

- Def. Tour (Hamiltonian circuit):
 - A path from a vertex to itself that passes through each of the other vertices exactly once.
- Def. Optimal tour (in a weighted digraph)
 - A tour of minimum length
- Def. TSP
 - Find an optimal tour starting at v₁
- Brute-force method
 - Consider all possible tours
 - \bullet (n-1)(n-2) ... 1 = (n-1)!

Principle of optimality applies?

$$\underbrace{v_1 \rightarrow v_k}_{\text{may not be shortest}} \xrightarrow{\text{shortest}} v_1 \text{ optimal}$$

Figure 3.17 The adja-		1	2	3	4
cency matrix representa- tion W of the graph in		0	2	9	∞
Figure 3.16.	2	1	0	6	4
	3	∞	7	0	8
	4	6	3	∞	0

Solution process (1/2)

W: weight(adjacency) matrix

$$A \subseteq V$$
, $V = \text{set of all the vertices}$

 $D[v_i][A]$: length of a shortest path from v_i to v_1 passing through each vertex in A exactly once.

Want :
$$D[v_1][V - \{v_1\}]$$

Example 3.10 – See Fig. 3.16 $D[v_2][\{v_3\}] = length[v_2, v_3, v_1] = \infty$ $D[v_2][\{v_3, v_4\}]$ $= \min(length[v_2, v_3, v_4, v_1], length[v_2, v_4, v_3, v_1])$ $= \min(20, \infty) = 20$

$$D[v_1][V - \{v_1\}] = \min_{2 \le j \le n} (W[1][j] + D[v_j][V - \{v_1, v_j\}])$$

Solution process (2/2)

In general $v_i \notin A$, $i \neq 1$

$$D[v_i][A] = \min_{v_j \in A} (W[i][j] + D[v_j][A - \{v_j\}]) \text{ if } A \neq \emptyset$$

$$D[v_i][\emptyset] = W[i][1]$$

Computing order

$$|A| = 0, |A| = 1, \cdots$$

- Determine an optimal tour for the graph in Fig. 3.17
- First consider the empty set: $D[v_2][\emptyset] = 1$, $D[v_3][\emptyset] = \infty$, $D[v_4][\emptyset] = 6$
- Next consider all $D[v_3][\{v_2\}] = \min_{\mathbf{v_j} \in \{\mathbf{v_2}\}} (W[3][j] + D[v_j][\{v_2\} \{v_j\}])$ sets containing one element: $= W[3][2] + D[v_2][\emptyset] = 7 + 1 = 8$
 - Similarly, $D[v_4][\{v_2\}] = 3+1=4$ $D[v_2][\{v_3\}] = 6+\infty = \infty$ $D[v_4][\{v_3\}] = \infty + \infty = \infty$ $D[v_2][\{v_4\}] = 4+6=10$ $D[v_3][\{v_4\}] = 8+6=14$

Example 3.11 (2/2)

Next consider all sets containing two elements:

$$\begin{split} D[\mathbf{v}_4][\{\mathbf{v}_2, \mathbf{v}_3\}] &= \min_{\mathbf{v}_j \in \{\mathbf{v}_2, \mathbf{v}_3\}} (\mathbf{W}[4][\mathbf{j}] + D[\mathbf{v}_{\mathbf{j}}][\{\mathbf{v}_2, \mathbf{v}_3\} - \{\mathbf{v}_{\mathbf{j}}\}]) \\ &= \min(\mathbf{W}[4][2] + D[\mathbf{v}_2][\{\mathbf{v}_3\}], \mathbf{W}[4][3] + D[\mathbf{v}_3][\{\mathbf{v}_2\}] \\ &= \min(3 + \infty, \infty + 8) = \infty \end{split}$$

- Similarly, $D[v_3][\{v_2,v_4\}] = \min(7+10,8+4) = 12$ $D[v_2][\{v_3,v_4\}] = \min(6+14,4+\infty) = 20$
- Finally, compute the length of an optimal tour:

$$\begin{split} D[v_1][\{v_2, v_3, v_4\}] &= \min_{\mathbf{v}_j \in \{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}} (\mathbf{W}[1][\mathbf{j}] + D[v_j][\{v_2, v_3, v_4\} - \{\mathbf{v}_j\}]) \\ &= \min(\mathbf{W}[1][2] + D[v_2][\{v_3, v_4\}], \mathbf{W}[1][3] + D[v_3][\{v_2, v_4\}], \\ \mathbf{W}[1][4] + \mathbf{D}[v_4][\{v_2, v_3\}]) \\ &= \min(2 + 20, 9 + 12, \infty + \infty) = 21 \end{split}$$

- Problem: Determine an optimal tour in a weighted, directed graph. The weights are nonnegative numbers.
- Inputs: a weighted, directed graph, and n, the number of vertices in the graph. The graph is represented by a 2D array W, which has both its rows and columns indexed from 1 to n, where W[i][j] is the weight on the edge from i-th vertex to the j-th vertex.
- Outputs: a variable *minlength*, whose value is the length of an optimal tour, and a 2D array P from which an optimal tour can be constructed. P has its rows indexed from 1 to n and its columns indexed by all subsets of $V \{v_1\}$. P[i][A] is the index of the first vertex after v_i on a shortest path from v_i to v_1 that passes through all the vertices in A exactly once.

