ZID: z5230310 Name: Tian Liu Date: 22/6/2020

$\mathbf{Q2}$

Note that using the substitution $y=x^{100}$ reduces P(x) to $P^*(y)=A_0+A_1y+A_2y^2$. The product of $R^*(y)=P^*(y)P^*(y)$ of these two polynomials is of degree 4 so to uniquely determine $R^*(y)$ we need 5 of its values. Thus, we evaluate $P^*(y)$ at 5 values of its argument x, by letting x=-2,-1,0,1,2. We then obtain from these 5 values of $R^*(y)$ its coefficients, by solving the corresponding system of linear equation in coefficients r_0,\ldots,r_4 such that $R^*(j)=r_0+r_1x+\cdots+r_4x$. Thus we solve the system $\sum_{j=0}^4 r_j i^j = R^*(i): -2 \le i \le 2$. We now form the polynomial $R^*(j)=r_0+r_1x+\cdots+r_4x$ with thus obtained r_j and finally substitute back y with x^{100} obtaining R(x)=P(x)P(x).