

End-to-End Weak Supervision

Neural Information Processing Systems (NeurIPS), 2021

Salva Rühling Cachay^{1,2}, Benedikt Boecking¹, Artur Dubrawski¹

¹Auton Lab, Carnegie Mellon University ²Technical University of Darmstadt

Successful Machine Learning methods require large amounts of labeled data

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

Hand labeling, however, is expensive both in terms of time and cost

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

Alternative: (Multi-source) Weak supervision

Weak Supervision

Multiple noisy heuristics that cheaply apply to unlabeled data!

= Labeling functions (LFs)

Domain Heuristics

Distant Supervision

e.g. Mintz et al. (2019), Bach et al. (2019)

Pretrained Models

e.g. Chen et al. (2019)

Unsupervised Models

e.g. Hingmire et al. (2014), Bach et al. (2019)

The usual approach

```
def lambda1(doc):
  return(1 if `rocket`
           in doc
           else ABSTAIN)
  Users write heuristics
```

The usual approach

def lambda1(doc): return(1 if `rocket` in doc else ABSTAIN)

Users write heuristics

But...

- Statistical dependencies are hard to model (efficiently)
 - Thus, they are often simply ignored!
- No data features/representations are considered!

→ This & more (often) violates assumptions needed for theoretical results

The usual approach

Two separate modeling steps!

 λ_1

1

def lambda1(doc):
 return(1 if `rocket`
 in doc
 else ABSTAIN)

Users write heuristics

Heuristics are used to model latent labels

The probabilistic labels are used to train an end-model

C

WeaSEL: Weakly Supervised End-to-end Learning

Our contributions

- introduce WeaSEL: A flexible, end-to-end method for learning models from multiple sources of weak supervision.
- empirically demonstrate that the method is robust to adversarial sources and highly correlated heuristics.
- release an open-source system for arbitrary PyTorch end-models
 - https://github.com/autonlab/weasel
- our method outperforms, by as much as 6.1 F1 points, state-of-the-art latent label modeling approaches on 4 out of 5 benchmark datasets, and achieves state-of-the-art performance on a crowdsourcing dataset against methods specifically designed for this setting

WeaSEL

def lambdal(doc): return(1 if `rocket` in doc else ABSTAIN) Users write heuristics

WeaSEL: Weakly Supervised End-to-end Learning

WeaSEL: Weakly Supervised End-to-end Learning

Encoder predicts the accuracy of each heuristic

Accuracy may vary across samples!

WeaSEL: Weakly Supervised End-to-end Learning

Same weighted aggregation as before!

WeaSEL: Weakly Supervised End-to-end Learning

Key design choices

def lambdal(doc): return(1 if `rocket` in doc else ABSTAIN) Users write heuristics

Predict accuracy scores, not labels

Figure 5: We start with a 100% accurate LF (i.e. ground truth labels) and plot test performances at each training epoch for a varying number of duplicates $\in \{2, 25, 100, 500, 2000\}$ of a LF that is no better than a coin flip. Performances are averaged out over five random seeds, and the standard deviation is shaded. More details are given in [F.2.1]

Adding duplicated, "bad" heuristics (up to 2000) can break ablated versions of WeaSEL, but not WeaSEL

Experiments

WeaSEL is more robust against "bad" LFs

Figure 4: We start with a 100% accurate LF (i.e. ground truth labels) and incrementally add new, independent LFs that are no better than a random guess. WeaSEL recovers the performance of training directly on the ground truth labels (Fully Supervised f), for up to 10 such randomly voting LFs that are independent of each other. The PGM-based prior work, rapidly degrades in performance (AUC ≈ 0.5) and is not able to recover any of the 100% accurate signal of the true-labels-LF, as soon as the LF set is corrupted by three or more random LFs. Performances are averaged out over five random seeds, and the standard deviation is shaded. For more details, see F.2.2

Datasets

Table 3: Dataset details, where training, validation and test set sizes are N_{train} , N_{val} , N_{test} respectively, and f denotes the downstream model type. We also report the total coverage Cov. of all LFs, which refers to the percentage of training samples which are labeled by at least one LF (the rest is not used). For IMDB we used two different sets of labeling functions of sizes 12 and 136.

