RÉDUCTION DES ENDOMORPHISMES ET DES MATRICES CARRÉES

ELÉMENTS PROPRES

Éléments propres

Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$.

- Soit $\lambda \in \mathbb{K}$. On dit que λ est valeur propre de u s'il existe $x \in E \setminus \{0\}$ tel que $u(x) = \lambda x$.
- Soit $x \in E$. On dit que x est vecteur propre de u si $x \neq 0$ et s'il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$.
- L'ensemble des valeurs propres d'un endomorphisme est appelé le spectre de u et noté $\mathrm{Sp}_{\mathbb{K}}(u)$.
- Soit $\lambda \in Sp(u)$. $E_{\lambda}(u) = Ker(u \lambda \cdot Id_E)$ est un sous-espace vectoriel de E distinct de $\{0_E\}$ appelé le sous-espace propre de u associé à λ

Caractérisation en dim finie

Si E est de dimension finie $n \geqslant 1$, alors

$$\lambda \in \operatorname{Sp}(u) \Leftrightarrow (u - \lambda \cdot \operatorname{Id}_{E}) \text{ n'est pas injectif}$$
 $\Leftrightarrow (u - \lambda \cdot \operatorname{Id}_{E}) \text{ n'est pas surjectif}$
 $\Leftrightarrow (u - \lambda \cdot \operatorname{Id}_{E}) \text{ n'est pas bijectif}$
 $\Leftrightarrow \operatorname{\mathbf{rg}}(u - \lambda \cdot \operatorname{Id}_{E}) < n$
 $\Leftrightarrow \operatorname{det}(u - \lambda \cdot \operatorname{Id}_{E}) = 0$

Éléments propres d'une matrice

Les éléments propres d'une matrice A sont ceux de l'endomorphisme canoniquement associé

$$u_A: \left\{ \begin{array}{ccc} M_{n,1}(\mathbb{K}) & \longrightarrow & M_{n,1}(\mathbb{K}) \\ X & \longmapsto & AX \end{array} \right.$$

POLYNÔME CARACTÉRISTIQUE

E est de dimension finie $n \geqslant 1$.

Définition

- ullet On appelle polynôme caractéristique de A le polynôme $\chi_A=$ $\det(XI_n - A)$.
- ullet On appelle polynôme caractéristique de u le polynôme $\chi_u =$ $\det (X \operatorname{Id}_E - u).$

Endomorphisme induit

 $\overline{\text{Si }F}$ est stable par u , alors $\chi_{u_F}|\chi_u$.

Plus généralement si $E = \bigoplus F_i$ tel que $\forall i \in [1, k]$, F_i est stable par u, alors

$$\chi_u = \prod_{i=1}^k \chi_{u_{F_i}}$$

Spectre et polynôme caractéristique

 $\operatorname{Sp}(u) = \{ \lambda \in \mathbb{K}, \ \chi_u(\lambda) = 0 \}$

Ordre de multiplicité

La multiplicité d'une racine λ de χ_u est appelée l'ordre de multiplicité de λ , et ona: elle est noté $m(\lambda)$.

$$1 \leqslant \dim E_{\lambda}(u) \leqslant m(\lambda)$$

POLYNÔME MINIMAL

Polynômes annulateurs et minimal

- Le noyau $\{P \in \mathbb{K}[X] \mid P(u) = 0\}$ du morphisme d'évaluation $P \mapsto$ P(u) est un idéal de $\mathbb{K}[X]$. On l'appelle l'idéal annulateur de u.
- On appelle polynôme annulateur de u tout élément de l'idéal annulateur;
- On appelle polynôme minimal de $u \in \mathcal{L}(E)$ l'unique polynôme unitaire qui engendre l'idéal des polynômes annulateurs.

Même définition pour les matrices

Théorème de décomposition des noyaux

Si P_1, \ldots, P_k sont k polynômes deux à deux premiers entre eux, alors :

$$\operatorname{Ker}\left[\left(\prod_{i=1}^{k} P_{i}\right)(u)\right] = \bigoplus_{i=1}^{k} \operatorname{Ker}\left(P_{i}\left(u\right)\right)$$

Si $P = \prod P_i$ un polynôme annulateur de u, alors $E = \bigoplus \operatorname{Ker}(P_i(u))$

Théorème de Cayley-Hamilton

Soit χ_u le polynôme caractéristique de u, alors $\chi_u(u) = 0_{\mathcal{L}(E)}$. En conséquence $\pi_u | \chi_u$.

