Product Summary

V _{(BR)DSS}	R _{DS(on)TYP}	I _D	
110V	2.7mΩ@10V	240A	

Feature

- Fast Switching
- Low Gate Charge and Rdson
- Advanced Split Gate Trench Technology
- 100% Single Pulse avalanche energy Test

Applications

- PWM Application
- Hard switched and high frequency circuits
- Power Management

Package

Circuit diagram

Marking

SP011N03AGHTO : Product code ** :Week code

Order Information

Device	Package	Unit/Tape
SP011N03AGHTO	TOLL	2000

110V N-Channel Power MOSFET

Absolute maximum ratings (Ta=25°C,unless otherwise noted)

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	110	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current1 (Tc=25°C)	I _D	240	Α
Continuous Drain Current1 (Tc=100°C)	I _D	160	Α
Pulsed Drain Current	I _{DM}	960	Α
Single Pulse Avalanche Energy ¹	Eas	744	mJ
Power Dissipation (Tc=25°C)	P _D	260	W
Thermal Resistance Junction-to-Case	R _{θJC}	0.48	°C/W
Storage Temperature Range	T _{STG}	-55 to 150	$^{\circ}$
Operating Junction Temperature Range	TJ	-55 to 150	$^{\circ}$

Electrical characteristics (Ta=25°C, unless otherwise noted)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Static Characteristics			·			
Drain-Source Breakdown Voltage	BV _{DSS}	ID = 250μA, VGS = 0V	110	120	-	V
Drain Cut-Off Current	I _{DSS}	VDS = 80V, VGS = 0V	-	-	1	
Gate Leakage Current	I _{GSS}	VGS = ±20V, VDS = 0V	-	-	±0.1	μA
Gate Threshold Voltage	$V_{GS(th)}$	VDS = VGS, ID = 250μA	2.0	3.0	4.0	V
Drain-Source ON Resistance	R _{DS(ON)}	VGS = 10V, ID = 30A	-	2.7	3.5	mΩ
Dynamic Characteristics						
Input Capacitance	Ciss	VDS =50V, VGS = 0V, f = 1.0MHz	-	7162	-	
Output Capacitance	Coss		-	1067	-	pF
Reverse Transfer Capacitance	C _{rss}		-	35	-	
Switching Characteristics						
Total Gate Charge	Qg	VDS=50V , VGS=10V , ID=100A	-	105	-	
Gate-Source Charge	Q _{gs}		-	47	-	nC
Gate-Drain Charge	Q_{gd}		-	23	-	
Turn-On Delay Time	t _{d(on)}		-	26	-	
Rise Time	t _r	VGS = 10V, VDS =50V, ID=100A	-	75	-	nS
Turn-Off Delay Time	t _{d(off)}	RG = 6Ω	-	87	-	
Fall Time	t _f		-	30	-	
Drain-Source Body Diode Characteris	tics					
Source-Drain Diode Forward Voltage	V _{SD}	I _S = 1A, VGS = 0V	-	-	1.2	V
Maximum Body-Diode Continuous Current	Is		-	_	240	А
Body Diode Reverse Recovery Time	Trr	1 4004 I'/II 4004/ TI 05°C	-	72	-	nS
Body Diode Reverse Recovery Charge	Qrr	I _s =100A, di/dt=100A/us, TJ=25℃	-	180	-	nC

Note:

1. The test condition is VDD=50V,VGS=10V,L=0.5mH,RG=25Ω;

Typical Characteristics

Output Characteristics

Transfer Characteristics

Capacitance Characteristics

Gate Charge

On-Resistance vs Gate to Source Voltage

Normalized On-Resistance

RDS(on) VS Drain Current

Forward characteristics of reverse diode

Normalized breakdown voltage

Normalized Threshold voltage

Current dissipation

Power dissipation

Safe Operation Area

TOLL Package Information

Symbol	Dimensions In Millimeters				
	Min.	Nom.	Max.		
Α	2.20	2.30	2.40		
b	0.65	0.75	0.85		
С		0.508 REF			
D	10.25	10.40	10.55		
D1	2.85	3.00	3.15		
E	9.75	9.90	10.05		
E1	9.65	9.80	9.95		
E2	8.95	9.10	9.25		
E3	7.25	7.40	7.55		
е		1.20 BSC			
F	1.05	1.20	1.35		
Н	11.55	11.70	11.85		
H1	6.03	6.18	6.33		
H2	6.85	7.00	7.15		
H3		3.00 BSC			
L	1.55	1.70	1.85		
L1	0.55	0.7	0.85		
L2	0.45	0.6	0.75		
М		0.08 REF.			
β	8°	10°	12°		
К	4.25	4.40	4.55		