08-CV-01373-CMP

3

6

9

ENTERED

UNITED STATES DISTRICT COURT WESTERN DISTRICT OF WASHINGTON AT SEATTLE

WISTRON CORPORATION, a Taiwan corporation.

Plaintiff.

v.

SAMSUNG ELECTRONICS CO., LTD., a Republic of Korea corporation; SAMSUNG ELECTRONICS AMÉRICA, INC., a New York corporation; and SAMSUNG TELECOMMUNICATIONS AMERICA, LLC. a Delaware limited liability company;

Defendants.

Case No. C 08-1373

COMPLAINT FOR INFRINGEMENT U.S. PATENT NOS. 5,410,713; 5,870,613; AND 5,903,765

JURY TRIAL DEMANDED

Plaintiff WISTRON CORPORATION ("Wistron") complains of Defendants SAMSUNG ELECTRONICS CO., LTD. ("SEC"), SAMSUNG ELECTRONICS AMERICA, INC. ("SEA"), and SAMSUNG TELECOMMUNICATIONS AMERICA, LLC ("STA") (collectively, "Defendants") and by this Complaint alleges as follows.

PARTIES

Wistron is a corporation organized in 2001, and existing under the laws of 1. Taiwan, with its principle place of business in Hsichih, Taiwan. Wistron is an Original Design Manufacturing ("ODM") company that designs, develops and manufactures electronic

COMPLAINT FOR INFRINGEMENT OF U.S. PATENT NOS.5,410,713; 5,870,613; AND 5,903,765 - 1

Case No.

K&L GATES LLP 925 FOURTH AVENUE **SHITE 2900** SEATTLE, WASHINGTON 98104-1158 TELEPHONE: (206) 623-7580 FACSIMILE. (206) 623-7022

13

12

14⁻ 15

16

17

18

19 20

21

22

23

24

2526

products for customers to sell under their own brand name including companies such as Microsoft, Hewlett Packard, Dell and Lenovo. As a result, Wistron is a leading manufacturer of personal computers including stand alone PCs, laptops, notebooks and other computing devices, including computing devices that are sold throughout the United States, including this district.

- 2. SEC is a corporation organized and existing under the laws of the Republic of Korea, with its principle place of business at 250 2-ga Taepyong-ro, Jung-gu, Seoul, 100-742, South Korea. SEC is a member of the multinational conglomerate Samsung Group, which manufactures and sells electronic products including cell phones, video playback equipment such as VCRs and DVD players, set top boxes and computers. In 2007, SEC boasted sales revenues of nearly \$100 billion, with a net income in excess of \$7.4 billion.
- 3. SEA is a New York corporation with its principal place of business at 105 Challenger Park Road, Ridgefield Park, New Jersey 07660. On information and belief, SEA was formed in 1977 as a subsidiary of SEC, and markets, sells, or offers for sale a variety of consumer electronics products including video playback equipment, TVs, set top boxes and all manner of computer components and peripherals. On information and belief, SEA manages the operations of STA.
- 4. STA is a Delaware limited liability company with its principal place of business at 1301 East Lookout Drive, Richardson, Texas 75091. On information and belief, STA was founded in 1996 as a subsidiary of SEC, and markets, sells, or offers for sale a variety of personal and business communications devices in the United States, including cell phones.

JURISDICTION

5. This is an action for patent infringement, over which this Court has subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and 1338(a).

COMPLAINT FOR INFRINGEMENT OF U.S. PATENT NOS.5,410,713; 5,870,613; AND 5,903,765 - 2

Case No.

K&L GATES LLP 925 FOURTH AVENUE SUITE 2900 SEATTLE, WASHINGTON 98304-1158 TELEPHONE: (206) 623-7580 FACSIMILE (206) 623-7022

1

2

3

4

5

6. This Court has personal jurisdiction over each of the Defendants consistent with the requirements of RCW § 4.28.185 in that each of the Defendants either directly or through their respective agents conduct business in this district by means of product sales, advertising on television and via the internet. In addition to the foregoing general allegations, all or substantially all of the accused products and technologies identified herein are sold, offered for sale or otherwise made available by Defendants here in Washington in general, and in this district in particular.

VENUE

7. Venue is proper in this district pursuant to 28 U.S.C. §§ 1391(b), (c) and (d), and 1400(b). By selling and offering for sale the Wistron Accused Products (as defined below), Defendants have committed acts of infringement in this district. Defendant SEC operates in the United States through one or more of its subsidiaries, including the other Defendants named above. Further, as an alien, SEC may be sued in any district. The remaining Defendants all reside in this district within the meaning 28 U.S.C. §§ 1391(b) and (c) and 1400(b).

FACTUAL BACKGROUND

- 8. Wistron is a co-owner of all right, title and interest in the following United States Patents (collectively the "Wistron Patents"), and is the owner of the sole and exclusive right to bring suit with respect to any past, present and future infringement thereof:
 - a. U.S. Patent No. 5,410,713 entitled "Power-Management System for a Computer," was duly and legally issued on April 25, 1995, from patent application Serial No. 07/816,108 filed on January 2, 1992, with Dave White, Yen W Lee, Rod Ang, Ray Barbieri, James Chen and Suh C. Lee as the named inventors (the "'713 patent"). Among other things, the '713 patent discloses

25

power management systems and methods for computers. A true and correct copy of the '713 patent is attached hereto as Exhibit 1.

- b. U.S. Patent No. 5,870,613 entitled "Power Management System for a Computer," was duly and legally issued on February 9, 1999, from patent application Serial No. 08/422,599 filed on April 14, 1995, which application was a continuation of application Serial No. 07/816,108 filed on January 2, 1992 (and that lead to the issuance of the '713 patent), with Dave White, Yen Wei Lee, Rod Ang, Ray Barbieri, James Chen and Suh Chiueh Lee as the named inventors (the "'613 patent"). Among other things, the '613 patent discloses power management systems and methods for computers. A true and correct copy of the '613 patent is attached hereto as Exhibit 2.
- c. U.S. Patent No. 5,903,765 entitled "Power Management System for a Computer," was duly and legally issued on May 11, 1999, from patent application Serial No. 08/825,663 filed on April 3, 1997, which application was a division of application No. 08/422,599 (that lead to the issuance of the '613 patent), which is a continuation of application Serial No. 07/816,108 filed on January 2, 1992 (that lead to issuance of the '713 patent), with Dave White, Yen Wei Lee, Rod Ang, Ray Barbieri, James Chen and Suh Chiueh Lee as the named inventors (the "'765 patent"). Among other things, the '765 patent discloses power management systems and methods for computers. A true and correct copy of the '765 patent is attached hereto as Exhibit 3.
- 9. Each of the Wistron Patents is valid and enforceable.
- 10. No later than June 28, 2007, representatives of SEC were put on express written and oral notice of Wistron's claim that one or more of the Defendants are infringing the '613 patent. The notice provided by Wistron to SEC included, but was not limited to

COMPLAINT FOR INFRINGEMENT OF U.S. PATENT NOS.5,410,713; 5,870,613; AND 5,903,765 - 4

24

25

26

claim charts covering the Samsung Blackjack SGH-i607 and SGH-D307 cell phones. On information and belief, Defendants have been on notice of the balance of the Wistron Patents since approximately that time.

- 11. Each of the Defendants has directly and indirectly infringed and continues to infringe, literally or under the doctrine of equivalents, one or more claims of the Wistron Patents by acting without authority so as to:
 - a. make, have made, use, offer to sell, sell within the United States, or import into the United States computer and digital products, that embody or practice the patented inventions, or practice the patented processes in the United States in connection with these activities, including at least:
 - i. Samsung SGH-D900 and SGH-D500 cell phones along with any other cell phones that embody or use the same or equivalent power management units and/or start up routine technology systems or methods;
 - ii. Samsung DVD-E217, E218, E219, E317, E319, E135, E535, P213, P313, E2323 players and any other DVD players that embody or use the same or equivalent power management units and/or start up routine technology systems or methods; and
 - iii. Samsung Blu-Ray players, televisions, home theater systems, data projectors, laser printers, multi-function printers, MP3 players and UMPC's that embody or use the same or equivalent power management units and/or start up routine technology systems or methods as the specific cell phones and DVD players identified above.
 - b. contribute to or actively induce infringement of the Wistron Patents.
 - 12. The foregoing products shall be referred to as the Wistron Accused Products

13. The above-described acts of infringement committed by Defendants have caused injury and damage to Wistron, and will continue to cause additional severe and irreparable injury and damages unless Defendants are enjoined from further infringing all of the foregoing Wistron Patents.

10

13

14

17

18

19

22

25

26

COMPLAINT FOR INFRINGEMENT OF U.S. PATENT

FIRST CLAIM FOR RELIEF

Infringement of U.S. Patent No. 5,410,713

- 14. Wistron alleges, and incorporates by reference, the allegations of paragraphs 1 through 13 above.
- 15. Defendants have directly, indirectly, contributorily, and/or by inducement infringed one or more claims of the '713 patent, literally, and/or under the doctrine of equivalents as proscribed by 35 U.S.C. § 271. The accused products include the Wistron Accused Products identified above.
- 16. As a consequence of Defendants' infringement, Wistron is entitled to recover damages adequate to compensate it for the injuries complained of herein, but in no event less than a reasonable royalty. Wistron is further entitled to have Defendants enjoined from committing additional future acts of infringement that would subject Wistron to irreparable harm.

SECOND CLAIM FOR RELIEF

Infringement of U.S. Patent No. 5,870,613

- 17. Wistron alleges, and incorporates by reference, the allegations of paragraphs 1 through 16 above.
- 18. Defendants have directly, indirectly, contributorily, and/or by inducement infringed one or more claims of the '613 patent, literally, and/or under the doctrine of

equivalents as proscribed by 35 U.S.C. § 271. The accused products include the Wistron Accused Products identified above.

