Структуры и алгоритмы обработки данных 2/2 [1.24-25]_54

Вопрос 1

Какой зависимостью описывается функция вычислительной сложности алгоритма пирамидальной сортировки (Heapsort) в среднем случае?

```
\bigcirc f(n)=O(n log(n))
```

 \bigcirc f(n)=O(n^2)

 \bigcirc f(n)=O(n)

 \bigcirc f(n)=O(log(n))

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=O(n \log(n))$	53	правильность неизвестна

Вопрос 2

Определите теоретическую вычислительную сложность (функцию роста времени) алгоритма:

```
for(int i = n/2; i < n; i++) for(int j = 1; j < n; j = j*2) { /* Последовательность шагов программы с временной сложностью O(1) */ }
```

- логарифмическая
- 🔍 линейно-логарифмическая
- квадратичная
- линейная

Вариант ответа	Выбрали этот вариант	Правильность
линейно-логарифмическая	83	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
линейная	1	правильность неизвестна
логарифмическая	1	правильность неизвестна

Вопрос 3

Для оценки порядка роста функций, описывающих вычислительную сложность алгоритмов, используются асимптотические обозначения (символики) или нотации. Что обозначает запись f(n)=O(g(n)):

- Множество всех функций, порядок роста которых не ограничен сверху и снизу функцией g(n) с точностью до постоянных множителей с1 и с2 соответственно
- Множество всех функций, порядок роста которых ограничен сверху и снизу функцией g(n) с точностью до постоянных множителей с1 и с2 соответственно
- Множество всех функций, порядок роста которых при достаточно больших n не меньше (больше или равен) некоторой константы с, умноженной на значение функции g(n)
- Множество всех функций, порядок роста которых при достаточно больших п не больше(меньше или равен) некоторой константы с, умноженной на значение функции g(n) Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Множество всех функций, порядок роста которых ограничен сверху и снизу функцией g(n) с точностью до постоянных множителей c1 и c2 соответственно	71	правильность неизвестна
Множество всех функций, порядок роста которых при достаточно больших n не больше(меньше или равен) некоторой константы c, умноженной на значение функции g(n)	61	верный ответ
Множество всех функций, порядок роста которых при достаточно больших n не меньше (больше или равен) некоторой константы c, умноженной на значение функции g(n)	3	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
Множество всех функций, порядок роста которых не ограничен сверху и снизу функцией g(n) с точностью до постоянных множителей c1 и c2 соответственно	2	правильность неизвестна

Вопрос 4

В теории вычислимости важную роль играет функция Аккермана A(m, n), определённая следующим образом:

Вычислите значение A(2, 2). (Введите только число)

Ответ: 7

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
7	80	верный ответ
-1	1	правильность неизвестна
6	1	правильность неизвестна
10	1	правильность неизвестна

Вопрос 5

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска по бинарному дереву поиска (binary search tree, BST) в лучшем случае?

 \bigcirc f(n)= Θ (n log(n))

 $f(n) = \Theta(\log(n))$

 $f(n) = \Theta(n^2)$ $f(n) = \Theta(n)$

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(\log(n))$	215	верный ответ
$f(n) = \Theta(n)$	5	правильность неизвестна
$f(n) = \Theta(n \log(n))$	6	правильность неизвестна

Вопрос 6

Какие существуют случаи в анализе алгоритма:

- Наилучший, средний и наихудший
- Простой и быстрый
- Эффективный, неэффективный и оптимальный
- Общий, частный и оптимальный

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Наилучший, средний и наихудший	132	верный ответ
Эффективный, неэффективный и оптимальный	4	правильность неизвестна

Вопрос 7

Какая операция считается недопустимой для линейного односвязного списка:

- Замена содержимого информационной части заданного элемента
- Удаление последнего элемента
- Вставка нового элемента после заданного элемента
- Вставка нового элемента перед заданным элементом

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Вставка нового элемента перед заданным элементом	91	верный ответ
Удаление последнего элемента	1	правильность неизвестна
Вставка нового элемента после заданного элемента	1	правильность неизвестна

Вопрос 8

К графу на рисунке 1 применен алгоритм обхода в ширину. Какое из остовных деревьев соответствует этому алгоритму обхода с вершины 3?

	2
ノ	_

5

3

4

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
4	36	правильность неизвестна
2	8	неверный ответ
3	21	правильность неизвестна
5	2	правильность неизвестна

Какие отношения между элементами поддерживает структура данных бинарное дерево?	
Двоичные	
Бинарные	
Сложные	
Иерархические	

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Бинарные	7	правильность неизвестна
Иерархические	163	верный ответ

Вопрос 10

Алгоритм Прима - это:

 Алгоритм для нахождения кратчайших путей от одной из вершин графа до всех остальных
 Алгоритм для нахождения кратчайших путей между всеми вершинами взвешенного
ориентированного графа
🔾 Алгоритм поиска заданного пользователем количества путей между двумя вершинами во
взвешенном графе
○ Алгоритм поиска минимального остовного дерева во взвешенном неориентированном связном
графе
Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Алгоритм поиска минимального остовного дерева во взвешенном неориентированном связном графе	29	правильность неизвестна
Алгоритм для нахождения кратчайших путей между всеми вершинами взвешенного ориентированного графа	1	правильность неизвестна

В результате применения алгоритма RLE был получен сжатый текст 9A-4BCAB7C. Какой коэффициент сжатия этого текста обеспечил алгоритм RLE?

_	
\sim	$\overline{}$
 	\neg
v	

0 1,7

0 1,5

2

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
2	76	правильность неизвестна
1,5	3	правильность неизвестна
1,7	1	правильность неизвестна

Вопрос 12

Для структуры данных очередь справедливо:

◎ Удаление элемента возможно с одной из сторон списка

- 🔾 Удаление элемента возможно из начала и из конца списка
- О Доступ возможен к произвольному элементу
- Вставка нового элемента возможна в начало и в конец списка

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Удаление элемента возможно с одной из сторон списка	109	верный ответ
Доступ возможен к произвольному элементу	1	правильность неизвестна

Что измеряется для оценки временной (вычислительной) сложности алгоритма:

- Зависимость объема требуемой памяти от размера обрабатываемых данных
- Зависимость количества итераций от размера обрабатываемых данных
- Зависимость количества выполняемых основных операций от объёма входа
- Зависимость количества выполняемых основных операторов от размера доступной памяти
 Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Зависимость количества выполняемых основных операций от объёма входа	119	верный ответ
Зависимость количества итераций от размера обрабатываемых данных	5	правильность неизвестна
Зависимость количества выполняемых основных операторов от размера доступной памяти	2	правильность неизвестна

Вопрос 14

В какой последовательности располагаются вершины дерева при прямом обходе (preorder):

- 0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- 1, 2, 4, 8, 9, 5, 10, 11, 3, 6, 12, 13, 7, 14, 15
- 0 8, 9, 4, 10, 11, 5, 2, 12, 13, 6, 14, 15, 7, 3, 1
- 0 8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15

Вариант ответа	Выбрали этот вариант	Правильность
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	4	правильность неизвестна
1, 2, 4, 8, 9, 5, 10, 11, 3, 6, 12, 13, 7, 14, 15	132	верный ответ

Структура данных массив отображается на	физическом уровне в структуру хранения:
---	---

🔾 граф

вектор

○ сеть

О СПИСОК

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
вектор	46	верный ответ

Вопрос 16

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска в тексте по образцу методом Кнута-Морриса-Пратта в лучшем случае?

 \bigcirc f(n)= Θ (n2)

 \bigcirc f(n, m)= $\Theta(\log(n*m))$

 \bigcirc f(n)= Θ (n)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(n)$	96	правильность неизвестна
$f(n, m) = \Theta(log(n*m))$	4	правильность неизвестна
$f(n, m) = \Theta(n+m)$	103	верный ответ
$f(n) = \Theta(n2)$	2	правильность неизвестна

Вопрос 17

Понятие "глубина рекурсии" для рекурсивной функции определяет:

 Количество операторов вызова функции в самой функции
○ Наибольшее количество операторов в рекурсивной функции
○ Наибольшее одновременное количество рекурсивных обращений функции
○ Количество внешних вызовов функции в программе
Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Наибольшее одновременное количество рекурсивных обращений функции	64	правильность неизвестна

Вопрос 18

Есть ли ошибка в коде функции f, которая осуществляет получение ссылки на последний узел линейного односвязного списка со структурой узла? struct Tnode{ Tdata data; Tnode* next;};
Tnode *f(Tnode *L) {
 Tnode *q=L;
 while(q) { q=q->next; }
 return q;

- Oшибка в записи оператора Tnode *q=L должно быть Tnode q=L
- Ошибка в условии while (q) должно быть while (q->next)
- Ошибка в записи оператора q=q->next
- Ошибки нет

Статистика:

}

Вариант ответа	Выбрали этот вариант	Правильность
Ошибка в условии while (q) - должно быть while (q->next)	71	правильность неизвестна
Ошибка в записи оператора Tnode *q=L - должно быть Tnode q=L	1	правильность неизвестна
Ошибки нет	1	правильность неизвестна

Вопрос 19

Исходный текст "abcdabcdaaacc" был сжат, в результате был получен код abcd(4,4)(8,1)(1,1)(1,1) (5,1). Какой принцип сжатия текстовой информации при этом использовался?

- уменьшение объема текста за счет формирования словаря кодов цепочек и замены цепочек на код
- уменьшение объема текста за счет замены каждой повторно встреченной цепочки символов комбинацией: (количество знаков в цепочке, цепочка символов)
- уменьшение объема текста за счет замены повторно встретившейся цепочки символов ссылкой на ранее встреченную цепочку
- частотное кодирование

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
уменьшение объема текста за счет замены каждой повторно встреченной цепочки символов комбинацией: (количество знаков в цепочке, цепочка символов)	1	правильность неизвестна
уменьшение объема текста за счет замены повторно встретившейся цепочки символов ссылкой на ранее встреченную цепочку	35	верный ответ

Вопрос 20

Какой зависимостью описывается функция вычислительной сложности алгоритма вставки ключа в бинарное дерево поиска в наилучшем случае?

- f(n)=O(log(n))
- \bigcirc f(n)=O(1)
- \bigcirc f(n)=O(n)
- \bigcirc f(n)=O(nlog(n))

Вариант ответа	Выбрали этот вариант	Правильность
f(n) = O(log(n))	151	верный ответ
f(n)=O(1)	3	правильность неизвестна
f(n)=O(n)	2	правильность неизвестна
f(n) = O(nlog(n))	3	правильность неизвестна

Вопрос 21

Как называется алгоритм, который выполнит сортировку исходного массива (3,1,5,2,4) следующей последовательностью проходов

(1,3,5,2,4), (1,3,5,2,4), (1,3,2,5,4), (1,3,2,4,5), (1,3,2,4,5), (1,2,3,4,5), (1,2,3,4,5)

- О Простого выбора
- О Простой вставки
- Простого обмена
- Шелла

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Простой вставки	2	неверный ответ
Простого обмена	77	верный ответ

Вопрос 22

Какая функция реализует линейную рекурсию:

- О Содержит несколько вызовов самой себя
- О Количество вызовов самой себя определяется линейной функцией
- О Содержит один вызов самой себя
- О Содержит линейную функцию

Вариант ответа	Выбрали этот вариант	Правильность
Содержит один вызов самой себя	53	верный ответ
Количество вызовов самой себя определяется линейной функцией	1	правильность неизвестна

Вопрос 23

Какой зависимостью описывается функция вычислительной сложности алгоритма сортировки методом Шелла в наилучшем случае?

- \bigcirc f(n)=O(log(n))
- \bigcirc f(n)=O(n)
- f(n)=O(n log(n))
- \bigcirc f(n)=O(n^2)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = O(n \log(n))$	48	верный ответ
f(n) = O(log(n))	2	правильность неизвестна

Вопрос 24

Как называется алгоритм поиска минимального остовного дерева во взвешенном неориентированном связном графе?

