Progetto N°3 - Calcolo Scientifico

Nodari Alessandro & Proserpio Lorenzo

May 2021

Problema 1

Il problema da risolvere

Si richiede che venga risolto il seguente problema di convezione-diffusione tempo dipendente per $x \in (0,1), t \geq 0$:

$$\begin{cases} \frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} - D \frac{\partial^2 u}{\partial x^2} = 0\\ u(0, t) = u(1, t) = -e^{-4\pi^2 Dt} \sin(2\pi\beta t)\\ u(x, 0) = \sin(2\pi x) \end{cases}$$

Autovalori di una matrice tridiagonale a diagonali costanti

Conviene ora mostrare ora il seguente risultato di algebra lineare che ci risulterà utile nei paragrafi successivi:

Lemma 1. Se A_n è una matrice tridiagonale di dimensione $n \times n$ a diagonale costante a, sottodiagonale costante b e sovradiagonale costante c e tali che $a^2 - 4bc \neq 0$, allora gli autovalori di A_n sono tutti e soli quelli della forma:

$$a-2\sqrt{bc}\cos\left(\frac{k\pi}{n+1}\right)\quad k=1,2,...,n$$

Dimostrazione. Sviluppo il determinante di A_n rispetto alla prima riga e anche il secondo minore rispetto alla prima riga ed ottengo l'equazione ricorsiva:

$$\det(A_n) = a \det(A_{n-1}) - bc \det(A_{n-2})$$

dove con A_{n-1} intendo la matrice di dimensione $(n-1) \times (n-1)$ a diagonale costante a, sottodiagonale costante b e sovradiagonale costante c, similmente per A_{n-2} . Scrivo l'equazione caratteristica associata all'equazione ricorsiva lineare omogenea:

$$t^2 - at + bc = 0$$

di cui so che le due radici $\alpha_{1,2}$ sono distinte per ipotesi. Dunque la soluzione dell'equazione ricorsiva risulta della forma:

$$\det(A_n) = c_1 \alpha_1^n + c_2 \alpha_2^n$$

con c_1 e c_2 costanti determinabili a partire dalle equazioni $\det(A_1) = a$ e $\det(A_2) = a^2 - bc$. Ora che abbiamo questa formula vorremmo applicarla per calcolare $\det(A_n - \mu I_n) = p_n(\mu)$, ovverosia il polinomio caratteristico di A_n . Vediamo che possiamo riapplicare la prima parte della dimostrazione a patto che $(a - \mu)^2 - 4bc \neq 0$, cioè $\mu \neq a \pm 2\sqrt{bc}$. Facendo i conti e nominando $\beta_{1,2}$ le due soluzioni dell'equazione caratteristica associata, risulta:

$$p_n(\mu) = \frac{\beta_1^{n+1} - \beta_2^{n+1}}{\beta_1 - \beta_2}$$

ora devo trovare le soluzioni dell'equazione $p_n(\mu)=0$. L'equazione è di grado n+1 dunque su $\mathbb C$ ha n+1 soluzioni, a cui va tolta quella $\beta_1=\beta_2$ al fine di mantenere valide le ipotesi, dunque sono esattamente n distinte quelle che cerchiamo. Nel piano di Argand-Gauss giacciono tutte sulla stessa circonferenza centrata in (a,0) di raggio pari a \sqrt{bc} . Queste sono dunque della forma:

$$\mu_k = a - \sqrt{bc} \left(e^{\frac{ik\pi}{n+1}} + e^{-\frac{ik\pi}{n+1}} \right)$$

a cui, applicando la formula di Eulero, si possono riscrivere come:

$$\mu_k = a - 2\sqrt{bc}\cos\left(\frac{k\pi}{n+1}\right)$$
 $k = 1, 2, ..., n$

Osservazione 1: gli autovettori associati agli autovalori λ_k possono essere trovati risolvendo l'equazione: $A_n \cdot \underline{v_k} = \mu_k \underline{v_k}$ e risultano della forma:

$$\underline{v_k} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \text{ con } v_j = \left(\frac{a}{c}\right)^{j/2} \frac{e^{\frac{ikj\pi}{n+1}} - e^{-\frac{ikj\pi}{n+1}}}{i}$$

per k, j = 1, ..., n.

