1) Inéquation

1 - 1) Méthode

On complète ici le travail fait au chapitre 2 :

- résolution graphique d'inéquations;
- résolution d'inéquations du premier degré.

Méthode 1 : pour résoudre une inéquation du type $f(x) \leq g(x)$, on résout l'inéquation équivalente suivante : $f(x) - g(x) \leq 0$.

Cela revient à étudier le signe de l'expression f(x) - g(x).

1 - 2) Étude du signe d'une expression factorisée

Propriété 1 : Pour connaître le signe d'une expression **factorisée**, on étudie le signe de chaque facteur et on utilise la « règle des signes » :

- * + par + donne +
- * par + donne -
- * par donne +

Méthode 2 : pour connaître le signe d'une expression :

- 1. on la met sous forme factorisée;
- 2. on étudie le signe de chaque facteur;
- 3. on utilise la « règle des signes ».

Il est commode de présenter ce travail sous la forme d'un tableau de signes.

Exemple détaillé :

On cherche à résoudre l'inéquation $(x+2)(7+3x) > 4x^2 + 8x$

1. On met en place une étude de signe équivalente :

$$(x+2)(7+3x) > 4x^2 + 8x \Leftrightarrow (x+2)(7+3x) - (4x^2 + 8x) > 0$$

2. On cherche à factoriser l'expression :

$$(x+2)(7+3x) - (4x^2+8x) = (x+2)(7+3x) - 4x(x+2)$$
$$= (x+2)[7+3x-4x]$$
$$= (x+2)(7-x)$$

3. On utilise la règle des signes, présenté dans un tableau de signes par commodité :

x	$-\infty$		-2		7		$+\infty$
signe(x+2)		_	0	+		+	
signe(7-x)		+		+	0	_	
signe(x+2)(7-x)		_	0	+	0	_	

Conclusion: l'inéquation $(x+2)(7+3x) > 4x^2 + 8x$ a pour solution: S =]-2; 7[

Étude du signe d'un quotient 1 - 3

Le principe est le même qu'au paragraphe précédent (parce que la « règle des signes » s'applique aussi bien pour un quotient que pour un produit). Il faut cependant faire attention aux éventuelles valeurs interdites.

Exemple détaillé :

On cherche à résoudre l'inéquation $\frac{3x+2}{5-x} \leqslant 0$

x	$-\infty$		$-\frac{2}{3}$	Į	5	$+\infty$
signe(3x+2)		_	0	+	+	
signe(5-x)		+		+	_	
$signe \frac{3x+2}{5-x}$		_	0	+	_	

Conclusion: l'inéquation $\frac{3x+2}{5-x} \le 0$ a pour solution: $S = \left[-\infty; -\frac{2}{3}\right] \cap \left[5; +\infty\right[$

2) Sens de variation d'une fonction

Définition 1: sens de variation d'une fonction

f est **strictement croissante** sur I lorsque :

pour tous réels a et b dans I, si a < b alors f(a) < f(b)

f est strictement décroissante sur I lorsque :

pour tous réels a et b dans I, si a < b alors f(a) > f(b)

f est **constante** sur I lorsque :

pour tous réels a et b dans I, f(a) = f(b)

Méthode 3 : ordonner des nombres

Avec I un intervalle, f une fonction définie sur I, a et b deux réels de I:

- Si f est strictement croissante sur I et a < b, alors f(a) < f(b)
- Si f est strictement décroissante sur I et a < b, alors f(a) > f(b)

AUTRE FORMULATION:

- avec une fonction strictement croissante, on dit que l'ordre est « conservé » ;
- avec une fonction strictement décroissante, on dit que l'ordre est « inversé ».

EXEMPLE:

Représentation graphique de la fonction f

- Pour tous nombres a et b tels que : -1, 5 < a < b < 0, 1, alors : f(a) > f(b) (l'ordre est inversé)
- Pour tous nombres c et d tels que : 0,1 < c < d < 2,5, alors : f(c) < f(d) (l'ordre est conservé)