GEANT4 GPU Port:

Test Report

Stuart Douglas – dougls2 Matthew Pagnan – pagnanmm Rob Gorrie – gorrierw Victor Reginato – reginavp

Contents

1	Intr	oduct	
	1.1	Purpo	se of the Document
	1.2	Scope	of the Testing
	1.3	Organ	ization $\ldots \ldots \ldots \ldots \ldots 2$
	1.4	Usabi	lity Testing
	1.5	Robus	stness Testing
2	Uni	t Test	<u> </u>
	2.1	Use of	f Automated Testing
		2.1.1	Overview
		2.1.2	Generating Test Results
		2.1.3	Analyzing Test Results
		2.1.4	Note About Random Results 4
	2.2	Defini	tion of Variables Used for Unit Testing
	2.3	G4Pa	tricleHPVector & operator = (const G4ParticleHPVector & right) 5
		2.3.1	Test Description
		2.3.2	Test Inputs
		2.3.3	Results
		2.3.4	Performance
	2.4	const	G4ParticleHPDataPoint GetPoint(G4int i)
		2.4.1	Test Description
		2.4.2	Test Inputs
		2.4.3	Test Results
		2.4.4	Performance
	2.5	G4doı	$\operatorname{able} \operatorname{GetX}(\operatorname{G4int} i) \dots $
		2.5.1	Test Description
		2.5.2	Test Inputs
		2.5.3	Test Results
		2.5.4	Performance
	2.6	G4doı	
		2.6.1	Test Description
		2.6.2	Test Inputs
		2.6.3	Test Results
		2.6.4	Performance
	2.7	G4doı	$able GetXsec(G4int i) \dots 8$
		2.7.1	Test Description
		2.7.2	Test Inputs
		2.7.3	Test Results
		2.7.4	Performance
	2.8	G4doı	ıble GetEnergy(G4int i)
		2.8.1	Test Description
		2.8.2	

	2.8.3	Test Results	10
	2.8.4	Performance	10
2.9	void Se	tData(G4int i, G4double x, G4double y)	10
	2.9.1	Test Description	10
	2.9.2	Test Inputs	10
	2.9.3	Test Results	11
	2.9.4	Performance	11
2.10	void Se	tEnergy(G4int i, G4double e)	11
	2.10.1	Test Description	11
	2.10.2	Test Inputs	11
	2.10.3	Test Results	12
			12
2.11	void Se	$tXsec(G4int i, G4double e) \dots \dots \dots \dots$	12
	2.11.1	Test Description	12
	2.11.2	Test Inputs	12
	2.11.3	Test Results	13
	2.11.4	Performance	13
2.12	void Se	$tX(G4int i, G4double e) \dots \dots \dots \dots$	13
	2.12.1	Test Description	13
	2.12.2	Test Inputs	13
	2.12.3	Test Results	14
	2.12.4	Performance	14
2.13	void Se	$tY(G4int i, G4double e) \dots \dots \dots \dots$	14
	2.13.1	Test Description	14
	2.13.2	Test Inputs	14
	2.13.3	Test Results	15
	2.13.4	Performance	15
2.14	void Ini	it(istream & aDataFile, G4int total, G4double ux, G4double uy)	15
	2.14.1	Test Description	15
	2.14.2	Test Inputs	15
	2.14.3	Test Results	16
	2.14.4	Performance	16
2.15	G4doul	ble SampleLin() \dots	17
	2.15.1	Test Description	17
	2.15.2	Test Inputs	17
	2.15.3	Test Results	17
			18
2.16	void Ti	$\operatorname{mes}(\operatorname{G4double\ factor})$	18
	2.16.1	Test Description	18
	2.16.2	Test Inputs	19
			19
	2.16.4	Performance	20
2.17		()	20
	2.17.1	Test Description	20

		2.17.2 Test Inputs
		2.17.3 Test Results
		2.17.4 Performance
	2.18	G4double Sample()
		2.18.1 Test Description
		2.18.2 Test Inputs
		2.18.3 Test Results
		2.18.4 Performance
	2.19	void SetPoint(G4int i, const G4ParticleHPDataPoint & it) 22
		2.19.1 Test Description
		2.19.2 Test Inputs
		2.19.3 Test Results
		2.19.4 Performance
	2.20	G4double GetXsec(G4double e)
		2.20.1 Test Description
		2.20.2 Test Inputs
		2.20.3 Test Results
		2.20.4 Performance
	2.21	G4double GetXsec(G4double e, G4int min)
		2.21.1 Test Description
		2.21.2 Test Inputs
		2.21.3 Test Results
		2.21.4 Performance
	2.22	G4double Get15percentBorder()
		2.22.1 Test Description
		2.22.2 Test Inputs
		2.22.3 Test Results
		2.22.4 Performance
	2.23	G4double Get50percentBorder()
		2.23.1 Test Description
		2.23.2 Test Inputs
		2.23.3 Test Results
		2.23.4 Performance
3	•	em Tests
	3.1	Summary of Tests Performed
	3.2	System Tests Results
	3.3	System Test - Water, 2000 events
		3.3.1 Accuracy
	a .	3.3.2 Performance
	3.4	System Test - Uranium, 2000 events
		3.4.1 Accuracy
		3.4.2 Performance
	3.5	System Test - Water 600 events 35

		3.5.1	Accuracy	. 35
		3.5.2	Performance	
	3.6	System	m Test - Uranium, 600 events	. 37
		3.6.1	Accuracy	. 37
		3.6.2	Performance	. 39
	3.7	System	m Test - Uranium, 20000 events	. 39
		3.7.1	Accuracy	. 39
		3.7.2	Performance	. 41
	3.8	System	m Test - Uranium, 0 events	. 41
		3.8.1	Accuracy	. 42
		3.8.2	Performance	. 43
4	Trac	ceabili	ity	43
	4.1	Requi	irements	. 43
	4.2		ıles	
5	Cha	nges a	after Testing	44

Revision History

All major edits to this document will be recorded in the table below.

