Control Automático

Regulador PID y ajuste del PID

Contenido

- Regulador PID
 - PID ideal
 - PID real
 - Antiwindup
 - Sintonía empírica del PID (Ziegler-Nichols)
 - EI PID 2DoF
- Ejemplos
- Ejercicios
- Referencias

El PID ideal

El regulador PID en el dominio del tiempo

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{d}{dt} e(t)$$

Transformando al dominio S (ideal)

$$K_{PID}(s) = K_P + \frac{K_I}{s} + K_D s$$

 Factorizando la ganancia K_P (estándar)

$$K_{PID}(s) = K_P(1 + \frac{1}{T_i s} + s \cdot T_d)$$

Circuito con regulador PID

$$K_{PID}(s) = K_P(1 + \frac{1}{T_i s} + s \cdot T_d)$$

El PID real

- Debido a que el regulador PID (PD) ideal es impropio, tiene más ceros que polos, presenta problemas para la simulación y para la realización.
- La solución: agregar un polo parásito con una constante de tiempo muy pequeña y ganancia estática unitaria. (Factor 100)
- El PID real estará constituido entonces por dos polos y dos ceros.

Regulador	Función de transferencia	Función de transferencia práctica	
P		$K_{P}(s) = K_{P}$	
I	$K_I(s) = \frac{K_I}{s}$	$K_I(s) = \frac{K_I}{s}$	
PI	$K_{PI}(s) = K_P + \frac{K_I}{s}$	$K_{PI}(s) = K_{P} \frac{\left(s + \frac{K_{I}}{K_{P}}\right)}{s}$	
PD	$K_{PD}(s) = K_P + K_D s$	$K_{PD}(s) = K_p + \frac{sK_D}{(ns+1)}$	
PID	$PID = K(s) = K_p + \frac{K_I}{s} + K_D s$	$K_{PID}(s) = K_p + \frac{K_i}{s} + \frac{sK_D}{(ns+1)}$	

PID real en paralelo

- El PID se implementa como la suma de sus tres términos
- Usualmente se colocan límites al integrador (antiwindup)
- Para que el derivador sea propio se agrega un filtro

¿Qué es el windup?

- Es la acumulación de un gran valor en la sumatoria o integral del error, debido a:
- 1. Saturación en los actuadores

- 2. Un error muy grande por
 - Un cambio muy grande en la consigna
 - Un error sostenido

¿Qué es el windup?

Metodología de diseño del PID antiwindup

Diseñar el PID ideal

2. Definir los límites de los actuadores

- Agregar al PID ideal la compensación antiwindup cuando se satura el actuador
 - a) Saturar el término integral
 - b) Suspender temporalmente la integral (seguimiento integral)

PID antiwindup por limitación del término I

- El PID es no lineal e invariante
- El diseñador impone los límites usando su experiencia e intuición
- Los límites son fijos para un actuador
- Fuera del rango permitido se cancela la acción I

PID antiwindup por limitación del término I

PID antiwindup de seguimiento integral

- PID lineal y variante
- Se agrega realimentación dentro del PID
- Al existir saturación se modifica la salida v(t) del PID para que sea igual a u(t), la acción de control sobre la planta
- La realimentación solamente actúa cuando hay saturación

Ajuste empírico del PID

https://youtu.be/fusr9eTceEo

https://youtu.be/uXnDwojRb1g

Sintonía de reguladores PID por Ziegler-Nichols

- Condición: La planta es lo suficientemente estable como para experimentar con ella
- Tipos de plantas adecuadas:
 - Caso 1: La respuesta, de lazo abierto, al escalón tiene forma de S. (La planta, de segundo orden al menos o primer orden con tiempo muerto, no tiene integradores ni polos dominantes complejos conjugados)
 - Caso 2: Plantas con integradores, respuesta de lazo cerrado.

