INTR 5057 Research Design & Methods

Juraj Medzihorsky

Day 12, 2016-12-09

Misc.

- ► Guest.
- ▶ Homeworks #1 and #2 graded. Qs later.
- Voluntary homework (tricky).
- ► Final paper.

Final Paper

- ▶ (1) Pick a journal article on topic of your interest that uses quantitative methods, and write a critique of the methods used in the article. Be parsimonious in your summary of the article, and focus on your critique.
- ▶ (2) A research proposal for an MA thesis that uses quantitative methods.
- ▶ 800 words. Due on 3 January 2017

Correlation

A measure of association between two continuous variables.

$$\rho_{x,y} = \frac{cov(x,y)}{\sigma_x \sigma_y}$$

Ranges from -1 to 1 on a closed interval.

$\rho = 0.82$

Simpson's Paradox

Simpson's Paradox

- ▶ In the whole population association in one direction.
- ▶ In subsets of the population association in the opposite direction.
- Not really a paradox when you think about it.
- A serious problem is that people rush ahead with causal interpretations.

Association & Causality

- Non-statisticians say "correlation does not imply causation."
- Statisticians say "association does not imply causation."
- Calling all association "correlation" is like calling all motor vehicles "cars."

Goals

Goals

- Describe.
- ► Explain.
- ► Predict/Forecast.
- **...**

Table 1: Electoral and Replacement Volatility in Post-Communist Europe

	Verification		Without Bosnia-Herzegovina		Corrected Bosnia-Herzegovina	
	Electoral Volatility	Replacement Volatility	Electoral Volatility	Replacement Volatility	Electoral Volatility	Replacement Volatility
GDP Change from 1989	0.639	-4.623***	0.116	-6.066	0.004	-6.002
	(0.693)	(1.326)	(3.206)	(7.178)	(3.233)	(6.609)
GDP Change Between Elections	-2.059	9.019	-1.891	6.677	-1.076	4.576
	(5.219)	(10.128)	(5.898)	(10.704)	(5.229)	(10.064)
Effective Number of Electoral Parties	0.446	-0.346	0.452	-0.264	0.471	-0.462
	(0.313)	(0.533)	(0.316)	(0.558)	(0.326)	(0.546)
Log Weighted District Magnitude	-0.784	0.638	-0.789	0.603	-0.824	0.820
	(0.887)	(2.931)	(0.882)	(2.893)	(0.886)	(2.872)
Presidential System	-4.631	6.784	-4.847	5.532	-4.928	6.659
	(4.126)	(9.435)	(4.606)	(10.241)	(4.623)	(10.296)
Semi-Presidential System	-2.788	4.255	-2.813	4.017	-2.596	2.621
	(2.211)	(5.897)	(2.286)	(5.885)	(2.266)	(5.887)
Proportional Representation	0.827	0.077	0.852	-0.146	0.987	-0.739
	(2.228)	(6.004)	(2.265)	(5.943)	(2.223)	(5.948)
Ethnic Fractionalization	-6.163	-2.677	-6.716	-5.298	-5.713	-11.828
	(6.397)	(18.978)	(6.784)	(22.939)	(6.772)	(22.931)
Years Since Collapse of Communism	0.848	-2.633	0.828	-1.989	0.732	-1.959
	(0.807)	(2.153)	(0.863)	(2.117)	(0.797)	(1.976)
Years Since Collapse Squared	-0.031	0.070	-0.029	0.045	-0.026	0.049
	(0.042)	(0.101)	(0.044)	(0.097)	(0.043)	(0.093)
Constant	13.059**	41.941***	13.586***	43.661***	12.885**	48.191***
	(5.318)	(13.329)	(5.115)	(14.057)	(5.034)	(14.509)
Countries	21	21	20	20	21	21
Pairs of Elections	89	89	86	86	89	89
\mathbb{R}^2	0.116	0.139	0.114	0.119	0.112	0.109

^{*} p < 0.10; ** p < 0.05; *** p < 0.01 (two-tailed).

▶ Whether we like it or not, **regression** is the workhorse of quantitative social science.

- Whether we like it or not, regression is the workhorse of quantitative social science.
- Any previous experiences with regression?

- One variable as a function of one or more other variables.
- Conditional association.
- ► Typically used to **explain** or **predict**.

Figure 2. Regression method. When x goes up by one SD, the average value of y only goes up by r SDs.

Linear Regression

$$\mathbf{y}_i = \alpha + \beta \times \mathbf{x}_i + \epsilon_i$$

- ▶ y: LHS, "dependent variable," outcome
- x: RHS, "indepdent variable," predictor, determinant
- $ightharpoonup \alpha$: intercept, "constant"
- \triangleright β : slope, coefficient, "effect"
- $ightharpoonup \epsilon$: residual, "error"

Figure 2. Prediction error equals vertical distance from the line.

Figure 3. Finding the slope and intercept of the regression line.

Linear Regression

$$y_i = \alpha + \beta x_i + \epsilon_i$$

- Ordinary Least Squares (OLS): $\Sigma_i \epsilon_i^2$.
- ▶ Probabilistic I.:

$$\epsilon_i \sim \mathsf{Normal}(0,\sigma)$$

Probabilistic II.:

$$y_i \sim Normal(\alpha + \beta x_i, \sigma)$$

Figure 3. Rule of thumb. About 68% of the points on a scatter diagram fall inside the strip whose edges are parallel to the regression line, and one r.m.s. error away (up or down). About 95% of the points are in the wider strip whose edges are parallel to the regression line, and twice the r.m.s. error away.

