खंड 1 (अधिकतम अंक: 18)

• इस खंड में **छ: (06)** प्रश्न हैं।

• प्रत्येक प्रश्न का उत्तर o से 9 तक (दोनों शामिल) के बीच का एक एकल अंकीय पूर्णांक (INTEGER) है |

 प्रत्येक प्रश्न के उत्तर को दर्शाने वाले सही पूर्णांक को माउज़ (MOUSE) और ऑन स्क्रीन (ON-SCREEN) वर्चुअल नुमेरिक कीपैड (VIRTUAL NUMERIC KEYPAD) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें।

• प्रत्येक प्रश्न के उत्तर का मुल्यांकन निम्न योजना के अनुसार होगा :

पूर्ण अंक : +3 यदि सिर्फ़ सही पूर्णांक (integer) ही दर्ज़ किया गया है।

शून्य अंक : 0 यदि प्रश्न अनुत्तरित है | ऋण अंक :-1 अन्य सभी परिस्थितियों में |

Q.1 जल से भरा हुआ वर्गाकार पेंदी एवं पतली पारदर्शक ऊर्ध्वाधर दीवारों वाला एक बड़ा पात्र क्षैतिज तल पर रखा हुआ है | जल का अपवर्तनांक (refractive index) $\frac{4}{3}$ है | एक विद्यार्थी ने एक पतले सीधे तार को ऊर्ध्वाधर अवस्था में जल के अंदर पकड़ कर रखा है | पात्र के एक कोने से इस तार की दूरी 12 cm है, जैसा कि प्रतीकात्मक (schematic) चित्र में दर्शाया गया है | एक दूसरा विद्यार्थी तार को इसी कोने से चित्र में दिखाई गयी रेखा (line of sight) के अनुरूप (along) देखता है | उसे तार के एक-एक प्रतिबिम्ब, इस रेखा के दोनों ओर सममित रूप से स्थित (symmetrically located) दिखाई देते हैं | इन प्रतिबिम्बों के बीच की दूरी (cm में)

Q.2 एक रेलगाड़ी v_t गित से एक लम्बी सुरंग के अंदर जा रही है | रेलगाड़ी एवं सुरंग की अनुप्रस्थ काट का क्षेत्रफल क्रमशः S_t एवं S_o ($S_o = 4S_t$) है | मान लीजिये कि रेलगाड़ी के सामने की लगभग समस्त वायु का प्रवाह सुरंग की दीवार एवं रेलगाड़ी के बाह्य-पृष्ठ के मध्य रेलगाड़ी की गित के विपरीत दिशा में होता है; तथा, वायु का प्रवाह रेलगाड़ी के सापेक्ष धारारेखीय (laminar) एवं स्थाई है | रेलगाड़ी के भीतर हवा का दबाव एवं वायुमंडलीय दबाव दोनों p_o हैं | वायु का घनत्व ρ है | रेलगाड़ी के बाह्य-पृष्ठ एवं सुरंग की दीवार के बीच के स्थान में दबाव p है तब $p_o - p = \frac{7}{2N}\rho v_t^2$ | तद्नुसार, p_o का मान ______ है |

Q.3 दो बड़ी वृत्ताकार चक्रिकाएं (discs), जिनके बीच की दूरी 0.01 m है, एक स्विच के द्वारा एक बैटरी से चित्रानुसार जुड़ी हुई हैं | ऊपरी चक्रिका के केंद्र में स्थित एक लघु छिद्र से आवेशित तेल की बूंदें, जिनका घनत्व 900 kg m⁻³ है, छोड़ी जाती हैं | जब तेल की कुछ बूंदें अंतिम वेग (terminal velocity) प्राप्त कर लेती हैं, तब चक्रिकाओं के बीच 200 V की वोल्टता लगाने के लिए स्विच को बंद (on) कर दिया जाता है | इसके परिणामस्वरुप, 8 × 10⁻⁷ m की त्रिज्या वाली तेल की एक बूंद ऊर्ध्वाधर दिशा में चलना बंद कर देती हैं तथा चिक्रकाओं के बीच में तैरने लगती है | तेल की इस बूंद में विद्यमान इलेक्ट्रानों की संख्या है [उत्प्लावन (buoyancy) बल को नगण्य मानें, गुरुत्वीय त्वरण का मान 10 ms⁻² तथा इलेक्ट्रान का आवेश (e) = 1.6×10⁻¹⁹ C लें|

Q.4 गर्म वायु से भरा हुआ एक गुब्बारा कुछ सवारियों एवं कुछ रेत की पोटलियों को लेकर जा रहा है | रेत की प्रत्येक पोटली का द्रव्यमान 1 kg है, तथा गुब्बारे का संपूर्ण द्रव्यमान 480 kg है | इसे उत्प्लावकता (buoyancy) प्रदान करने वाला प्रभावी आयतन V है | अपनी साम्यावस्था में यह गुब्बारा 100 m की ऊंचाई पर तैरता है | जब रेत की N पोटलियाँ गुब्बारे से निकाल कर फेंक दी जाती हैं, तो प्रभावी आयतन V के बिना परिवर्तित हुए गुब्बारा अपनी नयी साम्यावस्था में 150 m की ऊंचाई के निकट पहुँचता है | यदि वायु का घनत्व धरातल से ऊंचाई h पर $\rho(h) = \rho_o e^{-\frac{h}{h_o}}$ हो , जहां $\rho_o = 1.25 \text{ kg m}^{-3}$ एवं $h_o = 6000 \text{ m}$ है, तब N का मान $\frac{1}{2}$ होगा |

Q.5 एक बिंदु-आवेश को l लम्बाई की डोरी के एक सिरे से बाँध कर ऊर्ध्वाधर अवस्था में लटकाया गया है | बिंदु-आवेश का द्रव्यमान m तथा उस पर आवेश q है | द्विध्रुव आघूर्ण (dipole moment) \vec{p} के एक बिंदु-द्विध्रुव (point dipole) को अनंत से इस बिंदु-आवेश की ओर लाया जाता है, जिस कारण बिंदु-आवेश अपनी मूल अवस्था से दूर की ओर विक्षेपित हो जाता है | इस निकाय की अंतिम साम्यावस्था में बिंदु-द्विध्रुव की दिशा, विभिन्न कोण एवं दूरियां नीचे चित्र में दर्शायी गयी हैं | यदि बिंदु-द्विध्रुव को इस स्थिति तक लाने में किया गया कार्य $N \times (mgh)$ है, जहां g गुरुत्वीय त्वरण है, तो N का मान है ______ | (यदि एक बिंदु द्रव्यमान को तीन समतल बल (coplanar force) साम्यावस्था में रखें तो $\frac{F}{sin\,\theta}$ का मान सभी बलों के लिए समान होता है | यहाँ F कोई भी एक बल है तथा θ अन्य दो बलों के बीच का कोण है)

