Microsoft Azure: Compute Functions

Cloud Compting
Hannes Bähr
27.05.2025

Content

- 1. Azure Compute: Introduction and Overview
- 2. Azure Virtual Machines
- 3. Azure App Services
- 4. Azure Functions
- 5. Azure Kubernetes Services (AKS)
- 6. Pricing Models
- 7. Use Cases & Solutions
- 8. Summary & Takeaways

1. Azure Compute: Introduction and Overview

About Azure Compute

- A suite of on-demand computing services in Microsoft Azure
- Users can run applications, deploy containers, and execute serverless functions in the cloud
- Central component of IaaS, PaaS, and serverless models

Deployment Models

- IaaS: Full control over VMs and networking (e.g., Azure Virtual Machines)
- PaaS: Simplified deployment and scaling of apps (e.g., App Service)
- Serverless Computing: Event-driven execution without managing servers (e.g., Azure Functions)

Key Benefits

- Scalability on demand
- High availability across global regions
- Integrated with networking, storage, and identity services
- Pay-as-you-go pricing

1. Azure Compute: Introduction and Overview

Specialized VM Images

- SQL Server on Azure VMs
- Virtual Linux-Computer

Virtualized Desktops

- Azure Virtual Desktop
- Windows Server
- Azure VMware Solution

General-Purpose Compute

- Virtual Machines
- Spot VMs
- VM Scale Sets
- Azure Dedicated Host
- Azure VM Image Builder

Web & App Hosting

- App Service
- Static Web Apps
- Azure Spring Apps
- Azure Cloud Services

Azure Compute

Containers & Orchestration

- Azure Kubernetes Service
- Azure Container Instances
- Azure Container Apps
- Azure Service Fabric

High-Performance & Batch

- Azure Batch
- Azure Computing Fleet
- Azure Quantum

Serverless & Event-Driven

• Azure Functions

1. Azure Compute: Introduction and Overview

Specialized VM Images

- SQL Server on Azure VMs
- Virtual Linux-Computer

Virtualized Desktops

- Azure Virtual Desktop
- Windows Server
- Azure VMware Solution

General-Purpose Compute

- Virtual Machines
- Spot VMs
- VM Scale Sets
- Azure Dedicated Host
- Azure VM Image Builder

Web & App Hosting

- App Service
- Static Web Apps
- Azure Spring Apps
- Azure Cloud Services

Azure Compute

Containers & Orchestration

- Azure Kubernetes Service
- Azure Container Instances
- Azure Container Apps
- Azure Service Fabric

High-Performance & Batch

- Azure Batch
- Azure Computing Fleet
- Azure Quantum

Serverless & Event-Driven

Azure Functions

2. Azure Virtual Machines

About Azure VMs

- Scalable, on-demand computing resources running Windows or Linux
- Offers full control over the OS, file system, and installed software

Key Features

- Wide range of VM sizes (general purpose, compute-optimized, memory-optimized, etc.)
- Support for custom images and extensions
- Availability zones and auto-scaling
- Integration with Azure Load Balancer and Azure Disk Storage

- Deploy via Azure Portal, CLI, or templates
- Choose OS, region, VM size, and storage type
- Select SSH or RDP access, as well as managed or unmanaged disks
- Example: Hosting a personal website using a basic web server like Apache on a Linux VM

3. Azure App Services

About Azure App Services

- Fully managed platform for building, hosting, and scaling web apps, REST APIs, and backend services
- Broad open source support: .NET, Java, Node.js, Python, PHP, and more

Key Features

- Built-in support for custom domains, SSL, CI/CD, and authentication
- Auto-scaling and high availability across regions
- Deployment slots for zero-downtime releases
- Integrated monitoring with application insights

- Deploy from local files, GitHub, Azure DevOps, or container registry
- Choose runtime stack (e.g., .NET, Node.js), region, and pricing tier
- Ideal for hosting dynamic websites or APIs without managing infrastructure
- Example: Hosting an internal tool for a small business, e.g. an employee timesheet app

Next steps

4. Azure Functions

About Azure Functions

• Serverless compute service that lets you run small pieces of code in response to events

Key Features

- Event-driven: triggered by HTTP requests, storage uploads, timers, queues, etc.
- Automatic scaling: runs multiple instances as needed
- Supports multiple languages: C#, JavaScript, Python, PowerShell, more
- Integrates with other Azure services:, e.g Blob Storage, Cosmos DB, Logic Apps