Algorithm 3.11 DP Algorithm for TSP (2/3)

```
void travel (int n, const number W[],
                index P[][], number& minlength)
   index i, j, k;
   number D[1..n][subset of V - \{v_I\}];
   for (i = 2; i \le n; i++)
      D[i][\emptyset] = W[i][1];
   D[v_i][A] = \min_{v_j \in A} (\mathbf{W}[i][j] + D[v_j][A - \{v_j\}]) \text{ if } A \neq \emptyset
    D[v_i][\emptyset] = W[i][1]
```

Algorithm 3.11 DP Algorithm for TSP (3/3)

$$D[v_i][A] = \min_{v_j \in A} (W[i][j] + D[v_j][A - \{v_j\}]) \text{ if } A \neq \emptyset$$

```
for (k = 1; k \le n - 2; k++)
    for (all subsets A \subseteq V - \{v_I\} containing k vertices)
       for (i such that i \neq 1 and v_i is not in A) {
           \mathbf{D[i][A]} = \underset{j:v_i \in A}{\mathbf{minimum}} \ (\mathbf{W[i][j]} + \mathbf{D[j][A} - \{v_j\}]);
           P[i][A] = value of j that gave the minimum;
\mathbf{D}[1][\mathbf{V} - \{v_I\}] = \frac{\mathbf{minimum}}{2 \le i \le n} (\mathbf{W}[1][\mathbf{j}] + \mathbf{D}[\mathbf{j}][\mathbf{V} - \{v_I, v_j\}]);
P[1][V - \{v_i\}] = value of j that gave the minimum;
minlength = D[1][V - \{v_I\}];
```

T(n) of Alg. 3.11 (1/2)

Theorem 3.1

$$\sum_{k=1}^{n} k \binom{n}{k} = \sum_{k=1}^{n} n \binom{n-1}{k-1} = \sum_{k=0}^{n-1} n \binom{n-1}{k} = n \ 2^{n-1}$$

- **Basic operation: instruction executed for each value of** v_j
- Input size: n = |V|
 - Suppose |A| = k# of subsets A of $V - \{v_1\} = \binom{n-1}{k}$

for each A, we must consider [n - (k + 1)] vertices k choices for $v_j \in A$

$$D[v_i][A] = \min_{v_j \in A} (\mathbf{W}[i][j] + D[v_j][A - \{v_j\}])$$

$$[n - (k+1)] \binom{n-1}{k}$$

T(n) of Alg. 3.11 (2/2)

$$T(n) = \sum_{k=1}^{n-2} (n-1-k) \binom{n-1}{k} k$$

$$(n-1-k) \binom{n-1}{k} = \frac{(n-1-k)(n-1)!}{(n-1-k)!k!}$$

$$= \frac{(n-1)(n-2)!}{(n-2-k)!k!} = (n-1) \binom{n-2}{k}$$

$$= \sum_{k=1}^{n-2} (n-1) \binom{n-2}{k} k$$

$$(\text{by Th. 3.1 n} \rightarrow \text{n-2})$$

$$= (n-1)(n-2)2^{n-3} \in \Theta(n^2 2^n)$$

Space complexity

of subsets A of
$$V - \{v_1\} = 2^{n-1}$$

The first index of D & P ranges between 1 and n

$$M(n) = 2 \times n \cdot 2^{n-1} \in \Theta(n \ 2^n)$$

Printing the optimal tour

$$P[1][\{v_2, v_3, v_4\}] = 3$$

$$P[3][\{v_2, v_4\}] = 4$$

$$P[4][\{v_2\}] = 2$$

$$v_1 \rightarrow v_3 \rightarrow v_4 \rightarrow v_2 \rightarrow v_1$$

3.7 Sequence Alignment

DNA sequence (a section of **DNA**)

purines: A(adenine), G(guanine)

pyrimidines : C(cytosine), T(thymine)

base pair : (A, T), (G, C)

4

Sequence Alignment

Ex 3.13 DNA sequences

$$x[0..9] = A A C A G T T A C C$$

$$y[0..7] = T A A G G T C A$$

Alignment 1

\\ -: gap

T A A - G G T - - C A

5 matched, 2 mismatched, 4 gaps

Alignment 2

AACAGTTACC

TA-AGGT-CA

5 matched, 3 mismatched, 2 gaps

Sequence Alignment

Cost of an alignment the sum of all the penalties in an alignment

Assume

penalty for a mismatch = 1 and penalty for a gap = 2

Cost of alignment 1 = 2 * 1 + 4 * 2 = 10

Cost of alignment 2 = 3 * 1 + 2 * 2 = 7

Goal: optimal alignment with the min cost

Principle of Optimality Applies?

