1. **A)** log₂n; B) Sqrt(N); C) n; D) n²; E) 2ⁿ

#Setting up the equation

- 1 min = 60 seconds
- 1 microsecond = $1x10^{-6}$ seconds;
 - 1 second = 1,000,000 microseconds:
 - 60 seconds = 60,000,000 microseconds

#Solving the equations

- a. $Log_2 n \le 60,000,000$ ($log_b a = c \rightarrow b^a = c; b = 2, a = n & c = 60,000,000$) $N \le 2^{60,000,000}$
- b. \sqrt{N} ≤ 60,000,000 (Square both sides to get rid of \sqrt{N}) N ≤ (60,000,000)²
- c. $N \le 60,000,000$
- d. $N^2 \le 60,000,000$ (Square root to solve for N)

 $N \le 7745.966$ (round up to 7746)

e. $2^n \le 60,000,000$ (Take the logarithm of both sides to isolate N)

 $\log_2(2^n) \le \log_2(60,000,000)$

 $N \le \log_2(60,000,000)$

25.8 (26 round up)

Log₂(n) allows for the biggest n

- 2. Justify the following statements using the "Big-OH" definition
 - A) $(n+100)^3$ is $O(n^3)$, and n^3 is $O((n+100)^3)$;
 - For $(n+100)^3$ to be in $O(n^3)$, there must be positive constants C and n0 such that $c^*(n^3) >= (n+100)^3$ for all n >= n0. When n0=101 and c=8, this statement is true. Therefore, $(n+100)^3$ is in $O(n^3)$. Attached is a proof that $8^*(n)^3 >= (n+100)^3$ for all n >= 101
 - For n^3 to be in O((n+100)^3), there must be a positive constants C and n0 such that c*((n+100)^3) >= n^3 for all n>=n0. When n0=1 and c=1, this statement is true, therefore n³ is in O(n+100)³. Attached is a proof that n³ <= (n+100)³ for all n>=1.
 - B) n^4 is NOT O(n^2);
 - Suppose n^4 is $O(n^2)$. Then there must exist positive constants C and N_0 such that $C^*N^2 >= N^4$ for all $N >= N_0$

$$N^4 \le c^* n^2 \rightarrow n^2 \le c$$

The above inequality cannot be satisfied since c must be a constant. As n approaches infinity, no matter the size of c, there will always exist an $n > n_0$ for which $n^2 > c$. Since there does not exist a C and an N_0 for which the statement, $C >= N^2 (C^*N^2 >= N^4)$ for all $N >= N_0$, is true, N^4 is not $O(N^2)$

- C) If $f1^{(n)}$ is $O(g1^{(n)})$ and $f2^{(n)}$ is $O(g2^{(n)})$, then $f1^{(n)}*f2^{(n)}$ is $O(g1^{(n)}*g2^{(n)})$
 - By the definition of big O notation, f1(n) is O(g1(n)) if and only if there exists a constant C1 and n1 such that for all n >= n1, f1(n) <= C1 * g1(n). Similarly there exists constants C2 and n2 such that for all n >= n2, f2(n) <= C2 * g2(n)
 - Multiplying these two equations we get: $f_1(n) * f_2(n) \le c_1(g1(n)) * c_2(g2(n))$ for all n>=n1 OR for all n>=n2. We can set our final n0 to the larger of n1 and n2 and rearrange the equation. Resulting in $f_1(n)*f_2(n) \le c_1*c_2*(g1(n)) * (g2(n))$ for all n >= n_0
 - Now let $C_3 = C_1 C_2$ and $G_3(n) = g1(n)g2(n)$
 - With this, we can set up our equation, f1(n) $f2(n) \le C3 * g3(n)$ for all $n \ge n_0$.

3. Give the asymptotic ("Big-Oh") running time complexity of the following algorithm, show all the work that you have done

Algorithm: Foo(A[], int n)
Input: an Array A, an integer n

```
 \begin{array}{l} X = 0 \rightarrow \textbf{O(1)} \\ \text{For (i=0; i\leq n-1; i++) } \{ \rightarrow \textbf{O(N)} \\ \text{For (j=i; j\leq n-1; j++) } \{ \rightarrow \textbf{O(N/2)} \rightarrow \textbf{O(N)} \\ \text{$X = x + A[j] \rightarrow \textbf{O(1)} $} \\ \text{For (k=0; k\leq n-1; k++) } \{ \rightarrow \textbf{O(N)} \\ \text{For (j=0; j\leq n-1; j++) } \{ \rightarrow \textbf{O(N)} \\ \text{$X = x + A[j]*A[k] \rightarrow \textbf{O(1)} $} \\ \text{$\}$} \\ \text{} \\ \text{Equation = 1*N*(N+N*(N+1)) } \rightarrow \text{N*(N+N^2)} \rightarrow \text{N^2+N^3} \rightarrow \text{N}^3 \rightarrow \textbf{O(N^3)} \\ \end{array}
```