

# Maximum de Vraisemblance et Validation Croisée pour l'estimation des hyper-paramètres de covariance pour le Krigeage

François Bachoc Josselin Garnier Jean-Marc Martinez

CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France LPMA, Université Paris 7

Mai 2013





Introduction to Kriging and covariance function estimation

Finite sample analysis of ML and CV under model misspecification

Asymptotic analysis of ML and CV in the well-specified case

Conclusion





# Kriging model with Gaussian process

Basic idea: representing a deterministic and unknown function as the realization of a Gaussian process



#### Notation

Gaussian process Y defined on the set X.





# When the distribution of the Gaussian process is known



All this from explicit matrix vector formula





## Covariance function estimation

#### Parameterization

Covariance function model  $\left\{\sigma^2 K_{\theta}, \sigma^2 \geq 0, \theta \in \Theta\right\}$  for the Gaussian Process Y.

- $\sigma^2$  is the variance hyper-parameter
- $\theta$  is the multidimensional correlation hyper-parameter.  $K_{\theta}$  is a stationary correlation function.

#### Estimation

*Y* is observed at  $x_1, ..., x_n \in \mathcal{X}$ , yielding the Gaussian vector  $y = (Y(x_1), ..., Y(x_n))$ . Estimators  $\hat{\sigma}^2(y)$  and  $\hat{\theta}(y)$ 

#### "Plug-in" Kriging prediction

- 1 Estimate the covariance function
- 2 Assume that the covariance function is fixed and carry out the explicit Kriging equations



## Maximum Likelihood for estimation

Explicit Gaussian likelihood function for the observation vector *y* 

#### Maximum Likelihood

Define  $\mathbf{R}_{\theta}$  as the correlation matrix of  $y = (Y(x_1),...,Y(x_n))$  under correlation function  $K_{\theta}$ .

The Maximum Likelihood estimator of  $(\sigma^2, \theta)$  is

$$(\hat{\sigma}_{\mathit{ML}}^2, \hat{\theta}_{\mathit{ML}}) \in \operatorname*{argmin}_{\sigma^2 \geq 0, \theta \in \Theta} \frac{1}{n} \left( \ln \left( |\sigma^2 \mathbf{R}_{\theta}| \right) + \frac{1}{\sigma^2} y^t \mathbf{R}_{\theta}^{-1} y \right)$$



## Cross Validation for estimation

$$\hat{y}_{\theta,i,-i} = \mathbb{E}_{\sigma^2,\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

Leave-One-Out criteria we study

$$\hat{\theta}_{CV} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2$$

and

$$\frac{1}{n} \sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{\hat{\theta}_{CV}, i, -i})^{2}}{\hat{\sigma}_{CV}^{2} c_{\hat{\theta}_{CV}, i, -i}^{2}} = 1 \Leftrightarrow \hat{\sigma}_{CV}^{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{\hat{\theta}_{CV}, i, -i})^{2}}{c_{\hat{\theta}_{CV}, i, -i}^{2}}$$



## Virtual Leave One Out formula

Let  ${\bf R}_{\theta}$  be the covariance matrix of  $y=(y_1,...,y_n)$  with correlation function  $K_{\theta}$  and  $\sigma^2=1$ 

Virtual Leave-One-Out

$$y_i - \hat{y}_{\theta,i,-i} = (diag(\mathbf{R}_{\theta}^{-1}))^{-1}\mathbf{R}_{\theta}^{-1}y$$
 and  $c_{i,-i}^2 = \frac{1}{(\mathbf{R}_{\theta}^{-1})_{i,i}}$ 



O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, *Mathematical Geology*, 1983.

Using the virtual Cross Validation formula:

$$\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} y^t \mathbf{R}_{\theta}^{-1} \operatorname{diag}(\mathbf{R}_{\theta}^{-1})^{-2} \mathbf{R}_{\theta}^{-1} y$$

and

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} y^t \mathbf{R}_{\hat{\theta}_{CV}}^{-1} diag(\mathbf{R}_{\hat{\theta}_{CV}}^{-1})^{-1} \mathbf{R}_{\hat{\theta}_{CV}}^{-1} y$$



Introduction to Kriging and covariance function estimation

Finite sample analysis of ML and CV under model misspecification

Asymptotic analysis of ML and CV in the well-specified case

Conclusion





## **Objectives**

We want to study the cases of model misspecification, that is to say the cases when the true covariance function  $K_1$  of Y is far from  $\mathcal{K} = \left\{\sigma^2 K_\theta, \sigma^2 \geq 0, \theta \in \Theta\right\}$ 