Q.6 एक ऊष्मारोधी ऊर्ध्वाकार बंद बेलनाकार पात्र की ऊंचाई 8 m है | इस पात्र को एक ऊष्मा-पार्य (diathermic) (आदर्श ऊष्मा सुचालक) विभाजक (द्रव्यमान 8.3 kg) द्वारा दो बराबर भागों में बांटा गया है (चित्र देखें) | अतः आरम्भ में विभाजक पात्र के ऊपरी तल से 4 m दूरी पर है | प्रत्येक भाग में 300 K तापमान पर आदर्श गैस के 0.1 मोल भरे हैं | विभाजक को मुक्त करने पर यह बिना घर्षण के गतिमान होता है, तथा इस प्रक्रिया में पात्र के एक भाग से दूसरे भाग में गैस का स्थान्नान्तरण नहीं होता है | जब निकाय साम्यावस्था में पहुँचता है तब विभाजक की पात्र के ऊपरी तल से दूरी (m में) ______ होगी (गुरुत्वीय त्वरण = 10 ms⁻² तथा सार्वित्रिक गैस नियतांक = 8.3 J mol⁻¹K⁻¹ लें)|

खंड 2 (अधिकतम अंक: 24)

इस खंड में छः (06) प्रश्न हैं।

प्रत्येक प्रश्न के लिए चार विकल्प दिए गए हैं | इन चार विकल्पों में से एक या एक से अधिक विकल्प सही उत्तर है (हैं) |

• प्रत्येक प्रश्न के लिए दिए हुए विकल्पों में से सही उत्तर(उत्तरों) से संबंधित विकल्प (विकल्पों) को चुनिए |

प्रत्येक प्रश्न के उत्तर का मुल्यांकन निम्न योजना के अनुसार होगा:

पूर्ण अंक : +4 यदि केवल (सारे) सही विकल्प (विकल्पों) को चुना गया है।

आंशिक अंक : +3 यदि चारों विकल्प सही हैं परन्तु केवल तीन विकल्पों को चुना गया है |

आंशिक अंक : +2 यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया है और दोनों चुने हुए

विकल्प सही विकल्प हैं।

आंशिक अंक : +1 यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ विकल्प

एक सही विकल्प है।

शुन्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है (अर्थात प्रश्न अनुत्तरित है)।

ऋण अंक : -2 अन्य सभी परिस्थितियों में ।

Q.7 एक बीकर, जिसकी त्रिज्या r है, H ऊँचाई तक जल से भरा है, जैसा की चित्र में बाईं ओर दर्शाया गया है | जल का अपवर्तनांक (refractive index) $\frac{4}{3}$ है | जल से भरा यह बीकर एक क्षैतिज समतल (table) पर रखा गया है | यह निकाय कोणीय गति ω से घूर्णन कर रहा है | इस घूर्णन के कारण जल का पृष्ठ वक्रीय हो जाता है | इससे जल के पृष्ठ के उच्चतम बिंदु (बीकर की परिधि पर स्थित) एवं न्यूनतम बिंदु (बीकर के अक्ष पर स्थित) के मध्य की ऊँचाई h ($h \ll H, h \ll r$) हो जाती है जैसा कि चित्र में दायीं ओर दर्शाया गया है | यदि हम इस वक्रीय पृष्ठ को वक्रता त्रिज्या R का गोलीय पृष्ठ मानें तो (g गुरुत्वीय त्वरण है)

$$(A) R = \frac{h^2 + r^2}{2h}$$

(B)
$$R = \frac{3r^2}{2h}$$

- (C) बीकर के तल की आभासी गहराई लगभग $\frac{3H}{2}\left(1+\frac{\omega^2H}{2g}\right)^{-1}$ है |
- (D) बीकर के तल की आभासी गहराई लगभग $\frac{3H}{4} \left(1 + \frac{\omega^2 H}{4g}\right)^{-1}$ है |

Q.8 एक रैंप (लम्बे उन्नत तल के समान) क्षैतिज से 30° का कोण बनाता है | एक विद्यार्थी इस रैंप पर नीचे से v_o गित से आरम्भ कर ऊपर की ओर स्केटिंग करता/करती है |चित्रानुसार इस रैंप पर विद्यार्थी R त्रिज्या के अर्धवृत्ताकार पथ xyz पर वापस मुड़ना चाहता/चाहती है और ऐसा करने पर वह धरती से अधिकतम ऊँचाई h (बिंदु y पर) तक पहुंचता/पहुंचती है | मान लीजिये कि ऊर्जा का क्षय नगण्य है तथा इस अधिकतम ऊँचाई पर वापस मुड़ने के लिए केवल उसका भार ही उसे आवश्यक बल प्रदान करता है |तब (गुरुत्वीय त्वरण g है)

(A)
$$v_0^2 - 2gh = \frac{1}{2}gR$$

(B)
$$v_0^2 - 2gh = \frac{\sqrt{3}}{2}gR$$

- (C) बिन्दुओं x तथा z पर आवश्यक अभिकेन्द्र बल (centripetal force) शून्य है ।
- (D) बिन्दुओं x तथा z पर आवश्यक अभिकेन्द्र बल (centripetal force) अधिकतम है ।

Q.9 द्रव्यमान m एवं लम्बाई L वाली एक शलाका (rod), जो कि अपने एक छोर से कीलित (pivoted) है, उर्द्वाधर लटकी हुई है | समान द्रव्यमान की एक गोली, जिसकी गति v है, शलाका से क्षैतिज दिशा में चलते हुए टकराती है तथा उसके अन्दर धंस जाती है | टकराने वाले बिंदु की कीलक से दूरी x है | यह संयुक्त निकाय कीलक के पिरतः कोणीय वेग ω से घूमता है | कोणीय वेग का अधिकतम मान ω_M है, जो की $x = x_M$ पर प्राप्त होता है | तब

