On Decidability of the Bisimilarity on Higher-order Processes with Parameterization

Xu Xian (徐贤)

(East China University of Science and Technology)

&

Zhang Wenbo (张文博)

(Shanghai Ocean University)

EXPRESS/SOS 2021

August 23rd, 2021

What is this work about?

The decidability of parameterized higher-order processes.

What is this work about?

The decidability of parameterized higher-order processes.

higher-order = process-passing (no name-passing)

parameterized = a way to promote expressiveness [Lanese et al., 2010]

What is parameterization?

It is composed of abstraction and application (pursuant to those in lambda-calculus).

What is parameterization?

It is composed of abstraction and application (pursuant to those in lambda-calculus).

Two kinds of parameterization extending Π^{m}

• $\Pi^{\mathbf{m}}$: $0 \mid X \mid u(X).P \mid \overline{u}P'.P \mid P \mid P'$

ECUST & SOU 2-b

What is parameterization?

It is composed of abstraction and application (pursuant to those in lambda-calculus).

Two kinds of parameterization extending Π^{m}

- $\Pi^{\mathbf{m}}$: $0 \mid X \mid u(X).P \mid \overline{u}P'.P \mid P \mid P'$
- Parameterization on processes:

abstraction: $\langle X \rangle P$ (X is a process variable) ($\lambda X.P$)

application: $P\langle Q\rangle$

What is parameterization?

It is composed of abstraction and application (pursuant to those in lambda-calculus).

Two kinds of parameterization extending Π^{m}

- $\Pi^{\mathbf{m}}$: $0 \mid X \mid u(X).P \mid \overline{u}P'.P \mid P \mid P'$
- Parameterization on processes:

abstraction: $\langle X \rangle P$ (X is a process variable) ($\lambda X.P$)

application: $P\langle Q \rangle$

• Parameterization on names:

abstraction: $\langle x \rangle P$ (x is a name variable)

application: $P\langle u \rangle$

ECUST & SOU 2-d

What is parameterization?

It is composed of abstraction and application (pursuant to those in lambda-calculus).

Two kinds of parameterization extending Π^{m}

- $\Pi^{\mathbf{m}}$: $0 \mid X \mid u(X).P \mid \overline{u}P'.P \mid P \mid P'$
- Parameterization on processes:

abstraction: $\langle X \rangle P$ (X is a process variable) ($\lambda X.P$) application: $P\langle Q \rangle$

• Parameterization on names:

abstraction: $\langle x \rangle P$ (x is a name variable) application: $P\langle u \rangle$

• Π^{mp} : Π extended with both kinds of parameterization

Main results

- In Π^{mp} , the strong bisimilarity is <u>decidable</u>.
- For the strong bisimilarity, an <u>axiomatization</u> and a bisimilarity checking algorithm.

Organization

- $\bullet~$ Decidability of the strong bisimilarity in $\Pi^{\rm mp}$
- AXIOMATIZATION
- BISIMILARITY CHECKING ALGORITHM

1 Decidability of the strong bisimilarity in Π^{mp}

The strong bisimilarities

- 1. Strong HO-IO bisimilarity $\sim_{\mbox{\tiny hoio}}^{\circ}$.
- 2. Strong HO bisimilarity \sim_{ho} .
- 3. Strong context bisimilarity \sim_{ctx} .
- 4. Strong normal bisimilarity $\sim_{\rm nr}$.
- 5. Open strong normal bisimilarity \sim_{nr}° .

Main results

- 1. $\sim_{\text{hoio}}^{\circ}$ is decidable.
- 2. All the strong bisimilarities coincide.

Main results

- 1. $\sim_{\text{hoio}}^{\circ}$ is decidable.
- 2. All the strong bisimilarities coincide.

▶ Similar results for Π^{m} are first given by Lanese et al. [Lanese et al. 2011].

In this work, we adapt the approach of that work to accommodate parameterization.

Definition 1 (Strong HO-IO bisimilarity). A symmetric binary relation \mathcal{R} over Π^{mp} terms is a strong HO-IO bisimulation, if whenever $P \mathcal{R} Q$ the following properties hold.

