Logical and Theoretical Foundation of CS

Dependable Systems Group D. Nowotka, P. Fleischmann

Christian-Albrechts-Universität zu Kiel

Technische Fakultät

Example solution for Series #11

Exercise 1 You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer		10 Points
a) All recursive languages are also recursively enumerable.	⊗ true	○ false
b) If there exists a $w \in \Sigma^*$ such that a DTM $\mathcal A$ loops on w , then $L(\mathcal A) = \emptyset$.	\bigcirc true	\bigotimes false
c) Deterministic Turing machines are more powerful than PDAs.	⊗ true) false
d) The tape alphabet and the input alphabet of a Turing machine are disjoint.	\bigcirc true	\bigotimes false
e) $\{a^nb^nc^n n\in\mathbb{N}_0\}$ is recognisable by a 1DTM.	⊗ true) false
f) Each semidecidable language is also decidable.) true	\bigotimes false
g) The more tapes a DTM has the more powerful it is.) true	\bigotimes false
h) 2DPDAs are as powerful as DTMs.	\bigotimes true	○ false
i) 1-counter automaton are as powerful as DTMs.) true	\bigotimes false
j) $\{a^nb^nc^n n\in\mathbb{N}_0\}$ is recognisable by an enumeration machine.	\bigotimes true) false
Exercise 2 Give the following definitions:		7 Points
a) 1DTM b) 1DTM \mathcal{A} loops on $x \in \Sigma^*$ c) 1DTM \mathcal{A} total d) $L \subseteq \Sigma^*$ semidecidable		(4P) (1P) (1P) (1P)
Solution: a) $\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \lrcorner, \delta, q_0, q_a, q_r)$ 1DTM with • finite set of states Q with start state q_0 • finite input alphabet Σ • finite tape alphabet $\Gamma \supseteq \Sigma$ • blank symbol $\lrcorner \in \Gamma \backslash \Sigma$ • left endmarker $\vdash \in \Gamma \backslash \Sigma$ • transistion function $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$		

Exercise 3

a) Prove that $L' = \{ww^R w | w \in \{a, b\}$ is not context-free.

• accepting state q_a • rejecting state $q_r \neq q_a$

b) A does not halt on xc) A halts on all inputsd) L recursively enumerable

24 Points

Return till: January 20th, 2020, 12:00 pm

Logical and Theoretical Foundation of CS

- b) Decide whether the following claims are correct or not. Justify your answer.
 - a) There exists a 1DTM A that accepts an infinite language without moving the head more than one position away from position 1 (notice that at position 0 we have \vdash).
 - b) For all 1DTM A_1 exists a 1DTM A_2 with $L(A_1) = L(A_2)$ and A_2 has only the two states q_a and
 - c) For each Turing-Machine A on the alphabet Σ moving the head only to the right, $L(A) \subseteq \Sigma^+$.
- c) Construct a 1DTM for $L = \{w \in \Sigma^* | \exists v \in \Sigma^* : w = vv^R \}$. Describe the behaviour of your machine.

Solution:

- a) Suppose that L' is context-free. (0.5P)By the Pumping Lemma for context-free language there exits $p \in \mathbb{N}$. (0.5P)Set $z = a^p b^{2p} a^{2p} b^p$. (0.5P)Then we have $|z| = 6p \ge p$ and by $z = (a^p b^p)(a^p b^p)^R (a^p b^p)$ we have $z \in L'$. (1P) Consequently there exists $u, v, w, x, y \in \Sigma^*$ with (1) z = uvwxy(2) |vx| > 0(0.5P)(3) $|vwx| \le p$ (0.5P)(4) $\forall i \in \mathbb{N}_0 : uv^i w x^i y \in L'$. (0.5P)Sketch of proof for the case-analysis: case 1: |u| = 0(0.5P)Then $vwx \in \{a\}^*$ (0.5P)and uv^0wx^0y has strictly less a in the beginning than in the end. (0.5P)case 2: $|u| \leq p$ (0.5P)Then vwx is at most in the first b-block. By doubling v and x the number of b in the first b-block is increased but not the number of b in the
 - last b-block. (0.5P)(0.5P)

The remaining cases are analogous.

Thus in each case there exists an $i \in \mathbb{N}_0$ such that $uv^iwx^iy \notin L'$ (0.5P) and consequently L' is not context-free.

- a) The claim is correct. If $q_0 = q_a$ holds, \mathcal{A} accepts every word and thus for the input alphabet b) Σ , \mathcal{A} accepts Σ^* .
 - b) The claim is not correct. Since A_2 has only the states q_a and q_r , the initial state is one of them. This implies that A_2 accepts either Σ^* or \emptyset .
 - c) The claim is not correct. If q_0 is again q_a we accept Σ^* . The direction of the head is not important.

c)

Example solution for Series #11 Winter Semester 2019/20

Description of the machine: The machine compares always the first letter with the last letter. Are both the same they are replaced by _. If the tape is empty, we accept.

You can visualise the machine on https://turingmachinesimulator.com/ with the following instructions

name: palindromes

init: q0

accept: qacc

q0,1 q1,_,>

q0,0 q4,_,>

q0,_ qacc,_,-

q1,0 q1,0,>

q1,1 q1,1,> q1,_ q2,_,<

q2,1 q3,_,<

q3,1 q3,1,<

q3,0

q3,0,<

q3,_ q0,_,> q4,0

q4,0,>

q4,1 q4,1,>

q4,_ q5,_,<

q5,0

q3,_,<

Winter Semester 2019/20 Example solution for Series #11