Model-Free Reinforcement Learning Learning Optimal Value Functions

Matthia Sabatelli

November 17, 2021

Today's Agenda

1 Model-Free Reinforcement Learning

2 Monte Carlo Methods

3 Temporal Difference Learning

Recap

Key Concepts

So far we have seen:

- How to estimate an optimal value function and discover an optimal policy π^*
- We did this under the assumption that the environment $\mathcal{M} = \langle S, \mathcal{A}, \mathcal{P}, r \rangle$ was known

Plot Twist!

We will now consider situations where no complete knowledge is available:

- Set of possible states S
- Set of possible actions \mathcal{A}
- Transition Function $\mathcal{P}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$ X
- Reward Function $\Re: S \times \mathcal{A} \times S \to \mathbb{R}$ X

When parts of of the MDP \mathfrak{M} are unknown we do not deal with Dynamic Programming methods anymore but with Reinforcement Learning algorithms!

- We need to overcome the lack of information of \mathfrak{M}
- We can do this through experience
- Gathering experience means sampling states s, actions a and rewards r from the environment
- Recall the concept of trajectory τ $\langle s_t, a_t, r_t, s_{t+1} \rangle$ seen in Lecture 1!

What does it mean in practice?

- We do not know the consequences of our actions
- We do not know the dynamics of the environment we are interacting with
- We are no longer computing value functions but rather learning them

The transition function $\mathcal P$ and the reward function \Re are usually called the model of the environment

 $\mathcal P$ and \Re can be learned \Rightarrow model-based Reinforcement Learning

Why is model-free Reinforcement Learning so interesting?

- We learn without any prior knowledge of the environment
- Trajectories, and therefore experience, is sufficient for learning
- We "only" need a value function Q(s, a), which is arguably easier to learn than the model

The effectiveness of model-free Reinforcement Learning algorithms highly depends from how much experience the agent is able to gather!

Monte Carlo methods:

- Can be used for learning $V^{\pi}(s)$ as well as $Q^{\pi}(s, a)$
- Although in this lecture we only focus on learning $V^{\pi}(s)$
- The key idea is to learn through sampling returns

Assumption!

We assume that we are always dealing with episodic tasks i.e. episodes eventually terminate.

$$\langle (s_t, a_t, r_t, s_{t+1}) \rangle, t = 0, ..., T - 1$$

Let us consider the notion of expected discounted return introduced in Lecture 1:

$$G_{t} = r_{t} + \gamma r_{t+1}, \gamma^{2} r_{t+2} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}.$$

- The goal is to learn the state-value function of a given policy $V^{\pi}(s)$: Monte Carlo Prediction
- We do this with respect to the G_t that is obtained by following π

Learning $V^{\pi}(s)$ involves the following steps:

- Before learning, each state has its own value $V(s_t)$
- We follow policy π until an episode terminates
- We compute the discounted return G_t that was obtained by π

Monte Carlo (MC) Update Rule

We change the value of each state $V(s_t)$ based on G_t

$$V(s_t) := V(s_t) + \alpha \left[G_t - V(s_t) \right].$$

where $\alpha \in [0, 1]$ is the learning rate parameter.

Let us consider the following MDP:

- We have policy $\pi: s0 \rightarrow s1 \rightarrow s0 \rightarrow s2$
- π results in the sequence of rewards -1, +2, +3
- The starting value of each state is 0, $\gamma = 0.99$ and $\alpha = 0.5$

We know that G_t for starting in s0 is

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$
$$= -1 + \gamma^2 + \gamma^2 \approx 3.92$$

Therefore

$$V(s_t) := V(s_t) + \alpha [G_t - V(s_t)]$$

$$V(0) := V(0) + \alpha [3.92 - V(0)] \approx 1.96$$

More about Monte Carlo Methods:

- We have only considered the prediction case of learning $V^{\pi}(s)$
- Monte Carlo control algorithms learn an approximation of π* through Q^π(s, a)
- They follow the ideas of Dynamic Programming seen in the previous lecture
- The key idea of sampling real returns remains!

Pros & Cons of Monte Carlo Methods:

- Yield unbiased updates thanks to $G_t \checkmark$
- Scale well to function approximators ✓
- Learning can be very slow as one has to wait until the very end of an episode
- There can be large variance in the value updates X

"The simplest and most elegant idea idea of Reinforcement Learning ..."

With TD-Learning methods we we do not have to wait until the end of an episode before updating a value estimate

- We only need to wait until the next step
- At t + 1 we immediately create a target for learning called the TD-target
- We do this by using the observed reward r_t and the estimate $V(s_{t+1})$

Let us again consider the problem of estimating $V^{\pi}(s)$:

TD Prediction

We change the value of each state $V(s_t)$ with respect to t+1 only:

$$V(s_t) := V(s_t) + \alpha [r_t + \gamma V(s_{t+1}) - V(s_t)].$$

- It is clear that we only learn by looking ahead in the future one single step
- This is called TD(0) or one-step TD

The key idea of TD-Learning it to learn through bootsrapping:

- We update the value of a state with respect to the value of its successor state only
- Ideally we would like to use $V^{\pi}(s_{t+1})$ for learning but it is unfortunately unknown

$$V(s_t) := V(s_t) + \alpha [r_t + \gamma V^{\pi}(s_{t+1}) - V(s_t)].$$

Therefore we replace with a guess instead:

$$V(s_t) := V(s_t) + \alpha \big[r_t + \gamma V(s_{t+1}) - V(s_t) \big].$$

The key idea of TD-Learning it to learn through bootsrapping:

