$Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

Concepts review

What we have already seen:

- ► The probabilistic approach to AI
- ► Factorization, Conditional independence
- What is a probabilistic graphical model
- What is a Bayesian network

Today:

- ► Factor algebra
- Markov networks

- 1. Organize four students in pairs to work on homework
 - 1.1 Alice and Bob are friends
 - 1.2 Bob and Charles study together
 - 1.3 Charles and Debbie work together but usually disagree
 - 1.4 Debbie and Alice study together
 - 1.5 Alice and Charles cannot stand each other
 - 1.6 Bob and Debbie had a relationship that ended badly
- 2. Some students find out a mistake: the teacher explained something wrong
- 3. Students transmit this finding to their study partners
- 4. Probability that all of them are aware of the mistake?

$Misconception\ example$

- 1. Organize four students in pairs to work on homework
 - 1.1 Alice and Bob are friends
 - 1.2 Bob and Charles study together
 - 1.3 Charles and Debbie work together but usually disagree
 - 1.4 Debbie and Alice study together
 - 1.5 Alice and Charles cannot stand each other
 - 1.6 Bob and Debbie had a relationship that ended badly
- Some students find out a mistake: the teacher explained something wrong
- 3. Students transmit this finding to their study partners
- 4. Probability that all of them are aware of the mistake?

$$A \perp\!\!\!\perp C \mid D, B$$
 $B \perp\!\!\!\perp D \mid A, C$

${\it Markov\ networks\ vs.\ Bayesian\ Networks}$

Model	Bayesian network	Markov network
Graph	Directed Acyclic	Undirected
Factorization	Distribution per variable (variable and its parents)	Factors over the cliques of the graph
Joint		Requires normalization term (partition function)
Independence	Determined by d-separation in the graph	Determined by separation in the graph
$F \Longrightarrow I$	Always	Always
$I \Longrightarrow F$	Always	Only for positive distributions
Markov blanket	Parents, children and parents of children	The neighbors

Markov networks vs. Bayesian networks

1. Graph

2. Factorization

$$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^f \phi_i(\mathbf{x}_{\phi_i})$$
 $P(\mathbf{x}) = \prod_{i=1}^V p(\mathbf{x}_i \mid \mathbf{pa}_i)$

$$P(\mathbf{x}) = \prod_{i=1}^{v} p(\mathbf{x}_i \mid \mathbf{pa}_i)$$

There is no partition function

3. Factors

	X_4	X_2	$\phi(X_4,X_2)$
	а	a	3,3
	b	a	13,2
	a	b	18,0
	b	b	12,0
Factor potentials			

X_4	X_2	$p(X_4 X_2)$
а	а	0,25
b	а	0,75
а	b	0,66
b	b	0,33

Conditional prob. distributions

$Markov\ networks\ vs.\ Bayesian\ Networks$ Distributions and factors

- Distributions:
 - Joint distribution
 - Common operators:
 - Conditioning
 - Marginalization
- Factors:
 - How are they different from distributions?
 - Common operators:
 - Product
 - Reduction
 - Marginalization
 - Normalization

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

Cliques: relationship between graph and factorization

Clique or complete subgraph

Subgraph where every two vertices are connected to each other

► 1-vertex cliques:

$$C_1 = \{A\}, C_2 = \{B\}, C_3 = \{C\}, C_4 = \{D\}, C_5 = \{E\}$$

> 2-vertex cliques:

$$\begin{split} &C_6 = \{A,B\}, \ C_7 = \{A,D\}, \\ &C_8 = \{B,D\}, \ C_9 = \{D,E\}, \\ &C_{10} = \{E,C\} \end{split}$$

► 3-vertex cliques:

$$C_{11}=\{A,B,D\}$$

Cliques: relationship between graph and factorization

Clique or complete subgraph

Subgraph where every two vertices are connected to each other

- ▶ 1-vertex cliques: $C_1 = \{A\}, C_2 = \{B\}, C_3 = \{C\}, C_4 = \{D\}, C_5 = \{E\}$
- ▶ 2-vertex cliques: $C_6 = \{A, B\}, C_7 = \{A, D\},$ $C_8 = \{B, D\}, C_9 = \{D, E\},$ $C_{10} = \{E, C\}$
- ▶ 3-vertex cliques: $C_{11} = \{A, B, D\}$

Maximal clique

There is no any other larger clique that contains it

Factorization

Let $\mathcal H$ be an undirected graph. A distribution $P(\pmb X)$ factorizes according to $\mathcal H$ iff

$$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{f} \phi_i(\mathbf{x}_{\phi_i})$$

where, for each ϕ_i , there is an edge in \mathcal{H} between each pair of variables in $Scope(\phi_i)$ (i.e., $Scope(\phi_i)$ forms a clique in \mathcal{H})

and $Z = \sum_{x} \prod_{i=1}^{n} \phi_i(x_{\phi_i})$ is the normalization constant, known as partition function.

