Escola de Engenharia Mauá

ECM511 – Pesquisa Operacional e ~Métodos de Otimização

Prof. Joyce M Zampirolli joyce.zampirolli@maua.br

Otimização em Redes: Problema do Caminho Mais Curto e do Fluxo Máximo

Caminho mais curto

Exemplo: Junior Wells

Como discutido no estudo do PCV, um **grafo** é formado por um conjunto de **nós** e **arcos**. Se existirem **pesos** associados aos arcos, o grafo se torna uma **rede**.

Caminho mais curto

Exemplo: Junior Wells

O problema do transporte de **uma unidade** de produto entre os nós 1 e 6 pode ser usado para determinar o **caminho mais curto** entre estes nós (por quê?)

Distância = $4 \times 1 + 3 \times 1 + 2 \times 1$

Algoritmo de Dijkstra

Wikipédia: o algoritmo de Dijkstra, concebido pelo cientista da computação holandês Edsger Wybe Dijkstra em 1956 e

Numerische Mathematik 1, 269-271 (1959)

A Note on Two Problems in Connexion with Graphs

By

E. W. DIJKSTRA

We consider n points (nodes), some or all pairs of which are connected by a branch; the length of each branch is given. We restrict ourselves to the case where at least one path exists between any two nodes. We now consider two problems.

Problem 1. Construct the tree of minimum total length between the n nodes. (A tree is a graph with one and only one path between every two nodes.)

In the course of the construction that we present here, the branches are subdivided into three sets:

- I. the branches definitely assigned to the tree under construction (they will form a subtree);
- II. the branches from which the next branch to be added to set I, will be selected;

III the remaining branches (rejected or not vet considered)

Algoritmo de Dijkstra

Caminho mais curto

Dijkstra - exercício proposto

caminho mais curto entre os nós 1 e 5

Dijkstra - exercício proposto

Problema do fluxo máximo

- 1) **Objetivo**: determinar o fluxo máximo entre *F* e *S*.
- 2) O "peso" c_{ij} associado a cada arco (i, j) representa o fluxo máximo admissível. (2) \longrightarrow (4)
- 3) Os custos unitarios de transporte são irrelevantes.
- 4) Não exist f mite de fornecimento a par son nó fonte (F) ou limite de recebimento no nó sorvedours son.

Rotina A: Identificação de um caminho de aumento de fluxo.

Rotina B: Atualização dos fluxos.

Importante: As atualizações podem ocorrer em fluxos diretos ou <u>reversos</u>!

Fluxo máximo: rotina B

Fluxo máximo: rotina A

Fluxo máximo: rotina B

Fluxo máximo: rotina A

Exercício proposto

Aplique, <u>apenas 1 vez</u>, as rotinas A e B do algoritmo de Ford-Fulkerson à rede mostrada na pág. 130. No passo genérico da rotina A, se houver mais de um nó disponível, escolha o nó de menor numeração:

Exercício proposto

