Normaliz 3.10.0

Max Horn

Ulrich von der Ohe

16

16

16

18

19

20

21

Winfried Bruns

2. Discrete convex geometry by examples

2.3.3.

Former Normaliz 3 team members: 11m	Romer, Richard Sieg and Christof Soger
Normaliz 2 team me	ember: Bogdan Ichim
https://normaliz.uos.de	https://github.com/Normaliz
mailto:norm	naliz@uos.de
https://hub.docker.com	n/u/normaliz/dashboard/
https://mybinder.org/v2/gh/No	ormaliz/NormalizJupyter/master
Short reference:	NmzShortRef.pdf
Contents	
 Platforms, implementation and access Major changes relative to version 3.8 Future extensions Download and installation 	10 10 10 10 10 10 10 11 11 12 12 14 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18

	2.4.	A lattice polytope
		2.4.1. Only the lattice points
	2.5.	A rational polytope
		2.5.1. The series with vertices?
		2.5.2. The rational polytope by inequalities
	2.6.	Magic squares
		2.6.1. Blocking the grading denominator
		2.6.2. With even corners
		2.6.3. The lattice as input
	2.7.	Decomposition in a numerical semigroup
	2.8.	A job for the dual algorithm
	2.9.	A dull polyhedron
	2.7.	2.9.1. Defining it by generators
	2 10	The Condorcet paradox
	2.10.	2.10.1. Excluding ties
		2.10.2. At least one vote for every preference order
		2.10.2. At least one vote for every preference order
	2 11	
	2.11.	
	2.12	Γ
		Convex hull computation/vertex enumeration
		Lattice points in a polytope and its Euclidean volume
		The integer hull
	2.15.	Inhomogeneous congruences
		2.15.1. Lattice and offset
		2.15.2. Variation of the signs
	2.16.	Integral closure and Rees algebra of a monomial ideal
		2.16.1. Only the integral closure of the ideal
3.	Affi	ne monids and binomial ideals by examples 59
		Positive affine monoids
		3.1.1. Input and default computation goals
		3.1.2. Markov and Gröbner bases, Representations
		3.1.3. Hilbert series and muliplicity
		3.1.4. Binomial ideals from cone input
	3.2.	Monoids from binomials
	3.2.	3.2.1. Monoids from binomial ideals
		3.2.2. Normalization of monoids from binomials
	3.3.	Lattice ideals
4.		input file 69
	4.1.	Input items
		4.1.1. The ambient space and lattice
		4.1.2. Plain vectors

	4.1.3. Formatted vectors	70
	4.1.4. Plain matrices	71
	4.1.5. Formatted matrices	72
	4.1.6. Constraints in tabular format	72
	4.1.7. Constraints in symbolic format	73
	4.1.8. Polynomials	74
	4.1.9. Rational numbers	74
	4.1.10. Decimal fractions and floating point numbers	74
	4.1.11. Numbers in algebraic extensions of \mathbb{Q}	75
	4.1.12. Numerical parameters	75
	4.1.13. Computation goals and algorithmic variants	75
	4.1.14. Comments	75
	4.1.15. Restrictions	75
	4.1.16. Homogeneous and inhomogeneous input	76
	4.1.17. Default values	76
	4.1.18. Normaliz takes intersections	77
4.2.	Homogeneous generators	77
	4.2.1. Cones	77
	4.2.2. Lattices	78
	4.2.3. Affine monoids	78
4.3.	Homogeneous Constraints	78
	4.3.1. Cones	78
	4.3.2. Lattices	79
4.4.	Inhomogeneous generators	79
	4.4.1. Polyhedra	79
	4.4.2. Affine lattices	80
4.5.	Inhomogeneous constraints	80
	4.5.1. Polyhedra	80
	4.5.2. Affine lattices	81
4.6.	Tabular constraints	81
	4.6.1. Forced homogeneity	82
4.7.	Symbolic constraints	82
4.8.	Converting equations to inequalities	82
4.9.	Polynomial constraints	82
4.10.	Binomial ideals	83
	Unit vectors and unit matrix	83
	Grading	83
	4.12.1. With binomil ideal input	84
4.13.	Dehomogenization	84
	Open facets	85
	Coordinates for projection	85
	Numerical parameters	85
	4.16.1. Degree bound for series expansion	86
	4.16.2. Number of significant coefficients of the quasipolynomial	86

		4.16.3.	Codimension bound for the face lattice		 					86
		4.16.4.	Degree bounds for Markov and Gröbbner bases		 					86
		4.16.5.	Number of digits for fixed precision		 					86
		4.16.6.	Block size for distributed computation		 					86
	4.17.		lness							86
	4.18.	The zer	ro cone	•	 				•	87
5.	Con	nputati	on goals and algorithmic variants							88
		-	t choices and basic rules		 					88
			itation goals							89
		5.2.1.	Lattice data							89
		5.2.2.	Support hyperplanes and extreme rays							89
		5.2.3.	Hilbert basis and lattice points							89
		5.2.4.	Enumerative data							90
		5.2.5.	Combined computation goals		 					90
		5.2.6.	The class group							90
		5.2.7.	Integer hull							90
		5.2.8.	Triangulation and Stanley decomposition							91
		5.2.9.	Face structure		 					91
		5.2.10.	Semiopen polyhedra		 					92
		5.2.11.	Automorphism groups		 					92
			Weighted Ehrhart series and integrals							92
		5.2.13.	Markov and Gröbner bases		 					92
			Local structure							93
		5.2.15.	Boolean valued computation goals		 					93
	5.3.	Integer	type		 					94
	5.4.	The che	oice of algorithmic variants		 					94
		5.4.1.	Primal vs. dual		 					94
		5.4.2.	Lattice points in polytopes		 					95
		5.4.3.	Bottom decomposition and order		 					95
		5.4.4.	Multiplicity, volume and integrals		 					96
		5.4.5.	Symmetrization		 					97
		5.4.6.	Subdivision of simplicial cones		 					97
		5.4.7.	Options for the grading		 					97
	5.5.	Contro	l of computations and communication with interfaces		 					97
	5.6.	Rationa	al and integer solutions in the inhomogeneous case.		 	 •	•	•		98
6.	Run	ning N	Iormaliz						(99
	6.1.	_	ules		 				. 1	00
	6.2.		out Normaliz							00
	6.3.		l of execution							00
	6.4.		ption							01
	6.5.		l of output files							01

	6.6.	Ignorin	g the options in the input file	102
7.	Adv	anced	topics	103
			itations with a polytope	103
		7.1.1.	* * *	104
		7.1.2.		104
	7.2.	Lattice	points in polytopes once more	104
		7.2.1.	Project-and-lift	105
		7.2.2.	Project-and-lift with floating point arithmetic	107
		7.2.3.	LLL reduced coordinates and relaxation	107
		7.2.4.	Positive systems, coarse project-and-lift and patching	108
		7.2.5.	Polynomial constraints for lattice points	109
		7.2.6.	The triangulation based primal algorithm	109
		7.2.7.	Lattice points by approximation	110
		7.2.8.	Lattice points by the dual algorithm	111
		7.2.9.	Counting lattice points	111
	7.3.	The bo	ttom decomposition	111
	7.4.		ision of large simplicial cones	113
	7.5.		vs. dual – division of labor	114
	7.6.	Various	s volume versions	114
		7.6.1.	The primal volume algorithm	115
		7.6.2.	Volume by descent in the face lattice	116
		7.6.3.	Descent exploiting isomorphism classes of faces	117
		7.6.4.	Volume by signed decomposition	117
		7.6.5.	Fixed precision for signed decomposition	120
		7.6.6.	Comparing the algorithms	120
	7.7.	Checki	ng the Gorenstein property	121
	7.8.	Symme	etrization	122
	7.9.		tations with a polynomial weight	124
		7.9.1.	A weighted Ehrhart series	125
		7.9.2.	Virtual multiplicity	127
			An integral	127
	7.10.	. Expans	sion of the Hilbert or weighted Ehrhart series	128
			Series expansion	128
		7.10.2.	Counting lattice points by degree	129
			Significant coefficients of the quasipolynomial	130
	7.11.		t dehomogenization	131
			ion of cones and polyhedra	132
			inted cones	133
			A nonpointed cone	134
			A polyhedron without vertices	135
			Checking pointedness first	137
			Input of a subspace	137

	7.13.5. Data relative to the original monoid							138
	7.14. Exporting the triangulation							
	7.14.1. Nested triangulations							141
	7.14.2. Disjoint decomposition							141
	7.15. Terrific triangulations							142
	7.15.1. Just Triangulation							143
	7.15.2. All generators triangulation							144
	7.15.3. Lattice point triangulation							144
	7.15.4. Unimodular triangulation							144
	7.15.5. Placing triangulation							145
	7.15.6. Pulling triangulation							145
	7.16. Exporting the Stanley decomposition							146
	7.17. Face lattice, f-vector and incidence matrix							147
	7.17.1. Dual face lattice, f-vector and incidence matrix .							149
	7.18. Module generators over the original monoid							150
	7.18.1. An inhomogeneous example							151
	7.19. Lattice points in the fundamental parallelepiped							153
	7.20. Semiopen polyhedra							155
	7.21. Rational lattices							157
	7.22. Automorphism groups							159
	7.22.1. Euclidean automorphisms							160
	7.22.2. Rational automorphisms							163
	7.22.3. Integral automorphisms							163
	7.22.4. Combinatorial automorphisms							164
	7.22.5. Ambient automorphisms							165
	7.22.6. Automorphisms from input							166
	7.23. Precomputed data							168
	7.23.1. Precomputed cones and coordinate transformations							168
	7.23.2. An inhomogeneous example							169
	7.23.3. Precomputed Hilbert basis of the recession cone							171
	7.24. Singular locus							171
	7.25. Packed format in the output of binomials							
8.	Algebraic polyhedra							173
	8.1. An example							173
	8.2. Input							
	8.3. Computations							
•	-	-		•	-	- '	-	-,-
9.	Optional output files							177
	9.1. The homogeneous case							177
	9.2. Modifications in the inhomogeneous case							
	9.3. Algebraic polyhedra					•		
	9.4 Precomputed data for future input							179

	9.5.	Overview: Output files forced by computation goals	79
10	.Perf	formance 1	79
	10.1.	Parallelization	79
		Running large computations	30
11	Dist	ribution and installation	82
11			32
		Binary release	
			33
		Conda	
			34
12	Buil	ding Normaliz yourself	84
12		5 • • • • • • • • • • • • • • • • • • •	34
	12.1.	12.1.1. Linux	
		12.1.2. Mac OS X	
	12.2	Normaliz at a stroke	
			35 36
	12.3.	12.3.1. CoCoALib	_
		•	37 37
		•	
	12.4		
		Packages for algebraic polyhedra	
	12.3.	Wildows	00
13	.Cop	yright and how to cite	88
A.	Mat	hematical background and terminology	90
		Polyhedra, polytopes and cones) ()
		Cones) 1
	A.3.	Polyhedra) 1
		·	93
			94
		Hilbert series and multiplicity) 5
		· · ·	97
		0 1	97
			98
			99
В	Ann	otated console output 19	99
٠.		1) 99
		Dual mode	

C.	Nor	maliz 2	2 input syntax	203
D.	libn	ormaliz	Z	204
			aster header file	204
			al packages and configuration	204
			type as a template parameter	204
		_	Alternative integer types	205
			Decimal fractions and floating point numbers	205
	D.4.		action of a cone	205
	2,		Construction from an input file	208
	D.5.		and changing additional data	209
		_	Polynomials	209
			Grading	209
			Projection coordinates	209
			Numerical parameters	209
	D.6.		ring a cone after construction	210
			tations in a cone	211
		_	ing results	217
			Checking computations	217
			Rank, index and dimension	
		D.8.3.		218
			Extreme rays and vertices	218
			Generators	218
			Lattice points in polytopes and elements of degree 1	219
			Hilbert basis	219
		D.8.8.		219
		D.8.9.		220
		D.8.10.	Grading and dehomogenization	220
			Enumerative data	
		D.8.12.	Weighted Ehrhart series and integrals	221
			Triangulation and disjoint decomposition	
			Stanley decomposition	223
			Scaling of axes	224
			Coordinate transformation	224
		D.8.17.	Coordinate transformations for precomputed data	225
			Automorphism groups	225
			Class group	227
		D.8.20.	Face lattice and f-vector	227
			Local properties	228
		D.8.22.	Markov abd Grobner bases, representations	228
			Integer hull	228
			Projection of the cone	228
			Excluded faces	229

D.8.26. Boolean valued results	29
D.8.27. Results by type	30
D.9. Algebraic polyhedra	30
D.10. Reusing previous computation results	31
D.11. Control of execution	32
D.11.1. Exceptions	32
D.11.2. Interruption	32
D.11.3. Inner parallelization	33
D.11.4. Outer parallelization	33
D.11.5. Control of terminal output	33
D.11.6. Printing the cone	34
D.12. A simple program	34
Normaliz interactive: PyNormaliz 23	39
E.1. Installation	
E.2. The high level interface by examples	
E.2.1. Creating a cone	
E.2.2. Matrices, vectors and numbers	
E.2.3. Triangulations, automorphisms and face lattice	
E.2.4. Hilbert and other series	
E.2.5. Multiplicity, volume and integral	
E.2.6. Integer hull and other cones as values	
E.2.7. Boolean values	
E.2.8. Algebraic polyhedra	
E.2.9. The collective compute command and algorithmic variants	
E.2.10. Miscellaneous functions	
E.3. The low level interface	
E.3.1. The main functions	
E.3.1. Additional input and modification of existing cones	
E.3.2. Additional data access	
E.3.5. Raw formats of numbers)4
Distributed computation for volume via signed decomposition 25	55
erences 25	57
ex of keywords 25	59
→	

A. Mathematical background and terminology

For a coherent and thorough treatment of the mathematical background we refer the reader to [10].

A.1. Polyhedra, polytopes and cones

An affine halfspace of \mathbb{R}^d is a subset given as

$$H_{\lambda}^{+} = \{x : \lambda(x) \ge 0\},\,$$

where λ is an affine form, i.e., a non-constant map $\lambda: \mathbb{R}^d \to \mathbb{R}$, $\lambda(x) = \alpha_1 x_1 + \dots + \alpha_d x_d + \beta$ with $\alpha_1, \dots, \alpha_d, \beta \in \mathbb{R}$. If $\beta = 0$ and λ is therefore linear, then the halfspace is called *linear*. The halfspace is *rational* if λ is *rational*, i.e., has rational coordinates. If λ is rational, we can assume that it is even *integral*, i.e., has integral coordinates, and, moreover, that these are coprime. Then λ is uniquely determined by H_{λ}^+ . Such integral forms are called *primitive*, and the same terminology applies to vectors.

Definition 1. A (rational) *polyhedron P* is the intersection of finitely many (rational) halfspaces. If it is bounded, then it is called a *polytope*. If all the halfspaces are linear, then *P* is a *cone*.

The dimension of P is the dimension of the smallest affine subspace aff(P) containing P.

A support hyperplane of P is an affine hyperplane H that intersects P, but only in such a way that H is contained in one of the two halfspaces determined by H. The intersection $H \cap P$ is called a *face* of P. It is a polyhedron (polytope, cone) itself. Faces of dimension 0 are called *vertices*, those of dimension 1 are called *edges* (in the case of cones *extreme rays*), and those of dimension $\dim(P) - 1$ are *facets*.

When we speak of *the* support hyperplanes of P, then we mean those intersecting P in a facet. Their halfspaces containing P cut out P from aff(P). If dim(P) = d, then they are uniquely determined (up to a positive scalar).

The constraints by which Normaliz describes polyhedra are

- (1) linear equations for aff(P) and
- (2) linear inequalities (simply called support hyperplanes) cutting out P from aff(P).

In other words, the constraints are given by a linear system of equations and inequalities, and a polyhedron is nothing else than the solution set of a linear system of inequalities and equations. It can always be represented in the form

$$Ax \ge b, \qquad A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m,$$

if we replace an equation by two inequalities.

A.2. Cones

The definition describes a cone by constraints. One can equivalently describe it by generators:

Theorem 2 (Minkowski-Weyl). *The following are equivalent for* $C \subset \mathbb{R}^d$;

- 1. C is a (rational) cone;
- 2. there exist finitely many (rational) vectors x_1, \ldots, x_n such that

$$C = \{a_1x_1 + \dots + a_nx_n : a_1, \dots, a_n \in \mathbb{R}_+\}.$$

By \mathbb{R}_+ we denote the set of nonnegative real numbers; \mathbb{Q}_+ and \mathbb{Z}_+ are defined in the same way.

The conversion between the description by constraints and that by generators is one of the basic tasks of Normaliz. It uses the *Fourier-Motzkin elimination*.

Let C_0 be the set of those $x \in C$ for which $-x \in C$ as well. It is the largest vector subspace contained in C. A cone is *pointed* if $C_0 = 0$. If a rational cone is pointed, then it has uniquely determined *extreme integral generators*. These are the primitive integral vectors spanning the extreme rays. These can also be defined with respect to a sublattice L of \mathbb{Z}^d , provided C is contained in $\mathbb{R}L$. If a cone is not pointed, then Normaliz computes the extreme rays of the pointed C/C_0 and lifts them to C. (Therefore they are only unique modulo C_0 .)

The *dual cone* C^* is given by

$$C^* = {\lambda \in (\mathbb{R}^d)^* : \lambda(x) \ge 0 \text{ for all } x \in C}.$$

Under the identification $\mathbb{R}^d = (\mathbb{R}^d)^{**}$ one has $C^{**} = C$. Then one has

$$\dim C_0 + \dim C^* = d.$$

In particular, C is pointed if and only if C^* is full dimensional, and this is the criterion for pointedness used by Normaliz. Linear forms $\lambda_1, \ldots, \lambda_n$ generate C^* if and only if C is the intersection of the halfspaces $H_{\lambda_i}^+$. Therefore the conversion from constraints to generators and its converse are the same task, except for the exchange of \mathbb{R}^d and its dual space.

