EXERCICE 2 (4 points)

Cet exercice porte sur les bases de données relationnelles et le langage SQL.

L'énoncé de cet exercice utilise les mots-clés du langage SQL suivants : SELECT, FROM, WHERE, JOIN...ON, UPDATE...SET, INSERT INTO...VALUES..., COUNT, ORDER BY.

La clause ORDER BY suivie d'un attribut permet de trier les résultats par ordre croissant de l'attribut.

SELECT COUNT (*) renvoie le nombre de lignes d'une requête.

Un zoo souhaite pouvoir suivre ses animaux et ses enclos. Tous les représentants d'une espèce sont réunis dans un même enclos. Plusieurs espèces, si elles peuvent cohabiter ensemble, pourront partager le même enclos.

Il crée une base de données utilisant le langage SQL avec une relation (ou table) animal qui recense chaque animal du zoo. Vous trouverez un extrait de cette relation ci-dessous (les unités des attributs age, taille et poids sont respectivement ans, m et kg):

animal								
id_animal	nom	age	taille	poids	nom_espece			
145	Romy	18	2.3	130	tigre du Bengale			
52	Boris	30	1.10	48	bonobo			
				:	•••			
225	Hervé	10	2.4	130	lama			
404	Moris	6	1.70	100	panda			
678	Léon	4	0.30	1	varan			

Il crée la relation enclos dont vous trouverez un extrait ci-dessous (l'unité de l'attribut surface est m²) :

enclos							
num_enclos	ecosysteme	surface	struct	date_entretien			
40	banquise	50	bassin	04/12/2024			
18	forêt tropicale	200	vitré	05/12/2024			
				•••			
24	savane	300	clôture	04/12/2024			
68	désert	2	vivarium	05/12/2024			

Il crée également la relation espece dont vous trouverez un extrait ci-dessous :

espece							
nom_espece	classe	alimentation	num_enclos				
impala	mammifères	herbivore	15				
ara de Buffon	oiseaux	granivore	77				
•••		• • •					
tigre du Bengale	mammifères	carnivore	18				
caïman	reptiles	carnivore	45				
manchot empereur	oiseaux	carnivore	40				
lama	mammifères	herbivore	13				

23-NSIJ2G11 Page : 5/9

- 1. Cette question porte sur la lecture et l'écriture de requêtes SQL simples.
 - a. Écrire le résultat de la requête ci-dessous.

```
SELECT age, taille, poids FROM animal WHERE nom = 'Moris';
```

- **b.** Écrire une requête qui permet d'obtenir le nom et l'âge de tous les animaux de l'espèce bonobo, triés du plus jeune au plus vieux.
- 2. Cette question porte sur le schéma relationnel.
 - a. Citer, en justifiant, la clé primaire et la clé étrangère de la relation espece.
 - b. Donner le modèle relationnel de la base de données du zoo. On soulignera les clés primaires et on fera précéder les clés étrangères d'un #.
- 3. Cette question porte sur les modifications d'une table.

L'espèce **ornithorynque** a été entrée dans la base comme étant de la **classe** des oiseaux alors qu'il s'agit d'un mammifère.

- a. Écrire une requête qui corrige cette erreur dans la table espece.
 Le couple de lamas du zoo vient de donner naissance au petit lama nommé "Serge" qui mesure 80 cm et pèse 30 kg.
- **b.** Écrire une requête qui permet d'enregistrer ce nouveau venu au zoo dans la base de données, sachant que les clés primaires de 1 à 178 sont déjà utilisées.
- 4. Cette question porte sur la jointure entre deux tables
 - **a.** Recopier sur votre feuille la requête SQL et compléter les ... afin de recenser le nom et l'espèce de tous les animaux carnivores vivant en vivarium dans le zoo.

```
SELECT ...

FROM animal

JOIN espece ON ...

JOIN enclos ON ...

WHERE enclos.struct = 'vivarium' and ...;
```

On souhaite connaître le nombre d'animaux dans le zoo qui font partie de la classe des oiseaux.

b. Écrire la requête qui permet de compter le nombre d'oiseaux dans tout le zoo.

23-NSIJ2G11 Page : 6/9