Tarea_1_Alan Wilson

April 29, 2025

1) Cargar la base de datos en el ambiente. Identifique los tipos de datos que se encuentran en la base, realice estadisticas descriptivas sobre las variables importantes (Hint: Revisar la distribuciones, datos faltantes, outliers, etc.) y limpie las variables cuando sea necesario.

R: Se eliminaron variables con alta cantidad de datos faltantes (P6_9am, P6_3pm, Leakage), en el caso de leakage, también se considero eliminarla dada su alta cantidad de outliers. Se reemplazaron NaN por 0 en Evaporation y Electricity, generando columnas binarias que identificar los NaN reemplazados. Se generó una variable binaria a partir de Failure_today, además, se descartaron variables altamente correlacionadas, identificadas a partir de la matriz de correlación. Posteriormente, las variables categóricas como P1 Dir, P2 9am, P2 3pm, y Location se transformaron a dummies.

```
[248]: import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import statsmodels.api as sm
       import statsmodels.formula.api as smf
       import sklearn
       import scipy
       from scipy.stats import nbinom
       import seaborn as sns
       from statsmodels.iolib.summary2 import summary_col
       import matplotlib.patches as patches
       import warnings
       import math
       warnings.filterwarnings("ignore")
       %matplotlib inline
[249]: df = pd.read_csv('machine_failure_data.csv', delimiter=",", decimal=',')
       df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
       df['Fecha'] = df['Date']
       df['Date'] = df['Date'].dt.year.astype(int)
       df = df[df['Fecha'].dt.year >= 2009]
```

```
[250]: #Eliminamos las variables p6, que tienen muchos NaN, al igual que lasu sfiltraciones que tienen muchos outliers

df = df.drop(['P6_9am', 'P6_3pm', 'Leakage'], axis=1)
```

ocol in df.columnsl

df.columns = [col.replace('Parameter', 'P') if 'Parameter' in col else col for⊔

```
[251]: # Dejamos solo direcciones cardinal principales (N, S, E, W)
direccion = ['P1_Dir', 'P2_9am', 'P2_3pm']
for i in direccion:
    df[i] = df[i].astype(str).str[0]

df1 = df.copy()
```

```
[252]: # Crear columnas indicadoras donde había NaN (antes de reemplazarlos)

df['Evaporation_NaN'] = df['Evaporation'].isna().astype(int)

df['Electricity_NaN'] = df['Electricity'].isna().astype(int)

# Reemplazar NaN por 0 en las columnas originales

df['Evaporation'] = df['Evaporation'].fillna(0)

df['Electricity'] = df['Electricity'].fillna(0)
```

LIMPIEZA Y CONVERSIÓN DE DATOS

```
[253]: # ELIMINAMOS LOS NAN DE LA BASE DE DATOS
df.dropna(inplace=True)
```

```
[254]: # CONVERTIMOS LA COLUMNA A UNA BINARIA DE 1's y 0's
    df['Failure_today'] = df['Failure_today'].map({'No': 0, 'Yes': 1})

cols_a_convertir = [
        'Min_Temp', 'Max_Temp', 'Evaporation', 'Electricity',
        'P7_9am', 'P7_3pm', 'P5_9am', 'P5_3pm', 'Failure_today'
]

for col in cols_a_convertir:
    df[col] = pd.to_numeric(df[col], errors='coerce')
```

CONVERTIMOS LAS VARIABLES CATEGÓRICAS A NÚMEROS PARA GRÁFICAR (POSTERIMENTE SE PASARÁN A DUMMI)

```
[255]: for col in ['P1_Dir', 'P2_9am', 'P2_3pm']:

df[col], _ = pd.factorize(df[col])
```

REVISIÓN DE DISTRIBUCIÓN Y OUTLIERS (HISTOGRAMAS Y BOXPLOT)

```
[256]: # Excluir columnas binarias (con solo 2 valores únicos)
df_non_binary = df.loc[:, df.nunique() > 2]

df_non_binary.hist(bins=30, figsize=(15, 10))
plt.tight_layout()
plt.show()

numeric_cols = df_non_binary.select_dtypes(include=[np.number]).columns
```


MATRIZ DE CORRELACIONES INCLUYENDO TODAS LAS VARIABBLES (SIN DUMMIES, CON CATEGÓRICAS)

```
[257]: cols_non_binary = [col for col in df.columns if (df[col].nunique() > 2) or (col__
       df_corr = df[[col for col in cols_non_binary if col != 'Fecha']]
      corr = df_corr.corr()
      mask = np.triu(np.ones_like(corr, dtype=bool))
      f, ax = plt.subplots(figsize=(20, 10))
      cmap = sns.diverging_palette(230, 20, as_cmap=True)
      sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.8, center=0,
                  square=True, linewidths=.2, cbar_kws={"shrink": .5},
                  annot=True, fmt=".2f", annot_kws={"size": 8},
                  xticklabels=True, yticklabels=True)
      labels = corr.columns
      failure_index = list(labels).index('Failure_today')
      plt.title("Matriz de Correlaciones (sin variables binarias)", fontsize=16)
      plt.tight_layout()
      plt.show()
```

Matriz de Correlaciones (sin variables binarias)


```
[258]: # Eliminamos las variables que tienen mucha correlación entre ellas, dejandou duna, en este caso "Min_Temp" df = df.drop(['Max_Temp', 'P7_9am', 'P7_3pm'], axis=1)

# En este caso ambas variables miden lo mismo en horas distintas y tienen unau de df.drop(['P5_3pm'], axis=1)

[259]: cols_non_binary = [col for col in df.columns if (df[col].nunique() > 2) or (colude = 'Failure_today')]

df_corr = df[[col for col in cols_non_binary if col != 'Fecha']]

corr = df_corr.corr()

mask = np.triu(np.ones_like(corr, dtype=bool))
```

Matriz de Correlaciones (sin variables binarias)

CONVERTIMOS LAS VARIABLES CATEGÓRICAS EN COLUMNAS DUMMI PARA PODER HACER LA REGRESIÓN

2) Ejecute un modelo de probabilidad lineal (MCO) que permita explicar la probabilidad de que un dia se reporte fallo medido por sensor, a partir de las informacion disponible. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: El modelo muestra que variables como Min_Temp, P1_Speed, P3_9am, P4_9am y P4_3pm tienen una asociación positiva con la probabilidad de fallo, mientras que Evaporation, Electricity, P3_3pm y P5_9am presentan efectos negativos. Las variables indicadoras de datos faltantes (Evaporation_NaN, Electricity_NaN) también muestran asociaciones negativas significativas, lo cual sugiere que la ausencia de estas mediciones se relaciona con menor probabilidad de fallo.

