

Equipo

- Sandra Atencio
- Piero Tejada
- Manuel Azpilcueta
- Danilo Sanchez

1 Descripción del Problema

Elaborar un Cronograma Semanal para 7 cursos, asignándole a cada uno:

- horario
- aula
- profesor

Restricciones obligatorias y opcionales

Anexo 1 – Detalles de Data

2 Hipótesis del problema

- Algoritmo Genético
- Evolución de posibles vía mutaciones y cruzamientos
- Determinación y Uso de parámetros adecuados
- Mejor cronograma semanal tomando como objetivo el valor de Fitness = 1,841 (= 7 cursos * 263 puntos máximos por asignaciones correctas por curso).

3 Metodología de trabajo adecuada al problema

FUENTE: Metodología presentada en dictado de curso

1. Población Inicial:

Inicia con una población aleatoria de 50 individuos

2. Evaluación:

Evalúa los Fitness de los individuos y obtiene el Fitness máximo

3. Criterio de parada:

Se ha definido como criterio de parada "Número máximo de generaciones", en caso que el Fitness llegue a 1841 deberá pasar 2 generaciones más para que el sistema pare.

4. Retorno mejor individuo

En caso de encontrar el mejor Fitness= 1841 devuelve valores y finaliza sistema

5. Selección de padres para reproducción:

De forma aleatoria se ha definido la selección de padres por el método "ruleta"

6. Cruzamiento:

Se experimentó Onepoint y Uniform, y en este caso se obtuvo un mejor Fitness con un rápido resultado con "Onepoint" (Ver anexo)

7. Mutación:

De la misma forma que en el punto 6 se obtuvo como resultado el tipo de mutación= 'MultiFlip' con una tasa de mutación= 5% (ver anexo)

8. Selección de sobrevivientes:

Se elige a los sobrevivientes mediante el método de Ranking, en este caso a los 50 primeros fitness máximos.

Métricas de Evaluación:

- 1. Fitness de cada individuo
- 2. Valor de Generación de Convergencia

4 Experimentación

Etapa 1 del Experimento

Determinación de los parámetros óptimos del algoritmo (anexo 2 - 9)

Etapa 2 del Experimento

Aplicación de los parámetros - previamente definidos - en el algoritmo genético para hallar la mejor solución posible a través del Fitness y el resultado de generaciones requeridas para alcanzar dicho valor.

Cruzamiento: One Point

Mutación: MultiFlip

Población: 50

Generaciones: 100

• Pmut: 5%

FUENTE: Resultado de múltiples simulaciones usando código Python de Solución de Problema (Anexo 2-9)

4 Resultado

1. Output del Código donde se muestra el individuo con mejor fitness y cumpliendo las restricción del caso

```
Fitness de 1841 repetido en las últimas 3 generaciones. Deteniendo.

Mejor individuo en la última generación =

{'curso': 'C001', 'horario': 'H002', 'aula': 'A001', 'profesor': 'P002'}

{'curso': 'C002', 'horario': 'H003', 'aula': 'A001', 'profesor': 'P004'}

{'curso': 'C003', 'horario': 'H004', 'aula': 'A001', 'profesor': 'P002'}

{'curso': 'C004', 'horario': 'H001', 'aula': 'A001', 'profesor': 'P004'}

{'curso': 'C005', 'horario': 'H002', 'aula': 'A002', 'profesor': 'P001'}

{'curso': 'C006', 'horario': 'H003', 'aula': 'A002', 'profesor': 'P001'}

{'curso': 'C007', 'horario': 'H002', 'aula': 'A003', 'profesor': 'P001'}

(fitness = 1841)
```

