Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

Кафедра «Электронные вычислительные машины»

Отчёт по лабораторной работе №2

Микропрограммирование алгоритмов

по дисциплине

"ЭВМ и периферийные устройства"

Выполнили:

ст. гр. 245

Бригада №1

Бекренев Владислав

Луковкин Иван

Проверил:

ст. пр. Устюков Д.И.

ст. пр. Тарасов А.С.

Цель работы: овладение методами микропрограммирования, разработка и отладка микропрограмм.

Практическая часть

Задание (Вариант 2): Составить программы умножения двух положительных чисел по алгоритму с анализом младшего бита множителя со сдвигом множимого.

Указание: Множитель и множимое - байт, произведение (СЧП) - слово.

Рисунок 1 - Схема алгоритма

Исходные данные:

1. AX = 0005; BX = 0003

2. AX = 0003; BX = 0005

3. AX = 0004; BX = 0002

4. AX = 0245; BX = 0002

5. AX = 0005; BX = 0005

Таблица 1 - Микропрограмма для умножения чисел с анализом младшего бита множителя.

Адрес МК	Операция	Поле	Значения	Функция
00	M1: $DX = AX$	A B ALU DST	0 2 6 4	AX DX R + C0 P3Y[B]=SDA
01	BX \Leftrightarrow 0 if not Z then goto M2	B ALU DST JFI CC CHA CONST	3 4 0 1 1 3 0003	BX S + C0 Без записи I=1 JNZ CJP Адрес перехода
02	STOP	JFI	5	Остановка
03	M2: BP = BX	A B ALU DST	3 5 6 4	BX BP S + C0 P3Y[B]=SDA
04	BP = BP & 0001h	B SRC ALU DST CONST	5 5 9 4 0001	BP R-const;S-RGB R & S P3Y[B]=SDA R
05	BP = 1 if not Z then goto M3	A ALU DST CC JFI	5 6 0 1 0	ВР R + C0 Без записи JNZ I=0

		CHA CONST	3 0007	СЈР Адрес перехода
06	M3: CX = CX + DX	A B ALU DST	2 1 3 4	DX CX R + S + C0 P3Y[B]=SDA
07	BX = BX shr 1	B SH N ALU DST	3 2 1 4 4	ВХ ЛС Вправо S + C0 P3У[B]=SDA
08	DX = DX shl 1	B SH N ALU DST JFI CHA CONST	2 8 1 4 4 4 3 0001	DX ЛС Влево S + C0 P3У[B]=SDA J = 1 CJP Адрес перехода

Таблица 2 - Трассировка программы

СМК	РЗУ				RGA	RGB	ALU	SDA	
Civile	AX	BX	CX	DX	BP	KOA	KOD	ALU	SDA
	0005	0003	0000	0000	0000	0000	0000	0000	0000
00	0005	0003	0000	0005	0000	0005	0000	0005	0005
01	0005	0003	0000	0005	0000	0000	0003	0003	0003
03	0005	0003	0000	0005	0003	0003	0000	0000	0000
04	0005	0003	0000	0005	0001	0005	0003	0001	0001
05	0005	0003	0000	0005	0001	0001	0005	0000	0000
06	0005	0003	0005	0005	0001	0005	0000	0005	0005
07	0005	0001	0005	0005	0001	0000	0003	0003	0001
08	0005	0001	0005	000A	0001	0000	0005	0005	000A
01	0005	0001	0005	000A	0001	0000	0001	0001	0001
03	0005	0001	0005	000A	0001	0001	0001	0001	0001
04	0005	0001	0005	000A	0001	0005	0001	0001	0001
05	0005	0001	0005	000A	0001	0001	0005	0001	0001
06	0005	0001	000F	000A	0001	000A	0005	000F	000F
07	0005	0000	000F	000A	0001	0005	0001	0001	0000
08	0005	0000	000F	0014	0001	0005	000A	000A	0014
01	0005	0000	000F	0014	0001	0005	0000	0000	0000
02	0005	0000	000F	0014	0001	0005	000F	000F	000F

Экспериментальная часть:

Проверка вычислений:

1.
$$AX = 0005$$
; $BX = 0003h$

a.
$$5h * 3h = Fh$$

2.
$$AX = 0003h$$
; $BX = 0005h$

a.
$$3h * 5h = Fh$$

3.
$$AX = 0004h$$
; $BX = 0002h$

a.
$$4h * 2h = 8h$$

4.
$$AX = 0245h$$
; $BX = 0002h$

a.
$$245h * 2h = 48Ah$$

5.
$$AX = 0005h$$
; $BX = 0005h$

a.
$$5h * 5h = 19h$$

Вывод: программа работает в соответствии с заданием на всех протестированных наборах исходных данных.

Заключение

В ходе выполнения лабораторной работы были изучены методы микропрограммирования, использованные в составлении алгоритма.