Funções Contínuas

Priscila Bemm

UEM

Objetivos

- Definição de função contínua.
- Definição de função contínua em um intervalo.
- Propriedades de funções contínuas.
- Composta de função contínua.
- Teorema do Valor intermediário.
- Definição de função contínua à esquerda e à direita.

Priscila Bemm (UEM) Funções Contínuas 2/22

Para o cálculo do limite de uma função quando x tende a a podemos, muitas vezes, simplesmente calcular o valor da função em a.

Funções com essa propriedade são chamadas de contínuas em a.

Priscila Bemm (UEM) Funções Contínuas 3/22

Para o cálculo do limite de uma função quando x tende a a podemos, muitas vezes, simplesmente calcular o valor da função em a.

Funções com essa propriedade são chamadas de contínuas em $\it a. \,$

Definição

Uma função f é contínua em um número $a \in Dom(f)$ se

$$\lim_{x \to a} f(x) = f(a)$$

Priscila Bemm (UEM) Funções Contínuas 3/22

Observação

A definição de função contínua em a, requer 3 coisas:

- $a \in Dom(f)$.
- $\lim_{x \to a} f(x)$ existe.
- $\bullet \lim_{x \to a} f(x) = f(a)$

O gráfico da figura abaixo mostra que a função que a define é:

O gráfico da figura abaixo mostra que a função que a define é:

• Descontinúnua em x = 1, pois $1 \notin Dom(f)$.

O gráfico da figura abaixo mostra que a função que a define é:

- Descontinúnua em x = 1, pois $1 \notin Dom(f)$.
- Descontínua em x=3, pois $\lim_{x\to 3^-} f(x) \neq \lim_{x\to 3^+} f(x) \text{ e, portanto,}$ $\lim_{x\to 3^-} f(x) \text{ não existe.}$

O gráfico da figura abaixo mostra que a função que a define é:

- Descontinúnua em x = 1, pois $1 \notin Dom(f)$.
- Descontínua em x=3, pois $\lim_{x\to 3^-} f(x) \neq \lim_{x\to 3^+} f(x) \text{ e, portanto,} \\ \lim_{x\to 3^-} f(x) \text{ não existe.}$
- Descontínua em x=5, pois apesar de $\lim_{x\to 5} f(x)$ existir, temos $\lim_{x\to 5} f(x) \neq f(5)$

Determine onde cada função é descontínua.

a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

b)
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{quando } x \neq 0\\ 1 & \text{quando} x = 0 \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{quando } x \neq 2 \\ 1 & \text{quando} x = 2 \end{cases}$$

d) $f(x) = \parallel x \parallel$, que converte um número real x no maior número inteiro maior ou igual a x

6 / 22

Priscila Bemm (UEM) Funções Contínuas

Funções Contínuas

(c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{se } x \neq 2 \\ x - 2 & \text{otherwise} \end{cases}$$
 (d) $f(x) = [x]$

→□→→=→== → ○○

Definição

Dizemos que uma função f é contínua em um intervalo I se f for contínua em todo $x \in I$.

Observação

Dizemos que f é contínua, se esta função é contínua em todos os pontos do seu domínio.

Propriedades

Sejam f e g funções definidas em um intervalo I e $a \in I$. Se f e g são contínuas em a, então

- f + g é contínua em a;
- \bullet $f \cdot g$ é contínua em a;
- Se $g(x) \neq 0$ para todo $x \in I$ e $g(a) \neq 0$, então $\frac{f(x)}{g(x)}$ é contínua em a.

9 / 22

Priscila Bemm (UEM) Funções Contínuas

As seguintes funções são contínuas em todos os números de seus domínios:

- Polinômios
- Funções Trigonométricas
- Funções Trigonométricas Inversas
- Funções Racionais
- Funções Raízes
- Funções Exponenciais
- Funções Logarítmicas

10 / 22

Priscila Bemm (UEM) Funções Contínuas

$$\lim_{x \to a} \frac{1}{x} = \frac{\lim_{x \to a} 1}{\lim_{x \to a} x} = \frac{1}{a} = f(a).$$

• $f(x) = \frac{1}{x}$ é contínua em todo ponto $a \in \mathbb{R}^*$, pois $Dom f = R^*$. Assim, para todo $a \in R^*$ tem-se

$$\lim_{x \to a} \frac{1}{x} = \frac{\lim_{x \to a} 1}{\lim_{x \to a} x} = \frac{1}{a} = f(a).$$

Se $f(x)=\frac{x^4-2x+1}{x^3+3x^2+1}$ então $\lim_{x\to -1}f(x)=f(-1)$, pois $-1\in Dom\, f$. Assim,

$$\lim_{x \to -1} \frac{x^4 - 2x + 1}{x^3 + 3x^2 + 1} = \frac{(-1)^4 - 2(-1) + 1}{(-1)^3 + 3(-1)^2 + 1} = \frac{4}{3}.$$

Pela propriedade do limite da soma de funções, temos

$$\lim_{x \to \pi} (sen \ x + 3cos \ x) = \lim_{x \to \pi} \ sen \ x + \left(\lim_{x \to \pi} \ 3\right) \cdot \left(\lim_{x \to \pi} \ cos \ x\right)$$
$$= sen \ \pi + 3 \cdot cos \ \pi = 0 + 3(-1) = -3.$$

A função
$$f(x) = \frac{\ln x - \cos x}{x^2 - 1}$$
 é contínua?