- 1. If *P* is a non-abstraction, then so is *Q*.
- 2. If *P* is a process-abstraction $\langle Y \rangle A$, then *Q* is a process-abstraction $\langle Y \rangle B$, and $A \mathcal{R} B$.
- 3. If *P* is a name-abstraction $\langle y \rangle A$, then *Q* is a name-abstraction $\langle y \rangle B$, and $A \mathcal{R} B$.
- 4. If $P \xrightarrow{\overline{a}A} P'$, then $Q \xrightarrow{\overline{a}B} Q'$ with $A \mathcal{R} B$ and $P' \mathcal{R} Q'$.
- 5. If $P \xrightarrow{a(X)} P'$, then $Q \xrightarrow{a(X)} Q'$ and $P' \mathcal{R} Q'$.
- 6. If $P \equiv X \mid P'$, then $Q \equiv X \mid Q'$ and $P' \mathcal{R} Q'$.
- 7. If $P \equiv X\langle A \rangle \mid P'$, then $Q \equiv X\langle B \rangle \mid Q'$ with $A \mathcal{R} B$ and $P' \mathcal{R} Q'$.
- 8. If $P \equiv X\langle d \rangle \mid P'$, then $Q \equiv X\langle d \rangle \mid Q'$ and $P' \mathcal{R} Q'$.

The strong HO-IO bisimilarity, $\sim_{\text{hoio}}^{\circ}$, is the largest strong HO-IO bisimulation.

Definition 2 (Depth of a term). We define depth(P) as follows.

P	$\operatorname{depth}(P)$	
0	0	
X	1	
$m(X).P_1$	$depth(P_1) + 1$	
$\overline{m}(P_1)$	$depth(P_1) + 1$	
$P_1 \mid P_2$	$\operatorname{depth}(P_1) + \operatorname{depth}(P_2)$	
$\langle X \rangle P_1$	$depth(P_1) + 1$	
$X\langle P_1 \rangle$	$depth(P_1) + 1$	
$P_1\langle P_2\rangle$	$depth(P_3\{P_2/Y\})$	where P_1 is $\langle Y \rangle P_3$
$\langle x \rangle P_1$	$depth(P_1) + 1$	
$X\langle n \rangle$	1	
$P_1\langle n\rangle$	$\operatorname{depth}(P_3\{n/y\})$	where P_1 is $\langle y \rangle P_3$

Lemma 3. \sim_{hoio}° is decidable.

Proof (*sketch*). We decide whether $P \sim_{\text{hoio}}^{\circ} Q$ by induction on depth(P).

- 1. If P is an abstraction, then check Q is also an abstraction accordingly, and continue by induction hypothesis.
- 2. If *P* does an action, then check *Q* can simulate, and continue by induction hypothesis.
- 3. If P reveals some free variable, say X, then check Q also does with X, and continue by induction hypothesis.

Coincidence between the strong bisimilarities

Proof (sketch).

- 1. Main difference between \sim_{hoio}° and \sim_{ho} : \sim_{ho} requires closed under substitution and τ simulation.
- 2. Approach: show that the following relation is a strong HO bisimulation.

$$\mathcal{R}_1 \stackrel{\mathrm{def}}{=} \{ (P, Q) \mid P \sim_{\mathrm{hoio}}^{\circ} Q \} \cup \sim_{\mathrm{hoio}}^{\circ}$$

- 3. <u>Technical lemmas</u>:
 - (a) If $P \sim_{\text{hoio}}^{\circ} Q$, then $P\{R/X\} \sim_{\text{hoio}}^{\circ} Q\{R/X\}$.
 - (b) If $P \sim_{\text{hoio}}^{\circ} Q$ and $P \xrightarrow{\tau} P'$, then $Q \xrightarrow{\tau} Q'$ and $P' \sim_{\text{hoio}}^{\circ} Q'$.

Coincidence between the strong bisimilarities

Proof (*sketch*).

