Álgebra I Práctica 4 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	6.	11.	16 .	21.	26.	31.	36.
2.	7.	12.	17.	22.	27 .	32 .	37.
3.	8.	13.	18.	23.	28.	33.	38.
4.	9.	14.	19 .	24.	29.	34.	39.
5.	10.	15.	20.	25 .	30.	35 .	40.

• Ejercicios Extras

1 .	3 .	5 .	७ 7.	9 .	11 .
2 .	4 .	♦ 6.	♦ 8.	10 .	12 .

Notas teóricas:

Divisibilidad:

• Definición divisibilidad y notación:

$$d$$
 divide a $a \xleftarrow{\text{es lo mismo}} a$ es un múltiplo entero de d
$$d \mid a \iff \exists \, k \in \mathbb{Z} \, \text{ tal que } a = k \cdot d$$

• Conjunto de divisores de a:

$$\mathcal{D}(a) = \{-|a|, \dots, -1, 1, \dots, |a|\}.$$

- $d \mid 0$, dado que $0 = 0 \cdot d$. Se desprende que $\mathcal{D}(0) = \{\mathbb{Z} \{0\}\}\$
- A la hora de laburar con la divisibilidad "los signos no importan":

$$\left\{ \begin{array}{l} d \mid a \iff -d \mid a \text{ (pues } a = k \cdot d \iff a = (-k) \cdot (-d)) \\ d \mid a \iff d \mid -a \text{ (pues } a = k \cdot d \iff (-a) = (-k) \cdot d) \end{array} \right. \xrightarrow{\text{corta}} \left[d \mid a \iff |d| \mid |a| \right]$$

• Propiedades súper útiles para justificar los cálculos en los ejercicios:

$$\begin{cases} d \mid a \quad \text{y} \quad d \mid b \Rightarrow d \mid a \pm b \\ d \mid a \Rightarrow d \mid c \cdot a, \ \forall c \in \mathbb{Z} \\ d \mid a \overset{!!}{\Longrightarrow} d^n \mid a^n \ \forall n \in \mathbb{N} \end{cases}$$
 Error recurrente: $d \mid a \cdot b \not\Rightarrow \begin{cases} d \mid a \\ \text{o} \end{cases}$. Por ejemplo $6 \mid 3 \cdot 4 \text{ pero} \begin{cases} 6 \not\mid 3 \\ \text{ni} \\ d \mid b \end{cases}$

Definición congruencia:

■ Definición congruencia:

$$\begin{cases} 'a' \ es \ congruente \ a' b' \ m\'odulo' d' \ si \ d \ | \ a-b. \end{cases}$$
 Notación $\boxed{a \equiv b \ (d)}$
$$a \equiv b \ (d) \iff d \ | \ a-b$$

■ Sumar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \\ a_n \equiv b_n \ (d) \end{cases} \Rightarrow a_1 + \dots + a_n \equiv a_b + \dots + b_n \ (d)$$

■ Multiplicar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \\ a_n \equiv b_n \ (d) \end{cases} \Rightarrow a_1 \cdots a_n \equiv a_b \cdots b_n \ (d)$$

Un caso particular con un simpático resultado:

$$n \text{ ecuaciones} \begin{cases} a \equiv b \ (d) \\ \vdots \\ a \equiv b \ (d) \end{cases} \Rightarrow \boxed{a^n \equiv b^n \ (d)}$$

Algoritmo de división:

• Dados $a, d \in \mathbb{Z}$ con $d \neq 0$, existen únicos q (cociente), $r(\text{resto}) \in \mathbb{Z}$ tales que:

$$\begin{cases} a = q \cdot d + r, \\ \cos 0 \le r < |d|. \end{cases}$$

- Notación: $r_d(a)$ es el resto de dividir a a entre d
- $0 \le r < |d| \Rightarrow r = r_d(r)$. Un número que cumple condición de resto, es su resto.
- Así es como me gusta pensar a la congruencia. La derecha es el resto de dividir a a entre d:

$$a \equiv r_d(a) (d)$$
.

• Si d divide al número a, entonces el resto de la división es 0:

$$r_d(a) = 0 \iff d \mid a \iff a \equiv 0 \ (d)$$

• El resto es único:

$$a \equiv r \ (d) \ \text{con} \ \underbrace{0 \le r < |d|}_{\text{cumple condición de resto}} \Rightarrow r = r_d(a)$$

$$r_1 \equiv r_2 \ (d) \ \text{con} \ \underbrace{0 \le r_1, r_2 < |d|}_{\text{cumple condición de resto}} \Rightarrow r_1 = r_2$$

• Dos números que son congruentes módulo d entre sí, tienen igual resto al dividirse por d:

$$a \equiv b (d) \iff r_d(a) = r_d(b).$$

• Propiedades útiles para los ejercicios de calcular restos:

$$r_d(a+b) = r_d(r_d(a) + r_d(b))$$
 y $r_d(a \cdot b) = r_d(r_d(a) \cdot r_d(b))$

ya que si,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \ (d) \\ b \equiv r_d(b) \ (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{sumo}} a + b \equiv r_d(a) + r_d(b) \ (d)$$

y,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \; (d) \\ b \equiv r_d(b) \; (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{multiplico}} a \cdot b \equiv r_d(a) \cdot r_d(b) \; (d)$$

Máximo común divisor:

• Sean $a, b \in \mathbb{Z}$, no ambos nulos. El MCD entre a y b es el mayor de los divisores común entre a y b y se nota:

máximo común divisor: MCD =
$$(a:b)$$

- $(a:b) \in \mathbb{N}$ (pues $(a:b) \ge 1$) siempre existe y es único.
- Propiedades del (a:b), con $a y b \in \mathbb{Z}$, no ambos nulos.

- Los signos no importan: $(a:b) = (\pm a:\pm b)$
- \bullet Es simétrico: (a:b)=(b:a)
- Entre 1 y $a \in \mathbb{Z}$ siempre (a:1) = 1
- Entre 0 y a siempre $(a:0) = |a|, \forall a \in \mathbb{Z} \{0\}$
- si $b \mid a \Rightarrow (a : b) = |b| \operatorname{con} b \in \mathbb{Z} \{0\}$
- Útil para ejercicios: $(a:b) = (a:b+na) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: $(a:b) = (a:r_a(b)) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: Sean $a, b \in \mathbb{Z}$ no ambos nulos, y sea $k \in \mathbb{N}$

$$(ka:kb) = k(a:b)$$

- Algoritmo de Euclides: Para encontrar el (a:b) con números o expresiones feas. Hay que saber hacer esto. Fin. ¡Se usa de acá hasta el final de la materia!.
- Combinacion Entera: Otra herramienta gloriosa que sale de hacer Euclides. Por ejemplo se usa cuando no se ve a ojo una solución en ecuaciones diofánticas. ¡Se usa de acá hasta el final de la materia!.

Sean $a, b \in \mathbb{Z}$ no ambos nulos, entonces $\exists s, t \in \mathbb{Z}$ tal que $(a : b) = s \cdot a + t \cdot b$.

♦ Todos los divisores comunes entre a y b dividen al (a:b). Sean $a,b \in \mathbb{Z}$ no ambos nulos, $d \in \mathbb{Z} - \{0\}$. Entonces:

$$d \, \big| \, a \quad \mathbf{y} \quad d \, \big| \, b \iff d \, \big| \, \underbrace{(a:b)}_{s \cdot a + t \cdot b}.$$

- Sea $c \in \mathbb{Z}$ entonces $\exists s', t' \in \mathbb{Z}$ con $c = s'a + t'b \iff (a:b) \mid c$.
- $\ \, \ \, \ \,$ Todos los números múltiplos del MCD se escriben como combinación entera de a y b.
- $\mbox{\upshape Si}$ un número es una combinación entera de a y b entonces es un múltiplo del MCD.

Coprimos:

• Definición coprimos:

Dados $a, b \in \mathbb{Z}$, no ambos nulos, se dice que son coprimos si (a : b) = 1

$$\begin{array}{ccc} a \perp b & \Longleftrightarrow & (a:b)=1 \\ a \perp b & \Longleftrightarrow & \exists \, s, \, \, t \in \mathbb{Z} \, \text{ tal que } 1 = s \cdot a + t \cdot b \end{array}$$

• Sean $a, b \in \mathbb{Z}$ no ambos nulos. coprimizar los números es dividirlos por su máximos común divisor, para obtener un nuevo par que sea coprimo:

$$(a:b) \neq 1 \xrightarrow{\text{coprimizar}} a' = \frac{a}{(a:b)}, b' = \frac{b}{(a:b)}, \Rightarrow \boxed{(a':b') = 1}$$

• ¡Causa de muchos errores! Sean $a, c, d \in \mathbb{Z}$ con c, d no nulos. Entonces:

$$c \mid a \quad y \quad d \mid a \quad y \quad c \perp d \stackrel{!!}{\iff} c \cdot d \mid a$$

Al ser c y d coprimos, pienso a a como un número cuya factorización tiene a c, d y la coprimicidad hace que en la factorización aparezca $c \cdot d$. (no sé, así lo piensa mi \blacksquare).

