Math 7243 Machine Learning - Homework 2

For programming questions, you can only use numpy library. You should not use any build in function from Scikit-learn or StatsModels libraries.

Problem 1 Loss Functions: (You can use all results in section 1 on matrix calculus)

Let X be the data matrix and θ be the parameter vector.

a) In Lecture 2, we showed that the residual sum of square can be written

$$RSS(\theta) = (Y - X\theta)^{T}(Y - X\theta)$$

Find a **critical point** for $RSS(\theta)$ by calculate $\frac{\partial}{\partial \theta}RSS(\theta) = 0$.

b) **Ridge regression** changes the loss function to add in a term penalizing the θ if they get to large: For any positive number λ , the Ridge loss function

$$Ridge_{\lambda}(\theta) = (Y - X\theta)^{T}(Y - X\theta) + \lambda^{2}\theta^{T}\theta$$

Find an expression for the location of the critical point of Ridge_{λ}(θ).

Problem 2 - Computing Linear Regression:

Consider the points

$$x^{(i)}$$
 | 1.2 | 3.2 | 5.1 | 3.5 | 2.6 | $y^{(i)}$ | 7.8 | 1.2 | 6.4 | 2.6 | 8.1

- a). Fit a linear function to this dataset when the loss is RSS. You may use a computer to solve the matrix equation but you should report the best fit function.
- b). Fit a linear function to this dataset when the loss is the Ridge Loss from Problem 1.b) with $\lambda = 1$ and with $\lambda = 10$. What specifically explains the difference in values between the three fits.

Problem 3 - Gradient Decent and Newton's method

Consider solving the problem of locally weighted linear regression using gradient descent and Newton's method. Given data $\{\vec{x}^{(i)}, y^{(i)}\}$ for i = 1, 2, ..., n and and a query point \vec{x} , we choose a parameter vector θ to minimize the loss function

$$J(\vec{\theta}; \vec{x}) = \sum_{i=1}^{n} w^{(i)} (\vec{\theta}^T \vec{x}^{(i)} - y^{(i)})^2$$

Here the weight function is $w^{(i)} = \exp\left(-\frac{\|\vec{x}^{(i)} - \vec{x}\|^2}{2\tau^2}\right)$ where τ is a hyper-parameter that must be tuned. Note that whenever we receive a new query point \vec{x} , we must solve the entire problem again with these new weights $w^{(i)}$.

- (a) Given a data point \vec{x} , derive the gradient of $J(\vec{\theta}; \vec{x})$ with respect to $\vec{\theta}$.
- (b) Given a data point \vec{x} , derive the Hessian of $J(\vec{\theta}; \vec{x})$ with respect to $\vec{\theta}$.
- (c) Given a data point \vec{x} , write the update formula for gradient descent. Use the symbol η for an arbitrary step size.

1

(d) Given a data point \vec{x} , write the update formula for Newtons method.

Problem 4 - (Stochastic) Gradient Decent

(1) The data file $\{\vec{x}^{(i)}, y^{(i)}\}$ for i = 1, 2, ..., n is drawn (with noise) from

$$f(x) = \beta_0 + \beta_1 \sin(x) + \beta_2 \cos(x)$$

Can you solve the parameters use the least squares method? Find a closed formula and explain the matrices clearly in your formula.

(2) The data file $\{\vec{x}^{(i)}, y^{(i)}\}$ for i = 1, 2, ..., n = 10 is drawn (with noise) from the function:

$$g(x) = \beta_0 + \sin(\beta_1 x) + \cos(\beta_2 x)$$

Use gradient decent(GD) or stochastic gradient decent (SGD) to fit the data to the function g(x) by minimizing the RSS loss

$$RSS = \sum_{i=1}^{n} (y^{(i)} - g(x^{(i)}))^{2}$$

Turn in any associated computations, your learning rate, and the parameters.