Nom de la liaison	Exemple	Schématisation normalisée	Torseur cinématique	Torseur des A.M transmissibles.
Ponctuelle de normale $\left(O, \vec{z}\right)$	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \omega_x \vec{x} + \omega_y \vec{y} + \omega_z \vec{z} \\ V_x \vec{x} + V_y \vec{y} \end{matrix}\right\}_O$	$\left\{\mathfrak{F}_{2\rightarrow1}\right\} = \left\{\begin{matrix} Z\vec{z} \\ \vec{0} \end{matrix}\right\}_{\mathcal{O}}$
Linéaire rectiligne de normale (O, \vec{z}) et d'axe (O, \vec{x})	1 z 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{\vartheta_{2\rightarrow1}\right\} = \begin{cases} \omega_x \vec{x} + \omega_z \vec{z} \\ V_x \vec{x} + V_y \vec{y} \end{cases}_O$	$\left\{ \Im_{2\rightarrow1}\right\} = \left\{ \begin{matrix} Z\vec{z}\\M\vec{y} \end{matrix} \right\}_{O}$
Linéaire annulaire d'axe $\left(O, \vec{x}\right)$	1		$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \omega_x \vec{x} + \omega_y \vec{y} + \omega_z \vec{z} \\ V_x \vec{x} \end{matrix}\right\}_O$	$\left\{\Im_{2\to 1}\right\} = \left\{\begin{matrix} Y\vec{y} + Z\vec{z} \\ \vec{0} \end{matrix}\right\}_{O}$
Appui plan de normale $\left(O, \vec{z}\right)$	2 z y	$x \xrightarrow{z} \xrightarrow{z} y$	$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \omega_z \vec{z} \\ V_x \vec{x} + V_y \vec{y} \end{matrix}\right\}_{\mathcal{O}}$	$\left\{\mathfrak{I}_{2\rightarrow1}\right\} = \left\{\begin{matrix} Z\vec{z} \\ L\vec{x} + M\vec{y} \end{matrix}\right\}_{o}$
Rotule de centre O	x y	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \omega_x \vec{x} + \omega_y \vec{y} + \omega_z \vec{z} \\ \vec{0} \end{matrix}\right\}_o$	$\left\{\mathfrak{F}_{2\rightarrow1}\right\} = \left\{\begin{matrix} X\vec{x} + Y\vec{y} + Z\vec{z} \\ \vec{0} \end{matrix}\right\}_{O}$
Pivot glissant d'axe $\left(O, \vec{x}\right)$	1 z 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \omega_x \vec{x} \\ V_x \vec{x} \end{matrix}\right\}_O$	$\left\{\mathfrak{F}_{_{2\rightarrow1}}\right\} = \left\{\begin{matrix} Y\vec{y} + Z\vec{z} \\ M\vec{y} + N\vec{z} \end{matrix}\right\}_{o}$
Hélicoïdale d'axe $\left(O, \vec{z}\right)$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \omega_z \vec{z} \\ V_z \vec{z} \end{matrix}\right\}_O$ $\text{Avec } V_z = \frac{p}{2\pi} \omega_z$	$\left\{ \Im_{2\to 1} \right\} = \left\{ \begin{aligned} X\vec{x} + Y\vec{y} + Z\vec{z} \\ L\vec{x} + M\vec{y} + N\vec{z} \end{aligned} \right\}_{O}$ $\text{Avec } N = \frac{p}{2\pi} Z$ $\text{(liaison parfaite)}$
Pivot d'axe $\left(O, \vec{x}\right)$	1 Z 2 x y	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \omega_x \vec{x} \\ \vec{0} \end{matrix}\right\}_O$	$\left\{ \Im_{2\rightarrow1}\right\} = \left\{ \begin{aligned} X\vec{x} + Y\vec{y} + Z\vec{z} \\ M\vec{y} + N\vec{z} \end{aligned} \right\}_{\mathcal{O}}$
Glissière d'axe $\left(O, \vec{x}\right)$	x y		$\left\{\vartheta_{2\rightarrow1}\right\} = \left\{\begin{matrix} \vec{0} \\ V_x \vec{x} \end{matrix}\right\}_{\forall P}$	$\left\{ \Im_{2\rightarrow1}\right\} = \left\{ \begin{aligned} Y\vec{y} + Z\vec{z} \\ L\vec{x} + M\vec{y} + N\vec{z} \end{aligned} \right\}_{o}$
Encastrement			$\left\{\vartheta_{_{2\rightarrow1}}\right\} = \left\{ \begin{matrix} \overrightarrow{0} \\ \overrightarrow{0} \\ \end{matrix} \right\}_{\forall P}$	$\left\{\mathfrak{F}_{2\rightarrow1}\right\} = \left\{\begin{matrix} X\vec{x} + Y\vec{y} + Z\vec{z} \\ L\vec{x} + M\vec{y} + N\vec{z} \end{matrix}\right\}_{O}$