19. As a consequence of Defendants' infringement, Wistron is entitled to recover damages adequate to compensate it for the injuries complained of herein, but in no event less than a reasonable royalty. Wistron is further entitled to have Defendants enjoined from committing additional future acts of infringement that would subject Wistron to irreparable harm.

THIRD CLAIM FOR RELIEF

Infringement of U.S. Patent No. 5,903,765

- 20. Wistron alleges, and incorporates by reference, the allegations of paragraphs 1 through 19, above.
- 21. Defendants have directly, indirectly, contributorily, and/or by inducement infringed one or more claims of the '765 patent, literally, and/or under the doctrine of equivalents as proscribed by 35 U.S.C. § 271. The accused products include the Wistron Accused Products identified above.
- 22. As a consequence of Defendants' infringement, Wistron is entitled to recover damages adequate to compensate it for the injuries complained of herein, but in no event less than a reasonable royalty. Wistron is further entitled to have Defendants enjoined from committing additional future acts of infringement that would subject Wistron to irreparable harm.

FOURTH CLAIM FOR RELIEF

Willful Infringement

23. Wistron alleges and incorporates by reference, the allegations of paragraphs 1 through 22 above.

25

23

24

26

COMPLAINT FOR INFRINGEMENT OF U.S. PATENT NOS.5,410,713; 5,870,613; AND 5,903,765 - 7

4

5

6

7

9 10

11 12

13

.14 .15

16

17 18

19

2021

22

23

24

2526

- 24. As set forth above, since no later than June 28, 2007, representatives of SEC were notified of several of Wistron's infringement claims under the '613 patent.
- 25. On the face of the '613 patent is a reference to the fact that the underlying application for said patent was a continuation of the January 2, 1992 application that ultimately issued as the '713 patent. See Exhibit 2.
- 26. Defendants' representatives should have conducted an analysis of the '613 and '713 patents in response to having been put on notice of the '613 patent, and therefore did discover or should have discovered the existence of the '765 patent.
- 27. Defendants' failure to obtain a license to the Wistron Patents and/or failure to cease their infringing activities was objectively reckless and constitutes willful infringement of the Wistron Patents for purposes of 35 U.S.C. §§ 284 and 285.

PRAYER FOR RELIEF

WHEREFORE, Wistron prays for relief as follows:

- 1. Entry of a judgment declaring that each of the Defendants has infringed one or more claims of the Wistron Patents;
- 2. Entry of a preliminary and permanent injunction, pursuant to 35 U.S.C. § 283, enjoining each of the Defendants, and their respective agents, servants, officers, directors, employees and all other persons acting in concert with them, directly and indirectly, from any further acts of infringement, contributory infringement, or inducement of infringement of the Wistron Patents;
- 3. Entry of a judgment pursuant to 35 U.S.C. § 284 awarding to Wistron damages to compensate for Defendants' infringements in an amount to be determined at trial (and, if necessary, related accountings), but not less than a reasonable royalty;
- 4. Entry of a judgment pursuant to 35 U.S.C. § 284 trebling the damages awarded to Wistron to the extent one or more of the Defendants' infringement has been willful;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

- 5. Entry of a judgment pursuant to 35 U.S.C. § 285 declaring that this is an exceptional case, and awarding Wistron its costs of suit, including reasonable attorney's fees;
- 6. Entry of a judgment awarding Wistron pre-and post-judgment interest in accordance with the rates allowed by law; and
 - 7. Any such other and further relief as the Court deems just and proper.

DATED: September 12, 2008.

By .

Douglas B. Greenswag, wsba # 3506 Martha Rodriguez-Lopez, wsba # 35466 Christopher Schenck, wsba # 37997 Cristofer I. Leffler, wsba 35020

K&L Gates LLP

925 Fourth Avenue, Suite 2900 Seattle, WA 98104-1158

Telephone: (206) 623-7580 Facsimile: (206) 623-7022

E-Mail: douglas.greenswag@klgates.com

Minh-Hien Nguyen K&L Gates LLP 111 Congress Avenue, Suite 900 Austin, TX 78701 (512) 482-6800

Attorneys for Plaintiff Wistron Corporation

COMPLAINT FOR INFRINGEMENT OF U.S. PATENT NOS.5,410,713; 5,870,613; AND 5,903,765 - 9

Case No. K\\115644\\00012\\20950_MRL\\20950P20\$4

K&L GATES LLP
925 FOURTH AVENUE
SUITE 2900
SEATTLE, WASHINGTON 98104-1158
TELEPHONE: (206) 623-7580
FACSIMILE: (206) 623-7022

JURY TRIAL DEMANDED

Wistron requests a trial by jury on each cause of action for which a trial by jury is proper.

DATED: September 12, 2008.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Douglas B. Greenswag, wsb4#7506

K&L Gates LLP

925 Fourth Avenue, Suite 2900 Seattle, WA 98104-1158 Telephone: (206) 623-7580

Telephone: (206) 623-7580 Facsimile: (206) 623-7022

E-Mail: douglas.greenswag@klgates.com

Attorneys for Plaintiff Wistron Corporation

COMPLAINT FOR INFRINGEMENT OF U.S. PATENT NOS.5,410,713; 5,870,613; AND 5,903,765 - 10

Case No. K\\1156441\00012\20950_MRL\20950P2084

K&L GATES LLP
925 FOURTH AVENUE
SUITE 2900
SEATTLE, WASHINGTON 98104-1158
TELEPHONE: (206) 623-7580
FACSIMILE (206) 623-7022

EXHIBIT 1

US005410713A

United States Patent [19]

White et al.

Patent Number: [11]

5,410,713

Date of Patent: [45]

Apr. 25, 1995

POWER-MANAGEMENT SYSTEM FOR A COMPUTER

[75] Inventors: Dave White; Yen W. Lee; Rod Ang, all of San Jose, Calif.; Ray Barbieri, Campbell, Calif.; James Chen,

Taipei, Taiwan, Prov. of China; Suh

C. Lee, Palo Alto, Calif.

[73] Assignee: Smith Corona/Acer, New Canaan,

[21] Appl. No.: 816,108

[22] Filed:

Jan. 2, 1992

[51] [52] U.S. Cl. 395/750; 395/575; 395/725; 364/707; 307/66; 365/226; 365/229

58] Field of Search 395/750, 575, 725; 365/226, 229; 364/707; 307/66

[56]

References Cited

U.S. PATENT DOCUMENTS

4,189,717	2/1980	Takeuchi	364/707
4,200,916	4/1980	Seipp	364/900
4,232,377	11/1980	Tallman	365/229
4,495,569	1/1985	Higawa	395/725
4,551,841	11/1985	Fujita et al	395/750
4,553,223	11/1985	Bouhelier et al	395/750
4,611,289	9/1986	Coppola	395/750
4,654,821	3/1987	Lapp	395/750
4,675,538	6/1987	Epstein	. 307/66
4,777,626	10/1988	Matsushita et al	365/229
4,809,163	2/1989	Hirasawa et al	395/750
4,922,450	5/1990	Rose et al	395/750
5,121,500	6/1992	Arlington et al	395/750
5,163,153	11/1992	Cole et al	395/750
5,167,024	11/1992	Smith et al	395/750
5,182,810	1/1993	Bartling et al	395/750

5,220,671	6/1993	Yamagishi	395/750
5,230,074	7/1993	Canova et al	395/750
5.237.692	8/1993	Raasch et al	395/750

Primary Examiner—Allen R. MacDonald Assistant Examiner-George Davis

Attorney, Agent, or Firm-Townsend and Townsend Khourie and Crew

ABSTRACT

A power management system for a personal computer comprises a power management processor, a switchable power supply and a keep alive power supply. The processor is powered by the keep alive power supply that continuously provides power. The computer is powered by a power supply that is switchable in response to a control signal. The processor preferably controls the switchable power supply. The processor is coupled to receive external device interrupts from a plurality of external devices that instruct the processor when to turn the switchable power supply on and off. The processor is also coupled to the computer through an interface. The power management system also includes a method for turning the computer on and off. A preferred method uses the processor to control the power provided to the computer. The preferred method also uses the processor to dictate whether the computer will to perform a long boot that brings the computer to an operational state, identifies the computer's configuration, and tests memory, or a short boot that brings the computer to an operational state in a much shorter time. A preferred method for turning the computer off includes the ability to exit a program being run by the computer, and saving a hardware state of the computer on a hard disk.

10 Claims, 5 Drawing Sheets

U.S. Patent

Apr. 25, 1995

Sheet 1 of 5

FIG. 1

FIG. 2

U.S. Patent

Apr. 25, 1995

Sheet 2 of 5

FIG. 3

U.S. Patent

Apr. 25, 1995

Sheet 3 of 5

FIG. 4

U.S. Patent

Apr. 25, 1995

Sheet 4 of 5

FIG. 5

END

U.S. Patent

Apr. 25, 1995

Sheet 5 of 5

5,410,713

FIG. 6

POWER-MANAGEMENT SYSTEM FOR A COMPUTER

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to power supply systems. In particular, the present invention relates to a power management system for personal computers that provides power to the computer system in response to 10 interrupts from external devices.

2. Description of Related Art

Conventional present day computer systems include a power supply that provides the power required to operate the computer system. The power supply is coupled to an AC voltage source and converts the AC voltage to a DC voltage. Typically, the power supply is coupled through a switch that is manually activated by the user and only provides power when the switch is closed. Since the switch is manual, it cannot be elec- 20 tronically activated to open and close to turn the computer off and on, respectively. Thus, the prior art does not provide a method for using external device interrupts or other electronic signals to control the application of power to the computer.

The prior art has attempted to reduce this shortcoming by keeping computers in the on or operational state continuously. However, such a practice wastes significant amounts of power. This practice also reduces the life of the electronic components that comprise comput- 30 ers. Additionally, with the advent of portable computers that have a very limited power supply, such continuous operation is not possible.

