#### FOAMtastic: Polystyrene Repurposing to Reduce Landfill Waste

Group 14: Thomas Lee, Heidi Jiang, Vivian Su, Calvin Huang

Supervisor: Xianshe Feng

University of Waterloo Chemical Engineering Capstone 2025

#### References:

- [1] J. Davis, "Styrofoam Facts Why You May Want To Bring Your Own Cup," *SEJ*, Apr. 10, 2019. https://www.sej.org/publications/backgrounders/styrofoam-facts-why-you-may-want-bring-your-own-cup
- [2] Baleen Group, "CIF 291 Town of Markham Polystyrene Densifier," May 2012.
- [3] M. R. Reed, E. R. Belden, N. K. Kazantzis, M. T. Timko, and B. Castro-Dominguez, "Thermodynamic and economic analysis of a deployable and scalable process to recover Monomer-Grade styrene from waste polystyrene," *Chemical engineering journal*, pp. 152079–152079, May 2024, doi: https://doi.org/10.1016/j.cej.2024.152079.
- [4] NIST, "ThermoData Engine (TDE)," *trc.nist.gov*, 2009. https://trc.nist.gov/tde.html (accessed Feb. 28, 2025).
- [5] aspentech, "Aspen Plus | Leading Process Simulation Software | AspenTech," www.aspentech.com. https://www.aspentech.com/en/products/engineering/aspen-plus



# FOAMtastic

# Polystyrene Repurposing to Reduce Landfill Waste



Operational Cost Distribution (%)

8,533,000

2,113,000

Group 14: Calvin Huang, Heidi Jiang, Thomas Lee, Vivian Wan Ping Su Department of Chemical Engineering

### Introduction

#### **Problem Statement**

Polystyrene (PS) is a durable and versatile plastic that can take over 500 years to degrade, which presents environmental risks due to its limited recyclability and potential to release harmful toxins [1]. With less than 10% being recycled, the majority accumulates in landfills. This project addresses these challenges by developing a pyrolysis process to convert PS waste into feedstock.

#### Context

PS is classified as #6 on the plastic resin identification scale, making it one of the most difficult plastics to recycle despite its common use in takeout containers and packaging.

Using pyrolysis, a method that thermally degrades plastic anaerobically, this recycling process will:

Divert municipal PS waste from entering landfills

Table 1: 2013 City of Markham PS Densifier project [2]

| Polystyrene Collected | Revenue (\$) | Profit/Loss (\$) |
|-----------------------|--------------|------------------|
| 2100 tonnes/year      | 3,029.61     | (53,036)         |

2. Develop a novel solution that can operationally repurpose PS waste into valuable products



#### Constraints

Process capacity of 2100 tonnes/yr



Yield 98% purity of all products



Improve circularity



## Sustainable Development Goals



SDG 12: Responsible Consumption and Production

- Reducing virgin material use
- Addresses single use nature and low recyclability
- Improve waste management



SDG 13: Climate Action

- Diversion of waste from landfills and incineration
- Reduce greenhouse gas emissions
- Minimize energy use and emissions

# Process Development & Tools

#### **Process Development**

Literature review on PS/plastic pyrolysis

Develop process diagram

**Preliminary** Analysis

Simulate

Validate model with literature

### **Engineering Tools**

- Aspen Plus v14 for process simulation of shortcut and waspentech rigorous design of the process
- Microsoft Excel for cost analysis and general calculation Python for model validation using Matplotlib, NumPy, SciPy, and pandas

# Process Flow Diagram & Analysis



100 kg/hr N2 257 kg/hr PS

Reactor

N2 and PS are the feed of the reactor for the pyrolysis process. B1 (heat exchanger) cools column: the reactor output and . Toluene ensures the input of the distillation columns are

Table 2: Key Analysis Results based on shortcut method design

Toluene

- Pumps
- at the set temperature.

**Product** 

Uses

## Distillation Columns

Fixed conversion reactor

Sieve tray columns used to separate the products of the process. Separations in each

- 2. Alpha Methylstyrene 3. Ethylbenzene
- 4. Cumene and Styrene

### 4 Shortcut Method

Uses a simplified distillation model (DSTWU) for quick estimates of the process using minimal information. Model provides estimates of key parameters such as

reflux ratios and feed tray location.

Ethylbenzene

#### results of key parameters from the shortcut method as starting values to finetune column operating

5 Rigorous Method

distillation model

(RadFrac), and the

Uses a more complex

NRTL thermodynamic model

Steady-state

conditions for a more accurate process. Styrene Cumene COL 4 COL 4

#### COL 1 COL 2 **Production Location** COL 3 281 387 1343 158 Mass (tonnes/year) 99.97% 98.02% **Product Purity** 99.71% 99.61% 99.97% New PS, Paint, resins, coatings, Phenol, Paint solvent, Inks, dyes, rubber rubbers synthetic rubbers perfume, new PS acetone

## Thermodynamic Model Validation

#### NRTL (Non-Random Two-Liquid)

Thermodynamic model chosen for modelling vapor-liquid equilibrium (VLE) of the process:

Effective at modelling non-ideal interactions between hydrocarbons like styrene/toluene [3]

Alpha Methylstyrene

- VLE data obtained from NIST ThermoData Engine [4] and NRTL Aspen Plus Simulation [5]
- Simulated temperatures very closely reflect literature values



Figure 1: NIST ThermoData Engine Dataset

Styrene-Ethylbenzene Binary System (NRTL), P=0.1 bar

Figure 2: NRTL Thermodynamic Model Dataset

0.13% Max. error across vapor/liquid composition for both datasets

 $R^2 > = .995$ Fitted coefficients o VLE data used in temperature simulation

## Cost Analysis

Revenue Distribution by Product (%)

Total Equipment Cost (\$)

**Total Operational Cost** 



# **Sustainability Linearity Analysis**

7,390,000

6,420,000

Payback Period: 4.1 years

Revenue

**Profit** 



A linearity analysis was performed to evaluate a product's lifecycle from raw material to end of life. The developed pyrolysis process, improved all aspects of the recovery chain

### Conclusion

- The process effectively processes 100% of annual polystyrene waste collected by the City of Markham
- The process improves the material circularity by improving its recyclability while yielding 98% purity of all products
- The process has a payback period of 4.1 years with a yearly profit of \$2,113,000

#### **Future Direction**

- Analysis on impact of CaO catalysts to reduce energy expenditure
- Operational cost reduction through distillation column parameter optimization

# Acknowledgments & References

We want to thank our supervisor, Dr. Xianshe Feng, for technical guidance and the Continuous Improvement Fund for providing polystyrene recycling data on the City of Markham.