Table 1: Revision History

Description of Changes	Author	Date	
Initial draft of document	Matt, Rob, Victor, Stuart	2016-03-18	
Template of document	Matt	2016-03-15	

List of Tables

Tables for specific unit tests have been omitted in order to keep this document readable.

Table #	Title
1	Revision History
2	Definitions and Acronyms
3	General Unit Test Variables
59	Tests and Requirements Relationship
60	Tests and Modules Relationship

List of Figures

Figure #	Title
1	Performance results for Init function
2	Performance results for SampleLin function
3	Performance results for Times function
4	Performance results for GetXSec(e) function
5	Performance results for GetXSec(e,min) function
6	Performance results for Get15PercentBorder function
7	Performance results for Get50PercentBorder function

Definitions and Acronyms

1 Introduction

1.1 Purpose of the Document

This document summarizes the testing and test conclusions of GEANT4-GPU. This document uses the implementation outlined in the test plan.

Table 2: Definitions and Acronyms

Term	Description
GEANT4	Open-source software toolkit used to simulate the passage of par-
	ticles through matter
GEANT4-GPU	GEANT4 with some computations running on the GPU
GPU	Graphics processing unit, well-suited to parallel computing tasks
CPU	Computer processing unit, general computer processor well-suited
	to serial tasks
CUDA	Parallel computing architecture for general purpose programming
	on GPU, developed by NVIDIA

1.2 Scope of the Testing

The implemented tests are designed to give a general yet rigorous assessment of the components involved.

The tests are segregated into two categories: unit tests and system tests. The unit tests test function components of the G4ParticleVector module, and the system tests compare total system differences between CPU (original GEANT4) and GPU implementations. For both categories, performance and correctness are the key concerns.

Neither the unit tests nor the system tests are concerned with the correctness of original GEANT4 runs, as these runs are used as the baseline for the correctness of GEANT4-GPU modules.

A basic knowledge of programming concepts and command-line tools is assumed, as well as familiarity with GEANT4.

1.3 Organization

In Section 4 we provide an introduction to this report. Section 5 describes the test cases which are carried out on each function. Section 6 describes system test cases that were carried out by our team. In section 7 traceability matrices to requirements and modules are documented. Section 8 provides a summary of changes made in response to the testing results.

1.4 Usability Testing

GEANT4-GPU is a back end implementation of already existing GEANT4 modules. Therefore users will not be interacting with is directly. Since there is no direct user interaction with GEANT4-GPU. There are no usability test.

1.5 Robustness Testing

The GEANT4-GPU functions are meant to mimic the already existing GEANT4 functions. Therefore the GEANT4-GPU functions must also mimic the the robustness of the GEANT4 functions. The accuracy section for unit tests has several unit tests designed to test the robustness of the functions.

2 Unit Testing

2.1 Use of Automated Testing

2.1.1 Overview

Our unit testing system is semi-automated. The user runs a program to generate a test results text file, inputting whether or not Geant4 was compiled with CUDA enabled or disabled. Then, they recompile Geant4 in the opposite configuration (i.e. with CUDA enabled if previously disabled, and vice versa) and run the test program again. At this point there will be two test results text files, one for CUDA enabled, and one for CUDA disabled. In addition, two text files containing runtimes of all computationally-intensive functions are produced. After generating the files, a program to analyze the results is run outputting whether each test case passed or failed, and creating an Excel document (.csv) with the running times.

2.1.2 Generating Test Results

GenerateTestResults first initializes several G4ParticleHPVector objects from data files included with Geant4 of varying numbers of entries, including the creation of one G4ParticleHPVector with 0 entries. After the vectors have been initialized, the unittested methods are tested with a variety of input values. These cover edge cases (i.e. negative index for array, index greater than number of elements etc.) as well as more "normal" cases. The result of each function is then written to the results text file. This can be a single value in the case of "clean" functions that simply return a value, or it could be the state of the G4ParticleHPVector object, that is the array of points stored by that object. For performance reasons, instead of writing out the entire array of points, a hash value is generated from the array and is outputted. The value of the input variable for each function call is also outputted, so the results for specific inputs can be analyzed.

2.1.3 Analyzing Test Results

After the above files are generated, the AnalyzeTestResults utility runs through both documents and for each unit test outputted its status. If it failed, then the result from the CPU and from the GPU are both printed out. After the analysis completes, the total number of tests passed is outputted. In addition, AnalyzeTestResults will read

the files containing runtimes for each function and output them in .csv format to simplify performance analysis.

2.1.4 Note About Random Results

Some of the tests run in GenerateTestResults are based off of random numbers, which differ between the CPU and GPU implementations. To counteract this, each of those tests is run multiple times and the result is averaged. When analyzing results for those functions, they are only marked as failed if the difference in the values of the GPU and CPU results are more than a specified tolerance. There are some functions that depend on random numbers that modify the data array. Since a hash is outputted and will differ no matter how small the difference in the values of the array are, before hashing the values are all rounded to a lower precision.

