Involving Patients and Clinicians in Research on Frailty and Al

Lara Johnson

Some Communication Challenges

- Limited public awareness
- Low correlation between perceptions and the medical literature
- Negative connotations / stigma
- Existing content on frailty of a predominantly technical nature and aimed at healthcare professionals
- Extremely limited online information resources on frailty for the general public

Perceptions among older people and informal carers

Age UK and the British Geriatrics Society (2015). Frailty: Language and Perceptions

Patient and Public Involvement (PPI)

"Public involvement in research means research that is done 'with' or 'by' the public, not 'to', 'about' or 'for' them. It means that patients or other people with relevant experience contribution to how research is designed, conducted and disseminated"

Including Patients and Clinicians in the Team

- Lara Johnson, PhD Student
- Dr Sohan Seth, Lead Data Scientist
- Dr Atul Anand, Consultant Geriatrician
- Professor Alan Marshall, Social Research on Inequality
- Professor Bruce Guthrie, GP
- PPI Group of lay people in later life

Embedding PPI in the Project Timeline

Frailty Information Resource

- Co-designed with members of the public to ensure relevance and accessibility
- All key messages grounded in data
- Visual elements used to enhance text-based content

Review of
Literature
and Existing
Frailty
Content to
Identify Gaps

Refine the target audience through user case scenarios and personas

Storyboard of key concepts to test concepts and narrative flow

Data
exploration
to identify
key messages
from ELSA
data

Sketches of data visualisations

check
accessibility
of language
and visual
elements

Graphic Design of Information Resource

Information resource on frailty for the general public Target users are informal carers and people with mild frailty

Distilled concepts

Select key messages other ways to convey messages that are easier to understand?

Revised text and visual elements

Formal Evaluation

Outreach

Wed 08/11/2023 17:46

Coull, Andrew < Andrew. Coull@nhslothian.scot.nhs.uk >

Frailty info

To Lara Johnso

Hi Lara

I hope you are well. I wanted to give you an update on the frailty work and the positive impact of the poster / leaflet and get your 'permission' for wider sharing.

We made the leaflet into a massive poster which is in all the community hospitals and day hospitals.

We use the leaflet in conversations with our patients when discussing frailty with them and their families.

I have referenced the leaflet in talks to GPs and on RefHelp (GP referral system for GPs for all specialities) and hope to send out to all Lothian GPs when we aim to encourage them to use the Clinical Frailty scale.

So...absolutely brilliant and very far reaching!

Are you okay with me sharing with GPs and as a resource on Ref Help?

Best wishes

Andrew

Background – The Clinical Context

Frailty reflects a state of **increased vulnerability** to adverse health outcomes for individuals of the same chronological age

- Counts the number of health deficits someone has
- The burden of frailty grows as people accumulate more health deficits
- Can be quantified in a frailty index
- Uses pre-existing data

How a Frailty Index Works

Gather data from electronic health records

Calculate frailty scores

Frailty Index

Number of health deficits

Number of health deficits measured

Categorise patients

Make clinical decisions

Additional GP appointments, polypharmacy reviews, referrals, treatment

Research Questions

Aim: Identify subtypes of frailty

Do findings replicate in survey data and EHR?

Do findings make sense to patients and clinicians?

Viewing Frailty Holistically

Choosing the Data Sources

CPRD

Survey Data

Electronic Health Records

- N ~ 10,000 community-dwelling adults aged 50+ in England
- 2002-2019

- N ~ 3.5m patients aged 50+ in England registered with a GP > 1 year
- 2010-2019

Distinguishing frailty from multimorbidity

Can affect any age group

Individual Characteristics

Age: usually over-65s

Any combination of 2 or more diseases

Health Deficits

Deficits do not have to be diseases (e.g., "housebound" or "polypharmacy")

Deficits must be:

- Prevalent in the population
- Strongly correlated with increasing age

 (When considered collectively) associated with adverse health outcomes

Adverse Health

Outcomes

-railt

Selecting the Variables of Interest

Independent Variables / Predictors

Individual Characteristics

Health Deficits

- Sex
- Age
- Place
- Socioeconomic information

- Health conditions
- Mobility
- Activities of daily living

Outcome Variables

Adverse Health
Outcomes

- Mortality from any cause
- Unscheduled hospital admissions
- Falls
- Hip fractures

