Classification Assignment

Given data is Healthcare Domain and to predict a Chronic Kidney Disease(CKD).

- 1. The given data has 399 Rows and 25 Columns.
- 2. The given dataset has categorical and numerical values. And has to convert to numerical data to create a perfect model. So I used the One Hot encoding technique which is used to convert categorical values to numerical values. And also I dropped the Two columns has no details for the required prediction. The dropped columns are "pcc" and "ba".

4.Results

1. Result of Grid search for SVM model.

<pre>print("The report:\n",clf_report) The report:</pre>				
The report.	precision	recall	f1-score	support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133
Acc	uracy of this r	nodel is =	= <mark>0.99</mark>	

2. Result of Grid Search for Logistic Regression

H	<pre>print("The report:\n",clf_report)</pre>				
	The report:				
		precision	recall	f1-score	support
	0	0.98	1.00	0.99	51
	1	1.00	0.99	0.99	82
	accuracy			0.99	133
	macro avg	0.99	0.99	0.99	133
	weighted avg	0.99	0.99	0.99	133

Accuracy of this model is = 0.99

3. Result of Grid Search for Decision Tree Classification

print("The report:\n",clf_report)

The report:

	precision	recall	f1-score	support
0	0.91	0.96	0.93	51
1	0.97	0.94	0.96	82
accuracy			0.95	133
macro avg	0.94	0.95	0.94	133
weighted avg	0.95	0.95	0.95	133

Accuracy of this model is = 0.95

4. Result of Grid Search for Random Forest

print("The report:\n",clf_report)

The report:

	precision	recall	†1-score	support
0	1.00	1.00	1.00	51
1	1.00	1.00	1.00	82
accuracy			1.00	133
macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00	133 133

Accuracy of this model is = 1.00

Result:

The best model is "Random Forest Classification"

The model Accuracy = 1