A.3. Polyhedra

In order to transfer the Minkowski-Weyl theorem to polyhedra it is useful to homogenize coordinates by embedding \mathbb{R}^d as a hyperplane in \mathbb{R}^{d+1} , namely via

$$\kappa : \mathbb{R}^d \to \mathbb{R}^{d+1}, \qquad \kappa(x) = (x, 1).$$

If P is a (rational) polyhedron, then the closure of the union of the rays from 0 through the points of $\kappa(P)$ is a (rational) cone C(P), called the *cone over* P. The intersection $C(P) \cap (\mathbb{R}^d \times \{0\})$ can be identified with the *recession* (or tail) *cone*

$$rec(P) = \{x \in \mathbb{R}^d : y + x \in P \text{ for all } y \in P\}.$$

It is the cone of unbounded directions in *P*. The recession cone is pointed if and only if *P* has at least one bounded face, and this is the case if and only if it has a vertex.

The theorem of Minkowski-Weyl can then be generalized as follows:

Theorem 3 (Motzkin). *The following are equivalent for a subset* $P \neq \emptyset$ *of* \mathbb{R}^d :

- 1. P is a (rational) polyhedron;
- 2. P = Q + C where Q is a (rational) polytope and C is a (rational) cone.

If P has a vertex, then the smallest choice for Q is the convex hull of its vertices, and C = rec(P) is uniquely determined.

The *convex hull* of a subset $X \in \mathbb{R}^d$ is

$$conv(X) = \{a_1x_1 + \dots + a_nx_n : n \ge 1, x_1, \dots, x_n \in X, a_1, \dots, a_n \in \mathbb{R}_+, a_1 + \dots + a_n = 1\}.$$

Clearly, P is a polytope if and only if $rec(P) = \{0\}$, and the specialization to this case one obtains Minkowski's theorem: a subset P of \mathbb{R}^d is a polytope if and only if it is the convex hull of a finite set. A *lattice polytope* is distinguished by having integral points as vertices.

Normaliz computes the recession cone and the polytope Q if P is defined by constraints. Conversely it finds the constraints if the vertices of Q and the generators of C are specified.

Suppose that *P* is given by a system

$$Ax > b$$
, $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$,

of linear inequalities (equations are replaced by two inequalities). Then C(P) is defined by the homogenized system

$$Ax - x_{d+1}b > 0$$

whereas the rec(P) is given by the associated homogeneous system

$$Ax \ge 0$$
.

It is of course possible that P is empty if it is given by constraints since inhomogeneous systems of linear equations and inequalities may be unsolvable. By abuse of language we call the solution set of the associated homogeneous system the recession cone of the system.

Via the concept of dehomogenization, Normaliz allows for a more general approach. The *dehomogenization* is a linear form δ on \mathbb{R}^{d+1} . For a cone \widetilde{C} in \mathbb{R}^{d+1} and a dehomogenization δ , Normaliz computes the polyhedron $P = \{x \in \widetilde{C} : \delta(x) = 1\}$ and the recession cone $C = \{x \in \widetilde{C} : \delta(x) = 0\}$. In particular, this allows other choices of the homogenizing coordinate. (Often one chooses x_0 , the first coordinate then.)

In the language of projective geometry, $\delta(x) = 0$ defines the hyperplane at infinity.

A.4. Affine monoids

An *affine monoid* M is a finitely generated submonoid of \mathbb{Z}^d for some $d \geq 0$. This means: $0 \in M, M+M \subset M$, and there exist x_1, \ldots, x_n such that

$$M = \{a_1x_1 + \dots + a_nx_n : a_1, \dots, a_n \in \mathbb{Z}_+\}.$$

We say that $x_1, ..., x_n$ is a *system of generators* of M. A monoid M is positive if $x \in M$ and $-x \in M$ implies x = 0. An element x in a positive monoid M is called *irreducible* if it has no decomposition x = y + z with $y, z \in M$, $y, z \neq 0$. The *rank* of M is the rank of the subgroup gp(M) of \mathbb{Z}^d generated by M. (Subgroups of \mathbb{Z}^d are also called sublattices.) For certain aspects of monoid theory it is very useful (or even necessary) to introduce coefficients from a field K (or a more general commutative ring) and consider the monoid algebra K[M].

Theorem 4 (van der Corput). Every positive affine monoid M has a unique minimal system of generators, given by its irreducible elements.

We call the minimal system of generators the *Hilbert basis* of *M*. Normaliz computes Hilbert bases of a special type of affine monoid:

Theorem 5 (Gordan's lemma). Let $C \subset \mathbb{R}^d$ be a (pointed) rational cone and let $L \subset \mathbb{Z}^d$ be a sublattice. Then $C \cap L$ is a (positive) affine monoid.

The monoids $M = C \cap L$ of the theorem have the pleasant property that the group of units M_0 (i.e., elements whose inverse also belongs to M) splits off as a direct summand. Therefore M/M_0 is a well-defied affine monoid. If M is not positive, then Normaliz computes a Hilbert basis of M/M_0 and lifts it to M.

Let $M \subset \mathbb{Z}^d$ be an affine monoid, and let $N \supset M$ be an overmonoid (not necessarily affine), for example a sublattice L of \mathbb{Z}^d containing M.

Definition 6. The *integral closure* (or *saturation*) of M in N is the set

$$\widehat{M}_N = \{x \in N : kx \in M \text{ for some } k \in \mathbb{Z}, k > 0\}.$$

If $\widehat{M}_N = M$, one calls *M* integrally closed in *N*.

The integral closure \overline{M} of M in gp(M) is its *normalization*. M is *normal* if $\overline{M} = M$.

The integral closure has a geometric description:

Theorem 7.

$$\widehat{M}_N = \operatorname{cone}(M) \cap N$$
.

Combining the theorems, we can say that Normaliz computes integral closures of affine monoids in lattices, and the integral closures are themselves affine monoids as well. (More generally, \widehat{M}_N is affine if M and N are affine.)

In order to specify the intersection $C \cap L$ by constraints we need a system of homogeneous inequalities for C. Every sublattice of \mathbb{Z}^d can be written as the solution set of a combined system of homogeneous linear diophantine equations and a homogeneous system of congruences (this follows from the elementary divisor theorem). Thus $C \cap L$ is the solution set of a homogeneous linear diophantine system of inequalities, equations and congruences. Conversely, the solution set of every such system is a monoid of type $C \cap L$.

In the situation of Theorem 7, if gp(N) has finite rank as a gp(M)-module, \widehat{M}_N is even a finitely generated module over M. I.e., there exist finitely many elements $y_1, \ldots, y_m \in \widehat{M}_N$ such that $\widehat{M}_N = \bigcup_{i=1}^m M + y_i$. Normaliz computes a minimal system y_1, \ldots, y_m and lists the nonzero y_i as a system of module generators of \widehat{M}_N modulo M. We must introduce coefficients to make this precise: Normaliz computes a minimal system of generators of the K[M]-module $K[\widehat{M}_N]/K[M]$.

A.5. Lattice points in polyhedra

Let $P \subset \mathbb{R}^d$ be a rational polyhedron and $L \subset \mathbb{Z}^d$ be an *affine sublattice*, i.e., a subset $w + L_0$ where $w \in \mathbb{Z}^d$ and $L_0 \subset \mathbb{Z}^d$ is a sublattice. In order to investigate (and compute) $P \cap L$ one again uses homogenization: P is extended to C(P) and L is extended to $\mathcal{L} = L_0 + \mathbb{Z}(w,1)$. Then one computes $C(P) \cap \mathcal{L}$. Via this "bridge" one obtains the following inhomogeneous version of Gordan's lemma:

Theorem 8. Let P be a rational polyhedron with vertices and $L = w + L_0$ an affine lattice as above. Set $rec_L(P) = rec(P) \cap L_0$. Then there exist $x_1, \ldots, x_m \in P \cap L$ such that

$$P \cap L = \{(x_1 + \operatorname{rec}_L(P)) \cap \cdots \cap (x_m + \operatorname{rec}_L(P))\}.$$

If the union is irredundant, then x_1, \ldots, x_m *are uniquely determined.*

The Hilbert basis of $\operatorname{rec}_L(P)$ is given by $\{x: (x,0) \in \operatorname{Hilb}(C(P) \cap \mathcal{L})\}$ and the minimal system of generators can also be read off the Hilbert basis of $C(P) \cap \mathcal{L}$: it is given by those x for which (x,1) belongs to $\operatorname{Hilb}(C(P) \cap \mathcal{L})$. (Normaliz computes the Hilbert basis of $C(P) \cap L$ only at "levels" 0 and 1.)

We call $rec_L(P)$ the *recession monoid* of P with respect to L (or L_0). It is justified to call $P \cap L$ a *module* over $rec_L(P)$. In the light of the theorem, it is a finitely generated module, and it has a unique minimal system of generators.

After the introduction of coefficients from a field K, $\operatorname{rec}_L(P)$ is turned into an affine monoid algebra, and $N = P \cap L$ into a finitely generated torsionfree module over it. As such it has a well-defined *module rank* $\operatorname{mrank}(N)$, which is computed by Normaliz via the following combinatorial description: Let x_1, \ldots, x_m be a system of generators of N as above; then $\operatorname{mrank}(N)$ is the cardinality of the set of residue classes of x_1, \ldots, x_m modulo $\operatorname{rec}_L(P)$.

Clearly, to model $P \cap L$ we need linear diophantine systems of inequalities, equations and congruences which now will be inhomogeneous in general. Conversely, the set of solutions of such a system is of type $P \cap L$.

A.6. Hilbert series and multiplicity

Normaliz can compute the Hilbert series and the Hilbert (quasi)polynomial of a graded monoid. A *grading* of a monoid M is simply a homomorphism deg : $M \to \mathbb{Z}^g$ where \mathbb{Z}^g contains the degrees. The *Hilbert series* of M with respect to the grading is the formal Laurent series

$$H(t) = \sum_{u \in \mathbb{Z}^g} \#\{x \in M : \deg x = u\}t_1^{u_1} \cdots t_g^{u_g} = \sum_{x \in M} t^{\deg x},$$

provided all sets $\{x \in M : \deg x = u\}$ are finite. At the moment, Normaliz can only handle the case g = 1, and therefore we restrict ourselves to this case. We assume in the following that $\deg x > 0$ for all nonzero $x \in M$ and that there exists an $x \in \operatorname{gp}(M)$ such that $\deg x = 1$. (Normaliz always rescales the grading accordingly – as long as no module N is involved.) In the case of a nonpositive monoid, these conditions must hold for M/M_0 , and its Hilbert series is considered as the Hilbert series of M.

The basic fact about H(t) in the \mathbb{Z} -graded case is that it is the Laurent expansion of a rational function at the origin:

Theorem 9 (Hilbert, Serre; Ehrhart). Suppose that M is a normal positive affine monoid. Then

$$H(t) = rac{R(t)}{(1-t^e)^r}, \qquad R(t) \in \mathbb{Z}[t],$$

where r is the rank of M and e is the least common multiple of the degrees of the extreme integral generators of cone(M). As a rational function, H(t) has negative degree.

The statement about the rationality of H(t) holds under much more general hypotheses.

Usually one can find denominators for H(t) of much lower degree than that in the theorem, and Normaliz tries to give a more economical presentation of H(t) as a quotient of two polynomials. One should note that it is not clear what the most natural presentation of H(t) is in general (when e > 1). We discuss this problem in [14, Section 4]. The examples 2.5 and 2.6.2, may serve as an illustration.

A rational cone C and a grading together define the rational polytope $Q = C \cap A_1$ where $A_1 = \{x : \deg x = 1\}$. In this sense the Hilbert series is nothing but the Ehrhart series of Q. The following description of the Hilbert function $H(M,k) = \#\{x \in M : \deg x = k\}$ is equivalent to the previous theorem:

Theorem 10. There exists a quasipolynomial q with rational coefficients, degree rank M-1 and period π dividing e such that H(M,k)=q(k) for all $q \geq 0$.

The statement about the quasipolynomial means that there exist polynomials $q^{(j)}$, $j = 0, ..., \pi - 1$, of degree rank M - 1 such that

$$q(k)=q^{(j)}(k), \qquad j\equiv k \quad (\pi),$$

and

$$q^{(j)}(k) = q_0^{(j)} + q_1^{(j)}k + \dots + q_{r-1}^{(j)}k^{r-1}, \qquad r = \operatorname{rank} M,$$

with coefficients $q_i^{(j)} \in \mathbb{Q}$. It is not hard to show that in the case of affine monoids all components have the same degree r-1 and the same leading coefficient:

$$q_{r-1} = \frac{\operatorname{vol}(Q)}{(r-1)!},$$

where vol is the lattice normalized volume of Q (a lattice simplex of smallest possible volume has volume 1). The *multiplicity* of M, denoted by e(M) is $(r-1)!q_{r-1} = \operatorname{vol}(Q)$.

Suppose now that P is a rational polyhedron in \mathbb{R}^d , $L \subset \mathbb{Z}^d$ is an affine lattice, and we consider $N = P \cap L$ as a module over $M = \operatorname{rec}_L(P)$. Then we must give up the condition that deg takes the value 1 on $\operatorname{gp}(M)$ (see Section ?? for an example). But the Hilbert series

$$H_N(t) = \sum_{x \in N} t^{\deg x}$$

is well-defined, and the qualitative statement above about rationality remain valid. However, in general the quasipolynomial gives the correct value of the Hilbert function only for k > r where r is the degree of the Hilbert series as a rational function. The multiplicity of N is given by

$$e(N) = \operatorname{mrank}(N)e(M)$$
.

where mrank(M) is the module rank of M.

Since N may have generators in negative degrees, Normaliz shifts the degrees into \mathbb{Z}_+ by subtracting a constant, called the *shift*. (The shift may also be positive.)

Above the multiplicity of M was defined under the assumption that gp(M) contains an element of degree 1. In the homogeneous situation where no module N comes into play, Normaliz achieves this extra condition by dividing the grading by the *grading denominator* so that we are effectively in the situation considered above, except in two situations: (i) the use of the grading denominator is blocked; (ii) when a module N is considered, it can easily happen that the grading restricted to the recession monoid M has a denominator g > 1, but there occur degrees in N that are not divisible by g. Let deg' = deg/g and let e'(M) be the multiplicity of M with respect to deg'. Then

$$e(M) = \frac{e'(M)}{g^{r-1}}.$$

With this definition, e(M) has the expected property as a dimension normed leading coefficient of the Hilbert quasipolynomial: if $q^{(j)}$ is a *nonzero* component of the quasipolynomial of M, then its leading coefficient satisfies

$$q_{r-1}^{(j)} = \frac{e(M)}{(r-1)!}.$$

This follows immediately from the substitution $k \mapsto k/g$ in the Hilbert function when we pass from deg' to deg: H(M,k) = H'(M,k/g) if g divides k and H(M,k) = 0 otherwise. Also the

interpretation as a volume is consistent: e(M) is the lattice normalized volume of the polytope $C \cap \{x : \deg x = 1\}$ (whereas e'(M) is the lattice normalized volume of $C \cap \{x : \deg x = g\}$).

For the interpretation of the multiplicity $e(N) = \operatorname{mrank}(N)e(M)$ one must first split the module N into a direct sum where each summand bundles the elements whose degrees belong to a fixed residue class modulo g. Let N^0, \ldots, N^{g-1} be these summands. Then $e(N^k)$ is the dimension normed constant leading coefficient of the Hilbert quasipolynomial of N^k for each k, and $e(N) = \sum_k e(N^k)$.

A.7. The class group

A normal affine monoid M has a well-defined divisor class group. It is naturally isomorphic to the divisor class group of K[M] where K is a field (or any unique factorization domain); see [10, Section 4.F], and especially [10, Corollary 4.56]. The class group classifies the divisorial ideals up to isomorphism. It can be computed from the standard embedding that sends an element x of gp(M) to the vector $\sigma(x)$ where σ is the collection of support forms $\sigma_1, \ldots, \sigma_s$ of M: $Cl(M) = \mathbb{Z}^s/\sigma(gp(M))$. Finding this quotient amounts to an application of the Smith normal form to the matrix of σ .

A.8. Affine monoid algebras and their defining ideals

In addition to [10], the reader may want to consult De Loera, Hmmecke nd Köppe [21] and Sturmfels [35] for the discussion of Markov and Gröbner bases in our context.

As soon as one wants to understand affine monoids by generators and relations, the pure combinatorial treatment becomes cumbersome, since there are no exact sequences without coefficcients. (In monoid theory relations are given by congruences; see [10].) Therefore we start from a field K and a K-subalgebra K of a Laurent polsnomial ring $K[X_1^{\pm 1}, \ldots, X_n^{\pm 1}]$ that is generated by finitely many monomials K, ..., K, power products of indeterminates and their inverses. Often we identify the monomials with their exponent vectors, switching from multiplicative to additive notation and back. The exponent vectors generate an affine monoid, and the corresponding monomials are a K-basis of K.

To study A by its relations, one takes a polynomial ring $P = K[Y_1, \ldots, Y_m]$ and the surjective K-algebra homomorphism $\varphi: P \to A$ induced by the substitution $Y_i \mapsto M_i$. The kernel I of φ is the *defining ideal* of A (with respect to the generating system M_1, \ldots, M_m). It is generated by binomials $Y^{v^+} - Y^{v^-}$ where v^+ and v^- are vectors with m nonnegative integer entries, and for such a vector $v = (v_1, \ldots, v_m)$ we have set $Y^v = Y_1^{v_1} \cdots Y_m^{v_m}$. Since all variables Y_1, \ldots, Y_m are nonzerodivisors modulo I, we only need to consider binomials ssuch thatat most one entry v_i^+ and v_i^- is nonzero in computing I. So we restrict our use of the term "inomial" by assuming that both monmials in it do not have a common factor. This restriction has tremendous computational advantages: a binomial (in our restricted sense) can be represented by the difference vector $v^+ - v^-$.

