Деление вещественных чисел в формате с плавающей точкой

Содержание

- Беззнаковое деление мантисс
 - Деление мантисс с восстановлением остатков
 - Деление без восстановления остатков
- 2 Деление мантисс в дополнительном коде
 - Теория
 - Примеры
- ③ Задания на практику
 - Проходное
 - Мегамозг
- 4 Самообучение

Деление чисел в формате с плавающей точкой

$$\frac{A}{d}=q=\frac{m_A\cdot 2^{p_A}}{m_d\cdot 2^{p_d}}=\left(\frac{m_A}{m_d}\right)\cdot 2^{(p_A-p_d)},$$

где A — делимое, d — делитель, q — частное.

Отдельно обрабатываются исключительные случаи:

- деления на ноль;
- 2 деления ноля.

Алгоритм деления ненулевых чисел $\frac{A}{B}$

- Вычитанием из порядка делимого порядка делителя определяется порядок частного: $p_q = (p_A p_d)$.
- ② Делением мантиссы делимого на мантиссу делителя определяется мантисса частного: $m_q = \frac{m_A}{m_d}$. Деление мантисс см. далее.
- **3** Выполняется нормализация частного q. Фиксируется результат или ошибка.

		— мантисса частного
0 , 7 3 8	:0,345	— мантиссы делимого:делителя

2 ,		— мантисса частного
0 , 7 3 8	:0,345	— мантиссы делимого:делителя
0 , 7 3 8		
- 0 , 6 9 0		
= 0 , * 4 8		$q_0 = 2$
_		

	2	,	1					— мантисса частного
-	0	,	7	3	8		:0,345	— мантиссы делимого:делителя
	0	,	7	3	8			
-	0	,	6	9	0			
=	0	,	*	4	8			$q_0=2$
	0	,	*	4	8	0		
-	0	,	*	3	4	5		
=	0	,	*	1	3	5		$q_{-1}=1$

	2	,	1	3					— мантисса частного
	0	,	7	3	8			:0,345	— мантиссы делимого:делителя
	0	,	7	3	8				
-	0	,	6	9	0				
=	0	,	*	4	8				$q_0=2$
	0	,	*	4	8	0			
-	0	,	*	3	4	5			
=	0	,	*	1	3	5			$q_{-1}=1$
	0	,	*	1	3	5	0		
-	0	,	*	1	0	3	5		
=	0	,	*	*	3	1	5		$q_{-2} = 3$

	2		1	3	9				1	
		,			9					— мантисса частного
	0	,	7	3	8				:0,345	— мантиссы делимого:делителя
	0	,	7	3	8					
-	0	,	6	9	0					
=	0	,	*	4	8					$q_0=2$
	0	,	*	4	8	0				
-	0	,	*	3	4	5				
=	0	,	*	1	3	5				$\mid q_{-1}=1$
	0	,	*	1	3	5	0			
-	0	,	*	1	0	3	5			
=	0	,	*	*	3	1	5			$q_{-2} = 3$
	0	,	*	*	3	1	5	0		
-	0	,	*	*	3	1	0	5		
=	0	,	*	*	*	*	4	5		$q_{-3} = 9$
									1	I .

	_			_	_						I
	2	,	1	3	9	1					— мантисса частного
	0	,	7	3	8					:0,345	— мантиссы делимого:делителя
	0	,	7	3	8						
-	0	,	6	9	0						
=	0	,	*	4	8						$q_0=2$
	0	,	*	4	8	0					
-	0	,	*	3	4	5					
=	0	,	*	1	3	5					$q_{-1}=1$
	0	,	*	1	3	5	0				
-	0	,	*	1	0	3	5				
=	0	,	*	*	3	1	5				$q_{-2} = 3$
	0	,	*	*	3	1	5	0			
-	0	,	*	*	3	1	0	5			
=	0	,	*	*	*	*	4	5			$q_{-3} = 9$
	0	,	*	*	*	*	4	5	0		
-	0	,	*	*	*	*	3	4	5		
=	0	,	*	*	*	*	1	0	5		$q_{-4} = 1$ — для округления!