- О Алгоритм Белмана-Форда
- О Алгоритм Флойда-Уоршала
- О Алгоритм Дейкстры
- О Алгоритм Крускала

Вариант ответа	Выбрали этот вариант	Правильность
Алгоритм Крускала	25	правильность неизвестна

Вопрос 25

Как называется алгоритм, который выполнит сортировку исходного массива (3,1,5,2,4) следующей последовательностью проходов (1,3,5,2,4), (1,3,5,2,4), (1,2,3,5,4), (1,2,3,4,5)

_		_	
ш	Іростого	BHILD	กล
	ipocioi o	DDIOO	\sim

Простой вставки

- Пирамидальная
- О Простого обмена

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Простого выбора	18	правильность неизвестна
Простой вставки	54	верный ответ
Простого обмена	7	правильность неизвестна

Вопрос 26

Дисциплина обслуживания (порядок выполнения операций) очереди:

FIFO

LIFO

OFIL

O LOFI

Вариант ответа	Выбрали этот вариант	Правильность
FIFO	114	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
LOFI	1	правильность неизвестна
LIFO	2	правильность неизвестна
OFIL	1	правильность неизвестна

Вопрос 27

Как называется алгоритм, который выполнит сортировку исходного массива (3,1,5,2,4) следующей последовательностью проходов (3,1,4,2,5), (3,1,2,4,5), (2,1,3,4,5), (1,2,3,4,5)

- Простого обмена
- Простого выбора
- О Простой вставки
- Шелла

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Простой вставки	13	правильность неизвестна
Простого выбора	55	верный ответ
Простого обмена	3	правильность неизвестна

Вопрос 28

Что определяет структура данных:

- Множество данных и отношений между ними
- Множество отношений между данными в форме операций над ними
- Множество данных
- О Множество данных и множество операций над ними

Вариант ответа	Выбрали этот вариант	Правильность
Множество данных и отношений между ними	32	верный ответ

Вопрос 29

	••	_	i	1	_
1/12	числа приведённых	CONTINUOROK BLIDANI	ита паммапаа эфл	ФОКТИВП//Ю ПЗ	PUTPITINA MACCINBAA.
V 13	числа приведенных	сортировок выосри	TIC Harimetice 540	PCKINDITYIO HA	CONDENIA MACCIDAA.

выбором

пузырьковая

пирамидальная

вставками

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
пузырьковая	51	правильность неизвестна
выбором	5	правильность неизвестна

Вопрос 30

В основе алгоритма Бойера-Мура-Хорспула используется:

- 🔾 Хеш-таблица
- Префикс-функция
- ⊚ Эвристика "хороших" суффиксов
- ◎ Эвристика стоп-символов ("плохих" символов)

Вариант ответа	Выбрали этот вариант	Правильность
Эвристика стоп-символов ("плохих" символов)	102	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
Эвристика "хороших" суффиксов	94	правильность неизвестна
Хеш-таблица	3	правильность неизвестна
Префикс-функция	1	правильность неизвестна

Вопрос 31

Что предусматривает метод динамического программирования?

- Выбор локально-оптимального решения каждой подзадачи для достижения оптимального конечного результата
- □ Переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач
- Запоминание результатов решения тех подзадач, которые могут повторно использоваться
- Получение решения исходно задачи путем комбинирования рекурсивных решений подзадач Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Выбор локально-оптимального решения каждой подзадачи для достижения оптимального конечного результата	25	правильность неизвестна
Запоминание результатов решения тех подзадач, которые могут повторно использоваться	8	правильность неизвестна
Переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач	5	правильность неизвестна

Вопрос 32

Какой зависимостью описывается функция вычислительной сложности алгоритма сортировки шейкерным методом (с условием Айверсона) в наихудшем случае:

- \bigcirc f(n)=O(n log(n))
- f(n)=O(n^2)
- \bigcirc f(n)=O(log(n))
- \bigcirc f(n)=O(n^3)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=O(n^2)$	42	верный ответ

Вопрос 33

При каком значении баланс-фактора b (т.е. разницы высот правого и левого поддеревьев) необходимо выполнить перестройку АВЛ-дерева?

- |b| = 2
- |b| = 1
- |b| > 2
- |b| = 0

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
b > 2	125	правильность неизвестна
b = 2	39	правильность неизвестна
b = 0	1	правильность неизвестна
b = 1	1	правильность неизвестна

Как называется алгоритм, который напрямую или через другие вспомогательные алгоритмы
вызывает сам себя:

	D	v
()	Рекурсивны	1/
	I CKYPCNDUDI	VΙ
	<i>)</i>	

Линейный

Разветвляющийся

Циклический

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Рекурсивный	35	правильность неизвестна

Вопрос 35

Какой алгоритм из перечисленных не основан на жадном подходе?

- О Алгоритм построения минимального остовного дерева Крускала
- Алгоритм нахождения кратчайшего пути Беллмана-Форда
- О Алгоритм кодирования Хаффмана
- О Алгоритм нахождения кратчайшего пути Дейкстры

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Алгоритм нахождения кратчайшего пути Беллмана-Форда	40	верный ответ
Алгоритм нахождения кратчайшего пути Дейкстры	2	правильность неизвестна
Алгоритм кодирования Хаффмана	1	правильность неизвестна

Идея алгоритма интерполяционного поиска основана на:

- Выборе новой области поиска по расстоянию между ключом и текущим значением элемента
- О Сравнении каждого элемента с искомым

О Использовании хеш-таблицы

Учёте знака разности между ключом и текущим значением элемента Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Выборе новой области поиска по расстоянию между ключом и текущим значением элемента	242	верный ответ
Использовании хеш-таблицы	2	правильность неизвестна
Учёте знака разности между ключом и текущим значением элемента	2	верный ответ

Вопрос 37

				J	
Что помещается в	CTEK DEKVDC	ивных вызово	В ПОИ ВЫЗОВ	e pekypcubhou	Ф∨нкпии≀

- Значения всех переменных функции при текущем вызове для возврата в точку вызова
- Адрес точки возврата, значения всех переменных функции текущего вызова
- О Имена локальных переменных и параметров функции

Вариант ответа	Выбрали этот вариант	Правильность
Адрес точки возврата, значения всех переменных функции текущего вызова	56	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
Имена локальных переменных и параметров функции	1	правильность неизвестна

Вопрос 38

Выберите код, являющийся результатом сжатия по методу скользящего окна текста "abacabacabadaca". Примечание: кавычки ограничивают текст и не кодируются.

- $(0,0,a)(0,0,b)(2,1,c)(4,4,d)(2,1,c)(2,1,\pi)(2,0)$
- (0,0,a)(0,0,b)(2,1,c)(4,7,d)(2,1,c)(4,1,пусто)
- \bigcirc (0,0,a)(0,0,b)(2,1,c)(3,7,d)(2,1,c)(2,1,nycto)
- © (0,0,a)(0,0,b)(2,1,c)(4,7,d)(2,1,c)(2,1,пусто)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
(0,0,a)(0,0,b)(2,1,c)(4,7,d)(2,1,c)(2,1,пусто)	88	верный ответ
(0,0,a)(0,0,b)(2,1,c)(3,7,d)(2,1,c)(2,1,пусто)	1	правильность неизвестна
(0,0,a)(0,0,b)(2,1,c)(4,7,d)(2,1,c)(4,1,пусто)	1	правильность неизвестна

Вопрос 39

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска хешированием в лучшем случае?

- \bigcirc f(n)= Θ (n^2)
- \bigcirc f(n)= Θ (n log(n))
- \bigcirc f(n)= $\Theta(\log(n))$
- \odot f(n)= $\Theta(1)$

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(1)$	208	верный ответ
$f(n) = \Theta(\log(n))$	2	правильность неизвестна
$f(n)=\Theta(n^2)$	1	правильность неизвестна
$f(n) = \Theta(n \log(n))$	3	правильность неизвестна

Вопрос 40

Отличительная особенность алгоритма Бойера-Мура:

- О Сравнение символов производится начиная с конца текста
- О После каждого неудачного сравнения производится сдвиг образца вправо на одну позицию
- О Производится посимвольное сравнение образца с текстом при равенстве хешей
- Сравнение символов производится начиная с конца образца;

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
После каждого неудачного сравнения производится сдвиг образца вправо на одну позицию	55	правильность неизвестна
Сравнение символов производится начиная с конца образца;	157	верный ответ
Сравнение символов производится начиная с конца текста	2	правильность неизвестна

Вопрос 41

Пример какой структуры данных изображён на рисунке?

очередь
дек

кольцо

🔾 стек

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
дек	112	верный ответ
кольцо	2	правильность неизвестна
стек	1	правильность неизвестна

Вопрос 42

В каких случаях алгоритм Кнута-Морриса-Пратта дает подлинный выигрыш по сравнению с другими алгоритмами поиска в тексте по образцу?

Когда неудачному сравнению образца с текстом предшествовало некоторое число совпадений

- О Когда текст предварительно адаптирован
- О Когда образец предварительно адаптирован
- На больших алфавитах

Вариант ответа	Выбрали этот вариант	Правильность
На больших алфавитах	3	правильность неизвестна
Когда неудачному сравнению образца с текстом предшествовало некоторое число совпадений	222	верный ответ
Когда текст предварительно адаптирован	5	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
Когда образец предварительно адаптирован	2	правильность неизвестна

Вопрос 43

Какой зависимостью описывается функция вычислительной сложности алгоритма бинарного (двоичного) поиска в худшем случае?

- \bigcirc f(n)= Θ (n^2)
- \bigcirc f(n)= Θ (n log(n))
- $f(n) = \Theta(\log(n))$
- \bigcirc f(n)= Θ (n)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(\log(n))$	199	верный ответ
$f(n) = \Theta(n^2)$	1	правильность неизвестна
$f(n) = \Theta(n)$	3	правильность неизвестна
$f(n) = \Theta(n \log(n))$	4	правильность неизвестна

Вопрос 44

Линейные списки находят применение в технологии:

- 🔾 реляционных баз данных
- символьной адресации узлов DNS
- распределённых систем блокчейн
- O организации доменов Active Directory

Вариант ответа	Выбрали этот вариант	Правильность
распределённых систем блокчейн	119	верный ответ
реляционных баз данных	8	правильность неизвестна
символьной адресации узлов DNS	1	правильность неизвестна

Вопрос 45

Определите теоретическую вычислительную сложность (функцию роста времени) алгоритма:

for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) cout<<"hello";

• экспоненциальная

константная

квадратичная

линейная

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
квадратичная	124	верный ответ
линейная	1	правильность неизвестна

Вопрос 46

Укажите правильную аналогию между асимптотическим сравнением двух функций f и g для обозначения $f(n) = \Omega(g(n))$ и сравнением двух действительных чисел a и b:

○ a >b

○ a = b

a ≤ b

a ≥ b

Вариант ответа	Выбрали этот вариант	Правильность
a ≥ b	119	верный ответ
a >b	2	правильность неизвестна
a ≤ b	2	правильность неизвестна
a = b	1	правильность неизвестна

Вопрос 47

Укажите правильную аналогию между асимптотическим сравнением двух функций f и g для обозначения f(n) = O(g(n)) и сравнением двух действительных чисел a и b:

a ≤ b

 \bigcirc a = b

○ a < b

a ≥ b

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
a ≤ b	117	верный ответ
a ≥ b	5	правильность неизвестна
a = b	1	правильность неизвестна
a < b	1	правильность неизвестна

Вопрос 48

Основное требование, предъявляемое к массиву для возможности выполнения двоичного поиска:

- О Статический массив
- О Массив небольшого размера
- О Массив целочисленных значений
- Упорядоченность массива

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Упорядоченность массива	224	верный ответ
Массив целочисленных значений	2	правильность неизвестна
Статический массив	1	правильность неизвестна

Вопрос 49

В основе алгоритма Кнута-Морриса-Пратта используется:

- 🤍 Хеш-таблица
- **Префикс-функция**
- Эвристика "хороших" суффиксов
- Эвристика стоп-символов ("плохих" символов)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Префикс-функция	230	верный ответ
Эвристика стоп-символов ("плохих" символов)	3	правильность неизвестна
Хеш-таблица	3	правильность неизвестна
Эвристика "хороших" суффиксов	1	правильность неизвестна

Вопрос 50

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска по бинарному дереву в худшем случае (несбалансированное бинарное дерево)?

- \bigcirc f(n)= Θ (n^2)
- \bigcirc f(n)= $\Theta(\log(n))$
- f(n)=θ(n)
- \bigcirc f(n)= Θ (n log(n))

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(n)$	204	верный ответ
$f(n) = \Theta(n \log(n))$	3	правильность неизвестна
$f(n) = \Theta(\log(n))$	4	правильность неизвестна
$f(n) = \Theta(n^2)$	7	правильность неизвестна

Вопрос 51

Какие нотации можно использовать для асимптотической оценки сложности алгоритма в худшем случае?