Therefore, there is a need for a system for providing power to a computer system in response to external 35 events.

Another problem associated with power management systems of the prior art is the requirement of manually exiting all applications or programs being run on the computer before turning off the power. With most 40 all personal computers, the user must exit the program before turning the power off, otherwise, the data used by the program will be destroyed or corrupted. Additionally, turning off the power without exiting the program even affects the operation of some programs. 45 Thus, there is a need for a system that saves the state of the hardware and memory before turning off the power.

SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies of 50 tion; the prior art by providing a power management system that allows power to be controlled by external devices. A preferred embodiment of the power management system of the present invention comprises a power management processor, a switchable power supply and a 55 off power with the system of the present invention. keep alive power supply. The processor is coupled to and powered by the keep alive power supply. The keep alive power supply provides a voltage as long as it is coupled to a source. The computer is coupled to and powered by the switchable power supply. The switch- 60 a able power supply can be switched on and off in response to a control signal.

In the preferred embodiment, the processor is coupled to the switchable power supply and provides the control signal that turns the switchable power supply 65 on and off. The processor is also coupled to receive external device interrupts from a plurality of external devices. The external device interrupts are used to in-

struct the processor when to turn the switchable power supply on and off. One such device providing an interrupt may be an ordinary switch that is conventionally used to turn computers on and off. The processor is also 5 coupled to the computer through an interface and preferably can issue non-maskable interrupts (NMI) to the central processing unit (CPU) of the computer.

2

The power management system of the present invention also includes a method for turning the computer on and off. The preferred method for providing power to the computer comprises the steps of: continuously providing power to the power management processor with a first power supply; monitoring external device interrupt lines coupled to the power management processor; providing power to the computer if an external device interrupt is received by sending a control signal to a second power supply coupled to power the computer; and sending a boot status command from the power management processor to the computer. The boot status command can be either a long boot command that brings the computer to an operational state, identifies the computer's configuration, and tests memory, or a short boot command that brings the computer to an operational state in a much shorter time. The preferred method for turning the computer off comprises the steps of providing power to the power management processor with a first power source; monitoring external device interrupt lines coupled to the power management processor; signaling the computer when an external device interrupt is received; performing an operation that exits running programs and saves the hardware states of the computer on the hard disk; sending tasks from the computer to the power management processor; switching off a second power source coupled to the computer; and performing the tasks received in the sending step with the power management processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a preferred embodiment of a power management system of the present invention:

FIG. 2 is a block diagram of a preferred embodiment for the power supply of the present invention;

FIG. 3 is a flow chart for the preferred method for providing power with the system of the present invention:

FIG. 4 is a flow chart for the preferred method for turning off power with the system of the present inven-

FIG. 5 is a flow chart of a wake up sequence for providing power with the system of the present inven-

FIG. 6 is a flow chart of a sleep sequence for turning

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1, a preferred embodiment of power management system constructed in accordance with the present invention is shown. The power management system preferably comprises a power management processor (PMM) 10 and a power supply 12. The PMM 10 electronically controls the power supplied to a host computer system 14. The power supply 12 provides power to both the PMM 10 and the computer 14. The power supply 12 receives an AC input on line 26. Line 28 couples the power supply 12 to the computer 14

to provide the system power. The output of the power supply 12 on line 28 is controlled by an on/off control signal sent from the PMM 10 to the power supply 12 on line 18. The power supply 12 also provides continuous power to the PMM 10 on line 20.

Referring now to FIG. 2, a preferred embodiment of the power supply 12 is shown. The power supply 12 preferably comprises a switchable power supply 30 and a keep alive power supply 32. Both power supplies 30. 32 are preferably coupled to receive an AC power input 10 on line 26. The keep alive power supply 32 is preferably a low wattage power supply that provides a 12 volt output in an exemplary embodiment. The keep alive power supply 32 continuously outputs power while an AC input is provided. In contrast, the switchable power 15 supply 30 is electronically controllable, and may be selectively turned on an off using an enable (on/off control) signal on line 18. The switchable power supply 30 provides voltages of +5, -5, +12 and -12 at its outputs in an exemplary embodiment. For example, power supply by a custom made power supply manufactured by Hi-Power.

Referring back to FIG. 1, the coupling of the PMM 10 for receiving external device interrupts 16 on lines 22-24 is shown. The PMM 10 is preferably coupled to all hardware devices/interfaces (not shown) that can cause the computer 14 to wake up (i.e., switch power supply 30 to the on state). The external device interrupts 16 signal when the PMM 10 should apply or remove power from the computer 14. The external device interrupts 16 may be from a variety of devices that the user has granted permission to switch the computer on and off. It should be understood that all interfaces that can generate "WAKE UP" interrupts to the PMM 10 35 must be powered by the keep alive power supply 32. In the preferred embodiment, external device interrupts 16 are provided by a conventional manual switch for switching power on or off. In the preferred embodiment, an external device interrupt is also provided for a 40 ring detect from a tip and ring interface (not shown) used with modems, facsimile machines and telephone answering machines. While the present invention will be discussed primarily with reference to these two types of external device interrupts, it should be understood to 45 sponse to an external interrupt indicating the switch those skilled in the art that the PMM 10 could receive interrupts from a various external devices that need to turn the computer 14 on and off.

The PMM 10 is also coupled to the computer 14. The PMM 10 preferably sends a non-maskable interrupt 50 (NMI) on line 25 to the computer 14 (i.e., the main Intel architecture based processor) and is also coupled to the computer 14 for sending status and command signals. The PMM 10 preferably maintains the communications protocol with the system BIOS (Basic Input Output 55 System) of the computer 14. The PMM 10 sends the computer 14 status signals such as the short boot which indicates that the computer 14 is to be powered up to an operational state, and the long boot signal that indicates the computer 14 is to be powered up and also the con- 60 figuration of the computer 14 and memory are to be tested. The PMM 10 also receives data from the computer 14. Once the computer 14 has been informed that the power will be removed, the computer 14 sends instructions to the PMM 10 indicating the functions that 65 the PMM 10 is to perform when the computer 14 is in the sleep state (Power from switchable power supply 30 is off while power is provided to the PMM 10).

The PMM 10 is preferably a microprocessor such as the Intel 8051. However, it should be understood that the PMM 10 can be based on any instruction set. The instruction set is not material to the invention. As briefly noted above, the PMM 10 controls the switchable power supply 30. In particular, the PMM 10 switches the power supply 30 on and off in response to external device interrupts 16 on lines 22-24. The PMM 10 preferably includes or is coupled to memory (not shown) for storing the tasks to be performed and other status information used in the operations just described. For example the PMM 10 preferably includes Random Access Memory (RAM) and Read Only Memory (ROM) to maintain communications protocol with the system BIOS of the computer 14. The PMM 10 also includes a device for keeping real time. The real time is

then compared to alarm times for powering down or up

the computer 14.

The power management system of the present inven-20 tion also includes methods for operating the system described above. The methods use three levels of instructions or software. First, the PMM power management code details the operations performed by the PMM 10 such as sending the on/off control signal, 25 keeping real time, and comparing real time to the alarm settings. Second, the system BIOS power management code, which is preferably incorporated into the conventional system BIOS of computer 14, provides to a protocol that distinguishes "long boot" commands from "short boot" commands sent by the PMM 10. Third, the management system of the present invention includes an application level program interface definition (API) that operating systems, such as Microsoft Windows 3.0, and high based applications to invoke the services of the power management system.

Referring now to FIGS. 3-6, the preferred methods for performing the power on sequence, the power off sequence, the wake up sequence and the sleep sequence will be described. The power on sequence is shown in FIG. 3. When the computer 14 is in the off or sleep state, the preferred embodiment of the PMM 10 monitors the state of the Power ON/OFF switch in step 40, keeps real time and compares the real time to the alarm settings. The power on sequence is performed in re-(not shown) has been closed. Once a closed switch is detected, the PMM 10 turns on the main system power to the computer in step 42 by sending the on/off control signal to enable the switchable power supply 30. Then in step 44, the PMM 10 sends a power cycle status indication specifying a long boot command to the system BIOS of the computer 14 to boot to an operational state, identify the computer's system configuration and perform all memory tests. Once the computer 14 has been powered up, the API interacts with commercially available software to restore the computer 14 to the state and application the computer 14 was in prior to being powered down.

Referring now to FIG. 4, the power off sequence will be described. When the computer 14 is in the 0N (active) state, the PMM 10 monitors the state of the power ON/OFF switch in step 50 for an external interrupt indicating that the switch is open. If a change of state in the power ON/OFF switch is detected, an external device interrupt is sent to the PMM 10 and the power off sequence is initiated. In step 52, the PMM 10 issues a NMI to the host computer 14. Upon receipt of the NMI in step 54, the host computer 14 initiates a "Save

State" operation at the end of which the state of the hardware, as well as the state of the memory is saved to the a non-volatile storage media such as a hard disk. This particularly advantageous because it lets the computer 14 save the state of hardware and memory before 5 the on/off control signal is sent to turn off power supply 30. These states stored in memory can later be used to re-boot the computer 14 in the exactly the same state it was in prior to power down. After completion of the Save State operation, the computer 14 assigns tasks to 10 be performed by the PMM 10 during the SLEEP state of the computer 14 and then issues a Save Done status to the PMM in step 56. In step 58, the PMM 10 monitors the status line for the Save Done signal from the computer 14. Once the Save State operation is complete, the 15 PMM 10 turns OFF the main system power by disabling the switchable power supply 30.

