TECHNIQUES & MÉTHODES S07

NB: cette fiche reprend les techniques nécessaires minimales; elle ne constitue donc pas un objectif, mais un prérequis!

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

■■ Démarche générale

La méthode générale pour résoudre une équation différentielle linéaire est

- 1 Résolution de l'équation homogène,
- 2 Recherche d'une solution particulière,
- 3 Expression de la solution générale.

Les méthodes présentées dans ce chapitre sont classées suivant le type d'équation différentielle. Pour choisir la méthode appropriée, je réponds à ces deux questions :

- quel est l'ordre de l'équation?
- les coefficients sont-ils constants?

Le tableau ci-dessous donne une idée de la démarche à suivre dans chaque cas

dessous donne une idée de la démarche à suivre dans chaque cas.		
	Coefficient(s) constant(s)	Coefficient(s) continus(s)
	■ Équation homogène : $y' + ay = 0$. On forme et on résout l'équation caractéristique : $r + a = 0$.	 Équation homogène : y' + a(t)y = 0. On identifie a(t) = ···, On trouve une primitive A(t) = ···
EDL1	Les solutions $h(t) = Ce^{rt}, C \in \mathbf{K}$ • Solution particulière : $y' + ay = b(t)$ On imite le type du 2^d membre : • polynomial • polynomial-exponentielle • polynomial-trigo	Les solutions $h(t) = Ce^{-A(t)}, C \in \mathbf{K}$ • Solution particulière : $y' + a(t)y = b(t)$ On utilise la MVC (méthode de la variation de la constante). On cherche une solution particulière sous la forme $y_0(t) = c(t)e^{-A(t)}$.
	■ Solution générale : $y' + ay = b(t)$ On ajoute solution générale de (H_1) et solution particulière!	■ Solution générale : $y' + a(t)y = b(t)$ On ajoute solution générale de (H_1) et solution particulière!
	■ Sol H : $y'' + ay' + by = 0$. On forme et on résout l'équation caractéristique : $r^2 + ar + b = 0$. Les solutions sont les fonctions de la forme	La résolution des équations différentielles linéaires d'ordre 2 à coefficients continus dépasse légérement le cadre du programme de première année. On pourra appliquer les méthodes présentées page suivante
EDL2	$h(t) = C_1 h_1(t) + C_2 h_2(t), (C_1, C_2) \in \mathbf{K}^2,$ où (h_1, h_2) est un système fondamental de solutions. L'expression dépend du corps de base \mathbf{K} et du discriminant de (EC) .	(changement de fonction inconnue ou changement de variable) afin de se ramener au cadre strict du programme!
	■ Sol P: $y'' + ay' + by = c(t)$ On imite le type du 2 ^d membre : ▶ polynomial ▶ polynomial-exponentielle ▶ polynomial-trigo	
	■ Solution générale : $y''+ay'+by=c(t)$ On ajoute solution générale de (H_2) et solution particulière!	

■■■ Équation différentielle linéaire d'ordre 1, à coefficient constant

On considère l'équation

$$y' + ay = b(t)$$
, où $b: I \to \mathbf{K}$ est continue

1 la solution générale de l'équation homogène associée y' + ay = 0 est Ce^{-at} .

2 une solution particulière dans le cas d'un second membre constant, polynomial, polynomial-exponentiel, polynomial-trigo est connue. J' utilise le **principe de superposition** pour m'y ramener.

■■■ Équation différentielle linéaire d'ordre 1, à coefficient continu

On considère l'équation

$$y' + a(t)y = b(t)$$
, où $a, b: I \to \mathbf{K}$ sont continues

 $\boxed{1}$ la solution générale de l'équation homogène associée y'+a(t)y=0 est $Ce^{-A(t)}$, où $A:I\to \mathbf{K}$ est une primitive de a sur I.

 $\boxed{2}$ une solution particulière est obtenue par la méthode de la variation de la constante. Je cherche y_0 sous la forme :

$$\begin{array}{c|cccc} a(t) \times & y_0(t) & = & c(t)e^{-A(t)} \\ +1 \times & y_0'(t) & = & \left[c'(t) - a(t)c(t)\right]e^{-A(t)} \\ y_0'(t) + a(t)y_0(t) & = & c'(t)e^{-A(t)} \end{array}$$

 y_0 sera solution pourvu que $c'(t) = b(t)e^{-A(t)}$.

■■■ Équation différentielle linéaire d'ordre 2, à coefficients constants : solutions complexes

On considère l'équation

$$y'' + ay' + by = c(t)$$
, où $c: I \to \mathbf{C}$ est continue

 $\boxed{1} \ \text{la solution générale sur } \textbf{C} \ \text{de } y'' + ay' + by = 0 \ \text{est obtenue en discutant suivant le discriminant } \Delta \ \text{de l'équation}$ $caractéristique \qquad \qquad r^2 + ar + b = 0. \tag{EC}$

- ▶ si $\Delta \neq 0$, la solution générale est $C_1e^{r_1t} + C_2e^{r_2t}$ où r_1 et r_2 sont les racines de (EC)
- ▶ si $\Delta = 0$, la solution générale est $(C_1 + C_2 t)e^{r_0 t}$ où r_0 est la racine double de (EC)

2 une solution particulière est connue dans le cas d'un second membre constant, polynomial, polynomial exponentiel. J'utilise le principe de superposition pour vous y ramener.

■■■ Équation différentielle linéaire d'ordre 2, à coefficients constants : solutions réelles

On considère l'équation

$$y'' + ay' + by = c(t)$$
, où $c: I \to \mathbf{R}$ est continue

la solution générale sur ${\bf R}$ de y''+ay'+by=0 est obtenue en discutant suivant le discriminant Δ de l'équation caractéristique $r^2+ar+b=0$.

- ▶ si $\Delta > 0$, la solution générale est $C_1 e^{r_1 t} + C_2 e^{r_2 t}$ où r_1 et r_2 sont les racines de (EC)
- ▶ si $\Delta = 0$, la solution générale est $(C_1 + C_2 t)e^{r_0 t}$ où r_0 est la racine double de (EC)
- ▶ si $\Delta < 0$, la solution générale est $e^{\rho t} [C_1 \cos(\omega t) + C_2 \sin(\omega t)]$ où $\rho \pm i\omega$ sont les racines conjuguées de (EC)

2 une solution particulière est connue dans le cas d'un second membre constant, polynomial, polynomial exponentiel, polynomial trigo. J'utilise le principe de superposition pour m'y ramener.

■■■ Équation différentielle linéaire d'ordre 2, à coefficients continus

On considère l'équation

$$y'' + a(t)y' + b(t)y = c(t)$$
, où $a, b, c: I \to \mathbf{K}$ sont continues

Ces équations ne sont pas au programme officiel : l'énoncé doit vous guider pour vous ramener aux cas précédents. Souvent l'énoncé propose

- \blacktriangleright un changement de fonction in connue
- ▶ un changement de variable.