Langevin Monte Carlo Beyond Lipschitz Gradient Continuity

¹Brno University of Technology ²University of Warsaw ³Norwegian University of Science and Technology (NTNU)

Matej Benko ¹ Iwona Chlebicka ² Jørgen Endal ³ Błażej Miasojedow ²

Scope

We provide an algorithm to sample from the probability measure with the density

$$\mu^*(x) = \frac{\exp(-V(x))}{\int_{\mathbb{R}^d} \exp(-V(y)) \, \mathrm{d}y}.$$

- We do not need to assume that ∇V is globally Lipschitz and moreover does not have to exists.
- Our approach cover light tail distributions.

Assumptions

• V is λ -convex for $\lambda \in \mathbb{R}$ outside of a ball $B \subset \mathbb{R}^d$:

$$V(x) \ge V(y) + \nabla V(y) \cdot (x - y) + \frac{\lambda}{2} \mathbb{1}_{\mathbb{R}^d \setminus B}(y) |x - y|^2; \qquad \forall x, y \in \mathbb{R}^d.$$

• V is gradient locally Lipschitz with polynomial q-growth:

$$|\nabla V(x) - \nabla V(y)| \le L_q \min\{|x - y|, 1\}(|x|^{q-1} + |y|^{q-1}) \quad \forall x, y \in \mathbb{R}^d.$$

• Initial distribution $\varrho_0 \in \mathscr{P}_{q_V+1}(\mathbb{R}^d)$, i.e. has finite moment of order q_V+1 .

Gradient Flows

• We consider μ^* as a result of variational problem

$$\mu^* = \underset{\mu \in \mathscr{P}_2(\mathbb{R}^d)}{\operatorname{arg \, min}} \mathcal{F}[\mu] = \underset{\mu \in \mathscr{P}_2(\mathbb{R}^d)}{\operatorname{arg \, min}} \left\{ \mathcal{F}_V[\mu] + \mathcal{F}_{\mathcal{E}}[\mu] \right\},\,$$

such that

$$\mathcal{F}_V[\mu] := \int_{\mathbb{R}^d} V(x) \, \mu(\mathrm{d} x) \qquad \text{and} \qquad \mathcal{F}_{\mathcal{E}}[\mu] := \begin{cases} \int_{\mathbb{R}^d} \mu(x) \log \mu(x) \, \, \mathrm{d} x \,, & \text{iff } \mu \ll \mathrm{Leb} \,, \\ +\infty \,, & \text{otherwise} \,. \end{cases}$$

Algorithm

• We define Proximal operator:

$$\operatorname{prox}_{V}^{\tau}(x) := \underset{y \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \left\{ V(y) + \frac{1}{2\tau} |y - x|^{2} \right\}.$$

- We consider numerical approximation of the minimizer with known precision δ .
- Proximal step does not require existence of ∇V .
- The approach with proximal step allows us to sample from density with non-smooth potential.

Inexact Proximal Langevin Algorithm (IPLA)

- Sample initial distribution $X_0 \sim \mu_0$
- For k = 0, ..., n 1:

Step 1: Run routine for computing with an output

$$X_{k+\frac{2}{3}} = \text{prox}_{V}^{\tau}(X_{k}) + \Theta_{k+\frac{2}{3}}; \qquad |\Theta_{k+\frac{2}{3}}| \le \delta,$$

Step 2: Add Gaussian noise, i.e

$$X_{k+1} = X_{k+\frac{2}{3}} + Z_{k+1}; \qquad Z_{k+1} \sim \mathcal{N}(0, 2\tau \operatorname{Id}).$$

- It is implicit version of Unadjusted Langevin Algorithm.
- Thanks to proximal step instead of gradient step we are beyond gradient Lipschitz continuity.

