Corrigé CC 1 sans trop de dévails

ex 1.1

PQR	PER	QOR-	(600)et(Q6R)	POR	((POA) et (COR)) (PO R)
0 0 0	.1	1	1	1	1
0 0 1	Λ	0	0	ь	1
0 1 0	0	0	O	1	0
0 1 1	0	1	0	Ø	1
100	0	1	0	0	1
1 0 1	0	0	0	1	0
110	1	0	0	0	1
111	1	1	4	1	
			مد	1 1	1

Ce n'est pas une tombologie.

ex12: « si n = 6, 2 n = 26 = 64 et 6n+7 = 43 donc ona hen

2" 7, 6n+7.

$$2^{n+1} = 2 \cdot 2^{n}$$

$$2 \cdot (6n+7) \quad \text{for H.R}$$

$$= 12n + 14$$

$$= [6(n+1) + 7] + [6n + 1]$$

$$\geqslant 6(n+1) + 7$$

 $(x \cdot 1 \cdot 3)$: 1- $(x - 1)(x^{1} + x^{3} + x^{2} + x + 1) = x^{5} - 1 = f(x)$.

2- $f(1) = 1^5 - 1 = 0$ et comme f est injective, $f(n) \neq 0$ four bout $n \in \mathbb{R} \setminus \{1\}$.

Maintenant, si $x \in \mathbb{R}$ est til que $x^4 + x^3 + x^2 + x + 1 = 0$, alors en multipliant par x - 1 et par 1 - 1, f(x) = 0 donc x = 1.

3- 81 x = 1, $x^4 + x^3 + x^2 + x + 1 = 5 \neq 0$: absurble.

ex1.4.
$$x_n = \frac{\pi}{2} + 2\pi n$$
.

$$\left(\lim_{n \to \infty} x_n = +\infty\right)$$

et $f(x_n) = \frac{\pi}{2} + 2\pi n$, $\lim_{n \to \infty} f(x_n) = +\infty$

donc f n'est pas majurée.

Sort oin = even.

lim $x_n' = +\infty$ mais $f(x_n') = 0$ four tout $n \in \mathbb{N}$. Done free tend pas vers $+\infty$ en $+\infty$.

 $\frac{e \times 1.5}{A^c} = 1_{\chi} - 1_A$

2. mi ACB, mit x EX.

si $x \in A$, alon $x \in B$ done $1_A(x) = 1 \le 1_B(x) = 1$. smin, $x \notin A$ et $1_A(x) = 0 \le 1_B(x) = 0$ ou 1.

height represent, on four fout $x \in X$, $(A+bx) \le (B+bx)$, comme (A+bx) = 0 out four four (A+bx) = 1 along (A+bx) = 1. Done (B+bx) = 0 out (A+bx) = 1. Done (B+bx) = 0 out (A+bx) = 1.

3- ACB = 1/A < 1/B = -1/A > -1/B = 1-1/A > 1-1/B = 1/AC > 1/BC = BC CAC.

ax 1.6 . 1. (Ac) = A.

2. D'après 1-, fof=idgex donc f est une bijection et son inverse est f elle-même (on dit que f est une involution).

ex1.7 A-si card(X)=0, alors X= p. Dorns ce cas,

XC Y1 U Y2 est toujours mai, but comme XCY1, et XCY2 Anc (Xc4, on Xc42) est ausi wrai. Par conséquent, P(X, Y1, Y2) est usai.

2- si card (X)= 1, one Ent X= {23. Dans ce cas,

XCEYOUY, = xEYOV2

(x E / ou x E /2

(=) {ny=X c4, on {x}c42 -

en particulier, P(X, Y2, Y2) est wai.

3- Non. Contre-exemple; $Y_1 = R - , Y_2 = R + , X = E - 1, 13.$ Ona XcY1UY2=R Mais on n'a pas XcY1 mi XcY2. Ainsi P(X, Y1, Y2) est fame

ex 1.8 1- Sit (xxy) E (Xxy) i (AxB). Si n E A, alos y &B donc (X X (4)B).

Silven, x &A et (x,y) E(X) x y. Ame l'inclusion a est mon.

lour D, soit (ncy) E (X XYB)) U(XXXY).

Si (x,y) \in \(\chi(Y\B)\), alos (x,y) \in \((\chi\x)\) (\(\chi\x)\).

De même, si ((y) E (XXA) XY, (nig) E (XXY) (AXB). Pai l'inclusion 5.

2- []. Soit king) E (XX (41B)) A (XXA) XY).

(my) = Xx(Y1B) => y &B er (xix) E(XiA) xy => x &A.

Done (xiy) E (XIA) x (YIB).

DI Soit (nig) E (XiA) x (YiB).

Alors comme (XIA) x(41B) C X x(41B)

3- * $R- \cap R+ = \{0\}$ et $f(\{0\}) = 0$ • f(R-) = 1R+ = f(R+) done $f(R-) \cap f(R+) = 1R+$. Done $f(R-) \cap f(R+) = \{0\}$

ex1.10-1-soit $4 \in P_2$. Hors soi 4 a un élément, elevière $n \in X$ tel que 4 = Ex3 et dange ce cas, 4 = f((n, n)). Finon, 4 a deux éléments et alors il esuste $n, y \in X$ tels que 4 = Eny3. Dans ce cas, 4 = f((n, y)).

2- Si $Y=\{n,y\}$, $f^{-1}(\{y\})=\{(n,n)\}$ est de cardinal 1 si $Y=\{n,y\}$ avec $x\neq y$, $f^{-1}(\{y\})=\{(n,y),(y,x)\}$ est de cardinal 2.

