МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра высшей математики

О РАВНОМЕРНОЙ НЕПРЕРЫВНОСТИ ФУНКЦИЙ

Учебно-методическое пособие

Составитель П. А. Кожевников

москва МФТИ 2012

Рецензент

Кандидат физико-математических наук, доцент А. Ю. Петрович

О равномерной непрерывности функций: учебно-методическое пособие / сост.: П. А. Кожевников. – М.: МФТИ, 2012. – 20 с.

В пособии изложен теоретический материал по теме «Равномерная непрерывность функций» из курса математического анализа. Приведены задачи для самостоятельного решения с указаниями и решениями.

Предназначено для студентов первого курса физико-математических специальностей.

Учебно-методическое издание

О РАВНОМЕРНОЙ НЕПРЕРЫВНОСТИ ФУНКЦИЙ

Составитель Кожевников Павел Александрович

Редактор O.П. Котова. Корректор И.А. Волкова. Подписано в печать 12.04.2012. Формат $60 \times 84^{1}/_{16}$. Усл. печ. л. 1,25. Уч.-изд. л. 1,0. Тираж 300 экз. Заказ N 85.

федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 E-mail: rio@mail.mipt.ru

Отдел автоматизированных издательских систем «ФИЗТЕХ-ПОЛИГРАФ» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9

© федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)», 2012

Содержание

Теоретические сведения	4
Определение и связь с понятием непрерывности	4
Некоторые классы равномерно непрерывных	
функций	6
Способы установить отсутствие равномерной	
непрерывности некоторых функций	10
Задачи	14
Ответы, указания и решения	16
Литература	20

Теоретические сведения

Определение и связь с понятием непрерывности

Будем рассматривать понятие равномерной непрерывности для функции $f:E\to\mathbb{R},$ где E — некоторое подмножество множества действительных чисел $\mathbb{R}.$ В тексте используются определения (непрерывности, дифференцируемости функции и др.), обозначения и некоторые факты (теоремы Кантора, Лагранжа, свойства непрерывных функций, критерий Коши и др.), которые содержатся в любом из курсов анализа [1] — [7]. Мелким шрифтом набраны замечания, которые относятся к общему случаю отображения из одного метрического пространства в другое.

Определение. Функция $f: E \to \mathbb{R}$ называется равномерно непрерывной (на множестве E), если $\forall \varepsilon > 0 \; \exists \, \delta > 0$ такое, что $\forall x_1 \in E$, $\forall x_2 \in E$, удовлетворяющих условию $|x_1 - x_2| < \delta$, выполнено $|f(x_1) - f(x_2)| < \varepsilon$.

Понятие равномерной непрерывности естественно обобщается на отображения из одного метрического пространства в другое следующим образом. Пусть E и \widetilde{E} — два метрических пространства с функциями расстояния ρ и $\widetilde{\rho}$. Отображение $f:E\to\widetilde{E}$ называется равномерно непрерывным, если $\forall\,\varepsilon>0\;\exists\,\delta>0$ такое, что $\forall\,x_1,x_2\in E$, удовлетворяющих условию $\rho(x_1,x_2)<\delta$, выполнено $\widetilde{\rho}(f(x_1),f(x_2))<\varepsilon$.

Фиксируя в определении равномерной непрерывности точку x_1 , мы получаем определение непрерывности функции $f:E\to\mathbb{R}$ в данной точке $x_1\in E$. Таким образом, справедливо следующее

Предложение 1. Если $f:E\to\mathbb{R}$ равномерно непрерывна (на E), то f непрерывна на E.

Иначе говоря, если функция $f:E\to\mathbb{R}$ имеет разрыв хотя бы в одной точке множества E, то она не может быть равномерно непрерывной. ¹

 $^{^{1}}$ Отметим, что если x_{1} — изолированная точка множества E, то, согласно

Из определения сразу вытекает следующее

Предложение 2. Пусть функция $f: E \to \mathbb{R}$ равномерно непрерывна и $E' \subset E$. Тогда сужение функции f на E' также является равномерно непрерывной функцией.

Предложения 1 и 2 верны и в случае отображения из одного метрического пространства в другое.

Пример 1. Докажите, что функция $f:[0,+\infty)\to\mathbb{R}$, где $f(x)==\sqrt{x}$, является равномерно непрерывной.

Решение. Заметим, что если $0 \leqslant x < y$, то $\sqrt{y} - \sqrt{x} \leqslant \sqrt{y-x}$ (действительно, возводя неравенство $\sqrt{y} \leqslant \sqrt{x} + \sqrt{y-x}$ в квадрат, получаем верное неравенство $y \leqslant x + (y-x) + 2\sqrt{x(y-x)}$). Значит, при $|x_1-x_2| < \delta$ будет выполнено $|f(x_1)-f(x_2)| < \sqrt{\delta}$. Это означает, что для любого $\varepsilon > 0$ достаточно положить $\delta = \varepsilon^2$, и определение равномерной непрерывности будет выполнено. \square

Пример 2. Докажите, что функция $f:(0,+\infty)\to\mathbb{R}$, где $f(x)=\sin x^2$, не является равномерно непрерывной.

Решение. Положим $x_1 = \sqrt{2\pi n}$, $x_2 = \sqrt{2\pi n + \frac{\pi}{2}}$ (где $n \in \mathbb{N}$ выберем позднее), тогда $|f(x_1) - f(x_2)| = 1$. Предположим, что f равномерно непрерывна, и для $\varepsilon = 1$ найдем соответствующее $\delta > 0$ из определения. Подберем $n \in \mathbb{N}$ такое, что $|x_1 - x_2| < \delta$ (это возможно,

определения. Подберем
$$n\in\mathbb{N}$$
 такое, что $|x_1-x_2|<\delta$ (это возможно, так как $|x_1-x_2|=x_2-x_1=\frac{x_2^2-x_1^2}{x_1+x_2}=\frac{\pi}{2(\sqrt{2\pi n}+\sqrt{2\pi n+\frac{\pi}{2}})}$).

