SUMEC MACHINERY & ELECTRIC CO.,LTD

REMOTE CONTROLLER

Main Model: RC-1 Serial Model: N/A

April 18, 2014

Report No.: 14020140-FCC-R1 (This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:						
William Long	Alex. Lin					
William Long	Alex Liu					
Compliance Engineer	Technical Manager					

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

14020140-FCC-R1 April 18, 2014 2 of 32 www.siemic.com.cn

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, Telecom
Canada	EMC, RF/Wireless, Telecom
Taiwan	EMC, RF, Telecom, Safety
Hong Kong	RF/Wireless ,Telecom
Australia	EMC, RF, Telecom, Safety
Korea	EMI, EMS, RF, Telecom, Safety
Japan	EMI, RF/Wireless, Telecom
Singapore	EMC, RF, Telecom
Europe	EMC, RF, Telecom, Safety

14020140-FCC-R1 April 18, 2014 3 of 32 www.siemic.com.cn Report No.: Issue Date: Page:

This page has been left blank intentionally.

14020140-FCC-R1 April 18, 2014 4 of 32

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
AN.	NEX A. TEST INSTRUMENT & METHOD	18
AN	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	21
AN.	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	27
AN	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	31
AN.	NEX E. DECLARATION OF SIMILARITY	32

14020140-FCC-R1 April 18, 2014 5 of 32 www.siemic.com.cn

1 EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programmed was to demonstrate compliance of the SUMEC MACHINERY & ELECTRIC CO.,LTD. The REMOTE CONTROLLER and model: RC-1 against the current Stipulated Standards. The REMOTE CONTROLLER has demonstrated compliance with the FCC 15.231:2013, ANSI C63.4:2009.

EUT Information

EUT Description	REMOTE CONTROLLER
Main Model	RC-1
Serial Model	N/A
Antenna Gain	1 dBi
Input Power	12V DC battery of power supply
Classification Per Stipulated Test Standard	FCC 15.231:2013, ANSI C63.4:2009

14020140-FCC-R1 April 18, 2014 6 of 32 www.siemic.com.cn

2 TECHNICAL DETAILS

2	TECHNICAL DETAILS
Purpose	Compliance testing of REMOTE CONTROLLER with stipulated standard
Applicant / Client	SUMEC MACHINERY & ELECTRIC CO.,LTD CHANGJIANG ROAD 198,NANJING ,CHINA
Manufacturer	SUMEC MACHINERY & ELECTRIC CO.,LTD CHANGJIANG ROAD 198,NANJING ,CHINA
Laboratory performing the tests	SIEMIC (Nanjing-China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn
Test report reference number	14020140-FCC-R1
Date EUT received	February 25, 2014
Standard applied	FCC 15.231:2013, ANSI C63.4:2009
Dates of test	April 11, 2014
No of Units:	1#
Equipment Category:	DSC
Trade Name :	FIRMAN
RF Operating Frequency (ies)	Тх: 433.988МНz
Number of Channels :	1 CH
Modulation :	ОКК
FCC ID:	2ABXMSF-360453010

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 7 of 32 www.siemic.com.cn

3 MODIFICATION

NONE

14020140-FCC-R1 April 18, 2014 8 of 32

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Test Results Summary

Test Results Summary							
Test Standard	Description	Pass / Fail					
CFR 47 Part 15.231: 2013	Description	1 355 / 1 411					
15.203	Antenna Requirement	Pass					
15.207	Conducted Emissions Voltage	N/A					
15.231(b)	Fundamental & Radiated Spurious Emission	Pass					
15.231(c)	20dB Bandwidth	Pass					
15.231(a)(1)	Deactivation	Pass					

ANSI C63.4: 2009

PS: All measurement uncertainties are not taken into consideration for all presented test result.

14020140-FCC-R1 April 18, 2014 9 of 32

5 <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> <u>RESULTS</u>

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna is permanently attached to the device which meets the requirement.

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 10 of 32 www siemic com c

www.sieiiiic.coiii.cii

<u>5.2</u> Conducted Emissions Voltage

Requirement:

	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

^{*}Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.5dB$.

4. Environmental Conditions Temperature 20°C

Relative Humidity 48% Atmospheric Pressure 1019mbar

5. Test date: N/A

Tested By: William Long

Test result: N/A (Batteries operated)

Issue Date: Page: 14020140-FCC-R1 April 18, 2014 11 of 32 www.siemic.com.cn

5.3 20dB Occupied Bandwidth

1. 20dB bandwidth was measured by conducted method using a spectrum analyzer.

2. Environmental Conditions Temperature 20°C Relative Humidity 51%

Atmospheric Pressure 1009mbar

3. Test Date: April 11, 2014 Test By: William Long

Test Result:

Fundamental Frequency	Measured 20dB Bandwidth	FCC 15.231 Limit	Result
(MHz)	(kHz)	(kHz)	
433.988	146	1084.97	Pass

Date: 11.APR.2014 08:59:29

14020140-FCC-R1 April 18, 2014 12 of 32 www.siemic.com.cn

5.4 Radiated Fundamental and Spurious Emission

- 1. Radiated emissions were measured according to ANSI C63.4. The EUT was set 3 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the center of the loop. The measuring bandwidth was set to 10kHz. All possible modes of operation were investigated. Only the worst case emissions measured, All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Sample Calculation: Corrected Amplitude=Raw Amplitude(dBuV/m)+ACF(dB)+Cable Loss(dB)-Distance Correction Factor.

