

Europäisches Pat Intamt

European Patent Office

Office européen des brevets

(11) EP 0 854 189 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 22.07.1998 Bulletin 1998/30

(21) Application number: 97121443.2

(22) Date of filing: 05.12.1997

(51) Int. Cl.⁶: **C12N 15/54**, C12N 15/53, C12N 15/60, C12P 13/08; C12N 15/77, C12N 1/21 // (C12N1/21, C12R1:15)

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 05.12.1996 JP 325659/96

(71) Applicant: Ajinomoto Co., Inc. Tokyo 104 (JP)

(72) Inventors:

Araki, Masayuki,
c/o Ajinomoto Co., Inc.
Kawasaki-ku, Kawasaki-shi, Kanagawa 210 (JP)
Sugimoto, Masakazu,
c/o Ajinomoto Co., Inc.

Kawasaki-ku, Kawasaki-shi, Kanagawa 210 (JP)

Yoshihara, Yasuhiko,
 c/o Ajinomoto Co., Inc.
 Kawasaki-ku, Kawasaki-shi, Kanagawa 210 (JP)

Nakamatsu, Tsuyoshi,
 c/o Ajinomoto Co., Inc.
 Kawasaki-ku, Kawasaki-shi, Kanagawa 210 (JP)

(74) Representative:
Kolb, Helga, Dr. Dipl.-Chem. et al
Hoffmann Eitle,
Patent- und Rechtsanwälte,
Arabellastrasse 4
81925 München (DE)

Remarks:

A request for correction of pages 50 and 53 has been filed pursuant to Rule 88 EPC. A decision on the request will be taken during the proceedings before the Examining Division (Guidelines for Examination in the EPO, A-V, 3.).

(54) Method for producing L-lysine

A coryneform bacterium harboring an aspartokinase in which feedback inhibition by L-lysine and Lthreonine is substantially desensitized, and comprising an enhanced DNA sequence coding for a dihydrodipicolinate reductase, an enhanced DNA sequence coding for dihydropicolinate reductase, an enhance DNA sequence coding for dihydropicolinate synthase, an enhanced DNA sequence coding for diaminopimelate decarboxylase and an enhanced DNA sequence coding for aspartate aminotransferase; a method for producing L-lysine comprising the steps of cultivating the coryneform bacterium in an appropriate medium to allow Llysine to be produced and accumulated in a culture of the bacterium, and collecting L-lysine from the culture: and a recombinant DNA usable for production of the coryneform bacterium.

Description

BACKGROUND OF THE INVENTION

The present invention relates to a method for producing L-lysine by cultivating a microorganism obtained by modifying a coryneform bacterium used for fermentative production of amino acid or the like by means of a technique based on genetic engineering.

L-Lysine, which is used as a fodder additive, is usually produced by a fermentative method by using an L-lysine-producing mutant strain belonging to the coryneform bacteria. Various L-lysine-producing bacteria known at present are those created by artificial mutation starting from wild type strains belonging to the coryneform bacteria.

As for the coryneform bacteria, there are disclosed a vector plasmid which is autonomously replicable in bacterial cells and has a drug resistance marker gene (see United States Patent No. 4, 514, 502), and a method for introducing a gene into bacterial cells (for example, Japanese Patent Application Laid-open No. 2-207791). There is also disclosed a possibility for breeding an L-threonine- or L-isoleucine-producing bacterium by using the techniques as described above (see United States Patent Nos. 4,452,890 and 4,442,208). As for breeding of an L-lysine-producing bacterium, a technique is known, in which a gene participating in L-lysine biosynthesis is incorporated into a vector plasmid to amplify the gene in bacterial cells (for example, Japanese Patent Application Laid-open No. 56-160997).

Known genes for L-lysine biosynthesis include, for example, a dihydrodipicolinate reductase gene (Japanese Patent Application Laid-open No. 7-75578) and an aspartate aminotransferase gene (Japanese Patent Application Laid-open No. 6-102028) in which a gene participating in L-lysine biosynthesis is cloned, as well as a phosphoenolpyruvate carboxylase gene (Japanese Patent Application Laid-open No. 60-87788), a dihydrodipicolinate synthase gene (Japanese Patent Publication No. 6-55149), and a diaminopimelate decarboxylase gene (Japanese Patent Application Laid-open No. 60-62994) in which amplification of a gene affects L-lysine productivity.

As for enzymes participating in L-lysine biosynthesis, a case is known for an enzyme which undergoes feedback inhibition when used as a wild type. In this case, L-lysine productivity is improved by introducing an enzyme gene having such mutation that the feedback inhibition is desensitized. Those known as such a gene specifically include, for example, an aspartokinase gene (International Publication Pamphlet of WO 94/25605).

As described above, certain successful results have been obtained by means of amplification of genes for the L-lysine biosynthesis system, or introduction of mutant genes. For example, a coryneform bacterium, which harbors a mutant aspartokinase gene with desensitized concerted inhibition by lysine and threonine, produces a considerable amount of L-lysine (about 25 g/L). However, this bacterium suffers decrease in growth speed as compared with a bacterium harboring no mutant aspartokinase gene. It is also reported that L-lysine productivity is improved by further introducing a dihydrodipicolinate synthase gene in addition to a mutant aspartokinase gene (Applied and Environmental Microbiology, 57 (6), 1746-1752 (1991)). However, such a bacterium suffers further decrease in growth speed.

As for the dihydrodipicolinate reductase gene, it has been demonstrated that the activity of dihydrodipicolinate reductase is increased in a coryneform bacterium into which the gene has been introduced, however, no report is included for the influence on L-lysine productivity (Japanese Patent Application Laid-open No. 7-75578).

In the present circumstances, no case is known for the coryneform bacteria, in which anyone has succeeded in remarkable improvement in L-lysine yield without restraining growth by combining a plurality of genes for L-lysine biosynthesis. No case has been reported in which growth is intended to be improved by enhancing a gene for L-lysine biosynthesis as well.

SUMMARY OF THE INVENTION

35

An object of the present invention is to improve the L-lysine productivity of a coryneform bacterium by using genetic materials of DNA sequences each coding for aspartokinase (hereinafter referred to as "AK", provided that a gene coding for an AK protein is hereinafter referred to as "lysC", if necessary), dihydrodipicolinate reductase (hereinafter referred to as "DDPR", provided that a gene coding for a DDPR protein is hereinafter referred to as "dapB", if necessary), dihydrodipicolinate synthase (hereinafter abbreviate as "DDPS", provided that a gene coding for a DDPS protein is hereinafter referred to as "dapA", if necessary), diaminopimelate decarboxylase (hereinafter referred to as "DDC", provided that a gene coding for a DDC protein is hereinafter referred to as "lysA", if necessary), and aspartate aminotransferase (hereinafter referred to as "AAT", provided that a gene coding for an AAT protein is hereinafter referred to as "aspC, if necessary) which are important enzymes for L-lysine biosynthesis in cells of coryneform bacteria.

Namely, the present invention provides a recombinant DNA autonomously replicable in cells of coryneform bacte-

ria, comprising a DNA sequence coding for an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, a DNA sequence coding for a dihydrodipicolinate reductase, a DNA sequence coding for dihydrodipicolinate synthase, a DNA sequence coding for diaminopimelate decarboxylase, and a DNA sequence coding for aspartate aminotransferase.

In another aspect, the present invention provides a coryneform bacterium harboring an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, and comprising an enhanced DNA sequence coding for a dihydrodipicolinate reductase, an enhanced DNA sequence coding for dihydropicolinate reductase, an enhanced DNA sequence coding for diaminopimelate decarboxylase and an enhanced DNA sequence coding for aspartate aminotransferase.

In still another aspect, the present invention provides a method for producing L-lysine comprising the steps of cultivating any one of the coryneform bacteria described above in an appropriate medium, to allow L-lysine to be produced and accumulated in a culture of the bacterium, and collecting L-lysine from the culture.

The present invention also provides a DNA coding for a protein comprising an amino acid sequence shown in SEQ ID NO: 31. An example of the DNA is a DNA comprising a nucleotide sequence of nucleotide number 879 to 2174 in a nucleotide sequence shown in SEQ ID NO: 30.

The present invention further provides a vector pVK7, which is autonomously replicable in cells of <u>Escherichia coli</u> and <u>Brevibacterium lactofermentum</u>, and comprising a multiple cloning site and <u>lacZ'</u>.

The coryneform bacteria referred to in the present invention are a group of microorganisms as defined in <u>Bergey's Manual of Determinative Bacteriology</u>, 8th ed., p. 599 (1974), which are aerobic Gram-positive non-acid-fast rods having no spare-forming ability. The coryneform bacteria include bacteria belonging to the genus <u>Corynebacterium</u> bacteria belonging to the genus <u>Brevibacterium</u> but united as bacteria belonging to the genus <u>Corynebacterium</u> at present, and bacteria belonging to the genus <u>Brevibacterium</u> closely relative to bacteria belonging to the genus <u>Corynebacterium</u>.

According to the present invention, the L-lysine productivity of coryneform bacteria can be improved.

BRIEF EXPLANATION OF THE DRAWINGS

10

25

30

35

40

45

- Fig. 1 illustrates a process of construction of plasmids p399AK9B and p399AKYB comprising mutant lysC.
- Fig. 2 illustrates a process of construction of a plasmid pDPRB comprising dapB and Brevi.-ori.
- Fig. 3 illustrates a process of construction of a plasmid pDPSB comprising dapA and Brevi.-ori.
- Fig. 4 illustrates a process of construction of a plasmid p299LYSA comprising lysA.
- Fig. 5 illustrates a process of construction of a plasmid pLYSAB comprising lysA and Brevi.-ori.
- Fig. 6 illustrates a process of construction of a plasmid pCRCAB comprising lysC, dapB and Brevi.-ori.
- Fig. 7 illustrates a process of construction of a plasmid pCB comprising mutant [vsC] and dapB.
- Fig. 8 illustrates a process of construction of a plasmid pAB comprising dapA, dapB and Brevi.-ori.
- Fig. 9 illustrates a process of construction of a plasmid pCAB comprising mutant lysC, dapA, dapB, and Brevi.-ori.
- Fig. 10 illustrates a process of construction of a plasmid pCABL comprising mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and Brevi.-ori.
 - Fig. 11 illustrates a process of construction of novel doning vectors for Coryneform bacteria, pVK6 and pVK7.
 - Fig. 12 illustrates a process of construction of a plasmid pOm comprising aspC.
 - Fig. 13 illustrates two ORFs on an ATCC 13869 chromosomal DNA fragment.
 - Fig. 14 illustrates a process of construction of pORF1.

DETAILED DESCRIPTION OF THE INVENTION

(1) Preparation of genes for L-lysine biosynthesis used for the present invention

The genes for L-lysine biosynthesis used in the present invention are obtained respectively by preparing chromosomal DNA from a bacterium as a DNA donor, constructing a chromosomal DNA library by using a plasmid vector or the like, selecting a strain harboring a desired gene, and recovering, from the selected strain, recombinant DNA into which the gene has been inserted. The DNA donor for the gene for L-lysine biosynthesis used in the present invention is not specifically limited provided that the desired gene for L-lysine biosynthesis expresses an enzyme protein which functions in cells of coryneform bacteria. However, the DNA donor is preferably a coryneform bacterium.

All of the genes of <u>lysC</u>, <u>dapA</u>, <u>dapB</u> and <u>lysA</u> originating from coryneform bacteria have known sequences. Accordingly, they can be obtained by performing amplification in accordance with the polymerase chain reaction method (PCR; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)).

Each of the genes for L-lysine biosynthesis used in the present invention is obtainable in accordance with certain methods as exemplified below.

(1) Preparation of mutant lysC

A DNA fragment containing mutant <u>lysC</u> can be prepared from a mutant strain in which synergistic feedback inhibition on the AK activity by L-lysine and L-threonine is substantially desensitized (International Publication Pamphlet of WO 94/25605). Such a mutant strain can be obtained, for example, from a group of cells originating from a wild type strain of a coryneform bacterium subjected to a mutation treatment by applying an ordinary mutation treatment such as ultraviolet irradiation and treatment with a mutating agent such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The AK activity can be measured by using a method described by Miyajima, R. et al. in <u>The Journal of Biochemistry</u> (1968), 63(2), 139-148. The most preferred as such a mutant strain is represented by an L-lysine-producing bacterium AJ3445 (FERM P-1944) derived by a mutation treatment from a wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 (having its changed present name of <u>Corynebacterium glutamicum</u>).

Alternatively, mutant <u>lysC</u> is also obtainable by an <u>in vitro</u> mutation treatment of plasmid DNA containing wild type <u>lysC</u>. In another aspect, information is specifically known on mutation to desensitize synergistic feedback inhibition on AK by L-lysine and L-threonine (International Publication Pamphlet of WO 94/25605). Accordingly, mutant <u>lysC</u> can be also prepared from wild type <u>lysC</u> on the basis of the information in accordance with, for example, the site-directed mutagenesis method.

A fragment comprising <u>lysC</u> can be isolated from a coryneform bacterium by preparing chromosomal DNA in accordance with, for example, a method of Saito and Miura (H. Saito and K. Miura, <u>Biochem. Biophys. Acta</u>, <u>72</u>, 619 (1963)), and amplifying <u>lysC</u> in accordance with the polymerase chain reaction method (PCR; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)).

DNA primers are exemplified by single strand DNA's of 23-mer and 21-mer having nucleotide sequences shown in SEQ ID NOs: 1 and 2 in Sequence Listing in order to amplify, for example, a region of about 1,643 bp coding for lys_C based on a sequence known for Corynebacterium glutamicum (see Molecular Microbiology (1991), 5(5), 1197-1204; <a href="mailto:Molecular Microbiology (1991), 254, 317-324). DNA can be synthesized in accordance with an ordinary method by using DNA synthesizer model 380B produced by Applied Biosystems and using the phosphoamidite method (see Tetrahedron Letters (1981), 22, 1859). PCR can be performed by using DNA Thermal Cycler Model PJ2000 produced by Takara Shuzo, and using Taq DNA polymerase in accordance with a method designated by the supplier.

It is preferred that IvsQ amplified by PCR is ligated with vector DNA autonomously replicable in cells of <u>E. coli</u> and/or coryneform bacteria to prepare recombinant DNA, and the recombinant DNA is introduced into cells of <u>E. coli</u> beforehand. Such provision makes following operations easy. The vector autonomously replicable in cells of <u>E. coli</u> is preferably a plasmid vector which is preferably autonomously replicable in cells of a host, including, for example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, and RSF1010.

When a DNA fragment having an ability to allow a plasmid to be autonomously replicable in coryneform bacteria is inserted into these vectors, they can be used as a shuttle vector autonomously replicable in both <u>E. coli</u> and coryneform bacteria.

Such a shuttle vector includes the followings. Microorganisms harboring each of vectors and accession numbers in international deposition authorities (in parentheses) are shown.

pHC4: Escherichia coli AJ12617 (FERM BP-3532)

pAJ655: Escherichia coli AJ11882 (FERM BP-136) Corynebacterium glutamicum SR8201 (ATCC 39135)

pAJ1844: Escherichia coli AJ11883 (FERM BP-137) Corynebacterium glutamicum SR8202 (ATCC 39136)

pAJ611: Escherichia coli AJ11884 (FERM BP-138)

pAJ3148: Corynebacterium glutamicum SR8203 (ATCC 39137)

pAJ440: Bacillus subtilis AJ11901 (FERM BP-140)

These vectors are obtainable from the deposited microorganisms as follows. Cells collected at a logarithmic growth phas were lysed by using lysozyme and SDS, followed by separation from a lysate by centrifugation at $30,000 \times g$ to obtain a supernatant. To the supernatant, polyethylene glycol is added, followed by fractionation and purification by means of cesium chloride-ethicium bromide equilibrium density gradient centrifugation.

<u>E. coli</u> can be transformed by introducing a plasmid in accordance with, for example, a method of D. M. Morrison (<u>Methods in Enzymology</u>, 68, 326 (1979)) or a method in which recipient cells are treated with calcium chloride to increase permeability for DNA (Mandel, M. and Higa, A., <u>J. Mol. Biol.</u>, 53, 159 (1970)).

Wild type <u>lysC</u> is obtained when <u>lysC</u> is isolated from an AK wild type strain, while mutant <u>lysC</u> is obtained when <u>lysC</u> is isolated from an AK mutant strain in accordance with the method as described above.

An example of a nucleotide sequence of a DNA fragment containing wild type \underline{lysC} is shown in SEQ ID NO: 3 in Sequence Listing. An amino acid sequence of α -subunit of a wild type AK protein is deduced from the nucleotide sequence, and is shown in SEQ ID NO: 4 in Sequence Listing together with the DNA sequence. Only the amin acid sequence is shown in SEQ ID NO: 5. An amino acid sequence of β -subunit of the wild type AK protein is deduced from

the nucleotide sequence of DNA, and is shown in SEQ ID NO: 6 in Sequence Listing together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 7. In each of the subunits, GTG is used as an initiation codon, and a corresponding amino acid is represented by methionine. However, this representation refers to methionine, valine, or formylmethionine.

The mutant $\underline{\text{NsC}}$ used in the present invention is not specifically limited provided that it codes for AK in which synergistic feedback inhibition by L-lysine and L-threonine is desensitized. However, the mutant $\underline{\text{lysC}}$ is exemplified by one including mutation in which an amino acid residue corresponding to a 279th alanine residue as counted from the N-terminal is changed into an amino acid residue other than alanine and other than acidic amino acid in the α -subunit, and an amino acid residue corresponding to a 30th alanine residue from the N-terminal is changed into an amino acid residue other than alanine and other than acidic amino acid in the β -subunit in the amino acid sequence of the wild type AK. The amino acid sequence of the wild type AK specifically includes the amino acid sequence shown in SEQ ID NO: 5 in Sequence Listing as the α -subunit, and the amino acid sequence shown in SEQ ID NO: 7 in Sequence Listing as the β -subunit.

Those preferred as the amino acid residue other than alanine and other than acidic amino acid include threonine, arginine, cysteine, phenylalanine, proline, serine, tyrosine, and valine residues.

The codon corresponding to an amino acid residue to be substituted is not specifically limited for its type provided that it codes for the amino acid residue. It is predicted that the amino acid sequence of wild type AK may slightly differ depending on the difference in bacterial species and bacterial strains. AK's, which have mutation based on, for example, substitution, deletion, or insertion of one or more amino acid residues at one or more positions irrelevant to the enzyme activity as described above, can be also used for the present invention. A DNA coding for AK having the spontaneous mutation can be obtained by isolating a DNA which is hybridizable with, for example, the DNA having a part of the nucleotide sequence shown in SEQ ID NO: 3 under the stringent condition. By the "stringent condition" referred to herein is meant a condition under which a specific hybrid is formed, and nonspecific hybrid is not formed. It is difficult to clearly express the condition with numerical values. However, the condition is exemplified by a condition under which, nucleic acid having high homology, for example, DNA's having homology of not less than 90% are hybridized with each other, and nucleic acids having homology lower than the above are not hybridized with each other, or a condition of a temperature of from a melting out temperature (Tm) of a completely-matched hybrid to (Tm - 30)°C, preferably from Tm to (Tm - 20)°C and a salt concentration corresponding to 1 x SSC, preferably 0.1 x SSC.

Other AK's, which have artificial mutation based on, for example, substitution, deletion, or insertion of other one or more amino acid residues, can be also used provided that no influence is substantially exerted on the AK activity, and on the desensitization of synergistic feedback inhibition by L-lysine and L-threonine. A DNA coding for AK having the artificial mutation can be obtained by modifying the nucleotide sequence to give substitution, deletion or insertion of a specified site by, for example, site-specific mutagenesis. Also, lysC having the mutation can be obtained by known mutagen treatment. The mutagen treatment includes in vitro treatment of a DNA containing lysC with hydroxylamine or the like, and treatment of microorganism harboring a DNA containing lysC with a mutagen such as ultraviolet irradiation or a mutagenic agent used for ordinary artificial mutagenesis such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) or nitric acid. After the mutagen treatment, a site to which mutation is introduced or in which mutation occurs can be determined by selecting a DNA or a microorganism which codes for or produces AK which has the AK activity and whose amino acid sequence is mutated from the DNA subjected to the mutagen treatment or the microorganism subjected to the mutagen treatment. A site of the introduced mutation is not specifically restricted provided that no influence is substantially exerted on the AK activity and on desensitization of feedback inhibition. A number of the introduced mutation varies depending on a site or a kind of the mutated amino acid in a steric structure of a protein, and is not specifically restricted provided that no influence is substantially exerted on the AK activity and on desensitization of feedback inhibition. The number is usually 1 to 20, preferably 1 to 10.

An amino acid residue corresponding to the specified alanine residue in the amino acid sequence of AK having the mutation as described above can be easily determined by one skilled in the art.

An AJ12691 strain obtained by introducing a mutant <u>lysC</u> plasmid p399AK9B into an AJ12036 strain (FERM BP-734) as a wild type strain of <u>Brevibacterium lactofermentum</u> has been deposited on April 10, 1992 under an accession number of FERM P-12918 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, 305 Japan), transferred to international deposition based on the Budapest Treaty on February 10, 1995, and deposited under an accession number of FERM BP-4999.

(2) Preparation of dapB

45

55

A DNA fragment containing <u>dapB</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain.

A DNA sequence coding for DDPR is known for <u>Brevibacterium lactofermentum</u> (<u>Journal of Bacteriology</u>, <u>175(9)</u>, 2743-2749 (1993)), on the basis of which DNA primers for PCR can be prepared. Such DNA primers ar specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences depicted in SEQ ID NOs: 8 and 9 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid containing obtained <u>dapB</u> can be performed in the same manner as those for <u>lysC</u> described above.

