TL081, TL081A, TL081B, TL082, TL082A, TL082B TL084, TL084A, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS081G - FEBRUARY 1977 - REVISED SEPTEMBER 2004

- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Low Total Harmonic Distortion . . . 0.003% Typ

- High Input Impedance . . . JFET-Input Stage
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ
- Common-Mode Input Voltage Range Includes V_{CC+}

description/ordering information

The TL08x JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset-voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08x family.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The Q-suffix devices are characterized for operation from -40° C to 125° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

ORDERING INFORMATION

ТЈ	V _{IO} max AT 25°C	PACI	(AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
		DDID (D)	Tube of 50	TL081CP	TL081CP
		PDIP (P)	Tube of 50	TL082CP	TL082CP
		PDIP (N)	Tube of 25	TL084CN	TL084CN
			Tube of 75	TL081CD	TI 0040
	15 mV		Reel of 2500	TL081CDR	TL081C
			Tube of 75	TL082CD	TI 0000
		SOIC (D)	Reel of 2500	TL082CDR	TL082C
			Tube of 50	TL084CD	TI 00 10
0°C to 70°C			Reel of 2500	TL084CDR	TL084C
		000 (00)	Reel of 2000	TL081CPSR	T081
		SOP (PS)	Reel of 2000	TL082CPSR	T082
		SOP (NS)	Reel of 2000	TL084CNSR	TL084
			Tube of 150	TL082CPW	T000
		TOCOD (DIA)	Reel of 2000	TL082CPWR	T082
		TSSOP (PW)	Tube of 90	TL084CPW	T004
			Reel of 2000	TL084CPWR	T084

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description/ordering information (continued)

ORDERING INFORMATION

TJ	V _{IO} max AT 25°C	PAC	KAGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		DDID (D)	Tube of 50	TL081ACP	TL081ACP	
		PDIP (P)	Tube of 50	TL082ACP	TL082ACP	
		PDIP (N)	Tube of 25	TL084ACN	TL084ACN	
			Tube of 75	TL081ACD	00440	
			Reel of 2500	TL081ACDR	081AC	
	6 mV	0010 (D)	Tube of 75	TL082ACD	2224	
		SOIC (D)	Reel of 2500	TL082ACDR	082AC	
			Tube of 50	TL084ACD	TI 00 44 0	
			Reel of 2500	TL084ACDR	TL084AC	
2004 7000		SOP (PS)	Reel of 2000	TL082ACPSR	T082A	
0°C to 70°C		SOP (NS)	Reel of 2000	TL084ACNSR	TL084A	
		DDID (D)	Tube of 50	TL081BCP	TL081BCP	
		PDIP (P)	Tube of 50	TL082BCP	TL082BCP	
		PDIP (N)	Tube of 25	TL084BCN	TL084BCN	
			Tube of 75	TL081BCD		
	3 mV		Reel of 2500	TL081BCDR	081BC	
		SOIC (D)	Tube of 75	TL082BCD		
			Reel of 2500	TL082BCDR	082BC	
			Tube of 50	TL084BCD	TLOGADO	
			Reel of 2500	TL084BCDR	TL084BC	
			Tube of 50	TL081IP	TL081IP	
		PDIP (P)	Tube of 50	TL082IP	TL082IP	
		PDIP (N)	Tube of 25	TL084IN	TL081IN	
			Tube of 75	TL081ID		
			Reel of 2500	TL081IDR	TL081I	
–40°C to 85°C	6 mV		Tube of 75	TL082ID		
		SOIC (D)	Reel of 2500	TL082IDR	TL082I	
			Tube of 50	TL084ID		
			Reel of 2500	TL084IDR	TL084I	
		TSSOP (PW)	Reel of 2000	TL082IPWR	Z082	
		1	Tube of 50	TL084QD		
-40°C to 125°C	9 mV	SOIC (D)	Reel of 2500	TL084QDR	TL084QD	
		CDIP (J)	Tube of 25	TL084MJ	TL084MJ	
FF00 / 10-05	9 mV	LCCC (FK)	Reel of 55	TL084FK	TL084FK	
−55°C to 125°C	0. 17	CDIP (JG)	Tube of 50	TL082MJG	TL082MJG	
	6 mV	LCCC (FK)	Tube of 55	TL082MFK	TL082MFK	

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

TL082M . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

TL084M . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

symbols

TL082 (EACH AMPLIFIER) TL084 (EACH AMPLIFIER)

schematic (each amplifier)

Component values shown are nominal.

