FIT1047 - Week 2 hour 1

Introduction to computer systems, networks and security

Topics for week 2

- Error detection
- Boolean algebra
- Logical circuits

Boolean logic and Boolean algebra

Boolean logic is a rather simple possible (but useful) logic. Basic concepts:

• TRUE, FALSE

Usually, TRUE is represented by 1 and FALSE is represented by 0.

- AND, OR
- NOT

TRUE and FALSE are values for statements.

Note that not all statements qualify:

- Today, the temperature is over 15 degrees Celsius.
- Today, the weather is good.
- Haggis tastes great.

Do not confuse binary and Boolean:

	Binary	Boolean
0	Zero	FALSE
1	One	TRUE

Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values
 - In formal logic, these values are True/False
 - In digital systems, these values are on/off, 1/0 or high/low
- Boolean expressions are created by performing operations on Boolean variables
 - Common Boolean operators include AND, OR, NOT

Truth Tables: AND & OR

A Boolean operator can be completely described using a *Truth Table*

Truth tables for the Boolean operators AND and OR

	X AND Y			
×	Y	. 2	ζY	
О	0	1	0	
C	1		0	
1	. 0	1	0	
1	. 1		1	

X OR Y			
X	Y	X+Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

- The AND operator can also be represented as a period (a full stop) or space, so X.Y or XY
- The OR operator can also be represented as a + represented as X+Y

Truth Tables: **NOT**

Truth table for the Boolean NOT operator

NOT X				
Х	\overline{X}			
0	0 1			
1 0				

• The NOT operation is often designated by an **overbar**, a **prime mark**, an "**elbow**" or a "**squiggle**", e.g.,

$$\overline{A}$$
 A' $\neg A$ $\sim A$

Boolean Functions

A Boolean function has:

- At least <u>one</u> Boolean variable (x, y,..)
- At least <u>one</u> Boolean operator (and, or, not,..)
- At least <u>one</u> input from the set {0,1} or {T,F}
- → It produces an **output** that is also a member of the set {0,1} or {T,F}

Boolean Functions and Truth Tables

Truth table for the Boolean function

	$F(x,y,z) = x\overline{z}+y$						
	x	У	z	z	χΞ	x z +y	
	0	0	0	1	0	8	
	0	0	1	0	0	0	
ı	0	1	0	1	0	1	
ı	0	1	1	0	0	1	
ı	1	0	0	1	1	1	
ı	1	0	1	0	0	0	
ı	1	1	0	1	1	1	
	1	1	1	0	0	1	

$$F(x, y, z) = x\overline{z} + y$$

To make evaluation of the Boolean function easier, the truth table contains extra (shaded) columns to hold evaluations of subparts of the function

Rules of Precedence

- The NOT operator has highest priority, followed by AND & then OR
 - This is how we chose the (shaded) function subparts in our table

$F(x,y,z) = x\overline{z} + y$					
x	У	z	z	χΞ	x z +y
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

Boolean Algebra

- Digital computers contain circuits that implement Boolean functions
 - ✓ The simpler we can make a Boolean function, the smaller the circuit that will result
 - Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits
- With this in mind
 - We always want to reduce our Boolean functions to their simplest form
 - There are several Boolean identities that help us to do this

Laws of Boolean Algebra

A+B=B+A

AB = BA

Laws of Boolean Algebra

Laws of Boolean Algebra

- Identity Law
- Null Law (or Dominance Law)
- Idempotent Law
- Complement Law
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgans Law
- Double Complement Law

Identity	AND	OR
Name	Form	Form
Identity Law Null Law Idempotent Law Inverse Law	$1x = x$ $0x = 0$ $xx = x$ $x\overline{x} = 0$	$0 + x = x$ $1 + x = 1$ $x + x = x$ $x + \overline{x} = 1$

(Inverse or Complement Law)

Identity	AND	OR
Name	Form	Form
Commutative Law Associative Law Distributive Law	xy = yx $(xy) z = x (yz)$ $x+yz = (x+y) (x+z)$	x+y = y+x $(x+y)+z = x + (y+z)$ $x(y+z) = xy+xz$

Identity Name	AND Form	OR Form
Absorption Law DeMorgan's Law	$x (x+y) = x$ $\overline{(xy)} = \overline{x} + \overline{y}$	$\frac{\mathbf{x} + \mathbf{x}\mathbf{y} = \mathbf{x}}{(\mathbf{x} + \mathbf{y}) = \mathbf{x}\mathbf{y}}$
Double Complement Law	$(\overline{\overline{x}})$	= x

Reference: Linda Null, Julia Lobur. The essentials of computer organization and architecture. Fourth edition, 2015. Jones & Bartlett Learning.

