With that, let's get down to business! First, we need to define some hyperparameters, choose the optimizer, the loss function and the metrics (just the MAE in this example):

```
n = 5
   batch_size = 32
   n steps = len(X train) // batch size
   optimizer = keras.optimizers.Nadam(lr=0.01)
   loss fn = keras.losses.mean squared error
   mean loss = keras.metrics.Mean()
   metrics = [keras.metrics.MeanAbsoluteError()]
And now we are ready to build the custom loop!
    for epoch in range(1, n_epochs + 1):
       print("Epoch {}/{}".format(epoch, n_epochs))
       for step in range(1, n_steps + 1):
           X_batch, y_batch = random_batch(X_train_scaled, y_train)
           with tf.GradientTape() as tape:
               y pred = model(X batch, training=True)
               main loss = tf.reduce_mean(loss_fn(y_batch, y_pred))
               loss = tf.add_n([main_loss] + model.losses)
           gradients = tape.gradient(loss, model.trainable_variables)
           optimizer.apply_gradients(zip(gradients, model.trainable_variables))
           mean_loss(loss)
           for metric in metrics:
               metric(y batch, y pred)
           print_status_bar(step * batch_size, len(y_train), mean_loss, metrics)
       print_status_bar(len(y_train), len(y_train), mean_loss, metrics)
       for metric in [mean loss] + metrics:
           metric.reset_states()
```

There's a lot going on in this code, so let's walk through it:

- We create two nested loops: one for the epochs, the other for the batches within an epoch.
- Then we sample a random batch from the training set.
- Inside the tf.GradientTape() block, we make a prediction for one batch (using the model as a function), and we compute the loss: it is equal to the main loss plus the other losses (in this model, there is one regularization loss per layer). Since the mean_squared_error() function returns one loss per instance, we compute the mean over the batch using tf.reduce_mean() (if you wanted to apply different weights to each instance, this is where you would do it). The regularization losses are already reduced to a single scalar each, so we just need to sum them (using tf.add_n(), which sums multiple tensors of the same shape and data type).

- Next, we ask the tape to compute the gradient of the loss with regards to each trainable variable (not all variables!), and we apply them to the optimizer to perform a Gradient Descent step.
- Next we update the mean loss and the metrics (over the current epoch), and we display the status bar.
- At the end of each epoch, we display the status bar again to make it look complete11 and to print a line feed, and we reset the states of the mean loss and the metrics.

If you set the optimizer's clipnorm or clipvalue hyperparameters, it will take care of this for you. If you want to apply any other transformation to the gradients, simply do so before calling the apply_gradients() method.

If you add weight constraints to your model (e.g., by setting kernel_constraint or bias_constraint when creating a layer), you should update the training loop to apply these constraints just after apply_gradients():

```
for variable in model.variables:
   if variable.constraint is not None:
       variable.assign(variable.constraint(variable))
```

Most importantly, this training loop does not handle layers that behave differently during training and testing (e.g., BatchNormalization or Dropout). To handle these, you need to call the model with training=True and make sure it propagates this to every layer that needs it.12

As you can see, there are quite a lot of things you need to get right, it is easy to make a mistake. But on the bright side, you get full control, so it's your call.

Now that you know how to customize any part of your models¹³ and training algorithms, let's see how you can use TensorFlow's automatic graph generation feature: it can speed up your custom code considerably, and it will also make it portable to any platform supported by TensorFlow (see ???).

TensorFlow Functions and Graphs

In TensorFlow 1, graphs were unavoidable (as were the complexities that came with them): they were a central part of TensorFlow's API. In TensorFlow 2, they are still

¹¹ The truth is we did not process every single instance in the training set because we sampled instances randomly, so some were processed more than once while others were not processed at all. In practice that's fine. Moreover, if the training set size is not a multiple of the batch size, we will miss a few instances.

¹² Alternatively, check out K.learning_phase(), K.set_learning_phase() and K.learning_phase_scope().

