Solution mcq set 1 U4 Fourier series MTH174

unit 6 Fourier series practice problems

For the function $f(x)=x^2$, $-2 \le x \le 2$ the value of b_n in Fourier series expansion will be $(a) \frac{8}{3}$ (b) $(c) \frac{16}{3}$ (d) none of these Ans-b

For the function $f(x)=x^3$, $-\pi \le x \le \pi$ the value of a_n in Fourier series expansion will be $(a)^{\frac{2}{\pi}}$ (b) 2π (c) 0 (d) none of these Ans-c

Fourier series what is the value of Fourier coefficient for a_0 on [-l, l] (a) $\frac{2}{l} \int_0^l f(x) dx$ (b) $\frac{1}{l} \int_{-l}^l f(x) dx$ (c) $\frac{2}{l} \int_{-l}^l f(x) dx$ $\frac{2}{l} \int_0^l f(x) \cos\left(\frac{n\pi x}{l}\right) dx$ Ans-

(a)
$$\frac{2}{l} \int_0^l f(x) dx$$

(b)
$$\frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$(c) \frac{2}{l} \int_{-l}^{l} f(x) dx$$

- The value of an for $f(x) = e^{-x}$ in [-1,1] is

- a) $e^{l} = e^{l}$ b) $e^{l} + e^{l}$ c) $e^{-l} = e^{l}$ d) $e^{l} + e^{-l}$
- A for f(x)=25inx in [0, 8TT] then ao is
- b)-a c) 1
- 1) Fourier (onstant Qo for $f(x) = e^{-x}$ in $0 \le x < 2\pi$ is
- (a) $\frac{1-e^{-T}}{T}$ b) $\frac{1-e^{-2T}}{T}$ c) $\frac{1+e^{-2T}}{TT}$ d) $\frac{1+e^{-T}}{TT}$
- 9 The Value of b, for $f(x) = x^{2}$ in $(-\pi, \pi)$

 - a), b) 1/2 c)0 d)2
- 1 for $f(x) = x^{2}$ in $-3 \le x \le 3$ which is true for

fourier series expansion

- a) $a_0=0$, $a_n=0$ b) $a_0=0$ c) $a_0=0$, $b_n=0$ d) $b_n=0$

- 6 Value of COSPIT =
- $a_{1-(-1)}^{n+1}$ b) $(-1)^{n}$ () $(-1)^{2}$ $(-1)^{n+2}$ d) all of these

Q46 . The F	ourier coefficient a	of the function f(x) -	$\frac{x}{4}$ in the interval $(-\pi, \pi)$.		
a) $\frac{1}{4}$	b) $\frac{1}{2}$	c) 1	d) 0		
		file function fix)	1 in the interval (0, 2m)		
Q47. The F	ourier coefficient a	of the function i(x) -	$\frac{1}{2}$ in the interval $(0, 2\pi)$.		
a) 0	b) 1	c) 2	d) -1		
Q48. The va	alue of $\int_0^{2\pi} \cos nx dx$	is			
a) 2π	b) π	. c) 0	d) 1		
[Answers: 46d, 4	47h 48cl				
		•	r - (a		
a)1	Urier series of $f(x)=x^2$, b)2	2 <x<2, coefficien<="" fourier="" td="" the=""><td>t b_1 is equal to d) -1</td></x<2,>	t b_1 is equal to d) -1		
Q46.For the F	ourier series of periodic	function f(v) defined to f], which of the following is true:		

Q48.Find the Fourier coefficient a_n for f(x) = 3; $-\pi \le x \le \pi$

Q47.Any even function f(x) defined in [-L,L] that is periodic with period 2L has a)Fourier sine series b)Fourier cosine series c)Both a and b

a) -6

b) 6

c) 3

d) 0

d) None of these

[Answers: 45b,46d, 47b, 48d]

	(a) $\frac{1}{2}$	(b) 1	(c) 0	(d) $\frac{1}{3}$		
				[WBUT 2009, 2008]		
	A function ;	$f(x) = x^2, -\pi \le x \le \pi$	is represented b	y a Fourier series		
		$\frac{a_0}{2} + \sum_{\kappa=1}^{\infty} (a_{\kappa} \cos \alpha_{\kappa})$	$\cos nx + b_n \sin nx$			
	Then the va	lue of b_n is				
	(a) $\frac{2\pi^2}{3}$	(b) $\frac{4(-1)^n}{3}$	(c) 0	(d) None of these [WBUT 2008]		
4. The period of $\cos 2\pi x$ is						
	(a) 2π	(b) 1	(c) 2	(d) None of these [WBUT 2007]		
				[WBUT 2007]		
5. If $f(x) = x \sin x$, $-\pi \le x \le \pi$ be represented by a Fourier series						
$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$						
	Then the value of	a_0 is				
	(a) 2	(b) 0	(c) 4	(d) 1 [WBUT 2009, 2007]		
6. The period of the function $f(x) = \sin x $ is						
	(a) 2π	(b) $\frac{\pi}{2}$	(c) 3π	(d) π		
				[WBUT 2007]		

1. A function f(x), a < x < b, can be expanded in a Fourier series

(d) Only if it is both continuous and bounded in (a, b)

(b) Even if it is discontinuous at a finite number of points in (a, b)

[WBUT 2010]

(a) Only if it is continuous everywhere

(c) Even if it is unbounded in (a, b)

2. The period of the function $f(x) = \sin 2\pi x$ is

5. If $f(x) = x \sin x$, $-\pi \le x \le \pi$ be represented by a Fourier series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Then the value of a_0 is

- (a) 2
- (c) 4
- (d) 1

[WBUT 2009, 2007]

6. The period of the function $f(x) = |\sin x|$ is

- (a) 2π (b) $\frac{\pi}{2}$
- (c) 3π
- (d) π

[WBUT 2007]

The Fourier series of a function f(x) converges to f(x) if x is a point of

(a) continuity

(b) discontinuity

(c) differentiability

(d) None of these

For a function f(x) having Fourier expansion

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

the expression

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \{f(x)\}^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

is called

- (a) Dirichlet' identity
- (b) Euler's identity
- (c) Parseval's identity
- (d) None of these

[Ans. 1 (b), 2 (b), 3 (a), 4 (b), 5 (a), 6 (d), 7 (c), 8 (c), 9 (b), 10 (a), 11 (a), 12 (c)]

 The function which is an odd function in (-∞, ∞) among the following is

- (a) $\cos x$ (b) 1+x (c) e^{-x} (d) x Ans: (d)

A "periodic function" is given by a function which

- (A) has a period $T = 2\pi$
- (B) satisfies f(t+T) = f(t)
 - (C) satisfies f(t+T) = -f(t)
 - (D) has a period $T = \pi$
- Which of the following is an "even" function of t?
 - (A) t^2
 - (B) $t^2 4t$
 - (C) $\sin(2t) + 3t$
 - (D) $t^3 + 6$