Laboratório de Sistemas Digitais Aula Teórica 7

Ano Letivo 2014/15

Modelação em VHDL e Síntese de Máquinas de Estados Finitos

Aspetos Gerais Modelo de *Moore*

Conteúdo

- O processo de síntese de Máquinas de Estados Finitos (MEFs)
- Workflow da síntese
- Construção do diagrama de estados a partir da especificação
- Abordagens de modelação baseadas em VHDL
 - Modelo de Moore
- Simulação de MEFs

Síntese de Unidades de Controlo e Circuitos Sequenciais em Geral

- Passagem da especificação à implementação
 - Conceção de uma solução para um problema concreto (muitas vezes) inicialmente descrito em linguagem natural ou na forma de "use-cases"
 - Formalização/abstração segundo o modelo de Máquina de Estados Finitos (MEF)
 - Processo composto por diferentes passos de modelação, otimização e geração de hardware
 - Solução frequentemente
 - Não única
 - Sub-ótima

Instrumentos de Modelação e Síntese de MEFs

- Diagramas de Estado
- Cartas ASM: Algorithmic State Machines*
- Tabelas de Estado/Saídas
- Tabelas de Transição/Saídas
- Tabelas de Excitação
- Diagramas temporais
- Linguagens de Descrição de Hardware
 - VHDL

• ...

Workflow da Síntese de MEFs

- Entender a especificação inicial
- Obter um representação abstrata da MEF
 - Diagrama de Estados/Saídas, Tabelas de Estado/Saídas, ...
- Modelação em VHDL
- Simulação funcional da MEF
 - Testbenches
- Síntese lógica e implementação em hardware (em FPGA no contexto de LSDig)
- Verificação do comportamento da MEF em hardware

MEFs: Especificação → Formalização

- Problema principal (aspeto chave / mais importante)
 - Como passar da especificação ao diagrama de estados?
 - Qual do significado de cada estado?
- Especificação de ser
 - tão precisa quanto possível ...
 - identificar as entradas e as saídas (E/S)
 - Identificar o comportamento E/S
 - incluir "use cases"
- Vamos analisar alguns exemplos...

Exemplo 1 - Especificação

- Máquina de venda de bebidas
 - Requisitos gerais:
 - entrega lata de cerveja (sem álcool ⁽²⁾) após depósito de €
 0.60
 - uma única entrada para moedas de € 0.20 e € 0.50
 - a máquina não dá troco
 - Passo 1: perceber o problema (fazer um desenho / diagrama de blocos!...)

Exemplo 1 – Análise de Requisitos

- Começar por identificar as sequências de entradas que levam diretamente à abertura
 - 3 moedas de €0.20
 - 1 moeda de €0.20 + 1 moeda de €0.50
 - 1 moeda de €0.50 + 1 moeda de €0.20
 - 2 moedas de €0.50
 - 2 moedas de €0.20 + 1 moeda de €0.50
- Identificar entradas de saídas:
 - Entradas:
 - V (sensor ativo para €0.20)
 - C (sensor ativo para €0.50)
 - Saída
 - OPEN

Exemplo 1 – Diagrama de Estados

 Diagrama de estados primário (inicial)

Diagrama de estados correto com reutilização de estados

Exemplo 1 – Tabela de Estados

 Tabela de Estados/Saídas decorre diretamente do DE

PState	Inputs		NState	Output
	V	С		open
EO	0	0	E0	0
	0	1	E2	0
	1	0	E1	0
	1	1	X	X
E1	0	0	E1	0
	0	1	E3	0
	1	0	E2	0
	1	1	X	X
E2	0	0	E2	0
	0	1	E3	0
	1	0	E3	0
	1	1	×	X
E3	X	X	E3	1

Exemplo 2: Detector de Sequências

- Reconhecimento de padrões em frases de comprimento finito. Exemplo:
 - Um reconhecedor de frases finitas tem uma entrada (X) e uma saída (Z). A saída é activa sempre que a sequência de entrada ...010...é observada, desde que a sequência 100 nunca tenha surgido.
 - Exemplo do comportamento entrada/saída:
 - X: 011<u>**010**</u>00010...
 - Z: 00000**1**00000...
 - X: 00101010010...
 - Z: 000**1**0**1**0**1**000...

Exemplo 2: Diagrama de Estados

 Desenhar o diagrama de estados para os padrões que devem ser reconhecidos i.e., 010 e 100.

