Computers and Operations Research

A Hybrid and Adaptive Evolutionary Approach for Multitask Optimization of Post-Disaster Traveling Salesman and Repairman Problems --Manuscript Draft--

Manuscript Number:	CAOR-D-23-01305R1
Article Type:	Research Article
Keywords:	traveling salesman problem; Traveling Repairman Problem; post-disaster scenarios; Multifactorial Evolutionary Algorithm; tabu search
Corresponding Author:	Binh Huynh Thi Thanh Hanoi University of Science and Technology VIET NAM
First Author:	Ban Ha Bang
Order of Authors:	Ban Ha Bang
	Huynh Thi Thanh Binh
	Do Tuan Anh
	Tran Cong Dao
	Su Nguyen
Abstract:	Traveling Salesman Problem (TSP) and Traveling Repairman Problem (TRP) have been studied due to their real-world applications. While the TSP minimizes the total time to travel to all customers, the TRP minimizes the total waiting time between a main depot and customers. Solving two problems simultaneously is shown to obtain promising results due to their high similarity in solution representation and overlap in search space. However, these two problems in the context of post-disaster have not yet been considered in line with the three following restrictions. First, the salesman cannot travel on several destroyed roads. Second, the salesman needs additional time to remove debris, which means the debris removal time is added to the travel cost. Finally, we do not consider each vertex equally because they have different characteristics depending on their population or vulnerability. Therefore, reaching a vertex with higher priority takes more benefit overall. To tackle these problems, we first formalize TSP and TRP in post-disaster scenarios as TSPPD and TRPPD, respectively, and then propose the effective metaheuristic, MFEA-TS, combining a Multifactorial Evolutionary Algorithm (MFEA) and Tabu Search (TS) to solve them simultaneously and efficiently. In the proposed MFEA-TS, the MFEA can explore the search space well by transferring knowledge between two problems, while the TS can exploit good solutions in the search space. The proposed algorithm overcomes the drawbacks of the existing MFEA algorithms due to good exploitation capacity and prevention of revisiting previous solution spaces. We further conduct extensive experiments to verify the performance of our MFEA-TS with TRPPD and TSPPD. The empirical results show that the proposed algorithm can give high-quality solutions on a range of benchmarks, thus confirming the impressive efficiency of the proposed formulations and algorithm MFEA-TS.
Suggested Reviewers:	Mai Tien Singapore Management University atmai@smu.edu.sg Nguyen Bach Victoria University of Wellington bach.nguyen@vuw.ac.nz

Dear Editor-in-Chief,

I am pleased to submit an original research article entitled "A Hybrid and Adaptive Evolutionary Approach for Multitask Optimization of Post-Disaster Traveling Salesman and Repairman Problems" by Ban Ha Bang, Huynh Thi Thanh Binh, Do Tuan Anh, Tran Cong Dao, Su Nguyen for consideration for publication in Computers and Operations Research Journal.

The main contributions of this paper are as follows:

- We develop the first formulations for both TSPPD and TRPPD and obtained experimental results by MIP-Solver suggested that the instances with up to 30 vertices can be solved exactly.
- We then propose a new metaheuristic algorithm called MFEA-TS, combining the MFEA framework and Tabu Search to solve TSPPD and TRPPD. The proposed algorithm not only enables good transferrable knowledge between tasks from the MFEA but also enhances the exploitation capacity from the TS.
- We further conduct various experiments, and the empirical results demonstrate that our
 proposed MFEA-TS obtains near-optimal solutions for both TRPPD and TSPPD
 simultaneously at a reasonable time. Moreover, our MFEA-TS also performs better than
 previous strong algorithms for TSP and TRP, indicating the good generalization and
 application of our proposed algorithm for similar problems.

After the first round, We have received highly valuable comments and recommendations. Following these, we have made some major modifications to highlight the research gap of the proposed method and improve the quality of the manuscript.

We have carefully addressed all the reviewers' concerns, and detailed point-by-point responses are given. All major revisions are highlighted in yellow text in the revised manuscript.

We hope the revised version is acceptable and look forward to your kind recommendations.

Best regards,

Ban Ha Bang, Huynh Thi Thanh Binh, Do Tuan Anh, Tran Cong Dao, Nguyen Phan Bach Su

Dear Editorial Board,

Dear Reviewers,

We would like to thank you so much for your hard work in reviewing our paper. We have received highly valuable comments and recommendations. Following these, we have made some major modifications to highlight the research gap of the proposed method and improve the quality of the manuscript.

We have carefully addressed all the reviewers' concerns, and detailed point-by-point responses are given below. All major revisions are highlighted in yellow text in the revised manuscript.

We hope the revised version is acceptable and look forward to your kind recommendations.

Best regards,

Ban Ha Bang, Huynh Thi Thanh Binh, Do Tuan Anh, Tran Cong Dao, Nguyen Phan Bach Su

Reply to Associate Editor

Thank you for giving us the opportunity to revise the manuscript and for your highly valuable recommendations.

Following your suggestions and the reviewers' feedback, we have made significant modifications to highlight the proposed method's novelty and improve the manuscript's clarity. The revisions we have made are summarised below. In addition, the detailed point-by-point responses to the reviewers' comments can be found below. We believe that all comments have been successfully addressed in the revised manuscript.

Reply to Reviewer #1

Reviewer #1: I have the following comments:

Comment 1: Typo in lines 81 and 82 (the author).

Response:

Thank you for your comment. We have revised the paper.

Comment 2: What are the results if the Tabu Search is used without MFEA?

Response:

The proposed algorithm based on the MFEA framework allows us to solve two problems simultaneously with knowledge transfer. The TS algorithm is incorporated into the framework to improve exploitation capacity. To better understand the value of MFEA, we have conducted additional experiments in which TS is applied to solve each problem independently. In the revised manuscript, we have added the results of TS (as a non-multitasking algorithm) to Tables 8-11.

Tables 8 to 11 show that MFEA-TS outperforms TS in both problems for most instances, and the results are statistically significant. The results demonstrate the advantage of solving the two problems with knowledge transfer under the MFEA framework.

Comment 3: In lines 355 and 356, it is better to mention the algorithm's name used.

Response:

Thank you for your comment. We have added Table 2 to describe the algorithms used in our experiments. We believe that this table will make the paper easier to follow.

Comment 4: Why do Tables 15 and 16 not compare the proposed algorithm with other algorithms? Try to improve the results of solving the TRP (Table 16).

Response:

Thank you for your comment. Section 5.4.5 has been revised to clarify and highlight comparisons between the proposed algorithms and other algorithms in the literature. The proposed algorithm has been compared to other state-of-the-art multitasking algorithms in the literature: (1) YA [35], (2) OA [24], (3) MFEA [5]. The results show that the proposed algorithm is statistically better than YA and OA.

Additional experiments are also conducted to compare the proposed algorithm to other optimisation algorithms for TRP, including (1) SA-ST [28], (2) SA-MT [28], (3) MS [30], and

(4) TS+VNS [7]. The results (Table 19) suggest that our proposed algorithm is competitive when compared to other optimisation algorithms. A new section called "Comparisons with the other algorithms" has been added to the revised manuscript to present and discuss these new results.

To further improve the performance of MFEA-TS, we have introduced 3-opt into the proposed algorithm. The results show that MFEA-TS and MFEA-TS with 3-opt reach the optimal solutions for all TSP-instances with up to 100 vertices and TRP-instances with 50 vertices. For TRP-100-x, MFEA-TS with 3-opt obtains slightly better results than MFEA-TS. It shows that MFEA-TS with 3-opt improves exploitation capacity. In comparison with the state-of-the-art algorithms for TRP, both MFEA-TS and MFEA-TS with 3-opt are comparable.

The manuscript has been revised to address the points above. Below is the revised section 5.4.5:

In the experiment, we show the generalization of the proposed algorithm by solving two problems such as TSP and TRP simultaneously though it is not developed to solve them. For TSP and TRP, many effective algorithms [5, 7, 24, 28, 30, 35, 43] were proposed to solve in the literature. We divide them into two types: 1) algorithms [7, 28, 30, 43] were developed to solve each problem independently and separately; 2) algorithms based on MFEA approach [5, 24, 35] to solve two problems at the same time.

Comparisons with algorithms based on MFEA

We adopt the MFEA-TS algorithm to solve the TSP and TRP problems simultaneously. Tables 15 and 16 compare our results to BP [5], OA [24], and YA [35] in both the TSP and TRP problems. To have a fair comparison, we fix the maximum number of fitness function evaluations. In this work, the maximum number of fitness evaluations is $2 \times \square \times 10^4$. All algorithms are run with the same maximum number of fitness evaluations.

The average gap between our result and the optimal value is below 2.59%. It indicates that our solutions are near-optimal ones. In addition, the MFEA-TS algorithm obtains the optimal solutions for the instances with up to 76 vertices. Obviously, the MFEA-TS solves well in the case of the TSP and TRP.

A non-parametric test (Friedman, Aligned Friedman, and Quad test) is carried out in the group of the algorithms (BP [5], OA [24], and YA [35]) to check if a significant difference between them is found. Table 17 illustrates the rankings achieved by the Friedman, Aligned Friedman, and Quade tests. The results show significant differences between the algorithms. Because the other algorithms have a larger ranking, the MFEA-TS is selected as the control algorithm. After that, we compare the control algorithm with the others by statistical tests. Table 18 shows the MFEA-TS outperforms the remaining algorithms with a level of significance $\alpha = 0.05$.

The OA and YA were developed based on the MFEA framework. The exploration ability of the MFEA is shown well (in Section 5.6, we indicate good exploration ability of the MFEA). Nevertheless, there is a lack of a mechanism to exploit the good solution space explored by the

MFEA. Therefore, these algorithms cannot effectively balance exploration and exploitation. Recently, BP has successfully applied the MFEA with RVNS. The algorithm obtains better solutions than the OA and YA because of better exploration and exploitation balance. However, the search can return the explored solution space, and the BP may get stuck into local optima. The MFEA-TS not only maintains the exploration and exploitation balance by combining the MFEA and TS but also prevents the search from getting trapped into a cycle by using Tabu list. Therefore, the chance of finding better solutions is higher than the others.

Comparisons with the other algorithms

In fact, comparison between the proposed algorithm and the algorithms in [7, 28, 30, 43] is not actually fair because these algorithms are developed to solve a specific problem, but they cannot solve two problems well at the same time. In [5, 28], they also showed that efficient algorithms for TSP may not be good for TRP. They tested two algorithms on the same instances. On average, the optimal solution for TSP using the TRP objective function is 18% worse than the optimal solution for TRP. Similarly, the optimal solution for TRP using the TSP objective function is 15% worse than the optimal solution for TSP. On the other hand, if our results are good on average for TSP and TRP at the same time, we say that the proposed algorithm for multitasking is beneficial.

In the case of TSP and TRP, to exploit better solution space, additional neighbourhoods are used. We consider additional neighborhoods with larger sizes such as 3-opt, 4-opt though the complexity of time to explore these neighborhoods consumes much time in the general case. The reasons to explain why we consider their use in improving exploitation capacity are as follows: For TSP and TRP, the main operation in exploring these neighborhoods is the calculation of a neighboring solution's cost. In a straightforward way, it takes O(n) time. In [7, 30], by using the known cost of the current solution, we show that it can be done in constant time. Therefore, the fitness evaluations do not completely dominate the internal workings of the algorithm. Moreover, for TSP and TRP, all solutions are feasible and checking feasibility and fixing procedures are not necessary. Therefore, increment of exploitation capacity in the case of TSP and TRP is not too time-consuming. Nevertheless, in the pilot study, 4-opt requires much time to run but it does not bring any benefit. To balance between running time and solution quality, we only use 3-opt. As a result, we use nine neighborhoods in total. To compare directly to algorithms in [7, 28, 30, 43], another termination criterion is used. The algorithm stops if no improvement is found after 50 loops. The same termination criteria are also used in [7, 28, 30].

In Tables 15 and 16, MFEA-TS and MFEA-TS with 3-opt columns are our algorithms without or with using 3-opt. The average results are shown in Table 19. In TRP, *UB* is the result of the nearest neighbor heuristic [28] while the optimal solutions in TSP come from Concord Tool [43]. The results show that MFEA-TS and MFEA-TS with 3-opt reach the optimal solutions for all TSP-instances with up to 100 vertices and TRP-instances with 50 vertices. For TRP-100-x, MFEA-TS with 3-opt obtains slightly better results than MFEA-TS. It shows that MFEA-TS with 3-opt improves exploitation capacity. In comparison with the state-of-the-art algorithms for TRP, both MFEA-TS and MFEA-TS with 3-opt are comparable. Reaching good

solutions simultaneously for both two problems indicates that the proposed algorithm is beneficial.

