EEC 289A Assignment 1 Report

Chenye Yang, Hanchu Zhou, Haodong Liang, Yibo Ma

1 Introduction

In this project, we aim to do K-mean clustering on the patches from MNIST dataset, shown in Figure 1. After the clustering, we observe the results, and try to answer the following interesting questions:

- 1. What is the change of the learned clusters when K increases from 100 10,000?
- 2. How well one can reconstruct a 5x5 MNIST patch by the learned dictionary (clusters)?
- 3. How many clusters does one need in order to cover the whole patch space?
- 4. What are these clusters and do they have any interpretable meanings?
- 5. How is one digit made from these clusters?

Figure 1: Some examples of the MNIST dataset

2 Methodology

2.1 Data Preprocessing

We load the MNIST dataset $(28 \times 28 \text{ handwritten digits})^1$, including 60000 training images and 10000 testing images. The pixel values in each image are not normalized, and they range from 0 (black) to 255 (white). Then, we extract the patches from the training images, by sliding a 5×5 window over the images. Therefore, for each handwritten digit, we will get $(28-5+1) \times (28-5+1)$ patches. Then we get rid of all the blank patches, leading to 20,074,704 non-blank patches in total. Each patch is reshaped to a 25-dimensional vector, and we get a matrix $X \in R^{20,074,704 \times 25}$.

2.2 K-mean clustering

Once we get all the patches, we can do the K-mean clustering on the patches. The K-mean clustering is a method to partition the data into K clusters, where each data point belongs to the cluster with the nearest mean. Although there is a wildly used K-means algorithm in library *scikit learn*², we also implement the

¹Downloaded from https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/

 $^{^2}$ https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

K-means clustering algorithm using PyTorch, hoping to achieve acceleration by using Nvidia CUDA³ or Apple MPS⁴, which is shown in the Algorithm 1.

We define that:

- K: Number of the clustering
- C: Centroids of the clustering
- P: The 5 \times 5 patch
- X: The entire dataset of patches with size $20,074,704 \times 25$

Algorithm 1 PyTorch K-means Clustering for 5×5 Patches

```
1: procedure KMEANSPATCHES(Patches, K)
         X \leftarrow \text{Reshape each patch } P \text{ in } Patches \text{ to } R^{25}
                                                                                                                  ▶ No normalization
         Initialize C random K data points from X
 3:
 4:
         C_{\text{old}} \leftarrow \text{Copy of } C
 5:
         repeat
             Compute distances from each vector X_i in X to each centroid in C
 6:
             Assign each vector X_i to the closest centroid
 7:
 8:
             for j \leftarrow 1 to K do
                  if Count(X_i \text{ assigned to } C_i) = 0 \text{ then }
 9:
                      Randomly reinitialize centroid C_i from X
10:
11:
                      Update centroid C_i by calculating the mean of all vectors assigned to C_i
12:
13:
                  end if
             end for
14:
             C_{\text{new}} \leftarrow \text{Copy of } C
15:
             C_{\text{move}} \leftarrow \text{norm}(C_{\text{new}} - C_{\text{old}})
16:
             C_{\text{old}} \leftarrow C_{\text{new}}
17:
         until C_{\text{move}} < \text{tolerance}
18:
19:
         return Updated centroids and cluster labels
20: end procedure
```

2.3 Reconstruction

After the clustering, we can use the centroids to reconstruct the original digits, as shown in Algorithm 2. The reconstruction is done by assigning each non-blank patch to the nearest centroid, and keep the blank patches as zeros. Because of the overlap of the patches, we will have multiple centroids assigned to the same pixel. Thus, we need a count matrix to record the number of how many centroids are assigned to each pixel. Finally, we average the value of each pixel to get the reconstructed digit.

Some notations in this algorithm:

- POS: The position indices of a specific patch
- D: The ground truth of the handwritten digit
- \hat{D} : The reconstructed result of D according to the K-mean clustering centroids

³https://pytorch.org/docs/stable/cuda.html

⁴https://developer.apple.com/metal/pytorch/

Algorithm 2 Reconstruct Handwritten Digit Images

```
1: procedure RECONSTRUCTDIGIT(D, K, Model)
        P \leftarrow \text{empty list to store patches}
        Pos \leftarrow \text{empty list to store position indices}
 3:
                                                                                                          \triangleright 28 - 5 + 1 = 24
 4:
        for i \leftarrow 1 to 24 do
            for j \leftarrow 1 to 24 do
 5:
 6:
                patch \leftarrow D[i:i+5,j:j+5]
                if not all zeros in patch then
 7:
                    P.append(patch.flatten())
 8:
 9:
                    Pos.append((i, j))
10:
                end if
            end for
11:
        end for
12:
        X \leftarrow \text{stack of patches in } P
13:
        Labels \leftarrow Model.predict(X)
                                                                                            ▶ Assign patches to centroids
14:
15:
        \hat{D} \leftarrow \text{zero matrix of the same size as } D
                                                                              ▷ Initialize reconstructed digit with zeros
        Count \leftarrow \text{zero matrix of the same size as } D
                                                                                    ▷ Initialize Count matrix with zeros
16:
        for k \leftarrow 0 to len(P) - 1 do
17:
            pos \leftarrow Pos[k]
18:
            cluster \leftarrow Labels[k]
19:
            centroid \leftarrow Model.cluster\_centers[cluster].reshape(5,5)
20:
            \hat{D}[pos[0]:pos[0]+5,pos[1]:pos[1]+5] \leftarrow \hat{D}[pos[0]:pos[0]+5,pos[1]:pos[1]+5] + centroid
21:
22:
            Count[pos[0]:pos[0]+5,pos[1]:pos[1]+5] \leftarrow Count[pos[0]:pos[0]+5,pos[1]:pos[1]+5]+1
23:
        end for
        Count[Count == 0] = 1
                                                                                                     \triangleright Avoid division by 0
24:
        return \hat{D}/Count
25:
26: end procedure
```

3 Experiment Results

3.1 Clustering Results with Different K

We conducted the K-mean clustering on the patches with different K values, where:

 $K = 100, 200, 300, \dots, 900, 1000, 2000, \dots, 9000, 10000.$

Some results of the patches and the corresponding centroids are shown in the following Figures 2-7.

Figure 2: The patch and corresponding centroid when K = 100

Figure 3: The patch and corresponding centroid when K = 400

Figure 4: The patch and corresponding centroid when K = 1000

Figure 5: The patch and corresponding centroid when K = 2000

Moreover, we plot the Mean Squared Error (MSE) between the original patches and the reconstructed patches (centroids) with different K values, as shown in Figure 8.

With the results above, we can observe that:

Figure 6: The patch and corresponding centroid when K=5000

Figure 7: The patch and corresponding centroid when K=10000

Figure 8: MSE with different clustering number

- Question 1: As K increases, the learned clusters become more and more detailed and similar to the original patches.
- Question 2: With the increase of K, one can reconstruct the patches more accurately. For example, when K = 100, the reconstructed patches are not very similar, but when K = 10000, the reconstructed patches are very similar to the original patches.
- Question 3: The MSE decreases as K increases, however, the decreasing rate becomes slower when K is large. By elbow method, we can find that the optimal K is around 2000. So we need 2000 clusters to cover the whole patch space, considering the trade-off between the clustering performance and the computational cost.

3.2 What are the centroids

In addition to the clustering performance, we also want to understand the meaning of the clusters or centroids. Here we show the first 100 centroids when using K = 100 and K = 10000 in Figure 9.

Figure 9: Visual representation of cluster centroids for K = 100 and K = 10000

Question 4: From the results, we can see that the centroids of these clusters are actually the patterns of the handwritten digits. Specifically, they are the edges, corners, and other features of the digits.

3.3 Reconstruct a Digit

In this part, we show the reconstruction results of the handwritten digits from both the training set and testing set, by using the learned centroids, as in Figures 10 and 11.

