Fermat's Theorem Applications:

Compute 6¹⁰ mod 11= 6¹¹⁻¹ mod 11=1

If $a \equiv b \mod n$, then $a \mod n = b$

Find 3¹² mod 11

Properties of Modular arithmetic:

$$(a+b) \mod n = (a \mod n + b \mod n) \mod n$$

$$3^{12} \mod 11 = (3^{11} * 3) \mod 11 = ((3^{11} \mod 11) * (3 \mod 11) \mod 11 = (3 * 3) \mod 11 = 9$$

Second application:

$$a^{-1}$$
 mod $p = a^{p-2}$ mod p

$$8^{-1} \mod 17 = 8^{17-2} \mod 17 = 8^{15} \mod 17 = 15$$

Euler's Theorem:

First version: If a and n are coprime, then $a^{\emptyset(n)} \equiv 1 \pmod{n}$

Second version:It removes the condition that a and n should be coprime.if $n = P^* q$, a < n and k is an integer, then $a^{k^* \emptyset(n) - 1} \equiv a \pmod{n}$

Ø(n) is euler's t function

Ø(n) =Z_n*

Properties:

- 1. $\emptyset(1) = 0$
- 2. \emptyset (p)=p-1 if p ls prime
- 3. \emptyset (m * n) = \emptyset (m) * \emptyset (n) if m and n are relatively prime
- 4. \emptyset (p^e) = P^e P^{e-1}, If p is prime

Compute 6²⁴ mod 35 using Euler's theorem ANS :1 Compute 8⁻¹ mod 77 using Euler's theorem ANS :29

$$6^{24} \mod 35 = 6^{\emptyset(35)} \mod 35$$

$$\emptyset(7 * 5) = \emptyset(7) * \emptyset(5) = 6 * 4 = 24$$

$$\emptyset(240)=\emptyset(2^4*3^1*5^1)$$

 $\emptyset(240)=(2^4-2^3)*(3^1-3^0)*(5^1-5^0)=64$