NAME: Jinyi Xia STUDENT ID: 2021212057 CLASS NUMBER: 2021211802

ASSIGNMENT 4

The grammar *G* is given as follows:

(1)
$$S \rightarrow \mathbf{a}B$$
,

(2)
$$B \rightarrow S + B$$
,

(3)
$$B \rightarrow \varepsilon$$
.

Consider the augmented grammar G':

$$S' \to S$$
,
 $S \to \mathbf{a}B$,
 $B \to S + B \mid \varepsilon$.

1 Exercise 1

1. Calculate the FIRST and FOLLOW sets for *G*.

FIRST(
$$S$$
) = { \mathbf{a} },
FIRST(B) = { \mathbf{a} , ε },
FOLLOW(S) = {+,\$},
FOLLOW(B) = {+,\$}.

Construct the collection of sets of LR(0) items for G'.

$$I_0$$
:
$$S \rightarrow \mathbf{a} \cdot B$$

$$S \rightarrow \mathbf{a} \cdot B$$

$$B \rightarrow \cdot S + B$$

$$B \rightarrow \cdot S + B$$

$$B \rightarrow \cdot S + B$$

$$S \rightarrow \cdot \mathbf{a}B$$

$$I_3$$
:
$$S \rightarrow \mathbf{a}B$$

$$I_4$$
:
$$S' \rightarrow S$$

$$I_4$$
:
$$I_5$$
:
$$B \rightarrow S + B$$

$$B \rightarrow S + B$$

$$I_6$$
:
$$I_6$$
:
$$B \rightarrow S + B$$

Construct the SLR(1) parsing table for G'.

STATE	ACTION			Gото	
STATE	a	+	\$	S	В
0	s2			1	
1			acc		
2	s2	r3	r3	4	3
3		r1	r1		
4		s5			
5	s2	r3	r3	4	6
6		r2	r2		

- 2. Yes, it is.
- 3. Yes, it can.

	STACK	SYMBOLS	INPUT	ACTION
$\overline{(1)}$	0		aaaa+++\$	shift
(2)	0 2	a	aaa+++\$	shift
(3)	0 2 2	aa	aa +++\$	shift
(4)	0 2 2 2	aaa	a +++\$	shift
(5)	0 2 2 2 2	aaaa	+++\$	reduce by $B \to \varepsilon$
(6)	0 2 2 2 2 3	aaaa B	+++\$	reduce by $S \rightarrow \mathbf{a}B$
(7)	0 2 2 2 4	aaaS	+++\$	shift
(8)	0 2 2 2 4 5	aaaS+	++\$	reduce by $B \to \varepsilon$
(9)	0222456	aaaS + B	++\$	reduce by $B \rightarrow S + B$
(10)	0 2 2 2 3	aaa B	++\$	reduce by $S \rightarrow \mathbf{a}B$
(11)	0 2 2 4	aa S	++\$	shift
(12)	0 2 2 4 5	aaS+	+\$	reduce by $B \to \varepsilon$
(13)	022456	aaS + B	+\$	reduce by $B \rightarrow S + B$
(14)	0 2 2 3	$\mathbf{a}\mathbf{a}B$	+\$	reduce by $S \rightarrow \mathbf{a}B$
(15)	0 2 4	$\mathbf{a}S$	+\$	shift
(16)	0 2 4 5	aS+	\$	reduce by $B \to \varepsilon$
(17)	0 2 4 5 6	$\mathbf{a}S + B$	\$	reduce by $B \rightarrow S + B$
(18)	0 2 3	$\mathbf{a}B$	\$	reduce by $S \rightarrow \mathbf{a}B$
(19)	0 1	S	\$	accept

2 Exercise 2

1. Construct the collection of sets of LR(1) items for G'.

$$I_{0}: \qquad \qquad I_{2}: \qquad \qquad I_{3}: \qquad \qquad I_{5}: \qquad I_{5}: \qquad I_{5}: \qquad \qquad I_{5}: \qquad I_{5$$

Construct the canonical LR(1) parsing table for G'.

STATE	ACTION			Gото	
STATE	a	+	\$	S	В
0	s2			1	
1			acc		
2	s7		r3	4	3
2 3			r1		
4		s5			
5	s7		r3	4	6
6			r2		
7	s7	r3		9	8
8		r1			
9		s10			
10	s7	r3		9	11
11		r2			

