

Otávio Cury da Costa Castro

Orientador: Pedro de Alcântara dos Santos Neto

Coorientador: Guilherme Amaral Avelino

INTRODUÇÃO:

- Contexto e Motivação
- Definição do Problema
- Visão Geral da Proposta
- Objetivos

Alterações no código fonte

Necessidade de uma gestão eficiente

Gerenciamento complexo de projetos grandes

Informações relevantes sobre o desenvolvimento

• Quais desenvolvedores possuem conhecimento em quais arquivos de código fonte?

- Informação útil em diferentes situações:
 - Resolução de bugs

- Informação útil em diferentes situações:
 - Orientação de novos membros

- Informação útil em diferentes situações:
 - Implementação de novas funcionalidades

- Informação útil em diferentes situações
 - Revisão de código

Desafios da gerência: grande quantidade de informações.

 Solução: recorrer à informações presentes em Sistemas de Controle de Versão (SCV).

 Técnicas automatizar a identificação de mantenedores de arquivos de código fonte.

- Em um trabalho relacionado foi feita a comparação da performance de três técnicas na identificação de mantenedores de arquivo (AVELINO et al., 2018).
- Tamanho do arquivo e recência influenciam na performances das técnicas.
- Esses resultados sugerem que técnicas que utilizam essas variáveis podem ser mais precisas.

Visão Geral da Proposta

Objetivos

Objetivos Principais:

- Propor modelos para inferência de conhecimento em código fonte.
- Propor a utilização de classificadores de aprendizagem de máquina na identificação de mantenedores de arquivos.
- Comparar os desempenhos dos modelos propostos com os de outros presentes na literatura.

Objetivos secundários:

- 1. Construir um dataset de projetos para o estudo.
- Construir um dataset com o conhecimento dos desenvolvedores em arquivos de código fonte.
- Identificar quais variáveis extraídas de SCVs são relevantes para inferir o conhecimento de desenvolvedores em arquivos de código fonte.

TRABALHOS RELACIONADOS:

- Propostas de Novas Técnicas
- Comparação de Técnicas

Trabalhos Relacionados Pesquisa Realizada

Bases de dados bibliográficos utilizadas:

Trabalhos Relacionados Pesquisa Realizada

- String de pesquisa: (developer* OR programmer*) AND (familiarity OR knowledge OR expertise OR ownership OR authorship OR maintenance) AND (code OR file OR class OR package OR module) AND (version control OR revision control OR repositor*)
- Resultados das buscas:

Base de Dados	Resultados
Scopus	475
Web Of Science	369
IEE Xplore	269
Total	1113
Total sem duplicação	663

Tabela 1 – Resultados das buscas nas bases bibliográficas.

Trabalhos Relacionados Pesquisa Realizada

- Utiliza alguma técnica para a inferência de conhecimento em código fonte a partir de informações SCV; AND
- 2. Publicado em revistas, jornais, ou trilhas de conferências; **AND**
- 3. É um estudo completo.

 Foram selecionados 31 trabalhos relacionados após duas etapas de filtragem.

Trabalhos Relacionados Novas Técnicas

- Muitos trabalhos baseiam-se na quantidade de alterações feitas para a inferência de conhecimento: (MCDONALD; ACKERMAN, 2000; MOCKUS; HERBSLEB, 2002; GIRBA, et al., 2005; HATTORI; LANZA, 2009; HATTORI; LANZA, 2010; RAHMAN; DEVANBU, 2011; HOSSEN; KAGDI; POSHYVANYK, 2014; SÜLÜN; TÜZÜN; DOGRUSÖZ, 2019).
- Degree of Knowledge (DOK): (FRITZ, et. al, 2014).
- Outras abordagem levam em consideração a recência de modificação no cálculo de expertise: (KAGDI; POSHYVANYK, 2009; KAGDI et al., 2012; SILVA, et. al, 2015; SUN et al., 2017; SÜLÜN; TÜZÜN; DOGRUSÖZ, 2020).

Trabalhos Relacionados Novas Técnicas – Aprendizagem de máquina

- O trabalho (MONTANDON; SILVA; VALENTE, 2019) investigou a performance de classificadores supervisionados na identificação de expertise em bibliotecas e frameworks.
- Não foram identificados estudos que utilizam classificadores supervisionados para identificar mantenedores com base em informações de SCVs.

Trabalhos Relacionados Comparação de técnicas

- Comparação de técnicas:
 - Identificação de experts (AVELINO et al., 2018; ANVIK; MURPHY, 2007)
 - Familiaridade com código fonte (KRÜGER et al., 2018)
 - Recomendação de revisores de código (HANNEBAUER et al., 2016)
- Há diferenças em propósito, técnicas comparadas e abrangência.