From the results, we can observe that the reconstructed digits are very vague when K = 100, but they become more and more clear as K increases. When K = 10000, the reconstructed digits are very similar to the original digits. Question 5: This indicates that the digits are constructed from the detailed features of itself, such as the edges, corners, and other features. One digit is just a linear combination of these features / centroids/ clusters, and the more clusters we have, the more accurate the reconstruction will be.

Figure 10: Reconstruction of digit 2 with different K

Figure 11: Reconstruction of digit 5 with different K

Appendix

```
\#\ https://www.\ kaggle.com/code/hojjatk/read-mnist-dataset/notebook
    #
2
    # This is a sample Notebook to demonstrate how to read "MNIST Dataset"
3
    import numpy as np # linear algebra
    import struct
    from array import array
    # MNIST Data Loader Class
10
11
    class MnistDataloader(object):
12
13
        MNIST Data Loader
14
15
             @type
                      training_images_filepath: string
16
                      training\_images\_filepath: training images file path
             @param
18
                      training_labels_filepath: string
             @type
19
             @param
                      training\_labels\_filepath: training labels file path
20
             @type
                      test\_images\_filepath: string
22
             @param
                     test\_images\_filepath: test images file path
23
24
             @type
                      test\_labels\_filepath: string
25
                      test\_labels\_filepath:\ test\ labels\ file\ path
             @param
26
27
```

```
def __init__(self, training_images_filepath, training_labels_filepath,
28
            test_images_filepath, test_labels_filepath):
            self.training_images_filepath = training_images_filepath
29
            self.training_labels_filepath = training_labels_filepath
            self.test_images_filepath = test_images_filepath
31
            self.test_labels_filepath = test_labels_filepath
32
33
        def read_images_labels(self, images_filepath, labels_filepath):
34
35
            Read images and labels
36
                     @type
                              images\_filepath: string
38
                              images_filepath: images file path
                     @param
39
40
                     @type
                              labels\_filepath: string
                     @param
                              labels\_filepath: labels file path
42
                     @rtype:
                                (ndarray, ndarray)
44
                     @return:
                                images, labels
             , , ,
46
            labels = | |
47
            with open(labels_filepath, 'rb') as file:
48
                magic, size = struct.unpack(">II", file.read(8))
                 if magic != 2049:
50
                     raise ValueError ('Magic_number_mismatch,_expected_2049,_got_{})
51
                         '. format (magic))
                 labels = array("B", file.read())
52
53
            with open(images_filepath, 'rb') as file:
54
                 magic, size, rows, cols = struct.unpack(">IIII", file.read(16))
                 if magic != 2051:
56
                     raise ValueError ('Magic_number_mismatch, _expected_2051, _got_{} }
                         '. format (magic))
                 image_data = array("B", file.read())
            images = []
59
            for i in range(size):
60
                 images.append([0] * rows * cols)
61
            for i in range(size):
                 img = np.array(image_data[i * rows * cols:(i + 1) * rows * cols])
63
                img = img.reshape(28, 28)
                 images[i][:] = img
65
66
            return images, labels
67
68
        def load_data(self):
69
70
            Load MNIST data
71
72
                 @rtype:
                           (ndarray, ndarray), (ndarray, ndarray)
