PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Segundo semestre 2022

Ayudantía 13 - MAT1610

1. Calcular el volumen de un cono circular truncado, cuya altura es h, base inferior R y radio superior r, como se muestra en la figura.

Solución:

Note que el cono circular truncado puede obtenerse al rotar alrededor del eje x el área del trapecio de altura h, base menor r y base mayor R, como en la figura

Note el área del trapecio se asocia al área bajo la recta que pasa por los puntos (0, r) y (h, R),

entre 0 y h. Dicha recta tiene ecuación
$$y = mx + r$$
 con $m = \frac{R-r}{h-0} = \frac{R-r}{h}$, entonces, $V = \int_0^h \pi (mx + r)^2 dx = \pi \int_0^h (mx + r)^2 = \pi \left. \frac{(mx + r)^3}{3m} \right|_0^h = \frac{(mh + r)^3}{3m} - \frac{(r)^3}{3m}$

Por lo tanto,

V =
$$\frac{\pi}{3m}$$
 ($(mh+r)^3-r^3$) = $\frac{\pi}{3\frac{R-r}{h}}$ ($(R-r+r)^3-r^3$) = $\frac{\pi h}{3(R-r)}$ (R^3-r^3) = $\frac{\pi h}{3}$ (R^2+rR+r^2) Así, el volumen de un cono circular truncado, cuya altura es h , base inferior R y radio superior

r es $V = \frac{\pi h}{3} (R^2 + rR + r^2)$ unidades de volumen.

2. Determinar el volumen del sólido generado por la rotación del área limitada por las curvas asociadas a $-y^2-1=x$ y la recta x=-2 alrededor de la recta x=-2

Solución:

Puntos de Intersección: $-y^2 - 1 = -2 \Leftrightarrow y^2 = 1 \Leftrightarrow y = \pm 1$, es decir, los puntos son (-2, -1), (-2, 1).

$$V = \int_{-1}^{1} \pi (-y^2 - 1 - (-2))^2 dy$$

$$= 2\pi \int_{-1}^{1} (-y^2 + 1)^2 dy$$

$$= 2\pi \int_{-1}^{1} (y^4 - 2y^2 + 1) dy$$

$$= \pi \left(\frac{y^5}{5} - 2\frac{y^3}{3} + y \Big|_{-1}^{1} \right)$$

$$= \left(\frac{16\pi}{15} \right)$$

Así el volumen es $\frac{16\pi}{15}$ unidades de volumen. Idea gráfica

3. Hallar el volumen del sólido generado en la rotación del área limitada por la parábola $y = -x^2 - 3x + 6$ y la recta y = 3 - x alrededor de la recta x = 3 y del eje x.

Solución:

El área a rotar se muestra en la figura

Intersección entre las curvas:

$$-x^{2} - 3x + 6 = 3 - x \Leftrightarrow x^{2} + 2x - 3 = 0$$
$$\Leftrightarrow (x+3)(x-1) = 0$$
$$\Leftrightarrow x = -3 \lor x = 1$$

Idea gráfica del sólido generado:

$$V = 2\pi \int_{-3}^{1} (3-x) (-x^2 - 3x + 6 - (3-x)) dx$$

$$= 2\pi \int_{-3}^{1} (3-x) (-x^2 - 2x + 3) dx$$

$$= 2\pi \int_{-3}^{1} (-3x^2 - 6x + 9 + x^3 + 2x^2 - 3x)) dx$$

$$= 2\pi \int_{-3}^{1} (x^3 - x^2 - 9x + 9) dx$$

$$= 2\pi \left[\frac{x^4}{4} - \frac{x^3}{3} - \frac{9x^2}{2} + 9x \right]_{-3}^{1}$$

$$= 2\pi \left[\frac{1}{4} - \frac{1}{3} - \frac{9}{2} + 9 - \left(\frac{81}{4} + 9 - \frac{81}{2} - 27 \right) \right]$$

$$= 2\pi \left[-\frac{80}{4} + \frac{72}{2} + 27 - \frac{1}{3} \right]$$

$$= 2\pi \left[43 - \frac{1}{3} \right]$$

$$= 2\pi \left[\frac{128}{3} \right]$$

$$= \frac{256\pi}{3}$$

Así, el volumen del sólido es $\frac{256\pi}{3}$ unidades de volumen.

