# Evaluation Methods and Statistics revision#2

Chris Baber

### Aims of this Module

- This module provides an introduction to the use of empirical, scientific methods, including experimental design and statistics.
- This module is targeted at computer scientists with an interest in:
  - Developing systems that support human activity (Human-Computer Interaction)
  - Building computational models of human behaviour
  - Understanding human behaviour as an inspiration for Robotics,
    Machine Learning and Artificial Intelligence
  - Designing and analysing experiments to evaluate system performance

### Outcomes of this Module

- On successful completion of this module, you will be expected to be able to:
  - identify and apply research methodologies for investigating human behaviour;
  - recognise the appropriateness of statistical techniques in data analysis;
  - conduct and report statistical tests;
  - interpret and critique research findings that are supported by statistical tests;
  - demonstrate understanding of experimental design, including sampling, participant selection, task design and research ethics.

### New Exam Requirements

You will full details from the School.

- What do I expect...
  - Not all students will have access to R (or Statistics packages), so any calculations should be possible to perform by hand
  - If you are able to use Statistics packages for calculations, I
    expect enough information in your answer to demonstrate how
    this answer was produced (don't just write a single number and
    expect full marks...)

# **Doing Experiments**

#### Ethics

- What are the basic principles of the Declaration of Helsinki
- How can you ensure that participants' identity is protected and that they will not suffer from participating in the experiment?
- What are the basic principles of the (UK) Data Protection Act?

### Ecological Validity

- How 'true to life' is the activity that you are asking participants to do?
- How 'true to life' is the environment in which these tasks are performed?

### Experimental Design

- What is the Hypothesis to be tested?
- What are the Dependent and Independent variables?
- For the Independent variables, which is the 'control' and the 'experimental' condition?
- How can you manage confounding variables in the experiment?

### Experimental Design template

**Hypothesis:** Reaction time to congruent words will be faster than reaction time to incongruent words

**Independent Variable:** Congruent Words (colour of ink = name of word), Incongruent Words (colour of ink ≠ name of word)

#### **Control Condition:**

**Congruent Words** 

#### **Experimental Condition:**

Incongruent Words

#### **Dependent Variable(s):** Reaction Time

**Task:** participants will be asked to read, as quickly as possible, single words on a display. The words will be the names of colours and will be presented either in the same colour as the word's name or in a different colour

**Confounding Variables:** performance could be affected by ability to perceive colour ('colour-blindedness') and knowledge of the names of colour ('language skills')

# Hypothesis Testing

#### Type I error

- We could accept the Alternative hypothesis when it is false (false positive).
- Many statistics tests are designed to minimise this error.
- Type I errors define the significance level ( $\alpha$ ) that the experimenter will accept (conventionally 5%)

#### Type II error

- We could accept the Null hypothesis (fail to reject it) when it is false (false negative).
- The probability of a Type II error is defined as  $\beta$
- The probability of correctly rejecting a false null hypothesis is defined as 1- $\beta$ , which called Power.

### **Statistics**

- To apply a Parametric statistical test, we need to show that the data follow a Normal distribution
  - Applying shapiro-wilk tests (next slides)
- If the data are measured on at least an interval scale and are normally distributed, then you can use the t-statistic to compare means between two groups (for more groups, you need ANOVA; if the data are not normally distributed then you apply non-parametric tests)

### Shapiro-Wilk

- This is to test whether the set of data in an experiment are drawn from a normal distribution.
- The formula is:

$$W = \frac{\left(\sum_{i=1}^{n} a_i x_{(i)}\right)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- You will recognise the denominator as the formula for the Sum of Squares of the data; the numerator defines the expected mean, variance, and covariance of a sample size (n)from a normal distributed sample.
- While the sum of squares is easy to calculate, we use look-up tables for the expected values.
- I will provide a step-by-step tutorial on how to do this...

