Math 334 Homework 5

Alexandre Lipson

October 30, 2024

Problem (1). Find and classify all critical points of $f(x,y) = 3x - x^3 - 2y^2 + y^4$.

Proof. We will begin with $\nabla f(x,y) = (3-3x^2, -4y+4y^3)$. Then, at $\nabla f = 0$, $3-3x^2 = 0 \implies x = \pm 1$ and $-4y + 4y^3 = 0 \implies y = 0, \pm 1$. So we will check the points $(\pm 1, \pm 1)$ and $(\pm 1, 0)$.

$$f(1,\pm 1) = 3 - 1 - 2 + 1 = 1$$

$$f(-1,\pm 1) = -3 + 1 - 2 + 1 = -3$$

$$f(1,0) = 3 - 1 = 2$$

$$f(-1,0) = -3 + 1 = -2.$$

So, (1,0) is a local max while $(-1,\pm 1)$ is a local min. The other two points must be saddle points.

We can further verify this using the determinant of the Hessian matrix. We expect the saddle points to produce a negative value D, where $D(x,y) = f_{xx}f_{yy} - (f_{xy})^2 = -6x(12y^2 - 4)$. So $D(1,\pm 1) = -6(8) < 0$, and D(-1,0) = 6(-4) < 0. So, both of these points are indeed saddle points. Checking for our local extrema, we expect to find positive D, and, indeed, $D(-1,\pm 1) = 6(8) > 0$ and D(1,0) = -6(-4) > 0.

Problem (2). Let $V \ge 0$. Let $\{S_V\}$ be the set of rectangular prisms with volume $\le V$. Find the minimum surface area of a prism in $\{S_V\}$. Is there a maximum possible surface area?

Proof. Let the volume function be V(x, y, z) = xyz. Let the surface area function be A(x, y, z) = 2(xy + xz + yz).

First, we see that for a prism with zero volume, x = y = z = 0, then the area will also be zero. So, this is the minimum surface area for $V \ge 0$.

Next, we will use Lagrange multipliers, optimizing A with respect to V. So, $\nabla A = 2(y+z,x+z,x+y)$ and $\nabla V = (yz,xz,xy)$. With $\nabla A = \lambda \nabla V$ and $x,y,z \neq 0$, we are given the following equations,

$$yz = 2\lambda(y+z)$$
$$xz = 2\lambda(x+z)$$
$$xy = 2\lambda(x+y).$$

Alexandre Lipson October 30, 2024

Considering the first and last equations, we have

$$\frac{yz}{y+z} = \frac{xy}{x+y}$$
$$(x+z)y = (y+z)x$$
$$xy + yz = xy + xz$$
$$yz = xz$$
$$y = x.$$

We can perform a similar computation so see that a critical point occurs at x = y = z. For the minimum, have already seen that these values must all be zero. However, for the maximum, since V can be any number, so too can A. Thus, there is no maximum possible surface area. \square

Problem (3). Find the absolute max and min of f(x,y) = 2x + 3y on $\sqrt{x} + \sqrt{y} = 5$, $x,y \ge 0$.

Proof. Let $g(x,y) = \sqrt{x} + \sqrt{y}$. We wish to optimize f on g. Then, with $\nabla f = (2,3)$ and $\nabla g = \frac{1}{2}(\frac{1}{\sqrt{x}},\frac{1}{\sqrt{y}})$,

$$\nabla f = \lambda \nabla g \implies 2 = \frac{\lambda}{2\sqrt{x}}, \ 3 = \frac{\lambda}{2\sqrt{y}} \implies 2\sqrt{x} = 3\sqrt{y}.$$

Assume $x, y \neq 0$ and recall the constraint $\sqrt{x} + \sqrt{y} = 5$. The above becomes,

$$\frac{2}{3}\sqrt{x} = 5 - \sqrt{x}$$

$$\frac{5}{3}\sqrt{x} = 5$$

$$\sqrt{x} = 3$$

$$x = 9.$$

Then, y = 4. So, there exists a critical point on the boundary at (9,4). We must also check the boundary points (25,0) and (0,25).

$$f(25,0) = 50$$

$$f(0,25) = 75$$

$$f(9,4) = 30.$$

So, the absolute minimum of f on g is 30 at (9,4) and the absolute maximum is 75 at (0,25). \square

Problem (4). Let $S \subset \mathbb{R}^3$ be defined by $x^2 - 4y^2 + z^2 = 1$. Let p = (0,0,5).

