Topological Data Analysis

Lecture 10

Homology representatives

Homology representatives

Homologous cycles

$$z \sim z' \iff z - z' \in B_k$$

$$B_k = \{c \in C_k \mid \partial_{k+1}d = c, \text{ for some } d \in C_{k+1}\}$$

Homology representatives

Optimal cycle

$$z^* = \arg\min_{z} \ell(z_0) \quad s.t.z \sim z_0$$

Boundary matrix

 $\mathbf{B} =$

	1	2	3	4	12	14	23	24	34	234
0		В	3 0							
1										
2							B .			
3							B ₁			
4										
12										
14										
23										B ₂
24										
34										

Boundary matrix

	1	2	3	4	12	14	23	24	34	234
0	1	1	1	1						
1					1	1				
2					1		1	1		
3							1		1	
4						1		1	1	
12										
14										
23										1
24										1
34										1

One may skip adding B_0 to the full matrix or zero out it

Filtration function

A function $f: K \to \mathbb{R}$ is called a filtration function iff, either

$$f(\tau) \le f(\sigma) \iff \tau \subseteq \sigma$$

(sublevel filtration)

$$f(\tau) \ge f(\sigma) \iff \tau \ge \sigma$$

(superlevel filtration)

$$K_t = \{ \sigma \in K \mid f(\sigma) \le t \}$$

$$K^t = \{ \sigma \in K \mid f(\sigma) \ge t \}$$

sublevel set
$$t \in (-\infty, +\infty)$$

superlevel set
$$t \in (+\infty, -\infty)$$

A filtration is a sequence of sublevel (superlevel) sets s.t.

$$\emptyset \subset K_1 \subset K_2 \subset \ldots \subset K$$

 $\emptyset \subset K^1 \subset K^2 \subset \ldots \subset K$

sublevel filtration

superlevel filtration

Filtration function

Reordering w.r.t. filtration function

 $\mathbf{B} =$

	1	4	14	3	2	24	34	23	234	12
0										
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

Filtration function provides order on simplices, therefore on columns and rows of the filtration matrix. Ties are broken, first by simplex dimension, second by lexicographic order given by order on vertices.

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

24 | 34 | 23 | 234 | 12

[23+24]

[23+24+34]

	40	
	2 60 30	
10 1	30 3	
	50	
	20 50	
	4 20	4
	20	

	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

[23+24+34]

10 1	40 2 50	60 70	30 3
20	4 20	50	

	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

[23+24+34]

		1	4	14	3	2	24	34	23	234	
	1			1							
40	4			1			1	1			
2	14										
60 30 3	3							1			
50 70	2						1				
20 50	24									1	
4	34									1	
4 20	23									1	
	12										
											_

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			1
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										

[23+24+34]

[12+24]

50

[23+24+34] [12+14+24]

Matrix is called reduced if all lowest nonzero elements are in unique rows

[23+24+34] [12+14+24]

34 | 23 | 234 | 12 $\mathbf{R} =$

Matrix is called reduced if all lowest nonzero elements are in unique rows

Extracting information

[23+24+34] [12+14+24]

Essential simplices correspond to unpaired empty columns

Persistence pairing

(4, 14) 0

(1, <u>Ø</u>) 0

(2, 24) 0

(12, <u>Ø</u>) 1

(3, 34) 0

(23, 234) 1

Extracting information

60

50

[23+24+34] [12+14+24]

Persistence pairing

Persistence diagram

(1, <u>Ø</u>) 0

(12, <u>Ø</u>) 1

(10, <u>Ø</u>) 0

(80, <u>Ø</u>) 1

(4, 14) 0

(2, 24) 0

(3, 34) 0

(23, 234) 1

(20, 20) 0

(40, 50) 0

(30, 50) 0

(60, 70) 1

Extracting information

[23+24+34] [12+14+24]

34 | 23 | 234 | 12

24

14

3

Persistence pairing [representatives]

(4, 14) 0 [4] $(1, \underline{\varnothing}) 0$ [1]

(2, 24) 0 [2] $(12, \underline{\emptyset}) 1$ [12+14+24]

(3, 34) 0 [3]

(23, 234) 1 [23+24+34]

Persistence diagram

(20, 20) 0

(10, <u>Ø</u>) 0

(40, 50) 0

(80, <u>Ø</u>) 1

(30, 50) 0

(60, 70) 1

50

50

[23+24+34] [12+14+24]

