Structural Optimization using Cross-Entropy Method

Marcos Vinicius Issa

Universidade do Estado do Rio de Janeiro – UERJ Programa de Pós Graduação de Engenharia Mecãnica – PPG-EM NUMERICO – Núcleo de Modelagem e Experimentação Computacional http://numerico.ime.uerj.br

In collaboration with: Americo Cunha Jr
Francisco Soeiro
Anderson Pereira (PUC-Rio)

CNMAC 2018 September 17-21, 2018 Campinas - SP, Brazil

Outline

- Introduction
- 2 Optimization framework
- Numerical Experiments
- 4 Final Remarks

Numerical Experiments

- Introduction
- 2 Optimization framework

- 3 Numerical Experiments
- 4 Final Remarks

Structural Optimization

Typical Objectives

- Mass reduction (weight)
- Change the Natural Frequency (avoid Resonance)
- Improve Layout
- Improve Construction
- Improve Assembly
- Reduce internal stresses
- Reduce material used
- Reduce Cost

Applications

- Automobile Industry
- Aerospace Industry
- Construction Sector
 etc.

Different problems in structural optimization

Challenges and objectives

Some challenges:

- Derivative or gradient based methods are not possible in some cases
- Metaheuristics can be great computational cost or until prohibitive

Research objectives:

- Propose a Cross-Entropy framework for structural optimization
- Investigate its accuracy and efficiency

Numerical Experiments

Introduction

- Optimization framework

Formulation of the structural optimization problem

Find x* which minimize

$$m(\mathbf{x}) = \int_{B} \rho(\mathbf{x}) dV,$$

(mass of structure)

such that

$$\chi_{min} < \chi < \chi_{max}$$

(design limits)

$$\sigma(\mathbf{x}) \leq S_{\mathbf{v}}$$

(yield strength)

$$\sigma(\mathbf{x}) \leq \sigma_F$$
.

(buckling)

Generic optimization framework

Find x* which maximize

$$\mathcal{F}(\mathbf{x})$$

such that

$$\mathcal{G}_m(\mathbf{x}) < 0, \ m = 1, \cdots, M$$

(original formulation)

Find x* which maximize

$$S = \mathcal{F}(\mathbf{x}) + \sum_{m=1}^{M} H_m \max\{0, \mathcal{G}_m(\mathbf{x})\}$$

(penalized formulation)

Cross-entropy framework

Key Idea: "Transform" the optimization problem into a rare-event estimation problem.

Given a random design vector $\mathbf{X} \sim f(\mathbf{x}; \mathbf{v})$ and fixed reference level $\gamma \approx \gamma^* = \max \mathcal{S}(\mathbf{x}^*)$ one has that $\mathcal{S}(\mathbf{X}) \geq \gamma$ is a rare-event.

Cross-Entropy Method:

Generates an "optimal sequence" of estimators $(\widehat{\gamma}_t,\widehat{\mathbf{v}}_t)$ such that

$$\widehat{\gamma}_{t} \xrightarrow{a.s.} \gamma^{\star} \text{ and } f\left(\mathbf{x}, \widehat{\mathbf{v}}_{t}\right) \xrightarrow{a.s.} \delta\left(\mathbf{x} - \mathbf{x}^{\star}\right)$$

Optimal: "minimize KL divergence between $\delta\left(\mathbf{x}-\mathbf{x}^{\star}\right)$ and $f\left(\cdot\,,\,\mathbf{v}\right)$ "

R. Y. Rubinstein and Dirk P. Kroese, **Simulation and the Monte Carlo Method**, Wiley, 3rd Edition, 2017.

Cross-entropy algorithm

- **1** Define N, N^e , t_{max} , t = 0, $f(\cdot, \mathbf{v})$ and $\hat{\mathbf{v}}_0$
- ② Update level t = t + 1
- $\textbf{ § Generate } \mathbf{X}_1, \cdots, \mathbf{X}_N \text{ (iid) samples from } f\left(\cdot, \widehat{\mathbf{v}}_{t-1}\right)$
- Evaluate performance function $\mathcal{S}(\mathbf{X}_n)$ at samples $\mathbf{X}_1, \cdots, \mathbf{X}_N$ and sort the results $\mathcal{S}_{(1)} \leq \cdots \leq \mathcal{S}_{(N)}$
- **1** Update estimators $\widehat{\gamma}_t$ and $\widehat{\mathbf{v}}_t$

- Introduction
- Optimization framework
- Numerical Experiments
- 4 Final Remarks

Structural Models

• Truss 1

Results Truss 1 without buckling

Method	mass (kg)	d_i^{\star} (mm)	t* (mm)	Func Evaluate	CPU time* (sec)
SQP	78	20.0	3.5	5	0.3
GA	78	20.0	3.5	2657	5.0
CE	78	20.0	3.5	175	0.4

*Dell Inspiron i15 7559-A30 "Core i7" 2.8 GHz 16GB 1600 MHz DDR3L

Cross-Entropy method

- NCE = 25
- $\rho = 10\%$
- $tol = 10^{-4}$
- Stopped after t = 7 iterations
- $20mm \le d_i \le 100mm$ and $3mm \le t \le 20mm$

