

Maths

By: Mohamed Nasreldin

Revision & Answers

Primary First Term

2022

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

General Exercises

General Exercises On Unit 1

First:	Choose the correct answe	er:
1	is a number.	
a	(7 X 100,000) + (2 X 2,000)	5 0 millions
C	456	3 0,000 + 800
2 23	,080,250:	(in Word Form)
a	Three hundred and sixty million	, eighty thousand, two hundred fifty.
Ь	Twenty-three million, eight hunc	lred thousand, two hundred fifty.
C	Twenty-three million, eighty thou	usand, two hundred fifty.
d	Three hundred and sixty million.	eight hundred two thousand, fifty
3 70	6,200,405:	(in Expanded Form)
a	700,000,000 + 6,000,000 + 200,0	000 + 400 + 5
b	700,000,000 + 6,000,000 + 200 -	+ 40 + 5
C	70,000,000 + 6,000,000 + 20,000) + 400 + 5
d	700,000,000 + 6,000,000 + 200,0	000 + 40 + 5
4 Th	ree milliard (billion), five hundred	d ninety thousand, three hundred
five	e:	(in Standard Form)
a	3,000,590,305	5 3,590,305
C	3,590,000,305	3 ,005,900,305
5 Th	e smallest even number formed t	from 8 different digits
is .	.	
a	99,999,998	(b) 10,000,000
C	10,234,567	1 0,234,568

6 The greatest odd number forme	d from 6 different digits is
a 999,999	6 987,653
© 987,645	d 100,003
$\overline{m{7}}$ The value of the digit 6 in the $m{T}$	housands place = 100 times the value
of the digit 6 in the	place.
Ones	b Tens
• Hundreds	d Thousands
8 40,225,885 <	
a 8,688,988	6 41,200,800
© 9,999,999	3 9,009,000
9 258,456 ≈	(To the nearest 10,000)
a 250,000	260,000
© 200,000	3 00,000
10 The smallest integer that can be	e rounded to the nearest 100 so that
the result is 2,300 is	
a 2,350	6 2,250
© 2,301	3 2,299
Second: Complete the following	:
1 The place value of the digit 6 in	the number 6 58,478,203 is
2 The largest number that can be	formed from the digits: (4, 8, 0, 9, 7, 3)
is	
·	+ 225 thousands + 102 = (in
	77752:::
_	37,752 is in the
value of the digit in the	ndred-thousands place = 100 times the
6 (3 thousands and 5 tens) x 1,000	

7 7,305,057 (in Expanded Notation) =

8 Nine milliard (billion), seven hundred five million, thirty thousand, six

$$\approx$$
 45,000. (To the nearest 1,000)

(Complete with the **smallest** number possible)

Third: Complete using (< , = or >):

- 1 200,002,780. 200,020,078.
- 2 (5 X100,000,000) + (5 X 1). 550,000,000.
- 3 620,000,602. 62 millions, 602.
- 4 Three hundred million, three hundred. 300,300,000.
- 5 The value of the digit 8 in the Hundred-thousands place. 800,000.

Fourth: Arrange the following numbers in a descending order (Write the numbers using the Standard Form):

The Order	Number	Standard Form
a	30,000,450	
6	(3 X 1,000,000) + (4 X 100) + (5 X 1)	
C	Three hundred million, four hundred fifty	
6	50 + 400 + 3,000,000,000	
e	30 million, 450 thousand	

Fifth:

Write each of the following numerical forms in Standard Form, then estimate the number by the Front-end Estimation Strategy, then round the number to the nearest 100:

Numerical Form	Standard Form	Front-end Estimation Strategy	To the Nearest 100
a Five thousand, five hundred ninety nine			
6 4 thousand, 985			
© 90,000 + 400 + 30 + 2			
3 (8 X 10) + (3 X 1)			

General Exercises On Unit 2

First: Choose the correct answer:

$$1 25 + 152 = 152 + 25.$$

(......Property)

1 2 7 + 1 3 2 - 1 3 2 + 2 3

a Neutral Element

Associative

© Commutative

- **d** Distributive
- **2** 63 + (15 + 95) = (63 + 15) + 95.

(...... Property)

a Neutral Element.

6 Associative.

Commutative.

d Distributive

3258 + 0 = 258.