Table 16: The comparison with other algorithms with TRP-50-x

Instances	OPT Instances		Y	Α	o	A	MF	EA	MFE	A-TS	MFEA-TS (3-opt)		
mstances	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	
	131	TKI	best.sol	best.sol									
TRP-50-1	602	12198	641	13253	634	13281	610	12330	608	12198	608	12198	
TRP-50-2	549	11621	583	12958	560	12543	560	11710	549	11621	549	11621	
TRP-50-3	584	12139	596	13482	596	13127	592	12312	584	12139	584	12139	
TRP-50-4	603	13071	666	14131	613	15477	610	13575	603	13575	603	13575	
TRP-50-5	557	12126	579	13377	578	14449	557	12657	557	12126	557	12126	
TRP-50-6	577	12684	602	13807	600	13601	588	13070	577	12684	577	12684	
TRP-50-7	534	11176	563	11984	555	12825	547	11793	534	11176	534	11176	
TRP-50-8	569	12910	629	14043	609	13198	572	13198	569	12910	569	12910	
TRP-50-9	575	13149	631	14687	597	13459	576	13459	575	13149	575	13149	
TRP-50-10	583	12892	604	14104	602	13638	590	13267	583	12892	583	12892	
TRP-50-11	578	12103	607	13878	585	12124	585	12124	578	12103	578	12103	
TRP-50-12	500	10633	521	11985	508	11777	604	11305	500	10633	500	10633	
TRP-50-13	579	12115	615	13885	601	13689	587	12559	579	12115	579	12115	
TRP-50-14	563	13117	612	14276	606	14049	571	13431	563	13117	563	13117	
TRP-50-15	526	11986	526	12546	526	12429	526	12429	526	11986	526	11986	
TRP-50-16	551	12138	577	13211	564	12635	551	12417	551	12138	551	12138	
TRP-50-17	550	12176	601	13622	585	13342	564	12475	550	12475	550	12475	
TRP-50-18	603	13357	629	14750	625	14108	603	13683	603	13683	603	13683	
TRP-50-19	529	11430	595	12609	594	12899	539	11659	529	11430	529	11430	
TRP-50-20	539	11935	585	13603	575	12458	539	12107	539	11935	539	11935	

Table 17: The comparison with other algorithms with TRP-100-x

Instances	OPT KBS		Y	Ά	0	Α	MF	ΈA	MFE	A+TS	MFEA-TS (3-opt)	
llistances	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP
	131	TKF	best.sol	best.sol								
TRP-100-1	762	32779	830	36012	806	36869	791	35785	767	34629	767	33242
TRP-100-2	771	33435	800	39019	817	37297	782	35546	782	35546	782	33929
TRP-100-3	746	32390	865	38998	849	34324	767	34324	748	33734	748	33734
TRP-100-4	776	34733	929	41705	897	38733	810	37348	785	36655	785	35612
TRP-100-5	749	32598	793	40063	899	37191	774	34957	757	36899	757	34352
TRP-100-6	807	34159	905	40249	886	40588	854	36689	838	35469	838	35469
TRP-100-7	767	33375	780	38794	849	39430	780	35330	767	34989	767	34733
TRP-100-8	744	31780	824	38155	845	35581	763	34342	744	33265	744	33265
TRP-100-9	786	34167	863	39189	858	41103	809	35990	786	35625	786	35625
TRP-100-10	751	31605	878	36191	831	37958	788	33737	751	33390	751	32879
TRP-100-11	776	34188	831	39750	876	41153	814	36988	776	36815	776	35245
TRP-100-12	797	32146	855	39422	855	40081	823	34103	797	32146	797	32146
TRP-100-13	753	32604	772	37004	772	40172	771	35011	753	32604	753	32604
TRP-100-14	770	32433	810	40432	810	36134	800	34576	770	32433	770	32433
TRP-100-15	776	32574	953	38369	878	38450	810	35653	776	32574	776	32574
TRP-100-16	775	33566	838	40759	835	38549	808	36188	775	33566	775	33566
TRP-100-17	805	34198	939	39582	881	42155	838	36969	805	34198	805	34198
TRP-100-18	785	31929	876	38906	836	37856	814	34154	785	31929	785	31929
TRP-100-19	780	33463	899	39865	881	40379	797	35669	780	35669	780	34649
TRP-100-20	775	33632	816	41133	905	40619	808	35532	775	35532	775	35532

Table 19. Average results for algorithms in TSP and TRP

|--|

	gar	o_1	gar	0_2
	TRP-50-x	TSP-100-x	TRP-50-x	TRP-100-x
SA-ST	-	-	-6.87%	-10.54%
SA-MT	-	-	-9.67%	-11.56%
MS	-	-	-11.01%	-13.00%
TS-VNS	-	-	-11.01%	-13.00%
MFEA-TS	-	-	-11.01%	-9.57%
MFEA-TS (using 3-opt)	0.0%	0.0%	-11.01%	-10.90%

Comment 5: Please check the references. There are mistakes, for instance, reference #23 "N. Mladenovic, P. Hansen, Variable Neighborhood Search, J. Operations Research, Vol. 24, No. 11, 1997, pp.1097-1100. The paper was published in Computers & Operations Research, not J. Operations Research.

Response:

Thank you for your comment. We have fixed this error in the revised manuscript.

- We develop the first formulations for both TSPPD and TRPPD and obtained experimental results by MIP-Solver suggested that the instances with up to 30 vertices can be solved exactly.
- We then propose a new metaheuristic algorithm called MFEA-TS, combining the MFEA framework and Tabu Search to solve TSPPD and TRPPD. The proposed algorithm not only enables good transferrable knowledge between tasks from the MFEA but also enhances the exploitation capacity from the TS.
- We further conduct various experiments, and the empirical results demonstrate that our proposed MFEA-TS obtains near-optimal solutions for both TRPPD and TSPPD simultaneously at a reasonable time. Moreover, our MFEA-TS also performs better than previous strong algorithms for TSP and TRP, indicating the good generalization and application of our proposed algorithm for similar problems.

A Hybrid and Adaptive Evolutionary Approach for Multitask Optimization of Post-Disaster Traveling Salesman and Repairman Problems

Ha-Bang Ban^a, Huynh Thi Thanh Binh*^a, Tuan Anh Do^a, Cong Dao Tran^a, Su Nguyen^b

^aSchool of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam
^bRMIT University, Australia

Abstract

Traveling Salesman Problem (TSP) and Traveling Repairman Problem (TRP) have been studied due to their real-world applications. While the TSP minimizes the total time to travel to all customers, the TRP minimizes the total waiting time between a main depot and customers. Solving two problems simultaneously is shown to obtain promising results due to their high similarity in solution representation and overlap in search space. However, these two problems in the context of post-disaster have not yet been considered in line with the three following restrictions. First, the salesman cannot travel on several destroyed roads. Second, the salesman needs additional time to remove debris, which means the debris removal time is added to the travel cost. Finally, we do not consider each vertex equally because they have different characteristics depending on their population or vulnerability. Therefore, reaching a vertex with higher priority takes more benefit overall. To tackle these problems, we first formalize TSP and TRP in post-disaster scenarios as TSPPD and TRPPD, respectively, and then propose the effective metaheuristic, MFEA-TS, combining a Multifactorial Evolutionary Algorithm (MFEA) and Tabu Search (TS) to solve them simultaneously and efficiently. In the proposed MFEA-TS, the MFEA can explore the search space well by transferring knowledge between two problems, while the TS can exploit good solutions in the search space. The proposed algorithm overcomes the drawbacks of the existing MFEA algorithms due to good exploitation capacity and prevention of revisiting previous solution spaces. We further conduct extensive experiments to verify the performance of our MFEA-TS with TRPPD and TSPPD. The empirical results show that the proposed algorithm can give high-quality solutions on a range of benchmarks, thus confirming the impressive efficiency of the proposed formulations and algorithm MFEA-TS.

Keywords: Traveling Salesman Problem, Traveling Repairman Problem, post-disaster scenarios, Multifactorial Evolutionary Algorithm, Tabu Search

1. Introduction

Traveling Salesman Problem (TSP) [2, 17, 27, 34] and Traveling Repairman Problem (TRP) [1, 20] are combinatorial optimization problems that have many practical applications. The difference between the two

^{*}Corresponding author.

Email addresses: bangbh@soict.hust.edu.vn (Ha-Bang Ban), binhht@soict.hust.edu.vn (Huynh Thi Thanh Binh*), anhdt@soict.hust.edu.vn (Tuan Anh Do), dao.tc212433m@sis.hust.edu.vn (Cong Dao Tran), su.nguyen@rmit.edu.au (Su Nguyen)

problems is that the TSP is server-oriented [1, 20, 30] while the TRP is customer-oriented. Each problem is interested in a different aspect in the context of logistic operations: an economic aim in terms of minimizing the travel time of a salesman and a customer-oriented objective in terms of reducing the total waiting of customers or improving the quality of service. However, two problems in the literature were studied without disaster conditions. In recent years, disasters have occurred yearly and with higher frequency and impact. Approximately 95 million individuals were affected by a lack of essential goods due to these disasters in 2019 [41]. Because disasters destroy infrastructure, we have massive amounts of debris on roads. As a result, we face a big problem in the response stage when roads completely or partially are blocked. In the case of small debris, debris removal operations must be completed to allow vehicles to pass through. However, it is impossible to remove big debris. We propose a new formulation to address the disaster conditions and debris removal operations. At first, small debris partially blocks some roads, and the salesman needs additional time to remove them. That means the debris removal time is added to the travel cost. Conversely, a salesman cannot move on completely destroyed roads because of large debris. In this case, a salesman must choose alternative roads to move. The additional aspects make the TRP and TSP become the TRPPD and TSPPD (the TRP and TSP in post-disaster), respectively. They are also harder than the original problems because they are the TRP's and TSP's generality. In addition, each location has a different important level depending on its population or vulnerability. For instance, hospitals, schools, etc should be reached firstly because it takes more benefit overall.

We consider an example of the TSPPD and TRPPD in Figure 1. We have three types of edges: 1) yellow lines depict the blocked edges having two values, namely the cost of travel and the time required for debris removal; 2) the destroyed edges are red lines that the salesman cannot move; 3) the normal edges not affected by the disaster are demonstrated in black lines. Each vertex has a priority value indicating its important level (In Figure 1, they are values in pink). That means a vertex with a higher priority value needs to be reached sooner than the others. We have two feasible solutions for the TSPPD and TRPPD: 1-2-4-6-5-3-1 (Figure 1 (d)) and 1-2-6-4-5-3 (Figure 1 (e)). The costs of these solutions are 38 = (5 + 0) + (4 + 0) + (5 + 0) + (6 + 2) + (6 + 0) + (3 + 7)) and 100 = w(1) + w(2) + w(6) + w(4) + w(5) + w(3) = 0 + 5 + 15 + 20 + 27 + 33), respectively. We also have infeasible solutions such as 1-2-6-5-4-3 and 1-3-5-4-6-2 when the edge (4, 3) is destroyed completely, and the salesman violates priority constraints with the edge (4, 6), respectively (see Figure 1 (b) 1(c)).

For NP-hard problems, two main approaches for solving the problem: 1) exact algorithm; 2) metaheuristic algorithm. The exact algorithm is often applied to small instances, while the metaheuristic is suitable for larger ones. In the traditional perspective, a metaheuristic is developed to solve only a specific problem. It is good for the problem but cannot be good for the other problems. With the advent of the MFEA framework, an algorithm can simultaneously solve various tasks by transferring good knowledge between tasks. Currently, several effective state-of-the-art MFEAs [5, 24, 35] were proposed for the class of the TSP and TRP. However, the drawbacks of these algorithms are that either they do not have an effective mechanism to exploit the good solution space explored by MFEA [24, 35] or they can return to solution spaces explored previously [5]. Therefore, it can get stuck into local optima in many cases. The above drawbacks are also investigated in two works [7, 13]. To address the issues, we propose a hybrid algorithm combining MFEA and Tabu Search (TS) to address these issues. Therefore, it maintains a good combination between exploration and exploitation. The major contributions of this work are as follows:

- We develop the first formulations for both TSPPD and TRPPD and obtained experimental results by MIP-Solver suggested that the instances with up to 30 vertices can be solved exactly.
- We then propose a new metaheuristic algorithm called MFEA-TS, combining the MFEA framework and Tabu Search to solve TSPPD and TRPPD. The proposed algorithm not only enables good trans-

Figure 1: The example of TSPPD and TRPPD

ferrable knowledge between tasks from the MFEA but also enhances the exploitation capacity from the TS.

 We further conduct various experiments, and the empirical results demonstrate that our proposed MFEA-TS obtains near-optimal solutions for both TRPPD and TSPPD simultaneously at a reasonable time. Moreover, our MFEA-TS also performs better than previous strong algorithms for TSP and TRP, indicating the good generalization and application of our proposed algorithm for similar problems.

The rest of this paper is organized as follows. Sections 2 and 3 present related works and the formulations of two problems, respectively. Section 4 describes the proposed algorithm. Computational evaluations are reported in Section 5. Section 6 concludes the paper.

2. Related works

The TSP and TRP are popular problems in the literature. In the exact approaches, there are many algorithms [1, 6, 17] for both problems. In the metatheuristic approaches, many algorithms, including heuristics or metaheuristics [5, 7, 15, 28, 30], were applied for two problems with larger sizes in a short time. Generally speaking, these algorithms produce promising solution quality at a reasonable amount of time. However, they only solve each problem separately and independently. That means they cannot solve two problems simultaneously. By experiments, Salehipour et al. [28] indicated that an algorithm to solve this problem well might not be good to solve the other. Developing an algorithm to solve two problems well simultaneously is necessary where both the waiting time of customers and disaster relief costs are prioritized.

Few recent studies have incorporated post-disaster aspects in popular combinatorial optimization problems [8, 10, 12, 29, 31]. As we know, disaster management includes four stages: preparation, response, recovery, and reconstruction. The preparation stage aims to minimize negative situations before a disaster. The response starts immediately when the disaster occurs. The recovery focuses on restoring the disaster's transportation and infrastructure. Finally, the reconstruction's main objective is to ensure that victims' lives are normal. In disaster management, debris removal is an important step because it blocks roads from accessing disaster-affected areas. Delays in debris removal cause disruptions in providing necessary services to disaster victims. Many researchers are interested in debris removal in the reconstruction and restoration phases [11, 12, 16, 27]. However, when our main aim is reaching affected areas as quickly as possible, debris removal completely takes much time. It is the main drawback of this approach. H. Sahina et al. [29] first introduced debris removal to reach destroyed areas as soon as possible in the response phase. In this context, they considered the problem of finding a minimum-cost route to visiting critically affected areas by removing debris. The problem is called the Debris Removal in the Response Phase (DRR). The new variant involves extra effort, that is, debris removal time to make enough space for vehicles to pass. They proposed models and metaheuristics to minimize the time to travel critical vertices. N. Berktas et al. [10] then proposed mathematical models and heuristics to improve the solution quality. M. Ajam [3] then developed a metaheuristic to minimize the total waiting of the critical vertices during the response stage. Later, they considered the problem in the case of multiple vehicles [4]. The two problems in [3, 10, 29] are NP-hard problems because they are reduced to TSP and TRP when there are no blocked edges and all vertices are critical. The drawbacks of the three algorithms are that they either did not have been evaluated with larger instances or worked only with complete graphs when the triangular inequality holds. Recently, Ban et al. [8] have also incorporated debris removal time for the Time Dependent Traveling Salesman Problem. However, their problem requires visiting all victims. That means all vertices in the graph are critical. The experimental results show that their algorithms obtained good solutions fast.

The Multifactorial Evolutionary Algorithms (MFEA) [9, 18, 24, 35, 36, 38, 39] have been known as an efficient framework for solving many optimization problems. The important advantage of the MFEA is to allow us to solve multiple problems simultaneously in which genetic transfer occurs between multitasking tasks. Recently, several variants of the MFEA have been introduced to solve directly permutation-based discrete optimization problems related to TSP and TRP. Y. Yuan [35] developed multitasking in permutationbased optimization problems. Their experiment showed the good results of evolutionary multitasking in many-task environments. After that, Osaba et al. [24] proposed the dMFEA-II controlling the knowledge transfer by changing the crossover probability. The results from experiments indicate their algorithm minimizes negative knowledge transfer. Though the results are promising, there is a lack of a method to exploit the good solution space in two algorithms [24, 35]. Recently, Ban et al. [5] have just successfully combined the MFEA with Local Search (LS) to solve the TSP and TRP at the same time. Their algorithms improve exploitation capacity better than two algorithms in [24, 35]. However, two disadvantages can be found in this work: the fixed rmp used in [5] makes use of the positive knowledge transfer in some special cases, but it may intuitively bring negative effects in general cases [36]. In addition, their algorithm [5] can sometimes get trapped in a cycle. That means it returns to the solution space explored previously. As a result, it gets stuck into local optima.