                           (training data, traing labels), (test data, test labels)
                 @return:
74
            x_{train}, y_{train} = self.read_{images_labels}(self.
76
                training_images_filepath, self.training_labels_filepath)
```

```
from mnist_data_loader import MnistDataloader
    from os.path import join
2
    import numpy as np
3
    from tgdm import tgdm
4
5
    # Extract 5x5 patches from the 28x28 images
    def extract_patches(images, patch_size=5, threshold=0):
9
        Extract patches from images
10
11
             @type
                     images: ndarray
12
            @param
                     images: images
13
14
             @type
                     patch_size: int
                     patch\_size: patch size
            @param
16
17
             @type
                     threshold: float
18
                     threshold: default 0 means non-blank patches from the training
            @param
19
                 images
20
             @rtype:
                       ndarray
21
                       patches
             @return:
22
23
        patches = []
24
        num_pixels = patch_size * patch_size
25
        for image in tqdm(images, desc="Extracting_patches"):
            # Slide over the image and extract patches
27
            for i in range(image.shape[0] - patch_size + 1):
                 for j in range(image.shape[1] - patch_size + 1):
29
                     patch = image[i:i + patch_size, j:j + patch_size]
30
                     # Calculate the proportion of non-zero pixels
31
                     if np.sum(patch) > 255 * num_pixels * threshold: # Adjust the
32
                          threshold as needed
                         patches.append(patch.flatten())
33
        return np.array(patches)
34
35
    # Extract 5x5 patches from the 28x28 images
37
    def extract_nonblank_patches_from_one_image(image, patch_size=5, threshold=0):
38
39
        Extract nonblank patches from one image
41
             @type
                     image: ndarray
42
            @param
                     image: image
43
             @type
                     patch_size: int
45
            @param
                     patch_size: patch size
46
```

```
47
            @type
                     threshold: float
48
            @param
                     threshold: default 0 means non-blank patches from the training
49
                 images
50
             @rtype:
                       ndarray
51
             @return:
                       patches
52
53
        patches = []
54
        num_pixels = patch_size * patch_size
55
        # Slide over the image and extract patches
56
        for i in range(image.shape[0] - patch_size + 1):
57
            for j in range(image.shape[1] - patch_size + 1):
58
                 patch = image[i:i + patch_size, j:j + patch_size]
59
                # Calculate the proportion of non-zero pixels
                 if np.sum(patch) > 255 * num_pixels * threshold: # Adjust the
61
                    threshold as needed
                     patches.append(patch.flatten())
62
        return np.array(patches)
64
65
    def extract_all_patches_from_one_image(image, patch_size=5):
66
        Extract all patches (blank and nonblank) from one image
68
69
             @type
                     image: ndarray
70
            @param
                     image: image
71
72
             @type
                     patch_size: int
73
            @param
                     patch_size: patch size
75
             @rtype:
                       ndarray
76
            @return:
                       patches
77
        patches = []
79
        # Slide over the image and extract patches
80
        for i in range (image.shape [0] - patch_size + 1):
81
            for j in range(image.shape[1] - patch_size + 1):
                 patch = image[i:i + patch_size, j:j + patch_size]
83
                 patches.append(patch.flatten())
        return np.array(patches)
85
86
87
88
    if _-name_- = "_-main_-":
89
        # Set file paths based on added MNIST Datasets
