MAT-150: Linear Algebra Solution 1

Thomas R. Cameron

September 1, 2017

Other Problems

Problem 1

In this problem we will denote the $m \times n$ matrix A by its entries $a_{i,j}$, where $1 \le i \le m$ and $1 \le j \le n$. We will denote the vector b in \mathbb{R}^m by its entries b_i . In addition, we denote r_i as the ith row of A. Since we stop the algorithm in the presence of a free variable, we may assume that $n \le m$.

Algorithm 1 Solving the matrix equation Ax = b

```
for j = 1 to n do
     amax \leftarrow \max\{|a_{j,j}|, |a_{j+1,j}|, \dots, |a_{m,j}|\}
     if amax = 0 then
          Stop Algorithm, Free Variable
     k \leftarrow \text{smallest index} \geq j \text{ such that } |a_{k,j}| = amax
     Swap r_k and r_j
     Swap b_k and b_j
     for i = j + 1 to m do
         r_i \leftarrow r_i - \frac{a_{i,j}}{a_{j,j}} r_j
b_i \leftarrow b_i - \frac{a_{i,j}}{a_{j,j}} b_j
     end for
     if \max\{|b_{n+1}|,\ldots,|b_m|\}>0 then
          Stop Algorithm, Inconsistent System
     x_k \leftarrow 0 \text{ for } k = n+1, \dots, m
     for i = n to 1 do
          x_i \leftarrow b_i
          for j = i + 1 to n do
              x_i \leftarrow x_i - a_{i,j} x_i
          end for
         x_i \leftarrow \frac{x_i}{a_{i,i}}
     end for
end for
```

Problem 2

Theorem 1. A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column. If the solution set is consistent, then the solution set contains either a unique solution, or infinitely many solutions.

Proof. Let x_1, \ldots, x_n denote the unknown variables in a system of linear equations. If the system is consistent, then the last column of the augmented matrix cannot be a pivot column, since otherwise we would have a solution to $0x_1 + \cdots + 0x_n = b$, where b is a nonzero number. Furthermore, if the last column of the augmented matrix is a pivot column, then no solution can exist. It follows that the system is consistent if and only if the last column of the augmented matrix is not a pivot column.

Now, if the system is consistent, then either each column of the coefficient matrix is a pivot column or not. It follows that the solution is either unique or there are infinitely many solutions.

Problem 3

Theorem 2. Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- (a) For each b in \mathbb{R}^m , the equation Ax = b has a solution.
- (b) Each b in \mathbb{R}^m is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

Proof. We first show that $(a) \to (b) \to (c)$. Since the matrix-vector product Ax is a linear combination of the column vectors of A, it follows that $(a) \to (b)$, i.e. (a) implies (b). Since the span is the set of all linear combinations, it follows that $(b) \to (c)$. These arguments can easily be reversed to show that $(c) \to (b) \to (a)$.

Now, we show that $(a) \to (d)$. If Ax = b is consistent for every b, then there must be a pivot position in every row; otherwise, the last column of the augmented matrix would be a pivot column, which would violate Theorem 1. Again, this argument can easily be reversed to show that $(d) \to (a)$.

Problem 4

Theorem 3. Suppose Ax = b is consistent for some b, and let p denote the particular solution. Then the solution set of Ax = b is the set of all vectors of the form $w = p + v_h$, where v_h is any solution of the homogeneous equation.

Proof. Suppose $w = p + v_h$, then $Aw = A(p + v_h) = Ap + Av_h = b$. Therefore, w is a solution of the matrix equation Ax = b.

Now, suppose that w is a solution to the matrix equation Ax = b. Define $v_h = w - p$, then it follows that $Av_h = Aw - Ap = 0$. Therefore, v_h is a solution to the homogeneous equation, and $w = p + v_h$ as desired.