Тогда по определению равномерной непрерывности должно быть $|f(x_1) - f(x_2)| < \varepsilon = 1$. Противоречие. \square

Отметим, что о равномерной непрерывности можно говорить в терминах функции модуля непрерывности. Для отображения $f: E \to \widetilde{E}$ (E и \widetilde{E} — метрические пространства) модуль непрерывности $\omega_f(\delta)$ определяется для всех $\delta>0$ равенством $\omega_f(\delta)=\sup_{x_1,x_2\in E,\\ \rho(x_1,x_2)<\delta}$

принимать действительные неотрицательные значения или быть равным $+\infty$. Нетрудно показать, что $f:E\to \widetilde E$ равномерно непрерывна тогда и только тогда, когда $\lim_{\delta\to 0+0}\omega_f(\delta)=0$.

определению, любая функция $f: E \to \mathbb{R}$ непрерывна в точке x_1 .

Некоторые классы равномерно непрерывных функций

Отметим некоторые факты, на которые (помимо определения) можно опираться при доказательстве того, что функция является равномерно непрерывной.

Случай конечного промежутка

Предложение 3 (теорема Кантора). Пусть $a,b \in \mathbb{R}$, a < b, u $f: [a,b] \to \mathbb{R}$ — непрерывная функция на отрезке [a,b]. Тогда f равномерно непрерывна.

Учитывая предложение 1, получаем, что если E — отрезок, то понятия непрерывности и равномерной непрерывности совпадают.

Теорема Кантора верна для любого непрерывного отображения $f: E \to \widetilde{E},$ где E и \widetilde{E} — метрические пространства, причем E компактно.

Если E — конечный промежуток числовой прямой, то вопрос о равномерной непрерывности функции $f:E \to \mathbb{R}$ сводится к возможности доопределить f в концах E так, чтобы получилась непрерывная функция на отрезке. Иначе говоря, верное следующее

Предложение 4. Пусть E=(a,b), либо E=(a,b], либо E=[a,b), где $a,b\in\mathbb{R},\ a< b,\ u\ f:E\to\mathbb{R}$ — непрерывная на E функция. Функция f равномерно непрерывна \Leftrightarrow существуют конечные односторонние пределы $\lim_{x\to a+0} f(x)\ u\lim_{x\to b-0} f(x)$.

Доказательство. Пусть для определенности E=(a,b) и f равномерно непрерывна на (a,b). Докажем, например, что существует конечный предел $\lim_{x\to a+0} f(x)$. По определению равномерной непрерывности имеем: $\forall\,\varepsilon>0\,\,\exists\,\delta>0\,\,$ такое, что $\forall\,x_1,x_2\in(a,\min\{b,a+\delta\})$ выполнено $|f(x_1)-f(x_2)|<\varepsilon$ (поскольку из $x_1,x_2\in(a,\min\{b,a+\delta\})$) вытекает, что $|x_1-x_2|<\delta$). Последнее условие совпадает с условием Коши существования правого предела функции f в точке a. По критерию Коши получаем, что существует конечный предел $\lim_{x\to a+0} f(x)$.

 $^{^2}$ Напомним, что подмножество $E\subset\mathbb{R}^n$ компактно тогда и только тогда, когда оно ограничено и замкнуто.

Обратное утверждение почти очевидно: если f имеет конечные пределы в концах промежутка E, то f продолжается до непрерывной функции на отрезке [a,b]. Остается лишь воспользоваться теоремой Кантора и предложением 2 для подмножества $E \subset [a,b]$. \square

Пример 3. Докажите, что функция $f:E\to\mathbb{R}$, где E=(0,1), а $f(x)=x\sin\frac{1}{x^2},$ является равномерно непрерывной.

Решение. Покажем, что f удовлетворяет условиям предложения 4. Если $x_0 \neq 0$, то непрерывность f в точке x_0 следует из теорем об арифметических операциях и композиции непрерывных функций. В частности, $\lim_{x \to 1} f(x) = \sin 1$.

А так как
$$|f(x)|=|x|\cdot\left|\sin\frac{1}{x^2}\right|\leqslant |x|,$$
 то $\lim_{x\to 0}f(x)=0.3$ \square

Предложение 4 обобщается на случай отображения $f: E \to \widetilde{E}$, где E — метрическое пространство, а \widetilde{E} — полное метрическое пространство, следующим образом. Пусть \overline{E} — пополнение E (в случае, когда E является метрическим подпространством некоторого полного метрического пространства E_1 , множество \overline{E} является замыканием E в пространстве E_1). Отображение f является равномерно непрерывным тогда и только тогда, когда f можно продолжить до равномерно непрерывного отображения $\overline{f}: \overline{E} \to \widetilde{E}$ (в случае компактного \overline{E} , согласно теореме Кантора, достаточно непрерывности \overline{f}).