		Частное
0 , 1 0 1	:0.110	Делимое

0 ,		Частное
0 , 1 0 1	:0.110	Делимое
0 , 1 0 1		
- 0 , 0 0 0		
= 0 , 1 0 1		$q_0 = 0$

	0	,	1					Частное
	0	,	1	0	1		:0.110	Делимое
	0	,	1	0	1			
-	0	,	0	0	0			
=	0	,	1	0	1			$q_0 = 0$
	0	,	1	0	1	0		
-	0	,	*	1	1	0		
=	0	,	*	1	0	0		$q_{-1}=1$

	0	,	1	1					Частное
	0	,	1	0	1			:0.110	Делимое
	0	,	1	0	1				
-	0	,	0	0	0				
=	0	,	1	0	1				$q_0 = 0$
	0	,	1	0	1	0			
-	0	,	*	1	1	0			
=	0	,	*	1	0	0			$q_{-1}=1$
	0	,	*	1	0	0	0		
-	0	,	*	*	1	1	0		
=	0	,	*	*	*	1	0		$q_{-2}=1$

	0	,	1	1	0					Частное
	0	,	1	0	1				:0.110	Делимое
	0	,	1	0	1					
-	0	,	0	0	0					
=	0	,	1	0	1					$q_0 = 0$
	0	,	1	0	1	0				
-	0	,	*	1	1	0				
=	0	,	*	1	0	0				$q_{-1}=1$
	0	,	*	1	0	0	0			
-	0	,	*	*	1	1	0			
=	0	,	*	*	*	1	0			$q_{-2} = 1$
	0	,	*	*	*	1	0	0		
-	0	,	*	*	*	0	0	0		
=	0	,	*	*	*	1	0	0		$q_{-3} = 0$

	0	,	1	1	0	ĩ					Частное
	0	,	1	0	1					:0.110	Делимое
	0	,	1	0	1						
-	0	,	0	0	0						
=	0	,	1	0	1						$q_0 = 0$
	0	,	1	0	1	0					
-	0	,	*	1	1	0					
=	0	,	*	1	0	0					$q_{-1}=1$
	0	,	*	1	0	0	0				
-	0	,	*	*	1	1	0				
=	0	,	*	*	*	1	0				$q_{-2} = 1$
	0	,	*	*	*	1	0	0			
-	0	,	*	*	*	0	0	0			
=	0	,	*	*	*	1	0	0			$q_{-3} = 0$
	0	,	*	*	*	1	0	0	0		
-	0	,	*	*	*	*	1	1	0		
=	0	,	*	*	*	*	*	1	0		$q_{-4}=1$, только для округления!

Схема деления мантисс І-м способом

Потенциально бесконечная точность

Начальное состояние:

Схема деления мантисс І-м способом

Потенциально бесконечная точность

Конечное состояние:

Схема деления мантисс ІІ-м способом

Начальное состояние:

Схема деления мантисс II-м способом

Конечное состояние:

Деление нормализованных двоичных мантисс

$\overline{\mathsf{H}}$ ормализованная мантисса вещественного числа X eq 0

 m_X представляет собой число, целая часть которого — ноль, а в старшем разряде дробной части — единица: $(0.\underbrace{1xxx\cdots xxx}_{\text{мантисса}})_2$

Так как нормализованная мантисса — это число из интервала: $\left[\frac{1}{2},1\right)$, то результат деления мантисс будет находиться в $\left(\frac{1}{2},2\right)$.

Результат либо нормализован, либо нет:

$$(0.1xxx \cdots xxx)_2 \in \left(\frac{1}{2}, 1\right),$$

 $(1.xxxx \cdots xxx)_2 \in [1, 2)$

Ситуации ПРС и ПМР

Как и в умножении с плавающей точкой, возможны ситуации:

- ПРС, возникающей, когда результат вычитания порядков операндов выходит за пределы представления положительных порядков. При делении ситуация ПРС является неустранимой, так как в процессе нормализации порядок результата может только увеличиваться. В случае ПРС фиксируется ошибка вычислений.
- ПМР, возникающей, когда результат вычитания порядков операндов выходит за пределы представления *отрицательных* порядков. При делении ситуация ПМР является устранимой, так как в процессе нормализации порядок результата может увеличиваться и порядок результата может «вернуться» в диапазон. В случае ПМР в качестве результата выдается ноль (и при необходимости устанавливается ПМР-флаг).

