LEXICOGRAPHIC PRODUCTS AND IDEMPOTENT INVERSE LIMITS

STEVEN CLONTZ

ABSTRACT. The inverse limit $\varprojlim \{X, \gamma, L\}$ may be characterized as the quotient of a generalized lexicographic product of the compactification \hat{L} and X. A special case of this fact is used to show that when f satisfies condition Γ and L is uncountable, the inverse limit $\varprojlim \{X, f, L\}$ cannot be Corson compact, and therefore cannot be metrizable.

1. Introduction

All topological spaces are assumed to be T_1 .

Definition 1. Let L, M be total orders. Define their lexicographic product $L \times_{\text{lex}} M$ by the total ordering $\langle l, m \rangle < \langle l', m' \rangle$ if and only if l < l' or both l = l' and m < m'.

Definition 2. Let L be a total order, and let X be a topological space with two distinguished points 0, 1. Define their *generalized lexicographic product* $L \times_{gl} X$ to have the topology generated by the following neighborhood bases:

- For $l \in L$ and $t \in X \setminus \{0,1\}$, $\langle l,t \rangle$ has neighborhoods of the form $\{l\} \times U \setminus \{0,1\}$ for all neighborhoods U of t in X.
- For non-minimal $l \in L$, $\langle l, 0 \rangle$ has neighborhoods of the form $(\{l^-\} \times V \setminus \{0\}) \cup ((l^-, l) \times X) \cup (\{l\} \times U \setminus \{1\})$ such that $l^- < l$, U is a neighborhood of 0 in X, and V is either empty or a neighborhood of 1 in X.
- For $l = \min L$, $\langle l, 0 \rangle$ has neighborhoods of the form $(\{l\} \times U \setminus \{1\})$ such that U is a neighborhood of 0 in X.
- For non-maximal $l \in L$, $\langle l, 1 \rangle$ has neighborhoods of the form $(\{l\} \times V \setminus \{0\}) \cup ((l, l^+) \times X) \cup (\{l^+\} \times U \setminus \{1\})$ such that $l < l^+$, U is either empty or a neighborhood of 0 in X, and V is a neighborhood of 1 in X.
- For $l=\max L,\ \langle l,1\rangle$ has neighborhoods of the form $(\{l\}\times V\setminus\{0\})$ such that V is a neighborhood of 1 in X

Proposition 3. Let L, M be LOTS such that M has distinguished points $0 = \min M$ and $1 = \max M$. Then $L \times_{gl} M \cong L \times_{lex} M$.

Definition 4. Let X be a topological space with two distinguished points 0,1. Define $\gamma \subseteq X^2$ to be the idempotent bonding relation defined by $\gamma(0) = X$ and $\gamma(t) = \{1\}$ for all $t \in X \setminus \{0\}$.

Theorem 5. Let L be a total order, and let X be a topological space with two distinguished points 0, 1. Then $\varprojlim \langle X, \gamma, L \rangle = (\hat{L} \times_{\operatorname{gl}} X) / \sim$, where the equivalence relation \sim is given by

• $\langle A, t \rangle \sim \langle A, 1 \rangle$ for all $A \in \hat{L} \setminus \dot{L}$.

• $\langle A, 1 \rangle \sim \langle B, 0 \rangle$ whenever $|B \setminus A| = 1$.

Proof. We first observe that for $\vec{x} \in \varprojlim \langle X, \gamma, L \rangle$ there exists a maximal left-closed set $A_{\vec{x}} \in \hat{L}$ such that $\vec{x}[\inf A_{\vec{x}}] = \{1\}$ and $\vec{x}[\exp A_{\vec{x}}] = \{0\}$. Note that if $A_{\vec{x}}$ has a maximum element, i.e. $A_{\vec{x}} \in \dot{L}$, then $\vec{x}(\max A_{\vec{x}})$ may be valued at almost any point of X. The lone exception occurs when $\max A_{\vec{x}}$ has a successor in L; $\vec{x}(\max A_{\vec{x}}) = 1$ would then violate the maximality of $A_{\vec{x}}$.

Define $\theta: \varprojlim \langle X, \gamma, L \rangle \to (\hat{L} \times_{\operatorname{gl}} X) / \sim \operatorname{by} \theta(\vec{x}) = \langle A_{\vec{x}}, 1 \rangle$ whenever $A_{\vec{x}} \in \hat{L} \setminus \dot{L}$, and $\theta(\vec{x}) = \langle A_{\vec{x}}, \vec{x}(\max A_{\vec{x}}) \rangle$ otherwise. It's then evident from our construction of $A_{\vec{x}}$ that θ is a bijection.

Let $B = (\leftarrow, l] \in \dot{L}$. If $t \in X \setminus \{0, 1\}$, note $\langle B, t \rangle$ has a base of neighborhoods of the form $\{B\} \times U \setminus \{0, 1\}$ which is equal to $\theta[\pi_l^{-1}[U \setminus \{0, 1\}]]$.

Suppose $|B \setminus A| = 1$ for $A = (\leftarrow, k] \in \dot{L}$. Then $\langle B, 0 \rangle$ has a base of neighborhoods of the form $(\{A\} \times V \setminus \{0\}) \cup (\{B\} \times U \setminus \{1\})$, which is equal to $\theta[\pi_k^{-1}[V \setminus \{0\}]] \cap \theta[\pi_l^{-1}[U \setminus \{1\}]]$.

References

Department of Mathematics and Statistics, The University of South Alabama $E\text{-}mail\ address: }$ steven.clontz@gmail.com