На правах рукописи

Скурыдина Алия Фиргатовна

Тема диссертации

01.01.07 - Вычислительная математика

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

Научный руководитель
д. ф.-м. н., доц.
Акимова Елена Николаевна

Оглавление

Введен	ие	3
Глава 1	1. Решение уравнений с монотонным оператором	8
1.1.	Метод Ньютона	S
1.2.	Нелинейные альфа-процессы	15
1.3.	Численные эксперименты	20
Глава 2	2. Решение операторных уравнений в случае положитель-	
ного	спектра	25
2.1.	Метод Ньютона	26
2.2.	Нелинейные альфа-процессы	28
2.3.	Модифицированные варианты регуляризованных методов на ос-	
	нове нелинейных альфа-процессов	33
2.4.	Выводы ко второй главе	37
Глава 3	3. Покомпонентные методы и вычислительные оптимиза-	
ции		38
3.1.	Постановки задач	38
3.2.	Вычислительная оптимизация метода Ньютона	43
3.3.	Покомпонентный метод типа Ньютона	44
3.4.	Покомпонентный метод типа Левенберга—Марквардта	45
3.5.	Результаты численного моделирования	47
Заклю	пение	18

Введение

Актуальность темы исследования. Построение итеративно регуляризованных алгоритмов востребовано для решения широкого круга прикладных задач. Так, решение структурных обратных задач гравиметрии и магнитометрии сводится к решению нелинейных интегральных уравнений Урысона первого рода.

Цели и задачи диссертационной работы: построить новые методы решения нелинейных операторных уравнений, исследовать их сходимость.

Для достижения поставленных целей были решены следующие задачи:

- для нелинейного уравнения с монотонным оператором доказаны теоремы сходимости для регуляризованного метода Гаусса—Ньютона, доказана сильная фейеровость итерационных процессов;
- построены регуляризованные методы градиентного типа, названные нелинейными аналогами α-процессов, для нелинейного уравнения с монотонным оператором доказаны теоремы сходимости для них, доказана сильная фейеровость итерационных процессов;
- для задачи с немонотонным оператором с производной, имеющей неотрицательный спектр, доказаны теоремы сходимости методов Ньютона, нелинейных α-процессов и их модифицированных вариантов;
- предложена вычислительная оптимизация метода Ньютона и его модифицированного варианта при решении задач с матрицей производной, близкой к ленточной;
- Іля решения систем нелинейных интегральных уравнений с ядром оператора структурной обратной задачи гравиметрии в двуслойной среде предложен покомпонентный метод, основанный на методе Ньютона;

- для решения систем нелинейных уравнений структурных обратных задач гравиметрии в многослойной среде предложен подход на основе метода Левенберга-Марквардта покомпонентный метод типа Левенберга-Марквардта;
- проведены численные эксперименты, интерпретированы результаты.

Научная новизна. Результаты, полученные в диссертационной работе, являются новыми и состоят в следующем:

в рамках двухэтапного метода построения регуляризующего алгоритма обоснованы сходимость метод Ньютона и нелинейные аналоги альфа-процессов: метод минимальной ошибки (ММО), метод наискорейшего спуска (МНС) и метод минимальных невязок (ММН). Также установлена сходимость модифицированных вариантов методов ММО, МНС, ММН, когда производная оператора вычисляется в начальной точке итераций. Рассмотрены два случая: оператор задачи является монотонным, либо оператор является конечномерным и его производная имеет неотрицательный спектр.

Для решения систем нелинейных интегральных уравнений с ядром оператора структурной обратной задачи гравиметрии в двуслойной среде предложен покомпонентный метод, основанный на методе Ньютона. Предложена вычислительная оптимизация метода Ньютона и его модифицированного варианта в виде перехода от плотно заполненной матрицы производной оператора к ленточной в силу особенности строения ядер интегральных операторов задач грави- магнитометрии. Для решения систем нелинейных уравнений структурных обратных задач гравиметрии в многослойной среде предложен подход на основе метода Левенберга-Марквардта — покомпонентный метод типа Левенберга-Марквардта.

Теоретическая и практическая значимость. Результаты, изложенные в диссертации, могут быть использованы для решения нелинейных операторных уравнений, в частности, задач гравиметрии и магнитометрии.

Положения, выносимые на защиту: 1. Сформулированы и доказаны теоремы, устанавливающие сильную фейеровость оператора шага итераций методов:

- метод Ньютона;
- метод минимальной ошибки и его модифицированный вариант;
- метод наискорейшего спуска и его модифицированный вариант;
- метод минимальных невязок и его модифицированный вариант.

Доказана сильная фейеровость оператора шага итераций данных методов в случае монотонного оператора задачи и в случае конечномерного оператора с производной, имеющей неотрицательный спектр. Доказывается линейная скорость сходимости итерационных процессов.

- 2. Предложена вычислительная оптимизация метода Ньютона, которая в задачах гравиметрии и магнитометрии обеспечивает более высокую точность численного решения, а также уменьшает время счета программ.
 - 3. Предложены покомпонентные методы:
 - покомпонентный основанный на методе Ньютона для решения нелинейного интегрального уравнения в задаче гравиметрии в двухслойной среде;
 - покомпонентный метод типа Левенберга-Марквардта для решения систем нелинейных уравнений структурных обратных задач гравиметрии в многослойной среде.

Данные методы обладает меньшей вычислительной сложностью в отличие от классических методов Ньютона и Левенберга-Марквардта.

Вычислительные эксперименты показывают, что предложенные метод позволяют существенно уменьшить вычислительную сложность задачи и являются экономичными по потреблению памяти ЭВМ.

4. Проведены численные эксперименты для модельных и квазиреальных геофизических данных, разработан комплекс параллельных программ для многоядерных и графических процессоров с использованием технологий OpenMP, CUDA.

Степень достоверности и апробация результатов. Основные результаты по материалам диссертационной работы докладывались на конференциях:

- 1. XIV и XV Уральская молодежная научная школа по геофизике (Пермь, 2013 г., Екатеринбург 2014 г.);
- 2. Международная коференция "Параллельные вычислительные технологии" (Ростов-на-Дону, 2014 г., Екатеринбург, 2015 г., Казань, 2017 г.);
- 3. Международная конференция «Геоинформатика: теоретические и прикладные аспекты» (Киев 2014, 2015, 2016 г.)
- 4. Международная конференция "Актуальные проблемы вычислительной и прикладной математики" (Новосибирск, 2014 г.)
- 5. Международный научный семинар по обратным и некорректно поставленным задачам (Москва, 2015 г.)

Публикации. Материалы диссертации опубликованы в N печатных работах, из них n_1 статей в рецензируемых журналах [Ivanov_1999_Journal_17_173 Petrov_2001_Journal_23_12321; Sidorov_2002_Journal_32_1531], n_2 статей в сборниках трудов конференций и n_3 тезисов докладов.

Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причем вклад диссертанта был определяющим. Все представленные в диссертации результаты получены лично автором.

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, n глав, заключения и библиографии. Общий объем диссертации P страниц, из них p_1 страницы текста, включая f рисунков. Библиография включает B наименований на p_2 страницах.

Глава 1

Решение уравнений с монотонным оператором

В первой главе рассматриваются методы решения некорректных задач с монотонным оператором. В рамках двухэтапного подхода, где на первом этапе происходит регуляризация по Лаврентьеву, на втором этапе решения задачи применяются регуляризованные алгоритмы. Первый параграф главы посвящен вопросам сходимости регуляризованного метода Ньютона. Второй параграф содержит схемы построения итерационных процессов градиентного типа — нелинейных α-процессов и доказывается их сходимость. В третьем параграфе иллюстрируются особенности применения рассмотренных в данной главе итерационных методов к нелинейному интегральному уравнению и приводятся результаты численного моделирования.

1.1. Метод Ньютона

Рассматривается нелинейное уравнение

$$A(u) = f (1.1)$$

в гильбертовом пространстве U с монотонным непрерывно дифференцируемым по Фреше оператором A, для которого обратные операторы $A'(u)^{-1}$, A^{-1} разрывны, что влечет некорректность задачи (1.1). Для построения регуляризующего алгоритма (PA) используется двухэтапный метод, в котором на первом этапе используется регуляризация по схеме Лаврентьева

$$A(u) + \alpha(u - u^{0}) - f_{\delta} = 0, \tag{1.2}$$

где $\|f-f_\delta\| \leq \delta$, u_0 — некоторое приближение к решению; а на втором этапе для аппроксимации регуляризованного решения u_α применяется регуляризованный метод Ньютона (РМН)

$$u^{k+1} = u^k - \gamma (A'(u^k) + \bar{\alpha}I)^{-1} (A(u^k) + \alpha (u^k - u^0) - f_\delta) \equiv T(u^k).$$
 (1.3)

Здесь $\alpha, \bar{\alpha}$ — положительные параметры регуляризации, $\gamma > 0$ — демпфирующий множитель (параметр регулировки шага).

Так как оператор A — монотонный, то его производная $A'(u^k)$ — неотрицательно определенный оператор. Следовательно, операторы $(A'(u^k) + \bar{\alpha}I)^{-1}$ существуют и ограничены, следовательно, процесс (1.3) определен корректно.

Ранее в рамках двухэтапного подхода в работах В.В. Васина и авторов [VasAkiMin2013; Vasin2014] исследовался модифицированный метод Ньютона, когда вместо $A'(u^k)$ в (1.3) используется производная в начальной точке $A'(u^0)$ в ходе всего итерационного процесса, где $A'(u^0)$ — самосопряженный неотрицательно определенный оператор.

Пусть имеются следующие условия

$$||A(u) - A(v)|| \le N_1 ||u - v||, \quad \forall u, v \in U,$$
 (1.4)

$$||A'(u) - A'(v)|| \le N_2 ||u - v||, \quad \forall u, v \in U.$$
(1.5)

и известна оценка для нормы производной в точке u^0 (начальном приближении), т.е.

$$||A'(u^0)|| \le N_0 \le N_1, \quad ||u^0 - u_\alpha|| \le r.$$
 (1.6)

З а м е ч а н и е 1.1. Начальное приближение в неравенстве (1.6) в общем случае не обязано совпадать с u^0 в схеме (1.2). Однако, для простоты изложения, будем считать, что это один и тот же элемент. Кроме того, для монотонного оператора A оператор $A + \alpha I$ — равномерно монотонный, поэтому при выполнении условия 1.4 согласно [[KufFuch1988], теорема 43.7], регуляризованное уравнение (1.2) имеет единственное решение.

