

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativo: Ta	pprocontaro ramaamonto don		_		0
Ν	= 31900 N	$M_t = -28900 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7610 N	$M_x = -294000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 38900 N
                                                                              = -335000 Nmm
Ν
                                                                   M_{\star}
                                                                                                                                      G
T<sub>y</sub>
M₁
                                                                              = 240 \text{ N/mm}^2
           = 8450 N
                                                                              = 200000 \text{ N/mm}^2
           = 24400 Nmm
                                                                   \tau(M_t) =
                                                                                                                                      \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                      \sigma_{tresca} =
                                                                   \tau(T_{yb})_{d} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

	i additativo. ia	pprocontaro randamento a	Ono tone	. tangonziani.		
Ν	= 46500 N	$M_{t} = 30600 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 6310 N	$M_{x} = -376000 \text{ Nmm}$	Ē	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	$r_{\rm u}$	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_{v})_{d} =$	σ_{mise}	_s =		
J_t	=	σ =	$\sigma_{st.ve}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	pprocentare randamente den				•
Ν	= 37200 N	$M_{t} = -37500 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7110 N	$M_x = -417000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=	$\tau(T_{v})_{d} =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativo: Ta	pprocontaro randamento del				0
Ν	= 44800 N	$M_t = 45200 \text{ Nmm}$	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7900 N	$M_x = -311000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= -374000 Nmm
                                                                                                                                                = 75000 \text{ N/mm}^2
           = 32700 N
Ν
                                                                  M_{\star}
                                                                                                                                     G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
           = 7950 N
           = 18600 Nmm
                                                                             = 200000 \text{ N/mm}^2
                                                                  E
                                                                  \tau(M_t) =
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 40100 N
                                                                              = -429000 Nmm
Ν
                                                                   M_{\star}
                                                                                                                                      G
T<sub>y</sub>
M₁
           = 6040 N
                                                                              = 240 \text{ N/mm}^2
                                                                              = 200000 \text{ N/mm}^2
           = 24300 Nmm
                                                                   \tau(M_t) =
                                                                                                                                      \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                      \sigma_{tresca} =
                                                                   \tau(T_{yb})_{d} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	r additative rapprocentate randamente delle tenet tangenziam								
N	= 32700 N	M_t	= 30600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_v	= 6870 N	M_x	= -483000 Nmm		= 200000 N/mm ²				
\mathbf{y}_{g}^{r}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=	•			
J_{v}	=	$\tau(T_y)_d$		σ_{mises}					
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	r aconairo rapprocentaro randamente dene tener tangenziam								
N	= 39800 N	M_{t}	= -37700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_v	= 7700 N	M_x	= -364000 Nmm		= 200000 N/mm ²				
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=				
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativoi la	pprocontaro ramaamonto don		_		0
Ν	= 47600 N	$M_{t} = 30900 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8520 N	$M_x = -412000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	_a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 35300 N	$M_{t} = -19100 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 5930 N	$M_{x}^{'} = -327000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
uo	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativo: Ta	pprocontaro randamento del		_		0
Ν	= 28300 N	$M_t = -24100 \text{ Nmm}$	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 6590 N	$M_x = -448000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additative rapprocentare randamente delle tener tangenziam								
N	= 34100 N	M_t	= 29700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_v	= 7270 N	M_x	= -397000 Nmm		= 200000 N/mm ²				
\mathbf{y}_{g}^{r}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=	•			
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=				
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 41600 N
                                                                             = -458000 Nmm
Ν
                                                                  M_{\star}
                                                                                                                                     G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
           = 8160 N
                                                                             = 200000 \text{ N/mm}^2
           = 25100 Nmm
                                                                  \tau(M_t) =
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                   \tau(T_{yb})_{d} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 49700 N
