1. Fill in the multiplication table for the group S_3 . (You don't need to show the details of computation)

Solution:

S_3	id	$(1\ 2)$	$(1\ 3)$	$(2\ 3)$	$(1\ 2\ 3)$	$(1\ 3\ 2)$
id	id	$(1\ 2)$	$(1\ 3)$	$(2\ 3)$	$(1\ 2\ 3)$	$(1\ 3\ 2)$
(1 2)	(1 2)	id	$(1\ 3\ 2)$	(123)	$(2\ 3)$	(1 3)
(1 3)	(1 3)	$(1\ 2\ 3)$	id	$(1\ 3\ 2)$	(12)	(2 3)
$(2\ 3)$	$(2\ 3)$	$(1\ 3\ 2)$	$(1\ 2\ 3)$	id	(1 3)	(1 2)
$(1\ 2\ 3)$	$(1\ 2\ 3)$	$(1\ 3)$	$(2\ 3)$	$(1\ 2)$	$(1\ 3\ 2)$	id
$(1\ 3\ 2)$	$(1\ 3\ 2)$	$(2\ 3)$	(1 2)	(1 3)	id	$(1\ 2\ 3)$

2. G is a group and $x \in G$. Define $C(x) = \{g \in G | gx = xg\}$. Prove C(x) is a subgroup of G.

Solution:

For any $a, b \in C(x)$: ax = xa, $a^{-1}(ax)a^{-1} = a^{-1}(xa)a^{-1}$, $xa^{-1} = a^{-1}x$ It follows $(a^{-1}b)x = a^{-1}(bx) = a^{-1}(xb) = (xa^{-1})b = x(a^{-1}b)$, so $a^{-1}b \in C(x)$, C(x) is a subgroup of G.

3. H and K are subgroups of G. Prove that $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.

Solution:

If $H \subseteq K$ or $K \subseteq H$, then $H \cap K = K$ or $H \cap K = H$, so $H \cap K$ is a subgroup of G.

If $H \not\subset K$ and $K \not\subset H$, then there exists $h \in H \setminus K$ and $k \in K \setminus H$. Suppose $H \cup K$ is a subgroup of G, then $hk \in H \cup K$. If $hk \in H$, then $k = h^{-1}(hk) \in H$, contradiction; if $hk \in K$, then $h = (hk)k^{-1} \in K$, contradiction. So $H \cup K$ is not a subgroup of G.

4. G is a group, $g \in G$ and |g| is an odd number. Prove there exists $k \in \mathbb{Z}$ such that $g = g^{2k}$.

Solution: |g| is odd, so |g| and 2 are relatively prime, which implies the existence of $k, l \in \mathbb{Z}$ such that 2k + |g|l = 1. So:

$$g = g^1 = g^{2k+|g|l} = g^{2k}(g^{|g|})^l = g^{2k}1 = g^{2k}$$

- 5. a and b are nonzero integers.
 - (i). Show that there exists nonzero $m \in \mathbb{Z}$ such that $m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$. (This m is defined to be the **least common multiple** of a and b)
 - (ii). Prove m is divisible by both a and b.
 - (iii). If n is an integer divisible by both a and b, then m divides n.
 - (iv). If d is the greatest common divisor of a and b, prove ab = dm.

Solution: (i). Since $a\mathbb{Z}$ and $b\mathbb{Z}$ are subgroups of \mathbb{Z} , by Question 1, their intersection $a\mathbb{Z} \cap b\mathbb{Z}$ is also a subgroup of \mathbb{Z} , so it is of the form $m\mathbb{Z}$ for some $m \in \mathbb{Z}$. Note that a, b are nonzero, ab is a nonzero number such that $ab \in a\mathbb{Z} \cap b\mathbb{Z}$, so $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z} \neq \{0\}$, we see $m \neq 0$.

- (ii). $m \in m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$, so $m \in a\mathbb{Z}$ and $m \in b\mathbb{Z}$, which implies a divides m and b divides m.
- (iii). If n is divisible by both a and b, then $n \in a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, so n is divisible by m.
- (iv). it suffices to show ab|md and md|ab.

Since d is the greatest common divisor of a, b, we get $\frac{b}{d}$ and $\frac{a}{d}$ are integers. Observe that $\frac{ab}{d} = a\frac{b}{d} = b\frac{a}{d}$, this implies $\frac{ab}{d}$ is divisible by both a and b, By (iii), $m|\frac{ab}{d}$, i.e. md|ab.

Next consider $\frac{ab}{m}$ since ab is divisible by both a and b, by (iii), m|ab, so $\frac{ab}{m}$ is an integer. $a=\frac{ab}{m}\frac{m}{b}$ and $b=\frac{ab}{m}\frac{m}{a}$, and by (ii), $\frac{m}{a}$ and $\frac{m}{b}$ are also integers, we see $\frac{ab}{m}$ divides both a and b. By the property of greatest common divisor, we get $\frac{ab}{m}|d$, i.e. ab|md

6. G is a group, $g \in G$. Prove $|g| = |xgx^{-1}|$ for any $x \in G$.

Solution: For any $k \in \mathbb{N}$, $(xgx^{-1})^k = xg^kx^{-1}$. This implies

$$g^k = 1 \iff (xgx^{-1})^k$$

Since the order of an element is the smallest positive power to which the element is identity, we conclude $|g| = |xgx^{-1}|$.

7. x is an element of order n in a group G. k is an integer such that the greatest common divisor of k and n is d. Prove $\langle x^k \rangle = \langle x \rangle$ if and only if d = 1

Solution: If d > 1, then we see $(x^k)^{\frac{n}{d}} = x^{\frac{kn}{d}} = (x^n)^{\frac{k}{d}} = 1$, so by the definition of $|x^k|, |< x^k > | = |x^k| \le \frac{n}{d} < n = |< x > |, < x^k > \neq < x >$.

If d=1, it suffices to prove $x \in \langle x^k \rangle$, which implies $\langle x \rangle \subset \langle x^k \rangle$, and $\langle x^k \rangle \subset \langle x \rangle$ is trivial, then we can conclude $\langle x \rangle = \langle x^k \rangle$. d=1 implies there exists integers p,q such that np+kq=1. Thus $x=x^{np+kq}=x^{np}x^{kq}=x^{kq}=(x^k)^q$, we see $x \in \langle x^k \rangle$.