C.7 COMMUNICATION SCIENTIFIQUE PAR LA GAMIFICATION

La question de la communication scientifique, notamment entre les agents producteurs de connaissance, a été un thème récurrent de notre travail. Celle-ci intervient également dans le contact avec le public comme médiation scientifique, et le développement de celuici peut en retour informer les entreprises d'interdisciplinarité. Nous développons ici deux modèles sous forme de jeux, ayant un objectif similaire de transmettre des concepts d'écologie d'eau douce. Cela renforce l'idée du modèle comme instrument crucial de la médiation scientifique.

* *

Cette section est le fruit d'une collaboration interdisciplinaire avec l'écotoxicologue Dr. Hélène Serra (Université de Bordeaux et Ineris) et a été présentée à la conférence SETAC 2016 comme [Serra et Raimbault, 2016].

* *

C.7.1 Introduction

L'attente de prise de conscience et d'implication pour le public concernant les questions environnementales est croissante. Toutefois, une connaissance experte est souvent nécessaire pour comprendre le enjeux sous-jacents à la plupart de ces problèmes. L'un des défis de la science aujourd'hui réside dans le fait d'expliquer des questions complexes de façon simple et compréhensible à un predience nonspécialisée. Les jeux apparaissent comme un medium pertinent pour la vulgarisation scientifique. En effet, la première forme d'apprentissage est en général par le jeu. Les jeux sont très populaires et présentent divers avantages d'un point de vue éducatif. Ceux-ci sont dynamiques et interactifs. Ainsi, l'engagement du joueur est augmenté, ainsi que sa rétention de connaissances. De plus, le joueur est immergé dans un monde nouveau et découvre un environnement virtuel où il doit développer des stratégies et identifier les processus fon-

damentaux. Ces caractéristiques peuvent être aisément utilisées pour transmettre des concepts scientifiques, et la gamification a déjà été proposée comme un outil pour une meilleure propagation de la pensée scientifique [Morris et al., 2013] comme en pharmacologie [Cain et Piascik, 2015] ou les géosciences [Reynard et al., 2015]. Dans ce contexte, ce projet vise à développer des outils basés sur les je pour transmettre des concepts basiques en écologie d'eau douce. Nous nous intéressons à un jeu de plateau prisique et à un jeu informatique car ceux-ci sont complémentaire les l'audience visée (joueurs en groupe et joueurs en ligne) et dans les possibilités offertes, en particulier concernant les interactions entre joueurs et les dynamiques du système.

C.7.2 Méthodologie

La méthodologie pour la conception des deux types de jeux est divisée de manière similaire en 5 étapes : (1) sélection des espèces ; (2) définition des instructions (objets, environnement du jeu, règles) ; (3) inclusion des stress environnementaux (biotiques et abiotiques) ; (4) conception et construction des interfaces (plateau et implémentation informatique) ; (5) test avec des joueurs. L'ensemble des étapes sont interdépendantes et sont menées en parallèle pendant le développement des jeux.

Tandis que le jeu de plateau est inspiré d'experiences de joueurs, le jeu informatique se base sur un modèle de simulation de l'écosystème. De manière à introduire les notions d'équilibre et ses perturbations qui surviennent à une échelle de temps plus longue que celle du jeu de plateau, nous proposons d'implémenter un modèle basé-agent (ABM) et de coupler sa dynamique avec des actions de jeu. Les ABM sont déjà largement utilisés en écologie [Grimm et al., 2005]. Ainsi, nous choisissons un modèle dynamique de chaine trophique (modèle proie-prédateur étendu) qui est capable d'inclure des règles comportementales pour les poissons et un environnement spatial hétérogène. Un tel modèle est particulièrement adapté pour l'implémentation du jeu : les comportements des poissons sont influencés par les joueurs tandis que l'écosystème est perturbé par des évènements extérieurs.

c.7.3 Résultats

Les deux jeux sont basés sur les mêmes règles générales, même si des adaptations sont nécessaires selon le type. L'objectif du jeu est de garantir la stabilité d'une communauté écologique dans un lac. Pour cela, chaque joueur doit adapter le comportement de sa population de poissons en circonstance. Des perturbations externes sont illustrées par des évènements qui reflètent des facteurs de stress abiotiques (e.g. température de l'eau, lumière, pénurie de ressources) et biotiques (e.g.

produits chimiques, parasites, prédictions en la principe du jeu se base sur une place importante des interactions entre individus (prédation et compétition, voir Fig. 150) et illustre également les stratégies de reproduction selon différentes perspectives (dans le cas du jeu de plateau, d'un poisson solitaire à un poisson en banc, incluant une espèce invasive).

Jeu de plateau

Pour maintenir les populations dans le jeu de plateau, chaque joueur doit trouver les ressources selon son espèce de poisson. Les ressources sont converties en "unités" qui peuvent être utilisées par la suite par le joueur pour différents motifs, qui sont la reproduction, la croissance juvénile, échapper à un prédator ou attaquer une proie.

La version actuelle du jeu inclut quatre joueurs, cun étant une espèce différente, à savoir le gardon (Rutilus rutilus), le pumpkinseed (Lepomis gibbosus), le sandre (Sander lucioperca) et le bleak (Alburnus alburnus).