Exemplo 2: Diagrama de Estados

 Completar o diagrama analisando as condições de transição de cada estado

Transições em S3

Transições em S1 e S4

Transições em S2 e S5

Exemplo 2: Revisão do Procedimento

- Escrever sequências de teste com as entradas/saídas para perceber a especificação
- Criar uma sequência de estados e transições para as sequências que se pretende ver reconhecidas
- Acrescentar transições em falta; reusar estados existentes o mais possível
- Verificar o comportamento E/S do diagrama de estados para assegurar que funciona como pretendido

Agora que vimos alguns exemplos de passagem da especificação para o diagrama de estados, vamos ver como descrever eficientemente a MEF em VHDL...

Modelos Comportamentais Textuais de MEFs

- A linguagem VHDL proporciona descrições de alto nível (comportamentais) de MEFs
 - Muito próximas dos diagrama de estados
 - Não são necessárias equações para explicitar saídas e o "próximo estado"
 - Por omissão é o sintetizador que determina a codificação dos estados com base em estados simbólicos
 - Vários estilos de escrita possíveis em VHDL (mais frequentemente com 2 ou 3 processos)
 - Tradução direta do digrama de estados para VHDL no IDE de desenvolvimento

MEFs em VHDL - O Estilo de Codificação Baseado em "2" Processos

Modelo de Moore revisitado

 Podemos reorganizar sinais e portos segundo dois processos (compatível com *Moore* e

MEFs em VHDL - O Estilo de Codificação Baseado em "2" Processos

- Processo "synchronous" (apenas uma designação)
 - Atribuições dependentes dum evento de relógio e/ou de atribuição/inicialização assíncrona dos elementos de memória
- Processo "combinatorial" (apenas uma designação)
 - Atribuições relacionadas com a determinação de
 - Saídas
 - Estado seguinte
- Os 2 processos são interdependentes

Exemplo (segundo *Moore*) – Detetor de Paridade

- Detetor de paridade
 - Deteta se o número de '1's ocorridos numa stream (série) de bits é par ou **impar**
 - Entradas
 - clk
 - clear / reset (assincrono)
 - inData
 - Saída
 - parityOut

clear

Exemplo (segundo *Moore*) – Detetor de Paridade

```
library IEEE;
                                                   comb proc: process(pState, inData)
use IEEE.STD LOGIC 1164.all;
                                                   begin
                                                       case pState is
entity ParityDetector is
                                                          when S0 =>
   port(clear : in std logic;
                                                             parityOut <= '0'; -- Moore output</pre>
                   : in std logic;
        clk
                                         Criação dum
                                                             if (inData = '1') then
        inData : in std logic;
                                                                nState <= S1;</pre>
                                         novo tipo de
        parityOut : out std logic);
                                                             else
                                            dados
end ParityDetector;
                                                                nState <= S0;
                                         "enumerado"
                                                             end if:
architecture Behav of ParityDetector i
                                                          when S1 =>
                                                            parityOut <= '1'; -- Moore output</pre>
   type TState is (S0,S1);
                                                             if (inData = '1') then
                                             S0/
   signal pState, nState: TState;
                                    clear
                                                                nState <= S0;</pre>
                                                             else
begin
                                                                nState <= S1;
   sync proc: process(clk, clear)
                                                             end if;
   begin
                                                          when others => -- Catch all condition
      if (clear = '1') then
                                                             nState
                                                                       \leq 80;
         pState <= S0;
                                             S1/
                                                            parityOut <= '0';</pre>
      elsif (rising edge(clk)) then
                                                          end case;
         pState <= nState;</pre>
                                                     end process;
      end if:
                                                   end Behav;
                                                                           Tradução direta do
   end process;
                                                                              Diagrama de
    Onde estão as variáveis de estado?
```

Estados

Simulação – Detetor de Paridade

Simulação com testbench:

- Gerada a partir do ficheiro VWF
- Gerada diretamente em VHDL de acordo com o *template* para componentes sequenciais
 - 1 processo para geração do sinal de relógio
 - 1 processo para inicialização e geração da entrada

- Muito importante:

- Não comutar as entradas na vizinhança das transições ativas do sinal de relógio (refletir na simulação o cumprimento dos tempos de *setup* e de *hold*)

Comentários Finais

- No final desta aula e do trabalho prático 7 de LSDig, deverá ser capaz de:
 - Construir diagramas de estados com base na especificação de uma MEF
 - Conhecer os passos necessários à síntese de máquinas de estados finitos
 - Recorrer a descrições comportamentais VHDL próximas do diagrama de estados saídas
 - Modelo de *Moore*
 - Conceber testbenches para a simulação funcional das MEF
- ... bom trabalho prático 7, disponível no site da UC
 - elearning.ua.pt