Gradient Descent

Linear Regression Multiple Variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat $\{$ $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$

(simultaneously update for every $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $\, heta_0, heta_1$)

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $\, heta_j \,$ for $\, i = 0, \ldots, n
angle \,$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Equation 4-5. Partial derivatives of the cost function

 $\frac{\partial}{\partial \theta_i} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left(\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$

Equation 4-6. Gradient vector of the cost function

Equation 4-6. Gradient vector of the cost function
$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Equation 4-7. Gradient Descent step

$$\boldsymbol{\theta}^{(\text{next step})} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \text{MSE}(\boldsymbol{\theta})$$

"Batch" Gradient Descent (Full Gradient Descent)

Each step of gradient descent uses All the training examples.

Stochastic Gradient Descent

Picks a random instance and perform one iteration of parameter updates

Mini-batch Gradient Descent

Picks a small random set of instances and perform one iteration of parameter updates

Performance boost when using GPUs!

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. x_1 = size (0-2000 feet²) x_2 = number of bedrooms (1-5)

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Polynomial regression

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Choice of features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

- > from sklearn.preprocessing import PolynomialFeatures
- > poly_features = PolynomialFeatures(degree=2, include_bias=False)
- > X_poly = poly_features.fit_transform(X)
- > X[0] array([-0.75275929])
 - > X_poly[0]
 - array([-0.75275929, 0.56664654])
 - > lin reg = LinearRegression()
- > lin_reg.fit(X_poly, y)
 > lin_reg.intercent lin_reg.coef
- > lin_reg.intercept_, lin_reg.coef_ (array([1.78134581]), array([[0.93366893, 0.56456263]]))

Figure 4-13. Polynomial Regression model predictions

Figure 4-14. High-degree Polynomial Regression

Reference

Slides adapted from

Machine Learning By Andrew Ng

Hands-On Machine Learning - Chapter 4