

PROPOSAL PENGAJUAN TUGAS AKHIR

Realisasi Alat Pengiriman Data Hasil Tangkapan Nelayan dilengkapi Global Positioning System (GPS) dan Sensor Angin Berbasis Mikrokontroler yang Terintegrasi Webserver dengan Link-Komunikasi Radio Data Transceiver 170 MHz

Diusulkan Oleh:

Aditya Kusuma; 161331033; 2016

POLITEKNIK NEGERI BANDUNG BANDUNG 2019

LEMBAR PENGESAHAN PROPOSAL TUGAS AKHIR

1. Judul Tugas Akhir : Realisasi Alat Pengiriman Data Hasil Tangkapan Nelayan dilengkapi *Global Positioning System* (GPS) dan Sensor Angin Berbasis Mikrokontroler yang Terintegrasi Webserver dengan Link-Komunikasi Radio Data Transceiver 170 MHz

2. Identitas Mahasiswa Pengusul

a) Nama : Aditya Kusuma b) NIM : 161331033

c) Prodi : D3 Teknik Telekomunikasi

d) Jurusan : Teknik Elektro

e) Institusi : Politeknik Negeri Bandung f) Alamat Rumah : Kuningan, Jawa Barat

g) No. Telp/HP : 082127256100 / 085724962833 h) Email : adhietya.kusuma@gmail.com

3. Identitas Dosen Pembimbing

a) Nama Lengkap dan Gelar : Vitrasia, ST., MT.

b) NIDN : 0015026408

c) Alamat Rumah : Gegerkalong, Bandung

d) No. Telp/HP : 081321324816 4. Biaya Kegiatan Total : Rp. 3.872.000,-Sisa Barang dari PKM Polban : Rp. 2.090.000,-Biaya Kegiatan : Rp. 1.782.000,-

5. Jangka Waktu Pelaksanaan : 4 Bulan

Menyetujui, Bandung, 8 Februari 2019

Dosen pembimbing 1, Pengusul,

(Vitrasia, ST., MT.) (Aditya Kusuma) NIDN. 0015026408 NIM. 161331033

Abstrak

Indonesia yang merupakan salah satu negara maritim dunia, dengan luas lautan mencapai 2/3 dari keseluruhan dan garis pantai terpanjang ke-2 didunia. Namun, nelayan yang hidup dari hasil sumber daya kelautan masih menjadi masyarakat miskin. Beberapa faktor yang melandasinya seperti kurangnya teknologi penunjang, oknum tengkulak yang dapat memainkan harga, ketidakpastian penjualan, dan sistem pemasaran yang belum terintegrasi. Ide untuk membantu mengatasi permasalah tersebut yaitu membuat sistem pengiriman data hasil tangkapan nelayan secara langsung, dilengkapi dengan *Global Positioning System* (GPS), sensor angin (kecepatan dan arah) berbasis mikrokontroler. Lalu penggunaan kanal *Very High Frequency* (VHF) untuk memuat data dengan jangkauan yang lebih luas dibandingkan kanal *Ultra High Frequency* (UHF). Sehingga nelayan dapat mengirimkan data hasil tangkapannya secara langsung ketika masih melaut. *Website* yang terintegrasi dengan sistem tersebut pun menjadi jawaban dari digitalisasi pasar, terhubung dengan internet dan penunjang publikasi.

Kata kunci: teknologi penunjang, pengiriman data hasil tangkapan nelayan, GPS, sensor angin, mikrokontroler, kanal VHF, website yang terintegrasi, internet.

DAFTAR ISI

Halaman Judul	i
Lembar Pengesahan	ii
Abstrak	iii
Daftar Isi	iv
Daftar Gambar dan Tabel	v
BAB I. PENDAHULUAN	1
1.1 Latar Belakang1.2 Tujuan1.3 Luaran	2
BAB II. TINJAUAN PUSTAKA	3
BAB III. TAHAPAN PELAKSANAAN	5
 3.1 Perancangan 3.2 Realisasi / Pengerjaan 3.3 Pengujian 3.4 Evaluasi dan Perbaikan 3.5 Penyusunan Laporan 	6 6
BAB IV. BIAYA DAN JADWAL KEGIATAN	7
4.1 Anggaran Biaya	
DAFTAR PUSTAKA	8
Lampiran 1 Biodata Pengusul dan Dosen Pembimbing	9
Lampiran 2 Justifikasi Anggaran Kegiatan	12
Lampiran 3	13
Lampiran 4 Surat Pernyataan Ketua Pelaksana	14
Lampiran 5 Gambaran Umum Sistem yang akan dibuat	15

