EEE363

Electrical Machines (DC Motor)

Lecture # 9

Dr Atiqur Rahman

Armature torque

Armature developed power = $T_a \times \omega = E_b I_a$

$$T_{a} = \frac{E_{b} I_{a}}{\omega} = \frac{1}{\omega} \times \frac{\phi ZN}{60} \times \frac{P}{A} \times I_{a} = \frac{1}{2\pi} \phi ZI_{a} \cdot \frac{P}{A}$$
Thus
$$T_{a} \propto \phi I_{a}$$

Shunt motor

$$T_a \propto I_a$$

Series motor

$$T_a \propto I_a^2$$

Problem#1

Determine developed torque and shaft torque of 220-V, 4-pole series motor with 800 conductors wave-connected supplying a load of 8.2 kW by taking 45 A from the mains. The flux per pole is 25 mWb and its armature circuit resistance is 0.6 Ω .

$$T_a = \frac{1}{2\pi} \varphi ZI_a \cdot \frac{P}{A} = 0.159 \times 25 \times 10^{-3} \times 800 \times 45 (4/2) = 286.2 \text{ N-m}$$

$$E_b = V - I_a R_a = 220 - 45 \times 0.6 = 193 \text{ V}$$

$$E_b = \Phi ZN (P/A) \text{ or } 193 = 25 \times 10^{-3} \times 800 \times N \pi \times (4/2)$$

$$N = 4.825 \text{ r.p.s.}$$

$$P = T_{sh} \times \omega$$

$$T_{sh} = 270.5 \text{ N-m}$$

Speed of a DC Motor

$$E_b = V - I_a R_a \qquad \frac{\Phi ZN}{60} \left(\frac{P}{A}\right) = V - I_a R_a \qquad N = \frac{V - I_a R_a}{\Phi} \times \left(\frac{60A}{ZP}\right)$$

$$N = \frac{E_b}{\Phi} \times \left(\frac{60A}{ZP}\right) \longrightarrow N = K \frac{E_b}{\Phi}$$

Series motor
$$\longrightarrow \frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}} \times \frac{I_{a1}}{I_{a2}} \qquad \Phi \ll I_a$$

Shunt motor
$$\longrightarrow \frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}} \times \frac{\Phi_1}{\Phi_2} \longrightarrow \frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}}$$

Speed Regulation

Defines change in speed with load

% speed regulation =
$$\frac{N.L. \text{ speed} - F.L. \text{ speed}}{F.L. \text{ speed}} \times 100 = \frac{dN}{N} \times 100$$

Torque & Speed of a DC motor

$$N = K \frac{V - I_a R_a}{\phi} = \frac{KE_b}{\Phi} \qquad T_a \propto \Phi I_a$$

There appears to be a conflict between these two expressions

- Paradox between these two expressions can be explained in the following way:
- Back e.m.f. E_b (= NΦ/K) drops instantly (the speed remains constant because of inertia of the heavy armature).
- 2. Due to decrease in E_b, I_a is increased because I_a = (V E_b)/R_a. Moreover, a small reduction in flux produces a proportionately large increase in armature current.
- Hence, the equation T_a

 ΦI_a, a small decrease in φ is more than counterbalanced by a large increase in I_a with the result that there is a net increase in T_a.
- This increase in T_a produces an increase in motor speed.

Shunt motor characteristics

$$N = \frac{KE_b}{\Phi}$$

$$T_a \propto \Phi I_a$$

Series motor characteristics

$$N = \frac{KE_b}{\Phi}$$

$$T_a \propto \Phi I_a$$

Comparison of shunt & series motor

Shunt motor

- The speed of a shunt motor is sufficiently constant.
- For the same current input its starting torque is not as high as that of a series motor.

Series motor

- Has relatively large starting torque.
- Has low speed at high loads and very high speed at light load.

Comparison of shunt & series motor

Type of motor	Characteristics	Applications
Shunt	Approximately constant speed Adjustable speed Medium starting torque (Up to 1.5 F.L. torque)	For driving constant speed line shafting Lathes Centrifugal pumps Machine tools Blowers and fans Reciprocating pumps
Series	Variable speed Adjustable variying speed High Starting torque	For traction work <i>i.e.</i> Electric locomotives Rapid transit systems Trolley, cars etc. Cranes and hoists Conveyors

Power stages

Problem # 2

A d.c. shunt machine while running as generator develops a voltage of 250 V at 1000 r.p.m. on no-load. It has armature resistance of 0.5 Ω and field resistance of 250 Ω . When the machine runs as motor, input to it at no-load is 4 A at 250 V. Calculate the speed and efficiency of the machine when it runs as a motor taking 40 A at 250 V. Armature reaction weakens the field by 4 %

$$\frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}} \times \frac{\Phi_1}{\Phi_2}$$

Now, when running as a generator, the machine gives 250 V at 1000 r.p.m. If this machine was running as motor at 1000 r.p.m., it will, obviously, have a back e.m.f. of 250 V produced in its armature. Hence $N_1 = 1000$ r.p.m. and $E_{b1} = 250$ V.

When it runs as a motor, drawing 40 A, the back e.m.f. induced in its armature is $E_{b2} = 250 - (40 - 1) \times 0.5 = 230.5 \text{ V}$

$$\frac{N_2}{1000} = \frac{230.5}{250} \times \frac{\Phi_1}{0.96 \, \Phi_1}$$
; $N_2 = 960 \, \text{r.p.m.}$

Efficiency

No-load input represents motor losses which consists of

- (a) armature Cu loss = $I_a^2 R_a$ which is variable.
- (b) constant losses W_e which consists of (i) shunt Cu loss (ii) magnetic losses and (iii) mechanical losses.

Problem # 2 contd...

No-load input or total losses = $250 \times 4 = 1000 \text{ W}$

Arm. Cu loss =
$$I_a^2 R_a = 3^2 \times 0.5 = 4.5 \text{ W}$$
, $\therefore W_c = 1000 - 4.5 = 995.5 \text{ W}$

When motor draws a line current of 40 A, its armature current is (40-1) = 3

Arm. Cu loss = $39^2 \times 0.5 = 760.5$ W; Total losses = 760.5 + 955.5 = 1756 W

Input = $250 \times 40 = 10,000 \text{ W}$:

output = 10,000 - 1756 = 8,244 W

 $\eta = 8,244 \times 100/10,000 = 82.44\%$

Speed control of DC Motor

Factors controlling motor speed

$$N = 60 \frac{V - I_a R_a}{Z \Phi} \cdot \left(\frac{A}{P}\right)$$

I. Flux control method

- ✓ This method is very efficient.
- ✓ In non-interpolar m/c speed can be varied at a ratio 2:1.
- ✓ For machines with interpoles the ratio of maximum to minimum speed of 6:1 is common.

