#### STK473 – Simulasi Statistika

#### Simulasi Sifat Sebaran Percontohan Statistik



Dr. Ir. Erfiani, M.SI

#### Prodi Statistika dan Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor





#### Sebaran Percontohan

#### Misalkan sampel diambil dari populasi normal

- Sebaran dari rata-rata
  - Jika  $\sigma^2$  diketahui maka rata-rata menyebar  $N(\mu, \sigma^2/n)$
  - Jika  $\sigma^2$  tidak diketahui maka rata-rata menyebar t-student dengan derajat bebas n-1
  - Berdasarkan dalil limit pusat, walau  $\sigma^2$  tidak diketahui asalkan ukuran sampel besar (n>30) maka sebaran dari rata-rata dapat juga diaproksimasi dengan sebaran N( $\mu$ ,s²/n)
- Sebaran dari (n-1)s $^2/\sigma^2$ 
  - $(n-1)s^2/\sigma^2$  menyebar khi-kuadrat dengan derajat bebas n-1
- Sebaran dari  $(n_1-1)s_1^2/(n_2-1)s_2^2$ 
  - $(n_1-1)s_1^2/(n_2-1)s_2^2$  menyebar F dengan derajat bebas pembilang  $(n_1-1)$  dan derajat bebas penyebut  $(n_2-1)$ .







## Dalil Limit Pusat (central limit theorem)

Jika dari suatu populasi dengan nilai harapan  $\mu$  dan ragam  $\sigma^2$  ditarik contoh secara acak berukuran n yang besar maka rata-rata contoh akan:

1. memiliki sebaran yang mendekati normal jika ukuran contoh (n)

semakin besar

nilai harapan rata-rata contoh adalah μ

3. ragam dari rata-rata contoh adalah  $\sigma^2/n$ 

untuk n 
$$\rightarrow \infty$$

$$\overline{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$



## nilai harapan rata-rata contoh adalah $\mu$

- nilai harapan rata-rata contoh sama dengan nilai harapan populasi
- rata-rata contoh adalah penduga yang tak bias bagi rata-rata populasi







## Sifat keragaman rata-rata contoh



 $\sigma_{\overline{x}}$  disebut standard error (galat baku)

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

semakin besar n, simpangan rata-rata contoh terhadap µ cenderung lebih kecil



#### Bentuk Sampling Distribution dari Rata-Rata Contoh

Jika contoh berasal dari populasi yang menyebar normal



μ

dalil limit pusat

Jika contoh berasal dari populasi yang menyebar tidak normal



... maka rata-rata contoh akan menyebar normal, berapapun



... maka rata-rata contoh akan menyebar normal, asalkan *n* besar.



# Seberapa besar n? Agar sebaran rata-rata contoh cukup dekat dengan sebaran normal...

• pada umumnya, untuk berbagai bentuk sebaran data populasi kita dapat mencapai itu ketika n > 25 (beberapa buku menyebut  $n \ge 30$ )

 pada sebaran data populasi yang sangat tidak simetris, diperlukan n yang lebih besar lagi

## Seberapa besar n? Agar sebaran rata-rata contoh cukup dekat dengan sebaran normal...









### Teladan 1.

Tunjukan dengan menggunakan pendekatan simulasi, apakah dalil limit pusat berlaku pada sembarang sebaran populasi, sembarang ukuran populasi, dan sembarang ukuran contoh.

## Distribusi t





Jika n besar, maka rata-rata contoh akan mengikuti sebaran normal dengan rata-rata  $\mu$  dan ragam  $\sigma^2/n$ 

Sebaran t : σ² diduga dengan s².

$$\frac{\overline{X} - \mu}{s / \sqrt{n}} \sim \text{t-student db} = \text{n-}$$

sebaran t lebih bervariasi tergantung besarnya derajat bebas





### Teladan 2.

Tunjukan dengan menggunakan pendekatan simulasi Jika sampel diambil dari populasi normal, maka sebaran dari rata-rata jika  $\sigma^2$  tidak diketahui adalah  $N(\mu, S^2/n)$ 



Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World