Dénombrements Ensembles Finis

MPSI 2

Propriété 0.0.1

Soit n et p deux entiers naturels non nuls. Soit f une application de [1, n] dans [1, p].

- Si f est bijective, alors n = p
- Si f est injective, alors $n \leq p$
- Si f est surjective, alors $n \ge p$

Définition 0.0.1

Soit E un ensemble non vide.

On dit que E est \underline{fini} si il existe un entier naturel non nul n et une bijection de $[\![1,n]\!]$ sur E

Si un tel entier existe, il est unique et est le cardinal de E.

Notations: card(E), #E, |E|Convention: $card(\emptyset) = 0$

Propriété 0.0.2

Soit E un ensemble fini de cardinal n.

Soit F un sous-ensemble de E.

Alors F est également un ensemble fini <u>et</u> $card(F) \le n$ <u>et</u> $(card(F) = n) \iff (E = F)$

On procède par récurrence sur le cardinal de E.

Lemme: Si E est un ensemble fini de cardinal $n \ge 1$,

Et si a est un élément de E,

Alors $E \setminus \{a\}$ est un ensemble fini de cardinal n-1

Démonstration de la propriété

Soit P(n): Pour tout ensemble E de cardinal n, pour tout sous-ensemble F de E,

$$F$$
 est fini $\underline{\text{et}} \operatorname{card}(F) \leqslant n \ \underline{\text{et}} \ (\operatorname{card}(F) = n) \iff (E = F)$

n = 0: $E = \emptyset$ et $F = \emptyset$ et card(E) = card(F) = 0

Soit $n \in \mathbb{N}^*$ tel que P(n-1) soit vérifié.

Montrons P(n)

Soit E un ensemble fini de cardinal n.

Soit F une partie de E.

 $\underline{1}^{\text{er}}$ cas: F = E alors $\operatorname{card}(F) = n$

 $2^{\text{ème}} \text{ cas: } F \neq E$

Alors $\exists a \in E, \ a \notin F$

Soit a un tel élément.

 $a \notin F \text{ donc } F \subset E \setminus \{a\}$

Or, d'après la lemme, $E \setminus \{a\}$ est de cardinal n-1, donc d'après l'hypothèse de récurrence, F est fini et $\operatorname{card}(F) \leq n-1$

Finalement: $F = E \Rightarrow \operatorname{card}(E) = \operatorname{card}(F)$

$$F \neq E \Rightarrow \operatorname{card}(F) < \operatorname{card}(E)$$

D'o
$$(\operatorname{card}(F) = n) \iff (E = F)$$

Donc P(n) est vérifié.

D'après le principe de récurrence, $\forall n \in \mathbb{N}, P(n)$

Démonstration du lemme

Soit E un ensemble fini de cardinal $n \ge 1$.

Il existe une bijection de [1, n] sur E.

$$\underline{1}^{\text{er}} \text{ cas: } n = 1$$

$$f \colon \{1\} \longrightarrow E$$

$$1 \longmapsto f(1)$$

 $E = \{f(1)\}, \text{ donc } E \setminus \{f(1)\} = \emptyset, \text{ de cardinal } 0.$

 $2^{\text{ème}} \text{ cas: } n \geqslant 2$

Soit a un élément de E.

f réalise une bijection de [1, n] sur E, donc $\exists i \in [1, n]$, unique, f(i) = a

• Si i = n alors f(n) = a

 $\overline{f|_{\llbracket 1,n-1\rrbracket}}$ réalise une bijection de $\llbracket 1,n-1\rrbracket$ sur $f(\llbracket 1,n-1\rrbracket)$

$$\begin{array}{ll}
f(\llbracket 1, n-1 \rrbracket) & \text{readist} & \text{and superstant at } \llbracket 1, n \rrbracket \\
\text{Or} & f(\llbracket 1, n-1 \rrbracket) & = f(\llbracket 1, n \rrbracket \setminus \{n\}) \\
& = E \setminus \{a\}
\end{array}$$

Donc $f|_{\llbracket 1,n-1\rrbracket}$ réalise une bijection de $\llbracket 1,n-1\rrbracket$ sur $E\setminus\{a\}$.

