# Generation of Robot Manipulation Plans Using Generative Large Language Models

7<sup>th</sup> IEEE Conference on Robotic Computing 2023

Jan-Philipp Töberg & Philipp Cimiano jtoeberg@techfak.uni-bielefeld.de

> CITEC & CoAL IRC Bielefeld University

December 12, 2023







- 1 Motivation & Foundations
- 2 Experiment Design
- 3 Experiment Results
- 4 Limitations & Conclusion

# Robots in Open World Situations

#### Goal

Enable cognitive robots to perform household tasks in varying situations

### Robots in Open World Situations

#### Goal

Enable cognitive robots to perform household tasks in varying situations

#### **Problem**

Households are *open worlds* ⇒ unknown environments containing unknown objects and necessitating unknown actions

# Robots in Open World Situations

#### Goal

Enable cognitive robots to perform household tasks in varying situations

#### **Problem**

Households are open worlds  $\Rightarrow$  unknown environments containing unknown objects and necessitating unknown actions

### Solutions [Din+23]

- 1 Acquiring knowledge via human-robot interaction
- Dynamically building a knowledge base to assist a task planner
- Use generative Large Language Models (LLMs) as a task planner

 Generation of manipulation plans is also done in related work (e.g. Code as Policies [Lia+23] & ProgPrompt [Sin+23]):

- Generation of manipulation plans is also done in related work (e.g. Code as Policies [Lia+23] & ProgPrompt [Sin+23]):
  - Plans are written in Python
  - Generation uses one-shot prompting
  - Interaction with the robot through manually developed framework
  - Promising results in simulation and on the real robot

- Generation of manipulation plans is also done in related work (e.g. Code as Policies [Lia+23] & ProgPrompt [Sin+23]):
  - Plans are written in Python
  - Generation uses one-shot prompting
  - Interaction with the robot through manually developed framework
  - Promising results in simulation and on the real robot
- Open questions:
  - How do LLMs perform on cognitive architectures?

- Generation of manipulation plans is also done in related work (e.g. Code as Policies [Lia+23] & ProgPrompt [Sin+23]):
  - Plans are written in Python
  - Generation uses one-shot prompting
  - Interaction with the robot through manually developed framework
  - Promising results in simulation and on the real robot
- Open questions:
  - How do LLMs perform on cognitive architectures?
  - How does the example in the prompt influence performance?

ent Design Exp

# Cognitive Robot Abstract Machine (CRAM) [BMT10]



 Hybrid cognitive architecture for autonomous robots

Figure: CRAM Architecture from [Ver+22]

Motivation ○○● nt Design Experim

## Cognitive Robot Abstract Machine (CRAM) [BMT10]



Figure: CRAM Architecture from [Ver+22]

- Hybrid cognitive architecture for autonomous robots
- Tasks are vaguely described as high-level goals from which specific low-level motions are derived

Motivation

nent Design Experiment Results

## Cognitive Robot Abstract Machine (CRAM) [BMT10]



Figure: CRAM Architecture from [Ver+22]

- Hybrid cognitive architecture for autonomous robots
- Tasks are vaguely described as high-level goals from which specific low-level motions are derived
- Plans are written in Common LISP and are called designators

Motivation

### Experiment Setup

• 9 designators written by experts for 9 different actions (Close, Halve, Hold, Open, Pick Up, Place Down, Pour, Slice & Wipe)

### Experiment Setup

- 9 designators written by experts for 9 different actions (*Close, Halve, Hold, Open, Pick Up, Place Down, Pour, Slice & Wipe*)
- For each action, use each other action as a reference  $\rightarrow$  72 results

### Experiment Setup

- 9 designators written by experts for 9 different actions (Close, Halve, Hold, Open, Pick Up, Place Down, Pour, Slice & Wipe)
- For each action, use each other action as a reference  $\rightarrow$  72 results
- $\blacksquare$  Repeat the experiment 5 times per model  $\rightarrow$  360 generated designators per model

- 9 designators written by experts for 9 different actions (Close, Halve, Hold, Open, Pick Up, Place Down, Pour, Slice & Wipe)
- For each action, use each other action as a reference  $\rightarrow$  72 results
- Repeat the experiment 5 times per model  $\rightarrow$  360 generated designators per model
- Use 3 different models / model versions:
  - gpt-3.5-turbo-0301
  - gpt-3.5-turbo-0613
  - gpt-4-0613

The following LISP source code describes a CRAM designator for the action of " [reference action]", where the executing robot would be [reference action description]: [reference designator]

Can you please take this example and create a new designator for the action " [target action]", where the robot should be [target action description]. Your answer should only include the designator and no additional text.

