PHASE TRANSFORMATIONS AND PHASE DIAGRAMS

ISSUES TO ADDRESS...

- When we combine two elements...
 what is the resulting equilibrium state?
- In particular, if we specify...
 - -- the composition (e.g., wt% Cu wt% Ni), and
 - -- the temperature (T)

then...

How many phases form?

What is the composition of each phase?

What is the amount of each phase?

Phase Equilibria: Solubility Limit

- Solution solid, liquid, or gas solutions, single phase
- Mixture more than one phase

Solubility Limit:

Maximum concentration for which only a single phase solution exists.

Question: What is the solubility limit for sugar in water at 20° C?

Answer: 65 wt% sugar.

nswer: 65 wt% sugar. At 20° C, if C < 65 wt% sugar: syrup $\frac{v}{4}$ syrup + sugar

Sugar/Water Phase Diagram

Components and Phases

Components:

The elements or compounds which are present in the alloy (e.g., Al and Cu)

Phases:

The physically and chemically distinct material regions that form (e.g., α and β).

Aluminum-Copper Alloy

Effect of Temperature & Composition

- Altering T can change # of phases: path A to B.
- Altering C can change # of phases: path B to D.

Criteria for Solid Solubility

Simple system (e.g., Ni-Cu solution)

	Crystal Structure	electroneg	<i>r</i> (nm)
Ni	FCC	1.9	0.1246
Cu	FCC	1.8	0.1278

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally soluble in one another for all proportions.

Phase Diagrams

- Indicate phases as a function of T, C, and P.
- For this course:
 - binary systems: just 2 components.
 - independent variables: T and C (P = 1 atm is almost always used).

Isomorphous Binary Phase Diagram

- Phase diagram:
 Cu-Ni system.
- System is:
 - -- binary
 i.e., 2 components:
 Cu and Ni.
 - -- isomorphous
 i.e., complete
 solubility of one
 component in
 another; α phase
 field extends from
 0 to 100 wt% Ni.

Phase Diagrams: Determination of phase(s) present

Rule 1: If we know T and Co, then we know:
-- which phase(s) is (are) present.

Phase Diagrams: Determination of phase compositions

- Rule 2: If we know T and C₀, then we can determine:
 -- the composition of each phase.
- Examples:

```
Consider C_0 = 35 wt% Ni
At T_A = 1320^{\circ} C:
     Only Liquid (L) present
     C_1 = C_0  ( = 35 wt% Ni)
At T_D = 1190^{\circ} \text{ C}:
     Only Solid (\alpha) present
     C_{\alpha} = C_0 ( = 35 wt% Ni)
At T_B = 1250^{\circ} C:
      Both \alpha and L present
      C_L = C_{\text{liquidus}} (= 32 \text{ wt}\% \text{ Ni})
      C_{\alpha} = C_{\text{Solidus}} (= 43 wt% Ni)
```


Phase Diagrams: Determination of phase weight fractions

- Rule 3: If we know T and C_0 , then can determine:
 - -- the weight fraction of each phase.
- Examples:

Consider $C_0 = 35$ wt% Ni

At T_A : Only Liquid (L) present

$$W_L = 1.00, W_{\alpha} = 0$$

At T_D : Only Solid (α) present

$$W_L = 0$$
, $W_{\alpha} = 1.00$

At T_B : Both α and L present

$$W_L = \frac{S}{R+S} = \frac{43-35}{43-32} = 0.73$$

$$W_{\alpha} = \frac{R}{R+S} = 0.27$$

The Lever Rule

 Tie line – connects the phases in equilibrium with each other – also sometimes called an isotherm

What fraction of each phase?
Think of the tie line as a lever
(teeter-totter)

$$W_{\alpha} = \frac{R}{R+S} = \frac{C_0 - C_L}{C_{\alpha} - C_L}$$

$$W_{L} = \frac{M_{L}}{M_{L} + M_{\alpha}} = \frac{S}{R + S} = \frac{C_{\alpha} - C_{0}}{C_{\alpha} - C_{L}}$$

Ex: Cooling of a Cu-Ni Alloy

Phase diagram:
 Cu-Ni system.