Simplifying a Function

Apply Boolean algebra identities to simplify the following Boolean function:

$$(\overline{AB})A + A\overline{B}$$

SOLUTION:

de Morgan $(\bar{A} + \bar{B})A + A\bar{B}$

Commutative $A(\bar{A} + \bar{B}) + A\bar{B}$

Distributive $A\bar{A} + A\bar{B} + A\bar{B}$

Inverse $0 + A\bar{B} + A\bar{B}$

Identity $A\bar{B} + A\bar{B}$

Idempotent $A\bar{B}$

Identity	AND	OR
Name	Form	Form
Identity Law Null Law Idempotent Law Inverse Law	$1x = x$ $0x = 0$ $xx = x$ $x\overline{x} = 0$	$0 + x = x$ $1 + x = 1$ $x + x = x$ $x + \overline{x} = 1$

Identity	AND	OR
Name	Form	Form
Commutative Law Associative Law Distributive Law	xy = yx $(xy) z = x (yz)$ $x+yz = (x+y) (x+z)$	x+y = y+x (x+y)+z = x + (y+z) x(y+z) = xy+xz

Identity Name	AND Form	OR Form	
Absorption Law DeMorgan's Law	x(x+y) = x $(xy) = x + y$	$\frac{\mathbf{x} + \mathbf{x}\mathbf{y} = \mathbf{x}}{(\mathbf{x} + \mathbf{y}) = \mathbf{x}\mathbf{y}}$	
Double Complement Law	$(\overline{\overline{x}}) = x$		

- ✓ Provides a method for simplifying Boolean expressions.
- ✓ It will produce the simplest Sums-Of-Products (SOP) and Product-Of-Sums (POS) expressions.
- ✓ Works best for less than 6 variables.
- ✓ Similar to a truth table → it maps all possibilities.
- ✓ A Karnaugh map is an array of cells arranged in a special manner.
- ✓ The number of cells is 2^n where n = number of variables

A 3-Variable Karnaugh Map:

- ✓ Note: The order of these values they are reverse of the usual order.
- ✓ They are arranged this way so that only one variable changes at a time.

A 4-Variable Karnaugh Map:

One of the most common forms of simplification in Boolean algebra is the following:

$$A\overline{B} + AB = A(\overline{B} + B) = A$$

The same with three variables:

$$\overline{ABC} + ABC = AC$$

Both functions are independent from the value of B.

Karnaugh-maps provide an easy graphical way to find minimal AND terms that are then combined with OR to get the complete function.

Truth table for A AND B

Α	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

Karnaugh-map for A AND B

		В	
		0	1
Α	0	0	0
	1	0	1 =A.B

Let's look at a Karnaugh-map with 3 variables:

$$\overline{B}A\overline{C} + AB\overline{C} + ABC + \overline{A}B\overline{C}$$

		BC			
		00	01	11	10
Α	0	0	0	1	1
	1	1	0	1	(1

- •Find groups of 1s.
- •The group of **four** 1s represents **B=1**. (Note: A=0/1, B=1, C=0/1)
- •The wrapped group represents **A=1 AND C=0**. (Note: A=1, While B = 0/1, C=0)

Simplified version: $B + A\overline{C}$

7 rules for working with Karnaugh-Maps (K-map)

Simplification example

Simplification example:

$$F(A, B, C, D) == \overline{A}C + B + A\overline{C}D$$

Logic Gates and Truth Tables

Logic Gates

- The logic gate is the building brick of digital logic
- A logic gate is an electronic device that produces a result based on two or more input values
 - In reality, gates consist of one to six transistors, but digital designers think
 of them as a single unit
- Integrated circuits contain collections of gates suited to a particular purpose

XOR

• The output of the XOR operation is True (1) only when the values of the inputs differ

Reference: Linda Null, Julia Lobur. The essentials of computer organization and architecture. Fourth edition, 2015. Jones & Bartlett Learning.

NAND and NOR (I)

NAND and NOR gates have special properties:

- 1. NAND can be realised very efficiently.
- 2. All other gates can be build only using NAND gates.