(...... Property)

a Neutral Element

Associative

Commutative

- O Distributive
- 4 456 + 998 = 454 +
 - **a** 999

b 990

© 1,000

- **d** 996
- **5** 369 + 254 =
 - **a** 369 + 200 + 50 + 4

b 369 + 2 + 4 + 5

© 369 + 25 + 4

- **d** 369 + 2 + 54

75	50
χ	150

a
$$\chi + 120 = 750$$

b
$$750 - \chi = 150$$

a
$$\chi = 750 + 150$$

7 The Bar Model that represents the following equation "32 – y = 15"

is

b	1	5
	32	у

a 300,780

6 410,690

© 300,690

d 790,410

a 245 + 786

6 786 – 245

© 245 + 541

d 786 – 541

10 If
$$452 - y = 152$$
, then $y = ...$.

a 452 + 152

b 152 + 200

G 452 – 152

d 452 – 200

Second: Complete the following:

6 If
$$\chi + 258 = 500$$
, then $\chi = ...$.

7 If
$$458 + y = 600$$
, then $y = ...$

8 If
$$m - 524 = 214$$
, then $m = ...$.

$$9$$
 If 842 – z = 600, then z =

10 If
$$2,456 + 3,375 = \dots \approx \dots \approx 1,000$$

Third: Solve the following problems using the strategy shown. (Show your steps):

Problem	Mental Math Strategy	Solution
1 64 + 49	Compensation Strategy	
2 456 + 127	Composing and Decomposing Strategy	
3 800 - 793	Counting Up Strategy (From the smallest number to the largest number):	

Fourth: Solve the following problem using the Countdown Strategy with Decomposition of Numbers:

Fifth:		Solve th	e following p	oroblem ι	ising the Co	ount-c	n Strat	egy with
		Decom	position of	Number	s:			
	8	4 2						
	- 3	2 1	•					
Sixth		Answer	the following	g:				
a	In o	ne week	6,245 touris	ts visited	the pyramic	ds, and	in the f	ollowing
	we	ek 5,375 1	tourists did.					
	Hov	w many to	otal tourists v	visited the	e pyramids i	n the t	wo wee	ks?
	Bar	Model:				Г		
	Equ	ation:				····· •		
	Sol	ution:				.		
Ь	Sar	ah had 1 ,	025 pounds.	. She bou	ght a dress	for 67	5 pound	ls.
			ounds are le				·	
	Bar	Model:				Г		
	Equ	ation:				.		
	Sol	ution:						
C) A ro	oad with a	a length of 9	,150 met	ers was pav	ed in t	hree da	ys, of
	wh	ich 345 m	neters were _l	paved on	the first day	and 2	90 met	ers on the
	nex	t day. Ho	w many meto	ers were p	paved on th	e third	day?	
								•

General Exercises On Unit 3

First:	Choose the correct answer	••
1 The	best unit for measuring the heig	ht of a class is the
a n	neter	6 centimeter
C n	nillimeter	d kilometer
2 The	best unit for measuring a dog's i	mass is
a g	rams	6 centigrams
C n	nilligrams	d kilograms
3 The	best unit for measuring a car's for	uel tank is
a li	iters	6 centiliters
C n	nilliliters	dekaliters
4 The	time is now 10:25, what time wi	ll it be in fifty minutes?
a 1	.0: 50	6 10: 15
© 1	.1:25	d 11:15
5 120	hours =days.	
a 2		6 6
© 5		d 12
6 The	is one of the gradient s	cales that we see in our daily lives.
a c	ar	b mobile phone
© b	palance	d calculator
7 The	height of Cairo Tower is 198 me	ters. How high is it in
cent	imeters?	
a 1	.98 cm	1 ,980 cm
C 1	.9,800 cm	1 98,000 cm

8 If Shaima's weight is 65 kilograms and 500 grams, then her weight in				
grams =		•		
a 565 gn	n	b	650,500 gm	
© 65,000	,500 gm	d	65,500 gm	
9 " 20 to 3 ", r	epresented b	by the digital clo	ck is	
a 3: 20		6	2:40	
© 2: 20		0	4: 20	
10 If a fish ta	nk contains 2	20 liters and 250	milliliters of wa	ter. The volume
of water i	n the tank in	milliliters is	······································	
a 20,250	ml	Ь	2,250 ml	
© 25,020	ml	0	2,025 ml	
Second: Cor	nplete the f	ollowing:		
1 10 maters	J 2F G			
10 meters	and 25 cent	imeters =	centimeters.	
		imeters =kilometers a		eters.
2 20,015 m e	eters =		and m o	
2 20,015 me 3 15,040 gra	eters = ams =	kilometers a	nnd m o d gra i	ns.
2 20,015 me 3 15,040 gra 4 400,020 n	eters = ams = nilliliters =	kilometers a	d grai mill	ns. iliters.
2 20,015 me 3 15,040 gra 4 400,020 n 5 40 hecton	eters = ams = nilliliters = neters =	kilometers a kilograms an liters an	mnd mo d gran d mill s = me	ms. iliters. eters.
2 20,015 me 3 15,040 gra 4 400,020 n 5 40 hecton 6 20,000 ce	eters = ams = nilliliters = neters = ntigrams =	kilometers a kilograms an liters an dekameters	mnd	ms. iliters. eters.
2 20,015 me 3 15,040 grs 4 400,020 n 5 40 hecton 6 20,000 ce	eters =nilliliters =neters =ntigrams =ntigrams =	kilometers a kilograms an liters an dekameters decigrar	nnd	ms. iliters. eters.
2 20,015 me 3 15,040 gra 4 400,020 n 5 40 hecton 6 20,000 ce 7	eters =nilliliters =neters =ntigrams =ntigrams =ntigrams =	kilometers a kilograms an liters an dekameters decigrar	mnd	ms. iliters. eters.
2 20,015 me 3 15,040 grs 4 400,020 n 5 40 hecton 6 20,000 ce 7	eters =	kilometers a kilograms an liters an dekameters decigrar 500 liters =	mnd	ms. iliters. eters.
2 20,015 me 3 15,040 grs 4 400,020 n 5 40 hecton 6 20,000 ce 7	eters =nilliliters =neters =ntigrams =	kilometers a kilograms an liters an dekameters decigrar	mnd	ms. iliters. eters.
2 20,015 me 3 15,040 grs 4 400,020 n 5 40 hecton 6 20,000 ce 7	eters =	kilometers and kilograms and k	mnd	ms. iliters. eters.

