MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 12, 2024 Lecture 16 D3

Linear Maps and Basis

Question to think about

Show that to give a linear map from $T: \mathcal{M}_{2\times 2} \to \mathbb{R}^4$ it is sufficient to write down the image for $T(e_{11})$, $T(e_{12})$, $T(e_{21})$, $T(e_{22})$.

For instance create a linear transformation where $T(e_{11})=(5,6,7,8)$, $T(e_{12})=(1,2,3,4)$, $T(e_{21})=(1,1,1,1)$ and $T(e_{22})=(0,1,0,1)$

A general answer is given in the next slide.

Linear Maps and Basis

• Consider $S: \mathcal{M}_{2\times 2} \to \mathbb{R}^4$ given by $S\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a, b, c, d)^T$. Recall that $\{e_{11}, e_{12}, e_{21}, e_{22}\}$ is a basis of $\mathcal{M}_{2\times 2}$ such that $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ae_{11} + be_{12} + ce_{21} + de_{22}$. Observe that $S(e_{11}) = e_1, S(e_{12}) = e_2, S(e_{21}) = e_3, S(e_{22}) = e_4$. Thus, $S(A) = aS(e_{11}) + bS(e_{12}) + cS(e_{21}) + dS(e_{22}) = ae_1 + be_2 + ce_3 + de_4 = (a, b, c, d)^T$.

General case:

If
$$\{v_1, \dots, v_n\}$$
 is a basis of V , $T: V \to W$ is linear, $v \in V$, then $v = a_1v_1 + \cdots + a_nv_n \Rightarrow T(v) = a_1T(v_1) + \cdots + a_nT(v_n)$. Why? Thus, T is determined by its action on a basis,

i.e., for any n vectors w_1,\ldots,w_n in W (not necessarily distinct), there is unique linear transformation $T:V\to W$ such that $T(v_1)=w_1,\ldots,T(v_n)=w_n$.

Finite-dimensional Vector Spaces

Important Observation: Let dim (V) = n, and $\mathcal{B} = \{v_1, ..., v_n\}$ be a basis

of V. Define $T: V \to \mathbb{R}^n$ by $T(v_i) = e_i$.

e.g., If
$$v = v_1 + v_n$$
, $T(v) = ?$ If $v = 3v_2 - 5v_3$, $T(v) = ?$
If $v = a_1v_1 + \cdots + a_nv_n$, $T(v) = ?$

Thus $T(v) = [v]_{\mathscr{B}}$.

Is T a linear transformation? What is N(T)? What is C(T)?

Conclusion: (If dim (V) = n, then $V \simeq \mathbb{R}^n$.

Question: Is $\mathcal{P}_3 \simeq \mathcal{M}_{2\times 2}$?

Key point: Composition of isomorphisms is an isomorphism, and inverse

of an isomorphism is an isomorphism.

Exercise: Find 3 isomorphisms each from \mathscr{P}_3 to \mathbb{R}^4 , and $\mathscr{M}_{2\times 2}$ to \mathbb{R}^4 .

Linear maps from \mathbb{R}^n to \mathbb{R}^m

Example:
$$T(e_1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
, $T(e_2) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $T(e_3) = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$

defines a linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$.

If
$$x = (x_1, x_2, x_3)^T$$
, then $T(x) = T(x_1e_1 + x_2e_2 + x_3e_3) =$

$$x_1 T(e_1) + x_2 T(e_2) + x_3 T(e_3) = x_1 {3 \choose 1} + x_2 {2 \choose -1} + x_3 {-5 \choose 0}$$
, i.e., $T(x) = Ax$,

where
$$A = \begin{pmatrix} 3 & 2 & -5 \\ 1 & -1 & 0 \end{pmatrix}$$
. Q: $A_{*j} = ?$

If
$$x = (x_1, x_2, x_3)^T$$
, then $T(x) = Ax$, where $A = \begin{pmatrix} 3 & 2 & -5 \\ 1 & -1 & 0 \end{pmatrix}$, i.e., $A_{*j} = T(e_j)$.