                                                                           = -518000 Nmm
Ν
                                                                 M,
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6140 N
          = 31500 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
                                                                 \tau(T_y)_d =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	PP. 000.	itaro randamonto don	0 100	_		0
Ν	= 26000 N	M_t	= -19300 Nmm	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 6710 N	M_x	= -257000 Nmm	Ē	= 200000 N/mm ²		
y_g	=	$\sigma(N)$		$\boldsymbol{\tau}_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d$	_i =	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=	·	
J_{v}	=	$\tau(T_y)_d$		σ_{mises}			
J_t	=	σ	=	$\sigma_{\text{st.ven}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		pprocentare randamente den	.0 .0	_		0
Ν	= 31200 N	$M_t = -24300 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7360 N	$M_x = -256000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	pprocontaro randamento	00.10 10.10	n tangoniziani		•
Ν	= 37200 N	$M_t = 20400 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8020 N	$M_x = -361000 \text{ Nmm}$	E	= 200000 N/mm ²		
y_g	=	$\sigma(N) =$	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo: ra	pprocontaro ramaamonto aon	.0 .0	_		0
Ν	= 43800 N	$M_t = -25600 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 5910 N	$M_x = -482000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. ia	pp. 000	intaro randamonto don	0 10110	. tangonzian.		
Ν	= 34600 N	M_{t}	= -31300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 6590 N	M_x	= -618000 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	$\sigma(N)$		τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_{s}$; =	σ_{tresca}	, =	•	
J_v	=	$\tau(T_y)_c$	_j =	σ_{mises}	, =		
J_t	=	σ΄	=	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	pprocontaro ramaamonto aon		_		0
Ν	= 30000 N	$M_{t} = -19800 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7240 N	$M_{x} = -113000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_w	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=		σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 34500 N
Ν
                                                                  M_{\star}
                                                                             = -201000 Nmm
                                                                                                                                    G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
          = 8170 N
          = 16600 Nmm
                                                                             = 200000 \text{ N/mm}^2
                                                                  E
                                                                  \tau(M_t) =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativo: Ta	pprocontaro randamento den		_		0
Ν	= 40400 N	$M_{t} = 21100 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 5980 N	$M_x = -306000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	_a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= -426000 Nmm
                                                                                                                                                  = 75000 \text{ N/mm}^2
           = 31900 N
Ν
                                                                   M_{\star}
                                                                                                                                      G
T<sub>y</sub>
M₁
                                                                              = 240 \text{ N/mm}^2
           = 6650 N
           = 26300 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   \tau(M_t) =
                                                                                                                                      \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                       \sigma_{tresca} =
                                                                   \tau(T_{yb})_{d} =
                                                                                                                                       \sigma_{\text{mises}} =
                                                                   \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{st.ven}} =
                                                                   \tau(T_{v})_{d} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativoi la	pprocentare randamente de		_		0
Ν	= 38200 N	$M_{t} = 32200 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7320 N	$M_{x}^{-} = -382000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38000 N	M _t = 22000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 11000 N	$M_x = -459000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_w	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acontanto i iap	. OOO	inaio i anaamonio aom	0 .00.	tangoniziani j				
N	= 45600 N	M_t	= 28000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_v	= 8240 N	M_x	= -518000 Nmm		$= 200000 \text{ N/mm}^2$				
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_v	=	$\tau(T_y)_d$		σ_{mises}					
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 36600 N	M _t = 34600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 9300 N	$M_x^{\cdot} = -577000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	-	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acontanto i lap	Jp. 000	maio randamonto don	0 .00.	tangon-lam	1 additative rapprocentare randamente delle tener tangenziam								
N	= 44100 N	M_t	= 41900 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$							
T_v	= 10300 N	M_x	= -432000 Nmm	E	$= 200000 \text{ N/mm}^2$									
y_g	=	$\sigma(N)$	=	τ_{s}	=	Θ_{t}	=							
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=							
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=							
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=							
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=							
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=									
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=									
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=									
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06														