A nucleotide sequence of a DNA fragment containing <u>dapB</u> and an amino acid sequence deduced from the nucleotide sequence are illustrated in SEQ ID NO: 10. Only the amino acid sequence is shown in SEQ ID NO: 11. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 11, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDPR activity. The <u>dapB</u> having spontaneous or artificial mutation can be obtained in the same manner as those for the DNA coding for AK having mutation which exerts no influence on the AK activity and on the desensitization of synergistic feedback inhibition by L-tysine and L-threonine.

A transformant strain AJ13107 obtained by introducing a plasmid pCRDAPB containing <u>dapB</u> obtained in Example described later on into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5114 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, 305 Japan) based on the Budapest Treaty.

(3) Preparation of dapA

A DNA fragment containing <u>dapA</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain.

A DNA sequence coding for DDPS is known for <u>Corynebacterium glutamicum</u> (see <u>Nucleic Acids Research</u>, <u>18(21)</u>, 6421 (1990); <u>EMBL</u> accession No. X53993), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences depicted in SEQ ID NOs: 12 and 13 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid containing obtained <u>dapA</u> can be performed in the same manner as those for <u>lysC</u> described above.

A nucleotide sequence of a DNA fragment containing dapA and an amino acid sequence deduced from the nucleotide sequence are exemplified in SEQ ID NO: 14. Only the amino acid sequence is shown in SEQ ID NO: 15. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 15, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDPS activity. The dapA having spontaneous or artificial mutation can be obtained in the same manner as those for the DNA coding for AK having mutation which exerts no influnce on the AK activity and on the desensitization of synergistic feedback inhibition by L-lysine and L-threorine.

A transformant strain AJ13106 obtained by introducing a plasmid pCRDAPA containing <u>dapA</u> obtained in Example described later on into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5113 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, 305 Japan) based on the Budapest Treaty.

(14) Preparation of lysA

A DNA fragment containing <u>lysA</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain.

In the coryneform bacteria, IysA forms an operon together with args (arginyl-tRNA synthase gene), and IysA exists downstream from args. Expression of IysA is regulated by a promoter existing upstream from args (see Journal of Bacteriology, Nov., 7356-7362 (1993)). DNA sequences of these genes are known for Corynebacterium glutamicum (see Molecular and General Genetics, 212, 112-119 (1988)), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences shown in SEQ ID NO: 16 in Sequence Listing (corresponding to nucleotide numbers 11 to 33 in a nucleotide sequence described in Molecular Microbiology, 4(11), 1819-1830 (1990)) and SEQ ID NO: 17 (corresponding to nucleotide numbers 1370 to 1392 in a nucleotide sequence described in Molecular and General Genetics, 212, 112-119 (1988)). Synthesis of DNA, PCR, and preparation of a plasmid containing obtained [ysA] can be performed in the same manner as those for <a href="[ysC] described above.

In Example described later on, a DNA fragment containing a promoter, <u>argS</u>, and <u>lysA</u> was used in order to enhance <u>lysA</u>. However, <u>argS</u> is not essential for the present invention. It is allowable to use a DNA fragment in which <u>lysA</u> is ligated just downstream from a promoter.

A nucleotide sequence of a DNA fragment containing argS and lysA, and an amino acid sequence deduced to be encoded by the nucleotide sequence are exemplified in SEQ ID NO: 18. An example of an amino acid sequence encoded by args is shown in SEQ ID NO: 19, and an example of an amino acid sequence encoded by lysA is shown in SEQ ID NO: 20. In addition to DNA fragments coding for these amino acid sequences, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 20, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDC activity. The lysA having spontaneous or artificial mutation can be obtained in the same manner as those for the DNA coding for AK having mutation which exerts no influence on the AK activity and on the desensitization of synergistic feedback inhibition by L-lysine and L-threonine.

(5) Preparation of aspC

25

30

A DNA fragment containing aspC can be prepared from a gene library prepared from chromosome of a microorganism such as a coryneform bacterium and a bacterium belonging to the genus <u>Escherichia</u> by using complementarity to an auxotrophic property of an AAT-deficient strain as an indication. The DNA donor of the coryneform bacterium is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain. The DNA donor of the bacterium belonging to the genus <u>Escherichia</u> is not specifically limited, however, it is exemplified by <u>E. coli</u> JM109 strain.

Specifically, a method for preparing <u>aspC</u> of coryneform bacteria is known (Japanese Patent Publication No. 6-102028) and <u>aspC</u> can be prepared according to this method.

A DNA sequence coding for AAT is known for <u>E.coli</u> (Kuramitsu, S. et al., <u>J. Biochem.</u>, <u>97(4)</u>, 1259-1262 (1985)), on the basis of which primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 20-mers respectively having nucleotide sequences depicted in SEQ ID NOs: 21 and 22 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid containing obtained <u>aspC</u> can be performed in the same manner as those for <u>lysC</u> described above.

A nucleotide sequence of a DNA fragment containing aspC and an amino acid sequence deduced from the nucleotide sequence are illustrated in SEQ ID NO: 23. Only the amino acid sequence is shown in SEQ ID NO: 24. Another nucleotide sequence of a DNA fragment containing aspC and an amino acid sequence deduced from the nucleotide sequence are illustrated in SEQ ID NO: 30. Only the amino acid sequence is shown in SEQ ID NO: 31. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 24 or 31, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the AAT activity. The aspC having spontaneous or artificial mutation can be obtained in the same manner as those for the DNA coding for AK having mutation which exerts no influence on the AK activity and on the desensitization of synergistic feedback inhibition by L-lysine and L-threonine.

The aspC having the nucleotide sequence shown in SEQ ID NO: 30 originates from Corynebacterium lactofermentum, and has been firstly obtained according to the method described in Example 9 described below by the present invention. Thus, the present invention provides a DNA coding for a protein comprising the amino acid sequence shown in SEQ ID NO: 31. An example of the DNA includes a DNA comprising a nucleotide sequence of nucleotide number 879 to 2174 in a nucleotide sequence shown in SEQ ID NO: 30.

(2) Recombinant DNA and coryneform bacterium of the present invention

The coryneform bacterium of the present invention harbors an aspartokinase (mutant AK) in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, wherein the DNA sequence coding for a dihydordipicolinate reductase, the DNA sequence coding for a dihydordipicolinate synthase, the DNA sequence coding for a diaminopimelate decarboxylase and the DNA coding for an aspartate aminotransferase are enhanced.

The term "enhance" herein refers to the fact that the intracellular activity of an enzyme encoded by the DNA is raised by, for example, increasing the copy number of a gene, using a strong promoter, using a gene coding for an enzyme having a high specific activity, or combining these means.

The coryneform bacterium harboring the mutant AK may be those which produce the mutant aspartokinase as a result of mutation, or those which are transformed by introducing mutant <u>lysC</u>.

Examples of the coryneform bacterium used to introduce the DNA described above include, for example, the following lysine-producing wild type strains:

Corynebacterium acetoacidophilum ATCC 13870;

Corynebacterium acetoglutamicum ATCC 15806;

Corynebacterium callunae ATCC 15991;

Corvnebacterium glutamicum ATCC 13032;

(Brevibacterium divaricatum) ATCC 14020;

(Brevibacterium lactofermentum) ATCC 13869;

(Corynebacterium lilium) ATCC 15990;

(Brevibacterium flavum) ATCC 14067;

Corynebacterium melassecola ATCC 17965;

Brevibacterium saccharolyticum ATCC 14066;

Brevibacterium immariophilum ATCC 14068;

Brevibacterium roseum ATCC 13825;

10

15

Brevibacterium thiogenitalis ATCC 19240;

Microbacterium ammoniaphilum ATCC 15354;

Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539).

Other than the bacterial strains described above, those usable as a host include, for example, mutant strains having an L-lysine-producing ability derived from the aforementioned strains. Such artificial mutant strains includes the followings: S-(2-aminoethyl)cysteine (hereinafter abbreviated as "AEC") resistant mutant strains (for example, Brevibacterium lactofermentum AJ11082 (NRRL B-1147), Japanese Patent Publication Nos. 56-1914, 56-1915, 57-14157, 57-14158, 57-30474, 58-10075, 59-4993, 61-35840, 62-24074, 62-36673, 5-11958, 7-112437, and 7-112438); mutant strains which require amino acid such as L-homoserine for their growth (Japanese Patent Publication Nos. 48-28078 and 56-6499); mutant strains which exhibit resistance to AEC and require amino acids such as L-leucine, L-homoserine, L-proline, L-serine, L-arginine, L-alanine, and L-valine (United States Patent Nos. 3,708,395 and 3,825,472); L-lysine-producing mutant strains which exhibit resistance to DL- α -amino- ϵ -caprolactam, α -amino-lauryllactam, aspartate-analog, sulfa drug, quinoid, and N-lauroylleucine; L-lysine-producing mutant strains which exhibit resistance to inhibitors of oxyaloacetate decarboxylase or respiratory system enzymes (Japanese Patent Application Laid-open Nos. 50-53588, 50-31093, 52-102498, 53-9394, 53-86089, 55-9783, 55-9759, 56-32995 and 56-39778, and Japanese Patent Publication Nos. 53-43591 and 53-1833); L-lysine-producing mutant strains which require inositol or acetic acid (Japanese Patent Application Laid-open Nos. 55-9784 and 56-8692); L-lysine-producing mutant strains which exhibit sensitivity to fluoropyruvic acid or temperature not less than 34°C (Japanese Patent Application Laid-open Nos. 55-9783 and 53-86090); and producing mutant strains belonging to the genus Brevibacterium or Corynebacterium which exhibit resistance to ethylene glycol and produce L-lysine (United States Patent No. 4,411,997).

In a specified embodiment, in order to enhance the genes for L-lysine biosynthesis in the host as described above, the genes are introduced into the host by using a plasmid vector, transposon or phage vector or the like. Upon the introduction, it is expected to make enhancement to some extent even by using a low copy type vector. However, it is preferred to use a multiple copy type vector. Such a vector includes, for example, plasmid vectors, pAJ655, pAJ1844, pAJ611 pAJ3148, and pAJ440 described above. Besides, transposons derived from coryneform bacteria are described in International Publication Pamphlets of WO02/02627 and WO93/18151, European Patent Publication No. 445385, Japanese Patent Application Laid-open No. 6-46867, Vertes, A. A. et al., Mol. Microbiol., 11, 739-746 (1994), Bonamy, C., et al., Mol. Microbiology Letters, 126, 1-6 (1995), Japanese Patent Application Laid-open No. 7-107976, Japanese Patent Application Laid-open No. 7-327680 and the like.

In the present invention, it is not indispensable that the mutant <u>lysC</u> is necessarily enhanced. It is allowable to use those which have mutation on <u>lysC</u> on chromosomal DNA, or in which the mutant <u>lysC</u> is incorporated into chromosomal DNA. Alternatively, the mutant <u>lysC</u> may be introduced by using a plasmid vector. On the other hand, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and <u>aspC</u> are preferably enhanced in order to efficiently produce L-lysine.

Each of the genes of <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and <u>aspC</u> may be successively introduced into the host by using different vectors respectively. Alternatively, two, three, four, or five species of the genes may be introduced together by using a single vector. When different vectors are used, the genes may be introduced in any order, however, it is preferred to use vectors which have a stable sharing and harboring mechanism in the host, and which are capable of coexisting with each other.

Particularly, as a vector for introducing <u>aspC</u> into coryneform bacteria, a vector pVK7 is preferably used. The vector pVK7 is a cloning vector for coryneform bacteria provided by the present invention, which is autonomously replicable in cells of <u>Escherichia coli</u> and <u>Brevibacterium lactofermentum</u>, and comprising a multiple cloning site and <u>lacZ'</u>. The vector pVK7 can be constructed according to the method described in Example 8 described below.

A coryneform bacterium harboring the mutant AK and further comprising enhanced <u>dapB</u>, <u>dapA</u>, <u>lysA</u> and <u>aspC</u> is obtained, for example, by introducing, into a host coryneform bacterium, a recombinant DNA containing mutant <u>lysC</u>

and dapB, dapA, lysA and aspC autonomously replicable in cells of coryneform bacteria.

The above-mentioned recombinant DNAs can be obtained, for example, by inserting each of the genes participating in L-lysine biosynthesis into a vector such as plasmid vector, transposon or phage vector as described above.

In the case in which a plasmid is used as a vector, the recombinant DNA can be introduced into the host in accordance with an electric pulse method (Sugimoto et al., Japanese Patent Application Laid-open No. 2-207791). Amplification of a gene using transposon can be performed by introducing a plasmid which carrying a transposon into the host cell and inducing transposition of the transposon.

In coryneform bacteria used in the present invention, a gene participating in L-lysine biosynthesis such as a DNA sequence coding for a phosphoenolpyruvate carboxylase and a DNA sequence coding for a diaminopimelate dehydrogenase may be enhanced in addition to the above-mentioned genes.

(3) Method for producing L-lysine

L-Lysine can be efficiently produced by cultivating, in an appropriate medium, the coryneform bacterium comprising the enhanced genes for L-lysine biosynthesis as described above, to allow L-lysine to be produced and accumulated in a culture of the bacterium, and collecting L-lysine from the culture.

The medium to be used is exemplified by an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and optionally other organic components.

As the carbon source, it is possible to use sugars such as glucose, fructose, sucrose, molasses, and starch hydrolysate; and organic acids such as furnaric acid, citric acid, and succinic acid.

As the nitrogen source, it is possible to use inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate; organic nitrogen such as soybean hydrolysate; ammonia gas; and aqueous ammonia.

As organic trace nutrient sources, it is desirable to contain required substances such as vitamin B₁ and L-homoserine or yeast extract or the like in appropriate amounts. Other than the above, potassium phosphate, magnesium sulfate, iron ion, manganese ion and so on are added in small amounts, if necessary.

Cultivation is preferably carried out under an aerobic condition for about 30 to 90 hours. The cultivation temperature is preferably controlled at 25°C to 37°C, and pH is preferably controlled at 5 to 8 during cultivation. Inorganic or organic, acidic or alkaline substances, or ammonia gas or the like can be used for pH adjustment. L-lysine can be collected from a culture by combining an ordinary ion exchange resin method, a precipitation method, and other known methods.

EXAMPLES

The present invention will be more specifically explained below with reference to Examples.

Example 1: Preparation of Wild Type lysC Gene and Mutant lysC Gene from Brevibacterium lactofermentum

(1) Preparation of wild type and mutant lysC's and preparation of plasmids containing them

A strain of <u>Brevibacterium lactofermentum</u> ATCC 13869, and an L-lysine-producing mutant strain AJ3445 (FERM P-1944) obtained from the ATCC 13869 strain by a mutation treatment were used as chromosomal DNA donors. The AJ3445 strain had been subjected to mutation so that <u>lysC</u> was changed to involve substantial desensitization from concerted inhibition by lysine and threonine (<u>Journal of Biochemistry</u>, 68, 701-710 (1970)).

A DNA fragment containing <u>lysC</u> was amplified from chromosomal DNA in accordance with the PCR method (polymerase chain reaction; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)). As for DNA primers used for amplification, single strand DNA's of 23-mer and 21-mer having nucleotide sequences shown in SEQ ID NOs: 1 and 2 were synthesized in order to amplify a region of about 1,643 bp coding for <u>lysQ</u> on the basis of a sequence known for <u>Coryne-bacterium glutamicum</u> (see <u>Molecular Microbiology</u> (1991), <u>5(5)</u>, 1197-1204; and <u>Mol. Gen. Genet.</u> (1990), <u>224</u>, 317-324). DNA was synthesized in accordance with an ordinary method by using DNA synthesizer model 380B produced by Applied Biosystems and using the phosphoamidite method (see <u>Tetrahedron Letters</u> (1981), <u>22</u>, 1859).

The gene was amplified by PCR by using DNA Thermal Cycler Model PJ2000 produced by Takara Shuzo, and using Taq DNA polymerase in accordance with a method designated by the supplier. An amplified gene fragment of 1,643 kb was confirmed by agarose gel electrophoresis. After that, the fragment excised from the gel was purified in accordance with an ordinary method, and it was digested with restriction enzymes Nrul (produced by Takara Shuzo) and EcoRic (produced by Takara Shuzo).

pHSG399 (see Takeshita, S. et al., <u>Gene</u> (1987), <u>61</u>, 63-74) was used as a cloning vector for the gene fragment. pHSG399 was digested with restriction enzymes <u>Smal</u> (produced by Takara Shuzo) and <u>Eco</u>RI, and it was ligated with the amplified <u>lysC</u> fragment. DNA was ligated by using DNA ligation kit (produced by Takara Shuzo) in accordance with a designated method. Thus plasmids were prepared, in which the <u>lysC</u> fragments amplified from chromosomes of

Brevibacterium lactofermentum were ligated with pHSG399 respectively. A plasmid comprising lysC from ATCC 13869 (wild type strain) was designated as p399AKY, and a plasmid comprising lysC from AJ3463 (L-lysine-producing bacterium) was designated as p399AK9.

A DNA fragment (hereinafter referred to as "Brevi.-ori") having an ability to make a plasmid autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u> was introduced into p399AKY and p399AK9 respectively to prepare plasmids carrying <u>lysC</u> autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u>. Brevi.-ori was prepared from a plasmid vector pHK4 containing Brevi.-ori and autonomously replicable in cells of both <u>Escherichia coli</u> and bacteria belonging to the genus <u>Corynebacterium</u>. pHK4 was constructed by digesting pHC4 with <u>Konl</u> (produced by Takara Shuzo) and <u>Bam</u>HI, (produced by Takara Shuzo), extracting a Brevi.-ori fragment, and ligating it with pHSG298 having been also digested with <u>Konl</u> and <u>Bam</u>HI (see Japanese Patent Application Laid-open No. 5-7491). pHK4 gives kanamycin resistance to a host. <u>Escherichia coli</u> harboring pHK4 was designated as <u>Escherichia coli</u> AJ13136, and deposited on August 1, 1995 under an accession number of FERM BP-5186 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, 305 Japan).

pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>BamHI</u>, and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>BamHI</u> linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>BamHI</u>. This plasmid was digested with <u>BamHI</u>, and the generated Brevi.-ori DNA fragment was ligated with p399AKY and p399AK9 having been also digested with <u>BamHI</u> respectively to prepare plasmids each containing the <u>lysC</u> gene autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u>.

A plasmid containing the wild type lysC gene originating from p399AKY was designated as p399AKYB, and a plasmid containing the mutant lysC gene originating from p399AK9 was designated as p399AK9B. The process of construction of p399AK9B and p399AKYB is shown in Fig. 1. A strain AJ12691 obtained by introducing the mutant lysC plasmid p399AK9B into a wild type strain of Brevibacterium lactofermentum (AJ12036 strain, FERM BP-734) was deposited on April 10, 1992 under an accession number of FERM P-12918 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, 305 Japan), transferred to international deposition based on the Budapest Treaty on February 10, 1995, and deposited under an accession number of FERM BP-4999.

(2) Determination of nucleotide sequences of wild type lysC and mutant lysC from Brevibacterium lactofermentum

The plasmid p399AKY containing the wild type <u>lysC</u> and the plasmid p399AK9 containing the mutant <u>lysC</u> were prepared from the respective transformants to determine nucleotide sequences of the wild type and mutant <u>lysC's</u> Nucleotide sequence determination was performed in accordance with a method of Sanger et al. (for example, F. Sanger et al., <u>Proc. Natl. Acad. Sci.</u>, <u>74</u>, 5463 (1977)).

The nucleotide sequence of wild type <u>lysC</u> encoded by p399AKY is shown in SEQ ID NO: 3 in Sequence Listing. On the other hand, the nucleotide sequence of mutant <u>lysC</u> encoded by p399AK9 had only mutation of one nucleotide such that 1051st G was changed into A in SEQ ID NO: 3 as compared with wild type <u>lysC</u>. It is known that <u>lysC</u> of <u>Corynebacterium glutamicum</u> has two subunits (α, β) encoded in an identical reading frame on an identical DNA strand (see Kalinowski, J. et al., <u>Molecular Microbiology</u> (1991) <u>5(5)</u>, 1197-1204). Judging from homology, it is assumed that the gene sequenced herein also has two subunits (α, β) encoded in an identical reading frame on an identical DNA strand

An amino acid sequence of the α -subunit of the wild type AK protein deduced from the nucleotide sequence of DNA is shown in SEQ ID NO: 4 together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 5. An amino acid sequence of the β -subunit of the wild type AK protein deduced from the nucleotide sequence of DNA is shown in SEQ ID NO: 6 together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 7. In each of the subunits, GTG is used as an initiation codon, and a corresponding amino acid is represented by methionine. However, this representation refers to methionine, valine, or formylmethionine.

On the other hand, mutation on the sequence of mutant \underline{IysC} means occurrence of amino acid residue substitution such that a 279th alanine residue of the α -subunit is changed into a threonine residue, and a 30th alanine residue of the β -subunit is changed into a threonine residue in the amino acid sequence of the wild type AK protein (SEQ ID NOs: 5, 7).

