import the seaborn and matplot

import seaborn as sns
import matplotlib.pyplot as plt

Load the dataset of car crashes

```
sns.get_dataset_names()
```

```
['anagrams',
       'anscombe',
      'attention',
'brain_networks',
      'car_crashes',
      'diamonds',
      'dots',
      'dowjones',
'exercise',
      'flights',
      'fmri',
      'geyser',
      'glue',
'healthexp',
      'iris',
      'mpg',
      'penguins',
'planets',
      'seaice',
      'taxis',
      'tips',
       'titanic']
```

df=sns.load_dataset('car_crashes')
df

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	0 18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
	1 18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
:	2 18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
;	3 22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
	4 12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

Jata	columns (total	8 columns):			
#	Column	Non-Null Count	Dtype		
0	total	51 non-null	float6		
1	speeding	51 non-null	float6		
2	alcohol	51 non-null	float6		
3	<pre>not_distracted</pre>	51 non-null	float6		
4	no_previous	51 non-null	float6		
5	ins_premium	51 non-null	float6		
6	ins_losses	51 non-null	float6		
7	abbrev	51 non-null	object		
dtype	es: float64(7),	object(1)			

memory usage: 3.3+ KB

15 15 7 2 669 3 925 15 229 13 659 649 06 114 47 IA df.head()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
∠3	9.0	∠.∠∪ŏ	2.184	ö.44ö	ŏ.44ŏ	///.10	133.30	IVIIN

sns.scatterplot(x="alcohol",y="total",data=df)

Inference: According to the graphic, as the number of alcohol-related crashes rises, so do the overall numbers of auto accidents.

sns.pairplot(df)

sns.histplot(df["alcohol"], bins=15, kde=True)

Inference: It demonstrates that, with a peak of 5 to 10 crashes, alcohol-related crashes are generally quite rare in most locations.

sns.lineplot(x="speeding", y="total", data=df)

Inference: The total number of crashes has climbed along with the rise in speeding-related car accidents.

sns.relplot(x="speeding", y="total", hue="alcohol", data=df)

Inference: The relplot is used to distinguish between crashes caused by drinking and crashes caused by speeding (by using an x-axis and y-axis, respectively). This enables you to investigate the effects of drunk driving crashes on the link between total crashes and speeding.

sns.jointplot(x="alcohol", y="total", data=df, kind="scatter")

<seaborn.axisgrid.JointGrid at 0x7cf9d8603fd0>

Inference: The jointplot offers histograms for each variable combined with a scatter plot of crashes caused by alcohol versus all crashes. This aids in the visualisation of the marginal distributions of the two variables and the bivariate distribution.

```
sns.barplot(x="abbrev", y="total", data=df,width=0.8)
plt.xlabel("State Abbreviation")
plt.ylabel("Total Crashes")
plt.xticks(rotation=90)
plt.show()
```


Inference: Uses the abbreviations of the total crashes in various states to display them on the x-axis. This lets you compare crash counts between states.

```
corr_matrix = df.corr()
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm")
```

<ipython-input-36-01a5e2923d95>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future
 corr_matrix = df.corr()

Inference: There is a positive correlation between "total" and "alcohol."

Colab paid products - Cancel contracts here