回帰分析

予測と発展的なモデル

村田 昇

講義の内容

- 第1回: 回帰モデルの考え方と推定
- 第2回: モデルの評価
- ・第3回:モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

- 目的変数 を 説明変数 で説明する関係式を構成
 - 説明変数: $x_1, ..., x_p$ (p 次元)
 - 目的変数: y (1 次元)
- 回帰係数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

問題設定

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 式の評価: 残差平方和 の最小化による推定

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解とその一意性

• 解の条件: 正規方程式

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}\mathbf{v}$$

• 解の一意性 : **Gram 行列** *X*^T*X* が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

解析の事例

気温に影響を与える要因の分析

• データの概要

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2023-09-01	29.2	0.0	24.01	0	SSE	4.3	1012.1	71	2.0
2023-09-02	29.6	0.0	22.07	0	SSE	3.1	1010.3	72	8.0
2023-09-03	29.1	3.5	18.64	0	ENE	2.8	1010.6	74	9.3
2023-09-04	26.1	34.0	7.48	0	N	2.6	1007.5	96	10.0
2023-09-05	29.3	0.0	22.58	0	S	3.5	1005.2	77	3.5
2023-09-06	27.5	0.5	13.17	0	SSW	2.6	1003.6	79	10.0
2023-09-07	27.0	0.5	11.01	0	ENE	2.5	1007.9	72	10.0
2023-09-08	21.9	107.5	2.10	0	NW	3.4	1007.8	98	10.0
2023-09-09	24.8	1.0	8.81	0	S	2.2	1006.8	93	7.5
2023-09-10	27.8	0.0	17.57	0	S	3.1	1009.1	83	6.3
2023-09-11	28.1	0.0	17.19	0	SSE	3.1	1010.1	79	9.0
2023-09-12	27.7	0.0	20.02	0	SSE	2.8	1010.0	76	4.8
2023-09-13	28.0	0.0	22.00	0	SE	2.4	1010.9	74	4.5
2023-09-14	28.2	0.0	14.54	0	SSE	2.8	1009.9	80	7.0
2023-09-15	27.4	10.5	9.21	0	NE	2.0	1010.9	88	8.5
2023-09-16	27.9	0.0	11.78	0	SSE	2.0	1011.5	86	10.0
2023-09-17	28.7	0.0	14.84	0	S	3.2	1011.5	80	4.0
2023-09-18	28.9	0.0	19.59	0	S	4.2	1011.6	74	1.8
2023-09-19	29.0	0.0	19.93	0	S	3.3	1010.1	72	2.3
2023-09-20	27.2	6.0	10.65	0	N	1.9	1009.3	82	8.3
2023-09-21	26.7	2.0	6.65	0	S	4.1	1006.7	87	9.5
2023-09-22	24.8	59.5	6.83	0	ENE	2.5	1008.1	93	10.0
2023-09-23	22.1	4.0	4.48	0	NE	2.6	1012.5	89	10.0
2023-09-24	22.2	0.0	15.81	0	N	3.0	1017.2	67	7.0
2023-09-25	22.4	0.0	15.49	0	N	2.5	1017.1	69	6.5
2023-09-26	24.6	0.0	16.08	0	NNW	2.0	1012.7	71	6.0
2023-09-27	25.3	0.0	11.59	0	SSE	1.9	1008.1	81	9.0
2023-09-28	27.4	0.0	14.03	0	ESE	1.9	1004.7	79	5.8
2023-09-29	26.3	0.0	10.11	0	SSE	3.0	1009.0	75	8.5
2023-09-30	25.6	0.0	7.98	0	S	2.5	1007.5	77	7.0

• 気温を説明する5種類の線形回帰モデルを検討

- モデル1: 気温 = F(気圧)

- モデル2: 気温 = F(日射)

- モデル3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

• 関連するデータの散布図

• 観測値とあてはめ値の比較

寄与率

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Figure 1: 散布図

Figure 2: モデルの比較

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

モデルの評価

• 決定係数 (R^2 ・Adjusted R^2) によるモデルの比較

	モデル 1	モデル 2	モデル 3	モデル 4	モデル 5
Characteristic	Beta (SE) ^{1,2}				
気圧	-0.21 (0.135)		-0.36*** (0.090)	-0.32** (0.098)	-0.36*** (0.092)
日射		0.25*** (0.057)	0.30*** (0.048)	0.35*** (0.069)	0.32*** (0.069)
湿度				0.05 (0.052)	
雲量					0.05 (0.151)
R ²	0.082	0.414	0.632	0.644	0.633
Adjusted R ²	0.049	0.393	0.604	0.603	0.591