90
        input_path = 'MNIST_ORG/'
91
        training_images_filepath = join(input_path, 'train-images.idx3-ubyte')
92
        training_labels_filepath = join(input_path, 'train-labels.idx1-ubyte')
        test_images_filepath = join(input_path, 't10k-images.idx3-ubyte')
94
        test_labels_filepath = join(input_path, 't10k-labels.idx1-ubyte')
96
        # Load MINST dataset
97
        mnist_dataloader = MnistDataloader(training_images_filepath,
98
```

```
training_labels_filepath, test_images_filepath, test_labels_filepath)
(x_train, y_train), (x_test, y_test) = mnist_dataloader.load_data()

# Extract non-blank patches from the training data
patches = extract_patches(x_train)
np.save("patches.npy", patches)
```

```
import torch
   from tgdm import tgdm
2
3
    \mathbf{def} kmeans_pytorch(X, n_clusters, n_iters=100, tolerance=1e-4):
4
        Performs k-means clustering using PyTorch.
6
        Parameters:
            X (torch. Tensor): The input data, a tensor of shape (n-samples,
                n_{-}features).
            n_{-}clusters (int): The number of clusters to form.
10
             n_{-}iters (int): Maximum number of iterations of the k-means algorithm.
             tolerance (float): Tolerance to declare convergence.
13
        Returns:
14
             centers (torch. Tensor): Cluster centers, a tensor of shape (n_clusters
15
                , n_{-}features).
            labels (torch. Tensor): Index of the cluster each sample belongs to.
16
17
        \# Randomly choose cluster centers from the input data at the start.
        indices = torch.randperm(X. size(0))[:n_clusters]
19
        centers = X[indices]
20
21
        for _ in tqdm(range(n_iters), desc="K-means"):
            # Compute distances from data points to the centroids
23
            distances = torch.cdist(X, centers)
24
            # Assign clusters
25
            labels = torch.argmin(distances, dim=1)
26
            # Compute new centers
27
            new_centers = torch.stack([X[labels == i].mean(dim=0) for i in range(
                n_clusters)])
            # Check for convergence
30
            if torch.norm(centers - new_centers) < tolerance:</pre>
31
                 break
33
            centers = new_centers
34
35
        return centers, labels
37
38
    if = name_{--} = "-main_{--}":
39
        # Example usage
40
        # Creating some data
41
        torch.manual_seed(0)
42
```

```
data = torch.randn(100, 2) # 100 data points, 2 dimensions

# Clustering
centers, labels = kmeans_pytorch(data, n_clusters=3)
print("Cluster_centers:\n", centers)
print("Cluster_labels:\n", labels)
```

```
import numpy as np
    import matplotlib.pyplot as plt
2
    from sklearn.cluster import KMeans
3
    import joblib
4
    from tqdm import tqdm
5
    # Load patches
    \mathbf{try}:
        patches = np.load ("K-means/Code/patches.npv")
9
    except FileNotFoundError:
10
        print("cd_to_folder_EEC289A,_run_extract_patches.py_first.")
11
        exit()
12
13
   K = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,
14
       5000, 6000, 7000, 8000, 9000, 10000]
15
    # Perform K-means clustering
16
    for n_clusters in tqdm(K, desc="Clustering"):
17
        kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(patches)
18
19
        # Save the model
20
        joblib.dump(kmeans, f"K-means/Result/Model/{n_clusters}-clusters-model.
21
            joblib")
22
    ## Load the model
24
    \# model = joblib.load("../Result/Model/100-clusters-model.joblib")
25
```

```
import numpy as np
   import matplotlib.pyplot as plt
   from sklearn.cluster import KMeans
3
   from sklearn.metrics import mean_squared_error
   import joblib
5
6
   def visualize_reconstruction(n_clusters, patches, model):
        Visualize the original and reconstructed patches for a few random samples.
11
            @type
                     n_{-}clusters: int
12
            @param
                     n_{-}clusters: K
13
            @type
                     patches: ndarray
15
