

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

In the Claims:

Please cancel claims 1-13, without prejudice.

Please add the following newly-presented claims:

14. A flat panel liquid-crystal display, such as for a laptop computer, the flat panel liquid-crystal display comprising one of: a twisted nematic display, a supertwisted nematic display, an active matrix liquid-crystal display, a thin film transistor display, and a plasma addressed liquid-crystal display, said flat panel liquid-crystal display comprising:

backlight apparatus;

a first linear polarizer adjacent said backlight apparatus;

a first positive uniaxial retardation film adjacent said first linear polarizer;

a first negative retardation film adjacent said first positive uniaxial retardation film;

a first orientation film adjacent said first negative retardation film;

a liquid-crystal layer adjacent said first orientation film;

a second orientation film adjacent said liquid-crystal layer;

a second negative retardation film adjacent said second orientation film;

a second positive uniaxial retardation film adjacent said

Examiner: David SAMPLE
 Art Unit: 2871
 Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
 Serial No.: 09/758,952
 Telephone: 703-308-3825

second negative retardation film;

a second linear polarizer adjacent said second positive uniaxial retardation film;

a first glass substrate being disposed between said first orientation film and said first negative retardation film;

a second glass substrate being disposed between said second orientation film and said second negative retardation film;

B2
0
 a first electrode being disposed between said first glass substrate and said first orientation film; and

a second electrode being disposed between said second glass substrate and said second orientation film;

said first and said second glass substrates comprising:

an alkali-free aluminoborosilicate glass;

said glass having a coefficient of thermal expansion $\alpha_{20/300}$ of between $2.8 \times 10^{-6}/K$ and $3.8 \times 10^{-6}/K$;

said glass having the composition (in % by weight, based on oxides):

SiO_2	> 58 - 64.5
B_2O_3	> 6 - 10.5
Al_2O_3	20.5 - 24
MgO	0 - < 3
CaO	2.5 - < 8
SrO	0.1 - 3.5

Examiner: David SAMPLE
 Art Unit: 2871
 Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
 Serial No.: 09/758,952
 Telephone: 703-308-3825

TiO_2	0 - 2
with ZrO_2 + TiO_2	0 - 2
As_2O_3	0 - 1.5
Sb_2O_3	0 - 1.5
SnO_2	0 - 1.5
CeO_2	0 - 1.5
Cl^-	0 - 1.5
F^-	0 - 1.5
SO_4^{2-}	0 - 1.5

with As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2

+ Cl^- + F^- + SO_4^{2-} ≤ 1.5 ;

(e.) a glass in which arsenic oxide, antimony oxide, and inherent impurities are minimized;

(f.) a float glass; and

(g.) one of (i.), (ii.), and (iii.):

(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of from $2.8 \times 10^{-6}/\text{K}$ to $3.6 \times 10^{-6}/\text{K}$;

(ii.) a glass transition temperature T_g of $> 700^\circ\text{C}$; and

(iii.) a density ρ of $< 2.600 \text{ g/cm}^3$.--

--16. The flat panel liquid-crystal display according to

claim 14, wherein:

said glass comprises (a.), (b.), (c.), (d.), (e.), (f.), and (g.), where (a.), (b.), (c.), (d.), (e.), (f.), and (g.) are:

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

(a.) more than 8% by weight of B_2O_3 ;
(b.) one of: at least 18% by weight of Al_2O_3 , more than 18%
by weight of Al_2O_3 , at least 20.5% by weight of Al_2O_3 , and at
least 21.5% by weight of Al_2O_3 ;

(c.) at least 0.1% by weight of ZnO ;

(d.) additionally (in % by weight):

ZrO_2	0 - 2
TiO_2	0 - 2
with ZrO_2 + TiO_2	0 - 2
As_2O_3	0 - 1.5
Sb_2O_3	0 - 1.5
SnO_2	0 - 1.5
CeO_2	0 - 1.5
Cl^-	0 - 1.5
F^-	0 - 1.5
SO_4^{2-}	0 - 1.5

with As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2

+ Cl^- + F^- + SO_4^{2-} ≤ 1.5 ;

