Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

1/1 point

Given vectors $\mathbf{v} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

- $O_{\mathbf{v_b}} = \begin{bmatrix} -3\\2 \end{bmatrix}$
- $O_{\mathbf{v_b}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- \bullet $\mathbf{v_b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
- **⊘** Correct

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}$.

- 2. Given vectors $\mathbf{v} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.
 - $\mathbf{v}_{\mathbf{b}} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$
 - $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$
 - $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$
 - $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$

The vector \boldsymbol{v} is projected onto the two vectors $\boldsymbol{b_1}$ and $\boldsymbol{b_2}.$

- 3. Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

 - $O \quad \mathbf{v_b} = \begin{bmatrix} 2/5 \\ -4/5 \end{bmatrix}$
 - $\bigcirc \mathbf{v_b} = \begin{bmatrix} -2/5 \\ 5/4 \end{bmatrix}$
 - O $\mathbf{v_b} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$
 - ✓ Correct

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}.$

- 4. Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise orthogonal to each other.
 - $\begin{array}{c}
 \mathbf{O} \\
 \mathbf{v_b} = \begin{bmatrix}
 -3/5 \\
 -1/3 \\
 -2/15
 \end{bmatrix}
 \end{array}$
 - $\bigcirc \mathbf{v_b} = \begin{bmatrix}
 -3/5 \\
 -1/3 \\
 2/15
 \end{bmatrix}$

$$\mathbf{v_b} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ 2/15 \end{bmatrix}$$

⊘ Correct

The vector ${f v}$ is projected onto the vectors ${f b_1},{f b_2}$ and ${f b_3}.$

5. Given vectors
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{b}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$ all written in the standard 1/1 point basis, what is \mathbf{v} in the basis defined by \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 and \mathbf{b}_4 ? You are given that \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 and \mathbf{b}_4 are all points on the graph of the results of the standard by \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 and \mathbf{b}_4 ? You are given that \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 and \mathbf{b}_4 are all

pairwise orthogonal to each other.

$$\begin{array}{c}
O \\
\mathbf{v}_{\mathbf{b}} = \begin{bmatrix}
0 \\
1 \\
1 \\
1
\end{bmatrix}$$

$$\mathbf{\hat{v}}_b = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\bigcirc \quad \mathbf{v}_b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

⊘ Correct

The vector ${f v}$ is projected onto the vectors ${f b_1}, {f b_2}, {f b_3}$ and ${f b_4}.$