Fou	irth:	Arrange the fo	ollowing	g length	s in an	ascend	ing orde	er:
4	0 deka	ameters , 40 hed	ctometer	s , 400	centimet	ters , 40	00 decim	eters
	The	order :	····· , ·····		,		· • ······	·····••
Fift	h:	The following t Mathematics:	able sho	ows the	grades c	of a grou	ıp of stu	dents in
		Marks	15	16	17	18	19	20
	Nun	nber of Students	3	4	6	2	4	5
•	4	previous table to						
			X=					
Sixt	th:	Salah trains in goes to training Salah spend in	g three o	lays a w	eek, how			
		And how many	minutes	does S	alah spe	nd in tra	ining pe	r week?

General Exercises On Unit 4

First:	Choose the correct	answer:	
		nd 6 cm width, its perimeter is	cm.
	3 + 6 + 8 + 6	b 8 X 6 X 8 X 6	
C 8	3 X 6 X 2	a 8 + 6 + 2	
2 A re	ectangle has a length of 9	cm and a width one third of its length	١,
	n its area =		•
a <u>1</u>	12	b 27	
© 2	24	d 36	
3 A so	quare has an area of 64 c	m ² , then its perimeter =c	m.
a 8	3	b 16	
C	32	d 64	
4 A sc	quare has a perimeter of	28 cm, then its area = cm	2.
a 2	19	b 14	
© 7	7	d 21	
5 A re	ectangle has a perimeter	of 24 cm and a length of 9 cm, then its	
area	a is cm ² .		
a	3	b 31	
G (12	d 27	
6 Whi	ich of the following is a f	ormula for the perimeter of the rectang	jle?
a [P = L + W + 2	D P = (L X W) X 2	
C	P = (L X 2) + (W X 2)	P = (L X W) + 2	

a P = L + W + L + W**6** P = L X 2 X W X 2

7 Which of the following is a formula for the **perimeter of the rectangle**?

 $P = (L + 2) \times (W + 2)$

8 Whic	ch of the following is a formula	for the area of the rectangle ?	?
a A	= L X W	6 A = L X W X 2	
G A	= L + W	a $A = L + W + 2$	
9 The	area of a rectangle whose lengt	h is 9 cm and its width is 4 c	m is
equa	I to the area of the square who	se perimeter is	cm.
a 24	4	6 36	
© 1	3	d 18	
10 The	perimeter of a square whose are	ea is 25 cm ² is equal to the	
perir	meter of a rectangle whose dime	ensions are	
a 12	2 cm, 13 cm	6 8 cm, 12 cm	
© 6	cm, 4 cm	d 5 cm, 5 cm	
Second:	Complete the following:		
1 A red	ctangle of 15 m length and 10 m	width, its perimeter is	•
2 A squ	uare has a 6 cm side length, its r	perimeter is	
3 A squ	uare whose sides are <mark>7 mm</mark> has a	a surface area of	mm².
4 A rec	ctangle has a length of 8 cm and	l a width of 4 cm. Its surface	area
is	cm ² .		
5 A rec	ctangle has a perimeter of 18 cm	and a length of 7 cm, then	its
area	is cm ² .		
6 A rec	ctangle has an area of <mark>72 cm²</mark> ar	d a width of 8 cm, then its	
perir	neter is		
7 A squ	uare has a perimeter of 36 cm, tl	ne length of its side is	cm.
8 A squ	uare has an area of <mark>36 cm²,</mark> the l	ength of its side is	cm.
9 A squ	uare has a perimeter of 16 cm, se	o its area iscm	1 ² .
🔟 A squ	uare has an area of <mark>64 cm²</mark> , then	its perimeter is	cm.

Third: Answer the following:

1 Calculate the area and perimeter of each of the following shapes:

(Show your steps)

- 2 The length of Fatima's rectangular garden is three times its width. If (W) is the width, write an equation that can represent the perimeter of Fatima's garden?
- 3 Adam has a rectangular computer keyboard that is 40 cm long and 15 cm wide. How can Adam calculate the perimeter of the keyboard?

