Graphs Whose Spectral Band Functions are Perfect Morse Functions

Minisymposium on Spectral Theory and Applications of Schrödinger Operators

28 September 2025

Frank Sottile

Texas A&M University sottile@tamu.edu

Work with Matthew Faust of Michigan State.

Not Morse functions

Supported by NSF grant DMS-2201005

Periodic Graph Operators

A \mathbb{Z}^d -periodic graph $\Gamma = (\mathcal{V}, \mathcal{E})$ with periodic functions $V \colon \mathcal{V} \to \mathbb{R}$ and $E \colon \mathcal{E} \to \mathbb{R}$ (a *labeling*) \leadsto a discrete periodic operator $H = V + \Delta$ on $\ell_2(\mathcal{V})$. Δ is a weighted graph Laplacian.

As H is self-adjoint, its spectrum $\sigma(H)$ is a closed subset of \mathbb{R} .

Viewed through the lens of unitary characters \mathbb{T}^d of \mathbb{Z}^d , the spectrum is the image of $|\mathcal{V}/\mathbb{Z}^d|$ spectral band functions $\lambda_i \colon \mathbb{T}^d \to \mathbb{R}$.

This also gives a *Floquet matrix* H(z) of Laurent polynomials such that $det(H(z) - \lambda_i(z)) = 0$.

Spectral Edges Conjecture

Kuchment: Physicists typically assume that all extrema of spectral band functions are nondegenerate critical points, which implies many important physical properties.

The spectral edges conjecture for a periodic graph Γ posits that this occurs for a general labeling of Γ .

Easy fact: If $z \in \mathbb{T}^d$ satisfies that $z^2 = 1$ (z is a *corner point*), then it is a critical point of every spectral band function.

By the Morse inequalities, if every critical point of a spectral band function is nondegenerate, then it has at least 2^d critical points.

(This is because 2^d is the total Betti number of \mathbb{T}^d .)

Perfect Morse Functions

A spectral band function has at least 2^d critical points.

When it has exactly 2^d critical points, all nondegenerate, then the spectral band function is a *perfect Morse function*.

The Lieb lattice is a graph whose spectral band functions can be perfect Morse functions:

We seek conditions which imply that all spectral band functions are perfect Morse functions.

This very strong condition implies the spectral edges conjecture.

Minimally Supported Periodic Graphs

The general Floquet matrix H(z) of a connected periodic graph Γ has a monomial $z^{\pm \alpha} \iff \Gamma$ has an edge between vertices v and $\alpha + v$.

Such edges span \mathbb{Z}^d .

The Floquet matrix H(z) is minimally supported if the only monomials of z in det H(z) are z^0 , z_i , z_i^{-1} , for $i \in [d]$.

A graph is *minimally supported* if its general Floquet matrix is minimally supported.

This is a property of the Newton polytope of $det(H(z) - \lambda)$.

Faust-Robinson-S.: If Γ is minimally supported, each spectral band has at most 2^d isolated critical points.

Flat Band Trichotomy

A labeled graph Γ has a *flat band* if $D(z,\lambda) := \det(H(z)-\lambda)$ has a factor $\lambda-\lambda_0$.

 Γ has a *flat sub-band* if, after substituting ± 1 for z_i in $D(z,\lambda)$ for some *but not all* coordinates, there is a factor $\lambda - \lambda_0$. This implies a \mathbb{T}^r of critical points for some r < d.

Trichotomy (Faust-S.): If a labeled \mathbb{Z}^d periodic graph Γ is minimally supported, then either

- (1) Γ has a flat band.
- (2) Γ has a flat sub-band.
- (3) Every spectral band function is a perfect Morse function.

These can be wild. html

Isthmus connected graphs

A periodic graph Γ is *isthmus-connected* if it has a fundametal domain G with an induced path such that each adjacent fundamental domain is connected through a unique vertex in the interior of the path.

Isthmus (Faust-S.): Let Γ be an isthmus connected graph. For any choice of non-zero edge parameters, there is an explcitly described dense open subset U of potentials with the property:

For any labeling of Γ with these edge weights and potential $V \in U$, every spectral band function is a perfect Morse function.

Parallel Extensions

Let \mathbb{Z}_* be the 1-dimensional square lattice.

The parallel extension of a \mathbb{Z}^d -periodic labeled graph Γ is the \mathbb{Z}^{d+1} -periodic graph $\mathbb{Z}_* \times \Gamma$.

Parallel Extension (Faust-S.):

If every spectral band function of a labeled periodic graph Γ is perfect Morse function, then every spectral band function of its parallel extension is a perfect Morse function.