Ideals like I are called toric ideals. Computing I means to find a Markov basis of I, i.e., a

binomial sysdtem of generators, and for efficiency we may want a minimal Markov basis. It is not unique in general, but at least its cardinality is unique if M_1, \ldots, M_m generate a positive affine monoid. The name "Markov basis" is motivated by applications in algebraic statistics. For certain computations, for example the Hilbert series, one even needs a Gröbner basis of I (unless A is normal).

Toric ideals are generalized by *lattice ideals J*; these are generated by binomials and have the property that no indeterminate is a zeroduvisor modulo J.

Markov and Gröbner bases of toric and lattice are combinatorial invariants. They are independent of the choice of the field *K*.

The computation of Markov bases (that in all algorithms we know is based on Gröbner bases) is often time consuming. Normaliz uses a reimplementation of the project-and-lift algorithm of Hemmecke and Malkin [28] for the computation of Markov bases, realized by them in 4ti2 [1]. The project-and-lift algorithm is also explained in [21].

A.9. Affine monoid algebras from binomial ideals

The typical starting point is an ideal $J \subset P = K[Y_1, \dots, Y_m]$ generated by binomials

$$Y^{v}-Y^{w}, \qquad v,w\in\mathbb{Z}_{+}^{n}.$$

In general the residue class ring P/J is not a monoid ring, let alone an affine monoid ring. To understand in which way J nevertheless defines an affine monoid algebra, we extend J to JQ where $Q = K[Y_1^{\pm 1}, \dots, Y_m^{\pm 1}]$ is the Laurent polynomial extension of P.

The term "'lattice ideal" needs an explanation. In Q the monomial Y^w is a unit, so that

$$Y^{\nu}/Y^{w}-1 \in JO \iff Y^{\nu}-Y^{w} \in JO \cap P.$$

The quotients Y^{ν}/Y^{w} generate a sublattice of the unit group of Q which can be identified with ZZ^{m} if one passes from a monomial to its exponent vector. The binomials Y^{ν}/Y^{w} for which $Y^{\nu}/Y^{w}-1 \in JQ$ form a sublattice L of the unit group. So the smallest lattice ideal containing J is $JQ \cap P$. Normaliz computes it from the input type lattice_ideal via the sublattice L of the unit group of the Laurent polynomial ring.

Let us now assume that J is a lattice ideal. Then P/J is a monoid ring, but not necessarily an affine monoid ring since \mathbb{Z}^m/L need not be torsionfree. In order to get an affine monoid ring, we must increase by the preimage of the torsion subgroup of \mathbb{Z}^m/L in \mathbb{Z}^m . In other words, L is replaced by its saturation \overline{L} in ZZ^m . Computing the smallest toric ideal T defined by our binomials means to find \overline{L} and the ideal in P generated by all binomials $X^v - X^w$ for which $v - w \in \overline{L}$.

A.10. Local properties of affine monoid algebras

B. Annotated console output

Somewhat outdated, but not much has changed in the shown computations since 3.2.0.

B.1. Primal mode

With

```
./normaliz -ch example/A443
```

we get the following terminal output.

Self explanatory so far (see Section 7.3 for the definition of roughness). Now the generators are inserted.

```
Start simplex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 22 25 26 27 28 31 34 37 38 39 40 43 46
```

Normaliz starts by searching linearly independent generators with indices as small as possible. They span the start simplex in the triangulation. The remaining generators are inserted successively. (If a generator does not increase the cone spanned by the previous ones, it is not listed, but this does not happen for A443.)

```
gen=17, 39 hyp, 4 simpl
```

We have now reached a cone with 39 support hyperplanes and the triangulation has 4 simplices so far. We omit some generators until something interesting happens:

```
gen=35, 667 hyp, 85 pyr, 13977 simpl
```

In view of the number of simplices in the triangulation and the number of support hyperplanes, Normaliz has decided to build pyramids and to store them for later triangulation.

```
gen=36, 723 hyp, 234 pyr, 14025 simpl
...
gen=48, 4948 hyp, 3541 pyr, 14856 simpl
```

All generators have been processed now. Fortunately our cone is pointed:

```
Pointed since graded
Select extreme rays via comparison ... done.
```

Normaliz knows two methods for finding the extreme rays. Instead of "comparison" you may see "rank". Now the stored pyramids must be triangulated. They may produce not only simplices, but also pyramids of higher level, and indeed they do so:

At this point the preset size of the evaluation buffer for simplices has been exceeded. Normaliz stops the processing of pyramids, and empties the buffer by evaluating the simplices.

This is a small computation, and the computation of pyramids goes level by level without the necessity to return to a lower level. But in larger examples the buffer for level n+1 may be filled before level n is finished. Then it becomes necessary to go back. Some simplices remaining in the buffer are now evaluated:

Since our generators form the Hilbert basis, we do not collect any further candidates. If all generators are in degree 1, we have only one denominator class in the Hilbert series, but otherwise there may be many. The collection of the Hilbert series in denominator classes reduces the computations of common denominators to a minimum.

```
Total number of pyramids = 14137, among them simplicial 2994
```

Some statistics of the pyramid decomposition.

```
transforming data... done.
```

Our computation is finished.

A typical pair of lines that you will see for other examples is

```
auto-reduce 539511 candidates, degrees <= 1 3 7 reducing 30 candidates by 73521 reducers
```

It tells you that Normaliz has found a list of 539511 new candidates for the Hilbert basis, and this list is reduced against itself (auto-reduce). Then the 30 old candidates are reduced against the 73521 survivors of the auto-reduction.

B.2. Dual mode

Now we give an example of a computation in dual mode. It is started by the command

```
./normaliz -cid example/5x5
```

The option i is used to suppress the HSOP in the input file. The console output:

Indeed, we have used only equations as the input.

The cone is cut out from the space of solutions of the system of equations (in this case) by successive intersections with halfspaces defined by the inequalities. After such an intersection we have the positive half space, the "neutral" hyperplane and the negative half space. The final sizes given are the numbers of Hilbert basis elements strictly in the positive half space, strictly in the negative half space, and in the hyperplane. This pattern is repeated until all hyperplanes have been used.

We leave out some hyperplanes ...

Sometimes reduction takes some time, and then Normaliz may issue a message on "autoreduction" organized by degree (chosen for the algorithm, not defined by the given grading). The line of dots is printed is the computation of new Hilbert basis candidates takes time, and Normaliz wants to show you that it is not sleeping. Normaliz shows you the number of positive and negative partners that must be pared produce offspring.

```
cut with halfspace 25 ...

Positive: 1856 Negative: 653 ...

auto-reduce 1899 candidates, degrees <= 19 39

Final sizes: Pos 1976 Neg 688 Neutral 2852
```

All hyperplanes have been taken care of.

```
Find extreme rays
Find relevant support hyperplanes
```

Well, in connection with the equations, some hyperplanes become superfluous. In the output file Normaliz will list a minimal set of support hyperplanes that together with the equations define the cone.

```
Hilbert basis 4828
```

The number of Hilbert basis elements computed is the sum of the last positive and neutral numbers.

```
Find degree 1 elements
```

The input file contains a grading.

```
transforming data... done.
```

Our example is finished.

The computation of the new Hilbert basis after the intersection with the new hyperplane proceeds in rounds, and there can be many rounds ... (not in the above example). Then you can see terminal output like

```
Round 100
Round 200
Round 300
Round 400
Round 500
```

C. Normaliz 2 input syntax

A Normaliz 2 input file contains a sequence of matrices. Comments or options are not allowed in it. A matrix has the format

```
<m>
<n>
<x_1>
...
<x_m>
<type>
```

where <m> denotes the number of rows, <n> is the number of columns and <x_1>\dots<x_n> are the rows with <n> entries each. All matrix types of Normaliz 3 are allowed (with Normaliz 3), also grading and dehomogenization. These vectors must be encoded as matrices with 1 row.

Note that algebraic polyhedra cannot be defined by input files in this format.

The optional output files with suffix cst are still in this format. Just create one and inspect it.

D. libnormaliz

The kernel of Normaliz is the C++ class library libnormaliz. It implements all the classes that are necessary for the computations. The central class is Cone. It realizes the communication with the calling program and starts the computations most of which are implemented in other classes. In the following we describe the class Cone; other classes of libnormaliz may follow in the future.

Of course, Normaliz itself is the prime example for the use of libnormaliz, but it is rather complicated because of the input and output it must handle. Therefore we have a added a simple example program at the end of this introduction.

libnormaliz defines its own name space. In the following we assume that

```
using namespace std;
using namespace libnormaliz;
```

have been declared. It is clear that opening these name spaces is dangerous. In this documentation we only do it to avoid constant repetition of std:: and libnormaliz::

D.1. The master header file

```
#include "libnormaliz/libnormaliz.h"
```

reads all installed header files of libnormaliz.

D.2. Optional packages and configuration

The file

```
#include "libnormaliz/lnmz_config.h"
```

is created and installed when Normaliz is built by the autotools scripts. It (un)defines the preprocessor variables that indicate the optional packages used in the build process. These are

```
ENFNORMALIZ NMZ_NAUTY NMZ_FLINT NMZ_COCOA
```

with obvious interpretations (ENFNORMALIZ stands for e-antic).

D.3. Integer type as a template parameter

A cone can be constructed for two integer types, long long and mpz_class. (Also long is possible, but we disregard it in the following, since one should make sure that the integer type has at least 64 bits.) It is reasonable to choose mpz_class since the main computations will then be tried with long long and restarted with mpz_class if long long cannot store the results. This internal change of integer type is not possible if the cone is constructed for long long. (Nevertheless, the linear algebra routines can use mpz_class locally if intermediate results exceed long long; have a look into matrix.cpp.)

Internally the template parameter is called Integer. In the following we assume that the integer type has been fixed as follows:

```
typedef mpz_class Integer;
```

The internal passage from mpz_class to long long can be suppressed by

```
MyCone.deactivateChangeOfPrecision();
```

where we assume that MyCone has been constructed as described in the next section.

D.3.1. Alternative integer types

It is possible to use libnormaliz with other integer types than mpz_class, long long, long or renf_elem_class but we have tested only these types.

If you want to use other types, you probably have to implement some conversion functions which you can find in integer.h and integer.cpp. Namely the functions

```
bool libnormaliz::try_convert(TypeA, TypeB);
// converts TypeB to TypeA, returns false if not possible
```

where one type is your type and the other is long, long long, mpz_class and nmz_float. Additionally, if your type uses infinite precision (for example, it is some wrapper for GMP), you must also implement

```
template<> inline bool libnormaliz::using_GMP<YourType>() { return true; }
```

D.3.2. Decimal fractions and floating point numbers

libnormaliz has a type nmz_float (presently set to double) that allows the construction of cones from floating point data. These are first converted into mpq_class by using the GMP constructor of mpq_class, and then denominators are cleared. (The input routine of Normaliz goes another way by reading the floating point input as decimal fractions.)

D.4. Construction of a cone

The construction requires the specification of input data consisting of one or more matrices and the input types they represent. In addition there is a constructor that takes a Normaliz input file.

The term "matrix" stands for

```
vector<vector<number> >
```

where predefined choices of number are long long, mpz_class, mpq_class and nmz_float (the latter representing double).

The available input types (from input_type.h) are defined as follows:

```
namespace Type {
enum InputType {
//
// homogeneous generators
```

```
//
polytope,
rees_algebra,
subspace,
cone,
cone_and_lattice,
lattice,
    saturation,
rational_lattice,
monoid,
//
// inhomogeneous generators
//
vertices,
offset,
rational_offset,
// homogeneous constraints
inequalities,
signs,
equations,
congruences,
excluded_faces,
// inhomogeneous constraints
//
inhom_equations,
inhom_inequalities,
strict_inequalities,
strict_signs,
inhom_congruences,
inhom_excluded_faces,
// linearforms
//
grading,
dehomogenization,
// lattice ideals and friends
//
lattice_ideal,
toric_ideal,
normal_toric_ideal,
// special
```

```
open_facets,
projection_coordinates,
// precomputed data
support_hyperplanes,
extreme_rays,
maximal_subspace,
generated_lattice,
hilbert_basis_rec_cone,
// deprecated
//
integral_closure,
normalization,
polyhedron,
. . .
};
} //end namespace Type
```

The input types are explained in Section 4. (There are further input types used for debugging and tests.) In certain environments it is not possible to use the enumeration. Therefore we provide a function that converts a string into the corresponding input type:

```
Type::InputType to_type(const string& type_string)
```

The types grading, dehomogenization, signs, strict_signs, offsetand open_facets must be encoded as matrices with a single row. We come back to this point below.

The simplest constructor has the syntax

```
Cone<Integer>::Cone(InputType input_type, const vector< vector<Integer> >& Input)
```

and can be used as in the following example:

```
vector<vector <Integer> > Data = ...
Type::InputType type = cone;
Cone<Integer> MyCone = Cone<Integer>(type, Data);
```

For two and three pairs of type and matrix there are the constructors

```
Cone<Integer>::Cone(InputType type1, const vector< vector<Integer> >& Input1,
InputType type2, const vector< vector<Integer> >& Input2)

Cone<Integer>::Cone(InputType type1, const vector< vector<Integer> >& Input1,
InputType type2, const vector< vector<Integer> >& Input2,
InputType type3, const vector< vector<Integer> >& Input3)
```

If you have to combine more than three matrices, you can define a

```
map <InputType, vector< vector<Integer> > >
```

and use the constructor with syntax

```
Cone<Integer>::Cone(const map< InputType,
vector< vector<Integer> > >& multi_input_data)
```

The four constructors also exist in a variant that uses the libnormaliz type Matrix<Integer> instead of vector< vector<Integer> > (see cone.h).

For the input of rational numbers we have all constructors also in variants that use mpq_class for the input matrix, for example

```
Cone<Integer>::Cone(InputType input_type, const vector< vector<mpq_class> >& Input)
```

etc.

Similarly, for the input of decimal fractions and floating point numbers we have all constructors also in variants that use nmz_float for the input matrix, for example

```
Cone<Integer>::Cone(InputType input_type, const vector< vector<nmz_float> >& Input)
```

etc.

Note that rational_lattice and rational_offset can only be used if the input data are given in class mpq_class or nmz_float.

For convenience we provide the function

```
vector<vector<T> > to_matrix<Integer>(vector<T> v)
```

in matrix.h. It returns a matrix whose first row is v. A typical example:

```
size_t dim = ...
vector<vector <Integer> > Data = ...
Type::InputType type = cone;
vector<Integer> total_degree(dim,1);
Type::InputType grad = grading;
Cone<Integer> MyCone = Cone<Integer>(type, Data,grad,to_matrix(total_degree));
```

There is a default constructor for cones,

```
Cone<Integer>::Cone()
```

D.4.1. Construction from an input file

One can construct a cone also from a Normaliz input file by

```
Cone<Integer>::Cone(const string project)
```

D.5. Setting and changing additional data

These data must be given to the cone before starting the computation if they are needed. The numerical parameters have default values, and the grading can be set when the cone is constructed.

D.5.1. Polynomials

The polynomial needed for integrals and weighted Ehrhart series must be passed to the cone after construction:

```
void Cone<Integer>::setPolynomial(string poly)
```

Like the grading it can be changed later on. Then the results depending on the previous polynomial will be deleted.

Similarly polynomial constraints can be set:

```
void Cone<Integer>::setPolynomialEquations(const vector<string>& poly_equs)
void Cone<Integer>::setPolynomialInequalities(const vector<string>& poly_inequs)
```

En bloc setting is also possible:

```
void Cone<Integer>::setPolyParams(const map<PolyParam::Param, vector<string>>& poly_params)
```

Have a look at cone.cpp. The single polynomial must be disguised as the only member of a vector.

D.5.2. Grading

If your computation needs a grading, you should include it into the construction of the cone. However, especially in interactive use via PyNormaliz or other interfaces, it can be useful to add the grading if it was forgotten or to change it later on. The following function allows this:

```
void Cone<Integer>::resetGrading(const vector<Integer>& grading)
```

Note that it deletes all previously computed results that depend on the grading.

D.5.3. Projection coordinates

Similarly to resetGrading we have

```
void Cone<Integer>::resetProjectionCoords(const vector<Integer>& lf)
```

The entries of 1f must be 0 or 1.

D.5.4. Numerical parameters

Some computations can be controlled by numerical parameters. They can be given to the cone en bloc or individually.

To set them individually, you can use the following functions:

```
void Cone<Integer>::setExpansionDegree(long degree)
void Cone<Integer>::setNrCoeffQuasiPol(long nr_coeff)
void Cone<Integer>::setFaceCodimBound(long bound)
void Cone<Integer>::setAutomCodimBoundVectors(long bound) // not yet used
void Cone<Integer>::setDecimalDigits(long digits)
void Cone<Integer>::setBlocksizeHollowTri(long block_size)
void Cone<Integer>::setGBDegreeBound(const long degree_bound)
void Cone<Integer>::setGBMinDegree(const long min_degree)
```

There common default value of degree is -1, signaling no expansion, all coefficients or no codimension bound etc. One can reset the values after a computation. Then they will delete the computation results that depend on them.

To set them en bloc you can use

```
void Cone<Integer>::setNumericalParams(const map <NumParam::Param, long >& num_params)
```

where NumParam::Param refers to

```
namespace NumParam {
enum Param {
expansion_degree,
nr_coeff_quasipol,
face_codim_bound,
autom_codim_bound_vectors, // not yet used
block_size_hollow_tri,
decimal_digits,
not_a_num_param
};
} //end namespace NumParam
```

(see libnormaliz/input_type.h).