In overall problems, the TSP and TRP are often solved independently using metaheuristics to obtain good results in a reasonable time. In this paper, we aim to investigate two problems of TSPPD and TRPPD in the context of post-disaster and propose a new approach combining MFEA and TS to solve these simultaneously. Due to the similarity of solution space and representation of the two problems, MFEA is a suitable approach to encouraging good transfer between them. The formulations of these problems and the corresponding approach called MFEA-TS are carefully designed and presented in the following sections.

3. The formulations

Our problems in this paper have some key aspects. First, small debris partially blocks some roads, and the salesman needs additional time to remove them. Second, our problems also consider completely blocked edges. That means a salesman cannot move on these edges. This aspect makes our problems close to the TSP and TRP in the non-complete graph. Intuitively, a complete graph has many hamilton cycles, while a non-complete graph may have no any hamilton cycle. Checking whether a non-complete graph has a hamilton cycle is also NP-complete. Our methods work for any incomplete graph, thus covering more realistic cases. Thirdly, the problem divides vertices into critical and non-critical vertices. That means the salesman must visit critical vertices while the salesman can bypass non-critical ones. Finally, we do not consider each vertex equally because they have different characteristics depending on their population or vulnerability. Therefore, reaching a higher priority vertex takes more benefit overall. Therefore, our problems are generality of the problems in [3, 10, 29].

To cover the above aspects, we transform an initial graph G into a new graph G' by using a simple operator as follows: For an initial graph G = (V, E) with critical and non-critical vertices, we remove edges that are destroyed by disaster complete from it. We then build a directed graph G' = (V', E') on all critical vertices and a main depot in which the arc goes from a vertex with high priority to a vertex with a low one. The travel time between two vertices is calculated by the shortest path between them in the original graph G (note that the debris removal time is taken into account in the travel time). The problems are then solved on G', including only critical vertices.

3.1. The Traveling Repairman Problem in Post-Disaster

The formulation is obtained from the formulation proposed by B. Gavish et al. [17] for the Minimum Latency Problem. Let V_C be a set of vertices that include the depot, 0, and the others 1, 2, ..., n. Let c_{ij} , and

 w_{ij} be the traveling time, debris removal time of arc (i, j) while let $D = \{e_1 = (i, j), e_2, ..., e_l\}$ be a set of the arcs that man cannot move from vertex i to vertex j because of their priority level. We have several decision

$$x_{ik} = \begin{cases} 1 & \text{if vertex } i \text{ in a position } k \text{ in the solution} \\ 0 & \text{otherwise} \end{cases}$$

140

145

 $x_{ik} = \begin{cases} 1 & \text{if vertex } i \text{ in a position } k \text{ in the solution} \\ 0 & \text{otherwise} \end{cases}$ $y_{ijk} = \begin{cases} 1 & \text{if vertex } i \text{ in a position } k \text{ and vertex } j \text{ in a position } k+1 \text{ in the solution} \\ 0 & \text{otherwise} \end{cases}$

 $\min z = n \times \sum_{i \in V_C \setminus \{0\}}^n (c_{0i} + w_{0i}) \times x_{i1} + \sum_{k \in K \setminus \{n\}} \sum_{i \in V_C \setminus \{0\}} \sum_{j \in V_C \setminus \{0\}, i \neq j} (n - k) \times (c_{ij} + w_{ij}) \times y_{ijk}$

$$\sum_{k=1}^{n} x_{ik} = 1; \qquad (i = 1, 2, ..., n)$$
 (1)

$$\sum_{i=1}^{n} x_{ik} = 1; \qquad (k = 1, 2, ..., n)$$
 (2)

$$\sum_{j=1}^{n} y_{ijk} = x_{ik}; \qquad (i = 1, 2, ..., n, j \neq i, k = 1, 2, ..., n - 1)$$
(3)

$$\sum_{i=1}^{n} y_{ijk} = x_{i,k+1}; \qquad (i = 1, 2, ..., n, j \neq i, k = 1, 2, ..., n)$$
(4)

 $\sum_{i=1}^{n} y_{ijk} = 0; \qquad (i = 1, 2, ..., n, i \neq j, j = 1, 2, ..., n, (i, j) \in D)$ (5)

$$x_{ik} \in \{0, 1\}; \qquad (i = 1, ..., n, k = 1, 2, ..., n)$$
 (6)

$$y_{ijk} \ge 0;$$
 $(i = 1, ..., n, j = 1, 2, ..., n, i \ne j, k = 1, 2, ..., n - 1)$ (7)

Constraint (1) shows that each vertex must occupy a single position. Constraint (2) indicates a single vertex captures each position. Constraint (3) shows that only one arc leaves from position k. Constraint (4) guarantees that at position k + 1, only one arc arrives. Constraint (5) ensures the arcs in the destroyed matrix cannot be moved by man. Finally, Constraints (5) and (6) define x_{ik} as binary, and y_{ijk} are non-negative variables.

3.2. The Traveling Salesman Problem in Post-Disaster

A multi-commodity flow formulation [40] was proven to support a strong linear relaxation to solve the TSP. In this paper, we utilize these flow formulations to solve the TSPPD. Let V_C be a set of vertices that include the depot, 0, and the others 1, 2, ..., n. Let c_{ij} , and w_{ij} be the traveling time and debris removal time of arc (i, j), respectively, while let $D = \{e_1 = (i, j), e_2, ..., e_l\}$ be a set of the arcs that man cannot move because of priority level. We have several decision variables as follows:

$$x_{ij} = \begin{cases} 1 & \text{if arc } (i, j) \text{ is in the solution} \\ 0 & \text{otherwise} \end{cases}$$

To prevent subtour, additional variables, y_{ijk} , are included in the model. In the multi-commodity formulation, we have n-1 commodities with k=2,3,...,n, and a non-negative decision variable y_{ijk} representing the flow on the arc $(i,j) \in E$ for the commodity k from vertex 1 to k. We have:

min
$$z = \sum_{i,j=1}^{n} (c_{ij} + w_{ij}) \times x_{ij}$$

Subject to:

165

170

$$\sum_{i \in V \setminus \{i\}} x_{ij} = 1; \qquad (i = 1, 2, ..., n)$$
(8)

$$\sum_{i \in V \setminus \{j\}} x_{ij} = 1; \qquad (j = 1, 2, ..., n)$$
(9)

$$\sum_{i \in V \setminus \{0\}} y_{0jk} = 1; \qquad (k = 1, 2, ..., n)$$
(10)

$$\sum_{i \in V \setminus \{0\}} y_{i0k} = 0; \qquad (k = 1, 2, ..., n)$$
 (11)

$$\sum_{i \in V} y_{ikk} = 1; \qquad (k = 1, 2, ..., n)$$
 (12)

$$\sum_{i \in V} y_{kjk} = 0; \qquad (k = 1, 2, ..., n)$$
 (13)

$$\sum_{i \in V} y_{ijk} - \sum_{i \in V} y_{jik} = 0; \qquad (j, k = 1, 2, ..., n, j \neq k)$$
(14)

$$\sum_{(i,j)\in D} x_{ij} = 0; \tag{15}$$

$$x_{ij} \in \{0, 1\}; \qquad (i = 0, 1, ..., n, j = 0, 1, 2, ..., n)$$
 (16)

$$0 \le y_{ijk} \le x_{ij}; \qquad (i = 0, 1, ..., n)$$
(17)

Constraints (8) and (9) show that the man leaves and arrives only once at each vertex. Constraint (10) shows

that one unit of each commodity flows in at vertex 0, while constraint (11) avoids any commodity out at vertex 0. Constraints (12) and (13) guarantee that one unit of commodity k flows in vertex k and it does not flow out the vertex k. Constraint (14) forces balance for all commodities at each vertex, apart from vertex 0, and for commodity k at vertex k. Constraint (15) ensures the arcs in the destroyed matrix cannot be moved by man. Finally, constraints (16) and (17) define x_{ij} are binary, and y_{ijk} are non-negative variables.

4. The proposed algorithm

4.1. The basic Multifactorial Evolutionary Algorithm

The theory of multifactorial optimization (MFO) is proposed in [24, 25, 36]. This paper briefly describes how to combine the concept of MFO in EA. We have k optimization problems that need to be minimized simultaneously. The task j-th, defined T_j , with objective function $f_j: X_j \to R$, where x_j is its solution space. We need to find k solutions $\{x_1, x_2, ..., x_{k-1}, x_k\} = \min\{f_1(x), f_2(x), ..., f_{k-1}(x), f_k(x)\}$, in which x_j is a solution in X_j . Each f_j is an additional parameter impacting the evolution of a single population. Therefore, it is called the k- factorial problem. For a composite problem, a method to compare individuals is important. Each solution $p_i(i \in \{1, 2, ..., |P|\})$ in the population P has several properties: $factorial\ cost$, $factorial\ rank$, scalar-fitness, and skill-factor. These properties allow us to rank and select them.

- Factorial cost c_i^i of the solution p_i is its fitness value for task T_j $(1 \le j \le k)$.
- Factorial rank r_j^i of p_i on the task T_j is its index in the list of the population ranked in ascending order with respect to c_i^i .
- Scalar-fitness ϕ_i of p_i is given by its best factorial rank overall tasks as $\phi_i = \frac{1}{\min_{i=1,\dots,k} r_i^i}$.
- Skill-factor ρ_i of p_i is the one task, amongst all other tasks, on which the individual is most effective, i.e., $\rho_i = argmin_j\{r_i^i\}$ where $j \in \{1, 2, ..., k\}$.

The main steps of basic MFEA are as follows. Firstly, a unified search space (USS) for different tasks is created so that the transfer of information between tasks can occur in this space. Secondly, a set of *SP* solutions (*SP* is the population's size) is initialized in the USS. Each solution is then evaluated by calculating its skill-factor. After that, an iteration begins to build offspring and assign them skill-factors. Selection ensures the skill-factor of offspring is selected randomly among those of their parents. The offspring and parent are merged to generate a new population. The evaluation for each individual is taken, and their new skill-factors are updated. The Elitist method keeps the *SP* best individuals for the next generation. Following these above steps, MFEA allows solving many tasks simultaneously using unified space and knowledge transfer between tasks.

4.2. The proposed Algorithm

Figure 2 shows the general flow of the proposed MFEA-TS, and Algorithm 1 presents the proposed MFEA-TS in detail. The first step of MFEA-TS creates a unified search space for two problems. The population is then generated in the second step. All solutions in the population must be feasible by using the Fix_Invalid algorithm. After that, an iteration begins until the termination criterion is satisfied. Parents are selected to create offspring using assortative mating and then assign skill-factor values to them. The offspring are added to the current population. The individuals of the population are re-evaluated to update their skill-factors. The best solution is picked using skill-factor and converted to each task's representation.

Figure 2: Overview of the proposed algorithm.

Figure 3: The unified representation for each task

It then is the input of the TS to find the best solution for each task. This step tries to exploit good solution space. The outputs of the TS are then converted to the unified search space. After that, they will be added to the population. The Elitist strategy keeps the SP solutions for the next generation. Next, the rmp value is updated to encourage or discourage knowledge transfer between tasks when the transfer is taking advantage or does not bring profit. After the number of generations (Ng), the best solution has not been improved, and the algorithm stops. We show that combining MFEA and TS brings a good balance between exploration and exploitation in Appendix A. The details of these steps in our MFEA-TS are presented as follows.

4.2.1. Individual representation and evaluation

The permutation representation is used, in which an individual is encoded as a set of vertices as following $(v_1, v_2, ..., v_k, ..., v_n)$, where v_k is the k-th vertex to be visited. Figure 3 describes this encoding for two problems.

We need a fitness function to evaluate each individual in the population. The scalar-fitness is computed for each individual. Better solutions will be ones with higher scalar-fitness.

Algorithm 1: MFEA-TS

```
1 begin
         P \leftarrowInitialize the population according to Algorithm 2;
         while the termination criterion is not satisfied do
 3
              Offspring population O(t) \leftarrow \emptyset;
 4
              while |O(t)| < |P| do
 5
                   Select NG individuals in the population randomly;
 6
                   \mathbf{p}_1, \mathbf{p}_2 \leftarrow Select two individuals that have the best in terms of formula (18);
 7
                   if (M and F have the same skill-factor) or (rand(1) \le rmp) then
 8
                        \mathbf{c}_1, \mathbf{c}_2 \leftarrow \text{Perform knowledge transfer method for } M \text{ and } F \text{ according to Algorithm 3;}
                   else
10
                        \mathbf{c}_1, \mathbf{c}_2 \leftarrow Mutation(\mathbf{p}_1), Mutation(\mathbf{p}_2) and assign skill-factor, respectively;
11
12
                   \mathbf{c}_1, \mathbf{c}_2 \leftarrow \text{Transform to feasible solutions according to Algorithm 4;}
13
                   Evaluate and add \mathbf{c}_1, \mathbf{c}_2 to O(t);
14
              end
15
              \mathbf{o}_1, \mathbf{o}_2 \leftarrow \text{Select the best individuals from } O(t) \text{ for each task;}
16
              \mathbf{o}_{1}^{'}, \mathbf{o}_{2}^{'} \leftarrow Implement Tabu Search for each task according to Algorithm 6;
17
              Convert(\mathbf{o}_1', \mathbf{o}_2') to unified representation as Figure 3 and add them to O(t);
18
              P \leftarrow P \cup O(t):
19
              Update scalar-fitness and skill-factor for all individuals in P;
20
              Elitism-Selection(P);
21
              Update rmp according to Algorithm 5;
22
              Update the current best solution if found;
23
24
         return The best solutions;
25
26 end
```

4.2.2. Population initialization

An insertion heuristic for creating an initial population is described in Algorithm 2. We consider a partial solution and define \overline{V} as a set of non-visited nodes. To improve the partial tour, a vertex from \overline{V} is inserted. Among all cases, we create a list of pair (v, j) (notation: L) in which v is not yet in the partial tour and a position j in the partial tour so that after the insertion, the constraints are satisfied. If the list L is not empty, we randomly select a pair in the list to insert. Otherwise, we select a pair (v, j) so that the insertion leads to the lowest increase in the cost of the solution. When the solution is feasible, it is added to the population. Conversely, a Fix_Invalid algorithm is implemented. The algorithm includes two steps: 1) finding a feasible solution from an infeasible one by removing a vertex and inserting it into a suitable position; 2) improving the obtained solution from the previous step with many neighborhoods [21]. The Fix_Invalid algorithm is illustrated in Algorithm 4. This step stops until we obtain the population with SP feasible individuals.