Consider
 microstuctural
 changes that
 accompany the
 cooling of a

 $C_0 = 35$ wt% Ni alloy

Cored vs Equilibrium Structures

- C_{α} changes as we solidify.
- Cu-Ni case: First α to solidify has $C_{\alpha} = 46$ wt% Ni. Last α to solidify has $C_{\alpha} = 35$ wt% Ni.
- Slow rate of cooling: Equilibrium structure

Fast rate of cooling:
 Cored structure

Mechanical Properties: Cu-Ni System

Effect of solid solution strengthening on:

-- Tensile strength (*TS*)

-- Ductility (%*EL*)

Binary-Eutectic Systems

2 components

Ex.: Cu-Ag system

- 3 single phase regions
 (L, α, β)
- Limited solubility:

a: mostly Cu

 β : mostly Ag

- T_E : No liquid below T_E
- C_E: Composition at temperature T_E

Eutectic reaction

has a special composition with a min. melting *T*.

Cu-Ag

T(° C) system

$$L(C_E) = \alpha(C_{\alpha E}) + \beta(C_{\beta E})$$

 $L(71.9 \text{ wt\% Ag}) \stackrel{\text{cooling}}{=} \alpha(8.0 \text{ wt\% Ag}) + \beta(91.2 \text{ wt\% Ag})$

EX 1: Pb-Sn Eutectic System

For a 40 wt% Sn-60 wt% Pb alloy at 150° C, determine:

-- the phases present

Answer: $\alpha + \beta$

-- the phase compositions

Answer:
$$C_{\alpha} = 11$$
 wt% Sn
 $C_{\beta} = 99$ wt% Sn

-- the relative amount of each phase

Answer:

$$W_{\alpha} = \frac{S}{R+S} = \frac{C_{\beta} - C_{0}}{C_{\beta} - C_{\alpha}}$$

$$= \frac{99 - 40}{99 - 11} = \frac{59}{88} = 0.67$$

$$W_{\beta} = \frac{R}{R+S} = \frac{C_{0} - C_{\alpha}}{C_{\beta} - C_{\alpha}}$$

$$= \frac{40 - 11}{99 - 11} = \frac{29}{88} = 0.33$$

EX 2: Pb-Sn Eutectic System

• For a 40 wt% Sn-60 wt% Pb alloy at 220° C, determine:

-- the phases present:

Answer: $\alpha + L$

-- the phase compositions

Answer: $C_{\alpha} = 17$ wt% Sn $C_{I} = 46$ wt% Sn

-- the relative amount of each phase

Answer:

$$W_{\alpha} = \frac{C_L - C_0}{C_L - C_{\alpha}} = \frac{46 - 40}{46 - 17}$$
$$= \frac{6}{29} = 0.21$$

$$W_L = \frac{C_0 - C_\alpha}{C_1 - C_\alpha} = \frac{23}{29} = 0.79$$

Microstructural Developments in Eutectic Systems I

- For alloys for which
 C₀ < 2 wt% Sn
- Result: at room temperature
 -- polycrystalline with grains of
 α phase having
 composition C₀

Microstructural Developments in Eutectic Systems II

• For alloys for which $2 \text{ wt}\% \text{ Sn} < C_0 < 18.3 \text{ wt}\% \text{ Sn}$

Result:
 at temperatures in α + β range ³⁰⁰
 -- polycrystalline with α grains
 and small β-phase particles ₂₀₀

Microstructural Developments in Eutectic Systems III

- For alloy of composition $C_0 = C_E$
- Result: Eutectic microstructure (lamellar structure)
 - -- alternating layers (lamellae) of α and β phases.