1. Main difference between \sim_{ho} and \sim_{ctx} : the output simulation.

 \sim_{ho} : If $P \xrightarrow{\overline{a}A} P'$, then $Q \xrightarrow{\overline{a}B} Q'$ with $A \sim_{\text{ho}} B$ and $P' \sim_{\text{ho}} Q'$.

 \sim_{ctx} : If $P \xrightarrow{\overline{a}A} P'$, then $Q \xrightarrow{\overline{a}B} Q'$ and for every context E, it holds that $E(A) \mid P' \sim_{\text{ctx}} E(B) \mid Q'$.

- 2. <u>Intuition</u>: \sim_{ctx} requires closure under contexts.
- 3. Approach: use the congruence property of \sim_{ho} .

Coincidence between the strong bisimilarities

Proof (*sketch*).

The triggers family [Sangiorgi, 1992; Xu, 2013 & 2020]:

$$2 \operatorname{Tr}_m^D \stackrel{\mathrm{def}}{=} \langle Z \rangle \overline{m} Z,$$

Coincidence between the strong bisimilarities

Proof (*sketch*).

The triggers family [Sangiorgi, 1992; Xu, 2013 & 2020]:

$$\textcircled{1} \operatorname{Tr}_m \stackrel{\operatorname{def}}{=} \overline{m}, \qquad \textcircled{2} \operatorname{Tr}_m^D \stackrel{\operatorname{def}}{=} \langle Z \rangle \overline{m} Z, \qquad \textcircled{3} \operatorname{Tr}_m^{D,d} \stackrel{\operatorname{def}}{=} \langle z \rangle \overline{m} [\langle Z \rangle (Z \langle z \rangle)]$$

- 1. Main difference between \sim_{ctx} and \sim_{nr} : closure under substitution and output simulation.
- \sim_{ctx} : requires closure for *any processes* for input, and *any contexts* for output.
- \sim_{nr} : requires closure for *triggers* for input, and *trigger-receiving contexts* for output.
- 2. <u>Intuition</u>: \sim_{nr} is a special case of \sim_{ctx} .
- 3. Approach: in \sim_{ctx} , choose special forms of processes or contexts based on triggers.

Coincidence between the strong bisimilarities

Proof (*sketch*).

1. Main difference between \sim_{nr} and \sim_{nr}° : closure under substitution and simulation of open terms over free variables.

 $\sim_{\rm nr}$: requires closure under substitution of triggers, while $\sim_{\rm nr}^{\circ}$ does not.

 $\sim_{\rm nr}^{\circ}$: requires direct matching of free variables, while $\sim_{\rm nr}$ does not.

Coincidence between the strong bisimilarities

Proof (sketch).

- 1. Main difference between \sim_{nr} and \sim_{nr}° : closure under substitution and simulation of open terms over free variables.
- $\sim_{\rm nr}$: requires closure under substitution of triggers, while $\sim_{\rm nr}^{\circ}$ does not.
- $\sim_{\rm nr}^{\circ}$: requires direct matching of free variables, while $\sim_{\rm nr}$ does not.
- 2. <u>Intuition</u>: use the closure property of \sim_{nr}° to build a bisimulation.
- 3. Technical property: \sim_{nr}° is closed under substitution (from its definition). That is,

$$P \sim_{\mathrm{nr}} Q$$
 if and only if
$$P\{\widetilde{\mathrm{Tr}}_{m_1}/\widetilde{X_1}\}\{\widetilde{\mathrm{Tr}}_{m_2}^D/\widetilde{X_2}\}\{\widetilde{\mathrm{Tr}}_{m_3}^{D,d}/\widetilde{X_3}\} \sim_{\mathrm{nr}} Q\{\widetilde{\mathrm{Tr}}_{m_1}/\widetilde{X_1}\}\{\widetilde{\mathrm{Tr}}_{m_2}^D/\widetilde{X_2}\}\{\widetilde{\mathrm{Tr}}_{m_3}^{D,d}/\widetilde{X_3}\}$$

_

Coincidence between the strong bisimilarities

Proof (*sketch*).

