

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

© CKE 2013	UZUP	PEŁNIA ZDAJĄCY	Miejsce
graficzny © C	KOD	PESEL	Miejsce na naklejkę z kodem
Układ graj			dysleksja

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem □ i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

25 SIERPNIA 2015

Godzina rozpoczęcia: 9:00

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1_**1**P-154

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (1 pkt)

Niech $a = \frac{2}{3}$, $b = \frac{1}{2}$. Wtedy wartość wyrażenia $\frac{a+b}{a \cdot b}$ jest równa

A. $\frac{7}{2}$

- **B.** $\frac{9}{5}$ **C.** $\frac{7}{18}$
- **D.** $\frac{3}{2}$

Zadanie 2. (1 pkt)

Cenę pewnego towaru obniżano dwukrotnie, za każdym razem o 20%. Takie dwie obniżki ceny tego towaru można zastapić równoważną im jedną obniżką

- **A.** o 40%.
- **B.** o 36%.
- **C.** o 32%.
- **D.** o 28%.

Zadanie 3. (1 pkt)

Liczba $\frac{5^{12} \cdot 9^5}{15^{10}}$ jest równa

- **A.** 25
- **B.** 3^7
- **C.** 3^3

Zadanie 4. (1 pkt)

W rozwinięciu dziesiętnym ułamka $\frac{2}{7}$ na trzydziestym miejscu po przecinku stoi cyfra

A. 7

- **B.** 1
- **C.** 2
- **D.** 4

Zadanie 5. (1 pkt)

Wskaż największą liczbę całkowitą spełniającą nierówność $\frac{x}{4} - \sqrt{3} < 0$.

A. 5

- В. 6
- **C.** 7
- **D.** 8

Zadanie 6. (1 pkt)

Wyrażenie $9 - (y - 3)^2$ jest równe

- **A.** $-v^2 + 18$
- **B.** $-y^2 + 6y$ **C.** $-y^2$
- **D.** $-v^2 + 6v + 18$

Zadanie 7. (1 pkt)

Iloczyn liczb spełniających równanie $\left(x - \frac{1}{2}\right)^2 - \frac{25}{4} = 0$ jest równy

A. 6

- **C.** 5
- **D.** -6

Zadanie 8. (1 pkt)

Wierzchołek paraboli będącej wykresem funkcji kwadratowej y = f(x) ma współrzędne (2, 2). Wówczas wierzchołek paraboli będącej wykresem funkcji g(x) = f(x+2) ma współrzędne

- **A.** (0, 2)
- **B.** (4, 2)
- $\mathbf{C}.$ (2, 0)
- **D.** (2, 4)

Zadanie 9. (1 pkt)

Miejsce zerowe funkcji liniowej f(x) = x + 3m jest większe od 2 dla każdej liczby m spełniającej warunek

A.
$$m < -\frac{2}{3}$$

C.
$$\frac{1}{3} < m < 1$$

D.
$$m > 1$$

Zadanie 10. *(1 pkt)*

Na rysunku przedstawiony jest wykres funkcji f.

Wskaż wzór funkcji, której wykres jest symetryczny do wykresu funkcji f względem osi Oy układu współrzędnych.

$$\mathbf{A.} \quad y = f(x-4)$$

B.
$$y = f(x) - 4$$

A.
$$y = f(x-4)$$
 B. $y = f(x)-4$ **C.** $y = f(x+4)$ **D.** $y = f(x)+4$

D.
$$y = f(x) + 4$$

Zadanie 11. *(1 pkt)*

Osią symetrii wykresu funkcji kwadratowej $f(x) = -2x^2 - 8x + 6$ jest prosta o równaniu

A.
$$y = 2$$

B.
$$y = -2$$

C.
$$x = 2$$

D.
$$x = -2$$

Zadanie 12. *(1 pkt)*

Ciąg (a_n) jest określony dla $n \ge 1$ wzorem: $a_n = 2n - 1$. Suma jedenastu początkowych wyrazów tego ciągu jest równa

Zadanie 13. (1 pkt)

Dany jest ciąg arytmetyczny (a_n) dla $n \ge 1$, w którym $a_{10} = 11$ oraz $a_{100} = 111$. Wtedy różnica r tego ciągu jest równa

A.
$$\frac{9}{10}$$

C.
$$\frac{10}{9}$$

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Zadanie 14. (1 pkt)

W trójkącie prostokątnym o długościach przyprostokątnych 2 i 5 cosinus większego z kątów ostrych jest równy

A.
$$\frac{5}{2}$$

B.
$$\frac{2}{5}$$

C.
$$\frac{2}{\sqrt{29}}$$

D.
$$\frac{5}{\sqrt{29}}$$

Zadanie 15. (1 pkt)

Kąt α jest ostry oraz $3\sin \alpha - \sqrt{3}\cos \alpha = 0$. Wtedy

$$\mathbf{A.} \quad \mathsf{tg}\,\alpha = \frac{1}{3}$$

$$\mathbf{B.} \quad \mathsf{tg}\,\alpha = 3$$

$$\mathbf{C.} \quad \mathsf{tg}\,\alpha = \sqrt{3}$$

D.
$$tg\alpha = \frac{\sqrt{3}}{3}$$

Zadanie 16. (1 pkt)