• Sean $a, b, d \in \mathbb{Z}$ con $d \neq 0$. Entonces:

$$d \mid a \cdot b \quad y \quad d \perp a \Rightarrow d \mid b$$

- Primos y Factorización:
 - Sea p primo y sean $a, b \in \mathbb{Z}$. Entonces:

$$p \mid a \cdot b \Rightarrow p \mid a$$
 o $p \mid b$

• Si p divide a algún producto de números, tiene que dividir a alguno de los factores \rightarrow Sean $a_1, \ldots, a_n \in \mathbb{Z}$:

$$\begin{cases} p \mid a_1 \cdot a_2 \cdots a_n \Rightarrow p \mid a_i \text{ para algún } i \text{ con } 1 \leq i \leq n. \\ p \mid a^n \Rightarrow p \mid a. \end{cases}$$

• Si $a \in \mathbb{Z}$, p primo:

$$\begin{cases} (a:p) = 1 \iff p \nmid a \\ (a:p) = p \iff p \mid a \end{cases}$$

• Sea $n \in \mathbb{Z} - \{0\}$, $n = \underbrace{s}_{\{-1,1\}} \cdot \prod_{i=1}^k p_i^{\alpha_i} = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ su factorización en primos. Entonces todo divisor m positivo de n se escribe como:

$$\begin{cases} \text{Si } m \mid n \to m = p_1^{\beta_1} \cdots p_k^{\beta_k} \text{ con } 0 \le \beta_i \le \alpha_i, & \forall i \ 1 \le i \le k \\ & \text{y hay} \end{cases}$$
$$(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_k + 1) = \prod_{i=1}^k \alpha_i + 1$$
divisores positivos de n .

 \bullet Sean $a y b \in \mathbb{Z}$ no nulos, con

$$\begin{cases} a = \pm p_1^{m_1} \cdots p_r^{m_r} \text{ con } m_1, \cdots, m_r \in \mathbb{Z}_0 \\ b = \pm p_1^{n_1} \cdots p_r^{n_r} \text{ con } n_1, \cdots, n_r \in \mathbb{Z}_0 \\ \Rightarrow (a:b) = p_1^{\min\{m_1, n_1\}} \cdots p_r^{\min\{m_r, n_r\}} \\ \Rightarrow [a:b] = p_1^{\max\{m_1, n_1\}} \cdots p_r^{\max\{m_r, n_r\}} \end{cases}$$

• Sean $a, d \in \mathbb{Z}$ con $d \neq 0$ y sea $n \in \mathbb{N}$. Entonces

$$d \mid a \iff d^n \mid a^n$$
.

- \bullet Sean $a, b, c \in \mathbb{Z}$ no nulos:
 - $* a \perp b \iff$ no tienen primos en común.
 - * (a:b) = 1 y $(a:c) = 1 \iff (a:bc) = 1$
 - $* (a:b) = 1 \iff (a^m:b^n) = 1, \forall m, n \in \mathbb{N}$
 - $* (a^n : b^n) = (a : b)^n \ \forall n \in \mathbb{N}$
- Si $a \mid m \wedge b \mid m$, entonces $[a:b] \mid m$
- $a (a : b) \cdot [a : b] = |a \cdot b|$

Ejercicios de la guía:

Divisibilidad

Decidir si las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$

a)
$$a \cdot b \mid c \Rightarrow a \mid c$$
 y $b \mid c$

f)
$$a \mid c$$
 y $b \mid c \Rightarrow a \cdot b \mid c$

b)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

g)
$$a \mid b \Rightarrow a \leq b$$

c)
$$2 \mid a \cdot b \Rightarrow 2 \mid a$$
 o $2 \mid b$

h)
$$a \mid b \Rightarrow |a| \le |b|$$

d)
$$9 \mid a \cdot b \Rightarrow 9 \mid a$$
 o $9 \mid b$

i)
$$a \mid b + a^2 \Rightarrow a \mid b$$

e)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

$$j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$$

a)
$$a \cdot b \mid c \Rightarrow a \mid c \text{ y } b \mid c$$

$$c = k \cdot a \cdot b = h \cdot a \Rightarrow a \mid c$$

$$\left\{ \begin{array}{l} c = k \cdot a \cdot b = \underbrace{b}_{k \cdot b} \cdot a \Rightarrow a \mid c \quad \checkmark \\ c = k \cdot a \cdot b = \underbrace{i}_{k \cdot a} \cdot b \Rightarrow b \mid c \quad \checkmark \end{array} \right.$$

b)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

$$a^{2} = k \cdot 4 = \underbrace{h}_{k \cdot 2} \cdot 2 \Rightarrow a^{2} \mid 2 \xrightarrow{\text{si } a \cdot b \mid c} a \mid 2 \quad \checkmark$$

c)
$$2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b$$

Si
$$2 \mid a \cdot b \Rightarrow \left\{ \begin{array}{c} a \text{ tiene que ser } par \\ \lor \\ b \text{ tiene que ser } par \end{array} \right\} \xrightarrow{\text{para que}} a \cdot b \text{ sea par. Por lo tanto si } 2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b.$$

d)
$$9 \mid a \cdot b \Rightarrow 9 \mid a \text{ o } 9 \mid b$$

Si
$$a = 3 \land b = 3$$
, se tiene que $9 \mid 9$, sin embargo $9 \not \mid 3$

e)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

$$12 \mid 20 + 4 \Rightarrow 12 \nmid 20 \text{ y } 12 \nmid 4$$

🖭... hay que hacerlo! 😭

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 3$.

g) _

🖭... hay que hacerlo! 😭

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

h) _

2... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

i)
$$a \mid b + a^2 \Rightarrow a \mid b$$

$$a \mid b + a^2 \Rightarrow b + a^2 = k \cdot a \xrightarrow{\text{acomodo}} b = (k - a) \cdot a = h \cdot a \Rightarrow a \mid b \quad \checkmark$$

$$\xrightarrow[\text{decir si:}]{\text{también puedo}} \left\{ \begin{array}{c} a \mid a^2 \\ a \mid b - a^2 \end{array} \right\} \xrightarrow[\text{propiedad}]{\text{por}} a \mid (b - a^2) + (a^2) = b \Rightarrow a \mid b \quad \checkmark$$

 $j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$

Pruebo por inducción.

$$p(n): a \mid b \Rightarrow a^n \mid b^n$$

Caso base:

$$n = 1 \Rightarrow a \mid b \Rightarrow a^1 \mid b^1 \quad \checkmark$$

p(1) resulta verdadera.

Paso inductivo:

Asumo
$$p(h): a \mid b \Rightarrow a^h \mid b^h$$
 verdadera \Rightarrow quiero ver que $p(h+1): a \mid b \Rightarrow a^{h+1} \mid b^{h+1}$

Parto de la hipótesis inductiva y voy llegar a p(k+1). Si:

$$a \mid b \xrightarrow{\text{HI}} a^k \mid b^k \Leftrightarrow a^k \cdot c = b^k \overset{\times b}{\Longleftrightarrow} b \cdot a^k \cdot c = b^{k+1} \overset{a \mid b}{\Longleftrightarrow} a \cdot d \cdot a^k \cdot c = a^{k+1} \cdot (cd) = b^{k+1} \Leftrightarrow a^{k+1} \mid b^{k+1}.$$

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

Este resultado es importante y se va a ver en muchos ejercicios:

$$a \mid b \Rightarrow a^n \mid b^n \iff b \equiv 0 \ (a) \Rightarrow b^n \equiv 0 \ (a^n) \iff b^n \equiv a^n \ (a^n)$$

$$\boxed{a \mid b \Rightarrow b^n \equiv a^n \ (a^n)}$$

2. Hallar todos los $n \in \mathbb{N}$ tales que:

a)
$$3n-1 | n+7$$

c)
$$2n+1|n^2+5$$

b)
$$3n-2 | 5n-8$$

d)
$$n-2|n^3-8$$

a)
$$3n-1|n+7$$

Busco eliminar la n del miembro derecho.

$$\left\{
\begin{array}{l}
3n-1 \mid n+7 \xrightarrow{a \mid c \Rightarrow} 3n-1 \mid 3 \cdot (n+7) = 3n+21 \\
\frac{a \mid b \quad \text{y} \quad a \mid c}{\Rightarrow a \mid b \pm c} 3n-1 \mid 3n+21-(3n-1) = 22
\end{array}
\right\} \rightarrow 3n-1 \mid 22$$

$$\xrightarrow{\text{busco } n}_{\text{para que}} \xrightarrow{\frac{22}{3n-1}} \in \mathcal{D}(22) = \{\pm 1, \pm 2, \pm 11, \pm 22\} \xrightarrow{\text{probando}} n \in \{1, 4\} \quad \checkmark$$

b)

c)

d)
$$n-2 \mid n^3-8$$

$$\xrightarrow{a \mid b} n-2 \mid \underbrace{(n-2) \cdot (n^2+2n+4)}_{n^3-8} \text{ Esto va a dividir para todo } n \neq 2$$

- 3. Sean $a, b \in \mathbb{Z}$.
 - a) Probar que $a-b\mid a^n-b^n$ para todo $n\in\mathbb{N}$ y $a\neq b\in\mathbb{Z}$
 - b) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n b^n$.
 - c) Probar que si n es un número natural impar y $a \neq -b$, entonces $a+b \mid a^n+b^n$.
 - a) Inducción:

Proposición:

$$p(n): a-b \mid a^n-b^n \ \forall n \in \mathbb{N} \quad \text{y} \quad a \neq b \in \mathbb{Z}$$

Caso Base:

$$p(1): a-b \mid a^{1}-b^{1},$$

p(1) es verdadera. \checkmark

Paso inductivo:

Asumo que $p(k): a-b \mid a^k-b^k$ es verdadera \Rightarrow quiero probar que $p(k+1): a-b \mid a^{k+1}-b^{k+1}$ también lo sea.

$$\left\{ \begin{array}{ll} a-b \mid a^k-b^k \\ a-b \mid a^k-b^k \end{array} \right. \xrightarrow{\times a \atop \times b} \left\{ \begin{array}{ll} a-b \mid a^{k+1}-ab^k \\ a-b \mid ba^k-b^{k+1} \end{array} \right. \right. \\ \left. \left. \right. + \left\{ \begin{array}{ll} a-b \mid a^{k+1}-b^k \\ a-b \mid ba^k-b^{k+1} \end{array} \right. \right.$$

Como p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción p(n) también lo es.

b) Sé que

$$a + b \mid a + b \iff a \equiv -b (a + b)$$

Multiplicando la ecuación de congruencia por a sucesivas veces me formo:

$$\begin{cases} a \cdot a = a^2 & \stackrel{(a+b)}{\equiv} & a \cdot (-b) \stackrel{(a+b)}{\equiv} (-1)^2 b \\ & \vdots & \longleftarrow^{\mathbf{1}} \\ a^n & \stackrel{(a+b)}{\equiv} & (-1)^n \cdot b^n \to \begin{cases} a^n \equiv b^n \ (a+b) & \text{con n par} \\ a^n \equiv (-1)^n \cdot b^n \ (a+b) & \text{con n impar} \end{cases} \\ \begin{cases} \text{Con } n \text{ par:} & a^n \equiv b^n \ (a+b) & \Rightarrow \ a+b \ a^n - b^n \\ \text{Con } n \text{ impar:} & a^n \equiv -b^n \ (a+b) & \Rightarrow \ a+b \ a^n + b^n \end{cases}$$

 \bigstar^1 Inducción:

$$p(n): a \equiv -b \ (a+b) \Rightarrow a^n \equiv (-1)^n \cdot b^n \ (a+b) \ \forall n \in \mathbb{N}.$$

Caso base:

$$p(1): a \equiv -b \ (a+b) \Rightarrow a^1 \equiv (-1)^1 \cdot b^1 \ (a+b)$$

p(1) es verdadera.

Paso inductivo:

$$p(k): a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$$
 asumo verdadera para algún $k \in \mathbb{Z}$ \Rightarrow quiero probar que

$$p(k): a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b) \text{ asumo verdadera para algún } k \in \mathbb{Z}$$

$$\Rightarrow \text{ quiero probar que}$$

$$p(k+1): a \equiv -b \ (a+b) \Rightarrow a^{k+1} \equiv (-1)^k \cdot b^k \ (a+b)$$

$$a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$$

$$\xrightarrow{\text{multiplico}} \text{por } a$$

$$a \cdot a^k = a^{k+1} \equiv (-1)^k \cdot \underbrace{a}_{(a+b)} \cdot b^k \ (a+b)$$

$$\Rightarrow a^{k+1} \equiv (-1)^{k+1} \cdot b^{k+1} \ (a+b) \iff a+b \ | \ a^{k+1} - (-1)^{k+1} b^{k+1}$$

Como p(1), p(k) y p(k+1) son verdaderas por principio de inducción lo es también p(n) $\forall n \in \mathbb{N}$

c) Hecho en el anterior .

Se
a $a\in\mathbb{Z}$ impar. Probar que $2^{n+2}\,\big|\,a^{2^n}-1$ para todo
 $n\in\mathbb{N}$

Pruebo por inducción:

$$p(n): 2^{n+2} \mid a^{2^n} - 1$$
, con $a \in \mathbb{Z}$ e impar. $\forall n \in \mathbb{N}$.

Caso base:

$$p(1) : 2^{3} = 8 \mid a^{2} - 1 = (a - 1) \cdot (a + 1)$$

$$\xrightarrow{a \text{ es impar, si } m \in \mathbb{Z}}$$

$$a = 2m - 1$$

$$(a - 1) \cdot (a + 1) \stackrel{\bigstar}{=} (2m - 2) \cdot (2m) \stackrel{!}{=} 4 \cdot \underbrace{m \cdot (m - 1)}_{par: 2h, h \in \mathbb{Z}} = 4 \cdot 2h = 8 * h$$

$$\xrightarrow{\text{por lo} \atop \text{tanto}}$$

$$8 \mid 8h = (a - 1) \cdot (a + 1) \text{ para algún } h \in \mathbb{Z} \quad \checkmark$$

Por lo tanto p(1) es verdadera.

Paso inductivo:

Asumo que: $p(k): 2^{k+2} \mid a^{2^k} - 1$, es verdadera \Rightarrow Quiero ver que $p(k+1): 2^{k+3} \mid a^{2^{k+1}} - 1$, también lo sea.

$$2^{k+3} \mid a^{2^{k+1}} - 1 \stackrel{!}{\Leftrightarrow} 2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \overbrace{(a^{2^k} + 1)}^{\text{par }!}$$

$$\stackrel{\text{Si } a \mid b \quad \text{y} \quad c \mid d \Rightarrow ac \mid bd}{\underset{\text{hipótesis inductiva}}{\underset{\text{par}}{\text{par}}}}$$

$$2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \underbrace{(a^{2^k} + 1)}_{\text{par}}.$$

El! es todo tuyo, hints: diferencia de cuadrados, propiedades de exponentes... En el último paso se comprueba que p(k+1) es vedadera.

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción también lo será $p(n) \ \forall n \in \mathbb{N}$.

5. Some support of the second of the second

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

6.

- a) Probar que el producto de n enteros consecutivos es divisible por n!
- b) Probar que $\binom{2n}{n}$ es divisible por 2.

🖭... hay que hacerlo! 📦

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

Proba que las siguientes afirmaciones son vedaderas para todo $n \in \mathbb{N}$.

a) $99 \mid 10^{2n} + 197$

c) $56 \mid 13^{2n} + 28n^2 - 84n - 1$

b) $9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$

d) $256 \mid 7^{2n} + 208n - 1$

a) $99 \mid 10^{2n} + 197 \iff 10^{2n} + 197 \equiv 0 \ (99) \to 10^{2n} + 198 \equiv 1 \ (99) \to 10^{2n} + \underbrace{198}_{(99)} \equiv 1 \ (99) \to 100^n \equiv 10^{2n} + 198 = 1$

$$\begin{cases} \frac{1}{99} \rightarrow \\ \frac{\text{sé}}{\text{que}} 100 \equiv 1 \ (99) \iff 100^2 \equiv \underbrace{100}_{\stackrel{(99)}{\equiv} 1} (99) \rightarrow 100^2 \equiv 1 \ (99) \iff \dots \iff 100^n \equiv 1 \ (99) \end{cases}$$

Se concluye que $99 | 10^{2n} + 197 \iff 99 | \underbrace{100 - 1}_{\infty}$

b) $9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \iff 7 \cdot 5^{2n} + 2^{4n+1} \equiv 0 \ (9) \xrightarrow{\text{sumo } 2 \cdot 5^{2n} \atop \text{M.A.M}} \underbrace{9 \cdot 5^{2n}}_{\stackrel{(9)}{=} 0} + 2 \cdot 2^{4n} \equiv 2 \cdot 5^{2n} \ (9)$

c) 🖭 ... hay que hacerlo! 📆

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\mathbb{A} \to \bigcirc$.

d) • ... hay que hacerlo! •

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

Algoritmo de División:

8. Calcular el cociente y el resto de la división de a por b en los casos:

a)
$$a = 133$$
, $b = -14$.

d)
$$a = b^2 - 6$$
, $b \neq 0$.

b)
$$a = 13$$
, $b = 111$.

e)
$$a = n^2 + 5$$
, $b = n + 2$ $(n \in \mathbb{N})$.

c)
$$a = 3b + 7$$
, $b \neq 0$.

f)
$$a = n + 3$$
, $= n^2 + 1 \ (n \in \mathbb{N})$.

a)
$$133: (-14) \Rightarrow 133 = (-9) \cdot (-14) + 7$$

c)
$$a = 3b + 7 \rightarrow \text{me interesa:} \rightarrow \left\{ \begin{array}{l} |b| \le |a| \checkmark \\ 0 \le r < |b| \checkmark \end{array} \right\} \rightarrow$$

$$\rightarrow \begin{cases}
Si: |b| > 7 \to (q, r) = (3, 7) \\
Si: |b| \le 7 \to (q, r) = (3, 7) \\
\hline
(a, b) \mid (-14, -7) \mid (-11, -6) \mid (-8, -5) \mid (-5, -4) \mid (4, -1) \mid \dots \\
\hline
(q, r) \mid (2, 0) \mid (2, 1) \mid (2, 2) \mid (2, 3) \mid (4, 0) \mid \dots
\end{cases}$$

d)
$$a = b^2 - 6$$
, $b \neq 0$. Some half of the equation $b \neq 0$ is a simple of the equation $b \neq 0$.

