

from tensorflow.keras.models import Sequential

from tensorflow.keras.utils import to categorical

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

from sklearn.metrics import confusion matrix, classification report

(X_train, y_train), (X_test, y_test) = mnist.load_data()

*[3]: X_train = X_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0 X_test = X_test.reshape(-1, 28, 28, 1).astype('float32') / 255.0 y_train_cat = to_categorical(y_train) v_test_cat = to_categorical(y_test)

model.add(Dense(10, activation='softmax'))

model.add(Dropout(0.4))

Step 5: Compile the Model

model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])

Step 7: Evaluate the Model

313/313 •

Test Accuracy: 99.16%

print(f"\n ✓ Test Accuracy: {test accuracy*100:.2f}%")

2s 6ms/step - accuracy: 0.9886 - loss: 0.0339

plt.plot(history.history['loss'], label='Train Loss', color='red')

plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.show()

plt.plot(history.history['val loss'], label='Validation Loss', color='orange')

Confusion Matrix												
	0	976	0	0	0	0	1	1	0	1	1	
True Label	1	- 0	1130	0	3	0	0	0	1	1	0	- 1000
	2	- 0	2	1025	1	0	0	0	3	1	0	- 800
	m	- 0	0	0	1005	0	4	0	0	1	0	000
	4	- 0	0	1	0	974	0	2	1	0	4	- 600
True	5.	- 1	0	0	8	0	882	1	0	0	0	
	9 -	- 3	3	0	0	1	3	948	0	0	0	- 400
	7	- 0	3	4	2	0	0	0	1015	0	4	
	ω -	- 0	0	1	2	0	0	0	1	967	3	- 200
	6 -	. 0	3	0	0	3	5	0	2	2	994	
		Ó	i	2	3 P	4 redicte	5 ed Labe	6	7	8	9	- 0

Step 10: Classification Report

print(classification_report(y_test, y_pred_classes))

•[10]: print("\nClassification Report:\n")

回个少古早事

Classification Report:

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	980	
1	0.99	1.00	0.99	1135	
2	0.99	0.99	0.99	1032	
3	0.98	1.00	0.99	1010	
4	1.00	0.99	0.99	982	
5	0.99	0.99	0.99	892	
6	1.00	0.99	0.99	958	
7	0.99	0.99	0.99	1028	
8	0.99	0.99	0.99	974	
9	0.99	0.99	0.99	1009	
accuracy			0.99	10000	
macro avg	0.99	0.99	0.99	10000	
weighted avg	0.99	0.99	0.99	10000	

