COMPUTER ENGINEERING WORKSHOP

S.E. (CIS) OEL REPORT

Project Group ID:

FAIZAN AHMED CS-052 TAHIR ALI CS-058

BATCH: 2023

Department of Computer and Information Systems Engineering

NED University of Engg. & Tech., Karachi-75270 CONTENTS

S.No.		Page No.
1.	Problem Description	1
2.	Methodology	2
3.	Results	3

CHAPTER 1

PROBLEM DESCRIPTION

This project involves designing an **Integrated Environmental Monitoring System** (**IEMS**) in C, which leverages real-time environmental data. The software is designed to help users monitor critical environmental conditions and optimize resource management.

The project's scope includes the following functionalities:

- **Interfacing with APIs** to fetch real-time environmental data such as temperature and humidity.
- **Data Storage:** Raw and processed data are saved in separate files for future analysis.
- Shell Scripts: Automate tasks, including data retrieval and preprocessing.
- Efficiency and Optimization: Use pointers and dynamic memory allocation to handle large datasets.
- Alerts: Utilize Linux system calls to notify stakeholders of significant or critical readings.
- Code Modularity: Implement header files for better organization and readability of the C code.

This project aligns with **CLO-1**, focusing on attaining hands-on experience with contemporary computer engineering technologies.

CHAPTER 2

Methodology

The project was developed following these steps:

1. API Integration:

- o A free API providing environmental data (e.g., OpenWeatherMap) was integrated using HTTP requests in the C program.
- o JSON responses from the API were parsed to extract required parameters.

2. Data Handling:

- o Raw data was stored in .json files for traceability.
- Processed data, including daily summaries and averages, was stored in .txt files for simplified reporting.

3. Shell Scripting:

 Bash scripts were created to automate repetitive tasks, such as scheduling data retrieval every hour and summarizing data every 24 hours.

4. **Optimization:**

 Pointers and dynamic memory allocation ensured memory-efficient processing of data arrays and structures.

5. Alerts:

o Critical conditions (e.g., high temperature or humidity) triggered real-time alerts using kill() and sigaction() Linux system calls.

6. Modular Programming:

- Functions and variables were organized in three files:
 - main.c: Core logic and execution.
 - functions.c: Helper functions.
 - functions.h: Declarations and definitions.

CHAPTER 3

Results

- Functional Software: Successfully developed an environmental monitoring system.
- **Automation:** Shell scripts enabled seamless data collection and processing without manual intervention.
- **Optimization:** Memory allocation improved program efficiency, handling up to 1,000 readings in real-time.
- Alert System: Linux notifications provided timely alerts to users for critical readings.
- **Modular Code:** The program is easy to maintain and extend due to the use of header files and modular design.

Outputs

```
Current Weather for London:

Temperature: 5.49°C
Condition: few clouds

ALERT: Low Temperature! 5.49°C
MESA: error: ZINK: failed to choose pdev
libEGL warning: egl: failed to create dri2 screen
MESA: error: ZINK: failed to choose pdev
glx: failed to create drisw screen

Warning

ALERT: Low Temperature!

OK
```

```
Temperature: 3.41°C

Condition: overcast clouds

Temperature: 3.41°C

Condition: overcast clouds
```

- Average Temperature: 4.52°C

 Average Temperature: 6.78°C

 3