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de:

- a) la división de $a^2 3a + 11$ por 18.
- b) la división de a por 3.
- c) la división de 4a + 1 por 9.
- d) la división de $7a^2 + 12$ por 28.

a)
$$r_{18}(a) = r_{18} \underbrace{(r_{18}(a)^2 - r_{18}(3) \cdot r_{18}(a)}_{5} \cdot \underbrace{r_{18}(a)}_{5} + \underbrace{r_{18}(11)}_{11}) = r_{18}(21) = 3$$

b)
$$\begin{cases} a = 3 \cdot q + r_3(a) \\ 6 \cdot a = 18 \cdot q + \underbrace{6 \cdot r_3(a)}_{r_{18}(6a)} \end{cases} \rightarrow r_{18}(6a) = r_{18}(r_{18}(6) \cdot r_{18}(a)) = r_{18}(30) = 12$$
$$\Rightarrow 6 \cdot r_3(a) = r_{18}(6a) \rightarrow r_3(a) = 2$$

c)
$$r_9(4a+1) = \underbrace{r_9(4 \cdot r_9(a)+1)}_{*1} \rightarrow$$

 $a = 18 \cdot q + 5 = 9 \cdot \underbrace{(9 \cdot q)}_{q'} + \underbrace{5}_{r_9(a)} \xrightarrow{*_1} r_9(a) = r_9(21) = 3$

d)
$$r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) \xrightarrow{i\text{qu\'e es}} r_{28}(a)$$

$$\begin{cases}
a = 18 \cdot q + 5 \xrightarrow{\text{busco algo}} \\
14 \cdot a = \underbrace{252 \cdot q}_{28 \cdot 9 \cdot q} + 70 \xrightarrow{\text{corrijo seg\'un}} 28 \cdot 9 \cdot q + \underbrace{2 \cdot 28 + 14}_{70} = 28 \cdot (9 \cdot q + 2) + 14 \quad \checkmark \\
\xrightarrow{\text{por lo}}_{\text{tanto}} 14a = 28 \cdot q' + 14 \Rightarrow 14 \cdot a \equiv 14 \ (28) \iff a \equiv 1 \ (28)
\end{cases}$$
Ahora que sé que $r_{28}(a) = 1$ sale que $r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) = r_{28}(19) = 19 \quad \checkmark$

10.

- a) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 14, por 2 y por 7.
- b) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- c) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^{n} (-1)^i \cdot i!$ por 12

a)
$$\begin{cases} a \equiv 22 \ (14) \to a = 14 \cdot q + \underbrace{22}_{14+8} = 14 \cdot (q+1) + 8 \xrightarrow{\text{el resto}} r_{14}(a) = 8 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{2 \cdot (7 \cdot q)} + \underbrace{22}_{2 \cdot 11} = 2 \cdot (7q+11) + 0 \xrightarrow{\text{el resto}} r_{2}(a) = 0 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{7 \cdot (2 \cdot q)} + \underbrace{22}_{1+7 \cdot 3} = 7 \cdot (2q+3) + 1 \xrightarrow{\text{el resto}} r_{7}(a) = 1 \quad \checkmark \end{cases}$$

- b) Dos números congruentes tienen el mismo resto. $a \equiv 13$ (5) $\iff a \equiv 3$ (5) $r_5(33a^3 + 3a^2 197a + 2) = r_5(3 \cdot r_5(a)^3 + 3 \cdot r_5(a)^2 2 \cdot r_5(a) + 2)$ $\xrightarrow{\text{como } a \equiv 13 \text{ (5)}}{r_5(a) = 3} r_5(33a^3 + 3a^2 197a + 2) = 4$
- c) 2... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

11.

- a) Probar que $a^2 \equiv -1$ (5) $\iff a \equiv 2$ (5) $\lor a \equiv 3$ (5)
- b) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (7)
- c) Probar que $a^7 \equiv a$ (7) $\forall a \in \mathbb{Z}$
- d) Probar que $7 \mid a^2 + b^2 \iff 7 \mid a \land 7 \mid b$.
- e) Probar que 5 | $a^2 + b^2 + 1 \Rightarrow 5$ | a o 5 | b. ¿Vale la implicación recíproca?
- a) Me piden que pruebe una congruencia es válida solo para ciertos $a \in \mathbb{Z}$. Pensado en términos de restos quiero que el resto al poner los a en cuestión cumplan la congruencia.
- ♠ ¡Aportá! Correcciones, subiendo ejercicios, ★ al repo, críticas, todo sirve.

$$\begin{cases} a^{2} \equiv -1 \ (5) \Leftrightarrow a^{2} \equiv 4 \ (5) \Leftrightarrow a^{2} - 4 \equiv 0 \ (5) \Leftrightarrow (a-2) \cdot (a+2) \equiv 0 \ (5) \\ \xrightarrow{\text{quiero}} r_{5}(a^{2}+1) = r_{5}(a^{2}-4) = r_{5}(r_{5}(a-2) \cdot r_{5}(a+2)) = \underbrace{r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2))}_{\bigstar^{1}} = 0 \\ r_{5}(a^{2}+1) = 0 \Leftrightarrow r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2)) = 0 \end{cases} \begin{cases} r_{5}(a) = 2 \Leftrightarrow a \equiv 2 \ (5) \checkmark \\ r_{5}(a) = -2 \Leftrightarrow a \equiv 3 \ (5) \checkmark \end{cases}$$

Más aún:

Para una congruencia módulo 5 habrá solo 5 posibles restos, por lo tanto se pueden ver todos los casos haciendo una table de restos.

a	0	1	2	3	4	
$r_5(a)$	0	1	2	3	4	\rightarrow La tabla muestra que para un dado a
$r_5(a^2)$						
$\rightarrow r_5(a)$	=	$\left\{\begin{array}{c} 2\\ 3\\ 3\end{array}\right.$	2 ¢	\Rightarrow	a	$\equiv 2 (5) \iff a^2 \equiv 4 (5) \iff a^2 \equiv -1 (5)$ $\equiv 3 (5) \iff a^2 \equiv 4 (5) \iff a^2 \equiv -1 (5)$

b) ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

c) Me piden que exista una dada congruencia para todo $a \in \mathbb{Z}$. Eso equivale a probar a que al dividir el lado izquierdo entre el divisor, el resto sea lo que está en el lado derecho de la congruencia.

$a^7 - a \equiv 0 \ (7) \iff a \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^6 - 1$	$a^3 + 1 \equiv 0 \ (7) \xrightarrow{\text{tabla de restos con}}$
	sus propiedades lineales
$(a^3-1)\cdot(a^3+1)$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

u	U	1		J	4	0	U
$r_7(a)$	0	1	2	3	4	5	6
$r_7(a^3-1)$	6	0	0	5	0	5	5
$r_7(a^3+1)$	1	2	2	0	2	0	0

 \rightarrow Cómo para todos los a, alguno de los factores del resto siempre

se anula, es decir:

$$r_7(a^7 - a) = r_7(r_7(a) \cdot r_7(a^3 - 1) \cdot r_7(a^3 + 1)) = 0 \ \forall a \in \mathbb{Z}$$

- d)
- e

12. ②... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

13. Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$:

$$a_1 = 3$$
, $a_2 = -5$ y $a_{n+2} = a_{n+1} - 6^{2n} \cdot a_n + 21^n \cdot n^{21}$, para todo $n \in \mathbb{N}$.

Probar que $a_n \equiv 3^n \pmod{7}$ para todo $n \in \mathbb{N}$.

La infumabilidad de esos números me obliga a atacar a esto con el resto e inducción.

$$r_7(a_{n+2}) = r_7(r_7(a_{n+1}) - \underbrace{r_7(36)^n}_{\stackrel{(7)}{\equiv} 1} \cdot r_7(a_n) + \underbrace{r_7(21)^n}_{\stackrel{(7)}{\equiv} 0} \cdot r_7(n)^{21}) = \underbrace{r_7(a_{n+2}) = r_7(a_{n+1}) - r_7(a_n)}_{\bigstar^1} \quad \checkmark$$

Puesto de otra forma
$$a_{n+2} \equiv a_{n+1} - a_n$$
 (7) \rightarrow
$$\begin{cases} a_1 \equiv 3^1 \ (7) \iff a_1 \equiv 3 \ (7) \\ a_2 \equiv 3^2 \ (7) \iff a_2 \equiv 2 \ (7) \\ a_3 \equiv 3^3 \ (7) \iff a_3 \equiv 6 \ (7) \end{cases}$$

Quiero probar que $a_n \equiv 3^n \pmod{7} \rightarrow \text{inducción comple}$

$$p(n): a_n \equiv 3^n \pmod{7} \ \forall n \in \mathbb{N}$$

Casos base:
$$\begin{cases} p(1): a_1 \equiv 3^1 \ (7) \quad \checkmark, \quad p(1) \text{ es verdadera} \\ p(2): a_2 \equiv 3^2 \ (7) \stackrel{(7)}{\equiv} 2 \stackrel{(7)}{\equiv} -5 \quad \checkmark, \quad p(2) \text{ es verdadera} \\ p(k): a_k \equiv 3^k \ (\text{mod } 7) \quad \checkmark, \quad p(k) \text{ la asumo verdadera} \\ p(k+1): a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \quad \checkmark, \quad p(k+1) \text{ también asumo verdadera} \\ p(k+2): a_{k+2} \equiv 3^{k+2} \ (\text{mod } 7) \text{ quiero probar que es verdadera} \\ a_k \equiv 3^k \ (\text{mod } 7) \\ a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \\ a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \end{cases}$$

$$\xrightarrow{\star^1} a_{k+2} = a_{k+1} - a_k \equiv 3^{k+1} - 3^k = 2 \cdot 3^k \stackrel{(7)}{\equiv} 9 \cdot 3^k = 3^{k+2} \ (7) \quad \checkmark \\ p(k+2) \text{ resultó ser verdadera}.$$
Concluvendo como $p(1), p(2), p(k), p(k+1) \quad \forall \quad p(k+2) \text{ resultaron verdaderas por el principio de induction}$

Concluyendo como p(1), p(2), p(k), p(k+1) y p(k+2) resultaron verdaderas por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

14.

