QUI070 - Métodos	Pontuação ↓		
Data: 02/06/2025	Questões: 2	Pontos totais: 5	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	2	
2	3	
Total:	5	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas e materiais de consulta com essa folha anexa.
- 1. (2 pontos) O tolueno (metilbenzeno), quando reagido com cloreto de acetila na presença de AlCl₃ e, então, com Br₂ na presença de FeBr₃, gera um produto **A**, preferencialmente. Ao realizar a reação em laboratório, um aluno adquiriu os espectros no infravermelho e de RMN de ¹H do produto, que são mostrados nas **Figuras 1** e **2**.

Figura 1: Espectro no infravermelho do produto **A**. A banda pouco intensa entre 3200 cm^{-1} e 3400 cm^{-1} é relativa ao filme líquido empregado na análise.

Figura 2: Espectro de RMN de 1 H do produto **A**. O espectro foi adquirido em um espectrômetro de 400 MHz (1 H), utilizando DMSO- d_{6} como solvente. Os sinais em $\delta \sim 2,5$ ppm e 3,3 ppm são relativos ao DMSO residual e à água do DMSO- d_{6} .

- (a) Mostre a estrutura do produto **A**. Mostre o assinalamento completo das ressonâncias do espectro de ¹H.
- (b) Sabe-se que a primeira etapa dessa síntese pode gerar uma mistura de isômeros de posição, o que levaria a dois produtos finais, também isômeros de posição. Quais seriam esses isômeros? Os espectros fornecidos são suficientes para diferenciar entre esses isômeros?

Resposta:

Na letra **a**, o espectro no IV acusa a presença de carbonos aromático e com hibridação sp^3 , pela presença de bandas na região de 3000 cm⁻¹ a 3100 cm⁻¹ (ν (C–H, aromático)) e de 2950 cm⁻¹ a 2850 cm⁻¹ (ν (C–H, sp^3)). Além disso, acusa a presença de uma carbonila, devido a presença da banda em ca. 1700 cm⁻¹, representando uma possível conjugação.

No espectro de RMN de ¹H, o assinalamento completo é mostrado a seguir.

Sinal	δ/ppm	Integral	Multiplicidade	$J/{ m Hz}$
1	2,45	3Н	S	-
2	2,57	3Н	S	-
3	7,32	1H	d	$J=8~\mathrm{Hz}$
4	7,78	1H	d	$J=8~\mathrm{Hz}$
5	8,11	1H	S	

É possível observar que os hidrogênios 3 e 4, na região de δ típica de aromáticos, acoplam entre si, pois possuem a mesma constante de acoplamento. Não obstante, a constante de acoplamento é típica de 3J em orto. Além disso, há dois grupos CH₃ isolados, caracterizados pelos hidrogênios 1 e 2. Finalmente, há um átomo de hidrogênio isolado na região dos aromático mais desblindado que 3 e 4. Então, a estrutura que mais condiz com os dados obtidos é mostrada a seguir.

A estrutura proposta condiz com a reatividade observada, já que o grupo metil é *orto/para*-diretor, direcionando a entrada do grupo acil na posição preferencial *para* para diminuir a repulsão estérica. Por ser um grupo *meta*-diretor, a carbonila promove um efeito diretor complementar ao grupo metil e gera o anel 1,2,4-trisubstituído.

Na letra **b**, os isômeros de posição da primeira etapa seriam a 1-(*p*-tolil)etan-1-ona e a 1-(*o*-tolil)etan-1-ona. Esses isômeros a 1-(3-bromo-4-metilfenil)etan-1-ona e a 1-(5-bromo-2-metilfenil)etan-1-ona. Como os padrões de acoplamento não mudariam e os ambientes químicos dos hidrogênios seriam muito similares, os espectros fornecidos não seriam suficientes para diferenciá-los.