¹*p<0.05; **p<0.01; ***p<0.001 ²SE = Standard Error

F統計量による検定

- 説明変数のうち1つでも役に立つか否かを検定する
 - 帰無仮説 H_0 : $\beta_1 = \cdots = \beta_p = 0$
 - 対立仮説 H_1 : $\exists j \beta_i \neq 0$ (少なくとも 1 つは役に立つ)
- F 統計量: 決定係数 (または残差) を用いて計算

$$F = \frac{n - p - 1}{p} \frac{R^2}{1 - R^2}$$

• p 値: 自由度 p,n-p-1 の F 分布で計算

モデルの評価

• F 統計量によるモデルの比較

	モデル 1	モデル 2	モデル 3	モデル 4	モデル 5
Characteristic	Beta (SE) ^{1,2}				
気圧	-0.21 (0.135)		-0.36*** (0.090)	-0.32** (0.098)	-0.36*** (0.092)
日射		0.25*** (0.057)	0.30*** (0.048)	0.35*** (0.069)	0.32*** (0.069)
湿度				0.05 (0.052)	
雲量					0.05 (0.151)
R ²	0.082	0.414	0.632	0.644	0.633
Statistic	2.51	19.8	23.1	15.7	14.9
p-value	0.12	< 0.001	< 0.001	< 0.001	<0.001

¹*p<0.05; **p<0.01; ***p<0.001 ²SE = Standard Error

t 統計量による検定

・ 回帰係数 β_i が回帰式に寄与するか否かを検定する

- 帰無仮説 H_0 : $β_i = 0$

- 対立仮説 H_1 : $\beta_i \neq 0$ (β_i は役に立つ)

• t 統計量: 各係数ごと, ζ は $(X^TX)^{-1}$ の対角成分

$$t = \frac{\hat{\beta}_j}{\hat{\sigma}\zeta_j}$$

• p 値: 自由度 n-p-1 の t 分布を用いて計算

モデルの評価

• t 統計量によるモデルの比較

		Ŧ	デル 1			7	デル 2			Ŧ	デル3	
Characteristic	Beta	SE^I	Statistic	p-value	Beta	\mathbf{SE}^{I}	Statistic	p-value	Beta	\mathbf{SE}^{I}	Statistic	p-value
(Intercept)	243	137	1.78	0.086	23	0.855	27.1	< 0.001	386	91.0	4.25	< 0.001
気圧	-0.21	0.135	-1.58	0.12					-0.36	0.090	-3.99	< 0.001
日射					0.25	0.057	4.45	< 0.001	0.30	0.048	6.35	< 0.001

¹SE = Standard Error

モデル 4			モデル 5					
Characteristic	Beta	SE^{I}	Statistic	p-value	Beta	\mathbf{SE}^{I}	Statistic	p-value
(Intercept)	346	101	3.44	0.002	384	92.8	4.13	< 0.001
気圧	-0.32	0.098	-3.32	0.003	-0.36	0.092	-3.90	< 0.001
日射	0.35	0.069	5.05	< 0.001	0.32	0.069	4.62	< 0.001
湿度	0.05	0.052	0.948	0.4				
雲量					0.05	0.151	0.317	0.8

 $^{^{}I}$ SE = Standard Error

診断プロットによる評価

- モデル 2
- モデル3
- モデル 4

回帰モデルによる予測

予測

• 新しいデータ (説明変数) x に対する **予測値**

$$\hat{\mathbf{y}} = (1, \mathbf{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \qquad \hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

• 予測値は元データの目的変数の重み付け線形和

$$\hat{y} = w(x)^{\mathsf{T}} y, \qquad w(x)^{\mathsf{T}} = (1, x^{\mathsf{T}})(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}$$

- 重みは元データと新規データの説明変数で決定

Figure 3: モデル 2 の診断

Figure 4: モデル 3 の診断

Figure 5: モデル 4 の診断

予測値の性質

• 推定量は以下の性質をもつ多変量正規分布

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (X^\mathsf{T} X)^{-1}$$

• この性質を利用して以下の3つの値の違いを評価

$$\hat{y} = (1, \mathbf{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$
 (回帰式による予測値)
 $\tilde{y} = (1, \mathbf{x}^{\mathsf{T}})\boldsymbol{\beta}$ (最適な予測値)
 $y = (1, \mathbf{x}^{\mathsf{T}})\boldsymbol{\beta} + \epsilon$ (観測値)

