

CBSE Class 12 Mathematics Chapter-01

Relation and Function

TYPES OF RELATIONS:

- **Empty Relation**: It is the relation R in X given by $R = \phi \subset X \times X$.
- Universal Relation: It is the relation R in X given by R = X × X.
- Reflexive Relation: A relation R in a set A is called reflexive if (a, a) ∈ R for every a ∈ A.
- Symmetric Relation: A relation R in a set A is called symmetric if (a₁, a₂) ∈ R implies that (a₂, a₁) ∈ R, for all a₁, a₂ ∈
- Transitive Relation: A relation R in a set A is called transitive if (a₁, a₂) ∈ R, and (a₂, a₃) ∈ R together imply that all a₁, a₂, a₃ ∈ A.
- EQUIVALENCE RELATION: A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
- Equivalence Classes: Every arbitrary equivalence relation R in a set X divides X into mutually disjoint subsets (Ai) called partitions or subdivisions of X satisfying the following conditions:

All elements of Ai are related to each other for all i.

No element of Ai is related to any element of Aj whenever $i \neq j$ $Ai \cup Ai = X$ and $Ai \cap Ai = \Phi_i i \neq j$

- · . These subsets ((A_i)) are called equivalence classes.
- For an equivalence relation in a set X, the equivalence class containing $a \in X$, denoted by [a], is the subset of X containing all elements b related to a.

**Function: A relation f: A ____B is said to be a function if every clement of A is correlated to a

Unique element in B.

*A is domain

* B is codomain

- A function $f: X \to Y$ is one-one (or injective), if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2, \ \forall x_1, x_2 \in X$.
- A function $f: X \to Y$ is **onto** (or **surjective**), if $y \in Y$, $\exists x \in X$ such that f(x) = y.
- A function $f: X \to Y$ is **one-one-onto** (or **bijective**), if f is both one-one and onto.
- The composition of function $f: A \to B$ and $g: B \to C$ is the function $gof: A \to C$ given by $gof(x) = g(f(x)), \forall x \in A$.
- A function $f: X \to Y$ is invertible, if $\exists g: Y \to X$ such that $gof = I_x$ and $fog = I_y$.
- A function $f: X \to Y$ is invertible, if and only if f is one-one and onto.
- Given a finite set X, a function f: X → X is one-one (respectively onto) if and only if
 f is onto (respectively one-one). This is the characteristics property of a finite set. This
 is not true for infinite set.
- A binary function * on A is a function * from A x A to A.
- An element $e \in X$ is the identity element for binary operation $*: X \times X \to X$, if $a*e=a=e*a \ \forall a \in X$.
- An element $e \in X$ is invertibel for binary operation $*: X \times X \to X$ if there exists $b \in X$ such that a*b*e*b*a, where e is the binary identity for the binary operation *. The element b is called the inverse of a and is denoted by a^{-1} .
- An operation * on X is **commutative**, if a*b=b*a, $\forall a,b$ in X.
- An operation * on X is associative, if (a*b)*c = a*(b*c), $\forall a,b,c$ in X.

