Problem 6.2

- (a) The implication from right to left is by definition of \overleftarrow{F} and the fact that F is non-decreasing. The implication from left to right is because F is right continuous.
- (b) Consider the preimage of $(-\infty, t]$ under X. Then, using the above observation, we have

$$X^{-1}((-\infty,t]) = \{\omega \in \Omega : \overleftarrow{F}(U(\omega)) \in (-\infty,t]\}$$
$$= \{\omega \in \Omega : U(\omega) \in (-\infty,F(t)]\} = U^{-1}((-\infty,F(t)]) \in \mathcal{B}_{[0,1]}.$$

Hence, X is measurable. Finally, the above computation, together with Lemma 6.5, also implies that

$$\mathbb{P}\left(X^{-1}((-\infty,t])\right) = \mathbb{P}\left(U^{-1}((-\infty,F(t)))\right) = F(t).$$

Now let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and U a standard normal random variable. We will show that $X = F \circ U$ is a random variable with the right probability measure. Since we can construct a standard uniform random variable on the probability $([0,1],\mathcal{B}_{[0,1]},\lambda|_{[0,1]})$ this also implies the last part.

which finished the proof.

Problem 6.3

(a) For the probability space, take $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}_{[0,1]}$ and $\mathbb{P} = \lambda$ the Lebesgue measure restricted to [0, 1].

Observe that the function $H_{\gamma}(z)$ is continuous and hence has an inverse $g_{\gamma}(y) = \gamma \tan(\pi(y-1/2))$ on [0,1].

So the function $Y[0,1] \to \mathbb{R}$ defined by $Y(x) = g_\gamma(x)$ has the correct distribution as

$$\mathbb{P}(Y^{-1}((-\infty, t])) = \mathbb{P}(g_{\gamma}^{-1}((-\infty, t])) = \lambda(H_{\gamma}((-\infty, t])) = H_{\gamma}(t).$$

- (b) Note that g_{γ} is continuous on [0,1] and hence measurable.
- (c) For any $t \ge 0$, the cdf of the Poisson random variable is given by

$$F_{\lambda}(t) = \sum_{n=0}^{\lceil t \rceil} f_{\lambda}(n),$$

where $\lceil t \rceil$ is the ceiling of t, i.e. the smallest integer $k \geq t$.

(d) For the probability space, we again take $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}_{[0,1]}$ and $\mathbb{P} = \lambda$ the Lebesgue measure restricted to [0, 1].

Now for any $y \in [0,1]$ let k := k(y) be such that

$$\sum_{n=1}^{k} f_{\lambda}(n) \ge y \quad \text{and} \quad \sum_{n=1}^{k-1} f_{\lambda}(n) < y,$$

where the last sum is interpreted as -1 if k = 0.

Now define $X(y) = k(y) : [0,1] \to \mathbb{R}$. Then $k(y) \le t$ if and only if $y \le F_{\lambda}(t)$ and hence

$$X^{-1}((-\infty,t]) = \{ y \in [0,1] : k(y) \in (0,t] \} = \{ y \in [0,1] : y \in (0,F_{\lambda}(t)] \},$$

from which it follows that

$$\mathbb{P}(X^{-1}((-\infty,t])) = \lambda((0,F_{\lambda}(t)]) = F_{\lambda}(t).$$

- (e) It follows from the above computation that $X^{-1}((-\infty,t])=\{y\in [0,1]:y\in (0,F_{\lambda}(t)]\}$. Since the latter is a measurable set we conclude that $X^{-1}((-\infty,t])$ is measurable for all t and since these generate the Borel σ -algebra X is measurable.
- (f) for any $\ell \in \mathbb{N}$ define the sets $A_{\ell} = (n-1-1/\ell), n-1+1/\ell]$. Then A_{ℓ} is a decreasing set with $\lim_{\ell \to \infty} A_{\ell} = \{n\}$. Moreover, $A_{\ell} = (-\infty, n-1+1/\ell] \setminus (-\infty, n-1-1/\ell]$ and $\mathbb{P}(A_1) < \infty$. It now follows from continuity from above and (d) that

$$\begin{split} X_{\#}\mathbb{P}(\{n\}) &= \lim_{\ell \to \infty} X_{\#}\mathbb{P}(A_{\ell}) \\ &= \lim_{\ell \to \infty} X_{\#}\mathbb{P}((-\infty, n-1+1/\ell]) - X_{\#}\mathbb{P}((-\infty, n-1-1/\ell]) \\ &= F_{\lambda}(n-1+1/\ell) - F_{\lambda}(n-1-1/\ell) \\ &= \sum_{k=0}^{n} f_{\lambda}(k) - \sum_{k=0}^{n-1} f_{\lambda}(k) = f_{\lambda}(n). \end{split}$$