

MOSEK ApS

20 February 2020

Contents

1	Introduction 1.1 Why the Command Line Tools?	1 2			
2	Contact Information				
3	License Agreement	4			
4	Installation 4.1 Testing the installation	6			
5	The Command Line Tool 5.1 Introduction 5.2 Files 5.3 Example 5.4 Solver Parameters 5.5 Command Line Arguments 5.6 The license system				
6	6.1 Locating the AMPL shell 6.2 An example	14 16 17 18 20 20			
7	7.1 Understanding optimizer log				
8	8.1 Linear Optimization38.2 Conic Optimization38.3 Semidefinite Optimization4	36 39 43			
9	9.1 Presolve	16 46 48 54			

	itional features	63
	Problem Analyzer	
10.2		
10.3	Sensitivity Analysis	67
11 API	Reference	74
11.1	Parameters grouped by topic	74
11.2	Parameters (alphabetical list sorted by type)	86
11.3	Response codes	125
11.4	Constants	143
12 Sup	ported File Formats	166
12.1	The LP File Format	167
12.2	The MPS File Format	172
12.3	The OPF Format	183
12.4	The CBF Format	192
12.5	The PTF Format	206
12.6	The Task Format	210
12.7	The JSON Format	211
12.8	The Solution File Format	218
13 List	of examples	221
14 Inte	rface changes	222
14.1	Backwards compatibility	222
14.2	Parameters	222
14.3	Constants	223
14.4	Response Codes	225
Bibliog	raphy	227
Symbol	l Index	228
Index		235

Introduction

The **MOSEK** Optimization Suite 9.1.13 is a powerful software package capable of solving large-scale optimization problems of the following kind:

- linear,
- conic:
 - conic quadratic (also known as second-order cone),
 - involving the exponential cone,
 - involving the power cone,
 - semidefinite.
- convex quadratic and quadratically constrained,
- integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product introduction guide.

The most widespread class of optimization problems is *linear optimization problems*, where all relations are linear. The tremendous success of both applications and theory of linear optimization can be ascribed to the following factors:

- The required data are simple, i.e. just matrices and vectors.
- Convexity is guaranteed since the problem is convex by construction.
- Linear functions are trivially differentiable.
- There exist very efficient algorithms and software for solving linear problems.
- Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. *Conic optimization* has proved to be a very expressive and powerful way to introduce nonlinearities, while preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

$$Ax - b \ge 0$$
.

In conic optimization this is replaced with a wider class of constraints

$$Ax - b \in \mathcal{K}$$

where \mathcal{K} is a *convex cone*. For example in 3 dimensions \mathcal{K} may correspond to an ice cream cone. The conic optimizer in **MOSEK** supports a number of different types of cones \mathcal{K} , which allows a surprisingly large number of nonlinear relations to be modeled, as described in the **MOSEK** Modeling Cookbook, while preserving the nice algorithmic and theoretical properties of linear optimization.

1.1 Why the Command Line Tools?

The **MOSEK** capabilities can be accessed from the command line without the need to use any programming language. The user can input optimization problems using files in a variety of *formats*, or via the AMPL language shell.

The Command Line Tools provides access to:

- Linear Optimization (LO)
- Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
- Power Cone Optimization
- Conic Exponential Optimization (CEO)
- Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)
- Semidefinite Optimization (SDO)
- Mixed-Integer Optimization (MIO)

as well as to additional utilities for:

- problem analysis,
- sensitivity analysis,
- infeasibility diagnostics.

Contact Information

Phone	$+45\ 7174\ 9373$	
Website	mosek.com	
Email		
	sales@mosek.com	Sales, pricing, and licensing
	support@mosek.com	Technical support, questions and bug reports
	info@mosek.com	Everything else.
Mailing Address		
	MOSEK ApS	
	Fruebjergvej 3	
	Symbion Science Park, Box 16	
	2100 Copenhagen O	
	Denmark	

You can get in touch with \mathbf{MOSEK} using popular social media as well:

Blogger	https://blog.mosek.com/
Google Group	https://groups.google.com/forum/#!forum/mosek
Twitter	https://twitter.com/mosektw
$\mathbf{Google} +$	https://plus.google.com/+Mosek/posts
Linkedin	https://www.linkedin.com/company/mosek-aps

In particular $\mathbf{Twitter}$ is used for news, updates and release announcements.

License Agreement

Before using the **MOSEK** software, please read the license agreement available in the distribution at <MSKHOME>/mosek/9.1/mosek-eula.pdf or on the **MOSEK** website https://mosek.com/products/license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the *zlib* library obtained from the zlib website. The license agreement for *zlib* is shown in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:

- The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the netlib website. The license agreement for *fplib* is shown in Listing 3.2.

Listing 3.2: fplib license.

(continues on next page)

Zstandard

MOSEK includes the *Zstandard* library developed by Facebook obtained from github/zstd. The license agreement for *Zstandard* is shown in Listing 3.3.

Listing 3.3: Zstandard license.

```
BSD License
```

For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- * Neither the name Facebook nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Installation

In this section we discuss how to install and setup the MOSEK Command Line Tools.

Important: Before running this MOSEK interface please make sure that you:

- Installed **MOSEK** correctly. Some operating systems require extra steps. See the Installation guide for instructions and common troubleshooting tips.
- Set up a license. See the Licensing guide for instructions.

Locating files in the MOSEK Optimization Suite

The relevant files of the Command Line Tools are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Command Line Tools.

Relative Path	Description	Label
<pre><mskhome>/mosek/9.1/tools/platform/<platform>/bin</platform></mskhome></pre>	Binaries	<bindir></bindir>
<pre><mskhome>/mosek/9.1/tools/platform/<platform>/bin/mosek</platform></mskhome></pre>	Mosek executable	
<mskhome>/mosek/9.1/tools/examples/data</mskhome>	Examples	<exdir></exdir>

where

- <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,
- <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86, linux64x86 or osx64x86.

Setting up paths

The executable file is ready for use. It may be convenient to add the directory <BINDIR> to the environment variable PATH, and then MOSEK can simply be used by typing

mosek

in the command line.

4.1 Testing the installation

To test that Command Line Tools has been installed correctly go to the examples directory <EXDIR> and run MOSEK on any of the input files, for example lo1.mps:

mosek lo1.mps

Is should produce output similar to:

MOSEK Version 8.0.0.53 (Build date: 2017-1-12 22:21:45) Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com Platform: Linux/64-X86 Open file 'lo1.mps' Reading started. [....] Optimizer started. Interior-point optimizer started. [....] Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL var: 0e+00 Primal. obj: 8.3333333280e+01 nrm: 5e+01 Viol. con: 1e-08 Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09 Basic solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 8.3333333333e+01 Viol. con: 7e-15 var: 0e+00 nrm: 5e+01 Viol. con: 2e-10 Dual. obj: 8.3333333245e+01 nrm: 4e+00 var: 5e-09 [....] Open file 'lo1.sol' Start writing. done writing. Time: 0.00 Open file 'lo1.bas' Start writing.

done writing. Time: 0.00

Return code - 0 [MSK_RES_OK]

The Command Line Tool

5.1 Introduction

The MOSEK command line tool is used to solve optimization problems from the operating system command line. It is invoked as follows

```
mosek [options] [filename]
```

where both [options] and [filename] are optional arguments:

- [options] consists of command line arguments that modify the behavior of MOSEK. They are listed in Sec. 5.5. In particular, options can be used to set optimizer parameters.
- [filename] is a file describing the optimization problem. The MOSEK command line accepts files in any of the *supported file formats* or in the AMPL .nl format.

If no arguments are given, \mathbf{MOSEK} will display a splash screen and exit.

```
user@host:~$ mosek/8/tools/platform/linux64x86/bin/mosek

MOSEK Version 8.0.0.32(BETA) (Build date: 2016-7-12 10:29:26)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

*** No input file specified. No optimization is performed.

Return code - 0 [MSK_RES_OK]
```

5.2 Files

The MOSEK command line tool communicates with the user via files and prints some execution logs and solution summary to the terminal.

Input files

Optimization problems are read from files. See Sec. 12 for details.

File format conversion

To convert between two file formats supported by \mathbf{MOSEK} use the option -x together with -out to specify the target file name. The target file type must support the problem type of the source file, otherwise the conversion will be partial. For instance in case a MPS file must be converted in a more readable OPF format, the following line can be used

```
mosek -x -out lo1.opf lo1.mps
```

With the -x option the solver will not actually solve the problem.

Output files

Solutions are written to files:

- .bas basic solution,
- .sol interior point solution,
- .itg integer solution (the only available solution for mixed-integer problems).

For linear problems both the basic and interior point solution may be present. Infeasibility certificates are stored in the same files. See Sec. 12.8 for details.

5.3 Example

To solve a problem stored in file, say lol.mps, write:

```
mosek lo1.mps
```

The solver will

- read lo1.mps from disk,
- solve the problem and display the solution log and
- store the relevant solution files if any solution exists; file content explained in Sec. 12.8.

```
MOSEK Version 8.0.0.34(BETA) (Build date: 2016-8-24 00:51:13)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86
Open file '/home/andrea/mosek/8/tools/examples/data/lo1.mps'
Reading started.
Using 'obj' as objective vector
Read 13 number of A nonzeros in 0.00 seconds.
Using 'rhs' as rhs vector
Using 'bound' as bound vector
Reading terminated. Time: 0.00
Read summary
 Туре
                  : LO (linear optimization problem)
  Objective sense : max
 Scalar variables : 4
 Matrix variables : 0
 Constraints : 3
 Cones
                  : 0
 Time
                  : 0.0
Problem
 Name
                        : lo1
 Objective sense
                        : max
 Type
                        : LO (linear optimization problem)
 Constraints
                        : 3
                        : 0
 Cones
 Scalar variables
                        : 4
 Matrix variables
                        : 0
 Integer variables
                        : 0
```

(continues on next page)

```
Optimizer started.
Interior-point optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator: 0
Eliminator terminated.
                                                                             : 0.00
Eliminator - tries
                                  : 1
                                                      time
Lin. dep. - tries
                                  : 1
                                                      time
                                                                             : 0.00
Lin. dep. - number
                                  : 0
Presolve terminated. Time: 0.00
                                  : 2
Optimizer - threads
Optimizer - solved problem
Optimizer - Constraints
Optimizer - Cones
Optimizer - Scalar variables
Optimizer - threads
                                  : the primal
                                  : 3
                                  : 0
                                  : 6
                                                                            : 0
                                                      conic
Optimizer - Semi-definite variables: 0
                                                     scalarized
                                                                            : 0
         - setup time : 0.00
- ML order time : 0.00
                                                    dense det. time
                                                                           : 0.00
Factor
                                                    GP order time
                                                                           : 0.00
Factor
                                                    after factor
Factor - nonzeros before factor : 6
                                                                           : 6
                                                    flops
                                                                           : 1.06e+02
Factor - dense dim. : 0
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ
                                                         DOBJ
                                                                          MU
  8.0e+00 3.2e+00 3.5e+00 1.00e+00 1.000000000e+01 0.000000000e+00 1.0e+00 0.01
  4.2e+00 2.5e+00 4.7e-01 0.00e+00 3.093970927e+01 2.766058702e+01 2.6e+00 0.01
2 4.2e-01 2.5e-01 4.6e-02 -1.82e-02 6.511676243e+01 6.308843559e+01 2.6e-01 0.01
3 \quad 3.6 \\ e^{-02} \quad 2.1 \\ e^{-02} \quad 3.9 \\ e^{-03} \quad 5.84 \\ e^{-01} \quad 8.096141239 \\ e^{+01} \quad 8.061962333 \\ e^{+01} \quad 2.2 \\ e^{-02} \quad 0.01
4 1.5e-05 9.1e-06 1.7e-06 9.43e-01 8.333280389e+01 8.333241803e+01 9.2e-06 0.01
   1.5e-09 9.1e-10 1.7e-10 1.00e+00 8.333333328e+01 8.333333324e+01 9.2e-10 0.01
Basis identification started.
Primal basis identification phase started.
TTER.
          0.00
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
ITER
        TIME.
          0.00
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Interior-point optimizer terminated. Time: 0.01.
Optimizer terminated. Time: 0.02
Interior-point solution summary
  Problem status : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal. obj: 8.3333333280e+01 nrm: 5e+01
                                                Viol. con: 1e-08 var: 0e+00
  Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09
Basic solution summary
  Problem status : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal. obj: 8.333333333e+01 nrm: 5e+01
                                                Viol. con: 7e-15
                                                                   var: 0e+00
  Dual. obj: 8.3333333245e+01 nrm: 4e+00 Viol. con: 2e-10
                                                                   var: 5e-09
Optimizer summary
  Optimizer
                                                   time: 0.02
    Interior-point
                           - iterations : 5
                                                   time: 0.01
                                                   time: 0.00
      Basis identification -
                                                   time: 0.00
       Primal
                           - iterations : 0
                          - iterations : 0
                                                  time: 0.00
        Dual
```

(continues on next page)

```
Clean primal
                            - iterations : 0
                                                     time: 0.00
        Clean dual
                            - iterations : 0
                                                     time: 0.00
    Simplex
                                                     time: 0.00
      Primal simplex
                            - iterations : 0
                                                     time: 0.00
      Dual simplex
                            - iterations : 0
                                                     time: 0.00
   Mixed integer
                            - relaxations: 0
                                                     time: 0.00
Open file '/home/andrea/mosek/8/tools/examples/data/lo1.sol'
Start writing.
done writing. Time: 0.00
Open file '/home/andrea/mosek/8/tools/examples/data/lo1.bas'
Start writing.
done writing. Time: 0.00
Return code - 0 [MSK_RES_OK]
```

5.4 Solver Parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the optimizer. The typical settings which can be changed with solver parameters include:

- choice of the optimizer for linear problems,
- choice of primal/dual solver,
- turning presolve on/off,
- turning heuristics in the mixed-integer optimizer on/off,
- level of multi-threading,
- feasibility tolerances,
- solver termination criteria,
- behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users. Each parameter is identified by a unique string name and it can accept either integers or symbolic names, floating point values or symbolic strings. Please refer to Sec. 11.2 for the complete list of available solver parameters.

5.4.1 Setting from command line

Setting solver parameters is possible using the command line option -d. If multiple parameters must be specified, option -d must be repeated for each one. For example, the next command will switch off presolve, set a feasibility tolerance and solve the problem from lol.opf:

```
mosek -d MSK_IPAR_PRESOLVE_USE MSK_OFF -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 lo1.opf
```

5.4.2 Using the Parameter File

Solver parameters can also be set using a parameter file, for example:

The syntax of the parameter file must obey a few simple rules:

- The file must begin with BEGIN MOSEK and end with END MOSEK.
- Empty lines and lines starting from a % sign are ignored.
- Each line contains a valid MOSEK parameter name followed by its value.

The parameter file can have any name. Assuming it has been called mosek.par, it can be used using the -p option as follows:

```
mosek -p mosek.par afiro.mps
```

Command-line parameters override those from the parameter file in case of repetition. For instance

```
mosek -p mosek.par -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 afiro.mps
```

will set $MSK_DPAR_INTPNT_TOL_PFEAS$ to 10^{-8} using the value provided on the command line.

5.5 Command Line Arguments

The following list shows the available command-line arguments for MOSEK:

-anapro

Analyze the problem data.

-anasoli <name>

Analyze the initial solution name e.g. -anasoli bas.

-anasolo <name>

Analyze the final solution name e.g. -anasolo itg.

-a

MOSEK is started in AMPL mode.

-basi <name>

Input basic solution file name.

-baso <name>

Output basic solution file name.

-d <name> <value>

Define the value value for the MOSEK parameter name.

-dbgmem <name>

Name of memory debug file.

-f

Complete license information is printed.

-h, -?

Help.

-inti <name>

Input integer solution file name.

-into <name>

Output integer solution file name.

-itri <name>

Input interior point solution file name.

-itro <name>

Output interior point solution file name.

-info <name>

Infeasible subproblem output file name.

-infrepo <name>

Feasibility reparation output file.

-1,-L <dir>

dir is the directory where the MOSEK license file mosek.lic is located.

-max

The problem is maximized.

-min

The problem is minimized.

```
-n
     Ignore errors in subsequent parameter settings.
-out <name>
     Write the task to a data file named name. See Sec. 12.
-p <name>, -pari <name>
     Name of the input parameter file.
-paro <name>
     Name of the output parameter file.
-primalrepair
     Repair a primal infeasible problem. See Sec. 10.2.
     If the option is present, the program returns -1 if an error occurred, otherwise 0.
-removeitg
     Removes all integer constraints after reading the problem.
-rout <name>
     If the option is present, the program writes the return code to file name.
-q <name>
     Name of an optional log file.
-sen <file>
     Perform sensitivity analysis based on file.
-silent
     As little information as possible is send to the terminal.
-toconic
     Translate to conic form after reading.
- W
     MOSEK version is printed and no optimization is performed.
-w
     If this options is on, then MOSEK will wait for a license.
-x
     Do not run the optimizer. Useful for converting between file formats.
```

5.6 The license system

MOSEK is a commercial product that **always** needs a valid license to work. MOSEK uses a third party license manager to implement license checking. The number of license tokens provided determines the number of optimizations that can be run simultaneously.

List all possible solver parameters with default value, lower bound and upper bound (if applicable).

By default a license token remains checked out for the whole execution of the command line tool. If the license is not unlimited, then the number of tokens determines the maximal number of processes that can run simultaneously. In this case setting the license wait flag with the parameter <code>MSK_IPAR_LICENSE_WAIT</code> will force **MOSEK** to wait until a license token becomes available instead of returning with an error.

The MOSEK-bundled AMPL shell

AMPL is a modeling language for specifying linear and nonlinear optimization models in a natural way. AMPL also makes it easy to solve the problem and e.g. display the solution or part of it. We will not discuss the specifics of the AMPL language here but instead refer the reader to [FGK03], http://ampl.com/BOOK/download.html and the AMPL website http://www.ampl.com.

AMPL cannot solve optimization problems by itself but requires a link to an optimizer. The **MOSEK** distribution includes:

- An AMPL link which makes it possible to use **MOSEK** as an optimizer within AMPL. The link can be used from any AMPL shell.
- The full, official AMPL shell repackaged under the name mampl. This is sold as a separate product, and it can be hooked to other optimizers as well.

Note:

- To use MOSEK from AMPL you need to set up the system path to the MOSEK command line tool
- It is possible to specify problems in AMPL that cannot be solved by **MOSEK**. The optimization problem must be a smooth convex optimization problem as discussed in Sec. 8.

For the remainder of this section we refer to the MOSEK-bundled mampl as the AMPL interpreter of choice. However, the tutorial applies also to any other standard AMPL shell available to the user.

6.1 Locating the AMPL shell

If $\MSKHOME>$ is the folder in which the \MOSEK Optimization Suite has been installed then the AMPL binary is located in

<MSKHOME>/mosek/9.1/tools/platform/<PLATFORM>/bin/mampl

for Linux and OSX users (PLATFORM must be among linux64x86, osx64x86), and under

 $\verb|\MSKHOME>\mosek|9.1| tools\\platform\\<\mbox{PLATFORM}>\mbox| bin\\ |\mbox{mample}| |\mbox{PLATFORM}>\mbox| bin\\ |\mbox{PLATFORM}>\mbox| |\mbox{PLATFORM}>\mbox| |\mbox{PLATFORM}>\mbox| |\mbox| |\mb$

for Windows users (PLATFORM must be among win32x86, win64x86).

6.2 An example

In many instances, you can successfully apply **MOSEK** simply by specifying the model and data, setting the solver option to **MOSEK**, and typing solve.

Consider a simple linear optimization problem formulated as an AMPL model in Listing 6.1.

Listing 6.1: An example of an optimization problem in AMPL language.

```
set NUTR ordered;
set FOOD ordered;
param cost {FOOD} >= 0;
param f_{min} \{FOOD\} >= 0, default 0;
param f_max {j in FOOD} >= f_min[j], default Infinity;
param n_{\min} \{NUTR\} >= 0, default 0;
param n_max {i in NUTR} >= n_min[i], default Infinity;
param amt {NUTR,FOOD} >= 0;
# -----
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
# -----
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
minimize Nutr_Amt {i in NUTR}: sum {j in FOOD} amt[i,j] * Buy[j];
# -----
subject to Diet {i in NUTR}:
  n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];</pre>
```

We can specify the input data using an input file again following the AMPL syntax, as in Listing 6.2.

Listing 6.2: An example of data for an optimization problem using AMPL language.

```
param: FOOD:
                              cost f_min f_max :=
 "Quarter Pounder w/ Cheese"
                              1.84
 "McLean Deluxe w/ Cheese"
                             2.19
 "Big Mac"
                              1.84
 "Filet-O-Fish"
                              1.44
 "McGrilled Chicken"
                             2.29
 "Fries, small"
                              .77
 "Sausage McMuffin"
                            1.29
 "1% Lowfat Milk"
                              .60
 "Orange Juice"
                              .72
param: NUTR: n_min n_max :=
       Cal
              2000
       Carbo
               350
                       375
       Protein 55
       VitA
                100
       VitC
                100
       Calc
                100
       Iron
                100
param amt (tr):
                            Cal Carbo Protein VitA VitC Calc Iron :=
 "Quarter Pounder w/ Cheese" 510
                                 34 28
                                                            30
                                                15
                                                       6
                                                                  20
 "McLean Deluxe w/ Cheese"
                            370
                                   35
                                          24
                                                15
                                                       10
                                                            20
                                                                  20
 "Big Mac"
                            500
                                    42
                                          25
                                                 6
                                                       2
                                                            25
                                                                  20
 "Filet-O-Fish"
                            370
                                    38
                                          14
                                                 2
                                                       0
                                                            15
                                                                  10
 "McGrilled Chicken"
                            400
                                   42
                                          31
                                                 8
                                                       15
                                                            15
                                                                  8
```

(continues on next page)

"Fries, small"	220	26	3	0	15	0	2
"Sausage McMuffin"	345	27	15	4	0	20	15
"1% Lowfat Milk"	110	12	9	10	4	30	0
"Orange Juice"	80	20	1	2	120	2	2;

Invoke the AMPL shell:

mampl

and type in the commands:

```
ampl: model diet.mod;
ampl: data diet.dat;
ampl: option solver mosek;
ampl: solve;
```

The resulting output is:

```
MOSEK finished.
Problem status - PRIMAL_AND_DUAL_FEASIBLE
Solution status - OPTIMAL
Primal objective - 14.8557377
Dual objective - 14.8557377
Objective = Total_Cost
```

6.3 Retrieving solutions

6.3.1 Status codes

The AMPL parameter solve_result_num is used to indicate the outcome of the optimization process. It is used as follows

```
ampl: display solve_result_num
```

Please refer to table Table 6.1 for possible values of this parameter.

Table 6.1: Interpretation of solve_result_num.

Value	Message
0	the solution is optimal.
100	suboptimal primal solution.
101	superoptimal (dual feasible) solution.
150	the solution is near optimal.
200	primal infeasible problem.
300	dual infeasible problem.
400	too many iterations.
500	solution status is unknown.
501 ill-posed problem, solution status is unknown.	
> 501	Mapped MOSEK response code. See note below.

MOSEK response codes are mapped to AMPL return codes greater than 501. In order to get the actual response code the base value 501 must be subtracted. For example: the AMPL return code 502 corresponds to MOSEK response code 1.

6.3.2 Which solution is returned

MOSEK can produce three types of solutions: basic, interior point and integer. The solution returned to AMPL is determined according to the following rules:

• For problems containing integer variables only the integer solution is available and it is returned.

- For nonlinear problems only the interior point solution is available and it is returned.
- For linear problems, if both basic and interior point solution are available, then the basic solution is returned. Otherwise the only available solution is returned.

6.4 Optimizer options

6.4.1 The MOSEK parameter database

The **MOSEK** optimizer can be controller using solver parameters, as described in Sec. 5.4. These parameters can be modified within AMPL as shown in the example below:

```
ampl: model diet.mod;
ampl: data diet.dat;
ampl: option solver mosek;
ampl: option mosek_options
ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex \
ampl? msk_ipar_sim_max_iterations = 100000';
ampl: solve;
```

In the example above a string called mosek_options is created which contains the parameter settings. Each parameter setting has the format

```
parameter_name = value
```

where parameter_name is a valid MOSEK parameter name. See Sec. 11.2 for a description of all valid MOSEK parameters.

An alternative way of specifying the parameters is

```
ampl: option mosek_options
ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex'
ampl? 'msk_ipar_sim_max_iterations = 1000000';
```

New parameters can also be appended to an existing option string as shown below.

```
ampl: option mosek_options $mosek_options
ampl? ' msk_ipar_sim_print_freq = 0 msk_ipar_sim_max_iterations = 1000';
```

The expression <code>\$mosek_options</code> expands to the current value of the option. Line two in the example appends an additional value <code>msk_ipar_sim_max_iterations</code> to the option string.

6.4.2 Options

MOSEK recognizes the following AMPL options.

outlev

Controls the amount of printed output. 0 means no printed output and a higher value means progressively more output. An example of setting outlev is as follows:

```
ampl: option mosek_options 'outlev=2';
```

wantsol

Controls the solution information generated when run in standalone mode (called without the argument -AMPL). It should be constructed as the sum of

1	to write a .sol file
2	to print the primal variable values
4	to print the dual variable values
8	to suppress printing the solution message

We refer the reader to the AMPL manual [FGK03] for more details.

6.4.3 Passing variable names to MOSEK

AMPL assigns meaningful names to all the constraints and variables. Since **MOSEK** uses item names in error and log messages, it may be useful to pass the AMPL names to **MOSEK**. This can be achieved with the command:

```
ampl: option auxfiles rc;
ampl: solve;
```

6.5 Hot-start

Frequently, a sequence of optimization problems is solved where each problem differs only slightly from the previous problem. In that case it may be advantageous to use the previous optimal solution to warm-start the optimizer. Such a facility is available in **MOSEK** only when the simplex optimizer is used.

The warm-start facility exploits the AMPL variable suffix sstatus to communicate the optimal basis back to AMPL, and AMPL uses this facility to communicate an initial basis to MOSEK. The following example demonstrates this feature.

```
ampl: model diet.mod;
ampl: data diet.dat;
ampl: option solver mosek;
ampl: option mosek_options
ampl: 'msk_ipar_optimizer = msk_optimizer_primal_simplex outlev=2';
ampl: solve;
ampl: display Buy.sstatus;
ampl: solve;
```

The resulting output is:

```
= MSK_OPTIMIZER_PRIMAL_SIMPLEX
Accepted: msk_ipar_optimizer
Accepted: outlev
Computer
          - Platform
                                    : Linux/64-X86
                                    : Intel-P4
Computer
          - CPU type
MOSEK
          - task name
MOSEK
          - objective sense
                                    : min
          - problem type
MOSEK
                                    : LO (linear optimization problem)
MOSEK
          - constraints
                                    : 7
                                                        variables
                                                                                : 9
MOSEK
          - integer variables
                                    : 0
Optimizer started.
Simplex optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Presolve - Stk. size (kb) : 0
Eliminator - tries
                                                                                : 0.00
                                                        time
Eliminator - elim's
                                    : 0
Lin. dep. - tries
                                    : 1
                                                        time
                                                                                : 0.00
Lin. dep. - number
                                    : 0
Presolve terminated. Time: 0.00
Primal simplex optimizer started.
Primal simplex optimizer setup started.
Primal simplex optimizer setup terminated.
Optimizer - solved problem
                                   : the primal
Optimizer - constraints
                                    : 7
                                                        variables
                                                                                : 9
Optimizer - hotstart
                                    : no
ITER
         DEGITER(%) PFEAS
                                  DFEAS
                                              POBJ
                                                                    DOBJ
                                                                                           TIME
      TOTTIME
                                              1.258666667e+01
0
         0.00
                      1.40e+03
                                  NA
                                                                    NΑ
                                                                                           0.00
      0.01
```

(continues on next page)

```
0.00
                     0.00e+00
                                             1.4855737705e+01
                                                                   NA
                                                                                         0.00
       0.01
Primal simplex optimizer terminated.
Simplex optimizer terminated. Time: 0.00.
Optimizer terminated. Time: 0.01
Return code - 0 [MSK_RES_OK]
MOSEK finished.
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal objective : 14.8557377
Dual objective : 14.8557377
Objective = Total_Cost
Buy.sstatus [*] :=
'Quarter Pounder w/ Cheese' bas
'McLean Deluxe w/ Cheese' low
'Big Mac' low
Filet-O-Fish low
'McGrilled Chicken' low
'Fries, small' bas
'Sausage McMuffin' low
'1% Lowfat Milk' bas
'Orange Juice' low
Accepted: msk_ipar_optimizer
                                             = MSK_OPTIMIZER_PRIMAL_SIMPLEX
Accepted: outlev
                                             = 2
Basic solution
Problem status : UNKNOWN
Solution status : UNKNOWN
Primal - objective: 1.4855737705e+01
                                      eq. infeas.: 3.97e+03 max bound infeas.: 2.00e+03
Dual - objective: 0.000000000000e+00 eq. infeas.: 7.14e-01 max bound infeas.: 0.00e+00
                                  : Linux/64-X86
Computer - Platform
         - CPU type
Computer
                                   : Intel-P4
MOSEK
          - task name
MOSEK
          - objective sense
                                   : min
MOSEK

    problem type

                                   : LO (linear optimization problem)
MOSEK
                                   : 7
                                                                              : 9
          - constraints
                                                       variables
         - integer variables
MOSEK
                                   : 0
Optimizer started.
Simplex optimizer started.
Presolve started.
Presolve - Stk. size (kb) : 0
Eliminator - tries
                                   : 0
                                                       time
                                                                              : 0.00
Eliminator - elim's
                                   : 0
Lin. dep. - tries
                                   : 0
                                                       time
                                                                              : 0.00
Lin. dep. - number
                                   : 0
Presolve terminated. Time: 0.00
Primal simplex optimizer started.
Primal simplex optimizer setup started.
Primal simplex optimizer setup terminated.
Optimizer - solved problem : the primal
Optimizer - constraints
                                   : 7
                                                       variables
                                                                              : 9
Optimizer - hotstart
                                   : yes
Optimizer - Num. basic
Optimizer - Valid bas. fac.
                                                                              : 7
                                   : 7
                                                       Basis rank
                                   : no
        DEGITER(%) PFEAS
                                             POBJ
                                                                   DOBJ
ITER
                                 DFEAS
                                                                                         TIME
      TOTTIME
0
         0.00
                     0.00e+00
                                 NA
                                             1.4855737705e+01
                                                                                         0.00
                                                                   NA
      0.01
         0.00
                     0.00e+00
                                             1.4855737705e+01
0
                                 NΑ
                                                                   NΑ
                                                                                        0.00
      0.01
                                                                            (continues on next page)
```

```
Primal simplex optimizer terminated.
Simplex optimizer terminated. Time: 0.00.
Optimizer terminated. Time: 0.01
Return code - 0 [MSK_RES_OK]
MOSEK finished.
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal objective : 14.8557377
Dual objective : 14.8557377
Objective = Total_Cost
```

Please note that the second solve takes fewer iterations since the previous optimal basis is reused.

6.6 Infeasibility report

For linear optimization problems without any integer constrained variables \mathbf{MOSEK} can generate an infeasibility report automatically. The report provides important information about the infeasibility.

The generation of the infeasibility report is turned on using the parameter setting

```
option auxfiles rc;
option mosek_options 'msk_ipar_infeas_report_auto=msk_on';
```

For further details about infeasibility report see Sec. 10.2.

6.7 Sensitivity analysis

MOSEK can calculate sensitivity information for the objective and constraints. To enable sensitivity information set the option:

```
sensitivity = 1
```

Results are returned in variable/constraint suffixes as follows:

- .down Smallest value of objective coefficient/right hand side before the optimal basis changes.
- .up Largest value of objective coefficient/right hand side before the optimal basis changes.
- .current Current value of objective coefficient/right hand side.

For ranged constraints sensitivity information is returned only for the lower bound. The example below returns sensitivity information on the diet model.

```
ampl: model diet.mod;
ampl: data diet.dat;
ampl: option solver mosek;
ampl: option mosek_options 'sensitivity=1';

ampl: solve;
#display sensitivity information and current solution.
ampl: display _var.down,_var.current,_var.up,_var;
#display sensitivity information and optimal dual values.
ampl: display _con.down,_con.current,_con.up,_con;
```

The resulting output is:

```
Return code - 0 [MSK_RES_OK]

MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal objective : 14.8557377
```

(continues on next page)

```
Dual objective
                  : 14.8557377
suffix up OUT;
suffix down OUT;
suffix current OUT;
Objective = Total_Cost
  _var.down _var.current
                                 _var.up
                                                 _var
                                                           :=
                                                4.38525
    1.37385
                                    1.86075
                  1.84
1
   1.8677
                  2.19
                             Infinity
2
                                                0
3
   1.82085
                  1.84
                             Infinity
                                                0
4
   1.35466
                  1.44
                             Infinity
                                                0
5
   1.57633
                  2.29
                             Infinity
                                                0
6
    0.094
                  0.77
                                    0.794851
                                                6.14754
                             Infinity
7
    1.22759
                  1.29
                                                0
8
   0.57559
                  0.6
                                    0.910769
                                                3.42213
9
   0.657279
                  0.72
                             Infinity
                                                0
ampl: display _con.down,_con.current,_con.up,_con;
      _con.down
                   _con.current
                                   _con.up
    -Infinity
                         2000
                                   3965.37
1
2
          297.6
                          350
                                    375
                                               0.0277049
3
    -Infinity
                          55
                                    172.029
                                               0
4
           63.0531
                          100
                                    195.388
                                               0.0267541
5
                                    132.213
    -Infinity
                          100
6
    -Infinity
                          100
                                    234.221
                                               0
7
           17.6923
                          100
                                    142.821
                                               0.0248361
```

6.8 Using the command line version of the AMPL interface

AMPL can generate a data file containing the optimization problem and all relevant information which can then be read and solved by the **MOSEK** command line tool.

When the problem has been loaded into AMPL, the commands

```
ampl: option auxfiles rc;
ampl: write bprob;
```

will make AMPL write the appropriate data files, i.e.

```
prob.nl
prob.col
prob.row
```

Then the problem can be solved using the command line version of MOSEK as follows

```
mosek prob.nl outlev=10 -a
```

The option -a indicates that MOSEK is invoked in AMPL mode. When MOSEK is invoked in AMPL mode the standard MOSEK command line options should appear after the -a option except for the file name which should be the first argument. As the above example demonstrates MOSEK accepts command line options following the AMPL convention. To see which command line arguments MOSEK accepts in AMPL mode write:

```
mosek -= -a
```

For linear, quadratic and quadratically constrained problems a text file representation of the problem can be obtained by performing one of the following conversions:

```
mosek prob.nl -a -x -out prob.mps
mosek prob.nl -a -x -out prob.opf
mosek prob.nl -a -x -out prob.lp
```

6.9 amplpy

It is possible to use the MOSEK-bundled AMPL from amplpy (https://pypi.org/project/amplpy/). In order to do this rename mampl to ampl (or create a symbolic link) and initialize the AMPL object using the path to the MOSEK binaries folder, for example:

In case of problems with initializing the environment, try setting the system environment variable ${\tt LM_LICENSE_FILE}$ to the ${\tt MOSEK}$ license file path.

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is intended as a first line of technical help for issues such as: Why do I get solution status *unknown* and how can I fix it? Why is my model infeasible while it shouldn't be? Should I change some parameters? Can the model solve faster? etc.

The major steps when debugging a model are always:

- Consult the log output.
- Run the optimization and analyze the log output, see Sec. 7.1. In particular:
 - check if the problem setup (number of constraints/variables etc.) matches your expectation.
 - check solution summary and solution status.
- Dump the problem to disk if necessary to continue analysis.
 - use a human-readable text format, such as *.opf if you want to check the problem structure by hand. Assign names to variables and constraints to make them easier to identify.
 - use the MOSEK native format *.task.gz when submitting a bug report or support question.
- Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the diagnosis.

See the following sections for details.

7.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:

- 1. summary of the input data,
- 2. presolve and other pre-optimize problem setup stages,
- 3. actual optimizer iterations,
- 4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 9.3.4 or Sec. 9.4.8.

7.1.1 Input data

If **MOSEK** behaves very far from expectations it may be due to errors in problem setup. The log file will begin with a summary of the structure of the problem, which looks for instance like:

```
Problem
  Name
  Objective sense
                          : max
                          : CONIC (conic optimization problem)
  Type
  Constraints
                          : 20413
                          : 2508
  Cones
                          : 20414
  Scalar variables
 Matrix variables
                          : 0
  Integer variables
                          : 0
```

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables etc. Note that Fusion, and third-party modeling tools can introduce additional variables and constraints to the model. In the remaining **MOSEK** APIs the problem dimensions should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see Sec. 7) and using the anapro option of any of the command line tools. This will produce a longer summary similar to:

```
** Variables
scalar: 20414
                  integer: 0
                                     matrix: 0
low: 2082
                  up: 5014
                                     ranged: 0
                                                        free: 12892
                                                                          fixed: 426
** Constraints
all: 20413
low: 10028
                  up: 0
                                     ranged: 0
                                                        free: 0
                                                                          fixed: 10385
** Cones
QUAD: 1
                  dims: 2865: 1
RQUAD: 2507
                  dims: 3: 2507
** Problem data (numerics)
                  nnz: 10028
                                     min=2.09e-05
                                                        max=1.00e+00
Icl
|A|
                  nnz: 597023
                                     min=1.17e-10
                                                        max=1.00e+00
                                     min=-3.60e+09
                                                        max=2.75e+05
blx
                  fin: 2508
                  fin: 5440
                                     min=0.00e+00
                                                        max=2.94e+08
bux
blc.
                  fin: 20413
                                     min=-7.61e+05
                                                        max=7.61e+05
buc
                  fin: 10385
                                     min=-5.00e-01
                                                        max=0.00e+00
```

Again, this can be used to detect simple errors, such as:

- Wrong type of cone was used or it has wrong dimension.
- The bounds for variables or constraints are incorrect or incomplete.
- The model is otherwise incomplete.
- Suspicious values of coefficients.
- For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or OPF (see Sec. 7) and analyzing it by hand can reveal if the model is correct.

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-understood. They can also serve as hints as to numerical issues with the problem data. A typical warning of this kind is

```
MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for variable \( \to '\absh[107]' \) (2613).
```

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will become invalid. The user should make sure to test for errors/exceptions from all API calls that set up the problem and validate the data.

7.1.2 Solution summary

The last item in the log is the solution summary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

It contains the following elements:

- Problem and solution status.
- A summary of the primal solution: objective value, infinity norm of the solution vector xx, maximal violations of constraints, variable bounds and cones. The violation of a linear constraint such as $a^T x \leq b$ is $\max(a^T x b, 0)$. The violation of a conic constraint $x \in \mathcal{K}$ is the distance $\operatorname{dist}(x, \mathcal{K})$.
- The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a well-posed model are:

- Status: The solution status is OPTIMAL.
- Duality gap: The primal and dual objective values are (almost) identical, which proves the solution is (almost) optimal.
- Norms: Ideally the norms of the solution and the objective values should not be too large. This of course depends on the input data, but a huge solution norm can be an indicator of issues with the scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.
- Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe that due to rounding errors it can be expected that the violations are proportional to the norm (nrm:) of the solution. It is rarely the case that violations are exactly zero.

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

```
      Problem status : UNKNOWN

      Solution status : UNKNOWN

      Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 cones: 0e+00

      Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 cones: 0e+00
```

Note that:

- The primal and dual objective are very different.
- The dual solution has very large norm.
- There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 7.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means that the solver was unable to make any more progress due to numerical difficulties, and it was not able to reach the accuracy required by the termination criteria (see Sec. 9.3.2). Consider for instance:

```
Problem status : UNKNOWN
Solution status : UNKNOWN
        obj: 3.4531019648e+04
Primal.
                                                        con: 7e-02
                                   nrm: 1e+05
                                                 Viol.
                                                                       var: 0e+00
                                                                                      cones: 0e+00
Dual.
         obj: 3.4529720645e+04
                                  nrm: 8e+03
                                                 Viol.
                                                                       var: 2e-04
                                                                                     cones: 0e+00
                                                        con: 1e-04
```

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough approximation of the optimal point. For example, the large constraint violation may be due to the fact that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

```
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 cones: 0e+00
```

It is a Farkas-type certificate as described in Sec. 8.2.2. In particular, for a good certificate:

- The dual objective is positive for a minimization problem, negative for a maximization problem. Ideally it is well bounded away from zero.
- The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation. Use the hints in Sec. 7.1.1 and Sec. 7.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility certificate above is very solid. However, there can be less clear-cut cases, such as for example:

```
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 cones: 0e+00
```

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in comparison with the large violations. It also has rather large norm. This is more likely an indication that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to tiny variations in input data. See Sec. 7.3 and Sec. 7.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal objective should be negative a minimization problem and positive for a maximization problem.

7.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as follows:

```
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 itg: 5e-15
```

The interpretation of all elements is as for a continuous problem. The additional field itg denotes the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit, the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE Solution status : PRIMAL_FEASIBLE

Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 4.1

Objective of best integer solution : 6.011460779193e+06

Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum. The same data can be obtained as information items through an API. See also Sec. 9.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.00000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 itg: 0e+00

If infeasibility was not expected, consult Sec. 7.3.

7.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in particular UNKNOWN solution status or solutions with large violations. Since numerically stable models tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model, since it is the modeler who has the best insight into the structure of the problem and can fix the cause of the issue.

7.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially to the linear constraint matrix. Use Sec. 7.1.1 if necessary. For example a report such as

```
|A| nnz: 597023 min=1.17e-6 max=2.21e+5
```

means that the ratio of largest to smallest elements in A is 10¹¹. In this case the user should rescale or reformulate the model to avoid such spread which makes it difficult for **MOSEK** to scale the problem internally. In many cases it may be possible to change the units, i.e. express the model in terms of rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize
$$10^{10}x + y$$

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from x and y will become insignificant.

Removing huge bounds

Never use a very large number as replacement for ∞ . Instead define the variable or constraint as unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See Example 7.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a single point (technically, the Slater condition is not satisfied). In general, this refers to problems which are borderline between feasible and infeasible. See Example 7.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not very large. Consult the solution summary Sec. 7.1.2 to check the objective values or solution norms.

7.2.2 Further suggestions

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

- Remove the objective and solve the feasibility problem. This can reveal issues with the objective.
- Change the objective or change the objective sense from minimization to maximization (if applicable). If the two objective values are almost identical, this may indicate that the feasible set is very small, possibly degenerate.
- Perturb the data, for instance bounds, very slightly, and compare the results.
- \bullet For linear problems: solve the problem using a different optimizer by setting the parameter $MSK_IPAR_OPTIMIZER$ and compare the results.
- Force the optimizer to solve the primal/dual versions of the problem by setting the parameter <code>MSK_IPAR_INTPNT_SOLVE_FORM</code> or <code>MSK_IPAR_SIM_SOLVE_FORM</code>. **MOSEK** has a heuristic to decide whether to dualize, but for some problems the guess is wrong an explicit choice may give better results.
- Solve the problem without presolve or some of its parts by setting the parameter MSK_IPAR_PRESOLVE_USE, see Sec. 9.1.
- Use different numbers of threads $(MSK_IPAR_NUM_THREADS)$ and compare the results. Very different results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the **MOSEK** Command Line Tool or **MOSEK** Python Console Sec. 7.4.

7.2.3 Typical pitfalls

Example 7.1 (Ill-posedness). A toy example of this situation is the feasibility problem

$$(x-1)^2 \le 1$$
, $(x+1)^2 \le 1$

whose only solution is x=0 and moreover replacing any 1 on the right hand side by $1-\varepsilon$ makes the problem infeasible and replacing it by $1+\varepsilon$ yields a problem whose solution set is an interval (fully-dimensional). This is an example of ill-posedness.

Example 7.2 (Huge solution). If the norm of the expected solution is very large it may lead to numerical issues or infeasibility. For example the problem

$$(10^{-4}, x, 10^3) \in \mathcal{Q}_r^3$$

may be declared infeasible because the expected solution must satisfy $x \ge 5 \cdot 10^9$.

Example 7.3 (Near linear dependency). Consider the following problem:

If we add the equalities together we obtain:

$$0 = \varepsilon$$

which is infeasible for any $\varepsilon \neq 0$. Here infeasibility is caused by a linear dependency in the constraint matrix coupled with a precision error represented by the ε . Indeed if a problem contains linear dependencies then the problem is either infeasible or contains redundant constraints. In the above case any of the equality constraints can be removed while not changing the set of feasible solutions. To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore it is better to avoid them.

Example 7.4 (Presolving very tight bounds). Next consider the problem

minimize subject to
$$x_1 - 0.01x_2 = 0$$
, $x_2 - 0.01x_3 = 0$, $x_3 - 0.01x_4 = 0$, $x_1 \ge -10^{-9}$, $x_1 \le 10^{-9}$, $x_4 \ge 10^{-4}$.

Now the **MOSEK** presolve will, for the sake of efficiency, fix variables (and constraints) that have tight bounds where tightness is controlled by the parameter $MSK_DPAR_PRESOLVE_TOL_X$. Since the bounds

$$-10^{-9} \le x_1 \le 10^{-9}$$

are tight, presolve will set $x_1 = 0$. It easy to see that this implies $x_4 = 0$, which leads to the incorrect conclusion that the problem is infeasible. However a tiny change of the value 10^{-9} makes the problem feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one solution is to reduce parameters such as $MSK_DPAR_PRESOLVE_TOL_X$ to say 10^{-10} . This will at least make sure that presolve does not make the undesired reduction.

7.3 Debugging infeasibility

This section contains hints for debugging problems that are unexpectedly infeasible. It is always a good idea to remove the objective, i.e. only solve a feasibility problem when debugging such issues.

7.3.1 Numerical issues

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate has poor quality. See Sec. 7.1.2 for how to diagnose that and Sec. 7.2 for possible hints. Sec. 7.2.3 contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 7.2 for further information on dealing with those sort of issues. For the rest of this section we concentrate on the case when the solution summary leaves little doubt that the problem solved by the optimizer actually is infeasible.

7.3.2 Locating primal infeasibility

As an example of a primal infeasible problem consider minimizing the cost of transportation between a number of production plants and stores: Each plant produces a fixed number of goods, and each store has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in Fig. 7.1.

Fig. 7.1: Supply, demand and cost of transportation.

The problem represented in Fig. 7.1 is infeasible, since the total demand

$$2300 = 1100 + 200 + 500 + 500$$

exceeds the total supply

$$2200 = 200 + 1000 + 1000$$

If we denote the number of transported goods from plant i to store j by x_{ij} , the problem can be formulated as the LP:

minimize
$$x_{11} + 2x_{12} + 5x_{23} + 2x_{24} + x_{31} + 2x_{33} + x_{34}$$
 subject to x_{0} : $x_{11} + x_{12}$ $x_{23} + x_{24}$ $x_{24} + x_{31} + x_{24}$ $x_{23} + x_{34}$ x_{24} x_{2

Solving problem (7.1) using **MOSEK** will result in an infeasibility status. The infeasibility certificate is contained in the dual variables an can be accessed from an API. The variables and constraints with nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 8.1.2 or Sec. 8.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the parameter $MSK_IPAR_INFEAS_REPORT_AUTO$ to MSK_ON . This causes MOSEK to print a report on variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values in the certificate. The parameter $MSK_IPAR_INFEAS_REPORT_LEVEL$ controls the amount of information presented in the infeasibility report. The default value is 1. For the above example the report is

```
MOSEK PRIMAL INFEASIBILITY REPORT.
Problem status: The problem is primal infeasible
The following constraints are involved in the primal infeasibility.
Index
         Name
                    Lower bound
                                      Upper bound
                                                        Dual lower
                                                                         Dual upper
0
         s0
                    NONE
                                      2.000000e+002
                                                        0.000000e+000
                                                                         1.000000e+000
                                                                         1.000000e+000
2
         s2
                    NONE
                                      1.000000e+003
                                                        0.000000e+000
                                      1.100000e+003
                                                                         0.000000e+000
3
         d1
                    1.100000e+003
                                                        1.000000e+000
                                      2.000000e+002
                                                                         0.000000e+000
4
         d2
                    2.000000e+002
                                                        1.000000e+000
The following bound constraints are involved in the infeasibility.
                                      Upper bound
                                                       Dual lower
Index
         Name
                    Lower bound
                                                                         Dual upper
         x33
                    0.000000e+000
                                      NONE.
                                                        1.000000e+000
                                                                         0.000000e+000
10
         x34
                    0.000000e+000
                                     NONE
                                                        1.000000e+000
                                                                         0.000000e+000
```

The infeasibility report is divided into two sections corresponding to constraints and variables. It is a selection of those lines from the problem solution which are important in understanding primal infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables s_l^c , s_u^c , s_u^s and s_u^s in the primal infeasibility certificate (see Sec. 8.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1 with coefficient $s_u^c = 1$, constraints d1 and d2 with coefficient $s_u^c - s_l^c = 0 - 1 = -1$ and lower bounds on x33 and x34 with coefficient $-s_l^x = -1$ gives a contradiction. Indeed, the combination of the four involved constraints is $x_{33} + x_{34} \le -100$ (as indicated in the introduction, the difference between supply and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible problem called infeas.lp the command:

```
mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp
```

will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint $x_{12} = 200$ makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

7.3.3 Locating dual infeasibility

A problem may also be $dual\ infeasible$. In this case the primal problem is usually unbounded, meaning that feasible solutions exists such that the objective tends towards infinity. For example, consider the problem

```
maximize 200y_1 + 1000y_2 + 1000y_3 + 1100y_4 + 200y_5 + 500y_6 + 500y_7 subject to y_1 + y_4 \le 1, \ y_1 + y_5 \le 2, \ y_2 + y_6 \le 5, \ y_2 + y_7 \le 2, y_3 + y_4 \le 1, \ y_3 + y_6 \le 2, \ y_3 + y_7 \le 1 y_1, y_2, y_3 \le 0
```

which is dual to (7.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index	Name	Activity	Objective	Lower bound	Upper bound
5	x33	-1.000000e+00		NONE	2.000000e+00
6	x34	-1.000000e+00		NONE	1.000000e+00

The following variables are involved in the infeasibility.

Index	Name	Activity	Objective	Lower bound	Upper bound
0	у1	-1.000000e+00	2.000000e+02	NONE	0.000000e+00
2	у3	-1.000000e+00	1.000000e+03	NONE	0.000000e+00
3	у4	1.000000e+00	1.100000e+03	NONE	NONE
4	y5	1.000000e+00	2.000000e+02	NONE	NONE

Interior-point solution summary

Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility with non-zero values in the Activity column. Therefore

$$(y_1,\ldots,y_7)=(-1,0,-1,1,1,0,0)$$

is the dual infeasibility certificate as in Sec. 8.1.2. This just means, that along the ray

$$(0,0,0,0,0,0,0) + t(y_1,\ldots,y_7) = (-t,0,-t,t,t,0,0), t > 0,$$

which belongs to the feasible set, the objective value 100t can be arbitrarily large, i.e. the problem is unbounded.

In the example problem we could

- Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.
- Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the inequality $c^T y^* > 0$ and thus the certificate.

7.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

- Remove the objective function. This does not change the infeasibility status but simplifies the problem, eliminating any possibility of issues related to the objective function.
- Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the problem. Typical simple modeling errors will lead to infeasibility already at this stage.
- Consider whether your problem has some obvious necessary conditions for feasibility and examine if these are satisfied, e.g. total supply should be greater than or equal to total demand.
- Verify that coefficients and bounds are reasonably sized in your problem.
- See if there are any obvious contradictions, for instance a variable is bounded both in the variables and constraints section, and the bounds are contradictory.
- Consider replacing suspicious equality constraints by inequalities. For instance, instead of $x_{12} = 200$ see what happens for $x_{12} \ge 200$ or $x_{12} \le 200$.

- Relax bounds of the suspicious constraints or variables.
- For integer problems, remove integrality constraints on some/all variables and see if the problem solves.
- Form an **elastic model**: allow to violate constraints at a cost. Introduce slack variables and add them to the objective as penalty. For instance, suppose we have a constraint

which might be causing infeasibility. Then create a new variable y and form the problem which contains:

minimize
$$c^T x + y$$
, subject to $a^T x \le b + y$.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

- If you think you have a feasible solution or its part, fix all or some of the variables to those values. Presolve will propagate them through the model and potentially reveal more localized sources of infeasibility.
- Dump the problem in OPF or LP format and verify that the problem that was passed to the optimizer corresponds to the problem expressed in the high-level modeling language, if any such was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

- Verify that the objective coefficients are reasonably sized.
- Check if no bounds and constraints are missing, for example if all variables that should be nonnegative have been declared as such etc.
- Strengthen bounds of the suspicious constraints or variables.
- Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize
$$c^T x$$

solve the problem with an additional constraint such as

$$c^T x = -10^5$$

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• Dump the problem in OPF or LP format and verify that the problem that was passed to the optimizer corresponds to the problem expressed in the high-level modeling language, if any such was used.

Please note that modifying the problem to invalidate the reported certificate does *not* imply that the problem becomes feasible — the reason for infeasibility may simply *move*, resulting a problem that is still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint about errors or inconsistencies in the model that produced the problem.

7.4 Python Console

The **MOSEK** Python Console is an alternative to the **MOSEK** Command Line Tool. It can be used for interactive loading, solving and debugging optimization problems stored in files, for example **MOSEK** task files. It facilitates debugging techniques described in Sec. 7.

7.4.1 Usage

The tool requires Python 2 or 3. The **MOSEK** interface for Python must be installed following the installation instructions for Python API or Python Fusion API. In the basic case it should be sufficient to execute the script

```
python setup.py install --user
```

in the directory containing the MOSEK Python module.

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

```
python mosekconsole.py
```

To run the console in batch mode provide a semicolon-separated list of commands as the second argument of the script, for example:

```
python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"
```

The script is written using the **MOSEK** Python API and can be extended by the user if more specific functionality is required. We refer to the documentation of the Python API.

7.4.2 Examples

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

```
read data.task.gz; solve; writesol data
```

To convert between file formats:

```
read data.task.gz; write data.mps
```

To set a parameter before solving:

```
read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"
```

To list parameter values related to the mixed-integer optimizer in the task file:

```
read data.task.gz; param MIO
```

To print a summary of problem structure:

```
read data.task.gz; anapro
```

To solve a problem forcing the dual and switching off presolve:

```
read data.task.gz; solve form=dual presolve=no
```

To write an infeasible subproblem to a file for debugging purposes:

```
read data.task.gz; solve; infsub; write inf.opf
```

7.4.3 Full list of commands

Below is a brief description of all the available commands. Detailed information about a specific command cmd and its options can be obtained with

help cmd

Table 7.1: List of commands of the MOSEK Python Console.