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 52200 N
                                                                             = -488000 Nmm
Ν
                                                                  M_{\star}
                                                                                                                                    G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
          = 11400 N
                                                                             = 200000 \text{ N/mm}^2
          = 33900 Nmm
                                                                  \tau(M_t) =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38900 N	M _t = 21600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 7790 N	$M_{x}^{\cdot} = -573000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{v})_{s} =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 31900 N
Ν
                                                                   M_{\star}
                                                                             = -652000 Nmm
                                                                                                                                      G
T<sub>y</sub>
M₁
           = 8930 N
                                                                              = 240 \text{ N/mm}^2
                                                                              = 200000 \text{ N/mm}^2
           = 27700 Nmm
                                                                   \tau(M_t) =
                                                                                                                                     \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                      \sigma_{tresca} =
                                                                   \tau(T_{yb})_{d} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo i iap	. OOO	Tabolianto Tappi oconiai o Tandamonio dollo tonoi tangoniziam								
N	= 39000 N	M_t	= -34400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$				
T_v	= 10000 N	M_x	= -494000 Nmm		= 200000 N/mm ²						
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=				
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=				
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=				
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=				
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=				
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=						
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=						
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06											

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 46800 N	M _t = -28500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 11100 N	M_x = -564000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 55200 N	M _t = 35200 Nmm	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 8330 N	$M_x = -633000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	-	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

	r additative: rapprobertial or andamente delle terie: tangenzian:							
Ν	= 28400 N	M_{t}	= -22000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$	
T_y	= 8800 N	M_x	= -506000 Nmm	Ε̈́	= 200000 N/mm ²			
y_g	=	$\sigma(N)$		τ_{s}	=	Θ_{t}	=	
u_o	=	$\sigma(M_x)$) =	σ_{ls}	=	r_u	=	
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=	
A_n	=	$\tau(T_{yc})$) =	σ_{Id}	=	r_{o}	=	
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_p	=	
J_{u}	=	$\tau(T_{y})_{s}$; =	σ_{tresca}	_a =			
J_{v}	=	$\tau(T_y)_c$	_j =	σ_{mises}	, =			
J_t	=	σ΄	=	$\sigma_{st.ver}$				

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	pprocentare randamente dei		_		0
Ν	= 34200 N	$M_t = -27300 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 9680 N	$M_x = -460000 \text{ Nmm}$	Ē	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativoi la	pprocontaro randamento del		_		0
Ν	= 40500 N	$M_t = 22700 \text{ Nmm}$	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 10500 N	$M_x = -611000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= -697000 Nmm
                                                                                                                                               = 75000 \text{ N/mm}^2
          = 48600 N
Ν
                                                                  M_{\star}
                                                                                                                                    G
T<sub>y</sub>
M₁
          = 7990 N
                                                                             = 240 \text{ N/mm}^2
                                                                             = 200000 \text{ N/mm}^2
          = 28800 Nmm
                                                                  E
                                                                  \tau(M_t) =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= -782000 Nmm
                                                                                                                                                = 75000 \text{ N/mm}^2
           = 39000 N
Ν
                                                                  M_{\star}
                                                                                                                                     G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
           = 9080 N
                                                                             = 200000 \text{ N/mm}^2
           = 35700 Nmm
                                                                  \tau(M_t) =
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                   \tau(T_{yb})_{d} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	r additative rapprocentare randamente delle tener tangenziam									
N	= 31800 N	M_t	= -22200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_v	= 9880 N	M_x	= -277000 Nmm		$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}^{r}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ad	lolfo Zavelani Rossi, P	olitecn	ico di Milano, vers.12.0							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	ppi ocomaio i amaamonio aon		,, tangoniziani		•
Ν	= 37500 N	$M_t = -18700 \text{ Nmm}$	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 10700 N	$M_x = -407000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	r destructives rappresentate randamente delle tener tangenziam									
N	= 43900 N	M_t	= 23600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_v	= 7880 N	M_x	= -558000 Nmm		= 200000 N/mm ²					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_{v}	=	$\tau(T_y)_d$		σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ad	lolfo Zavelani Rossi, Po	olitecn	ico di Milano, vers.12.0							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

