ECE 667

Spring 2013

Synthesis and Verification of Digital Circuits

Scheduling Algorithms Analytical approach - ILP

Scheduling – a Combinatorial Optimization Problem

- NP-complete Problem
- Optimal solutions for special cases and for ILP
 - Integer linear program (ILP)
 - Branch and bound
- Heuristics
 - iterative Improvements, constructive
- Various versions of the problem
 - Minimum latency, unconstrained (ASAP)
 - Latency-constrained scheduling (ALAP)
 - Minimum latency under resource constraints (ML-RC)
 - Minimum resource schedule under latency constraint (MR-LC)
- If all resources are identical, problem is reduced to multiprocessor scheduling (Hu's algorithm)
 - In general, minimum latency multiprocessor problem is intractable under resource constraint
 - Under certain constraints (G(VE) is a tree), greedy algorithm gives optimum solution

Integer Linear Programming (ILP)

Given:

- integer-valued matrix $A_{m \times n}$
- variables: $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$
- constants: $\mathbf{b} = (b_1, b_2, \dots, b_m)^T$ and $\mathbf{c} = (c_1, c_2, \dots, c_n)^T$
- Minimize: $c^T x$

subject to:

$$\begin{cases} A \mathbf{x} \leq \mathbf{b} \\ \mathbf{x} = (x_1, x_2, \dots, x_n) \text{ is an integer-valued vector} \end{cases}$$

- If all variables are continuous, the problem is called linear (LP)
- Problem is called Integer LP (ILP) if some variables x are integer
 - special case: 0,1 (binary) ILP

Linear Programming – example

- Variables: $x = [x_1, x_2]^T$
- Objective function: max $F = -x_1 + x_2 = [-1 \ 1] [x_1, x_2]^T$

ILP Model of Scheduling

Binary decision variables x_{ii}

$$x_{il} = 1$$
 if operation v_i starts in step l ,
otherwise $x_{il} = 0$
 $i = 0, 1, ..., n$ (operations)
 $l = 1, 2, ..., \lambda + 1$ (steps, with limit λ)

Start time of each operation vi is unique:

$$\sum_{l} x_{il} = 1, \quad i = 0, 1, \dots, n$$

Note:
$$\sum_{l} x_{il} = \sum_{l=t_{i}}^{l=t_{i}} x_{il}$$
where:
$$X_{il} = \sum_{l=t_{i}}^{l=t_{i}} x_{il}$$

 t_i^S = time of operation I computed with ASAP

 $t \stackrel{L}{=}$ time of operation I computed with ALAP

ILP Model of Scheduling - constraints

• Start time for *v_i*:

$$t_i = \sum_{l} l \cdot x_{il}$$

Precedence relationships must be satisfied

$$\sum_{l} l \cdot x_{il} \ge \sum_{l} l \cdot x_{jl} + d_{j}, \quad i, j = 0, 1, \dots, n \quad : (v_{j}, v_{i}) \in E$$

- Resource constraints must be met
 - let upper bound on number of resources of type k be a_k

$$\sum_{i:\mathcal{T}(v_i)=k} \sum_{m=l-d_i+1}^{l} x_{im} \le a_k, \quad k=1,2,\ldots,n_{res}, \quad l=1,2,\ldots,\overline{\lambda}+1$$

Latency Minimization - Objective Function

- Function to be minimized: $F = c^T t$, where $t_i = \sum_l l \cdot x_{il}$
- Minimum latency schedule: $\mathbf{c} = [0, 0, ..., 1]^T$
 - $F = t_n = \sum_l l X_{nl}$
 - if sink has no mobility $(x_{n,s} = 1)$, any feasible schedule is optimum
- ASAP: $c = [1, 1, ..., 1]^T$
 - finds earliest start times for all operations $\sum_{i} \sum_{l} \mathbf{x}_{il}$
 - or equivalently:

$$x_{6,1} + 2x_{6,2} + 2x_{7,2} + 3x_{7,3} + x_{8,1} + 2x_{8,2} + 3x_{8,3} + 2x_{9,2} + 3x_{9,3} + 4x_{9,4} + x_{10,1} + 2x_{10,2} + 3x_{10,3} + 2x_{11,2} + 3x_{11,3} + 4x_{11,4}$$

Minimum-Latency Scheduling under Resource Constraints (ML-RC)