Osservazione 2: Si noti che le componenti degli autovettori sono già scritte rispetto a una base completa di Fourier su [0,1].

Soluzione dell'equazione alle differenze

Procedo con l'Ansatz di fattorizzazione di $u_j^n = T(t_n)X(x_j)$ con T che dipende solo dal tempo e X solo dal nodo spaziale. A questo punto abbiamo che la nostra equazione alle differenze discrete diventa:

$$\frac{T_{n+1}X_j - T_nX_j}{\Delta t} = -\beta \frac{T_nX_{j+1} - T_nX_{j-1}}{2\Delta x} + D \frac{T_nX_{j+1} - 2T_nX_j + T_nX_{j-1}}{\Delta x^2}$$

da cui posso ricavare:

$$\frac{T_{n+1} - T_n}{\Delta t T_n} = -\beta \frac{X_{j+1} - X_{j-1}}{2\Delta x X_j} + D \frac{X_{j+1} - 2X_j + X_{j-1}}{\Delta x^2 X_j}$$

ora l'RHS dipende solo dal nodo spaziale, l'LHS dipende solo dal tempo allora devono essere costanti e posso quindi disaccopiare le due equazioni:

$$\begin{cases} \frac{T_{n+1} - T_n}{\Delta t} = -\mu_k T_n \\ \beta \frac{X_{j+1} - X_{j-1}}{2\Delta x} - D \frac{X_{j+1} - 2X_j + X_{j-1}}{\Delta x^2} = \mu_k X_j \end{cases}$$

prendendo la seconda equazione ci accorgiamo che si tratta solo di risolvere un'equazione agli autovalori della matrice associata all'operatore differenziale discreto. Scrivo ora la matrice dell'operatore:

$$L = \frac{1}{\Delta x} \begin{pmatrix} -\frac{2D}{\Delta x} & +\frac{\beta}{2} + \frac{D}{\Delta x} & 0 & 0 & \cdots \\ -\frac{\beta}{2} + \frac{D}{\Delta x} & -\frac{2D}{\Delta x} & +\frac{\beta}{2} + \frac{D}{\Delta x} & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & -\frac{\beta}{2} + \frac{D}{\Delta x} & -\frac{2D}{\Delta x} & \frac{\beta}{2} + \frac{D}{\Delta x} \\ 0 & \cdots & 0 & -\frac{\beta}{2} + \frac{D}{\Delta x} & -\frac{2D}{\Delta x} \end{pmatrix}$$

notiamo che tale matrice soddisfa esattamente le ipotesi del lemma scritto sopra; infatti, a parte le ovvietà, vale anche che $4\left(\frac{D^2}{\Delta x^2}-\frac{\beta^2}{4}\right)\neq \frac{4D^2}{\Delta x^2}$ poichè $\beta\neq 0$. Per quanto detto sopra gli autovalori di questa matrice sono:

$$-\mu_k = -\frac{2D}{\Delta x^2} - \frac{2}{\Delta x} \sqrt{\frac{D^2}{\Delta x^2} - \frac{\beta^2}{4}} \cos\left(\frac{k\pi}{M}\right)$$

ricordando che abbiamo M intervalli spaziali e con k=1,...,M-1. Dall'osservazione sappiamo quanto valgono gli autovettori associati agli autovalori se valutati nel nodo x_i . Sono dunque del tipo:

$$v_k^n(x_j) = A_k^n \left(e^{ik\pi j\Delta x} - e^{-ik\pi j\Delta x} \right)$$

A questo punto riscrivo i μ_k in funzione di $Pe=\frac{\beta\Delta x}{2D}$ e $C=\frac{\beta\Delta t}{\Delta x}$ e diventano:

$$\Delta t \mu_k = +\frac{C}{Pe} + C\sqrt{\frac{1}{Pe^2} - 1}\cos\left(\frac{k\pi}{M}\right).$$

