

JTS Topology Suite State of the Lib

Martin Davis
October 2015

What is JTS?

- API for representing and processing 2D linear vector
 Geometry
- Implemented in Java; licensed under LGPL
- Provides the full OGC Simple Features for SQL geometry specification:
 - Points, Linestring, Polygons, collections
 - Metrics: Length, Area, Distance
 - o Predicates: intersects, contains, etc.; relate for DE-9IM
 - Overlay: intersection, union, difference, symDifference
 - Algorithms: Convex Hull, Buffer
- Other features:
 - Validation, Polygonization, Simplification, Linear Referencing, etc.

Project History

• Version 1.0 - May 2001

. . .

- **Version 1.9** January 2008
- Version 1.10 December 2008
- Version 1.11 March 2010
- Version 1.12 June 2011
- **Version 1.13** December 2012
- Version 1.14 Coming Soon!

JTS Ports & Bindings

- Ports
 - *GEOS* (C++)
 - Net Topology Suite (C#)
 - JSTS (JavaScript)

- Bindings (on JVM)
 - Groovy, Scala, Jython, JRuby, Clojure, etc
- Bindings (to GEOS)
 - Shapely (Python)
 - ∘ RGeo (Ruby)
 - ∘ R-GEOS (R)

Where is JTS used?

Overview of JTS

Geometry Model

- Complete model for 2-D linear geometry (OGC SFS model)
 - o Point
 - LineString, LinearRing
 - Polygon (with holes)
 - MultiPoint, MultiLineString, MultiPolygon
 - GeometryCollection
- User-defined coordinate representation

Spatial Predicates

- Determines the spatial relationship of two Geometries
- Uses the *Dimensionally Extended 9-Intersection Model (DE-9IM)*
 - Computes dimension of intersection of Interior, Boundary, Exterior
- General function
 - o relate(IMpattern)
- Named predicates
 - ointersects, contains, within, equals, disjoint, touches, crosses, overlaps, covers, coveredBy

Overlay functions

AKA Boolean functions, Set-theoretic functions

Heterogeneous – all geometry types supported

Buffers

- Positive & Negative buffers
 - All Geometry types
 - Robust, efficient algorithm

- Choice of End Cap Styles
 - o Round, Square, Butt

 Curve Quantization is user-controllable

Delaunay Triangulation, Voronoi Diagram

- Delaunay Triangulation
 - Optimal triangulation of point sets
 - Efficient, robust algorithm

- Conforming Delaunay Triangulation
 - includes (approximated) linear constraints

- Voronoi Diagram
 - dual of Delaunay

JTS TestBuilder

What's New in JTS

Visvalingam-Whyatt Simplifier

Visvalingam-Whyatt VS Douglas-Peucker

Line Dissolver

25 Polygons 949,625 vertices

72 LineStrings 505,615 vertices

Example: Polygonal Coverage Simplification

Line Dissolve -> VW Simplify -> Polygonize

Snap-Rounded Geometry

- Snap-round geometry to precision grid
- Topology collapses are cleaned so output is valid

Snap-Rounded Overlay

• 100% Robust!

Variable-Width Buffer

- Variable-Width Buffer
 - o e.g. for styling linear river networks

Future Plans

Functionality

- Computation in Geodetic coordinate systems
- Measures on coordinates

Deployment

- Split packaging into Core and Algorithms
- Move to Maven

Governance

- Move to LocationTech
- License change to BSD + EPL

• JTS 2.0...

- Refactor Geometry classes to use interfaces
- allows alternate geometry representations

Distribution & Support

JTS available from SourceForge

http://sourceforge.net/projects/jts-topo-suite/

Mailing List

https://lists.sourceforge.net/lists/listinfo/jts-topo-suite-user

Other JTS resources

- Javadoc
- References
- FAQ

http://tsusiatsoftware.net/jts/main.html