2022 秋数字逻辑电路假期复习专题计划第三话

班级: 05 班 考察范围: 第五章 ~ 第六章

考虑到本学期的课程学习特殊性,为了方便不同学习习惯的同学更好地完成数电课程学习,助教计划在寒假期间定期为大家准备专题复习题目,需要保持学习状态的同学可以参考助教的建议合理规划复习进度。祝好!

- 1. 触发器电路分析。(注意,本题中所有 \bar{A} 都表示A'。)
 - (1) 触发器电路如图所示,已知 \overline{CP} 和 A 的波形,画出触发器 Q 端的波形,设触发器的初始状态为 0。

(2) 触发器电路如图所示,已知 \overline{CP} 的波形,画出 ϕ_1 和 ϕ_2 端的波形,设触发器的 初始状态为 0。

(3) 触发器电路如图所示,已知时钟信号的波形,画出两个触发器 Q 端的波形,设触发器的初始状态为 0。

2. 试用 16 片 2114(1024×4 位的 RAM) 和 3 线 -8 线译码器 74HC138 接成一个 8 K×8 位的 RAM。74HC138 的功能表和框图和 2114 的框图如下

$\overline{S_1}$	$S_2' + S_3'$	A_2	A_1	A_0	Y_0'	Y_1'	Y_2'	Y_3'	Y_4'	Y_5'	Y_6'	Y_7'
0	×	×	×	×	1	1	1	1	1	1	1	1
×	1	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0 -	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

3. 用 ROM 设计一个组合逻辑电路, 用来产生下列一组逻辑函数。

$$\begin{cases} Y_1 = A'B'C'D' + A'BC'D + AB'CD' + ABCD \\ Y_2 = A'B'CD' + A'BCD + AB'C'D' + ABC'D \\ Y_3 = A'BD + B'CD' \\ Y_4 = BD + B'D' \end{cases}$$

列出 ROM 应有的数据表,画出存储矩阵的点阵图。

4. 试分析如图所示时序逻辑电路,写出电路的驱动方程、状态方程和输出方程,说明该电路是米利型电路还是穆尔型电路,列出状态转换表,画出状态转换图,判断电路能

否自启动,说明该电路实现的功能。

5. 试分析如图所示计数器电路在控制变量 A 为 0 和 1 时分别为几进制计数器。74161 的功能表如下

CLK	$R'_{ m D}$	LD'	EP	ET	工作状态
-X-X	0	×	×	×	置零
X 1	1	0	×	×	预置数
×	1	1	0	1	保持
×	1	1	×	0	保持 (但 $C=0$)
\uparrow	1	1	1	1	计数

6. 设计一个灯光控制逻辑电路。要求红、绿、黄三种颜色的灯在时钟信号作用下按下表规定的顺序转换状态。表中的 1 表示"亮", 0 表示"灭"。要求电路能自启动,并尽

可能采用中规模集成电路芯片。

CLK	红	黄	绿
0	0	0	0
1	1	0	0
2	0	1	0
3	0	0	1
4	1	1	1
5	0	0	1
6	0	1	0
7	1	0	0
8	0	0	0

- 7. 试用负脉冲触发的 JK 触发器设计一个可以自启动的带进位输出的 5421 码计数器,要求用 $Q_3Q_2Q_1Q_0$ 编码。
 - (1) 列出状态转换表;
 - (2) 写出驱动方程、状态方程和输出方程;
 - (3) 画出完整的电路图。
- 8. 试用上升沿触发的 T 触发器设计一个可以自启动的可控进制计数器,其中控制变量 A=0 时实现九进制计数器(状态编码取格雷码从 0000 开始的连续 9 个代码),控制 变量 A=1 时实现六进制计数器(状态编码取格雷码从 0000 开始的连续 6 个代码),要求用 $Q_3Q_2Q_1Q_0$ 编码。
 - (1) 列出状态转换表;
 - (2) 写出驱动方程、状态方程和输出方程;
 - (3) 画出完整的电路图。