Riprendo la prima equazione, quella temporale e la risolvo, imponendo che $T_0=1$:

$$T_{n+1} = T_n(1 - \Delta t \mu_k) \Longrightarrow T_n = T_0(1 - \Delta t \mu_k)^n = (1 - \Delta t \mu_k)^n$$

ora posso dunque riscrivere A_k^n come:

$$A_k^n = \gamma_k (1 - \Delta t \mu_k)^n$$

con i $\gamma_k \in \mathbb{C}$ costanti che dipendono solo dalle condizioni iniziali. Resta dunque solo da determinarli (e quindi risolvere anche l'equazione degli A_k^n , come da richiesta) e sovrapporre le soluzioni, poi abbiamo concluso. Per determinarle è relativamente semplice siccome la nostra u(x,0) è pressochè già sviluppata, infatti:

$$u(x_j, 0) = \frac{i}{2} \left(e^{-2i\pi j\Delta x} - e^{2i\pi j\Delta x} \right)$$

e dunque:

$$\begin{cases} \gamma_k = 0 & \forall k \neq \pm 2 \\ \gamma_{\pm 2} = \mp \frac{i}{2} \end{cases}$$

la soluzione finale, che ricordo essere dell'equazione (non del BVP, siccome non soddisfa le condizioni di Dirichlet), è:

$$u_{j}^{n} = -\frac{i}{2}(1 - \Delta t \mu_{2})^{n} e^{2i\pi j \Delta x} + \frac{i}{2}(1 - \Delta t \mu_{2})^{n} e^{-2i\pi j \Delta x}$$

valida in tutti i nodi x_j , compresi quelli ai bordi. Noto anche che la soluzione sta (giustamente) in \mathbb{R} siccome si puo' riscrivere come:

$$u_j^n = -(1 - \Delta t \mu_2)^n \sin(2\pi x_j)$$

Stabilità dello schema proposto

Affinchè sia stabile per tutti i tempi è necessario che sia soddisfatta la seguente condizione:

$$|1 - \Delta t \mu_k| \le 1 \quad \forall k = 1, ..., M - 1$$

questo perchè l'equazione nella derivata temporale, che abbiamo visto avere soluzione geometrica, non deve "esplodere". Ricordiamo ora che:

$$S(Pe, C) = \left|1 - \Delta t \mu_k\right| = \left|1 - \frac{C}{Pe} - C\sqrt{\frac{1}{Pe^2} - 1}\cos\left(\frac{k\pi}{M}\right)\right|$$

Plot della regione di stabilità

Abbiamo fissato Δx (e quindiM)ed abbiamo fatto variare Petra 0.01e 30 e C tra 0.01e 2.

Verifica sperimentale dei risultati

Abbiamo dunque implementato il metodo numerico (nel file main1.m) e fissato D=1. A questo punto per scegliere β e Δt opportuni abbiamo usato i risultati del file precedente. Abbiamo fissato Δx a 10^{-2} , scelto il punto (0.48, 0.2) nella regione di stabilità (Pe,C) e ricavato β e Δt con le formule inverse (che risultano rispettivamente 96 e 2.0833·10⁻⁵). Confrontati i risultati con la soluzione esatta e risulta tutto concorde. Nel grafico vediamo i confronti a tre tempi diversi fissati.

Problema 2

Studio a priori del metodo

Il problema da affrontare è un problema parabolico in 2 dimensioni:

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u = f(x, y, t) & in \ \Omega = (0, 1)^2 \\ u|_{\partial \Omega} = g(t), \ u(x, y, 0) = u_0(x, y) \end{cases}$$

Il metodo proposto è un metodo implicito a direzioni alternate alle differenze finite, in breve ADI. Nello specifico è quello proposto da Peaceman e Rachford nel 1955. Lo schema è:

$$\begin{cases} \frac{u_{i,j}^{k+\frac{1}{2}}-u_{i,j}^k}{\Delta t} = \frac{u_{i+1,j}^{k+\frac{1}{2}}-2u_{i,j}^{k+\frac{1}{2}}+u_{i-1,j}^{k+\frac{1}{2}}}{h^2} + \frac{u_{i,j+1}^k-2u_{i,j}^k+u_{i,j-1}^k}{h^2} + \frac{1}{2}f_{i,j}^{k+\frac{1}{2}} \\ \frac{u_{i,j}^{k+1}-u_{i,j}^{k+\frac{1}{2}}}{\Delta t} = \frac{u_{i+1,j}^{k+\frac{1}{2}}-2u_{i,j}^{k+\frac{1}{2}}+u_{i-1,j}^{k+\frac{1}{2}}}{h^2} + \frac{u_{i,j+1}^k-2u_{i,j}^k+u_{i,j-1}^k}{h^2} + \frac{1}{2}f_{i,j}^{k+\frac{1}{2}} \end{cases}$$

