DISTRIBUIRANI ALGORITMI I SISTEMI

Iz kursa CSCE 668 Proleće 2014 Autor izvorne prezentacije: Prof. Jennifer Welch

Prstenaste mreže

 U orijentisanom prstenu, procesori imaju isti pojam leve i desne strane

 Npr., ako se poruke uvek prosleđuju na kanal 1, one će kružiti po prstenu u smeru kazaljke na satu

Zašto proučavamo prstene?

- jednostavna polazna tačka, laka za analizu
- apstrakcija "token ring" LAN mreže
- donje granice i nemogući rezultati za topologiju prstena su primenljivi na proizvoljne topologije

Definicija izbora lidera (LE = Leader Election)

- Svaki procesor ima stanja: izabran (pobedio) i nijeizabran (izgubio)
- Jednom kada uđe u stanje izabran, procesor zauvek ostaje u tom stanju (isto tako i za nije-izabran), tj. to je ireverzibilna odluka
- U svakom prihvatljivom izvršenju:
 - svaki procesor na kraju ulazi ili u stanje izabran ili nijeizabran
 - samo jedan procesor (lider) ulazi u stanje izabran

Upotrebe lidera

- Lider može koordinirati aktivnosti u sistemu:
 - određivanje razapinjućeg stabla koristeći lidera kao koren
 - rekonstrukcija izgubljenog tokena u "token-ring" mreži
- Izučićemo izbor lidera u prstenima

Anonimni prsteni

- Kako modelirati slučaj kada procesori nemaju jedinstvene identifikatore?
- Prvi pokušaj: zahtevati da svi procesori imaju isti automat (state machine)
- Suptilna tačka: da li se alg. oslanja na poznavanje veličine prstena (broj procesora)?

Uniformni (Anonimni) algoritmi

- Uniformni algoritam ne koristi veličinu prstena (isti algoritam za sve veličine prstena)
 - Formalno, svi procesori za sve veličine prstena se modeliraju sa istim automatom
- Neuniformni algoritam koristi veličinu prstena (različit algoritam za svaku veličinu prstena)
 - Formalno, za svaku vrednost n, svi procesori u prstenu veličine n se modeliraju sa istim automatom A_n .
- Uočite da nema jedinstvenih identifikacija

Izbor lidera u anonimnim prstenima

- Teorema: Ne postoji algoritam za izbor lidera za anonimne prstene, čak i ako
 - algoritam poznaje veličinu prstena (neuniformno)
 - sinhroni model

■ Skica dokaza:

- Svaki procesor kreće iz istog stanja sa istim odlaznim por. (pošto je anoniman)
- Svaki procesor prima iste por., radi iste izmene stanja, i šalje iste por. u rundi 1
- □ Isto tako za runde 2, 3, ...
- Konačno, neki procesor bi trebao da uđe u stanje izabran. Ali onda bi svi ušli u to stanje.

Izbor lidera u anonimnim prstenima

- Skica dokaza pokazue da ili je bezbednost (nikada neće biti izabrano više od 1 lidera) ili životnost (konačno će biti izabran bar 1 lider) narušena
- Pošto je teorema dokazana za neuniformne i sinhrone prstene, isti rezultat važi za slabije modle:
 - uniformni
 - asinhroni

Prsteni sa identifikatorima

- Pretpost. svaki procesor ima jedinstven id
- Ne treba brkati indekse i identifikacije:
 - □ indeksi idu 0 do *n* 1; koriste se za analizu, oni nisu raspoloživi procesorima
 - id-ovi su proizvoljni nenegativni celi brojevi; oni su raspoloživi procesorima putem lokalne promenljive id

Specificiranje prstena

 Polazi se od najmanjeg id i daje se lista id-a po redosledu u smeru kazaljke na satu

□ Primer: 3, 37, 19, 4, 25

Uniformni (neanonimni) algoritmi

- Uniformni algoritam: postoji jedan automat za svaki id, bez obzira na veličinu prstena
- Neuniformni algoritam: postoji jedan automat za svaki id i za svaku različitu veličinu prstena
- Ove definicije su prilagođene za problem izbora lidera u prstenu