$$(A) \omega = \frac{3vx}{L^2 + 3x^2}$$

(B)
$$\omega = \frac{12vx}{L^2 + 12x^2}$$

(C)
$$x_M = \frac{L}{\sqrt{3}}$$

(D)
$$\omega_M = \frac{v}{2L}\sqrt{3}$$

- Q.10 एक X —िकरण निलका (X ray tube) के तंतु (कैथोड), जिसकी तंतु धारा (filament current) I है, से इलेक्ट्रान उत्सर्जित होते हैं | ये इलेक्ट्रान लक्ष्य (एनोड) पर पड़ते हैं | लक्ष्य एवं तंतु के बीच की दूरी d है | लक्ष्य (एनोड) को तंतु (कैथोड) की तुलना में उच्च विभव V पर रखा गया है | पिरणाम स्वरुप, लक्ष्य (एनोड) से संतत (continuous) एवं अभिलक्षणिक (characteristic) X —िकरणें उत्सर्जित होती हैं | यदि तंतु धारा I को घटा कर $\frac{I}{2}$ कर दिया जाए, विभवान्तर V को बढ़ाकर 2V कर दिया जाए एवं बीच की दूरी d को घटा कर $\frac{d}{2}$ कर दिया जाए तब
 - (A) अन्तक तरंग दैर्ध्य ($cut-off\ wavelength$) आधी हो जायेगी, एवं अभिलक्षणिक X- किरणों की तरंग दैर्ध्य समान रहेगी |
 - (B) अन्तक तरंग दैर्ध्य एवं अभिलक्षणिक X किरणों की तरंग दैर्ध्य, दोनों ही समान रहेंगी |
 - (C) अन्तक तरंग दैर्ध्य आधी हो जायेगी, एवं सभी X- किरणों की तीव्रता घट जायेगी \mid
 - (D) अन्तक तरंग दैर्ध्य दोगुना बढ़ जायेगी, एवं सभी $\it X-$ किरणों की तीव्रता घट जायेगी $\it |$

Q.11 दो समरस (identical) अचालक (non-conducting) ठोस गोले, जिनके द्रव्यमान एवं आवेश एकसमान हैं, एक उभयनिष्ठ (common) बिंदु से दो द्रव्यमान रहित अचालक डोरियों (strings) के द्वारा वायु में लटक रहे हैं | दोनों डोरियों की लम्बाई एकसमान है | साम्यावस्था में दोनों डोरियों के बीच का कोण α है | यह गोले अब एक परावैद्युत (dielectric) द्रव में डुबाये जाते हैं | इस द्रव का घनत्व 800 kg m⁻³ और परावैद्युतांक 21 है | द्रव में डुबाने के बाद यदि दोनों डोरियों के बीच का कोण पहले जितना ही रहे , तब

- (A) गोलों के बीच का विदुयुत बल भी अपरिवर्तित रहता है।
- (B) गोलों के बीच का विद्युत बल कम हो गया है |
- (C) गोलों का द्रव्यमान घनत्व $840 \, \text{kg} \, m^{-3} \, \text{है} \, \text{|}$
- (D) गोलों को बांधने वाली डोरियों में विद्यमान तनाव बदला नहीं है |
- Q.12 मूल बिंदु से t=0 समय पर 1 ms $^{-1}$ की गित से आरम्भ करते हुए एक कण x-y तल में दो विमीय प्रक्षेप-पथ का अनुसरण करता है | कण की गितमान अवस्था में इसके निर्देशांक समीकरण $y=\frac{x^2}{2}$ से सम्बद्ध हैं | इसके त्वरण के x एवं y घटकों को क्रमशः a_x तथा a_y से दर्शाया जाता है | तब
 - (A) $a_x = 1 \text{ ms}^{-2}$ इंगित करता है कि जब कण मूल-बिंदु पर है तब $a_y = 1 \text{ ms}^{-2}$ |
 - (B) $a_x = 0$ इंगित करता है कि सभी समयों पर $a_y = 1 \text{ ms}^{-2}$ |
 - (C) t = 0 पर कण का वेग x दिशा की ओर निर्दिष्ट (pointing) होगा।
 - (D) $a_x=0$ इंगित करता है कि $t=1\,s\,$ पर x- अक्ष एवं कण के वेग के बीच का कोण $45^{\rm o}$ है ।

खंड ३ (अधिकतम अंक: २४)

- इस खंड में **छ: (06)** प्रश्न हैं | प्रत्येक प्रश्न का उत्तर एक **संख्यात्मक मान (Numerical value)** है |
- प्रत्येक प्रश्न के उत्तर के सही संख्यात्मक मान को माउज़ (MOUSE) और ऑन स्क्रीन (ON-SCREEN) वर्चुअल नुमेरिक कीपैड (VIRTUAL NUMERIC KEYPAD) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें | यदि संख्यात्मक मान में दो से अधिक दशमलव स्थान हैं, तो संख्यात्मक मान को/का दशमलव के दो स्थानों तक समेंटे/शून्यांत करें (truncate/round-off) |

प्रत्येक प्रश्न के उत्तर का मु<u>ल्यांकन निम्न योजना के अनुसार</u> होगा:
 पूर्ण अंक : +4 यदि सिर्फ़ सही संख्यात्मक मान (Numerical value) ही दर्ज़ किया गया है |
 श्रन्य अंक : 0 अन्य सभी परिस्थितियों में |

- Q.13 पानी के अंदर स्थित गोलाकार बुलबुले की त्रिज्या R है | बुलबुले के अंदर का दाब और पानी के दाब का मान p_0 लें | यह बुलबुला अब त्रिज्य (radial) दिशा में रुधोष्म (adiabatic) विधि से संपीड़ित (compress) होता है, जिससे इसकी त्रिज्या (R-a) हो जाती है | $a \ll R$ के लिए इस प्रक्रम में किये गये कार्य का मान ($4\pi p_0 Ra^2$)X है | यहाँ पर X एक नियतांक है एवं $\gamma = \frac{C_p}{C_v} = \frac{41}{30}$ है | X का मान है ______
- Q.14 संतुलित अवस्था में एक व्हीटस्टोन सेतु (Wheatstone bridge) की चार भुजाओं के प्रतिरोधक चित्र में दिखाए गए हैं | प्रतिरोधक R_3 का ताप गुणांक (temperature coefficient) $0.0004\,^{\circ}\text{C}^{-1}$ है | यदि R_3 का तापमान $100\,^{\circ}\text{C}$ बढ़ाया जाता है, तब S और T के बीच उत्पन्न वोल्टता _____ वोल्ट होगी |

Q.15 दो संधारित्र (capacitors), जिनकी धारिताएँ $C_1 = 2000 \pm 10 \, \mathrm{pF}$ एवं $C_2 = 3000 \pm 15 \, \mathrm{pF}$ हैं, श्रेणीक्रम (series) में संयोजित हैं | इस संयोजन के मध्य वोल्टता $V = 5.00 \pm 0.02 \, \mathrm{V}$ है | संधारित्र के इस संयोजन में संचित उर्जा की गणना में प्रतिशत त्रुटि ______ है |