En el caso de las ubicaciones, la mayoría de los coeficientes son negativos, lo que indica que varias zonas presentan menor probabilidad de falla respecto del baseline.

REGRESIÓN MCO PARA LA VARIABLE "Failure_Today"

```
[261]: y=df['Failure_today']
X=df.drop(['Failure_today'], axis=1)
X=sm.add_constant(X)
model = sm.OLS(y, X)
results = model.fit(cov_type='HCO')
print(results.summary())
```

OLS Regression Results

```
Dep. Variable:
                      Failure today
                                    R-squared:
                                                                   0.275
Model:
                                    Adj. R-squared:
                               OLS
                                                                   0.275
Method:
                      Least Squares
                                    F-statistic:
                                                                   614.6
Date:
                  jue, 24 abr. 2025
                                    Prob (F-statistic):
                                                                    0.00
Time:
                          22:42:09
                                    Log-Likelihood:
                                                                 -44586.
No. Observations:
                            117793
                                    AIC:
                                                               8.932e+04
                                                               9.005e+04
Df Residuals:
                            117718
                                    BIC:
Df Model:
                                74
                               HC<sub>0</sub>
Covariance Type:
______
                                                 P>|z|
                                                            Γ0.025
                    coef
                           std err
                                           z
0.975]
                  8.4277
                             0.219
                                      38.563
                                                 0.000
                                                            7.999
const
8.856
```

Min_Temp 0.003	0.0029	0.000	11.725	0.000	0.002
Evaporation	-0.0062	0.000	-14.063	0.000	-0.007
-0.005 Electricity	-0.0060	0.000	-13.314	0.000	-0.007
-0.005 P1_Speed 0.005	0.0050	0.000	35.243	0.000	0.005
P3_9am 0.005	0.0049	0.000	28.263	0.000	0.005
P3_3pm -0.003	-0.0034	0.000	-18.435	0.000	-0.004
P4_9am 0.008	0.0077	9.09e-05	85.052	0.000	0.008
P4_3pm 0.003	0.0029	9.07e-05	32.071	0.000	0.003
P5_9am -0.008	-0.0087	0.000	-40.941	0.000	-0.009
Evaporation_NaN -0.014	-0.0253	0.006	-4.568	0.000	-0.036
Electricity_NaN -0.027	-0.0396	0.006	-6.153	0.000	-0.052
Location_3	-0.1212	0.009	-13.068	0.000	-0.139
Location_4 0.081	0.0654	0.008	8.016	0.000	0.049
Location_5	-0.1628	0.010	-16.768	0.000	-0.182
Location_6 -0.226	-0.2455	0.010	-24.149	0.000	-0.265
Location_7 -0.136	-0.1535	0.009	-16.770	0.000	-0.171
Location_8 -0.013	-0.0317	0.010	-3.292	0.001	-0.051
Location_9 -0.098	-0.1176	0.010	-11.659	0.000	-0.137
Location_10 -0.123	-0.1411	0.009	-15.050	0.000	-0.159
Location_11 -0.033	-0.0504	0.009	-5.680	0.000	-0.068
Location_12 -0.059	-0.0792	0.010	-7.839	0.000	-0.099
Location_13 -0.152	-0.1717	0.010	-16.956	0.000	-0.192
Location_14 -0.113	-0.1321	0.010	-13.613	0.000	-0.151
Location_15 -0.118	-0.1379	0.010	-13.744	0.000	-0.158

Location_16 -0.119	-0.1389	0.010	-13.817	0.000	-0.159
Location_17 -0.145	-0.1729	0.014	-11.985	0.000	-0.201
Location_18 -0.124	-0.1461	0.011	-13.053	0.000	-0.168
Location_19 -0.096	-0.1179	0.011	-10.545	0.000	-0.140
Location_20 -0.168	-0.1875	0.010	-19.100	0.000	-0.207
Location_21 -0.111	-0.1282	0.009	-14.926	0.000	-0.145
Location_22	-0.0879	0.009	-10.105	0.000	-0.105
-0.071 Location_23 -0.113	-0.1324	0.010	-13.374	0.000	-0.152
Location_26	-0.2214	0.011	-20.669	0.000	-0.242
-0.200 Location_27	-0.1807	0.010	-17.528	0.000	-0.201
-0.160 Location_28	-0.1511	0.010	-14.647	0.000	-0.171
-0.131 Location_29	-0.1051	0.009	-11.528	0.000	-0.123
-0.087 Location_30	-0.0821	0.010	-8.072	0.000	-0.102
-0.062 Location_32	-0.0481	0.009	-5.343	0.000	-0.066
-0.030 Location_33	-0.0659	0.009	-7.275	0.000	-0.084
-0.048 Location_34	-0.1318	0.010	-12.585	0.000	-0.152
-0.111 Location_35	-0.1446	0.010	-15.199	0.000	-0.163
-0.126 Location_36	-0.2466	0.010	-25.100	0.000	-0.266
-0.227 Location_38	-0.1191	0.011	-11.042	0.000	-0.140
-0.098 Location_39	-0.1048	0.010	-10.576	0.000	-0.124
-0.085 Location_40	-0.1414	0.009	-15.426	0.000	-0.159
-0.123 Location_41	-0.1062	0.009	-11.223	0.000	-0.125
-0.088 Location_42	-0.0157	0.009	-1.669	0.095	-0.034
0.003 Location_43 -0.073	-0.0909	0.009	-10.001	0.000	-0.109