Поведение производной и близкие свойства

Говорят, что функция $f:E\to\mathbb{R}$ удовлетворяет (на множестве E) условию Гельдера с показателем $\alpha>0$, если найдется такое c>0, что $\forall x_1,x_2\in E$ выполнено $|f(x_1)-f(x_2)|\leqslant c|x_1-x_2|^\alpha$. При $\alpha=1$ условие Гельдера принято называть условием Липшица. Как видим, из условия Гельдера сразу следует равномерная непрерывность функции $f:E\to\mathbb{R}$: в определении равномерной непрерывности достаточно для каждого $\varepsilon>0$ выбрать $\delta>0$ с условием $c\delta^\alpha<\varepsilon$. Итак, имеем следующее достаточное условие равномерной непрерывности.

 $^{^3}$ Как видно из решения, при любых $\alpha>0$ и $\beta\in\mathbb{R}$ функция $f(x)=\begin{cases} x^\alpha\sin x^\beta,\, x>0\\ 0,\quad x=0 \end{cases}$ непрерывна на $[0,+\infty)$ и поэтому равномерно непрерывна на любом отрезке [0,A], где A>0.

Предложение 5. Пусть функция $f: E \to \mathbb{R}$ удовлетворяет условию Гельдера с показателем $\alpha > 0$. Тогда f равномерно непрерывна.

Отметим, что в решении примера 1 фактически мы установили, что функция $f(x) = \sqrt{x}$ удовлетворяет условию Гельдера с показателем $\frac{1}{2}$.

Далее рассмотрим случай дифференцируемой функции на промежутке E. Если производная ограничена, то f удовлетворяет условию Липшица. Действительно, пусть C>0 таково, что $\forall x\in E$ выполнено |f'(x)|< C. Тогда, используя теорему Лагранжа, получаем: $\forall x_1,x_2\in E$ найдется такое ξ между точками x_1 и x_2 , что $|f(x_1)-f(x_2)|=|f'(\xi)|\cdot|x_1-x_2|< C|x_1-x_2|$. Как следствие предложения 5 получаем

Предложение 6. Пусть E — конечный или бесконечный промежуток, функция $f: E \to \mathbb{R}$ дифференцируема на E, причем ее производная $f': E \to \mathbb{R}$ — ограниченная функция. Тогда f равномерно непрерывна.

Из предложения 6 сразу следует равномерная непрерывность на \mathbb{R} линейных функций $f(x) = ax + b \ (a, b \in \mathbb{R})$, функций $\sin ax$, $\cos ax \ (a \in \mathbb{R})$ и их линейных комбинаций (в частности, тригонометрических многочленов). Рассмотрим несколько более сложный пример.

Пример 4. $(2003-3)^6$ Докажите, что функция $f:E\to\mathbb{R},$ где $E=(0,+\infty),$ а $f(x)=\sqrt{x}\ln(1+x^2),$ является равномерно непрерывной.

Решение. Воспользуемся предложением 6. Имеем $f'(x) = \frac{2x^{\frac{3}{2}}}{1+x^2} + \frac{\ln(1+x^2)}{2\sqrt{x}}$. Нетрудно видеть, что f' непрерывна на промежутке $(0,+\infty)$, причем $\lim_{x\to 0+0} f'(x) = \lim_{x\to +\infty} f'(x) = 0$. Отсюда следует, что

⁴Конечно, ее легко установить и непосредственно по определению.

⁵См. также задачу 8.

 $^{^6}$ Задача предлагалась на письменной контрольной работе во II семестре 1 курса М Φ ТИ (2003 год, 3 вариант).

 $f':(0,+\infty) o \mathbb{R}$ — ограниченная функция. 7

Особо отметим, что условие ограниченности производной из предложения 6 является лишь достаточным, но не необходимым условием равномерной непрерывности для функций, дифференцируемых на промежутке. Скажем, функции, рассмотренные в примерах 1 и 3, имеют неограниченные производные. Даже условие Гельдера не является необходимым условием равномерной непрерывности (скажем, существуют функции, непрерывные на отрезке, которые не удовлетворяют условию Гельдера).

Разбиение бесконечного интервала

Предложение 7. Пусть функция $f:[a,+\infty)\to\mathbb{R}$, где $a\in\mathbb{R}$, непрерывна и существует конечный предел $\lim_{x\to+\infty}f(x)$. Тогда f равномерно непрерывна.

Доказательство. Зафиксируем $\varepsilon > 0$.

Из существования конечного предела $\lim_{x\to +\infty} f(x)$ вытекает существование такого m>a, что $\forall x_1,x_2\in [m,+\infty)$ выполнено $|f(x_1)-f(x_2)|<\varepsilon$. Далее, по теореме Кантора сужение функции f на отрезок [a,m+1] является равномерно непрерывной функцией, поэтому $\exists\,\delta_1>0$ такое, что $\forall\,x_1,x_2\in [a,m+1]$ с условием $|x_1-x_2|<\delta_1$ выполнено $|f(x_1)-f(x_2)|<\varepsilon$. Любая пара $x_1,x_2\in [a,+\infty)$ с условием $|x_1-x_2|<1$ находится хотя бы в одном из двух промежутков [a,m+1], $[m,+\infty)$. Поэтому если положить $\delta=\min\{\delta_1,1\}$, то для любых $x_1,x_2\in [a,+\infty)$ с условием $|x_1-x_2|<\delta$ справедливо $|f(x_1)-f(x_2)|<\varepsilon$, то есть выполнено определение равномерной непрерывности. \square

 $^{^7}$ Если для непрерывной функция $g:[0,+\infty)\to\mathbb{R}$ существует конечный предел $\lim_{x\to+\infty}g(x)=A$, то g ограничена. Действительно, для $\varepsilon=1$ найдется m такое, что при $x\in[m,+\infty)$ значения g(x) лежат в промежутке [A-1,A+1]. А на отрезке [0,m] функция g ограничена по теореме Вейерштрасса. На самом деле в решении этого примера достаточно было установить, что f'(x) ограничена на $[a,+\infty)$ для некоторого a>0 (см. задачу 7).