Command	Description
help [command]	Print list of commands or info about a specific command
log filename	Save the session to a file
intro	Print MOSEK splashscreen
testlic	Test the license system
read filename	Load problem from file
reread	Reload last problem file
solve	Solve current problem
[options]	
write filename	Write current problem to file
param [name	Set a parameter or get parameter values
[value]]	
paramdef	Set all parameters to default values
info [name]	Get an information item
anapro	Analyze problem data
hist	Plot a histogram of problem data
histsol	Plot a histogram of the solutions
spy	Plot the sparsity pattern of the A matrix
truncate	Truncate small coefficients down to 0
epsilon	
anasol	Analyze solutions
removeitg	Remove integrality constraints
infsub	Replace current problem with its infeasible subproblem
writesol	Write solution(s) to file(s) with given basename
basename	
delsol	Remove all solutions from the task
exit	Leave

Chapter 8

Problem Formulation and Solutions

In this chapter we will discuss the following issues:

- The formal, mathematical formulations of the problem types that MOSEK can solve and their duals.
- The solution information produced by **MOSEK**.
- The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any book on convex optimization. This chapter explains how the related data is organized specifically within the **MOSEK** API.

8.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

where

- \bullet m is the number of constraints.
- \bullet *n* is the number of decision variables.
- $x \in \mathbb{R}^n$ is a vector of decision variables.
- $c \in \mathbb{R}^n$ is the linear part of the objective function.
- $c^f \in \mathbb{R}$ is a constant term in the objective
- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.
- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted. A primal solution (x) is (primal) feasible if it satisfies all constraints in (8.1). If (8.1) has at least one primal feasible solution, then (8.1) is said to be (primal) feasible. In case (8.1) does not have a feasible solution, the problem is said to be (primal) infeasible

8.1.1 Duality for Linear Optimization

Corresponding to the primal problem (8.1), there is a dual problem

maximize
$$(l^{c})^{T} s_{l}^{c} - (u^{c})^{T} s_{u}^{c} + (l^{x})^{T} s_{l}^{x} - (u^{x})^{T} s_{u}^{x} + c^{f}$$

$$A^{T} y + s_{l}^{x} - s_{u}^{x} = c,$$
subject to
$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0.$$

$$(8.2)$$

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0, and we use the convention that the product of the bound value and the corresponding dual variable is 0. This is equivalent to removing variable $(s_l^x)_j$ from the dual problem. In other words:

$$l_i^x = -\infty \quad \Rightarrow \quad (s_l^x)_j = 0 \text{ and } l_i^x \cdot (s_l^x)_j = 0.$$

A solution

$$(y, s_l^c, s_u^c, s_l^x, s_u^x)$$

to the dual problem is feasible if it satisfies all the constraints in (8.2). If (8.2) has at least one feasible solution, then (8.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

$$(x^*, y^*, (s_l^c)^*, (s_u^c)^*, (s_l^x)^*, (s_u^x)^*)$$

is denoted a primal-dual feasible solution, if (x^*) is a solution to the primal problem (8.1) and $(y^*, (s_l^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*$ is a solution to the corresponding dual problem (8.2). We also define an auxiliary vector

$$(x^c)^* := Ax^*$$

containing the activities of linear constraints.

For a primal-dual feasible solution we define the $duality\ gap$ as the difference between the primal and the dual objective value,

$$c^{T}x^{*} + c^{f} - \left\{ (l^{c})^{T}(s_{l}^{c})^{*} - (u^{c})^{T}(s_{u}^{c})^{*} + (l^{x})^{T}(s_{l}^{x})^{*} - (u^{x})^{T}(s_{u}^{x})^{*} + c^{f} \right\}$$

$$= \sum_{i=0}^{m-1} \left[(s_{l}^{c})_{i}^{*}((x_{i}^{c})^{*} - l_{i}^{c}) + (s_{u}^{c})_{i}^{*}(u_{i}^{c} - (x_{i}^{c})^{*}) \right]$$

$$+ \sum_{j=0}^{m-1} \left[(s_{l}^{x})_{j}^{*}(x_{j} - l_{j}^{x}) + (s_{u}^{x})_{j}^{*}(u_{j}^{x} - x_{j}^{*}) \right] \geq 0$$

$$(8.3)$$

where the first relation can be obtained by transposing and multiplying the dual constraints (8.2) by x^* and $(x^c)^*$ respectively, and the second relation comes from the fact that each term in each sum is nonnegative. It follows that the primal objective will always be greater than or equal to the dual objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the *complementarity* conditions

$$\begin{array}{rclcrcl} (s_l^c)_i^*((x_i^c)^*-l_i^c) & = & 0, & i=0,\dots,m-1, \\ (s_u^c)_i^*(u_i^c-(x_i^c)^*) & = & 0, & i=0,\dots,m-1, \\ (s_l^x)_j^*(x_j^*-l_j^x) & = & 0, & j=0,\dots,n-1, \\ (s_u^x)_j^*(u_j^x-x_j^*) & = & 0, & j=0,\dots,n-1, \end{array}$$

are satisfied.

If (8.1) has an optimal solution and **MOSEK** solves the problem successfully, both the primal and dual solution are reported, including a status indicating the exact state of the solution.

8.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (8.1) is infeasible (has no feasible solution), **MOSEK** will report a certificate of primal infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

such that the objective value is strictly positive, i.e. a solution

$$(y^*, (s_l^c)^*, (s_u^c)^*, (s_l^x)^*, (s_u^x)^*)$$

to (8.4) so that

$$(l^c)^T (s_l^c)^* - (u^c)^T (s_u^c)^* + (l^x)^T (s_l^x)^* - (u^x)^T (s_u^x)^* > 0.$$

Such a solution implies that (8.4) is unbounded, and that (8.1) is infeasible.

Dual Infeasible Problems

If the problem (8.2) is infeasible (has no feasible solution), **MOSEK** will report a certificate of dual infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize
$$c^T x$$

subject to $\hat{l}^c \leq Ax \leq \hat{u}^c$, $\hat{l}^x \leq x \leq \hat{u}^x$, (8.5)

where

$$\hat{l}_i^c = \left\{ \begin{array}{ll} 0 & \text{if } l_i^c > -\infty, \\ -\infty & \text{otherwise,} \end{array} \right\} \quad \text{and} \quad \hat{u}_i^c := \left\{ \begin{array}{ll} 0 & \text{if } u_i^c < \infty, \\ \infty & \text{otherwise,} \end{array} \right\}$$

and

$$\hat{l}_{j}^{x} = \left\{ \begin{array}{ll} 0 & \text{if } l_{j}^{x} > -\infty, \\ -\infty & \text{otherwise,} \end{array} \right\} \quad \text{and} \quad \hat{u}_{j}^{x} := \left\{ \begin{array}{ll} 0 & \text{if } u_{j}^{x} < \infty, \\ \infty & \text{otherwise,} \end{array} \right\}$$

such that

$$c^T x < 0.$$

Such a solution implies that (8.5) is unbounded, and that (8.2) is infeasible.

In case that both the primal problem (8.1) and the dual problem (8.2) are infeasible, **MOSEK** will report only one of the two possible certificates — which one is not defined (**MOSEK** returns the first certificate found).

8.1.3 Minimalization vs. Maximalization

When the objective sense of problem (8.1) is maximization, i.e.

the objective sense of the dual problem changes to minimization, and the domain of all dual variables changes sign in comparison to (8.2). The dual problem thus takes the form

This means that the duality gap, defined in (8.3) as the primal minus the dual objective value, becomes nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective. The primal infeasibility certificate will be reported by **MOSEK** as a solution to the system

$$\begin{split} A^T y + s_l^x - s_u^x &= 0, \\ -y + s_l^c - s_u^c &= 0, \\ s_l^c, s_u^x, s_l^x, s_u^x &\leq 0, \end{split} \tag{8.6}$$

such that the objective value is strictly negative

$$(l^c)^T (s_l^c)^* - (u^c)^T (s_u^c)^* + (l^x)^T (s_l^x)^* - (u^x)^T (s_u^x)^* < 0.$$

Similarly, the certificate of dual infeasibility is an x satisfying the requirements of (8.5) such that $c^T x > 0$.

8.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 8.1) allowing conic domains to be specified for subsets of the problem variables. A conic optimization problem to be solved by **MOSEK** can be written as

minimize
$$c^T x + c^f$$

subject to $l^c \le Ax \le u^c$,
 $l^x \le x \le u^x$,
 $x \in \mathcal{K}$, (8.7)

where

- m is the number of constraints.
- \bullet *n* is the number of decision variables.
- $x \in \mathbb{R}^n$ is a vector of decision variables.
- $c \in \mathbb{R}^n$ is the linear part of the objective function.
- $c^f \in \mathbb{R}$ is a constant term in the objective
- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.
- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted. The set \mathcal{K} is a Cartesian product of convex cones, namely $\mathcal{K} = \mathcal{K}_1 \times \cdots \times \mathcal{K}_p$. Having the domain restriction $x \in \mathcal{K}$, is thus equivalent to

$$x^t \in \mathcal{K}_t \subseteq \mathbb{R}^{n_t}$$
,

where $x = (x^1, ..., x^p)$ is a partition of the problem variables. Please note that the *n*-dimensional Euclidean space \mathbb{R}^n is a cone itself, so simple linear variables are still allowed. The user only needs to specify subsets of variables which belong to non-trivial cones.

In this section we discuss the formulations which apply to the following cones supported by MOSEK:

- The set \mathbb{R}^n .
- The zero cone $\{(0,\ldots,0)\}.$
- Quadratic cone

$$Q^{n} = \left\{ x \in \mathbb{R}^{n} : x_{1} \ge \sqrt{\sum_{j=2}^{n} x_{j}^{2}} \right\}$$

• Rotated quadratic cone

$$Q_r^n = \left\{ x \in \mathbb{R}^n : 2x_1 x_2 \ge \sum_{j=3}^n x_j^2, \quad x_1 \ge 0, \quad x_2 \ge 0 \right\}.$$

• Primal exponential cone

$$K_{\text{exp}} = \{ x \in \mathbb{R}^3 : x_1 \ge x_2 \exp(x_3/x_2), \quad x_1, x_2 \ge 0 \}$$

as well as its dual

$$K_{\text{exp}}^* = \left\{ x \in \mathbb{R}^3 : x_1 \ge -x_3 e^{-1} \exp(x_2/x_3), \quad x_3 \le 0, x_1 \ge 0 \right\}.$$

• Primal power cone (with parameter $0 < \alpha < 1$)

$$\mathcal{P}_n^{\alpha, 1 - \alpha} = \left\{ x \in \mathbb{R}^n : x_1^{\alpha} x_2^{1 - \alpha} \ge \sqrt{\sum_{j=3}^n x_j^2}, \quad x_1, x_2 \ge 0 \right\}$$

as well as its dual

$$(\mathcal{P}_n^{\alpha,1-\alpha})^* = \left\{ x \in \mathbb{R}^n : \left(\frac{x_1}{\alpha}\right)^\alpha \left(\frac{x_2}{1-\alpha}\right)^{1-\alpha} \ge \sqrt{\sum_{j=3}^n x_j^2}, \quad x_1, x_2 \ge 0 \right\}.$$

MOSEK supports also the cone of positive semidefinite matrices. Since that is handled through a separate interface, we discuss it in Sec. 8.3.

8.2.1 Duality for Conic Optimization

Corresponding to the primal problem (8.7), there is a dual problem

maximize
$$(l^c)^T s_l^c - (u^c)^T s_u^c + (l^x)^T s_l^x - (u^x)^T s_u^x + c^f$$
 subject to
$$A^T y + s_l^x - s_u^x + s_n^x = c - y + s_l^c - s_u^c = 0,$$

$$s_l^c, s_u^c, s_l^x, s_u^x \ge 0,$$

$$s_n^x \in \mathcal{K}^*,$$
 (8.8)

where the dual cone \mathcal{K}^* is a Cartesian product of the cones dual to \mathcal{K}_t . In practice this means that s_n^x has one entry for each entry in x. Please note that the dual problem of the dual problem is identical to the original primal problem.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0, and we use the convention that the product of the bound value and the corresponding dual variable is 0. This is equivalent to removing variable $(s_l^x)_j$ from the dual problem. In other words:

$$l_i^x = -\infty \quad \Rightarrow \quad (s_l^x)_i = 0 \text{ and } l_i^x \cdot (s_l^x)_i = 0.$$

A solution

$$(y, s_l^c, s_u^c, s_l^x, s_u^x, s_n^x)$$

to the dual problem is feasible if it satisfies all the constraints in (8.8). If (8.8) has at least one feasible solution, then (8.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

$$(x^*, y^*, (s_l^c)^*, (s_u^c)^*, (s_l^x)^*, (s_u^x)^*, (s_u^x)^*)$$

is denoted a primal-dual feasible solution, if (x^*) is a solution to the primal problem (8.7) and $(y^*, (s_l^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*, (s_u^c)^*$ is a solution to the corresponding dual problem (8.8). We also define an auxiliary vector

$$(x^c)^* := Ax^*$$

containing the activities of linear constraints.

For a primal-dual feasible solution we define the *duality gap* as the difference between the primal and the dual objective value,

$$c^{T}x^{*} + c^{f} - \left\{ (l^{c})^{T}(s_{l}^{c})^{*} - (u^{c})^{T}(s_{u}^{c})^{*} + (l^{x})^{T}(s_{l}^{x})^{*} - (u^{x})^{T}(s_{u}^{x})^{*} + c^{f} \right\}$$

$$= \sum_{i=0}^{m-1} \left[(s_{l}^{c})_{i}^{*}((x_{i}^{c})^{*} - l_{i}^{c}) + (s_{u}^{c})_{i}^{*}(u_{i}^{c} - (x_{i}^{c})^{*}) \right]$$

$$+ \sum_{j=0}^{m-1} \left[(s_{l}^{x})_{j}^{*}(x_{j} - l_{j}^{x}) + (s_{u}^{x})_{j}^{*}(u_{j}^{x} - x_{j}^{*}) \right] + \sum_{j=0}^{m-1} (s_{n}^{x})_{j}^{*}x_{j}^{*} \ge 0$$

$$(8.9)$$

where the first relation can be obtained by transposing and multiplying the dual constraints (8.2) by x^* and $(x^c)^*$ respectively, and the second relation comes from the fact that each term in each sum is nonnegative. It follows that the primal objective will always be greater than or equal to the dual objective.

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the *complementarity conditions*

$$(s_l^c)_i^*((x_i^c)^* - l_i^c) = 0, \quad i = 0, \dots, m - 1,$$

$$(s_u^c)_i^*(u_i^c - (x_i^c)^*) = 0, \quad i = 0, \dots, m - 1,$$

$$(s_l^T)_j^*(x_j^* - l_j^T) = 0, \quad j = 0, \dots, n - 1,$$

$$(s_u^x)_j^*(u_j^T - x_j^*) = 0, \quad j = 0, \dots, n - 1,$$

$$\sum_{j=0}^{n-1} (s_n^x)_j^* x_j^* = 0.$$

$$(8.10)$$

are satisfied.

If (8.7) has an optimal solution and **MOSEK** solves the problem successfully, both the primal and dual solution are reported, including a status indicating the exact state of the solution.

8.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (8.7) is infeasible (has no feasible solution), **MOSEK** will report a certificate of primal infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

$$\begin{array}{ll} \text{maximize} & (l^c)^T s_l^c - (u^c)^T s_u^c + (l^x)^T s_l^x - (u^x)^T s_u^x \\ \text{subject to} & \\ A^T y + s_l^x - s_u^x + s_n^x = 0, \\ & -y + s_l^c - s_u^c = 0, \\ & s_l^c, s_u^c, s_l^x, s_u^x \geq 0, \\ & s_n^x \in \mathcal{K}^*, \end{array}$$

such that the objective value is strictly positive, i.e. a solution

$$(y^*, (s_l^c)^*, (s_u^c)^*, (s_l^x)^*, (s_u^x)^*, (s_u^x)^*)$$

to (8.11) so that

$$(l^c)^T (s_l^c)^* - (u^c)^T (s_u^c)^* + (l^x)^T (s_l^x)^* - (u^x)^T (s_u^x)^* > 0.$$

Such a solution implies that (8.11) is unbounded, and that (8.7) is infeasible.

Dual Infeasible Problems

If the problem (8.8) is infeasible (has no feasible solution), **MOSEK** will report a certificate of dual infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize
$$c^{T}x$$
subject to $\hat{l}^{c} \leq Ax \leq \hat{u}^{c}$, $\hat{l}^{x} \leq x \leq \hat{u}^{x}$, $x \in K$. (8.12)

where

$$\hat{l}_{i}^{c} = \begin{cases}
0 & \text{if } l_{i}^{c} > -\infty, \\
-\infty & \text{otherwise,}
\end{cases} \quad \text{and} \quad \hat{u}_{i}^{c} := \begin{cases}
0 & \text{if } u_{i}^{c} < \infty, \\
\infty & \text{otherwise,}
\end{cases}$$
(8.13)

and

$$\hat{l}_{j}^{x} = \left\{ \begin{array}{cc} 0 & \text{if } l_{j}^{x} > -\infty, \\ -\infty & \text{otherwise,} \end{array} \right\} \quad \text{and} \quad \hat{u}_{j}^{x} := \left\{ \begin{array}{cc} 0 & \text{if } u_{j}^{x} < \infty, \\ \infty & \text{otherwise,} \end{array} \right\}$$
(8.14)

such that

$$c^T x < 0$$
.

Such a solution implies that (8.12) is unbounded, and that (8.8) is infeasible.

In case that both the primal problem (8.7) and the dual problem (8.8) are infeasible, **MOSEK** will report only one of the two possible certificates — which one is not defined (**MOSEK** returns the first certificate found).

8.2.3 Minimalization vs. Maximalization

When the objective sense of problem (8.7) is maximization, i.e.

the objective sense of the dual problem changes to minimization, and the domain of all dual variables changes sign in comparison to (8.2). The dual problem thus takes the form

$$\begin{array}{ll} \text{minimize} & (l^c)^T s_l^c - (u^c)^T s_u^c + (l^x)^T s_l^x - (u^x)^T s_u^x + c^f \\ \text{subject to} & A^T y + s_l^x - s_u^x + s_n^x = c, \\ & - y + s_l^c - s_u^c = 0, \\ & s_l^c, s_u^c, s_l^x, s_u^x \leq 0, \\ & - s_n^x \in \mathcal{K}^* \\ \end{array}$$

This means that the duality gap, defined in (8.9) as the primal minus the dual objective value, becomes nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective. The primal infeasibility certificate will be reported by **MOSEK** as a solution to the system

$$A^{T}y + s_{l}^{x} - s_{u}^{x} + s_{n}^{x} = 0,$$

$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \leq 0,$$

$$-s_{n}^{x} \in \mathcal{K}^{*}$$
(8.15)

such that the objective value is strictly negative

$$(l^c)^T(s_l^c)^* - (u^c)^T(s_u^c)^* + (l^x)^T(s_l^x)^* - (u^x)^T(s_u^x)^* < 0.$$

Similarly, the certificate of dual infeasibility is an x satisfying the requirements of (8.12) such that $c^T x > 0$.

8.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 8.2) allowing positive semidefinite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input are defined exactly as in Sec. 8.2, and the discussion from that section applies verbatim to all properties of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize
$$\sum_{j=0}^{n-1} c_j x_j + \sum_{j=0}^{p-1} \left\langle \overline{C}_j, \overline{X}_j \right\rangle + c^f$$
subject to $l_i^c \leq \sum_{j=0}^{n-1} a_{ij} x_j + \sum_{j=0}^{p-1} \left\langle \overline{A}_{ij}, \overline{X}_j \right\rangle \leq u_i^c, \quad i = 0, \dots, m-1$

$$l_j^x \leq x_j \leq u_j^x, \quad j = 0, \dots, n-1$$

$$x \in \mathcal{K},$$

$$\overline{X}_j \in \mathcal{S}_+^{r_j}, \qquad j = 0, \dots, p-1$$

$$(8.16)$$

where the problem has p symmetric positive semidefinite variables $\overline{X}_j \in \mathcal{S}_+^{r_j}$ of dimension r_j with symmetric coefficient matrices $\overline{C}_j \in \mathcal{S}^{r_j}$ and $\overline{A}_{i,j} \in \mathcal{S}^{r_j}$. We use standard notation for the matrix inner product, i.e., for $U, V \in \mathbb{R}^{m \times n}$ we have

$$\langle U, V \rangle := \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} U_{ij} V_{ij}.$$

As always we write $A = (a_{i,j})$ for the linear coefficient matrix.

Duality

The definition of the dual problem (8.8) becomes:

maximize
$$(l^c)^T s_l^c - (u^c)^T s_u^c + (l^x)^T s_l^x - (u^x)^T s_u^x + c^f$$
 subject to
$$A^T y + s_l^x - s_u^x + s_n^x = c$$

$$-y + s_l^c - s_u^c = 0,$$

$$\overline{C}_j - \sum_{i=0}^{m-1} y_i \overline{A}_{ij} = \overline{S}_j, \qquad j = 0, \dots, p-1$$

$$s_l^c, s_u^c, s_l^x, s_u^x \ge 0,$$

$$s_n^x \in \mathcal{K}^*,$$

$$\overline{S}_j \in \mathcal{S}_+^{r_j}, \qquad j = 0, \dots, p-1.$$

$$(8.17)$$

The duality gap (8.9) is computed as:

$$c^{T}x^{*} + c^{f} - \left\{ (l^{c})^{T}(s_{l}^{c})^{*} - (u^{c})^{T}(s_{u}^{c})^{*} + (l^{x})^{T}(s_{l}^{x})^{*} - (u^{x})^{T}(s_{u}^{x})^{*} + c^{f} \right\}$$

$$= \sum_{i=0}^{m-1} \left[(s_{l}^{c})_{i}^{*}((x_{i}^{c})^{*} - l_{i}^{c}) + (s_{u}^{c})_{i}^{*}(u_{i}^{c} - (x_{i}^{c})^{*}) \right]$$

$$+ \sum_{j=0}^{m-1} \left[(s_{l}^{x})_{j}^{*}(x_{j} - l_{j}^{x}) + (s_{u}^{x})_{j}^{*}(u_{j}^{x} - x_{j}^{*}) \right] + \sum_{j=0}^{m-1} (s_{n}^{x})_{j}^{*}x_{j}^{*} + \sum_{j=0}^{p-1} \langle \overline{X}_{j}, \overline{S}_{j} \rangle \ge 0.$$

$$(8.18)$$

Complementarity conditions (8.10) include the additional relation:

$$\langle \overline{X}_i, \overline{S}_i \rangle = 0 \quad j = 0, \dots, p - 1.$$
 (8.19)

Infeasibility

A certificate of primal infeasibility (8.11) is now a feasible solution to:

maximize
$$(l^{c})^{T} s_{l}^{c} - (u^{c})^{T} s_{u}^{c} + (l^{x})^{T} s_{l}^{x} - (u^{x})^{T} s_{u}^{x}$$

subject to
$$A^{T} y + s_{l}^{x} - s_{u}^{x} + s_{n}^{x} = 0,$$

$$-y + s_{l}^{c} - s_{u}^{c} = 0,$$

$$\sum_{i=0}^{m-1} y_{i} \overline{A}_{ij} + \overline{S}_{j} = 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \ge 0,$$

$$s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \ge 0,$$

$$\overline{S}_{i} \in \mathcal{S}_{i}^{r_{j}},$$

$$i = 0, \dots, p-1.$$

$$(8.20)$$

such that the objective value is strictly positive.

Similarly, a dual infeasibility certificate (8.12) is a feasible solution to

minimize
$$\sum_{j=0}^{n-1} c_j x_j + \sum_{j=0}^{p-1} \left\langle \overline{C}_j, \overline{X}_j \right\rangle$$
subject to $\hat{l}_i^c \leq \sum_{j=0}^{n-1} a_{ij} x_j + \sum_{j=0}^{p-1} \left\langle \overline{A}_{ij}, \overline{X}_j \right\rangle \leq \hat{u}_i^c, \quad i = 0, \dots, m-1$

$$\hat{l}_j^x \leq x_j \leq \hat{u}_j^x, \quad j = 0, \dots, n-1$$

$$x \in \mathcal{K},$$

$$\overline{X}_j \in \mathcal{S}_+^{r_j}, \qquad j = 0, \dots, p-1$$

$$(8.21)$$

where the modified bounds are as in (8.13) and (8.14) and the objective value is strictly negative.

8.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

where all variables and bounds have the same meaning as for linear problems (see Sec. 8.1) and Q^o and all Q^k are symmetric matrices. Moreover, for convexity, Q^o must be a positive semidefinite matrix and Q^k must satisfy

$$\begin{array}{rcl} -\infty < l_k^c & \Rightarrow & Q^k \text{ is negative semidefinite,} \\ u_k^c < \infty & \Rightarrow & Q^k \text{ is positive semidefinite,} \\ -\infty < l_k^c \leq u_k^c < \infty & \Rightarrow & Q^k = 0. \end{array}$$

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

8.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization problem, see Modeling Cookbook and [And13]. In fact **MOSEK** does such conversion internally as a part of the solution process for the following reasons:

- the conic optimizer is numerically more robust than the one for quadratic problems.
- the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions, even though the conic reformulation usually has more constraints and variables than the original quadratic formulation.
- it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge) computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem as a conic problem from scratch because:

- it saves the computational overhead of the reformulation including the convexity check. A conic problem is convex by construction and hence no convexity check is needed for conic problems.
- usually the modeler can do a better reformulation than the automatic method because the modeler can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically constrained problems directly in conic form.

8.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem (8.22) is given by

$$\begin{array}{ll} \text{maximize} & (l^c)^T s_l^c - (u^c)^T s_u^c + (l^x)^T s_l^x - (u^x)^T s_u^x + \frac{1}{2} x^T \left\{ \sum_{k=0}^{m-1} y_k Q^k - Q^o \right\} x + c^f \\ \text{subject to} & A^T y + s_l^x - s_u^x + \left\{ \sum_{k=0}^{m-1} y_k Q^k - Q^o \right\} x = c, \\ & - y + s_l^c - s_u^c = 0, \\ & s_l^c, s_u^c, s_l^x, s_u^x \geq 0. \end{array}$$

The dual problem is related to the dual problem for linear optimization (see Sec. 8.1.1), but depends on the variable x which in general can not be eliminated. In the solutions reported by **MOSEK**, the value of x is the same for the primal problem (8.22) and the dual problem (8.23).

8.4.3 Infeasibility for Quadratic Optimization

In case **MOSEK** finds a problem to be infeasible it reports a certificate of infeasibility. We write them out explicitly for quadratic problems, that is when $Q^k = 0$ for all k and quadratic terms appear only in the objective Q^o . In this case the constraints both in the primal and dual problem are linear, and **MOSEK** produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (8.4) such that the objective value is strictly positive.

The certificate of dual infeasibility is a solution to the problem (8.5) together with an additional constraint

$$Q^o x = 0$$

such that the objective value is strictly negative.

Chapter 9

Optimizers

The most essential part of MOSEK are the optimizers:

- primal simplex (linear problems),
- dual simplex (linear problems),
- interior-point (linear, quadratic and conic problems),
- mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

• Presolve

- 1. Elimination: Reduce the size of the problem.
- 2. Dualizer: Choose whether to solve the primal or the dual form of the problem.
- 3. Scaling: Scale the problem for better numerical stability.

• Optimization

- 1. Optimize: Solve the problem using selected method.
- 2. Terminate: Stop the optimization when specific termination criteria have been met.
- 3. Report: Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes. The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We discuss the details of the above steps in the following sections.

9.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called presolve. The purpose of the presolve is to

- 1. remove redundant constraints,
- 2. eliminate fixed variables,
- 3. remove linear dependencies,
- 4. substitute out (implied) free variables, and
- 5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the returned solution is valid for the original problem. Hence, the presolve is completely transparent. For further details about the presolve phase, please see [AA95] and [AGMX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too much time or memory compared to the reduction in problem size gained it may be disabled. This is done by setting the parameter $MSK_IPAR_PRESOLVE_USE$ to $MSK_PRESOLVE_MODE_OFF$. The two most time-consuming steps of the presolve are

- the eliminator, and
- the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare cases the presolved problem may be harder to solve then the original problem. The presolve may also be infeasible although the original problem is not. If it is suspected that presolved problem is much harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter $MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES$ to 0. If that does not help, then trying to turn entire presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when concluding a variable is fixed or a constraint is redundant. If it happens that \mathbf{MOSEK} incorrectly concludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters $MSK_DPAR_PRESOLVE_TOL_X$ and $MSK_DPAR_PRESOLVE_TOL_S$. However, if reducing the parameters actually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using substitution. For instance, given the constraints

$$\begin{array}{rcl} y & = & \sum_{j} x_{j}, \\ y, x & \geq & 0, \end{array}$$

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the eliminator consumes too much time or memory compared to the reduction in problem size gained it may be disabled. This can be done by setting the parameter $MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES$ to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities. For instance, the three linear equalities

$$\begin{array}{rcl} x_1 + x_2 + x_3 & = & 1, \\ x_1 + 0.5x_2 & = & 0.5, \\ 0.5x_2 + x_3 & = & 0.5. \end{array}$$

contain exactly one linear dependency. This implies that one of the constraints can be dropped without changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical problems in the optimization phase. It is best practice to build models without linear dependencies, but that is not always easy for the user to control. If the linear dependencies are removed at the modeling stage, the linear dependency check can safely be disabled by setting the parameter $MSK_IPAR_PRESOLVE_LINDEP_USE$ to MSK_OFF .

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with them. **MOSEK** has built-in heuristics to determine if it is more efficient to solve the primal or dual problem. The form (primal or dual) is displayed in the **MOSEK** log and available as an information item from the solver. Should the internal heuristics not choose the most efficient form of the problem it may be worthwhile to set the dualizer manually by setting the parameters:

- MSK_IPAR_INTPNT_SOLVE_FORM: In case of the interior-point optimizer.
- \bullet $\textit{MSK_IPAR_SIM_SOLVE_FORM}:$ In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0e+9 or 1.0e-7, are often hard to solve. Significant digits may be truncated in calculations with finite precision, which can result in the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients should be avoided. In general, data around the same *order of magnitude* is preferred, and we will refer to a problem, satisfying this loose property, as being *well-scaled*. If the problem is not well scaled, **MOSEK** will try to scale (multiply) constraints and variables by suitable constants. **MOSEK** solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important to be aware that the optimizer terminates when the termination criterion is met on the scaled problem, therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems. The best solution of this issue is to reformulate the problem, making it better scaled.

By default **MOSEK** heuristically chooses a suitable scaling. The scaling for interior-point and simplex optimizers can be controlled with the parameters <code>MSK_IPAR_INTPNT_SCALING</code> and <code>MSK_IPAR_SIM_SCALING</code> respectively.

9.2 Linear Optimization

9.2.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using the parameter $MSK_IPAR_OPTIMIZER$.

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point optimizer? It is impossible to provide a general answer to this question. However, the interior-point optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently of problem size, but cannot perform warm-start. On the other hand the simplex method can take advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and computational improvements, which, in our experience, make it faster on average than the primal version. Still, it depends much on the problem structure and size. Setting the MSK_IPAR_OPTIMIZER parameter to MSK_OPTIMIZER_FREE_SIMPLEX instructs **MOSEK** to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to try all the options.

9.2.2 The Interior-point Optimizer

The purpose of this section is to provide information about the algorithm employed in the **MOSEK** interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that **MOSEK** solves linear optimization problems of standard form

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$. (9.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (9.1) has an optimal solution, is primal infeasible or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason why **MOSEK** solves the so-called homogeneous model

$$\begin{array}{rcl}
Ax - b\tau & = & 0, \\
A^{T}y + s - c\tau & = & 0, \\
-c^{T}x + b^{T}y - \kappa & = & 0, \\
x, s, \tau, \kappa & \geq & 0,
\end{array} \tag{9.2}$$

where y and s correspond to the dual variables in (9.1), and τ and κ are two additional scalar variables. Note that the homogeneous model (9.2) always has solution since

$$(x, y, s, \tau, \kappa) = (0, 0, 0, 0, 0)$$

is a solution, although not a very interesting one. Any solution

$$(x^*, y^*, s^*, \tau^*, \kappa^*)$$

to the homogeneous model (9.2) satisfies

$$x_i^* s_i^* = 0$$
 and $\tau^* \kappa^* = 0$.

Moreover, there is always a solution that has the property $\tau^* + \kappa^* > 0$.

First, assume that $\tau^* > 0$. It follows that

$$\begin{array}{rcl} A\frac{x^*}{\tau^*} & = & b, \\ A^T\frac{y^*}{\tau^*} + \frac{s^*}{\tau^*} & = & c, \\ -c^T\frac{x^*}{\tau^*} + b^T\frac{y^*}{\tau^*} & = & 0, \\ x^*, s^*, \tau^*, \kappa^* & \geq & 0. \end{array}$$

This shows that $\frac{x^*}{\tau^*}$ is a primal optimal solution and $(\frac{y^*}{\tau^*}, \frac{s^*}{\tau^*})$ is a dual optimal solution; this is reported as the optimal interior-point solution since

$$(x, y, s) = \left\{ \frac{x^*}{\tau^*}, \frac{y^*}{\tau^*}, \frac{s^*}{\tau^*} \right\}$$

is a primal-dual optimal solution (see Sec. 8.1 for the mathematical background on duality and optimality).

On other hand, if $\kappa^* > 0$ then

$$\begin{array}{rcl} Ax^* & = & 0, \\ A^Ty^* + s^* & = & 0, \\ -c^Tx^* + b^Ty^* & = & \kappa^*, \\ x^*, s^*, \tau^*, \kappa^* & \geq & 0. \end{array}$$

This implies that at least one of

$$c^T x^* < 0 (9.3)$$

or

$$b^T y^* > 0 (9.4)$$

is satisfied. If (9.3) is satisfied then x^* is a certificate of dual infeasibility, whereas if (9.4) is satisfied then y^* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required for a solution to the original problem is obtained. A solution to the homogeneous model can be computed using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion has to be employed.

In the k-th iteration of the interior-point algorithm a trial solution

$$(x^k, y^k, s^k, \tau^k, \kappa^k)$$

to homogeneous model is generated, where

$$x^k, s^k, \tau^k, \kappa^k > 0.$$

Optimal case

Whenever the trial solution satisfies the criterion

$$\left\| A \frac{x^{k}}{\tau^{k}} - b \right\|_{\infty} \leq \epsilon_{p} (1 + \|b\|_{\infty}),$$

$$\left\| A^{T} \frac{y^{k}}{\tau^{k}} + \frac{s^{k}}{\tau^{k}} - c \right\|_{\infty} \leq \epsilon_{d} (1 + \|c\|_{\infty}), \text{ and}$$

$$\min \left(\frac{(x^{k})^{T} s^{k}}{(\tau^{k})^{2}}, \left| \frac{c^{T} x^{k}}{\tau^{k}} - \frac{b^{T} y^{k}}{\tau^{k}} \right| \right) \leq \epsilon_{g} \max \left(1, \frac{\min \left(\left| c^{T} x^{k} \right|, \left| b^{T} y^{k} \right| \right)}{\tau^{k}} \right),$$

$$(9.5)$$

the interior-point optimizer is terminated and

$$\frac{(x^k, y^k, s^k)}{\tau^k}$$

is reported as the primal-dual optimal solution. The interpretation of (9.5) is that the optimizer is terminated if

- $\frac{x^k}{\tau^k}$ is approximately primal feasible,
- $\left\{\frac{y^k}{\tau^k}, \frac{s^k}{\tau^k}\right\}$ is approximately dual feasible, and
- the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

$$-\epsilon_i c^T x^k > \frac{\|c\|_{\infty}}{\max\left(1, \|b\|_{\infty}\right)} \|Ax^k\|_{\infty}$$

then the problem is declared dual infeasible and x^k is reported as a certificate of dual infeasibility. The motivation for this stopping criterion is as follows: First assume that $\|Ax^k\|_{\infty} = 0$; then x^k is an exact certificate of dual infeasibility. Next assume that this is not the case, i.e.

$$||Ax^k||_{\infty} > 0,$$

and define

$$\bar{x} := \epsilon_i \frac{\max(1, \|b\|_{\infty})}{\|Ax^k\|_{\infty} \|c\|_{\infty}} x^k.$$

It is easy to verify that

$$\|A\bar{x}\|_{\infty} = \epsilon_i \frac{\max\left(1, \|b\|_{\infty}\right)}{\|c\|_{\infty}} \text{ and } -c^T\bar{x} > 1,$$

which shows \bar{x} is an approximate certificate of dual infeasibility, where ε_i controls the quality of the approximation. A smaller value means a better approximation.

Primal infeasibility certificate

Finally, if

$$\epsilon_i b^T y^k > \frac{\|b\|_{\infty}}{\max\left(1, \|c\|_{\infty}\right)} \|A^T y^k + s^k\|_{\infty}$$

then y^k is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances ε_p , ε_d , ε_g and ε_i using parameters; see table for details.

ToleranceParameter	name			
ε_p	MSK_DPAR_INTPNT_TOL_PFEAS			
$arepsilon_d$	MSK_DPAR_INTPNT_TOL_DFEAS			
ε_g	MSK_DPAR_INTPNT_TOL_REL_GAP			
$arepsilon_i$	MSK_DPAR_INTPNT_TOL_INFEAS			

Table 9.1: Parameters employed in termination criterion

The default values of the termination tolerances are chosen such that for a majority of problems appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually is not worthwhile. However, an inspection of (9.5) reveals that the quality of the solution depends on $||b||_{\infty}$ and $||c||_{\infty}$; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by **MOSEK** will converge toward optimality and primal and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most cases all the tolerances, ε_p , ε_d , ε_q and ε_i , have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for example because of a stall or other numerical issues, then it will check if the solution found up to that point satisfies the same criteria with all tolerances multiplied by the value of $MSK_DPAR_INTPNT_CO_TOL_NEAR_REL$. If this is the case, the solution is still declared as optimal.

The basis identification discussed in Sec. 9.2.2 requires an optimal solution to work well; hence basis identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing step that computes an optimal basic solution starting from the optimal interior-point solution. More information about the basis identification procedure may be found in [AY96]. In the following we provide an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

- a basic solution is often more accurate than an interior-point solution,
- a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,
- a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is particularly appealing when solving continuous relaxations of mixed integer problems, as well as in all applications in which sparser solutions are preferred.

To illustrate how the basis identification routine works, we use the following trivial example:

$$\begin{array}{lll} \mbox{minimize} & x+y \\ \mbox{subject to} & x+y & = & 1, \\ & x,y \geq 0. \end{array}$$

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions, namely

$$\begin{array}{rcl} (x_1^*,y_1^*) & = & (1,0), \\ (x_2^*,y_2^*) & = & (0,1). \end{array}$$

The interior point algorithm will actually converge to the center of the optimal set, i.e. to $(x^*, y^*) = (1/2, 1/2)$ (to see this in **MOSEK** deactivate *Presolve*).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in polynomial time an initial basis for the simplex algorithm from the current interior point solution. This basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to make it optimal and hence the final *clean-up* phase be short. However, for some cases of ill-conditioned problems the additional simplex clean up phase may take of lot a time.

By default **MOSEK** performs a basis identification. However, if a basic solution is not needed, the basis identification procedure can be turned off. The parameters

- MSK_IPAR_INTPNT_BASIS,
- MSK_IPAR_BI_IGNORE_MAX_ITER, and
- MSK_IPAR_BI_IGNORE_NUM_ERROR

control when basis identification is performed.

The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter $MSK_IPAR_BI_CLEAN_OPTIMIZER$, and the maximum number of iterations can be set with $MSK_IPAR_BI_MAX_ITERATIONS$.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

```
Optimizer
          - threads
                                    : 1
Optimizer

    solved problem

                                    : the dual
Optimizer - Constraints
                                    : 2
                                    : 0
Optimizer - Cones
                                    : 6
                                                                                 : 0
Optimizer - Scalar variables
                                                         conic
Optimizer - Semi-definite variables: 0
                                                         scalarized
                                                                                 : 0
                                    : 0.00
Factor
           - setup time
                                                         dense det. time
                                                                                 : 0.00
Factor
           - ML order time
                                    : 0.00
                                                         GP order time
                                                                                 : 0.00
Factor
           - nonzeros before factor : 3
                                                         after factor
                                                                                : 3
Factor
             dense dim.
                                     : 0
                                                         flops
                                                                                :
                                                                                  7.00e+001
ITE PFEAS
             DFEAS
                      GFEAS
                               PRSTATUS
                                          POBJ
                                                             DOBJ
                                                                               MU
                                                                                         TIME
   1.0e+000 8.6e+000 6.1e+000 1.00e+000
                                          0.00000000e+000
                                                             -2.208000000e+003 1.0e+000 0.00
                                          -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
    1.1e+000 2.5e+000 1.6e-001 0.00e+000
   1.4e-001 3.4e-001 2.1e-002 8.36e-001
                                           -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
                                          -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
   2.4e-002 5.8e-002 3.6e-003 1.27e+000
   1.3e-004 3.2e-004 2.0e-005 1.08e+000
                                          -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5
   1.3e-008 3.2e-008 2.0e-009 1.00e+000
                                          -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
   1.3e-012 3.2e-012 2.0e-013 1.00e+000
                                          -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01
```

The first line displays the number of threads used by the optimizer and the second line indicates if the optimizer chose to solve the primal or dual problem (see <code>MSK_IPAR_INTPNT_SOLVE_FORM</code>). The next lines display the problem dimensions as seen by the optimizer, and the <code>Factor...</code> lines show various statistics. This is followed by the iteration log.

Using the same notation as in Sec. 9.2.2 the columns of the iteration log have the following meaning:

- ITE: Iteration index k.
- PFEAS: $||Ax^k b\tau^k||_{\infty}$. The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- DFEAS: $||A^Ty^k + s^k c\tau^k||_{\infty}$. The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- GFEAS: $|-c^Tx^k+b^Ty^k-\kappa^k|$. The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges to −1 if that is not the case.

- POBJ: $c^T x^k / \tau^k$. An estimate for the primal objective value.
- DOBJ: $b^T y^k / \tau^k$. An estimate for the dual objective value.
- MU: $\frac{(x^k)^T s^k + \tau^k \kappa^k}{n+1}$. The numbers in this column should always converge to zero.
- TIME: Time spent since the optimization started.

9.2.3 The Simplex Optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal solution to reduce the solution time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 9.2.1 for a discussion. **MOSEK** provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate. A basic solution is optimal when it is primal and dual feasible; see Sec. 8.1 for a definition of the primal and dual problem. Due to the fact that computations are performed in finite precision **MOSEK** allows violations of primal and dual feasibility within certain tolerances. The user can control the allowed primal and dual tolerances with the parameters <code>MSK_DPAR_BASIS_TOL_X</code> and <code>MSK_DPAR_BASIS_TOL_S</code>.

Setting the parameter MSK_IPAR_OPTIMIZER to MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to choose the best optimizer for the given problem and the available solution. The same parameter can also be used to force one of the variants.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce the solution time significantly. When a simplex optimizer starts from an existing solution it is said to perform a *warm-start*. If the user is solving a sequence of optimization problems by solving the problem, making modifications, and solving again, **MOSEK** will warm-start automatically.

By default **MOSEK** uses presolve when performing a warm-start. If the optimizer only needs very few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible when working in finite precision. MOSEK treats a "numerically unexpected behavior" event inside the optimizer as a *set-back*. The user can define how many set-backs the optimizer accepts; if that number is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur, trying one or more of the following suggestions may be worthwhile:

- Raise tolerances for allowed primal or dual feasibility: increase the value of
 - MSK_DPAR_BASIS_TOL_X, and
 - MSK_DPAR_BASIS_TOL_S.
- Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.
- Switch optimizer: Try another optimizer.
- Switch off crash: Set both MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to 0.
- Experiment with other pricing strategies: Try different values for the parameters

- MSK_IPAR_SIM_PRIMAL_SELECTION and
- MSK_IPAR_SIM_DUAL_SELECTION.
- If you are using warm-starts, in rare cases switching off this feature may improve stability. This is controlled by the $MSK_IPAR_SIM_HOTSTART$ parameter.
- Increase maximum number of set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS.
- If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See the parameter $MSK_IPAR_SIM_DEGEN$ for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimi Optimi	-		: the pr	rimal			
-	zer - Scalar v	ariables	: 1424	conic		: 0	
Optimi	zer - hotstart	5	: no				
ITER	DEGITER(%)	PFEAS	DFEAS	POBJ	DOBJ		TIME⊔
\hookrightarrow	TOTTIME						
0	0.00	1.43e+05	NA	6.5584140832e+03	NA		0.00 _L
\hookrightarrow	0.02						
1000	1.10	0.00e+00	NA	1.4588289726e+04	NA		0.13 _L
\hookrightarrow	0.14						
2000	0.75	0.00e+00	NA	7.3705564855e+03	NA		0.21 _L
\hookrightarrow	0.22						
3000	0.67	0.00e+00	NA	6.0509727712e+03	NA		0.29⊔
\hookrightarrow	0.31						
4000	0.52	0.00e+00	NA	5.5771203906e+03	NA		0.38⊔
\hookrightarrow	0.39						
4533	0.49	0.00e+00	NA	5.5018458883e+03	NA		0.42 _L
\hookrightarrow	0.44						

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log, with the following meaning:

- ITER: Number of iterations.
- DEGITER(%): Ratio of degenerate iterations.
- PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if the problem is primal feasible (when the primal variant is used).
- DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the problem is dual feasible (when the dual variant is used).
- POBJ: An estimate for the primal objective value (when the primal variant is used).
- DOBJ: An estimate for the dual objective value (when the dual variant is used).
- TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).
- TOTTIME: Time spent since optimization started (in seconds).

9.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available.

9.3.1 The homogeneous primal-dual problem

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple we will assume that **MOSEK** solves a conic optimization problem of the form:

$$\begin{array}{lll} \text{minimize} & c^T x \\ \text{subject to} & Ax & = & b, \\ & x \in \mathcal{K} & \end{array} \tag{9.6}$$

where K is a convex cone. The corresponding dual problem is

$$\begin{array}{lll} \text{maximize} & b^T y \\ \text{subject to} & A^T y + s & = & c, \\ & s \in \mathcal{K}^* \end{array} \tag{9.7}$$

where \mathcal{K}^* is the dual cone of \mathcal{K} . See Sec. 8.2 for definitions.

Since it is not known beforehand whether problem (9.6) has an optimal solution, is primal infeasible or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that **MOSEK** solves the so-called homogeneous model

$$Ax - b\tau = 0,$$

$$A^{T}y + s - c\tau = 0,$$

$$-c^{T}x + b^{T}y - \kappa = 0,$$

$$x \in \mathcal{K},$$

$$s \in \mathcal{K}^{*},$$

$$\tau, \kappa \geq 0,$$

$$(9.8)$$

where y and s correspond to the dual variables in (9.6), and τ and κ are two additional scalar variables. Note that the homogeneous model (9.8) always has a solution since

$$(x, y, s, \tau, \kappa) = (0, 0, 0, 0, 0)$$

is a solution, although not a very interesting one. Any solution

$$(x^*, y^*, s^*, \tau^*, \kappa^*)$$

to the homogeneous model (9.8) satisfies

$$(x^*)^T s^* + \tau^* \kappa^* = 0$$

i.e. complementarity. Observe that $x^* \in \mathcal{K}$ and $s^* \in \mathcal{K}^*$ implies

$$(x^*)^T s^* > 0$$

and therefore

$$\tau^* \kappa^* = 0$$

since $\tau^*, \kappa^* \geq 0$. Hence, at least one of τ^* and κ^* is zero.

First, assume that $\tau^* > 0$ and hence $\kappa^* = 0$. It follows that

$$\begin{array}{rcl} A\frac{x^*}{\tau^*} & = & b, \\ A^T\frac{y^*}{\tau^*} + \frac{s^*}{\tau^*} & = & c, \\ -c^T\frac{x^*}{\tau^*} + b^T\frac{y^*}{\tau^*} & = & 0, \\ x^*/\tau^* & \in & \mathcal{K}, \\ s^*/\tau^* & \in & \mathcal{K}^*. \end{array}$$

This shows that $\frac{x^*}{\tau^*}$ is a primal optimal solution and $(\frac{y^*}{\tau^*}, \frac{s^*}{\tau^*})$ is a dual optimal solution; this is reported as the optimal interior-point solution since

$$(x, y, s) = \left(\frac{x^*}{\tau^*}, \frac{y^*}{\tau^*}, \frac{s^*}{\tau^*}\right)$$

is a primal-dual optimal solution.

On other hand, if $\kappa^* > 0$ then

$$\begin{array}{rcl} Ax^* & = & 0, \\ A^Ty^* + s^* & = & 0, \\ -c^Tx^* + b^Ty^* & = & \kappa^*, \\ x^* & \in & \mathcal{K}, \\ s^* & \in & \mathcal{K}^*. \end{array}$$

This implies that at least one of

$$c^T x^* < 0 (9.9)$$

or

$$b^T y^* > 0 (9.10)$$

holds. If (9.9) is satisfied, then x^* is a certificate of dual infeasibility, whereas if (9.10) holds then y^* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required for a solution to the original problem is obtained. A solution to the homogeneous model can be computed using a primal-dual interior-point algorithm [And09].

9.3.2 Interior-point Termination Criterion

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration k of the interior-point algorithm a trial solution

$$(x^k, y^k, s^k, \tau^k, \kappa^k)$$

to the homogeneous model is generated, where

$$x^k \in \mathcal{K}, s^k \in \mathcal{K}^*, \tau^k, \kappa^k > 0.$$

Therefore, it is possible to compute the values:

$$\begin{array}{lll} \rho_p^k &=& \arg\min_{\rho} \left\{\rho \mid \left\|A\frac{x^k}{\tau^k} - b\right\|_{\infty} \leq \rho \varepsilon_p (1 + \|b\|_{\infty})\right\}, \\ \rho_d^k &=& \arg\min_{\rho} \left\{\rho \mid \left\|A^T\frac{y^k}{\tau^k} + \frac{s^k}{\tau^k} - c\right\|_{\infty} \leq \rho \varepsilon_d (1 + \|c\|_{\infty})\right\}, \\ \rho_g^k &=& \arg\min_{\rho} \left\{\rho \mid \left(\frac{(x^k)^Ts^k}{(\tau^k)^2}, |\frac{c^Tx^k}{\tau^k} - \frac{b^Ty^k}{\tau^k}|\right) \leq \rho \varepsilon_g \max\left(1, \frac{\min(|c^Tx^k|, |b^Ty^k|)}{\tau^k}\right)\right\}, \\ \rho_{pi}^k &=& \arg\min_{\rho} \left\{\rho \mid \left\|A^Ty^k + s^k\right\|_{\infty} \leq \rho \varepsilon_i b^Ty^k, \, b^Ty^k > 0\right\} \text{ and } \\ \rho_{di}^k &=& \arg\min_{\rho} \left\{\rho \mid \left\|Ax^k\right\|_{\infty} \leq -\rho \varepsilon_i c^Tx^k, \, c^Tx^k < 0\right\}. \end{array}$$

Note $\varepsilon_p, \varepsilon_d, \varepsilon_g$ and ε_i are nonnegative user specified tolerances.

Optimal Case

Observe ρ_p^k measures how far x^k/τ^k is from being a good approximate primal feasible solution. Indeed if $\rho_n^k \leq 1$, then

$$\left\| A \frac{x^k}{\tau^k} - b \right\|_{\infty} \le \varepsilon_p (1 + \|b\|_{\infty}). \tag{9.11}$$

This shows the violations in the primal equality constraints for the solution x^k/τ^k is small compared to the size of b given ε_p is small.

Similarly, if $\rho_d^k \leq 1$, then $(y^k, s^k)/\tau^k$ is an approximate dual feasible solution. If in addition $\rho_g \leq 1$, then the solution $(x^k, y^k, s^k)/\tau^k$ is approximate optimal because the associated primal and dual objective values are almost identical.

In other words if $\max(\rho_p^k, \rho_d^k, \rho_g^k) \leq 1$, then

$$\frac{(x^k, y^k, s^k)}{\tau^k}$$

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that $\rho_{di}^k \leq 1$ and hence

$$||Ax^k||_{\infty} \le -\varepsilon_i c^T x^k$$
 and $-c^T x^k > 0$

holds. Now in this case the problem is declared dual infeasible and x^k is reported as a certificate of dual infeasibility. The motivation for this stopping criterion is as follows. Let

$$\bar{x} := \frac{x^k}{-c^T x^k}$$

and it is easy to verify that

$$||A\bar{x}||_{\infty} \leq \varepsilon_i$$
 and $c^T\bar{x} = -1$

which shows \bar{x} is an approximate certificate of dual infeasibility, where ε_i controls the quality of the approximation.

Primal Infeasiblity Certificate

Next assume that $\rho_{pi}^k \leq 1$ and hence

$$||A^T y^k + s^k||_{\infty} \le \varepsilon_i b^T y^k$$
 and $b^T y^k > 0$

holds. Now in this case the problem is declared primal infeasible and (y^k, s^k) is reported as a certificate of primal infeasibility. The motivation for this stopping criterion is as follows. Let

$$\bar{y} := \frac{y^k}{b^T y^k}$$
 and $\bar{s} := \frac{s^k}{b^T y^k}$

and it is easy to verify that

$$||A^T \bar{y} + \bar{s}||_{\infty} \le \varepsilon_i \text{ and } b^T \bar{y} = 1$$

which shows (y^k, s^k) is an approximate certificate of dual infeasibility, where ε_i controls the quality of the approximation.

9.3.3 Adjusting optimality criteria

It is possible to adjust the tolerances ε_p , ε_d , ε_g and ε_i using parameters; see table for details.