The present invention is particular advantageous because it provides wake up and sleep sequences that allow application software, such as WINFAX, to be 20 activated and used even though the computer 14 was in the SLEEP (OFF) state at the time the telephone ring was first detected. More specifically, the present invention allows the computer 14 to detect a ring while the computer 14 is in the SLEEP (OFF) State; boot com- 25 puter 14; activate the WINFAX software in less than 4 rings on the telephone line; receive the FAX from the FAX modem using WINFAX; store the FAX on the disk using WINFAX; and return the computer 14 to the SLEEP (OFF) state. The present invention will now be 30 described with reference to the WINFAX application software and FAX applications, however, it should be understood by those skilled in the art that the present invention may be used with various other software applications that may be initiated by external device 35

Referring now to FIG. 5, the wake up sequence is shown. The power management system of the present invention executes the wake up sequence when either (1) an external hardware event occurs, such as a ring is 40 detected on the Tip & Ring Interface, or (2) an alarm event occurs when the real time kept by PMM 10 matches with the alarm time programmed by the computer 14. When the computer 14 is in the SLEEP state, the PMM 10 also monitors external device interrupts 16 45 from the Ring Detect on the Tip & Ring Interface, and keeps real time and compares the current time against programmed alarm settings (Step 70). If a ring is detected, the PMM 10 switches power supply 30 on in step 72. Next, in step 74, the PMM 10 sends a short boot 50 status signal to the computer 14. The short boot status signal indicates that the system BIOS is not to perform all the power-on diagnostics, hardware initialization, and memory tests, but in the interest of time, to directly restore the state of the computer 14 from an alternate 55 bootable partition on the hard disk drive. This alternate (active) partition contains the applications needed to run the required functions of the system. The short boot process allow the present invention to boot, load the FAX software and be ready to receive the fax within 60 four rings on the Tip & Ring interface. Finally in step 76, the computer boots using the short boot command.

Referring now to FIG. 6, the preferred method for returning the computer 14 to the SLEEP state is shown. Once the computer 14 is booted with the short boot 65 command an is awake (on), the PMM 10 performs monitors the state of the Power ON/OFF switch and waits for "ACTION COMPLETE" status from the host

computer 14 in step 80. Upon receipt of the "ACTION COMPLETE" status, the present invention tests whether the state of the Power ON/OFF switch changed in step 82. If the state of the Power ON/OFF switch has not changed, the PMM 10 turns off the main system power supply in step 84 and reverts back to the tasks normally performed during the SLEEP state in step 86. On the other hand, if the Power ON/OFF switch state had changed in step 82, then the PMM 10 turns off power supply 30 in step 88. In step 90, the preferred method provides a delay, and then the normal power on sequence described with reference to FIG. 3 is executed in step 92.

Having described the present invention with reference to specific embodiments, the above description is intended to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. The scope of the invention is to be delimited only by the following claims. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the true spirit and scope of the present invention.

What is claimed is:

- 1. A system for supplying power to a computer in response to interrupts from external devices, said system comprising:
 - a first power supply having an input and an output for converting an AC voltage to a DC voltage, the input coupled to a first AC voltage source to receive AC voltage;
 - a second power supply having a voltage input, a control input and an output for converting an AC voltage to a DC voltage in response to a control signal, said input coupled to said AC voltage source to receive AC voltage in parallel with said first power supply, said output coupled to supply power to the computer; and
 - a power management processor having a power input, the power input of the power management processor connected to the output of the first power supply wherein said power management processor is powered by said first power supply, an output of the power management processor connected to the control input of the second power supply wherein the output of the power management processor provides control signals to said second power supply, control inputs and outputs coupled to the computer, and interrupt inputs coupled to the external devices to receive interrupts from the external devices.
- 2. The system of claim 1 wherein the power management processor is a microprocessor.
- 3. The system of claim 1 wherein one of the external devices is a switch and wherein the second power supply supplies power when the switch is closed.
- 4. The system of claim 1 wherein the processor outputs long boot and short boot commands to the computer and is capable of sending an interrupt to the computer, and the computer performs different power up functions as directed by the boot command received from the power management processor.
- 5. The system of claim 1 wherein the power management processor includes a device for keeping time, and logic for outputting the control signal to the second power supply when the time reaches predetermined values.

6. The system of claim 1 wherein the power management processor comprises memory for storing tasks to be performed by the power management processor.

7. A method for controlling with a power management processor the power supplied to a computer, 5 wherein said computer can perform any of a plurality of boot processes, said method comprising the steps of:

continuously supplying power to the power management processor;

monitoring external device interrupt lines coupled to 10 the power management processor;

if an external device interrupt is received in the power management processor, supplying power to the computer by sending a control signal from the power management processor to a switchable power supply, the switchable power supply being coupled to the computer for supplying power thereto; and

sending a boot status command from the power man- 20 agement processor to the computer to identify which boot process of said plurality of boot processes the computer is to perform.

8. The method of claim 7, wherein said computer has at least one identifiable configuration, and wherein said 25 while the computer is running a program, the steps of: computer includes testable memory and wherein the step of sending may send one of:

a long boot command that brings the computer to an operational state, identifies the computer's configuration, and tests memory; and

a short boot command that brings the computer to an operational state.

5,410,713

9. The method for turning off the power provided to a computer from a first power source with a power management processor having a second power source, the computer being capable of performing a plurality of operations, including a save state operation said method comprising the steps of:

supplying power to the power management processor with the second power source;

monitoring external device interrupt lines coupled to the power management processor;

sending a signal from said power management processor to the computer when an external device interrupt is received by said power management processor:

performing said save state operation with the computer in response to said step of sending a signal; sending tasks from the computer to the power management processor;

switching off the first power source by the power management processor; and

performing the tasks using the power management processor.

10. The method of claim 9, wherein the step of performing the save state operation includes performing exiting, by the computer, the program that the computer is running;

storing, by the computer a first state of a computer, hardware to a non-volatile media; and

storing, by the computer, a second state of a memory to a non-volatile media.

35

40

45

50

55

60

EXHIBIT 2

United States Patent 1191

White et al.

Patent Number: [11]

5,870,613

Date of Patent:

*Feb.	9.	1999
I VIJ.	-,	_///

[54]	POWER MANGEMENT SYSTEM FOR A
	COMPUTER

[75] Inventors: Dave White; Yen Wei Lee; Rod Ang, all of San Jose; Ray Barbieri, Campbell, all of Calif.; James Chen, Taipei, Taiwan; Suh Chiuch Lee, Palo

Alto, Calif.

[73] Assignee: Smith Corona/Acer

[*] Notice: The term of this patent shall not extend

beyond the expiration date of Pat. No. 5,410,713.

365/226, 229

[21] Appl. No.: 422,599

[22] Filed: Apr. 14, 1995

Related U.S. Application Data

[63]	Continuation 5,410,713.	of S	Ser.	No.	816,108,	Jan.	2,	1992,	Pat.	No.
------	-------------------------	------	------	-----	----------	------	----	-------	------	-----

[51]	Int. Cl.6	 G06F 11/00; G05B 23/02
[52]	U.S. Cl.	 395/750.01 : 395/750.06:

395/750.07; 365/226; 365/229; 364/707 395/750.01, 750.06, 750.07; 364/707; 307/66;

[56] References Cited

U.S. PATENT DOCUMENTS

4,051,326	9/1977	Badagnani et al 179/2 DP
4,189,717	2/1980	Takeuchi 340/365
4,200,916	4/1980	Seipp
4,232,377	11/1980	Tallman 365/229
4,495,569	1/1985	Kagawa 364/200
4,551,841	11/1985	Fujita et al
4,553,233	11/1985	Bouhelier et al 364/900
4,611,289	9/1986	Coppola 364/492
4,654,821	3/1987	Lapp 364/900
4,675,538	6/1987	Epstein 307/66
4,777,626	10/1988	Matsushita et al 365/226
4,809,163	2/1989	Hirosawa et al 364/200
4,922,450	5/1990	Rose et al 364/900

4,930,062	5/1990	Yamada	. 363/55
5,008,829	4/1991	Cox et al	364/480
5,012,406	4/1991	Martin 36	4/DIG. 1
5,121,500	6/1992	Arlington et al	395/750
5,163,153		Cole et al	
5,167,024	11/1992	Smith et al	395/375
5,175,853	12/1992	Kardach et al	395/650
5,182,810	1/1993	Bartling et al	395/750
5,210,875		Bealkowski et al	395/700
5,214,785	5/1993	Fairweather	395/800
5,220,671	6/1993	Yamagishi	395/750
5,230,052		Dayan et al	395/700
5,230,074	7/1993	Canova et al	395/750

(List continued on next page.)

Primary Examiner-George B. Davis Attorney, Agent, or Firm-Townsend and Townsend and Crew LLP

[57] ABSTRACT

A power management system for a personal computer comprises a power management processor, a switchable power supply and a keep alive power supply. The processor is powered by the keep alive power supply that continuously provides power. The computer is powered by a power supply that is switchable in response to a control signal. The processor preferably controls the switchable power supply. The processor is coupled to receive external device interrupts from a plurality of external devices that instruct the processor when to turn the switchable power supply on and off. The processor is also coupled to the computer through an interface. The power management system also includes a method for turning the computer on and off. A preferred method uses the processor to control the power provided to the computer. The preferred method also uses the processor to dictate whether the computer will perform a long boot that brings the computer to an operational state, identifies the computer's configuration, and tests memory, or a short boot that brings the computer to an operational state in a much shorter time. A preferred method for turning the computer off includes the ability to exit program being run by the computer, and saving the hardware state of the computer on the hard disk.

