Practice Problems 19

1. Let $X_1, X_2, ..., X_n$ be a random sample of size n from the distribution with probability density function

$$f_{\mathbf{X}}(x) = f_{\mathbf{X}}(x;\theta) = (\theta - 1)^2 \cdot \frac{\ln x}{x^{\theta}}, \qquad x > 1, \qquad \theta > 1.$$

Recall: If $\theta > 2$, the method of moments estimator of θ is $\tilde{\theta} = \frac{2\sqrt{\overline{X}} - 1}{\sqrt{\overline{X}} - 1}$.

The maximum likelihood estimator of θ is $\hat{\theta} = 1 + \frac{2n}{\sum_{i=1}^{n} \ln X_i}$.

Y = $\sum_{i=1}^{n} \ln X_i$ has Gamma ($\alpha = 2n$, "usual θ " = $\frac{1}{\theta - 1}$) distribution.

- a) Is $\hat{\theta}$ a consistent estimator for θ ?
- b) Show that $\hat{\theta}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.
- c) Suppose $\theta > 3$. Is $\tilde{\theta}$ a consistent estimator for θ ?
- d) Suppose $\theta > 3$. Show that $\tilde{\theta}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.
- e) Suggest a $(1-\alpha)$ 100 % confidence interval for θ based on $\sum_{i=1}^{n} \ln X_i$.
- f) Suppose n = 5, and $x_1 = 5$, $x_2 = 1.2$, $x_3 = 2$, $x_4 = 12$, $x_5 = 1.5$.

Construct a 95% confidence interval for θ .

g) Find the sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .

- h) Determine the Fisher information $I(\theta)$.
- i) Recall: $\hat{\theta} = 1 + \frac{2n-1}{\sum_{i=1}^{n} \ln X_i}$ is an unbiased estimator for θ .

Is $\hat{\hat{\theta}}$ an efficient estimator of θ ? If $\hat{\hat{\theta}}$ is not an efficient estimator of θ , find its efficiency.

2. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f(x) = 4 \theta x^3 e^{-\theta x^4}$$
 $x > 0$ $\theta > 0$.

Recall: $Y = \sum_{i=1}^{n} X_i^4$ has Gamma ($\alpha = n$, "usual θ " = $\frac{1}{\theta}$) distribution.

- a) Suggest a confidence interval for θ with $(1-\alpha)100\%$ confidence level.
- b) Find the sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .
- **3.** Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability mass function

$$P(X_i = 1) = \frac{\theta}{3+\theta}, \quad P(X_i = 2) = \frac{2}{3+\theta}, \quad P(X_i = 3) = \frac{1}{3+\theta}, \quad \theta > 0$$

- a) Find a sufficient statistic for θ .
- b) Obtain the method of moments estimator $\tilde{\theta}$ of θ .
- c) Obtain the maximum likelihood estimator $\hat{\theta}$ of θ .

4. Let $X_1, X_2, ..., X_n, ...$ be independent random variables, each with the probability density function

$$f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

For each of the following sequences, state whether the sequence convergences in probability or/and in distribution, and identify the limits (limiting distributions).

a)
$$\overline{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$$
;

b)
$$T_n = \frac{1}{n} \left(X_1^2 + X_2^2 + ... + X_n^2 \right);$$

c)
$$U_n = \sqrt{n} \left(\overline{X}_n - \frac{1}{3} \right);$$

d)
$$V_n = n \left(\overline{X}_n - \frac{1}{3} \right)^2$$
;

e)
$$W_n = \sqrt{n} \left(\overline{X}_n^2 - \frac{1}{9} \right).$$

Answers:

1. Let $X_1, X_2, ..., X_n$ be a random sample of size n from the distribution with probability density function

$$f_{\mathbf{X}}(x) = f_{\mathbf{X}}(x;\theta) = (\theta - 1)^2 \cdot \frac{\ln x}{x^{\theta}}, \qquad x > 1, \qquad \theta > 1.$$

Recall: If $\theta > 2$, the method of moments estimator of θ is $\tilde{\theta} = \frac{2\sqrt{\overline{X}} - 1}{\sqrt{\overline{X}} - 1}$.