Theoretical Analysis of the Algorithm

- We split the inexact proximal step into two substeps: exact proximal step and additive error:
 - (i) $X_{k+\frac{1}{3}} := \operatorname{prox}_{V}^{\tau}(X_k),$
 - $\begin{array}{ll} \text{(ii)} & X_{k+\frac{2}{3}} \coloneqq X_{k+\frac{1}{3}} + \Theta_{k+\frac{2}{3}}; & \Theta_{k+\frac{2}{3}} \sim \xi_{\delta}, \quad \xi_{\delta} \in \mathscr{P}(\mathbb{R}^d) \, ; \quad \text{supported on } B(0,\delta) \, , \\ \text{(iii)} & X_{k+1} \coloneqq X_{k+\frac{2}{3}} + Z_{k+1}; & Z_{k+1} \sim \mathcal{N}(0,2\tau \operatorname{Id}) \, . \end{array}$
- Step (i) is a step of length τ of gradient flow along the λ_V -convex potential functional \mathcal{F}_V ; $\lambda_V > 0$.
- Step (ii) introduce approximation error from inexact proximal step.
- Step (iii) is a step of length τ of gradient flow along the convex entropy functional $\mathcal{F}_{\mathcal{E}}$.

Auxiliary Result (Moment Bound)

• Theorem: Let $m \ge 0$. There exists a constant C > 0 such that we have

$$\sup_{k} \mathbb{E}|X_k|^m \le Cd^{\frac{m}{2}}.$$

• We need this result since we allow ∇V to be beyond gradient Lipschitz.

Figure 1. Trajectory of the 1^{st} coordinate from sampling from distribution with the light tails (Example 1) starting in a tail. Both plots are based on the same data.

Figure 2. Example 1, starting in minimizer. Dependence of RE and CV of IPLA, TULA and ULA on stepsize τ . ULA gives results only for smaller values of τ . Dashed line represents the observed edge of the area of ULA stability ($\tau \approx 0.01$).

0.05

Results: KL Error Bound

• We state bound for a sequence of probability measures $\{\nu_n^N\}_{n\in\mathbb{N}}$, called average measures, defined for every $n, N \in \mathbb{N}, n \ge 1$ by

$$u_n^N := \frac{1}{n} \sum_{k=N+1}^{N+n} \varrho_k ,$$

while N is a burn-in time.

• Theorem: Let $\tau < 1/\lambda_V$, $\kappa, \alpha > 0$, and $\delta \le \kappa \tau^{1+\alpha}$. Then it holds:

$$KL(\nu_n^N | \mu^*) \leq \frac{1}{2n\tau} W_2^2(\varrho_N, \mu^*) - \frac{1}{2n\tau} W_2^2(\varrho_{N+n}, \mu^*) + C_{\mu^*} \kappa \tau^{\alpha} + C_{q_V} \tau d^{\frac{q_V+1}{2}}.$$

Corollary: Assume further that

$$0 < \tau_{\varepsilon} \le C_V \varepsilon$$

and let the number of iterations $n_{arepsilon}$ be large enough – we derived explicit condition. Then $\mathrm{KL}(\nu_{n_{\varepsilon}}^{0}|\mu^{*}) \leq \varepsilon$.

Results: W_2 Error Bound

• Theorem: Suppose that $R_V=0$ and $\lambda_V>0$. Let $\tau<1/\lambda_V, \,\alpha\geq 0$, and $\delta\leq\kappa\tau^{1+\alpha}$. Iff τ_ε is small enough and n_{ε} satisfy derived condition then

$$W_2^2(\varrho_{n_{\varepsilon}}, \mu^*) \le \varepsilon$$
.

• We give explicit conditions on τ_{ε} and n_{ε} depending on geometry of V and ϱ_0 and μ^* .

Sketch of the Proof

We prove inequality

$$2\tau(\mathcal{F}[\varrho_{k+1}] - \mathcal{F}[\nu]) \le W_2^2(\varrho_k, \nu) - W_2^2(\varrho_{k+1}, \nu) + C_\nu \delta + C_{q_V} d^{\frac{q_V+1}{2}} \tau^2.$$

- Proven inequality is combination of gradient flow characterization and our moment bound auxiliary result.
- We use that for $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $\mathcal{F}_{\mathcal{E}}[\mu] < +\infty$ it satisfies

$$\mathcal{F}[\mu] - \mathcal{F}[\mu^*] = \mathrm{KL}(\mu|\mu^*),$$

where KL stands for Kullback-Leibler divergence and it is convex.

