		Geometry:		Physics:	
Run title> L-Mode I	DEMO	R_0	= 17.54 m	I_p	= 38.81 MA
PROCESS Version> 1.0.16		a	= 5.658 m	Vacuum B_T at R_0	= 5.916 T
Date:> 07/08/20	019	A	= 3.1	9 95	= 3.5
Time:> 09:35		K ₉₅	= 1.65	$oldsymbol{eta}_{N}$, thermal	$= 0.6247 \% \text{ m T MA}^{-1}$
User:> apearce		δ_{95}	= 0.3333	$oldsymbol{eta}_{N}$, total	$= 0.697 \% \text{ m T MA}^{-1}$
Optimising:> Plasma r	major radius	Surface area	$= 5462 \text{ m}^2$	$oldsymbol{eta}_P$, thermal	= 0.2851
Plasma composition:		Plasma volume	$= 1.863e + 04 \text{ m}^3$	$oldsymbol{eta}_P$, total	= 0.318
Number densities relative to elect	ron density:	No. of TF coils	= 16	< t _e >	= 6.767 keV
D + T	= 0.8931	inboard blanket+shield	= 1.055 m	< n _e >	$= 3.455e+19 \text{ m}^{-3}$
He	= 0.05221	ouboard blanket+shield	= 1.782 m	$< n_{\rm e, line} > /n_G$	= 1.194
Xe	= 1e-08	Fusion power	= 2741 MW	$T_{e0}/ < T_e >$	= 2.45
W	= 5e-05			$n_{e0}/ < n_{e, \text{vol}} >$	= 2
Calaum Laman d				Z_{eff}	= 1.225
Colour Legend: ITR				$n_Z/ < n_{\rm e, vol} >$	= 5.001e-05
OP				$ au_e$	= 6.919 s
				H-factor	= 1.13
				Scaling law	= ITER-96P
Coil currents etc: PF 1		Power flows:	= 0.3691 MW m ⁻²	Electron Cyclotron Current Drive:	= 61.45 MW
PF 1	= 21.95 MA	Nominal neutron wall load	= 0.3691 MW m ⁻²	Steady state auxiliary power	= 61.45 MW = 0.001 MW
PF 1 PF 3	= 21.95 MA = -13.89 MA	Nominal neutron wall load Normalised radius of 'core' regi		Steady state auxiliary power Power for heating only	= 61.45 MW = 0.001 MW = 0.1279
PF 1 PF 3 PF 5	= 21.95 MA	Nominal neutron wall load		Steady state auxiliary power Power for heating only Bootstrap fraction	= 0.001 MW
PF 1 PF 3	= 21.95 MA = -13.89 MA = -7.983 MA	Nominal neutron wall load Normalised radius of 'core' regi		Steady state auxiliary power Power for heating only	= 0.001 MW = 0.1279
PF 1 PF 3 PF 5 Startup flux swing	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb	Nominal neutron wall load Normalised radius of 'core' regi No pedestal model used	on= 0.75	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor	= 0.001 MW = 0.1279 = 0.07838 = 0.7937
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb	Nominal neutron wall load Normalised radius of 'core' regi No pedestal model used Helium fraction	on= 0.75 = 0.05221	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor	= 0.001 MW = 0.1279 = 0.07838 = 0.7937
PF 1 PF 3 PF 5 Startup flux swing Available flux swing	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb	Nominal neutron wall load Normalised radius of 'core' regi No pedestal model used Helium fraction Core radiation	on= 0.75 = 0.05221 = 167.4 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Ro Patrix	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs	Nominal neutron wall load Normalised radius of 'core' regi No pedestal model used Helium fraction Core radiation Total radiation	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Poliv Ro Poliv Ro Poliv Ro Poliv Ro	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW = 1607 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Ro Patrix	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ²
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.)	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Poliv Ro	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.) I/I _{crit}	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs = 13.04 T = 0.6019	Nominal neutron wall load Normalised radius of 'core' regi No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW = 295.9 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.) I/I _{crit} TF Temperature margin	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs = 13.04 T = 0.6019 =ERROR! Var missing	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold	= 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW = 295.9 MW = 295.9 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Poliv Ro	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.) I/l_crit TF Temperature margin CS Temperature margin	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs = 13.04 T = 0.6019 =ERROR! Var missing = 4.948 K	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW = 295.9 MW = 295.9 MW = 3.569 years	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Plasma heating used for H fa	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1 = 0.9986
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.) I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs = 13.04 T = 0.6019 =ERROR! Var missing = 4.948 K = 4.868e+08 Pa	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW = 295.9 MW = 295.9 MW = 3.569 years = 3598 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Plasma heating used for H fa	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1 = 0.9986
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.) I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs = 13.04 T = 0.6019 =ERROR! Var missing = 4.948 K = 4.868e+08 Pa = 5.8e+08 Pa	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency	= 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW = 295.9 MW = 295.9 MW = 3.569 years = 3598 MW = 37.5 %	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Plasma heating used for H fa	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1 = 0.9986
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.) I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress Allowable stress	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs = 13.04 T = 0.6019 = ERROR! Var missing = 4.948 K = 4.868e+08 Pa = 5.8e+08 Pa = 5.8e+08 Pa	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency Net cycle efficiency Gross electric power Net electric power	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW = 295.9 MW = 295.9 MW = 3.569 years = 3598 MW = 37.5 % = 31.55 % = 1349 MW = 500 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Plasma heating used for H fa	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1 = 0.9986
PF 1 PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.) I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress Allowable stress	= 21.95 MA = -13.89 MA = -7.983 MA = 1485 Wb = -1922 Wb = 2 hrs = 13.04 T = 0.6019 = ERROR! Var missing = 4.948 K = 4.868e+08 Pa = 5.8e+08 Pa = 5.8e+08 Pa	Nominal neutron wall load Normalised radius of 'core' regine No pedestal model used Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency Net cycle efficiency Gross electric power	on= 0.75 = 0.05221 = 167.4 MW = 289.5 MW = 1607 MW = 4.75 MW = 295.9 MW = 295.9 MW = 3.569 years = 3598 MW = 37.5 % = 31.55 % = 1349 MW = 500 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction Plasma heating used for H factor Plasma heating used for H fa	= 0.001 MW = 0.1279 = 0.07838 = 0.7937 or = 418 MW = 16.87 MW m ⁻¹ = 48.83 ×10 ⁻²⁰ MW m ² = 1 = 0.9986

