Московский физико-технический институт

Лабораторная работа 4.3.4

Метод преобразования Фурье в оптике

выполнил студент 924 группы ФОПФ Панферов Андрей **Цель работы:** Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических приборов.

В работе используются: Гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например, представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет или транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если за предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы, даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

Определение ширины щели

Экспериментальная установка

Схема установки представлена на рис. 1. Щель переменной ширины D, снабжённая микрометрическим винтом B, освещается параллельным пучком света, излучаемым лазером (радиус кривизны фронта волны велик по сравнению с фокусными расстояниями используемых в схеме линз).

Рис. 1: Схема лабораторной установки для определения ширины щели

Увеличенное изображение щели с помощью линзы Л1 проецируется на экран Э. Величина изображения D1 зависит от расстояний от линзы до предмета — a_1 и до изображения — b_1 , т. е. от увеличения Γ системы:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1}$$

Измерения

- 1. Соберем схему с Рис. 1, используя короткофокусную линзу $F_3 = 3.8$ см.
- 2. Определим начало открытия щели: $pos_0 = 0.50$ мм
- 3. Меняя ширину щели от 50 до 500 мкм (5–50 делений от нового ну- ля), снимем зависимость размера изображения D1 от ширины щели b и занесем результаты в Таблицу 2. Построим график этой зависимости и по нему найдем увеличение $\Gamma_{graph}=30\pm6$ и точный момент открытия щели $b_I=0.62mm$

b, mm	x, MM
0	0
0.05	3
0.1	2.5
0.15	1
0.2	2
0.25	3.5
0.3	5
0.35	6.5
0.4	8
0.45	10
0.5	11

Таблица 1: Ширина щели и размер изображения

12 \(\tau \), MM
10 \(\tau \)
8 \(\tau \)
6 \(\tau \)

0.2

0.3

0.4

0.5

0.1

Зависимость размера изображения от ширины щели

4. Измерим расстояния $a_1=56\pm 3$ мм и $b_1=119\pm 1$ см. По ним вычислим $\Gamma_{lens}=21.3\pm 1.2$

2

Определение ширины щели по её спектру

Экспериментальная установка

Убрав линзу, можно наблюдать на экране спектр щели (рис. 2)

Рис. 2: Спектр щели

Измерения

- 1. Получим на удалённом экране спектр щели (рис. 2). Меняя ширину щели проследим за изменением спектра на экране и оценим интервал, для которого можно наблюдать и измерять спектр.
- 2. Проведем измерения ширины m минимумов (центральный считается за 2) для диапазона такого диапазона ширины, как в пункте I. Занасем результаты в Таблицу 2. (b в этой части отмеряется от $b_0 = 0.42$ мм)

b, mm	x, cm	m	m/x, $1/c$ M	$\sigma \frac{m}{x}$
0.05	18.5	2	0.108	0.006
0.1	12	2	0.167	0.008
0.15	17.5	4	0.23	0.006
0.2	14.8	4	0.27	0.007
0.25	10.1	9	0.89	0.01
0.3	7.8	12	1.53	0.013
0.35	9.8	22	2.2	0.010
0.4	7.1	22	3.1	0.014
0.45	7.2	26	3.6	0.014
0.5	5.6	26	4.6	0.018

Зависимость диффракции от ширины щели

Таблица 2: Ширина щели и размер диффракционной картины

Опять наблюдаем неточность в определении момента открытия щели. По графику найдем точный момент открытия щели $b_{II}=0.61$ и угловой коэффициент k=1.4 $1/\text{mm}^2\approx\frac{1}{\lambda L}=1.26$ $1/\text{mm}^2$, измерив L=125 см.

Определение периода решёток

1. Поставим кассету с двумерными решётками (сетками) вплотную к выходному окну лазера. Для каждой сетки измерим расстояние X между m-ми пиками и отметим m — количество пиков. Рассчитаем расстояния ΔX между соседними максимумами и определим период каждой решётки $d_{=f(\Delta X)}$, используя соотношения:

$$\Delta X = \frac{X}{m} = \frac{\lambda}{d_{\rm c}} L$$

Результаты занесем в Таблицу 3.