Defining the Study Population

Respondents aged 65+ in Wave 9 (2018-2019) with missing data < 20 deficits

	Men		Women	Women		Total	
	N	%	N	%	N	%	
N	2156	43.4%	2815	56.6%	4971		
Age (Years)							
65-69	563	26.1%	731	26.0%	1294	26.0%	
70-79	1052	48.8%	1293	45.9%	2345	47.2%	
80-89	483	22.4%	670	23.8%	1153	23.2%	
90+	58	2.7%	121	4.3%	179	3.6%	
Number of Deficits							
0	122	5.7%	108	3.8%	230	4.6%	
1-5	1145	53.1%	1178	41.8%	2323	46.7%	
6-10	464	21.5%	679	24.1%	1143	23.0%	
11-15	200	9.3%	376	13.4%	576	11.6%	
16+	225	10.4%	474	16.8%	699	14.1%	
Number of Deficits,	C FC (C 20)		8.54		7.68		
mean (SD)	6.56 (6.29)		(7.31)		(6.96)		
Frailty index score,	0.113		0.147.(0.136.)		0.132		
mean (SD)	(0.109)		0.147 (0.126)		(0.119)		
CASP-19 score,	CASP-19 score, 42.80		42 50 (0.27)		42.64		
mean (SD)	(7.90)	42.50 (8.27)			(8.11)		

Using Interpretable Methods

Data

Model

Findings

Boolean Matrix Factorisation (BMF)

Identifies groups of patients and groups of deficits

Compare to Original Data

Matrix						
1	0	0	0	1		
1	0	0	1	0		
0	0	0	0	1		
1	0	0	0	1		
0	0	0	0	1		
0	0	0	0	1		

Reconstructed

Binarise

Probabilities

Dot product

Iteration with Expectation Maximisation

Model Evaluation and Selection

$$\operatorname{err} = \left|\widehat{X} - X\right| / \left(NM\right)$$

Interpretability

Do factors make sense to doctors and patients?

Prediction accuracy

Do factors better predict outcomes?

Visualising the Data

ID	Arthritis	Heart- attack	Difficulty managing money	Difficulty walking	Depressed	Does not remember the year
Patient1						
Patient2						
Patient3						
Patient4						
Patient5						

Deficits

0 = No Deficit

Patients

1 = Deficit Present

Decomposing into Latent Factors

Predicting Probabilities

Predicted Probabilities

Dot

Reconstructing the Data

Reconstructed Matrix (K = 4)

Interpretability

- Saliency of factor loadings (> |0.20|)
- Factors with a minimum of three salient deficit loadings
- Deficits load highly onto one factor
- Parsimony (simpler model with fewer parameters)
- Theoretical meaningfulness

Deficit Loadings

Feedback

from PPI

clinicians

mentor and

mob-walk100m mob-sit2hrs mob-stand from seated mob-stairs several flights mob-stairs 1flight mob-kneeling mob-extend arms mob-push pull mob-lift 10lb mob-pick up coin adl-dressing adl-walk across room adl-bathing adl-eating adl-bed adl-toilet adl-map adl-cooking adl-shopping adl-calls adl-medications adl-managing money cvd-hypertension cvd-angina cvd-heart attack cvd-heart failure cvd-arrhvthmia cvd-diabetes cvd-stroke chronic-lung_disease chronic-asthma chronic-arthritis chronic-osteoporosis chronic-cancer chronic-parkinson's chronic-Alzheimer's chronic dementia pscyh-depressed

adl-housework gardening chronic psychiatric condition psych-everything was effort psych-sleep psych-happiness psych-loneliness psych-life_enjoyment psych-sadness psych-can't get going gen-health gen-eyesight gen-hearing gen-fal gen-hip fracture gen-joint replacement gen-pain walking mem_day_of month mem month mem year mem day

Four subtypes of frailty?

 Mobility Impairment and Physical Morbidity

- Difficulties in Daily Activities
- Mental Health
- Disorientation in Time

Predicting care needs

Test Accuracy: 91.3%

Future Work

- Methodological contribution for sparse data > improve outcomes prediction
- Investigating the relationship between the factors and patients' individual characteristics
- Replicating in electronic health records (CPRD)

Patients and Clinicians involved through:

- Inclusion in the research team
- Guiding the research direction
- Evaluating and selecting model
- Interpreting results
- Outreach

Thank you!

Questions?

LinkedIn

Lara.johnson@ed.ac.uk