- ŷとyは独立な正規分布に従うことに注意

演習

問題

- 誤差が平均 0 分散 σ^2 の正規分布に従うとき、以下の間に答えなさい
 - 予測値 ŷ の平均を求めよ
 - 予測値ŷの分散を求めよ

解答例

• 定義にもとづいて計算する

$$\mathbb{E}[\hat{y}] = \mathbb{E}[(1, x^{\mathsf{T}})\hat{\boldsymbol{\beta}}]$$
$$= (1, x^{\mathsf{T}})\mathbb{E}[\hat{\boldsymbol{\beta}}]$$
$$= (1, x^{\mathsf{T}})\boldsymbol{\beta}$$
$$= \tilde{y}$$

- 真の回帰式による最適な予測値
- 定義にもとづいて計算する

$$Var(\hat{y}) = Var((1, \boldsymbol{x}^{\mathsf{T}})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))$$

$$= (1, \boldsymbol{x}^{\mathsf{T}})Cov(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}$$

$$= (1, \boldsymbol{x}^{\mathsf{T}})Cov(\hat{\boldsymbol{\beta}})(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}$$

$$= (1, \boldsymbol{x}^{\mathsf{T}})\sigma^{2}(X^{\mathsf{T}}X)^{-1}(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}$$

$$= \sigma^{2}(1, \boldsymbol{x}^{\mathsf{T}})(X^{\mathsf{T}}X)^{-1}(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}$$

信頼区間

最適な予測値との差

• 差の分布は以下の平均・分散をもつ正規分布に従う

$$\mathbb{E}[\tilde{y} - \hat{y}] = (1, \mathbf{x}^{\mathsf{T}})\boldsymbol{\beta} - (1, \mathbf{x}^{\mathsf{T}})\mathbb{E}[\hat{\boldsymbol{\beta}}] = 0$$

$$\operatorname{Var}(\tilde{y} - \hat{y}) = \underbrace{\sigma^{2}(1, \mathbf{x}^{\mathsf{T}})(X^{\mathsf{T}}X)^{-1}(1, \mathbf{x}^{\mathsf{T}})^{\mathsf{T}}}_{\hat{\boldsymbol{\beta}}} = \sigma^{2}\gamma_{c}(\mathbf{x})^{2}$$

• 標準化による表現

$$\frac{\tilde{y} - \hat{y}}{\sigma \gamma_c(\mathbf{x})} \sim \mathcal{N}(0, 1)$$

信頼区間

• 未知の分散を不偏分散で推定

$$Z = \frac{\tilde{y} - \hat{y}}{\hat{\sigma}\gamma_c(\mathbf{x})} \sim \mathcal{T}(n-p-1) \quad (t 分布)$$

確率 α の信頼区間

$$I_{\alpha}^{c} = (\hat{y} - C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}), \ \hat{y} + C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}))$$

$$P(|Z| < C_{\alpha}|Z \sim \mathcal{T}(n-p-1)) = \alpha$$

- 最適な予測値 \tilde{y} が入ることが期待される区間

演習

問題

- 以下の間に答えなさい
 - 信頼区間について以下の式が成り立つことを示せ

$$P(\tilde{y} \in I_{\alpha}^{c}) = \alpha$$

- 観測値と予測値の差 y - ŷ の平均と分散を求めよ

解答例

• C_{α} の定義にもとづいて計算すればよい

$$\alpha = P(|Z| < C_{\alpha})$$

$$= P\left(\left|\frac{\tilde{y} - \hat{y}}{\hat{\sigma}\gamma_{c}(\mathbf{x})}\right| < C_{\alpha}\right)$$

$$= P\left(|\tilde{y} - \hat{y}| < C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x})\right)$$

$$= P\left(-C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}) < \tilde{y} - \hat{y} < C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x})\right)$$

$$= P\left(\hat{y} - C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}) < \tilde{y} < \hat{y} + C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x})\right)$$