Exercise

Factorization in MNs

Which of these factorizations is valid for the following graph?

$$P(X) \propto \phi_1(X_4)\phi_2(X_1,X_2,X_3)$$

$$P(X) \propto \phi_1(X_1, X_2, X_4)$$

$$P(X) \propto \phi_1(X_1, X_2, X_3)\phi_2(X_2, X_3, X_4)$$

$$P(X) \propto \phi_1(X_1)\phi_2(X_1, X_2)\phi_3(X_3)\phi_4(X_3, X_4)$$

$$P(X) \propto \phi_1(X_1, X_2)\phi_2(X_1, X_3)\phi_3(X_3, X_4)\phi_4(X_2, X_4)\phi_5(X_2, X_3)$$

Exercise

Factorization in MNs

Which of the following sets of factors could factorize over this undirected graph?

- a) $\phi(A), \phi(B), \phi(C), \phi(D), \phi(E), \phi(F)$
- b) $\phi(A, B, D), \phi(A, B), \phi(C, D, E), \phi(E, F), \phi(F)$
- c) $\phi(A, B, D, C), \phi(C, D, E, F)$
- d) $\phi(A,B),\phi(C,D),\phi(E,F)$

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

$Markov\ network$ Independencies

Independence

Given a Markov network structure \mathcal{H} , two variables X and Y are independent in \mathcal{H} if there is no path between them in \mathcal{H}

Markov network Independencies

Conditional independence

Given a Markov network structure \mathcal{H} , two variables X and Y are independent given a third variable Z if Z separates X from Y in \mathcal{H}

Intuitively, probabilistic influence flow is stopped at observed nodes

$Flow\ of\ probabilistic\ influence$

Active trail

- ightharpoonup Let ${\cal H}$ be an undirected graph
- ▶ Let $X_1 \rightleftharpoons \ldots \rightleftharpoons X_m$ be a trail in \mathcal{H}
- ► A trail is active given a set of observed variables **Z** if no node along the trail is in **Z**

Exercise

Independence in MNs

Which pairs of variables are independent in this network?

- a) *A* ⊥⊥ *C*
- b) *C* ⊥⊥ *D*
- c) *D* ⊥⊥ *E*
- d) $A \perp \!\!\!\perp D$

Exercise

Independence in MNs

Which conditional independence statements hold in this network?

- a) $A \perp \!\!\!\perp C \mid E$
- b) *C* ⊥⊥ *D*|*B*
- c) $D \perp \!\!\!\perp E \mid C$
- d) $A \perp \!\!\!\perp D|E$

Markov network vs. Bayesian network

Markov blanket

Definition

Given X_j and \mathbf{Mb}_j , for any set of variables $\mathbf{X}_c \subseteq (\mathbf{V} \setminus \mathbf{Mb}_j)$:

$$X_c \perp \!\!\! \perp X_j \mid Mb_j$$

Parents, children and parents of the children

Neighbors

Connection between the three views

Markov networks Hammersley Clifford Theorem

Given a Markov network structure H, and a probability distribution P that factorizes over H, then P satisfies the independencies that hold in H.

P factorizes $\implies P$ satisfies independencies

▶ Given a Markov network structure H, and a positive probability distribution P that satisfies the independencies that hold in H, then P factorizes over H.

$$\left. egin{array}{ll} P & {
m satisfies independencies} \ P & {
m positive} \end{array}
ight.
ight.$$

Exercise

Let P be a distribution such that

$$P(X_1, X_2, X_3, X_4) \propto \phi_1(X_1)\phi_2(X_3, X_4)\phi_3(X_1, X_4)\phi_4(X_4, X_2)$$

- \triangleright $X_1 \perp \!\!\! \perp X_3 \mid X_4$?
- \triangleright $X_2 \perp \!\!\! \perp X_3 \mid X_1$?
- \triangleright $X_2, X_3 \perp \!\!\! \perp X_1$?

