1、已知带权连通图 G = (V, E)的邻接表如下:

- (1) 按此存储结构,分别写出从 V_5 出发执行深度优先搜索和广度优先搜索算法遍历该图 所得到的结点序列。
- 答:深度优先搜索算法所得结点序列为 V_5, V_2, V_1, V_3, V_4 广度优先搜索算法所得结点序列为 V_5, V_2, V_4, V_1, V_3
- (2) 求出该图的最小生成树。
- 答:最小生成树如下。

2、对下图分别按 Prim 算法和 Kruskal 算法求出最小生成树。(请画出构造步骤)

答: Prim 算法假定从顶点 A 开始,构造步骤参考书上 174 页图 7.16 所示。Kruskal 算法参考书上 176 页图 7.18 所示。最小生成树不唯一,其中一棵最小生成树如下。

3、试用 Dijkstra 算法求下图中从顶点 A 到其余各顶点的最短路径,要求给出执行算法过程 中各步的状态。

答:

终点	从 A 到各终点的 D 值和最短路径的求解过程				
	i=1	i=2	i=3	i=4	i=5
В	6 (A, B)	5 (A, C, B)			
С	3 (A, C)				
D	8	11 (A, C, D)	10 (A, C, B, D)	10 (A, C, B, D)	
E	8	7 (A, C, E)	7 (A, C, E)		
F	8	8		13 (A, C, E, F)	12 (A, C, B, D, F)
V _j	С	В	E	D	F
S	{A, C}	{A, C, B }	{A, C, B, E}	{A, C, B, E, D}	{A, C, B, E, D, F}

4、设有向网如右图所示,用弗洛伊德算法求图中各对顶点间的最短路径。

答:
$$D^{(-1)} = \begin{bmatrix} 0 & 5 & \infty & 4 \\ \infty & 0 & 2 & \infty \\ 3 & 5 & 0 & \infty \\ 2 & \infty & 6 & 0 \end{bmatrix}$$
 $D^{(0)} = \begin{bmatrix} 0 & 5 & \infty & 4 \\ \infty & 0 & 2 & \infty \\ 3 & 5 & 0 & 7 \\ 2 & 7 & 6 & 0 \end{bmatrix}$ $D^{(1)} = \begin{bmatrix} 0 & 5 & 7 & 4 \\ \infty & 0 & 2 & \infty \\ 3 & 5 & 0 & 7 \\ 2 & 7 & 6 & 0 \end{bmatrix}$ $D^{(2)} = \begin{bmatrix} 0 & 5 & 7 & 4 \\ 5 & 0 & 2 & 9 \\ 3 & 5 & 0 & 7 \\ 2 & 7 & 6 & 0 \end{bmatrix}$

$$\mathbf{D}^{(0)} = \begin{bmatrix} 0 & 3 & \infty & 4 \\ \infty & 0 & 2 & \infty \\ 3 & 5 & 0 & 7 \\ 2 & 7 & 6 & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{bmatrix} 0 & 5 & 7 & 4 \\ \infty & 0 & 2 & \infty \\ 3 & 5 & 0 & 7 \\ 2 & 7 & 6 & 0 \end{bmatrix}$$

$$D^{(2)} = \begin{bmatrix} 0 & 5 & 7 & 4 \\ 5 & 0 & 2 & 9 \\ 3 & 5 & 0 & 7 \\ 2 & 7 & 6 & 0 \end{bmatrix}$$

$$D^{(3)} = \begin{vmatrix} 0 & 3 & 7 & 4 \\ 5 & 0 & 2 & 9 \\ 3 & 5 & 0 & 7 \\ 2 & 7 & 6 & 0 \end{vmatrix}$$

5、下图是某一工程作业的网络图 G 的邻接表表示法,则:

- (1) 写出以结点 V1 出发深度遍历图 G 所得的结点序列;
- (2) 写出以结点 V1 出发广度遍历图 G 所得的结点序列;
- (3) 求从结点 V1 到结点 V8 的关键路径和关键路径的长度。
- 答: (1) V1, V2, V3, V8, V5, V7, V4, V6
 - (2) V1, V2, V4, V6, V3, V5, V7, V8
 - (3)

关键路径为 V1, V6, V5, V3, V8, 关键路径长度为 97。

6、设有向图 G 中有向边的集合 E = {<1, 2>, <2, 3>, <1, 4>, <4, 2>, <4, 3>},写出该图的一种 拓扑序列。

答: 1, 4, 2, 3