DESCRIPTION AND ANALYSIS OF GATE NETWORKS

- GATE NETWORKS: DEFINITION
- SETS OF GATES: (AND OR NOT), NAND NOR XOR
- ANALYSIS AND DESCRIPTION OF GATE NETWORKS

Figure 4.1: HIERARCHICAL IMPLEMENTATION OF A MODULE

Figure 4.2: A GATE NETWORK

- GATES
- EXTERNAL INPUTS AND OUTPUTS
- CONNECTIONS

GATE NETWORKS (cont.)

Figure 4.3: a) ILLEGAL NETWORK CONNECTION. b) ACCEPTABLE OUTPUT LOAD. c) LOOP-FREE NETWORK. d) LOOP NETWORK

DESCRIPTION OF GATE NETWORKS

- LOGIC DIAGRAM (GRAPHICAL REPRESENTATION)
- NET LIST (TABULAR REPRESENTATION)
- HDL DESCRIPTION (PROGRAM)

Figure 4.4: a) GRAPHICAL REPRESENTATION (LOGIC DIAGRAM)

Gate	e Type Inputs		Output	
Α	AND-2	A_1	A_3	
		A_2		
В	AND - 3	B_1	B_4	
		B_2		
		B_3		
C	OR - 2	C_1	C_3	
		C_2		

From	То
x_3	A_1
x_2	A_2
x_2	B_1
x_1	B_2
x_0	B_3
A_3	C_1
B_4	C_2
C_3	z

Gates

Connections

- FUNCTIONAL SPECIFICATION
- INPUT LOAD FACTORS OF THE NETWORK INPUTS;
- FAN-OUT FACTOR OF THE NETWORK OUTPUTS (ONLY FOR SOME TECHNOLOGIES); AND
- PROPAGATION DELAYS THROUGH THE NETWORK

• Set {AND,OR,NOT}

$$z = (((x_0 + x_1)x_2)' + x_2x_3 + x_4)'$$

Figure 4.4: CORRESPONDENCE AMONG SWITCHING EXPRESSION AND AND-OR-NOT NETWORK

UNIVERSAL SETS OF GATES (cont.)

Sets {AND,NOT} and {OR,NOT}

$$x_{n-1} + x_{n-2} + \dots + x_i + \dots + x_0 = (x'_{n-1}x'_{n-2}\dots x'_i\dots x'_0)'$$

Figure 4.5: AND-NOT IMPLEMENTATION OF AN OR GATE

UNIVERSAL SETS OF GATES (cont.)

Sets {NAND} and {NOR}

$$x' = (xx)'$$

$$NOT(x) = NAND(x, x)$$

$$x_1x_0 = ((x_1x_0)')' = ((x_1x_0)'(x_1x_0)')'$$

$$AND(x_1, x_0) = NAND(NAND(x_1, x_0), NAND(x_1, x_0))$$

Figure 4.6: IMPLEMENTATIONS WITH NAND GATES: a) NOT; b) AND

MIXED-LOGIC NOTATION

 $\label{eq:Figure 4.7: MIXED-LOGIC NOTATION: a) NAND GATE b) NOR GATE }$

Figure 4.8: ADDITIONAL GATES IN CMOS a) XOR and XNOR, b) COMPLEX GATE STRUCTURES: AND-OR and OR-AND

• FUNCTIONAL ANALYSIS:

- 1. OBTAIN I/O SWITCHING EXPRESSIONS
- 2. OBTAIN A TABULAR REPRESENTATION OF THE (BINARY) FUNCTION (IF FEW VARIABLES)
- 3. DEFINE HIGH-LEVEL INPUT AND OUTPUT VARIABLES; USE CODES TO RELATE THESE VARIABLES WITH THE BIT-VECTORS
- 4. OBTAIN A HIGH-LEVEL SPECIFICATION OF THE SYS-TEM

NETWORK CHARACTERISTICS:
 INPUT LOAD FACTORS, FAN-OUT FACTORS, AND DELAYS

OBTAIN SWITCHING EXPRESSIONS

- ASSIGN NAMES TO EACH CONNECTION IN THE NETWORK
- WRITE SWITCHING EXPRESSIONS FOR EACH GATE OUT-PUT
- SUBSTITUTE ALL INTERNAL NAMES TO OBTAIN
 EXTERNAL OUTPUTS IN TERMS OF EXTERNAL INPUTS

Figure 4.9: GATE NETWORK FOR ANALYSIS

EXAMPLE (cont.)