Location_44 -0.106	-0.1269	0.011	-11.866	0.000	-0.148
Location_45	-0.1626	0.010	-16.622	0.000	-0.182
-0.143	0 1110	0 011	10 400	0.000	0 122
Location_46 -0.091	-0.1118	0.011	-10.428	0.000	-0.133
Location_47	-0.0988	0.011	-9.385	0.000	-0.119
-0.078	0 1020	0.010	10 075	0.000	0 000
Location_48 -0.163	-0.1832	0.010	-18.075	0.000	-0.203
Location_49	-0.0987	0.008	-11.641	0.000	-0.115
-0.082	0.0050	0.004	1 550	0 101	0.012
P1_Dir_1 0.002	-0.0059	0.004	-1.550	0.121	-0.013
P1_Dir_2	-0.0313	0.004	-8.274	0.000	-0.039
-0.024					
P1_Dir_3 -0.006	-0.0141	0.004	-3.384	0.001	-0.022
P1_Dir_4	0.1205	0.123	0.981	0.326	-0.120
0.361					
P2_9am_1 -0.018	-0.0256	0.004	-6.352	0.000	-0.034
P2_9am_2	-0.0752	0.004	-17.936	0.000	-0.083
-0.067					
P2_9am_3 -0.067	-0.0745	0.004	-19.287	0.000	-0.082
P2_9am_4	-0.0869	0.006	-15.028	0.000	-0.098
-0.076					
P2_3pm_1 -0.001	-0.0082	0.004	-2.198	0.028	-0.016
P2_3pm_2	-0.0391	0.004	-9.425	0.000	-0.047
-0.031					
P2_3pm_3	-0.0533	0.004	-14.541	0.000	-0.061
-0.046 P2_3pm_4	-0.0959	0.015	-6.199	0.000	-0.126
-0.066					
Date_2010	0.0037	0.004	0.856	0.392	-0.005
0.012 Date_2011	-0.0048	0.004	-1.097	0.273	-0.013
0.004	0.0010	0.001	1.001	0.210	0.010
Date_2012	0.0025	0.004	0.577	0.564	-0.006
0.011 Data 2013	0.0020	0.004	0.478	0 633	-0.006
Date_2013 0.010	0.0020	0.004	0.410	0.633	-0.000
Date_2014	-0.0010	0.004	-0.248	0.804	-0.009
0.007	0 0074	0.004	1 710	0.006	0 001
Date_2015 0.016	0.0074	0.004	1.718	0.086	-0.001
-					

=======================================						=
Kurtosis:		2.922	Cond. No.		2.04e+05	5
Skew:		0.822	Prob(JB):		0.00)
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	a (JB):	13284.897	7
Omnibus:		10304.819	Durbin-Wats	son:	1.801	Ĺ
-0.016	========				==========	=
0.008 Date_2017	-0.0265	0.005	-4.837	0.000	-0.037	
Date_2016	-0.0005	0.004	-0.105	0.917	-0.009	

Notes:

.

[1] Standard Errors are heteroscedasticity robust (HCO)

. -

[2] The condition number is large, 2.04e+05. This might indicate that there are strong multicollinearity or other numerical problems.

0.1 3) Ejecute un modelo probit para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: El modelo probit refuerza los resultados del MCO y entrega una mejor representación de la variable dependiente. Las variables Min_Temp, P1_Speed, P3_9am, P4_9am y P4_3pm aumentan significativamente la probabilidad de que ocurra un fallo, mientras que Evaporation, P3_3pm, P5_9am y ciertas direcciones del viento se asocian negativamente. Se observaron diferencias de magnitud respecto a OLS, con efectos marginales más grandes en torno al promedio. Por ejemplo, un cambio unitario en P4_9am implica un aumento marginal importante en la probabilidad de fallo.

```
[262]: X1 = X.copy()
X1 = sm.add_constant(X1)
model = sm.Probit(y, X1)
probit_model = model.fit(cov_type='HCO')
print(probit_model.summary())
```

Optimization terminated successfully.

Current function value: 0.367778

Iterations 7

Probit Regression Results

=======================================			=========
Dep. Variable:	Failure_today	No. Observations:	117793
Model:	Probit	Df Residuals:	117718
Method:	MLE	Df Model:	74
Date:	jue, 24 abr. 2025	Pseudo R-squ.:	0.3037
Time:	22:42:12	Log-Likelihood:	-43322.
converged:	True	LL-Null:	-62216.
Covariance Type:	HC0	LLR p-value:	0.000
=======================================	===========		=======================================
===			
	coef std err	z P> z	[0.025

0.975]

const	29.4562	0.941	31.306	0.000	27.612	
31.300						
Min_Temp 0.018	0.0156	0.001	11.764	0.000	0.013	
Evaporation	-0.0451	0.004	-11.787	0.000	-0.053	
-0.038						
Electricity	-0.0101	0.002	-4.751	0.000	-0.014	
-0.006	0.0400	0.004	24 020	0.000	0.040	
P1_Speed 0.020	0.0188	0.001	31.939	0.000	0.018	
P3_9am	0.0217	0.001	26.530	0.000	0.020	
0.023						
P3_3pm	-0.0104	0.001	-12.378	0.000	-0.012	
-0.009 P4_9am	0.0403	0.000	82.052	0.000	0.039	
0.041	0.0100	0.000	02.002	0.000	0.003	
P4_3pm	0.0116	0.000	31.070	0.000	0.011	
0.012	0.0000	0.004	04 005	0.000	0.005	
P5_9am -0.031	-0.0332	0.001	-36.385	0.000	-0.035	
Evaporation_NaN	-0.2076	0.028	-7.291	0.000	-0.263	
-0.152						
Electricity_NaN	0.0025	0.029	0.085	0.932	-0.054	
0.059 Location_3	-0.5003	0.045	-11.105	0.000	-0.589	
-0.412	0.3003	0.043	11.105	0.000	0.569	
Location_4	-0.0979	0.060	-1.633	0.102	-0.215	
0.020						
Location_5 -0.572	-0.6621	0.046	-14.411	0.000	-0.752	
Location_6	-1.1728	0.048	-24.603	0.000	-1.266	
-1.079						
Location_7	-0.6964	0.045	-15.315	0.000	-0.785	
-0.607 Location_8	0.0287	0.045	0.645	0.519	-0.059	
0.116	0.0201	0.010	0.010	0.013	0.003	
Location_9	-0.4810	0.043	-11.143	0.000	-0.566	
-0.396						
Location_10 -0.438	-0.5281	0.046	-11.520	0.000	-0.618	
Location_11	-0.3918	0.053	-7.380	0.000	-0.496	
-0.288						
Location_12	-0.3051	0.044	-6.977	0.000	-0.391	
-0.219	_0 7700	0 044	_17 707	0.000	-0.966	
Location_13	-0.7798	0.044	-17.787	0.000	-0.866	