2.2 Definition of Variables Used for Unit Testing

The following are variables that are used for multiple unit tests. Instead of defining them again for each unit test they are defined here only once. Other variables used for specific unit tests will be defined in their respective unit test sections For all unit tests:

Table 3: General Unit Test Variables

Name	Type	Description
n	G4double	number of entries in the G4ParticleHPVector
r1	G4double	-1.0
r2	G4double	0.0
r3	G4double	0.00051234
r4	G4double	1.5892317
r5	G4double	513.18
vec0	G4ParticleHPVector	0 entries
vec1	G4ParticleHPVector	80 entries
vec2	G4ParticleHPVector	1509 entries
vec3	G4ParticleHPVector	8045 entries
vec4	G4ParticleHPVector	41854 entries
vec5	G4ParticleHPVector	98995 entries
vec6	G4ParticleHPVector	242594 entries

2.3 G4ParticleHPVector & operator = (const G4ParticleHPVector & right)

2.3.1 Test Description

Create a new, temporary G4ParticleHPVector object and assign the current vector to it. Outputs the data and the integral from the new vector.

2.3.2 Test Inputs

Table 4: Unit Tests - = (overloaded assignment operator)

Test #	$rac{ ext{Inputs}}{ ext{right}}$
1	Current vector

2.3.3 Results

Table 5: Test results - = (overloaded assignment operator)

Tost #	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
1	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.3.4 Performance

This method is not computationally heavy, so performance data was not included.

2.4 const G4ParticleHPDataPoint GetPoint(G4int i)

2.4.1 Test Description

Returns the G4ParticleHPDataPoint at index i in the current vector. The x and y values of the point are outputted.

2.4.2 Test Inputs

Table 6: Unit Tests - GetPoint

Test #	Inputs i
2	-1
3	0
4	n/2
5	n-1
6	n

2.4.3 Test Results

Table 7: Test Results – GetPoint

Toot #	Test Res				$\overline{ ext{ult}}$		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
2	_	_	_	Pass	_	_	_
3	Pass	Pass	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass	Pass	Pass
5	Pass	Pass	Pass	Pass	Pass	Pass	Pass
6	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.4.4 Performance

This method is not computationally heavy, so performance data was not included.

2.5 G4double GetX(G4int i)

2.5.1 Test Description

Returns the energy at index ${\tt i}$ in the current vector. The ${\tt x}$ value of the point are outputted.

2.5.2 Test Inputs

Table 8: Unit Tests - GetX

Test #	Inputs i
7	-1
8	0
9	n/2
10	n-1
11	n

2.5.3 Test Results

Table 9: Test Results – GetX

Tost #	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
7	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
8	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
9	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
10	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
11	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.5.4 Performance

This method is not computationally heavy, so performance data was not included.

2.6 G4double GetY(G4int i)

2.6.1 Test Description

Returns the xSec at index ${\tt i}$ in the current vector. The ${\tt y}$ value of the point are outputted.

2.6.2 Test Inputs

Table 10: Unit Tests - GetY

Test #	Inputs i
12	-1
13	0
14	n/2
15	n-1
16	n

2.6.3 Test Results

Table 11: Test Results – GetY

Test #	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
12	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
13	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
14	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
15	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
16	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.6.4 Performance

This method is not computationally heavy, so performance data was not included.

2.7 G4double GetXsec(G4int i)

2.7.1 Test Description

Returns the xSec at index ${\tt i}$ in the current vector. The ${\tt y}$ value of the point are outputted.

2.7.2 Test Inputs

Table 12: Unit Tests - GetXsec

Test #	Inputs i
17	-1
18	0
19	n/2
20	n-1
21	n

2.7.3 Test Results

Table 13: Test Results – GetXsec

Tost #	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
17	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
18	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
19	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
20	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
21	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.7.4 Performance

This method is not computationally heavy, so performance data was not included.

2.8 G4double GetEnergy(G4int i)

2.8.1 Test Description

Returns the energy at index ${\tt i}$ in the current vector. The ${\tt x}$ value of the point are outputted.

2.8.2 Test Inputs

Table 14: Unit Tests - GetEnergy

Test #	Inputs i
22	-1
23	0
24	n/2
25	n-1
26	n

2.8.3 Test Results

Table 15: Test Results – GetEnergy

Test #	Test Resultvec0vec1vec2vec3vec4vec5vec6							
rest #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
22						Pass		
23	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
24	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
25	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
26	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.8.4 Performance

2.9 void SetData(G4int i, G4double x, G4double y)

2.9.1 Test Description

Sets the energy and xSec at index i in the current vector.

2.9.2 Test Inputs

Table 16: Unit Tests - SetData

Tost #	Inputs				
Test #	i	Х	У		
27	-1	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5		
28	0	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5		
29	n/2	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5		
30	n-1	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5		
31	n	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5		

2.9.3 Test Results

Table 17: Test Results – SetData

Tost #			Te	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
27	_	_	_	Pass	_	_	_
28	Pass	Pass	Pass	Pass	Pass	Pass	Pass
29	Pass	Pass	Pass	Pass	Pass	Pass	Pass
30	Pass	Pass	Pass	Pass	Pass	Pass	Pass
31	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.9.4 Performance

This method is not computationally heavy, so performance data was not included.