FUENTE: Código Python de Solución de Problema

2- Output del Código para el usuario final (formato amigable)

	clase_id	curso	cantidad_alumnos	aula_id	capacidad	profesor_id	profesor	horario_id	horario
0	C001	Fundamentos de programación	45	A001	45	P002	Mg. Layla Hirsh	H002	L-Mi-V 10:00 - 11:00
1	C002	Bases de Datos	45	A001	45	P004	Mg. Cesar Aguilera	H003	Ma-J 09:00 - 10:30
2	C003	Algoritmia	35	A001	45	P002	Mg. Layla Hirsh	H004	Ma-J 10:30 - 12:00
3	C004	Sistemas de información	30	A001	45	P004	Mg. Cesar Aguilera	H001	L-Mi-V 09:00 - 10:00
4	C005	Sistemas de Información 2	30	A002	35	P003	Dr. Manuel Tupia	H002	L-Mi-V 10:00 - 11:00
5	C006	Machine Learning	25	A002	35	P001	Dr. Edwin Villanueva	H003	Ma-J 09:00 - 10:30
6	C007	Deep Learning	20	A003	25	P001	Dr. Edwin Villanueva	H002	L-Mi-V 10:00 - 11:00

5 Conclusiones

El enfoque vía algoritmos genéticos demostró ser una **solución efectiva y eficiente** para el problema de asignación de horarios, aulas y profesores a cada uno de los 7 cursos.

- ✓ Eficiencia del Enfoque
- ✓ Optimización de Parámetros
- ✓ Cumplimiento de Restricciones
- ✓ Eficiencia en el Uso de Recursos

ANEXOS

Anexo 1 – Datos de Entrada

```
1 import random
 3 # Datos proporcionados
 4 horarios = {
     'H001': 'L-Mi-V 09:00 - 10:00'.
     'H002': 'L-Mi-V 10:00 - 11:00',
 6
     'H003': 'Ma-J 09:00 - 10:30',
 8 'H004': 'Ma-J 10:30 - 12:00'
9 }
10
11 aulas = {
     'A001': 45,
12
      'A002': 35,
13
      'A003': 25
14
15 }
16
17 profesores = {
       'P001': {'nombre': 'Dr. Edwin Villanueva', 'preferido': None},
      'P002': {'nombre': 'Mg. Layla Hirsh', 'preferido': 'H001'},
19
      'P003': {'nombre': 'Dr. Manuel Tupia', 'preferido': None},
20
21
       'P004': {'nombre': 'Mg. Cesar Aguilera', 'preferido': 'H002'}
22 }
23
24 cursos = {
       'C001': {'nombre': 'Fundamentos de programación', 'alumnos': 45, 'profesores': ['P001', 'P002', 'P003', 'P004']},
      'C002': {'nombre': 'Bases de Datos', 'alumnos': 45, 'profesores': ['P004']},
26
27
      'C003': {'nombre': 'Algoritmia', 'alumnos': 35, 'profesores': ['P002', 'P003']},
      'C004': {'nombre': 'Sistemas de información', 'alumnos': 30, 'profesores': ['P003', 'P004']},
28
       'C005': {'nombre': 'Sistemas de Información 2', 'alumnos': 30, 'profesores': ['P003', 'P004']},
29
       'C006': {'nombre': 'Machine Learning', 'alumnos': 25, 'profesores': ['P001', 'P002']},
30
31
       'C007': {'nombre': 'Deep Learning', 'alumnos': 20, 'profesores': ['P001']}
32 }
33 FUENTE: Código Python de Solución de Problema
```

Anexo 2 - Determinación de número de individuos en la población y el número de generaciones

Fitness total final para este individuo: 1377


```
Fitness total final para este individuo: 1841
Generación 100, Mejor fitness = 1841
Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H001
```


Anexo 3 - Determinación de número de individuos en la población y el número de generaciones

Fitness total final para este individuo: 1225 Generación 100, Mejor fitness = 1225 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H002',

Fitness total final para este individuo: 1841 Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H003',

Fitness total final para este individuo: 1537
Generación 100, Mejor fitness = 1537
Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H004'

Fitness total final para este individuo: 1841 Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H004

11

Anexo 4 - Determinación de número de individuos en la población y el número de generaciones

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H00

Anexo 5 - Determinación de número de individuos en la población y el número de generaciones