D.6. Modifying a cone after construction

Within some boundaries it is possible to change an already constructed cone (and lattice). To this end one can use the functions

Similar to the cone constructor, it has variations for vector< vector<mpq_class> > and vector< vector<nmz_float> > for cones that are not of renf_elem_class. There are also versions with Matrix<...>.

The following input types are allowed (to be prefixed by Type::)

```
cone vertices subspace
equations inhom_equations inequalities inhom_inequalities
```

Modifying the current cone *C* by *additional* generators (first row) means to extend *C*. Modifying it by *additional* constraints (second row) restricts *C*.

It is allowed to issue several modifyCone(...) at any time, but there are some restrictions:

- (1) The inhomogeneous types are only allowed if the cone was constructed with inhomogeneous input.
- (2) Normaliz cannot fall back behind the coordinate transformation that has been reached at the time of additional input. This implies: (i) Additional generators must satisfy the equations valid at the time of addition. (They are automatically adapted to the congruences if there should be any.) (ii) Additional linear inequalities must vanish on the maximal subspace at the time of addition.
- (3) modifyCone cannot be used if the cone was created with rational_lattice or rational_offset.
- (4) Between two compute(...) several modifyCone are allowed. But they must be of the same category, either the types in the first line above (generators) or those in the second (constraints).

The last restriction are necessary to avoid ambiguities. If the cone constructor is used with generators and constraints simultaneously, then the *intersection* of the cones defined by the constraints on one side and the generators on the other side is computed. (The same applies to lattice data.) In contrast, the later addition of generators always leads to an *extension* of the existing cone. And: if both constraints and generators are added between two compute, should we first extend and then restrict, or the other way round? The two operations do not commute.

For flexibility both support hyperplanes and extrene rays are computed before the modification.

It may happen that a previously computed (or provided) grading gives a negative value on an added generator. In this case the grading is reset. In the inhomogeneous case, if the dehomogenization should give a negative value, a BadInputException is thrown.

D.7. Computations in a cone

Before starting a computation in a (previously constructed) cone, one must decide what should be computed and in which way it should be computed. The computation goals and algorithmic variants (see Section 5) are defined as follows (cone_property.h):

```
namespace ConeProperty {
enum Enum {
// matrix valued
START_ENUM_RANGE(FIRST_MATRIX),
ExtremeRays,
VerticesOfPolyhedron,
SupportHyperplanes,
HilbertBasis,
ModuleGenerators,
Deg1Elements,
LatticePoints,
ModuleGeneratorsOverOriginalMonoid,
ExcludedFaces,
OriginalMonoidGenerators,
MaximalSubspace,
Equations,
```

```
Congruences,
GroebnerBasis,
MarkovBasis,
Representations,
END_ENUM_RANGE(LAST_MATRIX),
START_ENUM_RANGE(FIRST_MATRIX_FLOAT),
SuppHypsFloat,
VerticesFloat,
ExtremeRaysFloat,
END_ENUM_RANGE(LAST_MATRIX_FLOAT),
// vector valued
START_ENUM_RANGE(FIRST_VECTOR),
Grading,
Dehomogenization,
WitnessNotIntegrallyClosed,
GeneratorOfInterior,
CoveringFace,
AxesScaling,
END_ENUM_RANGE(LAST_VECTOR),
// integer valued
START_ENUM_RANGE(FIRST_INTEGER),
TriangulationDetSum,
ReesPrimaryMultiplicity,
GradingDenom,
UnitGroupIndex,
InternalIndex,
END_ENUM_RANGE(LAST_INTEGER),
START_ENUM_RANGE(FIRST_GMP_INTEGER),
ExternalIndex = FIRST_GMP_INTEGER,
END_ENUM_RANGE(LAST_GMP_INTEGER),
// rational valued
START_ENUM_RANGE(FIRST_RATIONAL),
Multiplicity,
Volume,
Integral,
VirtualMultiplicity,
END_ENUM_RANGE(LAST_RATIONAL),
// field valued
START_ENUM_RANGE(FIRST_FIELD_ELEM),
RenfVolume,
```

```
END_ENUM_RANGE(LAST_FIELD_ELEM),
// floating point valued
START_ENUM_RANGE(FIRST_FLOAT),
EuclideanVolume,
EuclideanIntegral,
END_ENUM_RANGE(LAST_FLOAT),
// dimensions and cardinalities
START_ENUM_RANGE(FIRST_MACHINE_INTEGER),
TriangulationSize,
NumberLatticePoints,
RecessionRank,
AffineDim,
ModuleRank,
Rank,
EmbeddingDim,
CodimSingularLocus,
END_ENUM_RANGE(LAST_MACHINE_INTEGER),
// boolean valued
START_ENUM_RANGE(FIRST_BOOLEAN),
IsPointed,
IsDeg1ExtremeRays,
IsDeg1HilbertBasis,
IsIntegrallyClosed,
IsSerreR1,
IsLatticeIdealToric,
IsReesPrimary,
IsInhomogeneous,
IsGorenstein,
IsEmptySemiOpen,
//
// checking properties of already computed data
// (cannot be used as a computation goal)
IsTriangulationNested,
IsTriangulationPartial,
END_ENUM_RANGE(LAST_BOOLEAN),
// complex structures
START_ENUM_RANGE(FIRST_COMPLEX_STRUCTURE),
Triangulation,
UnimodularTriangulation,
LatticePointTriangulation,
AllGeneratorsTriangulation,
```

```
PlacingTriangulation,
PullingTriangulation,
StanleyDec,
InclusionExclusionData,
IntegerHull,
ProjectCone,
ConeDecomposition,
Automorphisms,
AmbientAutomorphisms,
Combinatorial Automorphisms,
RationalAutomorphisms,
EuclideanAutomorphisms,
InputAutomorphisms,
HilbertSeries,
HilbertQuasiPolynomial,
EhrhartSeries,
EhrhartQuasiPolynomial,
WeightedEhrhartSeries,
WeightedEhrhartQuasiPolynomial,
//
FaceLattice,
FVector.
Incidence,
DualFVector,
DualIncidence,
SingularLocus,
//
Sublattice,
ClassGroup,
END_ENUM_RANGE(LAST_COMPLEX_STRUCTURE),
//
// integer type for computations
START_ENUM_RANGE(FIRST_PROPERTY),
BigInt,
//
// algorithmic variants
//
DefaultMode,
Approximate,
BottomDecomposition,
NoBottomDec,
```

```
DualMode,
PrimalMode,
Projection,
ProjectionFloat,
NoProjection,
Symmetrize,
NoSymmetrization,
NoSubdivision,
NoNestedTri, // synonym for NoSubdivision
KeepOrder,
HSOP,
NoPeriodBound,
NoLLL,
NoRelax,
Descent,
NoDescent,
NoGradingDenom,
GradingIsPositive,
ExploitAutomsVectors, // not yet implemented
ExploitIsosMult,
StrictIsoTypeCheck,
SignedDec,
NoSignedDec,
FixedPrecision,
//
Dynamic,
Static,
    //
WritePreComp,
// Gröbner Basis
Lex,
RevLex,
DegLex,
// ONLY FOR INTERNAL CONTROL
//
END_ENUM_RANGE(LAST_PROPERTY),
EnumSize // this has to be the last entry, to get the number of entries in the en↓m
}; // remember to change also the string conversion function if you change this enum
}
```

The class ConeProperties is based on this enumeration. Its instantiations are essentially boolean vectors that can be accessed via the names in the enumeration. Instantiations of the class are used to set computation goals and algorithmic variants and to check whether the goals have been reached. The distinction between computation goals and algorithmic variants is not completely strict. See Section 5

for implications between some ConeProperties.

There exist versions of compute for up to 3 cone properties:

An example:

```
MyCone.compute(ConeProperty::HilbertBasis, ConeProperty::Multiplicity)
```

If you want to specify more than 3 cone properties, you can define an instance of ConeProperties yourself and call

```
ConeProperties Cone<Integer>::compute(ConeProperties ToCompute)
```

An example:

```
ConeProperties Wanted;
Wanted.set(ConeProperty::Triangulation, ConeProperty::HilbertBasis);
MyCone.compute(Wanted);
```

All get... functions that are listed in the next section, try to compute the data asked for if they have not yet been computed. Unless you are interested a single result, we recommend to use compute since the data asked for can then be computed in a single run. For example, if the Hilbert basis and the multiplicity are wanted, then it would be a bad idea to call getHilbertBasis and getMultiplicity consecutively. More importantly, however, there is no choice of an algorithmic variant if you use get... without compute beforehand.

It is possible that a computation goal is unreachable. If this can be recognized from the input, a BadInputException will be thrown. If it cannot be recognized from the input, and DefaultMode is not set, then compute() will throw a NotComputableException so that compute() cannot return a value. In the presence of DefaultMode, the returned ConeProperties are those that have not been computed.

Please inspect cone_property.cpp for the full list of methods implemented in the class ConeProperties. Here we only mention the constructors

```
ConeProperties::ConeProperties(ConeProperty::Enum p1)

ConeProperties::ConeProperties(ConeProperty::Enum p1, ConeProperty::Enum p2)

ConeProperties::ConeProperties(ConeProperty::Enum p1, ConeProperty::Enum p2,

ConeProperty::Enum p3)
```

and the functions

```
ConeProperties& ConeProperties::set(ConeProperty::Enum p1, bool value)
```

```
ConeProperties& ConeProperties::set(ConeProperty::Enum p1, ConeProperty::Enum p2)
bool ConeProperties::test(ConeProperty::Enum Property) const
```

A string can be converted to a cone property and conversely:

```
ConeProperty::Enum toConeProperty(const string&)
const string& toString(ConeProperty::Enum)
```

You can return the whole collection of reached computation goals via

```
const ConeProperties& Cone<Integer>::getIsComputed() const
```

D.8. Retrieving results

As remarked above, all get... functions that are listed below, try to compute the data asked for if they have not yet been computed. As also remarked above, it is often better to use compute first.

The functions that return a matrix encoded as vector<vector<number> > have variants that return a matrix encoded in the libnormaliz class Matrix<number>. These are not listed below; see cone.h.

Note that there are now functions that return results by type so that interfaces need not implement all the functions in this section. See D.8.27.

D.8.1. Checking computations

In order to check whether a computation goal has been reached, one can use

```
bool Cone<Integer>::isComputed(ConeProperty::Enum prop) const
```

for example

```
bool done=MyCone.isComputed(ConeProperty::HilbertBasis)
```

D.8.2. Rank, index and dimension

```
size_t Cone<Integer>::getEmbeddingDim()
size_t Cone<Integer>::getRank()
Integer Cone<Integer>::getInternalIndex()
Integer Cone<Integer>::getUnitGroupIndex()

size_t Cone<Integer>::getRecessionRank()
long Cone<Integer>::getAffineDim()
size_t Cone<Integer>::getModuleRank()
```

The *internal* index is only defined if original generators are defined. See Section D.8.16 for the external index.

The last three functions return values that are only well-defined after inhomogeneous computations.

D.8.3. Support hyperplanes and constraints

```
const vector< vector<Integer> >& Cone<Integer>::getSupportHyperplanes()
size_t Cone<Integer>::getNrSupportHyperplanes()
```

The first function returns the support hyperplanes of the (homogenized) cone. The second function returns the number of support hyperplanes. Similarly we have

```
const vector< vector<Integer> >& Cone<Integer>::getEquations()
size_t Cone<Integer>::getNrEquations()
const vector< vector<Integer> >& Cone<Integer>::getCongruences()
size_t Cone<Integer>::getNrCongruences()
```

Support hyperplanes can be returned in floating point format:

```
const vector< vector<nmz_float> >& Cone<Integer>::getSuppHypsFloat()
size_t Cone<Integer>::getNrSuppHypsFloat()
```

For these functions there also exist Matrixversions.

D.8.4. Extreme rays and vertices

```
const vector< vector<Integer> >& Cone<Integer>::getExtremeRays()
size_t Cone<Integer>::getNrExtremeRays()
const vector< vector<Integer> >& Cone<Integer>::getVerticesOfPolyhedron()
size_t Cone<Integer>::getNrVerticesOfPolyhedron()
```

In the inhomogeneous case the first function returns the extreme rays of the recession cone, and the second the vertices of the polyhedron. (Together they form the extreme rays of the homogenized cone.)

Vertices and extreme rays can be returned in floating point format:

```
const vector< vector<nmz_float> >& Cone<Integer>::getVerticesFloat()
const vector< vector<nmz_float> >& Cone<Integer>::getExtremeRaysFloat()
size_t Cone<Integer>::getNrVerticesFloat()
```

D.8.5. Generators

```
const vector< vector<Integer> >& Cone<Integer>::getOriginalMonoidGenerators()
size_t Cone<Integer>::getNrOriginalMonoidGenerators()
```

Note that original generators are not always defined. The system of generators of the cone that is used in the computations and its cardinality are returned by

```
const vector< vector<Integer> >& Cone<Integer>::getGenerators()
size_t Cone<Integer>::getNrGenerators()
```

D.8.6. Lattice points in polytopes and elements of degree 1

```
const vector< vector<Integer> >& Cone<Integer>::getDeg1Elements()
size_t Cone<Integer>::getNrDeg1Elements()
```

These functions apply to the homogeneous case. getNrDeg1Elements() returns the number of degree 1 elements if these have been computed and storedl, and if the degree 1 elements are not available, it forces their computation and storage, even if the number of these elements should be known from other computations.

In the inhomogeneous case replace Deg1Elements by ModuleGenerators; see below. (They are also computable in the unbounded case.) A uniform access is possible by

```
const vector< vector<Integer> >& Cone<Integer>::getLatticePoints()
size_t Cone<Integer>::getNrLatticePoints()
```

In addition, we have

```
size_t Cone<Integer>::getNumberLatticePoints()
```

There is an important difference between getNrLatticePoints() and getNumberLatticePoints(): the latter returns the number whenever it is known for some reason. If the number is not known, it forces only the counting of lattice points, not their storage.

D.8.7. Hilbert basis

In the nonpointed case we need the maximal linear subspace of the cone:

```
const vector< vector<Integer> >& Cone<Integer>::getMaximalSubspace()
size_t Cone<Integer>::getDimMaximalSubspace()
```

One of the prime results of Normaliz and its cardinality are returned by

```
const vector< vector<Integer> >& Cone<Integer>::getHilbertBasis()
size_t Cone<Integer>::getNrHilbertBasis()
```

Inhomogeneous case the functions refer to the Hilbert basis of the recession cone. The module generators of the lattice points in the polyhedron are accessed by

```
const vector< vector<Integer> >& Cone<Integer>::getModuleGenerators()
size_t Cone<Integer>::getNrModuleGenerators()
```

If the original monoid is not integrally closed, you can ask for a witness:

```
vector<Integer> Cone<Integer>::getWitnessNotIntegrallyClosed()
```

D.8.8. Module generators over original monoid

```
size_t Cone<Integer>::getNrModuleGeneratorsOverOriginalMonoid()
```

D.8.9. Generator of the interior

If the monoid is Gorenstein, Normaliz computes the generator of the interior (the canonical module):

```
const vector<Integer>& Cone<Integer>::getGeneratorOfInterior()
```

Before asking for this vector, one should test isGorenstein().

D.8.10. Grading and dehomogenization

```
vector<Integer> Cone<Integer>::getGrading()
Integer Cone<Integer>::getGradingDenom()
```

The second function returns the denominator of the grading.

```
vector<Integer> Cone<Integer>::getDehomogenization()
```

D.8.11. Enumerative data

```
mpq_class Cone<Integer>::getMultiplicity()
```

Don't forget that the multiplicity is measured for a rational, not necessarily integral polytope. Therefore it need not be an integer. The same applies to

```
mpq_class Cone<Integer>::getVolume()
nmz_float Cone<Integer>::getEuclideanVolume()
```

which can be computed for polytopes defined by homogeneous or inhomogeneous input. In the homogeneous case the volume is the multiplicity.

The Hilbert and Ehrhart series are stored in instances class HilbertSeries. They are retrieved by

```
const HilbertSeries& Cone<Integer>::getHilbertSeries()
const HilbertSeries& Cone<Integer>::getEhrhartSeries()
```

They contain several data fields that can be accessed as follows (see hilbert_series.h):

```
const vector<mpz_class>& HilbertSeries::getNum() const;
const map<long, denom_t>& HilbertSeries::getDenom() const;

const vector<mpz_class>& HilbertSeries::getCyclotomicNum() const;
const map<long, denom_t>& HilbertSeries::getCyclotomicDenom() const;

const vector<mpz_class>& HilbertSeries::getHSOPNum() const;
const map<long, denom_t>& HilbertSeries::getHSOPDenom() const;
```

```
long HilbertSeries::getDegreeAsRationalFunction() const;
long HilbertSeries::getShift() const;

bool HilbertSeries::isHilbertQuasiPolynomialComputed() const;
const vector< vector<mpz_class> >& HilbertSeries::getHilbertQuasiPolynomial() const;
long HilbertSeries::getPeriod() const;
mpz_class HilbertSeries::getHilbertQuasiPolynomialDenom() const;

vector<mpz_class> HilbertSeries::getExpansion() const;
```

The first six functions refer to three representations of the Hilbert series as a rational function in the variable t: the first has a denominator that is a product of polynomials $(1-t^g)^e$, the second has a denominator that is a product of cyclotomic polynomials. In the third case the denominator is determined by the degrees of a homogeneous system of parameters (see Section 2.5). In all cases the numerators are given by their coefficient vectors, and the denominators are lists of pairs (g, e) where in the second case g is the order of the cyclotomic polynomial.

If you have already computed the Hilbert series without HSOP and you want it with HSOP afterwards, the Hilbert series will simply be transformed, but Normaliz must compute the degrees for the denominator, and this may be a nontrivial computation.