### **Prompt**

The following LISP source code describes a CRAM designator for the action of "[reference action]", where the executing robot would be [reference action description]: [reference designator]

Can you please take this example and create a new designator for the action "[target action]", where the robot should be [target action description]. Your answer should only include the designator and no additional text.

### **Example Descriptions**

 ${\it Close} 
ightarrow {\it Closing}$  an arbitrary container

 $Pour \rightarrow Pouring$  the content of one container into another

 $Wipe \rightarrow Cleaning a surface using some kind of towel$ 

### Code Generation Metrics

- Machine Translation Metrics:
  - BLEU [Pap+01]
  - ROUGE-1 (R-1), ROUGE-2 (R-2) & ROUGE-L (R-L) [Lin04]
  - chrF [Pop15]

### Code Generation Metrics

- Machine Translation Metrics:
  - BLEU [Pap+01]
  - ROUGE-1 (R-1), ROUGE-2 (R-2) & ROUGE-L (R-L) [Lin04]
  - chrF [Pop15]
- Code Generation Quality Metrics:
  - CodeBERTScore (CBS) [Zho+23]

### Code Generation Metrics

- Machine Translation Metrics:
  - BLEU [Pap+01]
  - ROUGE-1 (R-1), ROUGE-2 (R-2) & ROUGE-L (R-L) [Lin04]
  - chrF [Pop15]
- Code Generation Quality Metrics:
  - CodeBERTScore (CBS) [Zho+23]
- Compilation Success

### Action Similarity Metrics

■ Wu-Palmer-Similarity (WuP) [WP94] between WordNet synsets [Mil95]

### Action Similarity Metrics

- Wu-Palmer-Similarity (WuP) [WP94] between WordNet synsets [Mil95]
- Cosine Similarity between GloVe embeddings [PSM14]

### **Action Similarity Metrics**

- Wu-Palmer-Similarity (WuP) [WP94] between WordNet synsets [Mil95]
- Cosine Similarity between GloVe embeddings [PSM14]
- Sensorimotor Distance (SMD) [WC22]





## Manual Analysis - (Un-)Changed Lines





| Model              | BLEU | R-1  | R-2  | R-L  | chrF | CBS  |
|--------------------|------|------|------|------|------|------|
| gpt-3.5-turbo-0301 | .595 | .630 | .527 | .621 | .674 | .942 |
| gpt-3.5-turbo-0613 | .579 | .614 | .511 | .612 | .639 | .940 |
| gpt-4-0613         | .605 | .631 | .532 | .623 | .674 | .945 |

| Model              | Compiles     | ¬Compiles    |
|--------------------|--------------|--------------|
| gpt-3.5-turbo-0301 | 147 / 40,83% | 213 / 59,17% |
| gpt-3.5-turbo-0613 | 101 / 28,06% | 259 / 71,94% |
| gpt-4-0613         | 139 / 38,61% | 221 / 61,39% |
| Σ                  | 387 / 35,83% | 693 / 64,17% |

### Compilation Success per Action



### Compilation Success per Action





### Hypothesis

The **higher** the similarity between the reference and the target action, the **better** the generated designator

### Action Similarity and Generation Correlation

### **Hypothesis**

The **higher** the similarity between the reference and the target action, the **better** the generated designator

### Testing

Calculate the Spearman Rank Correlation  $\rho$  between the code generation metrics and the action similarity metrics

