Intersección de subespacios

Intersección de subespacios

Dado un espacio vectorial $\mathbb V$ y dos subespacios $\mathbb S$, $\mathbb T\subset \mathbb V$ la intersección entre $\mathbb S$ y $\mathbb T$ es:

$$\mathbb{S} \cap \mathbb{T} = \{ \mathbf{v} \in \mathbb{V} \ / \ \mathbf{v} \in \mathbb{S} \ \mathbf{y} \ \mathbf{v} \in \mathbb{T} \}.$$

Es decir, la intersección entre $\mathbb S$ y $\mathbb T$ es el conjunto formado por los vectores que pertenecen tanto a $\mathbb S$ como a $\mathbb T$.

Ejemplo 1. Dados los subespacios

$$\mathbb{S} = \langle (1,1,1,1), (-1,2,2,1) \rangle$$
 y $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 = 0; x_2 - x_3 = 0 \}$,

hallar $\mathbb{S} \cap \mathbb{T}$.

Solución: Tenemos un subespacio que viene dado por generadores y otro que está dado por ecuaciones.

Si un vector pertenece a S sabemos que es combinación lineal de sus generadores:

$$(x_1, x_2, x_3, x_4) \in \mathbb{S} \iff (x_1, x_2, x_3, x_4) = a(1, 1, 1, 1) + b(-1, 2, 2, 1), \quad \text{con } a, b \in \mathbb{R}.$$

Por otro lado, las ecuaciones de \mathbb{T} nos dan condiciones que tienen que cumplir las coordenadas de un vector para pertenecer al subespacio:

$$(x_1, x_2, x_3, x_4) \in \mathbb{T} \iff x_1 + x_2 + x_3 = 0 \text{ y } x_2 - x_3 = 0.$$

Los vectores que pertenecen a $\mathbb{S} \cap \mathbb{T}$ deben cumplir todas las condiciones simultáneamente, de modo de pertenecer a ambos subespacios \mathbb{S} y \mathbb{T} .

Para ver cuáles son estos vectores, primero escribimos las coordenadas de un vector genérico de \mathbb{S} ,

$$(x_1, x_2, x_3, x_4) = a(1, 1, 1, 1) + b(-1, 2, 2, 1)$$

 $(x_1, x_2, x_3, x_4) = (a - b, a + 2b, a + 2b, a + b)$

y luego reemplazamos estas coordenadas en las ecuaciones de \mathbb{T} , para determinar qué restricciones imponen estas ecuaciones sobre los coeficientes a y b:

$$\begin{cases} a-b+a+2b+a+2b &= 0 \\ a+2b-(a+2b) &= 0 \end{cases} \iff \begin{cases} 3a+3b &= 0 \\ 0 &= 0 \end{cases} \iff a=-b.$$

Como sabemos que

$$(x_1, x_2, x_3, x_4) = (a - b, a + 2b, a + 2b, a + b),$$

usando que a = -b, tenemos

$$(x_1, x_2, x_3, x_4) = (-b - b, -b + 2b, -b + 2b, -b + b) = (-2b, b, b, 0) = b(-2, 1, 1, 0).$$

Entonces, los vectores de $\mathbb{S} \cap \mathbb{T}$ son los de la forma b(-2, 1, 1, 0), con $b \in \mathbb{R}$. Concluimos que:

Respuesta:
$$\mathbb{S} \cap \mathbb{T} = \langle (-2,1,1,0) \rangle$$
.

En el ejemplo, la interesección entre los subespacios $\mathbb S$ y $\mathbb T$ resultó ser, a su vez, un subespacio. Esto es siempre así:

Propiedad

Sea $\mathbb V$ un espacio vectrorial y sean $\mathbb S$, $\mathbb T$ dos subespacios de $\mathbb V$. Entonces $\mathbb S\cap \mathbb T$ es un subespacio de $\mathbb V$.

Veamos por qué es cierto esto. Para ver que la intersección entre dos subespacios \mathbb{S} y \mathbb{T} (acá \mathbb{S} y \mathbb{T} representan cualquier par de subespacios, no los del ejemplo anterior) es también un subespacio, tenemos que chequear tres propiedades:

- 1) $O \in \mathbb{S} \cap \mathbb{T}$.
- 2) Si $\mathbf{v}, \mathbf{w} \in \mathbb{S} \cap \mathbb{T}$, entonces $\mathbf{v} + \mathbf{w} \in \mathbb{S} \cap \mathbb{T}$.
- 3) Si $\mathbf{v} \in \mathbb{S} \cap \mathbb{T}$ y $c \in \mathbb{R}$, entonces $c\mathbf{v} \in \mathbb{S} \cap \mathbb{T}$.

