物质的溶解性 1

本章名言警句:记少不记多

1.1 K⁺, Na⁺, NH₄⁺, NO₃⁻, HCO₃⁻, HSO₃⁻, CH₃COO⁻ 对应的物质基本上都溶于水

例外: CoC₂O₄↓ (C₂O₄²⁻ 定向沉 CO²⁺)

补充: CO3²⁻ 沉 Li⁺, Ni²⁺;

补充: SO_{λ}^{2-} 沉 Pb^{2+} ; $(CH_3COO)_2Pb$ 溶于水, 弱电解质。

补充: 为什么 $C_2O_4^{2-}$ 的盐大多易溶于水?

— 草酸的结构,羧基容易与金属阳离子形成配位键,故易溶于水;且构成五元环的螯合物,很稳定。

1.2 氯化物 Cl^- 除 Ag^+ , Cu^+ (亚铜离子) 之外,全部溶于水

氯化物三大性质:

- 1. 除了 IA, IIA, 绝大多数为共价化合物。(IIA 中的BeCl₂ 也是共价化合物)
- 2. 熔沸点低,易升华,易堵塞导管(解决方法为换粗导管)。
- 3. 易水解,需左右隔水。

实验应用:

 $\operatorname{CuCl}_2 \xrightarrow{-\operatorname{\underline{a}}_{l} \operatorname{\underline{h}}} \operatorname{Cu}(\operatorname{OH})_2 \xrightarrow{\mathbb{R}^k} \operatorname{CuO}$ 氯化物易水解,所以在加热的过程中 CuCl_2 水解程度加大,最终变成 $\operatorname{Cu}(\operatorname{OH})_2$

配制FeCl3,溶于浓盐酸(防水解),SOCl2 也能防水解(除水)

MgCl₂·6H₂O 在 HCl 的氛围里加热脱水 MgCl₂

补充:

CaCl₂ 不能干燥 CH₃CH₂OH, NH₃, SO₃

 $CaCl_2 + 2NH_3 \longrightarrow CaCl_2 \cdot 2NH_3$

 $CaCl_2 + 2CH_3CH_2OH \longrightarrow CaCl_2 \cdot 2CH_3CH_2OH$

 $CaCl_2 + SO_3 \longrightarrow CaSO_4 \downarrow + HCl$

1.3 SO₄²⁻ 除 (Ba²⁺, Pb²⁺,)(不溶) 和 (Ag⁺, Ca²⁺)(微溶) 之外都溶于水

补充: 微溶表示除不尽, 之后的流程需要再除一次, 但前面过滤的滤渣需考虑微溶。

补充: 硫酸盐 = X 矾

 $FeSO_4 \cdot 7H_2O$ 绿矾; $CuSO_4 \cdot 5H_2O$ 胆矾;

KAl(SO₄)₂·12 H₂O 明矾;

Na₂SO₄·10 H₂O 芒硝 (一种泻药);

 $ZnSO_4 \cdot 7H_2O$ 皓矾;

补充: 生石膏 (打石膏默认)CaSO₄·2H₂O; 熟石膏 CaSO₄·0.5H₂O

[待写:结晶水的问题]

[待写: S₂O₃²⁻]

1.4 CO_3^{2-} 除 Na^+, K^+, NH_4^+ 之外,基本上都是沉淀

特征: $CaCO_3 \xrightarrow{\Delta} CaO + CO_2 \uparrow$

不溶于水的碳酸盐易受热分解

原因:熔融状态下 $CO_3^{2-} \longrightarrow CO_2 \uparrow + O^{2-}$

讨论分解温度高低:

温度高 $CaCO_3 \xrightarrow{\Delta} CaO + CO_2 \uparrow$

温度低 $MgCO_3 \xrightarrow{\Delta} MgO + CO_2 \uparrow$

原因: 金属阳离子夺取 CO_3^{2-} 中 O^{2-} 的能力越强,分解温度越低。

 Mg^{2+} 强的原因: $F = k \frac{Q_1 Q_2}{r^2}$ 其中 $r(Mg^{2+}) < r(Ca^{2+})$ 则 $F_{Mg^{2+}} > F_{Ca^{2+}}$, $T_{Mg^{2+}} < T_{Ca^{2+}}$

讨论热稳定性:

不稳定性排序: H_2CO_3 > 碳酸氢盐 > 不溶性碳酸盐 > 可溶性碳酸盐

补充: 是否溶于水和极性有关

补充:碳酸氢盐中, $Ca(HCO_3)_2$ 更易分解, 因为其极性更强

1.5 OH- 除 Na+, K+, NH₄+, Ba²⁺ 之外几乎都是沉淀

补充: Ca(OH)₂ 的溶解度随温度升高而下降。(可用于判断反应是吸热还是放热)

补充:弱碱都不稳定,受热易分解

$$2\operatorname{Al}(\operatorname{OH})_3 \xrightarrow{\Delta} \operatorname{Al}_2\operatorname{O}_3 + 3\operatorname{H}_2\operatorname{O} \qquad \operatorname{Ni}(\operatorname{OH})_2 \xrightarrow{\Delta} \operatorname{Ni}\operatorname{O} + \operatorname{H}_2\operatorname{O} \qquad \operatorname{TiO}(\operatorname{OH})_2 \xrightarrow{\Delta} \operatorname{TiO}_2 + \operatorname{H}_2\operatorname{O}$$

$$\operatorname{Co}(\operatorname{OH})_3 \xrightarrow{\Delta} \operatorname{Co}_2\operatorname{O}_3 + \operatorname{H}_2\operatorname{O}$$

补充: NiOOH, MnOOH, Co(OH)₂, Co(OH)₃, Ni(OH)₂, Ni(OH)₃ 都是沉淀, 除杂方法: 调 pH 值

补充: 氨水 (NH₃·H₂O) 和Mg(OH)₂ 的互制

 $2 \text{ NH}_4 \text{Cl} + \text{MgO} \xrightarrow{\Delta} 2 \text{ NH}_3 \uparrow + \text{MgCl}_2$

[待写:全空体系]

利用 K_{sp} 除杂: $Mn^{2+}(Ni^{2+})$ 加入MnS:

 $K_{sp}(\text{MnS}) > K_{sp}(\text{NiS})$ 实现沉淀转化: $\text{MnS} + \text{Ni}^{2+} \longrightarrow \text{NiS} + \text{Mn}^{2+}$

1.6 硫化物 (S²⁻)