Exercise

Given that P is positive and satisfies the independencies in:

Provide a factorization for P.

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

$Markov\ networks\ summary$

Model name	Markov network	
Graph type	Undirected	
Factorization	Over the cliques of the graph	
Probability distr.	Requires a normalization term (partition funct.)	
Independence	Determined by separation in the graph	
$F \Longrightarrow I$	Always	
$I \Longrightarrow F$	Only for positive distributions	
Markov blanket	The neighbors	

Expressiveness

Models represented by Markov networks and Bayesian networks

Expressiveness

Models represented by Markov networks and Bayesian networks

^{**} The intersection covers the decomposable models: BNs without V-structures $_{23/41}$

Exercise

Storing a Markov network

Let P(X) be a probability distribution that factorizes according to a Markov network \mathcal{H} . How much memory do we need?

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

$\underset{Uses}{Markov\ networks}$

from Christopher Burger, Christian Schuler and Stefan Harmeling. CVPR 2012.

$\underset{Uses}{Markov\ networks}$

$\underset{Uses}{Markov\ networks}$

$Markov\ networks$

Uses

Markov Networks

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

- $ightharpoonup X = (X_1, \dots, X_N)$ is a set of variables
- \triangleright A factor ϕ is a function,

$$\phi: Val(\mathbf{X}_{\phi}) \to \mathbb{R},$$

over a subset of variables. This set of variables is called *scope*:

$$Scope(\phi) = \mathbf{X}_{\phi} \subseteq \mathbf{X}$$

- Each variable X_i has its own set of possible values, $Val(X_i)$ or Ω_{X_i} .
- Similarly, for a set of variables X_{ϕ} , we define $Val(X_{\phi})$ or $\Omega_{X_{\phi}}$ as the cartesian product of the sets of possible values of the variables in X_{ϕ} .

** Remember: assuming that random variables are discrete

Factor Scope

Let $\phi(c, e)$ be a factor in a graphical model, where c is a value of C and e is a value of E. Which is the scope of ϕ ?

- a) *C*, *E*
- **b)** A, C, E
- c) A, B, C, E
- d) C

$Factor\ Algebra$

Examples

X	Y	ϕ
0	0	3
0	1	2
1	0	4
1	1	1

Y	Z	ψ
0	0	5
0	1	4
0	2	1
1	0	2
1	1	0
1	2	6

Operations

- ► Product
- ► Reduction
- ► Marginalization
- Normalization

Factor algebra Product

Product of factors

Product

Product of factors

Χ	Y	ϕ
0	0	3
0	1	2
1	0	4
1	1	1

Y	Z	ψ
0	0	5
0	1	4
0	2	1
1	0	2
1	1	0
1	2	6

Scope
$$(\Omega_{X_{\phi}} \cup \Omega_{X_{\psi}})$$
 of $\phi \times \psi$?

Product

Product of factors

X	Y	ϕ
0	0	3
0	1	2
1	0	4
1	1	1

Y	Z	ψ
0	0	5
0	1	4
0	2	1
1	0	2
1	1	0
1	2	6

X	Y	Z	$\phi \times \psi$
0	0	0	
0	0	1	
0	0	2	
0	1	0	
0	1	1	
0	1	2	
1	0	0	
1	0	1	
1	0	2	
1	1	0	
1	1	1	
1	1	2	

Product

Product of factors

Χ	Y	ϕ
0	0	3
0	1	2
1	0	4
1	1	1

Y	Z	ψ
0	0	5
0	1	4
0	2	1
1	0	2
1	1	0
1	2	6

X	Y	Z	$\phi \times \psi$
0	0	0	15
0	0	1	12
0	0	2	3
0	1	0	4
0	1	1	0
0	1	2	12
1	0	0	20
1	0	1	16
1	0	2	4
1	1	0	2
1	1	1	0
1	1	2	6

$Factor\ algebra$ $_{Product}$

Properties of the product

▶ The product of factors is **commutative**

$$\phi \times \psi = \psi \times \phi$$

▶ The product of factors is associative

$$(\phi \times \psi) \times \xi = \psi \times (\phi \times \xi)$$

► For each scope $U \subseteq X$, there is a **neutral element** that assigns $\phi(\mathbf{u}) = 1$