dove i si riferisce alla posizione del nodo sull'asse delle x, j alla posizione del nodo sull'asse delle y e k al passo temporale preso in analisi. Inoltre Δt indica il passo temporale tra l'istante temporale k e il successivo k+1. Per snellire la notazione lasciamo sottointeso dove debba essere valutata f ed introduciamo due operatori discreti:

$$\begin{cases} \delta_x^2(u_{i,j}^k) := u_{i+1,j}^k - 2u_{i,j}^k + u_{i-1,j}^k \\ \delta_y^2(u_{i,j}^k) := u_{i,j+1}^k - 2u_{i,j}^k + u_{i,j-1}^k \end{cases}$$

Riordinando e compattando la scrittura otteniamo il seguente sistema:

$$\begin{cases} (1 - r\delta_x^2)u_{i,j}^{k + \frac{1}{2}} = (1 + r\delta_y^2)u_{i,j}^k + \frac{\Delta t}{2}f\\ (1 - r\delta_y^2)u_{i,j}^{k + 1} = (1 + r\delta_x^2)u_{i,j}^{k + \frac{1}{2}} + \frac{\Delta t}{2}f\\ r := \frac{\Delta t}{h^2} \end{cases}$$

Applicando ad ambo i membri della prima equazione l'operatore discreto $(1+r\delta_x^2)$ e notando che commuta con l'operatore $(1-r\delta_x^2)$ ci accorgiamo che possiamo sostituire nella prima l'espressione di $(1+r\delta_x^2)u_{i,j}^{k+\frac{1}{2}}$ ottenuta dalla seconda equazione:

$$\begin{cases} (1+r\delta_x^2)u_{i,j}^{k+\frac{1}{2}} = (1-r\delta_y^2)u_{i,j}^{k+1} - \frac{\Delta t}{2}f \\ (1-r\delta_x^2)\bigg[(1-r\delta_y^2)u_{i,j}^{k+1} - \frac{\Delta t}{2}f \bigg] = (1+r\delta_x^2)\bigg[(1+r\delta_y^2)u_{i,j}^k + \frac{\Delta t}{2}f \bigg] \end{cases}$$

Tralasciamo per il momento la prima equazione e concentrandoci solo sulla seconda sviluppandone i conti otteniamo:

$$(1-r\delta_x^2)(1-r\delta_y^2)\;u_{i,j}^{k+1} = (1+r\delta_x^2)(1+r\delta_y^2)\;u_{i,j}^k + \frac{\Delta t}{2}(1+r\delta_x^2)f + \frac{\Delta t}{2}(1-r\delta_x^2)f$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (1-r\delta_y^2-r\delta_x^2+r^2\delta_x^2\delta_y^2)\;u_{i,j}^{k+1} = (1+r\delta_y^2+r\delta_x^2+r^2\delta_x^2\delta_y^2)\;u_{i,j}^k + \Delta tf$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad$$

Siccome vogliamo studiare la consistenza del metodo possiamo dimenticarci del termine relativo alla f ponendolo uguale a zero, infatti tale termine ha come errore di troncamento la precisione di macchina che è pari a 10^{-14} . Sviluppiamo quindi con Taylor il termine misto che abbiamo ottenuto e ricordandoci che $\Delta x = \Delta y = h$ abbiamo che:

$$\frac{\delta_x^2}{h^2} \frac{\delta_y^2}{h^2} (u_{i,j}^{k+1} - u_{i,j}^k) = \Delta t \left(\frac{\partial^5 u}{\partial t \partial^2 x \partial^2 y} \right)_{i,j}^k + \mathcal{O}(h^2 \Delta t) + \mathcal{O}(\Delta t^2)$$

Siccome il termine appena sviluppato è moltiplicato per Δt nell'equazione otteniamo che il metodo a due passi è del secondo ordine sia in Δt che h come il metodo di Crank-Nicolson in due dimensioni. L'incondizionata stabilità insieme alla consistenza garantiscono che il metodo sia anche convergente.