Алгоритм деления мантисс с восстановлением остатков

Вход: n-разрядные мантиссы операндов, p_q — порядок результата

- **1** $i \leftarrow 0$; в соответствии со схемой способа инициализировать регистры: остатка Δ , делителя d, частного q.
- ② Получить новый остаток $\Delta \leftarrow (\Delta d)$;
- **③** Если $\Delta \geq 0$, то в младший разряд частного занести 1. Если i=0 (ненормализованный результат), то $i \leftarrow (i+1)$; $p_q \leftarrow (p_q+1)$.
- **©** Если $\Delta < 0$, то в младший разряд частного занести 0 и выполнить восстановление старого значения остатка: $\Delta \leftarrow (\Delta + d)$.
- ullet В соответствии со схемой выполнить сдвиги регистров: q, Δ, d .
- Выполнить округление (не обязательный шаг), получив еще один остаток $\Delta \leftarrow (\Delta d)$ и увеличив частное на единицу, если $\Delta \geq 0$.

Форматы для примеров

С порядком:

где разряды [9:4] — ПК мантиссы, [9] — знак числа, [8:4] — разряды нормализованного модуля мантиссы, [3:0] — ПК порядка, [3] — знак порядка, [2:0] — модуль порядка.

2 С характеристикой:

где разряды [9:4] — ПК мантиссы, [9] — знак числа, [8:4] — разряды нормализованного модуля мантиссы, [4:0] — характеристика.

Деление (-29)/50 с восстановлением остатков І-й способ

Операнды и получение порядка частного

Определяется предварительный порядок частного. Используем для работы с порядками модифицированный дополнительный код:

$$+\frac{00,101}{11,010}\\ \frac{11,010}{11,111}$$

МДК $(p_a) = 11,111.$

Деление (-29)/50 с восстановлением остатков l-й способ

Деление мантисс

Частное q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.	
	0,11101	0,11001	операнды; $i=0$	
1	0,11101+1,00111=0,00100		$\Delta_1 = \Delta_0, ho_q \leftarrow (ho_q + 1);$ M \mathcal{J} K $(ho_q) = 00,000;$	
1.	0,0100.		Сдвиги;	
10	0,0100.+1,00111=1,01111		$\Delta_2 < 0$;	
	1,01111+0,11001=0,0100.		Восстановление Δ_2	
10.	0,100		Сдвиги;	
100	0,100+1,00111=1,10111		$\Delta_3 < 0$;	
	1,10111+0,11001=0,100		Восстановление Δ_3	
.100.	1,00		Сдвиги;	
.1001	1,00+1,00111=0,00111		$\Delta_4 \geq 0$;	
1001.	0,0111.		Сдвиги;	
10010	0,0111.+1,00111=1,10101		$\Delta_5 < 0$;	
Округление необязательно				
	1,10101+0,11001=0,0111.		Восстановление Δ_5	
	0,111		Сдвиг Δ , но не q ;	
10011	0,111+1,00111=0,00011		$\Delta_6 \geq 0, m_q \leftarrow (m_q + 1);$	

Деление (-29)/50 с восстановлением остатков І-й способ Фиксация результата

- Инкремент мантиссы из-за округления не повлек её ПРС нормализация не нужна.
- Переполнения порядка частного не было: МДК $(p_a) = 00,000$.
- Знак результата $1 \oplus 0 = 1$.

Результат с округлением:

Результат без округления:

Деление без восстановления остатков

Если новый остаток Δ получается отрицательным, то к нему прибавляется делитель, чтобы восстанавить старое (положительное) значение остатка. Чтобы не тратить на это время — проследим, что происходит к моменту получения следующего остатка Δ' .