(e.) a glass in which arsenic oxide, antimony oxide, and
inherent impurities are minimized;

(f.) a float glass; and

(g.) one of (i.), (ii.) and (iii.):

(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of from

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

$2.8 \times 10^{-6}/K$ to $3.6 \times 10^{-6}/K$;

(ii.) a glass transition temperature T_g of $> 700^\circ C$; and

(iii.) a density ρ of $< 2.600 \text{ g/cm}^3$.--

--11. A glass substrate for a flat panel liquid-crystal display, such as for a laptop computer, the flat panel liquid-crystal display including a twisted nematic display, a supertwisted nematic display, an active matrix liquid-crystal display, a thin film transistor display, and a plasma addressed liquid-crystal display, said substrate comprising:

an alkali-free aluminoborosilicate glass;

said glass having a coefficient of thermal expansion $\alpha_{20/300}$ of between $2.8 \times 10^{-6}/K$ and $3.8 \times 10^{-6}/K$;

said glass having the composition (in % by weight, based on oxide):

SiO_2	> 58 - 64.5
B_2O_3	> 6 - 10.5
Al_2O_3	> 18 - 24
MgO	0 - < 3
CaO	1 - < 8
SrO	0.1 - 1.5
BaO	> 5 - 8
with $\text{SrO} + \text{BaO}$	< 8.5
with $\text{MgO} + \text{CaO} + \text{SrO} + \text{BaO}$	8 - 18

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

ZnO

0 - < 2;

said glass being configured to be resistant to thermal shock;

said glass being configured to have a high transparency over a broad spectral range in the visible and ultra violet ranges; and

said glass being configured to be free of bubbles, knots, inclusions, streaks, and surface undulations.--

*b2
ew*
--18. The glass substrate according to claim 17, wherein:

said glass comprises at least one of (a.), (b.), (c.), (d.), (e.), (f.), and (g.), where (a.), (b.), (c.), (d.), (e.), (f.), and (g.) are:

(a.) more than 8% by weight of B_2O_3 ;
(b.) one of: at least 18% by weight of Al_2O_3 , more than 18% by weight of Al_2O_3 , at least 20.5% by weight of Al_2O_3 , and at least 21.5% by weight of Al_2O_3 ;

(c.) at least 0.1% by weight of ZnO;

(d.) additionally (in % by weight):

ZrO_2

0 - 2

TiO_2

0 - 2

with ZrO_2 + TiO_2

0 - 2

As_2O_3

0 - 1.5

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

Sb_2O_3	0 - 1.5
SnO_2	0 - 1.5
CeO_2	0 - 1.5
Cl^-	0 - 1.5
F^-	0 - 1.5
SO_4^{2-}	0 - 1.5

with $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2$

+ $Cl^- + F^- + SO_4^{2-}$ ≤ 1.5 ;

(e.) a glass in which arsenic oxide, antimony oxide, and inherent impurities are minimized;

(f.) a float glass; and

(g.) one of (i.), (ii.), and (iii.):

(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of from $2.8 \times 10^{-6}/K$ to $3.6 \times 10^{-6}/K$;

(ii.) a glass transition temperature T_g of $> 700^\circ C$; and

(iii.) a density ρ of $< 2.600 \text{ g/cm}^3$.--

--19. The glass substrate according to claim 17,

wherein:

said glass comprises (a.), (b.), (c.), (d.), (e.), (f.), and (g.), where (a.) - (b.), (c.), (d.), (e.), (f.), and (g.) are:

(a.) more than 8% by weight of B_2O_3 ;

(b.) one of: at least 18% by weight of Al_2O_3 , more than 18% by weight of Al_2O_3 , at least 20.5% by weight of Al_2O_3 , and at

Examiner: David SAMPLE
 Art Unit: 2871
 Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
 Serial No.: 09/758,952
 Telephone: 703-308-3825

least 21.5% by weight of Al_2O_3 ;

