ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ

DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ

STUDIJNÍ PROGRAM: GEODÉZIE A KARTOGRAFIE

STUDIJNÍ OBOR: GEOMATIKA

DIPLOMOVÁ PRÁCE

Rozšíření nástroje pro práci s katastrálními daty v programu QGIS

QGIS VFK PLUGIN IMPROVEMENTS

Vedoucí práce: Ing. Martin Landa, Ph.D. Katedra geomatiky

Abstrakt

Cílem diplomové práce je rozšířit projekt laboratoře OSGeoREL ČVUT v Praze zaměřený na práci s katastrálními daty poskytovanými ve výměnném formátu VFK v prostředí open source nástroje QGIS. Práce navazuje na již existující nástroj implementovaný jako tzv. zásuvný modul a rozšiřuje ho o novou funkctionalitu a to především zpracování a vizualizaci datových vět změnových souborů VFK. Druhotným cílem je usnadnění distribuce zásuvného modulu v prostředí QGIS s důrazem na jeho přenositelnost.

Klíčová slova

VFK, QGIS, ČUZK, Python, C++, PyQt, GDAL, zásuvný modul

Abstract

KEYWORDS

VFK, QGIS, CUZK, Python, C++, PyQt, GDAL, plugin

Prohlášení	
Prohlašuji, že jsem diplomovou práci na tastrálními daty v programu QGIS" vyprackterých jsem čerpal, jsou uvedeny v seznam	coval samostatně. Všechny podklady, ze
V Praze dne	 Štěpán Bambula

Poděkování

Seznam použitých zkratek

VFK Výměnný formát katastru nemovitostí

ČUZK Český úřad zeměměřický a katastrální

GDAL Geospatial Data Abstraction Library

GIS Geografický informační systém

OSGeo Open Source Geospatial Foundation

ISKN Informační systém katastru nemovitostí

Obsah

U.	Jvod		
1	Dos	ipné nástroje pro práci s VFK	2
2	Pou	té technologie	3
	2.1	QGIS	3
	2.2	GDAL/OGR	4
	2.3	Python	4
	2.4	PyQt	5
3	Info	mační systém katastru nemovitostí	6
	3.1	Historie a vývoj	6
	3.2	Havní charakteristiky ISKN	7
		3.2.1 Optimalizace uložení dat	7
		3.2.2 Optimalizace procesů při správě KN	8
		3.2.3 Bezpečnost	8
	3.3	Poskytování dat	8
		3.3.1 Poskytování dat dálkovým přístupem	9
		3.3.2 Poskytování dat ve výměnném formátu ISKN	9
1	Výr	énný formát ISKN	10

$\mathbf{\acute{U}vod}$

Kapitola 1

Dostupné nástroje pro práci s VFK

Kapitola 2

Použité technologie

2.1 QGIS

QGIS je geografický informační systém, který je distribuován jako open-source¹ pod licencí *GNU General Public License*. Je oficiálním a klíčovým produktem organizace OSGeo. Díky přenositelnosti zdrojového kódu je použitelný na širokém spektru platforem, ať už jsou to desktopové platformy Linux, MacOS, Windows, nebo mobilní platforma Android.

Obrázek 2.1: QGIS – logo (zdroj: [10])

Program umožňuje prohlížení, tvorbu a editaci velkého množství vektorových (Esri Shapefile, GeoJSON, GPX, ...), ale i rastrových (GeoTIFF, JPEG, ...) nebo databázových formátů. Podporuje zpracování dat GPS a tvorbu mapových výstupů. Mimo jiné umožňuje provádět prostorové analýzy, analýzy terénu nebo analýzy síťové, práci s mapovou algebrou a mnoho dalšího.

QGIS nedisponuje tak širokou paletou nástrojů, jako jeho open-source kolega GRASS GIS. Jeho funkcionalita ale může být rozšířena díky nepřebernému množství zásuvných modulů. Jedním z nejdůležitějších modulů pro analýzu geografických dat je zásuvný modul GRASS GIS, který zpřístupňuje funkce stejnojmenného programu.

