

Assignment 3

Mostafa Mahmoud Abdelwahab Nofal Nada Abdellatef Shaker Seddik Hadeer Mamoduh Abdelfattah Mohammed GRUOP | Part 1: Calculations 1. Use the k-means algorithm and Euclidean distance to cluster the following 5 data points into 2 clusters: A1=(2,5), A2=(5,8), A3=(7,5), A4=(1,2), A5=(4,9). Suppose that the initial centroids (centers of each cluster) are A2 and A4. Using k-means, cluster the 5 points and show the followings for one iteration only:

(a) Show step-by-step the performed calculations to cluster the 5 points.

C1=A2 C2=A4

1. Calculating distance between A1 and C1:

d (A1, C1) =
$$\sqrt{(5-2)^2 + (8-5)^2} = 3\sqrt{2}$$

2. Calculating distance between A1 and C2:

d (A1, C2) =
$$\sqrt{(1-2)^2 + (2-5)^2} = \sqrt{10}$$

3. Calculating distance between A2 and C1:

d (A2, C1) =
$$\sqrt{(5-5)^2 + (8-8)^2} = 0$$

4. Calculating distance between A2 and C2:

d (A2, C2) =
$$\sqrt{(5-2)^2 + (1-8)^2} = \sqrt{58}$$

5. Calculating distance between A3 and C1:

d (A3, C1) =
$$\sqrt{(5-7)^2 + (8-5)^2} = \sqrt{13}$$

6. Calculating distance between A3 and C2:

d (A3, C2) =
$$\sqrt{(1-7)^2 + (2-5)^2} = 3\sqrt{5}$$

7. Calculating distance between A4 and C1:

d (A4, C1) =
$$\sqrt{(5-1)^2 + (8-2)^2} = 2\sqrt{13}$$

8. Calculating distance between A4 and C2:

d (A4, C2) =
$$V(1-7=1)^2 + (2-2)^2 = 0$$

9. Calculating distance between A5 and C1:

d (A5, C1) =
$$V$$
 (5-4) 2 +(8-9) 2 = V 2

10. Calculating distance between A5 and C2:

d (A5, C2) =
$$\sqrt{(1-4)^2 + (2-9)^2} = \sqrt{58}$$

Conclusion:

Given Points	Distance from	Distance from	Points belongs to
	center of cluster	center of cluster	cluster
	(1)	(2)	
A1(2,5)	3√2	√10	2
A2(5,8)	0	√58	1
A3(7,5)	√13	3√5	1
A4(1,2)	2√13	0	2
A5(4,9)	√2	√58	1

Recalculate the mean of each cluster:

- -New center of cluster (1) = ((5+7+4)/3), (8+5+9)/3) = (5.33,7.33)
- -New center of cluster (2) = ((2+1)/2), (5+2)/2) = (1.5,3.5)

(b) Draw a 10 by 10 space with all the clustered 5 points and the coordinates of the

c)Calculate the silhouette score and WSS score:

1.WSS

$$WSS = \sum_{i=1}^{m} (x_i - c_i)^2$$

Where x_i = data point and c_i = closest point to centroid

WSS = $(2-1.5)^2 + (5-3.5)^2 + (5-5.33)^2 + (8-7.33) + (7-5.33)^2 + (5-7.33) + (1-1.5)^2 + (2-3.5)^2 + (4-5.33)^2 + (9-7.33)^2$

WSS=18.3334

2. silhouette:

$$s(i) = rac{b(i) - a(i)}{\max\{a(i),b(i)\}}$$
 , if $|C_i| > 1$

and

$$s(i)=0$$
, if $|C_i|=1$

Cluster 1:

Cluster 2:

calculation of A3:

d (A3, A2) =
$$\sqrt{(5-7)^2 + (8-5)^2} = \sqrt{13}$$

d (A3, A5) =
$$\sqrt{(4-7)^2 + (9-5)^2} = 5$$

-a(i) for A3 =
$$(\sqrt{13} + 5)/2 = 4.3$$

d (A3, A4) =
$$\sqrt{(1-7)^2 + (2-5)^2} = 3\sqrt{5}$$

d (A3, A1) =
$$\sqrt{(2-7)^2 + (5-5)^2} = 5$$

-b(i) for A3 =
$$(3\sqrt{5} + 5)/2 = 5.854$$

S (i) for A3 = (5.854-4.3)/5.854 =-777/2927 =0.265

calculation of A2:

d (A2, A3) =
$$\sqrt{(5-7)^2 + (8-5)^2} = \sqrt{13}$$

d (A2, A5) =
$$V (5-4)^2 + (8-9)^2 = V2$$

-a(i) for A2 =
$$(\sqrt{13} + \sqrt{2})/2 = 2.5$$

d (A2, A4) =
$$\sqrt{(5-1)^2 + (8-2)^2} = 2\sqrt{13}$$

d (A2, A1) =
$$V$$
 (5-2) 2 +(8-5) 2 =3 V 2

-b(i) for A2 =
$$(3\sqrt{2} + 2\sqrt{13})/2 = 5.726$$

calculation of A5:

d (A5, A3) =
$$\sqrt{(4-7)^2 + (9-5)^2} = 5$$

d (A5, A2) =
$$V$$
 (5-4) 2 +(8-9) 2 = V 2

-a(i) for A5 =
$$(5 + \sqrt{2})/2 = 3.2$$

d (A5, A4) =
$$V (1-4)^2 + (2-9)^2 = V58$$

d (A5, A1) =
$$\sqrt{(2-4)^2 + (5-9)^2} = 2\sqrt{5}$$

-b(i) for A5 =
$$(2\sqrt{5}+\sqrt{58})/2=6.043$$

S (i) for A5=(6.043-3.2)/ 6.043= 0.47

calculation of A1:

d (A1, A4) =
$$\sqrt{(1-2)^2 + (2-5)^2} = \sqrt{10} = 3.16$$

-a(i) for A1 = 3.16

d (A2, A1) =
$$\sqrt{(5-2)^2 + (8-5)^2} = 3\sqrt{2}$$

d (A5, A1) =
$$V (2-4)^2 + (5-9)^2 = 2V5$$

d (A3, A1) =
$$\sqrt{(2-7)^2 + (5-5)^2} = 5$$

-b(i) for A1 =
$$(2\sqrt{5}+3\sqrt{2}+5)/3=4.571$$

S(i) for A1= $(4.571-\sqrt{10})/4.571=0.308$

calculation of A4:

d (A1, A4) =
$$V (1-2)^2 + (2-5)^2 = V10 = 3.16$$

-a(i) for A4=3.16

d (A3, A4) =
$$\sqrt{(1-7)^2 + (2-5)^2} = 3\sqrt{5}$$

d (A2, A4) =
$$V$$
 (5-1) 2 +(8-2) 2 =2 V 13

d (A5, A4) =
$$V (1-4)^2 + (2-9)^2 = V58$$

-b(i) for A4 =
$$(2\sqrt{13}+3\sqrt{5}+\sqrt{58})/3=7.178$$

$$S(i)$$
 for A1= $(7.178-V10)/7.178=0.5594$

$$AVR_of_S(i) = (0.5594 + 0.308 + 0.47 + 0.563 + 0.265)/5$$

= 0.43308

Part 2: Programming

In this task, scikit-learn is used to implement Logistic Regression (LR) and K-Nearest Neighbor (K-NN) classifiers on the provided Diabetic dataset. The dataset has been standardized and split into training and testing. Through this assignment, the first 576 rows (75%) are used for training and the remaining 192 rows (25%) are used for testing. There are 2 classes in this dataset, and each sample in the provided dataset has 8 features.

```
    Read the dataset

✓ [4] data = pd.read_csv("/content/Assignment3_dataset (1).csv")
```

We read the dataset and split it into training and testing datasets.

```
Split to features and label

[9] x_train = train_data.iloc[:,:-1]
    x_test = test_data.iloc[:,:-1]

y_train = train_data.iloc[:,-1:]
    y_test = test_data.iloc[:,-1:]
```

1. Apply LR and KNN Models and their accuracies:

a. Logistic Regression:

Accuracy for LR:

b. K-Nearest Neighbor

Accuracy for KNN:

2. Plot TSNE diagram for training and testing dataset

2) The best number of clusters for k-means clustering algorithm:

a) Plot the silhouette score vs the number of clusters.

- b) Determine the optimal number of clusters for k-Means
 - Best K value is 2 and its score is 0.26114611150604655

c) Plot the clustered data with optimum number of clusters which was 2.

2) Apply the following Dimensionality Reduction (DR) methods:

a) KNN model using PCA

```
accuracy_dic_KNN={}
accuracy_list_KNN=[]
for i in range(2,8):
    pca_KNN=PCA_function(X,i)
    pca_x_train_KNN, pca_x_test_KNN, y_train_pca_knn, y_test_pca_knn = pca_KNN[0:576], pca_KNN[576:], Y[0:576], Y[576:]

pca_KNN_model = KNeighborsClassifier()
    pca_KNN_model = KNN_model.fit(pca_x_train_KNN, y_train.values.ravel())
    pca_y_pred_KNN = KNN_model.predict(pca_x_test_KNN)

accuracy_list_KNN.append(accuracy_score(y_test, pca_y_pred_KNN)*100)
best_n= accuracy_list_KNN.index(max(accuracy_list_KNN))+2
    max_acc=max(accuracy_list_KNN)
print("Best_value_of n_components for KNN: ",best_n," with maximum accuracy ",max(accuracy_list_KNN))
accuracy_dist_KNN.append(accuracy_score(y_test, y_pred_KNN)*100)
accuracy_dic_KNN=Loading._me(accuracy_dic_KNN)
accuracy_df_KNN=Loading._me(accuracy_dic_KNN)
ax=sns.barplot(x="n-component", y='accuracy', data=accuracy_df_KNN| 'n-component")]).set(title='KNN n-components_vs_accuracy')
```


