Exercice 1.

On suppose dans cet exercice qu'on ne connaît pas de valeur précise de $\sqrt{2}$. Ainsi, on utilisera uniquement les propriétés de la fonction racine carrée.

Partie I: Une méthode géométrique

Soit a > 0 tel que $a^2 \neq 2$. On note $(u_n)_{n \in \mathbb{N}}$ la suite définie par récurrence par $u_0 \in \mathbb{R}_+ \setminus \{a\}$ et pour tout n entier naturel, $u_{n+1} = \frac{2 + au_n}{a + u_n}$.

1. Montrer que, pour tout n entier naturel, $u_n \neq -a$ et $u_n \neq a$.

On note \mathscr{C} la courbe représentative de la fonction $f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto x^2 - 2$ dans un repère orthonormé, A le point de \mathscr{C} d'abscisse a et M_n le point de \mathscr{C} d'abscisse u_n .

- **2.** Montrer que, pour tout n entier naturel le réel u_{n+1} est l'abscisse du point d'intersection de la droite (AM_n) avec l'axe des abscisses.
- 3. Représenter graphiquement la courbe \mathscr{C} ainsi que les points A, M_0 et M_1 .
- **4.** Soit n un entier naturel.
 - **a)** Montrer que $u_{n+1} \sqrt{2} = \frac{a \sqrt{2}}{a + u_n} (u_n \sqrt{2})$.
 - **b)** En déduire que $\left|u_{n+1} \sqrt{2}\right| \leqslant \left|1 \frac{\sqrt{2}}{a}\right| \cdot \left|u_n \sqrt{2}\right|$.
 - c) Montrer finalement que $|u_n \sqrt{2}| \leqslant |1 \frac{\sqrt{2}}{a}|^n \cdot |u_0 \sqrt{2}|$.
- **5.** Choisir un réel a pour lequel la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Partie II: Méthode de Newton - Algorithme de Babylone

On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par récurrence par $a_0=1,5$ et pour tout entier n naturel, $a_{n+1}=\frac{1}{2}(a_n+\frac{2}{a_n})$. On note $g:\mathbb{R}_+^{\star}\to\mathbb{R},\,x\mapsto\frac{1}{2}(x+\frac{2}{x})$.

- **6.** Dresser le tableau de variations de q.
- 7. Montrer que la suite (a_n) est décroissante.
- **8.** En déduire que la suite $(a_n)_{n\in\mathbb{N}}$ converge vers $\sqrt{2}$. On pose pour tout $n\in\mathbb{N},$ $b_n=\frac{a_n-\sqrt{2}}{a_n+\sqrt{2}}$.
- **9. a)** Montrer que pour tout $n \in \mathbb{N}$, $b_{n+1} = b_n^2$
 - **b)** En déduire que pour tout $n \in \mathbb{N}$, $0 < a_n \sqrt{2} \leqslant (a_0 + \sqrt{2}) \cdot (a_0 \sqrt{2})^{2^n}$.
- 10. En notant A_n le point de \mathscr{C} d'abscisse a_n , montrer que a_{n+1} est l'abscisse du point d'intersection de la tangente à \mathscr{C} en A_n avec l'axe des abscisses.