55

Example 2: Preparation of dap8 from Brevibacterium lactofermentum

(1) Preparation of dapB and construction of plasmid containing dapB

5

A wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing <u>dapB</u> was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, DNA's of 23-mers having nucleotide sequences shown in SEQ ID NOs: 8 and 9 in Sequence Listing respectively were synthesized in order to amplify a region of about 2.0 kb coding for DDPR on the basis of a sequence known for <u>Brevibacterium lactofermentum</u> (see <u>Journal of Bacteriology</u>, 175(9), 2743-2749 (1993)). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pCR-Script (produced by Invitrogen) was used as a cloning vector for the amplified gene fragment of 2,001 bp, and was ligated with the amplified <u>dapB</u> fragment. Thus a plasmid was constructed, in which the <u>dapB</u> fragment of 2,001 bp amplified from chromosome of <u>Brevibacterium lactofermentum</u> was ligated with pCR-Script. The plasmid obtained as described above, which had <u>dapB</u> originating from ATCC 13869, was designated as pCRDAPB. A transformant strain AJ13107 obtained by introducing pCRDAPB into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5114 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, 305 Japan) based on the Budapest Treaty.

A fragment of 1,101 bp containing a structural gene of DDPR was extracted by digesting pCRDAPB with <u>Eco</u>RV and <u>Sph</u>I. This fragment was ligated with pHSG399 having been digested with <u>Hin</u>cII and <u>Sph</u>I to prepare a plasmid. The prepared plasmid was designated as p399DPR.

Brevi.-ori was introduced into the prepared p399DPR to construct a plasmid carrying <u>dapB</u> autonomously replicable in coryneform bacteria. pHK4 was digested with a restriction enzyme <u>Kpn</u>I (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>Bam</u>HI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>Bam</u>HI. This plasmid was digested with <u>Bam</u>HI, and the generated Brevi.-ori DNA fragment was ligated with p399DPR having been also digested with <u>Bam</u>HI to prepare a plasmid containing <u>dapB</u> autonomously replicable in coryneform bacteria. The prepared plasmid was designated as pDPRB. The process of construction of pDPRB is shown in Fig. 2.

(2) Determination of nucleotide sequence of dapB from Brevibacterium lactofermentum

Plasmid DNA was prepared from the AJ13107 strain harboring p399DPR, and its nucleotide sequence was determined in the same manner as described in Example 1. A determined nucleotide sequence and an amino acid sequence deduced from the nucleotide sequence are shown in SEQ ID NO: 10. Only the amino acid sequence is shown in SEQ ID NO: 11.

40 Example 3: Preparation of dapA from Brevibacterium lactofermentum

(1) Preparation of dapA and construction of plasmid containing dapA

A wild type strain of Brevibacterium lactofermentum ATCC 13869 was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing dapA was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, DNAs of 23-mers having nucleotide sequences shown in SEQ ID NOs: 12 and 13 in Sequence Listing respectively were synthesized in order to amplify a region of about 1.5 kb coding for DDPS on the basis of a sequence known for Corynebacterium glutamicum (see Nucleic Acids Research, 18(21), 6421 (1990); EMBL accession No. X53993). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pCR1000 (produced by Invitrogen, see Bio/Technology, 9, 657-663 (1991)) was used as a cloning vector for the amplified gene fragment of 1,411 bp, and was ligated with the amplified dapA fragment. Ligation of DNA was performed by using DNA ligation kit (produced by Takara Shuzo) in accordance with a designated method. Thus a plasmid was constructed, in which the dapA fragment of 1,411 bp amplified from chromosome of Brevibacterium lactofermentum was ligated with pCR1000. The plasmid obtained as described above, which had dapA originating from ATCC 13869, was designated as pCRDAPA.

A transformant strain AJ13106 obtained by introducing pCRDAPA into E. coli JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5113 in National Institute of Bioscience and

Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, 305 Japan) based on the Budapest Treaty.

Brevi.-ori was introduced into the prepared pCRDAPA to construct a plasmid carrying <u>dapA</u> autonomously replicable in coryneform bacteria. pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>BamHI</u> (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>SmaI</u> linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>SmaI</u>. This plasmid was digested with <u>SmaI</u>, and the generated Brevi.-ori DNA fragment was ligated with pCRDAPA having been also digested with <u>SmaI</u> to prepare a plasmid containing <u>dapA</u> autonomously replicable in coryneform bacteria. This plasmid was designated as pDPSB. The process of construction of pDPSB(Km¹) is shown in Fig. 3.

(2) Determination of nucleotide sequence of dapA from Brevibacterium lacofermentum

Plasmid DNA was prepared from the AJ13106 strain harboring pCRDAPA, and its nucleotide sequence was determined in the same manner as described in Example 1. A determined nucleotide sequence and an amino acid sequence deduced from the nucleotide sequence are shown in SEQ ID NO: 14. Only the amino acid sequence is shown in SEQ ID NO: 15.

Example 4: Preparation of lysA from Brevibacterium lactofermentum

(1) Preparation of lysA and construction of plasmid containing lysA

A wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing <u>argS</u>, <u>tysA</u>, and a promoter of an operon containing them was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, synthetic DNAs of 23-mers having nucleotide sequences shown in SEQ ID NOs: 16 and 17 in Sequence Listing respectively were used in order to amplify a region of about 3.6 kb coding for arginyl-tRNA synthase and DDC on the basis of a sequence known for <u>Corynebacterium glutamicum</u> (see <u>Molecular Microbiology</u>, <u>4(11)</u>, 1819-1830 (1990); <u>Molecular and General Genetics</u>, <u>212</u>, 112-119 (1988)). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pHSG399 was used as a cloning vector for the amplified gene fragment of 3,579 bp. pHSG399 was digested with a restriction enzyme <u>Smal</u> (produced by Takara Shuzo), which was ligated with the DNA fragment containing amplified <u>tysA</u>. A plasmid obtained as described above, which had <u>tysA</u> originating from ATCC 13869, was designated as p399LYSA.

A DNA fragment containing <u>lysA</u> was extracted by digesting p399LYSA with <u>Kon</u>I (produced by Takara Shuzo) and <u>Bam</u>HI (produced by Takara Shuzo). This DNA fragment was ligated with pHSG299 having been digested with <u>Kon</u>I and <u>Bam</u>HI. An obtained plasmid was designated as p299LYSA. The process of construction of p299LYSA is shown in Fig. 4.

Brevi.-ori was introduced into the obtained p299LYSA to construct a plasmid carrying LysA autonomously replicable in coryneform bacteria. pHK4 was digested with restriction enzymes Kpn! and BamHI, and deaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated Kpn! linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only Kpn!. This plasmid was digested with Kpn!, and the generated Brevi.-ori DNA fragment was ligated with p299LYSA having been also digested with Kpn! to prepare a plasmid containing IySA autonomously replicable in coryneform bacteria. The prepared plasmid was designated as pLYSAB. The process of construction of pLYSAB is shown in Fig. 5.

(2) Determination of nucleotide sequence of lysA from Brevibacterium lactofermentum

50

55

Example 5: Preparation of aspC from Escherichia coli and Construction of Plasmid Containing aspC

An Escherichia coli JM109 strain was used as a chromosomal DNA donor. Chromosomal DNA was prepared from

the <u>E.coli</u> JM109 strain in accordance with an ordinary method. A DNA fragment containing <u>aspC</u> was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, synthetic DNA's of 20-mers having nucleotide sequences shown in SEQ ID NOs: 21 and 22 in Sequence Listing respectively were used on the basis of a sequence known for <u>E. coli</u> (see Kuramitsu, S. et al., <u>J. Biochem.</u>, <u>97(4)</u>, 1259-1262 (1985)). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. The amplified fragment of 1,331 bp was cloned into TA cloning vector pCR1000. The constructed plasmid was designated as pCRASPC.

A nucleotide sequence of the amplified DNA containing aspC and an amino acid sequence deduced to be encoded by the nucleotide sequence are shown in SEQ ID NO: 23. Only the amino acid sequence is shown in SEQ ID NO: 24.

Comparative Example 1: Construction of Plasmid Comprising Combination of Mutant lysC and dapA

A plasmid comprising mutant <u>lysC</u>, <u>dapA</u>, and replication origin of coryneform bacteria was constructed from the plasmid pCRDAPA comprising <u>dapA</u> and the plasmid p399AK9B comprising mutant <u>lysC</u> and Brevi.-ori. p399AK9B was completely digested with <u>Sall</u>, and then blunt-ended, and was ligated with an <u>Eco</u>Rl linker to construct a plasmid in which the <u>Sall</u> site was modified into an <u>Eco</u>Rl site. The obtained plasmid was designated as p399AK9BSE. The mutant <u>lysC</u> and Brevi.-ori were excised as one fragment by partially digesting p399AK9BSE with <u>Eco</u>Rl. This fragment was ligated with pCRDAPA having been digested with <u>Eco</u>Rl. An obtained plasmid was designated as pCRCAB. This plasmid is autonomously replicable in <u>E. coli</u> and coryneform bacteria, and it gives kanamyon resistance to a host, the plasmid comprising a combination of mutant <u>lysC</u> and <u>dapA</u>. The process of construction of pCRCAB is shown in Fig. 6.

Comparative Example 2: Construction of Plasmid Comprising Combination of Mutant lysC and dapB

20

55

A plasmid comprising mutant <u>lysC</u> and <u>dapB</u> was constructed from the plasmid p399AK9 having mutant <u>lysC</u> and the plasmid p399DPR having <u>dapB</u>. A fragment of 1,101 bp containing a structural gene of DDPR was extracted by digesting p399DPR with <u>Eco</u>RV and <u>SphI</u>. This fragment was ligated with p399AK9 having been digested with <u>SalI</u> and then blunt-ended and having been further digested with <u>SphI</u> to construct a plasmid comprising a combination of mutant <u>lysC</u> and <u>dapB</u>. This plasmid was designated as p399AKDDPR.

Next, Brevi.-ori was introduced into the obtained p399AKDDPR. The plasmid pHK4 containing Brevi.-ori was digested with a restriction enzyme <u>Kpn</u>I (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>Bam</u>HI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>Bam</u>HI. This plasmid was digested with <u>Bam</u>HI, and the generated Brevi.-ori DNA fragment was ligated with p399AKDDPR having been also digested with <u>Bam</u>HI to construct a plasmid containing mutant <u>lysC</u> and <u>dapB</u> autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCB. The process of construction of pCB is shown in Fig. 7.

Comparative Example 3: Construction of Plasmid Comprising Combination of dapA and dapB

The plasmid pCRDAPA comprising <u>dapA</u> was digested with <u>Kpn</u>I and <u>Eco</u>RI to extract a DNA fragment containing <u>dapA</u>, and was ligated with the vector plasmid pHSG399 having been digested with <u>Kpn</u>I and <u>Eco</u>RI. An obtained plasmid was designated as p399DPS.

On the other hand, the plasmid pCRDAPB comprising <u>dapB</u> was digested with <u>Sac</u>II and <u>Eco</u>RI to extract a DNA fragment of 2.0 kb containing a region coding for DDPR, and was ligated with p399DPS having been digested with <u>Sac</u>II and <u>Eco</u>RI to construct a plasmid comprising a combination of <u>dapA</u> and <u>dapB</u>. The obtained plasmid was designated as p399AB.

Next, Brevi.-ori was introduced into p399AB. pHK4 containing Brevi.-ori was digested with a restriction enzyme BamHI (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated KpnI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only KpnI. This plasmid was digested with KpnI, and the generated Brevi.-ori DNA fragment was ligated with p399AB having been also digested with KpnI to construct a plasmid containing dapA and dapB autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pAB. The process of construction of pAB is shown in Fig. 8.

Example 6: Construction of Plasmid Comprising Combination of Mutant lysC, dapA, and dapB

p399DPS was digested with EcoRI and SphI and blunt-ended, followed by extraction of a dapA gene fragment. This

fragment was ligated with the p399AK9 having been digested with \underline{Sal} 1 and blunt-ended to construct a plasmid p399CA in which mutant \underline{IvsC} and \underline{dapA} co-existed.

The plasmid pCRDAPB comprising <u>dapB</u> was digested with <u>EcoRI</u> and blunt-ended, followed by digestion with <u>SacI</u> to extract a DNA fragment of 2.0 kb comprising <u>dapB</u>. The plasmid p399CA comprising <u>dapA</u> and mutant <u>lysC</u> was digested with <u>SocI</u> and blunt-ended, and was thereafter digested with <u>SacI</u> and ligated with the extracted <u>dapB</u> fragment to obtain a plasmid comprising mutant <u>lysC</u>, <u>dapA</u>, and <u>dapB</u>. This plasmid was designated as p399CAB.

Next, Brevi.-ori was introduced into p399CAB. The plasmid pHK4 comprising Brevi.-ori was digested with a restriction enzyme BamHI (produced by Takara Shuzo), and cleaved edges were blunt-ended. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated Konl linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only Konl. This plasmid was digested with Konl, and the generated Brevi.-ori DNA fragment was ligated with p399CAB having been also digested with Konl to construct a plasmid comprising a combination of mutant lysC, dapA, and dapB autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCAB. The process of construction of pCAB is shown in Fig. 9.

Example 7: Construction of Plasmid Comprising Combination of Mutant lysC, dapA, dapB, and lysA

Example 8: Construction of Plasmid Comprising aspC

As a vector for introducing <u>aspC</u> into coryneform bacteria, a cloning vector for coryneform bacteria, pVK7 which was newly constructed was used. pVK7 was constructed by ligating pHSG299, a vector for <u>E.coli</u> (Km¹; Takeshita, S. et al., <u>Gene</u>, <u>61</u>, 63-74 (1987)) with pAM330, a cryptic plasmid for <u>Brevibacterium lactofermentum</u> as described below. pAM330 was prepared from <u>Brevibacterium lactofermentum</u> ATCC 13869 strain. pHSG299 was digested with a restriction enzyme resulting one cleavage site, <u>Avall</u> (produced by Takara Shuzo), blunt-ended by using T4 DNA polymerase, and ligated with pAM330 having been digested with <u>HindIII</u> (produced by Takara Shuzo) and blunt-ended by using T4 DNA polymerase. Depending on orientation of the inserted pAM330 in pHSG299, the two obtained plasmids were designated as pVK6 and pVK7, and pVK7 was used for the following experiments. pVK7 is autonomously replicable in both of <u>E. coli</u> and <u>Brevibacterium lactofermentum</u> and has a multiple cloning site originating from pHSG299 and <u>lacZ</u>. The process of construction of pVK6 and pVK7 is shown in Fig. 11.

With the constructed shuttle vector pVK7, <u>aspC</u> was ligated. pCRASPC was digested with a restriction enzyme <u>Eco</u>RI (produced by Takara Shuzo) and ligated with pVK7 having been also digested with <u>Eco</u>RI. Ligation of DNA was performed by using DNA Ligation kit (produced by Takara Shuzo). Among those in which a fragment of <u>aspC</u> was ligated with pVK7, one in which the fragment was inserted in the same orientation as the transcription orientation of lac promoter possessed by pVK7 was designated as pOm. The process of construction of pOm is shown in Fig. 12.

Example 9: Preparation of aspC from Brevibacterium lactofermentum

(1) Preparation of aspC originating from Brevibacterium lactofermentum

An aspartic acid auxotrophic strain 102-7 belonging to the genus <u>Corynebacterium</u> which was deficient in <u>aspC</u> activity (AAT activity) to be aspartic acid auxotrophic (I. Shiio and K. Ujikawa, <u>J. Biochem.</u>, <u>84</u>, 647 (1978)), was transformed by introducing a gene library (International Publication No. WO95/23224) prepared by ligating various fragments of chromosomal DNA of wild type ATCC 13869 strain of <u>Brevibacterium lactofermentum</u> with a vector which functions in cells of bacteria belonging to the genus <u>Corynebacterium</u>. The obtained transformants were collected and washed with distilled water twice. Tens of thousands of the transformants were plated on agar plates of a minimum medium, Medium 10 containing no nitrogen source other than ammonia (I. Shiio and K. Ujikawa, <u>J. Biochem.</u>, <u>84</u>, 647 (1978)) to obtain transformants which restored aspartic acid auxotrophy and showed excellent growth on the plate. Plasmid DNA was recovered from the obtained stain restoring the aspartic acid auxotrophy, and the obtained plasmid was designated as pAC. When the wild type ATCC 13869 strain of <u>Brevibacterium lactofermentum</u> was transformed

with pAC, the <u>aspC</u> activity of the transformant was increased (Table 1). The activity determination was conducted according to a known method (see Sizer, I.W. and Jenkins, W.T., <u>Meth. Enzymol.</u>, <u>vol. 5</u>, 677-679 (1962)).

From the results, it was confirmed that the about 2.5 kb fragment of the chromosomal DNA of the ATCC 13869 strain on the plasmid DNA contained aspC of Brevibacterium lactofermentum.

Table 1

Strain/Plasmid	aspC Activity (Relative value)
AJ13869	1.0
AJ13869/pCABL	8.9

(2) Analysis of aspC originating from Brevibacterium lactofermentum

A nucleotide sequence of the 2.5 kb DNA fragment was determined according to the dideoxy method of Sangar et al. (Proc. Natl. Acad. Sci. USA, 74, 5463 (1977). The determined nucleotide sequence was shown in SEQ ID NO: 25. The nucleotide sequence was analyzed by using GENETYX-MAC Version 7.3 program (Software Kaihatsu KK). ORF (Open Reading Frame) search showed two ORFs which overlapped in the opposite orientation as shown in Fig. 13. The ORF of 432 amino acids or 426 amino acids which was encoded in the normal orientation between ATG of nucleotide number of 579 to 881 or 897 to 899 as an initiation codon and TAG of nucleotide number of 2175 to 2177 as a termination codon in the nucleotide sequence shown in SEQ ID NO: 25 was designated as ORF1. The ORF of 393 amino acids which was encoded in the reverse orientation between GTG complementary to CAC of nucleotide number of 2163 to 2165 as an initiation codon and TGA complementary to TCA of nucleotide number of 984 to 986 as a termination codon in the nucleotide sequence shown in SEQ ID NO: 25 was designated as ORF2.

(3) Determination of ORF coding for aspC

A DNA fragment which did not contained the full length of ORF2 and coded for the full length of ORF1 was amplified by PCR from pAC to confirm whether ORF codes for the AAT protein among the two ORFs. As for DNA primers used for amplification, synthetic DNAs of 23-mers having nucleotide sequences shown in SEQ ID NO: 25 and 27 in Sequence Listing respectively were used on the basis of the sequence shown in SEQ ID NO: 25. Synthesis of DNA and PCR were performed in the same manner as described in Example 1. The amplified fragment of 2,062 bp of the nucleotide number 126 to 2,187 in the nucleotide sequence shown in SEQ ID NO: 25 was doned into TA cloning vector pCR2.1 (produced by Invitrogen). The constructed plasmid was designated as pCRORF1.

In the same manner, a gene fragment of 1,543 bp of the nucleotide number 975 to 2,517 in the nucleotide sequence shown in SEQ ID NO: 25, which coded for the full length of only ORF2, was amplified and cloned. The constructed plasmid was designated as pCRORF2.

To introduce the cloned DNA fragments into cells of bacteria belonging to the genus <u>Corynebacterium</u>, the DNA fragments were ligated with the shuttle vector described in Example 8. pCRORF1 was digested with a restriction enzyme <u>Eco</u>RI (produced by Takara Shuzo), and ligated with pVK7 having been digested with the restriction enzyme <u>Eco</u>RI. Ligation of DNA was performed by using DNA Ligation kit (produced by Takara Shuzo). The constructed plasmid was designated as pORF1. The process of construction of pORF1 is shown in Fig. 14.

In the same manner, pORF2 was constructed from pCRORF2 and pVK7.

The prepared pORF1 and pORF2 were introduced into cells of <u>Brevibacterium lactofermentum</u> wild type ATCC 13869 strain in the same manner as in Example 9. The <u>aspC</u> activities of ATCC 13869 and obtained plasmid-introduced strains ATCC 13869/pORF1 and ATCC 13869/pORF2 were determined. The activity determination was conducted in the same manner as described in Example 1. As shown in Table 2, an increase in the <u>aspC</u> activity was observed only for ATCC 13869/pORF1, indicating that <u>aspC</u> is encoded by ORF1.

The nucleotide sequence of <u>aspC</u> of <u>Brevibacterium lactofermentum</u> determined by the above-mentioned experiments and an amino acid sequence deduced to be encoded by the nucleotide sequence are shown in SEQ ID NO: 30. Only the amino acid sequence is shown in SEQ ID NO: 31. Homology search on GENEBANK showed no homology to known amino acid sequences including AAT proteins originating from other organisms.

55

5

10

30

40

Table 2

Strain/Plasmid	aspC Activity (Relative value)
AJ13869	1.0
AJ13869/pORF1	10.1
AJ13869/pORF2	1.2

Example 10: Introduction of Plasmids Comprising Genes for L-Lysine Biosynthesis into L-Lysine-Producing Bacterium of Brevibacterium lactofermentum

The pCABL(Cm') constructed in Example 7 was introduced into an L-lysine-producing bacterium AJ11082 (NRRL B-11470) of <u>Brevibacterium lactofermentum</u> respectively. The AJ11082 strain has a property of AEC resistance. The plasmid was introduced in accordance with an electric pulse method (Sugimoto et al., Japanese Patent Application Laid-open No. 2-207791). Transformants were selected based on a drug resistance marker possessed by the plasmid. Transformants were selected on a complete medium containing 5 μg/ml of chloramphenicol when a plasmid comprising a chloramphenicol resistance gene was introduced, or transformants were selected on a complete medium containing 25 μg/ml of kanamycin when a plasmid comprising a kanamycin resistance gene was introduced.

The transformant AJ11082/pCABL obtained as described above was transformed with plasmid pOm (Km¹) having aspC of Escherichia coli or pORF1 (Km¹) having aspC of Brevibacterium lactofermentum. Since pCABL uses pHM1519 as an replication origin in cells of Brevibacterium lactofermentum and a Km resistance gene as a marker, and pOm uses pAM330 as an replication origin in cells of Brevibacterium lactofermentum and a Km resistance gene as a marker, both plasmids are stably harbored in cells of Brevibacterium lactofermentum. Thus, strains AJ11082/pCABL/pOm and AJ11082/pCABL/pORF1 in which a plasmid containing a gene participating in L-lysine biosynthesis and a plasmid containing aspC were obtained.