Let t be the vector whose entries are start times

$$t = [t_0, t_1, ..., t_n]$$

Formal ILP model

minimize $\mathbf{c}^T \mathbf{t}$ such that

$$\sum_{l} x_{il} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} l \cdot x_{il} - \sum_{l} l \cdot x_{jl} - d_{j} \geq 0, \quad i, j = 0, 1, \dots, n : (v_{j}, v_{i}) \in E$$

$$\sum_{i:\mathcal{T}(v_i)=k} \sum_{m=l-d_i+1}^{l} x_{im} \leq a_k, \quad k=1,2,\ldots,n_{res}, \quad l=1,2,\ldots,\overline{\lambda}+1$$

$$x_{il} \in \{0, 1\}, i = 0, 1, \dots, n, l = 1, 2, \dots, \overline{\lambda} + 1$$

Example 1 – multiple resources

- Two types of resources
 - MULT
 - ALU
 - Adder, Subtractor
 - Comparator
- Each take 1 cycle of execution time
- Assume upper bound on latency, L = 4
- Use ALAP and ASAP to derive bounds on start times for each operator

Start time must be unique

Recall:
$$\sum_{l} \mathbf{x}_{il} = \sum_{l=t_{i}}^{l=t_{i}} \mathbf{x}_{il}$$

where:

 $t_i^S = t_i$ computed with ASAP

 $t \stackrel{L}{=} t_i$ computed with ALAP

$$x_{0,1} = 1$$

$$x_{1,1} = 1$$

$$x_{2,1} = 1$$

$$x_{3,2} = 1$$

$$x_{4,3} = 1$$

$$x_{5,4} = 1$$

$$x_{6,1} + x_{6,2} = 1$$

$$x_{7,2} + x_{7,3} = 1$$

$$x_{8,1} + x_{8,2} + x_{8,3} = 1$$

$$x_{9,2} + x_{9,3} + x_{9,4} = 1$$

$$x_{10,1} + x_{10,2} + x_{10,3} = 1$$

$$x_{11,2} + x_{11,3} + x_{11,4} = 1$$

$$x_{n,5} = 1$$

Precedence constraints

Note: only non-trivial ones listed

$$2x_{9,2} + 3x_{9,3} + 4x_{9,4} - x_{8,1} - 2x_{8,2} - 3x_{8,3} - 1 \ge 0$$

$$2x_{11,2} + 3x_{11,3} + 4x_{11,4} - x_{10,1} - 2x_{10,2} - 3x_{10,3} - 1 \ge 0$$

$$4x_{5,4} - 2x_{7,2} - 3x_{7,3} - 1 \ge 0$$

$$5x_{n,5} - 2x_{9,2} - 3x_{9,3} - 4x_{9,4} - 1 \ge 0$$

$$5x_{n,5} - 2x_{11,2} - 3x_{11,3} - 4x_{11,4} - 1 \ge 0$$

 $2x_{7,2} + 3x_{7,3} - x_{6,1} - 2x_{6,2} - 1 \ge 0$

Resource constraints

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$

$$x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \le 2$$

$$x_{7,3} + x_{8,3} \le 2$$

$$x_{10,1} \le 2$$

$$x_{9,2} + x_{10,2} + x_{11,2} \le 2$$

$$x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \le 2$$

$$x_{5,4} + x_{9,4} + x_{11,4} \le 2$$

- Objective function (some possibilities): $F = c^T t$
- $F1: \mathbf{c} = [0, 0, ..., 1]^T$
 - Minimum latency schedule
 - since sink has no mobility $(x_{n,5} = 1)$, any feasible schedule is optimum
- $F2: \mathbf{c} = [1, 1, ..., 1]^T$
 - finds earliest start times for all operations $\sum_{i} \sum_{l} X_{il}$
 - or equivalently:

$$x_{6,1} + 2x_{6,2} + 2x_{7,2} + 3x_{7,3} + x_{8,1} + 2x_{8,2} + 3x_{8,3} + 2x_{9,2} + 3x_{9,3} + 4x_{9,4} + x_{10,1} + 2x_{10,2} + 3x_{10,3} + 2x_{11,2} + 3x_{11,3} + 4x_{11,4}$$

Example Solution 1:

Min. Latency Schedule Under Resource Constraint

Minimum Resource Scheduling under Latency Constraint (MR-LC)

