ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za pojačalo na slici zadano je: $U_{DD}=12$ V, $R_g=500$ Ω , $R_1=2200$ k Ω , $R_2=820$ k Ω , $R_D=1.8$ k Ω , $R_S=560$ Ω , $R_T=3.3$ k Ω . Za n-kanalni MOSFET poznato je da je $U_{GS0}=0.7$ V, K=2.75 mA/V 2 te da je porast struje odvoda u zasićenju zanemariv ($\lambda=0$ V $^{-1}$).

- a) Odrediti statičku radnu točku (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku analzu te odrediti naponsko pojačanje $A_V = u_{iz}/u_{ul}$ (4 boda).
- c) Odrediti ulazni otpor $R_{ul} = u_{ul}/i_{ul}$, izlazni otpor R_{iz} te strminsko pojačanje $G_M = i_{iz}/u_{ul}$ (2 boda).

ZADATAK 2. Silicijski *pnp* tranzistor ima homogene koncentracije primjesa u emiteru i bazi iznosa $1\cdot10^{18}$ cm⁻³ i $1,5\cdot10^{16}$ cm⁻³. Pokretljivost manjinskih nosilaca u emiteru je 450 cm²/Vs, a u bazi 260 cm²/Vs. Rekombinacijska struja baze iznosi $I_R = 5 \mu A$, efektivna širina emitera $1,5 \mu m$, a vrijeme života manjinskih nosilaca u bazi je $0,2 \mu s$. Širine baze i emitera su puno manje, a širina kolektora puno veća od difuzijskih duljina manjinskih nosilaca. Površina tranzistora je 2 mm². Naponi na spojevima su $U_{BE} = -0,5 \text{ V}$ i $U_{CB} = -5 \text{ V}$. Pretpostaviti T = 300 K i $I_{CBO} \approx 0 \text{ A}$.

- a) Izračunati koncentracije manjinskih nosilaca te skicirati njihovu raspodjelu u tranzistoru (označiti ravnotežne i rubne koncentracije manjinskih nosilaca u emiteru, bazi i kolektoru) i označiti sve komponente struja (3 boda).
- b) Odrediti efektivnu širinu baze (1 bod).
- c) Izračunati sve komponente struja tranzistora i ukupne struje emitera, baze i kolektora (3 boda).
- d) Izračunati faktore strujnih pojačanja α i β te faktor injekcije (1 bod).

ZADATAK 3. Za pojačalo sa slike zadano je $U_{CC}=12$ V, $R_g=500$ Ω , $R_T=2$ k Ω , $R_E=3$ k Ω . Parametri tranzistora su $\beta=h_{fe}=100$ i $U_{\gamma}=0.7$ V. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature iznosi $U_T=25$ mV.

- a) Ako je naponsko pojačanje $A_v = u_{iz}/u_{ul} = 0,9896$, odrediti iznose otpornika R_1 i R_2 ako vrijedi da je $R_2 = 2 \cdot R_1$. Provjeriti radi li tranzistor u normalnom aktivnom području (**4 boda**).
- b) Nacrtati shemu pojačala za dinamičku analizu, odrediti strujno pojačanje $A_I = i_{iz}/i_{ul}$, ulazni otpor R_{ul} i izlazni otpor R_{iz} (4 boda).

ZADATAK 4. Za zadani sklop izračunati pojačanje $A_V = u_{IZ}/u_{UL}$. Ako u_{UL} iznosi 1 V, izračunati iznos struje i_6 . Otpornici su iznosa: $R_1 = 1$ kΩ, $R_2 = 4.7$ kΩ, $R_3 = 6.8$ kΩ, $R_4 = 2$ kΩ, $R_5 = 12$ kΩ i $R_6 = 5.6$ kΩ. Operacijska pojačala su idealna (**6 bodova**).

PITANJA

- **1.** Kakva je statička radna točka za pojačalo na slici? Ako odspojimo R_T što se događa s iznosom naponskog pojačanja $A_v = u_{iz}/u_{ul}$ i izlaznim otporom R_{iz} (2 boda)?
 - a) Radna točka nije stabilizirana, $|A_V|$ se ne mijenja, R_{iz} raste.
 - b) Radna točka je stabilizirana, $|A_V|$ raste, R_{iz} raste.
 - c) Radna točka nije stabilizirana, $|A_V|$ pada, R_{iz} pada.
 - d) Radna točka je stabilizirana, $|A_V|$ raste, R_{iz} se ne mijenja.
 - e) Radna točka je stabilizirana, $|A_V|$ se ne mijenja, R_{iz} se ne mijenja.