¹³ With the exception of optimizers, as very few people ever customize these: see the notebook for an example.

there, but not as central, and much (much!) simpler to use. To demonstrate this, let's start with a trivial function that just computes the cube of its input:

```
def cube(x):
    return x ** 3
```

We can obviously call this function with a Python value, such as an int or a float, or we can call it with a tensor:

```
>>> cube(2)
>>> cube(tf.constant(2.0))
<tf.Tensor: id=18634148, shape=(), dtype=float32, numpy=8.0>
```

Now, let's use tf.function() to convert this Python function to a TensorFlow Function:

```
>>> tf_cube = tf.function(cube)
>>> tf_cube
<tensorflow.python.eager.def function.Function at 0x1546fc080>
```

This TF Function can then be used exactly like the original Python function, and it will return the same result (but as tensors):

```
>>> tf cube(2)
<tf.Tensor: id=18634201, shape=(), dtype=int32, numpy=8>
>>> tf cube(tf.constant(2.0))
<tf.Tensor: id=18634211, shape=(), dtype=float32, numpy=8.0>
```

Under the hood, tf.function() analyzed the computations performed by the cube() function and generated an equivalent computation graph! As you can see, it was rather painless (we will see how this works shortly). Alternatively, we could have used tf.function as a decorator; this is actually more common:

```
@tf.function
def tf cube(x):
    return x ** 3
```

The original Python function is still available via the TF Function's python_function attribute, in case you ever need it:

```
>>> tf_cube.python_function(2)
```

TensorFlow optimizes the computation graph, pruning unused nodes, simplifying expressions (e.g., 1 + 2 would get replaced with 3), and more. Once the optimized graph is ready, the TF Function efficiently executes the operations in the graph, in the appropriate order (and in parallel when it can). As a result, a TF Function will usually run much faster than the original Python function, especially if it performs complex computations.¹⁴ Most of the time you will not really need to know more than that: when you want to boost a Python function, just transform it into a TF Function. That's all!

Moreover, when you write a custom loss function, a custom metric, a custom layer or any other custom function, and you use it in a Keras model (as we did throughout this chapter), Keras automatically converts your function into a TF Function, no need to use tf.function(). So most of the time, all this magic is 100% transparent.

You can tell Keras *not* to convert your Python functions to TF Functions by setting dynamic=True when creating a custom layer or a custom model. Alternatively, you can set run_eagerly=True when calling the model's compile() method.

TF Function generates a new graph for every unique set of input shapes and data types, and it caches it for subsequent calls. For example, if you call tf_cube(tf.con stant(10)), a graph will be generated for int32 tensors of shape []. Then if you call tf_cube(tf.constant(20)), the same graph will be reused. But if you then call tf_cube(tf.constant([10, 20])), a new graph will be generated for int32 tensors of shape [2]. This is how TF Functions handle polymorphism (i.e., varying argument types and shapes). However, this is only true for tensor arguments: if you pass numerical Python values to a TF Function, a new graph will be generated for every distinct value: for example, calling tf_cube(10) and tf_cube(20) will generate two graphs.

If you call a TF Function many times with different numerical Python values, then many graphs will be generated, slowing down your program and using up a lot of RAM. Python values should be reserved for arguments that will have few unique values, such as hyperparameters like the number of neurons per layer. This allows TensorFlow to better optimize each variant of your model.

Autograph and Tracing

So how does TensorFlow generate graphs? Well, first it starts by analyzing the Python function's source code to capture all the control flow statements, such as for loops and while loops, if statements, as well as break, continue and return statements. This first step is called *autograph*. The reason TensorFlow has to analyze the source code is that Python does not provide any other way to capture control flow statements: it offers magic methods like __add__() or __mul__() to capture operators like

¹⁴ However, in this trivial example, the computation graph is so small that there is nothing at all to optimize, so tf_cube() actually runs much slower than cube().

