Sistemas de Transmissão

- Sistemas de longa distância
 - Sistemas por fibra óptica
 - Sistemas por feixe hertziano
 - Sistemas por satélite
- Multiplexagem por divisão de comprimento de onda (WDM – Wavelength Division Multiplexing)

Sistemas de Telecomunicações

Mário Jorge Leitão

Sistemas de longa distância

Sistemas em fibra óptica

Vantagens das fibras ópticas sobre o cobre

- maior largura de banda
- maiores débitos
- menor atenuação

- menores interferências
- melhores características físicas
- menores custos

4

Sistemas de longa distância

Sistemas em fibra óptica

Estrutura de um sistema de transmissão digital de linha

- estações terminais: em cada extremo da ligação
- meios de transmissão guiados
 - fibras ópticas
 - cabos em condutas enterradas ou suspensos
- repetidores intermédios: amplificam e regeneram o sinal

Sistema básico de transmissão de linha

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas em fibra óptica

Características gerais

− sinais ópticos: na banda do infra-vermelho

luz ON-OFF: uma forma de ASK

- meio de transmissão
 - material de suporte da transmissão: sílica
 - fibras agrupadas em cabos
- componentes opto-electrónicos
 - transmissor: conversão eléctrica-óptica (LED / Laser)
 - receptor: conversão óptica-eléctrica (díodos foto-sensíveis)
- baixa atenuação
- enorme capacidade

Construção de uma fibra óptica

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas em fibra óptica

Propagação nas fibras ópticas

- índice de refraçção núcleo η_1 bainha η_2 $\eta_1 > \eta_2$
- propagação guiada ao longo do núcleo
- possíveis um ou vários modos de propagação em simultâneo
- principais limitações
 - atenuação → redução do nível de potência óptica
 - dispersão → espalhamento temporal dos impulsos

objectivos tecnológicos reduzir a atenuação reduzir a dispersão

Modos de propagação numa fibra

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas em fibra óptica

Atenuação

- função do comprimento de onda
- utilizadas 3 janelas ópticas \rightarrow 850, 1310 e 1550 nm

Atenuação em fibras ópticas em função do comprimento de onda

8

Sistemas em fibra óptica

Dispersão

- resulta de diferentes velocidades de propagação dos componentes do sinal
- exprime-se através da derivada da função atraso de grupo vs. comprimento de onda
- três tipos de dispersão
 - modal → modos com diferentes velocidade de propagação
 - cromática → atraso de fase depende do comprimento de onda
 - modo de polarização → atraso de fase depende da polarização

Dispersão cromática em fibras ópticas em função do comprimento de onda

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas em fibra óptica

Sistemas em fibras multimodo

Características				
diâmetros típicos	núcleo – 50/62.5 μm bainha - 125 μm			
comprimento de onda	850 nm (1 ^a janela) 1 310 nm (2 ^a janela)			
modos de propagação	vários			
componentes	emissão – LEDs / lasers baixo custo recepção - díodos PIN conexão simples			
atenuação	3 dB/km @850 nm 1 dB/km @1 310 nm			
dispersão	fibras <i>step index</i> → dispersão modal elevada fibras <i>graded index</i> → dispersão modal moderada			

Sistemas de Telecomunicações

Sistemas de Transmissão

10

Sistemas de longa distância

Sistemas em fibra óptica

Sistemas em fibras monomodo

Características					
diâmetros típicos	núcleo - 8 μm bainha - 125 μm				
comprimento de onda	1 310 nm (2 ^a janela) 1 550 nm (3 ^a janela)				
modos de propagação	um único modo				
componentes	emissão - LEDs / lasers recepção - díodos PIN / foto-díodos de avalanche (APD) conexão e terminação precisa				
atenuação	0,2–0,4 dB/km @ 1 310 nm 0,15–0,3 dB/km @ 1 550 nm				
dispersão	dispersão modal inexistente dispersão cromática muito reduzida – procura-se criar um nulo na região de operação dispersão de modo de polarização muito reduzida – não desprezável para elevados débitos				

