Instructor: Student Name:

Asst. Prof. Onur Kurt

ID:

Date:

ITU

EHB 211E: Basics of Electrical Circuits (Fall 2020)

Homework 3

Grading Policy:

- You must upload your homework assignment to Ninova before its due date. Late homework will not be accepted/graded.
- Homework should be written clearly and legibly. Your answers should show step-by-step solution of each question. Messy and illegible homework may not be graded.
- You must not ask for answers directly from any aide.
- Academic dishonesty is unacceptable. Plagiarism and cheating on the homework assignment will result in a zero grade.

Question 1-) The circuit shown below utilizes an ideal op amp.

- a-) Find I_1 , I_2 , I_3 , I_L , and V_X .
- b-) If V_0 is not to be lower than -13 V, find the maximum allowed value for R_L .
- c-) If R_L is varied in the range 100 Ω to 1 k Ω , what is the corresponding change in I_L and in V_0 ?

Question 2-) For the op amp circuit shown below, find v_0 in terms of the input voltages v_1 and v_2 . Assume the op amp is ideal.

For

$$v_1 = 10\sin(2\pi \times 60t) - 0.1\sin(2\pi \times 1000t)$$
, volts

$$v_2 = 10\sin(2\pi \times 60t) + 0.1\sin(2\pi \times 1000t)$$
, volts

Question 3-) For the op amp circuit shown below, let $v_s = 10 V$, and choose proper values for R_a , R_b , and R_c to ensure an output voltage $v_o = 5 V$. Assume the op amps are ideal.

Question 4-) For the op amp circuit shown below, find the value of v_o .

Question 5-) For the op amp circuit shown below, find the value of v_o using PSpice.