Forma matriciale del metodo

Il metodo proposto può essere decomposto in tre semplici step da poter poi implementare in MATLAB. Per far vedere ciò riprendiamo il nostro sistema

$$\begin{cases} (1 - r\delta_x^2) u_{i,j}^{k+\frac{1}{2}} = (1 + r\delta_y^2) u_{i,j}^k + \frac{\Delta t}{2} f & (1 - r\delta_y^2) u_{i,j}^{k+1} = (1 + r\delta_x^2) u_{i,j}^{k+\frac{1}{2}} + \frac{\Delta t}{2} f & (2 + r\delta_y^2) u_{i,j}^{k+1} = (1 + r\delta_y^2) u_{i,j}^{k+1} & (3) \\ (1 - r\delta_x^2) u_{i,j}^{k+\frac{1}{2}} = V_{i,j}^k + \frac{\Delta t}{2} f & (4) \\ (1 - r\delta_y^2) u_{i,j}^{k+1} = 2 u_{i,j}^{k+\frac{1}{2}} - V_{i,j}^k & (5) \end{cases}$$

(3) è la semplice introduzione di un termine ausiliario definito a partire dal passo precedente. (4) è ottenuta sostituendo (3) in (1). (5) invece deriva dalla differenza di (2) - (1) e la successiva sostituzione di (3) al suo interno. Così facendo otteniamo un sistema di equazioni che è equivalente a quello di partenza,

ma più facilmente implementabile. Risolviamo quindi (3) tenendo fermo il nodo sulle x e facendo variare quello sulle y, ovvero tenendo fermo l'indice i e facendo variare j. Nella nostra notazione i nodi, sia lungo x che lungo y, sono N+1 e sono numerati da 0 a N. Inoltre ci interessiamo solo dei nodi interni poichè ai bordi la soluzione sarà orlata con le condizioni al bordo derivate dal problema stesso. Quindi i varia da 1 a N-1.

$$\begin{cases} V_{i,1}^k = u_{i,1}^k + r(u_{i,0}^k - 2u_{i,1}^k + u_{i,2}^k) \\ \vdots \\ V_{i,N-1} = u_{i,N-1} + r(u_{i,N-2}^k - 2u_{i,N-1}^k, u_{i,N}^k) \end{cases}$$

Definiamo dunque due vettori colonna

$$\mathbb{R}^{N-1}\ni U_{i,\cdot}^k:=\begin{bmatrix}u_{i,1}^k\\\vdots\\u_{i,N-1}^k\end{bmatrix}\qquad \mathbb{R}^{N-1}\ni V_{i,\cdot}^k:=\begin{bmatrix}V_{i,1}^k\\\vdots\\V_{i,N-1}^k\end{bmatrix}$$

e una matrice tridiagonale

$$\mathbb{R}^{(N-1)\times(N-1)} \ni B := \begin{bmatrix} -2 & 1 & 0 & \cdots & \\ 1 & -2 & 1 & & \\ 0 & \ddots & \ddots & \ddots & \\ \vdots & & 1 & -2 & 1 \\ & & & 1 & -2 \end{bmatrix}$$

Il primo step può dunque essere riscritto in forma matriciale come

$$V_{i,.}^k = (I + rB)U_{i,.}^k + \begin{bmatrix} u_{i,0}^k \\ 0 \\ \vdots \\ 0 \\ u_{i,N}^k \end{bmatrix}$$

Il secondo step può essere sviluppato come

$$\begin{cases} u_{1,j}^{k+\frac{1}{2}} - r(u_{0,j}^{k+\frac{1}{2}} - 2u_{1,j}^{k+\frac{1}{2}} + u_{2,j}^{k+\frac{1}{2}}) = V_{1,j}^k + \frac{\Delta t}{2} f_{1,j}^{k+\frac{1}{2}} \\ \vdots \\ u_{N-1,j}^{k+\frac{1}{2}} - r(u_{N-2,j}^{k+\frac{1}{2}} - 2u_{N-1,j}^{k+\frac{1}{2}} + u_{N,j}^{k+\frac{1}{2}}) = V_{N-1,j}^k + \frac{\Delta t}{2} f_{N-1,j}^{k+\frac{1}{2}} \end{cases}$$

