

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 3月 5日

出願番号 Application Number: 特願 2003-057990

[ST. 10/C]: [JP 2003-057990]

出願人 Applicant(s): 富士重工業株式会社

2003年10月31日

特許庁長官
Commissioner,
Japan Patent Office

今井 康夫

【書類名】 特許願

【整理番号】 Y1020930

【提出日】 平成15年 3月 5日

【あて先】 特許庁長官 殿

【国際特許分類】 H04N 5/232

【発明者】

【住所又は居所】 東京都新宿区西新宿一丁目 7 番 2 号 富士重工業株式会社内

【氏名】 岡田 洋

【発明者】

【住所又は居所】 東京都新宿区西新宿一丁目 7 番 2 号 富士重工業株式会社内

【氏名】 横倉 修一

【特許出願人】

【識別番号】 000005348

【氏名又は名称】 富士重工業株式会社

【代理人】

【識別番号】 100090033

【弁理士】

【氏名又は名称】 荒船 博司

【選任した代理人】

【識別番号】 100093045

【弁理士】

【氏名又は名称】 荒船 良男

【手数料の表示】

【予納台帳番号】 027188

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 撮像姿勢制御装置

【特許請求の範囲】

【請求項 1】

航空機に搭載されロール軸・ピッチ軸・ヨー軸回りに回転可能な撮像手段の姿勢を制御する撮像姿勢制御装置において、

操縦者の視線方向に係る情報を検出する視線方向情報検出手段と、

前記視線方向に係る情報を参照して前記撮像手段を回転駆動するための駆動信号を出力し、この駆動信号に基づいて前記撮像手段を回転駆動させる駆動手段と

前記撮像手段の姿勢に係る情報を検出する撮像姿勢情報検出手段と、

前記航空機の姿勢に係る情報を検出する機体姿勢情報検出手段と、

前記撮像手段の姿勢に係る情報及び前記航空機の姿勢に係る情報を参照して前記駆動信号を補正する補正手段と、

を備えることを特徴とする撮像姿勢制御装置。

【請求項 2】

前記撮像手段は、

所定の間隔をおいて配置された2台のカメラからなるステレオカメラであることを特徴とする請求項1に記載の撮像姿勢制御装置。

【請求項 3】

前記撮像手段の姿勢に係る情報は、前記撮像手段のヨー角情報であり、

前記航空機の姿勢に係る情報は、機体のピッチ角情報であり、

前記補正手段は、

前記撮像手段をロール軸回りに回転駆動させるための駆動信号を補正することを特徴とする請求項1又は2に記載の撮像姿勢制御装置。

【請求項 4】

前記視線方向に係る情報が所定レベルに達していない場合に、前記撮像手段の回転駆動を阻止する駆動阻止手段を備えることを特徴とする請求項1から3の何れか一項に記載の撮像姿勢制御装置。

【発明の詳細な説明】**【0001】****【発明の属する技術分野】**

本発明は、撮像姿勢制御装置に関し、特に、3軸（ロール軸・ピッチ軸・ヨー軸）回りに回転可能な撮像手段の姿勢を制御する撮像姿勢制御装置に関する。

【0002】**【従来の技術】**

近年、飛行中の外界の画像情報を所定の撮像装置によって取得し、この画像情報に基づいて外界映像を生成し、生成した外界映像を所定のディスプレイに表示することにより、操縦者の操縦を支援する技術が提案され、実用化されている。

【0003】

例えば、相互に直交する3軸回りに回転可能で、撮像方向を任意に変更することができるジャイロ式駆動装置に取り付けられたビデオカメラ（例えば、特許文献1参照。）を、機体の外部に設置する技術が提案されている。このようなジャイロ式駆動装置を採用すると、機体が動搖した場合においても、ジャイロ・スタビライズ効果により、外界映像は安定した状態で維持されることとなる。

【0004】

一方、航空機を操縦する際には、前記したような安定した外界映像だけではなく、地平線の傾斜や進行方向への指向を適切に示すとともに、操縦者の頭部や視線の動きに応じて変化する外界映像（視界情報）を提供する技術が必要となる。