This paper applies some popular neighborhoods $(N_i, i = 1, ..., 5)$ including swap-adjacent (N_1) , swap (N_2) , remove-insert (N_3) , 2-opt (N_4) , and or-opt (N_5) [23].

Algorithm 2: Insertion-based Construction

```
Input: v_1, V' are a depot, and the set of vertices, respectively.
   Output: An initial population P.
 1 begin
        P \leftarrow \emptyset:
 2
        while (|P| < SP) do
 3
 4
             Initial individual \mathbf{p} \leftarrow v_1;
             while (|p| < n) do
 5
                  L = \text{List of pairs } (v, j) \text{ so that Insert}(\mathbf{p}, j, v) \text{ satisfies constraints and } v \notin \text{the partial tour};
                  /* Insert(p, j, v) aims to insert v to p at position j-th
                  if (|L| > 0) then
 7
                       Randomly select a pair in L to insert into \mathbf{p};
                  else
                       Randomly select a vertex v \not\in \text{in the partial tour} so that \mathbf{p} = \text{Insert}(\mathbf{p}, j, v) has a
10
                        minimal cost;
                       /* if the constraints are not satisfied, p is infeasible
                                                                                                                              */
11
                  end
12
             end
             if (p is infeasible) then
13
                  \mathbf{p} \leftarrow \text{Convert } \mathbf{p} \text{ to feasible one according to Algorithm 4};
14
             end
15
             P \leftarrow P \cup \{\mathbf{p}\};
16
17
        end
        return P;
18
19 end
```

4.2.3. Selection operator

We propose a new selection for the MFEA-TS that balances scalar-fitness and diversity. The scalar-fitness effectively transfers elite genes between tasks and the good solutions are kept in each task. That means there is a large accumulation of good genes. However, diversity is important when diversity loss can make a bottleneck against the genetic information transfer. For each solution T, we consider both its scalar-fitness and diversity in a set of solutions as follows:

$$R(T) = \alpha \times (SP - RF(T) + 1) + (1 - \alpha) \times (SP - RD(T) + 1)$$

$$\tag{18}$$

where $SP, \alpha \in [0, 1], RF(T)$, and RD(T) are the population size, weight value, the rank of T based on scalar-fitness, and its diversity, respectively. The RD value of each solution is calculated as follows:

$$\overline{RD}(T) = \frac{\sum_{k=1}^{n} d(T, T_i)}{n}$$
(19)

 $d(T, T_i)$ is the metric distance between T, and T_i (see in section 3.1), and $\overline{RD}(T)$ is the average distance of T in the population. The larger $\overline{RD}(T)$ is, the higher its rank is. The larger R is, the better solution T is.

To select parents, a group of NG individuals is selected randomly in the same group. Then, two individuals with the largest R values are chosen to become parents.

Algorithm 3: Knowledge transfer method

```
Input: Two parent individuals \mathbf{p}_1 and \mathbf{p}_2.
    Output: Two children individuals \mathbf{c}_1 and \mathbf{c}_2.
         if p_1 and p_2 have the same skill-factor then
 3
               \mathbf{c}_1, \mathbf{c}_2 \leftarrow \text{Crossover according to Algorithm 5};
               \mathbf{c}_1, \mathbf{c}_2's skill-factors are set to the skill-factors off \mathbf{p}_1 or \mathbf{p}_2, respectively;
 4
 5
         else
               if rand(1) \leq rmp then
 6
                    \mathbf{c}_1, \mathbf{c}_2 \leftarrow \text{Crossover according to Algorithm 5};
 7
                    \mathbf{c}_1, \mathbf{c}_2's skill-factors are set to the skill-factors of \mathbf{p}_1 or \mathbf{p}_2 randomly;
 8
               end
         end
10
         return two offspring c_1, c_2;
11
12 end
```

Algorithm 4: Fix_Invalid

```
Input: T, N_i (i = 1, ..., 5) are the infeasible solution and a set of neighborhoods, respectively.
   Output: An feasible solution T.
1 begin
      while T is infeasible do
2
           /* Finding a feasible solution
                                                                                                         */
           for i from 1 to |T| - 1 do
3
               for j from i + 1 to |T| do
4
                   T' \leftarrow copy(T)
 5
                   Remove T'_i and insert it into j - th position in T';
 6
                   if (T' is feasible) then
                      T \leftarrow T';
 8
                   end
10
               end
           end
11
       end
12
       while The improvement is not found do
13
           /* Improving solution using local search
                                                                                                         */
           T \leftarrow \text{Find a feasible solution with the lowest cost in neighborhoods} N_i(T), i = 1, ..., 5;
14
15
       end
      return T;
16
17 end
```

Algorithm 5: Crossover

```
Input: \mathbf{p}_1, \mathbf{p}_2 are the parents, respectively.
    Output: A new child c.
 1 begin
         if the current best solution is improved then
 2
               A current crossover continues to use;
 3
         else
 4
               /* Choose a crossover randomly
                                                                                                                                             */
               opt \leftarrow rand(3);
 5
               if (opt==1) then
 6
                \mathbf{c} \leftarrow \mathbf{PMX}(\mathbf{p}_1, \mathbf{p}_2);
 7
 8
               end
 q
               if (opt==2) then
10
                    \mathbf{c} \leftarrow \mathbf{EXX}(\mathbf{p}_1, \mathbf{p}_2);
               else
11
                    C \leftarrow \mathbf{SC}(\mathbf{p}_1, \mathbf{p}_2);
12
               end
13
         end
14
15
         return c;
16 end
```

4.2.4. Crossover operator

250

During the multitasking evolutionary process, the knowledge across tasks is transferred via crossover operators. There are two types of crossover: intra-task between parents of the same skill factor and intertask with the predefined probability (*rmp*) between candidate solutions associated with different skill factors.

In [25], the crossovers are divided into three main types. We found no logical investigation showing which operator brings the best performance in the literature. In a pilot study, the following operators are selected from the study to balance solution quality and complexity time:

- Position-based crossovers (PMX, CX).
- Alternation-based without genes' repetition (EXX, EAX).
- Order-based crossovers (SC, MC).

In the beginning, a crossover is chosen at random. Along with the running, the others can be chosen, allowing repetitions. If an improvement is found, the current crossover is used. Otherwise, another crossover is selected randomly. As a result, multiple crossovers make the population diverse. Therefore, the algorithm prevents premature convergence. When the offsprings are infeasible, the Fix_Invalid algorithm repairs them to feasible ones. The offspring's skill-factors are randomly set to those of parents if inter-crossover is applied. Otherwise, they are set to those of parents respectively. The pseudocode of the crossover is given in Algorithm 4.

The *rmp* value may be dynamic or static. A larger *rmp* encourages the transfer of knowledge between tasks because the transfer is taking advantage. On the other hand, the smaller value suggests a reduction in knowledge transfer when the transfer does not bring profit. In the paper, we propose a dynamic *rmp* that controls the transfer rate between two tasks. The pseudocode of updating *rmp* value is given in Algorithm 5.

Algorithm 6: Modified Tabu search **Input:** *T* is a current solution. Output: A new solution. 1 begin Initialize the Neighborhood List NL; /* Randomized VNS with Tabu list while $NL \neq \emptyset$ do 3 Choose a neighborhood N in NL at random; $T^{'} \leftarrow \arg\min N(T);$ /* Neighborhood search */ **if** (L(T') < L(T) and T' is feasible and not tabu) **then** 6 Update Tabu list; 7 $T \leftarrow T'$ and Update NL; /* Built up promising solution */ if T is not less than the γ times current best solution then $L \leftarrow L \cup \{T\};$ 10 end 11 12 else Remove *N* from the *NL*; 13 end 14 15 end /* Additional intensification */ while $L \neq \emptyset$ do 16 Select randomly a solution \bar{T} (and remove it) from L; 17 Perform Neighborhood Search without using tabu list restrictions on the solution \bar{T} ; 18 19 end 20 end

If a better solution is found in any task, a current rmp is continued to use. It is added to the candidate value list L when it is not in L. Otherwise, the rmp value is updated by selecting a value from the L randomly. A Gaussian noise value is then added to create a new rmp.

4.2.5. Mutation operator

23 end

21 if improvement is found then

24 **return** the current best solution;

Update the current best solution;

A mutation is used to maintain the diversity of the population. The operation randomly picks two vertices and then inverts the list of vertices between them. After the operator, two offspring are created from the parents. If the offspring is infeasible, the Fix_Invalid algorithm converts them to feasible ones. Their skill-factors are set to those of parents, respectively.

Algorithm 7: Update-rmp

1 rmp, L, Θ are the current rmp value, the candidate value list, and the size of L, respectively. updated rmp. begin
2 | if the better solution is found for any task then

```
if |L| > \Theta then
 3
                 Remove a random value from L;
 4
 5
             end
             L \leftarrow L \cup \{rmp\};
 6
 7
             else
                 rmp \leftarrow Select random a value from L;
 8
                 rmp \leftarrow rmp + \delta \times N(0, 1);
10
             end
11
        end
        return rmp;
12
13 end
```

4.2.6. Tabu Search

The combination of MFEA and TS utilizes transferrable knowledge between tasks from MFEA and the ability to exploit good solution spaces from TS. In this step, we convert a solution from a unified representation to a separate representation for each task, as Figure 2. The proposed TS then applies to each task separately. The main characteristics of the TS: 1) various neighborhoods are used to exploit good solution spaces; 2) Tabu status is restarted after θ iterations; 3) only feasible solution is considered in neighborhood search; 4) a tabu movement is avoided from being applied if it is not better than the best solution. It prevents the search from getting trapped in a cycle. After that, the solutions whose costs are less than γ (γ is a parameter) times the cost of the optimal solution are added to the promising list L. These solutions are applied to neighborhood search for all possible moves (without tabu list). If a new best solution is improved, it replaces the current best solution. The step helps the search to enhance intensification. The best solution for the TS of each task is converted into a unified representation. They are then added to the current population.

For this step, we use N_i (i = 1, ..., 8) neighborhoods and a tabu list for each neighborhood, such as remove-insert (N_1), move-up (N_2), move-down (N_3), shift (N_4), swap-adjacent (N_5), exchange (N_6), 2-opt (N_7), and or-opt (N_8) in [23, 28, 30]. The pseudocode of the TS algorithm is given in Algorithm 6.

4.2.7. Elitism operator

The operator guarantees that good solutions have a higher chance of keeping in the population. We pick 15% of the best solutions moving to the next generation, and the remaining individuals are randomly selected from *P*. The value 15% is suitable as shown in [33].

5. Computational evaluations

The experiments are conducted on a personal computer with a Xeon E-2234 CPU and 16 GB of RAM. The metaheuristic was coded in C language, and mixed integer formulations were implemented using the state-of-the-art Gurobi MIP solver in Python-MIP. These parameters have been selected to find the best solution by the proposed algorithm: SP = 50, NG = 5, $\alpha = 10$, $\gamma = 1.2$, and $\delta = 0.1$.

5.1. Dataset

We used three data sets to evaluate the exact and metaheuristic algorithm. The first one is from the Kartal district in Istanbul [11, 30]. The second is based on a simplified variant of the Istanbul road network [3], and the third is based on the TSP and TRP benchmarks in [28].

5.1.1. Kartal dataset

The Kartal data is based on a complete network with 45 vertices [11]. They select subsets of size 14, 21, 22, 26, 33, 41, and 43 (subset 1) or 4, 5, 10, 14, 16, 21, 22, 26, 30, 33, 36, 38, 41, 43, and 44 (subset 2) of the critical nodes in the runs involving this network. Detailed instances about the creation of this dataset can be seen in [11, 30]. The dataset includes 20 instances (K1, ..., K20) in which the set of critical vertices, traveling times, and the number of blocked edges are different. The travel times are the time to travel from one vertex to another. The matrix distance is symmetric, and the triangular inequality holds. To generate different scenarios in disaster situations, Sahin et al. [30] assumed four levels of earthquake severity (SOE), which vary from 1 to 4. Since the level is 1, there is a less severe earthquake. On the other hand, when the level is 4, it yields the highest severe earthquake. Table 1 illustrates the broken edge ratios (BER) according to the severe earthquake. Therefore, the debris removal times are calculated according to: 1) $w(v_i, v_j) = \text{SOE} \times c(v_i, v_j)$ (low debris removal time); 2) $w(v_i, v_j) = \text{SOE} \times c(v_i, v_j) + U[0, \max_{(i,j) \in C} c(v_i, v_j)]$ (high debris removal time). Therefore, the cost to travel from v_i to v_j is the sum of $w(v_i, v_j)$ and $c(v_i, v_j)$. To assign a priority value to each vertex, they use the population parameter. That means a vertex that belongs to a crowded district has a priority value more than one with a small population. In total, we have 100 instances of different disaster situations from 7 to 15 critical vertices. In Table 1, we presents the SOE and the number of blocked edges in the instances. For instance, K1, ..., K5 have 124 blocked edges when SOE is 1.

5.1.2. Instabul dataset

The Istanbul datasets are generated from the road network of 74 vertices and 179 edges for the simplified dataset, and 250 vertices and 539 edges for the southwestern dataset by Akbari et al. [3], respectively. Detailed instances about creating these datasets can be found in [3]. All edges are divided into three categories: low, medium, and high-risk edges. The probability of a blocked edge after an earthquake for the low, medium, and high-risk edges is 0.1, 0.2, and 0.3, respectively. The depot and critical vertices are selected randomly among the potential ones with equal probabilities to obtain an instance. Moreover, the blocked edges are picked randomly among all vertices with equal probability values. The travel time is the time to travel from one vertex to another. The debris time $w(v_i, v_j) = X \times c(v_i, v_j)$, where X has a uniform distribution between 100 and 300. To set a priority value for each vertex, we randomly generate a value from 1 to 4 corresponding to four levels of earthquake severity. That means a location with more earthquake severity should be supported immediately. In [3], they create 80 instances from 15 to 30 critical vertices. To evaluate the efficiency of the proposed algorithm in the larger instances, 40 instances from 50 to 100 are generated.

5.1.3. TRP dataset

The TRP dataset is found in [28]. Specifically, we select two of these sets, where each of them is composed of 50, and 100 customers, respectively. For the dataset, we evaluate the efficiency of MFEA-TS in the case of TSP and TRP.

