

Din case of Regularised least-square cetimator,
curve is more generalised (thus low variance).
But if the dataset is more noisy, then evror
increases. (thus high bias)
in case of training data having
in case of training data having noises:
if the treiting data has no noises, & it's generalised, then-
low bias on teeting.
Description of Acrist
answert (c) (d) depending upon existence of noise
13 per dola, 3
if test data is not noisy, then => Q.
if we inviews the number of togining hts >
So, in case of very large size of taining data (>>> 1)
(>)) 1)=
1 10, The bias of model decreases to been large training
Ists. will average out the effect of noisy datapoints,
ste will average out the effect of noisy datapoints, which will lower the blas.
sts. will average out the effect of noisy datapoints, which will lower the blas. B. C. variance of model decreases -> large no. of datapte.
sts. will average out the effect of noisy datapoints, which will lower the blas. B. C. variance of model decreases -> large no. of datapte.
sts. will average out the effect of noisy datapoints, which will lower the blas.

1) to compute LI-Noom-O fixt calculate gratient D. Main ey = -Min. 1 XX +1 Min. Software 1; - (p(4,1. w+b)) 4 H>0=>(-x) H<0 >(+1) Then calc. asing, $\omega^{k+1} = \left[\begin{array}{c} \omega^{k} \\ b^{k} \end{array} \right] - \gamma_{i}$ 3. Do this for a tolerance