+ and *, but there are no __while__() or __if__() magic methods. After analyzing the function's code, autograph outputs an upgraded version of that function in which all the control flow statements are replaced by the appropriate TensorFlow operations, such as tf.while_loop() for loops and tf.cond() for if statements. For example, in Figure 12-4, autograph analyzes the source code of the sum_squares() Python function, and it generates the tf__sum_squares() function. In this function, the for loop is replaced by the definition of the loop_body() function (containing the body of the original for loop), followed by a call to the for_stmt() function. This call will build the appropriate tf.while_loop() operation in the computation graph.

Figure 12-4. How TensorFlow generates graphs using autograph and tracing

Next, TensorFlow calls this "upgraded" function, but instead of passing the actual argument, it passes a *symbolic tensor*, meaning a tensor without any actual value, only a name, a data type, and a shape. For example, if you call <code>sum_squares(tf.constant(10))</code>, then the <code>tf__sum_squares()</code> function will actually be called with a symbolic tensor of type int32 and shape []. The function will run in *graph mode*, meaning that each TensorFlow operation will just add a node in the graph to represent itself and its output tensor(s) (as opposed to the regular mode, called *eager execution*, or *eager mode*). In graph mode, TF operations do not perform any actual computations. This should feel familiar if you know TensorFlow 1, as graph mode was the default mode. In Figure 12-4, you can see the <code>tf__sum_squares()</code> function being called with a symbolic tensor as argument (in this case, an int32 tensor of shape []), and the final graph generated during tracing. The ellipses represent operations, and the arrows represent tensors (both the generated function and the graph are simplified).

To view the generated function's source code, you can call tf.auto graph.to_code(sum_squares.python_function). The code is not meant to be pretty, but it can sometimes help for debugging.

TF Function Rules

Most of the time, converting a Python function that performs TensorFlow operations into a TF Function is trivial: just decorate it with <code>@tf.function</code> or let Keras take care of it for you. However, there are a few rules to respect:

- If you call any external library, including NumPy or even the standard library, this call will run only during tracing, it will not be part of the graph. Indeed, a TensorFlow graph can only include TensorFlow constructs (tensors, operations, variables, datasets, and so on). So make sure you use tf.reduce_sum() instead of np.sum(), and tf.sort() instead of the built-in sorted() function, and so on (unless you really want the code to run only during tracing).
 - For example, if you define a TF function f(x) that just returns np.ran dom.rand(), a random number will only be generated when the function is traced, so f(tf.constant(2.)) and f(tf.constant(3.)) will return the same random number, but f(tf.constant([2., 3.])) will return a different one. If you replace np.random.rand() with tf.random.uniform([]), then a new random number will be generated upon every call, since the operation will be part of the graph.
 - If your non-TensorFlow code has side-effects (such as logging something or updating a Python counter), then you should not expect that side-effect to occur every time you call the TF Function, as it will only occur when the function is traced.
 - You can wrap arbitrary Python code in a tf.py_function() operation, but this will hinder performance, as TensorFlow will not be able to do any graph optimization on this code, and it will also reduce portability, as the graph will only run on platforms where Python is available (and the right libraries installed).
- You can call other Python functions or TF Functions, but they should follow the same rules, as TensorFlow will also capture their operations in the computation graph. Note that these other functions do not need to be decorated with <code>@tf.function</code>.
- If the function creates a TensorFlow variable (or any other stateful TensorFlow object, such as a dataset or a queue), it must do so upon the very first call, and only then, or else you will get an exception. It is usually preferable to create variables outside of the TF Function (e.g., in the build() method of a custom layer).

- The source code of your Python function should be available to TensorFlow. If the source code is unavailable (for example, if you define your function in the Python shell, which does not give access to the source code, or if you deploy only the compiled Python files *.pyc to production), then the graph generation process will fail or have limited functionality.
- TensorFlow will only capture for loops that iterate over a tensor or a Dataset. So make sure you use for i in tf.range(10) rather than for i in range(10), or else the loop will not be captured in the graph. Instead, it will run during tracing. This may be what you want, if the for loop is meant to build the graph, for example to create each layer in a neural network.
- And as always, for performance reasons, you should prefer a vectorized implementation whenever you can, rather than using loops.

