Serial No. 10/575,790 Case No. 21419YP

Page 2

AMENDMENTS TO THE CLAIMS:

The listing of the claims which follows replaces any and all prior versions and/or listings of the claims in the application.

1. (Currently amended) A compound represented by Formula A:

$$\begin{array}{c|c}
R^{5} \\
V - X \\
V - V
\end{array}$$

$$\begin{array}{c|c}
R^{2} R^{1} \\
V - V
\end{array}$$

$$\begin{array}{c|c}
R^{6} & V - V
\end{array}$$

$$\begin{array}{c|c}
R^{2} R^{1} \\
V - V
\end{array}$$

A

or a pharmaceutically acceptable salt thereof, wherein:

R¹, R², R³ and R⁴ are each independently selected from the group consisting of: –H, -F, -Cl, -Br, -I, -CN, -OH, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy,

wherein said C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH, C₁-8alkoxy and -CO₂H,

and any two of R¹, R², R³ and R⁴ may be joined together with the atoms to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms optionally containing 1 or 2 oxygen atoms;

R⁵ is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

R⁶ is selected from the group consisting of: phenyl, <u>and</u> pyridinyl, <u>pyrimidinyl, pyrazinyl</u>, <u>pyridizinyl and thienyl</u>, each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, phenyl, thienyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₂-4acyloxy,

wherein said phenyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to

the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁₋₈alkoxy, and

R6 may be substituted on two adjacent atoms to form a fused partially aromatic bicyclic ring of 9 to 12 atoms optionally containing one or two oxygen or sulfur groups, or both, and optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -CN, -OH, and C₁-4alkyl;

R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl, wherein said C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy;

U, V and W are each independently selected from the group consisting of: -C(R⁹)- and N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 4 to 8 5 membered ring, optionally containing 1 or 2 oxygen, sulfur or N(R¹⁰) atoms, thus forming a fused partially aromatic bicyclic ring system of 8 to 12 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;

X, Y and Z are independently selected from $C(R^{11})^-$, -O-, $-N^-$, $-N(R^{12})$ - and -S- such that the resulting ring together with Q and T form an aromatic heterocycle;

R¹⁰, R¹¹ and R¹² are each indepedently is selected from the group consisting of: -H, C₁ 6alkyl, C₂ 6alkenyl and C₂ 6alkynyl, wherein said C₁ 6alkyl, C₂ 6alkenyl and C₂ 6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: F, Cl, -Br, -I, -OH and C₁ 5alkoxy;

J is selected from the group consisting of: -CO₂H, PO₃H₂, PO₂H₂, SO₃H, CONHSO₂R¹³, PO₂H₃)OH,

Serial No. 10/575,790 Case No. 21419YP Page 5

R¹³ is selected from the group consisting of: C₁-C₄ alkyl, phenyl, -CH₂OH and CH(OH)-phenyl; and

each R¹⁴ is independently selected from the group consisting of: -H and -CH₃.

2. (Currently amended) A compound in accordance with Claim 1 represented by Formula I

I

or a pharmaceutically acceptable salt thereof, wherein:

R¹, R², R³ and R⁴ are each independently selected from the group consisting of: –H, -F, -Cl, -Br, -I, -CN, -OH, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy,

wherein said C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH, C₁-8alkoxy and -CO₂H,

and any two of R¹, R², R³ and R⁴ may be joined together with the atoms to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms optionally containing 1 or 2 oxygen atoms;

R⁵ is selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

R⁶ is selected from the group consisting of: phenyl, <u>and pyridinyl, pyrazinyl, pyridizinyl and thienyl,</u> each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, phenyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₂-4acyloxy,

wherein said phenyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy,

C3-6cycloalkoxy, C1-4alkylthio and C1-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C1-8alkoxy, and

R6 may be substituted on two adjacent atoms to form a fused partially aromatic bicyclic ring of 9 to 12 atoms optionally containing one or two oxygen or sulfur groups, or both, and optionally substituted with one to three substituents independently selected from the group consisting of:
-F, -Cl, -Br, -I, -CN, -OH, and C₁_4alkyl;

