Pequeñas oscilaciones

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

27 de septiembre de 2024

Agenda

- Pequeñas oscilaciones 1D
- Oscilaciones con varios grados de libertad
- Sección
- 4 Ejemplo: Osciladores Acoplados

ullet Como vimos en la clase de estabiliad dado un ${\cal L}=rac{1}{2}c\dot{q}^2-V_{
m ef}(q)$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{\rm ef}\left(q_0\right)=0\Rightarrow \left.\frac{\partial V_{\rm ef}}{\partial q}\right|_{q_0}=0$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{\rm ef}\left(q_0\right)=0\Rightarrow \left.\frac{\partial V_{\rm ef}}{\partial q}\right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{
 m ef}\left(q_0
 ight)=0\Rightarrow \left. rac{\partial V_{
 m ef}}{\partial q}\right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$
- Igual que en el caso anterior perturbamos alrededor del mínimo

3/9

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{
 m ef}\left(q_0
 ight)=0 \Rightarrow \left. rac{\partial V_{
 m ef}}{\partial q} \right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$
- Igual que en el caso anterior perturbamos alrededor del mínimo

ullet Desarrollamos por Taylor, $V_{
m ef}\left(q
ight)$ alrededor de $q=q_0$, y tenemos

$$V_{ ext{ef}}(q) = V_{ ext{ef}}\left(q_0 + \eta
ight) = V\left(q_0
ight) + \left. rac{\partial V_{ ext{ef}}}{\partial q} \right|_{q_0} \eta + \left. rac{1}{2} rac{\partial^2 V_{ ext{ef}}}{\partial q^2} \right|_{q_0} \eta^2 + \cdots,$$

• Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-\mathcal{K}\left(q-q_{0}
 ight)\equiv-\mathcal{K}\eta$

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-K\left(q-q_{0}
 ight)\equiv-K\eta$
- Entonces, $\ddot{\eta} + \omega^2 \eta = 0$, donde $\omega^2 \equiv \frac{\kappa}{c} = \frac{1}{c} \frac{\partial^2 V_{\rm ef}}{\partial q^2} \Big|_{q_0}$ es la frecuencia angular de las pequeñas oscilaciones alrededor de q_0 .

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-K\left(q-q_0
 ight)\equiv -K\eta$
- Entonces, $\ddot{\eta} + \omega^2 \eta = 0$, donde $\omega^2 \equiv \frac{\kappa}{c} = \frac{1}{c} \frac{\partial^2 V_{\rm ef}}{\partial q^2} \Big|_{q_0}$ es la frecuencia angular de las pequeñas oscilaciones alrededor de q_0 .
- Que tendrá como solución $\eta(t) = c_1 \cos \omega t + c_2 \sin \omega t = A \cos(\omega t + \varphi) \equiv \text{Re}\left[Ae^{i(\omega t + \varphi)}\right] = \text{Re}\left(ae^{i\omega t}\right)$ donde $a = Ae^{i\varphi}$ es la amplitud compleja

4/9

• Dado un sistema con s grados de libertad $\{q_i : i = 1, ..., s\}$ con energía potencial $V(q_1, ..., q_s)$.

- Dado un sistema con s grados de libertad $\{q_i : i = 1, ..., s\}$ con energía potencial $V(q_1, ..., q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

- Dado un sistema con s grados de libertad $\{q_i : i = 1, ..., s\}$ con energía potencial $V(q_1, ..., q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

ullet Perturbando las q_i , tendremos $q_i=q_{0i}+\eta_i,$ con $\eta_i o 0$ $\left(rac{\eta_i}{q_{0i}}\ll 1
ight)$

- Dado un sistema con s grados de libertad $\{q_i: i=1,\ldots,s\}$ con energía potencial $V(q_1,\ldots,q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

- ullet Perturbando las q_i , tendremos $q_i=q_{0i}+\eta_i,$ con $\eta_i o 0$ $\left(rac{\eta_i}{q_{0i}}\ll 1
 ight)$
- El valor del potencial $V(q_1, ..., q_s)$ cerca de la configuración de equilibrio se obtiene de la expansión de Taylor en varias variables de $V(q_1, ..., q_s)$ alrededor de $\{q_{0i}\}$, con $q_i = q_{0i} + \eta_{ir}$

• Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01},...,q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\}=(q_{01},...,q_{0s})$.

