CMPT 210: Probability and Computing

Lecture 3

Sharan Vaswani

January 16, 2024

Recap - Counting

Product Rule: For sets A_1 , A_2 ..., A_m , $|A_1 \times A_2 \times ... \times A_m| = \prod_{i=1}^m |A_i|$ (E.g. Selecting one course each from every subject.)

Sum rule: If $A_1, A_2 ... A_m$ are disjoint sets, then, $|A_1 \cup A_2 \cup ... \cup A_m| = \sum_{i=1}^m |A_i|$ (E.g Number of rainy, snowy or hot days in the year).

Generalized product rule: If S is the set of length k sequences such that the first entry can be selected in n_1 ways, after the first entry is chosen, the second one can be chosen in n_2 ways, and so on, then $|S| = n_1 \times n_2 \times \dots n_k$. (E.g Number of ways n people can be arranged in a line = n!)

Division rule: $f: A \to B$ is a k-to-1 function, then, |A| = k|B|. (E.g. For arranging people around a round table, f: seatings \to arrangements is an n-to-1 function).

1

Counting subsets (Combinations)

Q: How many size-k subsets of a size-n set are there?

Example: How many ways can we select 5 books from 100?

Let us form a permutation of the n elements, and pick the first k elements to form the subset. Every size k subset can be generated this way. There are n! total such permutations.

The order of the first k elements in the permutation does not matter in forming the subset, and neither does the order of the remaining n - k elements.

The first k elements can be ordered in k! ways and the remaining n-k elements can be ordered in (n-k)! ways. Using the product rule, $k! \times (n-k)!$ permutations map to the same size k subset.

Hence, the function f: permutations \rightarrow size k subsets is a $k! \times (n-k)!$ -to-1 function. By the division rule, $|\text{permutations}| = k! \times (n-k)!$ |size k subsets|. Hence, the total number of size k subsets $= \frac{n!}{k! \times (n-k)!}$.

n choose
$$k = \binom{n}{k} := \frac{n!}{k! \times (n-k)!}$$
.

Counting subsets (Combinations)

Q: Prove that $\binom{n}{k} = \binom{n}{n-k}$ - both algebraically (using the formula for $\binom{n}{k}$) and combinatorially (without using the formula)

Q: Which is bigger? $\binom{8}{4}$ vs $\binom{8}{5}$?

Counting subsets – Example

 \mathbf{Q} : How many *m*-bit binary sequences contain exactly k ones?

Consider set $A = \{1, ..., m\}$ and selecting S, a subset of size k. For example, say m = 10, k = 3 and $S = \{3, 7, 10\}$. S records the positions of the 1's, and can mapped to the sequence 0010001001. Similarly, every m-bit sequence with exactly k ones can be mapped to a subset S of size k. Hence, there is a bijection:

f: m-bit sequence with exactly k ones \to subsets of size k from size m-set, and |m-bit sequence with exactly k ones|=|subsets of size $k|={m \choose k}$.

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled, sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Recall that the number of ways of selecting 10 donuts with 5 varieties = number of 14-bit sequences with exactly 4 ones = $\binom{14}{4}$ = 1001.

Q: What is the number of ways of choosing n things with k varieties?

Counting subsets – Example

- Q: What is the number of n-bit binary sequences with at least k ones?
- Q: What is the number of n-bit binary sequences with less than k ones?
- Q: What is the total number of n-bit binary sequences?

Binomial Theorem

For all $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Example: If a = b = 1, then $\sum_{k=0}^{n} {n \choose k} = 2^{n}$ (result from previous slide).

If
$$n=2$$
, then $(a+b)^2=\binom{2}{0}a^2+\binom{2}{1}ab+\binom{2}{2}b^2=a^2+2ab+b^2$.

Q: What is the coefficient of the terms with ab^3 and a^2b^3 in $(a+b)^4$?.

Q: For a, b > 0, what is the coefficient of $a^{2n-7}b^7$ and $a^{2n-8}b^8$ in $(a+b)^{2n} + (a-b)^{2n}$?