- (a) Hallar el desarrollo en base 2 de
 - i. 1365

- ii. 2800
- iii. $3 \cdot 2^{12}$
- iv. $13 \cdot 2^n + 5 \cdot 2^{n-1}$

(b) Hallar el desarrollo en base 16 de 2800.

2... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

15. Some support of the state o

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

16. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

17. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$. Máximo común divisor:

- 18. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b:
 - i) a = 2532, b = 63.
 - ii) a = 131, b = 23.
 - iii) $a = n^4 3$, $b = n^2 + 2$ $(n \in \mathbb{N})$.

Hacer!

19. Some had a serio!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

20. Sea $a \in \mathbb{Z}$.

- a) Probar que (5a + 8 : 7a + 3) = 1 o 41. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 23 da 41.
- b) Probar que $(2a^2 + 3a : 5a + 6) = 1$ o 43. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 16 da 43
- c) Probar que $(a^2 3a + 2 : 3a^3 5a^2) = 2$ o 4, y exhibir un valor de a para cada caso. (Para este item es **indispensable** mostrar que el máximo común divisor nunca puede ser 1).

i) 9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\mathbb{A}T_{FX} \rightarrow \bigcirc$.

ii) 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 0$.

iii)
$$(a^2 - 3a + 2 : 3a^3 - 5a^2) \xrightarrow{\text{Euclides}} (\underline{a^2 - 3a + 2} : \underline{6a - 8})$$

$$\xrightarrow{\text{busco}} \left\{ \begin{array}{c} d \mid a^2 - 3a + 2 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\star 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\star 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\star 6} \left\{ \begin{array}{c} d \mid 8 \end{array} \right\} \rightarrow \mathcal{D}_{+}(8) = \{1, 2, 4, 8\} \stackrel{\bigstar}{\bigstar}^{1} = \{2, 4, 8\}$$

$$\left\{ \begin{array}{c} a = 1 & (0: -2) = 2 \\ a = 2 & (0: 4) = 4 \end{array} \right.$$
Parasida al basha an alaga

¿Qué onda el 8? Hice mal cuentas? Si no, cómo lo descarto?

21. Sean $a, b \in \mathbb{Z}$ coprimes. Probar que 7a - 3b y 2a - b son coprimes.

$$\overline{\left\{ \begin{array}{ccc|c}
d \mid 7a - 3b & \stackrel{\cdot 2}{\longrightarrow} & d \mid b & \rightarrow & d \mid b \\
d \mid 2a - b & \stackrel{\cdot 7}{\longrightarrow} & d \mid 2a - b & \rightarrow & d \mid a \end{array} \right\}} \xrightarrow{\text{propiedad}} d \mid (a:b) \xrightarrow{(a:b)} d \mid 1$$

Por lo tanto (7a - 3b : 2a - b) = 1 son coprimos como se quería mostrar.

22. Significant with the second secon

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

23.

- i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
- ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
- iii) Determinar todos los $a,b\in\mathbb{Z}$ tales que $\frac{2a+3}{a+1}+\frac{a+2}{4}\in\mathbb{Z}$.

i)
$$\frac{b+4}{a} + \frac{5}{b} = \frac{b^2+4b+5a}{ab} \xrightarrow{\text{quiero que}} ab \mid b^2 + 4b + 5a$$

$$\xrightarrow{\text{coprimitusibilidad}} \begin{cases} a \mid b^2 + 4b + 5a \\ b \mid b^2 + 4b + 5a \end{cases} \rightarrow \begin{cases} a \mid b^2 + 4b \\ b \mid 5a \end{cases} \xrightarrow{\text{debe dividr a 5}} \begin{cases} a \mid b \cdot (b+4) \\ b \mid 5 \end{cases}$$
Seguro tengo que $b \in \{\pm 1, \pm 5\} \rightarrow \text{pruebo valores de } b \text{ y veo que valor de } a \text{ queda:}$

$$\begin{cases} b = 1 \rightarrow (a \mid 5, 1) \rightarrow \{(\pm 1, 1).(\pm 5, 1)\} \\ b = -1 \rightarrow (a \mid -3, 1) \rightarrow \{(\pm 1, -1).(\pm 3, 1)\} \\ b = 5 \rightarrow (a \mid 45, 5) \xrightarrow{\text{atención que}} \{(\pm 1, 5), (\pm 3, 5).(\pm 9, 5)\} \end{cases}$$

$$b = -5 \rightarrow (a \mid 5, -5) \xrightarrow{\text{atención que}} \{(\pm 1, -5)\}$$

- ii) Hacer!
- iii) 2... hay que hacerlo! 6

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Primos y factorización:

24. _____

- **25.** Sea p primo positivo.
 - i) Probar que si $0 < k < p \mid \binom{p}{k}$.
 - ii) Probar que si $a, b \in \mathbb{Z}$, entonces $(a+b)^p \equiv a^p + b^p$ (p).
- 26. e... hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.

27. S... hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.

28. S... hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.

29. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

30. Omna hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en \LaTeX

31. 2... hav que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

32. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

🎧 ¡Aportá! Correcciones, subiendo ejercicios, 📩 al repo, críticas, todo sirve.

33. S. hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

34. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

35. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

36. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

37. 🖭... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

38. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

39. Q... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

40. Some had a serio!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

Ljercicios extras:

4400 ¿Cuántos divisores distintos tiene? ¿Cuánto vale la suma de sus divisores.

$$4400 \xrightarrow{\text{factorizo}} 4400 = 2^4 \cdot 5^2 \cdot 11 \xrightarrow{\text{los divisores } m \mid 4400} m = \pm 2^{\alpha} \cdot 2^{\beta} \cdot 2^{\gamma}, \text{ con } \left\{ \begin{array}{l} 0 \leq \alpha \leq 4 \\ 0 \leq \beta \leq 2 \\ 0 \leq \gamma \leq 1 \end{array} \right\}$$

Hay entonces un total de $5 \cdot 3 \cdot 2 = 30$ divisores positivos y 60 enteros.

Ahora busco la suma de esos divisores:
$$\sum_{i=0}^{4} \sum_{j=0}^{2} \sum_{k=0}^{1} 2^{i} \cdot 5^{j} \cdot 11^{k} = \left(\sum_{i=0}^{4} 2^{i}\right) \cdot \left(\sum_{j=0}^{2} 5^{j}\right) \cdot \left(\sum_{k=0}^{1} 11^{k}\right)$$

$$\xrightarrow{\text{sumas}} \xrightarrow{2^{4+1}-1} \cdot 5^{2+1}-1 \cdot 11^{1+1}-1 - 11532$$

$$\xrightarrow{\text{geométricas}} \underbrace{\frac{2^{4+1}-1}{2-1}}_{31} \cdot \underbrace{\frac{5^{2+1}-1}{5-1}}_{31} \cdot \underbrace{\frac{11^{1+1}-1}{11-1}}_{12} = 11532.$$

- Hallar el menor $n \in \mathbb{N}$ tal que:
 - i) (n:2528) = 316
 - ii) n tiene exáctamente 48 divisores positivos
 - iii) 27 ∤ n

Analizo los números:

$$\begin{cases}
\frac{\text{factorizo}}{2528} 2528 = 2^5 \cdot 79 \quad \checkmark \\
\frac{\text{factorizo}}{316} 316 = 2^2 \cdot 79 \quad \checkmark \qquad \xrightarrow{\text{quiero}} n = 2^{\alpha_2} \cdot 3^{\alpha_3} \cdot 5^{\alpha_5} \cdot 7^{\alpha_7} \cdots 79^{\alpha_7 9} \cdots \\
\frac{\text{reescribo}}{\text{condición}} (n : 2^5 \cdot 79) = 2^2 \cdot 79
\end{cases}$$

$$\xrightarrow{\text{como}} (n: 2^5 \cdot 79) = 2^2 \cdot 79 \xrightarrow{\text{tengo}} \left\{ \begin{array}{l} \alpha_2 = 2, & \text{dado que } 2^2 \cdot 79 \mid n. \text{ busco el menor } n!. \\ \alpha_{79} \geq 1, & \text{Al igual que antes.} \\ \frac{\text{notar}}{\text{que}} \alpha_3 < 3 & \text{si no } 3^3 = 27 \mid n \end{array} \right.$$

