Formulario I3

Igualdades

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}; \qquad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1;$$

$$\sum_{k=0}^\infty \frac{\lambda^k}{k!} = \exp(\lambda); \qquad \sum_{x=0}^\infty \binom{x+k-1}{k-1} \phi^x = \frac{1}{(1-\phi)^k} \quad \text{si } 0 < \phi < 1 \text{ y } k \in \mathbb{N}$$

Propiedades función $\Gamma(\cdot)$ y $B(\cdot, \cdot)$

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$ (3) $\Gamma(n+1) = n!,$ si $n \in \mathbb{N}_0;$

(4)
$$\Gamma(1/2) = \sqrt{\pi};$$
 (5) $B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$ (6) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

Distribución Gamma

(1) Si
$$T \sim \text{Gamma}(k, \nu)$$
, con $k \in \mathbb{N} \longrightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}$

(2)
$$Gamma(1, \nu) = Exp(\nu)$$
 (3) $Gamma(\eta/2, 1/2) = \chi^{2}(\eta)$

Medidas descriptivas

$$\mu_X = \mathcal{E}(X), \quad \sigma_X^2 = \mathcal{E}\left[(X - \mu_X)^2\right], \quad \delta_X = \frac{\sigma_X}{\mu_X}, \quad \theta_X = \frac{\mathcal{E}\left[(X - \mu_X)^3\right]}{\sigma_X^3}, \quad K_X = \frac{\mathcal{E}\left[(X - \mu_X)^4\right]}{\sigma_X^4} - 3$$

$$M_X(t) = \mathcal{E}\left(e^{tX}\right), \quad \mathcal{E}[g(X)] = \begin{cases} \sum_{x \in \Theta_X} g(x) \cdot p_X(x) \\ \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx \end{cases}, \quad \text{Rango} = \text{máx} - \text{mín}, \quad \text{IQR} = x_{75\%} - x_{25\%}$$

$$x_p: \text{ Percentil } p \times 100\,\% \rightarrow F_X(x_p) = p, \qquad \text{Cov}(X,\,Y) = \text{E}[(X - \mu_X) \cdot (Y - \mu_Y)] \qquad , \qquad \rho = \frac{\text{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

Teorema de Probabilidades Totales

$$p_Y(y) = \sum_{x \in \Theta_X} p_{X,Y}(x,y); \qquad f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dy$$
$$p_X(x) = \int_{-\infty}^{+\infty} p_{X|Y=y}(x) \cdot f_Y(y) \, dy; \qquad f_Y(y) = \sum_{x \in \Theta_X} f_{Y|X=x}(y) \cdot p_X(x)$$

Transformación

Sea Y = g(X) una función cualquiera, con k raíces:

$$f_Y(y) = \sum_{i=1}^k f_X(g_i^{-1}(y)) \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right| \quad \text{o} \quad p_Y(y) = \sum_{i=1}^k p_X(g_i^{-1}(y))$$

Sea Z = g(X, Y) una función cualquiera:

$$p_Z(z) = \sum_{g(x,y)=z} p_{X,Y}(x,y)$$

Sea Z = g(X, Y) una función invertible para X o Y fijo:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy = \int_{-\infty}^{\infty} f_{X,Y}(x, g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Esperanza y Varianza Condicional

$$\mathbf{E}(Y) = \mathbf{E}[\mathbf{E}(Y \,|\, X)] \quad \mathbf{y} \quad \mathrm{Var}(Y) = \mathrm{Var}[\mathbf{E}(Y \,|\, X)] + \mathbf{E}[\mathrm{Var}(Y \,|\, X)]$$

Distribución Normal Bivariada

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right) \left(\frac{y-\mu_Y}{\sigma_Y}\right) \right] \right\}$$

$$Y \mid X = x \sim \text{Normal}\left(\mu_Y + \frac{\rho\sigma_Y}{\sigma_X}\left(x-\mu_X\right), \, \sigma_Y\sqrt{(1-\rho^2)}\right)$$

Teorema del Límite Central

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas, entonces

$$Z_n = \frac{\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n} \, \sigma} = \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \longrightarrow Z \sim \text{Normal}(0, 1),$$

cuando $n \to \infty$, $E(X_i) = \mu$ y $Var(X_i) = \sigma^2$.