Daftar Gambar dan Tabel

Gambar 3.1 Blok Diagram Perancangan Sistem	5
Tabel 4.1 Tabel Anggaran Kegiatan	7
Tabel 4.2 Tabel Jadwal Kegiatan	7
Tabel 5.1 Tabel Justifikasi Anggaran Kegiatan	12
Gambar 5.1 Gambaran Sistem alat yang hendak dibuat	15
Gambar 5.2 Flowcart umum sistem yang akan dibuat	16

BAB I

PENDAHULUAN

1.1 Latar Belakang

Indonesia yang merupakan negara kepulauan dengan luas kelautan mencapai 2/3 dari keseluruhan. Lalu dengan garis pantai terpanjang kedua di dunia menegaskan Indonesia sebagai negara maritim dunia. Tata kelola kemaritiman Indonesia sudah selayaknya dijadikan komoditi yang bisa membantu perekonomian negara. Menurut Kusumastanto (2002), mencatat Indonesia memiliki 42 kota dan 181 kabupaten merupakan wilayah yang memiliki pesisir. Luas lautan Indonesia yaitu 3,26 juta km², dan Zona Ekonomi Ekslusif (ZEE) sebesar 2,55 juta km².

Kemiskinan merupakan salah satu perhatian untuk nelayan-nelayan di Indonesia. Angka kemiskinan masyarakat pesisir di Indonesia yang mata pencahariannya sebagian besar sebagai nelayan mencapai 32,4% (Purnomo, 2015). Kemiskinan tersebut dikarenakan hasil tangkapan yang kecil, padahal stok ikan di perairan Indonesia sangat melimpah. Kecilnya hasil tangkapan nelayan, karena penerapan teknologi pendukung untuk kapal-kapal nelayan masih sangat minim bahkan tanpa teknologi penunjang apapun (Hamzah, 2008).

Dalam hal penjualan, pemasaran, distribusi, dan pelelangan ikan nelayan pun masih sederhana dan tradisional. Masih juga didapatkan oknum-oknum tengkulak yang memainkan harga ikan ditingkat dasar. Sehingga ikan hasil tangkapan nelayan pun dihargai sangat murah. Acuan-acuan harga ikan dan regulasi penting diterapkan untuk nelayan dalam lingkup komunitas atau koperasi bagi nelayan di suatu wilayah.

Modernisasi teknologi pendukung nelayan pun dirasa sangat perlu, untuk membantu nelayan. Lalu menurut Hamzah, A (2008), pola penerapan teknologi atau modernisasi perikanan pada komunitas nelayan dapat menunjukan peningkatan efektifitas dan efisiensi pekerjaan. Lalu, Kementrian Kelautan dan Perikanan Republik Indonesia (KKP RI) pun ikut dalam hal mengembangkan teknologi untuk nelayan tersebut berupa Aplikasi Nelayan Pintar (IndonesiaBaik.id, 2018) dan Pengembangan untuk Aplikasi Elektronik Log Book Penangkapan Ikan untuk Mendukung Pengelolaan Perikanan (Nugroho, 2017).

Namun, kedua pengembangan teknologi tersebut hampir sama dengan pembuatan alat dan sistem yang akan kami buat, yaitu dapat membantu nelayan lebih efisien. Namun alat pengembangan teknologi tersebut, masih bergantungan dengan koneksi data dari operator seluler (*Internet Service Provider*). Lalu, nelayan yang rata-rata masih berpendidikan rendah, belum terlalu mengerti jika dalam mengakses internet dalam hal pembelian kuota data. Kemudian, dalam hal pengiriman data hasil tangkapan tidak dipublish

untuk keperluan penjualan dipasar dan data hasil tangkapan nelayan tidak secara langsung dikirimkan pasca tangkapan didapatkan.

