# Top-down ammonia emissions 19

IASI data and GEOS-Chem simulation 2021.8

- Method:
  - 1. IASI observations
  - 2. GEOS-Chem simulations
  - 3. NH3 emission flux estimations
  - 4. Uncertainty and sensitivity analysis
- Results and discussion:
  - Observed and simulated NH3 concentrations
  - Comparison of top-down NH3 emission estimations
    - compare lifetime of NH3 and NHx and their emissions
    - compare concentration based on updated emission over 2008 and 2018
  - Global NH3 emissions distributions
  - Regional NH3 emissions trends
    - Find evidence of biomass burning in northern high latitudes
  - Relation to methane emissions

|   | Parameter perturbed                      | Average emission (Tg a <sup>-1</sup> ) |
|---|------------------------------------------|----------------------------------------|
| 0 | None <sup>a</sup>                        | 92                                     |
| 1 | Half lifetime <sup>b</sup>               | 115                                    |
| 2 | Double lifetime <sup>c</sup>             | 80                                     |
| 3 | Upper IASI column error                  | 107                                    |
| 4 | Lower IASI column error                  | 77                                     |
| 5 | Number of retrievals > 400 <sup>d</sup>  | 95                                     |
| 6 | Number of retrievals > 1200 <sup>e</sup> | 87                                     |
| 7 | Transport/Emission < 0.2 <sup>f</sup>    | 87                                     |
| 8 | Transport/Emission < 5 <sup>g</sup>      | 102                                    |

<sup>&</sup>lt;sup>a</sup>The number of retrievals larger than 800, and the transport dominates over emissions of depositions when exclude grids.

b-cThe lifetime is 50% and 200% in Eq. (1), respectively.

d-eThe number of retrievals larger than 400 and 800 when exclude grids, respectively.

f-gThe threshold used in the budget analysis is 0.2 and 5, respectively.

#### lifetime



#### Optimized versus GEOS-Chem



#### Number of retrievals



# Optimized emissions timeseries

Emissions (Mt per month)



# Optimized emissions monthly variations



## Optimized versus GEOS-Chem by sectors



# Optimized emissions by sectors



## Optimized emissions trend by sectors



# Optimized emissions monthly trend



#### NH<sub>3</sub> Seasonal Concentrations

Mean (10<sup>15</sup> molecules cm<sup>-2</sup>)





#### NH<sub>3</sub> Seasonal Concentrations

Trend (10<sup>-6</sup> Mol m<sup>-2</sup> yr<sup>-1</sup>)





#### CH4 livestock emissions



#### Uncertainty

- IASI total columns:
- Lifetime: ~40%
  - Deposition
  - Transportation (-)

| Uncertainty of IASI Total Columns (%) 200 | 08-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60°N                                      | n de la companya de l |
| 30°N                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0°                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30°S                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60°S                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 180°W 120°W 60°W 0° 60°E 120°E            | 180°W 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Item                                | Bias            | Period    | Study area        | Observation       | Paper              |
|-------------------------------------|-----------------|-----------|-------------------|-------------------|--------------------|
| NH4 wet deposition                  | 1.2% (-9.8-11%) | 2006      | US                | NADP/NTN          | Zhang et al., 2012 |
| NH4 wet deposition                  | -23-25%         | 2006-2009 | US                | NADP/NTN          | Zhu et al., 2013   |
| NH4 wet deposition                  | -1% (-25-12%)   | 2008-2012 | China             | EANET             | Zhao et al., 2017  |
| dissolved inorganic N<br>deposition | 9% (-4-52%)     | 2000-2014 | Southern<br>China | Literature review | Xu et al., 2018    |

# Uncertainty (Mt)

- Lifetime
- Transportation (+)/emission ratio
- Number of retrievals
- •IASI column

• 
$$\sigma_C = \sqrt{\frac{\sum (\sigma_i \times \Omega_i)^2}{n-1}}$$

- $\sigma_C$ : the total column error in each grid, [mol m-2]
- $\sigma_i$ : the ith retrieval relative error, [mol m-2]
- $\Omega_i$ : the ith retrieval total column, [%]

• 
$$\sigma_{IASI} = \frac{\sigma_C \times M}{\tau_{mod}}$$

- $\sigma_{IASI}$ : the emission error in each grid associated with IASI total column error, [kg m-2 s-1]
- M: relative molecular mass, 17 [kg mol-1]

• 
$$\overline{\sigma_{IASI}} = \sqrt{\sum (\sigma_{IASI_j} \times A_j \times t)^2}$$

- $\overline{\sigma_{IASI}}$ : the domain mean error, associated with IASI total column error, [kg]
- $\sigma_{IASI_i}$ : the emission error in jth grid, [kg m-2 s-1]
- $A_i$ : the area of jth grid, [m2]
- t: the defined time period, [s]

| Parameter perturbed                    | Averaged emission | Standard deviation |
|----------------------------------------|-------------------|--------------------|
| Initial: ratio < 1, n > 800            | 92                | 7.4                |
| Transportation (-)                     | 101               | 9.1                |
| Transportation(+)/emission ratio < 0.2 | 87                | 5.2                |
| Transportation(+)/emission < 5         | 102               | 17.4               |
| Number of retrievals > 400             | 95                | 11.2               |
| Number of retrievals > 1200            | 87                | 13.9               |
| Lifetime -40%                          | 107               | 11.0               |
| Lifetime +40%                          | 85                | 5.6                |
| IASI column uncertainty                | ±15               | ±16.9              |

#### Uncertainty





# Optimized versus GEOS-Chem

Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (E_{Opt,i} - E_{Mod,i})^2}$$

