in various industries to see how IP adaptation and adoption are currently applied to IoT last-mile connectivity.

In the industrial and manufacturing sector, there has been a move toward IP adoption. Solutions and product lifecycles in this space are spread over 10+ years, and many protocols have been developed for serial communications. While IP and Ethernet support were not specified in the initial versions, more recent specifications for these serial communications protocols integrate Ethernet and IPv4.

Supervisory control and data acquisition (SCADA) applications are typical examples of vertical market deployments that operate both the IP adaptation model and the adoption model. Found at the core of many modern industries, SCADA is an automation control system for remote monitoring and control of equipment. Implementations that make use of IP adaptation have SCADA devices attached through serial interfaces to a gateway tunneling or translating the traffic. With the IP adoption model, SCADA devices are attached via Ethernet to switches and routers forwarding their IPv4 traffic.

Another example is a ZigBee solution that runs a non-IP stack between devices and a ZigBee gateway that forwards traffic to an application server. A ZigBee gateway often acts as a translator between the ZigBee and IP protocol stacks. As highlighted by these examples, the IP adaptation versus adoption model still requires investigation for particular last-mile technologies used by IoT.

The following factors determine which model is best suited for last-mile connectivity:

- **Bidirectional versus unidirectional data flow:** While bidirectional communications are generally expected, some last-mile technologies offer optimization for unidirectional communication. For example, different classes of IoT devices, as defined in RFC 7228, may only infrequently need to report a few bytes of data to an application. These sorts of devices, particularly ones that communicate through LPWA technologies, include fire alarms sending alerts or daily test reports, electrical switches being pushed on or off, and water or gas meters sending weekly indexes. For these cases, it is not necessarily worth implementing a full IP stack. However, it requires the overall end-to-end architecture to solve potential drawbacks; for example, if there is only one-way communication to upload data to an application, then it is not possible to download new software or firmware to the devices. This makes integrating new features and bug and security fixes more difficult.
- Overhead for last-mile communications paths: IP adoption implies a layered architecture with a per-packet overhead that varies depending on the IP version. IPv4 has 20 bytes of header at a minimum, and IPv6 has 40 bytes at the IP network layer. For the IP transport layer, UDP has 8 bytes of header overhead, while TCP has a minimum of 20 bytes. If the data to be forwarded by a device is infrequent and only a few bytes, then it can potentially have more header overhead than device data—again, particularly in the case of LPWA technologies. Consequently, there is a need to decide whether the IP adoption model is necessary and, if it is, how it can be optimized. This same consideration applies to control plane traffic that is run over IP for low-bandwidth, last-mile links. Routing protocol and other verbose network services may either not be required or call for optimization.
- Data flow model: One benefit of the IP adoption model is the end-to-end nature of communications. Any node can easily exchange data with any other node in a network, although security, privacy, and other factors may put controls and limits on the "end-to-end" concept. However, in many IoT solutions, a device's data flow is limited to one or two applications. In this case, the adaptation model can work because translation of traffic needs to occur only between the end device and one or two application servers. Depending on the network topology and the data flow needed, both IP adaptation and adoption models have roles to play in last- mile connectivity.
- **Network diversity:** One of the drawbacks of the adaptation model is a general dependency on single PHY and MAC layers. For example, ZigBee devices must only be deployed in ZigBee network

Module 3 - IP AS THE IOT NETWORKLAYER

Internet Protocol (IP), which has become the standard in many areas of IoT. With support from numerous standards and industry organizations, IP and its role as the network layer transport for IoT is a foundational element that has to be familiarized with.

3.1 The Business Case for IP

Data flowing from or to "things" is consumed, controlled, or monitored by data center servers either in the cloud or in locations that may be distributed or centralized. Dedicated applications are then run over virtualized or traditional operating systems or on network edge platforms (for example, fog computing). These lightweight applications communicate with the data center servers. Therefore, the system solutions combining various physical and data link layers call for an architectural approach with a common layer(s) independent from the lower (connectivity) and/or upper (application) layers. This is how and why the Internet Protocol (IP) suite started playing a key architectural role in the early 1990s. IP was not only preferred in the IT markets but also for the OT environment.