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas em fibra óptica

Áreas de evolução tecnológica

- novos tipos de fibra com atenuação e dispersão reduzidas
- lasers de elevada pureza espectral
- detecção coerente e igualização electrónica
- amplificação óptica e dispositivos ópticos de compensação da dispersão
- multiplexagem de comprimento de onda -WDM - ver capítulo seguinte • impacto no débito e distância Limitações desempenho de um sistema exprime-se em débito × distância Potência • potência emitida 50 Gbit/s × km fibras monomodo standard - 2ª janela • atenuação na fibra • sensibilidade do receptor 10 Mbit/s \times km fibras multimodo step index Dispersão modal fibras multimodo graded index 2 Gbit/s \times km Dispersão cromática fibras monomodo standard - 3ª janela 100 Gbit/s × km >1 Tbit/s \times km Dispersão de modo de polarização fibras monomodo de baixa dispersão

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas em fibra óptica

Gerações e exemplos de sistemas de fibra óptica na rede de transporte

			Exemplos de sistemas				
Geração	Características	Janela	Débito	Sistema	Espaçamento de regeneradores		
1ª Geração	multimodo	1ª	34 Mbit/s 140 Mbit/s	PDH	< 10 km		
			140 Mbit/s 565 Mbit/s	PDH			
2ª Geração	monomodo standard	2ª / 3ª	155 Mbit/s 620 Mbit/s	SDH	30 - 70 km		
		3ª	1 Gbit/s	GbE			
2ª Caração	manamada da haiya disnamão	3ª	2,5 Gbit/s 10 Gbit/s	SDH	00 1401		
3ª Geração	monomodo de baixa dispersão	3"	1 Gbit/s 10 Gbit/s	GbE	80 - 140 km		
4ª C 2 m 2 ≈ 2	monomodo de baixa dispersão lasers puros amplificação óptica		2,5 Gbit/s 10 Gbit/s	SDH	200 5 000 1		
4 Geração			1 Gbit/s 40 Gbit/s	GbE	300 - 5 000 km		

Sistemas de Telecomunicações

Sistemas de Transmissão

espectro electromagnético é limitado

feixes hertzianos só deverão ser utilizados

se não forem possíveis meios guiados

Sistemas de longa distância

Sistemas por feixe hertziano

Características gerais

- estações terminais em cada extremo
 - modulação e emissão
 - recepção e desmodulação
- sistemas de antena: radiam/recebem o sinal com directividade
- meio não guiado: o espaço livre
- repetidores intermédios: amplificam e regeneram o sinal e contornam obstáculos
- frequências de portadora acima de 1 GHz

Sistema básico de transmissão digital por feixe hertziano

12

Sistemas de Telecomunicações

Sistemas por feixe hertziano

Características gerais

modulações de amplitude-fase tipo M-QAM

transmissão na banda de canal

Eficiência -			Modulação M-QAM						
			M=2	M=4	M=16	M=64	M=128	M=256	M=512
Nominal	$\rho_{nom} = R_b / B_{nom} = (\log_2 M) / 2$	(1)	0,5	1	2	3	3,5	4	4,5
Máxima $\rho_{max} = R_b / B_{min} = \log_2 M $ (2)				2	4	6	7	8	9

- (1) B_{nom} : largura de banda "nulo-a-nulo" (lobo principal do sinal rectangular não filtrado)
- (2) B_{min} : largura de banda de Nyquist (sinal seno cardinal sem interferência intersimbólica)

Modulações M-QAM e respectivas eficiências

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas por feixe hertziano

Sistemas ponto-a-ponto de baixa / média capacidade

utilizados na rede local / regional

Madulaa a		Eficiência					
Modulação	2 Mbit/s	2 x 2 Mbit/s	8 Mbit/s	2 x 8 Mbit/s	34 Mbit/s	2 x 34 Mbit/s	
BPSK	3,5	7	14	28	56		≈ 0,6
QPSK	1,75	3,5	7	14	28	56	≈ 1,2
16-QAM		1,75	3,5	7	14	28	≈ 2,4

Sistemas ponto-a-ponto de alta capacidade

- utilizados na rede regional / nacional

Modulação	Modulação Sistema		Eficiência	
16 OAM	140 Mbit/s	40	3,5	
16-QAM	155 Mbit/s	55	2,8	
	140 Mbit/s	30	4,7	
64-QAM	140 Midius	40	3,5	
	155 Mbit/s	40	3,9	

