

Figure

Sep. 15, 1998

Sheet 2 of 23

5,809,431

Figure 2

.

Sheet 3 of 23

PARAMETER	VALUE
THREE, FOUR, SIX OR EIGHT SECTOR CELL DIVISION,& MORE CAN BE USED	120°, 90°, 60°, OR 45° COVERAGE PER SECTOR RESPECTIVELY
2. CELL DIMENSIONS	2 KM RADIUS, COMMUNICATION RANGE, 1 KM TYPICALLY WITHIN THE CELL, AND 1 KM BEYOND THE NORMAL CELL BOUNDARY
3. RAIN FADE	7 dB/KM, 14 dB TOTAL
4. FOLIAGE ATTENUATION	10 dB TO 20 dB ASSUMED PER TREE. OVER COME BY USE OF BASE STATION DIVERSITY
5. REQUIRED HUB TO SUB- SCRIBER C/(NO+1)	7 dB
6. REQUIRED SUBSCRIBER TO HUB C/(NO+1)	7 dB
7. HUB ANTENNA GAIN	13.5 dB, 15dB, 16.5dB, & 18dB FOR 120°, 90°, 60°, AND 45° COVERAGE, 3 dB BEAM WIDTHS RESPECTIVELY.
8. SUBSCRIBER ANTENNA GAIN	35 dB, 3.8 DEGREE, 3 dB BEAM WIDTH IN ALL CASES
9. HUB TRANSMIT POWER	1 W
10. SUBSCRIBER TRANSMIT POWER	100 mW TO 200 mW
11. DOWN STREAM DATA RATE	10 Mbps INITIALLY, 51 Mbps FUTURE REQUIREMENT
12. UP STREAM DATA RATE	TI (1.024 Mbps) INITIALLY, 10Mbps TO 51 Mbps FUTURE REQUIREMENT
13. DOWN STREAM FREQUENCY BAND	27.5 GHz TO 28.35GHz, 850 MHz TOTAL
14. UP STREAM FREQUENCY BAND	29.1 GHz TO 29.25 GHz 150 MHz TOTAL
15. SUBSCRIBER POPULATION PER CELL OF 1 KM RADIUS	1000 TOTAL SUBSCRIBERS, 60% TO 85% TO BE SERVICED. POPULATION TO BE SERVICED CAN BE INCREASED BY INCREASED CELL SECTORIZATION AND THE USE OF POLARIZATION DIVERSITY.
16. FREQUENCY RE-USE	FREQUENCY RE-USE OF 1 ACHIEVABLE WITH-OUT POLARIZATION DIVERSITY WHEN USING THE OPTIMAL CELL CONFIGURATION FOR BOTH RECTANGULAR AND HEXAGONAL ARRAYS. FREQUENCY RE-USE OF 1 ACHIEVABLE WHEN OPERATING IN A DISADVANTAGED CELL ARRAY THROUGH THE USE OF POLARIZATION DIVERSITY.
17. INTERFACE TO GEOGRAPHICALLY REMOTE CELLS	SATELLITE LINK BETWEEN HEAD END AND BASE STATION OF GEOGRAPHICALLY REMOTE CELLS CAN BE PROVIDED WITH A REDUCED REMOTE SYSTEM CAPACITY.