2. Koju logičku funkciju ostvaruje CMOS sklop na slici (2 boda)?

a)
$$Y = A(BC + D + E)$$
.

b)
$$Y = \overline{A + (B + C)DE}$$
.

c)
$$Y = \overline{A(BC + D + E)}$$
.

d)
$$Y = A + (B + C)DE$$
.

3. Dva bipolarna tranzistora imaju sve tehnološke karakteristike iste, osim širine baze. Prvi tranzistor ima širu bazu od drugog tranzistora. U kakvom su odnosu faktori efikasnosti emitera i bazni transportni faktori kada tranzistori rade u normalnom aktivnom području i priključeni su na iste napone (**2 boda**)?

- a) $\gamma_1 = \gamma_2, \beta_1 * < \beta_2 *$.
- b) $\gamma_1 > \gamma_2, \beta_1 * < \beta_2 *$.
- c) $\gamma_1 < \gamma_2, \beta_1^* = \beta_2^*$.
- d) $\gamma_1 > \gamma_2$, $\beta_1 * = \beta_2 *$.
- e) $\gamma_1 < \gamma_2, \beta_1^* < \beta_2^*$.

4. Za pojačalo na slici vrijedi $R_C = R_E$. Radna točka tranzistora postavljena je u normalno aktivno područje. Za izlazne napone u_{iz1} i u_{iz2} te izlazne otpore R_{iz1} i R_{iz2} vrijedi (**2 boda**):

- a) u_{iz1} i u_{iz2} su u protufazi, $R_{iz1} < R_{iz2}$.
- b) u_{iz1} i u_{iz2} su u fazi, $R_{iz1} > R_{iz2}$.
- c) u_{iz1} i u_{iz2} su u protufazi, $R_{iz1} = R_{iz2}$.
- d) u_{iz1} i u_{iz2} su u fazi, $R_{iz1} = R_{iz2}$.
- e) u_{iz1} i u_{iz2} su u protufazi, $R_{iz1} > R_{iz2}$.

5. Zajednički i diferencijski napon diferencijskog pojačala sa slike su $u_z = -2\sin\omega t$ mV i $u_d = -6\sin\omega t$ mV. Koliki su naponi u_{g1} i u_{g2} (2 boda)?

- a) $u_{g1} = -5 \sin \omega t \text{ mV i } u_{g2} = -7 \sin \omega t \text{ mV}$
- b) $u_{g1} = + 2 \sin \omega t \text{ mV i } u_{g2} = 6 \sin \omega t \text{ mV}$
- c) $u_{g1} = + 1 \sin \omega t \text{ mV i } u_{g2} = -5 \sin \omega t \text{ mV}$
- d) $u_{g1} = -1 \sin \omega t \text{ mV i } u_{g2} = +5 \sin \omega t \text{ mV}$
- e) $u_{g1} = +5 \sin \omega t \text{ mV i } u_{g2} = +7 \sin \omega t \text{ mV}$

6. Odrediti minimalnu vrijednost otpora R_C u sklopu na slici da bi osigurao rad tranzistora T_1 u zasićenju. Zadano je $U_{CC} = 5$ V, $U_{CEzas} = 0.2$ V, $U_{BEzas} = 0.8$ V, $R_B = 80$ k Ω , β može imati vrijednosti od 60 do 80. Odrediti napon logičke 1 na izlazu tranzistora T_1 , ako R_C ima minimalnu vrijednost (**2 boda**).

- a) $R_{Cmin} = 1,16 \text{ k}\Omega$, $U_1 = 4,94 \text{ V}$.
- b) $R_{Cmin} = 1,55 \text{ k}\Omega, U_1 = 5 \text{ V}.$
- c) $R_{Cmin} = 1.55 \text{ k}\Omega$, $U_1 = 4.92 \text{ V}$.
- d) $R_{Cmin} = 1,16 \text{ k}\Omega$, $U_1 = 5 \text{ V}$.
- e) $R_{Cmin} = 1,52 \text{ k}\Omega, U_1 = 5 \text{ V}.$

7. Koliko iznosi izlazni napon u_{IZ} sklopa na slici, ako je iznos naponskog pojačanja operacijskog pojačala $A_{VOP} = 10000$? Ostali parametri pojačala su idealni (2 boda).

- a) -10 V.
- b) +1 V.
- c) +10 V.
- d) -1 V.
- e) +0,0001 V.

