Paper summary

AI VISION Lab

- 1. 공부한 논문의 제목, 게재된 학회 혹은 저널 등 논문 기본 정보를 적으세요.
 - A. 이름: Improved Denoising Diffusion Probabilistic Models
 - B. 저널: ICLR
 - C. 도메인: Diffusion
 - D. 출판연도: 2021
 - E. 저자: Alex Nichol, Prafulla Dhariwal
- 2. 논문에서 제안한 알고리즘 및 프레임워크에 대해 본인이 이해한대로 다이어그램을 그려보세요. 논문 Figure를 그대로 따라 그리면 안됩니다.
 - A. [선행연구] DDPM은 CIFAR10, LSUN Dataset 및 실제 분야(예: Audio)에서 엄청난 성능을 보임.
 - B. [선행연구] 그러나 Diffusion Model을 Likelihood 측면에서 봤을 때는 한계 가 존재함. (FID, IS 매우 우수. 그러나 Likelihood 미미)
 - C. 따라서 본 연구에서는, DDPM의 구조를 최적화함과 동시에 Likelihood를 상 승시킬 수 있는 방법을 탐구하고자 함. (다양한 실험 기반)
 - D. DDPM에서 사용하던 L_{vlb} 을 기준으로 봤을 때, 해당 값은 Weighted과정을 보유하고 있음 $=\frac{1}{2\beta_t}$. 이 값의 경우, 초기 단계. 즉, Noise (β_t) 가 작은 경우 L_{vlb} 에 큰 영향을 주는 구조임. 따라서, 초기 단계를 최적화하기 위해서는 $\beta_t = \Sigma_{\theta}(x_t,t)$ 를 고정하는 것이 아닌(DDPM) 학습하는 구조로 변경할 필요가 있음.
 - E. 이때, L_{simple} 은 Σ_{θ} 를 학습하는 구조가 아니므로(μ_{θ} 만을 다루고 있음), L_{vlb} 를 추가한 $L_{hybrid} = L_{simple} + \lambda L_{vlb}$ 를 제안함.
 - F. 또한, Likelihood 관점에서, T = 1000 대비 T = 4000의 성능이 높다는 것을 실험적으로 확인하고, 이를 본 논문에서 계속해서 사용함.
 - G. DDPM의 경우, Noise를 linear하게 처리했는데, Linear하게 처리하는 경우,

Noise 가 목표에 비해 과도하게 주입되는 문제가 있었음(목표: 기존의 분포를 Gaussian Distribution을 따르도록 하는 것. DDPM에서는 이미 붕괴된 분포에 추가적인 Noise가 주입되는 구조였음). 즉, Diffusion Process의 후반부의 업무가 아무런 의미가 없었다고 할 수 있음.

- H. 따라서, 본 논문에서는 Linear 대신 Cosine 함수 기반의 새로운 Noise Scheduler를 제안함. (Edge-Effect의 영향력을 줄이기 위해, 양 끝단에서는 0에 수렴할 수 있도록 설정하고(0이 되면 안 되므로+ 영향력감소, s 추가) t=T에 도달했을 때, 분포가 Gaussian을 향할 수 있도록, Mid 시점의 Noise를 감소시키는 구조임)
- I. 본 논문에서는 추가적으로 Gradient Noise에 대해서 확인함. 앞서 예상했던 바와 마찬가지로, Likelihood 기준, $L_{simple} < L_{hybrid}$ 의 성능이 더 우수한 것을 실험적으로 보임.
- J. 그러나, 문제는 Noise가 존재한다는 점으로, 이를 해결하고자, Important Sampling을 도입함. (Important Sampling의 경우, 기존의 t를 Sampling해서, 학습시키는 구조에 대해서, 중요한 시점을 더 자주 학습할 수 있도록 함. 각 Loss $L_1, L_2, ..., L_T$ 대해서 10회 Sampling 및 저장하고, 이를 기반으로 Dynamic하게 Weight를 Update함. 결과적으로 영향력이 큰 시점을 자주 반 영할 수 있는 구조를 제안)
- K. 또한, DDIM에서 제안했던 바와 비슷하게 Subset구조를 통해 Sampling 속도를 줄임과 동시에, DDIM과 다른 조건 (Noise Scheduler: Cosine, L_{vlb} (Resample), DDIM의 경우 Deterministic하고, Langevin 기반의 Loss 사용)을 기준으로 성능향상을 보임.
- 3. 본인이 생각하는 이 논문의 장점이 무엇이라고 생각하나요? **논문 Contribution** bullet을 그대로 따라 적으면 안됩니다.
 - A. Noise Scheduling (Linear -> Cosine)
 - B. Important Sampling
 - C. Sampling Speed
- 4. 이 논문을 읽으면서 느낀 점, 혹은 배운 점이 있으면 적어보세요.
 - A. Diffusion 과정을 다시 리뷰하는데 좋은 논문이라고 생각함.

B. 다수의 실험을 기반으로 하는 전개과정은 상당히 흥미로웠다.

C.

