# Rademacher Average and Covering Number

#### Ruixin Guo

Department of Computer Science Kent State University

April 17, 2023

#### Contents

Rademacher Average

Covering Number

#### Recall

We want to find a bound for  $R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)$  where f is from a function class  $\mathcal{F}$ .

If  $|\mathcal{F}| = N$  is finite, the bound can be written as

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \le \sqrt{\frac{\log N + \log\frac{1}{\delta}}{2m}}\,\right] \ge 1 - \delta$$

If  $|\mathcal{F}|$  is infinite, we need to find a finite measure for the capacity of  $\mathcal{F}$ . Growth Function and VC Dimension are two classes of such measure and they are closely related.

**Growth Function**: The maximum number of ways into which m points can be classified by  $\mathcal{F}$ , denoted as  $S_{\mathcal{F}}(m)$ .

**Shattering**: We say  $\mathcal{F}$  shatters an m-point dataset if  $S_{\mathcal{F}}=2^m$ . That is, for an arbitrary way of classifying m points, there always exists one f in  $\mathcal{F}$  that can generate it.

**VC** Dimension: The VC Dimension of a function class  $\mathcal{F}$  is the largest h such that  $S_{\mathcal{F}}=2^h$ , i.e., the maximum number of points that  $\mathcal{F}$  can shatter.

#### Recall

**VC Theorem**: The bound for  $R^{\rm true}(f)-R^{\rm emp}(f)$  in terms of Growth Function is,

$$P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right)\leq 2\sqrt{2\frac{\log S_{\mathcal{F}}(2m)+\log\frac{4}{\delta}}{m}}\;\right]\geq 1-\delta$$

Sauer's Lemma shows an upper bound of the growth function. Supposing the VC Dimension of  $\mathcal F$  is h, and there are m points to be classified, then the growth function can be written as

$$S_{\mathcal{F}}(m) \leq \sum_{i=0}^{h} \binom{m}{i}$$

In particular, when  $m \geq h$ , we further have

$$S_{\mathcal{F}}(m) \leq \left(\frac{em}{h}\right)^h$$

By combining Sauer's Lemma and VC Theorem we get

$$P\left[\sup_{f \in \mathcal{F}} \left(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)\right) \le 2\sqrt{2\frac{h\log\frac{2em}{h} + \log\frac{4}{\delta}}{m}}\right] \ge 1 - \delta$$

# Other Types of Capacity Measure

The capacity measure is a metric for the learning ability (complexity/expressiveness/richness...) of a function class  $\mathcal{F}$ .

Some types of Capacity Measure:

- Growth Function and VC dimension
- VC entropy
- Covering Numbers
- Rademacher Average

Growth Function and VC dimension are independent of data distribution. The bound based on them may be loose for most distributions.

The other 3 measures are data dependent, which means they can generate tighter bounds. We will focus on Rademacher Average and Covering Numbers.

#### Contents

Rademacher Average

Covering Number

One way to measure complexity is to see how functions from the class  ${\cal F}$  can classify random noise.

Suppose the dataset  $S=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\}$  has m samples where  $x_i\in\mathbb{R}^n$  and  $y_i\in\{-1,1\}$  (Note that  $y_i$  is not in  $\{0,1\}$  anymore). Let each  $f\in\mathcal{F}$  be a binary classification function such that  $f(x_i)\in\{-1,1\}$  for i=1,2,...,m.

We can write the empirical risk function as

$$\begin{split} R^{\text{emp}}(f) &= \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{f(x_i) \neq y_i} \\ &= \frac{1}{m} \sum_{i=1}^{m} \begin{cases} 1 & (f(x_i), y_i) = (1, -1) \text{ or } (-1, 1) \\ 0 & (f(x_i), y_i) = (1, 1) \text{ or } (-1, -1) \end{cases} \\ &= \frac{1}{m} \sum_{i=1}^{m} \frac{1 - y_i f(x_i)}{2} \\ &= \frac{1}{2} - \frac{1}{2m} \sum_{i=1}^{m} y_i f(x_i) \end{split}$$

The term  $\frac{1}{m}\sum_{i=1}^m y_i f(x_i)$  can be interpreted as the correlation of the predictions  $f(x_i)$  with the labels  $y_i$ . Since  $\frac{1}{m}\sum_{i=1}^m y_i f(x_i) = 1 - 2R^{\text{emp}}(f)$ , the greater  $\frac{1}{m}\sum_{i=1}^m y_i f(x_i)$  makes the smaller  $R^{\text{emp}}(f)$ , which means  $\mathcal F$  has stronger ability to learn.

Thus our goal is to find an  $f \in \mathcal{F}$  satisfying

$$\underset{f \in \mathcal{F}}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} y_i f(x_i)$$

Now assume the labels satisfy a specific distribution, i.e., each label is a Rademacher random variable.

**Definition (Rademacher Variable)**: A random variable  $\sigma$  is called Rademacher random variable if  $P(\sigma = 1) = P(\sigma = -1) = 1/2$ .

Let  $\sigma_1, \sigma_2, ..., \sigma_m$  be iid Rademacher random variables. Replacing  $y_1, y_2, ..., y_m$  by  $\sigma_1, \sigma_2, ..., \sigma_m$ , we get

$$\underset{f \in \mathcal{F}}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i f(x_i)$$

Instead of select the  $f \in \mathcal{F}$  that correlates best with labels, this selects the  $f \in \mathcal{F}$  that correlates best with random noise variables  $\sigma_i$ . To measure how well  $\mathcal{F}$  correlate with random noise, we take the expectation of this correlation over the random variables  $\sigma_i$ :

**Definition (Empirical Rademacher Average)**: For a class  $\mathcal F$  of functions, on a given dataset S, the Empirical Rademacher Average is defined as

$$\hat{\mathcal{R}}_S(\mathcal{F}) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} \left( \frac{1}{m} \sum_{i=1}^m \sigma_i f(x_i) \right)$$

By our definition of Empirical Rademacher Average

 $\hat{\mathcal{R}}_S(\mathcal{F}) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^m \sigma_i f(x_i))$ , we have  $0 \leq \hat{\mathcal{R}}_S(\mathcal{F}) \leq 1$ . Consider two extreme cases:

- When  $S_m(\mathcal{F})=1$ , we only have one group of f and can only generate one way of classification. In this case  $\hat{\mathcal{R}}_S(\mathcal{F})=0$  since the max term disappears.
- When  $S_m(\mathcal{F})=2^m$ ,  $\mathcal{F}$  shatters S. In this case  $\hat{\mathcal{R}}_S(\mathcal{F})=1$ .