⁸ Именно для этого удобно использовать не разбиение $[a,m]\cup [m,+\infty)$, а делать "нахлест" $[a,m+1]\cap [m,+\infty)=[m,m+1]$.

Как показывают примеры после предложения 6, предложение 7 дает только достаточное, но не необходимое условие равномерной непрерывности на бесконечном промежутке (в отличие от предложения 4, которое является критерием в случае конечного интервала).

Пример 5. (2003-2) Докажите, что функция $f:E\to\mathbb{R}$, где $E==(0,+\infty),\ a\ f(x)=\dfrac{\sin x^3}{x},$ является равномерно непрерывной.

Решение. Так как $\lim_{x\to 0}\frac{\sin x^3}{x}=\lim_{x\to 0}\frac{x^3(1+o(1))}{x}=0$, то f продолжается до непрерывной функции на $[0,+\infty)$. Далее, $|f(x)|\leqslant \frac{1}{x}$, откуда $\lim_{x\to +\infty}f(x)=0$. Согласно предложению 7, получаем, что $f:E\to \mathbb{R}$ равномерно непрерывна. g

Способы установить отсутствие равномерной непрерывности некоторых функций

Случай конечного промежутка

Как мы видели в предложении 4, функция, определенная на конечном промежутке и не имеющая конечного предела в одном из его концов, не может быть равномерно непрерывной.

Пример 6. Докажите, что функция $f: E \to \mathbb{R}$, где E = (0,1), а $f(x) = \sin \frac{1}{x}$, не является равномерно непрерывной.

Решение. Согласно предложению 4, достаточно доказать, что не существует предела $\lim_{x\to 0+0} f(x)$. Рассмотрим две последовательности Гейне. Положим $x_n=\frac{1}{\pi n}$, тогда $\lim_{n\to\infty} x_n=0$ и $f(x_n)=0$. Если же $x_n'=\frac{1}{2\pi n+\frac{\pi}{2}}$, то $\lim_{n\to\infty} x_n'=0$ и $f(x_n')=1$. Тем самым получено

противоречие с определением предела по Гейне.

⁹Отметим, что пример 5 не удается решить с помощью предложения 6.

Бесконечно большая производная

Предложение 8. Пусть $E=[a,+\infty)$, и функция $f:E\to\mathbb{R}$ дифференцируема на E, причем $\lim_{x\to+\infty}f'(x)=\infty$. Тогда f не является равномерно непрерывной функцией.

Доказательство. Предположим, что f равномерно непрерывна. Возьмем $\varepsilon=1$ и подберем соответствующее $\delta>0$ из определения равномерной непрерывности. Из условия $\lim_{x\to+\infty}f'(x)=\infty$ следует, что найдется $m\geqslant a$ такое, что $\forall\,x\geqslant m$ выполнено $|f'(x)|>\frac{2}{\delta}$. Положим $x_1=m,\,x_2=m+\frac{\delta}{2}$. Применив теорему Лагранжа о конечных приращениях для отрезка $[x_1,x_2]$, получим, что $|f(x_1)-f(x_2)|=\frac{\delta}{2}|f'(\xi)|$ для некоторого $\xi\in[x_1,x_2]$. Так как $\xi\geqslant m$, то $|f'(\xi)|>\frac{2}{\delta}$, откуда $|f(x_1)-f(x_2)|>1=\varepsilon$, что противоречит равномерной непрерывности f. \square

Обратим внимание на то, что предложения 6 и 8 все же не дают исчерпывающий ответ на вопрос о равномерной непрерывности дифференцируемых функций (см., скажем, пример 5, задачу 11).

Пример 7. (2003-4) Докажите, что функция $f: E \to \mathbb{R}$, где $E = (0, +\infty)$, а $f(x) = x^2 \arctan x$, не является равномерно непрерывной.

Решение. Имеем
$$f'(x) = 2x \arctan x + \frac{x^2}{x^2+1}$$
. Так как $\lim_{x \to +\infty} 2x \arctan x = +\infty$, а $\lim_{x \to +\infty} \frac{x^2}{x^2+1} = 1$, то нужное утверждение сразу следует из предложения 8 . \Box

Колебание функции и рост

Предложение 9. Пусть $E = [a, +\infty)$, и функция $f : E \to \mathbb{R}$ равномерно непрерывна. Тогда существуют такие фиксированные числа k и b, что $\forall x, y \in E$ выполнено $|f(x) - f(y)| \le k|x - y| + b$. 11

 $^{^{10}{}m K}$ онечно, решение этого примера также сразу следует из более сильного предложения 10.

¹¹ Это предложение можно обобщить до критерия равномерной непрерывности (см. задачу 14).

Доказательство. По определению найдется такое $\delta>0$, что $\forall x',x''\in E$ таких, что $|x'-x''|<\delta$ выполнено |f(x')-f(x'')|<1. Зафиксируем $x\in E,y\in E$, для определенности y>x (если x=y, то годится любое k и любое b>0). Положим $n=\left[\frac{y-x}{\delta}\right]+1$. Разобьем отрезок [x,y] на n равных отрезков: $x=x_0< x_1< x_2<\ldots< x_n=y$; так как $n>\frac{y-x}{\delta}$, то $|x_i-x_{i-1}|=\frac{y-x}{n}<\delta$ для $i=1,2,\ldots,n$. Тогда $|f(y)-f(x)|=|f(x_n)-f(x_0)|\leqslant \sum\limits_{i=1}^n|f(x_i)-f(x_{i-1})|< n\cdot 1=n$. Отсюда $|f(y)-f(x)|\leqslant n\leqslant \frac{y-x}{\delta}+1=\frac{1}{\delta}|x-y|+1$, то есть в условии предложения достаточно положить $k=\frac{1}{\delta}$ и b=1. \square

Отметим два следствия последнего предложения.

