

Model Optimization and Tuning Phase

Date	10 July 2024
Team ID	SWTID1720078683
Project Title	Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognitions
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	[44]: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import RandomizedSearchCV [45]: dec = DecisionTreeClassifier() [46]: parm_grid = {	positions arranged (characterisans) and (d) to the second (characterisans) and the second (characterisans) are characterisans (characterisans).
Random Forest	from sklearn.model_eelection import RandomirorestClassifier from sklearn.model_eelection import RandomizedSearchCV rf = RandomforestClassifier() param_grid = { 'n_estimators': [50, 100, 200], 'criterion': ['gini', 'entropy'], 'max_depth': [Nome, 10, 20, 30], 'min_samples_plat': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], } rf = RandomizedSearchCV(rf, param_grid, cv:s) rf.fit(x_train,y_train) RandomiredSearchCV -estimator: RandomForestClassifier -RandomForestClassifier	profiles property (state (property and an an all profiles and an a

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric		
	rep_dc = classification_report(y_test,y_predict) print(rep_dc) precision recall f1-score support		
Decision Tree	0 1.00 1.00 1.90 123 1 1.00 1.00 1.00 125 accuracy 1.00 248		
	macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248		
confusion_matrix(y_test,y_predict) array([[123, 0],			
	rep_rf = classification_report(y_test,y_predict) print(rep_rf) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.0 125		
Random Forest	accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248 confusion_matrix(y_test,y_predict)		
<pre>confusion_matrix(y_test,y_predict) array([[223, 0],</pre>			
	<pre>rep_6B = classification_report(y_test,y_predict) print(rep_6B)</pre>		
Gradient Boosting	precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125		
	accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248		
	<pre>confusion_matrix(y_test,y_predict) array([[123, 0],</pre>		
	t of 1231), depresances		

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Gradient Boosting model was selected for its superior
	performance, exhibiting high accuracy during hyperparameter tuning.
	Its ability to handle complex relationships, minimize overfitting, and
	optimize predictive accuracy aligns with project objectives, justifying
Gradient Boosting	its selection as the final model