N	= 34600 N	M,	= -29100 Nmm		= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
		ι		σ_{a}		G	= 73000 N/IIIII
T_y	= 8780 N	M_x	= -730000 Nmm	E	$= 200000 \text{ N/mm}^2$		
\mathbf{y}_{g}	=	~ (· ·)	=	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$, =	σ_{tresca}	=		
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. ia	pp. 000	intaro randamonto don	0 10110			•
Ν	= 41200 N	M_t	= -35200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_{y}	= 9680 N	M_x	= -627000 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	$\sigma(N)$		τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_{s}$; =	σ_{tresca}	, =	·	
J_{v}	=	$\tau(T_{v})_{c}$	_j =	σ_{mises}	, =		
J_t	=	σ΄	=	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 36400 N	$M_{t} = -15400 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 10700 N	M_x = -199000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	₁ =		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 41200 N
                                                                           = -328000 Nmm
Ν
                                                                 M,
                                                                                                                                  G
T<sub>y</sub>
M₁
          = 8040 N
                                                                            = 240 \text{ N/mm}^2
          = 19500 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	r destructives rappresentate randamente delle tener tangenziam									
N	= 32300 N	M_t	= 24300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_v	= 8900 N	M_x	= -479000 Nmm		$= 200000 \text{ N/mm}^2$					
y_g	=	$\sigma(N)$	=	τ_{s}	=	θ_{t}	=			
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_{v}	=	$\tau(T_y)_d$		σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ad	lolfo Zavelani Rossi, Po	olitecn	ico di Milano, vers.12.0							

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 38300 N
                                                                              = -442000 Nmm
Ν
                                                                   M_{\star}
                                                                                                                                      G
T<sub>y</sub>
M₁
           = 9780 N
                                                                              = 240 \text{ N/mm}^2
                                                                              = 200000 \text{ N/mm}^2
           = 29900 Nmm
                                                                   E
                                                                   \tau(M_t) =
                                                                                                                                      \sigma_{\text{IId}}
                                                                   \tau(T_{yc}) =
                                                                                                                                      \sigma_{tresca} =
                                                                   \tau(T_{yb})_{d} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{st.ven}} =
                                                                   \tau(T_{v})_{d} =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 45000 N	$M_t = 24500 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 10600 N	$M_x = -593000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 44700 N	M _t = -25300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 10000 N	$M_x^{\cdot} = -663000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	r additative rapprocentare randamente delle tener tangenziam									
N	= 35900 N	M_{t}	= -31700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_v	= 11400 N	M_x	= -743000 Nmm		= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=					
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ad	olfo Zavelani Rossi, Po	olitecn	ico di Milano, vers.12.0	06.06						

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 43400 N	M _t = -38700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 12700 N	$M_{x}^{(i)} = -559000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. ia	pp. 000	maio randamonto don	o torio	. tangonziani		
Ν	= 51400 N	M_{t}	= 31600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 14000 N	M_x	= -633000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$		τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s}$, =	σ_{tresca}	_a =	-	
J_{v}	=	$\tau(T_{y})_{c}$	₁ =	σ_{mises}	, =		
J_t	=	σ΄	=	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= -707000 Nmm
                                                                                                                                               = 75000 \text{ N/mm}^2
          = 60100 N
Ν
                                                                  M_{\star}
                                                                                                                                   G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 10400 N
                                                                            = 200000 \text{ N/mm}^2
          = 38600 Nmm
                                                                  E
                                                                  \tau(M_t) =
                                                                                                                                   \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 31000 N	$M_t = 24700 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 10800 N	$M_{x}^{\cdot} = -814000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_{v})_{s} =$	σ_{tresc}	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38200 N	M _t = -31200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 12200 N	$M_x = -624000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	-	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i acontanto i iap	pp. 000.	r additativo rapprocontato randamente delle tener tangenziam								
N	= 45900 N	M_t	= -26100 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$				
T_v	= 13600 N	M_x	= -717000 Nmm		$= 200000 \text{ N/mm}^2$						
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=				
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=				
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=				
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=				
C_{w}	=	$\tau(T_{yb})_{c}$	_j =	σ_{IId}	=	J_p	=				
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=	·					
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=						
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06											

