MACHINE LEARNING PROJECT REPORT

INTRODUCTION

In general, our aim is to create a system in which we discriminate music genres by using the models we have created according to some characteristics of this data, after taking our data and subjecting it to certain regulations.

STEP 1

After importing the necessary libraries, we took our data and read it and visualized it.

	instance_id	artist_name	track_name	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode s
0	32894.0	Röyksopp	Röyksopp's Night Out	27.0	0.004680	0.652	-1.0	0.941	0.792000	A#	0.115	-5.201	Minor
1	46652.0	Thievery Corporation	The Shining Path	31.0	0.012700	0.622	218293.0	0.890	0.950000	D	0.124	-7.043	Minor
2	30097.0	Dillon Francis	Hurricane	28.0	0.003060	0.620	215613.0	0.755	0.011800	G#	0.534	-4.617	Major
3	62177.0	Dubloadz	Nitro	34.0	0.025400	0.774	166875.0	0.700	0.002530	C#	0.157	-4.498	Major
4	24907.0	What So Not	Divide & Conquer	32.0	0.004650	0.638	222369.0	0.587	0.909000	F#	0.157	-6.266	Major
	2110	0.25	575.5			77.5	1.55	2008	12	2115	7782	8889	2018
49995	56911.0	Too Short	Shake That Monkey	55.0	0.000577	0.937	278707.0	0.695	0.000032	С	0.295	-6.932	Major
49996	20269.0	Unknown Mortal Orchestra	So Good at Being in Trouble	57.0	0.036300	0.829	230147.0	0.435	0.878000	С	0.119	-10.136	Major
49997	54580.0	Tee Grizzley	First Day Out	75.0	0.171000	0,587	254694.0	0.711	0.000000	C#	0.125	-6.330	Major
49998	64552.0	Logic	Growing Pains III	55.0	0.474000	0.514	246773.0	0.730	0.000000	E	0.511	-8.491	Minor
19999	28408.0	Night Lovell	Barbie Doll	56.0	0.133000	0.849	237667.0	0.660	0.000008	С	0.296	-7.195	Major

STEP 2

With the df_describe() method, we saw our features in the data frame and the specific values (mean, stn, min,...) of our data here.

```
print(df.describe())
print(df.shape)
       instance id
                   popularity acousticness danceability
                                                          duration ms \
      50000.000000 50000.000000 50000.000000 50000.000000 5.000000e+04
count
                     44.220420
                                                0.558241 2.212526e+05
      55888.396360
mean
                                   0.306383
                    15.542008
                                               0.178632 1.286720e+05
std
      20725.256253
                                  0.341340
min
      20002.000000
                      0.000000
                                  0.000000
                                               0.059600 -1.000000e+00
                                               0.442000 1.748000e+05
25%
      37973.500000
                     34.000000
                                  0.020000
                                               0.568000 2.192810e+05
0.687000 2.686122e+05
50%
      55913.500000
                     45.000000
                                   0.144000
                                  0.552000
      73863.250000
                   56.000000
75%
                                              0.986000 4.830606e+06
    91759.000000 99.000000
                                 0.996000
max
           energy instrumentalness
                                       liveness
                                                    loudness \
                   50000.000000 50000.000000 50000.000000
count 50000.000000
                                                   -9.133761
mean
         0.599755
                         0.181601
                                       0.193896
                         0.325409
                                       0.161637
                                                   6.162990
std
         0.264559
                         0.000000
         0.000792
                                       0.009670
                                                -47.046000
                         0.000000
                                                -10.860000
25%
         0.433000
                                       0.096900
50%
         0.643000
                         0.000158
                                       0.126000
                                                   -7.276500
                         0.155000
75%
         0.815000
                                       0.244000
                                                  -5.173000
         0.999000
                        0.996000
                                       1,000000
                                                   3.744000
max
       speechiness
                       valence
count 50000.000000 50000.000000
mean
         0.093586
                      0.456264
std
         0.101373
                      0.247119
         0.022300
                      0.000000
min
25%
         0.036100
                      0.257000
50%
         0.048900
                      0.448000
75%
         0.098525
                      0.648000
         0.942000
max
                      0.992000
```

We removed the null values with the dropna() method in order to clean up my dataframe. We are preparing to process our data.

