Зміст

4	Скі	нченно-автоматні мови і праволінійні граматики	1
	4.1	Скінченно-автоматні мови	1
		4.1.1 Базові мови	1
		4.1.2 Операції над мовами	2
	4.2	Скінченні автомати та праволінійні граматики	3
		4.2.1 Класифікація граматик Хомського	4
		4.2.2 Мова породжена граматикою	4
		4.2.3 Праволінійна граматика \sim скінченний автомат	5
	4.3	Контрольні запитання	6

4 Скінченно-автоматні мови і праволінійні граматики

4.1 Скінченно-автоматні мови

Ознайомившись з деякими результатами теорії скінчених автоматів, спробуємо з'ясувати, які мови (множини слів) є скінчено-автоматними.

4.1.1 Базові мови

Твердження: Скінчено автоматними є наступні множини:

- 1. порожня словарна множина \varnothing ;
- 2. словарна множина, що складається з одного ε -слова $\{\varepsilon\}$;
- 3. множина $\{a\}, a \in \Sigma$.

Доведення: в кожному випадку нам доведеться конструктивно побудувати відповідний скінчений автомат:

- 1. Довільний скінчений автомат з пустою множиною заключних станів (а мінімальний з пустою множиною станів) допускає \emptyset ;
- 2. Розглянемо автомат $M=\langle\{q_0\},\Sigma,q_0,\delta,\{q_0\}\rangle$, у якому δ не визначено ні для яких $a\in\Sigma$. Тоді $L(M)=\{\varepsilon\}$.
- 3. Розглянемо автомат $M = \langle \{q_0, q_1\}, \Sigma, q_0, \delta, \{q_1\} \rangle$, у якому функція δ визначена лише для пари (q_0, a) , а саме: $\delta(q_0, a) = \{q_1\}$. Тоді $L(M) = \{a\}$.

4.1.2 Операції над мовами

Твердження: Якщо $M_1 = \langle Q_1, \Sigma, q_0^1, \delta_1, F_1 \rangle$ та $M_2 = \langle Q_2, \Sigma, q_0^2, \delta_2, F_2 \rangle$, що визначають відповідно мови $L(M_1)$ та $L(M_2)$, то скінченно-автоматними мовами будуть:

- 1. $L(M_1) \cup L(M_2) = \{ w \mid q \in L(M_1) \text{ or } q \in L(M_2) \};$
- 2. $L(M_1) \cdot L(M_2) = \{ w = xy \mid x \in L(M_1), y \in L(M_2) \};$
- 3. $L(M_1)^* = \{\varepsilon\} \cup L(M_1) \cup L(M_1)^2 \cup L(M_1)^3 \cup \dots$

Доведення: в кожному випадку нам доведеться конструктивно побудувати відповідний скінчений автомат:

- 1. Побудуємо автомат $M=\langle Q, \Sigma, q_0, \delta, F \rangle$ такий, що $L(M)=L(M_1)\cup L(M_2)$:
 - $Q = Q_1 \cup Q_2 \cup \{q_0\}$, де q_0 новий стан $(q_0 \notin Q_1 \cup Q_2)$;
 - ullet Функцію δ визначимо таким чином:

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1, \\ \delta_2(q, a), & q \in Q_2, \\ \delta_1(q_0^1, a) \cup \delta_2(q_0^2, a), & q = q_0. \end{cases}$$

• Множина заключних станів:

$$F = \begin{cases} F_1 \cup F_2, & \text{if } \varepsilon \notin L_1 \cup L_2, \\ F_1 \cup F_2 \cup \{q_0\}, & \text{otherwise.} \end{cases}$$

Побудований таким чином автомат взагалі кажучи недетермінований.

Індукцією по i показуємо, що $(q_0, w) \models^i (q, \varepsilon)$ тоді і тільки тоді, коли $(q_0^1, w) \models^i (q, \varepsilon), q \in F_1$ або $(q_0^2, w) \models^i (q, \varepsilon), q \in F_2$.

