CS61B Lectures #28

Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next

topic: Chapter 9.

Better than N lg N?

- Can prove that if all you can do to keys is compare them, then sorting must take $\Omega(N \lg N)$.
- ullet Basic idea: there are N! possible ways the input data could be scrambled.
- ullet Therefore, your program must be prepared to do N! different combinations of datamoving operations.
- Therefore, there must be N! possible combinations of outcomes of all the **if**-tests in your program, since those determine what move gets moved where (we're assuming that comparisons are 2-way).

Decision Tree leight \propto Sorting time b < c

Necessary Choices

- Since each if-test goes two ways, number of possible different outcomes for k if-tests is 2^k .
- Thus, need enough tests so that $2^k \geq N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$N! \in \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \Theta\left(\frac{1}{N}\right)\right),$$

$$\lg(N!) \in 1/2(\lg 2\pi + \lg N) + N\lg N - N\lg e + \lg\left(1 + \Theta\left(\frac{1}{N}\right)\right)$$

$$= \Theta(N\lg N)$$

• This tells us that k, the worst-case number of tests needed to sort N items by comparison sorting, is in $\Omega(N \lg N)$: there must be cases where we need (some multiple of) $N \lg N$ comparisons to sort N things.

Beyond Comparison: Distribution

- But suppose can do more than compare keys?
- ullet For example, how can we sort a set of Ninteger keys whose values range from 0 to kN, for some small constant k?
- ullet One technique: put the integers into N buckets, with an integer p going to bucket $\lfloor p/k \rfloor$.
- At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
- E.g., k = 2, N = 10:

Start: 10 13 4 2 19 17 0 9 In buckets: | 0 | 3 2 | 4 | | 9 | 10 | 13 | 14 |

 Now insertion sort is fast. Putting in buckets takes time $\Theta(N)$, and insertion sort takes $\Theta(kN)$. When k is fixed (constant), we have sorting in time $\Theta(N)$.

Distribution Counting

- Another technique: count the number of items < 1, < 2, etc.
- If $M_p=$ #items with value < p, then in sorted order, the j^{th} item with value p must be item $\#M_p+j$.
- Gives another linear-time algorithm.

 Suppose all items are between 0 and 9 as in this example:

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys < each value...

CS61B: Lecture #28 6

• ... which tells us where to put each key:

ullet The first instance of key k goes into slot m, where m is the number of key instances that are < k.

7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
Со	3		0	3		1	1		2	2		1	3		3
_	9		8	7		6	5		4	3		2	1		0
Ru	16		16	13		12	11		9	7		6	3		0
_	9	•	8	7	•	6	5	•	4	3	•	2	1		0
Ne	16		16	13		12	11		9	7		6	3		0
_	9	•	8	7		6	5	•	4	3		2	1		0

		1 1	i l	í I						
		1 1	i l	í I						
		1 1	i l	í I						
	 									-
\wedge	2			4		\circ		12		15
				\mathbf{n}		9		1/		1.5
U	J			U				16		10

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Co
0		1	2		3	4		5	6		7	8		9	_
0		3	6		7	9		11	12	2	13	16)	16	Ru
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	-
0		3	6		7	9		11	12	2	14	16)	16	Ne
0	•	1	2		3	4		5	6		7	8		9	

									7	
0		3		6		9		12		15

									_							
	7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
	3		3	1		2	2		1	1		3	0		3	Co
•	0		1	2		3	4		5	6		7	8		9	-
	0		3	6		7	9		11	12	2	13	16		16	Ru
	0		1	2		3	4		5	6		7	8		9	
ı										1			1			1 .
	1		3	6		7	9		11	12	2	14	16		16] Ne
	0		1	2		3	4		5	6		7	8		9	

0									7	
0		3		6		9		12		15

7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
Со	3		0	3		1	1		2	2		1	3		3
	9		8	7		6	5		4	3		2	1		0
Ru	16		16	13		12	11		9	7		6	3		0
	9		8	7		6	5		4	3		2	1		0
Ne	16		16	14		12	11		10	7		6	3		1
•	9	•	8	7	•	6	5	•	4	3	•	2	1	•	0

