

CHAPTER 15

Relational Database Design Algorithms and Further Dependencies

Chapter Outline

- 1. Further topics in Functional Dependencies
 - 1.1 Inference Rules for FDs
 - 1.2 Equivalence of Sets of FDs
 - 1.3 Minimal Sets of FDs
- 2. Properties of Relational Decompositions
- 3. Algorithms for Relational Database Schema Design
- 4. Nulls, Dangling Tuples, Alternative Relational Designs

Chapter Outline

- 5. Multivalued Dependencies and Fourth Normal Form – further discussion
- 6. Other Dependencies and Normal Forms
 - 6.1 Join Dependencies
 - 6.2 Inclusion Dependencies
 - 6.3 Dependencies based on Arithmetic Functions and Procedures
 - 6.2 Domain-Key Normal Form

FOR THIS LECTURE #10

We will only include:

SECTION 15.1 of Chapter 15:

- 15.1. Further topics in Functional Dependencies
 - 15.1.1 Inference Rules for FDs
 - 15.1.2 Equivalence of Sets of FDs
 - 15.1.3 Minimal Sets of FDs

Defining Functional Dependencies

- X → Y holds if whenever two tuples have the same value for X, they must have the same value for Y
 - For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
- X → Y in R specifies a constraint on all relation instances
 r(R)
- Written as X → Y; can be displayed graphically on a relation schema as in Figures in Chapter 14. (denoted by the arrow).
- FDs are derived from the real-world constraints on the attributes

1.1 Inference Rules for FDs (1)

- **Definition:** An FD X o Y is **inferred from** or **implied by** a set of dependencies F specified on R if X o Y holds in *every* legal relation state r of R; that is, whenever r satisfies all the dependencies in F, X o Y also holds in r.
- Given a set of FDs F, we can infer additional FDs that hold whenever the FDs in F hold

Inference Rules for FDs (2)

- Armstrong's inference rules:
 - IR1. (**Reflexive**) If Y subset-of X, then $X \rightarrow Y$
 - IR2. (Augmentation) If $X \rightarrow Y$, then $XZ \rightarrow YZ$
 - (Notation: XZ stands for X U Z)
 - IR3. (**Transitive**) If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- IR1, IR2, IR3 form a sound and complete set of inference rules
 - Sound: Given a set F that holds in R, every dependency that can be inferred using the rules will hold in every state of R.
 - Complete: These rules and all other extended rules that hold can be applied to a set F of dependencies in R until no more dependencies can be inferred.

INFERENCE RULES -1

Armstrong's Axioms-1

1. Axiom of Reflexivity

■ A set of attributes → A subset of the attributes

Example:

- \blacksquare NRIC, Name \rightarrow NRIC
- StudentID, Name, Age → Name, Age
- ABCD → ABC
- ABCD → BCD
- \blacksquare ABCD \rightarrow AD
- ABCD → ABCD

INFERENCE RULES-2

Armstrong's Axioms-2

2. Axiom of Augmentation

- $\blacksquare \quad \mathsf{If} \qquad \mathsf{A} \to \mathsf{B}$
- Then $AC \rightarrow BC$ (for any C)
- Also, $AA \rightarrow BA$ which means $A \rightarrow AB$
- **Example:** if NRIC → Name then
- NRIC, Age → Name, Age
- NRIC, Salary, Weight → Name, Salary, Weight
- NRIC, Address, Postal → Name, Address, Postal

INFERENCE RULES-3

Armstrong's Axioms-3

3. Axiom of Transitivity

- If $A \rightarrow B$ and $B \rightarrow C$
- Then $A \rightarrow C$

■ Example:

- if NRIC \rightarrow Address and Address \rightarrow Postal
- then NRIC → Postal

Inference Rules for FDs –contd.