R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy;

U, V and W are each independently selected from the group consisting of: $-C(R^9)$ - and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl and C₁₋₄alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 4 to 8 5 membered ring, optionally containing 1 or 2 oxygen, sulfur or N(R¹⁰) atoms, thus forming a fused partially aromatic bicyclic ring system of 8 to 12 9 atoms with the 6-membered aromatic ring to which R⁹ is attached; and

X, Y and Z are independently selected from $C(R^{11})=$, $-O_-$, -N=, $-N(R^{12})-$ and $-S_-$ such that the resulting ring together with Q and T form an aromatic heterocycle;

Serial No. 10/575,790 Case No. 21419YP

the ring
$$\sqrt{Q-Z}$$
 $T-\frac{5}{15}$ $\sqrt{Q-N}$; and

R¹⁰, R¹¹ and R¹² are each indepedently <u>is</u> selected from the group consisting of: -H, C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl, wherein said C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: F, -Cl, -Br, -I, -OH and C₁-5alkoxy.

- 3. (Original) A compound according to Claim 2 wherein R⁵ is methyl.
- 4. (Original) A compound according to Claim 2 wherein R⁶ is selected from the group consisting of : phenyl and pyridinyl, each optionally substituted with one to three substituents independently selected from the group consisting of: F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₁-4alkylthio, C₃-6cycloalkoxy and C₁-4acyloxy,

wherein said C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₁-4alkylthio, C₃-6cycloalkoxy and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-8alkoxy; and

R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl, wherein said C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy.

- 5. (Original) A compound according to Claim 2 wherein V and W are –CH-.
- 6. (Currently amended) A compound according to Claim 2 of Formula Ia

$$R^{b}$$
 R^{a}
 R^{a}

or a pharmaceutically acceptable salt thereof, wherein:

 R^1 and R^2 are independently selected from the group consisting of: -H, -OH and methyl or R^1 and R^2 may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are each independently selected from the group consisting of: -C(R⁹)- and N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy, wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;

A is selected from the group consisting of: -N- and $-C(R^{13})$ -, wherein R^{13} is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, $-CH_3$, $-OCH_3$, $-CF_3$, ethynyl, $-NO_2$ and $-NH_2$;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkyl, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I and -OH;

 R^7 and R^8 are independently selected from the group consisting of: -H and $C_{1\text{-}6}$ alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and $C_{1\text{-}5}$ alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

7. (Original) A compound according to Claim 2 of Formula Ib

$$R^{a}$$
 R^{a}
 R^{a}
 R^{a}
 R^{a}
 R^{b}
 R^{b}
 R^{b}
 R^{a}
 R^{b}
 R^{b

or a pharmaceutically acceptable salt thereof, wherein:

R¹ is selected from the group consisting of: -H, -OH and methyl;

A is selected from the group consisting of: -N- and $-C(R^{13})$ -, wherein R^{13} is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, $-CH_3$, $-OCH_3$, $-CF_3$, ethynyl, $-NO_2$ and $-NH_2$;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I and -OH;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

8 - 9. (Canceled)

10. (Currently amended) A compound according to Claim 2 selected from the following table:

$$R^{b}$$
 R^{a}
 R^{a}
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{a}
 R^{a}