The maximum likelihood estimator of θ is $\hat{\theta} = 1 + \frac{2n}{\sum_{i=1}^{n} \ln X_i}$.

Y = $\sum_{i=1}^{n} \ln X_i$ has Gamma ($\alpha = 2n$, "usual θ " = $\frac{1}{\theta - 1}$) distribution.

a) Is $\hat{\theta}$ a consistent estimator for θ ?

By WLLN, $\frac{1}{n} \sum_{i=1}^{n} \ln X_i \xrightarrow{P} E(\ln X) = \frac{2}{(\theta - 1)}$.

 $g(x) = 1 + \frac{2}{x}$ is continuous at $\frac{2}{(\theta - 1)}$.

 $g(\frac{1}{n}\sum_{i=1}^{n}\ln X_i) = \hat{\theta}.$ $g(\frac{2}{(\theta-1)}) = \theta.$ $\Rightarrow \hat{\theta} \stackrel{P}{\rightarrow} \theta.$

b) Show that $\hat{\theta}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.

$$\operatorname{Var}(\ln X) = \frac{2}{(\theta - 1)^2}.$$

By CLT,
$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\ln X_{i} - \frac{2}{(\theta-1)}\right) \xrightarrow{D} N(0, \frac{2}{(\theta-1)^{2}}).$$

$$g(x) = 1 + \frac{2}{x}. \qquad g'(x) = -\frac{2}{x^{2}}.$$

$$g(\frac{1}{n}\sum_{i=1}^{n}\ln X_{i}) = \hat{\theta}. \qquad g(\frac{2}{(\theta-1)}) = \theta. \qquad g'(\frac{2}{(\theta-1)}) = -\frac{(\theta-1)^{2}}{2}.$$

$$\sqrt{n}\left(g\left(\frac{1}{n}\sum_{i=1}^{n}\ln X_{i}\right) - g\left(\frac{2}{(\theta-1)}\right)\right) = \sqrt{n}\left(\tilde{\theta}-\theta\right) \xrightarrow{D} N(0, \frac{(\theta-1)^{2}}{2}).$$
 For large n , $\tilde{\theta} \sim N(\theta, \frac{(\theta-1)^{2}}{2n}).$

c) Suppose $\theta > 3$. Is $\tilde{\theta}$ a consistent estimator for θ ?

By WLLN,
$$\overline{X} \stackrel{P}{\to} \mu = E(X) = \frac{(\theta - 1)^2}{(\theta - 2)^2}$$
.
 $g(x) = \frac{2\sqrt{x} - 1}{\sqrt{x} - 1}$ is continuous at $\frac{(\theta - 1)^2}{(\theta - 2)^2}$.
 $g(\overline{X}) = \tilde{\theta}$. $g(\frac{(\theta - 1)^2}{(\theta - 2)^2}) = \theta$. $\Rightarrow \tilde{\theta} \stackrel{P}{\to} \theta$.

d) Suppose $\theta > 3$. Show that $\tilde{\theta}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.

By CLT,
$$\sqrt{n} \left(\overline{X} - \mu \right) \stackrel{D}{\to} N(0, \sigma^2).$$

$$\sigma^2 = \frac{(\theta - 1)^2}{(\theta - 3)^2} - \left[\frac{(\theta - 1)^2}{(\theta - 2)^2} \right]^2 = \frac{(\theta - 1)^2 \left(2\theta^2 - 8\theta + 7 \right)}{(\theta - 2)^4 (\theta - 3)^2}.$$

$$g(x) = \frac{2\sqrt{x} - 1}{\sqrt{x} - 1}.$$

$$g'(x) = \frac{1}{2\sqrt{x}\left(\sqrt{x} - 1\right)^{2}}.$$

$$g(\overline{X}) = \widetilde{\theta}$$

$$g(\frac{(\theta - 1)^{2}}{(\theta - 2)^{2}}) = \theta.$$

$$g'(\frac{(\theta - 1)^{2}}{(\theta - 2)^{2}}) = \frac{(\theta - 2)^{3}}{2(\theta - 1)}.$$

$$\sqrt{n}\left(g(\overline{X}) - g(\mu)\right) = \sqrt{n}\left(\widetilde{\theta} - \theta\right) \xrightarrow{D} N(0, \frac{(\theta - 2)^{2}\left(2\theta^{2} - 8\theta + 7\right)}{4(\theta - 3)^{2}}).$$
For large n , $\widetilde{\theta} \sim N(\theta, \frac{(\theta - 2)^{2}\left(2\theta^{2} - 8\theta + 7\right)}{4n(\theta - 3)^{2}}).$

e) Suggest a $(1-\alpha)$ 100 % confidence interval for θ based on $\sum_{i=1}^{n} \ln X_i$.