Expectation: positive, significant ( $p \le 0.05$ ) correlations

### Action Similarity and Generation Quality Correlation

|                 | WuP [WP94] |      | GloVe [PSM14] |      | SMD [WC22 |      |
|-----------------|------------|------|---------------|------|-----------|------|
| Metric          | $\rho$     | р    | ho            | p    | $\rho$    | р    |
| BLEU [Pap+01]   | 248        | .000 | 282           | .000 | 200       | .000 |
| ROUGE-1 [Lin04] | 086        | .104 | 270           | .000 | 355       | .000 |
| ROUGE-2 [Lin04] | 141        | .008 | 264           | .000 | 395       | .000 |
| ROUGE-L [Lin04] | 082        | .122 | 264           | .000 | 358       | .000 |
| chrF [Pop15]    | 188        | .000 | 296           | .000 | 241       | .000 |
| CBS [Zho+23]    | 101        | .056 | 215           | .000 | 279       | 000  |
| Lines of Code   | 287        | .000 | 336           | .000 | 204       | .000 |
| Comp. Succ.     | 278        | .000 | 166           | .002 | .007      | .898 |

Experiment Design Experiment Results Conclusion 0000 0000 0000 0000

### Action Similarity and Generation Quality Correlation

|                 | WuP [WP94] |      | GloVe [ | PSM14] | SMD [WC22] |      |
|-----------------|------------|------|---------|--------|------------|------|
| Metric          | $\rho$     | р    | ho      | р      | $\rho$     | р    |
| BLEU [Pap+01]   | 248        | .000 | 282     | .000   | 200        | .000 |
| ROUGE-1 [Lin04] | 086        | .104 | 270     | .000   | 355        | .000 |
| ROUGE-2 [Lin04] | 141        | .008 | 264     | .000   | 395        | .000 |
| ROUGE-L [Lin04] | 082        | .122 | 264     | .000   | 358        | .000 |
| chrF [Pop15]    | 188        | .000 | 296     | .000   | 241        | .000 |
| CBS [Zho+23]    | 101        | .056 | 215     | .000   | 279        | 000  |
| Lines of Code   | 287        | .000 | 336     | .000   | 204        | .000 |
| Comp. Succ.     | 278        | .000 | 166     | .002   | .007       | .898 |

### gpt-3.5-turbo-0301

 $\Rightarrow$  All significant correlations are negative (n = 360)

|                 | WuP [WP94] |      | GloVe [ | PSM14] | SMD [WC22] |      |
|-----------------|------------|------|---------|--------|------------|------|
| Metric          | $\rho$     | р    | ho      | p      | ho         | p    |
| BLEU [Pap+01]   | .117       | .026 | .235    | .000   | 013        | .799 |
| ROUGE-1 [Lin04] | .117       | .026 | .183    | .000   | 015        | .773 |
| ROUGE-2 [Lin04] | .103       | .051 | .156    | .003   | 010        | .856 |
| ROUGE-L [Lin04] | .115       | .029 | .183    | .000   | 017        | .748 |
| chrF [Pop15]    | .114       | .030 | .194    | .000   | 023        | .668 |
| CBS [Zho+23]    | .079       | .133 | .153    | .004   | .010       | .846 |
| Lines of Code   | 008        | .880 | .093    | .078   | 034        | .517 |
| Comp. Succ.     | 105        | .047 | 129     | .014   | 084        | .111 |

### Action Similarity and Generation Quality Correlation

|                 | WuP [WP94] |      | GloVe [ | PSM14] | SMD [WC22] |      |
|-----------------|------------|------|---------|--------|------------|------|
| Metric          | $\rho$     | р    | ho      | р      | $\rho$     | р    |
| BLEU [Pap+01]   | .117       | .026 | .235    | .000   | 013        | .799 |
| ROUGE-1 [Lin04] | .117       | .026 | .183    | .000   | 015        | .773 |
| ROUGE-2 [Lin04] | .103       | .051 | .156    | .003   | 010        | .856 |
| ROUGE-L [Lin04] | .115       | .029 | .183    | .000   | 017        | .748 |
| chrF [Pop15]    | .114       | .030 | .194    | .000   | 023        | .668 |
| CBS [Zho+23]    | .079       | .133 | .153    | .004   | .010       | .846 |
| Lines of Code   | 008        | .880 | .093    | .078   | 034        | .517 |
| Comp. Succ.     | 105        | .047 | 129     | .014   | 084        | .111 |

