

# PAINETTAVA ELEKTRONIIKKA

Korkean lämpötilan painettava elektroniikka

© Jari Hannu, Oulun yliopisto

# VALMISTUSMENETELMÄN VAIKUTUKSET MATERIAALIVALINTOIHIN

Elektroniikan komponentit ovat kiinteitä

Painomenetelmät vaativat nestemäiset lähtöaineet



- Painettua elektroniikkaa Oulussa jo 1970-luvulla
- Teknologia piirilevytuotannon ja ohutakalvoteknologian välillä
- Kuten painettu elektroniikka, paksukalvotekniikka on lisäävä menetelmä
  - · Lisätään materiaalia pohjalle, jotta saadaan piiri aikaiseksi
- Pääasiassa keraamisia komponentteja
- Mahdollistaa monikerroskomponenttien rakentamisen
- Piirilevyteknologiaan verrattuna pystytään monipuolisesti tuottamaan myös passiivikomponentteja



Paksukalvoprosessi:

Materiaalin lisäys Sintraus

- Materiaalin lisäys tehdään yleisimmin silkkipainotekniikalla (screen printing)
- Sintrauksessa käytetään korkeata lämpötilaa
  - Tyypillisesti yli 500°C









- Paksukalvotekniikassa käytetään epäorgaanisia toiminnallisia materiaaleja keraamisubstraateilla (pohjamateriaali)
- Sintrauksen (lämpökäsittely) jälkeen toiminnalliset materiaalit ja substraatti ovat kuin yhtä kiinteää materiaalia
- Substraattina käytetään yleisimmin alumina (alumiinioksidi, Al<sub>2</sub>O<sub>3</sub>)
  - Puhtausaste jopa 99,6%
  - Partikkelikoko 3-5 µm
  - Standardi sintrauslämpötila 850°C
- Muita materiaalieja alumiininitriiti, lasi, pinnoitettu teräs, epoksi, synteettinen timantti...





- Musteiden sijaan paksupainoprosessissa puhutaan pastoista
- Pastasta muodostetaan piirikuva tai komponentin rakenne
  - Johtimet
    - Kulta (Au), Platina (Pt), Hopea(Ag), Kupari (Cu), Nikkeli (Ni)
  - Vastukset
    - Ruthenium, iridium ja rhenium, Bi<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>, RuO<sub>2</sub>
  - Dielektriset (ylityksiin ja kondensaattoreihin
    - BaTiO<sub>3</sub>, lasi, lasikeraamit





- Pastan koostumus
  - Korkeampiin lämpötiloihin keraamipohjaisia
  - Mataliin lämpötiloihin polymeerpohjaisia
    - Orgaaniset, polymeereihin perustuvat pastat ovat erinomaisia eristeitä
- Kolme pääkomponenttia
  - 1. Funktionaalinen osa: puhdasta metallia tai metallioksideja
    - Johtava, eriste, resistiivinen
  - 2. Sidososa: lasisulate
    - Sitoon pastan substraattiin
  - 3. Liuote/apuaine: orgaaninen liuotinaine
    - Liuottaa ja sitoo pastan nesteeksi



- Painamisen jälkeen täytyy sintrata, jotta musteesta tulee kiinteä kalvo
- Toiminnalliset partikkelit sidotaan yhteen substraattiin lasisulatteella
- Orgaaninen liuotinlisäaine haihtuu pois sintrauksen aikana
- Pastan valmistajat määrittelevät sintrausprofiilit, joiden maksimilämpötila vaihtelee 500-1000 °C välillä



ORGANIC

BURN-OUT

ENTRANCE



ND STRESS

#### LTCC-PROSESSI

Paksukalvoprosess i on kehittynyt mm. LTCC-tekniikkaan

Mahdollistaa hyvin monimutkaisia monikerrosrakent eita

Sovellukset mm. korkean taajuuden tutkat









### MATALAN LÄMPÖTILAN SINTRAUS

- Joustavat ja taivuteltavat substraatit, joita käytetään matalan lämpötilan painettavassa elektroniikassa eivät kestä korkean lämpötilan prosessointia
- Tämä estää lasien ym. käytön lisäaineina musteille
  - Johtimien resistiivisyys kasvaa
  - Rajapinta substraatin ja painetun kuvion välillä heikkenee
- Eli yleensä toiminnallisuus ja luotettavuus heikkenee

