EDP - Résumé

October 18, 2023

THEVENET Louis

Table des matières

1.	Définitions	. 1
	1.1. Conditions aux limites classiques	. 1
	1.2. Classification des EDP d'ordre 2	. 1
2.	Approximation de la dérivée d'ordre 1	. 2
	2.1. Approximation décentrée	. 2
	2.2. Approximation centrée	. 2
	2.3. Définition	
3.	jsp quel nom mettre	. 3
	3.1. Expression générale d'un schéma	. 3
	3.2. Erreur de consistance	. 3
	3.3. Consistance d'un schéma	. 3
	3.4. Stabilité	. 4

1. Définitions

1.1. Conditions aux limites classiques

Définition 1.1.1:

- Dirichlet : la valeur de u(x) est donnée $\forall x \in \Gamma$

- Neumann : la valeur de ∂u/∂ν(x) est donnée ∀x ∈ Γ, avec ν normale sortante à Γ en x
 Cauchy : les valeurs de u(x) et ∂u/∂ν(x) sont données ∀x ∈ Γ
 Robin : la valeur de α(x)u(x) + β(x)∂u/∂ν(x) est donnée ∀x ∈ Γ, avec α et β des fonctions définies sur Γ

1.2. Classification des EDP d'ordre 2

Théorème 1.2.1:

Soit une EDP linéaire d'ordre 2 sur un domaine $\Omega \subset \mathbb{R}^d$ et d'inconnue $u:\Omega \to \mathbb{R}$ Elle peut s'écrire :

$$\forall z \in \Omega \sum_{i=1}^d \sum_{j=1}^d a_{j,i}(z) \frac{\partial^2 u}{\partial z_j \partial z_i}(z) + \sum_{i=1}^d f_{i(z)} \frac{\partial u}{\partial z_i}(z) + g(z) u(z) = h(z)$$

avec par convention $\forall z \in \Omega a_{j,i}(z) = a_{i,j}(z) \in \mathbb{R}, \ \left(f_{i(z)}\right)_{i=1:d} \in \mathbb{R}^d \text{ et } (g(z),h(z)) \in \mathbb{R}^2, \text{ on note } A(z) \in \mathcal{M}_d(\mathbb{R}) \text{ la matrice définie par } \left[A(z)\right]_{i,j} = a_{i,j}(z)$

Définition 1.2.1: Ainsi, l'EDP est dite :

- Elliptique en $z \in \Omega$ si A(z) n'admet que des vp non nulles toutes de même signe
- Hyperbolique en $z \in \Omega$ si A(z) admet d-1 vp non nulles de même signe, et une vp non nulle de signe opposé
- Parabolique en $z \in \Omega$ si A(z) admet d-1 vp non nulles de même signe, et une vp nulle

2. Approximation de la dérivée d'ordre 1

2.1. Approximation décentrée

Définition 2.1.1: Pour $u: \mathbb{R} \to \mathbb{R}^2$,

 \mathcal{C}^2 sur le segment $[x-h_0,x+h_0],$ avec $h_0>0.$ On a :

$$\exists C \geq 0, \forall h \in]0,h_0] \mid \left| \frac{u(x+h)-u(x)}{h} - u'(x) \right| \leq Ch$$

L'approximation est dite consistante d'ordre 1.

2.2. Approximation centrée

Définition 2.2.1: Pour $u : \mathbb{R} \to \mathbb{R}^2$,

 \mathcal{C}^3 sur le segment $[x-h_0,x+h_0]$, avec $h_0>0$. On a :

$$\exists C \geq 0, \forall h \in]0,h_0] \mid \left| \frac{u(x+h)-u(x-h)}{2h} - u'(x) \right| \leq Ch^2$$

L'approximation est dite consistante d'ordre 2.

2.3. Définition

Définition 2.3.1:

Une approximation de $u^{k(x)}$ avec $k \in \mathbb{N}^*$ est dite consistante à l'ordre p, s'il existe $C \geq 0$ indépendante de h telle que :

$$\left|\operatorname{Approx}(u,x,h)-u^{(k)}(x)\right|\leq Ch^p$$

3. jsp quel nom mettre

3.1. Expression générale d'un schéma

Définition 3.1.1:

En notant $U_h^k \in \mathbb{R}^N$ une approximation de la solution au temps t_k en les nœuds du maillage spatial, on appellera par la suite schéma (\mathcal{S}_{ML}) tout schéma à m+l niveaux de la forme

$$\sum_{p=-m}^{l} B_p u_h^{n+p} = C^n$$

avec $n\geq m, l\geq 0, m\geq 0, I+m\geq 1, B_p\in \mathcal{M}_N(\mathbb{R}) \forall p\in \llbracket -m:l \rrbracket, B_l\in \mathcal{M}_N(\mathbb{R})$ inversible, et $C^n\in \mathbb{R}^N$

3.2. Erreur de consistance

Définition 3.2.1:

Pour un schéma $(\mathcal{S}_{ML}),$ on appelle erreur de consistance au temps t_n :

$$\xi^n_{h(u)} = \sum_{p=-m}^l B_p \Pi^{n+p}_h(u) - C^n$$

avec u la solution (inconnue) de l'EDP et $\Pi_h^{n+p}(u) = \left[u(x_1,t_{n+p}),...,u(x_N,t_{n+p})\right]^T \in \mathbb{R}^N$ la solution évaluée au temps t_{n+p} en les noeuds du maillaige spatial.

3.3. Consistance d'un schéma

Théorème 3.3.1:

Le schéma est dit consistant pour la norme $\|.\|$ si

$$\sup_{n\Delta t \leq T} \Bigl\| \xi_h^{n(u)} \Bigr\| \underset{(\Delta t,h) \to 0}{\longrightarrow} 0$$

Et si on a $C\geq 0,\, (p,q)\in \left(\mathbb{N}^*\right)^2$ indépendantes de Δt et h telles que :

$$\sup_{n\Delta t \leq T} \Bigl\| \xi_h^{n(u)} \Bigr\| \leq C (\Delta t^p + h^q)$$

Alors le schéma est dit consistant à l'ordre p en temps et q en espace pour la norme $\|.\|$.

3.4. Stabilité