Лабораторная работа 1

Дисциплина - основы информационной безопасности

Тимофеева Екатерина Николаевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выполнение домашнего задания	13
6	Выводы	15
7	Контрольные вопросы	16
Список литературы		18

Список иллюстраций

4.1	Указание имени виртуальной машины	8
4.2	Указание размера основной памяти виртуальной машины	9
4.3	Указание типа	10
4.4	Задаём размер диска	10
4.5	Выбор языка	11
4.6	Добавление нового пользователя	11
4.7	Добавление нового окружения	12
5.1	Версия ядра Linux (Linux version)	13
5.2	Частота процессора (Detected Mhz processor). Модель процессора .	13
5.3	Объём доступной оперативной памяти	13
5.4	5. Тип обнаруженного гипервизора (Hypervisor detected). Тип фай-	
	ловой системы корневого раздела. Последовательность монтиро-	
	вания файловых систем	14

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установить на виртуальную машину операционной системы Linux дистрибутив Rocky
- 2. Выполнить домашнее задание
- 3. Контрольные вопросы

3 Теоретическое введение

Rocky Linux - это корпоративная операционная система с открытым исходным кодом, разработанная для 100% совместимости с Red Hat Enterprise Linux®. Интенсивно разрабатывается сообществом.

4 Выполнение лабораторной работы

Подготовка виртуальной машины к установке Создаем новую виртуальную машину. Для этого в VirtualBox выберем "Машина" "Создать". Укажем имя виртуальной машины (рис. [4.1]), (рис. [4.2])

Рис. 4.1: Указание имени виртуальной машины

Рис. 4.2: Указание размера основной памяти виртуальной машины

Задаём конфигурацию жёсткого диска— загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск (рис. [4.3]), (рис. [4.3])

Рис. 4.3: Указание типа

Рис. 4.4: Задаём размер диска

Установка Rocky Linux Выбираем язык English и язык English (United States). (рис. [4.5])

Рис. 4.5: Выбор языка

Выбираем автоматическую разметку диска. Добавляем нового пользователя, учитывая соглашение об именовании В предустанавливаемом ПО выбираем базовое окружение "Сервер с GUI" и группу "Developments tool". (рис. [4.6]), (рис. [4.7])

Рис. 4.6: Добавление нового пользователя

Рис. 4.7: Добавление нового окружения

Отключаем kdump.

Запускаем установку.

5 Выполнение домашнего задания

В окне терминала получаем следующую информацию. (рис. [5.1]), (рис. [5.2]), (рис. [5.3]), (рис. [5.4])

```
entimofeeva@entimofeeva:~ ×

File Edit View Search Terminal Help

[entimofeeva@entimofeeva ~]$ dmesg | grep -i "Linux Version"

[ 0.000000] Linux version 4.18.0-513.5.1.el8_9.x86_64 (mockbuild@iad1-prod-build001.bld.equ.rockylinux.org) (gcc version 8.5.0 20210514 (Red Hat 8.5.0-20) (GCC)) #1 SMP Fri Nov 17 03:31:10 UTC 2023
```

Рис. 5.1: Версия ядра Linux (Linux version)

```
[entimofeeva@entimofeeva ~]$ dmesg | grep -i "Processor"
[ 0.0000000] tsc: Detected 2419.200 MHz processor
[ 0.126000] smpboot: Total of 1 processors activated (4838.40 BogoMIPS)
[ 0.134317] ACPI: Added _OSI(Processor Device)
[ 0.134318] ACPI: Added _OSI(Processor Aggregator Device)
[entimofeeva@entimofeeva ~]$ dmesg | grep -i "CPU0"
[ 0.125714] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz (family: 0x6, model: 0x8c, stepping: 0x1)
```