- Some additional inference rules that are useful:
 - Decomposition: If X → YZ, then X → Y and X → Z
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Psuedotransitivity: If X → Y and WY → Z, then WX → Z
- The last three inference rules, as well as any other inference rules, can be deduced from IR1, IR2, and IR3 (completeness property)

Extended Armstrong Axioms -1

Extended Armstrong's Axioms

Armstrong's Axioms

- 1. Reflexivity $AB \rightarrow A$
- **2. Augmentation** $A \rightarrow B \Rightarrow AC \rightarrow BC$
- **3. Transitivity** $A \rightarrow B \& B \rightarrow C \Rightarrow A \rightarrow C$

A. Rule of Decomposition

- $\blacksquare \quad \mathsf{If} \quad \mathsf{A} \to \mathsf{BC}$
- Then $A \rightarrow B$ and $A \rightarrow C$

Proof:

- 1. A \rightarrow BC Given
- 2. $BC \rightarrow B$ Reflexivity $B \subseteq BC$

Hence, $A \rightarrow B$ Transitivity (1) and (2)

3. BC \rightarrow C Reflexivity C \subseteq BC

Now, A \rightarrow BC and BC \rightarrow C; Hence, A \rightarrow C, by Transitivity

Extended Armstrong Axioms -2

Extended Armstrong's Axioms

Armstrong's Axioms

- 1. Reflexivity $AB \rightarrow A$
- **2. Augmentation** $A \rightarrow B \Rightarrow AC \rightarrow BC$
- **3. Transitivity** $A \rightarrow B \& B \rightarrow C \Rightarrow A \rightarrow C$

B. Rule of Union

- If $A \rightarrow B$ and $A \rightarrow C$
- Then $A \rightarrow BC$

■ Proof:

- 1. $A \rightarrow B$ Given
- 2. $A \rightarrow C$ Given

Hence, $A \rightarrow AB$ Augmentation of (1) with A

3. $AB \rightarrow BC$ Augmentation of (2) with B

Now, A \rightarrow AB and AB \rightarrow BC . Thus, A \rightarrow BC

Closure

Two types of CLOSURE

- (1) Closure of a set F of FDs is the set F⁺ (which is called "Closure of F" or "F closure") of all FDs that can be inferred from F
- (2) Closure of a set of attributes X with respect to F is the set X⁺ of all attributes (called Closure of X) that are functionally determined by X
- X+ can be calculated by repeatedly applying IR1, IR2, IR3 using the FDs in F

Algorithm to determine Closure

- Algorithm 15.1. Determining X⁺, the Closure of X under F
- Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of R.

```
X^+ := X;

repeat

\operatorname{old} X^+ := X^+;

for each functional dependency Y \to Z in F do

if X^+ \supseteq Y then X^+ := X^+ \cup Z;

until (X^+ = \operatorname{old} X^+);
```

Example of Closure (1)

 For example, consider the following relation schema about classes held at a university in a given academic year.

CLASS (Classid, Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity).

ASSUMPTION: The same instructor may offer the same course# in an assigned classroom on different days – these will get different sectionids. Different instructors may choose different texts for the same course.

Let F, the set of functional dependencies for the above relation include the following f.d.s:

FD1: Classid → Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity;

FD2: Course# → Credit hrs;

FD3: {Course#, Instr_name} → Text, Classroom;

FD4: Text \rightarrow Publisher

FD5: Classroom → Capacity

SEMANTICS: These f.d.s above represent the meaning of the individual attributes and the relationships among them and defines certain rules about the classes.

Example of Closure (2)

The closures of attributes or sets of attributes for some example sets:

```
{ Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity } = CLASS 
{ Course#} + = { Course#, Credit_hrs} 
{ Course#, Instr_name } + = { Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity }
```

Note that the above combination on LHS does NOT define Classid. (because same instructor can teach a course in the same classroom on different days). Hence it cannot be a key.

Note that each closure above has an interpretation that is revealing about the attribute(s) on the left-hand-side.

The closure of { Classid } + is the entire relation CLASS indicating that all attributes of the relation can be determined from Classid and hence it is a key.

On that basis, Course# CANNOT be a key and even (Course#, Instr_name) cannot be the key.

Application of Inference Rules – Example 1

Exercise #1

■ Given:

- 1. $A \rightarrow B$
- 2. $D \rightarrow C$
- Target (to show) : $AD \rightarrow BC$

■ Proof:

- 3. $AD \rightarrow BD$ Augmentation of (1) with D
- 4. $AD \rightarrow B$ Decomposition of (3)
- 5. $AD \rightarrow AC$ Augmentation (2) with A
- 6. AD \rightarrow C Decomposition of (5)
- 7. AD \rightarrow BC Union of (4),(6)

Armstrong's Axioms

- 1. Reflexivity $AB \rightarrow A$
- **2. Augmentation** $A \rightarrow B \Rightarrow AC \rightarrow BC$ **3. Transitivity** $A \rightarrow B \& B \rightarrow C \Rightarrow A \rightarrow C$

Extended Armstrong's Axioms

- **A. Decomposition** $A \rightarrow BC \Rightarrow A \rightarrow B \& A \rightarrow C$
- **B. Union** $A \rightarrow B \& A \rightarrow C \Rightarrow A \rightarrow BC$

Type equation here.

