Problem A. G Game

Time limit 1000 ms Mem limit 262144 kB Windows OS

Abdulrahman and Hazem are playing a game. They have an array a of n integer numbers. Abdulrahman will choose p indices $x_1, x_2, \ldots x_p$ and Hazem will choose q indices $y_1, y_2, \ldots y_q$ where no index is chosen by both players. I.e. $x_i
eq y_j : 1 \leq i \leq p, 1 \leq j \leq q$.

After choosing their indices, let us denote the score of the players as the sum of the integers he chose from the array:

- Abdulrahman's score as $S_a=\sum_{i=1}^{i=p}a_{x_i}$ Hazem's score as $S_b=\sum_{i=1}^{i=q}a_{y_i}$

Now given P and Q find the maximum value for $S_a - S_b$ if Abdulrahman cannot choose more than P index and Hazem cannot choose more than Q index ($p \leq P, q \leq Q$)

Input

The first line of input contains one integer T ($1 \le T \le 10^5$) denoting the number of testcases.

The first line of each testcase contains three space-seperated integers N ($1 \le n \le 10^5$), P and Q $(0 \le P, Q \le n)$

The second line of each testcase contains n space–seperated integers $a_1,a_2,...,a_N$ ($-10^9 \leq a_i \leq$ 10^{9})

Its guaranteed that the sum of n over all testcases is less than or equal to 10^5 .

Output

Print the maximum value for S_a-S_b Abdulrahman and Hazem can obtain.

Sample 1

Input	Output
3 3 1 1 -2 0 2 3 1 2 6 3 -4 5 0 2 10 -6 -9 8 -7	4 10 16