Лабораторная работа №4 Основы теории автоматов

Цель работы: изучить основы теории конечных автоматов

І. Конечные автоматы

Автоматом называется дискретное устройство, способное принимать различные состояния, под воздействием входных сигналов переходить из одного состояния в другое и вырабатывать выходные сигналы. Математической моделью устройства является абстрактный автомат, который задается совокупностью пяти объектов $S(A,X,Y,\delta,\lambda)$, где

 $A = \{a_0, a_1, a_2, ..., a_m, ..., a_M\}$ - множество состояний автомата, причем, a_0 - исходное (начальное) состояние;

 $X = \{x_1, \, x_2, ..., \, x_f, ..., x_F \,\}$ - множество входных сигналов; $Y = \{ \, y_1, \, y_2, ..., \, y_g, ..., y_G \,\}$ - множество выходных сигналов;

- δ функция переходов, обеспечивающая выработку последующего состояния a_S автомата в зависимости от существующего состояния a_T и входного сигнала x_f , т.е. $a_S = \delta(a_m, x_f)$;
- λ функция выходов, обеспечивающая выработку выходного сигнала автомата в зависимости от a_m , и x_f , т.е. $y_g = \lambda(a_m, x_f)$.

Если множества A,X,У конечны, то автомат называется конечным.

$$X = \{x_1, x_2, ..., x_F\}$$
 $A = \{a_0, a_1, ..., a_M\}$
 $Y = \{y_1, y_2, ..., y_G\}$

рис.І

Абстрактный автомат имеет один входной и один выходной каналы (рис.1) и функционирует в дискретные моменты времени, которые обычно обозначаются натуральными числами: t=0,1,2,...,n,... В каждый момент дискретного времени t автомат находится в определенном состоянии a(t), причем в момент t=0 он всегда находятся в исходном состоянии $a(0)=a_0$. В момент t автомат, находясь в состоянии a(t), воспринимает сигнал x(t) на входном канале, вырабатывает на выходе сигнал $y(t)=\lambda[a(t),x(t)]$ и переходит в новое состояние, которое к следующему моменту дискретного времени определяется как $a(t+1)=\delta[a(t),x(t)]$.

Наибольшее распространение получили автоматы Мили и Мура. Закон функционирования автомата Мили задается следующими уравнениями:

$$a(t+1) = \delta[a(t), x(t)]; y(t) = \lambda[a(t), x(t)].$$

Работа автомата Мура определяется уравнениями:

$$a(t+1) = \delta[a(t), x(t)]; y(t) = \lambda[a(t)].$$

Как видно, в автомате Мура выходные сигналы зависят лишь от состояния автомата. **Табличный способ.** Автомат Мили может быть задан таблицей переходов, определяющей функцию переходов δ , и таблицей выходов, определяющей функцию выходов λ . Строки этих таблиц соответствуют возможным входным сигналам x_f , а столбцы - возможным состоянием a_m автомата. В таблице переходов (рис. 2, a) на пересечении столбца a_m и строки x_f находится состояние $a_s = \delta(a_m, x_f)$. В таблице, выходов (рис. 2, б) в аналогичной клетке помещается выходной сигнал $y_g = \lambda(a_m, x_f)$. Как видно, здесь задан автомат, имеющий множества $A = \{a_0, a_1, a_2\}$; $X = \{x_1, x_2\}$; $Y = \{y_1, y_2, y_3\}$.

Так как в автомате Мура выходные сигналы зависят лишь от состояния, то он задается одной так называемой отмеченной таблицей переходов (рис.2,в). В этой таблице над каждым состоянием ${\bf a}$ автомата, обозначающим тот или иной столбец таблицы, стоит соответствующий этому состоянию выходной сигнал $y_g = \lambda(a_m)$.

<u>Графический способ.</u> Этот способ основан на использовании направленных графов. Вершины графов соответствуют состояниям, а дуги - возможным переходам между ними. Две

вершины a_m , и a_s графа соединяются дугой, направленной от a_m , к a_s , если существует переход a_s = $\delta(a_m, x_f)$. Дуге автомата Мили приписывается входной сигнал x_f , и выходной сигнал y_g = $\lambda(a_m)$. В автомате Мура выходной сигнал y_g = $\lambda(a_m)$ записывается внутри вершины a_m . Графы автоматов Мили и Мура, заданных таблицами рис.2, представлены на рис.3.

Рис.3