Mínimo y Máximo

Sean X_1, \ldots, X_n variables aleatorias continuas independientes con idéntica distribución $(f_X y F_X)$, entonces para:

$$Y_1 = \min\{X_1, \dots, X_n\} \longrightarrow f_{Y_1} = n \left[1 - F_X(y)\right]^{n-1} f_X(y); \ Y_n = \max\{X_1, \dots, X_n\} \longrightarrow f_{Y_n} = n \left[F_X(y)\right]^{n-1} f_X(y)$$

Mientras que la distribución conjunta entre Y_1 e Y_n está dada por:

$$f_{Y_1,Y_n}(u,v) = n(n-1) \left[F_X(v) - F_X(u) \right]^{n-2} f_X(v) f_X(u), \quad u < v$$

Función Generadora de Momentos

En el caso que X_1, \ldots, X_n sean variables aleatorias independientes con funciones generadoras de momentos M_{X_1}, \ldots, M_{X_n} respectivamente, se tiene si $Z = \sum_{i=1}^n X_i \to M_Z(t) = M_{X_1}(t) \times \cdots \times M_{X_n}(t)$.

Propiedades Esperanza, Varianza y Covarianza

Sean $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ variables aleatorias y $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_m$ constantes conocidas.

$$\mathbb{E}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = a_0 + \sum_{i=1}^n a_i \cdot \mathbb{E}(X_i).$$

•
$$\operatorname{Cov}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i, b_0 + \sum_{j=1}^m b_j \cdot Y_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i \cdot b_j \cdot \operatorname{Cov}\left(X_i, Y_j\right).$$

■ Si
$$X_1, \ldots, X_n$$
 son variables aleatorias independientes, entonces $\operatorname{Var}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = \sum_{i=1}^n a_i^2 \cdot \operatorname{Var}\left(X_i\right)$

Aproximación de Momentos

Sea X una variable aleatoria e Y = g(X), la aproximación de 4to orden está dada por

$$Y = g(X) \approx g(\mu_X) + \frac{(X - \mu_X) g'(\mu_X)}{1!} + \frac{(X - \mu_X)^2 g''(\mu_X)}{2!} + \frac{(X - \mu_X)^3 g'''(\mu_X)}{3!} + \frac{(X - \mu_X)^4 g''''(\mu_X)}{4!}$$

Sean X_1, \ldots, X_n variables aleatorias con valores esperados $\mu_{X_1}, \ldots, \mu_{X_n}$ y varianzas $\sigma^2_{X_1}, \ldots, \sigma^2_{X_n}$ e $Y = g(X_1, \ldots, X_n)$, la aproximación de primer orden está dada por

$$Y \approx g(\mu_{X_1}, \dots, \mu_{X_n}) + \sum_{i=1}^n (X_i - \mu_{X_i}) \frac{\partial}{\partial X_i} g(\mu_{X_1}, \dots, \mu_{X_n})$$

$$E(Y) \approx g(\mu_{X_1}, \dots, \mu_{X_n})$$

$$Var(Y) \approx \sum_{i=1}^n \sum_{j=1}^n \rho_{ij} \, \sigma_{X_i} \, \sigma_{X_j} \, \left[\frac{\partial}{\partial X_i} g(\mu_{X_1}, \dots, \mu_{X_n}) \cdot \frac{\partial}{\partial X_j} g(\mu_{X_1}, \dots, \mu_{X_n}) \right], \qquad \text{con } \rho_{ij} = \text{Corr}(X_i, X_j)$$

Estimador Máximo Verosímil

Sea X_1, \ldots, X_n una muestra aleatoria independiente e idénticamente distribuida con función de probabilidad p_X o de densidad f_X , determinada por un parámetro θ . Si $\hat{\theta}$ es el estimador máximo verosímil del parámetro θ , entonces:

- $E(\hat{\theta}) \to \theta$, cuando $n \to \infty$.
- $\sqrt{I_n(\theta)}(\hat{\theta} \theta) \stackrel{\cdot}{\sim} \text{Normal}(0, 1)$, cuando $n \to \infty$.
- El estimador máximo verosímil de $g(\theta)$ es $g(\hat{\theta})$, cuya varianza está dada por: $Var[g(\hat{\theta})] = \frac{[g'(\theta)]^2}{I_n(\theta)}$

