7.4.1) Let L_j be the left ideal of $M_n(R)$ consisting of arbitrary entries in the j^{th} column and zero in all other entries and let E_{ij} be the element of $M_n(R)$ whose i, j entry is 1 and whose other entries are all 0. Prove that $L_j = M_n(R)E_{ij}$ for any i.

Proof

Let

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

be the kronecker delta symbol. This is just notation that will simplify the matrix multiplication visually. Thus, if $M \in M_n(R)$, then

$$(ME_{ij})_{lm} = \sum_{k=1}^{n} M_{lk}(E_{ij})_{km} = \sum_{k=1}^{n} M_{lk}\delta_{ik}\delta_{jm}$$
$$= M_{li}\delta_{jm}..$$

This tells us that the entries are only nonzero if m = j, meaning that only the j^{th} column on ME_{ij} is nonzero, with entries M_{li} , where l is the row label. Hence, $ME_{ij} \in L_j$ for all $M \in M$.

Now, we must prove that $L_j \subset M_n(R)E_{ij}$. This is easy to do by construction: we translate from L_j to $M_n(R)$ by taking the j^{th} column of the element of L_j and making it the j^{th} row of some element in $M_n(R)$. Since we know then that multiplying this element in $M_n(R)$ by E_{ij} gives L_j , it is clear that $L_j \subset M_n(R)E_{ij}$.

7.4.4) Assume R is commutative. Prove that R is a field iff 0 is a maximal ideal.

Proof

 (\Longrightarrow) Suppose that 0 is a maximal ideal of R. Then $R/\{0\}$ is a field. We can construct a trivial isomorphism between this quotient ring and R as follows:

$$\varphi: R/\{0\} \to R$$

 $\varphi: \overline{r} \mapsto r.$

Since $R \cong R/\{0\}$, we know that R is a field too.

(\Longrightarrow) We know that a field only has $\{0\}$ and itself as maximal ideals, so this direction of the proof is trivial.

7.4.7) Let R be a commutative ring with 1. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain. Prove that (x) is a maximal ideal iff R is a field.

Proof

Consider the ring homomorphism $\varphi: R[x] \to R$ defined by $\varphi: p(x) \mapsto p(0)$. Then, the $\ker \varphi = (x)$ since p(0) if and only if $a_0 = 0$, where a_0 is the constant term of p(x). If the constant term is zero, then by the division algorithm, we can write $p(x) = xq(x) \in (x)$. By the first isomorphism theorem for rings, we know that $R[x]/(x) \cong R$.

It is known that R/P is an integral domain if and only if P is a prime ideal in R. Hence, the proposition in the problem statement follows immediately from the above isomorphism.

7.4.8) Let R be an integral domain. Prove that (a) = (b) for some elements $a, b \in R$ iff a = ub for some unit $u \in R$.

Proof

(\Longrightarrow) If $(a)=(b), a\in (b)$ and $b\in (a)$. That is, a=ub and b=va for some $u,v\in R$. Thus, ab=(ub)(va)=(uv)ab, or ab(1-uv)=0. Hence, uv=1, meaning that $u\in R$ is a unit.

(\iff) Notice that $ca \in (a)$ can be written $c(ub) = (cu)b \in (b)$. Next, notice that $db = d(u^{-1}a) = (du^{-1})a \in (a)$.

7.4.9) Let R be the ring of all continuous functions on [0,1] and let I be the collection of functions f(x) in R with $f(\frac{1}{3}) = f(\frac{1}{2}) = 0$. Prove that I is an ideal of R but it is not a prime ideal.

Proof

We know that the ring of functions is commutative, so we need only show that I is left ideal to show that it is ideal. This is easy to do since if $f \in I$ and $g \in R$, then

$$gf\left(\frac{1}{3}\right) = g\left(\frac{1}{3}\right)f\left(\frac{1}{3}\right) = g\left(\frac{1}{3}\right) \times 0 = 0$$
$$gf\left(\frac{1}{2}\right) = g\left(\frac{1}{2}\right)f\left(\frac{1}{2}\right) = g\left(\frac{1}{2}\right) \times 0 = 0.$$

Hence, I is an ideal in R.

It is easy to see that I is not a prime ideal. Consider the linear functions $f(x) = x - \frac{1}{3}$ and $g(x) = x - \frac{1}{2}$. Clearly, fg is identically zero at $\frac{1}{3}$ and $\frac{1}{2}$, but neither is zero at both. That, is $fg \in I$ but $f, g \notin I$.

- **7.4.17)** Let $x^3 2x + 1$ be an element of the polynomial ring $E = \mathbb{Z}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{Z}[x]/(x^3 2x + 1)$. Let $p(x) = 2x^7 7x^5 + 4x^3 9x + 1$ and let $q(x) = (x 1)^4$.
- a) Express each of the following elements of \overline{E} in the form $\overline{f(x)}$ for some polynomial f(x) of degree ≤ 2 : $\overline{p(x)}$, $\overline{q(x)}$, $\overline{p(x) + q(x)}$, and $\overline{p(x)q(x)}$.
- \rightarrow We define $\overline{p(x)}$ as the remainder when p(x) is divided by $x^3 2x + 1$. This gives us that

$$\overline{p(x)} = -x^2 - 11x + 3$$

$$\overline{q(x)} = 8x^2 - 13x + 5$$

$$\overline{p(x) + q(x)} = \overline{\overline{p(x)} + \overline{q(x)}} = 7x^2 - 24x + 8$$

$$\overline{p(x)q(x)} = \overline{\overline{p(x)}} \overline{\overline{q(x)}} = 146x^2 - 236x + 90.$$

- b) Prove that \overline{E} is not an integral domain.
- c) Prove that \overline{x} is a unit in \overline{E} .
- **7.4.27)** Let R be a commutative ring with $1 \neq 0$. Prove that if a is a nilpotent element of R then 1 ab is a unit for all $b \in R$.

Proof

Suppose that $a^m = 0$. Then,

$$(1-ab)(1+ab+\ldots+(ab)^{m-1}) = (1+ab+\ldots+(ab)^{m-1}) - ab(1+ab+\ldots+(ab)^{m-1})$$
$$= (1+ab+\ldots+(ab)^{m-1}) - (ab+(ab)^2+\ldots+(ab)^m)$$
$$= 1.$$

This is true regardless of our choice of b.

- **7.5.1)** Fill in all the details in the proof of Theorem 15.
- **7.5.2)** Let R be an integral domain and let D be a nonempty subset of R that is closed under multiplication. Prove that the ring of fractions $D^{-1}R$ is isomorphic to a subring of the quotient field of R.

Proof

Suppose that F is the quotient field of R. Then we define $\varphi: D^{-1}R \to F$ such that $\varphi(d^{-1}r) = \frac{r}{d}$.

7.5.4) Prove that any subfield of \mathbb{R} must contain \mathbb{Q} .

Proof

Any subfield of \mathbb{R} must be contained in \mathbb{R} and be a field itself under the same operations. Hence, it must contain the integers since $1 \in \mathbb{R}$, implying $(1) = \mathbb{Z} \subset \mathbb{R}$. We also must have the multiplicative inverse of each element. That is, if $n \in \mathbb{Z} \setminus \{0\}$ is also in the subfield, then $\frac{1}{n} \in \mathbb{Q}$ is also in the subfield, and $\left(\frac{1}{n}\right)$ must be contained in the subfield. Since any rational number can be generated by some principal ideal $\left(\frac{1}{n}\right)$, implying that \mathbb{Q} is contained in every subfield of \mathbb{R} .

4 of 4