b) Logistic Regression model using PCA (n components=n, random state=0)

```
accuracy_dic={}
accuracy_listLR=[]
for i in range(2,8):
 pca_LR=PCA_function(X,i)
 pca_x_train_LR, pca_x_test_LR, y_train_pca_LR, y_test_pca_LR = pca_LR[0:576], pca_LR[576:], Y[0:576], Y[576:]
 pca_LR_model = LogisticRegression()
 pca_LR_model = pca_LR_model.fit(pca_x_train_LR, y_train.values.ravel())
 pca_y_pred_LR = pca_LR_model.predict(pca_x_test_LR)
 accuracy_listLR.append(accuracy_score(y_test, pca_y_pred_LR)*100)
best_n2= accuracy_listLR.index(max(accuracy_listLR))+2
max_acc2=max(accuracy_listLR)
print("Best value of n components for LR: ",best_n2," with maximmum accuracy ",max(accuracy_listLR))
accuracy_listLR.append(accuracy_score(y_test, y_pred_LR)*100)
accuracy_dic={"n-component":[2,3,4,5,6,7,8],"accuracy":accuracy_listLR}
accuracy_df=pd.DataFrame(accuracy_dic)
```

Best value of n components for LR: 7 with maximum accuracy 78.64

c) 2D TSNE plots, one for the training set and one for the test set using best n-components from PCA dimensionality reduction.

LR:

Training:

Testing:

KNN:

Training:

Testing:

3) Feature Selection:

a) Filter Methods

```
def filter_selecton(x_train1, y_train1, x_test1, y_test1, model_name,m):
 accuracy_dic={}
 accuracy_list=[]
accuracy_list2=[]
model = model_name
 for i in range(2,9):
   fsm = SelectKBest(mutual info classif, k=i)
   acc = select_feature(x_train1, y_train1, x_test1, y_test1, fsm, model)
    accuracy_list.append(acc)
 print('max mutal',max(accuracy_list))
 best_n=accuracy_list.index(max(accuracy_list))+2
 print("Best value of n components: ",best_n, "from Mutual information for a discrete target filter method")
 if m=='LogisticRegression':
   accuracy_list.append(max_acc2)
   accuracy_list.append(max_acc)
 accuracy_dic={"n-component":[2,3,4,5,6,7,8,"PCA baseline"],"accuracy":accuracy_list}
accuracy_df=pd.DataFrame(accuracy_dic)
 ax=sns.barplot(x="n-component", y='accuracy', data=accuracy_df,

palette=["b" if x!='PCA baseline' else 'r' for x in accuracy_df['n-component']]).set(title=' Mutual information for a discrete target windows)
                                                                                                                              Activate Windows
```

I. Filter Methods using Information Gain on LR model:

- Maximum Information Gain: 78.64
- Best value of n components: 4 from Mutual information for a discrete target filter method

II. Filter Methods using Information Gain on KNN model:

- Maximum Information Gain: 77.08
- Best value of n components: 6 from Mutual information for a discrete target filter method

b) Wrapper Methods: Function to fit, transform and predict the data

```
164] def wrapper_select_feature(X_train, y_train, X_test, y_test, label, model,i):
       fs = SFS(model,
                k_features=i,
                forward=label,
                verbose=2,
                scoring='roc_auc',
                cv=4)
       fs.fit(np.array(X_train), y_train.values.ravel())
       filtered_features= X_train.columns[list(fs.k_feature_idx_)]
       l=list(filtered_features)
       X_train_new = X_train.loc[:,1]
       X_test_new = X_test.loc[:,1]
       model.fit(X_train_new, y_train.values.ravel())
      y pred = model.predict(X test new)
       acc = accuracy_score(y_test, y_pred) * 100
       return acc, X_train_new, X_test_new
```

Function to determine the best features based on maximum accuracy and plot it with the number of features

```
def wrapper_selecton(x_train1, y_train1, x_test1, y_test1, model_name,m):
    accuracy_dic-()
    accuracy_dis-()
    acc
```

I. Wrapper Method using Forward on KNN model:

- Maximum forward accuracy: 76.5625
- Best value of n components: 3 using forward wrapper method with KNN

II. Wrapper Method using Forward on LR model:

- Maximum forward accuracy: 78.645833333333334
- Best value of n components: 3 forward wrapper method with LR

- c) Plot TSNE for training and testing dataset after Feature Selection using forward rapper method.
 - i. LR

Training

Testing

ii. KNN

Training

Testing

5) Choose best k from DR:

silhouette score vs the number of clusters

Best K value is 2 and its score is 0.27

Q6) Self Organizing Map

We used the best features from question 3 which was 3 to train SOM.