Assume you collected these data:

| Condition A | Condition B |
|-------------|-------------|
| 65          | 74          |
| 61          | 35          |
| 63          | 72          |
| 86          | 68          |
| 70          | 45          |
| 55          | 58          |
| M = 66.7    | M = 59      |
| sd = 10.7   | sd = 15.8   |

### • Step 1:

- Combine ALL of the data for the experiment into a single table
- Order the datain terms of size(smallest tolargest)

| All Experiment Data |
|---------------------|
| 35                  |
| 45                  |
| 55                  |
| 58                  |
| 61                  |
| 63                  |
| 65                  |
| 68                  |
| 70                  |
| 72                  |
| 74                  |
| 86                  |

### • Step 2:

- Calculate sum of squares
  - For each value, calculate difference between that value and the mean of the sample
  - Square this difference
  - Sum the squares

| Data     | X-M    | (x-m)2       |
|----------|--------|--------------|
| 35       | -27.67 | 765.4444     |
| 45       | -17.67 | 312.1111     |
| 55       | -7.67  | 58.77778     |
| 58       | -4.67  | 21.77778     |
| 61       | -1.67  | 2.777778     |
| 63       | 0.33   | 0.111111     |
| 65       | 2.33   | 5.444444     |
| 68       | 5.33   | 28.44444     |
| 70       | 7.33   | 53.77778     |
| 72       | 9.33   | 87.11111     |
| 74       | 11.33  | 128.4444     |
| 86       | 23.33  | 544.4444     |
| M= 62.67 |        | SS= 2008.667 |

#### • Step 3:

- Estimate the expected values for the data if they were drawn from a normal distribution
- Define sample size, N. In this case, N = 12.
- Use look-up table to define coefficients for a when N = 12.

| ı  | n -  | 2  | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     |
|----|------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| al | 0.70 | 71 | 0.7071 | 0.6872 | 0.6646 | 0.6431 | 0.6233 | 0.6052 | 0.5888 | 0.5739 | 0.5601 | 0.5475 | 0.5359 | 0.5251 |
| a2 |      |    |        | 0.1677 | 0.2413 | 0.2806 | 0.3031 | 0.3164 | 0.3244 | 0.3291 | 0.3315 | 0.3325 | 0.3325 | 0.3318 |
| a3 |      |    |        |        |        | 0.0875 | 0.1401 | 0.1743 | 0.1976 | 0.2141 | 0.2260 | 0.2347 | 0.2412 | 0.2460 |
| a4 |      |    |        |        |        |        |        | 0.0561 | 0.0947 | 0.1224 | 0.1429 | 0.1585 | 0.1707 | 0.1802 |
| a5 |      |    |        |        |        |        |        |        |        | 0.0399 | 0.0695 | 0.0922 | 0.1099 | 0.1240 |
| a6 |      |    |        |        |        |        |        |        |        |        |        | 0.0803 | 0.0539 | 0.0727 |
| a7 |      |    |        |        |        |        |        |        |        |        |        |        |        | 0.0240 |
|    |      |    |        |        |        |        |        |        |        |        |        |        |        | -      |

#### Step 4:

- Apply these coefficients to your data.
  - Divide the data into pairs to correspond with the number of coefficients.
  - In this case, there are 6 values for a (from the table).
  - We divide our data into 6 pairs, subtracting the largest from the smallest values.

|        | xl- xs | а      | a*(xl-xs)      |
|--------|--------|--------|----------------|
| x12-x1 | 51     | 0.5475 | 27.9225        |
| x11-x2 | 29     | 0.3325 | 9.6425         |
| x10-x3 | 17     | 0.2347 | 3.9899         |
| x9-x4  | 12     | 0.1586 | 1.9032         |
| x8-x5  | 7      | 0.0922 | 0.6454         |
| x7-x6  | 2      | 0.0303 | 0.0606         |
|        |        |        | b = 44.1641    |
|        |        |        | b^2 = 1950.468 |

### • Step 5:

Calculate W

W = 1950.468 / 2008.667

= 0.971026

$$W = \frac{\left(\sum_{i=1}^{n} a_i x_{(i)}\right)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

