

Topic

• Dissertation: Solving bimodular integer programs in strongly polynomial time

Supervisor: Dr. Giacomo Zambelli

• *Paper*: A strongly polynomial algorithm for bimodular integer linear programming (2017)

Authors: S. Artmann, R. Weismantel, and R. Zenklusen

Structure

- Introduction to integer programming
- Complexity of integer programming and other associated problems
- Bimodular integer programming
- Outline of an algorithm to solve bimodular integer programming

Integer linear programming

• An integer linear program (IP) is an optimization problem of the form,

$$\max\{c^{\mathsf{T}}x: Ax \leq b, x \in \mathbb{Z}^n\}$$

where $c \in \mathbb{Z}^n$, $b \in \mathbb{Z}^m$ and $A \in \mathbb{Z}^{m \times n}$, rank(A) = n.

•	Fruit	Cost	Weight	Vitamin C	Potassium
	1 Banana	0.30€	120g	10mg	420mg
	1 Orange	0.50€	130g	70mg	240mg

•
$$A = \begin{pmatrix} -10 & -70 \\ -420 & -240 \\ 120 & 130 \\ 0 & -1 \\ -1 & 0 \end{pmatrix}$$
, $b = \begin{pmatrix} -65 \\ -300 \\ 2000 \\ 0 \\ 0 \end{pmatrix}$, $x = \begin{pmatrix} x_B \\ x_O \end{pmatrix}$, $c = \begin{pmatrix} -0.3 \\ -0.5 \end{pmatrix}$ $x_B, x_O \in \mathbb{Z}$

Graphical representation of an IP

• max
$$x_1 + 3x_2$$

$$2x_1 + 2x_2 \le 9$$

$$x_2 \le 3$$

$$-x_2 \le 0$$

$$-x_1 \le 0$$

Complexity of

Linear programming

• $\max\{c^{\mathsf{T}}x: Ax \leq b, x \in \mathbb{R}^n\}$

Integer programming

• $\max\{c^{\mathsf{T}}x: Ax \leq b, x \in \mathbb{Z}^n\}$

Totally unimodular integer programs

 Totally unimodular (TU) matrix: all sub-determinants have values 0, ±1

• <u>Unimodular</u> matrix: the $n \times n$ subdeterminants have values 0, ± 1

Can we extend the result further?

- Yes!
- $n \times n$ sub-determinants have values 0, ± 1 , ± 2 .
- A bimodular integer program (BIP) is an optimization problem of the form, $\max\{c^{\top}x: Ax \leq b, x \in \mathbb{Z}^n\}$

where $c \in \mathbb{Z}^n$, $b \in \mathbb{Z}^m$ and $A \in \mathbb{Z}^{m \times n}$, rank(A) = n and the $n \times n$ sub-determinants of A are at most 2 in absolute value.

Outline of the algorithm

Transform BIP to a TU problem with an additional parity constraint

$$\max\{c^{\mathsf{T}}x: Ax \le 0, x \in \mathbb{Z}_{\ge 0}^n, \sum_{i \in S} x_i \text{ odd}\}$$
 (CPTU)

- 2. Iteratively decompose CPTU into smaller CPTU problems
 - The number of subproblems doesn't grow exponentially
- 3. Solving the base problems

Thank you!

• Slides and dissertation: https://github.com/LisaLentati/bip

Appendix: from unimodular to TU

- $\max\{c^{\top}x: Ax \leq b, x \in \mathbb{Z}^n\}$, with A unimodular
- $x = Q^{-1}y$
- $\max\{c^{\mathsf{T}}Q^{-1}y: \bar{A}y \leq bQ^{-1}, y \in \mathbb{Z}^n\}$, with \bar{A} totally unimodular