

Minimização de Criticalidades de Redes Elétricas com foco nos ganhos de confiabilidade e robustez na Estimação de Estado

Aluno: Vinícius Biajoni Braga Flôr Disciplina: Inteligência Computacional

Roteiro

- Introdução;
- Contexto e Motivações;
- •Formulação e Representação da Solução;
- GRASP-VND;
- VNS-VND;
- Busca Local (VND);
- Hash Global Auxiliar;
- Testes e Resultados;
- Conclusões e Trabalhos Futuros;

7/13/2020

Introdução

Operação em Tempo Real;

- O objetivo do trabalho é reforçar uma rede pré-planejada reduzindo as chamadas criticalidades de medidas;
- Uma rede pode possuir inúmeras barras disponíveis para alocação de Unidades de Medição(UMs) o que pode resultar em um problema combinatorial complexo;
- As metaheurísticas tradicionalmente são amplamente aplicadas nesses tipos de problemas e para tal testou-se duas técnicas:
 - GRASP-VND;
 - VNS-VND;

Contexto e Motivações

- Motivações:
 - Explorar e formular um problema novo;
 - Capacidade de reforçar a rede e possibilitar a mitigação das criticalidades;
 - Apresentar uma forma de solução através da utilização do "poder" das metaheurísticas;
 - Contexto prático para aplicação do estudo das criticalidades de uma rede elétrica;

7/13/2020

Contexto e Motivações

Risco

Ck-	Descrição	Propriedades Numéricas	Proces	samento de EGs
tupla	Descrição	Propriedades Numericas	Detecção	Identificação
C1	Medida essencial à EE cuja ausência torna a rede não observável;	O resíduo de C1 e seu desvio padrão são iguais a zero.	Não	
C2	Par de medidas redundantes, 100% correlacionadas. A indisponibilidade de uma medida torna a remanescente C1. A indisponibilidade de ambas torna a rede não observável.	Os resíduos normalizados das medidas em um C2 são idênticos. O coeficiente de correlação entre os resíduos normalizados de medidas em um C2j é um.	Sim	Não
С3	O trio redundante cuja indisponibilidade torna a rede não observável. A remoção de uma medida do trio torna as remanescentes C2 enquanto a remoção de duas torna a restante C1;	As colunas da matriz de covariância dos residuos referentes ao C3 são linearmente dependentes.	Sim	Sim, para EG simples em C3; Não, para 2 ou 3 EGs em C3;
Ck	Grupo de k medidas cuja indisponibilidade de todas em simultâneo torna a rede não observável. A indisponibilidade de j medidas torna as restantes C(k-j).	As colunas da matriz de covariância dos resíduos referentes ao Ck são linearmente dependentes.	Sim	Sim, para até (k-2) EGs em Ck; Não, até (k-1) ou k EGs em Ck;

Relação das Criticalidades de Medidas e a capacidade de Processamento de Erros Grosseiros.

Quanto menor a cardinalidade mais riscos ao processo de EE.

Ilustração do Problema

Seja uma rede observável e um lote L de UMs pré-definido, deseja-se alocar essas unidades de maneira a minimizar a seguinte equação:

7/13/2020

Seja uma rede observável e um lote L de UMs pré-definido, deseja-se alocar essas unidades de

maneira a minimizar a seguinte equação:

GRASP-VND

- Construção Heurística;
- Busca Local VND;

- Procedimento GRASP-VND
- Início:
 - 1. $s^* \leftarrow \varnothing$;
 - 2. $f(s^*) \leftarrow fobj \ na \ condio \ inicial;$
 - Global tempo_{max} ← Tempo Máximo definido;
 - Iter_{max} ← Número Máximo de Iterações;
 - 5. limite $\leftarrow 0$;
 - 6. $\alpha \leftarrow \text{Alfa escolhido}$;
 - 7. $lote \leftarrow Tamanho do Lote;$
 - barrasLivres ← BarrasLivresAlocação();
 - 9. Enquanto limite <= Iter_{max} e tempoSim() <= tempo_{max} faça
 - 10. $s' \leftarrow \text{ConstruçãoGRASP}(f(.), \alpha, \text{lote, barrasLivres});$
 - 11. $s'' \leftarrow \text{VND}(s');$
 - 12. se $f(s'') < f(s^*)$
 - 13. $s^* \leftarrow s''$;
 - fim-se;
 - 15. limite = limite + 1;
 - fim-enquanto;
 - 17. retorna s^* ;
- fim GRASP-VND

GRASP-VND

•Critérios de Construção:

- 1. Em redes sem barras terminais importantes ou com pouco conhecimento do arranjo das medidas ordena-se a LC dando preferência à inserção de UMs em barras com mais conexões, ou seja, essas estarão no topo da lista;
- 2. Em redes com barras terminais sem UMs e com muitas criticalidades "próximas" a esses barramentos, então prioriza-se, na ordenação da LC, as barras com menos conexões;

VNS-VND

VNS-VND

Soluções Iniciais:

- •Solução Inicial Aleatória Constrói-se de forma sistemática uma alocação viável de UMs através do sorteio aleatório das barras nas quais será distribuído o lote disponível, esse tipo de solução pode ser interessante quando se conhece pouco da rede ou necessita-se de diversificação.
- •Solução Inicial Gulosa Gera-se uma solução inicial com um critério guloso baseado na quantidade de conexões presentes em cada barramento, as escolhas desse critério seguem as mesmas premissas da formação da lista de candidatos do algoritmo GRASP-VND. Essa forma de geração possibilita a inserção de informações quanto às barras preferíveis para

Envolve o conhecimento da rede!!!

Busca Local (VND)

- Aplicada em ambas metaheurísticas;
- •Baseada em 4 estruturas de vizinhança básicas:
 - Vizinhança 1- Baseia-se na troca de uma posição igual a 1 na solução por outra igual a 0, ou seja, retira a UM de uma barra e coloca-se em outra disponível.
 - Vizinhança 2 Realiza-se a troca de duas posições iguais a 1 por outras duas iguais a 0;
 - Vizinhança 3- Aplica-se a vizinhança 1 e rotaciona-se o vetor binário;
 - Vizinhança 4 Aplica-se a vizinhança 2 e rotaciona-se o vetor binário;

Nas redes maiores a busca é parcial

Hash Global Auxiliar

- •Insere memória às iterações;
- •Estratégia previamente testada no processo de determinação das criticalidades;
- •Importante para amenizar o tempo gasto no cálculo das criticalidades;
- Acelera a análise de possíveis candidatos já avaliados;

•Simulações:

- Máquina -> Intel i7 sétima ger. com 16 GB de RAM;
- Pré-processamento e metaheurísticas -> MATLAB;
- Análise de criticalidades e obtenção do vetor nk -> Linguagem C com utilização de OpenMP;

Redes:

Removeu-se as medidas destacadas para o surgimento de mais criticalidades

Plano

original

Testes e Resultados

Redes:

IEEE 118 Barras

Redes:

- •Alterou-se o plano da rede IEEE 118 barras para a geração de uma instância mais desafiadora:
 - Programação Linear Inteira (Baseada na Literatura*); \longrightarrow Ax \leq b, $x_i \in \{0,1\}$
 - Geração de um plano observável;
 - Resultado = 39 UMs alocadas e 79 barras livres para alocação;

*B. Xu and A. Abur, "Observability analysis and measurement placement for system with PMUs", in Proc. IEEE Power System Conf. Expo., Oct. 2004, vol. 2, pp. 943-946.

Testes Principais:

•Rede 30 Barras- Lotes de UMs de tamanho 3 e 6; kmax=3 e 12 barramentos disponíveis para alocação;

•Rede 118 Barras plano base- Lotes de UMs de tamanho 6 e 9; kmax=2 e 19 barramentos disponíveis para alocação;

•Rede 118 Barras Nova- Lote de UMs tamanho 10, kmax=2 e 79 barramentos disponíveis para alocação;

Comparação com busca exaustiva

Critérios Principais:

Tabela 1: Critérios dos testes Rede IEEE 30 barras.

Técnica	Alfa	Sol. Inical	Tempo Máx	Iter. Máx	Busca Local	N° de Testes
GRASP-VND	0,3;0,5;0,8	-	10 min	5	Completa	3
VNS-VND	-	Gulosa e Aleatória	10 min	5	Completa	3

Tabela 2: Critérios dos testes Rede IEEE 118 barras Base.

Técnica	Alfa	Sol. Inical	Tempo Máx	Iter. Máx	Busca Local	Nº de Testes
GRASP-VND	0,3;0,5;0,8	-	45 min e 15 min (lote=9)	15	Parcial	3
VNS-VND	-	Gulosa e Aleatória	45 min e 15 min (lote=9)	15	Parcial	3

Tabela 3: Critérios dos testes Rede IEEE 118 barras Nova.

Técnica	Alfa	Sol. Inical	Tempo Máx	Iter. Máx	Busca Local	Nº de Testes
GRASP-VND	0,3;0,8	-	2:30h	50	Parcial	3
VNS-VND	-	Gulosa e Aleatória	2:30h	50	Parcial	3

Condições Iniciais e Pesos Definidos:

- •Rede 30 Barras w=[10, 3, 1.5]
- •Rede 118 Barras Base w=[20, 1.5]
- •Rede 118 Barras Modificado w=[1, 1]

Processo Empírico

\mathbf{Rede}	Ck1	Ck2	Ck3
30 Barras	10	14	93
118 Barras Base	9	91	-
118 Barras Modificado	0	97	_

Rede 30 Barras Lote 3:

Tabela 5: Resultados GRASP-VND rede 30 barras (lote=3).

Alfa	Tempo Tot. Médio(s)	Qtd. Iterações	Melhor Sol.
0,3	81,2	5	129
0,5	79,1	5	129
0,8	80,7	5	129

Tabela 6: Resultados VNS-VND rede 30 barras (lote=3).

Sol. Inicial	Tempo Tot. Médio(s)	Qtd. Iterações	Melhor Sol
Aleatória	88,6	5	129
Gulosa	89,4	5	129

Técnica	Tempo Total(s)	Melhor Sol.
Busca Exaustiva	80,9	129

Rede 30 Barras Lote 3:

Rede	Ck1	Ck2	Ck3
30 Barras	10	14	93
118 Barras Base	9	91	-
118 Barras Modificado	0	97	-

Condição Inicial

Tabela 8: Alocação ótima rede 30 barras (lote=3).

Tupla Binária	Barras Equivalentes	Criticalidades
000000110100	17 20 26	6 6 34

Rede 30 Barras Lote 6:

Tabela 9: Resultados GRASP-VND rede 30 barras (lote=6).

Alfa	Tempo Tot. Médio(s)	Qtd. Iterações	Melhor Sol.
0,3	238,2	5	86,5
0,5	232,3	5	86,5
0,8	203,7	5	86,5

Tabela 10: Resultados VNS-VND rede 30 barras (lote=6).

Sol. Inicial	Tempo Tot. Médio(s)	Qtd. Iterações	Melhor Sol
Aleatória	249,2	5	86,5
Gulosa	262,3	5	86,5

Tabela 11: Resultados busca exaustiva rede 30 barras (lote=6).

Técnica	Tempo Total (s)	Melhor Sol.
Busca Exaustiva	400,4	86,5

Rede 30 Barras Lote 6:

Rede	Ck1	Ck2	Ck3
30 Barras	10	14	93
118 Barras Base	9	91	-
118 Barras Modificado	0	97	-

Condição Inicial

Tabela 12: Alocação ótima rede 30 barras (lote=6).

Tupla Binária	Barras Equivalentes	Criticalidades
0 0 0 0 1 1 1 1 0 1 0 1	11 13 17 20 26 30	1 12 27

Grande Redução

Rede 118 Barras Base - Lote 6:

Tabela 13: Resultados GRASP-VND rede 118 barras base (lote=6).

