Co-Occurrence Matrix

(동시 발생 행렬)

ISL

안재원

CONTENTS

- Co-Occurrence matrix
- GLCM & CCM
- So what?
- Result

0

Co-Occurrence Matrix

 $(\Delta x = 1, \Delta y = 0)$

Co-Occurrence Matrix(or Distribution)

- 1. 영상내 각 픽셀(Pixel) 간의 분포 관계를 알 수 있는 Matrix를 의미한다.
- 2. 질감도(Texture)를 측정하는 용도로 사용된다.

$$C_{\Delta x, \Delta y}(i, j) = \sum_{x=1}^{n} \sum_{y=1}^{m} \begin{cases} 1, & \text{if } I(x, y) = i \text{ and } I(x + \Delta x, y + \Delta y) = j \\ 0, & \text{otherwise} \end{cases}$$

- Input image(1 Channel, 1~3)

	2	1	2	2	1
	2		3	2	•
2	1	2	1	1	1
3	3	2	1	3	2
				_	
1	2	3	3	3	1
2	2	→1	1	3	3
1	1	3	2	3	1

- Co-Occurrence Matrix($\Delta x = 1, \Delta y = 0$)

	i= 1	2	3
j= 	4	6	2
2	3	1	4
3		2	4

GLCM & CCM

HLS (Hue, Lightness, Saturation) 색상 공간 및 색상 공간 변환

RGB 색상 공간

빛의 삼원색인 빨강(Red), 초록(Green), 파랑 (Blue)의 3개의 채널을 이용해 각 픽셀의 색상을 표현하는 색상 공간이다.

HLS 색상 공간

색상(Hue), 밝기(Lightness), 채도(Saturation) 의 3개의 채널을 이용해 각 픽셀의 색상을 표 현하는 색상 공간이다.

색상(Hue)은 순수한 색상 정보를 담고 있으며 0~360°의 색상각으로 표현된다.

채도(Saturation)는 색의 선명한 정도를 의미 한다. 작으면 작을 수록 무채색(검정색, 회색, 흰색)에 가까운 색상을 의미한다.

색상 공간 변환(RGB to HLS)

RGB 색상 공간의 각 채널의 값이 0~1의 값을 갖을 때, 아래의 수식을 따라 색상 공간을 변환한다.

$$C_{\text{max}} = \max(R, G, B)$$
$$C_{\text{min}} = \min(R, G, B)$$

$$H_{(0\sim360^{\circ})} = \begin{cases} \frac{(G-B)\times60^{\circ}}{C_{\max}-C_{\min}} & if \quad C_{\max} = R \\ \frac{(B-R)\times60^{\circ}}{C_{\max}-C_{\min}} + 120^{\circ} & if \quad C_{\max} = G \\ \frac{(R-G)\times60^{\circ}}{C_{\max}-C_{\min}} + 240^{\circ} & if \quad C_{\max} = B \end{cases}$$

$$L_{(0\sim1)} = \frac{C_{\text{max}} + C_{\text{min}}}{2}$$

$$S_{(0\sim1)} = \begin{cases} \frac{C_{\text{max}} - C_{\text{min}}}{C_{\text{max}} + C_{\text{min}}} & \text{if} \quad L < 0.5 \\ \frac{C_{\text{max}} - C_{\text{min}}}{2 - (C_{\text{max}} + C_{\text{min}})} & \text{if} \quad L \ge 0.5 \end{cases}$$

Gray Level Co-Occurrence Matrix & Color Co-Occurrence Matrix

- Gray Level Co-Occurrence Matrix

\forall	M	1	3	2	1
2	1	2	1	1	1
3	3	2	1	3	2
1	2	3	3	3	1
2	2	1	1	3	3
1	1	3	2	3	1

$$GLCM_{\Delta x, \Delta y}(i,j) = \sum_{x=1}^{n} \sum_{y=1}^{m} \begin{cases} 1, & \text{if } I(x,y) = i \text{ and } I(x+\Delta x,y+\Delta y) = j \\ 0, & \text{otherwise} \end{cases}$$
 1개 Channel의 인접한 접들을 이용해 Co-Occurrence Matrix를 작성한다.

