

operating systems Introduction

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

What do Operating Systems do?

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

Course Syllabus - Unit 1

UNIT 1: Introduction and Process Management

Operating-System Structure & Operations, Kernel Data Structures, Computing Environments, Operating-System Services, OperatingSystem Design and Implementation. Process concept: Process in memory, Process State, Process Control Block, Process Creation and Termination, CPU Scheduling and Scheduling Algorithms, IPC – Shared Memory & Message Passing, Pipes – Named and Ordinary. Case Study: Linux/Windows Scheduling Policies.

Course Outline

Class No.	Chapter Title / Reference Literature	Topics to be covered	% of Portions covered	
			Reference chapter	Cumulative
1	1.1-1.2	What Operating Systems Do, Computer-System Organization?	1	21.4
2	1.3,1.4,1.5	Computer-System Architecture, Operating-System Structure & Operations	1	
3	1.10,1.11	Kernel Data Structures, Computing Environments	1	
4	2.1,2.6	Operating-System Services, Operating System Design and Implementation	2	
5	3.1-3.3	Process concept: Process in memory, Process State, Process Control Block, Process Creation and Termination	3	
6	5.1-5.2	CPU Scheduling: Basic Concepts, Scheduling Criteria	5	
7	5.3	Scheduling Algorithms: First-Come, First-Served Scheduling, Shortest-Job-First Scheduling	5	
8	5.3	Scheduling Algorithms: Shortest-Job-First Scheduling (Pre-emptive), Priority Scheduling	5	
9	5.3	Round-Robin Scheduling, Multi-level Queue, Multi-Level Feedback Queue Scheduling	5	
10	5.5,5.6	Multiple-Processor Scheduling, Real-Time CPU Scheduling	5	
11	5.7	Case Study: Linux/Windows Scheduling Policies	5	
12	3.4,3.6.3	IPC – Shared Memory & Message Passing, Pipes – Named and Ordinary	3,6	

Topic Outline

What is an Operating System?

A program that acts as an intermediary between user
 & computer H/W

- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Operating System Structure

OS_Interface_Layer

OS_Implementation Layer

Hardware_Interface_Layer

H_Implementation_L

7 of 12

What Operating Systems Do (User View)?

- User View
 - Users want convenience, ease of use and good performance
 - Users as such Don't care about resource utilization
 - Shared mainframe/minicomputers need to fairly cater to all users
 - Workstations with dedicated resources frequently share resources of servers
 - Handheld systems are resource poor, optimized for usability and battery life
 - Embedded & mobile systems have little or no user interface

What Operating Systems Do (System View)?

- Systems View
 - OS is a resource allocator, Manages all resources
 - Decides between conflicting requests for efficient & fair use
 - OS is a control program
 - Controls execution to prevent errors and improper Use

Operating System Definition

- No universally accepted definition
- "Everything a vendor ships with operating system bundle"
- "Kernel program running at all times on the computer"
- Everything else is either
 - a system program
 - Ships with the operating system
 - an application program

Topics Uncovered in this Session

What do Operating Systems do ?

THANK YOU

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

nitin.pujari@pes.edu

For Course Deliverables by the Anchor Faculty click on www.pesuacademy.com