Modulação	Sistema	B (MHz)	Eficiência
128-QAM	140 Mbit/s	30	4,7
126-QAM	155 Mbit/s	30	5,2
256-QAM	2 x 140 Mbit/s	40	7
512-QAM	2 x 155 Mbit/s	40	7,1
		•	•

Sistemas por feixe hertziano

Bandas mais utilizadas

– 2GHz, 4 GHz, 6 GHz, 11 GHz e 18 GHz

Plano de frequências - semi-bandas

- banda total é dividida em 2 semi-bandas com uma banda de guarda
- cada estação emite numa semi-banda e recebe na outra semi-banda
- os canais são separados entre si por uma banda de guarda
- cada antena suporta um máximo de 4 canais não adjacentes

Partição do espectro em semi-bandas

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas por feixe hertziano

Plano de frequências - polarização dos canais

- plano simples
 - uma única polarização

- plano simplesmente alternado
 - canais adjacentes ortogonais

- plano sobreposto
 - canais sobrepostos ortogonais

Utilização de polarizações ortogonais em feixes hertzianos

16

reduz interferências

Sistemas por satélite

Princípios do sistema

- feixes hertzianos com um repetidor (transpositor) a bordo de um satélite no espaço
- a órbita do satélite é uma elipse (caso geral) em que a Terra está num dos focos
- aplicação relevante: órbita circular equatorial geoestacionária (altitude=36 000 km)
- permitem uma grande flexibilidade de acesso aos recursos de transmissão

Sistema básico de transmissão por satélite

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas por satélite

Modulações mais utilizadas

− BPSK, QPSK, MSK as mais eficientes em termos de potência

Bandas mais utilizadas

– frequências ascendente e descendente afastadas 🚤

reduzem-se as interferências

- frequência ascendente superior à descendente

Bandas atribuídas a sistemas por satélite							
Serviço	Banda	Frequências	Ligação ascendente	Ligação descendente			
	С	6 / 4 GHz	5,925 - 6,425 GHz	3,700 - 4,200 GHz			
Fixo	Ku	14 / 11 GHz	14,000 - 14,800 GHz	10,700 - 11,700 GHz			
	Ka	30 / 20 GHz	27,500 - 31,000 GHz	18,100 - 21,200 GHz			
Difusão	Ku	18 / 12 GHz	17,300 - 18,100 GHz	11,700 - 12,500 GHz			
Móvel	L	1,6 GHz	A tuilbaria a	og divorgeg			
Movel	S	2,5 GHz	Hz Atribuições diversas				

Sistemas por satélite

Tipos de órbitas

- GEO (Geosynchronous Earth Orbit): órbita circular equatorial geosíncrona

• período de revolução: 23 h 56 m 4,091 s

• altitude média: $35.786 \text{ km} \quad (r_S - r_T = 42.164 - 6.378)$

- LEO (Low Earth Orbit): órbita circular de baixa altitude

altitude típica: 500 - 1 500 km
 período de revolução 1h 30m - 2h

- MEO (Medium Earth Orbit): órbita circular de altitude média

altitude típica: 10 400 km
 período de revolução 6 horas

- HEO (Highly Elliptical Orbit): órbita fortemente elíptica

órbita elíptica inclinada
 perigeu de baixa altitude
 perigeu: 1 000 km altitude apogeu: 39 000 km altitude período: 12 horas

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Principais órbitas de satélites

GEO - altitude 36 000 km LEO - altitude 850 km HEO - altitude 20 000 km

Cobertura terrestre de satélites com diversas órbitas

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Comparação entre os tipos de órbita mais importantes							
Características	Tipo de órbita						
Caracteristicas	GEO	LEO (polar)	MEO	HEO (Molniya)			
cobertura terrestre assegurada por cada satélite	1/2 - 1/3 da Terra pólos não cobertos	global ↑	global ↑	1/2 - 1/3 da Terra			
tempo útil de passagem de cada satélite	ilimitado 🏌	10 - 15 min	2 horas	8 horas			
necessidade de constelação para cobertura local permanente	não 🕇	≥ 48 satélites (ex: 6 sat × 8 planos)	≥ 10 satélites (ex: 5 sat × 2 planos)	3 satélites			
perdas em espaço livre (distância terra-satélite)	elevadas	reduzidas	médias \uparrow	elevadas			
atraso propagação (ida e retorno)	250 ms	5 - 7 ms (750 km) 10-25 ms (1 500 km)	70 - 100 ms	150-300 ms			
efeito Doppler (velocidade radial)	muito reduzido ↑	médio	médio	elevado			
elevação do satélite no ponto de recepção	grande junto do equador	variável com passagem do satélite	variável com passagem do satélite	grande em latitudes intermédias			
seguimento do satélite	geralmente não necessário	indispensável, excepto com antenas de feixe largo	indispensável, excepto com antenas de feixe largo	necessário, mas pouco complexo			

