

Experiência 5

Alarme de Invasão

1 Contexto

Considerar uma casa com uma porta e uma janela.

Na porta e na janela, há um sensor que indica quando estão fechadas ou abertas.

O objetivo é projetar um alarme de tal forma que, quando for detectada uma tentativa de entrar na casa, uma sirene soará. O alarme poderá ser ativado ou desativado.

A figura 1 ilustra a situação.

Figura 1: Contexto para o "Alarme de Invasão".

O significado dos símbolos presentes na figura 1, com informações adicionais, encontra-se descrito na **Tabela de Associação**, representada na tabela 1.

Tabela 1: Tabela de Associação para os símbolos da figura 1.

	Sinal	Descrição	Condição para Nível Lógico "1"		
Entradas	Sp	sensor da porta	porta aberta		
	Sj	sensor da janela	janela aberta alarme ativado		
	Chad	chave de ativar/desativar			
Saída	m As	atuador da sirene	sirene ativada		

2 Solução

A solução compreende as seguintes etapas:

- 1. Elaboração do "Manual do Usuário".
- 2. Elaboração do "Diagrama em Blocos".
- 3. Elaboração dos circuitos de cada bloco do "Diagrama em Blocos".
- 4. Implementação e testes.

2.1 Manual do Usuário

Para ativar o alarme, o seguinte procedimento deverá ser executado:

"Com a chave Chad na posição Desativado, fechar a porta e a janela. Em seguida, comutar Chad para a posição Ativado".

Para desativar o alarme:

"Comutar a chave Chad para a posição Desativado".

2.2 Diagrama em Blocos

A figura 2 apresenta o diagrama em blocos para o projeto proposto.

Figura 2: Diagrama em blocos para o projeto proposto. Notem-se as variáveis de entrada e de saída do Circuito Lógico Combinacional.

2.3 Circuitos

Circuitos de Entrada

A figura 3 apresenta os circuitos de entrada.

Figura 3: Circuitos de entrada.

Figura 4: Exemplos de chaves.

As chaves apresentadas no esquema elétrico podem ser implementadas com, por exemplo, *microswitch* ou *reed switch*, apresentadas na figura 4. Note-se, no caso da *microswitch*, a presença dos terminais C–NA–NF (na figura, em inglês, COM–NO–NC, ou seja, *commom, normally open, normally closed*); ainda, de acordo com as definições na **Tabela de Associação**, deve-se utilizar no projeto os terminais C e NA. (O que aconteceria se fosse utilizado C e NF?)

Circuito de Saída

O circuito de saída é apresentado na figura 5.

Figura 5: Circuito de saída.

2.4 Circuito Lógico Combinacional

O Circuito Lógico Combinacional é o circuito responsável pelo comportamento do alarme e está apresentado na figura 6.

Figura 6: Circuito lógico combinacional.

2.5 Implementações e Teste

Descritivos com as observações e correções realizadas durante a impl								
ntação dos circuitos e seus testes:								

3 Parte Experimental

Projetar e implementar o Circuito Lógico Combinacional para as seguintes situações:

1. Atender aos requisitos do projeto descritos na seção "Contexto".

2. Alterar este circuito a fim de manter a sirene acionada mesmo que a porta e a janela voltem a ficar fechadas no instante seguinte ao disparo do alarme.

4 Desafio

Como fazer para soar o buzzer, disponível no Painel Digital do laboratório, quando o sinal As for ativado?

Lista de Materiais

- Painel Digital Novo didático para desenvolvimento
- CIs: 7404, 7408, 7432
- 1 Alicate de bico
- 1 Alicate de corte
- 1 Espátula para remoção de CI
- Fios rígidos para protoboard