Remember that the dataset S is sampled from an unknown distribution D. The expectation of the empirical Rademacher average of all  $S \sim D$  is called the Rademacher Average:

**Definition (Rademacher Average)**: For a class  $\mathcal F$  of functions, the Rademacher Average is defined as

$$\mathcal{R}(\mathcal{F}) = \mathbb{E}_{S}(\hat{\mathcal{R}}_{S}(\mathcal{F})) = \mathbb{E}_{\sigma,S} \sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f(x_{i})\right)$$

In  $\mathcal{R}(\mathcal{F}) = \mathbb{E}_{\sigma,S} \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^m \sigma_i f(x_i))$  we define  $f \in \{-1,1\}$ . Generally, f can be any function of  $\mathbb{R}^d \to \mathbb{R}$ , this gives the general definition of Rademacher Average (See reference [2]).

Define  $g(x_i) = \mathbf{1}_{f(x_i) \neq y_i} \in \{0,1\}$ , and the set of all gs is a function class  $\mathcal{G}$ . Define  $\mathcal{R}(\mathcal{G}) = \mathbb{E}_{\sigma,S} \sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^m \sigma_i g(x_i))$ . Then we have the following relationship between  $\mathcal{R}(\mathcal{F})$  and  $\mathcal{R}(\mathcal{G})$ :

$$\mathcal{R}(\mathcal{G}) = \mathbb{E}_{\boldsymbol{\sigma},S} \sup_{g \in \mathcal{G}} \left( \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(x_{i}) \right) = \mathbb{E}_{\boldsymbol{\sigma},S} \sup_{f \in \mathcal{F}} \left( \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \mathbf{1}_{f(x_{i}) \neq y_{i}} \right)$$

$$= \mathbb{E}_{\boldsymbol{\sigma},S} \sup_{f \in \mathcal{F}} \left( \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \frac{1 - y_{i} f(x_{i})}{2} \right)$$

$$= \mathbb{E}_{\boldsymbol{\sigma},S} \left[ \frac{1}{2m} \sum_{i=1}^{m} \sigma_{i} + \sup_{f \in \mathcal{F}} \left( \frac{1}{2m} \sum_{i=1}^{m} (-\sigma_{i} y_{i}) f(x_{i}) \right) \right]$$

$$= \mathbb{E}_{\boldsymbol{\sigma},S} \sup_{f \in \mathcal{F}} \left( \frac{1}{2m} \sum_{i=1}^{m} \sigma_{i} f(x_{i}) \right) = \frac{1}{2} \mathcal{R}(\mathcal{F})$$

#### Rademacher Bound Theorem

Theorem (Rademacher Bound): Let  $g(x_i) = \mathbf{1}_{f(x_i) \neq y_i} \in \{0, 1\}$ ,  $\mathcal{R}(\mathcal{G}) = \mathbb{E}_{\sigma, S} \sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^m \sigma_i g(x_i))$  be the Rademacher Average of  $\mathcal{F}$ , then

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \le 2\mathcal{R}(\mathcal{G}) + \sqrt{\frac{\log\frac{1}{\delta}}{2m}}\,\right] \ge 1 - \delta$$

Remember that  $R^{\text{true}}(f)$  is the true risk,  $R^{\text{emp}}(f) = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{f(x_i) \neq y_i}$  is the empirical risk and  $R^{\text{true}}(f) = E(R^{\text{emp}}(f))$ .

To prove this bound, I will first introduce some basics about conditional expectation and supremum, then talk about McDiarmid's Inequality, Symmetrization and Lemma of Rademacher Average. Finally I will put these components together.

# Basics: Conditional Expectation

• Conditional Expectation: Suppose we have a bivariate random vector (X,Y) with joint PMF P(X,Y). We call  $E_X(X|Y=y)$  the expectation of X given that Y=y. Sometimes we just simplify the notation as E(X|Y). Formally,

$$E(X|Y) = \sum_{x} xP(X = x|Y = y) = \sum_{x} x \frac{P(X = x, Y = y)}{P(Y = y)}$$

Note that  $E_X(X|Y=y)$  is a function of y.

#### Properties:

- (1) If Y is independent of X, then E(X|Y) = E(X).
- (2) Let f(Z) be a function of a random variable Z, then E(f(Z)|Z)=f(Z).
- Law of Total Expectation:

$$E(X) = E_Y(E_X(X|Y))$$

### Basics: Supremum

• Let  $t \in \mathcal{T}$  be a variable, f and g be two functions of t, then

$$\sup\{f(t) + g(t)\} \le \sup\{f(t)\} + \sup\{g(t)\}$$

 $\begin{aligned} \textit{Proof} \colon & \text{Since } f(t) \leq \sup\{f(t)\} \text{ and } g(t) \leq \sup\{g(t)\}, \text{ we have } f(t) + g(t) \leq \sup\{f(t)\} + \sup\{g(t)\} \text{ for any } t \text{, thus } \sup\{f(t) + g(t)\} \leq \sup\{f(t)\} + \sup\{g(t)\}. \end{aligned}$ 

• Switching Supremum and Expectation: Let f(X,y) be any function of two variables X and y, and  $y \in \mathcal{Y}$ , then

$$\sup_{y \in \mathcal{Y}} \mathbb{E}f(X, y) \le \mathbb{E}\sup_{y \in \mathcal{Y}} f(X, y)$$

*Proof*: Since  $f(X,y) \leq \sup_{y \in \mathcal{Y}} f(X,y)$  for any X, we take expectation with respect to X on both sides, then  $\mathbb{E} f(X,y) \leq \mathbb{E} \sup_{y \in \mathcal{Y}} f(X,y)$ . Since this inequality holds for any y, we have  $\sup_{y \in \mathcal{Y}} \mathbb{E} f(X,y) \leq \mathbb{E} \sup_{y \in \mathcal{Y}} f(X,y)$ .