13 Claims, 5 Drawing Sheets

5,870,613 Page 2

	U.S. PA	TENT DOCUMENTS	5,404,546	4/1995	Stewart 395/750
5 6 7 7 6 7 7	0.4000		5,410,706	4/1995	Farrand et al 395/700
5,237,692		Raasch et al	5,410,712	4/1995	Okuno 395/750.05
5,283,905 5,293,494		Saadeh et al	5,410,713	4/1995	White et al 395/750
5,293,494		Saito et al	5,430,881	7/1995	Ikeda 395/750
, , .		Hibi	, ,		Oka
		Mito et al	, ,		Saito
		Soffel et al	5,475,848	12/1995	Ikeda 395/750
		Ortiz 364/492	5,546,591	8/1996	Wurzburg et al 395/750
		Fung 395/800	5,652,890	7/1997	Foster et al

U.S. Patent

Feb. 9, 1999

Sheet 1 of 5

5,870,613

FIG. 1

FIG. 2

U.S. Patent Feb. 9, 1999

Sheet 2 of 5

FIG. 3

U.S. Patent

Feb. 9, 1999

Sheet 3 of 5

5,870,613

FIG. 4

5,870,613

U.S. Patent Feb. 9, 1999

Sheet 4 of 5

FIG. 5

U.S. Patent

Feb. 9, 1999

Sheet 5 of 5

5,870,613

FIG. 6

5,870,613

POWER MANGEMENT SYSTEM FOR A **COMPUTER**

This is a continuation of application Ser. No. 07/816,108 filed Jan. 2, 1992, now U.S. Pat. No. 5,410,713.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to power supply systems. In $_{10}$ particular, the present invention relates to a power management system for personal computers that provides power to the computer system in response to interrupts from external devices.

2. Description of Related Art

Conventional present day computer systems include a power supply that provides the power required to operate the computer system. The power supply is coupled to an AC voltage source and converts the AC voltage to a DC voltage. Typically, the power supply is coupled through a switch that 20 is manually activated by the user and only provides power when the switch is closed. Since the switch is manual, it cannot be electronically activated to open and close to turn the computer off and on, respectively. Thus, the prior art does not provide a method for using external device inter- 25 rupts or other electronic signals to control the application of power to the computer.

The prior art has attempted to reduce this shortcoming by keeping computers in the on or operational state continuously. However, such a practice wastes significant amounts 30 of power. This practice also reduces the life of the electronic components that comprise computers. Additionally, with the advent of portable computers that have a very limited power supply, such continuous operation is not possible.

Therefore, there is a need for a system for providing 35 power to a computer system in response to external events.

Another problem associated with power management systems of the prior art is the requirement of manually exiting all applications or programs being run on the computer before turning off the power. With most all personal computers, the user must exit the program before turning the power off, otherwise, the data used by the program will be destroyed or corrupted. Additionally, turning off the power without exiting the program even affects the operation of some programs. Thus, there is a need for a system that saves the state of the hardware and memory before turning off the power.

SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies of the prior art by providing a power management system that allows power to be controlled by external devices. A preferred embodiment of the power management system of the present invention comprises a power management 55 processor, a switchable power supply and a keep alive power supply. The processor is coupled to and powered by the keep alive power supply. The keep alive power supply provides a voltage as long as it is coupled to a source. The computer is coupled to and powered by the switchable power supply. 60 The switchable power supply can be switched on and off in response to a control signal.

In the preferred embodiment, the processor is coupled to the switchable power supply and provides the control signal that turns the switchable power supply on and off. The 65 processor is also coupled to receive external device interrupts from a plurality of external devices. The external

device interrupts are used to instruct the processor when to turn the switchable power supply on and off. One such device providing an interrupt may be an ordinary switch that is conventionally used to turn computers on and off. The processor is also coupled to the computer through an inter-

face and preferably can issue non-maskable interrupts (NMI) to the central processing unit (CPU) of the computer.

The power management system of the present invention also includes a method for turning the computer on and off. The preferred method for providing power to the computer comprises the steps of: continuously providing power to the power management processor with a first power supply; monitoring external device interrupt lines coupled to the power management processor; providing power to the computer if an external device interrupt is received by sending a control signal to a second power supply coupled to power the computer; and sending a boot status command from the power management processor to the computer. The boot status command can be either a long boot command that brings the computer to an operational state, identifies the computer's configuration, and tests memory, or a short boot command that brings the computer to an operational state in a much shorter time. The preferred method for turning the computer off comprises the steps of providing power to the power management processor with a first power source; monitoring external device interrupt lines coupled to the power management processor; signaling the computer when an external device interrupt is received; performing an operation that exits running programs and saves the hardware states of the computer on the hard disk; sending tasks from the computer to the power management processor; switching off a second power source coupled to the computer; and performing the tasks received in the sending step with the power management processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a preferred embodiment of a power management system of the present invention;

FIG. 2 is a block diagram of a preferred embodiment for the power supply of the present invention;

FIG. 3 is a flow chart for the preferred method for providing power with the system of the present invention;

FIG. 4 is a flow chart for the preferred method for turning off power with the system of the present invention;

FIG. 5 is a flow chart of a wake up sequence for providing power with the system of the present invention; and

FIG. 6 is a flow chart of a sleep sequence for turning off 50 power with the system of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1, a preferred embodiment of a power management system constructed in accordance with the present invention is shown. The power management system preferably comprises a power management processor (PMM) 10 and a power supply 12. The PMM 10 electronically controls the power supplied to a host computer system 14. The power supply 12 provides power to both the PMM 10 and the computer 14. The power supply 12 receives an AC input on line 26. Line 28 couples the power supply 12 to the computer 14 to provide the system power. The output of the power supply 12 on line 28 is controlled by an on/off control signal sent from the PMM 10 to the power supply 12 on line 18. The power supply 12 also provides continuous power to the PMM 10 on line 20.

Referring now to FIG. 2, a preferred embodiment of the power supply 12 is shown. The power supply 12 preferably comprises a switchable power supply 30 and a keep alive power supply 32. Both power supplies 30, 32 are preferably coupled to receive an AC power input on line 26. The keep alive power supply 32 is preferably a low wattage power supply that provides a 12 volt output in an exemplary embodiment. The keep alive power supply 32 continuously outputs power while an AC input is provided. In contrast, the switchable power supply 30 is electronically controllable, 10 above. The methods use three levels of instructions or and may be selectively turned on an off using an enable (on/off control) signal on line 18. The switchable power supply 30 provides voltages of +5, -5, +12 and -12 at its outputs in an exemplary embodiment. For example, the power supply could be a custom made power supply manu- 15 power management code, which is preferably incorporated factured by Hi-Power.

Referring back to FIG. 1, the coupling of the PMM 10 for receiving external device interrupts 16 on lines 22-24 is shown. The PMM 10 is preferably coupled to all hardware devices/interfaces (not shown) that can cause the computer 20 application level program interface definition (API) that 14 to wake up (i.e., switch power supply 30 to the on state). The external device interrupts 16 signal when the PMM 10 should apply or remove power from the computer 14. The external device interrupts 16 may be from a variety of computer on and off. It should be understood that all interfaces that can generate "WAKE UP" interrupts to the PMM 10 must be powered by the keep alive power supply 32. In the preferred embodiment, external device interrupts 16 are provided by a conventional manual switch for switching power on or off. In the preferred embodiment, an external device interrupt is also provided for a ring detect from a tip and ring interface (not shown) used with modems, facsimile machines and telephone answering machines. While the present invention will be discussed primarily with 35 reference to these two types of external device interrupts, it should be understood to those skilled in the art that the PMM 10 could receive interrupts from a various external devices that need to turn the computer 14 on and off.

The PMM 10 is also coupled to the computer 14. The 40 PMM 10 preferably sends a non-maskable interrupt (NMI) on line 25 to the computer 14 (i.e., the main Intel architecture based processor) and is also coupled to the computer 14 for sending status and command signals. The PMM 10 preferably maintains the communications protocol with the 45 system BIOS (Basic Input Output System) of the computer 14. The PMM 10 sends the computer 14 status signals such as the short boot which indicates that the computer 14 is to be powered up to an operational state, and the long boot also the configuration of the computer 14 and memory are to be tested. The PMM 10 also receives data from the computer 14. Once the computer 14 has been informed that the power will be removed, the computer 14 sends instructions to the PMM 10 indicating the functions that the PMM 10 is to 55 perform when the computer 14 is in the sleep state (Power from switchable power supply 30 is off while power is provided to the PMM 10)

The PMM 10 is preferably a microprocessor such as the Intel 8051. However, it should be understood that the PMM 60 10 can be based on any instruction set. The instruction set is not material to the invention. As briefly noted above, the PMM 10 controls the switchable power supply 30. In particular, the PMM 10 switches the power supply 30 on and 22-24. The PMM 10 preferably includes or is coupled to memory (not shown) for storing the tasks to be performed

and other status information used in the operations just described. For example the PMM 10 preferably includes Random Access Memory (RAM) and Read Only Memory

(ROM) to maintain communications protocol with the system BIOS of the computer 14. The PMM 10 also includes a device for keeping real time. The real time is then compared to alarm times for powering down or up the computer 14.

The power management system of the present invention also includes methods for operating the system described software. First, the PMM power management code details the operations performed by the PMM 10 such as sending the on/off control signal, keeping real time, and comparing real time to the alarm settings. Second, the system BIOS into the conventional system BIOS of computer 14, provides to a protocol that distinguishes "long boot" commands from "short boot" commands sent by the PMM 10. Third, the management system of the present invention includes an operating systems, such as Microsoft Windows 3.0, and higher based applications to invoke the services of the power management system.

Referring now to FIG. 3-6, the preferred methods for devices that the user has granted permission to switch the 25 performing the power on sequence, the power off sequence, the wake up sequence and the sleep sequence will be described. The power on sequence is shown in FIG. 3. When the computer 14 is in the off or sleep state, the preferred embodiment of the PMM 10 monitors the state of the Power ON/OFF switch in step 40, keeps real time and compares the real time to the alarm settings. The power on sequence is performed in response to an external interrupt indicating the switch (not shown) has been closed. Once a closed switch is detected, the PMM 10 turns on the main system power to the computer in step 42 by sending the on/off control signal to enable the switchable power supply 30. Then in step 44, the PMM 10 sends a power cycle status indication specifying a long boot command to the system BIOS of the computer 14 to boot to an operational state, identify the computer's system configuration and perform all memory tests. Once the computer 14 has been powered up, the API interacts with commercially available software to restore the computer 14 to the state and application the computer 14 was in prior to being powered down.