The degree as a rational function is of course independent of the chosen representation, but may be negative, as well as the shift that indicates with which power of *t* the numerator tarts. Since the denominator has a nonzero constant term in all cases, this is exactly the smallest degree in which the Hilbert function has a nonzero value.

The Hilbert quasipolynomial is represented by a vector whose length is the period and whose entries are itself vectors that represent the coefficients of the individual polynomials corresponding to the residue classes modulo the period. These integers must be divided by the common denominator that is returned by the last function.

For the input type rees_algebra we provide

```
Integer Cone<Integer>::getReesPrimaryMultiplicity()
```

D.8.12. Weighted Ehrhart series and integrals

The weighted Ehrhart series can be accessed by

```
const pair<HilbertSeries, mpz_class>& Cone<Integer>::getWeightedEhrhartSeries()
```

The second component of the pair is the denominator of the coefficients in the series numerator. Its introduction was necessary since we wanted to keep integral coefficients for the numerator of a Hilbert series. The numerator and the denominator of the first component of type HilbertSeries can be accessed as usual, but one *must not forget the denominator of the numerator coefficients*, the second component of the return value. There is a second way to access these data; see below.

The virtual multiplicity and the integral, respectively, are got by

```
mpq_class Cone<Integer>::getVirtualMultiplicity()
mpq_class Cone<Integer>::getIntegral()
```

```
nmz_float Cone<Integer>::getEuclideanIntegral()
```

Actually the cone saves these data in a special container of class IntegrationData (defined in Hilbert_series.h). It is accessed by

```
const IntegrationData& Cone<Integer>::getIntData()
```

The three get functions above are only shortcuts for the access via getIntData():

```
string IntegrationData::getPolynomial() const
long IntegrationData::getDegreeOfPolynomial() const
bool IntegrationData::isPolynomialHomogeneous() const

const vector<mpz_class>& IntegrationData::getNum_ZZ() const
mpz_class IntegrationData::getNumeratorCommonDenom() const
const map<long, denom_t>& IntegrationData::getDenom() const

const vector<mpz_class>& IntegrationData::getCyclotomicNum_ZZ() const
const map<long, denom_t>& IntegrationData::getCyclotomicDenom() const

bool IntegrationData::isWeightedEhrhartQuasiPolynomialComputed() const
void IntegrationData::computeWeightedEhrhartQuasiPolynomial()
const vector< vector<mpz_class> >& IntegrationData::getWeightedEhrhartQuasiPolynomialDenom() const

vector<mpz_class IntegrationData::getWeightedEhrhartQuasiPolynomialDenom() const

mpq_class IntegrationData::getVirtualMultiplicity() const
mpq_class IntegrationData::getIntegral() const</pre>
```

The first three functions refer to the polynomial defining the integral or weighted Ehrhart series. The function getNumeratorCommonDenom() returns the integer by which the coefficients of the numerator of the series must be divided.

The computation of these data is controlled by the corresponding ConeProperty. The expansion is always computed on-the-fly. Its values must be divided by the same number as the coefficients of the numerator.

D.8.13. Triangulation and disjoint decomposition

The last triangulation that has been explicitly computed is returned by

If no triangulation has been computed yet, the basic triangulation is returned.

The Matrix<Integer> contains (a superset of) the vectors that generate the simplicial cones in the triangulation. The simplicial cones are represented by the <vector<SHORTSIMPLEX<Integer> >:

The key specifies the generators of the simplicial cone by their row indices in the matrix (counted from 0). The component vol is the (absolute value) of their determinant, and Excluded is only set if ConeDecomposition was asked for.

For the refined triangulations one uses

In which the parameter specifies the type of triangulation that is to be computed:

```
ConeProperty::Triangulation
ConeProperty::AllGeneratorsTriangulation
ConeProperty::LatticePointTriangulation
ConeProperty::UnimodularTriangulation
```

where the first choice returns the basic triangulation.

has the same effect as getTriangulation(ConeProperty::Triangulation), except that the components Excluded are definitely set.

Additional information on the possibly nested and /or partial triangulation that has been used for the computation in primal ode can be retrieved by

```
size_t Cone<Integer>::getTriangulationSize()
Integer Cone<Integer>::getTriangulationDetSum()
```

D.8.14. Stanley decomposition

The Stanley decomposition is stored in a list whose entries correspond to the simplicial cones in the triangulation:

```
const pair<list<STANLEYDATA<Integer> >, Matrix<Integer> > & Cone<Integer>::getStanleyDec()
```

The Matrix<Integer has the same meaning as for triangulations. STANLEYDATA defined as follows:

```
struct STANLEYDATA {
```

```
vector<key_t> key;
Matrix<Integer> offsets;
};
```

The key has the same interpretation as for the triangulation, namely as the vector of indices of the generators of the simplicial cone (counted from 0). The matrix contains the coordinate vectors of the offsets of the components of the decomposition that belong to the simplicial cone defined by the key. See Section 7.16 for the interpretation. The format of the matrix can be accessed by the following functions of class Matrix<Integer>:

```
size_t nr_of_rows() const
size_t nr_of_columns() const
```

The entries are accessed in the same way as those of vector<vector<Integer> >.

D.8.15. Scaling of axes

If rational_lattice or rational_offset are in the input for the cone, then the vector giving scaling of axes can be retrieved by

```
vector<Integer> Cone<Integer>::getAxesScaling()
```

The cone property AxesScaling cannot be used as a computation goal, but one can ask for its computation as usual.

D.8.16. Coordinate transformation

The coordinate transformation from the ambient lattice to the sublattice generated by the Hilbert basis (whether it has been computed or not) can be returned as follows:

```
const Sublattice_Representation<Integer>& Cone<Integer>::getSublattice()
```

For algebraic polyhedra it defines the subspace generated by the (homogenized) cone.

An object of type Sublattice_Representation models a sequence of \mathbb{Z} -homomorphisms

$$\mathbb{Z}^r \xrightarrow{\varphi} \mathbb{Z}^n \xrightarrow{\pi} \mathbb{Z}^r$$

with the following property: there exists $c \in \mathbb{Z}$, $c \neq 0$, such that $\pi \circ \varphi = c \cdot \mathrm{id}_{\mathbb{Z}^r}$. In particular φ is injective. One should view the two maps as a pair of coordinate transformations: φ is determined by a choice of basis in the sublattice $U = \varphi(\mathbb{Z}^r)$, and it allows us to transfer vectors from $U \cong \mathbb{Z}^r$ to the ambient lattice \mathbb{Z}^n . The map π is used to realize vectors from U as linear combinations of the given basis of $U \cong \mathbb{Z}^r$: after the application of π one divides by c. (If U is a direct summand of \mathbb{Z}^n , one can choose c = 1, and conversely.) Normaliz considers vectors as rows of matrices. Therefore φ is given as an $r \times n$ -matrix and π is given as an $n \times r$ matrix.

The data just described can be accessed as follows (sublattice_representation.h). For space reasons we omit the class specification Sublattice_Representation<Integer>::

```
const vector<vector<Integer> >& getEmbedding() const
const vector<vector<Integer> >& getProjection() const
```

```
Integer getAnnihilator() const
```

Here "Embedding" refers to φ and "Projection" to π (though π is not always surjective). The "Annihilator" is the number c above. (It annihilates \mathbb{Z}^r modulo $\pi(\mathbb{Z}^n)$.)

The numbers n and r are accessed in this order by

```
size_t getDim() const
size_t getRank() const
```

The external index, namely the order of the torsion subgroup of \mathbb{Z}^n/U , is returned by

```
mpz_class getExternalIndex() const
```

Very often φ and ψ are identity maps, and this property can be tested by

```
bool IsIdentity() const
```

The constraints computed by Normaliz are "hidden" in the sublattice representation. They van be accessed by

```
const vector<vector<Integer> >& getEquations() const
const vector<vector<Integer> >& getCongruences() const
```

But see Section D.8.3 above for a more direct access.

D.8.17. Coordinate transformations for precomputed data

For precomputed data we need Type::generated_lattice and Type::maximal_subspace, should they be nontrivial. The maximal subspace is retrieved by

```
getMaximalSubspace()
```

mentioned already in Section D.8.7. The generated lattice (subspace in the algebraic case) is accessed by

```
getSublattice().getEmbedding()
```

introduced in Section D.8.16.

D.8.18. Automorphism groups

The automorphism group is accessed by

```
const AutomorphismGroup<Integer>& Cone<Integer>::getAutomorphismGroup();
```

independently of the type of the automorphism group (see below). Only one type of automorphism group can be computed in a run of compute(...) and this type is stored.

Contrary to other get functions, getAutomorphismGroup() does not trigger a computation since it is unclear what quality of automorphisms is asked for. If no automorphism group has been computed, a BadInputException is thrown.

Additionally we have

in which the quality can be specified. If the automorphism group has already been computed with a different quality, then it is recomputed.

If the automorphism group has been computed by those options that use extreme rays and support hyperplanes, i.e., all except AmbientAutomorphisms and InputAutomorphisms, then the action of the group is recorded in

```
mpz_class getOrder() const;
const vector<vector<key_t> >& getVerticesPerms() const
const vector<vector<key_t> > getExtremeRaysPerms() const
const vector<vector<key_t> > getSupportHyperplanesPrms() const

const vector<vector<key_t> > getVerticesOrbits() const
const vector<vector<key_t> > geExtremeRaystOrbits() const
const vector<vector<key_t> > geExtremeRaystOrbits() const
const vector<vector<key_t> > getSupportHyperplanesOrbits() const
```

AQII these functions and the following ones belong to the class AutomorphismGroup<Integer>.

"Perms" is a shorthand for "permutations", and each generator of the automorphism group is represented by the permutation of the extreme rays that it induces. In the permutations, objects are counted from 0. The reference order of the vectors is the same as in the output files. The entry [i][j] is the index of the object to which the j-th object is mapped by the i-th generator of the automorphism group.

The orbits are listed one by one: each vector<key_t> contains the indices that form an orbit, and the collection of orbits is given by the outer vector.

The action of AmbientAutomorphisms and InputAutomorphisms is documented in

```
const vector<vector<key_t> >& getGensPerms() const;
const vector<vector<key_t> >& getGensOrbits() const;
const vector<vector<key_t> >& getLinFormsPerms() const;
const vector<vector<key_t> >& getLinFormsOrbits() const;
```

where the 'Gens' are the input vectors representing generators of the primal cone or inequalities, given by linear forms generating the dual cone. "LinForms" are defined only for AmbientAutomorphisms, and they represent the coordinate linear forms. The generators from which the group has been computed are returned by

```
const Matrix<Integer>& getGens() const;
```

The qualities of the automorphisms is returned by

```
set<AutomParam::Quality> getQualities() const;
```

and the qualities are given by

```
namespace AutomParam {
enum Quality {
```

```
combinatorial,
rational,
integral,
euclidean,
ambient_gen,
ambient_ineq,
input_gen,
input_ineq,
algebraic,
graded // not used at present
};
...
```

Input and ambient automorphisms appear twice since Normaliz records what type of input is used for the computation, and this information is shown in the output files.

Another access is given by

```
string getQualitiesString()
```

and

```
string quality_to_string(AutomParam::Quality quality)
```

does a single conversion.

Moreover, you can ask

```
bool IsIntegralityChecked() const;
bool IsIntegral() const;
```

If you are interested in cycle decompositions, you can use

```
vector<vector<key_t> > cycle_decomposition(vector<key_t> perm, bool with_fixed_points)
```

where with_fixed_points decides whether cycles of length 1 are produced.

D.8.19. Class group

```
vector<Integer> Cone<Integer>::getClassGroup()
```

The return value is to be interpreted as follows: The entry for index 0 is the rank of the class group. The remaining entries contain the orders of the summands in a direct sum decomposition of the torsion subgroup.

D.8.20. Face lattice and f-vector

```
vector<size_t> Cone<Integer>::getFVector()
const map<dynamic_bitset,int>& Cone<Integer>::getFaceLattice()
```

Each element of the set represents a face F: the int is its codimension, and the vector
sents the facets containing F: v[i] = 1, if and only if the facet given by the i-th row of getSupportHyperplanes () contains F. (See Section 7.17.)

The incidence matrix can be accessed by

```
const vector<dynamic_bitset>& Cone<Integer>::getIncidence()
```

These functions have dual versions:

```
vector<size_t> Cone<Integer>::getDualFVector()
const map<dynamic_bitset,int>& Cone<Integer>::getDualFaceLattice()
const vector<dynamic_bitset>& Cone<Integer>::getDualIncidence()
```

D.8.21. Local properties

They are properties of localizations. So far we have

```
const map<dynamic_bitset, int>& Cone<Integer>::getSingularLocus()
size_t Cone<Integer>::getCodimSingularLocus()
bool Cone<Integer>::isSerreR1()
```

D.8.22. Markov abd Grobner bases, representations

```
const vector<vector<Integer> >& Cone<Integer>::getMarkovBasis()
const vector<vector<Integer> >& Cone<Integer>::getGroebnerBasis()
const vector<vector<Integer> >& Cone<Integer>::getRepresentations()
```

For all three there are also the usual variants with Matrix and Nr. Note that they reurn only those binomials for Markov and Gröbner bases that satisfy the degree bounds set by gb_degree_bound and gb_min_degree.

D.8.23. Integer hull

For the computation of the integer hull an auxiliary cone is constructed. A reference to it is returned by

```
Cone<Integer>& Cone<Integer>::getIntegerHullCone() const
```

For example, the support hyperplanes of the integer hull can be accessed by

```
MyCone.getIntegerHullCone().getSupportHyperplanes()
```

D.8.24. Projection of the cone

Like the integer hull, the image of the projection is contained in an auxiliary cone that can be accessed by

```
Cone<Integer>& Cone<Integer>::getProjectCone() const
```

It contains constraints and extreme rays of the projection.

D.8.25. Excluded faces

Before using the excluded faces Normaliz makes the collection irredundant by discarding those that are contained in others. The irredundant collection (given by hyperplanes that intersect the cone in the faces) and its cardinality are returned by

```
const vector< vector<Integer> >& Cone<Integer>::getExcludedFaces()
size_t Cone<Integer>::getNrExcludedFaces()
```

For the computation of the Hilbert series the all intersections of the excluded faces are computed, and for each resulting face the weight with which it must be counted is computed. These data can be accessed by

```
const vector< pair<vector<key_t>,long> >& Cone<Integer>::getInclusionExclusionData()
```

The first component of each pair contains the indices of the generators (counted from 0) that lie in the face and the second component is the weight.

The emptiness of semiopen polyhedra can be tested by

```
bool Cone<Integer>::isEmptySemiOpen()
```

If the answer is positive, an excluded face making the semiopen polyhedron empty is returned by

```
vector<Integer> Cone<Integer>::getCoveringFace()
```

D.8.26. Boolean valued results

All the "questions" to the cone that can be asked by the boolean valued functions in this section start a computation if the answer is not yet known.

The first, the question

```
bool Cone<Integer>::isIntegrallyClosed()
```

does not trigger a computation of the full Hilbert basis. The computation stops as soon as the answer can be given, and this is the case when an element in the integral closure has been found that is not in the original monoid. Such an element is retrieved by

```
vector<Integer> Cone<Integer>::getWitnessNotIntegrallyClosed()
```

As discussed in Section 7.13.3 it can sometimes be useful to ask

```
bool Cone<Integer>::isPointed()
```

before a more complex computation is started.

The Gorenstein property can be tested with

```
bool Cone<Integer>::isGorenstein()
```

If the answer is positive, Normaliz computes the generator of the interior of the monoid. Also see D.8.9.

The next two functions answer the question whether the Hilbert basis or at least the extreme rays live in degree 1.

```
bool Cone<Integer>::isDeg1ExtremeRays()
bool Cone<Integer>::isDeg1HilbertBasis()
```

Finally we have

```
bool Cone<Integer>::isInhomogeneous()
bool Cone<Integer>::isReesPrimary()
```

isReesPrimary() checks whether the ideal defining the Rees algebra is primary to the irrelevant maximal ideal.

D.8.27. Results by type

It is also possible to access (and compute if necessary) the output data of Normaliz by functions that only depend on the C++ type of the data:

```
const Matrix<Integer>& getMatrixConePropertyMatrix(ConeProperty::Enum property);
const vector< vector<Integer> >& getMatrixConeProperty(ConeProperty::Enum property);
const Matrix<nmz_float>& getFloatMatrixConePropertyMatrix(ConeProperty::Enum property);
const vector< vector<nmz_float> >& getFloatMatrixConeProperty(ConeProperty::Enum property);
vector<Integer> getVectorConeProperty(ConeProperty::Enum property);
Integer getIntegerConeProperty(ConeProperty::Enum property);
mpz_class getGMPIntegerConeProperty(ConeProperty::Enum property);
mpq_class getRationalConeProperty(ConeProperty::Enum property);
renf_elem_class getFieldElemConeProperty(ConeProperty::Enum property);
size_t getMachineIntegerConeProperty(ConeProperty::Enum property);
bool getBooleanConeProperty(ConeProperty::Enum property);
```

For example, getMatrixConeProperty(ConeProperty::HilbertBasis) will return the Hilbert basis as a const vector< vector<Integer> >&.

These functions make it easier to write interfaces to Normaliz since they need not to introduce new functions for results that have one of the types listed above.

It is clear that the complex results can only be accessed via their specialized "get" functions.

D.9. Algebraic polyhedra

Cones over algebraic number fields are constructed by

```
Cone<renf_elem_class>(...)
```

where ... stands for all the variants that have been discussed in Section D.4, except that all matrices must be of type vector<vector<renf_elem_class> > or Matrix<renf_elem_class>. Cone<renf_elem_class>(...) is predefined in libnormaliz.

Note that not all integer, rational or float input types are allowed; see Section 8.

