Cognitive Algorithms Lecture 3

Linear Classification

Klaus-Robert Müller, Wojciech Samek Stephanie Brandl

> Berlin Institute of Technology Dept. Machine Learning

Recap

LDA

Probabilistic View

BBCI

Cross-validation

Summary

Summary Lecture 2

Biological Neural Networks

Cascade of (non-linear) filters of sensory features Abstract ideas are based on integration of these features How integration is done is subject of neuroscientific research

Psychologists postulated we learn **Prototypes**

Prototypes can be the class means New data is associated with **closest** Prototype Prototype theory is closely related to linear classification

Artificial Neural Networks

Inspired by biological neural networks
Perceptron algorithm realizes linear classification

Linear Classification Revisited

Comparison of distance to class means is equivalent to linear classification

$$\|\mathbf{x} - \mathbf{w}_{\Delta}\| > \|\mathbf{x} - \mathbf{w}_{o}\|$$

 $\Leftrightarrow 0 < \mathbf{w}^{\top} \mathbf{x} - \beta$

where

$$\mathbf{w} = \mathbf{w}_o - \mathbf{w}_{\Delta}$$

and

$$\beta = 1/2 \cdot (\mathbf{w}_o^{\top} \mathbf{w}_o - \mathbf{w}_{\Delta}^{\top} \mathbf{w}_{\Delta})$$
$$= 1/2 \cdot \mathbf{w}^{\top} (\mathbf{w}_o + \mathbf{w}_{\Delta})$$

This simple linear classification rule is often called **Nearest Centroid Classifier**.

Perceptron Algorithm with Stochastic Gradient Descent

Problems with Nearest Centroid Classification

Non-linear Data

Solutions Non-linear features, Non-linear classification methods

Correlated Data

Solution
(Fisher's) Linear Discriminant Analysis

Covariance and Correlation

For two random variables X and Y, their **covariance** and **correlation** are defined as

$$Cov(X, Y) := E[(X - E(X))(Y - E(Y))]$$

$$Corr(X, Y) := \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}.$$

Correlation measures the linear relationship between X and Y:

Covariance Matrices

Given T data points $\mathbf{x}_t \in \mathbb{R}^D$ in a data matrix $X \in \mathbb{R}^{D \times T}$ the empirical estimate of the **covariance matrix** is defined as

$$S = \frac{1}{T} XX^{\top}$$
 (1)

where we assume centered data, i.e. $\sum_{t=1}^{T} \mathbf{x}_t = \mathbf{0}$.

Correlated Data and Linear Mappings

We can generate correlated data using a diagonal scaling matrix D and a rotation R

Uncorrelated

$$x \sim \mathcal{N}(0, 1)$$

$$XX^{\top} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Uncorrelated, scaled

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} X$$

$$XX^{\top} = \begin{bmatrix} 9 & 0 \\ 0 & 1 \end{bmatrix}$$

Scaled, rotated by 45°

$$\begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} X$$

$$XX^{\top} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

Ronald A. Fisher

R.A. Fisher (1890 - 1962)

Founder of modern statistics Interested in Biology Suggested *Linear Discriminant Analysis* (LDA) [Fisher, 1936] Probabilistic View

BBCI DOODOOOOO Cross-validation

The Iris Flower Dataset

Iris Setosa

Iris Versicolor

Iris Virginica

http://en.wikipedia.org/wiki/Iris_flower_data_set

50 flowers of each species were collected

"all from the same pasture, and picked on the same day and measured at the same time by the same person with the same apparatus"

Petal and Sepal length and width were measured

Very popular benchmark data set

The Iris Flower Dataset

Iris Data (red=setosa,green=versicolor,blue=virginica)

http://en.wikipedia.org/wiki/Iris_flower_data_set

The Fisher Criterion - measure for class separability

Consider one dimensional data and two classes

The fisher criterion:

$$\frac{\text{between class variance}}{\text{within class variance}} = \frac{(\mathbf{w}_o - \mathbf{w}_{\Delta})^2}{\sigma_o^2 + \sigma_{\Delta}^2}$$

where
$$\mathbf{x}_{1o}, \dots, \mathbf{x}_{N_o o} \in \mathbb{R}^D$$
 and $\mathbf{w}_o = \frac{1}{N_o} \sum_{i=1}^{N_o} \mathbf{x}_{io}$ and $\sigma_o^2 = \frac{1}{N_o} \sum_{i=1}^{N_o} (\mathbf{x}_{io} - \mathbf{w}_o)^2$.