Micrograph of Pb-Sn eutectic microstructure

160 µm

Callister & Rethwisch 9e. (From Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

Lamellar Eutectic Structure

Callister & Rethwisch 9e. (Fig. 9.14 from Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

Microstructural Developments in Eutectic Systems IV

- For alloys for which 18.3 wt% Sn $< C_0 <$ 61.9 wt% Sn
- Result: α phase particles and a eutectic microconstituent

• Just above T_E :

$$C_{\alpha} = 18.3 \text{ wt}\% \text{ Sn}$$

$$C_L = 61.9 \text{ wt}\% \text{ Sn}$$

$$W_{\alpha} = \frac{S}{R+S} = 0.50$$

$$W_L = (1 - W_{\alpha}) = 0.50$$

• Just below T_E :

$$C_{Q} = 18.3 \text{ wt}\% \text{ Sn}$$

$$C_{\beta} = 97.8 \text{ wt}\% \text{ Sn}$$

$$W_{\alpha} = \frac{S}{R + S} = 0.73$$

$$W_{\beta} = 0.27$$

Hypoeutectic & Hypereutectic

Intermetallic Compounds

[Adapted from *Phase Diagrams of Binary Magnesium Alloys*, A. A. Nayeb-Hashemi and J. B. Clark (Editors), 1988. Reprinted by permission of ASM International, Materials Park, OH.]

Note: intermetallic compound exists as a line on the diagram - not an area - because of stoichiometry (i.e. composition of a compound is a fixed value).

Eutectic, Eutectoid, & Peritectic

- Eutectic liquid transforms to two solid phases $L \stackrel{\text{cool}}{=} \alpha + \beta$ (For Pb-Sn, 183° C, 61.9 wt% Sn)
- Eutectoid one solid phase transforms to two other solid phases

intermetallic compound
$$S_2 \iff S_1 + S_3 \qquad \text{- cementite}$$

$$\gamma \iff \frac{\text{cool}}{\text{heat}} \alpha + \text{Fe}_3 \text{C} \quad \text{(For Fe-C, 727°C, 0.76 wt% C)}$$

 Peritectic - liquid and one solid phase transform to a second solid phase

$$S_1 + L \Longrightarrow S_2$$

 $\delta + L \stackrel{\text{cool}}{\models \text{heat}} \gamma$ (For Fe-C, 1493° C, 0.16 wt% C)

Eutectoid & Peritectic

Iron-Carbon (Fe-C) Phase Diagram

[Adapted from Binary Alloy Phase Diagrams, 2nd edition,

Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted

by permission of ASM International, Materials Park, OH.]

Metallography and Microstructures, 1985.

Reproduced by permission of ASM

International, Materials Park, OH.)

28

Hypoeutectoid Steel

Hypoeutectoid Steel

Hypereutectoid Steel

Adapted from Fig. 9.33, *Callister & Rethwisch 9e*. (Copyright 1971 by United States Steel Corporation.)

Hypereutectoid Steel

Adapted from Fig. 9.33, *Callister & Rethwisch 9e*. (Copyright 1971 by United States Steel Corporation.)

Example Problem

- For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following:
- a) The compositions of Fe_3C and ferrite (α).
- b) The amount of cementite (in grams) that forms in 100 g of steel.
- c) The amounts of pearlite and proeutectoid ferrite (α) in the 100 g.

Solution to Example Problem

a) Using the RS tie line just below the eutectoid

$$C_{\alpha} = 0.022 \text{ wt% C}$$

 $C_{\text{Fe3C}} = 6.70 \text{ wt% C}$

b) Using the lever rule with the tie line shown

$$W_{\text{Fe}_3^{\text{C}}} = \frac{R}{R+S} = \frac{C_0 - C_\alpha}{C_{\text{Fe}_3^{\text{C}}} - C_\alpha}$$
$$= \frac{0.40 - 0.022}{6.70 - 0.022} = 0.057$$

Amount of Fe₃C in 100 g = $(100 \text{ g})W_{\text{Fe}_3\text{C}}$

$$= (100 g)(0.057) = 5.7 g$$

Fig. 9.24, Callister & Rethwisch 9e. [From Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Solution to Example Problem (cont.)

