Condições de Kuhn-Tucker e Equações Diferenciais

Chiang & Wainwright (2005)¹ - Seções 13.1, 15.1, 15.3 e 16.1

Apresentação por Fábio Nishida

Julho, 2021

1/11

¹Fundamental Methods of Mathematical Economics, 4th ed.

Seção 13.1: Condições de Kuhn-Tucker

Condições de Kuhn-Tucker (1/4)

- No problema de otimização clássico, com nenhuma restrição explícita nos sinais das variáveis de escolha e sem desigualdades nas restrições, a condição de primeira ordem para um extremo local é, simplesmente, as primeiras derivadas parciais iguais a zero.
- Em programação não-linear, existe uma condição similar à CPO, conhecida como condições de Kuhn-Tucker.

Efeito de Restrições Não-Negativas

• Tomando o caso para única variável, segue um problema

Maximizar
$$\pi = f(x_1)$$
, sujeito a $x_1 \ge 0$, (13.1)

em que f é uma função diferenciável.

ullet Note que estabelecemos um $x_{min}=0$. Caso não fosse 0, a restrição seria $x_1-x_{min}\geq 0$

Condições de Kuhn-Tucker (2/4)

- Dada restrição $x_1 \ge 0$, há três possíveis situações
 - 1. Se o máximo local de ocorrer no interior da região destacada, tal como o ponto A, então temos solução interior. A CPO neste caso é $d\pi/dx_1 = f'(x_1) = 0$, igual ao prob. clássico.
 - 2. O máximo local pode também ocorrer no eixo vertical, como no ponto B, onde $x_1 = 0$. Novamente, temos a CPO $f'(x_1) = 0$.
 - 3. Um máximo local pode ocorrer nos pontos C ou D. Para ser um máximo local no problema (13.1), o ponto precisa estar acima dos pontos vizinhos dentro da região factível.

FIGURE 13.1

Condições de Kuhn-Tucker (3/4)

- O ponto máximo no problema pode ser caracterizado não apenas pela equação $f'(x_1) = 0$, mas também pela desigualdade $f'(x_1) < 0$.
- Note que a desigualdade oposta $f'(x_1) > 0$ pode ser excluída, pois em um ponto onde a curva é positivamente inclinada, não pode existir um máximo, mesmo se o ponto estiver localizado no eixo, como no ponto E na Fig. 13.1a.
- Resumindo o que foi exposto acima, para o valor x_1 nos dar o máximo local de no problema (13.1), deve satisfazer uma destas 3 condições:

$$f'(x_1) = 0 \quad e \quad x_1 > 0 \quad [ponto A]$$
 (13.2)

$$f'(x_1) = 0$$
 e $x_1 = 0$ [ponto B] (13.3)

$$f'(x_1) < 0 \text{ e } x_1 = 0 \text{ [pontos C e D]}$$
 (13.4)

Condições de Kuhn-Tucker (4/4)

As 3 condições podem ser consolidadas em uma única:

$$f'(x_1) \le 0, \quad x_1 \ge 0 \quad e \quad x_1 f'(x_1) = 0$$
 (13.5)

- Na 3^{a} parte de (13.5), temos um aspecto importante em que, dos valores de x_1 e $f'(x_1)$, um deles deve ser igual a 0, o que torna o produto entre eles igual a zero.
- É similar à condição de transversalidade do problema de linha terminal vertical truncada:

$$[F_{y'}]_{t=T} \le 0, \quad y_T^* \ge y_{min} \quad e \quad (y_T^* - y_{min}) [F_{y'}]_{t=T} = 0$$
 (3.17)

- No problema <u>não-truncado</u>, só usamos $[F_{v'}]_{t=T} = 0$.
- No problema <u>truncado</u>, caso o problema não se solucione com $[F_{y'}]_{t=T} = 0$ (ou seja, $y_T^* \not\geq y_{min}$), usamos $(y_T^* y_{min}) = 0 \iff y_T^* = y_{min}$.

Seção 16.1: Equações Diferenciais de 2ª Ordem

Eq. Diferencial de 2^a Ordem – Coeficiente e Termos Constantes

 Uma equação diferencial de 1^a ordem com coeficientes e termo constantes, tem a seguinte forma:

$$y''(t) + a_1.y'(t) + a_2.y = a_3$$
 (16.2)

A função complementar é dada por

$$y_c = A_1 e^{r_1 t} + A_2 e^{r_2 t} [r_1 \neq r_2] (16.7)$$

tal que

$$r_1, r_2 = \frac{1}{2} \left(-a_1 \pm \sqrt{a_1^2 - 4a_2} \right)$$
 (16.5)

- A integral particular é dada por $\bar{y} = a_3/a_2$, com $a_2 \neq 0$.
- Logo, a solução geral é

$$y(t) = y_c + \bar{y} = A_1 e^{r_1 t} + A_2 e^{r_2 t} + \frac{a_3}{a_2}$$

Seções 15.1 e 15.3: Equações Diferenciais de 1^a Ordem

Eq. Diferencial de 1^a Ordem – Coeficiente e Termos Constantes

• Uma equação diferencial de 1ª ordem tem a seguinte forma

$$y' + u(t)y = w(t)$$
 (15.1)

- No caso em que coeficiente e termo são constantes, temos u(t) = a e w(t) = b
- No caso homogêneo, b=0, a solução geral é dada por

$$y(t) = Ae^{-at} (15.3)$$

• No caso não-homogêneo, $b \neq 0$, a função complementar e a integral particular são

$$y_c = Ae^{-at}$$
 e $\bar{y} = \frac{b}{a}$

tal que a solução geral é

$$y(t) = y_c + \bar{y} = Ae^{-at} + \frac{b}{a}$$

(15.5)

Eq. Diferencial de 1^a Ordem – Coeficiente e Termos Variáveis

• No caso em que coeficiente e termo são variáveis, usamos a forma (15.1)

$$y' + u(t)y = w(t)$$

• No caso homogêneo, w(t) = 0, a solução geral é dada por

$$y(t) = e^{-c}e^{-\int u(t)dt} = Ae^{-\int u(t)dt}$$
 (15.14)

• No caso não-homogêneo, $w(t) \neq 0$, a função complementar e a integral particular são

$$y_c = Ae^{-\int u(t)dt}$$
 e $\bar{y} = \int we^{\int udt}dt \left(e^{-\int u(t)dt}\right)$

tal que a solução geral é

$$y(t) = y_c + \bar{y} = e^{-\int u(t)dt} \left(A + \int we^{\int udt} dt \right) \tag{15.15}$$