(c.) at least 0.1% by weight of ZnO ;

(d.) additionally (in % by weight):

ZrO_2	0 - 2
TiO_2	0 - 2
with $\text{ZrO}_2 + \text{TiO}_2$	0 - 2
As_2O_3	0 - 1.5
Sb_2O_3	0 - 1.5
SnO_2	0 - 1.5
CeO_2	0 - 1.5
Cl^-	0 - 1.5
F^-	0 - 1.5
SO_4^{2-}	0 - 1.5

with $\text{As}_2\text{O}_3 + \text{Sb}_2\text{O}_3 + \text{SnO}_2 + \text{CeO}_2$

+ $\text{Cl}^- + \text{F}^- + \text{SO}_4^{2-}$ ≤ 1.5 ;

(e.) a glass in which arsenic oxide, antimony oxide, and inherent impurities are minimized;

(f.) a float glass; and

(g.) one of (i.), (ii.), and (iii.):

(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of from $2.8 \times 10^{-6}/\text{K}$ to $3.6 \times 10^{-6}/\text{K}$;

(ii.) a glass transition temperature T_g of $> 700^\circ\text{C}$; and

(iii.) a density ρ of $< 2.600 \text{ g/cm}^3$.--

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

--20. A glass comprising:
a substantially alkali-free aluminoborosilicate glass;
said glass having a coefficient of thermal expansion $\alpha_{20/300}$
of between $2.8 \times 10^{-6}/K$ and $3.8 \times 10^{-6}/K$;
said glass having the composition (in % by weight, based on
oxide):

SiO ₂	> 58 - 65
B ₂ O ₃	> 6 - 10.5
Al ₂ O ₃	> 14 - 25
MgO	0 - < 3
CaO	0 - 9
SrO	0.1 - 1.5
BaO	> 5 - 8.5
with SrO + BaO	\leq 8.6
with MgO + CaO + SrO + BaO	8 - 18
ZnO	0 - < 2. --

--21. The glass according to claim 20, wherein:
said glass is configured to be resistant to thermal shock;
said glass is configured to have a high transparency over a
broad spectral range in the visible and ultra violet ranges; and
said glass is configured to be free of bubbles, knots,
inclusions, streaks, and surface undulations.--

--22. The glass according to claim 21, wherein:

Examiner: David SAMPLE
 Art Unit: 2871
 Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
 Serial No.: 09/758,952
 Telephone: 703-308-3825

32
 B
 K
 said glass comprises more than 8% by weight of B_2O_3 .--

--23. The glass according to claim 22, wherein:

said glass comprises one of (i.), (ii.), (iii.), and (iv.):

(i.) at least 18% by weight of Al_2O_3 ;

(ii.) more than 18% by weight of Al_2O_3 ;

(iii.) at least 20.5% by weight of Al_2O_3 ; and

(iv.) at least 21.5% by weight of Al_2O_3 .--

--24. The glass according to claim 23, wherein:

said glass comprises at least 0.1% by weight of ZnO .--

--25. The glass according to claim 24, wherein:

said glass additionally comprises (in % by weight):

ZrO_2 0 - 2

TiO_2 0 - 2

with $ZrO_2 + TiO_2$ 0 - 2

As_2O_3 0 - 1.5

Sb_2O_3 0 - 1.5

SnO_2 0 - 1.5

CeO_2 0 - 1.5

Cl^- 0 - 1.5

F^- 0 - 1.5

SO_4^{2-} 0 - 1.5; and

with $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2$ ≤ 1.5 .--
 + $Cl^- + F^- + SO_4^{2-}$

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

--26. The glass according to claim 25, wherein:
said glass comprises a glass in which arsenic oxide,
antimony oxide, and inherent impurities are minimized.--

--27. The glass according to claim 26, wherein:
said glass comprises a float glass.--