Q.17 चित्रानुसार, दो *LR* परिपथों (circuits) के प्रेरकों (inductors) को एक दूसरे के समीप रखा गया है । प्रेरकों का स्व-प्रेरकत्व (self-inductance), प्रतिरोध, अन्योन्य-प्रेरकत्व (mutual inductances) एवं अनुप्रयुक्त वोल्टता (applied voltages) का मान परिपथ में दिया गया है । दोनों स्विचों को एक साथ बंद (on) करने के पश्चात् जब विद्युत् धाराएं अपनी स्थायी अवस्था (steady state) में पहुँचती हैं, तब तक प्रेरकों में प्रेरित विद्युत्-वाहक-बल के विरुद्ध बैटरियों द्वारा किया गया कुल कार्य ______ mJ है ।

Q.18 1 kg जल से भरा एक पात्र सूर्य के प्रकाश में रखा है, जिसके कारण परिवेश (surroundings) की अपेक्षा यह जल अधिक गर्म हो जाता है | प्रित सेकंड प्रित क्षेत्रफल इकाई पर सूर्य-प्रकाश से मिलने वाली औसत ऊर्जा 700 Wm $^{-2}$ है, एवं यह ऊर्जा जल द्वारा 0.05 m 2 के प्रभावी क्षेत्रफल में अवशोषित होती है | मान लीजिये कि जल के द्वारा परिवेश को होने वाली ऊष्मा-हानि न्यूटन के शीतलन सिद्धांत का अनुसरण करती है | तब लम्बे समय के पश्चात, जल एवं परिवेश के बीच तापमान का अंतर _______°C होगा [पात्र के प्रभाव को नगण्य मानें, तथा न्यूटन के शीतलन सिद्धांत का नियतांक = 0.001 s $^{-1}$, जल की ऊष्मा क्षमता (heat capacity) = 4200 J kg $^{-1}$ K $^{-1}$ लें]|

खंड 1 (अधिकतम अंक: 18)

• इस खंड में **छ: (06)** प्रश्न हैं।

• प्रत्येक प्रश्न का उत्तर **0 से 9 तक (दोनों शामिल) के बीच का एक एकल अंकीय पूर्णांक (INTEGER)** है |

 प्रत्येक प्रश्न के उत्तर को दर्शाने वाले सही पूर्णांक को माउज़ (MOUSE) और ऑन स्क्रीन (ON-SCREEN) वर्चुअल नुमेरिक कीपैड (VIRTUAL NUMERIC KEYPAD) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें |

• प्रत्येक प्रश्न के उत्तर का मुल्यांकन निम्न योजना के अनुसार होगा :

पूर्ण अंक : +3 यदि सिर्फ़ सही पूर्णांक (integer) ही दर्ज़ किया गया है |

शून्य अंक : 0 यदि प्रश्न अनुत्तरित है | ऋण अंक :-1 अन्य सभी परिस्थितियों में |

Q.1 चार परमाणुओं के प्रथम (I_1), द्वितीय (I_2), तथा तृतीय (I_3) आयनन एन्थैल्पी (ionization enthalpy) के मान नीचे सारणी में दिए गए हैं | इन परमाणुओं के परमाणु क्रमांक (atomic number) n, n+1, n+2, तथा n+3 हैं, जहाँ n<10 है | n का मान क्या है) ?

Atomic number	Ionization Enthalpy (kJ/mol)		
	I_1	I_2	I_3
n	1681	3374	6050
n+1	2081	3952	6122
n+2	496	4562	6910
n+3	738	1451	7733

Q.2 निम्नलिखित यौगिकों को उनकी द्रव अवस्था में मानते हुए विचार करें :

O₂, HF, H₂O, NH₃, H₂O₂, CCl₄, CHCl₃, C₆H₆, C₆H₅Cl.

जब एक आवेशित कंघे (charged comb) को इनके प्रवाह के पास लाया जाता है, इनमें से कितने नीचे दिए गए चित्र के अनुसार विचलन प्रदर्शित करेंगे ?

- Q.3 एक दुर्बल क्षारीय विलयन में, $KMnO_4$ तथा KI की रसायनिक अभिक्रिया रससमीकरणिमतीय (stoichiometric) मात्रा अनुसार होती है | इसमें 4 मोल $KMnO_4$ के उपभोग के बाद, निर्मुक्त I_2 के मोलों की संख्या क्या होगी ?
- Q.4 पोटैशियम क्रोमेट (potassium chromate) के एक अम्लीकृत विलयन पर समान आयतन की ऐमिल ऐल्कोहॉल (amyl alcohol) की परत बनायी गयी | इसमें $1 \text{ mL } 3\% \text{ H}_2\text{O}_2$ को मिलाने के बाद अच्छी तरह से हिलाने पर ऐल्कोहॉल की नीले रंग की परत बनती है | यह नीला रंग क्रोमियम (VI) के एक यौगिक ' \mathbf{X} ' के बनने के कारण होता है | \mathbf{X} के एक अणु में ऑक्सीजन के कितने परमाणु क्रोमियम के साथ एकल आबंध द्वारा बंधित हैं ?

Q.5 एक पेष्टाइड की संरचना नीचे दी गयी है।

यदि इस पेप्टाइड पर नेट आवेश का निरपेक्ष मान (absolute value), pH=2, pH=6, तथा pH=11 पर क्रमशः $|z_1|$, $|z_2|$ तथा $|z_3|$ है, तो $|z_1|+|z_2|+|z_3|$ का मान क्या होगा ?

Q.6 एक कार्बनिक यौगिक ($C_8H_{10}O_2$) समतल ध्रुवित प्रकाश (plane-polarized light) को घूर्णित करता है | यह उदासीन $FeCl_3$ विलयन के साथ गुलाबी रंग देता है | इस यौगिक के कुल संभावित समवयवियों (isomers) की संख्या कितनी है ?

