

Modelo Objeto-Relacional

Trabalho Prático nº 2

Tecnologia de Bases de Dados MIEIC - 2017/2018

Elementos do Grupo:

Andreia Rodrigues - up201404691 - <u>up201404691@fe.up.pt</u> Eduardo Leite - gei12068 - <u>gei12068@fe.up.pt</u>

Index

1. Objetivo do Trabalho	2
2. Modelo de Dados Objeto-Relacional	2
2.1 Modelo UML da Base de Dados	2
2.2 Código SQL de Criação da Base de Dados	3
2.3 Código SQL de Povoação do Modelo de Dados	4
2.4 Métodos Comuns Inseridos	4
3. Queries à Base de Dados	5
3.1 Query 1	5
3.1.1 Pergunta	5
3.1.2 Resposta	5
3.1.3 Resultados	5
3.2 Query 2	6
3.2.1 Pergunta	6
3.2.2 Resposta	6
3.2.3 Resultados	6
3.3 Query 3	7
3.3.1 Pergunta	7
3.3.2 Resposta	7
3.3.3 Resultados	7
3.4 Query 4	7
3.4.1 Pergunta	7
3.4.2 Resposta	8
3.4.3 Resultados	9
3.5 Query 5	9
3.5.1 Pergunta	9
3.5.2 Resposta	9
3.5.3 Resultados	10
3.6 Query 6	10
3.6.1 Pergunta	10
3.6.2 Resposta	10
3.6.3 Resultados	11
4. Anexos	12
4.1 Código SQL de Criação da Base de Dados	12
4.2 Código SQL de Povoação do Modelo de Dados	15
4.3 Métodos Comuns Inseridos	16

1. Objetivo do Trabalho

2. Modelo de Dados Objeto-Relacional

2.1 Modelo UML da Base de Dados

Modelo UML dos Tipos a Utilizar nas Tabelas da Base de Dados

Modelo UML das Tabelas da Base de Dados

2.2 Código SQL de Criação da Base de Dados

Refletindo o diagrama representado na secção acima, definimos os seguintes tipos para serem usados na criação das tabelas da base de dados:

- Region_t: Representa uma região do país, contém duas tabelas de referências, uma para os seus distritos e outra para os seus municípios.
- District_t: Representa um distrito do país, contém uma tabela de referências para os seus municípios e uma referência para a região onde se insere (pode ser nulo).
- DistrictsRef_tab_t: Representa uma tabela de referências para distritos para ser usada no tipo Region_t.
- Municipality_t: Representa um município, contém uma tabela de referências para as suas instalações, uma referência para o distrito a que pertence e outra para a região onde se insere.
- MunicipalitiesRef_tab_t: Representa uma tabela de referências para municípios para ser usada nos tipos Region_t e District_t.
- RoomType_t: Representa um tipo de quarto.
- Facility_t: Representa uma instalação, contém uma tabela de actividades, uma referência para o município onde se insere e uma referência para o seu tipo de auarto.
- FacilitiesRef_tab_t: Representa uma tabela de referências para instalações para ser usada no tipo Municipality_t.
- Activity_t: Representa uma actividade.
- Activities_tab_t: Representa uma tabela de atividades para ser usada no tipo Facility_t.

Foram criadas as seguintes tabelas:

- Regions
- Districts
- Municipalities
- RoomTypes
- Facilities

O código SQL de criação da base de dados e respetivos tipos a utilizar está em anexo (secção 4.1).

2.3 Código SQL de Povoação do Modelo de Dados

O código SQL de povoação do modelo de dados com a informação presente na base de dados relacional está em anexo (secção 4.2).

2.4 Métodos Comuns Inseridos

Os métodos criados com a finalidade de abstrair alguns acessos/operações que considerámos úteis para utilizar em perguntas comuns à base de dados foram os seguintes:

- GetCapacity no tipo Municipality_t: retorna a capacidade total de um município, ou seja, a soma total das capacidades das instalações pertencentes a esse município.
- GetFacilityCount no tipo Municipality_t: retorna o número total de instalações pertencentes ao município.
- GetMaxCARatio no tipo Municipality_t: rácio máximo entre a capacidade de uma instalação e o número de atividades diferentes que lá se podem realizar das instalações presentes no município.
- **DescContains(text string)** no tipo RoomType_t: retorna 'true' caso a descrição contenha a string especificada, caso contrário retorna 'false'.
- CARatio no tipo Facility_t: rácio entre a capacidade de uma instalação e o número de atividades diferentes que lá se podem realizar.

