Climate Change: A Global Analysis

Asifur Rahman Kevin Gates Manuel Moina Sara Zhou



#### CONTENT

- 1. Introduction
- 2. Data
- 3. Methods
- 4. Model Selection
- 5. Explanations
- 6. Predictions
- 7. Conclusions



# 01 Introduction



#### HadCRUT Surface Temperature Anomaly, 1990



Surface temperature anomaly, measured in degrees celcius The temperature anomaly is relative to the 1951-1980 global average temperature. Data is based on the HadCRUT analysis from the Climatic Research Unit (University of East Anglia) in conjunction with the Hadley Centre (UK Met Office).



#### HadCRUT Surface Temperature Anomaly, 2016



Surface temperature anomaly, measured in degrees celcius The temperature anomaly is relative to the 1951-1980 global average temperature. Data is based on the HadCRUT analysis from the Climatic Research Unit (University of East Anglia) in conjunction with the Hadley Centre (UK Met Office).





#### Per capita CO2 emissions, 1990



Carbon dioxide (CO<sub>2</sub>) emissions from the burning of fossil fuels for energy and cement production. Land use change is not included.



#### Per capita CO2 emissions, 2016

Our World in Data

Carbon dioxide (CO<sub>2</sub>) emissions from the burning of fossil fuels for energy and cement production. Land use change is not included.



#### Who emits the most CO<sub>2</sub>?

Global carbon dioxide (CO2) emissions were 36.2 billion tonnes in 2017.





Shown are national production-based emissions in 2017, Production-based emissions measure CO<sub>2</sub> produced domestically from fossil fuel combustion and cement, and do not adjust for emissions embedded in trade (i.e. consumption-based).

Figures for the 28 countries in the European Union have been grouped as the 'EU-28' since international targets and negotiations are typically set as a collaborative target between EU countries, Values may not sum to 100% due to rounding.

Data source: Global Carbon Project (GCP).

This is a visualization from OurWorldinData.org, where you find data and research on how the world is changing

Licensed under CC-BY by the author Hannah Ritchie.

# **Project Goals**

by climate change differently. In this project we seek to uncover specific global **relationships** between country inputs to climate change (i.e. CO2 emissions) and their effects on a country (i.e. death rates caused by pollution).

# 02 Data



#### **DATA**

**FEATURES** 

Range: 1990-2014

**26 Features** 

**COUNTRIES** 

**114 Countries** 

**SOURCE** 

https://ourworldindata.org/

Merged on Date & Country



#### **FEATURES**



CO2, GHG, CO2 Per Cap, Ozone Consumption, Industry Emissions, Forest area

**Climate Metrics** 

• • •



Urbanization (% of Pop), Population
Density, GDP Per
Cap, Commitment
to a Net Zero
Future

Demographic Metrics

• • •



Air Pollution Death Rates, Death Rates By Age, Child Mortality

Outcome Metrics

# 03: Methods



#### **Our Data Science Process**



#### **CLUSTER** • • •

With our wide array of interrelated features and our goal of investigating relationships, we knew clustering would be the best technique.

#### **ANALYSIS**

With a clustering problem in hand, our inference can be derived from deep diving into our features and model outputs with EDA.

#### PREDICT • • •

After thoroughly analyzing our cluster models we utilized predictive modeling techniques to test the validity of relationships we identified.

#### **MODEL SELECTION**

1. Hierarchical Clustering

a. Agglomerative

2. DBSCAN

3. KMeans



#### **Hierarchical Clustering**

- For hierarchical clustering, the different linkages methods tested are single, complete, weighted, centroid, average, and Ward.
- Eucledian distance with average linkage gave separate and distinct clusters, and also had the highest cophenetic

correlation (~0.95).

• The dendrogram for average linkage is shown below.



#### Hierarchical Clustering

Distribution of the different variables for each cluster.

