Homework 5

Math 25b

Due March 15, 2018

Topics covered: integrability, measure, Cavalieri, Fubini, function spaces Instructions:

- The homework is divided into one part for each CA. You will submit the assignment on Canvas as one pdf.
- If you collaborate with other students, please mention this near the corresponding problems.

1 For Beckham M.

Problem 1 (Pugh 3.39). Consider the characteristic functions f, g of the intervals [1, 4] and [2, 5], respectively. The derivatives f' and g' exist almost everywhere. The integration by parts formula says that

$$\int_0^3 f(x)g'(x) \, dx = f(3)g(3) - f(0)g(0) - \int_0^3 f'(x)g(x) \, dx.$$

But both integrals are zero, while f(3)g(3) - f(0)g(0) = 1. Where is the error?

 \Box

Problem 2 (Pugh 3.31). Define a Cantor set by removing from [0,1] the middle interval of length 1/4. From the remaining two intervals F^1 , remove the middle intervals of length 1/16. From the remaining four intervals F^2 , remove the middle intervals of length 1/64, and so on. At the n-th step in the construction F^n consists of 2^n subintervals of F^{n-1} . It is referred to as a "fat Cantor set". Prove that $F = \bigcap F^n$ is not a zero set. ¹ Hint: it is not enough to add up the lengths of the intervals that are removed; compare with HW4#4.

 \Box

Problem 3 (Pugh 3.33). Let C be the middle-thirds Cantor set and F the fat Cantor set. Prove that χ_C is integrable but χ_F is not.² Hint: What is the interior of F?

Solution. \Box

¹This shows that being a zero set is not a topological property: F and the usual Cantor set C are homeomorphic, but one is a zero set and the other is not.

²There exists a continuous bijection (homeomorphism) $h:[0,1]\to[0,1]$ that sends C to F, so that $\chi_F=h\circ\chi_C$. This exercise shows that compositions of Riemann integrable functions need not be Riemann integrable.

2 For Davis L.

Problem 4. Let $f:[a,b] \to \mathbb{R}$ be bounded, integrable, and non-negative. Let $A = \{(x,y) : a \le x \le b \text{ and } 0 \le y \le f(x)\}$. Show that A is rectifiable and has area $\int_a^b f$. Hint: most of the work goes toward showing that A is rectifiable. Warning: f is not assumed to be continuous!

Solution. \Box

Problem 5. Let A and B be rectifiable subsets of \mathbb{R}^3 . Let $A_c = \{(x,y) : (x,y,c) \in A\}$ and define B_c similarly. Suppose A_c and B_c are rectifiable and have the same area for each c. Show that A and B have the same volume. This is Cavalieri's principle. ³

 \Box

Problem 6.

- (a) Use Fubini's theorem to derive the volume of a cone C with base r and height h.
- (b) Fix $a \geq 0$, and let $f : [a,b] \to \mathbb{R}$ and $g : [a,b] \to \mathbb{R}$ be continuous functions such that $f(z) \leq g(z)$ for each $z \in [a,b]$. Consider $S = \{(y,z) : f(z) \leq y \leq g(z) \text{ and } a \leq z \leq b\}$. Derive an expression for the volume of a set $C \subset \mathbb{R}^3$ obtained by revolving S about the z-axis.
- (c) Repeat (b) but now with f, g functions of y, i.e. $S = \{(y, z) : a \le y \le b \text{ and } f(y) \le z \le g(y)\}$. (Again revolving S around the z-axis.) 4

 \Box

³Look up the "napkin-ring problem," which is a popular application of Cavalieri's principle. Explain it to your friends.

⁴In multivariable calculus, these two methods of computing volumes of revolution are typically called the "washer" and the "shell" methods.

3 For Joey F.

Problem 7. This problem is about integrating certain unbounded functions.

(a) If a > 0, find $\lim_{\epsilon \to 0^+} \int_{\epsilon}^a \frac{1}{\sqrt{x}} dx$. This limit is denoted by $\int_0^a \frac{1}{\sqrt{x}} dx$, even though the function $f(x) = 1/\sqrt{x}$ is not bounded on [0,a], no matter how we define f(0).

(b) Find $\int_0^a x^r dx$ if -1 < r < 0. (c) Show that $\int_0^a \frac{1}{x} dx$ does not make sense, even as a limit.

Solution.

Problem 8 (Pugh 4.5). Let $(f_n) \subset C_b$ be a sequence of bounded functions on [0,1]. Prove or disprove: If (f_n) converges uniformly to $f \in C_b$ and each f_n has finitely many discontinuities, then f has finitely many discontinuities.

Solution.

Problem 9. Each polynomial $p \in Poly(\mathbb{R})$ defines a bounded function on [0,1]. In this way we view $Poly(\mathbb{R})$ as a subspace of $C_b([0,1],\mathbb{R})$. Prove that $Poly(\mathbb{R})$ is not a closed subspace. Hint: use Taylor polynomials.

4 For Laura Z.

Problem 10. This conclusion of this problem is called Darboux's theorem.

- (a) Suppose f is differentiable on [a,b]. Prove that if the minimum of f on [a,b] is at a, then $f'(a) \geq 0$. What is the right conclusion if the minimum is at b?
- (b) Suppose f'(a) < 0 and f'(b) > 0. Show that f'(x) = 0 for some $x \in (a,b)$. Hint: the intermediate value theorem does not apply here (why?).
- (c) Use (b) to conclude that if f'(a) < c < f'(b), then f'(x) = c for some $x \in (a,b)$.

Solution. \Box

Problem 11. Use the fundamental theorem of calculus and Darboux's theorem to give an alternate proof of the intermediate value theorem.

 \Box

Problem 12. In this problem, you prove a special case of the Riemann–Lebesgue theorem. Let $C \subset \mathbb{R}^n$ be a bounded set, contained in a closed rectangle Q.

- (a) Suppose that $\int_Q \chi_C$ exists. Prove that $\operatorname{bd} C$ has measure 0. In fact, prove that for every $\epsilon > 0$, there are finitely many rectangles Q_1, \ldots, Q_k that cover C such that $\sum \operatorname{vol}(Q_i) < \epsilon$.
- (b) Suppose that $\operatorname{bd}(C)$ has measure 0. Prove that $\int_Q \chi_C$ exists. Hint: build a partition P of Q with $U(f,P)-L(f,P)<\epsilon$; use that Q is covering compact.

Solution. \Box

⁵In this case we say that C has content θ .