Sistemas por satélite

Acesso simples

- uma única estação terrestre transmite através de um transpositor de um satélite
- a estação ocupa toda a banda disponível no transpositor

Ocupação do tempo e banda no acesso simples a recursos de um satélite

A	Sinal transmitido				
Acesso simples	TDM	TV			
Serviço	serviço fixo grande capacidade	contribuição programas distribuição programas			
Forma de acesso	acesso fixo	acesso fixo			

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas por satélite

Acesso simples

Configuração típica de uma ligação ponto-a-ponto bidireccional com acesso simples

Sistemas por satélite

Acesso simples

Configuração típica de distribuição de televisão

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas por satélite

Acesso múltiplo

• várias estações terrestres transmitem através do mesmo transpositor de satélite

FDMA - Frequency Division Multiple Access

- estações acedem ao transpositor do satélite ao mesmo tempo
- cada estação transmite na sua própria banda de frequência

TDMA - Time Division Multiple Access

- estações transmitem uma de cada vez (sequencialmente)
- cada estação transmite no seu próprio intervalo de tempo

CDMA - Code Division Multiple Access

- estações transmitem ao mesmo tempo, em banda espalhada
- cada estação transmite com um código próprio

Acesso múltiplo a recursos de um satélite

(B - largura de banda do transpositor T - comprimento de trama)

Sistemas por satélite

Acesso múltiplo

			Sinal tra	nsmitido		
		SCPC	- Single Channel per Carrier	TDM		
FDMA	Serviço FDMA		SCPC / PSK / serviço fixo pequena capacidade comunicações móveis redes empresariais (VSAT)		serviço fixo média capacidade	
		FDMA	acesso fixo ou a pedido	FDMA	acesso fixo	
TDMA	Serviço _{SCF}		serviço fixo pequena capacidade comunicações móveis redes empresariais (VSAT)	TDM / PSK /	serviço fixo média / grande capacidade	
	Forma de acesso	TDMA	acesso fixo ou a pedido	TDMA	acesso fixo ou a pedido	
CDMA	Serviço PSK /		serviço fixo pequena capacidade comunicações móveis redes empresariais (VSAT)			
CDIVIT	Forma de acesso	CDMA	acesso fixo ou a pedido			

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas por satélite

Acesso múltiplo FDMA

Sistema típico FDMA

(representado apenas um sentido de transmissão)

28

tráfego próprio

Sistemas por satélite

Acesso múltiplo TDMA

Sistemas de Telecomunicações

Sistemas de Transmissão

Sistemas de longa distância

Sistemas por satélite

Acesso múltiplo CDMA

Sistema típico CDMA e destinado (representado apenas um sentido de transmissão)

30

com um código próprio

é destinado usando os respectivos códigos

Princípios básicos

Elementos de rede

Topologias de rede

Sistemas de Telecomunicações

Sistemas de Transmissão

Multiplexagem por divisão de comprimento de onda (WDM)

Princípios básicos

Características gerais dos sistemas de multiplexagem de comprimento de onda

- emissores produzem luz com diferentes comprimentos de onda
- sinais ópticos são combinados e transmitidos numa fibra monomodo
- na recepção os sinais são separados (filtrados) e entregues a receptores

Multiplexagem de sinais ópticos na mesma fibra (exemplo com 4 comprimentos de onda)

Princípios básicos

Bandas WDM

- UIT definiu 6 bandas contíguas que ajudam a especificar sistemas WDM
- estas bandas englobam as 2ª e 3ª janelas dos sistemas clássicos

Definição das bandas de comprimentos de onda em sistemas WDM

Sistemas de Telecomunicações

Sistemas de Transmissão

Multiplexagem por divisão de comprimento de onda (WDM)

