EXERCICE DU CROISEMENT

Au volant de sa voiture, Nolwenn quitte Nantes en direction de Rennes en empruntant la voie rapide.

Au même moment, **R**ozenn quitte **R**ennes en direction de Nantes à l'autre bout de cette même voie rapide. La distance entre la porte de Rennes à Nantes et la porte de Nantes à Rennes est de 97 km.

Le trajet est dessiné ci-contre.

Nolwenn roule à la vitesse constante de 90 km/h. Rozenn roule à la vitesse constante de 120 km/h.

Quand et où les deux automobilistes vont-elles se croiser?

Étude des fonctions $N: t \mapsto 1,5t$ et $R: t \mapsto 97-2t$

La fonction N est linéaire (multiplier par 1,5) et croissante.

La fonction R est affine (multiplier par -2 puis ajouter 97) et décroissante mais pas linéaire car $R(0) \neq 0$.

Propriétés

La courbe d'une fonction linéaire est une partie d'une droite passant par l'origine.

La courbe d'une fonction affine est une partie d'une droite qui ne passe pas par l'origine.

Taux d'accroissement des fonctions R et N

Pour tous t et t' tels que t < t', on a :

$$\frac{N(t') - N(t)}{t' - t} = \frac{1,5t' - 1,5t}{t' - t} = \frac{1,5(t' - t)}{t' - t} = 1,5$$

$$\frac{R(t') - R(t)}{t' - t} = \frac{97 - 2t' - (97 - 2t)}{t' - t} = \frac{-2t' + 2t}{t' - t}$$
$$= \frac{-2(t' - t)}{t' - t} = -2$$

Ces taux d'accroissements ne dépendent pas de t et de t' car les vitesses de Nolwen et Rozenn sont constantes.

Ces taux sont les vitesses 1,5 km/min et -2 km/min.

EXERCICE DU TÉLÉCHARGEMENT

- 1. Un service de téléchargement propose à ses clients un tarif A, proportionnel au poids des données téléchargées :
 - pour un poids de 40 Mo (mégaoctets), on paye 1,80 €;
 - pour un poids de 66 Mo, on paye 2,97 €.

Complétez, sans calculatrice, le tableau de proportionnalité ci-contre.

Poids des données (Mo)	40	66	80	146	106	73	1
Tarif A (€)							

- 2. Pour le mois de janvier, le site propose aux clients deux autres tarifs.
 - Tarif B : somme fixe de 4,50 € en début de mois, puis 0,02 € par mégaoctet.
 - Tarif C: 18 € pour un téléchargement illimité pendant tout le mois.

Déterminez, suivant le poids des données téléchargées, le tarif le plus avantageux.

2. On note a(p) le prix avec le tarif A , b(p) le prix avec le tarif B, c(p) le prix avec le tarif C pour p Mo téléchargés. On a :

$$a(p) = 0.045p$$
 $b(p) = 0.02p + 4.5$ $c(p) = 18$

On peut répondre à l'aide du graphique, mais pour plus de précision il vaut mieux résoudre les équations ci-dessous.

$$a(p) = b(p)$$

 $0.045p = 0.02p + 4.5$
 $0.025p = 4.5$
 $p = \frac{4.5}{0.025} = 180$
 $b(p) = c(p)$
 $0.02p + 4.5 = 18$
 $0.02p = 13.5$
 $p = \frac{13.5}{0.02} = 675$

D'après ces résultats et le graphique, on peut dire que :

- jusqu'à 180 Mo téléchargés, le tarif le moins cher est le tarif A. Pour 180 Mo, le tarif A est égal au tarif B;
- de 180 à 675 Mo téléchargés, le tarif le moins cher est le tarif B. Pour 675 Mo, le tarif B est égal au tarif C;
- à partir de 675 Mo téléchargés, le tarif le moins cher est le tarif C.

À propos de la fonction c

La fonction *c* est une fonction affine particulière : elle prend toujours la même valeur. C'est une fonction constante. Ses taux d'accroissement sont nuls.

La partie de droite qui la représente est horizontale.