Application of Inference Rules – Example 2

• Exercise #2

Given:

- 1. $A \rightarrow C$
- 2. AC \rightarrow D
- 3. AD \rightarrow B
- Target (to show) : $A \rightarrow B$

■ Proof:

4. $A \rightarrow AC$ Augmentation (1) with A 5. $A \rightarrow D$ Transitivity (4) and (2) 6. $A \rightarrow AD$ Augmentation (5) with A 7. $A \rightarrow B$ Transitivity (6) and (3)

Armstrong's Axioms

- 1. Reflexivity $AB \rightarrow A$
- **2. Augmentation** $A \rightarrow B \Rightarrow AC \rightarrow BC$
- 3. Transitivity $A \rightarrow B \& B \rightarrow C \Rightarrow A \rightarrow C$ Extended Armstrong's Axioms
- **A. Decomposition** $A \rightarrow BC \Rightarrow A \rightarrow B \& A \rightarrow C$
- **B. Union** $A \rightarrow B \& A \rightarrow C \Rightarrow A \rightarrow BC$

1.2 Equivalence of Sets of FDs

- Two sets of FDs F and G are equivalent if:
 - Every FD in F can be inferred from G, and
 - Every FD in G can be inferred from F
 - Hence, F and G are equivalent if F+ =G+
- Definition (<u>Covers</u>):
 - F covers G if every FD in G can be inferred from F
 - (i.e., if <u>G</u>+ <u>subset-of</u> F+)
- F and G are equivalent if F covers G and G covers F

Functional Dependency Equivalence

Example

- Example: R(A, B, C, D, E)
 F1 = {A → B, AB → C, D → AC, D → E}
 F2 = {A → BC, D → AE}
 Show F1 ≡ F2
- 1. Prove that F1 can be derived from F2
 - From F2, A \rightarrow B and D \rightarrow E can be derived easily using *decomposition rule*
 - $\{AB\}^+ = \{ABC\} \text{ so } AB \rightarrow C \text{ is implied by } F2$
 - $\{D\}^+ = \{DAE\}^+ = \{DAEBC\}$; so D \rightarrow AC is implied by F2

∴ F1 can be derived from F2

Functional Dependency Equivalence

Example

- Example: R(A, B, C, D, E)
 F1 = {A → B, AB → C, D → AC, D → E}
 F2 = {A → BC, D → AE}
 Show F1 ≡ F2
- 2. Prove that F2 can be derived from F1
 - {A}+ = {ABC} so A → BC is implied by F1
 {D}+ = {ABCDE} so D → AE is implied by F1
 - : F2 can be derived from F1

1.3 Finding Minimal Cover of F.D.s (1)

- Just as we applied inference rules to expand on a set *F* of FDs to arrive at *F*⁺, its closure, it is possible to think in the opposite direction to see if we could shrink or reduce the set *F* to its *minimal form* so that the minimal set is still equivalent to the original set *F*.
- Definition: An attribute in a functional dependency (on LHS) is considered <u>extraneous attribute</u> if we can remove it without changing the closure of the set of dependencies. Formally, given F, the set of functional dependencies and a functional dependency X → A in F, attribute set Y is extraneous in X if Y is a subset of X, and F logically implies (F- (X → A) ∪ { (X Y) → A })

Minimal Sets of FDs (2)

- A set of FDs is minimal if it satisfies the following conditions:
 - 1. Every dependency in F has a single attribute for its RHS.
 - We cannot replace any dependency X → A in F with a dependency Y → A, where Y is a propersubset-of X and still have a set of dependencies that is equivalent to F.
 - 3. We cannot remove any dependency from F and have a set of dependencies that is equivalent to F.

