Basics of Communication Engineering. COMM.100 Reyver Serna (K412764) reyverarley.sernalerma@tuni.fi

Project Work 5: Protocol Analysis

Ethernet

Let us start with examining Ethernet frame header.

- ➤ Task 5.1: During Lecture 12, we went through in detail the content of the first Ethernet frame (frame number 15). The frame 15 has been sent by the PC and the nearest router has received it. Next, we will analyze the frame number 16.
 - a) What is the destination address (MAC address) of frame 16?
 - 00 07 e9 0a 85 56 corresponding to the PC's MAC address.
 - **b)** What is the source address (MAC address) of frame 16?
 - 00 0f f7 1e 9e c1 corresponding to the router.
- **c)** Based on these MAC addresses, how do you know that frame 16 probably contains a response to the request contained in frame 15?

Based on these MAC addresses, we can determine that frame 16 is a response frame because fram 15 was sent from the PC to the router, and 16 is sent from the router to the PC. This is the logic to follow in a TCP/IP protocol.

d) Why these MAC addresses are specifically the MAC addresses of the PC and the router and not for example the addresses of the PC and the server?

Because these are capture in the link layer in the network. Here, the PC and the router communicate on the same physical segment, meanwhile the server is on a different segment. Therefore, frames 15 and 16 show how PC and router communicate with each other because they are directly connected on the same physical network segment. The server's MAC is not visible since it is not directly involved in this communication.

ΙP

Let us examine next the IP header.

- ➤ Task 5.2: Analyze the IP packet inside the Ethernet frame 17.
 - **a)** What is the value in the *Payload length* field in the IP packet header inside the Ethernet frame 17?

No. 17	Time 6.619507				1rce	9 708:	:31	0:52	2:20	07:	Destination 2001:1890:123a::1:2f						
0000	00	0f	f7	1e	9е	c1	00	07	е9	0a	85	56	86	dd	60	00	v`.
0010	00	00	00	14	06	40	20	01	07	08	03	10	00	52	02	07	@R
0020	e9	ff	fe	0 a	85	56	20	01	18	90	12	3а	00	00	00	00	v:
0030	00	00	00	01	00	2f	05	a5	00	50	9a	5b	b0	7d	15	00	/P.[.}
0040	e1	За	50	10	43	80	40	7d	00	00							.:P.C.@}

b) The content of all captured frames is represented in hexadecimal format. Convert the hexadecimal number you got in a)-part to decimal number (base-10 system).

h'00 14 is 20 in decimal.

Mathematical discloser:

$$1x16^{1}+4x16^{0}=20$$

c) The *Payload length* indicates the length of data field in octets. One octet is represented with two hexadecimal digits. Frame content has been presented in groups of two hexadecimal digits so that number of octets is easy to count. Include a picture of frame 17 to your report and highlight the *data field* of the IP packet. Check that the data field has correct number of octets (the number you got in b)-part). [Hint: The last field of IP packet header is *Destination address* and after that starts the data field that continues until the end of the packet.]

No. 17	Time 6.619507				Source 2001:708:310:52:207:e9ff:fe0a:8556											Destination 2001:1890:123a::1:2f			
0000	00	0f	f7	1e	9e	с1	00	07	е9	0 a	85	56	86	dd	60	00	v`.		
0010	00	00	00	14	06	40	20	01	07	8 0	03	10	00	52	02	07	@R		
0020	e9	ff	fe	0 a	85	56	20	01	18	90	12	3a	00	00	00	00	v:		
0030	00	00	00	01	00	2f	05	a5	00	50	9a	5b	b0	7d	15	00	/P.[.}		
0040	e1	3a	50	10	43	80	40	7d	00	00							.:P.C.@}		
					_														

d) How many bits the data field of that IP packet contains? [Hint: The answer of the b)-part is the number of octets, and it should be now multiplied with the number of bits in an octet. In other words, you must know how many bits one octet contains in general.]

```
#bits = #octects x Bits/octect
#bits = 20 octects x 8 bits/octect
#bits = 160 bits
```

- ➤ Task 5.3: Analyze further the IP packet inside the Ethernet frame 17.
 - a) What is the value in the *Hop limit* field of the IP packet inside the Ethernet frame 17?

40

b) What does this *Hop limit* value mean in practice?

Hop limits is the maximun number of hops (routers) that a packet can cross before being dropped out. Every time a packet crossed a router the Hop Limit is decreased by one. When this number gets to zero, the packet is discarded. In that way, the packet is not circulatin in the network forever.

c) Why in the previous frame (frame number 16) the *Hop limit* of the IP packet has smaller value than the value in the IP packet of the frame 17?

Because the Hop limit field decreases whe the packet goes through other routers in the network. Namely, the packet crossed at least six routers.

TCP

- ➤ Task 5.4: Analyze the TCP segment inside the frame number 18.
 - a) What is the value of *Flags* field of the TCP segment in frame 18? Give the value as hexadecimal number as it is given in the *TCPIP example all frames.pdf*.