5.2. Metrics

No prior algorithms have been identified for addressing the TSPPD and TRPPD problems in existing literature. Consequently, our proposed algorithm cannot be directly benchmarked against existing solutions. With respect to our methodology, we have applied our formulations exclusively to instances characterized

Table 1: Kartal dataset

SOE	BER	Kartal	Description
1	0-20 %	K1,, K5	the first severitylevel
2	20-40 %	K6,, K10	the second severity level
3	40-70 %	K10,, K15	the third severity level
4	70-100 %	K16,, K20	the fourth severity level

by small sizes, typically ranging between 7 and 30 vertices. Regarding MFEA approaches, the solutions are compared to the optimal solutions from the exact approach in the small instances, while for large instances, they are compared to the upper bounds. Moreover, we adopt the proposed algorithm to solve some close variants: In the TSP and TRP, the proposed algorithm (MFEA-TS) directly compares with the MFEA [5], OA [24], and YA [35] while in the TSPPD and TRPPD without priority constraints, it compares with the state-of-the-art metaheuristics in [3, 10, 29]. More details of these algorithms are provided in Table 2.

In this paper, some metrics can be used to evaluate the efficiency of the metaheuristic algorithm as follows:

$$gap_1[\%] = \frac{Best.Sol - KBS(OPT)}{KBS(OPT)} \times 100\%$$
 (20)

$$gap_2[\%] = \frac{Best.Sol - UB}{UB} \times 100\%$$
 (21)

We have some notations as follows:

345

350

355

- Best. Sol is the best solution found by the proposed algorithm.
- *OPT* and *KBS* are the optimal solution and the known best solution of the previous algorithms, respectively.
- *UB* is the best solution of Insertion-based Construction.
- Aver.Sol is the average solution after 30 runs.
- Time is the running time by second such that the proposed algorithm reaches the best solution.

The proposed algorithm is compared with the other algorithms showed in Table 1: To compare the effectiveness of the algorithms, the non-parametric statistic is selected to analyze the obtained results. There are two major steps in the comparison process:

- Statistical methods such as Friedman, Aligned Friedman, and Quade [37] are used to evaluate the differences among results obtained by the aforementioned algorithms.
- Once the hypothesis of equivalence of means of results obtained by algorithms in the first step is rejected, the post-hoc statistical procedures [37] are used to compute the concrete differences among algorithms and compare them. In this step, the control algorithm is the MFEA-TS.

5.3. Experimental scenarios

In this section, the effectiveness of the proposed formulations and the proposed algorithm MFEA-TS is evaluated in several experiments as follows:

Table 2: The algorithms' description

Algorithm	Description
MFEA-TS	The proposed algorithm
MFEA-NR	The MFEA-TS using scalar-fitness-based selection
MFEA-No-TS	The proposed algorithm without TS
CEA	The canonical evolutionary algorithm with a single task only
TS	Tabu Search to solve each problem
MA	The GRASP+VNS algorithm of M. Ajam et al. [3]
BE	The heuristic algorithm of N. Berktas et al. [10]
SA	The heuristic algorithm of H. Sahina et al. [29]
BP	The MFEA+VNS algorithms of Ban et al. [5]
OA	The MFEA algorithm of E. Osaba [24]
YA	The MFEA algorithm of Y. Yuan et al. [35]
TS-VNS	The Tabu with VNS algorithm of Ban et al. [7]
SA-ST	The VNS with single-start algorithm of A. Salehipour et al. [28]
SA-MT	The VNS with multi-start algorithm of A. Salehipour et al. [28]
MS	The GRASP+RNVD algorithm of M. Silva [30]

Table 3: The results of formulations for Kartal datasets with low debris removal time

n				7									1	5			
	BE		T:	SPPD			TI	RPPD			TS	SPPD			TF	RPPD	
instances		no-p		p		no-p		p		no-p		p		no-p		p	
	CPU time (Gurobi)	OPT	OPT	diff[%]	Time	OPT	OPT	diff[%]	Time	OPT	OPT	diff[%]	Time	OPT	OPT	diff[%]	Time
K1	95.83	65	106	146.51	0.01	180	509	182.78	0.01	101	183	115.29	0.08	642	1512	135.51	0.06
K2	124.7	65	106	146.51	0.01	180	509	182.78	0.01	101	183	115.29	0.07	642	1512	135.51	0.06
K3	102.15	65	106	146.51	0.01	180	509	182.78	0.01	101	183	115.29	0.07	642	1512	135.51	0.07
K4	99.36	65	106	146.51	0.01	180	509	182.78	0.01	101	183	115.29	0.07	642	1512	135.51	0.06
k5	137.65	65	106	146.51	0.01	180	509	182.78	0.01	116	183	115.29	0.08	642	1512	135.51	0.06
average				146.51	0.01			182.78	0.01			115.29	0.074			135.51	0.062
K6	387.90	71	107	122.92	0.01	198	514	159.60	0.01	117	192	97.94	0.08	731	1573	115.18	0.06
K7	426.63	68	108	134.78	0.01	192	525	173.44	0.01	114	198	100.00	0.08	740	1644	122.16	0.07
K8	431.03	71	111	131.25	0.01	204	538	163.73	0.02	112	195	95.00	0.07	740	1600	116.22	0.06
K9	358.51	69	108	129.79	0.01	204	538	163.73	0.01	113	194	100.00	0.08	738	1621	119.65	0.07
K10	422.57	70	108	125.00	0.02	198	512	158.59	0.01	117	189	90.91	0.07	716	1554	117.04	0.07
average				128.75	0.012			163.81	0.012			96.77	0.076			118.05	0.066
K11	722.86	74	114	128.00	0.02	225	552	145.33	0.02	130	198	94.12	0.08	816	1619	98.41	0.06
K12	806.2	83	123	101.64	0.02	266	599	125.19	0.01	120	217	85.47	0.09	866	1784	106.00	0.07
K13	624.41	80	119	88.89	0.02	272	575	111.40	0.01	115	220	101.83	0.08	848	1864	119.81	0.07
K14	605.93	69	112	143.48	0.01	197	542	175.13	0.02	113	200	108.33	0.09	721	1664	130.79	0.08
K15	513.3	70	111	136.17	0.02	198	524	164.65	0.02	113	197	107.37	0.09	715	1611	125.31	0.07
average				119.64	0.018			144.34	0.016			99.42	0.086			116.07	0.07
K16	1741.48	120	111	23.33	0.02	430	682	58.60	0.02	170	294	104.17	0.1	1197	2389	99.58	0.08
K17	1495.75	95	154	105.33	0.02	382	653	70.94	0.03	171	274	85.14	0.1	1201	2140	78.18	0.09
K18	1956.3	114	145	62.92	0.03	401	678	69.08	0.03	194	264	53.49	0.1	1309	2262	72.80	0.08
K19	1717.03	104	148	87.34	0.02	401	678	69.08	0.03	161	245	71.33	0.09	1085	2053	89.22	0.08
K20	1615.06	110	141	71.95	0.03	349	737	111.17	0.02	199	273	51.67	0.09	1268	2226	75.55	0.08
average			157	70.18	0.024			75.78	0.026			73.16	0.096			83.07	0.082

- Experiment 1: analyse the effectiveness of two proposed formulations of TSPPD and TRPPD using an exact optimizer to find the optimal solutions.
- Experiment 2: evaluate the performance of MFEA-TS for TSPPD and TRPPD by comparing to the upper bound, optimal value, and a single-task algorithm to prove the effectiveness of the proposed multi-task algorithm.

Table 4: The results of formulations for Kartal datasets with high debris removal time

n					7									1	15				
	В	E		T	SPPD			Tl	RPPD			T	SPPD			TI	RPPD		
instances			no-p		p		no-p		р		no-p		p		no-p		p		
	CPU time (Gurobi)	CPU time (Cplex)	OPT	OPT	diff[%]	Time	OPT	OPT	diff[%]	Time	OPT	OPT	diff[%]	Time	OPT	OPT	diff[%]	Time	
K1	77.9	70.25	66	106	140.91	0.01	185	509	175.14	0.01	107	183	110.34	0.09	655	1512	130.84	0.08	
K2	79.92	94.15	65	107	148.84	0.01	180	509	182.78	0.01	103	184	109.09	0.09	666	1512	127.03	0.07	
K3	170.13	88.21	65	108	145.45	0.01	186	511	174.73	0.01	106	184	109.09	0.08	654	1512	131.19	0.08	
K4	180.57	60.27	65	106	146.51	0.01	180	509	182.78	0.01	104	189	110.00	0.08	677	1547	128.51	0.08	
K5	173	60.57	65	106	146.51	0.01	180	509	182.78	0.01	119	187	112.50	0.07	663	1539	132.13	0.07	
average	136.30	74.69			145.64	0.01			179.64	0.01			110.21	0.08			129.94	0.08	
K6	381.84	476.06	71	107	122.92	0.01	198	514	159.60	0.01	117	204	104.00	0.08	752	1620	115.43	0.08	
K7	336.59	314.06	72	108	116.00	0.02	208	525	152.40	0.01	114	204	101.98	0.07	759	1698	123.72	0.09	
K8	340.94	332.62	74	117	129.41	0.01	208	568	173.08	0.01	116	200	100.00	0.11	740	1639	121.49	0.07	
K9	423.35	741.95	71	112	128.57	0.02	208	568	173.08	0.01	113	200	98.02	0.07	778	1670	114.65	0.07	
K10	384.81	430.96	70	108	125.00	0.01	198	512	158.59	0.01	119	189	90.91	0.08	716	1554	117.04	0.07	
average	373.51	459.13			124.38	0.01			163.35	0.01			98.98	0.08			118.46	0.08	
K11	490.67	1460.1	77	117	120.75	0.02	243	564	132.10	0.01	136	201	93.27	0.09	836	1641	96.29	0.1	
K12	503.7	311.29	85	128	103.17	0.02	279	621	122.58	0.02	121	225	82.93	0.09	932	1857	99.25	0.08	
K13	721.46	1246.04	84	123	80.88	0.02	287	596	107.67	0.02	115	227	102.68	0.1	861	1942	125.55	0.07	
K14	654.75	379.09	69	112	143.48	0.01	197	542	175.13	0.01	113	205	113.54	0.09	721	1679	132.87	0.08	
K15	709.89	245.1	70	111	136.17	0.01	198	524	164.65	0.02	113	198	106.25	0.1	718	1614	124.79	0.08	
average	616.09	728.32			116.89	0.016			140.42	0.016			99.73	0.094			115.75	0.082	
K16	1668.84	5874.1	140	172	50.88	0.02	554	750	35.38	0.02	179	327	106.96	0.1	1358	2598	91.31	0.1	
K17	1536.69	4067.4	102	160	95.12	0.01	410	724	76.59	0.02	189	325	95.78	0.12	1293	2477	91.57	0.09	
K18	2187.08	7200	137	161	42.48	0.03	488	734	50.41	0.03	209	279	53.30	0.1	1387	2422	74.62	0.09	
K19	1334.81	7200	119	163	75.27	0.03	488	734	50.41	0.03	180	277	77.56	0.1	1193	2265	89.86	0.1	
K20	1298.63	2286.1	131	203	89.72	0.01	441	967	119.27	0.02	228	317	53.14	0.09	1505	2554	69.70	0.1	
average	1605.21	5325.52		157	70.69	0.02			66.41	0.024			77.35	0.102			83.41	0.096	

Table 5: The results of formulations for Simplified Istanbul datasets

n		1	5			2	0				25		30				
instances	TSI	PPD	TR	PPD	TS	PPD	TR	PPD	TSI	PPD	TR	PPD	TSPPD		TRPPD		
ilistances	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	
K1	60	0.07	336	6.4	36	1.71	320	4.88	126	3	1355	187.8	66	7.89	730	1045.8	
K2	50	0.02	342	1.6	36	0.76	327	4.88	74	10.2	719	321.6	59	69.88	749	1021	
К3	50	0.03	301	4.2	99	1.25	749	16.45	57	4.11	744	61.8	45	15.63	546	396	
K4	61	0.02	551	1.47	49	0.59	829	446	104	1.92	1306	470.4	133	25.83	2089	153.6	
K5	33	0.04	156	3.45	62	0.75	369	17.58	87	5.55	1108	43.09	31	28.35	287	455.4	
K6	65	0.02	558	1.89	59	3.55	700	8.85	152	6.86	970	138	81	27.91	1021	966.6	
K7	33	0.02	214	1.37	113	4.32	926	5.36	97	3.38	1081	140.4	131	9.92	1679	182.4	
K8	72	0.02	462	2.37	82	1.26	853	13.86	110	2.37	1553	85.8	140	10.96	1678	976.8	
K9	78	0.07	634	2.61	106	2.15	822	7.19	54	2.37	651	1273.2	125	11.36	2483	216	
K10	81	0.02	714	1.28	37	1.4	441	5.06	101	2.54	1001	196.8	93	31.36	1291	505.2	
average		0.03		2.66		24.51		53.01		4.23		291.89		23.91		591.88	

- Experiment 3: conduct an ablation study to indicate the effectiveness of each new component in our MFEA-TS, including the selection method, the *rmp* update method, and the hybridization of MFEA and TS.
- Experiment 4: evaluate the effectiveness of the proposed MFEA-TS applied to similar problems, i.e., TRP and TSP and TSPPD and TRPPD without priority constraints, by comparing to the solid previous algorithms to demonstrate the good generalization of our MFEA-TS applications.

5.4. Experimental results and discussions

370

375

5.4.1. Analysis of proposed formulations of TRPPD and TSPPD

In Tables 3 to 5, the first column shows the size of instances. The second and third columns show the results of Berktas et al.'s formulation (BE) [28] when using Gurobi and Cplex solvers, respectively. The

Table 6: The results of formulations for Southwestern datasets

n		1	5			2	20			2	25		30				
instances	TSI	PPD	TR	PPD	TSI	PPD	TRPPD		TS	TSPPD		TRPPD		TSPPD		TRPPD	
ilistances	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	OPT	Time	
K1	21	0.04	212	3.49	13	0.85	160	38.7	15	2.92	174	76.8	66	12.23	730	1045.8	
K2	10	0.02	80	3.61	17	0.78	97	9.91	15	13.19	136	232.3	10	10.93	172	687	
K3	13	0.08	108	1.22	15	0.7	141	25.18	21	3.23	235	61.2	9	12.97	173	698	
K4	16	0.03	128	0.97	11	1.03	103	26.92	22	4.08	306	205.2	11	17.08	157	2427	
K5	12	0.02	95	1.61	23	0.79	283	10.88	9	15.16	91	247.8	13	23.7	209	985.2	
K6	12	0.04	80	1.89	17	1.52	188	14.3	18	6.08	239	73.8	18	21.83	266	552	
K7	15	0.08	101	1.41	20	0.63	157	8.1	18	1.55	197	63.6	13	43.25	176	307.8	
K8	11	0.02	107	3.61	11	2.71	64	7.45	10	5.85	151	131.4	17	7.15	267	383.4	
K9	7	0.02	58	0.98	13	0.78	133	8.06	23	4.38	323	70.8	15	6.99	261	504.6	
K10	5	0.03	34	1.65	20	0.73	133	26.88	29	6.94	349	257.4	17	109.36	198	2102	
average		0.04		2.04		1.05		17.64		6.34		142.03		26.55		969.28	

Table 7: The results of MFEA-TS for Istanbul and Southwestern datasets

Instance]	SPPD		Т	RPPD	
Instance	n	gap_1	Time	n	gap_1	Time
	15	0	0	15	0	0
Simplified Istanbul	20	0	1	20	0	1
Simplified Istanbul	25	0	2	25	0	2
	30	0	2.5	30	0	2.5
	15	0	0	15	0	0
Southwestern	20	0	1	20	0	1
Southwestern	25	0	2	25	0	2
	30	0	2.5	30	0	2.5
	7-high	0	0	7-high	0	0
Istanbul	7-low	0	0	7-low	0	0
istalibui	15-high	0	0	15-high	0	0
	15-low	0	0	15-low	0	0

OPT column indicates the optimal solution found, while the Time column describes the running time by second. We limit 3 hours for each run. After a limited time, the formulations stop running. The diff[%] shows the difference between the optimal solutions when a priority constraint is included (p column) or not (no-p column).