Minimal Sets of FDs (3)

- Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional Dependencies E
 - Input: A set of functional dependencies E.
- 1. Se tF:=E. breaking up the right hand side
- 2. Replace each functional dependency $X \rightarrow \{A1, A2, ..., An\}$ in F by the n functional dependencies $X \rightarrow A1, X \rightarrow A2, ..., X \rightarrow An$.
- 3. For each functional dependency $X \to A$ in F for each attribute B that is an element of X if $\{ \{F \{X \to A\} \} \cup \{ (X \{B\}) \to A\} \}$ is equivalent to F then replace $X \to A$ with $(X \{B\}) \to A$ in F.
 - (* The above constitutes a removal of the extraneous attribute B from X *)
- 4. For each remaining functional dependency $X \to A$ in F if $\{F \{X \to A\}\}$ is equivalent to F, then remove $X \to A$ from F.
 - (* The above constitutes a removal of the redundant dependency $X \rightarrow A$ from F *)

Computing the Minimal Sets of FDs (4)

We illustrate algorithm 15.2 with the following: Let the given set of FDs be $E: \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$. We have to find the minimum cover of E.

- All above dependencies are in canonical form; i.e., they have only one attribute on the RHS. So we have completed step 1
- of Algorithm 15.2 and can proceed to step 2. In step 2 we need to determine if $AB \rightarrow D$ has any redundant attribute on the left-hand side; that is, can it be replaced by $B \rightarrow D$ or $A \rightarrow D$?
- Since B \rightarrow A, by augmenting with B on both sides (IR2), we have $BB \rightarrow AB$, or $B \rightarrow AB$ (i). However, $AB \rightarrow D$ as given (ii).
- Hence by the transitive rule (IR3), we get from (i) and (ii), $B \to D$. Hence $AB \to D$ may be replaced by $B \to D$.
- We now have a set equivalent to original E, say E: { $B \rightarrow A$, $D \rightarrow A$, $B \rightarrow D$ }. No further reduction is possible in step 2 since all FDs have a single attribute on the left-hand side.
- In step 3 we look for a <u>redundant FD</u> in E'. By using the transitive rule on $B \to D$ and $D \to A$, we <u>derive $B \to A$ </u>. Hence $B \to A$ is <u>redundant</u> in E' and can be eliminated.
- Hence the minimum cover of E is $\{B \rightarrow D, D \rightarrow A\}$.

Minimal Basis (Cover)

Conditions

- $F_h \equiv F$
- Non-trivial and decomposed
- No redundant attributes on LHS
- 4. No redundant FD

Example

$$\blacksquare$$
 F = {A \rightarrow B, B \rightarrow C, A \rightarrow C} F_h = {A \rightarrow B, B \rightarrow C}

$$F_h = \{A \rightarrow B, B \rightarrow C\}$$

- Is F_b a minimal basis for F?
 - 1. A \rightarrow C in F can be derived from F_h
 - F_h is F by removal of A \rightarrow C
 - All FDs in F_h are non-trivial and decomposed
 - For any FD in F_h, if we remove an attribute from left hand side, then the FD cannot be derived from F (in fact, they have no left hand side!)
 - If any FD in F_h is removed, then some FD in F cannot be derived

∴ F_h is a minimal basis (cover) for F

Minimal Basis (Cover)

Conditions

- 1. $F_b \equiv F$
- 2. Non-trivial and decomposed
- 3. No redundant attributes on LHS
- 4. No redundant FD

Example

- \blacksquare F = {A \rightarrow B, B \rightarrow C, A \rightarrow C} F_b = {A \rightarrow B, AB \rightarrow C}
- Is F_b a minimal basis for F?
 - 1. B \rightarrow C in F can **NOT** be derived from F_b

∴ F_b is **NOT** equivalent to F and hence cannot be a minimal basis for F

Minimal Sets of FDs as a basis for design of relations

- Every set of FDs F has an equivalent minimal set
- There can be several equivalent minimal sets for a given set F of FDs.
- There is no simple algorithm for computing a minimal set of FDs that is equivalent to a set F of FDs. The process of Algorithm 15.2 is used until no further reduction is possible.
- The synthesis approach to design a set of relations, which we will discuss in Lecture 12, starts with all possible F.D.s among a set of attributes that we wish to store, computes their minimal cover and then proceeds to design a set of relations in a specific Normal Form. We will discuss that in the algorithms of Ch.15.

DESIGNING A SET OF RELATIONS

- The Approach of Relational Synthesis (Bottom-up Design):
 - Assumes that all possible functional dependencies are known. (impossible in real life)
 - First constructs a minimal set of FDs
 - Then applies algorithms that construct a target set of 3NF or BCNF relations.
 - Additional criteria may be needed to ensure the the set of relations in a relational database are satisfactory (see Algorithm 15.3).

companies use decomposition approach instead