Loop through the 30 neurons

```
[56]
      1 from minisom import MiniSom
      2 def minisom sil(data, dim):
          s = []
          for i in range(2,31):
            som shape = (i, 1)
            som = MiniSom(som shape[0], som shape[1],dim, random seed=0)
            som.train batch(data, 1000)
            # each neuron represents a cluster
            winner_coordinates = np.array([som.winner(x) for x in data]).T
     10
            # with np.ravel multi index we convert the bidimensional
            # coordinates to a monodimensional index
     11
            cluster_index = np.ravel_multi_index(winner_coordinates, som_shape)
     12
     13
            s.append(silhouette score(data, cluster index))
     14
          best_k(data, 31)
     15
```

Plotting the silhouette score for the 30 neurons

The optimal number of neurons for SOM is 2

We trained a new MiniSom model with our best number of neurons to calculate the initial and final weights for it before and after training.

```
[58] 1 from minisom import MiniSom
2 som_shape = (2, 1)
3 som = MiniSom(som_shape[0], som_shape[1],3, random_seed=0)
4 initial_weights = som.get_weights().copy()
5 som.train_batch(np.array(x_best_pca), 1000)
6 final_weights = som.get_weights().copy()
7
8 winner_coordinates = np.array([som.winner(x) for x in np.array(x_best_pca)]).T
9 cluster_index = np.ravel_multi_index(winner_coordinates, som_shape)
```

Initial Weights

```
[59] 1 initial_weights

array([[[ 0.20053839,  0.88405308,  0.42217829]],

[[ 0.26298257, -0.44732694,  0.8548326 ]]])
```

Final Weights

```
[60] 1 final_weights

array([[[ 0.30397215, -0.03699393, -0.03066724]],

[[-0.15368857, -0.13045023, -0.09615449]]])
```

In our case, the shape of our weights is (2,1,8) so we should reshape it to be able to plot them, so we reshaped them to (2,3).

Initial Weights Plot

Final Weights Plot

Q7) SOM Algorithm

Tune the hyperparameters epsilon and minpoints to get the clusters that are equal to our number of clusters in question 6 which was 2 after filtering the noise.

```
1 from sklearn.cluster import DBSCAN
2 clusters_2 = []
3 epsilon_ = np.linspace(0.3, 0.7, 50).tolist()
4 minpoints_ = np.arange(2, 16).tolist()
6 for i in epsilon_:
   for j in minpoints_:
     model = DBSCAN(eps=i, min_samples=j).fit(X)
     Clusters = list(np.unique(model.labels_))
     DB_Predict = model.fit_predict(X)
     if -1 in Clusters:
      Clusters.remove(-1)
      if len(Clusters) == 2:
        list1.append((len(Clusters),
                 silhouette_score(X ,DB_Predict, random_state=0)))
        clusters_2.extend(list1)
      list1 = []
```

We used the itemgetter library to sort our list based on the highest silhouette score.

```
1 from operator import itemgetter
2
3 top_sil = sorted(clusters_2, key = itemgetter(3), reverse = True)
4 top_sil_df = pd.DataFrame(top_sil, columns = ["Cluster_num", "Epsilon", "Minpoints", "Silhouette"])
5 top_sil_df[:10]
```

Output of the top 10 sorted combinations of epsilon and minpoints.

5	5 top_sil_df[:10]					
	Cluster_num	Epsilon	Minpoints	Silhouette		
0	2	0.446939	2	0.427027		
1	2	0.430612	2	0.416000		
2	2	0.422449	2	0.413268		
3	2	0.414286	2	0.407059		
4	2	0.438776	2	0.400058		
5	2	0.332653	3	0.310725		
6	2	0.332653	4	0.310725		
7	2	0.340816	6	0.310229		
8	2	0.332653	5	0.308900		
9	2	0.332653	6	0.308900		

Epsilon combinations vs Number of clusters

Minpoints combinations vs Number of clusters

Q8)

Result from Silouette before PCA

Best K value is 2 and its score is 0.26

Result from Silhouette after PCA

Best K value is 2 and its score is 0.27

Conclusion

After we applied the PCA on the data, the silhouette score slightly increased so that k mean clustering will improve.

b) Results of TSNE from Q1

Results of TSNE from Q3 after dimentionality reduction

Logistic Regression Model: Training data

Testing data

KNN Model:

Training data

Testing data

Results of TSNE from Q4 after feature selection

i. Logistic regression model

Training

Testing

ii. KNN model

Conclusion

After we applied the feature selection on the data as shown in the TSNE graph, the data points were classified better than the dimensionality reduction from question 3