- Color Co-Occurrence Matrix

													_				1			
	Г		$(\Delta x$	$=0,\Delta$	y = 0)									3 -	_ 2_	—1—	7-	2	1
								2	_ 3	-1-	2	- <u>-</u>	1		2	3	3	2	2	1
	1	2	1	3	2	1		3	2	2	1	2	2		2	1	2	1	1	3
	2	1	2	1	1	1		2	1	3	1	2	2		1	3	2	1	2	3
	3	3	2	1	3	2		1	2	1	3		2		1	1	2	2	1	1
	1	2	3	3	3	1		3	1	2	2		1	_	2	2	1	3	3	1
	2	2	1	1	3	3		1	2	2	3	1	2	. —	. — -	_ —		$(\Delta x$	= 1, 4	$\Delta y = 0$
ı							_													

$$CCM_{\Delta x, \Delta y}(i, j) = \sum_{x=1}^{n} \sum_{y=1}^{m} \begin{cases} 1, & \text{if } I_{c1}(x, y) = i \& I_{c2}(x + \Delta x, y + \Delta y) = j \\ 0, & \text{otherwise} \end{cases}$$

- 각 Channel의 해당 위치의 정보를 이용해 Co-Occurrence Matrix를 작성한다.
 다른 이미지 간의 분포 관계를 확인 할 때 사용 할 수 도 있다.

So what?

Enhancement Local Normalization

1. 평균
$$\mu_x = \sum_{i=1}^{I} i \sum_{j=1}^{J} p(i,j)$$

2. 분산
$$\sigma_x^2 = \sum_{i=1}^{I} (i - \mu_x)^2 \sum_{i=1}^{J} p(i, j)$$

- 3. Homogeneity, Angular Second Moment
 - 영상이 얼마나 비슷한 분포를 따르는가를 나타낸다.
 - 비슷한 분포를 갖는 경우 p(i,j)가 종류는 적지만 큰 값을 갖기 때문에 ASM의 값이 커진다.

$$ASM = \sum_{i=1}^{I} \sum_{j=1}^{J} \{p(i, j)\}^{2}$$

- 4. Contrast

 - 영상 속 대상들이 얼마나 잘 구분되는지를 나타낸다. 대각 성분을 제외한 나머지 영역의 값을 이용해 구한다.

Contrast =
$$\sum_{n=0}^{N-1} n^2 \left\{ \sum_{i=1}^{I} \sum_{j=1}^{J} p(i, j) \right\}, \quad n = |i - j|$$

- 5. Local Homogeneity, Inverse Difference Moment
 - 영상이 얼마나 비슷한 분포를 따르는가를 나타낸다.
 - 값들이 대각 성분에 얼마나 몰려 있는지를 의미한다.

$$IDM = \sum_{i=1}^{I} \sum_{i=1}^{J} \frac{1}{1 + (i-j)^2} p(i,j)$$

So what?

Enhancement Local Normalization

1. 평균
$$\mu_x = \sum_{i=1}^{I} i \sum_{j=1}^{J} p(i,j)$$

2. 분산
$$\sigma_x^2 = \sum_{i=1}^{I} (i - \mu_x)^2 \sum_{i=1}^{J} p(i, j)$$

6. Entropy

- 영상의 값들이 얼마나 안정적으로 분포되어 있는지를 의미한다.

$$Entropy = -\sum_{i=1}^{I} \sum_{j=1}^{J} p(i, j) \times \log(p(i, j))$$

7. Correlation

- 각 값들의 선형적 상관관계를 나타내는 척도를 의미한다.

$$Correlation = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\{i \times j\} \times p(i, j) - \{\mu_{x} \times \mu_{y}\}}{\sigma_{x} \times \sigma_{y}}$$

Result

Result(거품의 상태 별 특징 변화)

- 1. Hue & Hue
- 2. Hue & Lightness3. Hue & Saturation

- Lightness & Lightness
 Lightness & Saturation
 Saturation & Saturation

Result

Result(거품의 상태 별 특징 변화)

- 1. Hue & Hue
- 2. Hue & Lightness3. Hue & Saturation

- Lightness & Lightness
 Lightness & Saturation
 Saturation & Saturation

Result(색상 분석)

색상 채널 동시 발생 행렬 $(\Delta x = 1, \Delta y = 0)$

색상 채널 동시 발생 행렬 $(\Delta x = 1, \Delta y = 0)$

2019-04-09

Q&A