#### Step 7:

- Determine significance of this result by using look-up tables
- Our calculated value (0.971026) lies between 0.974 and 0.943, i.e., between p=0.9 and p=0.5.
- As the smallest p-value is > 0.05, we accept the null hypothesis and conclude that the data are normally distributed

| n\ <sup>p</sup> | 0.01  | 0.02  | 0.05  | 0.1   | 0.5   | 0.9   | 0.95  | 0.98  | 0.99    |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| 3               | 0.753 | 0.756 | 0.767 | 0.789 | 0.959 | 0.998 | 0.999 | 1.000 | 1.000   |
| 4               | 0.687 | 0.707 | 0.748 | 0.792 | 0.935 | 0.987 | 0.992 | 0.996 | 0.997   |
| 5               | 0.686 | 0.715 | 0.762 | 0.806 | 0.927 | 0.979 | 0.986 | 0.991 | 0.993   |
| 6               | 0.713 | 0.743 | 0.788 | 0.826 | 0.927 | 0.974 | 0.981 | 0.986 | 0.989   |
| 7               | 0.730 | 0.760 | 0.803 | 0.838 | 0.928 | 0.972 | 0.979 | 0.985 | 0.988   |
| 8               | 0.749 | 0.778 | 0.818 | 0.851 | 0.932 | 0.972 | 0.978 | 0.984 | 0.987   |
| 9               | 0.764 | 0.791 | 0.829 | 0.859 | 0.935 | 0.972 | 0.978 | 0.984 | 0.986   |
| 10              | 0.781 | 0.806 | 0.842 | 0.869 | 0.938 | 0.972 | 0.978 | 0.983 | 0.986   |
| 11              | 0.702 | 0.017 | 0.050 | 0.076 | 0.940 | 0.970 | 0.979 | 0.904 | 0.986   |
| 12              | 0.805 | 0.828 | 0.859 | 0.883 | 0.943 | 0.973 | 0.979 | 0.984 | 0.986   |
| 15              | 0.814 | 0.637 | 0.000 | 0.009 | 0.543 | 0.574 | 0.575 | 0.504 | U. 50 U |
| 14              | 0.825 | 0.846 | 0.874 | 0.895 | 0.947 | 0.975 | 0.980 | 0.984 | 0.986   |
| 15              | 0.835 | 0.855 | 0.881 | 0.901 | 0.950 | 0.975 | 0.980 | 0.984 | 0.987   |
| 16              | 0.844 | 0.863 | 0.887 | 0.906 | 0.952 | 0.976 | 0.981 | 0.985 | 0.987   |
| 17              | 0.851 | 0.860 | 0.802 | 0.010 | 0.05/ | 0.077 | 0.081 | 0.085 | 0.087   |

- What if the value of W was 0.8752?
  - The corresponding pvalues (for N = 12) are 0.05 and 0.1.
  - The table values are 0.859 and 0.883
  - By linear interpolation, we can estimate a p-value that is around 0.08. As this is >0.05, the data are normally distributed



### T-statistic

- Should you use Independent or Repeated measures test?
- How do you define the significance level of the result?
- How do you use Cohen's d to calculate effect size?

# Tables for a (Shapiro-Wilk)

|    | n • | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     |
|----|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| al |     | 0.7071 | 0.7071 | 0.6872 | 0.6646 | 0.6431 | 0.6233 | 0.6052 | 0.5888 | 0.5739 | 0.5601 | 0.5475 | 0.5359 | 0.5251 |
| a2 |     |        |        | 0.1677 | 0.2413 | 0.2806 | 0.3031 | 0.3164 | 0.3244 | 0.3291 | 0.3315 | 0.3325 | 0.3325 | 0.3318 |
| a3 |     |        |        |        |        | 0.0875 | 0.1401 | 0.1743 | 0.1976 | 0.2141 | 0.2260 | 0.2347 | 0.2412 | 0.2460 |
| a4 |     |        |        |        |        |        |        | 0.0561 | 0.0947 | 0.1224 | 0.1429 | 0.1586 | 0.1707 | 0.1802 |
| a5 |     |        |        |        |        |        |        |        |        | 0.0399 | 0.0695 | 0.0922 | 0.1099 | 0.1240 |
| a6 |     |        |        |        |        |        |        |        |        |        |        | 0.0303 | 0.0539 | 0.0727 |
| a7 |     |        |        |        |        |        |        |        |        |        |        |        |        | 0.0240 |