¹Open-source software je takový software, k němuž zákazník dostane od jeho tvůrce zdrojový kód a může jej dále upravovat. Jednotlivé definice termínu "open source" se liší zvláště v podmínkách pro další distribuci softwaru.[1]

QGIS poté může sloužit jako jeho nadstavba. [10] [11]

$2.2 \quad \text{GDAL/OGR}$

GDAL je knihovna určená pro čtení a zápis rastrových GIS formátů. Knihovna je vyvíjena pod hlavičkou Open Source Geospatial Foundation a vydávána pod licencí X/MIT. Knihovna používá jednoduchý abstraktní datový model pro všechny podporované datové formáty. Kromě toho nabízí také řadu užitečných nástrojů pro příkazovou řádku určených pro konverzi a zpracování dat. [3]

Obrázek 2.2: GDAL – logo (zdroj: [2])

GDAL byla původně vyvíjena Frankem Warmerdamem a to do verze 1.3.2, posléze byla knihovna převedena na GDAL/OGR Project Management Committee, která je součástí Open Source Geospatial Foundation.[3]

Knihovna OGR, která je od verze 2.0 součástí knihovny GDAL/OGR, slouží pro práci s daty ve vektorovém formátu.[2]

GDAL/OGR je považován za jeden z hlavních open-source projektů. Knihovna je hojně využívána také v komerční GIS sféře. Knihovna je otevřená a poskytuje základní funkcionalitu potřebnou pro denní práci s rozsáhlým množstvím GIS formátů.[3]

2.3 Python

Jazyk Python je objektově orientovaný programovací jazyk, který efektivně používá víceúrovňové datové typy. Jedná se o jazyk interpretovaný, čímž se jeví jako ideální nástroj pro psaní skriptů, ale i rychlý vývoj aplikací. Je vyvíjen jako opensource software, díky čemuž se stává použitelným na velkém množství platforem (Linux, Windows, MacOS, ...). Jazyk je rozšířitelný o široké spektrum modulů, které umožňují řešit problematiku takřka z jakékoli oblasti. V současné době je Python vyvíjen ve dvou verzích, ve verzi 2.x a v novější verzi 3.x. [6] [9]

Obrázek 2.3: Python – logo (zdroj: [9])

2.4 PyQt

PyQt je modul, který zpřístupňuje knihovnu Qt pro programovací jazyk Python. Spolu s PySide se jedná o nejznámější a nejpoužívanější modul pro Python postavený nad knihovnou Qt. Je vyvíjen britskou firmou Riverbank Computing ve dvou verzích. Ve verzi 4, podporující knihovnu Qt 4, a ve verzi 5, která podporuje novější verzi Qt knihovny. Modul je dostupný na všech platformách, které podporují knihovnu Qt (Windows, MacOS/X a Linux). PyQt je šířeno pod tzv. dvojí licencí, GNU GPL v3 a Riverbank Commercial License. Spolu s těmito licencemi je dostupné i pod komerční licencí.

Obrázek 2.4: PyQt – logo (zdroj: [8])

Pro grafický návrh aplikace je vhodné použít nativní grafické uživatelské rozhraní Qt Designer. Výstupem z tohoto programu je soubor obsahující vzhled aplikace ve formátu .xml. PyQt je poté schopné tento formát převést do kódu jazyka Python. Pro komunikaci mezi objekty je využíváno signálů a slotů, díky čemuž je vytvoření komponent velice snadné.

PyQt v sobě kombinuje mocnost knihovny Qt s jednoduchostí jazyka Python, což z něj dělá výkonný nástroj pro vývoj grafických aplikací. [7] [8]

Kapitola 3

Informační systém katastru nemovitostí

ISKN je integrovaný informační systém pro podporu výkonu státní správy katastru nemovitostí a pro zajištění jeho uživatelských služeb. Obsahuje prostředky pro současné vedení souborů popisných informací (SPI) a souborů geodetických informací (SGI). Dále jsou v něm obsaženy prostředky pro podporu správních a administrativních činností při vedení katastru nemovitostí a pro správu dokumentačních fondů. [4]

Obrázek 3.1: ČUZK – logo (zdroj: [4])

3.1 Historie a vývoj

Vývoj systému byl započat v roce 1997 ve spolupráci se společností APP Czech s.r.o.¹, která fungovala jako systémový integrátor a dodavatel aplikačního programového vybavení. Dalšími společnostmi podílejícími se na vývoji ISKN byly Infinity, a.s., Compaq Computer s.r.o.², Oracle Czech, s.r.o., Bentley Systems, s.r.o., BEA Systems, s.r.o. [4]

Systém byl nasazen do provozu v září roku 2001, a to na všech katastrálních pracovištích včetně centrály. Dolaďování a převzetí závěrečných etap probíhalo v roce 2002. V témže roce byl dokončen audit systému. [4]

¹Dnes společnost funguje pod názvem NESS Czech s.r.o.