2.10 void SetEnergy(G4int i, G4double e)

2.10.1 Test Description

Sets the energy at index i in the current vector.

2.10.2 Test Inputs

Table 18: Unit Tests - SetEnergy

Test #	Inputs			
Test #	i	е		
32	-1	r1, r2, r3, r4, r5		
33	0	r1, r2, r3, r4, r5		
34	n/2	r1, r2, r3, r4, r5		
35	n-1	r1, r2, r3, r4, r5		
36	n	r1, r2, r3, r4, r5		

2.10.3 Test Results

Table 19: Test Results – SetEnergy

Track //			Tes	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
32		Pass					
33	Pass	Pass	Pass	Pass	Pass	Pass	Pass
34	Pass	Pass	Pass	Pass	Pass	Pass	Pass
35	Pass	Pass	Pass	Pass	Pass	Pass	Pass
36	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.10.4 Performance

This method is not computationally heavy, so performance data was not included.

2.11 void SetXsec(G4int i, G4double e)

2.11.1 Test Description

Sets the xSec at index i in the current vector.

2.11.2 Test Inputs

Table 20: Unit Tests - SetXsec

Test #	Inputs			
	i	е		
37	-1	r1, r2, r3, r4, r5		
38	0	r1, r2, r3, r4, r5		
39	n/2	r1, r2, r3, r4, r5		
40	n-1	r1, r2, r3, r4, r5		
41	n	r1, r2, r3, r4, r5		

2.11.3 Test Results

Table 21: Test Results – SetXsec

Test #		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
37						Pass	
38	Pass	Pass	Pass	Pass	Pass	Pass	Pass
39	Pass	Pass	Pass	Pass	Pass	Pass	Pass
40	Pass	Pass	Pass	Pass	Pass	Pass	Pass
41	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.11.4 Performance

This method is not computationally heavy, so performance data was not included.

2.12 void SetX(G4int i, G4double e)

2.12.1 Test Description

Sets the energy at index i in the current vector.

2.12.2 Test Inputs

Table 22: Unit Tests - SetX

Test #	Inputs				
rest #	i	е			
42	-1	r1, r2, r3, r4, r5			
43	0	r1, r2, r3, r4, r5			
44	n/2	r1, r2, r3, r4, r5			
45	n-1	r1, r2, r3, r4, r5			
46	n	r1, r2, r3, r4, r5			

2.12.3 Test Results

Table 23: Test Results – SetX

Tost #		Test Result					
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
42	Pass	Pass	Pass	Pass	Pass	Pass	Pass
43	Pass	Pass	Pass	Pass	Pass	Pass	Pass
44	Pass	Pass	Pass	Pass	Pass	Pass	Pass
45	Pass	Pass	Pass	Pass	Pass	Pass	Pass
46	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.12.4 Performance

This function is not computationally heavy, so performance data was not included.

2.13 void SetY(G4int i, G4double e)

2.13.1 Test Description

Sets the xSec at index i in the current vector.

2.13.2 Test Inputs

Table 24: Unit Tests - SetY

Test #	Inputs			
rest #	i	е		
47	-1	r1, r2, r3, r4, r5		
48	0	r1, r2, r3, r4, r5		
49	n/2	r1, r2, r3, r4, r5		
50	n-1	r1, r2, r3, r4, r5		
51	n	r1, r2, r3, r4, r5		

2.13.3 Test Results

Table 25: Test Results – SetY

Toot #		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
47						Pass	
48	Pass	Pass	Pass	Pass	Pass	Pass	Pass
49	Pass	Pass	Pass	Pass	Pass	Pass	Pass
50	Pass	Pass	Pass	Pass	Pass	Pass	Pass
51	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.13.4 Performance

This function is not computationally heavy, so performance data was not included.

2.14 void Init(istream & aDataFile, G4int total, G4double ux, G4double uy)

2.14.1 Test Description

Initializes the data.

2.14.2 Test Inputs

Table 26: Unit Tests - Init

Tost #	Inputs			
Test #	aDataFile	G4int	ux	uy
52	Empty.Init()	n	1	1
53	D.Init()	n	1	1

2.14.3 Test Results

Table 27: Test Results – Init

Test #	Status
52	Pass
53	Pass

2.14.4 Performance

Figure 1: Performance results for Init function

2.15 G4double SampleLin()

2.15.1 Test Description

Performs samples of the vector with a linear interpolation scheme.

2.15.2 Test Inputs

Table 28: Unit Tests - SampleLin

Test #	Inputs N/A
54	N/A

2.15.3 Test Results

Table 29: Test Results – SampleLin

Toot 4	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
54	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.15.4 Performance

Figure 2: Performance results for SampleLin

The extraneous point for 1509 entries where the GPU function is significantly slower can be attributed to the need to copy the data from the GPU memory back to CPU memory in this case.

2.16 void Times(G4double factor)

2.16.1 Test Description

Multiplies every element in the vector by factor.

2.16.2 Test Inputs

Table 30: Unit Tests - Times

Test #	Inputs factor
55	r1
56	r2
57	r3
58	r4
59	r5

2.16.3 Test Results

Table 31: Test Results – Times

Test #			Te	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
55	_	_	_	_	_	Pass	_
56	Pass	Pass	Pass	Pass	Pass	Pass	Pass
57	Pass	Pass	Pass	Pass	Pass	Pass	Pass
58	Pass	Pass	Pass	Pass	Pass	Pass	Pass
59	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.16.4 Performance

Times Performance 0.002 0.0018 Average Runtime (s) 0.0016 0.0012 0.0008 0.0008 0.0006 0.0004 0.0004 0.0002 0 80 1509 8045 41854 98995 242594 Number of Entries Avg. Time CPU Avg. Time GPU **Times Performance** 0.002 0.0018 Average Runtime (s) 0.0014 0.0012 0.0008 0.0008 0.0006 0.0006 0.0016 0.0004 0.0002 0 50000 100000 200000 250000 300000 150000 Number of Entries Avg. Time CPU ——Avg. Time GPU

Figure 3: Performance results for Times function

2.17 void ThinOut(G4double precision)

2.17.1 Test Description

Removes any element from the vector whose neighbor is closer than precision.

2.17.2 Test Inputs

Table 32: Unit Tests - ThinOut

Test #	Inputs factor
60	r1
61	r2
62	r3
63	r4
64	r5

2.17.3 Test Results

Table 33: Test Results – ThinOut

Test #			Te	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
60	Pass	Pass	Pass	Pass	Pass	Pass	Pass
61	Pass	Pass	Pass	Pass	Pass	Pass	Pass
62	Pass	Pass	Pass	Pass	Pass	Pass	Pass
63	Pass	Pass	Pass	Pass	Pass	Pass	Pass
64	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.17.4 Performance

This method is not computationally heavy, so performance data was not included.

2.18 G4double Sample()

2.18.1 Test Description

Performs samples of the vector according to interpolation its interpolation scheme.

2.18.2 Test Inputs

Table 34: Unit Tests - Sample

Test #	Inputs N/A
65	N/A

2.18.3 Test Results

Table 35: Test Results – Sample

Toot 4			Tes	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
65	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.18.4 Performance

This method is not computationally heavy, so performance data was not included.

2.19 void SetPoint(G4int i, const G4ParticleHPDataPoint & it)

2.19.1 Test Description

Sets a point at a given index in a given vector.

2.19.2 Test Inputs

- "rPoint" is a random G4ParticleHPDataPoint
- "nPoint" is a negative G4ParticleHPDataPoint
- "zPoint" is a zero G4ParticleHPDataPoint

Table 36: Unit Tests

Togt #	Inputs			
Test #	vec0	vec1		
66	-1	rPoint		
67	0	rPoint		
68	1	rPoint		
69	-1	rPoint		
70	0	rPoint		
71	n/2	rPoint		
72	n-1	rPoint		
73	n	rPoint		
74	0	nPoint		
75	0	zPoint		

2.19.3 Test Results

Table 37: Test Results – SetPoint

Test #	Status
66	Pass
67	Pass
68	Pass
69	Pass
70	Pass
71	Pass
72	Pass
73	Pass
74	Pass
75	Pass

2.19.4 Performance

This method is not computationally heavy, so performance data was not included.

2.20 G4double GetXsec(G4double e)

2.20.1 Test Description

Returns the first xSec from the current vector whose energy is greater than e.

2.20.2 Test Inputs

Table 38: Unit Tests - GetXsec

Test #	Inputs
16st #	е
76	r1, r2, r3, r4, r5
77	r1, r2, r3, r4, r5
78	r1, r2, r3, r4, r5
79	r1, r2, r3, r4, r5
80	r1, r2, r3, r4, r5

2.20.3 Test Results

Table 39: Test Results – GetXsec

Toot #			Te	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
76	Pass	Pass	Pass	Pass	Pass	Pass	Pass
77	Pass	Pass	Pass	Pass	Pass	Pass	Pass
78	Pass	Pass	Pass	Pass	Pass	Pass	Pass
79	Pass	Pass	Pass	Pass	Pass	Pass	Pass
80	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.20.4 Performance

Figure 4: Performance results for GetXSec(e) function

The GPU function is significantly slower. This is due to the lack of a hashing function as on the CPU which dramatically speeds up the time to find the first element in the data with energy at least e. It can be noted in figure 5 that when a minimum value is pre-declared the performance gap is much smaller.

2.21 G4double GetXsec(G4double e, G4int min)

2.21.1 Test Description

Returns the first xSec from the current vector whose energy is greater than e.

2.21.2 Test Inputs

Commas denote multiple sub test inputs. If one of the sub tests fail then the whole test fails.

Table 40: Unit Tests - GetXsec

Test #	Inputs	
rest #	е	min
81	r1, r2, r3, r4, r5	-1
82	r1, r2, r3, r4, r5	0
83	r1, r2, r3, r4, r5	n/2
84	r1, r2, r3, r4, r5	n-1
85	r1, r2, r3, r4, r5	n

2.21.3 Test Results

Table 41: Test Results – GetXsec

Toot 4			Te	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
81	_	_	_	_	_	Pass	_
82	Pass	Pass	Pass	Pass	Pass	Pass	Pass
83	Pass	Pass	Pass	Pass	Pass	Pass	Pass
84	Pass	Pass	Pass	Pass	Pass	Pass	Pass
85	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.21.4 Performance

GetXSec(e,min) Performance 7.00E-05 6.00E-05 5.00E-05 4.00E-05 3.00E-05 2.00E-05 1.00E-05 0.00E+00 0 80 1509 8045 41854 98995 242594 **Number of Entries** Avg. Time CPU Avg. Time GPU GetXSec(e,min) Performance 7.00E-05 6.00E-05 Average Runtime (s) 5.00E-05 4.00E-05 3.00E-05 2.00E-05 1.00E-05 0.00E+00 50000 0 100000 150000 200000 250000 300000 **Number of Entries**

Figure 5: Performance results for GetXSec(e,min) function

2.22 G4double Get15percentBorder()

2.22.1 Test Description

Returns the integral from each data point to the last data point and returns the first one within 15% of the last data point.

