第九章 练习题及参考答案

选择题

1、极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{3xy}{\sqrt{xy+1}-1} =$$
【】.

- <mark>A. 6</mark>
- B. 3
- C. 1
- D. 2

2、设
$$f(x,y) = \frac{x - y + x^2 + y^2}{x + y}$$
,则 $\lim_{x \to 0} \lim_{y \to 0} f(x,y) =$ 【

- A. -1 B. 3 C. 1
- D. 2

3、极限
$$\lim_{\substack{x \to \infty \\ y \to \infty}} f(x, y) = A$$
 的精确含义是【 】.

- 对任意给定的正数 ε , 总存在正数M, 使当|x|>M, |y|>M时, 不等式 $|f(x,y)-A|<\varepsilon$ 恒成立
 - B. 对某些给定的正数 ε ,总存在正数 M ,使当 |x| > M , |y| > M 时,不等式 $|f(x,y)-A|<\varepsilon$ 恒成立
 - 对任意给定的正数 ε ,总存在正数 M ,使当 $\sqrt{x^2+y^2} > M$ 时,不等式 $|f(x,y)-A|<\varepsilon$ 恒成立
 - D. 对某些给定的正数 ε ,总存在正数 M ,使当 $\sqrt{x^2+y^2} > M$ 时,不等式 $|f(x,y)-A|<\varepsilon$ 恒成立

4、极限
$$\lim_{\substack{x\to 0\\y\to 0}} (x^2 + y^2)^{x^2y^2} = \mathbf{I}$$
 】.

- A. 0
- B. 1 C. 2
- D. *e*

- 5、设函数 $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$,则【
 - 极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 存在,但 f(x,y) 在(0,0) 处不连续 A.
 - 极限 $\lim_{x\to 0} f(x,y)$ 存在,且 f(x,y) 在 (0,0) 处连续 B.
 - 极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 不存在,故 f(x,y) 在 (0,0) 处不连续
 - 极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 不存在,但f(x,y)在 $\left(0,0\right)$ 处连续 D.
- 6、函数 $f(x, y) = \sin(x^2 + y)$ 在点(0, 0)处【
 - A. 无定义 B. 无极限 C. 有极限,但不连续
- 7、设 $u = x^{y^z} (x > 0, y > 0)$,则 du =【
 - $v^{z}x^{y^{z}-1}dx + v^{z-1}x^{y^{z}} \ln x \, dy + v^{z}x^{y^{z}} \ln x \ln y \, dz$
 - B. $y^z x^{y^z-1} dx + z y^{z-1} x^{y^z} \ln x dy + x^{y^z} \ln x \ln y dz$
 - C. $x^{y^z-1} dx + z y^{z-1} x^{y^z} \ln x dy + y^z x^{y^z} \ln x \ln y dz$
 - D. $y^z x^{y^z-1} dx + z y^{z-1} x^{y^z} \ln x dy + y^z x^{y^z} \ln x \ln y dz$
- 8、设 $z = \frac{1}{x} f(xy) + y \varphi(x+y)$, f , φ 具有二阶连续导数,则 $\frac{\partial^2 z}{\partial x \partial y} = \mathbf{I}$
 - - $f''(x,y) + \varphi'(x+y) + y\varphi''(x+y)$ B. $yf''(x,y) + \varphi'(x+y) + \varphi''(x+y)$

连续

- $yf''(x, y) + \varphi'(x + y) + y\varphi''(x + y)$ D. $yf''(x, y) + y\varphi''(x + y)$
- 9、设函数 y = y(x) 由方程 $y = f(x^2 + y^2) + f(x + y)$ 所确定, y(0) = 2, 其中 f 是可导
 - 函数,且 $f'(2) = \frac{1}{2}$, f'(4) = 1,则 $\frac{dy}{dx}\Big|_{x=0}$ = 【