- 🔲 нотация ω (омега-малое)
- □ нотация Ѳ (тета)
- нотация О (о-большое)
- 🗆 нотация Ω (омега-большое)

Статистика:

Вариант ответа	3 a	Против
нотация ω (омега-малое)	2	111
нотация Θ (тета)	99	15
нотация О (о-большое)	102	12
нотация Ω (омега-большое)	10	103

Дисциплина обслуживания (порядок выполнения операций) стека:
OFIL

LIFO

FIFO

O LOFI

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
FIFO	4	правильность неизвестна
LIFO	107	верный ответ
LOFI	1	правильность неизвестна

Вопрос 53

Величина сдвига при поиске образца в тексте определяется наибольшим значением из трёх, вычисленных, соответственно, по трём правилам (эвристикам) в алгоритме:

- Бойера-Мура-Хорспула
- Кнута-Морриса-Прата
- Бойера-Мура
- Бойера-Мура с турбосдвигом

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Бойера-Мура-Хорспула	66	правильность неизвестна
Кнута-Морриса-Прата	6	правильность неизвестна
Бойера-Мура с турбосдвигом	125	верный ответ
Бойера-Мура	18	правильность неизвестна

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска хешированием в худшем случае?

- $f(n) = \Theta(n)$
- $(n) = \Theta(n^2)$
- \bigcirc f(n)= $\Theta(\log(n))$
- \bigcirc f(n)= $\Theta(1)$

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(\log(n))$	6	правильность неизвестна
$f(n)=\Theta(n^2)$	6	правильность неизвестна
$f(n) = \Theta(n)$	190	верный ответ
$f(n)=\Theta(1)$	3	правильность неизвестна

Вопрос 55

Отличительная особенность алгоритма Бойера-Мура-Хорспула:

- После каждого неудачного сравнения производится сдвиг образца вправо на количество позиций, равное количеству предшествующих удачных сравнений
- После каждого неудачного сравнения производится сдвиг образца вправо в соответствии с эвристикой стоп-символов ("плохих" символов)
- После каждого неудачного сравнения производится сдвиг образца вправо в соответствии с таблицей префиксов (префикс-функцией)
- После каждого неудачного сравнения производится сдвиг образца вправо на одну позицию Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
После каждого неудачного сравнения производится сдвиг образца вправо в соответствии с эвристикой стоп-символов ("плохих" символов)	210	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
После каждого неудачного сравнения производится сдвиг образца вправо на одну позицию	1	правильность неизвестна
После каждого неудачного сравнения производится сдвиг образца вправо на количество позиций, равное количеству предшествующих удачных сравнений	7	правильность неизвестна
После каждого неудачного сравнения производится сдвиг образца вправо в соответствии с таблицей префиксов (префикс-функцией)	3	правильность неизвестна

Вопрос 56

Какие основные операции следует учитывать при оценке временной (вычислительной) сложности алгоритмов поиска:

- Операции перемещения данных
- Операции сравнения данных
- Операции сравнения и перемещения данных
- Все имеющиеся операции в алгоритме

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Операции сравнения и перемещения данных	91	правильность неизвестна
Операции сравнения данных	15	верный ответ
Все имеющиеся операции в алгоритме	2	правильность неизвестна

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска в тексте по образцу методом Бойера-Мура в лучшем случае?

- \bigcirc f(n, m)= $\Theta(\log(n+m))$
- \bigcirc f(n)= Θ (n)
- \odot f(n, m)= $\Theta(\log(n/m))$
- \bigcirc f(n, m)= $\Theta(\log(n*m))$

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n, m) = \Theta(\log(n/m))$	200	верный ответ
$f(n, m) = \Theta(log(n*m))$	8	правильность неизвестна
$f(n) = \Theta(n)$	9	правильность неизвестна
$f(n, m) = \Theta(\log(n+m))$	9	правильность неизвестна

Вопрос 58

Структура данных, работа с элементами которой организована по принципу FIFO (первый пришел - первый ушел), - это:

- массив
- 🔾 дек
- 🔾 стек
- **очередь**

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
стек	9	правильность неизвестна
очередь	93	верный ответ

Сложность рекурсивного алгоритма вычисления N-ого числа Фибоначчи можно снизить с O(2^n) до O(n), т.е. оптимизировать процесс вычисления, если сохранять промежуточные значения решения подзадач. Какой метод построения алгоритма (алгоритмическая стратегия) здесь задействован?

🕽 Метод	рекурсии
---------	----------

- 🤍 "Жадный" алгоритм
- О Разделяй и властвуй
- Динамическое программирование

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Динамическое программирование	34	правильность неизвестна
Метод рекурсии	1	правильность неизвестна
Разделяй и властвуй	1	правильность неизвестна

Вопрос 60

Какие из представленных связных неориентированных графов являются Эйлеровыми (содержат цикл Эйлера)?

01

3

0 1 и 3

2

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
1	20	правильность неизвестна

Что будет результатом применения алгоритма RLE - "Групповое кодирование" к сжатию текста ААААААААААААААААААААААА

٨	1	0	٨	П		٨	П		_	_
А	П	Ŏ.	А	ъ	C.	А	В	C	О	C

○ 18A-6BCABCA6C

A(18)BCA(2)C(6)

○ 18A-2BCA6C

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
A18ABCABC6C	32	правильность неизвестна
A(18)BCA(2)C(6)	8	правильность неизвестна
18A-6BCABCA6C	13	правильность неизвестна
18A-2BCA6C	5	правильность неизвестна

Вопрос 62

Массив д	длиной n	сортируется	пузырьковым	алгоритмом	по не	еубыванию.	За сколько	проходов	ПО
массиву	наимены	шее значени	е массива ока	жется "вверх	/"?				

 \bigcirc n

n-1

Один

_ n^2

Вариант ответа	Выбрали этот вариант	Правильность
n-1	40	правильность неизвестна
n^2	3	правильность неизвестна
Один	9	правильность неизвестна

Вопрос 63

В каком типе деревьев лист не должен содержать значение?

- 🔍 красно-черное дерево
- 🔾 АВЛ-дерево
- В-дерево
- О бинарное дерево поиска

Статистика:

Вариант ответа	Выбрали этот вариант Правильность	
В-дерево	122	верный ответ
бинарное дерево поиска	4	правильность неизвестна
красно-черное дерево	38	верный ответ
АВЛ-дерево	2	правильность неизвестна

Вопрос 64

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска ключа в бинарном дереве поиска в наихудшем случае?

- \bigcirc f(n)=O(log(n))
- \bigcirc f(n)=O(1)
- \bigcirc f(n)=O(nlog(n))
- f(n) = O(n)

Вариант ответа	Выбрали этот вариант	Правильность
f(n) = O(n)	136	верный ответ
f(n) = O(nlog(n))	7	правильность неизвестна
f(n) = O(log(n))	6	правильность неизвестна

Вопрос 65

Имеется следующее оптимальное кодовое дерево (ОКД):

Выберите исходную строку, которая была закодирована в битовый код 111 0 0 10 10 0 110 0 10 0 по алгоритму Хаффмана с использованием приведенного ОКД:

- ABDCDCDCDD
- DDDDDCCCBA
- BDDCCDADCD
- ABCCCDDDDD

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
BDDCCDADCD	67	верный ответ

Вопрос 66

Какой зависимостью описывается функция вычислительной сложности алгоритма сортировки слиянием (Mergesort) в среднем и наихудшем случаях:

- \bigcirc f(n)= Θ (n)
- $f(n) = \Theta(n \log(n))$
- \bigcirc f(n)= $\Theta(\log(n))$
- \bigcirc f(n)= Θ (n^2)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(n \log(n))$	52	верный ответ

Вопрос 67

Дано описание функции:

SyncShare

int $f(int x) \{ return (x == 0) ? 1 : x * f(x-1); \}$

данная функция вычисляст	Данная	функция	вычисляет
--------------------------	--------	---------	-----------

- n-ое простое число
- о степень числа n
- факториал числа n

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
факториал числа n	50	правильность неизвестна
степень числа n	1	правильность неизвестна

Вопрос 68

Что определяет термин "чёрная высота" узла в структуре красно-черного дерева?

- О Количество черных узлов в красно-черном дереве
- О Количество узлов на пути от корня до ближайшего чёрного узла
- Количество черных узлов на пути от корня до листового узла
- О Длина пути от корня до ближайшего чёрного узла

Вариант ответа	Выбрали этот вариант	Правильность
Количество черных узлов на пути от корня до листового узла	158	правильность неизвестна
Длина пути от корня до ближайшего чёрного узла	3	правильность неизвестна
Количество узлов на пути от корня до ближайшего чёрного узла	5	правильность неизвестна
Количество черных узлов в красно-черном дереве	2	правильность неизвестна

Вопрос 69	Воп	poc	69
-----------	-----	-----	----

В чем смысл анализа алгоритма:

- Обеспечить безопасность данных
- Предсказать требуемые для его выполнения вычислительные ресурсы
- Определить требования к интерфейсу
- Предсказать форматы структур данных и внешние связи между ними

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Предсказать требуемые для его выполнения вычислительные ресурсы	38	верный ответ
Предсказать форматы структур данных и внешние связи между ними	1	правильность неизвестна

Вопрос 70

При создании бинарного дерева поиска ключи поступали в следующей последовательности: 25, 15, 18, 10, 11, 7, 8, 17, 16. Из дерева удалили узел с ключом 18. Узел с каким значением был выбран замещающим?

18

17

15

16

Вариант ответа	Выбрали этот вариант	Правильность
16	3	правильность неизвестна
17	65	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
18	1	правильность неизвестна

Вопрос 71

Имеется идеально сбалансированное двоичное дерево, содержащее 31 узел. Сколько уровней в дереве?

	_					v
()	5	1//	00	RI	40	1/
	_	УΙ	\sim	וטי	10	и і

○ 4 уровня

○ 6 уровней

○ 7 уровней

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
6 уровней	5	правильность неизвестна
5 уровней	75	правильность неизвестна
4 уровня	1	правильность неизвестна
7 уровней	1	правильность неизвестна

Вопрос 72

При создании бинарного дерева поиска ключи поступали в следующей последовательности: 25, 12, 13, 10, 44, 11, 7, 8, 42. Какова высота этого дерева?

	4

3

4

5

Вариант ответа	Выбрали этот вариант	Правильность
5	12	правильность неизвестна
4	43	правильность неизвестна

Вопрос 73

```
Дан рекурсивный алгоритм:

void F(int n) {

  cout << n << endl;

  if (n < 5) {

    F(n+1);

    F(n+2);

    F(n*3);

  }
```

Найдите сумму чисел, которые будут выведены при вызове F(2). (В поле ответа - только число)

Ответ: 79

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
79	60	верный ответ
65	1	правильность неизвестна
62	1	правильность неизвестна
9	1	правильность неизвестна
61	1	правильность неизвестна

Вопрос 74

Известно, что при построении хеш-таблиц возможно появление коллизий. Коллизия это такая ситуация, когда:

Для разных ключей хэш-функция может принимать одно и тоже значение h(ki) = h(kj)

Способ нахождения промежуточных значений определяется величиной по имеющемуся дискретному набору значений

Определение области поиска производится с помощью учета знака разности между ключом и текущим значением элемента

Для одинаковых ключей хэш-функция может принимать разные значения h(ki) ≠ h(kj)
 Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Для разных ключей хэш-функция может принимать одно и тоже значение h(ki) = h(kj)	31	правильность неизвестна

Вопрос 75

Какой из перечисленных алгоритмов реализует стратегию "жадных алгоритмов" (greedy algorithm)?

- 🔾 алгоритм Бойера-Мура
- 🔍 алгоритм Дейкстры
- алгоритм быстрой сортировки Quick-sort
- 🔾 алгоритм Флойда

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
алгоритм Дейкстры	44	верный ответ

Вопрос 76

Какой из видов линейных списков лучше использовать при реализации задачи по проверке баланса круглых скобок (соответствие открывающей и закрывающей скобок: (()()) – баланс)?