Alfa	Tempo Tot. Med(s)	Qtd. Média Iterações	Melhor Sol.
0,3	2.649	14	196,5
0,5	2.700	9	196,5
0,8	2.700	8	196,5

Tabela 14: Resultados VNS-VND rede 118 barras base (lote=6).

Sol. Inicial	Tempo Tot. Med(s)	Qtd. Média Iterações	Melhor Sol.
Aleatória	2.700	2	196,5
Gulosa	2.700	2	196,5

Tabela 15: Resultados busca exaustiva rede 118 barras base (lote=6).

Técnica	Tempo Total(s)	Melhor Sol.	Criticalidades
Busca Exaustiva	5400	212	4 88

Rede 118 Barras Base - Lote 6:

Rede	Ck1	Ck2	Ck3
30 Barras	10	14	93
118 Barras Base	9	91	-
118 Barras Modificado	0	97	-

Condição Inicial

Tabela 16: Alocações ótimas rede 118 barras base (lote=6).

Tupla Binária	Barras Equivalentes	Criticalidades
1000001100001100100	10 73 87 111 112 116	3 91
0000001100001100110	73 87 111 112 116 117	3 91
1000001000001100110	10 73 111 112 116 117	3 91
1000001100001000110	10 73 87 111 116 117	3 91

Prioridade na redução das medidas críticas

Barras 73, 111 e 116 presentes em todas best-solutions

Barras Terminais

Rede 118 Barras Base - Lote 9:

•Tempo Limite 45 minutos

Tabela 17: Resultados GRASP-VND rede 118 barras base (lote=9).

Alfa	Tempo Tot. Med(s)	Qtd. Média Iterações	Melhor Sol.
0,3	2.700	12	152,5
0,5	2.700	7	152,5
0,8	2.700	6	152,5

Tabela 18: Resultados VNS-VND rede 118 barras base (lote=9).

Sol. Inicial	Tempo Tot. Med(s)	Qtd. Média Iterações	Melhor Sol.
Aleatória	2.700	2	152,5
Gulosa	2.700	2	152,5

Tabela 19: Resultados busca exaustiva rede 118 barras base (lote=9)

Técnica	Tempo Total(s)	Melhor Sol.	Criticalidades
Busca Exaustiva	5400	186	3 84

Rede 118 Barras Base - Lote 9:

Rede	Ck1	Ck2	Ck3
30 Barras	10	14	93
118 Barras Base	9	91	-
118 Barras Modificado	0	97	-

Condição Inicial

Tabela 20: Alocações ótimas rede 118 barras base (lote=9).

Tupla Binária	Barras Equivalentes	Criticalidades
1000011100101100110	10 72 73 87 104 111 112 116 117	2 75
1100001100101100110	10 36 73 87 104 111 112 116 117	2 75
1010001100101100110	10 57 73 87 104 111 112 116 117	2 75
1000001101101100110	10 73 87 102 104 111 112 116 117	2 75
1000001100111100110	10 73 87 104 107 111 112 116 117	2 75

Barras 10, 73, 87, 104, 111, 112, 116 e 117

Barras Terminais

Rede 118 Barras Base - Lote 9:

15 min -> Teste adicional

Tabela 21: Resultados GRASP-VND rede 118 barras base (lote=9) e tempo limite de 15 minutos.

Alfa	Tempo Tot. Med(s)	Qtd. Média Iterações	Melhor Sol.
0,3	900	2	152,5
0,5	900	2	152,5
0,8	900	2	152,5

Tabela 22: Resultados VNS-VND rede 118 barras base (lote=9) e tempo limite de 15 minutos.

Sol. Inicial	Tempo Tot. Med(s)	Qt d. Média Iterações	Melhor Sol.
Aleatória	900	1	152,5
Gulosa	900	1	152,5

Redução da qtd. de iterações, mas manutenção da qualidade da solução.

Rede 118 Barras modificada - Lote 10:

Tabela 23: Resultados GRASP-VND rede 118 barras modificada (lote=10).

Alfa	Tempo Tot. Médio(s)	Qtd. Média Iterações	Melhor Sol.	
0,3	9.000	10	32	
0,8	9.000	10	35	

Tabela 24: Resultados VNS-VND rede 118 barras modificada (lote=10).