-0.694 Location_14	-0.5151	0.046	-11.304	0.000	-0.604
-0.426 Location_15	-0.5820	0.047	-12.484	0.000	-0.673
-0.491					
Location_16 -0.265	-0.3561	0.046	-7.666	0.000	-0.447
Location_17 -0.628	-0.7811	0.078	-9.977	0.000	-0.935
Location_18 -0.446	-0.5449	0.051	-10.773	0.000	-0.644
Location_19 -0.226	-0.3207	0.049	-6.611	0.000	-0.416
Location_20 -0.611	-0.7013	0.046	-15.248	0.000	-0.791
Location_21 -0.721	-0.8204	0.051	-16.161	0.000	-0.920
Location_22 -0.231	-0.3284	0.050	-6.596	0.000	-0.426
Location_23 -0.498	-0.5834	0.044	-13.387	0.000	-0.669
Location_26 -0.991	-1.1031	0.057	-19.256	0.000	-1.215
Location_27	-0.7557	0.046	-16.323	0.000	-0.846
Location_28 -0.481	-0.5685	0.045	-12.721	0.000	-0.656
Location_29 -0.538	-0.6338	0.049	-12.976	0.000	-0.730
Location_30 -0.200	-0.3018	0.052	-5.798	0.000	-0.404
Location_32 -0.075	-0.1624	0.045	-3.648	0.000	-0.250
Location_33	-0.2308	0.046	-5.033	0.000	-0.321
Location_34 -0.494	-0.5799	0.044	-13.249	0.000	-0.666
Location_35 -0.513	-0.6038	0.046	-13.063	0.000	-0.694
Location_36 -0.888	-0.9768	0.045	-21.501	0.000	-1.066
Location_38 -0.280	-0.3730	0.047	-7.878	0.000	-0.466
Location_39 -0.271	-0.3620	0.047	-7.775	0.000	-0.453
Location_40	-0.5188	0.046	-11.228	0.000	-0.609
-0.428 Location_41	-0.3430	0.045	-7.568	0.000	-0.432

-0.254 Location_42	-0.3324	0.070	-4.722	0.000	-0.470
-0.194	0.4000	0.040	0.407	0.000	0 500
Location_43 -0.312	-0.4060	0.048	-8.467	0.000	-0.500
Location_44 -0.428	-0.5164	0.045	-11.488	0.000	-0.605
Location_45 -0.541	-0.6296	0.045	-13.968	0.000	-0.718
Location_46	-0.3906	0.047	-8.305	0.000	-0.483
-0.298 Location_47	-0.3794	0.046	-8.299	0.000	-0.469
-0.290 Location_48	-0.7271	0.047	-15.513	0.000	-0.819
-0.635 Location_49	-0.8885	0.060	-14.925	0.000	-1.005
-0.772 P1_Dir_1	-0.0358	0.017	-2.135	0.033	-0.069
-0.003 P1_Dir_2	-0.1833	0.018	-10.429	0.000	-0.218
-0.149 P1_Dir_3	-0.0769	0.020	-3.759	0.000	-0.117
-0.037 P1_Dir_4	0.5224	0.467	1.120	0.263	-0.392
1.437 P2_9am_1	-0.0522	0.016	-3.254	0.001	-0.084
-0.021 P2_9am_2	-0.3650	0.020	-18.527	0.000	-0.404
-0.326 P2_9am_3	-0.3484	0.016	-21.712	0.000	-0.380
-0.317 P2_9am_4	-0.3978	0.027	-14.834	0.000	-0.450
-0.345 P2_3pm_1	-0.0237	0.017	-1.408	0.159	-0.057
0.009 P2_3pm_2	-0.1303	0.021	-6.351	0.000	-0.170
-0.090	0.1000	0.021	0.001	0.000	0.170
P2_3pm_3 -0.189	-0.2237	0.018	-12.739	0.000	-0.258
P2_3pm_4 -0.246	-0.3766	0.066	-5.672	0.000	-0.507
Date_2010 0.083	0.0444	0.020	2.248	0.025	0.006
Date_2011 0.044	0.0037	0.020	0.183	0.855	-0.036
Date_2012 0.062	0.0220	0.021	1.070	0.285	-0.018
0.062 Date_2013	0.0120	0.021	0.583	0.560	-0.028

0.052						
Date_2014 0.045	0.0044	0.021	0.211	0.833	-0.036	
Date_2015	0.0288	0.021	1.378	0.168	-0.012	
0.070	0.0200	0.021	1.576	0.100	-0.012	
Date_2016	0.0290	0.021	1.380	0.168	-0.012	
0.070						
Date_2017 -0.069	-0.1200	0.026	-4.569	0.000	-0.171	

===

.

0.2 4) Ejecute un modelo logit para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: Los coeficientes marginales del modelo logit son muy similares a los obtenidos en el modelo probit, tanto en signo como en magnitud, lo cual es esperable. Sin embargo, logit permite interpretar los resultados también en términos de razón de odds (odds ratio), lo que entrega una visión más completa del efecto relativo de cada variable sobre la probabilidad de fallo. El modelo mantiene la significancia de las variables clave y muestra un leve aumento en el pseudo R² respecto al modelo probit.

```
[263]: model = sm.Logit(y, X1)
    logit_model = model.fit(cov_type='HCO')
    print(logit_model.summary())

mfxl = logit_model.get_margeff()
    print(mfxl.summary())

params = logit_model.params
    conf = logit_model.conf_int()
    conf['Odds Ratio'] = params
    conf.columns = ['Odds Ratio', '5%', '95%']
    print("Odds Ratios")
    print(np.exp(conf).iloc[1:17 , ])
```

Optimization terminated successfully.

Current function value: 0.366616

Iterations 8

Logit Regression Results

-----Dep. Variable: Failure_today No. Observations: 117793 Model: Logit Df Residuals: 117718 Method: MLE Df Model: 74 Date: jue, 24 abr. 2025 Pseudo R-squ.: 0.3059 22:42:14 Log-Likelihood: Time: -43185. converged: True LL-Null: -62216. Covariance Type: HCO LLR p-value: 0.000