• 独立性を利用して計算する

$$\mathbb{E}[y - \hat{y}] = \mathbb{E}[y] - \mathbb{E}[\hat{y}]$$

$$= \tilde{y} - \tilde{y}$$

$$= 0$$

$$Var(y - \hat{y}) = Var(y) + Var(\hat{y})$$

$$= \sigma^2 + \sigma^2(1, \mathbf{x}^{\mathsf{T}})(X^{\mathsf{T}}X)^{-1}(1, \mathbf{x}^{\mathsf{T}})^{\mathsf{T}}$$

予測区間

観測値との差

• 差の分布は以下の平均・分散をもつ正規分布に従う

$$\mathbb{E}[y - \hat{y}] = (1, \boldsymbol{x}^{\mathsf{T}})\boldsymbol{\beta} + \mathbb{E}[\boldsymbol{\epsilon}] - (1, \boldsymbol{x}^{\mathsf{T}})\mathbb{E}[\boldsymbol{\hat{\beta}}] = 0$$

$$\operatorname{Var}(y - \hat{y}) = \underbrace{\sigma^{2}(1, \boldsymbol{x}^{\mathsf{T}})(X^{\mathsf{T}}X)^{-1}(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}}_{\boldsymbol{\hat{\beta}}} + \underbrace{\sigma^{2}}_{\text{誤差の分散}} = \sigma^{2}\gamma_{p}(\boldsymbol{x})^{2}$$

• 標準化による表現

$$\frac{y - \hat{y}}{\sigma \gamma_p(\mathbf{x})} \sim \mathcal{N}(0, 1)$$

予測区間

• 未知の分散を不偏分散で推定

$$Z = \frac{y - \hat{y}}{\hat{\sigma} \gamma_p(\mathbf{x})} \sim \mathcal{T}(n-p-1)$$
 (t 分布)

確率 α の予測区間

$$I_{\alpha}^{p} = \left(\hat{y} - C_{\alpha}\hat{\sigma}\gamma_{p}(\boldsymbol{x}),\ \hat{y} + C_{\alpha}\hat{\sigma}\gamma_{p}(\boldsymbol{x})\right)$$

$$P(|Z| < C_{\alpha}|Z \sim \mathcal{T}(n{-}p{-}1)) = \alpha$$

- 観測値 y が入ることが期待される区間
- $-\gamma_p > \gamma_c$ なので信頼区間より広くなる

解析の事例

信頼区間と予測区間

- 東京の気候データを用いて以下を試みる
 - 8月のデータで回帰式を推定する 気温 = F(気圧, 日射, 湿度)
 - 上記のモデルで9月のデータを予測する
- 推定されたモデル

Characteristic	Beta	\mathbf{SE}^{I}	Statistic	p-value ²
(Intercept)	20	34.2	0.573	0.6
日射	0.13	0.030	4.42	<0.001***
気圧	0.01	0.034	0.224	0.8
雲量	-0.09	0.057	-1.55	0.13

¹SE = Standard Error

発展的なモデル

非線形性を含むモデル

- 目的変数 y
- 説明変数 x_1, \ldots, x_p
- 説明変数の追加で対応可能
 - 交互作用 (交差項): $x_i x_j$ のような説明変数の積
 - 非線形変換: $\log(x_k)$ のような関数による変換

²*p<0.05; **p<0.01; ***p<0.001

Figure 6:8月のあてはめ値の信頼区間

Figure 7:8月のあてはめ値の予測区間

Figure 8:8月モデルによる9月の予測値の信頼区間

Figure 9:8月モデルによる9月の予測値の予測区間

カテゴリカル変数を含むモデル

- 数値ではないデータ
 - 悪性良性
 - 血液型
- 適切な方法で数値に変換して対応:
 - 2値の場合は1,0(真, 偽)を割り当てる
 - * 悪性:1 * 良性:0
 - 3 値以上の場合は **ダミー変数** を利用する (カテゴリ数-1 個)
 - * A型: (1,0,0) * B型: (0,1,0) * O型: (0,0,1) * AB型: (0,0,0)

解析の事例

非線形変換による線形化

	body	brain
Mountain beaver	1.350	8.1
Cow	465.000	423.0
Grey wolf	36.330	119.5
Goat	27.660	115.0
Guinea pig	1.040	5.5
Dipliodocus	11700.000	50.0
Asian elephant	2547.000	4603.0
Donkey	187.100	419.0
Horse	521.000	655.0
Potar monkey	10.000	115.0
Cat	3.300	25.6
Giraffe	529.000	680.0
Gorilla	207.000	406.0
Human	62.000	1320.0
African elephant	6654.000	5712.0
Triceratops	9400.000	70.0
Rhesus monkey	6.800	179.0
Kangaroo	35.000	56.0
Golden hamster	0.120	1.0
Mouse	0.023	0.4
Rabbit	2.500	12.1
Sheep	55.500	175.0
Jaguar	100.000	157.0
Chimpanzee	52.160	440.0
Rat	0.280	1.9
Brachiosaurus	87000.000	154.5

