Dérivation

Les intervalles / considérés ne sont pas vides ni réduits à un point.

QCOP DER.1

- Soit I un intervalle de \mathbb{R} . Soit $f:I\longrightarrow \mathbb{R}$. Soit $a\in I$. Montrer que les deux assertions suivantes sont équivalentes :
 - (i) f est dérivable en a;
 - (ii) $\exists \varphi \in \mathscr{C}^0(I,\mathbb{R}): \forall x \in I, f(x) = f(a) + (x a)\varphi(x).$
- Énoncer et démontrer un théorème de composition des dérivées.

QCOP DER.2

Soit I un intervalle de \mathbb{R} . Soit $c \in I$. Soit $f: I \longrightarrow \mathbb{R}$ une fonction.

On considère les assertions suivantes :

- (i) c est intérieur à I;
- (ii) f est dérivable en c;
- (iii) f admet un extremum local en c;
- (iv) f'(c) = 0.
- Donner la définition de (iii).
- Montrer que

$$(i),(ii),(iii) \implies (iv).$$

- Donner, pour chaque situation, un exemple de *I*, *f* et *c* tels que :
 - (a) (ii) et (iv) sont vraies, mais (iii) est fausse;
 - (b) (iii) est vraie, mais (ii) est fausse;
 - (c) (ii) et (iii) sont vraies, mais (i) et (iv) sont fausses.

QCOP DER.3

Soit I un intervalle de \mathbb{R} . Soit $f:I\longrightarrow \mathbb{R}$ une fonction. Soit [a,b] un segment de I.

- Soit $c \in \mathring{I}$ tel que f est dérivable en c. Donner une condition nécessaire pour que f admette un extremum local en c.
- Énoncer et démontrer le théorème de Rolle.
- Le théorème de Rolle est-il vrai si f est à valeurs complexes?

QCOP DER.4

- Enoncer le théorème de Rolle.
- Énoncer et démontrer le théorème des accroissements finis.
- \mathbf{X} Soit $f:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction dérivable telle que

$$\forall x \in \mathbb{R}, \quad f'(x) \neq 0.$$

Monter que f est injective.

QCOP DER.5

Soit I un intervalle de \mathbb{R} . Soit $f:I\longrightarrow \mathbb{R}$ dérivable sur I.

- Enoncer le théorème des accroissements finis.
- (a) Montrer que

$$f$$
 est constante sur $I \iff \forall x \in \overset{\circ}{I}, \ f'(x) = 0.$

- **(b)** Montrer que le résultat reste vrai si f est à valeurs dans \mathbb{C} .
- Montrer que cette caractérisation est fausse si / n'est pas un intervalle.

QCOP DER.6

- Enoncer le théorème des accroissements finis.
- Énoncer et démontrer l'inégalité des accroissements finis.
- Établir les inégalités suivantes :

$$\forall x \in \mathbb{R}, \quad \left| \sin(x) \right| \leqslant |x|;$$

 $\forall x, y \in \mathbb{R}, \quad \left| \arctan(x) - \arctan(y) \right| \leqslant |x - y|;$
 $\forall x > 0, \quad \frac{1}{x + 1} < \ln(1 + x) - \ln(x) < \frac{1}{x}.$

QCOP DER.7

Soit I un intervalle de \mathbb{R} .

- Définir les espaces $\mathscr{C}^0(I,\mathbb{R})$, $\mathscr{C}^1(I,\mathbb{R})$, $\mathscr{C}^k(\mathbb{R})$ (pour $k \in \mathbb{N}^*$) et $\mathscr{C}^{\infty}(I,\mathbb{R})$.
- Montrer que la dérivabilité en un point implique la continuité en ce point.
- Donner un exemple de fonction continue non dérivable.
- **Q** Donner un exemple de fonction dérivable mais pas de classe \mathscr{C}^1 .

QCOP DER.8

Soit I un intervalle de \mathbb{R} . Soit $f:I\longrightarrow \mathbb{R}$ une fonction.

- Énoncer le théorème des accroissements finis.
- **?** Soit $a \in I$. Soit $\ell \in \overline{\mathbb{R}}$. On suppose que

$$\begin{cases} f \text{ est continue sur } I; \\ f \text{ est dérivable sur } I \smallsetminus \{a\}; \\ (f_{|I \smallsetminus \{a\}})' \text{ admet pour limite } \ell \text{ en } a. \end{cases}$$

- (a) Que dire si $\ell \in \mathbb{R}$? Le démontrer.
- **(b)** Que dire si $\ell = \pm \infty$?