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativo: ra	pprocentare randamente den		_		0
Ν	= 54200 N	$M_t = -32500 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 10200 N	$M_x = -809000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 43000 N
                                                                           = -900000 Nmm
Ν
                                                                 M,
                                                                                                                                 G
T<sub>y</sub>
M₁
                                                                           = 240 \text{ N/mm}^2
          = 11500 N
                                                                           = 200000 \text{ N/mm}^2
          = 39700 Nmm
                                                                 \tau(M_t) =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		pprocentare randamente den	.0 .0	_		0
Ν	= 34400 N	$M_t = -25000 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 12100 N	$M_x = -493000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

= 40600 N	$M_{t} = -20900 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
= 13200 N	$M_x = -670000 \text{ Nmm}$		$= 200000 \text{ N/mm}^2$		
=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
=	$\tau(T_y)_s =$	σ_{tresc}	a =		
=	$\tau(T_y)_d =$	σ_{mise}	₃ =		
=	σ =	$\sigma_{\text{st.ve}}$	n =		
	= 13200 N = = = = = =	= 13200 N $M_x^t = -670000 \text{ Nmm}$ = $\sigma(N) =$ = $\sigma(M_x) =$ = $\tau(M_t) =$ = $\tau(T_{yc}) =$ = $\tau(T_y)_d =$ = $\tau(T_y)_d =$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i accitativo i iap	. OOO	inaio i anaamonio aom	0 .00.	tangoniziani j		_	
N	= 47400 N	M_t	= 26100 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$	
T_v	= 9730 N	M_x	= -871000 Nmm		$= 200000 \text{ N/mm}^2$			
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=	
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=	
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=	
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=	
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=	
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=			
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=			
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38200 N	M _t = 32700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 11100 N	M_x = -985000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= -746000 Nmm
                                                                                                                                             = 75000 \text{ N/mm}^2
          = 46100 N
Ν
                                                                 M,
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                           = 240 \text{ N/mm}^2
          = 12400 N
                                                                           = 200000 \text{ N/mm}^2
          = 39900 Nmm
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38200 N	M _t = -17200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 13400 N	M_x = -420000 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_w	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i acontanto i iap	Jp. 000	inaio i anaamonio aom	0 .00.	tangoniziani j				
N	= 44300 N	M_t	= -21800 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_v	= 9880 N	M_x	= -597000 Nmm		$= 200000 \text{ N/mm}^2$				
\mathbf{y}_{g}^{r}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=		
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_{v}	=	$\tau(T_y)_d$		σ_{mises}					
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 34800 N
Ν
                                                                  M_{\star}
                                                                             = -799000 Nmm
                                                                                                                                    G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
          = 10900 N
                                                                             = 200000 \text{ N/mm}^2
          = 27000 Nmm
                                                                  E
                                                                  \tau(M_t) =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	r donairo rapprocentaro randamente delle terior tangenziam							
Ν	= 41300 N	$M_{t} = -32900 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_y	= 12000 N	$M_x = -698000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$				
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=		
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=		
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=		
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=		
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=		
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =				
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}					
J_t	=	σ =	$\sigma_{\text{st.ve}}$					

