UCF ICPC Training Camp Day II: Combinatorics

Yongwhan Lim Wednesday, March 22, 2022

Yongwhan Lim

Education

Part-time Jobs

Full-time Job

Workshops

Coach/Judge

https://www.yongwhan.io

Yongwhan Lim

- Currently:
 - a Co-Founder in a Stealth Mode Startup;
 - ICPC Internship Director;
 - Columbia ICPC Head Coach;
 - ICPC Judge for NAQ and Regionals;
 - Lecturer at MIT;
 - Adjunct (Associate in CS) at Columbia;

https://www.yongwhan.io

Today's Format

9am ET - 10:20am ET Lecture

10:30am ET - 12pm ET Lecture Exercises

12pm ET - 12:45pm ET **Lunch**

12:45pm ET - 3:45pm ET Practice Contest

UCF ICPC Training Camp Day 2

4pm ET - 5:20pm ET Review

Request 1:1 Meeting, through Calendly

- Use <u>calendly.com/yongwhan/one-on-one</u> to request 1:1 meeting:
 - Mock Interview
 - Resume Critique
 - Career Planning
 - Practice Strategy
 - 0 ...
- Always inspired by driven students like yourself!
- Since I'd feel honored/thrilled to talk to you, do not feel shy to sign up!!

Lecture

Now, let's dive right into Combinatorics!

- I. Catalan number;
- II. Bell Number;
- III. Euler Number;
- IV. Bernoulli number;
- V. Stirling numbers of the first kind; Stirling numbers of the second kind;

- VI. Generating Function;
- VII. Bernoulli polynomials; Bernoulli polynomials of the second kind;
- VIII. Euler polynomial;
 - IX. Stirling polynomials;

I. Catalan Numbers: Motivating Examples

- Number of correct bracket sequence consisting of n opening and n closing brackets.
- The number of rooted full binary trees with n + 1 leaves (vertices are not numbered). A rooted binary tree is full if every vertex has either two children or no children.
- The number of ways to completely parenthesize n + 1 factors.
- The number of ways to connect the 2n points on a circle to form n disjoint chords.
- The number of non-isomorphic full binary trees with n internal nodes (i.e. nodes having at least one son).

• ...

I. Catalan Numbers (A000108)

- 1
- '
- 2
- 5
- 14
- 42
- 132
- 429
- 1430
- ...

I. Catalan Numbers: Recursive Formula

$$C_0 = C_1 = 1$$

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}, n \geq 2$$

I. Catalan Numbers: Implementation

```
int catalan[MAX];
void init() {
    catalan[0] = catalan[1] = 1;
    for (int i=2; i<=n; i++) {
        catalan[i] = 0;
        for (int j=0; j < i; j++) {
            catalan[i] += (catalan[j] *
                           catalan[i-j-1]) % MOD;
            if (catalan[i] >= MOD) catalan[i] -= MOD;
```

I. Catalan Numbers: Analytical Formula

$$C_n = rac{1}{n+1} {2n \choose n}$$

$$C_n = {2n \choose n} - {2n \choose n-1} = rac{1}{n+1} {2n \choose n}, n \geq 0$$

II. Bell Numbers

- Bell numbers count the possible partitions of a set.
- For example, when n=3 (e.g., {a,b,c}), we have:
 - 0 {{a},{b},{c}};
 - 0 {{a},{b,c}};
 - o {{b},{a,c}};
 - o {{c},{a,b}};
 - {{a,b,c}};

II. Bell Numbers (A000110)

- 1
- 1
- 2
- 5
- 15
- 52
- 203
- 877
- 4140
- ...

II. Bell Numbers: Recurrence & Explicit

$$B_{n+1} = \sum_{k=0}^n inom{n}{k} B_k$$
 Binomial coefficient

$$B_n = \sum_{k=0}^n \left\{ rac{n}{k}
ight\}$$

Stirling number of second kind

number of ways to partition a set of cardinality n into exactly k nonempty subsets

III. Euler Numbers

• Euler numbers are a sequence of integers defined by the Taylor series expansion:

$$rac{1}{\cosh t} = rac{2}{e^t + e^{-t}} = \sum_{n=0}^{\infty} rac{E_n}{n!} \cdot t^n$$

III. Euler Numbers (A122045)

- 1
- 0
- -1
- (
- 5
- 0
- -61
- 0
- 1385
- ...