DIAGONALISATION

Définition

Soit $u \in \mathcal{L}(E)$, soit $A \in M_n(\mathbb{K})$.

- On dit que $u \in \mathcal{L}(E)$ est diagonalisable s'il existe une base \mathcal{B} de E telle que $M_{\mathcal{B}}(u)$ est diagonale.
- On dit que $A \in M_n(\mathbb{K})$ est diagonalisable si elle est semblable à une matrice diagonale.

Propriété

Si A est diagonalisable et $\Delta = P^{-1}AP$, alors les valeurs propres sont les éléments de la diagonale de Δ et la multiplicité de chacune est son nombre d'occurence dans cette diagonale.

Les vecteurs colonnes de P sont des vecteurs propres de A

Propriétés caractéristiques

Soit E un \mathbb{K} -ev de dimension n et $u \in \mathcal{L}(E)$. Soit $\mathrm{Sp}(u) = \{\lambda_1, \cdots, \lambda_k\}$. Les affirmations suivantes sont équivalentes.

- 1. *u* est diagonalisable.
- 2. E possède une base de vecteurs propres;
- 3. $E = \bigoplus E_{\lambda_i}$;
- 4. $\sum \dim(E_{\lambda_i}) = \dim E;$
- 5. χ_u est scindé et $\forall i \in [1, k]$, $\dim E_{\lambda_i} = m_i$.
- 6. π_u est scindé à racines simples.
- 7. *u* annule un polynôme scindé à racines simples.

En particulier si χ_u est scindé à racines simples, alors u est diagonalisable.

TRIGONALISATION

Soit E un \mathbb{K} -ev de dimension finie $n \geqslant 1$, $u \in \mathcal{L}(E)$ et $A \in M_n(\mathbb{K})$.

Définition

- u est dite trigonalisable s'il existe une base \mathcal{B} de E pour laquelle $M_{\mathcal{B}}(u)$ est triangulaire supérieure.
- ullet A est dite trigonalisable si elle est semblable à une matrice T triangulaire supérieure.

Propriétés caractéristiques

Les quatres affirmations sont équivalentes :

- 1. u est trigonalisable.
- 2. χ_u est scindé.
- 3. *u* annule un polynôme scindé
- 4. π_u est scindé.

Corollaire

Si $\mathbb{K} = \mathbb{C}$, alors tout $u \in \mathcal{L}(E)$ est trigonalisable.

Toute $A \in \mathcal{M}_n(\mathbb{C})$ est trigonalisable.

ENDOMORPHISMES NILPOTENTS

Soit $u \in \mathcal{L}(E)$ et $A \in M_n(\mathbb{K})$, avec dim E = n.

Définition

Un endomorphisme $u \in \mathcal{L}(E)$ est dit nilpotent s'il existe $p \in \mathbb{N}$ tel que $u^p = 0$.

Ce vocabulaire se transpose aux matrices

Propriété caractéristique

- u est nilpotent $\iff u$ est trigonalisable avec $Sp(u) = \{0\}$
- ullet A est nilpotente \Longleftrightarrow elle est semblable à une matrice triangulaire supérieure stricte

DÉCOMPOSITION SPÉCTRALE

Décomposition spéctrale

 $\overline{\text{Si } u \text{ est diago}}$ nalisable où E est de dim finie, avec $Sp(u) = \{\lambda_i, i \in [1, k]\}.$ Pour $i \in [1, k]$, on pose p_i la projection de E sur $E_{\lambda_i}(u)$ (de direction

$$\bigoplus_{\substack{j=1\\j\neq i}}^n E_{\lambda_j}(u)$$
). Alors

$$u = \sum_{i=1}^{k} \lambda_i p_i$$

$$\forall P \in \mathbb{K}[X], P(u) = \sum_{i=1}^{k} P(\lambda_i) p_i$$

CONTACT INFORMATION

Web www.elamdaoui.com

Email elamdaoui@gmail.com

Phone 06 62 30 38 81

Page: 03