TL081, TL081A, TL081B, TL082, TL082A, TL082B TL084, TL084A, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS081G - FEBRUARY 1977 - REVISED SEPTEMBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL08_C TL08_AC TL08_BC	TL08_I	TL084Q	TL08_M	UNIT	
Supply voltage, V _{CC+} (see Note 1)		18	18	18	18	V	
Supply voltage V _{CC} – (see Note 1)		-18	-18	-18	-18	V	
Differential input voltage, V _{ID} (see Note 2)		± 30	± 30	± 30	± 30	V	
Input voltage, V _I (see Notes 1 and 3)		±15	±15	±15	±15	V	
Duration of output short circuit (see Note 4)		Unlimited	Unlimited	Unlimited	Unlimited		
Continuous total power dissipation			See Dissi	pation Rating	Table		
Operating free-air temperature range, TA		0 to 70	- 40 to 85	- 40 to 125	- 55 to 125	°C	
	D package (8-pin)	97	97				
	D package (14-pin)	86	86				
	N package (14-pin)	76	76				
Package thermal impedance, θ,μ	NS package (14-pin)	80					
(see Notes 5 and 6)	P package (8-pin)	85	85			°C/W	
	PS package (8-pin)	95	95				
	PW package (8-pin)	149					
	PW package (14-pin)	113	113				
Operating virtual junction temperature	•	150	150	150	150	°C	
Case temperature for 60 seconds, T _C	FK package				260	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or JG package				300	°C	
Storage temperature range, T _{Stg}	•	- 65 to 150	- 65 to 150	- 65 to 150	- 65 to 150	°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. Differential voltages are at IN+ with respect to IN -.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 6. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (14 pin)	680 mW	7.6 mW/°C	60°C	604 mW	490 mW	186 mW
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
J	680 mW	11.0 mW/° C	88°C	680 mW	680 mW	273 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW

TL081, TL081A, TL081B, TL082, TL082A, TL082B TL084, TL084A, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS SLOS081G - FEBRUARY 1977 - REVISED SEPTEMBER 2004

	PARAMETER	TEST CONDITIONS	TAT		TL081C TL082C TL084C		FFF	TL081AC TL082AC TL084AC		FFF	TL081BC TL082BC TL084BC			TL0811 TL0821 TL0841		UNIT
				N N	TYP	MAX	NIM	TYP	MAX	N	TYP	MAX	MN	TYP	MAX	
;		í	25°C		က	15		3	9		2	3		က	9	:
<u>O</u>	Input offset voltage	$V_0 = 0$ $R_S = 50.02$	Full range			20			7.5			5			6	> E
ΟΙΛ»	Temperature coefficient of input offset voltage	V _O = 0 R _S = 50 Ω	Full range		18			18			18			18		ηV/°C
_	+,	,	25°C		2	200		2	100		2	100		2	100	ρΑ
<u>o</u>	Input offset current +	0 = 0V	Full range			2			2			2			10	nA
_	+	•	25°C		30	400		30	200		30	200		30	200	ρA
<u>B</u>	Input bias current +	VO = U	Full range			10			7			7			20	nA
	Common-mode input				-12			-12			-12			-12		
VICR	voltage range		25°C	+1	to 15		+1	to 15		+1	to 15		+1	to 15		>
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±13.5		±12	±13.5		±12	±13.5		
ΛΟΜ	Maximum peak	$R_L \ge 10 \text{ k}\Omega$		±12			±12			±12			±12			>
	Carpar voltage swillig	$R_L \ge 2 \text{ k}\Omega$	Full range	±10	±12		±10	±12		±10	±12		±10	±12		
<	Large-signal	$V_0 = \pm 10 \text{ V}, R_L \ge 2 \text{ k}\Omega$	25°C	25	200		20	200		50	200		20	200		11/1/11
AVD	amplification	$V_0 = \pm 10 \text{ V}, R_L \ge 2 \text{ k}\Omega$	Full range	15			25			25			25			v/m/
B1	Unity-gain bandwidth		25°C		3			3			3			3		MHz
ιį	Input resistance		25°C		1012			1012			1012			1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICRmin}$, $V_{O} = 0$, $R_{S} = 50 \Omega$	25°C	70	86		75	98		75	98		75	98		dB
ksvr	Supply-voltage rejection ratio (AVCC±/AVIO)	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V,}$ $V_{O} = 0, \qquad R_{S} = 50 \Omega$	25°C	20	86		80	98		80	98		80	98		dB
lcc	Supply current (per amplifier)	VO = 0, No load	25°C		1.4	2.8		1.4	2.8		1.4	2.8		4.1	2.8	mA
VO1/VO2	Crosstalk attenuation	AVD = 100	25°C		120			120			120			120		dB
† All charac	teristics are measured un	† All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range for TA is 0°C to 70°C for TL08_C, TL08_AC,	h zero comn	วดม-พอด	de voltag	e, unles	s other	wise spe	cified.	-ull ran	ge for T	o∘O si √	to 70°0	C for TLO	8_C, TL	08_AC,