Error Cuadrático Medio

El error cuadrático medio de un estimador $\hat{\theta}$ de θ se define como:

$$\mathrm{ECM}(\hat{\theta}) = \mathrm{E}\left[\left(\hat{\theta} - \theta\right)^2\right] = \mathrm{Var}(\hat{\theta}) + \mathrm{Sesgo}^2$$

Distribuciones Muestrales

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas Normal (μ, σ) , entonces

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0, 1), \quad \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \sim \text{t-student}(n - 1), \quad \frac{s^2(n - 1)}{\sigma^2} \sim \chi^2(n - 1)$$

con
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$
.

Tablas de Percentiles p

				Distrib	ución l	Normal l	Estánda	r k_p					Distribu	ción t-stı	$_{i}$ dent t_{i}	$_{p}(u)$
k_p	0,00	0,01	0,02			0,04	0,05	0,06	0,07	0,08	0,09	ν	t _{0,90}	$t_{0,95}$	$t_{0,975}$	$t_{0,99}$
0,0	0,5000	0,5040	,			*	0,5199	0,5239	0,5279	0,5319	0,5359	1	3,078	6,314	12,706	31,821
0,1	0,5398	0,5438				,	0,5596	0,5636	0,5675	0,5714	0,5753	2	1,886	2,920	4,303	6,965
0,2	0,5793	0,5832	,			*	0,5987	0,6026	0,6064	0,6103	0,6141	3	1,638	2,353	3,182	4,541
0,3	0,6179	0,6217	,			*	0,6368	0,6406	0,6443	0,6480	0,6517	4	1,533	2,132	2,776	3,747
0,4	0,6554	0,6591	0,662			*	0,6736	0,6772	0,6808	0,6844	0,6879	5	1,476	2,015	2,571	3,365
0,5	0,6915	0,6950	,				0,7088	0,7123	0,7157	0,7190	0,7224	6	1,440	1,943	2,447	3,143
0,6	0,7257	0,7291					0,7422	0,7454	0,7486	0,7517	0,7549	7	1,415	1,895	2,365	2,998
0,7	0,7580	0,7611	,			*	0,7734	0,7764	0,7794	0,7823	0,7852	8	1,397	1,860	2,306	2,896
0,8	0,7881	0,7910				*	0,8023	0,8051	0,8078	0,8106	0,8133	9	1,383	1,833	2,262	2,821
0,9	0,8159	0,8186	,			,	0,8289	0,8315	0,8340	0,8365	0,8389	10	1,372	1,812	2,228	2,764
1,0	0,8413	0,8438	0,846	61 0.84	485 0	,8508	0,8531	0,8554	0,8577	0,8599	0,8621	11	1,363	1,796	2,201	2,718
1,1	0,8643	0,8665	0,868	86 0.87	708 0	,8729	$0,\!8749$	0,8770	0,8790	0,8810	0,8830	12	1,356	1,782	2,179	2,681
1,2	0,8849	0,8869	0,888	88 0,89	907 - 0	,8925	0,8944	0,8962	0,8980	0,8997	0,9015	13	1,350	1,771	2,160	2,650
1,3	0,9032	0,9049	0,906	66 - 0,90	082 0	,9099	0,9115	0,9131	0,9147	0,9162	0,9177	14	1,345	1,761	2,145	2,624
1,4	0,9192	0,9207	0,922	0,92	236 - 0	,9251	0,9265	0,9279	0,9292	0,9306	0,9319	15	1,341	1,753	2,131	2,602
1,5	0,9332	0,9345	0,935	57 0,93	370 0	,9382	0,9394	0,9406	0,9418	0,9429	0,9441	16	1,337	1,746	2,120	2,583
1,6	0,9452	0,9463	0,947	74 0,94	484 0	,9495	0,9505	0,9515	0,9525	0,9535	0,9545	17	1,333	1,740	2,110	2,567
1,7	0,9554	0,9564	0,957	73 0,95	582 0	,9591	0,9599	0,9608	0,9616	0,9625	0,9633	18	1,330	1,734	2,101	2,552
1,8	0,9641	0,9649	0,965	56 0,96	664 0	,9671	0,9678	0,9686	0,9693	0,9699	0,9706	19	1,328	1,729	2,093	2,539
1,9	0,9713	0,9719	0,972	26 0,97	732 0	,9738	0,9744	0,9750	0,9756	0,9761	0,9767	20	1,325	1,725	2,086	2,528
2,0	0,9772	0,9778	,			*	0,9798	0,9803	0,9808	0,9812	0,9817	21	1,323	1,721	2,080	2,518
