# capstone project [part4]

updates

### OUTLINE

- PROBLEM STATEMENT
- DATA SCRAPING
- CLEANING & PREPROCESSING
- EXPLORATORY ANALYSIS
- MODELLING
- RESULTS VISUALIZATION

# PROBLEM STATEMENT

**Car-Buying** Decision-Making **Problem**:

|                 | Toyota Corolla | Toyota Corolla | Toyota Corolla | Toyota Corolla |
|-----------------|----------------|----------------|----------------|----------------|
|                 |                |                |                |                |
| Price (1000 \$) | 13.9           | 6.5            | 15.99          | 16.99          |
| Year            | 2010           | 2006           | 2014           | 2015           |
| Odometer        | 125,629        | 190,000        | 28,855         | 32,532         |

#### DATA SCRAPING

Scraping data from <a href="https://www.carsales.com.au">www.carsales.com.au</a>

Car make - Toyota Corolla





# DATA CLEANING & PREPROCESSING

#### Original data was quite messy

|   | fuel_efficiency      | location | make                                                 | price                                                                                              | vechile features                   |
|---|----------------------|----------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------|
| 0 | 11L/100km or<br>less | NaN      | 2016<br>Toyota<br>Corolla<br>Ascent<br>Sport<br>Auto | \$24,440 \$24,440 \$24,440 \$24,440 \$24,440 \$24,440 \$24,440 \$24,440 \$24,440 \$24,440 \$24,440 | Body\r\nHatch\r\n\r\n\r\nTransmiss |

After cleaning Final Data set was 3397

#### GENETIC ALGORITHMS

In computer science and operations research, a **genetic algorithm** (**GA**) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to **generate high-quality solutions to optimization and search problems** by relying on bio-inspired operators such as mutation, crossover and selection. [WIKI]

- A genetic algorithm is a search heuristic that mimics the process of natural evolution.
- There are five phases
  - Initial Population
  - Fitness Function
  - Selection
  - Crossover
  - Mutation
- The primary advantage of GA's comes from the crossover operation.

## **GENETIC ALGORITHMS**



# NSGA-II. PyBRAIN library

Non-dominated Sorting Genetic Algorithm-II (NSGA-II)





# Solutions A and B are non-dominated solutions.

**Definition 3.1** A solution  $\mathbf{x}^{(1)}$  is said to dominate the other solution  $\mathbf{x}^{(2)}$ , if both the following conditions are true:

- The solution x<sup>(1)</sup> is no worse than x<sup>(2)</sup> in all objectives. Thus, the solutions are compared based on their objective function values (or location of the corresponding points (z<sup>(1)</sup> and z<sup>(2)</sup>) on the objective space).
- 2. The solution x<sup>(1)</sup> is strictly better than x<sup>(2)</sup> in at least one objective.

For a given set of solutions (or corresponding points on the objective space, for example, those shown in Figure 5(a)), a pair-wise comparison can be made using the above definition and whether one point dominates the other can be established. All points which are not dominated by any other member of the



Figure 5: A set of points and the first non-domination front are shown.



# 2D PLOT



#### LIBRARIES USED

- DATA SCRAPING: BeautifulSoup, urllib2
- CLEANING & PREPROCESSING: Regular Expressions, Numpy, Pandas
- EXPLORATORY ANALYSIS: Matplotlib, SKlearn
- MODELLING: NSGA-II
- RESULTS VISUALIZATION: Basemap, Matplotlib, Plotly

# REFERENCES

1. Kalyanmoy Deb (23 March 2009). *Multi-Objective Optimization Using Evolutionary Algorithms*. John Wiley & Sons. ISBN 978-0-470-74361-4. Retrieved 1 November 2012.

2.

# DATA changes

| SCRAPING AGAIN |  |
|----------------|--|
|                |  |
|                |  |
| CLEANING AGAIN |  |
|                |  |

#### clean data set with 3397 cars

|       | fuel_efficiency | price        | year        | odometer      | Number of cylinders | capacity    |
|-------|-----------------|--------------|-------------|---------------|---------------------|-------------|
| count | 3397.0          | 3397.000000  | 3397.000000 | 3397.000000   | 3397.0              | 3397.000000 |
| mean  | 11.0            | 12712.374154 | 2009.443921 | 93639.964086  | 4.0                 | 1.793318    |
| std   | 0.0             | 6325.436554  | 5.203926    | 69126.368582  | 0.0                 | 0.037195    |
| min   | 11.0            | 400.000000   | 1984.000000 | 1.000000      | 4.0                 | 1.300000    |
| 25%   | 11.0            | 7990.000000  | 2007.000000 | 41500.000000  | 4.0                 | 1.800000    |
| 50%   | 11.0            | 12888.000000 | 2011.000000 | 76801.000000  | 4.0                 | 1.800000    |
| 75%   | 11.0            | 16990.000000 | 2014.000000 | 133600.000000 | 4.0                 | 1.800000    |
| max   | 11.0            | 35449.000000 | 2016.000000 | 785500.000000 | 4.0                 | 2.000000    |