Exercices 1: Ensembles

Exercice n°1

Déterminer les ensembles correspondants aux régions grisées.

 $\begin{array}{|c|c|}\hline E \\ \hline \\ A \\ \hline \\ C \\ \end{array}$

Figure 7

Exercice n°2

Hachurer les régions correspondant aux expressions données.

Exercice n°3

Définir les ensembles suivants en compréhension :

1)
$$A = \{1, 2, 4, 8, 16, 32, 64\}$$

2)
$$B = \{1, 2, 7, 14\}$$

Exercice n°4

Définir les ensembles suivants en extension :

1)
$$A = \{x \in \mathbb{R}, x(x+5) = 14\}$$

2)
$$B = \{x \in \mathbb{N}, x(2x+3) = 14\}$$

Exercice n°5

On considère les ensembles $E = \{0, 2, 3, 4, 5\}, F = \{1, 2, 4, 5, 7\}$ et $G = \{1, 3, 5, 9, 11\}$.

- 1) Expliciter les ensembles $E \cap F$, $E \cap G$, $F \cap G$ et $E \cap F \cap G$.
- **2)** Expliciter $E \cup F \cup G$.
- **3)** A-t-on $E \cap G \subset F$?

Exercice n°6

On considère l'ensemble $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, et les trois parties de E suivantes : $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7\}$ et $C = \{4, 5, 8, 9\}$. Déterminer $A \cup B$, $A \cap B$, $A \cap C$, \overline{B} , $A \setminus B$, $B \setminus A$.

Exercice n°7

On considère les ensembles \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} .

- 1) Quelles sont les différentes inclusions entre les ensembles ci-dessus?
- 2) Les inclusions sont-elles strictes? Justifier.

Exercice n°8

Soit E un ensemble et A, B et C trois sous-ensembles de E.

- 1) A-t-on $(A \setminus C = B \setminus C) \Longrightarrow A = B$?
- **2)** A-t-on $(A \cap C = B \cap C) \iff A = B$?
- 3) A-t-on $(A \cup C = B \cup C) \Longrightarrow A = B$?

Exercice n°9

Soient A, B, C et D des sous-ensembles d'un ensemble E.

- 1) Montrer que l'on a $(A \cap B) \cup \overline{B} = A \cup \overline{B}$ et $(A \setminus B) \cup B = A \cup B$.
- **2)** En déduire que l'on a $E = (C \setminus D) \cup (A \cap B \cap \overline{C}) \cup \overline{A} \cup \overline{B} \cup D$.

Exercice n°10

Soient A, B et C des sous-ensembles d'un ensemble E. Simplifier les expressions suivantes :

2

- 1) $(A \cup B) \cap (\overline{A} \cup B) \cap (A \cup \overline{B}) \cap (\overline{A} \cup \overline{B})$ où \overline{A} est le complémentaire de A dans E.
- **2)** $(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B}).$
- 3) $[(\overline{A} \cup \overline{C}) \cap (\overline{B} \cup \overline{C})] \cup [(A \cup B) \cap C].$

Ensemble des parties

Exercice n°11

Soit E un ensemble. On sait que $\mathcal{P}(E) = \{\emptyset, \{a\}, \{a,b\}, \{b\}\}\$. Décrire l'ensemble E en extension.

Exercice $n^{\circ}12$

Soit E un ensemble. On rappelle que $\mathcal{P}(E)$ désigne l'ensemble des parties de E.

- 1) On suppose que $E = \{1, 2, 3\}$. Déterminer $\mathcal{P}(E)$.
- **2)** On suppose que $E = \{1\}$. Déterminer $\mathcal{P}(E)$, puis $\mathcal{P}(\mathcal{P}(E))$.
- 3) On suppose que $E = \emptyset$. Déterminer $\mathcal{P}(E)$, puis $\mathcal{P}(\mathcal{P}(E))$.

Exercice n°13

Soient E un ensemble à n éléments, où n est un entier naturel. Combien d'éléments a $\mathcal{P}(E)$?

Exercice n°14

Soient E et F deux ensembles.

- 1. Montrer que, si $\mathcal{P}(E) \subset \mathcal{P}(F)$, alors $E \subset F$.
- 2. En déduire que, $E = F \iff \mathcal{P}(E) = \mathcal{P}(F)$.