Теорема 1.1. Пусть A — монотонный оператор, для которого выполнены условия (1.4), (1.5) для $u, v \in S_r(u_\alpha), r \leq \alpha/N_2, 0 < \alpha \leq \bar{\alpha}, u^0 \in S_r(u_\alpha).$

Тогда для процесса (1.3) с $\gamma = 1$ имеет место линейная скорость сходимости метода при аппроксимации единственного решения u_{α} регуляризованного уравнения (1.2)

$$||u^k - u_\alpha|| \le q^k r, \quad q = (1 - \frac{\alpha}{2\bar{\alpha}}).$$
 (1.7)

Доказательство. Учитывая, что для монотонного оператора $A \| (A'(u) + \bar{\alpha}I)^{-1} \| \le 1/\bar{\alpha}$, а из (1.5) следует справедливость разложения

$$A(u_{\alpha}) = A(u^{k}) + A'(u^{k})(u_{\alpha} - u^{k}) + \xi, \quad \|\xi\| \le \frac{N_{2}}{2} \|u_{\alpha} - u^{k}\|^{2},$$

приходим к соотношению

$$u^{k+1} - u_{\alpha} = u^{k} - u_{\alpha} - (A'(u^{k}) + \bar{\alpha}I)^{-1}(A(u^{k}) - A(u_{\alpha}) + \alpha(u^{k} - u_{\alpha})) = u^{k} - u_{\alpha}$$
$$-(A'(u^{k}) + \bar{\alpha}I)^{-1}(A'(u^{k})(u^{k} - u_{\alpha}) + \bar{\alpha}(u^{k} - u_{\alpha}) - \xi + (\alpha - \bar{\alpha})(u^{k} - u_{\alpha})).$$

Из полученного соотношения вытекает оценка

$$||u^{k+1} - u_{\alpha}|| \le \frac{1}{\bar{\alpha}} \left(\frac{N_2 ||u^k - u_{\alpha}||^2}{2} + (\bar{\alpha} - \alpha) ||u^k - u_{\alpha}|| \right)$$

$$\leq \left(1 - \frac{\alpha}{\bar{\alpha}} + \frac{N_2}{2\bar{\alpha}} \|u^k - u_\alpha\|\right) \|u^k - u_\alpha\|.$$

Имея $||u^0 - u_\alpha|| \le r \le \alpha/N_2$ и предполагая $||u^k - u_\alpha|| \le q^k r$, по индукции приходим к оценке (1.7).

Усиленное свойство Фейера [[VasEre2009], определение 1.3] для оператора T означает, что для некоторого $\nu>0$ выполнено соотношение

$$||T(u) - z||^2 \le ||u - z||^2 - \nu ||u - T(u)||^2, \tag{1.8}$$

где $z \in Fix(T)$ — множество неподвижных точек оператора T. Это влечет для итерационных точек u^k , порождаемых процессом $u^{k+1} = T(u^k)$, выполнение неравенства

$$\|u^{k+1} - z\|^2 \le \|u^k - z\|^2 - \nu \|u^k - u^{k+1}\|^2. \tag{1.9}$$

Важным свойством фейеровских операторов является замкнутость относительно операций произведения и взятия выпуклой суммы. Располагая итерационными процессами с фейеровским оператором шага и общим множеством неподвижных точек, можно конструировать разнообразные гибридные методы, а также учитывать в итерационном алгоритме априорные ограничения на решение в виде системы линейных или выпуклых неравенств.

Установим усиленное свойство Фейера для оператора шага T в методе (1.3).

Теорема 1.2. Пусть для монотонного оператора A выполнены условия (1.4)–(1.6), $A'(u^0)$ — самосопряженный оператор, $||u_{\alpha} - u^0|| \leq r$ и для параметров справедливы соотношения

$$0 \le \alpha \le \bar{\alpha}, \quad \bar{\alpha} \ge 4N_1, \quad r \le \alpha/8N_2. \tag{1.10}$$

Тогда для оператора

$$F(u) = (A'(u) + \bar{\alpha}I)^{-1}(A(u) + \alpha(u - u^{0}) - f_{\delta})$$

справедлива оценка снизу

$$\langle F(u), u - u_{\alpha} \rangle \ge \frac{\alpha}{4\bar{\alpha}} \|u - u_{\alpha}\|^2 \quad \forall u \in S_r(u_{\alpha}).$$
 (1.11)

Доказательство. Введем обозначение $B(u) = A'(u) + \bar{\alpha}I$. Принимая во внимание, что u_{α} — решение уравнения (1.2), имеем

$$\langle F(u), u - u_{\alpha} \rangle = \langle F(u) - F(u_{\alpha}), u - u_{\alpha} \rangle = \alpha \langle B^{-1}(u)(u - u_{\alpha}), u - u_{\alpha} \rangle$$
$$+ \langle B^{-1}(u)(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle. \tag{1.12}$$

Учитывая, что $A'(u^0)$ — самосопряженный и, ввиду монотонности A, неотрицательно определенный оператор, для первого слагаемого в правой части равенства (1.12), получаем

$$\alpha \langle B^{-1}(u)(u - u_{\alpha}), u - u_{\alpha} \rangle = \alpha \langle B^{-1}(u^{0})(u - u_{\alpha}), u - u_{\alpha} \rangle$$

$$+\alpha \langle (B^{-1}(u) - B^{-1}(u^{0}))(u - u_{\alpha}), u - u_{\alpha} \rangle \ge \frac{\alpha}{\bar{\alpha} + N_{0}} \|u - u_{\alpha}\|^{2}$$

$$-\alpha |\langle B^{-1}(u)(B(u^{0}) - B(u))B^{-1}(u^{0})(u - u_{\alpha}), u - u_{\alpha} \rangle|$$

$$\ge \left(\frac{\alpha}{\bar{\alpha} + N_{0}} - \frac{\alpha N_{2} \|u - u^{0}\|}{\bar{\alpha}^{2}}\right) \|u - u_{\alpha}\|^{2}$$

$$\ge \left(\frac{\alpha}{\bar{\alpha} + N_{0}} - \frac{2\alpha N_{2}r}{\bar{\alpha}^{2}}\right) \|u - u_{\alpha}\|^{2}, \tag{1.13}$$

где использовано неравенство $\|u-u^0\| \leq \|u-u_\alpha\| + \|u_\alpha-u^0\| \leq 2r$. Для второго слагаемого в правой части (1.12) имеем

$$\langle B^{-1}(u)(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle = \langle B^{-1}(u^{0})(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle$$

$$+ \langle (B^{-1}(u) - B^{-1}(u^{0}))(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle$$

$$= \langle B^{-1}(u^{0}) \int_{0}^{1} (A'(u_{\alpha} + \theta(u - u_{\alpha})) - A'(u^{0}))d\theta(u - u_{\alpha}), u - u_{\alpha} \rangle$$

$$+ \langle B^{-1}(u^{0})A'(u^{0})(u - u_{\alpha}), u - u_{\alpha} \rangle$$

$$+ \langle (B^{-1}(u) - B^{-1}(u^{0}))(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle$$

$$\geq -\frac{N_{2}}{\bar{\alpha}} \int_{0}^{1} ||u_{\alpha} + \theta(u - u_{\alpha}) - u^{0}||d\theta||u - u_{\alpha}||^{2}$$

$$-\frac{1}{\bar{\alpha}^{2}} (||A'(u) - A'(u^{0})||||A(u) - A(u_{\alpha})|||(u - u_{\alpha})||)$$

$$\geq -\frac{N_2}{2\bar{\alpha}} \left(\|u_{\alpha} - u^0\| + \|u - u^0\| \right) \|u - u_{\alpha}\|^2 - \frac{N_1 N_2}{\bar{\alpha}^2} \|u - u^0\| \|u - u_{\alpha}\|^2$$

$$\geq -\frac{3N_2 r}{2\bar{\alpha}} \|u - u_{\alpha}\|^2 - \frac{2rN_1 N_2}{\bar{\alpha}^2} \|u - u_{\alpha}\|^2.$$
(1.14)

Объединяя (1.13),(1.14), приходим к неравенству

$$\langle F(u), u - u_{\alpha} \rangle \ge \left(\frac{\alpha}{\bar{\alpha} + N_0} - \frac{2N_2 r \alpha}{\bar{\alpha}^2} - \frac{3N_2 r}{2\bar{\alpha}} - \frac{2r N_1 N_2}{\bar{\alpha}^2} \right) \|u - u_{\alpha}\|^2,$$

откуда с учетом условий (1.10) на параметры α , $\bar{\alpha}$, r, а также неравенства $N_1 \geq N_0$, приходим к оценке (1.11).

Теорема 1.3. Пусть выполнены условия теоремы 1.2. Тогда при

$$\gamma < \frac{\alpha \bar{\alpha}}{2(N_1 + \alpha)^2} \tag{1.15}$$

onepamop wara T npoyecca (1.3) npu

$$\nu = \frac{\alpha \bar{\alpha}}{2\gamma (N_1 + \alpha)^2} - 1 \tag{1.16}$$

удовлетворяет неравенству (1.8), для итераций u^k справедливо соотношение (1.9) и имеет место сходимость

$$\lim_{k \to \infty} \|u^k - u_\alpha\| = 0. \tag{1.17}$$

 $E c n u \ n a p a m e m p \ \gamma \ n p u h u m a e m \ з h a ч e h u e$

$$\gamma_{opt} = \frac{\alpha \bar{\alpha}}{4(N_1 + \alpha)^2},\tag{1.18}$$

то справедлива оценка

$$||u^k - u_\alpha|| \le q^k r, \quad q = \sqrt{1 - \frac{\alpha^2}{16(N_1 + \alpha)^2}}.$$
 (1.19)

Доказательство. В условиях теоремы справедливо неравенство

$$||F(u)||^2 \le ||B^{-1}(u)||^2 ||A(u) - A(u_\alpha) + \alpha (u - u_\alpha)||^2 \le \frac{(N_1 + \alpha)^2}{\bar{\alpha}^2} ||u - u_\alpha)||^2, (1.20)$$

которое вместе с (1.11) влечет соотношение

$$||F(u)||^2 \le \frac{4(N_1 + \alpha)^2}{\alpha \bar{\alpha}} \langle F(u), u - u_\alpha \rangle. \tag{1.21}$$

Условие (1.8) на оператор шага T эквивалентно

$$||F(u)||^2 \le \frac{2}{\gamma(1+\nu)} \langle F(u), u - u_\alpha \rangle. \tag{1.22}$$

Сравнивая неравенства (1.21) и (1.22), получаем условие (1.15) для γ и выражение (1.16) для ν .

При $u=u^k$ из неравенства (1.8) вытекает (1.9) и соотношение

$$||u^k - T(u^k)|| = \gamma ||F(u^k)|| \to 0, \quad k \to \infty,$$

что вместе с (1.11) влечет сходимость (1.17). Принимая во внимание (1.11), (1.20), имеем неравенство

$$\|u^{k+1} - u_{\alpha}\|^{2} = \|u^{k} - u_{\alpha}\|^{2} - 2\gamma \langle F(u^{k}), u^{k} - u_{\alpha} \rangle + \gamma^{2} \|F(u^{k})\|^{2}$$

$$\leq \left(1 - \gamma \frac{\alpha}{2\bar{\alpha}} + \gamma^{2} \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}}\right) \|u^{k} - u_{\alpha}\|^{2}$$
(1.23)

При значениях $\gamma = \gamma_{opt}$ из (1.18) выражение в круглых скобках неравенства (1.23) достигает минимума и при $\gamma = \gamma_{opt}$ параметр q вычисляется по формуле, представленной в (1.19).

1.2. Нелинейные альфа-процессы

Для решения уравнения (1.2) могут применяться методы градиентного типа, которые мы назовем нелинейными α -процессами

$$u^{k+1} = u^k - \gamma \frac{\langle (A'(u^k) + \bar{\alpha}I)^{\varkappa} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle}{\langle (A'(u^k) + \bar{\alpha}I)^{\varkappa + 1} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle} S_{\alpha}(u^k) \equiv T(u^k)$$
(1.24)

при $\varkappa=-1,0,1$. Здесь $\alpha,\bar{\alpha}$ — положительные параметры регуляризации, $\gamma>0$ — параметр регулировки шага, $S_{\alpha}(u)=A(u)+\alpha(u-u^0)-f_{\delta}$.