## McDiarmid's Inequality

**McDiarmid's Inequality**: Define the function  $F: \mathcal{X}^m \to \mathbb{R}$ . Let  $(x_1, x_2, ..., x_m) \in \mathcal{X}^m$ . Suppose for any i, replacing  $x_i$  by any  $x_i'$ , the following equality holds:

$$\sup_{x_i' \in \mathcal{X}} |F(x_1, ..., x_i, ..., x_m) - F(x_1, ..., x_i', ..., x_m)| \le c$$

where c is a constant. Then for all  $\epsilon > 0$ ,

$$P(|F - \mathbb{E}(F)| \ge \epsilon) \le 2 \exp\left(-\frac{2\epsilon^2}{mc^2}\right)$$

Proof: Use the marginal sequence, suppose

$$V_i = \mathbb{E}(F|x_1, x_2, ..., x_i) - \mathbb{E}(F|x_1, x_2, ..., x_{i-1})$$

for i = 1, 2, ..., m. Then

$$\mathbb{E}(V_i) = \mathbb{E}(\mathbb{E}(F|x_1, x_2, ..., x_i)) - \mathbb{E}(\mathbb{E}(F|x_1, x_2, ..., x_{i-1})) = \mathbb{E}(F) - \mathbb{E}(F) = 0$$

$$\sum_{i=1}^{m} V_{i} = \mathbb{E}(F|x_{1}, x_{2}, ..., x_{m}) - \mathbb{E}(F) = F - \mathbb{E}(F)$$

$$\begin{split} \sup V_i - \inf V_i &= \left[ \sup_x \mathbb{E}(F|x_1, x_2, ..., x_{i-1}, x) - \mathbb{E}(F|x_1, x_2, ..., x_{i-1}) \right] - \\ &= \left[ \inf_x \mathbb{E}(F|x_1, x_2, ..., x_{i-1}, x) - \mathbb{E}(F|x_1, x_2, ..., x_{i-1}) \right] \\ &= \sup_x \mathbb{E}(F|x_1, x_2, ..., x_{i-1}, x) - \inf_x \mathbb{E}(F|x_1, x_2, ..., x_{i-1}, x) \\ &= \sup_{x_u, x_l} \mathbb{E}(F|x_1, x_2, ..., x_{i-1}, x_u) - \mathbb{E}(F|x_1, x_2, ..., x_{i-1}, x_l) \\ &= \sup_{x_u, x_l} \sum_{x_{i+1}, ..., x_m} \left[ F(x_1, ..., x_{i-1}, x_u, x_{i+1}, ..., x_m | x_1, ..., x_{i-1}) - \\ &\quad F(x_1, ..., x_{i-1}, x_l, x_{i+1}, ..., x_m | x_1, ..., x_{i-1}) \right] P(x_{i+1}, ..., x_m) \\ &\leq c \sum_{x_{i+1}, ..., x_m} P(x_{i+1}, ..., x_m) = c \end{split}$$

By Azuma's Inequality (see Appendix),

$$P(|F - \mathbb{E}(F)| \ge \epsilon) = P(|\sum_{i=1}^{m} V_i| \ge \epsilon) \le 2 \exp\left(-\frac{2\epsilon^2}{mc^2}\right)$$

### Symmetrization

Let  $g(x_i) = \mathbf{1}_{f(x_i) \neq y_i} \in \{0,1\}$ . Since  $R^{\mathsf{emp}}(f) = \frac{1}{m} \sum_{j=1}^m g(x_j)$ , we can consider  $R^{\mathsf{emp}}(f)$  as a function of  $g(x_1), g(x_2), ..., g(x_m)$ . Define  $R^{\mathsf{emp},i}(f) = \frac{1}{m} (\sum_{j=1, j \neq i}^m g(x_j) + g(x_i'))$ , that is,  $g(x_i)$  is replaced by  $g(x_i')$ . Then the following inequality holds:

$$|\sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) - \sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp,i}}(f))| \leq \sup_{f \in \mathcal{F}} |R^{\mathsf{emp,i}}(f) - R^{\mathsf{emp}}(f)| \quad (*)$$

To prove this, suppose  $f^*$  achieves  $\sup_{f\in\mathcal{F}}(R^{\mathrm{true}}(f)-R^{\mathrm{emp}}(f))$ , and  $\sup_{f\in\mathcal{F}}(R^{\mathrm{true}}(f)-R^{\mathrm{emp}}(f))>\sup_{f\in\mathcal{F}}(R^{\mathrm{true}}(f)-R^{\mathrm{emp,i}}(f))$ , then

$$\begin{split} &\sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) - \sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp,i}}(f)) & (\diamond) \\ &= (R^{\mathsf{true}}(f^*) - R^{\mathsf{emp}}(f^*)) - \sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp,i}}(f)) \\ &\leq (R^{\mathsf{true}}(f^*) - R^{\mathsf{emp}}(f^*)) - (R^{\mathsf{true}}(f^*) - R^{\mathsf{emp,i}}(f^*)) \\ &= R^{\mathsf{emp,i}}(f^*) - R^{\mathsf{emp}}(f^*) \leq |R^{\mathsf{emp,i}}(f^*) - R^{\mathsf{emp}}(f^*)| \leq \sup_{f \in \mathcal{F}} |R^{\mathsf{emp,i}}(f) - R^{\mathsf{emp}}(f)| \end{split}$$

When  $\sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \leq \sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp},\mathsf{i}}(f))$ , switching the first and second terms in  $(\diamond)$  and we can get the same result, thus the inequality (\*) holds.

