Análisis formal de complejidad para imprimir_resultados_productos

Sea n el valor de total Seleccionados.

1. Planteamiento de T(n) para cada caso

Mejor caso: (deci \neq 1 y totalSeleccionados \leq 0) Solo se ejecutan instrucciones fuera de ciclos:

$$T_m(n) = C_1$$

Peor caso: (deci == 1 y totalSeleccionados = n > 0)

Se ejecuta un ciclo for de k = 0 a n - 1:

$$T_p(n) = C_1 + \sum_{k=0}^{n-1} C_2$$

$$T_p(n) = C_1 + n \cdot C_2$$

Caso promedio: Supongamos que con probabilidad p caemos en el peor caso, y con (1-p) en el mejor caso:

$$T_{pr}(n) = p \cdot (C_1 + n \cdot C_2) + (1 - p)C_1$$

 $T_{pr}(n) = C_1 + p \cdot n \cdot C_2$

2. Demostración de cotas por límites

Mejor caso:

$$\lim_{n \to \infty} \frac{T_m(n)}{1} = \lim_{n \to \infty} \frac{C_1}{1} = C_1$$

Por lo tanto, $T_m(n) \in \Theta(1)$.

Peor caso:

$$\lim_{n\to\infty}\frac{T_p(n)}{n}=\lim_{n\to\infty}\frac{C_1+n\cdot C_2}{n}=C_2$$

Por lo tanto, $T_p(n) \in \Theta(n)$.

Caso promedio:

$$\lim_{n \to \infty} \frac{T_{pr}(n)}{n} = \lim_{n \to \infty} \frac{C_1 + p \cdot n \cdot C_2}{n} = p \cdot C_2$$

Por lo tanto, $T_{pr}(n) \in \Theta(n)$.

3. Conclusión final:

- Mejor caso: $\Theta(1)$

• Peor caso: $\Theta(n)$

 Cada caso cumple la cota correspondiente, comprobada rigurosamente con límites tendiendo a infinito.