

European Signal Processing Conference 2011

View Interpolation With Structured Depth From Multiview Video

Pravin Kumar Rana and Markus Flierl

ACCESS Linnaeus Center School of Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden

Outline

- Motivation
- Depth Consistency Testing
- Inter-view Connection Information
- Structured Depth Maps
- Virtual View Interpolation
- Experimental Results
- Conclusions

Imaging

Classical Imaging

Imaging

Multiview Imaging

User

User

User

 $view_{n+1}$

 $view_{n-1}$

Reference Texture

3D Warping

3D Warping

Warped Texture

Hole Filling &

Hole Filling & Inpainting

virtual view_n

Virtual Texture

Estimated Depth

Reference Texture

Warped Texture

MPEG View Synthesis Reference Software 3.5 (VSRS 3.5)

Depth Estimation

Reference Textures

Estimated Depth Map

 $view_{n+1}$

 $view_n$

 $view_{n-1}$

Newspaper

 $view_{n+1}$

 $view_n$

 $view_{n-1}$

Newspaper

Slide 6

Newspaper

Newspaper

view 2

view n

view 2

view n

3D Warping to a principal viewpoint p (1≤p≤n)

view1

view n

3D Warping to a principal viewpoint p $(1 \le p \le n)$

Multiple Warped Depth Maps at a principal viewpoint p

Connection Evidence

Absolute Difference

Matrix (ADM) =
$$\begin{bmatrix}
0 & \Delta_{1,2} & \cdots & \Delta_{1,n} \\
\Delta_{2,1} & 0 & \cdots & \Delta_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{n,2} & \Delta_{n,2} & \cdots & 0
\end{bmatrix}$$
Pixel 1

where, $\Delta_{ij} = |d_i - d_j|$ is the absolute difference of depth values between warped depth map d_i and warped depth map d_i at a principal pixel

Connection Evidence

Absolute Difference
$$Matrix (ADM) = \begin{bmatrix} 0 & \Delta_{1,2} & \cdots & \Delta_{1,n} \\ \Delta_{2,1} & 0 & \cdots & \Delta_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{n,2} & \Delta_{n,2} & \cdots & 0 \end{bmatrix}, \begin{bmatrix} 0 & \Delta_{1,2} & \cdots & \Delta_{1,n} \\ \Delta_{2,1} & 0 & \cdots & \Delta_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{n,2} & \Delta_{n,2} & \cdots & 0 \end{bmatrix}, \bullet \bullet \bullet, Up to depth resolution$$

$$Pixel 1 \qquad Pixel 2$$

where, $\Delta_{ij} = |d_i - d_j|$ is the absolute difference of depth values between warped depth map d_i and warped depth map d_i at a principal pixel

Connection Evidence

where, $\Delta_{ij} = |d_i - d_j|$ is the absolute difference of depth values between warped depth map d_i and warped depth map d_i at a principal pixel

Connection Evidence Testing

Connection Threshold

- Define quality of the inter-view connection per frame

$$T=\mu + \lambda \sigma$$
,

where,

 $\mu = Mean \ of \ all \ ADM \ per \ frame$

 σ = Standard deviation of all ADM per frame

 λ = Trade-off between quality of connection and number of connection, in the rendering experiment λ = 0.8.

• Testing Rule

- Δ_{ij} < T : Accept the connection evidence and assume the corresponding depth pair have a consistent depth representation
- $-\Delta_{ij} \geq T$: Reject the connection evidence

Inter-View Connection Information

Example for inter-view connection information with three reference views, n=3.

Inter-View Connection Information

Example for inter-view connection information with three reference views, n=3.

Inter-View Connection Information

Possible cases of inter-view connectivity for n = 3:

<u>Use of Connection Information:</u>

- To obtain consistent depth values
- To combine texture pixels from multiple viewpoint reliably

Principal Depth Map

Structured Depth Maps

- To have inter-view consistent depth maps
- To remove **redundancy** from depth maps

Structured Depth Maps

Cardinality of the set of auxiliary depth information:

$$|d'| = \begin{cases} (N-1) & \text{if } p=r, \text{ for all reference viewpoint } r, \\ N & \text{if } p \neq r \text{ for all reference viewpoint } r, \end{cases}$$

where, N= total number of reference views used in the depth consistency testing.

Extraction of Auxiliary Depth

Rendering Using Structured Depth Images

 $view_{n+1}$

view_n

 $view_{n-1}$

User

 $view_{n+2}$

 $view_{n+1} = p$

 $view_{n-1}$

Enhanced depth maps resulting from SDI

 $view_{n+2}$

 $view_{n+1} = p$

 $view_{n-1}$

Multiview Texture

Warping

Warped views at virtual viewpoint n

 $view_{n+1} = p$

Masked Inter-view
Connection Information

 $view_{n+2}$

Warped views at virtual viewpoint n

Warping

 $view_{n+1} = p$

Warping

Masked Inter-view
Connection Information

Warping

Connection-Adaptive Pixel Intensity Estimation virtual view_n

Experimental Results

Experimental Results

Original

Virtual View by VSRS 3.5

Virtual View by Proposed Method

Error Image

- 30 - 20 - 10 - - 10 - - 20 - - 30

VSRS 3.5

Pantomime

Proposed Method

Experimental Results

Original

Virtual View by VSRS 3.5

Virtual View by Proposed Method

Original

Virtual View by VSRS 3.5

Virtual View by Proposed Method

Conclusions

• Depth consistency testing and resulting the inter-view connection information allow to exploit consistency among depth maps

• Structured depth addresses the problems of inter-view depth inconsistencies

• Structured depth permit an appealing 3D scene representation

• Structured depth maps and connection information improves the quality of rendered views

Thank You