Inverse Problems for Polynomial and Rational Structural Data

Richard Hollister

Department of Mathematics University at Buffalo, SUNY

June 14, 2022

Definition

Structural data for a polynomial matrix includes

- finite elementary divisors (or e-vals with partial multiplicities over \mathbb{C}),

Definition

Structural data for a polynomial matrix includes

- finite elementary divisors (or e-vals with partial multiplicities over \mathbb{C}),
- infinite elementary divisors,

Definition

Structural data for a polynomial matrix includes

- finite elementary divisors (or e-vals with partial multiplicities over \mathbb{C}),
- infinite elementary divisors,
- left and right minimal indices,

Definition

Structural data for a polynomial matrix includes

- finite elementary divisors (or e-vals with partial multiplicities over \mathbb{C}),
- infinite elementary divisors,
- left and right minimal indices,
- size and degree.

啩

Polynomial inverse problem

Definition

Structural data for a polynomial matrix includes

- finite elementary divisors (or e-vals with partial multiplicities over \mathbb{C}),
- infinite elementary divisors,
- left and right minimal indices,
- size and degree.

We consider the following

Inverse Problem

Given a list of structural data, construct a polynomial matrix realization.

R. Hollister 2/18

Some recent results...

Polynomial

- general existance (De Terán, Dopico, Van Dooren, 2015)

Some recent results...

Polynomial

- general existance (De Terán, Dopico, Van Dooren, 2015)
- Kronecker-like quadratic (De Terán, Dopico, Mackey)

Some recent results...

Polynomial

- general existance (De Terán, Dopico, Van Dooren, 2015)
- Kronecker-like quadratic (De Terán, Dopico, Mackey)
- structured quadratic (Perovic, Mackey, 2022)

Some recent results...

Polynomial

- general existance (De Terán, Dopico, Van Dooren, 2015)
- Kronecker-like quadratic (De Terán, Dopico, Mackey)
- structured quadratic (Perovic, Mackey, 2022)
- quasi-triangular (Anguas, Dopico, Hollister, Mackey)

Some recent results...

Polynomial

- general existance (De Terán, Dopico, Van Dooren, 2015)
- Kronecker-like quadratic (De Terán, Dopico, Mackey)
- structured quadratic (Perovic, Mackey, 2022)
- quasi-triangular (Anguas, Dopico, Hollister, Mackey)

Rational

general existance (Anguas, Dopico, Hollister, Mackey, 2019)

Index Sum Theorem

Theorem

Let $P(\lambda)$ have rank r and degree d. Then

$$\sum \{ \textit{inv. poly. degs.} \} + \sum \{ \textit{inf. e-val mult.} \} + \sum \{ \textit{min. inds.} \} = \textit{dr.}$$

Index Sum Theorem

Theorem

Let $P(\lambda)$ have rank r and degree d. Then

$$\sum \{ \text{inv. poly. degs.} \} + \sum \{ \text{inf. e-val mult.} \} + \sum \{ \text{min. inds.} \} = dr.$$

- The only constraint for realizing a list of structural data.

Index Sum Theorem

Theorem

Let $P(\lambda)$ have rank r and degree d. Then

$$\sum \{ \text{inv. poly. degs.} \} + \sum \{ \text{inf. e-val mult.} \} + \sum \{ \text{min. inds.} \} = dr.$$

- The only constraint for realizing a list of structural data.
- Rational counterpart (Van Dooren, 1979; Anguas, Dopico, Hollister, Mackey, 2019)

Consider only data lists without infinite elementary divisors and without minimal indices.

Goal

Given a list containing finite elementary divisors and a choice of size and degree, construct a strictly-regular realization such that the structural data can be recovered without numerical calculations.

Consider only data lists without infinite elementary divisors and without minimal indices.

Goal

Given a list containing finite elementary divisors and a choice of size and degree, construct a strictly-regular realization such that the structural data can be recovered without numerical calculations.

- direct-sum-of-blocks seems unreasonable

Consider only data lists without infinite elementary divisors and without minimal indices.

Goal

Given a list containing finite elementary divisors and a choice of size and degree, construct a strictly-regular realization such that the structural data can be recovered without numerical calculations.

