Les arènes

Les arènes

- I Généralités
- II Réactivité
- III Substitutions électrophiles
- IV Substitutions sur les arènes monosubstitués
- V Réactions d'addition et de coupures
- VI Préparations

Nomenclature

Arènes: hydrocarbures avec au moins un noyau benzènique

Benzène

Toluène

Diphénylméthane

$$C_6H_5$$

Phényle

$$C_6H_5-CH_2$$
—

Benzyle

Nomenclature

Arènes: hydrocarbures avec au moins un noyau benzènique

Benzène

Naphtalène

Anthracène

phénanthrène

Pyrène

Structure

> Longueurs de liaison :

$$C-C$$
 (benzène) = 0,146nm

⇒ longueur intermédiaire entre une simple et une double liaison

Structure

> Propriétés thermodynamiques :

Structure

C: hybridation sp²

Structure

Aromaticité du benzène

Règle de Hückel : est aromatique tout système cyclique possédant 4n+2 e délocalisés (système le plus fréquent n = 1)

II - Réactivité

Réactivité due aux caractères nucléophile et insaturé

Caractère nucléophile:

II - Réactivité

Caractère nucléophile :
Réactions de substitution électrophile

Caractère insaturé :

Seules réactions d'addition: réaction d'hydrogénation et réaction d'halogénation

Réaction	Réactif	Catalyseur	Electrophile	Produit
	AB +	z —	→ A [⊕] —	— → Ar——A
Halogénation	\mathbf{X}_2	AlX ₃	\mathbf{X}^{+}	Ar-X
Nitration	HNO ₃	H_2SO_4	NO_2^+	Ar-NO ₂
Sulfonation	SO ₃ dans H ₂ SO ₄	-	SO ₃	Ar-SO ₃ H
Alkylation	RCI	AlX ₃	\mathbf{R}^+	Ar- <mark>R</mark>
Acylation	RCOCI RCOOOCR'	AlX ₃	RCO ⁺	Ar-COR Ar-COR

Réaction souvent catalysée pour former l'électrophile E+ qui va attaquer l'arène

Réaction d'halogénation

Catalyseur : AlCl₃ : acide de Lewis

$$Cl$$
— Cl + $\begin{bmatrix} AlCl_3 \\ + Cl \end{bmatrix}$ + Cl + C

$$AlCl_4$$
 + H + \longrightarrow $AlCl_3$ + HCl

> Réaction de nitration

> Réaction de sulfonation

Réaction directement avec SO₃

$$\delta - 0 = S \qquad \qquad \bullet 0 \qquad \bullet$$

> Réactions d'alkylation et d'acylation

Réactions de Friedel et Crafts : permettent de créer des liaisons C-C sur un cycle benzènique

Alkylation

$$+$$
 R —Cl $\xrightarrow{\text{AlCl}_3}$ + HCl

Acylation

Préparation des cétones aromatiques

La présence d'un substituant :

- modifie la réactivité
- oriente l'attaque électrophile

3 groupes de substituants:

- Les substituants donneurs d'e- par effet +I ou +M
- Les substituants attracteurs d'e- par effet -I ou -M
- Les halogènes qui présentent un effet -l et +M

Effets		Groupes	Réactivité du cycle Comparée à C ₆ H ₆	Orientation
	Effet +I	Alkyles		
Donneurs	Effet +M	-OH, -OR, -NH ₂ , -NR ₂	Supérieure	Ortho et para
Attracteurs	Effet -I	R ₃ N ⁺ , -CX ₃	Inférieure	
	Effet -M et -I	-NO ₂ , -SO ₃ H, -COR, -CO ₂ R		Méta
Cas particuliers	Effet -I et +M	-Cl, -Br, -I	Inférieure	Ortho et para

- Les substituants donneurs d'e-par effet +I ou +M
 - enrichissent le noyau en e ⇒ noyau + nucléophile ⇒ + réactif
 - orientent en ortho ou para

- Les substituants attracteurs d'e par effet -I ou -M
 - diminuent la réactivité
 - orientent en méta

- Les halogènes effet -I et +M
 - diminuent la réactivité
 - orientent en ortho et para

Nitration d'un	Vitesse par rapport au benzène	% ortho/para	% méta			
Phénol	10 ³	98	2			
Toluène	25	95	5			
Chlorobenzène	0,3	99	1			
Nitrobenzène	10-4	6	94			

Réaction d'hydrogénation

Réaction difficile ⇒Catalyseur + chaleur + pression

Ni, 180°C, 100 Bar

$$R$$
 + $3 H_2$ \longrightarrow R

Fixation de 3 moles de H₂

Dès qu 'une mole de H₂ est fixée perte de l'aromaticité ⇒la 2ème et 3ème mole de H₂ se fixe très rapidement

Réaction d'halogénation

- Halogénation par voie photochimique ----- composés hexahalogénés
- Mélanges de plusieurs stéréoisomères

Réaction d'halogénation

Cas d'un alkylarène : selon les conditions, substitution sur la chaîne ou sur le noyau

$$Cl_2 + AlCl_3$$
 $+$ CH_3 $+$ HCl $Cl_2 + hv$ $+$ HCl $+$ HCl

Réaction d'oxydation

Oxydation du noyau

$$V_2O_5$$
 + 9/2 O_2 V_2O_5 + 2 $COOH$ + 2 CO_2 + $COOH$ + 2 CO_2 + $COOH$ +

Oxydation des chaînes latérales

$$CH_3$$
 $KMnO_4$ H^+ Acide benzoïque

VI - Préparations

- Pas de voies de préparations industrielles
- Obtention à partir des pétroles et des charbons
- Préparation des composés substitués :
 - réactions de Friedel et Crafts
- à partir des composés halogénés par passage par un organo-magnésien