Maths

By: Mohamed Nasreldin

Final Revision unit 5 to 7

Primary

First Term

2022

General Exercises

First:	Choose the	correct	answer:

_					
11	To compare	hatwaan	6 and	1 Q •	
	TO COMPANE	DELMEELL	U allu	TO.	

- a 18 equals six times 6 **b** 18 equals six times 3
- © 18 equals triple 6 **18** equals triple 3

- **a** 8 X 8
- \bigcirc 8 + 5

- 6 8 + 8
- **a** 8 X 5

- **a** 6 + 6 + 6 + 6
- \bigcirc 4 + 4 + 4 + 4

- 6 X 6 X 6 X 6
- **a** 4 X 4 X 4

7	7	7	7	7
/		/	/	/
'		· •	'	· '

- a 35 equals seven times 7
- **1** 35 equals five times 7
- © 35 equals seven times 5
- **1** 35 equals five times 5

3

5 The Strip Diagram that represents "12 equals triple 4" is

- **b**
- 3

3

3 3 3

- 4
- 6 The equation that represents "28 equals four times n" is
 - a 28 = 4n

 \bigcirc 28n = 4

 \bigcirc 28 = 4 + n

3 $\frac{1}{2}$ **3** $\frac{1}{2}$ **3** $\frac{1}{2}$ **3** $\frac{1}{2}$ **4** $\frac{1}{2}$

7 If
$$8 \times 5 = a \times 8$$
, then $a = ...$.

a 40

6 8

© 5

d 64

a 5

50

© 500

d 5,000

a 40

6 8

© 20

d 10

a 5

100

G 10

1,000

Second: Complete the following:

$$1 + 4 + 4 + 4 + 4 + 4 + 4 = 3 X$$

3 The equation that represents "36 equals four times n" is

4 If
$$5X = 35$$
, then $X = ...$.

Third:	Compare	e between each	n two n	umbers	s:			
1 48 a	nd 6 ⇒ 48	}						6.
2 36 a	nd 9 ⇒ 36)						9.
3 21 a	nd 7 ⇒ 21							7.
4 15 a	nd 3 ⇒ 15)						3.
5 45 a	nd 5 ⇒ 45)						5.
Fourth:	Complet	e each of the fo	ollowin	g using	the <mark>St</mark>	rip Dia	gram	1S :
1	is	times	7	7	7	7	7	
2	is	times	9	5		5		
3	is	times	2 2	2	2 2	2	2	2
4	is	times	3	3		3	3	
<u>5</u>	is	times	9		9		9	
Fifth:	Write an	equation for th	e follo	wing co	omparis	ons:		
	(Use symvalues):	bols to represe	ent the	unknow	vns, the	n find t	their	
1 The	,	equals eight time	es the n	umber <mark>6</mark>	5.			
Equa	ation :							•
Solu	tion :							•
2 The	number <mark>24</mark>	equals eight tim	es the r	number	n.			
	. •							•
Solu								•
3 The	number 21	equals a times t	he numl	oer 3 .				
Equa								•
Solu								•

4 The	number	x equals si	ix times t	he numbe	er 7 .		
Equ	ation	•					
Solu	ution	•					
Sixth:	Answe	r the follo	wing:				
a Ma	ahmoud	has <mark>20</mark> cra	yons, whi	ch is 5 tin	nes the n	umber of c	rayons
th	at Hazen	n has. How	many cra	ayons are	there wit	:h Hazem?	ı
(W	/rite a mi	ultiplicatio	n equatio	n represe	enting this	s problem	and then
SO	lve it).						
			9				
							•
b Na	ader has	12 orange	S.				
W	rite an e	quation usi	ing the Co	ommutati	ve Propei	rty of Mult	iplication
to	describe	two ways	in which	he can ai	range the	e oranges.	
C Us	se the As	sociative P	roperty ir	n the mul	tiplicatio	n to calcul	late the
ทบ	ımber of	marbles in	the pictu	ıre:			

General Exercises On Unit 6

First:	Choose the	e correct answe	r:	
1 T	he number of	factors of 16 are.	•	
(8	3	b 4	© 5	d 6
2 T	he number 17	is a prime numbe	er because	•
(8	it has one fa	actor only	b it has tw	vo factors only
	it has no fac	tors	d it has m	ore than two factors
3 T	he number th	at has the factors	(1,2,3,4,6,	8,12,24) is
(8	b 12	© 24	3 6
4 T	he smallest o	dd prime number	is	
(0	61	© 2	d 3
5 T	he greatest co	mmon factor of 2	4 and 36 is	•
(8	6	6 12	G 4	d 3
6	is a co r	nmon multiple of	8 and 6.	
(8	12	b 16	C 48	d 36
7 If	6 X 8 = 48, th	en		
(8	48 is a mult	iple of 6 and 8	6 48 is a f	actor of 6
	4 8 is a sum	for 6 and 8	6 6 is a fa	ctor of 8
8	is an o o	dd number and a រ	nultiple of the	two numbers 5 and 7.
(8	70	b 49	© 35	d 25
9	is an e v	en number and a	multiple of the	two numbers 5 and 3
(4)	15	6 45	© 60	d 50
10	is an e v	/en number, and (2,3,6,9) are	of its factors .
(8	30	6 24	© 45	d 36

