ACHTUNG: Eine Verbreitung der Unterlagen außerhalb der Vorlesung bzw. der dazugehörigen Übungen ist nicht gestattet!

Diese Vorlesung basiert auf: Hering et al., "Physik für Ingenieure"

ISSN 0937-7433 ISBN 978-3-642-22568-0 e-ISBN 978-3-642-22569-7 DOI 10.1007/978-3-642-22569-7 Springer Heidelberg Dordrecht London New York

8. Atom- und Kernphysik

ausgewählte Kapitel

Überblick:

- > Grundlagen der Quantentheorie
- Schrödinger-Gleichung
- Spezialfälle: freies Teilchen
- Kastenpotential
- harmonischer Oszillator
- Tunneleffekt
- Atomkerne und radioaktiver Zerfall

8.2 Quantentheorie

Grenzen der klassischen Beschreibung schon in Quantenoptik angesprochen!

Hohlraumstrahlung (schwarze Strahlung)

Lichtelektrischer Effekt

Compton-Streuung

Strahlung = Teilchenstrom aus Lichtquanten (Photonen)

Elektronenbeugung

Wellencharakter von Teilchen

Materie und Strahlung weisen eine "Doppelnatur" auf ! (Welle-Teilchen Dualismus = Ausdruck der Unzulänglichkeit der Beschreibung)

Vermischung von anschaulichen Bildern (Wellen etc.) und Prozessen, die sich Anschauung entziehen (Atome etc.)

Beugung am **Spalt**

Abb. aus: Hering et al., "Physik für Ingenieure"

Quantentheorie: von Anschauung gelöste mathematische Beschreibung!

Zuordnung einer Welle Y zu jedem Teilchen

$$I(x) \propto |\psi(x,t)|^2 \propto h(x)$$

Wellenbild

Häufigkeit = Teilchenbild

Verallgemeinerung: Jedes Teilchen durch Wellenfunktion Y beschrieben

- Alle Eigenschaften des Teilchens sind in dieser Wellenfunktion $\Psi(x,y,z,t)$ enthalten (codiert)
- Wenn man die (Vielteilchen)wellenfunktion Ψ(x_i,y_i,z_i,t) eines Systems kennt, kann man all seine Eigenschaften relativ einfach ausrechnen/bestimmen

Beschreibung eines Teilchens:

- Klassische Physik Bahnkurve
- Quantenphysik Aufenthaltswahrscheinlichkeit

Physik ET / Physik TE

z.B.: Aufenthaltswahrscheinlichkeit w eines durch Ψ beschriebenen Elektrons im Volumselement dV:

$$w = |\psi(x, y, z, t)|^2 dV$$

Wahrscheinlichkeitsdichte

Normierung der Wellenfunktion:

Wahrscheinlichkeit, ein Teilchen irgendwo im Raum anzutreffen muss 1 sein!

$$\int \psi^*(\vec{r})\psi(\vec{r})dV = 1$$

Fundamentalgleichung der Quantentheorie zur Bestimmung von Ψ :

Schrödinger-Gleichung

vergleichbar mit Newton'scher Bewegungsgleichung, die die Bahnkurve bestimmt!

Zur Beschreibung stationärer (= zeitlich gleichbleibender)

Zustände: zeitunabhängige Schrödingergleichung

$$\left(-\frac{\hbar^2}{2m}\Delta + V(\vec{r})\right)\Psi(\vec{r},t) = E\Psi(\vec{r},t)$$

$$\hbar ... \frac{h}{2\pi}$$
 m ... Masse des Teilchens h ... Planck'sches

Wirkungsquantum

Laplace Operator:

E ... Gesamtenergie des Systems

V ... potentielle Energie

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \nabla^2$$

Eigenwertgleichung:
$$\hat{A}\psi_n(\vec{r}) = a\psi_n(\vec{r})$$

Operator

Eigenfunktion

Eigenwert

(Rechenvorschrift)

Physik ET / Physik TE Egbert Zojer

Beispiel: Freies Teilchen

$$V(\vec{r}) = 0 \qquad \longrightarrow \qquad -\frac{\hbar^2}{2m} \Delta \Psi(\vec{r}, t) = E \Psi(\vec{r}, t)$$