【0005】

かかる視界情報を提供する技術としては、操縦者の頭部に小型のディスプレイ（Head Mounted Display：以下、「HMD」という）を装着するとともに、所定の駆動装置を介して機体にカメラを設置し、操縦者の頭部の動きを測定することにより操縦者の視線方向を検出し、検出した視線方向に従ってカメラを駆動する、というシステム（以下、「視界情報提供システム」という）が提案されている（例えば、特許文献2参照。）。

【0006】**【特許文献1】**

特開平5-167901号公報（第2頁、第2図）

【特許文献2】

特開2001-344597号公報（第1頁、第1図）

【0007】

【発明が解決しようとする課題】

しかし、前記したような視界情報提供システムで使用される駆動装置は、2軸（ピッチ軸・ヨー軸）回りにのみカメラを回転可能とする構造であるため、このシステムによって提供される視界情報を視認した操縦者（又は同乗者）が生理的不快感をおぼえる場合がある。

【0008】

例えば、操縦者が一時的に横を向いたことによりカメラがヨー軸回りに回転し、視界情報が横向きになった状態において、機体がピッティング運動を行った場合には、機体があたかもロール運動を行っているような視界情報が表示される。一方、機体は実際にロール運動を行っているわけではないので、操縦者は、三半規管及び耳石からなる前庭器官により、機体がピッティング運動をしていることを感じる。この結果、操縦者が目から得た視界情報と、前庭器官から得た空間情報とが矛盾することとなるため、操縦者は酔い易くなってしまう。

【0009】

かかる現象は、外部が全く見えない場合（例えば、前記したHMDを使用した場合）や、外部が見え難い場合（例えば、透過型の視界表示装置を使用した場合における夜間・悪天候時）において、顕著となる。

【0010】

本発明の課題は、航空機の視界情報提供システムで用いられる撮像手段の姿勢を制御する撮像姿勢制御装置において、操縦者が目から得た視界情報と、他の器官から得た空間情報とが矛盾することに起因する操縦者の生理的不快感を解消することである。

【0011】

【課題を解決するための手段】

以上の課題を解決するために、請求項1に記載の発明は、航空機に搭載されロ

ール軸・ピッチ軸・ヨー軸回りに回転可能な撮像手段の姿勢を制御する撮像姿勢制御装置において、操縦者の視線方向に係る情報を検出する視線方向情報検出手段と、前記視線方向に係る情報を参照して前記撮像手段を回転駆動するための駆動信号を出力し、この駆動信号に基づいて前記撮像手段を回転駆動させる駆動手段と、前記撮像手段の姿勢に係る情報を検出する撮像姿勢情報検出手段と、前記航空機の姿勢に係る情報を検出する機体姿勢情報検出手段と、前記撮像手段の姿勢に係る情報及び前記航空機の姿勢に係る情報を参照して前記駆動信号を補正する補正手段と、を備えることを特徴とする。

【0012】

請求項1に記載の発明によれば、補正手段により、撮像姿勢情報検出手段で検出した撮像手段の姿勢に係る情報と、機体姿勢情報検出手段で検出した航空機の姿勢に係る情報と、を参照して、撮像手段を回転駆動するための駆動信号を補正することができる。

【0013】

例えば、操縦者が一時的に横を向いたことにより撮像手段がヨー軸回りに回転して撮像手段が横向きになった状態において、機体がピッキング運動を行った場合に、撮像手段の姿勢に係る情報（撮像手段のヨー角情報）と、航空機の姿勢に係る情報（機体のピッチ角情報）と、に基づいて、撮像手段をロール軸回りに回転駆動させるための駆動信号を補正することができる。従って、機体がピッキング運動を行っても、ロール軸はほぼ動かない視界情報を表示することができる。この結果、操縦者が目から得た視界情報と、前庭器官から得た空間情報との矛盾を解消することができるので、操縦者の酔いを防止することができる。

【0014】

請求項2に記載の発明は、請求項1に記載の撮像姿勢制御装置において、前記撮像手段は、所定の間隔をおいて配置された2台のカメラからなるステレオカメラであることを特徴とする。

【0015】

請求項3に記載の発明は、請求項1又は2に記載の撮像姿勢制御装置において、前記撮像手段の姿勢に係る情報は、前記撮像手段のヨー角情報であり、前記航

空機の姿勢に係る情報は、機体のピッチ角情報であり、前記補正手段は、前記撮像手段をロール軸回りに回転駆動させるための駆動信号を補正することを特徴とする。

【0016】

請求項4に記載の発明は、請求項1から3の何れか一項に記載の撮像姿勢制御装置において、前記視線方向に係る情報が所定レベルに達していない場合に、前記撮像手段の回転駆動を阻止する駆動阻止手段を備えることを特徴とする。

