MELLODDY-TUNER: Data Standardization Framework for Federated Machine Learning

RDKit UGM 2020 Lukas Friedrich (Merck KGaA, Darmstadt)

PREDICTIVE MODELING IN DRUG DISCOVERY

MACHINE LEARNING LEDGER ORCHESTRATION FOR DRUG DISCOVERY

AMGEN

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement N° 831472. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA

THE MELLODDY OBJECTIVES

On average, bringing one drug to market costs €1.9 billion and 13 years¹.

The virtualization of parts of drug discovery by machine learning (ML) is a promising approach to improve efficiencies.

MELLODDY aims to show predictive benefits of modelling across tasks, data types and partners at the largest achievable scale.

In three yearly runs, the increasingly sophisticated platform will learn from:

- > 10 million annotated small molecules
- > 1 billion assay biological activity labels
- Multiple high-complexity phenotypes at high throughput
- Multiple high-complexity phenotypes at high throughput

Privacy preservation of data and federated models is paramount.

¹ DiMasi JA et al., 2016. Innovation in the pharmaceutical industry: new estimates of R&D costs. Journal of Health Economics 47, 20-33.

MULTI-TASK LEARNING ACROSS PHARMA PARTNERS

Compound and activity data and assay-specific models remain under their owner's control

Multi-task approach across partners to improve predictive performance and applicability

COMBINED PRIVACY-PRESERVING FEDERATED MACHINE LEARNING PLATFORM

Sensitive data and assay-specific models remain locked on each pharma's server

Lower level model components are securely exchanged and trained over the network

Complex but transparent pre-agreed access arrangements are strictly enforced

MELLODDY-TUNER: DATA STANDARDIZATION FOR FEDERATED LEARNING

Standardize data locally at multiple partners

Provide suitable input files for machine learning algorithm

Guarantee uniform processing within consortium while preserving privacy of partner's data

MELLODDY-TUNER: TECHNICAL OBJECTIVE

Standardize structures & activity data to create sparse matrices compatible with SparseChem

MELLODDY-TUNER: DATA STANDARDIZATION FOR FEDERATED LEARNING

Standardize smiles

• Standardize structures:

charge_parent

isotope_parent

stereo_parent

tautomer_parent

STRUCTURE STANDARDIZATION

One structure may not be enough

$$R \xrightarrow{N^{+}} P \xrightarrow{K_{a}} 6 \sim 7$$

$$H$$

$$R \xrightarrow{N} R \xrightarrow{N} R \xrightarrow{N} P \xrightarrow{N_{a}} R \xrightarrow{N} R \xrightarrow{$$

Horch et al., RSC Adv., 4, 54091-54095 (2014)

Tautomerization can change stereochemistry

Sitzmann, M. et al., J Comput Aided Mol Des 24, 521–551 (2010)

Objective: Make most consistent choice for standardization among several partners

NH₂

NH₂

STRUCTURE STANDARDIZATION TAUTOMERIZATION

Updated

"TautomerTransform"

No tautomerization of

esters and amides

TautomerTransform('1,3 (thio)keto/enol f', '[CX4!H0]-[C;!\$([C]([CH1])(=[O,S,Se,Te;X1])-[N,O])]=[O,S,Se,Te;X1]')

→ Moving Hydrogen from first atom to last atom

STRUCTURE STANDARDIZATION

Standardization can take time:

- 1. Enumerate all possible tautomers
- 2. Score all enumerated tautomers
- 3. Return canonical tautomer

Limit molecule size (max. number heavy atoms) Limit number of enumerated tautomers

Molecule from ChEMBL25
Standardization time: ~30 min

MELLODDY-TUNER: DATA STANDARDIZATION FOR FEDERATED LEARNING

Standardize smiles

Calculate descriptors

- Calculate fingerprint
- Cluster fingerprints into folds using localitysensitive hashing (LSH)

FINGERPRINT

1. Representation of molecules as bit vectors (Morgan Fingerprint with certain length):

→ Fingerprint can be "reverse-engineered" (Tuan Le' et al., ChemRxiv (2020))

2. Static shuffling of bit positions using secret key

Molecular fingerprints are part of X matrix for SparseChem

FINGERPRINT TRAINING, VALIDATION AND TEST SETS

Evaluation of ML model performance requires data split into training, validation & test sets

Scikit-learn.org/stable/modules/cross validation.html

How can we consistently assign compounds to folds across multiple partners? How to guarantee that identical compounds from different partners land in the same fold?