It's time to sum up! In this chapter we started with a brief overview of TensorFlow, then we looked at TensorFlow's low-level API, including tensors, operations, variables and special data structures. We then used these tools to customize almost every component in tf.keras. Finally, we looked at how TF Functions can boost performance, how graphs are generated using autograph and tracing, and what rules to follow when you write TF Functions (if you would like to open the black box a bit further, for example to explore the generated graphs, you will find further technical details in ???).

In the next chapter, we will look at how to efficiently load and preprocess data with TensorFlow.

Loading and Preprocessing Data with TensorFlow

With Early Release ebooks, you get books in their earliest form—the author's raw and unedited content as he or she writes—so you can take advantage of these technologies long before the official release of these titles. The following will be Chapter 13 in the final release of the book.

So far we have used only datasets that fit in memory, but Deep Learning systems are often trained on very large datasets that will not fit in RAM. Ingesting a large dataset and preprocessing it efficiently can be tricky to implement with other Deep Learning libraries, but TensorFlow makes it easy thanks to the *Data API*: you just create a dataset object, tell it where to get the data, then transform it in any way you want, and TensorFlow takes care of all the implementation details, such as multithreading, queuing, batching, prefetching, and so on.

Off the shelf, the Data API can read from text files (such as CSV files), binary files with fixed-size records, and binary files that use TensorFlow's TFRecord format, which supports records of varying sizes. TFRecord is a flexible and efficient binary format based on Protocol Buffers (an open source binary format). The Data API also has support for reading from SQL databases. Moreover, many Open Source extensions are available to read from all sorts of data sources, such as Google's BigQuery service.

However, reading huge datasets efficiently is not the only difficulty: the data also needs to be preprocessed. Indeed, it is not always composed strictly of convenient numerical fields: sometimes there will be text features, categorical features, and so on. To handle this, TensorFlow provides the *Features API*: it lets you easily convert these features to numerical features that can be consumed by your neural network. For

example, categorical features with a large number of categories (such as cities, or words) can be encoded using *embeddings* (as we will see, an embedding is a trainable dense vector that represents a category).

Both the Data API and the Features API work seamlessly with tf.keras.

In this chapter, we will cover the Data API, the TFRecord format and the Features API in detail. We will also take a quick look at a few related projects from Tensor-Flow's ecosystem:

- TF Transform (tf.Transform) makes it possible to write a single preprocessing function that can be run both in batch mode on your full training set, before training (to speed it up), and then exported to a TF Function and incorporated into your trained model, so that once it is deployed in production, it can take care of preprocessing new instances on the fly.
- TF Datasets (TFDS) provides a convenient function to download many common datasets of all kinds, including large ones like ImageNet, and it provides convenient dataset objects to manipulate them using the Data API.

So let's get started!

The Data API

The whole Data API revolves around the concept of a *dataset*: as you might suspect, this represents a sequence of data items. Usually you will use datasets that gradually read data from disk, but for simplicity let's just create a dataset entirely in RAM using tf.data.Dataset.from tensor slices():

```
>>> X = tf.range(10) # any data tensor
>>> dataset = tf.data.Dataset.from_tensor_slices(X)
<TensorSliceDataset shapes: (), types: tf.int32>
```

The from tensor slices() function takes a tensor and creates a tf.data.Dataset whose elements are all the slices of X (along the first dimension), so this dataset contains 10 items: tensors 0, 1, 2, ..., 9. In this case we would have obtained the same dataset if we had used tf.data.Dataset.range(10).

You can simply iterate over a dataset's items like this:

```
>>> for item in dataset:
        print(item)
```