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	r additative rappredentate variation to delle tener tangenziam							
Ν	= 48300 N	$M_t = -26700 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_y	= 13200 N	$M_x = -900000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$				
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=		
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=		
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=		
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=		
C_w	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=		
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	•			
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}					
J_t	=	σ =	$\sigma_{\text{st.ve}}$					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•	That of an administration don		_	_	2
N	= 43300 N	M_{t}	= -18100 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 10000 N	M_x	= -314000 Nmm	Ε̈́	= 200000 N/mm ²		
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_{y})_{s}$; =	σ_{tresca}	=		
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}			
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 33000 N	M _t = -22500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 11200 N	M_x = -490000 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_w	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s} =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	ppi ocomaio i amaamonio aon		,, tangoniziani		•
Ν	= 38800 N	$M_t = 27700 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 12200 N	$M_x = -471000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acontanto i iap	Jp. 000	1 doctative rapprocentare randamente delle tener tangenziam								
N	= 45300 N	M_t	= -22800 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$				
T_v	= 13300 N	M_x	= -648000 Nmm		$= 200000 \text{ N/mm}^2$						
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=				
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=				
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=				
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=				
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=				
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=						
J_{v}	=	$\tau(T_y)_d$		σ_{mises}							
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=						
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06											

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		pprocontaro randamento den		_		2
Ν	= 52500 N	$M_t = -28200 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 9830 N	$M_x = -850000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	a =		
J_{v}	=		σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 35300 N	M _t = 28800 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 13400 N	M_x = -909000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 42700 N
                                                                             = -688000 Nmm
Ν
                                                                  M_{\star}
                                                                                                                                     G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
           = 15000 N
                                                                             = 200000 \text{ N/mm}^2
           = 35600 Nmm
                                                                  E
                                                                  \tau(M_t) =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 50700 N
Ν
                                                                  M_{\star}
                                                                             = -783000 Nmm
                                                                                                                                    G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
          = 16600 N
                                                                             = 200000 \text{ N/mm}^2
          = 29200 Nmm
                                                                  E
                                                                  \tau(M_t) =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                  \tau(T_{yb})_{d} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 59400 N
                                                                          = -878000 Nmm
Ν
                                                                M,
                                                                                                                                G
T<sub>y</sub>
M₁
                                                                          = 240 \text{ N/mm}^2
          = 12300 N
                                                                          = 200000 \text{ N/mm}^2
          = 36000 Nmm
                                                                E
                                                                \tau(M_t) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativoi la	pprocontaro randamento del		_		0
Ν	= 46700 N	$M_t = -43400 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 13800 N	$M_x = -973000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 37300 N	M _t	= 28000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 14300 N	M_x	= -747000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x)$) =	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_{\xi}$	₃ =	$\sigma_{ ext{tresca}}$	=		
J_{v}	=	$\tau(T_y)_c$	_j =	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 45000 N	M _t = 23700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 16000 N	M_x = -867000 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

	i additativo. ia	opi ocomiano n	ariaariiorito aon	O LOTTO	i tangonziani.		
Ν	= 53300 N	$M_{t} = -299$	900 Nmm	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 12000 N	$M_{x} = -985$	5000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =		$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$		σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$		σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$		σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$		σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$		σ_{tresca}	=	·	
J_{v}	=	$\tau(T_y)_d =$		σ_{mises}	=		
J_t	=	σ =		$\sigma_{\text{st.ven}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 42300 N	M _t = -36800 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 13600 N	M_x = -1100000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	pprocontaro randamento den		_		0
Ν	= 50500 N	$M_t = -44300 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 15100 N	$M_{x} = -828000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	_a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 41000 N	$M_t = 19200 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 15800 N	M_x = -695000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 47700 N	M _t = -24200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 11600 N	M_x = -923000 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

i docitativo rapprocentaro randamente delle tener tangenziam							
N	= 37300 N	M_t	= 29700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 12900 N	M_x	= -1180000 Nmm		$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d ⁼	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=	·	
J_{v}	=	$\tau(T_y)_d$		σ_{mises}			
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06							

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 45200 N	M _t = 36700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 14600 N	$M_{x}^{\cdot} = -900000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. ia	pprocentare randamente den	.0 .0110	n tangonziani		
Ν	= 53700 N	$M_{t} = -30200 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 16300 N	M_x = -1030000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$			