CatCore-Processor 2.0

Bruno Ogata July 18, 2018

github.com/brunoogata/CatCORE-Processor

1 Proposta

O processador CatCore foi baseado na arquitetura MIPS monociclo em que cada instrução só pode ser executada em um ciclo de clock. Sua unidade de processamento contém como mencionado um Banco de Registradores, para armazenar os dados a processar, uma Unidade Lógica Aritmética, para realizar as operações lógico-aritméticas, dois somadores e quatro multiplexadores, para controle, além de um Program Counter, para definir o endereço da instrução a ser executada. A memória principal é composta de uma Memória de Instruções, que armazena as instruções a serem executadas, e uma Memória Principal, para armazenar informações que não estão presentes no Banco de Registradores. Para controlar a ordem que as operações nos módulos são executadas, foi implementada uma Unidade de Controle e como interface para interação com o usuário, foi desenvolvido um módulo de Entrada-Saída.

2 Conjunto de Instruções

Conjunto de Instruções formado por 25 instruções envolvendo operações aritméticas, deslocamento de memória e pulos de endereços.

Instruções e OPCODEs 2.1

Figure 1: Instruções com seus respectivos opcodes

0		3			
ADD	100000	ADDI	010000	J	111111
SUB	100001	SUBI	010001	JR	011010
MULT	101010	LOADI	011001	JAL	011000
DIV	101011	LW	011111	HALT	111110
SMLEQ	100100	sw	011110	NOP	000000
SML	100101	LWR	011101	FUNCTION	000000
LGREQ	100110	SWR	011100	LABEL	000000
LGR	100111	BNE	010111	INPUT	000111
EQ	101110	MOV	010100	OUTPUT	111000

Mapeamento das Instruções 2.2

Instrução	OpCode	Modo de Endereçamento	Operação	Tipo
ADD	100000	Por Registrador	RD = RS + RT	R
ADDI	010000	Imediato	RT = RS + IMED	I
SUB	100001	Por Registrador	RD = RS - RT	R
SUBI	010001	Imediato	RT = RS - IMED	I
MULT	100000	Por Registrador	RD = RS * RT	R
MULTI	100000	Imediato	RD = RS * IMED	I
DIV	100000	Por Registrador	RD = RS / RT	R
DIVI	100000	Imediato	RD = RS / IMED	I
AND	100010	Por Registrador	RD = RS & RT	R
OR	100011	Por Registrador	RD = RS - RT	R
SML	100100	Por Registrador	RD = (RS ; RT)	R
SMLEQ	100011	Por Registrador	RD = (RS	R
LGR	100011	Por Registrador	$RD = (RS \ i \ RT)$	R
LGREQ	100011	Por Registrador	RD = (RS	R
EQ	100011	Por Registrador	RD = (RS == RT)	R
MOV	010100	Por Registrador	RT = RS	R
BEQ	010110	Relativo ao PC	condicional ==	I
BNQ	010111	Relativo ao PC	condicional!=	I
SW	011110	Direto	Mem[AD] = RT	I/O
LW	011111	Direto	RT = Mem[AD]	I/O
LOADI	011001	Imediato	RT = IMED	I/O
LWR	011111	Direto	RT = Mem[RD]	I/O
SWR	011111	Direto	Mem[RD] = RT	I/O
J	111111	Absoluto	Jump	J
NOP	000000		PC + 1	J
HALT	111110		Espera ENTER	J
IN	000111		RT = SWITCHES(E/S)	I/O
OUT	111000		DISPLAY(E/S) = RT	I/O

Arquitetura Base 3

