Bioinformatics screening regarding herbal components that targetedly regulate the function of tumourassociated macrophages

Ga-Young La
Molecular Cell and Developmental Biology Lab
Department of Biological Science
Konkuk University

Network Biology

- Gene society라 할 수 있는 cellular system
- 동일한 유전자도 어떤 gene set과 상호작용 하는지에 의해 이질적인 기능을 나타낼 수 있음 -> pleiotropy
- 네트워크의 개발과 그 생물학적 응용에 집중하는 연구분야를 network biology

유전자 네트워크의 종류와 모델링 기법

- system을 node와 edge로 모델링
- · node는 component, edge는 relationship
 - 1 protein-protein interaction network
 - 2 transcriptional regulatory network
 - 3 functional gene network

functional gene network 생물학적 응용기법

- 1. gene의 새로운 기능 예측
- 2. gene의 기능상실이 개체 형질에 가져올 결과 예측
- 3. essential gene의 예측
- 4. disease causal gene과 그들의 modulator 예측

Gene Ontology

- Three examples illustrate the structure and style used by GO to represent the gene ontologies and to associate gen es with nodes within an ontology.
- The ontologies are built from structured, controlled vocabulary.
- The illustrations are the products of work in progress and are subject to change when new evidence becomes availa ble.
- For simplicity, not all known gene annotations have been in the figures.

Knowledge base extension

Disease/drug mapping is the process to map all known disease genes (pink) and all known drug targets (light blue) against all KEGG pathway maps.

Minoru Kanehisa et al. Nucl. Acids Res. 2011;nar.gkr988

Introduction

- Tumour-associated macrophages(TAMs) are the most common type of inflammatory cells in tumour stroma.
- Conventional cancer treatments include surgery, radiotherapy and chemotherapy, but the use of these treatments is greatly limited due to poor prognoses and severe side-effects.
- Traditional Chinese medicinal herbs are being employed as new anticancer drugs.
- In the present study, they used modular analysis bioinformatics techniques to screen for **the differentially expressed genes in TAMs** that play a role in their core functional groups.

Materials and methods

- Screening for differentially expressed genes in TAMs.
- Establishing and analyzing the modules of the differentially expressed genes.
- Screening for traditional Chinese medicine components that regulate the functional modules.
- Literature review and the generation of a regulatory network connecting herbal components and modules.
- Statistical analysis.

Summary of 4 data series

Series	Array platform	Samples	Experiment design	Group
GSE38283	GPL1261	GSM937959	Macrophages from normal brain, Rep 1	Contro
Expression data	Affymetrix	GSM937960	Macrophages from normal brain, Rep 2	Contro
from normal	mouse genome	GSM937961	Macrophages from normal brain, Rep 3	Contro
brain/glioma	430 2.0 array	GSM937962	Macrophages from Gl261, Rep 1	TAM
associated		GSM937963	Macrophages from Gl261, Rep 2	TAM
macrophages		GSM937964	Macrophages from Gl261, Rep 3	TAM
		GSM937965	Macrophages from Gl261, Rep 4	TAM
GSE18804	GPL6246	GSM466436	Macrophage unconditioned, Rep 1	Contro
Expression data from	Affymetrix	GSM466437	Macrophage unconditioned, Rep 2	Contro
in vitro-induced	mouse gene 1.0	GSM466438	Macrophage unconditoned, Rep 3	Contro
non-hypoxic TAMs	ST array	GSM466439	TAMs_human glioblastoma-conditioned, Rep 1	TAM
		GSM466440	TAMs_human glioblastoma-conditioned, Rep 2	TAM
		GSM466441	TAMs_human glioblastoma-conditioned, Rep 3	TAM
		GSM466442	TAMs_human colorectal adenocarcinoma- conditioned, Rep 1	TAM
		GSM466443	TAMs_human colorectal adenocarcinoma- conditioned, Rep 2	TAM
		GSM466444	TAMs_human colorectal adenocarcinoma- conditioned, Rep 3	TAM
GSE18404	GPL9298	GSM458919	TAM, Rep 1	TAM
High-density gene	Nimbelgen	GSM458920	TAM, Rep 2	TAM
expression analysis of	mouse 35K	GSM458921	TAM, Rep 3	TAM
TAMs from mouse	array	GSM458922	TAM, Rep 4	TAM
mammary tumours	-	GSM458923	Splenic Macrophage, Rep 1	Contro
		GSM458924	Splenic Macrophage, Rep 2	Contro
		GSM458925	Splenic Macrophage, Rep 3	Contro
		GSM458926	Splenic Macrophage, Rep 4	Contro
GSE36047	GPL13252	GSM879917	Macrophage cultured for 6 h	Contro
Macrophages in	Agilent-027114	GSM879918	Macrophage cocultured with tumour cells	TAM
invadopodia	human 8x60 k		(DU-145) for 6 h	
formation	microarray			

Screening the gene modules.

Among the 4 groups of TAM expression profiles, a total of 4,753 differentially expressed genes were identified.

PPI network - 2,407 edges and 1,501 nodes.

Screening the gene modules.

CFinder software was used to identify modules within the subnetworks.

k = 4, 6 modules were identified that had a total of 46 genes.

Functional analyses of the gene modules.

DAVID software was used to conduct a GO_BP analysis of each module.

The top 10 scores were plotted as a bar chart.

Functional analyses of the gene modules.

DAVID software was also used to perform a pathway analysis of each module.

The top 10 scores were plotted as a bar chart.

Herbal components that regulate the gene modules.

The genes from each module were mapped with the differentially expressed genes found from the c-map database, allowing us to determine the relationships between the genes in each module and the tested small molecules.

Potential new anticancer drugs.

Potential new anticancer drugs that regulate the genes in the 6 core modules were identified through literature review.

the 44 determined herbal small molecules

Creating a regulatory network connecting the herbal components and the modules.

Combined with the 44 herbal components and the 6 modules and the results of the literature review.