In the same manner as described above, p399AK9B(Cm'), pDPSB(Km'), pDPRB(Cm'), pLYSAB(Cm'), pOm, pCRCAB(Km'), pAB(Cm'), pCB(Cm'), and pCAB(Cm') were introduced into the AJ11082 strain to obtain transformants in which mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u> or <u>aspC</u> was enhanced singly, or two or three of these genes were enhanced in combination.

Example 11: Determination of aspC activity of transformants

The <u>aspC</u> activities of the transformants AJ11082/pCABL, AJ11082/pCABL/pOm and AJ11082/pCABL/pORF1 were determined. The activity determination was conducted in the same manner as described in Example 9 (3). As shown in Table 3, it was observed that the lac promoter on the pOm vector also functioned in <u>Brevibacterium lactofermentum</u> and the aspC activity of AJ11082/pCABL/pOm increased by about three times. A further increase in the aspC activity by about nine times was observed for AJ11082/pCABL/pORF1.

Table 3

Strain/Plasmid	aspC Activity (Relative value)
AJ11082	1.0
AJ11082/pOm	3.2
AJ11082/pORF1	10.1
AJ11082/pCABL	0.9
AJ11082/pCABL/pOm	2.9
AJ11082/pCABL/pORF1	11.5

55

50

10

15

Example 12: Production of L-Lysine

Each of the transformants obtained in Example 10 was cultivated in an L-lysine-producing medium to evaluate its L-lysine productivity. The L-lysine-producing medium had the following composition.

[L-Lysine-producing medium]

The following components other than calcium carbonate (in 1 L) were dissolved, and pH was adjusted at 8.0 with KOH. The medium was sterilized at 115°C for 15 minutes, and calcium carbonate (50 g) having been separately sterilized in hot air in a dry state was thereafter added thereto.

ĺ	Glucose	100 g
	(NH ₄) ₂ SO ₄	55 g
	KH ₂ PO ₄	1 g
Ì	MgSO ₄ • 7H ₂ O	1 g
	Biotin	500 μg
	Thiamin	2000 μg
	FeSO ₄ • 7H ₂ O	0.01 g
	MnSO ₄ • 7H ₂ O	0.01 g
	Nicotinamide	5 mg
	Protein hydrolysate (Mamenou)	30 ml
	Calcium carbonate	50 g

Each of the various types of the transformants and the parent strain was inoculated to the medium having the composition described above to perform cultivation at 31.5°C with reciprocating shaking. The amount of produced L-lysine after 40 or 72 hours of cultivation, and the growth after 72 hours (OD₅₆₂) are shown in Table 4. In the table, <u>lysC*</u> represents mutant <u>lysC</u>. The growth was quantitatively determined by measuring OD at 562 nm after 101-fold dilution.

Table 4

		Accumulation of L-Lysine after	Cultivation for 40	or 72 Hours	
5	Bacterial strain /plasmid	Introduced gene		produced L- e(g/L)	Growth (OD ₅₆₂ /101)
			after 40hrs	after 72hrs	
	AJ11082		22.0	29.8	0.450
10	AJ11082/p399AK9B	lysC*	16.8	34.5	0.398
	AJ11082/pDPSB	<u>dapA</u>	18.7	33.8	0.410
	AJ11082/pDPRB	<u>dapB</u>	19.9	29.9	0.445
15	AJ11082/pLYSAB	lysA	19.8	32.5	0.356
	AJ11082/pOm	aspC(E)[Note 1]	21.8	30.9	0.457
	AJ11082/pOm	aspC(B)[Note 2]	21.5	31.2	0.450
20	AJ11082/pCRCAB	lysC*, dapA	19.7	36.5	0.360
20	AJ11082/pAB	dapA, dapB	19.0	34.8	0.390
	AJ11082/pCB	lysC*, dapB	23.3	35.0	0.440
	AJ11082/pCAB	lysC* dapA, dapB	23.0	45.0	0.425
25	AJ11082/pCABL	lysC*, dapA, dapB, lysA	26.2	46.5	0.379
	AJ11082/pCABL/pOm	lysC*, dapA, dapB, lysA. aspC(E)	26.7	47.6	0.415
30	AJ11082/pCABL/pORF1	lysC* dapA, dapB, lysA, aspC(B)	27.1	48.8	0.410

Note 1:asoC of Escherichia coli

Note 2:aspC of Brevibacterium lactofermentum

As shown in the above, when mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u> or <u>aspC</u> was enhanced singly, the amount of produced L-lysine was larger than or equivalent to that produced by the parent strain after 72 hours of cultivation, however, the amount of produced L-lysine was smaller than that produced by the parent strain after 40 hours of cultivation. Namely, the L-lysine-producing speed was lowered in cultivation for a short period. Similarly, when mutant <u>lysC</u> and <u>dapA</u>, or <u>dapA</u> and <u>dapB</u> were enhanced in combination, the amount of produced L-lysine was larger than that produced by the parent strain after 72 hours of cultivation, however, the amount of produced L-lysine was smaller than that produced by the parent strain after 40 hours of cultivation. Thus the L-lysine-producing speed was lowered.

On the contrary, in the case of the strain in which <u>dapB</u> was enhanced together with mutant <u>lysC</u>, the strain in which three of mutant <u>lysC</u>, <u>dapA</u> and <u>dapB</u> were enhanced, and the strain in which four of mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u> and <u>lysA</u> were enhanced, the accumulated amount of L-lysine was improved in both of the short period and the long period of cultivation.

In the case of the strain in which five of mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and <u>aspC</u> of <u>Escherichia coli</u> were enhanced, and the strain in which five of mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and <u>aspC</u> of <u>Brevibacterium lactofermentum</u> were enhanced, the L-lysine productivity was further improved in any of the periods. The extent of the improvement of the latter was larger than that of the former.

55

50

SEQUENCE LISTING

	(1) GENERAL INFORMATION:	
5	(i) APPLICANT: AJINOMOTO CO., LTD.	
_	(ii) TITLE OF INVENTION: METHOD FOR PRODUCING L-LYSINE	
	(iii) NUMBER OF SEQUENCES: 31	
	(iv) CORRESPONDENCE ADDRESS:	
	(A) ADDRESSEE:	
	(B) STREET:	
10	(C) CITY:	
	(E) COUNTRY:	
	(F) ZIP:	
	(v) COMPUTER READABLE FORM:	
	(A) MEDIUM TYPE: Floppy disk	
	(B) COMPUTER: IBM PC compatible	
15	(C) OPERATING SYSTEM: PC-DOS/MS-DOS	
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30	
	(vi) CURRENT APPLICATION DATA:	
	(A) APPLICATION NUMBER:	
	(B) FILING DATE:	
00	(C) CLASSIFICATION:	
20	(vii) PRIOR APPLICATION DATA:	
	(A) APPLICATION NUMBER: JP 8-325659	
	(B) FILING DATE: 05-DEC-1996	
	(viii) ATTORNEY/AGENT INFORMATION:	
	(A) NAME:	
25	(B) REGISTRATION NUMBER:	
	(ix) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE:	
	(B) TELEFAX:	
	(2) INFORMATION FOR SEQ ID NO:1:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 bases	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
35	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: no	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	TCGCGAAGTA GCACCTGTCA CTT	23
	(2) INFORMATION FOR SEQ ID NO:2:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21 bases	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	21
	ACGGAATTCA ATCTTACGGC C	21
:o	(2) INFORMATION FOR SEQ ID NO:3:	
i <i>0</i>	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1643 bases	
	(A) MND1 1010 DUSCS	

	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
5	(N) ORIGINAL SOURCE:	
•	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
	(will spourage description: SEO ID NO: 3:	
	TOCCONGEN GONCOTOTON CONTINUES CONTINUES ANATHERAN TOGANTATON ATATACOGTO	60
	TOTAL TRACE TRACECTICAL AGREGATING ACCEPTAGE TARAGECTICAL GGARCECTICAL	120
10	GCAGAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
	CTRACTOR CORCETIGAT CGRAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT	. 240
	CCCCMTCCT CCCTTCAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC	300
	ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT	360
	CARCITACIAC ARCITECAGO GGOAGTGAAT COCGTTCCGC CAGCTCGTGA AATGGATATG	420
	CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT	480
15	GGCGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC	540
	GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC	600
	AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG	660
	TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT	720
	GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT	780
	AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC	840
20	TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC	900
	GTACGCTCGT CTTATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT	960
	CCTGTGGAAG AAGCAGTCCT TACCGGTGTC GCAACCGACA AGTCCGAAGC CAAAGTAACC	1020
	GTTCTGGGTA TTTCCGATAA GCCAGGCGAG GCTGCCAAGG TTTTCCGTGC GTTGGCTGAT	1080
	GCAGAAATCA ACATTGACAT GGTTCTGCAG AACGTCTCCT CTGTGGAAGA CGGCACCACC	1140
05	GAGATCACGT TCACCTGCCC TCGCGCTGAC GGACGCCGTG CGATGGAGAT CTTGAAGAAG	1200
25	CTTCAGGTTC AGGGCAACTG GACCAATGTG CTTTACGACG ACCAGGTCGG CAAAGTCTCC	1260
	CTCGTGGGTG CTGGCATGAA GTCTCACCCA GGTGTTACCG CAGAGTTCAT GGAAGCTCTG	1320
	CCCGATGTCA ACGTGAACAT CGAATTGATT TCCACCTCTG AGATCCGCAT TTCCGTGCTG	1380
	ATCCGTGAAG ATGATCTGGA TGCTGCTGCA CGTGCATTGC ATGAGCAGTT CCAGCTGGGC	1440
	GGCGAAGACG AAGCCGTCGT TTATGCAGGC ACCGGACGCT AAAGTTTTAA AGGAGTAGTT	1500
30	TTACAATGAC CACCATCGCA GTTGTTGGTG CAACCGGCCA GGTCGGCCAG GTTATGCGCA	1560
	CCCTTTGGA AGAGCGCAAT TTCCCAGCTG ACACTGTTCG TTTCTTTGCT TCCCCGCGTT	1620
	CCCTTTTGGA AGAGCGCAAT TTCCCAGTO AGATOTOL	1643
	CCGCAGGCCG TAAGATTGAA TTC	
	(2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 1643 bases	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	•
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
40	(vi) ORIGINAL SOURCE:	
40	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 2171482	
4 5	(*) SEQUENCE DESCRIPTION: SEO ID NO: 4:	
	TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC	60
	TEGERAGIA GEACCETECA CITATORIA ACGEATECGE TAAAGECECA GGAACECTGT	120
	GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
	GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAG GTG GCC CTG GTC GTA CAG	234
	Met Ala Leu Val Val Gln	
50	1 5	
	AAA TAT GGC GGT TCC TCG CTT GAG AGT GCG GAA CGC ATT AGA AAC GTC	282
	Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala Glu Arg Ile Arg Asn Val	
	The lat of of our per per per per per per per per per pe	

									1 6					20			
	CCT	CDD	cee	10	CTT	GCC	BCC.	nnc	15	GCT	CCD	דממ	сът	20 GTC	CTG	CTT	330
										Ala					_		330
5	Au	OI W	25		· u.		• • • •	30	-,,	,	O_j	,	35				
3	GTC	TGC		GCA	ATG	GGA	GAC		ACG	GAT	GAA	CTT		GAA	CTT	GCA	378
										Asp							
		40				•	45					50					
	GCG	GCA	GTG	AAT	CCC	GTT	CCG	CCA	GCT	CGT	GAA	ATG	GAT	ATG	CTC	CTG	426
	Ala	Ala	Val	Asn	Pro	Val	Pro	Pro	Ala	Arg	Glu	Met	Asp	Met	Leu	Leu	
10	55					60				_	65					70	
										CTC							474
	Thr	Ala	Gly	Glu	Arg	Ile	Ser	Asn	Ala	Leu	Val	Ala	Met	Ala	Ile	Glu	
				•	75					80					85		
										ACT							522
15	Ser	Leu	Gly		Glu	Ala	Gln	Ser		Thr	Gly	Ser	Gln		Gly	Val	
15			'	90					95					100			550
										CGC							570
	Leu	Thr	_	GLu	Arg	HIS	GIĀ		ALA	Arg	He	vaı		Val	Thr	PIO	
		-	105	~~			~~~	110	~~~			200	115	200	cmm	COM	610
										GGC							618
20	GLY		VAL	Arg	GIU	ALA	_	Asp	GIU	Gly	гÀг		Cys	тте	vai	Ala	
	ccm	120	CAC	CCT	CTT	2 2 2	125	CDD	n.c.c	CGC	CAT	130	ncc	DCG	ጥጥር	CCT	666
										Arg						_	000
	135	FILE	GIII	Gry	val	140	цуз	GLU	1111	ALY	145	vai	1111		504	150	
		CCT	ccir	ጥርጥ	GAC		ACT	GCD	GTT	GCG		GCA	GCT	GCT	TTG		714
05										Ala							
25	,	,	,		155					160					165		
	GCT	GAT	GTG	TGT		TTA	TAC	TCG	GAC	GTT	GAC	GGT	GTG	TAT	ACC	GCT	762
										Val							
		•		170			-		175		-	-		180			
	GAC	CCG	CGC	ATC	GTT	CCT	AAT	GCA	CAG	AAG	CTG	GAA	AAG	CTC	AGC	TTC	810
30	Asp	Pro	Arg	Ile	Val	Pro	Asn	Ala	Gln	Lys	Leu	Glu	Lys	Leu	Ser	Phe	
			185					190					195				
										GGC					_		858
	Glu		Met	Leu	Glu	Leu		Ala	Val	Gly	Ser		Ile	Leu	Val	Leu	
		200					205					210			~~~		006
35										TAA							906
50			Val	GIU	Tyr		Arg	Ala	Pne	Asn		Pro	Leu	Arg	var		
	215		m2.m	N C 111	* * * *	220		ccc	7 Cm	mmc.	225	ccc		m cm	ስጥር	230 CBC	⁻ 954
										TTG Leu							334
	Ser	Ser	ıyı	Ser	235	wsb	PLO	GLY	1111	240		ALA	Gry	Ser	245	GLU	
	GDT	ውጥ	_С Ст	CTC.	-	GDD	CCD	CTC	ርጥጥ	ACC		GTC	CCD	ACC		AAG	1002
40										Thr			_				2002
	-wp		110	250	014		744	. • • •	255		or,			260		-,-	
	TCC	GAA	GCC		GTA	·ACC	GTT	CTG		ATT	TCC	GAT	AAG		GGC	GAG	1050
										Ile							
			265	-,				270				•	275		•		
45	GCT	GCC	AAG	GTT	TTC	CGT	GCG	TTG	GCT	GAT	GCA	GAA	ATC	AAC	ATT	GAC	1098
-	Ala	Ala	Lys	Val	Phe	Arg	Ala	Leu	Ala	Asp	Ala	Glu	Ile	Asn	Ile	Asp	
		280	-			•	285			-		290					
	ATG	GTT	CTG	CAG	AAC	GTC	TCC	TCT	GTG	GAA	GAC	GGC	ACC	ACC	GAC	ATC	1146
	Met	Val	Leu	Gln	Asn	Val	Ser	Ser	Val	Glu	Asp	Gly	Thr	Thr	Asp		
	295					300					305					310	
50																TTG	1194
	Thr	Phe	Thr	Cys			Ala	Asp	Gly	Arg		Ala	Met	Glu			
					315					320					325		

	AAG	AAG	CTT	CAG	GTT	CAG	GGC	AAC	TGG	ACC .	TAA	GTG	CTT	TAC	GAC	GAC	1242
	-	_	Leu	330					335					340			
5	CAG	GTC	GGC	AAA	GTC	TCC	CTC	GTG	GGT	GCT	GGC	ATG .	AAG	TCT	CAC	CCA	1290
-			Gly 345					350					355				
	GGT	GTT	ACC	GCA	GAG	TTC	ATG	GAA	GCT	CTG	CGC	GAT	GTC	AAC	GTG	AAC	1338
	-	360	Thr				365					370					
10	ATC	GAA	TTG	ATT	TCC	ACC	TCT	GAG	ATC	CGC	ATT	TCC	GTG	CTG	ATC	CGT	1386
	Ile	Glu	Leu	Ile	Ser	Thr	Ser	Glu	Ile	Arg	Ile	Ser	Val	Leu	Ile	Arg 390	
	375	CAT	GAT	CTC	CAT	380 GCT	CCT	GCA	ССТ	GCA	385 TTG	CAT	GAG	CAG	TTC		1434
	GAA	Den	Asp	T.eu	Asn	Ala	Ala	Ala	Ara	Ala	Leu	His	Glu	Gln	Phe	Gln	
		_	_		395	1				400					405		
15	CTG	GGC	GGC	GAA	GAC	GAA	GCC	GTC	GTT	TAT	GCA	GGC	ACC	GGA	CGC	TAA	1482
	Leu	Gly	Gly		Asp	Glu	Ala	Val	Val	Tyr	Ala	Gly	Thr	Gly 420	Arg		
	7 C00	PARON 70. 7	. n.c. (410	Carana	ייתי אר	ים מי	באככם	415	\ ጥሮ ርር	TAGT	TGTT	GGTG		ACCG	GCCAGG	1542
	TCC	-CCN(144G (ישתה השתבור	CCAC	C CI	TTT	GAAG	AGC	GCAF	TTT	CCCP	GCT	AC Z	ACTG	TTCGTT	1602
	TCT	rrgc:	TC (CCGC	GTT	C GC	AGG	CGT	AGA	ATTG	ATT	С					1643
20																	
	(2)	INF	ORMAT	NOI	FOR	SEQ	ID N	10:5 :									
		(i)	SEC	DUENC	CE CI	IARAC	TER	ISTIC	SS:	d c							
						4: 42 amir			acit	12							
						OGY:											
25		(ii	MOI														
		(xi	SEC	DUEN	CE DI	ESCRI	PTI	: NC	SEQ :	ID NO	o: 5	:					
	1	Ala	Leu	Val	Val 5	Gln	Lys	Tyr	Gly	Gly 10	Ser	Ser			15	Ala	
	Glu	Arg	Ile	Arg	Asn	Val	Ala	Glu		Ile	Val	Ala	Thr	Lys	Lys	Ala	
30		_	_	20	··- 1	1	1/-1	c	25	21-	Wat	G) v	Asn	30 Thr		Asp	
	_		35					40					45			Asp	
		50					55					60				Arg	
35			Asp	Met	Leu		Thr	Ala	GLY	GLu	Arg 75	TTE	ser	ASI	Ala	Leu 80	
	65 Val	- הות	Wat	21=	Tle	70 Glu	Ser	Leu	Glv	Ala			Gln	Sei	Phe	Thr	
					85					90					95)	•
	_			100					105					110)	Arg	
40	Ile	val			Thr	Pro	Gly			Arg	Glu	Ala	Leu 125	Asp	Glu	ı Gly	
	_		115	-1-	*** 1	71.	61.	120		Glu	. Val	Asn			Th	r Arg	
	=	130)				135	•				140					
	Asp	Val	Thr	Thr	Leu	Gly	Arg	Gly	Gly	Ser	Asp	Thr	Thr	Ala	a Va.	l Ala	
	145	5				150					15:)				100	
45					165	5				170)				17		
				180) .				185	5				19	0	n Lys	
	Let	ı Glu	ı Lys	Leu	Sei	Phe	Glu		ı Met	: Leu	ı Gl	ı Lev	Ala	Al	a Va	1 Gly	
50			195	5				200) _ ••	C1-		- n1-	205		a Dh	e Ben	
50		210	3				215	5				220)			e Asn	
	Va.	l Pro	Let	ı Arç	y Val	L Arg	j Se	r Se	Ty:	r Se	r Ası	n Ast	Pro	GL	y Th	r Leu	

```
230
        225
                                            235
        Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr
                      245 250 255
        Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile
5
                                    265
        Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp
              275 280
                                                  285
        Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu
           290
                            295
                                        300
        Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg
10
                    310 315
        Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr
                   325 330
        Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350
15
        Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu
             355 360 365
        Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg
          370 · 375
                                              380
        Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala
                        390 395
20
        Leu His Glu Gln Phe Gln Leu Gly Glu Asp Glu Ala Val Val Tyr
                     405
                           410 415
        Ala Gly Thr Gly Arg
                  420
        (2) INFORMATION FOR SEQ ID NO:6:
25
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 1643 bases
                 (B) TYPE: nucleic acid
                 (C) STRANDEDNESS: double
                 (D) TOPOLOGY: linear
30
            (ii) MOLECULE TYPE: genomic DNA
            (vi) ORIGINAL SOURCE:
                 (A) ORGANISM: Brevibacterium lactofermentum
                 (B) STRAIN: ATCC 13869
            (ix) FEATURE:
                 (A) NAME/KEY: CDS
35
                 (B) LOCATION: 964..1482
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
        TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC 60
        TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCA GGAACCCTGT
        GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG
        GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT
                                                                       240
40
        GGCGGTTCCT CGCTTGAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC
                                                                       300
        ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT
                                                                       360
        GAACTTCTAG AACTTGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG
                                                                        420
        CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT
                                                                        480
        GGCGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC
        GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC
45
                                                                        600
        AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG
                                                                        660
        TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT
                                                                       720
        GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT
                                                                        780
        AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC
                                                                       840
        TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC
                                                                       900
50
        GTACGCTCGT CTTATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT
                                                                        960
        CCT GTG GAA GAA GCA GTC CTT ACC GGT GTC GCA ACC GAC AAG TCC GAA
                                                                       1008
            Met Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys Ser Glu
```