Lösung: ebene Welle (ortsabhängiger Teil)

$$\Psi(\vec{r},t) = Ae^{i\vec{k}\vec{r}}$$

beachte: $e^{ix} = \cos x + i \sin x$ k ... Wellenzahl (=2 π/λ)

Einsetzen in Schrödinger-Gleichung liefert für die Energieeigenwerte:

$$E_{\vec{k}} = \frac{\hbar^2 \vec{k}^2}{2m}$$

- Hier: kontinuierliches Eigenwertspektrum
- > Quantenzahl k, die einen Eigenzustand eindeutig benennt

Messgrößen werden in der QM durch Operatoren dargestellt:

z.B.: Impulsoperator

$$\hat{\vec{p}} = -i\hbar\vec{\nabla}$$

Bestimmung der entsprechenden Messgröße:

Stationäre Zustände = zeitlich konstanter Messwert: über Eigenwertgleichung des Operators

z.B.: Impuls

$$\hat{\vec{p}}\,\psi(\vec{r}) = \vec{p}\,\psi(\vec{r})$$

Messwert = Eigenwert

Beispiel: Bestimmen Sie den Impuls eines freien Teilchens und drücken Sie seine Energie als Funktion des Impulses aus

Bsp.: Teilchen in einem Rechteckpotential

Näherung: Unendlich hoher Potentialtopf

$$V(x) = \begin{cases} 0 & \text{für} - \frac{l}{2} < x < \frac{l}{2} \\ \infty & \text{sonst} \end{cases}$$

Schrödinger-Gleichung im Innenbereich:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) = E\psi(x)$$

Randbedingung: Wellenfunktion muss im Außeneberich verschwinden, damit die Energie nicht unendlich wird!

Praktische Relevanz: Halbleiter-Quantentröge

- - Schichtabfolge von Halbleitern mit unterschiedlichen Elektronen/Lochenergien
 - **Zentrales Element fast aller** optoelektronischer Halbleiterbauelemente

Lösung: Im Innenbereich stehende Wellen, die an x=-I/2 und x=I/2 verschwinden müssen

$$E_n = \frac{\hbar^2 k_n^2}{2m} \quad mit \quad k_n = \frac{\pi}{l} n$$

- Diskrete Energiewerte– im krassenGegensatz zur
- Praktisch relevant aber erst ab I~10 nm!

klassischen Mechanik!

Bsp.: Harmonischer Oszillator

D ... Federkonstante x ... Auslenkung

aus:
$$V(x) = \frac{Dx^2}{2}$$

$$V(x) = \frac{1}{2}m\omega^2 x^2 \text{ mit } \omega = \sqrt{\frac{D}{m}}$$

Schrödingergleichung des harmonischen Oszillators:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{1}{2}m\omega^2 x^2\right)\psi(x) = E\psi(x)$$

Energieeigenwerte (ohne Ableitung):

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$

- > Energie nur in (fixen) "Portionen" zuführbar
- Nullpunktsenergie ("Ruhe" gibt es nicht)

Anwendung z.B. Infrarotspektroskopie:

verschiedene chemische Verbindungen absorbieren Infrarot-Photonen nur bei ganz bestimmten Energien (ω von Bindungsstärke abhängig) \rightarrow chemische Analyse.

Annahme: Einlaufendes Teilchen mit E $< V_0$

— а

- klassisches Bild: Teilchen wird reflektiert.
- Lösung der Schrödinger-Gleichung: Es gibt eine endliche Transmissionswahrscheinlichkeit.

Tunneleffekt:

- Potentialdifferenz zwischen zwei Metallen oder Halbleitern, die nicht direkt miteinander gekoppelt sind (Potentialbarriere, z.B., Vakuum)
- → besetzte Zustände links bei gleicher Energie wie unbesetzte Zustände rechts der Barriere
- ➤ Elektronen können durch die Barriere tunneln!

