AL5.A.01 Techniques IA

Practical Lab 1 Kaggle Image Recognition Challenges

Minh-Tan Pham, Matthieu Le Lain BUT3 INFO, 2024-2025

IUT de Vannes, Université Bretagne Sud

minh-tan.pham@univ-ubs.fr

Kaggle Competitions

Background and Required notions

- Before starting the practical lab, let us remind the principle of Convolutional Neural Networks, course and labs from the 2nd semester of BUT2
 - Lecture 03: CNNs: Architecture
 - Lecture 04: CNNs: Transfer learning and Finetuning
 - Lab03: CNN training from scratch vs finetuning Guided version

All of them can be found in Moodle space of AL5.A.01 (https://moodle.univ-ubs.fr/course/view.php?id=9490)

Flower recognition : https://www.kaggle.com/datasets/apollo2506/flowers-recognition-dataset/data

Data Card Code (1) Discussion (0)

Recognise Flowers using any Library.

About Dataset

Usability ©

Data Explorer

Version 4 (239.55 MB)

- ▼ □ flowers
 - ▼ ☐ flowers
 - daisy
 - dandelion
 - ▶ □ rose
 - sunflower
 - tulip
 - label_map.pkl
 - test.csv
 - train.csv
 - walidation.csv

Rock Recognition: https://www.kaggle.com/datasets/neelgajare/rocks-dataset

Diamictite

Insect Recognition: https://www.kaggle.com/datasets/kmldas/insect-identification-from-habitus-images

New Notebook

Insect identification from habitus images

291 Insect specimen images

Data Card Code (4) Discussion (2)

About Dataset

Usability © 9.38

Data Explorer

Version 1 (2.55 GB)

- database
 - ▶ □ 1035167
 - 1035185
 - 1035194
 - 1035195
 - ▶ 🗖 1035204
 - ▶ 🗖 1035208
 - 1035231
 - 1035290
 - 1035366

Fish Recognition: https://www.kaggle.com/datasets/crowww/a-large-scale-fish-dataset

About Dataset

Data Explorer

Version 2 (3.49 GB)

- ▼ ☐ Fish Dataset
 - ▼ ☐ Fish Dataset
 - ▶ ☐ Black Sea Sprat
 - Gilt-Head Bream
 - ▶ ☐ Hourse Mackerel
 - Red Mullet
 - Red Sea Bream
 - Sea Bass
 - ▶ ☐ Shrimp
 - Striped Red Mullet
 - ▶ ☐ Trout
 - README.txt

 - license.txt

Land-use Classification: https://www.kaggle.com/datasets/apollo2506/landuse-scene-classification/data

Land-Use Scene Classification

Use for classifying land scenes in Landsat Images

Data Card Code (25) Discussion (2)

Data Explorer

Version 3 (2.13 GB)

- images
- ▼ images_train_test_val
 - test
 - train
 - validation
 - {i} label_map.json

 - test.csv
 - train.csv
 - u validation.csv

Kaggle Competitions

General rules

- Image data are provided with Train, Valid, Test splits (folders or .csv files)
 - Train + valid sets are provided with labels, used for training and validation
 - Test set is provided without labels. Competitors should predict classes labels then submit their prediction to a server for evaluation

- Image data provided without splits
 - Generally we randomly split into train/vali (80/20 for example) to train our model
 - When test images are given, we perform prediction and submit the results

Lab assignment

Practical lab1: Comparing training from scratch vs transfer learning on Kaggle datasets

- Based on R413_Lab3, create a jupyter notebook file named AL5A01_Lab1 and work in pairs (binômes)
- You have to choose one of the two following datasets (already downloaded and split into Train/Valid)
 - Insect dataset: https://drive.google.com/drive/folders/1-grJmceDqCL9mymbe_uPlQndu40BUasr?usp=sharing
 - Land-use dataset: https://drive.google.com/drive/folders/1Up6TYjS3-OAzxigoVG XRSLef6prfUqq?usp=sharing
- You need to perform and compare 2 following tasks:
 - Task 1: CNN from Scratch
 - Task 2: Finetuning from existing models
- All models should be trained with 20 epochs!
- The performance of each task (on validation set) will be reported for competition (with other pairs) !!!
- All remarks, comments, illustrations of results for analysis will be considered for evaluation!

REF: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

References and Sources

Convolutional neural networks for visual recognition - Stanford

https://cs231n.github.io/

Neural networks and deep learning (free online book)

http://neuralnetworksanddeeplearning.com/index.html

Machine learning course – Oxford

https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

Neural network course - Hugo Larochelle

https://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Deep learning course – François Fleuret

https://fleuret.org/dlc/