Worksheet 0: Some Probability

Name: Due: August 31, 2022

For the following questions, you will be working with probability measure $\mathbb{P}_{\mathcal{X} \times \mathcal{Y}}$ on $\mathcal{X} \times \mathcal{Y} = \mathbb{R} \times \mathbb{R}$ defined by density function $f_{\mathcal{X} \times \mathcal{Y}}$:

$$f(x,y) := x \cdot y^{-1/2} \mathbb{1}_{x \ge 0, x^2 + y^2 \le 1},$$

where $\mathbb{1}_{cond(t)} := \begin{cases} 1 & \text{if } cond(t) \\ 0 & \text{else} \end{cases}$ denotes the *indicator* function for condition cond(t).* Please try to fit all answers on this page.

1. Does $f_{X \times Y}$ define a valid pdf? If so, articulate why, else explain why not, and if not, modify f to make it a pdf. Also sketch (shading the appropriate region in \mathbb{R}^2) the *support* of f, i.e. the points (x, y) for which $f(x, y) \neq 0$.

- 2. Define the marginal density $f_{\mathcal{Y}}(y)$, express as a function of y, sketch a plot, and compute the marginal probability $\mathbb{P}_{\mathcal{Y}}(y=0)$.
- 3. Components x, y define random variables $\mathbb{R}^2 \xrightarrow{\pi} \mathbb{R}$ by projection, $\pi_x : (x,y) \mapsto x$ and $\pi_y(x,y) \mapsto y$. Are these random variables independent? Justify your answer.
- 4. Consider data set $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \subset \mathcal{X} \times \mathcal{Y}$. Define the covariance $cov(\pi_x, \pi_y)$ and write an expression approximating this quantity from S. Each term in this expression must be computable from the data!
- 5. Suppose you conduct an experiment under supposition that data is $\mathbb{P}_{\mathcal{X} \times \mathcal{Y}}$ -distributed, and you record a value x = 1 (you forgot to record the corresponding value of y). Report the p-value.
- 6. Consider, now, probability space $\mathcal{X}:=\prod_{j=1}^n\mathcal{X}_j$ with joint measure $\mathbb{P}_{\mathcal{X}}$, and suppose that for any subset (projection) $\{i_1,\ldots,i_k\}\subsetneq\{1,\ldots,n\}$ setting $\mathcal{X}':=\prod_{j=1}^k\mathcal{X}_{i_j}$, we have equality of marginals $\mathbb{P}_{\mathcal{X}'}=\prod_{j=1}^k\mathbb{P}_{\mathcal{X}_{i_j}}$. Are projections π_1,\ldots,π_k then independent? Why or why not? (Rationale for your answer may take the form of proof, example/counterexample, "just the definition," picture, or something else.)

^{*}While $\mathcal{X} = \mathcal{Y} = \mathbb{R}$, we distinguish components with notation to e.g. distinguish the marginals $f_{\mathcal{X}}$ and $f_{\mathcal{Y}}$.