 Using the VX tie line just above the eutectoid and realizing that

$$C_0 = 0.40 \text{ wt\% C}$$

 $C_{\alpha} = 0.022 \text{ wt\% C}$
 $C_{\text{pearlite}} = C_{\nu} = 0.76 \text{ wt\% C}$

$$W_{\text{pearlite}} = \frac{V}{V + X} = \frac{C_0 - C_{\alpha}}{C_{\gamma} - C_{\alpha}}$$
$$= \frac{0.40 - 0.022}{0.76 - 0.022} = 0.512$$

Amount of pearlite in 100 g

=
$$(100 \text{ g})W_{\text{pearlite}}$$

$$= (100 g)(0.512) = 51.2 g$$

Fig. 9.24, *Callister & Rethwisch 9e*. [From *Binary Alloy Phase Diagrams*, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

The Iron-Carbon Phase Diagram and Martensitic Phase Transformations: Time-Temperature-Transformation Diagrams for Plain-Carbon Steel

- The transformation of γ- to α+Fe₃C- phase can be understood using a Time-Temperature-Transformation (TTT) diagram.
- X-axis: Time and Y-axis: Temperature.
- For nucleation and growth phase transformations:
 - The TTT is obtained by keeping the material at an isothermal (constant temperature).
 - Then find the percent transformation as a function of time.

 A_1 - Austenite (γ FCC phase of iron). Stable above 727° C (unstable below this temp).

- TTT diagram of an eutectoid composition of iron+0.77%C cooled from 800°-600° C and kept at this temperature.
- No phase transformation is seen for 1 second before the Pearlite start line (P_s) is intersected.
 - Pearlite Start Line- Time required for nucleus of pearlite to form to a significant size (as a function of temperature).
- At 600° C, the transformation is complete when the Pearlite finish line is intersected (6.3 seconds).
 - Pearlite Finish Line- Time for unstable γ to be completely transformed to Pearlite.

- If this alloy is cooled to room temperature, the structure of Pearlite remains.
 - Because it is comprised of the equilibrium phases of γ -iron and Fe₃C.
- Below 550° C (isothermal),
 Bainite (B) is formed than
 Pearlite.
 - Bainite has an α -matrix with thin narrow ribbons (laths) of Fe₃C.
 - The laths are smaller and closer spaced than in pearlite: At lower temperatures, diffusion of Catoms is much slower.

- At low temperatures:
 - Driving force for eutectoid reaction is large.
 - BUT, mobility of atoms is lowered.
 - Smaller diffusion distance favored hence finer Bainite than coarser Pearlite is formed.
 - If the eutectoid alloy is quenched to 500° C and kept constant.
 - Bainite is first observed after 1second.
 - After 10-seconds, unstable austenite phase is completely transformed to Bainite at B_f.
- When cooled to room temperature, the Bainite structure remains (equilibrium phases of α-iron and Fe₃C).

*M*_s- Start of a Martensite transformation.

- If the temperature of Fe-0.77%C alloy is quenched from the eutectoid temperature to a low temperature (without crossing the P_s or B_s lines):
 - Not enough time for Pearlite or Bainite to form.
- In a Martensite transformation, the FCC γ-phase iron transforms to a Body-Centered Tetragonal Unit Cell.

Unit Cells of an FCC Cubic Iron

Iron atoms are depicted by large circles.

Carbon atoms are the small solid circles.

- Lattice Parameters of a Tetragonal Unit Cell.
 - a=b with $c\neq b$ and $c\neq a$.
 - All unit cell corner angles are 90°.
- The FCC unit cell can be indexed as a Body-Centered Tetragonal (BCT) unit cell.
 - However, when a=c, the BCT lattice is now BCC.
- Below 727° C, the equilibrium structure of iron-carbon alloys is BCC.
- If the alloy is rapidly cooled: No time for diffusion (nucleation/growth) to occur for FCC to transform to BCC.

Unit Cells of an FCC Cubic Iron

Iron atoms are depicted by large circles.

Carbon atoms are the small solid circles.

