HMM (2)

LING 570

Fei Xia

Week 7: 11/09/09

Three fundamental questions for HMMs

 Training an HMM: given a set of observation sequences, learn its distribution, i.e. learn the transition and emission probabilities

 HMM as a parser: Finding the best state sequence for a given observation

HMM as an LM: compute the probability of a given observation

Training an HMM: estimating the probabilities

- Supervised learning:
 - The state sequences in the training data are known
 - ML estimation

- Unsupervised learning:
 - The state sequences in the training data are unknown
 - forward-backward algorithm

HMM as a parser

HMM as a parser: Finding the best state sequence

• Given the observation $O_{1,T}=o_1...o_T$, find the state sequence $X_{1,T+1}=X_1...X_{T+1}$ that maximizes $P(X_{1,T+1} \mid O_{1,T})$.

→ Viterbi algorithm

"time flies like an arrow"

```
\init
 BOS 1.0
\transition
 BOS N 0.5
 BOS DT 0.4
 BOS V 0.1
 DT
      N 1.0
 Ν
      N 0.2
      V 0.7
 Ν
 Ν
      P 0.1
 V
      DT 0.4
 V
      N 0.4
 ٧
     P 0.1
 V
      V 0.1
     DT 0.6
 Р
     Ν
         0.4
```

```
\emission
N time
         0.1
        0.1
V time
N flies
        0.1
V flies
       0.2
V like
        0.2
P like
        0.1
DT an
        0.3
N arrow 0.1
```

Finding all the paths: to build the trellis

Finding all the paths (cont)

Viterbi algorithm

The probability of the best path that produces $O_{1,t-1}$ while ending up in state s_i :

$$\delta_{j}(t) = \max_{X_{1,t-1}} P(X_{1,t-1}, O_{1,t-1}, X_{t} = j)$$

Initialization: $\delta_j(1) = \pi_j$

Induction: $\delta_j(t+1) = \max_i \delta_i(t) a_{ij} b_{jo_t}$

 \rightarrow Modify it to allow ϵ -emission

$$\delta_{j}(t) = \max_{X_{1,t-1}} P(X_{1,t-1}, O_{1,t-1}, X_{t} = j)$$

$$\delta_j(1) = \pi_j$$

$$\delta_j(t+1) = \max_i \delta_i(t) a_{ij} b_{jo_t}$$

Proof of the recursive function**

$$\begin{split} \delta_{j}(t+1) &= \max_{X_{1,t}} P(X_{1,t}, O_{1,t}, X_{t+1} = j) \\ &= \max_{X_{1,t}} P(X_{1,t-1}, O_{1,t-1}, O_{t}, X_{t}, X_{t+1} = j) \\ &= \max_{X_{t} = i} \max_{X_{1,t-1}} P(X_{1,t-1}, O_{1,t-1}, X_{t} = i) P(o_{t}, X_{t+1} = j \mid X_{1,t-1}, O_{1,t-1}, X_{t} = i) \\ &= \max_{X_{t} = i} \max_{X_{1,t-1}} P(X_{1,t-1}, O_{1,t-1}, X_{t} = i) a_{ij} b_{jo_{t}} \\ &= \max_{X_{t} = i} a_{ij} b_{jo_{t}} (\max_{X_{1,t-1}} P(X_{1,t-1}, O_{1,t-1}, X_{t} = i)) \\ &= \max_{X_{t} = i} \delta_{i}(t) a_{ij} b_{jo_{t}} \end{split}$$

Viterbi algorithm: calculating $\delta_j(t)$

```
# N is the number of states in the HMM structure
# observ is the observation O, and leng is the length of observ.
Initialize delta[0..leng][0..N-1] to 0
for each state j
  delta[0][i] = \pi[i]
  back-pointer[0][j] = -1 # dummy
for (t=0; t<leng; t++)
  for (j=0; j<N; j++)
    k=observ[t] # the symbol at time t
   delta[t+1][j] = max_i delta[t][i] a_{ii} b_{ik}
    back-pointer[t+1][j] = arg max<sub>i</sub> delta[t][i] a<sub>ii</sub> b<sub>ik</sub>
```

Viterbi algorithm: retrieving the best path

```
# find the best path
best_final_state = arg max; delta[leng] [j]
# start with the last state in the sequence
i = best_final_state
push(arr, j);
for (t=leng; t>0; t--)
 i = back-pointer[t] [j]
  push(arr, i)
 i = i
```