View classification in terms of dimensionality reduction

Goal: Find a (normal vector of a linear decision boundary) $\mathbf{w} \in \mathbb{R}^D$ that

Maximizes mean class difference, and Minimizes variance in each class

Goal: Find a (normal vector of a linear decision boundary) $\mathbf{w} \in \mathbb{R}^D$ that Maximizes mean class difference

$$(\mathbf{w}^{\top}\mathbf{w}_{o} - \mathbf{w}^{\top}\mathbf{w}_{\Delta})^{2} = \mathbf{w}^{\top} \underbrace{(\mathbf{w}_{o} - \mathbf{w}_{\Delta})(\mathbf{w}_{o} - \mathbf{w}_{\Delta})^{\top}}_{S_{B} - \text{"between class scatter"}} \mathbf{w}$$
 (2)

Minimizes variance in each class

$$\begin{split} &\frac{1}{N_o} \sum_{i=1}^{N_o} \left(\mathbf{w}^\top (\mathbf{x}_{oi} - \mathbf{w}_o) \right)^2 + \frac{1}{N_\Delta} \sum_{j=1}^{N_\Delta} \left(\mathbf{w}^\top (\mathbf{x}_{\Delta j} - \mathbf{w}_\Delta) \right)^2 \\ &= \mathbf{w}^\top \underbrace{\left(\frac{1}{N_o} \sum_{i=1}^{N_o} (\mathbf{x}_{oi} - \mathbf{w}_o) (\mathbf{x}_{oi} - \mathbf{w}_o)^\top + \frac{1}{N_\Delta} \sum_{j=1}^{N_\Delta} (\mathbf{x}_{\Delta j} - \mathbf{w}_\Delta) (\mathbf{x}_{\Delta j} - \mathbf{w}_\Delta)^\top \right)}_{\mathbf{w}} \mathbf{w} \end{split}$$

 S_{W} —"within class scatter"

Goal: Find a (normal vector of a linear decision boundary) \mathbf{w} that Maximizes mean class difference, $\mathbf{w}^{\top}S_{B}\mathbf{w}$ and Minimizes variance in each class, $\mathbf{w}^{\top}S_{W}\mathbf{w}$

→ maximize the Fisher criterion

$$\underset{\mathbf{w}}{\operatorname{argmax}} \frac{\mathbf{w}^{\top} S_{B} \mathbf{w}}{\mathbf{w}^{\top} S_{W} \mathbf{w}}$$
 (3)

$$\underset{\mathbf{w}}{\operatorname{argmax}} \frac{\mathbf{w}^{\top} S_{B} \mathbf{w}}{\mathbf{w}^{\top} S_{W} \mathbf{w}}$$

To optimize the Fisher criterion, we set its derivative w.r.t \mathbf{w} to 0

$$\frac{(\mathbf{w}^{\top} S_{W} \mathbf{w}) S_{B} \mathbf{w} - (\mathbf{w}^{\top} S_{B} \mathbf{w}) S_{W} \mathbf{w}}{(\mathbf{w}^{\top} S_{W} \mathbf{w})^{2}} = 0$$

$$(\mathbf{w}^{\top} S_{B} \mathbf{w}) S_{W} \mathbf{w} = (\mathbf{w}^{\top} S_{W} \mathbf{w}) S_{B} \mathbf{w}$$

$$S_{W} \mathbf{w} = S_{B} \mathbf{w} \underbrace{\frac{\mathbf{w}^{\top} S_{W} \mathbf{w}}{\mathbf{w}^{\top} S_{B} \mathbf{w}}}_{SCalar}$$

$$\underset{\mathbf{w}}{\operatorname{argmax}} \frac{\mathbf{w}^{\top} S_{B} \mathbf{w}}{\mathbf{w}^{\top} S_{W} \mathbf{w}}$$
$$\rightarrow S_{W} \mathbf{w} = S_{B} \mathbf{w} \lambda$$

