ΑΣΚΗΣΗ 6: Διαφοριστής - Ολεκληρωτής με Ενεργά φύλτοα

ОМАЛА	AP. MHTP.	ΟΝΟΜΑΤΕΠΩΝΥΜΟ
		XPHSTOS TSOYOHS
		14 /
HMEPOM.	17-19 -	2010 DIOPO: 2 =

Α. Διαφοριστής1. Πραγματοποιήστε το θεωρητικό ενεργό κύκλωμα του διαφοριστή του σχήματος 1α (αντιστρέφουσα συνδεσμολογία), χρησιμοποιώντας για $\mathbf{R}_2 = \mathbf{10}$ $\mathbf{1}$ $\mathbf{\Omega}$ και $\mathbf{S}_1 = \mathbf{4}$, $\mathbf{7}$ \mathbf{n} \mathbf{F} . Ρυθμίστε την είσοδο στο $\mathbf{1}$ \mathbf{V} πλάτος τετραγωνική κυματομορφή, συχνότητας $\mathbf{1}$ \mathbf{k} \mathbf{H} \mathbf{z} . Η είσοδος να οδηγηθεί στο κανάλι $\mathbf{1}$ του παλμογράφου και η έξοδος στο κανάλι $\mathbf{2}$ του παλμογράφου.

Σχήμα 1: διάταξη διαφοριστή α) θεωρητικό κύκλωμα β) πρακτικό κύκλωμα

Β1. Διαφοριστής

- 2. Υλοποιήστε το πρακτικό ενεργό κύκλωμα του διαφοριστή του σχήματος ${}_{1}$ β, προσθέτοντας την R_{1} = 4,7 ${}_{1}$ k Ω ,. Η είσοδος να παραμείνει ως έχει.
- 3. Παρατηρήστε την έξοδο. Ρυθμίστε τη συχνότητα στα 10 kHz. Παρατηρήστε την έξοδο.
- Προσοχή: Καλέστε τον επιβλέποντα της άσκησής σας να ελέγξει το κύκλωμα, μόλις το ολοκληρώσετε.
- 4. Γυρίστε σε τριγωνική κυματομορφή πλάτος 1 V, συχνότητα 1 kHz.
- 5. Γυρίστε σε ημιτονοειδή κυματομορφή, πλάτος 1 V, και μετρήστε το μλάτος της εξόδου για συχνότητα 1 kHz Vo = 47 2 V

32. Ολοκληρωτής

6. Υλοποιήστε το θεωρητικό ενεργό κύκλωμα του ολοκληρωτή του σχήματος 2α (αντιστρέφουσα συνδεσμολογία), χρησιμοποιώντας για $R_1 = 4.7 \text{ kΩ}$ και $C_2 = 4.7 \text{ nF}$. Ρυθμίστε την είσοδο τλάτος τετραγωνική κυματομορφή, συχνότητας 10 kHz. Η είσοδος πιοδηγηθεί στο κανάλ καλμογράφου και η έξοδος στο κανάλι 2 του παλμογράφου.

Προσοχή: Καλέστε τον επιβλέποντα της άσκησης σας να «λέγ^τει το κή Λωμα, μόλις το ολοκληρώσετε.

σε συνεργασία με τους ΥΔ Θ.Αθανασιάδη, Π.Λεραντζή, Γ.Τετράδη τον φοιτητή Θ.Λαμπούση

Εχήμα 2: διάταξη ολοκληρωτή α) θεωρητικό κύκλωμα β) πρακτικό κύκλωμα

- 1. Υλοποιήστε το πρακτικό ενεργό κύκλωμα του ολοκληρωτή του σχήματος 2β , προσθέτοντας την \mathbf{R}_2 10 κΩ,. Η είσοδος να παραμείνει ως έχε..
- 8. Παρατηρήστε την έξοδο. Ρυθμίστε τη συχνότητα στο 1 κΗz. Παρατηρήστε την έξοδο.
- **σΠροσοχή:** Καλέστε τον επιβλέποντα της άσκησής σας να ελέγξει το κύκλωμα, μόλις το ολοκληρώσετε.
- 9. Γυρίστε σε τριγωνική κυματομορφή πλάτος 1 V, συχνότητα 10 kHz.
- 10. Γυρίστε σε ημιτονοειδή κυματομορφή, πλάτος 1 V, και μετρήστε το πλάτος της εξόδου για συχνότητα 10 kHz Vo = 8,80 V
- 11. Καταγράψτε τη μάρκα και το μοντέλο για κάθε όργανο που χρησιμοποιήσατε στην άσκηση а) Пагроурафоς: Tek + rom x TBS-1052BB) Гентуриа. TII 16310 31162.

Κλείστε τα όργανα και αποσυνδέστε το κύκλωμα.

Γ1. Ερωτήσεις για τον διαφοριστή

- Υπολογίστε το κέρδος -ου θεωρητικού διαφοριστή για την συχνότητα που το σήμα ενισχύεται Αν = ... (2-/2) - 90 f 2-20 μ f 2-20 μ
- Υπολογίστε το κέρδος από τις μετρήσεις σιις για τα 10 ΚΗΖ. Ανο ΜΑΙ = 17, 9 3)
- 4)
- 5)

Γ2. Ερωτήσεις για τον ολοκ, πρωτή

- Υπολογίο :ε την κρίσιμη συχνότητα του ολοκληρωτή $f_c = \frac{1}{2}$ [L. R. C. 2] Σε ποια συγνότητα από χυτές του μετυήσετε, θεωσείτε ότι το κέρδος είναι μεγαλύτερο της
- μονάδος. Da F= 1 KHZ
- ?) Υπολογίστε το κέρδος του θεωρητικού ολυκληρω, ή για την συχνότητα του ερωτήματος 7 Υπολογίστε για την ίδια συχνότητα το κέρδος από τις μετρήσεις σας. Αν = 21,6/1
- 10) Αν η είσοδος ειναι $f(x) = \sin x$, η έξοσος μετί την ολοκλήρωση θα είναι $y(x) = \frac{(65.100)}{100}$...