

Example

• Find i(t) and $i_R(t)$ for t > 0.

Copyright @ The McGraw-Hill Cor

Example

Initial values : $i(0^+) = 4A$

$$t = 0$$

$$4 \text{ A}$$

$$20 \text{ H}$$

$$20 \Omega$$

$$8 \text{ mF}$$

$$v(0^+) = 15V = L \frac{di(0^+)}{dt}$$

For
$$t > 0$$
, $\alpha = \frac{1}{2RC} = \frac{1}{2 \times 10 \times 8 \times 10^{-3}} = 6.25$, $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{20 \times 8 \times 10^{-3}}} = 2.5$
$$s_{1,2} = -6.25 \pm 5.7282$$

$$i(t) = I_{s.s.} + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$i(0^{+}) = 4A$$
Apply
$$\frac{di(0^{+})}{dt}$$

General Second-Order Circuits

An example

General Second-Order Circuits

- The principles of solving the series/parallel forms of RLC circuits can be applied/extended to general second-order circuits, by taking the following six steps:
 - 1. First determine the initial conditions, x(0) and dx(0)/dt.
 - **2. Applying KVL and KCL**, to find a general second-order differential equation about x(t).

Then solve the equation:

- 3. Depending on the roots of C.E., the form of general solution $x_{g.s.}(t)$ (3 cases) of homogeneous equation can be determined.
- 4. We obtain the **particular solution** by observation/calculation, **specially** for a DC/step response $x_{n.s.}(t)=x(\infty)$
- 5. The complete response = general solution + particular solution.

$$x(t) = x_{P.S.}(t) + x_{G.S.}(t)$$

6. Using the initial conditions to determine the constants of x(t).

Electric Circuits (Fall 2024)

x(t) = unknown variable (voltage or current)

Differential equation: x'' + ax' + bx = c

Initial conditions: x(0) and x'(0)

Final condition: $x(\infty) = \frac{c}{b}$

 $\alpha = \frac{a}{2}$ $\omega_0 = \sqrt{b}$

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
 $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$

Overdamped Response $\alpha > \omega_0$

$$x(t) = [A_1 e^{s_1 t} + A_2 e^{s_2 t} + x(\infty)]$$

General RLC Circuits

- Find the complete response v(t) for t > 0 in the circuit.
 - 1. Initial conditions

$$v(0^+) = v(0^-) = 12V, i(0^+) = i(0^-) = 0$$

$$\frac{dv(0^+)}{dt} = \frac{i_C(0^+)}{C} = \frac{-12/2}{0.5} = -12 V/s$$

General RLC Circuits

• Find the complete response v(t) for t > 0

2. To find a general second-order differential equation about x(t)

$$\frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 6v = 24$$

3. General Solution:

$$\Rightarrow$$
 General Solution $v_t(t) = A_1 e^{-2t} + A_2 e^{-3t}$

- 4. Particular Solution : Steady-state response $v_{ss}(t) = 4V$
- 5. Put together: $v(t) = 4 + A_1 e^{-2t} A_2 e^{-3t}$
- 6. Using initial conditions to determine A₁, A₂

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 Use mesh analysis method to find the complete response i(t) for t > 0 in the circuit.

Example of 2nd-order op-amp circuits

• Find v_o for t > 0 when $v_s = 10u(t)mV$.

Initial conditions:
$$v_o(0^+) = 0$$
, $C_1 \frac{dv_o(0^+)}{dt} = \frac{v_1(0^+) - v_o(0^+)}{R_2} = \frac{v_2(0^+)}{R_2} = 0$

Example of 2nd-order op-amp circuits

• Find v_o for t > 0 when $v_s = 10u(t)mV$.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

KCL at node M:

$$\frac{v_s - v_1}{R_1} = C_2 \frac{dv_2}{dt} + \frac{v_1 - v_o}{R_2}$$

KCL at node N:

$$C_1 \frac{dv_o}{dt} = \frac{v_1 - v_o}{R_2}$$

and we have $v_1 - v_2 = v_o$

$$\Rightarrow \frac{d^2v_o}{dt^2} + \left(\frac{1}{R_1C_2} + \frac{1}{R_2C_2}\right)\frac{dv_o}{dt} + \frac{v_o}{R_1R_2C_1C_2} = \frac{v_s}{R_1R_2C_1C_2}$$

