Lecture 9, Sept. 29

9.1 Definition. We sat that $\{a_n\}$ diverges to ∞ if for every $M \ge 0$ there exists $N_0 \in \mathbb{N}$ such that if $n \ge N_0$, then $a_n > M$

We write

$$\lim_{n\to\infty}a_n=\infty$$

Figure 1: $\{a_n\}$ and M=2

9.2 Question. Does every sequence $\{a_n\}$ that is <u>not</u> bounded above diverges to ∞ ?

No. $\{0, 1, 0, 2, 0, 3, 0, 4, 0, 5, \dots\}$

Note. If $\{a_n\}$ is non-decreasing then either

- 1) $\{a_n\}$ is bounded and convergent
- 2) $\{a_n\}$ is unbounded and diverges to ∞
- **9.3 Question.** If a sequence is not bounded above, does it have a sub-sequence that diverges to ∞ ?

Series

Given a Sequence $\{a_n\}$, what does it mean to sum all of the terms of the sequence? That is what does the formal sum mean

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

9.4 Example.

$$\sum_{n=1}^{\infty} (-1)^{n+1}$$

9.5 Example.

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

9.6 Definition. For each $k \in \mathbb{N}$, the kth partial sum is

$$S_k = \sum_{n=1}^k a_n = a_1 + a_2 + a_3 + \dots + a_k$$

We say that $\sum_{n=1}^{\infty} a_n$ converges if the sequence $\{S_k\}$ of partial sums converges. Otherwise we say the series diverges.

If the series converges we let

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=1}^{k} a_n$$

9.7 Example.

$$\sum_{n=1}^{\infty} (-1)^{n+1}$$

$$S_k = \begin{cases} 1 & \text{if } k \text{ is odd} \\ 0 & \text{if } k \text{ is even} \end{cases}$$

Thus S_k diverges

Geometric Series Let $r \in R$, consider

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \dots$$

$$S_k = \sum_{n=0}^k r^n = 1 + r + r^2 + r^3 + \dots + r^k$$

$$S_k = \frac{1 - r^{k+1}}{1 - r}$$
 if $r \neq 1$

Note. If |r| < 1 then $\lim_{k \to \infty} r^{k+1} = 0$

If |r| > 1 then $\lim_{k \to \infty} r^{k+1}$ does not exists

If r = -1 then $\lim_{k \to \infty} r^{k+1}$ does not exists.

If r = 1 then $S_k = k$ which diverges to infinity.

9.8 Example. $r = \frac{1}{2}$,

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1 - \frac{1}{2}} = 2$$

2