2,1	0,9821	0,9826	,	,		*	0,9842	0,9846	0,9850	0,9854	0,9857	22	1,321	1,717	2,074	2,508
$^{-,-}_{2,2}$	0,9861	0,9864	,			*	0,9878	0,9881	0,9884	0,9887	0,9890	23	1,319	1,714	2,069	2,500
2,3	0,9893	0,9896				*	0,9906	0,9909	0,9911	0,9913	0,9916	$\frac{1}{24}$	1,318	1,711	2,064	2,492
$^{2,3}_{2,4}$	0.9918	0,9920	,			*	0,9929	0,9931	0,9932	0,9934	0,9936	25	1,316	1,708	2,060	2,485
$^{2,1}_{2,5}$	0,9938	0,9940	,			*	0,9946	0,9948	0,9949	0,9951	0,9952	26	1,315	1,706	2,056	2,479
$^{2,6}_{2,6}$	0,9953	0,9955	,			*	0,9960	0,9961	0,9962	0,9963	0,9964	27	1,314	1,703	2,050 $2,052$	2,473 $2,473$
$^{2,0}_{2,7}$	0,9965	0,9966	,			*	0,9970	0,9971	0,9972	0,9973	0,9974	28	1,313	1,701	2,048	2,467
2,8	0,9974	0,9975	,			*	0,9978	0,9979	0,9979	0,9980	0,9981	29	1,311	1,699	2,045	2,467
$^{2,0}_{2,9}$	0,9981	0,9982	,			*	0.9984	0,9985	0,9985	0,9986	0,9986	30	1,311	1,695 $1,697$	2,043 $2,042$	2,462 $2,457$
$\frac{2,9}{3,0}$	0,9987	0,9982	,			*	0.9989	0,9989	0,9989	0,9990	0,9990	∞	1,310 $1,282$	1,645	1,960	2,326
	0,0001	0,0001	0,000	3, 0,00	000	,,,,,,,	0,0000	0,0000	0,0000	0,0000	0,0000	50	1,202	1,010	1,000	2,020
							Distrib	ución Chi-	Cuadrado	$c_p(\nu)$						
ν 1	$c_{0,005} = 0,000$	$c_{0,001} = 0.000$	$c_{0,025} = 0,001$	$c_{0,05} = 0.004$	$c_{0,1} = 0.016$	c _{0,2} 0,064	$c_{0,3} = 0.148$	$c_{0,4} = 0.275$	$c_{0,6} = 0.708$	$\frac{c_{0,7}}{1,074}$	$c_{0,8}$ $1,642$	$c_{0,9}$ $2,706$	$c_{0,95}$ $3,841$	$c_{0,975} = 5,024$	c _{0,99} 6,635	$c_{0,995} = 7,879$
2	0,010	0,002	0,051	0,103	0,211	0,446	0,713	1,022	1,833	2,408	3,219	4,605	5,991	7,378	9,210	10,597
3 4	$0,072 \\ 0,207$	0,024 $0,091$	0,216 $0,484$	0,352 $0,711$	0,584 $1,064$	1,005 1,649	1,424 $2,195$	1,869 2,753	2,946 $4,045$	3,665 $4,878$	4,642 $5,989$	6,251 $7,779$	7,815 9,488	9,348 11,143	11,345 13,277	
5	0,412	0,210	0,831	1,145	1,610	2,343	3,000	3,655	5,132	6,064	7,289	9,236	11,070	12,833	15,086	16,750
6 7	$0,676 \\ 0,989$	0,381 $0,598$	1,237 1,690	1,635 $2,167$	2,204 2,833	$3,070 \\ 3,822$	3,828 4,671	$4,570 \\ 5,493$	6,211 $7,283$	7,231 8,383	8,558 $9,803$	10,645 $12,017$	12,592 $14,067$	14,449 16,013	16,812 18,475	
8	1,344	0,857	2,180	2,733	3,490	4,594	5,527	6,423	8,351	9,524	11,030 12,242	13,362 14.684	15,507	17,535 19,023	20,090	21,955
9 10	1,735 2,156	$1,152 \\ 1,479$	$2,700 \\ 3,247$	$3,325 \\ 3,940$	4,168 $4,865$	5,380 6,179	6,393 7,267	$7,357 \\ 8,295$	9,414 $10,473$	10,656 $11,781$	13,442	14,684 $15,987$	16,919 18,307	20,483	21,666 23,209	25.188
11	2,603	1,834	3,816	4,575	5,578	6,989	8,148	9,237	11,530	12,899	14,631	17,275	19,675	21,920	24,725	26,757
12 13	$3,074 \\ 3,565$	$^{2,214}_{2,617}$	$\frac{4,404}{5,009}$	5,226 $5,892$	$6,304 \\ 7,042$	$7,807 \\ 8,634$	$9,034 \\ 9,926$	10,182 $11,129$	12,584 $13,636$	$14,011 \\ 15,119$	15,812 $16,985$	18,549 $19,812$	21,026 $22,362$	23,337 $24,736$	26,217 27,688	29,819
