House Price Predication

— Zining Wang, Wenxuan Wang and Wenda Zheng

Motivation and objective

Everyone has a dream house in mind!

- Tradeoffs between certain criteria and house prices
- Avoid over-estimated house
- How to predict the actual value of the house
- Convenient without field investigation

Goal:

Predicting House price according to different conditions.

Data Description

■ 79 house attributes

- floor), location attributes (e.g. the area of first floor), location attributes (e.g. whether the house is adjacent to railroads), and some overall quality ratings.
- Training data & Testing data

Data preprocessing

Discard attributes that have lots of missing values

 Adjust house price based on CPI index, choose Dec.2010 as base year

- Consumer price index (CPI)
- Measure of the overall level of prices
- Measure of the overall cost of goods and services
- Bought by a typical consumer

Inflation rate in year 2 =
$$\frac{\text{CPI in year 2 - CPI in year 1}}{\text{CPI in year 1}} \times 100$$

Adjusting price based on CPI Index

YrSold	SaleType	SaleCondition	SalePrice
2008	WD	Normal	208500.0
2007	WD	Normal	190575.0
2008	WD	Normal	223500.0
2006	WD	Abnorml	154000.0
2008	WD	Normal	260000.0

```
# Adjust House Price based on CPI index, Convert to 2010 December dollars (CPI indices are from Bu
reau of Labor Statistics)
train.ix[(train.YrSold == 2010) &
         ((train.MoSold == 7) | (train.MoSold == 6) | (train.MoSold <= 4)),
         'SalePrice'] = train.SalePrice * 1.01
train.ix[(train.YrSold == 2009) &
         ((train.MoSold == 1) | (train.MoSold == 6) | (train.MoSold <= 4)),
         'SalePrice'] = train.SalePrice * 1.04
train.ix[(train.YrSold == 2009) &
         ((train.MoSold == 2) | (train.MoSold == 3) | (train.MoSold == 4)),
         'SalePrice'] = train.SalePrice * 1.03
train.ix[(train.YrSold == 2009) &
         ((train.MoSold == 5)|(train.MoSold == 6)|(train.MoSold == 7)|(train.MoSold == 8)),
         'SalePrice'] = train.SalePrice * 1.02
train.ix[(train.YrSold == 2009) &
         ((train.MoSold >= 9)),
         'SalePrice'] = train.SalePrice * 1.01
train.ix[(train.YrSold == 2008) &
         ((train.MoSold == 1) | (train.MoSold == 12)),
         'SalePrice'] = train.SalePrice * 1.04
```

Data preprocessing (Other Techniques)

- int to string
- NA to another kind
- NA to 0.0
- Mean/Mode imputation
- Drop
- •

Pairwise Correlation

XGBoost (Extreme Gradient Boosting)

- based on the boosting tree model
- Uses gradient descent and boosting method to overcome incorrectly classified subsets over each iteration, until some stopping criterion is met
- Existing Python packages for XGBoost

First 5 rows of input after cleaning

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	LotConfig	Land Slope
0	60	RL	65.0	8450	Pave	NoAlleyAccess	Reg	LvI	Inside	GtI
1	20	RL	80.0	9600	Pave	NoAlleyAccess	Reg	LvI	FR2	GtI
2	60	RL	68.0	11250	Pave	NoAlleyAccess	IR1	LvI	Inside	GtI
3	70	RL	60.0	9550	Pave	NoAlleyAccess	IR1	LvI	Corner	GtI
4	60	RL	84.0	14260	Pave	NoAlleyAccess	IR1	LvI	FR2	GtI

5 rows x 79 columns

Replacing Dummy Variables

	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2	В
0	65.0	8450	7	5	2003	2003	196.0	706.0	0.0	18
1	80.0	9600	6	8	1976	1976	0.0	978.0	0.0	28
2	68.0	11250	7	5	2001	2002	162.0	486.0	0.0	4:
3	60.0	9550	7	5	1915	1970	0.0	216.0	0.0	54
4	84.0	14260	8	5	2000	2000	350.0	655.0	0.0	49

Correlation Heatmap

Fifteen most important attributes

	SalePrice	OverallQual	GrLivArea	GarageCars	GarageArea	TotalBsmtSF	1stFIrSF	FullBath	TotRmsAbvGrd	YearBuil
0	208500.0	7	1710	2	548	856	856	2	8	2003
1	190575.0	6	1262	2	460	1262	1262	2	6	1976
2	223500.0	7	1786	2	608	920	920	2	6	2001
3	154000.0	7	1717	3	642	756	961	1	7	1915
4	260000.0	8	2198	3	836	1145	1145	2	9	2000

Related work and method

Regularized linear regression

XGBoost (Extreme Gradient Boosting)

Regularized Linear Regression

In our dataset, 79 house attributes are used as independent variables, and house sales price is the dependent variable.

Served as the baseline model for our project

Adding a regularized term to control the complexity of the regression model. E.g. Ridge or Lasso regularization

