

Guía Docente

Análisis de Grafos y Redes Sociales

Autores: Abraham Duarte, Felipe Alonso y Jesús

Sánchez-Oro

9 de Enero de 2018

Índice de Contenidos

- 1. Datos de la Asignatura
- 2. Presentación
- 3. Contenido
- 4. Tiempo de trabajo
- 5. Metodología y plan de trabajo
- 6. Métodos de evaluación
- 7. Recursos y materiales didácticos
- 8. Profesorado

1. Datos de la Asignatura

Identificación de la asignatura	
Tipo	Obligatoria
Periodo de impartición	Trimestre 2
Número de créditos	3 ECTS
Idioma en el que se imparte	Español

2. Presentación

El análisis de redes (o análisis de grafos) es posiblemente una de las áreas de mayor crecimiento que se pueden encontrar en el contexto de las ciencias cuantitativas. A pesar de que sus raíces aparecen en el contexto del análisis de redes sociales, que se remontan a los años 30 y en la teoría de grafos, que se remonta a siglos, el aumento que ha experimentado esta disciplina en espectacular. Las redes actualmente permiten modelar aspectos propios de la vida cotidiana tales como Internet, redes sociales, marketing viral, etc.

El análisis de datos es un componente fundamental dentro de las redes. Por lo tanto, existe una necesidad de uso de herramientas teóricas. En esta asignatura nos vamos a centrar en técnicas descriptivas, destinadas a abordar una serie de tareas relacionadas con la red. Estas técnicas permitirán la visualización básica, la caracterización de la estructura de la red, o modelado.

Existe una variedad enorme de software que permite realizar muchos de estos análisis relacionados con la red. Además, está disponible en varios idiomas y entornos, a través de diferentes plataformas. En esta asignatura nos centraremos en R. La comunidad que lo respalda es enorme y muy activa.

En conjunto, estos paquetes permiten abordar tareas que van desde la manipulación estándar, visualización y caracterización de los datos de la red (por ejemplo, **igraph**, **network** y **SNA**), a la modelización de redes (por ejemplo, **igraph**, **eigenmodel**, **ERGM**, y **mixer**), para establecer contactos inferir la topología (por ejemplo, **Glasso** y **huge**). Además, hay una gran cantidad de análisis que se puede hacer usando directamente las herramientas y funciones que están disponibles en el paquete base de R.

El objetivo fundamental de esta asignatura es ofrecer una introducción al análisis de los datos estructurados en una red, a través del lenguaje de programación R. En concreto, se busca un equilibrio entre una descripción de los diversos paquetes R (sin ser un manual) y de los los fundamentos conceptuales y técnicos del área temática (sin proporcionar una cobertura exhaustiva).

Este análisis se completará con el estudio de casos de uso (redes sociales, redes de transporte, etc.) y con la introducción de herramientas y tecnologías de visualización de redes (igraph, Gephi, d3.js).

Como requisitos previos es conveniente tener unos conocimientos básicos de programación (aunque no necesariamente en el lenguaje considerados en la asignatura). Por otra parte, muchos de los formatos de documentos y técnicas que se utilizarán en esta asignatura se asume que se habrán visto en otras asignaturas del máster.

Tras cursar esta asignatura, los estudiantes serán capaces de:

- Modelar cualquier tipo de red como un grafo específico (ponderado, dirigido, etc.).
- Obtener y analizar características de las redes.
- Crear representaciones visuales de las redes que permitan el análisis cualitativo de las mismas.
- Aplicar algoritmos de extracción de conocimiento sobre las redes.
- Conocer las principales herramientas y tecnologías de visualización de redes.
- Extraer datos para la construcción de redes sociales a través de APIs

3. Contenido

a. Temario

Bloque temático	Tema
I. Análisis de redes	1. Introducción a las redes
	2. Modelado y manipulación de redes
	3. Análisis descriptivo
II. Visualización y casos de uso	4. Visualización de redes: igraph, Gephi,
	d3.js
	5. Casos de uso: redes sociales, redes de
	transporte.

b. Actividades formativas

Tipo	Descripción
Prácticas/Resolución de ejercicios	Ejercicios sobre los diferentes temas de
	la asignatura
Prácticas/Resolución de ejercicios	Entrega de prácticas

4. Tiempo de trabajo

Clases teóricas	10
Clases prácticas de resolución de problemas,	4
casos, etc.	
Prácticas en laboratorios tecnológicos, clínicos,	8
etc.	
Realización de pruebas	2
Tutorías académicas	12
Actividades relacionadas: jornadas, seminarios,	0
etc.	
Preparación de clases teóricas	13
Preparación de clases	13
prácticas/problemas/casos/entregas	
Preparación de pruebas	13
Total de horas de trabajo del estudiante	75

5. Metodología y plan de trabajo

Título	Periodo	Contenido
Clases teóricas	Semana 1 a Semana 12	Pretenden transmitir conocimientos al alumno mediante procesos cognitivos desarrollados de forma presencial (clases magistrales, debate y presentación de ejemplos). Las exposiciones serán por parte del profesor. Durante las sesiones de teoría se podrán plantear preguntas o situaciones problemáticas sobre un tema, propiciar el debate individual o en grupo, resolver dudas que puedan plantearse, etc.
Prácticas	Semana 1 a Semana 12	Sesiones prácticas (laboratorios y talleres) con el propósito de mostrar al estudiante cómo utilizar las herramientas y métodos estudiados para la resolución de problemas concretos, afianzando así los conceptos teóricos que se han tratado en la asignatura.

