МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В. Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 2

по дисциплине: Теория информации

тема: «Исследование кодов Шеннона-Фано»

Выполнил: ст. группы ПВ-223 Игнатьев Артур Олегович

1 11

Проверил:

Твердохлеб Виталий Викторович

Лабораторная работа №2

«Исследование кодов Шеннона-Фано»

Цель работы: исследовать кодирование по методу Шеннона-Фано. Научиться оценивать эффективности кода..

Решение задач:

1. Построить код для сообщения, содержащего строку панграммы «в чащах юга жил бы цитрус? Да, но фальшивый экземпляр!». Для полученного кода рассчитать показатели коэффициента сжатия и дисперсии.

1		Deserve						
Символ	Вероятность	Этапы						Код
	-	I	II	III	IV	V	VI	
пробел	0,166666667		0	1				111
A	0,092592593	1		0				110
Л	0,05555556			1	1			1011
И	0,05555556				0			1010
В	0,037037037			0	1 0	1		10011
Ы	0,037037037					0		10010
P	0,037037037					1		10001
Π	0,018518519					0		10000
?	0,018518519					1		01111
O	0,018518519	- - - - -		1	1	0	1	011101
Н	0,018518519					U	0	011100
M	0,018518519				0	1		01101
К	0,018518519					0	1	011001
Ň	0,018518519					U	0	011000
3	0,018518519		1			1		01011
Ж	0,018518519			0	0	0	1	010101
Е	0,018518519					U	0	010100
Γ	0,018518519					1	1	010011
Б	0,018518519					1	0	010010
,	0,018518519					0	1	010001
!	0,018518519					V	0	010000
Д	0,018518519	1	0	1	1	1		00111
R	0,018518519					0	1	001101
Ю	0,018518519					U	0	001100
Э	0,018518519				0	1	1	001011
Ъ	0,018518519					1	0	00101
Щ	0,018518519					0	1	001001
Ш	0,018518519					U	0	001000
Ч	0,018518519			0	1	1		00011
Ц	0,018518519					0	1	000101
X	0,018518519					V	0	000100
Ф	0,018518519				0	1	1	000011
У	0,018518519					1	0	000010
T	0,018518519					0	1	000001
C	0,018518519					U	0	000000

$$B = 54 \cdot 8 = 432$$
 $B' = 258$
 $Kcomp = \frac{B}{B'} = \frac{432}{258} = 1\frac{29}{43}$
 $l = 4.7778$
 $\delta = 1.5062$

2. Построить код для сообщения, содержащего строку «Victoria nulla est, Quam quae confessos animo quoque subjugat hostes» Для полученного кода рассчитать показатели коэффициента сжатия и дисперсии.

	Вероятность				T.C.				
Символ		I	II	III	Этап IV	V	VI	VII	Код
пробел	9	1	1	1					111
u	7			0					110
S	7		0	1					101
0	6			0	1				1001
a	6				0				1000
e	5		1	1	1				0111
t	4				0				0110
q	3			0	1				0101
n	3				0				0100
i	3	0	0	1	1	1			00111
m	2					0			00110
1	2				0	1			00101
c	2					0			00100
V	1			0	1	1	1		000111
r	1					1	0		000110
Q	1					0	1		000101
,	1					U	0		000100
j	1				0	1	1		000011
ĥ	1					1	0		000010
g	1						1		000001
f	1					0	0	1	0000001
ь	1						U	0	0000000