13 / 22

Priscila Bemm (UEM) Funções Contínuas

A função
$$f(x) = \frac{\ln x - \cos x}{x^2 - 1}$$
 é contínua?

$$f_1(x)=ln\ x$$
 é contínua para todo $x\in(0,+\infty)$

$$f_2(x) = cos \; x$$
 é contínua em ${\mathbb R}$

$$f_2(x)=\cos x$$
 é contínua em $\mathbb R$
$$f_3(x)=\frac{1}{x^2-1}$$
 é contínua em todo $x\in\mathbb R$, com $x\neq\pm 1$.

Fazendo a interseção dos domínios de cada uma destas funções, temos que f é contínua em $(0,1) \cup (1,+\infty).$

13 / 22

Priscila Bemm (UEM) Funções Contínuas E para quais pontos $g(x) = \frac{sen \ x}{2 + cos \ x}$ é contínua?

Priscila Bemm (UEM) Funções Contínuas 14/22

E para quais pontos
$$g(x) = \frac{sen \ x}{2 + cos \ x}$$
 é contínua?

Neste caso, sabemos que as funções $sen \ x$ e $2+cos \ x$ são contínuas em todo $x \in \mathbb{R}$. Além disso, observe que o denominador $2+cos \ x$ nunca se anula, já que $-1 \le cos \ x \le 1$ e portanto $1 < 2+cos \ x < 3$. Logo, q é contínua em \mathbb{R} .

Priscila Bemm (UEM) Funções Contínuas 14/22

Propriedade

Sejam f e g funções de modo que $\lim_{x \to a} g(x) = b$ e f é contínua em b. Então,

$$\lim_{x\to a}(f\circ g)(x)=f(b)$$
 , ou seja,

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$$

Priscila Bemm (UEM) Funções Contínuas 15/22

Se g é uma função contínua em a e f uma função contínua em g(a), então a função composta $f\circ g$ é contínua em a.

Determine o maior conjunto em que F(x) = ln(1 + cos x) é contínua.

Sabe-se que:

- $Dom(f) = \{x; x > 0\}$, onde $f(x) = \ln x$
- $Dom(cos) = \mathbb{R}$
- $Dom(g) = \mathbb{R}$, onde $g(x) = 1 + \cos x$

Pelo teorema anterior F(x)=f(g(x)) é contínua e seu domínio, e

$$Dom(F) = \{x \in \mathbb{R} | 1 + \cos x > 0\}$$

$$= \{x \in \mathbb{R} | \cos x > -1\} = \{x \in \mathbb{R} | \cos x \neq -1\}$$

$$= \mathbb{R} - \{\pm \pi, \pm 3\pi, \pm 5\pi \cdots \}.$$

Teorema do Valor Intermediário

Sejam $f:[a,b]\to\mathbb{R}$ contínua e N um número qualquer satisfazendo $f(a)\leq N\leq f(b)$, com $f(a)\neq f(b)$. Então existe $c\in(a,b)$ tal que f(c)=N.

Priscila Bemm (UEM) Funções Contínuas 18/22

Exemplo

Mostre que existe uma raiz da equação

$$4x^3 - 6x^2 + 3x - 2 = 0$$

entre 1 e 2.

Seja $f(x) = 4x^3 - 6x^2 + 3x - 2$. Observe que

$$f(1) = 4 - 6 + 3 - 2 = -1 < 0$$

e

$$f(2) = 32 - 24 + 6 - 2 = 12 > 0$$

Logo, f(1) < 0 < f(2), isto é, 0 é um número entre f(1) e f(2) .

Como f é contínua, o Teorema do Valor Intermediário afirma que existe um número c entre 1 e 2 tal que f(c)=0 .

Em outras palavras, a equação $4x^3-6x^2+3x-2=0$ tem pelo menos uma raiz c no intervalo (1,2).

Priscila Bemm (UEM)

Funções Contínuas

Definição

Uma função f é contínua à direita em um número a se

$$\lim_{x \to a^+} f(x) = f(a)$$

Definição

Uma função f é contínua à esquerda em um número a se

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Priscila Bemm (UEM) Funções Contínuas 21/22