Сначала опишем экстремальные принципы, которые используются при построении процессов (1.24) для нелинейного монотонного оператора A. Используя разложение Тейлора в точке u^k и удерживая лишь два члена, приходим к линейному уравнению

$$A(u^k) + A'(u^k)(u - u^k) = f_{\delta}.$$

Зададим итерационный процесс в следующем виде

$$u^{k+1} = u^k - \beta(A(u^k) - f_\delta)$$

и найдем параметр β из условия

$$\min_{\beta} \|u^k - \beta(A(u^k) - f_{\delta}) - z\|^2, \tag{1.25}$$

где z — решение уравнения $A'(u^k)z = F^k$, $F^k = f_\delta + A'(u^k)u^k - A(u^k)$. Заменяя теперь оператор A(u) на $A(u) + \alpha(u - u^0)$, а $A'(u^k)$ на $A'(u^k) + \bar{\alpha}I$, получаем процесс (1.24) при $\varkappa = -1$ и $\gamma = 1$, т.е. нелинейный регуляризованный вариант ММО. Если теперь вместо (1.25) использовать экстремальные принципы

$$\min_{\beta} \{ \langle A'(u^k)u^{k+1}, u^{k+1} \rangle - 2\langle u^{k+1}, F(u^k) \rangle \},$$

либо

$$\min_{\beta} \{ \|A'(u^k)(u^k - \beta(A(u^k) - f_{\delta}) - F(u^k)\|^2 \},$$
 (1.26)

то получаем после тех же замен нелинейный регуляризованный аналог МНС, т.е. (1.24) при $\varkappa=0$ и $\gamma=1$, либо ММН, т.е. (1.24) при $\varkappa=1$, $\gamma=1$ с учетом следующего замечания.

З а м е ч а н и е 1.2. Формула (1.24) при $\varkappa = 1$ справедлива лишь для самосопряженного оператора A'(u). В общем же случае, знаменатель дроби при $\varkappa = 1$ следует заменить на $\|(A'(u) + \alpha I)S_{\alpha}(u)\|^2$, как это следует из условия минимума задачи (1.26). Это обстоятельство будет учтено во всех выкладках в главах 1, 2.

Установим сходимость процесса (1.24) при $\varkappa = -1, 0, 1$ к решению уравнения (1.2). Как и прежде, используем обозначения:

$$B(u) = A'(u) + \bar{\alpha}I, \quad S_{\alpha}(u) = A(u) + \alpha(u - u^0) - f_{\delta},$$

а также введем новое

$$\beta^{\varkappa} = \frac{\langle B^{\varkappa}(u) S_{\alpha}(u), S_{\alpha}(u) \rangle}{\langle B^{\varkappa+1}(u) S_{\alpha}(u), S_{\alpha}(u) \rangle}, \quad F^{\varkappa}(u) = \beta^{\varkappa} S_{\alpha}(u),$$

где при $\varkappa = 1$ в β^{\varkappa} следует заменить знаменатель на $\|B(u)S_{\alpha}(u)\|^2$ (см. замечание 1.2).

Теорема 1.4. Пусть для монотонного оператора A выполнены условия (1.4) - (1.6) и $A'(u^0)$ — самосопряженный оператор. Кроме того, для ММО параметры α , $\bar{\alpha}$, r, N_2 , N_0 удовлетворяют дополнительным соотношениям:

$$\alpha \le \bar{\alpha}, \quad r \le \alpha/8N_2, \quad \bar{\alpha} \ge N_0.$$
 (1.27)

Тогда справедливы соотношения

$$||F^{\varkappa}(u)||^2 \le \mu_{\varkappa} \langle F^{\varkappa}(u), u - u_{\alpha} \rangle, \quad \varkappa = -1, 0, 1, \tag{1.28}$$

 $r \partial e$

$$\mu_{-1} = \frac{4(N_1 + \alpha)^2}{\alpha \bar{\alpha}}, \quad \mu_0 = \frac{(N_1 + \alpha)^2 (N_1 + \bar{\alpha})}{\alpha \bar{\alpha}^2}, \quad \mu_1 = \frac{(N_1 + \alpha)^2 (N_1 + \bar{\alpha})^2}{\alpha \bar{\alpha}^3}, \quad (1.29)$$

соответственно для ММО, МНС, ММН.

Доказательство. Рассмотрим ММО, т.е. (1.24) при $\varkappa = -1$. Принимая во внимание монотонность оператора A, самосопряженность и неотрицательность $A'(u^0)$ и условия на параметры (1.27), имеем (ниже $F^{-1}(u)$, $B^{-1}(u)$, означает $F^{\varkappa}(u)$, $B^{\varkappa}(u)$ при $\varkappa = -1$) имеем

$$\langle F^{-1}(u), u - u_{\alpha} \rangle = \beta^{-1}(u) \langle A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha}), u - u_{\alpha} \rangle \ge \alpha \beta^{-1}(u) \|u - u_{\alpha}\|^{2}$$

$$\ge \alpha \left(\frac{\langle B^{-1}(u^{0}) S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|S_{\alpha}(u)\|^{2}} - \frac{|\langle (B^{-1}(u) - B^{-1}(u^{0})) S_{\alpha}(u), S_{\alpha}(u) \rangle|}{\|S_{\alpha}(u)\|^{2}} \right)$$

$$\times \|u - u_{\alpha}\|^{2} \ge \left(\frac{\alpha}{N_{0} + \bar{\alpha}} - \alpha \|B^{-1}(u)\| \|B^{-1}(u^{0})\| \|A'(u) - A'(u^{0})\| \right) \|u - u_{\alpha}\|^{2}$$

$$\ge \left(\frac{\alpha}{N_{0} + \bar{\alpha}} - \frac{2\alpha N_{2}r}{\bar{\alpha}^{2}} \right) \|u - u_{\alpha}\|^{2} \ge \frac{\alpha}{4\bar{\alpha}} \|u - u_{\alpha}\|^{2}, \tag{1.30}$$

где учтено, что $\|u-u^0\| \leq \|u-u_\alpha\| + \|u_\alpha-u^0\| \leq 2r$. Кроме того, выполнены неравенства

$$||F^{-1}(u)||^{2} = |\beta^{-1}(u)|^{2} ||A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha})||^{2} \le (N_{1} + \alpha)^{2} ||B^{-1}(u)||^{2} ||u - u_{\alpha}||^{2}$$

$$\le \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}} ||u - u_{\alpha}||^{2}. \tag{1.31}$$

Объединяя (1.30) и (1.31), получаем

$$||F^{-1}(u)||^2 \le \frac{4(N_1 + \alpha)^2}{\alpha \bar{\alpha}} \langle F^{-1}(u), u - u_\alpha \rangle.$$
 (1.32)

Перейдем к оценке МНС ($\varkappa=0$). Из соотношений

$$\langle F^{0}(u), u - u_{\alpha} \rangle = \beta^{0}(u) \langle A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha}), u - u_{\alpha} \rangle \ge \alpha \beta^{0}(u) \|u - u_{\alpha}\|^{2}$$

$$= \alpha \frac{\|S_{\alpha}(u)\|^{2}}{\langle A'(u)S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha} \|S_{\alpha}(u)\|^{2}} |u - u_{\alpha}\|^{2} \ge \frac{\alpha}{N_{1} + \bar{\alpha}} \|u - u_{\alpha}\|^{2}, \qquad (1.33)$$

$$\|F^{0}(u)\|^{2} = \|\beta^{0}(u)\|^{2} \|S_{\alpha}(u) - S_{\alpha}(u_{\alpha})\|^{2}$$

$$\le \frac{(N_{1} + \alpha)^{2} \|S_{\alpha}(u)\|^{4} \|u - u_{\alpha}\|^{2}}{|\langle A'(u)S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha} \|S_{\alpha}(u)\|^{2}} \le \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}} \|u - u_{\alpha}\|^{2}, \qquad (1.34)$$

приходим к неравенству

$$||F^{0}(u)||^{2} \leq \frac{(N_{1}+\alpha)^{2}(N_{1}+\bar{\alpha})}{\alpha\bar{\alpha}^{2}} \langle F^{0}(u), u-u_{\alpha} \rangle.$$

Обратимся теперь к ММН (см. замечание (1.2)). Имеем неравенства:

$$\langle F^{1}(u), u - u_{\alpha} \rangle \geq \alpha \beta^{1}(u) \| u - u_{\alpha} \|^{2} = \alpha \frac{\langle (A'(u) + \bar{\alpha}I)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|B(u)S_{\alpha}(u)\|^{2}} \| u - u_{\alpha} \|^{2}$$

$$\geq \frac{\alpha \bar{\alpha}}{\|B(u)\|^{2}} \| u - u_{\alpha} \|^{2} \geq \frac{\alpha \bar{\alpha}}{(N_{1} + \bar{\alpha})^{2}} \| u - u_{\alpha} \|^{2}, \qquad (1.35)$$

$$\|F^{1}(u)\| \leq \frac{(N_{1} + \alpha)\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|B(u)S_{\alpha}(u)\|^{2}} \| u - u_{\alpha} \|$$

$$\leq \frac{(N_{1} + \alpha)\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\langle B(u)S_{\alpha}(u), B(u)S_{\alpha}(u) \rangle} \| u - u_{\alpha} \|$$

$$= \frac{(N_{1} + \alpha)\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|A'(u)S_{\alpha}(u)\|^{2} + \alpha\langle A'(u)S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha}\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}$$

$$\leq \frac{N_{1} + \alpha}{\bar{\alpha}} \| u - u_{\alpha} \| \qquad (1.36)$$

из которых вытекает оценка

$$||F^{1}(u)||^{2} \leq \frac{(N_{1} + \alpha)^{2}(N_{1} + \bar{\alpha})^{2}}{\alpha \bar{\alpha}^{3}} \langle F^{1}(u), u - u_{\alpha} \rangle.$$

Таким образом, доказана справедливость неравенства (1.28) при значениях μ_{\varkappa} из (1.29).

Теорема 1.5. Пусть выполнены условия теоремы (1.4) Тогда при

$$\gamma_{\varkappa} < \frac{2}{\mu_{\varkappa}} \quad (\varkappa = -1, 0, 1)$$
 (1.37)

для последовательности $\{u^k\}$, порожедаемой процессом (1.24) при соответствующем \varkappa , имеет место сходимость

$$\lim_{k \to \infty} \|u^k - u_\alpha\| = 0,$$

a npu

$$\gamma_{\varkappa}^{opt} = \frac{1}{\mu_{\varkappa}} \tag{1.38}$$

справедлива оценка

$$||u^{k+1} - u_{\alpha}|| \le q_{\varkappa}^k r,$$

 $r\partial e$

$$q_{-1} = \sqrt{1 - \frac{\alpha^2}{16(N_1 + \alpha)^2}}, \quad q_0 = \sqrt{1 - \frac{\alpha^2 \bar{\alpha}^2}{(N_1 + \alpha)^2(N_1 + \bar{\alpha})^2}},$$

$$q_1 = \sqrt{1 - \frac{\alpha^2 \bar{\alpha}^4}{(N_1 + \bar{\alpha})^4}}.$$
(1.39)

Доказательство. Сопоставляя неравенство (1.22) при $F(u) = F^{\varkappa}(u)$ ($\varkappa = -1, 0, 1$) с соотношением (1.28), находим, что при γ_{\varkappa} , удовлетворяющем (1.37), условие фейеровости выполняется для всех трех процессов. Поэтому сходимость итераций при выполнении условия (1.37) устанавливается аналогично теореме (1.3), касающейся метода Ньютона. Подставляя в (1.23) $F^{\varkappa}(u^k)$ и используя оценки (1.31), (1.32) (при $\varkappa = -1$), (1.33), (1.34) (при $\varkappa = 0$), (1.35), (1.36) (при $\varkappa = 1$), вычисляем выражение в круглых скобках в правой части неравенства (1.23) для каждого метода. Минимизируя это выражение по γ , получаем значение γ_{\varkappa}^{opt} , определяемое формулой (1.38) и вычисляем коэффициенты q_{\varkappa} , которые принимают вид из (1.39).