Table 9.2: Parameters employed in termination criterion

ToleranceParameter	name
$arepsilon_p$	MSK_DPAR_INTPNT_CO_TOL_PFEAS
$arepsilon_d$	MSK_DPAR_INTPNT_CO_TOL_DFEAS
$arepsilon_g$	MSK_DPAR_INTPNT_CO_TOL_REL_GAP
ε_i	MSK_DPAR_INTPNT_CO_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually is not worthwhile. However, an inspection of (9.11) reveals that the quality of the solution depends on $\|b\|_{\infty}$ and $\|c\|_{\infty}$; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by **MOSEK** will converge toward optimality and primal and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most cases all the tolerances, ε_p , ε_d , ε_q and ε_i , have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for example because of a stall or other numerical issues, then it will check if the solution found up to that point satisfies the same criteria with all tolerances multiplied by the value of $MSK_DPAR_INTPNT_CO_TOL_NEAR_REL$. If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

9.3.4 The Interior-point Log

Below is a typical log output from the interior-point optimizer:

```
Optimizer
           - threads
                                     : 20
Optimizer
           - solved problem
                                     : the primal
Optimizer
          - Constraints
                                     : 1
Optimizer
          - Cones
                                     : 2
          - Scalar variables
Optimizer
Optimizer - Semi-definite variables: 0
                                                         scalarized
           - setup time
                                                                                 : 0.00
                                                         dense det. time
Factor
           - ML order time
                                    : 0.00
                                                         GP order time
                                                                                 : 0.00
Factor
           - nonzeros before factor : 1
                                                         after factor
                                                                                 : 1
                                    : 0
Factor
           - dense dim.
                                                         flops
                                                                                 : 1.70e+01
             DFEAS
                               PRSTATUS
                                                                                MII
ITE PFEAS
                      GFEAS
                                           POR.I
                                                             DOB.T
                                                                                         TIME
                      3.4e+00 0.00e+00
                                           2.414213562e+00
                                                             0.00000000e+00
   1.0e+00 2.9e-01
                                                                                1.0e+00
                                                                                         0.01
    2.7e-01
            7.9e-02
                      2.2e+00
                               8.83e-01
                                           6.969257574e-01
                                                             -9.685901771e-03
                                                                                2.7e-01
1
                                                                                         0.01
   6.5e-02
            1.9e-02
                      1.2e+00
                               1.16e+00
                                           7.606090061e-01
                                                             6.046141322e-01
                                                                                6.5e-02
                                                                                         0.01
    1.7e-03
             5.0e-04
                      2.2e-01
                               1.12e+00
                                           7.084385672e-01
                                                             7.045122560e-01
                                                                                1.7e-03
                                                                                         0.01
    1.4e-08
             4.2e-09
                      4.9e-08
                               1.00e+00
                                           7.071067941e-01
                                                             7.071067599e-01
                                                                                1.4e-08
```

The first line displays the number of threads used by the optimizer and the second line indicates if the optimizer chose to solve the primal or dual problem (see <code>MSK_IPAR_INTPNT_SOLVE_FORM</code>). The next lines display the problem dimensions as seen by the optimizer, and the <code>Factor...</code> lines show various statistics. This is followed by the iteration log.

Using the same notation as in Sec. 9.3.1 the columns of the iteration log have the following meaning:

- ITE: Iteration index k.
- PFEAS: $||Ax^k b\tau^k||_{\infty}$. The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- DFEAS: $||A^Ty^k + s^k c\tau^k||_{\infty}$. The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- GFEAS: $|-c^Tx^k+b^Ty^k-\kappa^k|$. The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges to -1 if that is not the case.
- POBJ: $c^T x^k / \tau^k$. An estimate for the primal objective value.
- DOBJ: $b^T y^k / \tau^k$. An estimate for the dual objective value.
- MU: $\frac{(x^k)^T s^k + \tau^k \kappa^k}{n+1}$. The numbers in this column should always converge to zero.
- TIME: Time spent since the optimization started (in seconds).

9.4 The Optimizer for Mixed-integer Problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained to be integer valued. Readers unfamiliar with integer optimization are recommended to consult some relevant literature, e.g. the book /Wol98/ by Wolsey.

9.4.1 The Mixed-integer Optimizer Overview

MOSEK can solve mixed-integer

- linear,
- quadratic and quadratically constrained, and
- conic

problems, except for mixed-integer semidefinite problems. The mixed-integer optimizer is specialized for solving linear and conic optimization problems. Pure quadratic and quadratically constrained problems are automatically converted to conic form.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is solved twice on the same computer with identical parameter settings and no time limit then the obtained solutions will be identical. If a time limit is set then this may not be case since the time taken to solve a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple cores during the optimization.

The solution process can be split into these phases:

- 1. Presolve: See Sec. 9.1.
- 2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound.
- 3. **Heuristic:** Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can be controlled by the parameter MSK_IPAR_MIO_HEURISTIC_LEVEL.
- 4. **Search:** The optimal solution is located by branching on integer variables.

9.4.2 Relaxations and bounds

It is important to understand that, in a worst-case scenario, the time required to solve integer optimization problems grows exponentially with the size of the problem (solving mixed-integer problems is NP-hard). For instance, a problem with n binary variables, may require time proportional to 2^n . The value of 2^n is huge even for moderate values of n.

In practice this implies that the focus should be on computing a near-optimal solution quickly rather than on locating an optimal solution. Even if the problem is only solved approximately, it is important to know how far the approximate solution is from an optimal one. In order to say something about the quality of an approximate solution the concept of *relaxation* is important.

Consider for example a mixed-integer optimization problem

$$z^* = \text{minimize} \quad c^T x$$
subject to $Ax = b$,
 $x \ge 0$
 $x_j \in \mathbb{Z}, \quad \forall j \in \mathcal{J}.$

$$(9.12)$$

It has the continuous relaxation

$$\underline{z} = \underset{\text{subject to}}{\text{minimize}} c^T x
\text{subject to} Ax = b,
x \ge 0$$
(9.13)

obtained simply by ignoring the integrality restrictions. The relaxation is a continuous problem, and therefore much faster to solve to optimality with a linear (or, in the general case, conic) optimizer. We call the optimal value \underline{z} the *objective bound*. The objective bound \underline{z} normally increases during the solution search process when the continuous relaxation is gradually refined.

Moreover, if \hat{x} is any feasible solution to (9.12) and

$$\bar{z} := c^T \hat{x}$$

then

$$\underline{z} \le z^* \le \bar{z}$$
.

These two inequalities allow us to estimate the quality of the integer solution: it is no further away from the optimum than $\bar{z} - \underline{z}$ in terms of the objective value. Whenever a mixed-integer problem is solved **MOSEK** reports this lower bound so that the quality of the reported solution can be evaluated.

9.4.3 Outer approximation for mixed-integer conic problems

The relaxations of mixed integer conic problems can be solved either as a nonlinear problem with the interior point algorithm (default) or with a linear outer approximation algorithm. The type of relaxation used can be set with <code>MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION</code>. The best value for this option is highly problem dependent.

9.4.4 Randomization

A number of internal algorithms of the mixed-integer solver are dependend on random tie-breaking. The random tie-breaking can have a significant impact on the path taken by the algorithm and the optimal solution returned. The random seed can be set with the parameter MSK_IPAR_MIO_SEED.

9.4.5 Termination Criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization problem, though in many practical cases it may be possible to find a sufficiently good solution. The issue of terminating the mixed-integer optimizer is rather delicate and the user has numerous possibilities of influencing it with various parameters. The mixed-integer optimizer employs a relaxed feasibility and optimality criterion to determine when a satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an *integer feasible* solution if the criterion

$$\min(x_j - \lfloor x_j \rfloor, \lceil x_j \rceil - x_j) \le \delta_1 \quad \forall j \in \mathcal{J}$$

is satisfied, meaning that x_j is at most δ_1 from the nearest integer.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

$$\bar{z} - \underline{z} \le \max(\delta_2, \delta_3 \max(\delta_4, |\bar{z}|))$$

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution as an optimal solution.

All the δ tolerances discussed above can be adjusted using suitable parameters — see Table 9.3.

Table 9.3: Tolerances for the mixed-integer optimizer.

Tolerance	Parameter name
δ_1	MSK_DPAR_MIO_TOL_ABS_RELAX_INT
δ_2	MSK_DPAR_MIO_TOL_ABS_GAP
δ_3	MSK_DPAR_MIO_TOL_REL_GAP
δ_4	MSK_DPAR_MIO_REL_GAP_CONST

In Table 9.4 some other common parameters affecting the integer optimizer termination criterion are shown.

Table 9.4: Other parameters affecting the integer optimizer termination criterion.

Parameter name	Explanation
MSK_IPAR_MIO_MAX_NUM_BRANCHES	Maximum number of branches allowed.
MSK_IPAR_MIO_MAX_NUM_RELAXS	Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS	Maximum number of feasible integer solutions allowed.

9.4.6 Speeding Up the Solution Process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

• Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to relax the termination criterion — see Sec. 9.4.5 for details.

- Specify a good initial solution: In many cases a good feasible solution is either known or easily computed using problem-specific knowledge. If a good feasible solution is known, it is usually worthwhile to use this as a starting point for the integer optimizer.
- Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one form and quite easy in another form. However, it is beyond the scope of this manual to discuss good formulations for mixed-integer problems. For discussions on this topic see for example [Wol98].

9.4.7 Understanding Solution Quality

To determine the quality of the solution one should check the following:

- The problem status and solution status returned by MOSEK, as well as constraint violations in case of suboptimal solutions.
- The optimality gap defined as

```
\epsilon = |(\text{objective value of feasible solution}) - (\text{objective bound})| = |\bar{z} - \underline{z}|.
```

which measures how much the located solution can deviate from the optimal solution to the problem. The optimality gap can be retrieved through the information item <code>MSK_DINF_MIO_OBJ_ABS_GAP</code>. Often it is more meaningful to look at the relative optimality gap normalized against the magnitude of the solution.

$$\epsilon_{\rm rel} = \frac{|\bar{z} - \underline{z}|}{\max(\delta_4, |\bar{z}|)}.$$

The relative optimality gap is available in the information item $MSK_DINF_MIO_OBJ_REL_GAP$.

9.4.8 The Mixed-integer Log

Below is a typical log output from the mixed-integer optimizer:

Presolv	ved proble	em: 6573 va	riables,	35728 constraints, 1	01258 non-zeros				
Presolv	ved proble	em: O gener	al intege	er, 4294 binary, 2279	continuous				
Clique	table siz	ze: 1636							
BRANCHE	ES RELAXS	ACT_NDS	DEPTH	BEST_INT_OBJ	BEST_RELAX_OBJ	REL_GAP(%)	TIME		
0	1	0	0	NA	1.8218819866e+07	NA	1.6		
0	1	0	0	1.8331557950e+07	1.8218819866e+07	0.61	3.5		
0	1	0	0	1.8300507546e+07	1.8218819866e+07	0.45	4.3		
Cut ger	neration s	started.							
0	2	0	0	1.8300507546e+07	1.8218819866e+07	0.45	5.3		
Cut ger	neration t	terminated.	Time = :	1.43					
0	3	0	0	1.8286893047e+07	1.8231580587e+07	0.30	7.5		
15	18	1	0	1.8286893047e+07	1.8231580587e+07	0.30	10.5		
31	34	1	0	1.8286893047e+07	1.8231580587e+07	0.30	11.1		
51	54	1	0	1.8286893047e+07	1.8231580587e+07	0.30	11.6		
91	94	1	0	1.8286893047e+07	1.8231580587e+07	0.30	12.4		
171	174	1	0	1.8286893047e+07	1.8231580587e+07	0.30	14.3		
331	334	1	0	1.8286893047e+07	1.8231580587e+07	0.30	17.9		
[]]								
Objecti	ive of bes	st integer	solution	: 1.825846762609e+07					
_	ojective b	-		: 1.823311032986e+07					
Constru	ict soluti	ion objecti	ve	: Not employed					
Construct solution # roundings			ings	: 0					
User of	ojective o	cut value	•	: 0					
	5	generated		: 117					
Numbe	er of Gomo	ory cuts		: 108					
	er of CMIF	•		: 9					

(continues on next page)

 $({\rm continued\ from\ previous\ page})$

Number	of	branches :	4425
Number	of	relaxations solved :	4410
Number	of	interior point iterations:	25
Number	of	simplex iterations :	221131

The first lines contain a summary of the problem as seen by the optimizer. This is followed by the iteration log. The columns have the following meaning:

- BRANCHES: Number of branches generated.
- RELAXS: Number of relaxations solved.
- ACT_NDS: Number of active branch bound nodes.
- DEPTH: Depth of the recently solved node.
- \bullet BEST_INT_OBJ: The best integer objective value, $\bar{z}.$
- BEST_RELAX_OBJ: The best objective bound, \underline{z} .
- REL_GAP(%): Relative optimality gap, $100\% \cdot \epsilon_{\rm rel}$
- TIME: Time (in seconds) from the start of optimization.

Following that a summary of the optimization process is printed.

Chapter 10

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimization problems with **MOSEK**.

10.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying that the model has been built or imported correctly. In later stages it can help revealing special structures within the model that may be used to tune the optimizer's performance or to identify the causes of numerical difficulties.

The problem analyzer is run from the command line using the -anapro argument and produces output similar to the following (this is the problem analyzer's survey of the aflow30a problem from the MIPLIB 2003 collection.)

** Structural	report					
	Dimensions					
	Constraints	Variables	Matrix var.	Cones		
	479	842	0	0		
	Constraint a	nd bound types	3			
	Free	Lower	Upper	Ranged	Fixed	
Constraints:	0	0	421	0	58	
Variables:	0	0	0	842	0	
	Integer cons	traint types				
	Binary	General				
	421	0				
*** Data repor	rt					
_	Nonzeros	Min	Max			
cj :	421	1.1e+01	5.0e+02			
Aij :		1.0e+00	1.0e+02			
	# finite	Min	Max			
blci :	58	1.0e+00	1.0e+01			
buci :	479	0.0e+00	1.0e+01			
blxj :	842	0.0e+00	0.0e+00			
buxj :	842	1.0e+00	1.0e+02			

The survey is divided into a structural and numerical report. The content should be self-explanatory.

10.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section. Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed manually, using the knowledge of the model structure. We discuss this approach in Sec. 7.3.

10.2.1 Automatic repair

The main idea can be described as follows. Consider the linear optimization problem with m constraints and n variables

which is assumed to be infeasible.

One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds. If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the optimal relaxation by solving an optimization problem. The problem

$$\begin{array}{lll} \text{minimize} & & p(v_l^c, v_u^c, v_u^x, v_u^x) \\ \text{subject to} & l^c & \leq & Ax + v_l^c - v_u^c & \leq & u^c, \\ & l^x & \leq & x + v_l^x - v_u^x & \leq & u^x, \\ & & v_l^c, v_u^c, v_l^x, v_u^x \geq 0 \end{array} \tag{10.1}$$

does exactly that. The additional variables $(v_l^c)_i$, $(v_u^c)_i$, $(v_l^x)_j$ and $(v_u^c)_j$ are elasticity variables because they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the elasticity variable $(v_l^c)_i$ controls how much the lower bound $(l^c)_i$ should be relaxed to make the problem feasible. Finally, the so-called penalty function

$$p(v_l^c, v_u^c, v_l^x, v_u^x)$$

is chosen so it penalizes changes to bounds. Given the weights

- $w_l^c \in \mathbb{R}^m$ (associated with l^c),
- $w_u^c \in \mathbb{R}^m$ (associated with u^c),
- $w_l^x \in \mathbb{R}^n$ (associated with l^x),
- $w_u^x \in \mathbb{R}^n$ (associated with u^x),

a natural choice is

$$p(v_l^c, v_u^c, v_l^x, v_u^x) = (w_l^c)^T v_l^c + (w_u^c)^T v_u^c + (w_l^x)^T v_l^x + (w_u^x)^T v_u^x.$$

Hence, the penalty function p() is a weighted sum of the elasticity variables and therefore the problem (10.1) keeps the amount of relaxation at a minimum. Please observe that

- the problem (10.1) is always feasible.
- a negative weight implies problem (10.1) is unbounded. For this reason if the value of a weight is negative **MOSEK** fixes the associated elasticity variable to zero. Clearly, if one or more of the weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that constraints may have different importance.

Caveats

Observe if the infeasible problem

$$\begin{array}{rll} \text{minimize} & x+z \\ \text{subject to} & x & = & -1, \\ & x & > & 0 \end{array}$$

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution. Another and more important caveat is that only a minimal repair is performed i.e. the repair that barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize
$$-10x_1$$
 $-9x_2$,
subject to $7/10x_1 + 1x_2 \le 630$,
 $1/2x_1 + 5/6x_2 \le 600$,
 $1x_1 + 2/3x_2 \le 708$,
 $1/10x_1 + 1/4x_2 \le 135$,
 x_1 , $x_2 \ge 0$,
 $x_2 \ge 650$. (10.2)

The problem (10.2) is contained in a file:

Listing 10.1: Problem (10.2) in LP format.

```
minimize
obj: - 10 x1 - 9 x2
st
c1: + 7e-01 x1 + x2 <= 630
c2: + 5e-01 x1 + 8.333333333e-01 x2 <= 600
c3: + x1 + 6.6666667e-01 x2 <= 708
c4: + 1e-01 x1 + 2.5e-01 x2 <= 135
bounds
x2 >= 650
end
```

Given the assumption that all weights are 1 the command

```
mosek -primalrepair -d MSK_IPAR_LOG_FEAS_REPAIR 3 feasrepair.lp
```

will form the repaired problem and solve it. The parameter $MSK_IPAR_LOG_FEAS_REPAIR$ controls the amount of log output from the repair. A value of 2 causes the optimal repair to printed out. The output from running the above command is:

```
MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86
Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00
Read summary
 Type
                   : LO (linear optimization problem)
 Objective sense : min
 Scalar variables : 2
 Matrix variables : 0
 Constraints
                   : 4
  Cones
                   : 0
```

(continues on next page)

(continued from previous page)

```
Time
                                                                         : 0.0
Problem
        Name
        Objective sense
                                                                                           : min
                                                                                             : LO (linear optimization problem)
        Constraints
                                                                                             : 4
        Cones
                                                                                             : 0
        Scalar variables
                                                                                            : 2
       Matrix variables
                                                                                                : 0
       Integer variables
Primal feasibility repair started.
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries
                                                                                                                                                                                                                                                                                                                    : 0.00
                                                                                                                                            : 1
                                                                                                                                                                                                                          time
Lin. dep. - tries
                                                                                                                                           : 1
                                                                                                                                                                                                                          time
                                                                                                                                                                                                                                                                                                                 : 0.00
Lin. dep. - number
                                                                                                                                            : 0
Presolve terminated. Time: 0.00
Problem
       Name
        Objective sense : min
        Type
                                                                                            : LO (linear optimization problem)
        Constraints
                                                                                             : 8
                                                                                              : 0
       Cones
        Scalar variables
                                                                                          : 14
       Matrix variables
                                                                                             : 0
       Integer variables
                                                                                             : 0
Optimizer - threads
                                                                                                                                           : 20
Optimizer - solved problem
Optimizer - Constraints
                                                                                                                                   : the primal
                                                                                                                                         : 2
Optimizer - Cones
                                                                                                                                            : 0
Optimizer - Scalar variables : 5
                                                                                                                                                                                                                                                                                                                   : 0
                                                                                                                                                                                                                          conic
Optimizer - Semi-definite variables: 0
                                                                                                                                                                                                                    scalarized
                                                                                                                                                                                                                                                                                                                 : 0
                                                                                                                                                                                                 dense det. time
GP order time
after factor
Factor - setup time : 0.00
Factor - ML order time : 0.00
                                                                                                                                                                                                                                                                                                               : 0.00
                                                                                                                                                                                                                                                                                                                : 0.00
Factor
                                     - nonzeros before factor : 3
                                                                                                                                                                                                                                                                                                                : 3
Factor - dense dim. : 0
                                                                                                                                                                                                                   flops
                                                                                                                                                                                                                                                                                                                : 5.00e+01
                                                                                                                                                                                                                                                                             MU
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ
                                                                                                                                                                                                                                    DOBJ
1 \quad 2.5 \\ \text{e} + 01 \quad 9.1 \\ \text{e} - 01 \quad 1.4 \\ \text{e} + 00 \quad 0.00 \\ \text{e} + 00 \quad 8.711262850 \\ \text{e} + 00 \quad 1.115287830 \\ \text{e} + 01 \quad 2.4 \\ \text{e} + 00 \quad 0.00 \\ \text{e} + 01 \quad 1.4 \\ \text{e} + 00 \quad 0.00 \\ \text{e} + 01 \quad 1.4 \\ \text{e} + 00 \quad 0.00 \\ \text{e} + 01 \quad
2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01 0.00
3 \quad 9.4 \text{e} - 02 \quad 3.4 \text{e} - 03 \quad 5.5 \text{e} - 03 \quad 1.33 \text{e} + 00 \quad 4.250700434 \text{e} + 01 \quad 4.258548510 \text{e} + 01 \quad 9.1 \text{e} - 03 \quad 0.00
          2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06 0.00
               2.0 \\ e-09 \\ \phantom{0}7.2 \\ e-11 \\ \phantom{0}1.1 \\ e-10 \\ \phantom{0}1.00 \\ e+00 \\ \phantom{0}4.250000000 \\ 0e+01 \\ \phantom{0}4.250000000 \\ 0e+01 \\ \phantom{0}1.9 \\ e-10 \\ \phantom{0}0.00 \\\phantom{0}0.00 \\ \phantom{0}0.00 \\\phantom{0}0.00 \\ \phantom{0}0.00 \\ \phantom{0}0.00 \\ \phantom{0}0.00 \\ \phantom{0}0.00 \\ \phantom{0}0.00 
Basis identification started.
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01
Basic solution summary
      Problem status : PRIMAL_AND_DUAL_FEASIBLE
        Solution status : OPTIMAL
      Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1e-13
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00
                                                                                                                                                                                                                                                                                      var: 0e+00
                                                                                                                                                                                                                                                                                     var: 9e-11
Optimal objective value of the penalty problem: 4.250000000000e+01
```

(continues on next page)

(continued from previous page)

```
Repairing bounds.
Increasing the upper bound 1.35e+02 on constraint 'c4' (3) with 2.25e+01.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.
Primal feasibility repair terminated.
Optimizer started.
Optimizer terminated. Time: 0.00
Interior-point solution summary
 Problem status : PRIMAL_AND_DUAL_FEASIBLE
 Solution status : OPTIMAL
 Primal. obj: -5.6700000000e+03
                                  nrm: 6e+02
                                                 Viol. con: 0e+00
                                                                     var: 0e+00
 Dual.
          obj: -5.670000000e+03
                                  nrm: 1e+01
                                                 Viol. con: 0e+00
                                                                     var: 0e+00
Basic solution summary
 Problem status : PRIMAL_AND_DUAL_FEASIBLE
 Solution status : OPTIMAL
 Primal. obj: -5.6700000000e+03
                                                 Viol. con: 0e+00
                                                                      var: 0e+00
                                  nrm: 6e+02
          obj: -5.6700000000e+03 nrm: 1e+01
                                                 Viol. con: 0e+00
                                                                     var: 0e+00
 Dual.
Optimizer summary
 Optimizer
                                                    time: 0.00
   Interior-point
                           - iterations : 0
                                                   time: 0.00
                                                   time: 0.00
     Basis identification -
                           - iterations : 0
                                                   time: 0.00
       Dual
                           - iterations : 0
                                                   time: 0.00
       Clean primal
                          - iterations : 0
                                                   time: 0.00
       Clean dual
                           - iterations : 0
                                                   time: 0.00
                                                   time: 0.00
   Simplex
     Primal simplex
                          - iterations : 0
                                                   time: 0.00
     Dual simplex
                           - iterations : 0
                                                   time: 0.00
   Mixed integer
                           - relaxations: 0
                                                   time: 0.00
```

In this case the optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound on variable x2 by 20.

10.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective value changes when the problem parameters are perturbed. E.g, assume that a bound represents the capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity analysis.

References

The book [Chv83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97] presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper [Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function coefficients.

10.3.1 Sensitivity Analysis for Linear Problems

The Optimal Objective Value Function

Assume that we are given the problem

$$z(l^{c}, u^{c}, l^{x}, u^{x}, c) = \underset{\text{subject to}}{\text{minimize}} c^{T}x$$

$$subject to \quad l^{c} \leq Ax \leq u^{c},$$

$$l^{x} \leq x \leq u^{x},$$

$$(10.3)$$

and we want to know how the optimal objective value changes as l_i^c is perturbed. To answer this question we define the perturbed problem for l_i^c as follows

$$\begin{array}{lll} f_{l_i^c}(\beta) & = & \text{minimize} & & c^T x \\ & & \text{subject to} & l^c + \beta e_i & \leq & Ax & \leq u^c, \\ & & l^x & \leq & x \leq & u^x, \end{array}$$

where e_i is the *i*-th column of the identity matrix. The function

$$f_{l_i^c}(\beta) \tag{10.4}$$

shows the optimal objective value as a function of β . Please note that a change in β corresponds to a perturbation in l_i^c and hence (10.4) shows the optimal objective value as a function of varying l_i^c with the other bounds fixed.

It is possible to prove that the function (10.4) is a piecewise linear and convex function, i.e. its graph may look like in Fig. 10.1 and Fig. 10.2.

Fig. 10.1: $\beta = 0$ is in the interior of linearity interval.

Clearly, if the function $f_{l_i^c}(\beta)$ does not change much when β is changed, then we can conclude that the optimal objective value is insensitive to changes in l_i^c . Therefore, we are interested in the rate of change in $f_{l_i^c}(\beta)$ for small changes in β —specifically the gradient

$$f'_{l^c}(0),$$

which is called the *shadow price* related to l_i^c . The shadow price specifies how the objective value changes for small changes of β around zero. Moreover, we are interested in the *linearity interval*

$$\beta \in [\beta_1, \beta_2]$$

Fig. 10.2: $\beta = 0$ is a breakpoint.

for which

$$f'_{l_i^c}(\beta) = f'_{l_i^c}(0).$$

Since $f_{l_i^c}$ is not a smooth function $f'_{l_i^c}$ may not be defined at 0, as illustrated in Fig. 10.2. In this case we can define a left and a right shadow price and a left and a right linearity interval.

The function $f_{l_i^c}$ considered only changes in l_i^c . We can define similar functions for the remaining parameters of the z defined in (10.3) as well:

$$f_{l_i^c}(\beta) = z(l^c + \beta e_i, u^c, l^x, u^x, c), \quad i = 1, \dots, m,$$

$$f_{u_i^c}(\beta) = z(l^c, u^c + \beta e_i, l^x, u^x, c), \quad i = 1, \dots, m,$$

$$f_{l_j^x}(\beta) = z(l^c, u^c, l^x + \beta e_j, u^x, c), \quad j = 1, \dots, n,$$

$$f_{u_j^x}(\beta) = z(l^c, u^c, l^x, u^x + \beta e_j, c), \quad j = 1, \dots, n,$$

$$f_{c_j}(\beta) = z(l^c, u^c, l^x, u^x, c + \beta e_j), \quad j = 1, \dots, n.$$

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the parameters u_i^c etc.

Equality Constraints

In **MOSEK** a constraint can be specified as either an equality constraint or a ranged constraint. If some constraint e_i^c is an equality constraint, we define the optimal value function for this constraint as

$$f_{e^c}(\beta) = z(l^c + \beta e_i, u^c + \beta e_i, l^x, u^x, c)$$

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simultaneously. Therefore, **MOSEK** will handle sensitivity analysis differently for a ranged constraint with $l_i^c = u_i^c$ and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chv83], is based on an optimal basis. This method may produce misleading results [RTV97] but is computationally cheap. This is the type of sensitivity analysis implemented in **MOSEK**.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis

computes the linearity interval $[\beta_1, \beta_2]$ so that the basis remains optimal for the perturbed problem. A shadow price associated with the linearity interval is also computed. However, it is well-known that an optimal basic solution may not be unique and therefore the result depends on the optimal basic solution employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for $\beta = 0$ then the basis type sensitivity method will only provide a subset of either the left or the right linearity interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete information. Hence, the results of the basis type sensitivity analysis should be used with care.

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the transportation cost between a number of production plants and stores. Each plant supplies a number of goods and each store has a given demand that must be met. Supply, demand and cost of transportation per unit are shown in Fig. 10.3.

Fig. 10.3: Supply, demand and cost of transportation.

If we denote the number of transported goods from location i to location j by x_{ij} , problem can be formulated as the linear optimization problem of minimizing

$$1x_{11} + 2x_{12} + 5x_{23} + 2x_{24} + 1x_{31} + 2x_{33} + 1x_{34}$$

subject to

The sensitivity parameters are shown in Table 10.1 and Table 10.2.

Table 10.1: Ranges and shadow prices related to bounds on constraints and variables.

Con.	β_1	β_2	σ_1	σ_2
1	-300.00	0.00	3.00	3.00
2	-700.00	$+\infty$	0.00	0.00
3	-500.00	0.00	3.00	3.00
4	-0.00	500.00	4.00	4.00
5	-0.00	300.00	5.00	5.00
6	-0.00	700.00	5.00	5.00
7	-500.00	700.00	2.00	2.00
Var.	β_1	β_2	σ_1	σ_2
x_{11}	$-\infty$	300.00	0.00	0.00
x_{12}	$-\infty$	100.00	0.00	0.00
x_{23}	$-\infty$	0.00	0.00	0.00
x_{24}	$-\infty$	500.00	0.00	0.00
x_{31}	$-\infty$	500.00	0.00	0.00
x_{33}	$-\infty$	500.00	0.00	0.00
x_{34}	-0.000000	500.00	2.00	2.00

Table 10.2: Ranges and shadow prices related to the objective coefficients.

Var.	β_1	β_2	σ_1	σ_2
c_1	$-\infty$	3.00	300.00	300.00
c_2	$-\infty$	∞	100.00	100.00
c_3	-2.00	∞	0.00	0.00
c_4	$-\infty$	2.00	500.00	500.00
c_5	-3.00	∞	500.00	500.00
c_6	$-\infty$	2.00	500.00	500.00
c_7	-2.00	∞	0.00	0.00

Examining the results from the sensitivity analysis we see that for constraint number 1 we have $\sigma_1 = 3$ and $\beta_1 = -300$, $\beta_2 = 0$.

If the upper bound on constraint 1 is decreased by

$$\beta \in [0, 300]$$

then the optimal objective value will increase by the value

$$\sigma_1\beta=3\beta.$$

10.3.2 Sensitivity Analysis with MOSEK

A sensitivity analysis can be performed with the **MOSEK** command line tool specifying the option -sen, e.g.

mosek myproblem.mps -sen sensitivity.ssp

where sensitivity.ssp is a file in the format described in the next section. The ssp file describes which parts of the problem the sensitivity analysis should be performed on, see Sec. 10.3.2.

By default results are written to a file named myproblem.sen. If necessary, this file name can be changed by setting the $MSK_SPAR_SENSITIVITY_RES_FILE_NAME$ parameter.

Sensitivity Analysis Specification File

MOSEK employs an MPS-like file format to specify on which model parameters the sensitivity analysis should be performed. The format of the sensitivity specification file is shown in Listing 10.2, where capitalized names are keywords, and names in brackets are names of the constraints and variables to be included in the analysis.

Listing 10.2: Sensitivity analysis file specification.

```
BOUNDS CONSTRAINTS

U|L|LU [cname1]

U|L|LU [cname2]-[cname3]

BOUNDS VARIABLES

U|L|LU [vname1]

U|L|LU [vname2]-[vname3]

OBJECTIVE VARIABLES

[vname1]

[vname2]-[vname3]
```

The sensitivity specification file has three sections, i.e.

- BOUNDS CONSTRAINTS: Specifies on which bounds on constraints the sensitivity analysis should be performed.
- BOUNDS VARIABLES: Specifies on which bounds on variables the sensitivity analysis should be performed.
- OBJECTIVE VARIABLES: Specifies on which objective coefficients the sensitivity analysis should be performed.

A line in the body of a section must begin with a whitespace. In the BOUNDS sections one of the keys L, U, and LU must appear next. These keys specify whether the sensitivity analysis is performed on the lower bound, on the upper bound, or on both the lower and the upper bound respectively. Next, a single constraint (variable) or range of constraints (variables) is specified.

Recall from Sec. 10.3.1 that equality constraints are handled in a special way. Sensitivity analysis of an equality constraint can be specified with either L, U, or LU, all indicating the same, namely that upper and lower bounds (which are equal) are perturbed simultaneously.

As an example consider

```
BOUNDS CONSTRAINTS
L "cons1"
U "cons2"
LU "cons3"-"cons6"
```

which requests that sensitivity analysis is performed on the lower bound of the constraint named cons1, on the upper bound of the constraint named cons2, and on both lower and upper bound on the constraints named cons3 to cons6.

It is allowed to use indexes instead of names, for instance

```
BOUNDS CONSTRAINTS
L "cons1"
U 2
LU 3 - 6
```

The character * indicates that the line contains a comment and is ignored.

Example: Sensitivity Analysis from Command Line

As an example consider problem (10.5): the sensitivity file shown below (included in the distribution among the examples).

Listing 10.3: Sensitivity file for problem (10.5).

The command

```
mosek transport.lp -sen sensitivity.ssp
```

produces the output file as follow

Listing 10.4: Results of sensitivity analysis

BOUNDS CONSTRAINTS					
INDEX NAME	BOUND	LEFTRANGE	RIGHTRANGE	LEFTPRICE	ш
→RIGHTPRICE					
0 c1	UP	-6.574875e-18	5.000000e+02	1.000000e+00	1.
→000000e+00					
2 c3	UP	-6.574875e-18	5.000000e+02	1.000000e+00	1.
⊶000000e+00					
	FIX	-5.000000e+02	6.574875e-18	2.000000e+00	2.
→000000e+00		4 000000 .00	0 554055 40	0.00000000	
4 c5 →000000e+00	FIX	-1.000000e+02	6.574875e-18	3.000000e+00	3.
	FIX	E 00000000100	6.574875e-18	2 00000000100	3.
⇒000000e+00	LTV	-5.000000e+02	0.5740750-10	3.000000e+00	٥.
300000e100					
BOUNDS VARIABLES					
INDEX NAME	BOUND	LEFTRANGE	RIGHTRANGE	LEFTPRICE	ш
⇔RIGHTPRICE					
2 x23	LO	-6.574875e-18	5.000000e+02	2.000000e+00	2.
→000000e+00					
	LO	-inf	5.000000e+02	0.000000e+00	0.
→000000e+00					
	LO	-inf	5.000000e+02	0.000000e+00	0.
→000000e+00	T 0		0.00000000	0 000000 .00	
	LO	-inf	3.000000e+02	0.000000e+00	0.
→000000e+00					
OBJECTIVE VARIABLES					
INDEX NAME		LEFTRANGE	RIGHTRANGE	LEFTPRICE	11
→RIGHTPRICE		TO A A W W A A AN WORK			J
0 x11		-inf	1.000000e+00	3.000000e+02	3.
⊶000000e+02					
2 x23		-2.000000e+00	+inf	0.000000e+00	0.
→000000e+00					

Controlling Log Output

Setting the parameter $MSK_IPAR_LOG_SENSITIVITY$ to 1 or 0 (default) controls whether or not the results from sensitivity calculations are printed to the message stream.

The parameter $MSK_IPAR_LOG_SENSITIVITY_OPT$ controls the amount of debug information on internal calculations from the sensitivity analysis.

Chapter 11

API Reference

- Optimizer parameters:
 - Double, Integer, String
 - Full list
 - Browse by topic
- Optimizer response codes
- Constants

11.1 Parameters grouped by topic

Analysis

- MSK_DPAR_ANA_SOL_INFEAS_TOL
- MSK_IPAR_ANA_SOL_BASIS
- MSK_IPAR_ANA_SOL_PRINT_VIOLATED
- MSK_IPAR_LOG_ANA_PRO

Basis identification

- MSK_DPAR_SIM_LU_TOL_REL_PIV
- MSK_IPAR_BI_CLEAN_OPTIMIZER
- MSK_IPAR_BI_IGNORE_MAX_ITER
- MSK_IPAR_BI_IGNORE_NUM_ERROR
- MSK_IPAR_BI_MAX_ITERATIONS
- MSK_IPAR_INTPNT_BASIS
- MSK_IPAR_LOG_BI
- MSK_IPAR_LOG_BI_FREQ

Conic interior-point method

- MSK_DPAR_INTPNT_CO_TOL_DFEAS
- MSK_DPAR_INTPNT_CO_TOL_INFEAS
- MSK_DPAR_INTPNT_CO_TOL_MU_RED
- MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
- MSK_DPAR_INTPNT_CO_TOL_PFEAS
- MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Data check

- MSK_DPAR_DATA_SYM_MAT_TOL
- MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
- MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
- MSK_DPAR_DATA_TOL_AIJ_HUGE
- MSK_DPAR_DATA_TOL_AIJ_LARGE
- MSK_DPAR_DATA_TOL_BOUND_INF
- MSK_DPAR_DATA_TOL_BOUND_WRN
- MSK_DPAR_DATA_TOL_C_HUGE
- MSK_DPAR_DATA_TOL_CJ_LARGE
- MSK_DPAR_DATA_TOL_QIJ
- MSK_DPAR_DATA_TOL_X
- MSK_DPAR_SEMIDEFINITE_TOL_APPROX
- MSK_IPAR_CHECK_CONVEXITY
- MSK_IPAR_LOG_CHECK_CONVEXITY

Data input/output

- MSK_IPAR_INFEAS_REPORT_AUTO
- MSK_IPAR_LOG_FILE
- MSK_IPAR_OPF_WRITE_HEADER
- MSK_IPAR_OPF_WRITE_HINTS
- MSK_IPAR_OPF_WRITE_LINE_LENGTH
- MSK_IPAR_OPF_WRITE_PARAMETERS
- MSK_IPAR_OPF_WRITE_PROBLEM
- MSK_IPAR_OPF_WRITE_SOL_BAS
- MSK_IPAR_OPF_WRITE_SOL_ITG
- MSK_IPAR_OPF_WRITE_SOL_ITR
- MSK_IPAR_OPF_WRITE_SOLUTIONS

- MSK_IPAR_PARAM_READ_CASE_NAME
- MSK_IPAR_PARAM_READ_IGN_ERROR
- MSK_IPAR_PTF_WRITE_TRANSFORM
- MSK_IPAR_READ_DEBUG
- MSK_IPAR_READ_KEEP_FREE_CON
- MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU
- MSK_IPAR_READ_LP_QUOTED_NAMES
- MSK_IPAR_READ_MPS_FORMAT
- MSK_IPAR_READ_MPS_WIDTH
- MSK_IPAR_READ_TASK_IGNORE_PARAM
- MSK_IPAR_SOL_READ_NAME_WIDTH
- MSK_IPAR_SOL_READ_WIDTH
- MSK_IPAR_WRITE_BAS_CONSTRAINTS
- MSK_IPAR_WRITE_BAS_HEAD
- MSK_IPAR_WRITE_BAS_VARIABLES
- MSK_IPAR_WRITE_COMPRESSION
- MSK_IPAR_WRITE_DATA_PARAM
- MSK_IPAR_WRITE_FREE_CON
- MSK_IPAR_WRITE_GENERIC_NAMES
- MSK_IPAR_WRITE_GENERIC_NAMES_IO
- MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
- MSK_IPAR_WRITE_INT_CONSTRAINTS
- MSK_IPAR_WRITE_INT_HEAD
- MSK_IPAR_WRITE_INT_VARIABLES
- MSK_IPAR_WRITE_LP_FULL_OBJ
- MSK_IPAR_WRITE_LP_LINE_WIDTH
- MSK_IPAR_WRITE_LP_QUOTED_NAMES
- MSK_IPAR_WRITE_LP_STRICT_FORMAT
- MSK_IPAR_WRITE_LP_TERMS_PER_LINE
- MSK_IPAR_WRITE_MPS_FORMAT
- MSK_IPAR_WRITE_MPS_INT
- MSK_IPAR_WRITE_PRECISION
- MSK_IPAR_WRITE_SOL_BARVARIABLES
- MSK_IPAR_WRITE_SOL_CONSTRAINTS
- MSK_IPAR_WRITE_SOL_HEAD
- MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

- MSK_IPAR_WRITE_SOL_VARIABLES
- MSK_IPAR_WRITE_TASK_INC_SOL
- MSK_IPAR_WRITE_XML_MODE
- MSK_SPAR_BAS_SOL_FILE_NAME
- MSK_SPAR_DATA_FILE_NAME
- MSK_SPAR_DEBUG_FILE_NAME
- MSK_SPAR_INT_SOL_FILE_NAME
- MSK_SPAR_ITR_SOL_FILE_NAME
- MSK_SPAR_MIO_DEBUG_STRING
- MSK_SPAR_PARAM_COMMENT_SIGN
- MSK_SPAR_PARAM_READ_FILE_NAME
- MSK_SPAR_PARAM_WRITE_FILE_NAME
- MSK_SPAR_READ_MPS_BOU_NAME
- MSK_SPAR_READ_MPS_OBJ_NAME
- MSK_SPAR_READ_MPS_RAN_NAME
- MSK_SPAR_READ_MPS_RHS_NAME
- MSK_SPAR_SENSITIVITY_FILE_NAME
- MSK_SPAR_SENSITIVITY_RES_FILE_NAME
- MSK_SPAR_SOL_FILTER_XC_LOW
- MSK_SPAR_SOL_FILTER_XC_UPR
- MSK_SPAR_SOL_FILTER_XX_LOW
- MSK_SPAR_SOL_FILTER_XX_UPR
- MSK_SPAR_STAT_FILE_NAME
- MSK_SPAR_STAT_KEY
- MSK_SPAR_STAT_NAME
- MSK_SPAR_WRITE_LP_GEN_VAR_NAME

Debugging

• MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Dual simplex

- MSK_IPAR_SIM_DUAL_CRASH
- MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
- MSK_IPAR_SIM_DUAL_SELECTION

Infeasibility report

- MSK_IPAR_INFEAS_GENERIC_NAMES
- MSK_IPAR_INFEAS_REPORT_LEVEL
- MSK_IPAR_LOG_INFEAS_ANA

Interior-point method

- MSK_DPAR_CHECK_CONVEXITY_REL_TOL
- MSK_DPAR_INTPNT_CO_TOL_DFEAS
- MSK_DPAR_INTPNT_CO_TOL_INFEAS
- MSK_DPAR_INTPNT_CO_TOL_MU_RED
- MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
- MSK_DPAR_INTPNT_CO_TOL_PFEAS
- MSK_DPAR_INTPNT_CO_TOL_REL_GAP
- MSK_DPAR_INTPNT_QO_TOL_DFEAS
- MSK_DPAR_INTPNT_QO_TOL_INFEAS
- MSK_DPAR_INTPNT_QO_TOL_MU_RED
- MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
- MSK_DPAR_INTPNT_QO_TOL_PFEAS
- MSK_DPAR_INTPNT_QO_TOL_REL_GAP
- MSK_DPAR_INTPNT_TOL_DFEAS
- MSK_DPAR_INTPNT_TOL_DSAFE
- MSK_DPAR_INTPNT_TOL_INFEAS
- MSK_DPAR_INTPNT_TOL_MU_RED
- MSK_DPAR_INTPNT_TOL_PATH
- MSK_DPAR_INTPNT_TOL_PFEAS
- MSK_DPAR_INTPNT_TOL_PSAFE
- MSK_DPAR_INTPNT_TOL_REL_GAP
- MSK_DPAR_INTPNT_TOL_REL_STEP
- MSK_DPAR_INTPNT_TOL_STEP_SIZE
- MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
- MSK_IPAR_BI_IGNORE_MAX_ITER
- MSK_IPAR_BI_IGNORE_NUM_ERROR
- MSK_IPAR_INTPNT_BASIS
- MSK_IPAR_INTPNT_DIFF_STEP
- MSK_IPAR_INTPNT_HOTSTART
- MSK_IPAR_INTPNT_MAX_ITERATIONS

- MSK_IPAR_INTPNT_MAX_NUM_COR
- MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
- MSK_IPAR_INTPNT_OFF_COL_TRH
- MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
- MSK_IPAR_INTPNT_ORDER_METHOD
- MSK_IPAR_INTPNT_PURIFY
- MSK_IPAR_INTPNT_REGULARIZATION_USE
- MSK_IPAR_INTPNT_SCALING
- MSK_IPAR_INTPNT_SOLVE_FORM
- MSK_IPAR_INTPNT_STARTING_POINT
- MSK_IPAR_LOG_INTPNT

License manager

- MSK_IPAR_CACHE_LICENSE
- MSK_IPAR_LICENSE_DEBUG
- MSK_IPAR_LICENSE_PAUSE_TIME
- MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
- MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
- MSK_IPAR_LICENSE_WAIT

Logging

- MSK_IPAR_LOG
- MSK_IPAR_LOG_ANA_PRO
- MSK_IPAR_LOG_BI
- MSK_IPAR_LOG_BI_FREQ
- MSK_IPAR_LOG_CUT_SECOND_OPT
- MSK_IPAR_LOG_EXPAND
- MSK_IPAR_LOG_FEAS_REPAIR
- MSK_IPAR_LOG_FILE
- MSK_IPAR_LOG_INCLUDE_SUMMARY
- MSK_IPAR_LOG_INFEAS_ANA
- MSK_IPAR_LOG_INTPNT
- MSK_IPAR_LOG_LOCAL_INFO
- MSK_IPAR_LOG_MIO
- MSK_IPAR_LOG_MIO_FREQ
- MSK_IPAR_LOG_ORDER

- MSK_IPAR_LOG_PRESOLVE
- MSK_IPAR_LOG_RESPONSE
- MSK_IPAR_LOG_SENSITIVITY
- MSK_IPAR_LOG_SENSITIVITY_OPT
- MSK_IPAR_LOG_SIM
- MSK_IPAR_LOG_SIM_FREQ
- MSK_IPAR_LOG_STORAGE

Mixed-integer optimization

- MSK_DPAR_MIO_MAX_TIME
- MSK_DPAR_MIO_REL_GAP_CONST
- MSK_DPAR_MIO_TOL_ABS_GAP
- MSK_DPAR_MIO_TOL_ABS_RELAX_INT
- MSK_DPAR_MIO_TOL_FEAS
- MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
- MSK_DPAR_MIO_TOL_REL_GAP
- MSK_IPAR_LOG_MIO
- MSK_IPAR_LOG_MIO_FREQ
- MSK_IPAR_MIO_BRANCH_DIR
- MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
- MSK_IPAR_MIO_CUT_CLIQUE
- MSK_IPAR_MIO_CUT_CMIR
- MSK_IPAR_MIO_CUT_GMI
- MSK_IPAR_MIO_CUT_IMPLIED_BOUND
- MSK_IPAR_MIO_CUT_KNAPSACK_COVER
- MSK_IPAR_MIO_CUT_SELECTION_LEVEL
- MSK_IPAR_MIO_FEASPUMP_LEVEL
- MSK_IPAR_MIO_HEURISTIC_LEVEL
- MSK_IPAR_MIO_MAX_NUM_BRANCHES
- MSK_IPAR_MIO_MAX_NUM_RELAXS
- MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
- MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
- MSK_IPAR_MIO_NODE_OPTIMIZER
- MSK_IPAR_MIO_NODE_SELECTION
- MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
- MSK_IPAR_MIO_PROBING_LEVEL

- MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
- MSK_IPAR_MIO_RINS_MAX_NODES
- MSK_IPAR_MIO_ROOT_OPTIMIZER
- MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL
- MSK_IPAR_MIO_SEED
- MSK_IPAR_MIO_VB_DETECTION_LEVEL

Output information

- MSK_IPAR_INFEAS_REPORT_LEVEL
- MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
- MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
- MSK_IPAR_LOG
- MSK_IPAR_LOG_BI
- MSK_IPAR_LOG_BI_FREQ
- MSK_IPAR_LOG_CUT_SECOND_OPT
- MSK_IPAR_LOG_EXPAND
- MSK_IPAR_LOG_FEAS_REPAIR
- MSK_IPAR_LOG_FILE
- MSK_IPAR_LOG_INCLUDE_SUMMARY
- MSK_IPAR_LOG_INFEAS_ANA
- MSK_IPAR_LOG_INTPNT
- MSK_IPAR_LOG_LOCAL_INFO
- MSK_IPAR_LOG_MIO
- MSK_IPAR_LOG_MIO_FREQ
- MSK_IPAR_LOG_ORDER
- MSK_IPAR_LOG_RESPONSE
- MSK_IPAR_LOG_SENSITIVITY
- MSK_IPAR_LOG_SENSITIVITY_OPT
- MSK_IPAR_LOG_SIM
- MSK_IPAR_LOG_SIM_FREQ
- MSK_IPAR_LOG_SIM_MINOR
- MSK_IPAR_LOG_STORAGE
- MSK_IPAR_MAX_NUM_WARNINGS

Overall solver

- MSK_IPAR_BI_CLEAN_OPTIMIZER
- MSK_IPAR_INFEAS_PREFER_PRIMAL
- MSK_IPAR_LICENSE_WAIT
- MSK_IPAR_MIO_MODE
- MSK_IPAR_OPTIMIZER
- MSK_IPAR_PRESOLVE_LEVEL
- MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
- MSK_IPAR_PRESOLVE_USE
- MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
- MSK_IPAR_SENSITIVITY_ALL
- MSK_IPAR_SENSITIVITY_OPTIMIZER
- MSK_IPAR_SENSITIVITY_TYPE
- MSK_IPAR_SOLUTION_CALLBACK

Overall system

- MSK_IPAR_AUTO_UPDATE_SOL_INFO
- MSK_IPAR_INTPNT_MULTI_THREAD
- MSK_IPAR_LICENSE_WAIT
- MSK_IPAR_LOG_STORAGE
- MSK_IPAR_MT_SPINCOUNT
- MSK_IPAR_NUM_THREADS
- MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
- MSK_IPAR_TIMING_LEVEL
- MSK_SPAR_REMOTE_ACCESS_TOKEN

Presolve

- MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
- MSK_DPAR_PRESOLVE_TOL_AIJ
- MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
- MSK_DPAR_PRESOLVE_TOL_S
- MSK_DPAR_PRESOLVE_TOL_X
- MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
- MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
- MSK_IPAR_PRESOLVE_LEVEL
- MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

- MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
- MSK_IPAR_PRESOLVE_LINDEP_USE
- MSK_IPAR_PRESOLVE_MAX_NUM_PASS
- MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
- MSK_IPAR_PRESOLVE_USE

Primal simplex

- MSK_IPAR_SIM_PRIMAL_CRASH
- MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
- MSK_IPAR_SIM_PRIMAL_SELECTION

Progress callback

• MSK_IPAR_SOLUTION_CALLBACK

Simplex optimizer

- MSK_DPAR_BASIS_REL_TOL_S
- MSK_DPAR_BASIS_TOL_S
- MSK_DPAR_BASIS_TOL_X
- MSK_DPAR_SIM_LU_TOL_REL_PIV
- MSK_DPAR_SIMPLEX_ABS_TOL_PIV
- MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
- MSK_IPAR_LOG_SIM
- MSK_IPAR_LOG_SIM_FREQ
- MSK_IPAR_LOG_SIM_MINOR
- MSK_IPAR_SENSITIVITY_OPTIMIZER
- MSK_IPAR_SIM_BASIS_FACTOR_USE
- MSK_IPAR_SIM_DEGEN
- MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
- MSK_IPAR_SIM_EXPLOIT_DUPVEC
- MSK_IPAR_SIM_HOTSTART
- MSK_IPAR_SIM_HOTSTART_LU
- MSK_IPAR_SIM_MAX_ITERATIONS
- MSK_IPAR_SIM_MAX_NUM_SETBACKS
- MSK_IPAR_SIM_NON_SINGULAR
- MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
- MSK_IPAR_SIM_REFACTOR_FREQ

- MSK_IPAR_SIM_REFORMULATION
- MSK_IPAR_SIM_SAVE_LU
- MSK_IPAR_SIM_SCALING
- MSK_IPAR_SIM_SCALING_METHOD
- MSK_IPAR_SIM_SEED
- MSK_IPAR_SIM_SOLVE_FORM
- MSK_IPAR_SIM_STABILITY_PRIORITY
- MSK_IPAR_SIM_SWITCH_OPTIMIZER

Solution input/output

- MSK_IPAR_INFEAS_REPORT_AUTO
- MSK_IPAR_SOL_FILTER_KEEP_BASIC
- MSK_IPAR_SOL_FILTER_KEEP_RANGED
- MSK_IPAR_SOL_READ_NAME_WIDTH
- MSK_IPAR_SOL_READ_WIDTH
- MSK_IPAR_WRITE_BAS_CONSTRAINTS
- MSK_IPAR_WRITE_BAS_HEAD
- MSK_IPAR_WRITE_BAS_VARIABLES
- MSK_IPAR_WRITE_INT_CONSTRAINTS
- MSK_IPAR_WRITE_INT_HEAD
- MSK_IPAR_WRITE_INT_VARIABLES
- MSK_IPAR_WRITE_SOL_BARVARIABLES
- MSK_IPAR_WRITE_SOL_CONSTRAINTS
- MSK_IPAR_WRITE_SOL_HEAD
- MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
- MSK_IPAR_WRITE_SOL_VARIABLES
- MSK_SPAR_BAS_SOL_FILE_NAME
- MSK_SPAR_INT_SOL_FILE_NAME
- MSK_SPAR_ITR_SOL_FILE_NAME
- MSK_SPAR_SOL_FILTER_XC_LOW
- MSK_SPAR_SOL_FILTER_XC_UPR
- MSK_SPAR_SOL_FILTER_XX_LOW
- MSK_SPAR_SOL_FILTER_XX_UPR

Termination criteria

- MSK_DPAR_BASIS_REL_TOL_S
- MSK_DPAR_BASIS_TOL_S
- MSK_DPAR_BASIS_TOL_X
- MSK_DPAR_INTPNT_CO_TOL_DFEAS
- MSK_DPAR_INTPNT_CO_TOL_INFEAS
- MSK_DPAR_INTPNT_CO_TOL_MU_RED
- MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
- MSK_DPAR_INTPNT_CO_TOL_PFEAS
- MSK_DPAR_INTPNT_CO_TOL_REL_GAP
- MSK_DPAR_INTPNT_QO_TOL_DFEAS
- MSK_DPAR_INTPNT_QO_TOL_INFEAS
- MSK_DPAR_INTPNT_QO_TOL_MU_RED
- MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
- MSK_DPAR_INTPNT_QO_TOL_PFEAS
- MSK_DPAR_INTPNT_QO_TOL_REL_GAP
- MSK_DPAR_INTPNT_TOL_DFEAS
- MSK_DPAR_INTPNT_TOL_INFEAS
- MSK_DPAR_INTPNT_TOL_MU_RED
- MSK_DPAR_INTPNT_TOL_PFEAS
- MSK_DPAR_INTPNT_TOL_REL_GAP
- MSK_DPAR_LOWER_OBJ_CUT
- MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
- MSK_DPAR_MIO_MAX_TIME
- MSK_DPAR_MIO_REL_GAP_CONST
- MSK_DPAR_MIO_TOL_REL_GAP
- MSK_DPAR_OPTIMIZER_MAX_TIME
- MSK_DPAR_UPPER_OBJ_CUT
- MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
- MSK_IPAR_BI_MAX_ITERATIONS
- MSK_IPAR_INTPNT_MAX_ITERATIONS
- MSK_IPAR_MIO_MAX_NUM_BRANCHES
- MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
- MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
- MSK_IPAR_SIM_MAX_ITERATIONS

Other

• MSK_IPAR_COMPRESS_STATFILE

11.2 Parameters (alphabetical list sorted by type)

- Double parameters
- Integer parameters
- String parameters

11.2.1 Double parameters

MSK_DPAR_ANA_SOL_INFEAS_TOL

If a constraint violates its bound with an amount larger than this value, the constraint name, index and violation will be printed by the solution analyzer.