Sample Calculation:

- $1) \ Corrected \ Amplitude = Raw \ Amplitude (dBuV/m) + ACF(dB) + Cable \ Loss(dB) Distance \ Correction \ Factor$
- 2) Average = peak reading + 20log(duty cycle)
- 4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz(QP only3m & 10m) is $+5.6/-4.5\text{dB}(\text{for EUTs}<0.5\text{m}\times0.5\text{m}\times0.5\text{m})$. In range of 1-40GHz) is $\pm3.6\text{dB}$.

5. Environmental Conditions

Temperature Relative Humidity

Atmospheric Pressure

20°C 50% 1009mbar

6. Test date : April 11, 2014

Tested By: William Long

Standard Requirement:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)	
40.66-40.70	2250	225	
70-130	1250	125	
130-174	1250 to 3750	125 to 375	
174-260	3750	375	
260-470	3750-12500	375 to 1250	
Above 470	12500	1250	

Test Result: Pass

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 13 of 32 www.siemic.com.c

Fundamental Measurement @ 433.988MHz @3 Meter FCC 15.231(a)

Frequency (MHz)	correct (dBμV/m)	Azimuth	Polarity	Height(m)	Factors(dB)	FCC 15.231(a) Limit (dBµV)	Margin(dB)	Comments
433.988	72.03	156.23	V	2.20	-31.37	100.83	-28.80	Peak
433.988	67.55	-	V	-	-4.48	80.83	-13.27	Ave
433.988	79.85	151.20	Н	1.80	-31.37	100.83	-20.98	Peak
433.988	75.37	-	Н	-	-4.48	80.83	-5.45	Ave

Spurious Emissions (<1GHz) Measurement @ 3 Meter FCC 15.231(a)

Frequency (MHz)	correct (dBμV/m)	Azimuth	Polarity	Height(m)	Factors(dB)	FCC 15.231(a) Limit (dBµV)	Margin(dB)	Comments
867.976	55.33	55.60	V	2.1	-25.03	80.83	-25.50	Pk
867.976	50.85	-	V	-	-4.48	60.83	-9.97	Ave
867.976	60.22	251.02	Н	2.6	-25.03	80.83	-20.61	Pk
867.976	55.74	_	Н	-	-4.48	60.83	-5.08	Ave

Notes:

- 1. Duty cycle is 59.73%, 20log (duty cycle) = -4.48dB correction was used to determine the average level from the peak reading. Average = peak reading + 20log (duty cycle), Final Average= peak reading -4.48
- 2. All the data measurement of peak values.
- 3. FCC Limit for Average Measurement= $41.6667*(433.988MHz)-7083.3333=10999.51 \mu V/m=80.83 d B \mu V/m$
- 4. Average pulsed signal over one complete pulse train or 100 ms time frame if pulse train exceeds 100 ms
- 5. Maximum average in 100 ms
- 6. Calculate duty cycle for pulse train or 100 ms
- 7. Duty cycle = (t1 + t2 + t3 + ...tn)/T where tn = pulse width, T = pulse train length or 100 ms

14020140-FCC-R1 April 18, 2014 14 of 32 www.siemic.com.cn

Spurious Emissions (>1GHz) Measurement @ 3 Meter FCC 15.231(a)

Frequency	Height	Polar	Factors (dB)	Amplifier	correct (dBμV/m)	FCC 15.231	Margin	Comments
GHz	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	(dB)	(Pk/Av)
1301.96	1.2	Н	-26.7	55	52.66	74.00	-21.34	Peak
1301.96	-	Н	-4.48	-	48.18	54.00	-5.82	Ave
1735.93	1.6	Н	-25.47	55	55.02	80.83	-25.81	Peak
1735.93	-	Н	-4.48	-	50.54	60.83	-10.28	Ave
2169.26	1.8	Н	-23.17	55	53.36	80.83	-27.47	Peak
2169.26	-	Н	-4.48	-	48.88	60.83	-11.94	Ave
3037.89	1.4	Н	-19.37	55	51.06	80.83	-29.77	Peak
3037.89	-	Н	-4.48	-	46.58	60.83	-14.24	Ave
3472.02	1.9	Н	-18.7	55	48.58	80.83	-32.25	Peak
3472.02	-	Н	-4.48	-	44.10	60.83	-16.72	Ave
3905.89	1.2	Н	-17.63	55	44.66	74.00	-29.34	Peak
3905.89	-	Н	-4.48	-	40.18	54.00	-13.82	Ave
1301.96	1.3	V	-26.7	55	54.33	74.00	-19.67	Peak
1301.96	-	V	-4.48	-	49.85	54.00	-4.15	Ave
1735.93	2.3	V	-25.47	55	52.6	80.83	-28.23	Peak
1735.93	-	V	-4.48	-	48.12	60.83	-12.70	Ave
2169.26	1.9	V	-23.17	55	52.69	80.83	-28.14	Peak
2169.26	-	V	-4.48	-	48.21	60.83	-12.61	Ave
3037.89	1.2	V	-19.37	55	47.36	80.83	-33.47	Peak
3037.89	-	V	-4.48	-	42.88	60.83	-17.94	Ave
3472.02	1.6	V	-18.7	55	44.66	80.83	-36.17	Peak
3472.02	-	V	-4.48	-	40.18	60.83	-20.64	Ave
3905.89	1.7	V	-17.63	55	41.56	74.00	-32.44	Peak
3905.89	-	V	-4.48	-	37.08	54.00	-16.92	Ave

