Redes de Computadores Camada Física

Luiz Filipe Menezes Vieira,PhD Ifvieira@dcc.ufmg.br

Departamento de Ciência da Computação Universidade Federal de Minas Gerais

A LIEMO/DOC - Badas do Computadores - Comado Eísico

Análise teórica de transmissão de dados

- Informação pode ser transmitida variando-se uma propriedade física como tensão ou corrente
- A grandeza é representada por uma função do tempo, f(t)
 - Permite uma análise matemática do sinal
- Análise de Fourier:
 - Uma função periódica g(t) com certas características e período T pode ser representada por uma série de senos e cossenos

HEMC/DCC - Bodon do Computadoros - Comado Físico

Sinais limitados pela faixa de passagem

- Sinais perdem potência na transmissão
- Harmônicos diferentes têm perdas diferentes
 - Causa da distorção
- Normalmente, freqüências na faixa 0-f_c são transmitidas sem perda e, acima, fortemente atenuadas
 - devido a propriedade física do meio de transmissão ou
 - filtro presente

UFMG/DCC • Redes de Computadores — Camada Física

Velocidade de sinalização

- Velocidade de sinalização:
 - número de vezes por segundo que o valor de um sinal é injetado na linha
 - Medido em bauds
- Uma linha de b bauds não transmite necessariamente b bits/s
- Exemplos:
 - dibit (2 bits/baud)
 - tribit (3 bits/baud)

UFMG/DCC + Redes de Computadores — Camada Física

Meios de transmissão

- Objetivo da camada física:
 - Transportar uma seqüência de bits de uma máquina para outra
- Problema a ser resolvido:
 - Codificação de bits

UFMG/DCC . Redes de Computadores — Camada Física

Meios de transmissão

- O tipo de meio físico a ser usado depende, dentre outros fatores de:
 - Largura de banda (BW: bandwidth)
 - Atraso (delay) ou latência (latency)
 - Custo
 - Facilidade de instalação e manutenção
- Os meios podem ser agrupados em:
 - "Guiados": fio de cobre e fibra óptica
 - "Não-guiados": ondas de rádio e lasers

UFMG/DCC • Redes de Computadores — Camada Física

Meios ópticos/magnéticos

- Exemplos:
 - Discos óptico e magnético, fita magnética
- Como é feito o transporte:
 - Informações gravadas em meio magnético
 - Mídia levada de uma máquina para outra
 - Mídia lida na máquina destino
- Pode ser vantajoso em certos cenários mas não é o caso normalmente

Par trançado

- Meio de transmissão mais antigo e mais comum
- O que é:
 - Dois fios de cobre encapados (≈1 mm de espessura) que são trançados para evitar interferência elétrica
- Usado largamente no sistema de telefonia

Par trançado

- Pode transmitir dados por alguns kms sem necessidade de amplificação
- Transmissão de dados analógicos e digitais
- Faixa de passagem: depende da espessura do fio e da distância
- Baixo custo
- Produzido em diversas modalidades:
 - Categoria 3
 - Categoria 5
 - Shielded Twisted Pair
 - Etc.

Cabo coaxial

- Possui melhor blindagem que o par trançado
 - · Suporta distâncias maiores a velocidades mais altas
- Dois tipos de cabos:
 - 50 Ω: usado para TX digital (FE)
 - 75 Ω: usado para TX analógica (FL)
 - Distinção baseada em fatores históricos, ao invés de técnicos

Cabo coaxial

- Largura de banda depende do comprimento do
- Usado frequentemente em TV a cabo e redes

Fibra óptica

- Tecnologia atual de fibra permite largura de banda na faixa de Tbps
- Problema: conversão sinal elétrico-sinal óptico
 - Solução: sistema óptico completo
- Componentes de um sistema de TX óptico
 - Fonte de luz:
 - ▶ bit 1: pulso de luz
 - ▶ bit 0: ausência
 - Detector: gera um pulso elétrico ao receber um pulso de luz

2

Espectro eletromagnético

- Espectro é uma "ferramenta conceitual" usada para organizar e mapear um conjunto de fenômenos físicos
- Campos elétrico e magnético produzem ondas eletromagnéticas que se propagam pelo espaço em freqüências diferentes
- O conjunto de todas as freqüências é chamado de espectro eletromagnético

