

Variational Autoencoders

ENEE 6583 Neural Nets

Dr. Alsamman

Slide Credits:

Supervised vs Unsupervised Learning

- ❖ Supervised (SL) : $\{X,Y\}$: $M\{X\} \rightarrow Y$
 - \triangleright Given inputs X, corresponding labels (outputs) Y
 - \triangleright Learn mapping M that maps X to Y
- ❖ Unsupervised (USL): $M\{X\}$ → Y
 - Given only inputs X
 - > Find a mapping to Y that optimizes some objective function

Alsamman

Why Unsupervised: No label possible

- Hidden data representation
 - Data compression
 - Data organization
 - > Explore hidden structures within data

Applications:

- Organize computer clusters
- Group users according to interest
- ➤ Marketing: Recommend products/services
- Detect fault/intrusion
- > Find similarity
- Driven by an objective function

Why Unsupervised: Price

Data is

- Decreasing in price
- > Increasing in: volume, speed,
- Varying in modality

Advanced tech =>

- cheaper tech => cheaper data (price)
- better sensors => more data (volume, speed)
- more tech services => user data (modes, speed)

Expert labeling is expensive

Mechanical Turk Is 'data labeling' the new blue-collar job of the AI era? www.techrepublic.com/article/is-data-labeling-the-new-blue-collar-job-of-the-ai-era/

Autoencoder

- \bullet Encode the input: $M\{X\} \to Y$
 - Analysis
- ❖ Decoder is the reverse: $M^{-1}\{Y\}$ → \hat{X}
 - > Synthesis
 - > Identical to encoder network
- Unsupervised learning
- •• Objective function: $X \approx \hat{X}$

$$E = |X - \widehat{X}|^2 = 0$$

 \triangleright Find W for $E \approx 0$

ENCODER

Linear AE

- Linear encoding: Linear activations
- Equations:

$$Y = WX$$

$$\hat{X} = W^{T}Y$$

$$E = |X - W^{T}WX|^{2}$$

- $\triangleright W$ is a principal component (PCA)
- ➤ Line along that max energy
- ➤ Matrix theory: max Eigen vector

Nonlinear AE

- Nonlinear activations
- Nonlinear CA
- Learn the nonlinear manifold

DECODER

ENCODER

Applications

- Denoising data
- Data compression/encryption
- Classification
 - > Reduced dimension leads to a unique manifold
- Mix source separation
 - ➤ Multiple sources with unique manifolds linearly mixed together
 - > Encoder: Source separation
 - > Decoder: Generate sources

Generative Models

- Discriminative learning: classification
 - > Supervised process
 - > Find difference
 - E.g.: MNIST classify digit as 0,1,...,9
- Generative learning: creation
 - Unsupervised learning
 - > Find similarity
 - E.g.: machine translation

Latent Space Generative Models

- Data are generated from a real-valued latent space
- Latent space: unknown model space of given data
 - \triangleright Model is probabilistic (PDF/PMF, μ , Σ)
- Data: samples from that space are used to create
- Factor Analysis:
 - ➤ Assume a model PDF/PMF
 - \triangleright Objective: based on given data observation, \mathbf{x} , determine statistics (μ, Σ) and $p(\mathbf{x})$

Variational AE

*Decoder: $p(x_i|z_i, W)$

- Nnet, Generative model
- Estimates the probability distribution of input X given the laten variable Z

- Normally distributed Latent Space
- characterized by μ , σ

- Nnet, Inference model
- Estimates the probability distribution of the latent space given the data X

 \bullet Encoder: $q(z_i|x_i,W)$

X

Encoder

- $q(z_i|x_i,\phi) = \mathcal{N}(z_i|\mu_{e_i},\Sigma_{e_i})$
- *Encoder output is : $\mu_{e_i} = u_e(x_i, W_1), \quad \Sigma_{e_i} = \operatorname{diag}(s_e(x_i, W_2))$
- *Two networks: u_e , s_e
- W_1 : weights of network u_e
- W_2 : weights of network s_e
- ϕ : combination of weights W_1 , W_2

Alsamman

ENEE 6583

Decoder

- $p(x_i|z_i,\theta) = \mathcal{N}(x_i|\mu_{e_i},\Sigma_{e_i})$
- *Sample Z space: generate z_i based on μ_{e_i} and Σ_{e_i}
- *Decoder output: $\widehat{x_i}$

KL Divergence

- Kullback-Leibler divergence
 - \triangleright Measures the information lost when a probability distribution, q, is used to approximate another probability distribution p.

$$D_{KL}(p(x)||q(x)) = \sum_{x} p(x) \ln \frac{p(x)}{q(x)}$$

Reparametrization

- $\bullet \operatorname{Let} z_i = g(\epsilon_i, x_i, \phi)$
- $\bullet \epsilon_i$ drawn from Gaussian $p(\epsilon)$
- *Z deterministic depends on ϕ
- Now we can backpropagate!

$$z = \mu + \sigma \odot \epsilon$$

$$\epsilon \sim \mathcal{N}(0,1)$$

Re-parametrization

loss =
$$C || x - \hat{x} ||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