Analogamente definiamo i seguenti vettori in \mathbb{R}^{N-1} :

$$U_{.,j}^{k+\frac{1}{2}} = \begin{bmatrix} u_{1,j}^{k+\frac{1}{2}} \\ \vdots \\ u_{N-1,j}^{k+\frac{1}{2}} \end{bmatrix} \qquad V_{.,j}^{k} = \begin{bmatrix} V_{1,j}^{k} \\ \vdots \\ V_{N-1,j}^{k} \end{bmatrix} \qquad f_{.,j}^{k+\frac{1}{2}} = \begin{bmatrix} f_{1,j}^{k+\frac{1}{2}} \\ \vdots \\ f_{N-1,j}^{k+\frac{1}{2}} \end{bmatrix}$$

Dunque in forma matriciale diventa

$$(I-rB)U_{.,j}^{k+\frac{1}{2}} = V_{.,j}^{k} + \frac{\Delta t}{2}f_{.,j}^{k+\frac{1}{2}} + r \begin{bmatrix} u_{0,j}^{k+\frac{1}{2}} \\ 0 \\ \vdots \\ 0 \\ u_{N,j}^{k+\frac{1}{2}} \end{bmatrix}$$

Il terzo step può essere scritto come

$$\begin{cases} u_{i,1}^{k+1} - r(u_{i,0}^{k+1} - 2u_{i,1}^{k+1} + u_{i,2}^{k+1}) = 2u_{i,1}^{k+\frac{1}{2}} - V_{i,1}^k \\ \vdots \\ u_{i,N-1}^{k+1} - r(u_{i,N-2}^{k+1} - 2u_{i,N-1}^{k+1} + u_{i,N}^{k+1}) = 2u_{i,N-1}^{k+\frac{1}{2}} - V_{i,N-1}^k \end{cases}$$

In forma matriciale può essere espresso come:

$$(I-rB)U_{i,.}^{k+1} = 2U_{i,.}^{k+\frac{1}{2}} - V_{i,.}^{k} + r \begin{bmatrix} u_{i,0}^{k+1} \\ 0 \\ \vdots \\ 0 \\ u_{i,N}^{k+1} \end{bmatrix}$$

Notiamo che (I - rB) è una matrice tridiagonale.

L'algoritmo di Thomas

Siccome negli step da implementare bisogna risolvere dei sistemi del tipo Ax=b in cui la matrice A è tridiagonale conviene utilizzare un algoritmo di risoluzione che sia specifico per questo tipo di problemi. Un tale algoritmo è quello sviluppato da Llewellyn Thomas. Poniamo di avere il seguente sistema di equazioni:

$$\begin{bmatrix} b_1 & c_1 & & & & \\ a_2 & b_2 & c_2 & & & \\ & a_3 & b_3 & \ddots & \\ & & \ddots & \ddots & c_{n-1} \\ & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}$$

Il sistema può essere riscritto in modo più compatto come:

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i$$
 con $a_1 = c_n = 0$

L'algoritmo consiste essenzalmente di due passi. Il primo forward usato per eliminare i termini a_i e un secondo backward fatto per sostituzione per calcolare

la soluzione. Il passo forward consiste nel calcolare dei nuovi coefficienti che indicheremo con un primo.

$$c'_{i} = \begin{cases} \frac{c_{i}}{b_{1}} & i = 1\\ \frac{c_{i}}{b_{i} - a_{i}c'_{i-1}} & i = 2, \dots, n \end{cases} \qquad d'_{i} = \begin{cases} \frac{d_{i}}{b_{i}} & i = 1\\ \frac{d_{i} - a_{i}d_{i-1}}{b_{i} - a_{i}c'_{i-1}} & i = 2, \dots, n \end{cases}$$

La soluzione è poi ottenuta per sostituzione all'indietro

$$\begin{cases} x_n = d'_n \\ x_i = d'_i - c'_i x_i + 1 & i = n - 1, \dots, 1 \end{cases}$$