【0017】

請求項4に記載の発明によれば、視線方向に係る情報が所定レベルに達していない場合に撮像手段の回転駆動を阻止する駆動阻止手段を備えるので、操縦者が視界情報の変更を望まない場合において、操縦者や機体の微動により撮像手段が回転して視界情報が変更してしまうのを防ぐことができる。従って、安定した視界情報を操縦者に提供することができるので、操縦者が生理的不快感をおぼえることがない。

【0018】

【発明の実施の形態】

以下、本発明の実施の形態を、図面に基づいて詳細に説明する。本実施の形態では、航空機の視界情報提供システムにおいて使用される撮像姿勢制御装置について説明する。なお、視界情報提供システムは、操縦者の頭部に装着するHMD、機体に搭載するステレオカメラ、等を備えるものであり、本実施の形態に係る撮像姿勢制御装置は、ステレオカメラの姿勢を制御するように機能する。

【0019】

まず、本実施の形態に係る撮像姿勢制御装置の構成について、図1及び図2を用いて説明する。図1は、撮像姿勢制御装置の構成を説明するためのブロック図であり、図2は、図1に示した撮像姿勢制御装置によって制御される撮像手段（ステレオカメラ100）の概略図である。

【0020】

撮像姿勢制御装置は、相互に直交するロール軸A₁・ピッチ軸A₂・ヨー軸A₃回りに回転可能なステレオカメラ100（図2参照）の姿勢を制御するものであ

る。ステレオカメラ100は、所定の間隔をおいて配置された2台のカメラ110から構成されており、ステレオカメラ駆動装置200を介して航空機の機体Bの前方下部に設置されている。

【0021】

撮像姿勢制御装置は、図1に示すように、視線方向情報検出手段10、演算装置20、ステレオカメラ駆動装置200、撮像姿勢情報検出手段30、機体姿勢情報検出手段40、補正手段50、駆動阻止手段60、等を備えて構成されている。

【0022】

視線方向情報検出手段10は、操縦者の視線方向に係る情報を検出するものである。本実施の形態では、「視線方向に係る情報」として、操縦者の頭部の姿勢情報（頭部ロール角情報 Φ_T 、頭部ヨー角情報 Ψ_T 及び頭部ピッチ角情報 Θ_T ）を採用している。視線方向情報検出手段10で検出した操縦者の頭部の姿勢情報は、演算装置20に出力される。

【0023】

視線方向情報検出手段10は、操縦者の頭部に装着するHMD70及び機体に搭載した3軸ジャイロセンサによって構成することができる。また、HMD70に搭載したセンサ（磁気センサ、光波センサ、音波センサ等）と、機体に搭載した信号（磁気信号、光波信号、音波信号等）発生手段と、によって視線方向情報検出手段10を構成することもできる。

【0024】

演算装置20は、視線方向情報検出手段10で検出した視線方向に係る情報を参照して、ステレオカメラ100を回転駆動するための駆動信号を出力するものである。演算装置20は、ローパスフィルタ21、リミッタ22、A/D変換器23、補正手段50、駆動阻止手段60、等を備えている。

【0025】

ローパスフィルタ21は、視線方向情報検出手段10によって検出された情報（頭部ロール角情報 Φ_T 、頭部ヨー角情報 Ψ_T 及び頭部ピッチ角情報 Θ_T ）の低周波部分（約数十Hz以下）のみを通過させて高周波ノイズを除去するフィルタで

あり、機体振動の影響を除去する。

【0026】

リミッタ22は、ステレオカメラ100の2台のカメラ110が機体Bに当たるのを回避するために、カメラ110の回転角度を制限するという機能を果たす。リミッタ22により、ステレオカメラ100のロール軸A₁回りの回転角（ロール角Φ）と、ピッチ軸A₂回りの回転角（ピッチ角Θ）と、ヨー軸A₃回りの回転角（ヨー角Ψ）とを、ステレオカメラ100が機体Bに当たらない範囲に制限する。なお、これらロール角Φ、ピッチ角Θ及びヨー角Ψの範囲は、機体Bに対するステレオカメラ駆動装置200の取付位置により決定される。