1. Main difference between \sim_{nr}° and \sim_{hoio}° : the output simulation and the simulation of an open process with a free variable for process-abstraction. We take a case (the others are similar).

 \sim_{nr}° : If $P \xrightarrow{\overline{a}A} P'$ in which A is a process abstraction, then $Q \xrightarrow{\overline{a}B} Q'$ for process-abstraction B, and it holds for fresh m that

$$m(Z).A\langle Z\rangle \mid P' \sim_{\text{nr}}^{\circ} m(Z).B\langle Z\rangle \mid Q'$$
 (*a)

 $\sim_{\text{hoio}}^{\circ}$: If $P \xrightarrow{\overline{a}A} P'$, then $Q \xrightarrow{\overline{a}B} Q'$ with

$$A \sim_{\text{hoio}}^{\circ} B$$
 and $P' \sim_{\text{hoio}}^{\circ} Q'$ (*b)

__

ECUST & SOU 15-a

Coincidence between the strong bisimilarities

Proof (*sketch*).

1. Main difference between \sim_{nr}° and \sim_{hoio}° : the output simulation and the simulation of an open process with a free variable for process-abstraction. We take a case (the others are similar).

 \sim_{nr}° : If $P \xrightarrow{\overline{a}A} P'$ in which A is a process abstraction, then $Q \xrightarrow{\overline{a}B} Q'$ for process-abstraction B, and it holds for fresh m that

$$m(Z).A\langle Z\rangle \mid P' \sim_{\text{nr}}^{\circ} m(Z).B\langle Z\rangle \mid Q'$$
 (*a)

 $\sim_{\text{hoio}}^{\circ}$: If $P \xrightarrow{\overline{a}A} P'$, then $Q \xrightarrow{\overline{a}B} Q'$ with

$$A \sim_{\text{hoio}}^{\circ} B$$
 and $P' \sim_{\text{hoio}}^{\circ} Q'$ (*b)

2. <u>Intuition</u>: use the fresh name to separate the parallel components, so as to extract the two pairs of bisimilar processes.

ECUST & SOU 15-b

Coincidence between the strong bisimilarities

Proof (sketch).

1. Main difference between \sim_{nr}° and \sim_{hoio}° : the output simulation and the simulation of an open process with a free variable for process-abstraction. We take a case (the others are similar).

 \sim_{nr}° : If $P \xrightarrow{\overline{a}A} P'$ in which A is a process abstraction, then $Q \xrightarrow{\overline{a}B} Q'$ for process-abstraction B, and it holds for fresh m that

$$m(Z).A\langle Z\rangle \mid P' \sim_{\text{nr}}^{\circ} m(Z).B\langle Z\rangle \mid Q'$$
 (*a)

 $\sim_{\text{hoio}}^{\circ}$: If $P \xrightarrow{\overline{a}A} P'$, then $Q \xrightarrow{\overline{a}B} Q'$ with

$$A \sim_{\text{hoio}}^{\circ} B$$
 and $P' \sim_{\text{hoio}}^{\circ} Q'$ (*b)

- 2. <u>Intuition</u>: use the fresh name to separate the parallel components, so as to extract the two pairs of bisimilar processes.
- 3. Technical lemma: Assume that m is fresh.

If
$$m(Z).A\langle Z\rangle \mid P' \sim_{\operatorname{nr}}^{\circ} m(Z).B\langle Z\rangle \mid Q'$$
, then $A \sim_{\operatorname{nr}}^{\circ} B$ and $P' \sim_{\operatorname{nr}}^{\circ} Q'$.

2021

The strong bisimilarities

Theorem 4. All the strong bisimilarities above are coincident and decidable.

2 Axiomatization

The axiom system

The axiom system is composed of the following laws.