²Dnes pod názvem HP.

Implementace ISKN plně nahradila dřívější způsob vedení katastru nemovitostí. ISKN integroval vedení a správu katastru nemovitostí pod jediný informační systém společný pro všechna pracoviště katastrálních úřadů a centrum. Toto vede k tomu, že je možné zveřejňovat a poskytovat aktuální data z katastru nemovitostí prostřednictvím dálkového přístupu během několika málo minut, a to z celého území republiky. [4]

Data jsou do systému ISKN ukládána pomocí Spatial Cartridge Option do databáze Oracle. Podpora vzdáleného přístupu k datům pomocí sítě Internet je zajištěna pomocí BEA WebLogic. Systémový management využívá nástrojů CA Unicenter. [4]

V roce 2004 byla uzavřena nová smlouva se společností NESS Czech s.r.o. na rozvoj a údržbu informačního systému v letech 2004 – 2006. V tomto období byl zmodernizován především Dálkový přistup do katastru nemovitostí a zavedena orientační mapa parcel. Důležitou inovací bylo zavedení elektronické značky pro výpis z katastru nemovitostí a pro kopii katastrální mapy ³. [4]

Společnost NESS Czech s.r.o. poté v dalších letech vyhrála několik veřejných zakázek týkajících se údržby a rozvoje ISKN. Hlavním cílem bylo převedení decentralizovaného systému (107 lokálních databází replikovaných do centrální databáze) na centralizovaný systém, ve kterém byla data ISKN uložena pouze v jedné databázi. Spolu s touto úpravou byla změněna i architektura z původní client/server na třívrstvou architekturu. Architektura je postavena na platformě Oracle Forms/Reports 10g a databázi Oracle 10g. Další změnou byl přechod na vyšší verzi Bentley nástroje pro správu prostorových dat. [4]

ISKN byl nadále zlepšován. Za zmínku stojí především systém pro Dálkový přístup do katastru nemovitostí nebo zavedení možnosti získat informaci o ukončení řízení pomocí SMS nebo e-mailové zprávy. [4]

3.2 Hlavní charakteristiky ISKN

3.2.1 Optimalizace uložení dat

Díky zvolení jednotného datového modelu pro uložení popisných a prostorových dat v databázi Oracle spolu s daty týkajících se správních řízení byla umožněna současná aktualizace popisných a prostorových dat a udržení jejich vzájemné konzistence. Pro optimalizaci byla také přijata koncepce samostatné evidence budov a bezešvé digitální katastrální mapy. Od konce roku 2001 jsou uchovávány také veškerá historická data popisných a prostorových dat, díky čemuž je možné sestavovat

³Tento krok umožnil, aby tzv. "ověřující" podle zákona č. 365/2000 Sb., o informačních systémech veřejné správy, v platném znění, mohli poskytovat ověřené výpisy z katastru nemovitostí, převedené z elektronické do listinné podoby. [4]

data do potřebných výstupů k historickému datu od zavedení ISKN v roce 2001. [4]

3.2.2 Optimalizace procesů při správě KN

Do systému ISKN byla zavedena celá řada automatických kontrol pro proces zapsání změny do KN. Dále bylo umožněno převzetí aktuálních dat z jiných registrů (např. registr obyvatel) a ostatních informačních systémů. Postup provedení změny dat KN je následující: na základě návrhu je připraven budoucí stav, který je možné před jeho zplatněním zobrazit (SPI, SGI), případně v něm provádět úpravy. Toto zajišťuje důkladnou kontrolu výsledného stavu katastru. Proces realizace změny je navíc zajištěn i technicko-organizačními opatřeními (návrh změny a kontrolu, včetně zplatnění provádí vždy jiná osoba dle přidělených uživatelských rolí). [4]

Díky novým procesům ve zpracování dat/návrhů změn je možné částečné nabytí platnosti geometrického plánu s automatizovanou změnou návrhu změny v budoucím stavu. Nové procesy také umožňují aktualizaci dat katastru nemovitostí takovým způsobem, aniž by zamkly aktualizovaná data. Pouze se jimi řeší konflikty v aktualizaci stejných dat.