6

Counting Practice

Q: A standard dice (with numbers $\{1,2,3,4,5,6\}$) is rolled 6 times in succession.

- How many rolls will have no 6?
- How many rolls will have each number once?
- How many rolls will have 6 come up exactly once?
- How many rolls will have 6 come up exactly k times (for $k \le 6$)?

Counting Practice

Q: How many 5 digit numbers are there which contain at least one zero? Note that a number is different from a string, i.e. 01234 is not a 5-digit number and is hence not allowed.

Counting Practice

Q: How many non-negative integer solutions $(x_1, x_2, x_3 \ge 0)$ are there to the following equation:

$$x_1 + x_2 + x_3 = 40$$

Generalization to Multinomials

We saw how to split a set into two subsets - one that contains some elements, while the other does not. Can generalize the arguments to split a set into more than two subsets.

A $(k_1, k_2, ..., k_m)$ -split of set A is a sequence of sets $(A_1, A_2, ..., A_m)$ s.t. sets A_i form a partition $(A_1 \cup A_2 \cup ... = A$ and for $i \neq j$, $A_i \cap A_j = \emptyset)$ and $|A_i| = k_i$.

An example of a (2,1,3)-split of $A=\{1,2,3,4,5,6\}$ is $(\{2,4\},\{1\},\{3,5,6\})$. Here, m=3, $A_1=\{2,4\}$, $A_2=\{1\}$, $A_3=\{3,5,6\}$ s.t. $|A_1|=2$, $|A_2|=1$, $|A_3|=3$, $A_1\cup A_2\cup A_3=A$ and for $i\neq j$, $A_i\cap A_j=\emptyset$.

Example: Consider strings of length 6 of a's, b's and c's such that number of a's = 2; number of b's = 1 and number of c's = 3. Possible strings: abaccc, ccbaac, bacacc, cbacac.

Each possible string, e.g. bacacc can be written as a (2,1,3)-split of $A = \{1,2,3,4,5,6\}$ as $(\{2,4\},\{1\},\{3,5,6\})$ where A_1 records the positions of a, A_2 records the positions of b and a records the positions of a.

Generalization to Multinomials

Q: Show that the number of ways to obtain an $(k_1, k_2, ..., k_m)$ split of A with |A| = n is $\binom{n}{k_1, k_2, ..., k_m} = \frac{n!}{k_1! k_2! ... k_m!}$ where $\sum_i k_i = n$.

Can map any permutation $(a_1, a_2, \ldots a_n)$ into a split by selecting the first k_1 elements to form set A_1 , next k_2 to form set A_2 and so on. For the same split, the order of the elements in each subset does not matter. Hence f: number of permutations \rightarrow number of splits is a $k_1! k_2! \ldots k_m!$ -to-1 function.

Hence, $|\text{number of splits}| = \frac{|\text{number of permutations}|}{k_1! \ k_2! \ ... k_m!} = \frac{n!}{k_1! \ k_2! \ ... k_m!}$.

Generalization to Multinomials - Example

Q: Count the number of permutations of the letters in the word BOOKKEEPER.

We want to count sequences of the form (1E, 1P, 2E, 1B, 1K, 1R, 2O, 1K) = EPEEBKROOK. There is a bijection between such sequences and (1, 2, 2, 3, 1, 1) split of $A = \{1, 2, ..., 10\}$ where A_1 is the set of positions of B's, A_2 is the set of positions of O's, A_3 is set of positions of K and so on.

For example, the above sequence maps to the following split:

$$({5}, {8,9}, {6, 10}, {1,3,4}, {2}, {7})$$

Hence, the total number of sequences that can be formed from the letters in BOOKKEEPER = number of (1, 2, 2, 3, 1, 1) splits of $A = [10] = \{1, 2, \dots, 10\} = \frac{10!}{1! \cdot 2! \cdot 2! \cdot 3! \cdot 1! \cdot 1!}$.

Q: Count the number of permutations of the letters in the word (i) ABBA (ii) A_1BBA_2 and (iii) $A_1B_1B_2A_2$?