Tables 3 and 4 show that the formulations for the TRPPD and TSPPD solved optimality instances with 7 and 15 vertices in less than one second. On the other hand, Berktas et al.'s formulation consumes much time to obtain the optimal solution in the instances with 7 vertices. In addition, it fails to solve exactly the instances with 15 vertices. Table 3 also shows that the optimal solutions for the TSPPD or TRPPD in the case of small blocking arcs (K1-K5) are the same. Specifically, the optimal values for K1-K5 instances (SOE = 1) for both the TSPPD and TRPPD are 106 and 509, respectively. It indicates that the optimal solutions remain unchanged when the number of blocking arcs is small. However, when the number of blocking arcs increases, the difference between them is significant. Namely, from K6 to K20 (SOE = 2, 3, 4), their optimal values are significantly different in both TSPPD and TRPPD. Even with the high debris removal time in Table 4, their optimal values also show a relative difference in the case of SOE = 1. Therefore, a large number of blocking arcs strongly affects the optimal solutions for both two problems.

Table 8: The experimental results of MFEA+TS for the TSPPD with 50-x

	U	В	MFEA-NR	MFEA-No-TS	CEA	TS	N	IFEA-TS	
Instances	Best.Sol	gap2[%]	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Aver.Sol	Time
50-1	235981	39.5	154053	165596	149780	149780	142753	143989	12
50-2	254527	39.8	165973	178618	159440	162810	153292	154922	12
50-3	307200	39.7	201297	217357	192497	198705	185198	187143	13
50-4	294542	39.6	190760	209173	183985	190760	177865	181002	12
50-5	257662	39.8	162099	182342	162099	162099	155183	158566	13
50-6	308924	39.2	204144	220970	196568	196568	187909	192160	12
50-7	294258	39.5	192955	208913	187365	190464	178012	178986	13
50-8	306216	39	202690	219642	196240	199396	186844	191385	14
50-9	313625	38.1	210448	227646	197537	197537	194265	201654	13
50-10	324638	39.5	209962	229277	202282	209962	196478	201178	14
50-11	246455	37.7	165159	180273	161487	164395	153437	156565	13
50-12	335069	40	215856	234344	207818	215856	201087	206168	14
50-13	247717	39.7	162230	174830	157271	160374	149420	152678	14
50-14	279986	39.6	183541	197196	177327	178165	169053	174057	14
50-15	288503	39.3	186268	194890	180144	186268	175207	177846	14
50-16	257886	40	166836	181384	162411	165030	154796	159135	13
50-17	272687	40	176673	186684	171214	171214	163691	175282	12
50-18	252800	39.4	165859	178937	160841	163233	153181	156481	14
50-19	276117	39.5	181177	195807	174511	179097	166917	167378	13
50-20	305457	39.9	194246	212230	183547	194246	183547	194854	14

In addition, we compare the optimal solutions for both problems since their priority constraints are included or not. The results in Tables 3 and 4 show that the priority constraints clearly change the optimal solutions for both problems. Specifically, the average difference between them is from 70.18% to 146.51%.

To evaluate the efficiency of our formulations, we run them with larger datasets (Simplified and Southwestern). In Tables 5 and 6, the running time increases exponentially when the number of vertices increases. For example, the formulations spend 0.33 (2.66) seconds for 15 vertices, 1.77 (53.01) seconds for 20 vertices, 4.23 (291.89) seconds for 25 vertices, and 23.91 (591.88) seconds for 30 vertices in Simplified Istanbul. Similarly, the formulations spend 0.41 (2.04), 1.05 (17.64), 6.34 (142.03), and 26.55 (969.28) seconds for 15, 20, 25, and 30 vertices in Southwestern, respectively. In Tables 4 and 5, our formulation can reach the optimal solutions in all cases. Otherwise, Berktas et al.'s formulation cannot find the optimal solutions within the limited time.

We realize that the formulation of the TSPPD consumes less time than the one of the TRPPD. Solving the TSPPD exactly is easier than the TRPPD because of the non-local objective function in the TRPPD [1, 7].

5.4.2. Analysis of the performance of MFEA-TS for TSPPD and TPRPD

Comparisons with Upper Bound and Optimal Value

In this experiment, we evaluate the improvement of the MFEA-TS compared to the optimal value and upper bound. The results can be seen in Tables 7 to 11. The statistical results are shown in Tables 12 to 13.

For small instances, the optimal solutions are found by the proposed formulations. Therefore, the efficiency of the algorithm can be evaluated exactly. Otherwise, the proposed algorithm's efficiency is relatively considered for larger instances. The experimental results in Table 7 show that the proposed MFEA-TS can find the optimal solutions reasonably for all instances with up to 30 vertices in some seconds. For larger

Table 9: The experimental results of MFEA+TS for the TRPPD with 50-x

	U	В	MFEA-NR	MFEA-No-TS	CEA	TS	N	MFEA-TS	
Instances	Best.Sol	gap2[%]	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Aver.Sol	Time
50-1	6080981	39.3	4005300	4325339	3962098	4097709	3692387	3711904	14
50-2	6638406	38.8	4306322	4843049	4306322	4306322	4062897	4081171	12
50-3	7107284	39.8	4628451	5127652	4599701	4741901	4278164	4387289	12
50-4	7966498	39.9	5202904	5757629	5132789	5310755	4788320	4847465	14
50-5	6791026	39.8	4437392	4618240	4381111	4534195	4087043	4099890	12
50-6	8538476	39.7	5489662	6134266	5489662	5489662	5146606	5247384	12
50-7	7263151	39.8	4752153	5214786	4617865	4825016	4373371	4402019	14
50-8	7824652	38.2	5256379	5810213	5139493	5360317	4838545	4951029	12
50-9	6422149	39.1	4101198	4101198	4101198	4101198	3910787	3980310	14
50-10	7246558	40	4538765	4885717	4538765	4745767	4350515	4380405	12
50-11	6299119	39.9	4112925	4555432	4019817	4207351	3788536	3918720	13
50-12	8663625	39.7	5647433	6201197	5586917	5756225	5220605	5235148	13
50-13	6210437	39.5	4078041	4332095	3977327	4108422	3760359	3780892	14
50-14	7354910	39.5	4806887	5326512	4757116	4942263	4453144	4474603	14
50-15	7611028	38.2	5075175	5573050	5054200	5222499	4705136	4809496	12
50-16	6323649	39.8	4130599	4571705	3898364	4219212	3804147	3856347	13
50-17	6811803	37.8	4538371	5097578	4538371	4538371	4239276	4315343	13
50-18	6331719	39.8	4141096	4436108	4086751	4216937	3813681	3869880	14
50-19	7375267	38.9	4879902	5397160	4824263	4924734	4507705	4524135	14
50-20	8394429	39.8	5463200	6077710	5410185	5583490	5057494	5176389	14

instances in Tables 8-11, the improvement of the MFEA-TS upon the UB is significant when the best average values of gap_2 are 32.05% to 31.95% for the TSPPD and TRPPD, respectively. The statistical results in Tables 12 and 13 also indicate the dominance of the MFEA-TS compared to the UB values.

Comparsions with a single-task algorithm

In this experiment, we compare the results between single-task and multi-task algorithms to verify the performance of our multitasking approach. The results can be seen in Tables 8 to 11. The statistical results are shown in Tables 12 to 13.

The result of the CEA is obtained by running the MFEA-TS with the only task. Table 12 shows the ranking of the MFEA-TS is lower than the one of single-task, while Table 13 indicates the MFEA-TS is better than the CEA, and its result is statistically significant. The results show knowledge transfer between two tasks brings benefits.

When multitasking is run with the same number of generations as single-tasking, on average, it only consumes $\frac{1}{k}$ computational effort for each task (k is the number of tasks). Therefore, we consider the worst-case situation when the number of generations for multitasking is k times the one for single-tasking. If multitasking obtains better solutions than single-tasking in this case, we can say that multitasking obtains benefits. The result shows that multitasking obtains better solutions than single-tasking. It indicates the efficiency of knowledge transfer between tasks.

Comparsions with TS algorithm

430

The proposed algorithm based on the MFEA framework allows us to solve two problems simultaneously with knowledge transfer. The TS is incorporated in the framework to improve exploitation capacity. When only TS is used without MFEA, we need to adapt it to solve each problem independently. In this case, there is no knowledge transfer between problems, which is the main focus of this paper. The experimental results

Table 10: The experimental results of MFEA+TS for the TSPPD with 100-x

	U	В	MFEA-NR	MFEA-No-TS	CEA	TS	N	IFEA-TS	
Instances	Best.Sol	gap2[%]	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Aver.Sol	Time
100-1	381273	24.9	301215	335792	307712	314958	286356	288351	133
100-2	367316	23.3	295930	314588	297298	297298	281625	285058	140
100-3	404285	25	318588	324817	324817	324817	303346	307684	139
100-4	351578	24.7	267239	311109	284435	294107	264844	273628	135
100-5	379862	24.8	299173	333407	307199	313130	285820	292382	141
100-6	362385	24.9	285964	315848	291652	301376	272196	273211	145
100-7	423565	24.8	334111	374473	342106	351577	318336	319260	117
100-8	355035	24.7	280606	313433	284367	296501	267209	268802	151
100-9	367533	25	289387	320327	291350	305852	275652	280512	140
100-10	373781	24.9	294798	330197	301385	310397	280800	283709	119
100-11	350967	24.8	277162	309216	277162	277162	263923	270073	123
100-12	417894	24.7	328984	365591	336588	349304	314524	320401	127
100-13	320723	24.7	254104	280130	257449	267007	241527	245390	121
100-14	370816	24.9	286252	325877	298704	308866	278357	279391	118
100-15	348077	24.8	272468	307985	279985	290715	261915	266841	130
100-16	373168	24.2	294548	332628	302914	314245	282951	284870	144
100-17	330501	24.7	248756	290033	248756	268266	248756	266113	128
100-18	356400	24.8	280417	283182	283182	283182	267988	276107	131
100-19	341690	23.7	274149	305380	275517	275517	260714	262321	115
100-20	344006	25	271225	303007	276743	280538	258089	259496	123

Table 11: The experimental results of MFEA+TS for the TRPPD with 100-x

	UI	В	MFEA-NR	MFEA-No-TS	CEA	TS	N	IFEA-TS	
Instances	Best.Sol	gap2[%]	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Best.Sol	Aver.Sol	Time
100-1	19701162	23.2	16611026	17763267	15893159	16800523	15123495	15129263	124
100-2	19041426	24.8	15050709	15050709	15050709	15050709	14320185	14438380	126
100-3	22184417	25	18218171	19398593	17181430	18448881	16642691	16687134	132
100-4	17677320	24.4	14642421	15698945	14068931	14848014	13366215	13419299	143
100-5	19445140	23.4	16336279	17512478	15608839	16539207	14888412	15361077	123
100-6	19043432	24.7	15729728	16614015	14479296	15927717	14336787	14376290	115
100-7	21197212	23.8	17742144	18961402	16924755	17914939	16161999	16200148	149
100-8	18040875	24.9	14743768	15906571	14231592	15042317	13539849	13891184	142
100-9	18395395	24.8	15193776	16277673	14226667	15193776	13839118	14056154	134
100-10	19475134	24.7	16061881	17182678	15395142	16259255	14672566	14677904	117
100-11	17645405	25	13418669	15148845	13418669	13418669	13234577	14066141	135
100-12	21520395	24.8	16854040	19035996	16854040	17978792	16190510	16202579	137
100-13	18268534	24.8	14899620	16127986	14449604	14899620	13733131	13744283	118
100-14	18156978	24.8	14914561	16025364	13652605	15150436	13652605	14587526	127
100-15	17570417	24.7	14446116	15526818	13878303	14672223	13223492	13524377	140
100-16	19615829	23.4	16397486	17617861	15792968	16671890	15017576	15034498	126
100-17	16258585	24.9	12971680	14043818	12204540	12971680	12204540	12778748	147
100-18	18314303	24.2	15172286	15342467	14561872	15342467	13876452	13883402	136
100-19	18417920	24.9	14378858	14378858	14378858	14378858	13839463	15120058	143
100-20	18508123	24.6	15232670	16387122	14681403	15338070	13947650	13958039	152

Table 12: Average rankings achieved by the Friedman, Friedman Aligned, and Quade tests in both the TSPPD and TRPPD

Algorithm		TSPPD			TRPPD	
Aigoriumi	Friedman	Friedman Aligned	Quad	Friedman	Friedman Aligned	Quad
UB	1.00	20.5	1.0	1.0	10.5	0.99
MFEA-NR	3.5	121.0	3.29	3.02	51.7	3.01
MFEA-N-TS	2.02	60.54	2.01	2.0	30.5	1.99
CEA	3.51	121.9	3.71	1.9	71.3	4.02
MFEA-TS	4.96	178.4	4.97	4.0	88.4	4.95

Table 13: The z-values and p-values of the Friedman procedures (MFEA-TS is the control algorithm) in both the TSPPD and TRPPD

;	Algorithm		TSF	PPD			TRI	PPD	
1	Aigorumi	z	p	Holm	Holland	z	p	Holm	Holland
4	UB	11.24	2.50E-29	0.0125	0.012	11.53	8.50E-31	0.0125	0.012
3	MFEA-No-TS	8.20	2.35E-16	0.016	0.017	8.20	2.32E-16	0.016	0.017
2	MFEA-NR	5.37	7.70E-8	0.025	0.025	4.89	9.93E-7	0.025	0.025
1	CEA	3.11	0.0012	0.05	0.050	2.14	0.03	0.05	0.050

Table 14: Comparisons with SA for the TSPPD without priority constraints

n	,	7	1	.5	
Ti I	gap	1[%]	<i>gap</i> ₁ [%]		
Debris removal time	LOW	HIGH	LOW	HIGH	
SA	1.3	2.17	7.3	9.5	
MFEA-TS	0	0	0	0	

are shown in Tables from 8 to 11.

