Total No.	of Questions : 8] SEAT No. :
P 3281	[Total No. of Pages : 3
1 0201	[5353] - 154
	TE (E&TC)
ELECTROMAGNETICS AND TRANSMISSION LINES	
	(2012 Pattern)
<i>Time</i> : 2½	[Max. Marks :70
Instruction	ons to the candidates:
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, and Q7 or Q8.
2)	Figures to the right indicate full marks.
3)	Assume Suitable data if necessary.
Q1) a)	Derive an expression for potential gradient [6]
	$(\overline{E} = -\nabla V)$
b)	Derive boundary conditions for dielectric dielectric interface. [7]
c)	State and prove stoke's theorem. [7]
,	
	OR
Q2) a)	Evaluate both sides of divergence theorem for the field
	$\overline{D} = 2xy \ \overline{a}x + x^2 \overline{a}y \ c / m^2$ and the rectangular parallelopiped formed by
	planes $x = 0$ and 1, $y = 0$ and 2, $z = 0$ and 3. [8]
b)	A.
b)	Derive an expression for capacitance of a spherical capacitor [6]
c)	State amperis circuital law and derive an expression for magnetic field
	intensity \bar{H} using Amperis circuital law. [6]

Conduction current density (Jc)
Displacement current density (JD) Define: i) [8] **Q3)** a)

and show that $\nabla \times \overline{H} = J_{\scriptscriptstyle C} + J_{\scriptscriptstyle D}$

Write time harmonic form of maxwell's equations in integral and point b) form. [10]

- What are uniform plane waves? Obtain the wave equation in free space **Q4**) a) in terms of \overline{E} and \overline{H} .
 - In free space, $\overline{E} = 50\cos(\omega t \beta z)\overline{a}_x v/m$. Find the average power b) crossing a circular area of radius 2.5m in the plane z = 0. Assume Em = Hm n_0 and $n_0 = 120\pi$ [10]
- A transmission line has characteristic impedance of 50Ω . Find the reflection **O5)** a) coefficient, VSWR. if the line is terminated with: [8]

- ii) $(75 + j75) \Omega$ iv) $(75 + j40) \Omega$
- Derive an expression for characteristic impedance (Z_0) and propagation b) constant (γ) in terms of primary constants of transmission. [8]

Calculate the characteristic impedance, attenuation constant, phase *Q6*) a) constant of a transmission line, if the following measurments are made on the line. [8]

$$Zoc = 550 L - 60^{\circ} \Omega$$

$$Zsc = 500 L - 14^{\circ} \Omega$$

- Derive equations for valtages and currents at any point on transmission b) line. [8]
- What is standing wave ratio? Derive relationship between SWR and **Q7**) a) reflection coefficient. [8]
 - A lossless transmission line has $Z_0 = 50\Omega$. length 1 = 30m, operating b) frequency 2MHz. The line is terminated with $Z = 60 + j40\Omega$. If velocity is $0.6 \times C$ on the line, where C is velocity of light, find reflection coefficient, VSWR using SMITH CHART. [8]

Q8) a) Write a short note on [8]

- Stub matching i)
- i/p impedance of open and short circuited line. ii)
- The VSWR on a lossless line is found to be 5, and successive voltage b) minima are 40 cm apart. The first voltage minima is observed to be 15cm from load. The length of a line is 160cm and characteristic impedance is 300Ω. Using SMITH CHART, find load impedance and sending end impedance. [8]

Chiles of the state of the stat String of the st