Note that

$$S_B \mathbf{w} = (\mathbf{w}_o - \mathbf{w}_\Delta) \underbrace{(\mathbf{w}_o - \mathbf{w}_\Delta)^\top \mathbf{w}}_{\text{scalar}}$$

thus left multiplying with S_W^{-1} yields

$$\mathbf{w} \propto S_W^{-1}(\mathbf{w}_o - \mathbf{w}_{\Delta}).$$

 $(\propto denotes proportional)$

Linear Discriminant Analysis vs Nearest Centroid Classifier

Linear Discriminant Analysis vs Nearest Centroid Classifier

If both classes have the same covariance matrix, LDA first decorrelates the data followed by nearest centroid classification:

$$\mathbf{x} \mapsto \operatorname{sign}(\mathbf{w}^T \cdot \mathbf{x} - \beta)$$

 $\mathbf{w} \propto S_W^{-1}(\mathbf{w}_o - \mathbf{w}_\Delta)$

$$\mathbf{w}^T \mathbf{x} = (\mathbf{w}_o - \mathbf{w}_\Delta)^T S_W^{-1} \mathbf{x} = \underbrace{(\mathbf{w}_o - \mathbf{w}_\Delta)^T U \Lambda^{-1/2}}_{\text{mean class difference of decorrelated data}} \underbrace{\Lambda^{-1/2} U^T \mathbf{x}}_{\text{decorrelated x}}$$

where $S_W = U \Lambda U^T$ is the eigenvalue decomposition of S_W

LDA first decorrelates the data followed by nearest centroid classification:

$$\mathbf{w}^{T}\mathbf{x} = (\mathbf{w}_{o} - \mathbf{w}_{\Delta})^{T}S_{W}^{-1}\mathbf{x} = \underbrace{(\mathbf{w}_{o} - \mathbf{w}_{\Delta})^{T}U\Lambda^{-1/2}}_{\text{mean class difference of decorrelated data}} \underbrace{\Lambda^{-1/2}U^{T}\mathbf{x}}_{\text{decorrelated x}}$$

Decision theory

Decision theory:

For a new data point $\mathbf{x} \in \mathbb{R}^D$

Decide class
$$\Delta$$
 if $p(\Delta|\mathbf{x}) > p(o|\mathbf{x})$.

Calculate $p(\Delta|\mathbf{x})$ with Bayes rule:

$$p(\Delta|\mathbf{x}) = \frac{p(\Delta, \mathbf{x})}{p(\mathbf{x})}$$
$$= \frac{p(\Delta)p(\mathbf{x}|\Delta)}{p(\mathbf{x})}$$

Decision theory

Estimating $p(\mathbf{x}|\Delta)$ is difficult: already if each dimension of \mathbf{x} can take 2 values $\rightarrow 2^D$ possible values.

One possibilty to deal with it:

Choose a distribution $p(\mathbf{x}|\Delta)$, $p(\mathbf{x}|o)$ that is easy to deal with

 \rightarrow Most popular: The Gaussian (or Normal) distribution

$$\mathbf{x} \in \mathbb{R}^D \sim \mathcal{N}(\mathbf{w}_{\Delta}, S_{\Delta}) = \frac{1}{(2\pi)^{rac{D}{2}}\sqrt{|S_{\Delta}|}}e^{-rac{1}{2}(\mathbf{x} - \mathbf{w}_{\Delta})^{\top}S_{\Delta}^{-1}(\mathbf{x} - \mathbf{w}_{\Delta})}$$

Linear Discriminant - a Probabilistic View

If we assume equal covariance in each class, $S_W=2S_\Delta=2S_o$, and equal class probablities, $p(\Delta)=p(o)=0.5$, the optimal classification boundary is linear and given by

$$\mathbf{w} = S_W^{-1}(\mathbf{w}_o - \mathbf{w}_\Delta)$$

$$\beta = \frac{1}{2}\mathbf{w}_o S_W^{-1}\mathbf{w}_o - \frac{1}{2}\mathbf{w}_\Delta S_W^{-1}\mathbf{w}_\Delta = \frac{1}{2}\mathbf{w}^T(\mathbf{w}_o + \mathbf{w}_\Delta)$$

 \Rightarrow Linear decision boundaries arise from simple assumption about the distribution of the data.