- direct-sum-of-blocks seems unreasonable
- focus on invariant polynomials instead of elementary divisors

Consider only data lists without infinite elementary divisors and without minimal indices.

Goal

Given a list containing finite elementary divisors and a choice of size and degree, construct a strictly-regular realization such that the structural data can be recovered without numerical calculations.

- direct-sum-of-blocks seems unreasonable
- focus on invariant polynomials instead of elementary divisors
- new types of blocks

Consider only data lists without infinite elementary divisors and without minimal indices.

Goal

Given a list containing finite elementary divisors and a choice of size and degree, construct a strictly-regular realization such that the structural data can be recovered without numerical calculations.

- direct-sum-of-blocks seems unreasonable
- focus on invariant polynomials instead of elementary divisors
- new types of blocks
- new ways of combining blocks

Let \mathcal{L} be a list of fully factored invariant polynomials over \mathbb{C} and choice of degree d.

Let \mathcal{L} be a list of fully factored invariant polynomials over \mathbb{C} and choice of degree d.

- Construct the Smith form.

Let \mathcal{L} be a list of fully factored invariant polynomials over \mathbb{C} and choice of degree d.

- Construct the Smith form.
- Construct a "target diagonal" by re-arranging the diagonal factors.

Let \mathcal{L} be a list of fully factored invariant polynomials over \mathbb{C} and choice of degree d.

- Construct the Smith form.
- Construct a "target diagonal" by re-arranging the diagonal factors.
- Realize the target diagonal as a combination of two block types,
 - bidiagonal chains,
 - recombinant matrices

Let \mathcal{L} be a list of fully factored invariant polynomials over \mathbb{C} and choice of degree d.

- Construct the Smith form.
- Construct a "target diagonal" by re-arranging the diagonal factors.
- Realize the target diagonal as a combination of two block types,
 - bidiagonal chains,
 - recombinant matrices

put together using three operations

- embedding (bidiag chain inside recombinant),

Let \mathcal{L} be a list of fully factored invariant polynomials over \mathbb{C} and choice of degree d.

- Construct the Smith form.
- Construct a "target diagonal" by re-arranging the diagonal factors.
- Realize the target diagonal as a combination of two block types,
 - bidiagonal chains,
 - recombinant matrices

put together using three operations

- embedding (bidiag chain inside recombinant),
- smoosh sum,

Let \mathcal{L} be a list of fully factored invariant polynomials over \mathbb{C} and choice of degree d.

- Construct the Smith form.
- Construct a "target diagonal" by re-arranging the diagonal factors.
- Realize the target diagonal as a combination of two block types,
 - bidiagonal chains,
 - recombinant matrices

put together using three operations

- embedding (bidiag chain inside recombinant),
- smoosh sum,
- direct sum.

Goal

Re-arrange the invariant polynomials so that the degree is "spread out".

- Start with an invariant polynomial of degree higher than d
- If the average degree excedes *d*, include an invariant poly with degree lower than *d*.
- If the average degree is less than *d*, include an invariant polynomial of higher degree.
- The result is a permuted Smith form that can be partioned into blocks whose average degree is close to d

R. Hollister 7/18

Goal

Re-arrange the invariant polynomials so that the degree is "spread out".

- \blacksquare Start with an invariant polynomial of degree higher than d.

Goal

Re-arrange the invariant polynomials so that the degree is "spread out".

- Start with an invariant polynomial of degree higher than d.
- If the average degree excedes d, include an invariant poly with degree lower than d.

Goal

Re-arrange the invariant polynomials so that the degree is "spread out".

- Start with an invariant polynomial of degree higher than d.
- If the average degree excedes d, include an invariant poly with degree lower than d.
- If the average degree is less than d, include an invariant polynomial of higher degree.

Goal

Re-arrange the invariant polynomials so that the degree is "spread out".

- Start with an invariant polynomial of degree higher than d.
- If the average degree excedes d, include an invariant poly with degree lower than d.
- If the average degree is less than d, include an invariant polynomial of higher degree.
- The result is a permuted Smith form that can be partioned into blocks whose average degree is close to d.