La estrategia sigue con el primo más chico que haya:

$$\begin{cases}
48 = \underbrace{(\alpha_2 + 1)}_{2+1} \cdot (\alpha_3 + 1) \cdots \\
48 = 3 \cdot (\alpha_3 + 1) \cdot \cdots \\
16 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \underbrace{(\alpha_{79} + 1)}_{=2 \text{ quiero el menor}} \\
8 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \\
8 = \underbrace{(\alpha_3 + 1)}_{=2} \cdot \underbrace{(\alpha_5 + 1)}_{=2} \cdot \underbrace{(\alpha_7 + 1)}_{=2} \cdot 1 \cdots 1
\end{cases}$$

El n que cumple lo pedido sería $n = 2^2 \cdot 3^1 \cdot 5^1 \cdot 7^1 \cdot 79^1$

Sabiendo que (a:b)=5. Probar que $(3ab:a^2+b^2)=25$

Arranco comprimizando:

🜎 ¡Aportá! Correcciones, subiendo ejercicios, 🗡 al repo, críticas, todo sirve.

$$\begin{cases} a = 5c \\ b = 5d \end{cases} \Rightarrow (3ab: a^2 + b^2) = 25 \stackrel{\text{coprimizar}}{=} (3cd: c^2 + d^2) = 1$$

Esto último nos dice que las expresiones 3cd y $c^2 + d^2$ son coprimas entre sí, en otras palabras, que no hay ningún p primo que divida ambas expresiones a la vez.

Pruebo por absurdo que no existe p primo que divida a ambas expresiones, es decir que no existe un p, tal que $(3cd:c^2+d^2)=p$. Supongo que $\exists p$ primo tal que:

$$p \mid 3 \cdot c \cdot d \Leftrightarrow \begin{cases} p \mid 3 & \bigstar^{1} \\ o \\ p \mid c & \bigstar^{2} \\ o \\ p \mid d & \bigstar^{3} \end{cases}$$

Si ocurre que $p \mid 3 \Leftrightarrow p = 3$. Quiero entonces ver si $3 \mid c^2 + d^2 \Leftrightarrow c^2 + d^2 \stackrel{(3)}{\equiv} 0$. Hago una tabla para estudiar esa última ecuación:

$r_3(c)$	0	1	2
$r_3(d)$	0	1	2
$r_3(c^2+d^2)$	0	2	2

De la tabla concluímos que para que $c^2 + d^2 \stackrel{(3)}{\equiv} 0$ debe ocurrir que: $c \stackrel{(3)}{\equiv} 0$ y también que $d \stackrel{(3)}{\equiv} 0$, es decir que tanto c como d sean múltiplos de 3. Esto es una contradicción, ya que no puede ocurrir porque (c:d) = 1. Por lo tanto no puede ser que $\bigstar^1 p \mid 3$

Si ocurre ahora que $\bigstar^2 p \mid c$, estudio a ver si también $p \mid c^2 + d^2$:

$$\left\{ \begin{array}{c|c} p & c \\ p & c^2 + d^2 \end{array} \right. \xrightarrow[F_2 - c \cdot F_1 \to F_2]{} \left\{ \begin{array}{c|c} p & c \\ p & d^2 & \xrightarrow{p} p & d \end{array} \right.$$

Entonces si $p \mid c$ y también $p \mid c^2 + d^2$ debe ocurrir que $p \mid d$. Nuevamente contraticción ya que no puede ocurrir debido a que (c:d) = 1.

El caso \star^3 es lo mismo que el caso \star^2 .

Se concluye entonces que $(3cd:c^2+d^2)=1$ con (c:d)=1. Así probando que $(3ab:a^2+b^2)=25$ con $\begin{cases} a=5c\\b=5d \end{cases}$

♦4. Sea $n \in \mathbb{N}$. Probar que 81 | $(16n^2 + 8^{2n} - 15n - 7)^{2024}$ si y solo si 3 | n.

 $81 \mid (16n^{2} + 8^{2n} - 15n - 7)^{2024} \stackrel{\text{!!!}}{\Longrightarrow} 3 \mid (16n^{2} + 8^{2n} - 15n - 7)^{506} \stackrel{\text{def}}{\Longleftrightarrow}$ $\stackrel{\text{def}}{\Longleftrightarrow} (16n^{2} + 8^{2n} - 15n - 7)^{2024} \equiv 0 \ (3) \stackrel{\text{!}}{\Leftrightarrow} (n^{2})^{2024} \equiv 0 \ (3) \Leftrightarrow n^{4048} \equiv 0 \ (3) \stackrel{\text{!!}}{\Longrightarrow} n \equiv 0 \ (3)$ $\boxed{81 \mid (16n^{2} + 8^{2n} - 15n - 7)^{2024} \Rightarrow 3 \mid n}$

En el !!! uso esto $p^n \mid a^n \Leftrightarrow p \mid a$. En ! son cuentas de congruencia. Y en !! uso esto, $p \mid a^n \Rightarrow p \mid a$.

 \Leftarrow

$$3 \mid n \stackrel{\text{def}}{\iff} n \equiv 0 \ (3) \stackrel{!}{\iff} n^2 \equiv 0 \ (3) \stackrel{!}{\iff} 16n^2 + 8^{2n} - 15n - 7 \equiv 0 \ (3) \stackrel{!}{\iff}$$

$$\stackrel{!}{\iff} (16n^2 + 8^{2n} - 15n - 7)^4 \equiv 0 \ (3^4) \stackrel{!}{\implies} (16n^2 + 8^{2n} - 15n - 7)^{2024} \equiv 0 \ (3^4)$$

$$\boxed{3 \mid n \Rightarrow 81 \mid (16n^2 + 8^{2n} - 15n - 7)^{2024}}$$

En el primero y último! uso que $n \equiv 0$ $(d) \Rightarrow n^m \equiv 0$ (d) y en los otros la mismas cosas que antes... ponele

Estudiar los valores parar **todos** los $a \in \mathbb{Z}$ de $(a^3 + 1 : a^2 - a + 1)$

Primero hay que notar que el lado $a^2 - a + 1$ es siempre impar ya que:

There hay que notar que et late
$$u = u + 1$$
 es simple impar ya que.
$$\left\{ \begin{array}{l} (2k-1)^2 - (2k-1) + 1 \stackrel{(2)}{\equiv} (-1)^2 - 1 + 1 \stackrel{(2)}{\equiv} 1 \\ (2k)^2 - (2k) + 1 \stackrel{(2)}{\equiv} (0)^2 - 0 + 1 \stackrel{(2)}{\equiv} 1. \end{array} \right\} \text{ Por lo tanto 2 no puede ser un divisor de ambas expresiones y si } 2 \not\mid A \Rightarrow 2 \cdot k \not\mid A \text{ tampoco.}$$
Se ve fácil contrarecíproco: $2k \mid A \Rightarrow 2 \mid A$. Porque existe un k tal que $2 \cdot c \cdot k = A \Rightarrow 2 \cdot (c \cdot k) = A$. Ahora cuentas para simplificar la expresión y encontrar número del lado derecho.
$$\left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a^3 + 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c} d \mid a \end{matrix} \right) = \frac{1}{2} \left(\begin{array}{c}$$

$$\begin{cases} d \mid a^3 + 1 \\ d \mid a^2 - a + 1 \end{cases} \rightarrow d \mid 30 \rightarrow \mathcal{D}_+(d) = \{1, 2, 3, 5, 6, 10, 15, 30\} \xrightarrow{\text{por lo de antes}} \mathcal{D}_+(d) = \{1, 3, 5, 15\}$$

Ahora cuentas para simplificar la expresión y encontrar número del lado derecho.
$$\begin{cases} d \mid a^3+1 \\ d \mid a^2-a+1 \end{cases} \rightarrow d \mid 30 \rightarrow \mathcal{D}_+(d) = \{1,2,3,5,6,10,15,30\} \xrightarrow{\text{por lo de antes}} \mathcal{D}_+(d) = \{1,3,5,15\}$$

$$\xrightarrow{\text{hacer tabla de restos}} \begin{cases} r_3(a^3+1) = 0 & \text{si} \quad a \equiv 2 \ (3) \\ r_3(a^2-a+1) = 0 & \text{si} \quad a \equiv 2 \ (3) \end{cases} \rightarrow \begin{cases} r_5(a^3+1) \neq 0 \quad \forall a \in \mathbb{Z} \ \}.$$
 Luego si $5 \not\mid (a^3+1:a^2-a+1) \Rightarrow \underbrace{15}_{5\cdot 3} \not\mid (a^3+1:a^2-a+1) \xrightarrow{\text{se achica el}} \mathcal{D}_+(d) = \{1,3\}$
$$d = \begin{cases} 3 & \text{si} \quad a \equiv 2 \ (3) \\ 1 & \text{si} \quad a \equiv 1 \lor 2 \ (3) \end{cases}$$