		1	L			5	i				10					15	
	GCC	AAA	GTA	ACC	GTT	CTG	GGT	ATT	TCC	GAT	AAG	CÇA	GGC	GAG	GCT	GCC	1056
	Ala	Lys	Val	Thr	Val 20	Leu	Gly	Ile	Ser	Asp 25	Lys	Pro	Gly	Glu	Ala 30	Ala	
5	ממ	CTT	ттс	CGT	GCG	TTG	GCT	GAT	GCA	GAA	ATC	AAC	ATT.	GAC	ATG	GTT	1104
	Lys	Val	Phe	Arg 35	Ala	Leu	Ala	Asp	Ala 40	Glu	Ile	Asn	Ile	Asp 45	Met	Val	
	CTG	CAG	AAC	GTC	TCC	TCT	GTG	GAA	GAC	GGC	ACC	ACC	GAC	ATC	ACG	TTC	1152
	Leu	Gln	Asn	Val	Ser	Ser	Val	Glu	Asp	Gly	Thr	Thr	Asp	Ile	Thr	Phe	
10			50					55					60				
••	ACC	TGC	CCT	CGC	GCT	GAC	GGA	CGC	CGT	GCG	ATG	GAG	ATC	TTG	AAG	AAG	1200
	Thr	Cys 65	Pro	Arg	Ala	Asp	Gly 70	Arg	Arg	Ala	Met	Glu 75	Ile	Leu	Lys	Lys	1010
	CTT	CAG	GTT	CAG	GGC	AAC	TGG	ACC	TAA	GTG	CTT	TAC	GAC	GAC	CAG	GTC	1248
	Leu	Gln	Val	Gln	Gly	Asn	Trp	Thr	Asn	Val	Leu	Tyr	Asp	Asp	Gln	Val	
15	80					85					90					95	1200
	GGC	AAA	GTC	TCC	CTC	GTG	GGT	GCT	GGC	ATG	AAG	TCT	CAC	CCA	GGT	GTT	1296
	_	_		Ser	100					105					110		1244
	ACC	GCA	GAG	TTC	ATG	GAA	GCT	CTG	CGC	GAT	GTC	AAC	GTG	AAC	ATC	GAA	1344
20				Phe 115					120					125			1392
	TTG	ATT	TCC	ACC	TCT	GAG	ATC	CGC	ATT	TCC	GTG	CIG	ATC	CGT	CAA	DA1	1332
			130	Thr				135					140				1440
	GAT	CTG	GAT	GCT	GCT	GCA	CGT	GCA	TTG	CAT	GAG	CAG	TTC	CAG	CrG	GGC	1440
25	-	145	_				150					155				Gly	1400
	GGC	GAA	GAC	GAA	GCC	GTC	GTT	TAT	GCA	GGC	ACC	GGA	CGC	TAA	AGTT	TTAA	1490
	Gly	Glu	Asp	Glu	Ala		Val	Tyr	Ala	Gly			Arg				
	160					165					170				como	CCCCDC	1550
	AGG	AGTA	GTT '	TTAC	AATG	C C	ACCA:	rcgc	A GT	TGTT	GGTG	CAA		CCA	GGTC mmac	GGCCAG	1610
30	GTT	ATGC CCGC	GCA GTT	CCCT	TTTG(AGGC(SA AC	gagc aaga'	GCAA' L'TGA	TT A	CCCA C	GCTG	ACA	CTGT	TCG	TITC	TTTGCT	1643
	(2)	INF	ORMA	TION	FOR CE C	SEQ	ID !	NO:7	: CS:								
		`-	,(A) L	ENGT	H: 1	72 a	mino	aci	ds							
35				B) T													
				D) T													
		(ii) MO	LECU	LE T	YPE:	pro	tein									
		(xi) SE	OUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 7	:					
	Met	Glu	Glu	Ala	Val	Leu	Thr	Gly	Val	Ala	Thr	Asp	Lys	Ser	Glu	Ala	
40	1				5					10					15	•	
				20					25					30	l	Lys	
			35					40					45)		. Leu	
	Gln	Asn	Val	Ser	Ser	Val	Glu	Asp	Gly	Thr	Thr	Asp	Ile	Thr	Phe	Thr	
45		50)				55					60)				
	65	,				70					75)				E Leu 80	
	Gln	Val			85					90)				93		
50				100)				105	j				110)	Thr	
	Ala	Glu	Phe 115		Glu	Ala	Leu	Arg 120		Va]	l Asr	val	. Asr 125	ı Ile	e Glu	ı Leu	

	130 135 140	
	Leu Asp Ala Ala Arg Ala Leu His Glu Gln Phe Gln Leu Gly Gly	
5	145 150 155 160	
•	Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg	
	165 170	
	(2) INFORMATION FOR SEQ ID NO:8:	
	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "synthetic DNA"	
15	(iv) ANTI-SENSE: no	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	GGATCCCCAA TCGATACCTG GAA	23
	(2) INFORMATION FOR SEQ ID NO:9:	
	(1) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 23 bases	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
25	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: CGGTTCATCG CCAAGTTTTT CTT	23
	COGITATION COMMOTITIE CIT	
	(2) INFORMATION FOR SEQ ID NO:10:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2001 bases	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA	
35	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
40	(B) LOCATION: 7301473	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: GGATCCCCAA TCGATACCTG GAACGACAAC CTGATCAGGA TATCCAATGC CTTGAATATT	60
		20
		80
	TCGCGTGAAC GTTTCGTGCT CGGCAACGCG GATGCCAGCG ATCGACATAT CGGAGTCACC 2	40
4E		300
45	GGAAGGGGAG TTGGTGGACT CTGAATCAGT GGGCTCTGAA GTGGTAGGCG ACGGGGCAGC	360
	ATCTGAAGGC GTGCGAGTTG TGGTGACCGG GTTAGCGGTT TCAGTTTCTG TCACAACTGG	120
	Vacuation and an analysis and	180
		540
		500 560
50	aviavouri carivouria variavouria iliani	720
	AGGAGCATA ATG GGA ATC AAG GTT GGC GTT CTC GGA GCC AAA GGC CGT	768
	Met Gly Ile Lys Val Gly Val Leu Gly Ala Lys Gly Arg	
	,,,,,,,,,	

				1				5					LO				
	GTT	GGT	CAA	ACT	TTA	GTG	GCA	GCA	GTC	AAT	GAG	TCC	GAC	GAT	CTG	GAG	816
_	Val	Gly 15	Gln	Thr	Ile	Val	Ala 20	Ala	Val	Asn	Glu	Ser 25	Asp	Asp	Leu	Glu	
5	ርጥጥ	CTT	GCA	GAG	ATC	GGC		GAC	GAT	GAT	TTG	AGC	CTT	CTG	GTA	GAC	864
	Leu	Val	Ala	Glu	Ile	Gly 35	Val	Asp	Asp	Asp	Leu 40	Ser	Leu	Leu	Val	Asp 45	
	30	ccc	GCT	CDD	بلملت		GTT.	GAC	ттс	ACC		ССТ	AAC	GCT	GTG	ATG	912
	AAC	GUU	Ala	Glu	Val	Val	Val	Asp	Phe	Thr	Thr	Pro	Asn	Ala	Val	Met	
10	ASII	Gry	Ala	GLU	50	• • • •				55					60		
	ccc	מממ	CTG	GAG		TGC	ATC	AAC	AAC		ATT	TCT	GCG	GTT	GTT	GGA	960
	Glv	Asn	Leu	Glu	Phe	Cvs	Ile	Asn	Asn	Gly	Ile	Ser	Ala	Val	Val	Gly	
	-			65					70					75			
	ACC	ACG	GGC	TTC	GAT	GAT	GCT	CGT	TTG	GAG	CAG	GTT	CGC	GCC	TGG	CTT	1008
15	Thr	Thr	Gly 80	Phe	Asp	Asp	Ala	Arg 85	Leu	Glu	Gln	Val	Arg 90	Ala	Trp	Leu	
	GAA	GGA	AAA	GAC	AAT	GTC	GGT	GTT	CTG	ATC	GCA	CCT	AAC	TTT	GCT	ATC	1056
	Glu	Gly	Lys	Asp	Asn	Val	Gly	Val	Leu	Ile	Ala	Pro	Asn	Phe	Ala	Ile	
		95	_				100					105					
	TCT	GCG	GTG	TTG	ACC	ATG	GTC	TTT	TCC	AAG	CAG	GCT	GCC	CGC	TTC	TTC	1104
20	Ser	Ala	Val	Leu	Thr	Met	Val	Phe	Ser	Lys	Gln	Ala	Ala	Arg	Phe	Phe	
	110					115					120					125	1150
	GAA	TCA	GCT	GAA	GTT	ATT	GAG	CTG	CAC	CAC	CCC	AAC	AAG	CTG	GAT	GCA	1152
			Ala		130					135					140		
	CCT	TCA	GGC	ACC	GCG	ATC	CAC	ACT	GCT	CAG	GGC	ATT	GCT	GCG	GCA	CGC	1200
25			Gly	145					150					155			
	AAA	GAA	GCA	GGC	ATG	GAC	GCA	CAG	CCA	GAT	GCG	ACC	GAG	CAG	GCA	CTT	1248
	-		Ala 160					165					170				
	GAG	GGT	TCC	CGT	GGC	GCA	AGC	GTA	GAT	GGA	ATC	CCA	GTT	CAC	GCA	GTC	1296
30		175	Ser				180					185					
	CGC	ATG	TCC	GGC	ATG	GTT	GCT	CAC	GAG	CAA	GTT	ATC	TTT	GGC	ACC	CAG	1344
	Arg	Met	Ser	Gly	Met	Val	Ala	His	Glu	Gln	Val	Ile	Phe	Gly	Thr	GIn	
	190					195					200					205	1202
<i>3</i> 5	GGT	CAG	ACC	TTG	ACC	ATC	AAG	CAG	GAC	TCC	TAT	GAT	CGC	AAC	TCA	TTT	1392
					210					215					220		1440
	GCA	CCA	GGT	GTC	TTG	GTG	GGT	GTG	CGC	AAC	ATT	GCA	CAG	CAC	D-A	GGC	1440
				225					230					235		Gly	1493
40	CTA	GTC	GTA	GGA	CTT	GAG	CAT	TAC	CTA	GGC	CTG	TAA	AGGC	TCA	TITC	AGCAGC	1775
			Val 240					245									1663
	GGG	TGGA	ATT	TTTT	AAAA	GG A	GCGT	AATT	A GG	CTGT	'GGCC	GAA	CAAC	TTA	AATI	GAGCGT	1553 1613
	GGA	GTTG	ATA	GCGT	GCAG	TT C	TTTT	ACTC	C AC	CCGC	TGAI	GTT	GAGT	GGT	CMM	TGATGT	
45	TGA	reeec	GCG	GAAG	CACT	CG T	CGAG	TTTG	CGG	GTC	TGCC	TGC	TACE	MAA	DACT	TGATAA	1733
73	GCC	GAAC	CCT	CGAA	CTGC	TT C	CAAT	GCTG	CGI	ATCI	GCGC	CAC	ATCF	TGG	WHO!	GGGGCA	
	CAC	TGCT	TTG	CTTG	AGCA	TG C	CAAT	GCCA	C GP	TGTF	CTATO		CEC	CTTT.	PCCC	GTCCGC	
	GAC	CCAI	'GAA	TTGG	TCCG	AC A	CCGC	CATT	T TI			CAA	CEAN	DTC	7900	TTTCGT CTTGCG	1913
	GCA	CAGC	:GGA	GAAT	CGGA	AG T	AGTG	AT GC	C TOP	CCTCI	י האנונ	י שאיני	ישמעני. ישעעני	EDCC.	TGC	GTTGCG TAATGC	1973
			TTC							, ,		. 110	W-36-8 (200
~~	(-4 '	121744		MMMI	- 1 1 1 1 1 1 1												

(2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS:

						amiı	no ac		acı	15								
							line											
5							prot											
	W-+	(X1)	SE	DUEN	CE DI	ESCR.	(PTIC Val	JN: :	GIV	יא מז): 1. Tue	6) v	Dra	Va1	Glv	Gl n		
	met 1	GIA	TIE	rys	vaı 5	GTÅ	Val	шец	Gry	10	цуs	Gry	ALG	Val	15	GIII		
		Ile	Val	Ala 20	_	Val	Asn	Glu	Ser 25		Asp	Leu	Glu	Leu 30		Ala		
10	Glu	Ile	Gly 35		Asp	Asp	Asp	Leu 40	Ser	Leu	Leu	Val	Asp 45	Asn	Gly	Ala		
		50					Thr 55					60						
	65					70	Gly				75					80		
15		-	-		85		Glu			90					95			
	_			100			Ile		105					110				
00			115				Lys	120					125					
20		130					His 135					140		,				
		Ala	Ile	His	Thr		Gln	Gly	Ile	Ala		Ala	Arg	Lys	Glu			
	145 Gly	Met	Asp	Ala	Gln 165	150 Pro	Asp	Ala	Thr	Glu 170	155 Gln	Ala	Leu	Glu	Gly 175	160 Ser		
25	Arg	Gly	Ala	Ser 180		Asp	Gly	Ile	Pro 185		His	Ala	Val	Arg 190		ser		
	Gly	Met	Val 195		His	Glu	Gln	Val 200		Phe	Gly	Thr	Gln 205	Gly	Gln	Thr		
3 <i>0</i>	Leu	Thr 210		Lys	Gln	Asp	Ser 215	Tyr	Asp	Arg	Asn	Ser 220	Phe	Ala	Pro	Gly		
	Val 225	Leu	Val	Gly	Val	Arg 230	Asn	Ile	Ala	Gln	His 235	Pro	Gly	Leu	Val	Val 240		
	Gly	Leu	Glu	His	Tyr 245	Leu	Gly	Leu										
35	(2)						ID I											
		(1,		_		_	CTER: 3 ba:		cs.									
				-			leic		d									
							ESS:		_								•	
							lin		_	_								
40		(ii					oth						D173	**				
		/ 4					ON:	/a	esc	= "s	yntn	etic	DNA					
				TI-SI OUEN			IPTI	on:	SEO	ID N	0: 1	2:						
	GTC					GC A												23
45	(2)	INF	ORMA	TTON	FOR	SEO	ID I	NO:1	3:									
	(-,						CTER											
		•	(A) L	ENGT.	H: 2	3 ba	ses										
				•			leic											
							ESS:		gle									
50		(ii) MO	LECU	LE T	YPE:	lin- oth	er n						_				
		,.					ON:	/ d	esc	= "s	ynth	etic	DNA	."				
		(17) AN	TI-S	こいろと	: ve	5											

						a a n T	DMT 0	M. C	PO T	D NO	. 12						
	GGAT	(X1) CCTT						N: S	ev i	D NO	. 13	•					23
5	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	10:14	:								
		(1)						STIC ases	5 .								
								acid									
								doub									
) TO													
10								mic	DNA								
		(vi)	ORI	GINA	L SO	URCE	:					_					
								ribac		um 1	acto	term	entu	m			
		,		-		: AT	CC 1	13869									
		(1X)	FEA) NA		EY:	CDS										
15								.121	3								
		(xi)	SEC	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NO	: 14	:					
	CTC	rcgai	AT C	GAGA	GAGA	A GC	AGC	CCAC	GGT	TTTT	CGG	TGAT	TTTG	AG A	TTGP	AACTT	60
	TGG	CAGAC	GG A	TCGC	AAAT	'G GC	AAC	AGCC	CGT	ATGT	CAT	GGAC	TTTT	AA C	GCAP	AGCTC	120 180
	ACA	CCCAC	GA G	CTAA	AAAT	T CA	TATA	AGTTA	AGA	CAAC	ATT	CTCC	CTTC	CG C	いこひかび	CAGCC GTTAT	240
20	GTA	AAAAC	CT C	TTGC	TCAL	שי יינ		CTTC	. 11A	מממני	CCC	TAAA	GAGG	GA A	GAAG	GTAAC	300
	CTT	GAACI	מידים ו	TG P	GC A	CA G	GT 1	CTA A	CA G	CT A	AG A	CC G	GA G	TA G	AG C	AC	349
	011		, or	let S	er T	hr G	ly I	Leu T	hr A	la I	ys T	hr G	iy v	al G	lu E	lis	
				1				5					10				
	TTC	GGC	ACC	GTT	GGA	GTA	GCA	ATG	GTT	ACT	CCA	TTC	ACG	GAA	TCC	GGA	397
25	Phe	Gly	Thr	Val	Gly	Val		Met	Val	Thr	Pro		Thr	GIU	Ser	GIA	
		15 ATC	G7.00	N. M.C	ccm	CCT	20	ccc	CDD	GTC	ccc	25 GCT	ጥልጥ	TTG	GTT	GAT	445
	GAC	Ile	Den	TIA	Dla	Dla	Glv	Ara	Glu	Val	Ala	Ala	Tvr	Leu	Val	Asp	
	30					35					40					45	
	AAG	GGC	TTG	GAT	TCT	TTG	GTT	CTC	GCG	GGC	ACC	ACT	GGT	GAA	TCC	CCA	493
30	Lys	Gly	Leu	Asp	Ser	Leu	Val	Leu	Ala	Gly	Thr	Thr	Gly	Glu	Ser	Pro	
					50					55				~mm	60	CAC	541
	ACG	ACA	ACC	GCC	GCT	GAA	AAA	CTA	GAA	CTG	CTC	AAG	NI a	Val	Arg	GAG	341
	Thr	Thr	Thr	65	Ala	GIU	гåг	Leu	70	цец	peu	цуз	714	75	,9		
	CDD	GTT	GGG	GAT	CGG	GCG	AAC	GTC		GCC	GGT	GTC	GGA		AAC	AAC	589
35	Glu	Val	Glv	Asp	Arq	Ala	Asn	Val	Ile	Ala	Gly	Val	Gly	Thr	Asn	Asn	
			80					85					90				
	ACG	CGG	ACA	TCT	GTĢ	GAA	CTT	GCG	GAA	GCT	GCT	GCT	TCT	GCT	GGC	GCA.	637
	Thr	Arg	Thr	Ser	Val	Glu		Ala	Glu	ALA	Ala	105	Ser	ALA	GIY	MIG	
	C 3 C	95 GGC	comm.	mm n	COURT	Cuth	100	CCT	тат	ጥልሮ	ጥርሮ		CCG	AGC	CAA	GAG	685
40	Den	Gly	Len	T.AII	Val	Val	Thr	Pro	Tvr	Tvr	Ser	Lvs	Pro	Ser	Gln	Glu	
	110		БСи	ДСЦ	***	115			-1-	-]	120					125	
	GGA	TTG	CTG	GCG	CAC	TTC	GGT	GCA	ATT	GCT	GCA	GCA	ACA	GAG	GTT	CCA	733
	Gly	Leu	Leu	Ala	His	Phe	Gly	Ala	Ile	Ala	Ala	Ala	Thr	Glu	Val	Pro	
					130					135					140		781
45	ATT	TGT	CTC	TAT	GAC	ATT	CCT	GGT	CGG	TCA	GGT	ATT	DEA	ATT	GAG	Ser	701
	Ile	Cys	Leu		Asp	IIe	PIO	GIY	150	ser	GIY	TIE	PLU	155	Giu	561	
	CNT	ACC	DTG	145	cec	CTG	дст	GAA		CCT	ACG	ATT	TTG			AAG	829
	Asn	Thr	Met	Ara	Ara	Leu	Ser	Glu	Leu	Pro	Thr	Ile	Leu	Ala	Val	Lys	
			160					165					170				
50	GAC	GCC	AAG	GGT	GAC	CTC	GTT	GCA	GCC	ACG	TCA	TTG	ATC	AAA	. GAA	ACG	877
	Asp	Ala		Gly	Asp	Leu			Ala	Thr	Ser	Leu 185	TTE	гÀг	GIU	Thr	
		175					180					103					