$$\sum_{i=1}^{n} \ln X_{i} \text{ has Gamma} (\alpha = 2 n, \text{``usual } \theta\text{'`'} = \frac{1}{\theta - 1}) \text{ distribution}.$$

Then $2(\theta-1)\sum_{i=1}^{n} \ln X_i$ has a $\chi^2(2\alpha=4n)$ distribution.

$$\Rightarrow P(\chi_{1-\alpha/2}^{2}(4n) < 2(\theta-1)\sum_{i=1}^{n}\ln X_{i} < \chi_{\alpha/2}^{2}(4n)) = 1-\alpha.$$

$$\Rightarrow P\left(1 + \frac{\chi_{1-\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln X_{i}} < \theta < 1 + \frac{\chi_{\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln X_{i}}\right) = 1 - \alpha.$$

A $(1-\alpha)$ 100 % confidence interval for θ

$$\left(1 + \frac{\chi_{1-\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln x_{i}}, 1 + \frac{\chi_{\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln x_{i}}\right).$$

f) Suppose n = 5, and

$$x_1 = 5$$
, $x_2 = 1.2$, $x_3 = 2$, $x_4 = 12$, $x_5 = 1.5$.

Construct a 95% confidence interval for θ .

$$\sum_{i=1}^{5} \ln x_i = \ln 216 \approx 5.3753. \qquad \chi_{0.975}^2(20) = 9.591. \qquad \chi_{0.025}^2(20) = 34.17.$$

A $(1-\alpha)$ 100 % confidence interval for θ

$$\left(1 + \frac{\chi_{1-\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n} \ln x_{i}}, 1 + \frac{\chi_{\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n} \ln x_{i}}\right) = \left(1 + \frac{9.591}{2 \cdot 5.3753}, 1 + \frac{34.17}{2 \cdot 5.3753}\right)$$

$$= \left(1.89, 4.18\right)$$

g) Find the sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .

$$\begin{split} f(x_1;\theta) \ f(x_2;\theta) \ \dots \ f(x_n;\theta) &= \ \prod_{i=1}^n \big(\theta - 1\big)^2 \cdot \frac{\ln x_i}{x_i^{\theta}} \\ &= \ \big(\theta - 1\big)^{2n} \cdot \left(\prod_{i=1}^n x_i\right)^{-\theta} \cdot \prod_{i=1}^n \ln x_i \,. \end{split}$$

$$\Rightarrow$$
 Y₁ = $\prod_{i=1}^{n}$ X_i is a sufficient statistic for θ.

$$\Rightarrow$$
 Y₂ = ln $\prod_{i=1}^{n}$ X_i = $\sum_{i=1}^{n}$ ln X_i is also a sufficient statistic for θ.

OR

$$f_{X}(x;\theta) = (\theta - 1)^{2} \cdot \frac{\ln x}{x^{\theta}} = \exp\{-\theta \ln x + \ln \ln x + 2\ln(\theta - 1)\}$$

$$\Rightarrow$$
 K(x) = ln x.

$$\Rightarrow$$
 Y₂ = $\sum_{i=1}^{n} \ln X_i$ is a sufficient statistic for θ.

$$\Rightarrow$$
 Y₁ = $e^{Y_2} = \prod_{i=1}^n X_i$ is also a sufficient statistic for θ.

h) Determine the Fisher information $I(\theta)$.

$$\ln f(x;\theta) = 2 \cdot \ln(\theta - 1) + \ln \ln x - \theta \cdot \ln x$$

$$\frac{\partial}{\partial \theta} \ln f(x; \theta) = \frac{2}{\theta - 1} - \ln x$$

$$\frac{\partial^2}{\partial \theta^2} \ln f(x; \theta) = -\frac{2}{(\theta - 1)^2}$$

$$I(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2} \ln f(X; \theta)\right] = \frac{2}{(\theta - 1)^2}$$

i) Recall:
$$\hat{\theta} = 1 + \frac{2n-1}{n - 1}$$
 is an unbiased estimator for θ .