O código SQL de criação dos métodos na base de dados está em anexo (secção 4.3).

3. Queries à Base de Dados

3.1 Query 1

3.1.1 Pergunta

Which are the facilities where the room type description contains 'touros' and have 'teatro' as one of their activities? Show the id, name, description and activity.

3.1.2 Resposta

Solução 1

```
select f.id, f.name, f.roomtype.description, a.activity
from facilities f, table(f.activities) a
where
a.activity = 'teatro' and
f.roomtype.DescContains('touros') = 'true';
```

Solução 2 - Mostrando todas as atividades

```
select f.id, f.name, f.roomtype.description, a.activity
from facilities f, table(f.activities) a
where f.id
in
(
    select f.id
    from facilities f, table(f.activities) a
    where
    a.activity = 'teatro' and
    f.roomtype.DescContains('touros') = 'true'
);
```

3.1.3 Resultados

Solução 1

	∯ ID ∯ NAME		
1	940 ARENA DE ÉVORA - EX PRAÇA DE TOIROS	Praça de touros multiusos	teatro
2	957 COLISEU DE REDONDO - EX PRAÇA DE TOIROS	Praça de touros multiusos	teatro
3	916 COLISEU JOSÉ RONDÃO DE ALMEIDA-EX PRAÇA DE TOIROS	Praça de touros multiusos	teatro

Solução 2

	∯ ID ∯ NAME	ROOMTYPE.DESCRIPTION	♦ ACTIVITY
1	940 ARENA DE ÉVORA - EX PRAÇA DE TOIROS	Praça de touros multiusos	dança
2	940 ARENA DE ÉVORA - EX PRAÇA DE TOIROS	Praça de touros multiusos	música
3	940 ARENA DE ÉVORA - EX PRAÇA DE TOIROS	Praça de touros multiusos	tauromaquia
4	940 ARENA DE ÉVORA - EX PRAÇA DE TOIROS	Praça de touros multiusos	teatro
5	957 COLISEU DE REDONDO - EX PRAÇA DE TOIROS	Praça de touros multiusos	dança
6	957 COLISEU DE REDONDO - EX PRAÇA DE TOIROS	Praça de touros multiusos	música
7	957 COLISEU DE REDONDO - EX PRAÇA DE TOIROS	Praça de touros multiusos	tauromaquia
8	957 COLISEU DE REDONDO - EX PRAÇA DE TOIROS	Praça de touros multiusos	teatro
9	916 COLISEU JOSÉ RONDÃO DE ALMEIDA-EX PRAÇA DE TOIROS	Praça de touros multiusos	dança
10	916 COLISEU JOSÉ RONDÃO DE ALMEIDA-EX PRAÇA DE TOIROS	Praça de touros multiusos	música
11	916 COLISEU JOSÉ RONDÃO DE ALMEIDA-EX PRAÇA DE TOIROS	Praça de touros multiusos	tauromaquia
12	916 COLISEU JOSÉ RONDÃO DE ALMEIDA-EX PRAÇA DE TOIROS	Praça de touros multiusos	teatro

3.2 Query 2

3.2.1 Pergunta

How many facilities with 'touros' in the room type description are there in each region?

3.2.2 Resposta

```
select r.cod, r.designation, r.NUT1, Coalesce(aux.countVal, 0)
from regions r
left join
(
select r.cod, r.designation, r.NUT1, count(value(f).ID) countVal
from regions r, table(r.municipalities) m, table(value(m).facilities) f
where
value(f).roomtype.DescContains('touros') = 'true'
group by r.cod, r.designation, r.NUT1
) aux on r.cod = aux.cod
order by r.cod asc;
```

3.2.3 Resultados

	∯ COD	♦ DESIGNATION	∯ NUT1	
1	1	Norte	Continente	3
2	2	Centro	Continente	11
3	3	Lisboa	Continente	6
4	4	Alentejo	Continente	43
5	5	Algarve	Continente	1
6	6	Açores	Açores	0
7	7	Madeira	Madeira	0

3.3 Query 3

3.3.1 Pergunta

How many municipalities do not have any facility with an activity of 'cinema'?