- Special case
 - Identical operations, each executing in one cycle time
- Given a set of operations $\{v_1, v_2, ..., v_n\}$,
 - find the *minimum number* of operation units needed to complete the execution in *k* control steps (*MR-LC problem*)
- Integer Linear Programming (ILP):
 - Let y_0 be an integer variable (# units to be minimized)
 - for each control step l = 1, ..., k, define variable x_{il} as

$$x_{il} = \begin{cases} 1, & \text{if computation } v_i \text{ is executed in the } l\text{-}th \text{ control step} \\ 0, & \text{otherwise} \end{cases}$$

- define variable y_i (number of units in control step l)

$$\mathbf{y}_l = \mathbf{x}_{1l} + \mathbf{x}_{2l} + \dots + \mathbf{x}_{nl} = \Sigma_i \mathbf{x}_{il}$$

ILP Scheduling – simple MR-LC

Minimize: y₀

Subject to:

- Each computation v_i can start only once: $\sum_{l} x_{il} = 1, i = 0, 1, ..., n$ $x_{il} = 1$ for only one value of l (control step) ("vertical" constraint)
- For each precedence relation:
 - If v_j has to be executed after v_i

$$x_{j1} + 2 x_{j2} + ... + k x_{jk} \ge x_{i1} + 2 x_{i2} + ... + k x_{ik} + d(i)$$

- $y_l \le y_0$ for all l = 1, ..., k (steps)
- Meaning of y0: upper bound on the number of units, to be minimized

Example 2 - Formulation

$$n = 6$$
 computations
 $k = 3$ control steps
 $d(i) = 1$

Execution constraints:

$$x_{i1} + x_{i2} + x_{i3} = 1$$
 for $i = 1, ..., \underline{6}$

Resource constraints:

$$y_l = x_{1l} + x_{2l} + x_{3l} + x_{4l} + x_{5l} + x_{6l}$$
 for $l = 1, ..., 3$ (steps)

Dependency constraints: e.g. V₄ executes after V₁

$$x_{41} + 2x_{42} + 3x_{43} \ge x_{11} + 2x_{12} + 3x_{13} + 1$$

. etc

Example 2 - Solution

- Minimize: y₀
- Subject to:

$$y_l \le y_0$$
 for $l = 1, ..., 3$

- Starting time constraints ...
- Precedence constraints ...
- One possible solution:

$$y_0 = 2$$

 $x_{11} = 1$, $x_{21} = 1$,
 $x_{32} = 1$, $x_{42} = 1$,
 $x_{53} = 1$, $x_{63} = 1$.

all other $x_{ii} = 0$

Minimum Resource Scheduling under Latency Constraint – general MR-LC

- General case: several operation units (resources)
- Given
 - vector $c = [c_1, ..., c_r]$ of resource costs (areas)
 - vector $\mathbf{a} = [a_1, ..., a_r]$ of number of resources (unknown)
- Minimize total cost of resources
 min c^Ta
- Resource constraints are expressed in terms of variables a_k = number of operators of type k

Example 3 – Min. Resources under Latency Constraint

- Let c = [5, 1]
 - MULT costs = 5 units of area, $c_1 = 5$
 - ALU costs = 1 unit of area, $c_2 = 1$
- Starting time constraint as before
- Sequencing constraints as before
- Resource constraints similar to ML-RC, but expressed in terms of unknown variables a₁ and a₂

a₁ = number of multipliers

a₂ = number of ALUs (add/sub)

Objective function:

$$c^T a = 5 \cdot a_1 + 1 \cdot a_2$$

Resource constraints

Example 3 - Solution

Minimize

$$\mathbf{c}^{\mathsf{T}}\mathbf{a} = 5 \cdot a_1 + 1 \cdot a_2$$

• Solution with cost = 12

$$a1 = 2$$

$$a2 = 2$$

Precedence-constrained Multiprocessor Scheduling

- All operations performed by the same type of resource
 - intractable problem; even if operations have unit delay
 - except when the G_c is a tree (then it is optimal and O(n))
 - Hu's algorithm

minimize
$$\mathbf{c}^{T}\mathbf{t}$$
 such that
$$\sum_{l} x_{il} = 1, \quad i = 0, 1, ..., n$$

$$\sum_{l} l \cdot x_{il} - \sum_{l} l \cdot x_{jl} \geq 1, \quad i, j = 0, 1, ..., n : (v_{j}, v_{i}) \in E$$

$$\sum_{l} x_{il} \leq a, \quad l = 1, 2, ..., \overline{\lambda} + 1$$

$$x_{il} \in \{0, 1\}, \quad i = 0, 1, ..., n, \quad l = 1, 2, ..., \overline{\lambda} + 1$$