Assignment 16

Saransh Bali

Abstract—This is a simple document about representation of a vector space orthogonal complement of its invariant subspaces.

Download latex-tikz from

https://github.com/saranshbali/ EE5609/blob/master/ Assignment16

1 Problem

Let, **T** be the linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \tag{1.0.1}$$

Let W be the null space of T-2I. Prove that W has no complementary T-invariant subspace.

2 Definition and Result used

Invariant Subspaces	Suppose $T \in L(V)$. A subspace U of V is called invariant under T if $u \in U$ implies $T(u) \in U$. Suppose $T \in L(V)$, then null T and range T are invariant subspaces of T .
Complementary T invariant subspace	Suppose we have a vector space V , if V is written as direct sum of its subspaces W and W' , i.e $V = W \bigoplus W'$ and each of W and W' is invariant under T , then we say W has a complementary T invariant subspace.

3 Solution

Nullspace	of T	– 2I
-----------	------	-------------

We Know that Nullspace of a linear operator T is the nullspace of its matrix representation of T w.r.t standard basis. Thus, Nullspace(W) = Nullspace(T - 2I).

Now, Nullspace(
$$\mathbf{T} - 2\mathbf{I}$$
) = Nullspace
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Hence, Nullspace(
$$\mathbf{T} - 2\mathbf{I}$$
) = $\left\{ \begin{pmatrix} 0 \\ k \\ 0 \end{pmatrix} : k \in \mathbb{R} \right\}$
= $\left\{ k \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} : k \in \mathbb{R} \right\}$

Proof

Let
$$\beta = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
. Then

$$(\mathbf{T} - 2\mathbf{I})\beta = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \gamma \in \mathbf{W}$$

Now,

$$(\mathbf{T} - 2\mathbf{I})\gamma = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbf{W}.$$

Now, we assume that **W** has a complementary **T**-invariant subspace **S**. Then β can be written as $\beta = s + w$, $s \in \mathbf{W}$, $w \in \mathbf{W}'$.

Finally, we see that

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = (\mathbf{T} - 2\mathbf{I})\beta = (\mathbf{T} - 2\mathbf{I})(s + w) = (\mathbf{T} - 2\mathbf{I})w \in \mathbf{W}' \text{ as } \mathbf{W}' \text{ is invariant under } \mathbf{T} \text{ and}$$

 $s \in Nullspace W.$

Thus, we coclude that $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in \mathbf{W} \cap \mathbf{W}'$, which is a contradiction. Since, $\mathbf{V} = \mathbf{W} \bigoplus \mathbf{W}'$,

thus
$$\mathbf{W} \cap \mathbf{W}' = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
.

Therefore, W has no complementary T-invariant subspace.