Предложение 10. Пусть $E = [a, +\infty)$, и функция $f : E \to \mathbb{R}$ равномерно непрерывна. Тогда существуют такие фиксированные числа k u b, что $\forall x \in E$ выполнено $|f(x)| \leq kx + b$.

Доказательство. Согласно предложению 9, найдутся постоянные числа k и b_1 такие, что $\forall x \in E$ выполнено $|f(x) - f(a)| \leq kx + b_1$. Но тогда $|f(x)| \leq kx + b_1 + |f(a)|$, значит, достаточно положить $b = b_1 + |f(a)|$. \square

Заметим, что из предложения 10 легко следует предложение 8.

Предложение 11. Пусть c>0 — фиксированное число, $E\subset\mathbb{R}$ — некоторый промежуток числовой прямой, $E'=\{x-c\,|\,x\in E\}$. Пусть дана равномерно непрерывная на E функция $f:E\to\mathbb{R}$. Тогда функция $g:E\cap E'\to\mathbb{R}$, где g(x)=f(x+c)-f(x), является ограниченной.

Доказательство. Согласно предложению 9 найдутся постоянные k и b такие, что $\forall \, x \in E$ выполнено $|f(x+c)-f(x)| \leqslant kc+b.^{12}$

Пример 8. (2010-4) Докажите, что функция $f: E \to \mathbb{R}$, где $E = (1, +\infty)$, а $f(x) = x^2 \cos \ln x$, не является равномерно непрерывной.

 $^{^{12}}$ Как видно из доказательства, предложение 11 можно обобщить, заменив всюду число c на ограниченную функцию c(x), определенную на E.

Решение. Предположим противное и, воспользовавшись предложением 10, найдем числа k и b такие, что $\forall x \in [2, +\infty)$ выполнено $|f(x)| \leq kx + b$. Найдем такое $m \in [2, +\infty)$, что $\forall x \in [m, +\infty)$ выполнено $x^2 > kx + b$. Подберем $n \in \mathbb{N}$ так, чтобы число $x_0 = e^{2\pi n}$ было больше m. Тогда $f(x_0) = x_0^2 \cos \ln x_0 = x_0^2 > kx_0 + b$. Получено противоречие. ¹³

Пример 9. (2003-2) Докажите, что функция $f: E \to \mathbb{R}$, где $E = (0, +\infty)$, а $f(x) = \sqrt{x} \sin x$, не является равномерно непрерывной.

Решение. В силу предложения 11 достаточно доказать, что функция $g(x)=f(x+\frac{\pi}{2})-f(x)$ не является ограниченной. Это верно, так как при натуральных k выполнено $f(2\pi k+\frac{\pi}{2})-f(2\pi k)=\sqrt{2\pi k+\frac{\pi}{2}}.^{14}$ \sqcap

Пример 10. (2010-1) Докажите, что функция $f: E \to \mathbb{R}$, где $E = (0, +\infty)$, а $f(x) = x \sin \sqrt{x}$, не является равномерно непрерывной.

Решение. Предположим противное. Положим $x_n=(2\pi n)^2,\ y_n=(2\pi n+\frac{\pi}{2})^2$ так, что $f(x_n)=0,\ f(y_n)=y_n=(2\pi n+\frac{\pi}{2})^2>n^2.$ Тогда $|y_n-x_n|=y_n-x_n=\pi^2(2n+\frac{1}{4})<30n.$

Согласно предложению 9 должны существовать k и b такие, что для всех n выполнено $|f(x_n)-f(y_n)|\leqslant k|x_n-y_n|+b$. Тогда получаем $n^2\leqslant 30kn+b$, что неверно при достаточно больших n. Противоречие. \square

Благодарность. Составитель этого пособия благодарен рецензенту за ряд полезных замечаний.

¹³Отметим, что пример 8 не удается решить с помощью предложения 8.

 $^{^{14}}$ Из решения видно, что вместо $f(x)=x\cos x$ можно взять любую функцию вида $h(x)\cos x$ или $h(x)\sin x$ (или даже $h(x)\cos^{\alpha}x$ или $h(x)\sin^{\alpha}x$ для $\alpha\geqslant 1$), где h(x) удовлетворяет условию $\lim_{x\to +\infty}h(x)=\infty.$

Задачи

В задачах 1—5 требуется выяснить, является ли данная функция $f: E \to \mathbb{R}$ равномерно непрерывной.

Задача 1. $f(x) = x^{\alpha}$, $i \partial e \ \alpha \in \mathbb{R}$; $E = (0, +\infty)$.

Задача 2. $f(x) = \ln x$ для a) $E = (1, +\infty)$; b) E = (0, 1).

Задача 3. (2003-3) a) $f(x)=\frac{1}{x}\ln(1+x^2);$ б) $f(x)=\frac{1}{x}\arctan x^2;$ $E=(0,+\infty)$ (для a) и для б)).

Задача 4. * $f(x) = x^{\alpha} \sin x^{\beta}$, где $\alpha, \beta > 0$; $E = (0, +\infty)$.

Задача 5. *(2003-1) $f(x) = \sin(x\sin x)$; $E = (0, +\infty)$.