In this context we want to compare Leave-One-Out and Maximum Likelihood estimators from the point of view of prediction mean square error and point-wise estimation of the prediction mean square error

We proceed in two steps

- ▶ When  $\mathcal{K} = \{\sigma^2 K_2, \sigma^2 \geq 0\}$ , with  $K_2$  a correlation function, and  $K_1$  the true unit-variance covariance function : theoretical formula and numerical tests
- In the general case : numerical studies





# Case of variance hyper-parameter estimation

- $\hat{Y}(x_{new})$  : Kriging prediction with fixed misspecified correlation function  $K_2$
- ▶  $\mathbb{E}\left[(\hat{Y}(x_{new}) Y(x_{new}))^2 | y\right]$  : conditional mean square error of the non-optimal prediction
- ▶ One estimates  $\sigma^2$  by  $\hat{\sigma}^2$ .
- ▶ Conditional mean square error of  $\hat{Y}(x_{new})$  estimated by  $\hat{\sigma}^2 c_{x_{new}}^2$  with  $c_{x_{new}}^2$  fixed by  $K_2$

#### The Risk

We study the Risk criterion for an estimator  $\hat{\sigma}^2$  of  $\sigma^2$ 

$$\mathcal{R}_{\hat{\sigma}^2, x_{\text{new}}} = \mathbb{E}\left[\left(\mathbb{E}\left[(\hat{Y}(x_{\text{new}}) - Y(x_{\text{new}}))^2|y\right] - \hat{\sigma}^2 c_{x_{\text{new}}}^2\right)^2\right]$$

 $\longrightarrow$  Explicit formula for estimators of  $\sigma^2$  that are quadratic forms of the observation vector



## Summary of numerical results

#### For variance hyper-parameter estimation

- ▶ We make the distance between  $K_1$  and  $K_2$  vary, starting from 0
- For not too regular design of experiments: CV is more robust than ML to misspecification
  - Larger variance but smaller bias for CV
  - ▶ The bias term becomes dominating when  $K_1 \neq K_2$
- For regular design of experiments, CV is less robust to model misspecification

#### For variance and correlation hyper-parameter estimation

- Numerical study on analytical functions
- Confirmation of the results of the variance estimation case



Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, *Computational Statistics and Data Analysis (2013)*, http://dx.doi.org/10.1016/j.csda.2013.03.016.





Introduction to Kriging and covariance function estimation

Finite sample analysis of ML and CV under model misspecification

Asymptotic analysis of ML and CV in the well-specified case

Conclusion





# Framework and objectives

#### Estimation

We do not make use of the distinction  $\sigma^2$ ,  $\theta$ . Hence we use the set  $\{K_{\theta}, \theta \in \Theta\}$  of stationary covariance functions for the estimation.

#### Well-specified model

The true covariance function K of the Gaussian Process belongs to the set  $\{K_{\theta}, \theta \in \Theta\}$ . Hence

$$K=K_{\theta_0},\theta_0\in\Theta$$

### Objectives

- Study the consistency and asymptotic distribution of the Cross Validation estimator
- Confirm that, asymptotically, Maximum Likelihood is more efficient
- Study the influence of the spatial sampling on the estimation



## Spatial sampling for hyper-parameter estimation

- Spatial sampling : Initial design of experiment for Kriging
- It has been shown that irregular spatial sampling is often an advantage for hyper-parameter estimation
  - Stein M, Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York, 1999. Ch.6.9.
  - Zhu Z, Zhang H, Spatial sampling design under the infill asymptotics framework, *Environmetrics* 17 (2006) 323-337.
- Our question: Is irregular sampling always better than regular sampling for hyper-parameter estimation?



# Asymptotics for hyper-parameters estimation

Asymptotics (number of observations  $n \to +\infty$ ) is an area of active research (Maximum-Likelihood estimator)

Two main asymptotic frameworks

 fixed-domain asymptotics: The observations are dense in a bounded domain
 From 80'-90' and onwards. Fruitful theory



Stein, M., Interpolation of Spatial Data Some Theory for Kriging, *Springer, New York, 1999*.