1. Structural congruence.

$$(P | Q) | R = P | (Q | R)$$
 $P | Q = Q | P$ $P | 0 = P$

2. Distribution [Lanese et al., 2011].

$$a(X).\left(P \mid \prod^{k-1} a(X).P\right) = \prod^{k} a(X).P$$

3. Parameterization.

$$(\langle X \rangle P)\langle Q \rangle = P\{Q/X\} \qquad (\langle x \rangle P)\langle m \rangle = P\{m/x\}$$

The axiom system

The axiom system is composed of the following laws.

1. Structural congruence.

$$(P \mid Q) \mid R = P \mid (Q \mid R) \qquad \qquad P \mid Q = Q \mid P \qquad \qquad P \mid 0 = P$$

2. Distribution [Lanese et al., 2011].

$$a(X).$$
 $\left(P \mid \prod^{k-1} a(X).P\right) = \prod^{k} a(X).P$

3. Parameterization.

$$(\langle X \rangle P)\langle Q \rangle = P\{Q/X\} \qquad (\langle x \rangle P)\langle m \rangle = P\{m/x\}$$

Normal form P is in *normal form* if it cannot be rewritten by the laws for Distribution and Parameterization (left to right). Any P has a *unique normal form up to* \equiv , denoted as $\inf(P)$.

Completeness of the axiom system

Lemma 5 (Completeness). For any P, Q, if $P \sim Q$ then P = Q, more precisely, nf(P) = nf(Q).

Proof (sketch). Induction on depth(P).

- 1. Key lemmas:
 - (a) About normal forms: $P \sim nf(P)$.
 - (b) About input prefix:

If
$$a(X).P \sim Q \mid Q' \quad (Q, Q' \nsim 0)$$
, then $a(X).P \sim \prod_{i=1}^k a(X).A \ (k > 1)$ with $a(X).A$ is in nf.

- 2. A notion of *prime* processes [Lanese et al., 2011; Milner et al., 1993].
 - (a) P is prime if $P \not\sim 0$ and $P \sim P_1 \mid P_2$ implies $P_1 \sim 0$ or $P_2 \sim 0$.
 - (b) If $P \sim \prod_{i=1}^n P_i$ where each P_i is prime, $\prod_{i=1}^n P_i$ is called a *prime decomposition* of P.
- 3. Properties about prime processes.
 - (a) If *P* is a prefixed process in normal form, then *P* is prime.
 - (b) Unique prime decomposition. If P has two prime decompositions $P \sim \prod_{i=1}^n P_i$ and $P \sim \prod_{j=1}^m Q_j$, then n=m and there is a permutation $\sigma: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$, such that $P_i \sim Q_{\sigma(i)}$ for each $i \in \{1, 2, \ldots, n\}$.

3 Bisimilarity checking algorithm

Core of the algorithm

Input

Two processes P and Q.

Procedure

- 1. (Data structure) Representing processes P and Q as trees.
- 2. (Transformation) Normalizing the trees.

3. (Comparison) Comparing the trees up-to syntax.

Output

Whether P = Q or not.

Core of the algorithm

Input

Two processes P and Q.

Procedure

- 1. (Data structure) Representing processes P and Q as trees.
- 2. (Transformation) Normalizing the trees.
 - (a) Rewrite each process by the application rules, if possible.
 - (b) Normalize each process over parallel composition.
 - (c) Apply the distribution law, if possible.
- 3. (Comparison) Comparing the trees up-to syntax.

Output

Whether P = Q or not.

Tree representation

Definition 6 (Tree representation). The tree representation of *P* is defined as follows.

- Tree(0) = 0[]
- Tree(X) = db(X)[]
- Tree $(a(X).P) = a[\mathsf{Tree}(P)]$
- $\bullet \ \operatorname{Tree}(\overline{a}(Q)) = a^O[\operatorname{Tree}(Q)]$
- Tree(x(X).P) = db(x)[Tree(P)]
- Tree $(\overline{x}(Q)) = db(x)^{O}[Tree(Q)]$
- Tree $(\Pi_{i=1}^n P_i) = \Pi_{i=1}^n[\mathsf{Tree}(P_1), \ldots, \mathsf{Tree}(P_n)]$
- Tree $(\langle X \rangle P) = abs[Tree(P)]$
- Tree $(\langle P \rangle Q) = app[Tree(P), Tree(Q)]$
- Tree($\langle x \rangle P$) = abs[Tree(P)]
- Tree $(\langle P \rangle n) = app[Tree(P), n[]]$

db assigns uniform indices to variables [De Bruijn, 1972; Lanese et al., 2011].