1.3. Численные эксперименты

Продемонстрируем особенности применения итерационных методов (1.3), (1.24) на примере решения нелинейного интегрального уравнения с монотонным оператором.

Обратная задача определения закона распределенного роста $x(t), t \in [0,1]$ с заданной константой $c_0 > 0$

$$\frac{dy}{dt} = x(t)y(t), \quad y(0) = c_0,$$
(1.40)

где $x(t), y(t) \in L^2[0,1]$. Интегрируя (1.40), приходим к нелинейному операторному уравнению

$$F(x) = y, (1.41)$$

где

$$[F(x)](t) = c_0 e^{\int_0^t x(\tau)d\tau},$$

действует из $L^2[0,1]$ в $L^2[0,1]$. В случае, когда правая часть задана с шумом $y^\delta(t)=y(t)e^{\frac{\delta}{5}sin(t/\delta^2)}$, при $y^\delta\to y$ в $L^2[0,1]$, величина $\|x-x^\delta\|=\|\frac{1}{\delta}cos(t/\delta^2)\|\to\infty$ при $\delta\to 0$. Этот факт показывает, что задача (1.41) поставлена некорректно. Запишем производную оператора

$$[F'(x)h](t) = [F(x)](t) \int_{0}^{t} h(\tau)d\tau.$$
 (1.42)

Так как $[F(x)](t) \geq 0$ и $\langle \int_0^t h(\tau)d\tau, h \rangle \geq 0$, производная оператора неотрицательно определена $\langle F'(x)h, h \rangle \geq 0$. Оператор F монотонен. Для проверки условий Липшица для операторов F, F'(x) в шаре $S_r(u_\alpha)$ используем оценки: $\|\int_0^1 h(\tau)d\tau\| \leq \|h\|, |e^\lambda - e^\mu| \leq |\lambda - \mu| max\{e^\lambda, e^\mu\}$

$$||F(u) - F(v)|| \le c_0 ||e^{\int_0^1 u(\tau)d\tau} - e^{\int_0^1 v(\tau)d\tau}|| \le c_0 \max\{e^{||u||}, e^{||v||}\} ||u - v||,$$

$$||(F'(u) - F'(v))h|| \le ||F(u) - F(v)|| ||h|| \le c_0 \max\{e^{||u||}, e^{||v||}\} ||h|| ||u - v||.$$

Рис. 1.1. Восстановленное ММН решение.

Также имеем оценку нормы производной в начальном приближении $||F'(x^0)h|| \le c_0 e^{||x^0||} ||h||$, т.е. $||F'(x^0)|| \le c_0 e^{||x^0||}$, $||x^0 - u_\alpha|| \le r$.

1.3.1. Эксперимент для задачи без использования шума. Для проведения численного эксперимента была решена модельная задача. В качестве точного решения взята функция $z(t)=t^2$, по точному решению построили правую часть y(t). Начальное приближение $x^0(t)=t^3$, $\bar{\alpha}=\alpha=10^{-2}$, критерий останова $\frac{\|x^k-z\|}{\|z\|} \leq \varepsilon = 10^{-2}$, где x^k — приближение на k-й итерации. Для примера на рис. 1.1 изображено восстановленное решение методом ММН. Точное решение отмечено голубым цветом, начальное приближение — малиновым, ММН — зеленым. Ниже в таблице 1.1 показаны результаты расчетов методами (1.3), (1.24), $\Delta = \frac{\|F(x^k) + \alpha(x^k-x^0) - y\|}{\|y\|}$ — относительная норма невязки.

Выбор начального приближения, достаточно близкого к точному решению, обусловлен условиями теорем 1.1, 1.5 для сходимости немодифицированных вариантов методов (1.3), (1.24). Так же следует отметить, что теорема 1.5 не гарантирует, что при $\gamma=1$ итерационный процессы (1.24) будут сходиться, так же как и модифицированный вариант метода Ньютона. Поэтому сходимость некоторых этих методов в рамках эксперимента была достигнута при выборе $\gamma<1$, тогда как для метода Ньютона немодифицированного варианта сходимость при $\gamma=1$ доказана теоремой 1.1, что и подтверждается экспериментом. Для достижения необходимой точности решения модифицированным вариан-

Таблица 1.1. Результаты для правой части без шума

Метод	Параметр шага, γ	Δ	Число итераций, N
MMO	0.5	0.003	25
ММО модиф.	0.5	0.003	22
MHC	0.001	0.003	283
МНС модиф.	0.02 (с 0-й итер.), 0.005 (с 30-й итер.), 0.002 (с 32-й итер.)	0.003	32
MMH	1	0.003	32
ММН модиф.	1	0.003	27
PMH	1	0.003	26
РМН модиф.	0.75	0.003	6

том МНС параметр γ потребовалось несколько раз уменьшать. С 30-й итерации $\gamma=0.005,~{\rm c}\,$ 32-й итерации $\gamma=0.002.$

1.3.2. Эксперимент для задачи без использования шума с начальным приближением, далеким от точного решения. Точное решение и правая часть такие же, как в эксперименте 1.3.1. Начальное приближение $x^0(t)=0, \ \bar{\alpha}=\alpha=10^{-2},$ критерий останова $\frac{\|x^k-z\|}{\|z\|} \leq \varepsilon=10^{-1},$ где x^k — приближение на k-й итерации. Ниже в таблице 1.2 показаны результаты расчетов методами (1.3), (1.24), Δ — относительная норма невязки.

Выбор начального приближения обусловлен фактом, установленным в статье [Vasin_2016], где для модифицированных вариантов методов (1.24) доказывается глобальная сходимость итерационных процессов. Для сходимости модифицированного метода Ньютона требование близкого начального приближения оговаривается в статье [VasAkiMin2013], но в данном случае была достигнута требуемая точность, как и для немодифицированных методов, рассматриваемых в данной главе. Факт сходимости при $\gamma = 1$ не установлен для

Таблица 1.2. Результаты для правой части без шума, с начальным приближением, равным константе

Метод	Параметр шага, γ	Δ	Число итераций, N
MMO	1	0.015	25
ММО модиф.	0.1	0.015	20
MHC	0.025	0.021	27
МНС модиф.	0.025	0.024	24
MMH	1	0.019	12
ММН модиф.	1	0.016	8
PMH	1	0.016	19
РМН модиф.	0.75	0.016	8

каждого из методов, однако при соответствующем $\gamma < 1$ методы (1.3), (1.24) должны сходиться по теореме 1.5, этому не противоречат результаты расчетов.

1.3.3. Эксперимент для задачи с возмущенной правой частью с начальным приближением, далеким от точного решения. Точное решение такое же, как в эксперименте 1.3.1. Правая часть $y^{\delta}(t)=y(t)e^{\frac{\delta}{5}sin(t/\delta^2)},\ \delta=0.1,\ \|y-y^{\delta}\|=0.07<\delta.$ Начальное приближение $x^0(t)=0,\ \bar{\alpha}=1,\ \alpha=10^{-3},$ критерий останова $\frac{\|x^k-z\|}{\|z\|}\leq \varepsilon=0.25,$ где x^k — приближение на k-й итерации. Ниже в таблице 1.3 приведены результаты расчетов.

В статье [VasSkur2017] приводятся оценки погрешности двухэтапного метода для $\|u^{\delta} - \hat{u}\|$ сверху (u^{δ} — решение уравнения с возмущенной правой частью, \hat{u} — решение уравнения (1.1)), устанавливается сходимость

$$\lim_{\delta \to 0} ||A(u_{\alpha(\delta)}^{\delta}) - f_{\delta}|| = 0,$$

при $\alpha(\delta) \to 0$, $\delta \to 0$. Для задачи с возмущенной правой частью удалось достигнуть точности ε , не превыщающую оценку для $\|u^\delta - \hat{u}\|$, относительная норма невязки Δ уменьшается с каждой итерацией.

Таблица 1.3. Результаты для задачи с шумом

Метод	Параметр шага, γ	Δ	Число итераций, N
MMO	1	0.042	9
ММО модиф.	1	0.042	9
MHC	1	0.041	9
МНС модиф.	1	0.040	9
MMH	1	0.045	9
ММН модиф.	1	0.045	9
PMH	1	0.042	9
РМН модиф.	1	0.042	8

Глава 2

Решение операторных уравнений в случае положительного спектра

Монотонность оператора A исходного уравнения — очень сильное требование, которое не выполняется во многих важных прикладных задачах, например, в задачах гравиметрии и магнитометрии. В данной главе показано, что есть возможность ослабить условие монотонности и обосновать сходимость итераций РМН, ММО, МНС, ММН. В первом параграфе представлены доказательства сходимости метода Ньютона с регуляризацией, во втором параграфе сформулированы теоремы сходимости для нелинейных α -процессов, в третьем параграфе представлены следствия для модифицированных аналогов α -процессов, в четвертом приведены результаты численных расчетов.

2.1. Метод Ньютона

Рассматривается конечномерный случай, когда оператор $A: \mathbb{R}^n \to \mathbb{R}^n$, для которого матрица A'(u) в некоторой окрестности решения имеет спектр, состоящий из различных неотрицательных собственных значений. Справедлива лемма (Bacuh, [VasSkur2017]).

Лемма 2.1. Пусть $n \times n$ матрица A'(u) не имеет кратных собственных значений λ_i и числа λ_i (i=1,2,..n) различны и неотрицательны. Тогда при $\bar{\alpha}>0$ матрица имеет представление $A'(u)+\bar{\alpha}I=S(u)\Lambda S^{-1}(u)$ и справедлива оценка

$$\|(A'(u) + \bar{\alpha}I)^{-1}\| \le \frac{\mu(S(u))}{\bar{\alpha} + \lambda_{min}} \le \frac{\mu(S(u))}{\bar{\alpha}},\tag{2.1}$$

где столбцы матрицы S(u) составлены из собственных векторов матрицы $A'(u) + \bar{\alpha}I$, $\Lambda - \partial u$ агональная матрица, ее элементы — собственные значения матрицы $A'(u) + \bar{\alpha}I$, $\mu(S(u)) = \|S(u)\| \|S^{-1}(u)\|$.

Обратимся к регуляризованному методу Ньютона, для которого была доказана теорема (1.3) о сходимости итераций и оценке погрешности для монотонного оператора. Рассмотрим теперь вариант этой теоремы, когда оператор $A \colon R^n \to R^n$ и производная которого имеет неотрицательный спектр, удовлетворяющий условиям леммы (2.1), причем функция $\mu(S(u))$ при фиксированном α равномерно ограничена по u в шаре $S_r(u_\alpha)$, т.е.

$$\sup\{\mu(S(u)) : u \in S_r(u_\alpha)\} \le \bar{S} < \infty. \tag{2.2}$$

Теорема 2.1. Пусть выполнены условия (2.2), (1.4)-(1.6), $A'(u^0)$ — симметричная матрица, и для параметров справедливы соотношения: $0 < \alpha \leq \bar{\alpha}$, $\bar{\alpha} \geq 4N_0$, $r \leq \alpha/8N_2\bar{S}$, $||u_{\alpha} - u^0|| \leq r$.