Since  $|R^{\text{emp}}(f) - R^{\text{emp,i}}(f)| = \frac{1}{m}|Z_i - Z_i'| \leq \frac{1}{m}$ , we have

$$|\sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) - \sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp,i}}(f))| \leq \frac{1}{m}$$

This satisfies the condition of McDiarmid's inequality with  $c=\frac{1}{m}$ , thus

$$P\left[|\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f))-\mathbb{E}_{S}\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f))|\geq\epsilon\right]\leq 2\exp\left(-2m\epsilon^{2}\right)$$

Since the McDiarmid's Bound is symmetric, for one-sided bound, we have

$$P\left[\sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) - \mathbb{E}_S \sup_{f \in \mathcal{F}} (R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \ge \epsilon\right] \le \exp\left(-2m\epsilon^2\right)$$

# Lemma of Rademacher Average

**Lemma**: Let  $S = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$  be a set of training samples, and  $R^{\mathsf{emp}}(f) = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{f(x_i) \neq y_i} = \frac{1}{m} \sum_{i=1}^m g(x_i)$ , then

$$\mathbb{E}_{S} \sup_{f \in \mathcal{F}} [\boldsymbol{R}^{\mathsf{true}}(f) - \boldsymbol{R}^{\mathsf{emp}}(f)] \leq 2\mathbb{E}_{\boldsymbol{\sigma},S} \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(\boldsymbol{x}_{i})) = 2\mathcal{R}(\mathcal{G})$$

*Proof*: Suppose we have a set of ghost samples  $S'=\{(x'_1,y'_1),(x'_2,y'_2),...,(x'_m,y'_m)\}$  and the empirical risk on the ghost samples is  $R^{\text{emp}\prime}(f)=\frac{1}{m}\sum_{i=1}^m g(x'_i)$ . Since  $R^{\text{true}}(f)=\mathbb{E}_{S'}[R^{\text{emp}\prime}(f)|S]$  and  $R^{\text{emp}}(f)=\mathbb{E}_{S'}[R^{\text{emp}}(f)|S]$ . Then,

$$\begin{split} \mathbb{E}_{S} \sup_{f \in \mathcal{F}} [R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)] &= \mathbb{E}_{S} \sup_{f \in \mathcal{F}} [\mathbb{E}_{S'}[R^{\mathsf{emp}\prime}(f)|S] - \mathbb{E}_{S'}[R^{\mathsf{emp}}(f)|S]] \\ &= \mathbb{E}_{S} \sup_{f \in \mathcal{F}} [\mathbb{E}_{S'}[(R^{\mathsf{emp}\prime}(f) - R^{\mathsf{emp}}(f))|S]] \\ &\leq \mathbb{E}_{S} \mathbb{E}_{S'} \sup_{f \in \mathcal{F}} [(R^{\mathsf{emp}\prime}(f) - R^{\mathsf{emp}}(f))|S] \\ &= \mathbb{E}_{S,S'} \left[ \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} (g(x_i') - g(x_i)) \right] \end{split}$$

In  $(\diamond)$  we use the property that  $\sup_{y \in \mathcal{Y}} \mathbb{E} f(X,y) \leq \mathbb{E} \sup_{y \in \mathcal{Y}} f(X,y)$ .

Now we introduce a set of Rademacher variables  $\sigma = \{\sigma_1, \sigma_2, ..., \sigma_m\}$ . Each  $\sigma_i$  satisfies  $P(\sigma_i = -1) = P(\sigma_i = 1) = \frac{1}{2}$ .

$$\begin{split} \mathbb{E}_{S} \sup_{f \in \mathcal{F}} [R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)] &\leq \mathbb{E}_{S,S'} \left[ \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} (g(x_i') - g(x_i)) \right] \\ &= \mathbb{E}_{\sigma,S,S'} \left[ \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i (g(x_i') - g(x_i)) \right] \qquad (*) \\ &\leq \mathbb{E}_{\sigma,S'} \left[ \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i g(x_i') \right] + \mathbb{E}_{\sigma,S} \left[ \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} -\sigma_i g(x_i) \right] \qquad (\star) \\ &= 2\mathbb{E}_{\sigma,S} \sup_{g \in \mathcal{G}} \left( \frac{1}{m} \sum_{i=1}^{m} \sigma_i g(x_i) \right) = 2\mathcal{R}(\mathcal{G}) \end{split}$$

The equality (\*) uses the fact that, since  $g(x_i')$  and  $g(x_i)$  are interchangeable and  $\sigma_i = -1$  or 1, multiplying  $\sigma_i$  will not change the distribution of  $g(x_i') - g(x_i)$ . The inequality  $(\star)$  uses the fact  $\sup\{f(t) + g(t)\} \leq \sup\{f(t)\} + \sup\{g(t)\}$ .

### Putting All Components Together

By Symmertrization we have the following one-sided bound:

$$\begin{split} P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) - \mathbb{E}\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) \geq \epsilon\right] \leq \exp\left(-2m\epsilon^2\right) \\ \mathsf{Let}\ \delta &= \exp\left(-2m\epsilon^2\right), \ \mathsf{so}\ \mathsf{that}\ \epsilon = \sqrt{\frac{\log\frac{1}{\delta}}{2m}}, \ \mathsf{thus} \\ P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) - \mathbb{E}\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) \geq \sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right] \leq \delta \\ P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) - \mathbb{E}\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) \leq \sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right] \geq 1-\delta \\ P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) \leq \mathbb{E}\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) + \sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right] \geq 1-\delta \end{split}$$

By Lemma of Rademacher Average,  $\mathbb{E}\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f))\leq 2\mathcal{R}(\mathcal{G})$ , therefore

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f))\leq 2\mathcal{R}(\mathcal{G})+\sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right]\geq 1-\delta$$