NEMC/DCC - Badas do Computadores - Comodo Ejaiso

Espectro eletromagnético

- Frequência (f):
 - Número de oscilações por segundo de uma onda eletromagnética (medida em Hertz)
- Comprimento de onda (λ):
 - Distância entre dois pontos máximos (mínimos) consecutivos

UFMG/DCC + Redes de Computadores — Camada Física

Espectro eletromagnético

- Velocidade da luz:
 - Vácuo (c) ≈ 3 x 10⁻⁸ m/s
 - Cobre ou fibra = 2/3 vácuo
- Relação: λf = c
 - Para f = 1 MHz, $\lambda = 300$ m (vácuo)
 - Para f = 30 GHz, $\lambda = 1$ cm (vácuo)

UFMG/DCC + Redes de Computadores — Camada Física

Rádio transmissor Dado, voz, vídeo Fonte de ondas elétricas Rádio transmissor Rádio transmissor

Propagação de ondas Reflexão Absorção Desvanecimento com a distância: Inverso do quadrado no espaço livre (teórico) Na prática, pior que isso

Propriedades físicas de ondas

Freqüência	Comprimento de onda	Propriedades interessantes	Usos típicos
10 kHz	30 km	Ondas penetram uma distância significativa na água	Comunicação sub- aquática
100 kHz	3 km		Navegação
1000 kHz (1 MHz)	300 m		Rádio AM
10 MHz	30 m	Reflexão pela ionosfera	Rádio CB Difusão HF
100 MHz	3 m		Rádio FM, TV
1000 MHz (1 GHz)	30 cm		Rádio celular, TV UHF (superior)
10 GHz	3 cm	Ondas bloqueadas por chuva intensa	TV satélite, comunicação ponto-a-ponto, radares

Ondas de rádio

- Fácil de gerar
- Se propagam por longas distâncias em todas as direções
 - TX e RX não precisam estar fisicamente alinhados

 Usadas para comunicação interna e externa

LIEMG/DCC - Radae do Computadoras — Camada Eieira

Ondas de rádio

- Propriedades dependem normalmente da frequência
- Baixa:
 - passam facilmente por obstáculos
 - perdem potência rapidamente com a distância
- Alta
 - tendem a se propagar em linha reta
 - são refletidas ao encontrarem obstáculos
 - são absorvidas pela chuva
- Qualquer:
 - sofrem interferências de motores e outros equipamentos elétricos

UFMG/DCC • Redes de Computadores — Camada Física

Microondas

- Ondas propagam em linha reta acima de 100 MHz
- Possuem uma taxa sinal/ruído mais alta
- Antenas (pratos) de TX e RX devem estar alinhados

UFMG/DCC + Redes de Computadores — Camada Física

Microondas

- Estações repetidoras são necessárias se TX e RX não são visíveis diretamente
- Não penetram edificações facilmente
- Note that the second se
- Ondas podem ser refratadas e levarem um pouco mais de tempo para chegarem que ondas diretas
 - Sinal pode ser cancelado--efeito multipath fading

UFMG/DCC • Redes de Computadores — Camada Física

Microondas

- Principal vantagem sobre fibra óptica:
 - Não é necessário ter o "direito de passagem" (right of way)
- Tecnologia relativamente barata
- Existem bandas específicas para finalidades industriais, científicas e médicas
 - Não estão sujeitas a regras de licenciamento
 - Exemplo: ISM (Industrial, Scientific, Medical) 2.4 GHz

UFMG/DCC • Redes de Computadores — Camada Física

24

Infravermelho e ondas milimétricasnão guiadas

- Muito utilizadas para comunicações a pequenas distâncias
 - Controle remoto de equipamento eletrônico (TV, VCR, som, etc)
 - Algumas interfaces atuais de computadores
- TX e RX precisam estar ± alinhados
- São baratos e fáceis de instalar
- Não passam por objetos sólidos
 - Usado em ambientes de segurança

HEMC/DCC - Bodon do Computadoros - Comado Eínico

Infravermelho e ondas milimétricasnão guiadas

- Tendem a se comportar mais como luz visível e menos como ondas de rádio
- Tipo de tecnologia que n\u00e3o pode ser utilizada em ambientes externos
- Opção para comunicação numa LAN sem fio

UFMG/DCC . Redes de Computadores — Camada Física

Comunicação no futuro

- Que tipo de comunicação predominará no futuro?
 - Fibra óptica para a parte fixa?!, e
 - Comunicação sem fio para a parte móvel?!

