JEE-ADVANCED-2014-P2-Model

PHYSICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 10)	Questions with Single Correct Choice	3	-1	10	30
Sec – II(Q.N : 11 – 16)	Questions with Comprehension Type (3 Comprehensions – 2 +2+2 = 6Q)	3	-1	6	18
Sec – III(Q.N : 17 – 20)	Matrix Matching Type	3	-1	4	12
(8)	Total	- (20	60

CHEMISTRY:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec - I(Q.N : 21 - 30)	Questions with Single Correct Choice	3	-1	10	30
Sec – II(Q.N : 31 – 36)	Questions with Comprehension Type (3 Comprehensions – 2 +2+2 = 6Q)	3	-1	6	18
Sec – III(Q.N : 37 – 40)	Matrix Matching Type	3	-1	4	12
	Total	Y. CZ		20	60

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 41 – 50)	Questions with Single Correct Choice	3	-1	10	30
Sec – II(Q.N : 51 – 56)	Questions with Comprehension Type (3 Comprehensions – 2 +2+2 = 6Q)	3	-1	6	18
Sec – III(Q.N : 57 – 60)	Matrix Matching Type	3	-1	4	12
	Total			20	60

PART-II_CHEMISTRY

Max Marks: 60

Section-1 (One or more options correct type)

This section contains 10 Multiple Choice questions. Each Question has Four choices (A), (B), (C) and (D). Out of Which **Only One is correct**

21. Which of the following expressions is not true?

A)
$$\lceil H^+ \rceil = \lceil OH^- \rceil = \sqrt{K_w}$$
 FOR A NEUTRAL SOLUTION

B)
$$\lceil H^+ \rceil > \sqrt{K_w}$$
 and $\lceil OH^- \rceil < \sqrt{K_w}$ for an acidic solution

C)
$$\lceil H^+ \rceil < \sqrt{K_w}$$
 and $\lceil OH^- \rceil > \sqrt{K_w}$ for an alkaline solution

D)
$$[H^+] = [OH^-] = 10^{-7}M$$
 for a neutral solution at all temperature

- 22. The following equilibrium is established when hydrogen chloride is dissolved in acetic acid. $HCl + CH_3COOH \rightleftharpoons Cl^{-1} + CH_3COOH_2^+$, The set that characterizes the conjugate acid-base pairs is :
 - A) (HCl, CH_3COOH) and $(CH_2COOH_2^+, Cl^-)$

B)
$$(HCl, CH_3COOH_2^+)$$
 and (CH_3COOH, Cl^-)

C)
$$(CH_3COOH_2^+, HCl)$$
 and (Cl^-, CH_3COOH)

D)
$$(HCl,Cl^{-})$$
 and $(CH_3COOH_2^+,CH_3COOH)$

	~ 1 1.			
Sri	Chaitany	∕a IIT	Acad	lemv

27-12-15_Sr.IPLCO_JEE-ADV_(2014_P2)_RPTA-16_Q'Paper

- A weak acid HA has $K_a = 10^{-6} M^2$. What would be the molar ratio of this acid and 23. its salt with strong base so that pH of the buffer solution is 5?
 - A) 1
- B) 2
- C) 10
- D) 1/10
- The correct order of increasing $[H_3O^+]$ in the following aqueous solution is 24.
 - A) $0.01M H_2S < 0.01M H_2SO_4 < 0.01M NaCl < 0.01M NaNO_3$
 - B) $0.01M NaCl = 0.01M NaNO_3 < 0.01M H_2S < 0.01M H_2SO_4$
 - C) $0.01M H_2S < 0.01M NaNO_3 = 0.01M NaCl < 0.01M H_2SO_4$
 - D) $0.01M H_2S < 0.01M NaNO_3 < 0.01M NaCl < 0.01M H_2SO_4$
- When equal volumes of the following solutions are mixed, precipitation of 25. $AgCl(K_{sp} = 1.8 \times 10^{-10} M^2)$ will occur only with

 - A) $10^{-4} M (Ag^{+}) and 10^{-4} M (Cl^{-})$ B) $10^{-5} M (Ag^{+}) and 10^{-5} M (Cl^{-})$

 - C) $10^{-6}M(Ag^{+})$ and $10^{-6}M(Cl^{-})$ D) $10^{-10}M(Ag^{+})$ and $10^{-10}M(Cl^{-})$

