1 Fundamental Theorem of Galois Theory II

Theorem 1.1. 1. Let L: K be a Galois extension with $G = \operatorname{Gal}_K L$. Then

$$\forall P \in \mathcal{I}(K, L), \quad L^{G_P} = P$$

 $\forall H \in \mathcal{S}(G), \quad G_{L^H} = H.$

Also, $P_1 \subseteq P_2 \iff G_{P_1} \ge G_{P_2}$ and $H_1 \le H_2 \iff L^{H_1} \supseteq L^{H_2}$ (by thm 1 lec 19)

2. For $P \in I(K, L)$ suppose P : K is a normal extension. Then $G_P \triangleleft G$ and $Gal_K P \cong G/G_P$.

Lemma 1.2. Let K-P-L be a tower of fields and $g \in \operatorname{Aut} L$. Then $G_{gP}=gG_Pg^{-1}$.