Tenth Homework

Hand in to Frank Tuesday 12 November:

55. Let $R \subset \mathbb{C}$ be set whose elements are

$$R := \left\{ a + b \left(\frac{1 + \sqrt{-19}}{2} \right) \mid a, b \in \mathbb{Z} \right\}.$$

Show that R is a subring of \mathbb{C} that is a principal ideal domain but not a Euclidean domain.

Hand in for the grader Thursday 14 November:

- 56. For $\alpha=a+b\sqrt{-1}\in\mathbb{Z}[\sqrt{-1}]$, (the Gaußian integers) set $N(\alpha):=a^2+b^2$. Determine the units in $\mathbb{Z}[\sqrt{-1}]$. Show that if $N(\alpha)$ is prime, then α is irreducible. Show that the same conclusion holds if $N(\alpha)=p^2$, where p is a prime in \mathbb{Z} that is congruent to 3 modulo 4.
- 57. Show that $\mathbb{Z}[\sqrt{-1}]$ is a unique factorization domain. (Hint: Show that it is a Euclidean domain.)
- 58. Using that $\mathbb{Z}[\sqrt{-1}]$ is a unique factorization domain, show that every prime p that is congruent to 1 modulo 4 is the sum of two squares.
 - Hint: use the cyclicity of the group of units of \mathbb{Z}_p^* (an earlier homework problem) to show that there is a number $n \in \mathbb{Z}$ with $n^2 \cong -1 \pmod p$. Then use this to show that p is reducible in $\mathbb{Z}[\sqrt{-1}]$.
- 59. Let S be a multiplicative subset of an integral domain R with $0 \notin S$. Show that if R is a principal ideal domain, then so is $R[S^{-1}]$.
- 60. Let $p \in \mathbb{Z}$ be a prime number, so that (p) is a prime ideal. What can be said about the relation between the quotient ring \mathbb{Z}_p and the localisation $\mathbb{Z}_{(p)}$?