【0027】

なお、機体Bの進行方向を向いて右側のカメラ110が所定の基準位置から下方に傾斜する場合をロール角「正」とし、2台のカメラ110が所定の基準位置から上方を向く場合をピッチ角「正」とし、2台のカメラ110が所定の基準位置から右側を向く場合をヨー角「正」としている。

【0028】

ステレオカメラ駆動装置200は、演算装置20で出力された駆動信号に基づいてステレオカメラ100を回転駆動して、ステレオカメラ100の姿勢を変更するものである。なお、演算装置20及びステレオカメラ駆動装置200は、本発明における駆動手段を構成する。

【0029】

撮像姿勢情報検出手段30は、ステレオカメラ100の姿勢に係る情報を検出するものである。本実施の形態においては、「ステレオカメラ100の姿勢に係る情報」として、ステレオカメラ100のヨー角情報（ヨー軸A₃回りの回転角）Ψを採用している。

【0030】

機体姿勢情報検出手段40は、航空機の姿勢に係る情報を検出するものである。本実施の形態においては、「航空機の姿勢に係る情報」として、機体のピッチ角情報（機体の前後軸と水平面とのなす角）Θ_Bを採用している。撮像姿勢情報検出手段30及び機体姿勢情報検出手段40としては、ジャイロを用いた慣性機

器や、光や電波等の電磁波を利用する装置等を採用することができる。

【0031】

補正手段50は、ステレオカメラ100の姿勢に係る情報（ステレオカメラ100のヨー角情報 Ψ ）及び航空機の姿勢に係る情報（機体のピッチ角情報 Θ_B ）に基づいて、ステレオカメラ100を回転駆動するための駆動信号を補正するものであり、演算装置20内に設けられている。

【0032】

本実施の形態における補正手段50は、ステレオカメラ100のヨー角情報 Ψ 及び機体のピッチ角情報 Θ_B を用いて、補正角情報 Φ_C を算出し、視線方向情報検出手段10で検出された頭部ロール角情報 Φ_T からこの補正角情報 Φ_C を減算することにより、補正ロール角情報 Φ_F を算出している。すなわち、

$$\Phi_F = \Phi_T - \Phi_C \quad (1)$$

となる。ここで、補正角情報 Φ_C は、

$$\Phi_C = \Theta_B \sin \Psi \quad (2)$$

なる式で算出される。なお、機体のピッチ角情報 Θ_B 及びステレオカメラ100のヨー角情報 Ψ は、A/D変換器23によりデジタル信号に変換される。

【0033】

駆動阻止手段60は、視線方向情報検出手段10で検出した視線方向に係る情報が所定レベルに達していない場合に、ステレオカメラ100の回転駆動を阻止するものであり、演算装置20内に設けられている。具体的に説明すると、視線方向情報検出手段10で検出された頭部ロール角情報 Φ_T 、頭部ヨー角情報 Ψ_T 及び頭部ピッチ角情報 Θ_T の絶対値が、予め規定した規定値 Φ_0 、 Ψ_0 、 Θ_0 未満であった場合には、駆動阻止手段60は、ステレオカメラ駆動装置200への駆動信号の出力を阻止する。

【0034】

次に、本実施の形態に係る撮像姿勢制御装置によるステレオカメラ100の姿勢制御動作について説明する。

【0035】

まず、操縦者の頭部が横向きになると、視線方向情報検出手段10は、操縦者

の頭部の姿勢情報（頭部ヨー角情報 Ψ_T ）を検出する。視線方向情報検出手段10で検出された頭部ヨー角情報 Ψ_T は、演算装置20に出力され、ローパスフィルタ21を経て、駆動阻止手段60に達する。駆動阻止手段60で、頭部ヨー角情報 Ψ_T の絶対値が規定値 Ψ_0 以上である場合には、頭部ヨー角情報 Ψ_T はそのままリミッタ22を経由してステレオカメラ駆動装置200に伝送される。一方、頭部ヨー角情報 Ψ_T の絶対値が規定値 Ψ_0 未満である場合には、駆動阻止手段60は、ステレオカメラ駆動装置200への駆動信号の出力を阻止する。