Ketersedian pada band VHF di frekuensi 170 MHz dapat membantu dalam hal pengiriman informasi dan penerapan untuk *Internet of Things* (IoT). Dengan band VHF tersebut diharapkan jangkuan lebih luas dengan daya yang tidak terlalu besar. Lalu penggunaan mikrokontroler sebagai pengolah data dan protocol-protokol pengiriman datanya. Dengan *Global Positioning System* (GPS), dapat mengetahui posisi nelayan ketika melaut dan data dari GPS tersebut dapat diolah untuk keperluan navigasi dan lain-lain.

Dengan latar belakang tersebut, kami berencana membuat prototype alat pengiriman data hasil tangkapan nelayan secara langsung ketika nelayan masih dalam keadaan melaut. Sehingga data tersebut dapat diolah kemudian menjadi acuan di pasar untuk kemudian ikan tersebut diharapkan dapat terjual sebelum nelayan sampai ke dermaga.

1.2 Tujuan

Tujuan dari Tugas Akhir ini yaitu:

- Untuk meraih gelar diploma (Ahli Madya) dari Program Studi D3 Teknik
 Telekomunikasi, Jurusan Elektro, Politeknik Negeri Bandung
- Membuat alat dan sistem aplikasi pengiriman data hasil tangkapan nelayan untuk komunitas nelayan dilengkapi *Global Positioning System* (GPS) untuk Tracking Posisi Nelayan, yang terintegrasi dengan website dan webserver.
- Membuat dan menguji link komunikasi dengan Radio Data Transceiver 170 MHz di daerah

1.3 Luaran

Luaran dari kegiatan Tugas Akhir ini yaitu:

- Laporan Kemajuan Tugas Akhir dan Laporan Tugas Akhir
- Purwarupa alat pengiriman data hasil tangkapan nelayan yang dilengkapi
 GPS, sensor kecepatan dan arah angin yang terintegrasi dengan website.

BAB II

TINJAUAN PUSTAKA

Indonesia merupakan negara kepulauan terbesar dengan laut/perairan yang luas dan mempunyai garis pantai terpanjang kedua di dunia serta bahari yang memiliki potensi besar dalam hal sumber daya ikannya. Menurut Kusumastanto (2002), mencatat Indonesia memiliki 42 kota dan 181 kabupaten merupakan wilayah yang memiliki pesisir. Lalu menurut Syam dan Suhartini, *et al.* (2005) luas negara Indonesia mencapai 5,8 km² dan luas lautannya mencapai 2/3 dari keseluruhan (daratan dan lautan) dapat menjadi potensi sumber daya perikanan sebagai salah satu tumpuan harapan bangsa. Potensi untuk menggarap hasil Perikanan yang lebih baik dan Penjualan atau pelelangan ikan yang lebih modern dan terintegrasi juga terbuka lebar.

Menurut Hamzah (2008), Persepsi nelayan terhadap Penerapan teknologi pun cukup baik. Respon nelayan dalam menyambut penerapan teknologi pendukung terutama dalam hal infomasi mengenai keberadaan ikan dan informasi harga ikan. Sehingga nelayan tidak dirugikan jika ada oknum tengkulak yang memainkan harga ikan karena memiliki acuan harga. Lalu, percepatan penjualan ikan dapat membantu ikan hasil tangkapan nelayan terdistribusi lebih cepat dan tidak cepat membusuk.

Kementrian Kelautan dan Perikanan Republik Indonesia (KKP RI) pun ikut dalam hal mengembangkan teknologi untuk nelayan tersebut berupa Aplikasi Nelayan Pintar (IndonesiaBaik.id, 2018). Implementasi Aplikasi tersebut dapat membantu dalam hal menentukan fishing ground, kesuburan perairan, Peta Perkiraan Daerah Penangkapan Ikan (PPDPI), informasi cuaca, hingga informasi harga ikan terbaru, serta fitur perkiraan BBM yang dibutuhkan.

Pada jurnal Kelautan Nasional oleh Nugroho (2017), Pengembangan di KKP RI pun mengembangkan juga e-logbook. Elektronik log-book itu berfungsi sebagai data penangkapan akurat untuk skala nasional. Sehingga data tersebut dapat menjadi acuan untuk data statistik maupun data rii untuk pegangan nasional. Untuk mendukung kebijakan pengelolaan perikanan yang berkelanjutan serta dapat menjamin kelestarian sumber daya ikan, diperlukan data perikanan yang akurat dari hasil kegiatan penangkapan ikan (Novianti, 2011).

