Κεφάλαιο 4 - Ο χώρος \mathbb{R}^n

Διανυσματικοί χώροι

Ορισμός

Έστω μη κενό σύνολο V στο οποίο έχουμε ορίσει πρόσθεση και πολλαπλασιασμό με πραγματικούς αριθμούς. Το V λέγεται διανυσματικός χώρος αν ισχύουν τα παρακάτω αξιώματα για κάθε $u, v, w \in V$ και $\lambda, \mu \in \mathbb{R}$:

- u + v = v + u
- ③ Υπάρχει στοιχείο $\mathbb{O} \in V$ ώστε $\mathbb{O} + u = u + \mathbb{O} = u$.
- $lackbox{0}$ Για κάθε $u \in V$ υπάρχει $-u \in V$ ώστε $u + (-u) = (-u) + u = \mathbb{O}$.

- $\lambda(\mu u) = (\lambda \mu)u$
- **3** 1u = u

Σ. Δημόπουλος ΜΑΣ029 2 / 18

Τα παρακάτω σύνολα είναι διανυσματικοί χώροι με τις συνήθεις πράξεις:

- ullet Το σύνολο των $m \times n$ πινάκων με πραγματικά στοιχεία.
- ullet Το σύνολο \mathbb{R}^2 των διανυσμάτων του επιπέδου.
- ullet Το σύνολο \mathbb{R}^3 των διανυσμάτων του χώρου.
- Το σύνολο $\{ \mathbb{O} \}$ (μηδενικός διανυσματικός χώρος).

Σ. Δημόπουλος ΜΑΣ029 3 / 18

Ορισμός

 $s_1, s_2, \ldots, s_n \in \mathbb{R}$.

Ορίζουμε για $n\in\mathbb{N}$ το σύνολο \mathbb{R}^n με στοιχεία της μορφής $\begin{pmatrix} s_1\\s_2\\\vdots\\s_n \end{pmatrix}$, όπου

Συμβολισμός:
$$\begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} = \vec{u} = \mathbf{u} = (s_1, s_2, \dots, s_n)$$

Σ. Δημόπουλος MAΣ029 4 / 18 Ορίζουμε επίσης:

Θεώρημα

Το \mathbb{R}^n με τις παραπάνω πράξεις είναι διανυσματικός χώρος.

Λόγω του θεωρήματος, αποκαλούμε τα στοιχεία του \mathbb{R}^n διανύσματα.

Σ. Δημόπουλος ΜΑΣ029 5 / 18

Ορισμός

Έστω $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$ και $\lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{R}$. Το διάνυσμα

$$\mathbf{y} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots \lambda_m \mathbf{v}_m$$

λέγεται **γραμμικός συνδυασμός των ν**1, ν2,..., ν_m. Επίσης λέμε ότι το y παράγεται (spanned) από τα $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$.

Παράδειγμα

Στον
$$\mathbb{R}^2$$
: $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

MAΣ029 6 / 18

Ston
$$\mathbb{R}^3$$
: $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Σ. Δημόπουλος $MA \Sigma 029$ 7 / 18

Στον
$$\mathbb{R}^n$$
: Έστω $\mathbf{e}_1=egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}$, $\mathbf{e}_2=egin{pmatrix}0\\1\\\vdots\\0\end{pmatrix}$, ..., $\mathbf{e}_n=egin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}$.

Σ. Δημόπουλος ΜΑΣ029 8 / 18

Ορισμός

Έστω $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$. Το σύνολο όλων των γραμμικών συνδυασμών των $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ λέγεται ο παραγόμενος χώρος των $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ και συμβολίζεται με Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$.

$$\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\} = \{\lambda_1\mathbf{v}_1 + \lambda_2\mathbf{v}_2 + \ldots + \lambda_m\mathbf{v}_m \mid \lambda_1,\lambda_2,\ldots,\lambda_m \in \mathbb{R}\}$$

Παράδειγμα

Τι συμπεραίνετε από τα προηγούμενα παραδείγματα σε σχέση με το σύνολο Span;

> MAΣ029 9 / 18

Γεωμετρική ερμηνεία

Aν $\mathbf{v} \in \mathbb{R}^3$, Span $\{\mathbf{v}\} = \{\lambda \mathbf{v} \mid \lambda \in \mathbb{R}\}$. Αυτό το σύνολο εκφράζει μια ευθεία που διέρχεται από το O και είναι παράλληλη στο \mathbf{v} .