• В первом способе:

$$\Delta' = egin{cases} 2 \cdot \Delta + d, & \text{ если } \Delta < 0 \colon 2 \cdot (\underbrace{\Delta + d}_{ ext{B.O.}}) - d = 2 \cdot \Delta + d, \ \\ 2 \cdot \Delta - d, & \text{ если } \Delta \geq 0. \end{cases}$$

• Во втором способе:

$$\Delta' = egin{cases} \Delta + d/2, & ext{ если } \Delta < 0 \colon (\underbrace{\Delta + d}) - d/2 = \Delta + d/2, \ \Delta - d/2, & ext{ если } \Delta \geq 0. \end{cases}$$

Алгоритм деления мантисс без восстановления остатков

Вход: n-разрядные мантиссы операндов, p_q — порядок результата

- **1** $i \leftarrow 0$; в соответствии со схемой способа инициализировать регистры: остатка Δ , делителя d, частного q.
- ② Получить новый остаток: если $\Delta \geq 0$, то $\Delta \leftarrow (\Delta d)$, иначе $\Delta \leftarrow (\Delta + d)$.
- ullet Если $\Delta \geq 0$, то в младший разряд частного занести 1. Если i=0 (ненормализованный результат), то $i \leftarrow (i+1)$; $p_q \leftarrow (p_q+1)$.
- ullet Если $\Delta < 0$, то в младший разряд частного занести 0.
- $oldsymbol{0}$ В соответствии со схемой выполнить сдвиги регистров: q, Δ , d.
- $m{O}$ Выполнить округление (не обязательный шаг), получив еще один остаток (см. шаг 2) и увеличив частное на единицу, если $\Delta \geq 0$.

Деление 50/(-29) без ВО І-й способ

Операнды и получение характеристики частного

Определяется харатеристика частного: $c_q = (c_A - c_d) + \Delta$. Используем для работы с характеристиками МДК:

$$00,1110 + 11,0011 + 00,1000 = 00,1001.$$

МДК
$$(c_q) = 00,1001.$$

Деление 50/(-29) без ВО І-й способ

Деление мантисс

Частное m_q, \leftarrow	дел-е, ∆ ←	дел-ль, <i>d</i>	прим.	
	00,11001	00,11101	операнды;	
0	00,11001+11,00011=11,11100		$-d,\Delta_0<0$; Р-т нормализован!	
0.	11,1100.		сдвиг;	
01	11,1100.+00,11101=00,10101		$+d, \Delta_1 \geq 0;$	
01.	01,0101.		сдвиг;	
011	01,0101.+11,00011=00,01101		$-d, \Delta_2 \geq 0;$	
.011.	00,1101.		сдвиг;	
.0110	00,1101.+11,00011=11,11101		$-d$, $\Delta_3 < 0$;	
0110.	11,1101.		сдвиг;	
01101	11,1101.+00,11101=00,10111		$+d, \Delta_4 \geq 0;$	
1101.	01,0111.		сдвиг;	
11011	01,0111.+11,00011=00,10001		$-d, \Delta_5 \geq 0;$	
Округление необязательно				
	01,0001.		сдвиг;	
11100	01,0001.+11,00011=00,00101		$-d, \Delta_6 \geq 0, m_q \leftarrow (m_q + 1);$	

Деление 50/(-29) без ВО І-й способ

Фиксация результата

- Инкремент мантиссы из-за округления не повлек её ПРС нормализация не нужна.
- Переполнения характеристики частного не было:

МДК
$$(c_q) = 00,1001.$$

• Знак результата $(1 \oplus 0) = 1$.

Результат с округлением:

Результат без округления:

Представление мантисс в дополнительном коде

Договоримся фиксировать точку после знакового разряда.

$$\Phi \text{ормат c порядком:} \left\{ \begin{array}{l} 0 & = \begin{array}{c} \frac{9}{000000} \begin{array}{c} 4 & 3 & 2 & 0 \\ \hline 0000000 & 0 & 0000 \end{array} \end{array} \right\} \\ 9 & = \begin{array}{c} \frac{9}{010010} \begin{array}{c} 4 & 3 & 2 & 0 \\ \hline 010010 & 0 & 100 \end{array} \end{array} \right\} \\ -9 & = \begin{array}{c} \frac{9}{0101110} \begin{array}{c} 4 & 3 & 2 & 0 \\ \hline 101110 & 0 & 100 \end{array} \right\} \\ \Phi \text{ормат c характеристикой:} \left\{ \begin{array}{c} 1 & = \begin{array}{c} \frac{9}{0} \begin{array}{c} 4 & 3 & 0 \\ \hline 010000 & 1001 \end{array} \right] \\ 25 & = \begin{array}{c} \frac{9}{0} \begin{array}{c} 4 & 3 & 0 \\ \hline 011001 & 1101 \end{array} \right. \\ -25 & = \begin{array}{c} \frac{9}{0} \begin{array}{c} 4 & 3 & 0 \\ \hline 011001 & 1101 \end{array} \right] \end{array} \right.$$

