Stochastic differential equations

With insights to the Langevin equation

Kian Kirchhof, Tomas Fernandez Bouvier and Niels Vestergaard

Advanced methods in applied statistics University of Copenhagen

March 11, 2021

Overview

1. Stochastic differential equation

2. The Langevin equation

Comparison

ODE form:

- $m\frac{d\mathbf{v}}{dt} = \mathbf{F}$
- Deterministic, our output value is fully determined by the parameter values with no randomness.
- Equation of motion for many common things, ie. cars.

SDE form (Langevin Equation):

- $m\frac{d\mathbf{v}}{dt} = -\lambda\mathbf{v} + \eta(t)$
- The force acting on a particle is the sum of a viscous force proportional to the particle's velocity, $-\lambda v$ and a noise term $\eta(t)$
- Stochastic, our model has some randomness in the term $\eta(t)$.
- Brownian motion for particles suspended in a medium.

Relevant methods

- Analytical:
 - SDE: Ito calculus gives us the integral form $m\mathbf{v} = \int_{-\infty}^{t} (-\lambda \mathbf{v} + \eta(t)) dt$
 - PDE alternative: Focker Planck equations
 - Treat the time evolution of the full probability distribution (Similar to Schrödinger equation)
 - Inconvenient: Not easy to solve for 2 and 3 dims.
- Numerical: Euler/Runge-Kutta integration with random component
 - Keeps the dynamical treatment of the problem
 - Simple to implement in our times
 - Repeat the simulation many times to obtain a distribution

Langevin equation

- First stochastic differential equation.
- Developed to describe the Brownian motion, ie the motion of particles in a medium.
- Nowadays extended to many other fields with a generic form.
 - Thermal noise
 - Stock market
 - Particle in a fluid
- Two sets of variables: macroscopic (slow) and microscopic (fast/stochastic)
 - Fast: Local thermodynamic equilibrium in a liquid settles within a few collisions.
 - Slow: Parts like mass and energy takes longer to relax to equilibrium.

The equation

Intuitive derivation:

Take newton's classical particle in a fluid equation and add some stochastic noise.

$$m\frac{d\mathbf{v}}{dt} + \lambda\mathbf{v} = 0 \implies m\frac{d\mathbf{v}}{dt} + \lambda\mathbf{v} = \eta(t)$$
 (1)

6 / 12

Coments on η

CLT

- step of a random walk \Longrightarrow Normal uncorrelated distribution
- gaussian with $<\eta(t)\eta(t')>=2\lambda k_BT\delta(t-t')$
- approximation. In a microscopic reality gas' molecules speeds are of course correlated at the collision time but we look at slow property (speed of the particle).
- $\bar{\eta}=0$

Generic form

Mathematical derivation starting from Zwanzig operator (separate slow and fast variables)

$$\frac{dA_i}{dt} = k_B T \sum_i [A_i, A_j] \frac{d\mathcal{H}}{dA_j} - \sum_i \lambda_{i,j}(A) \frac{d\mathcal{H}}{dA_j} + \sum_i \frac{d\lambda_{i,j}(A)}{dA_j} + \eta_i(t)$$

Example simulation

Figure: Different examples of one particle random walk (migration to XZ-plane located at y=0.5)

Figure: Probability distribution (2D gaussian)

References

https://www.probabilitycourse.com/chapter11

F. B. Tomás Simulations in GLAD-TPC Universidade de Santiago de Compostela, 2020

Coffey, W. T. and Kalmykov, Yu P. and Waldron, J. T. *The Langevin Equation. With Applications in Physics, Chemistry and Electrical Engineering* (pp. 1-25) World Scientific Publishing Co. Pte. Ltd., Singapore, 1996.

https://en.wikipedia.org/wiki/Langevinequation

The End