Define the running degree excess

$$e_0 := 0$$
 $e_j := \sum_{i=1}^j \deg(d_i) - jd.$

After *t* steps:

$$\mathcal{L}_h = \{x_1, x_2, \dots, x_r\}$$

 $\mathcal{L}_\ell = \{y_1, y_2, \dots, y_s\}$

$$D = \mathsf{diag}\{d_1, d_2, \dots, d_t, \underline{}$$

Define the running degree excess

$$e_0 := 0$$
 $e_j := \sum_{i=1}^j \deg(d_i) - jd.$

After t steps: If $e_t < 0$, then...

$$\mathcal{L}_h = \{x_1, x_2, \dots, x_r\}$$

$$\mathcal{L}_\ell = \{y_1, y_2, \dots, y_s\}$$

$$D = diag\{d_1, d_2, \dots, d_t, \underline{\hspace{1cm}}, \underline{\hspace{1cm}}, \underline{\hspace{1cm}}, \underline{\hspace{1cm}}\}$$

Define the running degree excess

$$e_0 := 0$$
 $e_j := \sum_{i=1}^j \deg(d_i) - jd.$

After t steps: If $e_t < 0$, then...

$$\mathcal{L}_h = \{x_1, x_2, \dots (x_r)\}$$
 $\mathcal{L}_\ell = \{y_1, y_2, \dots, y_s\}$
 $D = \text{diag}\{d_1, d_2, \dots, d_t, \underbrace{\qquad}, \dots, \dots, \underbrace{\qquad}$

Define the running degree excess

$$e_0 := 0$$
 $e_j := \sum_{i=1}^j \deg(d_i) - jd.$

After t steps: If $e_t < 0$, then...

$$\mathcal{L}_h = \{x_1, x_2, \dots, x_k\}$$

$$\mathcal{L}_\ell = \{y_1, y_2, \dots, y_s\}$$

$$D = diag\{d_1, d_2, \dots, d_t, \underbrace{x_r}, \underline{\dots}, \dots, \underline{\dots}\}$$

Define the running degree excess

$$e_0 := 0$$
 $e_j := \sum_{i=1}^j \deg(d_i) - jd.$

After t steps: If $e_t > 0$, then...

$$\begin{split} \mathcal{L}_h &= \{x_1, x_2, \dots, x_r\} \\ \mathcal{L}_\ell &= \{y_1, y_2, \dots, y_s\} \end{split}$$

$$D = \mathsf{diag}\{d_1, d_2, \dots, d_t, \underline{\hspace{1cm}}, \underline{\hspace{1cm}}, \dots, \underline{\hspace{1cm}}\}$$

Arrangement algorithm in action

Define the running degree excess

$$e_0 := 0$$
 $e_j := \sum_{i=1}^j \deg(d_i) - jd.$

After t steps: If $e_t > 0$, then...

$$\mathcal{L}_h = \{x_1, x_2, \dots, x_r\}$$

 $\mathcal{L}_\ell = \{y_1, y_2, \dots, y_s\}$

$$D = \operatorname{diag}\{d_1, d_2, \dots, d_t, \underline{\hspace{1cm}}, \underline{\hspace{1cm}}, \dots, \underline{\hspace{1cm}}\}$$

Arrangement algorithm in action

Define the running degree excess

$$e_0 := 0$$
 $e_j := \sum_{i=1}^j \deg(d_i) - jd.$

After t steps: If $e_t > 0$, then...

$$\begin{split} \mathcal{L}_h &= \{x_1, x_2, \dots, x_r\} \\ \mathcal{L}_\ell &= \{y_1, y_2, \dots, y_s\} \end{split}$$

$$D = diag\{d_1, d_2, \dots, d_t, \underline{y_s}, \underline{\hspace{1cm}}, \dots, \underline{\hspace{1cm}}\}$$