Sec: Sr. IPLCO

space for rough work

26. $A_2B_3(g)$ is injected suddenly into an evacuated rigid container shown below, which attained equilibrium after some time. What is the percentage dissociation of A_2B_3 at equilibrium? $(P_{bar} = 1atm)$ (T=constant)

- 27. In which of the following acid-base titration, *pH* is greater than 8 at the equivalence point?
 - A) Acetic acid versus ammonia
 - B) Acetic acid versus sodium hydroxide
 - C) Hydrochloric acid versus ammonia
 - D) Hydrochloric acid versus sodium hydroxide

- A solution is saturated with respect to $SrCO_3$ and SrF_2 . The CO_3^2 was found to 28. be 1.2×10^{-3} M. The concentration of F^{-1} in the solution would be:
 - A) $1.3 \times 10^{-3} M$
- B) $2.6 \times 10^{-2} M$ C) $3.7 \times 10^{-2} M$ D) $5.8 \times 10^{-7} M$

(Given: $K_{sp}(SrCO_3) = 7.0 \times 10^{-10} M^2$, $K_{sp}(SrF_2) = 7.9 \times 10^{-10} M^3$).

In a 1.0 L aqueous solution when the reaction 29.

 $2Ag_{(aq)}^+ + Cu_{(s)} \rightleftharpoons Cu_{(aq)}^{2+} + 2Ag_{(s)}$, reaches equilibrium, $\left[Cu^{2+}\right] = xM$, $\left[Ag^{1+}\right] = yM$

If volume of solution is doubled by adding water, then at equilibrium

- A) $\left[Cu^{2+}\right] = \frac{x}{2}M, \left[Ag^{+}\right] = \frac{y}{2}M$ B) $\left[Cu^{2+}\right] > \frac{x}{2}M, \left[Ag^{+}\right] > \frac{y}{2}M$
- C) $\left[Cu^{2+}\right] < \frac{x}{2}M, \left[Ag^{+}\right] > \frac{y}{2}M$ C) $\left[Cu^{2+}\right] < \frac{x}{2}M, \left[Ag^{+}\right] < \frac{y}{2}M$

 $I_2 + I^- \Longrightarrow I_3^-$ 30.

> This reaction is set-up in aqueous medium. We start with 1 mol of I_2 and 0.5 mol of I^- in 1 L flask. After equilibrium is reached, excess of $AgNO_3$ gave 0.25 mol of yellow ppt. Equilibrium constant (K_c) is

- A) 1.33
- B) 2.66
- C) 2.00
- D) 3.00

Sec: Sr. IPLCO

space for rough work

Section-2 (Paragraph Type)

This section contains 3 paragraphs each describing theory, experiment, data etc. Six questions relate to three paragraphs with two questions on each paragraph. Each question pertaining to a particular **paragraph** should have only one correct answer among the four choices A, B, C and D.

Paragraph For Questions 31 & 32

Dehydration of salts is an important class of heterogeneous reactions. The salt hydrates during dehydration often dissociates in steps to form a number of intermediate hydrates according to the prevailing pressure of moisture in contact with the solid hydrates. Thus copper sulphate pentahydrate (solid)on dissociation yields trihydrates(solid), monohydrates(solid) and then the anhydrous salt(solid) in the above order as follows:

31. The equilibrium constant K_p in the unit of $(mm)^2$ for the equilibrium between pentahydrate and trihydrate is

A) 7.8

B) 60.84

C) 31.36

D) 5.6

	~ 1 1.			
Sri	Chaitany	∕a IIT	Acad	lemv

27-12-15_Sr.IPLCO_JEE-ADV_(2014_P2)_RPTA-16_Q'Paper

- The ratio of equilibrium constant of equilibrium between pentahydrate and 32. trihydrate and equilibrium between trihydrate and monohydrate is
 - A) 1.9
- B) 2.9
- C) 8.6
- D) 5.6

Paragraph For Questions 33 & 34

- 1.0 litre of solution which was in equilibrium with solid mixture of AgCl and Ag_2CrO_4 was found to contain 1×10^{-4} moles of Ag^+ ions, 1.0×10^{-6} moles of $Cl^$ ions and 8.0×10^{-4} moles of CrO_4^{2-} ions. Ag^+ ions are added slowly to the above mixture (keeping volume constant)till 8.0×10^{-7} moles of AgCl got precipitated.
- Find the $\lceil Ag^{1+} \rceil$ left in the solution after precipitation of AgCl? 33.
 - A) $15 \times 10^{4-} M$ B) $5 \times 10^{4-} M$ C) $10^{4-} M$ D) $10^{3-} M$