Referring now to FIG. 4, the power off sequence will be described. When the computer 14 is in the ON (active) state, the PMM 10 monitors the state of the power ON/OFF switch in step 50 for an external interrupt indicating that the switch is open. If a change of state in the power ON/OFF switch is signal that indicates the computer 14 is to be powered up and 50 detected, an external device interrupt is sent to the PMM 10 and the power off sequence is initiated. In step 52, the PMM 10 issues a NMI to the host computer 14. Upon receipt of the NMI in step 54, the host computer 14 initiates a "Save State" operation at the end of which the state of the hardware, as well as the state of the memory is saved to the a non-volatile storage media such as a hard disk. This particularly advantageous because it lets the computer 14 save the state of hardware and memory before the on/off control signal is sent to turn off power supply 30. These states stored in memory can later be used to re-boot the computer 14 in the exactly the same state it was in prior to power down. After completion of the Save State operation, the computer 14 assigns tasks to be performed by the PMM 10 during the SLEEP state of the computer 14 and then issues a Save Done status off in response to external device interrupts 16 on lines 65 to the PMM in step 56. In step 58, the PMM 10 monitors the status line for the Save Done signal from the computer 14. Once the Save State operation is complete, the PMM 10

turns OFF the main system power by disabling the switchable power supply 30.

The present invention is particular advantageous because it provides wake up and sleep sequences that allow application software, such as WINFAX, to be activated and used 5 even though the computer 14 was in the SLEEP (OFF) state at the time the telephone ring was first detected. More specifically, the present invention allows the computer 14 to detect a ring while the computer 14 is in the SLEEP (OFF) State; boot computer 14; activate the WINFAX software in 10 less than 4rings on the telephone line; receive the FAX from the FAX modem using WINFAX; store the FAX on the disk using WINFAX; and return the computer 14 to the SLEEP (OFF) state. The present invention will now be described with reference to the WINFAX application software and FAX applications, however, it should be understood by those 15 skilled in the art that the present invention may be used with various other software applications that may be initiated by external device interrupts.

Referring now to FIG. 5, the wake up sequence is shown. The power management system of the present invention 20 executes the wake up sequence when either (1) an external hardware event occurs, such as a ring is detected on the Tip & Ring Interface, or (2) an alarm event occurs when the real time kept by PMM 10 matches with the alarm time programmed by the computer 14. When the computer 14 is in 25 the SLEEP state, the PMM 10 also monitors external device interrupts 16 from the Ring Detect on the Tip & Ring Interface, and keeps real time and compares the current time against programmed alarm settings (Step 70). If a ring is detected, the PMM 10 switches power supply 30 on in step 30 72. Next, in step 74, the PMM 10 sends a short boot status signal to the computer 14. The short boot status signal indicates that the system BIOS is not to perform all the power-on diagnostics, hardware initialization, and memory tests, but in the interest of time, to directly restore the state 35 of the computer 14 from an alternate bootable partition on the hard disk drive. This alternate (active) partition contains the applications needed to run the required functions of the system. The short boot process allows the present invention to boot, load the FAX software and be ready to receive the 40 fax within four rings on the Tip & Ring interface. Finally in step 76, the computer boots using the short boot command.

Referring now to FIG. 6, the preferred method for returning the computer 14 to the SLEEP state is shown. Once the computer 14 is booted with the short boot command an is 45 awake (on), the PMM 10 monitors the state of the Power ON/OFF switch and waits for "ACTION COMPLETE" status from the host computer 14 in step 80. Upon receipt of the "ACTION COMPLETE" status, the present invention tests whether the state of the Power ON/OFF switch has 50 changed in step 82. If the state of the Power ON/OFF switch has not changed, the PMM 10 turns off the main system power supply in step 84 and reverts back to the tasks normally performed during the SLEEP state in step 86. On the other hand, if the Power ON/OFF switch state had 55 changed in step 82, then the PMM 10 turns off power supply 30 in step 88. In step 90, the preferred method provides a delay, and then the normal power on sequence described with reference to FIG. 3 is executed in step 92.

Having described the present invention with reference to 60 specific embodiments, the above description is intended to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. The scope of the invention is to be delimited only by the following claims. From the above discussion, many variations will be apparent 65 to one skilled in the art that would yet be encompassed by the true spirit and scope of the present invention.

What is claimed is:

1. A system for supplying power to a computer in response to interrupts from external devices, the system comprising:

6

- a first power supply having an input and an output for converting an AC voltage to a DC voltage, the input coupled to a first AC voltage source to receive AC voltage;
- a second power supply having a voltage input, a control input, and an output for converting an AC voltage to a DC voltage in response to a control signal, the input coupled to the AC voltage source to receive AC voltage in parallel with the first power supply, the output coupled to supply power to the computer; and
- a power management circuit having a power input, the power input of the power management circuit coupled to the output of the first power supply wherein the power management circuit is powered by the first power supply, an output of the power management circuit coupled to the control input of the second power supply wherein the output of the power management circuit provides control signals to the second power supply, control inputs and outputs coupled to the computer, and interrupt inputs coupled to the external devices to receive interrupts from the external devices.
- 2. The system of claim 1 wherein one of the external devices is a tip & ring interface.
- 3. The system of claim 1 wherein one of the external devices is a switch and wherein the second power supply supplies power when the switch is closed.
- 4. The system of claim 1 wherein the power management circuit outputs long boot and short boot commands to the computer and is capable of sending an interrupt to the computer, and the computer performs different power up functions as directed by the boot command received from the power management circuit.
- 5. The system of claim 1 wherein the power management circuit includes a device for keeping time, and logic for outputting the control signal to the second power supply when the time reaches predetermined values.
- 6. The system of claim 1 wherein the power management circuit comprises memory for storing tasks to be performed by the power management circuit.
- 7. A system for supplying power to a computer in response to interrupts from external devices, the system comprising:
 - a first power supply having an input and an output for converting an AC voltage to a DC voltage, the input coupled to a first AC voltage source to receive AC voltage;
 - a second power supply having a voltage input, a control input, and an output for converting an AC voltage to a DC voltage in response to a control signal, the input coupled to the AC voltage source to receive AC voltage in parallel with the first power supply, the output coupled to supply power to the computer; and
 - power management means, powered by the first power supply and coupled to the computer, for providing the control signal to the second power supply in response to interrupts from the external devices.
- 8. The system of claim 7 wherein one of the external devices is a tip & ring interface.
- 9. The system of claim 7 wherein one of the external devices is a switch and the second power supply supplies power when the switch is closed.

5,870,613

7

- 10. The system of claim 7 wherein:
- the power management means includes means for outputting long boot and short boot commands to the computer, and means for sending an interrupt to the computer, and
- the computer performs different power up functions as directed by the boot command received from the power management means.
- 11. The system of claim 7 wherein the power management means includes means for keeping time, and means for outputting the control signal to the second power supply when the time reaches predetermined values.
- 12. The system of claim 7 wherein the power management means includes means for storing tasks to be performed by the power management means.

R

- 13. A system for supplying power to a computer in response to interrupts from external devices, the system comprising:
 - a first power supply;
 - a second power supply that is coupled to the computer and is switchable in response to a control signal;
 - means, powered by the first power supply, for monitoring external device interrupt lines; and
 - means, powered by the first power supply and responsive to an external device interrupt being received, for sending the control signal to the second power supply, thereby causing the second power supply to supply power to the computer.

* * * * *

EXHIBIT 3

US005903765A

United States Patent [19]

White et al.

[11] Patent Number:

5,903,765

[45] Date of Patent:

May 11, 1999

[54] POWER MANAGEMENT SYSTEM FOR A COMPUTER

[75] Inventors: Dave White; Yen Wei Lee; Rod Ang, all of San Jose; Ray Barbieri, Campbell, all of Calif.; James Chen, Taipei, Taiwan; Suh Chiueh Lee, Palo Alto, Calif.

[73] Assignee: Smlth Corona/Acer

[21] Appl. No.: 08/825,663

[22] Filed: Apr. 3, 1997

Related U.S. Application Data

[62] Division of application No. 08/422,599, Apr. 14, 1995, Pat.
 No. 5,870,613, which is a continuation of application No. 07/816,108, Jan. 2, 1992, Pat. No. 5,410,713.

[51]	Int. Cl. ⁶	G06F 1/26; G06F 1/32
[52]	U.S. Cl	
[58]	Field of Search	395/750.02, 750.01.

[56] References Cited

U.S. PATENT DOCUMENTS

0.0077 Posternost et al

395/750.03, 750.05, 364/707

205/250 02

4,051,326	9/1977	Badagnani et al
4,189,717	2/1980	Takeuchi 340/825.26
4,200,916	4/1980	Seipp
4,232,377	11/1980	Tallman
4,495,569	1/1985	Kagawa 395/741
4,551,841	11/1985	Fujita et al 395/182.2
4,553,223	11/1985	Bouhelier et al 395/183.21
4,611,289	9/1986	Coppola 395/750.01
4,654,821	3/1987	Lapp 395/750.07
4,675,538	6/1987	Epstein 307/66
4,777,626	10/1988	Matsushita et al 365/226
4,809,163	2/1989	Hirosawa et al 395/750.05
4,922,450	5/1990	Rose et al 395/750.02
4,930,062	5/1990	Yamada 363/55
5,008,829	4/1991	Cox et al
5,012,406	4/1991	Martin 395/182.2
5,121,500	6/1992	Arlington et al 395/750.07
5,163,153	11/1992	Cole et al 395/750.04
5,167,024	11/1992	Smith et al

5,175,853	12/1992	Kardach et al 395/733
5,182,810	1/1993	Bartling et al 395/750.05
5,210,875	5/1993	Bealkowski et al 395/652
5,214,785	5/1993	Fairweather 395/887
5,220,671	6/1993	Yamagishi 395/750.06
5,230,052	7/1993	Dayan et al 395/652
5,230,074	7/1993	Canova, Jr. et al 395/750.08
5,237,692	8/1993	Raasch et al 395/750.06
5,293,494	3/1994	Saito et al
5,297,282	3/1994	Meilak et al 395/750.05
5,333,309	7/1994	Hibi 395/182.2
5,355,490	10/1994	Kou 395/653
5,355,503	10/1994	Soffel et al 395/750.04
5,359,540	10/1994	Ortiz 364/528.3

(List continued on next page.)

