Gesture Recognition with Neural Network

• **Problem Statement:** Imagine you are working as a data scientist at a home electronics company which manufactures state of the art smart televisions. You want to develop a cool feature in the smart-TV that can recognise five different gestures performed by the user which will help users control the TV without using a remote. The gestures are continuously monitored by the webcam mounted on the TV. Each gesture corresponds to a specific command:

Thumbs up: Increase the volume

Thumbs down: Decrease the volume

o Left swipe: 'Jump' backwards 10 seconds

o Right swipe: 'Jump' forward 10 seconds

o Stop: Pause the movie

Experiment Number	Model	Result	Decision + Explanation
1	 SD-CNN Kernal Size = (3,3,3) Batch Size = 32 Frames = 30 Convolutions = 32, 64, 128 Dense = 128, 64, 5 Epochs = 5 	Train Accuracy: 36.09% Test Accuracy: 43.75%	This is a starting model, but it is underfitting.
2	 SD-CNN Kernal Size = (3,3,3) Batch Size = 32 Frames = 30 Convolutions = 16, 32, 64, 128 Dense = 64, 64, 5 With padding Epochs = 5 	Train Accuracy: 36.69% Test Accuracy: 37.50%	Add extra convolutional layer with 16 filters since above model is underfitting. But performance is still not much improved.
3	 SD-CNN Kernal Size = (2,2,2) Batch Size = 32 Frames = 30 Convolutions = 32, 32, 64, 64 Dense = 512 Epochs = 5 	Train Accuracy: 25.71% Test Accuracy: 7.00%	In this model I decreased the pool size as well as batch size. Also, similar type of convolutions is used here but the model is overfitting.

4	3D-CNN	Train Accuracy:	Since the above models are
•	• Kernal Size = (2,2,2)	41.92%	not performing well
	 Reffidi Size = (2,2,2) Batch Size = 32 	41.32/0	therefore in this model, I
	• Frames = 30	Test Accuracy:	decreased the kernel size and
		25.00%	batch size. Batch
	• Convolutions = 32, 64,	23.00%	normalization layer is also
	128		used. Now the model is
	• Dense = 128, 64, 5		overfitting.
	Batch Normalization		overnitting.
	• Epochs = 5		
5	3D-CNN	Train Accuracy:	Remove batch normalization
	Kernal Size = (2,2,2)	89.64%	from the above model. From
	Batch Size = 32		Now the model performance
	• Frames = 30	Test Accuracy:	is increased significantly. But
	 Convolutions = 32, 64, 	87.50%	a small amount of overfitting
	128		is still there. Let's jump to
	• Dense = 128, 64, 5		CNN+RNN architecture.
	• Epochs = 15		
6	ResNet152 + GRU	Train Accuracy:	This is a starter model with
	Batch Size = 10	66.51%	transfer learning. The model
	 Time Distributed 		accuracy is good, but
	ResNet152	Test Accuracy:	overfitting is there.
	Time Distributed	37.50%	
	Dense = 64 and 256		
	• GRU = 128		
	Dense = 256, 5		
	• Epochs = 5		
7	ResNet50 + GRU	Train Accuracy:	To remove overfitting, I use
	Batch Size = 10	63.54%	the less complex CNN model,
	 Time Distributed 		now overfitting has removed
	ResNet50	Test Accuracy:	but the model is under
	 Time Distributed 	37.50%	perform on train data.
	Dense = 64 and 256		
	• GRU = 128		
	• Dense = 256, 5		
	• Epochs = 5		
8	ResNet152 + GRU	Train Accuracy:	In experiment number 5, I
	Batch Size = 10	62.85%	have added an extra dense
	 Time Distributed 		layer of 128 neurons. No
	ResNet152	Test Accuracy:	effect on model's test
	 Time Distributed 	31.25%	accuracy.
	Dense = 64 and 256		
	• GRU = 128		
	• Dense = 256, 128, 5		
	• Epochs = 5		

9	MobileNet + GRU	Train Accuracy:	Try another transfer learning
	Batch Size = 64	92.12%	model with large batch size,
	 Time Distributed 		this time model is performing
	MobileNet	Test Accuracy:	extremely well.
	 Time Distributed 	87.50%	
	Batch Normalization		
	• GRU = 256		
	• Dense = 256, 5		
	• Epochs = 15		

Contributor:

Vishrut Mishra