概率论与数理统计

3.5随机变量函数的分布

北京化工大学数学系

苏贵福

在第二章已经讨论过由一个随机变量生成函数的分布情况,本节主要讨论两个随机变量 函数的分布问题. 我们只就下面几个具体的函数来讨论.

一. 连续型情形

设二维连续型随机变量(X,Y)的联合密度为f(x,y), z = g(x,y)为

- 二元连续函数, 则Z = g(X, Y)的密度函数可以用下述方法求得:
 - ① 求出Z的分布函数 $F_Z(z) = P\{g(X,Y) \le z\}$
 - ② 求导数可得密度函数为 $f_Z(z) = F_Z'(z)$.

1. Z = X + Y的分布

定理1 设二维连续性随机变量(X, Y)的联合密度为f(x, y), 边缘密度为f(x, y), 则X = X + Y仍为连续性随机变量, 其概率密度为

$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy$$
$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

当X和Y相互独立时, 有

$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$$

$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$$
(1)

公式(1)称为卷积公式, 记作 $f_X * f_Y$.

证明 先求Z = X + Y的分布函数 $F_Z(z)$:

$$F_Z(z) = P\{Z \le z\} = \iint_{x+y \le z} f(x,y) dx dy$$
 (2)

其中积分区域 $G: x + y \le z$ 是直线x + y = z及其左下方的半平面, 如图.

将二重积分(2)化为累次积分得

$$F_Z(z) = \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{z-y} f(x, y) dx \right] dy$$

固定z和y, 对积分 $\int_{-\infty}^{z-y} f(x,y) dx$ 作变量变换. 令x = u - y, 则有

$$\int_{-\infty}^{z-y} f(x,y)dx = \int_{-\infty}^{z} f(u-y,y)du$$

因此有

$$F_{Z}(z) = \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{z} f(u - y, y) du \right] dy$$
$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{+\infty} f(u - y, y) dy \right] du$$

两边求导获证. ■

例1 设X和Y是两个相互独立的随机变量. 它们都服从N(0,1), 其概率 密度分别为

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < +\infty.$$

解 由卷积公式

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

= $\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \cdot e^{-\frac{(z - x)^2}{2}} dx = \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-\left(x - \frac{z}{2}\right)^2} dx.$

令 $t = x - \frac{z}{2}$,则有

$$f_Z(z) = \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-t^2} dt = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}}.$$

即Z = X + Y服从(0,2)正态分布. ■

 \spadesuit 若X, Y相互独立且 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$. 则

$$Z = X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

♠ 有限个相互独立的正态随机变量的线性组合仍然服从正态分布.

例2 在一简单电路中有两电阻 R_1 和 R_2 . 设 R_1 , R_2 相互独立, 它们的概率 密度均为

$$f(x) = \begin{cases} \frac{10 - x}{50}, & 0 \le x \le 10\\ 0, & 其他 \end{cases}$$

求总电阻 $R = R_1 + R_2$ 的概率密度.

解 由卷积公式知R的概率密度为

$$f_R(z) = \int_{-\infty}^{+\infty} f_{R_1}(x) f_{R_2}(z-x) dx.$$

仅当
$$\begin{cases} 0 < x < 10 \\ 0 < z - x < 10 \end{cases} \Leftrightarrow \begin{cases} 0 < x < 10 \\ z - 10 < x < z \end{cases}$$
 时被积函数 $\neq 0$, 如图.

于是有

$$f_R(z) = \left\{ egin{array}{ll} \int_0^z f(x)f(z-x)dx, & 0 \leq z < 10 \ \int_{z-10}^{10} f(x_f(z-x)dx, & 10 \leq z \leq 20 \ 0, & 其他 \end{array}
ight.$$

将f(x)的表达式代入上式得

$$f_R(z) = \left\{ egin{array}{ll} rac{1}{15000} (600z - 60z^2 + z^3), & 0 \leq z < 10 \ & rac{1}{15000} (20 - z)^3, & 10 \leq z \leq 20 \ & 0, &$$
其他

2. $\max\{X, Y\}$ 和 $\min\{X, Y\}$ 分布

设 $M = \max\{X, Y\}$, 则

$$F_M(z) = P\{\max\{X, Y\} \le z\} = P\{X \le z, Y \le z\} = F(z, z).$$

① 当X, Y相互独立时, 有

$$F_M(z) = F_X(z)F_Y(z).$$

② 若 X_1, X_2, \cdots, X_n 相互独立, 其分布函数分别为 $F_1(x)$, $F_2(x)$, \cdots , $F_n(x)$, 则 $M = \max\{X_1, X_2, \cdots, X_n\}$ 的分布函数为

$$F_M(z) = F_1(z)F_2(z)\cdots F_n(z).$$

设 $N = \min\{X, Y\}$, 则

$$F_{N}(z) = P\{\min\{X, Y\} \le z\} = 1 - P\{\min\{X, Y\} > z\}$$
$$= 1 - P\{X > z, Y > z\} = P\{\{X \le z\} \cup \{Y \le z\}\}$$
$$= F_{X}(z) + F_{Y}(z) - F(z, z).$$

① 当X, Y相互独立时, 有

$$F_N(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$

= $F_X(z) + F_Y(z) - F_X(z)F_Y(z)$.

