SBML Model Report

Model name: "Olsen2003_peroxidase"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Nicolas Le Novre¹ and Jacky L Snoep² at August 22nd 2005 at 10:49 p. m. and last time modified at April eighth 2016 at 3:21 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	16
events	0	constraints	0
reactions	15	function definitions	0
global parameters	0	unit definitions	1
rules	0	initial assignments	0

Model Notes

Notes of the BioModels curators:

The current model reproduce the figure 7, panel B of the paper. Note that there is a typo in the figure. The ordinates represent the concentration of peroxyde, as stated in the legend, and not of oxygen. The model has been tested in COPASI (http://www.copasi.org/, build 13).

Notes of the original version of the SBML file:

¹EMBL-EBI, lenov@ebi.ac.uk

²Stellenbosh University, jls@sun.ac.za

SBML level 2 code generated for the JWS Online project by Jacky Snoep using PySCeS Run this model online at http://jjj.biochem.sun.ac.za

To cite JWS Online please refer to: Olivier, B.G. and Snoep, J.L. (2004) Web-based modelling using JWS Online, Bioinformatics, 20:2143-2144

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micromole

Definition µmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

 $\mbox{\bf Notes}\,$ Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment			3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 16 species. The boundary condition of four of these species is set to true so that these species' amount cannot be changed by any reaction. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
NADH		compartment	$\mu mol \cdot l^{-1}$		
02		compartment	$\mu mol \cdot l^{-1}$		\Box
H202		compartment	$\mu mol \cdot l^{-1}$		
per3		compartment	$\mu mol \cdot l^{-1}$		
coI		compartment	μ mol·l ⁻¹		
ArH		compartment	$\mu mol \cdot l^{-1}$		
coII		compartment	$\mu mol \cdot l^{-1}$		
Ar		compartment	$\mu mol \cdot l^{-1}$		
NADrad		compartment	$\mu mol \cdot l^{-1}$		
super		compartment	$\mu mol \cdot l^{-1}$		
coIII		compartment	$\mu mol \cdot l^{-1}$		
per2		compartment	$\mu mol \cdot l^{-1}$		
NAD2		compartment	$\mu mol \cdot l^{-1}$		
NAD		compartment	$\mu mol \cdot l^{-1}$		\square
02g		compartment	$\mu mol \cdot l^{-1}$	\Box	
NADHres		compartment	$\mu mol \cdot l^{-1}$	\Box	

5 Reactions

This model contains 15 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1	v1		$NADH + O2 \longrightarrow H2O2 + NAD$	
2	v2		$per3 + H2O2 \longrightarrow coI$	
3	v3		$ArH + coI \longrightarrow Ar + coII$	
4	v4		$coII + ArH \longrightarrow per3 + Ar$	
5	v5		$NADrad + O2 \longrightarrow NAD + super$	
6	v6		$per3 + super \longrightarrow coIII$	
7	v7		$2 \operatorname{super} \longrightarrow H2O2 + O2$	
8	v8		$NADrad + coIII \longrightarrow NAD + coI$	
9	v9		$2 \text{ NADrad} \longrightarrow \text{NAD2}$	
10	v10		$per3 + NADrad \longrightarrow per2 + NAD$	
11	v11		$per2 + O2 \longrightarrow coIII$	
12	v12		NADHres NADH	
13	v131		$O2g \longrightarrow O2$	
14	v132		$O2 \longrightarrow O2g$	
15	v14		$NADH + Ar \longrightarrow NADrad + ArH$	

5.1 Reaction v1

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$NADH + O2 \longrightarrow H2O2 + NAD \tag{1}$$

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
NADH		
02		

Products

Table 6: Properties of each product.

Id	Name	SBO
H202		
NAD		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{compartment}\right) \cdot \text{k1} \cdot [\text{NADH}] \cdot [\text{O2}]$$
 (2)

Table 7: Properties of each parameter.

Id	Name	SBO V	Value	Unit	Constant
k1		3	$\cdot 10^{-6}$		✓

5.2 Reaction v2

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$per3 + H2O2 \longrightarrow coI \tag{3}$$

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
per3 H202		

Product

Table 9: Properties of each product.