=======================================		=======	========	=======	=======================================
===	coef	std err	z	P> z	[0.025
0.975]					
const 54.735	51.4770	1.662	30.965	0.000	48.219
Min_Temp 0.034	0.0294	0.002	12.776	0.000	0.025
Evaporation -0.089	-0.1022	0.007	-15.428	0.000	-0.115
Electricity -0.005	-0.0128	0.004	-3.414	0.001	-0.020
P1_Speed 0.035	0.0331	0.001	31.850	0.000	0.031
P3_9am 0.041	0.0386	0.001	26.460	0.000	0.036
P3_3pm -0.015	-0.0175	0.001	-11.714	0.000	-0.020
P4_9am 0.075	0.0731	0.001	84.119	0.000	0.071
P4_3pm 0.021	0.0200	0.001	30.659	0.000	0.019
P5_9am -0.055	-0.0582	0.002	-36.078	0.000	-0.061
Evaporation_NaN -0.343	-0.4375	0.048	-9.034	0.000	-0.532
Electricity_NaN 0.135	0.0352	0.051	0.694	0.488	-0.064
Location_3 -0.746	-0.9024	0.080	-11.307	0.000	-1.059
Location_4 -0.009	-0.2214	0.108	-2.042	0.041	-0.434
Location_5 -1.031	-1.1916	0.082	-14.530	0.000	-1.352
Location_6 -1.973	-2.1377	0.084	-25.424	0.000	-2.303
Location_7 -1.080	-1.2382	0.081	-15.334	0.000	-1.396
Location_8 0.227	0.0716	0.079	0.902	0.367	-0.084
Location_9 -0.677	-0.8261	0.076	-10.832	0.000	-0.976
Location_10 -0.784	-0.9445	0.082	-11.544	0.000	-1.105
Location_11 -0.570	-0.7566	0.095	-7.943	0.000	-0.943

Location_12 -0.405	-0.5572	0.077	-7.198	0.000	-0.709
Location_13	-1.4182	0.077	-18.301	0.000	-1.570
Location_14	-0.8985	0.081	-11.026	0.000	-1.058
-0.739 Location_15	-1.0672	0.083	-12.902	0.000	-1.229
-0.905 Location_16	-0.6944	0.084	-8.309	0.000	-0.858
-0.531 Location_17	-1.3368	0.140	-9.527	0.000	-1.612
-1.062 Location_18	-0.9834	0.089	-11.038	0.000	-1.158
-0.809 Location_19	-0.5865	0.087	-6.772	0.000	-0.756
-0.417 Location_20	-1.2543	0.082	-15.233	0.000	-1.416
-1.093 Location_21	-1.4946	0.091	-16.375	0.000	-1.673
-1.316 Location_22	-0.6534	0.090	-7.300	0.000	-0.829
-0.478 Location_23	-1.0717	0.077	-13.833	0.000	-1.224
-0.920 Location_26	-1.9686	0.103	-19.170	0.000	-2.170
-1.767 Location_27	-1.3969	0.083	-16.819	0.000	-1.560
-1.234 Location_28	-1.0330	0.080	-12.909	0.000	-1.190
-0.876 Location_29	-1.1666	0.088	-13.284	0.000	-1.339
-0.994 Location_30	-0.5840	0.092	-6.327	0.000	-0.765
-0.403 Location_32	-0.2692	0.079	-3.400	0.001	-0.424
-0.114 Location_33	-0.4002	0.082	-4.879	0.000	-0.561
-0.239 Location_34	-1.0759	0.078	-13.736	0.000	-1.229
-0.922 Location_35	-1.0803	0.082	-13.101	0.000	-1.242
-0.919 Location_36	-1.7830	0.081	-22.028	0.000	-1.942
-1.624 Location_38	-0.6611	0.084	-7.864	0.000	-0.826
-0.496 Location_39	-0.6617	0.084	-7.834	0.000	-0.827
-0.496	0.0017	0.004	7.004	0.000	0.021

Location_40 -0.686	-0.8479	0.083	-10.275	0.000	-1.010
Location_41	-0.6071	0.081	-7.537	0.000	-0.765
-0.449 Location_42	-0.6461	0.128	-5.036	0.000	-0.898
-0.395 Location_43	-0.7838	0.086	-9.161	0.000	-0.951
-0.616 Location_44	-0.9580	0.081	-11.891	0.000	-1.116
-0.800 Location_45	-1.1412	0.080	-14.220	0.000	-1.298
-0.984	11112	0.000	111220	0.000	1.200
Location_46 -0.555	-0.7197	0.084	-8.567	0.000	-0.884
Location_47	-0.7162	0.081	-8.842	0.000	-0.875
Location_48	-1.3367	0.084	-15.826	0.000	-1.502
-1.171 Location_49	-1.6390	0.106	-15.475	0.000	-1.847
-1.431	0.0580	0.020	1 050	0.050	0 116
P1_Dir_1 6.98e-05	-0.0580	0.030	-1.958	0.050	-0.116
P1_Dir_2 -0.251	-0.3119	0.031	-10.079	0.000	-0.372
P1_Dir_3 -0.046	-0.1166	0.036	-3.237	0.001	-0.187
P1_Dir_4	1.0584	0.923	1.146	0.252	-0.752
2.868	0.0017	0 000	2 246	0.001	0 147
P2_9am_1 -0.036	-0.0917	0.028	-3.246	0.001	-0.147
P2_9am_2 -0.580	-0.6484	0.035	-18.611	0.000	-0.717
P2_9am_3 -0.564	-0.6191	0.028	-21.873	0.000	-0.675
P2_9am_4 -0.608	-0.7005	0.047	-14.899	0.000	-0.793
P2_3pm_1	-0.0404	0.030	-1.353	0.176	-0.099
0.018 P2_3pm_2	-0.2229	0.036	-6.152	0.000	-0.294
-0.152	-0.2229	0.030	-0.152	0.000	-0.294
P2_3pm_3 -0.336	-0.3964	0.031	-12.789	0.000	-0.457
P2_3pm_4 -0.420	-0.6472	0.116	-5.589	0.000	-0.874
Date_2010	0.0968	0.035	2.769	0.006	0.028
0.165					
Date_2011 0.088	0.0171	0.036	0.473	0.636	-0.054

0.0538	0.036	1.475	0.140	-0.018	
0.0212	0.036	0.580	0.562	-0.050	
0.0151	0.037	0.413	0.680	-0.057	
0.0594	0.037	1.598	0.110	-0.013	
0.0636	0.037	1.704	0.088	-0.010	
-0.2044	0.047	-4.380	0.000	-0.296	
	0.0212 0.0151 0.0594 0.0636	0.0212 0.036 0.0151 0.037 0.0594 0.037 0.0636 0.037	0.0212 0.036 0.580 0.0151 0.037 0.413 0.0594 0.037 1.598 0.0636 0.037 1.704	0.0212 0.036 0.580 0.562 0.0151 0.037 0.413 0.680 0.0594 0.037 1.598 0.110 0.0636 0.037 1.704 0.088	0.0212 0.036 0.580 0.562 -0.050 0.0151 0.037 0.413 0.680 -0.057 0.0594 0.037 1.598 0.110 -0.013 0.0636 0.037 1.704 0.088 -0.010