- 2. Побудуємо автомат $M=\langle Q, \Sigma, q_0, \delta, F \rangle$ такий, що $L(M)=L(M_1)\cdot L(M_2)$:
 - $\bullet \ Q = Q_1 \cup Q_2;$
 - $q_0 = q_0^1$;

• Функцію δ визначимо таким чином:

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \setminus F_1, \\ \delta_2(q, a), & q \in Q_2, \\ \delta_1(q, a) \cup \delta_2(q_0^2, a), & q \in F_1. \end{cases}$$

• Множина заключних станів:

$$F = \begin{cases} F_2, & \text{if } \varepsilon \notin L_2, \\ F_1 \cup F_2, & \text{otherwise.} \end{cases}$$

- 3. Побудуємо автомат $M=\langle Q, \Sigma, q_0, \delta, F \rangle$ такий, що $L(M)=L(M_1)^\star$:
 - $Q = Q_1 \cup \{q_0\}$, де q_0 новий стан $(q_0 \notin Q_1)$;
 - ullet Функцію δ визначимо таким чином:

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \setminus F_1, \\ \delta_1(q_0^1, a), & q = q_0, \\ \delta_1(q, a) \cup \delta_1(q_0^1, a), & q \in F_1. \end{cases}$$

• Множина заключних станів $F = F_1 \cup \{q_0\}.$

4.2 Скінченні автомати та праволінійні граматики

 Π ороджуюча граматика G — це четвірка

$$G = \langle N, \Sigma, P, S \rangle$$
,

де:

- N- скінченна множина допоміжний алфавіт (нетермінали);
- Σ скінченна множина основний алфавіт (термінали);
- Р скінченна множина правил вигляду

$$\alpha \mapsto \beta$$
, $\alpha \in (N \cup \Sigma)^* \times N \times (N \cup \Sigma)^*$, $\beta \in (N \cup \Sigma)$.

• S — виділений нетермінал (аксіома).

4.2.1 Класифікація граматик Хомського

В залежності від структури правил граматики діляться на чотири типи:

• Тип 0: граматики загального вигляду, коли правила не мають обмежень, тобто

$$\alpha \mapsto \beta$$
, $\alpha \in (N \cup \Sigma)^* \times N \times (N \cup \Sigma)^*$, $\beta \in (N \cup \Sigma)$.

• Тип 1: граматики, що не укорочуються, коли обмеження на правила мінімальні, а саме:

$$\alpha \mapsto \beta$$
, $\alpha \in (N \cup \Sigma)^* \times N \times (N \cup \Sigma)^*$, $\beta \in (N \cup \Sigma)$, $|\alpha| \leq |\beta|$.

• Тип 2: контекстно-вільні граматики, коли правила в схемі P мають вигляд:

$$A_i \mapsto \beta, \quad A_i \in N, \quad \beta \in (N \cup \Sigma)^*.$$

• Тип 3: скінченно-автоматні граматики, коли правила в схемі P мають вигляд:

$$A_i \mapsto wA_i, \quad A_i \mapsto w, \quad Ai \mapsto A_iw,$$

де
$$A_i, A_i \in N, w \in \Sigma^*$$
.

В класі скінченно-автоматних граматик виділимо так звані *праволі*нійні граматики — це граматики, які в схемі Р мають правила вигляду:

$$A_i \mapsto wA_j, \quad A_i \mapsto w,$$

де
$$A_i, A_i \in N, w \in \Sigma^*$$
.

Нескладно довести, що клас праволінійних граматик співпадає з класом граматик типу 3.

4.2.2 Мова породжена граматикою

Ланцюжок w_1 безпосередньо виводиться з ланцюжка w (позначається $w \Rightarrow w_1$), якщо $w = x\alpha y$, $w_1 = x\beta y$ та в схемі P граматики G є правило виду $\alpha \mapsto \beta$. Оскільки поняття "безпосередньо виводиться" розглядається на парах ланцюжків, то в подальшому символ \Rightarrow буде трактуватися як бінарне вдіношення.