2. Yes, it can.

	STACK	SYMBOLS	Input	ACTION
(1)	0	STMBOES	aaaa+++\$	shift
(2)	$\begin{bmatrix} 0 & 2 \end{bmatrix}$	a	aaa+++\$	shift
(3)	027	aa	aa +++\$	shift
(4)	0277	aaa	a +++\$	shift
(5)	02777	aaaa	+++\$	reduce by $B \to \varepsilon$
(6)	027778	aaaa <i>B</i>	+++\$	reduce by $S \rightarrow \mathbf{a}B$
(7)	02779	aaaS	+++\$	shift
(8)	0277910	aaaS+	++\$	reduce by $B \to \varepsilon$
(9)	027791011	aaaS+B	++\$	reduce by $B \rightarrow S + B$
(10)	02778	aaaB	++\$	reduce by $S \rightarrow \mathbf{a}B$
(11)	0279	aaS	++\$	shift
(12)	027910	aaS+	+\$	reduce by $B \to \varepsilon$
(13)	02791011	$\mathbf{aa}S + B$	+\$	reduce by $B \rightarrow S + B$
(14)	0278	$\mathbf{a}\mathbf{a}B$	+\$	reduce by $S \rightarrow \mathbf{a}B$
(15)	0270	$\mathbf{a}S$	+\$	shift
(16)	02910	$\mathbf{a}S$	\$	reduce by $B \to \varepsilon$
(10)	02710	ab	Ψ	reduce by $B \rightarrow \epsilon$

(continued)

	STACK	SYMBOLS	Input	ACTION
(17)	0 2 9 10 11	aS+B	\$	reduce by $B \rightarrow S + B$
(18)	0 2 8	$\mathbf{a}B$	\$	reduce by $S \rightarrow \mathbf{a}B$
(19)	0 1	S	\$	accept

3 Exercise 3

1. There are 5 pairs of sets of items that can be merged.

 I_2 and I_7 are replaced by their union:

$$I_{2,7}: S \rightarrow \mathbf{a} \cdot B, +/\$$$
 $B \rightarrow \cdot S + B, +/\$$
 $B \rightarrow \cdot, +/\$$
 $S \rightarrow \cdot \mathbf{a}B, +/\$$

 I_3 and I_8 are replaced by their union:

$$I_{3,8}: S \rightarrow \mathbf{a}B \cdot , +/\$$$

 I_4 and I_9 are replaced by their union:

$$I_{4.9}: B \rightarrow S \cdot +B, +/\$$$

 I_5 and I_{10} are replaced by their union:

$$I_{5,10}: \quad B \rightarrow S + \cdot B, \quad +/\$$$

$$B \rightarrow \cdot S + B, \quad +/\$$$

$$B \rightarrow \cdot, \qquad +/\$$$

$$S \rightarrow \cdot \mathbf{a}B, \qquad +/\$$$

 I_6 and I_{11} are replaced by their union:

$$I_{6.11}: B \to S + B \cdot, +/\$$$

The LALR(1) parsing table for G' is as follows.

~	ACTION			Gото	
STATE	a	+	\$	S	В
0	s2,7			1	
1			acc		
2,7	s2,7	r3	r3	4,9	3,8
3,8		r1	r1		
4,9		s5,10			
5,10	s2,7	r3	r3	4,9	6,11
6,11		r2	r2		

2. Yes, it can.

	STACK	SYMBOLS	Input	ACTION
(1)	0		aaaa + ++\$	shift
(2)	0 2,7	a	aaa+++\$	shift
(3)	0 2,7 2,7	aa	aa +++\$	shift
(4)	0 2,7 2,7 2,7	aaa	a +++\$	shift
(5)	0 2,7 2,7 2,7 2,7	aaaa	+++\$	reduce by $B \to \varepsilon$
(6)	0 2,7 2,7 2,7 2,7 3,8	aaaaB	+++\$	reduce by $S \rightarrow \mathbf{a}B$
(7)	0 2,7 2,7 2,7 4,9	aaaS	+++\$	shift
(8)	0 2,7 2,7 2,7 4,9 5,10	aaaS+	++\$	reduce by $B \to \varepsilon$
(9)	0 2,7 2,7 2,7 4,9 5,10 6,11	aaaS + B	++\$	reduce by $B \rightarrow S + B$
(10)	0 2,7 2,7 2,7 3,8	aaaB	++\$	reduce by $S \rightarrow \mathbf{a}B$
(11)	0 2,7 2,7 4,9	aa S	++\$	shift
(12)	0 2,7 2,7 4,9 5,10	aaS+	+\$	reduce by $B \to \varepsilon$
(13)	0 2,7 2,7 4,9 5,10 6,11	aaS + B	+\$	reduce by $B \rightarrow S + B$
(14)	0 2,7 2,7 3,8	aaB	+\$	reduce by $S \rightarrow \mathbf{a}B$
(15)	0 2,7 4,9	a S	+\$	shift
(16)	0 2,7 4,9 5,10	aS+	\$	reduce by $B \to \varepsilon$
(17)	0 2,7 4,9 5,10 6,11	$\mathbf{a}S + B$	\$	reduce by $B \rightarrow S + B$
(18)	0 2,7 3,8	$\mathbf{a}B$	\$	reduce by $S \rightarrow \mathbf{a}B$
(19)	0 1	S	\$	accept