	f.dropna() cribe()										
	instance_id	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	liveness	loudness	speechiness	
count	50000.000000	50000.000000	50000.000000	50000.000000	5.000000e+04	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	
mean	55888.396360	44.220420	0.306383	0.558241	2.212526e+05	0.599755	0.181601	0.193896	-9.133761	0.093586	
std	20725.256253	15.542008	0.341340	0.178632	1.286720e+05	0.264559	0.325409	0.161637	6.162990	0.101373	
min	20002.000000	0.000000	0.000000	0.059600	-1.000000e+00	0.000792	0.000000	0.009670	-47.046000	0.022300	
25%	37973.500000	34.000000	0.020000	0.442000	1.748000e+05	0.433000	0.000000	0.096900	-10.860000	0.036100	
50%	55913.500000	45.000000	0.144000	0.568000	2.192810e+05	0.643000	0.000158	0.126000	-7.276500	0.048900	
75%	73863.250000	56.000000	0.552000	0.687000	2.686122e+05	0.815000	0.155000	0.244000	-5.173000	0.098525	
max	91759.000000	99.000000	0.996000	0.986000	4.830606e+06	0.999000	0.996000	1.000000	3.744000	0.942000	

We manually select some features.

I examine these manually selected features on the histogram.

I observed that this feature shows a distribution close to the symmetrical distributed. It can be concluded that mean and median values are close.

I observed that the distribution of danceability also shows a distribution similar to popularity.

Duration, on the other hand, spread in a narrower area in general. Accordingly, it can be concluded that the discrimination is low.

We observe that the instrumentalness feature is only evident in a certain interval.

It is seen that the liveness feature shows a skewed to right distribution. We see the mode > median > mean order. So the mean is also to the right of the peak. The distribution stacks up at high scores, that is, it stacks to the right. It has a negative belt. Instruction is sufficient. The learning level is high. The test is easy.

I see that the loudness feature shows a skewed to left distribution. We see the order mean > median > mode. so the mean is also to the left of the peak. The scatter piles up on low scores. It has a positive belt. The test is difficult. Achievement is low and learning level is low.

It is seen that the valence property shows a symmetrical distribution. In distributions close to this style, the median mode and mean values are close.

STEP 5

I applied shuffling because shuffling data serves the purpose of reducing variance and making sure that models remain general and overfit less.

Then I determined our classes. Make sure it's unique.

I converted each column to numeric value.

```
# describe each column and convert them into numerical form
for feature_name in feature_names:
    print("Feature Name: {}".format(feature_name))
   Feature Name: popularity
count
       50000.000000
           44.220420
mean
std
           15.542008
            0.000000
25%
           34.000000
50%
           45.000000
75%
           56,000000
max
           99.000000
Name: popularity, dtype: float64
Feature Name: acousticness
```

STEP 7

At this stage, we will do feature elimination. I'm using thresholding to do this. We will observe that different tresholding values yield different results. We are sifting through 10 manually selected features. Let's examine the results we obtained by keeping the parameters of our SVM , Logistic Regression , ANN models constant and only changing the threshold values.

STEP 7.1

Threshold Value: .001 -- Chosen 9 out of 10 features.

```
print("----")
print(X.shape)
sel = VarianceThreshold(threshold=(.001))
sel.fit_transform(X)

X = sel.fit_transform(X)|
print(X.shape)

print("-----")
```


				Predicted label accuracy=0.5251; misclass=0.4
	precision	recall	f1-score	support
Нір-Нор	0.46	0.52	0.49	743
Country	0.43	0.48	0.45	765
Rap	0.45	0.33	0.38	726
Blues	0.52	0.47	0.49	800
Rock	0.50	0.72	0.59	751
Anime	0.62	0.59	0.61	750
Alternative	0.38	0.33	0.35	736
Electronic	0.60	0.59	0.59	733
Jazz	0.51	0.40	0.45	769
Classical	0.77	0.83	0.80	727
accuracy			0.53	7500
macro avg	0.52	0.53	0.52	7500
weighted avg	0.52	0.53	0.52	7500

				Predicted label accuracy=0.5145; misclass=0.485
	precision	recall	f1-score	support
Нір-Нор	0.46	0.48	0.47	743
Country	0.41	0.52	0.46	765
Rap	0.44	0.36	0.39	726
Blues	0.48	0.47	0.47	800
Rock	0.51	0.66	0.57	751
Anime	0.59	0.59	0.59	750
Alternative	0.39	0.34	0.36	736
Electronic	0.58	0.60	0.59	733
Jazz	0.51	0.35	0.41	769
Classical	0.77	0.81	0.79	727
accuracy			0.51	7500
macro avg	0.51	0.52	0.51	7500
weighted avg	0.51	0.51	0.51	7500