Mean Fractional Bias (MFB)

$$MFB = \frac{2}{N} \sum_{i=1}^{N} \frac{E_{Opt,i} - E_{Mod,i}}{E_{Opt,i} + E_{Mod,i}} \times 100\%$$

#### IASI daily data

- Missing date (37 days):
  - 2008 (13 days): 1.17-18, 3.20-3.26, 12.10-11, 12.30-31
  - 2009 (3 days): 1.1, 1.23, 10.1
  - 2010 (5 days): 5.18, 8.31, 9.1-9.3
  - 2011 (2 days): 10.23-24
  - 2012 (0)
  - 2013 (2 days): 11.6-7
  - 2014 (7 days): 2.19-2.20, 9.9-9.13
  - 2015 (3 days): 4.10-4.12
  - 2016 (0)
  - 2017 (1 day): 6.7
  - 2018 (1 day): 12.31
- Filter
  - Cloud coverage: [0, 10%]
  - Skin temperature: > 263.15 K

#### IASI emission flux calculations——fixed τ

- $E = M/\tau$ 
  - E: emission fluxes, assumes stationarity and constant firstorder loss terms
  - M: the total mass contained within the assumed box
  - τ: The effective lifetime or residence time of NH3 within a given box

$$\begin{split} \bullet \; \tau_{mod} &= \frac{(K_{NH_4^+/NH_3}^{\text{mod}} + 1)M_{mod}}{-\Delta M_{NH_3,NH_4^+}^{drydep,wetdep}} \\ \bullet \; \tau'_{mod} &= \frac{\tau_{mod}}{K_{NH_4^+/NH_3}^{\text{mod}} + 1} = \frac{M_{NH_3}}{-\Delta M_{NH_3,NH_4^+}^{drydep,wetdep}} \\ \bullet \; \hat{E}_{obs} &= \frac{(M_{\text{obs}} - M_{mod})}{\tau'_{mod}} + E_{mod} \end{split}$$

| Table SI1: NH <sub>3</sub> lifetime estimates reported in the literature. |                |                                                           |  |
|---------------------------------------------------------------------------|----------------|-----------------------------------------------------------|--|
| REFERENCE                                                                 | LIFETIME       | COMMENT                                                   |  |
| Norman and Leck, 2005                                                     | Few hours      | Clean remote ocean                                        |  |
|                                                                           | Several days   | Dust/Biomass plumes over ocean                            |  |
| Quinn et al., 1990                                                        | Order of hours | Central Pacific Ocean                                     |  |
| Flechard and Fowler, 1998                                                 | 1-2 hours      | Scottish moorland site                                    |  |
| Sutton, 1990                                                              | 10 hours       | Using dry deposition velocity by Duyzer et al. (1987)     |  |
| Möller and Schieferdecker 1985                                            | 19 hours       | Using dry deposition rates of Mészáros and Horváth (1984) |  |
| Hertel et al., 2012                                                       | 24 hours       | Simulations over Europe                                   |  |
| Dentener and Crutzen, 1994                                                | Order of hours |                                                           |  |
| Whitburn et al., 2016                                                     | 17-23 hours    | Fire plume                                                |  |
| Hauglustaine et al., 2014                                                 | 15 hours       | Average global model                                      |  |

#### total column concentration

- $\Omega = \sum_{i=1}^{47} c_i \times rho_i \times h_i \times k$ 
  - $\Omega$ : total column concentration, [mol/m2]
  - $c_i$ : 'IJ-AVG-\$\_NH3', mixing ratio for each level, [ppbv] to [v/v] (\*1E-9)
  - rhoi: 'TIME-SER\_AIRDEN', air density for each level, [molecules/cm3]
  - $h_i$ : 'BXHGHT-\$\_BXHEIGHT', grid box height for each level, [m] to [cm] (\*100)
  - k: 1/6.02214179E19, multiplication factor to convert [molecules/cm2] to [mol/m2]

#### Regrid 180x360 to 46x72

- Latitude: 46 degrees
  - 88°-90°: 2x5 to 1x1, 2 degrees
  - 0-88°: 4x5 to 1x1, 44 degrees
- Method:
  - Step1: mask ocean, set as NaN
  - Step2: calculate mean value in each upscaling grid

#### emissions

- Anthropogenic
  - APEI: Historical Canadian emissions (1990-2014)
  - NEI2011\_MONMEAN: US emissions
  - MIX: Asian anthropogenic emissions
  - DICE\_Africa: emissions from inefficient combustion over Africa
  - CEDS: Global anthropogenic emissions
  - POET\_EOH: aldehydes and alcohols
  - TZOMPASOSA: global fossil fuel and biofuel emissions of C2H6 for 2010
  - XIAO\_C3H8: C2H6 and C3H8
  - AFCID: PM2.5 dust emission
- Natural
  - GEIA\_NH3: 1990 (obsolete now)
  - SEABIRD\_DECAYING\_PLANTS: the oceanic emissions of acetaldehyde
  - NH3: the Arctic seabird
  - MEGAN: biogenic emissions
- Biomass burning
  - GFED4: biomass burning emissions
- Ship
  - CEDS\_SHIP
  - SHIP

# Increased atmospheric ammonia over the world's major agricultural areas detected from space

- provides evidence of substantial increases in atmospheric ammonia (NH3) concentrations (14year) over several of the world's major agricultural regions
- The rate of change of NH3 volume mixing ratio (VMR) in partsper-billion by volume (ppbv) per year computed
  - BB: biomass burning
  - AG: agricultural



## End