Figure 10. A football-shaped scatter diagram. Take the points inside a narrow vertical strip. Their y-values are a new data set. The new average is given by the regression method. The new SD is given by the r.m.s. error of the regression line. Inside the strip, a typical y-value is around the new average—give or take the new SD.

Null Hypothesis Significance Testing

▶ What's the definition of probability in classical stats?

- ▶ What's the definition of probability in classical stats?
- Frequency. Classical stats is frequentist.

- ▶ What's the definition of probability in classical stats?
- Frequency. Classical stats is frequentist.
- Can in classical stats probability represent degrees of belief?

- ▶ What's the definition of probability in classical stats?
- Frequency. Classical stats is frequentist.
- Can in classical stats probability represent degrees of belief?
- ▶ No, it cannot.

- ▶ What's the definition of probability in classical stats?
- Frequency. Classical stats is frequentist.
- Can in classical stats probability represent degrees of belief?
- ▶ No, it cannot.
- ▶ OTH, in Bayesian statistics it can.

▶ From a sample to a population.

- ▶ From a sample to a population.
- ▶ When is classical stats appropriate?

- ▶ From a sample to a population.
- ▶ When is classical stats appropriate?
- ► Stochastic (i.e., random) samples.

- ▶ From a sample to a population.
- When is classical stats appropriate?
- ► Stochastic (i.e., random) samples.
- Or experiments with random treatment assignment.

Does classical stats apply if the data is not a stochastic sample or from a randomized experiment?

- Does classical stats apply if the data is not a stochastic sample or from a randomized experiment?
- A lot of it does not.

- Does classical stats apply if the data is not a stochastic sample or from a randomized experiment?
- A lot of it does not.
- ▶ Then why do people use it?

Inference in Classical Statistics

- Does classical stats apply if the data is not a stochastic sample or from a randomized experiment?
- A lot of it does not.
- ▶ Then why do people use it?
- ► They don't know any better, or know they can get away with it.

Uncertainty in Classical Statistics

- Comes from sampling.
- Standard errors.
- Confidence intervals.

Classical Standard Errors

► **Standard error** is a one-number summary of the variability of the estimate.

Classical Confidence Intervals

- ► An X% confidence interval is an interval that if we take many samples the same way, and compute the interval the same way, X% of them will contain the true population value.
- ▶ We don't know if our sample is one of those X%.

► What's your experience?

- ▶ One of the pillars of frequentist stats.
- Almost everywhere in quant. soc. sci.
- ► All the '***,' '**,' '*' in tables.
- No time for subtlety: NHST is misunderstood, and ritualistically abused.

<ロ > ← □

- ▶ One of the pillars of frequentist stats.
- ► All the '***,' '**,' '*' in tables.
- No time for subtlety: NHST is misunderstood, and ritualistically abused.
- A common element of cargo cult social science.

- ► Two sources: significance testing and hypothesis testing.
- Origin in making business decisions (Student at Guiness).
- Decide whether to retain or reject a hypothesis by looking on how far the data is from the hypothesis.

Null hypothesis usually, but not necessarily states that something (a correlation, a coefficient, a difference between groups) is 0.

- ► The data is compared to a hypothetical world where the null hypothesis is true.
- ► How far would samples be from the true value if in the population the null hypothesis is true.
- p value: what % of the samples would be as far or futher from the null as is our data.

- Human mind craves certainity.
- p values are continuous.
- People desire discrete beliefs (true/false).
- p vals converted to decisions by comparing to a significance level.

▶ What are the common significance levels?

- ▶ What are the common significance levels?
- **▶** 0.05 (5%), 0.01 (1%), 0.01 (0.1%)

- ▶ What are the common significance levels?
- **▶** 0.05 (5%), 0.01 (1%), 0.01 (0.1%)
- ▶ Do you know why these?

- ▶ What are the common significance levels?
- **▶** 0.05 (5%), 0.01 (1%), 0.01 (0.1%)
- ▶ Do you know why these?
- ▶ No good reason.

- ▶ What are the common significance levels?
- **▶** 0.05 (5%), 0.01 (1%), 0.01 (0.1%)
- Do you know why these?
- ▶ No good reason.
- ▶ One should select the level based on the consequences of the decision. Almost noone does that. Meaning the test results are useless.

- In statistics significance means visibility, not importance!
- ▶ In frequentist statistics **confidence** means **reliability**.

- When someone is going on about statistical significance ask them what is the substantive or practical significance.
- ▶ Just because we can see something it doesn't mean it's important.
- ▶ Just because the picture is blurry, it doesn't mean there's nothing there.

▶ I crave certainty, I want decisions, what can I do?

- ▶ I crave certainty, I want decisions, what can I do?
- Fight the craving.

- ▶ I crave certainty, I want decisions, what can I do?
- Fight the craving.
- ▶ I need to make a decision, what can I do?

- ▶ I crave certainty, I want decisions, what can I do?
- Fight the craving.
- ▶ I need to make a decision, what can I do?
- ▶ If you have experimental or stochastic sample data, you can use NHST, but compute the right sig. level.

My data is not a random sample or from a randomized experiment.

- My data is not a random sample or from a randomized experiment.
- ► Go Bayesian.

- My data is not a random sample or from a randomized experiment.
- ▶ Go Bayesian.
- Many frequentist point and interval estimates are numerically close to Bayesian ones.

