

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Integrados Analógicos

Design de um Amplificador Errata

João Bernardo Sequeira de Sá ${\rm n.^o~68254}$ Maria Margarida Dias dos Reis ${\rm n.^o~73099}$ Nuno Miguel Rodrigues Machado ${\rm n.^o~74236}$

Índice

1	Errata		1
	1.1	Introdução	1
	1.2	Detecção dos erros	1
	1.3	Correcção do dimensionamento	2
	1.4	Demonstração de resultados	2
		1.4.1 Detecção dos erros	2

1 Errata

1.1 Introdução

Este capítulo foi acrescentado ao relatório final no intuito de corrigir os resultados obtidos e apresentados no último relatório, *middle target*. Como referenciado, pretende-se projectar um amplificador folded cascode CMOS OTA de dois andares de acordo com as especificações da seguinte tabela.

Especificação	Símbolo	Valor
Tensão de Alimentação	Vdd	3.3 V
Ganho para Sinais de Baixa Amplitude	Av	70 dB
Largura de Banda	Bw	60 kHz
Margem de Fase	PM	60°
Capacidade da Carga	CL	0.25 pF
Slew-Rate	SR	200 V/μs
Budget da Corrente	IDD	400 μΑ
Área de <i>Die</i>	/	0.02 mm ²

Tabela 1: Características do amplificador a projectar.

1.2 Detecção dos erros

Foi identificado erros no relatório intermédio que comprometem os resultados apresentados anteriormente. A primeira correcção foi referente ao *schematic* do *testbench* que permite simular o circuito em testes de resposta AC, foi colocado um *switch* que simula a bobine, circuito aberto para um regime AC e curto-circuito para um regime DC. Foi também alterado a amplitude do sinal de entrada de 3.3 V para 1.6 V, esta alteração garante que os transístores não saem da saturação. De seguida pode-se comparar o novo *testbench* com o anterior.

Figura 1: Schematic do testbench anterior que permite simular o circuito em testes de resposta AC.

Figura 2: Schematic do novo testbench anterior que permite simular o circuito em testes de resposta AC.

Outro erro identificado, foi referente ao calculo da Slew-Rate. No relatório intermédio o resultado da Slew-Rate era relativo só ao flanco de descida, sendo necessário demonstrar para os dois flancos, subida(1.1) e descida(1.2). De seguida está representado a equação utilizada para o calculo da Slew-Rate:

$$slewRate(VT("/OUT") \ 1 \ nil \ 2 \ nil \ 10 \ 90 \ nil "time")$$
 (1.1)

$$slewRate(VT("/OUT") \ 2 \ nil \ 1 \ nil \ 10 \ 90 \ nil "time")$$
 (1.2)

1.3 Correcção do dimensionamento

1.4 Demonstração de resultados

Neste capitulo será representado os resultados do dimensionamento do relatório intermédio e do novo dimensionamento anteriormente referido.

1.4.1 Resultados do dimensionamento inicial

1.4.2 Resultados do dimensionamento corrigido