- How many moles of Ag_2CrO_4 were precipitated. 34.
 - A) 7.68×10^{-4} moles

B) 7.68×10^{-3} moles

C) 3.20×10^{-5} moles

D) 3.20×10^{-6} moles

Paragraph For Questions 35 & 36

A solution contains a mixture of $Ag^{+}(0.1M)$ and $Hg_{2}^{2+}(0.10M)$ which are separated by selective precipitation.

$$(K_{SPAgI} = 8.5 \times 10^{-17} M^2; K_{sp} Hg_2 I_2 = 2.5 \times 10^{-26} M^3)$$

Sec: Sr. IPLCO

space for rough work

Sri Chaitanya IIT Academy

27-12-15_Sr.IPLCO_JEE-ADV_(2014_P2)_RPTA-16_Q'Paper

- 35. Calculate maximum concentration of iodide ion to be added from outside at which one of them gets precipitated almost completely.
 - A) $8.5 \times 10^{-16} M$
- B) $5 \times 10^{-13} M$
- C) $1.7 \times 10^{-4} M$
- D) $8.5 \times 10^{-17} M$
- 36. What % age of that metal ion is precipitated?
 - A) 0.17%
- B) 1.7%
- C) 99.83%
- D) 99.17%

Section-3 (Matching List Type)

This section contains four questions, each having two matching lists (List-I). The options for the **correct match** are provided as (A), (B),(C) and (D) out of which **ONLY ONE** is correct.

37. Match the following

(Condition for the reaction to be favoured in forward direction)

COLUMN - I

- (A) $CO_2(g) + H_2O(l) \to H_2CO_3(aq) : \Delta H = -10kj / mol$
- (B) $CO(g) + 2H_2(g) \rightarrow CH_3OH(g) : \Delta H = -91kj / mol$
- (C) $N_2O_4(g) \rightleftharpoons 2NO_2(g); \Delta H = 57.2kJ / mol$
- (D) $N_2(g) + O_2(g) \to 2NO(g); \Delta H = 90 \text{ kJ/mol}$

COLUMN – II

- (p) Low temperature
- (q) High temperature
- (r) Low pressure
- (s) High pressure

- A) A-p,s;B-s;C-q,r;D-q
- B) A-p,s;B-s;C-q,r;D-q,r
- C) A-p;B-p,s;C-q;D-q
- D) A-p,s;B-p,s;C-q,r;D-q

38. Match the following

COLUMN - I

COLUMN - II

(A) NH_4NO_3

 $(p) pH = \frac{1}{2} (pK_w - pK_b - \log c)$

(B) NaCN

(q) $pH = \frac{1}{2} (pK_w + pK_a + \log c)$

(C) Acidic buffer

(r) $pOH = pK_b + \log \frac{[Salt]}{[Base]}$

(D) Basic buffer

(s) $pH = pK_a + \log \frac{[salt]}{[Acid]}$

A) A-p;B-q;C-s;D-r

B)A-q;B-s;C-r;D-p

C) A-p;B-q;C-r;D-s

D) A-q;B-p;C-s;D-r

Sri	Chaitany	ra IIT	Academy

27-12-15_Sr.IPLCO_JEE-ADV_(2014_P2)_RPTA-16_Q'Paper

39. Match the following

COLUMN-I

COLUMN - II

(A) NH_4Cl in water

- (p) Neutral solution which doesnot undergo hydrolysis
- (B) CH₃COONa in water
- (q) Cationic hydrolysis

(C) NH_4CN in water

(r) Anionic hydrolysis

(D) NaCl in water

(s) Both cationic and anionic hydrolysis

A) A-r;B-q;C-s;D-p

B) A-q;B-r;C-p;D-s

C) A-r;B-q;C-p;D-s

D) A-q;B-r;C-s;D-p

40. Match the Following:

P = equilibrium total pressure, Initial mole = 1, x = Degree of dissociation

Column I

Column II

$$(\mathbf{A}) N_2 O_{4(g)} \Longrightarrow 2NO_{2(g)}$$

(P)
$$K_p = \frac{4x^2P}{1-x^2}$$

(B)
$$PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$$

$$(Q) K_p = \frac{4P^3}{27}$$

(C)
$$NH_2COONH_{4(s)} \Longrightarrow 2NH_{3(g)} + CO_{2(g)}$$

(R)
$$K_p = K_c$$

$$(D) H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$$

(S)
$$K_p = K_c.RT$$

Sec: Sr. IPLCO

space for rough work