2. (3 pontos) O racemato da 3-bromo-4-hidroxi-3-metilciclopentan-1-ona, ao reagir com etóxido de sódio na presença de etanol sob aquecimento, gerou o produto **B**. Ao realizar a reação em laboratório, uma aluna adquiriu os espectros no infravermelho e de RMN de ¹H do produto.

O espectro no IV de **B** gerou as seguintes bandas (cm⁻¹): 3394 (br, s) 3125 (m), 2944 (m), 1683 (s), 1624 (m), 1379 (w), 1294 (w), 1194 (w) e 1077 (w). As bandas (i) br são designadas largas, (ii) s, fortes, (iii), m, médias, e (iv) w, fracas. O espectro de RMN de ¹H do produto é mostrado na **Figura 3**.

Figura 3: Espectro de RMN de 1 H do produto majoritário **B**. O espectro foi adquirido em um espectrômetro de 300 MHz (1 H), utilizando DMSO- d_{6} como solvente.

- (a) Qual a estrutura do produto majoritário **B**? Mostre o assinalamento completo das ressonâncias do espectro de ¹H.
- (b) Caso KOtBu (*terc*-butóxido de potássio) e *t*BuOH (*terc*-butanol) fossem usados, sob aquecimento, ao invés dos reagentes especificados, qual produto seria majoritário? Você esperaria mudanças no espectros no infravermelho e de RMN de ¹H? Se sim, quais?

Resposta:

De acordo com os dados obtidos na espectroscopia no IV, o grupo –OH foi mantido (banda larga e forte em 3394 cm⁻¹), uma ligação C=C foi formada (bandas em 3125 cm⁻¹ – ν (C-H, sp^2) – e 1624 cm⁻¹ – ν (C=C)) e a carbonila se manteve e se tornou conjugada (banda em 1683 cm⁻¹).

Os sinais observados no espectro de RMN de ¹H estão na tabela a seguir.

Sinal	δ/ppm	Integral	Multiplicidade	$J/{ m Hz}$
1	2,13	3Н	S	-
2	2,59	2H	d	$J=6,3~\mathrm{Hz}$
3	5,07	1H	t	$J=6,3~\mathrm{Hz}$
4	6,02	1H	\mathbf{s}	-

Sendo assim, sabe-se que há (i) um grupo $-CH_3$ isolado, referente ao sinal em 2,13 ppm, (ii) um H ligado a C sp^3 que acopla com um ligado a C sp^2 , referentes aos sinais em 2,59 ppm e 5,07 ppm, respectivamente, e (iii) um H ligado a C sp^2 isolado, referente ao sinal em 6,02 ppm. Sabe-se, ainda, que o hidrogênio relativo ao sinal em 2,59 ppm é um CH_2 vizinho a 1 hidrogênio e que o relativo ao sinal em 5,07 ppm é um CH vizinho a 2 hidrogênios. Considerando isso e as evidência observadas no espectro de IV, a estrutura mais provável é a mostrada abaixo.

H4 (6,02 ppm, 1H, s)

Carbonila conjugada (IV)

H1 (2,13 ppm, 3H, s)

H3 (5,07 ppm, 1H, t,
$${}^3J_{3,2}=6,3$$
 Hz)

Função álcool preservada (IV)

O resultado é esperado de acordo com as condições reacionais, que promovem uma reação de desidroalogenação do tipo E₂, favorecendo o produto de Zaitsev, devido ao tamanho da base. A hidroxila dificilmente atuaria como um grupo abandonador em meio básico na presença do brometo.

Na letra **b**, o aumento do volume da base utilizada favoreceria o produto de Hoffmann – *i.e.*, menos substituído. Mudanças profundas seriam esperadas no espectro no IV e de RMN de 1 H. O espectro no IV teria a banda de carbonila na região usual de cetonas cíclicas (*ca.* 1730 cm $^{-1}$) e o de RMN de 1 H teria apenas um simpleto integrado para 2 hidrogênios na região de alcenos, com os outros três hidrogênios na região de carbonos sp^{3} .