Id	Name	SBO
coI		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \text{k2} \cdot [\text{H2O2}] \cdot [\text{per3}]$$
 (4)

Table 10: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k2		18.0	\overline{Z}

5.3 Reaction v3

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$ArH + coI \longrightarrow Ar + coII$$
 (5)

Reactants

Table 11: Properties of each reactant.

Id	Name	SBO
ArH		
coI		

Products

Table 12: Properties of each product.

Id	Name	SBO
Ar		
coII		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol} (\text{compartment}) \cdot \text{k3} \cdot [\text{coI}] \cdot [\text{ArH}]$$
 (6)

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k3		0.15	

5.4 Reaction v4

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$coII + ArH \longrightarrow per3 + Ar \tag{7}$$

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
coII ArH		

Products

Table 15: Properties of each product.

Id	Name	SBO
per3 Ar		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{compartment}\right) \cdot \text{k4} \cdot [\text{coII}] \cdot [\text{ArH}]$$
 (8)

Table 16: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k4		0.005	

5.5 Reaction v5

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$NADrad + O2 \longrightarrow NAD + super$$
 (9)

Reactants

Table 17: Properties of each reactant.

Id	Name	SBO
NADrad		
02		

Products

Table 18: Properties of each product.

Id	Name	SBO
NAD		

Id	Name	SBO
super		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{compartment}) \cdot \text{k5} \cdot [\text{NADrad}] \cdot [\text{O2}]$$
 (10)

Table 19: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k5		20.0	

5.6 Reaction v6

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$per3 + super \longrightarrow coIII$$
 (11)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
per3		
super		

Product

Table 21: Properties of each product.

Id	Name	SBO
coIII		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{compartment}\right) \cdot \text{k6} \cdot [\text{super}] \cdot [\text{per3}]$$
 (12)

Table 22: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k6		17.0	$\overline{\mathbf{Z}}$

5.7 Reaction v7

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$2 \operatorname{super} \longrightarrow H2O2 + O2 \tag{13}$$

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
super		

Products

Table 24: Properties of each product.

Id	Name	SBO
H202		
02		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{compartment}) \cdot \text{k7} \cdot [\text{super}] \cdot [\text{super}]$$
 (14)

Table 25: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k7		20.0	\overline{Z}

5.8 Reaction v8

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$NADrad + coIII \longrightarrow NAD + coI$$
 (15)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
NADrad		
coIII		

Products

Table 27: Properties of each product.

Id	Name	SBO
NAD		
coI		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}\left(\text{compartment}\right) \cdot \text{k8} \cdot [\text{coIII}] \cdot [\text{NADrad}]$$
 (16)

Table 28: Properties of each parameter.

		· r · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO Value Unit	Constant
k8		40.0	

5.9 Reaction v9

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$2 \, NADrad \longrightarrow NAD2 \tag{17}$$

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
NADrad		

Product

Table 30: Properties of each product.

Id	Name	SBO
NAD2		

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}\left(\text{compartment}\right) \cdot \text{k9} \cdot [\text{NADrad}] \cdot [\text{NADrad}]$$
 (18)

Table 31: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k9		60.0	$\overline{\mathbf{Z}}$

5.10 Reaction v10

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$per3 + NADrad \longrightarrow per2 + NAD$$
 (19)

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
per3 NADrad		

Products

Table 33: Properties of each product.

Id	Name	SBO
per2 NAD		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{compartment}\right) \cdot \text{k10} \cdot [\text{per3}] \cdot [\text{NADrad}]$$
 (20)

Table 34: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k10		1.8	

5.11 Reaction v11

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$per2 + O2 \longrightarrow coIII$$
 (21)

Reactants

Table 35: Properties of each reactant.

Id	Name	SBO
per2 02		

Product

Table 36: Properties of each product.