                    patches: patches
            @param
17
            @type
                    model: sklearn model
18
```

```
@param model: the fitted sklearn KMeans model
19
20
        # Predict the cluster for each patch
21
        labels = model.labels_{-}
23
        # Get the cluster centers
        centroids = model.cluster_centers_
25
        # Pick random patches for display
27
        num_samples = 5 # Number of random samples to pick
28
        indices = np.random.choice(range(len(patches)), num_samples, replace=False
29
           )
30
        # Plotting the original and reconstructed patches
31
        fig, axs = plt.subplots(2, num_samples+1, figsize=(15, 3)) # 2 rows:
            originals and reconstructions
33
        # Set labels for the rows
34
        axs[0, 0].text(0.5, 0.5, 'Original', vertical alignment='center',
           horizontalalignment='center', transform=axs[0, 0].transAxes, fontsize
           = 15)
        axs[1, 0].text(0.5, 0.5, 'Reconstructed', verticalalignment='center',
36
           horizontalalignment='center', transform=axs[1, 0].transAxes, fontsize
           = 15)
        axs[0, 0].axis('off')
37
        axs[1, 0].axis('off')
39
        for i, idx in enumerate(indices):
40
            i += 1 # Adjust index for the extra label column
41
            # Original patches
43
            axs[0, i].imshow(patches[idx].reshape(5, 5), cmap='gray')
44
            axs[0, i].axis('off')
45
            axs[0, i].set_title('#{})'.format(idx), fontsize = 15)
47
            # Reconstructed patches
48
            reconstructed_patch = centroids[labels[idx]].reshape(5, 5)
49
            axs[1, i].imshow(reconstructed_patch, cmap='gray')
            axs[1, i].axis('off')
51
            axs[1, i].set_title('#{})'.format(labels[idx]), fontsize = 15)
53
        plt.tight_layout()
        \# plt.show()
55
        plt.savefig(f"K-means/Result/Reconstruction/{n_clusters}-clusters-
56
           reconstruction.png", dpi=300)
        plt.close()
57
58
59
    def mse_reconstruction(patches, model):
61
        Calculate the mean squared error between the original and reconstructed
           patches.
63
            @type
                    patches: ndarray
64
```

```
@param
                      patches: patches
65
66
                      model: sklearn model
             @type
67
             @param
                      model: the fitted sklearn KMeans model
69
         # Predict the cluster for each patch
70
         labels = model.labels_{-}
71
         # Get the cluster centers
73
         centroids = model.cluster_centers_
74
75
         # Calculate the mean squared error
76
         reconstruction = centroids [labels]
77
         mse = mean_squared_error(patches, reconstruction)
78
         return mse
80
82
84
     if = name = "= main = ":
86
        K = \begin{bmatrix} 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, \end{bmatrix}
            5000, 6000, 7000, 8000, 9000, 10000
88
         # Load patches
         try:
             patches = np.load("K-means/Code/patches.npy")
91
         except FileNotFoundError:
92
             print ("cd_to_folder_EEC289A,_run_extract_patches.py_first.")
             exit()
94
95
         mse_K = []
96
         for n_clusters in K:
98
             # Load the model
99
             try:
100
                 model = joblib.load(f"K-means/Result/Model/{n_clusters}-clusters-
                     model.joblib")
             except FileNotFoundError:
                  print(f"cd_to_folder_EEC289A,_run_run_kmeans.py_first.")
103
                  exit()
104
105
             visualize_reconstruction(n_clusters, patches, model)
106
107
             mse = mse_reconstruction(patches, model)
108
             mse_K.append(mse)
109
110
         # Plot the mean squared error
         plt.plot(K, mse_K, marker='o')
112
         plt.xlabel('Number_of_Clusters_(K)')
113
         plt.ylabel('Mean_Squared_Error_(MSE)_of_Patches_Reconstruction')
114
         plt.title('MSE_vs._Number_of_Clusters')
115
         plt.grid(True)
116
```

