Simulation Exercise

Hatem Jasim Hatem
May 13, 2019

library(ggplot2)

Part 1: Simulation Exercise Instructions

In this project you will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

1. Show the sample mean and compare it to the theoretical mean of the distribution.

```
n <- 40
Lambda <- 0.2
mns = NULL
for (i in 1 : 1000) mns = c(mns, mean(rexp(n, Lambda)))
SampleMean<- mean(mns)
TheoreticalMean <- 1/Lambda
paste('Sample Mean', SampleMean, 'Theoretical Mean', TheoreticalMean, sep = ': ')</pre>
```

[1] "Sample Mean: 4.9624590175826: Theoretical Mean: 5"

Sample mean 4.962459 approximately equal to theoretical mean 5

Distribution of Exponential Mean

2. Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

[1] "sample stander deviation: 0.749321922712387: sample variance: 0.561483343857388"

Sample stander deviation can calculated theoretically accourding to this formula: $S = \frac{\sigma}{\sqrt{n}}$ and sample variance accourding to this formula $variance = S^2$

[1] "Theoretical stander deviation: 0.790569415042095: Theoretical variance: 0.625"

The simulation variance 0.5614833 approximately equal to Theoretical variance 0.625

3. Show that the distribution is approximately normal.

The above figure show that sample distribution curve is approximately similar to normal distribution curve.

For further explaint used Q-Q Normal Plot to compare between sample quantiles and theortical quantiles

```
qqnorm(mns, col = 'red')
qqline(mns, col = "green")
```

Normal Q-Q Plot