	GGA	CTT	GCC	TGG	TAT	TCA	GGC	GAT	GAC	CCA	CTA	AAC	CTT	GTT	TGG	CTT	925
	190			-	-	195	Gly				200					205	•
5							TTC										973
			_	_	210	_	Phe			215					220		
							TAC										1021
				225			Tyr		230					235			
10	CGT	GCG	CGG	GAA	ATC	AAC	GCC	AAA	CTA	TCA	CCG	CTG	GTA	GCT	GCC	CAA	1069
	Arg	Ala	Arg 240	Glu	Ile	Asn	Ala	Lys 245	Leu	Ser	Pro	Leu	Val 250	Ala	Ala	Gln	
							AGC										1117
	Gly	Arg 255	Leu	Gly	Gly	Val	Ser 260	Leu	Ala	Lys	.Ala	Ala 265	Leu	Arg	Leu	Gln	
15	GGC	ATC	AAC	GTA	GGA	GAT	CCT	CGA	CTT	CCA	ATT	ATG	GCT	CCA	aat	GAG	1165
	Gly 270	Ile	Asn	Val	Gly	Asp 275	Pro	Arg	Leu	Pro	11e 280	Met	Ala	Pro	Asn	Glu 285	
		GAA	CTT	GAG	GCT	CTC	CGA	GAA	GAC	ATG	AAA	AAA	GCT	GGA	GTT	CTA	1213
							Arg										
					290					295					300		
20	AGC:	rggto	CAG	LAAA	ACCA	C TC	GAT	ACCC	TG?	CTT	CAG	GCA	CAG	ATG (CTTC	CCAGA CTCTAA	1273 1333
	CCA	GAGC	GCT (TAAI	\AGC?	rg Ac	SACC	GCCG(G AA	ACGA	TAAC	CGG	SATG	CTG (CGCA	AGGTGC	1393
		AGGA?															1411
25	(2)						ID 1										
		(1)	-	_			CTERI			د							
			-)1 an		acı	15							
			•				line										
		(ii)	-	•			prot										
20							PTIC		SEQ 1	D N	o: 19	5:				•	
30	Met 1						Ala						His	Phe	Gly 15	Thr	
	Val	Gly	Val	Ala 20	Met	Val	Thr	Pro	Phe 25	Thr	Glu	Ser	Gly	Asp 30	Ile	Asp	
35	Ile	Ala	Ala 35	Gly	Arg	Glu	Val	Ala 40	Ala	Tyr	Leu	Val	Asp 45	Lys	Gly	Leu	
	Asp	Ser 50	Leu	Val	Leu	Ala	Gly 55	Thr	Thr	Gly	Glu	Ser 60	Pro	Thr	Thr	Thr	
	Ala 65	Ala	Glu	Lys	Leu	Glu 70	Leu	Leu	Lys	Ala	Val 75	Arg	Glu	Glu	Val	Gly 80	:
40		Arg	Ala	Asn	Val 85	Ile	Ala	Gly	Val	Gly 90	Thr	Asn	Asn	Thr	Arg 95	Thr	
	Ser	Val	Glu	Leu 100	Ala	Glu	Ala	Ala	Ala 105	Ser	Ala	Gly	Ala	Asp 110	Gly	Leu	
	Leu	Val	Val 115		Pro	Tyr	Tyr	Ser 120		Pro	Ser	Gln	Glu 125		Leu	Leu	
4 5	Ala	His 130		Gly	Ala	Ile	Ala 135		Ala	Thr	Glu	Val 140		Ile	Cys	Leu	
	ጥህተ		Tle	Pro	Glv	Dra	Ser	Glv	Tle	Pro	Tle			Asp	Thr	Met	
	145	_				150					155					160	
		_			165		Pro			170					175		
50		_		180					185					190		Ala	
	Trp	Tyr	Ser	Gly	Asp	Asp	Pro	Leu	Asn	Leu	Val	Trp	Leu	Ala	Leu	Gly	

			195					200					205					
	Gly	Ser	Gly	Phe	Ile	Ser	Val	Ile	Gly	His	Ala	Ala	Pro	Thr	Ala	Leu		
	_	210					215		_			220		_		_		
5	Arg	Glu	Leu	Tyr	Thr	Ser	Phe	Glu	Glu	Gly		Leu	Val	Arg	Ala	Arg		
J	225					230					235				_	240		
	Glu	Ile	Asn	Ala	Lys	Leu	Ser	Pro	Leu		Ala	Ala	Gln	GLy		Leu		
					245				_ •	250	_	_		-1	255	•		
	Gly	Gly	Val		Leu	Ala	Lys	Ala		Leu	Arg	Leu	GIn		lle	Asn		
				260		_	_		265		_	_	- 22	270	~ 1	T		
10	Val	Gly	Asp	Pro	Arg	Leu	Pro		Met	Ala	Pro	Asn	GIU	GIN	GIU	Leu		
			275					280	*	n1 -	c3	3/- 3	285					
	Glu		Leu	Arg	GIU	Asp		ràs	гÀг	ALA	GIA	300	rea					
		290					295					200						
	121	TNE	ORMAT	TON	FOR	SEO	TD N	10:10	5:				•					
	(2)	/1) SE(TIEN	E CE	IARA	CTER	STI	cs:									
15		12	, Jan (1	A) T.F	NGT	1: 2:	3 bas	ses										
			Ü	3) T	PE:	nuc:	leic	acio	i									
			i	c) S1	rani	DEDNI	ESS:	sing	gle									
			(1) TO	OPOL	OGY:	line	ear :										
		(ii) MOI	LECUI	LE T	YPE:	othe	er n	icle:	ic a	cid							
20			(2	A) DI	ESCR.	[PTI	ON:	/de	esc :	= "s	ynth:	etic	DNA'	17			,	
		(iv	AN	ri-si	ENSE	no:												
			SE					ON:	SEQ :	ID N	o: 1	6:						22
	GTG	GAGC	CGA (CCAT	rccg	CG A	GG											23
					E05	CEO	TD 1		7.									
25	(2)	INE	ORMA!	LION	EOK	עמעה העמעה	.מבהשה. זחז	10.1 [CT]	, . -c .									
25		(1	1 254	V I III	CE CI	1 2	3 bas	262 FDIT										
							leic		d									
			(1	C) S'	TRAN	DEDNI	ESS:	sin	ale									
							line		.									
		(ii) MO	LECU	LE T	YPE:	oth	er n	ucle	ic a	cid							
30		•	(2	A) Di	ESCR	IPTI	ON:	/d	esc	= "5	ynth	etic	DNA	n				
		(iv) AN	ri-si	ENSE	: ye:	s											
		(xi) SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ	ID N	0: 1	7:						
	CCA	AAAC	CGC	CCTC	CACG	GC G	AA											23
					200	CEO	TD 1	VO. 1	٥.									
35	(2)	INE	ORMA'	TION	TOK CE C	מסמט עסמט	ים שיחים ניטו	T C T T										
		(1) 55	ZOEN.	ENGT	n 3	579 I	hase	ςυ.									
							leic											•
							ESS:											
							lin		_									
40		(ii) MO	LECU	LE T	YPE:	gen	omic	DNA									
40		(vi) OR	IGIN.	AL S	OURC	E:											
		•	(.	A) 0	RGAN	ISM:	Bre	viba	cter	ium	lact	ofer	ment	um				
			(B) S	TRAI	N: A	TCC	1386	9									
		(ix) FE	ATUR	E:													
							CDS											
45						ION:	533	21	82									
		(ix) FE															
							CDS		E 22									
) SE (.	B) L	OCAT	TON:	218	o	322 880	TD N	ra • 1	8-						
	~~~	(Xi	.) SE	QUEN	TOE D	ESCR	TELT	CCNC	an Co ⊃rA	טטמעי ז חד	יט.	יט. רוריי	יםכיים	ייייי	GTAC	CATGGC	ľ	60
50	GTG	CCCC	CGA	TCAT	CCAM	TC C	CTCL	CCDA	C DE	CCTE	TAGG	CAT	CGC	CCA	GGGC	CACCG	Ä	120
	C.L.I	יאררר	WGI.	TOWN	THECO	CT C	CTTT	TCGC	CTT	GGGC	AGG	ACC	TTG	CAA	AGCC	CACGC	r	180
	GDT	יאיריני		ACTO	AGGG	AT C	AGAA	TAGT	G CF	TGG	CAC	TC	ATG	TGC	CACF	ATTGAGG	3	240
	JA1																	

5	AGTO CCT	SGGCI LTTTI CAAAU	ATT ( ATT ( AAG (	GATA( GTCG/	CAAV AACG( PACA(	AA AG GG GG GA GJ	eggg( Catt) Accaj	CTAA( ACGG( ATGA1	G CGC	CAGT( CAAG( PTCAT	CGAG GACG PTAA	GCGC TTTC AAAC	GCAA( STTT? SGCA(	GAA CCT GGG	CTGC1 GGGT( ATTT(		300 360 420 480 535
10				GAT Asp 5												GTT	583
				CGC Arg													631
15	Val	Glu 35	Arg	CCG Pro	Arg	Asn	Pro 40	Glu	His	Gly	Asp	Tyr 45	Ala	Thr	Asn	Ile	679
	Ala 50	Leu	Gln	GTG Val	Ala	Lys 55	Lys	Val	Gly	Gln	Asn 60	Pro	Arg	Asp	Leu	Ala 65	727
20	Thr	Trp	Leu	GCA Ala	Glu 70	Ala	Leu	Ala	Ala	Asp 75	Asp	Ala	Ile	Asp	Ser 80	Ala	775
	Glu	Ile	Ala	GGC Gly 85	Pro	Gly	Phe	Leu	Asn 90	Ile	Arg	Leu	Ala	Ala 95	Ala	Ala .	823
25	Gln	Gly	Glu 100	ATT Ile	Val	Ala	Lys	Ile 105	Leu	Ala	Gln	Gly	Glu 110	Thr	Phe	Gly	871
	Asn	Ser 115	Asp	CAC His	Leu	Ser	His 120	Leu	Asp	Val	Asn	Leu 125	Glu	Phe	Val	Ser	919
30	Ala 130	Asn	Pro	ACC	Gly	Pro 135	Ile	His	Leu	Gly	Gly 140	Thr	Arg	Trp	Ala	Ala 145	967
	Val	Gly	Asp	TCT Ser	Leu 150	Gly	Arg	Val	Leu	Glu 155	Ala	Ser	Gly	Ala	Lys 160	Val	1015
35	Thr	Arg	Glu	TAC Tyr 165	Tyr	Phe	Asn	Asp	His 170	Gly	Arg	Gln	Ile	Asp 175	Arg	Phe	1063
	Ala	Leu	Ser 180	Leu	Leu	Ala	Ala	Ala 185	Lys	Gly	Glu	Pro	Thr 190	Pro	Glu	Asp	1159
40	Gly	Tyr 195	Gly	GGC Gly GAA	Glu	Tyr	Ile 200	Lys	Glu	Ile	Ala	Glu 205	Ala	Ile	Val	Glu	1207
	Lys 210	His	Pro	Glu	Ala	Leu 215	Ala	Leu	Glu	Pro	Ala 220	Ala	Thr	Gln	Glu	Leu 225	1255
45	Phe	Arg	Ala	GAA Glu	Gly 230	Val	Glu	Met	Met	Phe 235	Glu	His	Ile	Lys	Ser 240	Ser	
	Leu	His	Glu	TTC Phe 245	Gly	Thr	Asp	Phe	Asp 250	Val	Tyr	Tyr	His	G1u 255	Asn	Ser	1303
50				TCC Ser													1351

	AAC	GGC	AAC	CTG	TAC	GAA	AAC	GAG	GGC	GCT	TGG	TGG	CTG	CGT	TCC	ACC	1399
	Asn	Glv	Asn	Leu	Tyr	Glu	Asn	Glu	Gly	Ala	Trp	Trp	Leu	Arg	Ser	Thr	
		275			-		280		-			285					
	GAA	TTC	GGC	GAT	GAC	AAA	GAC	CGC	GTG	GTG	ATC	AAG	TCT	GAC	GGC	GAC	1447
5	Glu	Phe	Glv	Asp	Asp	Lvs	Asp	Arg	Val.	Val	Ile	Lys	Ser	Asp	Gly	Asp	
	290		,			295	•	•			300	•				305	
	GCA	GCC	TAC	ATC	GCT		GAT	ATC	GCG	TAC	GTG	GCT	GAT	AAG	TTC	TCC	1495
	710	818	Tur	Ile	Ala	Glv	Asp	Ile	Ala	Tvr	Val	Ala	Asp	Lys	Phe	Ser	
	ALA	~T.a	-3-		310	1	r			315			•	-	320		
	~~~	CCR	CNC	AAC		DDC	חייר	TAC	ATG		GGT	GCT	GAC	CAC		GGT	1543
10	2	GGA	TTA	Asn	Tan	Nen	T1 =	Tur	Met	T.ell	Glv	E I A	Asp	His	His	Glv	•
	Arg	GIÀ	uis		neu	W311	116	1 1 1	330	DCu	OL,			335		1	
				325 CGC	~~~	220	CC8	ccc		ccc	CCD	ملسل	ccc		DAG	CCA	·1591
	TAC	ATC	GCG	CGC	CIG	AAG	GCA	31-	71-	81-	712	Tan	Clu	Tur	T.176	Pro	
	Tyr	Ile		Arg	Leu	гåг	ALA		ALA	ALA	ALA	Leu	350	-1-	_,_		
			340					345	~	3 m.c	cmc	220			ccc	GNC	1639
15	GAA	GGC	GTT	GAA	GTC	CIG	ATT	GGC	CAG	AIG	616	AAC	Tan	Tan	7.50	Ten	2000
	Glu		Val	Glu	Val	Leu		GIA	GIn	met	Vai	ASI	Leu	rea	ALG	Asp	
		355					360					365	cmc.	cmc	200	CT N	1687
	GGC	AAG	GCA	GTG	CGT	ATG	TCC	AAG	CGT	GCA	GGC	ACC	616	W-1	ML-	Ton	1007
	Gly	Lys	Ala	Val	Arg		Ser	Lys	Arg	Ala		Thr	vaı	val	THE	10E	
	370					375					380		•		maa	385	1735
20	GAT	GAC	CTC	GTT	GAA	GCA	ATC	GGC	ATC	GAT	GCG	GCG	CGT	TAC	TCC	CIG	1733
	Asp	Asp	Leu	Val	Glu	Ala	Ile	Gly	Ile		Ala	Ala	Arg	Tyr	ser	Leu	
				-	390					395					400		1703
	ATC	CGT	TCC	TCC	GTG	GAT	TCT	TCC	CTG	gat	ATC	GAT	CTC	GGC	CTG	TGG	1783
	Ile	Arg	Ser	Ser	Val	Asp	Ser	Ser	Leu	Asp	Ile	Asp	Leu	Gly	Leu	Trp	
05		_		405			•		410					415			
25	GAA	TCC	CAG	TCC	TCC	GAC	AAC	CCT	GTG	TAC	TAC	GTG	CAG	TAC	GGA	CAC	1831
	Glu	Ser	Gln	Ser	Ser	Asp	Asn	Pro	Val	Tyr	Tyr	Val	Gln	Tyr	Gly	His	
			420					425					430				
	GCT	CGT	CTG	TGC	TCC	ATC	GCG	CGC	AAG	GCA	GAG	ACC	TTG	GGT	GTC	ACC	1879
	Ala	Arq	Leu	Cys	Ser	Ile	Ala	Arg	Lys	Ala	Glu	Thr	Leu	Gly	Val	Thr	
30		435					440					445					
50	GAG	GAA	GGC	GCA	GAC	CTA	TCT	CTA	CTG	ACC	CAC	GAC	CGC	GAA	GGC	GAT	1927
	Glu	Glu	Glv	Ala	Asp	Leu	Ser	Leu	Leu	Thr	His	Asp	Arg	Glu	Gly	qzA	
	450				•	455					460					465	
	CTC	ATC	CGC	ACA	CTC	GGA	GAG	TTC	CCA	GCA	GTG	GTG	AAG	GCT	GCC	GCT	1975
	Leu	Tle	Arg	Thr	Leu	Glv	Glu	Phe	Pro	Ala	Val	Val	Lys	Ala	Ala	Ala	
35	200		,		470	2				475			, -		480		
	GAC	CTA	CGT	GAA	CCA	CAC	CGC	ATT	GCC	CGC	TAT	GCT	GAG	GAA	TTA	GCT	- 2023
	Ben-	T.eu	Ara	Glu	Pro	His	Arg	Ile	Ala	Arg	Tvr	Ala	Glu	Glu	Leu	Ala	
	Jup	200	,9	485			,		490		•			495			
	GGA	D CT	ጥጥር	CAC	CGC	TTC	TAC	GAT			CAC	ATC	CTT	CCA	AAG	GTT	2071
	Glu	Thr	Dha	Hic	Ara	Phe	Tvr	Asp	Ser	Cvs	His	Ile	Leu	Pro	Lys	Val	
40	Gry	1111	500		,,,,		-1-	505		-,-			510		-		
	CRT	GR G	CDT	n.c.c	CCD	CCD	DTC		ACA	GCA	CGT	CTG	GCA	CTT	GCA	GCA	2119
	7-2	GI.	Res	The	212	Pro	Tle	His	Thr	Ala	Arg	Leu	Ala	Leu	Ala	Ala	
	Asp	515		TILL	AL a	110	520				,	525					
	CCB	212		CNG	NCC	CTC	CCT	ABC	GCC	сто	CAC			GGC	GTT	TCC	2167
	GCA	ACC	8.00	CAG	ML-	Tan	71.	na-	21 a	LAN	Hie	Leu	Val	Glv	Val	Ser	
45			Arg	GIN	THE	535		ASII	7.0	, Dec	540	, 200				545	
	530	~~~	- CR-C	AAG	3000			TC C	ርጥ ከ	CB C			י ייב	TC A	AT G		2214
							LA A	10 0	1. "	the T	721 0	ili b	sn P	he D	sn G	il u	
	ALa	Pro	GIU	Lys			M		ıa 1	111 A	ar c	71 L F	wii F	^			•
					550	-		1	77.		· cmc		ממט י	GDB	GDC	GGC	2262
	CTI	CCC	GCA	CAC	GTA	TGG	TCA	7	MAI	, GCL	, U10	, UGC	, www.	611	Der	GGC	
50			ALa	Hls	val			AIG	ASI	. AL	. Acry		9.11	. 514	· -wp	Gly 25	
	10)				15					20			י כחח	Għ?	-	2310
	GTI	GTC	ACC	GTC	: GCI	GGI	GTG	CCT	CTG	, CC1	GAC	, CIC	. 601	GA.	. GM	TAC	2320

					30				Leu	35					40		
	GGA	ACC	CCA	CTG	TTC	GTA	GTC	GAC	GAG	GAC	GAT	TTC	CGT	TCC	CGC	TGT	2358
5	-			45					Glu 50					55.			
	CGC	GAC	ATG	GCT	ACC	GCA	TTC	GGT	GGA	CCA	GGC	AAT	GTG	CAC	TAC	GCA	2406
		_	60					65	Gly				. 70				
	TCT	AAA	GCG	TTC	CTG	ACC	AAG	ACC	TTA	GCA	CGT	TGG	GTT	GAT	GAA	GAG	2454
10		75					80		Ile			85					
	GGG	CTG	GCA	CTG	GAC	ATT	GCA	TCC	ATC	AAC	GAA	CTG	GGC	ATT	GCC	CTG	2502
	90					95			Ile		100					105	2550
15	GCC	GCT	GGT	TTC	CCC	GCC	AGC	CGT	ATC	ACC	GCG	CAC	GGC	AAC	AAC	AAA	2550
					110				Ile	115					120		2500
	GGC	GTA	GAG	TTC	CTG	CGC	GCG	TTG	GTT	CAA	AAC	GGT	GTG	GGA	CAC	GIG	2598
	•			125					Val 130					135			2646
20	GTG	CTG	GAC	TCC	GCA	CAG	GAA	CTA	GAA	CTG	TTG	GAT	TAC	GTT	GCC	GCT Dla	2646
			140					145	Glu				150	•			2694
	GGT	GAA	GGC	AAG	ATT	CAG	GAC	GTG	TTG	ATC	CGC	GTA	AAG	Dra	GGC	Tle	2034
05	_	155					160		Leu			165					2742
25	GAA	GCA	CAC	ACC	CAC	GAG	TTC	ATC	GCC	ACT	AGC	CAC	GAA	BAC	CAG	THE	2142
	170					175			Ala		180					185	2790
	TTC	GGA	TTC	TCC	CTG	GCA	TCC	GGT	TCC	GCA	TTC	GAA	GCA	GCA	AAA	nla	2190
30		-			190				Ser	195					200		2838
	GCC	AAC	AAC	GCA	GAA	AAC	CTG	AAC	CTG	GTT	GGC	CTG	CAC	TGC	UAC Vic	Wal	2030
				205					Leu 210					215			2886
	GGT	TCC	CAG	GTG	TTC	GAC	GCC	GAA	GGC	TTC	AAG	CIG	TI T	nla	Glu	Ara	2000
35			220					225	Gly				230				2934
	GTG	TTG	GGC	CTG	TAC	TCA	CAG	ATC	TILE	AGC	GAA	Lau	Glv	Val	Mla	CTT Leu	
		235	_				240					245				GCT	2982
	Des	GAA	Tou	GAI	Tan	GG I	Glv	Glv	TUT	Glv	Tle	Ala	Tvr	Thr	Ala	Ala	
40	250		пец	vsh	пса	255	OL,	-	-,-	,	260	•	- 3			265	
	GAA	GAA	CCA	CTC	AAC	GTC	GCA	GAA	GTT	GCC			CTG	CTC	ACC	GCA	3030
	Glu	Glu	Pro	Leu	Asn 270	Val	Ala	Glu	Val	Ala 275	Ser	Asp	Leu	Leu	Thr 280	Ala	
	GTC	GGA	AAA	ATG	GCA	GCG	GAA	CTA	GGC	ATC	GAC	GCA	CCA	ACC	GTG	CTT	3078
45 _	Val	Gly	Lys	Met 285	Ala	Ala	Glu	Leu	Gly 290	Ile	Asp	Ala	Pro	Thr 295	Val	Leu	
	GTT	GAG	CCC	GGC	CGC	GCT	ATC	GCA	GGC	CCC	TCC	ACC	GTG	ACC	ATC	TAC	3126
			300					305					310			Tyr	2174
	GAA	GTC	GGC	ACC	ACC	AAA	GAC	GTC	CAC	GTA	GAC	GAC	GAC	AAA	ACC	CGC	3174
50		315	_				320					325				Arg	2222
	CGT	TAC	ATC	GCC	GTG	GAC	GGA	GGC	ATG	TCC	GAC	AAC	ATC	CGC	, CCA	GCA	3222
	Arg	Tyr	Ile	Ala	Val	Asp	Gly	GLy	Met	ser	Asp	Asn	TTE	AEG	FIC	Ala	