GM 2023

Nom de la liaison	Exemple	Schématisation normalisée	Degrés de liberté	Torseur des A.M transmissibles.
Ponctuelle de normale $\left(O, \vec{z}\right)$	2 z 1 y	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tx Rx Ty Ry 0 Rz	$\left\{\mathfrak{F}_{2\rightarrow1}\right\} = \left\{\begin{matrix} Z\vec{z} \\ \vec{0} \end{matrix}\right\}_{O}$
Linéaire rectiligne de normale (O, \vec{z}) et d'axe (O, \vec{x})	1 z 2 x y	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tx Rx Ty 0 0 Rz	$\left\{ \Im_{2\rightarrow1}\right\} =\left\{ \begin{matrix} Z\overrightarrow{z}\\ M\overrightarrow{y} \end{matrix}\right\}_{\mathcal{O}}$
Linéaire annulaire d'axe $\left(O, \vec{x}\right)$	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tx Rx 0 Ry 0 Rz	$\left\{\Im_{2\to 1}\right\} = \left\{\begin{matrix} Y\vec{y} + Z\vec{z} \\ \vec{0} \end{matrix}\right\}_{\mathcal{O}}$
Appui plan de normale $\left(O, \vec{z}\right)$	2 x y	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tx 0 Ty 0 0 Rz	$\left\{\Im_{2\rightarrow1}\right\} = \left\{\begin{matrix} Z\vec{z} \\ L\vec{x} + M\vec{y} \end{matrix}\right\}_{O}$
Rotule de centre O	1 2 x y		0 Rx 0 Ry 0 Rz	$\left\{ \mathfrak{F}_{2\rightarrow 1} \right\} = \left\{ \begin{matrix} X\vec{x} + Y\vec{y} + Z\vec{z} \\ \vec{0} \end{matrix} \right\}_{\mathcal{O}}$
Pivot glissant d'axe $\left(O, \vec{x}\right)$	1 z z z z z y y	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tx Rx 0 0 0 0	$\left\{\mathfrak{F}_{2\rightarrow1}\right\} = \left\{\begin{matrix} Y\vec{y} + Z\vec{z} \\ M\vec{y} + N\vec{z} \end{matrix}\right\}_{o}$
Hélicoïdale d'axe $\left(O, \vec{z}\right)$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cc} 0 & 0 \\ 0 & 0 \\ \hline Tz \leftarrow & \rightarrow Rz \end{array} $	$\left\{ \Im_{2\to 1} \right\} = \left\{ \begin{aligned} X\vec{x} + Y\vec{y} + Z\vec{z} \\ L\vec{x} + M\vec{y} + N\vec{z} \end{aligned} \right\}_{O}$ $\text{Avec } N = \frac{p}{2\pi} Z$ (liaison parfaite)
Pivot d'axe (O, \vec{x})	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 Rx 0 0 0 0	$\left\{ \mathfrak{F}_{2\rightarrow1}\right\} = \begin{bmatrix} X\vec{x}+Y\vec{y}+Z\vec{z}\\ M\vec{y}+N\vec{z} \end{bmatrix}_{o}$
Glissière d'axe $\left(O,\vec{x}\right)$	x y		Tx 0 0 0 0 0 0	$\left\{ \Im_{2\rightarrow 1} \right\} = \left\{ \begin{aligned} Y\vec{y} + Z\vec{z} \\ L\vec{x} + M\vec{y} + N\vec{z} \end{aligned} \right\}_{O}$
Encastrement			0 0 0 0 0 0	$\left\{\mathfrak{F}_{2\rightarrow1}\right\} = \left\{\begin{matrix} X\vec{x} + Y\vec{y} + Z\vec{z} \\ L\vec{x} + M\vec{y} + N\vec{z} \end{matrix}\right\}_{O}$

GM 2023