CC2 - Optimisation

Durée: 2h.

Seuls le polycopié de cours et les notes personnelles de cours sont autorisés.

Exercice 1. Applications directes du cours (7 points)

1. Déterminez le gradient et la hessienne H_F de la fonction :

$$F: \mathbb{R}^n \to \mathbb{R}$$

$$x \mapsto \frac{1}{2} ||Ax - b||_2^2$$

$$(1)$$

où $\|\cdot\|_2^2$ est la norme l^2 usuelle, $A \in \mathbb{R}^{m \times n}$ et $b \in \mathbb{R}^n$.

- 2. A quelle condition sur la matrice A, la fonction F est-elle convexe?
- 3. A quelle condition sur A est elle fortement convexe?
- 4. Soit $\phi: \mathbb{R} \to \mathbb{R}$ une fonction C^2 , convexe et:

$$\Phi: \mathbb{R}^m \to \mathbb{R}
 y \mapsto \sum_{i=1}^m \phi(y_i)$$
(2)

Déterminer le gradient de la fonction $G(x) = \Phi(Ax - b)$.

- 5. On souhaite minimiser F. Quel algorithme utiliseriez-vous si n = 10? Si $n = 10^6$?
- 6. On souhaite minimiser G. Quel algorithme utiliseriez-vous si n = 10? Si $n = 10^6$?
- 7. Quel algorithme utiliseriez-vous si $\Phi(y) = ||y||_1$ si n = 10? si $n = 10^6$? si $n = 10^{19}$?

Exercice 2. Dualité de Fenchel-Rockafellar (14 points)

Soit f une fonction convexe fermée. On considère la fonction f^* définie de la façon suivante :

$$f^*(x) = \sup_{y \in \mathbb{R}^n} \langle x, y \rangle - f(y).$$

L'application $f \mapsto f^*$ est appelée transformée de Fenchel-Rockafellar ou polaire de f et c'est un outil fondamental d'analyse convexe. L'objectif de cet exercice est de déterminer quelques-unes de ses propriétés.

PARTIE 1 - Quelques exemples de polaires :

On pose $X=\{x\in\mathbb{R}^n,\|x\|_2\leq 1\}.$ On considère les fonctions :

$$f_1(x) = \frac{1}{2} ||x||_2^2$$

$$f_2(x) = \chi_X(x) = \begin{cases} 0 & \text{si } ||x||_2 \le 1 \\ +\infty & \text{sinon} \end{cases}$$

$$f_3(x) = f_1(x) + f_2(x).$$

- 1. Chacune des fonctions ci-dessus est-elle convexe? Fermée?
- 2. Déterminez la transformée de Fenchel f_1^* de f_1 . Que vaut f_1^{**} ?
- 3. Montrez que:

$$f_2^*(x) = \sup_{y \in \mathbb{R}^n, ||y||_2^2 \le 1} \langle x, y \rangle.$$

- 4. Calculez f_2^* et f_2^{**} .
- 5. Calculez f_3^* .

PARTIE 2 - Propriétés élémentaires de f^* :

- 1. Montrez que f^* est convexe.
- 2. On pose $h(x) = f(\lambda x), \lambda \in \mathbb{R}^*$. Calculez $h^*(x)$ en fonction de f et f^* .
- 3. Que vaut $h^*(x)$ si $\lambda = 0$?
- 4. On souhaite montrer que $f^{**}=f$ lorsque f est convexe fermée.
 - (a) Montrez que $f^{**}(x) = \sup_{y \in \mathbb{R}^n} \inf_{z \in \mathbb{R}^n} f(z) + \langle x z, y \rangle$.
 - (b) En identifiant $(y, z) \mapsto f(z) + \langle x z, y \rangle$ à un lagrangien, justifiez que l'on puisse intervertir le supremum et l'infimum.
 - (c) Conclure que $f^{**} = f$.
- 5. Hors-Barème : On considère le problème suivant :

$$(\mathcal{P}) \qquad \inf_{x \in \mathbb{R}^n} f(Ax) + g(x)$$

où $A \in \mathbb{R}^{m \times n}$ et f et g sont desz fonctions convexes fermées. En réécrivant le problème (\mathcal{P}) sous la forme

$$\inf_{x \in \mathbb{R}^n, y \in \mathbb{R}^m, Ax = y} f(y) + g(x)$$

et en utilisant la dualité la grangienne, montrez que 1 :

$$\inf_{x \in \mathbb{R}^n} f(Ax) + g(x) = \sup_{\lambda \in \mathbb{R}^m} -g^*(A^T \lambda) - f^*(-\lambda).$$

^{1.} c'est un résultat central de la dualité de Fenchel-Rockafellar