○ Линейный односвязный список
Стек
 Линейный двусвязный список
Очередь
Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Стек	108	правильность неизвестна
Линейный односвязный список	2	правильность неизвестна
Линейный двусвязный список	1	правильность неизвестна

Вопрос 77

Какой зависимостью описывается функция вычислительной сложности алгоритма турнирной сортировки в наихудшем случае:

- \bigcirc f(n)= Θ (n^2)
- \bigcirc f(n)= Θ (n log(n))
- \bigcirc f(n)= Θ (n)
- \bigcirc f(n)= $\Theta(\log(n))$

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(\log(n))$	3	правильность неизвестна
$f(n) = \Theta(n \log(n))$	38	правильность неизвестна
$f(n) = \Theta(n)$	1	правильность неизвестна
$f(n) = \Theta(n^2)$	1	правильность неизвестна

Вопрос 78

К графу на рисунке 1 применен алгоритм обхода в глубину. Какое из остовных де	еревьев
соответствует обходу в глубину с вершины 3?	

5
2

4

3

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
5	9	правильность неизвестна
2	48	правильность неизвестна
4	1	правильность неизвестна
3	3	правильность неизвестна

Вопрос 79

D			_			_	
POCT	/ DENBUUHOTO	кластера в	в хеш-таблице с	CTKDLITLIM	алпесом	CHOCOLCTE	VAT:
1 001	y nepovi-inoro	Macrepai	в леш таблище с	CIRPBITBIN	адрессом	CHOCOOCID	y Cı.

Смещение	е и раз	мер табл	ицы имею	т обшие	множители
CIVICEACTIVIT	, ri pas	wicp rach	rigoi riivicio	п оощис	WILL COLOR

- Для большого количества ключей хеш-функция сформировала один и тот же индекс
- Ключи равномерно распределены по таблице
- О Размер таблицы определен как простое число и смещение простое число

CT	aı	·N(CTV	ıкa:

Вариант ответа	Выбрали этот вариант	Правильность
Ключи равномерно распределены по таблице	2	правильность неизвестна
Смещение и размер таблицы имеют общие множители	5	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
Для большого количества ключей хеш-функция сформировала один и тот же индекс	28	правильность неизвестна
Размер таблицы определен как простое число и смещение простое число	1	правильность неизвестна

Вопрос 80

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска в глубину на списке смежных вершин, если V – количество вершин в графе, а E –количество ребер:

```
f(n) = O(log(E))
f(n) = O(V)
f(n) = O(E)
```

 \bigcirc f(n)=O(V^2)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
f(n) = O(log(E))	20	правильность неизвестна
$f(n)=O(V^2)$	3	правильность неизвестна
f(n) = O(E)	3	правильность неизвестна
f(n) = O(V)	1	правильность неизвестна

Вопрос 81

```
Дана следующая рекурсивная функция: int fib(int n) \{ if (n < 2) \{ return 1; \} else \{ return fib(n - 2) + fib(n - 1); \} \}
```

Какова высота дерева рекурсии при вызове fib(5)?

7

5

4

3

Вариант ответа	Выбрали этот вариант	Правильность
7	13	правильность неизвестна
5	5	правильность неизвестна
3	1	правильность неизвестна
4	39	верный ответ

Вопрос 82

Укажите свойство, характеризующее структуру данных Дек:

- Вставка нового элемента возможна в заданную позицию
- Удаление элемента возможно из заданной позиции
- О Линейный список с заданным количеством узлов
- Обладает двумя первыми элементами

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Обладает двумя первыми элементами	94	верный ответ
Линейный список с заданным количеством узлов	5	правильность неизвестна
Вставка нового элемента возможна в заданную позицию	2	правильность неизвестна
Удаление элемента возможно из заданной позиции	1	правильность неизвестна

Вопрос 83

Для оценки порядка роста функций, описывающих вычислительную сложность алгоритмов, используются асимптотические обозначения (символики) или нотации. Что обозначает запись $f(n) = \Theta(g(n))$:

- Множество всех функций, порядок роста которых при достаточно больших n не меньше (больше или равен) некоторой константы с, умноженной на значение функции g(n)
- Множество всех функций, порядок роста которых ограничен сверху и снизу функцией g(n)
 с точностью до постоянных множителей c1 и c2 соответственно
- Множество всех функций, порядок роста которых не ограничен сверху и снизу функцией g(n) с точностью до постоянных множителей с1 и с2 соответственно
- Множество всех функций, порядок роста которых при достаточно больших n не больше(меньше или равен) некоторой константы c, умноженной на значение функции g(n)
 Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Множество всех функций, порядок роста которых при достаточно больших n не больше(меньше или равен) некоторой константы c, умноженной на значение функции g(n)	4	правильность неизвестна
Множество всех функций, порядок роста которых ограничен сверху и снизу функцией g(n) с точностью до постоянных множителей c1 и c2 соответственно	109	верный ответ
Множество всех функций, порядок роста которых не ограничен сверху и снизу функцией g(n) с точностью до постоянных множителей c1 и c2 соответственно	1	правильность неизвестна
Множество всех функций, порядок роста которых при достаточно больших n не меньше (больше или равен) некоторой константы c, умноженной на значение функции g(n)	5	правильность неизвестна

Вопрос 84

Что будет выведено при прямом обходе дерева?

- \bigcirc d b e a f c
- \bigcirc a b c d e f
- b d e c f 1
- abdecf

Вариант ответа	Выбрали этот вариант	Правильность
a b c d e f	45	правильность неизвестна
a b d e c f	114	верный ответ

Вопрос 85

Для каких узлов необходимо проверить коэффициент балансировки (баланс-фактор) после добавления узла в АВЛ-дерево?

Для	род	ителя	нового	vзла
	$r \sim r$,

◎ Для всех предков нового узла вплоть до корня дерева

- Только для нового добавленного узла
- 🗆 Для всех узлов дерева

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Для родителя нового узла	63	правильность неизвестна
Для всех предков нового узла вплоть до корня дерева	88	верный ответ
Для всех узлов дерева	3	правильность неизвестна

Вопрос 86

Что будет результатом применения алгоритма RLE ("групповое кодирование") к сжатию текста АААААААААААААААААААААВВВВВАААВВВВВВС?

19A5B3A7B1C

- (22)A(12)B(1)C
- ABC(19,5,3,7,1)
- ABABC(19,5,3,7,1)

Вариант ответа	Выбрали этот вариант	Правильность
(22)A(12)B(1)C	4	правильность неизвестна
19A5B3A7B1C	76	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
ABC(19,5,3,7,1)	1	правильность неизвестна

Вопрос 87

17						
Какие отношения между	/ > \UDIAL \unial \unia		$\square \square $	CTNVVTVNa	π	массив.
какис отпошения между	2) CIVICITIAIVIVI	пслыно	поддерживает	CIPYKIYPA	данных і	Macchib.

- Иерархические
- Линейные
- Наследование
- Нелинейные

Вариант ответа	Выбрали этот вариант	Правильность
Наследование	1	правильность неизвестна
Линейные	37	верный ответ

Вопрос 88

Какой зависимостью описывается функция вычислительной сложности алгоритма быстрой сортировки методом Хоара (quicksort) в среднем и наилучшем случаях?

- \bigcirc f(n)= Θ (n^2)
- \bigcirc f(n)= Θ (n log(n))
- \bigcirc f(n)= $\Theta(\log(n))$
- \bigcirc f(n)= Θ (n)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(n \log(n))$	40	правильность неизвестна
$f(n) = \Theta(n^2)$	2	правильность неизвестна

Вопрос 89

Какой код будет получен из входной строки символов ABCCCDDDDD при использовании алгоритма Хаффмана?

- 01233344444
- 00 01 10 10 10 11 11 11 11 11
- 110 111 10 10 10 0 0 0 0 0 0
- A1 B1 C3 D5

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
110 111 10 10 10 0 0 0 0 0 0	74	верный ответ
00 01 10 10 10 11 11 11 11 11	2	правильность неизвестна

Вопрос 90

Имеется идеально сбалансированное двоичное дерево (не являющееся деревом поиска),
содержащее целые числа. Симметричный просмотр дерева (слева-направо, in-oder обход) даёт
следующий результат: 2, 4, 6, 8, 10, 12, 14. Какой узел является корнем дерева?

2

6

8

0 10

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
2	4	правильность неизвестна
8	161	верный ответ
10	2	правильность неизвестна
6	1	правильность неизвестна

Вопрос 91

Какие основные операции следует учитывать при оценке временной (вычислительной) сложности алгоритмов сортировки:

- Операции перемещения данных
- Операции сравнения данных
- Операции сравнения и перемещения данных
- Все имеющиеся операции в алгоритме

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Операции сравнения и перемещения данных	126	верный ответ

Вопрос 92

Диапазон допустимых значений простого типа данных определяется разрядностью отдельного значения этого типа. В перечне примеров найдите неправильный вариант:

D long int – занимает	4 байта, следовательно	, имеет диапазон от –2 1	47 483 648 до +2 147 483 647
-----------------------	------------------------	--------------------------	------------------------------

○ int – занимает 4 байта, следовательно, имеет диапазон от –2 148 483 647 до +2 147 483 647 Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
long int – занимает 4 байта, следовательно, имеет диапазон от –2 147 483 648 до +2 147 483 647	25	правильность неизвестна
int – занимает 4 байта, следовательно, имеет диапазон от –2 148 483 647 до +2 147 483 647	3	правильность неизвестна

Вопрос 93

Какая проблема может возникнуть в хеш-таблице с открытым адресом, после удаления ключа из первичного кластера ключей, хешированных с одним индексом?

- Неоднозначность результата поиска ключа
- Невозможно вставить ключ в первичный кластер
- Невозможность найти ключ в первичном кластере
- Ключи поменяют индексы, с которыми были хешированы при вставке в таблицу Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Невозможность найти ключ в первичном кластере	41	верный ответ

Вопрос 94

При создании бинарного дерева поиска ключи поступали в следующей последовательности: 25, 12, 13, 10, 11, 7, 8, 44, 42. В это дерево был вставлен узел с ключом 6. В какое поддерево и какого узла

[○] short int – занимает 2 байта, следовательно, имеет диапазон от –32 768 до +32 767

[○] char – занимает 1 байт, следовательно, имеет диапазон от –128 до +127

был вставлен узел?

🗎 В левое поддерево узла	42
--------------------------	----

○ В левое поддерево узла 11

○ В левое поддерево узла 13

🔾 В левое поддерево узла 7

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
В левое поддерево узла 7	72	правильность неизвестна
В левое поддерево узла 13	1	правильность неизвестна

Вопрос 95

Какой зависимостью описывается функция вычислительной сложности алгоритма интерполяционного поиска в среднем случае?

- \bigcirc f(n)= Θ (n log(n))
- \bigcirc f(n)= Θ (n)
- \bigcirc f(n)= $\Theta(\log(n))$
- f(n)= $\Theta(\log(\log(n))$

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(\log(\log(n))$	198	верный ответ
$f(n) = \Theta(n \log(n))$	4	правильность неизвестна
$f(n) = \Theta(\log(n))$	10	правильность неизвестна
$f(n) = \Theta(n)$	2	правильность неизвестна

Вопрос 96

Чем может быть вызвано переполнение стека при выполнении рекурсивной функции с небольшой глубиной рекурсии:

■ Неправильно сформулированным условием завершения рекурсии

- Неправильно оформленным выводом результата
- Неправильно оформленным блоком входа в рекурсию
- Неправильным выполнением вызова функции

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Неправильно сформулированным условием завершения рекурсии	53	верный ответ

Вопрос 97

```
Имеется линейный односвязный список из n (n>2) узлов. Структура узла списка: struct Tnode {
    Tdata data;
    Tnode* next;
```

L - указатель на его начало. Укажите группу операторов, которые обеспечат корректное удаление двух узлов из начала списка L:

```
q1=L; q2=L; L=q2->next; delete q1;delete q2;
```

- q1=L; q2=L->next; L=L->next->next; delete q1;delete q2;
- \bigcirc q1=L; delete q1; q2=q1; L=q2->next; delete q2;
- q1=L; L=L->next->next; q2=L; delete q1; delete q2;

Вариант ответа	Выбрали этот вариант	Правильность
q1=L; q2=L->next; L=L->next->next; delete q1;delete q2;	56	правильность неизвестна
q1=L; delete q1; q2=q1; L=q2->next; delete q2;	1	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
q1=L; q2=L; L=q2->next; delete q1;delete q2;	1	правильность неизвестна

Вопрос 98

Когда алгоритм считается корректным:

- О Когда для каждого ввода результатом его работы является корректный вывод
- Когда для одного определённого ввода результатом его работы является корректный вывод
- О Когда для каждого вывода результатом его работы является корректный ввод
- Когда он может выдать ответ, отличный от ожидаемого
 Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Когда для каждого ввода результатом его работы является корректный вывод	10	правильность неизвестна
Когда для одного определённого ввода результатом его работы является корректный вывод	24	правильность неизвестна
Когда он может выдать ответ, отличный от ожидаемого	1	правильность неизвестна

Вопрос 99

С какой вычислительной сложностью выполняются операции поиска, удаления и вставки в хештаблицах в лучшем случае?