===

Logit Marginal Effects

Dep. Variable: Failure_today

Method: fallure_today
At: overall

===========					========	=====
===	dy/dx	std err	z	P> z	[0.025	
0.975]	·					
Min_Temp 0.004	0.0034	0.000	12.813	0.000	0.003	
Evaporation -0.010	-0.0118	0.001	-15.589	0.000	-0.013	
Electricity -0.001	-0.0015	0.000	-3.413	0.001	-0.002	
P1_Speed 0.004	0.0038	0.000	32.491	0.000	0.004	
P3_9am 0.005	0.0045	0.000	26.761	0.000	0.004	
P3_3pm -0.002	-0.0020	0.000	-11.744	0.000	-0.002	
P4_9am 0.009	0.0085	8.83e-05	95.833	0.000	0.008	
P4_3pm 0.002	0.0023	7.48e-05	30.968	0.000	0.002	
P5_9am -0.006	-0.0067	0.000	-36.857	0.000	-0.007	
Evaporation_NaN -0.040	-0.0506	0.006	-9.056	0.000	-0.062	
Electricity_NaN 0.016	0.0041	0.006	0.694	0.488	-0.007	
Location_3	-0.1044	0.009	-11.334	0.000	-0.123	

-0.086 Location_4	-0.0256	0.013	-2.042	0.041	-0.050
-0.001					
Location_5 -0.119	-0.1379	0.009	-14.590	0.000	-0.156
Location_6	-0.2474	0.010	-25.757	0.000	-0.266
Location_7	-0.1433	0.009	-15.391	0.000	-0.162
Location_8 0.026	0.0083	0.009	0.902	0.367	-0.010
Location_9	-0.0956	0.009	-10.848	0.000	-0.113
Location_10	-0.1093	0.009	-11.577	0.000	-0.128
Location_11	-0.0876	0.011	-7.953	0.000	-0.109
Location_12 -0.047	-0.0645	0.009	-7.206	0.000	-0.082
Location_13	-0.1641	0.009	-18.430	0.000	-0.182
Location_14 -0.086	-0.1040	0.009	-11.047	0.000	-0.122
Location_15	-0.1235	0.010	-12.946	0.000	-0.142
Location_16	-0.0804	0.010	-8.337	0.000	-0.099
Location_17	-0.1547	0.016	-9.534	0.000	-0.187
Location_18	-0.1138	0.010	-11.070	0.000	-0.134
Location_19	-0.0679	0.010	-6.784	0.000	-0.087
Location_20 -0.127	-0.1452	0.009	-15.314	0.000	-0.164
Location_21 -0.152	-0.1730	0.011	-16.451	0.000	-0.194
Location_22 -0.055	-0.0756	0.010	-7.311	0.000	-0.096
Location_23 -0.107	-0.1240	0.009	-13.895	0.000	-0.142
Location_26 -0.205	-0.2278	0.012	-19.285	0.000	-0.251
Location_27 -0.143	-0.1617	0.010	-16.931	0.000	-0.180
Location_28 -0.101	-0.1196	0.009	-12.963	0.000	-0.138
Location_29	-0.1350	0.010	-13.328	0.000	-0.155

-0.115 Location_30	-0.0676	0.011	-6.336	0.000	-0.088
-0.047					
Location_32 -0.013	-0.0312	0.009	-3.401	0.001	-0.049
Location_33	-0.0463	0.009	-4.880	0.000	-0.065
Location_34	-0.1245	0.009	-13.804	0.000	-0.142
Location_35	-0.1250	0.010	-13.141	0.000	-0.144
-0.106 Location_36	-0.2064	0.009	-22.288	0.000	-0.225
-0.188 Location_38	-0.0765	0.010	-7.877	0.000	-0.096
-0.057 Location_39	-0.0766	0.010	-7.847	0.000	-0.096
-0.057 Location_40	-0.0981	0.010	-10.281	0.000	-0.117
-0.079 Location_41	-0.0703	0.009	-7.547	0.000	-0.089
-0.052 Location_42	-0.0748	0.015	-5.037	0.000	-0.104
-0.046 Location_43	-0.0907	0.010	-9.183	0.000	-0.110
-0.071 Location_44	-0.1109	0.009	-11.937	0.000	-0.129
-0.093 Location_45	-0.1321	0.009	-14.291	0.000	-0.150
-0.114 Location_46	-0.0833	0.010	-8.586	0.000	-0.102
-0.064 Location_47	-0.0829	0.009	-8.863	0.000	-0.101
-0.065 Location_48	-0.1547	0.010	-15.921	0.000	-0.174
-0.136 Location_49	-0.1897	0.012	-15.533	0.000	-0.214
-0.166					
P1_Dir_1 8.21e-06	-0.0067	0.003	-1.958	0.050	-0.013
P1_Dir_2	-0.0361	0.004	-10.082	0.000	-0.043
-0.029 P1_Dir_3	-0.0135	0.004	-3.237	0.001	-0.022
-0.005 P1_Dir_4	0.1225	0.107	1.146	0.252	-0.087
0.332 P2_9am_1	-0.0106	0.003	-3.248	0.001	-0.017
-0.004 P2_9am_2	-0.0750	0.004	-18.669	0.000	-0.083
	0.0100	0.001	10.000	0.000	0.000

0.067						
-0.067 P2_9am_3	-0.0716	0.003	-22.023	0.000	-0.078	
-0.065	0.0120	0.000	22.020	0.000	0.010	
P2_9am_4	-0.0811	0.005	-14.947	0.000	-0.092	
-0.070						
P2_3pm_1	-0.0047	0.003	-1.353	0.176	-0.011	
0.002						
P2_3pm_2	-0.0258	0.004	-6.156	0.000	-0.034	
-0.018 P2_3pm_3	-0.0459	0.004	-12.824	0.000	-0.053	
-0.039	-0.0459	0.004	-12.024	0.000	-0.055	
P2_3pm_4	-0.0749	0.013	-5.591	0.000	-0.101	
-0.049						
Date_2010	0.0112	0.004	2.770	0.006	0.003	
0.019						
Date_2011	0.0020	0.004	0.473	0.636	-0.006	
0.010						
Date_2012	0.0062	0.004	1.476	0.140	-0.002	
0.014	0.0024	0.004	0.580	0.562	-0.006	
Date_2013 0.011	0.0024	0.004	0.560	0.562	-0.006	
Date_2014	0.0018	0.004	0.413	0.680	-0.007	
0.010	0.0020	0.002	0.110	0.000		
Date_2015	0.0069	0.004	1.598	0.110	-0.002	
0.015						
Date_2016	0.0074	0.004	1.705	0.088	-0.001	
0.016						
Date_2017	-0.0237	0.005	-4.380	0.000	-0.034	
-0.013 =========						

