5.3 Definition ("Model-Checking-Semantik" von HML; S. 96 in [AILS07])

Sei $T = (\mathsf{Proc}, \mathsf{Act}, \mathsf{Tran})$, mit $\mathfrak M$ definiert über Act . Die Relation $\models : (\mathsf{Proc}, \mathfrak M)$ ist induktiv definiert durch:

$$p \models \#$$
 für alle $p \in Proc$
 $p \models f$ für kein $p \in Proc$
 $p \models F \land G$ falls $p \models F$ und $p \models G$
 $p \models F \lor G$ falls $p \models F$ oder $p \models G$

$$p \models \langle \alpha \rangle F$$
 falls es $p' \in Der(p, \alpha)$ gibt mit $p' \models F$

falls für alle $p' \in Der(p, \alpha)$ gilt $p' \models F$

Logik: Semantik II

Aufgabe 2: Hennessy-Milner Logik: Semantik I

Gegeben sei folgendes LTS:

2.a) Werte die Formeln aus:

(i)
$$\Gamma_1 = e$$

(ii) $\Gamma_2 = (a) f$
(iii) $\Gamma_3 = (b) e$
(iv) $\Gamma_4 = |a| f$
(v) $\Gamma_5 = (a) f$
(vi) $\Gamma_6 = |b| f$
(vii) $\Gamma_7 = |b| f$

Welche der folgenden Aussagen sind korrekt? Begründe deine Antwort.
 (i) p₂ ⊢ Γ₄ □ (ii) p₄ ⊢ Γ₅ □ (iii) p₃ ⊢ Γ₇ □ (iv) p₅ ⊢ Γ₈ □

[[+]]=[M, M2, M, 14, 4]

5.4 Definition (Denotationelle HML-Semantik; Def. 5.2 in [AILS07])

Sei T = (Proc, Act, Tran), mit M definiert über Act. Die Funktion $[\cdot]: M \to 2^{Proc}$ ist induktiv definiert durch:

$$[f] \triangleq \mathsf{Proc}$$

$$[f] \triangleq \emptyset$$

$$[F \land G] \triangleq [F] \cap [G]$$

$$[F \lor G] \triangleq [F] \cup [G]$$

$$[[\alpha]F] \triangleq [\cdot \alpha \cdot][F]$$

$$[\langle \alpha \rangle F] \triangleq \langle \cdot \alpha \cdot \rangle [F]$$

wobei die Operatoren $[\cdot \alpha \cdot]$, $\langle \cdot \alpha \cdot \rangle : 2^{\mathsf{Proc}} \to 2^{\mathsf{Proc}}$ gegeben sind durch:

$$\begin{array}{ll} [\cdot\alpha\cdot|S] \triangleq & \{p\in\operatorname{Proc}\mid\forall p'\in\operatorname{Der}(p,\,\alpha):p'\in S\} \Rightarrow \text{IpeProc} & \text{Der}(p,\,x) \in S \end{array}$$

$$\langle\cdot\alpha\cdot\rangle S \triangleq & \{p\in\operatorname{Proc}\mid\exists p'\in\operatorname{Der}(p,\,\alpha):p'\in S\}$$

Die Semantik [·] für die n-stelligen Varianten ∧ und ∨ ergibt sich analog durch die n-stelligen Varianten ∩ und ∪.

Gegeben sei folgendes LTS:

(i)
$$A_1 = \{ p_2, p_3 \}$$
 (ii) $A_2 = \{ p_1 \}$ (iii) $A_3 = \{ p_2, p_3, p_4, p_6 \}$

Finde drei Hennessy-Milner Formeln F₁, F₂, F₃, passend zum LTS, so dass [F₁] = A₁, $[F_2] = A_2 \text{ und } [F_3] = A_3.$

- 3.b) Formalisiere die folgenden Aussagen:
- (ii) Nach jeder b-Aktion ist eine a-Aktion möglich.
 (iii) Nach jeder c-Aktion ist eine b-Aktion möglich.
- (iv) Nach jeder c-Aktion gilt, es ist eine b-Aktion oder eine a-Aktion möglich.
- (v) Es ist keine c-Aktion möglich.
- (vi) Es ist weder eine a-Aktion, noch eine b-Aktion möglich.
- (vii) Es ist sowohl eine a-Aktion, als auch eine b-Aktion möglich.

In welchen Zuständen des LTS gilt jede dieser Formeln?