O(n log n)

O(1)

O(n)

○ O(n^2) Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
O(1)	48	верный ответ

Вопрос 100

Чтο	проверяету	/словие	Айверсона в	алгоритме	сортировки	метолом г	постого	обмена:
110	TIPODCP/ICT	γ COIODVIC I	WIDCDCOIIG D		CODINDODKI	IVICTOACIVI I		CONCING

- Наличие сравнений в текущем проходе по массиву
- Наличие обменов в текущем проходе по массиву
- О Количество элементов в неупорядоченной части массива
- Не пуст ли массив

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Наличие обменов в текущем проходе по массиву	44	правильность неизвестна
Наличие сравнений в текущем проходе по массиву	2	правильность неизвестна

Вопрос 101

Показатели эффективности алгоритмов (или программ) включают:

- О Корректность и достоверность программы
- Количество уровней подзадач при декомпозиции основной задачи
- Количество выполняемых операций и объем требуемой памяти
- Размер программы (количество операторов)

Вариант ответа	Выбрали этот вариант	Правильность
Количество выполняемых операций и объем требуемой памяти	129	верный ответ
Количество уровней подзадач при декомпозиции основной задачи	1	правильность неизвестна
Корректность и достоверность программы	1	правильность неизвестна

Вопрос 102

Чему равна сумма степеней вершин графа?

- Числу его ребер
- Удвоенному весу ребер
- Удвоенному числу его ребер
- О Сумме веса ребер

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Удвоенному числу его ребер	26	правильность неизвестна
Удвоенному весу ребер	1	правильность неизвестна

Вопрос 103

Какие из перечисленных АВЛ-деревьев не требуют проведения перестройки?

- 0 1, 3, 4
- 0 2, 3, 4
- 0 1, 2, 3
- **1, 2, 4**

Вариант ответа	Выбрали этот вариант	Правильность
1, 2, 3	10	правильность неизвестна
1, 2, 4	146	верный ответ
2, 3, 4	2	правильность неизвестна
1, 3, 4	1	правильность неизвестна

Вопрос 104

Какой алгоритм сортировки из перечисленных ниже будет самым эффективным на уже отсортированном массиве?

вставками

• быстрая сортировка

пирамидальная

слиянием

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
вставками	15	правильность неизвестна
быстрая сортировка	33	правильность неизвестна

Вопрос 105

Какой вычислительной сложностью характеризуется алгоритм "грубой силы" (brute force attack) прямого поиска по образцу?

O(n^2)

O(n log m)

O(n*m)

O(n+m)

Вариант ответа	Выбрали этот вариант	Правильность
O(n*m)	50	правильность неизвестна
O(n log m)	1	правильность неизвестна

Вопрос 106

Как называется определённая последовательность вычислительных шагов, преобразующих входные величины в выходные?

	N 4		-	
.)	MHOWECTRO	ЛОПУСТИМЫХ	операции	над данными
	IVIIIO/KCCIDO	ACITY CIVINIDIA	операции	пад даппыни

- Множество данных
- Алгоритм
- Структура данных

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность	
Алгоритм	32	правильность неизвестна	

Вопрос 107

Для выполнения какой операции в линейном двусвязном списке необходимо выполнить два "подготовительных" оператора:

q->prev->next=q->next;

q->next->prev=q->prev;

•••

(q - указатель на некрайний узел списка).

- Обмен значениями двух узлов по указателю q
- О Вставка нового узла после элемента, ссылку на который хранит указатель q
- Вставка нового узла по указателю q
- Удаление узла по указателю q

Вариант ответа	Выбрали этот вариант	Правильность
Удаление узла по указателю q	48	верный ответ
Обмен значениями двух узлов по указателю q	1	правильность неизвестна

Вопрос 108

Время выполнения рекурсивной функции f(n) в наихудшем случае определяется рекуррентным соотношением

Что является решением этого соотношения?

- O(n)
- O(log2n)
- O(2n)
- O(n log2n)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
O(n log2n)	12	правильность неизвестна
O(n)	45	правильность неизвестна
O(log2n)	2	правильность неизвестна

Вопрос 109

Что делает следующая функция? int trinity (int a, int b, int c) {

if ((a >= b) && (c < b)) return b; else if (a >= b) return trinity (a,c,b);

else return trinity (b,a,c);
}

вычисляет среднее значение

вычисляет максимальное значение

вычисляет минимальное значение

пичего из перечисленного

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
ничего из перечисленного	14	правильность неизвестна
вычисляет среднее значение	48	правильность неизвестна
вычисляет максимальное значение	1	правильность неизвестна

Вопрос 110

Система байтового кодирования символов ASCII кодирует символы входной последовательности кодами:

🔾 фиксированной длины в один байт

🔾 переменной длины свыше одного байта

🔾 переменной длины до одного байта

🔾 хеш-кодами

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
фиксированной длины в один байт	36	правильность неизвестна

Вопрос 111

Какое из перечисленных АВЛ-деревьев требует балансировки?

 \bigcirc 1

04

32

Вариант ответа	Выбрали этот вариант	Правильность
3	148	верный ответ
4	2	правильность неизвестна
1	2	правильность неизвестна

Вопрос 112

Префиксный код в теории кодирования - это:

🔾 кодовое слово переменной длины, с которого не может начинаться другое кодовое слово того
же кода
O KO TODOG CTODO Ó MYCHDODOLINOŬ TENNILI C KOTODOFO MONOT HOLINIOTI CE EDVEGO KOTODOG CTODO

🔍 кодовое слово фиксированной длины, с которого может начинаться другое кодовое слово

О кодовое слово переменной длины, с которого может начинаться другое кодовое слово

О кодовое слово фиксированной длины, с которого не может начинаться другое кодовое слово

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
кодовое слово переменной длины, с которого не может начинаться другое кодовое слово того же кода	32	правильность неизвестна
кодовое слово фиксированной длины, с которого не может начинаться другое кодовое слово	2	правильность неизвестна
кодовое слово переменной длины, с которого может начинаться другое кодовое слово	1	правильность неизвестна
кодовое слово фиксированной длины, с которого может начинаться другое кодовое слово	1	правильность неизвестна

Вопрос 113

Какая структура данных относятся к категории линейных списков?

Массив

○ Бинарное дерево

Множество

Дек

Вариант ответа	Выбрали этот вариант	Правильность
Дек	103	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
Массив	16	верный ответ

Вопрос 114

Какой алгорить	и реализует	стратегию "	разделяй и вла	аствуй" ((divide and	conquer	approach)?
Rakon ani opini	n pearling en	ciparcifiio	pasacinin in bin	aciby Fi	(arriae arra	conque	approacri,.

- 🔾 алгоритм Бойера-Мура
- 🔾 алгоритм Крускала
- о алгоритм Дейкстры
- алгоритм быстрой сортировки Quick-sort

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
алгоритм быстрой сортировки Quick-sort	39	верный ответ

Вопрос 115

Остовное дерево - это:

○ Подграф, полученный путем удаления вершин, связанных со всеми остальными
 Дерево, полученное путем удаления вершин, связанных с более чем половиной всех вершин в
графе

О Подграф, полученный путем удаления максимального числа ребер, без нарушения связности

Подграф, полученный путем кратчайшего обхода всех вершин графа

Вариант ответа	Выбрали этот вариант	Правильность
Подграф, полученный путем удаления максимального числа ребер, без нарушения связности	31	правильность неизвестна
Дерево, полученное путем удаления вершин, связанных с более чем половиной всех вершин в графе	1	правильность неизвестна

Вопрос 116

Когда один алгоритм считается эффективнее другого:

Если его вычислительная сложность в наихудшем случае имеет более низкий порядок роста

🔾 Если его вычислительная сложность в наилучшем случае имеет более высокий порядок роста
--

- Если его вычислительная сложность в наилучшем случае имеет более низкий порядок роста
- □ Если его вычислительная сложность в наихудшем случае имеет более высокий порядок роста
 Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Если его вычислительная сложность в наихудшем случае имеет более низкий порядок роста	122	верный ответ
Если его вычислительная сложность в наихудшем случае имеет более высокий порядок роста	2	правильность неизвестна

Вопрос 117

Сколько указателей используется в структуре узла стека? (Введите только число)

Ответы:

- 1
- один

Вариант ответа	Выбрали этот вариант	Правильность
2	24	правильность неизвестна
3	2	правильность неизвестна
1	78	верный ответ

Вариант ответа	Выбрали этот вариант	Правильность
один	1	правильность неизвестна

Вопрос 118

Выберите все характеристики хеш-функции, используемой в алгоритме поиска Рабина-Карпа:

- полиномиальный хеш
- □ отсутствие коллизий
- модульная арифметика
- кольцевой ("скользящий", "летящий")

Статистика:

Вариант ответа	3 a	Против
полиномиальный хеш	171	24
отсутствие коллизий	7	188
модульная арифметика	153	42
кольцевой ("скользящий", "летящий")	168	27

Вопрос 119

Нелинейными называются структуры данных, в которых:

- 🔍 связи между элементами зависят от выполнения определенного условия
- 🔾 связи между элементами не зависят от выполнения какого-либо условия
- О связи между элементами не зависят от упорядоченности значений элементов
- 🔾 связи между элементами не зависят от линейной упорядоченности элементов

Вариант ответа	Выбрали этот вариант	Правильность
связи между элементами не зависят от линейной упорядоченности элементов	3	правильность неизвестна
связи между элементами зависят от выполнения определенного условия	22	правильность неизвестна

Вопрос 120

Что обеспечивает метод пробирования "двойное хеширование" при вставке элемента в хештаблицу, разрешающей коллизии по методу открытого адреса?

- Вычисление смещения, зависящее от значения ключа
- Длину первичного кластера
- Вычисление смещения, не зависящее от значения ключа
- Эффективное рехеширование

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Вычисление смещения, зависящее от значения ключа	42	верный ответ
Вычисление смещения, не зависящее от значения ключа	3	правильность неизвестна

Вопрос 121

Какой зависимостью описывается функция вычислительной сложности алгоритма интерполяционного поиска в худшем случае?

- \bigcirc f(n)= $\Theta(\log(\log(n))$
- \bigcirc f(n)= Θ (n)

- Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(\log(n))$	110	правильность неизвестна
$f(n) = \Theta(\log(\log(n))$	13	правильность неизвестна
$f(n) = \Theta(n)$	70	правильность неизвестна
$f(n) = \Theta(n \log(n))$	4	правильность неизвестна

Вопрос 122

В основе алгоритма Рабина-Карпа используется:

- Эвристика стоп-символов ("плохих" символов)
- Префикс-функция
- 🤍 Хеш-функция
- Эвристика "хороших" суффиксов

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Хеш-функция	232	верный ответ
Эвристика "хороших" суффиксов	1	правильность неизвестна
Эвристика стоп-символов ("плохих" символов)	1	правильность неизвестна

Вопрос 123

Каков максимальный размер кодового слова, полученного алгоритмом Шеннона-Фано, для текста, частота появления символов в котором определяется таблицей: a-11,и-8,пробел - 6, л-4, п-3, с-3, м-2, ы-2, н-1, ш-1, ч-1, к-1, у-1, т-1, ь-1?

	4
--	---

6

5

07

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
6	65	правильность неизвестна
4	3	правильность неизвестна
5	1	правильность неизвестна

Вопрос 124

Какой формулой определяется максимальное количество узлов в бинарном дереве высотой k (у корня высота 0)?

- 2^k 1
- $0^{2}(k-1) + 1$
- 0 2^(k+1) 1
- 2^k + 1

Вариант ответа	Выбрали этот вариант	Правильность
2^(k+1) - 1	161	верный ответ
2^k - 1	6	правильность неизвестна
2^(k-1) + 1	2	правильность неизвестна
2^k + 1	1	правильность неизвестна

Вопрос 125

١)	ть алгоритма	CONTUNORKU	метолом	ППелла	заключаетс	a B.
_	TD and opinina	COPINPODICI	WIC I OHOW	LL CALATO	Jaiono lacre	, D.

