# Deep Learning

Or why you should just ask a computer to figure it out.

Scalars - a single value

Vectors – A one-dimensional array of values

Matrices – A two-dimensional array of values

Scalars – a single value

Vectors – A one-dimensional array of values

Matrices – A two-dimensional array of values

Tensors can have more than two dimensions (A hierarchical arrangement of matrices and vectors). E.g. An Image.

Scalars – a single value

Vectors – A one-dimensional array of values

Matrices – A two-dimensional array of values

Tensors can have more than three dimensions (A hierarchical arrangement of matrices and vectors). E.g. An Image.



Scalars – a single value

Vectors – A one-dimensional array of values

Matrices – A two-dimensional array of values

Tensors can have more than two dimensions (A hierarchical arrangement of matrices and vectors). E.g. An Image.



When is the image wrong?

## Tensors Operations

Mathematical (including Boolean)

Join-Based

Indexing

Conversion

Task: Go look for useful tensor methods/functions and keywords and populate a shared google sheet with them. (Have one tab for pytorch and one for tensorflow)

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

- 1. For any given dimension, only one tensor can be tiled.
- 2. Size checks happen from right to left

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

- 1. For any given dimension, only one tensor can be tiled.
- 2. Size checks happen from right to left
- 1) Can torch.Size (5,1,3) torch.Size (5,1,3) be broadcast?

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

- 1. For any given dimension, only one tensor can be tiled.
- 2. Size checks happen from right to left
- 1) Can torch.Size(5,1,3) torch.Size(5,1,3) be broadcast?
- 2) Can torch.Size(5,2,3,1) torch.Size(5,1,3,1) be broadcast?

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

- 1. For any given dimension, only one tensor can be tiled.
- 2. Size checks happen from right to left
- 1) Can torch.Size(5,1,3) torch.Size(5,1,3) be broadcast?
- 2) Can torch.Size(5,2,3,1) torch.Size(5,1,3,1) be broadcast?
- 3) Can torch.Size(5,2,3,1) torch.Size(5,1,3,5) be broadcast?

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

- 1. For any given dimension, only one tensor can be tiled.
- 2. Size checks happen from right to left
- Can torch.Size(5,1,3)
  torch.Size(5,1,3) be broadcast?
- 2) Can torch.Size(5,2,3,1) torch.Size(5,1,3,1) be broadcast?
- 3) Can torch.Size(5,2,3,1) torch.Size(5,1,3,5) be broadcast?
- 4) Can torch.Size(5,3,3) torch.Size(5,2,3) be broadcast?

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

- 1. For any given dimension, only one tensor can be tiled.
- 2. Size checks happen from right to left
- 1) Can torch.Size(5,1,3) torch.Size(5,1,3) be broadcast?
- 2) Can torch.Size(5,2,3,1) torch.Size(5,1,3,1) be broadcast?
- 3) Can torch.Size(5,2,3,1) torch.Size(5,1,3,5) be broadcast?
- 4) Can torch.Size(5,3,3) torch.Size(5,2,3) be broadcast?
- 5) Can torch.Size(5,3,3) torch.Size(5,3) be broadcast?

Broadcasting is an automatic tiling mechanism to ensure Tensor shapes match for operations to succeed.

### Addition

- 1. For any given dimension, only one tensor can be tiled.
- 2. Size checks happen from right to left
- 1) Can torch.Size(5,1,3) torch.Size(5,1,3) be broadcast?
- 2) Can torch.Size(5,2,3,1) torch.Size(5,1,3,1) be broadcast?
- 3) Can torch.Size(5,2,3,1) torch.Size(5,1,3,5) be broadcast?
- 4) Can torch.Size(5,3,3) torch.Size(5,2,3) be broadcast?
- 5) Can torch.Size(5,3,3) torch.Size(5,3) be broadcast?
- 6) Can torch.Size (5,3,3) torch.Size (3,3) be broadcast?

