EE 382N: Distributed Systems

Fall 2017

Lecture 1: September 5

Lecturer: Dr. Vijay Garg Scribe: Shailesh Kelkar and Daniel Cabrera

1.1 Recap

Happened-before relation (\rightarrow) is the smallest relation such that

- 1. if $(e \prec f)$ in the same process, then $(e \rightarrow f)$ where \prec is locally precedes.
- 2. if $(e \leadsto f)$, then $(e \to f)$ where \leadsto is remotely precedes.
- 3. if $(\exists g : (e \to g) \land (g \to f))$, then $(e \to f)$.

Thus, \rightarrow : $(\prec \cup \leadsto)^+$ where + is transitive closure.

1.2 Topics

- 1. Logical Clock
- 2. Physical Clock
- 3. Down-sets
- 4. Principal Ideals
- 5. Vector Clock
- 6. Dilworth's Theorem

1.3 Logical Clock

1.3.1 Definition

A map C:E $\to \mathbb{N}$ is a logical clock if \forall e,f \in E: $(e \to f) \Rightarrow$ C(e) < C(f). In short, C is the function that preserves the structure.

1.3.2 Logical Clock Algorithm

The variable c (integer) is initialized to 0.

- 1. For internal events, c++ (increment c by 1).
- 2. For send event, c++ and piggyback c with message.
- 3. For receive event of message having logical value d, $c := \max(c,d) + 1$.

Note:C(e) < C(f) does not imply that $e \rightarrow f$

Consider, C(e) = 5 and C(f) = 7, we can only conclude that f did not happen before e. Two possibilities exist: e happened before or concurrent with f.

Sometimes, events need to have unique timestamps. In this case, (logical clock value, Process ID) becomes the timestamp. In case of a tie, event with smallest process id wins. Example

1.4 Physical Clock

1.4.1 Terminology

Let G = (V,E) be undirected graph representing topology.

Drift rate = $|1 - \frac{dc}{dt}| < \kappa$

 $\tau = \text{Synchronization Period (Every } \tau \text{ units of time, send your clock value to all your neighboring nodes)}$

1.4.2 Lamport's Physical Clock Algorithm

- 1. Assume, every sent message takes time in $[\mu, \mu + \xi]$ to reach destination.
- 2. On receiving a message timestamped with D, C:= $\max(C, D + \mu)^+$ where + indicates that it is fractionally bigger (smallest level of granularity). Still, there exists uncertainty in synchronization(ϵ) $|C_i(t) C_j(t)| < \epsilon$

Diameter of the graph(d) = $max_{i,j}$ (length of the shortest path from i to j)

$$\epsilon \approx d(2\kappa\tau + \xi)$$

Advantage of physical clock is that is satisfies logic clock property.

1.5 Down Sets

1.5.1 Terminology

Let (X,\leqslant) be any poset. We call a subset $Y\subseteq X$ a down-set if:

$$(z \in Y) \land (y \leqslant z) \Rightarrow (y \in Y).$$

Example 1

 $Y = \{ D \}$ is not a downset. $Y = \{ C, A \}$ is a downset.

Example 2

$$D[E] = \{A, D, E\}$$

1.6 Principal Ideals

It refers to an ideal in a poset P generated by a single element x of P, which is to say the set of all elements less than or equal to x in P.

1.7 Vector clocks

When using vector clocks, the time domain is represented by a set of n-dimensional non-negative integer vector. A process Pi maintains a vector $VT_i[1...n]$ where $VT_i[i]$ is the local logical clock of Pi and describes the logical time progress at the process Pi.

Process Pi uses the following two rules R1 and R2 to update its clock:

• R1: Before executing an event, process Pi, updates its local logical time:

$$VT_i[i] = VT_i[i] + d \text{ where d} > 0$$

- R2: Each message m is piggybacked with the vector VT of the sender process at sending time. On the receipt of such a message (m,vt), process Pi executes the following actions:
 - 1. Update its global logical time as follows:

$$1 \leq K \leq n : VT_i[i] := \max(VT_i[k], VT[k])$$

- 2. Execute R1
- 3. Deliver the message m

Example

1.8 Dilworth's Theorem(1950's)

1.8.1 Theorem

Any poset can be decomposed into w chains where w is the width of the poset. This is necessary and sufficient condition.

1.8.2 **Proof**

The basic idea is that when new element x comes up, we have to show that we can add it to one of the existing w chains.

(To be continued...)

References

[ACM78] Leslie, Lamport, Time, clocks, and the ordering of events in a distributed system, $Communications \ of \ the \ ACM \ 21 \ (1978), \ pp. 558--565.$

[Cambridge] Kshemkalyani, Ajay, Distributed Computing: Principals, algorithms, and systems (2008)