Exercice n°15

Soient E un ensemble, A et B les sous-ensembles de E définis par $A = \{1, 2\}$ et $B = \{b\}$.

- 1) Déterminer $\mathcal{P}(A) \cup \mathcal{P}(B)$.
- **2)** Déterminer $\mathcal{P}(A \cup B)$.
- 3) Comparer les ensembles obtenus.

Partitions

Exercice $n^{\circ}16$

Considérons l'ensemble $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Déterminer parmi les familles d'ensembles suivantes celles qui sont des partitions de E.

- $\begin{array}{lll} (1) \; \{\{1,3,6\},\{2,8\},\{5,7,9\}\} \\ (2) \; \{\{1,5,7\},\{2,4,8,9\},\{3,5,6\}\} \end{array} \\ \end{array} \qquad \begin{array}{lll} (3) \; \{\{2,4,5,8\},\{1,9\},\{3,6,7\}\} \\ (4) \; \{\{1,2,7\},\{3,5\},\{4,8,9\},\{10,9\},\{10,9\}\} \end{array} \\ \end{array}$
- (4) {{1, 2, 7}, {3, 5}, {4, 8, 9}, {10, 6}}

Exercice n°17

On considère l'ensemble $E = \{abracadabra, mistigri, oiseau, panda, loto, urubu\}$ et ses sous-ensembles

 $E_a = \{ \text{mots de } E \text{ qui contiennent la voyelle } a \}$ $E_e = \{ \text{mots de } E \text{ qui contiennent la voyelle } e \}$ $E_i = \{ \text{mots de } E \text{ qui contiennent la voyelle } i \}$ $E_o = \{ \text{mots de } E \text{ qui contiennent la voyelle } o \}$

 $E_u = \{ \text{mots de } E \text{ qui contiennent la voyelle } u \}$

A-t-on $E = E_a \cup E_e \cup E_i \cup E_o \cup E_u$? Les ensembles E_a, E_e, E_i, E_o, E_u forment-ils une partition de E?

Exercice n°18

On note E_0 l'ensemble des entiers naturels multiples de 3, E_1 l'ensemble des entiers naturels dont le reste dans la division par 3 est 1 et E_2 l'ensemble des entiers naturels dont le reste dans la division par 3 est 2.

- 1) Donner des éléments de E_0 , de E_1 , de E_2 .
- 2) Les ensembles E_0, E_1, E_2 forment-ils une partition de \mathbb{N} ?

Exercice n°19

Soient E un ensemble non vide et A_1 , A_2 , A_3 trois sous-ensembles de E. On suppose que ces sous-ensembles vérifient les conditions suivantes :

 $P_1: A_1 \neq E \quad A_2 \neq E \quad A_3 \neq E$

 $P_2: A_1 \cup A_2 = A_1 \cup A_3 = A_2 \cup A_3 = E$

 $P_3: A_1 \cap A_2 \cap A_3 = \emptyset$

Montrer que la famille $\{\overline{A_1}, \overline{A_2}, \overline{A_3}\}$ est une partition de l'ensemble E.

Produit cartésien

Exercice n°20

Soit $E = \{1, 2, 3\}$ et $F = \{1, 2\}$.

- 1) Déterminer les ensembles $E \times F$ et $F \times E$.
- 2) Ces ensembles ont-ils le même nombre d'éléments? Sont-ils égaux?

Exercice n°21

Dessiner les ensembles suivants

- 1) $E_1 = [0,1] \times [-1,1]$
- **2)** $E_2 = \mathbb{R}_+ \times [0, 5]$
- **3)** $E_3 = \{(x,y) \in \mathbb{R}^2 \mid |x-2| \le 1\}$

Exercice $n^{\circ}22$

Soient E et F deux ensembles. Un sous-ensemble X de $E \times F$ est-il toujours de la forme $A \times B$, où A appartient à $\mathcal{P}(E)$ et B appartient à $\mathcal{P}(F)$?

Exercice n°23

Soient E et F deux ensembles, A et B deux sous-ensembles de E, et C et D deux sous-ensembles de F. Les égalités suivantes sont-elles toujours vraies? (Sinon, donner un contre-exemple.)

- 1) $(A \times C) \cup (B \times C) = (A \cup B) \times C$.
- 2) $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$.