MCMC Convergence and Mixing

Premise

We can never be entirely certain that our MCMC samples give us an accurate view of the posterior, but we can look for indications of problems.

Shape of Traces

Shape of Traces

What should be our burnin?

Shape of Traces

Geweke's Diagnostic

Is there a difference in means between early and late parts of chains?

Geweke's Diagnostic

Is there a difference in means between early and late parts of chains?

Has this run converged?

Shape of Traces

BAD MIXING - Proposals Too Small

Shape of Traces

BAD MIXING - Proposals Too Big

Acceptance Rates

Proposals should ideally be accepted between 20% and 70% of the time.

> 70% means proposals too small.

< 20% means proposals too big.

By default, RevBayes tunes proposals so that they are in this range.

Autocorrelation

Lag = the interval (number of generations) between samples that are not correlated with one another

Autocorrelation

Effective Sample Size

Given my autocorrelation, how many "independent" samples do I really have?

Basically, we're correcting the total number of samples we've gathered for their autocorrelation.

Single Analysis Diagnostics Jagged Marginal Distributions

Multiple Analysis Diagnostics Compare Marginal Distributions

Potential Scale Reduction Factor (PSRF) Gelman-Rubin Diagnostic

What is the ratio of the variances within runs to combined runs.

If convergence is good, PSRF = 1.

Kolmogorov-Smirnov (KS) Test Compares Two Distributions

Bipartition Probabilities

Bipartition Probabilities

Take a look at tree space

Take a look at tree space

Colors = Trees from Different Genes

Salamanders

Mammals

