

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences
Third Year - Semester I Examination – June/July 2018

MAT 3203 - REGRESSION ANALYSIS

Time: Two(02) hours

Answer All Questions.

Statistical tables and calculators will be provided.

Unless otherwise specified, symbols have their usual meaning.

1. a) Suppose $Y_1, Y_2, ..., Y_n$ are a set of uncorrelated random variables with common variance σ^2 and $E(Y_i) = \widehat{\beta_0} + \widehat{\beta_1} x_i$ for I = 1, 2, ..., n where $\widehat{\beta_0}$ and $\widehat{\beta_1}$ are unknown parameters and the x_i 's are known constants.

Using the least square method, obtain the equations for $\widehat{\beta_0}$ and $\widehat{\beta_1}$.

(35 marks)

b) Consider the summary quantities obtained from a regression model derived for a chemical process, where the yield of the process (Y) is assumed to be related to the reaction temperature (X). Assume that $y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ regression model is appropriate, where $\epsilon_i \sim N(0, \sigma^2)$.

In the usual notation, n = 20, $\sum Y_i = 50$, $\sum X_i = 100$, $\sum Y_i^2 = 134.84$, $\sum X_i^2 = 509.12$, and $\sum X_i Y_i = 257.66$.

i. Obtain values for $\widehat{\beta_0}$ and $\widehat{\beta_1}$, and state the estimated regression function.

ii. Show that Sum of Squares of Errors (SSE) can be written as $(S_{YY} - \beta_1 S_{XY})$. Hence, find the coefficient of determination and interpret your answer.

- iii. Obtain 95% confidence interval for $\widehat{\beta_1}$.
- iv. Can the hypothesis H_0 : $\widehat{\beta_1} = 0.6$ be accepted?

(65 marks)

2. a) Briefly explain multiple linear regression.

(10 marks)

b) Consider the model $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$, for the following data set:

Y	x_1	x_2
293	1.6	851
230	15.5	816
172	22	1058
91	43	1201
113	33	1357
125	40	1115

Complete the following ANOVA table:

Source	DF	SS	MS	F
Regression	······	29951.4		*********
Residual				
Total		30245.3		

Using above details, construct the F test to check linear association between X and Y with $\alpha = 0.05$. (50 marks)

- c) Considering the following simple linear regression output which was obtained from the MINITAB software, answer the following questions.
 - i. Write down the regression equation and interpret the coefficients.
 - . ii. Briefly interpret the MINITAB output.

(40 marks)

Predictor Coef SE Coef T P Constant 389.19 23.81 16.34 0.000 Lat -5.9776 0.5984 -9.99 0.000 S = 19.12 R-Sq = 68.0% R-Sq(adj) = 67.3%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 36464
 36464
 99.80
 0.000

 Residual Error
 47
 17173
 365

 Total
 48
 53637

3. A study was conducted on the effect of temperature on the yield of a chemical process. The following data (in coded form) were collected:

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
Y	1		4	7	10	8	9	13	14	13	18

- i. Find the summary statistics S_{YY} , S_{XX} , S_{XY} , \overline{X} and \overline{Y} .
- ii. In the usual notation, use $\sum Y_i^2$, $\sum X_i^2$ and $\sum XY$ to find the matrix X'X and vector X'Y. Write the normal equations in matrix form.
- iii. Estimate the parameters, and find the dispersion matrix of the parameter vector.
- iv. Find the Sum of Squares of Error (SSE), and Sum of Squares of Regression (SSR), and hence, find the coefficient of determination.
- v. Prepare the ANOVA table and interpret the result. (100 marks)
- 4. a) i. Write down the three procedures of model selection. (15 marks)
 - ii. Briefly explain one procedure mentioned in part (a) with steps. (15 marks)

iii. Explain the uses of R^2 , R^2_{adj} , MSE and C_p statistics in Model selection procedure.

(20marks)

b) For a multiple regression model with 4 independent variables, the following statistics for variable selection were obtained:

Model	Variable	R^2	R_{adj}^2	C_p	\sqrt{MSE}	1	2	3	4
A	1	67.5	64.5	138.7	8.9639				X
В	1	68.6	63.6	142.5	9.0771		X		
С	1	53.4	49.2	202.5	10.727	X			
D	1	28.6	22.1	315.2	13.278			X	
Е	2	97.9	97.4	2.7	5.4063	X	X		
F	2	98.2	96.7	5.5	2.7343	X			X
G	2	93.5	92.2	22.4	4.1921			X	X
Н	2	84.7	81.6	62.4	6.4455		X	X	
I	2	68.0	61.1	138.2	9.3214		X		X
J	3	98.2	97.6	3.0	2.3087	X	X		X
K	3	98:2	97.6	3.0	2.3121		X	X	X
L	3	98.1	97.5	3.5	2.3766	X		X	X
M	3	97.3	96.4	7.3	2.8638	X	X	X	
N	4	98.2	97.4	5.0	2.4460	X	X	X	X

Select the best one variable, two variable and three variable models and justify your answer. Also select the best among these models.

(50 marks)

END