Mathématiques I

Systèmes linéaires & matrices

Dr. Mucyo Karemera (enseignant), Prof. Stéphane Guerrier

Matériel disponible en ligne: https://mkaremera-math1.netlify.app/

Licence: CC BY-NC-SA 4.0

Écriture matricielle des systèmes linéaires

Un système linéaire peut aussi s'écrire sous forme matricielle de la façon suivante

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{cases} \Leftrightarrow \underbrace{\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}}_{\mathbf{b}}$$

où $\mathbf{A} \in \mathbb{R}^{m \times n}$ est une matrice de taille $m \times n$ et $\mathbf{x} \in \mathbb{R}^n$ et $\mathbf{b} \in \mathbb{R}^m$ sont des vecteurs. L'ensemble des solutions \mathcal{S} du système ne dépend que de la matrice \mathbf{A} et du vecteur \mathbf{b} . Si bien que l'on peut effectuer l'élimination de Gauss directement sur la matrice augmentée, notée $(\mathbf{A}|\mathbf{b})$, et définie par

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} & b_n \end{pmatrix}$$

Ceci justifie de parler d'un système linéaire en ne considérant que la matrice augmentée correspondante.

On reprend l'exemple suivant

$$\begin{cases} 2x_2 - x_3 = -7 \\ x_1 + x_2 + 3x_3 = 2 \\ -3x_1 + 2x_2 + 2x_3 = -10 \end{cases} \iff \begin{pmatrix} 0 & 2 & -1 & | & -7 \\ 1 & 1 & 3 & | & 2 \\ -3 & 2 & 2 & | & -10 \end{pmatrix}$$

et on résout en utilisant la forme matricielle uniquement

$$\begin{pmatrix} 0 & 2 & -1 & | & -7 \\ 1 & 1 & 3 & | & 2 \\ -3 & 2 & 2 & | & -10 \end{pmatrix} \xrightarrow{\ell_1 \leftrightarrow \ell_2} \begin{pmatrix} 1 & 1 & 3 & | & 2 \\ 0 & 2 & -1 & | & -7 \\ -3 & 2 & 2 & | & -10 \end{pmatrix}$$

$$\ell_3 := \ell_3 + 3\ell_1 \Longrightarrow \begin{pmatrix} 1 & 1 & 3 & | & 2 \\ 0 & 2 & -1 & | & -7 \\ 0 & 5 & 11 & | & -4 \end{pmatrix} \xrightarrow{\ell_3 := \ell_3 - \frac{5}{2}\ell_2} \begin{pmatrix} 1 & 1 & 3 & | & 2 \\ 0 & 2 & -1 & | & -7 \\ 0 & 0 & \frac{27}{2} & | & \frac{27}{2} \end{pmatrix}$$

Il suffit alors de "continuer" à faire des opérations élémentaires sur les lignes pour obtenir la solution

$$\begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 2 & -1 & -7 \\ 0 & 0 & \frac{27}{2} & \frac{27}{2} \end{pmatrix} \xrightarrow{\ell_3 := \ell_3 \div \frac{27}{2}} \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 2 & -1 & -7 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\stackrel{\ell_1 := \ell_1 - 3\ell_3}{\underset{\ell_2 := \ell_2 + \ell_3}{\Longrightarrow}} \begin{pmatrix} 1 & 1 & 0 & | & -1 \\ 0 & 2 & 0 & | & -6 \\ 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{\ell_1 := \ell_1 - \frac{1}{2}\ell_2} \begin{pmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

On remarque que la solution "apparaît" dans la dernière colonne.

On reprend l'exemple suivant

$$\begin{cases} 2x_1 + 4x_2 = 4 \\ 2x_1 - 3x_2 = 18 \\ x_1 - 4x_2 = 10 \end{cases} \iff \begin{pmatrix} 2 & 4 & | & 4 \\ 2 & -3 & | & 18 \\ 1 & -4 & | & 10 \end{pmatrix}$$

Les calculs fait précédemment donne pour la matrice augmentée

$$\begin{pmatrix} 2 & 4 & | & 4 \\ 2 & -3 & | & 18 \\ 1 & -4 & | & 10 \end{pmatrix} \implies \begin{pmatrix} 2 & 4 & | & 4 \\ 0 & 1 & | & -2 \\ 0 & 0 & | & \frac{2}{3} \end{pmatrix}$$

la dernière ligne "constituant" la contradiction.