- Задача 6. а) Пусть дана функция $f: E \to \mathbb{R}$, где $E = E' \cup E''$. Известно, что сужения функции f на E' и на E'' являются равномерно непрерывными функциями. Обязательно ли $f: E \to \mathbb{R}$ равномерно непрерывна?
- б) Докажите, что если в условиях пункта а) $E' \subset \mathbb{R}$ замкнуто, а E'' компактно, то $f: E \to \mathbb{R}$ равномерно непрерывна.
- **Задача 7.** Пусть функция $f:[a,+\infty)\to\mathbb{R}$ непрерывна, причем для некоторого b>a функция f(x) дифференцируема на $[b,+\infty)$, и f' ограничена на $[b,+\infty)$. Докажите, что f равномерно непрерывна.
- **Задача 8.** Докажите, что любая непрерывная периодическая функция $f: \mathbb{R} \to \mathbb{R}$ является равномерно непрерывной.
- **Задача 9.** а) Пусть функции $f: E \to \mathbb{R}$ и $g: E \to \mathbb{R}$ равномерно непрерывны. Докажите, что $f \pm g$ и λf ($\lambda \in \mathbb{R}$) также равномерно непрерывны.
- б) Пусть $f:E\to\mathbb{R}$ равномерно непрерывна, а $g:E\to\mathbb{R}$ не является равномерно непрерывной. Докажите, что f+g не является равномерно непрерывной.

- Задача 10. Докажите, что если $f:[a,+\infty)\to\mathbb{R}$ непрерывна uимеет наклонную асимптоту при $x \to +\infty$, то f равномерно непрерывна.
- Задача 11. (1991-3) Существует ли функция равномерно непрерывная и дифференцируемая функция $f:[a,+\infty)\to\mathbb{R}$ такая, что $\lim_{x \to +\infty} f(x) = \infty, \ u \ orall \ b \geqslant a \$ функция f' — неограниченная на $[b, +\infty)$?
- **Задача 12.** Пусть функции $f: E \to \mathbb{R}$ и $g: \mathbb{R} \to \mathbb{R}$ равномерно непрерывны. Докажите, что их композиция $g \circ f : E \to \mathbb{R}$ равномерно непрерывна. (По определению композиции $(q \circ f)(x) = q(f(x))$.)
- **Задача 13.** (1991-1) Пусть $f:[0,+\infty)\to\mathbb{R}$ непрерывна на $[0,+\infty)$ $u\lim_{x\to +\infty}f(x)=\infty$. Докажите, что функция $\mathrm{arctg}\,f(x)$ равномерно непрерывна на $[0, +\infty)$.
- **Задача 14.** Докажите критерий для функции $f:[a,+\infty)\to\mathbb{R}$: f является равномерно непрерывной $\Leftrightarrow \forall b > 0 \; \exists \, k > 0 \; m$ акое, что $\forall x, y \in [a, +\infty)$ выполнено $|f(x) - f(y)| \leq k|x - y| + b$.
- Задача 15. Пусть $f:[a,+\infty) \to \mathbb{R}$ равномерно непрерывна и интеграл $\int_{-\infty}^{+\infty} f(x) dx$ сходится. Докажите, что $\lim_{x \to +\infty} f(x) = 0$.

В задачах 16—17 речь идет о равномерной непрерывности функций двух переменных $f: E \to \mathbb{R}$, где $E \subset \mathbb{R}^2$.

- Задача 16. Пусть $E\subset\mathbb{R}^2$ выпуклая область, а функция $f:E\to\mathbb{R}$ такова, что частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ существуют в каждой точке E и являются ограниченными на E функциями. Докажите, что f равномерно непрерывна.
- Задача 17. Является ли f равномерно непрерывной в области $E \subset \mathbb{R}^2$, где a) (2007-1) $f(x,y)=\sin\frac{1}{x^2+y^2+2y},\ E=\{x^2+y^2+y<0\};$ 6) (2007-2) $f(x,y)=\sin\frac{1}{2x^2-2xy+y^2},\ E=\{x>0,y<1,y>x\};$
- 6) (2007-4) $f(x,y) = \cos \frac{1}{x^2+y^2-2x}$, $E = \{-1 < y < 1, 2 < x < 3\}$?

Ответы, указания и решения

1. Ответ: f равномерно непрерывна $\Leftrightarrow \alpha \in [0,1]$.

При $\alpha>1$ можно воспользоваться предложением 8. Согласно предложению 4 при $\alpha<0$ функция f не является равномерно непрерывной даже на (0,1).

При $\alpha \in (0,1]$ можно доказать, что применимо предложение 5, либо воспользоваться задачей 7.

- 2. Ответ: а) да (равномерно непрерывна); б) нет. а) следует из предложения 6, б) из предложения 4.
- **3.** Ответ: а) да; б) да. Можно воспользоваться предложением 7.
- **4.** Ответ: равномерно непрерывна $\Leftrightarrow \alpha + \beta \leqslant 1$.

При $\alpha+\beta\leqslant 1$ функция f(x) продолжается до непрерывной функции на $[0,+\infty)$, имееющей ограниченную производную на $[1,+\infty)$ (см. задачу 7).