Avg. Time GPU

Avg. Time CPU

2.22.2 Test Inputs

Table 42: Unit Tests - Get15percentBorder

Test #	Inputs N/A
86	N/A

2.22.3 Test Results

Table 43: Test Results – Get15percentBorder

Test #	Test Result						
	vec0	vec1	vec2	vec3	vec4	vec5	vec6
86	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.22.4 Performance

Figure 6: Performance results for Get15PercentBorder

Number of Entries

Avg. Time CPU Avg. Time GPU

150000

200000

250000

300000

100000

2.23 G4double Get50percentBorder()

50000

0.00E+00

2.23.1 Test Description

Returns the integral from each data point to the last data point and returns the first one within 50% of the last data point.

2.23.2 Test Inputs

Table 44: Unit Tests - Get50percentBorder

Test #	Inputs N/A	
87	N/A	

2.23.3 Test Results

Table 45: Test Results – Get50percentBorder

Test #	Test Result						
	vec0	vec1	vec2	vec3	vec4	vec5	vec6
87	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.23.4 Performance

Figure 7: Performance results for Get50PercentBorder function

3 System Tests

3.1 Summary of Tests Performed

System tests will be performed by running the sample code packaged with the GEANT4 installation. The Hadr04 example will be run with different materials (i.e water, uranium) and number of events. The values and conditions that are changed per test are detailed in the table below.

Table 46: System Tests

Test #	Name	Inputs	Outputs	Description
88	System Test - Water, 2000 events	Events = 2000 Material = Water	Same output as non-GPU GEANT4	HADR04 no changes
89	System Test - Uranium, 2000 events	Events = 2000 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – basic example
90	System Test - Water, 600 events	Events = 600 Material = Water	Same output as non-GPU GEANT4	HADR04 – Shorter test
91	System Test - Uranium, 600 events	Events = 600 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – Shorter test
92	System Test - Uranium, 20000 events	Events = 20000 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – Long simulation stress Test
93	System Test - Uranium, 0 events	Events = 0 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – no runs, Edge case

3.2 System Tests Results

This section will summarize all of the results from running tests 39 through 44. Each test has an accuracy section as well as a performance section. The accuracy of the results will be based on how well the values generated on the GPU match up with the values generated on the CPU. The performance metric that is used is the time required to run each system test, without initialization. A positive value in the difference section of the performance tables indicates that the CPU version of the system test was faster by that many seconds. A negative value in this section indicates that the GPU version of the test was quicker by that many seconds.

3.3 System Test - Water, 2000 events

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The code for this example is bundled with the GEANT4 installation.

3.3.1 Accuracy

Table 47: Accuracy Test # 88

Data	CPU Values	GPU Values	Similarity
Process Calls			
hadElastic	423181	432423	far
nCapture	1998	1998	same
neutronInelastic	2	2	same
Parcours of incident neutron			
collisions	212.59	217.21	close
track length	$93.387~\mathrm{cm}$	$95.292~\mathrm{cm}$	close
time of flight	202.14 mus	206.94 mus	close
Generated particles			
<u>C14</u>			different
# of particles	2	NA	different
Emean	404.13 keV	NA	different
<u>C15</u>			different
# of particles	NA	2	different
Emean	NA	29.472 keV	different
<u>O16</u>			
# of particles	5948	6035	close
Emean	39.577 keV	40.436 keV	close
<u>O17</u>			
# of particles	4	5	close
Emean	1.4823 keV	$320.93~\mathrm{eV}$	far
<u>O18</u>			
# of particles	3	6	close
Emean	52.362	8.5446 keV	far
Alpha			
# of particles	2	2	same
Emean	$1.4146~\mathrm{MeV}$	7.8556 keV	far
<u>Deuteron</u>			
# of particles	1996	1994	close
Emean	1.3185 keV	1.3186 keV	close
Gamma			_
# of particles	2000	2005	close
Emean	2.2239 MeV	$2.2214~\mathrm{MeV}$	close
Proton			
# of particles	45355	45645	close
Emean	83.046 keV	82.301 keV	close

3.3.2 Performance

Table 48: Performance Test # 88

CPU Time	GPU Time	Difference
54.55s	72.08s	17.53s

3.4 System Test - Uranium, 2000 events

This test simply runs the Hadr04 example on both the GPU and the CPU with a modified source files to include Uranium as an element is the simulation. The number of events for this test has been set to 2000. The code for this example is bundled with the GEANT4 installation.