Тогда для метода (1.3) справедливо заключение теоремы 1.3, где соотношения (1.15), (1.16) для γ и выражение для q в (1.19) соответственно принимает вид

$$\gamma < \frac{\alpha \bar{\alpha}}{2(N_1 + \alpha)^2 \bar{S}^2}, \quad \gamma_{opt} = \frac{\alpha \bar{\alpha}}{4(N_1 + \alpha)^2 \bar{S}^2}, \quad q = \sqrt{1 - \frac{\alpha^2}{16(N_1 + \alpha)^2 \bar{S}^2}}$$

Доказательство. С учетом оценки (2.1), доказательство с несущественными поправками проводится по схеме из теоремы 1.3.

З а м е ч а н и е 2.1. При доказательстве теоремы вместо условия (2.2) достаточно требовать ограниченность величины $\sup\{\mu(S(u^k)):u^k\in S_r(u_\alpha)\}$, где u^k — итерационные точки метода. Причем, при регулярном правиле останова итераций $k(\delta)$, супремум берется по конечному набору номеров $k\leq k(\delta)$, что автоматически влечет ограниченность супремума и выполнение оценки вида (1.19) при этих значениях k. Кроме того, для модифицированного метода Ньютона, в котором производная $A'(u^0)$ вычисляется в фиксированной точке u^0 , величина $\mu(S(u^0)) = \|S(u^0)\| \|S^{-1}(u^0)\| = \bar{S} < \infty$.

2.2. Нелинейные альфа-процессы

При тех же условиях на оператор, что и для метода Ньютона в параграфе 2.1, исследуем процессы (1.24).

Теорема 2.2. Пусть выполнены условия (1.4)–(1.6). Пусть при $u \in S_r(u_\alpha)$ матрица A'(u) имеет спектр, состоящий из неотрицательных различных собственных значений, $A'(u^0)$ — симметричная неотрицательно определенная матрица. Пусть параметры удовлетворяют условиям:

$$MMO: \quad 0 < \alpha \le \bar{\alpha}, \quad r \le \alpha/6\bar{S}N_2, \quad \bar{\alpha} \ge N_0$$
 (2.3)

$$MHC: \quad 0 < \alpha \le \bar{\alpha}, \quad r \le \alpha/3N_2,$$
 (2.4)

$$MMH: 0 < \alpha \le \bar{\alpha}, \quad r \le \alpha/6N_2.$$
 (2.5)

Тогда справедливы следующие соотношения (1.28), где

$$\mu_{-1} = \frac{8\bar{S}^2(N_1 + \alpha)^2}{\alpha\bar{\alpha}}, \quad \mu_0 = \frac{18(N_1 + \alpha)^2(N_1 + \bar{\alpha})}{\alpha\bar{\alpha}^2}, \quad \mu_1 = \frac{18(N_1 + \alpha)^2(N_1 + \bar{\alpha})^4}{\alpha\bar{\alpha}^5}$$
(2.6)

Доказательство. При $\varkappa=-1$ и тех же обозначениях, которые были приняты в разделе 3, имеем (верхний индекс (-1) соответствует методу (1.24) при $\varkappa=-1$)

$$< F^{-1}(u), u - u_{\alpha} > = \beta^{-1}(u) [< A(u) - A(u_{\alpha}), u - u_{\alpha} > +\alpha ||u - u_{\alpha}||^{2}].$$

Оценим каждое из слагаемых в правой части равенства с учетом условий (2.3):

$$< A(u) - A(u_{\alpha}), u - u_{\alpha} > +\alpha \|u - u_{\alpha}\|^{2} = \alpha \|u - u_{\alpha}\|^{2}$$

$$+ < \int_{0}^{1} (A'(u_{\alpha} + \theta(u - u_{\alpha})) - A'(u^{0}))(u - u_{\alpha})d\theta, u - u_{\alpha} > + < A'(u^{0})(u - u_{\alpha}), u - u_{\alpha} >$$

$$\ge \alpha \|u - u_{\alpha}\|^{2} - \frac{N_{2}(\|u^{0} - u_{\alpha}\| + \|u - u^{0}\|)^{2}}{2} \|u - u_{\alpha}\|^{2}$$

 $\geq \left(\alpha - \frac{3N_2r}{2}\right) \|u - u_\alpha\|^2 \geq \frac{3\alpha}{4} \|u - u_\alpha\|^2$

(2.7)

$$\beta^{-1}(u) = \frac{\langle (A'(u) + \bar{\alpha}I)^{-1}S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|S_{\alpha}(u)\|^{2}} = \frac{\langle (A'(u^{0}) + \bar{\alpha}I)^{-1}S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|S_{\alpha}(u)\|^{2}} + \frac{\langle (B^{-1}(u) - B^{-1}(u^{0}))S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|S_{\alpha}(u)\|^{2}} \ge \frac{1}{N_{0} + \bar{\alpha}} - \frac{\bar{S}N_{2}\|u - u^{0}\|}{\bar{\alpha}^{2}}$$
$$\ge \frac{1}{N_{0} + \bar{\alpha}} - \frac{2\bar{S}N_{2}r}{\bar{\alpha}^{2}} \ge \frac{1}{6\bar{\alpha}}, \tag{2.8}$$

где учтены условия (2.3) и соотношение $||u-u^0|| \le ||u-u_\alpha|| + ||u_\alpha-u^0|| \le 2r$. Кроме того, имеем оценку

$$||F^{-1}(u)||^{2} \leq (\beta^{-1})^{2} ||A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha})||^{2}$$

$$\leq ||B^{-1}(u)||^{2} (N_{1} + \alpha)^{2} ||u - u_{\alpha}||^{2} \leq \frac{\bar{S}^{2} (N_{1} + \alpha)^{2}}{\bar{\sigma}^{2}} ||u - u_{\alpha}||^{2}$$
(2.9)

Объединяя (2.7)–(2.9), получаем, что в соотношении (1.28), μ_{-1} выражается величиной из (2.6)

Исследуем теперь МНС, т.е. процесс (1.24) при $\varkappa=0$. Аналогично прерыдущему методу устанавливаем, что

$$< A(u) - A(u_{\alpha}), u - u_{\alpha} > +\alpha \|u - u_{\alpha}\|^{2} \ge \left(\alpha - \frac{3N_{2}r}{2}\right) \|u - u_{\alpha}\|^{2}$$
 (2.10)

Кроме того, имеем

$$\beta^{0}(u) = \frac{\|S_{\alpha}(u)\|^{2}}{\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle} \ge \frac{1}{\|B(u)\|} \ge \frac{1}{\|A'(u) + \bar{\alpha}I\|} \ge \frac{1}{N_{1} + \bar{\alpha}}.$$

Объединяя последнее соотношение с (2.10), получаем оценку снизу

$$< F^{0}(u), u - u_{\alpha} > \ge \frac{1}{N_{1} + \bar{\alpha}} \left(\alpha - \frac{3N_{2}r}{2} \right) \|u - u_{\alpha}\|^{2}.$$
 (2.11)

Аналог оценки (2.9) для $F^0(u)$ следует из следующих неравенств:

$$||F^{0}(u)|| \le \beta^{0}(u)(||A(u) - A(u_{\alpha})|| + \alpha||u - u_{\alpha}||) \le \beta^{0}(u)(N_{1} + \alpha)||u - u_{\alpha}||, (2.12)$$

$$\beta^{0}(u) = \frac{\|S_{\alpha}(u)\|^{2}}{\bar{\alpha}\|S_{\alpha}(u)\|^{2} + \langle A'(u^{0})S_{\alpha}(u), S_{\alpha}(u) \rangle + \langle (A'(u) - A'(u^{0}))S_{\alpha}(u), S_{\alpha}(u) \rangle}$$

$$\leq \frac{\|S_{\alpha}(u)\|^{2}}{\bar{\alpha}\|S_{\alpha}(u)\|^{2} - |\langle (A'(u) - A'(u^{0}))S_{\alpha}(u), S_{\alpha}(u) \rangle|}$$

$$\leq \frac{1}{\bar{\alpha} - N_2 \|u - u^0\|} \leq \frac{1}{\bar{\alpha} - 2N_2 r} \tag{2.13}$$

Из (2.11)-(2.13) при значениях параметров из (2.4) получаем значения μ_0 в (2.6).

Наконец рассмотрим процесс (1.24) при $\varkappa=1$ с учетом замечания 3.1. Как и в предыдущем методе, при оценке снизу величины $< F^1(u), u-u_\alpha>$, справедливо соотношение (2.10). Для параметра $\beta^1(u)$ получаем

$$\beta^{1}(u) = \frac{\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|B(u)S_{\alpha}(u)\|^{2}}$$

$$\geq \frac{\langle A'(u^{0})S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha} \langle S_{\alpha}(u), S_{\alpha}(u) \rangle - \|A'(u) - A'(u^{0})\| \|S_{\alpha}(u)\|^{2}}{(N_{1} + \bar{\alpha})^{2} \|S_{\alpha}(u)\|^{2}}$$

$$\geq \frac{\bar{\alpha} - N_{2} \|u - u^{0}\|}{(N_{1} + \bar{\alpha})^{2}} \geq \frac{\bar{\alpha} - 2N_{2}r}{(N_{1} + \bar{\alpha})^{2}},$$

что при условиях на параметры (2.5), дает оценку

$$< F^{1}(u), u - u_{\alpha} > \ge \left(\alpha - \frac{3N_{2}r}{2}\right) \frac{\bar{\alpha} - 2N_{2}r}{(N_{1} + \bar{\alpha})^{2}} \|u - u_{\alpha}\|^{2} \ge \frac{\alpha\bar{\alpha}}{2(N_{1} + \bar{\alpha})^{2}} \|u - u_{\alpha}\|^{2}.$$

$$(2.14)$$

Поскольку

$$||F^{1}(u)|| \leq \beta^{1}(u)(||A(u) - A(u_{\alpha})|| + \alpha||u - u_{\alpha}||) \leq \beta^{1}(u)(N_{1} + \alpha)||u - u_{\alpha}||,$$

$$||\beta^{1}(u)|| \leq \frac{(N_{1} + \bar{\alpha})||S_{\alpha}(u)||^{2}}{||A'(u)S_{\alpha}(u)||^{2} + 2\bar{\alpha} < A'(u)S_{\alpha}(u), S_{\alpha}(u) > +\bar{\alpha}^{2}||S_{\alpha}(u)||^{2}}$$

$$\leq \frac{(N_{1} + \bar{\alpha})||S_{\alpha}(u)||^{2}}{2\bar{\alpha} < A'(u^{0})S_{\alpha}(u), S_{\alpha}(u) > -2\bar{\alpha}| < (A'(u) - A'(u^{0}))S_{\alpha}(u), S_{\alpha}(u) > |+\bar{\alpha}^{2}||S_{\alpha}(u)||^{2}}$$

$$\leq \frac{(N_{1} + \bar{\alpha})}{\bar{\alpha}^{2} - 2\bar{\alpha}N_{2}||u - u^{0}||} \leq \frac{N_{1} + \bar{\alpha}}{\bar{\alpha}(\bar{\alpha} - 4N_{2}r)} \leq \frac{3(N_{1} + \bar{\alpha})}{\bar{\alpha}^{2}}.$$

Окончательно получаем для $||F^1(u)||^2$ оценку сверху

$$||F^{1}(u)||^{2} \le \frac{3^{2}(N_{1} + \alpha)^{2}(N_{1} + \bar{\alpha})^{2}}{\bar{\alpha}^{4}} ||u - u_{\alpha}||^{2}.$$
(2.15)

Объединяя соотношения (2.14) и (2.15), и условия (2.5), получаем значение μ_1 , представленное в (2.6).