| n =  | 15     | 16     | 17     | 18     | 19     | 20     | 21     | 22     | 23     | 24     | 25     | 26     |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| a1   | 0.5150 | 0.5056 | 0.4968 | 0.4886 | 0.4808 | 0.4734 | 0.4643 | 0.4590 | 0.4542 | 0.4493 | 0.4450 | 0.4407 |
| a 2  | 0.3306 | 0.3290 | 0.3273 | 0.3253 | 0.3232 | 0.3211 | 0.3185 | 0.3156 | 0.3126 | 0.3098 | 0.3069 | 0.3043 |
| a3   | 0.2495 | 0.2521 | 0.2540 | 0.2553 | 0.2561 | 0.2565 | 0.2578 | 0.2571 | 0.2563 | 0.2554 | 0.2543 | 0.2533 |
| a4   | 0.1878 | 0.1939 | 0.1988 | 0.2027 | 0.2059 | 0.2085 | 0.2119 | 0.2131 | 0.2139 | 0.2145 | 0.2148 | 0.2151 |
| a5   | 0.1353 | 0.1447 | 0.1524 | 0.1587 | 0.1641 | 0.1686 | 0.1736 | 0.1764 | 0.1787 | 0.1807 | 0.1822 | 0.1836 |
| a6   | 0.0880 | 0.1005 | 0.1109 | 0.1197 | 0.1271 | 0.1334 | 0.1399 | 0.1443 | 0.1480 | 0.1512 | 0.1539 | 0.1563 |
| a7   | 0.0433 | 0.0593 | 0.0725 | 0.0837 | 0.0932 | 0.1013 | 0.1092 | 0.1150 | 0.1201 | 0.1245 | 0.1283 | 0.1316 |
| a8   |        | 0.0196 | 0.0359 | 0.0496 | 0.0612 | 0.0711 | 0.0804 | 0.0878 | 0.0941 | 0.0997 | 0.1046 | 0.1089 |
| a9   |        |        |        | 0.0163 | 0.0303 | 0.0422 | 0.0530 | 0.0618 | 0.0696 | 0.0764 | 0.0823 | 0.0876 |
| a 10 |        |        |        |        |        | 0.0140 | 0.0263 | 0.0368 | 0.0459 | 0.0539 | 0.0610 | 0.0672 |
| a 11 |        |        |        |        |        |        |        | 0.0122 | 0.0228 | 0.0321 | 0.0403 | 0.0476 |
| a 12 |        |        |        |        |        |        |        |        | 0.0000 | 0.0107 | 0.0200 | 0.0284 |
| a 13 |        |        |        |        |        |        |        |        |        |        | 0.0000 | 0.0094 |

