Research Project Overview

1 Concept overview

Given

$$\sigma(z,t) = H_A \int_0^t G(t-s) \frac{d\epsilon}{ds}(z,s) ds = H_A G * \frac{d\epsilon}{dt}$$
 (1)

where

$$G(t) = 1 + c \int_{\tau_1}^{\tau_2} g(t, \tau) dF(\tau) = G_{\infty} + G_d \mathbb{E}_F[g]$$
 (2)

In other words, $G_{\infty} \equiv 1, G_d \equiv c$ with

$$g(t,\tau) = \frac{e^{-t/\tau}}{\tau}, \quad \tau = \text{"relaxation time"}$$
 (3)

Note that

$$\hat{g} = \frac{1}{1 + i\omega\tau} \tag{4}$$

Then, $\sigma(z,t)$ can be expressed as

$$\sigma(z,t) = H_A G_\infty \epsilon |_0^t + H_A P \tag{5}$$

where $P := G_d \mathbb{E}_F[g] * d\epsilon/dt$, giving

$$\hat{P} = G_d \mathbb{E}_F[\hat{g}] \cdot \frac{d\hat{\epsilon}}{dt} = \underbrace{\int_{\tau_1}^{\tau_2} \frac{G_d}{1 + i\omega\tau} dF(\tau)}_{\text{"\hat{G} (c)"}} \cdot \frac{d\hat{\epsilon}}{dt}$$
 (6)

"Can show that" $P = \mathbb{E}_F[\mathcal{P}]$ where \mathcal{P} satisfies an (auxiliary) ODE:

$$\tau \dot{\mathcal{P}} + \mathcal{P} = G_d \frac{d\epsilon}{dt}$$
, with $\tau \sim F(\tau)$. (7)

2 Project overview

Weeks	Planned Activities
1, 2	Show this problem is analogous to Debye Polarization in Electromagnetics
	(auxiliary ODE same, although PDEs differ)
3, 4	Implement polynomial chaos to solve random ODE for \mathcal{P}
5	Rigorously prove approach is valid
	recover Gauss-Legendre as special case