Critério Análise do Valor Limite Técnica Caixa-Preta

Ver o Resumo da Licença | Ver o Texto Legal

Organização

Análise do Valor Limite Introdução Técnica de Aplicação

Exemplo de Aplicação Aplicabilidade e Limitações

Resumo

Exercício

Leitura Recomendada

Análise do Valor Limite Introdução Técnica de Aplicação

Exemplo de Aplicação
Aplicabilidade e Limitaçõe

Documo

Evercício

Laitura Pacamandad

Organização

- Um dos critérios de teste mais básico que existe.
- Auxilia na seleção de um pequeno subconjunto de casos de teste que mantém um boa cobertura do código.
- Considerando o exemplo utilizado anteriormente (extraído de Copeland (2004)):

0 – 16	Não empregar.
16 – 18	Pode ser empregado tempo parcial.
18 – 55	Pode ser empregado tempo integral.
55 – 99	Não empregar.

Observe que os limites, tal como o 16, aparecem em duas classes de equivalência. O mesmo ocorre com o 18 e o 55

Introdução (2)

Organização

As condições acima, na verdade, deveriam ser escritas como:

,	,
$0 \leq idade < 16$	Não empregar.
$16 \leq idade < 18$	Pode ser empregado tempo parcial.
$18 \leq idade < 55$	Pode ser empregado tempo integral.
$55 \le idade < 99$	Não empregar.

ou

$0 \leq idade \leq 15$	Não empregar.
$16 \leq idade \leq 17$	Pode ser empregado tempo parcial.
$18 \leq idade \leq 54$	Pode ser empregado tempo integral.
$55 \le idade \le 99$	Não empregar.

- Na primeira regra, 16 não deve ser incluído.
- Na segunda 16 pode ser empregado em tempo parcial MBA

Introdução (3)

A implementação abaixo implementa as regras acima:

(extraído de Copeland (2004))

► Valores limites a serem considerados:

```
{-1,0,1}, {14,15,16}
{15,16,17}, {16,17,18}
{17,18,19}, {53,54,55}
{54,55,56}, {98,99,100}
```


0000

Análise do Valor Limite

Organização

- 1. Identificar as classes de equivalência (requisitos de teste do critério).
- Identificar os limites de cada classe.
- Criar casos de teste para os limites, escolhendo:
 - Um ponto abaixo do limite.
 - O limite.
 - Um ponto acima do limite.
- 4. Observe que "acima" e "abaixo" são termos relativos e dependente do valor dos dados.
 - Números inteiros: limite = 16; abaixo = 15; acima = 17.
 - Números reais: limite = \$5,00; abaixo = \$4,99; acima = \$5.01.
- 5. Casos de teste adicionais podem ser criados dependendo do recursos disponíveis.

Mais adequado para entradas que apresentam valores contínuos.

(extraído de Copeland (2004))

- Dados de teste para o limite inferior: {\$999, \$1.000, \$1.001}
- Dados de teste para o limite superior: {\$83.332,\$83.333,\$83.334}

Definição das Classes (2)

00000000

Organização

Intervalo de dados discretos (hipotecas de 1 a 5 casas):

(extraído de Copeland (2004))

Renda	# Moradores	Resultado	Descrição
\$1,000	1	Válido	Mín. renda, mín. moradores
\$83,333	1	Válido	Max. renda, mín. moradores
\$1,000	5	Válido	Mín. renda, max moradores
\$83,333	5	Válido	Max. renda, max. moradores
\$1,000	0	Inválido	Mín. renda, abaixo mín. moradores
\$1,000	6	Inválido	Mín. renda, acima max. moradores
\$83,333	0	Inválido	Max. renda, abaixo mín. moradores
\$83,333	6	Inválido	Max. renda, acima max. moradores
\$999	1	Inválido	Abaixo mín. renda, mín. moradores
\$83,334	1	Inválido	Acima max. renda, mín. moradores
\$999	5	Inválido	Abaixo mín. renda, max moradores
\$83,334	5	Inválido	Acima max. renda, max. madradores A

Análise do Valor Limite Introdução Técnica de Anlicação

Exemplo de Aplicação Aplicabilidade e Limitações

Documo

Evereíei

Laitura Pacamandad

Resumo

Programa Identifier (1)

Análise do Valor Limite

Organização

Especificação (extraído de Maldonado et al. (2004)):

O programa deve determinar se um identificador é válido ou não em Silly Pascal (uma variante do Pascal). Um identificador válido deve começar com uma letra e conter apenas letras ou dígitos. Além disso, deve ter no mínimo um caractere e no máximo seis caracteres de comprimento.

Exemplos de Identificadores:

```
abc12 (válido);
```

cont*1 (inválido); 1soma (inválido);

Programa Identifier (cont.)