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V\left(q_1,\ldots,q_s\right) = V\left(\eta_1,\ldots,\eta_s\right) = \frac{1}{2}\sum_{i,j}V_{ij}\eta_i\eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{1}{q_{0i}} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$
- La energía cinética del sistema es $T = \frac{1}{2} \sum_{i,j} T_{ij} \dot{q}_i \dot{q}_j$ donde los coeficientes $T_{ij} = T_{ji}$ representan parámetros constantes que dependen de propiedades del sistema (masas, longitudes, etc).

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{1}{q_{0i}} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$
- La energía cinética del sistema es $T=\frac{1}{2}\sum_{i,j}T_{ij}\dot{q}_i\dot{q}_j$ donde los coeficientes $T_{ij}=T_{ji}$ representan parámetros constantes que dependen de propiedades del sistema (masas, longitudes, etc).
- Para pequeños desplazamientos $T=rac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$
- La energía cinética del sistema es $T=\frac{1}{2}\sum_{i,j}T_{ij}\dot{q}_i\dot{q}_j$ donde los coeficientes $T_{ij}=T_{ji}$ representan parámetros constantes que dependen de propiedades del sistema (masas, longitudes, etc).
- Para pequeños desplazamientos $T=rac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$
- El Lagrangiano del sistema cerca de la configuración de equilibrio es $\mathcal{L} = T V = \frac{1}{2} \sum_{i,j} (T_{ij} \dot{\eta}_i \dot{\eta}_j V_{ij} \eta_i \eta_j)$ $i,j = 1,2,\ldots,s$

• La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\eta}_k}\right) - \frac{\partial L}{\partial \eta_k} = 0$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\eta}_k}\right) \frac{\partial L}{\partial \eta_k} = 0$
- $\frac{\partial L}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\eta}_k}\right) \frac{\partial L}{\partial \eta_k} = 0$
- $\frac{\partial L}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial L}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\eta}_k}\right) \frac{\partial L}{\partial \eta_k} = 0$
- $\frac{\partial L}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial L}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\eta}_k}\right) \frac{\partial L}{\partial \eta_k} = 0$
- $\frac{\partial L}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial L}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.
- Como la solución es $\eta_j(t) = a_j e^{i\omega t}$ tenemos $\sum_j \left(-\omega^2 T_{kj} + V_{kj} \right) a_j e^{i\omega t} = 0 \quad \Rightarrow \sum_n \left(V_{mn} \omega^2 T_{mn} \right) a_n = 0$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\eta}_k}\right) \frac{\partial L}{\partial \eta_k} = 0$
- $\frac{\partial L}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial L}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.
- Como la solución es $\eta_j(t) = a_j e^{i\omega t}$ tenemos $\sum_j \left(-\omega^2 T_{kj} + V_{kj} \right) a_j e^{i\omega t} = 0 \quad \Rightarrow \sum_n \left(V_{mn} \omega^2 T_{mn} \right) a_n = 0$
- Es decir, para dos grados de libertad s = 1,2 tendremos

$$m = 1 : (V_{11} - \omega^2 T_{11}) a_1 + (V_{12} - \omega^2 T_{12}) a_2 = 0$$

 $m = 2 : (V_{21} - \omega^2 T_{21}) a_1 + (V_{22} - \omega^2 T_{22}) a_2 = 0$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\eta}_k}\right) \frac{\partial L}{\partial \eta_k} = 0$
- $\frac{\partial L}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial L}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.
- Como la solución es $\eta_j(t) = a_j e^{i\omega t}$ tenemos $\sum_j \left(-\omega^2 T_{kj} + V_{kj} \right) a_j e^{i\omega t} = 0 \quad \Rightarrow \sum_n \left(V_{mn} \omega^2 T_{mn} \right) a_n = 0$
- Es decir, para dos grados de libertad s=1,2 tendremos $m=1: (V_{11}-\omega^2 T_{11}) a_1 + (V_{12}-\omega^2 T_{12}) a_2 = 0$ $m=2: (V_{21}-\omega^2 T_{21}) a_1 + (V_{22}-\omega^2 T_{22}) a_2 = 0$
- En general, existe solución no trivial $\eta_j(t) \neq 0$ si $a_j \neq 0, \forall j$, cuando det $|V_{ij} \omega^2 T_{ij}| = 0$. Las frecuencias características ω deben ser reales para que las soluciones tengan sentido físico.