6. Métodos de evaluación

a. Convocatorias de evaluación

Evaluación ordinaria: La distribución y características de las pruebas de evaluación son las que se describen a continuación. Atendiendo a las características específicas de cada grupo el profesor podrá, en las primeras semanas de curso, introducir cambios que considere oportunos, comunicándolo previamente a la Dirección del Máster para su aprobación.

Evaluación extraordinaria: Los alumnos que no consigan superar la evaluación ordinaria, o no se hayan presentado, serán objeto de la realización de una evaluación extraordinaria en los términos establecidos por el profesor.

b. Descripción de las pruebas de evaluación y ponderación

La asignatura se evaluará, tanto en su **convocatoria ordinaria** (Abril-Mayo), como en la **convocatoria extraordinaria** (Junio-Julio), sobre la entrega de una **práctica**, realizada de manera individual, y desarrollada durante el curso.

Para aprobar la asignatura es necesario obtener como **mínimo** una **nota final de 5 sobre 10**.

c. Evaluación de alumnos con dispensa académica

Para que un alumno pueda optar a esta evaluación, tendrá que obtener la 'Dispensa Académica' para la asignatura, que habrá solicitado al Decano/a o Director/a del Centro que imparte su titulación. La Dispensa Académica se podrá conceder siempre y cuando las peculiaridades propias de la asignatura lo permitan.

d. Revisión de las pruebas de evaluación

Se realizará conforme a la normativa de reclamación de exámenes de la Universidad Rey Juan Carlos, previa cita con el profesor responsable de la prueba y/o de la asignatura.

e. Estudiantes con discapacidades o necesidades especiales

Las adaptaciones curriculares para estudiantes con discapacidad o con necesidades educativas especiales, a fin de garantizar la igualdad de oportunidades, no discriminación, la accesibilidad universal y la mayor garantía de éxito académico serán pautadas por la Unidad de Atención a Personas con Discapacidad en virtud de la Normativa que regula el servicio de Atención a Estudiantes con Discapacidad, aprobada por Consejo de Gobierno de la Universidad Rey Juan Carlos.

Será requisito imprescindible para ello la emisión de un informe de adaptaciones curriculares por parte de dicha Unidad, por lo que los estudiantes con discapacidad o necesidades educativas especiales deberán contactar con ella, a fin de analizar conjuntamente las distintas alternativas.

f. Conducta académica

Véase normativa general de conducta académica de la URJC.

7. Recursos y materiales didácticos

a. Bibliografía

Eric D. Kolaczyk, Gábor Csárdi, 2014. Statistical Analysis of Network Data with R. Springer.

b. Bibliografía de consulta

J. Leskovec, A. Rajaraman and J. D. Ullman, "Mining of Massive Datasets," Cambridge University Press.

8. Profesorado

Nombre y apellidos	Abraham Duarte
Correo electrónico	Abraham Duarte@urjc.es
Departamento	Ciencias de la Computación, Arquitectura
	de la Computación, Lenguajes y Sistemas
	Informáticos y Estadística e Investigación
	Operativa
Categoría	Prof. Titular de Universidad

Titulación Académica	Doctor en Informática
Responsable asignatura	No
Horario de tutorías	Previo contacto por correo a través del
	aula virtual, en horario a convenir
Nombre y apellidos	Felipe Alonso
Correo electrónico	felipe.alonso@urjc.es
Departamento	Teoría de la Señal y Comunicaciones y
	Sistemas Telemáticos y Computación
Categoría	Prof. Contratado Doctor
Titulación Académica	Doctor en Telecomunicaciones
Responsable asignatura	Sí
Horario de tutorías	Previo contacto por correo a través del
	aula virtual, en horario a convenir
Nombre y apellidos	Jesús Sánchez-Oro
Correo electrónico	jesus.sanchezoro@urjc.es
Departamento	Ciencias de la Computación, Arquitectura
	de la Computación, Lenguajes y Sistemas
	Informáticos y Estadística e Investigación
	Operativa
Categoría	Prof. Visitante
Titulación Académica	Doctor en Informática
Responsable asignatura	No
Horario de tutorías	Previo contacto por correo a través del
	aula virtual, en horario a convenir