GSHD调试原则及调试步骤

- ① **内层带宽要大于外层带宽**: 否则 整个控制系统为不稳定系统, 会 造成系统震荡;
- ② 三**环路带宽关系**: 电流环带宽>速 度环带宽>位置环带宽

步骤1. 接线

步骤2.电机参数设置

步骤3. 编码器参数设置

步骤4. 寻相(确定相序和相位角)

步骤5. 电压开环验证(防止飞车)

步骤6. 调试电流环响应

步骤7. 惯量辨识

步骤8. 初步调试速度环

步骤9. 初步调试位置环

步骤10.上位机根据给定运动参数往复运动精调速度环和位置环

步骤11. 配置IO

步骤12. 配置用户模式

步骤13. 上位机验证运动方向和编码器方向

步骤14. 滤波器介绍

0. 调试前配置

EtherCat驱动器需连接C7调试口进行调试且在连接之前在网络属性中设置ip 地址

设置方式: 调试软件右上角更多,点击网络设置,选择连接的网口,设置手动设置,按照提示设置IP地址,输入完成后点击应用会提示设置成功,之后点击连接即可连接成功;也可在电脑中的网络配置中设置。

注意: 脉冲型号的驱动器用通用网线调试,不过需要千兆网络,需要电脑和网线的带宽都达到千兆;

通过交换机同时连接多个驱动器,连接前需要将各个驱动器的拨码调整为不相同

1. 接线

1. 接线

2. 电机参数设置

3. 编码器参数设置

4.寻相(确定相序和相位角)

寻相方式:

- 慢速寻相同时寻找相序和相位角。
 电机会有明显的转动;
- ② 二分搜索法只找相位角, 电机基本不会有摆动;
- ③ 新电机调试时先用慢速寻相,校 正相序并保存相位,再更改成二分 搜索法;
- ④ 对于增量式编码器,驱动器会默 认勾选。

慢速寻相方法:

- ① 右侧码盘会两侧各偏转90度,如果偏转角度不在90度,请确认电机极距和编码器分辨率是否准确?
- ② 如果电机行程过短或者负载太重导致慢速寻相无法成功时,确认极距和编码器分辨率是否有问题? 用鼠标右键进入列表视图,手动修改相序,然后用二分法寻相并验证。

5.电压环开环调试 (防止飞车)

电压开环验证的目的:

- 验证电机动力线和编码器
 线;
- ② 询相结果是否正确。 正常现象是电机三相电流 间隔均匀且幅值一致,电压开 环运行正常方可进行下一步。

电压开环验证方法: 电压开环验证是一种连续单向运动, 请注意行程设备安全。

- ① uq_ref 中填入 5 并回车,点击"伺服开"按钮,正常情况,上伺服后电机缓慢转动,曲线如图,以趋近于三相正弦交流曲线;
- ② 若电机不动,则加大 uq_ref 的电压值,再上伺服,uq_ref 每次加 1,直至电机开始运转;
- ③ 若 uq_ref 加到 12 电机仍无法运转,请检查当前轴参数中极对数是否正确。

6.调试电流环响应

ID_REF 输入 5 并回车,点击伺服开关 上使能,然后关掉伺服使能,此时示波 器会采集到一个方波

① 增益系数大致范围: 200~3000; 越

大响应越快

② 积分常数大致范围: 100~3000; 越

小响应越快

电流环初始状态不对,需要调整时:

- 先将电流环输入滤波关闭,电流环积分常数改到20000;
- ② 依次提高电流环增益系数,直到Id曲线上升沿开始衰减临近过冲;
- ③ 减小电流环积分常数,同样到Id曲线上升沿临近过冲;
- 4 打开电流环输入滤波器,再验证电流环效果;
- 直线电机和DD马达建议关闭弱磁功能。

7.惯量辨识

系统真实增益是惯量比和比例增益的乘积,惯量比的准确性会保证比例增益数值在—个比较小的范围内,方便对比和分析

惯量意义: 电机的加、减速有着极其重要的影响

- ① 惯性大小与物体质量及转动半径有关J=fr2dm;
- ② 电机转子惯量小响应好,但电机要接负载的,负载分为负载转矩 与负载惯量;
- ③ 小惯量的电机制动性能好,启动、加速、停止的反应很快,适合于一些轻负载,高速定位的场合;
- ④ 若负载、加速特性较大,选择小惯量的电机对电机轴损伤太大, 应根据负载、加速度等因素选。

惯量辨识步骤:

- 最大速度: 惯量辨识期间的最大速度;
- 行程: 惯量辨识走过的行程;
- 回车: 设定完毕后记得敲回车;
- ④ 使能控制:点击开始画图,上伺服,在设定行程范围内往复转
 - 动, 最后回到原点并自行下使能;
- ◎显示: 完成后会显示转动惯量和惯量比 (直线电机下为总质量和
 - 惯量比);

