

单元1.5 图的矩阵表示

第14章 图的基本概念

14.4 图的矩阵表示

讲义参考北京大学《离散数学》及电子科技大学《离散数学》讲义

内容提要

- 关联矩阵
- 邻接矩阵
- 可达矩阵

图的表示方法

- 集合:精确简练,但抽象不易理解 G=<V,E>
 - V={a,b,c,d,e}
 - E={(a,a),(a,b),(a,b),(b,c),(c,d),(b,d)}
- 图形:形象直观,顶点数、 边数较大时不方便, 甚至不可行
- 矩阵: 利于计算机处理 需先标定顶点(边)

有向图关联矩阵

- 设D=<V,E>是无环有向图, V={v₁,v₂,...,v_n}, E={e₁,e₂,...,e_m}
- 关联矩阵(incidence matrix): $M(D)=[m_{ij}]_{n\times m}$,

 $m_{ij} = \begin{cases} 1, v_i \neq e_j$ 的起点 $m_{ij} = \begin{cases} 0, v_i \neq e_j$ 不关联

-1, v_i是e_i介久以 -1, v_i是e_i的终点

有向图关联矩阵举例

有向图关联矩阵性质

- 每列和为零: $\Sigma^n_{i=1} m_{ij} = 0$
- 每行绝对值和为d(v): d(v_i)=Σ^m_{j=1}|m_{ij}|,
 其中 1的个数为d⁺(v),
 -1的个数为d⁻(v)
- 握手定理: $\Sigma^{n}_{i=1}\Sigma^{m}_{j=1}m_{ij}=0$
- 平行边: 相同两列

无向图关联矩阵

- 设G=<V,E>是无环无向图, V={v₁,v₂,...,v_n}, E={e₁,e₂,...,e_m}
- 关联矩阵(incidence matrix): M(G)=[m_{ij}]_{n×m},

$$m_{ij} = \begin{cases} 1, \ v_i = e_j 关联 \\ 0, \ v_i = e_i 关联 \end{cases}$$

无向图关联矩阵举例

无向图关联矩阵性质

- 每列和为2: $\Sigma^{n}_{i=1}m_{ii}$ =2($\Sigma^{n}_{i=1}\Sigma^{m}_{ii}$ =2m)
- 每行和为d(v): d(v_i)=Σ^m_{i=1}m_{ij}
- $\Sigma^{m}_{j=1}m_{ij}=0$ 当且仅当 v_{i} 为孤立点
- 第i行所有1对应的边构成v_i的关联集
- 平行边: 相同两列

有向图邻接矩阵(性质)

- 每行和为出度: Σⁿ_{i=1}a_{ii}=d⁺(v_i)
- 每列和为入度: Σⁿ_{i=1}a_{ii}=d⁻(v_i)
- 握手定理: $\Sigma_{i=1}^n \Sigma_{i=1}^n a_{ii} = \Sigma_{i=1}^n d^-(v_i) = \Sigma_{i=1}^n d^+(v_i) = m$

有向图邻接矩阵

- 设D=<V,E>是有向图,V={v₁,v₂,...,v_n}
- 邻接矩阵(adjacency matrix): A(D)=[a_{ij}]_{n×n},
 a_{ii} = 从v_i到v_i的长度为1的边数/通路

邻接矩阵与通路数

- 设A(D)=A=[a_{ij}]_{n×n}, A^r=A^{r-1}•A,(r≥2), A^r=[a^(r)_{ij}]_{n×n}, B_r=A+A²+...+A^r= [b^(r)_{ii}]_{n×n}
- 定理**14.11**: $\mathbf{a}^{(r)}_{ij}$ =从 \mathbf{v}_{i} 到 \mathbf{v}_{j} 长度为 \mathbf{r} 的通路总数 且 $\mathbf{\Sigma}^{n}_{i=1}\mathbf{\Sigma}^{n}_{j=1}\mathbf{a}^{(r)}_{ij}$ =长度为 \mathbf{r} 的通路总数 且 $\mathbf{\Sigma}^{n}_{i=1}\mathbf{a}^{(r)}_{ii}$ =长度为 \mathbf{r} 的回路总数
- 推论: $\mathbf{b}^{(r)}_{ij} = \mathbf{\mathcal{L}} \mathbf{v}_{i}$ 到 \mathbf{v}_{j} 长度 \leq r的通路总数 且 $\mathbf{\Sigma}^{n}_{i=1} \mathbf{\Sigma}^{n}_{j=1} \mathbf{b}^{(r)}_{ij} =$ 长度 \leq r的通路总数 且 $\mathbf{\Sigma}^{n}_{i=1} \mathbf{b}^{(r)}_{ii} =$ 长度 \leq r的回路总数. #

定理14.11证明

证明: (归纳法) (1)r=1: a⁽¹⁾_{ij}=a_{ij}, 结论显然.
 (2) 设r≤k时结论成立, 当r=k+1时,
 a^(k)_{it}•a⁽¹⁾_{tj}=从v_i到v_j最后经过v_t的长度为k+1的通路总数,