Default 1e-6

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_ANA_SOL_INFEAS_TOL 1e-6 file

Groups Analysis

MSK_DPAR_BASIS_REL_TOL_S

Maximum relative dual bound violation allowed in an optimal basic solution.

Default 1.0e-12

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_BASIS_REL_TOL_S 1.0e-12 file

Groups Simplex optimizer, Termination criteria

MSK_DPAR_BASIS_TOL_S

Maximum absolute dual bound violation in an optimal basic solution.

Default 1.0e-6

Accepted [1.0e-9; +inf]

Example mosek -d MSK_DPAR_BASIS_TOL_S 1.0e-6 file

Groups Simplex optimizer, Termination criteria

MSK_DPAR_BASIS_TOL_X

Maximum absolute primal bound violation allowed in an optimal basic solution.

Default 1.0e-6

Accepted [1.0e-9; +inf]

Example mosek -d MSK_DPAR_BASIS_TOL_X 1.0e-6 file

Groups Simplex optimizer, Termination criteria

MSK_DPAR_CHECK_CONVEXITY_REL_TOL

This parameter controls when the full convexity check declares a problem to be non-convex. Increasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the Cholesky factor of a matrix which is required to be PSD (NSD). This parameter controls how much this non-negativity requirement may be violated.

If d_i is the pivot element for column i, then the matrix Q is considered to not be PSD if:

$$d_i \leq -|Q_{ii}|$$
 check convexity rel tol

Default 1e-10

```
Accepted [0; +inf]
```

Example mosek -d MSK_DPAR_CHECK_CONVEXITY_REL_TOL 1e-10 file

Groups Interior-point method

MSK_DPAR_DATA_SYM_MAT_TOL

Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix is smaller than this parameter in absolute terms **MOSEK** will treat the values as zero and generate a warning.

Default 1.0e-12

Accepted [1.0e-16; 1.0e-6]

Example mosek -d MSK_DPAR_DATA_SYM_MAT_TOL 1.0e-12 file

Groups Data check

MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default 1.0e20

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_SYM_MAT_TOL_HUGE 1.0e20 file

Groups Data check

MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

An element in a symmetric matrix which is larger than this value in absolute size causes a warning message to be printed.

Default 1.0e10

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_SYM_MAT_TOL_LARGE 1.0e10 file

Groups Data check

MSK_DPAR_DATA_TOL_AIJ_HUGE

An element in A which is larger than this value in absolute size causes an error.

Default 1.0e20

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_TOL_AIJ_HUGE 1.0e20 file

Groups Data check

MSK_DPAR_DATA_TOL_AIJ_LARGE

An element in A which is larger than this value in absolute size causes a warning message to be printed.

Default 1.0e10

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_TOL_AIJ_LARGE 1.0e10 file

Groups Data check

MSK_DPAR_DATA_TOL_BOUND_INF

Any bound which in absolute value is greater than this parameter is considered infinite.

Default 1.0e16

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_TOL_BOUND_INF 1.0e16 file

Groups Data check

MSK_DPAR_DATA_TOL_BOUND_WRN

If a bound value is larger than this value in absolute size, then a warning message is issued.

Default 1.0e8

```
Accepted [0.0; +inf]
```

Example mosek -d MSK_DPAR_DATA_TOL_BOUND_WRN 1.0e8 file

Groups Data check

MSK_DPAR_DATA_TOL_C_HUGE

An element in c which is larger than the value of this parameter in absolute terms is considered to be huge and generates an error.

Default 1.0e16

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_TOL_C_HUGE 1.0e16 file

Groups Data check

MSK_DPAR_DATA_TOL_CJ_LARGE

An element in c which is larger than this value in absolute terms causes a warning message to be printed.

Default 1.0e8

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_TOL_CJ_LARGE 1.0e8 file

Groups Data check

MSK_DPAR_DATA_TOL_QIJ

Absolute zero tolerance for elements in Q matrices.

Default 1.0e-16

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_TOL_QIJ 1.0e-16 file

Groups Data check

MSK_DPAR_DATA_TOL_X

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound is less than this value, then the lower and upper bound is considered identical.

Default 1.0e-8

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_DATA_TOL_X 1.0e-8 file

Groups Data check

MSK_DPAR_INTPNT_CO_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_CO_TOL_DFEAS 1.0e-8 file

See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-12

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_CO_TOL_INFEAS 1.0e-12 file

Groups Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_CO_TOL_MU_RED 1.0e-8 file

Groups Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Optimality tolerance used by the interior-point optimizer for conic problems. If **MOSEK** cannot compute a solution that has the prescribed accuracy then it will check if the solution found satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then the solution is also declared optimal.

Default 1000

Accepted [1.0; +inf]

Example mosek -d MSK_DPAR_INTPNT_CO_TOL_NEAR_REL 1000 file

Groups Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_CO_TOL_PFEAS 1.0e-8 file

See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Relative gap termination tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_CO_TOL_REL_GAP 1.0e-8 file

See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_QO_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_QO_TOL_DFEAS 1.0e-8 file

See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-12

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_QO_TOL_INFEAS 1.0e-12 file

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_QO_TOL_MU_RED 1.0e-8 file

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Optimality tolerance used by the interior-point optimizer for quadratic problems. If **MOSEK** cannot compute a solution that has the prescribed accuracy then it will check if the solution found satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then the solution is also declared optimal.

Default 1000

Accepted [1.0; +inf]

Example mosek -d MSK_DPAR_INTPNT_QO_TOL_NEAR_REL 1000 file

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_QO_TOL_PFEAS 1.0e-8 file

See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_REL_GAP

Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_QO_TOL_REL_GAP 1.0e-8 file

See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_TOL_DFEAS 1.0e-8 file

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_DSAFE

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it might be worthwhile to increase this value.

Default 1.0

Accepted [1.0e-4; +inf]

Example mosek -d MSK_DPAR_INTPNT_TOL_DSAFE 1.0 file

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-10

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_TOL_INFEAS 1.0e-10 file

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-16

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_TOL_MU_RED 1.0e-16 file

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_PATH

Controls how close the interior-point optimizer follows the central path. A large value of this parameter means the central path is followed very closely. On numerically unstable problems it may be worthwhile to increase this parameter.

Default 1.0e-8

Accepted [0.0; 0.9999]

Example mosek -d MSK_DPAR_INTPNT_TOL_PATH 1.0e-8 file

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 file

Groups Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_PSAFE

Controls the initial primal starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be worthwhile to increase this value.

Default 1.0

Accepted [1.0e-4; +inf]

Example mosek -d MSK_DPAR_INTPNT_TOL_PSAFE 1.0 file

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_REL_GAP

Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8

Accepted [1.0e-14; +inf]

Example mosek -d MSK_DPAR_INTPNT_TOL_REL_GAP 1.0e-8 file

Groups Termination criteria, Interior-point method

MSK_DPAR_INTPNT_TOL_REL_STEP

Relative step size to the boundary for linear and quadratic optimization problems.

Default 0.9999

Accepted [1.0e-4; 0.999999]

Example mosek -d MSK_DPAR_INTPNT_TOL_REL_STEP 0.9999 file

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_STEP_SIZE

Minimal step size tolerance. If the step size falls below the value of this parameter, then the interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does not make any progress and therefore it is better to stop.

Default 1.0e-6

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_INTPNT_TOL_STEP_SIZE 1.0e-6 file

Groups Interior-point method

MSK_DPAR_LOWER_OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is outside the interval [$MSK_DPAR_LOWER_OBJ_CUT$, $MSK_DPAR_UPPER_OBJ_CUT$], then \mathbf{MOSEK} is terminated.

Default -1.0e30

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_DPAR_LOWER_OBJ_CUT -1.0e30 file

See also MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

Groups Termination criteria

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

If the lower objective cut is less than the value of this parameter value, then the lower objective cut i.e. $MSK_DPAR_LOWER_OBJ_CUT$ is treated as $-\infty$.

Default -0.5e30

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH -0.5e30 file

Groups Termination criteria

MSK_DPAR_MIO_MAX_TIME

This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number means infinity.

Default -1.0

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_DPAR_MIO_MAX_TIME -1.0 file

Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_REL_GAP_CONST

This value is used to compute the relative gap for the solution to an integer optimization problem.

Default 1.0e-10

Accepted [1.0e-15; +inf]

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_DPAR_MIO_REL_GAP_CONST} \ \mathtt{1.0e-10} \ \mathtt{file}$

Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_TOL_ABS_GAP

Absolute optimality tolerance employed by the mixed-integer optimizer.

Default 0.0

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_MIO_TOL_ABS_GAP 0.0 file

Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance then an integer constraint is assumed to be satisfied.

Default 1.0e-5

Accepted [1e-9; +inf]

Example mosek -d MSK_DPAR_MIO_TOL_ABS_RELAX_INT 1.0e-5 file

Groups Mixed-integer optimization

${\tt MSK_DPAR_MIO_TOL_FEAS}$

Feasibility tolerance for mixed integer solver.

Default 1.0e-6

```
Accepted [1e-9; 1e-3]
```

Example mosek -d MSK_DPAR_MIO_TOL_FEAS 1.0e-6 file

Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

If the relative improvement of the dual bound is smaller than this value, the solver will terminate the root cut generation. A value of 0.0 means that the value is selected automatically.

Default 0.0

Accepted [0.0; 1.0]

Example mosek -d MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT 0.0 file

Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_GAP

Relative optimality tolerance employed by the mixed-integer optimizer.

Default 1.0e-4

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_MIO_TOL_REL_GAP 1.0e-4 file

Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_OPTIMIZER_MAX_TIME

Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number means infinity.

Default -1.0

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_DPAR_OPTIMIZER_MAX_TIME -1.0 file

Groups Termination criteria

MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

Absolute tolerance employed by the linear dependency checker.

Default 1.0e-6

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP 1.0e-6 file

 ${\bf Groups}\ {\it Presolve}$

MSK_DPAR_PRESOLVE_TOL_AIJ

Absolute zero tolerance employed for a_{ij} in the presolve.

Default 1.0e-12

Accepted [1.0e-15; +inf]

Example mosek -d MSK_DPAR_PRESOLVE_TOL_AIJ 1.0e-12 file

Groups Presolve

MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

Relative tolerance employed by the linear dependency checker.

Default 1.0e-10

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_PRESOLVE_TOL_REL_LINDEP 1.0e-10 file

Groups Presolve

MSK_DPAR_PRESOLVE_TOL_S

Absolute zero tolerance employed for s_i in the presolve.

Default 1.0e-8

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_PRESOLVE_TOL_S 1.0e-8 file

Groups Presolve

MSK_DPAR_PRESOLVE_TOL_X

Absolute zero tolerance employed for x_j in the presolve.

Default 1.0e-8

Accepted [0.0; +inf]

Example mosek -d MSK_DPAR_PRESOLVE_TOL_X 1.0e-8 file

Groups Presolve

MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

This parameter determines when columns are dropped in incomplete Cholesky factorization during reformulation of quadratic problems.

Default 1e-15

Accepted [0; +inf]

Example mosek -d MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL 1e-15 file

Groups Interior-point method

MSK_DPAR_SEMIDEFINITE_TOL_APPROX

Tolerance to define a matrix to be positive semidefinite.

Default 1.0e-10

Accepted [1.0e-15; +inf]

Example mosek -d MSK_DPAR_SEMIDEFINITE_TOL_APPROX 1.0e-10 file

Groups Data check

MSK_DPAR_SIM_LU_TOL_REL_PIV

Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex optimizers and in the basis identification procedure. A value closer to 1.0 generally improves numerical stability but typically also implies an increase in the computational work.

Default 0.01

Accepted [1.0e-6; 0.999999]

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_DPAR_SIM_LU_TOL_REL_PIV} \ \mathtt{0.01} \ \mathtt{file}$

Groups Basis identification, Simplex optimizer

MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Absolute pivot tolerance employed by the simplex optimizers.

Default 1.0e-7

Accepted [1.0e-12; +inf]

Example mosek -d MSK_DPAR_SIMPLEX_ABS_TOL_PIV 1.0e-7 file

Groups Simplex optimizer

MSK_DPAR_UPPER_OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is outside the interval [MSK_DPAR_LOWER_OBJ_CUT, MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is terminated.

Default 1.0e30

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_DPAR_UPPER_OBJ_CUT 1.0e30 file

See also MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

Groups Termination criteria

${\tt MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH}$

If the upper objective cut is greater than the value of this parameter, then the upper objective cut $MSK_DPAR_UPPER_OBJ_CUT$ is treated as ∞ .

Default 0.5e30

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH 0.5e30 file

Groups Termination criteria

11.2.2 Integer parameters

MSK_IPAR_ANA_SOL_BASIS

Controls whether the basis matrix is analyzed in solution analyzer.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_ANA_SOL_BASIS MSK_ON file

Groups Analysis

MSK_IPAR_ANA_SOL_PRINT_VIOLATED

A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All constraints violated by more than the value set by the parameter $MSK_DPAR_ANA_SOL_INFEAS_TOL$ will be printed.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_ANA_SOL_PRINT_VIOLATED MSK_OFF file

Groups Analysis

MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Controls whether the elements in each column of A are sorted before an optimization is performed. This is not required but makes the optimization more deterministic.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_AUTO_SORT_A_BEFORE_OPT MSK_OFF file

Groups Debugging

MSK_IPAR_AUTO_UPDATE_SOL_INFO

Controls whether the solution information items are automatically updated after an optimization is performed.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_AUTO_UPDATE_SOL_INFO MSK_OFF file

Groups Overall system

MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with -1 in the right position. However, if this parameter is set to MSK_ON , -1 is replaced by 1.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE MSK_OFF file

 ${\bf Groups} \ \textit{Simplex optimizer}$

MSK_IPAR_BI_CLEAN_OPTIMIZER

Controls which simplex optimizer is used in the clean-up phase. Anything else than $MSK_OPTIMIZER_PRIMAL_SIMPLEX$ or $MSK_OPTIMIZER_DUAL_SIMPLEX$ is equivalent to $MSK_OPTIMIZER_FREE_SIMPLEX$.

Default FREE

Accepted FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

Example mosek -d MSK_IPAR_BI_CLEAN_OPTIMIZER MSK_OPTIMIZER_FREE file Groups Basis identification, Overall solver

MSK_IPAR_BI_IGNORE_MAX_ITER

If the parameter $MSK_IPAR_INTPNT_BASIS$ has the value $MSK_BI_NO_ERROR$ and the interior-point optimizer has terminated due to maximum number of iterations, then basis identification is performed if this parameter has the value MSK_ON .

Default OFF
Accepted ON. OFF

Example mosek -d MSK_IPAR_BI_IGNORE_MAX_ITER MSK_OFF file

Groups Interior-point method, Basis identification

MSK_IPAR_BI_IGNORE_NUM_ERROR

If the parameter $MSK_IPAR_INTPNT_BASIS$ has the value $MSK_BI_NO_ERROR$ and the interior-point optimizer has terminated due to a numerical problem, then basis identification is performed if this parameter has the value MSK_ON .

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_BI_IGNORE_NUM_ERROR MSK_OFF file

Groups Interior-point method, Basis identification

MSK_IPAR_BI_MAX_ITERATIONS

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis identification.

Default 1000000

Accepted [0; +inf]

Example mosek -d MSK_IPAR_BI_MAX_ITERATIONS 1000000 file

Groups Basis identification, Termination criteria

MSK_IPAR_CACHE_LICENSE

Specifies if the license is kept checked out for the lifetime of the **MOSEK** environment/model/process (MSK_-ON) or returned to the server immediately after the optimization (MSK_-OFF) .

Check-in and check-out of licenses have an overhead. Frequent communication with the license server should be avoided.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_CACHE_LICENSE MSK_ON file

Groups License manager

MSK_IPAR_CHECK_CONVEXITY

Specify the level of convexity check on quadratic problems.

Default FULL

Accepted NONE, SIMPLE, FULL

Example mosek -d MSK_IPAR_CHECK_CONVEXITY MSK_CHECK_CONVEXITY_FULL file

Groups Data check

MSK_IPAR_COMPRESS_STATFILE

Control compression of stat files.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_COMPRESS_STATFILE MSK_ON file

MSK_IPAR_INFEAS_GENERIC_NAMES

Controls whether generic names are used when an infeasible subproblem is created.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_INFEAS_GENERIC_NAMES MSK_OFF file

Groups Infeasibility report

MSK_IPAR_INFEAS_PREFER_PRIMAL

If both certificates of primal and dual infeasibility are supplied then only the primal is used when this option is turned on.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_INFEAS_PREFER_PRIMAL MSK_ON file

Groups Overall solver

MSK_IPAR_INFEAS_REPORT_AUTO

Controls whether an infeasibility report is automatically produced after the optimization if the problem is primal or dual infeasible.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_OFF file

Groups Data input/output, Solution input/output

MSK_IPAR_INFEAS_REPORT_LEVEL

Controls the amount of information presented in an infeasibility report. Higher values imply more information.

Default 1

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_INFEAS_REPORT_LEVEL 1 file

Groups Infeasibility report, Output information

MSK_IPAR_INTPNT_BASIS

Controls whether the interior-point optimizer also computes an optimal basis.

Default ALWAYS

Accepted NEVER, ALWAYS, NO_ERROR, IF_FEASIBLE, RESERVERED

Example mosek -d MSK_IPAR_INTPNT_BASIS MSK_BI_ALWAYS file

See also MSK_IPAR_BI_IGNORE_MAX_ITER, MSK_IPAR_BI_IGNORE_NUM_ERROR, MSK_IPAR_BI_MAX_ITERATIONS, MSK_IPAR_BI_CLEAN_OPTIMIZER

Groups Interior-point method, Basis identification

MSK_IPAR_INTPNT_DIFF_STEP

Controls whether different step sizes are allowed in the primal and dual space.

Default ON

Accepted

- \bullet $\mathit{ON}\colon \textsc{Different}$ step sizes are allowed.
- \bullet OFF : Different step sizes are not allowed.

Example mosek -d MSK_IPAR_INTPNT_DIFF_STEP MSK_ON file

Groups Interior-point method

MSK_IPAR_INTPNT_HOTSTART

Currently not in use.

Default NONE

Accepted NONE, PRIMAL, DUAL, PRIMAL_DUAL

Example mosek -d MSK_IPAR_INTPNT_HOTSTART MSK_INTPNT_HOTSTART_NONE file

Groups Interior-point method

MSK_IPAR_INTPNT_MAX_ITERATIONS

Controls the maximum number of iterations allowed in the interior-point optimizer.

Default 400

Accepted [0; +inf]

Example mosek -d MSK_IPAR_INTPNT_MAX_ITERATIONS 400 file

Groups Interior-point method, Termination criteria

MSK_IPAR_INTPNT_MAX_NUM_COR

Controls the maximum number of correctors allowed by the multiple corrector procedure. A negative value means that **MOSEK** is making the choice.

Default -1

Accepted $[-1; +\inf]$

Example mosek -d MSK_IPAR_INTPNT_MAX_NUM_COR -1 file

 ${\bf Groups} \ \ Interior\mbox{-}point \ method$

MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

Maximum number of steps to be used by the iterative refinement of the search direction. A negative value implies that the optimizer chooses the maximum number of iterative refinement steps.

Default -1

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS -1 file

Groups Interior-point method

MSK_IPAR_INTPNT_MULTI_THREAD

Controls whether the interior-point optimizers are allowed to employ multiple threads if more threads is available.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_INTPNT_MULTI_THREAD MSK_ON file

Groups Overall system

MSK_IPAR_INTPNT_OFF_COL_TRH

Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0	no detection
1	aggressive detection
> 1	higher values mean less aggressive detection

Default 40

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_INTPNT_OFF_COL_TRH 40 file

Groups Interior-point method

MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

Default 0

Accepted [0; +inf]

Example mosek -d MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS 0 file

Groups Interior-point method

MSK_IPAR_INTPNT_ORDER_METHOD

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton equation system.

Default FREE

Accepted FREE, APPMINLOC, EXPERIMENTAL, TRY_GRAPHPAR, FORCE_GRAPHPAR, NONE

Example mosek -d MSK_IPAR_INTPNT_ORDER_METHOD MSK_ORDER_METHOD_FREE file

Groups Interior-point method

MSK_IPAR_INTPNT_PURIFY

Currently not in use.

Default NONE

Accepted NONE, PRIMAL, DUAL, PRIMAL_DUAL, AUTO

Example mosek -d MSK_IPAR_INTPNT_PURIFY MSK_PURIFY_NONE file

Groups Interior-point method

MSK_IPAR_INTPNT_REGULARIZATION_USE

Controls whether regularization is allowed.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_INTPNT_REGULARIZATION_USE MSK_ON file

Groups Interior-point method

MSK IPAR INTPNT SCALING

Controls how the problem is scaled before the interior-point optimizer is used.

Default FREE

Accepted FREE, NONE, MODERATE, AGGRESSIVE

Example mosek -d MSK_IPAR_INTPNT_SCALING MSK_SCALING_FREE file

Groups Interior-point method

MSK_IPAR_INTPNT_SOLVE_FORM

Controls whether the primal or the dual problem is solved.

Default FREE

Accepted FREE, PRIMAL, DUAL

Example mosek -d MSK_IPAR_INTPNT_SOLVE_FORM MSK_SOLVE_FREE file

 ${\bf Groups} \ \ Interior\mbox{-}point \ method$

MSK_IPAR_INTPNT_STARTING_POINT

Starting point used by the interior-point optimizer.

Default FREE

Accepted FREE, GUESS, CONSTANT, SATISFY_BOUNDS

Example mosek -d MSK_IPAR_INTPNT_STARTING_POINT MSK_STARTING_POINT_FREE file

Groups Interior-point method

MSK_IPAR_LICENSE_DEBUG

This option is used to turn on debugging of the license manager.

Default OFF

Accepted ON, OFF

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_IPAR_LICENSE_DEBUG} \ \mathtt{MSK_OFF} \ \mathtt{file}$

 ${\bf Groups}\ {\it License}\ {\it manager}$

MSK_IPAR_LICENSE_PAUSE_TIME

If $MSK_IPAR_LICENSE_WAIT$ is MSK_ON and no license is available, then \mathbf{MOSEK} sleeps a number of milliseconds between each check of whether a license has become free.

Default 100

Accepted [0; 1000000]

Example mosek -d MSK_IPAR_LICENSE_PAUSE_TIME 100 file

Groups License manager

MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Controls whether license features expire warnings are suppressed.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS MSK_OFF file

Groups License manager, Output information

MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

If a license feature expires in a numbers of days less than the value of this parameter then a warning will be issued.

Default 7

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LICENSE_TRH_EXPIRY_WRN 7 file

Groups License manager, Output information

MSK_IPAR_LICENSE_WAIT

If all licenses are in use **MOSEK** returns with an error code. However, by turning on this parameter **MOSEK** will wait for an available license.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_LICENSE_WAIT MSK_OFF file

Groups Overall solver, Overall system, License manager

MSK_IPAR_LOG

Controls the amount of log information. The value 0 implies that all log information is suppressed. A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of this parameter is reduced by the value of $MSK_IPAR_LOG_CUT_SECOND_OPT$ for the second and any subsequent optimizations.

Default 10

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG 10 file

See also MSK_IPAR_LOG_CUT_SECOND_OPT

Groups Output information, Logging

MSK_IPAR_LOG_ANA_PRO

Controls amount of output from the problem analyzer.

Default 1

Accepted $[0; +\inf]$

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_IPAR_LOG_ANA_PRO} \ \mathtt{1} \ \mathtt{file}$

Groups Analysis, Logging

MSK_IPAR_LOG_BI

Controls the amount of output printed by the basis identification procedure. A higher level implies that more information is logged.

Default 1

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_BI 1 file

Groups Basis identification, Output information, Logging

MSK_IPAR_LOG_BI_FREQ

Controls how frequently the optimizer outputs information about the basis identification and how frequent the user-defined callback function is called.

Default 2500

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_LOG_BI_FREQ 2500 file

Groups Basis identification, Output information, Logging

MSK_IPAR_LOG_CHECK_CONVEXITY

Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging on. If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also shown.

Default 0

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_CHECK_CONVEXITY O file

Groups Data check

MSK_IPAR_LOG_CUT_SECOND_OPT

If a task is employed to solve a sequence of optimization problems, then the value of the log levels is reduced by the value of this parameter. E.g MSK_IPAR_LOG and $MSK_IPAR_LOG_SIM$ are reduced by the value of this parameter for the second and any subsequent optimizations.

Default 1

Accepted [0; +inf]

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_IPAR_LOG_CUT_SECOND_OPT} \ \mathtt{1} \ \mathtt{file}$

See also MSK_IPAR_LOG,

 $MSK_IPAR_LOG_INTPNT$,

 $MSK_IPAR_LOG_MIO$,

 $MSK_IPAR_LOG_SIM$

Groups Output information, Logging

MSK_IPAR_LOG_EXPAND

Controls the amount of logging when a data item such as the maximum number constrains is expanded.

Default 0

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_EXPAND 0 file

Groups Output information, Logging

MSK_IPAR_LOG_FEAS_REPAIR

Controls the amount of output printed when performing feasibility repair. A value higher than one means extensive logging.

Default 1

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_FEAS_REPAIR 1 file

Groups Output information, Logging

MSK_IPAR_LOG_FILE

If turned on, then some log info is printed when a file is written or read.

${\bf Default} \ 1$

```
Accepted [0; +inf]
```

Example mosek -d MSK_IPAR_LOG_FILE 1 file

Groups Data input/output, Output information, Logging

MSK_IPAR_LOG_INCLUDE_SUMMARY

Not relevant for this API.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_LOG_INCLUDE_SUMMARY MSK_OFF file

Groups Output information, Logging

MSK_IPAR_LOG_INFEAS_ANA

Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies that more information is logged.

Default 1

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_INFEAS_ANA 1 file

Groups Infeasibility report, Output information, Logging

MSK_IPAR_LOG_INTPNT

Controls amount of output printed by the interior-point optimizer. A higher level implies that more information is logged.

Default 1

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_INTPNT 1 file

Groups Interior-point method, Output information, Logging

MSK_IPAR_LOG_LOCAL_INFO

Controls whether local identifying information like environment variables, filenames, IP addresses etc. are printed to the log.

Note that this will only affect some functions. Some functions that specifically emit system information will not be affected.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_LOG_LOCAL_INFO MSK_ON file

Groups Output information, Logging

MSK_IPAR_LOG_MIO

Controls the log level for the mixed-integer optimizer. A higher level implies that more information is logged.

Default 4

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_LOG_MIO 4 file

Groups Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_MIO_FREQ

Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time $MSK_IPAR_LOG_MIO_FREQ$ relaxations have been solved.

Default 10

Accepted [-inf; +inf]

Example mosek -d MSK_IPAR_LOG_MIO_FREQ 10 file

Groups Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_ORDER

If turned on, then factor lines are added to the log.

Default 1

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_ORDER 1 file

Groups Output information, Logging

MSK_IPAR_LOG_PRESOLVE

Controls amount of output printed by the presolve procedure. A higher level implies that more information is logged.

Default 1

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_PRESOLVE 1 file

Groups Logging

MSK_IPAR_LOG_RESPONSE

Controls amount of output printed when response codes are reported. A higher level implies that more information is logged.

Default 0

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_LOG_RESPONSE 0 file

Groups Output information, Logging

MSK_IPAR_LOG_SENSITIVITY

Controls the amount of logging during the sensitivity analysis.

- 0. Means no logging information is produced.
- 1. Timing information is printed.
- 2. Sensitivity results are printed.

Default 1

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_LOG_SENSITIVITY 1 file

Groups Output information, Logging

MSK_IPAR_LOG_SENSITIVITY_OPT

Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0 means no logging information is produced.

Default 0

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_SENSITIVITY_OPT 0 file

Groups Output information, Logging

MSK_IPAR_LOG_SIM

Controls amount of output printed by the simplex optimizer. A higher level implies that more information is logged.

Default 4

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_SIM 4 file

Groups Simplex optimizer, Output information, Logging

MSK_IPAR_LOG_SIM_FREQ

Controls how frequent the simplex optimizer outputs information about the optimization and how frequent the user-defined callback function is called.

Default 1000

Accepted [0; +inf]

Example mosek -d MSK_IPAR_LOG_SIM_FREQ 1000 file

Groups Simplex optimizer, Output information, Logging

MSK_IPAR_LOG_SIM_MINOR

Currently not in use.

Default 1

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_LOG_SIM_MINOR 1 file

Groups Simplex optimizer, Output information

MSK_IPAR_LOG_STORAGE

When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default 0

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_LOG_STORAGE 0 file

Groups Output information, Overall system, Logging

MSK_IPAR_MAX_NUM_WARNINGS

Each warning is shown a limited number of times controlled by this parameter. A negative value is identical to infinite number of times.

Default 10

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_MAX_NUM_WARNINGS 10 file

Groups Output information

MSK_IPAR_MIO_BRANCH_DIR

Controls whether the mixed-integer optimizer is branching up or down by default.

Default FREE

Accepted FREE, UP, DOWN, NEAR, FAR, ROOT_LP, GUIDED, PSEUDOCOST

Example mosek -d MSK_IPAR_MIO_BRANCH_DIR MSK_BRANCH_DIR_FREE file

Groups Mixed-integer optimization

MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

If this option is turned on outer approximation is used when solving relaxations of conic problems; otherwise interior point is used.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION MSK_OFF file

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_CLIQUE

Controls whether clique cuts should be generated.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_MIO_CUT_CLIQUE MSK_ON file

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_CMIR

Controls whether mixed integer rounding cuts should be generated.

Default ON

Accepted ON, OFF

```
Example mosek -d MSK_IPAR_MIO_CUT_CMIR MSK_ON file
Groups Mixed-integer optimization
```

MSK_IPAR_MIO_CUT_GMI

Controls whether GMI cuts should be generated.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_MIO_CUT_GMI MSK_ON file

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_IMPLIED_BOUND

Controls whether implied bound cuts should be generated.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_MIO_CUT_IMPLIED_BOUND MSK_OFF file

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_KNAPSACK_COVER

Controls whether knapsack cover cuts should be generated.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_MIO_CUT_KNAPSACK_COVER MSK_OFF file

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_SELECTION_LEVEL

Controls how aggressively generated cuts are selected to be included in the relaxation.

- \bullet -1. The optimizer chooses the level of cut selection
- ullet 0. Generated cuts less likely to be added to the relaxation
- 1. Cuts are more aggressively selected to be included in the relaxation

Default -1

Accepted [-1; +1]

Example mosek -d MSK_IPAR_MIO_CUT_SELECTION_LEVEL -1 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_FEASPUMP_LEVEL

Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

- \bullet -1. The optimizer chooses how the Feasibility Pump is used
- 0. The Feasibility Pump is disabled
- 1. The Feasibility Pump is enabled with an effort to improve solution quality
- 2. The Feasibility Pump is enabled with an effort to reach feasibility early

Default -1

Accepted [-1; 2]

Example mosek -d MSK_IPAR_MIO_FEASPUMP_LEVEL -1 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_HEURISTIC_LEVEL

Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means that a gradually more sophisticated heuristic is used which is computationally more expensive. A negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5 should be optimal.

Default -1

Accepted [-inf; +inf]

Example mosek -d MSK_IPAR_MIO_HEURISTIC_LEVEL -1 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_BRANCHES

Maximum number of branches allowed during the branch and bound search. A negative value means infinite.

Default -1

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_MIO_MAX_NUM_BRANCHES -1 file

Groups Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_RELAXS

Maximum number of relaxations allowed during the branch and bound search. A negative value means infinite.

Default -1

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_MIO_MAX_NUM_RELAXS -1 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

Maximum number of cut separation rounds at the root node.

Default 100

Accepted [0; +inf]

Example mosek -d MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS 100 file

Groups Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

The mixed-integer optimizer can be terminated after a certain number of different feasible solutions has been located. If this parameter has the value n > 0, then the mixed-integer optimizer will be terminated when n feasible solutions have been located.

Default -1

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_MIO_MAX_NUM_SOLUTIONS -1 file

Groups Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MODE

Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer optimization problem.

Default SATISFIED

Accepted IGNORED, SATISFIED

Example mosek -d MSK_IPAR_MIO_MODE MSK_MIO_MODE_SATISFIED file

Groups Overall solver

MSK_IPAR_MIO_NODE_OPTIMIZER

Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default FREE

Accepted FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

Example mosek -d MSK_IPAR_MIO_NODE_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups Mixed-integer optimization

MSK_IPAR_MIO_NODE_SELECTION

Controls the node selection strategy employed by the mixed-integer optimizer.

Default FREE

Accepted FREE, FIRST, BEST, PSEUDO

Example mosek -d MSK_IPAR_MIO_NODE_SELECTION MSK_MIO_NODE_SELECTION_FREE file

Groups Mixed-integer optimization

MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

Enables or disables perspective reformulation in presolve.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE MSK_ON file

Groups Mixed-integer optimization

MSK_IPAR_MIO_PROBING_LEVEL

Controls the amount of probing employed by the mixed-integer optimizer in presolve.

- \bullet -1. The optimizer chooses the level of probing employed
- 0. Probing is disabled
- 1. A low amount of probing is employed
- 2. A medium amount of probing is employed
- 3. A high amount of probing is employed

Default -1

Accepted [-1; 3]

Example mosek -d MSK_IPAR_MIO_PROBING_LEVEL -1 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

Use objective domain propagation.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT MSK_OFF file

Groups Mixed-integer optimization

MSK_IPAR_MIO_RINS_MAX_NODES

Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default -1

Accepted $[-1; +\inf]$

Example mosek -d MSK_IPAR_MIO_RINS_MAX_NODES -1 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_ROOT_OPTIMIZER

Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default FREE

Accepted FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_IPAR_MIO_ROOT_OPTIMIZER} \ \mathtt{MSK_OPTIMIZER_FREE} \ \mathtt{file}$

Groups Mixed-integer optimization

MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL

Controls whether presolve can be repeated at root node.

- \bullet -1. The optimizer chooses whether presolve is repeated
- 0. Never repeat presolve
- 1. Always repeat presolve

```
Default -1
```

Accepted [-1; 1]

Example mosek -d MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL -1 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_SEED

Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different seed can change the path the optimizer takes to the optimal solution.

Default 42

Accepted [0; +inf]

Example mosek -d MSK_IPAR_MIO_SEED 42 file

Groups Mixed-integer optimization

MSK_IPAR_MIO_VB_DETECTION_LEVEL

Controls how much effort is put into detecting variable bounds.

- \bullet -1. The optimizer chooses
- 0. No variable bounds are detected
- 1. Only detect variable bounds that are directly represented in the problem
- 2. Detect variable bounds in probing

Default -1

Accepted [-1; +2]

Example mosek -d MSK_IPAR_MIO_VB_DETECTION_LEVEL -1 file

Groups Mixed-integer optimization

MSK_IPAR_MT_SPINCOUNT

Set the number of iterations to spin before sleeping.

Default 0

Accepted [0; 1000000000]

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_IPAR_MT_SPINCOUNT} \ \mathtt{0} \ \mathtt{file}$

Groups Overall system

MSK_IPAR_NUM_THREADS

Controls the number of threads employed by the optimizer. If set to 0 the number of threads used will be equal to the number of cores detected on the machine.

If using the conic optimizer, the value of this parameter set at first optimization remains constant through the lifetime of the process. \mathbf{MOSEK} will allocate a thread pool of given size, and changing the parameter value later will have no effect. It will, however, remain possible to demand single-threaded execution by setting $\mathit{MSK_IPAR_INTPNT_MULTI_THREAD}$.

For the mixed-integer optimizer and interior-point linear optimizer there is no such restriction.

Default 0

Accepted [0; +inf]

Example mosek -d MSK_IPAR_NUM_THREADS 0 file

Groups Overall system

MSK_IPAR_OPF_WRITE_HEADER

Write a text header with date and MOSEK version in an OPF file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_OPF_WRITE_HEADER MSK_ON file

Groups Data input/output

MSK_IPAR_OPF_WRITE_HINTS

Write a hint section with problem dimensions in the beginning of an OPF file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_OPF_WRITE_HINTS MSK_ON file

Groups Data input/output

MSK_IPAR_OPF_WRITE_LINE_LENGTH

Aim to keep lines in OPF files not much longer than this.

Default 80

Accepted [0; +inf]

Example mosek -d MSK_IPAR_OPF_WRITE_LINE_LENGTH 80 file

Groups Data input/output

MSK_IPAR_OPF_WRITE_PARAMETERS

Write a parameter section in an OPF file.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_OPF_WRITE_PARAMETERS MSK_OFF file

Groups Data input/output

MSK_IPAR_OPF_WRITE_PROBLEM

Write objective, constraints, bounds etc. to an OPF file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_OPF_WRITE_PROBLEM MSK_ON file

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_BAS

If $MSK_IPAR_OPF_WRITE_SOLUTIONS$ is MSK_ON and a basic solution is defined, include the basic solution in OPF files.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_OPF_WRITE_SOL_BAS MSK_ON file

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITG

If $MSK_IPAR_OPF_WRITE_SOLUTIONS$ is MSK_ON and an integer solution is defined, write the integer solution in OPF files.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_OPF_WRITE_SOL_ITG MSK_ON file

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITR

If $MSK_IPAR_OPF_WRITE_SOLUTIONS$ is MSK_ON and an interior solution is defined, write the interior solution in OPF files.

Default ON

```
Accepted ON, OFF
```

Example mosek -d MSK_IPAR_OPF_WRITE_SOL_ITR MSK_ON file

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOLUTIONS

Enable inclusion of solutions in the OPF files.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_OPF_WRITE_SOLUTIONS MSK_OFF file

Groups Data input/output

MSK_IPAR_OPTIMIZER

The parameter controls which optimizer is used to optimize the task.

Default FREE

Accepted FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

Example mosek -d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups Overall solver

MSK_IPAR_PARAM_READ_CASE_NAME

If turned on, then names in the parameter file are case sensitive.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_PARAM_READ_CASE_NAME MSK_ON file

Groups Data input/output

MSK_IPAR_PARAM_READ_IGN_ERROR

If turned on, then errors in parameter settings is ignored.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_PARAM_READ_IGN_ERROR MSK_OFF file

Groups Data input/output

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase of the presolve. A negative value means the parameter value is selected automatically.

Default -1

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL -1 file

Groups Presolve

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

Control the maximum number of times the eliminator is tried. A negative value implies **MOSEK** decides.

Default -1

Accepted [-inf; +inf]

Example mosek -d MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES -1 file

Groups Presolve

MSK_IPAR_PRESOLVE_LEVEL

Currently not used.

Default -1

Accepted $[-\inf; +\inf]$

```
Example mosek -d MSK_IPAR_PRESOLVE_LEVEL -1 file
```

Groups Overall solver, Presolve

MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially computationally expensive.

Default 100

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH 100 file

Groups Presolve

MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially computationally expensive.

Default 100

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH 100 file

Groups Presolve

MSK_IPAR_PRESOLVE_LINDEP_USE

Controls whether the linear constraints are checked for linear dependencies.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_PRESOLVE_LINDEP_USE MSK_ON file

Groups Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_PASS

Control the maximum number of times presolve passes over the problem. A negative value implies **MOSEK** decides.

Default -1

 ${\bf Accepted} \ \left[-{\rm inf}; \, +{\rm inf} \right]$

Example mosek -d MSK_IPAR_PRESOLVE_MAX_NUM_PASS -1 file

Groups Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

Controls the maximum number of reductions performed by the presolve. The value of the parameter is normally only changed in connection with debugging. A negative value implies that an infinite number of reductions are allowed.

Default -1

Accepted $[-\inf; +\inf]$

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS} \ \mathtt{-1} \ \mathtt{file}$

Groups Overall solver, Presolve

MSK_IPAR_PRESOLVE_USE

Controls whether the presolve is applied to a problem before it is optimized.

Default FREE

Accepted OFF, ON, FREE

Example mosek -d MSK_IPAR_PRESOLVE_USE MSK_PRESOLVE_MODE_FREE file

Groups Overall solver, Presolve

${\tt MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER}$

Controls which optimizer that is used to find the optimal repair.

Default FREE

```
Accepted FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT
```

Example mosek -d MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups Overall solver

MSK_IPAR_PTF_WRITE_TRANSFORM

If $MSK_IPAR_PTF_WRITE_TRANSFORM$ is MSK_ON , constraint blocks with identifiable conic slacks are transformed into conic constraints and the slacks are eliminated.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_PTF_WRITE_TRANSFORM MSK_ON file

Groups Data input/output

MSK_IPAR_READ_DEBUG

Turns on additional debugging information when reading files.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_READ_DEBUG MSK_OFF file

Groups Data input/output

MSK_IPAR_READ_KEEP_FREE_CON

Controls whether the free constraints are included in the problem.

Default OFF

Accepted

- ON: The free constraints are kept.
- *OFF*: The free constraints are discarded.

Example mosek -d MSK_IPAR_READ_KEEP_FREE_CON MSK_OFF file

Groups Data input/output

${\tt MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU}$

If this option is turned on, **MOSEK** will drop variables that are defined for the first time in the bounds section.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU MSK_OFF file

 ${\bf Groups}\ \textit{Data input/output}$

${\tt MSK_IPAR_READ_LP_QUOTED_NAMES}$

If a name is in quotes when reading an LP file, the quotes will be removed.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_READ_LP_QUOTED_NAMES MSK_ON file

Groups Data input/output

MSK_IPAR_READ_MPS_FORMAT

Controls how strictly the MPS file reader interprets the MPS format.

Default FREE

Accepted STRICT, RELAXED, FREE, CPLEX

Example mosek -d MSK_IPAR_READ_MPS_FORMAT MSK_MPS_FORMAT_FREE file

Groups Data input/output

MSK_IPAR_READ_MPS_WIDTH

Controls the maximal number of characters allowed in one line of the MPS file.

Default 1024

Accepted [80; +inf]

Example mosek -d MSK_IPAR_READ_MPS_WIDTH 1024 file

Groups Data input/output

MSK_IPAR_READ_TASK_IGNORE_PARAM

Controls whether **MOSEK** should ignore the parameter setting defined in the task file and use the default parameter setting instead.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_READ_TASK_IGNORE_PARAM MSK_OFF file

Groups Data input/output

MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

Removes unused solutions before the optimization is performed.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_REMOVE_UNUSED_SOLUTIONS MSK_OFF file

Groups Overall system

MSK_IPAR_SENSITIVITY_ALL

Not applicable.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_SENSITIVITY_ALL MSK_OFF file

Groups Overall solver

MSK_IPAR_SENSITIVITY_OPTIMIZER

Controls which optimizer is used for optimal partition sensitivity analysis.

Default FREE_SIMPLEX

Accepted FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

Example mosek -d MSK_IPAR_SENSITIVITY_OPTIMIZER MSK_OPTIMIZER_FREE_SIMPLEX file

Groups Overall solver, Simplex optimizer

MSK_IPAR_SENSITIVITY_TYPE

Controls which type of sensitivity analysis is to be performed.

Default BASIS

Accepted BASIS

Example mosek -d MSK_IPAR_SENSITIVITY_TYPE MSK_SENSITIVITY_TYPE_BASIS file

Groups Overall solver

MSK_IPAR_SIM_BASIS_FACTOR_USE

Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization sometimes improves the stability of the simplex optimizers, but in most cases there is a performance penalty.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_SIM_BASIS_FACTOR_USE MSK_ON file

Groups Simplex optimizer

MSK_IPAR_SIM_DEGEN

Controls how aggressively degeneration is handled.

Default FREE

Accepted NONE, FREE, AGGRESSIVE, MODERATE, MINIMUM

Example mosek -d MSK_IPAR_SIM_DEGEN MSK_SIM_DEGEN_FREE file

Groups Simplex optimizer

MSK_IPAR_SIM_DUAL_CRASH

Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to x, then a crash will be performed if a basis consists of more than $(100 - x) \mod f_v$ entries, where f_v is the number of fixed variables.

Default 90

Accepted [0; +inf]

Example mosek -d MSK_IPAR_SIM_DUAL_CRASH 90 file

Groups Dual simplex

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

An experimental feature.

Default 0

Accepted [0; 10]

Example mosek -d MSK_IPAR_SIM_DUAL_PHASEONE_METHOD 0 file

Groups Simplex optimizer

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first choose a subset of all the potential outgoing variables. Next, for some time it will choose the outgoing variable only among the subset. From time to time the subset is redefined. A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Default 50

Accepted [0; 100]

Example mosek -d MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION 50 file

 ${\bf Groups}\ \ {\it Dual\ simplex}$

MSK_IPAR_SIM_DUAL_SELECTION

Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex optimizer.

Default FREE

Accepted FREE, FULL, ASE, DEVEX, SE, PARTIAL

Example mosek -d MSK_IPAR_SIM_DUAL_SELECTION MSK_SIM_SELECTION_FREE file

Groups Dual simplex

MSK_IPAR_SIM_EXPLOIT_DUPVEC

Controls if the simplex optimizers are allowed to exploit duplicated columns.

Default OFF

Accepted ON, OFF, FREE

Example mosek -d MSK_IPAR_SIM_EXPLOIT_DUPVEC MSK_SIM_EXPLOIT_DUPVEC_OFF file

Groups Simplex optimizer

MSK_IPAR_SIM_HOTSTART

Controls the type of hot-start that the simplex optimizer perform.

Default FREE

Accepted NONE, FREE, STATUS_KEYS

Example mosek -d MSK_IPAR_SIM_HOTSTART MSK_SIM_HOTSTART_FREE file

Groups Simplex optimizer

MSK_IPAR_SIM_HOTSTART_LU

Determines if the simplex optimizer should exploit the initial factorization.

Default ON

Accepted

- *ON*: Factorization is reused if possible.
- *OFF*: Factorization is recomputed.

Example mosek -d MSK_IPAR_SIM_HOTSTART_LU MSK_ON file

Groups Simplex optimizer

MSK_IPAR_SIM_MAX_ITERATIONS

Maximum number of iterations that can be used by a simplex optimizer.

Default 10000000

Accepted [0; +inf]

Example mosek -d MSK_IPAR_SIM_MAX_ITERATIONS 10000000 file

Groups Simplex optimizer, Termination criteria

MSK_IPAR_SIM_MAX_NUM_SETBACKS

Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where the optimizer moves in the wrong direction. This is impossible in theory but may happen due to numerical problems.

Default 250

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_SIM_MAX_NUM_SETBACKS 250 file

Groups Simplex optimizer

MSK_IPAR_SIM_NON_SINGULAR

Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_SIM_NON_SINGULAR MSK_ON file

Groups Simplex optimizer

MSK_IPAR_SIM_PRIMAL_CRASH

Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Default 90

Accepted [0; +inf]

Example mosek -d MSK_IPAR_SIM_PRIMAL_CRASH 90 file

Groups Primal simplex

MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

An experimental feature.

Default 0

Accepted [0; 10]

Example mosek -d MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD 0 file

Groups Simplex optimizer

MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer first choose a subset of all the potential incoming variables. Next, for some time it will choose the incoming variable only among the subset. From time to time the subset is redefined. A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Default 50
Accepted [0; 100]
Example mosek -d MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION 50 file
Groups Primal simplex

MSK_IPAR_SIM_PRIMAL_SELECTION

Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex optimizer.

Default FREE
Accepted FREE, FULL, ASE, DEVEX, SE, PARTIAL
Example mosek -d MSK_IPAR_SIM_PRIMAL_SELECTION MSK_SIM_SELECTION_FREE file
Groups Primal simplex

MSK_IPAR_SIM_REFACTOR_FREQ

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default 0
Accepted [0; +inf]
Example mosek -d MSK_IPAR_SIM_REFACTOR_FREQ 0 file
Groups Simplex optimizer

MSK_IPAR_SIM_REFORMULATION

Controls if the simplex optimizers are allowed to reformulate the problem.

Default OFF
Accepted ON, OFF, FREE, AGGRESSIVE
Example mosek -d MSK_IPAR_SIM_REFORMULATION MSK_SIM_REFORMULATION_OFF
file
Groups Simplex optimizer

MSK_IPAR_SIM_SAVE_LU

Controls if the LU factorization stored should be replaced with the LU factorization corresponding to the initial basis.

Default OFF
Accepted ON, OFF
Example mosek -d MSK_IPAR_SIM_SAVE_LU MSK_OFF file
Groups Simplex optimizer

MSK_IPAR_SIM_SCALING

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default FREE
Accepted FREE, NONE, MODERATE, AGGRESSIVE
Example mosek -d MSK_IPAR_SIM_SCALING MSK_SCALING_FREE file
Groups Simplex optimizer

MSK_IPAR_SIM_SCALING_METHOD

Controls how the problem is scaled before a simplex optimizer is used.

Default POW2

Accepted POW2, FREE

Example mosek -d MSK_IPAR_SIM_SCALING_METHOD MSK_SCALING_METHOD_POW2

Groups Simplex optimizer

MSK_IPAR_SIM_SEED

Sets the random seed used for randomization in the simplex optimizers.

Default 23456

Accepted [0; 32749]

Example mosek -d MSK_IPAR_SIM_SEED 23456 file

Groups Simplex optimizer

MSK_IPAR_SIM_SOLVE_FORM

Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default FREE

Accepted FREE, PRIMAL, DUAL

Example mosek -d MSK_IPAR_SIM_SOLVE_FORM MSK_SOLVE_FREE file

Groups Simplex optimizer

MSK_IPAR_SIM_STABILITY_PRIORITY

Controls how high priority the numerical stability should be given.

Default 50

Accepted [0; 100]

Example mosek -d MSK_IPAR_SIM_STABILITY_PRIORITY 50 file

Groups Simplex optimizer

MSK_IPAR_SIM_SWITCH_OPTIMIZER

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem. This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized, then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal (dual) one, then it is switched to the dual (primal).

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_SIM_SWITCH_OPTIMIZER MSK_OFF file

Groups Simplex optimizer

MSK_IPAR_SOL_FILTER_KEEP_BASIC

If turned on, then basic and super basic constraints and variables are written to the solution file independent of the filter setting.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_SOL_FILTER_KEEP_BASIC MSK_OFF file

Groups Solution input/output

MSK_IPAR_SOL_FILTER_KEEP_RANGED

If turned on, then ranged constraints and variables are written to the solution file independent of the filter setting.

Default OFF

Accepted ON, OFF

```
Example mosek -d MSK_IPAR_SOL_FILTER_KEEP_RANGED MSK_OFF file Groups Solution input/output
```

MSK_IPAR_SOL_READ_NAME_WIDTH

When a solution is read by **MOSEK** and some constraint, variable or cone names contain blanks, then a maximum name width much be specified. A negative value implies that no name contain blanks.

Default -1

Accepted $[-\inf; +\inf]$

Example mosek -d MSK_IPAR_SOL_READ_NAME_WIDTH -1 file

Groups Data input/output, Solution input/output

MSK_IPAR_SOL_READ_WIDTH

Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default 1024

Accepted [80; +inf]

Example mosek -d MSK_IPAR_SOL_READ_WIDTH 1024 file

Groups Data input/output, Solution input/output

MSK_IPAR_SOLUTION_CALLBACK

Indicates whether solution callbacks will be performed during the optimization.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_SOLUTION_CALLBACK MSK_OFF file

Groups Progress callback, Overall solver

MSK_IPAR_TIMING_LEVEL

Controls the amount of timing performed inside MOSEK.

Default 1

Accepted [0; +inf]

Example mosek -d MSK_IPAR_TIMING_LEVEL 1 file

Groups Overall system

MSK_IPAR_WRITE_BAS_CONSTRAINTS

Controls whether the constraint section is written to the basic solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_BAS_CONSTRAINTS MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_BAS_HEAD

Controls whether the header section is written to the basic solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_BAS_HEAD MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_BAS_VARIABLES

Controls whether the variables section is written to the basic solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_BAS_VARIABLES MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_COMPRESSION

Controls whether the data file is compressed while it is written. 0 means no compression while higher values mean more compression.

Default 9

Accepted [0; +inf]

Example mosek -d MSK_IPAR_WRITE_COMPRESSION 9 file

Groups Data input/output

MSK_IPAR_WRITE_DATA_PARAM

If this option is turned on the parameter settings are written to the data file as parameters.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_DATA_PARAM MSK_OFF file

Groups Data input/output

MSK_IPAR_WRITE_FREE_CON

Controls whether the free constraints are written to the data file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_FREE_CON MSK_ON file

Groups Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES

Controls whether generic names should be used instead of user-defined names when writing to the data file.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_GENERIC_NAMES MSK_OFF file

Groups Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES_IO

Index origin used in generic names.

Default 1

Accepted $[0; +\inf]$

Example mosek -d MSK_IPAR_WRITE_GENERIC_NAMES_IO 1 file

 ${\bf Groups}\ \textit{Data input/output}$

MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS

Controls if the writer ignores incompatible problem items when writing files.

Default OFF

Accepted

- ON: Ignore items that cannot be written to the current output file format.
- *OFF*: Produce an error if the problem contains items that cannot the written to the current output file format.

Example mosek -d MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS MSK_OFF file

Groups Data input/output

MSK_IPAR_WRITE_INT_CONSTRAINTS

Controls whether the constraint section is written to the integer solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_INT_CONSTRAINTS MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_INT_HEAD

Controls whether the header section is written to the integer solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_INT_HEAD MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_INT_VARIABLES

Controls whether the variables section is written to the integer solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_INT_VARIABLES MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_LP_FULL_OBJ

Write all variables, including the ones with 0-coefficients, in the objective.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_LP_FULL_OBJ MSK_ON file

Groups Data input/output

MSK_IPAR_WRITE_LP_LINE_WIDTH

Maximum width of line in an LP file written by MOSEK.