## Differential Calculus





Image credit: <a href="https://losslandscape.com/">https://losslandscape.com/</a>

### **Automatic Differentiation**

Calculating the gradients is difficult and cumbersome become of interactions in very large models. So, our modern frameworks use automatic differentiation.

#### With automatic differentiation,

- 1. the framework builds a graph that connects all the inputs and operations that produce a particular output
- 2. The nodes and edges in the graph capture input/output relationships automatically
- 3. Tracing through the graph allows us to calculate gradients automatically.

Reference: https://en.wikipedia.org/wiki/Automatic\_differentiation

## Probability

### References:

- 1. StatQuest: <a href="https://www.youtube.com/channel/UCtYLUTtg83k1Fg4y5tAhLbw">https://www.youtube.com/channel/UCtYLUTtg83k1Fg4y5tAhLbw</a>
- 2. MML book: <a href="https://mml-book.github.io/">https://mml-book.github.io/</a>
- 3. The D2L.ai book (Section 2.6)
- 4. Google.

## Break

## CODING SESSION

## Break



Objective function: Squared error



Objective function: Squared error

Loss = 0.5\* (predictions – actual)\*\*2



Objective function: Squared error

Loss = 0.5\* (predictions – actual)\*\*2

Updates:  $(a,b)^N \leftarrow (a,b)^{N-1} - \text{Ir * mean}(D_i(\text{loss}(a,b;x_i)))$ 



Objective function: Squared error

Loss = 0.5\* (predictions – actual)\*\*2

Updates:  $(a,b)^N \leftarrow (a,b)^{N-1} - lr * mean(D_i(loss(a,b;x_i)))$ 

Algorithm: Stochastic Gradient Descent (SGD)

## SGD



Dataset size = 10 Samples = 8

## SGD



Dataset size = 10 Samples = 8

## Break

## CODING SESSION

## Break

## Biology



Image source: d2l.ai

(Multiclass Classification)



Image source: d2l.ai

(Multiclass Classification)

$$P(y|x) = \prod_{i} P(y^{i}|x^{i})$$

(Multiclass Classification)

$$P(y|x) = \prod_{i} P(y^{i}|x^{i})$$

For a Binary classifier,

$$P(y|x) = P(y)^{y} * P(\bar{y})^{\bar{y}}$$

(Multiclass Classification)

$$P(y|x) = \prod_{i} P(y^{i}|x^{i})$$

For a Binary classifier,

$$P(y|x) = P(y)^{y} * P(\bar{y})^{\bar{y}}$$

$$P(y|x) = p(y)^y * (1 - p(y))^{1-y}$$
  $\leftarrow$  This is a Bernoulli distribution

(Multiclass Classification)

$$P(y|x) = \prod_{i} P(y^{i}|x^{i})$$

For a Binary classifier,

$$P(y|x) = P(y)^{y} * P(\overline{y})^{\overline{y}}$$

$$P(y|x) = p(y)^y * (1 - p(y))^{1-y}$$
  $\leftarrow$  This is a Bernoulli distribution

$$\log(P(y|x)) \Rightarrow y \log P(y) + (1-y) \log(1-P(y))$$

(Multiclass Classification)

$$\log(P(y|x)) \Rightarrow y \log P(y) + (1-y) \log(1-P(y))$$

(Multiclass Classification)

$$\log(P(y|x)) \Rightarrow y \log P(y) + (1-y) \log(1-P(y))$$

Extending to multiple classes,

$$\Rightarrow y_1 \log P(y_1) + y_2 \log P(y_2) + \dots + y_k \log P(y_k)$$

### Binary Cross Entropy

(Multilabel Classification)

$$\Rightarrow y_1 \log P(y_1) + y_2 \log P(y_2) + \dots + y_k \log P(y_k)$$

+

$$(1-y_1)*\log(1-P(y_1))+(1-y_2)*\log(1-P(y_2))+\cdots$$

## Break

## CODING SESSION

## Break

### References

https://stats.stackexchange.com/questions/245502/why-should-we-shuffle-data-while-training-a-neural-network

https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/