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H004

Generación

60

80

100

40

20

Anexo 6 - Determinación de número de individuos en la población y el número de generaciones

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H003'

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H003

Generación 100, Mejor fitness = 1841
Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H004'

Generación 100, Mejor fitness = 1841
Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H003

Evolución del Fitness a lo largo de las Generaciones


```
9 # Inicializa una población inicial de forma aleatoria
10 poblacion_inicial = init_population(tamano_poblacion, cursos, horarios, aulas, profesores)
11
12 # Evoluciona la población con el algoritmo genético (cruzamiento 'uniforme', mutación 'flip')
13 best_ind, bestfitness = genetic_algorithm(poblacion inicial, GENERATIONS, PMUT,
14
15 crossover="uniform", mutation="flip",
15 selection_parents_method='roulette',
16 selection_survivors_method='ranking')
17
```

Anexo 7 - Determinación de número de individuos en la población y el número de generaciones

Generación 100, Mejor fitness = 1689
Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H00:

Evolución del Fitness a lo largo de las Generaciones

1700

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H00

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H002'

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H004

MULTIFLIP, 50 INDIVIDUOS, 100 GENERACIONES

Pmut: 5% Pmut: 10% Pmut: 100%

16

FLIP, 50 INDIVIDUOS, 100 GENERACIONES

Pmut: 5% Pmut: 10% Pmut: 100%

17

Evolución del Fitness a lo largo de las Generaciones 1,841 1800 1700 Mejor Fitness 1600 1500 1400 Generación Generación de **Stop Aplicado** Convergencia

Anexo 11 Resultados de la Experimentación (Etapa 2)

1. Output del Código donde se muestra el individuo con mejor fitness y cumpliendo las restricción del caso

```
Fitness de 1841 repetido en las últimas 3 generaciones. Deteniendo.

Mejor individuo en la última generación =
{'curso': 'C001', 'horario': 'H002', 'aula': 'A001', 'profesor': 'P002'}
{'curso': 'C002', 'horario': 'H003', 'aula': 'A001', 'profesor': 'P004'}
{'curso': 'C003', 'horario': 'H004', 'aula': 'A001', 'profesor': 'P002'}
{'curso': 'C004', 'horario': 'H001', 'aula': 'A001', 'profesor': 'P004'}
{'curso': 'C005', 'horario': 'H002', 'aula': 'A002', 'profesor': 'P003'}
{'curso': 'C006', 'horario': 'H003', 'aula': 'A002', 'profesor': 'P001'}
{'curso': 'C007', 'horario': 'H002', 'aula': 'A003', 'profesor': 'P001'}
(fitness = 1841)
```

FUENTE: Código Python de Solución de Problema

2. Output del Código para el usuario final (formato amigable)

clase_id curso	cantidad	i_alumnos aula_id	capacio	dad profesor_id	profesor	horario_id	horario
0 C001 Fundamentos	de programación	45 A001	Ī	45 P002	Mg. Layla Hirsh	H002	L-Mi-V 10:00 - 11:00
1 C002 Bases de Da	tos	45 A001	i	45 P004	Mg. Cesar Aguilera	H003	Ma-J 09:00 - 10:30
2 C003 Algoritmia	į	35 A001	į	45 P002	Mg. Layla Hirsh	H004	Ma-J 10:30 - 12:00
3 C004 Sistemas de	información	30 A001	İ	45 P004	Mg. Cesar Aguilera	H001	L-Mi-V 09:00 - 10:00
4 C005 Sistemas de	Información 2	30 A002	į	35 P003	Dr. Manuel Tupia	H002	L-Mi-V 10:00 - 11:00
5 C006 Machine Lea	rning	25 A002	į	35 P001	Dr. Edwin Villanueva	H003	Ma-J 09:00 - 10:30
6 C007 Deep Learni		20 A003	İ	25 P001	Dr. Edwin Villanueva	H002	L-Mi-V 10:00 - 11:00

Gracias por su atención!