

ACCELERATED NATURAL LANGUAGE PROCESSING

Assignment 1

S1818699, S1884908

Contents

1	Intr	roduction	2
2 Random Sequence Generation - Question 4		ndom Sequence Generation - Question 4	2
	2.1	Raw Application of Language Model	2
	2.2	Random generation	2
	2.3	Results	3
3 Perplexity Computation - Question 5		3	
	3.1	Perplexity Computation	3
	3.2	Comparative Results	3
4	Con	aclusions	3

1 Introduction

2 Random Sequence Generation - Question 4

2.1 Raw Application of Language Model

After having generated and built a language model, the model itself can be used as is to generate new sequences.

2.2 Random generation

Algorithm 1 Random Generation

```
1: procedure GENERATE_FROM_LM(Num_Chars, Model, Valid_Char_List)
 2:
        sequence = empty
        bigram\_in \leftarrow '\#' + random(Valid\_Char\_List)
 3:
        chars\_left \leftarrow Num\_Chars - 1
 4:
 5: loop:
        if chars\_left > 0 then
 6:
            pos\_tris \leftarrow [bigram\_in + Valid\_Char\_List].
 7:
            distribution \leftarrow model[pos\_tris].
 8:
 9:
            bins \leftarrow cumulative sum(distribution)
            seg\_pos \leftarrow random\_bin\_select(bins)
10:
            new\_seq \leftarrow pos\_tris[seq\_pos]
11:
            bigram\_in \leftarrow new\_seq[0:1]
12:
            sequence \leftarrow sequence + new\_seq[2]
13:
            chars\_left \leftarrow chars\_left - 1
14:
            goto loop.
15:
        return sequence
16:
```


Figure 1: Random selection from a probability distribution

2.3 Results

3 Perplexity Computation - Question 5

This part of the assignment dealt with utilising the generated language models to assess the content of a given text.

3.1 Perplexity Computation

A perplexity measure attempt to measure how well a given model predicts a selected text sample. A low perplexity indicates the model is well suited to predicting the selected text, whilst a high perplexity indicates the model is unsuited for the text selected. The general equation for perplexity computation is as follows:

$$PP_{M} = P_{M} \left(w_{1} ... w_{n} \right)^{-\frac{1}{n}} \tag{1}$$

Taking logs:

$$log(PP_M) = log\left(P_M(w_1...w_n)^{-\frac{1}{n}}\right)$$
(2)

$$log(PP_M) = -\frac{1}{n} \times log(P_M(w_1...w_n))$$
(3)

$$log(PP_M) = -\frac{1}{n} \sum_{i=1}^{n} (log(P_M(w_1)) + \dots + log(P_M(w_n)))$$
(4)

3.2 Comparative Results

4 Conclusions