Reduction

Reduction of a factor

The reduction of a factor ϕ for an assignment of values $\boldsymbol{U}=\boldsymbol{u}$ is a new factor $\phi[\boldsymbol{u}]$ whose scope is $\boldsymbol{V}=\boldsymbol{X}_{\phi}\backslash\boldsymbol{U}$ and whose value for the assignment $\boldsymbol{V}=\boldsymbol{v},\ \phi[\boldsymbol{u}](\boldsymbol{v}),$ is the value of ϕ for the joint assignment of \boldsymbol{u} and $\boldsymbol{v},\ \phi[\boldsymbol{u}](\boldsymbol{v})=\phi(\boldsymbol{u},\boldsymbol{v}).$

Reduction

Reduction of a factor

The reduction of a factor ϕ for an assignment of values $\boldsymbol{U} = \boldsymbol{u}$ is a new factor $\phi[\boldsymbol{u}]$ whose scope is $\boldsymbol{V} = \boldsymbol{X}_{\phi} \backslash \boldsymbol{U}$ and whose value for the assignment $\boldsymbol{V} = \boldsymbol{v}$, $\phi[\boldsymbol{u}](\boldsymbol{v})$, is the value of ϕ for the joint assignment of \boldsymbol{u} and \boldsymbol{v} , $\phi[\boldsymbol{u}](\boldsymbol{v}) = \phi(\boldsymbol{u}, \boldsymbol{v})$.

X	Y	Ζ	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11
0	1	1	2
0	1	2	1
1	0	0	4
1	0	1	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

Scope of	
$\phi[X=0]?$	

Scope of
$$\phi[Y=1,Z=2]$$
?

Reduction

Reduction of a factor

The reduction of a factor ϕ for an assignment of values $\boldsymbol{U} = \boldsymbol{u}$ is a new factor $\phi[\boldsymbol{u}]$ whose scope is $\boldsymbol{V} = \boldsymbol{X}_{\phi} \backslash \boldsymbol{U}$ and whose value for the assignment $\boldsymbol{V} = \boldsymbol{v}$, $\phi[\boldsymbol{u}](\boldsymbol{v})$, is the value of ϕ for the joint assignment of \boldsymbol{u} and \boldsymbol{v} , $\phi[\boldsymbol{u}](\boldsymbol{v}) = \phi(\boldsymbol{u}, \boldsymbol{v})$.

X	Y	Z	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11
0	1	1	2
0	1	2	1
1	0	0	4
1	0	1	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

Y	Z	$\phi[X=0]$
0	0	
0	1	
0	2	
1	0	
1	1	
1	2	

0	Χ	$\phi[Y=1,Z=2]$
1	0	
1	1	

Reduction

Reduction of a factor

The reduction of a factor ϕ for an assignment of values $\boldsymbol{U}=\boldsymbol{u}$ is a new factor $\phi[\boldsymbol{u}]$ whose scope is $\boldsymbol{V}=\boldsymbol{X}_{\phi}\backslash\boldsymbol{U}$ and whose value for the assignment $\boldsymbol{V}=\boldsymbol{v},\ \phi[\boldsymbol{u}](\boldsymbol{v}),$ is the value of ϕ for the joint assignment of \boldsymbol{u} and $\boldsymbol{v},\ \phi[\boldsymbol{u}](\boldsymbol{v})=\phi(\boldsymbol{u},\boldsymbol{v}).$

X	Y	Z	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11
0	1	1	2
0	1	2	1
1	0	0	4
1	0	1	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

Y	Z	$\phi[X=0]$
0	0	4
0	1	3
0	2	5
1	0	11
1	1	2
1	2	1

v	$\phi[Y-1, 7-2]$
	$\phi[Y=1,Z=2]$
0	1
1	9

Factor algebra Product and reduction

Relationship between reduction and product of factors

Let ϕ_1 and ϕ_2 be two factors, and $\boldsymbol{U}=\boldsymbol{u}$ an assignment of values to variables:

$$(\phi_1 \times \phi_2)[\boldsymbol{U} = \boldsymbol{u}] = \phi_1[\boldsymbol{U} = \boldsymbol{u}] \times \phi_2[\boldsymbol{U} = \boldsymbol{u}]$$

Factor algebra Product and reduction

Relationship between reduction and product of factors

Let ϕ_1 and ϕ_2 be two factors, and $\boldsymbol{U}=\boldsymbol{u}$ an assignment of values to variables:

$$(\phi_1 \times \phi_2)[\mathbf{U} = \mathbf{u}] = \phi_1[\mathbf{U} = \mathbf{u}] \times \phi_2[\mathbf{U} = \mathbf{u}]$$