III. Euler Numbers: Explicit

$$E_n = 2^{2n-1} \sum_{\ell=1}^n rac{(-1)^\ell S(n,\ell)}{\ell+1} \left(3 igg(rac{1}{4}igg)^{(\ell)} - igg(rac{3}{4}igg)^{(\ell)}
ight)$$

$$S(n,\ell)$$

Stirling numbers of the second kind

$$x^{(\ell)} = (x)(x+1)\cdots(x+\ell-1)$$
 Rising factorial

IV. Bernoulli Numbers

- Taylor series expansions of the tangent and hyperbolic tangent functions;
- Faulhaber's formula for the sum of m-th powers of the first n positive integers;
- the Euler–Maclaurin formula;
- Certain values of the Riemann zeta function;

IV. Bernoulli Numbers: Numerator (A027641)

- 1
- -1
- 1
- 0
- -1
- C
- 1
- 0
- -1
- ...

IV. Bernoulli Numbers: Denominator (A027642)

- 1
- 2
- 6
- 1
- 30
- 1
- 42
- 1
- 30
- ...

IV. Bernoulli Numbers: Recurrence

$$B_m^- = \delta_{m,0} - \sum_{k=0}^{m-1} inom{m}{k} rac{B_k^-}{m-k+1}$$

$$\delta_{ij} = \left\{ egin{array}{ll} 0 & ext{if } i
eq j, \ 1 & ext{if } i = j. \end{array}
ight.$$
 Kronecker delta

 $B_n^+ = (-1)^n B_n^-$, or for integer n=2 or greater

IV. Bernoulli Numbers: Explicit

$$B_m^- = \sum_{k=0}^m \sum_{v=0}^k (-1)^v inom{k}{v} rac{v^m}{k+1}$$

IV. Bernoulli Numbers: Riemann Zeta Function

$$B_n^+ = -n\zeta(1-n) \qquad \text{for } n \ge 1$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

V-A. Stirling numbers of the first kind

 Count permutations according to their number of cycles (counting fixed points as cycles of length one)

V-A. Stirling numbers of the first kind: Recurrence

$$\left[egin{array}{c} n+1 \ k \end{array}
ight] = n \left[egin{array}{c} n \ k \end{array}
ight] + \left[egin{array}{c} n \ k-1 \end{array}
ight]$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1 \quad \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0$$

V-A. Stirling numbers of the first kind: Explicit

$$s(n,n-p) = rac{1}{(n-p-1)!} \sum_{0 \leq k_1, \ldots, k_p : \sum_1^p m k_m = p} (-1)^K rac{(n+K-1)!}{k_1! k_2! \cdots k_p! \ 2!^{k_1} 3!^{k_2} \cdots (p+1)!^{k_p}}$$

V-B. Stirling numbers of the second kind

 the number of ways to partition a set of n objects into k non-empty subsets

V-B. Stirling numbers of the second kind: Recurrence

$$\left\{ egin{aligned} n+1 \ k \end{aligned}
ight\} = k \left\{ egin{aligned} n \ k \end{aligned}
ight\} + \left\{ egin{aligned} n \ k-1 \end{aligned}
ight\} & ext{for } 0 < k < n \end{aligned}$$

$$\left\{ egin{aligned} n \ n \end{aligned}
ight\} = 1 \quad ext{ for } n \geq 0 \quad ext{ and } \quad \left\{ egin{aligned} n \ 0 \end{aligned}
ight\} = \left\{ egin{aligned} 0 \ n \end{aligned}
ight\} = 0 \quad ext{ for } n > 0.$$

V-B. Stirling numbers of the second kind: Explicit

$$\left\{ {n \atop k} \right\} = rac{1}{k!} \sum_{i=0}^k (-1)^i {k \choose i} (k-i)^n$$

VI. Generating Function

• a way of encoding an infinite sequence of numbers (a_n) by treating them as the **coefficients** of a formal **power series**.