-Tables from 8 to 11 show MFEA-TS obtains better results than TS in both problems for most instances and the results are statistically significant. The results also show the approach based on the MFEA framework takes advantages with knowledge transfer.

5.4.3. Ablation study on MFEA-TS performance

Evaluating the efficiency of selection

In this experiment, we evaluate the ability of the selection operator in the MFEA-TS algorithm to balance knowledge transfer and diversity. The detailed results can be seen in Tables 8 and 11. The statistical results are shown in Tables 12 to 13.

In Tables from 8 to 11, the MFEA-TS obtains better solutions than the MFEA-NR regarding the average *gap* value for both problems. In Table 12, the ranking obtained by the Friedman, Friedman Aligned, and Quade tests strongly suggest the MFEA-TS algorithm has a slower ranking than the MFEA-NR. Table 13 confirms that the MFEA-TS is better than the MFEA-NR, and its result is significant.

Obviously, the proposed selection considering both scalar-fitness and diversity in selecting parents is more effective than the other. The scalar-fitness-based criterion for effectively transferring elite genes between tasks while diversity is important since it becomes a bottleneck against genetic knowledge transfer.

Table 15: Comparisons with MA, and BE for the TRPPD without priority constraints

n			11						15			
Instances	MA		BE		MFEA	-TS	MA		BE		MFEA	-TS
Ilistances	gap ₁ [%][%]	Time	$gap_1[\%][\%]$	Time	$gap_1[\%]$	Time	$gap_1[\%]$	Time	$gap_1[\%]$	Time	$gap_1[\%]$	Time
K1	0	0.5	0	345.3	0	0	7.8	29.7	64.2	-	0	1
K2	0	0.4	0	419.7	0	0	7.4	27.9	52	-	0	1
K3	0	0.4	0	254	0	0	6	28.3	67.8	-	0	1
K4	0	0.5	0	321	0	0	4.6	28.9	63.5	-	0	1
K5	0	0.5	0	319.3	0	0	4.6	28.4	63.4	-	0	1
K6	0	0.5	0	380.8	0	0	3.2	22.8	64.5	-	0	1
K7	0	0.4	0	1213.7	0	0	6	29.1	67.9	-	0	1
K8	0	0.4	0	683.9	0	0	4.7	24.6	49.5	-	0	1
K9	0	0.4	0	605.1	0	0	5.1	27.8	64.9	-	0	1
K10	0	0.4	0	477.3	0	0	2.6	26.4	64	-	0	1
K11	0	0.6	0	604.4	0	0	5	25.8	68.6	-	0	1
K12	0	0.4	0	677.9	0	0	3.4	26.2	67.3	-	0	1
K13	0	0.4	0	651.5	0	0	3.9	29.1	65.8	-	0	1
K14	0	0.3	0	413.5	0	0	3.5	24.3	54.1	-	0	1
K15	0	0.5	0	831.4	0	0	4.2	27.4	63.7	-	0	1
K16	0	0.5	0	1236.4	0	0	4.7	24.9	72	-	0	1
K17	0	0.5	0	573.9	0	0	5.4	24.2	67.6	-	0	1
K18	0	0.6	0	660.9	0	0	5.9	23.2	60.1	-	0	1
K19	0	0.5	0	508.2	0	0	2.1	24	67.3	-	0	1
K20	0	0.5	0	536	0	0	6.7	21.5	58.8	-	0	1
average		0.5		585.7		0	4.9	26.2	63.4			1

Table 16: The comparison with other algorithms with TRP-50-x

Instances	С	PT	Y	Ά	О	A	В	P	MFE	A-TS	1	A-TS opt)
instances	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP
	131	INF	best.sol									
TRP-50-1	602	12198	641	13253	634	13281	610	12330	608	12198	608	12198
TRP-50-2	549	11621	583	12958	560	12543	560	11710	549	11621	549	11621
TRP-50-3	584	12139	596	13482	596	13127	592	12312	584	12139	584	12139
TRP-50-4	603	13071	666	14131	613	15477	610	13575	603	13575	603	13575
TRP-50-5	557	12126	579	13377	578	14449	557	12657	557	12126	557	12126
TRP-50-6	577	12684	602	13807	600	13601	588	13070	577	12684	577	12684
TRP-50-7	534	11176	563	11984	555	12825	547	11793	534	11176	534	11176
TRP-50-8	569	12910	629	14043	609	13198	572	13198	569	12910	569	12910
TRP-50-9	575	13149	631	14687	597	13459	576	13459	575	13149	575	13149
TRP-50-10	583	12892	604	14104	602	13638	590	13267	583	12892	583	12892
TRP-50-11	578	12103	607	13878	585	12124	585	12124	578	12103	578	12103
TRP-50-12	500	10633	521	11985	508	11777	604	11305	500	10633	500	10633
TRP-50-13	579	12115	615	13885	601	13689	587	12559	579	12115	579	12115
TRP-50-14	563	13117	612	14276	606	14049	571	13431	563	13117	563	13117
TRP-50-15	526	11986	526	12546	526	12429	526	12429	526	11986	526	11986
TRP-50-16	551	12138	577	13211	564	12635	551	12417	551	12138	551	12138
TRP-50-17	550	12176	601	13622	585	13342	564	12475	550	12475	550	12475
TRP-50-18	603	13357	629	14750	625	14108	603	13683	603	13683	603	13683
TRP-50-19	529	11430	595	12609	594	12899	539	11659	529	11430	529	11430
TRP-50-20	539	11935	585	13603	575	12458	539	12107	539	11935	539	11935

Evaluating the *rmp* **values**

In this experiment, the changes of the *rmp* values are evaluated. We choose some instances (K1-30, K6-

Table 17: The comparison with other algorithms with TRP-100-x

Instances	ОРТ	KBS	Y	'A	О	PΑ	В	P	MFE	A+TS		A-TS opt)
Histalices	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP	TSP	TRP
	131	IKF	best.sol									
TRP-100-1	762	32779	830	36012	806	36869	791	35785	767	34629	767	33242
TRP-100-2	771	33435	800	39019	817	37297	782	35546	782	35546	782	33929
TRP-100-3	746	32390	865	38998	849	34324	767	34324	748	33734	748	33734
TRP-100-4	776	34733	929	41705	897	38733	810	37348	785	36655	785	35612
TRP-100-5	749	32598	793	40063	899	37191	774	34957	757	36899	757	34352
TRP-100-6	807	34159	905	40249	886	40588	854	36689	838	35469	838	35469
TRP-100-7	767	33375	780	38794	849	39430	780	35330	767	34989	767	34733
TRP-100-8	744	31780	824	38155	845	35581	763	34342	744	33265	744	33265
TRP-100-9	786	34167	863	39189	858	41103	809	35990	786	35625	786	35625
TRP-100-10	751	31605	878	36191	831	37958	788	33737	751	33390	751	32879
TRP-100-11	776	34188	831	39750	876	41153	814	36988	776	36815	776	35245
TRP-100-12	797	32146	855	39422	855	40081	823	34103	797	32146	797	32146
TRP-100-13	753	32604	772	37004	772	40172	771	35011	753	32604	753	32604
TRP-100-14	770	32433	810	40432	810	36134	800	34576	770	32433	770	32433
TRP-100-15	776	32574	953	38369	878	38450	810	35653	776	32574	776	32574
TRP-100-16	775	33566	838	40759	835	38549	808	36188	775	33566	775	33566
TRP-100-17	805	34198	939	39582	881	42155	838	36969	805	34198	805	34198
TRP-100-18	785	31929	876	38906	836	37856	814	34154	785	31929	785	31929
TRP-100-19	780	33463	899	39865	881	40379	797	35669	780	35669	780	34649
TRP-100-20	775	33632	816	41133	905	40619	808	35532	775	35532	775	35532

Table 18: Average rankings achieved by the Friedman, Friedman Aligned, and Quade tests in both the TSPPD and TRPPD

Algorithm		TSPPD			TRPPD	
Aigorium	Friedman	Aligned Friedman	Quade	Friedman	Aligned Friedman	Quade
YA	3.85	64.35	3.89	3.75	64.55	3.66
OA	2.89	50.65	2.86	3.14	54.94	3.24
MFEA	2.075	29.47	2.16	2.02	29.27	2.02
MFEA-TS	1.175	17.52	1.07	1.075	13.22	1.06

Table 19: The z-values and p-values of the Friedman procedures ((MFEA-TS is the control algorithm) in both the TSPPD and TRPPD

i	i Algorithm		TSI	PPD			TRI	PPD	
ι	Aigorium	z	p	Holm	Holland	z	p	Holm	Holland
3	YA	6.55	5.66E-11	0.016	0.016	6.55	5.66E-11	0.016	0.016
2	OA	4.22	2.38E-5	0.025	0.025	5.08	3.72E-5	0.025	0.025
1	MFEA	2.20	0.027	0.05	0.05	2.32	0.02	0.05	0.05

30, K11-30, and K16-30) to visualize the changes of *rmp* over successive generations. The result is shown in Figure 4. In Figure 4, the horizontal axis is the number of generations while the vertical axis is the *rmp* value.

Figure 4 indicates the changes of *rmp* value over 100 generations. A larger *rmp* encourages knowledge transfer between tasks because the knowledge transfer may be positive. Conversely, the smaller value shows a reduction in knowledge transfer when the transfer may be negative. It is the benefit of dynamic *rmp* in the

Table 20:	Average re-	culte for	algorithme	in T	SP and TRP
Table 20.	Average re	suns ioi	argoriumis	111 1	or and inc

	T	SP	TRP	
Algorithms	gap_1		gap_2	
	TRP-50-x	TRP-100-x	TRP-50-x	TRP-100-x
SA+ST	-	-	-6.87%	-10.54%
SA+MT	-	-	-9.67%	-11.56%
MS	-	-	-11.01%	-13.00%
TS-VNS	-	-	-11.01%	-13.00%
MFEA-TS	-	-	-11.01%	-9.57%
MFEA-TS	0.00%	0.00%	-11.01%	-10.90%
(using 3-opt)	0.00%			

proposed algorithm.

60 Evaluating the balance between exploration and exploitation

Generally speaking, algorithms get stuck into local optimum because there is a lack of balance between exploration and exploitation. Exploration helps the search to explore extension spaces on a global scale, while exploitation helps the search to focus on local space by exploiting the information that a current solution is reached in this space. In this experiment, the balance between exploration and exploitation is considered. To study the ability to balance exploration and exploitation of the search space, we implement an experimental study on the distribution of locally optimal solutions. We choose two instances (sw-50-1, and sw-50-2) to perform one execution of our algorithm and record the distinct local optima encountered in some generations. We then plot the normalized tour's cost versus its average metric distance to all other local minima (the distance metric and its average is defined in Section 3.1). The results are illustrated in Figures 5 to 8. The black "x" points indicate the result of the MFEA, while the red "x" points show the results of the TS. The normalized cost can be used as follows:

$$\overline{f_j} = \frac{(f_j - f_{min})}{(f_j^{max} - f_j^{min})},\tag{22}$$

where j = 1, 2 is the j-task and f_j^{min} , f_j^{max} are the minimum and maximum cost values for all runs, respectively.

Figures 5 to 8 show that the black "x" points are spread quite widely, which implies that our algorithm has the power to search over a wide region of the solution space. It is the capacity for exploration of the MFEA. On the other hand, the red "x" points are concentrated in the regions containing the good solution space. It shows the search tends to exploit the good solution spaces explored by the MFEA. It is the exploitation capacity of the TS. As a result, the algorithm maintains the right balance between exploration and exploitation.

In Tables 8 and 9, the original MFEA column is the results of the MFEA without the TS (MFEA-No-TS), while the MFEA-TS column is the results of the proposed MFEA-TS. The statistical results are shown in Tables 10 to 11. In Tables 8 and 9, for both problems, the proposed MFEA-TS obtains much better solutions than the MFEA-No-TS on average *gap* value. The ranking obtained in Tables 10 and 11 strongly suggests the significant differences in comparison with the MFEA-No-TS. Table 9 shows that MFEA-TS outperforms the MFEA-No-TS in the level of significance. It indicates that tabu lists prevent the search from getting trapped in a cycle. It enhances the ability to exploit good solution spaces.

Figure 4: The average rmp values over generations

5.4.4. Analysis of the generalization of our MFEA-TS for TSPPD and TRPPD without priority constraints

We adopt the MFEA-TS algorithm to solve the TSPPD and TRPPD simultaneously without priority constraints. Therefore, we can compare our results with MA [3], BE [10], and SA [29] directly. The results are presented in Tables 14 and 15. The results of MA [3] and BE [10] are extracted from [3] while we coded the heuristic SA in [29] and ran it on the same dataset.

In Table 14, the average gap_1 of SA is from 1.3% to 9.5% for low and high debris removal time, respec-

Figure 5: The average distance to the other local optima in 50-1 instance (TSPPD)

tively. On the other hand, our average gap_1 is always 0 in all cases. Obviously, MFEA-TS obtains better results than SA [29].

In Table 15, for the instances with 11 critical vertices, three algorithms obtain the optimal solutions in all cases. However, our average running time is much better than the others. In the instances with 15 critical vertices, our solution results still outperform the others when our algorithm obtains the optimal solutions in all cases, while the average MA, and BE's gap_1 is 4.9%, and 63.4%, respectively. Obviously, the proposed algorithm applied to the two variants well.

5.4.5. Analysis of the generalization of our MFEA-TS for TSP and TRP

In the experiment, we show the generalization of the proposed algorithm by solving two problems such as TSP and TRP though it is not developed to solve them. For TSP and TRP, many effective algorithms [5, 7, 24, 28, 30, 35, 43] were proposed to solve in the literature. We divide them into two types: 1) algorithms [7, 28, 30, 43] were developed to solve each problem independently and separately; 2) algorithms based on MFEA approach [5, 24, 35] to solve two problems at the same time.

Comparisons with algorithms based on MFEA

We adopt the MFEA-TS algorithm to solve TSP and TRP problems simultaneously. Tables 16 and 17 compare our results to BP [5], OA [24], and YA [35] in both the TSP and TRP problems. To compare fairly, we fix the maximum number of fitness function evaluations. In this work, the maximum number of fitness evaluations is $2 \times n \times 10^4$. All algorithms are run with the same maximum number of fitness evaluations.

Figure 6: The average distance to the other local optima in 50-1 instance (TRPPD)

The average gap between our result and the optimal value is below 2.59%. It indicates that our solutions are near-optimal ones. In addition, the MFEA-TS algorithm obtains the optimal solutions for the instances with up to 76 vertices. Obviously, the MFEA-TS solves well in the case of the TSP and TRP.