Определение разряда частного q_0

Пусть S(x) — функция, возвращающая знак x.

- ullet $q_0 \leftarrow 1$, если знаки делимого A и текущего остатка Δ совпадают, иначе $q_0 \leftarrow 0$.
- $oldsymbol{Q}_0$ инвертируется, если знаки делимого A и делителя d различны (т.е. результат отрицателен).

Выражая формулой и упрощая:

$$q_0 \leftarrow (\underbrace{(1 \oplus S(\Delta) \oplus S(A))}_{\mathsf{п.1}\ \mathsf{правила}} \oplus \underbrace{(S(A) \oplus S(d))}_{\mathsf{п.2}\ \mathsf{правила}}),$$
 $q_0 \leftarrow \neg (S(\Delta) \oplus S(d)),$ $q_0 \leftarrow (S(\Delta) = S(d)).$

Процедура поиска разряда частного Вызов: ШАГ(Δ , d, q)

ullet Если знак остатка Δ и делителя d совпадают, то $\Delta \leftarrow (\Delta - d)$, иначе $\Delta \leftarrow (\Delta + d)$.

$$\Delta \leftarrow egin{cases} (\Delta - d), & ext{ если } S(\Delta) = S(d), \ (\Delta + d), & ext{ иначе}. \end{cases}$$

② Определяется значение младшего разряда мантиссы частного: 1, если знаки остатка Δ и делителя d совпадают, иначе — 0.

$$q_0 \leftarrow (S(\Delta) = S(d)).$$

Значение подается на вход замещения младшего разряда регистра мантиссы частного q.

ullet В соответствии со схемой выполняются сдвиги регистров Δ , d, q.

Алгоритм деления мантисс в ДК без ВО

- Если делитель ноль, фиксируется ошибка деления на ноль.
- Если делимое ноль, фиксируется результат: ноль.
- Определяется предварительный порядок частного:
 $p_q \leftarrow (p_A p_d)$. Возможны ПМР или ПРС.
- **③** Инициализируются регистры остатка Δ и делителя d. Младший разряд регистра частного q_0 заполняются знаком будущего результата: $q_0 \leftarrow (sign(A) \oplus sign(d))$.
- lacktriangle Устанавливается шаг $i \leftarrow 1$. Нужно выполнить (n-1) шагов.
- lacktriangle Выполняется ШАГ (Δ, d, q) .
- ullet Если m_q нормализована, то $p_q \leftarrow (p_q+1)$ и переход к пункту 10. Возможно ПРС.
- ullet Выполняется ШАГ (Δ, d, q) ,
- $oldsymbol{0}$ Фиксируется ошибка или выдается результат: $m_q \cdot 2^{p_q}$.

Округление позволяет повысить точность

- lacktriangle Выполняется поиск старшего разряда отбрасываемой части. Для этого выполняется ШАГ (Δ,d,q) , но сдвиг регистра частного не выполняется.
- Если найденный старший разряд отбрасываемой части ноль, то алгоритм завершается, коррекции мантиссы не требуется.
- ullet В противном случае мантисса результата увеличивается на единицу $m_q \leftarrow (m_q+1)$, что может повлечь одно из следующих взаимоисключающих последствий.
 - Временное ПРС мантиссы (возникает, если $m_q>0$ до округления). Для коррекции мантисса сдвигается вправо, а порядок увеличивается на единицу. Возможно ПРС.
 - Потеря нормализации мантиссы (возникает, если $m_q < 0$ до округления). Для коррекции мантисса сдвигается влево, а порядок на единицу уменьшается. Возможно ПМР.
 - Ни ПРС мантиссы, ни потери нормализации не возникнет. Никаких действий по коррекции не требуется.