0						4			7	
0		3		6		9		12		15

										_				_	
7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
	3	3	1		2	2		1	1		3	0		3	Со
	0	1	2	•	3	4		5	6	·	7	8	·	9	
	0	3	6		7	9		11	12	2	13	16		16	Ru
	0	1	2	•	3	4	•	5	6	•	7	8	•	9	,
	2	3	6		7	10		11	12	2	14	16		16	Ne
(0	1	2		3	4	•	5	6		7	8	•	9	-

0	0					4			7	
0		3		6		9		12		15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3	3	3	1		2	2		1	1		3	0		3	Co
C)	1	2	•	3	4	•	5	6		7	8		9	
С)	3	6		7	9		11	12	2	13	16	,	16	Ru
C)	1	2	•	3	4	•	5	6		7	8		9	1
2	2	3	6		7	10		11	12	2	14	16	,	17	Ne
C)	1	2	•	3	4	•	5	6	<u>'</u>	7	8	•	9	1

0	0					4			7	
0		3		6		9		12		15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Co
0		1	2		3	4		5	6		7	8		9	_
0		3	6		7	9		11	12	2	13	16		16	Ru
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	•
2		4	6		7	10		11	12	2	14	16		17	Ne
0	•	1	2		3	4	•	5	6	•	7	8	·	9	-

0	0	1				4			7	
0		3		6		9		12		15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Со
0		1	2		3	4		5	6)	7	8		9	
0		3	6		7	9		11	12	2	13	16)	16	Ru
0		1	2	•	3	4	•	5	6	,	7	8		9	1
2		4	6		7	10		11	12	2	14	16)	18	Ne
0	•	1	2	•	3	4	•	5	6)	7	8	•	9	_

0	0	1				4			7	
0		3		6		9		12		15

	7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
	3		3	1		2	2		1	1		3	0		3	Со
	0		1	2		3	4		5	6		7	8		9	-
	0		3	6		7	9		11	12		13	16		16	Ru
•	0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	
	2		5	6		7	10		11	12		14	16		18	Ne
•	0	•	1	2	•	3	4	·	5	6	•	7	8	•	9	

0	0	1	1			4			7	
0		3		6		9		12		15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Со
0		1	2		3	4		5	6		7	8		9	
0		3	6		7	9		11	12		13	16	,	16	Ru
0	•	1	2	•	3	4	•	5	6		7	8	•	9	
2		5	6		7	10		11	12		14	16		19	Ne
0		1	2		3	4		5	6		7	8		9	_

0	0	1	1			4			7	
0		3		6		9		12		15

	7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
	3		3	1		2	2		1	1		3	0		3	Со
	0	·	1	2	•	3	4	•	5	6		7	8		9	
	0		3	6		7	9		11	12		13	16	,	16	Ru
•	0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	-
	2		5	6		7	10		12	12	,	14	16)	19	Ne
	0	•	1	2		3	4		5	6		7	8		9	-

0	0	1	1			4	5		7	
0		3		6		9		12		15

	7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
	3		3	1		2	2		1	1		3	0		3	Со
	0		1	2		3	4		5	6		7	8		9	
	0		3	6		7	9		11	12		13	16		16	Ru
•	0	·	1	2	·	3	4	•	5	6	·	7	8	·	9	
	2		5	6		8	10		12	12		14	16		19	Ne
	0	·	1	2		3	4		5	6		7	8		9	_

0	0	1	1		3	4	5		7	
0		3		6		9		12		15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Со
0		1	2		3	4	•	5	6	•	7	8	•	9	
0		3	6		7	9		11	12		13	16		16	Ru
0		1	2	•	3	4		5	6		7	8	·	9	
2		5	6		8	10		12	12)	15	16		19	Ne
0		1	2		3	4		5	6		7	8		9	

0	0	1	1		3	4	5		7	7	
0		3		6		9		12			15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Со
0		1	2		3	4		5	6		7	8		9	
0		3	6		7	9		11	12		13	16		16	Ru
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	-
2		5	6		9	10		12	12		15	16		19	Ne
0		1	2		3	4		5	6		7	8		9	_