- 5. 이 논문의 한계점이 있다면 무엇이라고 생각하나요?
 - A. 여전히 느린 Sampling
- 6. 본인의 연구에 접목시켜볼 점이 있을지 생각하고 적어보세요.
 - A. Diffusion 선행연구
- 7. 본 Summary를 작성하는 과정에서 생성형AI를 사용했나요?
 - A. 아니요

날짜: 2025-07-08

이름: 신준원

Introduction	penoising Diffusion Probabiliszic moder 01100 maximum likelihood thet you
DDAN -6	まる はらい image 水 Jan4, likelihood 中間川 当時。
	$- lof P_{\theta}(A_{0} A_{1}) \qquad (fixed - edge effect)$
Lt-1	= DAL (9 (At-1 At. No)) Po (At. Ole) (Athan Loss)
l1 =	DKL (q(n/100) p(n/1)) (An1=12x, 2/3/2 2/2).
L-simple =	= Et, do, & [11 2 - 20 (dp.+) "]
GaussianDKL	4
	$(b_{1}^{2}) N(M_{1},b_{1}^{2}) = \frac{1}{N}\left[\frac{b_{1}^{2}}{b_{2}^{2}} + \frac{(M_{1}-M_{1})^{2}}{b_{1}^{2}} - 1 + lof(\frac{b_{1}^{2}}{b_{1}^{2}})\right]$
	$E_{g(\Lambda_0,\Lambda_b)} \left[\frac{1}{v \mathcal{B}_b} \right] \left[M_{\theta} \left(\Lambda_{b,t} \right) - \overline{M_{\theta}} \left(\Lambda_{b,t} \right) \right]^{v} + C \right]$
	hoise of the wolf to lay, and
	hoise & 234 of 10/2 to 1 20/2 to 1 2
Ą	3, And the angula Lother may and way > - simple

Improving the log-likelihood
$\frac{\text{DDPM} \Rightarrow \text{Limple} + \text{fixed variance}}{1} \Rightarrow \frac{1}{t} \text{ fixed variance} = \frac{1}{t} \text{ or } b_t^2 = \frac{2}{t} + T = 1000}{1}$
Deverse process g(X+1/X+,X0)
Sample fuality of fixed variances (Po (Xb-1(Xt)) > 7 1- at-1
Sample fuality of fixed variances ($P_{\theta}(X_{t-1} X_{t})$) $\Rightarrow \tilde{\mathcal{E}}_{t} = \frac{1-\bar{d}_{t-1}}{1-\bar{d}_{t}}\tilde{\mathcal{E}}_{t-1}$
sharse processed Gifma scheduling > 253 Mg(14+) of 32 Loss 2014
第 D 可學別 Ch Ch 华 快飞
Ct, Ct > Co to Diffusion stepon 2/2 Het.
是年 = 20 39 (C+XC+) (等制 step)子外部分 对望的对).
場の diffusion step of alight Loss 地立 man idea
特の diffusion step of cot Los 世生 Main idea () 2年 Los 世生 Main idea () 2年 Los 世生 Main idea () 2月 11年 11日 11
程: 刻智의 noise = 安告 型正.
$\Sigma_{\theta}(d_{1}\pm)$ = $\frac{1}{2}$ =
ENO Variance the H = EE [0,1) = model of offetion = 20th.
$\exists t: \Sigma_{\theta}(A_{t},t) = \exp(v \log t_{t} + (1-v) \log t_{t})$
> network output (variance direct of x)
Thetwork output (variance sirect stop x). (1) Ob, Eb 21 mf2 ol3 > mg/2 - I2 3 < 2
Eal D Limple 2 > Variance 21 xxxx Loss . 5/74: Lybrid = Limple +X 46 34

noise Schedule DDPM > noise schedule (Linear) 祖: 当时和 明 明音 (> 其中 29 元 101 x) 维. Improved DDPM: $\overline{dt} = \frac{f(t)}{f(0)}$ $f(t) = \cos\left(\frac{t/T + s}{t + s} \cdot \frac{\pi}{v}\right)^{\times}$ 等的 [@ 加油鞋 社上 @ 升级如, t=0,T 柳北 721 002. 3) offset: S An (S= JBo) or (S=0.008) à une si noise ि model र नीस्त गर्मिकं स्थित हुउ मीर Time step

T=1000 /T=4000 old Likelihood Go.A.

Gradient Noise -> LVIB = 3829-2 Ht. Like!had= 3016 846}
例 Lhybrid, Lub 以 (imagenet 64×64 2程) 10g-likelihood 2程、: Lhybrid > Lub
614 = Botan 有金 5463 年刊世对 > 12 Loss 401 分,并.
450 Stall Noisy
特の fradient noise Scale 海内
及計: Lvlb of Lhybrid Yzt hoify が
th: 21 Maisy th 我创了: 上町 Mby 写好 Sampling.
of ?: importance sampling 39 > + sample > 4854 Ag + glong 4 sixty = 2501 strang =
LVIB = EtNR [4], P. OC (EILY), SR = 1
- 4 → 性 (Inamic) + * 4 疑
권라: Luib (resompled) 사용하는 (Lingbrid > 경향 x)

Sampling Speed

当 教徒 物

-> noise 39 1/1.p ~ Likelihood 性

- Linear Schedule: 20% n/2/2 40%

- Cosine Schedule : 500/0 m/2/ # # 55.

名 Q T=4000 (T=1000 ayl) topt . 454. 字 202卷)

(DOINA # - Subset)

4 Subset S. Lop(dsy-1/dsx)

对外 中日的 明 打印船 许.

@ Limple = The sampling of 1/2 by we

@ Lybrid = 404

图 加加 > 到货咖啡发生的, 分中五次好

图 DOIM > 知知 为经期

X DOIM VS Improved DDPM

Deterministic Stochastic
#107.

cos scheduling.

39 > Subset 149