	330					335					340					345	
	CTC	TAC	GGC	TCC	GAA '	TAC	GAC	GCC	CGC	GTA	GTA	TCC	CGC	TTC	GCC	GAA	3270
	Leu	Tur	Glv	Ser	Glu	Tvr	Asp	Ala	Arg	Val	Val	Ser	Arg	Phe	Ala	Glu	
-	200	- 3 -	,		350		•		•	355					360		
,	CCN	CAC	CCB	GTA	AGC	ACC	CGC	ATC	GTG	GGC	TCC	CAC	TGC	GAA	TCC	GGC	3318
	CIM	BAC	Dra	Val	Ser	Thr	Ara	Tle	Val	Gly	Ser	His	Cvs	Glu	Ser	Gly	
	GIA	ASp	PLO	365	JC 1		• • •		370				•	375		-	
				202	B B C	C D TT	C D D			CCA	TCT	GAC	ATC		AGC	GGC	3366
	GAT	ATC	CTG	ATC	AAC	GHI	CAA	TIO	TAC	Pro	Ser	Asn	Tle	Thr	Ser	Glv	
	Asp	Ile		IIe	Asn .	qza	Giu		TAT	FLO	361	بر م	390			027	•
10			380					385		CCB	mn c	mcc		ccc	a TC	»cc	3414
	GAC	TTC	CTT	GCA	CTC	GCA	GCC	ACC	GGC	GCA	TAC	TGC	TAC	71-	Mat	202	3111
	Asp	Phe	Leu	Ala	Leu	Ala		Thr	GIÀ	Ala	Tyr	Cys	Tyr	Ata	met	Ser	
		395					400					405					2462
	TCC	CGC	TAC	AAC	GCC	TTC	ACA	CGG	CCC	GCC	GTC	GTG	TCC	GTC	CGC	GCT	3462
	Ser	Arq	Tyr	Asn	Ala	Phe	Thr	Arg	Pro	Ala	Val	Val	Ser	Val	Arg	ALA	
15	410					415					420					423	
	GGC	AGC	TCC	CGC	CTC	ATG	CTG	CGC	CGC	gaa	ACG	CTC	GAC	GAC	ATC	CTC	3510
	Glv	Ser	Ser	Ara	Leu	Met	Leu	Arg	Arg	Glu	Thr	Leu	Asp	Asp	Ile	Leu	
	0-1	201			430			-	_	435					440		
	TCD	CTD	G)G	CCA	TAAC	GCTT	TT C	GACG	CCT	A CC	CCGC	CCT	CA	CCTT	CGCC		3562
					17410		• • •										
20	Ser	Leu	GIU														
				445													3579
	GTG	SAGG	SCG (21.1.1.1	GG												
						222	- N	10.10	١.								
	(2)	INFO	ORMA	LION	FOR	SEQ	TDI	10: 1:									
		(i)	SEÇ	QUENC	CE CH	LARAC	FERI	LSTIC	.a:								
25					ENGTH				acı	ıs							
					PE:												
					OPOLO												
		(ii)	MOI	LECUI	LE TY	PE:	prot	tein				_					
		(xi)) SE	QUENC	CE DE	SCR	PTIC	on: S	SEQ :	ID NO): 19	9:		_			
	Met	Thr	Pro	Ala	Asp	Leu	Ala	Thr	Leu	Ile	Lys	Glu	Thr	Ala	Val	Glu	
30	1				5					10					12		
	Val	Leu	Thr	Ser	Arg	Glu	Leu	Asp	Thr	Ser	Val	Leu	Pro	Glu	Gln	Val	
				20					25					30			
	V-1	V=1	Glu	Ara	Pro	Ara	Asn	Pro	Glu	His	Gly	Asp	Tyr	Ala	Thr	Asn	
	V41	101	35	7119		,		40			-	_	45				
	T1 -	B 1 -	700	C1 n	17-3	nl a	T.vs	Lvs	٧al	Glv	Gln	Asn	Pro	Arc	Asp	Leu	
35	TIE		Leu	GIII	Val	Λια	55	Lys	***	0_,		60	•	•	•		
		_50 	_	.	-1-	61		T 011	71-	7.1 -	nen.			T1 e	Asp	Ser	
			Trp	Leu	ALA		ALA	Leu	ALA	ALG	75	rwp	,		_F	Ser 80	•
	65			_	_	_70			-	•	75			. n1 -	. 112		
	Ala	Glu	Ile	Ala	Gly	Pro	GTÀ	Phe	Leu	Asn	ile	Arg	Leu	, A10	95	Ala	
					85					90			61.				
40	Ala	Gln	Gly	Glu	Ile	Val	Ala	Lys	Ile	Leu	Ala	Gin	GIY	GIL	ITHE	Phe	
40				100					105					110	,		
	Glv	Asn	Ser	Asp	His	Leu	Ser	His	Leu	Asp	Val	Asn	Leu	Glu	ı Phe	: Val	
			115					120					125)			
	Ser	. Ala	Asn	Pro	Thr	Glv	Pro	Ile	His	Leu	Gly	Gly	Thr	Ar	g Trp	Ala	
		130					135				_	140	1				
	73-	Val	G114	Den	Ser	Leu	Glv	Ara	Val	Leu	Glu	Ala	Ser	G1	y Ala	Lys	
45			GLY	wab	Der	150		9			155					160	
	145							. Acn	n er	Uie			G) t	T1	e Ası	Arg	
	Val	. Thr	Arg	GLU			Pile	Hall	vof	170	OI,	742	,		17	5	
			_	_	165	_			m1-	170		, G1.	, p-,	. ጥኩ			
	Phe	: Ala	Leu			Leu	Ala	ALA			GIA	GIL	* E.T.	19	V	o Glu	
				180			_		185			. 21-				- Val	
50	Asp	Gly	, Tyr	: Gly	Gly	Glu	Tyr	Ile	гуз	i GIU	1776	: AL	T GT	. AL	G 11	e Val	
			195	,				200			_		20		_ ^,		
	Glu	Lys	His	Pro	Glu	. Ala	Leu	ı Ala	Leu	ı Glu	Pro	Ala	Ala	a Th	r GI	n Glu	
		-															

		210					215					220				
	Leu 225	Phe	Arg	Ala	Glu	Gly 230	Val	Glu	Met	Met	Phe 235	Glu	His	Ile	Lys	Ser 240
5	Ser	Leu	His	Glu	Phe 245	Gly	Thr	Asp	Phe	Asp 250	Val	туг	Tyr	His	G1u 255	Asn
	Ser	Leu	Phe	Glu 260	Ser	Gly	Ala	Val	Asp 265	Lys	Ala	Val	Gln	Val 270	Leu	Lys
	Ī		Gly 275			_		280					285			
10		290	Phe		_		295					300				
	305		Ala	_		310					315					320
			Gly		325					330					335	
15	-	_	Ile	340	_		_		345					350		
			Gly 355					360					365			
20	_	370	Lys			-	375					380				
20	385	_	Asp			390					395					400
•			Arg		405					410					415	
25	_		Ser	420					425					430		
			Arg 435					440					445			
		450	Glu Ile	_			455					460				
30	465		Leu			470					475					480
			Thr		485				•	490					495	
		-	Glu	500					505					510		
35			515					520					525			Val
		530	Pro				535	Ala	Maii	Λια	Deu	540	Deu			
	545	714	710	914	ny s	550										
40	(2)		ORMAT	_												
			-		engti Ype:				aci	ds						
		(11	I) IOM (•	DPOLA											
45		(xi) SE(QUEN	CE DI	ESCR	IPTI	: NC	SEQ	ID N	o: 2	0:				
	1				5					10					15	
				20					25					30		Val
50			35					40					45			Val
	Asp	G1u 50	Asp	Asp	Phe	Arg	Ser 55	Arg	Cys	Arg	Asp	Met 60	ALA	rnr	WIS	Phe

	65	_				70				Ser	75					80
	Thr	Ile	Ala	Arg	Trp 85	Val	Asp	Glu	Glu	Gly 90	Leu	Ala	Leu	Asp	Ile . 95	Ala
5				100	Leu				105	Ala				110		
	_		115	Ala				120		Gly			125			
10		130					135			Val		140				
	145	Glu				150				Gly	155					160
	Val				165					Glu 170					175	
15				180	i				185	Phe				190		
	-		195					200		Ala			205			
		210					215			Gly		220				
20	225					230				Val	235					240
					245					Pro 250					255	
				260					265	Glu				2/0		
25			275					280		Val			285			
		250					295			Val		300				
	305	-				310				Glu -	315					320
30 .					325					330					333	Gly
				340	1				345					350		
			355					360					365			Arg
35		370					375	,				380				Glu
	385					390)				395	•				Ala 400
40					405	5				410)				413	
**				420)				425	5				431)	Leu
	Arq	j Arg	435		r Let	ı Asp) Asp	440)	ı Ser	Let	ı Git	445	5		
45	(2)) INI (:	L) SI	EQUEI (A) : (B) :	LENG LENG	R SE(CHAR! TH: :	ACTE 20 b clei	RIST ases c ac:	ics:							
50			i) M	(D) OLEC (A)	Topo ULE Desc	NDEDI LOGY TYPE RIPT E: n	: li : ot ION:	near her	nucl	eic : = ":	acid synt	heti	c DN	A"		

	AACC		-	-	CE DE		PTIC	ON: 5	SEQ 1	D NO): 2 <u>1</u>	l:					20
5	(2)		SE((<i>I</i> (E	QUENC A) LE B) TY C) ST	CE CH ENGTH (PE: TRANK	IARAC I: 20 nucl Dedni	ID Note: Text of the second se	ISTIC ses acic sinc	:s: :								
10		(ii)	MOI	LECUI	LE TY	PE:	othe	er ni									
		(ivi	-			[PTIC	ON:	/de	esc =	= "s <u>y</u>	nthe	etic	DNA'	•			•
						-	PTIC	on: s	SEQ I	D NO): 22	2:					
	CCGG	CCTA	ICA 7	VAATO	GTG	:A									•		20
15	(2)		SE(() ()	QUENC A) Li B) Ti C) Si	CE CH ENGTH (PE: TRANI	iarac i: 13 nucl Dedni	ID N TERM 331 N Leic ESS:	STIC pase: acic doub	:S: : :								
20		(ii)	•				line		DNA								
20			ORI	GIN	AL SC	URCE	Ξ:										
				•		ISM: V: JR	Esci	nerio	hia	coli	L						
		(ix)	•	ATURI		••• •••	1100										
			•			ŒY:										•	
25		(xi)					.00. PTIC			א מ	a: 23	3 •					
	AAC			-					-				CC G2	AC CO	CG A	r r	48
			Me		ne Gl	Lu As	sn Il	_	ır Al	La AJ	la Pi			sp P	ro I	le	
	CTG	GGC	CTG	1 GCC	GAT	CTG	ттт	5 CGT	GCC	GAT	GAA		CCC	GGC	дад	ATT	96
30															Lys		
	220	15			ccm	~~~	20		C. T. C.		3.00	25		7.00		CMA	244
															CCG Pro		144
	30		,		,	35	-,-	-3-	р		40	,	-,-		•	45	
35																ACC .	192
55	Leu	Thr	ser	Val	Lys 50	ràs	ALA	GIU	Gin	Tyr 55	Leu	Leu	GIU	Asn	Glu 60	Thr	
					CTC					ATC					CGC		240
	Thr	Lys	Asn		Leu	Gly	Ile	Asp	_	Ile	Pro	Glu	Phe		Arg	Cys	
	ACT	CAG	GAA	65 CTG	сте	ىلىلىل	GGT	AAA	70 GGT	AGC	GCC	CTG	ATC	75 AAT	GAC	AAA	288
40															Asp		
			80					85					90				226
															Arg	GTG Val	336
		95	144			02	100		4 23	OL,		105			,		
45																GTG	384
	Ala 110	Ala	Asp	Phe	Leu	Ala 115	Lys	Asn	Thr	Ser	Val 120	-	Arg	Val	Trp	Val 125	
		AAC	CCA	AGC	TGG		AAC	CAT	AAG	AGC			AAC	TCT	GCA		432
					Trp					Ser	Val				Ala	Gly	
					130					135					140		
	CTC	GD P	COO	CCM		TAC	COM	do M to	ጥለጥ	-		CDD	ከከጥ	CRC	D.Com	СФФ	490
50					GAA					GAT	GCG				ACT Thr		480

	GAC	TTC	GAT	GCA	CTG	ATT	AAC	AGC	CTG	AAT	GAA	GCT	CAG	GCT	GGC	GAC	528
		Phe															
			160					165					170				
5		GTG												_			576
	Val	Val 175	Leu	Pne	HIS	GLY	180	Cys	птэ	ASII	PIO	185	GIY	TIE	ASP	PIO	
	ACG	CTG	GAA	CAA	TGG	CAA		CTG	GCA	CAA	CTC		GTT	GAG	AAA	GGC	624
		Leu															
	190					195					200					205	
10		TTA													_		672
	тгр	Leu	Pro	теп	210	ASP	Pne	ALA	ıyı	215	GIY	rne	WIG	AIG	220	Ded	
	GAA	GAA	GAT	GCT		GGA	CTG	CGC	GCT		GCG	GCT	ATG	CAT		GAG	720
		Glu															
				225					230					235			
15		ATT															768
	Leu	Ile	Val 240	ALA	Ser	ser	Tyr	Ser 245	гàг	Asn	Pne	GIY	250	туг	Asn	GIU	
	CGT	GTT		GCT	TGT	ACT	CTG		GCT	GCC	GAC	AGT		ACC	GTT	GAT	816
		Val															
20		255	_		_		260					265					
20		GCA															864
	-	Ala	Phe	Ser	Gln	Met 275	Lys	Ala	ALA	ITE	280	ALA	Asn	Tyr	ser	Asn 285	
	270 CCA	CCA	GCA	CAC	GGC		тст	GTT	GTT	GCC		ATC	CTG	AGC	AAC		912
		Pro															
25					290					295					300		
		TTA															960
	Ala	Leu	Arg		Ile	Trp	Glu	Gln		Leu	Thr	Asp	Met	Arg 315	GIn	Arg	
	» ከጥጥ	CAG	CGT	305	CCT	CDG	ጥጥር	TTC	310 GTC	таа	ACG	CTG	CAG		AAA	GGC	1008
		Gln															
30			320		•			325					330				
		AAC															1056
	Ala	Asn	_	Asp	Phe	Ser	Phe 340	Ile	He	Lys	GIn	Asn 345	GIY	Met	Pne	Ser	
	TTC	335 AGT		CTG	ACA	AAA		CAA	GTG	CTG	CGT		CGC	GAA	GAG	TTT	1104
	Phe	Ser	Gly	Leu	Thr	Lys	Glu	Gln	Val	Leu	Arg	Leu	Arg	Glu	Glu	Phe	
35	350		_			355					360					365	
																ACA	1152
	Gly	Val	Tyr	Ala	Val 370	Ala	Ser	GTĀ	Arg	741 375	Asn	vat	ALA	GIY	380	Thr	
	CCA	GAT	AAC	ATG		CCG	CTG	TGC	GAA		ATT	GTG	GCA	GTG			1197
40		Asp															
10				385					390					395			
																GCAACA	1257
		CCTG				TA T	CAGG	CCTA	C GC	GTCC	CCTG	CAA	TATT	TIG	AATT	TGCACG	1317 1331
	MI I	1161	AGG	CCGG													
45	(2)	INE	ORMA	TION	FOR	SEQ	ID	NO:2	4:								
		(i		-				ISTI									
			•					mino	aci	ds							
			-	-	YPE: OPOL												
		(ii	•					tein									
50		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ							r	
			Glu	Asn			Ala	Ala	Pro			Pro	Ile	Leu		Leu	
	1				5					10)				15	•	

	Ala	Asp	Leu	Phe 20	Arg	Ala	qeA	Glu	Arg 25	Pro	Gly	Lys	Ile	Asn 30	Leu	Gly
5	Ile	Gly	Val 35	Tyr	Lys	Asp	Glu	Thr 40	Gly	Lys	Thr	Pro	Val 45	Leu	Thr	Ser
	Val	Lys 50	Lys	Ala	Glu	Gln	Tyr 55	Leu	Leu	Glu	Asn	Glu 60	Thr	Thr	Lys	Asn
	65					70		Pro			75					80
10					85			Ala		90					95	
				100					105					110		Asp
			115	_				Val 120	_	_		•	125			
15		130				_	135	Val		•		140	_		•	
	145					150		Ala Glu			155					160
20					165			Pro		170		_	_		175	
20			-	180	-			Leu	185	-		-		190	•	•
		_	195					200 Gly				•	205	•		
25	Ala	210 Glu	Gly	Leu	Arg	Ala	215 Phe	Ala	Ala	Met	His	220 Lys	Glu	Leu	Ile	Val
	225 Ala	Ser	Ser	Tyr		230 Lys	Asn	Phe	Gly		235 Tyr	Asn	Glu	Arg		240 Gly
	Ala	Cys	Thr		245 Val	Ala	Ala	Asp		250 Glu	Thr	Val	Asp		255 Ala	Phe
30	Ser	Gln	Met 275	260 Lys	Ala	Ala	Ile	Arg 280		Asn	Туг	Ser	Asn 285	270 Pro	Pro	Ala
	His	Gly 290		Ser	Val	Val	Ala 295	Thr		Leu	Ser	Asn 300		Ala	Leu	Arg
			Trp	Glu	Gln			Thr	Asp	Met			Arg	Ile	Gln	Arg
35	305 Met	Arg	Gln	Leu	Phe	310 Val	Asn	Thr	Leu	Gln	315 Glu	Lys	Gly	Ala	Asn	320 Arg
	Asp	Phe	Ser	Phe	325 Ile	Ile	Lvs	Gln	Asn	330 Gl v	Met	Phe	Ser	Phe	335 Ser	Gly
				340					345					350		•
40			355					360					365			Tyr Asn
		370				_	375				_	380	1111	110	mp	A.J.II
	Met 385		Pro	Leu	Cys	Glu 390	Ala	Ile	Val	Ala	Val 395	Leu				
45	(2)							NO:2								
		(i						ISTI base								
			(1	B) T	YPE:	nuc	leic	aci	d							
50			•	•	OPOL			dou ear	pre							
-					LE T			omic	DNA							
		(41	•					viba	cter	ium	lact	ofer	ment	um		

	(B) STRAIN: ATCC 13869	
	(xi) SEOUENCE DESCRIPTION: SEQ ID NO: 25:	
	CATCACCTTC GGGTGTTGAA GGGGCCGAAT AAGGAACTCG CGCAGTTGGG TCGTAGTTTG	60
_	TTTBBCCAC TTGGTGATGT GTTGGCGTAT TTCGATGTTG GTGTCTCCAA CGGTCCGGTC	120
5	CARCCATCA ACGGACGGTT GGAGCATTTG CGTGGGATTG CTCTAGGTTT CCGTAATTTG	180
	ARCONCTACA TTCTGCGGTG CCTTATCCAT TCAGGGCAGT TGGTCCATAA GATCAATGCA	240
	CTCTABBACA GGAAGAGCCC CTTTACAAGC GGCAAGACCA AACTGGGTGA CCGAAAATCT	300
	TCACCCART CAGTTTTGGT CATATGGGAT GGTTTTTAGA CCTCGAAACC ATCCCATATG	360
	ACCENECCE GEGRAACTET GTGTTCGTTG GTCGCCTGGT TCGGTCTCAA TGCCTTGCCG	420
10	BBBCCBCBC GCCCGAAAC CCAAAACTCC CCAATACATG AAAAAACCAG CTTCCCACCG	480
10	AAGTGAGAAG CTGGTTTAGT TTGCGGAGGA TAGGGGATTT GAACCCCTGA GGGATTGCTC	540
	CCAACCCGCG TTCCAGGCGA GCGACATAGG CCGCTAGTCG AATCCTCCAG CTAGAACGGC	600
	TGCAACGCAT GGCTGCTTTG TTCTGGGGAT TAGATTACAC AAAAGTCGTT TAGAAACTCA	660
	AATCCGCTCG CAGTTGGCGT TTTCTGGGGC GGTTCAGCTA GAGTTATGCG AAGGATCCCG	720
	TGCGGCGTTT ATCTTGTGAA CTCCCCCAGG GCAGGAATGC AGCAAGGGTC AGCGAGCTCT	780
15	GACGGGTGCG CGGGGTCCCC TAAAACGTCT AGAGTAGTGG CTTGAGGTCA CTGCTCTTTT	840
	TTTGTGCCCT TTTTTTGGTC CGTCTATTTT GCCACCACAT GCGGAGGTAC GCAGTTATGA	900
	GTTCAGTTTC GCTGCAGGAT TTTGATGCAG AGCGAATTGG TCTGTTCCAC GAGGACATTA	960
	AACGCAAGTT TGATGAGCTC AAGTCAAAAA ATCTGAAGCT GGATCTTACT CGCGGTAAGC	1020
	CTTCGTCGGA GCAGTTGGAT TTCGCTGATG AGCTGTTGGC GTTGCCTGGT AAGGGCGATT	1080
	TCAAGGCTGC GGATGGTACT GATGTCCGTA ACTATGGCGG GCTGGATGGC ATTGTTGATA	1140
20	TTCGTCAGAT TTGGGCGGAT TTGCTGGGTG TTCCTGTGGA GCAGGTGCTG GCGGGGGATG	1200
	CTTCGAGCTT GAACATCATG TTTGATGTGA TCAGCTGGTC GTACATTTTT GGTAACAATG	1260
	ATTCGGTTCA GCCTTGGTCG AAGGAAGAAA CTGTTAAGTG GATTTGTCCT GTTCCGGGAT	1320
	ATGATCGCCA TTTCTCCATC ACGGAGCGTT TCGGCTTTGA GATGATTTCT GTGCCAATGA	1380
	ATGAAGACGG CCCTGATATG GATGCTGTTG AGGAATTGGT CAAGGATCCG CAGGTTAAGG	1440
05	GCATGTGGGT TGTGCCGGTA TTTTCTAACC CGACTGGTTT CACGGTGTCG GAGGACGTCG	1500
25	CAAAGCGTCT GAGCACGATG GAAACTGCGG CGCCGGACTT CCGCGTGGTG TGGGATAACG	1560
	CTTACGCCGT TCATACTCTG ACCGATGAGT TCCCTGAGGT CATCGACATC GTTGGGCTTG	1620
	GTGAGGCGGC GGGTAACCCG AACCGTTTCT GGGCGTTCAC TTCTACTTCG AAGATCACTC	1680 1740
	TCGCGGGTGC GGGCGTGTCC TTCTTCATGA CTTCTGCGGA GAACCGTAAG TGGTACTCCG	1800
	GTCATGCGGG TATCCGTGGC ATTGGCCCTA ACAAGGTCAA TCAGTTGGCT CATGCGCGTT	1860
30	ACTITIGGCGA TGCTGAGGGA GTGCGCGCGG TGATGCGTAA GCATGCTGCG TCGTTGGCTC	1920
	CGAAGTTCAA CAAGGTTCTG GAGATCCTGG ATTCTCGCCT TGCTGAGTAC GGTGTCGCGC	1980
	AGTGGACTGT CCCTGCGGGC GGTTACTTCA TTTCCCTTGA TGTGGTTCCT GGTACGGCAT	2040
	CTCGTGTGGC TGAGTTGGCT AAGGAAGCCG GCATTGCGTT GACGGGTGCG GGTTCTTCTT	2100
	ACCCGCTGCG TCAGGATCCG GAGAACAAGA ACCTCCGTTT GGCGCCTTCT CTGCCTCCTG	2160
	TTGAGGAACT TGAGGTTGCC ATGGATGGCG TGGCTACGTG TGTTTTGCTG GCAGCTGCGG	2220
<i>35</i>	AGCACTACGC TAGCTAGAGT GAATACCGCG GAAACTGCAC ATTGGATTAA CCGTTTGCTG	2280
	CCGGGTCAGC CGGAGTTTCA CCAGGTTGGC GCGTTTAAAG TGGCGGGTTA CACGCTTGAT	2340
	GATGAGTCAA TTGCGTGTTC TGTCAATTTC GGGCGCGTCA ACACGGGCCT GGTCACCGAG	2400
	ACAGGCGCGG AAACCGTCGA TGTGCGAAGT GAGATTTTGA GCCTGGCCAG GGCCGACGTG	2460
	TCCGTGCCTG GGCGCCCGT CGGCGCTGCT GCAACAATGC TTCTCGACGC CTCCCTCTCC	2517
	TTCAAATCCG CCACCGATTC CAGTGTCACT CCCATGCATG CCCAACCGGG ACAGATC	232.
40	IN THE TANK POR ORD TO NO.25.	
	(2) INFORMATION FOR SEQ ID NO:26:	
	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 bases	
	(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(B) TOPOLOGI: Timear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: no (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	GATCAACGGA CGGTTGGAGC ATT	23
50	CHICHCOOK COOLLONGO HIL	