Ie

Ex.	Ra	Rb	A	U	R2	R1
1	i-PrO-	-CN	-CH=	=CH-	Н	Н
2	i-PrO-	C1-	-CH=	=CH-	Н	Н
3	i-PrO-	Br-	-CH=	=CH-	Н	Н
4	i-PrO-	MeO-	-CH=	=CH-	Н	Н
5	i-PrO-	Me-	-CH=	=CH-	Н	Н
6	i-PrO-	F-	-CH=	=CH-	Н	Н
8	i-PrO-	-CF3	-CH=	=CH-	R^2 and R^3 R^1 joined to	
					form cyclopropyl	
9	i-PrO-	-CF3	-CH=	=CH-	Н	Me
10	i-PrO-	-CN	-CH=	=CH-	Н	Me
11	i-PrO-	-СН3	-CH=	=CH-	Н	Me
12	i-PrO-	-CF3	-CH=	=CH-	Me	Н
13	i-PrO-	-CN	-CH=	=CH-	Me	Н
14	i-PrO-	-СН3	-CH=	=CH-	Me	Н
15	i-PrO-	C1-	-N=	=CH-	Н	Н
16	i-Pr-NH-	Cl-	-N=	=CH-	Н	Н
17	2,2,2-trifluoro-1-	Cl-	-N=	=CH-	Н	Н
	methylethoxy					
18	pyrrolidinyl	Cl-	-N=	=CH-	Н	Н
19	morpholin-4-yl	Cl-	-N=	=CH-	Н	Н
20	i-Pr-N(Me)-	Cl-	-N=	=CH-	Н	Н
21	2,2,2-trifluoroethoxy	Cl-	-N=	=CH-	Me	Н

22	2,2,2-trifluoro-1- methylethoxy	C1-	-N=	=CH-	Me	Н
23	3,3-difluoro piperidinyl	C1-	-N=	=CH-	Me	Н
24	3,3,-difluoro pyrrolidinyl	C1-	-N=	=CH-	Me	Н
25	morpholin-4-yl	-CF3	-N=	=CH-	Me	Н
26	3,3,-difluoro pyrrolidinyl	C1-	-N=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
27	2,2,2-trifluoroethoxy	C1-	-N=	=СН-	R ² and R ³ R ¹ joined to form cyclopropyl	
28	2,2,2-trifluoro-1- methylethoxy	Cl-	-N=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
29	1-Me-n-PrO-	Cl-	-N=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
39	i-PrO-	C1-	-N=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
31	i-Bu-	Cl-	-N=	=CH-	Н	Н
32	i-Pr-N(Me)-	I-	-N=	=CH-	Н	Н
33	i-Pr-N(Me)-	-CN	-N=	=CH-	Н	Н
34	3,3,-difluoro pyrrolidinyl	I	-N=	=CH-	Н	Н
35	3,3,-difluoro pyrrolidinyl	-CN	-N=	=CH-	Н	Н
36	i-PrO-	-CN	-СН=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
37	2,2,2-trifluoro-1- methylethoxy	-CN	-CH=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
38	i-PrO-	MeO-	-CH=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
39	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
40	2,2,2-trifluoro- 1-trifluoromethyl	-CN	-CH=	=СН-	R ² and R ³ R ¹ joined to form cyclopropyl	

	ethoxy					
43	1-Me-n-PrO-	-CN	-CH=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
44	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
45	i-PrO-	I	-N=	=CH-	R ² and R ³ R ¹ joined to form cyclopropyl	
48	Ethoxy	-CN	-N=	=CH-	Н	Н
49	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=CH-	Н	Н
50	2-Me- <i>n</i> -Pr-	-CN	-N=	=CH-	Н	Н
51	2-methyl-1,1- difluoro- <i>n</i> -propyl	Н	-CH=	=CH-	Н	Н
52	2,2,2-trifluoro-1- methylethoxy	I-	-N=	=CH-	Н	Н
53	Cyclopentyloxy	Cl-	-CH=	=CH-	Н	Н
54	2-Me- <i>n</i> -PrO-	Cl-	-CH=	=CH-	Н	Н
55	2,2,2-trifluoro-1- methylethoxy	-CN	-СН=	=CH-	Н	Н
56	2,2,2-trifluoro-1- methylethoxy	Cl-	-СН=	=CH-	Н	Н
57	i-PrO-	C1-	-C(C1)=	=CH-	Н	Н
58	cyclopropylmethoxy	Cl-	-CH=	=CH-	Н	Н
60	2,2,2-trifluoro-1- methylethoxy	-NO ₂	-CH=	=CH-	Н	Н
61	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	Н	Н
62	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=CH-	Н	Н
63	1-Me- <i>n</i> -PrO-	-CN	-CH=	=CH-	Н	Н
65	2,2,2-trifluoro-1- methylethoxy	-NH2	-СН=	=CH-	Н	Н
66	1-Me- <i>n</i> -PrO-	-CN	-СН=	=CH-	Me	Н
67	2,2,2-trifluoro-	-CN	-СН=	=CH-	Me	Н