Classes de Equivalência:

Condições de Entrada	Classes Válidas	Classes	Inválidas
Tamanho t do identificador	$1 \le t \le 6$	t < 1	t > 6
	(1)	(2)	(3)
Primeiro caractere c é uma letra	Sim	N	lão
	(4)	((5)
Só contém caracteres válidos	Sim	١	lão
	(6)	((7)

Organização

Programa Identifier (2)

Conjunto de Teste

(http://pt.wikipedia.org/wiki/ASCII):

Identificador	Resultado	Descrição
a	Válido	Primeiro minúsculo válido, tam. mínimo
b3	Válido	Segundo minúsculo válido, tam. mínimo
Xkl	Válido	Penúltimo maiúsculo válido, tam. mínimo
Z9	Válido	Último maiúsculo válido, tam. acima mínimo
×kl	Válido	Penúltimo minúsculo válido, tam. mínimo
zAaZ1	Válido	Último minúsculo válido, tam. abaixo máximo
AaZz91	Válido	Primeiro maiúsculo válido, tam. máximo
BaZz91	Válido	Segundo maiúsculo válido, tam. máximo
abcdefg	Inválido	Caracteres válidos, tam. acima máximo
0	Inválido	Primeiro minúsculo abaixo, tam. mínimo
	Inválido	Primeiro minúsculo acima, tam. mínimo
,	Inválido	Primeiro maíusculo abaixo, tam. mínimo
{	Inválido	Primeiro maiúsculo acima, tam. mínimo INFORMAÇÃO
A-&\$#	Inválido	Caracteres inválidos, tam. máximo Tecnologia
• • •	• • •	MBA & NOVAÇÃO

Organização

 Outros exemplos do critério Particionamento em Classe de Equivalência pode ser encontrado no Capítulo 4 do livro de (Copeland, 2004).

Resumo

Análise do Valor Limite

Organização

- Reduz significativamente o número de casos de teste em relação ao teste exaustivo.
- Mais adequado para o teste de produtos com domínios de entrada divididos em intervalos ou conjuntos.
- Aplicável em todas as fases de teste: unidade, integração, sistema e aceitação.

Análise do Valor Limite Introdução Técnica de Anlicação

Exemplo de Aplicação

Resumo

Evereíei

Laitura Pacamandad

Resumo 0

Análise do Valor Limite

Resumo

- Reduz o tamanho do conjunto de teste a ser utilizado.
- ► Testa os limites das classes de equivalência nos quais diferentes tipos de erros estão escondidos.
- Casos de teste mantém uma boa cobertura do código em teste.
- Simples e intuitiva para a maioria dos programadores.

Análise do Valor Limite Introdução Técnica de Anlicação

Exemplo de Aplicação

Б

Exercício

Laitura Basamandada

Programa cal do Unix - Especificação

cal [[month] year]

Organização

"Um único parâmetro especifica o ano (year) a ser exibido e pode variar entre 1 e 9999; observe que o ano deve ser completamente especificado: ca189 não exibe o calendário do ano 1989 mas sim do ano 89

Dois parâmetros são utilizados para denotar o mês (month) e o ano, sendo que o mês pode variar entre 1 e 12). Caso nenhum parâmetro seja fornecido, o mês do ano atual é exibido.

O ano se inicia em 1 de Jan.

A reforma no calendário Gregoriano (The Gregorian Reformation) ocorreu no dia 3 de setembro de 1752. Até o momento, a maioria dos países reconheceu a reforma realizada (embora poucos ainda não o tinham feito até os anos 90). Com a reforma, dez dias foram eliminados do calendário a partir da data acima exibindo um calendário diferente para esse mês e ano."

Com base na especificação acima, considerando o critério Análise do Valor Limite. defina quais as classes de equivalência válidas e inválidas, identifique os limites e derive casos de testes que satisfaçam o critério.

& INOVAÇÃO

Análise do Valor Limite Introdução Técnica de Aplicação

Exemplo de Aplicação

D - ----

Evereíei

Leitura Recomendada

Leitura Recomendada

Mais informações sobre esse tema podem ser encontrados em:

► Seção 1, Capítulo 4 do livro de Copeland (2004).

Organização Análise do Valor Limite Exemplo de Aplicação Resumo Exercício Leitura Recomendada Referências

Referências I

Copeland, L. A practitioner's guide to software test design. Artech House Publishers, 2004.

Maldonado, J. C.; Barbosa, E. F.; Vincenzi, A. M. R.; Delamaro, M. E.; Souza, S. R. S.; Jino, M. Introdução ao teste de software. Relatório Técnico 65 – Versão 2004-01, Instituto de Ciências Matemáticas e de Computação – ICMC-USP, disponível on-line:

http://www.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_ND_65.pdf., 2004.

