Laboratorio Lenguajes Formales y de Programación A+

Clase 8

Agenda

- Anuncios
- Clase
- Explicación del Proyecto 2
- Hoja de trabajo 1

Análisis Sintáctico y manejo de errores

Estrategias existentes

- Modo Pánico
- A nivel de frase.
- Producciones de error
- Corrección Global

Modo Pánico

- 1. Es el método más sencillo de aplicar.
- 2. Es el más utilizado por los analizadores sintáctico.
- 3. Al descubrir un error, el analizador sintáctico desecha símbolos de entrada de uno en uno, hasta que encuentra uno perteneciente a un conjunto designado de componentes léxicos de sincronización que generalmente son delimitadores.

Árbol de derivación

Árbol de derivación

Un árbol de derivación nos permite poder mostrar gráficamente cómo se puede derivar cualquier cadena de un lenguaje a partir del símbolo distinguido de una gramática que genera ese lenguaje.

Importante:

Para cada cadena del lenguaje generado por una gramática es posible construir (al menos) un árbol de derivación.

Propiedades del árbol de derivación

- El nodo raíz está rotulado con el no terminal inicial de la gramática.
- Cada hoja corresponde a un símbolo terminal o un símbolo no terminal.
- Cada nodo interior corresponde a un símbolo no terminal.

Ejemplo 1

```
<E>::= <E> tk_suma <E>
<E> ::= <E>tk_multiplicacion <E>
<E> ::= id
```

Entrada ejemplo 1

id*id+id

Solución ejemplo 1

Derivaciones

Existen dos tipos de derivaciones

Por la izquierda

Se sustituye siempre la hoja no terminal que se encuentra más a la izquierda Por la derecha

Se sustituye siempre la hoja no terminal que se encuentra más a la derecha.

Ejemplo derivación por la izquierda

......

2.
$$A \rightarrow b$$

4.
$$S \rightarrow d$$

5.
$$A \rightarrow aA$$

6.
$$B \rightarrow dcd$$

Ejemplo de derivación por la derecha

Gramaticas Ambiguas

Una gramática es ambigua, si para una cadena de entrada se puede generar más de un árbol de derivación.

Solución:

Reescribir la gramática

Ejemplo de gramática ambigua

```
<E>::= <E> tk_suma <E>
<E> ::= <E>tk_multiplicacion <E>
<E> ::= id
```

Posibles árboles de derivación

Eliminación de la recursividad por la izquierda

Una gramática es recursiva por la izquierda si tiene un no terminal A tal que existe una derivación del tipo A::= A α

Regla general para eliminar este problema

A::= A
$$\alpha$$
 A::= β A' A' ::= α A' | epsilon

Factorizacion por la izquierda

Esto constituye parte de lo que son las gramáticas ambiguas, debido a que si tenemos dos producciones que inician con un mismo símbolo terminal, esto puede llegar a producir que al estar programando no podamos indicar sobre qué produccion tomar

A ::=
$$\alpha B1$$
 A ::= $\alpha A'$ A' ::= $B1$ B2

Ejemplo

Gramatica	Gramatica Factorizada	Cadena de entrada
A::= tk_puntoComa a	A::= tk_puntoComa A'	; a
tk_puntoComa b	A' -> a	
	b	

Gramáticas Descendentes

- Se realizan Derivaciones por la izquierda
- No ambigua
- No Recursivas por la izquierda
- Factorizada

Proyecto 2

Explicación

Hoja de trabajo 1

Obtenga el autómata finito determinista para la siguiente expresion $ba^{?}b|cb^{?}c$ aplicando el metodo del arbol

Entrega: UEDI Tareas de laboratorio

Fecha y hora: 24/09/2021 23:59

Formato: HT1_#carnet