Default 80

Accepted [40; +inf]

Example mosek -d MSK_IPAR_WRITE_LP_LINE_WIDTH 80 file

Groups Data input/output

MSK_IPAR_WRITE_LP_QUOTED_NAMES

If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_LP_QUOTED_NAMES MSK_ON file

 ${\bf Groups}\ \ {\it Data\ input/output}$

${\tt MSK_IPAR_WRITE_LP_STRICT_FORMAT}$

Controls whether LP output files satisfy the LP format strictly.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_LP_STRICT_FORMAT MSK_OFF file

Groups Data input/output

MSK_IPAR_WRITE_LP_TERMS_PER_LINE

Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Default 10

Accepted [0; +inf]

Example mosek -d MSK_IPAR_WRITE_LP_TERMS_PER_LINE 10 file

Groups Data input/output

MSK_IPAR_WRITE_MPS_FORMAT

Controls in which format the MPS is written.

Default FREE

Accepted STRICT, RELAXED, FREE, CPLEX

Example mosek -d MSK_IPAR_WRITE_MPS_FORMAT MSK_MPS_FORMAT_FREE file

Groups Data input/output

MSK_IPAR_WRITE_MPS_INT

Controls if marker records are written to the MPS file to indicate whether variables are integer restricted.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_MPS_INT MSK_ON file

Groups Data input/output

MSK_IPAR_WRITE_PRECISION

Controls the precision with which double numbers are printed in the MPS data file. In general it is not worthwhile to use a value higher than 15.

Default 15

Accepted [0; +inf]

Example mosek -d MSK_IPAR_WRITE_PRECISION 15 file

Groups Data input/output

MSK_IPAR_WRITE_SOL_BARVARIABLES

Controls whether the symmetric matrix variables section is written to the solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_SOL_BARVARIABLES MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_CONSTRAINTS

Controls whether the constraint section is written to the solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_SOL_CONSTRAINTS MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_HEAD

Controls whether the header section is written to the solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_SOL_HEAD MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default OFF

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES MSK_OFF file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_VARIABLES

Controls whether the variables section is written to the solution file.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_SOL_VARIABLES MSK_ON file

Groups Data input/output, Solution input/output

MSK_IPAR_WRITE_TASK_INC_SOL

Controls whether the solutions are stored in the task file too.

Default ON

Accepted ON, OFF

Example mosek -d MSK_IPAR_WRITE_TASK_INC_SOL MSK_ON file

Groups Data input/output

MSK_IPAR_WRITE_XML_MODE

Controls if linear coefficients should be written by row or column when writing in the XML file format.

Default ROW

Accepted ROW, COL

Example mosek -d MSK_IPAR_WRITE_XML_MODE MSK_WRITE_XML_MODE_ROW file

Groups Data input/output

11.2.3 String parameters

MSK_SPAR_BAS_SOL_FILE_NAME

Name of the bas solution file.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_BAS_SOL_FILE_NAME somevalue file

Groups Data input/output, Solution input/output

MSK_SPAR_DATA_FILE_NAME

Data are read and written to this file.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_DATA_FILE_NAME somevalue file

Groups Data input/output

MSK_SPAR_DEBUG_FILE_NAME

MOSEK debug file.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_DEBUG_FILE_NAME somevalue file

Groups Data input/output

MSK_SPAR_INT_SOL_FILE_NAME

Name of the int solution file.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_INT_SOL_FILE_NAME somevalue file

Groups Data input/output, Solution input/output

MSK_SPAR_ITR_SOL_FILE_NAME

Name of the itr solution file.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_ITR_SOL_FILE_NAME somevalue file

Groups Data input/output, Solution input/output

MSK_SPAR_MIO_DEBUG_STRING

For internal debugging purposes.

Accepted Any valid string.

 $\begin{tabular}{ll} Example mosek -d MSK_SPAR_MIO_DEBUG_STRING some value file \\ \end{tabular}$

Groups Data input/output

MSK_SPAR_PARAM_COMMENT_SIGN

Only the first character in this string is used. It is considered as a start of comment sign in the **MOSEK** parameter file. Spaces are ignored in the string.

Default

%%

Accepted Any valid string.

Example mosek -d MSK_SPAR_PARAM_COMMENT_SIGN %% file

Groups Data input/output

MSK_SPAR_PARAM_READ_FILE_NAME

Modifications to the parameter database is read from this file.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_PARAM_READ_FILE_NAME somevalue file

Groups Data input/output

MSK_SPAR_PARAM_WRITE_FILE_NAME

The parameter database is written to this file.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_PARAM_WRITE_FILE_NAME somevalue file

Groups Data input/output

MSK_SPAR_READ_MPS_BOU_NAME

Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted Any valid MPS name.

Example mosek -d MSK_SPAR_READ_MPS_BOU_NAME somevalue file

 ${\bf Groups}\ {\it Data\ input/output}$

MSK_SPAR_READ_MPS_OBJ_NAME

Name of the free constraint used as objective function. An empty name means that the first constraint is used as objective function.

Accepted Any valid MPS name.

Example mosek -d MSK_SPAR_READ_MPS_OBJ_NAME somevalue file

Groups Data input/output

MSK_SPAR_READ_MPS_RAN_NAME

Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted Any valid MPS name.

 $\mathbf{Example} \ \mathtt{mosek} \ \mathtt{-d} \ \mathtt{MSK_SPAR_READ_MPS_RAN_NAME} \ \mathtt{somevalue} \ \mathtt{file}$

Groups Data input/output

MSK_SPAR_READ_MPS_RHS_NAME

Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted Any valid MPS name.

Example mosek -d MSK_SPAR_READ_MPS_RHS_NAME somevalue file

Groups Data input/output

MSK_SPAR_REMOTE_ACCESS_TOKEN

An access token used to submit tasks to a remote **MOSEK** server. An access token is a random 32-byte string encoded in base64, i.e. it is a 44 character ASCII string.

Accepted Any valid string.

Example mosek -d MSK_SPAR_REMOTE_ACCESS_TOKEN somevalue file Groups Overall system

MSK_SPAR_SENSITIVITY_FILE_NAME

Not applicable.

Accepted Any valid string.

Example mosek -d MSK_SPAR_SENSITIVITY_FILE_NAME somevalue file

Groups Data input/output

MSK_SPAR_SENSITIVITY_RES_FILE_NAME

Not applicable.

Accepted Any valid string.

Example mosek -d MSK_SPAR_SENSITIVITY_RES_FILE_NAME somevalue file

Groups Data input/output

MSK_SPAR_SOL_FILTER_XC_LOW

A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.

Example mosek -d MSK_SPAR_SOL_FILTER_XC_LOW somevalue file

Groups Data input/output, Solution input/output

MSK_SPAR_SOL_FILTER_XC_UPR

A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints having xc[i]<-buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.

 $\begin{tabular}{ll} \bf Example \ mosek \ -d \ MSK_SPAR_SOL_FILTER_XC_UPR \ some value \ file \\ \end{tabular}$

Groups Data input/output, Solution input/output

MSK_SPAR_SOL_FILTER_XX_LOW

A filter used to determine which variables should be listed in the solution file. A value of "0.5" means that all constraints having xx[j] >= 0.5 should be listed, whereas "+0.5" means that all constraints having xx[j] >= blx[j] + 0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid filter.

Example mosek -d MSK_SPAR_SOL_FILTER_XX_LOW somevalue file

Groups Data input/output, Solution input/output

MSK_SPAR_SOL_FILTER_XX_UPR

A filter used to determine which variables should be listed in the solution file. A value of "0.5" means that all constraints having xx[j]<0.5 should be printed, whereas "-0.5" means all constraints having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_SOL_FILTER_XX_UPR somevalue file

Groups Data input/output, Solution input/output

MSK_SPAR_STAT_FILE_NAME

Statistics file name.

Accepted Any valid file name.

Example mosek -d MSK_SPAR_STAT_FILE_NAME somevalue file

Groups Data input/output

MSK_SPAR_STAT_KEY

Key used when writing the summary file.

Accepted Any valid string.

Example mosek -d MSK_SPAR_STAT_KEY somevalue file

Groups Data input/output

MSK_SPAR_STAT_NAME

Name used when writing the statistics file.

Accepted Any valid XML string.

Example mosek -d MSK_SPAR_STAT_NAME somevalue file

Groups Data input/output

MSK_SPAR_WRITE_LP_GEN_VAR_NAME

Sometimes when an LP file is written additional variables must be inserted. They will have the prefix denoted by this parameter.

Default xmskgen

Accepted Any valid string.

Example mosek -d MSK_SPAR_WRITE_LP_GEN_VAR_NAME xmskgen file

Groups Data input/output

11.3 Response codes

Response codes include:

- Termination codes
- Warnings
- Errors

The numerical code (in brackets) identifies the response in error messages and in the log output.

11.3.1 Termination

MSK_RES_OK (0)

No error occurred.

MSK_RES_TRM_MAX_ITERATIONS (10000)

The optimizer terminated at the maximum number of iterations.

MSK_RES_TRM_MAX_TIME (10001)

The optimizer terminated at the maximum amount of time.

MSK_RES_TRM_OBJECTIVE_RANGE (10002)

The optimizer terminated with an objective value outside the objective range.

MSK_RES_TRM_MIO_NUM_RELAXS (10008)

The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

MSK_RES_TRM_MIO_NUM_BRANCHES (10009)

The mixed-integer optimizer terminated as the maximum number of branches was reached.

MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS (10015)

The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached. $MSK_RES_TRM_STALL$ (10006)

The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress and that it makes no sense to continue. In many cases this happens if the problem is badly scaled or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal. However, often stalling happens near the optimum, and the returned solution may be of good quality. Therefore, it is recommended to check the status of the solution. If the solution status is optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with basis identification turned on, the returned basic solution likely to have high accuracy, even though the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible problems.

MSK_RES_TRM_USER_CALLBACK (10007)

The optimizer terminated due to the return of the user-defined callback function.

MSK_RES_TRM_MAX_NUM_SETBACKS (10020)

The optimizer terminated as the maximum number of set-backs was reached. This indicates serious numerical problems and a possibly badly formulated problem.

MSK_RES_TRM_NUMERICAL_PROBLEM (10025)

The optimizer terminated due to numerical problems.

MSK_RES_TRM_INTERNAL (10030)

The optimizer terminated due to some internal reason. Please contact MOSEK support.

MSK_RES_TRM_INTERNAL_STOP (10031)

The optimizer terminated for internal reasons. Please contact MOSEK support.

11.3.2 Warnings

MSK_RES_WRN_OPEN_PARAM_FILE (50)

The parameter file could not be opened.

MSK_RES_WRN_LARGE_BOUND (51)

A numerically large bound value is specified.

MSK_RES_WRN_LARGE_LO_BOUND (52)

A numerically large lower bound value is specified.

MSK_RES_WRN_LARGE_UP_BOUND (53)

A numerically large upper bound value is specified.

MSK_RES_WRN_LARGE_CON_FX (54)

An equality constraint is fixed to a numerically large value. This can cause numerical problems.

MSK_RES_WRN_LARGE_CJ (57)

A numerically large value is specified for one c_i .

MSK_RES_WRN_LARGE_AIJ (62)

A numerically large value is specified for an $a_{i,j}$ element in A. The parameter $MSK_DPAR_DATA_TOL_AIJ_LARGE$ controls when an $a_{i,j}$ is considered large.

MSK_RES_WRN_ZERO_AIJ (63)

One or more zero elements are specified in A.

MSK_RES_WRN_NAME_MAX_LEN (65)

A name is longer than the buffer that is supposed to hold it.

MSK_RES_WRN_SPAR_MAX_LEN (66)

A value for a string parameter is longer than the buffer that is supposed to hold it.

MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR (70)

An RHS vector is split into several nonadjacent parts in an MPS file.

MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR (71)

A RANGE vector is split into several nonadjacent parts in an MPS file.

MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR (72)

A BOUNDS vector is split into several nonadjacent parts in an MPS file.

MSK_RES_WRN_LP_OLD_QUAD_FORMAT (80)

Missing '/2' after quadratic expressions in bound or objective.

MSK_RES_WRN_LP_DROP_VARIABLE (85)

Ignored a variable because the variable was not previously defined. Usually this implies that a variable appears in the bound section but not in the objective or the constraints.

MSK_RES_WRN_NZ_IN_UPR_TRI (200)

Non-zero elements specified in the upper triangle of a matrix were ignored.

MSK_RES_WRN_DROPPED_NZ_QOBJ (201)

One or more non-zero elements were dropped in the Q matrix in the objective.

MSK_RES_WRN_IGNORE_INTEGER (250)

Ignored integer constraints.

MSK_RES_WRN_NO_GLOBAL_OPTIMIZER (251)

No global optimizer is available.

MSK_RES_WRN_MIO_INFEASIBLE_FINAL (270)

The final mixed-integer problem with all the integer variables fixed at their optimal values is infeasible.

MSK_RES_WRN_SOL_FILTER (300)

Invalid solution filter is specified.

MSK_RES_WRN_UNDEF_SOL_FILE_NAME (350)

Undefined name occurred in a solution.

MSK_RES_WRN_SOL_FILE_IGNORED_CON (351)

One or more lines in the constraint section were ignored when reading a solution file.

MSK_RES_WRN_SOL_FILE_IGNORED_VAR (352)

One or more lines in the variable section were ignored when reading a solution file.

MSK_RES_WRN_TOO_FEW_BASIS_VARS (400)

An incomplete basis has been specified. Too few basis variables are specified.

MSK_RES_WRN_TOO_MANY_BASIS_VARS (405)

A basis with too many variables has been specified.

MSK_RES_WRN_LICENSE_EXPIRE (500)

The license expires.

MSK_RES_WRN_LICENSE_SERVER (501)

The license server is not responding.

MSK_RES_WRN_EMPTY_NAME (502)

A variable or constraint name is empty. The output file may be invalid.

MSK_RES_WRN_USING_GENERIC_NAMES (503)

Generic names are used because a name is not valid. For instance when writing an LP file the names must not contain blanks or start with a digit.

MSK_RES_WRN_LICENSE_FEATURE_EXPIRE (505)

The license expires.

MSK_RES_WRN_PARAM_NAME_DOU (510)

The parameter name is not recognized as a double parameter.

MSK_RES_WRN_PARAM_NAME_INT (511)

The parameter name is not recognized as a integer parameter.

MSK_RES_WRN_PARAM_NAME_STR (512)

The parameter name is not recognized as a string parameter.

MSK_RES_WRN_PARAM_STR_VALUE (515)

The string is not recognized as a symbolic value for the parameter.

MSK_RES_WRN_PARAM_IGNORED_CMIO (516)

A parameter was ignored by the conic mixed integer optimizer.

MSK_RES_WRN_ZEROS_IN_SPARSE_ROW (705)

One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant to specify zero elements then it may indicate an error.

MSK_RES_WRN_ZEROS_IN_SPARSE_COL (710)

One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to specify zero elements. Hence, it may indicate an error.

MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK (800)

The linear dependency check(s) is incomplete. Normally this is not an important warning unless the optimization problem has been formulated with linear dependencies. Linear dependencies may prevent **MOSEK** from solving the problem.

MSK_RES_WRN_ELIMINATOR_SPACE (801)

The eliminator is skipped at least once due to lack of space.

MSK_RES_WRN_PRESOLVE_OUTOFSPACE (802)

The presolve is incomplete due to lack of space.

MSK_RES_WRN_WRITE_CHANGED_NAMES (803)

Some names were changed because they were invalid for the output file format.

MSK_RES_WRN_WRITE_DISCARDED_CFIX (804)

The fixed objective term could not be converted to a variable and was discarded in the output file.

MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES (850)

Two constraint names are identical.

MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES (851)

Two variable names are identical.

MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES (852)

Two barvariable names are identical.

MSK_RES_WRN_DUPLICATE_CONE_NAMES (853)

Two cone names are identical.

MSK_RES_WRN_ANA_LARGE_BOUNDS (900)

This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

MSK_RES_WRN_ANA_C_ZERO (901)

This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective are all zero.

MSK_RES_WRN_ANA_EMPTY_COLS (902)

This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are found.

MSK_RES_WRN_ANA_CLOSE_BOUNDS (903)

This warning is issued by problem analyzer, if ranged constraints or variables with very close upper and lower bounds are detected. One should consider treating such constraints as equalities and such variables as constants.

MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS (904)

This warning is issued by the problem analyzer if a constraint is bound nearly integral.

MSK_RES_WRN_QUAD_CONES_WITH_ROOT_FIXED_AT_ZERO (930)

For at least one quadratic cone the root is fixed at (nearly) zero. This may cause problems such as a very large dual solution. Therefore, it is recommended to remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

MSK_RES_WRN_RQUAD_CONES_WITH_ROOT_FIXED_AT_ZERO (931)

For at least one rotated quadratic cone at least one of the root variables are fixed at (nearly) zero. This may cause problems such as a very large dual solution. Therefore, it is recommended to remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

MSK_RES_WRN_EXP_CONES_WITH_VARIABLES_FIXED_AT_ZERO (932)

For at least one exponential cone $x \ge y \exp(z/y)$ either the variable x or y is fixed at (nearly) zero. This may cause problems such as a very large dual solution. Therefore, it is recommended to remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

MSK_RES_WRN_POW_CONES_WITH_ROOT_FIXED_AT_ZERO (933)

For at least one power cone at least one of the root variables are fixed at (nearly) zero. This may cause problems such as a very large dual solution. Therefore, it is recommended to remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

MSK_RES_WRN_NO_DUALIZER (950)

No automatic dualizer is available for the specified problem. The primal problem is solved.

MSK_RES_WRN_SYM_MAT_LARGE (960)

A numerically large value is specified for an $e_{i,j}$ element in E. The parameter $MSK_DPAR_DATA_SYM_MAT_TOL_LARGE$ controls when an $e_{i,j}$ is considered large.

11.3.3 Errors

MSK_RES_ERR_LICENSE (1000)

Invalid license.

MSK_RES_ERR_LICENSE_EXPIRED (1001)

The license has expired.

MSK_RES_ERR_LICENSE_VERSION (1002)

The license is valid for another version of **MOSEK**.

MSK_RES_ERR_SIZE_LICENSE (1005)

The problem is bigger than the license.

MSK_RES_ERR_PROB_LICENSE (1006)

The software is not licensed to solve the problem.

MSK_RES_ERR_FILE_LICENSE (1007)

Invalid license file.

MSK_RES_ERR_MISSING_LICENSE_FILE (1008)

MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details.

MSK_RES_ERR_SIZE_LICENSE_CON (1010)

The problem has too many constraints to be solved with the available license.

MSK_RES_ERR_SIZE_LICENSE_VAR (1011)

The problem has too many variables to be solved with the available license.

MSK_RES_ERR_SIZE_LICENSE_INTVAR (1012)

The problem contains too many integer variables to be solved with the available license.

MSK_RES_ERR_OPTIMIZER_LICENSE (1013)

The optimizer required is not licensed.

MSK_RES_ERR_FLEXLM (1014)

The FLEXIm license manager reported an error.

MSK_RES_ERR_LICENSE_SERVER (1015)

The license server is not responding.

MSK_RES_ERR_LICENSE_MAX (1016)

Maximum number of licenses is reached.

MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON (1017)

The MOSEKLM license manager daemon is not up and running.

MSK_RES_ERR_LICENSE_FEATURE (1018)

A requested feature is not available in the license file(s). Most likely due to an incorrect license system setup.

MSK_RES_ERR_PLATFORM_NOT_LICENSED (1019)

A requested license feature is not available for the required platform.

MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE (1020)

The license system cannot allocate the memory required.

MSK_RES_ERR_LICENSE_CANNOT_CONNECT (1021)

MOSEK cannot connect to the license server. Most likely the license server is not up and running. MSK_RES_ERR_LICENSE_INVALID_HOSTID (1025)

The host ID specified in the license file does not match the host ID of the computer.

MSK_RES_ERR_LICENSE_SERVER_VERSION (1026)

The version specified in the checkout request is greater than the highest version number the daemon supports.

MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT (1027)

The license server does not support the requested feature. Possible reasons for this error include:

- The feature has expired.
- The feature's start date is later than today's date.
- The version requested is higher than feature's the highest supported version.
- A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log. MSK_RES_ERR_LICENSE_NO_SERVER_LINE (1028)

There is no SERVER line in the license file. All non-zero license count features need at least one SERVER line.

MSK_RES_ERR_OLDER_DLL (1035)

The dynamic link library is older than the specified version.

MSK_RES_ERR_NEWER_DLL (1036)

The dynamic link library is newer than the specified version.

MSK_RES_ERR_LINK_FILE_DLL (1040)

A file cannot be linked to a stream in the DLL version.

MSK_RES_ERR_THREAD_MUTEX_INIT (1045)

Could not initialize a mutex.

MSK_RES_ERR_THREAD_MUTEX_LOCK (1046)

Could not lock a mutex.

MSK_RES_ERR_THREAD_MUTEX_UNLOCK (1047)

Could not unlock a mutex.

MSK_RES_ERR_THREAD_CREATE (1048)

Could not create a thread. This error may occur if a large number of environments are created and not deleted again. In any case it is a good practice to minimize the number of environments created.

MSK_RES_ERR_THREAD_COND_INIT (1049)

Could not initialize a condition.

MSK_RES_ERR_UNKNOWN (1050)

Unknown error.

MSK_RES_ERR_SPACE (1051)

Out of space.

MSK_RES_ERR_FILE_OPEN (1052)

Error while opening a file.

MSK_RES_ERR_FILE_READ (1053)

File read error.

MSK_RES_ERR_FILE_WRITE (1054)

File write error.

MSK_RES_ERR_DATA_FILE_EXT (1055)

The data file format cannot be determined from the file name.

MSK_RES_ERR_INVALID_FILE_NAME (1056)

An invalid file name has been specified.

MSK_RES_ERR_INVALID_SOL_FILE_NAME (1057)

An invalid file name has been specified.

MSK_RES_ERR_END_OF_FILE (1059)

End of file reached.

MSK_RES_ERR_NULL_ENV (1060)

env is a NULL pointer.

MSK_RES_ERR_NULL_TASK (1061)

task is a NULL pointer.

MSK_RES_ERR_INVALID_STREAM (1062)

An invalid stream is referenced.

MSK_RES_ERR_NO_INIT_ENV (1063)

env is not initialized.

MSK_RES_ERR_INVALID_TASK (1064)

The task is invalid.

MSK_RES_ERR_NULL_POINTER (1065)

An argument to a function is unexpectedly a NULL pointer.

MSK_RES_ERR_LIVING_TASKS (1066)

All tasks associated with an environment must be deleted before the environment is deleted. There are still some undeleted tasks.

MSK_RES_ERR_BLANK_NAME (1070)

An all blank name has been specified.

MSK_RES_ERR_DUP_NAME (1071)

The same name was used multiple times for the same problem item type.

MSK_RES_ERR_FORMAT_STRING (1072)

The name format string is invalid.

MSK_RES_ERR_INVALID_OBJ_NAME (1075)

An invalid objective name is specified.

MSK_RES_ERR_INVALID_CON_NAME (1076)

An invalid constraint name is used.

MSK_RES_ERR_INVALID_VAR_NAME (1077)

An invalid variable name is used.

MSK_RES_ERR_INVALID_CONE_NAME (1078)

An invalid cone name is used.

MSK_RES_ERR_INVALID_BARVAR_NAME (1079)

An invalid symmetric matrix variable name is used.

MSK_RES_ERR_SPACE_LEAKING (1080)

MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

MSK_RES_ERR_SPACE_NO_INFO (1081)

No available information about the space usage.

MSK_RES_ERR_READ_FORMAT (1090)

The specified format cannot be read.

MSK_RES_ERR_MPS_FILE (1100)

An error occurred while reading an MPS file.

MSK_RES_ERR_MPS_INV_FIELD (1101)

A field in the MPS file is invalid. Probably it is too wide.

MSK_RES_ERR_MPS_INV_MARKER (1102)

An invalid marker has been specified in the MPS file.

MSK_RES_ERR_MPS_NULL_CON_NAME (1103)

An empty constraint name is used in an MPS file.

MSK_RES_ERR_MPS_NULL_VAR_NAME (1104)

An empty variable name is used in an MPS file.

MSK_RES_ERR_MPS_UNDEF_CON_NAME (1105)

An undefined constraint name occurred in an MPS file.

MSK_RES_ERR_MPS_UNDEF_VAR_NAME (1106)

An undefined variable name occurred in an MPS file.

MSK_RES_ERR_MPS_INV_CON_KEY (1107)

An invalid constraint key occurred in an MPS file.

MSK_RES_ERR_MPS_INV_BOUND_KEY (1108)

An invalid bound key occurred in an MPS file.

MSK_RES_ERR_MPS_INV_SEC_NAME (1109)

An invalid section name occurred in an MPS file.

MSK_RES_ERR_MPS_NO_OBJECTIVE (1110)

No objective is defined in an MPS file.

MSK_RES_ERR_MPS_SPLITTED_VAR (1111)

All elements in a column of the A matrix must be specified consecutively. Hence, it is illegal to specify non-zero elements in A for variable 1, then for variable 2 and then variable 1 again.

MSK_RES_ERR_MPS_MUL_CON_NAME (1112)

A constraint name was specified multiple times in the ROWS section.

MSK_RES_ERR_MPS_MUL_QSEC (1113)

Multiple QSECTIONs are specified for a constraint in the MPS data file.

MSK_RES_ERR_MPS_MUL_QOBJ (1114)

The Q term in the objective is specified multiple times in the MPS data file.

MSK_RES_ERR_MPS_INV_SEC_ORDER (1115)

The sections in the MPS data file are not in the correct order.

MSK_RES_ERR_MPS_MUL_CSEC (1116)

Multiple CSECTIONs are given the same name.

MSK_RES_ERR_MPS_CONE_TYPE (1117)

Invalid cone type specified in a CSECTION.

MSK_RES_ERR_MPS_CONE_OVERLAP (1118)

A variable is specified to be a member of several cones.

MSK_RES_ERR_MPS_CONE_REPEAT (1119)

A variable is repeated within the CSECTION.

MSK_RES_ERR_MPS_NON_SYMMETRIC_Q (1120)

A non symmetric matrix has been speciefied.

MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT (1121)

Duplicate elements is specifed in a Q matrix.

MSK_RES_ERR_MPS_INVALID_OBJSENSE (1122)

An invalid objective sense is specified.

MSK_RES_ERR_MPS_TAB_IN_FIELD2 (1125)

A tab char occurred in field 2.

MSK_RES_ERR_MPS_TAB_IN_FIELD3 (1126)

A tab char occurred in field 3.

MSK_RES_ERR_MPS_TAB_IN_FIELD5 (1127)

A tab char occurred in field 5.

MSK_RES_ERR_MPS_INVALID_OBJ_NAME (1128)

An invalid objective name is specified.

MSK_RES_ERR_LP_INCOMPATIBLE (1150)

The problem cannot be written to an LP formatted file.

MSK_RES_ERR_LP_EMPTY (1151)

The problem cannot be written to an LP formatted file.

MSK_RES_ERR_LP_DUP_SLACK_NAME (1152)

The name of the slack variable added to a ranged constraint already exists.

MSK_RES_ERR_WRITE_MPS_INVALID_NAME (1153)

An invalid name is created while writing an MPS file. Usually this will make the MPS file unreadable.

MSK_RES_ERR_LP_INVALID_VAR_NAME (1154)

A variable name is invalid when used in an LP formatted file.

MSK_RES_ERR_LP_FREE_CONSTRAINT (1155)

Free constraints cannot be written in LP file format.

MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME (1156)

Empty variable names cannot be written to OPF files.

MSK_RES_ERR_LP_FILE_FORMAT (1157)

Syntax error in an LP file.

MSK_RES_ERR_WRITE_LP_FORMAT (1158)

Problem cannot be written as an LP file.

MSK_RES_ERR_READ_LP_MISSING_END_TAG (1159)

Syntax error in LP file. Possibly missing End tag.

MSK_RES_ERR_LP_FORMAT (1160)

Syntax error in an LP file.

MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME (1161)

An auto-generated name is not unique.

MSK_RES_ERR_READ_LP_NONEXISTING_NAME (1162)

A variable never occurred in objective or constraints.

MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM (1163)

The problem contains cones that cannot be written to an LP formatted file.

MSK_RES_ERR_LP_WRITE_GECO_PROBLEM (1164)

The problem contains general convex terms that cannot be written to an LP formatted file.

MSK_RES_ERR_WRITING_FILE (1166)

An error occurred while writing file

MSK_RES_ERR_PTF_FORMAT (1167)

Syntax error in an PTF file

MSK_RES_ERR_OPF_FORMAT (1168)

Syntax error in an OPF file

MSK_RES_ERR_OPF_NEW_VARIABLE (1169)

Introducing new variables is now allowed. When a [variables] section is present, it is not allowed to introduce new variables later in the problem.

MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE (1170)

An invalid name occurred in a solution file.

MSK_RES_ERR_LP_INVALID_CON_NAME (1171)

A constraint name is invalid when used in an LP formatted file.

MSK_RES_ERR_OPF_PREMATURE_EOF (1172)

Premature end of file in an OPF file.

MSK_RES_ERR_JSON_SYNTAX (1175)

Syntax error in an JSON data

MSK_RES_ERR_JSON_STRING (1176)

Error in JSON string.

MSK_RES_ERR_JSON_NUMBER_OVERFLOW (1177)

Invalid number entry - wrong type or value overflow.

MSK_RES_ERR_JSON_FORMAT (1178)

Error in an JSON Task file

MSK_RES_ERR_JSON_DATA (1179)

Inconsistent data in JSON Task file

MSK_RES_ERR_JSON_MISSING_DATA (1180)

Missing data section in JSON task file.

MSK_RES_ERR_ARGUMENT_LENNEQ (1197)

Incorrect length of arguments.

MSK_RES_ERR_ARGUMENT_TYPE (1198)

Incorrect argument type.

MSK_RES_ERR_NUM_ARGUMENTS (1199)

Incorrect number of function arguments.

MSK_RES_ERR_IN_ARGUMENT (1200)

A function argument is incorrect.

MSK_RES_ERR_ARGUMENT_DIMENSION (1201)

A function argument is of incorrect dimension.

MSK_RES_ERR_SHAPE_IS_TOO_LARGE (1202)

The size of the n-dimensional shape is too large.

MSK_RES_ERR_INDEX_IS_TOO_SMALL (1203)

An index in an argument is too small.

MSK_RES_ERR_INDEX_IS_TOO_LARGE (1204)

An index in an argument is too large.

MSK_RES_ERR_PARAM_NAME (1205)

The parameter name is not correct.

MSK_RES_ERR_PARAM_NAME_DOU (1206)

The parameter name is not correct for a double parameter.

MSK_RES_ERR_PARAM_NAME_INT (1207)

The parameter name is not correct for an integer parameter.

MSK_RES_ERR_PARAM_NAME_STR (1208)

The parameter name is not correct for a string parameter.

MSK_RES_ERR_PARAM_INDEX (1210)

Parameter index is out of range.

MSK_RES_ERR_PARAM_IS_TOO_LARGE (1215)

The parameter value is too large.

MSK_RES_ERR_PARAM_IS_TOO_SMALL (1216)

The parameter value is too small.

MSK_RES_ERR_PARAM_VALUE_STR (1217)

The parameter value string is incorrect.

MSK_RES_ERR_PARAM_TYPE (1218)

The parameter type is invalid.

MSK_RES_ERR_INF_DOU_INDEX (1219)

A double information index is out of range for the specified type.

MSK_RES_ERR_INF_INT_INDEX (1220)

An integer information index is out of range for the specified type.

MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL (1221)

An index in an array argument is too small.

MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE (1222)

An index in an array argument is too large.

MSK_RES_ERR_INF_LINT_INDEX (1225)

A long integer information index is out of range for the specified type.

MSK_RES_ERR_ARG_IS_TOO_SMALL (1226)

The value of a argument is too small.

MSK_RES_ERR_ARG_IS_TOO_LARGE (1227)

The value of a argument is too large.

MSK_RES_ERR_INVALID_WHICHSOL (1228)

which sol is invalid.

MSK_RES_ERR_INF_DOU_NAME (1230)

A double information name is invalid.

MSK_RES_ERR_INF_INT_NAME (1231)

An integer information name is invalid.

MSK_RES_ERR_INF_TYPE (1232)

The information type is invalid.

MSK_RES_ERR_INF_LINT_NAME (1234)

A long integer information name is invalid.

MSK_RES_ERR_INDEX (1235)

An index is out of range.

MSK_RES_ERR_WHICHSOL (1236)

The solution defined by whichsol does not exists.

MSK_RES_ERR_SOLITEM (1237)

The solution item number solitem is invalid. Please note that MSK_SOL_ITEM_SNX is invalid for the basic solution.

MSK_RES_ERR_WHICHITEM_NOT_ALLOWED (1238)

whichitem is unacceptable.

MSK_RES_ERR_MAXNUMCON (1240)

The maximum number of constraints specified is smaller than the number of constraints in the task.

MSK_RES_ERR_MAXNUMVAR (1241)

The maximum number of variables specified is smaller than the number of variables in the task.

MSK_RES_ERR_MAXNUMBARVAR (1242)

The maximum number of semidefinite variables specified is smaller than the number of semidefinite variables in the task.

MSK_RES_ERR_MAXNUMQNZ (1243)

The maximum number of non-zeros specified for the Q matrices is smaller than the number of non-zeros in the current Q matrices.

MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ (1245)

The maximum number of non-zeros specified is too small.

MSK_RES_ERR_INVALID_IDX (1246)

A specified index is invalid.

MSK_RES_ERR_INVALID_MAX_NUM (1247)

A specified index is invalid.

MSK_RES_ERR_NUMCONLIM (1250)

Maximum number of constraints limit is exceeded.

MSK_RES_ERR_NUMVARLIM (1251)

Maximum number of variables limit is exceeded.

MSK_RES_ERR_TOO_SMALL_MAXNUMANZ (1252)

The maximum number of non-zeros specified for A is smaller than the number of non-zeros in the current A.

MSK_RES_ERR_INV_APTRE (1253)

aptre[j] is strictly smaller than aptrb[j] for some j.

MSK_RES_ERR_MUL_A_ELEMENT (1254)

An element in A is defined multiple times.

MSK_RES_ERR_INV_BK (1255)

Invalid bound key.

MSK_RES_ERR_INV_BKC (1256)

Invalid bound key is specified for a constraint.

MSK_RES_ERR_INV_BKX (1257)

An invalid bound key is specified for a variable.

MSK_RES_ERR_INV_VAR_TYPE (1258)

An invalid variable type is specified for a variable.

MSK_RES_ERR_SOLVER_PROBTYPE (1259)

Problem type does not match the chosen optimizer.

MSK_RES_ERR_OBJECTIVE_RANGE (1260)

Empty objective range.

MSK_RES_ERR_UNDEF_SOLUTION (1265)

MOSEK has the following solution types:

- an interior-point solution,
- a basic solution,
- and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization with the interior-point optimizer defines the interior-point solution and, for linear problems, also the basic solution. This error occurs when asking for a solution or for information about a solution that is not defined.

MSK_RES_ERR_BASIS (1266)

An invalid basis is specified. Either too many or too few basis variables are specified.

MSK_RES_ERR_INV_SKC (1267)

Invalid value in skc.

MSK_RES_ERR_INV_SKX (1268)

Invalid value in skx.

MSK_RES_ERR_INV_SKN (1274)

Invalid value in skn.

MSK_RES_ERR_INV_SK_STR (1269)

Invalid status key string encountered.

MSK_RES_ERR_INV_SK (1270)

Invalid status key code.

MSK_RES_ERR_INV_CONE_TYPE_STR (1271)

Invalid cone type string encountered.

MSK_RES_ERR_INV_CONE_TYPE (1272)

Invalid cone type code is encountered.

MSK_RES_ERR_INVALID_SURPLUS (1275)

Invalid surplus.

MSK_RES_ERR_INV_NAME_ITEM (1280)

An invalid name item code is used.

MSK_RES_ERR_PRO_ITEM (1281)

An invalid problem is used.

MSK_RES_ERR_INVALID_FORMAT_TYPE (1283)

Invalid format type.

MSK_RES_ERR_FIRSTI (1285)

Invalid firsti.

MSK_RES_ERR_LASTI (1286)

Invalid lasti.

MSK_RES_ERR_FIRSTJ (1287)

Invalid firstj.

MSK_RES_ERR_LASTJ (1288)

Invalid lastj.

MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL (1289)

A maximum length that is too small has been specified.

MSK_RES_ERR_NONLINEAR_EQUALITY (1290)

The model contains a nonlinear equality which defines a nonconvex set.

MSK_RES_ERR_NONCONVEX (1291)

The optimization problem is nonconvex.

MSK_RES_ERR_NONLINEAR_RANGED (1292)

Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.

MSK_RES_ERR_CON_Q_NOT_PSD (1293)

The quadratic constraint matrix is not positive semidefinite as expected for a constraint with finite upper bound. This results in a nonconvex problem. The parameter $MSK_DPAR_CHECK_CONVEXITY_REL_TOL$ can be used to relax the convexity check.

MSK_RES_ERR_CON_Q_NOT_NSD (1294)

The quadratic constraint matrix is not negative semidefinite as expected for a constraint with finite lower bound. This results in a nonconvex problem. The parameter $MSK_DPAR_CHECK_CONVEXITY_REL_TOL$ can be used to relax the convexity check.

MSK_RES_ERR_OBJ_Q_NOT_PSD (1295)

The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a minimization problem. The parameter $MSK_DPAR_CHECK_CONVEXITY_REL_TOL$ can be used to relax the convexity check.

MSK_RES_ERR_OBJ_Q_NOT_NSD (1296)

The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a

maximization problem. The parameter $MSK_DPAR_CHECK_CONVEXITY_REL_TOL$ can be used to relax the convexity check.

MSK_RES_ERR_ARGUMENT_PERM_ARRAY (1299)

An invalid permutation array is specified.

MSK_RES_ERR_CONE_INDEX (1300)

An index of a non-existing cone has been specified.

MSK_RES_ERR_CONE_SIZE (1301)

A cone with incorrect number of members is specified.

MSK_RES_ERR_CONE_OVERLAP (1302)

One or more of the variables in the cone to be added is already member of another cone. Now assume the variable is x_j then add a new variable say x_k and the constraint

 $x_j = x_k$

and then let x_k be member of the cone to be appended.

MSK_RES_ERR_CONE_REP_VAR (1303)

A variable is included multiple times in the cone.

MSK_RES_ERR_MAXNUMCONE (1304)

The value specified for maxnumcone is too small.

MSK_RES_ERR_CONE_TYPE (1305)

Invalid cone type specified.

MSK_RES_ERR_CONE_TYPE_STR (1306)

Invalid cone type specified.

MSK_RES_ERR_CONE_OVERLAP_APPEND (1307)

The cone to be appended has one variable which is already member of another cone.

MSK_RES_ERR_REMOVE_CONE_VARIABLE (1310)

A variable cannot be removed because it will make a cone invalid.

MSK_RES_ERR_APPENDING_TOO_BIG_CONE (1311)

Trying to append a too big cone.

MSK_RES_ERR_CONE_PARAMETER (1320)

An invalid cone parameter.

MSK_RES_ERR_SOL_FILE_INVALID_NUMBER (1350)

An invalid number is specified in a solution file.

MSK_RES_ERR_HUGE_C (1375)

A huge value in absolute size is specified for one c_j .

MSK_RES_ERR_HUGE_AIJ (1380)

A numerically huge value is specified for an $a_{i,j}$ element in A. The parameter $\textit{MSK_DPAR_DATA_TOL_AIJ_HUGE}$ controls when an $a_{i,j}$ is considered huge.

MSK_RES_ERR_DUPLICATE_AIJ (1385)

An element in the A matrix is specified twice.

MSK_RES_ERR_LOWER_BOUND_IS_A_NAN (1390)

The lower bound specified is not a number (nan).

MSK_RES_ERR_UPPER_BOUND_IS_A_NAN (1391)

The upper bound specified is not a number (nan).

MSK_RES_ERR_INFINITE_BOUND (1400)

A numerically huge bound value is specified.

MSK_RES_ERR_INV_QOBJ_SUBI (1401)

Invalid value in qosubi.

MSK_RES_ERR_INV_QOBJ_SUBJ (1402)

Invalid value in qosubj.

MSK_RES_ERR_INV_QOBJ_VAL (1403)

Invalid value in goval.

MSK_RES_ERR_INV_QCON_SUBK (1404)

Invalid value in qcsubk.

MSK_RES_ERR_INV_QCON_SUBI (1405)

Invalid value in qcsubi.

MSK_RES_ERR_INV_QCON_SUBJ (1406)

Invalid value in qcsubj.

MSK_RES_ERR_INV_QCON_VAL (1407)

Invalid value in qcval.

MSK_RES_ERR_QCON_SUBI_TOO_SMALL (1408)

Invalid value in qcsubi.

MSK_RES_ERR_QCON_SUBI_TOO_LARGE (1409)

Invalid value in qcsubi.

MSK_RES_ERR_QOBJ_UPPER_TRIANGLE (1415)

An element in the upper triangle of Q^o is specified. Only elements in the lower triangle should be specified.

MSK_RES_ERR_QCON_UPPER_TRIANGLE (1417)

An element in the upper triangle of a Q^k is specified. Only elements in the lower triangle should be specified.

MSK_RES_ERR_FIXED_BOUND_VALUES (1420)

A fixed constraint/variable has been specified using the bound keys but the numerical value of the lower and upper bound is different.

MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE (1421)

A too small value for the A trucation value is specified.

MSK_RES_ERR_INVALID_OBJECTIVE_SENSE (1445)

An invalid objective sense is specified.

MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE (1446)

The objective sense has not been specified before the optimization.

MSK_RES_ERR_Y_IS_UNDEFINED (1449)

The solution item y is undefined.

MSK_RES_ERR_NAN_IN_DOUBLE_DATA (1450)

An invalid floating point value was used in some double data.

MSK_RES_ERR_NAN_IN_BLC (1461)

 l^c contains an invalid floating point value, i.e. a NaN.

MSK_RES_ERR_NAN_IN_BUC (1462)

 u^c contains an invalid floating point value, i.e. a NaN.

MSK_RES_ERR_NAN_IN_C (1470)

c contains an invalid floating point value, i.e. a NaN.

MSK_RES_ERR_NAN_IN_BLX (1471)

 l^x contains an invalid floating point value, i.e. a NaN.

MSK_RES_ERR_NAN_IN_BUX (1472)

 u^x contains an invalid floating point value, i.e. a NaN.

MSK_RES_ERR_INVALID_AIJ (1473)

 $a_{i,j}$ contains an invalid floating point value, i.e. a NaN or an infinite value.

MSK_RES_ERR_SYM_MAT_INVALID (1480)

A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.

MSK_RES_ERR_SYM_MAT_HUGE (1482)

A symmetric matrix contains a huge value in absolute size. The parameter $MSK_DPAR_DATA_SYM_MAT_TOL_HUGE$ controls when an $e_{i,j}$ is considered huge.

MSK_RES_ERR_INV_PROBLEM (1500)

Invalid problem type. Probably a nonconvex problem has been specified.

MSK_RES_ERR_MIXED_CONIC_AND_NL (1501)

The problem contains nonlinear terms conic constraints. The requested operation cannot be applied to this type of problem.

MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM (1503)

The global optimizer can only be applied to problems without semidefinite variables.

MSK_RES_ERR_INV_OPTIMIZER (1550)

An invalid optimizer has been chosen for the problem.

MSK_RES_ERR_MIO_NO_OPTIMIZER (1551)

No optimizer is available for the current class of integer optimization problems.

MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE (1552)

No optimizer is available for this class of optimization problems.

MSK_RES_ERR_FINAL_SOLUTION (1560)

An error occurred during the solution finalization.

MSK_RES_ERR_FIRST (1570)

Invalid first.

MSK_RES_ERR_LAST (1571)

Invalid index last. A given index was out of expected range.

MSK_RES_ERR_SLICE_SIZE (1572)

Invalid slice size specified.

MSK_RES_ERR_NEGATIVE_SURPLUS (1573)

Negative surplus.

MSK_RES_ERR_NEGATIVE_APPEND (1578)

Cannot append a negative number.

MSK_RES_ERR_POSTSOLVE (1580)

An error occurred during the postsolve. Please contact **MOSEK** support.

MSK_RES_ERR_OVERFLOW (1590)

A computation produced an overflow i.e. a very large number.

MSK_RES_ERR_NO_BASIS_SOL (1600)

No basic solution is defined.

MSK_RES_ERR_BASIS_FACTOR (1610)

The factorization of the basis is invalid.

MSK_RES_ERR_BASIS_SINGULAR (1615)

The basis is singular and hence cannot be factored.

MSK_RES_ERR_FACTOR (1650)

An error occurred while factorizing a matrix.

MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX (1700)

An optimization problem cannot be relaxed.

MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED (1701)

The relaxed problem could not be solved to optimality. Please consult the log file for further details.

MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND (1702)

The upper bound is less than the lower bound for a variable or a constraint. Please correct this before running the feasibility repair.

MSK_RES_ERR_REPAIR_INVALID_PROBLEM (1710)

The feasibility repair does not support the specified problem type.

MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED (1711)

Computation the optimal relaxation failed. The cause may have been numerical problems.

MSK_RES_ERR_NAME_MAX_LEN (1750)

A name is longer than the buffer that is supposed to hold it.

MSK_RES_ERR_NAME_IS_NULL (1760)

The name buffer is a NULL pointer.

MSK_RES_ERR_INVALID_COMPRESSION (1800)

Invalid compression type.

MSK_RES_ERR_INVALID_IOMODE (1801)

Invalid io mode.

MSK_RES_ERR_NO_PRIMAL_INFEAS_CER (2000)

A certificate of primal infeasibility is not available.

MSK_RES_ERR_NO_DUAL_INFEAS_CER (2001)

A certificate of infeasibility is not available.

MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK (2500)

The required solution is not available.

MSK_RES_ERR_INV_MARKI (2501)

Invalid value in marki.

MSK_RES_ERR_INV_MARKJ (2502)

Invalid value in markj.

MSK_RES_ERR_INV_NUMI (2503)

Invalid numi.

MSK_RES_ERR_INV_NUMJ (2504)

Invalid numj.

MSK_RES_ERR_TASK_INCOMPATIBLE (2560)

The Task file is incompatible with this platform. This results from reading a file on a 32 bit platform generated on a 64 bit platform.

MSK_RES_ERR_TASK_INVALID (2561)

The Task file is invalid.

MSK_RES_ERR_TASK_WRITE (2562)

Failed to write the task file.

MSK_RES_ERR_LU_MAX_NUM_TRIES (2800)

Could not compute the LU factors of the matrix within the maximum number of allowed tries.

MSK_RES_ERR_INVALID_UTF8 (2900)

An invalid UTF8 string is encountered.

MSK_RES_ERR_INVALID_WCHAR (2901)

An invalid wchar string is encountered.

MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL (2950)

No dual information is available for the integer solution.

MSK_RES_ERR_NO_SNX_FOR_BAS_SOL (2953)

 s_n^x is not available for the basis solution.

MSK_RES_ERR_INTERNAL (3000)

An internal error occurred. Please report this problem.

MSK_RES_ERR_API_ARRAY_TOO_SMALL (3001)

An input array was too short.

MSK_RES_ERR_API_CB_CONNECT (3002)

Failed to connect a callback object.

MSK_RES_ERR_API_FATAL_ERROR (3005)

An internal error occurred in the API. Please report this problem.

MSK_RES_ERR_API_INTERNAL (3999)

An internal fatal error occurred in an interface function.

MSK_RES_ERR_SEN_FORMAT (3050)

Syntax error in sensitivity analysis file.

MSK_RES_ERR_SEN_UNDEF_NAME (3051)

An undefined name was encountered in the sensitivity analysis file.

MSK_RES_ERR_SEN_INDEX_RANGE (3052)

Index out of range in the sensitivity analysis file.

MSK_RES_ERR_SEN_BOUND_INVALID_UP (3053)

Analysis of upper bound requested for an index, where no upper bound exists.

MSK_RES_ERR_SEN_BOUND_INVALID_LO (3054)

Analysis of lower bound requested for an index, where no lower bound exists.

MSK_RES_ERR_SEN_INDEX_INVALID (3055)

Invalid range given in the sensitivity file.

MSK_RES_ERR_SEN_INVALID_REGEXP (3056)

Syntax error in regexp or regexp longer than 1024.

MSK_RES_ERR_SEN_SOLUTION_STATUS (3057)

No optimal solution found to the original problem given for sensitivity analysis.

MSK_RES_ERR_SEN_NUMERICAL (3058)

Numerical difficulties encountered performing the sensitivity analysis.

MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE (3080)

Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only possible for linear problems.

MSK_RES_ERR_UNB_STEP_SIZE (3100)

A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact **MOSEK** support if this error occurs.

MSK_RES_ERR_IDENTICAL_TASKS (3101)

Some tasks related to this function call were identical. Unique tasks were expected.

MSK_RES_ERR_AD_INVALID_CODELIST (3102)

The code list data was invalid.

MSK_RES_ERR_INTERNAL_TEST_FAILED (3500)

An internal unit test function failed.

MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE (3600)

The problem type is not supported by the XML format.

MSK_RES_ERR_INVALID_AMPL_STUB (3700)

Invalid AMPL stub.

MSK_RES_ERR_INT64_TO_INT32_CAST (3800)

A 64 bit integer could not be cast to a 32 bit integer.

MSK_RES_ERR_SIZE_LICENSE_NUMCORES (3900)

The computer contains more cpu cores than the license allows for.

MSK_RES_ERR_INFEAS_UNDEFINED (3910)

The requested value is not defined for this solution type.

MSK_RES_ERR_NO_BARX_FOR_SOLUTION (3915)

There is no \overline{X} available for the solution specified. In particular note there are no \overline{X} defined for the basic and integer solutions.

MSK_RES_ERR_NO_BARS_FOR_SOLUTION (3916)

There is no \bar{s} available for the solution specified. In particular note there are no \bar{s} defined for the basic and integer solutions.

MSK_RES_ERR_BAR_VAR_DIM (3920)

The dimension of a symmetric matrix variable has to be greater than 0.

MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX (3940)

A row index specified for sparse symmetric matrix is invalid.

MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX (3941)

A column index specified for sparse symmetric matrix is invalid.

MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR (3942)

Only the lower triangular part of sparse symmetric matrix should be specified.

MSK_RES_ERR_SYM_MAT_INVALID_VALUE (3943)

The numerical value specified in a sparse symmetric matrix is not a floating point value.

MSK_RES_ERR_SYM_MAT_DUPLICATE (3944)

A value in a symmetric matric as been specified more than once.

MSK_RES_ERR_INVALID_SYM_MAT_DIM (3950)

A sparse symmetric matrix of invalid dimension is specified.

MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT (4000)

The file format does not support a problem with symmetric matrix variables.

MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX (4001)

The file format does not support a problem with nonzero fixed term in c.

MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS (4002)

The file format does not support a problem with ranged constraints.

MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS (4003)

The file format does not support a problem with free constraints.

MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES (4005)

The file format does not support a problem with conic constraints.

MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR (4010)

The file format does not support a problem with nonlinear terms.

MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES (4500)

Two constraint names are identical.

MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES (4501)

Two variable names are identical.

MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES (4502)

Two barvariable names are identical.

MSK_RES_ERR_DUPLICATE_CONE_NAMES (4503)

Two cone names are identical.

MSK_RES_ERR_NON_UNIQUE_ARRAY (5000)

An array does not contain unique elements.

MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE (5005)

The value of a function argument is too large.

MSK_RES_ERR_MIO_INTERNAL (5010)

A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

MSK_RES_ERR_INVALID_PROBLEM_TYPE (6000)

An invalid problem type.

MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS (6010)

Unhandled solution status.

MSK_RES_ERR_UPPER_TRIANGLE (6020)

An element in the upper triangle of a lower triangular matrix is specified.

MSK_RES_ERR_LAU_SINGULAR_MATRIX (7000)

A matrix is singular.

MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE (7001)

A matrix is not positive definite.

MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX (7002)

An invalid lower triangular matrix.

MSK_RES_ERR_LAU_UNKNOWN (7005)

An unknown error.

MSK_RES_ERR_LAU_ARG_M (7010)

Invalid argument m.

MSK_RES_ERR_LAU_ARG_N (7011)

Invalid argument n.

MSK_RES_ERR_LAU_ARG_K (7012)

Invalid argument k.

MSK_RES_ERR_LAU_ARG_TRANSA (7015)

Invalid argument transa.

MSK_RES_ERR_LAU_ARG_TRANSB (7016)

Invalid argument transb.

MSK_RES_ERR_LAU_ARG_UPLO (7017)

Invalid argument uplo.

MSK_RES_ERR_LAU_ARG_TRANS (7018)

Invalid argument trans.

MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX (7019)

An invalid sparse symmetric matrix is specified. Note only the lower triangular part with no duplicates is specified.

MSK_RES_ERR_CBF_PARSE (7100)

An error occurred while parsing an CBF file.

MSK_RES_ERR_CBF_OBJ_SENSE (7101)

An invalid objective sense is specified.

MSK_RES_ERR_CBF_NO_VARIABLES (7102)

No variables are specified.

MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS (7103)

Too many constraints specified.

MSK_RES_ERR_CBF_TOO_MANY_VARIABLES (7104)

Too many variables specified.

MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED (7105)

No version specified.

MSK_RES_ERR_CBF_SYNTAX (7106)

Invalid syntax.

MSK_RES_ERR_CBF_DUPLICATE_OBJ (7107)

Duplicate OBJ keyword.

MSK_RES_ERR_CBF_DUPLICATE_CON (7108)

Duplicate CON keyword.

MSK_RES_ERR_CBF_DUPLICATE_VAR (7109)

 $\label{eq:continuous} \mbox{Duplicate VAR keyword.}$

MSK_RES_ERR_CBF_DUPLICATE_INT (7110)

Duplicate INT keyword.

MSK_RES_ERR_CBF_INVALID_VAR_TYPE (7111)

Invalid variable type.

MSK_RES_ERR_CBF_INVALID_CON_TYPE (7112)

Invalid constraint type.

MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION (7113)

Invalid domain dimension.

MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD (7114)

 $\label{eq:Duplicate index in OBJCOORD.}$

MSK_RES_ERR_CBF_DUPLICATE_BCOORD (7115)

Duplicate index in BCOORD.