Теорема 2.3. Пусть выполнены условия теоремы 2.1. Тогда при $\gamma_{\varkappa} < 2/\mu_{\varkappa}$, $\varkappa = -1, 0, 1$, где значения μ_k определяются соотношениями (2.6), последовательности u^k , порожедаемые процессом (1.24) при $\varkappa = -1, 0, 1$, сходятся к u_{α} , m.e.,

$$\lim_{k \to \infty} \|u^k - u_\alpha\| = 0,$$

а при $\gamma_{\varkappa}^{opt} = \frac{1}{\mu_{\varkappa}}$ справедлива оценка

$$||u^{k+1} - u_{\alpha}|| \le q_{\varkappa}^k r,$$

 $r\partial e$

$$q_{-1} = \sqrt{1 - \frac{\alpha^2}{64\bar{S}^2(N_1 + \alpha)^2}}, \quad q_0 = \sqrt{1 - \frac{\alpha^2\bar{\alpha}^2}{36(N_1 + \alpha)^2(N_1 + \bar{\alpha})^2}},$$

$$q_1 = \sqrt{1 - \frac{\alpha^2\bar{\alpha}^6}{36(N_1 + \alpha)^2(N_1 + \bar{\alpha})^6}}.$$
(2.16)

Доказательство. Подставляя в соотношение (1.23) вместо $F(u^k)$ последовательность $F^{\varkappa}(u^k)$ ($\varkappa=-1,0,1$) и, используя оценки (2.7), (2.8) ($\varkappa=-1$), (2.8), (2.9) ($\varkappa=0$), (2.10), (2.11) ($\varkappa=1$), а также условия на параметры (2.3)–(2.5), получаем, после минимизации по γ , значения для q_{\varkappa} , представленные в (2.16). При выполнении условия $\gamma_{\varkappa} < 2/\mu_{\varkappa}$, выражение в круглых скобках в правой части неравенства (1.23) принимает значение, которое меньше единицы, что влечет сходимость итераций для всех трех методов.

З а м е ч а н и е 2.2. Предложенный подход к получению оценок скорости сходимости итерационных процессов полностью переносится на случай, когда спектр матрицы $A'(u^k)$, состоящий из различных вещественных значений, содержит набор малых по абсолютной величине отрицательных собственных значений. Пусть λ_1 — отрицательное собственное значение с наименьшим модулем $|\lambda_1|$ и $\bar{\alpha}-|\lambda_1|=\bar{\alpha}_1<\alpha^*$. Тогда оценка (2.1) трансформируется в неравенство

$$\|(A'(u^k) + \bar{\alpha}I)^{-1}\| \le \frac{\mu(S(u^k))}{\bar{\alpha}^*} \le \frac{\bar{S}}{\bar{\alpha}^*}$$
 (2.17)

Все утверждения, т.е. теоремы (2.1)–(2.3) остаются справедливыми при замене $\bar{\alpha}$ на $\bar{\alpha}^*$ во всех оценках, где используется (2.17).

З а м е ч а н и е 2.3. Если рассматривать модифицированные варианты методов (1.3)-(1.24), когда вместо $A'(u^k)$ в операторе шага используется $A'(u^0)$ в процессе итераций, то при условиях на оператор, принятых в данном разделе, для получения аналогичных результатов о сходимости и оценке погрешности наряду с неотрицательностью спектра достаточно: требовать симметричность матрицы $A'(u^0)$ [VasAkiMin2013; Vasin_2014; Vasin_2016]. Заметим, что при исследовании основных методов (1.3)-(1.24) существование симметричной матрицы для некоторого элемента u^0 предполагается.

2.3. Модифицированные варианты регуляризованных методов на основе нелинейных альфа-процессов

Рассматривается случай, когда производная оператора производной A'(u) вычисляется в начальной точке итерационных процессов u^0 . Тогда формулы итерационных процессов (1.24) принимают вид:

$$u^{k+1} = u^k - \gamma \frac{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle}{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa + 1} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle} S_{\alpha}(u^k) \equiv T(u^k), \qquad (2.18)$$

где при $\varkappa=-1$ итерационный процесс представляет собой модифицированный ММО, при $\varkappa=0$ — модифицированный МНС и при $\varkappa=1$ — модифицированный ММН.

Справедлива следующая теорема.

Теорема 2.4. Пусть выполнены условия (1.4)–(1.6) $A'(u^0)$ — самосопряженный оператор, спектр которого состоит из неотрицательных различных собственных значений, параметры удовлетворяют условиям:

$$0 \le \alpha \le \bar{\alpha}, \quad r = \alpha/6N_2, \quad \bar{\alpha} \ge N_0. \tag{2.19}$$

Тогда для оператора поправки итерационного метода (2.18)

$$F^{\varkappa}(u) = \frac{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle}{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa+1} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle} S_{\alpha}(u^k)$$

имеет место неравенство

$$||F^{\varkappa}(u)||^{2} \le \frac{8(N_{1} + \alpha)^{2}}{3\alpha\bar{\alpha}} < F^{\varkappa}(u), u - u_{\alpha} >,$$

 ${\it где}\ \varkappa = -1,0,1,\ {\it для}\ {\it модифицированных}\ {\it вариантов}\ {\it MMO},\ {\it MHC}\ {\it u}\ {\it MMH}\ {\it coom-ветственно}.$

Доказательство. Установим свойство монотонности оператора F для МММО, обозначим его как F_0^{-1} .

$$< F_0^{-1}(u), u - u_{\alpha} > = < F_0^{-1}(u) - F_0^{-1}(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u - u_{\alpha} > = \beta_0^{-1} [< A(u) - A(u_{\alpha}), u -$$

$$+\alpha \|u - u_{\alpha}\|^{2}.$$

$$< A(u) - A(u_{\alpha}), u - u_{\alpha} > = < \int_{0}^{1} [A'(u_{\alpha} + \theta(u - u_{\alpha})) - A'(u^{0})](u - u_{\alpha})d\theta, u - u_{\alpha} >$$

$$+ < A'(u^{0})(u - u_{\alpha}), u - u_{\alpha} > \ge -N_{2} \int_{0}^{1} \|u_{\alpha} - u^{0} + \theta(u - u_{\alpha})\| \cdot \|u - u_{\alpha}\|^{2}d\theta$$

$$= -N_{2}\|u - u_{\alpha}\|^{2} \int_{0}^{1} \|u_{\alpha} - u^{0} + \theta u - \theta u_{\alpha} \pm \theta u^{0}\|d\theta = -N_{2}\|u - u_{\alpha}\|^{2}$$

$$\times \int_{0}^{1} \|(1 - \theta)(u_{\alpha} - u^{0}) + \theta(u - u_{\alpha})\|d\theta \ge -N_{2}\|u - u_{\alpha}\|^{2} \left[\int_{0}^{1} (1 - \theta)d\theta \cdot \|u^{0} - u_{\alpha}\| + \int_{0}^{1} \theta d\theta \|u - u_{\alpha}\|^{2}\right] = -N_{2}\|u - u_{\alpha}\|^{2} \left[\frac{\|u_{\alpha} - u^{0}\|}{2} + \frac{\|u_{\alpha} - u^{0} + u^{0} - u\|}{2}\right]$$

$$\ge -\frac{3N_{2}r}{2}\|u - u_{\alpha}\|^{2}, \qquad (2.20)$$

где $r = ||u_{\alpha} - u^{0}||, \quad ||u - u^{0}|| \le 2r.$

Получим оценку снизу для множителя $\beta_0^{-1}(u)$, воспользовавшись спектральным разложением резольвенты самосопряженного оператора $A'(u^0)$:

$$<(A'(u^{0}) + \bar{\alpha}I)S_{\alpha}(u), S_{\alpha}(u) > = \int_{0}^{N_{0}} \frac{d < E_{\lambda}S_{\alpha}(u), S_{\alpha}(u) >}{\lambda + \bar{\alpha}} \ge \frac{\|S_{\alpha}(u)\|^{2}}{N_{0} + \bar{\alpha}},$$
$$\beta_{0}^{-1}(u) = \frac{<(A'(u^{0}) + \bar{\alpha}I)S_{\alpha}(u), S_{\alpha}(u) >}{\|S_{\alpha}(u)\|^{2}} \ge \frac{1}{N_{0} + \bar{\alpha}}.$$

Имеем

$$< F_0^{-1}(u), u - u_\alpha > \ge \frac{1}{N_0 + \bar{\alpha}} \left[\alpha - \frac{3N_2 r}{2} \right] ||u - u_\alpha||^2.$$

Применяя условия (2.19) теоремы, получаем итоговую оценку

$$< F_0^{-1}(u), u - u_\alpha > \ge \frac{3\alpha}{8\bar{\alpha}} ||u - u_\alpha||^2.$$
 (2.21)

Получим оценку нормы оператора F_0^{-1} :

$$||F_0^{-1}(u)|| = |\beta_0^{-1}(u)| \cdot ||A(u) + \alpha(u - u^0) - f_\delta|| = |\beta_0^{-1}(u)| \cdot ||A(u) - A(u_\alpha) + \alpha(u - u_\alpha)||.$$

$$||A(u) + \alpha(u - u^0) - f_{\delta}|| \le (N_1 + \alpha)||u - u_{\alpha}||.$$
 (2.22)

$$\beta_0^{-1}(u) = \frac{1}{\|S_\alpha(u)\|^2} \int_0^{N_0} \frac{d < E_\lambda S_\alpha(u), S_\alpha(u) >}{\lambda + \bar{\alpha}} \le \frac{1}{\bar{\alpha}},$$

$$||F_0^{-1}(u)||^2 \le \frac{(N_1 + \alpha)^2}{\bar{\alpha}^2} ||u - u_\alpha||^2.$$
(2.23)

Объединим (2.21) и (2.23), получаем

$$||F_0^{-1}(u)||^2 \le \frac{8(N_1 + \alpha)^2}{3\alpha\bar{\alpha}} < F_0^{-1}(u), u - u_\alpha > 0$$

для модифицированного варианта ММО.

Рассмотрим модифицированный вариант МНС ($\varkappa=0$).

$$< F_0^0(u), u - u_\alpha > = \beta_0^0(u) [< A(u) - A(u_\alpha), u - u_\alpha > +\alpha ||u - u_\alpha||^2].$$

Учитывая, что $<(A'(u^0)+\bar{\alpha}I)S_{\alpha}(u),S_{\alpha}(u)>\leq (N_0+\bar{\alpha})\|S_{\alpha}(u)\|^2$, имеем

$$\beta_0^0(u) = \frac{\|S_\alpha(u)\|^2}{\langle (A'(u^0) + \bar{\alpha}I)S_\alpha(u), S_\alpha(u) \rangle} \ge \frac{1}{N_0 + \bar{\alpha}}.$$

Воспользовавшись ранее полученной оценкой (2.20), имеем

$$< F_0^0(u), u - u_\alpha > \ge \frac{3\alpha}{8\bar{\alpha}} ||u - u_\alpha||^2.$$
 (2.24)

Оценивая сверху $\beta_0^0(u)$ как

$$\beta_0^0(u) \le \frac{1}{\bar{\alpha}},\tag{2.25}$$

при объединении неравенств (2.22), (2.24) и (2.25), приходим к соотношению

$$||F_0^0(u)||^2 \le \frac{8(N_1 + \alpha)^2}{3\alpha\bar{\alpha}} < F_0^0(u), u - u_\alpha > 0$$

для модифицированного варианта МНС.

