Divide** takes *O(n)* time.
- **Recurse** takes either $T(|S_L|)$ time (case 1), or O(1) time (case 2), or $T(|S_R|)$ time (case 3).

Divide: Pick an arbitrary value v among x_1, x_2, \ldots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_{ν} : The subset of integers that are equal to ν ;

- *S_R*: The subset of integers that are greater than *v*;

- **Recurse:** 1) If $k \leq |S_L|$, output **Select**(S_L , k).
 - 2) If $|S_L| < k \le |S_L| + |S_V|$, output *V*.
 - 3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k |S_L| |S_V|$).
- **Divide** takes *O(n)* time.
- **Recurse** takes either $T(|S_L|)$ time (case 1), or O(1) time (case 2), or $T(|S_R|)$ time (case 3).
- Note that both $|S_L|$ and $|S_R|$ are at most n-1. So we have:

$$T(n) \le T(n-1) + O(n) \le T(n-2) + O(n-1) + O(n) = \dots = O(1 + 2 + \dots + n) = O(n^2)$$

• Yes, if we are extremely unlucky, and pick either the smallest or largest number as *v* in every round.

- Yes, if we are extremely unlucky, and pick either the smallest or largest number as *v* in every round.
- But, if we are extremely lucky, and pick the n/2 smallest every time, then

- Yes, if we are extremely unlucky, and pick either the smallest or largest number as *v* in every round.
- But, if we are extremely lucky, and pick the n/2 smallest every time, then

$$T(n) = T(n/2) + O(n) = T(n/4) + O(n/2) + O(n) = \dots = O(n).$$

- Yes, if we are extremely unlucky, and pick either the smallest or largest number as v in every round.
- But, if we are extremely lucky, and pick the n/2 smallest every time, then

$$T(n) = T(n/2) + O(n) = T(n/4) + O(n/2) + O(n) = \dots = O(n).$$

 In reality, we cannot be that lucky; on the other hand, we may not be that unlucky to always pick the extreme numbers.

- Yes, if we are extremely unlucky, and pick either the smallest or largest number as v in every round.
- But, if we are extremely lucky, and pick the n/2 smallest every time, then

$$T(n) = T(n/2) + O(n) = T(n/4) + O(n/2) + O(n) = \dots = O(n).$$

 In reality, we cannot be that lucky; on the other hand, we may not be that unlucky to always pick the extreme numbers.

> Idea: Choose v randomly and hope that v is "reasonably good" on average?

A Randomized Divide and Conquer Selection Algorithm

Select(S, k)

Divide: Pick value v randomly among x_1, x_2, \dots, x_n ;

Divide the input integers into three subsets:

- S_L : The subset of integers that are smaller than v;

- S_{ν} : The subset of integers that are equal to ν ;

- S_R: The subset of integers that are greater than v;

Recurse: 1) If $k \leq |S_L|$, output **Select**(S_L , k).

2) If $|S_L| < k \le |S_L| + |S_v|$, output v.

3) If $|S_L| + |S_V| < k$, output **Select**(S_R , $k - |S_L| - |S_V|$).

What is "reasonably good"?

: "reasonably good"

: bad

Observation 1: In each round, *v* is "reasonably good" with probability 1/2.

Observation 2: If v is always "reasonably good", then both $|S_L|$ and $|S_R|$ are at most 3n/4, and T(n) = T(3n/4) + O(n) = O(n)!!

In each round, v is "reasonably good" with probability 1/2.