Если же $\alpha+\beta>1$, можно строить противоречие с предложением 9 так же, как и в примере 10. Положим $x_n=(2\pi n)^{\frac{1}{\beta}},\,y_n=(2\pi n+\frac{\pi}{2})^{\frac{1}{\beta}},$ так что $f(x_n)=0,\,f(y_n)=y_n^\alpha=(2\pi n+\frac{\pi}{2})^{\frac{\alpha}{\beta}}.$ Тогда $|y_n-x_n|==(2\pi n)^{\frac{1}{\beta}}\left(\left(1+\frac{1}{4n}\right)^{\frac{1}{\beta}}-1\right)$. При $n\to\infty$ имеем $|f(x_n)-f(y_n)|\sim c_1n^{\frac{\alpha}{\beta}}$ $(c_1>0$ — константа); $|y_n-x_n|\sim(2\pi n)^{\frac{1}{\beta}}\cdot\frac{1}{4\beta n}\sim c_2n^{\frac{1}{\beta}-1}$ $(c_2>0$ — константа). Так как $\frac{1}{\beta}-1<\frac{\alpha}{\beta}$, то при достаточно больших n неравенство $|f(x_n)-f(y_n)|\leqslant k|x_n-y_n|+b$ (k и b фиксированы) не выполнено. Получается противоречие с предположением 9.

5. Ответ: нет.

На отрезке $[2\pi n, 2\pi n + \frac{\pi}{2}]$ функция $h(x) = x \sin x$ непрерывна и монотонно возрастает от 0 до $2\pi n + \frac{\pi}{2}$. Пусть $2\pi n < x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n = 2\pi n + \frac{\pi}{2}$ — такие точки, что $h(x_k) = 2\pi k, \ h(y_k) = 2\pi k + \frac{\pi}{2}$. Тогда $\sin y_k - \sin x_k = 1 - 0 = 0$, а длина хотя бы одного из отрезков $[x_k, y_k]$ меньше, чем $\frac{\pi}{2}$. При достаточно

больших п получается противоречие с определением равномерной непрерывности.

- **6.** а) Ответ: нет. Пусть $E'\cap E''=\varnothing$, и $\inf_{\substack{x'\in E',\\x''\in E''}}|x'-x''|=0.^{15}$ Тогда достаточно
- рассмотреть функцию, равную 1 на E' и равную 0 на E''.
- б) Предположив противное, можно для некоторого $\varepsilon > 0$ выбрать последовательности точек $x_1', x_2', \ldots \in E', x_1'', x_2'', \ldots \in E''$ такие, что $\lim_{n \to \infty} |x_k' - x_k''| = 0$, но $|f(x_k') - f(x_k'')| > \varepsilon$ при всех k. В силу компактности E'' можно считать, что (x''_k) сходится к $x_0 \in E''$. Тогда и (x_k') сходится к x_0 , поэтому $x_0 \in E'$ (так как E' замкнуто). Так как сужения f на E' и E'' непрерывны в точке x_0 , то $\lim_{k \to \infty} f(x_k') =$ $=\lim_{k\to\infty} f(x_k'') = f(x_0)$. Противоречие. ¹⁶
- **7.** По теореме Кантора и предложению 6 функция f равномерно непрерывна на каждом из множеств [a, c] и $[b, +\infty)$. Остается положить c = b и воспользоваться задачей 6. Можно также положить c > b(сделать "нахлест") и далее доказать равномерную непрерывность по определению, как это сделано в доказательстве предложения 7.
- **8.** Пусть T>0 длина периода. Для любых $x_1,x_2\in\mathbb{R}$ таких, что $|x_1 - x_2| < T$ найдется $k \in \mathbb{Z}$ такое, что $x_1 + kT, x_2 + kT \in [0, 2T]$. Поэтому равномерную непрерывность f можно вывести из того, что сужение f на отрезок [0,2T] — равномерно непрерывная функция.
- 9. Утверждение а) несложно выводится из определений. Докажем, например, равномерную непрерывность функции f+g исходя из равномерной непрерывности f и g. Для данного $\varepsilon > 0$ выберем $\delta > 0$ такое, что при $|x_1 - x_2| < \delta$ выполнено $|f(x_1) - f(x_2)| < \frac{\varepsilon}{2}$ и $|g(x_1)-g(x_2)|<rac{arepsilon}{2}$. Тогда при $|x_1-x_2|<\delta$ выполнено $|(f(x_1)+g(x_1))-f(x_2)|<0$ $-(f(x_2) + g(x_2))| \leq |f(x_1) - f(x_2)| + |g(x_1) - g(x_2)| < \varepsilon^{17}$
 - б) Предположим противное: пусть функция h = f + g является

 $^{^{15}}$ Это может выполняться и для замкнутых множеств E' и E''.

 $^{^{16}\}Pi$ ункт б) легко обобщить на случай полного и компактного метрических пространств E' и E''.

¹⁷Утверждение а), по сути, означает, что равномерно непрерывные функции $E \to \mathbb{R}$ образуют линейное пространство.

равномерно непрерывной. Тогда согласно а) функция g=h-f тоже равномерно непрерывна. Противоречие.

10. По условию f(x)=(kx+b)+g(x), где k и b — некоторые константы, а $g:[a,+\infty)\to\mathbb{R}$ непрерывна и $\lim_{x\to+\infty}g(x)=0$. Согласно предложению 7 g равномерно непрерывна. Воспользовавшись задачей 9, получаем, что и f равномерно непрерывна.

11. Ответ: Существует.

Воспользовавшись задачей 9 (или 10), нужный пример можно построить как f(x)=x+g(x), где $g:[a,+\infty)\to\mathbb{R}$ — дифференцируемая функция такая, что $\lim_{x\to+\infty}g(x)=0$, и $\forall\,b\geqslant a$ функция g' — неограниченная на $[b,+\infty)$ (годится, скажем, функция $g(x)=\frac{\sin x^3}{x}$ из примера 5).