UFMG/DCC + Redes de Computadores — Camada Física

Rede pública

- Solução de comunicação quando é necessário enviar dados através de uma infra-estrutura pública
 - PSTN (Public Switched Telephone Network) projetada para transmitir voz
 - Fortemente ligada a redes de computadores de longa distância, principalmente no passado

UFMG/DCC + Redes de Computadores — Camada Física

Capacidade do canal Nyquist

- Considera canal sem erro
- Se taxa de transmissão do sinal é 2B então pode transmitir um sinal com frequência até B
- Um sinal binário de 2B bps precisa de uma largura de banda de B Hz
- Pode-se aumentar a taxa usando M níveis de sinais
- Fórmula:
 - $C = 2B \log_2 M$
- Aumente a taxa aumentando os níveis de sinais:
 - Aumenta a complexidade do receptor
 - Limitado pelo aumento de ruído e outros problemas

UFMG/DCC • Redes de Computadores — Camada Física

Capacidade do canal Shannon

- Considere a relação de taxa de dados, ruído e taxa de erros:
 - Taxas de dados maiores diminuem o tempo de transmissão de cada bit e uma rajada de ruído afeta mais bits
 - Dado um nível de ruído, valores mais altos implicam taxas de erro maiores
- Shannon propôs uma fórmula que relaciona esses fatores a taxa sinal-ruído (em decibels)
 - SNR_{db}=10 log₁₀ (signal/noise)
 - Capacidade máxima teórica do canal $C = B \log_2(1+SNR)$
 - → Menor na prática

UFMG/DCC + Redes de Computadores — Camada Física

Estrutura do sistema de telefonia

- Centrais de comutação
 - Infra-estrutura de cabeamento ligando terminais telefônicos às centrais (Local loops)
 - Infra-estrutura de conexões entre centrais de comutação (*Trunks*)

UFMG/DCC → Redes de Computadores — Camada Física

Transmissões analógica e digital para uma chamada entre computadores Conversação é feita usando modems e codecs

Problemas na transmissão num *local* loop

- Atenuação: perda de energia
 - Em meios guiados, o sinal cai logaritmicamente com a distância
 - Perda depende da freqüência
 - Amplificadores devem ser introduzidos
- Distorção: harmônicos se propagam em velocidades diferentes causando interferências na recepção

UFMG/DCC • Redes de Computadores — Camada Física

Problemas na transmissão num *local* loop

- Ruído: interferência de outras fontes no sinal enviado pelo TX
 - Ruído térmico: movimento randômico dos elétrons
 - Cross talk: acoplamento indutivo entre dois fios que estão perto
 - Ruído causado por descargas diversas

UFMG/DCC ◆ Redes de Computadores — Camada Física

Modem

- Sinal não deve ter um grande número de freqüências para evitar problemas de atenuação e distorção
- Ondas quadradas (e.g., sinal digital) possuem um grande espectro
 - Sinalização banda base (DC) não é apropriada, exceto em baixas velocidades e pequenas distâncias
- Sinalização AC é usada

HEMC/DCC - Bodos do Computadoros - Comodo Eísico

Modem

- O que é?
 - Dispositivo que aceita uma seqüência de bits de entrada e produz uma portadora modulada na saída, e vice versa.
- Transmissão é feita modulando-se um dos parâmetros da portadora (carrier):
 - Amplitude: dois níveis de tensão são usados para representar 0 e 1
 - Freqüência: dois tons são usados
 - Fase: a portadora é deslocada em diferentes ângulos

UFMG/DCC + Redes de Computadores — Camada Física

Modem

- Como aumentar a velocidade de transmissão?
 - Transmitir mais bits em cada sinalização de linha, ou seja, por baud
- Modems modernos usam diferentes técnicas de modulação
 - Tipicamente, amplitude e deslocamento de fase

UFMG/DCC + Redes de Computadores — Camada Física

Modem Padrões de constelação 180 0

(a) QPSK: (Quadrature Phase Shifting Keying) variante da modulação PSK (a amplitude e a freqüência permanecem sempre inalteradas) no qual quatro diferentes ângulos de fase ortogonais são utilizados.

(b) QAM-16: (Quadrature Amplitude Modulation) técnica que combina modulação por amplitude (AM) com modulação por fase (PSK).(c) QAM-64

UFMG/DCC • Redes de Computadores — Camada Física

RS-232C e RS-449

- Interface computador/terminal-modem
- Exemplo de protocolo da camada física
- Partes:
 - DTE: Data Terminal Equipment (computador/terminal)
 - DCE: Data Circuit-Terminating Equipment (modem)

LIEMC/DCC - Bodon do Computadoros - Comodo Eloino

RS-232C

- Especificação mecânica
 - Conectores (25 pinos)
- Especificação elétrica
 - Níveis de tensão para o bit 1 (-3V) e bit 0 (+4 V)
 - Taxa máxima de dados (≤ 20 kbps)
 - Comprimento máximo dos cabos (≤ 15 m)

UFMG/DCC • Redes de Computadores — Camada Física

RS-232C

- Especificação funcional
 - Define como os pinos se conectam (circuitos) e o que eles significam
 - Circuitos pouco usuais: selecionar taxa de dados, testar o modem, detecção de sinais de tocar, etc.
- Especificação procedimental
 - Define o protocolo, ou seja, seqüência lógica de eventos

UFMG/DCC + Redes de Computadores — Camada Física

RS-232C

- A conexão entre dois computadores (dentro da distância permitida) é feita através de um cabo "null modem"
- Problemas do padrão RS-232C
 - Taxa máxima de transferência de dados e comprimento máximo do cabo

UFMG/DCC • Redes de Computadores — Camada Física

RS-449

- Padrão RS-449 (três padrões):
 - RS-449: especificações mecânica, funcional e procedimental
 - RS-423A: especificação elétrica similar a RS-232C onde existe um terra comum (unbalanced transmission)
 - RS-422A: circuitos requerem dois fios e n\u00e3o existe um terra comum (balanced transmission)
 - ▶ Velocidades até 2 Mbps e cabos acima de 60 m

HENOROO Podro do Oscosto dos se Oscosto Esdas

USB Universal Serial Bus

- Visão geral:
 - Padrão plug-and-play para interconexão de periféricos
 - Padronizado pelo "USB Implementers Forum"
- Detalhes técnicos:
 - Conexão Host/Slave
 - ▶ PC (host) gerencia todas transferências; periféricos (slave) apenas responde
 - ► Suporta 127 slaves/host
 - Conexão física:
 - ► Conexão de quatro fios

 - Dois fios para energia (+5 e GND)
 Dois fios (par trançado) para synchronous serial data
 - ► Computador fornece energia (até 500 mA)

USB: História

- USB 1.0 (Jan/1996), 1.1 (Set/1998)
 - Disponível para PCs com Windows 95 (OEM Service
 - Low-Speed (1.5 Mbps) e Full-Speed (12 Mbps)
- USB 2.0 (Abr/2000)
 - Hi-Speed (480 Mbps)
- Extensões
 - USB On-The-Go (OTG)
 - Conexão direta entre periféricos
 - Wireless USB (WUSB)
 - ► Conexão sem fios
 - ▶ Baseado no Ultra Wide Band (UWB)

USB: Dispositivos

- Interface
 - Conectores série A e série B
 - Assegura conectividade correta
 - ▶ Evita concatenação de cabos
 - Transmissão de dados em par trançado
 - Fios para fornecimento de energia
- Definição de classes de dispositivos
 - Facilita o desenvolvimento e a adaptação de drivers
 - Quantidade e tipo de endpoints: obrigatórios na especificação
 - Descritores padrão e modo de utilização de dados são opcionais

USB: Dispositivos Series "B" plugs are

USB: Topologia

- USB estrela em camadas (Tiered Star)
 - Host (centro da rede): inicia todas as transmissões de dados

Wireless USB estrela

Ausência de hubs

USB: Enumeração

- Procedimento de inserção de um dispositivo na rede USB
- Estados do dispositivo:
 - Energizado
 - Padrão
 - Endereçado
 - Configurado
 - Plugado
 - Suspenso

Multiplexação WDM ■ WDM: Wavelenght Division Multiplexing • Variação de FDM usada em fibra óptica Fiber 1 Spectrum on the shared fiber on the

Multiplexação WDM

- Requisitos para haver multiplexação WDM:
 - Cada canal deve ter sua própria faixa de freqüência
 - Faixas devem ser disjuntas
- Diferença para multiplexação FDM "elétrica":
 - Sistema óptico é usado para difração
 - Confiabilidade muito maior

LIEMG/DCC - Radae do Computadoros — Camada Ejeira

Comutação

- Duas técnicas diferentes são usadas no sistema de telefonia:
 - Comutação de circuito
 - Comutação de pacote

UFMG/DCC + Redes de Computadores — Camada Física

Comutação de circuito

- Estabelecimento do circuito é feito em fases:
 - Pedido e resposta de estabelecimento de uma conexão
 - Transferência
 - Término
- Estabelecimento da conexão deve obrigatoriamente ser confirmado

UFMG/DCC + Redes de Computadores — Camada Física

Comutação de circuito

- Existe um circuito dedicado:
 - Uma vez que uma chamada tenha sido estabelecida
 - Enquanto a chamada existir
- Existe a necessidade de haver um circuito estabelecido antes de poder haver transferência de dados

UFMG/DCC ← Redes de Computadores — Camada Física

Comutação de circuito

- Enquanto existir o circuito dedicado:
 - O único atraso para transferência de dados é o tempo de propagação
 - Não existe problema de congestionamento
 - Não existe problema de roteamento
 - Não existe problema de "endereçamento"

UFMG/DCC • Redes de Computadores — Camada Física

Comutação de mensagem

- Não se estabelece a priori um caminho (circuito) entre origem e destino
- Unidade de transferência: mensagens que podem ter tamanho variável
 - Buffers podem ter tamanhos arbitrariamente longos
 - Não é adequado para tráfego interativo
- Modalidade de transferência
 - Store-and-forward

UFMG/DCC • Redes de Computadores — Camada Física

Comutação de pacote

- Unidade de transferência:
 - · Pacote tem um tamanho máximo
- Adequado para tráfego interativo
- Em comparação com comutação de mensagem oferece
 - Atraso menor
 - Vazão maior

UFMG/DCC + Redes de Computadores — Camada Física

Comentários sobre comutação

- Redes de computadores são normalmente baseadas em comutação de pacotes
- Algumas vezes baseadas em comutação de circuitos
- Não usam comutação de mensagens

UFMG/DCC • Redes de Computadores — Camada Física

Comutação de circuito versus Comutação de pacotes

Item	Circuit switched	Packet switched
Call setup	Required	Not needed
Dedicated physical path	Yes	No
Each packet follows the same route	Yes	No
Packets arrive in order	Yes	No
Is a switch crash fatal	Yes	No
Bandwidth available	Fixed	Dynamic
Time of possible congestion	At setup time	On every packet
Potentially wasted bandwidth	Yes	No
Store-and-forward transmission	No	Yes
Transparency	Yes	No
Charging	Per minute	Per packet

UFMG/DCC → Redes de Computadores — Camada Física

Circuito virtual versus Comutação de circuito Hall Virtual circuit Fig. 2-43. The dotted line shows a virtual circuit. It is simply defined by table entries inside the switches.

Satélites de comunicação Existem acordos internacionais para uso de órbitas e freqüências ■ Tendência atual: Low-Orbit Satellites

Exercícios

- (Tanenbaum, Cap 2, #11) Radio antennas often work best
- (Tanenbaum, Cap 2, #11) Radio antennas orten work best when the diameter of the antenna is equal to the wavelength of the radio wave. Reasonable antennas range from 1 cm to 5 meters in diameter. What frequency range does this cover? (Tanenbaum, Cap 2, #22) A modem constellation diagram similar to Fig. 2-25 [Slide 47] has data points at the following coordinates: (1,1), (1, -1), (-1,1), and (-1,-1). How many bps can a modem with these parameters achieve at 1200 baud? Tanenbaum, Cap 2, #39) W/tat is the esceptial difference.
- Can a modern with these parameters achieve at 1200 baud? (Tanenbaum, Cap 2, #39) What is the essential difference between message switching and packet switching? (Tanenbaum, Cap 2, #41) Three packet-switching networks each contain *n* nodes. The first network has a star topology with a central switch, the second is a (bidirectional) ring, and the third is fully interconnected, with a wire from every node to every other node. What are the best-, average-, and-worst case transmission paths in hops?

Exercícios

- (Tanenbaum, Cap 2, #42) Compare the delay in sending an x-bit message over a k-hop path in a circuit-switched network and in a (lightly loaded) packet-switched network. The circuit setup time is s sec, the propagation delay is d sec per hop, the packet size is p bits, and the data rate is b bps. Under what conditions does the packet network have a lower delay?
- (Tanenbaum, Cap 2, #43) Suppose that x bits of user data are to be transmitted over a k-hop path in a packet-switched network as a series of packets, each containing p data bits and h header bits, with x > p + h. The bit rate of the lines is b bps and the propagation delay is negligible. What value of p minimizes the total delay?