In each round, v is "reasonably good" with probability 1/2.

$$\mathbf{E} T(n) \leq \frac{1}{2} \left(\mathbf{E} T \left(\frac{3n}{4} \right) + \mathbf{E} T(n) \right) + O(n)$$

"reasonably good" pivot

"bad" pivot

In each round, v is "reasonably good" with probability 1/2.

$$\mathbf{E} T(n) \leq \frac{1}{2} \left(\mathbf{E} T \left(\frac{3n}{4} \right) + \mathbf{E} T(n) \right) + O(n)$$

"reasonably good" pivot

"bad" pivot

• Rearranging all $\mathbf{E} T(n)$ terms to the left:

$$\mathbf{E} T(n) \leq \mathbf{E} T\left(\frac{3n}{4}\right) + O(n)$$

In each round, v is "reasonably good" with probability 1/2.

$$\mathbf{E} T(n) \leq \frac{1}{2} \left(\mathbf{E} T \left(\frac{3n}{4} \right) + \mathbf{E} T(n) \right) + O(n)$$

"reasonably good" pivot

"bad" pivot

• Rearranging all $\mathbf{E} T(n)$ terms to the left:

$$\mathbf{E} T(n) \leq \mathbf{E} T\left(\frac{3n}{4}\right) + O(n)$$

• Viewing $\mathbf{E} T(n)$ as a function of n, Master Theorem gives:

$$\mathbf{E} T(n) = O(n)$$

In general, we can reason about the running time as follows:

T(n) = (time to reduce the array to $\leq 3n/4$) + T(3n/4)

- In general, we can reason about the running time as follows:
 - $T(n) = \text{(time to reduce the array to } \le 3n/4) + T(3n/4)$
- The expected (average) running time is

```
E[T(n)] = E[\text{ (time to reduce the array to } \le 3n/4) + T(3n/4)]
```

= E[(time to reduce the array to $\leq 3n/4$)] + E[T(3n/4)]

- In general, we can reason about the running time as follows:
 - $T(n) = \text{(time to reduce the array to } \le 3n/4) + T(3n/4)$
- The expected (average) running time is

```
E[T(n)] = E[ (time to reduce the array to \leq 3n/4) + T(3n/4)] = E[ (time to reduce the array to \leq 3n/4)] + E[T(3n/4)]
```

 Since v is "reasonably good" with probability 1/2 each round, by Discrete Mathematics, the algorithm gets a "reasonably good" v in every two rounds on average.

- In general, we can reason about the running time as follows:
 - $T(n) = \text{(time to reduce the array to } \le 3n/4) + T(3n/4)$
- The expected (average) running time is

```
E[T(n)] = E[ (time to reduce the array to \leq 3n/4) + T(3n/4)] = E[ (time to reduce the array to \leq 3n/4)] + E[T(3n/4)]
```

- Since v is "reasonably good" with probability 1/2 each round, by Discrete Mathematics, the algorithm gets a "reasonably good" v in every two rounds on average.
- Since process one v takes O(n) time, we conclude that E[(time to reduce the array to $\leq 3n/4)$] = O(n)

- In general, we can reason about the running time as follows: $T(n) = \text{(time to reduce the array to } \le 3n/4\text{)} + T(3n/4)$
- The expected (average) running time is
 E[T(n)] = E[(time to reduce the array to ≤ 3n/4) + T(3n/4)]

= E[(time to reduce the array to $\leq 3n/4$)] + E[T(3n/4)]

- Since *v* is "reasonably good" with probability *1/2* each round, by Discrete Mathematics, the algorithm gets a "reasonably good" *v* in every two rounds on average.
- Since process one v takes O(n) time, we conclude that E[(time to reduce the array to $\leq 3n/4)$] = O(n)
- So E[T(n)] = O(n) + E[T(3n/4)].

- In general, we can reason about the running time as follows: $T(n) = \text{(time to reduce the array to } \le 3n/4\text{)} + T(3n/4)$
- The expected (average) running time is
 E[T(n)] = E[(time to reduce the array to ≤ 3n/4) + T(3n/4)]

= E[(time to reduce the array to $\leq 3n/4$)] + E[T(3n/4)]

- Since *v* is "reasonably good" with probability *1/2* each round, by Discrete Mathematics, the algorithm gets a "reasonably good" *v* in every two rounds on average.
- Since process one v takes O(n) time, we conclude that E[(time to reduce the array to $\leq 3n/4)$] = O(n)
- So E[T(n)] = O(n) + E[T(3n/4)].
- Let E[T(n)] = A(n), we have A(n) = A(3n/4) + O(n) = ... = O(n).