Primary Examiner—Robert W. Downs
Attorney, Agent, or Firm—Townsend and Townsend and
Crew LLP

[57] ABSTRACT

A power management system for a personal computer comprises a power management processor, a switchable power supply and a keep alive power supply. The processor is powered by the keep alive power supply that continuously provides power. The computer is powered by a power supply that is switchable in response to a control signal. The processor preferably controls the switchable power supply. The processor is coupled to receive external device interrupts from a plurality of external devices that instruct the processor when to turn the switchable power supply on and off. The processor is also coupled to the computer through an interface. The power management system also includes a method for turning the computer on and off. A preferred method uses the processor to control the power provided to the computer. The preferred method also uses the processor to dictate whether the computer will perform a long boot that brings the computer to an operational state, identifies the computer's configuration, and tests memory, or a short boot that brings the computer to an operational state in a much shorter time. A preferred method for turning the computer off includes the ability to exit program being run by the computer, and saving the hardware state of the computer on the hard disk

15 Claims, 5 Drawing Sheets

5,903,765 Page 2

	5,446,910	8/1995	Kennedy et al 395/299	
		5,448,741	9/1995	Oka
5,396,635	3/1995 Fung	5,467,469	11/1995	Saito 395/750.05
5,404,546	4/1995 Stewart 395/750.04	5,475,848	12/1995	Ikeda 395/750.04
5,410,706	4/1995 Farrand et al 395/652	5,524,244	6/1996	Robinson et al 395/705
5,410,713	4/1995 White et al 395/750.07	5,546,591	8/1996	Wurzburg et al 395/750.04
5.430.881	7/1995 Ikeda 395/750.04	5,625,890	4/1997	Foster et al 395/750.05

May 11, 1999

Sheet 1 of 5

5,903,765

FIG. 1

FIG. 2

FIG. 3

5,903,765

U.S. Patent

FIG. 4

FIG. 5

U.S. Patent

May 11, 1999

Sheet 5 of 5

5,903,765

FIG. 6

5,903,765

POWER MANAGEMENT SYSTEM FOR A **COMPUTER**

This is a Division of application Ser. No. 08/422,599, filed Apr. 14, 1995, now U.S. Pat. No. 5,870,613, issued Feb. 5 9, 1989, which is a continuation of application Ser. No. 07/816,108, filed Jan. 2, 1992, now U.S. Pat. No. 5,410,713, issued Apr. 25, 1995, the disclosure of which is incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to power supply systems. In particular, the present invention relates to a power management system for personal computers that provides power to 15 the computer system in response to interrupts from external devices.

2. Description of Related Art

Conventional present day computer systems include a power supply that provides the power required to operate the computer system. The power supply is coupled to an AC voltage source and converts the AC voltage to a DC voltage. Typically, the power supply is coupled through a switch that is manually activated by the user and only provides power when the switch is closed. Since the switch is manual, it cannot be electronically activated to open and close to turn the computer off and on, respectively. Thus, the prior art does not provide a method for using external device interrupts or other electronic signals to control the application of power to the computer.

The prior art has attempted to reduce this shortcoming by keeping computers in the on or operational state continuously. However, such a practice wastes significant amounts of power. This practice also reduces the life of the electronic 35 components that comprise computers. Additionally, with the advent of portable computers that have a very limited power supply, such continuous operation is not possible.

Therefore, there is a need for a system for providing power to a computer system in response to external events. 40

Another problem associated with power management systems of the prior art is the requirement of manually exiting all applications or programs being run on the computer before turning off the power. With most all personal computers, the user must exit the program before turning the 45 power off, otherwise, the data used by the program will be destroyed or corrupted. Additionally, turning off the power without exiting the program even affects the operation of some programs. Thus, there is a need for a system that saves the state of the hardware and memory before turning off the 50

SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies of the prior art by providing a power management system that 55 allows power to be controlled by external devices. A preferred embodiment of the power management system of the present invention comprises a power management processor, a switchable power supply and a keep alive power supply. The processor is coupled to and powered by the keep 60 alive power supply. The keep alive power supply provides a voltage as long as it is coupled to a source. The computer is coupled to and powered by the switchable power supply. The switchable power supply can be switched on and off in response to a control signal.

In the preferred embodiment, the processor is coupled to the switchable power supply and provides the control signal

that turns the switchable power supply on and off. The processor is also coupled to receive external device interrupts from a plurality of external devices. The external device interrupts are used to instruct the processor when to turn the switchable power supply on and off. One such device providing an interrupt may be an ordinary switch that is conventionally used to turn computers on and off. The processor is also coupled to the computer through an interface and preferably can issue non-maskable interrupts 10 (NMI) to the central processing unit (CPU) of the computer.

The power management system of the present invention also includes a method for turning the computer on and off. The preferred method for providing power to the computer comprises the steps of: continuously providing power to the power management processor with a first power supply; monitoring external device interrupt lines coupled to the power management processor; providing power to the computer if an external device interrupt is received by sending a control signal to a second power supply coupled to power the computer; and sending a boot status command from the power management processor to the computer. The boot status command can be either a long boot command that brings the computer to an operational state, identifies the computer's configuration, and tests memory, or a short boot command that brings the computer to an operational state in a much shorter time. The preferred method for turning the computer off comprises the steps of providing power to the power management processor with a first power source; monitoring external device interrupt lines coupled to the power management processor; signaling the computer when an external device interrupt is received; performing an operation that exits running programs and saves the hardware states of the computer on the hard disk; sending tasks from the computer to the power management processor; switching off a second power source coupled to the computer; and performing the tasks received in the sending step with the power management processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a preferred embodiment of a power management system of the present invention;

FIG. 2 is a block diagram of a preferred embodiment for the power supply of the present invention;

FIG. 3 is a flow chart for the preferred method for providing power with the system of the present invention;

FIG. 4 is a flow chart for the preferred method for turning off power with the system of the present invention;

FIG. 5 is a flow chart of a wake up sequence for providing power with the system of the present invention; and

FIG. 6 is a flow chart of a sleep sequence for turning off power with the system of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1, a preferred embodiment of a power management system constructed in accordance with the present invention is shown. The power management system preferably comprises a power management processor (PMM) 10 and a power supply 12. The PMM 10 electronically controls the power supplied to a host computer system 14. The power supply 12 provides power to both the PMM 10 and the computer 14. The power supply 12 receives an AC input on line 26. Line 28 couples the power supply 12 to the computer 14 to provide the system power. The output of the power supply 12 on line 28 is

5,903,765

controlled by an on/off control signal sent from the PMM 10 to the power supply 12 on line 18. The power supply 12 also provides continuous power to the PMM 10 on line 20.

Referring now to FIG. 2, a preferred embodiment of the power supply 12 is shown. The power supply 12 preferably comprises a switchable power supply 30 and a keep alive power supply 32. Both power supplies 30, 32 are preferably coupled to receive an AC power input on line 26. The keep alive power supply 32 is preferably a low wattage power supply that provides a 12 volt output in an exemplary 10 to alarm times for powering down or up the computer 14. embodiment. The keep alive power supply 32 continuously outputs power while an AC input is provided. In contrast, the switchable power supply 30 is electronically controllable, and may be selectively turned on an off using an enable (on/off control) signal on line 18. The switchable power 15 supply 30 provides voltages of +5, -5, +12 and -12 at its outputs in an exemplary embodiment. For example, the power supply could be a custom made power supply manufactured by Hi-Power.

receiving external device interrupts 16 on lines 22-24 is shown. The PMM 10 is preferably coupled to all hardware devices/interfaces (not shown) that can cause the computer 14 to wake up (i.e., switch power supply 30 to the on state). The external device interrupts 16 signal when the PMM 10 25 should apply or remove power from the computer 14. The external device interrupts 16 may be from a variety of devices that the user has granted permission to switch the computer on and off. It should be understood that all interfaces that can generate "WAKE UP" interrupts to the 30 PMM 10 must be powered by the keep alive power supply 32. In the preferred embodiment, external device interrupts 16 are provided by a conventional manual switch for switching power on or off. In the preferred embodiment, an from a tip and ring interface (not shown) used with modems, facsimile machines and telephone answering machines. While the present invention will be discussed primarily with reference to these two types of external device interrupts, it 10 could receive interrupts from a various external devices that need to turn the computer 14 on and off.

The PMM 10 is also coupled to the computer 14. The PAM 10 preferably sends a non-maskable interrupt (NMI) on line 25 to the computer 14 (i.e., the main Intel architec- 45 ture based processor) and is also coupled to the computer 14 for sending status and command signals. The PMM 10 preferably maintains the communications protocol with the system BIOS (Basic Input Output System) of the computer 14. The PMM 10 sends the computer 14 status signals such 50 as the short boot which indicates that the computer 14 is to be powered up to an operational state, and the long boot signal that indicates the computer 14 is to be powered up and also the configuration of the computer 14 and memory are to be tested. The PMM 10 also receives data from the computer 55 14. Once the computer 14 has been informed that the power will be removed, the computer 14 sends instructions to the PAM 10 indicating the functions that the PMM 10 is to perform when the computer 14 is in the sleep state (Power from switchable power supply 30 is off while power is 60 provided to the PMM 10).

