Notes of Caltech ML Lecture:

Neural Network

Trần Trung Kiên ttkien@fit.hcmus.edu.vn

Overview

- ☐ Hypothesis set
- ☐ Learning algorithm

Hypothesis set

The process of computing h(x) from x is call forward-propagation

How is $a^{(l)}$ computed from $a^{(l-1)}$?

- Each node is a neuron
- Value inside a node is the output of this neuron
- Each edge is a weight (parameter)
- The output of a neuron is computed as follows: (1) compute the weighted sum of neurons' outputs in the previous layer, (2) pass the result through a nonlinear function called activation function (e.g. logistic)
 - $w_{ij}^{(l)}$: the weight corresponding to the edge from neuron i in layer l-1 to neuron j in layer l $(1 \le l \le L, 0 \le i \le d^{(l-1)}, 1 \le j \le d^{(l)})$ [Check: blackboard]
 - $a_j^{(l)} = \theta\left(s_j^{(l)}\right)$ with $s_j^{(l)} =$ and θ is some activation function

How is $a^{(l)}$ computed from $a^{(l-1)}$?

neurons in layer l)

neurons in layer l-1)

- Each node is a neuron
- Value inside a node is the output of this neuron
- Each edge is a weight (parameter)
- The output of a neuron is computed as follows: (1) compute the weighted sum of neurons' outputs in the previous layer, (2) pass the result through a nonlinear function called activation function (e.g. logistic)
 - $w_{ij}^{(l)}$: the weight corresponding to the edge from neuron i in layer l-1 to neuron j in layer l $(1 \le l \le L, 0 \le i \le d^{(l-1)}, 1 \le j \le d^{(l)})$ [Check: blackboard]
 - $a_j^{(l)} = \theta\left(s_j^{(l)}\right)$ with $s_j^{(l)} = \sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} a_i^{(l-1)}$ and θ is some activation function

Activation function

□ Common activation functions:

Name	θ(s) 	Range -	θ'(s)
Logistic	$\theta(s) = \frac{1}{1 + e^{-s}}$	[0, 1]	
Tanh	$ \theta(s) = \frac{1}{1 + e^{-s}}$ $ \theta(s) = \frac{e^{s} - e^{-s}}{e^{s} + e^{-s}}$	[-1, 1]	
Rectified linear	$ \theta(s) = \max(0, s)$	$\mid [0, \infty)$	
Linear	$\mid \theta(s) = s$		

- \Box θ for output layer: dictated by the problem
 - \square Regression: θ often is linear
 - \square Binary classification: θ often is logistic

Hypothesis set

After choosing a net architecture (# hidden layers, # neurons / hidden layer, θ), we will have a hypothesis set

1 specific
$$\mathbf{w} = \left\{ w_{ij}^{(l)} \right\} \leftrightarrow$$
 1 hypothesis h

Overview

- ☐ Hypothesis set
- ☐ Learning algorithm

Learning algorithm

- ☐ Given:
 - Training data $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ $x^{(n)} \in \{1\} \times \mathbb{R}^d, y^{(n)} \in ?$
 - Hypothesis set $\mathcal{H} = \{h(x)\}$ corresponding to a net architecture
- $\square w = ?$
 - \square Define $E_{in}(w)$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} e(h(x^{(n)}), y^{(n)})$$

 \square min $E_{in}(\mathbf{w})$

$\min E_{in}(w)$

(Batch) Gradient Descent (BGD)

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla E_{in}(\mathbf{w})$$

$$\nabla E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \nabla e(h(\mathbf{x}^{(n)}), y^{(n)})$$

To take a step, BGD needs to go through *N* training examples

→ Slow when *N* is large

$\min E_{in}(w)$

Stochastic Gradient Descent (SGD)

Idea: use a minibatch of B $(B \ll N)$ examples to estimate ∇E_{in}

Algorithm:

- 1. Initialize w
- While termination criterion is not satisfied
- a. Shuffle the order of training examples b. For minibatch $b=1,\ldots,\frac{N}{B}$:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{1}{B} \sum_{n=(b-1)B+1}^{bB} \nabla e(h(\mathbf{x}^{(n)}), y^{(n)})$$

Compute ∇e

To apply SGD or BGD, we need to compute ∇e (it contains $\frac{\partial e}{\partial w_{ij}^{(l)}} \forall l, i, j$)

Back-propagation algorithm:

help us compute $\frac{\partial e}{\partial w_{ij}^{(l)}} \forall l, i, j$ efficiently

Review of chain rule

1 path

$$\frac{x \to y = f_1(x) \to z = f_2(y)}{\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}}$$

More than 1 path

$$x \to y_1 = f_1(x) \to z = f_3(y_1, y_2)$$

$$y_2 = f_2(x) \nearrow$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x}$$

$$\frac{\partial e}{\partial w_{ij}^{(l)}} = \frac{\partial e}{\partial s_{j}^{(l)}} \frac{\partial s_{j}^{(l)}}{\partial w_{ij}^{(l)}}$$

$$\frac{\partial e}{\partial a_{j}^{(l)}} \frac{\partial a_{j}^{(l)}}{\partial s_{j}^{(l)}}$$

$$\frac{\partial e}{\partial a_{j}^{(l)}} \frac{\partial a_{j}^{(l)}}{\partial s_{j}^{(l)}}$$

$$\frac{\partial e}{\partial s_{k}^{(l+1)}} \frac{\partial e}{\partial s_{k}^{(l+1)}} \frac{\partial s_{k}^{(l+1)}}{\partial a_{j}^{(l)}}$$

$$\frac{\partial e}{\partial s_{k}^{(l+1)}} \frac{\partial s_{k}^{(l+1)}}{\partial s_{ik}^{(l+1)}}$$

$$w_{ij}^{(l)} \xrightarrow{S_{j}^{(l)}} a_{i}^{(l-1)} + \cdots \xrightarrow{S_{j}^{(l+1)}} S_{1}^{(l+1)} \xrightarrow{\vdots} e$$

$$\vdots$$

$$\vdots$$

$$s_{d^{(l+1)}}^{(l+1)} a_{i}^{(l-1)} + \cdots$$

$$\frac{\partial e}{\partial w_{ij}^{(l)}} = \frac{\partial e}{\partial s_{j}^{(l)}} \frac{\partial s_{j}^{(l)}}{\partial w_{ij}^{(l)}}$$

$$\delta_{j}^{(l)} a_{i}^{(l-1)}$$

$$\theta'\left(s_{j}^{(l)}\right) \sum_{k=1}^{d} w_{jk}^{(l+1)} \delta_{k}^{(l+1)}$$

To compute $\frac{\partial e}{\partial w_{ij}^{(l)}} \forall l, i, j$, we need to compute:

1.
$$a_i^{(l-1)} \forall l, i: \mathbf{x} = \mathbf{a}^{(0)} \to \mathbf{a}^{(1)} \to \cdots \to \mathbf{a}^{(L)}$$

2.
$$\delta_j^{(l)} \forall l, j$$
: $\delta^{(1)} \leftarrow \cdots \leftarrow \delta^{(L-1)} \leftarrow \delta^{(L)}$
Back-prop

Initialize w?

Init w with all zeros (or values equal to each other)?
[blackboard]

□ People often init w with small random values around 0 ("small" means "small absolute value")

[blackboard]