Results Truss 1 with buckling

Method	mass (kg)	d_i^{\star} (mm)	t* (mm)	Func Evaluate	CPU time* (sec)
SQP	288	56.1	5.0	21	0.3
GA	293	55.9	5.1	5250	13.0
CE	288	56.1	5.0	100	0.4

*Dell Inspiron i15 7559-A30 "Core i7" 2.8 GHz 16GB 1600 MHz DDR3L

Cross-Entropy method

- NCE = 25
- $\rho = 10\%$
- $tol = 10^{-4}$
- Stopped after t = 4 iterations
- $50mm \le d_i \le 100mm$ and $5mm \le t \le 20mm$

Numerical Experiments

Structural Models

• Truss 2

S. Kalanta, J. Atkočiūnas, T. Ulitinas and A. Grigusevičius, Optimization of bridge trusses height and bars cross-sections, In *The Baltic Journal of Road and Bridge Engineering*, 7(2):112-119, 2012.

Results Truss 2 with buckling

Method	mass (kg)	d_i^{\star} (mm)	t* (mm)	h_{1}^{\star} (m)	h ₂ * (m)	Func Evaluate	CPU time* (sec)
SQP	815	68.5	10.0	1.32	0.10	56	0.6
GA	856	71.2	10.5	1.01	0.10	2625	20.0
CE	852	69.1	10.3	1.2	0.49	625	1.2

*Dell Inspiron i15 7559-A30 "Core i7" 2.8 GHz 16GB 1600 MHz DDR3L

Cross-Entropy method

- NCE = 25
- $tol = 10^{-4}$
- Stopped after t = 25 iterations

Introduction

- 2 Optimization framework
- Numerical Experiments
- 4 Final Remarks

Concluding remarks

Contributions:

• Cross-Entropy new framework for structural optimization

Conclusions:

- CE presents accuracy comparable to SQP and GA
- CE presents an efficiently more or less comparable to SQP
- CE is much faster than GA

Future directions:

- Explore CE framework for optimization of 3D structures
- Test CE framework in topology optimization

Acknowledgments

Academic discussion:

• Prof. Rafael Holdorf (UFSC)

Financial support:

Thank you for your attention!

marcosviniciusissa@gmail.com

Numerical Experiments Final Remarks

References from images and data

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, Wiley, 3rd edition, 2017.

J. F. Bonnans, J. C. Gilbert, C. Lemarechal and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects, Springer, 2nd edition, 2009.

O. Kramer, **Genetic Algorithm Essentials**, Springer, 2017.

A. J. M. Ferreira, MATLAB Codes for Finite Element Analysis Solids and Structures. Springer. 2009.

M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer, 2003.

D. P. Kroese, R. Y. Rubinstein, I. Cohen, S. Porotsky and T. Taimre, Cross-Entropy Method, In Encyclopedia of Operations Research and Management Science, edited by S. I. Gass and M. C. Fu, pages 326-333, Springer, 2013.

S. Kalanta, J. Atkočiūnas, T. Ulitinas and A. Grigusevičius, Optimization of bridge trusses height and bars cross-sections, In The Baltic Journal of Road and Bridge Engineering, 7(2):112-119, 2012.

Annex

Truss 3

 $L=9.15~\mathrm{m}$; $P=445~\mathrm{KN}$

Results Truss 3 with buckling

Method	mass (kg)	Func Evaluate	CPU time* (sec)
SQP	2557	98	1.3
GA	2886	9472	31.0
CE	2795	2500	4.9

^{*}Dell Inspiron i15 7559-A30 "Core i7" 2.8 GHz 16GB 1600 MHz DDR3L

Cross-Entropy method

- NCE = 50
- $\rho = 10\%$
- $tol = 10^{-4}$
- Stopped after t = 50 iterations

Truss 3 SQP

bar		1	2	3	4	5	6	7	8	9	10
$d_i(mm)$		188.9	150.0	192.5	150.0	150.0	150.0	194.3	187.2	166.8	150.0
σ (MPa)		89	22	-94	-35	18	22	68	-61	45	-31
σ_e (MPa))	130	85	134	85	85	85	68	64	52	43

Truss 3 GA

bar		1	2	3	4	5	6	7	8	9	10
$d_i(mm)$		198.8	174.3	207.1	209.0	183.6	173.9	234.9	184.2	170.6	187.0
σ (MPa)	-	89	21	-91	-25	13	21	61	-58	42	-27
σ _e (MPa)	142	112	154	156	123	111	97	62	54	64

Truss 3 CE

bar	- [1	2	3	4	5	6	7	8	9	10
$d_i(mm)$		195.8	162.6	176.9	189.2	224.1	161.5	197.9	196.2	176.9	177.7
σ (MPa)	-	89	21	-99	-28	15	21	64	-62	42	-27
σ _e (MPa))	138	98	115	130	178	97	71	69	57	58

