Preguta 2

| i | $\alpha_i$ | $a_i$ | $d_i$ | $\theta_i$ |       |
|---|------------|-------|-------|------------|-------|
| 1 | $\pi/2$    | 0     | $d_1$ | $q_1$      | - Rev |
| 2 | $-\pi/2$   | 0     | $q_2$ | 0          | Pei   |
| 3 | $\pi/2$    | 0     | $d_3$ | $q_3$      | - Rev |
| 4 | $\pi/2$    | 0     | $q_4$ | 0          | Pei   |
| 5 | $-\pi/2$   | 0     | $d_5$ | $q_5$      | - Rev |
| 6 | $\pi/2$    | 0     | 0     | $q_6$      | Rev   |
| 7 | 0          | 0     | $d_7$ | $q_7$      | Rev   |
|   |            |       |       |            |       |

 $\begin{bmatrix} V \\ \omega \end{bmatrix} = \begin{bmatrix} Z_0 \times P_{0,7} & Z_1 & Z_2 \times P_{2,7} & Z_3 & Z_4 \times P_{4,7} & Z_5 \times P_{5,5} \\ Z_0 & O & Z_2 & O & Z_4 & Z_5 \end{bmatrix}$ 

|           | _   |      |   |
|-----------|-----|------|---|
|           |     |      |   |
| - ~       | 1   | ۲à   | 1 |
| 26x16     | .   | 1 7  |   |
| - 6 X / E | ,+  | 19,  | 1 |
| 2         | ı   | 1 :  |   |
| 46        | ١ ١ | la l |   |
|           |     | 477  |   |

 $\frac{\mathbf{z}_{i-1} \times \mathbf{p}_{i-1,n}}{\mathbf{z}_{i-1}}$ 

6) Se elimina la última columno y & halla el rango

Hay singularidad cinemática, ya que se pierde rango

c) 
$$V = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$$
  $\omega = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ 

En python: error en la inversa

V Vel. de giro: è, èz y és

## Solución



Modelo de cinemática inverso extraído de PPT

$$\dot{\varphi}_1 = \frac{1}{r} \left( \frac{\sqrt{3}}{2} v_x - \frac{1}{2} v_y - l\omega \right)$$

$$\dot{\varphi}_2 = \frac{1}{r} \left( v_y - l\omega \right)$$

$$\dot{\varphi}_3 = -\frac{1}{r} \left( \frac{\sqrt{3}}{2} v_x + \frac{1}{2} v_y + l\omega \right)$$

## Recuplazando

$$\dot{\varphi}_1 = \sqrt{3} = 1,7320$$

$$\dot{\varphi}_2 = 0$$

$$\dot{\varphi}_3 = -\sqrt{3} = -1,7320$$

$$\begin{array}{cccc}
\sqrt{V_{Y}} &= 0 \\
\sqrt{V_{W}} &= \frac{-r}{3!\ell} \left( \dot{\varphi}_{1} + \dot{\varphi}_{2} + \dot{\varphi}_{3} \right)
\end{array}$$

$$\omega = -\frac{1}{12} (\dot{p}_1 + \dot{p}_2 + \dot{\varphi}_3)$$

## · De circuatica inversa, reamplayando

$$V \dot{\varphi}_{1} = -\frac{Q_{1}2}{Q_{1}Q_{2}} \omega = \frac{1}{3} (\dot{\varphi}_{1} + \dot{\varphi}_{2} + \dot{\varphi}_{3})$$

$$V \dot{\varphi}_{2} = - \frac{0.2}{0.05} \omega = \frac{1}{3} (\dot{\varphi}_{1} + \dot{\varphi}_{2} + \dot{\varphi}_{3})$$

$$\sqrt{\dot{\varphi}_{3}} = -\frac{0.2}{0.05} \cdot \omega = \frac{1}{3} (\dot{\varphi}_{1} + \dot{\varphi}_{2} + \dot{\varphi}_{3})$$



## Preguta 4:

- a) Porque el tipo de rueda da restricciones al movimiento del robot. Por otro lado, la configuración del robot depende del sistema de cef. de cada rueda.
- 6) Se pueden relacionar a través de la sumatoria de energía cinética de trasloción, rotación.

$$T = \frac{1}{2} \text{ m. } V_c. V_c + \frac{1}{2}.\omega^T. I.\omega$$
E. cinética  $\frac{1}{2}$  | L. Tensor de inercia

C) Al tener el modelo dinámico del robot, se usa la dinámico directa, de tal forma que, al aplicar un tarque a cada motor, se hallon las aceleraciones de cada aiticulación. Estas al integrarlas 2 veces se tima las posiciones articulares.