【0036】

駆動阻止手段60を通過した頭部ヨー角情報 Ψ_T がステレオカメラ駆動装置200に入力されると、ステレオカメラ駆動装置200は、この頭部ヨー角情報 Ψ_T に基づいてステレオカメラ100をヨー軸A₃回りに回転させる。ステレオカメラ100がヨー軸A₃回りに回転すると、撮像姿勢情報検出手段30は、ステレオカメラ100のヨー角情報 Ψ を検出する。そして、撮像姿勢情報検出手段30によって検出されたヨー角情報 Ψ は、A/D変換器23でデジタル信号に変換された上で、演算装置20の補正手段50に伝送される。

【0037】

このようにステレオカメラ100がヨー軸A₃回りに回転した状態において、航空機がピッキング運動を行うと、機体姿勢情報検出手段40は、機体のピッチ角情報 Θ_B を検出する。機体姿勢情報検出手段40で検出されたピッチ角情報 Θ_B は、A/D変換器23を経由して、演算装置20の補正手段50に伝送される。

【0038】

補正手段50は、撮像姿勢情報検出手段30で検出されたヨー角情報 Ψ と、機体姿勢情報検出手段40で検出されたピッチ角情報 Θ_B と、を参照して補正ロール角情報 Φ_F を算出し、ステレオカメラ100を回転駆動するための駆動信号を補正する。

【0039】

例えば、視線方向情報検出手段10で検出された頭部ロール角情報 Φ_T が 0° （左右への傾斜なし）、撮像姿勢情報検出手段30で検出されたヨー角情報 Ψ が 30° （右向き）、機体姿勢情報検出手段40で検出されたピッチ角情報 Θ_B が

30°（上向き）である場合には、補正ロール角情報 Φ_F は、前記した（1）式及び（2）式を用いて、

$$\Phi_F = \Phi_T - \Theta_B \sin \Psi = 0 - 30 \times \sin 30^\circ = -15^\circ \quad (3)$$

と算出される。

【0040】

すなわち、検出された頭部ロール角情報 Φ_T は0°であって、仮にこの情報 Φ_T がそのままステレオカメラ駆動装置200に入力されるとステレオカメラ100のロール角 Φ は所定の基準位置から傾斜することはないが、本実施の形態においては、補正手段50により算出された補正ロール角情報 Φ_F （-15°）がステレオカメラ駆動装置200に入力されるため、ステレオカメラ100は所定の基準位置から左側に15°傾斜することとなる。このため、機体がピッキング運動をしてもロール軸はほぼ動かない視界情報を表示することができる。

【0041】

以上説明した実施の形態に係る撮像姿勢制御装置においては、補正手段50により、撮像姿勢情報検出手段30で検出したステレオカメラ100のヨー角情報 Ψ と、機体姿勢情報検出手段40で検出した機体のピッチ角情報 Θ_B と、を参照して駆動信号を補正することができる。

【0042】

すなわち、操縦者が一時的に横を向いたことによりステレオカメラ100がヨー軸A3回りに回転して横向きになった状態において、機体がピッキング運動を行った場合に、ステレオカメラ100のヨー角情報 Ψ と、機体のピッチ角情報 Θ_B と、に基づいて補正ロール角情報 Φ_F を算出することにより、ステレオカメラ100のロール軸A1回りの回転駆動量を補正することができる。従って、操縦者は、機体がロール運動しているような錯覚を受けることがない。この結果、操縦者がHMD70から得た視界情報と、前庭器官から得た空間情報との矛盾を解消することができるので、操縦者の酔いを防止することができる。

【0043】

また、本実施の形態に係る撮像姿勢制御装置においては、視線方向情報検出手

段10で検出した情報（頭部ロール角情報 Φ_T 、頭部ヨー角情報 Ψ_T 及び頭部ピッチ角情報 Θ_T ）の絶対値が、予め規定した規定値（ Φ_0 、 Ψ_0 、 Θ_0 ）未満である場合に、駆動阻止手段60によってステレオカメラ100の回転駆動を阻止することができる。従って、操縦者が視界情報の変更を望まない場合において、センサの共振や、機体の振動に起因する視線方向の変動、等によりステレオカメラ100が回転して視界情報が変わってしまうのを防ぐことができる。この結果、安定した視界情報を操縦者に提供することができるので、操縦者は、疲労感の認知を含む生理的不快感をおぼえることがない。

