Rezolvare subiecte admitere Politehnică 2007

- 1). Din expresia tensiunii la borne, $U=\frac{ER}{R+r}$, rezistența internă a sursei este $r=\frac{R(E-U)}{U}=1\Omega$. *Răspuns corect e*.
 - 2). $C_V = \frac{R}{\gamma 1} = \frac{5}{2}R$ și $C_p = \frac{\gamma R}{\gamma 1} = \frac{7}{2}R$. Răspuns corect e.
 - 3). Răspuns corect e.
- 4). Viteza fiind constantă, $F_{trac} = F_{rez} = \frac{P}{v}$, de unde $F_{rez} = 3.6 \cdot 10^3 \, \text{N}$. Răspuns corect **d**
- 5). Din expresia rezistenței electrice, $R = \rho \frac{l}{S}$, rezistivitatea $\rho = 14\pi \cdot 10^{-8} \, \Omega \text{m} = 43,98 \cdot 10^{-8} \, \Omega \text{m}$. *Răspuns corect d*
- 6). Din ecuația transformării izocore, $\frac{p}{T} = \frac{10p}{T + \Delta T}$, rezultă $T = \frac{10}{9}$ K. *Răspuns corect e*.
- 7. În coordonate (p,V), ecuația transformării se scrie, $pV^{-1}=b$, care este ecuația unei politrope cu indicele n=-1. Dar, $n=\frac{C-C_p}{C-C_V}=-1$, de unde $C=\frac{C_p+C_V}{2}=2R$, sau, conform definiției căldurii molare,

$$C = \frac{Q}{v\Delta T} = \frac{L + \Delta U}{v\Delta T} = \frac{\frac{(p_1 + p_2)}{2}(V_2 - V_1) + vC_V\Delta T}{v\Delta T} = \frac{p_2V_2 - p_1V_1}{2v\Delta T} + C_V = \frac{R}{2} + C_V = 2R,$$

deoarece, conform ecuației transformării, $p_1V_2 = p_2V_1$. Răspuns corect \boldsymbol{b} .

- 8). Conform formulei lui Galilei, $h = \frac{v_0^2}{2g}$ și $\frac{h}{2} = \frac{v_0^2 v^2}{2g}$, de unde $h = \frac{v^2}{g} = 10$ m. Răspuns corect **a**
- 9). Conform condiției din enunț, $\frac{E}{R+r}=\frac{E}{29r}$, de unde rezistența internă $r=\frac{R}{28}=50\Omega$. Răspuns corect e.

10).
$$P_{\text{max}} = \frac{U^2}{R_1 + R_2} = \frac{U^2}{\frac{U^2}{P_1} + \frac{U^2}{P_2}} = \frac{P_1 P_2}{P_1 + P_2} = \frac{200}{7} \text{W. Răspuns corect } \boldsymbol{a}$$

- 11). Conform teoremei de variație a energiei cinetice, $L_{frec} = \Delta E_c = \frac{m}{2} \left(v^2 \frac{v^2}{4} \right) = \frac{3}{8} m v^2 = 12 \text{ J. Răspuns corect } \mathbf{c}.$
- 12). Ecuația vitezei este, $v = x'_t = 6 2t = 2$, de unde t = 2 s. Răspuns corect f
 - 13). Din condiția de echilibru a forțelor,

 $F \sin \alpha = \mu (mg - F \cos \alpha)$, rezultă $F = \frac{\mu mg}{\sin \alpha + \mu \cos \alpha} = 125 \text{ N.}$ Răspuns corect **e**

- 14). Răspuns corect e.
- 15). Energia cinetică, $E_c = \frac{mv^2}{2} = \frac{p^2}{2m}$, de unde $m = \frac{p^2}{2E_c} = 5$ kg. *Răspuns* corect f
 - 16). Randamentul este adimensional. Răspuns corect b
 - 17). Răspuns corect b
 - 18). $B = \mu_0 \frac{NI}{l} = 4\pi \cdot 10^{-3} \text{ T. Răspuns corect } d.$