 Encontrar las frecuencias de oscilación para un sistema de dos partículas de masa m conectadas com resortes horizontales, de constantes k y longitud en reposo I.

• El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,

- El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,
- La energía cinética para pequeños desplazamientos del equilibrio es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}m\dot{\eta}_2^2=\frac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$, con $T_{11}=m,\quad T_{22}=m,\quad T_{12}=T_{21}=0$

- El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,
- La energía cinética para pequeños desplazamientos del equilibrio es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}m\dot{\eta}_2^2=\frac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$, con $T_{11}=m,\quad T_{22}=m,\quad T_{12}=T_{21}=0$
- La energía potencial del sistema para pequeños desplazamientos es $V = \frac{1}{2}k\eta_1^2 + \frac{1}{2}k\left(l'-l\right)^2 + \frac{1}{2}k\eta_2^2 = \frac{1}{2}k\left[\eta_1^2 + (\eta_2 \eta_1)^2 + \eta_2^2\right]$

- El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,
- La energía cinética para pequeños desplazamientos del equilibrio es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}m\dot{\eta}_2^2=\frac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$, con $T_{11}=m,\quad T_{22}=m,\quad T_{12}=T_{21}=0$
- La energía potencial del sistema para pequeños desplazamientos es $V = \frac{1}{2}k\eta_1^2 + \frac{1}{2}k\left(l'-l\right)^2 + \frac{1}{2}k\eta_2^2 = \frac{1}{2}k\left[\eta_1^2 + (\eta_2 \eta_1)^2 + \eta_2^2\right]$
- Donde $I' I = (x_2 x_1) (x_{02} x_{01}) = \eta_2 \eta_1$

• Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 - 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- $\bullet \ \, \text{Por lo tanto} \, \left| \begin{array}{cc} V_{11} \omega^2 \, T_{11} & V_{12} \omega^2 \, T_{12} \\ V_{21} \omega^2 \, T_{21} & V_{22} \omega^2 \, T_{22} \end{array} \right| = 0$

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- Por lo tanto $\left| \begin{array}{cc} V_{11} \omega^2 T_{11} & V_{12} \omega^2 T_{12} \\ V_{21} \omega^2 T_{21} & V_{22} \omega^2 T_{22} \end{array} \right| = 0$
- Es decir $\begin{vmatrix} 2k \omega^2 m & -k \\ -k & 2k \omega^2 m \end{vmatrix} = 0$

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- $\bullet \ \, \text{Por lo tanto} \, \left| \begin{array}{cc} V_{11} \omega^2 T_{11} & V_{12} \omega^2 T_{12} \\ V_{21} \omega^2 T_{21} & V_{22} \omega^2 T_{22} \end{array} \right| = 0$
- Es decir $\begin{vmatrix} 2k \omega^2 m & -k \\ -k & 2k \omega^2 m \end{vmatrix} = 0$
- La ecuación característica resultante es $\left(2k \omega^2 m\right)^2 k^2 = 0 \Rightarrow 2k \omega^2 m = \pm k \Rightarrow \omega^2 = \frac{2k \pm k}{m}$

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- $\bullet \ \, \text{Por lo tanto} \, \left| \begin{array}{cc} V_{11} \omega^2 T_{11} & V_{12} \omega^2 T_{12} \\ V_{21} \omega^2 T_{21} & V_{22} \omega^2 T_{22} \end{array} \right| = 0$
- Es decir $\begin{vmatrix} 2k \omega^2 m & -k \\ -k & 2k \omega^2 m \end{vmatrix} = 0$
- La ecuación característica resultante es $(2k \omega^2 m)^2 k^2 = 0 \Rightarrow 2k \omega^2 m = \pm k \Rightarrow \omega^2 = \frac{2k \pm k}{m}$
- Finalmente $\omega_1 = \sqrt{\frac{3k}{m}}, \quad \omega_2 = \sqrt{\frac{k}{m}}$