$$B = 68 \cdot 8 = 544$$

$$B' = 278$$

$$Kcomp = \frac{B}{B'} = \frac{544}{278} = 1\frac{133}{139}$$

$$l = 4.0882$$

$$\delta = 0.5515$$

3. Построить консольное приложение, реализующее процесс кодирования по методу Шеннона-Фано (с возможностью расчета коэффициента сжатия и дисперсии).

```
package labs.lab2;
public class Main {
    public static List<TableElement> schennonFano(String input) {
        for (char symbol : input.toCharArray()) {
            Optional<TableElement> result = table.stream().filter((el) ->
el.symbol == symbol).findAny();
            if (result.isPresent()) {
                table.add(new TableElement(symbol));
        table.sort(Comparator.comparingInt(o -> o.amount));
        Collections. reverse (table);
   public static void schennonFano(List<TableElement> table, int beginIndex,
            table.get(beginIndex).code.add(true);
            table.get(beginIndex + 1).code.add(false);
        int separateIndex = getSeparateIndex(table, beginIndex, endIndex);
        for (int i = beginIndex; i < endIndex; i++) {
   if (i < beginIndex + separateIndex) {</pre>
                table.get(i).code.add(true);
        schennonFano(table, beginIndex, separateIndex);
        schennonFano(table, separateIndex, endIndex);
```

```
sum += table.get(i).amount;
        int sumBefore = table.get(beginIndex).amount;
        int separateIndex = beginIndex + 1;
        while (separateIndex < endIndex - 1 && sumAfter - table.get(sepa-
rateIndex).amount -
                (sumBefore + table.qet(separateIndex).amount) > 0 ) {
            sumAfter -= table.get(separateIndex).amount;
            sumBefore += table.get(separateIndex).amount;
        if (Math.abs(sumBefore - sumAfter) > Math.abs(sumAfter - ta-
ble.get(separateIndex).amount -
                (sumBefore + table.get(separateIndex).amount))) {
        return separateIndex;
    public static void main(String[] args) throws IOException {
        System.out.println("Введите сообщение: ");
        BufferedReader r = new BufferedReader(new InputStreamReader(Sys-
tem.in));
        input = r.readLine();
       System.out.println();
        List<TableElement> table = schennonFano(input);
        for (TableElement element : table) {
            System.out.print(element.symbol);
            for (int i = 0; i < element.code.size(); i++)
        for (TableElement element : table) {
"0").collect(Collectors.joining(""));
        System.out.println(code);
        System.out.println("Коэффициент сжатия: " + 1.0 * uncodedLength /
codedLength);
"0").collect(Collectors.joining(""));
           midLen += elementCode.length() * (1.0 * element.amount / sum);
        System.out.println("Средняя длина: " + midLen);
```

4. Получить кодовые представления сообщений из пунктов 1 и 2 задания по методу Хаффмана. Сравнить полученные результаты с методом Шеннона Фано по показателям сжатия и дисперсии. Сделать соответствующие выводы. Результаты выполнения программы для задания 1:

```
Введите сообщение:
в чащах юга жил бы цитрус? Да, но фальшивый экземпляр!
Таблица:
и 3 1010
p 2 10111
ы 2 10110
в 2 10011
я 1 01111
п 1 011111
м 1 011110
e 1 01111
з 1 011111
к 1 011110
э 1 01111
й 1 011111
ш 1 011110
ф 1 011110
н 1 011110
д 1 011111
т 1 011111
ц 1 011110
б 1 01111
ж 1 001111
ю 1 001111
х 1 001111

х 1 001110

щ 1 001111

ч 1 001110
Закодированное сообщение:
100111111011011111011110010
Коэффициент сжатия: 1.6744186046511629
Средняя длина: 4.7777777777776
Дисперсия: 1.5061728395061729
```

Результаты выполнения программы для задания 2:

```
Введите сообщение:
Victoria nulla est, Quam quae confessos animo quoque subjugat hostes
s 7 110
u 7 101
a 6 1011
e 5 0111
t 4 0110
n 3 0110
i 3 01111
m 2 01110
1 2 01111
c 2 01110
f 1 001111
Q 1 001110
 1 001111
Закодированное сообщение:
Коэффициент сжатия: 1.9568345323741008
Средняя длина: 4.088235294117648
Дисперсия: 1.1392733564013837
```

Вывод: в ходе лабораторной работы исследовали кодирование по методу Шеннона-Фано. Научиться оценивать эффективности кода. Выполнили реализацию метода кодирования по методу Шеннона-Фано в виде консольного приложения.