2022-2023 MP2I

DM 19, pour le mardi 30/05/2023

Petit problème d'une heure pour réviser les probabilités, les déterminants et les changements de base.

PROBLÈME ÉTUDE D'UNE MARCHE ALÉATOIRE

On considère une marche aléatoire se déplaçant entre 3 points A, B et C. Lorsque la marche est en A, elle a une probabilité 2/3 d'aller en B et 1/3 d'aller en C, lorsqu'elle est en B, elle a une probabilité 2/3 d'aller en A et 1/3 d'aller en C et lorsqu'elle est en C, elle a une probabilité 1/2 d'aller en A et 1/2 d'aller en B. Pour tout $n \in \mathbb{N}$, on note A_n (respectivement B_n et C_n) l'évènement « la marche est en A (respectivement B et C) à l'instant n » et on note a_n, b_n, c_n les probabilités correspondantes.

- 1) Déterminer (en justifiant!) une relation de récurrence vérifiée par les suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$.
- 2) On pose pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$. Vérifier que pour tout $n \in \mathbb{N}$, on a $X_{n+1} = AX_n$ où : $A = \begin{pmatrix} 0 & 2/3 & 1/2 \\ 2/3 & 0 & 1/2 \\ 1/3 & 1/3 & 0 \end{pmatrix}.$

En déduire une expression de X_n en fonction de X_0 , de A et de n.

- 3) Déterminer le polynôme $P(x) = \det(A xI_3)$.
- 4) Vérifier que P admet trois racines réelles $\lambda_1 < \lambda_2 < \lambda_3$. 1 est normalement racine évidente.
- 5) Soit u l'application linéaire canoniquement associée à A.
 - a) Déterminer trois vecteurs e_1, e_2, e_3 de \mathbb{R}^3 dont la première composante dans la base canonique vaut 1 et tels que $\forall i \in [1, 3], u(e_i) = \lambda_i e_i$.
 - b) Montrer que $\mathcal{B}' = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 et déterminer $\mathrm{Mat}_{\mathcal{B}'}(u)$.
 - c) Déterminer une matrice P inversible et une matrice diagonale D (à préciser) telles que $A = PDP^{-1}$.
- 6) Justifier sans calculs que la suite $(X_n)_{n\in\mathbb{N}}$ converge (c'est à dire que chaque coordonnée admet une limite) et exprimer sa limite en fonction d'un produit de trois matrices et de X_0 .
- 7) En déduire les valeurs des limites de $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$. On pourra vérifier qu'elles ne dépendent pas de a_0, b_0 et de c_0 .