PROPOSTA:

- Coleta de Dados
- Extração dos Históricos de Desenvolvimento
- Aplicação de um Survey
- Processamento das Respostas
- Analise de Variáveis de Desenvolvimento
- Técnicas Comparadas
- Avaliação dos Técnicas Lineares
- Classificadores de Aprendizagem de Máquina

Coleta de Dados Projetos *open-source*

 Foram escolhidas 6 linguagens de programação populares no GitHub.

Coleta de Dados Seleção dos projetos

 50 projetos mais populares de cada linguagem.

Coleta de Dados Seleção dos projetos

Filtragem dos projetos selecionados.

Coleta de Dados Projetos privados

 Foram utilizados dados do desenvolvimento de dois projetos privados.

ERICSSON

Extraindo Histórico de Desenvolvimento

- Foram extraídos dados do histórico de desenvolvimento do branch master/defaultbranch de cada projeto.
- Foram extraídos os históricos de commits dos arquivos do projeto.
- De cada commit foram extraídos: Caminho dos arquivos, nome e email do autor do commit, o tipo de alteração realizada em cada arquivo.

Extraindo Histórico de Desenvolvimento

- Foram removidos arquivos que não contém código fonte.
- Foi unificado o histórico de desenvolvedores e seus aliases por meio de duas etapas:
 - Unificação de desenvolvedores que compartilham o mesmo email, com usernames distintos.
 - Unificação de desenvolvedores com emails diferentes, porém com usernames semelhantes.

Amostras para o Survey

- Pares (dev, arquivo) de cada projeto.
- Limite máximo de 5 arquivos por desenvolvedor.

Projetos	Pares	Desenvolvedores
Públicos	20.564	7.803
Privados	394	92

Aplicando o Survey

- Foi enviado um email para cada desenvolvedor das amostras geradas.
- Especificar o conhecimento de 1 a 5 em cada arquivo da sua lista.

	Enviados	Respostas	Porcentagem
Públicos	7.803	501	7%
Privados	92	38	41%

Tabela 1 – Emails enviados e repostas recebidas.

- Dois datasets foram criados:
 - Público: 1024 pares (desenvolvedor, arquivo)
 - Privado: 163 pares (desenvolvedor, arquivo)

Aplicando o Survey

Classificação das respostas do survey:

Processando as Respostas

Classificação das respostas do survey:

	Mantenedores	Não Mantenedores
Público	54%	46%
Privado	47%	53%

Variável	Significado
Adds	Número de linhas adicionadas por um desenvolvedor d até a versão v de um arquivo f
Dels	Número de linhas removidas por um desenvolvedor daté a versão v de um arquivo f
Mods	Número de linhas modificadas por um desenvolvedor d até a versão v de um arquivo f
Conds	Número de condicionais adicionadas por um desenvolvedor d até a versão v de um arquivo f
Amount	Soma do número de linhas adicionadas e removidas por um desenvolvedor d até a versão v de um arquivo f
FA	Valor binário que indica se um desenvolvedor d adicionou o arquivo f ao projeto
Blame	Número de linhas adicionadas por um desenvolvedor d que estão na versão v de um arquivo f
NumCommits	Número de <i>commit</i> s feitos por um desenvolvedor <i>d</i> no arquivo <i>v</i> até a versão <i>v</i>
NumDays	Número de dias desde o último <i>commit</i> feito pelo desenvolvedor <i>d</i> no arquivo <i>f</i> até a versão <i>v</i>
NumModDevs	Número de $commits$ feitos por outros desenvolvedores no arquivo f desde o último $commit$ de um desenvolvedor d no arquivo f
Size	Número de linhas de código (LOC) do arquivo f
AvgDaysCommits	Média do número de dias entre os <i>commit</i> s de um desenvolvedor <i>d</i> em um arquivo <i>f</i> até a versão <i>v</i>

Tabela 3 – Variáveis extraídas dos históricos de desenvolvimento.

QP1 – Qual das variáveis extraídas do histórico de desenvolvimento possui a maior correlação positiva com Conhecimento?

QP2 – Qual das variáveis extraídas do histórico de desenvolvimento possui a maior correlação negativa com Conhecimento?

QP3 – Quais os níveis de correlações existentes entre as variáveis extraídas?

Variável	Direção	Corr. com Conhecimento	p-value
FA	Positiva	0,33	0
Adds	Positiva	0,31	0
Blame	Positiva	0,29	0
Amount	Positiva	0,28	0
NumDays	Negativa	0,24	0
Size	Negativa	0,21	6,313e-13
NumModDevs	Negativa	0,21	1,588e-13
AvgDaysCommits	Positiva	0,21	4,894e-13
NumCommits	Positiva	0,20	1,279e-11
Cond	Positiva	0,19	8,221e-11
Dels	Positiva	0,02	0,369
Mods	Positiva	0,01	0,515

Tabela 4 – Correlação das variáveis extraídas com Conhecimento utilizando o rho de Spearman.