14 15	4,075 $4,601$	3,041 3,483	5,629 6,262	6,571 $7,261$	7,790 8,547	9,467 $10,307$	10,821 $11,721$	12,078 13,030	14,685 15,733	16,222 17,322	18,151 $19,311$	21,064 $22,307$	23,685 24,996	26,119 27,488	29,141 30,578	31,319
16	5,142	3,942	6,908	7,962	9,312	11,152	12,624	13,983	16,780	18,418	20,465	23,542	26,296	28,845	32,000	34,267
17 18	5,697 $6,265$	4,416 $4,905$	7,564 $8,231$	8,672 $9,390$	10,085 10,865	12,002 $12,857$	13,531 $14,440$	14,937 $15,893$	17,824 $18,868$	19,511 $20,601$	21,615 $22,760$	24,769 $25,989$	27,587 28,869	30,191 31,526	33,409 34,805	
19	6,844	5,407	8,907	10,117	11,651	13,716	15,352	16,850	19,910	21,689	23,900	27,204	30,144	32,852	36,191	38,582
20 21	7,434 8,034	5,921 $6,447$	9,591 10,283	10,851 11,591	12,443 $13,240$	14,578 $15,445$	16,266 $17,182$	17,809 18,768	20,951 $21,991$	22,775 $23,858$	25,038 $26,171$	28,412 $29,615$	31,410 32,671	34,170 35,479	37,566 38,932	
22	8,643	6,983	10,982	12,338	14,041	16,314	18,101	19,729	23,031	24,939	27,301	30,813	33,924	36,781	40,289	42,796
23 24	9,260 9,886	7,529 8,085	11,689 12,401	13,091 13,848	14,848 15,659	17,187 $18,062$	19,021 19,943	20,690 $21,652$	24,069 $25,106$	26,018 27,096	28,429 $29,553$	32,007 $33,196$	35,172 36,415	38,076 39,364	41,638 42,980	
25	10,520	8,649	13,120	14,611	16,473	18,940	20,867	22,616	26,143	28,172	30,675	34,382	37,652	40,646	44,314	46,928
26 27	11,160 11,808	9,222 $9,803$	13,844 $14,573$	15,379 $16,151$	17,292 $18,114$	19,820 20,703	21,792 $22,719$	23,579 $24,544$	27,179 $28,214$	29,246 $30,319$	31,795 $32,912$	35,563 $36,741$	38,885 40,113	41,923 43,195	45,642 46,963	
28	12,461	10,391	15,308	16,928	18,939	21,588	23,647	25,509	29,249	31,391	34,027	37,916	41,337	44,461	48,278	50,993
29 30	13,121 13,787	10,986 11,588	16,047 $16,791$	17,708 $18,493$	19,768 $20,599$	22,475 $23,364$	24,577 $25,508$	26,475 $27,442$	30,283 $31,316$	$32,461 \\ 33,530$	35,139 $36,250$	39,087 $40,256$	42,557 $43,773$	45,722 46,979	49,588 $50,892$	
40	20,707	17,916	24,433	26,509	29,051	32,345	34,872	37,134	41,622	44,165	47,269	51,805	55,758	59,342	63,691	66,766
50 60	27,991 $35,534$	24,674 $31,738$	32,357 $40,482$	34,764 $43,188$	37,689 $46,459$	41,449 $50,641$	44,313 53,809	46,864 $56,620$	51,892 $62,135$	54,723 $65,227$	58,164 $68,972$	63,167 $74,397$	67,505 79,082	71,420 83,298	76,154 88,379	
70	43,275 $51,172$	39,036	48,758	51,739	55,329	59,898	63,346	66,396	72,358	75,689 86,120	79,715	85,527	90,531 101,879	95,023	100,425	104,215
80 90	59,196	$46,520 \\ 54,155$	57,153 $65,647$	60,391 $69,126$	64,278 $73,291$	69,207 $78,558$	72,915 $82,511$	$76,188 \\ 85,993$	82,566 $92,761$	96,524	90,405 $101,054$	96,578 $107,565$	113,145	106,629 $118,136$	112,329 $124,116$	128,299
	67,328	61,918	74,222	77,929	82,358	87,945	92,129	95,808	102,946	106,906	111,667	118,498	124,342	129,561	135,807	140,169
100	01,020															

