SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING SCHOOL OF TECHNOLOGY MANAGEMENT

Academic Year: 2023-2024

Program/s: MCA

Year: I Semester: I

Subject: Operating Systems

Time: 3 hrs (10am to 01 pm)

Date: 29/11/2023

No. of Pages:3

Marks: 100

Final-Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book provided for their use.

- 1) Question No. _1__ is compulsory.
- 2) Out of the remaining questions, attempt any __4__ questions.
- 3) In all ___5_ questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer each new question to be started on a fresh page.
- 6) Figures in brackets on the right-hand side indicate full marks.

7) Assume Suitable data if necessary.

Q1		Answer briefly:	
CO-1 ; SO- 1,6; BL-4	a.	Differentiate the terms Tightly coupled vs. Loosely coupled systems.	5
CO-2; SO- 1,6; BL-3	b.	Demonstrate the states followed in the process execution with a diagram.	5
CO- 3; SO- 1; BL-2	C.	Explain the structure of Contiguous and Indexed File allocation methods.	5
CO-3; SO- 1,6; BL-2	d.	Discuss various DMA types used for I/O data transfer.	5
Q2 CO-3; SO-	a.	Explain how "Peterson's solution" supports ensuring the critical section.	10
1,6;BL-2	b.	Illustrate the need for Page replacement in memory management. Find the	er .
CO-3; SO- 1,6; BL-3	,	Miss and hit ratio in LRU, OPTIMAL & FIFO page replacement algorithm for the reference string < 1,2,3,2,4,1,3,2,4,1 > for a main memory size of 3-page frames that are empty initially.	10
Q3	a.	Define thread. Enlist various multithreading models. Explain each one of	10
CO-2; SO- 1,6; BL-1	exore	them with its advantages and disadvantages.	

									- 13		
CO-3; SO-	b.	Differentiate between Concurrent, Cooperative, and Interleaving						5			
1,6; BL-4		processes.									
CO-3; SO-	C.	Discuss an	y three re	quirements	s of Mem	ory manag	ement.			5	
1,6; BL-2											
Q4	a.	Illustrate t	Illustrate the Paging hardware with the Translational Look ahead Buffer								
CO-3; SO-		(TLB) mecl	(TLB) mechanism. Lists the pros and cons of paging.								
1,6; BL-3	I have a light the contents of the Process Control Block and its lises								5		
CO-2; SO- 1,6; BL-2	c.	Give a sho	Give a short note on Real-Time Operating Systems.								
CO-1; SO-			the series and the series and								
1,6; BL-2					* *** 1		60 1		-1-		
Q5	a.	For a disk of 200 tracks, with an initial position at 63, pending requests							10		
		are <47,38	are <47,38,121,191,87,11,92,10>. Calculate head movement for SSTF,								
CO-3; SO- 1; BL-4		SCAN, and	CLOOK. I	f one adjac	cent track	moveme	nt takes 0.	5ms, who	at is		
_,		the total t	ime for th	e requests	for indiv	idual algor	ithms? Co	mpare th	neir		
		efficiency.	efficiency. (Assume head movement for SCAN is outwards and CLOOK is						-		
CO-2; SO-		inwards). The cylinders are numbered from 0 to 199.									
1,6; BL-2	b.		Explain how the semaphore is helping to solve the Readers Writers								
	δ.								10		
		Problem									
	a.	A uniprocessor system has three resource types, A, B, and C, which are								6	
	d	shared by 3 processes (P0, P1, and P2), in which only 3 instances of A, 2									
Q6		instances of B, and 2 instances of C are available at a particular instance.									
		As per the following scenario, Will the system be Safe? What is the									
CO-2; SO- 2; BL-4	,	Process termination sequence order?									
2, 01-4			Allocation Max								
CO-2; SO-			Α	В	С	Α	В	С			
2; BL-2		P0	0	0	1	8	4	3			
60.2.60		P1	3	2	0	6	2	0			
CO-2; SO- 1,6; BL-4		P2	2	1	1	3	3	3			
	b.										
		Identify the conditions required for the occurrence of deadlock.								4	
		Consider the following set of processes with the length of CPU burst time						10			
	C.	given in milliseconds. Draw the Gantt chart for SRTF, RR_2, and Pre-									

- Aller

		emptive Priority scheduling with 1 as high priority. Calculate average waiting and turnaround time.						
		Process	AT	ВТ	Priority			
		P1	0	5	· 2			
		P2	2	3	1		-	
		Р3	4	3	3			
		P4	7	1	4			
Q7	a.	Explain how the "Diner's Philosopher problem" is solved with an array of						
CO-2,3;		semaphores considering all 3 cases.						
SO-1,6;	b. Demonstrate the process of segmentation hardware in memory							
BL-2		management. List its Pros and Cons.						
CO-3; SO-		*						
1,6; BL-3	c. Describe two types of File Organization methods in detail.							
							5	
CO-3; SO-							-	
1,6; BL-3							k	
	1	1						

Control Control