Princípios básicos

Primeiros sistemas de multiplexagem de comprimento de onda

- até cerca de 4 comprimentos de onda
- pré-normalização → dificultou oferta de lasers com comprimentos de onda standard

Multiplexagem esparsa de comprimento de onda (CWDM, Coarse WDM)

- espaçamento moderado de comprimentos de onda \rightarrow 20 nm
- possível utilizar lasers sem controlo de estabilidade de comprimento de onda
- grelha de comprimentos de onda normalizada pela UIT

$$\lambda = 1270 + n \times 20 \text{ (nm)}$$
 $n = 0 \dots 17$

Sistemas de Telecomunicações

Sistemas de Transmissão

Princípios básicos

Multiplexagem densa de comprimento de onda (DWDM, Dense WDM)

- várias dezenas (futuramente centenas) de comprimentos de onda
- necessário utilizar mecanismos de controlo de estabilidade dos lasers
- grelhas de frequências normalizadas pela UIT
 - centradas a 193,1 THz (C-Band)
 - espaçamentos de 12,5 / 25 / 50 / 100 GHz e múltiplos de 100 GHz
- bandas prioritárias: S-Band, C-Band, L-Band

espaçamento de 12,5 GHz
$$\rightarrow f = 193,1 + n \times 0,0125$$
 (THz) espaçamento de 25 GHz $\rightarrow f = 193,1 + n \times 0,025$ (THz) espaçamento de 50 GHz $\rightarrow f = 193,1 + n \times 0,05$ (THz) espaçamento de 100 GHz $\rightarrow f = 193,1 + n \times 0,1$ (THz)

n - inteiro positivo ou negativo, incluindo 0

Sistemas de Telecomunicações

Sistemas de Transmissão

Multiplexagem por divisão de comprimento de onda (WDM)

Elementos de rede

Repetidor

- puramente óptico → já é possível regeneração 3R
- -com conversão O-E-O \rightarrow mais complexo mas temporização mais precisa

Formas de onda em repetidores ópticos e regeneradores

Elementos de rede

Adaptador de Comprimento de Onda (WLA, Wavelength Adaptor)

Adaptadores de Comprimentos de Onda

Sistemas de Telecomunicações

Sistemas de Transmissão

Multiplexagem por divisão de comprimento de onda (WDM)

Elementos de rede

Multiplexador Óptico Terminal (OTM, Optical Terminal Multiplexer)

Multiplexador e desmultiplexador WDM

Elementos de rede

Multiplexador Óptico de Inserção / Remoção (OADM, Optical Add-Drop Multiplexer)

Multiplexador e Desmultiplexador Ópticos de Inserção / Remoção WDM

Sistemas de Telecomunicações

Sistemas de Transmissão

Multiplexagem por divisão de comprimento de onda (WDM)

OXC

 λ_1, λ_2

 λ_1, λ_2

Elementos de rede

 λ_2

 $\lambda_{3} \\$

OXC

Nós de Interligação Óptica (OXC, Optical Cross-Connects)

 λ_1 , λ_2

 λ_1 , λ_2

OXC λ_{1}, λ_{2} λ_{1}, λ_{2} λ_{1}, λ_{2}

reconfigurável

Estrela passiva

Encaminhador passivo

Comutador activo

Sistemas de Telecomunicações

Sistemas de Transmissão

Topologias de rede

Ligação ponto-a-ponto

- saltos máximo sem amplificação limitados pela sensibilidade do receptor
- saltos máximos sem regeneração electrónica limitados pela dispersão temporal

Ligações ponto-a-ponto sem e com amplificação

Sistemas de Telecomunicações

Sistemas de Transmissão

Multiplexagem por divisão de comprimento de onda (WDM)

Topologias de rede

Transporte de sinais ópticos não WDM

Ligações ópticas sobre WDM

Topologias de rede

Anéis

- agregação / distribuição de tráfego de alta capacidade

Anel WDM

Sistemas de Telecomunicações

Sistemas de Transmissão

Multiplexagem por divisão de comprimento de onda (WDM)

Topologias de rede

Malhas

- núcleo de muito alta capacidade da rede de transporte
- sistemas operacionais com dezenas de Tbit/s de capacidade

Malha WDM