Menurut Britanica, Pangkalan data (*Database*) merupakan pengumpul data atau informasi yang spesifik yang kemudian dapat merubah respon menjadi suatu query untuk dijalankan/diolah oleh suatu program. Data-data digital yang dapat diolah biasanya dimasukan ke dalam suatu database. Suatu komunitas membutuhkan database untuk menyimpan data-data pentingnya. Dalam hal ini data mengenai berbagai atribut suatu komunitas nelayan dan database hasil penangkapan ikan.

Penyajian data atau informasi di internet dalam bentuk website. Website tersebut memuat infomasi mengenai komunitas tersebut, tampilan data hasil tangkapan nelayan komunitas, booking online hasil tangkapan, maps dengan posisi nelayan-nelayan tersebut.

Kanal Frekuensi Sangat Tinggi (*Very High Frequency* – VHF), merupakan range frekuensi antara 30 MHz sampai 300 MHz. Alokasi penggunaan frekuensi pada band ini cukup beragam. Namun, kebanyakan band pada VHF ini digunakan untuk penggunaan radio, seperti radio FM, radio maritime sampai radio amatir. Kelebihan frekuensi ini juga yaitu terletak pada jarak jangkau yang lebih jauh jika dibandingkan dengan frekuensi diatasnya yaitu pada band *Ultra High Frequency* (UHF).

Global Positioning System (GPS)) adalah sistem untuk menentukan letak di permukaan bumi dengan bantuan penyelarasan (synchronization) sinyal satelit. Sistem ini menggunakan 24 satelit yang mengirimkan sinyal gelombang mikro ke Bumi. Sinyal ini diterima oleh alat penerima di permukaan, dan digunakan untuk menentukan letak, kecepatan, arah, dan waktu. Sistem yang serupa dengan GPS antara lain GLONASS Rusia, Galileo Uni Eropa, IRNSS India.

GPS Tracker atau sering disebut dengan GPS Tracking adalah teknologi AVL (Automated Vehicle Locater) yang memungkinkan pengguna untuk melacak posisi kendaraan, armada ataupun mobil dalam keadaan Real-Time. GPS Tracking memanfaatkan kombinasi teknologi GSM dan GPS untuk menentukan koordinat sebuah objek, lalu menerjemahkannya dalam bentuk peta digital.

Google maps API merupakan sistem peta digital dari Google. GMaps ini sering menjadi acuan berbagai sistem aplikasi karena keandalannya dan ketepannya dalam hal pemetaan maupun posisi sesuatu. GMaps ini dapat diterapkan di website dengan menggunakan API Google Mapsnya tersebut yang disadur koordinatnya dari database yang sebelumnya database tersebut merupakan data langsung koordinat yang dikirimkan nelayan dari GPS yang terpasang.

Sensor-sensor angin yang dipakai merupakan sensor untuk mengukur kecepatan angin dan arah angin. Sensor tersebut sebelumnya harus sudah terkalibrasi sesuai dengan satuan yang berlaku. Menurut Derek (2016), pembacaan dari sensor kecepatan angin ini akan menghasilkan tegangan outputan sensor dari besaran kinetic angin ke besaran listrik. Sinyal tersebut kemudian diubah dan diolah di mrokontroler menjadi satuan yang sesuai dengan pengukuran kecepatan angin. Faktor koreksi dan kalibrasi perlu ditambahkan dalam setiap pengukuran sensor, dibandingkan dengan alat/device yang telah memiliki pengukuran yang lebih baik. Ini dilakukan agar data hasil pengukuran sesuai atau mendekati standar.

BAB III

TAHAP PELAKSANAAN

3.1 Perancangan

Tahap perancangan ini dimulai dengan membagi sub-sub bidang pekerjaan kedalam blok-blok tertentu yang dapat mempermudah dalam pengerjaan. Berikut blok diagram perancangan sistem yang akan dibuat.