Bidiagonal chains

Definition

A polynomial matrix \mathcal{B} is called a *bidiagonal chain* if it is of the form

$$\mathcal{B} = \left[\begin{array}{cccc} r_n & s_{n-1} & & & & \\ & r_{n-1}s_{n-1} & s_{n-2} & & & \\ & & \ddots & \ddots & & \\ & & & r_2s_2 & s_1 & \\ & & & & r_1s_1 \end{array} \right],$$

where $s_1|s_2|\cdots|s_{n-1}|r_n$

Bidiagonal chains

Definition

A polynomial matrix \mathcal{B} is called a *bidiagonal chain* if it is of the form

$$\mathcal{B} = \left[\begin{array}{cccc} r_n & s_{n-1} & & & & \\ & r_{n-1}s_{n-1} & s_{n-2} & & & \\ & & \ddots & \ddots & & \\ & & & r_2s_2 & s_1 & \\ & & & & r_1s_1 \end{array} \right],$$

where $s_1|s_2|\cdots|s_{n-1}|r_n$

Data can be stored as two vectors of sizes n and n-1.

Lemma

A bidiagonal chain in the form of \mathcal{B} is equivalent to

$$\operatorname{diag}\left\{\prod_{i=1}^n r_i, s_{n-1}, \ldots, s_1\right\}.$$

Lemma

A bidiagonal chain in the form of \mathcal{B} is equivalent to

$$\operatorname{diag}\left\{\prod_{i=1}^n r_i, s_{n-1}, \ldots, s_1\right\}.$$

- Start in the bottom right and use row and column operations.

Lemma

A bidiagonal chain in the form of \mathcal{B} is equivalent to

$$\operatorname{diag}\left\{\prod_{i=1}^n r_i, s_{n-1}, \dots, s_1\right\}.$$

- Start in the bottom right and use row and column operations.
- The divisibility chain $s_1|s_2|\cdots|s_{n-1}|r_n$ plays a key role.

Lemma

A bidiagonal chain in the form of \mathcal{B} is equivalent to

$$\operatorname{diag}\left\{\prod_{i=1}^n r_i, s_{n-1}, \dots, s_1\right\}.$$

- Start in the bottom right and use row and column operations.
- The divisibility chain $s_1|s_2|\cdots|s_{n-1}|r_n$ plays a key role.
- Diagonalized matrix is in Smith form.

Lemma

A bidiagonal chain in the form of \mathcal{B} is equivalent to

$$\operatorname{diag}\left\{\prod_{i=1}^n r_i, s_{n-1}, \ldots, s_1\right\}.$$

- Start in the bottom right and use row and column operations.
- The divisibility chain $s_1|s_2|\cdots|s_{n-1}|r_n$ plays a key role.
- Diagonalized matrix is in Smith form.
- Can read off diagonalization from original matrix.

Recombinant matrices

Definition

A recombinant matrix is a polynomial matrix ${\mathcal R}$ of the form

$$\mathcal{R} = \left[egin{array}{ccccccc} p_n & p_{n-1} & \cdots & p_2 & p_1 \\ & p_{n-1}q_n & \cdots & p_2q_n & p_1q_n \\ & & \ddots & dots & dots \\ & & p_2q_3 & p_1q_3 \\ & & & p_1q_2 \end{array}
ight]$$

where $p_1|p_2|\cdots|p_n$.

Recombinant matrices

Definition

A recombinant matrix is a polynomial matrix \mathcal{R} of the form

$$\mathcal{R} = \begin{bmatrix} p_n & p_{n-1} & \cdots & p_2 & p_1 \\ & p_{n-1}q_n & \cdots & p_2q_n & p_1q_n \\ & & \ddots & \vdots & \vdots \\ & & p_2q_3 & p_1q_3 \\ & & & p_1q_2 \end{bmatrix}$$

where $p_1|p_2|\cdots|p_n$.

- Data can be stored as two vectors of sizes n and n-1.

Recombinant matrices

Definition

A recombinant matrix is a polynomial matrix \mathcal{R} of the form

$$\mathcal{R} = \begin{bmatrix} p_n & p_{n-1} & \cdots & p_2 & p_1 \\ & p_{n-1}q_n & \cdots & p_2q_n & p_1q_n \\ & & \ddots & \vdots & \vdots \\ & & p_2q_3 & p_1q_3 \\ & & & p_1q_2 \end{bmatrix}$$

where $p_1|p_2|\cdots|p_n$.

- Data can be stored as two vectors of sizes n and n-1.
- Upper triangular part of a rank one matrix.