Dataset	#LFs	N_{train}	Cov. (in %)	N_{val}	N_{test}	f
Spouses	9	22,254	25.8	2811	2701	LSTM
BiasBios	99	12,294	81.8	250	12,044	MLP
IMDB	12	25k	88.0	250	24,750	MLP
IMDB	136	25k	83.1	250	24,750	MLP
Amazon	175	160k	65.5	500	39,500	MLP

Results

Table 1: Test F1 performance of various label models over seven runs using different random seeds, are averaged out \pm standard deviation. The top 2 performance scores are highlighted as **First**, **Second**. Triplet-median [10] is not listed as it only converged for IMDB with 12 LFs (F1 = 73.0 \pm 0.22), and Spouses (F1 = 48.7 \pm 1.0). Sup. (Val. set) is the performance of the downstream model trained in a supervised manner on the labeled validation set. The rest are state-of-the-art latent label models. For reference, we also report the *Ground truth* performance of a fully supervised model trained on true training labels (which are unused by all other models, and not available for Spouses).

Model	Spouses (9 LFs)	ProfTeacher (99 LFs)	IMDB (136 LFs)	IMDB (12 LFs)	Amazon (175 LFs)
Ground truth	_	90.65 ± 0.29	86.72 ± 0.40	86.72 ± 0.40	92.93 ± 0.68
Sup. (Val. set)	20.4 ± 0.2	73.34 ± 0.00	68.76 ± 0.00	68.76 ± 0.00	84.18 ± 0.00
Snorkel	48.79 ± 2.69	85.12 ± 0.54	82.22 ± 0.18	$\textbf{74.45} \pm \textbf{0.58}$	80.54 ± 0.41
Triplet	45.88 ± 3.64	74.43 ± 10.59	75.36 ± 1.92	73.15 ± 0.95	75.44 ± 3.21
Triplet-Mean	49.94 ± 1.47	82.58 ± 0.32	79.03 ± 0.26	73.18 ± 0.23	79.44 ± 0.68
Majority vote	40.67 ± 2.01	85.44 ± 0.37	80.86 ± 0.28	74.13 ± 0.31	84.20 ± 0.52
WeaSEL	51.98 ± 1.60	86.98 ± 0.45	82.10 ± 0.45	$\textbf{77.22} \pm \textbf{1.02}$	86.60 ± 0.71

Evaluation on a crowdsourcing-worker aggregation dataset

Table 2: Test accuracy scores on the crowdsourced, multi-class LabelMe image classification dataset.

Model	Accuracy
Majority vote	79.23 ± 0.5
MBEM [26]	76.84 ± 0.4
DoctorNet [21]	81.31 ± 0.4
CrowdLayer [34]	82.83 ± 0.4
AggNet [1]	84.35 ± 0.4
MaxMIG [8]	$\textbf{85.45} \pm \textbf{1.0}$
Snorkel+CE	82.89 ± 0.7
WeaSEL+CE	82.46 ± 0.8
Snorkel+MIG	85.15 ± 0.8
WeaSEL+MIG	86.36 ± 0.3

Practical aspects

- Early-stopping on a small labeled validation set
- In binary classification: Tune decision threshold

Limitations and future work

 When the end-model is slow to train, the process of finding a "final" set of heuristics is slowed down with WeaSEL → use Snorkel or less complex end-model

- How to completely avoid collapses? How to detect them without validation set?
- Use probabilistic heuristics!
- Applicable to regression?

Conclusion

- We proposed WeaSEL, a new approach for end-to-end learning of neural network models for classification from, exclusively, multiple sources of weak supervision that streamlines prior latent variable models.
- Strong empirical performance and outperforms several state-of-the-art crowdsourcing methods on a crowdsourcing task.
- More robust to dependencies and correlations between the heuristics
- Works with discrete and probabilistic labeling functions and can utilize various neural network designs for probabilistic label generation.

Thanks!:)

End-to-End Weak Supervision,
Salva Rühling Cachay, Benedikt Boecking, Artur Dubrawski,
In Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), 2021

Code: https://github.com/autonlab/weasel **Contact**: salvaruehling@gmail.com