This rule can help us reducing work!

$$p(E = e)$$
 or $p(X \mid E = e)$

Marginalization

Marginal

Given a factor ϕ and a set of variables ${\bf V}$ to remove, the marginal $\sum_{{\bf V}} \phi$ is a factor ψ with scope ${\bf U} = {\bf X}_{\!\phi} \setminus {\bf V}$, defined by $\psi({\bf u}) = \sum_{{\bf v}} \phi({\bf u},{\bf v})$ **sometimes written as $\phi^{\downarrow {\bf U}}$

Marginalization

Marginal

Given a factor ϕ and a set of variables ${\bf V}$ to remove, the marginal $\sum_{{\bf V}} \phi$ is a factor ψ with scope ${\bf U} = {\bf X}_{\!\phi} \setminus {\bf V}$, defined by $\psi({\bf u}) = \sum_{{\bf v}} \phi({\bf u},{\bf v})$ **sometimes written as $\phi^{\downarrow {\bf U}}$

X	Y	Ζ	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11 2
0	1	1	2
0	1	2	1
1	0	0	4
1	0	1	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

Scope of
$$\sum_{Y} \phi$$
?

Scope of
$$\sum_{Y,Z} \phi$$
?

Marginalization

Marginal

Given a factor ϕ and a set of variables ${\pmb V}$ to remove, the marginal $\sum_{{\pmb V}} \phi$ is a factor ψ with scope ${\pmb U} = {\pmb X}_\phi \setminus {\pmb V}$, defined by $\psi({\pmb u}) = \sum_{{\pmb v}} \phi({\pmb u},{\pmb v})$ **sometimes written as $\phi^{\downarrow {\pmb U}}$

X	Y	Z	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11
0	1	1	11 2
0	1	2	1
1	0	0	4 5
1	0	1 2	5
1	0		12
1	1	0	4
1	1	1	1
1	1	2	9

Χ	Ζ	$\sum_{Y} \phi$
0	0	
0	1	
0	2	
1	0	
1	1	
1	2	

$\sum_{Y,Z} \phi$

Marginalization

Marginal

Given a factor ϕ and a set of variables ${\pmb V}$ to remove, the marginal $\sum_{{\pmb V}} \phi$ is a factor ψ with scope ${\pmb U} = {\pmb X}_\phi \setminus {\pmb V}$, defined by $\psi({\pmb u}) = \sum_{{\pmb V}} \phi({\pmb u},{\pmb V})$ **sometimes written as $\phi^{\downarrow {\pmb U}}$

X	Y	Z	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11 2
0	1	1	2
0	1	2	1
1	0	0	4 5
1	0	1	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

X	Z	$\sum_{Y} \phi$
0	0	15
0	1	5
0	2	6
1	0	8
1	1	6
1	2	21

X	$\sum_{Y,Z} \phi$
0	26
1	35

Product and marginalization

Relationship between marginalization and product of factors

Let ϕ_1 and ϕ_2 be two factors, if $X \notin Scope(\phi_1)$:

$$\sum_{X} (\phi_1 \times \phi_2) = \phi_1 \times \sum_{X} \phi_2$$

Product and marginalization

Relationship between marginalization and product of factors

Let ϕ_1 and ϕ_2 be two factors, if $X \notin Scope(\phi_1)$:

$$\sum_{X} (\phi_1 \times \phi_2) = \phi_1 \times \sum_{X} \phi_2$$

This rule can help us reducing work!

$$p(X) = \frac{1}{\theta} \sum_{V \setminus X} \phi_1 \times \cdots \times \phi_f$$

Factor algebra Product and marginalization

This rule can help us reducing work!

The order of summation matters!

Factor algebra Product and marginalization

This rule can help us reducing work!

The order of summation matters!