Caso 1: Respuesta al escalón de lazo abierto

$$G(s) = \frac{K}{(T * s + 1)} \cdot e^{-Ls}$$

La tangente al punto de inflexión determina dos puntos:

- a) El tiempo muerto, L
- b) b) La constante de tiempo más el tiempo muerto (T+L)

Tenemos además la ganancia estática K, con entrada escalón de amplitud A

$$K = \frac{\Delta y}{\Delta u} = \frac{\lim_{t \to \infty} y(t) - y(0)}{A}$$

Caso 1: Respuesta al escalón de lazo abierto: otro método

$$G(s) = \frac{K \cdot e^{-s \cdot t_d}}{(\tau \cdot s + 1)}$$

Los parámetros:

$$\tau = 2(t_{63\%} - t_{39\%})$$

$$K = \frac{\lim_{t \to \infty} T(t) - T_i}{A}$$

$$t_d = t_{63\%} - (t_i + \tau)$$

$$K_{PID}(s) = K_P(1 + \frac{1}{T_i s} + s \cdot T_d)$$

Tipo de controlador	K _P	T _i	T _d
P	$\frac{1}{K} \cdot \frac{T}{L}$	∞	0
PI	$\frac{0.9}{K} \cdot \frac{T}{L}$	L/0.3	0
PID	$\frac{1.2}{K} \cdot \frac{T}{L}$	2L	0.5L

Caso 1: PID

El PID ajustado por el primer método da:

$$K_{PID}(s) = 0.6T \frac{\left(s + \frac{1}{L}\right)^2}{s}$$

Consiste de un polo en el origen y dos ceros en -1/L

- Se ponen T_i en infinito y T_d en cero, se ajusta K_P desde 0 hasta que haya oscilación sostenida con la ganancia K_{CR}
- Se determina el periodo T_{CR} de la oscilación
 - (si no hay oscilación, el método no se puede aplicar)

Caso 2: Oscilación sostenida

La oscilación obtenida con la ganancia K_{cr}

$$K_{PID}(s) = K_P(1 + \frac{1}{T_i s} + s \cdot T_d)$$

Tipo de controlador	K _p	T _i	T _d
Р	0.5K _{cr}	∞	0
PI	0.45K _{cr}	T _{cr} /1.2	0
PID	0.6K _{cr}	0.5T _{cr}	0.125T _{cr}

Caso 2: PID

El PID ajustado por el segundo método da:

$$K_{PID}(s) = 0.075K_{CR}T_{CR} \frac{\left(s + \frac{4}{T_{CR}}\right)^2}{s}$$

Consiste de un polo en el origen y dos ceros en -4/Tcr

Ejemplo 1: PID 2DoF

Ejemplo 1: Resultado Z-N

El PI_D

La parte derivativa solo trabaja en la realimentación

$$D(s) = 0.675s$$

$$T(s) = \frac{\left(13.5 + 67.5 / s\right)G(s)}{1 + \left(13.5 + 67.5 / s + 0.675s\right)G(s)}$$

Ejemplo 2: Resultado PI_D

El I_PD

 Las partes proporcional y derivativa solo trabajan en la realimentación

$$PD(s) = 13.5 + 0.675s$$

$$T(s) = \frac{\left(67.5/s\right)G(s)}{1 + \left(13.5 + 67.5/s + 0.675s\right)G(s)}$$

Ejemplo 2: Resultado I_PD

Ejemplo 2: Resultado REI

Ejercicios

Utilice el método de Ziegler-Nichols para compensar el sistema con variantes del PID o PID 2DoF.

$$G(s) = \frac{4}{(s+2)} \cdot e^{-0.1s}$$

Utilice un PID (IMC) y un PID2DoF (LQR) para sintonizar el siguiente sistema

$$G(s) = \frac{1}{s^2 + 0.103 \, s \, + \, 0.712}$$

Referencias

- Ogata, Katsuhiko. "Ingeniería de Control Moderna", Pearson, Prentice Hall, 2003, 4ª Ed., Madrid.
- Kuo, Benjamin C.. "Sistemas de Control Automático", Ed. 7, Prentice Hall, 1996, México.
- http://en.wikipedia.org/wiki/PID_controller
- http://www.cds.caltech.edu/~murray/amwiki/index.php?title=PI D_Control