MSK_RES_ERR_CBF_DUPLICATE_ACOORD (7116)

Duplicate index in ACOORD.

MSK_RES_ERR_CBF_TOO_FEW_VARIABLES (7117)

Too few variables defined.

MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS (7118)

Too few constraints defined.

MSK_RES_ERR_CBF_TOO_FEW_INTS (7119)

Too few ints are specified.

MSK_RES_ERR_CBF_TOO_MANY_INTS (7120)

Too many ints are specified.

MSK_RES_ERR_CBF_INVALID_INT_INDEX (7121)

Invalid INT index.

MSK_RES_ERR_CBF_UNSUPPORTED (7122)

Unsupported feature is present.

MSK_RES_ERR_CBF_DUPLICATE_PSDVAR (7123)

Duplicate PSDVAR keyword.

MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION (7124)

Invalid PSDVAR dimension.

MSK_RES_ERR_CBF_TOO_FEW_PSDVAR (7125)

Too few variables defined.

MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION (7126)

Invalid dimension of a exponential cone.

MSK_RES_ERR_CBF_DUPLICATE_POW_CONES (7130)

Multiple POWCONES specified.

MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES (7131)

Multiple POW*CONES specified.

MSK_RES_ERR_CBF_INVALID_POWER (7132)

Invalid power specified.

MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG (7133)

Power cone is too long.

MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX (7134)

Invalid power cone index.

MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX (7135)

Invalid power star cone index.

MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE (7136)

An unhandled power cone type.

MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE (7137)

An unhandled power star cone type.

MSK_RES_ERR_CBF_POWER_CONE_MISMATCH (7138)

The power cone does not match with it definition.

MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH (7139)

The power star cone does not match with it definition.

MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES (7740)

Invalid number of cones.

MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES (7741)

Invalid dimension of cones.

MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER (7700)

An invalid root optimizer was selected for the problem type.

MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER (7701)

An invalid node optimizer was selected for the problem type.

MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD (7800)

The matrix defining the quadratric part of constraint is not positive semidefinite.

MSK_RES_ERR_TOCONIC_CONSTRAINT_FX (7801)

The quadratic constraint is an equality, thus not convex.

MSK_RES_ERR_TOCONIC_CONSTRAINT_RA (7802)

The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC (7803)

The constraint is not conic representable.

MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD (7804)

The matrix defining the quadratric part of the objective function is not positive semidefinite.

MSK_RES_ERR_SERVER_CONNECT (8000)

Failed to connect to remote solver server. The server string or the port string were invalid, or the server did not accept connection.

MSK_RES_ERR_SERVER_PROTOCOL (8001)

Unexpected message or data from solver server.

MSK_RES_ERR_SERVER_STATUS (8002)

Server returned non-ok HTTP status code

MSK_RES_ERR_SERVER_TOKEN (8003)

The job ID specified is incorrect or invalid

11.4 Constants

11.4.1 Basis identification

MSK_BI_NEVER

Never do basis identification.

MSK_BI_ALWAYS

Basis identification is always performed even if the interior-point optimizer terminates abnormally.

MSK_BI_NO_ERROR

Basis identification is performed if the interior-point optimizer terminates without an error.

MSK_BI_IF_FEASIBLE

Basis identification is not performed if the interior-point optimizer terminates with a problem status saying that the problem is primal or dual infeasible.

MSK_BI_RESERVERED

Not currently in use.

11.4.2 Bound keys

MSK_BK_LO

The constraint or variable has a finite lower bound and an infinite upper bound.

MSK BK UP

The constraint or variable has an infinite lower bound and an finite upper bound.

MSK_BK_FX

The constraint or variable is fixed.

MSK_BK_FR

The constraint or variable is free.

MSK_BK_RA

The constraint or variable is ranged.

11.4.3 Mark

MSK_MARK_LO

The lower bound is selected for sensitivity analysis.

MSK MARK UP

The upper bound is selected for sensitivity analysis.

11.4.4 Degeneracy strategies

MSK_SIM_DEGEN_NONE

The simplex optimizer should use no degeneration strategy.

MSK_SIM_DEGEN_FREE

The simplex optimizer chooses the degeneration strategy.

MSK_SIM_DEGEN_AGGRESSIVE

The simplex optimizer should use an aggressive degeneration strategy.

MSK_SIM_DEGEN_MODERATE

The simplex optimizer should use a moderate degeneration strategy.

MSK_SIM_DEGEN_MINIMUM

The simplex optimizer should use a minimum degeneration strategy.

11.4.5 Transposed matrix.

MSK_TRANSPOSE_NO

No transpose is applied.

MSK_TRANSPOSE_YES

A transpose is applied.

11.4.6 Triangular part of a symmetric matrix.

MSK_UPLO_LO

Lower part.

MSK_UPLO_UP

Upper part.

11.4.7 Problem reformulation.

MSK_SIM_REFORMULATION_ON

Allow the simplex optimizer to reformulate the problem.

MSK_SIM_REFORMULATION_OFF

Disallow the simplex optimizer to reformulate the problem.

MSK_SIM_REFORMULATION_FREE

The simplex optimizer can choose freely.

MSK_SIM_REFORMULATION_AGGRESSIVE

The simplex optimizer should use an aggressive reformulation strategy.

11.4.8 Exploit duplicate columns.

MSK_SIM_EXPLOIT_DUPVEC_ON

Allow the simplex optimizer to exploit duplicated columns.

MSK_SIM_EXPLOIT_DUPVEC_OFF

Disallow the simplex optimizer to exploit duplicated columns.

MSK_SIM_EXPLOIT_DUPVEC_FREE

The simplex optimizer can choose freely.

11.4.9 Hot-start type employed by the simplex optimizer

MSK_SIM_HOTSTART_NONE

The simplex optimizer performs a coldstart.

MSK_SIM_HOTSTART_FREE

The simplex optimize chooses the hot-start type.

MSK_SIM_HOTSTART_STATUS_KEYS

Only the status keys of the constraints and variables are used to choose the type of hot-start.

11.4.10 Hot-start type employed by the interior-point optimizers.

MSK_INTPNT_HOTSTART_NONE

The interior-point optimizer performs a coldstart.

MSK_INTPNT_HOTSTART_PRIMAL

The interior-point optimizer exploits the primal solution only.

MSK_INTPNT_HOTSTART_DUAL

The interior-point optimizer exploits the dual solution only.

MSK_INTPNT_HOTSTART_PRIMAL_DUAL

The interior-point optimizer exploits both the primal and dual solution.

11.4.11 Solution purification employed optimizer.

MSK_PURIFY_NONE

The optimizer performs no solution purification.

MSK_PURIFY_PRIMAL

The optimizer purifies the primal solution.

MSK_PURIFY_DUAL

The optimizer purifies the dual solution.

MSK_PURIFY_PRIMAL_DUAL

The optimizer purifies both the primal and dual solution.

MSK_PURIFY_AUTO

TBD

11.4.12 Progress callback codes

MSK_CALLBACK_BEGIN_BI

The basis identification procedure has been started.

MSK_CALLBACK_BEGIN_CONIC

The callback function is called when the conic optimizer is started.

MSK_CALLBACK_BEGIN_DUAL_BI

The callback function is called from within the basis identification procedure when the dual phase is started.

MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY

Dual sensitivity analysis is started.

MSK_CALLBACK_BEGIN_DUAL_SETUP_BI

The callback function is called when the dual BI phase is started.

MSK_CALLBACK_BEGIN_DUAL_SIMPLEX

The callback function is called when the dual simplex optimizer started.

MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the dual simplex clean-up phase is started.

MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK

Begin full convexity check.

MSK_CALLBACK_BEGIN_INFEAS_ANA

The callback function is called when the infeasibility analyzer is started.

MSK_CALLBACK_BEGIN_INTPNT

The callback function is called when the interior-point optimizer is started.

MSK_CALLBACK_BEGIN_LICENSE_WAIT

Begin waiting for license.

MSK_CALLBACK_BEGIN_MIO

The callback function is called when the mixed-integer optimizer is started.

MSK_CALLBACK_BEGIN_OPTIMIZER

The callback function is called when the optimizer is started.

MSK_CALLBACK_BEGIN_PRESOLVE

The callback function is called when the presolve is started.

MSK_CALLBACK_BEGIN_PRIMAL_BI

The callback function is called from within the basis identification procedure when the primal phase is started.

MSK_CALLBACK_BEGIN_PRIMAL_REPAIR

Begin primal feasibility repair.

MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY

Primal sensitivity analysis is started.

MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI

The callback function is called when the primal BI setup is started.

MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX

The callback function is called when the primal simplex optimizer is started.

MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the primal simplex clean-up phase is started.

MSK_CALLBACK_BEGIN_QCQO_REFORMULATE

Begin QCQO reformulation.

MSK_CALLBACK_BEGIN_READ

MOSEK has started reading a problem file.

MSK_CALLBACK_BEGIN_ROOT_CUTGEN

The callback function is called when root cut generation is started.

MSK_CALLBACK_BEGIN_SIMPLEX

The callback function is called when the simplex optimizer is started.

MSK_CALLBACK_BEGIN_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the simplex clean-up phase is started.

MSK_CALLBACK_BEGIN_TO_CONIC

Begin conic reformulation.

MSK_CALLBACK_BEGIN_WRITE

MOSEK has started writing a problem file.

MSK_CALLBACK_CONIC

The callback function is called from within the conic optimizer after the information database has been updated.

MSK_CALLBACK_DUAL_SIMPLEX

The callback function is called from within the dual simplex optimizer.

MSK_CALLBACK_END_BI

The callback function is called when the basis identification procedure is terminated.

MSK_CALLBACK_END_CONIC

The callback function is called when the conic optimizer is terminated.

MSK_CALLBACK_END_DUAL_BI

The callback function is called from within the basis identification procedure when the dual phase is terminated.

MSK_CALLBACK_END_DUAL_SENSITIVITY

Dual sensitivity analysis is terminated.

MSK_CALLBACK_END_DUAL_SETUP_BI

The callback function is called when the dual BI phase is terminated.

MSK_CALLBACK_END_DUAL_SIMPLEX

The callback function is called when the dual simplex optimizer is terminated.

MSK_CALLBACK_END_DUAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the dual clean-up phase is terminated.

MSK_CALLBACK_END_FULL_CONVEXITY_CHECK

End full convexity check.

MSK_CALLBACK_END_INFEAS_ANA

The callback function is called when the infeasibility analyzer is terminated.

MSK_CALLBACK_END_INTPNT

The callback function is called when the interior-point optimizer is terminated.

MSK_CALLBACK_END_LICENSE_WAIT

End waiting for license.

MSK_CALLBACK_END_MIO

The callback function is called when the mixed-integer optimizer is terminated.

MSK_CALLBACK_END_OPTIMIZER

The callback function is called when the optimizer is terminated.

MSK_CALLBACK_END_PRESOLVE

The callback function is called when the presolve is completed.

MSK_CALLBACK_END_PRIMAL_BI

The callback function is called from within the basis identification procedure when the primal phase is terminated.

MSK_CALLBACK_END_PRIMAL_REPAIR

End primal feasibility repair.

MSK_CALLBACK_END_PRIMAL_SENSITIVITY

Primal sensitivity analysis is terminated.

MSK_CALLBACK_END_PRIMAL_SETUP_BI

The callback function is called when the primal BI setup is terminated.

MSK_CALLBACK_END_PRIMAL_SIMPLEX

The callback function is called when the primal simplex optimizer is terminated.

MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the primal clean-up phase is terminated.

MSK_CALLBACK_END_QCQO_REFORMULATE

End QCQO reformulation.

MSK_CALLBACK_END_READ

MOSEK has finished reading a problem file.

MSK_CALLBACK_END_ROOT_CUTGEN

The callback function is called when root cut generation is terminated.

MSK_CALLBACK_END_SIMPLEX

The callback function is called when the simplex optimizer is terminated.

MSK_CALLBACK_END_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the simplex clean-up phase is terminated.

MSK_CALLBACK_END_TO_CONIC

End conic reformulation.

MSK_CALLBACK_END_WRITE

MOSEK has finished writing a problem file.

MSK_CALLBACK_IM_BI

The callback function is called from within the basis identification procedure at an intermediate point.

MSK_CALLBACK_IM_CONIC

The callback function is called at an intermediate stage within the conic optimizer where the information database has not been updated.

MSK_CALLBACK_IM_DUAL_BI

The callback function is called from within the basis identification procedure at an intermediate point in the dual phase.

MSK_CALLBACK_IM_DUAL_SENSIVITY

The callback function is called at an intermediate stage of the dual sensitivity analysis.

MSK_CALLBACK_IM_DUAL_SIMPLEX

The callback function is called at an intermediate point in the dual simplex optimizer.

MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK

The callback function is called at an intermediate stage of the full convexity check.

MSK_CALLBACK_IM_INTPNT

The callback function is called at an intermediate stage within the interior-point optimizer where the information database has not been updated.

MSK_CALLBACK_IM_LICENSE_WAIT

MOSEK is waiting for a license.

MSK_CALLBACK_IM_LU

The callback function is called from within the LU factorization procedure at an intermediate point.

MSK_CALLBACK_IM_MIO

The callback function is called at an intermediate point in the mixed-integer optimizer.

MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX

The callback function is called at an intermediate point in the mixed-integer optimizer while running the dual simplex optimizer.

MSK_CALLBACK_IM_MIO_INTPNT

The callback function is called at an intermediate point in the mixed-integer optimizer while running the interior-point optimizer.

MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX

The callback function is called at an intermediate point in the mixed-integer optimizer while running the primal simplex optimizer.

MSK_CALLBACK_IM_ORDER

The callback function is called from within the matrix ordering procedure at an intermediate point.

MSK_CALLBACK_IM_PRESOLVE

The callback function is called from within the presolve procedure at an intermediate stage.

MSK_CALLBACK_IM_PRIMAL_BI

The callback function is called from within the basis identification procedure at an intermediate point in the primal phase.

MSK_CALLBACK_IM_PRIMAL_SENSIVITY

The callback function is called at an intermediate stage of the primal sensitivity analysis.

MSK_CALLBACK_IM_PRIMAL_SIMPLEX

The callback function is called at an intermediate point in the primal simplex optimizer.

MSK_CALLBACK_IM_QO_REFORMULATE

The callback function is called at an intermediate stage of the conic quadratic reformulation.

MSK_CALLBACK_IM_READ

Intermediate stage in reading.

MSK_CALLBACK_IM_ROOT_CUTGEN

The callback is called from within root cut generation at an intermediate stage.

MSK_CALLBACK_IM_SIMPLEX

The callback function is called from within the simplex optimizer at an intermediate point.

MSK_CALLBACK_IM_SIMPLEX_BI

The callback function is called from within the basis identification procedure at an intermediate point in the simplex clean-up phase. The frequency of the callbacks is controlled by the $MSK_IPAR_LOG_SIM_FREQ$ parameter.

MSK_CALLBACK_INTPNT

The callback function is called from within the interior-point optimizer after the information database has been updated.

MSK_CALLBACK_NEW_INT_MIO

The callback function is called after a new integer solution has been located by the mixed-integer optimizer.

MSK_CALLBACK_PRIMAL_SIMPLEX

The callback function is called from within the primal simplex optimizer.

MSK_CALLBACK_READ_OPF

The callback function is called from the OPF reader.

MSK_CALLBACK_READ_OPF_SECTION

A chunk of Q non-zeros has been read from a problem file.

MSK_CALLBACK_SOLVING_REMOTE

The callback function is called while the task is being solved on a remote server.

MSK_CALLBACK_UPDATE_DUAL_BI

The callback function is called from within the basis identification procedure at an intermediate point in the dual phase.

MSK_CALLBACK_UPDATE_DUAL_SIMPLEX

The callback function is called in the dual simplex optimizer.

MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure at an intermediate point in the dual simplex clean-up phase. The frequency of the callbacks is controlled by the $MSK_IPAR_LOG_SIM_FREQ$ parameter.

MSK_CALLBACK_UPDATE_PRESOLVE

The callback function is called from within the presolve procedure.

MSK_CALLBACK_UPDATE_PRIMAL_BI

The callback function is called from within the basis identification procedure at an intermediate point in the primal phase.

MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX

The callback function is called in the primal simplex optimizer.

MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure at an intermediate point in the primal simplex clean-up phase. The frequency of the callbacks is controlled by the $MSK_IPAR_LOG_SIM_FREQ$ parameter.

MSK_CALLBACK_WRITE_OPF

The callback function is called from the OPF writer.

11.4.13 Types of convexity checks.

MSK_CHECK_CONVEXITY_NONE

No convexity check.

MSK_CHECK_CONVEXITY_SIMPLE

Perform simple and fast convexity check.

MSK_CHECK_CONVEXITY_FULL

Perform a full convexity check.

11.4.14 Compression types

MSK_COMPRESS_NONE

No compression is used.

MSK_COMPRESS_FREE

The type of compression used is chosen automatically.

MSK_COMPRESS_GZIP

The type of compression used is gzip compatible.

MSK_COMPRESS_ZSTD

The type of compression used is zstd compatible.

11.4.15 Cone types

MSK_CT_QUAD

The cone is a quadratic cone.

MSK_CT_RQUAD

The cone is a rotated quadratic cone.

MSK_CT_PEXP

A primal exponential cone.

MSK_CT_DEXP

A dual exponential cone.

MSK_CT_PPOW

A primal power cone.

MSK_CT_DPOW

A dual power cone.

MSK_CT_ZERO

The zero cone.

11.4.16 Name types

MSK_NAME_TYPE_GEN

General names. However, no duplicate and blank names are allowed.

MSK_NAME_TYPE_MPS

MPS type names.

MSK_NAME_TYPE_LP

LP type names.

11.4.17 SCopt operator types

MSK_OPR_ENT

Entropy

MSK_OPR_EXP

Exponential

MSK_OPR_LOG

Logarithm

MSK_OPR_POW

Power

MSK_OPR_SQRT

Square root

11.4.18 Cone types

MSK_SYMMAT_TYPE_SPARSE

Sparse symmetric matrix.

11.4.19 Data format types

MSK_DATA_FORMAT_EXTENSION

The file extension is used to determine the data file format.

MSK_DATA_FORMAT_MPS

The data file is MPS formatted.

MSK_DATA_FORMAT_LP

The data file is LP formatted.

MSK_DATA_FORMAT_OP

The data file is an optimization problem formatted file.

MSK_DATA_FORMAT_FREE_MPS

The data a free MPS formatted file.

MSK_DATA_FORMAT_TASK

Generic task dump file.

MSK_DATA_FORMAT_PTF

(P)retty (T)ext (F)format.

MSK_DATA_FORMAT_CB

Conic benchmark format,

MSK_DATA_FORMAT_JSON_TASK

JSON based task format.

11.4.20 Double information items

MSK_DINF_BI_CLEAN_DUAL_TIME

Time spent within the dual clean-up optimizer of the basis identification procedure since its invocation

MSK_DINF_BI_CLEAN_PRIMAL_TIME

Time spent within the primal clean-up optimizer of the basis identification procedure since its invocation.

MSK_DINF_BI_CLEAN_TIME

Time spent within the clean-up phase of the basis identification procedure since its invocation.

MSK_DINF_BI_DUAL_TIME

Time spent within the dual phase basis identification procedure since its invocation.

MSK_DINF_BI_PRIMAL_TIME

Time spent within the primal phase of the basis identification procedure since its invocation.

MSK_DINF_BI_TIME

Time spent within the basis identification procedure since its invocation.

MSK_DINF_INTPNT_DUAL_FEAS

Dual feasibility measure reported by the interior-point optimizer. (For the interior-point optimizer this measure is not directly related to the original problem because a homogeneous model is employed.)

MSK_DINF_INTPNT_DUAL_OBJ

Dual objective value reported by the interior-point optimizer.

MSK_DINF_INTPNT_FACTOR_NUM_FLOPS

An estimate of the number of flops used in the factorization.

MSK_DINF_INTPNT_OPT_STATUS

A measure of optimality of the solution. It should converge to +1 if the problem has a primal-dual optimal solution, and converge to -1 if the problem is (strictly) primal or dual infeasible. If the measure converges to another constant, or fails to settle, the problem is usually ill-posed.

MSK_DINF_INTPNT_ORDER_TIME

Order time (in seconds).

MSK_DINF_INTPNT_PRIMAL_FEAS

Primal feasibility measure reported by the interior-point optimizer. (For the interior-point optimizer this measure is not directly related to the original problem because a homogeneous model is employed).

MSK_DINF_INTPNT_PRIMAL_OBJ

Primal objective value reported by the interior-point optimizer.

MSK_DINF_INTPNT_TIME

Time spent within the interior-point optimizer since its invocation.

MSK_DINF_MIO_CLIQUE_SEPARATION_TIME

Separation time for clique cuts.

MSK_DINF_MIO_CMIR_SEPARATION_TIME

Separation time for CMIR cuts.

MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ

If **MOSEK** has successfully constructed an integer feasible solution, then this item contains the optimal objective value corresponding to the feasible solution.

MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE

Value of the dual bound after presolve but before cut generation.

MSK_DINF_MIO_GMI_SEPARATION_TIME

Separation time for GMI cuts.

MSK_DINF_MIO_IMPLIED_BOUND_TIME

Separation time for implied bound cuts.

MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME

Separation time for knapsack cover.

MSK_DINF_MIO_OBJ_ABS_GAP

Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) – (objective bound)|.

Otherwise it has the value -1.0.

MSK_DINF_MIO_OBJ_BOUND

The best known bound on the objective function. This value is undefined until at least one relaxation has been solved: To see if this is the case check that $MSK_IINF_MIO_NUM_RELAX$ is strictly positive.

MSK_DINF_MIO_OBJ_INT

The primal objective value corresponding to the best integer feasible solution. Please note that at least one integer feasible solution must have been located i.e. check $MSK_IINF_MIO_NUM_INT_SOLUTIONS$.

MSK_DINF_MIO_OBJ_REL_GAP

Given that the mixed-integer optimizer has computed a feasible solution and a bound on the optimal objective value, then this item contains the relative gap defined by

 $\frac{|(\text{objective value of feasible solution}) - (\text{objective bound})|}{\max(\delta, |(\text{objective value of feasible solution})|)}$

where δ is given by the parameter $\textit{MSK_DPAR_MIO_REL_GAP_CONST}$. Otherwise it has the value -1.0. MSK_DINF_MIO_PROBING_TIME

Total time for probing.

MSK_DINF_MIO_ROOT_CUTGEN_TIME

Total time for cut generation.

MSK_DINF_MIO_ROOT_OPTIMIZER_TIME

Time spent in the optimizer while solving the root node relaxation

MSK_DINF_MIO_ROOT_PRESOLVE_TIME

Time spent presolving the problem at the root node.

MSK_DINF_MIO_TIME

Time spent in the mixed-integer optimizer.

MSK_DINF_MIO_USER_OBJ_CUT

If the objective cut is used, then this information item has the value of the cut.

```
MSK_DINF_OPTIMIZER_TIME
```

Total time spent in the optimizer since it was invoked.

MSK_DINF_PRESOLVE_ELI_TIME

Total time spent in the eliminator since the presolve was invoked.

MSK_DINF_PRESOLVE_LINDEP_TIME

Total time spent in the linear dependency checker since the presolve was invoked.

MSK_DINF_PRESOLVE_TIME

Total time (in seconds) spent in the presolve since it was invoked.

MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ

The optimal objective value of the penalty function.

MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION

Maximum absolute diagonal perturbation occurring during the QCQO reformulation.

MSK_DINF_QCQO_REFORMULATE_TIME

Time spent with conic quadratic reformulation.

MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING

Worst Cholesky column scaling.

MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING

Worst Cholesky diagonal scaling.

MSK_DINF_RD_TIME

Time spent reading the data file.

MSK_DINF_SIM_DUAL_TIME

Time spent in the dual simplex optimizer since invoking it.

MSK_DINF_SIM_FEAS

Feasibility measure reported by the simplex optimizer.

MSK_DINF_SIM_OBJ

Objective value reported by the simplex optimizer.

MSK_DINF_SIM_PRIMAL_TIME

Time spent in the primal simplex optimizer since invoking it.

MSK_DINF_SIM_TIME

Time spent in the simplex optimizer since invoking it.

MSK_DINF_SOL_BAS_DUAL_OBJ

Dual objective value of the basic solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_BAS_DVIOLCON

Maximal dual bound violation for x^c in the basic solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_BAS_DVIOLVAR

Maximal dual bound violation for x^x in the basic solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_BAS_NRM_BARX

Infinity norm of \overline{X} in the basic solution.

MSK_DINF_SOL_BAS_NRM_SLC

Infinity norm of s_l^c in the basic solution.

MSK_DINF_SOL_BAS_NRM_SLX

Infinity norm of s_l^x in the basic solution.

MSK_DINF_SOL_BAS_NRM_SUC

Infinity norm of s_n^c in the basic solution.

MSK_DINF_SOL_BAS_NRM_SUX

Infinity norm of s_u^X in the basic solution.

MSK_DINF_SOL_BAS_NRM_XC

Infinity norm of x^c in the basic solution.

MSK_DINF_SOL_BAS_NRM_XX

Infinity norm of x^x in the basic solution.

MSK_DINF_SOL_BAS_NRM_Y

Infinity norm of y in the basic solution.

MSK_DINF_SOL_BAS_PRIMAL_OBJ

Primal objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO is set

.

MSK_DINF_SOL_BAS_PVIOLCON

Maximal primal bound violation for x^c in the basic solution. Updated if $\texttt{MSK_IPAR_AUTO_UPDATE_SOL_INFO}$ is set .

MSK_DINF_SOL_BAS_PVIOLVAR

Maximal primal bound violation for x^x in the basic solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITG_NRM_BARX

Infinity norm of \overline{X} in the integer solution.

MSK_DINF_SOL_ITG_NRM_XC

Infinity norm of x^c in the integer solution.

MSK_DINF_SOL_ITG_NRM_XX

Infinity norm of x^x in the integer solution.

MSK_DINF_SOL_ITG_PRIMAL_OBJ

Primal objective value of the integer solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITG_PVIOLBARVAR

Maximal primal bound violation for \overline{X} in the integer solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITG_PVIOLCON

Maximal primal bound violation for x^c in the integer solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITG_PVIOLCONES

Maximal primal violation for primal conic constraints in the integer solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITG_PVIOLITG

Maximal violation for the integer constraints in the integer solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITG_PVIOLVAR

Maximal primal bound violation for x^x in the integer solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_DUAL_OBJ

Dual objective value of the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_DVIOLBARVAR

Maximal dual bound violation for \overline{X} in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_DVIOLCON

Maximal dual bound violation for x^c in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_DVIOLCONES

Maximal dual violation for dual conic constraints in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_DVIOLVAR

Maximal dual bound violation for x^x in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_NRM_BARS

Infinity norm of \overline{S} in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_BARX

Infinity norm of \overline{X} in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_SLC

Infinity norm of s_l^c in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_SLX

Infinity norm of s_l^x in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_SNX

Infinity norm of s_n^x in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_SUC

Infinity norm of s_u^c in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_SUX

Infinity norm of s_u^X in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_XC

Infinity norm of x^c in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_XX

Infinity norm of x^x in the interior-point solution.

MSK_DINF_SOL_ITR_NRM_Y

Infinity norm of y in the interior-point solution.

MSK_DINF_SOL_ITR_PRIMAL_OBJ

Primal objective value of the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_PVIOLBARVAR

Maximal primal bound violation for \overline{X} in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_PVIOLCON

Maximal primal bound violation for x^c in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set.

MSK_DINF_SOL_ITR_PVIOLCONES

Maximal primal violation for primal conic constraints in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set .

MSK_DINF_SOL_ITR_PVIOLVAR

Maximal primal bound violation for x^x in the interior-point solution. Updated if $MSK_IPAR_AUTO_UPDATE_SOL_INFO$ is set.

MSK_DINF_TO_CONIC_TIME

Time spent in the last to conic reformulation.

11.4.21 License feature

MSK FEATURE PTS

Base system.

MSK_FEATURE_PTON

Conic extension.

11.4.22 Long integer information items.

MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER

Number of dual degenerate clean iterations performed in the basis identification.

MSK_LIINF_BI_CLEAN_DUAL_ITER

Number of dual clean iterations performed in the basis identification.

MSK_LIINF_BI_CLEAN_PRIMAL_DEG_ITER

Number of primal degenerate clean iterations performed in the basis identification.

MSK_LIINF_BI_CLEAN_PRIMAL_ITER

Number of primal clean iterations performed in the basis identification.

MSK_LIINF_BI_DUAL_ITER

Number of dual pivots performed in the basis identification.

MSK_LIINF_BI_PRIMAL_ITER

Number of primal pivots performed in the basis identification.

MSK_LIINF_INTPNT_FACTOR_NUM_NZ

Number of non-zeros in factorization.

MSK_LIINF_MIO_ANZ

Number of non-zero entries in the constraint matrix of the probelm to be solved by the mixed-integer optimizer.

MSK_LIINF_MIO_INTPNT_ITER

Number of interior-point iterations performed by the mixed-integer optimizer.

MSK_LIINF_MIO_PRESOLVED_ANZ

Number of non-zero entries in the constraint matrix of the problem after the mixed-integer optimizer's presolve.

MSK_LIINF_MIO_SIMPLEX_ITER

Number of simplex iterations performed by the mixed-integer optimizer.

MSK_LIINF_RD_NUMANZ

Number of non-zeros in A that is read.

MSK_LIINF_RD_NUMQNZ

Number of Q non-zeros.

11.4.23 Integer information items.

MSK_IINF_ANA_PRO_NUM_CON

Number of constraints in the problem.

MSK_IINF_ANA_PRO_NUM_CON_EQ

Number of equality constraints.

MSK_IINF_ANA_PRO_NUM_CON_FR

Number of unbounded constraints.

MSK_IINF_ANA_PRO_NUM_CON_LO

Number of constraints with a lower bound and an infinite upper bound.

MSK_IINF_ANA_PRO_NUM_CON_RA

Number of constraints with finite lower and upper bounds.

MSK_IINF_ANA_PRO_NUM_CON_UP

Number of constraints with an upper bound and an infinite lower bound.

MSK_IINF_ANA_PRO_NUM_VAR

Number of variables in the problem.

MSK_IINF_ANA_PRO_NUM_VAR_BIN

Number of binary (0-1) variables.

MSK_IINF_ANA_PRO_NUM_VAR_CONT

Number of continuous variables.

MSK_IINF_ANA_PRO_NUM_VAR_EQ

Number of fixed variables.

MSK_IINF_ANA_PRO_NUM_VAR_FR

Number of free variables.

MSK_IINF_ANA_PRO_NUM_VAR_INT

Number of general integer variables.

MSK_IINF_ANA_PRO_NUM_VAR_LO

Number of variables with a lower bound and an infinite upper bound.

MSK_IINF_ANA_PRO_NUM_VAR_RA

Number of variables with finite lower and upper bounds.

MSK_IINF_ANA_PRO_NUM_VAR_UP

Number of variables with an upper bound and an infinite lower bound.

MSK_IINF_INTPNT_FACTOR_DIM_DENSE

Dimension of the dense sub system in factorization.

MSK_IINF_INTPNT_ITER

Number of interior-point iterations since invoking the interior-point optimizer.

MSK_IINF_INTPNT_NUM_THREADS

Number of threads that the interior-point optimizer is using.

MSK_IINF_INTPNT_SOLVE_DUAL

Non-zero if the interior-point optimizer is solving the dual problem.

MSK_IINF_MIO_ABSGAP_SATISFIED

Non-zero if absolute gap is within tolerances.

MSK_IINF_MIO_CLIQUE_TABLE_SIZE

Size of the clique table.

MSK_IINF_MIO_CONSTRUCT_SOLUTION

This item informs if MOSEK constructed an initial integer feasible solution.

- \bullet -1: tried, but failed,
- 0: no partial solution supplied by the user,
- 1: constructed feasible solution.

MSK_IINF_MIO_NODE_DEPTH

Depth of the last node solved.

MSK_IINF_MIO_NUM_ACTIVE_NODES

Number of active branch and bound nodes.

MSK_IINF_MIO_NUM_BRANCH

Number of branches performed during the optimization.

MSK_IINF_MIO_NUM_CLIQUE_CUTS

Number of clique cuts.

MSK_IINF_MIO_NUM_CMIR_CUTS

Number of Complemented Mixed Integer Rounding (CMIR) cuts.

MSK_IINF_MIO_NUM_GOMORY_CUTS

Number of Gomory cuts.

MSK_IINF_MIO_NUM_IMPLIED_BOUND_CUTS

Number of implied bound cuts.

MSK_IINF_MIO_NUM_INT_SOLUTIONS

Number of integer feasible solutions that have been found.

MSK_IINF_MIO_NUM_KNAPSACK_COVER_CUTS

Number of clique cuts.

MSK_IINF_MIO_NUM_RELAX

Number of relaxations solved during the optimization.

MSK_IINF_MIO_NUM_REPEATED_PRESOLVE

Number of times presolve was repeated at root.

MSK_IINF_MIO_NUMBIN

Number of binary variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMBINCONEVAR

Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCON

Number of constraints in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONE

Number of cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONEVAR

Number of cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONT

Number of continuous variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONTCONEVAR

Number of continuous cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMDEXPCONES

Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMDPOWCONES

Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMINT

Number of integer variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMINTCONEVAR

Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMPEXPCONES

Number of primal exponential cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMPPOWCONES

Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMQCONES

Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMRQCONES

Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMVAR

Number of variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_OBJ_BOUND_DEFINED

Non-zero if a valid objective bound has been found, otherwise zero.

MSK_IINF_MIO_PRESOLVED_NUMBIN

Number of binary variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR

Number of binary cone variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMCON

Number of constraints in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMCONE

Number of cones in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMCONEVAR

Number of cone variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMCONT

Number of continuous variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR

Number of continuous cone variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES

Number of dual exponential cones in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES

Number of dual power cones in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMINT

Number of integer variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR

Number of integer cone variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES

Number of primal exponential cones in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES

Number of primal power cones in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMQCONES

Number of quadratic cones in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMRQCONES

Number of rotated quadratic cones in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_PRESOLVED_NUMVAR

Number of variables in the problem after the mixed-integer optimizer's presolve.

MSK_IINF_MIO_RELGAP_SATISFIED

Non-zero if relative gap is within tolerances.

MSK_IINF_MIO_TOTAL_NUM_CUTS

Total number of cuts generated by the mixed-integer optimizer.

MSK_IINF_MIO_USER_OBJ_CUT

If it is non-zero, then the objective cut is used.

MSK_IINF_OPT_NUMCON

Number of constraints in the problem solved when the optimizer is called.

MSK_IINF_OPT_NUMVAR

Number of variables in the problem solved when the optimizer is called

MSK_IINF_OPTIMIZE_RESPONSE

The response code returned by optimize.

MSK_IINF_PURIFY_DUAL_SUCCESS

Is nonzero if the dual solution is purified.

MSK_IINF_PURIFY_PRIMAL_SUCCESS

Is nonzero if the primal solution is purified.

MSK_IINF_RD_NUMBARVAR

Number of symmetric variables read.

MSK_IINF_RD_NUMCON

Number of constraints read.

MSK_IINF_RD_NUMCONE

Number of conic constraints read.

MSK_IINF_RD_NUMINTVAR

Number of integer-constrained variables read.

MSK_IINF_RD_NUMQ

Number of nonempty Q matrices read.

MSK_IINF_RD_NUMVAR

Number of variables read.

MSK_IINF_RD_PROTYPE

Problem type.

MSK_IINF_SIM_DUAL_DEG_ITER

The number of dual degenerate iterations.

MSK_IINF_SIM_DUAL_HOTSTART

If 1 then the dual simplex algorithm is solving from an advanced basis.

MSK_IINF_SIM_DUAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used by the dual simplex algorithm.

MSK_IINF_SIM_DUAL_INF_ITER

The number of iterations taken with dual infeasibility.

MSK_IINF_SIM_DUAL_ITER

Number of dual simplex iterations during the last optimization.

MSK_IINF_SIM_NUMCON

Number of constraints in the problem solved by the simplex optimizer.

MSK_IINF_SIM_NUMVAR

Number of variables in the problem solved by the simplex optimizer.

MSK_IINF_SIM_PRIMAL_DEG_ITER

The number of primal degenerate iterations.

MSK_IINF_SIM_PRIMAL_HOTSTART

If 1 then the primal simplex algorithm is solving from an advanced basis.

MSK_IINF_SIM_PRIMAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used by the primal simplex algorithm.

MSK_IINF_SIM_PRIMAL_INF_ITER

The number of iterations taken with primal infeasibility.

MSK_IINF_SIM_PRIMAL_ITER

Number of primal simplex iterations during the last optimization.

MSK_IINF_SIM_SOLVE_DUAL

Is non-zero if dual problem is solved.

MSK_IINF_SOL_BAS_PROSTA

Problem status of the basic solution. Updated after each optimization.

MSK_IINF_SOL_BAS_SOLSTA

Solution status of the basic solution. Updated after each optimization.

MSK_IINF_SOL_ITG_PROSTA

Problem status of the integer solution. Updated after each optimization.

MSK_IINF_SOL_ITG_SOLSTA

Solution status of the integer solution. Updated after each optimization.

MSK_IINF_SOL_ITR_PROSTA

Problem status of the interior-point solution. Updated after each optimization.

MSK_IINF_SOL_ITR_SOLSTA

Solution status of the interior-point solution. Updated after each optimization.

MSK_IINF_STO_NUM_A_REALLOC

Number of times the storage for storing A has been changed. A large value may indicates that memory fragmentation may occur.

11.4.24 Information item types

MSK_INF_DOU_TYPE

Is a double information type.

MSK_INF_INT_TYPE

Is an integer.

MSK_INF_LINT_TYPE

Is a long integer.

11.4.25 Input/output modes

MSK_IOMODE_READ

The file is read-only.

MSK_IOMODE_WRITE

The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is created when it is opened.

MSK_IOMODE_READWRITE

The file is to read and write.

11.4.26 Specifies the branching direction.

MSK_BRANCH_DIR_FREE

The mixed-integer optimizer decides which branch to choose.

MSK_BRANCH_DIR_UP

The mixed-integer optimizer always chooses the up branch first.

MSK_BRANCH_DIR_DOWN

The mixed-integer optimizer always chooses the down branch first.

MSK_BRANCH_DIR_NEAR

Branch in direction nearest to selected fractional variable.

MSK_BRANCH_DIR_FAR

Branch in direction farthest from selected fractional variable.

MSK_BRANCH_DIR_ROOT_LP

Chose direction based on root lp value of selected variable.

MSK_BRANCH_DIR_GUIDED

Branch in direction of current incumbent.

MSK_BRANCH_DIR_PSEUDOCOST

Branch based on the pseudocost of the variable.

11.4.27 Continuous mixed-integer solution type

MSK_MIO_CONT_SOL_NONE

No interior-point or basic solution are reported when the mixed-integer optimizer is used.

MSK_MIO_CONT_SOL_ROOT

The reported interior-point and basic solutions are a solution to the root node problem when mixed-integer optimizer is used.

MSK_MIO_CONT_SOL_ITG

The reported interior-point and basic solutions are a solution to the problem with all integer variables fixed at the value they have in the integer solution. A solution is only reported in case the problem has a primal feasible solution.

MSK_MIO_CONT_SOL_ITG_REL

In case the problem is primal feasible then the reported interior-point and basic solutions are a solution to the problem with all integer variables fixed at the value they have in the integer solution. If the problem is primal infeasible, then the solution to the root node problem is reported.

11.4.28 Integer restrictions

MSK_MIO_MODE_IGNORED

The integer constraints are ignored and the problem is solved as a continuous problem.

MSK_MIO_MODE_SATISFIED

Integer restrictions should be satisfied.

11.4.29 Mixed-integer node selection types

MSK_MIO_NODE_SELECTION_FREE

The optimizer decides the node selection strategy.

MSK_MIO_NODE_SELECTION_FIRST

The optimizer employs a depth first node selection strategy.

MSK_MIO_NODE_SELECTION_BEST

The optimizer employs a best bound node selection strategy.

MSK_MIO_NODE_SELECTION_PSEUDO

The optimizer employs selects the node based on a pseudo cost estimate.

11.4.30 MPS file format type

MSK_MPS_FORMAT_STRICT

It is assumed that the input file satisfies the MPS format strictly.

MSK_MPS_FORMAT_RELAXED

It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

MSK_MPS_FORMAT_FREE

It is assumed that the input file satisfies the free MPS format. This implies that spaces are not allowed in names. Otherwise the format is free.

MSK_MPS_FORMAT_CPLEX

The CPLEX compatible version of the MPS format is employed.

11.4.31 Objective sense types

MSK_OBJECTIVE_SENSE_MINIMIZE

The problem should be minimized.

MSK_OBJECTIVE_SENSE_MAXIMIZE

The problem should be maximized.

11.4.32 On/off

MSK_ON

Switch the option on.

MSK_OFF

Switch the option off.

11.4.33 Optimizer types

MSK_OPTIMIZER_CONIC

The optimizer for problems having conic constraints.

MSK_OPTIMIZER_DUAL_SIMPLEX

The dual simplex optimizer is used.

MSK_OPTIMIZER_FREE

The optimizer is chosen automatically.

${\tt MSK_OPTIMIZER_FREE_SIMPLEX}$

One of the simplex optimizers is used.

MSK_OPTIMIZER_INTPNT

The interior-point optimizer is used.

MSK_OPTIMIZER_MIXED_INT

The mixed-integer optimizer.

MSK_OPTIMIZER_PRIMAL_SIMPLEX

The primal simplex optimizer is used.

11.4.34 Ordering strategies

MSK_ORDER_METHOD_FREE

The ordering method is chosen automatically.

MSK_ORDER_METHOD_APPMINLOC

Approximate minimum local fill-in ordering is employed.

MSK_ORDER_METHOD_EXPERIMENTAL

This option should not be used.

MSK_ORDER_METHOD_TRY_GRAPHPAR

Always try the graph partitioning based ordering.

MSK_ORDER_METHOD_FORCE_GRAPHPAR

Always use the graph partitioning based ordering even if it is worse than the approximate minimum local fill ordering.

MSK_ORDER_METHOD_NONE

No ordering is used.

11.4.35 Presolve method.

MSK_PRESOLVE_MODE_OFF

The problem is not presolved before it is optimized.

MSK_PRESOLVE_MODE_ON

The problem is presolved before it is optimized.

MSK_PRESOLVE_MODE_FREE

It is decided automatically whether to presolve before the problem is optimized.

11.4.36 Parameter type

MSK_PAR_INVALID_TYPE

Not a valid parameter.

MSK_PAR_DOU_TYPE

Is a double parameter.

MSK_PAR_INT_TYPE

Is an integer parameter.

MSK_PAR_STR_TYPE

Is a string parameter.

11.4.37 Problem data items

MSK_PI_VAR

Item is a variable.

MSK_PI_CON

Item is a constraint.

MSK_PI_CONE

Item is a cone.

11.4.38 Problem types

MSK_PROBTYPE_LO

The problem is a linear optimization problem.

MSK_PROBTYPE_QO

The problem is a quadratic optimization problem.

MSK_PROBTYPE_QCQO

The problem is a quadratically constrained optimization problem.

MSK_PROBTYPE_CONIC

A conic optimization.

MSK_PROBTYPE_MIXED

General nonlinear constraints and conic constraints. This combination can not be solved by MOSEK.

11.4.39 Problem status keys

MSK_PRO_STA_UNKNOWN

Unknown problem status.

MSK_PRO_STA_PRIM_AND_DUAL_FEAS

The problem is primal and dual feasible.

MSK_PRO_STA_PRIM_FEAS

The problem is primal feasible.

MSK_PRO_STA_DUAL_FEAS

The problem is dual feasible.

MSK_PRO_STA_PRIM_INFEAS

The problem is primal infeasible.

MSK_PRO_STA_DUAL_INFEAS

The problem is dual infeasible.

MSK_PRO_STA_PRIM_AND_DUAL_INFEAS

The problem is primal and dual infeasible.

MSK_PRO_STA_ILL_POSED

The problem is ill-posed. For example, it may be primal and dual feasible but have a positive duality gap.

MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED

The problem is either primal infeasible or unbounded. This may occur for mixed-integer problems.

11.4.40 XML writer output mode

MSK_WRITE_XML_MODE_ROW

Write in row order.

MSK_WRITE_XML_MODE_COL

Write in column order.

11.4.41 Response code type

MSK_RESPONSE_OK

The response code is OK.

MSK_RESPONSE_WRN

The response code is a warning.

MSK_RESPONSE_TRM

The response code is an optimizer termination status.

MSK_RESPONSE_ERR

The response code is an error.

MSK_RESPONSE_UNK

The response code does not belong to any class.

11.4.42 Scaling type

MSK_SCALING_FREE

The optimizer chooses the scaling heuristic.

MSK_SCALING_NONE

No scaling is performed.

MSK_SCALING_MODERATE

A conservative scaling is performed.

MSK_SCALING_AGGRESSIVE

A very aggressive scaling is performed.

11.4.43 Scaling method

MSK_SCALING_METHOD_POW2

Scales only with power of 2 leaving the mantissa untouched.

MSK_SCALING_METHOD_FREE

The optimizer chooses the scaling heuristic.

11.4.44 Sensitivity types

MSK_SENSITIVITY_TYPE_BASIS

Basis sensitivity analysis is performed.

11.4.45 Simplex selection strategy

MSK_SIM_SELECTION_FREE

The optimizer chooses the pricing strategy.

MSK_SIM_SELECTION_FULL

The optimizer uses full pricing.

MSK_SIM_SELECTION_ASE

The optimizer uses approximate steepest-edge pricing.

MSK_SIM_SELECTION_DEVEX

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge selection).

MSK_SIM_SELECTION_SE

The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge selection).

MSK_SIM_SELECTION_PARTIAL

The optimizer uses a partial selection approach. The approach is usually beneficial if the number of variables is much larger than the number of constraints.

11.4.46 Solution items

MSK_SOL_ITEM_XC

Solution for the constraints.

MSK_SOL_ITEM_XX

Variable solution.

MSK_SOL_ITEM_Y

Lagrange multipliers for equations.

MSK_SOL_ITEM_SLC

Lagrange multipliers for lower bounds on the constraints.

MSK_SOL_ITEM_SUC

Lagrange multipliers for upper bounds on the constraints.

MSK_SOL_ITEM_SLX

Lagrange multipliers for lower bounds on the variables.

MSK_SOL_ITEM_SUX

Lagrange multipliers for upper bounds on the variables.

MSK_SOL_ITEM_SNX

Lagrange multipliers corresponding to the conic constraints on the variables.

11.4.47 Solution status keys

MSK_SOL_STA_UNKNOWN

Status of the solution is unknown.

MSK_SOL_STA_OPTIMAL

The solution is optimal.

MSK_SOL_STA_PRIM_FEAS

The solution is primal feasible.

MSK_SOL_STA_DUAL_FEAS

The solution is dual feasible.

MSK_SOL_STA_PRIM_AND_DUAL_FEAS

The solution is both primal and dual feasible.

MSK_SOL_STA_PRIM_INFEAS_CER

The solution is a certificate of primal infeasibility.

MSK_SOL_STA_DUAL_INFEAS_CER

The solution is a certificate of dual infeasibility.

MSK_SOL_STA_PRIM_ILLPOSED_CER

The solution is a certificate that the primal problem is illposed.

MSK_SOL_STA_DUAL_ILLPOSED_CER

The solution is a certificate that the dual problem is illposed.

MSK_SOL_STA_INTEGER_OPTIMAL

The primal solution is integer optimal.

11.4.48 Solution types

MSK_SOL_BAS

The basic solution.

MSK_SOL_ITR

The interior solution.

MSK_SOL_ITG

The integer solution.

11.4.49 Solve primal or dual form

MSK_SOLVE_FREE

The optimizer is free to solve either the primal or the dual problem.

MSK_SOLVE_PRIMAL

The optimizer should solve the primal problem.

MSK_SOLVE_DUAL

The optimizer should solve the dual problem.

11.4.50 Status keys

MSK_SK_UNK

The status for the constraint or variable is unknown.

MSK_SK_BAS

The constraint or variable is in the basis.

MSK_SK_SUPBAS

The constraint or variable is super basic.

MSK SK LOW

The constraint or variable is at its lower bound.

MSK_SK_UPR

The constraint or variable is at its upper bound.

MSK_SK_FIX

The constraint or variable is fixed.

MSK_SK_INF

The constraint or variable is infeasible in the bounds.

11.4.51 Starting point types

MSK_STARTING_POINT_FREE

The starting point is chosen automatically.

MSK_STARTING_POINT_GUESS

The optimizer guesses a starting point.

MSK_STARTING_POINT_CONSTANT

The optimizer constructs a starting point by assigning a constant value to all primal and dual variables. This starting point is normally robust.

MSK_STARTING_POINT_SATISFY_BOUNDS

The starting point is chosen to satisfy all the simple bounds on nonlinear variables. If this starting point is employed, then more care than usual should employed when choosing the bounds on the nonlinear variables. In particular very tight bounds should be avoided.

11.4.52 Stream types

MSK_STREAM_LOG

Log stream. Contains the aggregated contents of all other streams. This means that a message written to any other stream will also be written to this stream.

MSK_STREAM_MSG

Message stream. Log information relating to performance and progress of the optimization is written to this stream.

MSK_STREAM_ERR

Error stream. Error messages are written to this stream.

MSK_STREAM_WRN

Warning stream. Warning messages are written to this stream.

11.4.53 Integer values

MSK_MAX_STR_LEN

Maximum string length allowed in **MOSEK**.

MSK_LICENSE_BUFFER_LENGTH

The length of a license key buffer.

11.4.54 Variable types

MSK_VAR_TYPE_CONT

Is a continuous variable.

MSK_VAR_TYPE_INT

Is an integer variable.

Chapter 12

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 12.1 and Table 12.2. The **Task** format is MOSEK's native binary format and it supports all features that MOSEK supports. The **OPF** format is MOSEK's human-readable alternative that supports nearly all features (everything except semidefinite problems). In general, text formats are significantly slower to read, but can be examined and edited directly in any text editor.

Problem formats

Table 12.1: List of supported file formats for optimization problems. The column *Conic* refers to conic problems involving the quadratic, rotated quadratic, power or exponential cone. The last two columns indicate if the format supports solutions and optimizer parameters.

Format Type	Ext.	Binary/Text	LP	QO	Conic	SDP	Sol	Param
LP	lp	plain text	X	X				
MPS	mps	plain text	X	X	X			
OPF	opf	plain text	X	X	X		X	X
PTF	ptf	plain text	X	X	X	X	X	
CBF	cbf	plain text	X		X	X		
Task format	task	binary	X	X	X	X	X	X
Jtask format	jtask	text	X	X	X	X	X	X

Solution formats

Table 12.2: List of supported solution formats.

Format Type	Ext.	Binary/Text	Description
SOL	sol	plain text	Interior Solution
	bas	plain text	Basic Solution
	int	plain text	Integer
Jsol format	jsol	text	Solution

Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and .zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when written. For example, a file called

problem.mps.gz

will be considered as a GZIP compressed MPS file.

12.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-defined standard and hence different optimization packages may interpret the same LP file in slightly different ways. MOSEK tries to emulate as closely as possible CPLEX's behavior, but tries to stay backward compatible.

The LP file format can specify problems of the form

$$\begin{array}{lll} \text{minimize/maximize} & & c^Tx + \frac{1}{2}q^o(x) \\ \text{subject to} & l^c & \leq & Ax + \frac{1}{2}q(x) & \leq & u^c, \\ l^x & \leq & x & \leq & u^x, \\ & & & x_{\mathcal{J}} \text{ integer,} \end{array}$$

where

- $x \in \mathbb{R}^n$ is the vector of decision variables.
- $c \in \mathbb{R}^n$ is the linear term in the objective.
- $q^o :\in \mathbb{R}^n \to \mathbb{R}$ is the quadratic term in the objective where

$$q^o(x) = x^T Q^o x$$

and it is assumed that

$$Q^o = (Q^o)^T$$
.

- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.
- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.
- $q: \mathbb{R}^n \to \mathbb{R}$ is a vector of quadratic functions. Hence,

$$q_i(x) = x^T Q^i x$$

where it is assumed that

$$Q^i = (Q^i)^T$$
.

• $\mathcal{J} \subseteq \{1, 2, \dots, n\}$ is an index set of the integer constrained variables.

12.1.1 File Sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds, and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

$$c^T x + \frac{1}{2} x^T Q^o x.$$

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.

The objective function contains linear and quadratic terms. The linear terms are written as

```
4 x1 + x2 - 0.1 x3
```

and so forth. The quadratic terms are written in square brackets ($[\]/2$) and are either squared or multiplied as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.

An example of an objective section is

```
minimize
myobj: 4 x1 + x2 - 0.1 x3 + [ x1^2 + 2.1 x1 * x2 ]/2
```

Please note that the quadratic expressions are multiplied with $\frac{1}{2}$, so that the above expression means

minimize
$$4x_1 + x_2 - 0.1 \cdot x_3 + \frac{1}{2}(x_1^2 + 2.1 \cdot x_1 \cdot x_2)$$

If the same variable occurs more than once in the linear part, the coefficients are added, so that $4 \times 1 + 2 \times 1$ is equivalent to 6×1 . In the quadratic expressions $\times 1 \times 2$ is equivalent to $\times 2 \times 1$ and, as in the linear part, if the same variables multiplied or squared occur several times their coefficients are added.

Constraints

The second section beginning with one of the keywords

```
subj to
subject to
s.t.
st
```

defines the linear constraint matrix A and the quadratic matrices Q^{i} .

A constraint contains a name (optional), expressions adhering to the same rules as in the objective and a bound:

```
subject to con1: x1 + x2 + [ x3^2 ]/2 <= 5.1
```

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound may be any number.