• We consider exponential decay of gradient flow λ_V -convex functional \mathcal{F}_V , $\lambda_V>0$ and nonincreasing decay along convex $\mathcal{F}_{\mathcal{E}}$.

Experiments

Example 1: Sampling from distribution with light tails

$$\mu^*(x) \propto \exp\left(-\frac{|x|^4}{4}\right)$$
.

Example 2: Ginzburg-Landau model with the potential

$$V(x) = \sum_{i,j,k=1}^{q} \frac{1-v}{2} x_{ijk}^2 + \frac{v\varkappa}{2} |\widetilde{\nabla} x_{ijk}|^2 + \frac{v\varsigma}{4} x_{ijk}^4.$$

• Example 3: Bayesian image deconvolution: Bayesian estimate of sharp picture x from observed blured picture (y) with prior distribution given by nonsmooth isotropic 2D total variation (TV)function. We sample from posterior distribution in the form

$$\mu^* \propto \exp\left(-\frac{1}{2\sigma^2}|y - Hx|^2 - \beta \operatorname{TV}(x)\right).$$

(a) Original image

(b) Blurred with additive noise

(c) Processed ($\beta = 0.03$)

Figure 3. Result of the Bayesian image denoising problem. The original photo by Zbyszko Siemaszko 1955-56.

 We compared IPLA with explicit Unadjusted Langevin Algorithm (ULA) and Tamed Unadjusted Langevin Algorithm (TULA). Abbreviations: RE \equiv relative error, CV \equiv coefficient of variance.

Table 1. Estimation of the moments of light tails distribution from Example 1.

\sim	1om.	Method	Start RE	in tail CV	Start in RE	$x_0 = 0$
\mathbb{E}	$ Y ^2$	IPLA TULA ULA		0.0019 0.0016 NaN		0.0019
\mathbb{E}	$ Y ^4$	IPLA TULA ULA		0.0039 0.0032 NaN		0.0039
\mathbb{E}	$ Y ^6$	IPLA TULA ULA	0.0081 0.0144 NaN	0.0058 0.0047 NaN	0.0047 0.0120 0.0032	0.0058

1998.

Table 2. Estimation of moments of Ginzburg-Landau model from Example 2.

	model from Example 2.							
	Mom.	Method		in tail CV	Start in RE	$x_0 = 0$		
_	$\mathbb{E} Y ^2$	IPLA TULA ULA	0.0067	0.0244 0.0213 NaN	0.0859	0.0739		
	$\mathbb{E} Y ^4$	IPLA TULA ULA	0.0134	0.0491 0.0425 NaN	0.1635	0.1473		
	$\mathbb{E} Y ^6$	IPLA TULA ULA	0.0199	0.0742 0.0638 NaN	0.2337	0.2208		

References

- [1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.
- [2] Matej Benko, Iwona Chlebicka, Jørgen Endal, and Błażej Miasojedow. Convergence rates of particle approximation of forward-backward splitting algorithm for granular medium equations, arxiv: 2405.18034, 2024.
- [3] Nicolas Brosse, Alain Durmus, Éric Moulines, and Sotirios Sabanis. The tamed unadjusted Langevin algorithm. Stochastic Process. Appl.,
- 129(10):3638-3663, 2019. [4] Alain Durmus, Szymon Majewski, and Błażej Miasojedow. Analysis of Langevin Monte Carlo via convex optimization. Journal of Machine
- Learning Research, 20:Paper No. 73, 46, 2019. [5] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29(1):1-17,
- The 39th Annual AAAI Conference on Artificial Intelligence, Philadelphia, Pennsylvania, USA