- Отдельной сортировке частей массива относительно опорного элемента
- Отдельной сортировке элементов, отстоящих друг от друга на расстоянии h,
 уменьшающемся на каждом проходе массива до значения 1
- Чередовании проходов по сортируемому массиву слева-направо и справа-налево
- Попарным сравнением элементов массива с целью выбора наименьшего Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Отдельной сортировке элементов, отстоящих друг от друга на расстоянии h, уменьшающемся на каждом проходе массива до значения 1	53	верный ответ
Отдельной сортировке частей массива относительно опорного элемента	1	правильность неизвестна

Вопрос 126

В АВЛ-дерево, содержащее ключи 8,10,11,14, был вставлен ключ 12. Потребовалась ли перестройка дерева и если да, то каким способом?

	0 0	D
ла	двойной	КI
дч,	двоинои	

- нет
- да, двойной LR
- 🔾 да, одинарный правый

Вариант ответа	Выбрали этот вариант	Правильность
да, двойной LR	56	правильность неизвестна
да, одинарный правый	1	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
да, двойной RL	10	правильность неизвестна

Вопрос 127

Метод сортировки считается устойчивым, о	если:

- относительное расположение элементов с равными ключами не изменяется
- 🔘 начальная отсортированность массива не важна
- О относительное расположение элементов с равными ключами всегда изменяется
- время доступа к значению константное

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
относительное расположение элементов с равными ключами не изменяется	47	правильность неизвестна
относительное расположение элементов с равными ключами всегда изменяется	1	правильность неизвестна

Вопрос 128

В результате применения алгоритма RLE был получен сжатый текст 9A-4BCAB7C. Какой текст был сжат этим алгоритмом?

- AAAAAAAAABCABBCABBCABCCCCCCC
- AAAAAAAAABACBCCCCCC
- (9)A-BCAB(7)C
- AAAAAAAABCABCCCCCC

Вариант ответа	Выбрали этот вариант	Правильность
AAAAAAAABCABCCCCCC	51	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
AAAAAAAABCABBCABBCABCCCCCCC	5	правильность неизвестна

Вопрос 129

Для структуры	данных	стек	справедливо:
---------------	--------	------	--------------

- О Линейный список с двумя вершинами
- Линейный список с одной вершиной
- О Доступ возможен к произвольному элементу
- Удаление (выборка) возможно произвольного элемента

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Линейный список с одной вершиной	106	верный ответ
Линейный список с двумя вершинами	1	правильность неизвестна

Вопрос 130

Какая структура данных используется для хранения элементов данных в хеш-таблице, при реализации разрешения коллизий по методу цепочек (цепного хеширования)?

Двоичное	дерево
----------------------------	--------

- 🔾 Дек
- Очередь
- Однонаправленный список

Вариант ответа	Выбрали этот вариант	Правильность
Однонаправленный список	42	верный ответ

Вопрос 131

Для	структуры	данных дек	справедливо:
-----	-----------	------------	--------------

- Удаление элемента возможно из произвольной позиции
- О Линейный список с произвольным количеством вершин
- Вставка нового элемента возможна только в начало списка
- Вставка нового элемента возможна в начало или в конец списка

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Вставка нового элемента возможна в начало или в конец списка	100	верный ответ
Линейный список с произвольным количеством вершин	1	правильность неизвестна
Вставка нового элемента возможна только в начало списка	3	правильность неизвестна

Вопрос 132

Бинарное дерево - это:

- 🔾 дерево, элементы которого являются двоичными числами
- 🖲 дерево, у которого каждый узел может содержать до двух дочерних узлов
- 🔾 дерево, у которого каждый узел содержит до двух различных значений
- 🔾 дерево, у которого каждый узел должен содержать два дочерних узла

Вариант ответа	Выбрали этот вариант	Правильность
дерево, у которого каждый узел может содержать до двух дочерних узлов	177	верный ответ
дерево, элементы которого являются двоичными числами	1	правильность неизвестна

Вопрос 133

Какие нотации можно использовать для асимптотической оценки сложности алгоритма в лучшем случае?

- **☑** нотация Ω (омега-большое)
- нотация О (о-большое)
- ☑ нотация Θ (тета)
- потация о (о-малое)

Статистика:

Вариант ответа	3a	Против
нотация Ω (омега-большое)	117	14
нотация О (о-большое)	113	18
нотация Ө (тета)	111	20
нотация о (о-малое)	5	126

Вопрос 134

Зачем нужен заглавный элемент в двусвязном кольцевом списке?

- О Для связи последнего и первого элемента
- Чтобы иметь указатель на текущий элемент
- 🔾 Для удаления пустых указателей
- Чтобы указать на первый элемент

Вариант ответа	Выбрали этот вариант	Правильность
Для удаления пустых указателей	1	правильность неизвестна
Чтобы указать на первый элемент	16	правильность неизвестна
Для связи последнего и первого элемента	73	правильность неизвестна

Вопрос 135

Когда достигается максимальная эффективность алгоритма Бойера-Мура?

● Если образец длинный, а мощность алфавита достаточно велика

- Если образец короткий, а мощность алфавита достаточно велика
- Если образец длинный, а мощность алфавита достаточно низка
- 🗆 Если образец короткий, а мощность алфавита достаточно низка

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Если образец длинный, а мощность алфавита достаточно велика	192	верный ответ
Если образец длинный, а мощность алфавита достаточно низка	8	правильность неизвестна
Если образец короткий, а мощность алфавита достаточно низка	3	правильность неизвестна
Если образец короткий, а мощность алфавита достаточно велика	10	правильность неизвестна

Вопрос 136

Какой зависимостью описывается функция вычислительной сложности алгоритма сортировки методом простого обмена (с условием Айверсона) в наилучшем случае:

- \bigcirc f(n)=O(n^2)
- f(n)=O(n)
- \bigcirc f(n)=O(n log(n))

Вариант ответа	Выбрали этот вариант	Правильность
f(n)=O(n)	42	верный ответ
f(n)=O(n^2)	1	правильность неизвестна

Вопрос 137

K	Н РЛОСТАТИЗМ	рекурсивного	метола	MOXHO	OTHECTIA:
	педостаткам	DEKADCARHOLO	метода	MUXHU	отнести.

			_					
\checkmark	возможность переп	DNHAHRA	CTEKORON	памати	THAT	nammence	THOLL	ecca
	DOSINO/KITOCID HCPCI		CICKODON	IIGIVI/II FI	IIPUI	Paivilviiioio	проц	CCCU

- меньшая точность результата вычислений
- 🔲 расход времени на выделение и очистку стекового кадра в памяти
- возможность переполнения динамически распределяемой памяти программного процесса

Статистика:

Вариант ответа	3a	Против
возможность переполнения стековой памяти программного процесса	54	2
меньшая точность результата вычислений	0	55
расход времени на выделение и очистку стекового кадра в памяти	8	47
возможность переполнения динамически распределяемой памяти программного процесса	49	7

Вопрос 138

Какую операцию можно использовать в качестве хеш-функции для целочисленных ключей?

- Операцию взятия остатка от деления размерности массива на ключ
- Операцию взятия остатка от деления ключа на размерность массива
- Операцию деления ключа на размерность массива
- Операцию умножения ключа на размерность массива

Вариант ответа	Выбрали этот вариант	Правильность
Операцию взятия остатка от деления ключа на размерность массива	37	правильность неизвестна
Операцию деления ключа на размерность массива	1	правильность неизвестна

Вопрос 139

Какая вычислительная сложность описывает реализацию алгоритма Дейкстры для графов, представленных в виде списков смежности (n и m обозначают соответственно число вершин и ребер исходного графа):

- \bigcirc O(m + n)
- O(m log n)
- O (m*n)
- O (n^2)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
O (n^2)	17	правильность неизвестна
O(m log n)	3	правильность неизвестна

Вопрос 140

Имеется указатель q на узел в середине линейного односвязного списка со следующей структурой узла:

```
struct Tnode {
Tdata data;
```

```
Tnode* next;
```

Требуется вставить новый узел (узел содержит данные), ссылку на который хранит указатель qq, в позицию, в которой находится узел q. Какую последовательность операторов необходимо выполнить, чтобы корректно выполнилась данная операция вставки?

<pre>qq->next=q->next; q->next=qq; swap(qq->data, q->data);</pre>
<pre>q->next=qq; qq->next=q; swap(qq->data,q->data);</pre>
○ (*qq)=(*q);
○ qq=q;
Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
qq->next=q->next; q->next=qq; swap(qq->data, q->data);	77	верный ответ
q->next=qq; qq->next=q; swap(qq->data,q- >data);	1	правильность неизвестна
(*qq)=(*q);	1	правильность неизвестна

Вопрос 141

Какие поля должны содержать записи хеш-таблицы при использовании метода цепочек (цепного хеширования)?

О Адрес следующего элемента списка
Ключ элемента
○ Указатель на начало списка элементов с одним и тем же значением хеш-функции
○ Значение хеш-функции

Вариант ответа	Выбрали этот вариант	Правильность
Указатель на начало списка элементов с одним и тем же значением хеш-функции	38	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
Адрес следующего элемента списка	2	правильность неизвестна

Вопрос 142

Временная (вычислительная) сложность алгоритма определяется объёмом входа n. Этот параметр в частном случае может определяться:

_				
Размером	занимаемой	входными	данными	памяти

- О Количеством основных операций
- О Количеством определённых подпрограмм
- Размером обрабатываемого массива или файла

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Размером обрабатываемого массива или файла	125	верный ответ
Количеством основных операций	7	правильность неизвестна

Вопрос 143

Как называют множество элементов данных и внутренних связей между ними:

	Алг	0	р١	1T	V
--	-----	---	----	----	---

- О Структура данных
- Программа
- Класс

Вариант ответа	Выбрали этот вариант	Правильность
Структура данных	29	правильность неизвестна

Вопрос 144

Имеется бинарное дерево поиска, содержащее целые числа от 1 до 7. Каким будет результат вывода при обратном обходе дерева (postoder):

- 0 1, 2, 3, 4, 5, 6, 7
- 7, 6, 5, 4, 3, 2, 1
- 0 4, 1, 2, 3, 5, 6, 7
- 0 4, 1, 5, 2, 6, 3, 7

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
7, 6, 5, 4, 3, 2, 1	81	правильность неизвестна
1, 2, 3, 4, 5, 6, 7	2	правильность неизвестна
4, 1, 2, 3, 5, 6, 7	1	правильность неизвестна
4, 1, 5, 2, 6, 3, 7	2	правильность неизвестна

Вопрос 145

Какой зависимостью описывается функция вычислительной сложности алгоритма Дейкстры в графе, построенном на списке смежных вершин, если V – количество вершин в графе, а E – количество ребер:

- f(n)=O(V^2)
- \bigcirc f(n)=O(V)
- \bigcirc f(n)=O(E)
- \bigcirc f(n)=O(E*log(V))

Вариант ответа	Выбрали этот вариант	Правильность
f(n)=O(V^2)	23	правильность неизвестна

Вопрос 146

Алгоритм обхода графа - это:

- Алгоритм, устанавливающий движение от начальной вершины в определенном направлении (по определенному пути) до тех пор, пока не будет достигнут конец пути или заданная вершина
- Алгоритм, устанавливающий переход от одной его вершины к другой в поисках свойств связей этих вершин
- Алгоритм, указывающий несколько путей обработки одних и тех же входных данных, без какоголибо уточнения, какой именно вариант будет выбран
- Алгоритм, устанавливающий переход от одной его вершины к другой с целью нахождения кратчайшего пути

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Алгоритм, устанавливающий движение от начальной вершины в определенном направлении (по определенному пути) до тех пор, пока не будет достигнут конец пути или заданная вершина	16	правильность неизвестна
Алгоритм, устанавливающий переход от одной его вершины к другой в поисках свойств связей этих вершин	2	правильность неизвестна

Вопрос 147

Рекурсия имеет место, если решение задачи сводится к разделению её на меньшие подзадачи, выполняемые с помощью одного и того же алгоритма. Когда должен завершиться правильно организованный процесс разбиения задачи на подзадачи:

- О До заполнения стека
- ◎ Когда достигается простейшее возможное решение
- О Когда он будет остановлен пользователем
- О Когда завершится ввод исходных данных

Статистика:

1/24/25, 10:22 PM

Вариант ответа	Выбрали этот вариант	Правильность
Когда достигается простейшее возможное решение	54	правильность неизвестна

Вопрос 148

Высота (глубина) бинарного дерева поиска из N узлов в наилучшем случае определяется по формуле:

- \bigcirc h=N
- h=log2N
- h=log2(N+1)-1
- h=log2(N+1)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
h=log2(N+1)	124	верный ответ
h=log2(N+1)-1	24	верный ответ
h=log2N	3	правильность неизвестна

Вопрос 149

Алгоритмы сортировки выбором, обменом и вставкой называются простыми в смысле их:

- Вычислительной сложности
- интеллектуальной сложности

- 🔾 временной сложности
- ёмкостной сложности

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
интеллектуальной сложности	42	правильность неизвестна
ёмкостной сложности	7	правильность неизвестна
вычислительной сложности	3	правильность неизвестна
временной сложности	2	правильность неизвестна

Вопрос 150

Укажите асимптотическую сложность операции удаления элемента в позиции і из массива размером n:

- O(1)
- O(n^2)
- O(n)
- O(logn)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
O(n)	97	верный ответ
O(n^2)	3	правильность неизвестна
O(1)	1	правильность неизвестна

Вопрос 151

Какой из приведенных кодов является префиксным (коды отдельных кодовых слов перечислены через запятую)?