		1	4	14	3	2	24	34	23	234	12
	1			1							
	4			1			1	1			
	14										
	3							1			
_	2						1				
	24									1	
	34									1	
	23									1	
	12										

Representatives are given by the linear combination of columns corresponding to the reduced columns

[23+24+34] [12+14+24]

34 23 234 12

Representatives are given by the linear combination of columns corresponding to the reduced columns

40 50

Optimal representatives

Optimal cycle

minimize $\|z\|_0$ subject to $z\sim z_1.$ minimize $\|z\|_0$ subject to $z=z_1+\partial w,$ $w\in C_2(X).$

$$z = z_0 + a_1 \partial w_1 + a_2 \partial w_2 + \dots + a_n \partial w_n$$

Optimal representatives w.r.t. a filtration — cycles

minimize
$$\|z\|_0$$
 subject to $z=z_3+\partial w+kz_2,$ $w\in C_2(X_5),$ $k\in \Bbbk.$

Algorithm 1 Computing an optimal cycle on a filtration.

Compute $D_q(X)$ and persistence cycles z_1, \ldots, z_n Have $(b_i, d_i) \in D_q(X)$ be chosen by a user Solve the following optimization problem:

minimize
$$\|z\|_1$$
 subject to $z=z_i+\partial w+\sum_{j\in T_i} \alpha_j z_j,$ $w\in C_{q+1}(X_{b_i}),$ $\alpha_j\in \Bbbk,$ where $T_i=\{j\mid b_j< b_i< d_j\}$

Optimal representatives w.r.t. a filtration — volumes

Algorithm 2 Algorithm for a volume-optimal cycle.

procedure Volume-Optimal-Cycle(X, r)

Compute the persistence diagram $D_q(X)$

Have a user choose a birth-death pair $(b_i, d_i) \in D_q(X)$

Solve the following optimization problem:

minimize
$$||z||_1$$
 subject to

(14)
$$z = \sigma_{d_i} + \sum_{\sigma_k \in \mathcal{F}_{q+1}^{(r)}} \alpha_k \sigma_k,$$

$$\tau^*(\partial z) = 0 \text{ for all } \tau \in \mathcal{F}_q^{(r)}$$

Scaffolds

Given a graph G a homological scaffold H(G) is a subgraph of G induced by the edges present in the representatives of homology classes.

The frequency homological scaffold $H^F(G)$ as the network composed of all the cycle paths corresponding to generators, where an edge e is weighted by the number of different cycles it belongs to.

The persistence homological scaffold $H^{p}(G)$ is the network composed of all the cycle paths corresponding to generators weighted by their persistence.

If an edge e belongs to multiple cycles $z_0,z_1,...,z_s$, its weight is defined as the sum of the generators' persistence.

$$\omega_e^P = \sum_{[z]_i} \mathbf{1}_{e \in [z]_i}$$

$$\omega_e^F = \sum_{[z]_i \mid e \in [z]_i} \pi_{[z]_i}$$

Harmonic representatives

Hodge Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0 \qquad C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Betti numbers via Hodge Laplacian

$$\beta_k = \dim \ker(\mathbf{L}_k)$$

Harmonic cycles

$$z_k^H \in \ker L_k$$

Hodge decomposition

$$C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

Harmonic representatives

Hodge Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0 \qquad C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Hodge decomposition

$$C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

Betti numbers via Hodge Laplacian

$$\beta_k = \dim \ker(\mathbf{L}_k)$$

Harmonic cycles

$$z_k^H \in \ker L_k$$

Eigenvectors corresponding to zero eigenvalues of \mathbf{L}_k

Harmonic representatives

Hodge Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0 \qquad C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Hodge decomposition

$$C_k = \operatorname{im} \partial_{k+1} \oplus \ker L_k \oplus \partial_k^T$$

Betti numbers via Hodge Laplacian

$$\beta_k = \dim \ker(\mathbf{L}_k)$$

Harmonic cycles

$$z_k^H \in \ker L_k$$

Eigenvectors corresponding to zero eigenvalues of \mathbf{L}_k

(0, 2): 0.25

(2, 3): 0.16

(2, 5): 0.09

(3, 4): 0.16

(4, 6): 0.09

(5, 6): 0.09