Machine Learning and Intelligent Systems - Fall 2017

3rd Lab Session's Report

by Berkay KÖKSAL

Part 1: Implementing the computation of entropy

• Trainingdata result screenshot:

```
Reading file ../../data/kdd_cup_trainingdata

86854 samples with 38 attributes

Data set: 86854 samples, 38 attributes

Node 0 depth=0 size=86854 N(Y=0)=83225 N(Y=1)=3629 entropy=0.250407
            ...trying attribute 5
      split node 0 with question X[4]<=18 (entropy improvement=0.136283) to create nodes 1 and 2 lode 1 depth=1 size=9133 N(Y=0)=5606 N(Y=1)=3527 entropy=0.962291
Node 1 depth=1 size=9133 N(Y=e)=5606 N(Y=1)=3527 entropy=0.962291

split node 1 with question X[2]<=5 (entropy improvement=0.868361) to create nodes 3 and 4

Node 3 depth=2 size=5522 N(Y=e)=5508 N(Y=1)=19 entropy=0.0331116

split node 3 with question X[31]<=0.14 (entropy improvement=0.0157501) to create nodes 5 and 6

Node 5 depth=3 size=5404 N(Y=e)=5402 N(Y=1)=2 entropy=0.00475285

split node 5 with question X[25]<=0.18 (entropy improvement=0.00424306) to create nodes 7 and 8

Node 7 depth=4 size=3 N(Y=0)=1 N(Y=1)=2 entropy=0.918296

Node 8 depth=4 size=5401 N(Y=e)=5401 N(Y=1)=0 entropy=0

Node 6 depth=3 size=118 N(Y=e)=101 N(Y=1)=17 entropy=0.594794

split node 6 with question X[36]<=0.05 (entropy improvement=0.333859) to create nodes 9 and 10

Node 9 depth=4 size=87 N(Y=e)=87 N(Y=1)=0 entropy=0

Node 10 depth=4 size=31 N(Y=e)=14 N(Y=1)=17 entropy=0.993234

Node 4 depth=2 size=3611 N(Y=e)=103 N(Y=1)=3508 entropy=0.186935

split node 4 with question X[2]<=12 (entropy improvement=0.0976333) to create nodes 11 and 12

Node 11 depth=3 size=3419 N(Y=e)=14 N(Y=1)=3405 entropy=0.0383751

split node 11 with question X[31]<=0.02 (entropy improvement=0.006979) to create nodes 13 and 14

Node 13 depth=4 size=1054 N(Y=e)=14 N(Y=1)=1040 entropy=0.101844

Node 14 depth=3 size=1054 N(Y=e)=89 N(Y=1)=1040 entropy=0.901614

Split node 12 with question X[24]<=0 (entropy improvement=0.317888) to create nodes 15 and 16

Node 15 depth=4 size=129 N(Y=e)=87 N(Y=1)=103 entropy=0.9010348

Node 16 depth=4 size=63 N(Y=e)=87 N(Y=1)=104 entropy=0.910348

Node 2 depth=3 size=77721 N(Y=e)=77619 N(Y=1)=102 entropy=0.0144564

trying attribute 5
   Node 2 depth=1 size=77721 N(Y=0)=77619 N(Y=1)=102 entropy=0.0144564
          ...trying attribute 5
     split node 2 with question X[8]<=0 (entropy improvement=0.00581168) to create nodes 17 and 18 Node 17 depth=2 size=77180 N(Y=0)=77152 N(Y=1)=28 entropy=0.00466949
          ...trying attribute 5
     split node 17 with question X[29] \le 48 (entropy improvement=0.000904318) to create nodes 19 and 20 Node 19 depth=3 size=9201 N(Y=0)=9175 N(Y=1)=26 entropy=0.0279973
       split node 19 with question X[28]<=6 (entropy improvement=0.00380336) to create nodes 21 and 22
   Node 21 depth=4 size=289 N(Y=0)=277 N(Y=1)=12 entropy=0.24923
Node 22 depth=4 size=8912 N(Y=0)=8898 N(Y=1)=14 entropy=0.0168964
    Node 20 depth=3 size=67979 N(Y=0)=67977 N(Y=1)=2 entropy=0.000485345
   ...trying attribute 20
split node 20 with question X[29]<=128 (entropy improvement=0.000101804) to create nodes 23 and 24
Node 23 depth=4 size=6182 N(Y=0)=6180 N(Y=1)=2 entropy=0.00421753
Node 24 depth=4 size=61797 N(Y=0)=61797 N(Y=1)=0 entropy=0
Node 24 depth=4 size=61797 N(Y=0)=61797 N(Y=1)=0 entropy=0
Node 18 depth=2 size=541 N(Y=0)=467 N(Y=1)=74 entropy=0.575753
split node 18 with question X[4]<=126 (entropy improvement=0.30717) to create nodes 25 and 26
Node 25 depth=3 size=51 N(Y=0)=1 N(Y=1)=50 entropy=0.139233
split node 25 with question X[6]<=192 (entropy improvement=0.139233) to create nodes 27 and 28
Node 27 depth=4 size=50 N(Y=0)=0 N(Y=1)=50 entropy=0
Node 28 depth=4 size=1 N(Y=0)=1 N(Y=1)=0 entropy=0
Node 26 depth=3 size=490 N(Y=0)=466 N(Y=1)=24 entropy=0.282046
split node 26 with question X[11]<=0 (entropy improvement=0.146722) to create nodes 29 and 30
Node 29 depth=4 size=456 N(Y=0)=452 N(Y=1)=4 entropy=0.0725372
Node 30 depth=4 size=34 N(Y=0)=14 N(Y=1)=20 entropy=0.977418
The complete tree has 31 nodes (non-splitting nodes are included)
Tree (31 nodes) saved in: ../../data/kdd_cup_tree
Finished, press Enter to exit.
```

- on level 0 we have node 0: question is if X[4] is less than the 18 threshold
- on level 1 we have node 1 and node 2:
 - node 1: the chosen question is X[2] < 5 (threshold)
 - node 2 : holds 77721 of the input data, needs to be split once more. So splits with question x[8] < 0 (threshold is zero)
- Comments on the tree created for the complete training set. (which attributes are the most significant in determining a normal network connection, etc...)

For the training data file (traning completed in 5 minutes)

The final tree has 31 nodes. The attributes used for the splitting are X[4], X[2], X[31], X[25], X[36], X[31], X[24], X[8], X[28], X[29], X[0] and X[11]. As can be seen we can choose many different attributes to split the dataset on different levels of the decision tree. The threshold we use to compare the attributes are also different on each level, sometimes zero sometimes even reachs up to 192.

Tree file generated:

```
1 0 0 4 18 0 1 2
2 1 1 2 5 0 3 4
3 2 1 8 0 0 17 18
   3 2 31 0.14 0 5 6
   4 2 2 12 1 11 12
6 5 3 25 0.18 0 7 8
   6 3 36 0.05 0 9 10
8
  7 4 -1 0 1
9 8 4 -1 0 0
10 9 4 -1 0 0
11 10 4 -1 0 1
12 11 3 31 0.02 1 13 14
13 12 3 24 0 1 15 16
14 13 4 -1 0 1
15
   14 4 -1 0 1
16
   15 4 -1 0 0
   16 4 -1 0 1
18 17 2 29 48 0 19 20
19 18 2 4 126 0 25 26
20 19 3 28 6 0 21 22
21 20 3 29 128 0 23 24
22 21 4 -1 0 0
23 22 4 -1 0 0
24 23 4 -1 0 0
25 24 4 -1 0 0
26 25 3 0 192 1 27 28
   26 3 11 0 0 29 30
   27 4 -1 0 1
29 28 4 -1 0 0
30 29 4 -1 0 0
31 30 4 -1 0 1
```

Part 2: Evaluation of the classification

Tree file is created using the training data file. So for this part I will try to predict another dataset.

• Predicting the kdd_cup_testdata

9602 / 10000 Success, 392 instruction missed.

Node	Entropy	error
0	0,00508331	0,0398
1	0,0418891	0,37069
2	0,000792863	0,00122823
3	0,0167006	0,00155521
4	0,0822787	0,37069
5	0,0170452	0,0015873
6	0	0
7	0	1
8	0,0170723	0,00158983
9	0	0
10	0	1
11	0,0391977	0,00533333
12	0,703639	0,5
13	0,12148	0,0165289
14	0	0
15	0,749595	0,214286
16	0,650022	0,166667
17	0	0
18	0,116408	0,180328
19	0	0
20	0	0
21	0	0
22	0	0
23	0	0
24	0	0
25	0	0
26	0,131498	0,0740741
27	0	0
28	0	0
29	0,139233	0,0196078
30	0	0

Test data: 10000 samples, 398 errors							
9602	9602 ok						
0 intrusions correctly detected							
398 i	398 intrusions missed						
0 false alarms							
node	entropy	error r	ate	nb of	errors		
7	0	1	1				
8	0.01707	23	0.001589	983	1		
5	0.01704	52	0.00158	73	1		
9	0	0	0				
10	0	1	2				
6	0	0	0				
3	0.01670	36	0.00155	521	1		
13	0.12148	0.01652	89	2			
14	0		0				
11	0.03919		0.00533	333	2		
15	0.74959		0.21428	5	3		
16	0.65002		0.16666		2		
12	0.703639		0.5				
4	0.08227		0.03740		15		
1	0.041889		0.37069	387			
21	0	0	0				
22	0	0	0				
19	0	0	0				
23	0	0	0				
24	0	0	0				
20	0	0	0				
17	0	0	0				
27	0	0	0				
28	0	0	0				
25	0	0	0	70	4		
29	0.13923		0.01960	/8	1		
30	0 43440		0 07407	4.4	4		
26	0.13149		0.074074		4		
18	0.11640		0.18032		11		
2 0	0.00079		0.00122		11		
0	0.00508	331	0.0398	398			

• Predicting the trainingdata Let us try to predict the dataset that we used to generate our tree just to see what will happen.

83225 / 86854 Success, 3629 instruction missed.

Node	Entropy	Error
0	0,00674819	0,0417828
1	0,0296854	0,386182
2	0,00405283	0,00131239
3	0,00607482	0,00344078
4	0,0657911	0,028524
5	0,000509787	0,000370096
6	0,260934	0,144068
7	0,918296	0,333333
8	0	0
9	0	0
10	0,993234	0,451613
11	0,0313961	0,00409476
12	0,678274	0,463542
13	0,101844	0,0132827
14	0	0
15	0,910348	0,325581
16	0,203074	0,031746
17	0,00322209	0,000362788
18	0,122568	0,136784
19	0,0241939	0,00282578
20	0,000383541	0
21	0,24923	0,0415225
22	0,0168964	0,00157092
23	0,00421753	0,00032352
24	0	0
25	0	0,0196078
26	0,135325	0,0489796
27	0	0
28	0	0
29	0,0725372	0,00877193
30	0,977418	0,411765

	ta: 86854 sample	s, 3629 errors	
83225	ok		
	rusions correctl		
3629	intrusions misse	ed	
	se alarms		
node	entropy error r	ate nb of e	rrors
7 8 5	0.918296	0.333333	1
8	0 0	0	
5		0.000370096	2
9	0 0		
10		0.451613	
		0.144068	
		0.00344078	
13	0.101844	0.0132827	14
14	0 0	0	
		0.00409476	14
15	0.910348	0.325581	42
16	0.203074	0.031746	2
12	0.678274	0.463542	
4	0.0657911	0.028524	
1	0.0296854	0.386182	3527
	0.24923 0.04152		
22	0.0168964		14
19	0.0241939	0.00282578	26
23	a aa/21752	0.00032352	2
24	0 0 0.000383541	0	
20	0.000383541	2.94209e-05	2
17	0.00322209	0.000362788	28
27	0 0	0	
28	0 0		
25	0 0.01960	78 1	
29	0.0725372		4
30	0.977418		14
26	0.135325	0.0489796	24
18	0.122568	0.136784	74
2 0	0.00405283	0.00131239	102
0	0.00674819	0.0417828	3629

When we are using our decision tree to predict a dataset, our success relies on our threshold. If we use a very high threshold our decisions will not be correct and it will result in a terrible predictions with very wrong classification. Similarly, if we use a very low threshold then we will over fit the dataset and we will never give correct decisions because even a small error will result in a rejection on our decision algorithm. There is no such thing as the best threshold unless we 100% know what the dataset is, which is impossible since as it is named this is a "prediction". Therefore, we need to try our best to define a threshold that will give us the best solution in overall.

Please notice that even the tree file we generated on the trainingset gave better result on another dataset (%96) but now on its own data that generated it (%95) and the reason is because we over fit the values on the trainingset, resulting in rejection of most on the attributes to be decided as success.