Tutorial 5 – Deadlocks (Chapter 8)

Operating Systems Comp Sci 3SH3, Winter 2024

Prof. Neerja Mhaskar

Questions:

1. Consider the below resource allocation graph. Is the system in a deadlock state? If so, report the cycle(s) causing deadlock. If not, explain the order in which processes access the resources requested and complete execution.

No deadlock. They complete execution in P2 -> P3 -> P1 -> P4

2. Consider the below resource allocation graph. Is the system in a deadlocked state? If so, report the cycle(s) causing deadlock. If not, explain the order in which processes access the resources requested and complete execution.

It is in a deadlock state. There is a cycles. It is P1 -> P2 -> P3 -> P4 -> P1
P2 -> P3 -> P4 -> P2

3. Consider the following snapshot of a system:

	Allocation	Max	Available	Need
	ABCD	ABCD	ABCD	ABCD
P_0	0012	0012	1520	0000
P_1	1000	1750		0750
P_2	1354	2356		1002
P_3	0632	0652		0020
$P_{\mathbf{A}}$	$0\ 0\ 1\ 4$	0656		0642

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix Need? Answered above
- b. Is the system in a safe state? Yes
- c. If a request from process P₁ arrives for (0,4,2,0), can the request be granted immediately? Yes, because it's less than the work matrix and less than the max need the process requires
- 4. Consider the below resource allocation graph. Construct the corresponding wait-for graph. Is the system in deadlock? If so, provide the cycle causing deadlock.

5. Consider the following snapshot of a system at time *T*0:

Five processes P_0 through P_4 .

Three resource types A (10 instances), B (3 instances), and C (6 instances)

Snapshot at time T_0 :

	Allocation	Request	Available
	ABC	ABC	ABC
<i>P</i> 0	2 1 1	000	000
<i>P</i> 1	212	202	
<i>P</i> 2	400	0 0 1	
<i>P</i> 3	2 1 1	100	
<i>P</i> 4	002	002	

- a) Is the system in deadlocked state? If no, provide a sequence of processes satisfying the safety requirement. If yes, explain why and list the processes involved in the deadlock.
- b) Suppose process P1 makes an additional request of resource type B, the Request matrix is modified as follows:

	<u>Request</u>
	ABC
P_0	000
P_1	212
P_2	0 0 1
P_3	100
P_4	002

- c) Is the system in deadlocked state? If no, provide a sequence of processes satisfying the safety requirement. If yes, explain why and list the processes involved in the deadlock.
- 6. Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-free.
- 7. Consider the version of the dining-philosophers problem in which the chopsticks are placed at the center of the table and any two of them can be used by a philosopher. Assume that requests for chopsticks are made one at a time. Describe a simple rule for determining whether a particular request can be satisfied without causing deadlock given the current allocation of chopsticks to philosophers.