3.4.1 Accuracy

Table 49: Accuracy Test # 89

10010 10. 1	recuracy resu	7 00	
Data	CPU Values	GPU Values	Similarity
Process Calls			
hadElastic	1931	1932	close
nCapture	29	30	close
nFission	281	314	close
neutronInelastic	1690	1656	close
Parcours of incident neutron			
collisions	1.9655	1.966	close
track length	$5.6484~\mathrm{cm}$	$5.6517~\mathrm{cm}$	close
time of flight	2.896 ns	2.8983 ns	close
Generated particles			
U235			
# of particles	29	23	close
Emean	$6.5841~\mathrm{keV}$	7.1217 keV	close
<u>U236</u>			different
# of particles	NA	1	different
Emean	NA	10.474 keV	different
<u>U238</u>			
# of particles	3592	3565	close
Emean	$8.8059~\mathrm{keV}$	$8.8494~\rm keV$	close
U239			
# of particles	29	29	close
Emean	$8.3978~\mathrm{keV}$	$8.3269~\mathrm{keV}$	close
<u>Gamma</u>			
# of particles	4319	4351	close
Emean	$496.96~\rm keV$	$477.71~\mathrm{keV}$	close
Neutron			
# of particles	2449	2410	close
Emean	$1.2746~\mathrm{MeV}$	$1.2814~\mathrm{MeV}$	close

3.4.2 Performance

Table 50: Performance Test # 88

CPU Time	GPU Time	Difference
0.63s	10.57s	9.94s

3.5 System Test - Water, 600 events

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The number of runs for this test has been changed to be 600, a low number of events relative to the other trials. The code for this example is bundled with the GEANT4 installation.

3.5.1 Accuracy

Table 51: Accuracy Test # 90

	J		
Data	CPU Values	GPU Values	Similarity
Process Calls			
hadElastic	131588	131588	same
nCapture	600	600	same
Parcours of incident neutron			
collisions	220.31	220.31	same
track length	$96.495~\mathrm{cm}$	$96.495~\mathrm{cm}$	same
time of flight	210.57 mus	210.57 mus	same
Generated particles			
<u>O16</u>			
# of particles	1819	1819	same
Emean	$41.788~\rm keV$	$41.788~\rm keV$	same
<u>O17</u>			
# of particles	3	3	same
Emean	$316.87~{\rm eV}$	$316.87~\mathrm{eV}$	same
<u>O18</u>			
# of particles	1	1	same
Emean	$9.3256~\mathrm{eV}$	$9.3256~\mathrm{eV}$	same
<u>Deuteron</u>			
# of particles	597	597	same
Emean	$1.319~\mathrm{keV}$	$1.319~\mathrm{keV}$	same
<u>Gamma</u>			
# of particles	602	602	same
Emean	$2.2229~\mathrm{MeV}$	$2.2229~\mathrm{MeV}$	same
Proton			
# of particles	13860	13860	same
Emean	81.141 keV	81.141 keV	same

3.5.2 Performance

Table 52: Performance Test # 90

CPU Time	GPU Time	Difference
17.07s	22.11s	5.04s

3.6 System Test - Uranium, 600 events

This test simply runs the Hadr04 example on both the GPU and the CPU with a modified source files to include Uranium as an element is the simulation. The number of events is set to 600, a lower number of events than the other tests, to see how fewer events will impact accuracy and/or performance The code for this example is bundled with the GEANT4 installation.

3.6.1 Accuracy

Table 53: Accuracy Test # 91

	J 1.	-	
Data	CPU Values	GPU Values	Similarity
Process Calls			
hadElastic	562	550	close
nCapture	8	9	close
nFission	89	100	close
neutronInelastic	508	491	close
Parcours of incident neutron			
collisions	1.9367	1.9167	close
track length	$5.6204~\mathrm{cm}$	$5.4727~\mathrm{cm}$	close
time of flight	2.8817 ns	2.8063 ns	close
Generated particles			
$\underline{\text{U235}}$			
# of particles	6	9	close
Emean	$6.131~\mathrm{keV}$	$6.1807~\rm keV$	close
<u>U238</u>			
# of particles	1064	1032	close
Emean	$8.9857~\rm keV$	$9.0257~\mathrm{keV}$	close
<u>U239</u>			
# of particles	8	9	close
Emean	$8.3308~\mathrm{keV}$	$8.498~\mathrm{keV}$	close
<u>Gamma</u>			
# of particles	1261	1294	close
Emean	$486.58~\rm keV$	473.83 keV	close
<u>Neutron</u>			
# of particles	743	737	close
Emean	$1.3038~\mathrm{MeV}$	$1.3173~\mathrm{MeV}$	close

3.6.2 Performance

Table 54: Performance Test # 91

CPU Time	GPU Time	Difference
.22s	3.01s	2.79s

3.7 System Test - Uranium, 20000 events

This test simply runs the Hadr04 example on both the GPU and the CPU with a modified source files to include Uranium as an element is the simulation. The macro file detailing the number of events had been changed such that 20000 events are run. The idea is to see if speed and/or accuracy gaps will widen or shrink as the number of events increases. The code for this example is bundled with the GEANT4 installation.

