Notes of **Computational Material Science**, CHEN Shuang

hebrewsnabla

December 9, 2019

Contents

1	Introduction	3
	1.1 Development	3
	1.2 Methodological System	4
	1.3 Learning	4
2		4
3	Electronic Structure Theory	4
	3.1 HF	4
	3.2 CI	4
	3.3 MCSCF, Multiconfiguration Self-Consistent Field	4
	3.4 CC	4
4	QC Computation with Gaussian	4
5	Energy Band Theory	4
	5.1	4
	5.2 Reciprocal Space	4
6	Density Functional Theory	5
	6.1	5
7		5
	7.1 E_{cut}	5
	7.2 Orthogonalized PW, OPW	5
	7.3 Pseudo-potentials	5
	7.4 Tricks	5
8		5
9	FPMD	5
	9.1 Introduction	5
	9.2 BOMD	6
	9.3 CPMD	6
	9.4 Gaussian Plane Waves (GPW) Method	6

9.5	CP2K Quick Start
	9.5.1
9.6	inp

report: density fitting

score: rescale to 85-98

1 Introduction

1.1 Development

光到电 – SC 电到光 – OLED

memory + resistor = memristor

Two aspects of CMS

- 1. computational simulation (of real process)
- 2. computer design

Main Elements of Materials

- 1. Composition & Structure
- 2. Synthesis & Processing
- 3. Properties
- 4. Performance

MGI, Materials Genome Initiative

DB	founder	institute	
Materials Project	G. Ceder	UCB, MIT	Li battery, zeolites, MOF
AFLOWlib	S. Curtarolo	Duke	
OQMD	C. Wolverton	NW	perovskites, thermoelectrics
NoMaD		马普	
		EPFL	
MatNavi		NIMS	

Table 1

1.2 Methodological System

1.3 Learning

2

Add Valence 加氢 copy: save as .mol – MS

3 Electronic Structure Theory

- 3.1 HF
- 3.2 CI

MRCI

3.3 MCSCF, Multiconfiguration Self-Consistent Field

CASSCF, Complete Active Space SCF

3.4 CC

4 QC Computation with Gaussian

Draw MOs Results – Surfaces – generate cube

5 Energy Band Theory

5.1

5.2 Reciprocal Space

For a crystal founded by $N_1 \times N_2 \times N_3$ lattices

$$k = \frac{l_1}{N_1}b_1 + \frac{l_2}{N_2}b_2 + \frac{l_3}{N_3}b_3 \tag{5.1}$$

$$R_n G_m = 2\pi N \tag{5.2}$$

Brillouin zone

$$k \cdot G_m = -\frac{1}{2} |G_m|^2 \tag{5.3}$$

PBC SE

$$(\widehat{\mathbf{T}} + \widehat{V}(r))\psi_n = E_n \psi_n \tag{5.4}$$

$$V(r) = V(r + R_l) \tag{5.5}$$

Plot $E(\mathbf{k})$ needs 4-D picture, we choose a certain direction to plot 2-D graph.

6 Density Functional Theory

Ab intio 数值基组

6.1

LDA: magnetic Hybrid: band gap GGA+U: GW

7

7.1 E_{cut}

Higher E_{cut} , More accurate. correction factor

$$\frac{\mathrm{d}E_{tot}}{\mathrm{d}\ln E_{cut}} < 0.01 \mathrm{eV/atom} \tag{7.1}$$

7.2 Orthogonalized PW, OPW

Herring

7.3 Pseudo-potentials

- NCPP
- USPP

7.4 Tricks

8

9 FPMD

9.1 Introduction

MD:

- 1. classical
- 2. semi-classical (tight-binding)
- 3. FP

Software: CPMD, VASP, CP2K

9.2 BOMD

Hellmann-Feynman force

$$m\ddot{\mathbf{R}}_i = -\frac{\partial E}{\partial \mathbf{R}_i} \tag{9.1}$$

9.3 CPMD

Extended Lagrangian

$$\mathcal{L} = \sum_{i}^{N_e} \frac{\mu}{2} \int \left| \dot{\psi}_i(\mathbf{r}) \right|^2 d\mathbf{r} + \sum_{I}^{N_{atom}} \frac{M_I}{2} \ddot{\mathbf{R}}_I^2 - E[\{\psi_i\}, \{\mathbf{R}_i\}] + \sum_{ij} \Lambda_{ij} \left[\int \psi_i^* \psi_j d\mathbf{r} - \delta_{ij} \right]$$
(9.2)

适合 NVE

9.4 Gaussian Plane Waves (GPW) Method

Used by CP2K

GTH pseudo potential

9.5 CP2K Quick Start

 $Max-Planck \rightarrow U$ of Zurich

9.5.1

Input

- *.inp
- •
- •

Output

- *.out (summary)
- *.ener
- *.xyz
- \bullet *.restart
- *.wfn

9.6 inp

```
&BEGIN section_name [param]

KEYWORD [value] = [...]

...

&END section_name
```

- \bullet GLOBAL
- $\bullet \ \ EXT_RESTART$
- MOTION
- $\bullet \ \ FORCE_EVAL$
- \bullet DFT
- SUBSYS

PRINT_LEVEL LOW PROJECT_NAME XXX RUN_TYPE MD \$\&\text{\$END GLOBAL}	1 &GLOBAL			
4 RUN_TYPE MD	2 PRINT_LEVEL	LOW		
	3 PROJECT_NAME	XXX		
5 & END GLOBAL	4 RUN_TYPE	MD		
	5 &END GLOBAL			