### gpt-3.5-turbo-0613

 $\Rightarrow$  All significant correlations (except for compilation success) are positive (n = 360)

|                 | WuP [WP94] |      | GloVe [PSM14] |      | SMD [WC22] |      |
|-----------------|------------|------|---------------|------|------------|------|
| Metric          | $\rho$     | p    | ho            | р    | $\rho$     | р    |
| BLEU [Pap+01]   | 061        | .250 | 133           | .011 | 104        | .050 |
| ROUGE-1 [Lin04] | .039       | .464 | 126           | .017 | 240        | .000 |
| ROUGE-2 [Lin04] | .013       | .803 | 115           | .029 | 256        | .000 |
| ROUGE-L [Lin04] | .039       | .464 | 118           | .026 | 246        | .000 |
| chrF [Pop15]    | 012        | .822 | 136           | .010 | 142        | .007 |
| CBS [Zho+23]    | 001        | .992 | 127           | .016 | 203        | .000 |
| Lines of Code   | 146        | .006 | 256           | .000 | 166        | .002 |
| Comp. Succ.     | 195        | .000 | 037           | .483 | .019       | .712 |

Experiment Results

# Action Similarity and Generation Quality Correlation

|                 | WuP [WP94] |      | GloVe [PSM14] |      | SMD [WC22] |      |
|-----------------|------------|------|---------------|------|------------|------|
| Metric          | $\rho$     | p    | $\rho$        | р    | $\rho$     | р    |
| BLEU [Pap+01]   | 061        | .250 | 133           | .011 | 104        | .050 |
| ROUGE-1 [Lin04] | .039       | .464 | 126           | .017 | 240        | .000 |
| ROUGE-2 [Lin04] | .013       | .803 | 115           | .029 | 256        | .000 |
| ROUGE-L [Lin04] | .039       | .464 | 118           | .026 | 246        | .000 |
| chrF [Pop15]    | 012        | .822 | 136           | .010 | 142        | .007 |
| CBS [Zho+23]    | 001        | .992 | 127           | .016 | 203        | .000 |
| Lines of Code   | 146        | .006 | 256           | .000 | 166        | .002 |
| Comp. Succ.     | 195        | .000 | 037           | .483 | .019       | .712 |

#### gpt-4-0613

 $\Rightarrow$  All significant correlations are negative (n = 360)

Experiment Results

# Action Similarity and Generation Quality Correlation

#### **Hypothesis**

The **higher** the similarity between the reference and the target action, the **better** the generated designator

# Action Similarity and Generation Quality Correlation

#### Hypothesis<sup>1</sup>

The **higher** the similarity between the reference and the target action, the **better** the generated designator

#### Results

- Action similarity negatively correlates with generation quality in the old ChatGPT and the GPT-4 model
- Action similarity positively correlates with generation quality in the new ChatGPT model
- significant correlations with the compilation success are always negative
- ⇒ Using a similar action as a reference **decreases** the chance of compiling successfully

■ Most metrics (BLEU, chrF & ROUGE) are for evaluating machine translation tasks

- Most metrics (BLEU, chrF & ROUGE) are for evaluating machine translation tasks
- CodeBERTScore is not optimised for Common LISP

- Most metrics (BLEU, chrF & ROUGE) are for evaluating machine translation tasks
- CodeBERTScore is not optimised for Common LISP
- Sensorimotor Distance is susceptible to semantic inaccuracy

- Most metrics (BLEU, chrF & ROUGE) are for evaluating machine translation tasks
- CodeBERTScore is not optimised for Common LISP
- Sensorimotor Distance is susceptible to semantic inaccuracy
- No fine-tuning of the models due to limited sample size (n = 9)

## How do LLMs perform on cognitive architectures (CRAM)?

All analysed LLMs achieve solid results on the code generation metrics

### How do LLMs perform on cognitive architectures (CRAM)?

- All analysed LLMs achieve solid results on the code generation metrics
- GPT-4 slightly outperforms ChatGPT

## How do LLMs perform on cognitive architectures (CRAM)?

- All analysed LLMs achieve solid results on the code generation metrics
- GPT-4 slightly outperforms ChatGPT
- ullet Only  $\sim 36\%$  of designators compiled successfully

