EA theory

In general: there is not much (not enough)

Often, either the

- · Problem (fitness function), or
- · The algorithm

is oversimplified to make the case tractable

In this lecture:

- · Schema theorem for GAs
- Building block hypothesis & implicit parallelism for GAs
- · Almost sure convergence for any EA
- No Free Luch Theorem (NFL) for any EA

Evolutinary Computing

Schemata (1)

Schema (definition):

A schema H in IB^ℓ is a *partial* instantiation of a string in IB^ℓ . Usually the uninstantiated elements are denoted by $^{+}$, sometimes called "don't care" symbol or "wild card". A schema defines a subset of IB $^{\ell}$:

$$H \in \{0, 1, *\}^{t}$$

Example:
$$H = \{1,\,0,\,0,\,*,\,1,\,*,\,1,\,0,\,*,\,*,\,*\}$$

Further definitions:

10001010101 • Instance of the schema H:

• Set of all instances of schema $H=(h_1,\,\ldots\,,\,h_{\ell})$: $I(H)=\{(a_1,\,\ldots\,,\,a_{\ell})\in\,IB^{\ell}\mid h_i\neq * \Rightarrow a_i=h_i\}$

Evolutinary Computing

Schemata (2)

Further definitions continued:

• Order of the schema: Number of instantiated elements (6 in our example).

$$o(H) = |\{i \mid h_i \in \{0,1\}\}|$$

· Defining length of the schema: length of the sub-string starting at the first and ending at the last instantiated element (7 in our example). Idea: it is the number of possible breakpoints

$$d(H) = \max\{i \mid h_i \in \{0,1\}\} - \min\{i \mid h_i \in \{0,1\}\}$$

Evolutinary Computing

GA Theory

Schemata (3)

Some numbers:

- In total there are 3^{ℓ} different schemata.
- Each chromosome (in IB^{ℓ}) is an instance of 2^{ℓ} different schemata.
- Thus: at most N \cdot 2 $^{\prime}$ schemata are represented in a population of size N.

A schema can be viewed as a hyperplane of an n-dimensional space.

Examples in a 3-dimensional (hyper)cube:

Evolutinary Computing

GA Theory

Schemata (4) A function and various (schema) partitions of hyperspace: Evolutinary Computing GA Theory

Schema Theorem (1)

Theorem (Holland '75):

$$m(H,t+1) \geq m(H,t) \cdot \frac{f(H)}{\bar{f}} \cdot \left(1 - p_c \frac{d(H)}{l-1}\right) \cdot \left(1 - p_m\right)^{o(H)}$$

- f to be maximised, f: mean fitness in population
- I: length of the string
- H: a schema
- d(H): defining length
- o(H): order
- p_m: mutation rate
- p_c: crossover rate f(H): (estimated) schema fitness
- m(H, t): expected number of instantiations of H in generation t

Evolutinary Computing

GA Theory

GA Theory 1

Schema Theorem (2)

Expected number of instantiations of H selected for the gene pool:

(CCC)

$$m(H,t) \cdot \frac{f(H)}{\bar{f}}$$

 Probability that crossover does not occur within the defining length:

$$1 - p_c \frac{d(H)}{l - 1}$$

• Probability that the schema is not mutated:

$$(1-p_{\scriptscriptstyle m})^{\scriptscriptstyle o(H)}$$

Evolutinary Computing

GA Theor

Schema Theorem (3)

Critique on the schema theorem (Bäck '96):

- Most of Holland's approximations are only true for very large numbers (trials and population size).
- Within finite populations, exponentially increasing/decreasing the number of schema instances, leads to entirely filling the population and complete elimination, respectively.
- · Not all schemata are represented in a typical population.
- Schemata of large defining length are likely to be destroyed by crossover (even highly fit ones).

Evolutinary Computing GA Theory

eory 8

Almost sure convergence (1)

First theoretical result based on Markov chains

Theorem (Eiben et al. '91):

Let $-P_t$ be the population at time t generated by an EA

- *Optima:* set of global optima of a function *f*

 $-\max_{\overline{x}\in P(t)} f(\overline{x}) \ge \max_{\overline{x}\in P(t-1)} f(\overline{x}) \quad \text{ and } \quad$

- any point is accessible from any other point

then

 $P[\lim P_t \cap Optima \neq 0] = 1$

Note: elitist selection and $p_m > 0$ satify the conditions

Evolutinary Computing GA Theory

Almost sure convergence (2)

Critique on the theorem:

- It says nothing about convergence speed
- Theory people: I don't care if it works if only it converges
- Practice people: I don't care if it converges if only it works

Theorem later generalized by Rudolph

Evolutinary Computing GA Theory 12

GA Theory 2

11

Implicit parallelism

- Implicit parallelism: a GA with population size N processes more than N different schemata effectively
- Reason: individuals are instantiations of more than one schema
- Effectively processing of a schema:

Sampled at the desirable exponentially increasing rate.

• Why wouldn't a schema be processed effectively?

Schema disruption by genetic operators!

 Holland's estimate: O(N³) schemata are processed effectively when using a population of size N

The Building Block Hypothesis

Building Block Hypothesis (Holland '75):

GA's are able to detect short, low order and highly fit schemata and combine these into highly fit individuals.

Building blocks are small and good schemata, where:

- small is:
 - short (i.e have a small defining length)
 - of low order, and
- good is: highly fit (estimated fitness in present population).

Implicit parallelism and the Building Block Hypothesis are seen as explanations for the power of GA's.

Evolutinary Computing

No Free Lunch Theorem (NFL)

Theorem (Macready & Wolpert'97)

Informal phrasing 1

- · For any measure of algorithm performance
- · For any two search algorithms
- The aggregate behavior over all possible discrete functions is equivalent

Informal phrasing 2

Without any structural assumptions on a discrete optimization problem, no algorithm can perform better on average than blind search

Evolutinary Computing

NFL (2)

- $F: X \rightarrow Y$ the set of all functions from X to Y(X, Y) finite)
- $f \in F$ is any given objective function
- an algorithm will generate samples from $D_m = (X \times Y)^m$
 - m is the sample size
 - $\langle d(x,1,m), ..., d(x,m,m) \rangle$ are the points, notations: d(x,m), d(x)
- $-\langle d(y,1,m),...,d(y,m,m)\rangle$ are their f values, notation: d(y,m)
- an algorithm is $a: d \in D \mid \rightarrow \{x \mid x \notin d(x)\}$, where $D = U_{m > 0} D_m$ the performance of algorithm a: $P(d(y,m) \mid f,m,a)$ is the conditional probability of getting the sample d(y,m) after m iterations on f

 $\sum_{f} P(d(y,m) | f,m,a_1) = \sum_{f} P(d(y,m) | f,m,a_2)$

l.e., the quality of generated samples over all objective functions is independent from the algorithm (minima depend on d(y,m) only)

Evolutinary Computing

GA Theory

NFL (3)

- · Discreteness assumption seen as not very restrictive because of inherently discrete computer representations
- "No repetitions" condition ($\{x \mid x \notin d(x)\}$) is crucial
- · An algorithm in this formulation is deterministic, but
 - Pseudorandom number generators are deterministic given a seed
 - Theorem generalizable to stochastic case
- Says nothing about speed
- Does not hold for a subset G ⊂ F
- Thus: there can be differences on problems of type T, etc.

Evolutinary Computing

GA Theory

17

GA Theory 3