Painel ► Meus cursos ► INE5415-04208 (20201) ► ATIVIDADES SÍNCRONAS ► Aula Síncrona 05 - PROVA 1

Iniciado em	Tuesday, 29 Sep 2020, 10:17
Estado	Finalizada
Concluída em	Tuesday, 29 Sep 2020, 12:15
Tempo empregado	1 hora 57 minutos
Avaliar	4.33 de um máximo de 10.00(43%)

Avaliar 4,33 de um máximo de 10,00(43%)

Comentários " Dizem que antes de um rio entrar no mar, ele treme de medo.

Olha para trás, para toda jornada que percorreu, para os cumes, as montanhas, para o longo caminho sinuoso que trilhou através de florestas e povoados e vê à sua frente um oceano tão vasto, que entrar nele nada mais é do que desaparecer para sempre.

Mas não há outra maneira.

O rio não pode voltar. Ninguém pode voltar.

Voltar é impossível na existência.

O rio precisa aceitar sua natureza e entrar no oceano. Somente ao entrar no oceano o medo irá se diluir, porque apenas então o rio saberá que não se trata de desaparecer no oceano, mas de se tornar o oceano."

(Khalil Gilbran)

Questão 1

Parcialmente correto

Atingiu 0,33 de 0,50

\sim 1			opções			•	
\sim	aciana	20	ANCAAC	Vara	2010	บเกว	С.
	CUUIC	a	000000	VELU	auc	-11 0	· ``

Escolha uma ou mais:

- a. Toda linguagem finita, i.e. que possua um número finito de palavras, é Regular.
- b. A diferença entre um AFD e um AFND está apenas em sua função de transição. 🗸
- c. Um AFND com n estados pode gerar um AFD de até 2^n estados após ser determinizado.

- d. Por causa do não-determinismo, um AFND é um modelo mais poderoso do que um AFD.
- e. Dois autômatos finitos M_1 e M_2 são ditos equivalentes sse M_2 foi gerado pelo processo de determinização partindo de M_1 .

Sua resposta está parcialmente correta.

Você selecionou corretamente 2.

As respostas corretas são: Toda linguagem finita, i.e. que possua um número finito de palavras, é Regular., A diferença entre um AFD e um AFND está apenas em sua função de transição., Um AFND com n estados pode gerar um AFD de até 2^n estados após ser determinizado.

Incorreto

Atingiu 0,00 de 0,50 Dado um autômato finito $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconheça L_1 , e um autômato finito $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ que reconheça L_2 , o autômato M resultante do produto cartesiano de M_1 e M_2 definido pela quíntupla, $M=(Q,\Sigma,\delta,q_0,F)$, onde:

$$Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ e } r_2 \in Q_2\}.$$

$$\Sigma = \{0,1\}^*$$

δ, para cada $(r_1,r_2)\in Q$ e cada $a\in \Sigma$, $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a)).$

 q_0 é o par (q_1,q_2) .

$$F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ e } r_2 \in F_2\}.$$

É capaz de reconhecer a linguagem $L_1 \cup L_2$

Escolha uma opção:

- Verdadeiro X
- Falso

A resposta correta é 'Falso'.

Questão 3

Parcialmente correto

Atingiu 0,25 de 0,50 Selecione as opções verdadeiras:

Escolha uma ou mais:

- a. A linguagem reconhecida por um autômato M é aquela cujo conjunto de sentenças é aceito por M.
- b. A profundidade da árvore de computação não determinística cresce linearmente com relação ao tamanho da entrada.
- c. Por não consumir nenhum elemento da entrada, uma E transição não altera a configuração de um autômato durante a computação de uma palavra.
- d. Para que uma computação não-determinística aceite uma palavra, todos os ramos da computação tem que terminar em um estado de aceitação
- e. A relação $[q_1,aw] o [q_2,w]$, onde o representa a operação 'resulta em', existe se e somente se existe uma transição de q_2 para q_1 sob a, onde $a \in \Sigma$ e $w \in \Sigma^*$.

Sua resposta está parcialmente correta.

Você selecionou corretamente 1.

×

As respostas corretas são: A linguagem reconhecida por um autômato M é aquela cujo conjunto de sentenças é aceito por M., A profundidade da árvore de computação não determinística cresce linearmente com relação ao tamanho da entrada.