Dłuższa przekątna sześciokąta foremnego ma długość $2\sqrt{2}$. Pole tego sześciokąta jest równe

A.
$$12\sqrt{3}$$

B.
$$6\sqrt{3}$$

C.
$$2\sqrt{3}$$

D.
$$3\sqrt{3}$$

Zadanie 17. (1 pkt)

Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 1:4, mogą być równe

Zadanie 18. (1 pkt)

Punkty A = (3,2) i C są przeciwległymi wierzchołkami kwadratu ABCD, a punkt O = (6,5) jest środkiem okręgu opisanego na tym kwadracie. Współrzędne punktu C są równe

C.
$$\left(4\frac{1}{2}, 3\frac{1}{2}\right)$$

Zadanie 19. *(1 pkt)*

Okrąg opisany równaniem $(x-3)^2 + (y+2)^2 = r^2$ jest styczny do osi *Oy*. Promień *r* tego okręgu jest równy

A.
$$\sqrt{13}$$

B.
$$\sqrt{5}$$

Zadanie 20. (1 pkt)

Każda krawędź ostrosłupa prawidłowego trójkątnego ma długość 9 (ostrosłup taki jest nazywany czworościanem foremnym). Wysokość tego ostrosłupa jest równa

A.
$$3\sqrt{6}$$

B.
$$3\sqrt{3}$$

C.
$$2\sqrt{6}$$

D.
$$3\sqrt{2}$$

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Egzamin maturalny z matematyki Poziom podstawowy

Zadanie 21. (1 pkt)

Dane są punkty A = (2,3) oraz B = (-6,-3). Promień okręgu wpisanego w trójkąt równoboczny ABC jest równy

- A. $\frac{20\sqrt{3}}{3}$
- **B.** $\frac{40\sqrt{3}}{3}$ **C.** $\frac{5\sqrt{3}}{3}$
- **D.** $\frac{10\sqrt{3}}{2}$

Zadanie 22. *(1 pkt)*

Pole podstawy graniastosłupa prawidłowego czworokatnego jest równe 36, a miara kata nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy jest równa 30°. Wysokość tego graniastosłupa jest równa

- **A.** $3\sqrt{2}$
- **B.** $6\sqrt{2}$ **C.** $2\sqrt{6}$ **D.** $3\sqrt{6}$

Zadanie 23. (1 pkt)

Ze zbioru {0, 1, 2, ..., 15} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe

- C. $\frac{6}{15}$
- **D.** $\frac{7}{15}$

Zadanie 24. (1 pkt)

Medianą zestawu danych 9, 1, 4, x, 7, 9 jest liczba 8. Wtedy x może być równe

A. 8

- **B.** 4
- **C.** 7
- **D.** 9

Zadanie 25. (1 pkt)

Ile jest wszystkich liczb czterocyfrowych, większych od 3000, utworzonych wyłącznie z cyfr 1, 2, 3, przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?

A. 3

- **B.** 27
- **C.** 9
- **D.** 6

Zadanie 26. *(2 pkt)*

Rozwiąż równanie $8x^3 + 8x^2 - 3x - 3 = 0$.

Zadanie 27. (2 pkt)

Rozwiąż nierówność $5x^2 - 45 \le 0$.

Odpowiedź:

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminatoı	Uzyskana liczba pkt		

Zadanie 28. (2 pkt)

Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia *A* polegającego na tym, że otrzymamy liczbę podzielną przez 9 lub podzielną przez 12.

Zadanie 29. (2 pkt)

Kąt α jest ostry i spełnia równość $tg\alpha + \frac{1}{tg\alpha} = \frac{7}{2}$. Oblicz wartość wyrażenia $sin\alpha \cdot cos\alpha$.

Odpowiedź:

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. *(2 pkt)*

Udowodnij, że dla wszystkich nieujemnych liczb rzeczywistych x, y prawdziwa jest nierówność $x^3 + y^3 \ge x^2y + xy^2$.

Zadanie 31. (2 pkt)

W prostokącie ABCD punkt P jest środkiem boku BC, a punkt R jest środkiem boku CD. Wykaż, że pole trójkąta APR jest równe sumie pól trójkątów ADR oraz PCR.

Wypełnia	Nr zadania	30.	31.
	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. *(4 pkt)*

Dany jest ciąg arytmetyczny (a_n) o różnicy $r \neq 0$ i pierwszym wyrazie $a_1 = 2$. Pierwszy, drugi i czwarty wyraz tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu geometrycznego. Oblicz iloraz tego ciągu geometrycznego.

Odpowiedź:

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. *(4 pkt)*

Wyznacz równanie osi symetrii trójkąta o wierzchołkach A = (-2, 2), B = (6, -2), C = (10, 6).

Egzamin maturalny z matematyki Poziom podstawowy

Odpowiedź:

aggaminator	Nr zadania	33.
	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 34. *(5 pkt)*

W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy pod kątem 60°. Oblicz objętość tego ostrosłupa.

Egzamin maturalny z matematyki Poziom podstawowy

Odpowiedź:

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	