3.3.2 Resposta

```
select count(*)
from municipalities m
where cod not in
(
select distinct m.cod
from municipalities m, table(m.facilities) f, table(value(f).activities) a
where a.activity = 'cinema'
);
```

3.3.3 Resultados

3.4 Query 4

3.4.1 Pergunta

Which is the municipality with more facilities engaged in each of the six kinds of activities? Show the activity, the municipality name and the corresponding number of facilities.

3.4.2 Resposta

Problema "Greatest n per group"

Solução 1 - Join with Group-Identifier Max-value-in-Group Subquery

```
select t1.*
from
    select a.ACTIVITY, m.COD, m.DESIGNATION, count(value(f).ID) CountValue
    from municipalities m, table(m.facilities) f, table(value(f).activities)
    group by a.ACTIVITY, m.COD, m.DESIGNATION
) t1
inner join
    select ACTIVITY, max(CountValue) MaxCountValue
    from
        select a.ACTIVITY, m.COD, count(value(f).ID) CountValue
        from municipalities m, table(m.facilities) f,
table(value(f).activities) a
       group by a.ACTIVITY, m.COD
    )
    group by ACTIVITY
) t2 on t1.ACTIVITY = t2.ACTIVITY and t1.CountValue = t2.MaxCountValue
order by t1.ACTIVITY;
```

Solução 2 - Left Join Self using join conditions

```
select t1.*
from
(
    select a.ACTIVITY, m.COD, m.DESIGNATION, count(value(f).ID) CountValue
    from municipalities m, table(m.facilities) f, table(value(f).activities)
a
    group by a.ACTIVITY, m.COD, m.DESIGNATION
)
t1
left outer join
(
    select a.ACTIVITY, m.COD, m.DESIGNATION, count(value(f).ID) CountValue
    from municipalities m, table(m.facilities) f, table(value(f).activities)
a
    group by a.ACTIVITY, m.COD, m.DESIGNATION
)
t2 ON (t1.ACTIVITY = t2.ACTIVITY AND t1.CountValue < t2.CountValue)
WHERE t2.ACTIVITY IS NULL</pre>
```

3.4.3 Resultados

		∯ COD	♦ DESIGNATION	
1	cinema	1106	Lisboa	96
2	circo	1106	Lisboa	2
3	dança	1106	Lisboa	47
4	música	1106	Lisboa	77
5	tauromaquia	210	Moura	4
6	teatro	1106	Lisboa	66

3.5 Query 5

3.5.1 Pergunta

Which are the codes and designations of the districts with facilities in all the municipalities?

3.5.2 Resposta

Solução 1 - Dupla negação, sem usar métodos

Solução 2 - Usando métodos (execução mais rápida)

```
select d.COD, d.DESIGNATION
```

```
from districts d
where d.COD not in
(
    select distinct d.COD
    from districts d, table(d.municipalities) m
    where value(m).GetFacilityCount() = 0
)
order by COD;
```

3.5.3 Resultados

	∯ COD	
1	7	Évora
2	11	Lisboa
3	12	Portalegre
4	15	Setúbal

3.6 Query 6

3.6.1 Pergunta

Add a query that illustrates the use of OR extensionsAdd a query that illustrates the use of OR extensions.

3.6.2 Resposta

Solução 1 - What is the total capacity of each Municipality? (sum of the capacity of all facilities in that municipality).

