PPG Signal Processing: Filtering, Feature Extraction, and Peak Detection

Introduction

Photoplethysmography (PPG) is a non-invasive technique used to measure blood volume changes in the skin, commonly found in **wearable devices** like smartwatches and pulse oximeters. However, PPG signals are often affected by noise from motion artifacts, respiration, and ambient light. In this lab, we will implement **filtering, feature extraction, and peak detection** to process PPG signals effectively.

1. Filtering PPG Signals

Why Filtering?

PPG signals often contain noise from:

- ✓ Motion Artifacts (Low-frequency noise, < 0.5 Hz)</p>
- ✓ High-frequency noise (caused by power line interference, > 50 Hz)
- ✓ Baseline Drift (slow changes in signal amplitude)

Approach:

- Use a **bandpass filter** (e.g., **0.5 5 Hz**) to retain only the relevant heart rate frequencies.
- Implement FIR or IIR filtering to remove unwanted noise.

Steps:

- 1. Load the PPG signal.
- 2. Apply a **low-pass filter** (to remove high-frequency noise).
- 3. Apply a **high-pass filter** (to remove baseline drift).
- 4. Compare the filtered vs. raw signal.

2. Feature Extraction from PPG

Why Feature Extraction?

Extracting key features helps in analyzing heart rate, heart rate variability (HRV), and blood oxygen levels.

Common Features:

- ✓ Heart Rate (HR) Number of beats per minute (BPM).
- ✔ Pulse Interval Time difference between consecutive peaks.
- ✓ Amplitude of Peaks Helps in detecting blood volume variations.

Steps:

- 1. Extract **time-domain features** (e.g., heart rate, pulse amplitude).
- 2. Extract **frequency-domain features** (e.g., dominant frequency using Fourier Transform).
- 3. Compare extracted features before and after filtering.

3. Peak Detection (Finding Heartbeats)

Why Peak Detection?

The peaks in a PPG signal represent **heartbeats**, allowing us to calculate heart rate.

Approach:

- Use a peak detection algorithm (e.g., scipy.signal.find_peaks in Python).
- Set conditions based on amplitude and time intervals to detect valid beats.

Steps:

- 1. Detect peaks using signal processing techniques.
- 2. Calculate heart rate (HR = 60 / RR interval in seconds).
- 3. Plot detected peaks on the signal for verification.

Steps Covered in Code:

- ☐ Load a sample or synthetic **PPG signal**
- ☐ Apply a bandpass filter (0.5–5 Hz)
- ☐ **Detect peaks** (heartbeats)
- ☐ **Extract features** (heart rate, pulse interval)
- ☐ Plot the results

Install Dependencies (if needed)

pip install numpy scipy matplotlib

Step 1: Import Libraries

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import butter, filtfilt, find peaks
```

Step 2: Generate or Load a PPG Signal

```
fs = 100  # Sampling frequency (100 Hz)
t = np.linspace(0, 10, fs * 10)  # 10 seconds of signal
ppg_clean = 1 + 0.5 * np.sin(2 * np.pi * 1.2 * t)  # Simulated PPG (1.2 Hz
heart rate)
noise = np.random.normal(0, 0.1, len(t))  # Add random noise
ppg_signal = ppg_clean + noise

plt.plot(t, ppg_signal, label="Noisy PPG Signal")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.title("Raw PPG Signal")
plt.legend()
plt.show()
```

Step 3: Apply Bandpass Filtering (0.5 - 5 Hz)

```
def bandpass_filter(signal, lowcut, highcut, fs, order=3):
    nyquist = 0.5 * fs
    low = lowcut / nyquist
    high = highcut / nyquist
    b, a = butter(order, [low, high], btype='band')
    return filtfilt(b, a, signal)

filtered_ppg = bandpass_filter(ppg_signal, 0.5, 5, fs)

plt.plot(t, filtered_ppg, label="Filtered PPG Signal", color='red')
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.title("Filtered PPG Signal (0.5 - 5 Hz)")
plt.legend()
plt.show()
```

Step 4: Peak Detection (Heartbeat Detection)

```
python
CopyEdit
peaks, _ = find_peaks(filtered_ppg, height=0.3, distance=fs//2) # Detect
peaks

plt.plot(t, filtered_ppg, label="Filtered PPG", color='red')
plt.plot(t[peaks], filtered_ppg[peaks], "bo", label="Detected Peaks") # Mark
peaks
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.title("Peak Detection in PPG Signal")
plt.legend()
plt.show()
```

Step 5: Feature Extraction (Heart Rate & Pulse Interval)

```
python
CopyEdit
peak_times = t[peaks]  # Time of detected peaks
rr_intervals = np.diff(peak_times)  # Time difference between peaks (RR
intervals)
heart_rate = 60 / np.mean(rr_intervals)  # Calculate BPM

print(f"Estimated Heart Rate: {heart_rate:.2f} BPM")
print(f"Average Pulse Interval: {np.mean(rr_intervals):.2f} seconds")
```

Expected Output:

1. Raw PPG Signal Plot (with noise)

2. Filtered PPG Signal Plot (noise removed)

3. **Peak Detection Plot** (blue dots on heartbeats)

4. Estimated Heart Rate (BPM) and Pulse Interval

Estimated Heart Rate: 71.82 BPM
Average Pulse Interval: 0.84 seconds

Conclusion

In this project, we:

- ✓ Filtered PPG signals to remove noise.
- ✓ Extracted key features like heart rate and pulse amplitude.
- ✔ Detected peaks to analyze heartbeat intervals.

This project is crucial for **health monitoring applications**, such as **wearable fitness devices and medical diagnostics**.