Devoir surveillé n°4

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soient a et b deux réels. Montrer que :

- 1) $a \leqslant b \Rightarrow \lfloor a \rfloor \leqslant \lfloor b \rfloor$;
- 2) $|a| + |b| \le |a + b| \le |a| + |b| + 1$.

II. Suites et matrices.

On se propose d'étudier de deux manières différentes les suites (u_n) vérifiant la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, u_{n+3} = 6u_{n+2} - 11u_{n+1} + 6u_n. \tag{\mathscr{R}}$$

- 1) Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites vérifiant (\mathscr{R}) . Montrer que si $u_0=v_0,\ u_1=v_1$ et $u_2=v_2$, alors, pour tout $n\in\mathbb{N},\ u_n=v_n$.
- 2) Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites vérifiant (\mathscr{R}) . Montrer que, pour tout $\lambda, \mu \in \mathbb{C}$, $(\lambda u_n + \mu v_n)_{n\in\mathbb{N}}$ est solution de (\mathscr{R}) .
- 3) Soit $r \in \mathbb{C}$. Montrer que $r^3 6r^2 + 11r 6 = 0$ si et seulement si $(r^n)_{n \in \mathbb{N}}$ vérifie (\mathscr{R}) .
- 4) En déduire qu'il existe uniquement trois réels $r_1 < r_2 < r_3$, que l'on calculera, tels que, pour tout $i \in \{1, 2, 3\}$, la suite géométrique $(r_i^n)_{n \in \mathbb{N}}$ vérifie (\mathcal{R}) .
- **5)** Application. soit $(u_n)_{n\in\mathbb{N}}$ vérifiant (\mathcal{R}) telle que $u_0=2, u_1=-1$ et $u_2=4$. Déterminer $x,y,z\in\mathbb{R}$ tels que :

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} = x \begin{pmatrix} 1 \\ r_1 \\ r_1^2 \end{pmatrix} + y \begin{pmatrix} 1 \\ r_2 \\ r_2^2 \end{pmatrix} + z \begin{pmatrix} 1 \\ r_3 \\ r_3^2 \end{pmatrix}$$

et en déduire l'expression du terme général de la suite $(u_n)_{n\in\mathbb{N}}$.

6) Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant (\mathcal{R}) . Pour chaque $n\in\mathbb{N}$, on définit

$$X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}.$$

Montrer qu'il existe une matrice A, que l'on explicitera, telle que

$$\forall n \in \mathbb{N}, \ X_{n+1} = AX_n.$$

- 7) Montrer que $\forall n \in \mathbb{N}, \ X_n = A^n X_0.$
- 8) Soit $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$. Soit $a, b, c \in \mathbb{R}$. Résoudre le système d'inconnues x, y, z:

$$P \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

- 9) En déduire que P est inversible et expliciter P^{-1} .
- **10)** Calculer $D = P^{-1}AP$.
- 11) Montrer que $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.
- 12) En déduire l'expression du terme général de $(u_n)_{n\in\mathbb{N}}$. Vérifier que l'on retrouve bien le résultat trouvé à la question 5).

III. Le théorème chinois.

Soit a et b deux entiers naturels premiers entre eux, et soit r_1 , r_2 deux entiers naturels non nuls. On considère le système de congruences suivant, d'inconnue $n \in \mathbb{N}$:

$$(S) : \begin{cases} n \equiv r_1 [a] \\ n \equiv r_2 [b] \end{cases}$$

- 1) Justifier l'existence de deux entiers u et v tels que au + bv = 1.
- 2) On pose $r_0 = aur_2 + bvr_1$. Montrer que r_0 est une solution de (S).
- 3) Soit $n \in \mathbb{N}$ une solution de (S).
 - a) Montrer que n vérifie $\begin{cases} n \equiv r_0[a] \\ n \equiv r_0[b] \end{cases}$
 - **b)** En déduire successivement que : a, b, $a \lor b$ et enfin ab sont des diviseurs de $n-r_0$.
 - c) En déduire que n vérifie $n \equiv r_0[ab]$.
- 4) Soit n un entier vérifiant $n \equiv r_0[ab]$, n est-il solution de (S)? En déduire l'ensemble des solutions de (S).
- 5) Application directe:

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (qui n'est, lui, pas un pirate). Celui ci reçoit 3 pièces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces.

Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces.

Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

IV. Construction de la fonction racine p-ème.

Dans tout ce problème, x_0 désigne un réel strictement positif, et p un entier strictement supérieur à 1.

On établit ici l'existence de la fonction racine p-ième, il est donc interdit d'utiliser cette fonction (ainsi que l'exponentielle, les logarithmes, le théorème de la bijection, le théorème des valeurs intermédiaires, etc...).

On se bornera donc à utiliser, comme outils d'analyse, les propriétés découlant directement de la définition de la borne supérieure et, éventuellement, des résultats élémentaires de convergence de suite.

On note:

$$A(x_0) = \{ y \in \mathbb{R}_+ \mid y^p \leqslant x_0 \}.$$

- 1) a) Sans utiliser la notion de dérivée, montrer que la fonction « puissance $p \gg : \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto x^p$ est strictement croissante.
 - **b)** En utilisant la définition d'un intervalle, montrer que l'ensemble $A(x_0)$ est un intervalle de \mathbb{R} .
- 2) Montrer que $A(x_0)$ est non vide.
- 3) a) Montrer que $(1+x_0)^p \ge 1 + px_0$.
 - b) En déduire que $A(x_0)$ est majoré par $1+x_0$. Que peut-on en conclure?

On note

$$c = \sup(A(x_0)),$$

et pour tout $n \in \mathbb{N}^*$,

$$u_n = c\left(1 - \frac{1}{n}\right)$$
 et $v_n = c\left(1 + \frac{1}{n}\right)$.

- 4) a) Montrer que 0 < c.
 - Indication: on pourra montrer que l'on a toujours $x_0 \in A(x_0)$ ou bien $\frac{1}{x_0} \in A(x_0)$.
 - b) Soit $n \in \mathbb{N}^*$. Justifier l'existence d'un réel $a \in A(x_0)$ tel que $u_n < a \leqslant c$.
 - c) En déduire que pour tout $n \in \mathbb{N}^*$, $u_n \in A(x_0)$ puis que $c^p \leqslant x_0$.
- 5) a) Justifier que pour tout $n \in \mathbb{N}^*$, $v_n^p > x_0$.
 - b) En déduire que $c^p = x_0$. Par définition, le réel c est appelé racine p-ième de x_0 , et noté $\sqrt[p]{x_0}$.
- 6) Soient B et C deux parties de \mathbb{R} , non vides et telles que $B \subset C$, avec C majorée.
 - a) Montrer que B et C admettent des bornes supérieures et que sup $B \leqslant \sup C$.
 - b) En déduire que la fonction racine p-ième est strictement croissante sur $]0, +\infty[$.

— FIN —