# More Tables for a (Shapiro-Wilk)

| n =  | 27     | 28     | 29     | 30     | 31     | 32     | 33     | 34     | 35     | 36     | 37     | 38     |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| a1   | 0.4366 | 0.4328 | 0.4291 | 0.4254 | 0.4220 | 0.4188 | 0.4156 | 0.4127 | 0.4096 | 0.4068 | 0.4040 | 0.4015 |
| a2   | 0.3018 | 0.2992 | 0.2968 | 0.2944 | 0.2921 | 0.2898 | 0.2876 | 0.2854 | 0.2834 | 0.2813 | 0.2794 | 0.2774 |
| a3   | 0.2522 | 0.2510 | 0.2499 | 0.2487 | 0.2475 | 0.2463 | 0.2451 | 0.2439 | 0.2427 | 0.2415 | 0.2403 | 0.2391 |
| a4   | 0.2152 | 0.2151 | 0.2150 | 0.2148 | 0.2145 | 0.2141 | 0.2137 | 0.2132 | 0.2127 | 0.2121 | 0.2116 | 0.2110 |
| a5   | 0.1848 | 0.1857 | 0.1864 | 0.1870 | 0.1874 | 0.1878 | 0.1880 | 0.1882 | 0.1883 | 0.1883 | 0.1883 | 0.1881 |
| a6   | 0.1584 | 0.1601 | 0.1616 | 0.1630 | 0.1641 | 0.1651 | 0.1660 | 0.1667 | 0.1673 | 0.1678 | 0.1683 | 0.1686 |
| a7   | 0.1346 | 0.1372 | 0.1395 | 0.1415 | 0.1433 | 0.1449 | 0.1463 | 0.1475 | 0.1487 | 0.1496 | 0.1505 | 0.1513 |
| a8   | 0.1128 | 0.1162 | 0.1192 | 0.1219 | 0.1243 | 0.1265 | 0.1284 | 0.1301 | 0.1317 | 0.1331 | 0.1344 | 0.1356 |
| a9   | 0.0923 | 0.0965 | 0.1002 | 0.1036 | 0.1066 | 0.1093 | 0.1118 | 0.1140 | 0.1160 | 0.1179 | 0.1196 | 0.1211 |
| a 10 | 0.0728 | 0.0778 | 0.0822 | 0.0862 | 0.0899 | 0.0931 | 0.0961 | 0.0988 | 0.1013 | 0.1036 | 0.1056 | 0.1075 |
| a 11 | 0.0540 | 0.0598 | 0.0650 | 0.0697 | 0.0739 | 0.0777 | 0.0812 | 0.0844 | 0.0873 | 0.0900 | 0.0924 | 0.0947 |
| a 12 | 0.0358 | 0.0424 | 0.0483 | 0.0537 | 0.0585 | 0.0629 | 0.0669 | 0.0706 | 0.0739 | 0.0770 | 0.0798 | 0.0824 |
| a 13 | 0.0178 | 0.0253 | 0.0320 | 0.0381 | 0.0435 | 0.0485 | 0.0530 | 0.0572 | 0.0610 | 0.0645 | 0.0677 | 0.0706 |
| a 14 | 0.0000 | 0.0084 | 0.0159 | 0.0227 | 0.0289 | 0.0344 | 0.0395 | 0.0441 | 0.0484 | 0.0523 | 0.0559 | 0.0592 |
| a 15 |        |        | 0.0000 | 0.0076 | 0.0144 | 0.0206 | 0.0262 | 0.0314 | 0.0361 | 0.0404 | 0.0444 | 0.0481 |
| a 16 |        |        |        |        | 0.0000 | 0.0068 | 0.0131 | 0.0187 | 0.0239 | 0.0287 | 0.0331 | 0.0372 |
| a 17 |        |        |        |        |        |        | 0.0000 | 0.0062 | 0.0119 | 0.0172 | 0.0220 | 0.0264 |
| a 18 |        |        |        |        |        |        |        |        | 0.0000 | 0.0057 | 0.0110 | 0.0158 |
| a 19 |        |        |        |        |        |        |        |        |        |        | 0.0000 | 0.0053 |