4. Determine:

(a)
$$\int e^{-x} \ln \left(1 + e^x\right) dx$$

(b)
$$\int_0^{\frac{1}{2}} \frac{xe^{\arcsin(x)}}{\sqrt{1-x^2}} dx$$

Solución:

(a) Entonces, considerando $u = \ln(1 + e^x)$ y $dv = e^{-x}dx$ se tiene que $du = \frac{e^x}{1 + e^x}dx$ y $v = \int dv = \int e^{-x}dx = -e^{-x}$. Así, aplicando integración por partes

$$\int e^{-x} \ln (1 + e^x) \, dx = -\ln (1 + e^x) e^{-x} + \int e^{-x} \frac{e^x}{1 + e^x} dx$$

$$= -\ln (1 + e^x) e^{-x} + \int \frac{1}{1 + e^x} dx$$

$$= -\ln (1 + e^x) e^{-x} + \int \frac{1 + e^x - e^x}{1 + e^x} dx$$

$$= -\ln (1 + e^x) e^{-x} + \int \frac{1 + e^x}{1 + e^x} dx - \int \frac{e^x}{1 + e^x} dx$$

$$= -\ln (1 + e^x) e^{-x} + \int 1 dx - \int \frac{e^x}{1 + e^x} dx$$

$$= -\ln (1 + e^x) e^{-x} + x - \ln (|1 + e^x|) + C$$

$$= -\ln (1 + e^x) e^{-x} + x - \ln (1 + e^x) + C$$

$$= -\ln (1 + e^x) (e^{-x} + 1) + x + C$$

(b) Notar que $\frac{d}{dx} \operatorname{arcsen}(x) = \frac{1}{\sqrt{1-x^2}}$, entonces haciendo la sustitución $t = \operatorname{arcsen}(x)$, se tiene que $dt = \frac{1}{\sqrt{1-x^2}} dx$, $x = \operatorname{sen}(t)$, si x = 0 entonces $t = \operatorname{arcsen}(0) = 0$ y si $x = \frac{1}{2}$ entonces $t = \operatorname{arcsen}(\frac{1}{2}) = \frac{\pi}{6}$ y $\int_0^{\frac{1}{2}} \frac{xe^{\operatorname{arcsen}(x)}}{\sqrt{1-x^2}} dx = \int_0^{\frac{\pi}{6}} \operatorname{sen}(t)e^t dt$ cuyo valor puede obtenerse integrando por partes.

Considerando la integral indefinida, aplicando integración pr partes dos veces:

$$u = \text{sen}(t), dv = e^t, du = \cos(t)dt, v = e^t$$

 $u = \cos(t), dv = e^t, du = -\text{sen}(t)dt, v = e^t$

$$\int \operatorname{sen}(t)e^{t}dt = e^{t}\operatorname{sen}(t) - \int \cos(t)e^{t}dt$$

$$= e^{t}\operatorname{sen}(t) - \left(\cos(t)e^{t} + \int \operatorname{sen}(t)e^{t}dt\right)$$

$$= e^{t}\operatorname{sen}(t) - \cos(t)e^{t} - \int \operatorname{sen}(t)e^{t}dt$$

$$= e^{t}\left(\operatorname{sen}(t) - \cos(t)\right) - \int \operatorname{sen}(t)e^{t}dt$$

Entonces,
$$\int \operatorname{sen}(t)e^t dt = \frac{e^t}{2} \left(\operatorname{sen}(t) - \cos(t) \right) + C y$$

$$\int_0^{\frac{\pi}{6}} \operatorname{sen}(t)e^t dt = \frac{e^t}{2} \left(\operatorname{sen}(t) - \cos(t) \right) \Big|_0^{\frac{\pi}{6}}$$

$$= \frac{e^{\frac{\pi}{6}}}{4} \left(1 - \sqrt{3} \right) + \frac{1}{2}$$