NAND is =
$$\overline{AB}$$
 or \overline{XY}

NOR is =
$$\overline{A + B}$$
 or $\overline{X + Y}$

NAND and NOR (II)

- Known as universal gates because they can be used to construct any gate
 - Building NOT with NAND gates

- Building AND with NAND gates
- Building OR with NAND gates

Logic Gates: Inputs and Outputs

- Gates can have multiple inputs and more than one output
 - A second output can be provided for the complement of the operation

Summarize topics of first 2 weeks

- A little bit of history
- Vacuum tubes and transistors
- bit, byte, word (8bit/16bit/32bit/64bit)
- Numbering systems (base 2, base 10, base 16)
- Conversion between numbering systems
- Signed integer representations (sign/magnitude, 1's complement, 2's complement)
- Properties of 2's complement, adding 2's complement numbers
- Floating point representation
- Properties of floating point, precision, rounding
- Characters: ASCII and Unicode
- Error detection: Parity bits, Checksum, CRC
- Boolean Logic AND, OR, NOT, XOR, NAND, NOR
- Logic gates
- Simple logic circuits
- Boolean Algebra, Laws
- Karnaugh Maps/K-maps

End of Lecture Week-2 Hour 1

FIT1047 - Week 2 hour 2

Introduction to computer systems, networks and security

Logic Gates and Boolean Functions

Combinations of gates implement Boolean functions

Example

$$F(X,Y,Z) = X + \overline{Y}Z$$

Simplifying a Function

- Sometimes it is more economical to build a circuit using the complement of a function (and complementing its result) than it is to implement the function directly
 - DeMorgan's law provides an easy way of finding the complement of a Boolean function
 - Recall DeMorgan's law states

$$(xy) = x + y$$
 and $(x+y) = xy$

DeMorgan's law can be extended to any number of variables

Calculating the Complement of a Function

- Replace each variable by its complement and change all ANDs to ORs and all ORs to ANDs
- Example
 - Find the complement of:

$$F(X,Y,Z) = (XY) + (\overline{X}Z) + (Y\overline{Z})$$

$$\overline{F}(X,Y,Z) = \overline{(XY) + (\overline{XZ}) + (Y\overline{Z})}$$

$$= \overline{(XY)}(\overline{XZ})(\overline{YZ})$$

$$= (\overline{X}+\overline{Y})(X+\overline{Z})(\overline{Y}+Z)$$

Canonical Form (I)

- There are numerous ways of stating the same Boolean expression
 - These "synonymous" forms are logically equivalent
 - Logically equivalent expressions have identical truth tables
 - In order to eliminate as much confusion as possible, designers express
 Boolean functions in standardized or canonical form

Canonical Form (II)

There are **two canonical forms** for Boolean expressions

- Sum-of-products and product-of-sums
 - Recall the Boolean product is the AND operation and the Boolean sum is the OR operation
- Sum-of-products: ANDed variables are ORed together
 - \circ For example: F(X,Y,Z) = XY + XZ + YZ
- Product-of-sums: ORed variables are ANDed together
 - For example: F(X,Y,Z) = (X+Y)(X+Z)(Y+Z)

Converting to Sum of Products

We are interested in the values of the variables that make the function True (=1)

- 1. Using the Truth Table, make groups of **ANDed** variables (or negated variables), such that each group results in a True function value
- 2. OR together each group of variables

Converting to Sum of Products: Example

$$F(x,y,z) = x\overline{z}+y$$

$$x y z x\overline{z}+y$$

$$0 0 0 0 0$$

$$0 0 1 0$$

$$0 1 0 1$$

$$0 1 1 1$$

$$1 0 0 1$$

$$1 0 1$$

$$1 1 1 1$$

$$1 1 1$$

$$F(x,y,z) = \overline{x}y\overline{z} +$$

$$\overline{x}yz +$$

$$x\overline{y}\overline{z} +$$

$$xy\overline{z} +$$

$$xyz +$$

Converting to Product of Sums

IDEA: use De Morgan Law to calculate the complement of the complement of the function

- 1. We are interested in the values of the variables that make the function False (=0)
- 2. Complement all the <u>function values</u> (function output)
- 3. Using the Truth Table, make groups of ANDed variables (or negated variables), such that each group results in a True value for the complement of the function (False value for the function)
- 4. OR together each group of variables
 - → This yields the complement of the function
- 5. Take the complement of this complement
 - → This yields the function itself