Ланцюжок w_1 виводиться з ланцюжка w (позначається $w \Rightarrow^* w_1$), якщо існує скінчена послідовність виду $w \Rightarrow w_1' \Rightarrow w_2' \Rightarrow \ldots \Rightarrow w_n' \Rightarrow w_1$.

Або кажуть, що бінарне відношення \Rightarrow^* — це рефлексивно-транзитивне замикання бінарного відношення \Rightarrow .

Мова, яку породжує граматика G (позначається L(G)) — це множина термінальних ланцюжків:

$$L(G) = \{ w \mid S \Rightarrow^{\star} w, w \in \Sigma^{\star} \}.$$

4.2.3 Праволінійна граматика \sim скінченний автомат

Теорема. Клас мов, що породжуються праволінійними граматиками, співпадає з класом мов, які розпізнаються скінченими автоматами.

Доведення. Спочатку покажемо, що для довільної праволінійної граматики G можна побудувати скінчений автомат M, такий що L(M) = L(G).

Розглянемо правила праволінійної граматики. Вони бувають двох типів: $A_i \mapsto w A_i$, і $A_i \mapsto w$.

На основі правил граматики G побудуємо схему P_1 нової граматики, яка буде еквівалентною початковій, а саме:

• правила виду $A_i \mapsto a_1 a_2 \dots a_p A_j$ замінимо послідовністю правил

$$A_i \mapsto a_1 B_1,$$

$$B_1 \mapsto a_2 B_2,$$

$$\dots$$

$$B_{p-1} \mapsto a_p A_j.$$

• правила виду $A_i \mapsto a_1 a_2 \dots a_p$ замінимо послідовністю правил

$$A_{i} \mapsto a_{1}B_{1},$$

$$B_{1} \mapsto a_{2}B_{2},$$

$$\dots$$

$$B_{p-1} \mapsto a_{p}B_{p},$$

$$B_{p} \mapsto \varepsilon.$$

де B_1, B_2, \ldots — це нові нетермінали граматики G_1 .

Очевидно, що граматика G_1 ьуде еквівалентна граматиці G.

Далі, на основі граматики G_1 побудуємо скінчений автомат M, таким чином:

- як імена станів автомата візьмемо нетермінали граматики G_1 ;
- початковий стан автомата позначається аксіомою S;
- функція δ визначається діаграмою переходів, яка будується на основі правил вигляду $A_i \mapsto a_k A_i$:

• множина F заключних станів скінченого автомата визначається так: $F = \{A_i \mid A_i \mapsto \varepsilon\}.$

Індукцією по довжині вхідного слова покажемо, що якщо $S \Rightarrow^{n+1} w$, то $(q_0, w) \models^n (q, \varepsilon)$:

- База: i = 0: $S \Rightarrow \varepsilon$, тоді $(q_0, \varepsilon) \models^0 (q_0, \varepsilon)$.
- Перехід: нехай |w|=i+1, тобто $w=aw_1$. Тоді $S\Rightarrow aA_p\Rightarrow^i aw_1$ та $(q_0,aw_1)\models (q_i,w_1)\models^{i-1}(q,\varepsilon)$, де $q\in F$.

Доведення навпаки є очевидним.

4.3 Контрольні запитання

- 1. Які три базові скінченно-автоматні мови ви знаєте?
- 2. Доведіть, що мови з попереднього питання справді є скінченно-автоматними.
- 3. Які три операції над скінченно-автоматними мовами ви знаєте?
- 4. Доведіть, що результати операцій з попереднього питання справді є скінченно-автоматними.
- 5. Що таке породжуюча граматика?
- 6. Які чотири типи граматик за Хомським ви знаєте?
- 7. Що таке праволінійна граматика?
- 8. Дайте визначення безпосереднього виведення, виведення, породженої граматикою мови.
- 9. Доведіть, що скінченний автомат це майже праволінійна грамати-