However, when convergence in distribution is proved, the asymptotic distribution does not depend on the spatial sampling —— Impossible to compare sampling techniques for estimation in this context

increasing-domain asymptotics: A minimum spacing exists between the observation points — infinite observation domain.
 Asymptotic normality proved for Maximum-Likelihood under general conditions



Sweeting, T., Uniform asymptotic normality of the maximum likelihood estimator, *Annals of Statistics 8 (1980) 1375-1381*.



Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance in spatial regression, *Biometrika 71 (1984)* 135-146.





# Randomly perturbed regular grid

- ► Our sampling model: regular square grid of step one in dimension d.  $(v_i)_{i\in\mathbb{N}^*}$ . The observation points are the  $v_i+\epsilon X_i$ . The  $(X_i)_{i\in\mathbb{N}^*}$  are *iid* and uniform on  $[-1, 1]^d$
- $\epsilon \in ]-\frac{1}{2},\frac{1}{2}[$  is the regularity parameter.  $\epsilon = 0 \longrightarrow \text{regular grid.} \ |\epsilon| \text{ close}$ to  $\frac{1}{2}$   $\longrightarrow$  irregularity is maximal

Illustration with  $\epsilon = 0, \frac{1}{8}, \frac{3}{8}$ 







## Main result

## Under general conditions

#### For ML

- ▶ a.s convergence of the random Fisher information : The random trace  $\frac{1}{n} Tr\left(\mathbf{R}_{\theta_0}^{-1} \frac{\partial \mathbf{R}_{\theta_0}}{\partial \theta_i} \mathbf{R}_{\theta_0}^{-1} \frac{\partial \mathbf{R}_{\theta_0}}{\partial \theta_j}\right)$  converges a.s to the element  $(\mathbf{I}_{ML})_{i,j}$  of a  $p \times p$  deterministic matrix  $\mathbf{I}_{ML}$  as  $n \to +\infty$
- asymptotic normality : With  $\Sigma_{ML} = 2I_{ML}^{-1}$

$$\sqrt{n}\left(\hat{\theta}_{ML}-\theta_{0}\right)
ightarrow\mathcal{N}\left(0,\Sigma_{ML}
ight)$$

#### For CV

Same result with more complex random traces for asymptotic covariance matrix  $\boldsymbol{\Sigma}_{CV}$ 

 $\Sigma_{ML,CV}$  depends only on the regularity parameter  $\epsilon$ .  $\longrightarrow$  in the sequel, we study the functions  $\epsilon \to \Sigma_{ML,CV}$ 





Top: ML

Bot: CV Left :  $\hat{\ell}$  ( $\nu_0$  known)

# Small random perturbations of the regular grid

Matern model. Dimension one. One estimated hyper-parameter. Levels plot of  $(\partial_{\epsilon}^2 \Sigma_{ML,CV})/\Sigma_{ML,CV}$  in  $\ell_0 \times \nu_0$ 



There exist cases of degradation of the estimation for small perturbation for ML and CV. Not easy to interpret



# Large random perturbations of the regular grid

Plot of  $\Sigma_{ML,CV}$ . Top : ML. Bot : CV.

From left to right : (  $\hat{\nu},\ell_0=$  0.5,  $\nu_0=$  2.5), (  $\hat{\ell},\ell_0=$  2.7,  $\nu_0=$  1), (  $\hat{\nu},\ell_0=$  2.7,

 $\nu_0 = 2.5$ )





## Conclusion on the well-specified case

- CV is consistent and has the same rate of convergence than ML
- We confirm that ML is more efficient
- Irregularity in the sampling is generally an advantage for the estimation, but not necessarily
  - With ML, irregular sampling is more often an advantage than with CV
  - Large perturbations of the regular grid are often better than small ones for estimation
  - Keep in mind that hyper-parameter estimation and Kriging prediction are strongly different criteria for a spatial sampling

#### For further details:



Bachoc F, Asymptotic analysis of the role of spatial sampling for hyper-parameter estimation of Gaussian processes, *Submitted, available at http://arxiv.org/abs/1301.4321*.



## Conclusion

#### General conclusion

- ML preferable to CV in the well-specified case
- In the misspecified-case, with not too regular design of experiments : CV preferable because of its smaller bias
- In both misspecified and well-specified cases: the estimation benefits from an irregular sampling
- ► The variance of CV is larger than that of ML in all the cases studied.

#### **Perspectives**

 Designing other CV procedures (LOO error ponderation, decorrelation and penalty term) to reduce the variance

Thank you for your attention!