- A. $-\frac{1}{7}$ B. $\frac{1}{7}$ C. $\frac{1}{6}$ D. $-\frac{1}{6}$

- 10、设 z = z(x, y) 由方程 $e^{-xy} 2z + e^z = 0$ 确定,则 $\frac{\partial^2 z}{\partial x^2} = \mathbf{I}$
 - A. $\frac{-y^2 e^{-xy} (e^z 2)^2 y^2 e^{-2xy+z}}{(e^z 2)^3}$ B. $\frac{-y^2 e^{-xy} (e^z 2)^2 y^2 e^{-2xy+z}}{(e^z 2)^2}$

 - C. $\frac{y^2 e^{-xy} (e^z 2)^2 y^2 e^{-2xy + z}}{(e^z 2)^3}$ D. $\frac{-y^2 e^{-xy} (e^z 2)^2 + y^2 e^{-2xy + z}}{(e^z 2)^3}$
- 11、设w=x+y, 其中x, y是由 $\begin{cases} xy^2-uv=1\\ x^2+v-u+v=0 \end{cases}$ 确定的u, v的函数,则 $\frac{\partial w}{\partial u}=$

 - A. $\frac{(2x-1)v y^2 + 2xy}{4x^2y + y^2}$ B. $\frac{(2x-1)v y^2 2xy}{4x^2y y^2}$
 - C. $\frac{(2x-1)v y^2 + 2xy}{4x^2v v^2}$ D. $\frac{(2x-1)v y^2 + 2xy}{x^2y y^2}$
- 12、曲面 $z-e^z+2xy=3$ 在点(1, 2, 0)处的切平面方程为【
 - A. 2x + y + 4 = 0
- B. 2x + y 4 = 0
- C. 2x-y-4=0 D. 2x-y+4=0
- 13、函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点A(1, 0, 1)处沿点A指向点B(3, -2, 2)方向的方向
 - 导数为【
 - A. $-\frac{1}{2}$ B. $\frac{1}{3}$ C. $-\frac{1}{3}$

- 14、抛物线 $y=x^2$ 到直线 x-y-2=0 之间的最短距离是【
 - A. $\frac{7}{4\sqrt{2}}$ B. $\frac{7}{\sqrt{2}}$ C. $\frac{7}{4}$ D. $\frac{7}{8}$

- 15、函数u = x + y + z在区域 $x^2 + y^2 \le z \le 1$ 的最大值为【
 - A. $1+\sqrt{2}$ B. $-\frac{1}{2}$ C. $1-\sqrt{2}$ D. $\frac{1}{2}$

- 16、考虑二元函数 f(x,y) 的下面四个性质:
 - (1) f(x,y) 在点 (x_0,y_0) 处连续
 - (2) f(x,y) 在点 (x_0,y_0) 处的两个偏导数连续
 - (3) f(x,y) 在点(x₀,y₀)处可微
 - (4) f(x,y) 在点 (x_0, y_0) 处的两个偏导数存在

若用" $P \Rightarrow Q$ "表示可由性质 P 推出性质 Q ,则有【 1.

- A. $(2) \Rightarrow (3) \Rightarrow (1)$ B. $(3) \Rightarrow (2) \Rightarrow (1)$
- C. $(3) \Rightarrow (4) \Rightarrow (1)$ D. $(3) \Rightarrow (1) \Rightarrow (4)$

17、设 $f(x,y) = \begin{cases} \frac{\sin(x^2 y)}{xy}, & xy \neq 0 \\ x, & xy = 0 \end{cases}$, 则 $f_x'(0, 1) = \mathbf{I}$ 】.

18、设 $\varphi(x-az,y-bz)=0$,则 $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=$ 【】.

- A.
- B. *b*
- C. -1 D. 1

19、函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f_x^{'}(x_0,y_0)$, $f_y^{'}(x_0,y_0)$ 存在是 f(x,y) 在 该点连续的【 1.

- C. 充分必要条件
- 充分而非必要条件
 B. 必要而非充分条件

 充分必要条件
 D. 既非充分又非必要条件

20、函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$ 在点(0,0)处【 】.