Pregled LE alg. u prstenima sa identifikacijama

- Postoje algoritmi kada čvorovi imaju jedinstvene id
- Procenićemo ih prema njihovom (najgorem) broju poruka
- □ asinhroni prsten:
 - \square $\Theta(n \log n)$ poruka
- sinhroni prsten:
 - \square $\Theta(n)$ poruka pod određenim uslovima
 - \square inače $\Theta(n \log n)$ poruka
- Sve granice su asimptotski uske

Zagrevanje: Asinhroni LE algoritam sa O(n²) poruka

- □ pošalji vrednost svog id u levo
- \square kad se primi id j (sa desne strane):
 - \square if j > id then
 - prosledi j u levo (ovaj procesor je izgubio)
 - \square if j = id then
 - izaberi sebe (ovaj procesor je pobedio)
 - \square if j < id then
 - ne radi ništa

Analiza $O(n^2)$ algoritma

- □ Korektnost: Izabira procesor sa najvećim id
 - por sa najvećim id prolazi kroz sve procesore
- \square Vreme: O(n)
- □ Broj poruka: Zavisi kako su id-ovi uređeni
 - najveći id putuje skroz oko prstena (*n* por.)
 - 2-gi najveći id putuje dok ne dođe do najvećeg
 - 3-ći najveći id putuje dok ne dođe do najvećeg ili drugog najvećeg
 - □ itd.

Analiza $O(n^2)$ algoritma

- Najgore uređenje id-a je u opadajućem redosledu:
 - □ 2-gi najveći izaziva n 1 poruka
 - □ 3-ći najveći izaziva n 2 poruka
 - □ itd.
- □ Ukupan br. poruka je $n + (n-1) + (n-2) + ... + 1 = \Theta(n^2)$

Da li je moguće koristiti manje poruka?

- \square $O(n^2)$ algoritam je jednostavan i radi i u sinhronom i u asinhronom modelu
- Ali da li možemo rešiti problem sa manje poruka?
- □ Ideja:
 - Pokušajmo da poruke sa manjim id prelaze kraća rastojanja u prstenu

$O(n \log n)$ algoritam

- Svaki proc. isprobava sukcesivno veće komšiluke u oba pravca (u levo i u desno)
 - veličina komšiluka se uvostručava u svakoj fazi
- Ako proba dosegne čvor sa većim id, isprobavanje se zaustavlja
- Ako proba dosegne kraj komšiluka, inicijatoru se šalje nazad odgovor
- Ako inicijator dobije nazad odgovore iz oba pravca, on prelazi na sledeću fazu
- Ako proc. primi probu sa svojim id, on izabira sebe

$O(n \log n)$ algoritam

- □ Korektnost: Slično sa $O(n^2)$ algoritmom
- □ Broj poruka:
 - Svaka por. pripada određenoj fazi i inicira je određeni proc.
 - \square Distanca probe u fazi k je 2^k
 - Broj por. iniciran od strane proc. u fazi k je najviše 4^*2^k (probe i odgovori u oba pravca)

- □ Koliko procesora inicira probe u fazi k?
- \square Za k = 0, svaki proc. inicira
- □ Za k > 0, svaki proc. koji je "pobednik" u fazi k-1 inicira
 - "pobednik" znači da ima najveći id u svom 2^{k-1} komšiluku

□ Max broj pobednika u fazi k-1 se dešava kada su oni pakovani najgušće što je moguće:

 \square ukupan broj pobednika u fazi k-1 je najviše

$$n/(2^{k-1}+1)$$

- □ Koliko ima faza?
- U svakoj fazi broj pobednika (faze) se otprilike prepolovi
 - od $n/(2^{k-1}+1)$ na $n/(2^k+1)$
- □ Tako posle otprilike log₂ n faza, ostaje samo jedan pobednik
 - \square preciznije, max faza je $\lceil \log(n-1) \rceil + 1$

Ukupan broj poruka je zbir, preko svih faza, broja pobednika u toj fazi puta broj poruka nastalih od tog pobednika:

Da li možemo bolje?

- □ O(n log n) algoritam je složeniji od O(n²) algoritma ali koristi manje poruka u najgorem slučaju
- Radi i u sinhronom i u asinhronom modelu
- Da li možemo još smanjiti broj poruka?
- □ Ne u asinhronom modelu...