Lemma

A recombinant matrix in the form of R is equivalent to

diag
$$\{p_nq_n, p_1, p_{n-1}q_{n-1}, \dots, p_2q_2\}$$
.

Lemma

A recombinant matrix in the form of R is equivalent to

diag
$$\{p_nq_n, p_1, p_{n-1}q_{n-1}, \dots, p_2q_2\}$$
.

- Use row and column operations and the divisibility chain $p_1|p_2|\cdots|p_n$.

Lemma

A recombinant matrix in the form of R is equivalent to

diag
$$\{p_nq_n, p_1, p_{n-1}q_{n-1}, \dots, p_2q_2\}$$
.

- Use row and column operations and the divisibility chain $p_1|p_2|\cdots|p_n$.
- Can read off diagonalization from original matrix.
- Can construct *p*'s and *q*'s so that diagonalized matrix in Smith form

Lemma

A recombinant matrix in the form of R is equivalent to

diag
$$\{p_nq_n, p_1, p_{n-1}q_{n-1}, \dots, p_2q_2\}$$
.

- Use row and column operations and the divisibility chain $p_1|p_2|\cdots|p_n$.
- Can read off diagonalization from original matrix.
- Can construct p's and q's so that diagonalized matrix in Smith form.

Embedding a bidiagonal chain inside a recombinant matrix

A bidiagonal chain and recombinant matrix pair can be embedded as follows.

$\lceil p_n \rceil$	p_{n-1}				p_{n-2}	• • •	p_1
0	$p_{n-1}q_n$	S _m			$p_{n-2}q_n$	• • •	p_1q_n
		r _m s _m	•				
			•	s_1			
·				r_1s_1	1		
0	0				$p_{n-2}q_{n-1}$	5	p_1q_{n-1}
:	:						00
0	0						p_1q_2

Embedding a bidiagonal chain inside a recombinant matrix

A bidiagonal chain and recombinant matrix pair can be embedded as follows.

$\lceil p_n \rceil$	p_{n-1}				p_{n-2}		p_1
0	$p_{n-1}q_n$	S _m			$p_{n-2}q_n$	• • •	p_1q_n
		r _m s _m	•				
			٠	s_1			
				r_1s_1	1		
0	0				$p_{n-2}q_{n-1}$	5	p_1q_{n-1}
:	:						00
0	0						p_1q_2

To diagonalize, need $s_m | p_n q_n$.

Smoosh sum

Definition

The smoosh sum of $A \in M_{m,n}(\mathbb{C})$ and $B \in M_{p,\ell}(\mathbb{C})$ is the $(m+p-1)\times(n+\ell-1)$ matrix

$$A \lor B := \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} & b_{1,2} & \cdots & b_{1,\ell} \\ \hline & b_{2,1} & b_{2,2} & \cdots & b_{2,\ell} \\ & \vdots & \vdots & & \vdots \\ & b_{n,1} & b_{n,2} & \cdots & b_{n,\ell} \end{bmatrix}$$

Smoosh sum

Definition

The smoosh sum of $A \in M_{m,n}(\mathbb{C})$ and $B \in M_{p,\ell}(\mathbb{C})$ is the $(m+p-1)\times(n+\ell-1)$ matrix

$$A \lor B := \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} & b_{1,2} & \cdots & b_{1,\ell} \\ \hline & & b_{2,1} & b_{2,2} & \cdots & b_{2,\ell} \\ & & \vdots & \vdots & & \vdots \\ & & b_{p,1} & b_{p,2} & \cdots & b_{p,\ell} \end{bmatrix}.$$

Used to join two or more embedded pairs together.

Main result

Theorem

Any list of invariant polynomials (completely factored) together with a choice of degree consistant with the index sum theorem can be realized by

- a direct sum of blocks.
- each block is a smoosh sum of embedded pairs.

Main result

Theorem

Any list of invariant polynomials (completely factored) together with a choice of degree consistant with the index sum theorem can be realized by

- a direct sum of blocks.
- each block is a smoosh sum of embedded pairs.
- Can be diagonalized without any numerical computations.