- (a) Find $x \in S$ closest to p, or prove there is no such x.
- (b) Find $x \in S$ furthest from p, or prove there is no such x.
- (c) Sketch S supporting answers to parts a and b.

Proof of a. We will use $f(x, y, z) = x^2 + y^2 + (z - 5)^2$ to give the distance squared from p. We will minimize f with respect to $g(x, y, z) = x^2 - 4y^2 + z^2 - 1$.

Alexandre Lipson October 30, 2024

So,
$$\nabla f = (2x, 2y, 2z - 10)$$
 and $\nabla g = (2x, -8y, 2z)$. Then, $\nabla f = \lambda \nabla g \implies$
$$2x = 2\lambda x \implies x = 0 \lor \lambda = 1$$

$$2y = -8\lambda y \implies y = 0 \lor \lambda = -1/4$$

$$2z - 10 = 2\lambda z \implies z = \frac{5}{1 - \lambda}.$$

If $\lambda=1$, then z is of indeterminate form. So we must have x=0. For the first case, we will consider $\lambda=-\frac{1}{4}$, which gives z=4. But, our constraint g and x=0 provide that $-4y^2+4^2=1$, so $y^2=\frac{15}{4} \implies y=\frac{\pm\sqrt{15}}{2}$. Thus, we have a critical point at $\left(0,\frac{\pm\sqrt{15}}{2},4\right)$.

For the second case, we will use y = 0, yet, with our constraint g and x = 0, then $z^2 = 1 \implies z = \pm 1$. So we also have critical points $(0,0,\pm 1)$. Evaluating f at these critical points yields,

$$f(0,0,1) = 16$$

$$f(0,0,-1) = 36$$

$$f\left(0,\frac{\pm\sqrt{15}}{2},4\right) = \frac{19}{4}.$$

So, the minimum distance squared is $\frac{19}{4}$. Thus, the point of S closest to p is $\left(0, \frac{\pm\sqrt{15}}{2}\right)$, at $\frac{\sqrt{19}}{2}$ units away.

Proof of b. Since S is a hyperboloid of one sheet, then there is no point on S furthest from p. \square

Figure 1: Sketch of $S \subset \mathbb{R}^3$

Problem (5). (AMGM inequality) $\forall x_i \geq 0$,

$$\left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Prove AMGM inequality using Lagrange multipliers subject to the constraint $x_1 + \cdots + x_n = 1$.

Alexandre Lipson October 30, 2024

Proof. Let $g = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$. We will optimize $\log g$ which increases as g increases. Let

$$G = \log g = \frac{1}{n} \log \left(\prod_{i=1}^{n} x_i \right) = \frac{1}{n} \sum_{i=1}^{n} \log x_i.$$

So, $\frac{\partial G}{\partial x_i} = \frac{1}{nx_i}$. Then, with the constraint $a = \sum_{i=1}^n x_i$, $\frac{\partial a}{\partial x_i} = 1$. With $\nabla G = \lambda \nabla a$, we have that $\frac{1}{nx_i} = \lambda$, which implies that all x_i must be equal. So, with the constraint a, $\forall i$, $x_i = \frac{1}{n}$ provides the critical point.

Next, we will use the Hessian matrix H. If we look at the pure second partials, we see that $\frac{\partial^2 G}{\partial x_i^2} = -\frac{1}{nx_i^2}$, while the mixed partials are zero. Thus, H_G contains only negative diagonal entries, since $\forall x_i \geq 0$, $-\frac{1}{nx_i^2} < 0$. Since H_G is a diagonal matrix with all negative eigenvalues, it is negative definite. Since H_G is negative definite, then the critical point given by $\forall i, x_i = \frac{1}{n}$ is a maximum.

Then, indeed,

$$\left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} = \left(\left(\frac{1}{n}\right)^n\right)^{\frac{1}{n}} = \frac{1}{n} \le \frac{1}{n}.$$

So, the geometric and arithmetic means will be equal when all compared values are equal, but the geometric mean will be less than the arithmetic if the compared values are distinct. \Box