

Agda 中的证明,从一点五到二

2017, Nov 6 by Tesla Ice Zhang

上一篇说了很多只有一种情况的证明,这一篇说个有两种情况的。 到目前为止,按理说所有的字符都还能正常显示。

前置知识

• 上一篇文章

以及,由于 Agda 语言的特殊性,本文将继续使用 LaTeX 和代码块来 共同展示代码。 代码块唯一的作用在于便于复制,主要的呈现途径 为 LaTeX。

上一篇的习题

上一篇文章我留下了一个没提供证明的命题,现在给出完整答案:

$$\wedge -\mathrm{assoc}_0 : orall \{P \ Q \ R\}
ightarrow ((P \wedge Q) \wedge R)
ightarrow (P \wedge (Q \wedge R))$$

$$\wedge$$
-assoc₀ (\wedge -intro (\wedge -intro $p(q)(r) = \wedge$ -intro $p(\wedge$ -intro $q(r)$

$$\wedge -\mathrm{assoc}_1 : \forall \{P \ Q \ R\} \to (P \land (Q \land R)) \to ((P \land Q) \land R)$$

$$\wedge$$
-assoc₁ (\wedge -intro p (\wedge -intro q r)) = \wedge -intro (\wedge -intro p q) r

$$\wedge$$
-assoc : $\forall \{P \ Q \ R\} \rightarrow (P \land (Q \land R)) \Leftrightarrow ((P \land Q) \land R)$

$$\wedge$$
-assoc = \wedge -intro \wedge -assoc₁ \wedge -assoc₀

 Λ -assoc $_{\theta}$: \forall {P Q R} \rightarrow ((P Λ Q) Λ R) \rightarrow (P Λ (Q Λ R))

 Λ -assoc_θ (Λ -intro (Λ -intro p q) r) = Λ -intro p (Λ -intro q

 Λ -assoc₁ : \forall {P Q R} \rightarrow (P Λ (Q Λ R)) \rightarrow ((P Λ Q) Λ R)

 Λ -assoc₁ (Λ -intro p (Λ -intro q r)) = Λ -intro (Λ -intro p q)

 Λ -assoc : \forall {P Q R} \rightarrow (P Λ (Q Λ R)) \Leftrightarrow ((P Λ Q) Λ R)

Λ-assoc = Λ-intro Λ-assoc₁ Λ-assoc₀

确实没什么好说的,所以才能说是即得易见平凡,仿照上例显然。

或相关的证明

上一篇我有个东西没讲完,就是"或"。 它和"与"相对,它只要求两个命题中的一个成立。

因此,它对应着两个不同的情况:

定义 GADT

把这个关系写成 GADT, 就是这样:

data $_\lor_(PQ:Set):Set$ where

 $\vee -\mathrm{intro}_0: P \to P \vee Q$

 \vee -intro₁ : $Q \rightarrow P \vee Q$

data v (P Q : Set) : Set where

 $v\text{-intro}_{0} : P \rightarrow P \ V \ Q$

v-intro₁ : $Q \rightarrow P \lor Q$

这里我们遇到了一种和之前不一样的情况: 我们的 GADT 有了两种 instance。 这意味着我们需要在证明的时候考虑两种不同的情况, 分别针对这两种 instance。

证明一

比如,我们可以证明一下这个命题:

$$(p
ightarrow r) \wedge (q
ightarrow r) \wedge (p ee q)
ightarrow r$$

它的逻辑很简单,在 p 和 q 都能推出 r 的时候, p q 只需要成立一个, r 就成立。这个命题写成 Aqda 的类型,就是:

$$\vee$$
-elim: $\forall \{P Q\}\{R: \mathrm{Set}\} \rightarrow (P \rightarrow R) \rightarrow (Q \rightarrow R) \rightarrow (P \lor Q) \rightarrow R$

$$v\text{-elim}: \forall \{P Q\} \{R : Set\} \rightarrow (P \rightarrow R) \rightarrow (Q \rightarrow R) \rightarrow (P \lor Q) \rightarrow (P$$

我们在证明中,需要同时对 $(P \vee Q)$ 的两种可能的情况进行处理 (因为这个类型的东西既可以是通过 P 构造的,也可以是通过 Q 构造的),不然 Agda 的 exhaustiveness check 会报错的(这也是为 什么 postulate 不被推荐使用)。

首先考虑 P 成立的情况, 我们有:

$$\vee$$
-elim pr_ (\vee -elim₀ p) = pr p

v-elim pr _ (v-intro₀ p) = pr p

然后考虑 Q 成立的情况, 我们有:

$$\vee$$
-elim_qr (\vee -elim₁ q) = qr q

v-elim _ qr (v-intro₁ q) = qr q

放在一起,就是:

$$\begin{split} & \lor - \mathrm{elim} : \forall \{P \ Q\} \{R : \mathrm{Set}\} \to (P \to R) \to (Q \to R) \to (P \lor Q) \to R \\ & \lor - \mathrm{elim} \, \mathrm{pr}_- \, (\lor - \mathrm{elim}_0 \, p) = \mathrm{pr} \, p \\ & \lor - \mathrm{elim}_- \, \mathrm{qr} \, \left(\lor - \mathrm{elim}_1 \, q \right) = \mathrm{qr} \, q \\ \\ & \mathsf{v-elim} : \, \forall \, \left\{ \mathsf{P} \ \mathsf{Q} \right\} \, \left\{ \mathsf{R} : \, \mathsf{Set} \right\} \to \left(\mathsf{P} \to \mathsf{R} \right) \to \left(\mathsf{Q} \to \mathsf{R} \right) \to \left(\mathsf{P} \ \mathsf{V} \ \mathsf{Q} \right) \to \mathcal{O} \end{split}$$

v-elim :
$$\forall$$
 {P Q} {R : Set} \rightarrow (P \rightarrow R) \rightarrow (Q \rightarrow R) \rightarrow (P v Q) -v-elim pr _ (v-intro $^{\circ}$ p) = pr p
v-elim _ qr (v-intro $^{\circ}$ q) = qr q

这样,就 check 了。十分简单。

证明二

和 / 一样, / 也有交换律:

$$\lor -\mathrm{comm}' : \forall \{P \ Q\} \to (P \lor Q) \to (Q \lor R)$$
 $\lor -\mathrm{comm}' \ (\lor -\mathrm{intro}_0 \ p) = \lor -\mathrm{intro}_1 \ p$
 $\lor -\mathrm{comm}' \ (\lor -\mathrm{intro}_1 \ q) = \lor -\mathrm{intro}_0 \ q$
 $\lor -\mathrm{comm} : \forall \{P \ Q\} \to (P \lor Q) \Leftrightarrow (Q \lor R)$

$$\lor -comm = \land -intro \lor -comm' \lor -comm'$$

$$\lor -comm' : \forall \{P Q\} \rightarrow (P \lor Q) \rightarrow (Q \lor P)$$

$$V\text{-comm}$$
 : \forall {P Q} \rightarrow (P V Q) \Leftrightarrow (Q V P)
V-comm = $\Lambda\text{-intro }V\text{-comm}'$ V-comm'

结束

这么快就没了?

其实只是填一下上一篇留下的坑。

是的,我说完了。

Tweet this **

Top

创建一个 issue 以申请评论

Create an issue to apply for commentary

协议/License

本作品 Agda 中的证明,从一点五到二 采用 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 进行许可,基于 http://ice1000.org/2017/11/06/ProofInAgda3/ 上的作品创作。

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internat ional License.

© 2017 Tesla Ice Zhang

유 | 💿 | 🖹