Histogramas

Elementos de Reconocimiento Visual

4to bimestre 2023

Histogramas

El histograma de la imagen nos da una idea de cómo es la imagen en términos de sus niveles de gris.

Los elementos del histograma de una imagen X son la frecuencia relativa de los niveles de gris presentes en la misma.

$$h_{n_i} = \frac{n_i}{NM}$$

donde

 $n_i = {\sf cantidad}$ de ocurrencias del nivel de gris i en la imagen X $NM = {\sf cantidad}$ de pixels.

El histograma de una imagen da una idea de la distribución de los niveles de gris presentes en la misma.

Ejemplo de una imagen de 4×4 con la tabla de valores y frecuencias

10	10	11	12	
9	9	9	5	
9	10	9	9	
8	8	8	1	

valor	frecuencia	valor	frecuencia	
0	0	8	3	
1	1	9	6	
2	0	10	3	
3	0	11	1	
4	0	12	1	
5	1	13	0	
6	0	14	0	
7	0	15	0	

La suma total de las frecuencias debe dar la cantidad total de pixels de la imagen.

Frecuencias Relativas

Sea r_i un nivel de gris, entonces

$$f_r(r_j) = \frac{n_j}{n}$$

donde n_j es la frecuencia absoluta y n es la cantidad total de pixels de la imagen.

En el ejemplo anterior la frecuencia relativa del valor de nivel de gris $r_j = 8$ es 0.1875.

Diferentes tipos de luminosidad

imagen oscura

histograma

Comparación de imágenes ecualizadas

imagen clara

histograma

imagen bajo contraste

histograma

imagen con contraste

histograma

Ecualización de Histogramas

- r variable aleatoria correspondiente a los niveles de gris de la imagen de entrada.
- s variable aleatoria correspondiente a los niveles de gris de la imagen de salida.
- $F_{\mathbf{r}}(r)$ función de distribución acumulada correspondiente a \mathbf{r} .

La ecualización del histograma consiste en encontrar una transformación que haga que la distribución del histograma de la imagen de salida tenga distribución uniforme.

Es decir que:

$$\mathbf{s} = T(\mathbf{r}), \ \mathbf{s} \sim U[0, L-1]$$

que es equivalente a:

$$s = F_{\mathbf{s}}(s)$$

T monótona creciente e inyectiva, entonces:

$$s = F_{\mathbf{s}}(s) = P(\mathbf{s} \le s) = P(T(r) \le s) = P(\mathbf{r} \le T^{-1}(s)) =$$
$$= F_{\mathbf{r}}(T^{-1}(s)) = F_{\mathbf{r}}(r)$$

Luego,

$$s = F_{\mathbf{r}}(r)$$

Veamos que efectivamente s tiene distribución uniforme:

$$\begin{split} F_{\mathbf{s}}(s) &= P(\mathbf{s} \leq s) = P(T(r) \leq s) = P(F_{\mathbf{r}}(r) \leq s) = \\ &= P(\mathbf{r} \leq F^{-1}s) = F_{\mathbf{r}}(F^{-1}s) = s \end{split}$$

y por lo tanto, s resulta una variable aleatoria con distribución uniforme.

Resultado de la ecualización de la imagen de Lena

Otro ejemplo de ecualización

Histogramas y acumulados antes y después de la ecualización

En la forma discreta

Definimos:

$$s_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n}$$

donde,

- ullet r_k : k-ésimo nivel de gris que varía en el intervalo [0,...,L-1]
- n: cardinal de la imagen
- $\frac{n_j}{n}$: frecuencia relativa del *j*-ésimo nivel de gris.

Notar que $s_{min} \leq s_k \leq 1$, para llevar el valor de gris al intervalo $[0,\ldots,L-1]$, aplicamos la transformación:

$$\hat{s}_k = \left[\frac{s_k - s_{min}}{1 - s_{min}} (L - 1) + 0.5 \right]$$

Especificación de histograma

- r: variable aleatoria de niveles de gris de la imagen de entrada
- $p_r(r)$ función de densidad de probabilidad.

Objetivo

Transformar r en s.

s variable aleatoria con $p_s(s)$ función de densidad de probabilidad especificada.

Definimos w variable aleatoria uniforme:

$$w \triangleq \int_0^r p_r(x) dx = F_r(r)$$

tal que satisfaga la relación:

$$w = \int_0^r p_s(x) dx = F_s(s)$$

Obtenemos:

$$s = F_s^{-1}(F_r(r))$$

Entonces, la transformación T tal que s=T(r), con $p_{\mathbf{s}}(s)$ especificada viene dada por:

$$T(r) = F_s^{-1}(F_r(r))$$

r y s variables aleatorias discretas

r y s toman valores x_i y y_i , $i=0,\ldots,L-1$ con probabilidades $p_r(x_i)$ y $p_s(y_i)$, respectivamente.

