

Personal Image Detection

The Data

Target:

Person A (Any Key Person)

Input Data

- Images containing Person A
- Images not containing Person A

Problem: Small Target Space

- Users only have ~10-1000 images of key person
- Not large for Deep Learning

Solution: Upsampling

- Add blurry & unsharpened versions of images
- Add rotated images
- Reason: Better Adversity Performance

Recommendations

- Data:
 - Sourced Images
 - ► Get large dataset of (10k-100k) images not containing person A
 - ▶ Re-usable for persons B, C, ...
 - User Images
 - ► Tagged Images
 - Personal Albums

Recommendations

- Model:
 - Best Test Accuracy
 - Update model
 - ▶ When Test Accuracy improves

Recommendations

- Cloud:
 - Host Images and Model Training on Cloud (AWS, Google Cloud)
- ► Total Cost (~100 users):
 - Images: Fixed (~\$100 monthly)
 - ► Models: Variable (Training ~50 hr/mo)
 - Medium Performance (~\$1000 monthly)
 - ► High Performance (~\$5000 monthly)

Example Model Performance

- Target: Clarissa
 - ▶ 79 Test Clarissa Images
 - ▶ 218 Test non-Clarissa Images
- Performance: >95% Accuracy

Goals

- User Experience
 - Automatic Tagging
 - ► Album Generation
- Product Recommendation
 - User A + User B mutually tagged
 - ► Recommend similar products
 - ▶ Ad success w. User A -> Show ad to User B

Next Steps

- Test on Multiple Users
- ► A / B Test automatic tagging and album generation
- Long term:
 - Incorporate Object Detection
 - ► Implement / Enhance product recommendation