TRAIN/TEST SPLIT: RANDOM VS CLUSTER BASED SPLIT

Random Split:

Overly optimistic performance assessment

Cluster based split:

More realistic performance assessment

Cluster based split:

Uneven distribution of assay data among clusters

perfect clustering not required, but privacy-preserving is necessary

TRAIN/VALIDATION/TEST FOLD: LOCALITY-SENSITIVE HASHING

Locality-sensitive hashing:

Hashing similar items into same bucket(s) with high probability

TRAIN/VALIDATION/TEST FOLD: LOCALITY-SENSITIVE HASHING

MELLODDY-TUNER: DATA STANDARDIZATION FOR FEDERATED LEARNING

Standardize smiles

Calculate descriptors

Format activity data

- Remove data from failed compounds
- Aggregate replicates
- Filter out tasks not fulfilling minimum number of actives/inactives

ACTIVITY DATA BIT VECTOR REPRESENTATION

Assay	Α	В	С	D
%Ctrl @ 10μM	70	8	82	100
Activity class	0	1	0	0

Activity fingerprints are part of Y matrix for SparseChem

ACTIVITY DATA DATA AGGREGATION AND FILTERING

Remove data of "failed" compounds

Aggregate data of replicates

Filte out tasks not fulfilling criteria for SparseChem

"Failed" compounds like

m1 = Chem.MolFromSmiles('CO(C)C')

Same fingerprint for different compounds (e.g. stereochemistry not considered)

Majority voting approach:

"Majority" class wins for tasks with multiple datapoints "Minority" class wins for tasks with draws

Guarantee sufficient amount of both classes in all folds

Analysis of ML performance is possible

MELLODDY-TUNER: DATA STANDARDIZATION FOR FEDERATED LEARNING

Standardize smiles

Calculate descriptors

Format activity data

Convert to matrices

- Create X sparse matrix (compound/fingerprint)
- Create Y sparse matrix (compound/activity data tasks)

SPARSE MATRICES

Sparse matrices

Fingerprint Bits

SPARSE MATRICES MELLODDY-TUNER & SPARSECHEM

MELLODDY-TUNER provides dataframes of standardized data (results), mapping tables & excluded data (results_tmp) and SparseChem-compatible matrices (files_4_ML)

MELLODDY-TUNER SUMMARY

user-defined parameters **Standardize smiles Calculate descriptors** Format activity data Standardize structures: Calculate fingerprint Remove data from failed charge parent compounds Cluster fingerprints into isotope parent folds using locality- Aggregate replicates stereo_parent sensitive hashing (LSH) Filter out tasks not tautomer parent fulfilling minimum number of actives/inactives standardize_smiles.py calculate_descriptors.py activity_data_formatting.py

example_parameters.json

Convert to matrices

- Create compound/ fingerprint matrix
- Create compound/ activity data matrix

Consistency check

csv_2_mtx.py

prepare_4_melloddy.py

MELLODDY-TUNER CONSISTENCY CHECK

pre-defined parameters

Reference set

 10 reference structures to be processed

Standardize smiles

Standardize structures:
 charge_parent
 isotope_parent
 stereo_parent
 tautomer_parent

Calculate descriptors

 Cluster fingerprints into folds using localitysensitive hashing (LSH)

Calculate fingerprint

Hash result files

- Hash generated output files and parameter file
- Compare hash with a distributed reference hash

standardize_smiles.py

calculate_descriptors.py

hash_reference_set.py

MELLODDY-TUNER: TECHNICAL DETAILS

MELLODDY-TUNER@Github

Python 3.6 or higher

Conda environment

Docker image available

Machine Learning Code (local version):

SparseChem@Github

OBJECTIVE YEAR 1

MELLODDY PROJECT YEAR 2

Hugo Ceulemans (Janssen Pharmaceuticals):

"[...] Over the next year we'll turn our focus on studying the hypothesis that multipartnered modeling will yield superior predictive models for drug discovery."

Press release Sept. 17th, 2020

MELLODDY

ACKNOWLEDGEMENTS

- Jaak Simm (KU Leuven)
- Adam Arany (Ku Leuven)
- Noé Sturm (Novartis)
- Ansgar Schuffenhauer (Novartis)
- Nikolas Fechner (Novartis)
- Anastasia Pentina (Bayer)
- Tobias Morawietz (Bayer)

- Lina Humbeck (Boehringer-Ingelheim)
- Peter Schmidtke (Servier-Discngine)
- Adam Zalewski (Amgen)
- Michael Krug (Merck KGaA)
- Wouter Heyndrickx (Janssen Pharmaceuticals)
- Lewis Mervin (AstraZeneca)
- Arnaud Gohier (Servier)