117

plt.savefig("K-means/Result/Reconstruction/MSE_vs_K.png", dpi=300)

```
import numpy as np
1
    import matplotlib.pyplot as plt
2
    from sklearn.cluster import KMeans
    import joblib
    from os.path import join
    from mnist_data_loader import MnistDataloader
    from extract_patches import extract_all_patches_from_one_image,
8
       extract_nonblank_patches_from_one_image
9
10
11
    def calculate_positions(image_shape, patch_size):
12
13
        Calculate the positions of all patches in an image
14
15
             @type
                      image\_shape: tuple
16
             @param
                     image\_shape: image shape
17
18
             @type
                     patch_size: int
19
             @param
                     patch_size: patch size
20
21
             @rtype:
                        list
22
             @return:
                        positions
23
24
        positions = []
25
        for i in range(image_shape[0] - patch_size + 1):
26
             for j in range(image_shape[1] - patch_size + 1):
27
                 positions.append((i, j))
28
        return positions
30
31
32
    def reconstruct_digit(digit_image, model, patch_size = 5):
33
34
        Reconstruct a digit image using a KMeans model
35
36
             @type
                      digit_{-}image: ndarray
37
             @param
                      digit_{-}image: digit image
38
39
                     model: sklearn model
             @type
                     model: KMeans model
             @param
41
42
             @type
                     patch_-size: int
43
             @param
                     patch_size: patch size
45
             @rtype:
                        ndarray
46
             @return:
                        reconstructed image
47
        \# Extract all patches and calculate positions
49
        all_patches = extract_all_patches_from_one_image(digit_image)
50
```

```
positions = calculate_positions(digit_image.shape, patch_size)
51
52
        \# Extract non-blank patches
53
        nonblank_patches = extract_nonblank_patches_from_one_image(digit_image)
55
        # Map nonblank patches to their positions
        nonblank_indices = [i for i, patch in enumerate(all_patches) if np.sum(
57
            patch) > 0
58
        # Predict clusters for non-blank patches
59
        labels = model.predict(nonblank_patches)
61
        \# Initialize the reconstructed image with zeros
62
        reconstructed_image = np.zeros_like(digit_image, dtype=float)
63
        count_matrix = np.zeros_like(digit_image, dtype=float)
65
        # Add centroids to the corresponding positions
        centroids = model.cluster_centers_
67
        for label, idx in zip(labels, nonblank_indices):
            i, j = positions[idx]
69
            reconstructed_image[i:i+patch_size, j:j+patch_size] += centroids[label
                ].reshape(patch_size, patch_size)
            count_matrix[i:i+patch_size, j:j+patch_size] += 1
72
        \# Avoid division by zero
73
        count_matrix[count_matrix == 0] = 1
        reconstructed_image /= count_matrix
76
        return reconstructed_image
77
79
80
81
    if -name = "-main = ":
83
        # Set file paths based on added MNIST Datasets
84
        input_path = 'K-means/Code/MNIST_ORG/'
85
        training_images_filepath = join(input_path, 'train-images.idx3-ubyte')
        training_labels_filepath = join(input_path, 'train-labels.idx1-ubyte')
87
        test_images_filepath = join(input_path, 't10k-images.idx3-ubyte')
        test_labels_filepath = join(input_path, 't10k-labels.idx1-ubyte')
89
91
        # Load MINST dataset
92
        mnist_dataloader = MnistDataloader(training_images_filepath,
93
            training_labels_filepath, test_images_filepath, test_labels_filepath)
        (x_train, y_train), (x_test, y_test) = mnist_dataloader.load_data()
94
95
        # Example of reconstructing a digit
97
        digit_i dx = np.random.randint(0, len(x_test))
        digit_image = x_test[digit_idx]
99
100
101
```

```
102
        K = \begin{bmatrix} 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, \end{bmatrix}
103
            5000, 6000, 7000, 8000, 9000, 10000
104
105
         # Prepare the figure for subplots
106
         fig, axs = plt.subplots (2, 10, figsize = (18, 4)) # 1 row, columns for each
107
             K plus one for the original
108
         # Display the original digit in the first column
109
         axs[0, 0].imshow(digit_image, cmap='gray')
110
         axs[0, 0].set_title('Original_Number_{{}}')'.format(y_train[digit_idx]))
111
         axs[0, 0].axis('off')
112
113
115
         for i_fig , n_clusters in enumerate(K):
116
             # Load the model
117
             try:
                  model = joblib.load(f"K-means/Result/Model/{n_clusters}-clusters-
119
                     model.joblib")
             except FileNotFoundError:
120
                  print (f"cd_to_folder_EEC289A,_run_run_kmeans.py_first.")
                  exit()
122
123
             # Reconstruct the digit
124
             reconstructed_image = reconstruct_digit(digit_image, model)
125
126
             # Display reconstructed digit for this K
127
             if i_fig < 9:
                  axs[0, i_fig + 1].imshow(reconstructed_image, cmap='gray')
129
                  axs[0, i_fig + 1].set_title(f'K={n_clusters}')
130
                  axs[0, i_fig + 1].axis('off')
131
             else:
                  axs[1, i_fig - 9].imshow(reconstructed_image, cmap='gray')
133
                  axs[1, i_fig - 9].set_title(f'K={n_clusters}')
134
                 axs[1, i_fig - 9].axis('off')
135
136
         \# plt.tight_layout()
137
         plt.savefig(f"K-means/Result/Digits/reconstruct-test-digit.png", dpi=300)
```