P1103

3. 设项 t, u 都对公式 p(x) 中 x 自由,且不含 x. 求证 $E \cup \{\exists! x p(x), p(t)\} \vdash p(u) \to u \approx t$,

这里规定

$$\exists ! x p(x) = \exists x (p(x) \land \forall y (p(y) \rightarrow x \approx y)),$$

其中y不在p(x)中出现.

证明:

结论一:由于y不在p(x)中出现,且t、u都对公式p(x)中的x自由,所以项t、u都对公式p(y)中的y自由由演绎定理,即证 $E \cup \{\exists x(p(x) \land \forall y(p(y) \to x \approx y)), p(t), p(u)\} \vdash u \approx t$

下面是 $u \approx t$ 在K中从 $E \cup \{p(x) \land \forall y(p(y) \rightarrow x \approx y), p(t), p(u)\} \vdash u \approx t$ 的一个证明:

- 1. $p(x) \land \forall y(p(y) \rightarrow x \approx y)$ 假定
- 2. $p(x) \land \forall y(p(y) \to x \approx y) \to \forall y(p(y) \to x \approx y)$ 永真式
- 3. $\forall y(p(y) \rightarrow x \approx y$ MP1,2
- 4. $\forall y(p(y) \to x \approx y) \to (p(u) \to x \approx u)$ K₄ (条件依据结论一)
- 6. p(u) o x pprox u MP3,4
- 7. $p(t) \rightarrow x \approx t$ MP3,5
- 8. p(u) 假定
- 9. p(t)
- 假定
- 10. $x \approx u$
- MP8,6
- 11. $x \approx t$
- MP9,7
- 12. xpprox u o (xpprox t o upprox t) E3
- 13. xpprox t o upprox t
- MP10,12
- 14. $u \approx t$
- MP11,13

结论二:在上面的证明中没有使用任何Gen变元,所以根据演绎定理,不需要任何Gen变元就可得到 $E \cup \{(p(x) \land \forall y(p(y) \to x \approx y)), p(t)\} \vdash p(u) \to u \approx t$

结论三:由于项t、u都不含x,所以根据 \exists 2规则,可得

 $E \cup \{\exists x (p(x) \land \forall y (p(y) \rightarrow x pprox y)), p(t)\} \vdash p(u) \rightarrow u pprox t$

结论一没有写且在 K_4 使用中没有注明条件的,一个-0,5;

(K4) $\forall xp(x) \rightarrow p(t)$, 其中项 t 对 p(x) 中的 x 是自由的;

结论二使用演绎定理没有解释没有使用Gen变元的,-1;

定理 2 (演绎定理)

1° 若 Γ ⊢ $p \rightarrow q$, 则 $\Gamma \cup \{p\}$ ⊢ q;

 2° 若 $\Gamma \cup \{p\} + q$, 且证明中所用 Gen 变元不在 p 中自由出现,则不增加新的 Gen 变元就可得 $\Gamma \vdash p \rightarrow q$.

结论三没有写使用∃2的条件的, -1;

命题 4 (3, 规则) 设 $\Gamma \cup \{p\} + q$, 其证明中 Gen 变元不在 p 中自由出现,且 x 不在 q 中自由出现,那么有 $\Gamma \cup \{\exists xp\} + q$, 且除了 x 不增加其他 Gen 变元.

定理2的3 $\vdash_k u = v \to (v = w \to u = w)$

证明:

- 1. $u = v \rightarrow v = u$ 定理2的2
- 2. v=u
 ightarrow (v=w
 ightarrow u=w) E3
- 3. u=v
 ightarrow (v=w
 ightarrow u=w) HS 1,2

解证明:无证 EUfuzV3 F V≈u	
$10 N \approx V \Rightarrow (u \approx u \Rightarrow V \approx u)$	E3
ww. V ≈ V	前提
1374 24 → V 24	MP(1)(2)
14) 121	EI
(5) V & U	Mp(3) 14)
由演绎定理 Eトルンレッレンル	
16) NZV -> V ZN	演绎定理
17) V≈u > (V≈w > u ≈w)	E3
(8) UZV → (V ×W → U2W)	HSCHOLD
证平	

本次作业出现的问题

1. 假定是如何来的?

三!xpxx)=∃x(p(x) ∧ ∀y(p(y)→ xzy)). g 不在 p(x)中世纪。 由演译定理、只需证 Euj∃!xp(x), p(x), p(w);} しいっせ、

10) (DIX) (DIX) -> X24) 1822.

ו דומא ב-וחט ולא ברו ולא אלאח והא אלאח) (10)

九面式

小测中批改出现的问题

直接证明中的HS

L2的使用

2. (1). + (1p → 7q) → ((7p → q)	→ p).
0 ¬p → 79	12 12 P 18 18 18 18 18 18 18 18 18 18 18 18 18
③	Mp 1.2
	(否定前件律)
(¬p → p) → (¬p → q).	(L2),
	(LI)