	1-trifluoromethyl ethoxy					
68	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	Me	Н
69	i-PrO-	-CN	- CH =	= N-	H	H
70	2,2,2-trifluoro-1- methylethoxy	- CN	- <u>N</u> =	= N-	H	H
71	2,2,2-trifluoroethoxy	-CN	- CH=	=N-	H	H
72	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	- CH =	=N-	H	H
73	2,2,2-trifluoroethoxy	-CN	- CH =	= N-	Me	H
74	2,2,2-trifluoro-1- methylethoxy	- CN	-N=	= N -	Me	H
75	i-PrO-	-CF3	-CH=	=CH-	Н	Н
79	i-PrO-	-CN	-CH=	=CH-	ОН	ОН
80	i-PrO-	-CN	-CH=	=CH-	ОН	ОН

or a pharmaceutically acceptable salt of any of the compounds above.

11. (Currently amended) A compound according to Claim 2 selected from the following table:

or a pharmaceutically acceptable salt of any of the compounds above.

12. (Canceled)

13 - 17. (Canceled)

Page 19

18. (Original) A pharmaceutical composition comprised of a compound in accordance with Claim 1 in combination with a pharmaceutically acceptable carrier.

19 - 23. (Canceled)

24 - 25. (Canceled)

26. (Currently amended) A compound according to Claim 1 of Formula Ig:

$$\mathbf{Q} \cdot \mathbf{Z} \cdot \mathbf{T} - \mathbf{Q} \cdot \mathbf{Z} \cdot \mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{Z} \cdot \mathbf{Q} \cdot \mathbf{Z} \cdot \mathbf{Q} \cdot \mathbf{Z} \cdot \mathbf{Q} \cdot \mathbf{Z} \cdot \mathbf{Q} \cdot$$

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from –N- or –CH-;

the group 's is selected from the group consisting of:

Serial No. 10/575,790 Case No. 21419YP Page 20

R¹ and R² are -H, or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are $-C(R^9)$ -;

each R⁹ is -H, or

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: thienyl, NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy are each optionally substituted from one up to the maximum number of substitutable positions with fluoro;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three flouro groups, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, said ring is optionally substituted with one to three fluoro groups.

27. (Currently amended) A compound according to Claim 26 selected from the group consisting of:

or a pharmaceutically acceptable salt of any of the above.

28. (Currently amended) A compound according to Claim 1 of Formula Ih:

$$R^{b}$$
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from –N- or –CH-;

R¹ and R² are -H, or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

 R^5 is -H or $-CH_3$;

U and V are $-C(R^9)$ -;

each R⁹ is -H, or

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: -F, NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy are each optionally substituted from one up to the maximum number of substitutable positions with fluoro;

 R^7 and R^8 are independently selected from the group consisting of: -H and $C_{1\text{-}6}$ alkyl, optionally substituted with one to three flouro groups, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, said ring is optionally substituted with one to three fluoro groups;

Rb is Cl or I;

J is selected from the group consisting of: -CO₂H, -PO₃H₂, -PO₂H₂, -SO₃H, -CONHSO₂R¹³, -PO₂H₃)OH,

R¹³ is selected from the group consisting of: C₁-C₄ alkyl, phenyl, -CH₂OH and CH(OH)-phenyl; and

each R¹⁴ is independently selected from the group consisting of: -H and -CH₃.

29. (Original) A compound according to Claim 28, wherein:

For U, R⁹ and R¹ are joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

R⁵ is CH₃;

Rb is Cl; and

J is selected from the group consisting of: -CO₂H,

$$N = NR^{14}$$
 $N = NR^{14}$
 $N = 0$
 $N = 0$

 R_{14} , wherein each R^{14} is independently selected from the group consisting of: -H and -CH3.

30. (Currently amended) A compound according to Claim 28 selected from the group consisting of:

$$\begin{array}{c|c} & & & & \\ & &$$

or a pharmaceutically acceptable salt of any of the above.