# The bound of Empirical Rademacher Average

We can also bound  $\sup_{f\in\mathcal{F}}(R^{\mathrm{true}}(f)-R^{\mathrm{emp}}(f))$  by Empirical Rademacher Average. Since  $\hat{\mathcal{R}}_S(\mathcal{G})=\mathbb{E}_{\sigma}\sup_{g\in\mathcal{G}}(\frac{1}{m}\sum_{i=1}^m\sigma_ig(x_i))$ , changing one  $x_i$  will change  $\hat{\mathcal{R}}_S(\mathcal{G})$  by at most  $\frac{1}{m}$ . Then by McDiarmid's Inequality

$$P\left[\left|\hat{\mathcal{R}}_{S}(\mathcal{G}) - \mathcal{R}(\mathcal{G})\right| > \epsilon\right] \le 2\exp\left(-2m\epsilon^{2}\right)$$

$$P\left[\hat{\mathcal{R}}_{S}(\mathcal{G}) - \mathcal{R}(\mathcal{G}) > \epsilon\right] \le \exp\left(-2m\epsilon^{2}\right)$$

Since

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \le 2\mathcal{R}(\mathcal{G}) + \epsilon\right] \ge 1 - \exp\left(-2m\epsilon^2\right)$$

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \ge 2\mathcal{R}(\mathcal{G}) + \epsilon\right] \le \exp\left(-2m\epsilon^2\right) \tag{2}$$

By (1) and (2), we have

$$\begin{split} P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) &\geq 2\hat{\mathcal{R}}_S(\mathcal{G}) + 3\epsilon \right] \\ &\leq P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) &\geq 2\mathcal{R}(\mathcal{G}) + \epsilon \text{ or } \hat{\mathcal{R}}_S(\mathcal{G}) - \mathcal{R}(\mathcal{G}) \geq \epsilon \right] \\ &\leq P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)) &\geq 2\mathcal{R}(\mathcal{G}) + \epsilon \right] + P\left[\hat{\mathcal{R}}_S(\mathcal{G}) - \mathcal{R}(\mathcal{G}) \geq \epsilon \right] \leq 2\exp\left(-2m\epsilon^2\right) \end{split}$$

Let  $\delta=2\exp\left(-2m\epsilon^2\right)$ , so that  $\epsilon=\sqrt{\frac{\log\frac{2}{\delta}}{2m}}$ , thus we have the following Empirical Rademacher Average bound:

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \ge 2\hat{\mathcal{R}}_S(\mathcal{G}) + 3\sqrt{\frac{\log\frac{2}{\delta}}{2m}}\right] \le \delta$$

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f))\leq 2\hat{\mathcal{R}}_S(\mathcal{G})+3\sqrt{\frac{\log\frac{2}{\delta}}{2m}}\;\right]\geq 1-\delta$$

#### Massart's Lemma

Since we have

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f))\leq 2\mathcal{R}(\mathcal{G})+\sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right]\geq 1-\delta$$

The question is, how can we calculate  $\mathcal{R}(\mathcal{G})$ ? The following lemma gives an upperbound:

**Massart's Lemma**: Let  $A \subset \mathbb{R}^m$  be a finite set of points and  $a = \{a_1, a_2, ..., a_m\} \in A$ . Let  $r = \sup_{a \in A} \|a\|_2$ , then

$$\mathbb{E}_{\sigma} \left[ \sup_{a \in A} \sum_{i=1}^{m} \sigma_{i} a_{i} \right] \leq r \sqrt{2 \log |A|}$$

*Proof:* Let t > 0 be a number to be chosen later.

$$\begin{split} &\exp\left(t\mathbb{E}_{\pmb{\sigma}}\sup_{a\in A}\sum_{i=1}^{m}\sigma_{i}a_{i}\right)\leq\mathbb{E}_{\pmb{\sigma}}\exp\left(t\sup_{a\in A}\sum_{i=1}^{m}\sigma_{i}a_{i}\right)=\mathbb{E}_{\pmb{\sigma}}\sup_{a\in A}\exp\left(\sum_{i=1}^{m}t\sigma_{i}a_{i}\right)\\ &=\mathbb{E}_{\pmb{\sigma}}\sup_{a\in A}\left(\prod_{i=1}^{m}\exp\left(t\sigma_{i}a_{i}\right)\right)\leq\mathbb{E}_{\pmb{\sigma}}\sum_{a\in A}\prod_{i=1}^{m}\exp\left(t\sigma_{i}a_{i}\right)=\sum_{a\in A}\prod_{i=1}^{m}\mathbb{E}_{\pmb{\sigma}}\exp\left(t\sigma_{i}a_{i}\right)\\ &\leq\sum_{a\in A}\prod_{i=1}^{m}\exp\left(\frac{t^{2}a_{i}^{2}}{2}\right)=\sum_{a\in A}\exp\left(\frac{t^{2}(\sum_{i=1}^{m}a_{i}^{2})}{2}\right)\leq|A|\exp\left(\frac{t^{2}r^{2}}{2}\right) \end{split}$$

The  $\leq$  uses the Jenson's Inequality. The  $\leq$  uses Hoeffding's Lemma, given that  $-|a_i| \leq \sigma_i a_i \leq |a_i|$ .