Second: Complete the follow	wing:
1 The factors of 14 are	······· , ······ , ········· , ········
2 The smallest odd prime num	nber is
3 The prime numbers betwe	en 20 and 40 are,
and	
4 The number that has only t	wo factors is called anumber.
5 The smallest two-digit-prim	ne-number is
6 Number (2) is a factor of a	number if the Ones digit of this number
is	
7 Multiples of 6 up to 20 are	
8 The common multiples of 4	and 6 between 20 and 50 are
The relationship between t	he numbers 5, 6 and 30 is that
the number 30 is a	for the numbers 5 and 6.
is a pri	me number whose the sum of its factors is 8.
Third: Find the Greatest Co	mmon Factor for 40, 32:
The factors of number 40:	The factors of number 32:
The common factors are:	
The Greatest Common Factor	(G. C. F.) is:

Fourt	h: Find the multiples of each of the numbers 6 and 8, up to 50
	then find the common multiples between them:
	The multiples of 6 are:
	The multiples of 8 are:
	The common multiples of the two numbers are:
Fifth:	There is an alarm that rings every 3 hours and another alarm tha
	rings every two hours. If they ring together at 12:00, when will they ring
	again together? (Show your steps
	6.05
C:	
Sixth:	
	Hana wants to form equal groups of balloons, so that all groups
	contain the same number of balloons of different colors.
	How many groups can be formed?
	How many balloons of each color are in each group?
•••••	

General Exercises On Unit 7

First: Choose the correct answer:

- - 2 3 8 X 2 = 16 8 X 3 = 24 8
- 20 3 80 X 20 = 1,600 80 X 3 = 240 80
- 2 30 8 X 2 = 16 8 X 30 = 240 8
 - 8 X 20 = 160 8 X 3 = 24 80

20

- 2 4 X (200 + 30 + 5) = 4 X
 - **a** 235

b 10

b

© 523

- **d** 940
- 3(5X7) + (5X30) + (40X7) + (40X30) =X
 - **a** 57 X 43

6 45 X 37

© 47 X 35

- **d** 43 X 75
- 4 (8 X 6) + (8 X 20) + (8 X 100) =X
 - **a** 8 X 621

6 8 X 18

© 8 X 126

- **1** 8 X 62,000
- **5** 62 X 50 =
 - a (60 X 50) + (2 X 50)
- **(**6 + 2) X 50

 \bigcirc 60 + 2 + 50

- **d** 60 X 2 X 50
- 6 The opposite Rectangle Area Model represents:
 - **a** 52 X 23

6 25 X 23

© 32 X 52

a 25 X 32

Χ	20	5
30	30 X 20	30 X 5
2	2 X 20	2 X 5

7 The quotient of $(157 \div 5)$ is between	and
a 0 and 100	1 00 and 200
© 200 and 300	d 300 and 400
8 The number of digits of the quotient	of (2,542 ÷ 6) is
a 1	6 2
© 3	d 4
9 The number which if divided by 7, th	e quotient is 24 and the remainde
3 is	
a 168	6 171
© 72	d 165
10 The area of a rectangle is 104 cm ² a	nd its width is 8 cm, then its
length iscm.	
a 13	6 44
© 832	@ 26
Second: Complete the following:	
1 4,257 = 4,000 + 200 +	+
2 80 X 900 =	
3 If 8 X 5 = 40, then 40,000 ÷ 8 =	
4 6 X = 30,000.	
5 The number which if divided by 8, th	e quotient will be 200 is
6 The estimation of 32 X 24 is	X=
7 The remainder of (49 ÷ 6) is	
8 75 = (12 X) + 3.	
9 The quotient ($945 \div 4$) is between	and
10 800 X 30 = 24 X	

Third: Use the Rectangle Area Model Strategy to solve the following problems:

Fourth: Use the Multiplication/Division Partial Algorithm to solve the following problems:

1 98	3 X 6		

6	1,125 ÷ 5	
		_

Fifth: Use the Standard Multiplication/Division Algorithm to solve the following problems:

1 6 X 29	2 3 X 125	3 96 X 17
4 84 ÷ 6	5 981 ÷ 9	6 2,436 ÷ 4

Sixth: Use the Distributive Property to solve the following problems:

Revision

Seventh: Answer the following using the appropriate strategy:

- The school bus can accommodate 45 students. If the school has
 buses, and each bus makes two trips in the morning,
 how many students can be transported by all buses in the two trips?
- Ahmed bought a car for 290,000 pounds, of which he paid 80,000 pounds as a down-payment, and the rest of the car's price will be paid in 7 equal installments. How much is one installment?
- A charity association wants to distribute 3,168 pounds among
 8 people. How much is the share of one person?

