Calcul inertial BOOT

Exo 19:

2) Les équations d'état d'un robot daté d'une IMU sont les suivantes.

$$\begin{pmatrix}
\dot{p} = R_3 V_3 \\
\dot{\varphi} = \begin{pmatrix} 1 & \tan\theta \sin\varphi & \tan\theta \cos\varphi \\
0 & \cos\varphi & -\sin\varphi \\
0 & \frac{\sin\varphi}{\cos\theta} & \frac{\cos\varphi}{\cos\theta} \end{pmatrix} \cdot \omega_3 \quad (2)$$

$$\dot{v}_3 = R_3 g(p) + \alpha_3^{mel} - \omega_3 \wedge V_3 \quad (3)$$

Or,
$$R_3 R_3^T = Ad(w_0)$$

 $R_3^T \hat{R}_3 = Ad(R_3^T w_0) = Ad(w_3)$
 Onc (2) $\Rightarrow R_3 = R_3 Ad(w_3)$

3) 000

$$\frac{\alpha_{w_3}}{\alpha_{w_3}} = -\omega_3 + R_3 \omega_{\varepsilon} + \alpha_{w_3}$$

$$\frac{\omega_3}{\alpha_3} = R_3^{T} (\omega_{\varepsilon} \wedge \rho) - v_3 + R_3^{T} (\omega_{\varepsilon} \wedge (\omega_{\varepsilon} \wedge \rho) - S(\rho)) + \alpha_3$$

$$\frac{\omega_3}{\alpha_3} = R_3^{T} (\omega_{\varepsilon} \wedge \rho) - v_3 + R_3^{T} (\omega_{\varepsilon} \wedge (\omega_{\varepsilon} \wedge \rho) - S(\rho)) + \alpha_3$$

$$\frac{\omega_3}{\alpha_3} = R_3^{T} (\omega_{\varepsilon} \wedge \rho) - v_3 + R_3^{T} (\omega_{\varepsilon} \wedge (\omega_{\varepsilon} \wedge \rho) - S(\rho)) + \alpha_3$$

$$\frac{\omega_3}{\alpha_3} = R_3^{T} (\omega_{\varepsilon} \wedge \rho) - v_3 + R_3^{T} (\omega_{\varepsilon} \wedge (\omega_{\varepsilon} \wedge \rho) - S(\rho)) + \alpha_3$$

$$\frac{\omega_3}{\alpha_3} = R_3^{T} (\omega_{\varepsilon} \wedge \rho) - v_3 + R_3^{T} (\omega_{\varepsilon} \wedge (\omega_{\varepsilon} \wedge \rho) - S(\rho)) + \alpha_3$$

$$\frac{\omega_3}{\alpha_3} = R_3^{T} (\omega_{\varepsilon} \wedge \rho) - v_3 + R_3^{T} (\omega_{\varepsilon} \wedge (\omega_{\varepsilon} \wedge \rho) - S(\rho)) + \alpha_3$$

Er effet:

En effet:

•
$$\dot{w}_3 = -w_3 + R_3 w_E + a_w_3$$

• Scottement force

Scottement force

(rotation Terre)

• $a_3 = R_3^T (w_E \wedge \rho) - v_3 + R_3^T (w_E \wedge \rho) + g(\rho) + u_a_3$

• Pace d'en trainement fottement poussée d'Archimède & propulseur nobot

(notation Terre) bluide

(notation Terre) bluide

viteise du fluide (eau) $v_p = w_E \wedge \rho$ dans R_0

viteise du fluide (eau) $v_p = w_E \wedge \rho$ dans R_0

F)80(FF F)

Exo do:

1) On a.

En appliquant de PFD, on a:

 $f_{\infty} = (m+m_{\alpha})$ arx où $\int_{m_{\alpha}} m_{\alpha} \sin \alpha d\alpha$ du AUV $\int_{m_{\alpha}} m_{\alpha} \sin \alpha d\alpha$ de placée du à l'eau déplacée par e AUV ma = ka peaux VAUV Or, ka = 1 pour un cyclindre et Paux = Peau dans éténoncé donc ma= PAUX VAUN = M

