Lecture 15 Linear Regression

- Motivation
 - O Understand and explain how y varies as a function of x
 - \circ Find a function y = h(x) that best fits our data
 - o If the function matching the curve is too complex it may be overfitting
 - \circ Y = XB and a singular point is (xi, xiB)
 - Data generated by a linear function plus noise

$$\vec{y} = h_X(\beta) + \vec{\epsilon}$$

Where h is linear in a parameter $\beta.$ Where $\varepsilon_{_{i}}$ are independent $N(0,\,\sigma^{2})$ distribution.

- Cost Function
 - O Given a data set $\{(x1,y1)...(xn,yn)\}$ and a curve y = h(x) we can evaluate whether it is a good fit to our data through a cost function that compares h(xi) to yi for all I
 - o Goal: for a given distance function d, find h where L is the smallest

$$L(h) = \sum_{i} d(h(x_i), y_i)$$

- Assumptions
 - The realtion between x (the independent variable) and y(the dependent variable) is linear in a parameter B
 - εi are independent, identically distributed random variables following a normal distribution
- Goal(s):
 - Learn / estimate B
 - Try to minimize cost function
- Least Squares
- Maximum Likelihood
 - o Defining the linear regression problem in terms of probability
 - Define P(Y|h) as the probability of observing Y given that it was sampled from h
 - Goal: find h that maximizes the probability of having observed our data
 - \circ Maximizing L(h) = P(Y|h)
 - Since $\varepsilon \sim N(0, \text{sigma}^2)$ and $Y = XB + \varepsilon Y \sim N(XB, \text{sigma}^2)$
 - An unbiased estimator

$$E[\beta_{LS}] = E[(X^T X)^{-1} X^T y]$$

$$= (X^T X)^{-1} X^T E[y]$$

$$= (X^T X)^{-1} X^T E[X\beta + \epsilon]$$

$$= (X^T X)^{-1} X^T X\beta + E[\epsilon]$$

$$= \beta$$