TL08_BC and -40°C to 85°C for TL08_I.

‡ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

electrical characteristics, $V_{CC\pm}$ = ±15 V (unless otherwise noted)

SLOS081G - FEBRUARY 1977 - REVISED SEPTEMBER 2004

electrical characteristics, $V_{\mbox{CC}\,\pm}$ = ± 15 V (unless otherwise noted)

		TEST CONDITIONS†			TL08	1M, TL0	82M	TL08	4Q, TL0	84M	UNIT
,	PARAMETER	TEST CON	IDITIONS	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNII
\/	land offers wellen	\/- 0	D- 50.0	25°C		3	6		3	9	mV
VIO	Input offset voltage	$V_{O} = 0,$	$R_S = 50 \Omega$	Full range			9			15	mv
ανιο	Temperature coefficient of input offset voltage	V _O = 0	$R_S = 50 \Omega$	Full range		18			18		μV/°C
	land offers and an import	., .		25°C		5	100		5	100	pA
lio	Input offset current‡	VO = 0		125°C			20			20	nA
1	Input bias current‡	\/ 0		25°C		30	200		30	200	pA
IB	input bias current+	V _O = 0		125°C			50			50	nA
VICR	Common-mode input voltage range			25°C	±11	-12 to 15		±11	– 12 to 15		٧
	Maximum peak VOM output voltage swing	$R_L = 10 \text{ k}\Omega$		25°C	±12	±13.5		±12	±13.5		
VOM		$R_L \ge 10 \text{ k}\Omega$			±12			±12			V
	output voltage ownig	$R_L \ge 2 k\Omega$		Full range	±10	±12		±10	±12		
	Large-signal	$V_0 = \pm 10 \text{ V},$	$R_L \ge 2 \; k\Omega$	25°C	25	200		25	200		.,, .,
AVD	differential voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L \ge 2 k\Omega$	Full range	15			15			V/mV
B ₁	Unity-gain bandwidth			25°C		3			3		MHz
rį	Input resistance			25°C		10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ $V_{O} = 0$,	nin, $R_S = 50 \Omega$	25°C	80	86		80	86		dB
kSVR	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = \pm 15 \ V_{O} = 0,$		25°C	80	86		80	86		dB
ICC	Supply current (per amplifier)	V _O = 0,	No load	25°C		1.4	2.8		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100		25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.

operating characteristics, $V_{\mbox{CC}\pm}$ = ± 15 V, $T_{\mbox{A}}$ = 25°C (unless otherwise noted)

