Generowanie ciągu liczb pseudolosowych o rozkładzie jednorodnym i trójkątnym.

Tomasz Chwiej

11 czerwca 2018

1 Wstęp

Funkcję gęstości prawdopodobieństwa dla rozkładu trójkątnego $T(\mu, \Delta)$ (rys.1) definiujemy następująco

$$f(x;\mu,\Delta) = -\frac{|x-\mu|}{\Delta^2} + \frac{1}{\Delta} \tag{1}$$

gdzie: μ to środek rozkładu, a Δ to jego szerokość.

Rysunek 1: Funkcja gęstości prawdopodobieństwa rozkładu trójkątnego.

Dystrybuanta tego rozkładu jest następująca

$$F(a) = P(x < a) = \int_{\mu - \Delta}^{a} f(x : \mu, \Delta) dx = \begin{cases} -\frac{1}{\Delta^{2}} \left(-\frac{x^{2}}{2} + \mu x \right) + \frac{x}{\Delta}, & x \leq \mu \\ -\frac{1}{\Delta^{2}} \left(\frac{x^{2}}{2} - \mu x + \mu^{2} \right) + \frac{x}{\Delta}, & x > \mu \end{cases}$$
(2)

Jeśli $\xi_1\in U(0,1)$ i $\xi_2\in U(0,1)$ to zmienną o rozkładzie trójkątnym oraz parametrach μ i Δ generujemy stosując formułę

$$x = \mu + (\xi_1 + \xi_2 - 1) \cdot \Delta \tag{3}$$

2 Zadania do wykonania

2.1 Rozkład jednorodny

Startując od $x_0=10$ należy wygenerować $n=10^4$ liczb pseudolosowych przy użyciu generatora mieszanego

$$x_{n+1} = (ax_n + c) \bmod m \tag{4}$$

o parametrach (**typu long int**):

a)
$$a = 123, c = 1, m = 2^{15}$$

b)
$$a = 69069, c = 1, m = 2^{32}$$

Proszę w obu przypadkach sporządzić rysunek $X_{i+1} = f(X_i)$ ($X_i = x_i/(m+1.0)$ z warunku normalizacji do rozkładu U(0,1)). Czy porównując oba rysunki można stwierdzić, który generator ma lepsze własności statystyczne? W sprawozdaniu proszę uzasadanić odpowiedź. W sprawozdaniu proszę także zamieścić histogram (dla k=12 podprzedziałów) rozkładu gętości prawdopodobieństwa dla $n=10^4$ liczb pseudolosowych o rozkładzie równomiernym (oba przypadki). Proszę także podać obliczone wartości μ i σ i porównać je z wartościami teoretycznymi. Uwaga: Dla generatorów proszę napisać funkcje w których zmienna x będzie typu static long long int x=10; tj. będzie ona inicjalizowana tylko podczas pierwszego wywołania a jej aktualna wartość będzie zachowywana w pamięci po zakończeniu działania funkcji.

```
double gen_1(){
    static long int x=10;
    int a=...;
    int c=...;
    long int m=...;
    x=(a*x+c) % m;
    return x/(m+1.0);
}
```

2.2 Rozkład trójkątny

- 1. Wygenerować $n=10^3$ liczb o rozkładzie trójkatnym (wzór 3) o parametrach $\mu=4$ i $\Delta=3$.
- 2. Podzielić przedział $[\mu \Delta, \mu + \Delta]$ na K = 10 podprzedziałów i zliczyć ile liczb wpada do każdego z nich.
- 3. Dla rozkładu trójkatnego przeprowadzić test χ^2 tj. określić wartość statystyki testowej

$$\chi^{2} = \sum_{i=1}^{K} \frac{(n_{i} - n \cdot p_{i})^{2}}{n \cdot p_{i}}$$
 (5)

gdzie: n_i to ilość liczb znajdujących się w podprzedziale o indeksie i, p_i to prawdopodobieństwo teoretyczne że zmienna losowa X znajdzie się w i - tym przedziale

$$p_i = F(x_{i,max}) - F(x_{i,min}) \tag{6}$$

We wzorze (6) F(x) jest wartością dystrybuanty liczonej zgodnie z wzorem (2). Wartości: p_i oraz $n \cdot p_i$ dla każdego z podprzedziałów zapisać do pliku. W sprawozdaniu proszę zamieścić histogram pokazujący wartości n_i/n oraz p_i dla każdego z podprzedziałów.

4. Testujemy hipotezę H_0 : wygenerowany rozkład jest rozkładem $T(\mu, \Delta)$ wobec H_1 że nie jest to prawdą. Korzystając z odpowiednich tabel statystycznych proszę sprawdzić czy nasza hipoteza jest prawdziwa na poziomie istotności $\alpha=0.05$ (α jest prawdopodobieństwem pierwszego rodzaju czyli prawdopodobieństwem odrzucenia hipotezy H_0 gdy ta jest prawdziwa). W tym celu definiujemy obszar krytyczny testu:

$$\Phi = \{ \boldsymbol{X} : \chi^2(\boldsymbol{X}) > \varepsilon \} \tag{7}$$

gdzie: $\mathbf{X} = \{x_1, x_2, \dots, x_n\}$ jest ciągiem liczb pseudolosowych, $\chi^2(\mathbf{X})$ wartością statystyki dla danego ciągu \mathbf{X} , ε jest poziomem krytycznym danego rozkładu dla określonej liczby stopni swobody i założonego poziomu istotności (należy odczytać z tabel statystycznych). Liczbę stopni swobody określamy jako $\nu = K - r - 1$, gdzie: K jest liczbą podprzedziałów, a r = 2 jest liczbą parametrów testowanego rozkładu (μ i Δ). Jeśli $\chi^2 < \varepsilon$ to stwierdzamy że dla zadanego poziomu istotności nie ma podstaw do odrzucenia hipotezy H_0 .