After the construction of the cone you must use

```
void Cone<renf_elem_class>::setRenf(renf_class* renf)
```

It is necessary to forward the information about the number field to derived cones. In the other direction:

```
renf_class* Cone<renf_elem_class>::getRenf()
```

Since version 1.0.0 the renf_class* is administrated through a std::shared_ptr<const renf_class>. It is returned by

```
const std::shared_ptr<const renf_class> Cone<Integer>::getRenfSharedPtr()
```

One can retrieve the minimal polynomial and the embedding by

```
vector<string> Cone<renf_elem_class>::getRenfData()
```

The name of the field generator is returned by

```
string Cone<renf_elem_class>::getRenfGenerator()
```

The computation follows the same rules that have been explained above, again with some restriction of the computation goals that can be reached. Again see Section 8.

In return values Integer must be specialized to renf_elem_class. A special return value is the volume that in general is no longer of type mpq_class. It is retrieved by

```
renf_elem_class Cone<renf_elem_class>::getRenfVolume()
```

The number field must be defined outside of libnormaliz. Have a look at source/normaliz.cpp and source/input.in to see the details.

The integer hull cone is of type libnormaliz::Cone<renf_elem_class>.

Remark: In the code, the template Integer does no longer stand for a truly integer type, but also for renf_elem_class, and thus for elements from a field.

D.10. Reusing previous computation results

To some extent it is possible to exploit the results of a previous computation after the modification of a cone (see Section D.6). This is controlled by

```
ConeProperty::Dynamic
ConeProperty::Static
```

where Dynamic activates this feature and Static deactivates it.

At present only results of previous convex hull computations or vertex enumerations can be reused. Restrictions:

- (1) The coordinate transformation that had been reached before the previous computation must have remained unchanged. Note that a change may have happened as a consequence the previous computation. For example, the addition of inequalities can reduce the dimension.
- (2) If a convex hull computation simultaneously creates a triangulation, then it must start from scratch.

An example for the use of ConeProperty::Dynamic is given in source/dynamic/dynamic.cpp. It is compiled automatically by the autotools scripts, and can also be compiled in source by make -f Makefile.classic dynamic.

D.11. Control of execution

D.11.1. Exceptions

All exceptions that are thrown in libnormaliz are derived from the abstract class NormalizException that itself is derived from std::exception:

```
class NormalizException: public std::exception
```

The following exceptions must be caught by the calling program:

```
class ArithmeticException: public NormalizException
class BadInputException: public NormalizException
class NotComputableException: public NormalizException
class FatalException: public NormalizException
class NmzCoCoAException: public NormalizException
class InterruptException: public NormalizException
```

The ArithmeticException leaves libnormaliz if a nonrecoverable overflow occurs (it is also used internally for the change of integer type). This should not happen for cones of integer type mpz_class, unless it is caused by the attempt to create a data structure of illegal size or by a bug in the program. The BadInputException is thrown whenever the input is inconsistent; the reasons for this are manifold. The NotComputableException is thrown if a computation goal cannot be reached. The FatalException should never appear. It covers error situations that can only be caused by a bug in the program. At many places libnormaliz has assert verifications built in that serve the same purpose.

There are two more exceptions for the communication within libnormaliz that should not leave it:

```
class NonpointedException: public NormalizException
class NotIntegrallyClosedException: public NormalizException
```

The InterruptException is discussed in the next section.

D.11.2. Interruption

In order to find out if the user wants to interrupt the program, the functions in libnormaliz test the value of the global variable

```
volatile sig_atomic_t nmz_interrupted
```

If it is found to be true, an InterruptException is thrown. This interrupt leaves libnormaliz, so that the calling program can process it. The Cone still exists, and the data computed in it can still be accessed. Moreover, compute can again be applied to it.

The calling program must take care to catch the signal caused by Ctrl-C and to set nmz_interrupted=1.

D.11.3. Inner parallelization

By default the cone constructor sets the maximal number of parallel threads to 8, unless the system has set a lower limit. You can change this value by

```
long set_thread_limit(long t)
```

The function returns the previous value.

 $set_thread_limit(0)$ raises the limit set by libnormaliz to ∞ .

D.11.4. Outer parallelization

The libnormaliz functions can be called by programs that are parallelized via OpenMP themselves. The functions in libnormaliz switch off nested parallelization.

As a test program you can compile and run outerpar in source/outerpar. Compile it by For the compilation of maxsimplex.cpp use

```
make -f Makefile.classic outerpar
```

in source.

D.11.5. Control of terminal output

By using

```
bool setVerboseDefault(bool v)
```

one can control the verbose output of libnormaliz. The default value is false. This is a global setting that effects all cones constructed afterwards. However, for every cone one can set an individual value of verbose by

```
bool Cone<Integer>::setVerbose(bool v)
```

Both functions return the previous value. In order to setVerbose for a cone, it must have already beren constructed, and during construction the global verbose determines terminalk output. The construction phase does some precomputations, and they may issue some inwanted terminal output. In order to suppress it, one can use

```
void suppressNextConstructorVerbose()
```

It sets the value of verbose to false for the next cone constructed.

The default values of verbose output and error output are std::cout and std::cerr. These values can be changed by

```
void setVerboseOutput(std::ostream&)
void setErrorOutput(std::ostream&)
```

D.11.6. Printing the cone

The function

```
void Cone<Integer>::write_cone_output(const string& output_file)
```

writes the standard out file using the content of output_file instead of the standard <project>. It is meant as a tool for debugging libraries. It is not possible to write any file with a suffix different from out.

We also have

```
void Cone<Integer>::write_precomp_for_input(const string& output_file)
```

D.12. A simple program

The example program is a simplified version of the program on which the experiments for the paper "Quantum jumps of normal polytopes" by W. Bruns, J. Gubeladze and M. Michałek, Discrete Comput. Geom. 56 (2016), no. 1, 181–215, are based. Its goal is to find a maximal normal lattice polytope P in the following sense: there is no normal lattice polytope $Q \supset P$ that has exactly one more lattice point than P. "Normal" means in this context that the Hilbert basis of the cone over P is given by the lattice points of P, considered as degree 1 elements in the cone.

The program generates normal lattice simplices and checks them for maximality. The dimension is set in the program, as well as the bound for the random coordinates of the vertices.

Let us have a look at source/maxsimplex/maxsimplex.cpp. First the more or less standard preamble:

```
#include <cstdlib>
#include <vector>
#include <fstream>
#include <omp.h>
using namespace std;

#include "libnormaliz/libnormaliz.h"
```

Since we want to perform a high speed experiment which is not expected to be arithmetically demanding, we choose 64 bit integers:

```
typedef long long Integer;
```

The first routine finds a random normal simplex of dimension dim. The coordinates of the vertices are integers between 0 and bound. We are optimistic that such a simplex can be found, and this is indeed

no problem in dimension 4 or 5.

```
Cone<Integer> rand_simplex(size_t dim, long bound){
    vector<vector<Integer> > vertices(dim+1, vector<Integer> (dim));
    while(true){ // an eternal loop ...
        for(size_t i=0;i<=dim;++i){</pre>
            for(size_t j=0;j<dim;++j)</pre>
                vertices[i][j]=rand()%(bound+1);
        }
        Cone<Integer> Simplex(Type::polytope,vertices);
        // we must check the rank and normality
        if(Simplex.getRank()==dim+1 && Simplex.isDeg1HilbertBasis())
            return Simplex;
    }
    vector<vector<Integer> > dummy_gen(1,vector<Integer>(1,1));
    // to make the compiler happy
    return Cone<Integer>(Type::cone,dummy_gen);
}
```

We are looking for a normal polytope $Q \supset P$ with exactly one more lattice point. The potential extra lattice points z are contained in the matrix j ump_cands. There are two obstructions for Q = conv(P, z) to be tested: (i) z is the only extra lattice point and (ii) Q is normal. It makes sense to test them in this order since most of the time condition (i) is already violated and it is much faster to test.

In order to make the (final) list of candidates z as above we must compute the widths of P over its support hyperplanes.

```
vector<Integer> lattice_widths(Cone<Integer>& Polytope){
   if(!Polytope.isDeg1ExtremeRays()){
```

```
cerr<< "Cone in lattice_widths is not defined by lattice polytope"<< endl;
    exit(1);
}
vector<Integer> widths(Polytope.getNrExtremeRays(),0);
for(size_t i=0;i<Polytope.getNrSupportHyperplanes();++i){
    for(size_t j=0;j<Polytope.getNrExtremeRays();++j){
        // v_scalar_product is a useful function from vector_operations.h
        Integer test=v_scalar_product(Polytope.getSupportHyperplanes()[i],
        Polytope.getExtremeRays()[j]);
        if(test>widths[i])
            widths[i]=test;
    }
}
return widths;
```

Since the computations are rather small, we suppress parallelization (except for one step below).

Maximality is tested in 3 steps. Most often there exists a lattice point z of height 1 over P. If so, then conv(P,z) contains only z as an extra lattice point and it is automatically normal. In order to find such a point we must move the support hyperplanes outward by lattice distance 1.

```
vector<vector<Integer> > supp_hyps_moved=Candidate.getSupportHyperplanes();
```

Among the polytopes that have survived the height 1 test, most nevertheless have suitable points z close to them, and it makes sense not to use the maximum possible height immediately. Note that we must now test normality explicitly.

Now we can be optimistic that a maximal polytope P has been found, and we test all candidates z that satisfy the maximum possible bound on their lattice distance to P.

The computation may become arithmetically critical at this point. Therefore we use mpz_class for our cone. The conversion to and from mpz_class is done by routines contained in convert.h.

```
vector<vector<mpz_class> > mpz_supp_hyps;
convert(mpz_supp_hyps,supp_hyps_moved);
vector<mpz_class> mpz_grading=convertTo<vector<mpz_class> >(grading);
```

The computation may need some time now. Therefore we allow a little bit of parallelization.

Since P doesn't have many vertices (even if we use these routines for more general polytopes than simplices), we don't expect too many vertices for the enlarged polytope. In this situation it makes sense to set the algorithmic variant Approximate.

Success!

```
cout << "Maximal simplex found" << endl;
cout << "Vertices" << endl;
Candidate.getExtremeRaysMatrix().pretty_print(cout); // a goody from matrix.h
cout << "Number of lattice points = " << Candidate.getNrDeg1Elements();
cout << " Multiplicity = " << Candidate.getMultiplicity() << endl;
} // end while
} // end main</pre>
```

For the compilation of maxsimplex.cpp use

```
make -f Makefile.classic maxsimplex
```

in source. Running the program needs a little bit of patience. However, within a few hours a maximal simplex should have emerged. From a log file:

```
simplex 143000
No ht 1 jump #latt 9
Testing 22 jump candidates
No ht 1 jump #latt 10
Testing 30 jump candidates
No ht 1 jump #latt 29
Testing 39 jump candidates
No ht <= 1+dim jump
Testing 173339 jump candidates
Maximal simplex found
Vertices
1 3 5 3 1
2 3 0 3 1
3 0 5 5 1
5 2 2 1 1
6 5 6 2 1
Number of lattice points = 29 Multiplicity = 275
```

E. Normaliz interactive: PyNormaliz

PyNormaliz serves three purposes:

- It is the bridge from Normaliz to SageMath.
- It provides an interactive access to Normaliz from a Python command line.
- It is a flexible environment for the exploration of Normaliz.

In the following we describe the use of PyNormaliz from a Python command line and document the basic functions that allow the access from SageMath.

For a brief introduction please consult the PyNormaliz tutorial at https://nbviewer.jupyter.org/github/Normaliz/PyNormaliz/blob/main/doc/PyNormaliz_Tutorial.ipynb.

You can also open the tutorial for PyNormaliz interactively on https://mybinder.org following the link https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master.

E.1. Installation

The PyNormaliz install script assumes that you have executed the

```
install_normaliz_with_eantic.sh
```

script. (It is however possible to install PyNormaliz with fewer optional packages.) In the following we assume that PyNormaliz resides in the subdirectory PyNormaliz of the Normaliz directory. This automatically the case if you have downloaded a Normaliz source package. If you have obtained Normaliz or PyNormaliz in another way, make sure that our assumption is satisfied.

To install PyNormaliz navigate to the Normaliz directory and type

```
./install_pynormaliz.sh --user
```

The script detects your Python3 version, assuming the executable is in the PATH. Note that the installation stores the produced files in ~/.local.

If you want to install PyNormaliz system wide, replace --user by --sudo. Then you will be asked for your root password. The following additional options are available for install_pynormaliz.sh:

- --python3 <path>: Path to a python3 executable.
- --prefix <path>: Path to the Normaliz install path

Depending on your setup, you might be able to install PyNormaliz via pip, typing

```
pip3 install PyNormaliz
```

at a command prompt.

The installation requires the setuptools. If you are missing them install them with pip3.

E.2. The high level interface by examples

PyNormaliz has a high level interface which allows a very intuitive use. We load PyNormaliz:

```
winfried@ryzen:~$ python3
Python 3.6.9 (default, Oct 8 2020, 12:12:24)
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import PyNormaliz
>>> from PyNormaliz import *
```

E.2.1. Creating a cone

The only available class in PyNormaliz is Cone. As often in this manual, "cone" includes a lattice of reference, unless we are working in an algebraic number field. We come back to this case below. First we have to create a cone (and a lattice). We can use all input types that are allowed in Normaliz input files. They must be given as named parameters as in the following example:

```
>>> C = Cone(cone = [[1,3],[2,1]])
```

This is the example from Section 2.3. There can be several input matrices. The example shows us how Normaliz matrices are represented as Python types: each row is a list, and the matrix then is a list whose members are the lists representing the rows. Important: This encoding matches exactly the formatted matrices in Normaliz input files.

It is possible to use (decimal) fractions in the input, but they must be encoded as strings. Our cone from above could be defined by

```
>>> C = Cone(cone = [[1,"3.0"],[1,"1/2"]])
```

This creates a Cone<mpz_class> on the Normaliz side. One can also create a Cone<long long> by

```
>>> C = Cone(cone = [[1,"3.0"],[1,"1/2"]], CreateAsLongLong = True)
```

In the following Cone (with a capital C) is a class defined in PyNormaliz.py. An instance of this class contains an NmzCone which is the Python equivalent of a Cone<Integer> defined on the Normaliz side. The NmzCone in the Cone C, is referred to by C.cone. This is only important when one wants to access the low level interface.

One can create a cone from a Normaliz input file as follows:

```
C = Cone(file = "example/small")
```

It will read the file small.in in the directory example /relative to the current directory. CreateAsLongLong = True can be used.

For polynomial constraints one uses commands like

```
PolyEq = ["x[1] -x[2]^2", "x[2]*x[3] - 27"]
C.SetPolynomialEquations(PolyEQ)
```

The argument of SetPolynomialEquations is a list of strings in which each component represents a polynomial expression. See Sections 4.1.8 and 4.9. The equations are always of type f(x) = 0. Similarly, inequalities defined by

```
C.SetPolynomialInequalities(PolyEQ)
```

are vinterpreted as $f(x) \ge 0$.

Selected input types:

- Homogeneous generators: polytope, subspace, cone, cone_and_lattice, lattice monoid
- Inhomogeneous generators: vertices
- Homogeneous constraints: inequalities, signs, equations, congruences
- Inhomogeneous constraints: inhom_equations, inhom_inequalities, inhom_congruences
- Linear forms: grading, dehomogenization
- Lattice ideals and friends: lattice_ideal, toric_ideal, normal_toric_ideal

For explanantions and other input types se the Normaliz manual. The input type constraints can't be used in PyNormaliz. Also shortcuts like nonnegative or total_degree are not available.

E.2.2. Matrices, vectors and numbers

The matrix format of the input is of course also used in PyNormaliz results:

```
>>> C.HilbertBasis()
[[1, 1], [1, 2], [1, 3], [2, 1]]
```

PyNormaliz contains some functions that help reading complicated output. For matrices we can use

```
>>> print_matrix(C.HilbertBasis())
1 1
1 2
1 3
2 1
```

Similarly

```
>>> print_matrix(C.SupportHyperplanes())
-1  2
3 -1
```

Since our input defines an original monoid, we can ask for the module generators over it:

```
>>> print_matrix(C.ModuleGeneratorsOverOriginalMonoid())
0 0
1 1
1 2
2 2
2 3
```

Binomials are retrieved in the same way:

```
>>> print_matrix(C.MarkovBasis())
-1 2 -1 0
-3 1 0 1
```

```
-2 -1 11
```

In this connection note that you can set upper and lower bounds for the degrees in the output of Markov and Gröbner bases:

```
C.SetGBDegreeBound(3)
C.SetGBMinDegree(2)
```

If you want to set a monomial order for the Gröbner basis, you must use the Compute function:

```
C.Compute("GroebnerBasis", "Lex")
C.GroebnerBasis()
```

Some numerical invariants:

```
>>> C.Rank()
2
>>> C.EmbeddingDim()
2
>>> C.ExternalIndex()
1
>>> C.InternalIndex()
5
```

If we want to know whether a certain cone property has already been computed, we can ask for it:

```
>>> C.IsComputed("HilbertBasis")
True
```

The essential point is that this query does *not* force the computation if the property has not yet been computed. There are several more computation goals that come as matrices, vectors or numbers. We list all of them:

- Matrices: ExtremeRays, VerticesOfPolyhedron, SupportHyperplanes, HilbertBasis, ModuleGenerators, Deg1Elements, LatticePoints, ModuleGeneratorsOverOriginalMonoid, ExcludedFaces, OriginalMonoidGenerators, MaximalSubspace, Equations, Congruences, GroebnerBasis, Representations
- Matrices with floating point entries: ExtremeRaysFloat, SuppHypsFloat, VerticesFloat
- Vectors: Grading, Dehomogenization, WitnessNotIntegrallyClosed, GeneratorOfInterior, CoveringFace, AxesScaling
- Numbers: TriangulationSize, NumberLatticePoints, RecessionRank, AffineDim, ModuleRank, Rank, EmbeddingDim, ExternalIndex, TriangulationDetSum, GradingDenom, UnitGroupIndex, InternalIndex,

The numbers have several different representations on the Normaliz side. In Python they are all (long) integers.