Hagamos la verificación de cada una:

- 1) Para ver que $O \in \mathbb{S} \cap \mathbb{T}$ tenemos que ver que O pertenece a ambos subespacios. Esto es cierto porque todos los subespacios tienen al vector nulo.
- 2) Si $\mathbf{v}, \mathbf{w} \in \mathbb{S} \cap \mathbb{T}$, entonces $\mathbf{v}, \mathbf{w} \in \mathbb{S}$ y $\mathbf{v}, \mathbf{w} \in \mathbb{T}$. Como tanto \mathbb{S} como \mathbb{T} son subespacios, $\mathbf{v} + \mathbf{w} \in \mathbb{S}$ y $\mathbf{v} + \mathbf{w} \in \mathbb{T}$; por lo tanto, $\mathbf{v} + \mathbf{w} \in \mathbb{S} \cap \mathbb{T}$.
- 3) Si $\mathbf{v} \in \mathbb{S} \cap \mathbb{T}$ y $c \in \mathbb{R}$, tenemos que $\mathbf{v} \in \mathbb{S}$ y $\mathbf{v} \in \mathbb{T}$. Como \mathbb{S} y \mathbb{T} son subespacios, entonces $c\mathbf{v} \in \mathbb{S}$ y $c\mathbf{v} \in \mathbb{T}$; por lo tanto, $c\mathbf{v} \in \mathbb{S} \cap \mathbb{T}$.

Observación: En el ejemplo anterior teníamos que $\dim(\mathbb{S})=2$, $\dim(\mathbb{T})=2$ y resultó que $\dim(\mathbb{S}\cap\mathbb{T})=1$. Es decir que la intersección resultó ser un subespacio más "chico" que \mathbb{S} y que \mathbb{T} . Esto tiene sentido porque $\mathbb{S}\cap\mathbb{T}$ está incluido en ambos subespacios y no puede pasar que sea más "grande". En otras palabras, siempre se tiene que

$$\dim(\mathbb{S} \cap \mathbb{T}) \leq \dim(\mathbb{S})$$
 y $\dim(\mathbb{S} \cap \mathbb{T}) \leq \dim(\mathbb{T})$.

Veamos algunos ejemplos más de cómo calcular la intersección de dos subespacios.

Ejemplo 2. Dados
$$\mathbb{S} = \{ A \in \mathbb{R}^{2 \times 2} / a_{11} + a_{22} = 0 \}$$
 y $\mathbb{T} = \left\langle \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ -1 & 1 \end{pmatrix} \right\rangle$, hallar $\mathbb{S} \cap \mathbb{T}$.

Solución: Como en el ejemplo anterior, tenemos un subespacio dado por ecuaciones y otro por generadores. Buscamos las matrices $A \in \mathbb{R}^{2 \times 2}$ que pertenecen simultáneamente a \mathbb{S} y a \mathbb{T} . Las matrices que pertenecen a \mathbb{S} son las que cumplen la ecuación que lo define:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{S} \iff a_{11} + a_{22} = 0.$$

Por otro lado, las que pertenecen a \mathbb{T} , son las combinaciones lineales de sus generadores:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{T} \iff \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} + b \begin{pmatrix} -2 & 1 \\ -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} a - 2b & -a + b \\ 3a - b & a + b \end{pmatrix}, \text{ con } a, b \in \mathbb{R}.$$

Reemplazamos los valores de las entradas de una matriz genérica de $\mathbb T$ en la ecuación de $\mathbb S$ para determinar bajo qué condiciones pertenece a dicho subespacio:

$$\underbrace{(a-2b)}_{a_{11}} + \underbrace{(a+b)}_{a_{22}} = 0 \iff 2a-b=0 \iff b=2a.$$

En definitiva, tenemos que los elementos de $\mathbb{S} \cap \mathbb{T}$ son

$$A = \begin{pmatrix} a-2b & -a+b \\ 3a-b & a+b \end{pmatrix}$$
, con $b = 2a$ y $a \in \mathbb{R}$,

que, reemplazando y haciendo las operaciones, nos quedan de la forma

$$A = \begin{pmatrix} -3a & a \\ a & 3a \end{pmatrix} = a \begin{pmatrix} -3 & 1 \\ 1 & 3 \end{pmatrix}$$
, con $a \in \mathbb{R}$.

Respuesta:
$$\mathbb{S} \cap \mathbb{T} = \left\langle \left(\begin{array}{cc} -3 & 1 \\ 1 & 3 \end{array} \right) \right\rangle$$
.