# More Tables for a (Shapiro-Wilk)

| n = | 39     | 40     | 41     | 42     | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 50     |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| a1  | 0.3989 | 0.3964 | 0.3940 | 0.3917 | 0.3894 | 0.3872 | 0.3850 | 0.3830 | 0.3808 | 0.3789 | 0.3770 | 0.3751 |
| a2  | 0.2755 | 0.2737 | 0.2719 | 0.2701 | 0.2684 | 0.2667 | 0.2651 | 0.2635 | 0.2620 | 0.2604 | 0.2589 | 0.2574 |
| a3  | 0.2380 | 0.2368 | 0.2357 | 0.2345 | 0.2334 | 0.2323 | 0.2313 | 0.2302 | 0.2291 | 0.2281 | 0.2271 | 0.2260 |
| a4  | 0.2104 | 0.2098 | 0.2091 | 0.2085 | 0.2078 | 0.2072 | 0.2065 | 0.2058 | 0.2052 | 0.2045 | 0.2038 | 0.2032 |
| a5  | 0.1880 | 0.1878 | 0.1876 | 0.1874 | 0.1871 | 0.1868 | 0.1865 | 0.1862 | 0.1859 | 0.1855 | 0.1851 | 0.1847 |
| a6  | 0.1689 | 0.1691 | 0.1693 | 0.1694 | 0.1695 | 0.1695 | 0.1695 | 0.1695 | 0.1695 | 0.1693 | 0.1692 | 0.1691 |
| a7  | 0.1520 | 0.1526 | 0.1531 | 0.1535 | 0.1539 | 0.1542 | 0.1545 | 0.1548 | 0.1550 | 0.1551 | 0.1553 | 0.1554 |
| a8  | 0.1366 | 0.1376 | 0.1384 | 0.1392 | 0.1398 | 0.1405 | 0.1410 | 0.1415 | 0.1420 | 0.1423 | 0.1427 | 0.1430 |
| a9  | 0.1225 | 0.1237 | 0.1249 | 0.1259 | 0.1269 | 0.1278 | 0.1286 | 0.1293 | 0.1300 | 0.1306 | 0.1312 | 0.1317 |
| a10 | 0.1092 | 0.1108 | 0.1123 | 0.1136 | 0.1149 | 0.1160 | 0.1170 | 0.1180 | 0.1189 | 0.1197 | 0.1205 | 0.1212 |
| a11 | 0.0967 | 0.0986 | 0.1004 | 0.1020 | 0.1035 | 0.1049 | 0.1062 | 0.1073 | 0.1085 | 0.1095 | 0.1105 | 0.1113 |
| a12 | 0.0848 | 0.0870 | 0.0891 | 0.0909 | 0.0927 | 0.0943 | 0.0959 | 0.0972 | 0.0986 | 0.0998 | 0.1010 | 0.1020 |
| a13 | 0.0733 | 0.0759 | 0.0782 | 0.0804 | 0.0824 | 0.0842 | 0.0860 | 0.0876 | 0.0892 | 0.0906 | 0.9190 | 0.0932 |
| a14 | 0.0622 | 0.0651 | 0.0677 | 0.0701 | 0.0724 | 0.0745 | 0.0765 | 0.0783 | 0.0801 | 0.0817 | 0.0832 | 0.0846 |
| a15 | 0.0515 | 0.0546 | 0.0575 | 0.0602 | 0.0628 | 0.0651 | 0.0673 | 0.0694 | 0.0713 | 0.0731 | 0.0748 | 0.0764 |
| a16 | 0.0409 | 0.0444 | 0.0476 | 0.0506 | 0.0534 | 0.0560 | 0.0584 | 0.0607 | 0.0628 | 0.0648 | 0.0667 | 0.0685 |
| a17 | 0.0305 | 0.0343 | 0.0379 | 0.0411 | 0.0442 | 0.0471 | 0.0497 | 0.0522 | 0.0546 | 0.0568 | 0.0588 | 0.0608 |
| a18 | 0.0203 | 0.0244 | 0.0283 | 0.0318 | 0.0352 | 0.0383 | 0.0412 | 0.0439 | 0.0465 | 0.0489 | 0.0511 | 0.0532 |
| a19 | 0.0101 | 0.0146 | 0.0188 | 0.0227 | 0.0263 | 0.0296 | 0.0328 | 0.0357 | 0.0385 | 0.0411 | 0.0436 | 0.0459 |
| a20 | 0.0000 | 0.0049 | 0.0094 | 0.0136 | 0.0175 | 0.0211 | 0.0245 | 0.0277 | 0.0307 | 0.0335 | 0.0361 | 0.0386 |
| a21 |        |        | 0.0000 | 0.0045 | 0.0087 | 0.0126 | 0.0163 | 0.0197 | 0.0229 | 0.0259 | 0.0288 | 0.0314 |
| a22 |        |        |        |        | 0.0000 | 0.0042 | 0.0081 | 0.0118 | 0.0153 | 0.0185 | 0.0215 | 0.0244 |
| a23 |        |        |        |        |        |        | 0.0000 | 0.0039 | 0.0076 | 0.0111 | 0.0143 | 0.0174 |
| a24 |        |        |        |        |        |        |        |        | 0.0000 | 0.0037 | 0.0071 | 0.0104 |
| a25 |        |        |        |        |        |        |        |        |        |        | 0.0000 | 0.0035 |