3.7.1 Accuracy

Table 55: Accuracy Test # 92

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	19526	19335	close
nCapture	245	268	close
nFission	2933	2920	close
neutronInelastic	16822	16812	close
Parcours of incident neutron			
collisions	1.9763	1.9667	close
track length	$5.6512~\mathrm{cm}$	$5.5873~\mathrm{cm}$	close
time of flight	2.898 ns	2.8651 ns	close
Generated particles			
$\underline{\text{U234}}$			
# of particles	6	4	close
Emean	$3.1299~\mathrm{keV}$	$6.32~\mathrm{keV}$	close
$\underline{\text{U235}}$			
# of particles	223	193	close
Emean	$8.4136~\rm keV$	$8.4444~\rm keV$	close
$\underline{\text{U236}}$			
# of particles	2	3	close
Emean	9.5669 keV	$9.192~\mathrm{keV}$	close
<u>U238</u>			
# of particles	36119	35950	close
Emean	$8.8767~\rm keV$	$8.8895~\rm keV$	close
<u>U239</u>			
# of particles	243	265	close
Emean	$8.428~\mathrm{keV}$	$8.4341~\mathrm{keV}$	close
<u>Gamma</u>			
# of particles	43826	44039	close
Emean	479.54 keV	$479.03~\mathrm{keV}$	close
Proton			
# of particles	24374	24546	close
Emean	$1.2749~\mathrm{MeV}$	$1.2587~\mathrm{MeV}$	close

3.7.2 Performance

Table 56: Performance Test # 92

CPU Time	GPU Time	Difference
6.4s	106.41s	101.01s

3.8 System Test - Uranium, 0 events

This test simply runs the Hadr04 example on both the GPU and the CPU with a modified source files to include Uranium as an element is the simulation. Then number of events in this test has been set to 0. This is to cover all possible cases. The code behaves as expected and no values are produced. The code for this example is bundled with the GEANT4 installation.

3.8.1 Accuracy

Table 57: Accuracy Test # 93

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	NA	NA	NA
nCapture	NA	NA	NA
neutronInelastic	NA	NA	NA
Parcours of incident neutron			
collisions	NA	NA	NA
track length	NA	NA	NA
time of flight	NA	NA	NA
Generated particles			
<u>O16</u>			
# of particles	NA	NA	NA
Emean	NA	NA	NA
<u>O17</u>			
# of particles	NA	NA	NA
Emean	NA	NA	NA
<u>O18</u>			
# of particles	NA	NA	NA
Emean	NA	NA	NA
<u>Deuteron</u>			
# of particles	NA	NA	NA
Emean	NA	NA	NA
<u>Gamma</u>			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Proton			
# of particles	NA	NA	NA
Emean	NA	NA	NA

3.8.2 Performance

Table 58: Performance Test # 93

Type	CPU Time	GPU Time
User	NA	NA
Real	NA	NA
System	NA	NA

4 Traceability

The following section is used to highlight the relations of implemented test cases to requirements and modules. In doing so, we hope to draw clear reasoning upon the inclusion of such tests.

4.1 Requirements

Below is a traceability table outlining test cases and the requirements they are related to:

Table 59: Tests and Requirements Relationship

Test #	Description	Requirement
1	Performance test of functions	Req. # 4 (Speed and Latency)
2	InitializeVector	Req # 5, 6, 7 (Precision, Reliability, Robustness)
3	SettersandGetters	Req # 5, 6, 7 (Precision, Reliability, Robustness)
4	GetXSec	Req # 5, 6, 7 (Precision, Reliability, Robustness)
5	ThinOut	Req # 5, 6, 7 (Precision, Reliability, Robustness)
6	Merge	Req # 5, 6, 7 (Precision, Reliability, Robustness)
7	Sample	Req # 5, 6, 7 (Precision, Reliability, Robustness)
8	GetBorder	Req # 5, 6, 7 (Precision, Reliability, Robustness)

9	Integral	Req $\#$ 5, 6, 7 (Precision, Reliability,
		Robustness)
10	Times	Req $\#$ 5, , 7 (Precision, Reliability,
		Robustness)
11	Assignment	Req $\#$ 5, 6, 7 (Precision, Reliability,
		Robustness)
12	System Test	Req $\#$ 1, 2, 8, 11 (Adjacent Systems,
		Access)

4.2 Modules

Similarly, the following is a traceability table explicitly relating test cases to modules:

Table 60: Tests and Modules Relationship

Test #	Description	Module
1	Performance test of	G4ParticleVector
	functions	
2	${\bf Initialize Vector}$	G4ParticleVector
3	SettersandGetters	G4ParticleVector
4	$\operatorname{GetXSec}$	G4ParticleVector
5	ThinOut	G4ParticleVector
6	Merge	G4ParticleVector
7	Sample	G4ParticleVector
8	$\operatorname{GetBorder}$	G4ParticleVector
9	Integral	G4ParticleVector
10	Times	G4ParticleVector
11	Assignment	G4ParticleVector
12	System Test	G4NeutronHPDataPoint &
		G4ParticleVector & CMake Files

5 Changes after Testing

Developing the unit testing system illuminated a variety of bugs and changes that needed to be made. These were predominantly related to edge cases – trying to access indices in arrays that are negative or greater than the number of elements in the array

was a common theme. Some of these edge cases were not covered by Geant4 itself, so the required change was made to the original Geant4 source code as well as the modified CUDA code.

Aside from the handling of edge cases with if guards, there was one more significant change required to get the unit tests to pass. An important control flow statement in <code>GetXSec(e,min)</code> was supposed to branch if the difference between two values was below a certain threshold. Our implementation was missing a call to get the absolute value for this difference, and as such was returning the wrong result in cases where the second value was larger than the first.

In terms of performance, some performance testing had been done prior to the development of the unit testing system. That profiling data led us to reimplement nearly every function on the GPU using a hybrid approach wherein the data values are stored in both GPU and CPU memory, are modified mainly on the GPU and then the version in CPU memory is updated only when required. This gave very large performance improvements, with the GPU code going from 4.5X slower to 1.2X slower. Further performance tuning is planned for the future based on the results from individual unit tests.