SIO 207A: Fundamentals of Digital Signal Processing Class 13

Florian Meyer

Scripps Institution of Oceanography Electrical and Computer Engineering Department University of California San Diego

0

Filter Design – Homework 5 & 6

- In Homework 5, transition width specified as $50 {\rm Hz} \to 62.5 {\rm Hz}$ to protect against aliasing (all frequencies above $f_{\rm s}'=62.5 {\rm Hz}$ will alias into region below $62.5 {\rm Hz}$)
- However, since the transition region is a "don't care" region, might as well allow aliasing of signals above $62.5 \rm{Hz}$ into this region

Filter Design – Homework 5 & 6

- In Homework 5, transition width specified as $50 {\rm Hz} \to 62.5 {\rm Hz}$ to protect against aliasing (all frequencies above $f_{\rm s}' = 62.5 {\rm Hz}$ will alias into region below $62.5 {\rm Hz}$)
- However, since the transition region is a "don't care" region, might as well allow aliasing of signals above $62.5 \rm Hz$ into this region
- Thus expanding the transition region to $50 Hz \to 75 Hz$ will not result in aliasing into the region we care about $(0 Hz \to 50 Hz)$

 The benefit is that the wider the transition region, the easier it is for the filter design algorithm to yield smaller ripples in the passband and stopband regions

2

Filter Design – Homework 6

binang

- Normalize impulse response h[n] so that largest coefficients is 1
- Multiply coefficients by 2^b , i.e., $b=3,2^3=8$
- Round to nearest integer part
- Multiply by 2^{-b}

• Look at the characteristics of quantized impulse response

Frequency Sampling Approach to FIR Filter Design

 Let us assume we design an ideal filter in discrete frequency domain by setting all samples in stopband to 0

$$H(e^{j\omega}) = e^{-j\omega\frac{N-1}{2}} \sum_{k=0}^{N-1} \tilde{H}(k) \; e^{j\frac{2\pi}{N}k\frac{N-1}{2}} \frac{\sin\left[N\frac{\omega-\frac{2\pi}{N}k}{2}\right]}{\sin\left[\frac{\omega-\frac{2\pi}{N}k}{2}\right]}$$

$$\tilde{h}[n] = \mathrm{IFFT}\Big(\tilde{H}(k)\Big) \qquad \qquad \int_{\mathrm{samples of desired frequency response}}^{\mathrm{N-1}} \mathrm{d}k \, dk$$

impulse response with N samples period

see also Section 7.4 in Oppenheim & Schafer, 1999: "Optimal Approximations of FIR Filters"

Frequency Sampling Approach to FIR Filter Design

• Let us assume we design an ideal filter in discrete frequency domain by setting all samples in stopband to 0

$$H(e^{j\omega}) = e^{-j\omega\frac{N-1}{2}} \sum_{k=0}^{N-1} \tilde{H}(k) \ e^{j\frac{2\pi}{N}k\frac{N-1}{2}} \underbrace{\frac{\sin\left[N\frac{\omega-\frac{2\pi}{N}k}{2}\right]}{\sin\left[\frac{\omega-\frac{2\pi}{N}k}{2}\right]}}_{\text{function}} \text{ interpolation function}$$

$$[n] = \text{IFFT}(\tilde{H}(k))$$

$$\tilde{h}[n] = \text{IFFT}\Big(\tilde{H}(k)\Big)$$

impulse response with N samples period

FIR filter response h[n] is equal to the first N samples of $\tilde{h}[n]$ and zero otherwise

→ multiplication of h[n] with rectangular window

frequency response

Frequency Sampling Approach to FIR Filter Design

• Instead of just using samples of the ideal response, include 2-3 transition regions samples to mitigate the high sidelobes

Continuous Frequency Response Synthesis of "Ideal" Discrete Filter Continuous Frequency Response Synthesis: Equiripple Design

6

Frequency Sampling Approach to FIR Filter Design

• Instead of just using samples of the ideal response, include 2-3 transition regions samples to mitigate the high sidelobes

Continuous Frequency Response Synthesis of "Ideal" Discrete Filter Continuous Frequency Response Synthesis: Equiripple Design

Adjussamprespo

Adjust value of transition sample to minimize stopband response levels

see also Section 7.4.3 in *Oppenheim & Schafer, 1999*: "The Parks-McClellan algorithm" (Equiripple design)