② 若*X*₁, *X*₂, · · · , *X*_n相互独立, 其分布函数分别为*F*₁(*x*), *F*₂(*x*), · · · ,

$$F_n(x)$$
, 则 $N = \min\{X_1, X_2, \cdots, X_n\}$ 的分布函数为

$$F_N(z) = 1 - [1 - F_1(z)][1 - F_2(z)] \cdots [1 - F_n(z)].$$

例3 设系统L由相互独立的两个子系统 L_1 和 L_2 联接而成,联接的方式分别为串联与并联,如图所示. 设 L_1 和 L_2 的寿命分别为 X和Y,已知它们的概率密度分别为

$$f_X(x) = \begin{cases} se^{-sx}, & x \ge 0, s > 0 \\ 0, & 其他 \end{cases}$$
$$f_Y(y) = \begin{cases} te^{-tx}, & y \ge 0, t > 0 \\ 0, & 其他 \end{cases}$$

试分别就串联和并联方式下求出系统L的寿命Z的概率密度.

 $\mathbf{K}(1)$ 串联时 L_1 与 L_2 有一个损坏,则整个系统L就无法正常工作,如图. 故L的寿命为

$$Z = \min\{X, Y\}.$$

注意到X与Y相互独立, 所以

$$F_Z(z) = F_X(z) + F_Y(z) - F_X(z)F_Y(z).$$

由已知条件可知

$$F_X(z) = \begin{cases} 1 - e^{-sz}, & z \ge 0, s > 0 \\ 0, & 其他 \end{cases}$$
 $F_Y(z) = \begin{cases} 1 - e^{-tz}, & z \ge 0, t > 0 \\ 0, & 其他 \end{cases}$

故寿命Z的分布函数为

$$F_Z(z) = \begin{cases} 1 - e^{-(s+t)z}, & z \ge 0 \\ 0, & 其他 \end{cases}$$

从而寿命Z的密度函数为

$$f_Z(z) = F_Z'(z) =$$

$$\begin{cases} (s+t)e^{-(s+t)z}, & z \ge 0 \\ 0, &$$
其他

(2) 并联时只要 L_1 与 L_2 中有一个不损坏,整个系统L就可正常工作,如图. 故L的寿命为

$$Z = \max\{X, Y\}.$$

注意到X与Y相互独立, 所以

$$F_Z(z) = F_X(z)F_Y(z).$$

故寿命 Z的分布函数为

$$F_Z(z) = \begin{cases} 1 - e^{-sz} - e^{-tz} + e^{-(s+t)z}, & z \ge 0 \\ 0, & 其他 \end{cases}$$

关于z求导即可得密度函数

$$f_Z(z) = F_Z'(z) = \begin{cases} se^{-sz} + te^{-tz} - (s+t)e^{-(s+t)z}, & z \ge 0 \\ 0, & 其他 \end{cases}$$

二. 离散型情形

设二维离散型随机变量(X,Y)的联合分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \cdots$$

则Z = g(X, Y)的分布律可以用下述方法求得:

$$P\{Z = g(x_i, y_j)\} = p_{ij}, \quad i, j = 1, 2, \cdots.$$
 (3)

- ① 当函数值 $g(x_i, y_j)$ 均不相同时,式(3)即为Z = g(X, Y)的分布律.
- ② 当函数值 $g(x_i, y_i)$ 中有相同值时,相同值只写一个,对应的概率相加,其余不变,即可得到Z = g(X, Y)的分布律.

例4 设X, Y相互独立且服从同一分布,其分布律为 $P\{X=i\}=\frac{1}{3}$,

$$i = 1, 2, 3$$
. 试求: (1) $Z = X + Y$ 的分布律; (2) $Z = \max\{X, Y\}$ 的分布

律; (3) $Z = \min\{X, Y\}$ 的分布律.

 \mathbf{K} 由已知条件知(X,Y)的联合分布律为

$$P{X = i, Y = j} = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}, i, j = 1, 2, 3.$$

(1)
$$Z = X + Y$$
的分布律

$$P{Z = 2} = P{X = 1, Y = 1} = \frac{1}{9}$$

 $P{Z = 3} = P{X = 2, Y = 1} + P{X = 1, Y = 2} = \frac{2}{9}$

$$P{Z = 4} = P{X = 3, Y = 1} + P{X = 2, Y = 2}$$

$$=P\{X = 3, Y = 1\} + P\{X = 2, Y = 2\}$$

$$+P\{X=1,Y=3\}=\frac{3}{9}=\frac{1}{3}$$

$$P{Z = 5} = P{X = 2, Y = 3} + P{X = 3, Y = 2} = \frac{2}{9}$$

 $P{Z = 6} = P{X = 3, Y = 3} = \frac{1}{9}.$

或用表格形式表示

X + Y	2	3	4	5	6	
p_k	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{2}{9}$	$\frac{1}{9}$	

(2)
$$Z = \max\{X, Y\}$$
的分布律

$$P{Z = 1} = P{X = 1, Y = 1} = \frac{1}{9}$$

$$P{Z = 2} = P{X = 1, Y = 2} + P{X = 2, Y = 1}$$

$$+P{X = 2, Y = 2} = \frac{1}{3}.$$

$$P{Z = 3} = P{X = 1, Y = 3} + P{X = 3, Y = 1} + P{X = 3, Y = 2}$$
$$+P{X = 2, Y = 3} + P{X = 3, Y = 3} = \frac{5}{9}.$$

或用表格形式表示

$\max\{X,Y\}$	1	2	3	
p _k	$\frac{1}{9}$	$\frac{1}{3}$	<u>5</u>	

(3) 用类似于(2)的方法可求得 $Z = min\{X, Y\}$ 的分布律

$\min\{X,Y\}$	1	2	3	
p_k	<u>5</u>	<u>1</u> 3	<u>1</u>	