- 0, 100, 101, 110, 111
- **1, 10, 100, 1000**
- **1, 12, 31**
- 0, 10, 11, 100, 110

Вариант ответа	Выбрали этот вариант	Правильность
1, 12, 31	7	правильность неизвестна
1, 10, 100, 1000	5	правильность неизвестна
0, 100, 101, 110, 111	20	правильность неизвестна

Вопрос 152

Как определить, что функция реализует каскадную (множественную) рекурсию:

- Вызов функции по любой из всех возможных ветвей алгоритма встречается более одного раза
- О Функция вызывает последовательно несколько внешних функций
- О Функция вызывает параллельно несколько внешних функций
- Функция вызывает несколько внешних функций по любой из всех возможных ветвей алгоритма

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Функция вызывает несколько внешних функций по любой из всех возможных ветвей алгоритма	59	правильность неизвестна
Вызов функции по любой из всех возможных ветвей алгоритма встречается более одного раза	15	правильность неизвестна
Функция вызывает последовательно несколько внешних функций	1	правильность неизвестна
Функция вызывает параллельно несколько внешних функций	1	правильность неизвестна

Вопрос 153

Определите теоретическую вычислительную сложность (функцию роста времени) алгоритма: int count = 1;

```
while (count < n) {
    count = count * 2;
    /* Последовательность шагов программы с временной сложностью O (1) * /
}
```

- линейная
- логарифмическая
- квадратичная
- экспоненциальная

Вариант ответа	Выбрали этот вариант	Правильность
линейная	56	правильность неизвестна
логарифмическая	51	верный ответ
квадратичная	1	правильность неизвестна
экспоненциальная	1	правильность неизвестна

Вопрос 154

Какой код будет получен из входной строки символов 1111223444 при использовании алгоритма группового кодирования RLE (Run Length Encoding)?

- 0 41 22 13 34
- 000001011011111
- 0 1-4-2-2-3-1-4-3
- 041221334

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
41 22 13 34	78	правильность неизвестна
1-4-2-3-1-4-3	6	правильность неизвестна
41221334	1	правильность неизвестна

Вопрос 155

Какой зависимостью описывается функция вычислительной сложности алгоритма быстрой сортировки методом Шелла в наихудшем случае:

- \bigcirc f(n)=O(n)
- \bigcirc f(n)=O(n log(n))
- f(n)=O(n^2)
- \bigcirc f(n)=O(log(n))

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=O(n^2)$	54	верный ответ

Вопрос 156

Алгоритм Флойда-Уоршала - это:

○ Алгоритм поиска минимального остовного дерева во взвешенном неориентированном связном
графе
🔾 Алгоритм для нахождения кратчайших путей от одной из вершин графа до всех остальных
 Алгоритм поиска заданного пользователем количества путей между двумя вершинами во
взвешенном графе
 Алгоритм для нахождения кратчайших путей между всеми вершинами взвешенного
ориентированного графа

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Алгоритм для нахождения кратчайших путей между всеми вершинами взвешенного ориентированного графа	23	правильность неизвестна

Вопрос 157

Структура хранения, в которой элементы данных физически размещаются в последовательных ячейках памяти строго один за другим:

()	сетевая
	Сетевал

векторная

• иерархическая

списочная

Вариант ответа	Выбрали этот вариант	Правильность	
векторная	34	правильность неизвестна	
списочная	2	правильность неизвестна	

Вопрос 158

Имеется описание структуры узла линейного односвязного списка:
struct Tnode {
 Tdata data;

 XXXX next;
}
Какое определение должно быть у экземпляра этой структуры на месте XXXX?

 struct
 void
 *Tnode
 Tnode

Вариант ответа	Выбрали этот вариант	Правильность
*Tnode	98	правильность неизвестна
Tnode	4	правильность неизвестна

Вопрос 159

Статистика:

Имеется бинарное дерево поиска, содержащее целые числа. Просмотр дерева даёт следующий результат: 2, 4, 6, 8, 10, 12, 14. Какой способ обхода дерева при этом использовался:

Симметричный

В ширину

ОбратныйПрямой

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Симметричный	168	верный ответ
В ширину	4	правильность неизвестна
Прямой	3	правильность неизвестна

Вопрос 160

Какой зависимостью описывается функция вычислительной сложности алгоритма линейного (последовательного) поиска в худшем случае?

- \bigcirc f(n)= $\Theta(\log(n))$
- $f(n) = \Theta(n)$
- \bigcirc f(n)= Θ (n2)
- \bigcirc f(n)= Θ (n log(n))

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n) = \Theta(n2)$	56	правильность неизвестна
$f(n) = \Theta(\log(n))$	6	правильность неизвестна
$f(n) = \Theta(n \log(n))$	1	правильность неизвестна
$f(n) = \Theta(n)$	153	верный ответ

Вопрос 161

Имеется узел АВЛ-дерева, для которого |hl-hr|=0, где hl, hr высота левого и правого поддерева соответственно. В левое поддерево вставляется новый ключ, после этого:

	требуется	перестройка	дерева
_			

- требуется перестройка малым правым поворотом
- требуется перестройка малым левым поворотом
- не требуется перестройка дерева

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
требуется перестройка дерева	124	верный ответ
не требуется перестройка дерева	42	правильность неизвестна
требуется перестройка малым правым поворотом	6	правильность неизвестна
требуется перестройка малым левым поворотом	2	правильность неизвестна

Вопрос 162

Что означает утверждение, что алгоритм X асимптотически более эффективен, чем алгоритм Y?

- О Х будет лучшим выбором для любых входных данных, кроме очень больших
- О Х будет лучшим выбором для любых входных данных
- О Х будет лучшим выбором для любых входных данных до некоторого граничного значения
- Х будет лучшим выбором для любых входных данных, начиная с некоторого граничного значения

Вариант ответа	Выбрали этот вариант	Правильность
Х будет лучшим выбором для любых входных данных	4	правильность неизвестна
X будет лучшим выбором для любых входных данных до некоторого граничного значения	3	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
X будет лучшим выбором для любых входных данных, начиная с некоторого граничного значения	111	верный ответ
X будет лучшим выбором для любых входных данных, кроме очень больших	2	правильность неизвестна

Вопрос 163

Какое количество узлов в полном бинарном дереве высотой 4?

48

32

31

64

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность	
32	7	правильность неизвестна	
31	141	верный ответ	

Вопрос 164

Какой зависимостью описывается функция вычислительной сложности алгоритма прямого поиска в тексте по образцу в худшем случае?

 \bigcirc f(n, m)= $\Theta(\log(n+m))$

 \bigcirc f(n)= Θ (n)

 \bigcirc f(n)= Θ (n2)

f(n, m)=Θ(log(n*m))

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=\Theta(n2)$	124	правильность неизвестна
$f(n, m) = \Theta(log(n*m))$	58	верный ответ
$f(n, m) = \Theta(log(n+m))$	7	правильность неизвестна
$f(n) = \Theta(n)$	8	правильность неизвестна

Вопрос 165

Укажите асимптотическую сложность операции удаления элемента, на который имеется указатель (например, ptr), из двунаправленного списка размером n:

- O(n)
- **O**(1)
- O(n^2)
- O(logn)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
O(logn)	28	правильность неизвестна
O(1)	87	верный ответ
O(n)	4	правильность неизвестна

Вопрос 166

Какое из условий проверяется при определении сбалансированности красно-черного дерева?

- Высота левого и правого поддерева равны
- О Количество красных или черных узлов в левом и правом поддеревьях равны
- 🖲 Любой путь от корня дерева к листу содержит одно и то же число черных узлов
- Любой путь от корня дерева к листу содержит одно и то же число красных узлов Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Количество красных или черных узлов в левом и правом поддеревьях равны	63	правильность неизвестна
Любой путь от корня дерева к листу содержит одно и то же число черных узлов	68	верный ответ
Любой путь от корня дерева к листу содержит одно и то же число красных узлов	2	правильность неизвестна

Вопрос 167

Имеется некоторая структура данных, в которую заносятся упорядоченные по возрастанию символы. Считывание данных из этой структуры даёт результат: F, E, D, C, B, A. Чем является эта структура данных?

()	(7	$\Delta \nu$
	Ų.	CV

- Бинарное дерево поиска
- О Связный список
- Очередь

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Стек	48	правильность неизвестна
Очередь	2	правильность неизвестна

Вопрос 168

Имеется двоичное дерево поиска, содержащее целые числа. Обратный обход дерева даёт следующий результат: 10, 30, 20, 50, 70, 60, 40. Какой узел является корнем дерева?

0 10

40

2030

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
40	78	верный ответ
10	2	правильность неизвестна
30	1	правильность неизвестна

Вопрос 169

```
Какие из приведённых строк кода int fib(int n) { if (n < 2) return 1; else { ... } }
```

необходимо записать после else в рекурсивной функции вычисления n-ного числа Фибоначчи?

```
return (n - 1) + (n - 2)
return fib ((n - 1) + (n - 2))
fib (n - 1) + fib (n - 2)
return fib (n - 1) + fib (n - 2)
```

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
return fib (n - 1) + fib (n - 2)	52	правильность неизвестна

Вопрос 170

Прямой доступ к элементу данных в памяти делает возможным:

- 🔾 адрес элемента в ОЗУ
- любая списочная структура

- порядковый номер элемента в структуре
- идентификатор элемента в программе

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
адрес элемента в ОЗУ	28	правильность неизвестна

Вопрос 171

Какой зависимостью описывается функция вычислительной сложности алгоритма сортировки методом простого выбора в наилучшем случае:

- \bigcirc f(n)=O(n)
- \bigcirc f(n)=O(log(n))
- \bigcirc f(n)=O(n log(n))

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=O(n^2)$	44	верный ответ

Вопрос 172

Что необходимо делать с большим объемом информации, связанной с каждым ключом:

- Увеличить хэш-таблицу
- 🔾 Хранить ее в хеш-таблице
- Не хранить ее в хеш-таблице
- Чаще рехешировать

Вариант ответа	Выбрали этот вариант	Правильность
Не хранить ее в хеш-таблице	26	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
Хранить ее в хеш-таблице	1	правильность неизвестна
Увеличить хэш-таблицу	2	правильность неизвестна

Вопрос 173

```
Дан рекурсивный алгоритм:
int F(int n)
{
   if (n > 2)
     return F(n-1)+F(n-2)+F(n-3);
   else return n;
}
Найдите значение F(5). (В поле ответа - только число)
```

Правильного ответа нет

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
11	62	правильность неизвестна

Вопрос 174

Какой зависимостью описывается функция вычислительной сложности алгоритма Дейкстры в графе, построенном на матрице смежности, если V – количество вершин в графе, а E –количество ребер:

```
    f(n)=O(E)
    f(n)=O(log(E))
    f(n)=O(V^2)
    f(n)=O(V)
    Статистика:
```

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=O(V^2)$	17	правильность неизвестна
f(n) = O(log(E))	1	правильность неизвестна

Вопрос 175

Специфичным	лля обхола	графа.	в отличие	от обхода	лерева.	является:
специфи ппыш	дли ослода	ι ραψα,	D CITIVI TVIC	от облода	дорова,	ADDITIC I CAL

