Übungsblatt 7 zur Algebraischen Zahlentheorie

Aufgabe 1. Dichtheit ganzzahliger Linearkombinationen

Sei x eine irrationale reelle Zahl. Zeige: $\operatorname{span}_{\mathbb{Z}}(1,x)$ liegt dicht in \mathbb{R} .

Aufgabe 2. Auf den Spuren Fermats

Sei K ein Zahlkörper.

- a) Sei $m \geq 0$ eine zur Klassenzahl h_K teilerfremde Zahl. Sei $\mathfrak{a} \subseteq \mathcal{O}_K$ ein Ideal. Zeige: Ist \mathfrak{a}^m ein Hauptideal, so ist auch \mathfrak{a} ein Hauptideal.
- b) Gelte in \mathcal{O}_K die Identität $z^p=x_1\cdots x_n$, wobei die x_i paarweise teilerfremd sind. Zeige: Ist $h_K=1$, so sind die x_i bis auf Einheiten p-te Potenzen.

 Hinweis. Die Behauptung gilt in allgemeinen faktoriellen Ringen.
- c) Zeige dieselbe Behauptung wie in c) unter der schwächeren Voraussetzung $p \nmid h_K$.
- d) Zeige: Um Fermats großen Satz zu beweisen, genügt es, ihn für primzahlige Exponenten und für den Exponent 4 zu beweisen.

Aufgabe 3. Verzweigung von Primidealen

Sei $K = \mathbb{Q}[\sqrt[3]{2}]$. Es ist $(1, \sqrt[3]{2}, \sqrt[3]{2})$ eine Ganzheitsbasis von \mathcal{O}_K . Bestimme das Verzweigungsverhalten der Primzahlen 2, 3, 5 und 11 in \mathcal{O}_K .

Aufgabe 4. Mumfords Schatzkarte

Die unten stehende Skizze visualisiert die Primideale von $\mathbb{Z}[X]$. Was möchte sie dir mitteilen? Untersuche folgende Fragen:

- a) Welche Primideale sind jeweils zu vertikalen Linien gruppiert? Wieso?
- b) Was hat die mit " $[(X^2+1)]$ " beschriftete Kurve mit dem Verzweigungsverhalten von Primzahlen in $\mathbb{Z}[i]$ zu tun?
- c) Kannst du auf analoge Art und Weise die Primideale von \mathcal{O}_K aus Aufgabe 3 visualisieren? Deine Skizze sollte aus zwei übereinander liegenden Kurven bestehen, wobei die untere Kurve einfach die gerade Linie der Primideale von \mathbb{Z} sein sollte.