The PMM 10 is preferably a microprocessor such as the Intel 8051. However, it should be understood that the PMM 10 can be based on any instruction set. The instruction set is PMM 10 controls the switchable power supply 30. In particular, the PMM 10 switches the power supply 30 on and

off in response to external device interrupts 16 on lines 22-24. The PMM 10 preferably includes or is coupled to memory (not shown) for storing the tasks to be performed and other status information used in the operations just described. For example the PMM 10 preferably includes Random Access Memory (RAM) and Read Only Memory (ROM) to maintain communications protocol with the system BIOS of the computer 14. The PMM 10 also includes a device for keeping real time. The real time is then compared

The power management system of the present invention also includes methods for operating the system described above. The methods use three levels of instructions or software. First, the PMM power management code details the operations performed by the PMM 10 such as sending the on/off control signal, keeping real time, and comparing real time to the alarm settings. Second, the system BIOS power management code, which is preferably incorporated into the conventional system BIOS of computer 14, provides Referring back to FIG. 1, the coupling of the PMM 10 for 20 to a protocol that distinguishes "long boot" commands from "short boot" commands sent by the PMM 10. Third, the management system of the present invention includes an application level program interface definition (API) that operating systems, such as Microsoft Windows 3.0, and higher based applications to invoke the services of the power management system.

Referring now to FIGS. 3-6, the preferred methods for performing the power on sequence, the power off sequence, the wake up sequence and the sleep sequence will be described. The power on sequence is shown in FIG. 3. When the computer 14 is in the off or sleep state, the preferred embodiment of the PMM 10 monitors the state of the Power ON/OFF switch in step 40, keeps real time and compares the real time to the alarm settings. The power on sequence is external device interrupt is also provided for a ring detect 35 performed in response to an external interrupt indicating the switch (not shown) has been closed. Once a closed switch is detected, the PMM 10 turns on the main system power to the computer in step 42 by sending the on/off control signal to enable the switchable power supply 30. Then in step 44, the should be understood to those skilled in the art that the PMM 40 PMM 10 sends a power cycle status indication specifying a long boot command to the system BIOS of the computer 14 to boot to an operational state, identify the computer's system configuration and perform all memory tests. Once the computer 14 has been powered up, the API interacts with commercially available software to restore the computer 14 to the state and application the computer 14 was in prior to being powered down.

Referring now to FIG. 4, the power off sequence will be described. When the computer 14 is in the ON (active) state, the PMM 10 monitors the state of the power ON/OFF switch in step 50 for an external interrupt indicating that the switch is open. If a change of state in the power ON/OFF switch is detected, an external device interrupt is sent to the PMM 10 and the power off sequence is initiated. In step 52, the PMM 10 issues a NMI to the host computer 14. Upon receipt of the NMI in step 54, the host computer 14 initiates a "Save State" operation at the end of which the state of the hardware, as well as the state of the memory is saved to the a non-volatile storage media such as a hard disk. This particularly advantageous because it lets the computer 14 save the state of hardware and memory before the on/off control signal is sent to turn off power supply 30. These states stored in memory can later be used to re-boot the computer 14 in the exactly the same state it was in prior to power down. After complenot material to the invention. As briefly noted above, the 65 tion of the Save State operation, the computer 14 assigns tasks to be performed by the PMM 10 during the SLEEP state of the computer 14 and then issues a Save Done status

to the PMM in step 56. In step 58, the PMM 10 monitors the status line for the Save Done signal from the computer 14. Once the Save State operation is complete, the PMM 10 turns OFF the main system power by disabling the switchable power supply 30.

The present invention is particular advantageous because it provides wake up and sleep sequences that allow application software, such as WINFAX, to be activated and used even though the computer 14 was in the SLEEP (OFF) state at the time the telephone ring was first detected. More 10 specifically, the present invention allows the computer 14 to detect a ring while the computer 14 is in the SLEEP (OFF) State; boot computer 14; activate the WINFAX software in less than 4 rings on the telephone line; receive the FAX from the FAX modem using WINFAX; store the FAX on the disk 15 using WINFAX; and return the computer 14 to the SLEEP (OFF) state. The present invention will now be described with reference to the WINFAX application software and FAX applications, however, it should be understood by those skilled in the art that the present invention may be used with 20 various other software applications that may be initiated by external device interrupts.

Referring now to FIG. 5, the wake up sequence is shown. The power management system of the present invention executes the wake up sequence when either (1) an external 25 hardware event occurs, such as a ring is detected on the Tip & Ring Interface, or (2) an alarm event occurs when the real time kept by PMM 10 matches with the alarm time programmed by the computer 14. When the computer 14 is in the SLEEP state, the PAM 10 also monitors external device 30 interrupts 16 from the Ring Detect on the Tip & Ring Interface, and keeps real time and compares the current time against programmed alarm settings (Step 70). If a ring is detected, the PMM 10 switches power supply 30 on in step 72. Next, in step 74, the PMM 10 sends a short boot status 35 signal to the computer 14. The short boot status signal indicates that the system BIOS is not to perform all the power-on diagnostics, hardware initialization, and memory tests, but in the interest of time, to directly restore the state of the computer 14 from an alternate bootable partition on 40 the hard disk drive. This alternate (active) partition contains the applications needed to run the required functions of the system. The short boot process allows the present invention to boot, load the FAX software and be ready to receive the fax within four rings on the Tip & Ring interface. Finally in 45 step 76, the computer boots using the short boot command.

Referring now to FIG. 6, the preferred method for returning the computer 14 to the SLEEP state is shown. Once the computer 14 is booted with the short boot command an is awake (on), the PMM 10 monitors the state of the Power 50 ON/OFF switch and waits for "ACTION COMPLETE" status from-the host computer 14 in step 80. Upon receipt of the "ACTION COMPLETE" status, the present invention tests whether the state of the Power ON/OFF switch has changed in step 82. If the state of the Power ON/OFF switch 55 has not changed, the PMM 10 turns off the main system power supply in step 84 and reverts back to the tasks normally performed during the SLEEP state in step 86. On the other hand, if the Power ON/OFF switch state had changed in step 82, then the PMM 10 turns off power supply 60 30 in step 88. In step 90, the preferred method provides a delay, and then the normal power on sequence described with reference to FIG. 3 is executed in step 92.

Having described the present invention with reference to specific embodiments, the above description is intended to 65 interrupt is generated by a switch. illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. The scope of

the invention is to be delimited only by the following claims. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the true spirit and scope of the present invention.

6

What is claimed is:

- 1. A method of controlling power supplied to a computer, wherein the computer can perform any of a plurality of boot processes, the method comprising:
 - monitoring external device interrupt lines during a period in which power is not supplied to the computer;
 - if an external device interrupt is received during the period, supplying power to the computer by sending a control signal to a switchable power supply, the switchable power supply being coupled to the computer for supplying power thereto;
 - sending boot status command to the computer to identify which boot process of the plurality of distinct boot processes the computer is to perform; and
- booting up the computer in accordance with the identified boot process.
- 2. The method of claim 1, wherein the computer has at least one identifiable configuration, and wherein the computer includes testable memory and wherein the sending of the boot status command may send one of:
 - a long boot command that brings the computer to an operational state, identifies the computer's configuration, and tests memory; and
 - a short boot command that brings the computer to an operational state, without identifying the computer's configuration or testing memory.
- 3. The method of claim 1 wherein the external device interrupt is generated by a switch.
- 4. A method for turning off power provided to a computer from a power source, the computer being capable of performing a plurality of operations, including a save state operation, the method comprising:
 - sending a signal to the computer upon receipt of an external device interrupt;
 - performing the save state operation with the computer in response to the sending of the signal;
 - specifying, by the computer, tasks to be performed while the power source of the computer is switched off, wherein the tasks include a plurality of operations in accordance with a stored code;
 - switching of the power source of the computer; and performing the specified tasks after switching off the power source of the computer.
- 5. The method of claim 4, wherein the performing the save state operation includes performing, while the computer is running a program:
 - exiting, by the computer, the program that the computer
 - storing, by the computer, a first state of a computer hardware to a non-volatile media; and
 - storing, by the computer, a second state of a memory to a non-volatile media.
- 6. The method of claim 4 wherein each of the plurality of operations is selected from a group comprising:

sending a control signal;

keeping real time; and

comparing real time to a preset time.

- 7. The method of claim 4 wherein the external device
- 8. A method of waking up a computer to execute an application in response to an event, the method comprising:

5,903,765

7

restoring power to the computer in response to the event, the computer being in a powered off state immediately before the event occurs;

sending a boot status signal to the computer, the boot status signal identifying which one of a plurality of 5 distinct boot processes the computer is to perform;

booting the computer in accordance with the identified boot process;

loading the application into a main memory of the computer; and

executing the application on the computer.

9. The method of claim 8, wherein the event occurs when a current time equals a programmed time.

10. The method of claim 8, wherein the event occurs upon $_{15}$ receipt of an external device interrupt.

11. The method of claim 10, wherein the external device interrupt is a ring detected on a tip and ring interface.

 The method of claim 11, wherein the application is a FAX application.

13. The method of claim 10 wherein the external device interrupt is generated by a switch.

14. The method of claim 8, wherein the boot status signal is a short boot status signal that causes the computer to not perform power-on diagnostics, hardware initialization, and memory tests while booting but rather to perform a state restoration from an alternative bootable partition on a hard

disk drive of the computer, the partition containing the

8

application.

15. The method of claim 8, further comprising:

generating in the computer a signal indicating that execution of the application has completed;

determining if a switch controlling power to the computer has been activated;

turning off power to the computer; and

if the switch has been activated, turning on power to the computer after a delay from when the power to the computer is turned off; and

sending a long boot status signal to the computer.

* * * * *