49.14. PROBLEMS 1723

Let $J: \mathbb{R}^n \to \mathbb{R}$ be the function given by

$$J(v) = \sum_{i,j=1}^{n} a_{iij} v_i v_j + \sum_{i=1}^{n} b_i v_i,$$

where $v = (v_1, \ldots, v_n)$ and

$$a_{ij} = \int_0^1 \varphi_i'(t)\varphi_j'(t)dt, \quad b_i = \int_0^1 \varphi_i(t)dt.$$

(1) Let U_1 be the subset of \mathbb{R}^n given by

$$U_1 = \left\{ v \in \mathbb{R}^n \mid \sum_{i=1}^n b_i v_i = 0 \right\}.$$

Consider the problem of finding a minimum of J over U_1 . Prove that the Lagrange multiplier λ for which the Lagrangian has a critical point is $\lambda = -1$.

(2) Prove that the map defined on U_1 by

$$||v|| = \left(\int_0^1 \left(\sum_{i=1}^n v_i \varphi_i'(x)\right)^2 dx\right)^{1/2}$$

is a norm. Prove that J is elliptic on U_1 with this norm. Prove that J has a unique minimum on U_1 .

(3) Consider the the subset of \mathbb{R}^n given by

$$U_2 = \left\{ v \in \mathbb{R}^n \mid \sum_{i=1}^n (\varphi_i(1) + \varphi_i(0)) v_i = 0 \right\}.$$

Consider the problem of finding a minimum of J over U_2 . Prove that the Lagrange multiplier λ for which the Lagrangian has a critical point is $\lambda = -1/2$. Prove that J is elliptic on U_2 with the same norm as in (2). Prove that J has a unique minimum on U_2 .

(4) Consider the the subset of \mathbb{R}^n given by

$$U_3 = \left\{ v \in \mathbb{R}^n \mid \sum_{i=1}^n (\varphi_i(1) - \varphi_i(0)) v_i = 0 \right\}.$$

This time show that the necessary condition for having a minimum on U_3 yields the equation $1 + \lambda(1-1) = 0$. Conclude that J does not have a minimum on U_3 .