===

Odds Ratios

daab madidb			
	Odds Ratio	5%	95%
Min_Temp	1.025190	1.034475	1.029822
Evaporation	0.891168	0.914620	0.902818
Electricity	0.980059	0.994566	0.987286
P1_Speed	1.031586	1.035801	1.033691
P3_9am	1.036419	1.042368	1.039389
P3_3pm	0.979832	0.985571	0.982697
P4_9am	1.074040	1.077706	1.075872
P4_3pm	1.018899	1.021508	1.020203
P5_9am	0.940462	0.946430	0.943441
Evaporation_NaN	0.587214	0.709959	0.645677
Electricity_NaN	0.937759	1.144212	1.035854
Location_3	0.346859	0.474265	0.405590
Location_4	0.647949	0.991148	0.801382
Location_5	0.258624	0.356688	0.303724
Location_6	0.100008	0.139053	0.117926

0.3 5) Comente los resultados obtenidos en 2, 3 y 4. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

R: En base a los resultados, el modelo MCO entrega una aproximación inicial, pero no modela adecuadamente una variable binaria, por lo que Probit o Logit son más apropiados. Ambos muestran resultados similares, pero el modelo Logit permite una mejor interpretación de los efectos, por lo que se considera más adecuado. Variables como Min_Temp, P1_Speed, P3_9am, P4_9am, P4_3pm y P5_9am resultaron ser robustas a la especificación.

0.3.1 6) Agregue la data a nivel mensual, usando la data promedio de las variables (ignorando aquellas categoricas, como la direccion del viento). En particular, genere una variable que cuente la cantidad de fallos observados en un mes, utilice un valor de 0 si en ese mes no se reporto fallos en ningun dia. Use un modelo Poisson para explicar el numero de fallas por mes. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: El modelo Poisson, aplicado a datos mensuales por ubicación, presenta buen ajuste (pseudo $R^2 = 0.855$). Se observa que Min_Temp, P1_Speed, P4_9am y P4_3pm están positivamente asociados al número de fallos reportados por sensores, lo que sugiere que temperaturas mínimas más altas y ciertas condiciones de viento aumentan la frecuencia esperada de fallas. En contraste, Evaporation, Electricity, P3_3pm y P5_9am se asocian negativamente, lo que podría indicar condiciones más estables o menor carga operacional.

```
[264]: # Mismos ajustes de la parte 1 (Sin indicadores)
df1['Failure_today'] = df1['Failure_today'].map({'No': 0, 'Yes': 1})

cols_a_convertir = [
    'Min_Temp', 'Evaporation', 'Electricity',
    'P7_9am', 'P7_3pm', 'P5_9am', 'P5_3pm', 'Failure_today'
]

for col in cols_a_convertir:
    df1[col] = pd.to_numeric(df1[col], errors='coerce')

for col in ['P1_Dir', 'P2_9am', 'P2_3pm']:
    df1[col], _ = pd.factorize(df1[col])

df1 = df1.drop(['Max_Temp', 'P7_9am', 'P7_3pm'], axis=1)

df1 = df1.drop(['P5_3pm'], axis=1)
df2 = df1.copy()
```

AGRUPAMOS POR MES Y AÑADIMOS LA CANTIDAD DE FALLOS POR MES

```
[265]: # Convertir 'Fecha' a datetime y extraer año y mes
      df2['Fecha'] = pd.to_datetime(df2['Fecha'])
      df2['Year'] = df2['Fecha'].dt.year
      df2['Month'] = df2['Fecha'].dt.month
      categoricas = ['Location', 'P1_Dir', 'P2_9am', 'P2_3pm', 'Fecha']
      df_numerico = df2.drop(columns=categoricas)
      df_mensual = df2.groupby(['Year', 'Month', 'Location']).agg({
          col: 'mean' for col in df_numerico.columns if col != 'Failure_today'
      })
      fallos_mensuales = df2.groupby(['Year', 'Month', 'Location'])['Failure_today'].
       ⇔sum().rename('Monthly_Failures')
      df_final = df_mensual.join(fallos_mensuales)
[266]: # Crear columnas indicadoras donde había NaN (antes de reemplazarlos)
      df_final['Evaporation_NaN'] = df_final['Evaporation'].isna().astype(int)
      df_final['Electricity_NaN'] = df_final['Electricity'].isna().astype(int)
      # Reemplazar NaN por O en las columnas originales
      df_final['Evaporation'] = df_final['Evaporation'].fillna(0)
      df_final['Electricity'] = df_final['Electricity'].fillna(0)
      df_final = df_final.dropna()
[267]: y = df_final['Monthly_Failures']
      X2 = df_final.drop(columns=['Monthly_Failures', 'Year', 'Month', 'Date'],
       ⇒axis=1)
      X2 = sm.add_constant(X2)
      poisson_model_final=sm.GLM(y,X2,family=sm.families.Poisson()).fit()
      print(poisson_model_final.summary())
                      Generalized Linear Model Regression Results
      ______
      Dep. Variable:
                         Monthly_Failures
                                            No. Observations:
                                                                            4076
      Model:
                                      GLM
                                          Df Residuals:
                                                                            4064
      Model Family:
                                  Poisson Df Model:
                                                                              11
      Link Function:
                                           Scale:
                                                                          1.0000
                                      Log
     Method:
                                                                         -9541.0
                                     IRLS
                                          Log-Likelihood:
                        jue, 24 abr. 2025 Deviance:
      Date:
                                                                          5272.3
      Time:
                                 22:42:44 Pearson chi2:
                                                                        4.91e+03
      No. Iterations:
                                          Pseudo R-squ. (CS):
                                                                          0.8550
      Covariance Type:
                                nonrobust
                           coef std err z P>|z|
                                                                   [0.025
      0.975]
```

