

# Low-Rank Nonlinear Decoding of $\mu$ -ECoG from the Primary Auditory Cortex



Melikasadat Emami<sup>1</sup>, Mojtaba Sahraee-Ardakan<sup>1</sup>, Parthe Pandit<sup>1</sup>, Alyson K. Fletcher<sup>1</sup>, Sundeep Rangan<sup>2</sup>, Michael Trumpis<sup>3</sup>, Brinnae Bent<sup>3</sup>, Chia-Han Chiang<sup>3</sup>, Jonathan Viventi<sup>3</sup>

<sup>1</sup>University of California, Los Angeles; <sup>2</sup>New York University; <sup>3</sup>Duke University

#### Overview

- Problem: Neural decoding from parallel neural measurements in awake rats
- Challenge in learning decoders:
  - Large dimensionality of raw data due to high sampling rate
  - Limited number of training samples
- Contribution: novel neural decoder with low-rank structure in first hidden layer

## Background

Previous work in neural decoding:

- Linear and non-linear mapping of the neural response to to auditory spectrogram
- Linear neural decoders like SVMs for behavioral task classification
- Canonical correlation analysis (CCA) to measure the correlation between the stimulus and the responses.

Challenge in parallel neural measurements: High dimensionality of the raw data

- Two key novel properties in our work:
  - DCT preprocessing stage to reduce sampling rate
  - Low-rank structure in the first hidden layer of neural decoder

#### Problem Formulation

- Decoding stimuli  $y_i$  from d dimensional neural response from some area of brain
- $X^i \in \mathbb{R}^{T \times d}$  is the response to  $y_i$  in time window of length T
- N input-output sample pairs  $\{(X^1, y^1), (X^2, y^2), \dots, (X^N, y^N)\}$
- Problem: learn a decoder to map X to y
  - Response y can be discrete or continues
- We present regression problem for scalar target y
- Challenge: High-dimensionality of X
  - Large number of parameters
  - Even linear decoders need O(dT) coefficient

### Model



- First stage: DCT
  - low pass filtering (F first component in the frequency domain is remained)
- Next stage: Neural network

$$Z_{1j} = u_j^T Z_0 v_j + b_{1j} j = 1, ..., h_1$$
  

$$Z_{2j} = \sigma \left( w_{2j}^T Z_1 + b_{2j} \right) j = 1, ..., h_2$$
  

$$\hat{y} = \sigma \left( w_3^T Z_2 + b_3 \right)$$

- First layer based on low rank projections
- Reduces number of parameters
- Motivation for low-rank model :
  - Suppose

$$Z_0 \approx \sum_{k=1}^{h_1} \alpha_k u_{ki} v_{kf}$$
  $i = 1, 2, ..., d$  and  $f = 1, 2, ..., f$ 

- $\alpha = (\alpha_1, \alpha_2, ..., \alpha_{h_1})$  latent variables caused by stimulus y
- $u_{ki}$  ,  $v_{kf}$  are responses of  $\alpha_k$  over measurement channel index i and frequency index f
- Estimation of y: first estimate  $\alpha$  from  $Z_0$  and then estimate y
- $Z_0 = G(\alpha) \Rightarrow \hat{\alpha} = (G^T G + \gamma I)^{-1} G^T(Z_0)$ 
  - regularized least square estimate for given  $Z_0$
- Due to separability we have:  $\hat{\alpha}_k = \sum_{j=1}^{h_1} W_{2,kj} u_j^T Z_0 v_j + b_{2k}$
- Thus we can recover the latent variables under a linear low-rank output model

#### Results

- Data
  - Recordings from a high resolution  $\mu$ ECoG array from A1 area of auditory cortex in awake rats.
  - $420 \ \mu m$  spacing and 8x8 grid
  - Frequency tones were played for 50 ms
  - Recorded signal are down sampled at 2 kHz
- 390 tones in each experiment
- 61 channels and T = 160 samples
- F=256 (we choose 55 first components), 10 low rank units and 4 hidden units in the next layer
- Decoder Performances:
  - PCA + Linear: top p PCs of the network is used for regression, p + 1 parameters,  $\ell_1$  and  $\ell_2$  regularization
  - **PCA + SVM**: top p PCs of the network is used for regression, p + 1 parameters (Linear and Radial basis functions are used for SVM)
  - **PCA+NN**: top p PCs of the input followed by a NN, $(p+2)n_h+1$  parameters,  $\ell_2$  regularization is used for weights



| Method       | R-squared score | RMSE  |
|--------------|-----------------|-------|
| PCA+Linear   | 0.484           | 0.179 |
| PCA+SVM      | 0.476           | 0.181 |
| PCA+NN       | 0.510           | 0.174 |
| Low-Rank +NN | 0.761           | 0.121 |

#### References:

Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone, N. E., . . . Chang, E. F. (2012). Reconstructing speech from human auditory cortex. *PLoS biology*, *10*(1), e1001251.

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. *Nature neuroscience*, *19*(3), 356.

Cunningham, J. P., & Byron, M. Y. (2014). Dimensionality reduction for large-scale neural

recordings. Nature neuro-science, 17(11), 1500.

Chang, E. F. (2015). Towards large-scale, human-based, mesoscopic neurotechnologies *Neuron*, *86*(1), 68–78.

Decoding the auditory brain with canonical component analysis. *NeuroImage*, 172, 206–216.

Francis, N. A., Winkowski, D. E., Sheikhattar, A., Armengol, K., Babadi, B., & Kanold, P. O (2018). Small networks encode decision-making in primary auditory cortex. *Neuron*, 97(4) 885–897.