Boxplot of numerical variables for each cluster obtained using Hierarchical Clustering





### **KMEANS MODEL**





| k  | inertia   | silhouette |
|----|-----------|------------|
| 2  | 38563.314 | 0.798      |
| 3  | 32001.744 | 0.761      |
| 4  | 25712.987 | 0.277      |
| 5  | 22522.354 | 0.279      |
| 6  | 19631.994 | 0.301      |
| 7  | 16958.828 | 0.316      |
| 8  | 14944.614 | 0.325      |
| 9  | 13832.446 | 0.326      |
| 10 | 11874.338 | 0.312      |
| 11 | 10624.942 | 0.324      |
| 12 | 9809.654  | 0.271      |

| cluster               | 0             | 1              | 2              |
|-----------------------|---------------|----------------|----------------|
| CO2 Emissions         | 102877714.826 | 3149207442.771 | 5664404257.417 |
| CO2 Emissions Per Cap | 5.169         | 2.464          | 19.947         |
| Total GHG             | 195452293.539 | 3915458541.667 | 6159869583.333 |
| Consumption of Ozone  | 1187.150      | 35517.384      | 47467.957      |
| Urban%                | 58.067        | 33.545         | 78.875         |
| Population            | 180.856       | 249.008        | 31.124         |
| GDP                   | 15806.941     | 3911.556       | 49302.893      |
| Forest area           | 30985970.730  | 124395229.562  | 305191875.000  |
| Deaths %              | 10.697        | 19.831         | 3.912          |
| Child Mortality       | 4.473         | 5.999          | 0.858          |
| Death_rate_all_causes | 55.409        | 80.021         | 20.981         |
| Death_under5          | 1316.642      | 60912.312      | 964.144        |
| Death_5-14            | 34.251        | 1765.129       | 7.433          |
| Death_70+             | 4986.685      | 411923.571     | 61425.546      |
| net_zero_bin          | 0.344         | 1.000          | 1.000          |

#### What's Inside?

- Cluster 2: United States
- Cluster 1: China & India
- Cluster 0: ROW

# **CLUSTERS**

Cluster 0

Rest of the world (111)

Cluster 1

China & India

Cluster 2

US

























## **Predictions (linear regression)**





| Predictor                    | Train    | Test     |
|------------------------------|----------|----------|
| Total GHG                    | 0.994219 | 0.995571 |
| CO2 Emissions                | 0.996917 | 0.994699 |
| Shared CO2 Emissions         | 0.989121 | 0.990754 |
| Transport                    | 0.991486 | 0.98432  |
| Death_actual_household       | 0.969355 | 0.974721 |
| clusterx3                    | 0.97311  | 0.972311 |
| Food Emissions               | 0.941125 | 0.934144 |
| Death_rate_household_air_pol | 0.926519 | 0.926603 |
| Deaths %                     | 0.852396 | 0.852154 |
| Child Mortality              | 0.827584 | 0.836838 |
| GDP                          | 0.789815 | 0.799169 |
| CO2 Emissions Per Cap        | 0.760061 | 0.746024 |
| Death_rate_all_causes        | 0.7395   | 0.72434  |
| Urban%                       | 0.727791 | 0.715992 |
| Forest area                  | 0.686289 | 0.653941 |
| Death_rate_ambient_ozone_pol | 0.584691 | 0.613677 |
| clusterx10                   | 0.590787 | 0.560587 |
| Consumption of Ozone         | 0.620467 | 0.527336 |
| Population                   | 0.222576 | 0.219751 |

# Classification of Countries

| Model  | Train    | Test     |
|--------|----------|----------|
| logreg | 0.976744 | 0.970149 |
| rfc    | 1.000000 | 0.998342 |

#### **LIMITATIONS & RECOMMENDATIONS**



#### **TIMEFRAME**

Data time frame limitation



#### **SPECIFICITY**

Doing an investigation for specific countries or years would tailor highlight particular effects



#### DATA

Variety & scale mismatch. Limitation of features & countries



#### **NEXT STEP**

Exclusion of US, China, & India to change the behavior of the clusters; inclusion of recent years



#### **MODEL**

Inclusion of death rates bake in causation/weigh death; population and country size



#### **MORE INPUTS**

Focus on different streams of inputs (uv rays, water quality, energy consumption, weather anomalies, etc.)



# Conclusion

Large countries (population & size) contribute most to climate change while not uniformly receiving the worst effects of climate change.

The cluster model groups heavily based on factors interrelated by emissions and population.

Cluster 2 (China and India) and Cluster 3 (United States) are some of the highest emitters on a total CO2 basis. Yet the ROW separates itself from cluster 1 and 2 by having higher emissions on a per capita basis.

Cluster 1 separates itself further also having the highest death rates attributable to an air pollution risk factor, followed by the ROW, while the US, the leading emitter over most of time period seems immune to the consequences looking at death rates.



# **Check-out Our Streamlit to see for yourself!!**

https://share.streamlit.io/sara-zhou/project-5/main/code/sz/streamlit.py

