水俁退散-自製有害無機汞快篩器應用於放流水之檢測

科 別:環境學科(含衛工、環工、環境管理)

組 別:高級中等學校組

水俁退散-自製有害無機汞快篩器應用於放流水之檢測

壹、研究動機:

臺灣,是重工業發展十分興盛的區域。因此在這種情況下,為防範工業廢水的危害,我們開發出一個簡易的快篩器,藉由arduino和顏色感測器的偵測,分辨奈米金對汞離子不同吸附能力,所造成的不同大小的粒子其相對應的顏色變化,快速且便宜的測出水質中的汞含量,讓水質檢測這件事,不需要只依靠政府,而是能讓每個民眾能自己及能檢測周遭水質安全。

貳、研究目的:

- (一)自行合成奈米金並接上**硫醇基與羧酸根,找出最佳碳鏈長度與溶液成分比例**,使溶液具有選擇性並**抓**取水中汞離子。
- (二)結合IoT概念(Internet of Things,物連網):開發一個**低成本且體積小**的裝置,快速檢測放流水中的汞含量是否超標。

自製汞離子快篩器特點

自製快篩器價目表			
設備	價錢(元)		
Arduino MEGA2560	250		
TFT觸控顯示螢幕	370		
TCS34725顏色感測器	132		
麵包板	50		
電阻	45		
杜邦線	8		
紅、綠雷射	500		
總價	1355		

參、研究過程或方法

(一)製作重金屬汞快篩器並組裝

Arduino區:

結合Arduino Mega2560、Color Sensor、觸 控顯示螢幕

測試區:

由前至後,分別擺設 紅和綠雷射燈、比色 管、Color Sensor

快篩器設計圖與實際成品圖

機器透視圖

奈米金與汞離子結合原理

原理:因為奈米金抓取汞後,聚集的顆粒大小不同,因此在紅、綠雷射燈照射下,顆粒大粒子的易將紅光(650 nm)吸收,而顆粒小的粒子易將綠光(520 nm)吸收,以此變化就可以

判斷汞離子溶液的濃度。

(二)螢幕顯示、操作與校正

(步驟一)每次開始時 便會先詢問是否要校正

(步驟二)如果按下Yes 即會重新測量

(步驟三)將測量到的數 值換成公式

(步驟四)選擇是否要開始進行測量還是重新校正

(步驟五)如果選擇後M easure後即會開始測量

(步驟六) Calibrate(校正) 時的畫面

(三)配置MPA-Au Nps

- 1.配置1%的檸檬酸鈉溶液2ml (檸檬酸鈉0.0228g + 2ml去離子水)10⁻⁴M MPA水溶液 (10ul 11.5M的MPA + 11ml490ul的去離子水)
- 2.將1998 ml的去離子水及1M且20ul的四氯金酸倒入雙頸瓶中(溶液呈黃色), 一同加熱至沸騰。
- 3.溶液沸騰後快速加入配好的檸檬酸鈉溶液(溶液變成暗紅色),加熱8分鐘, 再將溶液降至室溫(鮮紅色)。
- 4. 將900 ul四氯金酸溶液,加入100ul 10⁻⁴M MPA水溶液中。
- 5.冰入4℃的冰箱中,靜置2小時。

(四)配置標準溶液

購買汞離子濃度標準品,運用去離子水稀釋,配置出五個濃度(0、2、4、6、8 ppm)的無機汞離子溶液

加入2,6-吡啶二甲酸試劑(2,6-pyridinedicarboxylic acid,) 可提高奈米金和汞離子結合的專一度

	去離子水(ul)	MPA-AuNps(ul)	10 ⁻⁴ M汞溶液(ul)	PDCA(10 ⁻³ M) (ul)	Tris-buffer(pH 9.0) (uI)
0 ppm	400	100	0	250	250
2 ppm	300	100	100	250	250
4 ppm	200	100	200	250	250
6 ppm	100	100	300	250	250
8 ppm	0	100	400	250	250

依序加入:去離子水、Tris-buffer、PDCA、汞離子溶液、MPA-Au Nps

肆、實驗結果

一、利用Uv-Vis測量溶液中汞含量

使用**去離子水**配置五種濃度(0、2、4、6、8 ppm)的汞離子溶液並添加MPA-Au Nps

二、利用自製快篩器測量溶液中汞含量

使用**去離子水**配置五種濃度(0、2、4、6、8 ppm)的汞離子溶液並添加MPA-Au Nps

第一次快篩器測量校正, $R^2=0.97$

第二次快篩器測量校正, $R^2=0.96$

第三次快篩器測量校正, $R^2=0.95$

- 1、透過聚集顆粒不同導致的吸光值差異,將吸光值與濃度關係數值進行線性回歸。
- 2、得出自製快篩器 R^2 =0.96±0.01 並與分光光度計 Uv-Vis 比較,已經具有一定可信度。

三、實際檢測放流水中的汞濃度

將自製機器實際運用於放流水之檢測!