0 18

No.	Tir															Destination	
18	6.6	5197	715		200	2001:708:310:52:207:e9ff:fe0a:8556									2001:1890:123a::1:2f		
0000	00	0f	f7	1e	9e	c1	00	07	е9	0 a	85	56	86	dd	60	00	
0010	00	00	01	6с	06	40	20	01	07	08	03	10	00	52	02	07	1.@R
0020	e9	ff	fe	0 a	85	56	20	01	18	90	12	3 a	00	00	00	00	V:
0030	00	00	00	01	00	2f	05	a5	00	50	9a	5b	b0	7d	15	00	/P.[.}
0040	e1	За	50	18	43	80	79	43	00	00	47	45	54	20	2f	72	.:P.C.yCGET /r
0050	66	63	2f	72	66	63	31	36	2e	74	78	74	20	48	54	54	fc/rfc16.txt HTT
0060	50	2f	31	2e	31	0d	0a	48	6f	73	74	За	20	77	77	77	P/1.1Host: www
0070	2e	72	66	63	2d	65	64	69	74	6f	72	2e	6f	72	67	0d	.rfc-editor.org.
0080	0 a	55	73	65	72	2d	41	67	65	6e	74	3а	20	4d	6f	7 a	.User-Agent: Moz
0090	69	6с	6с	61	2f	35	2e	30	20	28	57	69	6e	64	6f	77	illa/5.0 (Window
00a0	73	20	4e	54	20	35	2e	31	3b	20	72	76	За	38	2e	30	s NT 5.1; rv:8.0
00b0	29	20	47	65	63	6b	6f	2f	32	30	31	30	30	31	30	31) Gecko/20100101
00c0	20	46	69	72	65	66	6f	78	2f	38	2e	30	0d	0a	41	63	Firefox/8.0Ac
00d0	63	65	70	74	3а	20	74	65	78	74	2f	68	74	6d	6с	2c	cept: text/html,
00e0	61	70	70	6с	69	63	61	74	69	6f	6e	2f	78	68	74	6d	application/xhtm
00f0	6с	2b	78	6d	6с	2c	61	70	70	6с	69	63	61	74	69	6f	1+xml,applicatio
0100	6e	2f	78	6d	6с	3b	71	3d	30	2e	39	2c	2a	2f	2a	3b	n/xml;q=0.9,*/*;
0110	71	3d	30	2e	38	0d	0a	41	63	63	65	70	74	2d	4c	61	q=0.8Accept-La
0120	6e	67	75	61	67	65	За	20	65	6e	2d	75	73	2c	65	6e	nguage: en-us, en
0130	3b	71	3d	30	2e	35	0d	0a	41	63	63	65	70	74	2d	45	;q=0.5Accept-E
0140	6e	63	6f	64	69	6e	67	За	20	67	7a	69	70	2c	20	64	ncoding: gzip, d
0150	65	66	6с	61	74	65	0d	0a	41	63	63	65	70	74	2d	43	eflateAccept-C
0160	68	61	72	73	65	74	За	20	49	53	4f	2d	38	38	35	39	harset: ISO-8859
0170	2d	31	2c	75	74	66	2d	38	3b	71	3d	30	2e	37	2c	2a	-1,utf-8;q=0.7,*
0180	3b	71	3d	30	2e	37	0d	0a	43	6f	6e	6e	65	63	74	69	;q=0.7Connecti
0190	6f	6e	3a	20	6b	65	65	70	2d	61	6с	69	76	65	0d	0 a	on: keep-alive
01a0	0d	0a															

b) Convert the answer of the a)-part to binary number.

0001 1000

c) Based on previous part, which of the TCP flags have been set, i.e., which flags have binary value of 1? According to the event flow chart (slide 30 of Lecture 12), one of these flags is Push (PSH), which is related to transferring application layer data. What is the meaning of the other set flag?

The Push flag (PSH) and Acknowledgement (ACK). The later (ACK flag) recognizes the receipt of data.

➤ **Task 5.5:** Which of the frames 15–23 implement the three-way handshake of TCP? In general, what is three-way handshake, and why it is needed?

Packets 15, 16, 17.

The three-way handshake is used in TCP to establish a conenction between two devices over a network, This mehtod is used to set a reliable connection before data transmission. It consist of three steps:

- 1. Synchronize: a SYN packet is sent from the client to the server.
- 2. Synchronize- Acknoledgement (SYN-ACK): is the response from the server once the SYN packet is received. Here, it recognizes the receipt of the SYN packet and also sends it own SYN packet.
- 3. Acknowledgement (ACK): the client acknowledges the receipt of the SYN-ACK packet, completing the handshake.

HTTP

- ➤ Task 5.6: The HTTP request sent in the frame number 18 gets a response from the server in the frame number 20.
- a) Decode the hexadecimal numbers taken from the frame (listed below) to ASCII characters:

48	54	54	50	2f	31	2e	31	20	32	30	30	20	4f	4b
Н	T	T	P	/	1		1		2	0	0		О	K

b) What does this response from the server mean specifically?

It indicates that the server has processed the client's request successfully, and will provide the resource. HTTP/1.1specifies the protocol beign used; 200 means the statuts code of the request, which is positive and the server will deliver. OK is the textual representation of the status code.