खंड 2 (अधिकतम अंक: 24)

इस खंड में छः (06) प्रश्न हैं |

• प्रत्येक प्रश्न के लिए **चार** विकल्प दिए गए हैं | इन चार विकल्पों में से **एक या एक से अधिक** विकल्प सही उत्तर है (हैं) |

• प्रत्येक प्रश्न के लिए दिए हुए विकल्पों में से सही उत्तर(उत्तरों) से संबंधित विकल्प (विकल्पों) को चुनिए।

प्रत्येक प्रश्न के उत्तर का मृल्यांकन निम्न योजना के अनुसार होगा:

पूर्ण अंक : +4 यदिं केवल (सारे) सही विकल्प (विकल्पों) को चुना गया है |

. आंशिक अंक : +3 यदि चारों विकल्प सही हैं परन्तु केवल तीन विकल्पों को चुना गया है |

आंशिक अंक : +2 यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया है और दोनों चुने हुए

विकल्प सही विकल्प हैं।

आंशिक अंक : +1 यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ विकल्प

एक सही विकल्प है |

शून्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है)।

ऋण अंक : -2 अन्य सभी परिस्थितियों में |

एक प्रयोग में नीचे दर्शाए चित्र \mathbf{I} के अनुसार एक पात्र में एक योगिक \mathbf{X} (गैस/द्रव/ठोस) के m gram को तला में Q.7 रखा गया। एक चुम्बकीय क्षेत्र की उपस्थिति में, उस पलंडे, जिस पर X रखा हुआ है, का विस्थापन यौगिक X के अनुसार या तो उर्ध्वमुखी (चित्र ॥) या अधोमुखी (चित्र ॥।) होता है | सही कथन (कथनीं) का चयन करें | (चित्र में Magnetic field absent: चुम्बकीय क्षेत्र अनुपस्थित; Magnetic field present: चुम्बकीय क्षेत्र उपस्थित; magnet: चुम्बक; Balanced: संत्रित; Upward deflection: उर्ध्वमुखी विस्थापन; Downward deflection: अधोमुखी विस्थापन हैं)

- (A) यदि $\mathbf{X} = \mathrm{H}_2\mathrm{O}(l)$ है, तो पलड़े का विस्थापन उर्ध्वमुखी होता है |
- (B) यदि $\mathbf{X} = \mathrm{K}_4[\mathrm{Fe}(\mathrm{CN})_6](s)$ है, तो पलड़े का विस्थापन उर्ध्वमुखी होता है।
- (C) यदि $\mathbf{X} = \mathbf{0}_2(g)$ है, तो पलड़े का विस्थापन अधोमुखी होता है | (D) यदि $\mathbf{X} = \mathbf{C}_6\mathbf{H}_6(l)$ है, तो पलड़े का विस्थापन अधोमुखी होता है |

Q.8 निम्नलिखित अभिक्रिया के लिए दिए गए आरेखों में से सही आरेख (आरेखों) का चयन करें | (P की आरंभिक सांद्रता [P]0 है, initial rate = आरंभिक वेग, तथा time = समय)

$$CH_3$$
 $H_3C \xrightarrow{CH_3} Br + NaOH \xrightarrow{\qquad} H_3C \xrightarrow{CH_3} OH + NaBr$
 CH_3
 P
 Q

(A)

(B)

(C)

(D)

- Q.9 बॉक्साइट से ऐलुमिनियम के निष्कर्षण (extraction) के सन्दर्भ में सही कथन है (हैं)।
 - (A) जब सोडियम ऐलुमिनेट (sodium aluminate) के विलयन में CO_2 बुदबुदाया (bubbled) जाता है, तब जलयोजित (hydrated) Al_2O_3 का अवक्षेपण होता है |
 - (B) Na₃AlF₆ को मिलाने पर ऐलुमिना (alumina) का गलनांक कम हो जाता है |
 - (C) विद्युत्अपघटन के दौरान एनोड पर CO2 मुक्त होती है |
 - (D) कैथोड एक कार्बन की परत युक्त स्टील का पात्र है |
- Q.10 निम्नलिखित में से सही कथन (कथनों) का चयन करें |
 - (A) SnCl₂. 2H₂O एक अपचायक (reducing agent) है |
 - (B) SnO₂, KOH से अभिक्रिया कर के, K₂[Sn(OH)₆] बनता है |
 - (C) $PbCl_2$ के HCl के विलयन में Pb^{2+} तथा Cl^- आयन होते हैं |
 - (D) ${\rm Pb_3O_4}^-$ की गर्म तनु नाइट्रिक अम्ल के साथ अभिक्रिया, जो ${\rm PbO_2}$ बनाती है, एक रेडॉक्स अभिक्रिया है |

Q.11 निम्नलिखित चार यौगिकों I, II, III, π था IV के सन्दर्भ में सही कथन है (हैं) |

- (A) क्षारकता का क्रम **II** > **I** > **III** > **IV** है।
- (B) I तथा II के pK_b के अंतर का परिमाण, III तथा IV के pK_b के अंतर के परिमाण से अधिक है |
- (C) III में अनुनाद प्रभाव (resonance effect) IV से अधिक है |
- (D) त्रिविम प्रभाव (steric effect) के कारण \vec{IV} की क्षारकता \vec{III} से अधिक है।
- Q.12 यौगिक **P** के निम्नलिखित रूपान्तरणों पर विचार करें | (Optically active: ध्रुवण घूर्णक; reagent: अभिकर्मक; Optically active acid: ध्रुवण घूर्णक अम्ल)

(Optically active)
$$\begin{array}{c|c} \textbf{R} & (i) \ \text{NaNH}_2 & \textbf{p} & (i) \ \textbf{X} \ \text{(reagent)} \\ \hline (ii) \ \text{C}_6 \text{H}_5 \text{COCH}_3 & (ii) \ \text{H}_3 \text{O}^+ \ / \ \triangle & \\ \hline (iii) \ \text{H}_3 \text{O}^+ \ / \ \triangle & \\ \hline \end{array}$$

सही विकल्प है (हैं),

(A) **P** है

(B) **X** है

Pd-C/quinoline/H₂

(C) **P** है

(D) **R** है

खंड ३ (अधिकतम अंक: 24)

• इस खंड में छ: (06) प्रश्न हैं | प्रत्येक प्रश्न का उत्तर एक **संख्यात्मक मान** (Numerical value) है |

- प्रत्येक प्रश्न के उत्तर के सही संख्यात्मक मान को माउज़ (MOUSE) और ऑन स्क्रीन (ON-SCREEN) वर्चुअल नुमेरिक कीपैड (VIRTUAL NUMERIC KEYPAD) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें | यदि संख्यात्मक मान में दो से अधिक दशमलव स्थान हैं, तो संख्यात्मक मान को/का दशमलव के दो स्थानों तक समेंटे/शून्यांत करें (truncate/round-off) |
- प्रत्येक प्रश्न के उत्तर का मु<u>ल्यांकन निम्न योजना के अनुसार</u> होगा:
 पूर्ण अंक : +4 यदि सिर्फ़ सही संख्यात्मक मान (Numerical value) ही दर्ज़ किया गया है।

श्रन्य अंक : ० अन्य सभी परिस्थितियों में।

Q.13 0.1 M दुर्बल क्षार (B) के एक विलयन का अनुमापन 0.1 M प्रबल अम्ल (HA) के द्वारा किया गया | HA के मिलाए गए आयतन के साथ विलयन के pH का परिवर्तन नीचे चित्र में दर्शाया गया है (Volume of HA: HA का आयतन) | क्षार का pK_b क्या है ? उदासीनीकरण अभिक्रिया इस प्रकार है,

$$B + HA \rightarrow BH^+ + A^-$$
.

