Please read these carefully: please submit your answers to Mycourses before the given deadline as a separate files (.pdf file with the report and Jupyter notebook .ipynb files if there are any). Do not compress them into a single (zip or equivalent) archive.

Problem 3.1: FJ and KKT Conditions at Optimal Point

Consider the following optimization problem:

$$\min - x_1 \tag{1}$$

subject to:
$$x_2 \le (1 - x_1)^3$$
 (2)

$$x_1 \ge 0 \tag{3}$$

$$x_2 \ge 0 \tag{4}$$

- (a) Draw the feasible region of the problem (1) (4) and identify its optimal point \overline{x} .
- (b) Is the optimal point \overline{x} a FJ point? Justify your answer.
- (c) Are KKT conditions valid at the optimal point \overline{x} ? Does \overline{x} satisfy either the Linear Independence Constraint Qualification (LIQC) or Slater's CQ?

Problem 3.2: KKT Conditions for a Quadratic Problem

Consider the following optimization problem:

min.
$$(x_1 - \frac{9}{4})^2 + (x_2 - 2)^2$$
 (5)

subject to:
$$x_2 - x_1^2 \ge 0$$
 (6)

$$x_1 + x_2 \le 6 \tag{7}$$

$$x_1 \ge 0 \tag{8}$$

$$x_2 \ge 0 \tag{9}$$

- (a) Write the KKT optimality conditions for the problem (5) (9) and verify that these conditions hold at the point $\overline{x} = (\frac{3}{2}, \frac{9}{4})$
- (b) Draw the feasible region (6) (9) and verify graphically that the KKT conditions hold at $\overline{x} = (\frac{3}{2}, \frac{9}{4})$.
- (c) Justify why the point $\overline{x} = (\frac{3}{2}, \frac{9}{4})$ is a unique global optimal solution.

Problem 3.3: Lagrangian Dual of a Least-Squares Problem

Consider the following least-squares optimization problem with equality constraints:

$$\min x^{\top} x \tag{10}$$

subject to:
$$Ax = b$$
 (11)

with decision variables $x \in \mathbb{R}^n$ and problem data $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

- (a) Write the Lagrangian dual problem of the primal (10) (11) by using dual variables $v \in \mathbb{R}^m$.
- (b) Derive the optimal dual and primal solutions \overline{v} and \overline{x} , respectively, by solving the Lagrangian dual problem of part (a). Does strong duality hold between the primal and the dual problem? *Hint:* consider the Slater's Constraint Qualification.

Problem 3.4: Concavity of Lagrangian Dual Functions

Let $X \subset \mathbb{R}^n$ be a nonempty compact set, and let $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, and $h : \mathbb{R}^n \to \mathbb{R}^l$ be continuous functions. Consider the following optimization problem.

$$\min. f(x) \tag{12}$$

subject to:
$$g(x) \le 0$$
 (13)

$$h(x) = 0 (14)$$

$$x \in X \tag{15}$$

Consider the Lagrangian dual function of the problem (12) - (15):

$$\theta(u, v) := \inf \{ f(x) + u^{\top} g(x) + v^{\top} h(x) : x \in X \}$$
(16)

where $u \in \mathbb{R}^m$ with $u \geq 0$ and $v \in \mathbb{R}^l$. For ease of notation, let us define $w \in \mathbb{R}^{m+l}$ and $\beta : \mathbb{R}^n \to \mathbb{R}^{m+l}$ as follows:

$$w = \begin{pmatrix} u \\ v \end{pmatrix}$$
 and $\beta(x) = \begin{pmatrix} g(x) \\ h(x) \end{pmatrix}$

Using this notation, $w^{\top}\beta(x) = u^{\top}g(x) + v^{\top}h(x)$, and the Lagrangian dual function (16) becomes

$$\theta(w) := \inf \{ f(x) + w^{\top} \beta(x) : x \in X \}$$
 (17)

Show that the Lagrangian dual function (17) is concave in \mathbb{R}^{m+l} .