[From the Transactions of the Cambridge Philosophical Society, VoL x. Part i.] VIII. On Faraday's Lines of Force. [Read Dec. 10, 1855, and Feb. 11, 1856.] The present state of electrical science seems peculiarl unfavourable to speculation. The laws of the distribution of electricity on the surface of conductors have been analytically deduced from experiment; some parts of the mathematical theory of magnetism are established, while in other parts the experimental data are wanting; the theory of the conduction of galvanism and that of the mutual attraction of conductors have been reduced to mathematical formulae, but have not fallen into relation with the other parts of the science. No electrical theory can now be put forth, unless it shows the connexion not only between electricity at rest and current electricity, but between the attractions and inductive effects of electricity in both states. Such a theory must accurately satisfy those laws, the mathematical form of which is known, and must afford the means of calculating the effects in the limiting cases where the known formulae are inapplicable. In order therefore to appreciate the requirements of the science, the student must make himself familiar with a considerable body of most intricate mathematics, the merfi retention of which in the memory materially interferes with further progress. The first process therefore in the effectual study of the science, must be one of simplification and reduction of the results of previous investigation to a form in which the mind can grasp them. The results of this simplification may take the form of a purely mathematical formula or of a physical hypothesis. In the first case we entirely lose sight of the phenomena to be explained; and though we may trace out the consequences of given laws, we can never obtain more extended views of the connexions of the subject If, on the other luiml, we adopt a physical hypothesis, we see the phenomena only through a medium, and are liable to that blindness to facts and rashness m From the Transactions of the Cambridge Philosophical Society, Vol. x. Part i.] VIII. On Faraday's Lines of Force. [Read Dec. 10, 1855, and Feb. 11, 1856.] The present state of electrical science seems peculiarlunfavourable to speculation. The laws of the distribution of electricity on the surface of conductors have been analytically deduced from experiment; some parts of the mathematical theory of magnetism are established, while in other parts the experimental data are wanting; the theory of the conduction of galvanism and that of the mutual attraction of conductors have been reduced to mathematical formulae, but have not fallen into relation with the other parts of the science. No electrical theory can now be put forth, unless it shows the connexion not only between electricity at rest and current electricity, but between the attractions and inductive effects of electricity in both states. Such a theory must accurately satisfy those laws, the mathematical form of which is known, and must afford the means of calculating the effects in the limiting cases where the known formulae are inapplicable. In order therefore to appreciate the requirements of the science, the student must make himself familiar with a considerable body of most intricate mathematics, the merfi retention of which in the memory materially interferes with further progress. The first process therefore in the effectual study of the science, must be one of simplification and reduction of the results of previous investigation to a form in which the mind can grasp them. The results of this simplification may take the form of a purely mathematical formula or of a physical hypothesis. In the first case we entirely lose sight of the phenomena to be explained; and though we may trace out the consequences of given laws, we can never obtain more extended views of the connexions of the subject If, on the other luiml, we adopt a physical hypothesis, we see the phenomena only through a medium, and are liable to that blindness to facts and rashness m