

Tercer taller de refuerzo Derivadas Parciales

Cálculo III-20254 Fecha: Marzo 2025

Nombre: Grupo: Grupo:

1. Sea la función, $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- a. Determine $\frac{\partial f}{\partial x}(x,y)$, $\frac{\partial f}{\partial y}(x,y)$, para todo $(x,y) \neq (0,0)$.
- b. Determine $\frac{\partial f}{\partial x}(0,0)$, $\frac{\partial f}{\partial y}(0,0)$. Haga la gráfica de la función f(x,y) en Geogebra.
- 2. Considere la función $f(x,y) = (x^2 + y^2)^{\frac{2}{3}}$. Haga la gráfica de la función en Geogebra y muestre que:

$$f_x(x,y) = \begin{cases} \frac{4x}{3(x^2 + y^2)^{\frac{1}{3}}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 3. Calcular las derivadas parciales mixtas $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ y $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ sobre el conjunto $\{(x,y): x>0,y<0\}$, de la función $f(x,y)=x\sqrt{y}+y\sqrt{x}$. Realice la gráfica usando Geogebra.
- 4. Sea $u: \mathbb{R}^2 \to \mathbb{R}$ definida por $u(x,y) = \sin(x^2 + y^2)$ para $(x,y) \in \mathbb{R}^2$. Calcular $\frac{\partial u}{\partial x}(x,y)$ y $\frac{\partial u}{\partial y}(x,y)$. Además, dibujar la función usando Geogebra.
- 5. Encontrar las cuatro derivadas parciales de segundo orden de la función $f(x,y) = \sin(x-2y)$ y graficar en Geogebra.Luego, muestre que $f_{xy}(x,y) = f_{yx}(x,y)$ para todo $(x,y) \in \mathbb{R}^2$.
- 6. Sea $f(x,y) = x+y^3$, determinar la pendiente de la recta tangente a la curva intersección de la gráfica del campo escalar f y los planos; (a), x = 1; (b), y = 1, en el punto P = (1,1,2). Haga un dibujo en Geogebra.
- 7. Para una caja de dimesiones x (profundidad), y (ancho) y z (alto), hallar la razón de cambio del volumen de la caja respecto a y, si x=2; y=3; z=4.