Universidade Federal de Alagoas – UFAL Centro de Tecnologia – CTEC Curso de Engenharia Civil

Mecânica dos Sólidos 3 – ECIV051D (2020.2)

Professor: Adeildo S. Ramos Jr.

Monitores: Hugo Vinícius F. Azevedo, Milton Mateus G. Santos, Ricardo A. Fernandes

Lista de Exercícios – Deslocamentos em vigas isostáticas e hiperestáticas

Data: 16/08/2021

Questão 1 A curva de deflexão da viga AB (ver Figura) é dada pela seguinte equação:

- a) Descreva o carregamento atuante na viga
- b) Determine as reações de apoio R_A e R_B nos apoios
- c) Determine o momento fletor máximo $M_{
 m max}$

Questão 2 Encontre a equação da curva de deflexão e determine as deflexões δ_A na extremidade A e δ_C no ponto C de acordo com as condições de apoio e carregamento mostradas na Figura.

Questão 3 A viga AB mostrada na Figura tem momentos $2M_0$ e M_0 atuantes em suas extremidades. Determine a equação da curva de deflexão e obtenha a deflexão máxima $\delta_{\rm max}$.

Questão 4 Considere a viga simples AB (ver Figura).

- a) Determine a deflexão δ_1 no meio do vão
- b) Se o mesmo carregamento total (5P) fosse distribuído como um carregamento uniforme ao longo da viga, qual seria a deflexão δ_2 no meio do vão?
- c) Calcule a razão δ_1 / δ_2

Questão 5 Uma carga horizontal *P* atua na extremidade C do suporte ABC (ver Figura).

Assume que a rigidez a flexão EI é constante ao longo de toda a estrutura. Também despreza os efeitos das deformações axiais e considere somente os efeitos da flexão devido ao carregamento P.

- a) Encontre a deflexão $\delta_{\mathcal{C}}$ na extremidade C
- b) Encontre a deflexão máxima para cima $\delta_{
 m max}$ do membro AB

Questão 6 Uma viga simples ABC tem momento de inércia 1,5I de A e B e 1,0I de B a C (ver Figura). Uma carga concentrada P atua em B. Obtenha as equações das curvas de deflexão para ambas as partes da viga. Determine as rotações θ_A e θ_C nos apoios e a deflexão δ_B em B.

Questão 7 Uma viga composta ABCDE (ver Figura) consiste em duas partes (ABC e CDE) unidas por uma conexão de pino (ou seja, liberação de momento) em C. O suporte elástico em B tem rigidez k. Encontre a deflexão δ_E na extremidade livre E devido ao carregamento P atuante neste ponto.

Questão 8 Uma viga de extremidades fixas suporte um carregamento linearmente distribuído de intensidade máxima q_0 (ver Figura). Obtenha as reações de apoio na viga e a equação da curva de deflexão.

Questão 9 A viga ABC (ver Figura) de comprimento 2L é submetida a um carregamento uniformemente distribuído de intensidade q. O apoio elástico em B possui rigidez $k=6\,EI/L^3$. Determine as reações de apoio da viga.

Questão 10 A viga AB possui um suporte de 2° gênero em A e um apoio de 1° gênero em B. O ponto B também é restringido por uma mola rotacional linear elástica de rigidez k_R , que introduz um momento resistente M_B devido à rotação em B. O membro AB possui resistência à flexão EI. Um momento M_0 atua em sentido anti-horário no ponto A.

- a) Determine rodas as reações de apoio
- b) Encontre uma expressão para a rotação θ_A em função de k_R
- c) Quanto vale θ_A quando (i) $k_R \to 0$; (ii) $k_R \to \infty$; e (iii) $k_R = 6$ EI / L

Questão 11 Uma viga contínua ABC com dois vãos diferentes suporta um carregamento uniforme de intensidade q (ver Figura). Determinar as reações de apoio. Desenhar os diagramas de esforço cortante e momento fletor, indicando as ordenadas críticas.

Gabarito

1
$$q = q_0 \sin \frac{\pi x}{L}$$
, $R_A = R_B = \frac{q_0 L}{\pi}$, $M_{\text{max}} = q_0 L^2 / \pi^2$

$$v(x) = \begin{cases} -\frac{PL}{10368 EI} [-4104x^2 + 3565L^2] & 0 \le x \le \frac{L}{3} \\ -\frac{P}{1152 EI} [-648Lx^2 + 192x^3 + 64L^2x + 389L^3] & \frac{L}{3} \le x \le \frac{L}{2} \\ -\frac{P}{144 EI L} [72L^2x^2 + 12Lx^3 + 6x^4 + 5L^3x + 49L^4] & \frac{L}{2} \le x \le L \end{cases}$$

$$\delta_A = \frac{3565 PL^3}{10368 EI}, \quad \delta_C = \frac{3109 PL^3}{10368 EI}$$

$$v = -\frac{M_0 x [L - x]^2}{2L F L}, \qquad \delta_{\text{max}} = \frac{2M_0 L^2}{27 F L} \text{ (para baixo)}$$

$$\delta_1 = \frac{11 \, PL^3}{144 \, EI}, \qquad \delta_2 = \frac{25 \, PL^3}{38 \, EI}, \qquad \frac{\delta_1}{\delta_2} = 1,173$$

$$\delta_C = \frac{PH^2[L+H]}{3 EI}, \qquad \delta_{\text{max}} = \frac{PHL^2}{9\sqrt{3} EI}$$

$$v(x) = \begin{cases} -\frac{2Px[19L^2 - 27x^2]}{729 EI} & 0 \le x \le \frac{L}{3} \\ \frac{P[13L^3 - 175L^2x + 243Lx^2 - 81x^3]}{1458 EI} & \frac{L}{3} \le x \le L \end{cases}$$

$$\theta_A = \frac{38 PL^2}{729 EI}, \quad \theta_C = \frac{34 PL^2}{729 EI}, \quad \delta_B = \frac{32 PL^3}{2187 EI}$$

$$\delta_E = \frac{47 Pb^3}{12 EI}$$

8
$$R_A = \frac{3}{20}q_0L$$
, $R_B = \frac{7}{20}q_0L$, $M_A = \frac{1}{30}q_0L^2$
 $v(x) = \frac{1}{120LEI}[-q_0x^5 + 3q_0Lx^3 - 2q_0L^2x^2]$

9
$$R_A = \frac{7}{12}qL$$
, $R_B = \frac{17}{12}qL$, $M_A = \frac{7}{12}qL^2$

10 a)
$$R_A = -R_B = \frac{M_0}{L} + \frac{M_0 \, k_R}{2 \, [3EI + Lk_R]}$$
, $M_B = \frac{LM_0 k_R}{6EI + 2Lk_R}$ (anti-horário) b) $\theta_A = \frac{LM_0}{4 \, EI} + \frac{LM_0}{4 \, [3EI + Lk_R]}$ c) $\theta_A(k_R \to 0) = \frac{LM_0}{3 \, EI}$, $\theta_A(k_R \to \infty) = \frac{LM_0}{4 \, EI}$, $\theta_A(k_R = \frac{6EI}{L}) = \frac{5LM_0}{18 \, EI}$

11
$$R_A = \frac{qL}{8}$$
, $R_B = \frac{33qL}{16}$, $R_C = \frac{13qL}{16}$