Therefore, taking log on both sides, we get

$$\mathbb{E}_{\sigma} \sup_{a \in A} \sum_{i=1}^{m} \sigma_i a_i \le \inf_{t>0} \left( \frac{\log|A|}{t} + \frac{tr^2}{2} \right) = r\sqrt{2\log|A|}$$

Let  $A = \mathcal{F}$ ,  $|A| = S_m(\mathcal{F})$ ,  $a_i = f(x_i) \in \{-1, 1\}$ , then  $r = \sqrt{m}$ . Therefore

$$\mathcal{R}(\mathcal{F}) = \mathbb{E}_{\sigma, S} \sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i f(x_i) \le \frac{r}{m} \sqrt{2 \log S_m(\mathcal{F})} = \sqrt{\frac{2 \log S_m(\mathcal{F})}{m}}$$

By Sauer's Lemma,  $S_m(\mathcal{F}) \leq (\frac{em}{h})^h$ , where h is the VC dimension of  $\mathcal{F}$ , then

$$\mathcal{R}(\mathcal{G}) = \frac{1}{2}\mathcal{R}(\mathcal{F}) \le \frac{1}{2}\sqrt{\frac{2\log S_m(\mathcal{F})}{m}} \le \frac{1}{2}\sqrt{\frac{2h\log\frac{em}{h}}{m}}$$

Thus the Rademacher Bound becomes

$$P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)) \le \sqrt{\frac{2h\log\frac{em}{h}}{m}} + \sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$

Comparing the Rademacher Bound and the Growth Function Bound, both bounds grow like  $O(\sqrt{\frac{h\log(em/h)}{m}})$  with respect to m and h, so the Rademacher Bound will not be looser than the Growth Function Bound.

Actually Massart's Lemma gives a loose bound for  $\mathcal{R}(\mathcal{G})$ . Sometimes we bound  $\mathcal{R}(\mathcal{G})$  by a constant instead of Massart's Lemma. For example, since  $g(x_i) \in \{0,1\}$ 

$$\mathcal{R}(\mathcal{G}) = \frac{1}{2}\mathcal{R}(\mathcal{F}) = \frac{1}{2}\mathbb{E}_{\sigma,S} \sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i f(x_i) \le \frac{1}{2}$$

 $\mathcal{R}(\mathcal{G})$  reaches its maximum when given any dataset S, there always exists an  $f \in \mathcal{F}$  that perfectly classifies it. This gives another upperbound for  $\mathcal{R}(\mathcal{G})$ .

#### Contents

Rademacher Average

Covering Number

### Covering Number

Recall that we have a dataset  $S=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\}$ , and a function class  $\mathcal{F}.$  The functions  $f\in\mathcal{F}$  are binary-valued, i.e.,  $f(x_i)\in\{-1,1\}$ . The Growth Function partitions  $\mathcal{F}$  into finite number of groups because the cardinality of the set  $\{-1,1\}$  is finite. Since the cardinality of  $\{-1,1\}$  is 2 and we have m samples, we can partition  $\mathcal{F}$  into at most  $2^m$  groups.

However, when f is continuous, the candinarity of the value set will be infinite, thus the Growth Function will not work. To address this, we introduce another way to measure the capacity of  $\mathcal F$  – Covering Number.

Let  $(\mathcal{F},d)$  be a metric space, and we define the distance of a function  $f\in\mathcal{F}$  by  $L_p$  norm of m points:

$$||f||_{L_p(m)} = \left(\frac{1}{m} \sum_{i=1}^m |f(x_i)|^p\right)^{1/p}$$

The distance of two functions f and f' can be defined as

$$||f - f'||_{L_p(m)} = \left(\frac{1}{m} \sum_{i=1}^m |f(x_i) - f'(x_i)|^p\right)^{1/p}$$

Let's use  $L_1$  norm to define the distance, then

$$||f - f'||_{L_1(m)} = \left(\frac{1}{m} \sum_{i=1}^m |f(x_i) - f'(x_i)|\right)$$

### Covering Number

Denote  $B(f_j,\epsilon)$  as a ball of radius  $\epsilon$  around  $f_j$ , using the metric  $L_p(m)$ .  $B(f_j,\epsilon)$  contains all the function in  $\mathcal F$  that are within distance  $\epsilon$  of  $f_j$ , i.e.,  $B(f_j,\epsilon)=\{f':\|f-f'\|_{L_p(m)}<\epsilon\}$ . Here  $B(f_j,\epsilon)$  is considered as one group of functions, and we would like to know how many groups can cover  $\mathcal F$ . We say that  $f_1,f_2,...,f_N$  covers  $\mathcal F$  at radius  $\epsilon$  if:

$$\mathcal{F} \subset \bigcup_{j=1}^{N} B(f_j, \epsilon)$$

**Definition (Covering Number)**: The covering number of  $\mathcal F$  at radius  $\mathcal F$  with respect to  $L_p(m)$ , denoted by  $N(\mathcal F,\epsilon,L_p(m))$ , is the minimum N such that  $f_1,f_2,...,f_N$  covers  $\mathcal F$  at radius  $\epsilon$ .

If the covering number is finite, we can approximately represent  $\mathcal{F}$  by a finite set of functions that cover  $\mathcal{F}$ . This is another a finite measure for the capacity of  $\mathcal{F}$ .



#### Discretization Theorem

We can bound the empirical Rademacher Average with the following theorem:

**Theorem (Discretication)**: Let  $-1 \le f \le 1$  for all  $f \in \mathcal{F}$ , then for any  $S = \{x_1, x_2, ..., x_m\}$  we have

$$\hat{\mathcal{R}}_{S}(\mathcal{F}) \leq \inf_{\epsilon > 0} \{ \epsilon + \sqrt{\frac{2 \log(2N(\mathcal{F}, \epsilon, L_{1}(m)))}{m}} \}$$

*Proof*: Fix  $S=\{x_1,x_2,...,x_m\}$  and  $\epsilon>0$ . Let V be the minimal set of  $\epsilon$ -balls that covers  $\mathcal{F}$ , thus  $|V|=N(\mathcal{F},\epsilon,L_1(m))$ . For any  $f\in\mathcal{F}$ , define  $f'\in V$  such that  $\|f-f'\|_{L_1(m)}<\epsilon$ . Then

$$\begin{split} \hat{\mathcal{R}}_{S}(\mathcal{F}) &= \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f(x_{i})) \\ &\leq \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} (f(x_{i}) - f'(x_{i}))) + \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f'(x_{i})) \\ &\leq \epsilon + \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f'(x_{i})) \\ &\leq \epsilon + \sqrt{\frac{2 \log(2|V|)}{m}} \quad [\text{Massart's Lemma}] \\ &\leq \epsilon + \sqrt{\frac{2 \log(2N(\mathcal{F}, \epsilon, L_{1}(m)))}{m}} \end{split}$$

Note that this inequality holds for any  $\epsilon \geq 0$ , so we can add an  $\inf_{\epsilon \geq 0}$  on the RHS.