Mole	0.122	3.0
Pig	192.000	180.0

- 様々な動物の体重と脳の重さの関係を調べる
 - 体重は5桁程度のばらつき
 - 脳の重さは4桁程度のばらつき
- 以下の変換を検討する
 - 変換なし
 - 体重を対数変換
 - 体重および脳の重さを対数変換
- 散布図 (変換なし)

Figure 10: 散布図 (データの変換なし)

- 散布図 (x 軸を対数変換)
- 散布図 (xy 軸を対数変換)
- 単回帰 (全データ)
- ・ 単回帰 (外れ値を除去)

Figure 11: 散布図 (体重を対数変換)

Figure 12: 散布図 (体重と脳の重さを対数変換)

Figure 13: 単回帰

Figure 14: 外れ値を除いた単回帰

非線形な関係の分析

- ・東京の気候データ (10月)を用いて、この時期気温に影響する変数の関係を検討する
 - 日射と気圧の線形回帰モデル (日射と気圧が気温にどのように影響するか検討する)
 - これらの交互作用を加えた線形回帰モデル (日射と気圧の相互の関係の影響を検討する)
- 関連データの散布図

Figure 15: 散布図 (気温・日射・気圧)

交互作用の効果

	交互作用なし	交互作用あり
Characteristic	Beta (SE) ^{1,2}	Beta (SE) ^{1,2}
日射	0.20* (0.086)	14 (14.4)
気圧	-0.14* (0.065)	0.03 (0.185)
日射 * 気圧		-0.01 (0.014)
R ²	0.250	0.273
Adjusted R ²	0.196	0.192
Statistic	4.65	3.38
p-value	0.018	0.033

¹*p<0.05; **p<0.01; ***p<0.001

- 気温への寄与
 - 線形モデル
 - * 日射の係数は正

²SE = Standard Error

- * 気圧の係数は負
- 交互作用を加えたモデル
 - * 日射の係数は気圧がある値より高い場合に負
 - * 気圧の係数は日射がある値より高い場合に負
 - * 係数の有意性は低いのでより多くのデータでの分析が必要

カテゴリカル変数の利用

- 東京の気候データを用いて気温を回帰するモデルを検討する
 - 降水の有無を表すカテゴリカル変数を用いたモデル (雨が降ると気温が変化することを検証する)
 - 月をカテゴリカル変数として加えたモデル (月毎の気温の差を考慮する)
- 関連データの散布図

Figure 16: 散布図 (気温・雨の有無・月)

カテゴリカル変数の効果

	雨の有無	雨の有無+月
Characteristic	Beta (SE) ^{1,2}	Beta (SE) ^{1,2}
雨の有無		
FALSE	_	_
TRUE	1.5 (0.954)	-0.72* (0.300)
月		
1		_
2		1.5* (0.641)
3		7.3*** (0.625)

4		11*** (0.629)
5		13*** (0.625)
6		18*** (0.635)
7		23*** (0.624)
8		24*** (0.625)
9		21*** (0.630)
10		13*** (0.623)
11		8.6*** (0.629)
12		3.6*** (0.624)
(Intercept)	17*** (0.500)	5.9*** (0.446)
R ²	0.006	0.912
Adjusted R ²	0.004	0.909
Statistic	2.36	305
p-value	0.13	< 0.001

¹*p<0.05; **p<0.01; ***p<0.001

- 気温への寄与
 - 雨の 有無モデル
 - * 経験的に雨の有無は気温と無関係ではないと考えられる
 - * 決定係数から回帰式としての説明力は極めて低い
 - * 通年では雨と気温の関係は積極的に支持されない
 - 雨の有無+月モデル
 - * 月毎の気温の偏りが月の係数として推定される
 - * 雨の日の方が気温が低いことが支持される

次回の予定

- ・第1回: 主成分分析の考え方
- ・第2回:分析の評価と視覚化

²SE = Standard Error