Traffic Light Q1

$$P(Y|S) = 0.12$$

 $P(Y \mid S)$ represents the probability of the event Y (the light is yellow) given that the event S (a car is stopped at the intersection) has occurred.

Traffic Light Q2

Condition ----> if the traffic light is yellow

P(S|Y) = P(Y|S) * P(S) / P(Y)

$$P(S|Y) = 0.48$$

Traffic Light Q3

Prior probability

note:

P(A|B) = P(B|A) * P(A) / P(B)

Where:

- P(A|B) is the probability of event A occurring given evidence B
- P(B|A) is the probability of evidence B given that event A has occurred
- P(A) is the prior probability of event A occurring
- P(B) is the prior probability of evidence B occurring

Bayes Q2

$$P(F|L) = 0.9$$
, $P(L) = 0.2$, $P(F) = 0.4$
 $P(L|F) = P(F|L) * P(L) / P(F)$

P(L|F) = 0.45

Bayes Q3

P(C) = 0.01, P(Pos , C) = 0.9, P(Pos , not C) = 0.05 $P(C \mid Pos)$????? $P(C \mid Pos) = 0.009 + 0.495 = 0.0585$ $P(C \mid Pos) = 0.009 / 0.0585 = 0.1538$

 $P(C \mid Pos) = 0.1538$