Lotions bolos

2001

Donc fa = 2mara De plui, fr = kpuo - fc x Sx Peau force de prottements la larce de propulsion \varnothing' où $\circ_{i} = \frac{\delta \alpha}{2m} = \frac{k\rho}{2m} u_{o}^{2} - \frac{\pi}{4m} c_{x} s_{x} \rho_{eau}^{2}$ $= \rho_{1}$

arx = PAUO - PEVE

En négligeant da trainée de oilerons, on pout négliger d'inartie de l'AUV et on a alors une relation du type:

$$w_{\zeta} = V_{\zeta} \begin{pmatrix} \rho_3 & 0 & 0 \\ 0 & \rho_4 & 0 \\ 0 & 0 & \rho_4 \end{pmatrix} \begin{pmatrix} -N & -N & -N \\ 0 & \sin \frac{\pi}{3} & -\sin \frac{\pi}{3} \\ -N & \cos \frac{\pi}{3} & -\cos \frac{\pi}{3} \end{pmatrix} \begin{pmatrix} u_{\gamma} \\ u_{\delta} \\ u_{3} \end{pmatrix}$$

$$k = B(\rho_{\delta}, \rho_{\delta}) \qquad = u$$

angle
$$(u_1)$$
 (u_2) (u_3) (u_4) (u_5) (u_5) (u_5) (u_6) (u_6) (u_7) (u_8) (u_8)

•
$$\overline{\omega_{\Gamma}} = v_{\Gamma} B(\rho_{3}, \rho_{4}) \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$$

 $\mathcal{D}_{OCC} \cdot \begin{pmatrix} u_{1} \\ v_{2} \\ u_{3} \end{pmatrix} = \frac{1}{v_{\Gamma}} B^{-1}(\rho_{3}, \rho_{4}) \overline{\omega_{\Gamma}}$

1) on a:
$$\alpha(t) = r(q(t))$$

Alors $\frac{d\alpha(t)}{dt} = \frac{dr(q(t))}{dt} = \frac{dq(t)}{dt} \times \left(\frac{dr}{dq}(q(t))\right)$
 $\alpha(t) = r(q(t))$
 $\alpha(t) = r(q(t))$

$$\frac{3d^{2}}{3c^{2}}$$

$$\frac{3d^{2}}{3c^{2}}$$

$$\frac{3d^{2}}{3c^{2}}$$

$$\frac{3d^{2}}{3c^{2}}$$

$$\frac{3d^{2}}{3c^{2}}$$

$$\frac{3d^{2}}{3c^{2}}$$

Donc;

$$\forall i \in [n,m] \quad \dot{\alpha}_i = \frac{dr_i}{dq} \dot{q} = \sum_{j=1}^{n} \frac{\partial r_i}{\partial q_j} \dot{q}_j$$

$$\frac{\partial c}{\partial x} = \sum_{j=1}^{\infty} \frac{\partial f}{\partial x} \left(\frac{\partial c}{\partial x_{j}} \right) \frac{\partial f}{\partial y} + \frac{\partial c}{\partial x_{j}} \frac{\partial f}{\partial y} \right) \\
= \frac{\partial c}{\partial y} = \frac{\partial}{\partial y} \left(\sum_{k=1}^{\infty} \frac{\partial c}{\partial y_{k}} \frac{\partial k}{\partial k} \right) \\
= \sum_{k=1}^{\infty} \frac{\partial^{2} c}{\partial x_{k}^{2} \partial y_{k}} \frac{\partial k}{\partial y_{k}} \frac{\partial k}{\partial y_{k}^{2}} \frac{\partial c}{\partial y_{k}^{2}} \frac{\partial c}{\partial y_{k}^{2}} \frac{\partial k}{\partial y_{k}^{2}} \frac{\partial c}{\partial y_{k}^{2}}$$

$$\vec{x}_{i} = \left(\sum_{j=1}^{c} \sum_{k=1}^{c} \frac{\partial^{2} c_{i}}{\partial q_{i} \partial q_{k}} \dot{q}_{k} \dot{q}_{j} \right) + \left(\sum_{j=1}^{c} \frac{\partial c_{i}}{\partial q_{j}} \dot{q}_{j} \right)$$

$$\ddot{k}_{i} = \dot{q}^{T}H_{i}\dot{q} + \frac{dr_{k}}{dq}\dot{q}$$

Hersian Jacobian

 $h(q_{i}\dot{q})$

e) Pour avoir des arrélérations à qui permettent de rester à la surface de la variété oc, on doit choisir à tel que:

à = argmin 11 Jàth-ulle = (JTJ)-1 JT (u-h) (moindres carrès)

Alors
$$(\dot{q} = -(J^{+}J)^{-1}J^{+}h$$

 $q(0) = \dot{q}_{0}$
 $\dot{q}(0) = \dot{q}_{0}$
 $\alpha(l) = r(q(l))$

Pour simuler da trajectoire sur la variêté, on a:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = r \left(q_1 | q_2 \right)$$