const	22.4848	2.272	9.897	0.000	18.032	
26.938						
Min_Temp	0.0071	0.002	4.077	0.000	0.004	
0.010	0.0405	0.004	0. 000	0.000	0.005	
Evaporation -0.008	-0.0165	0.004	-3.699	0.000	-0.025	
Electricity	-0.0421	0.006	-6.759	0.000	-0.054	
-0.030						
P1_Speed	0.0394	0.002	19.620	0.000	0.035	
0.043						
P3_9am	-0.0027	0.003	-1.088	0.277	-0.008	
0.002						
P3_3pm	-0.0465	0.003	-17.342	0.000	-0.052	
-0.041	0.0004	0.004	0.005	0.000	0.007	
P4_9am	0.0091	0.001	8.065	0.000	0.007	
0.011	0.0200	0.001	20 F14	0.000	0.000	
P4_3pm 0.032	0.0302	0.001	32.514	0.000	0.028	
0.032 P5_9am	-0.0228	0.002	-10.444	0.000	-0.027	
-0.019	0.0220	0.002	10.411	0.000	0.021	
Evaporation_NaN	-0.1155	0.033	-3.516	0.000	-0.180	
-0.051						
Electricity_NaN	-0.3688	0.051	-7.281	0.000	-0.468	
-0.270						

===

0.4 7) Determine sobre dispersion en la data y posible valor optimo de alpha para un modelo Binomial Negativa.

R: El análisis muestra que hay sobredispersión en los datos, ya que el valor de alpha estimado es positivo y estadísticamente significativo. Esto indica que la varianza supera a la media, lo que sugiere que un modelo Binomial Negativa puede ser más apropiado que el Poisson para explicar la cantidad de fallos mensuales.

```
[268]: df_final['plambda'] = poisson_model_final.mu sns.histplot(data=df_final, x="plambda")
```

[268]: <Axes: xlabel='plambda', ylabel='Count'>


```
[269]: aux=((y-poisson_model_final.mu)**2 - poisson_model_final.mu) /

poisson_model_final.mu
auxr=sm.OLS(aux, poisson_model_final.mu).fit()
print(auxr.summary())
```

OLS Regression Results

======

Dep. Variable: Monthly_Failures R-squared (uncentered):

0.001

Model: OLS Adj. R-squared (uncentered):

0.001

Method: Least Squares F-statistic:

5.401

Date: jue, 24 abr. 2025 Prob (F-statistic):

0.0202

Time: 22:42:45 Log-Likelihood:

-11541.

No. Observations: 4076 AIC:

2.308e+04

Df Residuals: 4075 BIC:

2.309e+04

Df Model:	1
Covariance Ty	pe: nonrobust

=========	=======	=========	-======	========	:========	========
	coef	std err	t	P> t	[0.025	0.975]
x1	0.0198	0.009	2.324	0.020	0.003	0.037
Omnibus:		12885.64	45 Durb	in-Watson:		1.973
Prob(Omnibus	s):	0.00	00 Jarq	ue-Bera (JB)	: 1430	0803010.337
Skew:		49.69	92 Prob	(JB):		0.00
Kurtosis:		2903.84	40 Cond	. No.		1.00
========					.=======	

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.5 8) Usando la informacion anterior, ejecute un modelo Binomial Negativa para responder a la pregunta 6. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: El modelo Binomial Negativa, estimado con el valor de alpha obtenido en la regresión auxiliar, entrega un peor ajuste que el modelo Poisson (menor log-likelihood). Sin embargo, los coeficientes estimados son muy similares, lo que sugiere que las asociaciones identificadas se mantienen.

Variables como P1_Speed, P3_3pm, P4_3pm, P5_9am y Electricity continúan mostrando efectos significativos, manteniéndose robustas en ambas especificaciones. La interpretación de los coeficientes sigue siendo en términos del log del número esperado de fallos, por lo que no cambia respecto al modelo Poisson.

```
[270]: negbin=sm.GLM(y,X2,family=sm.families.NegativeBinomial(alpha= np.exp(0.0197))).

ofit()
print(negbin.summary())
```

Generalized Linear Model Regression Results

			=======
Dep. Variable:	${ t Monthly_Failures}$	No. Observations:	4076
Model:	GLM	Df Residuals:	4064
Model Family:	NegativeBinomial	Df Model:	11
Link Function:	Log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-11475.
Date:	jue, 24 abr. 2025	Deviance:	1177.1
Time:	22:42:45	Pearson chi2:	959.
No. Iterations:	8	Pseudo R-squ. (CS):	0.2466
Covariance Type:	nonrobust		

0.975]	coef	std err	z	P> z	[0.025	
const	24.2265	6.776	3.575	0.000	10.946	
37.507						
Min_Temp 0.015	0.0050	0.005	0.988	0.323	-0.005	
Evaporation	-0.0120	0.010	-1.157	0.247	-0.032	
0.008						
Electricity -0.038	-0.0703	0.016	-4.296	0.000	-0.102	
P1_Speed 0.059	0.0471	0.006	7.937	0.000	0.035	
P3_9am	-0.0012	0.007	-0.174	0.862	-0.014	
0.012 P3_3pm -0.044	-0.0588	0.007	-7.939	0.000	-0.073	
P4_9am 0.014	0.0078	0.003	2.665	0.008	0.002	
P4_3pm 0.039	0.0339	0.002	13.576	0.000	0.029	
P5_9am -0.012	-0.0245	0.007	-3.760	0.000	-0.037	
Evaporation_NaN 0.060	-0.1071	0.085	-1.255	0.210	-0.274	
Electricity_NaN -0.291	-0.5699	0.142	-4.009	0.000	-0.849	

===

9) Comente los resultados obtenidos en 6, 7 y 8. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

R: El modelo Poisson (pregunta 6) presentó buen ajuste y permitió identificar relaciones significativas entre varias variables y el número de fallos. Sin embargo, en la pregunta 7 se evidenció una leve sobre-dispersión, lo que motivó el uso del modelo Binomial Negativa en la pregunta 8.

Aunque el Binomial Negativa entregó un peor ajuste (menor log-likelihood), los coeficientes fueron muy similares a los del modelo Poisson, lo que indica estabilidad en los resultados. Dado que la sobre-dispersión es leve, el modelo Poisson es más parsimonioso y, por tanto, más conveniente en este caso.

Las variables P1_Speed, P3_3pm, P4_3pm, P5_9am y Electricity fueron significativas y consistentes en todas las especificaciones, por lo que se consideran robustas.