Σ. Δημόπουλος ΜΑΣ029 10 / 18

Γεωμετρική ερμηνεία

Aν $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^3$, Span $\{\mathbf{v}_1, \mathbf{v}_2\} = \{\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 \mid \lambda_1, \lambda_2 \in \mathbb{R}\}$. Αυτό το σύνολο εκφράζει το επίπεδο του \mathbb{R}^3 που ορίζουν τα v_1, v_2 (λόγω κανόνα παραλληλογράμμου).

Σ. Δημόπουλος ΜΑΣ029 11 / 18

Έστω
$$\mathbf{v}_1=\begin{pmatrix}1\\-2\\-5\end{pmatrix}$$
, $\mathbf{v}_2=\begin{pmatrix}2\\5\\6\end{pmatrix}$. Να ελέγξετε αν $\mathbf{b}\in\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$, όπου

$$\mathbf{b} = \begin{pmatrix} 7 \\ 4 \\ -3 \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 12 / 18

Έστω
$$\mathbf{v}_1=\begin{pmatrix}1\\2\\-1\end{pmatrix}$$
, $\mathbf{v}_2=\begin{pmatrix}6\\4\\2\end{pmatrix}$. Να ελέγξετε αν $\mathbf{w}\in \text{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$, όπου
$$\mathbf{w}=\begin{pmatrix}4\\-1\\8\end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 13 / 18

Θεώρημα

Τα παρακάτω είναι ισοδύναμα για $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m, \mathbf{w} \in \mathbb{R}^n$.

- **1** Το **w** είναι γραμμικός συνδυασμός των $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$.
- $\mathbf{Q} \mathbf{w} \in \mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\}$
- \bullet Το γραμμικό σύστημα με επαυξημένο πίνακα $(\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_m | \mathbf{w})$ είναι συμβιβαστό.

MAΣ029 14 / 18

Να βρεθεί το Span
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 όπου $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -4 \\ -3 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$,

$$\mathbf{v}_3 = \begin{pmatrix} 4 \\ -6 \\ -7 \end{pmatrix}.$$

Σ. Δημόπουλος $MA \Sigma 029$ 15 / 18

Έστω
$$\mathbf{v}_1=\begin{pmatrix}1\\1\\2\end{pmatrix}$$
, $\mathbf{v}_2=\begin{pmatrix}1\\0\\1\end{pmatrix}$, $\mathbf{v}_3=\begin{pmatrix}2\\1\\3\end{pmatrix}$. Να ελέγξετε αν

$$\mathsf{Span}\{\textit{v}_1,\textit{v}_2,\textit{v}_3\} = \mathbb{R}^3.$$

Σ. Δημόπουλος ΜΑΣ029 16 / 18

Έστω
$$\mathbf{v}_1=\begin{pmatrix}1\\0\\-2\end{pmatrix}$$
, $\mathbf{v}_2=\begin{pmatrix}-3\\1\\8\end{pmatrix}$, $\mathbf{y}=\begin{pmatrix}h\\-5\\3\end{pmatrix}$. Για ποιες τιμές του h ισχύει $\mathbf{y}\in \mathrm{Span}\{v_1,v_2\};$

Σ. Δημόπουλος ΜΑΣ029 17 / 18

Παρατήρηση

Αν A είναι $m \times n$ πίνακας και $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, τότε το γινόμενο $A\mathbf{x}$ είναι γραμμικός συνδυασμός των στηλών του A.

Σ. Δημόπουλος ΜΑΣ029 18 / 18