Categories for the Wonking

Mathematicians. 2nd ed.

Mac Lane. Springer.

§ 2.6. Comma Categories

Def.

C: category. be E: object

(b (C): category of objects under b with

objects: ⟨f.c⟩, where ce €:obj. and f:b→c in €.

o arrows: (f.c) - (f'.c'), where h: c-c' s.t f'= hof.

Objects: f

throws:

t

t

c

t

f

c

Exs.

@ *: 1-point see or & 5. (* 1 Set) = Sety

Obj. * $\rightarrow \times$ (t. pair $(x \in X : X)$ of z.)

Arr. $(x : X) \rightarrow (x : X)$ (t. base point $z \in X$) map of z.

0 (ZJA6) = Abx

 \bigcirc Obj. $\mathbb{Z} \xrightarrow{f} G$ it. $(f(1), G) \cap \mathbb{Z}$. (base point f(1)).

Arr. $(q, G) \longrightarrow (q', G')$ it. base point $\mathbb{E}(\Re)$ group hom, $n \geq 1$.

Def.

E: cat. ae E: obj.

(Ela): category of objects onen a

 ϕ \star : 1-point set. \Rightarrow (Set \downarrow \star) \cong Set.

 $(f: \chi \rightarrow \chi)$ $(f: \chi \rightarrow \chi)$

ring how presoning angmentations as arrows.

Obj. R = 2 (4. augmentation 2041, Ith 3. (All 360).

An $(E,R) \rightarrow (E',R')$ (1. E = E' oh Ith Ith

Dot.
S:D ~ E: function. be E: obj.

(b (S): contegory of objects S-under b. with

Def.

T: E→ E: functor, a∈ E:obj.

(Tla): category of objects Town a with

obj. Te Am. Te \xrightarrow{Th} Te'

£x.

$$(x \cup U)$$
: map $x \xrightarrow{f} Uq$ as obj
group ham $h: (f,g) \longrightarrow (f',g')$ s.c. $f' = h \circ f$ as an.

Composites of (TIS) 12 mell-defined:

3 a composite

(TLS) 17 (618). (81a). (615). (Tla) n-A24cz" #3!

$$\emptyset$$
 (\mathcal{E} (a)(\mathcal{E} , $S=a:1\rightarrow\mathcal{E}$, $T=1_{\mathcal{E}}:\mathcal{E}\rightarrow\mathcal{E}$ ruter.

EKS.

$$(C \downarrow C) = \emptyset$$

$$\mathfrak{D} T = b, S = a : 1 \longrightarrow \mathcal{E}. \quad \text{are}.$$

Am.
$$b \xrightarrow{f} a$$
 $b \xrightarrow{f} a$
 $b \xrightarrow{f} a$
 $b \xrightarrow{f} a$

Comma category" o Zaj o to *!

(t15)の普遍性 (cf. Exercise (5))

$$d_0, d_1 : 1 \longrightarrow 9$$

& do (nesp & ds) 17. anom a + b E. a = donf (nesp. b = cobf) 12 243 functor. (cf. §2.5).

- (1) K: com. ring or v . (K | CRng) = CAlgk.
 - Obj. A : comming, $f: K \longrightarrow A : ring hom.$ i.e., A : com. alg./K.

Am. (A.f) h (A.f'): ring hom s.t.

大の子 i.e. scalar 信 f. fr を保か ming hom h A か A' i.e., alg. hem. h:A A'.

- (2) ℓ : cat. $t \in \ell$: terminal $\Rightarrow (\ell) = \ell$.
 - Obj. b for to to terminal tobis. & be 8 122712 one and exactly one 13ti.

An. 6 h 6 5.2.

b h b t: torninal tors i, and agram 15 (1) \$1069 12 commutative.

(4) (S.A. Hug). T.S.D -> E: function & \$\frac{1}{5}\$.

T: T - S: nat. transformation (t. T: D - (TIS): funder s-t.

Pe = Qt = idp 1= 50 to 5 to 1. (P. Q; projs.)

(;) T: T → S

 $\iff \forall d \in D, \exists \forall d : \forall d \rightarrow Sd \quad Sd. \qquad \forall d \xrightarrow{dd} Sd$

The Sdr

 $\tau: D \longrightarrow (\tau \downarrow S)$ s.t. $Pz = Qz = id_D$

⇔ & deD (24t(2) td: Te → Sq (3e, g ∈D)

& d f d' 124th Te Td Sq (3kie mei. h: q mg)

Te' To Sa

s.t.