【0044】

なお、以上の実施の形態においては、視線方向情報検出手段10として、操縦者の頭部の姿勢情報を検出するものを採用したが、操縦者の眼球の動きを検出するアイカメラ等を視線方向情報検出手段10として採用することもできる。

【0045】

また、本発明に係る撮像姿勢制御装置を搭載する航空機は、操縦者が搭乗する有人の航空機であるが、その種類は特に限定されることはない。すなわち、固定翼航空機、回転翼航空機、飛行船、等の各種有人航空機に本発明に係る撮像姿勢制御装置を搭載することができる。

【0046】

また、本発明に係る撮像姿勢制御装置は、地上で遠隔操縦を行う航空機についても適用することができる。例えば、視線方向情報検出手段10を装着したHMD70等のディスプレイを地上操作員がかぶり、これ以外の装置を機体に搭載して運用することができる。

【0047】

【発明の効果】

請求項1に記載の発明によれば、補正手段により、撮像姿勢情報検出手段で検出した撮像手段の姿勢に係る情報と、機体姿勢情報検出手段で検出した航空機の姿勢に係る情報と、を参照して駆動信号を補正することができる。例えば、操縦者が一時的に横を向いたことにより撮像手段が横向きになった状態において、機体がピッティング運動を行った場合に、撮像手段のヨー角と、機体のピッチ角と、

に基づいて、撮像手段のロール軸回りの回転駆動量を補正することができる。この結果、機体がロール運動しているような錯覚を起こすことなく、視界情報を表示することができるので、操縦者が得た視界情報と、前庭器官から得た空間情報との矛盾を解消することができ、操縦者の酔いを防止することができる。

【0048】

請求項4に記載の発明によれば、視線方向に係る情報が所定レベルに達していない場合に撮像手段の回転駆動を阻止する駆動阻止手段を備えるので、操縦者が視界情報の変更を望まない場合において、センサの共振や、機体の振動等に起因する視線方向の変動、等により撮像手段が回転して視界情報が変わってしまうのを防ぐことができる。従って、安定した視界情報を操縦者に提供することができるので、操縦者は、疲労感の認知を含む生理的不快感をおぼえることがない。

【図面の簡単な説明】

【図1】

本発明の実施の形態に係る撮像姿勢制御装置の構成を説明するためのブロック図である。

【図2】

図1に示した撮像姿勢制御装置によって制御されるステレオカメラの概略図である。

【符号の説明】

- 1 0 視線方向情報検出手段
- 2 0 演算装置（駆動手段）
- 3 0 撮像姿勢情報検出手段
- 4 0 機体姿勢情報検出手段
- 5 0 補正手段
- 6 0 駆動阻止手段
- 7 0 HMD
- 1 0 0 ステレオカメラ（撮像手段）
- 1 1 0 カメラ
- 2 0 0 ステレオカメラ駆動装置（駆動手段）

A₁ ロール軸
A₂ ピッチ軸
A₃ ヨー軸

【書類名】

図面

【図 1】

【図2】

【書類名】 要約書

【要約】

【課題】 航空機の視界情報提供システムで用いられる撮像手段の姿勢を制御する撮像姿勢制御装置において、HMD等のディスプレイから得た視界情報と、他の器官から得た空間情報と、が矛盾することによる操縦者の生理的不快感を消す。

【解決手段】 相互に直交する3軸回りに回転可能な撮像手段100の姿勢を制御する撮像姿勢制御装置において、操縦者の視線方向に係る情報を検出する視線方向情報検出手段10と、視線方向に係る情報を参照して撮像手段100を回転駆動するための駆動信号を出力し、この駆動信号に基づいて撮像手段100を回転駆動させる駆動手段20、200と、撮像手段10の姿勢に係る情報を検出する撮像姿勢情報検出手段30と、航空機の姿勢に係る情報を検出する機体姿勢情報検出手段40と、撮像手段10の姿勢に係る情報及び航空機の姿勢に係る情報を参照して駆動信号を補正する補正手段50と、を備える。

【選択図】 図1

特願 2003-057990

出願人履歴情報

識別番号 [000005348]

1. 変更年月日 1990年 8月 9日

[変更理由] 新規登録

住 所 東京都新宿区西新宿一丁目7番2号

氏 名 富士重工業株式会社