OUTPUT EXPRESSIONS:

$$z_0 = T_2 + T_3$$

$$= x'_0 x'_1 x_2 + x_0 T_1$$

$$= x'_0 x'_1 x_2 + x_0 (x'_2 + x_3)$$

$$= x'_0 x'_1 x_2 + x_0 x'_2 + x_0 x_3$$

$$z_{1} = T_{5} + T_{6}$$

$$= x_{1}x_{2}x_{3} + T'_{4}$$

$$= x_{1}x_{2}x_{3} + (T_{1}x'_{0}x_{1})'$$

$$= x_{1}x_{2}x_{3} + T'_{1} + x_{0} + x'_{1}$$

$$= x_{1}x_{2}x_{3} + x_{2}x'_{3} + x_{0} + x'_{1}$$

REDUCED EXPRESSIONS:

$$z_0 = x'_0 x'_1 x_2 + x_0 x'_2 + x_0 x_3$$
 (no reduction possible)
 $z_1 = x_0 + x'_1 + x_2$

HIERARCHICAL APPROACH

- DECOMPOSE THE NETWORK INTO SUBNETWORKS (MOD-ULES)
- ANALYZE EACH SUBNETWORK SEPARATELY
- USE SUBSTITUTION TO OBTAIN THE NETWORK FUNC-TION

 $\label{eq:Figure 4.10:NETWORK FOR HIERARCHICAL ANALYSIS}$

EXAMPLE cont.

VERIFY THAT THE NETWORK SATISFIES THE SPECIFICA-TION:

Inputs: $x, y, w \in \{0, 1, ..., 7\}$

Output: $z \in \{0, 1, ..., 7\}$

Function: $z = \begin{cases} (y+1) \mod 8 & \text{if } x \neq 0 \\ (w+1) \mod 8 & \text{if } x = 0 \end{cases}$

SUBNETWORKS

 M_1 :

$$t = x_2 + x_1 + x_0$$
$$t = \begin{cases} 1 & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

 M_2 :

$$v_i = y_i t + w_i t' \quad (i = 0, 1, 2)$$

$$\underline{v} = \begin{cases} \underline{y} & \text{if} \quad t = 1 \\ \underline{w} & \text{if} \quad t = 0 \end{cases}$$

$$v = \begin{cases} \underline{y} & \text{if} \quad t = 1 \\ w & \text{if} \quad t = 0 \end{cases}$$

 M_3 :

$$z_{2} = v'_{2}v_{1}v_{0} + v_{2}v'_{1} + v_{2}v'_{0}$$

$$z_{1} = v_{1}v'_{0} + v'_{1}v_{0}$$

$$z_{0} = v'_{0}$$

• HIGH-LEVEL SPECIFICATION:

v_2	v_1	v_0	z_2	z_1	z_0	v	z
0	0	0	0	0	1	0	
0	0	1		1	0	1	2
0	1	0	0	1	1	2	3
0	1	1	1	0	$\theta\!\!\rightarrow$	3	4
1	0	0	1	0	1	4	5
1	0	1	1	1	0	5	6
1	1	0	1	1	1	6	7
_1	1	1	0	0	0	7	0

FROM TABLE, WE GET

$$z = (v+1) \bmod 8$$

SECOND LEVEL OF ANALYSIS:

$$z = \begin{cases} (y+1) \bmod 8 & \mathbf{if} \quad x \neq 0 \\ (w+1) \bmod 8 & \mathbf{if} \quad x = 0 \end{cases}$$

THIS CORRESPONDS TO THE ORIGINAL SPECIFICATION OF THE FUNCTION

ANALYSIS OF NETWORKS WITH NOT, NAND and NOR

Figure 4.11: a) NAND NETWORK; b) NETWORK REDRAWN IN MIXED-LOGIC NOTATION

ANALYSIS (cont.)

