Reg No.					

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of MAHE- Deemed University) MANIPAL-576104

2

3

2

3

V SEMESTER B.E. (COMPUTER SCIENCE AND ENGG) SUBJECT: THEORY OF COMPUTATION (CSE 301)

21st November 2008

TIME: 3 HOUR MAX .MARKS : 50

Answer any five full questions Missing data may be assumed suitably.

- 1. A. Prove that a binary tree of height n has at most 2ⁿ leaves.
 - B. Find grammars for $\Sigma = \{a,b\}$ that generate the sets of i)all strings with exactly one a.
 - ii)all strings with no more than three a's
 - C. Minimize the following finite automata.

δ a b В F A В G \mathbf{C} *C G Α D C G E Η F F \mathbf{C} G G G Е Η G C

- D. Construct a DFA to accept strings of 0's,1's and 2's starting with 0 followed by odd number of 1's followed at ending with 2.
- 2. A. Find all strings in L((a+b)*b(a+ab)*) of length less than four.
 - B. Let r be a regular expression. Then there exists some NFA that accepts L(r). Consequently L(r) is regular language. Prove this theorem.
 - C. Construct right and left linear grammar for the following language.

$$L=\{a^nb^m:n>=2,m>=3\}$$

D. Define right quotient of two languages.Let L1=L(a*baa*) ,L2=L(aba*).Find L1/L2.	2
3. A. Give an example for an ambiguous grammar and explain why it is ambiguous.	3
B. Eliminate λ -productions and unit productions from the following grammar.	3
$S \rightarrow aAB bB A \rightarrow aB \lambda B \rightarrow bA A a$	
C. Define Chomsky Normal Form. Obtain the CNF grammar for the following.	4
$S \rightarrow aSb ab Aa B$ $A \rightarrow abb$ $B \rightarrow bB b$	
4. A. Define instantaneous description for an nondeterministic push down automata.	1
B. Construct an deterministic PDA to accept $L=\{wcw^R:w\in\{a,b\}^*\}$.	4
C.Prove for any context free language L,there exists an NPDA M such that L=L(M).	5
5. A.Give formal definition for a Turing machine and the language accepted by a TM.	2
B. Construct a TM to accept $L=\{a^nb^{2n}c^n:n\geq 1\}$.	5
C. Define TM with semi-infinite tape. Show that the class of semi-infinite tape Turing m	nachines
are equivalent to the class of standard Turing machines.	3
6. Write short notes on the following.	
A. Recursive and Recursively enumerable languages.	2
B. Linear bounded automata.	3
C. Unrestricted grammar.	2
D. Universal TM.	3