Деление (-27)/(-9) Представление

Предварительный порядок частного: $p_q = 5 - 4 = 1$.

Деление (-27)/(-9) Деление мантисс I-м способом

Частное m_q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.
.,0	11,00101	11,01110	операнды;
.,01	11,00101+00,10010=11,10111		$-d$; $S(\Delta_1) = S(d)$;
.,010	11,0111.+00,10010=00,00000		$-d$; $S(\Delta_2) \neq S(d)$; $\Delta = 0!!!$
.,.0101	00,0000.+11,01110=11,01110		$+d$; $S(\Delta_3) = S(d)$;
.,01011	10,1110.+00,10010=11,01110		$-d$; $S(\Delta_4) = S(d)$;
0,10111	10,1110.+00,10010=11,01110		$-d$; $S(\Delta_5) = S(d)$;
			m_q нормал.: $p_q \leftarrow (p_q + 1)$;
			P-т отсеч. $p_q = 2$.
0,10111(+1)	10,1110.+00,10010=11,01110		$-d$; $S(\Delta_6) = S(d)$;
			$m_q \leftarrow (m_q + 1);$
0,11000			Р-т округл.; $p_q = 2$.

Деление (-27)/(-9)Оценка результата

Результат с отсечением:

дает абсолютную погрешность $\Delta = |3-2.875| = 0.125$ и относительную $\delta = 0.125/3 \approx 0.041$.

Результат с округлением оказывается точным:

Деление (19)/(-25) Представление

Предварительная характеристика частного: $c_q = 13 - 13 + 8 = 8$.

Деление (19)/(-25) Деление мантисс I-м способом

Частное m_q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.
.,1	00,10011	11,00111	операнды;
.,11	00,10011+11,00111=11,11010		$+d$; $S(\Delta_1) = S(d)$;
.,110	11,1010.+00,11001=00,01101		$-d$; $S(\Delta_2) \neq S(d)$;
.,.1100	00,1101.+11,00111=00,00001		$+d$; $S(\Delta_3) \neq S(d)$;
.,11001	00,0001.+11,00111=11,01001		$+d$; $S(\Delta_4) = S(d)$;
1,10011	10,1001.+00,11001=11,01011		$-d$; $S(\Delta_5) = S(d)$;
			m_q ненорм.! Еще шаг!
1,00111	10,1011.+00,11001=11,01111		$-d$; $S(\Delta_6) = S(d)$;
			Р-т отсеч. $c_q = 8$;
1,00111(+1)	10,1111.+00,11001=11,10111		$-d$; $S(\Delta_7) = S(d)$;
			$m_q \leftarrow (m_q + 1);$
1,01000			P-т округл.; $c_q = 8$.

Деление (19)/(-25)

Оценка результата

Результат с отсечением:

дает абсолютную погрешность $\Delta=|0.76-0.78125|=0.02125$ и относительную $\delta=0.02125/0.76\approx0.028$.

Результат с округлением оказывается точнее:

дает абсолютную погрешность $\Delta = |0.76-0.75| = 0.01$ и относительную $\delta = 0.01/0.76 \approx 0.013$.

1)

Выполнить деление чисел (выбрав формат с плавающей точкой самостоятельно):

- 25/5, первым способом без восстановления остатков;
- 2 39/10, вторым способом без восстановления остатков.

Подобрать пример, когда в результате округления возникает временное ПРС мантиссы.

Советы самоучке

Представление чисел в формате с плавающей точкой и их обработка обсуждаются в [2, 1].

Библиография I

Б.Г.Лысиков. Арифметические и логические основы цифровых автоматов / Б.Г.Лысиков. — 2 изд. —

Мн.: Выш. школа, 1980.

А.Я.Савельев. Прикладная теория цифровых автоматов / А.Я.Савельев. —

М.: Высшая школа, 1987.

leee standard for floating-point arithmetic: Standard / Institute of Electrical and Electronics Engineers. — Geneva, CH: 2008.