Correlação entre as variáveis extraídas

- Alta correlação positiva entre: Adds, Dels, Mods, e Amount.
- Correlação positiva moderada entre Adds e NumCommits.
- Correlação positiva moderada entre NumModDevs e NumDays.

Commits

- Número de commits (NumCommits) como medida de conhecimento.
- Quanto maior o número de commits em um arquivo, maior o conhecimento do desenvolvedor.
- Utilizada tanto de forma atômica, quanto na composição de técnicas.

Blame

 Conhecimento inferido pela quantidade de linhas adicionadas presentes na última versão do arquivo.

Degree of Authorship (DOA)

O conhecimento é inferido por fatores como: autoria do arquivo, número de contribuições, número de mudanças feitas por outros desenvolvedores (FRITZ et al., 2014).

DOA(d, f(v)) =
$$3,293 + 1,098 * FA + 0,164 * DL - 0,321 * In(1 + AC)$$

- FA: 1 se o desenvolvedor d é o criador do arquivo f, 0 caso contrário
- DL: número de mudanças feitas por um desenvolvedor d até a versão v de um arquivo f
- AC: número de mudanças feitas por outros desenvolvedores no arquivo f

Nível de Expertise

- 1. As variáveis Size e NumDays foram incluídas no modelo.
- 2. Entre *Adds*, *Amount*, *Blame*, *NumCommits* foi escolhida a variável *Adds*.
- 3. Foi incluída a variável *FA* no modelo.
- O modelo final foi formando pelas variáveis: Adds, FA, NumDays, Size.

 O Conhecimento de um desenvolvedor d na versão v de um arquivo f é dado por:

Conhecimento(d, f(v)) = C +
$$b_0$$
* $In(1 + Adds^{d, f(v)}) + b_1$ * $(FA^f) - b_2$ * $In(1 + NumDays^{d, f(v)}) - b_3$ * $In(Size^{f(v)})$

- Utilizamos regressão linear múltipla nas avaliações.
- Na apresentação dos resultados esse modelo é referenciado por NE.

CoDiVision

- Modelo linear para inferência da familiaridade de um desenvolvedor com um arquivo (LIRA, 2016).
- Quantidade total de alterações:

W(d, f(v)) =
$$(b_0 * Adds^{d, f(v)}) + (b_1 * Mods^{d, f(v)}) + (b_2 * Dels^{d, f(v)}) + (b_3 * Conds^{d, f(v)})$$

 Degradação do conhecimento por tempo decorrido desde a última modificação:

$$T(d, f(v)) = 1 - (b_4 * NumDays)$$

 Degradação do conhecimento por mudanças realizadas por outros desenvolvedores desde a última modificação:

$$N(d, f(v)) = 1 - (b_5 * NumModDevs)$$

Familiaridade de um desenvolvedor d na versão v de um arquivo f:

Familiaridade(d,
$$f(v)$$
) = W(d, $f(v)$) * T(d, $f(v)$) * N(d, $f(v)$)

Utilizamos regressão linear múltipla nas avaliações.

Classificadores de Aprendizagem de Máquina

- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Gradient Boosting Machine (GBM)
- Logistic Regression.

Identificando Mantenedores - Técnicas Lineares

 Os valores de cada métrica foram normalizadas para cada par (desenvolvedor, arquivo) nos dois datasets.

Identificando Mantenedores - Técnicas Lineares

 Foi utilizado um threshold k para classificação em mantenedores

- No exemplo, para um k = 0,7:
 - Dev. 1 é um mantenedor do Arquivo A de acordo com Blame e Commit
 - Dev. 2 é um mantenedor do Arquivo A de acordo com Blame

Arquivo A

Blame = 1

Commit = 0,66

Dev. 2

Avaliando Performance

Técnicas Lineares:

- Threshold K foi variado de 0,1 a 1, usando passos de 0,1. A cada passo foi computado o F-Measure.
- Para os dois modelos de regressão linear foi executado 10-fold Cross Validation em cada threshold k.
- Classificadores de Aprendizagem de Máquina:
 - 10-fold Cross Validation.
 - Busca em grade para achar melhores configurações.

Avaliando Performance

Métricas Utilizadas:

- Precision = proporção de desenvolvedores classificados como mantenedores que são efetivamente mantenedores (Conhecimento > 3).
- Recall = proporção de mantenedores identificados corretamente.
- F-Measure = média harmônica entre precision e recall.

AVALIAÇÃO:

- Resultados
- Discussão
- Ameaças à Validade

- Análise em dois cenários:
 - Dataset público
 - Dataset privado
- Técnicas comparadas nas suas melhores configurações.

