Esame Scritto 12/07/2019 Esperimentazioni II – Primo Modulo

1) Dato il circuito in figura, alimentato con una tensione alternata sinusoidale, a) determinare la frequenza di taglio. b) Come cambia il comportamento se all'uscita del filtro è applicato un carico di $1k\Omega$?

Il condensatore Cl non si considera, perchè è in parallelo con un generatore di tensione ideale e quindi non provoca cambiamenti di tensione alla restante parte del circuito.

$$f_L = \frac{1}{2\pi RC} = 1592 \,\text{Hz}$$
. Se si aggiunge R da 1k, f_L ' = 2 f_L .

2) La resistenza R1 è una fotoresistenza sensibile alla luce: se oscurata presenta una resistenza di $500k\Omega$, se colpita da un fascio luminoso la sua resistenza diventa $10k\Omega$. La fotoresistenza è collegata fra la base di un transistor ed un generatore da 9V come indicato nello schema presentato in figura. Calcolare la tensione V_0 nel caso di buio e di illuminazione della fotoresistenza, sapendo che β_f del transistor è di 166.

Si può ridisegnare il circuito e contestualmente applicare il T. di Thevenin

Caso I: la fotoresistenza non è illuminata e la sua resistenza è di $500k\Omega$ La corrente che passa nella base è $I_b = \frac{9-0.7}{500} = 0.0166 \, \text{mA}$.

La corrente che passa nel collettore è I_c =0.0166·166=2.76 mA. La tensione V_o risulta essere V_o =6-2.76·0.66=4.16 V.

Caso II: la foto resistenza è illuminata e presenta una resistenza di $10k\Omega$ La corrente che passa nella base è $I_b = \frac{9 - 0.7}{10} = 0.83 \, \text{mA}$.

La corrente che dovrebbe passare nel collettore, se il transistor fosse nella sua regione attiva, sarebbe $I_c=0.83\cdot 166=138\,\text{mA}$. La massima corrente di collettore è però $I_{c,max}=\frac{6}{0.66}=9\,\text{mA}$, cioè il transistor è saturo e la tensione V_o è circa zero.

3) Calcolare la potenza generata o assorbita dal generatore V1

Le correnti I_2 ed I_3 che fluiscono nei rispettivi rami:

la corrente I₂ risulta:

$$I_2 = I_3 - I_2 = 0.675 - 0.15 = 0.525 A$$

Quindi il generatore fornisce potenza, perché la tensione di V_1 e la corrente I_1 hanno lo stesso verso: $P=3.5\cdot0.525W=1.84W$. Con Thevenin: $V_{Th}=0$ V, $V_{taglio}=3.5$ V $R_{Th}=\frac{20\cdot10}{20+10}\Omega=6.67\Omega$.