Donc E est de cardinal n-1

• Si $i \neq n$

Notons i_0 l'unique élément de [1, n-1] tel que $f(i_0) = a$

On considère $\tau: \llbracket 1, n-1 \rrbracket \longrightarrow \llbracket 1, n-1 \rrbracket$

$$i \longmapsto \begin{cases} i \text{ si } (i \neq i_0 \text{ et } i \neq n) \\ i_0 \text{ si } i = n \\ n \text{ si } i = i_0 \end{cases}$$

 τ réalise un bijection de [1, n] sur [1, n].

On applique ensuite le premier cas avec $\tau(\llbracket 1,n \rrbracket)$ au lieu de $\llbracket 1,n \rrbracket$

Propriété 0.0.3

Soit P une partie finie, non vide et incluse dans \mathbb{N} , de cardinal p. Alors il existe une unique bijection strictement croissante de $[\![1,p]\!]$ sur P.

Existence:

- P est une partie non vide de \mathbb{N} , et admet un plus petit élément que l'on note y_1 . On pose $\phi(1) = y_1$
- Soit $k \in [1, p-1]$ tel que $(\phi(i))_{i \in [1,k]}$ est défini <u>et</u> $\phi(1) < ... < \phi(k)$ Soit $P_k = \{x \in \mathbb{N}, \ x \in P \text{ et } x > \phi(k)\}$

 P_k est non vide car k < p, donc admet un plus petit élément. On le note $\phi(k+1)$ On construit alors ϕ par itération, et elle est strictement croissante.

Unicité: Soit ψ une application strictement croissante bijective de [1, p] sut P. Alors $P = {\psi(1), \psi(2), ..., \psi(p)}$ et $\psi(1) < ... < \psi(p)$

- $\psi(1)$ est le plus petit élément de P, donc $\psi(1) = \phi(1)$
- $\psi(2)$ est le plus petit élément de $P \setminus \{\psi(1)\}$. Or $P \setminus \{\psi(1)\} = P_1$, donc par définition, $\phi(2) = \psi(2)$
- ...

Conclusion: $\phi = \psi$

Propriété 0.0.4

Soit E et F deux ensembles finis de même cardinal n.

Soit $f: E \longrightarrow F$ une application.

On a alors équivalence entre:

- \bigcirc f est injective
- (2) f est surjective
- ③ f est bijective
 - \bigcirc Supposons f injective.

Montrer que f est surjective.

Donc montrer que f(E) = F

Soit $g: E \longrightarrow f(E)$ une application.

$$x \longmapsto f(x)$$

g réalise une bijection de E sur f(E) par définition de l'espace d'arrivée.

Par ailleurs, E est de cardinal n, donc il existe une bijection ϕ de [1, n] sur E.

$$q \circ \phi : [1, n] \longrightarrow f(E)$$

 $g \circ \phi$ est une bijection, donc $\operatorname{card}(f(E)) = n$

D'où, sachant $f(E) \subset F$ et card(E) = card(F), E = F

Donc f est surjective.

② Supposons f surjective.

Montrer que f est bijective de E sur F.

a/ Montrer que $\exists h \in \mathcal{F}(F, E), \ f \circ h = \mathrm{Id}_F$

Soit y un élément de F.

f est surjective, donc $f^{-1} < \{y\} > \text{est non vide.}$

$$\exists x \in E, \ x \in f^{-1} < \{y\} >$$

Soit x_y un tel élément.

Posons $h(y) = x_y$

Ce raisonnement étant valable pour tout y de F, on définit une application h de F dans E.

Vérifions que $f \circ h = \mathrm{Id}_F$:

$$\forall y \in F, \ f \circ h(y) = f(x_y) = y$$

Donc $f \circ h = \mathrm{Id}_F$

b/ Montrer que h est injective.

Donc montrer que $\forall (y, y') \in F^2, \ h(y) = h(y') \Rightarrow y = y'$

Soit y et y' deux éléments de F tels que h(y) = h(y')

Alors f(h(y)) = f(h(y')) car f est une application

$$\iff y = y' \qquad \qquad \operatorname{car} f \circ h = \operatorname{Id}_F$$

Donc f est injective.

c/ Montrer que f est bijective.

 $h: F \longrightarrow E$ est injective et card(E) = card(F)

Donc h réalise une bijection de F sur E.

Par ailleurs, $f \circ h = \mathrm{Id}_F$

$$\iff f = h^{-1}$$

Conclusion: f est bijective de E sur F.

Conclusion Générale: Les trois propositions sont équivalentes.