Distribución	Densidad de Probabilidad	Φ ×	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \dots, n$	n, p	$\mu_X = n p$ $\sigma_X^2 = n p (1-p)$ $M(t) = [p e^t + (1-p)]^n, t \in \mathbb{R}$
Geométrica	$p (1-p)^{x-1}$	$x=1,2,\ldots$	a	$M(t) = p e^{t} / [1 - (1 - p)/p^{2}]$ $M(t) = p e^{t} / [1 - (1 - p) e^{t}], t < -\ln(1 - p)$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x = r, r + 1, \dots$	r, r	$\begin{split} \mu X &= r/p \\ \sigma_X^2 &= r (1-p)/p^2 \\ M(t) &= \left\{ p e^t / [1-(1-p) e^t] \right\}^r, t < - \ln(1-p) \end{split}$
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	7	$\mu X = \nu t$ $\sigma_X^2 = \nu t$ $\sigma_X^2 = \nu t$ $\left[\lambda \left(e^t - 1\right)\right], t \in \mathbb{R}$
Exponencial	7 e - 7	0 \\ \\ \\ \	λ	$M(t) = \frac{\mu_X}{\sigma_X} = 1/\nu$ $\frac{\sigma_X}{\sigma_X} = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	О ЛІ в	k, v	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k, t < \nu$
Normal	$\frac{1}{\sqrt{2\pi\sigma}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	8 V 8 V	μ , σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M(t) = \exp(\mu t + \sigma^2 t^2/2), t \in \mathbb{R}$
Log-Normal	$\frac{1}{\sqrt{2\pi}\left(\zeta x\right)} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \lambda}{\zeta}\right)^{2}\right]$	a VI O	У, С	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$ $E(X^r) = e^{r\lambda} M_Z(r\zeta), \text{ con } Z \sim \text{Normal}(0,1)$
Uniforme	$\frac{1}{(b-a)}$	a	a, b	$\begin{split} \mu X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^t b - e^t a]/[t (b-a)], t \in \mathbb{R} \end{split}$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	Ф VI 8 VI в	g, r	$\mu_X = \alpha + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n}}{\binom{n}{x}}$	$\max\{0,n+m-N\} \leq x \leq \min\{n,m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