注意:在辨识过程中,电流的最大值要达到或接近额定电流,这样

识别的惯量比才是比较准确的;点击"保存惯量比"可直接

将惯量比保存至驱动器中。

8. 初步调试速度环

速度环积分时间常数:有效消除速度稳态误差,快速反应细微的速度变化。

- ① 在机械系统不产生共振或噪音的情况下,减小速度环积分时间常数,可以增加系统刚性,降低稳态误差。
- ② 若负载惯量比很大或机械系统存在共振因素,必须加大速度环积分时间常数,减小积分作用,否则机械系统易发生共振;
- ③ 若惯量比参数G设置为儿/JM的情况下,速度环积分时间常数(ms)=4000/(2*pi*速度环增益(Hz))其中:pi为圆周率。

比例增益大致范围: 10~220

越大响应越快

积分常数大致范围: 2~200

越小响应越快

速度环增益: 直接决定速度环的响应带宽。

- ① 在机械系统不产生共振或噪音 的情况下,增大速度环增益,速度 响应越快,速度跟随性越好;
- ② 过大的速度环增益会引起机械 共振。

9. 初步调试位置环

比例增益大致范围: 2~50

越大响应越快

位置环增益:直接决定位置环的反应速度。

- ① 在机械系统不产生共振或噪音的情况下,增加位置环增益,减小位置跟踪误差,缩短定位时间; 过大的位置环增益会造成机械系统抖动或定位超调。
- ② 位置环带宽不可高于速度环带宽: 位置环带宽(Hz) <= 速度环带宽(Hz)/4 若惯量比参数G设置为儿/JM, 位置环增益可以计算: 位置环增益(1/s) <= 2*pi*速度环增益(Hz)/4。

10.上位机根据给定运动参数往复运动 精调速度环和位置环

位置控制的增益调整步骤如下:

- 1. 设定速度环积分时间常数为较大值, 一般设定为20;
- 2. 加大速度环增益, 如果机械振动, 稍许调小;
- 3. 减小速度环积分时间常数,如果机械振动,稍许调大;
- 4. 增大位置环增益, 如果机械振动, 稍许调小;
- 5. 如果因为机械系统发生共振而无法加大增益,进而无 法得到应有的伺服应用要求,可以添加速度环输出滤 波器来抑制机械系统共振;然后重新操作以上步骤以 提高伺服性。建议首先使用低通滤波器,若低通滤波 器效果不好再考虑陷波器;
- 若需要更短的定位时间和更小的位置跟踪误差,可启用速度前馈;

(速度控制就不需要进行第4和第6步)

10.上位机根据给定运动参数往复运动精调速度环和位置环

在示波器里观察电机往 复运动,运动过程中可见示 波器中的电流曲线,依次增 加速度环的和位置环的比例 增益,不要使电流震动就可 以;

如果增益提高到电机有 震动时,还未达到需要的刚性,可以将震动用陷波滤掉 后再提高增益,陷波加在速 度环输出位置。

11.配置IO

12.配置用户模式

13.上位机验证运动方向和编码器方向

1. 更改

电子齿轮比、运动和 反馈的方向

2. 输入/输出分辨率

为脉冲当量,即电机 一个极距的距离需要的 脉冲数。

3. 例

左图中即是上位机发 送20000个脉冲电机运行 一个极距

13.精调驱动器性能

- 1. 设定速度环积分时间常数为较大值;
- 2. 加大速度环增益, 若机械振动, 稍许调小;
- 3. 减小速度环积分时间常数, 若机械振动, 稍许调大;
- 4. 增大位置环增益, 若机械振动, 稍许调小;
- 5. 若因为机械系统发生共振而无法加大增益,进而无法 得到应有的伺服应用要求,可对转矩低通滤波器或陷 波器调整抑制机械系统共振,再重新操作以上步骤以 提高伺服性;

建议: 首先使用转矩低通滤波器, 若转矩低通滤波器效果不好再考虑陷波器;

 若需更短的定位时间和更小的位置跟踪误差,可适当 增加速度前馈,即速度前馈增益,但不宜超过100%

注意: 速度控制不需进行第4和第6步。

• 位置控制的增益调整步骤

13. 速度环编码器反馈波

用于滤除编码器反馈中的噪声

- ① 取值范围: 从 0.001 至 0.999;
- ② 值越小滤波效果越大,但太小会造成 相位裕度减小,容易造成系统震荡。

14. 滤波器介绍-位置环输入滤波器 减缓规划指令阶梯跨越程度

FIR滤波器平滑时间取值范围从 0.5~128ms, 值越大平缓效果越强。

- ①太大设置值会造成节拍变慢,规划和反馈滞后越严重;
- ②添加FIR滤波器(截止频率越小,滤波效果越明显),降低规划的指令加加速度,滤波越严重,规划和反馈滞后越严重;
- ③平滑时间的数值请按照总线周期的整数倍填写;
- ④ IIR滤波器请按照总线周期的频率减小十倍填写,例如总线周期2ms,对应的指令频率就是500Hz,IIR滤波器使用—阶低通或二阶低通,低通频率≤50Hz。

14. 滤波器介绍-速度环输出滤波器的使用

14. 滤波器介绍-速度环输入滤波器的使用

速度环输入滤波器通常在模拟 量速度控制模式下使用。 当指令电压存在跳动时,会导 致指令速度存在某频率的跳动, 从而造成机械系统振动,此时, 需要添加速度环输入滤波器, 对指令进行滤波处理。

