

Due Date: 23:59, Oct.28th, 2024

In order to get full marks, you shall write all the intermediate steps of calculation or proof unless otherwise indicated. This assignment covers content from chapter 1 to 3.

Exercise 1.1 (20%)

The current entering the positive terminal of a device is $i(t) = 2e^{-2t}mA$ and the voltage across the device is $v(t) = 15\frac{di}{dt}V$.

- (a) Find the total charge in the device at t = 3 s, q(0)=0.
- (b) Calculate the power absorbed P(t).
- (c) Determine the total energy absorbed in 5s.

(2)
$$q = \int_{0}^{3} 2e^{-2t} dt + q_{0}$$
.

$$= -\int_{0}^{3} e^{-2t} dt + q_{0}$$

$$= -\int_{0}^{3} e^{-2t} dt + q_{0}$$

$$= e^{-2t} \int_{0}^{3} e^{-2t} dt + q_{0}$$

$$= e^{-2$$

Exercise 1.2 (20%) Please find the voltage v_1 and v_2 in the circuit below by using delta-to-wye transformation.

VE215 2024FA Assignment 1

Exercise 1.3 (20%)

In the network graph below

- (a) Determine the number of branches, nodes and meshes.
- (b) Assuming all the resistor have the resistance of 5 ohm, calculate out v_{\triangle} and i_{\triangle}

(a), Branches: 12 meshes: 1. nodes: 7

$$\frac{0.1125 - V_{1}}{5} + \frac{2+5ia - V_{1}}{5} - \frac{V_{0}}{5} + \frac{10ia - V_{1}}{5} = 0.$$

$$\frac{18 V_{0} + \frac{V_{0}}{5} + \frac{5ia + V_{0} - V_{1}}{5} = 0.$$

$$\frac{5ia + V_{0} - V_{1}}{5} + \frac{10ia + \frac{10ia - V_{1}}{5} = 0.$$

$$V_{0} = 7.67 \times 0^{3} \cdot V$$

$$V_{1} = 1.4 V$$

VE215 2024FA Assignment 1

Exercise 1.4 (10+10%)

(a) (10%) Using nodal analysis, find current i_0 in the circuit below.

(b) (10%) Obtain the node voltages v_1 , v_2 , and v_3 in the circuit below.

$$V_{2} = 120V$$
 $V_{1} = 70V$
 $V_{5} = 45V$

VE215 2024FA Assignment 1

Exercise 1.5 (10+10%)

(a) (10%) Use mesh analysis by inspection to find current i_1 , i_2 , i_3 and i_4 in the circuit below.

$$\begin{cases}
5i, -8 + (i, -i_2) \cdot 2 = 0 \\
2 (i_2 - i_1) - 4 + 4 (i_2 - i_3) = 0.
\end{cases}$$

$$\begin{cases}
4 (i_3 - i_2) + (i_3 - i_4) + 10 = 0. \\
i_4 - i_3 + 4 + 4i_4 = 0.
\end{cases}$$

$$\begin{cases}
i_1 = 0, 77A \\
i_2 = -1, 5A \\
i_3 = -3, 3A \\
i_4 = -1, 47A
\end{cases}$$

(b) (10%) Find current I_1 , I_2 and I_3 in the circuit below.