Physik ET / Physik TE

8.7 Aufbau der Atomkerne

- Der Kern besteht aus Z (positiv geladenen) Protonen und N (ungeladen) Neutronen; Z ... Ordnungszahl; A = Z+N ... Massenzahl.
- Isotope: Kerne mit gleicher Ordnungszahl aber unterschiedlicher Massezahl
- Protonen und Neutronen werden von der starken Wechselwirkung (Kernkraft) zusammengehalten
- ➤ Kern beinhaltet fast die gesamte Masse eines Atoms, ist aber im Vergleich zur Elektronenhülle verschwindend klein (R = 1,2·10⁻¹⁵ A^{1/3})
- ➤ Kern hat positive Ladung der Größe Ze → erzeugt ein entsprechendes Coulombfeld.

Energieerezeugung aus Kernumwandlungsprozessen:

- Kernspaltung schwerer Kerne (typischerweise Spaltung von U-235 in zwei ~ gleich große Bruchstücke)
- Kernfusion leichter Kerne

Von außen in Gang gesetzte Kernreaktionen!

$$E = m c^2$$

E ... Energie

m ... Masse

c ... Vakuumlichtgeschwindigkeit

Abb. 8.53 Bindungsenergie je Nukleon in Abhängigkeit von der Massenzahl

8.8 Radioaktiver Zerfall

spontaner Zerfall instabiler Atomkerne

Natürliche Radioaktivität:

α-Strahlung: Emission von He-Kernen (bestehend aus 2 Protonen und 2 – Ladung: 2+)

Sehr starke Wechselwirkung mit Materie → z.B.: durch Blatt Papier abschirmbar

β-Strahlung: Emission von hochenergetischen Elektronen mit ~99% der Lichtgeschwindigkeit; gleichzeitige Emission eines schwer nachweisbaren Antineutrinos

- Elektron entsteht durch Zerfall eines Neutrons in ein Proton, ein Elektron und ein Antineutrino → Abbau eines Neutronenüberschusses im Kern.
- Kann nicht durch ein Blatt Papier abgeschirmt werden!

γ -Strahlung: Hochenergetische (> 100 keV) elektromagnetische Strahlung; zeigt primär Teilchencharakter $\rightarrow \gamma$ -Quanten

- Nach α oder β -Zerfall befindet sich der Kern häufig in einem angeregten Zustand \rightarrow Energie beim Übergang zum Grundzustand wird als γ -Quant abgegeben
- Kann "überhaupt nicht" durch ein Blatt Papier abgeschirmt werden.

Künstliche Radioaktivität:

β+-Strahlung: Emission von hochenergetischen Positronen aus bei Kernreaktionen entstandenen Protonenreichen Kernen; gleichzeitige Emission eines Neutrinos.

Positron entsteht durch Zerfall eines Protons in ein Neutron, ein Positron und ein Neutrino → Abbau eines Protonenüberschusses im Kern.

Radioaktives Zerfallsgesetz:

Anzahl der Zerfälle pro Zeiteinheit (= Aktivität, A) proportional zur Zahl der noch vorhandenen Kerne, N:

$$A = -\frac{dN}{dt} = \lambda N$$

λ ... Zerfallswahrscheinlichkeit

[A] = 1 Becquerel (1 Bq) = 1 Zerfall pro s

Große Zerfallswahrscheinlichkeit: hohe Strahlenbelastung aber schnelles Abklingen der Strahlung.

$$N(t) = N_0 e^{-\lambda t}$$

Halbwertszeit, T: $t \text{ für } N = N_0/2$

Zeit nach der die Hälfte der zerfallsfähigen Kerne zerfallen ist.

$$T = \frac{\ln 2}{\lambda}$$

Abschwächung radioaktiver Strahlung:

$$dA = -\kappa A dx$$

к... Absorptionskoeffizient / Dämpfungskoeffizient

Daraus ergibt sich ein exponentieller Abfall der Aktivität mit der Dicke, D:

$$A(D) = A_0 e^{-\kappa D}$$

Analoge Gesetzmäßigkeiten gelten für Schalloder Lichtabsorption (bei Licht spricht man vom Beer-Lambertschen Gesetz).

https://de.wikipedia.org/wiki/Abschirmung (Strahlung)