Otras distribuciones

• Si $T \sim \text{Weibull}(\eta, \beta)$, se tiene que

$$F_T(t) = 1 - \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right] \quad f_T(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right], \quad t > 0$$

Con $\beta>0$, es un parámetro de forma y $\eta>0$, es un parámetro de escala. Si t_p es el percentil $p\times 100\,\%$, entonces

$$\ln(t_p) = \ln(\eta) + \frac{1}{\beta} \cdot \Phi_{\text{Weibull}}^{-1}(p), \quad \Phi_{\text{Weibull}}^{-1}(p) = \ln[-\ln(1-p)]$$

Mientras que su m-ésimo momento está dado por

$$\begin{split} E(T^m) &= \eta^m \, \Gamma(1+m/\beta) \\ \mu_T &= \eta \, \Gamma\left(1+\frac{1}{\beta}\right), \quad \sigma_T^2 = \eta^2 \, \left[\Gamma\left(1+\frac{2}{\beta}\right) - \Gamma^2\left(1+\frac{1}{\beta}\right)\right] \end{split}$$

• Si $Y \sim \text{Log}(\text{stica}(\mu, \sigma))$, se tiene que

$$F_Y(y) = \Phi_{\text{Logfstica}}\left(\frac{y-\mu}{\sigma}\right); \qquad f_Y(y) = \frac{1}{\sigma}\,\phi_{\text{Logfstica}}\left(\frac{y-\mu}{\sigma}\right), \quad -\infty < y < \infty$$

donde

$$\Phi_{\text{Logística}}(z) = \frac{\exp(z)}{[1 + \exp(z)]} \quad \text{y} \quad \phi_{\text{Logística}}(z) = \frac{\exp(z)}{[1 + \exp(z)]^2}$$

son la función de probabilidad y de densidad de una Logística Estándar. $\mu \in \mathbb{R}$, es un parámetro de localización y $\sigma > 0$, es un parámetro de escala. Si y_p es el percentil $p \times 100 \%$, entonces

$$y_p = \mu + \sigma \, \Phi_{\text{Logística}}^{-1}(p) \quad \text{con} \quad \Phi_{\text{Logística}}^{-1}(p) = \log \left(\frac{p}{1-p}\right)$$

Su esperanza y varianza están dadas por: $\mu_Y = \mu$ y $\sigma_Y^2 = \frac{\sigma^2 \pi^2}{3}$.

• Si $T \sim \text{Log-Log}(\text{stica}(\mu, \sigma))$, se tiene que

$$F_T(t) = \Phi_{\text{Logística}}\left(\frac{\ln(t) - \mu}{\sigma}\right); \quad f_T(t) = \frac{1}{\sigma t} \, \phi_{\text{Logística}}\left(\frac{\ln(t) - \mu}{\sigma}\right) \quad t > 0$$

Donde $\exp(\mu)$, es un parámetro de escala y $\sigma > 0$, es un parámetro de forma. Si t_p es el percentil $p \times 100\%$, entonces

$$\ln(t_p) = \mu + \sigma \, \Phi_{\text{Logística}}^{-1}(p)$$

Para un entero m > 0 se tiene que

$$E(T^{m}) = \exp(m \mu) \Gamma(1 + m \sigma) \Gamma(1 - m \sigma)$$

El m-ésimo momento no es finito si $m \sigma \ge 1$.

Para $\sigma < 1$: $\mu_T = \exp(\mu) \Gamma(1 + \sigma) \Gamma(1 - \sigma)$

y para
$$\sigma < 1/2$$
: $\sigma_T^2 = \exp(2\,\mu) \left[\Gamma(1+2\,\sigma)\,\Gamma(1-2\,\sigma) - \Gamma^2(1+\sigma)\,\Gamma^2(1-\sigma)\right]$

lacktriangle Un variable aleatoria T tiene distribución t-student si su función de densidad está dada por:

$$f_T(t) = \frac{\Gamma[(\nu+1)/2]}{\sqrt{\pi \nu} \Gamma(\nu/2)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}, \quad -\infty < t < \infty$$

- $\mu_T = 0$, para $\nu > 1$.
- $\sigma_T^2 = \frac{\nu}{\nu 2}$, para $\mu > 2$.
- Si $T \sim \text{Fisher}(\eta, \nu)$, se tiene que

$$f_T(t) = \frac{\Gamma(\frac{\eta+\nu}{2})}{\Gamma(\eta/2)\Gamma(\nu/2)} \left(\frac{\eta}{\nu}\right)^{\frac{\eta}{2}} \frac{t^{\frac{\eta}{2}-1}}{\left(\frac{\eta}{\nu}t+1\right)^{\frac{\eta+\nu}{2}}}, \quad t > 0$$

- $\mu_T = \frac{\nu}{\nu 2}$, para $\nu > 2$.
- $\sigma_T^2 = \frac{2\nu^2 (\eta + \nu 2)}{\eta (\nu 2)^2 (\nu 4)}$, para $\nu > 4$.