# P-values (Shapiro-Wilk)

| n\ <sup>p</sup> | 0.01  | 0.02  | 0.05  | 0.1   | 0.5   | 0.9   | 0.95  | 0.98  | 0.99  |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 3               | 0.753 | 0.756 | 0.767 | 0.789 | 0.959 | 0.998 | 0.999 | 1.000 | 1.000 |
| 4               | 0.687 | 0.707 | 0.748 | 0.792 | 0.935 | 0.987 | 0.992 | 0.996 | 0.997 |
| 5               | 0.686 | 0.715 | 0.762 | 0.806 | 0.927 | 0.979 | 0.986 | 0.991 | 0.993 |
| 6               | 0.713 | 0.743 | 0.788 | 0.826 | 0.927 | 0.974 | 0.981 | 0.986 | 0.989 |
| 7               | 0.730 | 0.760 | 0.803 | 0.838 | 0.928 | 0.972 | 0.979 | 0.985 | 0.988 |
| 8               | 0.749 | 0.778 | 0.818 | 0.851 | 0.932 | 0.972 | 0.978 | 0.984 | 0.987 |
| 9               | 0.764 | 0.791 | 0.829 | 0.859 | 0.935 | 0.972 | 0.978 | 0.984 | 0.986 |
| 10              | 0.781 | 0.806 | 0.842 | 0.869 | 0.938 | 0.972 | 0.978 | 0.983 | 0.986 |
| 11              | 0.792 | 0.817 | 0.850 | 0.876 | 0.940 | 0.973 | 0.979 | 0.984 | 0.986 |
| 12              | 0.805 | 0.828 | 0.859 | 0.883 | 0.943 | 0.973 | 0.979 | 0.984 | 0.986 |
| 13              | 0.814 | 0.837 | 0.866 | 0.889 | 0.945 | 0.974 | 0.979 | 0.984 | 0.986 |
| 14              | 0.825 | 0.846 | 0.874 | 0.895 | 0.947 | 0.975 | 0.980 | 0.984 | 0.986 |
| 15              | 0.835 | 0.855 | 0.881 | 0.901 | 0.950 | 0.975 | 0.980 | 0.984 | 0.987 |
| 16              | 0.844 | 0.863 | 0.887 | 0.906 | 0.952 | 0.976 | 0.981 | 0.985 | 0.987 |
| 17              | 0.851 | 0.869 | 0.892 | 0.910 | 0.954 | 0.977 | 0.981 | 0.985 | 0.987 |
| 18              | 0.858 | 0.874 | 0.897 | 0.914 | 0.956 | 0.978 | 0.982 | 0.986 | 0.988 |
| 19              | 0.863 | 0.879 | 0.901 | 0.917 | 0.957 | 0.978 | 0.982 | 0.986 | 0.988 |
| 20              | 0.868 | 0.884 | 0.905 | 0.920 | 0.959 | 0.979 | 0.983 | 0.986 | 0.988 |
| 21              | 0.873 | 0.888 | 0.908 | 0.923 | 0.960 | 0.980 | 0.983 | 0.987 | 0.989 |
| 22              | 0.878 | 0.892 | 0.911 | 0.926 | 0.961 | 0.980 | 0.984 | 0.987 | 0.989 |
| 23              | 0.881 | 0.895 | 0.914 | 0.928 | 0.962 | 0.981 | 0.984 | 0.987 | 0.989 |
| 24              | 0.884 | 0.898 | 0.916 | 0.930 | 0.963 | 0.981 | 0.984 | 0.987 | 0.989 |
| 25              | 0.888 | 0.901 | 0.918 | 0.931 | 0.964 | 0.981 | 0.985 | 0.988 | 0.989 |