Ejemplo 3. Dados los subespacios

$$\mathbb{S} = \langle (1,1,0,1), (1,-1,1,2) \rangle$$
 y $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 = 0; x_2 - x_3 = 0 \}$,

hallar $\mathbb{S} \cap \mathbb{T}$.

Solución: Nuevamente tenemos un subespacio dado por generadores y otro dado por ecuaciones. Procedemos como en los ejemplos anteriores.

Si un vector pertenece a S, sabemos que es una combinación lineal de sus generadores:

$$(x_1, x_2, x_3, x_4) \in \mathbb{S} \iff (x_1, x_2, x_3, x_4) = a(1, 1, 0, 1) + b(1, -1, 1, 2), \quad \text{con } a, b \in \mathbb{R},$$

es decir,

$$(x_1, x_2, x_3, x_4) = (a + b, a - b, b, a + 2b).$$

Por otro lado, para pertencer a \mathbb{T} debe cumplir las ecuaciones que lo definen:

$$(x_1, x_2, x_3, x_4) \in \mathbb{T} \iff x_1 + x_2 + x_3 = 0 \text{ y } x_2 - x_3 = 0.$$

Entonces reemplazamos las coordenadas de un vector genérico de S en las ecuaciones de T:

$$\begin{cases} a+b+a-b+b &= 0 \\ a-b-b &= 0 \end{cases} \iff \begin{cases} 2a+b &= 0 \\ a-2b &= 0 \end{cases} \iff \begin{cases} a &= 0 \\ b &= 0 \end{cases}$$

Como sabemos que

$$(x_1, x_2, x_3, x_4) = (a + b, a - b, b, a + 2b),$$

con a = 0 y b = 0 obtenemos que

$$(x_1, x_2, x_3, x_4) = (0 + 0, 0 - 0, 0, 0 + 2 \cdot 0) = (0, 0, 0, 0)$$

es el único vector que pertenece simultáneamente a $\mathbb S$ y a $\mathbb T$.

Respuesta:
$$S \cap T = \{(0, 0, 0, 0)\}.$$

Observación: En este caso la intersección $\mathbb{S} \cap \mathbb{T}$ está formada únicamente por el vector nulo. Esto es lo más "chica" que puede ser una intersección entre subespacios, ya que el vector nulo siempre está en cualquier subespacio.

Ejemplo 4. Dados los subespacios

$$\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^4 \ / \ x_1 + x_2 - x_3 + 2x_4 = 0 \} \ \ \mathbf{y} \ \ \mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 \ / \ x_1 + x_2 + x_3 = 0; x_2 - x_3 = 0 \},$$

hallar $\mathbb{H} \cap \mathbb{T}$.

Solución: En este caso tenemos ambos subespacios dados por ecuaciones. Así,

$$(x_1, x_2, x_3, x_4) \in \mathbb{H} \iff x_1 + x_2 - x_3 + 2x_4 = 0.$$

y, por otro lado,

$$(x_1, x_2, x_3, x_4) \in \mathbb{T} \iff x_1 + x_2 + x_3 = 0 \text{ y } x_2 - x_3 = 0.$$

Por lo tanto, los vectores de la intersección $\mathbb{H} \cap \mathbb{T}$ son aquellos que cumplen las tres ecuaciones a la vez, es decir,

$$\mathbb{H} \cap \mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 = 0; x_2 - x_3 = 0; x_1 + x_2 - x_3 + 2x_4 = 0 \}.$$

Si queremos encontrar una base de la intersección simplemente resolvemos el sistema. Pasamos a la matriz y la escalonamos:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 2 & 0 \end{array}\right) F_3 - F_1 \to F_3 \left(\begin{array}{ccc|c} 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -2 & 2 & 0 \end{array}\right).$$

Volviendo a las ecuaciones,

$$\begin{cases} x_1 + x_2 + x_3 &= 0 \\ x_2 - x_3 &= 0 \\ -2x_3 + 2x_4 &= 0. \end{cases}$$

Como luego de escalonar tenemos 3 ecuaciones y 4 incógnitas podemos despejar todo en función de una variable. También sabemos que la intersección tiene dimensión 1.

$$\begin{cases} x_3 = x_4 \\ x_2 = x_4 \\ x_1 = -2x_4. \end{cases}$$

Un vector que pertenece a $\mathbb{H} \cap \mathbb{T}$ tiene la forma $(-2x_4, x_4, 2x_4, x_4) = x_4(-2, 1, 1, 1)$, con $x_4 \in \mathbb{R}$, por lo que $B = \{(-2, 1, 1, 1)\}$ es una base de $\mathbb{H} \cap \mathbb{T}$.