Q.14 ताप 25 °C पर, द्रव **A** तथा **B** सभी संघटनों पर आदर्श विलयन बनाते हैं | ऐसे दो विलयन, जिनमें **A** का मोल-अंश 0.25 तथा 0.50 है, का कुल वाष्प दाब (vapor pressure) क्रमशः 0.3 तथा 0.4 bar है | शुद्ध द्रव **B** का वाष्प दाब (bar में) क्या है ?

Q.15 नीचे दिया गया चित्र, H_2 अणु के तलस्थ इलेक्ट्रॉनिक अवस्था (electronic ground state) में अंतर्नाभिक दूरी (internuclear distance), d, के सापेक्ष स्थितिज ऊर्जा (potential energy) का आरेख है | इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण तथा नाभिक-नाभिक प्रतिकर्षण ऊर्जाएं $d=d_0$ पर यदि अनुपस्थित हों, तो नेट स्थितिज ऊर्जा E_0 (जैसा की चित्र में दर्शाया गया है) का मान (kJ mol $^{-1}$ में) क्या है ? संदर्भ के लिए जब इलेक्ट्रॉन नाभिक से अनन्त दूरी पर है तब H परमाणु की स्थितिज ऊर्जा शून्य मानें | (उपयोग करें: आवोगाद्रो स्थिरांक (Avogadro constant) = $6.023 \times 10^{23} \, \mathrm{mol}^{-1}$)

Q.16 नीचे दिखाए गए $\bf P$ से $\bf Q$ अभिक्रिया क्रम पर विचार करें | $\bf P$ से मुख्य उत्पाद $\bf Q$ की समग्र लब्धि (overall yield) 75% है | 9.3 mL $\bf P$ से प्राप्त उत्पाद $\bf Q$ की $\rm gram$ में मात्रा क्या होगी ? [उपयोग करें: $\bf P$ का घनत्व = 1.00 $\rm g~mL^{-1}$; $\bf C$, $\bf H$, $\bf O$ तथा $\bf N$ के मोलर द्रव्यमान (molar mass) क्रमशः 12.0, 1.0, 16.0 तथा 14.0 $\rm g~mol^{-1}$ हैं]

 $S^{0}(C(s)) = 6.0 \text{ J K}^{-1} \text{mol}^{-1}, S^{0}(CO_{2}(g)) = 210.0 \text{ J K}^{-1} \text{mol}^{-1}.$ मानें कि सभी एन्थैल्पी और एन्टॉपी ताप पर निर्भर नहीं करते हैं।

Q.18 0.05 M Zn²⁺ के एक अम्लीकृत विलयन को 0.1 M H₂S से संतृप्त (saturate) किया जाता है | ZnS के अवक्षेपण को रोकने के लिए H⁺ की कितने न्यूनतम मोलर सांद्रता (M) की आवश्यकता होगी ? (उपयोग करें: $K_{\rm sp}$ (ZnS) = 1.25 \times 10⁻²² तथा H₂S का समग्र वियोजन स्थिरांक (overall dissociation constant), $K_{\rm NET} = K_1 K_2 = 1 \times 10^{-21}$)

END OF THE QUESTION PAPER

खंड 1 (अधिकतम अंक: 18)

• इस खंड में **छ: (06)** प्रश्न हैं।

- प्रत्येक प्रश्न का उत्तर **0 से 9 तक (दोनों शामिल) के बीच का एक एकल अंकीय पूर्णांक (INTEGER)** है |
- प्रत्येक प्रश्न के उत्तर को दर्शाने वाले सही पूर्णांक को माउज़ (MOUSE) और ऑन स्क्रीन (ON-SCREEN) वर्चुअल नुमेरिक कीपैड (VIRTUAL NUMERIC KEYPAD) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें ।

• प्रत्येक प्रश्न के उत्तर का मल्यांकन निम्न योजना के अनुसार होगा :

पूर्ण अंक : +3 यदि सिर्फ़ सही पूर्णांक (integer) ही दर्ज़ किया गया है |

शून्य अंक : 0 यदि प्रश्न अनुत्तरित है | ऋण अंक :-1 अन्य सभी परिस्थितियों में |

- Q.1 माना कि सम्मिश्र संख्या (complex number) z के वास्तविक भाग (real part) को $\operatorname{Re}(z)$ से दर्शाते हैं | माना कि s उन सभी सम्मिश्र संख्याओं z का समुच्चय (set) है जो कि $z^4 |z|^4 = 4 i z^2$ को संतुष्ट करती हैं, जहाँ $i = \sqrt{-1}$ है | तब $|z_1 z_2|^2$ का न्यूनतम संभावित मान (minimum possible value), जहाँ $z_1, z_2 \in S$ तथा $\operatorname{Re}(z_1) > 0$ एवं $\operatorname{Re}(z_2) < 0$ हैं, है _____
- Q.2 एक लक्ष्य (target) को मिसाइल (missile) द्वारा सफलतापूर्वक भेदने की प्रायिकता (probability) 0.75 है | इस लक्ष्य को पूरी तरह नष्ट करने के लिये कम से कम तीन सफल भेदन (three successful hits) जरुरी हैं | तब मिसाइलों की न्यूनतम (minimum) संख्या जिनके दागने से लक्ष्य के पूरी तरह नष्ट होने की प्रायिकता 0.95 से कम **नहीं** हो, है ____
- पाना कि वृत्त (circle) $x^2+y^2=r^2$ का केंद्र (centre) o है, जहाँ $r>\frac{\sqrt{5}}{2}$ है | मान लीजिये कि PQ इस वृत्त की एक जीवा (chord) है तथा P और Q से जाने वाली रेखा (line) का समीकरण (equation) 2x+4y=5 है | यदि त्रिभुज (triangle) OPQ के परिवृत्त (circumcircle) का केंद्र रेखा x+2y=4 पर स्थित है, तब r का मान है ____
- Q.4 एक वर्ग आव्यूह (square matrix) के अनुरेख (trace) को उसके विकर्ण की प्रविष्टियों (diagonal entries) के योगफल (sum) द्वारा परिभाषित किया जाता है | यदि A एक ऐसा 2×2 आव्यूह है जिसका अनुरेख 3 है एवं A^3 का अनुरेख -18 है, तब A के सारणिक (determinant) का मान है ____