Definimos

$$w \triangleq \sum_{x_i=0}^r p_r(x_i)$$

$$\widetilde{w}_k \triangleq \sum_{y_i=0}^k p_s(y_i), \quad k = 0, \dots, L-1$$

Denotamos \dot{w} al \widetilde{w}_n tal que $\widetilde{w}_n - w \geq 0$ para el valor más chico de n.

$$\hat{n} = \min_{n} \{ n : \widetilde{w}_n - w \ge 0 \}$$
$$\dot{w} = \widetilde{w}_{\hat{n}}$$

Entonces

$$\dot{s} = y_{\hat{n}}$$

es la salida de la transformación buscada.

Ejemplo

Dados

•
$$x_i = 0, 1, 2, 3$$
 $p_r(x_i) = 0.25, i = 0, \dots, 3$

•
$$y_i = 0, 1, 2, 3$$
 $p_s(y_0) = 0, p_s(y_1) = p_s(y_2) = 0.5, p_s(y_3) = 0$

Hallar la transformación entre r y s

r	$\mathbf{p_r}(\mathbf{x_i})$	\mathbf{w}	$\widetilde{\mathbf{w}}_{\mathbf{k}}$	$\mathbf{\dot{w}}$	n	$\dot{\mathbf{s}}$
0	0.25	0.25	0.00	0.50	1	1
1	0.25	0.50	0.50	0.50	1	1
2	0.25	0.75	1.00	1.00	2	2
3	0.25	1.00	1.00	1.00	2	2

Modificación de histogramas

Objetivo

Encontrar el histograma modificado $\widetilde{\mathbf{h}}$ que sea más parecido a un histograma uniforme \mathbf{u} , pero que el residuo entre $\widetilde{\mathbf{h}}$ y el original $\mathbf{h_o}$ sea pequeño.

 ${f h}$ podría ser usado para obtener la transformación de niveles de gris T(r).

Problema de minimización

Suma pesada de dos objetivos:

$$\min_{\mathbf{h}} \|\mathbf{h} - \mathbf{h_o}\| + \lambda \|\mathbf{h} - \mathbf{u}\| \tag{1}$$

donde \mathbf{h} , $\mathbf{h}_{\mathbf{o}}$ y \mathbf{u} pertenecen a \mathbb{R}^{256} .

 $\lambda \in [0, \infty]$: parámetro de ajuste.

 $\mathbf{h_o}$: histograma de la imagen original.

u: histograma uniforme.

 $\lambda = 0$ correponde a la ecualización del histograma standard.

 $\lambda \to \infty$ preserva los detalles de la imagen original.

Ecualización ajustable de histogramas

una solución analítica de la ecuación (1) puede ser obtenida usando la norma euclídea:

$$\widetilde{\mathbf{h}} = \operatorname*{arg\,min}_{\mathbf{h}} \|\mathbf{h} - \mathbf{h_o}\|_2^2 + \lambda \|\mathbf{h} - \mathbf{u}\|_2^2$$

lo que resulta un problema de optimización cuadrática:

$$\widetilde{\mathbf{h}} = \underset{\mathbf{h}}{\operatorname{arg\,min}}[(\mathbf{h} - \mathbf{h_o})^t(\mathbf{h} - \mathbf{h_o}) + \lambda(\mathbf{h} - \mathbf{u})^t(\mathbf{h} - \mathbf{u})]$$

cuya solución es:

$$\widetilde{\mathbf{h}} = \frac{\mathbf{h_o} + \lambda \mathbf{u}}{1 + \lambda} = \frac{1}{1 + \lambda} \mathbf{h_o} + \frac{\lambda}{1 + \lambda} \mathbf{u}$$

el histograma modificado $\widetilde{\mathbf{h}}$ es el promedio pesado entre $\mathbf{h_o}$ y \mathbf{u} .

Ecualización standard de histogramas

Modificación de histogramas

 $\widetilde{\mathbf{h}}$, $\lambda=2$

 $\widetilde{\mathbf{h}}$ acumulado

imagen ecualizada

Condición de suavidad: el histograma modificado tiende a tener menos picos, la diferencia h(i)-h(i-1) puede ser usada para medir suavidad.

Consideremos la matriz $D \in \mathbb{R}^{255 \times 256}$ de diferencias bi-diagonal

$$\begin{bmatrix} -1 & 1 & 0 & 0 \dots & 0 \\ 0 & -1 & 1 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix}$$

la minimización tiene un término que penaliza la suavidad:

$$\min_{\mathbf{h}} \left\| \mathbf{h} - \mathbf{h_o} \right\|_2^2 + \lambda \left\| \mathbf{h} - \mathbf{u} \right\|_2^2 + \gamma \left\| D \mathbf{h} \right\|_2^2$$

$$\widetilde{\mathbf{h}} = ((1+\lambda)\mathbb{I} + \gamma D^t D)^{-1}(\mathbf{h_o} + \lambda \mathbf{u})$$

Modificación de histogramas

$$\widetilde{\mathbf{h}}$$
 , $\lambda=2$, $\gamma=100$

 $\widetilde{\mathbf{h}}$ acumulado

imagen ecualizada suave

Comparación de imágenes ecualizadas

imagen original

ecualizada
$$\lambda=2$$

ecualizada
$$\lambda=2$$
, $\gamma=100$