Домашнее задание по теме «Кратные интегралы и числовые ряды» (модуль 1)

по дисциплине «Теория вероятностей и математическая статистика», ИУ1Б, 3-й семестр

Задача 1 (2 балла). Поменять порядок интегрирования в повторном интеграле. Выполнить рисунок области интегрирования.

№ варианта	Условие задачи			
1	$\int_{0}^{1} dx \int_{x/2}^{2x} f(x,y) dy + \int_{1}^{2} dx \int_{x/2}^{2/x} f(x,y) dy.$			
2	$\int_{0}^{4} dx \int_{\sqrt{4x-x^2}}^{\sqrt{16-x^2}} f(x,y)dy.$			
3	$\int_{-1}^{1} dy \int_{y^2-1}^{1-y^2} f(x,y) dx.$			
4	$\int_{0}^{2} dx \int_{-\sqrt{4-x^2}}^{\sqrt{2x-x^2}} f(x,y)dy.$			
5	$\int_{2}^{4} dy \int_{y/2}^{y} f(x,y) dx.$			

6	$\int_{0}^{3} dx \int_{x^{2}}^{3+2x} f(x,y)dy.$				
7	$\int_{-\sqrt{2}}^{\sqrt{2}} dy \int_{y^2 - 1}^{y^2 / 2} f(x, y) dx.$				
8	$\int_{1}^{2} dx \int_{2/x}^{2x} f(x,y) dy.$				
9	$\int_{0}^{4} dx \int_{-\sqrt{4x-x^{2}}}^{\sqrt{16-x^{2}}} f(x,y)dy.$				
10	$\int_{0}^{1} dx \int_{-1+\sqrt{2x-x^2}}^{1-\sqrt{2x-x^2}} f(x,y)dy.$				
11	$\int_{-8/3}^{0} dy \int_{-2(y+1)}^{\sqrt{4+y^2}} f(x,y) dx.$				

12	$\int_{0}^{2} dx \int_{-\sqrt{4x-x^2}}^{0} f(x,y)dy.$				
13	$\int_{-1}^{0} dy \int_{-\sqrt{-y}}^{\sqrt{y+1}} dx.$				
14	$\int_{-\sqrt{2}}^{\sqrt{2}} dy \int_{-y^2/2}^{1-y^2} f(x,y) dx.$				
15	$\int_{-\sqrt{3}}^{\sqrt{3}} dy \int_{-\sqrt{1+y^2}}^{\sqrt{1+y^2}} f(x,y)dx.$				
16	$\int_{0}^{4} dx \int_{2-\sqrt{8-(x-2)^2}}^{\sqrt{4x-x^2}} f(x,y)dy.$				
17	$\int_{-1}^{1} dx \int_{-\sqrt{2-x^2}}^{x} f(x,y)dy + \int_{1}^{\sqrt{2}} dx \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} f(x,y)dy.$				

18	$\int_{0}^{2} dx \int_{-\sqrt{4-x^2}}^{\sqrt{4x-x^2}-2} f(x,y)dy.$			
19	$\int_{-4}^{-2} dx \int_{-\sqrt{-x^2-4x}}^{\sqrt{-x^2-4x}} f(x,y)dy + \int_{-2}^{\sqrt{8}} dx \int_{-\sqrt{8-x^2}}^{\sqrt{8-x^2}} f(x,y)dy.$			
20	$\int_{0}^{1} dx \int_{2x-1}^{(x+1)/2} f(x,y)dy.$			
21	$\int_{-2}^{0} dx \int_{-x-2}^{\sqrt{-x}} f(x,y)dy + \int_{0}^{2} dx \int_{x-2}^{\sqrt{x}} f(x,y)dy.$			
22	$\int_{-2}^{2} dx \int_{-2+\sqrt{4-x^2}}^{2+\sqrt{4-x^2}} f(x,y)dy.$			
23	$\int_{0}^{1} dy \int_{2y-1}^{(y+1)/2} f(x,y) dx.$			

24	$\int_{-4}^{0} dx \int_{-\sqrt{-x}}^{2-x} f(x,y)dy.$			
25	$\int_{-\sqrt{3}}^{0} dx \int_{-\sqrt{1+x^2}}^{\sqrt{1+x^2}} f(x,y)dy.$			
26	$\int_{-3}^{0} dx \int_{0}^{3+x} f(x,y)dy + \int_{0}^{3} dx \int_{2x}^{3+x} f(x,y)dy.$			
27	$\int_{0}^{2} dx \int_{-\sqrt{4x-x^2}}^{0} f(x,y)dy.$			
28	$\int_{-1}^{0} dy \int_{-\sqrt{-y}}^{\sqrt{y+1}} dx.$			

Задача 2 (2 балла). Вычислить объем тела, ограниченного поверхностями. Выполнить рисунок.