## How do LLMs perform on cognitive architectures (CRAM)?

- All analysed LLMs achieve solid results on the code generation metrics
- GPT-4 slightly outperforms ChatGPT
- ullet Only  $\sim 36\%$  of designators compiled successfully
- The older ChatGPT version achieves the highest compilation success rate

### How do LLMs perform on cognitive architectures (CRAM)?

- All analysed LLMs achieve solid results on the code generation metrics
- GPT-4 slightly outperforms ChatGPT
- Only  $\sim 36\%$  of designators compiled successfully
- The older ChatGPT version achieves the highest compilation success rate

## How does the example in the prompt influence performance?

Action similarity negatively influences compilation success rate

### How do LLMs perform on cognitive architectures (CRAM)?

- All analysed LLMs achieve solid results on the code generation metrics
- GPT-4 slightly outperforms ChatGPT
- Only  $\sim 36\%$  of designators compiled successfully
- The older ChatGPT version achieves the highest compilation success rate

## How does the example in the prompt influence performance?

- Action similarity negatively influences compilation success rate
- Action similarity negatively influences code generation quality for GPT-4 & Old ChatGPT

### How do LLMs perform on cognitive architectures (CRAM)?

- All analysed LLMs achieve solid results on the code generation metrics
- GPT-4 slightly outperforms ChatGPT
- Only  $\sim 36\%$  of designators compiled successfully
- The older ChatGPT version achieves the highest compilation success rate

## How does the example in the prompt influence performance?

- Action similarity negatively influences compilation success rate
- Action similarity negatively influences code generation quality for GPT-4 & Old ChatGPT
- Action similarity positively influences code generation quality for new ChatGPT

### Future Work

Use other generative LLMs that focus on source code generation

- Use other generative LLMs that focus on source code generation
- Repeat the experiment for Python version of CRAM (PyCRAM [Dec+23])

### **Future Work**

- Use other generative LLMs that focus on source code generation
- Repeat the experiment for Python version of CRAM (PyCRAM [Dec+23])
- Generate PyCRAM designators from CRAM designators

### Future Work

- Use other generative LLMs that focus on source code generation
- Repeat the experiment for Python version of CRAM (PyCRAM [Dec+23])
- Generate PyCRAM designators from CRAM designators
- Simulate the successfully compiled designators

# Thank you for your attention!

Questions?

### References I

- [BMT10] Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. "CRAM A Cognitive Robot Abstract Machine for Everyday Manipulation in Human Environments". In: *Proceedings of the 2nd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010)*. Ed. by Ren C. Luo and Hajime Asama. Taipei, Taiwan: IEEE, 2010, pp. 1012–1017. ISBN: 978-1-4244-6674-0. DOI: 10.1109/IROS.2010.5650146.
- [Dec+23] Jonas Dech et al. *PyCRAM*. Institute for Artificial Intelligence, Bremen University. GitHub, 2023. URL: https://github.com/cram2/pycram.
- [Din+23] Yan Ding et al. "Integrating Action Knowledge and LLMs for Task Planning and Situation Handling in Open Worlds". In: *Autonomous Robots* 2023 Special Issue on Large Language Models in Robotics (2023). DOI: 10.48550/ARXIV.2305.17590. (Visited on 10/05/2023).

### References II

- [Lia+23] Jacky Liang et al. "Code as Policies: Language Model Programs for Embodied Control". In: 40th IEEE International Conference on Robotics and Automation (ICRA). London, UK: IEEE, 2023, pp. 9493–9500. DOI: 10.1109/ICRA48891.2023.10160591. (Visited on 02/22/2023).
- [Lin04] Chin-Yew Lin. "ROUGE: A Package for Automatic Evaluation of Summaries". In: Text Summarization Branches Out. Barcelona, Spain: Association for Computational Linguistics, 2004, pp. 74–81.
- [Mil95] George A Miller. "WordNet: A Lexical Database for English". In: Communications of the ACM 38.11 (1995), pp. 39–41. DOI: 10.1145/219717.219748.