In the standard LP format it is not possible to define more than one bound per line, but **MOSEK** supports defining ranged constraints by using double-colon (::) instead of a single-colon (:) after the constraint name, i.e.

$$-5 \le x_1 + x_2 \le 5 \tag{12.1}$$

may be written as

```
con:: -5 < x_1 + x_2 < 5
```

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into upper bounded and lower bounded constraints or be written as an equality with a slack variable. For example the expression (12.1) may be written as

$$x_1 + x_2 - sl_1 = 0, -5 \le sl_1 \le 5.$$

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound bounds

The bounds section is optional but should, if present, follow the subject to section. All variables listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and $+\infty$. A variable may be declared free with the keyword free, which means that the lower bound is $-\infty$ and the upper bound is $+\infty$. Furthermore it may be assigned a finite lower and upper bound. The bound definitions for a given variable may be written in one or two lines, and bounds can be any number or $\pm\infty$ (written as $+\inf/-\inf/+\inf\inf$) as in the example

```
bounds

x1 free

x2 <= 5

0.1 <= x2

x3 = 42

2 <= x4 < +inf
```

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen general

Under general all integer variables are listed, and under binary all binary (integer variables with bounds 0 and 1) are listed:

general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

12.1.2 LP File Examples

Linear example lo1.lp

```
\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity
end</pre>
```

Mixed integer example milo1.lp

```
maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity
general
x1 x2
end
```

12.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and the characters

```
!"#$%&()/,.;?@_'`|~
```

The first character in a name must not be a number, a period or the letter **e** or **E**. Keywords must not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8 string. For a Unicode character c:

- If c==_ (underscore), the output is __ (two underscores).
- If c is a valid LP name character, the output is just c.
- If c is another character in the ASCII range, the output is <code>_XX</code>, where <code>XX</code> is the hexadecimal code for the character.
- If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal code for the character.

Invalid $\mathtt{utf-8}$ substrings are escaped as $\mathtt{XX'}$, and if a name starts with a period, e or E, that character is escaped as \mathtt{XX} .

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but **MOSEK** uses only the tightest bounds. If a variable is fixed (with =), then it is considered the tightest bound.

MOSEK Extensions to the LP Format

Some optimization software packages employ a more strict definition of the LP format than the one used by **MOSEK**. The limitations imposed by the strict LP format are the following:

- Quadratic terms in the constraints are not allowed.
- Names can be only 16 characters long.
- Lines must not exceed 255 characters in length.

To get around some of the inconveniences converting from other problem formats, **MOSEK** allows lines to contain 1024 characters and names may have any length (shorter than the 1024 characters).

If an LP formatted file created by **MOSEK** should satisfy the strict definition, then the parameter <code>MSK_IPAR_WRITE_LP_STRICT_FORMAT</code> should be set; note, however, that some problems cannot be written correctly as a strict LP formatted file. For instance, all names are truncated to 16 characters and hence they may lose their uniqueness and change the problem.

Internally in MOSEK names may contain any (printable) character, many of which cannot be used in LP names. Setting the parameters <code>MSK_IPAR_READ_LP_QUOTED_NAMES</code> and <code>MSK_IPAR_WRITE_LP_QUOTED_NAMES</code> allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes from quoted names e.g, "x1", when reading LP formatted files. The second parameter tells MOSEK to put quotes around any semi-illegal name (names beginning with a number or a period) and fully illegal name (containing illegal characters). As double quote is a legal character in the LP format, quoting semi-illegal names makes them legal in the pure LP format as long as they are still shorter than 16 characters. Fully illegal names are still illegal in a pure LP file.

The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of the LP format. To make \mathbf{MOSEK} 's definition of the LP format more compatible with the definitions of other vendors set the parameter $MSK_IPAR_WRITE_LP_STRICT_FORMAT$ to MSK_ON .

This setting may lead to truncation of some names and hence to an invalid LP file. The simple solution to this problem is to set the parameter $MSK_IPAR_WRITE_GENERIC_NAMES$ to MSK_ON which will cause all names to be renamed systematically in the output file.

Formatting of an LP File

A few parameters control the visual formatting of LP files written by \mathbf{MOSEK} in order to make it easier to read the files. These parameters are

- MSK_IPAR_WRITE_LP_LINE_WIDTH sets the maximum number of characters on a single line. The default value is 80 corresponding roughly to the width of a standard text document.
- MSK_IPAR_WRITE_LP_TERMS_PER_LINE sets the maximum number of terms per line; a term means a sign, a coefficient, and a name (for example + 42 elephants). The default value is 0, meaning that there is no maximum.

Unnamed Constraints

Reading and writing an LP file with **MOSEK** may change it superficially. If an LP file contains unnamed constraints or objective these are given their generic names when the file is read (however unnamed constraints in **MOSEK** are written without names).

12.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the MPS format see the book by Nazareth [Naz87].

12.2.1 MPS File Structure

The version of the MPS format supported by \mathbf{MOSEK} allows specification of an optimization problem of the form

maximize/minimize
$$c^T x + q_0(x)$$

 $l^c \leq Ax + q(x) \leq u^c,$
 $l^x \leq x \leq u^x,$
 $x \in \mathcal{K},$
 $x_{\mathcal{T}}$ integer, (12.2)

where

- $x \in \mathbb{R}^n$ is the vector of decision variables.
- $A \in \mathbb{R}^{m \times n}$ is the constraint matrix.
- $l^c \in \mathbb{R}^m$ is the lower limit on the activity for the constraints.
- $u^c \in \mathbb{R}^m$ is the upper limit on the activity for the constraints.
- $l^x \in \mathbb{R}^n$ is the lower limit on the activity for the variables.
- $u^x \in \mathbb{R}^n$ is the upper limit on the activity for the variables.
- $q: \mathbb{R}^n \to \mathbb{R}$ is a vector of quadratic functions. Hence,

$$q_i(x) = \frac{1}{2}x^T Q^i x$$

where it is assumed that $Q^i = (Q^i)^T$. Please note the explicit $\frac{1}{2}$ in the quadratic term and that Q^i is required to be symmetric. The same applies to q_0 .

- \mathcal{K} is a convex cone.
- $\mathcal{J} \subseteq \{1, 2, \dots, n\}$ is an index set of the integer-constrained variables.
- \bullet c is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1	2	3	4	5	6				
*2345678901234567890123456789012345678901234567890									
NAME	[name]								
OBJSENSE									
[objsense]								
OBJNAME	[objname]								
ROWS									
? [cname1]									
COLUMNS									
[vname1]	[cname1]	[value1]	[cname2]	[value2]					
RHS									
[name]	[cname1]	[value1]	[cname2]	[value2]					
RANGES									
[name]	[cname1]	[value1]	[cname2]	[value2]					
QSECTION	[cname1]								
[vname1]	[vname2]	[value1]	[vname3]	[value2]					
QMATRIX	_	_							
[vname1]	[vname2]	[value1]							

(continues on next page)

(continued from previous page)

```
QUADOBJ
               [vname2]
                          [value1]
    [vname1]
QCMATRIX
               [cname1]
    [vname1]
               [vname2]
                          [value1]
BOUNDS
                          [value1]
?? [name]
               [vname1]
CSECTION
               [kname1]
                          [value1]
                                           [ktype]
    [vname1]
ENDATA
```

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in *fields*. The fields named "valueN" are numerical values. Hence, they must have the format

```
[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]
```

where

```
X = [0|1|2|3|4|5|6|7|8|9].
```

- Sections: The MPS file consists of several sections where the names in capitals indicate the beginning of a new section. For example, COLUMNS denotes the beginning of the columns section.
- Comments: Lines starting with an * are comment lines and are ignored by MOSEK.
- Keys: The question marks represent keys to be specified later.
- Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with other vendors extensions to the MPS format.
- The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain fixed positions. **MOSEK** also supports a *free format*. See Sec. 12.2.5 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

```
* File: lo1.mps
NAME
OBJSENSE
    MAX
ROWS
N obj
E c1
G c2
L c3
COLUMNS
               obj
    x1
                          3
                          3
    x1
               c1
                          2
    x1
    x2
               obj
    x2
               c1
                          1
    x2
               c2
                          1
                          2
    x2
               сЗ
                          5
    x.3
               obj
                          2
    x3
               c1
    x3
               c2
                          3
    x4
                          1
               obi
    x4
```

(continues on next page)

(continued from previous page)

x4	сЗ	3
RHS		
rhs	c1	30
rhs	c2	15
rhs	c3	25
RANGES		
BOUNDS		
UP bound	x2	10
ENDATA		

Subsequently each individual section in the MPS format is discussed.

NAME (optional)

In this section a name ([name]) is assigned to the problem.

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE section contains one line at most which can be one of the following:

MIN	
MINIMIZE	
MAX	
MAXIMIZE	

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective function. objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field	Starting Position	Max Width	required	Description
?	2	1	Yes	Constraint key
[cname1]	5	8	Yes	Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must be present to specify the type of the constraint. The key can have values E, G, L, or N with the following interpretation:

Constraint type	l_i^c	u_i^c
E (equal)	finite	$=l_i^c$
G (greater)	finite	∞
L (lower)	$-\infty$	finite
N (none)	$-\infty$	∞

In the MPS format the objective vector is not specified explicitly, but one of the constraints having the key N will be used as the objective vector c. In general, if multiple N type constraints are specified, then the first will be used as the objective vector c, unless something else was specified in the section OBJNAME.

COLUMNS

In this section the elements of A are specified using one or more records having the form:

ne2]	[cname2]	[value1]	[cname1]	e1] [cname1] [value1] [cname2] [value2
[va	[va	[cname2] [va	[value1] [cname2] [value1]	alue2
[cname1] [value1] [cname1]	[cname1] [value1]	[cname1]		e1]

where the requirements for each field are as follows:

Field	Starting Position	Max Width	required	Description
[vname1]	5	8	Yes	Variable name
[cname1]	15	8	Yes	Constraint name
[value1]	25	12	Yes	Numerical value
[cname2]	40	8	No	Constraint name
[value2]	50	12	No	Numerical value

Hence, a record specifies one or two elements a_{ij} of A using the principle that [vname1] and [cname1] determines j and i respectively. Please note that [cname1] must be a constraint name specified in the ROWS section. Finally, [value1] denotes the numerical value of a_{ij} . Another optional element is specified by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

- All elements belonging to one variable must be grouped together.
- \bullet Zero elements of A should not be specified.
- At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

me2] [value:	cname2]	[value1]	[value	1]	[cname	ame]	П
--------------	---------	---	---------	--------	----	--------	------	---

where the requirements for each field are as follows:

Field	Starting Position	Max Width	required	Description
[name]	5	8	Yes	Name of the RHS vector
[cname1]	15	8	Yes	Constraint name
[value1]	25	12	Yes	Numerical value
[cname2]	40	8	No	Constraint name
[value2]	50	12	No	Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general, several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS section. Now, assume that this name has been assigned to the i-h constraint and v_1 denotes the value specified by [value1], then the interpretation of v_1 is:

Constraint	l_i^c	u_i^c
E	v_1	v_1
G	v_1	
L		v_1
N		

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way. Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

RANGES (optional)

A record in this section has the form

value2]	me2]	[cname2]	[value1]	[cname1]	
[cname1] [value1] [cname2] [[cname1] [value1] [cname1]	[cname1] [value1]	[cname1]		

where the requirements for each fields are as follows:

Field	Starting Position	Max Width	required	Description
[name]	5	8	Yes	Name of the RANGE vector
[cname1]	15	8	Yes	Constraint name
[value1]	25	12	Yes	Numerical value
[cname2]	40	8	No	Constraint name
[value2]	50	12	No	Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values in l^c and u^c . A record has the following interpretation: [name] is the name of the RANGE vector and [cname1] is a valid constraint name. Assume that [cname1] is assigned to the *i*-th constraint and let v_1 be the value specified by [value1], then a record has the interpretation:

Constraint type	Sign of v_1	l_i^c	u_i^c
E	_	$u_i^c + v_1$	
E	+		$l_i^c + v_1$
G	- or +		$l_i^c + v_1 $
L	- or +	$u_i^c - v_1 $	
N			

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]
--

where the requirements for each field are:

Field	Starting Position	Max Width	required	Description
[vname1]	5	8	Yes	Variable name
[vname2]	15	8	Yes	Variable name
[value1]	25	12	Yes	Numerical value
[vname3]	40	8	No	Variable name
[value2]	50	12	No	Numerical value

A record specifies one or two elements in the lower triangular part of the Q^i matrix where [cname1] specifies the i. Hence, if the names [vname1] and [vname2] have been assigned to the k-th and j-th variable, then Q^i_{kj} is assigned the value given by [value1] An optional second element is specified in the same way by the fields [vname1], [vname3], and [value2].

The example

$$\begin{array}{ll} \text{minimize} & -x_2 + \frac{1}{2}(2x_1^2 - 2x_1x_3 + 0.2x_2^2 + 2x_3^2) \\ \text{subject to} & x_1 + x_2 + x_3 & \geq & 1, \\ & x \geq 0 & \end{array}$$

has the following MPS file representation

```
* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
```

(continues on next page)

(continued from previous page)

х3	c1	1.0
RHS		
rhs	c1	1.0
QSECTION	obj	
x1	x1	2.0
x1	x3	-1.0
x2	x2	0.2
x3	x3	2.0
ENDATA		

Regarding the QSECTIONs please note that:

- Only one QSECTION is allowed for each constraint.
- The QSECTIONs can appear in an arbitrary order after the COLUMNS section.
- All variable names occurring in the QSECTION must already be specified in the COLUMNS section.
- ullet All entries specified in a QSECTION are assumed to belong to the lower triangular part of the quadratic term of Q.

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They differ in how the quadratic term of the objective function is stored:

- QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the Q
 matrix
- QUADOBJ stores the upper diagonal nonzero elements of the Q matrix.

A record in both sections has the form:

|--|

where the requirements for each field are:

Field	Starting Position	Max Width	required	Description
[vname1]	5	8	Yes	Variable name
[vname2]	15	8	Yes	Variable name
[value1]	25	12	Yes	Numerical value

A record specifies one elements of the Q matrix in the objective function. Hence, if the names [vname1] and [vname2] have been assigned to the k-th and j-th variable, then Q_{kj} is assigned the value given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective function will be evaluated as $1/2x^TQx$.

The example

$$\begin{array}{ll} \text{minimize} & -x_2 + \frac{1}{2}(2x_1^2 - 2x_1x_3 + 0.2x_2^2 + 2x_3^2) \\ \text{subject to} & x_1 + x_2 + x_3 & \geq & 1, \\ & x \geq 0 & \end{array}$$

has the following MPS file representation using QMATRIX

(continues on next page)

c1 c1	1.0 1.0				
c1	1.0				
c1	1.0				
x1	2.0				
xЗ	-1.0				
x1	-1.0				
x2	0.2				
xЗ	2.0				
	x1 x3 x1 x2	x1 2.0 x3 -1.0 x1 -1.0 x2 0.2			

or the following using QUADOBJ

* F	ile:	qo1_quadobj.n	nps
NAM		qo1_qua	
ROW	S		·
N	obj		
	c1		
COL	UMNS		
	x1	c1	1.0
	x2	obj	-1.0
	x2	c1	1.0
	x3	c1	1.0
RHS			
	rhs	c1	1.0
QUA	DOBJ		
	x1	x1	2.0
	x1	x3	-1.0
	x2	x2	0.2
	x3	x3	2.0
END	ATA		

Please also note that:

- A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.
- All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the COLUMNS section.

QCMATRIX (optional)

The example

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1] denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

|--|

where the requirements for each field are:

Field	Starting Position	Max Width	required	Description
[vname1]	5	8	Yes	Variable name
[vname2]	15	8	Yes	Variable name
[value1]	25	12	Yes	Numerical value

A record specifies an entry of the Q^i matrix where [cname1] specifies the i. Hence, if the names [vname1] and [vname2] have been assigned to the k-th and j-th variable, then Q^i_{kj} is assigned the value given by [value1]. Moreover, the quadratic term is represented as $1/2x^TQx$.

minimize
$$x_2$$

subject to $x_1 + x_2 + x_3 \ge 1$, $\frac{1}{2}(-2x_1x_3 + 0.2x_2^2 + 2x_3^2) \le 10$, $x \ge 0$

has the following MPS file representation

```
* File: qo1.mps
NAME
               qo1
ROWS
   obj
   c1
   q1
COLUMNS
                          1.0
    x1
               c1
    x2
               obj
                          -1.0
    x2
               c1
                          1.0
                          1.0
    xЗ
               c1
RHS
                          1.0
               c1
    rhs
                          10.0
    rhs
               q1
QCMATRIX
               q1
               x1
                          2.0
    x1
    x1
               хЗ
                          -1.0
                          -1.0
    хЗ
               x1
                          0.2
    x2
               x2
    xЗ
               xЗ
                          2.0
ENDATA
```

Regarding the QCMATRIXs please note that:

- Only one QCMATRIX is allowed for each constraint.
- The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.
- All variable names occurring in the QSECTION must already be specified in the COLUMNS section.
- QCMATRIX does not exploit the symmetry of Q: an off-diagonal entry (i,j) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors l^x and u^x are specified. The default bounds vectors are $l^x=0$ and $u^x=\infty$. Moreover, it is possible to specify several sets of bound vectors. A record in this section has the form

where the requirements for each field are:

Field	Starting Position	Max Width	Required	Description
??	2	2	Yes	Bound key
[name]	5	8	Yes	Name of the BOUNDS vector
[vname1]	15	8	Yes	Variable name
[value1]	25	12	No	Numerical value

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of the bound vector and [vname1] is the name of the variable for which the bounds are modified by the record. ?? and [value1] are used to modify the bound vectors according to the following table:

??	l_j^x	u_j^x	Made integer (added to ${\mathcal J})$
FR	$-\infty$	∞	No
FX	v_1	v_1	No
LO	v_1	unchanged	No
MI	$-\infty$	unchanged	No
PL	unchanged	∞	No
UP	unchanged	v_1	No
BV	0	1	Yes
LI	$\lceil v_1 \rceil$	unchanged	Yes
UI	unchanged	$\lfloor v_1 \rfloor$	Yes

Here v_1 is the value specified by [value1].

CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

$$x \in \mathcal{K}$$

in (12.2). It is assumed that K satisfies the following requirements. Let

$$x^t \in \mathbb{R}^{n^t}, \quad t = 1, \dots, k$$

be vectors comprised of parts of the decision variables x so that each decision variable is a member of exactly **one** vector x^t , for example

$$x^1 = \begin{bmatrix} x_1 \\ x_4 \\ x_7 \end{bmatrix}$$
 and $x^2 = \begin{bmatrix} x_6 \\ x_5 \\ x_3 \\ x_2 \end{bmatrix}$.

Next define

$$\mathcal{K} := \left\{ x \in \mathbb{R}^n : \quad x^t \in \mathcal{K}_t, \quad t = 1, \dots, k \right\}$$

where \mathcal{K}_t must have one of the following forms:

• \mathbb{R} set:

$$\mathcal{K}_t = \mathbb{R}^{n^t}$$
.

• Zero cone:

$$\mathcal{K}_t = \{0\} \subseteq \mathbb{R}^{n^t}. \tag{12.3}$$

• Quadratic cone:

$$\mathcal{K}_t = \left\{ x \in \mathbb{R}^{n^t} : x_1 \ge \sqrt{\sum_{j=2}^{n^t} x_j^2} \right\}. \tag{12.4}$$

• Rotated quadratic cone:

$$\mathcal{K}_t = \left\{ x \in \mathbb{R}^{n^t} : 2x_1 x_2 \ge \sum_{j=3}^{n^t} x_j^2, \quad x_1, x_2 \ge 0 \right\}.$$
 (12.5)

• Primal exponential cone:

$$\mathcal{K}_t = \left\{ x \in \mathbb{R}^3 : x_1 \ge x_2 \exp(x_3/x_2), \quad x_1, x_2 \ge 0 \right\}. \tag{12.6}$$

• Primal power cone (with parameter $0 < \alpha < 1$):

$$\mathcal{K}_{t} = \left\{ x \in \mathbb{R}^{n^{t}} : x_{1}^{\alpha} x_{2}^{1-\alpha} \ge \sqrt{\sum_{j=3}^{n^{t}} x_{j}^{2}}, \quad x_{1}, x_{2} \ge 0 \right\}.$$
 (12.7)

• Dual exponential cone:

$$\mathcal{K}_t = \left\{ x \in \mathbb{R}^3 : x_1 \ge -x_3 e^{-1} \exp(x_2/x_3), \quad x_3 \le 0, x_1 \ge 0 \right\}. \tag{12.8}$$

• Dual power cone (with parameter $0 < \alpha < 1$):

$$\mathcal{K}_t = \left\{ x \in \mathbb{R}^{n^t} : \left(\frac{x_1}{\alpha}\right)^{\alpha} \left(\frac{x_2}{1-\alpha}\right)^{1-\alpha} \ge \sqrt{\sum_{j=3}^{n^t} x_j^2}, \quad x_1, x_2 \ge 0 \right\}.$$
 (12.9)

In general, membership in the \mathbb{R} set is not specified. If a variable is not a member of any other cone then it is assumed to be a member of the \mathbb{R} cone.

Next, let us study an example. Assume that the power cone

$$x_4^{1/3} x_5^{2/3} \ge |x_8|$$

and the rotated quadratic cone

$$2x_3x_7 \ge x_1^2 + x_0^2, \quad x_3, x_7 \ge 0,$$

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as follows:

*	1	2	3	4	5	6
*2345678	9012345	67890123	4567890123	4567890123456	78901234	567890
CSECTION	k	conea	3e-1	PPOW		
x4						
x5						
x8						
CSECTION	k	coneb	0.0	RQUAD		
x7						
x3						
x1						
x0						

In general, a CSECTION header has the format

e]			;]
----	--	--	----

where the requirements for each field are as follows:

Field	Starting Position	Max Width	Required	Description
[kname1]	15	8	Yes	Name of the cone
[value1]	25	12	No	Cone parameter
[ktype]	40		Yes	Type of the cone.

The possible cone type keys are:

[ktype]	Members	[value1]	Interpretation.
ZERO	≥ 0	unused	Zero cone (12.3).
QUAD	≥ 1	unused	Quadratic cone (12.4).
RQUAD	≥ 2	unused	Rotated quadratic cone (12.5).
PEXP	3	unused	Primal exponential cone (12.6).
PPOW	≥ 2	α	Primal power cone (12.7).
DEXP	3	unused	Dual exponential cone (12.8).
DPOW	≥ 2	α	Dual power cone (12.9).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field	Starting Position	Max Width	required	Description
[vname1]	5	8	Yes	A valid variable name

A variable must occur in at most one CSECTION.

ENDATA

This keyword denotes the end of the MPS file.

12.2.2 Integer Variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables should be integer-constrained i.e. be members of \mathcal{J} . However, an alternative method is available. This method is available only for backward compatibility and we recommend that it is not used. This method requires that markers are placed in the COLUMNS section as in the example:

```
COLUMNS
           obj
x1
                      -10.0
                                       c1
                                                  0.7
x1
           c2
                      0.5
                                       с3
                                                  1.0
x1
           c4
                      0.1
* Start of integer-constrained variables.
           'MARKER'
MARK000
                                       'TNTORG'
x2
           obj
                      -9.0
                                       c1
                                                  1.0
x2
           c2
                      0.8333333333
                                       с3
                                                  0.6666667
x2
           c4
                      0.25
xЗ
           obj
                      1.0
                                       с6
                                                  2.0
MARKO01
                                       'INTEND'
           'MARKER
* End of integer-constrained variables.
```

Please note that special marker lines are used to indicate the start and the end of the integer variables. Furthermore be aware of the following

- All variables between the markers are assigned a default lower bound of 0 and a default upper bound of 1. This may not be what is intended. If it is not intended, the correct bounds should be defined in the BOUNDS section of the MPS formatted file.
- MOSEK ignores field 1, i.e. MARKO001 and MARKO01, however, other optimization systems require
 them.
- Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can be assigned the name MARKER.
- Field 3 is ignored and should be left blank.
- Field 4, i.e. INTORG and INTEND, must be specified.
- It is possible to specify several such integer marker sections within the COLUMNS section.

12.2.3 General Limitations

• An MPS file should be an ASCII file.

12.2.4 Interpretation of the MPS Format

Several issues related to the MPS format are not well-defined by the industry standard. However, \mathbf{MOSEK} uses the following interpretation:

- If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are added together.
- If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are added together.

12.2.5 The Free MPS Format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying the parameter $MSK_IPAR_READ_MPS_WIDTH$ an arbitrary large line width will be accepted.

The free MPS format is default. To change to the strict and other formats use the parameter $MSK_IPAR_READ_MPS_FORMAT$.

12.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimization problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions, comments and extra information relevant for solving the problem. It is designed to be easily read and modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

- The LP file format: Any problem that can be written as an LP file can be written as an OPF file too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary characters in names, fixed expressions in the objective, empty constraints, and conic constraints.
- Parameter files: It is possible to specify integer, double and string parameters along with the problem (or in a separate OPF file).
- Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

12.3.1 The File Format

The format uses tags to structure data. A simple example with the basic sections may look like this:

```
[comment]
This is a comment. You may write almost anything here...
[/comment]
# This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]
[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]</pre>
```

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening tag may accept a list of unnamed and named arguments, for examples:

```
[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]
```

Unnamed arguments are identified by their order, while named arguments may appear in any order, but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted text string, i.e.

```
[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]
```

12.3.2 Sections

The recognized tags are

[comment]

A comment section. This can contain *almost* any text: Between single quotes (') or double quotes (") any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes. Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example min) is either min or max (regardless of case) and defines the objective sense, and the second one (above myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the constraint, otherwise it is given a null-name. The section contains a constraint definition written as linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality. Examples:

Constraint names are unique. If a constraint is specified which has the same name as a previously defined constraint, the new constraint replaces the existing one.

[bounds]

This does not directly contain any data, but may contain subsections b (linear bounds on variables) and cone (cones).

[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given only this bound is replaced. This means that upper and lower bounds can be specified separately. So the OPF bound definition:

```
[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]
```

results in the bound $-10 \le x, y \le 10$.

[cone]

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The supported cone types are:

• quad: a quadratic cone of n variables x_1, \ldots, x_n defines a constraint of the form

$$x_1^2 \ge \sum_{i=2}^n x_i^2, \quad x_1 \ge 0.$$

• rquad: a rotated quadratic cone of n variables x_1, \ldots, x_n defines a constraint of the form

$$2x_1x_2 \ge \sum_{i=3}^n x_i^2, \quad x_1, x_2 \ge 0.$$

• pexp: primal exponential cone of 3 variables x_1, x_2, x_3 defines a constraint of the form

$$x_1 \ge x_2 \exp(x_3/x_2), \quad x_1, x_2 \ge 0.$$

• ppow with parameter $0 < \alpha < 1$: primal power cone of n variables x_1, \ldots, x_n defines a constraint of the form

$$x_1^{\alpha} x_2^{1-\alpha} \ge \sqrt{\sum_{j=3}^n x_j^2}, \quad x_1, x_2 \ge 0.$$

• dexp: dual exponential cone of 3 variables x_1, x_2, x_3 defines a constraint of the form

$$x_1 \ge -x_3 e^{-1} \exp(x_2/x_3), \quad x_3 \le 0, x_1 \ge 0.$$

• dpow with parameter $0 < \alpha < 1$: dual power cone of n variables x_1, \ldots, x_n defines a constraint of the form

$$\left(\frac{x_1}{\alpha}\right)^{\alpha} \left(\frac{x_2}{1-\alpha}\right)^{1-\alpha} \ge \sqrt{\sum_{j=3}^{n^t} x_j^2}, \quad x_1, x_2 \ge 0.$$

• zero: zero cone of n variables x_1, \ldots, x_n defines a constraint of the form

$$x_1 = \dots = x_n = 0$$

A [bounds]-section example:

```
[bounds]

[b] 0 <= x,y <= 10 [/b] # ranged bound

[b] 10 >= x,y >= 0 [/b] # ranged bound

[b] 0 <= x,y <= inf [/b] # using inf

[b] x,y free [/b] # free variables

# Let (x,y,z,w) belong to the cone K

[cone rquad] x,y,z,w [/cone] # rotated quadratic cone

[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'

[/bounds]
```

By default all variables are free.

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints and non-zeros. Placed before all other sections containing data this may reduce the time spent reading the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this section a hint is defined as follows:

```
[hint ITEM] value [/hint]
```

The hints recognized by **MOSEK** are:

- number of variables),
- numcon (number of linear/quadratic constraints),
- numanz (number of linear non-zeros in constraints),
- numqnz (number of quadratic non-zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified using a [solution]-section, i.e.

```
[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]
```

The syntax of a [solution]-section is the following:

```
[solution SOLTYPE status=STATUS]...[/solution]
```

where SOLTYPE is one of the strings

- interior, a non-basic solution,
- basic, a basic solution,
- integer, an integer solution,

and STATUS is one of the strings

- UNKNOWN,
- OPTIMAL,
- INTEGER_OPTIMAL,
- PRIM_FEAS,
- DUAL_FEAS,
- PRIM_AND_DUAL_FEAS,
- NEAR_OPTIMAL,
- NEAR_PRIM_FEAS,

- NEAR_DUAL_FEAS,
- NEAR_PRIM_AND_DUAL_FEAS,
- PRIM_INFEAS_CER,
- DUAL_INFEAS_CER,
- NEAR_PRIM_INFEAS_CER,
- NEAR_DUAL_INFEAS_CER,
- NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any order, written as

KEYWORD=value

Allowed keywords are as follows:

- sk. The status of the item, where the value is one of the following strings:
 - LOW, the item is on its lower bound.
 - UPR, the item is on its upper bound.
 - FIX, it is a fixed item.
 - BAS, the item is in the basis.
 - SUPBAS, the item is super basic.
 - UNK, the status is unknown.
 - INF, the item is outside its bounds (infeasible).
- 1v1 Defines the level of the item.
- sl Defines the level of the dual variable associated with its lower bound.
- su Defines the level of the dual variable associated with its upper bound.
- sn Defines the level of the variable associated with its cone.
- y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.

An example of a solution section

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters defining solver parameters. When reading a vendor section, any unknown vendor can be safely ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break any text may be written, including markup characters.

12.3.3 Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part and an exponent. The decimal point is always . (a dot). Some examples are

```
1
1.0
.0
1.
1e10
1e+10
1e-10
```

Some *invalid* examples are

```
e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid
```

More formally, the following standard regular expression describes numbers as used:

```
[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?
```

12.3.4 Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash. Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

```
an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"
```

12.3.5 Parameters Section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter is written as

```
[p PARAMETER_NAME] value [/p]
```

where PARAMETER_NAME is replaced by a **MOSEK** parameter name, usually of the form MSK_IPAR_..., MSK_DPAR_..., or MSK_SPAR_..., and the value is replaced by the value of that parameter; both integer values and named values may be used. Some simple examples are

12.3.6 Writing OPF Files from MOSEK

To write an OPF file then make sure the file extension is .opf.

Then modify the following parameters to define what the file should contain:

MSK_IPAR_OPF_WRITE_SOL_BAS	Include basic solution, if defined.	
MSK_IPAR_OPF_WRITE_SOL_ITG	Include integer solution, if defined.	
MSK_IPAR_OPF_WRITE_SOL_ITR	Include interior solution, if defined.	
MSK_IPAR_OPF_WRITE_SOLUTIONS Include solutions if they are defined. If this is off, no solutions are		
	included.	
MSK_IPAR_OPF_WRITE_HEADER	Include a small header with comments.	
MSK_IPAR_OPF_WRITE_PROBLEM	Include the problem itself — objective, constraints and bounds.	
MSK_IPAR_OPF_WRITE_PARAMETER\$ include all parameter settings.		
MSK_IPAR_OPF_WRITE_HINTS	Include hints about the size of the problem.	

12.3.7 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear, quadratic and conic problems.

Linear Example 1o1.opf

Consider the example:

having the bounds

In the OPF format the example is displayed as shown in Listing 12.1.

Listing 12.1: Example of an OPF file for a linear problem.

```
[comment]
 The lo1 example in OPF format
[/comment]
[hints]
  [hint NUMVAR] 4 [/hint]
  [hint NUMCON] 3 [/hint]
  [hint NUMANZ] 9 [/hint]
[/hints]
[variables disallow_new_variables]
 x1 x2 x3 x4
[/variables]
[objective maximize 'obj']
  3 \times 1 + \times 2 + 5 \times 3 + \times 4
[/objective]
[constraints]
  [con 'c1'] 3 x1 + x2 + 2 x3
                                     = 30 [/con]
  [con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
  [con 'c3']
                2 x2 + 3 x4 <= 25 [/con]
[/constraints]
[bounds]
```

```
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]
[/bounds]
```

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

$$\begin{array}{ll} \text{minimize} & x_1^2 + 0.1x_2^2 + x_3^2 - x_1x_3 - x_2 \\ \text{subject to} & 1 & \leq & x_1 + x_2 + x_3, \\ & & x > 0. \end{array}$$

This can be formulated in opf as shown below.

Listing 12.2: Example of an OPF file for a quadratic problem.

```
[comment]
 The qo1 example in OPF format
[/comment]
[hints]
 [hint NUMVAR] 3 [/hint]
 [hint NUMCON] 1 [/hint]
 [hint NUMANZ] 3 [/hint]
 [hint NUMQNZ] 4 [/hint]
[/hints]
[variables disallow_new_variables]
 x1 x2 x3
[/variables]
[objective minimize 'obj']
 # The quadratic terms are often written with a factor of 1/2 as here,
 # but this is not required.
  - x2 + 0.5 ( 2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2 )
[/objective]
[constraints]
 [con 'c1'] 1.0 \le x1 + x2 + x3 [/con]
[/constraints]
[bounds]
 [b] 0 <= * [/b]
[/bounds]
```

Conic Quadratic Example cqo1.opf

Consider the example:

minimize
$$x_3 + x_4 + x_5$$

subject to $x_0 + x_1 + 2x_2 = 1$,
 $x_0, x_1, x_2 \ge 0$,
 $x_3 \ge \sqrt{x_0^2 + x_1^2}$,
 $2x_4x_5 \ge x_2^2$.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 12.3.

Listing 12.3: Example of an OPF file for a conic quadratic problem.

```
[comment]
 The cqo1 example in OPF format.
[/comment]
[hints]
  [hint NUMVAR] 6 [/hint]
  [hint NUMCON] 1 [/hint]
  [hint NUMANZ] 3 [/hint]
[/hints]
[variables disallow_new_variables]
 x1 x2 x3 x4 x5 x6
[/variables]
[objective minimize 'obj']
  x4 + x5 + x6
[/objective]
[constraints]
  [con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]
[/constraints]
[bounds]
 # We let all variables default to the positive orthant
  [b] 0 <= * [/b]
  # ...and change those that differ from the default
  [b] x4,x5,x6 free [/b]
  # Define quadratic cone: x4 \ge sqrt(x1^2 + x2^2)
  [cone quad 'k1'] x4, x1, x2 [/cone]
  # Define rotated quadratic cone: 2 x5 x6 >= x3^2
  [cone rquad 'k2'] x5, x6, x3 [/cone]
[/bounds]
```

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

This can be implemented in OPF with the file in Listing 12.4.

Listing 12.4: Example of an OPF file for a mixed-integer linear problem.

```
[comment]
  The milo1 example in OPF format
[/comment]

[hints]
  [hint NUMVAR] 2 [/hint]
  [hint NUMCON] 2 [/hint]
  [hint NUMANZ] 4 [/hint]
[/hints]
```

```
[variables disallow_new_variables]
 x1 x2
[/variables]
[objective maximize 'obj']
  x1 + 6.4e-1 x2
[/objective]
[constraints]
  [con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
  [con 'c2'] -4 \le 3 x1 - 2 x2 [/con]
[/constraints]
[bounds]
 [b] 0 <= * [/b]
[/bounds]
[integer]
 x1 x2
[/integer]
```

12.4 The CBF Format

This document constitutes the technical reference manual of the *Conic Benchmark Format* with file extension: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic) and semidefinite optimization with mixed-integer variables. The format has been designed with benchmark libraries in mind, and therefore focuses on compact and easily parsable representations. The problem structure is separated from the problem data, and the format moreover facilitates benchmarking of hotstart capability through sequences of changes.

12.4.1 How Instances Are Specified

This section defines the spectrum of conic optimization problems that can be formulated in terms of the keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

$$\min / \max \quad g^{obj}
g_i \in \mathcal{K}_i, \quad i \in \mathcal{I},
\text{s.t.} \quad G_i \in \mathcal{K}_i, \quad i \in \mathcal{I}^{PSD},
x_j \in \mathcal{K}_j, \quad j \in \mathcal{J},
\overline{X}_j \in \mathcal{K}_j, \quad j \in \mathcal{J}^{PSD}.$$
(12.10)

- Variables are either scalar variables, x_j for $j \in \mathcal{J}$, or variables, \overline{X}_j for $j \in \mathcal{J}^{PSD}$. Scalar variables can also be declared as integer.
- Constraints are affine expressions of the variables, either scalar-valued g_i for $i \in \mathcal{I}$, or matrix-valued G_i for $i \in \mathcal{I}^{PSD}$

$$g_i = \sum_{j \in \mathcal{J}^{PSD}} \langle F_{ij}, X_j \rangle + \sum_{j \in \mathcal{J}} a_{ij} x_j + b_i,$$
$$G_i = \sum_{j \in \mathcal{J}} x_j H_{ij} + D_i.$$

• The **objective function** is a scalar-valued affine expression of the variables, either to be minimized or maximized. We refer to this expression as g^{obj}

$$g^{obj} = \sum_{j \in \mathcal{J}^{PSD}} \langle F_j^{obj}, X_j \rangle + \sum_{j \in \mathcal{J}} a_j^{obj} x_j + b^{obj}.$$

CBF format can represent the following cones \mathcal{K} :

• Free domain - A cone in the linear family defined by

$$\{x \in \mathbb{R}^n\}, \text{ for } n \ge 1.$$

• Positive orthant - A cone in the linear family defined by

$$\{x \in \mathbb{R}^n \mid x_i \ge 0 \text{ for } j = 1, \dots, n\}, \text{ for } n \ge 1.$$

• Negative orthant - A cone in the linear family defined by

$$\{x \in \mathbb{R}^n \mid x_j \le 0 \text{ for } j = 1, \dots, n\}, \text{ for } n \ge 1.$$

• Fixpoint zero - A cone in the linear family defined by

$$\{x \in \mathbb{R}^n \mid x_j = 0 \text{ for } j = 1, \dots, n\}, \text{ for } n \ge 1.$$

• Quadratic cone - A cone in the second-order cone family defined by

$$\left\{ \left(\begin{array}{c} p \\ x \end{array}\right) \in \mathbb{R} \times \mathbb{R}^{n-1}, \ p^2 \ge x^T x, \ p \ge 0 \right\}, \ \text{for } n \ge 2.$$

• Rotated quadratic cone - A cone in the second-order cone family defined by

$$\left\{ \begin{pmatrix} p \\ q \\ x \end{pmatrix} \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n-2}, \ 2pq \ge x^T x, \ p \ge 0, \ q \ge 0 \right\}, \text{ for } n \ge 3.$$

12.4.2 The Structure of CBF Files

This section defines how information is written in the CBF format, without being specific about the type of information being communicated.

All information items belong to exactly one of the three groups of information. These information groups, and the order they must appear in, are:

- 1. File format.
- 2. Problem structure.
- 3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group, problem structure, provides the information needed to deduce the type and size of the problem instance. Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding the actual information to be specified.

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item required to precede it.

Embedded hotstart-sequences

A sequence of problem instances, based on the same problem structure, is within a single file. This is facilitated via the CHANGE within the problem data information group, as a separator between the information items of each instance. The information items following a CHANGE keyword are appending to, or changing (e.g., setting coefficients back to their default value of zero), the problem data of the preceding instance.

The sequence is intended for benchmarking of hotstart capability, where the solvers can reuse their internal state and solution (subject to the achieved accuracy) as warmpoint for the succeeding instance. Whenever this feature is unsupported or undesired, the keyword CHANGE should be interpreted as the end of file.

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note, by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

- A line feed marks the end of a line, carriage returns are ignored.
- Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the standard C locale. The format does not impose restrictions on the magnitude of, or number of significant digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to '#' (US-ASCII 35) are comments, and should be ignored. Comments are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the following rules:

- Leading and trailing whitespace characters should be ignored.
 - The seperator between multiple pieces of information on one line, is either one or more whitespace characters.
- Lines containing only whitespace characters are empty, and should be ignored. Empty lines are only allowed between information items.

12.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also defines the index sets, \mathcal{J} , \mathcal{J}^{PSD} , \mathcal{I} and \mathcal{I}^{PSD} , which are all numbered from zero, $\{0, 1, \ldots\}$, and empty until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as $(x_0, x_1) \in \mathbb{R}^2_+$, $(x_2, x_3, x_4) \in \mathcal{Q}^3$, etc. In terms of the Cartesian product, this generalizes to

$$x \in \mathcal{K}_1^{n_1} \times \mathcal{K}_2^{n_2} \times \dots \times \mathcal{K}_k^{n_k}$$

which in the CBF format becomes:

```
VAR
n k
K1 n1
K2 n2
...
Kk nk
```

where $\sum_{i} n_{i} = n$ is the total number of scalar variables. The list of supported cones is found in Table 12.3. Integrality of scalar variables can be specified afterwards.

• **PSD variables** are constructed one-by-one. That is, $X_j \succeq \mathbf{0}^{n_j \times n_j}$ for $j \in \mathcal{J}^{PSD}$, constructs a matrix-valued variable of size $n_j \times n_j$ restricted to be symmetric positive semidefinite. In the CBF format, this list of constructions becomes:

```
PSDVAR
N
n1
n2
...
nN
```

where N is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as $(g_0, g_1) \in \mathbb{R}^2_+$, $(g_2, g_3, g_4) \in \mathcal{Q}^3$, etc. In terms of the Cartesian product, this generalizes to

$$g \in \mathcal{K}_1^{m_1} \times \mathcal{K}_2^{m_2} \times \dots \times \mathcal{K}_k^{m_k}$$

which in the CBF format becomes:

```
CON
m k
K1 m1
K2 m2
..
Kk mk
```

where $\sum_{i} m_{i} = m$ is the total number of scalar constraints. The list of supported cones is found in Table 12.3

• **PSD constraints** are constructed one-by-one. That is, $G_i \succeq \mathbf{0}^{m_i \times m_i}$ for $i \in \mathcal{I}^{PSD}$, constructs a matrix-valued affine expressions of size $m_i \times m_i$ restricted to be symmetric positive semidefinite. In the CBF format, this list of constructions becomes

```
PSDCON
M
m1
m2
..
mM
```

where M is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance. These are considered zero until explicitly defined, implying that instances with no keywords from this information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed positions in a symmetric matrix) is an error.

The affine expressions of the objective, g^{obj} , of the scalar constraints, g_i , and of the PSD constraints, G_i , are defined separately. The following notation uses the standard trace inner product for matrices, $\langle X, Y \rangle = \sum_{i,j} X_{ij} Y_{ij}$.

• The affine expression of the objective is defined as

$$g^{obj} = \sum_{j \in \mathcal{J}^{PSD}} \langle F_j^{obj}, X_j \rangle + \sum_{j \in \mathcal{J}} a_j^{obj} x_j + b^{obj},$$

in terms of the symmetric matrices, F_j^{obj} , and scalars, a_j^{obj} and b^{obj} .

• The affine expressions of the scalar constraints are defined, for $i \in \mathcal{I}$, as

$$g_i = \sum_{j \in \mathcal{J}^{PSD}} \langle F_{ij}, X_j \rangle + \sum_{j \in \mathcal{J}} a_{ij} x_j + b_i,$$

in terms of the symmetric matrices, F_{ij} , and scalars, a_{ij} and b_i .

• The affine expressions of the PSD constraints are defined, for $i \in \mathcal{I}^{PSD}$, as

$$G_i = \sum_{j \in \mathcal{J}} x_j H_{ij} + D_i,$$

in terms of the symmetric matrices, H_{ij} and D_i .

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar variables and constraints, constructed in vectors, the supported conic domains and their minimum sizes are given as follows.

Table 12.3: Cones available in the CBF format

Name	CBF keyword	Cone family
Free domain	F	linear
Positive orthant	L+	linear
Negative orthant	L-	linear
Fixpoint zero	L=	linear
Quadratic cone	Q	second-order
Rotated quadratic cone	QR	second-order

12.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.

HEADER: None

BODY: One line formatted as:

INT

This is the version number.

Must appear exactly once in a file, as the first keyword.

OBJSENSE

Description: Define the objective sense.

HEADER: None

BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Capital letters are required. Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.

HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.

BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD variable. The number of lines should match the number stated in the header.

VAR

Description: Construct the scalar variables.

HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 12.3), and the number of scalar variables restricted to this cone. These numbers should add up to the number of scalar variables stated first in the header. The number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.

HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.

BODY: a list of lines formatted as:

INT

This indicates the scalar variable index $j \in \mathcal{J}$. The number of lines should match the number stated in the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.

BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine expression of the PSD constraint. The number of lines should match the number stated in the header. Can only be used after these keywords: PSDVAR, VAR.

CON

Description: Construct the scalar constraints.

HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to. BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 12.3), and the number of affine expressions restricted to this cone. These numbers should add up to the number of scalar constraints stated first in the header. The number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices F_j^{obj} , as used in the objective.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index $j \in \mathcal{J}^{PSD}$, the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, a_j^{obj} , as used in the objective. HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index $j \in \mathcal{J}$ and the coefficient value. The number of lines should match the number stated in the header.

OBJBCOORD

Description: Input the scalar, b^{obj} , as used in the objective.

HEADER: None.

BODY: One line formatted as:

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, F_{ij} , as used in the scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index $i \in \mathcal{I}$, the PSD variable index $j \in \mathcal{J}^{PSD}$, the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, a_{ij} , as used in the scalar constraints. HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index $i \in \mathcal{I}$, the scalar variable index $j \in \mathcal{J}$ and the coefficient value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, b_i , as used in the scalar constraints. HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index $i \in \mathcal{I}$ and the coefficient value. The number of lines should match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, H_{ij} , as used in the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index $i \in \mathcal{I}^{PSD}$, the scalar variable index $j \in \mathcal{J}$, the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, D_i , as used in the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index $i \in \mathcal{I}^{PSD}$, the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

CHANGE

Start of a new instance specification based on changes to the previous. Can be interpreted as the end of file when the hotstart-sequence is unsupported or undesired.

BODY: None Header: None

12.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (12.11), has three variables in a quadratic cone - first one is integer - and an affine expression in domain 0 (equality constraint).

$$\begin{array}{ll} \text{minimize} & 5.1 \, x_0 \\ \text{subject to} & 6.2 \, x_1 + 7.3 \, x_2 - 8.4 \in \{0\} \\ & x \in \mathcal{Q}^3, \, x_0 \in \mathbb{Z}. \end{array} \tag{12.11}$$

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to safeguard against later revisions.

```
VER
1
```

Next follows the problem structure, consisting of the objective sense, the number and domain of variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions (i.e., the equality constraint).

```
OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0
```

```
CON
1 1
L= 1
```

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

```
OBJACOORD

1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4
```

This concludes the example.

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (12.12), has a semidefinite cone, a quadratic cone over unordered subindices, and two equality constraints.

The equality constraints are easily rewritten to the conic form, $(g_0, g_1) \in \{0\}^2$, by moving constants such that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this variable permutation. Instead, it takes a scalar constraint $(g_2, g_3, g_4) = (x_1, x_0, x_2) \in \mathcal{Q}^3$, with scalar variables constructed as $(x_0, x_1, x_2) \in \mathbb{R}^3$. Its formulation in the CBF format is reported in the following list

```
# Three scalar variables in this one conic domain:
      | Three are free.
VAR
3 1
F 3
# Five scalar constraints with affine expressions in two conic domains:
# | Two are fixed to zero.
#
     | Three are in conic quadratic domain.
CON
5 2
L= 2
QЗ
\# Five coordinates in F^{obj}_j coefficients:
    | F^{obj}[0][0,0] = 2.0
     | F^{obj}[0][1,0] = 1.0
     and more...
OBJFCOORD
0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0
# One coordinate in a^{obj}_j coefficients:
# | a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0
# Nine coordinates in F_ij coefficients:
     | F[0,0][0,0] = 1.0
     | F[0,0][1,1] = 1.0
#
#
     and more...
FCOORD
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0
# Six coordinates in a_ij coefficients:
\# | a[0,1] = 1.0
     | a[1,0] = 1.0
     | and more...
ACOORD
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0
```

```
# Two coordinates in b_i coefficients:
#  | b[0] = -1.0
#  | b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5
```

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as shown in.

minimize
$$\left\langle \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, X_1 \right\rangle + x_1 + x_2 + 1$$

subject to $\left\langle \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, X_1 \right\rangle - x_1 - x_2 \geq 0.0,$
 $x_1 \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} + x_2 \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succeq \mathbf{0},$
 $X_1 \succeq \mathbf{0}.$ (12.13)

Its formulation in the CBF format is written in what follows

```
# File written using this version of the Conic Benchmark Format:
#
     | Version 1.
VER
# The sense of the objective is:
     | Minimize.
OBJSENSE
MTN
# One PSD variable of this size:
# | Two times two.
PSDVAR
1
# Two scalar variables in this one conic domain:
     | Two are free.
VAR
2 1
# One PSD constraint of this size:
# | Two times two.
PSDCON
1
2
# One scalar constraint with an affine expression in this one conic domain:
     | One is greater than or equal to zero.
CON
1 1
L+ 1
# Two coordinates in F^{obj}_j coefficients:
```

```
| F^{obj}[0][0,0] = 1.0
     | F^{obj}[0][1,1] = 1.0
OBJFCOORD
0 0 0 1.0
0 1 1 1.0
# Two coordinates in a^{obj}_j coefficients:
\# | a^{obj}[0] = 1.0
#
     | a^{obj}[1] = 1.0
OBJACOORD
0 1.0
1 1.0
# One coordinate in b^{obj} coefficient:
# | b^{obj} = 1.0
OBJBCOORD
1.0
# One coordinate in F_ij coefficients:
# | F[0,0][1,0] = 1.0
FCOORD
0 0 1 0 1.0
# Two coordinates in a_ij coefficients:
\# | a[0,0] = -1.0
     | a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0
# Four coordinates in H_ij coefficients:
# | H[0,0][1,0] = 1.0
     | H[0,0][1,1] = 3.0
#
     and more...
HCOORD
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0
# Two coordinates in D_i coefficients:
# | D[0][0,0] = -1.0
     | D[0][1,1] = -1.0
DCOORD
0 0 0 -1.0
0 1 1 -1.0
```

Optimization Over a Sequence of Objectives

The linear optimization problem (12.14), is defined for a sequence of objectives such that hotstarting from one to the next might be advantages.

$$\begin{array}{lll} \text{maximize}_k & g_k^{obj} \\ \text{subject to} & 50 \, x_0 + 31 & \leq & 250 \,, \\ & 3 \, x_0 - 2 x_1 & \geq & -4 \,, \\ & x \in \mathbb{R}^2_+, \end{array} \tag{12.14}$$

given, 1. $g_0^{obj} = x_0 + 0.64x_1$. 2. $g_1^{obj} = 1.11x_0 + 0.76x_1$. 3. $g_2^{obj} = 1.11x_0 + 0.85x_1$.

Its formulation in the CBF format is reported in Listing 12.5.

Listing 12.5: Problem (12.14) in CBF format.

```
# File written using this version of the Conic Benchmark Format:
     | Version 1.
VER
# The sense of the objective is:
# | Maximize.
OBJSENSE
MAX
# Two scalar variables in this one conic domain:
     | Two are nonnegative.
VAR
2 1
L+ 2
# Two scalar constraints with affine expressions in these two conic domains:
# | One is in the nonpositive domain.
     | One is in the nonnegative domain.
CON
2 2
L- 1
# Two coordinates in a^{obj}_j coefficients:
     | a^{obj}[0] = 1.0
     | a^{obj}[1] = 0.64
OBJACOORD
0 1.0
1 0.64
# Four coordinates in a_ij coefficients:
     | a[0,0] = 50.0
     | a[1,0] = 3.0
      and more...
ACOORD
0 0 50.0
1 0 3.0
0 1 31.0
1 1 -2.0
# Two coordinates in b_i coefficients:
     | b[0] = -250.0
     | b[1] = 4.0
BCOORD
0 -250.0
1 4.0
```

```
# New problem instance defined in terms of changes.
CHANGE

# Two coordinate changes in a^{obj}_j coefficients. Now it is:
# | a^{obj}_[0] = 1.11
# | a^{obj}_[1] = 0.76

OBJACOORD
2
0 1.11
1 0.76

# New problem instance defined in terms of changes.
CHANGE

# One coordinate change in a^{obj}_j coefficients. Now it is:
# | a^{obj}_[0] = 1.11
# | a^{obj}_[1] = 0.85

OBJACOORD
1
1 0.85
```

12.5 The PTF Format

The PTF format is a new human-readable, natural text format. Its features and structure are similar to the *OPF* format, with the difference that the PTF format **does** support semidefinite terms.

12.5.1 The overall format

The format is indentation based, where each section is started by a head line and followed by a section body with deeper indentation that the head line. For example:

```
Header line
Body line 1
Body line 1
Body line 1
```

Section can also be nested:

```
Header line A

Body line in A

Header line A.1

Body line in A.1

Body line in A.1

Body line in A.1
```

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation. The character # defines a line comment and anything between the # character and the end of the line is ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary, and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

```
NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!|]
QUOTED_NAME: "'" ( [^'\\r\n] | "\\" ( [\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F] ) )* "'"
```

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where the coefficient can be left out if it is 1.0), or a matrix inner product.

An expression:

```
EXPR: EMPTY | [+-]? TERM ( [+-] TERM )*
TERM: LINEAR_TERM | MATRIX_TERM
```

A linear term

```
LINEAR_TERM: FLOAT? NAME
```

A matrix term

```
MATRIX_TERM: "<" FLOAT? NAME ( [+-] FLOAT? NAME)* ";" NAME ">"
```

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.

For example following two section are equivalent:

12.5.2 Task section

The first section of the file must be a Task. The text in this section is not used and may contain comments, or meta-information from the writer or about the content.

Format:

```
Task NAME
Anything goes here...
```

NAME is a the task name.

12.5.3 Objective section

The Objective section defines the objective name, sense and function. The format:

```
"Objective" NAME?
( "Minimize" | "Maximize" ) EXPR
```

For example:

```
Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >
```

12.5.4 Constraints section

The constraints section defines a series of constraints. A constraint defines a term $A \cdot x + b \in K$. For linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint spans multiple rows these can either be written inline separated by semi-colons, or each expression in a separete sub-section.

Simple linear constraints:

```
"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf") )? "]" EXPR
```

If the brackets contain two values, they are used as upper and lower bounds. It they contain one value the constraint is an equality.