- **12.** В силу равномерной непрерывности g, для данного $\varepsilon > 0$ найдется $\delta_1 > 0$ такое, что $\forall y_1, y_2 \in \mathbb{R}$, удовлетворяющих условию $|y_1 y_2| < \delta_1$, выполнено $|g(y_1) g(y_2)| < \varepsilon$. В силу равномерной непрерывности f, для такого δ_1 найдется $\delta > 0$ такое, что $\forall x_1, x_2 \in E$, удовлетворяющих условию $|x_1 x_2| < \delta$, выполнено $|f(x_1) f(x_2)| < \delta_1$. Получаем, что для всех таких x_1, x_2 выполнено $|g(f(x_1)) g(f(x_2))| < \varepsilon$.
- **13.** Можно воспользоваться задачей 12. ¹⁸
- **14.** Доказать утверждение в одну сторону можно, повторяя доказательство предложения 9, вместо $\varepsilon=1$ положив $\varepsilon=b$.

В обратную сторону утверждение можно доказать по определению равномерной непрерывности, взяв $b = \frac{\varepsilon}{2}$ и $\delta = \frac{\varepsilon}{2b}$.

15. Предположив, что утверждение неверно, найдем такое $\varepsilon > 0$, что $\forall c > a \; \exists \, x_c > c$, для которого $|f(x_c)| > \varepsilon$. Из условия равномерной непрерывности следует, что найдется $\delta > 0$ (зависящее от ε , но не зависящее от c) такое, что $|f(x)| > \frac{\varepsilon}{2} |f(x)| > \frac{\varepsilon}{2}$ при $x \in [x_c - \delta, x_c + \delta]$.

Тогда
$$\left|\int\limits_{x_c-\delta}^{x_c+\delta}f(x)\right|\geqslant 2\delta\cdot\frac{\varepsilon}{2}=\varepsilon\delta$$
. Это противоречит критерию Коши

 $[\]overline{^{18}}$ Предположение о том, что $\lim_{x \to +\infty} f(x) = \infty$, является лишним условием.

для сходимости данного в условии интеграла.¹⁹

16. Пусть модули частных производных не превосходят C. Тогда верно следующее $ymeep neemath{mee}$ для любых двух точек $M,N\in E$, имеющих равную абсциссу или ординату, выполнено |f(M)-f(N)|< C|MN|. Это утверждение доказывается аналогично предложению 6 (при этом используется то, что весь отрезок MN содержится в E).

Докажем, что для данного $\varepsilon>0$ можно положить $\delta<\frac{\varepsilon}{2C}$, и определение равномерной непрерывности будет выполнено. Зафиксируем две точки $M,N\in E$ такие, что $|MN|<\delta$. Пусть $\sigma>0$ таково, что отрезок MN вместе с его σ -окрестностью содержится в E (такое σ существует, так как E выпуклое и открытое множество). Положим $k=\left[\frac{\delta}{\sigma}\right]+1$ и разобьем отрезок MN точками $M=M_0,M_1,M_2,\ldots,M_k=N$ на k равных отрезков. Заметим, что длина каждого из отрезков меньше σ . Пусть M_i имеет координаты (x_i,y_i) . Рассмотрим еще точки $P_i(x_{i-1},y_i),\ i=1,2,\ldots,k$. В силу выбора σ все отрезки $M_{i-1}P_i$ и P_iM_i целиком содержатся в E. Пользуясь утверждением, имеем: $|f(M_i)-f(M_{i-1})|\leqslant |f(M_i)-f(P_i)|+|f(P_i)-f(M_{i-1})|\leqslant C|M_iP_i|+C|P_iM_{i-1}|\leqslant 2C|M_iM_{i-1}|$. Таким образом, $|f(M)-f(N)|=|f(M_0)-f(M_k)|\leqslant \sum_{i=1}^k|f(M_i)-f(M_{i-1})|\leqslant 2C|M_iM_{i-1}|$.

17. Ответ: а) нет; б) нет; в) нет.

Как следует из обобщения предложения 4, достаточно показать, что функцию невозможно продолжить до непрерывной функции на замыкании области E. Например: а) не существует $\lim_{y\to 0-0} f(0,y)$; б) не существует $\lim_{x\to 0+0} f(x,2x)$; в) не существует $\lim_{x\to 2+0} f(x,0)$.

¹⁹Отметим, что утверждение задачи становится неверным, если заменить условие равномерной непрерывности на условие непрерывности.

Литература

Учебники

- 1. *Бесов О. В.* Лекции по математическому анализу. Ч. 1: учебное пособие. М.: МФТИ, 2004.
- Зорич В. А. Математический анализ. Ч. 1. М.: ФАЗИС, 1997.
- 3. Иванов Г. Е. Лекции по математическому анализу. Ч. 1: учебное пособие. М.: МФТИ, 2012.
- 4. $\mathit{Kydpseuee}\ \mathcal{I}$. Д. Курс математического анализа. Т. І. М.: Высшая школа, 1981.
- 5. *Никольский С. М.* Курс математического анализа. Т. І. М.: Наука, 1983.
- 6. *Тер-Крикоров А. М.*, *Шабунин М. И.* Курс математического анализа. М.: МФТИ, 2000.
- 7. Яковлев Г. Н. Лекции по математическому анализу. Ч. 1 М.: Физматлит, 2004.

Задачники

- 1. Демидович Б. П. Сборник задач и упражнений по математическому анализу: учебное пособие. 13 изд., испр. М.: Изд-во Моск. ун-та, ЧеРо, 1997.
- 2. *Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И.* Сборник задач по математическому анализу. Ч. I (Предел, непрерывность, дифференцируемость). 2-е изд., перераб. М.: Физматлит, 2003.