	PARAMETER		TEST CONDIT	IONS		MIN	TYP	MAX	UNIT
		V _I = 10 V,	$R_L = 2 k\Omega$,	$C_L = 100 pF$,	See Figure 1	8*	13		
SR	Slew rate at unity gain	$V_I = 10 \text{ V},$ $T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C},$	$R_L = 2 kΩ$, See Figure 1	$C_L = 100 pF$,		5*			V/µs
t _r	Rise time	\/ 00 m\/	D 010	0 400 - 5	0		0.05		μs
	Overshoot factor	V _I = 20 mV,	$R_L = 2 k\Omega$, $C_L = 100 pF$, S		See Figure 1		20		%
.,	Equivalent input noise	D 00 0	f = 1 kHz				18		nV/√Hz
Vn	voltage	$R_S = 20 \Omega$ $f = 10 \text{ Hz to } 10 \text{ kHz}$					4		μV
In	Equivalent input noise current	$R_S = 20 \Omega$	f = 1 kHz				0.01		pA/√ Hz
THD	Total harmonic distortion	V _I rms = 6 V, f = 1 kHz	$A_{VD} = 1$,	$R_S \le 1 \text{ k}\Omega$,	$R_L \ge 2 k\Omega$,	·	0.003		%

^{*}On products compliant to MIL-PRF-38535, this parameter is not production tested.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 17. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as possible.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$

	PARAMETER		TEST CO	NDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$,	$C_L = 100 pF$,	See Figure 1	8	13		V/µs
t _r	Rise time)	D 010	0 400 - 5	O		0.05		μs
	Overshoot factor	$V_{I} = 20 \text{ mV},$	$R_L = 2 \text{ K}\Omega$,	$C_L = 100 pF$,	See Figure 1		20		%
	English and thought a single coefficient	D 00.0	f = 1 kHz				18		nV/√ Hz
Vn	Equivalent input noise voltage	$R_S = 20 \Omega$	f = 10 Hz to	10 kHz			4		μV
In	Equivalent input noise current	$R_S = 20 \Omega$,	f = 1 kHz				0.01		pA/√Hz
THD	Total harmonic distortion	V _I rms = 6 V, f = 1 kHz	A _{VD} = 1,	$R_S \le 1 \text{ k}\Omega,$	$R_L \ge 2 k\Omega$,		0.003		%

PARAMETER MEASUREMENT INFORMATION

 V_{I} V_{I

Figure 1

Figure 2

Figure 3

Figure 4

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V _{OM}	Maximum peak output voltage	vs Frequency vs Free-air temperature vs Load resistance vs Supply voltage	5, 6, 7 8 9 10
AVD	Large-signal differential voltage amplification	vs Free-air temperature vs Frequency	11 12
"	Differential voltage amplification	vs Frequency with feed-forward compensation	13
PD	Total power dissipation	vs Free-air temperature	14
lcc	Supply current	vs Free-air temperature vs Supply voltage	15 16
I _{IB}	Input bias current	vs Free-air temperature	17
	Large-signal pulse response	vs Time	18
Vo	Output voltage	vs Elapsed time	19
CMRR	Common-mode rejection ratio	vs Free-air temperature	20
٧n	Equivalent input noise voltage	vs Frequency	21
THD	Total harmonic distortion	vs Frequency	22

MAXIMUM PEAK OUTPUT VOLTAGE

FREQUENCY

MAXIMUM PEAK OUTPUT VOLTAGE

Figure 6

Figure 8

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

Figure 11

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

Figure 12

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

10 M

DIFFERENTIAL VOLTAGE AMPLIFICATION FREQUENCY WITH FEED-FORWARD COMPENSATION 106 A_{VD} - Differential Voltage Amplification - V/mV $V_{CC\pm} = \pm 15 \text{ V}$ C2 = 3 pF105 T_A = 25°C See Figure 3 104 103 102 10

f - Frequency With Feed-Forward Compensation - Hz Figure 13

100 k

1 M

10 k

100

1 k

Figure 14

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 17

Figure 19

Figure 18

†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

APPLICATION INFORMATION

Figure 23

Figure 24

SLOS081G - FEBRUARY 1977 - REVISED SEPTEMBER 2004

APPLICATION INFORMATION

Figure 25. Audio-Distribution Amplifier

NOTE A: These resistor values may be adjusted for a symmetrical output.

Figure 26. 100-KHz Quadrature Oscillator

APPLICATION INFORMATION

Figure 27. Positive-Feedback Bandpass Filter

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to $http://www.ti.com/sc/docs/package/pkg_info.htm$

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated