Optimization for the information and data sciences

Convex Optimization Problems

Ming Hsieh Department of Electrical Engineering

Optimization problem in standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $x \in \mathbb{R}^n$ is the optimization variable
- ullet $f_0:\mathbb{R}^n o\mathbb{R}$ is the objective or cost function
- $f_i: \mathbb{R}^n \to \mathbb{R}$, $i=1,\ldots,m$, are the inequality constraint functions
- $h_i:\mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if problem is unbounded below

Optimal and locally optimal points

x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints a feasible x is **optimal** if $f_0(x) = p^\star$; X_{opt} is the set of optimal points x is **locally optimal** if there is an R > 0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to
$$f_i(z) \leq 0, \quad i=1,\dots,m, \quad h_i(z)=0, \quad i=1,\dots,p$$
 $\|z-x\|_2 \leq R$

examples (with n = 1, m = p = 0)

- $f_0(x)=1/x$, $\operatorname{dom} f_0=\mathbb{R}_{++}$: $p^\star=0$, no optimal point
- $f_0(x) = -\log x$, $dom f_0 = \mathbb{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $dom f_0 = \mathbb{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i,$$

- ullet we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- ullet a problem is **unconstrained** if it has no explicit constraints (m=p=0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

$$\begin{array}{ll} \text{find} & x \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

can be considered a special case of the general problem with $f_0(x) = 0$:

$$\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

- ullet f_0 , f_1 , ..., f_m are convex; equality constraints are affine
- ullet problem is *quasiconvex* if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax = b \end{array}$$

important property: feasible set of a convex optimization problem is convex

example

$$\begin{array}{ll} \text{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \text{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- ullet not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

$$\begin{array}{ll} \text{minimize} & x_1^2 + x_2^2 \\ \text{subject to} & x_1 \leq 0 \\ & x_1 + x_2 = 0 \end{array}$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$ x locally optimal means there is an R>0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2\|y - x\|_2)$

- $||y x||_2 > R$, so $0 < \theta < 1/2$
- ullet z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$ and

$$f_0(z) \le \theta f_0(x) + (1 - \theta) f_0(y) < f_0(x)$$

which contradicts our assumption that \boldsymbol{x} is locally optimal

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T (y-x) \ge 0$$
 for all feasible y

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

• unconstrained problem: x is optimal if and only if

$$x \in \mathbf{dom} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists a ν such that

$$x \in \mathbf{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

minimization over nonnegative orthant

minimize
$$f_0(x)$$
 subject to $x \succeq 0$

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \geq 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa some common transformations that preserve convexity:

eliminating equality constraints

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\dots,m \\ & Ax = b \end{array}$$

is equivalent to

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0 \text{ for some } z$$

Ш

introducing equality constraints

minimize
$$f_0(A_0x+b_0)$$

subject to $f_i(A_ix+b_i) \leq 0, \quad i=1,\ldots,m$

is equivalent to

minimize (over
$$x$$
, y_i) $f_0(y_0)$ subject to
$$f_i(y_i) \leq 0, \quad i=1,\ldots,m$$

$$y_i = A_i x + b_i, \quad i=0,1,\ldots,m$$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$ subject to
$$a_i^T x + s_i = b_i, \quad i = 1, \dots, m$$

$$s_i \geq 0, \quad i = 1, \dots m$$

• epigraph form: standard form convex problem is equivalent to

minimize (over
$$x$$
, t) t subject to
$$f_0(x)-t \leq 0 \\ f_i(x) \leq 0, \quad i=1,\dots,m \\ Ax=b$$

minimizing over some variables

$$\begin{array}{ll} \text{minimize} & f_0(x_1,x_2) \\ \text{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

is equivalent to

minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax = b \end{array}$$

with $f_0:\mathbb{R}^n \to \mathbb{R}$ quasiconvex, $f_1,\,\ldots,\,f_m$ convex can have locally optimal points that are not (globally) optimal

convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- t-sublevel set of f_0 is 0-sublevel set of ϕ_t , i.e.,

$$f_0(x) \le t \iff \phi_t(x) \le 0$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} f_0$

- can take $\phi_t(x) = p(x) tq(x)$:
 for $t \ge 0$, ϕ_t convex in x
 - $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \quad f_i(x) \le 0, \quad i = 1, \dots, m, \quad Ax = b$$
 (1)

- ullet for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^*$; if infeasible, $t \leq p^*$

Bisection method for quasiconvex optimization

given $l \leq p^{\star}$, $u \geq p^{\star}$, tolerance $\epsilon > 0$.

repeat

- 1. t := (l + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. if (1) is feasible, u := t; else l := t.

 $\mathbf{until}\ u-l\leq \epsilon.$

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations (where u, l are initial values)

Linear program (LP)

$$\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & Gx \preceq h\\ & Ax=b \end{array}$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- ullet one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- ullet healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \succeq b, \quad x \succeq 0 \end{array}$$

piecewise-linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{ x_c + u \mid ||u||_2 \le r \}$$

• $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c+u) \mid ||u||_2 \le r\} = a_i^T x_c + r||a_i||_2 \le b_i$$

ullet hence, x_c , r can be determined by solving the LP

maximize
$$r$$
 subject to $a_i^T x_c + r \|a_i\|_2 \leq b_i, \quad i = 1, \dots, m$

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 $dom f_0(x) = \{x \mid e^T x + f > 0\}$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$\begin{array}{ll} \text{minimize} & c^Ty+dz\\ \text{subject to} & Gy \preceq hz\\ & Ay=bz\\ & e^Ty+fz=1\\ & z \geq 0 \end{array}$$

generalized linear-fractional program

$$f_0(x) = \max_{i=1,\dots,r} \frac{c_i^T x + d_i}{e_i^T x + f_i},$$
 $\mathbf{dom} f_0(x) = \{x \mid e_i^T x + f_i > 0, \ i = 1,\dots,r\}$

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

$$\begin{array}{ll} \text{maximize (over } x,\, x^+) & \min_{i=1,\dots,n} x_i^+/x_i \\ \text{subject to} & x^+ \succeq 0, \quad Bx^+ \preceq Ax \end{array}$$

- $x, x^+ \in \mathbb{R}^n$: activity levels of n sectors, in current and next period
- $(Ax)_i$, $(Bx^+)_i$: produced, resp. consumed, amounts of good i
- x_i^+/x_i : growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

- $P \in \mathcal{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

minimize
$$||Ax - b||_2^2$$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

linear program with random cost

$$\begin{array}{ll} \text{minimize} & \bar{c}^Tx + \gamma x^T \Sigma x = \mathbb{E}[c^Tx] + \gamma \text{var}(c^Tx) \\ \text{subject to} & Gx \preceq h, \quad Ax = b \end{array}$$

- ullet c is random vector with mean $ar{c}$ and covariance Σ
- hence, c^Tx is random variable with mean \bar{c}^Tx and variance $x^T\Sigma x$
- $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^TP_0x + q_0^Tx + r_0$$
 subject to
$$(1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m$$

$$Ax = b$$

- $P_i \in \mathcal{S}^n_+$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathcal{S}^n_{++}$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i$, $i = 1, \dots, m$
 $F x = g$

$$(A_i \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n})$$

inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i + 1}$$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, ..., m$,

there can be uncertainty in c, a_i , b_i two common approaches to handling uncertainty (in a_i , for simplicity)

ullet deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$,

 \bullet stochastic model: a_i is random variable; constraints must hold with probability η

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & \mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m \\ \end{array}$$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbb{R}^n, \quad P_i \in \mathbb{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

robust LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize
$$c^Tx \\ \text{subject to} \quad \bar{a}_i^Tx + \|P_i^Tx\|_2 \leq b_i, \quad i=1,\dots,m$$

(follows from
$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$
)

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$
- ullet $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\operatorname{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$ is CDF of $\mathcal{N}(0,1)$

robust LP

minimize
$$c^T x$$
 subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

with $\eta \geq 1/2$, is equivalent to the SOCP

minimize
$$c^Tx$$
 subject to
$$\bar{a}_i^Tx + \Phi^{-1}(\eta)\|\Sigma_i^{1/2}x\|_2 \leq b_i, \quad i=1,\dots,m$$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \qquad \operatorname{dom} f = \mathbb{R}^n_{++}$$

with c>0; exponent α_i can be any real number **posynomial function:** sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom} f = \mathbb{R}^n_{++}$$

geometric program (GP)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & h_i(x)=1, \quad i=1,\ldots,p \end{array}$$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

 \bullet monomial $f(x)=cx_1^{a_1}\cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

$$\begin{array}{ll} \text{minimize} & \log \left(\sum_{k=1}^K \exp(a_{0k}^T y + b_{0k}) \right) \\ \text{subject to} & \log \left(\sum_{k=1}^K \exp(a_{ik}^T y + b_{ik}) \right) \leq 0, \quad i = 1, \dots, m \\ & Gy + d = 0 \end{array}$$

Design of cantilever beam

- ullet N segments with unit lengths, rectangular cross-sections of size $w_i imes h_i$
- ullet given vertical force F applied at the right end

design problem

```
minimize total weight subject to upper & lower bounds on w_i, h_i upper bound & lower bounds on aspect ratios h_i/w_i upper bound on stress in each segment upper bound on vertical deflection at the end of the beam
```

variables: w_i , h_i for $i = 1, \ldots, N$

objective and constraint functions

- total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- ullet aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- ullet maximum stress in segment i is given by $6iF/(w_ih_i^2)$, a monomial
- ullet the vertical deflection y_i and slope v_i of central axis at the right end of segment i are defined recursively as

$$v_{i} = 12(i - 1/2)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6(i - 1/3)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for $i=N,N-1,\ldots,1$, with $v_{N+1}=y_{N+1}=0$ (E is Young's modulus) v_i and y_i are posynomial functions of w,h

formulation as a GP

$$\begin{split} & \text{minimize} & & w_1 h_1 + \dots + w_N h_N \\ & \text{subject to} & & w_{\max}^{-1} w_i \leq 1, \quad w_{\min} w_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & & & h_{\max}^{-1} h_i \leq 1, \quad h_{\min} h_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & & & S_{\max}^{-1} w_i^{-1} h_i \leq 1, \quad S_{\min} w_i h_i^{-1} \leq 1, \quad i = 1, \dots, N \\ & & & 6 i F \sigma_{\max}^{-1} w_i^{-1} h_i^{-2} \leq 1, \quad i = 1, \dots, N \\ & & & y_{\max}^{-1} y_1 \leq 1 \end{split}$$

note

• we write $w_{\min} \leq w_i \leq w_{\max}$ and $h_{\min} \leq h_i \leq h_{\max}$

$$w_{\min}/w_i \le 1, \qquad w_i/w_{\max} \le 1, \qquad h_{\min}/h_i \le 1, \qquad h_i/h_{\max} \le 1$$

• we write $S_{\min} \leq h_i/w_i \leq S_{\max}$ as

$$S_{\min} w_i / h_i \le 1, \qquad h_i / (w_i S_{\max}) \le 1$$

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_{\mathrm{pf}}(A)$

- ullet exists for (elementwise) positive $A \in \mathbb{R}^{n \times n}$
- ullet a real, positive eigenvalue of A, equal to spectral radius $\max_i |\lambda_i(A)|$
- ullet determines asymptotic growth (decay) rate of $A^k\colon A^k\sim \lambda_{
 m pf}^k$ as $k o\infty$
- alternative characterization: $\lambda_{\rm pf}(A) = \inf\{\lambda \mid Av \preceq \lambda v \text{ for some } v \succ 0\}$

minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{\rm pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

minimize
$$\lambda$$
 subject to $\sum_{j=1}^n A(x)_{ij} v_j/(\lambda v_i) \leq 1, \quad i=1,\ldots,n$

variables λ , v, x

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \ldots, m$
 $Ax = b$

- ullet $f_0:\mathbb{R}^n o\mathbb{R}$ convex; $f_i:\mathbb{R}^n o\mathbb{R}^{k_i}$ K_i -convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \preceq_K 0$
 $Ax = b$

extends linear programming $(K=\mathbb{R}^m_+)$ to nonpolyhedral cones

Semidefinite program (SDP)

$$\begin{array}{ll} \text{minimize} & c^Tx\\ \text{subject to} & x_1F_1+x_2F_2+\cdots+x_nF_n+G \preceq 0\\ & Ax=b \end{array}$$

with F_i , $G \in \mathcal{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \left[\begin{array}{cc} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{array} \right] + x_2 \left[\begin{array}{cc} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{array} \right] + \dots + x_n \left[\begin{array}{cc} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{array} \right] + \left[\begin{array}{cc} \hat{G} & 0 \\ 0 & \tilde{G} \end{array} \right] \preceq 0$$

LP and SOCP as SDP

LP and equivalent SDP

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize
$$f^Tx$$
 subject to $\|A_ix + b_i\|_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$

$$\begin{split} \text{SDP:} & \quad \text{minimize} \quad f^T x \\ & \quad \text{subject to} \quad \left[\begin{array}{cc} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{array} \right] \succeq 0, \quad i = 1, \dots, m \end{split}$$

Eigenvalue minimization

$$\mbox{minimize} \quad \lambda_{\max}(A(x))$$
 where $A(x)=A_0+x_1A_1+\cdots+x_nA_n$ (with given $A_i\in\mathcal{S}^k$)

equivalent SDP

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & A(x) \preceq tI \end{array}$$

- variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$
- follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Matrix norm minimization

$$\begin{aligned} & \text{minimize} & \quad \|A(x)\|_2 = \left(\lambda_{\max}(A(x)^TA(x))\right)^{1/2} \\ & \text{where } A(x) = A_0 + x_1A_1 + \dots + x_nA_n \text{ (with given } A_i \in \mathbb{R}^{p\times q} \text{)} \\ & \text{equivalent SDP} \\ & \text{minimize} & \quad t \\ & \text{subject to} & \left[\begin{array}{cc} tI & A(x) \\ A(x)^T & tI \end{array} \right] \succeq 0 \end{aligned}$$

- variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \succeq 0$$

Vector optimization

general vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x) \leq 0, \quad i=1,\ldots,p$

vector objective $f_0:\mathbb{R}^n o \mathbb{R}^q$, minimized w.r.t. proper cone $K \in \mathbb{R}^q$

convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $Ax = b$

with f_0 K-convex, f_1 , ..., f_m convex

Optimal and Pareto optimal points

set of achievable objective values

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of \mathcal{O}
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of \mathcal{O}

 x^{po} is Pareto optimal

Multicriterion optimization

vector optimization problem with $K=\mathbb{R}^q_+$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^{\star} is optimal if

$$y \text{ feasible} \implies f_0(x^*) \leq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

ullet feasible x^{po} is Pareto optimal if

$$y$$
 feasible, $f_0(y) \leq f_0(x^{\mathrm{po}}) \implies f_0(x^{\mathrm{po}}) = f_0(y)$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

Regularized least-squares

minimize (w.r.t.
$$\mathbb{R}^2_+$$
) $(\|Ax - b\|_2^2, \|x\|_2^2)$

example for $A \in \mathbb{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk return trade-off in portfolio optimization

$$\begin{array}{ll} \text{minimize (w.r.t. } \mathbb{R}^2_+) & (-\bar{p}^Tx, x^T\Sigma x) \\ \text{subject to} & \mathbf{1}^Tx = 1, \quad x\succeq 0 \end{array}$$

- $x \in \mathbb{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $p \in \mathbb{R}^n$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p} , covariance Σ • $\bar{p}^Tx=\mathbb{E}r$ is expected return; $x^T\Sigma x=\mathbf{var}r$ is return variance

example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

$$\begin{array}{ll} \text{minimize} & \lambda^T f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

if \boldsymbol{x} is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

examples

regularized least-squares problem

take
$$\lambda=(1,\gamma)$$
 with $\gamma>0$
$$\text{minimize} \quad \|Ax-b\|_2^2+\gamma\|x\|_2^2$$
 for fixed γ , a LS problem

• risk-return trade-off of

$$\begin{array}{ll} \text{minimize} & -\bar{p}^Tx + \gamma x^T\Sigma x \\ \text{subject to} & \mathbf{1}^Tx = 1, \quad x\succeq 0 \end{array}$$

for fixed $\gamma>0\mbox{, a quadratic program}$