

Motivação CNNs

Alto custo computacional

Vulnerabilidade a variações na imagem

Dificuldade em capturar relações espaciais

Propósito

Processar imagens de forma eficiente

Capturar relações espaciais entre os pixels

Aprender relações hierárquicas de características

Componentes de uma CNN Típica

Camada Convolucional

Camada Densa

Camada de Pooling

Camada de Ativação

Aplicação: Visão Computacional

Camada Convolucional

Convolução: aplicar filtros sobre a imagens de entrada

Cada filtro é uma pequena matriz de pesos

Saída do processo: mapa de características

desliza pela imagem

multiplica seus valores pelos dos pixels

Na prática

Convolution Output

1,	1,0	1 _{×1}	0	0
0 ×0	1,	1,0	1	0
0,	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0
	1 _{x1} 0 _{x0} 0 _{x1} 0	$\begin{array}{c c} 1_{x_1} & 1_{x_0} \\ 0_{x_0} & 1_{x_1} \\ 0_{x_1} & 0_{x_0} \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{c cccc} 1_{x_1} & 1_{x_0} & 1_{x_1} \\ 0_{x_0} & 1_{x_1} & 1_{x_0} \\ 0_{x_1} & 0_{x_0} & 1_{x_1} \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4	

Image

Convolved Feature

Camada de Pooling

Max Pooling

Take the **highest** value from the area covered by the kernel

Average Pooling

Calculate the **average** value from the area covered by the kernel

Example: Kernel of size 2 x 2; stride=(2,2)

Reduz a dimensionalidade dos mapas de características gerados pelas camadas convolucionais.

Diminui o custo computacional e torna a rede mais robusta a pequenas variações na imagem

Os métodos de pooling mais comuns são:

Camada de Ativação

Camada Totalmente Conectada

Dense Layer

Visão Computacional

- Classificação de imagens: determinar a categoria de um objeto presente na imagem (ex.: gato, cachorro, carro).
- Reconhecimento de objetos: identificar e localizar múltiplos objetos em uma cena.
- Segmentação de imagens: dividir a imagem em regiões com significado semântico (ex.: identificar o contorno de um objeto).