VI. Ordinary Generating Function (OGF)

$$G(a_n;x)=\sum_{n=0}^\infty a_n x^n.$$

$$G(a_{m,n};x,y)=\sum_{m,n=0}^\infty a_{m,n}x^my^n$$

VI. Exponential Generating Function (EGF)

$$\mathrm{EG}(a_n;x) = \sum_{n=0}^\infty a_n rac{x^n}{n!}$$

VI. Generating Function: Example: Geometric Series

$$\sum_{n=0}^{\infty}x^n=rac{1}{1-x}$$

1, 1, 1, 1, 1, ...

$$\sum_{n=0}^{\infty} (ax)^n = \frac{1}{1-ax}$$

1, a, a^2 , a^3 , a^4 , a^5 , ...

VII-A. Bernoulli Polynomials

$$rac{te^{xt}}{e^t-1} = \sum_{n=0}^\infty B_n(x) rac{t^n}{n!}$$

$$B_n(x) = \sum_{k=0}^n inom{n}{k} B_{n-k} x^k$$

VII-B. Bernoulli Polynomials of the second kind

$$rac{z(1+z)^x}{\ln(1+z)} = \sum_{n=0}^{\infty} z^n \psi_n(x), \qquad |z| < 1$$

VIII. Euler Polynomials

$$rac{2e^{xt}}{e^t+1} = \sum_{n=0}^\infty E_n(x) rac{t^n}{n!}$$

$$E_m(x) = \sum_{k=0}^m inom{m}{k} rac{E_k}{2^k} igg(x-rac{1}{2}igg)^{m-k}$$

IX. Stirling polynomials

$$\left(rac{t}{1-e^{-t}}
ight)^{x+1} = \sum_{k=0}^{\infty} S_k(x) rac{t^k}{k!}$$

Further Topics

- Burnside's Lemma
- Placing Bishops on a Chessboard
- Balanced bracket sequences
- Counting labeled graphs
- Sums of powers
- Pólya enumeration theorem
- Probabilistic methods

Further Readings

- USACO Guide: https://usaco.guide/gold/combo?lang=cpp
- CP Algorithms: https://cp-algorithms.com/algebra/factorial-divisors.html

- Concrete Mathematics, Donald Knuth, et. al.
- Generatingfunctionology, Herbert Wilf
- Combinatorics and Graph Theory, John Harris, et. al.
- Principles And Techniques In Combinatorics, Chen Chuan-Chong, et. al.

A Terse Guide on ICPC Contest Strategies

- Please take a look at:
 - A <u>Terse Guide</u> on ICPC Contest Strategies for Columbia team.
 - In addition, we have <u>Google Drive</u> to Terse Guides, of course!

These documents will be frequently expanded upon later.

Reminder! Discord Servers

Join the following discord servers, if you have not already!!!

[ICPC CodeForces Zealots] https://discord.gg/7bvMnMyF6G

Reminder! Practice makes PERFECT!

- Do as many practice contests as you can!
 - Live Contests
 - CodeForces: Division 1-4
 - AtCoder: Beginner; Regular; Grand;
 - LeetCode: Weekly/Biweekly
 - ICPC North America Practice Contests on:
 - Sundays from 1pm ET to 6pm ET
 - Zealot Problem Sets
 - **Everyday** (24 hours 7 days a week)!

Lecture Exercises

Lecture Exercise #1 (1800)

https://codeforces.com/contest/300/problem/C

• https://codeforces.com/contest/300/submission/16421338

Lecture Exercise #2 (2500)

https://codeforces.com/problemset/problem/407/C

• https://codeforces.com/contest/407/submission/6186385

Lecture Exercise #3 (2300)

https://codeforces.com/contest/785/problem/D

https://codeforces.com/contest/785/submission/37115054

Lecture Exercise #4 (1900)

https://codeforces.com/problemset/problem/9/D

https://codeforces.com/contest/9/submission/3014721

Lecture Exercise #5 (1600)

https://codeforces.com/problemset/problem/888/D

https://codeforces.com/contest/888/submission/33698050

Lecture Exercise #6 (2100)

https://codeforces.com/problemset/problem/1606/E

https://codeforces.com/contest/1606/submission/133732412

Lecture Exercise #7

https://atcoder.jp/contests/dp/tasks/dp_y/

• https://atcoder.jp/contests/dp/submissions/3979598