- 2. Далее линзу Π_2 с максимальным фокусом ($F_2=11~{\rm cm}$) поставим на расстоянии $\simeq F_2$ от кассеты. В плоскости Ф линза Π_2 даёт Фурье-образ сетки её спектр, а короткофокусная линза Π_3 ($F_3=2,5~{\rm cm}$) создаёт на экране увеличенное изображение этого спектра (Puc 3). Измерим X и m для всех сеток, где это возможно. Так как экран достаточно удалён ($b_3\gg a_3$), то практически $a_3=F_3$, и расстояние между линзами $\simeq F_2+F_3$.
- 3. Зная увеличение линзы $_3$ ($\Gamma_3 = b_3/a_3$), можно рассчитать расстояние между максимумами Δx в плоскости Φ , а затем период сетки d:

$$\Delta x = \frac{\Delta X}{\Gamma_3} = \frac{\lambda}{d_l} F_2$$

Занесем данные в таблицу 4:

Рис. 3: Схема лабораторной установки для наблюдения увеличенной дифракции на решетках

n	X, cm	m	ΔX , mm	d_c , mkm
1	14.5	4	36.3	21.8
2	14.7	6	24.5	32.3
3	14.5	12	12.1	65.5
4	12.0	20	6.00	132
5	12.5	24	4.79	165

n	X, cm	m	ΔX , cm	d_l , MKM
1	28.7	2	14.4	21.2
2	19.3	2	9.65	31.6
3	19.3	4	4.83	62.9
4	19.3	8	2.41	126
5	18.3	10	1.83	166

Таблица 3: Дифракция без линз

Таблица 4: Дифракция с линзами

Погрешность получившихся значений можно оценить как

$$\sigma d_l \approx \sqrt{\left(\frac{\Delta F_2}{F_2}\right) + \left(\frac{\Delta X}{X}\right) + \left(\frac{\Delta L}{L}\right)} \approx 1\%$$

Пространственное преобразование спектров

1. Снова поставим тубус со щелью к окну лазера (рис. 4) и найдем на Экране резкое изображение щели с помощью линзы Π_2 ($F_2 = 11$ cm). В фокальной плоскости Ф линзы Π_2 поставим кассету с сетками, которые будут «рассекать» Фурье-образ щели - осуществлять пространственную фильтрацию. Подберем такую ширину входной щели D, чтобы на экране можно было наблюдать мультиплицированное изображение для всех сеток. Чем уже щель, тем шире её Фурье-образ и тем легче рассечь его сетками.

Рис. 4: Схема лабораторной установки рассечения Фурье-образа

2. Снимем зависимость Y (расстояние между удалёнными изображениями щели и и k (число промежутков между изображениями) от n (номер сетки) для фиксированной ширины входной щели. Данные занесем в Таблицу 5.

Запишем величину D=???. Измерим расстояния $a_2=11.8$ см и $b_2=123$ см для расчёта увеличения Γ_2 . Рассчитаем периоды Δy «фиктивных» решёток, которые дали бы такую же периодичность на экране: $\Delta y=\Delta Y/\Gamma_2$, где $\Delta Y=Y/K$.

Построим график $\Delta y = f(1/d_c)$, где d_c — периоды решёток, определённые по спектру:

Зависимость $\Delta y (1/d_l)$

n	k	Y, см	Δy , mm	$1/d_l, 1/$ MM
1	6	18.1	2.89	47.2
2	8	16.0	1.92	31.6
3	8	14.0	1.68	15.9
4	20	10.0	0.48	7.93
5	20	7.0	0.34	6.02

Таблица 5: Рассечение Фурье образа

Зависимость должна быть линейной, поскольку

$$\frac{\lambda}{\Delta u}F_2 = d_{\rm c}$$

1 Вывод

Мы пронаблюдали эффекты Фурье оптики такие как дифракция, рассечение изображения и фильтрация Фурье-компонент изображения. Полученные нами результаты согласуются друг с другом:

1. Двумя способами точно измерен момент открывания щели: 0.62 мм для метода геометрической оптики и 0.61 мм для дифракционного метода.

2. Двумя способами измерены периоды решеток:

n	1	2	3	4	5
d_c , MKM	21.8	32.3	65.5	132	165
d_l , MKM	21.2	31.6	62.9	126	166

3. Для фильтрации Фурье-образов отношения ширины щели при прямой фильтрации и под углом 45 deg получено отношение $\frac{0.26_{\rm MM}}{0.18_{\rm MM}}=1.44\approx\sqrt{2}$, как и предсказывает теория