				Predicts accuracy=0.5501	ed label ; misclass=0
	precision	recall	f1-score	support	
Нір-Нор	0.47	0.55	0.51	743	
Country	0.43	0.52	0.47	765	
Rap	0.44	0.34	0.38	726	
Blues	0.56	0.50	0.53	800	
Rock	0.52	0.67	0.58	751	
Anime	0.70	0.67	0.68	750	
Alternative	0.43	0.35	0.38	736	
Electronic	0.62	0.62	0.62	733	
Jazz	0.52	0.46	0.49	769	
Classical	0.81	0.84	0.83	727	
accuracy			0.55	7500	
macro avg	0.55	0.55	0.55	7500	
weighted avg	0.55	0.55	0.55	7500	

STEP 7.1

Threshold Value: .1 -- Chosen 2 out of 10 features.

```
print("-----")
print(X.shape)

sel = VarianceThreshold(threshold=(.1))
sel.fit_transform(X)

X = sel.fit_transform(X)
print(X.shape)

print("-----")
```


				accura
	precision	recall	f1-score	support
Anime	0.21	0.02	0.04	728
Blues	0.21	0.11	0.15	750
Rock	0.00	0.00	0.00	767
Rap	0.15	0.82	0.25	722
Classical	0.52	0.88	0.66	751
Alternative	0.12	0.02	0.04	750
Hip-Hop	0.09	0.00	0.01	773
Country	0.19	0.17	0.18	775
Electronic	0.41	0.36	0.39	746
Jazz	0.31	0.11	0.16	738
accuracy			0.25	7500
macro avg	0.22	0.25	0.19	7500
eighted avg	0.22	0.25	0.19	7500

				Predicted label accuracy=0.2551; misclass=0.7	449
	precision	recall	f1-score	support	
Anime	0.02	0.00	0.00	728	
Blues	0.30	0.06	0.10	750	
Rock	0.20	0.00	0.01	767	
Rap	0.15	0.67	0.25	722	
Classical	0.53	0.88	0.66	751	
Alternative	0.15	0.05	0.08	750	
Hip-Hop	0.00	0.00	0.00	773	
Country	0.19	0.37	0.25	775	
Electronic	0.41	0.42	0.41	746	
Jazz	0.36	0.11	0.17	738	
accuracy			0.26	7500	
macro avg	0.23	0.26	0.19	7500	
weighted avg	0.23	0.26	0.19	7500	

				Predicted label accuracy=0.2832; misclass=0	0.716
	precision	recall	f1-score	support	
Anime	0.31	0.02	0.04	728	
Blues	0.24	0.08	0.12	750	
Rock	0.00	0.00	0.00	767	
Rap	0.17	0.15	0.16	722	
Classical	0.65	0.84	0.73	751	
Alternative	0.17	0.42	0.25	750	
Hip-Hop	0.21	0.41	0.27	773	
Country	0.19	0.16	0.17	775	
Electronic	0.41	0.42	0.42	746	
Jazz	0.30	0.32	0.31	738	
accuracy			0.28	7500	
macro avg	0.26	0.28	0.25	7500	
weighted avg	0.26	0.28	0.25	7500	

STEP 7.1 and 7.2 - RESULT:

When we change the Threshold value, we see that the efficiency we get decreases, as can be seen when the current outputs are examined. When we reduce the number of features, efficient learning does not occur.

Therefore, I will continue to the next stages, provided that the threshold value is .001, that is, it is evaluated over 9 features.

STEP 8

We labeled our music genres.

```
# labels
df_y = df.loc[:, "music_genre"].values

# encode each label to the integer value
# ex; Blues --> 0 etc.
le = preprocessing.LabelEncoder()
y = le.fit_transform(df_y)
y_text = df_y.tolist()

print(y)
print(y)
print(y.shape)
for value in list(set(y)):
    print("{} --> {}".format(value, le.inverse_transform([value])))
```

We have reserved part of our dataset for testing. We will not be training with this part.

```
# train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y_text, test_size=0.15, random_state=42)
print(X_train.shape, X_test.shape, len(y_train), len(y_test))
(42500, 9) (7500, 9) 42500 7500
```

STEP 10

Training part. I observed that we obtained different results by changing the parameters in the models we used.