USE MIXED-LOGIC TRANSFORMATIONS

$$z = x'_5 + (x_4 + x'_3)(x'_2 + x_1x'_0)$$

= $x'_5 + x_4x'_2 + x_3x'_2 + x_4x_1x'_0 + x'_3x_1x'_0$

ANALYSIS (cont.)

$$z = ((x_2 + x_1')(x_2' + x_1) + x_0)(x_2' + x_1' + x_0')$$

$$= (x_2 + x_1' + x_0)(x_2' + x_1 + x_0)(x_2' + x_1' + x_0')$$

$$= (x_2x_1 + x_2'x_1' + x_0)(x_2' + x_1' + x_0)$$

$$= x_2'x_1' + x_0$$

ANALYSIS OF CHARACTERISTICS

- LOAD FACTOR OF A NETWORK INPUT
- FAN-OUT FACTOR OF A NETWORK OUTPUT
- SIZE OF THE NETWORK
- NETWORK (PROPAGATION) DELAY
- NUMBER OF LEVELS OF A NETWORK
- DYNAMIC CHARACTERISTICS

Table 4.3: Characteristics of a family of CMOS gates (partial)

Gate	Fan-	Propagation delays		Load factor	Size
type	in	t_{pLH}	t_{pHL}		
		[ns]	[ns]	[standard	[equiv.
				loads]	gates]
AND	2	0.15 + 0.037L	0.16 + 0.017L	1.0	2
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2
OR	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	2
NOT	1	0.02 + 0.038L	0.05 + 0.017L	1.0	1

 $\label{eq:Figure 4.13: NETWORK FOR HIERARCHICAL ANALYSIS}$

EXAMPLE (cont.)

TYPES OF GATES USED: 2-input AND, 3-input AND, etc. LOAD FACTORS: NETWORK INPUTS: 1; GATE INPUTS: 1

FANOUT FACTORS: F = 12 (assumed)

$$F(z_2) = F(z_1) = 12, \quad F(z_0) = 12 - 2 = 10$$

NETWORK SIZE: 38 [equiv. gates] 21 [actual]

NUMBER OF LEVELS: 7

NETWORK DELAY Example of path delay calculation:

$$O_{1} \rightarrow N_{1} \rightarrow A_{2} \rightarrow O_{2} \rightarrow N_{2} \rightarrow A_{9} \rightarrow O_{5}$$

$$T_{pLH}(x_{1}, z_{2}) = t_{pLH}(O_{1}) + t_{pHL}(N_{1}) + t_{pHL}(A_{2}) + t_{pHL}(O_{2}) + t_{pLH}(N_{2}) + t_{pLH}(A_{9}) + t_{pLH}(O_{5})$$

$$T_{pHL}(x_{1}, z_{2}) = t_{pHL}(O_{1}) + t_{pLH}(N_{1}) + t_{pLH}(A_{2}) + t_{pLH}(O_{2}) + t_{pHL}(N_{2}) + t_{pHL}(A_{9}) + t_{pHL}(O_{5})$$

Gate	Identifier	Output load	t_{pLH}	t_{pHL}
			[ns]	[ns]
OR3	O_1	4	0.27	0.43
NOT	N_1	3	0.13	0.10
AND2	A_2	1	0.19	0.18
OR2	O_2	3	0.23	0.26
NOT	N_2	1	0.06	0.07
AND3	A_9	1	0.24	0.20
OR3	O_5	L	0.12 + 0.038L	0.34 + 0.022L

$$T_{pLH}(x_1, z_2) = 0.27 + 0.10 + 0.18 + 0.26 + 0.06$$

 $+0.24 + 0.12 + 0.038L = 1.23 + 0.038L \text{ [ns]}$
 $T_{pHL}(x_1, z_2) = 0.43 + 0.13 + 0.19 + 0.23 + 0.07$
 $+0.20 + 0.34 + 0.022L = 1.59 + 0.022L \text{ [ns]}$

Figure 4.14: TIMING DIAGRAM FROM NETWORK ANALYSIS