0	0	1	1		3	3	4	5		7	7	
0		3		6			9		12			15

	7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
	3		3	1		2	2		1	1		3	0		3	Со
	0		1	2		3	4		5	6		7	8		9	
	0		3	6		7	9		11	12	2	13	16		16	Ru
	0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	
	2		6	6		9	10		12	12)	15	16		19	Ne
•	0	·	1	2		3	4		5	6		7	8		9	

0	0	1	1	1		3	3	4	5		7	7	
0		3			6			9		12			15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Со
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	
			г			1			1			1			1 _
0		3	6		7	9		11	12	.	13	16		16	Ru
0		1	2	•	3	4	•	5	6	•	7	8	•	9	
							_								_
2		6	6		9	10		12	13		15	16		19	Ne
0	·	1	2	•	3	4	•	5	6		7	8	•	9	

0	0	1	1	1		3	3	4	5	6	7	7	
0		3			6			9		12			15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Со
0		1	2		3	4		5	6		7	8		9	
0		3	6		7	9		11	12		13	16		16	Ru
0		1	2		3	4	•	5	6		7	8	·	9	
2		6	6		9	10		12	13		16	16)	19	Ne
0		1	2		3	4		5	6		7	8		9	_

0	0	1	1	1		3	3	4	5	6	7	7	7
0		3			6			9		12			15

7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
Co	3		0	3		1	1		2	2		1	3		3
	9		8	7	·	6	5		4	3		2	1		0
Ru	16	,	16	13		12	11			7		6	3		0
_	9		8	7	·	6	5	·	4	3	·	2	1		0
Ne	19		16	16		13	12		11	9		6	6		2
_	9	•	8	7		6	5	-	4	3	•	2	1	•	0

0	0	1	1	1		3	3	4	4	5	6	7	7	7
0		3			6			9			12			15

7	6	1	3	7	3	5	9	1	9	1	9	0	4	0	7
Co	3		0	3		1	1		2	2		1	3		0
	9		8	7		6	5		4	3		2	1		0
Ru	16	,	16	13		12	11			7		6	3		0
_	9		8	7	·	6	5	•	4	3	·	2	1		0
Ne	19		16	16		13	12		11	9		7	6		2
_	9	•	8	7		6	5		4	3	•	2	1	•	0

0	0	1	1	1	2	3	3	4	4	5	6	7	7	7
0		3			6			9			12			15

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7
3		3	1		2	2		1	1		3	0		3	Со
0		1	2		3	4		5	6		7	8		9	
0		3	6		7	9		11	12		13	16		16	Ru
0		1	2		3	4		5	6		7	8		9	_
3		6	7		9	11		12	13		16	16		19	Ne
0	-	1	2	•	3	4		5	6		7	8		9	

0	0	0	1	1	1	2	3	3	4	4	5	6	7	7	7
0			3			6			9			12			15

Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

$$\begin{array}{c} \text{bet} \\ \text{let} \\ \text{bat} \\ \text{cat} \\ \text{bat} \\ \text{cat} \\ \text{can} \\ \text{(by char \#1)} \\ \text{cad} \\ \text{`a'} \\ \text{be, cad, con, can, set, cat, bat, let, bet} \end{array}$$

bat, be, bet, cad, can, cat, con, let, set

CS61B: Lecture #28 28

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	pos
* set, cat, cad, con, bat, can, be, let, bet	0
\star bat, be, bet / cat, cad, con, can / let / set	1
bat $/ *$ be, bet $/$ cat, cad, con, can $/$ let $/$ set	2
bat / be / bet / \star cat, cad, con, can / let / set	1
bat / be / bet / \star cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- ullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- \bullet Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- ullet So $N\lg N$ comparisons really means $N(\lg N)^2$ operations.
- ullet While radix sort would take $B=N\lg N$ time with minimal-length keys.
- On the other hand, must work to get good constant factors with radix sort.

Last modified: Thu Oct 25 20:46:10 2018 CS61B: Lecture #28 30

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- ullet Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- ullet Heapsort, treesort with guaranteed balance: $\Theta(N\lg N)$ guaranteed.
- ullet Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.