Show the municipality code, name and total capacity.

```
select m.COD, m.DESIGNATION, Coalesce(m.GetCapacity(), 0) TotalCapacity from municipalities m order by TotalCapacity desc;
```

Solução 2 - In each municipality, what is the facility with the best capacity/activity ratio, 2 decimals.

```
select m.COD, value(f).ID, round(value(f).CARatio(), 2) MaxCARatio
from municipalities m, table(m.facilities) f
where value(f).CARatio() = m.GetMaxCARatio()
order by m.COD;
```

3.6.3 Resultados

Solução 1

	∯ COD		♦ TOTALCAPACITY
1	1106	Lisboa	77339
2	1312	Porto	16374
3	1416	Santarém	13993
4	1207	Elvas	11402
5	1304	Gondomar	11086
6	811	Portimão	11013
7	308	Guimarães	10469
8	1512	Setúbal	9691
9	314	Vizela	8339
10	1507	Montijo	8232
11	705	Évora	8045
12	605	Figueira da Foz	7914
13	210	Moura	7414
14	603	Coimbra	7230
15	1105	Cascais	7219
16	1308	Matosinhos	7206
17	1317	Vila Nova de Gaia	7088
18	1409	Coruche	6448
19	1313	Póvoa de Varzim	6197
20	1403	Almeirim	5758
21	1214	Portalegre	5534
22	1506	Moita	5353

(...)

Solução 2

	♦ COD	♦ VALUE(F).ID	
1	101	280	171,75
2	102	281	251,5
3	103	285	69,25
4	104	227	200
5	105	303	305
6	106	211	50
7	107	72	250
8	108	306	127
9	109	229	469,33
10	110	308	166
11	111	312	122
12	113	230	230,33
13	114	313	120
14	115	315	1800
15	116	233	473,5
16	117	317	80,75
17	118	318	58
18	201	972	2000
19	203	974	50
20	204	975	60,75
21	205	978	3822
22	206	980	84,5

(...)

4. Anexos

4.1 Código SQL de Criação da Base de Dados

```
(
    COD NUMBER (4,0),
    DESIGNATION VARCHAR2 (50 BYTE),
    REGION ref Region t
);
-- DistrictsRef tab t
create or replace type DistrictsRef tab t as table of ref District t;
-- Municipality
create or replace type Municipality t as object
    COD
          NUMBER (4,0),
    DESIGNATION VARCHAR2 (50 BYTE),
    DISTRICT ref District t,
   REGION ref Region_t
);
-- MunicipalitiesRef tab t
create or replace type MunicipalitiesRef_tab_t as table of ref
Municipality t;
-- RoomType
create or replace type RoomType t as object
    ROOMTYPE NUMBER (4,0),
    DESCRIPTION VARCHAR2 (50 BYTE)
);
-- Facility
create or replace type Facility t as object
    ID number (4,0),
    NAME varchar2(80),
    CAPACITY number (8,0),
    ROOMTYPE ref RoomType t,
    ADDRESS varchar2(80),
    MUNICIPALITY ref Municipality t
);
-- FacilitiesRef tab t
create or replace type FacilitiesRef tab t as table of ref Facility t;
-- Activity
create or replace type Activity t as object
   REF varchar2(20),
    ACTIVITY varchar2(20)
);
-- Activities tab t
```

```
create or replace type Activities tab t as table of Activity t;
-- Region Districts
alter type Region t
add attribute (DISTRICTS DistrictsRef tab t) CASCADE;
-- Region Municipalities
alter type Region t
add attribute (MUNICIPALITIES MunicipalitiesRef tab t) CASCADE;
-- District Municipalities
alter type District t
add attribute (MUNICIPALITIES MunicipalitiesRef tab t) CASCADE;
-- Municipality Facilities
alter type Municipality_t
add attribute (FACILITIES FacilitiesRef tab t) CASCADE;
-- Facility Activities
alter type Facility_t
add attribute (ACTIVITIES Activities_tab_t) CASCADE;
_____
----- Table Creation -----
_____
-- Regions
create table Regions of Region_t
   nested table Districts store as Region Districts,
   nested table Municipalities store as Region Municipalities;
-- Districts
create table Districts of District t
   nested table Municipalities store as District Municipalities;
-- Municipalities
create table Municipalities of Municipality t
   nested table Facilities store as Municipality Facilities;
-- RoomTypes
create table RoomTypes of RoomType t;
-- Facilities
create table Facilities of Facility t
   nested table Activities store as Facility Activities;
```

