Optimizing Reachability Sets in Temporal Graphs by Delaying

Argyrios Deligkas, Igor Potapov

Algorithmic Aspects of Temporal Graphs II ICALP 2019

- Graph G = (V, E)
- Labelling function T

- Graph G = (V, E)
- Labelling function *T*

- Graph G = (V, E)
- Labelling function T

- Graph G = (V, E)
- Labelling function T

- Graph G = (V, E)
- Labelling function *T*

- Graph G = (V, E)
- Labelling function T

- Graph G = (V, E)
- Labelling function T

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

- Graph G = (V, E)
- Labelling function T
- Set of sources S

 $reach(v, \langle G, T \rangle)$ Reachability set of v: Set of reachable vertices from v

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

$$reach(v,\langle G,T\rangle)$$

Reachability set of v: Set of reachable

vertices from v

$$S = \{a\}$$

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

How to optimize the reachability set in a temporal graph?

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

How to optimize the reachability set in a temporal graph?

Approach 1: Reshuffling

Enright, Meeks

- Graph G = (V, E)
- Labelling function *T*
- Set of sources *S*

How to optimize the reachability set in a temporal graph?

Approach 1: Reshuffling

Enright, Meeks

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

How to optimize the reachability set in a temporal graph?

Approach 1: Reshuffling Enright, Meeks

Approach 2: Edge deletion

Enright, Meeks, Mertzios, Zamaraev

Delete all edges with label 2

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

How to optimize the reachability set in a temporal graph?

Approach 1: Reshuffling Enright, Meeks

Approach 2: Edge deletion

Enright, Meeks, Mertzios, Zamaraev

Delete all edges with label 2

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

How to optimize the reachability set in a temporal graph?

Approach 1: Reshuffling Enright, Meeks

Approach 2: Edge deletion

Enright, Meeks, Mertzios, Zamaraev

Delete label 1 from edge ab

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

How to optimize the reachability set in a temporal graph?

Approach 1: Reshuffling Enright, Meeks

Approach 2: Edge deletion

Enright, Meeks, Mertzios, Zamaraev

Delete label 1 from edge ab

- Graph G = (V, E)
- Labelling function T
- Set of sources S

$$S = \{a\}$$

How to optimize the reachability set in a temporal graph?

Approach 1: Reshuffling Enright, Meeks

Not always possible in real-life networks (too many changes)

Can create deadends
in the network
(blocks the flow)

Approach 2: Edge deletion

Enright, Meeks, Mertzios, Zamaraev

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

Merging operation

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

Merging operation

 λ -merge: E_i , ..., $E_{i+\lambda-1}$

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

$$S = \{a\}$$

t=1 t=2

O a O a

O b

O c

O d e f d e f

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

 λ -merge: E_i , ..., $E_{i+\lambda-1}$ E_i , $= \cdots = E_{i+\lambda-2} = \emptyset$ $E_{i+\lambda-1} = E_i \cup \cdots \cup E_{i+\lambda-1}$ t=4 t=5 O a

- Graph G = (V, E)
- Labelling function T
- Set of sources *S*

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

- Minimum modification/disturbance of the original network
- Does not create deadends
- Intuitive

Merging Schemes

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

Merging Schemes

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

Merging Schemes

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

Input

- Temporal graph $\langle G, T \rangle$
- Integers λ and μ
- Set of sources S

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

 λ -merge: E_i , ..., $E_{i+\lambda-1}$

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

Input

- Temporal graph $\langle G, T \rangle$
- Integers λ and μ
- Set of sources S

Minimization Objectives

 (λ, μ) -merging scheme uses **at most** μ independent λ -merges

- \triangleright MinReach: min $|\bigcup_{v \in S} reach(v, \langle G, T \rangle)|$
- \triangleright MinMaxReach: min $\max_{v \in S} |reach(v, \langle G, T \rangle)|$
- \triangleright MinAvgReach: min $\sum_{v \in S} |reach(v, \langle G, T \rangle)|$

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

 λ -merge: E_i , ..., $E_{i+\lambda-1}$

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

Input

- Temporal graph $\langle G, T \rangle$
- Integers λ and μ
- Set of sources S

When |S| = 1, all problems coincide

Minimization Objectives

 (λ, μ) -merging scheme uses **at most** μ independent λ -merges

- \triangleright MinReach: min $|\bigcup_{v \in S} reach(v, \langle G, T \rangle)|$
- \triangleright MinMaxReach: min $\max_{v \in S} |reach(v, \langle G, T \rangle)|$
- \triangleright MinAvgReach: min $\sum_{v \in S} |reach(v, \langle G, T \rangle)|$

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

 λ -merge: E_i , ..., $E_{i+\lambda-1}$

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

Input

- Temporal graph $\langle G, T \rangle$
- Integers λ and μ
- Set of sources *S*

Maximization Objectives

 (λ, μ) -merging scheme uses **at least** μ independent λ -merges

- \triangleright MaxReach: max $|\bigcup_{v \in S} reach(v, \langle G, T \rangle)|$
- \triangleright MaxMinReach: max min $|reach(v, \langle G, T \rangle)|$
- \triangleright MaxAvgReach: max $\sum_{v \in S} |reach(v, \langle G, T \rangle)|$

A (λ, μ) -merging scheme uses at most/least μ independent λ -merges

 λ -merge: E_i , ..., $E_{i+\lambda-1}$

$$E_{i}, = \dots = E_{i+\lambda-2} = \emptyset$$

$$E_{i+\lambda-1} = E_{i} \cup \dots \cup E_{i+\lambda-1}$$

Input

- Temporal graph $\langle G, T \rangle$
- Integers λ and μ
- Set of sources S

When |S| = 1, all problems coincide

Maximization Objectives

 (λ, μ) -merging scheme uses **at least** μ independent λ -merges

- \triangleright MaxReach: max $|\bigcup_{v \in S} reach(v, \langle G, T \rangle)|$
- MaxMinReach: max $\min_{v \in S} |reach(v, \langle G, T \rangle)|$
- \triangleright MaxAvgReach: max $\sum_{v \in S} |reach(v, \langle G, T \rangle)|$

Our Results

Problem	Graph	# Sources	# Labels/Edge	# Edges/Step
MinReach	Path	O(n)	1	3
MinReach MinMaxReach MinAvgReach	Tree max degree 3	1	1	1
MaxReach	Path	O(n)	1	4
MaxReach MaxMinReach MaxAvgReach	Bipartite Max degree 3	1	1	4
MaxReach MaxMinReach MaxAvgReach	Tree max degree 3	1	1	10

NP-hard for every λ

Our Results

Problem	Graph	# Sources	# Labels/Edge	# Edges/Step
MinReach	Path	O(n)	1	3
MinReach MinMaxReach MinAvgReach	Tree max degree 3	1	1	1
MaxReach	Path	O(n)	1	4
MaxReach MaxMinReach MaxAvgReach	Bipartite Max degree 3	1	1	4
MaxReach MaxMinReach MaxAvgReach	Tree max degree 3	1	1	10

NP-hard for every λ

- **DAGs**
- Unit disk graphs
- Approximation preserving, no PTAS

Idea

Reduction from Max2SAT(3)

Open Questions

- > Approximation Algorithms
- > Tractable Cases/Graph Classes
- > FPT algorithms

Thanks!!