Gambar 3.1 Blok Diagram Perancangan Sistem

Alat yang akan digunakan terdiri dari 2 bagian alat, yaitu bagian Mobile station yang diletakan dikapal nelayan dan bagian base station yang diletakan di darat yang terhubung dengan Webserver. Radio Data Transceiver 170 MHz yang menghubungkan antara mobile station dan base station.

Pada tahap ini dilakukan juga identifikasi terkait modul/sensor yang digunakan dan format datanya, seperti modul *Global Positioning System* (GPS), sensor berat (*loadcell*) sensor kecepatan dan arah angin. Sehingga mikrokontroler tersebut dapat memperoleh data-dari dari sensor/modul tersebut, untuk kemudian selanjutnya dikirimkan ke basestation di pantai yang memiliki akses ke webserver. Setelah mengidentifikasi jenis data yang akan dikirimkan lalu keefektifan data tersebut dikirim dan terupload ke web server, memerlukan waktu berapa lama sekali, sehingga waktu tersebut perlu ditetapkan.

Pada bagian software dan webserver dilakukan perancangan dalam hal flow chart dan juga relational databasenya lalu pembagian webpage sesuai kegunaan. Sehingga, didapatkan aplikasi dan website yang sesuai dan efektif dalam penggunaannya.

3.2 Realisasi / Pengerjaan

Realisasi hardware ini dilakukan dengan membuat alat perbagian yang telah dirancang sebelumnya. Realisasi hardware ini juga mencakup pemrograman mikrokontrolernya. Dan bagian-bagian yang tersusun dari

komponen-komponennya. Lalu pembuatan casing masuk kedalam realisasi hardware ini. Komponen-komponennya terdiri dari mikrokontroler, nodeMCU, sensor kecepatan angin, sensor arah angin, radio data transceiver,

Realisasi software ini berupa pembuatan flowcart aliran dan transfer data aplikasi yang akan diterapkan pada teknologi ini. Software yang ada akan berupa aplikasi android untuk nelayan serta web pada server penerima dengan database-databasenya. Web tersebut juga akan terhubung dengan database dan tabel-tabel datanya, lalu menggunakan Google Maps API sebagai penampil peta digital yang akan menunjukan posisi nelayan.

3.3 Pengujian

Berikut ini merupakan skema yang digunakan dalam hal pengujian alat yang dibuat.

- Alat telah terintegrasi dengan baik, dan dapat mengirimkan data-data dari mobile station ke base station sampai ke website, dan tampil di website.
- Terdapat skema penghapusan/drop data yang rusak atau tidak sesuai secara otomatis pada mikrokontroler pada bagian mobile station dan base station.
- Pengujian jarak jangkauan radio data transceiver 170MHz dapat mengirim dan menerima data.

3.4 Evaluasi dan Perbaikan

Tahapan ini merupakan tahapan akhir dari pembuatan sampai ke percobaan alat. Sehingga, telah didapatkan hasil pengujian sesuai skema untuk selanjutnya jika ada kesalahan dilakukan troubleshooting. Jika telah selesai dan sesuai rencana, dilakukan pelaporan dalam bentuk Laporan Tugas Akhir.

3.5 Penyusunan Laporan

Penyusunan laporan Tugas Akhir dilakukan secara paralel, dari minggu awal setelah proposal TA disetujui, dengan jadwal bimbingan disesuaikan. Lalu, laporan TA ini akan melewati tahapan-tahapan Sidang Kemajuan Tugas Akhir hingga Sidang Tugas Akhir. Penyusunan menyusuaikan dengan format yang disepakati.

BAB IV

BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Untuk Pengerjaan Tugas Akhir ini, memerlukan biaya sebagai berikut :

No.	Jenis Pengeluaran	Biaya (Rp.)
1.	Perlengkapan	200.000
2.	Barang Habis Pakai	3.200.000
3.	Perjalanan dan Transportasi	400.000
4.	Lain-lain	72.000
	Jumlah (Rp.)	3.872.000

Tabel 4.1 Tabel Anggaran Biaya

4.2 Jadwal Kegiatan

Berikut jadwal untuk pengerjaan Tugas Akhir ini:

No.	Ionis Vaciatan	Bulan			
NO.	Jenis Kegiatan	1	2	3	4
1.	Pendataan alat/komponen yang				
	akan digunakan dan juga				
	pendataan alat/komponen yang				
	sudah tersedia dan yang belum				
	tersedia				
2.	Pembelian alat/komponen yang				
	belum tersedia				
3.	Realisasi alat dan komponen				
	per-sub bagian				
4.	Integrasi alat dan komponen				
5.	Pembuatan aplikasi dan website				
6.	Pengetesan dan Pencatatan				
	untuk Evaluasi				
7.	Perbaikan dan Finalisasi				
8.	Penyusunan Laporan Tugas				
	Akhir				

Tabel 4.2 Tabel Jadwal Kegiatan Tugas Akhir

DAFTAR PUSTAKA

- ArduPilot. 2018. "SiK Radio Advance Configuration and Technical Information". Laman: http://ardupilot.org/copter/docs/common-3dr-radio-advanced-configuration-and-technical-information.html ArduPilot Dev Team.
- Britannica. *Computer Science : About Database*. Laman : https://www.britannica.com/technology/database . The Editors of Britannica.com
- Derek, Oktavian. 2016. "Rancang Bangun Alat Monitoring Kecepatan Angin Dengan Koneksi Wireless Menggunakan Arduino Uno". E-Journal Teknik Elektro dan Komputer vol.5 no.4 Juli-September 2016, ISSN: 2301-8402. Manado: Fakultas Teknik, Universitas Samratulangi.
- Detik. 2016. "Ubah Muara Baru Jadi Pasar Modern, Susi: Lelang Ikan Pakai Sistem Online".

 Diakses 26 Februari 2018. https://finance.detik.com/berita-ekonomi-bisnis/d-3308271/ubah-muara-baru-jadi-pasar-modern-susi-lelang-ikan-pakai-sistem-online
- Hamzah, A. et al. 2008. "Respon Komunitas Nelayan terhadap Modernisasi Perikanan (Studi Kasus Nelayan Suku Bajo di Desa Lagasa, Kabupaten Muna, Provinsi Sulawesi Tenggara)", Vol 02 No 02. Jurnal Sosiologi Pedesaan IPB. Diakses pada tanggal: 2 Januari 2019. Tersedia di: http://journal.ipb.ac.id/index.php/sodality/article/view/5885
- Kementrian Keluatan dan Perikanan RI. 2017. "Maritim Indonesia, Kemewahan Yang Luar Biasa". Diakses 1 Januari 2019. https://kkp.go.id/artikel/2233-maritim-indonesia-kemewahan-yang-luar-biasa
- Kusumastanto, H. Tridoyo. 2002. "Ocean Policy dalam Membangun Negeri Bahari di Era Otonomi Daerah". Jakarta: Gramedia Pustaka Utama.
- Muawanah, Umi. et al. 2017. "GAMBARAN, KARAKTERISTIK PENGGUNA DAN PERSEPSI NELAYAN TERHADAP KEMANFAATAN SISTEM APLIKASI NELAYAN PINTAR (SINP) DI PELABUHAN PERIKANAN INDONESIA". Jurnal Elektronik, Kebijakan Sosial Ekonomi Balitbang Kementrian Kelautan dan Perikanan Republik Diakses tanggal 31 Desember 2018. Tersedia di : http://ejournal-balitbang.kkp.go.id/index.php/jkse/article/view/6460
- Nughroho, Hadi. et al. 2017. *APLIKASI TEKNOLOGI ELEKTRONIK LOG BOOK PENANGKAPAN IKAN UNTUK MENDUKUNG PENGELOLAAN PERIKANAN*. Jurnal Elektronik Kelautan Nasional. Diakses tanggal 29 Desember 2018. Tersedia di : http://ejournal-balitbang.kkp.go.id/index.php/jkn/article/view/6174
- Noviyanti, R. 2011. Kondisi Perikanan Tangkap di Wilayah Pengelolaan Perikanan (WWP) Indonesia. Hal 6. Diakses tanggal 3 Januari 2019. Tersedia di : www.pustaka.ut.ac.id/dev25/pdfprosiding2/fmipa201130.pdf.
- Parkinson, B.W. 1996. *Global Positioning System: Theory and Applications*, chap. 1: Introduction and Heritage of NAVSTAR, the Global Positioning System. pp. 3-28, American Institute of Aeronautics and Astronautics, Washington, D.C.
- Purnama, Ratna. 2015. "Ini Masalah Utama Kemiskinan Masyarakat Pesisir". Sindonews. Diakses 26 Februari 2018. https://ekbis.sindonews.com/read/1013402/34/ini-masalah-utama-kemiskinan-masyarakat-pesisir-1434457234