4.2 Código SQL de Povoação do Modelo de Dados

```
----- Data Migration -----
-- Regions
delete from Regions;
insert into Regions (COD, DESIGNATION, NUT1)
select r.COD, r.DESIGNATION, r.NUT1
from gtd8.Regions r;
-- Districts
delete from Districts;
insert into Districts (COD, DESIGNATION, REGION)
select d.COD, d.DESIGNATION, (select ref(r) from Regions r where r.COD =
d.REGION)
from gtd8.Districts d;
-- Municipalities
delete from Municipalities;
insert into Municipalities (COD, DESIGNATION, DISTRICT, REGION)
select m.COD, m.DESIGNATION, (select ref(d) from Districts d where d.COD =
m.DISTRICT), (select ref(r) from Regions r where r.COD = m.REGION)
from gtd8.Municipalities m;
-- RoomTypes
delete from RoomTypes;
insert into RoomTypes (ROOMTYPE, DESCRIPTION)
select rt.ROOMTYPE, rt.DESCRIPTION
from gtd8.RoomTypes rt;
-- Facilities
delete from Facilities;
insert into Facilities (ID, NAME, CAPACITY, ROOMTYPE, ADDRESS, MUNICIPALITY)
select f.ID, f.NAME, f.CAPACITY, (select ref(rt) from RoomTypes rt where
rt.ROOMTYPE = f.ROOMTYPE), f.ADDRESS, (select ref(m) from Municipalities m
where m.COD = f.MUNICIPALITY)
from gtd8. Facilities f;
_____
----- Nested Migration -----
```

```
-- Facilities Activities
update Facilities f
set f.Activities =
cast(multiset(select a.ref, a.activity from gtd8.Activities a join gtd8.Uses
u on a.ref = u.ref where u.id = f.id) as Activities tab t);
-- Municipalities Facilities
update Municipalities m
set m.Facilities =
cast(multiset(select ref(f) from Facilities f where m.cod =
f.municipality.cod) as FacilitiesRef tab t);
-- Districts Municipalities
update Districts d
set d.Municipalities =
cast(multiset(select ref(m) from Municipalities m where d.cod =
m.district.cod) as MunicipalitiesRef tab t);
-- Regions Districts
update Regions r
set r.Districts =
cast(multiset(select ref(d) from Districts d where r.cod = d.region.cod) as
DistrictsRef_tab_t);
-- Regions Municipalities
update Regions r
set r.Municipalities =
cast(multiset(select ref(m) from Municipalities m where r.cod = m.region.cod)
as MunicipalitiesRef tab t);
```

4.3 Métodos Comuns Inseridos

----- Function Declaration ----
alter type Municipality_t
add member function GetCapacity return integer cascade;

alter type Municipality_t
add member function GetFacilityCount return integer cascade;

alter type Municipality_t
add member function GetMaxCARatio return float cascade;

```
alter type RoomType t
add member function DescContains(text string) return string cascade;
alter type Facility t
add member function CARatio return float cascade;
_____
----- Function Definition -----
_____
create or replace type body Municipality t as
   member function GetCapacity return integer is
   totalCapacity integer;
   begin
   select sum(f.capacity) into totalCapacity
   from facilities f
   where f.municipality.cod = self.cod;
   return totalCapacity;
   end GetCapacity;
   member function GetFacilityCount return integer is
   facilityCount integer;
   begin
   select count(*) into facilityCount
   from municipalities m, table(m.facilities) f
   where m.cod = self.cod;
   return facilityCount;
   end GetFacilityCount;
   member function GetMaxCARatio return float is
   bestRatio float;
```

```
begin
    select max(value(f).CARatio()) into bestRatio
    from municipalities m, table(m.facilities) f
    where m.COD = self.COD
    group by COD;
    return bestRatio;
    end GetMaxCARatio;
end;
create or replace type body RoomType_t as
   member function DescContains(text string) return string is
    expression varchar(50);
   begin
        expression := '%' || text || '%';
        if description like expression then
            return 'true';
        else
            return 'false';
        end if;
    end DescContains;
end;
create or replace type body Facility t as
   member function CARatio return float is
    activityCount integer;
   begin
    select count(*) into activityCount
    from facilities f, table(f.activities) a
    where f.ID = self.ID;
    if activityCount = 0 then
        return 0;
    else
        return self.CAPACITY/activityCount;
    end if;
    end CARatio;
```

end;