Linear Discriminant - a Probabilistic View

If we assume equal covariance in each class, $S_W=2S_\Delta=2S_o$, the optimal classification boundary is linear and given by

$$\mathbf{w} = S_W^{-1}(\mathbf{w}_o - \mathbf{w}_\Delta)$$

$$\beta = \frac{1}{2}\mathbf{w}_o S_W^{-1}\mathbf{w}_o - \frac{1}{2}\mathbf{w}_\Delta S_W^{-1}\mathbf{w}_\Delta + \log \frac{p(\Delta)}{p(o)}$$

$$= \frac{1}{2}\mathbf{w}^T(\mathbf{w}_o + \mathbf{w}_\Delta) + \log \frac{p(\Delta)}{p(o)}$$

⇒ Linear decision boundaries arise from simple assumption about the distribution of the data.

Linear Discriminant Algorithm

Computes: Normal vector **w** of decision hyperplane, threshold β **Input:** Data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}, x_i \in \mathbb{R}^D, v_i \in \{-1, +1\}.$ Compute class mean vectors $\mathbf{w}_{-1} = 1/N_{-} \sum_{i \in \mathcal{V}_{-}} \mathbf{x}_{i}$ $\mathbf{w}_{+1} = 1/N_{+} \sum_{i \in \mathcal{V}_{+1}} \mathbf{x}_{i}$ Compute within-class covariance matrices $S_W = 1/N_- \sum_{i \in \mathcal{V}} (\mathbf{x}_i - \mathbf{w}_{-1})(\mathbf{x}_i - \mathbf{w}_{-1})^{\top}$ $+1/N_{+}\sum_{i\in\mathcal{V}_{+1}}(x_{i}-w_{+1})(x_{i}-w_{+1})^{\top}$ Compute normal vector w $\mathbf{w} = S_{W}^{-1}(\mathbf{w}_{+1} - \mathbf{w}_{-1})$ Compute threshold $\beta = 1/2 \mathbf{w}^T (w_{+1} + \mathbf{w}_{-1}) + \log(N_-/N_+)$ Output: w, β

Berlin Brain-Computer-Interface (BBCI)

Hex-o-spell: Writing with thoughts http://www.bbci.de/

Demo: http://iopscience.iop.org/1741-2552/8/6/066003/media

BCI with ML: Calibration and Feedback

BCI Based on Event-Related Potentials (ERPs)

- User concentrates on a symbol
- Rows and columns are intensified randomly
- Target rows and columns elicit specific ERPs
- BCI detects target ERPs (averaged over few repetitions)

Illustration: Single-Trials and ERPs

Segments (epochs) around stimulus markers:

Illustration: Single-Trials and ERPs

Scalp Potentials In Response to Targets/Non-Targets

Berlin Brain-Computer-Interface

Berlin Brain-Computer-Interface

Centroid Classification

Fisher's LDA

Understanding the classifier

- (a) Classification error on features from the time interval 115-535m
- (b) Classification error for intervals of 30ms duration
- (c) Weight vector of classification on features from the time interval 220-250ms $[Blankertz\ et\ al.,\ 2011]$

Generalization and Model Evaluation

The goal of classification is **generalization**: Correct categorization/prediction of new data

How can we estimate generalization performance?

\rightarrow Cross-validation:

- Train model on part of data
- Test model on other part of data
- Repeat on different cross-validation folds
- · Average performance on test set across all folds

Cross-Validation

Algorithm 1: Cross-Validation

Require: Data $(x_1, y_1) \dots, (x_N, y_N)$, Number of CV folds F

- 1: # Split data in F disjunct folds
- 2: for folds $f = 1, \ldots, F$ do
- 3: # Train model on folds $\{1, \ldots, F\} \setminus f$
- 4: # Compute prediction error on fold f
- 5: end for
- 6: # Average prediction error

Summary

Correlations between features can affect classification accuracy Fisher proposed Linear Discriminant Analysis (LDA) LDA maximizes *between class variance* while minimizing

LDA maximizes between class variance while minimizing within class variance

If data is Gaussian with equal class covariances, than LDA is the optimal classifer

LDA is used in state-of-the-art BCI systems

We can use Cross-validation for Model Evaluation

References

- B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller. Single-trial analysis and classification of erp components–a tutorial. Neuroimage, 56(2):814–25, 2011. doi: 10.1016/j.neuroimage.2010.06.048.
- R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.