

MAE5009: Continuum Mechanics B

Assignment 05: Notation

Due December 1, 2021

 Please expand the following Cartesian tensor notations and give final values if possible:

(a)
$$B_{ij}$$

 $i=1, j=1,2,3$, $B_{1j}=B_{111}+B_{122}+B_{133}$
 $i=2, j=1,2,3$, $B_{2jj}=B_{211}+B_{222}+B_{233}$
 $i=3, j=1,2,3$, $B_{3jj}=B_{211}+B_{222}+B_{233}$

$$B_{ijj} = B_{ijj} + B_{2ij} + B_{2ij} = B_{123} + B_{123} + B_{233} + B_{233} + B_{233} + B_{233} + B_{223}$$

(b)
$$a_{i}T_{ij}$$

 $j=1, i=1,2,3, \alpha_{1}T_{11}=\alpha_{1}T_{11}+\alpha_{2}T_{21}+\alpha_{2}T_{31}$
 $j=2, i=1,2,3, \alpha_{1}T_{12}=\alpha_{1}T_{12}+\alpha_{2}T_{22}+\alpha_{2}T_{32}$
 $\hat{J}=3, i=1,2,3, \alpha_{1}T_{13}=\alpha_{1}T_{13}+\alpha_{2}T_{22}+\alpha_{2}T_{32}$

$$\begin{bmatrix} T_{11} & T_{21} & T_{31} \\ T_{12} & T_{22} & T_{32} \\ T_{13} & T_{22} & T_{32} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix}$$

$$: . \, Q_{1} \, \overline{\big[}_{1} \, = Q_{1} \, \overline{\big]}_{11} + Q_{2} \, \overline{\big]}_{21} + Q_{3} \, \overline{\big]}_{31} + Q_{1} \, \overline{\big]}_{12} + Q_{2} \, \overline{\big]}_{22} + Q_{2} \, \overline{\big]}_{32} + Q_{1} \, \overline{\big]}_{32} + Q_{2} \, \overline{\big]}_{23} +$$

(c)
$$a_ib_jS_{ij}$$

 $i=1,j=1,2,3$, $a_1b_jS_{1j}=a_1b_1S_{11}+a_1b_2S_{12}+a_1b_3S_{13}$
 $i=2,j=1,2,3$, $a_2b_jS_{2j}=a_2b_1S_{21}+a_2b_2S_{22}+a_2b_3S_{23}$
 $i=3,j=1,2,3$, $a_2b_jS_{2j}=a_3b_1S_{21}+a_3b_2S_{22}+a_3b_3S_{23}$

$$a$$
. a : b ; S : j =

(d)
$$\delta_{ii}$$
 $i=1, \delta_{i1}=1$. $i=2, \delta_{22}=1$. $i=3, \delta_{33}=1$

... $\delta_{ii}=\delta_{ii}+\delta_{23}+\delta_{23}=3$

(e) $\delta_{ij}\delta_{ij}$
 $i=j, \delta_{ij}\delta_{ij}=1$. $i\neq j, \delta_{ij}\delta_{ij}=0$
 $i=j=1, \delta_{ii}\delta_{ii}=1$. $i=j=2, \delta_{23}\delta_{23}=1$. $i=j=3, \delta_{23}\delta_{33}=1$

... $\delta_{ij}\delta_{ij}=\delta_{ii}\delta_{ii}+\delta_{22}\delta_{23}+\delta_{33}\delta_{33}=3$

(f) $\delta_{ij}\delta_{ik}\delta_{jk}$
 $i=j, \delta_{ij}=1$. $i\neq j, \delta_{ij}=0$
 $i=j=k=1, \delta_{ii}\delta_{ii}\delta_{ik}\delta_{ik}$
 $i=j, \delta_{ii}\delta_{ik}\delta_{jk}=\delta_{ii}\delta_{ii}\delta_{ii}-1$. $i=j=k=2, \delta_{22}\delta_{22}+\delta_{22}\delta_{23}=1$. $i=j=k=3, \delta_{23}\delta_{23}=1$

... $\delta_{ij}\delta_{ik}\delta_{jk}=\delta_{ii}\delta_{ii}\delta_{ii}+\delta_{22}\delta_{22}\delta_{22}+\delta_{22}\delta_{23}\delta_{23}=3$

(g)
$$\varepsilon_{ijk}\varepsilon_{kij}$$
if any two of i, j, k are equal. $S_{ijk}=0$
 $i=1, j=2, k=3$, $S_{123}S_{212}=1\times 1=1$
 $i=1, j=3, k=2$. $S_{132}S_{213}=(-1)\times (-1)=1$
 $i=2, j=1, k=3$, $S_{213}S_{221}=(-1)\times (-1)=1$
 $i=2, j=3, k=1, S_{231}S_{122}=1\times 1=1$
 $i=3, j=1, k=2, S_{312}S_{231}=1\times 1=1$
 $i=3, j=1, k=2, S_{312}S_{231}=1\times 1=1$
 $i=3, j=2, k=1, S_{221}S_{122}=1$

2. Prove the following:

(a)
$$\delta_{ik} \varepsilon_{ikm} = 0$$

 $i = K$, $\delta_{iK} = 1$. $\delta_{iK} \varepsilon_{ikm} = 0$. $\delta_{iK} \delta_{iK} \varepsilon_{ikm} = 0$
 $i \neq K$. $\delta_{iK} = 0$. $\delta_{iK} \delta_{iKm} = 0$

(b)
$$\varepsilon_{ijk}\varepsilon_{ijk} = 6$$

if any two of i,j, k are equal. $\Sigma_{ijk} = 0$
 $i=1, j=2, k=3$, $\Sigma_{123}\Sigma_{123} = |X| = 1$
 $i=1, j=3, k=2$, $\Sigma_{132}\Sigma_{132} = |X| = 1$
 $i=2, j=1, k=3$, $\Sigma_{213}\Sigma_{213} = (-1)\times(-1)=1$
 $i=2, j=3, k=1$, $\Sigma_{231}\Sigma_{221} = |X| = 1$
 $i=3, j=1, k=2$, $\Sigma_{312}\Sigma_{312} = |X| = 1$
 $i=3, j=1, k=2$, $\Sigma_{312}\Sigma_{321} = |X| = 1$
 $i=3, j=1, k=2$, $\Sigma_{321}\Sigma_{321} = (-1)\times(-1) = 1$

(c)
$$\varepsilon_{ijk}\varepsilon_{ijp} = 2\delta_{kp}$$

if $k=P$. $2\delta_{kp} = 2\delta_{pk} = 2\delta_{ij} + \delta_{2i} + \delta_{3} = 2\times 3 = 6$
 $\delta_{ijk} \delta_{ijp} = \delta_{ijk} \delta_{ijk} = \delta$
 $\delta_{ijk} \delta_{ijp} = \delta_{kp}$

if
$$k \neq p$$
, $28 kp = 0$
also if any two of ijk, ijp are equal, $2 ijk = 0$ or $2 ijp = 0$
 $i=1, j=2, k=3$

(d)
$$\delta_{ij}\delta_{jk}\delta_{km} = \delta_{im}$$

With the same way, Six 8km = Sim