Для модифицированного ММН ($\varkappa=1$), по аналогии, оценим сверху и снизу параметр $\beta_0^1(u)$. Обозначим $B_0(u)=A'(u^0)+\bar{\alpha}I,$

$$\beta_0^1(u) = \frac{\langle B_0(u)S_\alpha(u), S_\alpha(u) \rangle}{\|B_0(u)S_\alpha(u)\|^2} = \frac{\|B_0^{1/2}(u)S_\alpha(u)\|^2}{\|B_0^{1/2}\|^2 \|B_0^{1/2}S_\alpha(u)\|^2} \ge \frac{1}{\|B_0(u)\|} \ge \frac{1}{N_0 + \bar{\alpha}}.$$

Объединяя эту оценку и оценку (2.20), имеем соотношение

$$< F_0^1(u), u - u_\alpha > \ge \frac{3\alpha}{8\bar{\alpha}} ||u - u_\alpha||^2.$$
 (2.26)

И наконец,

$$\beta_0^1(u) = \frac{\langle B_0(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\langle B_0(u)S_{\alpha}(u), A'(u^0)S_{\alpha}(u) \rangle + \bar{\alpha} \langle B_0(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}$$

$$\leq \frac{\langle B_0(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\bar{\alpha} \langle B_0S_{\alpha}(u), S_{\alpha}(u) \rangle} = \frac{1}{\bar{\alpha}},$$

так как

$$< B_0(u)S_{\alpha}(u), A'(u^0)S_{\alpha}(u) > = < A'(u^0)S_{\alpha}(u), A'(u^0)S_{\alpha}(u) >$$

 $+\bar{\alpha} < S_{\alpha}(u), A'(u^0)S_{\alpha}(u) > \geq 0$

в силу неотрицательности спектра оператора $A'(u^0)$. Таким образом,

$$||F_0^1(u)||^2 \le \frac{(N_1 + \alpha)^2}{\bar{\alpha}^2} ||u - u_\alpha||^2, \tag{2.27}$$

объединяя (2.26), (2.27), получаем

$$||F_0^1(u)||^2 \le \frac{8(N_1 + \alpha)^2}{3\alpha\bar{\alpha}} < F_0^1(u), u - u_\alpha > .$$

Докажем сильную фейеровость оператора шага T в методах (2.18).

Теорема 2.5. Пусть выполнены условия теоремы 2.4. Тогда при $\gamma < 2/\mu_{\varkappa}$ последовательность $\{u^k\}_{k=1}^{\infty}$ сходится к регуляризованному решению u_{α} :

$$\lim_{k \to \infty} \|u^k - u_\alpha\| = 0,$$

 $npu \ \gamma_{opt} = 1/\mu_{\varkappa}$. Справедлива оценка

$$||u^k - u_\alpha|| \le q_\varkappa^k r,$$

 $r \partial e$

$$q^{\varkappa} = \sqrt{1 - \frac{9\alpha^2}{64(N_1 + \alpha)^2}}$$

Доказательство. Неравенство (1.8) будет выполнено при $\mu_{\varkappa} = \frac{2}{\gamma(1+\nu)}$ (из теоремы 2.4), $\nu = \frac{2}{\gamma\mu_{\varkappa}} - 1$, где $\gamma < 2/\mu_{\varkappa}$. Отсюда следует сходимость итераций к u_{α} .

Величину q получим из условия минимума $\|u^{k+1} - u_{\alpha}\|^2$:

$$||u^{k+1} - u_{\alpha}||^{2} = ||u^{k} - u_{\alpha}||^{2} - 2\gamma \langle F^{\varkappa}(u^{k}), u^{k} - u_{\alpha} \rangle + \gamma^{2} ||F^{\varkappa}(u^{k})||^{2}$$

$$\leq \left(1 - 2\gamma \frac{3\alpha}{8\bar{\alpha}} + \gamma^{2} \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}}\right) ||u^{k} - u_{\alpha}||^{2}.$$

$$\gamma_{opt} = argmin\{1 - 2\gamma \frac{3\alpha}{8\bar{\alpha}} + \gamma^{2} \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}}\},$$
(2.28)

подставляя полученное γ_{opt} в выражение в круглых скобках (2.28), вычисляем значение для q^{\varkappa} :

$$||u^{k+1} - u_{\alpha}||^2 \le \left(1 - \frac{9\alpha^2}{64(N_1 + \alpha)^2}\right)||u^k - u_{\alpha}||^2,$$

отсюда получаем q^{\varkappa} .

2.4. Выводы ко второй главе

Глава 3

Покомпонентные методы и вычислительные оптимизации

3.1. Постановки задач

Рассматривается трехмерная структурная обратная задача гравиметрии о нахождении поверхностей раздела сред по известным скачкам плотности и гравитационному полю, измеренному на некоторой площади земной поверхности. Рассмотрим уравнение гравиметрии для модели двуслойной среды в декартовой системе координат с осью z, направленной вниз

$$\gamma \Delta \sigma \frac{1}{4\pi} \left\{ \iint_{D} \frac{1}{[(x-x')^{2} + (y-y')^{2} + H^{2}]^{1/2}} dx' dy' - \iint_{D} \frac{1}{[(x-x')^{2} + (y-y')^{2} + u^{2}(x',y')]^{1/2}} dx' dy' \right\} = \Delta g(x,y),$$
(3.1)

где γ — гравитационная постоянная, $\Delta \sigma = \sigma_2 - \sigma_1$ — скачок плотности на поверхности раздела сред, описываемой функцией u(x,y) и подлежащей определению, f(x,y) — аномальное гравитационное поле, вызванное отклонением поверхности от асимптотической плоскости z=H для искомого решения u(x,y) (рис. 3.1). Запишем (3.1) в виде операторного уравнения

$$[A(u)](x,y) = -\iint_{D} \frac{1}{[(x-x')^{2} + (y-y')^{2} + u^{2}(x',y')]^{1/2}} dx'dy' = f(x,y), \quad (3.2)$$

где $f(x,y) = \Delta g(x,y) 4\pi/\gamma \Delta \sigma - A(H)$. Тогда производная оператора A в точке $u^0(x,y)$ определяется формулой

$$[A'(u^0)]h = \iint_D \frac{u^0(x',y')h(x',y')}{[(x-x')^2 + (y-y')^2 + (u^0(x',y'))^2]^{3/2}} dx'dy',$$

Уравнение (3.2) является интегральным уравнением Урысона (так как неизвестная функция u(x,y) входит в ядро оператора нелинейно) І рода, следовательно,

Рис. 3.1. Модель двуслойной среды в задаче гравиметрии.

относится к классу некорректных задач.

После дискретизации интегрального уравнения (3.2) двумерным аналогом формулы прямоугольников с равномерной сеткой по каждой переменной с шагом Δx , Δy , получаем систему нелинейных уравнений относительно неизвестного вектора $u_{ji} = u(x_j, y_i)$ (j = 1, 2, ..., N, i = 1, 2, ..., M), которая в векторноматричном виде может быть записана следующим образом

$$A_n(u_n) = f_n, (3.3)$$

где u_n, f_n — векторы размерности $n = N \times M$. Дискретный аналог производной $A'(u^0)$ принимает форму

$$[A'_n(u_n^0)h_n]_{k,l} = \sum_{i=1}^M \sum_{j=1}^N \Delta x \Delta y \frac{u_{ji}^0 h_{ji}}{[(x_k - x'_j)^2 + (y_l - y'_i)^2 + (u_{ji}^0)^2]^{3/2}},$$
 (3.4)

где при $u_n = u_n^0 - \text{const } A'_n(u_n^0) - \text{симметричная матрица, компоненты которой вычисляются по формуле (3.4).}$

Рассмотрим уравнение гравиметрии для модели многослойной среды.

Предполагается, что нижнее полупространство состоит из нескольких слоев постоянной плотности $\Delta \sigma_l(l=1,..,L)$, разделенных искомыми поверхностями S_l , где L — число границ раздела (рис. 3.2). Гравитационный эффект от такого полупространства равен сумме гравитационных эффектов от всех поверхностей раздела. Пусть поверхности раздела задаются уравнениями $u_l(x,y)$,

Рис. 3.2. Модель многослойной среды.

скачки плотности на них равны $\Delta \sigma_l$. поверхности имеют горизонтальные асимптотические плоскости $u_l = H_l$, т.е.

$$\lim_{|x|,|y|\to\infty} |u_l(x,y) - H_l| = 0.$$

Функции $u_l(x,y)$, $u=(u_1(x,y),...,u_L(x,y))$, описывающие искомые поверхности раздела сред, удовлетворяют операторному уравнению

$$A(u) = \sum_{l=1}^{L} f \Delta \sigma_l \frac{1}{4\pi} \iint_D \left\{ \frac{1}{[(x-x')^2 + (y-y')^2 + u_l^2(x,y)]^{1/2}} - \frac{1}{[(x-x')^2 + (y-y')^2 + H_l^2]^{1/2}} \right\} = \Delta g(x',y'),$$
(3.5)

где f — гравитационная постоянная, $\Delta \sigma_l(l=1,..,L)$ скачки плотности, $\Delta g(x',y')=\sum_{l=1}^L g_l$ — суммарное аномальное гравитационное поле.

Предварительная обработка гравитационных данных с выделением аномального поля из измеренных гравитационных данных выполняется по методике [MarPrut2003]. Задача является недоопределенной, так как мы ищем несколько функций $u_l(x,y)$ по заданной функции $\Delta g(x',y')$. Поэтому необходимо использовать весовые множители, которые могут быть найдены по формулам из [AkMarMis2013]:

$$F = [F_1, F_2, ..., F_L] = (f_1, f_2, ..., f_{M \times L}, ..., f_{L \times M \times N})$$

$$\to (w_1, w_2, ..., w_{L \times M \times N}),$$

$$w_i = \frac{|f_i|^{\beta}}{\max_i |f_i|^{\beta}}, \quad \beta > 1, \tag{3.6}$$

где $F_l(l=1,2,...,L)$ — аномальные гравитационные поля, создаваемые гравитирующими массами, находящимися на соответствующих глубинах H_l и разделенных границами раздела $S_l(l=1,2,...,L)$.

После дискретизации уравнения (3.5) на сетке $n=M\times N$ с заданной правой частью $\Delta g(x',y')$ и аппроксимации интегрального оператора A(u) по квадратурным формулам, получаем вектор правой части F(x',y') размера $M\times N$, вектор решения $u(x,y)=[u_1(x,y),..,u_L(x,y)]$ размерности $L\times M\times N$, полученный конкатенацией векторов решений, соответствующих l-й границе раздела, матрицу производной оператора A'(u) размерности $(M\times N)\times (L\times M\times N)$, полученной приписыванием справа к матрице производной $A'(u^l)$ в точке u^l матрицы $A'(u^{l+1})$, где

$$[A'(u_n^l)h_n]_{k,m} = \sum_{i=1}^M \sum_{j=1}^N \Delta x \Delta y \frac{u_{ij}^l h_{ij}^l}{[(x_k - x_i')^2 + (y_m - y_j')^2 + (u_{ij}^l)^2]^{3/2}},$$
 (3.7)

и систему нелинейных уравнений

$$A_n[u] = F_n. (3.8)$$

Критерием останова итераций выбрана относительная норма невязки $||A_n(u^k) - F_n||/||F_n||$ точного и численного решений при достаточно малом ε .

Уравнение магнитометрии при тех же предположениях, что и в задаче гравиметрии для двухслойной среды, имеет вид:

$$\Delta J \left\{ \iint_{D} \frac{H}{[(x-x')^{2} + (y-y')^{2} + H^{2}]^{3/2}} dx' dy' - \iint_{D} \frac{u(x',y')}{[(x-x')^{2} + (y-y')^{2} + u^{2}(x',y')]^{3/2}} dx' dy' \right\} = \Delta G(x,y),$$
(3.9)

где ΔJ – усредненный скачок z-компоненты вектора намагниченности, z=H – асимптотическая плоскость, u(x,y) – функция, описывающая аномальное поле, z=u(x,y) – искомая функция, описывающая поверхность раздела сред

Рис. 3.3. Модель двуслойной среды в задаче гравиметрии.