## References III

- [Pap+01] Kishore Papineni et al. "BLEU: A Method for Automatic Evaluation of Machine Translation". In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL '02. Philadelphia, Pennsylvania: Association for Computational Linguistics, 2001, p. 311. DOI: 10.3115/1073083.1073135. (Visited on 04/11/2023).
- [Pop15] Maja Popović. "chrF: Character n-Gram F-score for Automatic MT Evaluation". In: Proceedings of the 10th Workshop on Statistical Machine Translation. 2015, pp. 392–395.
- [PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. "Glove: Global Vectors for Word Representation". In: *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1532–1543. DOI: 10.3115/v1/D14-1162. (Visited on 06/01/2023).

### References IV

- [Sin+23] Ishika Singh et al. "ProgPrompt: Generating Situated Robot Task Plans
  Using Large Language Models". In: 40th IEEE International Conference on
  Robotics and Automation (ICRA). London, UK: IEEE, May 2023,
  pp. 11523–11530. ISBN: 9798350323658. DOI:
  10.1109/ICRA48891.2023.10161317. (Visited on 08/15/2023).
- [Ver+22] David Vernon et al. "Action Selection and Execution in Everyday Activities: A Cognitive Robotics and Situation Model Perspective". In: *TopiCS*. Everyday Activities 14.2 (2022), pp. 344–362. DOI: 10.1111/tops.12569. (Visited on 10/17/2022).
- [WC22] Cai Wingfield and Louise Connell. "Sensorimotor Distance: A Grounded Measure of Semantic Similarity for 800 Million Concept Pairs". In: Behav Res (Sept. 2022). ISSN: 1554-3528. DOI: 10.3758/s13428-022-01965-7. (Visited on 07/11/2023).

## References V

- [WP94] Zhibiao Wu and Martha Palmer. "Verb Semantics and Lexical Selection". In: Proceedings of ACL 94. arXiv, 1994. DOI: 10.48550/ARXIV.CMP-LG/9406033. (Visited on 05/17/2023).
- [Zho+23] Shuyan Zhou et al. "CodeBERTScore: Evaluating Code Generation with Pretrained Models of Code". In: Deep Learning for Code (DL4C) Workshop at the 11th International Conference on Learning Representations (ICLR). Kigali, Rwanda, 2023. DOI: 10.48550/ARXIV.2302.05527. (Visited on 04/11/2023).

# Zero-Shot Prompting

# Incremental Refinement through Interaction

#### Task

 Refine a generated designator through interacting with ChatGPT (gpt-3.5-turbo-0613)

# Incremental Refinement through Interaction

#### Task

- Refine a generated designator through interacting with ChatGPT (gpt-3.5-turbo-0613)
- In each step, tell ChatGPT one mistake and prompt it to fix it without just telling "add this line"

# Incremental Refinement through Interaction

#### Task

- Refine a generated designator through interacting with ChatGPT (gpt-3.5-turbo-0613)
- In each step, tell ChatGPT one mistake and prompt it to fix it without just telling "add this line"
- Chosen example: *Pick-Up* based on *Close* 
  - 1 added line (needs to be removed)
  - 8 missing lines (need to be added)
  - 14 changed lines (not all need changing)

■ 12 rounds of dialogue necessary for all these changes

- 12 rounds of dialogue necessary for all these changes
- When prompted to remove 1 variable from the header, ChatGPT (additionally) added 5 correct lines at a fitting place

- 12 rounds of dialogue necessary for all these changes
- When prompted to remove 1 variable from the header, ChatGPT (additionally) added 5 correct lines at a fitting place
- When asked about this, ChatGPT does not provide an answer and removes the 5 lines

- 12 rounds of dialogue necessary for all these changes
- When prompted to remove 1 variable from the header, ChatGPT (additionally) added 5 correct lines at a fitting place
- When asked about this, ChatGPT does not provide an answer and removes the 5 lines
- After 9 rounds, ChatGPT started to add comments to its changes

- 12 rounds of dialogue necessary for all these changes
- When prompted to remove 1 variable from the header, ChatGPT (additionally) added 5 correct lines at a fitting place
- When asked about this, ChatGPT does not provide an answer and removes the 5 lines
- After 9 rounds, ChatGPT started to add comments to its changes

### Summary

- ⇒ ChatGPT could successfully refine the designator
- ⇒ ChatGPT is not reliable since it introduces unforeseen changes
- ⇒ This demonstration worked well because the final result was known beforehand