E.2.3. Triangulations, automorphisms and face lattice

Some of the raw output is complicated:

```
>>> U = C.UnimodularTriangulation()
>>> U
[[[[1, 2], 1, []], [[2, 3], 1, []], [[0, 3], 1, []]], [[1, 3], [2, 1], [1, 1], [1, 2]]]
```

Taking a close look, we see two members of the outermost list. The second is an ordinary matrix, namely the matrix of the rays of the triangulation:

```
>>> print_matrix(U[1])
1 3
2 1
1 1
1 2
```

The first member is not a matrix, but close enough so that we can use print_matrix:

```
>>> print_matrix(U[0])
[1, 2] 1 []
[2, 3] 1 []
[0, 3] 1 []
```

In each line we find the information on a simplicial cone, first the list of the rays by their indices relative to the matrix of rays (counting rows from 0). The next is the determinant relative to a lattice basis (in our case the unit vectors). In a unimodular triangulation these determinants must of course be 1. The third component is the list of excluded faces if we have computed a disjoint decomposition. This is explained in Section 7.14.2.

To see an even more complicated data structure we ask for the combinatorial automorphisms:

```
>>> G = C.CombinatorialAutomorphisms()
>>> G
[2, Faase, False, [[[1, 0]], [[0, 1]]], [[], []], [[[1, 0]], [[0, 1]]]]
```

There are 6 components on the outermost level. The first is the order of the group. The second amswers the question whether the integrality of the automorphisms has been checked. The answer is always "no" for compinatorial automorphisms, and therefore the third give the answer "no" to the question whether the automorphisms are integral.

The next three contain information on the

- extreme rays of the (recession) cone,
- the vertices of the polyhedron,
- he support hyperplane

in this order. In each of them we find

- the action of the group generators on the respective vectors,
- their orbits under the group.

In our case there are no vertices of the polyhedron (only defined for inhomogeneous input). This explains the empty list. Fortunately we can print the complicated result nicely with an explanation:

```
>>> print_automs(G)
order 2
```

```
permutations of extreme rays of (recession) cone

0 : [1, 0]
orbits of extreme rays of (recession) cone

0 : [0, 1]
permutations of support hyperplanes

0 : [1, 0]
orbits of support hyperplanes

0 : [0, 1]
```

It makes sense to have a look at Section 7.22. (Here we count from 0.)

AmbientAutomorphisms and InputAutomorphisms yield a slightly different result. The permutations and orbits in the third element of the outer list now refer to the input vectors. The fourth element gives data for thempty set, as does the fifth for InputAutomorphisms . For AmbientAutomorphisms it lists the permutation and oprbits of the coordinates of the ambient lattice. All this is followed by the input vectors for reference. A simple example:

```
>>> C = Cone(cone = [[0,1],[1,0]])
>>> C.AmbientAutomorphisms()
[2, True, True, [[[1, 0]], [[0, 1]]], [[], []], [[[1, 0]], [[0, 1]]], [[0, 1], [1, 0]]]
>>> print_automs(C.AmbientAutomorphisms())
order 2
automorphisms are integral
permutations of input vectors
0:[1,0]
orbits of input vectors
0:[0,1]
permutations of coordinates
0: [1, 0]
orbits of coordinates
0:[0,1]
input vectors
0 1
1 0
```

Of course, we also want to know the face lattice:

```
>>> C.FaceLattice()
[[[0, 0], 0], [[1, 0], 1], [[0, 1], 1], [[1, 1], 2]]
```

Hard to read. Much better:

```
>>> print_matrix(C.FaceLattice())
[0, 0] 0
[1, 0] 1
[0, 1] 1
[1, 1] 2
```

So there are four faces. The list contains the support hyperplanes that meet in the face and the number is the codimension. The support hyperplanes are given by their row indices relative to the matrix of

support hyperplanes. Also see Section 7.17. The f-vector:

```
>>> C.FVector()
[1, 2, 1]
```

If you want to limit the codimension of the faces computed with FaceLattice or FVector, set the bound by

```
>>> SetFaceCodimBound(1)
```

Try it and ask for FaceLattice once more. If you want to get rid of a previously set bound:

```
>>> SetFaceCodimBound()
```

or take -1 as the argument.

We also have a printer for the Stanley decomposition:

```
>>> print_Stanley_dec(C.StanleyDec())
```

Try it.

The cone properties that fall into the categories discussed in this section are: Triangulation, UnimodularTriangulation, LatticePointTriangulation, AllGeneratorsTriangulation, PlacingTriangulation, PullingTriangulation, StanleyDec, InclusionExclusionData, Automorphisms, CombinatorialAutomorphisms, RationalAutomorphisms, EuclideanAutomorphisms, AmbientAutomorphisms, InputAutomorphisms, FaceLattice, DualFaceLattice, FVector, DualFVector, Incidence, DualIncidence.

E.2.4. Hilbert and other series

Now we turn to the Hilbert series.

```
>>> C.HilbertSeries()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/winfried/../PyNormaliz.py", line 403, in inner
return self._generic_getter(name, **kwargs)
File "/home/winfried/.../PyNormaliz.py", line 393, in _generic_getter
PyNormaliz_cpp.NmzCompute(self.cone, input_list)
PyNormaliz_cpp.NormalizError: Could not compute:
No grading specified and cannot find one. Cannot compute some requested properties!
```

Indeed, we forgot the grading. We could have added it at the time of construction

```
>>> C = Cone(cone = [[1,3],[2,1]], grading = [[1,2]])
```

where it must be given as a matrix with a single row. Or we can add it later:

```
>>> C.SetGrading([1,2])
```

(A similar function is SetProjectionCoords.) We check the grading:

```
>>> C.Grading()
```

```
[[1, 2], 1]
```

The number 1 following the vector is the grading denominator.

Now:

```
>>> C.HilbertSeries()
[[1, -1, 0, 1, 0, 0, 0, 1, 0, -1, ..., 0, 0, 0, 0, 1, -1, 1], [1, 28], 0]
```

For space reasons we have omitted some components in the first list, the numerator of the Hilbert series. The second gives the denominator, and the last is the shift. Much nicer:

Options can be added as named parameters:

This representation is much more natural in this case. Perhaps we want so see the Hilbert quasipolynomial:

```
>>> print_quasipol(C.HilbertQuasiPolynomial())
28 5
-5 5
...
10 5
5 5
divide all coefficients by 28
```

In this case it seems better to print the polynomials as vectors of coefficients.

If the quasipolynomial has a large period and high degree, you may want to restrict the information to only a few coefficients from the top:

```
SetNrCoeffQuasiPol(bound)
```

The bound -1 or SetNrCoeffQuasiPol() mean "all", in case you want to get rid of the previously set bound.

Normaliz can compute the values of the coefficients of the Hilbert series for you:

```
>>> C.HilbertSeriesExpansion(10)
[1, 0, 0, 1, 1, 1, 2, 2, 1, 2]
```

For the weighted Ehrhart series we need a polynomial. Let's add it (can also be done in the constructor with polynomial = <string>):

```
>>> C.SetPolynomial("x[1]+x[2]")
```

True

Then

```
print_series(C.WeightedEhrhartSeries())
```

We don't show the result because it is too long for this manual.

The cone properties of this section: HilbertSeries, HilbertQuasiPolynomial, EhrhartSeries, EhrhartQuasiPolynomial, WeightedEhrhartSeries, WeightedEhrhartQuasiPolynomial

E.2.5. Multiplicity, volume and integral

The first time we see a fraction printed as such:

```
>>> C.Multiplicity()
'5/28'
```

Since Python has no built-in type for fractions, we print it as a string.

```
>>> C.EuclideanVolume()
'0.3993'
```

The decimal fractions is rounded to 4 decimals. If you need more precision, you can directly use the low level interface:

```
>>> NmzResult(C.cone,"EuclideanVolume")
0.39929785312496247
```

By default, the low level interface returns raw values. We use it once more:

```
>>> NmzResult(C.cone,"EuclideanIntegral")
0.2638217958147073
```

We have integrated our polynomial from above. In case we have forgotten it:

```
>>> C.Polynomial()
'x[1]+x[2]'
```

For computations with fixed precision one can specify the number of decimal digits:

```
>>> C.setDecimalDigits(50)
```

This function is hardly necessary, since the default value of 100 is almost always satisfactory.

The cone properties of this section: Multiplicity, Volume, Integral, VirtualMultiplicity, EuclideanVolume, EuclideanIntegral, ReesPrimaryMultiplicity

E.2.6. Integer hull and other cones as values

Let us define a nonintegral polytope (we vary the format of the numbers on purpose):

```
>>> R = Cone(vertices = [["-3/2", '7/5',1], [9,-15,4], ["7.0",8,3]])
>>> R.VerticesOfPolyhedron()
[[-15, 14, 10], [7, 8, 3], [9, -15, 4]]
```

The last component of each vector acts as the denominator of the first two, and we recognize the fractions in the input. Numerical invariants available with inhomogeneous input:

```
>>> R.AffineDim()
2
>>> R.RecessionRank()
0
>>> R.LatticePoints()
[[-1, 1, 1], [0, 0, 1], [0, 1, 1], [1, -2, 1], ... [2, -1, 1], [2, 0, 1], [2, 1, 1], [2, 2, 1]]
>>> H = R.IntegerHull()
>>> H
<Normaliz Cone>
```

So we have computed a new cone, the cone over the polytope (in this case) spanned by the lattice points in the polytope with rational vertices [[-15, 14, 10], [7, 8, 3], [9, -15, 4]].

```
>>> H.VerticesOfPolyhedron()
[[-1, 1, 1], [1, -2, 1], [1, 2, 1], [2, -3, 1], [2, 2, 1]]
```

The last component is 1 as it must be for lattice points of the polytope.

```
>>> print_matrix(H.SupportHyperplanes())
-1 0 2
0 -1 2
1 -2 3
1 1 1
3 2 1
```

The other computations that return a cone are ProjectCone and SymmetrizedCone.

E.2.7. Boolean values

We ask our cone C many questions:

```
>>> C.IsGorenstein()
False
>>> C.IsDeg1HilbertBasis()
False
>>> C.IsDeg1ExtremeRays()
False
>>> C.IsPointed()
True
>>> C.IsInhomogeneous()
False
```

```
>>> C.IsEmptySemiOpen()
...
PyNormaliz_cpp.NormalizError: ...: IsEmptySemiOpen can only be computed with excluded faces
>>> C.IsIntegrallyClosed()
False
>>>
>>> C.IsReesPrimary()
...
PyNormaliz_cpp.NormalizError: Could not compute: IsReesPrimary !
```

E.2.8. Algebraic polyhedra

For an algebraic polyhedron we must define the real embedded number field over which the polyhedron is living. This information is given in the cone constructor:

```
>>> A = Cone(number_field=[ "a^2-2", "a", "1.4+/-0.1" ],
             vertices = [["1/2a", "13/3",1], ["-3a^1",-6,2], [-6, "-1/2a-7",1]])
>>> print_matrix(A.VerticesOfPolyhedron())
    -6 -1/2*a-7 1
-3/2*a
            -3 1
1/2*a
           13/3 1
>>> print_matrix(A.VerticesFloat())
-6.0000 -7.7071 1.0000
-2.1213 -3.0000 1.0000
0.7071 4.3333 1.0000
>>> A.RenfVolume()
'-19*a+42'
>>> A.EuclideanVolume()
7.5650
>>> print_matrix(A.LatticePoints())
-5 -6 1
. . .
-1 11
0 3 1
>>> A.NumberFieldData()
('a^2 - 2', '[1.414213562373095048801688724209698078569671875376948073176679738 +∤- 3.57e-64]')
>>> A.GetFieldGeneratorName()
'a'
```

The only point to notice is RenfVolume that we must use instead of Volume here. The number field data show you to what precision $\sqrt{2}$ had to be computed to make all decisions about positivity for our little polytope.

E.2.9. The collective compute command and algorithmic variants

So far we have asked Normaliz for a single cone property. It is also possible to bundle several computation goals and options in a single compute command:

```
>>> C.Compute("HilbertBasis", "HilbertSeries", "ClassGroup", "DualMode")
True
>>> C.IsComputed("ClassGroup")
True
>>> C.ClassGroup()
[0, 5]
```

which means that the class group is isomorphic to $\mathbb{Z}/(5)$. The first number 0 indicates that the class group has rank 0.

The collective compute command not only allows you to sset several computation goals simultaneously. It allows you to specify algorithmic variants, like DulaMode. There is a whole collection of variants explained elsewhere in this manual:

DefaultMode, Approximate, BottomDecomposition, NoBottomDec, DualMode,
PrimalMode, Projection, ProjectionFloat, NoProjection, Symmetrize, NoSymmetrization,
NoSubdivision, NoNestedTri, KeepOrder, HSOP, NoPeriodBound, NoLLL, NoRelax, Descent, NoDescent,
NoGradingDenom, GradingIsPositive, ExploitAutomsVectors (not yet implemented), ExploitIsosMult,
StrictIsoTypeCheck, SignedDec, NoSignedDec, FixedPrecision

E.2.10. Miscellaneous functions

In order to get some information about what is going on in Normaliz, we can switch on the terminal output:

```
>>> C = Cone(cone = [[1,3],[2,1]], grading = [[1,2]])
>>> C.SetVerbose()
False
>>> C.HilbertBasis(DualMode = True)
Computing support hyperplanes for the dual mode:
*******************
starting full cone computation
Generators sorted lexicographically
Starting primal algorithm (only support hyperplanes) ...
Start simplex 1 2
Pointed since graded
Select extreme rays via comparison ... done.
_____
transforming data... done.
*********************
computing Hilbert basis ...
cut with halfspace 1 ...
Final sizes: Pos 1 Neg 1 Neutral 0
```

```
cut with halfspace 2 ...

Final sizes: Pos 3 Neg 3 Neutral 1

Hilbert basis 4

Find degree 1 elements

transforming data... done.

[[1, 1], [2, 1], [1, 2], [1, 3]]
```

The return value of SetVerbose is the *old value* of *verbose*. We had to redefine C to get of the already computed Hilbert basis. The very last line is our Hilbert basis.

If we want to see all data computed for C, call

```
>>> C.print_properties()
ExtremeRays:
                                      NumberLatticePoints:
[[2, 1], [1, 3]]
SupportHyperplanes:
                                      Rank:
[[-1, 2], [3, -1]]
HilbertBasis:
                                      EmbeddingDim:
[[1, 1], [2, 1], [1, 2], [1, 3]]
Deg1Elements:
                                      IsPointed:
                                      True
[]
OriginalMonoidGenerators:
                                      IsDeg1ExtremeRays:
[[1, 3], [2, 1]]
                                      False
MaximalSubspace:
                                      IsDeg1HilbertBasis:
[]
                                      False
Grading:
                                      IsIntegrallyClosed:
[[1, 2], 1]
                                      False
GradingDenom:
                                      IsInhomogeneous:
                                      False
UnitGroupIndex:
                                      Sublattice:
                                      [[[1, 0], [0, 1]], [[1, 0], [0, 1]], 1]
InternalIndex:
```

Typeset in two columns. The last property we see is Sublattice. It consists of two matrices and a number. See Section D.8.16 for the interpretation.

Finally, we can write a Normaliz output file:

```
>>> C.WriteOutputFile("Wonderful")
True
```

Now you should find a file Wonderful.out in the current directory.

One can also write a file for the inout of precomputed data:

```
>>> C.WritePrecompData("Wonderful")
True
```

It creates the file Wonderful.precomp.in.

E.3. The low level interface

The low level interface is contained in NormalizModule.cpp. Its functions are listed in PyNormaliz_cppMethods[]. They allow the construction of an NmzCone (accompanied by a lattice), the computation in it, and give access to the computation results. The use of the low level interface is indirectly explained by the examples above. Therefore we keep the discussion short.

E.3.1. The main functions

For the construction one uses

```
NmzCone(**kwargs)
```

The keyword arguments kwargs transport Normaliz input types and the corresponding matrices in Python format. In addition we must use number_field for algebraic polyhedra. You can use polynomial for computations with a polynomial weight. (There is also an extra function for setting the polynomial; see below.) You can also ask for a Cone<long long> by adding CreateAsLongLong = True.

Once and for all: in the functions listed in the following that apply to a specific NmzCone, this NmzCone must be the first argument in *args.

Computations are started by

```
NmzCompute(*args)
```

The arguments list the computation goals and options as strings.

Access to the computation results is given by

```
NmzResult(*args, **kwargs)
```

There must be exactly two positional arguments. The first is the NmzCone, the second names the result to be returned, given as a string.

The *kwargs specify handlers, routines that format the raw results of output types that are not existent in Python or should be formatted for another reason. The potential handlers:

RatHandler defines the formatting of fractions.

FloatHandler defines the formatting of floating point numbers.

NumberfieldElementHandler defines the formatting of number field elements.

VectorHandler defines the formatting of vectors.

MatrixHandler defines the formatting of matrices.

The default handler for vectors and matrices is list, and there is not be much point in changing it. If you don't like lists, you can set VectorHandler=tuple, for example. But especially RatHandler and NumberfieldElementHandler are very useful since the raw versions are difficult to read. Examples of handlers can be found in PyNormaliz.py.

Note: When NmzResult is called, its first action is to reset the handlers to the raw format. Then the kwargs are evaluated. In other words: the values of the handlers are only applied to the current result, and not to future ones.

In the same way as the data access functions of Normaliz, NmzResult triggers the computation of the required result if it should not have been computed yet. Whether a result has been computed yet can be

checked by

```
NmzIsComputed(*args)
```

The second argument of exactly 2 is the result whose computation is to be checked, given as a string.