General Exercises

General Exercises on

Unit 1

First

- **1** (c)
- 2 (c)
- 3 (a) 6 (b)

- 4 (a) 7 (b)
- 5 (d) 8 (b)
- 9 (b)
- 10 (b)

Second

- 1 Hundred-millions 2 987,430
- 3 Two billion, seven million, Two hundred twenty five thousand, one hundred two.
- 4 Ten-millions.
- **5** Thousands.
- 6 3,050,000.
- 1,000,000 100,000 1,000 10 1.
- 8 9,705,030,006.
- 9 650,000.
- 10 44,500.

Third

- 1 <
- 2 <
- 3 >

- 4 <
- 5 =

Fourth

The Order	Standard form
3	30,000,450
1	3,000,405
4	300,000,450
5	3,000,000,450
3	30,450,000

Fifth

- **a** 5,599 , 5,000 , 5,600.
- **b** 4,985 , 4,000 , 5,000.
- **©** 90,432 , 90,000 , 90,400.
- **3** 83 , 80 , 100

General Exercises on

Unit 2

First

- (c)
- **2** (b)
- 3 (a)

- 4 (c)
- 5 (a) 8 (b)
- 6 (b)

- 7 (a) 9 (b)
- 10 (c)

Second

- 1 21, Commutative. 2 13, 45, 25, Associative.
- 3 0, Neutral Element.
- 4 110,710.
- 5 235,553.

8 738.

6 242.9 242.

- **7** 142.
- **10** 5,831 ≈ 6,000.

Third

- $\bigcirc 63 + 50 = 113$
- 2 456 + 100 + 20 + 7 = 556 + 20 + 7
 - = 576 + 7 = 583
- 3 7

Fourth

552

Fifth

521

Sixth

- (a) $\chi = 6,245 + 5,375$
 - $\chi = 11,620$
- **b** $\chi = 1,025 675$ $\chi = 350$
- © 345 + 290 = 635 m. 9,150 - 635 = 8,515 m.

General Exercises on

Unit 3

First

- **1** (a) 4 (d)
- 2 (d)
- **5** (c) 8 (d)
- **7** (c) 9 (b)
- 10 (a)

Second

- 1,025
- 2 20,15
- 3 15,40

3 (a)

6 (c)

400 , 20.

6 2,000 ,200.

- 5 400 , 4,000. **7** 50 , 5,000.
- 8 9:13

- 9 00:23
- 10 4 , 10

Third

- 1 <
- 2 >
- 3 <

4 =

Fourth

400 cm, 400 dm, 40 dekameters, 40 hectometers.

Fifth

Marks of Mathematics

Sixth

120 + 30 = 150 minutes.

150 + 150 + 150 = 450 minutes.

General Exercises on

Unit 4

First

- **1** (a)
- 2 (b) 5 (d)
- 3 (c) 6 (c)

- 4 (a) **7** (a)
- 8 (a)
- 9 (a)
- 10 (c)

Second

- 1 50 m.
- 2 24 m.
- 3 49 5 14 6 34
- 4 32 7 9
- 8 6
- 9 16

10 32

Third

- 1 a $A = 24 \text{ cm}^2$, P = 20 cm.
 - **b** $A = 16 \text{ cm}^2$, P = 16 cm.
 - \bigcirc A = 81 cm², P = 40 cm.
- $P = 3 \times W + W + 3 \times W + W$ = 8 X w
- 3 P = (40 + 15) X 2 = 110 cm.

Unit 5

Lesson 1

Understanding Multiplicative Comparison

- **b** triple.
- © 5 times.
- d triple.
- 7 times.
- 2 a 6 X 4 = 24
- **b** 5 X 3 = 15
- \bigcirc 7 + 7 + 7 = 21
- 6 + 6 + 6 + 6 + 6 = 30
- **3 a** 16.4
- **(b)** 14.7.7
- **©** 8,4,2
- **d** 27,9,3
- 4 (a) 7 7 7 7
- © 8 8 8
- **10** 10 10

Lesson 2

Creating Multiplicative Comparison Equations

- (1) (a) $\chi = 4 \times 7$
- \bigcirc y = 4 X 3
- \circ m = 2 X 7
- **6** $18 = 6 \chi$
- **2**4 = 4 y
- $69 \pm 48 = 8 \chi$
- 9 21 = 3 a
- $\frac{1}{1}$ 36 = 9 X m.
- 2 a $\chi = 5 \times 4$
- **b** $12 = 3 \chi$
- © 21 = 7 y
- **d** $\chi = 2 \times 4$
- 18 = 6 m