Is $\hat{\hat{\theta}}$ an efficient estimator of θ ? If $\hat{\hat{\theta}}$ is not an efficient estimator of θ , find its efficiency.

Recall:
$$\operatorname{Var}(\hat{\theta}) = \frac{(2n-1)^2}{(2n)^2} \operatorname{Var}(\hat{\theta}) = \frac{(\theta-1)^2}{(2n-2)}.$$

Rao-Cramer lower bound =
$$\frac{1}{n \cdot I(\theta)} = \frac{(\theta - 1)^2}{2n}$$
.

 \Rightarrow $\hat{\theta}$ is NOT an efficient estimator of θ ,

its efficiency =
$$\frac{2n-2}{2n} = \frac{n-1}{n} \to 1$$
 as $n \to \infty$.

2. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f(x) = 4 \theta x^3 e^{-\theta x^4}$$
 $x > 0$ $\theta > 0$.

Recall:
$$Y = \sum_{i=1}^{n} X_i^4$$
 has Gamma ($\alpha = n$, "usual θ " = $\frac{1}{\theta}$) distribution.

a) Suggest a confidence interval for θ with $(1 - \alpha) 100 \%$ confidence level.

2
Y/"usual θ " = $2\theta \sum_{i=1}^{n} X_{i}^{4}$ has a chi-square distribution with $r = 2\alpha = 2n$ d.f.

$$\Rightarrow P(\chi_{1-\alpha/2}^{2}(2n) < 2\theta \sum_{i=1}^{n} X_{i}^{4} < \chi_{\alpha/2}^{2}(2n)) = 1-\alpha.$$

$$\Rightarrow P\left(\frac{\chi_{1-\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}X_{i}^{4}} < \theta < \frac{\chi_{\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}X_{i}^{4}}\right) = 1 - \alpha.$$

A
$$(1-\alpha)$$
 100 % confidence interval for θ :
$$\left| \frac{\chi_{1-\alpha/2}^2(2n)}{2\sum_{i=1}^n \chi_i^4}, \frac{\chi_{\alpha/2}^2(2n)}{2\sum_{i=1}^n \chi_i^4} \right|.$$

b) Find the sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .

$$f(x_1, x_2, \dots x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$
$$= \left[4^n \theta^n e^{-\theta \sum_{i=1}^n x_i^4} \right] \left(\prod_{i=1}^n x_i^3 \right).$$

By Factorization Theorem, $Y = \sum_{i=1}^{n} X_i^4$ is a sufficient statistic for θ .

OR

$$f(x;\theta) = \exp\{-\theta \cdot x^4 + \ln\theta + \ln4 + 3\ln x\}.$$

$$\Rightarrow$$
 K(x)= x^4 .

$$\Rightarrow$$
 Y = $\sum_{i=1}^{n}$ K(X_i) = $\sum_{i=1}^{n}$ X $_{i}^{4}$ is a sufficient statistic for θ.

5. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability mass function

$$P(X_i = 1) = \frac{\theta}{3+\theta}, \quad P(X_i = 2) = \frac{2}{3+\theta}, \quad P(X_i = 3) = \frac{1}{3+\theta}, \quad \theta > 0.$$

a) Find a sufficient statistic for θ .

$$f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta) = \frac{1}{(3+\theta)^n} \cdot \theta^{(\# \text{of 1's})} \cdot 2^{(\# \text{of 2's})} \cdot 1^{(\# \text{of 3's})}.$$

- \Rightarrow Y = (# of 1's) is a sufficient statistic for θ .
- b) Obtain the method of moments estimator θ of θ .