--28. The glass according to claim 27, wherein:
said glass has one of (i.), (ii.), (iii.):
(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of from $2.8 \times 10^{-6}/K$ to $3.6 \times 10^{-6}/K$;
(ii.) a glass transition temperature T_g of $> 700^\circ C$; and
(iii.) a density ρ of $< 2.600 \text{ g/cm}^3$.--

--29. The glass according to claim 21, wherein:
said glass comprises at least one of (a.), (b.), (c.), (d.),
(e.), (f.), and (g.), where (a.), (b.), (c.), (d.), (e.), (f.),
and (g.) are:
(a.) more than 8% by weight of B_2O_3 ;
(b.) one of: at least 18% by weight of Al_2O_3 , more than 18%
by weight of Al_2O_3 , at least 20.5% by weight of Al_2O_3 , and at
least 21.5% by weight of Al_2O_3 ;
(c.) at least 0.1% by weight of ZnO ;
(d.) additionally (in % by weight):
 ZrO_2 0 - 2
 TiO_2 0 - 2

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

with ZrO_2 + TiO_2 0 - 2
 As_2O_3 0 - 1.5
 Sb_2O_3 0 - 1.5
 SnO_2 0 - 1.5
 CeO_2 0 - 1.5
 Cl^- 0 - 1.5
 F^- 0 - 1.5
 SO_4^{2-} 0 - 1.5

(b2)
with As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2
+ Cl^- + F^- + SO_4^{2-} ≤ 1.5 ;

(e.) a glass in which arsenic oxide, antimony oxide, and inherent impurities are minimized;

(f.) a float glass; and

(g.) one of (i.), (ii.), and (iii.):

(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of from $2.8 \times 10^{-6}/K$ to $3.6 \times 10^{-6}/K$

(ii.) a glass transition temperature T_g of $> 700^\circ C$; and

(iii.) a density ρ of $< 2.600 \text{ g/cm}^3$.--

--30. The glass according to claim 20, wherein:

said glass is configured as a glass substrate in combination in or with a flat panel liquid-crystal display, such as for a laptop computer, the flat panel liquid-crystal display including a twisted nematic display, a supertwisted nematic display, an

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

active matrix liquid-crystal display, a thin film transistor display, and a plasma addressed liquid-crystal display. --

--31. The glass according to claim 30, wherein said flat panel liquid-crystal display comprises:

backlight apparatus;

a first linear polarizer adjacent said backlight apparatus;

a first positive uniaxial retardation film adjacent said first linear polarizer;

a first negative retardation film adjacent said first positive uniaxial retardation film;

a first orientation film adjacent said first negative retardation film;

a liquid-crystal layer adjacent said first orientation film;

a second orientation film adjacent said liquid-crystal layer;

a second negative retardation film adjacent said second orientation film;

a second positive uniaxial retardation film adjacent said second negative retardation film;

a second linear polarizer adjacent said second positive uniaxial retardation film;

said glass substrate comprising a first glass substrate; said first glass substrate being disposed between said first

NHL:ktp

Examiner: David SAMPLE
Art Unit: 2871
Facsimile: 703-872-9310

Docket No.: NHL-SCT-19 US
Serial No.: 09/758,952
Telephone: 703-308-3825

orientation film and said first negative retardation film;
said glass substrate comprising a second glass substrate;
said second substrate being disposed between said second
orientation film and said second negative retardation film;
a first electrode being disposed between said first glass
substrate and said first orientation film; and
a second electrode being disposed between said second glass
substrate and said second orientation film.--

32. The glass according to claim 20, wherein:
said glass is configured as a glass substrate in combination
in or with a thin-film photovoltaic device, including a thin-film
solar cell.--

33. The glass according to claim 32, wherein:
said thin-film photovoltaic device comprises:
said glass substrate;
a transparent conductive oxide film disposed on said glass
substrate;
an insulating buffer layer disposed atop said transparent
conductive oxide film;
said film being disposed between ~~said glass substrate and~~
~~said buffer layer and~~ being configured to be a front contact
current collector;
a first semiconductor layer disposed upon said buffer layer;

NHL:ktp