Note: Duty cycle is 59.73%, 20log (duty cycle) = -4.48dB correction was used to determine the average level from the peak reading. Average = peak reading + 20log (duty cycle), final Average= peak reading -4.48dB

Note:

Pulse width (PW) = 1338ms 1/PW = 1/1338ms =0.000747kHz RBW > 1/PW (0.000747kHz) Therefore PDCF is not needed.

14020140-FCC-R1 April 18, 2014 15 of 32 www.siemic.com.cn

Pulse Duty Cycle: Wide Pulse: 0.9ms Narrow Pulse: 0.54ms

Duty cycle= (0.9*34+0.54*43)/90.1 =59.73%

Average Duty Factor: $20*\log (Duty Cycle) = -4.48dB$

Date: 11.APR.2014 09:03:37

Date: 11.APR.2014 09:05:04

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 16 of 32 www.siemie.com.c

Date: 11.APR.2014 09:05:39

14020140-FCC-R1 April 18, 2014 17 of 32

5.5 Deactivation

1. Deactivation was measured by conducted method using a spectrum analyzer.

Environmental Conditions Temperature 20°C Relative Humidity 51%

Atmospheric Pressure 1009mbar

3. Test Data: April 11, 2014 Test By: William Long

Standard requirement: 47 CFR §15.231 (a)(1)

Release Time < 5 seconds

Test Result: Pass

Date: 11.APR.2014 09:07:36

Report No.: 14020140-FCC-R1
Issue Date: April 18, 2014
Page: 18 of 32

vww.siemic.com.cn

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Date	Calibration Due Date
Radiated Emissions				
R&S Receiver	ESPI 3	101216	09/27/2013	09/26/2014
Hp Spectrum Analyzer	8563E	3821A09023	09/27/2013	09/26/2014
HP Pre-amplifier	8447F	1937A01160	10/27/2013	10/26/2014
Sunol Sciences, Inc. antenna	JB6	A121411	03/26/2014	03/25/2015
A-INFOMW Horn Antenna (1~18GHz)	JXTXLB-10180	J2031081120092	10/09/2013	10/08/2014
MITEQ Pre-Amplifier(0.1 ~ 18GHz)	AMF-7D- 00101800-30-10P	1451710	11/03/2013	11/02/2014
SIEMIC Labview Radiated Emissions software	V1.0	N/A	N/A	N/A

Annex A. ii. RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 20 of 32 www.siemic.com.cn

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

> Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

14020140-FCC-R1 April 18, 2014 21 of 32

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph: EUT External Photo

Front View of EUT

Rear View of EUT

14020140-FCC-R1 April 18, 2014 22 of 32 www.siemic.com.cn

Top View of EUT

Bottom View of EUT

14020140-FCC-R1 April 18, 2014 23 of 32 www.siemic.com.cn

Left View of EUT

Right View of EUT

14020140-FCC-R1 April 18, 2014 24 of 32

Antenna

Annex B.ii. Photograph: EUT Internal Photo

EUT – Uncover Front View

EUT -PCB Front View

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 25 of 32 www.siemic.com.cn

EUT -PCB Rear View

14020140-FCC-R1 April 18, 2014 26 of 32 www.siemic.com.cn

Annex B.iii. Photograph: Test Setup Photo

Radiated Emission Test Setup Rear View Below 1GHz

Radiated Emission Test Setup Front View Above 1GHz

Report No.: 14020140-FCC-R1 April 18, 2014 27 of 32 Issue Date: Page:

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

SUPPORTING EQUIPMENT DESCRIPTION Annex C. i.

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
N/A	N/A	N/A

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 28 of 32 www.siemic.com.cn

Block Configuration Diagram for Conducted Emission

N/A

Block Configuration Diagram for Radiated Emission

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 30 of 32 www.siemic.com.c

www.siemic.com.cn

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation	
Emissions Testing	TX mode is continuous transmitting with full power.	

Report No.: 14020140-FCC-R1 Issue Date: April 18, 2014 Page: 31 of 32

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Report No.: Issue Date: Page: 14020140-FCC-R1 April 18, 2014 32 of 32 www.siemic.com.cn

Annex E. DECLARATION OF SIMILARITY