On reprend l'exemple suivant

$$\begin{cases} 5x_2 - 3x_3 = 1 \\ x_1 + 3x_2 - x_3 = 4 \\ 2x_1 + x_2 + x_3 = 7 \end{cases} \iff \begin{pmatrix} 0 & 5 & -3 & 1 \\ 1 & 3 & -1 & 4 \\ 2 & 1 & 1 & 7 \end{pmatrix}$$

Les calculs fait précédemment donne pour la matrice augmentée

$$\begin{pmatrix} 0 & 5 & -3 & 1 \\ 1 & 3 & -1 & 4 \\ 2 & 1 & 1 & 7 \end{pmatrix} \implies \begin{pmatrix} 1 & 3 & -1 & 4 \\ 0 & 5 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

La matrice est échelonné et dans ce cas on résout le système comme auparavant, i.e. en raisonnant avec les variables.

Le rang d'une matrice

Pour toute matrice, on peut définir une quantité, nommée rang (de la matrice), qui permet de déterminer si un système linéaire ($\mathbf{A}|\mathbf{b}$) possède au moins une solution ou aucune.

Théorème.

Un système linéaire possède au moins une solution si et seulement si le rang de $\bf A$ est égal au rang de $(\bf A|\bf b)$.

Marche à suivre pour calculer le rang

- 1) Échelonner la matrice selon ses lignes et ses colonnes,
- 2) compter le nombre d'éléments non nuls dans la matrice résultante.

Ce dernier nombre est le rang de la matrice.

On sait que le système suivant possède une solution

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 0 & 2 & -1 & | & -7 \\ 1 & 1 & 3 & | & 2 \\ -3 & 2 & 2 & | & -10 \end{pmatrix}$$

En reprenant les calculs précédant on a

$$\begin{pmatrix} 0 & 2 & -1 & | & -7 \\ 1 & 1 & 3 & | & 2 \\ -3 & 2 & 2 & | & -10 \end{pmatrix} \implies \begin{pmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$$

Ce qui montre que $rang(\mathbf{A}) = 3$. On échelonne alors par rapport aux colonnes de la matrice augmentée pour déterminer son rang :

$$\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{c_4 := c_4 - 2c_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$c_4 := c_4 + 3c_2 \xrightarrow{} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{c_4 := c_4 - c_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Ainsi $rang(\mathbf{A}|\mathbf{b}) = 3$ ce qui confirme le théorème.

On sait que le système suivant ne possède pas de solution

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 2 & 4 & | & 4 \\ 2 & -3 & | & 18 \\ 1 & -4 & | & 10 \end{pmatrix}$$

En reprenant les calculs précédant on a

$$\begin{pmatrix} 2 & 4 & 4 \\ 2 & -3 & 18 \\ 1 & -4 & 10 \end{pmatrix} \implies \begin{pmatrix} 2 & 4 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & \frac{2}{3} \end{pmatrix}$$

$$\stackrel{\ell_1 := \ell_1 - 4\ell_2}{\Longrightarrow} \begin{pmatrix} 2 & 0 & 12 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{\ell_1 := \ell_1 - 12\ell_3}{\Longrightarrow} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ainsi, on a rang(\mathbf{A}) = 2 alors que rang(\mathbf{A} | \mathbf{b}) = 3, ce qui confirme le théorème.

On sait que le système suivant possède une infinité de solutions

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 0 & 5 & -3 & 1 \\ 1 & 3 & -1 & 4 \\ 2 & 1 & 1 & 7 \end{pmatrix}$$

En reprenant les calculs précédant, on a

$$\begin{pmatrix} 0 & 5 & -3 & | & 1 \\ 1 & 3 & -1 & | & 4 \\ 2 & 1 & 1 & | & 7 \end{pmatrix} \implies \begin{pmatrix} 1 & 3 & -1 & | & 4 \\ 0 & 5 & -3 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \qquad \stackrel{c_2 := c_2 - 3c_1}{\underset{c_3 := c_3 + c_1}{\Longrightarrow}} \begin{pmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 5 & -3 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{c_4 := c_4 - 4c_1}{\underset{c_3 := c_2 + \frac{3}{5}c_2}{\Longrightarrow}} \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 5 & 0 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{c_4 := c_4 - \frac{1}{5}c_2}{\underset{c_3 := c_2 + \frac{3}{5}c_2}{\Longrightarrow}} \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 5 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Ainsi, on a rang(\mathbf{A}) = 2 = rang(\mathbf{A} | \mathbf{b}), ce qui confirme le théorème.