

MIDAS: Modeling Ground-Truth Distributions with Dark Knowledge for Domain Generalized Stereo Matching

Peng Xu Zhiyu Xiang Jingyun Fu Tianyu Pu Hanzhi Zhong Eryun Liu

Date: Oct.20, 2025

- > 3D convolution—based stereo networks output discrete disparity probability distributions, making them naturally suitable for supervision with cross-entropy loss.
- > Previous works modeled stereo ground truth as a uni-modal Laplacian [1] or Gaussian [2], centered on the disparity ground truth.

- [1] Tulyakov S, Ivanov A, Fleuret F. Practical deep stereo (pds): Toward applications-friendly deep stereo matching. NeurIPS 2018.
- [2] Chen C, Chen X, Cheng H. On the over-smoothing problem of cnn based disparity estimation. ICCV 2019.

> Later work (ADL) extended this to multi-modal modeling, but only for edge pixels.

- Other ambiguous regions, such as repeating textures and transparency, intuitively should also be modeled as multi-modal distributions.
- Our goal is to model the ground-truth distribution for all regions, enabling the network to learn more generalizable matching principles.
- > Dark knowledge: stereo networks trained with a unimodal distribution spontaneously learn dark knowledge such as similarity and uncertainty.

➤ Pretrained networks with different **architectures**, and even different **checkpoints** of the same architecture, all show **domain preferences** for different test sets.

- \triangleright For each pixel, the network ensemble predicts M multi-modal probability distributions.
- \triangleright Individual modes are separated from these distributions and fitted as **parameterized Laplacians** (w, μ, b) .

Laplacian(
$$\mathbf{d}; w, \mu, b$$
) = $w \cdot \frac{\exp(-\frac{|\mathbf{d} - \mu|}{b})}{\sum_{d \in \mathbf{d}} \exp(-\frac{|d - \mu|}{b})}$
$$w \leftarrow \sum_{d=l}^{r} \mathbf{p}[d]$$
$$\mu \leftarrow \sum_{d=l}^{r} (\mathbf{p}[d]/w) \cdot d$$
$$b \leftarrow \sum_{d=l}^{r} (\mathbf{p}[d]/w) \cdot |d - \mu|$$

- \triangleright For each pixel, the network ensemble predicts M multi-modal probability distributions.
- \triangleright Individual modes are separated from these distributions and fitted as **parameterized Laplacians** (w, μ, b) .
- \succ The disparity ground-truth is also modeled as the uni-modal Laplacian with coordinate $(\widehat{w}, \widehat{d}, \widehat{b})$.

- \succ For each pixel, the network ensemble predicts M multi-modal probability distributions.
- \triangleright Individual modes are separated from these distributions and fitted as **parameterized Laplacians** (w, μ, b) .
- \succ The disparity label is also modeled as the uni-modal Laplacian with coordinate $(\widehat{w},\widehat{d},\widehat{b})$.
- We cluster the points in the parameter space to distinguish the **objective knowledge** (effective clusters) from the **biased knowledge** (noise).

The elements within each cluster are **fused** and **re-modeled** as a formulated mode in the final ground-truth distribution.

$$\hat{\mathbf{p}} = \sum_{k=1}^{K} \text{Laplacian}(\mathbf{d}; w_k, \mu_k, b_k) = \sum_{k=1}^{K} w_k \cdot \frac{\exp(-\frac{|\mathbf{d} - \mu_k|}{b_k})}{\sum_{d \in \mathbf{d}} \exp(-\frac{|d - \mu_k|}{b_k})}$$

> preserves unimodal property

3. Experiments

> Trained on **synthetic** dataset SceneFlow and evaluated on four **real-world** datasets

Method	Publication	KITTI 2015 >3px	KITTI 2012 >3px	Middlebury >2px	ETH3D >1px	Mean Rank
PSMNet [1]	CVPR 2018	16.30 ¹⁸	15.10 ¹⁸	25.10 ¹⁸	23.8018	18.00
GwcNet [14]	CVPR 2018	12.80^{17}	11.70 ¹⁷	18.10^{16}	9.00^{16}	16.50
GANet [45]	CVPR 2019	11.70^{16}	10.10 ¹⁶	20.30^{17}	14.10^{17}	16.5
DSMNet [46]	ECCV 2020	6.50^{15}	6.20^{15}	13.80^{13}	6.20^{14}	14.25
CFNet [32]	CVPR 2021	5.80^{12}	4.70^{11}	15.30 ¹⁴	5.80^{12}	12.25
Mask-CFNet [29]	CVPR 2023	5.80^{12}	4.80^{12}	13.70 ¹²	5.70^{11}	11.75
Raft-Stereo [23]	3DV 2021	5.70^{11}	5.20^{14}	12.60^{11}	3.30 ⁶	10.50
FC-GANet [48]	CVPR 2022	5.30 ⁹	4.60 ¹⁰	10.20 ⁹	5.80 ¹²	10.00
PCWNet [33]	ECCV 2022	5.60^{10}	4.20 ⁵	15.77 ¹⁵	5.20^{10}	10.00
IGEV-Stereo [39]	CVPR 2023	6.0314	5.1813	7.27 ³	3.60 ⁷	9.25
Graft-GANet [24]	CVPR 2022	4.90 ⁶	4.20 ⁵	9.80 ⁸	6.20^{14}	8.25
ITSA-CFNet [8]	CVPR 2022	4.70 ⁴	4.20 ⁵	10.40^{10}	5.10 ⁹	7.00
StereoRisk [25]	ICML 2024	5.19 ⁸	4.43 ⁹	9.32 ⁷	2.41 ²	6.50
NMRF [13]	CVPR 2024	5.10 ⁷	4.20 ⁵	7.50^{4}	3.80^{8}	6.00
GANet + ADL [40]	CVPR 2024	4.84 ⁵	3.93 ⁴	8.72 ⁶	2.31 ¹	4.00
PSMNet + Ours		4.49 ³	3.72 ²	7.95 ⁵	3.17 ⁵	3.75
GwcNet + Ours		4.16 ²	3.74 ³	7.23 ²	2.91 ⁴	2.75
PCWNet + Ours		3.96 ¹	3.57 ¹	7.20 ¹	2.72 ³	1.50

3. Experiments

Thanks!

Date: Oct.20, 2025