愛河水和後勁溪五個濃度(0、2、4、6、8 ppm)溶液配置比例圖:

種類	放流水(ul)	MPA-Au NPs(ul)	10 ⁻⁴ M汞溶液(ul)		Tris-buffer(pH9.0) (uI)
0 ppm	400	100	0	250	250
2 ppm	300	100	100	250	250
4 ppm	200	100	200	250	250
6 ppm	100	100	300	250	250
8 ppm	0	100	400	250	250

分光光度計測量結果:

三、實際檢測放流水中的汞濃度

自製快篩器測量結果:

愛河河水自製機器檢測結果 (平均測量值為:1.90 ppm)

後勁溪溪水自製機器檢測結果 (平均測量值為:0.72 ppm)

放流水濃度計算(利用**外插法**求得其值):

Uv-Vis與自製快篩器測量差異值: 0.1076

愛河水(放流水) Y=0.019 X +0.0345 R²=0.85

標準添加法(愛河水): Y(吸收度)=0時(利用外插法), X(濃度)=1.81 (ppm)

Uv-Vis與自製快篩器測量差異值: 0.0513

四、PDCA與硫醇的選用

查詢相關資料,發現若在溶液中先添加PDCA(螯合配體),會因PDCA孔隙大小與汞離子十分相近,因此易與汞結合,而能幫助奈米金粒子抓取溶液中的汞離子,使MPA-Au NPs和汞離子結合的專一度提高,大幅度地提升無機汞濃度測量的準確性。而MPA-Au NPs和汞離子結合使顆粒變大,吸收波峰紅移,溶液顏色變藍。

2,6-吡啶二甲酸試劑(2 6-pyridinedicarboxylic acid, PDCA)

有加入PDCA測量的迴歸線,其 R^2 值為0.99

最後我們選擇以**3-硫基丙酸(MPA)**修飾金奈米粒子,MPA一端有硫醇基,能夠和金奈米粒子相接;而另一端 有羧酸根,會和汞金屬離子形成配位,彼此帶有相反電荷,可造成表面帶負電量的減少,從而聚集顆粒便大,

顏色加深。

被MPA修飾的奈米金其粒徑介在11 nm~19 nm· 並無沉澱。

伍、討論

- 一、膠體溶液中的廷得耳效應(聚集越大,吸收波長紅移,溶液顏色偏藍聚集顆粒越小,吸收波峰藍移,溶液顏色偏紅。)
- 二、光譜波長選擇與背景處理:我們用**650/520 nm**是因為這兩個值改變時最具代表意義,且將兩個光相除可以去除環境造成的干擾。
- 三、可改變含硫醇的碳鏈長短或不同官能基(團),分別檢測不同的離子溶液。其中一端SH附著奈米粒子上;另一端以COOH、NO2、NH2、OH等有機官能基(團)連接,由於硫醇分子間吸引力,彼此間會互相結合聚集。再加入不同的離子溶液(Mn+),競爭金粒間結合位,造成金粒聚合而顏色改變的效果。

陸、結論

- 一、對應目的(一),結合Arduino顏色感測器,利用五個標準溶液校準, 得到不同濃度與吸光度的線性關係,藉此辨認汞離子汙染程度。
- 二、本儀器做為快篩汞汙染,便宜又有效率(測量一次約5分鐘)的方式, 材料成本約1355元。

柒、參考資料

耗材	價格		價格/次	
四氯金酸	7500/1g(3.9ml)		0.02元	
PDCA	1700/25g		0.002元	
 設備				
Arduino Mega2560		250		
TFT觸控顯示螢幕		370		
TCS34725顏色感測器		132		
		50		
 電阻		45		
杜邦線		8		
紅、綠雷射		500		

1355

- Lobnik, A.&Urek, S. K. (2011). Nano- Based Optical Chemical Sensors. Journal of Nano Research, 13, 99-110.
- Mori, K.&Yamashita, H. (2011). Design of Colloidal and Supported Metal Nanoparticles: Their Synthesis, Characterization, and Catalytic Application. Journal of the Japan Petroleum Institute, 54, 1-14.