Q.5 माना कि फलनों (functions) $f: (-1,1) \to \mathbb{R}$ एवं $g: (-1,1) \to (-1,1)$ को

$$f(x) = |2x - 1| + |2x + 1|$$
 $\forall \vec{q}$ $g(x) = x - [x]$

से परिभाषित किया जाता है, जहाँ [x] उस महत्तम पूर्णांक (greatest integer) को दर्शाता है जो x से कम या x के बराबर है | माना कि $f\circ g\colon (-1,1)\to \mathbb{R}$ संयुक्त फलन (composite function) है जो कि $(f\circ g)(x)=f\big(g(x)\big)$ द्वारा परिभाषित है | मान लीजिये कि c, अंतराल (-1,1) में उन बिन्दुओं की संख्या है, जिन पर $f\circ g$ संतत (continuous) **नहीं** है, एवं d, अंतराल (-1,1) में उन बिन्दुओं की संख्या है, जिन पर $f\circ g$ अवकलनीय (differentiable) **नहीं** है | तब c+d का मान है $\underline{\hspace{1cm}}$

Q.6 सीमा (limit)

$$\lim_{x \to \frac{\pi}{2}} \frac{4\sqrt{2}(\sin 3x + \sin x)}{\left(2 \sin 2x \sin \frac{3x}{2} + \cos \frac{5x}{2}\right) - \left(\sqrt{2} + \sqrt{2} \cos 2x + \cos \frac{3x}{2}\right)}$$

का मान है

खंड २ (अधिकतम अंक: 24)

- इस खंड में छः (06) प्रश्न हैं |
- प्रत्येक प्रश्न के लिए चार विकल्प दिए गए हैं | इन चार विकल्पों में से एक या एक से अधिक विकल्प सही उत्तर है (हैं) |
- प्रत्येक प्रश्न के लिए दिए हुए विकल्पों में से सही उत्तर(उत्तरों) से संबंधित विकल्प (विकल्पों) को चुनिए |
- प्रत्येक प्रश्न के उत्तर का मल्यांकन निम्न योजना के अनुसार होगा:

पूर्ण अंक : +4 यदिं केवल (सारे) सही विकल्प (विकल्पों) को चुना गया है |

आंशिक अंक : +3 यदि चारों विकल्प सही हैं परन्तु केवल तीन विकल्पों को चुना गया है |

आंशिक अंक : +2 यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया है और दोनों चुने हुए

विकल्प सही विकल्प हैं।

आंशिक अंक : +1 यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ विकल्प

एक सही विकल्प है।

शून्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है)|

ऋण अंक : -2 अन्य सभी परिस्थितियों में |

Q.7 माना कि b एक शून्येतर वास्तविक संख्या (nonzero real number) है। मान लिजिये कि $f: \mathbb{R} \to \mathbb{R}$ एक ऐसा अवकलनीय फलन (differentiable function) है जिसके लिये f(0) = 1 है। यदि f का अवकलज (derivative) f' समीकरण

$$f'(x) = \frac{f(x)}{b^2 + x^2}$$

को सभी $x \in \mathbb{R}$ के लिये संतुष्ट करता है, तब निम्न में से कौन सा (से) कथन **सही** है (हैं)?

- (A) यदि b > 0 है, तब f एक वर्धमान फलन (increasing function) है
- (B) यदि b < 0 है, तब f एक हासमान फलन (decreasing function) है
- (C) सभी $x \in \mathbb{R}$ के लिये f(x)f(-x) = 1 है
- (D) सभी $x \in \mathbb{R}$ के लिये f(x) f(-x) = 0 है
- Q.8 माना कि a एवं b इस प्रकार की धनात्मक वास्तविक संख्याएँ (positive real numbers) हैं जिनके लिये a>1 और b< a हैं । माना कि प्रथम चतुर्थांश (first quadrant) का एक बिन्दु P अतिपरवलय (hyperbola) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ पर स्थित है। मान लीजिये कि बिन्दु P पर डाली गयी अतिपरवलय की स्पर्शरेखा (tangent) बिन्दु (1,0) से गुजरती है, एवं मान लीजिये कि बिन्दु P पर डाले गये अतिपरवलय का अभिलम्ब (normal) निर्देशक अक्षों (coordinate axes) पर बराबर अन्तःखंड (equal intercepts) काटता है। माना कि P पर डाली गयी स्पर्शरेखा, P पर डाले गये अभिलम्ब एवं x-अक्ष द्वारा बनाये गए त्रिभुज (triangle) के क्षेत्रफल (area) को Δ से दर्शाया जाता है। यदि अतिपरवलय की उत्केन्द्रता (eccentricity) को e से दर्शाया जाता है, तब निम्न में से कौन सा (से) कथन **सही** है (हैं)?
 - (A) $1 < e < \sqrt{2}$ (B) $\sqrt{2} < e < 2$ (C) $\Delta = a^4$

- (D) $\Delta = b^4$

Q.9 माना कि $f: \mathbb{R} \to \mathbb{R}$ और $g: \mathbb{R} \to \mathbb{R}$ ऐसे फलन (functions) हैं जो कि सभी $x,y \in \mathbb{R}$ के लिये

$$f(x+y) = f(x) + f(y) + f(x)f(y) \quad \forall \dot{q} \quad f(x) = xg(x)$$

को संतुष्ट करते हैं | यदि $\lim_{x\to 0}\ g(x)=1$ है, तब निम्न में से कौन सा (से) कथन **सही** है (हैं)?

- (A) f प्रत्येक $x \in \mathbb{R}$ पर अवकलनीय (differentiable) है
- (B) यदि g(0) = 1 है, तब g प्रत्येक $x \in \mathbb{R}$ पर अवकलनीय है
- (C) अवकलज f'(1) का मान 1 के बराबर है
- (D) अवकलज f'(0) का मान 1 के बराबर है
- Q.10 माना कि वास्तविक संख्याएँ (real numbers) α , β , γ , δ इस प्रकार से हैं कि $\alpha^2 + \beta^2 + \gamma^2 \neq 0$ एवं α + $\gamma = 1$ हैं | मान लीजिये कि समतल (plane) $\alpha x + \beta y + \gamma z = \delta$ के सापेक्ष, बिन्दु (1,0,-1) का दर्पण प्रतिबिम्ब (mirror image), बिन्दु (3,2,-1) है | तब निम्न में से कौन सा (से) कथन **सही** है (हैं)?
 - (A) $\alpha + \beta = 2$

(B) $\delta - \gamma = 3$

(C) $\delta + \beta = 4$

(D) $\alpha + \beta + \gamma = \delta$

Q.11 माना कि a और b धनात्मक वास्तविक संख्याएँ (positive real numbers) हैं | मान लीजिये कि $\overrightarrow{PQ} = a\hat{i} + b\hat{j}$ एवं $\overrightarrow{PS} = a\hat{i} - b\hat{j}$ समांतर चतुर्भुज (parallelogram) PQRS की संलग्न भुजाएं (adjacent sides) हैं | माना कि $\overrightarrow{w} = \hat{i} + \hat{j}$ के \overrightarrow{PQ} और \overrightarrow{PS} पर प्रक्षेप सदिश (projection vectors) क्रमशः \overrightarrow{u} और \overrightarrow{v} हैं | यदि $|\overrightarrow{u}| + |\overrightarrow{v}| = |\overrightarrow{w}|$ है एवं यदि समांतर चतुर्भुज PQRS का क्षेत्रफल (area) 8 है, तब निम्न में से कौन सा (से) कथन **सही** है (हैं)?