Main result

Theorem

Any list of invariant polynomials (completely factored) together with a choice of degree consistant with the index sum theorem can be realized by

- a direct sum of blocks.
- each block is a smoosh sum of embedded pairs.
- Can be diagonalized without any numerical computations.
- The amount of data contained in the matrix is about 2npolynomials of degree d or less.

- The realization is not unique, not even up to permutation of blocks.

16/18 R. Hollister

- The realization is not unique, not even up to permutation of blocks.
 - Some uniqueness can be salvaged during the arrangement algorithm.

16/18 R. Hollister

- The realization is not unique, not even up to permutation of blocks.
 - Some uniqueness can be salvaged during the arrangement algorithm.
- 2 Size of blocks is determined by choices during arrangement algorithm.
- When target degree is 1, the Weierstrass canonical form can be easily recovered.
 - Requires reading the diagonal entries deleting off-diagonal entries when the value.
 - Results in the Weierstrass form, up to permutation of
- Extended in my thesis to regular polynomial matrix, general polynomial matrices, and general rational matrices.

- The realization is not unique, not even up to permutation of blocks.
 - Some uniqueness can be salvaged during the arrangement algorithm.
- 2 Size of blocks is determined by choices during arrangement algorithm.
- When target degree is 1, the Weierstrass canonical form can be easily recovered.
 - Requires reading the diagonal entries of the realization and deleting off-diagonal entries when the diagonal entry changes value
 - Results in the Weierstrass form, up to permutation of blocks.
- 4 Extended in my thesis to regular polynomial matrix general polynomial matrices, and general rational matrices.

- The realization is not unique, not even up to permutation of blocks.
 - Some uniqueness can be salvaged during the arrangement algorithm.
- 2 Size of blocks is determined by choices during arrangement algorithm.
- When target degree is 1, the Weierstrass canonical form can be easily recovered.
 - Requires reading the diagonal entries of the realization and deleting off-diagonal entries when the diagonal entry changes value
 - Results in the Weierstrass form, up to permutation of blocks
- 4 Extended in my thesis to regular polynomial matrix general polynomial matrices, and general rational matrices.

Ъ

Additional features of the realization

- The realization is not unique, not even up to permutation of blocks.
 - Some uniqueness can be salvaged during the arrangement algorithm.
- 2 Size of blocks is determined by choices during arrangement algorithm.
- When target degree is 1, the Weierstrass canonical form can be easily recovered.
 - Requires reading the diagonal entries of the realization and deleting off-diagonal entries when the diagonal entry changes value
 - Results in the Weierstrass form, up to permutation of blocks.
- 4 Extended in my thesis to regular polynomial matrix general polynomial matrices, and general rational matrices.

- The realization is not unique, not even up to permutation of blocks.
 - Some uniqueness can be salvaged during the arrangement algorithm.
- 2 Size of blocks is determined by choices during arrangement algorithm.
- When target degree is 1, the Weierstrass canonical form can be easily recovered.
 - Requires reading the diagonal entries of the realization and deleting off-diagonal entries when the diagonal entry changes value.
 - Results in the Weierstrass form, up to permutation of blocks.
- Extended in my thesis to regular polynomial matrix, general polynomial matrices, and general rational matrices.

Working on modifying these results for

Working on modifying these results for

- Regular, structured (Hermitian, palindromic, alternating) polynomial matrices,

Working on modifying these results for

- Regular, structured (Hermitian, palindromic, alternating) polynomial matrices,
- General, structured polynomial matrices,

Working on modifying these results for

- Regular, structured (Hermitian, palindromic, alternating) polynomial matrices,
- General, structured polynomial matrices,
- Structured rational matrices.

Working on modifying these results for

- Regular, structured (Hermitian, palindromic, alternating) polynomial matrices,
- General, structured polynomial matrices,
- Structured rational matrices.

The plan is to

- Refine the bidiagonal chains and recombinant matrices to reflect the given structure,

Working on modifying these results for

- Regular, structured (Hermitian, palindromic, alternating) polynomial matrices,
- General, structured polynomial matrices,
- Structured rational matrices.

The plan is to

- Refine the bidiagonal chains and recombinant matrices to reflect the given structure,
- Put them together in ways that preserve the structure.

Questions???

Richard Hollister rahollis@buffalo.edu

18/18 R. Hollister