Last lecture;

$$H^{q}(X, \mathbb{R}) = H^{q}_{uR}(X) := H^{q}(\Gamma(X, \delta))$$

$$A' = (A^{\circ} \stackrel{\checkmark}{\rightharpoonup}) A^{1} \stackrel{\checkmark}{\rightharpoonup} - - - - 2A^{n} - - > 0)$$

· X complex manifold

E/X holomorphic vector bulk

mo E shoof of holonorphiz

rultions of E

· Compute Hq(X, E) Via

Dolbemett vesslution

 $A^{0.4}(E) = 5heaf of 5mooth 50ctions$ of $S_{X}^{0.4} \otimes E$ $A^{0.0}(E) \xrightarrow{E} A^{0.1}(E) \xrightarrow{JE} A^{0.1}(E) A$

 \overline{D} -Poincaré lemma => $\Delta''(F)$ rosolvtion of E

Thm; $H^{a}(X, E) \cong H^{a}(\Gamma(X, A^{a}(E)))$ Representations

Proved us before, i.e., for $H^{a}(X, B) \cong H^{a}(X)$

4. Lompurison with singular volumologn

Thm: X localy contractible

topological space.

Thori Hay (X.Z) = Ha (X.Z)

Idon; Lonsidor Proshoat on X

UI -> C(U.Z) singular

cochain canplex

resolution of Z'

(can be mule precise)

Corkdo Ahan); X smooth manifold

Thoni tring (XIA) = Han (X)

Lecture 6 : Hurmonic forms

1. The Holye ster Olevator

. X comput smooth manifold

g Riemannian metric on X

(only went) Symmetric, non-digoneraly

metrics (-i.) on Dx.M

· Assume (X, y) oriented

VOIX= volume form

Then: L'-metric on A'(X)

(d.B) Lz:= SLd.B) VOIX

d.BEA"(X)

mme (A'(X), L·,·)Li) Pro-Hilbert space

Lnot complete)

DFn; (Holy: Steen spareton)

$$X := p^{-1}om : \Omega_X \xrightarrow{X} \Omega_X^{u-k}$$

ison. of Vector bundles

· can be mule explicit in

Local coordinates (massy, signs)

Lemma; (i) $(d,\beta)_{L^2} = \int_X d\Lambda \star \beta$

for 44 d. BEA (X)

(ii)
$$*^2 = (-1)^{k(u-k)}$$

Proof: (i) (d.B). Volx = d/+B

(i) d1×B = (d.B) volx = (+d. *B) volx

$$(d, \beta)$$
 $vol_{x} = d \wedge x \beta$

extend to

Hermitian metric

2. Formul aliant of dDfn; $d^*: A^{u}(x) \longrightarrow A^{v-1}(x)$ $d^*= [-1]^{v} *^{-1} d^{v} *$

(mades souso even if X ust compact)

Lemmi; (d. d*B) [2 = (UL, B) [2]

For au ZEA (X), BEAK(X)

Proof; U(1/+B) = Ud/+B+(-1) d/U+B

 $= \sum_{x} (Ja, \beta)_{L} = \int_{x} Jan \times \beta = (-1)^{x} \int_{x} Jn dx \beta$ $= (Jan \times \beta)_{L} = (Jan \times \beta)_{L}$

Rmu: If n even, then $d^* = (-1) \cdot * \circ d \circ *, \quad sin : *^2 = (-1)^2$

3. Formul adjoints of D, D

$$\mathcal{L} = \mathcal{D} + \mathcal{D}$$
, $\mathcal{D}: \mathcal{L}''(X) \longrightarrow \mathcal{L}'(X)$

$$\overline{\partial} = d$$
 on $f^{n,n-n}(X)$, $n=dim X$

where
$$K_X := \Omega_X = \Lambda^n \Omega_X^{1.0}$$

holomorphic Vector bundle

$$\underline{pfn:}(i) L^2 - metric on A^{0.9}(E) \\
\underline{cd.B} = \int (d.B) Volx$$

(ii)
$$\overline{\partial}_{E}^{*}$$
; $A^{0,1}(E) \longrightarrow A^{0,(q-1)}(F)$

Lem: DE formal adjoint of DE

EXEVLISO

4. The Laplacian and hurmonic forms

Dfs: Di= dod + dod; A (x) -> A (x) similarly 15, Do, 150

Fult: Ker Du = UEI do Werd*

(5imilmly for DD, AJ, AJE)

Prosf; USU alimation

(d, D, d) [2= (dd, dd) [2+ (dxd, dxd) [2]

Mfn: $\lambda \in A^{\kappa}(x)$ (Δ_{λ} -) humon. λ if $\Delta_{\lambda}(\lambda)=0$ (β -) $\lambda d=\lambda d=0$

Donato MKCAK(X) 5065PULO 07 harmonic Forms

Deop fact: (i) $A^{k}(X) = \mathcal{Y}^{k} \oplus \mathcal{J}(A^{k}(X))$ (ii) $\lim_{x \to \infty} \mathcal{Y}^{k} < \infty$

Theorem (Hodge); X compact
complex manifold. Then;

(i) $M' \xrightarrow{\sim} H'(X, \underline{C}) \cong H'_{ir}(X)$ $d \longrightarrow [a]$

(ii) E holomorphic vector bundle on x $y^{p,a}(E):=xer \Delta_{\overline{D}E} \xrightarrow{\sim} H^{a}(X,E)$ d $\longrightarrow [a]$

proof: only 20 (i), (ii)
is similus

(i) 5-v; $E(\mathcal{L}; VE; B \in A^{\prime\prime}(X))$ closed drop => $B = \lambda + \Delta Y$, $\Delta \lambda = 0$ funt = $\lambda + \Delta U^{\dagger} X + U^{\dagger} X T$

=> d*17 = ker d n lmd* = 30}

 $\frac{1}{(kerd)^{+}}$

=>[門=[]

inicative: Beylk exact

=> BE lm 1 nuer 1 = 303

=> B=>

M

Corollary: (i) dim H"(X, E) < 20 (ii) dim H"(X, E) < 20