

Simple implementations of priority queue Unsorted array: Construct: Get highest priority: Sorted array: Construct: Get highest priority:

Simple implementations of priority queue

- Unsorted list:
 - Construct:
 - Get highest priority:
- Sorted list:
 - Construct:
 - Get highest priority:

COMP 20003 Algorithms and Data Structures

A better implementation of priority queue: The Heap

Heap data structure:

- A complete tree
 - n.b. a complete tree is...?
- Every node satisfies the "heap condition":
 - parent->key >= child->key, for all children
 - Root is therefore ...?

Complete tree represented as an array:

- n.b. we first look at binary heaps, but
 - A heap need not be binary

COMP 20003 Algorithms and Data Structures

Example heap

T

G

S

M

N

COMP 2000S Algorithms and Data Structures

1.7

uphead () VS. downheap () Add new item in last place in heap: upheap () O() Replace root in heap: downheap () O()

Making a heap: two strategies Strategy 1: Insert items one-by-one into the array upheap() as each new item is inserted Insert n items into heap of size n: Each insertion: O() How many insertions? Overall: O()

Analysis of buildheap()

Loose bound:

- downheap() O(logn)
- n operations
- On first glance: O(n log n)

BUT: observe

- only the root ever goes has a log n downheap ()
- The n/2 leaves have 0 work for downheap ()
- n/4 leaves at level <u>h-1</u> have max 1 downheap ()

COMP 20003 Algorithms and Data Structures

Analysis of buildheap()

- Overall:
 - at most ceil(n/2(h+1)) nodes exist at height h
 - When h = 0, n/2 nodes
 - When h = 1, n/4 nodes
 - When h = floor(log n), 1 node
- Total cost =
 - $\sum_{(h=0 \to floor(log n))} ceil(n/2^{(h+1)})*O(h)$

number of nodes at this level comp 20003 Algorithms and Data Structures vork for each node at this level to restore heap

Analysis of buildheap()

$$\sum_{(h=0 \, \rightarrow floor(log \, n))} \, ceil(n/2^{(h+1)})^*O(h)$$

$$= O(n \sum h/2^h)$$

(converging geometric series)

=O(n)

See Cormen, Leiserson, and Rivest for more detail

COMP 20003 Algorithms and Data Structures

Heapsort

We will be using Priority Queues in the context of graph algorithms, a lot!

But note that the Priority Queue suggests an efficient sorting algorithm:

Heapsort

OMP 20003 Algorithms and Data Structures

Applications

- Bandwidth Management:
- VoIP, IPTV
- Shortest Path Algorithms:
 - Pathfinding, navigation, games
- Job Scheduling:
 - OS, Clusters
- Minimum Spanning Tree algorithm:
 - network design
- Huffman Code:
 - Entropy encoding, compression jpeg, mp3

1-53