- A. 连续,偏导数存在
 B. 连续,偏导数不存在

 C. 不连续,偏导数存在
 D. 不连续,偏导数不存在

- 21、可使 $\frac{\partial^2 u}{\partial x \partial y} = 2x y$ 成立的函数是【

 - A. $u = x^2y + \frac{1}{2}xy^2$ B. $u = x^2y \frac{1}{2}xy^2 + e^x + e^y 5$

 - C. $u = x^2y \frac{1}{2}xy^2 + e^{x+y} 5$ D. $u = x^2y + \frac{1}{2}xy^2 + e^x + e^y 5$
- 22、设函数 z = f(x, y) 在点 (x_0, y_0) 处可微,且 $f_x^{'}(x_0, y_0) = f_y^{'}(x_0, y_0) = 0$,则函数 f(x,y)在点 (x_0,y_0) 处【] .
 - A. 必有极值,可能是极大值,也可能是极小值
 - B. 可能有极值,也可能无极值
 - C. 必有极大值
 - D. 必有极小值
- 23、函数 $u = \sin x \sin y \sin z$ 满足 $x + y + z = \frac{\pi}{2}$ (x > 0, y > 0, z > 0) 的条件极值是
 - 1.

- A. 1 B. 0 C. $\frac{1}{6}$ D. $\frac{1}{8}$
- 24、平面 $2x+3y-z=\lambda$ 是曲面 $z=2x^2+3y^2$ 在点 $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ 处的切平面,则 $\lambda=$
 - 1.
 - A. $\frac{4}{5}$ B. $\frac{5}{4}$ C. 2 D. $\frac{1}{2}$

- 25、设a为非零常数,则极限 $\lim_{\substack{x\to a\\y}}\frac{\ln(1-xy)}{y}=$ 【

- A. -a B. 0 C. a D. 不存在

- 26、设 $u = \left(\frac{x}{y}\right)^z$,则 $\frac{\partial u}{\partial y}\Big|_{(1,2,3)} = \mathbf{I}$ 】.
- A. $-\frac{3}{8}$ B. $\frac{3}{16}$ C. $-\frac{3}{16}$ D. $\frac{3}{8}$
- 设函数 $u=x^3+y^3+z^3-3xyz$ 在点P处的梯度为零向量,则点P的坐标
 - (x, y, z) 必满足方程【
 - A. x = y = z B. $x = y \neq z$
- 28、设f(x,y)可微, $f(1, 1)=1, f_x'(1, 1)=a, f_y'(1, 1)=b$, 记
 - $\varphi(x) = f(x, f(x, f(x, x))), \quad \text{if } \frac{d}{dx} \varphi^2(x) \Big|_{x=0} = \mathbf{I}$

 - A. $a+ab+ab^2+b^3$ B. $2(a-ab+ab^2+b^3)$
 - C. $2(a+ab+ab^2+b^3)$ D. $2(a-ab-ab^2+b^3)$
- 29、函数 $f(x,y) = \begin{cases} \frac{x^2 y^3}{x^3 + y^9}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$ 在 (0, 0) 点处【

 - A. 极限不存在 B. 极限存在但不连续
 - C. 连续但不可微
- 可微 D.
- 30、设函数 f(x,y) 在点 $M_0(x_0,y_0)$ 处二阶偏导数都存在,则此函数在点 M_0 处
 - 1.
 - A. 一阶偏导数必连续
- B. 一阶偏导数不一定连续

C. 可微

所有方向导数都存在 D.

- 31、设 $z = x\sin(x + y)$,则 $dz|_{(\frac{\pi}{4}, \frac{\pi}{4})} =$ 【 】.
 - A. dx + dy B. dx dy C. dx

- 32、设 y = y(x,z) 由方程 $xyz = e^{x+y}$ 所确定,则 $\frac{\partial y}{\partial x} = \mathbf{I}$ 】.

 - A. $\frac{y(1-x)}{x(z-1)}$ B. $\frac{y(1-z)}{z(1-x)}$ C. $\frac{y(1-x)}{x(y-1)}$ D. $\frac{z(1-x)}{x(z-1)}$
- 33、设函数 $f(x,y) = y^2 x^2 + 1$,则点(0,0) 【

 - A. 是 f(x,y) 的极小值点 B. 是 f(x,y) 的极大值点
 - C. 不是 f(x,y) 的驻点
- D. 是 f(x, y) 的驻点但不是极值点