U.C. de Projeto Integrador de Telecomunicações e Informática

Ano Letivo: 2022/2023

Especificação da Fase A

Grupo 5

- > Luís Oliveira, a89380
- > Francisco Martins, a93079
- > José Gomes, a93083
- > Rui Cunha, a93093
- ➤ Diogo Cerqueira, a93108

28/02/2023

Universidade do Minho Mestrado Integrado em Engenharia de Telecomunicações e Informática

Índice

1.	Índice de figuras	3
2.	Lista de siglas e acrónimos	4
3.	Introdução	5
4.	Contextualização da Fase A	6
5.	Algoritmos do sistema	7
Ę	5.1. Algoritmo do Emissor	7
Ę	5.2. Algoritmo do Recetor	8
6.	Ferramentas	9
6	6.1. Hardware	9
6	6.2. Software	11
7.	Planificação do projeto	13
8.	Conclusão	14
9.	Bibliografia	15

1.Índice de figuras

Figura 1 - Arquitetura da Fase A	6
Figura 2 - Algoritmo do emissor	7
Figura 3 - Algoritmo do recetor	8
Figura 4 - Diagrama de Gantt	13

2. Lista de siglas e acrónimos

PC Personal Computer

BLE Bluetooth Low Energy

Wi-Fi Wireless Fidelity

ISP Internet Service Provider

3.Introdução

O relatório de especificação está inserido no âmbito da Unidade Curricular de Projeto Integrador em Telecomunicações e Informática.

Serve o presente relatório como introdução e descrição dos critérios de *hardware* e de *software* a serem implementados na fase A, em junção com a apresentação e planeamento temporal das tarefas convenientes à sua construção.

O relatório referido será iniciado com as especificações impostas pela fase A, nomeadamente: arquitetura, requisitos e funcionalidades do sistema; identificação das tecnologias necessárias e planificação horária. Seguido de uma ligeira conclusão.

4. Contextualização da Fase A

A figura 1 ilustra a arquitetura solicitada pela fase A.

Figura 1 - Arquitetura da Fase A.

A fase A concentra-se na transmissão unidirecional de dados, ou seja, no fluxo de *bits* em sincronismo entre as placas ESP32, com auxílio a fios de ligação.

De forma a assegurar uma transmissão fiável e eficaz é pertinente a definição de protocolos de comunicação (baseados em tramas), quer entre cada PC (*Personal Computer*) e a respetiva placa ESP32, quer para a comunicação entre placas ESP32.

Em adição à conceção dos formatos das tramas, os protocolos referidos devem incorporar mecanismos de deteção e correção de erros e mecanismos inerentes, e se necessário, incluir mecanismos de controlo de fluxo.

Para além do estabelecimento de diversos protocolos, é oportuno o desenvolvimento de mecanismos de codificação e descodificação dos *bits* e de mecanismos responsáveis pela sincronização do fluxo de *bits* entre as placas referidas, em especial, a nível do *bit*, do *byte* e da trama.

5. Algoritmos do sistema

5.1. Algoritmo do Emissor

Na figura 2, é possível observar o algoritmo incorporado pelo emissor.

Figura 2 - Algoritmo do emissor.

5.2. Algoritmo do Recetor

Seguidamente, na figura 3, é ilustrado o algoritmo integrado pelo recetor.

Figura 3 - Algoritmo do recetor.

6. Ferramentas

Para a realização deste projeto, o grupo dispõe de vários recursos de forma a ser possível a finalização do projeto prático com sucesso. Parte dos recursos a serem utilizados podem ser classificados como físicos, constituindo desta forma a componente *hardware* a ser usufruída, e os restantes sem formato físico, enquadram-se no domínio do *software*.

6.1. Hardware

A tabela seguinte apresenta todo o *hardware* necessário ao desenvolvimento da fase A.

Imagem	Designação	Descrição
	ESP32-DevKitC-32D	2 placas: uma para a implementação do sistema sensor e outra para o gateway BLE/Wi-Fi
	Cabos USB	Cabos responsáveis pela conexão entre o PC e a placa ESP32
	Fios de ligação	Fios responsáveis pela conexão dos componentes necessários
	Computador	Desenvolvimento do código e relatórios
	Breadboard	Interface de conexão entre os circuitos

6.1.1 ESP32-DevKitC-32D

O ESP32 é um módulo genérico de Wi-Fi (Wireless Fidelity), Bluetooth e BLE (Bluetooth Low Energy), que possibilita uma grande variedade de aplicações como por exemplo redes de sensores de baixa potência, decodificação de MP3 e codificação de voz.