Рис. 5.2: Частота процессора (Detected Mhz processor). Модель процессора

```
[ 0.000000] Memory: 261120K/2096696K available (14341K kernel code, 5952K rwd ata, 8520K rodata, 2608K init, 26336K bss, 151768K reserved, 0K cma-reserved)
[ 0.023174] Freeing SMP alternatives memory: 36K
[ 0.132266] x86/mm: Memory block size: 128MB
[ 0.856607] Freeing initrd memory: 52288K
[ 0.919755] Non-volatile memory driver v1.3
[ 1.190720] Freeing unused decrypted memory: 2036K
[ 1.19111] Freeing unused kernel image (initmem) memory: 2608K
[ 1.191637] Freeing unused kernel image (text/rodata gap) memory: 2012K
[ 1.191937] Freeing unused kernel image (rodata/data gap) memory: 1720K
[ 2.068431] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB,
FIFO = 2048 kB, surface = 507904 kB
[ 2.068435] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 k
```

Рис. 5.3: Объём доступной оперативной памяти

```
[entimofeeva@entimofeeva ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[entimofeeva@entimofeeva ~]$ dmesg | grep -i "VFS: Mounted root"
[entimofeeva@entimofeeva ~]$ df -T
[entimofeeva@entimofeeva ~]$ df -T
Filesystem
                                                  1K-blocks
                                                                         Used Available Use% Mounted on
                                   Туре
                                                                                       ailable Use% Mounted on 972480 0% /dev 1002812 0% /dev/shm 993408 1% /run 1002812 0% /sys/fs/cgroup 1770840 18% / 786420 25% /boot 200520 1% /run/wser/1000 0 100% /run/media/entimof
devtmpfs
                                   devtmpfs
                                                        972480
tmpfs
tmpfs
                                                                                      1002812
                                   tmpfs
                                                       1002812
                                                                          9404
                                   tmpfs
                                                       1002812
                                                                                      1002812
tmpfs
                                   tmpfs
                                                       1002812
/dev/mapper/rl-root xfs
/dev/sdal xfs
                                                     38733336 6962496
                                                                                   31770840
/dev/sda1
                                                       1038336 251916
tmpfs
/dev/sr0
                                   tmpfs
                                                        200560
                                                                          40
                                                                        62390
                                   iso9660
                                                          62390
 eeva/VBox_GAs_6.1.38
[entimofeeva@entimofeeva ~]$ dmesg_| grep -i "Mounted"
```

Рис. 5.4: 5. Тип обнаруженного гипервизора (Hypervisor detected). Тип файловой системы корневого раздела. Последовательность монтирования файловых систем.

6 Выводы

По итогам выполнения работы, я настроил виртуальную машину с Rocky Linux.

7 Контрольные вопросы

- 1. Учётная запись, как правило, содержит сведения, необходимые для опознания пользователя при подключении к системе, сведения для авторизации и учёта. Это идентификатор пользователя (login) и его пароль. Пароль или его аналог, как правило, хранится в зашифрованном или хэшированном виде для обеспечения его безопасности.
- 2. manual (man) для получения полной справочной информации по другой команде.

Для перемещения и переименования файлов и каталогов используется команда mv. (Move)

Для просмотра содержимого каталога используется команда ls.

Для просмотра размеров папок на диске используется команда du.

touch — создать файл

Для удаления директорий используется команда rmdir имя директории.

Команда rm применяется для удаления ненужных файлов.

Команда chmod (change mode – сменить режим) предназначена для изменения прав доступа к файлам

Достаточно выполнить команду history

3. Файловая система — это структура, используемая операционной системой для организации и управления файлами на устройстве хранения, например на жестком диске, твердотельном накопителе (SSD) или USB-накопителе.

- 4. Команда findmnt это простая утилита командной строки, используемая для отображения списка смонтированных файловых систем или поиска файловой системы в /etc/fstab, /etc/mtab и /proc/self/mountinfo.
- 5. Один из способов «убить», запущенное приложение в Linux, это использование таких команд, как kill или killall.

Список литературы

Кулябов Д.С. "Материалы к лабораторной работе"