### Covering Theorem

The following theorem gives a generalization error bound using Covering Number:

**Theorem (Covering)**: Let  $R^{\text{emp}}(f) = \frac{1}{m} \sum_{i=1}^m (f(x_i) - y_i)^2$  and  $R^{\text{true}}(f) = \mathbb{E}[R^{\text{emp}}(f)]$ . Suppose there exists M > 0 such that  $|f(x_i) - y_i| \leq M$  for any  $x_i$ . For any  $f_1, f_2 \in \mathcal{F}$ , define the  $L_{\infty}$  measure as  $\|f_1 - f_2\|_{L_{\infty}} = \max_x |f_1(x) - f_2(x)|$ . Then for any  $\epsilon > 0$ ,

$$P\left[\sup_{f\in\mathcal{F}}\left|R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right|\geq\epsilon\right]\leq 2N(\mathcal{F},\frac{\epsilon}{8M},L_{\infty})\exp\left(-\frac{m\epsilon^2}{2M^4}\right)$$

Proof:

Let  $L_S(f)=R^{\mathrm{true}}(f)-R^{\mathrm{emp}}(f)$ , we show that for all  $f_1,f_2\in\mathcal{F}$  and any dataset S, the following inequality holds:  $|L_S(f_1)-L_S(f_2)|\leq 4M\|f_1-f_2\|_{L_\infty}$ .

This is because

$$\begin{split} &|L_S(f_1) - L_S(f_2)| \leq |R^{\mathsf{true}}(f_1) - R^{\mathsf{true}}(f_2)| + |R^{\mathsf{emp}}(f_1) - R^{\mathsf{emp}}(f_2)| \\ &= \left| \mathbb{E}_{x,y} [(f_1(x) - y)^2 - (f_2(x) - y)^2] \right| + \frac{1}{m} \sum_{i=1}^m \left| (f_1(x_i) - y_i)^2 - (f_2(x_i) - y_i)^2 \right| \end{split}$$

Since for any  $\boldsymbol{x},\boldsymbol{y}$ ,

$$\left| (f_1(x) - y)^2 - (f_2(x) - y)^2 \right| = \left| (f_1(x) - f_2(x))[(f_1(x) - y) + (f_2(x) - y)] \right|$$
  
$$\leq \|f_1 - f_2\|_{L_{\infty}} 2M$$

We have  $|L_S(f_1) - L_S(f_2)| \le 4M ||f_1 - f_2||_{L_{\infty}}$ .

Assume  $\mathcal{F}$  can be covered by  $B_1, B_2, ..., B_k$  such that  $\mathcal{F} \subset \bigcup_{i=1}^k B_i$ , then

$$P\left[\sup_{f\in\mathcal{F}}\left|R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)\right| \ge \epsilon\right] = P\left[\bigcup_{i=1}^{k}\sup_{f\in B_{i}}\left|R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)\right| \ge \epsilon\right]$$

$$\le \sum_{i=1}^{k}P\left[\sup_{f\in B_{i}}\left|R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)\right| \ge \epsilon\right] \qquad (*)$$

Let  $f_i$  be the center of the ball  $B_i$  and the radius of  $B_i$  is  $\frac{\epsilon}{8M}$ , then for all  $f \in B_i$ , we have  $\|f-f_i\|_{L_\infty} \leq \frac{\epsilon}{8M}$ , thus

$$|L_S(f)-L_S(f_i)|\leq 4M\|f-f_i\|_{L_\infty}\leq \frac{\epsilon}{2}$$
 Therefore, let the events  $A:|L_S(f)|\geq \epsilon$  and  $B:|L_S(f_i)|\geq \frac{\epsilon}{2}$  we must have  $A\Rightarrow B$ 

Therefore, let the events  $A:|L_S(f)|\geq \epsilon$  and  $B:|L_S(f_i)|\geq \frac{\epsilon}{2}$ , we must have  $A\Rightarrow B.$  Thus for any  $f\in B_i$ 

$$P\left[\left|R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)\right| \geq \epsilon\right] \leq P\left[\left|R^{\mathsf{true}}(f_i) - R^{\mathsf{emp}}(f_i)\right| \geq \frac{\epsilon}{2}\right]$$

Let A,B,C be three events. If  $A\Rightarrow C$  and  $B\Rightarrow C$ , then  $A\cup B\Rightarrow C$ , thus  $P(A\cup B)\leq P(C)$ . We have

$$\begin{split} &P\left[\sup_{f\in B_i}\left|R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right|\geq\epsilon\right]=P\left[\bigcup_{f\in B_i}\left|R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right|\geq\epsilon\right]\\ &\leq P\left[\left|R^{\mathsf{true}}(f_i)-R^{\mathsf{emp}}(f_i)\right|\geq\frac{\epsilon}{2}\right] \end{split}$$

Since  $R^{\text{emp}}(f_j) = \frac{1}{m} \sum_{i=1}^m (f_j(x_i) - y_i)^2 \le M^2$ , use Hoeffding Bound, we have

$$P\left[\left|R^{\mathsf{true}}(f_i) - R^{\mathsf{emp}}(f_i)\right| \geq \frac{\epsilon}{2}\right] \leq 2\exp\left(-\frac{2m(\epsilon/2)^2}{(M^2)^2}\right) = 2\exp\left(-\frac{m\epsilon^2}{2M^4}\right)$$

Since k is the minimum number of the balls  $B_i$ , and each  $B_i$  is with radius  $\frac{\epsilon}{8M}$ , we have  $k=N(\mathcal{F},\frac{\epsilon}{8M},L_{\infty}).$ 