E.3.2. Additional input and modification of existing cones

These functions allow the input of data that cannot be passed through the cone constructor or modify a cone after construction. For example:

```
NmzSetGrading(cone, grading)
```

The grading is a vector encoded as a Python list. Similarly

```
NmzSetProjectionCoords(cone, coordinates)
```

where coordinates is a list with entries 0 or 1.

```
NmzSetPolynomial(cone, polynomial)
```

The polynomial is given as a string.

```
NmzSetNrCoeffQuasiPol(cone, number)
NmzSetFaceCodimBound(cone, number)
```

Do what the names say.

```
NmzModifyCone(cone, type, matrix)
```

This is the PyNormaliz version of the libnormaliz function modifyCone. Please have a look at Section D.6.

E.3.3. Additional data access

Some values cannot be returned as cone properties. For them we have additional access functions.

```
NmzGetPolynomial(cone)
```

returns the polynomial weight if one has been set.

The functions

```
NmzHilbertSeriesExpansion(cone, degree)
NmzEhrhartSeriesExpansion(cone, degree)
NmzWeightedEhrhartSeriesExpansion(cone, degree)
```

return the expansion of the named series up to the given degree as a list of numbers.

```
NmzIntegerHullCone(cone)
NmzProjectCone(cone)
NmzSymmetrizedCone(cone)
```

return NmzCone.

```
NmzGetRenfInfo(cone)
NmzFieldGenName(cone)
```

return the data defining the number field.

E.3.4. Miscellaneous functions

```
NmzSetVerbose(cone, value=True)
NmzSetVerboseDefault(value=True)
```

The first sets verbose to the specified value for cone, whereas the second sets it for all subsequently defined cones.

```
NmzConeCopy(cone)
```

returns a copy of cone.

```
NmzSetNumberOfNormalizThreads(number)
```

does what its name says. The previous number of threads is returned.

```
NmzWriteOutputFile(cone, project)
NmzWritePrecompData(cone, project)
```

The first writes a Normaliz output file whose name is the string project with the suffix .out, the second a file whose name is the string project with suffix precomp.in.

The functions

```
NmzHasEantic(cone)
NmzHasCoCoA(cone)
NmzHasFlint(cone)
NmzHasFlint(cone)
```

return True or False, depending on whether Normaliz has been built with the corresponding package.

```
NmzListConeProperties()
```

lists all cone properties in case you should have forgotten any of them.

```
error_out(PyObject* m)
```

writes an error message if something bad has happened.

E.3.5. Raw formats of numbers

All Normaliz integers are transformed to Python long integers, and floating point numbers are transformed to Python floats.

Numbers of type mpq_class are represented by a list with two components on the Python side, namely the numerator and the denominator.

An algebraic number is represented by a list whose members are rational numbers each of which is a list with two members. They are the coefficients of the polynomial representing the algebraic number.

F. Distributed computation for volume via signed decomposition

Normaliz offers a possibility to compute volumes via signed decomposition by distributing the task to several computers or nodes in a gigh performance cluster that run independently of each other. The principal approach:

- (1) The first step is the computation of the hollow triangulation and the generic vector on a single machine. This step can require considerable time and memory.
- (2) These data (and some more) are written to "hollow tri" files.
- (3) The files are read by Normaliz with the --Chunk option that makes it compute the contribution to the volume that comes from a single data file ("chunk") and write this volume to a "mult" file.
- (4) A final run of Normaliz with the --AddChunks option so that it reads all the "mult" files and adds the partial volumes.

This is certainly a robust and flexible approach to distributed computation. While the main purpose of distributed computation is a massive increase in parallelization, one should consider its use even if the computation is done on a single machine. It limits the loss of data caused by system crashes or similar interruptions to a small amount and allows easy repair. Another advantage is that the most time consuming step (3) needs very little RAM for a single "chunk", compared to step (1).

To make Normaliz write the data files and to stop once they have been written, one uses the cone property

DistributedComp

The size of the locks can be set by

block_size_hollow_tri <n>

to the input file where <n> is the number of simplices of the full triangulation that should go into a single output file. The default value chosen by DistributedComp is 500,000.

The output files are

ct>.hollow_tri.<n>.gz

where <n> numbers these files consecutively, starting from 0. As usual, <project> is the name of the project. These files are gzipped to save disk space.

Moreover, there is a common data file:

oject>.basic.data

Each file of the hollow triangulation must be run by Normaliz with the option --Chunk. The input is read from stdin to which the gzipped file(s) must be decompressed and redirected or piped. The directory source/chunk contains run_single.sh hat can be used for this purpose:

```
time zcat $1.hollow_tri.$2.gz | ../normaliz --Chunk
```

where \$1 is the project name and \$2 is the number <n> from above. The OpenMP parallelization is set to 8 threads by this call, but one can add the option -x= where is the number of parallel threads to be used. Normaliz processes the single blocks with the fixed precision of 100 decimal digits. The path to normaliz (../ above) must be adapted to your system.

On a cluster system one uses a script to start a job array where our number <n> serves as an index for the array. An example:

```
#SBATCH --job-name="CondEffPlur"
#SBATCH --comment="CondEffPlur"
#SBATCH --time=24:00:00
#SBATCH --ntasks=8
#SBATCH --threads-per-core=1
#SBATCH --mem=15000
#SBATCH --array=0-359%100

# each job will see a different ${SLURM_ARRAY_TASK_ID}
../run_single.sh CondEffPlur ${SLURM_ARRAY_TASK_ID}
```

In this example <n> runs from 0 to 359, and 100 jobs can be processed simultaneously. Finally, execute

```
normaliz <project> --AddChunks
```

to sum the partial multiplicities in the files <project>.mult.<n> The result is written to the terminal and also to the file <project>.total.mult.

References

- [1] 4ti2 team. 4ti2-A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at https://github.com/4ti2/4ti2.
- [2] J. Abbott, A. M. Bigatti and G. Lagorio, *CoCoA-5: a system for doing Computations in Commutative Algebra*. Available at http://cocoa.dima.unige.it.
- [3] V. Almendra and B. Ichim, *jNormaliz 1.7*. Available at https://normaliz.uos.de.
- [4] V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne and J. Wu, *A User's Guide for LattE integrale v1.7.2*, 2013. Software package LattE is available at https://www.math.ucdavis.edu/~latte/.
- [5] D. Bremner, M. D. Sikirić, D. V. Pasechnik, Th. Rehn and A. Schürmann, *Computing symmetry groups of polyhedra*. LMS J. Comp. Math. 17 (2014), 565–581.
- [6] St. Brumme, *Hash library*. Package available at https://create.stephan-brumme.com/.
- [7] W. Bruns, *Automorphism groups and normal forms in Normaliz*. Res. Math. Sci. 9 (2022), no. 2, Paper No. 20, 15 pp.
- [8] W. Bruns, *Polytope volume in Normaliz*. São Paulo J. Math. Sci. https://doi.org/10.1007/s40863-022-00317-9
- [9] W. Bruns, P. Garcia-Sanchez, C. O'Neill and D. Wilburne, *Wilf's conjecture in fixed multiplicity*. Int. J. Algebra Comp. 30 (2020), 861–882.
- [10] W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory. Springer, 2009.
- [11] W. Bruns, R. Hemmecke, B. Ichim, M. Köppe and C. Söger, *Challenging computations of Hilbert bases of cones associated with algebraic statistics*. Exp. Math. 20 (2011), 25–33.
- [12] W. Bruns and B. Ichim, *Normaliz: algorithms for rational cones and affine monoids*. J. Algebra 324 (2010) 1098–1113.
- [13] W. Bruns and B. Ichim, *Polytope volume by descent in the face lattice and applications in social choice*. Math. Prog. Comp. 113 (2020), 415–442.
- [14] W. Bruns, B. Ichim and C. Söger, *The power of pyramid decomposition in Normaliz*. J. Symb. Comp. 74 (2016), 513–536.
- [15] W. Bruns, B. Ichim and C. Söger, *Computations of volumes and Ehrhart series in four candidates elections*. Ann. Oper. Res. 280 (2019), 241–265.
- [16] W. Bruns and R. Koch, *Computing the integral closure of an affine semigroup*. Univ. Iagell. Acta Math. 39 (2001), 59–70.
- [17] W. Bruns, R. Sieg and C. Söger, *Normaliz 2013–2016*. In G. Böckle, W. Decker and G. Malle, editors, *Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory*, pages 123–146. Springer, 2018.
- [18] W. Bruns and C. Söger, *The computation of weighted Ehrhart series in Normaliz.* J. Symb. Comp. 68 (2015), 75–86.
- [19] B. Büeler and A. Enge, *Vinci*. Package available from https://www.math.u-bordeaux.fr/~aenge/
- [20] B. Büeler, A. Enge, K. Fukuda, *Exact volume computation for polytopes: a practical study.* In: Polytopes combinatorics and computation (Oberwolfach, 1997), pp. 131 154, DMV Sem. 29,

- Birkhäuser, Basel, 2000.
- [21] J. A. De Loera, R. Hemmecke and M. Köppe. Algebraic and geometric ideas in the theory of discrete optimization. MOS-SIAM Series on Optimization, 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013.
- [22] V. Delecroix, *embedded algebraic number fields* (on top of antic), package available at https://github.com/flatsurf/e-antic.
- [23] P. Filliman, The volume of duals and sections of polytopes. Mathematika 37 (1992), 67–80.
- [24] S. Gutsche, M. Horn and C. Söger, *NormalizInterface for GAP*. Available at https://github.com/gap-packages/NormalizInterface.
- [25] S. Gutsche and R. Sieg, *PyNormaliz an interface to Normaliz from python*. Available at https://github.com/Normaliz/PyNormaliz.
- [26] W. B. Hart, *Algebraic Number Theory In C*. Package available at https://github.com/wbhart/antic.
- [27] W. B. Hart, F. Johansson and S. Pancratz, *FLINT: Fast Library for Number Theory*. Available at https://flintlib.org.
- [28] Hemmecke and P. N. Malkin. Computing generating sets of lattice ideals and Markov bases of lattices. J. Symb. Comp. 44, 1463–1476 (2009).
- [29] F. Johansson, *Arb a C library for arbitrary-precision ball arithmetic*. Available at https://arblib.org/.
- [30] J. Lawrence, *Polytope volume computation*. Math. Comp. 57 (1991), 259–271.
- [31] M. Köppe and S. Verdoolaege, *Computing parametric rational generating functions with a primal Barvinok algorithm*. Electron. J. Comb. 15, No. 1, Research Paper R16, 19 p. (2008).
- [32] B. D. McKay and A. Piperno, *Practical graph isomorphism*, *II*. J. Symbolic Comput. 60 (2014), 94–112.
- [33] L. Pottier, *The Euclide algorithm in dimension n*. Research report, ISSAC 96, ACM Press 1996.
- [34] A. Schürmann, *Exploiting polyhedral symmetries in social choice*. Social Choice and Welfare 40 (2013), 1097–1110.
- [35] B. Sturmfels, Gröbner baes and convex polytopes. American Mathematical Society 1996.

Index of keywords

-h, 90	dec, 179
-n, 90	decimal_digits <n>, 86, 120</n>
-p, 90	DefaultMode, 88
-x= <t>, 100</t>	DeglElements, -1,89
help, -?, 100	DegLex, 62, 93
ignore, -i, 88	Dehomogenization, 98
version, 100	dehomogenization, 84
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Descent ExploitIsosMult, 96, 117
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Descent, -F, 96, 116
OutputDir= <outdir>, 101</outdir>	DistributedComp, 96, 254
<suffix>, 101</suffix>	DualFaceLattice, 92
all-files, -a, 101	DualFVector, 92
files, -f, 101	DualIncidence, 92
ignore, -i, 102	DualMode Deg1Elements, -d1,99
verbose, -c, 100	<code>DualMode HilbertBasis, -dN</code> , 98
	DualMode LatticePoints, 99
AffineDim, 98	${\tt DualMode\ ModuleGenerators}, 99$
AllGeneratorsTriangulation, 91, 144	DualMode, -d,95
AmbientAutomorphisms, 92, 165	150
Approximate, -r, 95, 110	egn, esp, 178
aut, 179	EhrhartQuasiPolynomial, 98
Automorphisms, 92	EhrhartSeries, 90
BigInt, -B, 94	EmbeddingDim, 97
BinomialsPacked, 102, 172	Equations, 98
block_size_hollow_tri <n>, 86, 254</n>	equations, 78
BottomDecomposition, -b, 95	EuclideanAutomorphisms, 92
bottombecomposition, -b, 75	EuclideanVolume, 98
ClassGroup, -C, 90	excluded_faces, 79
CodimSingularLocus, 93, 172	ExcludedFaces, 98
CombinatorialAutomorphisms, 92	expansion_degree <n>, 86</n>
cone, 77	ext, 177
cone_and_lattice, 77, 78	ExternalIndex, 98
ConeDecomposition, -D, 91	extreme_rays, 77
Congruences, 98	ExtremeRays, 97, 99
congruences, 79	ExtremeRaysFloat, 89
constraints <n>, 81</n>	fac, 179
constraints <n> symbolic, 82</n>	face_codim_bound <n>, 86</n>
${\tt convert_equations}, 82$	FaceLattice, 91
CoveringFace, 98	FixedPrecision, 96, 120
cst, 177	FVector, 91

 $gb_degree_bound < n>, 62, 86$ IsTriangulationNested, 98 IsTriangulationPartial, 98 $gb_min_degree < n>, 62, 86$ gen, 177 KeepOrder, -k, 95 generated_lattice, 78 GeneratorOfInterior, 98 **lat**, 178 Grading, 98 lattice, 78 grading, 84 lattice_ideal, 67, 83 GradingDenom, 98LatticePoints, 89 **GradingIsPositive**, 97 LatticePointTriangulation, 91, 144 grb, 61, 179 Lex, 61, 93 GroebnerBasis, 61, 92 LongLong, 94 hilbert_basis_rec_cone, 78 MarkovBasis, 60, 92 HilbertBasis, -N, 89 maximal_subspace, 77 HilbertQuasiPolynomial, 98 MaximalSubspace, 97 HilbertSeries, -q, 90 mod, 178 hom_constraints, 82 ModuleGenerators, 97 **HSOP**, 90 ModuleGeneratorsOverOriginalMonoid, -M, **ht1**, 177 89 ModuleRank, 98 IdsSerreR1, 93 monoid, 59, 78 inc, 179 mrk, 60, 179 Incidence, 91 msp, 178 InclusionExclusionData, 98 Multiplicity, -v, 90 inequalities, 78 inhom_congruences, 81 NoBottomDec, -0.95inhom_equations, 80 NoCoarseProjection, 95, 108 inhom_excluded_faces, 80 **NoDescent**, 96, 116 $\verb|inhom_inequalities|, 80$ NoExtRaysOutput, 52, 101 InputAutomorphisms, 92, 166 NoGradingDenom, 97 IntegerHull, -H, 90 NoHilbertBasisOutput, 102 Integral, -I, 92NoLLL, 95, 107 InternalIndex, 98 NoMatricesOutput, 102 inthull.out, 179 nonnegative, 79 inv, 177 NoPatching, 95, 109 IsDeg1ExtremeRays, 93 NoPeriodBound, 90 IsDeg1HilbertBasis, 93 NoProjection, 95 IsEmptySemiopen, 92 NoRelax, 95, 108 IsGorenstein, -G, 93 normal_toric_ideal, 66, 83 IsInhomogeneous, 98 NoSignedDec, 96, 119 IsIntegrallyClosed, 93 NoSubdivision, 97 IsPointed, 93 NoSuppHypsOutput, 52, 102 IsReesPrimary, 93

IsSerreR1, 172

NoSymmetrization, -X, 97

nr_coeff_quasipol <n>, 86

NumberLatticePoints, 90, 111

offset, 80
ogn, 61, 179
open_facets, 85
OriginalMonoidGenerators, 97

PlacingTriangulation, 91, 145
polynomial_equations <n>, 82
polynomial_inequalities <n>, 82
polytope, 77
PrimalMode, -P, 95
proj.out, 179
ProjectCone, 89, 132
Projection, -j, 95, 106
projection_coordinates, 85
ProjectionFloat, -J, 95, 107
PullingTriangulation, 91, 145

Rank, 98
rational_lattice, 78
rational_offset, 80
RationalAutomorphisms, 92
RecessionRank, 98
rees_algebra, 77
ReesPrimaryMultiplicity, 98
rep, 62, 179
Representations, 62, 93
RevLex, 61, 93

saturation, 78
SignedDec, 96, 118
signs, 78
SingularLocus, 93, 171
sng, 171, 179
StanleyDec, -y, 91
strict_inequalities, 80
strict_signs, 80
StrictIsoTypes, 117
StrictTypeChecking, 96
Sublattice, -S, 89
subspace, 77
SuppHypsFloat, 52, 89
support_hyperplanes, 79
SupportHyperplanes, -s, 89, 99

 $\begin{array}{l} \text{symm.out}, 179 \\ \text{Symmetrize, -Y}, 97 \end{array}$

tgn, 139, 179 toric_ideal, 65, 83 total_degree, 84 tri, 139, 179 Triangulation, -T, 91 TriangulationDetSum, 91 TriangulationSize, -t, 91

UnimodularTriangulation, 91, 144 unit_matrix, 83 unit_vector <n>, 83 UnitGroupIndex, 98

vertices, 79 VerticesFloat, 52, 89 VerticesOfPolyhedron, 97, 99 VirtualMultiplicity, -L, 92 Volume, -V, 53, 90

WeightedEhrhartQuasiPolynomial, 98 WeightedEhrhartSeries, -E, 92 WitnessNotIntegrallyClosed, -w, 89 WritePreComp, 179