CS124 Programming Assignment: Ben Anandappa and Kyle Kwong

RESULTS

Dimension = 0

n	f(n)
16	1.287811
32	1.566054
64	1.497568
128	1.408702
256	1.51272
512	1.491951
1024	1.518965
2048	1.521151
4096	1.51782
8192	1.207898
16384	1.438853
32768	1.490328
65536	1.500143

Excluding the outliers f(16) and f(8192), the average of f(n) is 1.5003. The function g(n) = 1.5003 is a good approximation of f(n).

Dimension = 2

n	f(n)	$n^{1/2}$	$f(n)/n^{1/2}$	$0.7614 * n^{1/2}$
16	2.788859	4	0.69721475	3.0456
32	4.301632	5.656854249	0.760428289	4.307128826
64	6.168682	8	0.77108525	6.0912
128	8.884378	11.3137085	0.785275491	8.614257651
256	12.442919	16	0.777682438	12.1824
512	17.561265	22.627417	0.776105598	17.2285153
1024	24.772576	32	0.774143	24.3648
2048	34.409645	45.254834	0.760352916	34.4570306
4096	48.564183	64	0.758815359	48.7296
8192	68.625559	90.50966799	0.758212471	68.91406121
16384	96.942668	128	0.757364594	97.4592
32768	136.844034	181.019336	0.755963628	137.8281224
65536	196.010885	256	0.76566752	194.9184

The average of $f(n)/n^{1/2}$ is 0.7614, so as we can see from the table, we can approximate f(n) as $g(n) = 0.7614 * n^{1/2}$. We figured this out by looking a graph of f(n) vs n and noticing that it looks very similar to a square root graph.

Dimension = 3

n	f(n)	$n^{2/3}$	$f(n)/n^{2/3}$	$0.766 * n^{2/3}$
16	4.743462	6.349604208	0.747048453	4.863796823
32	7.820685	10.0793684	0.775910225	7.720796194
64	12.842705	16	0.802669063	12.256
128	20.19819	25.39841683	0.795253898	19.45518729
256	31.599015	40.3174736	0.783754838	30.88318478
512	49.245631	64	0.769462984	49.024
1024	77.736074	101.5936673	0.765166531	77.82074917
2048	122.8152	161.2698944	0.761550694	123.5327391
4096	193.923037	256	0.757511863	196.096
8192	305.780897	406.3746693	0.752460525	311.2829967
16384	483.547002	645.0795775	0.749592793	494.1309564
32768	765.19601	1024	0.747261729	784.384
65536	1211.697603	1625.498677	0.745431307	1245.131987

By graphing it, we saw that f(n) grew slower than linear but faster than $n^{1/2}$ so we guessed $n^{2/3}$. The average of $f(n)/n^{2/3}$ is 0.766, and we can see that $g(n) = 0.766 * n^{2/3}$ is a good approximation of f(n)

Dimension = 4

n	f(n)	$n^{3/4}$	$f(n)/n^{3/4}$	$0.8123 * n^{3/4}$
16	5.980992	8	0.747624	6.4984
32	11.602174	13.45434264	0.862336742	10.92896253
64	19.671795	22.627417	0.869378728	18.38025083
128	31.514738	38.05462768	0.828144694	30.91177406
256	53.1891	64	0.831079688	51.9872
512	89.476336	107.6347412	0.831296058	87.43170024
1024	148.533202	181.019336	0.820537768	147.0420066
2048	246.27943	304.4370214	0.808966757	247.2941925
4096	410.523811	512	0.801804318	415.8976
8192	685.939253	861.0779292	0.796605313	699.4536019
16384	1145.321887	1448.154688	0.790883665	1176.336053
32768	1917.845048	2435.496172	0.787455579	1978.35354
65536	3210.352736	4096	0.783777523	3327.1808

By similar logic, we saw that f(n) is slower than linear but faster than $n^{2/3}$ so we guessed $n^{3/4}$. The average of $f(n)/n^{3/4}$ is 0.8123, and we can see that $g(n) = 0.8123 * n^{3/4}$ is a good approximation of f(n)

DISCUSSION

CHECKLIST

Done

- Table for each dimension
- Description of guess for the function

Need to do

- Why algorithm did you use and why?
- Are the growth rates (the f(n)) surprising? Can you come up with an explanation for them?
- How long does it take your algorithm to run? Does this make sense? Do you notice things like the cache size of your computer having an affect?
- Did you have any interesting experiences with the random number generatr? Do you trust it?
- Why will throwing away edges in this manner never lead to a situation where the program returns the wrong tree?
- Be sure to explain any techniques you use as part of your discussion and attempt to justify why they should give the same results as a non-optimized program!