- (A) a + b = 4
- (B) a b = 2
- (C) समांतर चतुर्भुज PQRS के विकर्ण (diagonal) PR की लम्बाई 4 है
- (D) सदिशों \overrightarrow{PQ} एवं \overrightarrow{PS} का एक कोण समद्विभाजक (angle bisector) \overrightarrow{w} है

Q.12 माना कि ऋणेतर पूर्णांकों (nonnegative integers) s एवं r के लिये

$$\binom{s}{r} = \begin{cases} \frac{s!}{r! \ (s-r)!} & \text{if } r \leq s, \\ 0 & \text{if } r > s \end{cases}$$

है | माना कि धनात्मक पूर्णांकों (positive integers) m एवं n के लिये

$$g(m,n) = \sum_{p=0}^{m+n} \frac{f(m,n,p)}{\binom{n+p}{p}}$$

है, जहाँ किसी ऋणेतर पूर्णांक p के लिये

$$f(m, n, p) = \sum_{i=0}^{p} {m \choose i} {n+i \choose p} {p+n \choose p-i}$$

है | तब निम्न में से कौन सा (से) कथन सही है (हैं)?

- (A) सभी धनात्मक पूर्णांकों m, n के लिये g(m, n) = g(n, m) है
- (B) सभी धनात्मक पूर्णांकों m,n के लिये g(m,n+1)=g(m+1,n) है
- (C) सभी धनात्मक पूर्णांकों m,n के लिये g(2m,2n)=2 g(m,n) है
- (D) सभी धनात्मक पूर्णांकों m,n के लिये $g(2m,2n)=(g(m,n))^2$ है

खंड 3 (अधिकतम अंक: 24)

• इस खंड में छ: (06) प्रश्न हैं | प्रत्येक प्रश्न का उत्तर एक **संख्यात्मक मान (Numerical value)** है |

 प्रत्येक प्रश्न के उत्तर के सही संख्यात्मक मान को माउज़ (MOUSE) और ऑन स्क्रीन (ON-SCREEN) वर्चुअल नुमेरिक कीपैड (VIRTUAL NUMERIC KEYPAD) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें | यदि संख्यात्मक मान में दो से अधिक दशमलव स्थान हैं, तो संख्यात्मक मान को/का दशमलव के दो स्थानों तक समेंटे/शून्यांत करें (truncate/round-off) |

Paper 2

प्रत्येक प्रश्न के उत्तर का मु<u>ल्यांकन निम्न योजना के अनुसार</u> होगा:
 पूर्ण अंक : +4 यदि सिर्फ़ सही संख्यात्मक मान (Numerical value) ही दर्ज़ किया गया है |
 शन्य अंक : 0 अन्य सभी परिस्थितियों में |

- Q.13 एक अभियंता (engineer) को किसी कारखाने (factory) में प्रत्येक महीने के पहले 15 दिनों में से ठीक चार दिन (exactly four days) जाना है और यह जरुरी है कि उसको कभी भी दो दिन लगातर **नहीं** जाना है | तब 1 15 जून 2021 के बीच उस अभियंता के कारखाने में जाने के ऐसे सभी संभावित तरीको की संख्या (number of all possible ways) है ____
- Q.14 एक होटल में चार कमरे उपलब्ध हैं | छह व्यक्तियों को इन चार कमरों में इस प्रकार से ठहराना है कि प्रत्येक कमरे में कम से कम एक व्यक्ति हो एवं ज्यादा से ज्यादा दो व्यक्ति हों | तब ऐसा करने के सभी संभावित तरीकों की संख्या (number of all possible ways) है _____
- Q.15 दो न्याय्य पासों (fair dice), जिनके फलको (faces) पर 1, 2, 3, 4, 5 और 6 अंकित है, को एक साथ उछाला जाता है एवं उनके फलको पर आने वाली संख्याओं के योगफल (sum) को देखा जाता है | यह प्रक्रिया इस योगफल के एक अभाज्य संख्या (prime number) या एक पूर्ण वर्ग (perfect square) आने तक दोहराई जाती है | मान लीजिये कि यह योगफल अभाज्य संख्या आने से पहले एक पूर्ण वर्ग आता है | यदि इस पूर्ण वर्ग के विषम संख्या (odd number) होने की प्रायिकता (probability) p है, तब 14p का मान है ____
- Q.16 माना कि फलन (function) $f:[0,1] \to \mathbb{R}$ को

$$f(x) = \frac{4^x}{4^x + 2}$$

से परिभाषित किया जाता है | तब

$$f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + f\left(\frac{3}{40}\right) + \dots + f\left(\frac{39}{40}\right) - f\left(\frac{1}{2}\right)$$

का मान है ____

Q.17 माना कि $f: \mathbb{R} \to \mathbb{R}$ एक ऐसा अवकलनीय फलन (differentiable function) है जिसका अवकलज (derivative) f' संतत (continuous) है, एवं $f(\pi) = -6$ है | यदि $F: [0,\pi] \to \mathbb{R}$ को $F(x) = \int_0^x f(t) dt$ से परिभाषित किया जाता है, एवं यदि

$$\int_{0}^{\pi} \left(f'(x) + F(x) \right) \cos x \, dx = 2$$

है**,** तब f(0) का मान है ____

Q.18 माना कि फलन (function) $f:(0,\pi)\to\mathbb{R}$ को

$$f(\theta) = (\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^4$$

से परिभाषित किया जाता है | मान लीजिये कि फलन f का स्थानीय न्यूनतम (local minimum) केवल और केवल (precisely) उन्हीं θ पर है जिनके लिये $\theta \in \{\lambda_1\pi,\dots,\lambda_r\pi\}$ हो, जहाँ $0<\lambda_1<\dots<\lambda_r<1$ है | तब $\lambda_1+\dots+\lambda_r$ का मान है _____

END OF THE QUESTION PAPER