Le plateau se compose principalement de cases. Chacune représente un type de ressource (e.g. crustacés, plantes, insectes), et certaines cases sont combinées à un "évènement" pour inclure les perturbations externes dans le jeu. Le joueur a deux figurines sur le plateau (un mâle et un femelle) et les déplace à l'aide d'un dé. Les caractéristiques écologiques de chaque espèce sont gardées sur une carte par chaque joueur. Elles décrivent les règles spécifiques à chaque espèce (préférences alimentaires, temps et ressources nécessaires à la reproduction, comment s'échapper ou attaquer, etc). Le plateau représente le bord d'un lac. Un premier prototype est en cours de test pour ajuster la conception du plateau, les caractéristiques écologiques de chaque espèce et la caractérisation des évènements, en particulier leur impact sur les joueurs.

Jeu pour ordinateur

Dans le cas du jeu informatique, les joueurs²¹ contrôlent un espsystème avec des proies (le gardon) et des prédateurs (le *pumpkinseed*). L'objectif est de maintenir la stabilité de l'écosystème et les concepts illustrés sont les dynamiques de population et la résilience d'un écosystème.

Un modèle-basé agent pour un système proie-prédateur est proposé comme la base du jeu. L'ABM simule le comportement et les interactions entre agents (poissons) pour reconstruire la dynamique de population (approche *bottom-up*). La stochasticité est prise en compte

²¹ Le nombre de joueurs n'est pas spécifié, puisque le but est le maintien de la stabilité de l'ensemble de l'écosystème. Deux joueurs peuvent alors se répartirent les rôles de proie et prédateur, chacun jouant sur les paramètres qu'il contrôle pour stabiliser l'écosystème.

FIGURE 150: **Principes du jeu de plateau.** espèces illustrées ici sont deux poissons ppéens commun de petite taille, le gardon (Rutilus rutilus) comme proie et le *pumpkinseed* (Lepomis gibbosus) comme prédateur. Nous donnons également des exemples de perturbations extérieures (cartes "chance").

FIGURE 151: Exemples de diagrammes de phase du modèle proie-prédateur. L'exploration systématique permet de vérifier l'expression théorique des trajectoires moyennes dans l'espace des phases. Les graphes donnent les portraits de phase des deux populations (x/y), pour deux points de l'espace des paramètres.

via les interactions spatialisées (rencontre aléatoires entre des mouvements browniens lissés), illustrant le caractère aléatoire des interactions proie-prédateur. La dynamique discrète consiste en les points suivants : (a) mouvement des individus; (b) interactions trophiques; (c) renouvellement de la population (reproduction). Les paramètres du modèle incluent taux de reproduction et de prédation, et de survie pour le prédateur, ainsi que les paramètres de mouvement.

Le modèle est implémenté en NetLogo, ce qui permet son utilisation en ligne par l'intermédiaire de NetLogoweb²². Le modèle est exploré par l'intermédiaire d'OpenMole [Reuillon, Leclaire et Rey-Coyrehourcq, 2013], afin de vérifier la position théorique des attracteurs et des trajectoires moyennes dans l'espace des phases. Nous obtenons sur une grille de l'espace des paramètres (taux de reproduction de la proie, taux de prédation, taux de survie du prédateur) une bonne correspondance entre les attracteurs théoriques et les attracteurs simulés. La Fig. 151 illustre des diagrammes de phase obtenus par les simulations. La connaissance des attracteurs permet d'utiliser le modèle pour le jeu.

En effet, le jeu commence à un écosystème à l'équilibre, c'est-àdire que les valeurs des populations sont fixées à l'attracteur non nul.

²² L'implémentation ouverte est disponible sur le dépôt du projet à https://github.com/JusteRaimbault/MediationEcotox.

FIGURE 152: Capture de l'application web qui implémente le jeu informatique. Le contexte, la documentation et les liens vers les ressources sont brièvement rappelés, et NetLogoweb est inclus dans la page pour l'interface du jeu.

Un bouton pour jouer un tour fait évoluer l'écosystème sur 50 pas de temps. Le joueur observe alors la trajectoire des populations. La trajectoire peut alors être corrigée par le joueur par action sur les paramètres du modèle (survie du prédateur, reproduction de la proie, prédation) et donc la position de l'attracteur. Des évènement extérieur aléatoires perturbent les populations, et conjointement au bruit contribuent à déstabiliser l'écosystème, qui peut passer sur des orbites plus proches de l'effondrement (disparition d'une espèce). Le jeu inclut 5 niveaux de difficultés, basés sur la force des perturbations.

La version NetLogoweb du jeu (qui ne contient que les graphiques minimaux à cause des restrictions par rapport à NetLogo natif) est disponible en ligne à http://aquaecogames.org/. Une capture d'écran de l'application web est montrée en Fig. 152.

c.7.4 Discussion

Un prototype pour chaque jeu est disponible actuellement pour des tests et des ajustements sont prévus en fonction des retours d'expérience. A court terme, les prochaines versions des jeux seront développées selon le retour des joueurs et incluront une conception esthétique ainsi que des processus plus fins. Les objectifs à moyen et long terme s'oriente vers un développement natif de l'application web et l'utilisation de plateformes de financement participatif pour diffuser le jeu de plateau.

L'objectif principal de nos jeux reste d'être entrainants gardant à l'esprit que le caractère ludique plutôt que pédagogique sont centraux dans le succès de tels media basés sur les jeux. Si les joueurs oublient que le jeu est à propos d'un problème écologique, l'objectif est précisément atteint, puisque cela signifierait que les concepts scientifiques sous-jacents sont clairement compris.

* *

*