Melhores Configurações das Técnicas Lineares

Melhores Configurações das Técnicas Lineares

Melhores Thresholds					
	Dados Públicos	Dados Privados			
NE	0,7	0,8			
CoDiVision	0,1	0,1			
DOA	0,1	0,7			
NumCommits	0,1	0,3			
Blame	0,1	0,1			

Questões de pesquisa:

- QP4 Qual técnica linear apresenta a melhor performance na identificação correta de mantenedores de arquivos?
- QP5 Qual classificador de aprendizagem de máquina apresenta a melhor performance na identificação correta de mantenedores de arquivos?
- QP6 As técnicas propostas neste trabalho trouxeram melhorias na identificação de mantenedores de arquivo?

Performances das técnicas lineares:

	Público			Privado		
	Precision	Recall	F-Measure	Precision	Recall	F-Measure
NE	0,60	0,91	0,72	0,50	0,95	0,64
DOA	0,55	0,97	0,70	0,61	0,77	0,68
NumCommits	0,60	0,87	0,70	0,55	0,86	0,67
CoDiVision	0,55	0,91	0,69	0,45	0,84	0,58
Blame	0,69	0,62	0,65	0,62	0,40	0,49

- Nível de Expertise não trouxe uma melhora significativa na identificação de mantenedores.
- A técnica CoDiVision também não obteve um desempenho satisfatório.
- Precision baixo e Recall alto foi obtido por todas as técnicas lineares nos três cenários, com exceção de Blame.

 Performances dos classificadores de aprendizagem de máquina :

	Público			Privado		
	Precision	Recall	F-Measure	Precision	Recall	F-Measure
Random Forest	0,73	0,74	0,73	0,59	0,62	0,59
SVM	0,71	0,75	0,73	0,63	0,60	0,61
KNN	0,71	0,71	0,71	0,70	0,69	0,67
GBM	0,73	0,73	0,73	0,65	0,58	0,60
Logistic Regression	0,69	0,75	0,72	0,70	0,51	0,58

- Os classificadores de aprendizagem de máquina obtiveram um melhor balanceamento entre *Precision* e *Recall*.
- Os classificadores alcançaram os melhores *Precision* em todos os cenários analisados.

- QP4 Qual técnica linear apresenta a melhor performance na identificação correta de mantenedores de arquivos?
 - Resposta Dados Públicos: Nível de Expertise; Dados Privados: DOA.
- QP5 Qual classificador de aprendizagem de máquina apresenta a melhor performance na identificação correta de mantenedores de arquivos?
 - Resposta Dados Públicos: Random Forest, Support Vector Machines e Gradient Boosting Machines; Dados Privados: K Nearest Neighbors.
- QP6 As técnicas propostas neste trabalho trouxeram melhorias na identificação de mantenedores de arquivo?
 - Resposta: As técnicas propostas alcançaram os melhores F-Measures nos cenários analisados.

• Qual a melhor técnica para a identificação de mantenedores de arquivos?

Ameaças à Validade

- Auto avaliação de conhecimento inflada.
- Risco de má interpretação da escala de conhecimento (1 a 5) utilizada no survey.
- Definição de expert no survey.
- Definição de mantenedor utilizada nas avaliações.
- Outros fatores influenciam o conhecimento de um desenvolvedor em um arquivo de código fonte.
- Outras variáveis podem ser extraídas de SCV.

- CONCLUSÃO:

- Principais Achados
- Desafios e Limitações
- Trabalhos Futuros

Principais Achados

- Sobre correlações entre as variáveis estudadas:
 - Primeira autoria demonstrou a maior correlação positiva com conhecimento em arquivos de código fonte.
 - Das variáveis que representam as mudanças, a variável Número de linhas adicionadas apresentou a maior correlação positiva com conhecimento.
 - Recência da Modificação apresentou a maior correlação negativa com conhecimento em arquivos de código fonte.

Principais Achados

- Sobre a performance das técnicas comparadas:
 - Nível de Expertise obteve o maior F-Measure entre as técnicas lineares.
 - Os classificadores de aprendizagem de máquina tiveram os melhores *Precisions* em todos os três cenários analisados, e alcançaram os melhores *F-Measures*.

Desafios e Limitações

Aplicabilidade das técnicas propostas:

```
cationClient.LastRequest = DateTin
cationClient.RequestCount = Notific
ficationClient.Update();
```

Revisão de código

Desafios e Limitações

Implementações em ferramentas:

Uma ferramenta para mapear a divisão do conhecimento entre desenvolvedores

Trabalhos Futuros

- Extração de outras informações presentes em SCV:
 - Arquivos relacionados
 - Caminho de arquivos no projeto
 - Complexidade do código
- Outras fontes de dados:
 - Repositório de bugs
 - Fóruns de programação
- Aplicação em contextos reais.

Otávio Cury da Costa Castro

Orientador: Pedro de Alcântara dos Santos Neto

Coorientador: Guilherme Amaral Avelino