FIG . 3a

PARAMETER	VALUE
DOWN STREAM LINK	
1) TOTAL BANDWIDTH ALLOCATED	850MHz
2) FREQUENCY RE-USE, SECTORS PER	FREQUENCY RE-USE OF 1,
CELL	4 SECTORS/CELL
3) DATA FORMAT	CONTINUOUS CARRIER TDMA
4) NUMBER OF CARRIERS TOTAL &	24 CARRIERS TOTAL,
CARRIERS/SECTOR	6 CARRIERS/SECTOR
5) CARRIER SPACING	1/T = F = TRANSMITTED DATA RATE
	OF THE CHANNEL
6) DATA RATE: PAYLOAD,	OC-1 (51.84 Mbps), 52.2 Mbps
TRANSMITTED	
7) DATA MODULATION	QPSK
8) DATA CODING	RATE 7/8 CONVOLUTIONAL ENCODING,
,	INTERLEAVED, AND (60,54) REED
	SOLOMON CODING
9) TRANSMIT CELL DATA STRUCTURE	1 SYNC BYTE. 5 BYTE HEADER, 48 BYTE
LID OTDEAN LINK	ATM PAYLOAD, 6 BYTE RS BITS
UP STREAM LINK	450 141
1) TOTAL BANDWIDTH ALLOCATED	150 MHz
2) FREQUENCY RE-USE, SECTORS	1 IN 4 FREQUENCY RE-USE, 4
PER CELL	SECTORS/CELL
3) DATA FORMAT	BURST CARRIER, BYTE SYNCHRONOUS TDMA
4) NUMBER OF CARRIERS TOTAL &	8 CARRIERS TOTAL, 2 CARRIERS/SECTOR
1 -7	OCANNIENS TOTAL, 2 CANNIENS/SECTON
CARRIERS/SECTOR 5) CARRIER SPACING	2/F' = 2F', WHERE F' = TRANSMITTED
5) CARRIER SPACING	DATA RATE OF THE CHANNEL
6) DATA RATE	1/2 OC -1 (25.92 Mbps), 26.1 Mbps
7) DATA MODULATION	ALPHA = 0.25 ROOT-RAISED COSINE
/ DATA WICEGLATION	FILTERED QPSK
8) DATA CODING	(60,54) REED SOLOMON CODING
9) TRANSMIT CELL DATA STRUCTURE	1 SYNC BYTE, 5 BYTE HEADER, 48 BYTE
1 I TANSIVITI CELL DATA STRUCTURE	ATM PAYLOAD, 6 BYTE RS BITS,
	FOLLOWED BY A 1 BYTE GUARD SPACE
<u></u>	1 OCCUPATED BY A TENTE GOVERNO BY ACE

Sheet 4 of 23

U.S. Patent

Sep. 15, 1998

Sheet 5 of 23

5,809,431

Figure 6a

Figure 6b

Sheet 9 of 23

DOS SELECT OS LACO

 S_{2} **B**5 2 ප <u>m</u> 8 A **B**6 **A**3 $\overline{\Omega}$ **A**2 C2 **B**7 පු \aleph A7 **B**2 **A**9 B11 ප 5 88 **A**8 C10 B10

Figure 7

D3	A3	A 4	74	D5	A5
SS	B3	B4	2	C5	B5
C5	B2	. B1	C1	90	B6
D2	A2	A1	D1	90	A6
60	A9	A8	D8	20	A7
පී	B9	B8	8	C2	B7
	D9 D2 C2 C3	D9 D2 C2 C3 A9 A2 B2 B3	A9 A2 B2 B3 A8 A1 B1 B4	A9 A2 B2 B3 A8 A1 B1 B4 C1 C4	A9 A2 B2 B3 A8 A1 B1 B4 D8 D1 C1 C4 D7 D6 C6 C5

A10 B10 D10 C10

Figure 8

		,			
A3 B3	A3 B3	B4 A4	B4 A4	A5 B5	A5 B5
සි සි	D3 C3	42 P4	2 42	D5.	D5 C5
22 62	20 25	C1 D1	C1 D1	90 90	9D 9D
A2 B2	A2 B2	A1 B1	B1 A1	A 6 B6	A 6 B6
A9 B9	A 9 89	B8 A8	88 A8	A7 B7	A7 B7
8 8	8 8	8 8	80 83	CJ DJ	D7 C7

Figure

CHTTED. THIED

Figure 12a

Figure 12b

(b) Up Stream Frame Structure (contains no frame sync identifier)