500

-A non-parametric test (Friedman, Aligned Friedman, and Quad test) is carried out in the group of the algorithms ([5], OA [24], and YA [35]) to check if a significant difference between them is found. Table 18 illustrates the rankings achieved by the Friedman, Aligned Friedman, and Quade tests. The results show significant differences between the algorithms. Because the other algorithms have a larger ranking, the MFEA-TS is selected as the control algorithm. After that, we compare the control algorithm with the others by statistical tests. Table 19 shows the MFEA-TS outperforms the remaining algorithms with a level of significance $\alpha = 0.05$.

The OA and YA were developed based on the MFEA framework. The exploration ability of the MFEA is shown well (in Section 5.6, we indicate good exploration ability of the MFEA). Nevertheless, there is a lack of a mechanism to exploit the good solution space explored by the MFEA. Therefore, these algorithms cannot effectively balance exploration and exploitation. Recently, BP has successfully applied the MFEA with RVNS. The algorithm obtains better solutions than the OA and YA because of better exploration and exploitation balance. However, the search can return the explored solution space, and the BP may get stuck into local optima. The MFEA-TS not only maintains the exploration and exploitation balance by combining the MFEA and TS but also prevents the search from getting trapped into a cycle by using Tabu list. Therefore, the chance of finding better solutions is higher than the others.

Figure 7: The average distance to the other local optima in 50-2 instance (TSPPD)

Comparisons with the other algorithms

520

In fact, comparison between the proposed algorithm and the algorithms in [7, 28, 30, 43] is not actually fair because these algorithms are developed to solve a specific problem but they cannot solve two problems well at the same time. In [5, 28], they also showed that efficient algorithms for TSP may not be good for TRP. They tested two algorithms on the same instances. On average, the optimal solution for TSP using the TRP objective function is 18% worse than the optimal solution for TRP. Similarly, the optimal solution for TRP using the TSP objective function is 15% worse than the optimal solution for TSP. On the other hand, if our results are good on average for TSP and TRP at the same time, we say that the proposed algorithm for multitasking is beneficial.

In the case of TSP and TRP, to exploit better solution space, additional neighbourhoods are used. We consider additional neighborhoods with larger sizes such as 3-opt, 4-opt though the complexity of time to explore these neighborhoods consumes much time in the general case. The reasons to explain why we consider their use in improving exploitation capacity are as follows: For TSP and TRP, the main operation in exploring these neighborhoods is the calculation of a neighboring solu cost. In a straightforward way, it takes O(n) time. In [7, 30], by using the known cost of the current solution, we show that it can be done in constant time. Therefore, the fitness evaluations do not completely dominate the internal workings of the algorithm. Moreover, for TSP and TRP, all solutions are feasible and checking feasibility is not necessary. Therefore, the running time of the proposed algorithm in the case of TSP and TRP is not too time-consuming. Nevertheless, in the pilot study, 4-opt requires much time to run but it does not bring any benefit. To balance between

Figure 8: The average distance to the other local optima in 50-2 instance (TRPPD)

running time and solution quality, we only use 3-opt. By using 3-opt, we use nine neighborhoods in total. To compare directly to algorithms in [7, 28, 30, 43], another termination criterion is used. The algorithm stops if no improvement is found after 50 loops. The same termination criteria are also used in [7, 28, 30].

-In Tables 16 and 17, MFEA-TS and MFEA-TS with 3-opt columns are our algorithms without or with using 3-opt. The average results are shown in Table 20. In TRP, *UB* is the result of the nearest neighbor heuristic [28] while the optimal solutions in TSP come from Concord Tool [43]. The results show that MFEA-TS and MFEA-TS with 3-opt are comparable with the state-of-the-art algorithms for TRP while they obtain the optimal solutions for all instances in TSP. Reaching good solutions simultaneously for both two problems indicates that the proposed algorithm is beneficial.

6. Conclusions

Compared to the previous MFEA frameworks in the literature, the proposed scheme consists of new features. Firstly, we propose two formulations to solve the TSPPD and TRPPD. The formulations can solve the instances with up to 30 vertices exactly. Secondly, we propose a new selection operator that balances skill-factor and population diversity. The skill-factor effectively transfers elite genes between tasks, while diversity in the population is important when it meets a bottleneck against the information transfer. Thirdly, a multiple crossover scheme helps the proposed algorithm to maintain diversity. The combination of the MFEA with the TS has good transferrable knowledge between tasks from the MFEA and the ability to

exploit good solution spaces from the TS. Extensive numerical experiments on benchmark instances show that our formulations find the optimal solutions for two problems with 30 vertices simultaneously. For larger instances, the MFEA-TS obtains better solutions than the state-of-the-art MFEA in many cases. However, the running time needs to be improved and we leave the further improvements in the future works.

Acknowledgment

This research was funded by Vingroup Innovation Foundation (VINIF) under project code VINIF.2022.DA00183.

References

- [1] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, The time-dependent traveling salesman problem: polyhedra and algorithm, J. Mathematical Programming Computation, Vol. 5, 2013, pp. 27-55.
- [2] D.L. Applegate, R.E. Bixby, V. Chvatal and W.J. Cook, The Traveling Salesman Problem: a Computational Study, Princeton University Press, 2006.
 - [3] M. Ajam, V. Akbari, F. Sibel Salman, Minimizing latency in post-disaster road clearance operations, J. European Journal of Operational Research, Vol. 277, No. 3, 2019, pp. 1098-1112.
 - [4] V. Akbari, and F. S. Salman, Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity, J. European Journal of Operational Research, 257(2), 2017, pp. 625–640.
 - [5] Ha-Bang Ban, and Dang-Hai, Pham. Multifactorial Evolutionary Algorithm for Simultaneous Solution of TSP and TRP, J. CAI, Vol. 40, No.6, 2022, pp. 1370–1397.
 - [6] Ha-Bang Ban, K. Nguyen, M.C. Ngo and D.N. Nguyen, An efficient exact algorithm for Minimum Latency Problem. J. Information Progress, Vol. 10, 2013, pp. 167–174.
- [7] Ha-Bang Ban, Duc-Nghia Nguyen, A Meta-Heuristic Algorithm Combining Between Tabu and Variable Neighborhood Search for the Minimum Latency Problem, J. Fundamenta Informaticae, Vol. 156, No. 1, pp. 21-41, 2017.
 - [8] Ha-Bang Ban, Applying Metaheuristic for Time-Dependent Traveling Salesman Problem in Postdisaster, International Journal of Computational Intelligence Systems, Vol. 14, No. 1, 2021, pp. 1087-1107.
- [9] K.K. Bali, Y.S. Ong, A. Gupta, P.S. Tan, Multifactorial evolutionary algorithm with online transfer parameter estimation: Mfea-II, J. IEEE Trans Evol Comput, Vol. 24, No.1, 2019, pp. 69–83.
 - [10] N. Berktas, B.Y. Kara, and O.E. Karaşan, Solution methodologies for debris removal in disaster response, EURO J. Comput. Optim., Vol. 4, 2016, pp. 403-445.
 - [11] K. Boese, "Cost Versus Distance In the Traveling Salesman Problem", 1995.
- ⁵⁸⁵ [12] M. Çelik M, O. Ergun, and P. Keskinocak, The post-disaster debris clearance problem under incomplete information. Oper Res 63(1), 2015, pp. 65–85.
 - [13] G. D'Angelo, F. Palmieri, GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems, J. Information Sciences, Vol. 547, 2021, pp. 136-162.

[14] M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem, J. IEEE Trans. Evol. Comput, 1(1), 1997, pp. 53–66.

590

- [15] T. A. Feo, and M.G.C. Resende, Greedy Randomized Adaptive Search Procedures, J. Global Opt., 1995, pp. 109-133.
- [16] G. Fetter, T. Rakes, Incorporating recycling into post-disaster debris disposal. Soc Econ Plan Sci, 46(1), 2012, pp. 14–22.
- [17] B. Gavish, S. Graves, The traveling salesman problem and related problems, Working Paper GR-078-78, Operations Research Center, Massachusetts Institute of Technology.
 - [18] A. Gupta, Y.S. Ong, L. Feng, Multifactorial evolution: toward evolutionary multitasking, J. IEEE Trans Evol Comput, Vol. 20, No. 3, pp. 343–357, 2016.
- [19] D. Hains, D. Whitley, and A. Howe, Revisiting the big valley search space structure in the TSP, J. ORS, Vol. 62, No. 2, 2011, pp. 305-312.
 - [20] A. Lucena, Time-dependent traveling salesman problem the deliveryman case, J. Netw., Vol. 20, 1990, pp. 753-763.
 - [21] Y. C. Lian, Z. X. Huang, Y. R. Zhou, Z. F. Chen, Improve theoretical upper bound of Jumpk function by evolutionary multitasking, Proc. HPCCT, pp. 22–24, 2019, pp. 44–50.
- [22] C. Malandraki and M. Daskin, Time dependent vehicle routing problems: formulations, properties and heuristic algorithms, J. Transp. Sci. 26, 1992, pp. 185–200.
 - [23] N. Mladenovic, P. Hansen, Variable Neighborhood Search, J. Computers and Operations Research, Vol. 24, No. 11, 1997, pp.1097-1100.
- [24] E. Osaba, A.D. Martinez, A. Galvez, A. Iglesias, J. Del Ser, dMFEA-II: An Adaptive Multifactorial
 Evolutionary Algorithm for Permutation-based Discrete Optimization Problems, Proc. GECCO, pp. 1690–1696, 2020.
 - [25] E. Osaba, E. Onieva, R. Carballedo, F. Diaz, and A. Perallos, An adaptive multi-crossover population algorithm for solving routing problems, G. Terrazas, F. Otero, and A. Masegosa (editors), Nature Inspired Cooperative Strategies for Optimization (NICSO 2013), Springer, Cham, Switzerland, Vol. 512, 2013, pp. 113-125.
 - [26] A. Otman, and A. Jaafar, A Comparative Study of Adaptive Crossover for Genetic Algorithms to Resolve the Traveling Salesman Problem, J. Computer Applications, Vol. 31, No. 11, pp. 49-57, 2011.
 - [27] A. Pramudita, E. Taniguchi, AG. Qureshi, Location, and routing problems of debris collection operation after disasters with a realistic case study, Proc. Soc Behav, 2014, pp. 445–458.
- [28] A. Salehipour, K. Sorensen, P. Goos, and O. Braysy, Efficient GRASP+VND and GRASP+VNS metaheuristics for the traveling repairman problem, J. Oper. Res., Vol. 9, 2011, pp. 189-209.
 - [29] H. Sahina, B.Y. Karab, and O.E. Karasanb, Debris removal during disaster response: a case for Turkey, J. Socio-Econ. Plan. Sci., Vol. 53, 2016, pp. 49-59.

- [30] M. Silva, A. Subramanian, T. Vidal, and L. Ochi, A simple and effective metaheuristic for the minimum latency problem, J. Oper. Res., Vol. 221, 2012, pp. 513-520.
 - [31] L. Shuanglin, Ma. Zujun, T. L. Kok, A new model for road network repair after natural disasters: Integrating logistics support scheduling with repair crew scheduling and routing activities, J. Computers Industrial Engineering, Vol. 145, 2020, 106506.
 - [32] E. G. Talbi, Metaheuristics: from design to implementation, NewJersey, Wiley, 2009.

- [33] C. R. Reeves, Landscapes, operators and heuristic search, Annals of Operations Research, Vol. 86, No. 0, 1999, pp. 473-490.
 - [34] K. Ruland, Polyhedral solution to the pickup and delivery problem. Ph.D. thesis, Washington University, Saint Louis, MO, 1995.
- [35] Y. Yuan, Y.S. Ong, A. Gupta, P.S. Tan, H. Xu, Evolutionary multitasking in permutation-based combinatorial optimization problems: realization with tsp, qap, lop, and jsp, Proc. TENCON, 2016, pp. 3157-3164.
 - [36] Q. Xu, N. Wang, L. Wang, W. Li, and Q. Sun, "Multi-Task Optimization and Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review, J. Mathematics, 9 (864), 2021, pp. 1-44.
- [37] J. Carrasco, S. Garcia, S. Rueda, and F. Herrera, Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review, J. Swarm and Evolutionary Computation, 100665 (2020).
 - [38] T. B. Thang, T. C. Dao, N. H. Long, and H. T. T. Binh, Parameter adaptation in multifactorial evolutionary algorithm for many-task optimization, J. Memetic Computing, 13(4), 433-446.
- [39] T. B. Thang, N. B. Long, N. V. Hoang, and H. T. T. Binh, Adaptive Knowledge Transfer in Multifactorial Evolutionary Algorithm for the Clustered Minimum Routing Cost Problem, J. Asoc, 105 (3), 2021, pp. 1-10.
 - [40] R. Wong, Integer programming formulations of the traveling salesman problem, Proc. circuits and computers, Vol. 149, 1980.
 - [41] Disaster Year in Review 2019, Cred Crunch, 2020, pp. 1-2. No. 58, Centre For Research On The Epidemiology Of Disasters (Cred) https://cred.be/sites/default/files/CC58.pdf.
 - [42] https://docs.google.com/spreadsheets/d/11aDWCwXz8Egn8b2URmGOdwZmGSPm1CKo/editgid=1987736922.
 - [43] https://www.math.uwaterloo.ca/tsp/concorde.html

Appendix A. The global search structure

660

Figure 9: The metric distance to the optimal solution in MLP-20-1 instance.

Figure 10: The global search structure and cycle issue.

In this paper, we investigate the global structure of solution space by selecting a representative instance (such as MLP-20-1 instance [28]) and applying Variable Neighborhood Search (VNS) on the instance. We give a definition of a measure of distance between two tours T_1 and T_2 of the problem. Naturally, the distance is defined as the minimum number of transformations from T_1 to T_2 , denoted $d(T_1, T_2)$. Since there is no polynomial algorithm to compute $d(T_1, T_2)$, we define $d(T_1, T_2)$ to be n minus the number of vertices with the same position in both T_1 and T_2 [11].

The result of the global structure investigation is shown in Figure 9. In this figure, the x-axis is the evaluation of the local optimum, while the y-axis is the distance from the global optimum as measured

by the metric distance. The neighborhoods seem to have a big-valley structure in which the evaluation of solutions is positively correlated to the metric distances. The big valley structure often has a big valley in which local optima are spread and surround the global optimum. In Figure 10, we also realize that the search can return the previous solution spaces explored before (cycle issue). The global structure investigation and cycle issue suggest that a good balance of exploration and exploitation, e.g. by combining the TS and MFEA, is needed. The MFEA explores extensive local optima, while the TS is attracted to the big valley area by not only exploiting good solution spaces but also preventing the search from getting trapped into cycles.