- We update the value of a state with respect to the value of its successor state only
- Ideally we would like to use $V^{\pi}(s_{t+1})$ for learning but it is unfortunately unknown

$$V(s_t) := V(s_t) + \alpha \left[r_t + \gamma V^{\pi}(s_{t+1}) - V(s_t) \right].$$

Therefore we replace it with a guess instead:

$$V(s_t) := V(s_t) + \alpha [r_t + \gamma V(s_{t+1}) - V(s_t)].$$

Let us go back to the previous MDP:

- We again have policy $\pi: s0 \to s1 \to s0 \to s2$
- π results in the sequence of rewards -1, +2, +3
- The starting value of each state is 0, $\gamma = 0.99$ and $\alpha = 0.5$

Our first state transition is $s0 \rightarrow s1$

$$V(s_t) := V(s_t) + \alpha [r_t + \gamma V(s_{t+1}) - V(s_t)]$$

$$V(s_t) := V(s_t) + \alpha [r_t + \gamma V(s_t) - V(s_t)]$$

$$V(s_t) := -0.5$$

What is so cool about the TD Learning update rule?

$$V(s_t) := V(s_t) + \alpha \big[r_t + \gamma V(s_{t+1}) - V(s_t) \big]$$

We are learning by guessing!

- We want to learn $V(s_t)$ with respect to $V(s_{t+1})$
- But $V(s_{t+1})$ is as unknown as $V(s_t)$
- We use the information provided by the environment r_t immediately to construct the TD-error δ_t

$$V(s_t) := \underbrace{V(s_t) + \alpha \big[r_t + \gamma V(s_{t+1}) - V(s_t) \big]}_{\delta_t}$$

Why are the TD-errors δ_t so important?

- They allow us to start learning immediately
- They separate RL algorithms into two families of techniques: off-policy and on-policy techniques
- Each family comes with its own convergence properties

To know more about these families let us consider the problem of learning the state-action value function $Q^{\pi}(s, a)$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{k=0}^{\infty} \gamma^{k} r_{t+k}\right| s_{t} = s, a_{t} = a, \pi\right].$$

The arguably most popular algorithm for learning $Q^{\pi}(s, a)$ is Q-Learning (Watkins & Dayan, 1992)

- Is an off-policy learning algorithm
- Able of converging to the optimal state-action value function $Q^*(s, a)$ with probability 1
- Works by keeping track of an estimate of the state-action value function $Q: \mathcal{S} \times \mathcal{A} \to \Re$

Q-Learning

The update rule of each visited state-action pair used by Q-Learning is:

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \Big[r_t + \gamma \max_{a \in A} Q(s_{t+1}, a_t) - Q(s_t, a_t) \Big].$$

How does Q-Learning work?

$$Q(s_t, a_t) := \underbrace{Q(s_t, a_t) + \alpha \Big[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a_t) - Q(s_t, a_t) \Big]}_{\delta_t}$$

• We create the TD-error δ_t by using the $\max_{a \in A}$ operator

How does Q-Learning work?

$$Q(s_t, a_t) := \underbrace{Q(s_t, a_t) + \alpha \Big[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a_t) - Q(s_t, a_t) \Big]}_{\delta_t}$$

- We create the TD-error δ_t by using the $\max_{a \in A}$ operator
- We always update $Q(s_t, a_t)$ with respect to a greedy policy

How does Q-Learning work?

$$Q(s_t, a_t) := \underbrace{Q(s_t, a_t) + \alpha \Big[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a_t) - Q(s_t, a_t) \Big]}_{\delta_t}$$

- We create the TD-error δ_t by using the $\max_{a \in \mathcal{A}}$ operator
- We always update $Q(s_t, a_t)$ with respect to a greedy policy
- Even if the agent is exploring the environment, learning is done greedily → off-policy learning

We can also learn the $Q^{\pi}(s, a)$ function in a way which is more similar to how we learned $V^{\pi}(s)$ beforehand: SARSA (Rummery & Niranjan, 1994)

- Is an on-policy learning algorithm
- Also works by keeping track of $Q: S \times A \rightarrow \Re$
- Has different convergence properties

SARSA

The update rule of each visited state-action pair used by SARSA is:

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \Big[r_t + \gamma \ Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \Big].$$

If we take a look at SARSA's TD-error ...

$$Q(s_t, a_t) := \underbrace{Q(s_t, a_t) + \alpha \Big[r_t + \gamma \ Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)\Big]}_{\delta_t}$$

• We do not use the max operator anymore

If we take a look at SARSA's TD-error ...

$$Q(s_t, a_t) := \underbrace{Q(s_t, a_t) + \alpha \Big[r_t + \gamma \ Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \Big]}_{\delta_t}$$

- We do not use the max operator anymore
- We learn with respect to the next state visited by the agent s_{t+1} which might or might not (important!) correspond to a greedy policy

If we take a look at SARSA's TD-error ...

$$Q(s_t, a_t) := \underbrace{Q(s_t, a_t) + \alpha \Big[r_t + \gamma \ Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \Big]}_{\delta_t}$$

- We do not use the max operator anymore
- We learn with respect to the next state visited by the agent s_{t+1} which might or might not (important!) correspond to a greedy policy
- As we are always taking into account the actions chosen by the agent $Q(s_{t+1}, a_{t+1})$ we learn \rightarrow *on-policy*

If we take a look at SARSA's TD-error ...

$$Q(s_t, a_t) := \underbrace{Q(s_t, a_t) + \alpha \Big[r_t + \gamma \ Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)\Big]}_{\delta_t}$$

- We do not use the max operator anymore
- We learn with respect to the next state visited by the agent s_{t+1} which might or might not (important!) correspond to a greedy policy
- As we are always taking into account the actions chosen by the agent $Q(s_{t+1}, a_{t+1})$ we learn \rightarrow on-policy

Final Slide!

Lecture Takeaway