Implementation issue storing HMM

Approach #1:

- π_i : pi {state_str}
- a_{ii}: a {from_state_str} {to_state_str}
- b_{ik}: b {state_str} {symbol}

Approach #2:

- state2idx{state_str} = state_idx
- symbol2idx{symbol_str} = symbol_idx
- π_i : pi [state_idx] = prob
- a_{ii}: a [from_state_idx] [to_state_idx] = prob
- b_{ik}: b [state_idx] [symbol_idx] = prob
- idx2state[state_idx] = state_str
- Idx2symbol[symbol_idx] = symbol_str

Storing HMM: sparse matrix

- a_{ii}: a [i] [j] = prob
- b_{jk} : b[j][k] = prob
- a_{ii} : a[i] = "j1 p1 j2 p2 ..."
- a_{ij} : a[j] = "i1 p1 i2 p2 ..."
- b_{ik} : b[j] = "k1 p1 k2 p2"
- b_{ik} : b[k] = "j1 p1 j2 p2 ..."

Other implementation issues

 Index starts from 0 in programming, but often starts from 1 in algorithms

 The sum of logprob is used in practice to replace the product of prob.

 Check constraints and print out warning if the constraints are not met.

HMM as LM

HMM as an LM: computing $P(o_1, ..., o_T)$

$$P(o_1, ..., o_T) = \sum_{X_1, ..., X_{T+1}} P(o_1, ..., o_T, X_1, ..., X_{T+1})$$

1st try:

- enumerate all possible paths
- add the probabilities of all paths

Forward probabilities

• Forward probability: the probability of producing $O_{1,t-1}$ while ending up in state s_i :

$$\alpha_i(t) \stackrel{def}{=} P(O_{1,t-1}, X_t = i)$$

$$P(O) = \sum_{i=1}^{N} \alpha_i (T+1)$$

Calculating forward probability

Initialization:
$$\alpha_j(1) = \pi_j$$

$$\alpha_{j}(t+1) = P(O_{1,t}, X_{t+1} = j)$$

$$=\sum_{i}\alpha_{i}(t)a_{ij}b_{jo_{t}}$$

$$\begin{split} \alpha_{j}(t+1) &= P(O_{1,t}, X_{t+1} = j) \\ &= \sum_{i} P(O_{1,t}, X_{t} = i, X_{t+1} = j) \\ &= \sum_{i} P(O_{1,t-1}, X_{t} = i) * P(o_{t}, X_{t+1} = j \mid O_{1,t-1}, X_{t} = i) \\ &= \sum_{i} P(O_{1,t-1}, X_{t} = i) * P(o_{t}, X_{t+1} = j \mid X_{t} = i) \\ &= \sum_{i} \alpha_{i}(t) a_{ij} b_{jo_{t}} \end{split}$$

Summary

- Definition: hidden states, output symbols
- Properties: Markov assumption
- Applications: POS-tagging, etc.
- Three basic questions in HMM
 - Find the probability of an observation: forward probability
 - Find the best sequence: Viterbi algorithm
 - Estimate probability: MLE
- Bigram POS tagger: decoding with Viterbi algorithm

Hw7

- Q1: Viterbi algorithm
 - viterbi.sh hmm test_file output_file
 - HMM: the same format as in Hw6
 - test_file: $o_1 o_2 \dots o_k$
 - output_file: " $o_1 o_2 ... o_k => x_1 x_2 ... x_{k+1} logprob$ "
 - logprob is $\lg P(o_1 o_2 ... o_k, x_1 x_2 ... x_{k+1})$
 - Do not try to smooth the input HMM. It might have been smoothed already.
 - You can reuse some code from check_hmm.sh in Hw6

Q2: trigram POS tagger with HMM

- training:
 - cat wsj sec0.word pos | create_3gram_hmm.sh hmm1 1.00 0 unk_prob_sec22
- decoding: "w1 w2 ... => x1 x2 ... logprob"
 - viterbi.sh hmm1 test.word sys1
- convert format: "w1/t1 w2/t2 ..."
 - cat sys1 | conv format.sh > sys1 res
- evaluation
 - calc tagging accuracy.pl test.word pos sys1 res > sys1 res.acc 2>&1