Putting all things together, we get

$$P\left[\sup_{f\in\mathcal{F}}\left|R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right|\geq\epsilon\right]\leq 2N(\mathcal{F},\frac{\epsilon}{8M},L_{\infty})\exp\left(-\frac{m\epsilon^2}{2M^4}\right)$$

#### References

- [1] Prediction: Machine Learning And Statistics. Lecture 14. https://ocw.mit.edu/courses/15-097-prediction-machine-learning-and-statistics-spring-2012/pages/lecture-notes/
- [2] Theoretical Machine Learning. Lecture 9. https://www.cs.princeton.edu/courses/archive/spring13/cos511/scribe\_notes/0305.pdf
- [3] Machine Learning Theory: Rademacher Complexity https://www.cs.cmu.edu/~ninamf/ML11/lect1117.pdf
- [4] Rademacher Complexity and Massart's Lemma https://web.eecs.umich.edu/~jabernet/eecs598course/fall2015/web/notes/lec13\_102715.pdf
- [5] Mathematics of Machine Learning Lecture 6: Covering Number https: //ocw.mit.edu/courses/18-657-mathematics-of-machine-learning-fall-2015/ resources/mit18\_657f15\_16/
- [6] https://cs.nyu.edu/~mohri/ml13/sol2.pdf

#### References

```
[7] Notes 20 : Azuma's inequality https://people.math.wisc.edu/~roch/grad-prob/gradprob-notes20.pdf
```

```
[8] https://people.eecs.berkeley.edu/~sinclair/cs271/n18.pdf
```

[9] Concentration Inequalities: Hoeffding and McDiarmid https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/13.pdf

## Appendix: Azuma's Inequality

Azuma's Inequality is a generalization of Hoeffding's Inequality.

**Azuma's Inequality**: Suppose  $F:\mathcal{X}^m\to\mathbb{R}$  is a function of variables  $x_1,x_2,...,x_m$ . Let  $Z_i=\mathbb{E}(F|x_1,x_2,...,x_i)$  for  $i\geq 1$  and  $Z_0=\mathbb{E}(F)$ . Let  $V_i=Z_i-Z_{i-1}$  be the marginal sequence, and assume  $\sup V_i-\inf V_i\leq c$  for i=1,2,...,m, where c is a constant. Then

$$P[Z_m - Z_0 \ge \epsilon] = P\left[\sum_{i=1}^m V_i \ge \epsilon\right] \le \exp\left(-\frac{2\epsilon^2}{mc^2}\right)$$

*Proof*: Let t > 0 be a value to be determined

$$\begin{split} P\left[\sum_{i=1}^{m}V_{i}\geq\epsilon\right] &\leq e^{-t\epsilon}\mathbb{E}\left[e^{t\sum_{i=1}^{m}V_{i}}\right] & \text{[Chernoff Bound]} \\ &= e^{-t\epsilon}\mathbb{E}\left[\mathbb{E}\left[e^{t\sum_{i=1}^{m}V_{i}}\middle|x_{1},x_{2},...,x_{m-1}\right]\right] & \text{[Law of the total expectation]} \\ &= e^{-t\epsilon}\mathbb{E}\left[e^{t\sum_{i=1}^{m-1}V_{i}}\mathbb{E}\left[e^{tV_{m}}\middle|x_{1},x_{2},...,x_{m-1}\right]\right] \end{split}$$

The last equality is because  $\sum_{i=1}^{m-1} V_i$  can be considered as a function of  $x_1, x_2, ..., x_{m-1}$ . Let h be a function of X, we have

$$\mathbb{E}_X[\mathbb{E}_Y[h(X)Y|X]] = \mathbb{E}_X[h(X)\mathbb{E}_Y[Y|X]]$$

# Appendix: Azuma's Inequality

Recall the Hoeffding Lemma: Let X be any random variable such that  $a \leq X \leq b$ , for all  $t \in \mathbb{R}$ ,  $\mathbb{E}[e^{tX}] \leq \exp(\frac{t^2(b-a)^2}{8})$ . Therefore,

$$\mathbb{E}\left[\left.e^{tV_{m}}\,\right|\,x_{1},x_{2},...,x_{m-1}\right]\leq e^{\frac{t^{2}c^{2}}{8}}$$

Induct the rest part  $e^{t\sum_{i=1}^{m-1}V_i}$  by the following formula:

$$\mathbb{E}\left[e^{t\sum_{i=1}^{k}V_{i}}\right] = \mathbb{E}\left[e^{t\sum_{i=1}^{k-1}V_{i}}\mathbb{E}\left[\left.e^{tV_{k}}\right|x_{1},x_{2},...,x_{k-1}\right]\right]$$

for k = m - 1, m - 2, ..., 1, we get

$$P\left[\sum_{i=1}^{m} V_i \ge \epsilon\right] \le e^{-t\epsilon} e^{\frac{mt^2c^2}{8}} = \exp\left(-t\epsilon + \frac{mt^2c^2}{8}\right)$$

The above inequality holds for any t. Let  $t=\frac{4\epsilon}{mc^2}$ , we get  $\inf_t (-t\epsilon+\frac{mt^2c^2}{8})=-\frac{2\epsilon}{mc^2}$ , thus

$$P\left[\sum_{i=1}^{m} V_i \ge \epsilon\right] \le \exp\left(-\frac{2\epsilon}{mc^2}\right)$$

## Appendix: Azuma's Inequality

Since the Chernoff Bound is symmetric, for two-sided bound, we have

$$P\left[\left|\sum_{i=1}^{m} V_i\right| \ge \epsilon\right] \le 2 \exp\left(-\frac{2\epsilon^2}{mc^2}\right)$$

Note that Azuma's Inequality does not assume  $V_1,V_2,...,V_m$  to be independent. In fact  $V_1,V_2,...,V_m$  are can be dependent (see [8]), we can not apply Hoeffding's Inequality to them. That is the reason we use Azuma's Inequality instead.