Lesson 3

Solving Multiplicative Comparison Equations

- 1 a X = 4 X 8 , $\chi = 32$
 - **b** $y = 5 \times 6$, y = 30
 - \odot m = 2 X 9 , m = 18
 - **d** 18 = 6 a . a = 3
 - \bigcirc 36 = 4 b , b = 9
 - \bigcirc 42 = 7 n , n = 6

- 2 a 15 = 3a , a = 5
 - **b** b = 5 X 3 , b = 15
 - © 20 = 5a , a = 4
 - \bigcirc 24 = 3y y = 8

Lesson

Commutative Property of Multiplication

- **1 a** 7
- **6**
- **6**
- **6** 9
- **2 a** 8
- **b** 10
- **6**
- **6** 8
- 3 5 X 6 = 6 X 5
- 4 5 X 8 = 8 X 5

Lesson 5

Patterns of Multiplying by 10s

- **1 a** 0
- **(**)
- **G** 1
- **6** 9
- **e** 7
- **1**
- 2 3 80
- **6** 900
- **6**,000
- **120**
- **2,000**
- **f** 30,000
- 3 10
- **b** 1.000
- **©** 100
- **100**

- **10**
- **1**0

Lesson 6

Exploring Pattens in Multiplication

- **1**,200
- **b** 1,500
- **©** 40,000
- **d** 10,000
- **100,000**
- **1** 400,000
- **2 a** 50
- **6**0
- **©** 500
- **a** 20
- **6** 5000
- **100**
- 3 1,000 X 2 = 2,000 mm.

Exploring More Pattens in Multiplication

- 1) (3) (5 X 3) X 2 = 15 X 3 = 30
 - **(3 X 4) X 2 = 12 X 2 = 24**
 - © 2 X (5 X 4) = 2 X 20 = 40
 - **10** X (6 X 5) = 10 X 30 = 300
- 2 3,5
- **b** 3,4
- **©** 7.9
- **1** 7.2
- $3 6 \times 2 \times 3 = 6 \times (2 \times 3)$
 - $= 6 \times 6 = 36 \text{ eggs}.$
- $4 \times 2 \times 5 = 4 \times (2 \times 5)$
 - $= 4 \times 10 = 40 \text{ bottles}.$

Lesson 8

Applying Patterns in Multiplication

- **1 a** 10
- **b** 100
- **6** 8
- **6** 5
- **6**0
- **2 a** 240
- **b** 240
- **9** 4.000
- **d** 6.300
- **9** 40,000
- **1** 42,000

Unit 6

Lesson 1

Identifying Factors of Whole Numbers

- **1 a** 1, 2, 3, 4, 6, 12 **b** 1, 2, 4, 5, 8, 10, 20, 40
 - **6** 1, 2, 3, 4, 6, 9, 12, 18, 36
- 2 1, 5, 25
- **b** 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
- **©** 1,19
- **3 a** 10, 20, 30
 - **b 1** 5
- 2 2,5,10
- 3 2
- 4 5
- 5 2

Lesson 2

Prime and Composite Numbers

- **1 a** 3,5
- **b** 2,3,6,9
- **©** 2,5
- **d** 2,3,6,9
- **2.5**
- **1** 3,9
- 2 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
- **3 a** 1, 2, 7, 14
- (Not a prime number)
- **b** 1, 2, 23, 46
- (Not a prime number)
- **©** 1, 2, 11, 22
- (Not a prime number)
- **1**,59
- (prime number)
- (a) 1, 2, 5, 10, 25, 50 (Not a prime number)
- **1,29**
- (prime number)
- **4 a** 28
- **b** 48
- **©** 35

Lesson

Greatest Common Factor (G.C.F)

- **1 a** 4
- **b** 10
- **G** 7
- **a** 1
- 2 Largest number of groups = (G.C.F) = 9

Number of boys in each group

 $= 27 \div 9 = 3$ boys.

Number of girls in each group

- $= 36 \div 9 = 4$ girls.
- 3 Number of snacks

(G.C.F) = 12

Number of apples in each

package = $24 \div 12 = 2$ apples.

Number of candy in each

package = $36 \div 12 = 3$ candies.

Identifying Multiples of Whole Numbers

- 1 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40.
- 2 0, 5, 10, 15, 20, 25, 30, 35, 40.
- (3) (a) 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100.
 - **b** 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
- 4 a 0, 16, 32, 40, 56, 64, 72, 80.
 - **b** 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60.
 - © 0, 7, 14, 21, 28.
 - **d** 27, 54, 99, 36, 45.

Lesson

Common Multiples

- 0, 6, 12, 18
- 2 0, 12, 24
- 3 3 8.16
- **(b)** 10, 20
- **©** 24, 48
- **d** 42, 84
- 4 (a) 40, 50, 60, 70

- **b** 48, 60, 72, 84
- **©** 72, 96, 120

Lesson 6

Relationships Between Factors and Multiples

- **a** 35,5,7,5,7,35 **b** 48 = 6 X 8,8,8,48
 - **©** 24
- 27
- ② 2,3 are factors of 6 or 6 is a multiple of 2,3.

