```
In [1]: # Anuar Konkashbaev
    # class DDS-8555 v1
# Assignment 1
import pandas as pd
from sklearn import datasets
iris= pd.DataFrame(datasets.load_iris().data)
iris.columns = datasets.load_iris().feature_names
iris['type'] = datasets.load_iris().target
iris['type']=iris['type'].astype('object')
iris
```

Out[1]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	type
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	•••					
	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

```
iris['new']=(iris.iloc[:,0]*iris.iloc[:,1])/(iris.iloc[:,2]*iris.iloc[:,3])
        iris['new']
In [3]:
Out[3]: 0
                63.750000
                52.500000
        1
        2
                57.846154
                47.533333
                64.285714
         145
                 1.680602
         146
                 1.657895
         147
                 1.875000
         148
                 1.697262
         149
                 1.928105
        Name: new, Length: 150, dtype: float64
```

In [4]: from sklearn.model_selection import train_test_split as tts
X_train, X_test, y_train, y_test = tts(iris.iloc[:,0:3], iris.iloc[:,4], test_size=
stratify=iris.iloc[:,4])

In [5]: X_train

Out[5]:		sepal length (cm)	sepal width (cm)	petal length (cm)
	8	4.4	2.9	1.4
	106	4.9	2.5	4.5
	76	6.8	2.8	4.8
	9	4.9	3.1	1.5
	89	5.5	2.5	4.0
	•••			
	37	4.9	3.6	1.4
	2	4.7	3.2	1.3
	33	5.5	4.2	1.4
	52	6.9	3.1	4.9
	3	4.6	3.1	1.5

120 rows × 3 columns

In [6]: X_test

Out[6]:		sepal length (cm)	sepal width (cm)	petal length (cm)
	38	4.4	3.0	1.3
	127	6.1	3.0	4.9
	57	4.9	2.4	3.3
	93	5.0	2.3	3.3
	42	4.4	3.2	1.3
	56	6.3	3.3	4.7
	22	4.6	3.6	1.0
	20	5.4	3.4	1.7
	147	6.5	3.0	5.2
	84	5.4	3.0	4.5
	107	7.3	2.9	6.3
	141	6.9	3.1	5.1
	104	6.5	3.0	5.8
	51	6.4	3.2	4.5
	7	5.0	3.4	1.5
	49	5.0	3.3	1.4
	14	5.8	4.0	1.2
	69	5.6	2.5	3.9
	63	6.1	2.9	4.7
	138	6.0	3.0	4.8
	10	5.4	3.7	1.5
	140	6.7	3.1	5.6
	58	6.6	2.9	4.6
	134	6.1	2.6	5.6
	132	6.4	2.8	5.6
	77	6.7	3.0	5.0
	75	6.6	3.0	4.4
	18	5.7	3.8	1.7
	116	6.5	3.0	5.5
	28	5.2	3.4	1.4

```
y_train
Out[7]: 8
                2
         106
         76
                1
         9
                0
         89
                1
         37
                0
         2
         33
                0
         52
                1
         3
         Name: type, Length: 120, dtype: object
In [8]: y_test
Out[8]: 38
                0
         127
                2
         57
                1
         93
                1
         42
                0
         56
                1
         22
                0
         20
                0
         147
                2
         84
                1
         107
                2
         141
                2
         104
                2
         51
                1
                0
         7
         49
                0
         14
                0
         69
                1
         63
                1
         138
                2
         10
                0
         140
                2
         58
                1
         134
                2
         132
                2
         77
                1
         75
                1
         18
                0
         116
                2
         28
         Name: type, dtype: object
In [9]: import numpy as np
         from sklearn.metrics import mean_squared_error as MSE
         from sklearn.metrics import mean_absolute_error as MAE
         from sklearn.metrics import mean_absolute_percentage_error as MAPE
         def myf(y,yhat):
             ME=np.round(np.mean(y-yhat),3)
```

```
MPE=np.round(np.mean((y-yhat)/y),3)
             myMAE=np.round(MAE(y,yhat),3)
             myMSE=np.round(MSE(y,yhat),3)
             myMAPE=np.round(MAPE(y,yhat),3)
             print("\n", "ME:", np.round(ME,3), "\n", "MPE:", MPE, "\n", "MAE:", myMAE, "\n", "MS
         est1=np.mean(X_train['petal length (cm)'])
         est2=np.mean(X_train['sepal length (cm)']-X_train['petal length (cm)']) # I changed
         est1=[est1]*len(y_test)
         est2=[est2]*len(y test)
         print("est1: ")
         myf(X_test['sepal width (cm)'],est1)
         print("est2: ")
         myf(X_test['sepal width (cm)'],est2)
        est1:
         ME: -0.677
         MPE: -0.237
         MAE: 0.694
         MSE: 0.602
         MAPE: 0.242
        est2:
         ME: 1.022
         MPE: 0.32
         MAE: 1.022
         MSE: 1.188
         MAPE: 0.32
In [10]: from sklearn.metrics import confusion_matrix as cm, ConfusionMatrixDisplay as cmd
         from sklearn.metrics import classification report as cr
         import matplotlib.pyplot as plt
         from numpy import percentile
         est3=percentile(X_train['sepal length (cm)'], [25, 50])
         y_hat=np.zeros(len(y_test))
         y_hat[X_test['sepal length (cm)']>est3[0]]=1
         y_hat[X_test['sepal length (cm)']>est3[1]]=2
         y_hat=y_hat.astype('int')
         print(cr(y_test.astype('int'),y_hat))
         est4=percentile(X_train['sepal length (cm)'], [50,75])
         y_hat2=np.zeros(len(y_test))
         y_hat2[X_test['sepal length (cm)']>est4[0]]=1 # I changed est3 to est4
         y_hat2[X_test['sepal length (cm)']>est4[1]]=2 # I changed est3 to est4
         y hat2=y hat2.astype('int')
         print(cr(y_test.astype('int'),y_hat2))
```

	precision	recall	f1-score	support
0	0.71	0.50	0.59	10
1	0.33	0.20	0.25	10
2	0.59	1.00	0.74	10
accuracy			0.57	30
macro avg	0.55	0.57	0.53	30
weighted avg	0.55	0.57	0.53	30
	precision	recall	f1-score	support
0	0.69	0.90	0.78	10
4				
1	0.38	0.30	0.33	10
2	0.38 0.67	0.30 0.60	0.33 0.63	10 10
_				
2			0.63	10

In [11]: plt.scatter(iris['sepal width (cm)'],iris['sepal length (cm)'])

Out[11]: <matplotlib.collections.PathCollection at 0x28a21b10140>

In [12]: plt.scatter(iris['sepal width (cm)'],iris['sepal length (cm)']-iris['petal length (

Out[12]: <matplotlib.collections.PathCollection at 0x28a21ae6300>

In [13]: plt.scatter(X_train['sepal width (cm)'],X_train['sepal length (cm)'])

Out[13]: <matplotlib.collections.PathCollection at 0x28a21bd99d0>

In [14]: plt.scatter(X_train['sepal width (cm)'],X_train['sepal length (cm)']-X_train['petal

Out[14]: <matplotlib.collections.PathCollection at 0x28a21c41d90>

In [15]: plt.scatter(X_test['sepal width (cm)'],X_test['sepal length (cm)']-X_test['petal le

Out[15]: <matplotlib.collections.PathCollection at 0x28a21bd9e20>

In []:		
In []:		