ЛАБОРАТОРНАЯ РАБОТА 6.

ЧИСЛЕННОЕ РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

Отчет по лабораторной работе должен содержать

- 1) постановку задачи;
- 2) необходимый теоретический материал (формулы)
- 3) результаты вычисления;
- 4) текст программы и графический материал.
- 1. Построить приближенное решение интегрального уравнения Фредгольма второго рода $\mathbf{x}(t) = \int\limits_{\mathbf{a}_1}^{\mathbf{b}_1} \mathbf{K}(t,\mathbf{s})\mathbf{x}(\mathbf{s})\mathrm{d}\mathbf{s} + \mathbf{f}(t)$ на сетке точек t_i отрезка $[a_1;\ b_1]$ с

шагом h_1 , пользуясь обобщенную квадратурную формулу Симпсона.

2. Применяя обобщенную квадратурную формулу трапеций на отрезке $[a_2;b_2]$ с шагом h_2 , найти приближенное решение интегрального уравнения t

Вольтерра
$$x(t) = \int_{a_2}^{t} Q(t,s)x(s)ds + F(t)$$
.

Исходные параметры для уравнений Фредгольма и Волтерры.

No	Задание				
варианта	Q(t,s)	K(t, s)	f(t)	F(t)	
1	$2\ln\frac{1+s}{1+t^2}$	$t + \sqrt{s}$	$t^2 - t + 1$	$2t\sqrt{t}-t-1$	
2	$t + \ln(1+s)$	$\frac{\sqrt{s}-t}{s}$	$1 - \frac{t^2}{t+1}$	$3t - 2\sqrt{t} - 1$	
3	$2\ln\frac{1+s}{1+t^2}$	$t + \sqrt{s}$	$2t^2 - t + 1$	$t\sqrt{t}-t-1$	
4	$\frac{t}{s^2-1}$	$\frac{\sqrt{s}-1}{s} + \sin ts$	$t^2 + \frac{t}{6} - \frac{7}{3}$	$t-2\sqrt{t}-1$	
5	$2\ln\frac{1+2s}{1+t^2}$	$t + \sqrt{s}$	$t^2 - t + 1$	$2t\sqrt{t}-3t-1$	
6	$t + 2\ln(1+s)$	$\frac{\sqrt{s}-1}{s}-t^2$	$1 - \frac{t^2}{t+1}$	$3t - \sqrt{t} - 1$	
7	$2\ln\frac{1+2s}{1+t^2}$	$t + \sqrt{s}$	$2t^2 - t + 1$	$2t\sqrt{t}-t-2$	
8	$\frac{2t}{s^2-1}$	$\frac{\sqrt{s}-1}{s}$	$t^2 + \frac{t}{6} - \frac{7}{3}$	$3t - 2\sqrt{t} - 2$	
9	$ \ln \frac{1+3s}{1+t^2} $	$t + 2\sqrt{s}$	$t^2 - t + 1$	$t\sqrt{t}-t-2$	
10	$\frac{t}{3} + \ln(1+s)$	$\frac{\sqrt{s}-1}{s}+t$	$1 - \frac{t^2}{t+1}$	$t-\sqrt{t}-1$	
11	$ \ln \frac{1+3s}{1+t^2} $	$2t + 3\sqrt{s}$	$2t^2 - t + 1$	$3t\sqrt{t}-t-3$	

			T	
12	$\frac{3t}{s^2-1}$	$t - \frac{\sqrt{s} - 1}{s}$	$t^2 + \frac{t}{6} - \frac{7}{3}$	$t-\sqrt{t}-3$
13	$\sin(0.2(st)^2)$	1/(10-st)	$1+t^2$	$1+t+e^t$
14	$1/\left(10+\cos(s+t)\right)$	$\sin(st/5)$	te^t	$\sin(\pi t)$
15	$1/(8+\sin^2(s+t))$	$\sin(0.1(st)^2)$	$1+t+e^t$	$\cos t$
16	$\sin(st)/(5+t)$	(s+t)/(10+t)	1 + 2 <i>t</i>	e^{-t}
17	tg(0.1(s+t))	$1/\left(5+\cos(s+t)\right)$	$\sin(\pi t)$	$1 + \sin t$
18	1/(10-st)	$1/\left(\ln(2+st)\right)$	$1+e^t$	$1+t^2$
19	sin(st / 8)	$1/\left(5+\sin(s+t)\right)$	$\cos(t)$	te ^t
20	tg(s/(4+t))	$\sin(st)/(2+t)$	e^{-t}	1+t

Исходные параметры для заданий.

No	Задание				
варианта	$[a_1; b_1]$	h_1	$[a_2; b_2]$	h_2	
1	[0; 2]	0,1	[0; 1]	0,2	
2	[1; 3]	0,2	[1; 2]	0,2	
3	[2; 4]	0,2	[2; 3]	0,2	
4	[0; 3]	0,2	[0; 2]	0,4	
5	[1; 4]	0,2	[1; 3]	0,4	
6	[2; 5]	0,2	[2; 4]	0,4	
7	[0; 2]	0,1	[0; 2]	0,5	
8	[1; 3]	0,2	[1; 3]	0,5	
9	[2; 4]	0,1	[2; 4]	0,5	
10	[0; 3]	0,25	[0; 1]	0,2	
11	[1; 4]	0,25	[1; 2]	0,2	
12	[0; 1]	0,05	[2; 3]	0,2	
13	[0; 2]	0,1	[0; 3]	0,2	
14	[0; 1]	0,1	[0; 1]	0,1	
15	[1; 2]	0,2	[1; 2]	0,2	
16	[0; 1]	0,1	[0; 1]	0,1	
17	[0; 2]	0,25	[0; 2]	0,25	
18	[0; 1]	0,1	[0; 1]	0,1	
19	[0; 2]	0,1	[0; 2]	0,1	
20	[0; 3]	0,2	[0; 3]	0,2	