1

NCERT-Analog: 11.14.18

EE:1205 Signals and Systems
Indian Institute of Technology, Hyderabad

Kunal Thorawade EE23BTECH11035

I. QUESTION:

A cylindrical piece of cork of density of base area A and height h floats in a liquid of density ρ_1 , The cork is depressed slightly and then released. Show that the cork oscillates up and down simple becomes its liquid $T = 2\pi$

harmonically with a period $T = 2\pi \sqrt{\frac{h\rho}{\rho_1 g}}$

Solution:

Parameter	Description
ρ_1	Density of Liquid
ρ	Density of cork
h	Height of cylindrical cork
X	Displacement
T	Time period
A	Base area of cylindrical cork
F_R	Restoring Force
а	Acceleration
ω	Angular Frequency
$m = \rho A h$	Mass of cylindrical cork

TABLE 1 Parameter Table

by a depth x,

$$F_R = -(\rho_1 A x) g \tag{1}$$

$$\implies a = -\frac{\rho_1 A g}{m} x \tag{2}$$

$$a = -\omega^2 x \tag{3}$$

Comparing (2) and (3),

$$\omega^2 = \frac{\rho_1 A g}{m} = \frac{\rho_1 A g}{\rho A h} \tag{4}$$

$$\implies \omega = \sqrt{\frac{\rho_1 g}{\rho h}} \tag{5}$$

$$T = \frac{2\pi}{\omega} \tag{6}$$

$$T = 2\pi \sqrt{\frac{h\rho}{\rho_1 g}}$$
 (7)

Hence Proved.

When we slightly displace cylindrical piece of cork