$$E(X) = 1 \times \frac{\theta}{3+\theta} + 2 \times \frac{2}{3+\theta} + 3 \times \frac{1}{3+\theta} = \frac{\theta+7}{3+\theta}.$$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} x_i = \overline{x} = \frac{\widetilde{\theta} + 7}{3 + \widetilde{\theta}}.$$
 $3\overline{x} + \widetilde{\theta} \overline{x} = \widetilde{\theta} + 7.$

$$\Rightarrow \qquad \widetilde{\theta} = \frac{7 - 3x}{x - 1}.$$

c) Obtain the maximum likelihood estimator $\hat{\theta}$ of θ .

$$L(\theta) = \frac{1}{(3+\theta)^n} \cdot \theta^{(\# \text{ of 1's})} \cdot 2^{(\# \text{ of 2's})} \cdot 1^{(\# \text{ of 3's})}.$$

$$\ln L(\theta) = -n \ln(3+\theta) + (\# \text{ of 1's}) \ln(\theta) + (\# \text{ of 2's}) \ln(2) + (\# \text{ of 3's}) \ln(1).$$

$$(\ln L(\theta))' = -\frac{n}{3+\theta} + \frac{(\# \text{ of 1's})}{\theta} = 0 \qquad \Rightarrow \qquad \hat{\theta} = \frac{3 \cdot (\# \text{ of 1's})}{n - (\# \text{ of 1's})}.$$

4. Let $X_1, X_2, ..., X_n, ...$ be independent random variables, each with the probability density function

$$f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

For each of the following sequences, state whether the sequence convergences in probability or/and in distribution, and identify the limits (limiting distributions).

a)
$$\overline{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$$
;

$$\overline{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i;$$

By WLLN,
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu = E(X) = \frac{1}{3}$$
.

b)
$$T_n = \frac{1}{n} (X_1^2 + X_2^2 + ... + X_n^2);$$

$$T_n = \frac{1}{n} \left(X_1^2 + X_2^2 + ... + X_n^2 \right);$$

By WLLN,
$$T_n = \frac{1}{n} \left(X_1^2 + X_2^2 + ... + X_n^2 \right) \xrightarrow{P} E(X^2) = \frac{1}{6}$$
.

c)
$$U_n = \sqrt{n} \left(\overline{X}_n - \frac{1}{3} \right);$$

$$\mathbf{U}_n = \sqrt{n} \left(\overline{\mathbf{X}}_n - \frac{1}{3} \right);$$

By CLT,
$$U_n = \sqrt{n} \left(\overline{X}_n - \frac{1}{3} \right) \xrightarrow{D} N(0, \sigma^2) = N(0, \frac{1}{18}).$$

d)
$$V_n = n \left(\overline{X}_n - \frac{1}{3} \right)^2$$
;

$$V_n = n \left(\overline{X}_n - \frac{1}{3} \right)^2;$$

From part (c),
$$\sqrt{n} \left(\overline{X}_n - \frac{1}{3} \right) \xrightarrow{D} \frac{1}{\sqrt{18}} N(0, 1).$$

Since $g(x) = x^2$ is continuous,

$$g\left(\sqrt{n}\left(\overline{X}_n-\frac{1}{3}\right)\right)=n\left(\overline{X}_n-\frac{1}{3}\right)^2\xrightarrow{D}\left[\frac{1}{\sqrt{18}}N(0,1)\right]^2=\frac{1}{18}\chi^2(1).$$

e)
$$W_n = \sqrt{n} \left(\overline{X}_n^2 - \frac{1}{9} \right)$$
.

$$W_n = \sqrt{n} \left(\overline{X}_n^2 - \frac{1}{9} \right).$$

From part (c),
$$\sqrt{n} \left(\overline{X}_n - \frac{1}{3} \right) \xrightarrow{D} N(0, \frac{1}{18}).$$

Since $g(x) = x^2$ is differentiable and $g'(\frac{1}{3}) = \frac{2}{3} \neq 0$,

$$\sqrt{n}\left(g\left(\overline{X}_n\right)-g\left(\frac{1}{3}\right)\right)=\sqrt{n}\left(\overline{X}_n^2-\frac{1}{9}\right)\stackrel{D}{\to}N(0,\left(\frac{2}{3}\right)^2\times\frac{1}{18})=N(0,\frac{2}{81}).$$