Capítulo 1 - Introdução à teoria da probabilidade

Resolução de alguns exercícios

Consequências dos axiomas.

P2 Queremos demonstrar que $A \subseteq B \Rightarrow P(A) \leq P(B)$.

Observe-se primeiramente que sendo $A \subseteq B$, o conjunto B se pode escrever como

$$B = A \cup (\overline{A} \cap B)$$

onde os conjuntos A e $\overline{A} \cap B$ são disjuntos. Neste seguimento, vem pelo Axioma A3,

$$P(B) = P(A \cup (\overline{A} \cap B)) = P(A) + P(\overline{A} \cap B)$$
 (1)

Nestas condições, e considerando ainda o Axioma A1 onde se refere que $P(A) \geq 0$ para qualquer acontecimento A, vem agora

$$P(\overline{A} \cap B) \ge 0. \tag{2}$$

De (2) e (1) vem então que

$$P(A) \leq P(A) + P(\overline{A} \cap B) = P(B)$$

donde $P(A) \leq P(B)$

c.q.d.

Consequências dos axiomas.

P4 Queremos demonstrar que $P(A) \in [0, 1]$.

Pelo Axioma A1 temos $P(A) \ge 0$.

Dado que
$$A\subseteq\Omega$$
 podemos concluir $P(A)\leq P(\Omega)=1$

c.g.d.

P6 Queremos demonstrar que $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Observamos agora que $A\cup B=(A\cap \overline{B})\cup (\overline{A}\cap B)\cup (A\cap B)$ onde $A\cap \overline{B}, \overline{A}\cap B, A\cap B$ são conjuntos disjuntos dois a dois, temos então pelo Axioma A3

$$P(A \cup B) = P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)) = P(A \cap \overline{B}) + P(\overline{A} \cap B) + P(A \cap B) =$$

$$= P(A \cap \overline{B}) + P(\overline{A} \cap B) + P(A \cap B) + P(A \cap B) - P(A \cap B)$$

$$= (P(A \cap \overline{B}) + P(A \cap B)) + (P(\overline{A} \cap B) + P(A \cap B)) - P(A \cap B)$$

$$= P(A) + P(B) - P(A \cap B)$$
c.q.d.

Consequências dos axiomas.

P7 Queremos demonstrar que

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Ora, usando a propriedade associativa da união, a propriedade P6 e a propriedade comutativa da intersecção relativamente à união vem

$$\begin{split} P(A \cup B \cup C) &= P((A \cup B) \cup C) \underset{\text{P6}}{=} P(A \cup B) + P(C) - P((A \cup B) \cap C) = \\ &= \underset{\text{P6}}{=} P(A) + P(B) - P(A \cap B) + P(C) - P((A \cap C) \cup (B \cap C)) = \\ &= \underset{\text{P6}}{=} P(A) + P(B) + P(C) - P(A \cap B) - \left(P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)\right) = \\ &= \underset{\text{P6}}{=} P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) \end{split}$$

Exercícios

Exe. 1º Teste-2016/17

Admita que A, B e C são acontecimentos de um espaço de acontecimentos (Ω,\mathcal{F}) e que:

- P(A) = 0.2, P(B) = 0.4, P(C) = 0.1, $P(A \cap B) = 0.1$
- os acontecimentos A e C são independentes
- acontecimentos $B \ {\rm e} \ C$ são disjuntos

Selecione a opção correta.

a)
$$V ext{ } F P(\overline{A \cap B}) = 0.5$$

b)
$$V = P(A - B) = 0.2$$

c)
$$V F P(A \cup B \cup C) = 0.58$$

Resolução:

a)
$$\boxed{\mathbb{F}} P(\overline{A \cap B}) = 1 - P(A \cap B) = 0.9$$

b)
$$P(A - B) = P(A) - P(A \cap B) = 0.1$$

c) V Como
$$B\cap C=\emptyset$$
 também $A\cap B\cap C=\emptyset$, logo $P\left(B\cap C\right)=P\left(A\cap B\cap C\right)=P\left(\emptyset\right)=0.$ Se A e C são acontecimentos independentes então $P\left(A\cap C\right)=P\left(A\right)\times P\left(C\right)=0.02.$ Assim, $P\left(A\cup B\cup C\right)=P\left(A\cap C\right)=P\left(A\cap C\right)=P\left(A\cap C\right)$

Exercícios

Exe 18 Considere os acontecimentos $A,B\in (\Omega,\mathcal{S},P)$ tais que $P(A\cup B)=0.8$ e P(A-B)=0.3. Qual o valor da P(B)?

Resolução:

Repare-se que por

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \text{ e } P(A - B) = P(A) - P(A \cap B)$$

virá que

$$P(B) = P(A \cup B) - P(A) + P(A \cap B) = P(A \cup B) - P(A - B) = 0.8 - 0.3 = 0.5.$$

Exercícios

Exe. 1º Teste-2016/17

Para efeitos de controlo da poluição no rio Tejo, são recolhidas de forma periódica amostras de água em três localizações distintas L_1 , L_2 e L_3 . Em L_1 são recolhidas o dobro das amostras relativamente a qualquer uma das outras localizações (L_2, L_3) . A percentagem de amostras com resultado positivo, para um certo tipo de poluente, é de 2% em L_1 e L_2 , enquanto que em L_3 é de 4%. Todas as amostras são guardadas e arquivadas num único lugar mas alguém eliminou todos os registos identificativos das amostras.

a) Escolhendo uma amostra ao acaso de entre todas as que estão arquivadas, qual a probabilidade desta ser positiva para o poluente?

A 0.05

В 0.025

C 0.011

D 0.015

E Nenhuma das anteriores

b) Se a amostra tiver resultado positivo, qual a probabilidade de ter sido recolhida em

A 0.2

в 0.30

C 0.40

D 0.60

E Nenhuma das anteriores

Resolução:

Considerem-se os acontecimentos: L_i - localização L_i , i = 1, 2, 3 e RP-Resultado positivo.

Informação:
$$P(L_1) = 2P(L_2) = 2P(L_3) \Rightarrow P(L_2) = P(L_3) \\ P(L_1) + P(L_2) + P(L_3) = 1 \Leftrightarrow 2P(L_2) + P(L_2) + P(L_2) = 1 \Leftrightarrow \\ P(L_2) = 1/4 \\ P(L_1) = 1/2 \quad P(L_2) = 1/4 \quad P(L_3) = 1/4$$

• $P(RP|L_1) = 0.02$ $P(RP|L_2) = 0.02$ $P(RP|L_3) = 0.04$

)
$$\blacksquare$$
 $P(RP) = P(RP \cap L_1) + P(RP \cap L_2) + P(RP \cap L_3) =$

 $= P(RP|L_1) P(L_1) + P(RP|L_2) P(L_2) + P(RP|L_3) P(L_3) = 0.025$

b)
$$C$$

$$P(L_1|RP) = \frac{P(L_1 \cap RP)}{P(RP)} = \frac{P(RP|L_1)P(L_1)}{P(RP)} = \frac{0.01}{0.025} = 0.4$$