Completo

Atingiu 0,00 de 1,00

Projete um Autômato Finito Determinístico que reconheça a seguinte linguagem:

 $L = \{w \mid w \in \{0,1\}^*$ e w não possui as sequências 00 e 11.}

Teste seu autômato para as seguintes entradas:

Válidas:

0101

1010

0

1

Inválidas:

111000

001101010

0110101

10100

4.PNG

Comentário:

Imagem em baixa resolução, não é possível ler as transições do autômato. Pela Multiple run oferecida, o autômato não reconhece a linguagem da questão.

Completo

Atingiu 0,50 de 2,00

Projete um Autômato Finito Determinístico que reconheça a seguinte linguagem

 $L = \{w \mid w \in \{a,b\}^*c^* \text{ e se o } \# \text{a for par então o } \# \text{c \'e \'impar},$ mas se o #a+#b for impar então #c é par}

Teste seu autômato para as seguintes entradas:

Válidas:

abbaccc

bbaabcc

aaabb

Inválidas:

aaaacc

abbc

cccc

ababbccc

5.PNG

Comentário:

Seu autômato aceita a palavra cac, que é uma palavra inválida. A linguagem {a,b}*c* exige que todas as ocorrências de c sejam após todas as ocorrências de a e b. O seu autômato reconhece as palavras de {a,b,c}*

Completo

Atingiu 0,75 de 1,00

Determinize o seguinte AFND

	0	1
-> q0	{q0, q1}	{q0, q2}
q1	q3	
q2		q4
q2 *q3 *q4	q3	q3
*q4	q4	q4

Q	0	1
->q0	{q0,q1}	{q0,q2}
{q0,q1}	{q0,q1,q3}	{q0,q2}
{q0,q2}	{q0,q1,q3}	{q0,q2,q4}
{q0,q1,q3}*	{q0,q1,q3}	{q0,q2,q3}
{q0,q2,q4}*	{q0,q1,q4}	{q0,q2,q4}
{q0,q2,q3}*	{q0,q1,q3}	{q0,q2,q3,q4}
{q0,q1,q4}*	{q0,q1,q3,q4}	{q0,q2,q4}
{q0,q2,q3,q4}*	{q0,q1,q3,q4}	{q0,q2,q3,q4}
{q0,q1,q3,q4}*	{q0,q1,q3,q4}	{q0,q2,q3,q4}

Comentário:

A transição por a de q0q2 deveria levar para q0q1 e não q0q1q3.

Questão 7

Completo

Atingiu 0,00 de 1,50

Determinize o seguinte AFND

	a	b	<i>epsilon</i> "}">ε {q1, q2}
-> q0			{q1, q2}
q1	q1		q4
q2	q3		q4
q2 q3 *q4		q2	
*q4		q4	

Q	a	b	e
->{q1,q2}	{q1,q3,q4}	-	{q1,q2}
q4*	-	q4	-
{q1,q3,q4}*	{q1,q4}	{q2,q4}	{q1,q3,q4}
{q1,q4}*	{q1,q4}	q4	{q1,q4}
{q2,q4}*	{q3,q4}	q4	{q2,q4}
{q3,q4}*	-	{q2,q4}	{q3,q4}

Comentário:

Faltou definir um estado morto para preencher as transições do AFD resultante e deixá-lo completo

O cálculo dos e-fecho foi feito de maneira errada. O e-fecho de q0, por exemplo, seria {q0,q1,q2,q4}, pois q0 atinge q0, q1 e q2 por epsilon e q2 atinge q4 por epsilon.

Completo

Atingiu 1,50 de 1,50

Crie um autômato que reconheça $L_1\cap L_2$ usando ϵ -transições e em seguida determinize o autômato.

$$L = \{w \mid w \in \{0,1\}^* \text{ e w termina com a sequência } 11\}$$

$$L = \{w \mid w \in \{0,1\}^* \text{ e } \#1 \text{ \'e impar}\}$$

Dica: Use De Morgan ou produto cartesiano.

3.PNG

Comentário:

Questão 9

Completo

Atingiu 1,00 de 1,50

Crie um autômato que reconheça L^st . Se o autômato resultante for não determinístico, determinize ele.

 $L = \{w \mid w \in \{a,b\}^*$ e w possui pelo menos um b e um número par de a's $\}$

9.PNG

Comentário:

O autômato não reconhece a palavra vazia, então ele não reconhece a linguagem L*

O alfabeto do autômato é {a,b}* e não {0,1}*

■ Sala para Aulas Remotas

Seguir para...

Aula Síncrona 11 - PROVA 2 ▶