STEP 10.1

```
In [25]: # Model training
#######################

print("SVM Model is starting")

svm_model = SVC(kernel='poly',degree=4).fit(X_train, y_train)

print("Logistic Regression Model is starting")

logistic model = LogisticRegression().fit(X_train, y_train)

print("ANN Model is starting")

mlp_model = MLPClassifier(activation='identity', solver='lbfgs', alpha=1e-5).fit(X_train, y_train)
```


				accuracy=0	0.5515,
	precision	recall	f1-score	support	
Classical	0.82	0.84	0.83	716	
Jazz	0.54	0.46	0.49	750	
Hip-Hop	0.46	0.57	0.51	736	
Alternative	0.41	0.35	0.38	733	
Anime	0.69	0.70	0.70	765	
Electronic	0.64	0.54	0.59	758	
Country	0.44	0.53	0.48	738	
Rap	0.48	0.33	0.39	783	
Blues	0.54	0.51	0.52	747	
Rock	0.51	0.71	0.59	774	
accuracy			0.55	7500	
macro avg	0.55	0.55	0.55	7500	
eighted avg	0.55	0.55	0.55	7500	

				Predicted label accuracy=0.5132; misclass=0.4868		
	precision	recall	f1-score	support		
Classical	0.77	0.82	0.79	716		
Jazz	0.50	0.34	0.41	750		
Hip-Hop	0.47	0.50	0.48	736		
Alternative	0.37	0.32	0.34	733		
Anime	0.59	0.61	0.60	765		
Electronic	0.59	0.56	0.57	758		
Country	0.39	0.54	0.45	738		
Rap	0.47	0.36	0.41	783		
Blues	0.47	0.45	0.46	747		
Rock	0.51	0.65	0.57	774		
accuracy			0.51	7500		
macro avg	0.51	0.51	0.51	7500		
weighted avg	0.51	0.51	0.51	7500		

				Predicted label accuracy=0.5144; misclass=0.4
	precision	recall	f1-score	support
Classical	0.78	0.81	0.80	716
Jazz	0.51	0.35	0.42	750
Нір-Нор	0.45	0.49	0.47	736
Alternative	0.37	0.33	0.35	733
Anime	0.60	0.62	0.61	765
Electronic	0.59	0.55	0.57	758
Country	0.40	0.55	0.46	738
Rap	0.46	0.35	0.40	783
Blues	0.48	0.45	0.47	747
Rock	0.51	0.64	0.57	774
accuracy			0.51	7500
macro avg	0.52	0.52	0.51	7500
weighted avg	0.52	0.51	0.51	7500

	precision	recall	f1-score	support
Classical	0.55	0.58	0.57	760
Jazz	0.04	0.01	0.01	786
Rock	1.00	0.01	0.01	775
Rap	0.41	0.08	0.13	729
Anime	0.09	0.36	0.14	781
Hip-Hop	0.10	0.24	0.14	750
Alternative	0.25	0.08	0.13	701
Electronic	0.71	0.01	0.01	748
Blues	0.07	0.10	0.09	749
Country	0.00	0.00	0.00	721
accuracy			0.15	7500
macro avg	0.32	0.15	0.12	7500
weighted avg	0.32	0.15	0.12	7500

				Dradicted label	B
				Predicted label accuracy=0.5189; misclass=0.48	11
	precision	recall	f1-score	support	
Classical	0.77	0.82	0.80	760	
Jazz	0.49	0.37	0.42	786	
Rock	0.53	0.68	0.60	775	
Rap	0.43	0.39	0.41	729	
Anime	0.63	0.63	0.63	781	
Hip-Hop	0.44	0.41	0.43	750	
Alternative	0.37	0.32	0.35	701	
Electronic	0.59	0.56	0.57	748	
Blues	0.48	0.44	0.46	749	
Country	0.40	0.55	0.46	721	
accuracy			0.52	7500	
macro avg	0.51	0.52	0.51	7500	
weighted avg	0.52	0.52	0.51	7500	

				Predicted label accuracy=0.5476; misclass=0.4524	
	precision	recall	f1-score	support	
Classical	0.81	0.87	0.84	760	
Jazz	0.54	0.39	0.45	786	
Rock	0.52	0.67	0.58	775	
Rap	0.43	0.38	0.40	729	
Anime	0.72	0.72	0.72	781	
Hip-Hop	0.46	0.45	0.46	750	
Alternative	0.43	0.31	0.36	701	
Electronic	0.61	0.57	0.59	748	
Blues	0.52	0.53	0.52	749	
Country	0.42	0.56	0.48	721	
accuracy			0.55	7500	
macro avg	0.54	0.54	0.54	7500	
weighted avg	0.55	0.55	0.54	7500	

!!! Model comparison will be made in the result part.