Součástí ISKN je také jednotná centrální správa číselníků, která vnáší jednotnost do procesu zpracování změn na katastrálních úřadech. Tímto se rapidně zvyšuje konzistence a kvalita datové základny. Některé z centrálních číselníků nebo seznamů jsou přebírány z externích datových zdrojů (např. číselníky územní identifikace, PSČ). [4]

3.2.3 Bezpečnost

Vysoká bezpečnost ochrany dat je zajištěna kombinací hardwarových prostředků s operačním systémem, databází a vlastní aplikací ISKN. Nepřetržitý provoz je zajištěn pomocí technologie databázových a aplikačních clusterů a tím, že je celá infrastruktura zdvojena (primární a záložní centrum). Do záložního centra jsou replikována veškerá data tak, aby byl v případě náhlého výpadku primárního centra zajištěn nepřetržitý provoz ISKN. [4]

3.3 Poskytování dat

Poskytování dat je umožněno na základě vyhlášky číslo 358/2013 Sb., o poskytování údajů z katastru nemovitostí. [4]

3.3.1 Poskytování dat dálkovým přístupem

Na základě registrace je umožněno poskytování dat (zdarma, nebo za úplatu podle typu zákazníka) prostřednictvím sítě Internet. Výpisy z KN a snímky katastrální mapy mají povahu veřejných elektronických listin (jsou opatřeny elektronickou značkou) a mohou být převedeny do podoby listinných veřejných listin. Tímto způsobem je v současné době vyřizována více než třetina výstupů. [4]

Více informací o této metodě poskytování dat je spolu s aplikací dostupných na stránkách ČUZK (http://www.cuzk.cz/aplikace-dp/).

3.3.2 Poskytování dat ve výměnném formátu ISKN

Data z KN mohou být poskytována v textovém souboru, který obsahuje záznamy v pevně definované struktuře. Více informací o tomto výměnném formátu je uvedeno v kapitole č. 4.

Kapitola 4 Výměnný formát ISKN

[5] [12]

Literatura

- [1] AbcLinuxu výkladový slovník. [online], cit. 2016-03-15. URL http://www.abclinuxu.cz/slovnik/open-source
- [2] GDAL Official website. [online], cit. 2016-03-15. URL http://www.gdal.org/
- [3] GDAL Wikipedie. [online], cit. 2016-03-16. URL https://cs.wikipedia.org/wiki/GDAL
- [4] Informační systém katastru nemovitostí. [online], cit. 2016-03-28. URL http://goo.gl/9o771D
- [5] LANDA, M.: Návrh modulu GRASSu pro import dat ve výměnném formátu ISKN. Diplomová práce, České vysoké učení technické, Praha, 2005. URL http://goo.gl/5ZzQps
- [6] PILGRIM, M.: Dive into Python. Berkeley: Apress, 7 2004, ISBN 978-1-59059-356-1.
- [7] PyQt Official website. [online], cit. 2016-03-15. URL https://riverbankcomputing.com/software/pyqt/intro
- [8] PyQt Wikipedie. [online], cit. 2016-03-15. URL https://en.wikipedia.org/wiki/PyQt
- [9] Python official website. [online], cit. 2016-03-15. URL https://www.python.org/
- [10] QGIS Official website. [online], cit. 2016-03-15. URL http://www.qgis.org/
- [11] QGIS Wikipedie. [online], cit. 2016-03-16. URL https://cs.wikipedia.org/wiki/QGIS
- [12] Struktura VFK. [online], cit. 2016-03-15. URL http://goo.gl/2I22N6

Seznam obrázků

2.1	QGIS-logo	3
2.2	GDAL – logo	4
2.3	Python – logo	5
2.4	PyQt-logo	5
3.1	ČUZK – logo	6

Seznam tabulek