|    |       |       |       |       | •••   | /     |       |       |       |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    | 0.01  | 0.02  | 0.05  | 0.1   | 0.5   | 0.9   | 0.95  | 0.98  | 0.99  |
| 26 | 0.891 | 0.904 | 0.920 | 0.933 | 0.965 | 0.982 | 0.985 | 0.988 | 0.989 |
| 27 | 0.894 | 0.906 | 0.923 | 0.935 | 0.965 | 0.982 | 0.985 | 0.988 | 0.990 |
| 28 | 0.896 | 0.908 | 0.924 | 0.936 | 0.966 | 0.982 | 0.985 | 0.988 | 0.990 |
| 29 | 0.898 | 0.910 | 0.926 | 0.937 | 0.966 | 0.982 | 0.985 | 0.988 | 0.990 |
| 30 | 0.900 | 0.912 | 0.927 | 0.939 | 0.967 | 0.983 | 0.985 | 0.988 | 0.990 |
| 31 | 0.902 | 0.914 | 0.929 | 0.940 | 0.967 | 0.983 | 0.986 | 0.988 | 0.990 |
| 32 | 0.904 | 0.915 | 0.930 | 0.941 | 0.968 | 0.983 | 0.986 | 0.988 | 0.990 |
| 33 | 0.906 | 0.917 | 0.931 | 0.942 | 0.968 | 0.983 | 0.986 | 0.989 | 0.990 |
| 34 | 0.908 | 0.919 | 0.933 | 0.943 | 0.969 | 0.983 | 0.986 | 0.989 | 0.990 |
| 35 | 0.910 | 0.920 | 0.934 | 0.944 | 0.969 | 0.984 | 0.986 | 0.989 | 0.990 |
| 36 | 0.912 | 0.922 | 0.935 | 0.945 | 0.970 | 0.984 | 0.986 | 0.989 | 0.990 |
| 37 | 0.914 | 0.924 | 0.936 | 0.946 | 0.970 | 0.984 | 0.987 | 0.989 | 0.990 |
| 38 | 0.916 | 0.925 | 0.938 | 0.947 | 0.971 | 0.984 | 0.987 | 0.989 | 0.990 |
| 39 | 0.917 | 0.927 | 0.939 | 0.948 | 0.971 | 0.984 | 0.987 | 0.989 | 0.991 |
| 40 | 0.919 | 0.928 | 0.940 | 0.949 | 0.972 | 0.985 | 0.987 | 0.989 | 0.991 |
| 41 | 0.920 | 0.929 | 0.941 | 0.950 | 0.972 | 0.985 | 0.987 | 0.989 | 0.991 |
| 42 | 0.922 | 0.930 | 0.942 | 0.951 | 0.972 | 0.985 | 0.987 | 0.989 | 0.991 |
| 43 | 0.923 | 0.932 | 0.943 | 0.951 | 0.973 | 0.985 | 0.987 | 0.990 | 0.991 |
| 44 | 0.924 | 0.933 | 0.944 | 0.952 | 0.973 | 0.985 | 0.987 | 0.990 | 0.991 |
| 45 | 0.926 | 0.934 | 0.945 | 0.953 | 0.973 | 0.985 | 0.988 | 0.990 | 0.991 |
| 46 | 0.927 | 0.935 | 0.945 | 0.953 | 0.974 | 0.985 | 0.988 | 0.990 | 0.991 |
| 47 | 0.928 | 0.936 | 0.946 | 0.954 | 0.974 | 0.985 | 0.988 | 0.990 | 0.991 |
| 48 | 0.929 | 0.937 | 0.947 | 0.954 | 0.974 | 0.985 | 0.988 | 0.990 | 0.991 |
| 49 | 0.929 | 0.939 | 0.947 | 0.955 | 0.974 | 0.985 | 0.988 | 0.990 | 0.991 |
| 50 | 0.930 | 0.938 | 0.947 | 0.955 | 0.974 | 0.985 | 0.988 | 0.990 | 0.991 |