LAMPIRAN 1

BIODATA PENGUSUL

A. Identitas Diri

1.	Nama Lengkap	Aditya Kusuma
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	D3 Teknik Telekomunikasi
4.	NIM	161331033
5.	Tempat dan Tanggal Lahir	Kuningan, 21 Desember 1998
6.	Email	Adhietya.kusuma@gmail.com
7.	No. Telp/HP	082127156100 / 085724962833

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	ESQ (Emotional	Peserta	2016, Polban
	Spiritual Question)		
2.	Bela Negara Polban	Peserta	2016, Pusdikjas
3.	Arkavidia ITB –	Peserta	2018, Aula CC
	Technology Stage		Timur ITB
4.	PKM-Belmawa Tahun	Ketua	2018
	Anggaran 2018		
5.	PKM-Polban	Ketua	2018

C. Penghargaan dalam 10 Tahun Terakhir

No.	Jenis Penghargaan	Institusi Penghargaan	Tahun
1.	Siswa berprestasi SMAN 1	SMAN 1 Lebakwangi	2016
	Lebakwangi Angkatan 2016	_	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternayata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah syarat persyaratan dalam pengajuan Proposal Tugas Akhir.

Bandung, 31 Januari 2019 Pengusul,

BIODATA DOSEN PEMBIMBING

A. Identitas Diri

1	Nama Lengkap	Vitrasia, ST., MT
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP	196402152006041001
5	Tempat dan Tanggal Lahir	Bangka, 15 Pebruari 1964
6	E-mail	vitra123@yahoo.co.id
7	Nomor Telepon/HP	081321324816

B. Riwayat Pendidikan

	S1	S2	S3
Nama Institusi	Universitas Kristen Maranatha	Institut Teknologi Bandung	
Jurusan	Teknik Elektro	Teknik Elektro	
Tahun Masuk-Lulus	1991-2004	2007-2010	

C. Rekam Jejak Tri Dharma PT

C.1 Pendidikan / Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Kesehatan dan Keselamatan Kerja (K3)	Wajib	2
2.	Elektronika Komunikasi	Wajib	3
3.	Sistem Komunikasi Satelit	Wajib	3
4.	Teknik Pengukuran HF	Wajib	3
5.	Sistem Komunikasi Radio	Wajib	3

C.2 Penelitian

No	Judul Penelitian	Institusi yang mendanai	Tahun
1.	Pengembangan prototipe Robot Cerdas Pendeteksi Lokasi Bayi pada Kebakaran	DIK-S Polban	2006

2.	Studi Penentuan Umur Teknis Alat		
	Telekomunikasi dengan Metoda Monte Carlo	DIKTI	2013
	untuk Peningkatan Kualitas Penjaminan Mutu		

C.3 Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Institusi yang mendanai	Tahun
1.	Pelatihan komputer: Aplikasi Intercom via LAN untuk Informasi Siskamling dan Basis data di Lingkungan RT/RW	DIPA Polban	2012
2.	Pelatihan Komputer dan Instalasi Jaringann RT/RW Net di Lingkungan Kelurahan Gegerkalong Bandung	DIPA Polban	2013

D. Penghargaan dalam 10 Tahun Terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Piagam: Pembimbing Tim Robotika POLBAN (Juara kedua Devisi Robot expert dalam Kontes Robot Cerdas indonesia)	DIKTI	2005
2.	Piagam : Pembimbing Tim Robotika POLBAN (Juara pertama Devisi Robot expert dalam Kontes Robot Cerdas indonesia)	DIKTI	2006

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Tugas Akhir.