3.1.1 The Key Advantages of Internet Protocol

One of the main differences between traditional information technology (IT) and operational technology (OT) is the lifetime of the underlying technologies and products. One way to guarantee multi-year lifetimes is to define a layered architecture such as the 30-year-old IP architecture. IP has largely demonstrated its ability to integrate small and large evolutions. At the same time, it is able to maintain its operations for large numbers of devices and users, such as the 3 billion Internet users. Before evaluating the pros and cons of IP adoption versus adaptation, this section provides a quick review of the key advantages of the IP suite for the Internet of Things:

- Open and standards-based: Operational technologies have often been delivered as turnkey features by vendors who may have optimized the communications through closed and proprietary networking solutions. The Internet of Things creates a new paradigm in which devices, applications, and users can leverage a large set of devices and functionalities while guaranteeing interchangeability and interoperability, security, and management. This calls for implementation, validation, and deployment of open, standards-based solutions. While many standards development organizations (SDOs) are working on Internet of Things definitions, frameworks, applications, and technologies, none are questioning the role of the Internet Engineering Task Force (IETF) as the foundation for specifying and optimizing the network and transport layers. The IETF is an open standards body that focuses on the development of the Internet Protocol suite and related Internet technologies and protocols.
- Versatile: A large spectrum of access technologies is available to offer connectivity of "things" in the last mile. Additional protocols and technologies are also used to transport IoT data through backhaul links and in the data center. Even if physical and data link layers such as Ethernet, Wi-Fi, and cellular are widely adopted, the history of data communications demonstrates that no given wired or wireless technology fits all deployment criteria. Furthermore, communication technologies evolve at a pace faster than the expected 10- to 20- year lifetime of OT solutions. So, the layered IP architecture is well equipped to cope with any type of physical and data link layers. This makes IP ideal as a long-term investment because various protocols at these layers can be used in a deployment now and over time, without requiring changes to the whole solution architecture and data flow.

- **Ubiquitous:** All recent operating system releases, from general-purpose computers and servers to lightweight embedded systems (TinyOS, Contiki, and so on), have an integrated dual (IPv4 and IPv6) IP stack that gets enhanced over time. In addition, IoT application protocols in many industrial OT solutions have been updated in recent years to run over IP. While these updates have mostly consisted of IPv4 to this point, recent standardization efforts in several areas are adding IPv6.
- Scalable: As the common protocol of the Internet, IP has been massively deployed and tested for robust scalability. Millions of private and public IP infrastructure nodes have been operational for years, offering strong foundations for those not familiar with IP network management. Of course, adding huge numbers of "things" to private and public infrastructures may require optimizations and design rules specific to the new devices.
- Manageable and highly secure: Communications infrastructure requires appropriate management and security capabilities for proper operations. One of the benefits that comes from 30 years of operational IP networks is the well-understood network management and security protocols, mechanisms, and toolsets that are widely available. Adopting IP network management also brings an operational business application to OT. Well-known network and security management tools are easily leveraged with an IP network layer.
- Stable and resilient: IP has been around for 30 years, and it is clear that IP is a workable solution. IP has a large and well-established knowledge base and, more importantly, it has been used for years in critical infrastructures, such as financial and defense networks. In addition, IP has been deployed for critical services, such as voice and video, which have already transitioned from closed environments to open IP standards. Finally, its stability and resiliency benefit from the large ecosystem of IT professionals who can help design, deploy, and operate IP-based solutions.
- Consumers' market adoption: When developing IoT solutions and products targeting the consumer market, vendors know that consumers' access to applications and devices will occur predominantly over broadband and mobile wireless infrastructure. The main consumer devices range from smart phones to tablets and PCs. The common protocol that links IoT in the consumer space to these devices is IP.
- The innovation factor: The past two decades have largely established the adoption of IP as a factor for increased innovation. IP is the underlying protocol for applications ranging from file transfer and email to the World Wide Web, e-commerce, social networking, mobility, and more. Even the recent computing evolution from PC to mobile and mainframes to cloud services are perfect demonstrations of the innovative ground enabled by IP.

3.1.2 Adoption or Adaptation of the Internet Protocol

How to implement IP in data center, cloud services, and operation centers hosting IoT applications may seem obvious, but the adoption of IP in the last mile is more complicated and often makes running IP end-to-end more difficult. The use of numerous network layer protocols in addition to IP is often a point of contention between computer networking experts. Typically, one of two models, adaptation or adoption, is proposed:

- *Adaptation* means application layered gateways (ALGs) must be implemented to ensure the translation between non-IP and IPlayers.
- *Adoption* involves replacing all non-IP layers with their IP layer counterparts, simplifying the deployment model and operations.

A similar transition is now occurring with IoT and its use of IP connectivity in the last mile. While IP is slowly becoming more prevalent, alternative protocol stacks are still often used. Let's look at a few examples

islands. This same restriction holds for ITU G.9903 G3-PLC nodes. Therefore, a deployment must consider which applications have to run on the gateway connecting these islands and the rest of the world. Integration and coexistence of new physical and MAC layers or new applications impact how deployment and operations have to be planned. This is not a relevant consideration for the adoption model.

3.2 The Need for Optimization

The following sections take a detailed look at why optimization is necessary for IP. Both the nodes and the network itself can often be constrained in IoT solutions. Also, IP is transitioning from version 4 to version 6, which can add further confinements in the IoT space.

3.2.1 Constrained Nodes

Another limit is that this network protocol stack on an IoT node may be required to communicate through an unreliable path. Even if a full IP stack is available on the node, this causes problems such as limited or unpredictable throughput and low convergence when a topology change occurs.

Finally, power consumption is a key characteristic of constrained nodes. Many IoT devices are battery powered, with lifetime battery requirements varying from a few months to 10+ years. This drives the selection of networking technologies since high-speed ones, such as Ethernet, Wi-Fi, and cellular, are not (yet) capable of multi-year battery life. Current capabilities practically allow less than a year for these technologies on battery-powered nodes. Of course, power consumption is much less of a concern on nodes that do not require batteries as an energy source.

The power consumption requirements on battery-powered nodes impact communication intervals. To help extend battery life, enable a "low-power" mode instead of one that is "always on." Another option is "always off," which means communications are enabled only when needed to send data.

While it has been largely demonstrated that production IP stacks perform well in constrained nodes, classification of these nodes helps when evaluating the IP adoption versus adaptation model selection. IoT constrained nodes can be classified as follows:

- Devices that are very constrained in resources, may communicate infrequently to transmit a few bytes, and may have limited security and management capabilities: This drives the need for the IP adaptation model, where nodes communicate through gateways and proxies.
- Devices with enough power and capacities to implement a stripped-down IP stack or non- IP stack: In this case, either an optimized IP stack and directly communicate with application servers (adoption model) or go for an IP or non-IP stack and communicate through gateways and proxies (adaptation model) can be implemented.
- Devices that are similar to generic PCs in terms of computing and power resources but have constrained networking capacities, such as bandwidth: These nodes usually implement a full IP stack (adoption model), but network design and application behaviors must cope with the bandwidth constraints.

3.2.2 Constrained Networks

Constrained networks have unique characteristics and requirements. In contrast with typical IP networks, where highly stable and fast links are available, constrained networks are limited by low-power, low-bandwidth links (wireless and wired). They operate between a few kbps and a few hundred kbps and may utilize a star, mesh, or combined network topologies, ensuring proper operations. With a constrained network,

in addition to limited bandwidth, it is not unusual for the packet delivery rate (PDR) to oscillate between low and high percentages. Large bursts of unpredictable errors and even loss of connectivity at times may occur. These behaviors can be observed on both wireless and narrowband power-line communication links, where packet delivery variation may fluctuate greatly during the course of a day.

Unstable link layer environments create other challenges in terms of latency and control plane reactivity. One of the golden rules in a constrained network is to "underreact to failure." Due to the low bandwidth, a constrained network that overreacts can lead to a network collapse—which makes the existing problem worse. Control plane traffic must also be kept at a minimum; otherwise, it consumes the bandwidth that is needed by the data traffic. Finally, the power consumption in battery-powered nodes has to be considered. Any failure or verbose control plane protocol may reduce the lifetime of the batteries.

3.2.3 IP Versions

For 20+ years, the IETF has been working on transitioning the Internet from IP version 4 to IP version 6. The main driving force has been the lack of address space in IPv4 as the Internet has grown. IPv6 has a much larger range of addresses that should not be exhausted for the foreseeable future. Today, both versions of IP run over the Internet, but most traffic is still IPv4 based.

While it may seem natural to base all IoT deployments on IPv6, current infrastructures and their associated lifecycle of solutions, protocols, and products need to be taken into account. IPv4 is entrenched in these current infrastructures, and so support for it is required in most cases. Therefore, the Internet of Things has to follow a similar path as the Internet itself and support both IPv4 and IPv6 versions concurrently. Techniques such as tunneling and translation need to be employed in IoT solutions to ensure interoperability between IPv4 and IPv6.

A variety of factors dictate whether IPv4, IPv6, or both can be used in an IoT solution. Most often these factors include a legacy protocol or technology that supports only IPv4. Newer technologies and protocols almost always support both IP versions.

The following are some of the main factors applicable to IPv4 and IPv6 support in an IoT solution:

- Application Protocol: IoT devices implementing Ethernet or Wi-Fi interfaces can communicate over both IPv4 and IPv6, but the application protocol may dictate the choice of the IP version. For IoT devices with application protocols defined by the IETF, such as HTTP/HTTPS, CoAP, MQTT, and XMPP, both IP versions are supported. The selection of the IP version is only dependent on the implementation.
- Cellular Provider and Technology: IoT devices with cellular modems are dependent on the generation of the cellular technology as well as the data services offered by the provider. For the first three generations of data services—GPRS, Edge, and 3G—IPv4 is the base protocol version. Consequently, if IPv6 is used with these generations, it must be tunneled over IPv4. On 4G/LTE networks, data services can use IPv4 or IPv6 as a base protocol, depending on the provider.
- Serial Communications: Many legacy devices in certain industries, such as manufacturing and utilities, communicate through serial lines. Data is transferred using either proprietary or standards-based protocols, such as DNP3, Modbus, or IEC 60870-5-101. In the past, communicating this serial data over any sort of distance could be handled by an analog modem connection. However, as service provider support for analog line services has declined, the solution for communicating with these

legacy devices has been to use local connections. To make this work, connect the serial port of the legacy device to a nearby serial port on a piece of communications equipment, typically a router. This local router then forwards the serial traffic over IP to the central server for processing. Encapsulation of serial protocols over IP leverages mechanisms such as raw socket TCP or UDP. While raw socket sessions can run over both IPv4 and IPv6, current implementations are mostly available for IPv4 only.

• IPv6 Adaptation Layer: IPv6-only adaptation layers for some physical and data link layers for recently standardized IoT protocols support only IPv6. While the most common physical and data link layers (Ethernet, Wi-Fi, and so on) stipulate adaptation layers for both versions, newer technologies, such as IEEE 802.15.4 (Wireless Personal Area Network), IEEE 1901.2, and ITU G.9903 (Narrowband Power Line Communications) only have an IPv6 adaptation layer specified. This means that any device implementing a technology that requires an IPv6 adaptation layer must communicate over an IPv6-only subnetwork. This is reinforced by the IETF routing protocol for LLNs, RPL, which is IPv6 only.

3.3 Optimizing IP for IoT

While the Internet Protocol is key for a successful Internet of Things, constrained nodes and constrained networks mandate optimization at various layers and on multiple protocols of the IP architecture. The following sections introduce some of these optimizations already available from the market or under development by the IETF. Figure 3.1 highlights the TCP/IP layers where optimization is applied.

Figure 3.1 Optimizing IP for IoT Using an Adaptation Layer

3.3.1 From 6LoWPAN to 6Lo

In the IP architecture, the transport of IP packets over any given Layer 1 (PHY) and Layer 2 (MAC) protocol must be defined and documented. The model for packaging IP into lower-layer protocols is often referred to as an *adaptation layer*.

Unless the technology is proprietary, IP adaptation layers are typically defined by an IETF working group and released as a Request for Comments (RFC). An RFC is a publication from the IETF that officially documents Internet standards, specifications, protocols, procedures, and events. For example, RFC 864 describes how an IPv4 packet gets encapsulated over an Ethernet frame, and RFC 2464 describes how the same function is performed for an IPv6 packet.

IoT-related protocols follow a similar process. The main difference is that an adaptation layer designed for