A tabela 2 apresenta as caraterísticas da placa em questão.

MóduloESP32-DevKit-32DSPI flash32 Mbits, 3.3 VCoreESP32-D0WDCrystal40 MHz (apenas para a funcionalidade do Wi-Fi e do Bluetooth)AntenaConector U.FL (que precisa de estar conectado a uma antena IPEX externa)Dimensões (Unidade: mm)(18.00±0.10) × (19.20±0.10) × (3.20±0.10)

Tabela 1 - Caraterísticas da placa ESP32-DevKit-32D.

O *Bluetooth*, o BLE e o Wi-Fi são diferentes tipos de comunicação, que são suportados pelo ESP32. A utilização do Wi-Fi proporciona um grande alcance físico e conexão direta com a *internet* através de um ISP (*Internet Service Provider*).

A sleep current (corrente caraterística, quando a placa opera em modo standby) da placa é inferior a 5 microamperes, o que torna este componente ideal para sistemas eletrónicos alimentados por baterias.

O *chip* da placa suporta uma taxa de transmissão até 150 Mbps e 20 dBm de potência de saída de antena para proporcionar o melhor alcance físico possível.

6.2. Software

A tabela seguinte contém o software necessário à implementação da fase A.

Símbolo	Designação	Função
⊙ ⊙	Arduino IDE	Programação do módulo Arduino
W Word	Microsoft Word	Editor de texto
	IntelliJ IDEA	Ambiente de desenvolvimento integrado
facebook	Facebook	Comunicação entre os membros do grupo
Opera	Opera	Motor de pesquisa

6.2.1 Linguagens de Programação

A tabela seguinte contém as linguagens de programação, que se serão necessárias ao desenvolvimento da fase A.

Tabela 2 - Linguagens de programação necessárias à implementação da fase A.

Linguagens de programação					
	C++	A linguagem C++ será empregue no desenvolvimento das funções setup() e loop() de ambas as placas.			
	Java	A linguagem <i>Java</i> será aplicada na implementação dos algoritmos do emissor e recetor.			

7. Planificação do projeto

Para garantir consistência, linearidade e para que se cumpra todos os objetivos é necessário recorrer a um planeamento bem estruturado. O planeamento do projeto encontra-se ilustrado pelo diagrama de *Gantt*, representado pela figura 4.

Figura 4 - Diagrama de Gantt.

8. Conclusão

Concluída esta exposição, na opinião do grupo, espera-se desta fase um nível de complexidade moderada, especialmente na fase de *design* inicial, visto que se ambiciona, desde o início, eficiência e modularidade para que o resto do projeto seja mais suave.

Assim sendo, acreditamos que o planeamento apresentado irá resultar numa aplicação eficaz do *hardware* e do *software*, para que demonstremos adequadamente conhecimentos a adquirir no decorrer da Unidade Curricular.

9. Bibliografia

- Bot n Roll. (20 de Fevereiro de 2022). Obtido de Bot n Roll: https://www.botnroll.com/1219-medium_default/sensor-de-temperatura-ehumidade-dht11.jpg
- Bot n Roll. (22 de 2 de 2022). *botnroll*. Obtido de https://www.botnroll.com/8958-medium_default/sensor-de-press-o-atmosf-rica-bmp280.jpg
- botnroll. (2 de 2 de 2022). Obtido de botnroll: https://www.botnroll.com/8958-medium_default/sensor-de-press-o-atmosf-rica-bmp280.jpg
- dfrobot. (20 de Fevereiro de 2022). Obtido de dfrobot: https://image.dfrobot.com/image/data/DFR0067/DFR0067_DS_10_en.pdf
- Espressif Systems. (21 de Fevereiro de 2022). *ESP32 Series*. Obtido de www.espressif.com: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_e
 - https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
- fnac-static. (20 de Fevereiro de 2022). Obtido de https://static.fnac-static.com/multimedia/Images/PT/NR/67/05/62/6423911/1540-1.jpg
- *lotone*. (22 de Fevereiro de 2022). Obtido de https://www.iotone.com/files/vendor/logo_Thingspeak.jpg
- Sistema de Monitorização de Estações Meteorológicas. (20 de Fevereiro de 2022). Obtido de Blackboard: elearning.uminho.pt
- sparkfun. (20 de Fevereiro de 2022). Obtido de https://cdn.sparkfun.com//assets/parts/3/3/4/5/09567-01-Working.jpg