M 697 V M 607 H

5.7 Definition (Negation)

Sei T = (Proc, Act, Tran), mit M definiert über Act. Die Funktion $(\cdot)^c : \mathcal{M} \to \mathcal{M}$ ist gegeben durch:

$$(F \wedge G)^c \triangleq (F)^c \vee (G)^c$$

$$\psi$$
 $(F \vee G)^c \triangleq (F)^c \wedge (G)^c$

$$\bigcap_{\alpha} ((\alpha)F)^{\alpha} \triangleq [\alpha](F)^{\alpha}$$

Es gilt für alle $F \in \mathcal{M}$:

- 1. $[(F)^c] = Proc \setminus [F];$
- 2. $((F)^c)^c = F$.

Explicit state in Theorem Miller February

$$P_0 = \{a \mid i \geq 1 \leq i \leq k \} \land i \geq j \leq i$$

 $P_0 = \{a \mid i \geq k \} \land i \neq j \leq j \leq k \}$
 $P_0 = \{a \mid i \geq k \} \land i \neq j \leq j \leq k \}$

Antipolis & Histories Million Deglis III

Funds one LES and $A = \{ a, b, a \}$ and Euroteen ba, we show $p_1 \mapsto b_2 \cap b_3 \cap b_4$.

Aufgabe 1: Komplementierung

Zeige, dass die folgende Aussage gilt: $\forall F \in M$. $(F^c)^c = F$

Beweis mit struktureller Induktion

$$\frac{JA}{+}\frac{7=+}{+}\frac{1}{5}=((t+)^{5})^{5}=(4)^{5}=\pm 7$$

2.
$$((F)^c)^c = F$$
.

Aufgabe 2: Unterscheidende Formeln

JV: Luce t, & truck

2.a) Gegeben sei folgendes LTS:

5.10 Theorem (Hennessy-Milner-Theorem; Theorem 5.1 in [AILS07])

Sei T = (Proc, Act, Tran) Bild-endlich. Seien p, q ∈ Proc.

Dann gilt:

 $p \sim q$ genau dann, wenn [p] = [q]

 $p \sim_i q$ genau dann, wenn $[p]^{\leqslant i} = [q]^{\leqslant i}$

Gelten unten stehende Aussagen? Falls nicht, gib eine HML-Formel an, die die jeweiligen Prozesse unterscheidet.

- (i) p₁ ~ q₁
- (ii) $q_1 \sim s_1$

(iii) $q_1 \sim r_1$

5.3 Definition ("Model-Checking-Semantik" von HML; S. 96 in [AILS07])

Sei T = (Proc, Act, Tran), mit M definiert über Act.

Die Relation ⊨ : (Proc, M) ist induktiv definiert durch: für alle p ∈ Proc

$$p \models f$$
 für kein $p \in Proc$
 $p \models F \land G$ falls $p \models F$ und $p \models G$
 $p \models F \lor G$ falls $p \models F$ oder $p \models G$
 $p \models [\alpha]F$ falls für alle $p' \in Der(p)$

falls für alle $p' \in Der(p, \alpha)$ gilt $p' \models F$

falls es $p' \in Der(p, \alpha)$ gibt mit $p' \models F$

Aufgabe 3: n-Bisimulation und das Hennessy-Milner-Theorem

Gegeben sei folgendes LTS:

- 3.a) Bestimme \sim_0 , \sim_1 , \sim_2 und \sim_3 .
- 3.b) Gilt (q2, q3) ∈ ~1? Falls nicht, begründe deine Antwort.
- 3.c) Begründe: p₁ und q₁ sind 2-bisimilar.
- 3.d) Wie stehen ∼i+1 und ∼i in Beziehung?
- 3.e) Gilt p₁ ~ q₁? Begründe deine Antwort.

5.10 Theorem (Hennessy-Milner-Theorem; Theorem 5.1 in [AILS07])

Sei T = (Proc, Act, Tran) Bild-endlich.

Seien $p, q \in Proc.$

Dann gilt:

 $p \sim q$ genau dann, wenn [p] = [q]

 $p \sim_i q$ genau dann, wenn $[p]^{\leqslant i} = [q]^{\leqslant i}$

Aufgabe 1: Ausdrucksstärke HML vs HML mit Rekursion

Seien a, b, c ∈ Act. Welche der folgenden Aussagen lassen sich mit HML Formeln formalisieren und welche nicht? Zur Begründung gib entweder eine Formel an, oder erkläre kurz, warum es keine Formel gibt.

- 1.a) Es ist immer möglich eine Aktion auszuführen.
- 1.b) Nach jeder a-Aktion at, ist eine b-Aktion möglich.
 1.c) Es ist irgendwann möglich eine a-Aktion auszuführen.
- 1.d) Es ist möglich eine a-Aktion zu machen, so dass es danach immer wieder möglich ist eine b-Aktion auszuführen.
- Wenn eine a-Aktion möglich ist, dann ist keine b-Aktion möglich.
- Es ist immer möglich nach einer b-Aktion eine c-Aktion zu machen, bis keine a-Aktion mehr