с различными свойствами намагниченности (рис. 3.3). Уравнение (3.9) можно переписать в форме

$$[D(u)](x,y) = \iint_{D} \frac{u(x',y')}{[(x-x')^2 + (y-y')^2 + u^2(x',y')]^{3/2}} dx'dy' = F(x,y), \quad (3.10)$$

где $F(x,y) = D(H) - \Delta G(x,y)/\Delta J$, тогда производная оператора D в точке $u^0(x,y)$ определится формулой

$$[A'(u^0)]h = \iint_D \frac{(x-x')^2 + (y-y')^2 - 2(u^0(x',y'))^2}{[(x-x')^2 + (y-y')^2 + (u^0(x',y'))^2]^{5/2}} h(x',y') dx' dy'.$$

После дискретной аппроксимации подобно задаче гравиметрии уравнения (3.10), приходим к системе нелинейных уравнений

$$D_n(u_n) = F_n (3.11)$$

относительно вектора u_n $(n=N\times M)$ с компонентами u_{ij} (i=1,2,...,N,j=1,2,...,M), при этом компоненты производной оператора D_n в точке u_n^0 вычисляются по формуле

$$[D'_n(u_n^0)h_n]_{k,l} = \sum_{i=1}^N \sum_{j=1}^M \Delta x \Delta y \frac{(x_k - x'_j)^2 + (y_l - y'_i)^2 - 2(u_{ji}^0)^2}{[(x_k - x'_j)^2 + (y_l - y'_i)^2 + (u_{ji}^0)^2]^{5/2}} h_{ji}, \quad (3.12)$$

причем при $u_n^0=\{u^0(x_j',y_i'),1\leq j\leq M,1\leq i\leq N\}=const,\ D_n'(u_n^0)$ – симметричная матрица.

Рис. 3.4. Схема матрицы производной оператора A в задачах грави- магнитометрии в двух- слойной среде

3.2. Вычислительная оптимизация метода Ньютона

Для задач (3.3), (3.11) можно отметить, что элементы матриц $A'(u^0)$ (3.4), (3.12) принимают наибольшие значения при малых значениях (x-x') и (y-y') (Рис. 3.4). Однако при возрастании глубины H асимптотической плоскости по сравнению с площадью D — размером сетки, выраженная «ленточность» матрицы производной оператора теряется.

Поэтому в структурных обратных задачах грави- магнитометрии при небольших относительно размера сетки глубинах H при решении итерационными методами без существенной потери точности можно не учитывать значения элементов, отстоящих от диагонали далее, чем на β -ю часть размерности матрицы производной, то есть те значения a_{ij} , для которых $j \in \{i - h(\beta), ...i + h(\beta)\}$, где $h(\beta)$ — полуширина ленты матрицы, i,j — индекс элемента. Данный подход позволяет существенно уменьшить количество вычислительных операций, перейдя от плотно заполненных матриц к матрицам ленточного вида.

В данной работе приведены результаты расчетов модельных задач гравиметрии и магнитометрии в двухслойной среде методами Ньютона и модифицированным его вариантом.

3.3. Покомпонентный метод типа Ньютона

Запишем исходное операторное уравнение (1.1) в виде:

$$P(u) = A(u) - f,$$

где $A(u) = \int_a^b \int_c^d K(x,y,x',y',u^k(x,y)) dx dy$ — интегральный оператор задачи гравиметрии (3.1).

Итерации в методе Ньютона строятся по схеме

$$A'(u^k)(\Delta u^k) = -(A(u^k) - f),$$

где $\Delta u^k = u^{k+1} - u^k$. То есть, для задачи гравиметрии

$$f\Delta\sigma \int_{a}^{b} \int_{c}^{d} K'_{u}(x, y, x', y', u^{k}(x, y)) \Delta u^{k} dx dy = [A(u^{k})](x', y') - f(x', y'). \tag{4.3}$$

В задаче гравиметиии на изменение гравитационного поля в правой части (4.3) наибольшее значение оказывает отклонение искомой функции точного решения z от асимптотической плоскости в точке (x',y'). Тогда можем записать

$$f\Delta\sigma(\Delta u^k) \int_{a}^{b} \int_{c}^{d} K'_u(x, y, x', y', u^k(x, y)) dx dy = A(u(x', y')) - f(x', y').$$
 (3.13)

Таким образом, величина поправки Δu^k может быть получена как

$$\Delta u^k = \left[[A(u)](x', y') - f(x', y') \right] / f \Delta \sigma \int_a^b \int_a^d K'_u(x, y, x', y', u^k(x, y)) dx dy,$$

итерации осуществляются по схеме:

$$u^{k+1}(x',y') = u^k(x',y') - \frac{1}{\psi^k(x',y')}([A(u^k)](x',y') - f(x',y')),$$

где

$$\psi^{k}(x',y') = f\Delta\sigma \int_{a}^{b} \int_{c}^{d} K'_{u}(x,y,x',y',u^{k}(x,y))dxdy.$$
 (3.14)

В дискретной записи итерационный процесс запишется

$$u_{k,m}^{k+1} = u_{k,m}^k - \frac{1}{\psi_{k,m}^k} ([A_n(u^k)]_{k,m} - f_{k,m}), \quad 1 \le k \le M, \quad 1 \le m \le N,$$

где

$$\psi_{k,m}^{k} = f \Delta \sigma \sum_{i=1}^{M} \sum_{j=1}^{N} \Delta x \Delta y \frac{u_{ij}}{[(x_k - x_j')^2 + (y_l - y_i')^2 + (u_{ij})^2]^{3/2}}.$$

Эту сумму $\psi_{k,m}^k$ можно интерпретировать как сумму элементов $(k \times M + l)$ -й строки матрицы производной $A_n'(u_n^k)$.

Предложенный метод позволяет существенно упростить вычисления по сравнению с методом Ньютона. Вместо вычисления обратной матрицы в методе Ньютона можно вычислить вектор, состоящий из сумм элементов строк матрицы и использовать его компоненты для восстановления соответствующей компоненты вектора решения u_n^k . Вычислительная сложность метода Ньютона составляет $O(n^2)$, если для обращения матрицы производной $A'_n(u_n)$ использовать методы градиентного типа, в то время как вычислительная сложность покомпонентного метода O(n).

3.4. Покомпонентный метод типа

Левенберга-Марквардта

Для решения задач (3.1), (3.5) предлагается метод покомпонентного типа, основанный на идее метода Левенберга—Марквардта.

Для аппроксимации решения уравнения (3.2) метод Левенберга—Марквардта (МЛМ) имеет вид:

$$u^{k+1} = u^k - \gamma [A'(u^k)^* A'(u^k) + \alpha I]^{-1} A'(u^k)^* (A(u^k) - f_\delta), \tag{3.15}$$

где $A'(u^k)^*$ — оператор, сопряженный к производной оператора A задачи A'(u), $\alpha>0$ — параметр регуляризации, $\|f-f_\delta\|\leq \delta.$

В работах В.В. Васина [Vasin_2012], [VasPer_2011] был исследован метод Левенберга—Марквардта

$$u^{k+1} = u^k - \gamma [A'(u^k)^* A'(u^k) + \bar{\alpha}I]^{-1} [A'(u^k)^* (A(u^k) - f_\delta) + \alpha(u - u^0)]$$
 (3.16)

и его модифицированный вариант

$$u^{k+1} = u^k - \gamma [A'(u^0)^* A'(u^0) + \bar{\alpha}I]^{-1} [A'(u^k)^* (A(u^k) - f_\delta) + \alpha (u - u^0)]$$
 (3.17)

для решения регуляризованного уравнения

$$A'(u)^*(A(u) - f_{\delta}) + \alpha(u - u^0) = 0,$$

где γ — демпфирующий множитель, u^0 — некоторое приближение к u_α , $\alpha>0$. На основании выводов, сделанных М.Ю. Кокуриным [**Kok_2010**] о свойствах градиента $\Phi'_\alpha(u)$ тихоновского функционала

$$\Phi_{\alpha}(u) = (1/2)(\|A(u) - f_{\delta}\|^2 + \alpha \|u - \xi\|^2)$$

было установлено, что при выборе параметров $\bar{\alpha}$, α , γ имеет место сильная сходимость итераций (3.16), (3.17) к регуляризованному решению u_{α} .

По аналогии с покомпонентным методом типа Ньютона (3.3), можно выполнить прием вынесения значимой компоненты за знак интегрального оператора, как в (3.13) и запишем итерационную последовательность восстановления каждой из неизвестных границ u_l

$$u_l^{k+1} = u_l^k - \gamma \frac{1}{\varphi_l} \Lambda [A'(u_l^k)^T (A(u^k) - f_\delta) + \alpha (u_l^k - u_l^0)],$$
 (3.18)

где l – номер границы раздела, l=1,..,L, Λ — диагональная матрица, состоящая из весовых множителей,

$$\varphi_{l} = \left[f \Delta \sigma \int_{a}^{b} \int_{c}^{d} K'_{u}(x', y', x, y, u_{l}^{k}(x, y)) dx' dy' \right]$$

$$\times \left[f \Delta \sigma \int_{a}^{b} \int_{c}^{d} K'_{u}(x, y, x', y', u_{l}^{k}(x, y)) dx dy \right],$$

где $K'_u(x',y',x,y,u^k_l(x,y))$ — функция ядра, транспонированного к ядру $K'_u(x,y,x',y',u^k(x,y))$. Величина φ_l зависит от u^k_l . Итерационный процесс (3.18) перепишем в дискретной форме

$$u_{l,i}^{k+1} = u_{l,i}^k - \gamma \frac{1}{\varphi_{l,i}} w_{l,i} \left[\{ A'(u_l^k)^T (A(u^k) - f_\delta) \}_i + \alpha (u_{l,i}^k - u_{l,i}^0) \right], \tag{3.19}$$

где $w_{l,i}-i$ -й весовой множитель, зависящий от l-й границы раздела,

$$\varphi_{l,i} = \left[f \Delta \sigma \sum_{k=1}^{N} \sum_{m=1}^{M} K'_{u}(x'_{k}, y'_{m}, \{x, y\}_{i}, u^{k}_{l,i}) \Delta x' \Delta y' \right] \times \left[f \Delta \sigma \sum_{k=1}^{N} \sum_{m=1}^{M} K'_{u}(x_{k}, y_{m}, \{x', y'\}_{i}, u^{k}_{l}(x_{k}, y_{m})) \Delta x \Delta y \right].$$

Преимущества покомпонентного метода типа Левенберга—Марквардта в низкой вычислительной сложности. Здесь не требуется вычисления матрицы $A'(u^k)^T A'(u^k) + \alpha I$. Это делает метод более экономичным в численных расчетах по сравнению с (3.16), (3.17), где вычислительная сложность алгоритмов достигает $O(n^3)$ в силу умножения матриц $A'(u^k)^T A'(u^k)$ и обращения матрицы $A'(u^k)^T A'(u^k) + \alpha I$. Вычислительная сложность (3.18) составляет $O(n^2)$ потому что самыми затратными по времени операциями являются вычисление элементов матрицы $A'(u^k)^T$ и матрично-векторные умножения.

3.5. Результаты численного моделирования

Заключение