Bandung, 8 Februari 2019 Dosen Pembimbing 1,

Vitrasia, ST., MT. NIDN. 0015026408

LAMPIRAN 2 Justifikasi Anggaran Kegiatan

1. Jenis perlengkapan	Volume	Harga Satuan (Rp.)	Nilai (Rp.)	Ket.
- Logic analyzer	2 buah	100.000	200.000	
		SUBTOTAL (Rp.)	200.000	
2. Bahan habis pakai/Primer Alat				
- Mikrokontroler (Arduino	2 buah	180.000	360.000	$\sqrt{}$
Mega)				
- Radio Data Transceiver 170	2 buah	620.000	1.240.000	
MHz				
- Antena DualBand	2 buah	90.000	180.000	$\sqrt{}$
(VHF/UHF)				
- NodeMCU	2 buah	120.000	240.000	
- GPS	1 buah	70.000	70.000	$\sqrt{}$
- Sensor angin	1 set	420.000	420.000	
- Kabel-kabel jumper	1 set	50.000	50.000	
- Komponen elektronik	1 set	100.000	100.000	
(Resistor, Capasitor,				
Transistor, Optocoupler)				
- Protoboard	3 buah	20.000	60.000	
- Casing	2 buah	100.000	200.000	
- Kabel catu daya	2 buah	60.000	120.000	
- Cetak PCB	2 buah	80.000	160.000	
		SUBTOTAL (Rp.)	3.200.000	
3. Perjalanan				
- Ongkos kirim dan	1 paket	400.000	400.000	
transportasi pembelian				
		SUBTOTAL (Rp.)	400.000	
4. Lain-lain				
- Map dan ATK	1 set	30.000	30.000	
- Materai	6 buah	7.000	42.000	
	72.000			
TOTAL (Rp.) 3.872.000				

Tabel 5.1 Tabel Justifikasi Anggaran Kegiatan

*ket : $(\sqrt{})$ sisa/inventaris dari PKM-POLBAN

LAMPIRAN 3

Susunan Organisasi Tim dan Pembagian Tugas

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI

POLITEKNIK NEGERI BANDUNG

Jalan Gegerkalong Hilir, Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889

Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN PENGUSUL

Saya yang menandatangani Surat Pernyataan ini:

Nama : Aditya Kusuma NIM : 161331033

Program Studi : D3-Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal pengajuan Tugas Akhir saya dengan judul: "Realisasi Alat Pengiriman Data Hasil Tangkapan Nelayan dilengkapi *Global Positioning System* (GPS) dan Sensor Angin Berbasis Mikrokontroler yang Terintegrasi Webserver dengan Link-Komunikasi Radio Data Transceiver 170 MHz" yang diusulkan untuk Tugas Akhir saya bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 8 Februari 2019 Yang Menyatakan

Aditya Kusuma NIM. 161331033

LAMPIRAN 5Gambaran Umum Sistem yang akan dibuat

Gambar 5.1
Gambaran Sistem alat yang hendak dibuat

Mobile station di nelayan dikontrol langsung oleh nelayan tersebut dengan smartphone android yang dapat terhubung ke mikrokontroler, smartphone android dinelayan hanya perlu mengisikan kode kapal dan jenis ikan, setelah ikan diletakan di timbangan. Lalu nelayan bisa melakukan perintah pengiriman. Nelayan dapat langsung mengirimkan data hasil tangkapan tersebut ketika masih dilaut tanpa membutuhkan sinyal data dari operator telekomunikasi. Data tersebut dikirimkan melalui radio data transceiver pada band VHF di frekuensi 170MHz dalam bentuk frame khusus yang dikustom, sehingga dapat meminimalkan pencurian data/hacking.

Lalu untuk data-data dari sensor angin (kecepatan dan arah) dan dari GPS. Data tersebut dikirimkan secara berkala tiap satu menit melakukan updating dan pengiriman data ke darat. Data ini pun diletakan dalam suatu frame khusus yang dikustom untuk meminimalkan pencurian

Data ketika diterima di base station di darat. Data-data yang masuk ke base station ini akan dipisahkan secara otomatis, data yang berupa data hasil tangkapan, sensor angin, dan juga data GPS. Lalu otomatis akan melakukan unggahan ke database. Database tersebut menjadi acuan atau saduran data untuk website. Website tersebut memuat data hasil tangkapan, Google Maps yang berisi tracking posisi nelayan, serta data sensor yang dimuat. Kemudian, website tersebut dapat diakses oleh siapapun.

Gambar 5.2 Flowchart umum sistem yang akan dibuat