用邻接矩阵求通路数举例

用邻接矩阵求通路数举例

- v₂到v₄长度为3和4的通路数: 1, 2
- v₂到v₄长度≤4的通路数: 4
- v₄到v₄长度为4的回路数: 5
- v₄到v₄长度≤4的回路数: 11 「0 0 2 17 「0 0

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 4 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

用邻接矩阵求通路数举例

- 长度=4的通路(不含回路)数: 16
- 长度≤4的通路和回路数: 53, 15

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 1 \end{bmatrix}$$

可达矩阵

- 设D=<V,E>是有向图,V={v₁,v₂,...,v_n},
- 可达矩阵: P(D)=[p_{ij}]_{n×n},

0, 从**v**_i不可达**v**_i

- 主对角线元素都是1: ∀v_i∈V, 从v_i可达v_i
- 强连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的可达矩阵
- $\forall i \neq j$, $p_{ij} = 1 \Leftrightarrow b^{(n-1)}_{ij} > 0$

$$P(D) = \begin{bmatrix} P(D_1) & & & \\ & P(D_2) & & \\ & & \ddots & \\ & & P(D_k) \end{bmatrix}$$

可达矩阵举例

无向图邻接矩阵

- 设G=<V,E>是无向<mark>简单</mark>图,V={v₁,v₂,...,v_n}
- 邻接矩阵(adjacency matrix): A(G)=[a_{ij}]_{n×n}, a_{i=0}. 〔1. v.与v.相邻.i≠i

无向图邻接矩阵性质

- A(G)对称: a_{ii}=a_{ii}
- 每行(列)和为顶点度: Σⁿ_{i=1}a_{ii}=d(v_i)
- 握手定理: $\Sigma^n_{i=1}\Sigma^n_{i=1}a_{ii}=\Sigma^n_{i=1}d(v_i)=2m$

邻接矩阵与通路数

- 设A^r=A^{r-1}●A,(r≥2), A^r=[a^(r)_{ij}]_{n×n}, $B_r = A + A^2 + ... + A^r = [b^{(r)}_{ij}]_{n \times n}$
- 定理: a^(r)ij=从v_i到v_j长度为r的通路总数且 $\Sigma_{i=1}^n a^{(r)} = 长度为r的回路总数. #$
- 推论1: a⁽²⁾;;=d(v;). #
- 推论2: G连通⇒距离d(v_i,v_i)=min{r|a^(r)ii≠0}. #

用邻接矩阵求通路数举例

$$A(G) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ v_2 & 1 & 0 & 1 & 1 \\ v_3 & 0 & 1 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{matrix}$$

$$A^4 = \begin{bmatrix} 7 & 6 & 4 & 6 \\ 6 & 11 & 2 & 6 \\ 4 & 2 & 3 & 4 \\ 6 & 6 & 4 & 7 \end{bmatrix}$$

用邻接矩阵求通路数举例

• v₁到v₂长度为4的通路数: 6

14142,14242,14232,12412,14212,12142

• v₁到v₃长度为4的通路数: 4

12423,12323,14123,12123

• v₁到v₁长度为4的回路数: 7

14141,14241,14121,12121,

12421,12321,12141,

$$A^2 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$A^{3} = \begin{vmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \end{vmatrix}$$

可达矩阵

- 设G=<V,E>是无向简单图, $V = \{v_1, v_2, ..., v_n\},$
- •可达矩阵: P(G)=[p_{ij}]_{n×n}, 1, 若v_i与v_j连通 p_{ij} = 0, 若v_i与v_i不连通

可达矩阵性质

- 主对角线元素都是1: ∀v_i∈V, v_i与v_i连通
- 连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的连通矩阵
- 设B_r=A+A²+...+A^r= [b^(r);i]_{n×n},则∀i≠j, p;i=1⇔ $\dot{b}^{(n-1)}_{ii} > 0$

$$P(G) = \begin{bmatrix} P(G_1) & & & \\ & P(G_2) & & \\ & & \ddots & \\ & & P(G_k) \end{bmatrix}$$

可达矩阵举例

A与P的关系

• G为n阶无向简单图,设A、P为G的邻接矩 阵及可达矩阵,则 $P = A \lor A^2 \lor \cdots \lor A^{n-1} \lor I$

$$P = A \vee A^2 \vee \cdots \vee A^{n-1} \vee I$$

这里, A^i 表示做矩阵布尔乘法的i次幂,i为单 位阵。

思考题

• 有向简单图的单向连通性与弱连通性如何 通过A、P矩阵进行判断?

小结

- 1. 关联矩阵M(D), M(G)
- 2. 邻接矩阵A(D), A(G)
- 3. 用A的幂求不同长度通路(回路)总数
- 4. 可达矩阵P(D), P(G)

