Лекция 2.

1 Поднятие

Лемма (О поднятии). Для любого пути в базе $\varphi: [0;1] \to B$ и $v_0 \in \pi^{-1}(\varphi(0))$ существует единственный путь-поднятие: $\overline{\varphi}_v: [0;1] \to E: \overline{\varphi}_v(0) = v$ и $\varphi = \pi \circ \overline{\varphi}_v$.

Доказательство. Для каждой точки отрезка $\forall t \in [0;1] \; \exists U_t$ — окрестность точки t с таким свойством, что $\varphi(U_t) \subset U(\varphi(t))$, где $U(\varphi(t))$ — тривиализующая окретсность: $\pi^{-1}(U(\varphi(t))) \xrightarrow{k} U(\varphi(t)) \times F$.

В силу компактности отрезка выберем конечное подпокрытие: $\exists t_0,\dots,t_N: [0;1]=igcup_{j=0}^N U_{t_j}.$ Более того, сузим все интервалы до отрезков, граничащих

по концам:
$$[0;1] = \bigcup_{j=0}^{N-1} [t_j;t_{j+1}].$$

Для каждого j $\exists U_j\subset B: \varphi([t_j;t_{j+1}])\subset U_j, k_j:\pi^{-1}(U_j)\to U_j\times F$ (при этом $\pi=k_j\circ p_1$).

Поднятие тогда определим так: $\overline{\varphi} = k_j^{-1}(\varphi(t), p_2 \circ k(\overline{\varphi}(t_j)))$. Это отображение непрерывно, так как непрерывно на каждом из замкнутых множеств, которые разбивают весь отрезок.

$$\pi \circ \overline{\varphi}(t) = \pi(k^{-1}(\varphi(t), \ldots)) = p_1(\varphi(t), \ldots) = \varphi(t).$$

Единственность покажем по индукции: если $\overline{\varphi}'$ тоже поднятие и оно совпадает на нескольких первых отрезках, нужно показать, что оно совпадает и на следующем.

Определение 1 (Действие фундаментальной группы). Действие группы $\pi_1(B,b_0)$ на множестве $\pi^{-1}(b_0)$ определим формулой $\psi:\pi_1(B,b_0)\to S(\pi^{-1}(b_0)), \psi([\varphi])(v)=\overline{\varphi}_v(1).$

Утверждение 1.
$$\overline{(\varphi_1\varphi_2)}=\overline{\varphi}_{1,v_1}\overline{\varphi}_{2,v_0},$$
 где $v_1=\overline{\varphi}_{2,v_0}(1).$

Доказательство. Отображение является поднятием какого-то пути, если удовлетворяет двум свойствам из определения. Первое свойство очевидно, второе: $\pi \circ (\overline{\varphi}_{1,v_1}\overline{\varphi}_{2,v_0}=\varphi_2$ при $t\in [0;\frac{1}{2})$ и $\varphi_1(2t+1)$ иначе.

Корректность определения:

- Гомоморфизм: $\psi([\varphi_1][\varphi_2])(v) = \psi([\varphi_1\varphi_2])(v) = \overline{(\varphi_1\varphi_2)}_v(1) = \overline{\varphi}_{1,v_1}\overline{\varphi}_{2,v}(1) = \overline{\varphi}_{1,v_1}(1) = \psi([\varphi_1])(\overline{\varphi}_{2,v}(1)) = \psi([\varphi_1]) \circ \psi([\varphi_2])(v)$ где, $v_1 = \overline{\varphi}_{2,v}$
- Биективность: обратным будет отображение $\psi([\varphi^{-1}])$.
- Если $[\varphi_1] = [\varphi_2]$, то $\overline{\varphi}_{1,v}(1) = \overline{\varphi}_{2,v}(1)$ (упражнение).

2 Группа монодромии

Определение 2 (Группа монодромии). Группа монодромии G_{b_0} накрытия $\pi: E \to B \ni b_0$ — это образ $\psi(\pi_1(B,b_0))$.

Пример. У накрытия $\exp: \mathbb{R} \to S^1$ выполнено $\psi([\varphi])(v) = v+1$, то есть $G_{b_0} \cong \mathbb{Z} \cong \pi(B,b_0)$.

Пример. У тривиального накрытия группа монодромии тривиальна, в то время, как фундаментальная группа $\pi_1(B,b_0)$ может быть нетривиальна, то есть нельзя сказать, что ψ — изоморфизм.

Пример. У накрытия $P_k: S^1 \to S^1, P_k(e^{2\pi i t}) = e^{2\pi i k t}$ выполнено $\psi([\varphi])(v) = ve^{\frac{2\pi i t}{k}}$, то есть $G_{b_0} \cong \mathbb{Z}_k$.

Определение 3 (Изоморфизм накрытий). Накрытия $\pi_i: E_i \to B_i, i \in \{0,1\}$ изоморфны, если существует гомеоморфизмы $f: E_1 \leftrightarrow E_2, g: B_1 \leftrightarrow B_2$, такие что $\pi_2 \circ f \cong g \circ \pi_1$.

Замечание (Связь группы монодромии с фундаментальной группой). Если $\varphi: [0;1] \to B, \varphi(0) = b_0, \varphi(1) = b_1,$ то $G_{b_0} \cong G_{b_1}$.

Замечание (Изоморфизм групп монодромии). Если два накрытия изоморфны, то $G_{b_1} \cong G_{g(b_1)}$.

Доказательство. Рассмотрим два построения.

Рассмотрим $[\varphi] \in \pi_1(b_1, b_0)$ и $[g(\varphi)] \in \pi_1(B_2, b_2)$. Отображение определим как $h: G_{b_1} \to G_{g(b_1)}, h(\psi([\varphi]) = \psi(g_*([\varphi]))$, где g_* — индуцированное отображением g отображение фундаментальных групп. Нужно показать, что если $[\varphi_1] \neq [\varphi_2]$, то $\psi([\varphi_1]) \neq \psi([\varphi_2])$.

Пусть $\sigma \in G_{b_1} \subset S(\pi^{-1}(b_1))$. Определим отображение $h(\sigma)(v) = f(\sigma(f^{-1}(v)))$. Нужно показать корректность: $h(\sigma) \in G_{b_2}$.

Если покажем, что эти построения это на самом деле одно и то же, то оба будут корректны.

Утверждается, что $\psi([g(\varphi)])(v) = \overline{g(\varphi)}_v(1) = f(\overline{\varphi}_{f^{-1}(v)})(1)$. Для этого надо проверить свойства: 1) $f(\overline{\varphi}_{f^{-1}(v)})(0) = f(f^{-1}(v)) = v; 2)$ $\pi_2(f(\overline{\varphi}_{f^{-1}(v)})) = g(\pi_1(\overline{\varphi}_{f^{-1}(v)})) = g(\varphi)$.

Тогда $\psi([g(\varphi)])=f(\overline{\varphi}_{f^{-1}(v)})(1)=f(\psi([\varphi])(f^{-1}(v)))=f(\sigma(f^{-1}(v))),$ что нам и надо.

Замечание (Гомоморфизм накрытий). Эти рассуждения работают, если f,g — непрерывные отображения, такие что $\pi_2 \circ f = g \circ \pi_1$, а также, что $f \mid_{P_i}$ — биекция, где P_i — это i-й слой накрытия. В этом случае не факт, что индуцированное отображение является изоморфизмом.

Такие f, g задают так называемый гомоморфизм накрытий.