STEP 11

I make specific edits to show the results on confusion_matrix.

STEP 12

We obtain the confusion_matrix with the relevant codes and finish our process.

SVM:

```
cm_svm = confusion_matrix(y_test, y_pred_svm, labels=list(music_classes))
plot_confusion_matrix(cm_svm, list(music_classes), "Confusion Matrix - SVM")
print(classification_report(y_test, y_pred_svm, labels=list(music_classes)))
```

LOGISTIC

```
cm_lr = confusion_matrix(y_test, y_pred_lr, labels=list(music_classes))
plot_confusion_matrix(cm_lr, list(music_classes), "Confusion Matrix - Logistic Regression")
print(classification_report(y_test, y_pred_lr, labels=list(music_classes)))
```

ANN

```
cm_ann = confusion_matrix(y_test, y_pred_ann, labels=list(music_classes))
plot_confusion_matrix(cm_ann, list(music_classes), "Confusion Matrix - Artificial Neural Network")
print(classification_report(y_test, y_pred_ann, labels=list(music_classes)))
```

RESULT

First of all, when we over-eliminate as a result of the threshold adjustments made for feature elimination, we see that it has a negative effect on all models. The model is underfitting because it cannot complete its learning. The results of the tests we made on our model with the test set give bad results compared to the models made with more features.

After determining the Threshold value as a constant variable, we will examine our models. We need to know some of the explanations under the con_matix we use to make these reviews.

Accuracy is a metric that is widely used to measure the success of a model but does not appear to be sufficient on its own.

$$\frac{TP + TN}{TP + FP + TN + FN}$$

Precision, on the other hand, shows how many of the values we estimated as Positive are actually Positive.

$$Precision = \frac{TP}{TP + FP}$$

Recall, on the other hand, is a metric that shows how much of the operations we need to estimate as Positive, we estimate as Positive.

F1 Score value shows us the harmonic mean of Precision and Recall values.

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

Accordingly, I will make our general evaluation over the f1 score.

10.1:

The values we get when we use the 4th degree polynomial function for SVM and the identity function for ANN:

SVM: 0.55 LOG: 0.51 ANN: 0.51

We can say that it provides the most successful result for svm under these conditions. In this context, let's make an experiment with how the change of the polynomial function degree will result for SVM. The process takes too long, so it is inefficient..

```
In [*]: # Model training
##################

print("SVM Model is starting")
svm_model = SVC(kernel='poly',degree=9).fit(X_train, y_train)
print("Logistic Regression Model is starting")
logistic_model = LogisticRegression().fit(X_train, y_train)
print("ANN Model is starting")
mlp_model = MLPClassifier(activation='identity', solver='lbfgs', alpha=1e-5).fit(X_train, y_train)
SVM Model is starting
```

10.2:

Let's compare the data we get when we choose sigmoid for SVM and Relu function for ANN.

SVM: 0.12 LOG: 0.51 ANN: 0.54

As can be seen, when sigmoid is used for svm, it gives an extremely bad result. because while the sigmoid function has two distinctions, 0 and 1, ours is more than two. It seems that it is not suitable for our data. In this combination, we achieved the most successful result on our ANN model.

GENERALLY

When we compare the SVM models, we see that the distribution of our current data is more suitable for the polynomial distribution.

When we compare our ANN Models, it has been observed that the accuracy value of the model has increased since it shows a distribution suitable for the ReLU function rather than the unit function.

We kept the logistic regression values constant at the last stage. It was observed that when we enlarged the trheshold values only, a decrease from 0.51 to 0.19 was observed. This shows that when applying this teaching model, it is efficient when more features are used.

It was a project in which we prepared the data beforehand, then performed the ferature elimination and normalization processes and divided the data, first applying the learning and then testing stages, observing the results on the matrix and presenting this matrix with different evaluation criteria.