Unit 7

Lesson

The Area Model Strategy

- **1 a** 64
- **b** 84
- **©** 170
- **2 a** 120
- **b** 522
- **©** 268

3 702

- **d** 686
- 4 138

Lesson 2

The Distributive Property

- **1.248**
- **b** 2.244
- **©** 47,106
- **d** 10,748
- 2 3,000
- **b** 1,944
- **©** 19.425
- **d** 39.696
- 3 980 cm.

Lesson

The Partial Products Algorithm

- **a** 2,048
- **b** 23.916
- **©** 567
- **6** 5,616
- **6** 500
- **1** 76,185

Lesson 4

The Standard Multiplication Algorithm

- **1 a** 1,200 , 1,422 , 1,422

 - **b** 63,000 , 66,825 , 66,825
- 2 336
- **b** 1.944
- **©** 29,232
- 216
- **1,192**
- **1** 39,330

Lesson

Connecting Strategies

- 1,548
- **b** 270
- **6** 4,298
- **d** 21,375
- **25,040**
- 2 (a) 3,192
- **(**) 372
- **©** 1,640
- **d** 372

Lesson 6

Two-Digit Multiplication

- **1 a** 960
- **b** 2,960
- 2 2,800
- **5,740**
- 3 (a) 7,650
- **b** 810
- 4 (a) 450
- **6** 700
- **©** 840
- 2,400

Area Models and 2-Digit Multiplication

- **1 a** 2,205
- **b** 3.827
- **©** 1,932
- **d** 1.813
- $215 \times 6 = 1,290$
- $35 \times 38 = 1,330$

Lesson 8

Algorithms and 2-Digit Multiplication

- **a** 1,000 , 1,484 , 1,484
 - **b** 2,400 , 3,216 , 3,216
 - © 2,700 , 3,040 , 3,040

Lesson 9

Putting It All Together

- $11210 \times 2 = 420 \text{ kg}$.
 - 420 130 = 290 kg.
- 2 6 + 8 = 14 km.
 - $14 \times 6 = 84 \text{ km}$.
- $376 \times 3 = 228$ seats.
 - 228 53 = 175 seats.
 - 76 + 228 + 175 = 479 seats.
- $4.65 \times 3 + 55 \times 2 = 305$ km.
 - 500 305 = 195 km.
- 5 270 70 = 200 km. 200 + 270 + 20 = 670 km.

Lesson 10

Exploring Remainders

- **1 a** 25 , 4 , 6 , 1
- **6**, 5, 6, 5, 0
- © 28,5,5,3
- d 16,3,5,1
- 2 60 ÷ 40 = 1
- R 20

Number of buses = 2.

Number of empty seats

- = 40 20 = 20.
- $248 \div 5 = 9$
- R 3

Number of boxes = 10 boxes.

Lesson 11

Patterns and Place Value in Division

- **1 a** $45 \div 9 = 5,500$ **b** $15 \div 5 = 3,3,000$
- 2 (3 300
- **6** 500
- **c** 2.000
- **6** 500
- $3.9 \times 90 = 810$

All workers can't ride the same metro.

- 4) 360 ÷ 6 = 60 patties.
- $540 \div 9 = 60$ boxes.

Lesson 12

The Area Model and Division

- **1 a** 14
- **b** 22 R2.
- C 152 R1.
- **b** 400
- $2868 \div 8 = 108 \text{ R4}.$
- $3 492 \div 4 = 123 \text{ cars.}$

Lesson 13

The Partial Quotients Algorithm

- 16 R3
- **b** 28
- **©** 125
- **d** 234 R1
- **2,312**
- **1** 2,092 R2
- $2480 \div 3 = 160 \text{ cups.}$
- $31,026 \times 5 = 5,130$ cans.
 - $5.130 \div 2 = 2.565$ cans.

Lesson

The Standard Division Algorithm

- **1 a** 60,90 20,30
 - **b** 600,900 200,300
 - © 200,240 50,60
 - **d** 4,000 , 6,000 2,000 , 3,000
 - **6** 4,000 , 8,000 1,000 , 2,000
- **1 a** 13
- **b** 24 R1
- **©** 152
- **139 R3**
- **2,819**
- **1** 3,269
- $2784 \div 8 = 98 \text{ passengers}.$

Division and Multiplication

$$3219 \div 3 = 73 \text{ km}.$$

Lesson 16

Solving Challenging Story Problems

 $14 \times 6 = 84 \text{ kg}.$

$$84 + 14 = 98 \text{ kg}$$
.

$$98 \div 7 = 14$$
 bags.

Number of bags = 14 bags.

 $2347 \times 4 = 1,388 \text{ balls}$

$$1,388 - 799 = 589$$
 balls.

- $3 21 \div 3 = 7$ bottles.
- $4 814 \times 3 = 2,442$ pages.

$$2,442 + 814 = 3,256$$
 pages.