Questa implementazione non cambia i coefficienti iniziali, ma ne vengono creati di nuovi. Nel nostro caso però non siamo interessati ai coefficienti iniziali e quindi una versione più efficiente è la seguente:

$$\begin{cases} w = \frac{a_i}{b_{i-1}} \\ b_i = b_i - wc_{i-1} \\ d_i = d_i - wd_{i-1} \end{cases}$$
 $i = 2, \dots, n$

con la conseguente sostituzione all'indietro

$$\begin{cases} x_n = \frac{d_n}{b_n} \\ x_i = \frac{d_i - c_i x_{i+1}}{b_i} \quad i = n - 1, \dots, 1 \end{cases}$$

Nel file thomas.m abbiamo implementato il secondo algoritmo. Bisogna notare che l'algoritmo proposto non è generalmente stabile, ma lo è se la matrice è diagolnamente dominante (per righe o per colonne), che è il nostro caso, oppure se è simmetrica e definita positiva. Sappiamo che il costo computazionale dell'eliminazione gaussiana classica è dell'ordine di $\mathcal{O}(n^3)$ mentre l'algoritmo di Thomas è computazionalmente più efficiente essendo dell'ordine di $\mathcal{O}(n)$. Nel-l'implementazione contenuta nel file adi.m per una maggior efficienza il termine ausiliario w viene calcolato una volta per tutte e poi passato come argomento a thomas.m.

Confronto tra risultati teorici e pratici

L'implementazione che abbiamo sviluppato è contenuta nel file adi.m. La soluzione esatta del problema è

$$u(x, y, t) = \frac{1}{\sqrt{1+4t}} e^{-\frac{x^2+y^2}{1+4t}}$$

da cui si ottengono le condizioni iniziali g_1 , al bordo g_2 e il termine forzante f

$$g_1(x,y) = e^{-(x^2 + y^2)} \qquad f(x,y,t) = \frac{2}{(1+4t)^{\frac{3}{2}}} e^{-\frac{x^2 + y^2}{1+4t}}$$

$$\begin{cases} g_2(0,y,t) = \frac{1}{\sqrt{1+4t}} e^{-\frac{y^2}{1+4t}} \\ g_2(1,y,t) = \frac{1}{\sqrt{1+4t}} e^{-\frac{1+y^2}{1+4t}} \\ g_2(x,0,t) = \frac{1}{\sqrt{1+4t}} e^{-\frac{x^2}{1+4t}} \\ g_2(x,1,t) = \frac{1}{\sqrt{1+4t}} e^{-\frac{x^2+1}{1+4t}} \end{cases}$$

Per la valutazione dell'errore abbiamo usato il massimo errore ottenuto nei punti interni della griglia definito come:

$$e_{max} = \max_{i,j=1,...,N-1} |U_{i,j}^T - u(x_i, y_i, T)|$$

dove T indica il tempo finale a cui siamo arrivati. Per trovare l'ordine di convergenza abbiamo usato:

$$(\mathcal{O}) = \frac{\log(\frac{e_n}{e_{n+1}})}{\log(\frac{h_n}{h_{n+1}})}$$

Nel nostro caso $log(\frac{h_n}{h_{n+1}})$ non è altro che log(2) per come abbiamo definito i passi nell'implementazione. Abbiamo usato h poichè abbiamo posto che $\Delta x = \Delta y = \Delta t = h$. Abbiamo usato sette diversi passi partendo da 0.2 e dimezzando ad ogni passo ottenendo la seguente tabella:

h	err	ordine
0.2	0.000854735370413	/
0.1	0.000239606459449	1.834811023152323
0.05	0.000067876387417	1.819685114135211
0.025	0.000018158516530	1.902263436693405
0.0125	0.000004736284159	1.938818800807373
0.00625	0.000001215585137	1.962104699405502
0.003125	0.000000308919316	1.976348952040961

Notiamo che l'ordine del metodo sta convergendo a 2 in accordo con i risultati teorici ottenuti in precedenza.

Grafico ottenuto con una griglia 81x81 ovvero con un passo h=0.0125e come tempo finale $T=1.\,$