Luego si
$$5 \nmid (a^3 + 1 : a^2 - a + 1) \Rightarrow \underbrace{15}_{5,3} \nmid (a^3 + 1 : a^2 - a + 1) \xrightarrow{\text{se achica el conjunto de divisores}} \mathcal{D}_+(d) = \{1, 3\}$$

$$d = \begin{cases} 3 & \text{si} \quad a \equiv 2 \ (3) \\ 1 & \text{si} \quad a \equiv 1 \lor 2 \ (3) \end{cases}$$

Sean $a, b \in \mathbb{Z}$ tal que (a : b) = 6. Hallar todos los d = (2a + b : 3a - 2b) y dar un ejemplo en cada caso.

$$d = (2 \cdot 6A + 6B : 3 \cdot 6A - 2 \cdot 6B) = (6 \cdot (2 \cdot A + B) : 6 \cdot (3 \cdot A - 2 \cdot B)) = 6 \cdot (2A + B : 3A - 2B)$$

Conviene coprimizar:
$$(a:b) = 6 \iff \begin{cases} a = 6A \\ b = 6B \end{cases}$$
 con $(A:B)^{\bigstar^{1}} = 1$

$$d = (2 \cdot 6A + 6B : 3 \cdot 6A - 2 \cdot 6B) = (6 \cdot (2 \cdot A + B) : 6 \cdot (3 \cdot A - 2 \cdot B)) = 6 \cdot \underbrace{(2A + B : 3A - 2B)}_{D}$$

$$\rightarrow d^{\bigstar^{2}} = 6D \xrightarrow{\text{busco divisores}}_{\text{comunes}} \begin{cases} D \mid 2A + B \\ D \mid 3A - 2B \end{cases} \xrightarrow{\text{operaciones}}_{\dots} \begin{cases} D \mid 7B \\ D \mid 7A \end{cases} \Rightarrow D = (7A : 7B) = 7 \cdot (A : B)^{\bigstar^{1}} = 7$$
Por lo tanto $D \in \mathcal{D}_{+}(7) = \{1, 7\}$ pero vo quiero encontrar ejemplos de $a \times b$:

Por lo tanto $D \in \mathcal{D}_+(7) = \{1, 7\}$, pero yo quiero encontrar ejemplos de a

For 10 tanto
$$D \in D_{+}(T) = \{1, T\}$$
, pero yo quiero encontrar ejemplos
$$d = 6 \cdot 7 = 42 \begin{cases} \text{Si: } A = 2 \to a = 12 \\ B = 3 \to b = 18 \\ (7:0) \Rightarrow D = 7 \to d = (42:0) = \underbrace{42}_{6 \cdot D} \end{cases}$$

$$\downarrow 0$$

$$d = 6 \cdot 1 = 6 \begin{cases} \text{Si: } A = 0 \to a = 0 \\ B = 1 \to b = 6 \\ (1:-2) \Rightarrow D = 1 \to d = (6:-12) = \underbrace{6}_{6 \cdot D} \end{cases}$$

♦7. Sea $a \in \mathbb{Z}$ tal que $32a \equiv 17$ (9). Calcular $(a^3 + 4a + 1 : a^2 + 2)$

Simplifico un poco:

$$32a \equiv 17 \ (9) \Leftrightarrow 5a \equiv 8 \ (9) \xrightarrow[(\Leftarrow)2 \ \bot \ 9]{\times 2} a \equiv 7 \ (9) \xrightarrow{}^{1} \checkmark$$

Simplifico la exprecion del MCD con euclides:

$$\begin{array}{c|c}
 a^{3} + 4a + 1 & a^{2} + 2 \\
 -a^{3} - 2a & a \\
\hline
 2a + 1
\end{array}$$

Entonces puedo escribir:

$$d = (a^3 + 4a + 1 : a^2 + 2) = (a^2 + 2 : 2a + 1)$$

Busco potenciales d:

$$\left\{ \begin{array}{l} d \mid a^2 + 2 \\ d \mid 2a + 1 \end{array} \right. \stackrel{2F_1 - aF_2}{\longleftrightarrow} \left\{ \begin{array}{l} d \mid -a + 4 \\ d \mid 2a + 1 \end{array} \right. \stackrel{2F_1 + F_2}{\longleftrightarrow} \left\{ \begin{array}{l} d \mid -a + 4 \\ d \mid 9 \end{array} \right.$$

Por lo tanto la versión más simple quedó en: d=(-a+4:9). Posibles $d:\{1,3,9\}$

Hago tabla de restos 9 y 3, para ver si las expresiones $(a^2 + 2 : 2a + 1)$ son divisibles por mis potenciales d. Tabla de restos para d = 9:

$r_9(a)$	0	1	2	3	4	5	6	7	8
$r_9(-a+4)$	4	3	2	1	0	-1	-2	-3	-4

Entonces los a que cumplen $a \equiv 4$ (9), son candidatos para obtener d. Tabla de restos para d = 3:

Entonces los a que cumplen $a \equiv 1$ (3), también con candidatos para obtener d.

Estos resultados deben cumplir la condición $\star^1 a \equiv 7$ (9) como se pide en el enunciado, lo cual no es compatible con el resultado de la tabla de r_9 , pero sí con la tabla r_3 . Notar que: $a = 9k + 7 \stackrel{(3)}{\equiv} 1$.

Finalmente el MCD con $a \in \mathbb{Z}$ que cumplan que $32a \equiv 17$ (9)

$$\boxed{(a^3 + 4a + 1 : a^2 + 2) = 3} \quad \checkmark$$

a) Probar que $a_{n+6} = a_n$

b) Calcular $\sum_{k=0}^{255} a_k$

(a) Por inducción:

$$p(n): a_{n+6} = a_n \ \forall n \ge \mathbb{N}_0$$

Primero notar que:

$$\begin{cases}
 a_0 = 1 \\
 a_1 = 3 \\
 a_2 \stackrel{\text{def}}{=} 2 \stackrel{\bigstar}{}^1 \\
 a_3 \stackrel{\text{def}}{=} -1 \\
 a_4 \stackrel{\text{def}}{=} -3 \\
 a_5 \stackrel{\text{def}}{=} -2
\end{cases}$$

$$\Rightarrow
\begin{cases}
 a_6 \stackrel{\text{def}}{=} 1 \\
 a_7 \stackrel{\text{def}}{=} 3 \\
 a_8 \stackrel{\text{def}}{=} 2 \stackrel{\bigstar}{}^1 \\
 a_9 \stackrel{\text{def}}{=} -1 \\
 a_{10} \stackrel{\text{def}}{=} -3 \\
 a_{11} \stackrel{\text{def}}{=} -2
\end{cases}$$

Se ve que tiene un período de 6 elementos.

Caso Base: $p(2): a_8 \stackrel{?}{=} a_2 \quad \checkmark$

Paso inductivo: Asumo que

$$p(k): \underbrace{a_{k+6} = a_k \text{ para algún } k \geq \mathbb{N}_{\geq 2}}_{\text{hipótesis inductiva}}$$

entonces quiero probar que,

$$p(k+1): a_{k+1+6} = a_{k+1}$$

también sea verdadera.

Parto desde p(k+1)

$$a_{k+7} \stackrel{\text{def}}{=} a_{k+6} - a_{k+5} \stackrel{\text{HI}}{=} a_k - a_{k+5} \stackrel{\text{def}}{=} a_k - (a_k + a_{k+4}) = -a_{k+4} \Rightarrow a_{k+7} = -a_{k+4} \quad \checkmark$$

Ahora uso la definición de manera sucesiva:

$$a_{k+7} = -a_{k+4} \stackrel{\text{def}}{=} -(a_{k+3} - a_{k+2}) \stackrel{\text{def}}{=} -(a_{k+2} - a_{k+1} - a_{k+2}) = a_{k+1} \Rightarrow a_{k+7} = a_{k+1} \quad \checkmark$$

Como p(2), p(3), p(4), p(5), p(k) y p(k+1) son verdaderas por el principio de inducción p(n) también es verdadera $\forall n \in \mathbb{N}_{\geq 2}$

(b)
$$\sum_{k=0}^{255} a_k = \underbrace{a_0 + a_1 + a_2 + a_3 + a_4 + a_5}_{=0} + \underbrace{a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11}}_{=0} + \dots + a_{252} + a_{253} + a_{254} + a_{255}$$

En la sumatoria hay 256 términos. $256 = 42 \cdot 6 + 4$ por lo tanto van a haber 42 bloques que dan 0 y sobreviven los últimos 4 términos. $\sum_{k=0}^{255} a_k = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{252} + a_{253} + a_{254} + a_{255} =$

$$\underline{a_{252}} + a_{253} + a_{254} + \underline{a_{255}} = a_{253} + a_{254} = 5$$

$$1 \quad \text{si} \quad n \mod 6 = 0$$

$$3 \quad \text{si} \quad n \mod 6 = 1$$

$$2 \quad \text{si} \quad n \mod 6 = 2$$

$$-1 \quad \text{si} \quad n \mod 6 = 3$$

$$-3 \quad \text{si} \quad n \mod 6 = 4$$

$$-2 \quad \text{si} \quad n \mod 6 = 5$$

$$\downarrow \sum_{k=0}^{255} a_k = 5$$

Página 22

Determinar todos los $a \in \mathbb{Z}$ que cumplen que

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} \in \mathbb{Z}.$$

Busco una fracción. Para que esa fracción $en \mathbb{Z}$ es necesario que el denominador divida al numerador. Fin.

