南昌航空大学实验报告

二〇二二年五月十一日

课程	名称:	数值计算方法		实验名称:	矩阵三角形分解与线性方程组计算						
班级	£: <u>190</u>)841 班	_ 姓名:	李奕澄	同组人:						
	教师评				签名:						
-,	实验目	的									
	1、掌持	屋矩阵三角形分解	法;								
	2、通过	过练习熟练使用矩	阵三角を	}解法求解:	线性方程组。						
二、	实验内	容									
	(1)	对下列矩阵进行	LU 分解	,并由矩阵	形式输出结果。						
	1)	$A = \begin{bmatrix} 2 & 2 & 3 \\ 4 & 7 & 7 \\ -2 & 4 & 5 \end{bmatrix}$	2) B	$R = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 6 & 1 \end{bmatrix}$	$\begin{bmatrix} 2\\1\\5 \end{bmatrix} 3) C = \begin{bmatrix} 2 & 2 & 3 & 4\\2 & 4 & 9 & 16\\4 & 8 & 24 & 64\\6 & 16 & 51 & 100 \end{bmatrix}$						
		求: 1) 使用杜特 用 LU 分解求解↑		., ,	ē洛特分解,3)两种方法任选一种。						
		1) $\begin{cases} x + y - z = \\ x + 2y - 2z \\ -2x + y + z \end{cases}$	= 1 = 0 2 = 0	$\begin{cases} x+y\\ x+2y\\ -2x+y \end{cases}$	$ \begin{aligned} -z &= 0 \\ -2z &= 1 \\ y + z &= 0 \end{aligned} \begin{cases} x + y - z &= 0 \\ x + 2y - 2z &= 0 \\ -2x + y + z &= 1 \end{cases} $						
三、	实验设	备									
	1、PC										
	2, Mat	lab R2019a;									
四、	实验程	序									
	clc;clea	ır;									
	coef1=	[2,2,3;4,7,7;-2,4,5]									
coef2=[2,1,2;4,3,1;6,1,5]; coef3=[2,2,3,4;2,4,9,16;4,8,24,64;6,16,51,100]; coef4=[1,1,-1;1,2,-2;-2,1,1];coef44=[1;0;0];											
							coef55	=[0;1;0];coef66=[0);0;1];%输	ì入数据	
							[a,b]=c	doolittle(coef1);			
	[c,d]=c	crout(coef2);									
	[e,f]=d	oolittle(coef3);									
	[g]=so	lve(coef4,coef44);									
	[h]=so	lve(coef4,coef55);									
	[i]=solv	ve(coef4,coef66);%	调用函数	攵							

```
disp('对 A 使用杜特利尔分解可得: ');disp([a,b]);
disp('对 B 使用克洛特分解可得: ');disp([c,d]);
disp('对 C 使用杜利特尔分解可得: ');disp([e,f]);
disp('对 1) 求根可得: ');disp(g);
disp('对 2) 求根可得: ');disp(h);
disp('对 3) 求根可得: ');disp(i);%显示结果
function [fx]=solve(coef1,coef2)
    [r,c]=size(coef1);%测量矩阵大小
    [l,u]=doolittle(coef1);%调用 doolittle 函数
    y=zeros(r,1);%创建中间矩阵
    for i=1:r
      temp=0;
       for j=1:i
           temp=temp+l(i,j)*y(j,1);%带入下三角,循环叠加
       end
      y(i,1)=coef2(i,1)-temp;%求对应中间矩阵值
    end
    fx(r,1)=y(r,1)/u(r,c);%求解解矩阵
   for i=r-1:-1:1
       temp=0;
       for j=i+1:r
           temp=temp+u(i,j)*fx(j,1);%, 带入上三角, 对应求解
       end
      fx(i,1)=(y(i,1)-temp)/u(i,i);
    end
end
function [I,u]=crout(coef)
    [r,c]=size(coef);%测量矩阵大小
    for i=1:r
       I(i,1)=coef(i,1); %确定 L 矩阵第一列
    end
    u(1,1)=1;
```

```
u(1,i)=coef(1,i)/coef(1,1); %确定 U 矩阵第一行
    end
    for i=2:r
       for j=i:c
            temp=0;
            for k=1:i-1
               temp=temp+l(j,k)*u(k,i);
            end
            I(j,i)=coef(j,i)-temp;%先确定 L 矩阵的值
            temp1=0;
            for p=1:i-1
               temp1=temp1+l(i,p)*u(p,j);
            end
            u(i,j)=(coef(i,j)-temp1)/l(i,i);%确定 U 矩阵对应值
       end
    end
end
function [I,u]=doolittle(coef)
    [r,c]=size(coef);%确定矩阵尺寸
    for i=1:c
        u(1,i)=coef(1,i);%确定 U 矩阵第一行
    end
    I(1,1)=1;
    for i=2:r
       I(i,1)=coef(i,1)/coef(1,1); %确定 L 矩阵第一列
    end
    for i = 2:r
        for j = i:c
             temp = 0;
             for k = 1:i-1
                 temp = temp + I(i,k)*u(k,j);
             end
```

for i=2:c

五、实验结果

对A使用杜特利尔分解可得:

1	0	0	2	2	3
2	1	0	0	3	1
-1	2	1	0	0	6

对B使用克洛特分解可得:

2.0000	0	0	1. 0000	0. 5000	1. 0000
4.0000	1.0000	0	0	1.0000	-3.0000
6.0000	-2.0000	-7.0000	0	0	1.0000

对C使用杜利特尔分解可得:

1	0	0	0	2	2	3	4
1	1	0	0	0	2	6	12
2	2	1	0	0	0	6	32
3	5	2	1	0	0	0	-36

对1) 求根可得:对2) 求根可得:对3) 求根可得:

 2. 0000
 -1. 0000
 0

 1. 5000
 -0. 5000
 0. 5000

 2. 5000
 -1. 5000
 0. 5000

六、实验总结及心得

通过本次实验学习并掌握了矩阵三角分解法,并且通过编程练习并熟悉了用矩阵三角分解法求解线性方程组。在此次编程的过程中,发现了杜特利尔分解法与克洛特分解法在分解的过程中的步骤的差异与相似之处,所以在编写两种分解方法的函数时加深了两种方法的理解与记忆。同时在编写求根函数时加深了对求根过程的了解和印象。此次实验收获颇多,对后续实验的开展有较大帮助。