Tree normalization

```
Application: App(n_{raw}, ind, n_{eval})
   Input: Tree nodes n_{raw}, n_{eval}, an integer ind.
   Output: Tree nodes for which application is done.
 1 if (n_{raw}.type == 'var' \text{ or } n_{raw}.type == 'inp') \text{ and } n_{raw}.label == ind \text{ then}
        n_{raw} = n_{eval};
 3 end if
 4 if n_{raw}.type == 'out' and n_{raw}.label == ind^O then
        n_{raw} = n_{eval};
        n_{raw}.label = (n_{raw}.label)<sup>O</sup>;
 7 end if
 s if n_{raw}.type == 'inp' or n_{raw}.type == 'abs' then
        ind = ind + 1;
10 end if
11 for i = 1 to n.numChildren do
        App(n_{raw}.children[i], ind, n_{eval});
13 end for
```

Tree normalization

```
Normalization Step 1: NS1(n)

Input: A tree node n.

Output: Tree node after normalization step 1.

for i = 1 to n.numChildren do

NS1(n.children[i]);

end for

if n.type == 'app' then

if n.children[1].type == 'abs' then

App(n.children[1].children[1], 1, n.children[2]);

end if

end if
```

Tree normalization

17 sortChildren(n);

```
Normalization Step 2: NS2(n)
   Input: A tree node n.
   Output: Tree node after normalization step 2.
1 for i = 1 to n.numChildren do NS2(n.children[i]);
2 if n.type == 'par' then
       j = 1;
       for i = 1 to n.numChildren do
            if n.children[i].type \neq 'zero' then
                 n.children[j] = n.children[i];
 6
                 j = j + 1;
            end if
 8
       end for
 9
       n.numChildren = j - 1;
10
       if n.numChildren == 0 then
11
            n.\mathsf{type} = '\mathsf{zero}';
12
       else if n.numChildren == 1 then
13
            n = n.children[1];
14
       end if
15
16 end if
```

Tree normalization

18 end if

```
Normalization Step 3: NS3(n)
   Input: A tree node n.
   Output: Tree node after normalization step 3.
1 for i = 1 to n.numChildren do NS3(n.children[i]);
2 if n.type == 'inp' then
       p = n.children[1];
       if p.type == 'par' then
           smallIndex = -1; small = null; biq = null;
           pc1 = p.children[1]; pc2 = p.children[p.numChildren];
6
           if pc1.type == 'inp' and pc1.label == n.label and pc1.children[1] == pc2 then
                small = pc2; big = pc1; smallIndex = p.numChildren;
8
           else if pc2.type=='inp' and pc2.label==n.label and pc2.children[1]==pc1 then
                small = pc1; big = pc2; smallIndex = 1;
10
           else return;
11
           for i = 2 to n.numChildren-1 do
12
                if p.children[i] \neq big then return;
13
           end for
14
           p.children[smallIndex] = big;
15
           n = n.children[1];
16
       end if
17
```

Complexity of the algorithm

Let n be the total number of nodes in the tree representations of the processes under consideration. The bisimilarity checking algorithm has the following complexity.

Time $O(n \log(n))$.

Space O(n).

4 Conclusion

- 1. In presence of parameterization, the strong bisimilarity is still decidable for Π^{mp} .
- 2. A complete axiom system for the strong bisimilarity is provided.
- 3. An algorithm for the bisimilarity checking is designed.

Future work

- 1. Expanding the model to allow more modelling capability, e.g., locations or probability, while maintaining the decidability result.
- 2. Considering the decidability of the weak bisimilarity.

Thank you.