№ варианта	Условие задачи	
1	$x^2+y^2+z^2=5,\ z=x^2+y^2+1$ (внутри параболоида).	
2	$x^2 + y^2 - z^2 = 9$, $z = 0$, $z = 4$.	
3	$z = x^2 + y^2$; $(x - 1)^2 + y^2 = 1$; $z = 0$.	
4	$x^{2} + y^{2} = 1$, $x^{2} + y^{2} = 4$, $z = 0$; $x + y + z = 4$.	
5	$(x-1)^2 + y^2 = 1$; $z = 0$; $x + y + z = 4$.	
6	$x^2 + y^2 + z^2 = 16$, $z = \sqrt{7}$, $z = 2\sqrt{3}$.	
7	$z=9-x^2-y^2,\ z=0,\ x^2+y^2=4$ (вне цилиндра).	
8	$x^2 + y^2 - z^2 = 4$; $x^2 + y^2 = 9$.	
9	$x^{2} + (y-2)^{2} = 4; z = 0; z = 6 - x.$	

10	$x^2 + y^2 + z^2 = 6; z = x^2 + y^2$	
	(внутри параболоида).	
11	$z = \sqrt{x^2 + y^2 + 1}$; $z = \sqrt{3 - x^2 - y^2}$.	
12	$x^2 + y^2 = 1; \ x^2 + y^2 + z^2 = 4$ (вне цилиндра).	
13	$z = 6; z = 10 - x^2 - y^2.$	
14	$z = 5 - x^2 - y^2; \ z = 1.$	
15	$z = x^2 + y^2$; $z = 1$; $z = 4$.	
16	$x^2 + y^2 - z^2 = 4$; $x^2 + y^2 = 9$.	
17	$z = x^2 + y^2$; $(x - 1)^2 + y^2 = 1$; $z = 0$.	
18	$z = 5 - x^2 - y^2; \ z = 1.$	
19	$x^2 + y^2 + z^2 = 16$, $z = \sqrt{7}$, $z = 2\sqrt{3}$.	
20	$z = 6; z = 10 - x^2 - y^2.$	

21	$x^2 + y^2 + z^2 = 6; z = x^2 + y^2$ (внутри параболоида).			
22	$(x-1)^2 + y^2 = 1; z = 0; x + y + z = 4.$			
23	$x^2 + y^2 - z^2 = 9$, $z = 0$, $z = 4$.			
24	$x^2 + y^2 = 1; \ x^2 + y^2 + z^2 = 4$ (вне цилиндра).			
25	$x^2+y^2+z^2=5,\ z=x^2+y^2+1$ (внутри параболоида).			
26	$z = x^2 + y^2; z = 1; z = 4.$			
27	$z = \sqrt{x^2 + y^2 + 1}$; $z = \sqrt{3 - x^2 - y^2}$.			
28	$z=9-x^2-y^2,\ z=0,\ x^2+y^2=4$ (вне цилиндра).			

Задача 3 (3 балла). Исследовать сходимость рядов. В случае знакопеременного ряда исследовать на абсолютную и условную сходимость.

№ вар.		Условие задачи	
1	$\sum_{n=1}^{\infty} \frac{(n-1)^3}{n^4 + 3n^2 + 2}$	$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$	$\sum_{n=1}^{\infty} (-1)^n \left(\frac{5n}{5n+2}\right)$
2	$\sum_{n=1}^{\infty} \frac{n^3}{n^{17} + n^2}$	$\sum_{n=1}^{\infty} n \arctan \frac{1}{n}$	$\sum_{n=1}^{\infty} (-1)^n \frac{1000 \cdot 1002 \cdot 1004(998 + 2n)}{1 \cdot 4 \cdot 7(3n - 2)}$
3	$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{\sqrt{n^3}}$	$\sum_{n=1}^{\infty} \left(\frac{7n-1}{7n+2}\right)^n$	$\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \dots (3n-2)}{(2n+5)!}$

4	$\sum_{n=1}^{\infty} \frac{3n^2 - 5}{2n^2 + 1}$	$\sum_{n=1}^{\infty} \frac{2^n}{n}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}} \sin \frac{1}{n}$
5	$\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tg} \frac{1}{\sqrt{n}}$	$\sum_{n=1}^{\infty} \frac{n^3}{(n+1)!}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{3n}{3n+1}\right)^{n^2}$
6	$\sum_{n=1}^{\infty} \left(\frac{n}{n+3}\right)^{n^2}$	$\sum_{n=2}^{\infty} \frac{\ln n}{n}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \sin \frac{\pi}{n+2}$
7	$\sum_{n=1}^{\infty} \cos \frac{1}{n}$	$\sum_{n=2}^{\infty} \frac{2n+19}{\sqrt{n^2-1}}$	$\sum_{n=1}^{\infty} (-1)^n \frac{(2n)!}{(n!)^2}$

8	$\sum_{n=1}^{\infty} n \ln \frac{n^3 + 3}{n^3}$	$\sum_{n=1}^{\infty} \frac{(2n)!2^n}{(n!)^2 \cdot 3^n}$	$\sum_{n=1}^{\infty} (-1)^n (2n-1)^2 \lg \frac{\pi}{n^2}$
9	$\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 - \cos \frac{1}{\sqrt{n}} \right)$	$\sum_{n=1}^{\infty} \left(\frac{4n+1}{5n+2}\right)^{n/2}$	$\sum_{n=1}^{\infty} \frac{1000 \cdot 1002 \cdot 1004(998 + 2n)}{1 \cdot 4 \cdot 7(3n - 2)}$
10	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n^2 + 15}{7n^2}$	$\sum_{n=1}^{\infty} \left(\frac{n-1}{n+1}\right)^{n^2}$	$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \dots (2n-1)}{5^n \cdot n!}$
11	$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \arctan \frac{5}{\sqrt{n}}$	$\sum_{n=1}^{\infty} \frac{e^{-\sqrt{n}}}{n}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1 \cdot 11 \cdot 21 \dots (10n-9)}{(2n-1)!}$