General case: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then

for
$$x = (x_1, \dots, x_n)^T$$
 in \mathbb{R}^n ,

$$T(x) = x_1 T(e_1) + \cdots + x_n T(e_n) = Ax,$$

where
$$A = (T(e_1) \cdots T(e_n)) \in \mathcal{M}_{m \times n}$$
, i.e., $A_{*j} = T(e_j)$.

Defn. A is called the *standard matrix* of T. Thus

Linear transformations from \mathbb{R}^n to \mathbb{R}^m

are in one-one correspondence with $m \times n$ matrices.

Question: Can you imitate this if V and W are not \mathbb{R}^n and \mathbb{R}^m ?

Matrix Associated to a Linear Map: Example

 $S: \mathscr{P}_2 \to \mathscr{P}_1$ given by $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$ is linear.

Question: Is there a matrix associated to *S*?

Expected size: 2×3 . Why?

Idea: Construct an associated linear map $\mathbb{R}^3 \to \mathbb{R}^2$.

Use coordinate vectors! Fix bases $\mathscr{B} = \{1, x, x^2\}$ of \mathscr{P}_2 , and $\mathscr{C} = \{1, x\}$ of \mathscr{P}_1 to do this.

Identify
$$f = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2$$
 with $[f]_{\mathscr{B}} = (a_0, a_1, a_2)^T \in \mathbb{R}^3$,

and
$$S(f) \in \mathscr{P}_1$$
 with $[S(f)]_{\mathscr{C}} = (a_1, 4a_2)^T \in \mathbb{R}^2$.

The associated linear map $S': \mathbb{R}^3 \to \mathbb{R}^2$ is defined by

$$S'(a_0, a_1, a_2)^T = (a_1, 4a_2)^T$$
, i.e., $S'([f]_{\mathscr{B}}) = [S(f)]_{\mathscr{C}}$, i.e.,

$$S'$$
 is defined by $S'(e_1) = (0,0)^T$, $S'(e_2) = (1,0)^T$, $S'(e_3) = (0,4)^T \Rightarrow$ the

standard matrix of
$$S'$$
 is $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Q: How is A related to S?

Observe:
$$A_{*1} = [S(1)]_{\mathscr{C}}, \ A_{*2} = [S(x)]_{\mathscr{C}}, \ A_{*3} = [S(x^2)]_{\mathscr{C}}.$$

Matrix Associated to a Linear Map

Example: The matrix of $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$, w.r.t. the bases $\mathscr{B} = \{1, x, x^2\}$ of \mathscr{P}_2 and $\mathscr{C} = \{1, x\}$ of \mathscr{P}_1 is A =

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ and } A_{*1} = [S(1)]_{\mathscr{C}}, A_{*2} = [S(x)]_{\mathscr{C}}, A_{*3} = [S(x^2)]_{\mathscr{C}}.$$

General Case: If $T: V \to W$ is linear, then the matrix of T w.r.t. the ordered bases $\mathcal{B} = \{v_1, \dots, v_n\}$ of V, and $\mathcal{C} = \{w_1, \dots, w_m\}$ of W, denoted $[T]_{\mathcal{C}}^{\mathcal{B}}$, is

$$A = ([T(v_1)]_{\mathscr{C}} \cdots [T(v_n)]_{\mathscr{C}}) \in \mathscr{M}_{m \times n}.$$

Example: Projection onto the line $x_1 = x_2$

$$P\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix} \text{ has standard matrix } \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}.$$

This is the matrix of P w.r.t. the standard basis.

Question: What is $[P]^{\mathscr{B}}$ where $\mathscr{B} = \{(1,1)^T, (-1,1)^T\}$?

Conclusion: The matrix of a transformation depends on the chosen basis. Some are better than others!