(2) INFORMATION FOR SEQ ID NO:27: (1) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 23 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA" (iv) ANTI-SENSE: yes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27: GGTATTCACT CTAGCTAGCG TAG	23
10	(2) INFORMATION FOR SEQ ID NO:28:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: no	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
00	GAGCTCAAGT CAAAAAATCT GAA	23
20		
	(2) INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 bases	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "synthetic DNA"	
	(iv) ANTI-SENSE: yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
30	GATCTGTCCC GGTTGGGCAT GCA	23
•		
	(2) INFORMATION FOR SEQ ID NO:30:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2517 bases	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Brevibacterium lactofermentum</pre>	
	(B) STRAIN: ATCC 13869	
40	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 8792174	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	GATCAGCTTC GGGTGTTGAA GGGGCCGAAT AAGGAACTCG CGCAGTTGGG TCGTAGTTTG	60
45	TTTAAACGAC TTGGTGATGT GTTGGCGTAT TTCGATGTTG GTGTCTCCAA CGGTCCGGTC	120
~	GAAGCGATCA ACGGACGGTT GGAGCATTTG CGTGGGATTG CTCTAGGTTT CCGTAATTTG	180
	AACCACTACA TTCTGCGGTG CCTTATCCAT TCAGGGCAGT TGGTCCATAA GATCAATGCA	240
	CTCTAAAACA GGAAGAGCCC CTTTACAAGC GGCAAGACCA AACTGGGTGA CCGAAAATCT	300
	TCAGGCCAAT CAGTTTTGGT CATATGGGAT GGTTTTTAGA CCTCGAAACC ATCCCATATG	360
	ACCGAAGCCC GCGAAACTCT GTGTTCGTTG GTCGCCTGGT TCGGTCTCAA TGCCTTGCCG	420
50	AAACCACAAC GCCCGGAAAC CCAAAACTCC CCAATACATG AAAAAACCAG CTTCCCACCG	480
	AAGTGAGAAG CTGGTTTAGT TTGCGGAGGA TAGGGGATTT GAACCCCTGA GGGATTGCTC	540
	CCAACCCGCG TTCCAGGCGA GCGACATAGG CCGCTAGTCG AATCCTCCAG CTAGAACGGC	600
	TGCAACGCAT GGCTGCTTTG TTCTGGGGAT TAGATTACAC AAAAGTCGTT TAGAAACTCA	660

	TGCGG	GCGT	TT AT	TTO?	TGA	CTC	CCCC	CAGG	GCA AGA	GGAA' GTAG	TGC . TGG	agcai Cttgi	agggt aggt(C AC	GCGA TGCT	TCCCG GCTCT CTTTT	720 780 840
5	TTTG	TGCC	CT T	rttt?	rggt(C CG	rctai	TTTT	GCC	ACCA	C AT Me	G CGG t Ard	3 AGG	TAG	C GC	A	893
	GTT :	ATG Met	AGT :	rca (Ser)	Val :	rcg (Ser :	CTG (Leu (CAG (Gln)	GAT Asp	TTT Phe 15	GAT	GCA (GAG (Glu <i>I</i>	CGA A	ATT Ile 20	GGT Gly	941
10	CTG Leu	TTC Phe	CAC (GAG (10 GAC : Asp :	ATT .	AAA (Lys)	CGC . Arg	Lys	TTT	GAT Asp	GAG Glu	CTC I Leu l	AAG ' Lys : 35	TCA	AAA Lys	989
	AAT Asn	CTG Leu	AAG Lys	25 CTG Leu	GAT (CTT . Leu	ACT (CGC Arg	30 GGT Gly	AAG Lys	CCT Pro	TCG Ser	ser (GAG	CAG Gln	TTG Leu	1037
15	CDT	ሙሞር	40 GCT	GAT	GAG	CTG	TTG	45 GCG	TTG	CCT	GGT	AAG Lys	GGC (gat	TTC	AAG	1085
	CCT	55	CDT	ccr	አ <i>ር</i> ሞ	GAT	GTC	CGT	AAC	TAT	GGC	65 GGG Gly	CTG	GAT	GGC	ATT	1133
20	70	CNT	እ ጥ ሞ	CCT	CAG	75 ATT	TGG	GCG	GAT	TTG	CTG	GGT Gly	GTT	CCT	GTG	GAG	1181
	CNG	CTC.	СТС	ഭഭ	90 GGG	GAT	GCT	TCG	AGC	95 TTG	AAC	ATC	ATG	TTT	GAT	GTG	1229
25	አሞ ሮ	N.C.C	тсс	105	TAC	тта	ттт	GGT	110 AAC	AAT	GAT	TCG	GTT	CAG	CCT	TGG	1277
	Ile	Ser	Trp 120	Ser	Tyr	Ile	Phe	Gly 125 TGG	Asn	Asn	Asp	Ser	130 CCG	GGA	TAT	GAT	1325
30	Ser	Lys	Glu	Glu	Thr	Val	Lys 140	Trp	Ile	Cys	Pro	Val 145 GAG	PIO	GIY	ıyı	Mah	1373
	Arg	His	Phe	Ser	Ile	Thr 155	Glu	Arg	Phe	Gly	Phe 160	GIU	Met	116	261	165	1421
35	Pro	Met	Asn	Glu	Asp	Gly	Pro	Asp	Met	Asp 175	Ala	GTT Val	Glu	GLU	180	Val	
	Lys	Asp	Pro	Gln	Val	Lys	Gly	Met	Trp	Val	val	Pro	val	195	261	AAC Asn	1469
40	Pro	Thr	Gly	Phe	Thr	Val	Ser	Glu 205	Asp	Val	Ala	Lys	210	Leu	Ser	ACG Thr	1517
	ATG Met	Glu	ACT Thr	CCC	GCG Ala	CCG Pro	GAC Asp 220	Phe	CGC Arg	GTG Val	GTC Val	TGG Trp 225	Asp	AAC Asn	GCT Ala	TAC Tyr	1565
45	Ala	Val	י כשת	ACT Thr	CTG Leu	Thr	GAT Asp	GAG	TTC Phe	CCT Pro	GA0 G10 240	GTC 1 Val	ATC	GAC Asp	ATC	C GTT E Val 245	1613
	230 GG0 Gly	- CT	r GGT ı Gly	GAG	GCG	235 GCG Ala	GGT	AAC Ast	CCC) Ası	C CG1	r TTC	TGG Trp	GCG	7T0 Pho 26	C ACT	1661
50	m-	n n.c.	r rcc	: nnc	250) - אריז	ר כיינ	: GCC	G GG	25: F GCG Y Ala	s GGG	c GT	TCC	TTC Phe	TT Ph	C ATG e Met	1709
-				269	`				27	U				21.	_	C. CGT	1757

	Thr	Ser	Ala 280	Glu	Asn	Arg	Lys	Trp 285	Tyr	Ser	Gly	His	Ala 290	Gly	Ile	Arg	
	GGC	ATT	GGC	CCT	AAC	AAG	GTC	AAT	CAG	TTG	GCT	CAT	GCG	CGT	TAC	TTT	1805
5	Gly	Ile 295	Gly	Pro	Asn	Lys	Val 300	Asn	Gln	Leu	Ala	His 305	Ala	Arg	Tyr	Phe	
	GGC	GAT	GCT	GAG	GGA	GTG	CGC	GCG	GTG	ATG	CGT	AAG	CAT	GCT	GCG	TCG	1853
							Arg										
	310	•			-	315					320	•				325	
	TTG	GCT	CCG	AAG	TTC	AAC	AAG	GTT	CTG	GAG	ATC	CTG	GAT	TCT	CGC	CTT	1901
10							Lys										
		_	_		330		•			335			•		340		
	GCT	GAG	TAC	GGT		GCG	CAG	TGG	ACT		CCT	GCG	GGC	GGT		TTC	1949
							Gln										
			•	345				•	350					355	- 3 -		•-
	ATT	TCC	CTT	GAT	GTG	GTT	CCT	GGT	ACG	GCA	TCT	CGT	GTG	GCT	GAG	TTG	1997
15							Pro										
			360	-				365				•	370				
	GCT	AAG	GAA	GCC	GGC	ATT	GCG	TTG	ACG	GGT	GCG	GGT	TCT	TCT	TAC	CCG	2045
							Ala										
		375			•		380					385					
20	CTG	CGT	CAG	GAT	CCG	GAG	AAC	AAG	AAC	CTC	CGT	TTG	GCG	CCT	TCT	CTG	2093
	Leu	Arg	Gln	Asp	Pro	Glu	Asn	Lys	Asn	Leu	Arq	Leu	Ala	Pro	Ser	Leu	
	390	•		-		395		-			400			•		405	
	CCT	CCT	GTT	GAG	GAA	CTT	GAG	GTT	GCC	ATG	GAT	GGC	GTG	GCT	ACG	TGT	2141
	Pro	Pro	Val	Glu	Glu	Leu	Glu	Val	Ala	Met	Asp	Gly	Val	Ala	Thr	Cys	
					410					415	_	_			420	-	
25	GTT	TTG	CTG	GCA	GCT	GCG	GAG	CAC	TAC	GCT	AGC	TAG	AGTG	AT A	ACCG	CGGAAA	2194
	Val	Leu	Leu	Ala	Ala	Ala	Glu	His	Tyr	Ala	Ser						
				425					430								
	CTG	CACA	TTG (GATT	AACC	FT T	rgct	SCCGG	GT	CAGC	CGGA	GTT	CAC	CAG	TTG(SCGCGT	2254
	TTA	AAGT	GGC (GGGT1	raca	CG CI	rtga:	rgato	AG?	CAA	TGC	GTG	rtct(STC A	ATT:	CGGGC	2314
30	GCG'	CAAC	CAC	GGGC	CTGG	C AC	CCGA	GACA	GCC	CGG!	VAAC	CGT	CGAT	TG (CGAA	GTGAGA	2374
50	TTT	PGAGO	CCT	GGCCI	AGGG(CC G7	ACGT	STCC	F TGG	CTG	GCG	CGC	CGTC	GC (3CTG(CTGCAA	2434
	CAA!	rgcT:	rct (CGAC	SCCT	cc c	CTC	CTTC	AA?	CCG	CCAC	CGA:	ltcc)	GT (STCA	CTCCCA	2494
	TGC	ATGC	CCA 1	ACCG(GGACI	AG A	rc										2517
	(2)						ID 1										
35		(1)					CTER									•	
				•			32 ar		acı	15							
			-	•			no a										•
		/11					line										
							prot PTI			FD 37/	· · ·	١.					•
40	Mat			_									C1 =	N am	Dha	n.o.	
40		AEG	Arg	Tyr	ATG	Val	Met	ser	ser		ser	Leu	GIN	Asp		Asp	
	1	c1	B	T1.	د داء		Db -	***	~1	10	71.	T	7	7	15	3	
	MIG	GIU	Arg	TIE	GIĀ	Leu	Phe	nis		ASP	TTE	rys	Arg	тÀ2	Pne	Asp	
	C1	T	T	20	*	n	T	T	25	8	*	mh	7	~1··	7	D==	
	GIU	Leu	rå2	Ser	гåг	ASII	Leu	ւրջ 40	rea	ASp	Leu	Int	ALG	GIA	пÃ2	PIO	
15	50=	e.=	~1··	C1 =	T 011	B ===	Dha	• •	7	C1	7	T	71-	T	Des	c1	
	Ser	50	GIU	GIII	Leu	ASP	55	ALA	Asp	GIU	ьeu	60	ALA	Leu	PIO	Gly	
	Luc		n en	Dha	7 ***	212		N.c.	G1.	mh -	7		R ===	N.c.n	m	Gly	
	65	GTÅ	₩ħ	FILE	nys	70	vrq	ռոր	GIÀ	THE	75	AGI	λιg	~>≀1	TYL	80	
		T.e.	Den	G1 10	Tic		700	Tle	D	<u>ما ہ</u>		₩~~	A1 -	Ben	1.011		
	GLY	nea	wah	GTÀ	85	AGT	vəb	116	vrā	90	175	TTD	Λ1 d	wah	95	Leu	
50	Glv	۷a۱	Pro	Va 1		<u>د ا ب</u>	Va I	7,611	11 s		Aen	Δ1 s	Sar	Ser		Asn	
	1	. 41		100	JIU	GIH	· a1	u	105	CTA	ւար	~~~	261	110	204	·wii	
	Tla	Wat	Dh.		1/- 1	T1 -	Ser	m			71.	Db.	C3.		B ===	3	

```
120
                                                            125
                  115
          Ser Val Gln Pro Trp Ser Lys Glu Glu Thr Val Lys Trp Ile Cys Pro
                                   135
                                                        140
          Val Pro Gly Tyr Asp Arg His Phe Ser Ile Thr Glu Arg Phe Gly Phe
5
                               150
                                                    155
          145
          Glu Met Ile Ser Val Pro Met Asn Glu Asp Gly Pro Asp Met Asp Ala
                                                                    175
                                                170
                           165
          Val Glu Glu Leu Val Lys Asp Pro Gln Val Lys Gly Met Trp Val Val
                                            185
                                                                190
                       180
10
          Pro Val Phe Ser Asn Pro Thr Gly Phe Thr Val Ser Glu Asp Val Ala
                                                            205
                                        200
                   195
          Lys Arg Leu Ser Thr Met Glu Thr Ala Ala Pro Asp Phe Arg Val Val
                                                        220
                                   215
          Trp Asp Asn Ala Tyr Ala Val His Thr Leu Thr Asp Glu Phe Pro Glu
15
                               230
                                                    235
          225
          Val Ile Asp Ile Val Gly Leu Gly Glu Ala Ala Gly Asn Pro Asn Arg
                                                250
                           245
          Phe Trp Ala Phe Thr Ser Thr Ser Lys Ile Thr Leu Ala Gly Ala Gly
                                                                270
                       260
                                            265
          Val Ser Phe Phe Met Thr Ser Ala Glu Asn Arg Lys Trp Tyr Ser Gly
20
                                                            285
                                        280
                   275
          His Ala Gly Ile Arg Gly Ile Gly Pro Asn Lys Val Asn Gln Leu Ala
                                                        300
               290
                                   295
          His Ala Arg Tyr Phe Gly Asp Ala Glu Gly Val Arg Ala Val Met Arg
                                                                         320
                                310
                                                    315
          305
25
          Lys His Ala Ala Ser Leu Ala Pro Lys Phe Asn Lys Val Leu Glu Ile
                                                330
                           325
           Leu Asp Ser Arg Leu Ala Glu Tyr Gly Val Ala Gln Trp Thr Val Pro
                                            345
                                                                350
                       340
          Ala Gly Gly Tyr Phe Ile Ser Leu Asp Val Val Pro Gly Thr Ala Ser
                                                            365
                                        360
                   355
30
           Arg Val Ala Glu Leu Ala Lys Glu Ala Gly Ile Ala Leu Thr Gly Ala
                                                        380
                                    375
           Gly Ser Ser Tyr Pro Leu Arg Gln Asp Pro Glu Asn Lys Asn Leu Arg
                                                    395
                                                                         400
                                390
           385
           Leu Ala Pro Ser Leu Pro Pro Val Glu Glu Leu Glu Val Ala Met Asp
35
                            405
                                                 410
           Gly Val Ala Thr Cys Val Leu Leu Ala Ala Glu His Tyr Ala Ser .
                                                                 430
                                            425
```

Claims

- 1. A recombinant DNA autonomously replicable in cells of coryneform bacteria, comprising a DNA sequence coding for an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, a DNA sequence coding for a dihydrodipicolinate reductase, a DNA sequence coding for dihydrodipicolinate synthase, a DNA sequence coding for diaminopimelate decarboxylase, and a DNA sequence coding for aspartate aminotransferase.
- 2. The recombinant DNA according to claim 1, wherein said aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized is an aspartokinase originating from coryneform bacteria, and wherein said aspartokinase is a mutant aspartokinase in which an amino acid residue corresponding to a 279th alanine residue as counted from its N-terminal in the amino acid sequence shown in SEQ ID NO: 5 is changed into an amino acid residue other than alanine and other than acidic amino acid in its α-subunit, and an amino acid residue corresponding to a 30th alanine residue as counted fr m its N-terminal in the amino acid sequence shown in SEQ ID NO: 7 is changed into an amino acid residue other than alanine and other than acidic amino acid in its β-subunit.

- The recombinant DNA according to claim 1, wherein said DNA sequence coding for the dihydropicolinate reductase codes for an amino acid sequence shown in SEQ ID NO: 15, or an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 15.
- 5 4. The recombinant DNA according to claim 1, wherein said DNA sequence coding for the dihydropicolinate synthase codes for an amino acid sequence shown in SEQ ID NO: 11, or an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 11.
- 5. The recombinant DNA according to claim 1, wherein said DNA sequence coding for the diaminopimelate decarboxylase codes for an amino acid sequence shown in SEQ ID NO: 19, or an amino acid sequence substantially the
 same as the amino acid sequence shown in SEQ ID NO: 19.
 - 6. The recombinant DNA according to claim 1, wherein said DNA sequence coding for the aspartate aminotransferase codes for an amino acid sequence shown in SEQ ID NO: 24 or 31, or an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 24 or 31.
 - 7. A coryneform bacterium harboring an aspartokinase in which feedback inhibition by L-lysine and L-threonine is substantially desensitized, and comprising an enhanced DNA sequence coding for a dihydrodipicolinate reductase, an enhanced DNA sequence coding for dihydropicolinate reductase, an enhance DNA sequence coding for dihydropicolinate synthase, an enhanced DNA sequence coding for diaminopimelate decarboxylase and an enhanced DNA sequence coding for aspartate aminotransferase.
 - The coryneform bacterium according to claim 7, transformed by introduction of the recombinant DNA as defined in claim 1.
 - 9. A method for producing L-lysine comprising the steps of cultivating said coryneform bacterium as defined in claim 8 in an appropriate medium to allow L-lysine to be produced and accumulated in a culture of the bacterium, and collecting L-lysine from the culture.
- 30 10. A DNA coding for a protein comprising an amino acid sequence shown in SEQ ID NO: 31.

15

20

25

40

45

50

- 11. The DNA according to claim 10, which comprises a nucleotide sequence of nucleotide number 879 to 2174 in a nucleotide sequence shown in SEQ ID NO: 30.
- 35 12. A vector pVK7, which is autonoumously replicable in cells of <u>Escherichia coli</u> and <u>Brevibacterium lactofermentum</u>, and comprising a multiple cloning site and <u>lacZ'</u>.

FIG. 1

1 10. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

53

54

FIG. 10

FIG. 11

FIG. 12

FIG. 14

THIS PAGE BLANK (USPTO)

RESEARCH

AUG 1 0 1998

LIBRARY Hawke