Ex 3.14 Suppose the following is an optimal alignment of x[0..9] and y[0..7]

AACAGTTACC

TA - AGGT - CA

Then the following must be an optimal alignment of x[1..9] and y[1..7]

ACAGTTACC

A - AGGT - CA

Dynamic Programming

Let x[0..m-1] and y[0..n-1] be two sequences, penalty for a mismatch = 1 and penalty for a gap = 2

O(i, j): the cost of the optimal alignment of x[i..m-1] & y[j..n-1]

Want : O(0, 0)

terminal condition

$$O(m, j) = 2(n-j), j < n$$
 // insert n-j gaps
 $O(i, n) = 2(m-i), i < m$ // insert m-i gaps

4

Dynamic Programming

Three cases

- 1. x[0] is aligned with y[0] if x[0] = y[0] no penalty, penalty of 1 otherwise
- 2. x[0] is aligned with a gap gap penalty of 2
- 3. y[0] is aligned with a gap gap penalty of 2

$$O(0, 0) = min (O(1, 1) + penalty, O(1, 0) + 2, O(0, 1) + 2)$$

 $O(i, j) = min (O(i+1, j+1) + penalty, O(i+1, j) + 2, O(i, j+1) + 2)$

Dynamic Programming

1

Algorithm 3.12 Divide & Conquer Algorithm

- Problem: Determine an optimal alignment of two DNA sequences.
- Inputs: DNA sequences x of length m and y of length n.
- Outputs: The cost of an optimal alignment.

```
void opt (int i, int j)
    if (i == m) opt = 2(n-j);
    else if (j==n) opt = 2(m-i);
        else {
            if (x[i] == y[j]) penalty = 0; else penalty = 1;
            opt= min(opt(i+1,j+1))+penalty, opt(i+1, j)+2, opt(i, j+1)+2)
     // note : exponential time complexity
```

Dynamic Programming Approach

Compute m+1 by n+1 array (see Fig. 3.19)

Example
$$3.13 : m = 10, n = 8$$

Diagonal 1

$$O(10, 8) = 2(10-10) = 0$$

Diagonal 2

$$O(9, 8) = 2(10-9) = 2$$

$$O(10, 7) = 2(8-7) = 2$$

Diagonal 3

$$O(8, 8) = 2(10-8) = 4$$

$$O(9,7) = min (O(9+1,7+1)+penalty, O(9+1,7)+2, O(9,7+1)+2)$$

= $min (0+1,2+2,2+2) = 1$

$$O(10, 6) = 2(8-6) = 4$$

Dynamic Programming Approach

	j	0	1	2	3	4	5	6	7	8
i		Т	А	Α	G	G	Т	С	A	-
0	Α	7	8	10	12	13	15	16	18	20
1	Α	6	6	8	10	11	13	14	16	18
2	С	6	5	6	8	9	11	12	14	16
3	Α	7	5	4	6	7	9	11	12	14
4	G	9	7	5	4	5	7	9	10	12
5	Т	8	8	6	4	4	5	7	8	10
6	Т	9	8	7	5	3	3	5	6	8
7	Α	11	9	7	6	4	2	3	4	6
8	С	13	11	9	7	5	3	1	3	4
9	С	14	12	10	8	6	4	2	1	2
10	-	16	14	12	10	8	6	4	2	0

Figure 3.20 • The completed array used to find the optimal alignment.

4

Find the optimal alignment

Find the path from the upper-left corner to the lower-right corner (See Fig. 3.20)

- 1. Choose O[0][0] = 7
- 2. Find the second array item in the path
 - (a) Check O[0][1]

$$O(0, 1) + 2 = 8 + 2 = 10 \neq 7$$
 // 2 : gap penalty

(b) Check O[1][0]

$$O(1, 0) + 2 = 6 + 2 = 8 \neq 7$$
 // 2 : gap penalty

(c) Check O[1][1]

$$O(1, 1) + 1 = 6 + 1 = 7$$
 // 1 : mismatch penalty $x[0] \neq y[0]$

The second array item in the path is O[1][1] and Continue

Find the optimal alignment 2

$$O(i, j) = min (O(i+1, j+1)+penalty, O(i+1, j)+2, O(i, j+1)+2)$$

$$case 1 \qquad case 2 \qquad case 3$$

P(i, j) = case that gave the minimum

Ex: aligned

$$P(0, 0) = 1$$
 $x[0]$ and $y[0]$

$$P(1, 1) = 1$$
 $x[1]$ and $y[1]$

$$P(3, 2) = 1$$
 $x[3]$ and $y[2]$

Find the optimal alignment 2

Ex : X[0..3] = AACA and Y[0..2] = TAA

O(i,j)

	0	1	2	3
0	3	4	6	8
1	2	2	4	6
2	3	1	2	4
3	4	2	0	2
4	6	4	2	0

P(i,j)

	0	1	2	
0	1	2	2	
1	1	1	2	
2	3	1	2	
3	3	3	1	