12	$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \arctan \frac{1}{\sqrt[5]{n^4 + 1}}$	$\sum_{n=1}^{\infty} \frac{n^5}{3^n}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{3n}{3n-3}\right)^{2n^2}$
13	$\sum_{n=0}^{\infty} \frac{1}{\sqrt{3n+1}}$	$\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}e^{-\sqrt{n}}}{\sqrt{n}}$
14	$\sum_{n=1}^{\infty} (-1)^n n \arctan \frac{1}{n}$	$\sum_{n=1}^{\infty} \left(\frac{5n}{n+3}\right)^n$	$\sum_{n=1}^{\infty} \frac{(2n)!}{(3n+4)3^n}$
15	$\sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot \dots (3n+2)}{(n+2)!}$	$\sum_{n=2}^{\infty} \frac{\ln n}{n}$	$\sum_{n=1}^{\infty} (-1)^n \left(\frac{5n-1}{5n+1}\right)^n$

16	$\sum_{n=1}^{\infty} \sqrt[3]{n^2} \arcsin^2 \frac{1}{\sqrt[3]{3n}}$	$\sum_{n=1}^{\infty} \frac{5^{n-1}}{(n-1)!}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{n+3}{n+4}\right)^{n^2};$
17	$\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{\sqrt{n}} \right)$	$\sum_{n=1}^{\infty} \frac{3n^2 - 5}{2n^2 + 1}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{3n+1}\right)^n$
18	$\sum_{n=1}^{\infty} \left(\frac{5n}{5n+2} \right)^n$	$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(\ln n)^n}$	$\sum_{n=1}^{\infty} \frac{1 \cdot 11 \cdot 21 \dots (10n-9)}{(2n-1)!}$
19	$\sum_{n=1}^{\infty} (-1)^{n-1} n \sin \frac{1}{n}$	$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$	$\sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \left(\frac{n+3}{n}\right)^n$

20	$\sum_{n=1}^{\infty} \left(\frac{3n}{3n+1} \right)^{n^2}$	$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln^3 n}}$	$\sum_{n=2}^{\infty} (-1)^{n-1} \arctan \frac{1}{\sqrt{n+2}}$
21	$\sum_{n=1}^{\infty} \frac{2^n}{7^n} \left(\frac{n}{n+1}\right)^{n^2}$	$\sum_{n=1}^{\infty} \sqrt[3]{n} \operatorname{tg} \frac{10}{n^2}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(3n+1)(3n+2)}$
22	$\sum_{n=1}^{\infty} \left(\frac{n}{n+3}\right)^{n^2}$	$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right)$	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n n!}{n^n}$
23	$\sum_{n=1}^{\infty} n^2 \cdot tg^5 \frac{\pi}{\sqrt{n^3}}$	$\sum_{n=1}^{\infty} \frac{1}{5^n} \left(\frac{n+1}{n} \right)^{n^2}$	$\sum_{n=1}^{\infty} (-1)^n \frac{3n^2 + 1}{2n^2 - 1}$

24	$\sum_{n=1}^{\infty} \left(\frac{4n+1}{5n+2}\right)^{n/2}$	$\sum_{n=1}^{\infty} \frac{n^n}{n!}$	$\sum_{n=1}^{\infty} (-1)^n \cdot n \cdot \operatorname{arctg} \frac{1}{n}$
25	$\sum_{n=2}^{\infty} \frac{\ln n}{n(\ln^4 n + 1)}$	$\sum_{n=1}^{\infty} \frac{n^5}{3^n}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{n^2}{2n^2 + 1}$
26	$\sum_{n=1}^{\infty} \frac{(n-1)^3}{n^4 + 3n^2 + 2}$	$\sum_{n=1}^{\infty} \left(\frac{n+2}{n+4}\right)^{n^2}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot 3 \cdot 5 \cdot 7 \dots (2n+1)}{2 \cdot 5 \cdot 8 \dots (3n-1)}$
27	$\sum_{n=1}^{\infty} \frac{\arctan}{n^2 + 1}$	$\sum_{n=1}^{\infty} \frac{4^n n!}{n^n}$	$\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{(n-1)^3}{n^4 + 3n^2 + 2}$

ДЗ «Кратные интегралы и числовые ряды», модуль1 (ТВиМС, ИУ1Б, 3-й семестр, 2022г.)

 $\sum_{n=1}^{\infty} 2^n \operatorname{tg} \frac{1}{3^n} \qquad \sum_{n=1}^{\infty} \left(\frac{n-1}{n+1}\right)^{n^2} \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{n^n}{n!}$