Whenever we have to assess a factor algebra expression:

- 1. For each reduction operation:
 - 1.1 Move it towards the affected factors and do them
- 2. For each marginalization operation:
 - 2.1 Select a good ordering of the variables
 - 2.2 Move it towards the affected factors
 - 2.3 Perform marginalization operations "from the inside out"

Reduction and marginalization

X	Y	Ζ	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11
0	1	1	2
0	1	2	1
1	0	0	4
1	0	1	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

$$p(X|Y=1)$$

$$p(Z|X=0)$$

Reduction and marginalization

Let $\{A, B, C, D\}$ be a set of binary variables, where

$$p(A, B, C, D) = \frac{1}{\theta} \phi_1(A, B) \phi_2(B, C) \phi_3(C, D) \phi_4(D, A)$$

- ightharpoonup p(A, C|B=b)
- ightharpoonup p(A|B=b)
- \triangleright p(D|C=c)

Reduction and marginalization

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$\begin{array}{cccc} a^0 & b^0 & 30 \\ a^0 & b^1 & 5 \\ a^1 & b^0 & 1 \\ a^1 & b^1 & 10 \end{array}$	$ \begin{vmatrix} b^0 & c^0 & 100 \\ b^0 & c^1 & 1 \\ b^1 & c^0 & 1 \\ b^1 & c^1 & 100 \end{vmatrix} $	$ \begin{vmatrix} c^0 & d^0 & 1 \\ c^0 & d^1 & 100 \\ c^1 & d^0 & 100 \\ c^1 & d^1 & 1 \end{vmatrix} $	$ \begin{vmatrix} d^0 & a^0 & 100 \\ d^0 & a^1 & 1 \\ d^1 & a^0 & 1 \\ d^1 & a^1 & 100 \end{vmatrix} $

$$p(A, B, C, D) = \frac{1}{\theta} \phi_1(A, B) \phi_2(B, C) \phi_3(C, D) \phi_4(D, A)$$

$$p(D|C = c^1) =$$

Factor algebra Normalization

Marginal

Given a factor ϕ , its normalization

$$Norm(\phi)(\mathbf{x}) = \frac{\phi(\mathbf{x})}{Z_{\phi}}$$

where
$$Z_{\phi} = \sum_{\mathbf{x}} \phi(\mathbf{x})$$

Normalization

Marginal

Given a factor ϕ , its normalization

$$Norm(\phi)(\mathbf{x}) = \frac{\phi(\mathbf{x})}{Z_{\phi}}$$

where
$$Z_{\phi} = \sum_{\mathbf{x}} \phi(\mathbf{x})$$

Y	Z	ψ	$Norm(\psi)$
0	0	2	
0	1	5	
0	2	2	
1	0	4	
1	1	3	
1	2	1	

Z	ϕ	$Norm(\phi)$
0	8	
1	2	

Normalization

Marginal

Given a factor ϕ , its normalization

$$Norm(\phi)(\mathbf{x}) = \frac{\phi(\mathbf{x})}{Z_{\phi}}$$

where
$$Z_{\phi} = \sum_{\mathbf{x}} \phi(\mathbf{x})$$

Y	Z	ψ	$\mathit{Norm}(\psi)$
0	0	2	2/17
0	1	5	5/17
0	2	2	2/17
1	0	4	4/17
1	1	3	3/17
1	2	1	1/17

Z	ϕ	$Norm(\phi)$
0	8	8/10=0.8
1	2	2/10=0.2

Summary

- Product: $\phi_1 \times \phi_2$
- ▶ Reduction: $\phi[\mathbf{E} = \mathbf{e}]$
- ightharpoonup Marginalization: $\sum_{X} \phi$
- ightharpoonup Normalization: $Norm(\phi)$
- Product and reduction interaction:

$$(\phi_1 \times \phi_2)[\mathbf{U} = \mathbf{u}] = \phi_1[\mathbf{U} = \mathbf{u}] \times \phi_2[\mathbf{U} = \mathbf{u}]$$

Product and marginalization interaction:

$$\sum_{X} (\phi_1 \times \phi_2) = \phi_1 \sum_{X} \phi_2$$

where $X \notin Scope(\phi_1)$

Factors in Markov Network

Let $\phi_1(A, B)$, $\phi_2(B, C)$, and $\phi_3(A, C)$ be the factors of a MN. What is

$$\sum_{A,B,C} \phi_1(A,B) \times \phi_2(B,C) \times \phi_3(A,C)?$$

- a) Always less than or equal to $\phi_1(a,b) \times \phi_2(b,c) \times \phi_3(a,c)$, where a is a value of A, b is a value of B, and c is a value of C.
- b) Always greater than or equal to $\phi_1(a, b) \times \phi_2(b, c) \times \phi_3(a, c)$, where a is a value of A, b is a value of B, and c is a value of C.
- c) Always greater than or equal to 0
- d) Always greater than or equal to 1
- e) Always equal to the partition function, Z
- f) Always equal to 1

** More than 1 option might be valid

Markov Networks

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González