	1						_	
) R	rname	всегла	$T \cap J \cap K \cap$	ОЛИН	Manillinv	т ло	любого	ソス カス
-	ιραψε	осст да	TOTIDICO	ОДИПП	маршру	. 40	71100010	y Jaia

- 🤍 у дерева есть корень
- 🔾 никакой специфики нет, т.к. дерево частный случай графа
- 🔾 в графе могут быть циклы

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
никакой специфики нет, т.к. дерево - частный случай графа	4	правильность неизвестна
в графе могут быть циклы	15	правильность неизвестна

Вопрос 176

Структура хранения данных, в которой элементы явно хранят связи с соседними элементами структуры:

- списочная
- реляционная
- векторная
- массив

Вариант ответа	Выбрали этот вариант	Правильность
списочная	45	правильность неизвестна

Вопрос 177

$K \cap K \cap K$		LIABACTATAL	VALUE TOP	\
Nakub	ілавный	недостаток	хеш-тас	י בוועות (
		недостаток		

- В отказе на повторное хеширование
- Фиксированное число элементов, располагающихся в таблице
- В трудоёмкой функции хеширования
- О Фиксированный размер, при неизвестном окончательном числе элементов

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Фиксированный размер, при неизвестном окончательном числе элементов	54	правильность неизвестна
Фиксированное число элементов, располагающихся в таблице	2	правильность неизвестна

Вопрос 178

Свойство алгоритма, обеспечивающее возможность его использования для решения множества однотипных задач (применимость к различным наборам входных данных), называется:

- Дискретность
- Результативность
- Массовость
- Завершаемость

Вариант ответа	Выбрали этот вариант	Правильность
Дискретность	1	правильность неизвестна

Вариант ответа	Выбрали этот вариант	Правильность
Массовость	34	верный ответ

Вопрос 179

Какой из методов поиска обычно используется при поиске кратчайшего пути между любыми двумя вершин во взвешенном неориентированном графе?

	Поиск	методом	В	ширину
--	-------	---------	---	--------

О Бинарный поиск

○ Поиск методом в глубину

О Линейный поиск

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Поиск методом в ширину	30	правильность неизвестна

Вопрос 180

Перед выполнением какой операции в линейном двусвязном списке необходимо выполнить два "подготовительных" оператора:

q->prev->next=q->next;

q->next->prev=q->prev;

(q - указатель на некрайний узел списка).

Удаление узла по указателю q

- 🔾 Вставка нового узла по указателю q
- Обмен значениями двух узлов по указателю q
- 🔾 Вставка нового узла после элемента, ссылку на который хранит указатель q

Вариант ответа	Выбрали этот вариант	Правильность
Вставка нового узла по указателю q	9	правильность неизвестна
Удаление узла по указателю q	43	верный ответ

Вопрос 181

Что такое инвариант цикла:

- Логическое выражение, истинное после каждого прохода тела цикла и перед началом выполнения цикла, зависящее констант, изменяющихся в теле цикла
- Логическое выражение, истинное перед началом цикла, после каждого прохода тела цикла и в конце выполнения цикла, зависящее от переменных, изменяющихся в теле цикла
- Логическое выражение, истинное после первого прохода тела цикла и в конце выполнения цикла, зависящее от переменных, изменяющихся в теле цикла
- Логическое выражение, истинное во время работы цикла, зависящее от переменных, изменяющихся в теле цикла

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Логическое выражение, истинное перед началом цикла, после каждого прохода тела цикла и в конце выполнения цикла, зависящее от переменных, изменяющихся в теле цикла	30	верный ответ
Логическое выражение, истинное после каждого прохода тела цикла и перед началом выполнения цикла, зависящее констант, изменяющихся в теле цикла	1	правильность неизвестна

Вопрос 182

Имеется некоторая линейная структура данных, в которую заносятся упорядоченные по возрастанию символы. Считывание данных из этой структуры даёт результат: F, E, D, C, B, A. Чем может быть эта структура данных?

✓	Дек

■ Бинарное дерево поиска

□ Очередь

☑ Стек

Статистика:

Вариант ответа	3 a	Против
Дек	47	5
Бинарное дерево поиска	2	50
Очередь	0	52
Стек	52	0

Вопрос 183

Количество ребер в остовном дереве (п - количество вершин графа) равно:

 \bigcirc n+1

n-1

 \bigcirc n

0 n-2

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
n-1	18	правильность неизвестна

Вопрос 184

Какая идея положена в основу построения алгоритма методом "жадного алгоритма"

- На каждом этапе осуществляется выбор решения, которое может не быть оптимальным в данный момент, но в результате решение станет оптимальным
- Осуществляется разбиение задачи на перекрывающиеся подзадачи

Осуществляется разбиение задачи на неперекрывающиеся подзадачи
○ На каждом этапе осуществляется выбор решения, которое кажется оптимальным в данный
момент

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
На каждом этапе осуществляется выбор решения, которое кажется оптимальным в данный момент	35	правильность неизвестна
На каждом этапе осуществляется выбор решения, которое может не быть оптимальным в данный момент, но в результате решение станет оптимальным	1	правильность неизвестна

Вопрос 185

Чтобы алгоритм Дейкстры сформировал помимо длины кратчайшего пути от вершины а к вершине b и сам путь в графе, предусматривают запись вершин в линейную структуру. В какой последовательности расположатся вершины пути в структуре?

- В любом порядке
- Упорядоченно по возрастанию значений вершин
- Последовательно от вершины b до а
- Последовательно от вершины а до b

Вариант ответа	Выбрали этот вариант	Правильность
Упорядоченно по возрастанию значений вершин	1	правильность неизвестна
Последовательно от вершины а до b	3	правильность неизвестна
Последовательно от вершины b до а	17	верный ответ

Вопрос 186

Маршрутом в графе называется:

- 🗆 последовательность рёбер графа
- последовательность вершин графа, в которой каждая вершина соединена с предыдущей ребром и все ребра различны
- 🔾 последовательность вершин графа, в которой каждая вершина соединена с предыдущей ребром
- 🔾 последовательность вершин графа, в которой все вершины различны

Вариант ответа	Выбрали этот вариант	Правильность
последовательность вершин графа, в которой каждая вершина соединена с предыдущей ребром и все ребра различны	20	правильность неизвестна
последовательность вершин графа, в которой каждая вершина соединена с предыдущей ребром	2	правильность неизвестна

Вопрос 187

Что хранит матрица смежности графа?

● Список ребер и их направление

- О Длину пути между вершинами графа
- Только направления ребер
- О Список вершин

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Список ребер и их направление	22	правильность неизвестна
Длину пути между вершинами графа	1	правильность неизвестна
Только направления ребер	1	правильность неизвестна

Вопрос 188

Как называется алгоритм для нахождения кратчайших путей между всеми вершинами взвешенного ориентированного графа?

- О Алгоритм Дейкстры
- 🗆 Алгоритм Флойда-Уоршала
- О Алгоритм Прима
- О Алгоритм Крускала

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Алгоритм Флойда-Уоршала	17	правильность неизвестна
Алгоритм Дейкстры	1	правильность неизвестна

Вопрос 189

Какой зависимостью описывается функция вычислительной сложности алгоритма быстрой сортировки методом Хоара (quicksort) в наихудшем случае:

		_		
1	-/)=O(′1 ~ ~	/ \ \
. /	(1)	コーしょ	1()(1	(\mathbf{n})
_		,		(' ' ' / /

 \bigcirc f(n)=O(n log(n))

 \bigcirc f(n)=O(n^3)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=O(n^2)$	33	правильность неизвестна
$f(n)=O(n \log(n))$	3	правильность неизвестна
$f(n) = O(\log(n))$	1	правильность неизвестна

Вопрос 190

Как определить есть ли в неориентированном связном графе Эйлеров цикл?

- 🔾 в графе все вершины имеют нечетную степень
- 🔾 в графе все вершины имеют четную степень
- о в графе только две вершины, которые имеют четную степень
- 🔾 в графе все вершины, которые имеют нечетную степень

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
в графе все вершины имеют четную степень	24	правильность неизвестна

Вопрос 191

Какая вычислительная сложность характерна для алгоритмов со стратегией "разделяй и властвуй" (divide and conquer approach)?

 $[\]bigcirc$ f(n)=O(n^2)

O(n logn)
O(1)
O(n)
O(n^2)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
O(n logn)	31	правильность неизвестна

Вопрос 192

Линейными называются структуры данных, в которых:

	СВЯЗИ	между	элементами	не зависят	от выполнения какого-либо условия
	СВЯЗИ	между	элементами	зависят от	упорядоченности значений элементов
	СВЯЗИ	между	элементами	не зависят	от линейной упорядоченности элементо
	СВЯЗИ	между	элементами	зависят от	выполнения какого-либо условия
C	гатисти	іка:			

Вариант ответа	Выбрали этот вариант	Правильность
связи между элементами зависят от упорядоченности значений элементов	18	правильность неизвестна
связи между элементами не зависят от выполнения какого-либо условия	3	правильность неизвестна

Вопрос 193

Какой зависимостью описывается функция вычислительной сложности алгоритма сортировки методом простой вставки в наилучшем случае:

 \bigcirc f(n)=O(n log(n))

 \bigcirc f(n)=O(n^2)

 \bigcirc f(n)=O(n)

 \bigcirc f(n)=O(log(n))

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
f(n) = O(n)	35	правильность неизвестна

Вопрос 194

Какой зависимостью описывается функция вычислительной сложности алгоритма поиска в ширину в неориентированном графе, построенном на списке смежных вершин, если V – количество вершин в графе, а E –количество ребер:

- \bigcirc f(n)=O(V2)
- \bigcirc f(n)=O(V log(E))
- \bigcirc f(n)=O(V)
- \bigcirc f(n)=O(V+E)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
f(n) = O(V + E)	17	правильность неизвестна

Вопрос 195

Для динамической структуры данных (переменной) справедливо утверждение:

- создается на этапе выполнения программы и размер может быть изменен на этапе выполнения
 создается на этапе выполнения программы и размер не может быть изменен на этапе
 выполнения
- создается на этапе компиляции кода и размер не может быть изменен во время выполнения программы
- создается на этапе компиляции кода и размер может быть изменен во время выполнения программы

Вариант ответа	Выбрали этот вариант	Правильность
создается на этапе выполнения программы и размер может быть изменен на этапе выполнения	29	правильность неизвестна
создается на этапе компиляции кода и размер может быть изменен во время выполнения программы	1	правильность неизвестна

Вопрос 196

Как называется алгоритм для нахождения кратчайших путей от одной из вершин графа до всех остальных?

- Алгоритм Дейкстры
- О Алгоритм Йена
- О Алгоритм Крускала
- О Алгоритм Флойда-Уоршала

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
Алгоритм Дейкстры	20	верный ответ
Алгоритм Флойда-Уоршала	1	правильность неизвестна

Вопрос 197

Какое из определений соответствует структуре данных граф?

- Нелинейная, статическая, упорядоченная структура данных
- Нелинейная, многосвязная, динамическая структура данных
- О Линейная, динамическая структура данных
- О Иерархическая, динамическая структура данных

Вариант ответа	Выбрали этот вариант	Правильность
Нелинейная, многосвязная, динамическая структура данных	19	правильность неизвестна

Вопрос 198

Какой зависимостью описывается функция вычислительной сложности алгоритма Флойда-Уоршала в графе, построенном на матрице смежности, если V – количество вершин в графе, а E –количество ребер:

- \bigcirc f(n)=O(E)
- \bigcirc f(n)=O(log(E))
- \bigcirc f(n)=O(V)

Статистика:

Вариант ответа	Выбрали этот вариант	Правильность
$f(n)=O(V^3)$	30	верный ответ

Вопрос 199

Структура хранения, обеспечивающая прямой доступ к каждому элементу данных, т.е. время доступа к значению O(1):

- сетевая
- векторная
- списочная
- иерархическая

Вариант ответа	Выбрали этот вариант	Правильность
векторная	20	правильность неизвестна

Вопрос 200

Какая пространственная сложность описывает матрицу смежности графа как функцию от числа n вершин и числа m ребер:

0	'n	^2	

○ O(n+m)

O(n)

O(n*m)

Вариант ответа	Выбрали этот вариант	Правильность
O(n^2)	24	правильность неизвестна