实验名称 RLC 电路暂态特性的研究

一、预习

- 1. RC、RL 串联电路暂态过程电压表达式,以及时间常数τ的表达式是什么?
- 2. RLC 串联电路的暂态过程 (三种阻尼过程) 电压表达式、时间常数τ表达式是什么?
- 3. 请绘制数字示波器、信号发生器观测 RC、RL 和 RLC 串联电路的的连接线路示意图。

答: LORC解电路 充电: Uc(t)=E(1-e-成)放电: Uc(t)=Ee-元 耐河常数 T=RC ORL解的路 2.RLC串联电路 ①矩时 ·夕阳尼R〈照时.有ucts=E[]-J4Le=c=cos(wttp)] ·过阻尼 R>层时有 uct) = E[1-5the e sin (Bitter)]
·临界阻尼 R=层时有 uct)= E[1-tre)e=+] 使时 加尼 RJ是时有此时=EJHRe=tcos(wtte) 回放电时 其中下是如流儿器户意思

二、原始数据记录

1. RC 串联电路的暂态特性(使用方波信号进行实验,可取 V_{pp} =10V)

 $R=500 \Omega$

$\overline{\tau}$ C	0.022μF	10μF	100μF	470μF
方波信号周期 T	300us	100ms	1s	4s
时间常数τ	12us	5.60ms	60.00ms	264ms

 $C=100 \ \mu F$

$\overline{\tau}$ R	10Ω	50Ω	100Ω	500Ω
方波信号周期 T	100ms	500ms	1s	2s
时间常数τ	6.00ms	10.6ms	16.2ms	64.00ms

2. RL 串联电路的暂态过程(使用方波信号进行实验,可取 Vpp=10V)

L = 10 mH

τ R	100Ω	500Ω	900Ω
方波信号周期 T	2ms	0.4ms	0.2ms
时间常数τ	60us	17.2us	9.80us

 $R=1000 \Omega$

τ L	10 mH	50 mH	100mH
方波信号周期 T	0.15ms	0.7ms	1.4ms
时间常数τ	9.40us	44.8us	87.6us

3. RLC 串联电路的暂态特性(使用方波信号进行实验,可取 V_{pp} =10V)

测量欠阻尼情况下 U_C 充电时振荡波形的任一 t_1 时峰值 U_{ct_1} 和 t_1+n T 时峰值 $U_{c(t_1+nT)}$

n	0	1	2	3	4	5	6	7	8
$U_{\mathrm{c(t1+nT)}}/\mathrm{V}$	8.4	5.92	4.48	3.20	2.16	1.52	0.720	0.560	0.400

三、数据处理

- 1. 记录各项实验任务过程中的 R、C 和 L 各参数值,示波器观察到的波形,以及时间常数 τ 。
- 2. 测量欠阻尼情况下 U_C 充电时振荡波形的任一 t_1 时峰值 U_{ct_1} 和 t_1+nT 时峰值 $U_{c(t_1+nT)}$,采用最小二乘法或作图法求出 $\ln\left(1-\frac{U_C}{E}\right)\sim t$ 的斜率,计算时间常数 τ ,并与理论值 $\tau=\frac{2L}{R}$ $(R=R_{\text{em}}+R_S+R_L)$ 进行比较,分析误差产生的原因。

答: 1、

RC 串联电路暂态特性(Vpp=10V)		时间常	相对误差	
R (Ω)	C (µF)	观测值	理论值	加州灰左
	0.022	12us	12.1us	-0.826%
500	10	5.60ms	5.60ms 5.5ms	
500	100	60.00ms	55ms	9.090%
	470	264ms	258.5ms	2.128%
10		6.00ms	6ms	0
50	100	10.6ms	10ms	6.0%
100	100	16.2ms	15ms	8.0%
500		64.00ms	55ms	16.364%

RL 串联电路暂态特性(Vpp=10V)		时间信	相对误差	
R (Ω)	L (mH)	观测值	理论值	
100	10	60us	63.9us	-6.103%
500		17.2us	17.97us	-4.285%
900		9.80us	10.45us	-6.220%
1000	10	9.40us	9.47us	-0.739%
	50	44.8us	46.1us	-2.820%
	100	87.6us	89.0us	-1.573%

2、欠阻尼状态下,有
$$U_{c}(t) = E(1 - \sqrt{\frac{4L}{4L - R^{2}C}}e^{-\frac{t}{\tau}}\cos(\alpha t + \theta))$$
,

其峰值为
$$U_c = E(1 - \sqrt{\frac{4L}{4L - R^2C}}e^{-\frac{t}{\tau}})$$

两边取对数,得
$$\ln(1-\frac{U_c}{E}) = \ln\sqrt{\frac{4L}{4L-R^2C}} - \frac{t}{\tau}$$

$$au = -rac{1}{k}$$
求得斜率 k 后,得到时间常数

计算得斜率 k = -19112.15,因此时间常数 $\tau = 52.32 \, \mu \, s$

四、实验现象分析及结论

答: 对于 RC 或 RL 串联电路,换路后电容电压或电感电流不会发生跃变,随后电容电压或电感电流按照指数规律变化,其中指数项 $e^{-\frac{t}{\tau}}$ 中的 τ 表征了电感或电容的状态变化快慢,称为时间常数。对于 RL 电路, $\tau=\frac{L}{R}$; 对于 RC 电路, $\tau=RC$ 。

对于 RLC 串联电路,当电路中电阻取值和 $2\sqrt{\frac{L}{C}}$ 大小关系不同时,可能出现欠阻尼、临界阻尼和过阻尼三种情况。

五、讨论题

- 1. 在 RC 和 RL 电路中,固定方波频率 f 而改变 R 的阻值,为什么会有各种不同的波形?若固定 R 而改变方波频 f,会得到类似的波形吗?为什么?
- 2. 在RLC电路中,为什么要适当调节方波频率才能观测到阻尼振荡的波形?如果频率很高,将会发生什么样的情况?试观察。

答: 1、

(1) 会。由于对于 RL 电路, $\tau = \frac{L}{R}$; 对于 RC 电路, $\tau = RC$,改变电阻 R 的阻值将改变时间常数,时间常数不同,储能元件状态改变的快慢也不同,电路中各处电压和电流的变化速率也就不同,所以会观察到不同的波形。

- (2) 不会。只要设定的方波周期 T 比电路达到稳态所需要的时间长得多,所观察到的充放电波形就都是极为相近的,只是维持稳态的时间的长短不同。但若方波的周期很短,电路来不及达到稳态就到了另一个阶段,那么这时候改变 f 就会使得波形发生较大变化。
- 2. 适当调节方波频率,才能使电路在方波在电平转化前已经很接近稳态。这样在换路后,才能观察到电路从一个稳态开始改变的过程。方波频率很高时,高低电平的改变很频繁,导致系统尚未达到稳态时就要经历下一个阶段,则波形无法达到稳态。