Respuesta: $\mathbb{H} \cap \mathbb{T} = \langle (-2, 1, 1, 1) \rangle$.

Ejemplo 5. Dados los subespacios

$$\mathbb{S} = \langle (1,1,0,1), (1,-1,1,2) \rangle$$
 y $\mathbb{W} = \langle (2,0,1,3), (0,2,-1,-1), (0,1,1,0) \rangle$,

hallar $\mathbb{S} \cap \mathbb{W}$.

Solución: En este caso, ambos subespacios están dados por generadores. La forma más práctica de calcular su intersección es buscar ecuaciones para alguno de los dos y luego proceder como en los primeros ejemplos que resolvimos.

Busquemos ecuaciones para \mathbb{W} , es decir, qué condiciones tiene que cumplir (x_1, x_2, x_3, x_4) para ser una combinación lineal de (2,0,1,3), (0,2,-1,-1) y (0,1,1,0):

$$(x_1, x_2, x_3, x_4) = \alpha(2, 0, 1, 3) + \beta(0, 2, -1, -1) + \gamma(0, 1, 1, 0)$$

$$(x_1, x_2, x_3, x_4) = (2\alpha, 2\beta + \gamma, \alpha - \beta + \gamma, 3\alpha - \beta), \quad \text{con } \alpha, \beta, \gamma \in \mathbb{R}.$$

Armamos el sistema,

$$\begin{cases} 2\alpha &= x_1 \\ 2\beta + \gamma &= x_2 \\ \alpha - \beta + \gamma &= x_3 \\ 3\alpha - \beta &= x_4 \end{cases}$$

y analizamos bajo qué condiciones es compatible:

$$\begin{pmatrix} 2 & 0 & 0 & | & x_1 \\ 0 & 2 & 1 & | & x_2 \\ 1 & -1 & 1 & | & x_3 \\ 3 & -1 & 0 & | & x_4 \end{pmatrix} \xrightarrow{2F_3 - F_1 \to F_3} \begin{pmatrix} 2 & 0 & 0 & | & x_1 \\ 0 & 2 & 1 & | & x_2 \\ 0 & -2 & 2 & | & 2x_3 - x_1 \\ 0 & -2 & 0 & | & 2x_4 - 3x_1 \end{pmatrix}$$

$$F_3 + F_2 \to F_3 \qquad \begin{pmatrix} 2 & 0 & 0 & | & x_1 \\ 0 & 2 & 1 & | & x_2 \\ 0 & 0 & 3 & | & 2x_3 - x_1 + x_2 \\ 0 & 0 & 1 & | & 2x_4 - 3x_1 + x_2 \end{pmatrix}$$

$$3F_4 - F_3 \to F_3 \qquad \begin{pmatrix} 2 & 0 & 0 & | & x_1 \\ 0 & 0 & 3 & | & 2x_3 - x_1 + x_2 \\ 0 & 0 & 3 & | & 2x_3 - x_1 + x_2 \\ 0 & 0 & 3 & | & 2x_3 - x_1 + x_2 \\ 0 & 0 & 0 & | & -8x_1 + 2x_2 - 2x_3 + 6x_4 \end{pmatrix}.$$

Observamos que el sistema es compatible si y solo si $-8x_1 + 2x_2 - 2x_3 + 6x_4 = 0$, es decir,

$$\mathbb{W} = \{ \mathbf{x} \in \mathbb{R}^4 / -8x_1 + 2x_2 - 2x_3 + 6x_4 = 0 \}.$$

Ahora para calcular $\mathbb{S} \cap \mathbb{W}$ procedemos como antes. Primero escribimos una expresión de un vector genérico de \mathbb{S} :

$$(x_1, x_2, x_3, x_4) = (a + b, a - b, b, a + 2b), \quad \text{con } a, b \in \mathbb{R}.$$

Reemplazamos en la ecuación de W:

$$-8(a+b) + 2(a-b) - 2(b) + 6(a+2b) = 0,$$

0 = 0.

Obtuvimos que para cualquier valor de a y de $b \in \mathbb{R}$ un vector de la forma (a+b,a-b,b,a+2b) pertenece a \mathbb{W} , es decir, $\mathbb{S} \subset \mathbb{W}$. Por lo tanto,

$$\mathbb{S} \cap \mathbb{W} = \langle (1, 1, 0, 1), (1, -1, 1, 2) \rangle = \mathbb{S}.$$

Respuesta: $\mathbb{S} \cap \mathbb{W} = \mathbb{S}$.