Saksham Jindal

Email: saksham.jindal@outlook.com | Mobile: +44-7440736592 | Postcode: London (UK) TW75PD Linkedin: www.linkedin.com/in/sakshamjindal | Github: www.github.com/sakshamjindal

EDUCATION

Indian Institute of Technology, Kharagpur

July 2018 M.Tech. and B.Tech. in Ocean Engineering and Naval Architecture CGPA: 8.20/10.0

PROFESSIONAL EXPERIENCE

Fractal Analytics, London (UK)

June 2018 – Present

Data Scientist | Machine Learning Engineer

AI@scale, Computer Vision and Conversational AI

Research and Development of scalable products and prototypes in Computer Vision

- Product information extraction using image instance segmentation and OCR for a retail client
 - Designed and developed automated product identification model with ~20 brands of the client in advertisement pamphlets using deep learning based layout-segmentation and image classification algorithms for extraction of products
 - Implemented incremental learning for scaling up batch training for new classes and reduced training time by 60%
 - Operationalized framework enabled automation in business workflow by eliminating ~200 man-hours monthly
- Surveillance using object detection on aerial images using inference optimized single-stage methods
 - Architected a multi-dataset and multi-network object detection experimentation framework with scalable and reproducible pipelines for image pre-processing, distributed training, inference generation and model deployment
 - Developed several models based on backbones of Yolov3 and RetinaNet and benchmarked on VisDrone-2019 dataset
 - Optimized the performance of YOLOv3 fine-tuned to detect small and medium objects with implementation of mixed precision training and researched on model quantization for latency optimization and increase in inference speed
- Product placement context understanding using scene classification in images for a CPG client
 - Spearheaded the development of an image classification capability to categorize indoor scenes (8 classes) in the image
 - Developed a fully retrained model based on Resnet-50 and Resnet-101 to classify scenes at various scales and layouts
 - Optimized the performance by multi-class multi-scale training with cosine annealing schedule on learning rate
- In-house attendance tracking system using facial recognition and face tracking
 - Designed and deployed a facial recognition and tracking system for over 1000+ employees across 3 locations in India
 - Developed FaceNet based face-verification model for few-shot representation learning of face embedding using online hard triplet negative mining (triplet loss) and facial recognition using image classification on the feature embeddings

OPEN-SOURCE PROJECTS

- *Unsupervised framework to capture visual and spatial embeddings on multi-view CLEVR dataset* [code][doc]
 - Developed a framework to construct scene graph from visual and spatial prototypes from a single RGB image
 - Initialized the embeddings from masked object ROI pool features (visual) and concatenation of connecting node features (spatial) conditioned on ground truth egomotion refined further by momentum contrastive learning framework
- Real-time stereo visual odometry and camera pose estimation with local bundle adjustment [code]
 - Implemented a pipeline for incremental estimation of 6-DOF ego-motion using video stream of the moving camera
 - Employed techniques included feature matching, outlier rejection using RANSAC, feature tracking across time instants, 3D reconstruction of point cloud, pose estimation (PnP algorithm) and local pose refinement using Bundle Adjustment
- Road lane marking detection for autonomous driving benchmarked on BDD dataset [code]
 - Developed training and inference pipelines for experimentation with deep learning architectures for real-time semantic segmentation (Deeplabv3, SCNN, Enet), different loss functions to handle class imbalance and learning rate schedulers
 - Initiated experiments with the architectures and loss functions to benchmark on BDD100K dataset for lane detection
- Real-time monocular visual SLAM and pose-graph optimization with g2o framework [code]
 - Implemented a pipeline of monocular SLAM for feature tracking, pose prediction, pose refinement and 3D visualization

PUBLICATION

J.Pradhan, S. Jindal, B. Mahato, Y.G. Bhumkar, "Joint Optimization of the Spatial and the Temporal Discretization Scheme for Accurate Computation of Acoustic Problems", Communications in Computational Physics, 24 (2018), pp. 408-434

SKILLS, TOOLS & FRAMEWORKS

- Languages: Python, C, C++
- Deep Learning in Computer Vision: Pytorch, Tensorflow, Keras
- Containerization, Orchestration and Deployment: Docker, Django, Flask, Nginx, Kubernetes, Airflow, Git
- Machine Learning and Image Processing: Numpy, Pandas, Scikit-learn, Statsmodel, Scipy, Jupyter, OpenCV, Pillow
- Relevant Courses Undertaken: Linear Algebra, Data Structure and Algorithms, Graph Theory, Probability and Statistics