- Choose hosting plan, runtime, and trigger type (e.g., HTTP, Timer)
- Code directly in the portal or deploy from GitHub
- Ideal for automating lightweight tasks or building quick APIs
- Example: Automatically sending a confirmation email when someone submits a contact form on a website

5. Azure Kubernetes Service (AKS)

About Azure Kubernetes Services

- Fully managed Kubernetes service
- Simplifies deploying, managing, and scaling containerized applications using Kubernetes

Key Features

- Handles complex container orchestration (deployment, scaling, load balancing)
- Integrated monitoring, auto-scaling, and rolling updates
- Supports both Linux and Windows containers
- Connects easily to services like Azure Load Balancer and Azure Container Registry

- Choose cluster size (number of nodes), region, node VM type, and Kubernetes version
- Use the Azure Portal, CLI, or Infrastructure-as-Code (e.g., Bicep, Terraform)
- Suitable for running microservices apps or containerized enterprise platforms
- Example: Deploying a containerized e-commerce web app with frontend, backend, and database services across pods

Basics **Node pools** Networking Integrations Monitoring Security Advanced

Node pools

In addition to the required primary node pool configured on the Basics tab, you can also add optional node pools to handle a variety of workloads <u>Learn more</u>

+ Add node pool 🗓 Delete

Name	Mode	Node size	OS SKU	Node count	Availak
agentpool	System	Standard_DS2_v2 (Ubuntu	2 - 5	None
demo	User	Standard_B2pls_v2	Ubuntu	1	1,2,3

i B-series node sizes are not recommended for node pools due to inconsistent resource availability.

Create Kubernetes cluster							
Private access							
Enable a private cluster to restrict worker r isolation.	le a private cluster to restrict worker node to API access, enhancing your Kubernetes workload's security and iion.						
Enable private cluster ①							
Public access							
Set authorized IP ranges ①							
Container networking							
Network configuration ①	Azure CNI Overlay Assigns pod IP addresses from a private IP space. Best for scalability						
	Azure CNI Node Subnet						
	Previously named Azure CNI. Assigns pod IP addresses from your host VNet. Best for workloads where pods must be reachable by other VNet resources						
Bring your own Azure virtual network ①							
DNS name prefix * ①	aksdemo						

6. Pricing Models

Service	Service Pricing Model(s)		Main Billing Unit	Notes
Azure VMs	Pay-as-you-go, Reserved	750 hrs/month (B1s)	Per second (CPU/memory)	Varies by VM size and region
App Service	App Service Tier-based (F1, B1, etc.)		Per App Service Plan	Upgrades offer scaling, SSL, staging
Azure Functions	Consumption Plan	1M requests + 400k GB-s	Per execution + memory	Costs may vary depending on trigger type
AKS	Pay for Infrastructure (Nodes, Storage,)		VM node usage (per second)	Pay for VMs and related storage

7. Use Cases & Solutions

Web Application Deployment

- Use Azure App Service to host the frontend
- Connect to Azure SQL or Cosmos DB for data
- Use Azure Functions for background tasks like sending emails or image processing

E-commerce Platform (Microservices)

- Deploy microservices (product catalog, shopping cart, payment service) on AKS
- Use Azure Load Balancer to distribute incoming traffic across services running in AKS cluster
- Add Azure Functions for lightweight services like order confirmations, inventory updates, etc.

Academic Research Workflow Automation

- Azure VMs to run simulations or data analysis with custom software environments (R, Python,...)
- Azure Functions to automate data preprocessing or file conversion when results are uploaded
- Azure App Service to host a simple web interface to submit jobs and download results

8. Summary & Takeaways

Azure Compute

- Offers a broad range of services to run workloads of any size and type
- Allows various customer groups to build smart, scalable solutions without managing hardware

We explored 4 Services

- Virtual Machines: Full control for flexible compute
- App Service: Simplified web app hosting
- Functions: Lightweight, event-driven automation
- AKS: Powerful container orchestration at scale

Combine different services depending on needs and use cases

Pricing Models

- Pay-as-you-go for most services, but free tiers available (750 VM hours, 1M Function executions)
- Costs based on resource usage (time, memory, compute), so you only pay for what you use

Thanks for your attention!