Sep. 15, 1998

Sheet 16 of 23

5,809,431

Figure 14

MESSAGE TYPE	SOURCE	DESTINATION	FUNCTION
INITIALIZATION REQUEST, FIGURE 14(a)	SUBSCRIBER	HEAD END	SUBSCRIBER ISSUES REQUEST FOR NET ENTRY FUNCTION TO BE INITIATED
INITIALIZATION RESPONSE, FIGURE 14 (d)	HEAD END	SUBSCRIBER	ISSUE INITIAL POWER, TIMING, AND FREQUENCY ADJUSTMENTS TO SUBSCRIBER, AND TRANSFER SUBSCRIBER OPERATIONS TO CHANNEL & SERVICES ASSIGNMENT REGION
TERMINATE REQUEST FIGURE 14 (a)	SUBSCRIBER	HEAD END	SUBSCRIBER ISSUES REQUEST FOR TERMINATION OF ONGOING SERVICES
TERMINATE COMMAND (a). FIGURE 14 (b)	HEAD END	SUBSCRIBER	HEAD END ISSUES COMMAND TO SUBSCRIBER TERMINATING ONGOING SERVICES AND ALL UP STREAM TRANSMISSIONS
TERMINATE COMMAND (b), FIGURE 14 (b)	HEAD END	SUBSCRIBER	HEAD END INDEPENDENTLY ISSUES COMMAND TO SUBSCRIBER TERMINATING ONGOING SERVICES AND ALL UP STREAM TRANSMISSIONS BECAUSE OF DEPICTED IMPROPER & REAL TIME UNCORRECTABLE SUBSCRIBER OPERATING CONDITIONS
SERVICE REQUEST, FIGURE 14 (c)	SUBSCRIBER	HEAD END	SUBSCRIBER IDENTIFICATION OF & REQUEST FOR INITIATION OF NEW SERVICES REQUIRED SERVICES
SERVICE REQUEST RESPONSE, FIGURE 14 (d) EXPANDED	HEAD END	SUBSCRIBER	CONTINUE REFINEMENT OF POWER, TIMING, AND FREQUENCY ADJUSTMENTS TO SUBSCRIBER, ISSUE DEFINITION OF SERVICES APPROVED FOR USE BY SUBSCRIBER AND TRANSFER SUBSCRIBER OPERATIONS TO ASSIGNED CELL REGION
STATUS REQUEST AND PARAMETER ADJUSTMENT COMMAND, FIGURE 14 (d)	HEAD END	SUBSCRIBER	HEAD END COMMAND TO SUBSCRIBER REQUESTING STATUS OF OPERATIONAL EQUIPMENT, & ALL IN-HOME MONITORING SERVICES, AND POWER, TIMING, & FREQUENCY ADJUSTMENT COMMANDS IF REQUIRED
REQUEST TO EXECUTE A FILE TRANSFER, FIGURE 14 (a) EXPANDED	SUBSCRIBER	HEAD END	THERE WILL BE TIMES THAT FILES OF DATA WILL BE TRANSFERRED FROM THE SUBSCRIBER TO THE HEAD END. THIS REQUEST DEFINES THE FILE DATA AND THE NEED TO INITIATE THIS OPERATION.
COMMAND TO PRE- PARE TO RECEIVE A DATA FILE. FIGURE 14 (b) EXPANDED	HEAD END	SUBSCRIBER	COMMAND TO SUBSCRIBER TO PREPARE FOR RECEPTION OF A DATA FILE, & DEFINITION OF HOW FILE WILL BE TRANSFERRED

Figure 16a

	6 bytes 6 byte Destination Source Address Address	6 bytes Source Address	Message Type				
ē	fre 16b 6 bytes 6 bytes Destination Source Address	6 bytes Source Address	2 2 Subscriber Message ID # Type	2 Message Type		·	

Figure 16c

2	Service	Туре
.2	Service	Type
0	Service	Type
8	Service	Type
2	Message :	Туре
6 bytes	Source	Address
6 bytes	Destination	Address

Figure 16d

9	Parameter	Adjustments
5	Message	Type
2	Subscriber	# 0
6 bytes	Source	Address
6 bytes	Destination	Address

Figure 18

•

5,809,431

Figure 20

POWER LEVEL ADJUSTMENT **TRANSMIT** PROCESSOR COMPUTATION **POWER LEVEL OPERATIONS TRANSMIT ESTIMATOR** RANGE POWER LEVEL MEASURMENT RECEIVED DEMODULATOR SIGNAL POWER MODULATOR LEVEL COMPUTER DOWN CONVERTER CONVERTER OP DOTE

Figure 21