Converting to Product of Sums: Example

$$F(x,y,z) = x\overline{z}+y$$

$$\begin{array}{c|cccc} x & y & z & x\overline{z}+y \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}$$

$$F(x, y, z) = \overline{x} \overline{y} \overline{z} + \overline{x} \overline{y} z + x \overline{y} z$$

$$= (\overline{x} \overline{y} \overline{z})(\overline{x} \overline{y} z)(\overline{x} \overline{y} z)$$

$$= (x + y + z)(x + y + \overline{z})(\overline{x} + y + \overline{z})$$

Calculating the Complement of a Function

- Replace each variable by its complement and change all ANDs to ORs and all ORs to ANDs
- Example
 - Find the complement of:

$$F(X,Y,Z) = (XY) + (\overline{X}Z) + (Y\overline{Z})$$

$$\overline{F}(X,Y,Z) = \overline{(XY) + (\overline{XZ}) + (Y\overline{Z})}$$

$$= \overline{(\overline{XY})(\overline{XZ})(\overline{YZ})}$$

$$= (\overline{X} + \overline{Y})(X + \overline{Z})(\overline{Y} + Z)$$

7 rules for working with Karnaugh-Maps (K-map)

FIT1047 TUTORIAL 2 (week-2)

2d (Additional advanced task:) Use logisim and only AND, OR and NOT to build a circuit for the following function:

$$F(A, B, C) = \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC$$

How many gates do you need? Simplify the function first, e.g. by using k-maps.

METHOD – II : Using K-maps

FIT1047 TUTORIAL 2 (week-2)

2d (Additional advanced task:) Use logisim and only AND, OR and NOT to build a circuit for the following function:

$$F(A, B, C) = \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC$$

How many gates do you need? Simplify the function first, e.g. by using k-maps.

Identity	AND	OR
Name	Form	Form
Identity Law Null Law Idempotent Law Inverse Law	$1x = x$ $0x = 0$ $xx = x$ $x\overline{x} = 0$	$0 + x = x$ $1 + x = 1$ $x + x = x$ $x + \overline{x} = 1$

METHOD – I: Using Boolean Identities

$$F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{AC} (\overline{B}+B) + \overline{AB} (\overline{C}+C) + \overline{ABC}$$

$$= \overline{AC} + \overline{AB} + \overline{ABC}$$

$$= \overline{AC} + \overline{A(B}+BC)$$

$$= \overline{AC} + \overline{A(B}+B)(\overline{B}+C)$$

$$= \overline{AC} + \overline{A(B}+C)$$

$$= \overline{AC} + \overline{AB} + \overline{AC}$$

$$= \overline{C(A+A)} + \overline{AB}$$

$$F(A,B,C) = \overline{C} + \overline{AB}$$

Identity	AND	OR
Name	Form	Form
Commutative Law Associative Law Distributive Law	xy = yx $(xy) z = x (yz)$ $x+yz = (x+y) (x+z)$	x+y = y+x $(x+y)+z = x + (y+z)$ $x(y+z) = xy+xz$

Identity Name	AND Form	OR Form
Absorption Law DeMorgan's Law	x (x+y) = x $(xy) = x + y$	$x + xy = x$ $\overline{(x+y)} = \overline{x}\overline{y}$
Double Complement Law	$(\overline{\overline{x}}) = x$	

Reference: Linda Null, Julia Lobur. The essentials of computer organization and architecture. Fourth edition, 2015. Jones & Bartlett Learning.

FIT1047 TUTORIAL 2 (week-2)

2d (Additional advanced task:) Use logisim and only AND, OR and NOT to build a circuit for the following function:

$$F(A,B,C) = \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC = \mathbf{A} \overline{\mathbf{B}} + \mathbf{C}$$

How many gates do you need? Simplify the function first, e.g. by using k-maps.

Simulate using logisim

Summarize topics of first 2 weeks

- A little bit of history
- Vacuum tubes and transistors
- bit, byte, word (8bit/16bit/32bit/64bit)
- Numbering systems (base 2, base 10, base 16)
- Conversion between numbering systems
- Signed integer representations (sign/magnitude, 1's complement, 2's complement)
- Properties of 2's complement, adding 2's complement numbers
- Floating point representation
- Properties of floating point, precision, rounding
- Characters: ASCII and Unicode
- Error detection: Parity bits, Checksum, CRC
- Boolean Logic AND, OR, NOT, XOR, NAND, NOR
- Logic gates
- Simple logic circuits
- Boolean Algebra, Laws
- Karnaugh Maps/K-maps

END of Lecture 2