Sol. Inicial	Tempo Tot. Médio(s)	Qtd. Média Iterações	Melhor Sol
Aleatória	9.000	2	32
Gulosa	9.000	2	31

Tabela 25: Alocação ótima rede 118 barras base (lote=10).

Barras Alocadas	Criticalidades	
6 18 36 46 50 61 70 78 83 105	0 31	

Rede	Ck1	Ck2	Ck3
30 Barras	10	14	93
118 Barras Base	9	91	-
118 Barras Modificado	0	97) –

Condição Inicial

A busca exaustiva não é aplicável nessa instância.

7/13/2020

Rede 118 Barras modificada - Lote 10:

Figura 14: Processo de Convergência rede 118 barras modificada teste 1 VNS-VND Aleatório.

Figura 15: Processo de Convergência rede 118 barras modificada teste 1 VNS-VND Guloso.

Rede 118 Barras modificada - Lote 10:

Figura 16: Processo de Convergência rede 118 barras modificada teste 1 GRASP-VND $\alpha=0,3.$

Figura 17: Processo de Convergência rede 118 barras modificada teste 1 GRASP-VND $\alpha = 0, 8$.

Rede 118 Barras modificado - Lote 10:

•Vizinhanças 1 e 2 e "sol. inicial gulosa"

Figura 18: Processo de Convergência rede 118 barras modificada teste 1 GRASP-VND $\alpha=0,1.$

 ${\bf Figura~19:~Processo~de~Convergência~rede~118~barras~modificada~teste~2~VNS-VND~Guloso.}$

Conclusões e Trabalhos Futuros

•Conclusões:

- O trabalho atingiu os objetivos iniciais de redução das criticalidades e de se comprovar a aplicação prática da análise das criticalidades de medidas, além de validar o uso de metaheurísticas para o problema em questão;
- Com a comparação com a busca exaustiva demonstrou-se que a aplicação das metaheurísticas é um bom caminho para o problema proposto;
- •Nas redes e instâncias de menor dimensão ambas metaheurísticas se mostraram equivalentes e atingiram resultados semelhantes;
- O GRASP-VND apesar de possuir iterações mais rápidas que o VNS-VND não conseguiu superá-lo na instância mais complexa;
- A formulação proposta se mostrou válida, porém há a necessidade de pós-filtragem em casos onde há configurações equivalentes;
- •Para a instância mais difícil as soluções iniciais mais gulosas se mostraram mais interessantes pois permitem a inserção de conhecimentos práticos no problema;

Conclusões e Trabalhos Futuros

Trabalhos Futuros:

Testado preliminarmente

- •Testes de uma busca local RVND para se tentar uma maior diversificação em instâncias maiores e complexas, essa modificação juntamente com estruturas de vizinhanças mais sofisticadas podem melhorar a convergência dos algoritmos em instâncias mais difíceis;
- •A utilização de um **GRASP Reativo** pode levar a um melhor conhecimento de qual α é mais interessante em cada instância testada e tornar o GRASP-VND mais adaptativo à cada rede e plano de medição avaliado;
- •Inserir conceitos de mineração de dados para a geração das soluções iniciais, visto que observou-se em testes secundários que as melhores soluções apresentam diversos elementos em comum e isso pode ser uma característica própria de cada rede testada;

Testado preliminarmente

Conclusões e Trabalhos Futuros

- Trabalhos Futuros:
- •Inserção de restrições que indiquem prioridades em relações aos barramentos livres para alocação, considerando distâncias físicas e dificuldade de instalação por localidade inserindo assim informações práticas ao problema;
- •Aprimoramento da formulação para considerar mais fatores além das criticalidades como, por exemplo, custos distintos das barras;
- •Desenvolvimento de outras funções para a etapa construtiva do GRASP, considerando não só uma informação heurística mas também alguma função que traga informações quanto às criticalidades reduzidas com a inserção de cada barra;
- Geração de mais instâncias difíceis para testes e calibração das metaheurísticas e a consequente realização de testes em outras configurações de rede;

OBRIGADO!!!