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} = \frac{4a^2 - 13a + 8}{10a - 15} \quad \checkmark$$

$$\bigstar^{1} \left\{ \begin{array}{c|c} 10a - 15 & 4a^{2} - 13a + 8 \\ 10a - 15 & 10a - 15 \end{array} \right. \xrightarrow{\text{operaciones}} \left\{ \begin{array}{c|c} 10a - 15 & -25 \bigstar^{2} \\ 10a - 15 & 10a - 15 \end{array} \right..$$

$$10a - 15 \mid -25 \iff 10a - 25 \in \{\pm 1, \pm 5, \pm 25\} \stackrel{\star}{\thickapprox}$$
 para algún $a \in \mathbb{Z}$. \checkmark

De paso observo que $|10a - 25| \le 25$. Busco a:

$$\begin{cases} \text{Caso:} \quad d = 10a - 15 = 1 & \iff a = \frac{8}{5} \\ \text{Caso:} \quad d = 10a - 15 = -1 & \iff a = \frac{8}{5} \\ \text{Caso:} \quad d = 10a - 15 = 5 & \iff a = 2 \checkmark \\ \text{Caso:} \quad d = 10a - 15 = -5 & \iff a = 1 \checkmark \\ \text{Caso:} \quad d = 10a - 15 = 25 & \iff a = 4 \checkmark \\ \text{Caso:} \quad d = 10a - 15 = -25 & \iff a = -1 \checkmark \end{cases}$$

Los valores de $a \in \mathbb{Z}$ que cumplen \bigstar^2 son $\{-1, 1, 2, 4\}$. Voy a evaluar y así encontrar para cual de ellos se cumple \bigstar^1 , es decir que el númerador sea un múltiplo del denominador para el valor de a usado.

El único valor de $a \in \mathbb{Z}$ que cumple lo pedido es a = -1

Notas extras sobre el ejercicio:

Para a = -1 se obtiene $\frac{2a-1}{5} - \frac{a-1}{2a-3} = -1$. Más aún, si hubiese encarado el ejercicio con tablas de restos para ver si lo de arriba es divisible por los divisores en \star 3, calcularía:

$$r_5(4a^2 - 13a + 8)$$
 y $r_{25}(4a^2 - 13a + 8)$

$$r_5(4a^2-13a+8)=0 \Leftrightarrow \begin{cases} a\equiv 3 \ (5) \\ a\equiv 4\equiv -1 \ (5) \end{cases}$$
 y $r_{25}(4a^2-13a+8)=0 \Leftrightarrow \begin{cases} a\equiv 23 \ (25) \\ a\equiv 24\equiv -1 \ (25) \end{cases}$ Se puede ver también así que el único valor de $a\in \mathbb{Z}$, que cumple \bigstar^1 es $a=-1$

♦10. Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión dada por recurrencia:

$$\begin{cases} a_1 = 30, \\ a_2 = 16, \\ a_{n+2} = 24a_{n+1} + 65^n a_n + 96n^4 \quad \forall n \ge 1. \end{cases}$$

Probar que $a_n \equiv 3^n - 5^n$ (32), $\forall n \ge 1$.

Ejercicio intimidante a primera vista. Acomodemos un poco el enunciado así hacemos inducción.

Estoy buscando el módulo 32, a_{n+2} queda más amigable: $\bigstar^1 a_{n+2} \stackrel{(32)}{\equiv} 24a_{n+1} + a_n \quad \checkmark$ Inducción:

$$p(n): a_n \equiv 3^n - 5^n (32) \quad \forall n \in \mathbb{N}$$

Casos base:

$$\begin{cases} p(1): a_1 \equiv 3 - 5 \ (32) & \iff a_1 \equiv 30 \ (32) & \checkmark & p(1) \text{ result\'o verdadera.} \\ p(2): a_2 \equiv 3^2 - 5^2 \ (32) & \iff a_2 \equiv 16 \ (32) & \checkmark & p(2) \text{ result\'o verdadera.} \end{cases}$$

Pasos inductivos:

Para algún $k \in \mathbb{Z}$:

$$\begin{cases} p(k): & a_k \equiv 3^k - 5^k \ (32) \\ p(k+1): & a_{k+1} \equiv 3^{k+1} - 5^{k+1} \ (32) \end{cases}$$

Se asume verdadera.

También se asume verdadera.

Y queremos probar entonces que:

$$p(k+2): a_{k+2} \equiv 3^{k+2} - 5^{k+2}$$
 (32)

Arranco con la definición de la sucesión que se cocinó un poco en \bigstar^1 :

$$a_{k+2} \stackrel{\text{def}}{=} 24 a_{k+1} + 65^k a_k + 96k^4 \stackrel{\text{(32)}}{=} 24 \left(3^{k+1} - 5^{k+1} \right) + 3^k - 5^k \stackrel{\text{!!}}{=} 73 \cdot 3^k - 121 \cdot 5^k \stackrel{\text{(32)}}{=} 9 \cdot 3^k - 25 \cdot 5^k = 3^{k+2} - 5^{k+2} \cdot \checkmark$$

Si te quedaste picando en !!, seguí mirando ese paso, porque son cuentas que tenés que poder *encontrar* mirando fijo el tiempo que sea necesario. Por mi parte **\(\varepsilon** \).

Y así fue como comprobamos que el enunciado ladraba pero no mordía.

Como p(1), p(2), p(k), p(k+1) y p(k+2) son verdaderas, por el principio de inducción también lo será $p(n) \in \mathbb{N}$.

11. Caracterizar, para cada $a \in \mathbb{Z}$, el valor de $(a^3 + 31 : a^2 - a + 1)$.

• ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

12. Determinar para cada par $(a,b) \in \mathbb{Z}^2$ tal que (a:b) = 7 el valor de

$$(a^2b^4:7^5(-a+b)).$$

Coprimizar:

$$d = (a^{2}b^{4} : 7^{5}(-a+b)) \stackrel{a = 7A}{\rightleftharpoons} 7^{6} \cdot (A^{2}B^{4} : B-A) \Leftrightarrow d = 7^{6} \cdot D$$

$$\begin{cases} D \mid A^{2}B^{4} \\ D \mid B-A \stackrel{\text{def}}{\Longleftrightarrow} B \equiv A \ (D) \end{cases} \stackrel{1}{\bigstar} 1$$

$$\begin{cases} D \mid A^{2}B^{4} \stackrel{\text{def}}{\Longleftrightarrow} B \stackrel{\text{def}}{\Longrightarrow} D \ (D) \end{cases}$$

$$\text{y también}$$

$$D \mid A^{2}B^{4} \stackrel{\text{def}}{\Longleftrightarrow} A^{6} \equiv D \ (D)$$

El resultado dice que $D \mid A^6$ y que $D \mid B^6$ lo cual está <u>complicado</u> porque A y B son coprimos, por lo tanto A^6 y B^6 también y $(A^6:B^6) \stackrel{\bigstar^2}{=} 1 = D$.

★ la factorización en primos lo muestra, mismos factores elevados a la 6, no puede cambiar la coprimisimilitubilidad.

Creo que hay que justificar con algo más, pero no sé, con algo de primos? Bueh, algo así: Si $D \mid A^6$ entonces la descomposición en primos de $D = p_1^{i_d} \cdots p_n^{j_d}$ tiene que tener solo factores de la descomposición en primos de $A^6 = p_1^i \cdots p_n^j$ con les exponentes de les factores de $D(i_n, i_n)$

descomposición en primos de $A^6 = p_1^i \cdots p_n^j \cdot p_{n+1}^k \cdots p_m^l$ con los exponentes de los factores de $D(i_d, j_d, \ldots)$, menores o iguales a los exponentes de $A^6(i, j, \ldots)$ de manera que al dividir:

$$\frac{A^6}{D} = \frac{p_1^i \cdots p_n^j \cdot p_{n+1}^k \cdots p_m^l}{p_1^{i_d} \cdots p_n^{j_d} \cdot p_{n+1}^{k_d} \cdots p_m^{l_d}} = \frac{p_1^{\underbrace{i-i_d}} \cdots \underbrace{p_n^{\underbrace{j-j_d}}}_{j-i_d} \cdots \underbrace{p_n^{\underbrace{j-j_d}}}_{j-j_d} \cdots \underbrace{p_{n+1}^{\underbrace{j-l_d}}}_{j-i_d} \cdots \underbrace{p_m^{\underbrace{j-l_d}}}_{j-i_d},$$

es decir que se cancele todo de manera que que de un 1 en el denominador. Eso es que $D \mid A^6$ ni más ni me nos.

Y sí, muy rico todo, pero esa cantinela es la misma para $D \mid B^6$, pero la descomposición en primos de B^6 tiene los p_i distintos a los de A^6 , porque $\mathbf{j}(A^6:B^6)=1!$ y ahí llegamos al <u>absurdo</u>. D no puede dividir a ambos a la vez, porque son coprimos \clubsuit , a menos que D=1 \checkmark .

$$D=1\Rightarrow \boxed{d=7^6}$$
, para cada $(a,b)\in\mathbb{Z}^2\Big/(a:b)=7$