- The FCC structure instead transforms to BCT:
 - By diffusionless martensitic transformation.
- In a martensitic transformation, the lattice distorts into a new lattice with no long-range diffusion.
- If carbon atoms go preferentially into the position shown:
 - The a parameter expands, and the c parameter contracts: Lattice distorts.
 - Bain's Distortion where a=b=0285nm and c=0.295nm.
 - Body-Centered Tetragonal Unit Cell (close to BCC unit cell).

The Iron-Carbon Phase Diagram and Martensitic Phase Transformations: Time-Temperature-Transformation Diagrams for Plain-Carbon Steel

The microstructure of Martensite in lowcarbon steel is acicular (needle-like as seen to the right).

The motion of the carbon atoms in Martensite transformation is more rapid than the long-range diffusion (required to form Pearlite or Bainite).

The Martensite transformation in plain carbon steel is athermal.

• Athermal means the amount of transformation depends on the temperature but not time.

The Iron-Carbon Phase Diagram and Martensitic Phase Transformations: Time-Temperature-Transformation Diagrams for Plain-Carbon Steel

- · Iron-carbon Martensite is hard and brittle.
 - Hence rarely used in engineering applications after quenching.

Tempering:

- Heating to an elevated temperature 600° C.
- Martensite transforms to BCC α -phase iron and Fe₃C.
- Quenching and tempering leads to the Fe3C precipitate being nucleated throughout the alloy.
- Tempering leads to iron-carbon alloys of high strength and good ductility.
 - · E.g. Cutting tools, Crank shafts, Springs and Pistons.

- · Martensite phase transformation in iron-carbon alloys is irreversible.
 - Due to dislocation formation during Bain's Distortion.
 - Dislocations allow material to be continuous during Bain distortion in martensitic transformations..
- Formation of dislocations in a material is irreversible.
- A <u>reversible</u> martensitic transformation occurs in materials without dislocations during transformation.
 - Dislocation is accommodated by the reversible stretching and bending of atomic bonds.
 - Change in Gibbs Free energy is zero.
 - Negative change in GFE from change in structure= Positive change in GFE from bond stretching and bending.

- Mostly seen in metal alloys especially TiNi.
- Finally Tine is a random mixture of Titanium and Nickel atoms in a structure.
- The Martensite start temperature (M_s) for TiNi is around 70° C, and can be described as a shear distortion.
- The Martensite finish temperature (M_f) is one where TiNi is 100% Martensite, and is around 30° -40° C below the start temperature.

 The reversible martensitic transformation in TiNi doesn't cause the overall shape of the specimen to change, even though the crystal lattice changes shape.

0

Left: 2D diagram of cubic austenite phase.

Right: Distorted Martensite lattice (reversible).

- The amount of Martensite in this transformation depends only on temperature (and not time).
- If the Martensite lattice (on the right) is heated, it will transform back into cubic austenite by reversing bond stretching and bending.

- The Martensite to Austenite begins at the Austenite start temperature (A_s) and completes at the Austenite finish temperature (A_f) .
- Where 100% of the Martensite has transformed to Austenite.
- In TiNi: Can go through cycles of cooling Austenite to form Martensite and heating Martensite to form Austenite.

Reversible Martensitic Phase Transformations: The Shape-Memory Effect and Training in Metal Alloys

- Shape-Memory effect is due to reversible Martensitic transformation in TiNi.
- Bend the wire into a desired shape, causes variations in distortion (that allow it to bend).
- · When the wire is heated above A_f it returns to cubic structure and initial straight shape.
- If the wire is heated above A_f and bent to a different shape, it returns to that shape above A_f .

 The characteristic temperatures can be varied by changing the TiNi alloy composition.

Reversible Martensitic Phase Transformations: The Shape-Memory Effect and Training in Metal Alloys

- E.g. Coronary stents use shape-memory effect.
 - But need to reduce the temperature of martensitic transformation so that human body temperature is above A_f.

Summary

- Phase diagrams are useful tools to determine:
 - -- the number and types of phases present,
 - -- the composition of each phase,
 - -- and the weight fraction of each phase given the temperature and composition of the system.
- The microstructure of an alloy depends on
 - -- its composition, and
 - -- whether or not cooling rate allows for maintenance of equilibrium.
- Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.