Id	Name	SBO
coIII		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{compartment}) \cdot \text{k11} \cdot [\text{per2}] \cdot [\text{O2}]$$
 (22)

Table 37: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k11		0.1	

5.12 Reaction v12

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$NADHres \longrightarrow NADH \tag{23}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
NADHres		

Product

Table 39: Properties of each product.

Id	Name	SBO
NADH		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol} \left(\text{compartment} \right) \cdot \text{k12}$$
 (24)

Table 40: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k12		0.08	

5.13 Reaction v131

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$O2g \longrightarrow O2$$
 (25)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
02g		

Product

Table 42: Properties of each product.

Id	Name	SBO
02		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{compartment}\right) \cdot \text{k13f} \cdot [\text{O2g}]$$
 (26)

Table 43: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k13f		0.006	

5.14 Reaction v132

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$O2 \longrightarrow O2g$$
 (27)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
02		

Product

Table 45: Properties of each product.

Id	Name	SBO
02g		

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{compartment}\right) \cdot \text{k13b} \cdot [\text{O2}]$$
 (28)

Table 46: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k13b		0.006	

5.15 Reaction v14

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$NADH + Ar \longrightarrow NADrad + ArH$$
 (29)

Reactants

Table 47: Properties of each reactant.

Id	Name	SBO
NADH		
Ar		

Products

Table 48: Properties of each product.

Id	Name	SBO
NADrad		
ArH		

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{compartment}) \cdot \text{k14} \cdot [\text{Ar}] \cdot [\text{NADH}]$$
 (30)

Table 49: Properties of each parameter.

Id	Name	 Value Unit	Constant
k14		0.7	

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of

SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

6.1 Species NADH

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v1, v14 and as a product in v12).

$$\frac{d}{dt}NADH = |v_{12}| - |v_{1}| - |v_{15}|$$
(31)

6.2 Species 02

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v1, v5, v11, v132 and as a product in v7, v131).

$$\frac{\mathrm{d}}{\mathrm{d}t}O2 = |v_7| + |v_{13}| - |v_1| - |v_5| - |v_{11}| - |v_{14}|$$
(32)

6.3 Species H202

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v2 and as a product in v1, v7).

$$\frac{d}{dt}H2O2 = |v_1| + |v_7| - |v_2| \tag{33}$$

6.4 Species per3

Initial concentration $1.4 \, \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v2, v6, v10 and as a product in v4).

$$\frac{d}{dt}per3 = |v_4| - |v_2| - |v_6| - |v_{10}|$$
(34)

6.5 Species coI

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v3 and as a product in v2, v8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{coI} = |v_2| + |v_8| - |v_3| \tag{35}$$

6.6 Species ArH

Initial concentration $500 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v3, v4 and as a product in v14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ArH} = |v_{15}| - |v_3| - |v_4| \tag{36}$$

6.7 Species coII

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v4 and as a product in v3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{coII} = v_3 - v_4 \tag{37}$$

6.8 Species Ar

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v14 and as a product in v3, v4).

$$\frac{d}{dt}Ar = |v_3| + |v_4| - |v_{15}| \tag{38}$$

6.9 Species NADrad

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v5, v8, v9, v10 and as a product in v14).

$$\frac{d}{dt}NADrad = |v_{15}| - |v_{5}| - |v_{8}| - 2|v_{9}| - |v_{10}|$$
(39)

6.10 Species super

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v6, v7 and as a product in v5).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{super} = v_5 - v_6 - 2 v_7 \tag{40}$$

6.11 Species coIII

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v8 and as a product in v6, v11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{coIII} = |v_6| + |v_{11}| - |v_8| \tag{41}$$

6.12 Species per2

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v11 and as a product in v10).

$$\frac{d}{dt}per2 = |v_{10} - v_{11}| \tag{42}$$

6.13 Species NAD2

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in v9), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NAD2} = 0\tag{43}$$

6.14 Species NAD

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a product in v1, v5, v8, v10), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NAD} = 0\tag{44}$$

6.15 Species 02g

Initial concentration $12 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v131 and as a product in v132), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{O}2\mathrm{g} = 0\tag{45}$$

6.16 Species NADHres

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in v12), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADHres} = 0\tag{46}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany