TIPE

T. Lestienne

1 Formalisation de la cryptographie

Définition 1: chiffre

Un chiffre défini sur $(K, \mathcal{M}, \mathcal{C})$, avec K l'espace des clés, \mathcal{M} l'espace des messages, et \mathcal{C} l'espace des messages chiffrés, est une paire (E, D) telle que:

- $E: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ est la fonction de chiffrement,
- $D: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$ est la fonction de déchiffrement,
- $\forall m \in \mathcal{M}, \forall k \in \mathcal{K}, D(k, E(k, m)) = m.$

Exemple 1: Application au code de César

Le code de César consiste à associer à chaque lettre un nombre lié à sa position dans l'alphabet (voir tableau ci-dessous). Puis effectuer un décalage de k "vers la droite".

ш													
ſ	0	1	2	3	4	5	6	7	8	9	10	 24	25

Formellement : Le chiffre de César est défini sur $(\mathcal{K}, \mathcal{M}, \mathcal{C})$ avec $\mathcal{K} = [|0; 25|]$, $\mathcal{M} = \mathcal{C} = \{A, B, \dots, Z\}$. Les fonctions de chiffrement E et de déchiffrement D sont définies par :

$$E: \left\{ \begin{array}{ccc} \mathcal{K} \times \mathcal{M} & \to & \mathcal{C} \\ (k,m) & \mapsto & (m+k) \mod 26 \end{array} \right.$$

$$D: \left\{ \begin{array}{ccc} \mathcal{K} \times \mathcal{C} & \to & \mathcal{M} \\ (k,c) & \mapsto & (c-k) \mod 26 \end{array} \right.$$

On a bien $\forall m \in \mathcal{M}, \forall k \in \mathcal{K}, D(k, E(k, m)) = (m + k \mod 26) - k \mod 26 = m \mod 26 = m$

Application : Chiffrement de TEST avec k = 10:

- $\bullet \ T \to D \quad \ (19+10) \ \operatorname{mod} \ 26 = 3,$
- $E \to O$ (4 + 10) mod 26 = 14,
- $\bullet \ S \to C \quad \ (18+10) \ \operatorname{mod} \ 26 = 2,$
- $T \to D$ (19 + 10) mod 26 = 3.

Le message chiffré est donc DOCD.

Pour le déchiffrement, on utilise D(k,c):

- $\bullet \ D \to T \quad \ (3-10) \ \mathrm{mod} \ 26 = 19,$
- $O \to E \pmod{14-10} \mod 26 = 4$,
- $C \to S$ $(2-10) \mod 26 = 18$,
- $D \to T$ (3 10) mod 26 = 19.

Le message déchiffré est donc TEST.

Remarque 1:

deux occurences de la même lettre seront encoder par la même lettre

Remarque 2:

Dans ce cas, les fonctions \mathcal{E} et \mathcal{D} s'effectuent en $\mathcal{O}(1)$.

2 Formalisation des machines de Mealy

Définition 2: Transducteur

Un transducteur est un sextuplet $T = (\Sigma_1, \Sigma_2, Q, q_0, \delta)$ tel que :

- Σ_1 est l'alphabet d'entrée,
- Σ_2 est l'alphabet de sortie,
- ullet Q est l'ensemble des états,
- $q_0 \in Q$ est l'état initial,
- $\delta: Q \times \Sigma_1 \to Q \times \Sigma_2$ est la fonction de transition.

Exemple 2: Representation graphique

Le transducteur $T = (\{a, b, c\}, \{0, 1\}, \{q_0, q_1, q_2\}, q_0, \delta)$ Avec δ

État actuel	Symbole lu	État suivant	Sortie
q_0	a	q_1	0
q_0	b	q_0	1
q_1	a	q_2	1
q_1	c	q_0	0
q_2	b	q_2	1
q_2	a	q_0	1
q_2	c	q_0	0

Peut être representé par

Définition 3: Machine de Mealy

une machine de mealy $M = (\Sigma)$ est un transducteur tel que

Théorème 1:

Soit Σ un alphabet et $N \in \mathbb{N}$ Il existe $(|\Sigma|! \times N^{|\Sigma|})^{|N|}$ Machines de Mealy a N états.

Démonstration 1:

Ainsi il y a $(|\Sigma|! \times N^{|\Sigma|})^{|N|}$

Remarque 3:

N	$(26! \times N^{26})^{ N }$
1	4.03×10^{26}
2	7.32×10^{68}
3	1.08×10^{117}
4	1.09×10^{169}
5	7.84×10^{223}

Théorème 2:

Soit

 ${\cal A}$: Deux lettres successives dans le message original sont identique

B : Deux lettres successives dans le message chiffré sont identique

$$N = \frac{|\Sigma| \times P(A) - 1}{|\Sigma| \times P(B) - 1}$$

Démonstration 2:

$$P(B|A) = 1/N + \frac{N-1}{N} \times \frac{1}{|\Sigma|}$$

$$P(B|\overline{A}) = \frac{N-1}{N} \times \frac{1}{|\Sigma|}$$

$$P(B) = P(A) \times P(B|A) + P(\overline{A}) \times P(B|\overline{A})$$

$$P(B) = (1/N + \tfrac{N-1}{N} \times \tfrac{1}{|\Sigma|}) * P(A) + (\tfrac{N-1}{N} \times \tfrac{1}{|\Sigma|}) * P(\overline{A})$$

$$P(B) = \frac{1}{N} \times P(A) + \frac{N-1}{N|\Sigma|} \times (P(A) + P(\overline{A}))$$

$$P(B) = \frac{1}{N} \times P(A) + \frac{N-1}{N|\Sigma|}$$

$$P(B) = \frac{N-1+P(A)\times|\Sigma|}{N|\Sigma|}$$

$$N|\Sigma| \times P(B) = N - 1 + P(A) \times |\Sigma|$$

$$N(|\Sigma| \times P(B) - 1) = P(A) \times |\Sigma| - 1$$

$$N = \frac{|\Sigma| \times P(A) - 1}{|\Sigma| \times P(B) - 1}$$

Remarque 4: synthese

Soit m un message sur Σ et k la clé choisie

Chiffre	Complexité	Complexité	Complexité de		
	deE	deD	l'attaque par force brute		