For example:

```
Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3
```

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is written in the brackets, and **MOSEK** currently supports following types:

- SOC(N) Second order cone of dimension N
- RSOC(N) Rotated second order cone of dimension N
- PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N*(N+1)/2 elements.
- PEXP Primal exponential cone of dimension 3
- DEXP Dual exponential cone of dimension 3
- PPOW(N,P) Primal power cone of dimension N with parameter P
- DPOW(N,P) Dual power cone of dimension N with parameter P
- ZERO(N) The zero-cone of dimension N.

```
"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST
```

For example:

```
Constraints

'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1

'K2' [RSOC(3)]

x1 + x2

x2 + x3

x3 + x1
```

12.5.5 Variables section

Any variable used in an expression must be defined in a variable section. The variable section defines each variable domain.

```
"Variables"

NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf") )? "]"

NAME "[" DOMAIN "]" NAMES

For example, a linear variable
```

```
Variables x1 [0;Inf]
```

As with constraints, members of a conic domain can be listed either inline or in a subsection:

```
Variables
k1 [SOC(3)] x1; x2; x3
k2 [RSOC(3)]
x1
x2
x3
```

12.5.6 Integer section

This section contains a list of variables that are integral. For example:

```
Integer
x1 x2 x3
```

12.5.7 SymmetricMatrixes section

This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms. The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the lower triangular part should be defined.

```
"SymmetricMatrixes"

NAME "SYMMAT" "(" INT ")" ( "(" INT "," INT "," FLOAT ")" )*

...
```

For example:

```
SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)
(0,0,1.0)
(1,1,2.0)
(2,1,0.5)
```

12.5.8 Solutions section

Each subsection defines a solution. A solution defines for each constraint and for each variable exactly one primal value and either one (for conic domains) or two (for linear domains) dual values. The values follow the same logic as in the **MOSEK** C API. A primal and a dual solution status defines the meaning of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

```
"Solutions"
   "Solution" WHICHSOL
      "ProblemStatus" PROSTA PROSTA?
  "SolutionStatus" SOLSTA SOLSTA?
  "Objective" FLOAT FLOAT
   "Variables"
     # Linear variable status: level, slx, sux
     NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
     # Conic variable status: level, snx
     NAME.
        "[" STATUS "]" FLOAT FLOAT?
  "Constraints"
     # Linear variable status: level, slx, sux
     NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
     # Conic variable status: level, snx
         "[" STATUS "]" FLOAT FLOAT?
```

Following values for WHICHSOL are supported:

- interior Interior solution, the result of an interior-point solver.
- basic Basic solution, as produced by a simplex solver.
- integer Integer solution, the solution to a mixed-integer problem. This does not define a dual solution.

Following values for PROSTA are supported:

- unknown The problem status is unknown
- feasible The problem has been proven feasible
- infeasible The problem has been proven infeasible
- illposed The problem has been proved to be ill posed
- infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:

- unknown The solution status is unknown
- feasible The solution is feasible
- optimal The solution is optimal
- infeas_cert The solution is a certificate of infeasibility
- illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:

- unknown The value is unknown
- super_basic The value is super basic
- at_lower The value is basic and at its lower bound
- at_upper The value is basic and at its upper bound
- fixed The value is basic fixed
- infinite The value is at infinity

12.6 The Task Format

The Task format is **MOSEK**'s native binary format. It contains a complete image of a **MOSEK** task, i.e.

- Problem data: Linear, conic, semidefinite and quadratic data
- Problem item names: Variable names, constraints names, cone names etc.
- Parameter settings
- Solutions

There are a few things to be aware of:

- Status of a solution read from a file will *always* be unknown.
- Parameter settings in a task file *always override* any parameters set on the command line or in a parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not work: Creating a file using TAR will most probably not create a valid **MOSEK** Task file since the order of the entries is important.

12.7 The JSON Format

MOSEK provides the possibility to read/write problems in valid JSON format.

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is completely language independent but uses conventions that are familiar to programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-interchange language.

The official JSON website $\mbox{http://www.json.org}$ provides plenty of information along with the format definition.

MOSEK defines two JSON-like formats:

- jtask
- jsol

Despite being text-based human-readable formats, jtask and jsol files will include no indentation and no new-lines, in order to keep the files as compact as possible. We therefore strongly advise to use JSON viewer tools to inspect jtask and jsol files.

12.7.1 jtask format

It stores a problem instance. The *jtask* format contains the same information as a *task format*. Even though a *jtask* file is human-readable, we do not recommend users to create it by hand, but to rely on **MOSEK**.

12.7.2 isol format

It stores a problem solution. The *jsol* format contains all solutions and information items.

12.7.3 A *itask* example

In Listing 12.6 we present a file in the *jtask* format that corresponds to the sample problem from lo1.1p. The listing has been formatted for readability.

Listing 12.6: A formatted *jtask* file for the lol.lp example.

```
"$schema": "http://mosek.com/json/schema#",
"Task/INFO":{
    "taskname": "lo1",
    "numvar":4,
    "numcon":3,
    "numcone":0,
    "numbarvar":0,
    "numanz":9,
    "numsymmat":0,
    "mosekver":[
        8,
        0,
        0,
        9
},
"Task/data":{
    "var":{
         "name":[
             "x1",
             "x2",
             "x3".
```

```
"x4"
   ],
    "bk":[
       "lo",
"ra",
        "lo",
        "lo"
   ],
"bl":[
       0.0,
        0.0,
        0.0,
        0.0
    ],
    "bu":[
       1e+30,
        1e+1,
        1e+30,
        1e+30
    ],
    "type":[
        "cont",
        "cont",
        "cont",
        "cont"
    ]
},
"con":{
    "name":[
       "c1",
        "c2",
        "c3"
    ],
    "bk":[
       "fx",
        "lo",
        "up"
   ],
    "bl":[
       3e+1,
        1.5e+1,
            -1e+30
    ],
    "bu":[
        3e+1,
        1e+30,
        2.5e+1
    ]
},
"objective":{
    "sense":"max",
    "name":"obj",
    "c":{
        "subj":[
           Ο,
            1,
            2,
            3
        ],
        "val":[
            3e+0,
```

 $({\rm continued\ from\ previous\ page})$

```
1e+0,
                5e+0,
                1e+0
            ]
        },
        "cfix":0.0
    },
    "A":{
        "subi":[
            Ο,
            Ο,
            Ο,
            1,
            1,
            1,
            1,
            2,
            2
        ],
        "subj":[
            0,
            1,
            2,
            0,
            1,
            2,
            3,
            1,
            3
        ],
        "val":[
            3e+0,
            1e+0,
            2e+0,
            2e+0,
            1e+0,
            3e+0,
            1e+0,
            2e+0,
            3e+0
        ]
    }
"Task/parameters":{
    "iparam":{
        "ANA_SOL_BASIS": "ON",
        "ANA_SOL_PRINT_VIOLATED":"OFF",
        "AUTO_SORT_A_BEFORE_OPT": "OFF",
        "AUTO_UPDATE_SOL_INFO":"OFF",
        "BASIS_SOLVE_USE_PLUS_ONE":"OFF",
        "BI_CLEAN_OPTIMIZER":"OPTIMIZER_FREE",
        "BI_IGNORE_MAX_ITER":"OFF",
        "BI_IGNORE_NUM_ERROR": "OFF",
        "BI_MAX_ITERATIONS":1000000,
        "CACHE_LICENSE": "ON",
        "CHECK_CONVEXITY": "CHECK_CONVEXITY_FULL",
        "COMPRESS_STATFILE": "ON",
        "CONCURRENT_NUM_OPTIMIZERS":2,
        "CONCURRENT_PRIORITY_DUAL_SIMPLEX":2,
        "CONCURRENT_PRIORITY_FREE_SIMPLEX":3,
        "CONCURRENT_PRIORITY_INTPNT":4,
```

```
"CONCURRENT_PRIORITY_PRIMAL_SIMPLEX":1,
"FEASREPAIR_OPTIMIZE": "FEASREPAIR_OPTIMIZE_NONE",
"INFEAS_GENERIC_NAMES": "OFF",
"INFEAS_PREFER_PRIMAL": "ON",
"INFEAS_REPORT_AUTO":"OFF",
"INFEAS_REPORT_LEVEL":1,
"INTPNT_BASIS": "BI_ALWAYS",
"INTPNT_DIFF_STEP":"ON",
"INTPNT_FACTOR_DEBUG_LVL":0,
"INTPNT_FACTOR_METHOD":0,
"INTPNT_HOTSTART": "INTPNT_HOTSTART_NONE",
"INTPNT_MAX_ITERATIONS":400,
"INTPNT_MAX_NUM_COR":-1,
"INTPNT_MAX_NUM_REFINEMENT_STEPS":-1,
"INTPNT_OFF_COL_TRH":40,
"INTPNT_ORDER_METHOD": "ORDER_METHOD_FREE",
"INTPNT_REGULARIZATION_USE":"ON",
"INTPNT_SCALING": "SCALING_FREE",
"INTPNT_SOLVE_FORM": "SOLVE_FREE",
"INTPNT_STARTING_POINT": "STARTING_POINT_FREE",
"LIC_TRH_EXPIRY_WRN":7,
"LICENSE_DEBUG": "OFF",
"LICENSE_PAUSE_TIME":0,
"LICENSE_SUPPRESS_EXPIRE_WRNS": "OFF",
"LICENSE_WAIT": "OFF",
"LOG":10,
"LOG_ANA_PRO":1,
"LOG_BI":4,
"LOG_BI_FREQ":2500,
"LOG_CHECK_CONVEXITY":0,
"LOG_CONCURRENT":1,
"LOG_CUT_SECOND_OPT":1,
"LOG_EXPAND":0,
"LOG_FACTOR":1,
"LOG_FEAS_REPAIR":1,
"LOG_FILE":1,
"LOG_HEAD":1,
"LOG_INFEAS_ANA":1,
"LOG_INTPNT":4,
"LOG_MIO":4,
"LOG_MIO_FREQ":1000,
"LOG_OPTIMIZER":1,
"LOG_ORDER":1,
"LOG_PRESOLVE":1,
"LOG_RESPONSE":0,
"LOG_SENSITIVITY":1,
"LOG_SENSITIVITY_OPT":0,
"LOG_SIM":4,
"LOG_SIM_FREQ":1000,
"LOG_SIM_MINOR":1,
"LOG_STORAGE":1,
"MAX_NUM_WARNINGS":10,
"MIO_BRANCH_DIR": "BRANCH_DIR_FREE",
"MIO_CONSTRUCT_SOL": "OFF",
"MIO_CUT_CLIQUE": "ON",
"MIO_CUT_CMIR": "ON",
"MIO_CUT_GMI": "ON",
"MIO_CUT_KNAPSACK_COVER": "OFF",
"MIO_HEURISTIC_LEVEL":-1,
"MIO_MAX_NUM_BRANCHES":-1,
"MIO_MAX_NUM_RELAXS":-1,
```

```
"MIO_MAX_NUM_SOLUTIONS":-1,
"MIO_MODE": "MIO_MODE_SATISFIED",
"MIO_MT_USER_CB": "ON",
"MIO_NODE_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_NODE_SELECTION": "MIO_NODE_SELECTION_FREE",
"MIO_PERSPECTIVE_REFORMULATE": "ON",
"MIO_PROBING_LEVEL":-1,
"MIO_RINS_MAX_NODES":-1,
"MIO_ROOT_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_ROOT_REPEAT_PRESOLVE_LEVEL":-1,
"MT_SPINCOUNT":0,
"NUM_THREADS":0,
"OPF_MAX_TERMS_PER_LINE":5,
"OPF_WRITE_HEADER":"ON",
"OPF_WRITE_HINTS":"ON",
"OPF_WRITE_PARAMETERS":"OFF",
"OPF_WRITE_PROBLEM": "ON",
"OPF_WRITE_SOL_BAS":"ON",
"OPF_WRITE_SOL_ITG":"ON",
"OPF_WRITE_SOL_ITR":"ON",
"OPF_WRITE_SOLUTIONS": "OFF",
"OPTIMIZER": "OPTIMIZER_FREE",
"PARAM_READ_CASE_NAME": "ON",
"PARAM_READ_IGN_ERROR": "OFF",
"PRESOLVE_ELIMINATOR_MAX_FILL":-1,
"PRESOLVE_ELIMINATOR_MAX_NUM_TRIES":-1,
"PRESOLVE_LEVEL":-1,
"PRESOLVE_LINDEP_ABS_WORK_TRH":100,
"PRESOLVE_LINDEP_REL_WORK_TRH": 100,
"PRESOLVE_LINDEP_USE": "ON",
"PRESOLVE_MAX_NUM_REDUCTIONS":-1,
"PRESOLVE_USE": "PRESOLVE_MODE_FREE",
"PRIMAL_REPAIR_OPTIMIZER": "OPTIMIZER_FREE",
"QO_SEPARABLE_REFORMULATION": "OFF",
"READ_DATA_COMPRESSED": "COMPRESS_FREE";
"READ_DATA_FORMAT": "DATA_FORMAT_EXTENSION",
"READ_DEBUG": "OFF",
"READ_KEEP_FREE_CON": "OFF",
"READ_LP_DROP_NEW_VARS_IN_BOU":"OFF",
"READ_LP_QUOTED_NAMES":"ON",
"READ_MPS_FORMAT": "MPS_FORMAT_FREE",
"READ_MPS_WIDTH":1024,
"READ_TASK_IGNORE_PARAM": "OFF",
"SENSITIVITY_ALL": "OFF",
"SENSITIVITY_OPTIMIZER": "OPTIMIZER_FREE_SIMPLEX",
"SENSITIVITY_TYPE": "SENSITIVITY_TYPE_BASIS",
"SIM_BASIS_FACTOR_USE": "ON",
"SIM_DEGEN": "SIM_DEGEN_FREE",
"SIM_DUAL_CRASH":90,
"SIM_DUAL_PHASEONE_METHOD":0,
"SIM_DUAL_RESTRICT_SELECTION":50,
"SIM_DUAL_SELECTION": "SIM_SELECTION_FREE",
"SIM_EXPLOIT_DUPVEC": "SIM_EXPLOIT_DUPVEC_OFF",
"SIM_HOTSTART": "SIM_HOTSTART_FREE",
"SIM_HOTSTART_LU": "ON",
"SIM_INTEGER":0,
"SIM_MAX_ITERATIONS":10000000,
"SIM_MAX_NUM_SETBACKS":250,
"SIM_NON_SINGULAR": "ON",
"SIM_PRIMAL_CRASH":90,
"SIM_PRIMAL_PHASEONE_METHOD":0,
```

```
"SIM_PRIMAL_RESTRICT_SELECTION":50,
    "SIM_PRIMAL_SELECTION": "SIM_SELECTION_FREE",
    "SIM_REFACTOR_FREQ":0,
    "SIM_REFORMULATION": "SIM_REFORMULATION_OFF",
    "SIM_SAVE_LU":"OFF",
    "SIM_SCALING": "SCALING_FREE",
    "SIM_SCALING_METHOD": "SCALING_METHOD_POW2",
    "SIM_SOLVE_FORM": "SOLVE_FREE",
    "SIM_STABILITY_PRIORITY":50,
    "SIM_SWITCH_OPTIMIZER": "OFF";
    "SOL_FILTER_KEEP_BASIC": "OFF";
    "SOL_FILTER_KEEP_RANGED": "OFF",
    "SOL_READ_NAME_WIDTH":-1,
    "SOL_READ_WIDTH": 1024,
    "SOLUTION_CALLBACK": "OFF",
    "TIMING_LEVEL":1,
    "WRITE_BAS_CONSTRAINTS": "ON",
    "WRITE_BAS_HEAD":"ON",
    "WRITE_BAS_VARIABLES": "ON",
    "WRITE_DATA_COMPRESSED":0,
    "WRITE_DATA_FORMAT": "DATA_FORMAT_EXTENSION",
    "WRITE_DATA_PARAM":"OFF",
    "WRITE_FREE_CON":"OFF",
    "WRITE_GENERIC_NAMES": "OFF",
    "WRITE_GENERIC_NAMES_IO":1,
    "WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS": "OFF",
    "WRITE_IGNORE_INCOMPATIBLE_ITEMS": "OFF",
    "WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS":"OFF"
    "WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS":"OFF",
    "WRITE_INT_CONSTRAINTS": "ON",
    "WRITE_INT_HEAD": "ON",
    "WRITE_INT_VARIABLES": "ON",
    "WRITE_LP_FULL_OBJ": "ON",
    "WRITE_LP_LINE_WIDTH":80,
    "WRITE_LP_QUOTED_NAMES": "ON",
    "WRITE_LP_STRICT_FORMAT": "OFF",
    "WRITE_LP_TERMS_PER_LINE":10,
    "WRITE_MPS_FORMAT": "MPS_FORMAT_FREE",
    "WRITE_MPS_INT":"ON",
    "WRITE_PRECISION":15,
    "WRITE_SOL_BARVARIABLES": "ON",
    "WRITE_SOL_CONSTRAINTS": "ON",
    "WRITE_SOL_HEAD": "ON",
    "WRITE_SOL_IGNORE_INVALID_NAMES": "OFF",
    "WRITE_SOL_VARIABLES": "ON",
    "WRITE_TASK_INC_SOL": "ON",
    "WRITE_XML_MODE": "WRITE_XML_MODE_ROW"
},
"dparam":{
    "ANA_SOL_INFEAS_TOL":1e-6,
    "BASIS_REL_TOL_S":1e-12,
    "BASIS_TOL_S":1e-6,
    "BASIS_TOL_X":1e-6,
    "CHECK_CONVEXITY_REL_TOL":1e-10,
    "DATA_TOL_AIJ":1e-12,
    "DATA_TOL_AIJ_HUGE": 1e+20,
    "DATA_TOL_AIJ_LARGE":1e+10,
    "DATA_TOL_BOUND_INF":1e+16,
    "DATA_TOL_BOUND_WRN":1e+8,
    "DATA_TOL_C_HUGE":1e+16,
    "DATA_TOL_CJ_LARGE":1e+8,
```

```
"DATA_TOL_QIJ":1e-16,
    "DATA_TOL_X":1e-8,
    "FEASREPAIR_TOL":1e-10,
    "INTPNT_CO_TOL_DFEAS":1e-8,
    "INTPNT_CO_TOL_INFEAS":1e-10,
   "INTPNT_CO_TOL_MU_RED":1e-8,
   "INTPNT_CO_TOL_NEAR_REL":1e+3,
    "INTPNT_CO_TOL_PFEAS":1e-8,
   "INTPNT_CO_TOL_REL_GAP":1e-7,
    "INTPNT_NL_MERIT_BAL":1e-4,
    "INTPNT_NL_TOL_DFEAS":1e-8,
    "INTPNT_NL_TOL_MU_RED":1e-12,
    "INTPNT_NL_TOL_NEAR_REL":1e+3,
    "INTPNT_NL_TOL_PFEAS":1e-8,
    "INTPNT_NL_TOL_REL_GAP":1e-6,
    "INTPNT_NL_TOL_REL_STEP":9.95e-1,
    "INTPNT_QO_TOL_DFEAS":1e-8,
    "INTPNT_QO_TOL_INFEAS":1e-10,
    "INTPNT_QO_TOL_MU_RED":1e-8,
   "INTPNT_QO_TOL_NEAR_REL":1e+3,
    "INTPNT_QO_TOL_PFEAS":1e-8,
   "INTPNT_QO_TOL_REL_GAP":1e-8,
   "INTPNT_TOL_DFEAS":1e-8,
   "INTPNT_TOL_DSAFE":1e+0,
    "INTPNT_TOL_INFEAS":1e-10,
    "INTPNT_TOL_MU_RED":1e-16,
   "INTPNT_TOL_PATH":1e-8,
   "INTPNT_TOL_PFEAS":1e-8,
   "INTPNT_TOL_PSAFE":1e+0,
    "INTPNT_TOL_REL_GAP":1e-8,
    "INTPNT_TOL_REL_STEP":9.999e-1,
    "INTPNT_TOL_STEP_SIZE":1e-6,
    "LOWER_OBJ_CUT":-1e+30,
    "LOWER_OBJ_CUT_FINITE_TRH":-5e+29,
    "MIO_DISABLE_TERM_TIME":-1e+0,
    "MIO_MAX_TIME":-1e+0,
    "MIO_MAX_TIME_APRX_OPT":6e+1,
    "MIO_NEAR_TOL_ABS_GAP":0.0,
    "MIO_NEAR_TOL_REL_GAP":1e-3,
    "MIO_REL_GAP_CONST":1e-10,
   "MIO_TOL_ABS_GAP":0.0,
    "MIO_TOL_ABS_RELAX_INT":1e-5,
    "MIO_TOL_FEAS":1e-6,
    "MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT":0.0,
    "MIO_TOL_REL_GAP":1e-4,
    "MIO_TOL_X":1e-6,
    "OPTIMIZER_MAX_TIME":-1e+0,
    "PRESOLVE_TOL_ABS_LINDEP":1e-6,
    "PRESOLVE_TOL_AIJ":1e-12,
    "PRESOLVE_TOL_REL_LINDEP":1e-10,
   "PRESOLVE_TOL_S":1e-8,
    "PRESOLVE_TOL_X":1e-8,
    "QCQO_REFORMULATE_REL_DROP_TOL":1e-15,
    "SEMIDEFINITE_TOL_APPROX":1e-10,
    "SIM_LU_TOL_REL_PIV":1e-2,
    "SIMPLEX_ABS_TOL_PIV":1e-7,
    "UPPER_OBJ_CUT":1e+30,
    "UPPER_OBJ_CUT_FINITE_TRH":5e+29
"sparam":{
    "BAS_SOL_FILE_NAME":"",
```

```
"DATA_FILE_NAME": "examples/tools/data/lo1.mps",
            "DEBUG_FILE_NAME":"",
            "INT_SOL_FILE_NAME":"",
            "ITR_SOL_FILE_NAME":"",
            "MIO_DEBUG_STRING":"",
            "PARAM_COMMENT_SIGN":"%%",
            "PARAM_READ_FILE_NAME":""
            "PARAM_WRITE_FILE_NAME":"",
            "READ_MPS_BOU_NAME":"",
            "READ_MPS_OBJ_NAME":"",
            "READ_MPS_RAN_NAME":"",
            "READ_MPS_RHS_NAME":"",
            "SENSITIVITY_FILE_NAME":"",
            "SENSITIVITY_RES_FILE_NAME":"",
            "SOL_FILTER_XC_LOW":"",
            "SOL_FILTER_XC_UPR":"",
            "SOL_FILTER_XX_LOW":"",
            "SOL_FILTER_XX_UPR":"",
            "STAT_FILE_NAME":"",
            "STAT_KEY":"",
            "STAT_NAME":"",
            "WRITE_LP_GEN_VAR_NAME": "XMSKGEN"
    }
}
```

12.8 The Solution File Format

MOSEK provides several solution files depending on the problem type and the optimizer used:

- basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis identification is performed,
- interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer and no basis identification is required,
- integer solution file (extension .int) if the problem contains integer constrained variables.

All solution files have the format:

```
NAME
                    : <problem name>
PROBLEM STATUS
                   : <status of the problem>
SOLUTION STATUS
                   : <status of the solution>
OBJECTIVE NAME
                   : <name of the objective function>
PRIMAL OBJECTIVE
                   : <primal objective value corresponding to the solution>
DUAL OBJECTIVE
                    : <dual objective value corresponding to the solution>
CONSTRAINTS
INDEX NAME
                AT ACTIVITY
                               LOWER LIMIT
                                             UPPER LIMIT
                                                           DUAL LOWER
                                                                         DUAL UPPER
       <name>
               ?? <a value>
                               <a value>
                                             <a value>
                                                            <a value>
                                                                         <a value>
VARIABLES
INDEX NAME
                AT ACTIVITY
                               LOWER LIMIT
                                             UPPER LIMIT
                                                           DUAL LOWER
                                                                         DUAL UPPER
                                                                                       CONIC
→DUAL
       <name>
                ?? <a value>
                               <a value>
                                             <a value>
                                                            <a value>
                                                                         <a value>
                                                                                       <a value>
```

In the example the fields ? and <> will be filled with problem and solution specific information. As can be observed a solution report consists of three sections, i.e.

• HEADER In this section, first the name of the problem is listed and afterwards the problem and solution status are shown. Next the primal and dual objective values are displayed.

 \bullet CONSTRAINTS For each constraint i of the form

$$l_i^c \le \sum_{j=1}^n a_{ij} x_j \le u_i^c, \tag{12.15}$$

the following information is listed:

- INDEX: A sequential index assigned to the constraint by MOSEK
- NAME: The name of the constraint assigned by the user.
- AT: The status of the constraint. In Table 12.4 the possible values of the status keys and their interpretation are shown.

Table 12.4: Status keys.

Status key	Interpretation
UN	Unknown status
BS	Is basic
SB	Is superbasic
LL	Is at the lower limit (bound)
UL	Is at the upper limit (bound)
EQ	Lower limit is identical to upper limit
**	Is infeasible i.e. the lower limit is greater than the upper limit.

- ACTIVITY: the quantity $\sum_{j=1}^{n} a_{ij} x_{j}^{*}$, where x^{*} is the value of the primal solution. LOWER LIMIT: the quantity l_{i}^{c} (see (12.15).)
- UPPER LIMIT: the quantity u_i^c (see (12.15).)
- DUAL LOWER: the dual multiplier corresponding to the lower limit on the constraint.
- DUAL UPPER: the dual multiplier corresponding to the upper limit on the constraint.
- VARIABLES The last section of the solution report lists information about the variables. This information has a similar interpretation as for the constraints. However, the column with the header CONIC DUAL is included for problems having one or more conic constraints. This column shows the dual variables corresponding to the conic constraints.

Example: lo1.sol

In Listing 12.7 we show the solution file for the lol.opf problem.

Listing 12.7: An example of .sol file.

NAME	•			
	: PRIMAL_AND_DUAL_FEASIBLE			
	: OPTIMAL.			
002012011 0111100	· • • • • • • • • • • • • • • • • • • •			
	: obj			
	: 8.33333333e+01			
DUAL OBJECTIVE	: 8.33333332e+01			
CONSTRAINTS				
INDEX NAME	AT ACTIVITY	LOWER LIMIT	UPPER LIMIT	Ш
⇔DUAL LOWER	DUAL UPPER			
0 c1	EQ 3.0000000000000e+01	3.00000000e+01	3.00000000e+01	-0.
→00000000000000e+00	-2.49999999741653e+00			
1 c2	SB 5.3333333349187e+01	1.50000000e+01	NONE	2.
→09159033069640e-10	-0.0000000000000e+00			
2 c3	UL 2.4999999842049e+01	NONE	2.50000000e+01	-0.
→00000000000000e+00	-3.33333332895108e-01			
VARIABLES				
INDEX NAME	AT ACTIVITY	LOWER LIMIT	UPPER LIMIT	ш
→DUAL LOWER	DUAL UPPER	201121	VI I 111 1 11111 1	П
0 x1	LL 1.67020427038537e-09	0.0000000e+00	NONE	1
		0.0000000e+00	NOINE	-4.
→49999999528054e+00	-0.0000000000000e+00			

$({\rm continued\ from\ previous\ page})$

1	x2	LL 2.93510446211883e-09	0.00000000e+00	1.00000000e+01	-2.
→ 1666666	6494915e+00	6.20868657679896e-10			
2	x3	SB 1.49999999899424e+01	0.0000000e+00	NONE	-8.
→ 7912317	7245553e-10	-0.0000000000000e+00			
3	x4	SB 8.33333332273115e+00	0.00000000e+00	NONE	-1.
→ 6979597	8848200e-09	-0.0000000000000e+00			

Chapter 13

List of examples

List of examples shipped in the distribution of Command Line Tools:

Table 13.1: List of distributed examples

File	Description
25fv47.mps	A large linear problem from the Netlib library
ampl1.res	Interfacing MOSEK from AMPL
ampl2.res	Interfacing MOSEK from AMPL
ampl3.res	Interfacing MOSEK from AMPL
cqo1.mps	A simple conic quadratic problem
diet.dat	Data for the diet example diet.mod
diet.mod	A diet balancing AMPL example
dinfeas.lp	A simple dual infeasible linear problem
feasrepair.lp	An example demonstrating repair of infeasible problems
infeas.lp	A simple primal infeasible problem
lo1.mps	A simple linear problem
qo1.mps	A simple quadratic problem
sensitivity.	Sensitivity analysis specification for transport.lp
ssp	
transport.lp	A linear problem in the sensitivity analysis example

Additional examples can be found on the \mathbf{MOSEK} website and in other \mathbf{MOSEK} publications.

Chapter 14

Interface changes

The section shows interface-specific changes to the **MOSEK** Command Line Tools in version 9.1 compared to version 8. See the release notes for general changes and new features of the **MOSEK** Optimization Suite.

14.1 Backwards compatibility

- Parameters. Users who set parameters to tune the performance and numerical properties of the solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial in the current version. The hints in Sec. 7 may be useful for some cases.
- Removed all Near problem and solution statuses i.e. NEAR_OPTIMAL, NEAR_PRIMAL_INFEASIBLE_CER, etc. See Sec. 9.3.3.
- All programs related to the general nonlinear optimizer and Scopt (mskexpopt, mskscopt, mskdgopt) have been removed.

14.2 Parameters

Added

- MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
- MSK_IPAR_INTPNT_PURIFY
- MSK_IPAR_LOG_INCLUDE_SUMMARY
- MSK_IPAR_LOG_LOCAL_INFO
- MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
- MSK_IPAR_MIO_FEASPUMP_LEVEL
- MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
- MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
- MSK_IPAR_MIO_SEED
- MSK_IPAR_OPF_WRITE_LINE_LENGTH
- MSK_IPAR_PRESOLVE_MAX_NUM_PASS
- MSK_IPAR_PTF_WRITE_TRANSFORM
- MSK_IPAR_SIM_SEED
- MSK_IPAR_WRITE_COMPRESSION

Removed

- MSK_DPAR_DATA_TOL_AIJ
- MSK_DPAR_INTPNT_NL_MERIT_BAL
- MSK_DPAR_INTPNT_NL_TOL_DFEAS
- MSK_DPAR_INTPNT_NL_TOL_MU_RED
- MSK_DPAR_INTPNT_NL_TOL_NEAR_REL
- MSK_DPAR_INTPNT_NL_TOL_PFEAS
- MSK_DPAR_INTPNT_NL_TOL_REL_GAP
- MSK_DPAR_INTPNT_NL_TOL_REL_STEP
- MSK_DPAR_MIO_DISABLE_TERM_TIME
- MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
- MSK_DPAR_MIO_NEAR_TOL_REL_GAP
- MSK_IPAR_MIO_CONSTRUCT_SOL
- MSK_IPAR_MIO_MT_USER_CB
- MSK_IPAR_OPF_MAX_TERMS_PER_LINE
- MSK_IPAR_READ_DATA_COMPRESSED
- MSK_IPAR_READ_DATA_FORMAT
- MSK_IPAR_WRITE_DATA_COMPRESSED
- MSK_IPAR_WRITE_DATA_FORMAT

14.3 Constants

Added

- MSK_COMPRESS_ZSTD
- MSK_CT_DEXP
- MSK_CT_DPOW
- MSK_CT_PEXP
- MSK_CT_PPOW
- MSK_CT_ZERO
- MSK_DATA_FORMAT_PTF
- MSK_IINF_MIO_NUMBIN
- MSK_IINF_MIO_NUMBINCONEVAR
- MSK_IINF_MIO_NUMCONE
- MSK_IINF_MIO_NUMCONEVAR

- MSK_IINF_MIO_NUMCONT
- MSK_IINF_MIO_NUMCONTCONEVAR
- MSK_IINF_MIO_NUMDEXPCONES
- MSK_IINF_MIO_NUMDPOWCONES
- MSK_IINF_MIO_NUMINTCONEVAR
- MSK_IINF_MIO_NUMPEXPCONES
- MSK_IINF_MIO_NUMPPOWCONES
- MSK_IINF_MIO_NUMQCONES
- MSK_IINF_MIO_NUMRQCONES
- MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR
- MSK_IINF_MIO_PRESOLVED_NUMCONE
- MSK_IINF_MIO_PRESOLVED_NUMCONEVAR
- MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR
- MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES
- MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES
- MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR
- MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES
- MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES
- MSK_IINF_MIO_PRESOLVED_NUMQCONES
- MSK_IINF_MIO_PRESOLVED_NUMRQCONES
- MSK_IINF_PURIFY_DUAL_SUCCESS
- MSK_IINF_PURIFY_PRIMAL_SUCCESS
- MSK_LIINF_MIO_ANZ

Removed

- MSK_DATAFORMAT_XML
- MSK_DINFITEM_MIO_HEURISTIC_TIME
- MSK_DINFITEM_MIO_OPTIMIZER_TIME
- MSK_IINFITEM_MIO_CONSTRUCT_NUM_ROUNDINGS
- MSK_IINFITEM_MIO_INITIAL_SOLUTION
- MSK_IINFITEM_MIO_NEAR_ABSGAP_SATISFIED
- MSK_IINFITEM_MIO_NEAR_RELGAP_SATISFIED
- MSK_LIINFITEM_MIO_SIM_MAXITER_SETBACKS
- MSK_MIONODESELTYPE_HYBRID

- MSK_MIONODESELTYPE_WORST
- MSK_PROBLEMTYPE_GECO
- MSK_PROSTA_NEAR_DUAL_FEAS
- MSK_PROSTA_NEAR_PRIM_AND_DUAL_FEAS
- MSK_PROSTA_NEAR_PRIM_FEAS
- MSK_SENSITIVITYTYPE_OPTIMAL_PARTITION
- MSK_SOLSTA_NEAR_DUAL_FEAS
- MSK_SOLSTA_NEAR_DUAL_INFEAS_CER
- MSK_SOLSTA_NEAR_INTEGER_OPTIMAL
- MSK_SOLSTA_NEAR_OPTIMAL
- MSK_SOLSTA_NEAR_PRIM_AND_DUAL_FEAS
- MSK_SOLSTA_NEAR_PRIM_FEAS
- MSK_SOLSTA_NEAR_PRIM_INFEAS_CER

14.4 Response Codes

Added

- MSK_RES_ERR_APPENDING_TOO_BIG_CONE
- MSK_RES_ERR_CBF_DUPLICATE_POW_CONES
- MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES
- MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES
- MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION
- MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES
- MSK_RES_ERR_CBF_INVALID_POWER
- MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX
- MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX
- MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG
- MSK_RES_ERR_CBF_POWER_CONE_MISMATCH
- MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH
- MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE
- MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE
- MSK_RES_ERR_CONE_PARAMETER
- MSK_RES_ERR_FORMAT_STRING
- MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX
- MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS
- MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR

- MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS
- MSK_RES_ERR_NUM_ARGUMENTS
- MSK_RES_ERR_PTF_FORMAT
- MSK_RES_ERR_SHAPE_IS_TOO_LARGE
- MSK_RES_ERR_SLICE_SIZE
- MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE
- MSK_RES_WRN_EXP_CONES_WITH_VARIABLES_FIXED_AT_ZERO
- MSK_RES_WRN_POW_CONES_WITH_ROOT_FIXED_AT_ZERO

Removed

- MSK_RES_ERR_CANNOT_CLONE_NL
- MSK_RES_ERR_CANNOT_HANDLE_NL
- MSK_RES_ERR_INVALID_ACCMODE
- MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_GENERAL_NL
- MSK_RES_ERR_NONLINEAR_FUNCTIONS_NOT_ALLOWED
- MSK_RES_ERR_NR_ARGUMENTS
- MSK_RES_ERR_OPEN_DL
- MSK_RES_ERR_USER_FUNC_RET
- MSK_RES_ERR_USER_FUNC_RET_DATA
- MSK_RES_ERR_USER_NLO_EVAL
- MSK_RES_ERR_USER_NLO_EVAL_HESSUBI
- MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ
- MSK_RES_ERR_USER_NLO_FUNC
- MSK_RES_TRM_MIO_NEAR_ABS_GAP
- MSK_RES_TRM_MIO_NEAR_REL_GAP
- MSK_RES_WRN_CONSTRUCT_INVALID_SOL_ITG
- MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG
- MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS
- MSK_RES_WRN_NO_NONLINEAR_FUNCTION_WRITE

Bibliography

- [AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. *Math. Programming*, 71(2):221–245, 1995.
- [AGMX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor, *Interior-point methods of mathematical programming*, pages 189–252. Kluwer Academic Publishers, 1996.
- [ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method for conic quadratic optimization. *Math. Programming*, February 2003.
- [AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. *Management Sci.*, 42(12):1719–1731, December 1996.
- [And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear optimization. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/whitepapers/homolo.pdf.
- [And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.com/whitepapers/qmodel.pdf.
- [Chv83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.
- [FGK03] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL. A modeling language for mathematical programming. Thomson, 2nd edition, 2003.
- [Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York, 1987.
- [RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an interior point approach. John Wiley and Sons, New York, 1997.
- [Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. *Oper. Res.*, 48(1):20–25, January 2000.
- [Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

Symbol Index

Parameters Double parameters, 86 MSK_DPAR_NAN_SOL_INFEAS_TOL, 86 MSK_DPAR_ANA_SOL_INFEAS_TOL, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_BIJLARGE, 87 MSK_DPAR_DATA_TOL_GUILS, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_INTPNT_CO_TOL_UTILSEA, 88 MSK_DPAR_INTPNT_CO_TOL_UTILSEA, 88 MSK_DPAR_INTPNT_CO_TOL_UTILSEA, 88 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_OO_TOL_PEAS, 89 MSK_DPAR_INTPNT_OO_TOL_PEAS, 90 MSK_DPAR_INTPNT_OO_TOL_PEAS, 90 MSK_DPAR_INTPNT_TOL_OTDL_REAR_REL, 90 MSK_DPAR_INTPNT_TOL_DATH, 91 MSK_DPAR_INTPNT_TOL_DATH, 91 MSK_DPAR_INTPNT_TOL_PEAS, 90 MSK_DPAR_INTPNT_TOL_PEAS,	Functions	MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT,
Double parameters, 86 MSK_DPAR_ANA_SOL_INFEAS_TOL, 86 MSK_DPAR_BASIS_REL_TOL_S, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_DATS_TOL_X, 87 MSK_DPAR_DATA_SYM_MAT_TOL, 87 MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 88 MSK_DPAR_DATA_TOL_O_JL_BOUND_WEN, 87 MSK_DPAR_DATA_TOL_O_CIL_MGE, 88 MSK_DPAR_DATA_TOL_O_TOL_NEAS_88 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_MEL_GAP, 89 MSK_DPAR_INTPNT_QO_TOL_MEL_GAP, 90 MSK_DPAR_INTPNT_QO_TOL_MEL_GAP, 90 MSK_DPAR_INTPNT_TOL_DEASE, 91 MSK_DPAR_INTPNT_TOL_DEASE, 91 MSK_DPAR_INTPNT_TOL_DEASE, 91 MSK_DPAR_INTPNT_TOL_SETE_SIZE, 91 MSK_DPAR_INTPNT_TOL_SETE_SIZE, 91 MSK_DPAR_INTPNT_TOL_SETE_SIZE, 91 MSK_DPAR_INTPNT_REGURD, 92 MSK_DPAR_INTPNT_TOL_SETE_SIZE, 91 MSK_DPAR_INTPNT_REGURD, 92 MSK_DPAR_INTPNT_TOL_SEL_GAP, 90 MSK_DPAR_INTPNT_TOL_SEL_GAP, 90 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_GAP, 90 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 91 MSK_DPAR_INTPNT_TOL_SEL_SEP, 92 MSK_DPAR_INTPNT_TOL_SEL_SEP, 93 MSK_DPAR_INTPNT_TOL_SEL_SEP, 94 MSK_DPAR_INTPNT_TOL_SEL_SEP, 96 MSK_DPAR_INTPNT_TOL_SEL_SEP, 96 MSK_DPAR_INTPNT_TOL_SEL_SEP, 96 MSK_DPAR_INTPNT_TOL_SEL_SEP, 96 MSK_DPAR_INTPNT_TOL_SEL_SEP, 96 MSK_DPAR_INTPNT_TOL_SEL_SEP, 97 MSK_DPAR_INTPNT_TOL_SEL_SEP, 96 MSK_DPAR_INTPNT_TOL_	Parameters	
MSK_DPAR_ANA_SOL_INFEAS_TOL, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_DATA_SYM_MAT_TOL. 87 MSK_DPAR_DATA_SYM_MAT_TOL_BOLARGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_BOUND_WEN, 87 MSK_DPAR_DATA_TOL_BOUND_WEN, 87 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_JLARGE, 88 MSK_DPAR_DATA_TOL_C_JLARGE, 88 MSK_DPAR_DATA_TOL_C_JL_X, 88 MSK_DPAR_DATA_TOL_C_JL_X, 89 MSK_DPAR_INTPNT_CO_TOL_MPEAS, 89 MSK_DPAR_INTPNT_CO_TOL_MPEAS, 89 MSK_DPAR_INTPNT_CO_TOL_MED_REL_SP, 89 MSK_DPAR_INTPNT_O_TOL_MER_REL, 90 MSK_DPAR_INTPNT_O_TOL_MER_SR, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_D		
MSK_DPAR_BASIS_REL_TOL_S, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_BASIS_TOL_S, 86 MSK_DPAR_DATA_SYM_MAT_TOL_KOE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_HOE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_HOE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_HAGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_BOUND_INE, 87 MSK_DPAR_DATA_TOL_BOUND_WE, 87 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_JL_AIGE, 88 MSK_DPAR_DATA_TOL_C_JL_AIGE, 88 MSK_DPAR_DATA_TOL_C_JL_AIGE, 88 MSK_DPAR_DATA_TOL_C_JL_AIGE, 88 MSK_DPAR_DATA_TOL_C_TOL_DFEAS, 88 MSK_DPAR_DATA_TOL_O_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_LINEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_QO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_QO_TOL_MEAR_SEL, 89 MSK_DPAR_INTPNT_QO_TOL_MEAR_SEL, 90 MSK_DPAR_INTPNT_QO_TOL_MEAR_SEL, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_DEAS, 91 MSK_DPAR_INTPNT_T	- · · · · · · · · · · · · · · · · · · ·	
MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_BASIS_TOL_X, 86 MSK_DPAR_DASIS_TOL_X, 86 MSK_DPAR_DATA_STUL_X, 86 MSK_DPAR_DATA_STYM_MAT_TOL_, 100, 86 MSK_DPAR_DATA_STYM_MAT_TOL_, 100, 87 MSK_DPAR_DATA_TOL_, 100, 100, 100, 100, 100, 100, 100, 10	,	
MSK_DPAR_BASTS_TOL_X, 86 MSK_DPAR_CHECK_CONVEXITY_REL_TOL, 86 MSK_DPAR_DATA_SYM_MAT_TOL_SY MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_WIN, 87 MSK_DPAR_DATA_TOL_C HUGE, 88 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_LHUGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_JLARGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_TOL_DFEAS, 89 MSK_DPAR_DATA_TOL_C_TOL_DFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_O_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MURED, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_MURED, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_GOR_GR_BUNGSEDS, 98 MSK_DPAR_INTPNT_GOR_GR		
MSK_DPAR_CHECK_CONVEXITY_REL_TOL, 86 MSK_DPAR_DATA_SYM_MAT_TOL, 87 MSK_DPAR_DATA_SYM_MAT_TOL, 87 MSK_DPAR_DATA_SYM_MAT_TOL, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_GLUGE, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_QO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_QO_TOL_MEAR_REL, 90 MSK_DPAR_INTPNT_TOL_DEAFR, 90 MSK_DPAR_INTPNT_TOL_DEAFR, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PEAS, 90 MSK_DPAR_INTPNT_TOL_PEAS, 90 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_MS_DATA_TOL_PEAS, 91 MSK_		
MSK_DPAR_DATA_SYM_MAT_TOL, 87 MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LAGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LAGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_WS, 87 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_JIARGE, 89 MSK_DPAR_INTPNT_CO_TOL_MURED, 89 MSK_DPAR_INTPNT_O_TOL_DEAR_REL, 90 MSK_DPAR_INTPNT_TOL_DEAR_S, 90 MSK_DPAR_INTPNT_TOL_MURED, 90 MSK_DPAR_INTPNT_TOL_PEAR_S, 91 MSK_DPAR_INTPNT_TOL_PEAR_S, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_LPAR_INTPNT_SOLULARICAN, 99 MSK_LPAR_INTPNT_DROLLAGE, 90 MSK_LPAR_INTPNT_DROLLAGE, 90 MSK_LPAR_INTPNT_DROLLAGE, 90 MSK_LPAR_INTPNT_DROLE, 91 MSK_LPAR_INTPNT_DROLE, 91 MSK_LPAR_INTPNT_DROLE, 91 MSK_LPAR_INTPNT_DROLE, 91 MSK_LPAR_INTPNT_DROLLAGE, 91 MSK_LPAR_INTPNT_DROLLAGE, 91 MSK_LPAR_INTPNT_DROL		
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_BOUND_LINE, 87 MSK_DPAR_DATA_TOL_BOUND_LINE, 87 MSK_DPAR_DATA_TOL_GHUGE, 88 MSK_DPAR_DATA_TOL_CHUGE, 88 MSK_DPAR_DATA_TOL_CHUGE, 88 MSK_DPAR_DATA_TOL_GJ_LARGE, 88 MSK_DPAR_DATA_TOL_GJ_LARGE, 88 MSK_DPAR_DATA_TOL_GJ_LARGE, 88 MSK_DPAR_DATA_TOL_GJ_LARGE, 88 MSK_DPAR_DATA_TOL_GJ_LARGE, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_MIRED, 88 MSK_DPAR_INTPNT_CO_TOL_MIRED, 88 MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MIRED, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 91 MSK_DPAR_INTPNT_TOL_PREAR, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_MIO_REL_GAP, 93 MSK_IPAR_INTPNT_DRED_GULARIZATION_USE, 93 MSK_IPAR_INTPNT_SOLUE_FORM, 93 MSK_IPAR_INTPNT_SOLUE_FORM, 93	•	
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_HUGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_WNN, 87 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MEL_GAP, 90 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DEFAS, 90 MSK_DPAR_INTPNT_TOL_DEFAS, 90 MSK_DPAR_INTPNT_TOL_DEFAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DRED, 89 MSK_DPAR_INTPNT_TOL_DRED, 89 MSK_DPAR_INTPNT_TOL_DRED, 89 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 90 MSK_DPAR_INT		
MSK_DPAR_DATA_TOL_AIJ_HOGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_WN, 87 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_LAIS, 88 MSK_DPAR_DATA_TOL_C_JLARGE, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_AUTO_SORT_A_BEFORE_OPT, 95 MSK_DPAR_INTPNT_CO_TOL_MFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_MFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_MFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_MFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_MFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MEL_GAP, 90 MSK_DPAR_INTPNT_TOL_DEFAS, 90 MSK_DPAR_INTPNT_TOL_MURED, 90 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_ABS_GAP, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 M		
MSK_DPAR_DATA_TOL_AIJ_LARGE, 87 MSK_DPAR_UPPER_OBJ_CUT, 94 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_DATA_TOL_BOUND_WRN, 87 MSK_DPAR_DATA_TOL_CHUGE, 88 MSK_DPAR_DATA_TOL_CHUGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_IPAR_ANA_SOL_BASIS, 95 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 95 MSK_DPAR_LINTPNT_CO_TOL_DIFEAS, 88 MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 95 MSK_DPAR_LINTPNT_CO_TOL_DIFEAS, 88 MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 95 MSK_DPAR_LINTPNT_CO_TOL_INFEAS, 88 MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 95 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 89 MSK_IPAR_BI_LGRORE_MAX_ITTER, 96 MSK_DPAR_INTPNT_CO_TOL_DEAR, 89 MSK_IPAR_BI_LGRORE_MAX_ITTER, 96 MSK_DPAR_INTPNT_QO_TOL_DEFAS, 89 MSK_IPAR_CHECK_CONVEXITY, 96 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_IPAR_CHECK_CONVEXITY, 96 MSK_DPAR_INTPNT_QO_TOL_REAR_REL, 90 MSK_IPAR_INFEAS_REPER_PRIMAL, 97 MSK_DPAR_INTPNT_TOL_DEFAS, 90 MSK_IPAR_INFEAS_REPER_PRIMAL, 97 MSK_DPAR_INTPNT_TOL_DEFAS, 90 MSK_IPAR_INFEAS_REPORT_LEVEL, 97 MSK_DPAR_INTPNT_TOL_DATE, 90 MSK_IPAR_INTPNT_DIFF_SIZEP, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91		
MSK_DPAR_DATA_TOL_BOUND_INF, 87 MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 94 MSK_DPAR_DATA_TOL_BOUND_WRN, 87 MSK_DPAR_DATA_TOL_CJ_LUGE, 88 MSK_DPAR_DATA_TOL_C_J_LARGE, 88 MSK_IPAR_ANA_SOL_BASIS, 95 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 95 MSK_DPAR_DATA_TOL_X, 88 MSK_IPAR_AUTO_UPDATE_SOL_INFO, 95 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 88 MSK_IPAR_AUTO_UPDATE_SOL_INFO, 95 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 88 MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 95 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_IPAR_BI_CLEAN_OPTIMIZER, 95 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_IPAR_BI_CIGNORE_MAX_ITTER, 96 MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 89 MSK_IPAR_BI_GNORE_NUM_ERROR, 96 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_IPAR_CACHE_LICENSE, 96 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_IPAR_CHECK_CONVEXITY, 96 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_IPAR_INFEAS_GENERIC_NAMES, 96 MSK_DPAR_INTPNT_QO_TOL_REAR_REL, 90 MSK_IPAR_INFEAS_REPORT_AUTO, 97 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INFEAS_REPORT_AUTO, 97 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INTPNT_HASIS, 97 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INTPNT_MAX_TITERATIONS, 98 MSK_DPAR_INTPNT_TOL		
MSK_DPAR_DATA_TOL_BOUND_WRN, 87 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_HUGE, 88 MSK_DPAR_DATA_TOL_C_J_LARGE, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_AUTO_SORT_A_BEFORE_OPT, 95 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_LPAR_AUTO_UPDATE_SOL_INFO, 95 MSK_LPAR_BASIS_SOLVE_USE_PLUS_ONE, 95 MSK_LPAR_BI_CLEAN_OPTIMIZER, 95 MSK_LPAR_BI_CLEAN_OPTIMIZER, 95 MSK_LPAR_BI_ICHORE_MAX_ITER, 96 MSK_LPAR_BI_ICHORE_MAX_ITER, 96 MSK_LPAR_BI_ICHORE_MAX_ITER, 96 MSK_LPAR_BI_ICHORE_MAX_ITER, 96 MSK_LPAR_BI_ICHORE_MAX_ITER, 96 MSK_LPAR_BI_MIX_ATTERATIONS, 96 MSK_LPAR_INTPNT_QO_TOL_NEAP_REN, 90 MSK_LPAR_INTPNT_QO_TOL_MEAP_REN, 90 MSK_LPAR_INTPNT_QO_TOL_MEAP_REN, 90 MSK_LPAR_INTPNT_DASIS, 97 MSK_DPAR_INTPNT_TOL_DAFE, 90 MSK_LPAR_INTPNT_BASIS, 97 MSK_DPAR_INTPNT_TOL_PAFAE, 90 MSK_LPAR_INTPNT_BASIS, 97 MSK_DPAR_INTPNT_TOL_PAFAE, 91 MSK_DPAR_INTPNT_TOL_PAFAE, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_LPAR_INTPNT_MAX_NUM_CEF, 98 MSK_LPAR_INTPNT_MAX_NUM_CEF, 99 MSK_LPAR_INTPNT_OPER_QP_NUM_SEEDS, 98 MSK_LPAR_INTPNT_DRER_QP_NUM_SEEDS, 98 MSK_LPAR_INTPNT_REGULARION, 99 MSK_LPAR_INTPNT_SOLVE_FORM, 99 MSK_LPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_DATA_TOL_CHUGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_DEAR_REL, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFAH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_REL_SEP, 92 MSK_IPAR_INTPNT_ORDER_GP.NUM_SEEDS, 98 MSK_IPAR_INTPNT_SEQULARIZATION_USE, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_DATA_TOL_CJ_LARGE, 88 MSK_DPAR_DATA_TOL_QJJ, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 92 MSK_IPAR_INTPNT_ORDER_METHOD, 99 MSK_IPAR_INTPNT_ORDER_METHOD, 99 MSK_IPAR_INTPNT_ORDER_METHOD, 99 MSK_IPAR_INTPNT_ORDER_METHOD, 99 MSK_IPAR_INTPNT_REGULARIZATION_USE, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_DATA_TOL_QIJ, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MPEAS, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_MPEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_MPEA, 90 MSK_DPAR_INTPNT_TOL_MPEA, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_SELZE, 91 MSK_DPAR_INTPNT_REL_SELZE, 91 MSK_DPAR_INTPNT_REL_SELZE, 91 MSK_DPAR_MIO_REL_SELZE, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IP		
MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_DATA_TOL_X, 88 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_TREAS, 88 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_NU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DEFEAS, 90 MSK_DPAR_INTPNT_TOL_DEFEAS, 90 MSK_DPAR_INTPNT_TOL_DAFF, 90 MSK_DPAR_INTPNT_TOL_DAFF, 90 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_ABE_GAP, 90 MSK_DPAR_INTPNT_TOL_ABE_GAP, 90 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLL_ABC, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_INFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_MRED, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MOD_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLUL_BED, 99 MSK_DPAR_INTPNT_SOLULABS_GAP, 92 MSK_DPAR_MOD_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLULEFORM, 99 MSK_IPAR_INTPNT_SOLULEFORM, 99 MSK_IPAR_INTPNT_SOLULEFORM, 99 MSK_IPAR_INTPNT_SOLULEFORM, 99 MSK_IPAR_INTPNT_SOLULEFORM, 99		
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 88 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_DPAR_INTPNT_CO_TOL_MEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_PEAS, 90 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 88 MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INTPNT_BASIS, 97 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INTPNT_DIFFESTEP, 97 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INTPNT_DIFF_STEP, 97 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PREL_GAP, 91 MSK_DPAR_INTPNT_TOL_PSEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP, 20 MSK_IPAR_INTPNT_REGULARIZATION_USE, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_PEAS, 89 MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_S, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_S, 89 MSK_IPAR_COMPRESS_STATFILE, 96 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_IPAR_INFEAS_GENERIC_NAMES, 96 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_IPAR_INFEAS_REPORT_AUTO, 97 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INTPNT_BASIS, 97 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_IPAR_INTPNT_DIT_STEP, 97 MSK_DPAR_INTPNT_TOL_MD_RED, 90 MSK_IPAR_INTPNT_DIT_STEP, 97 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 89 MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 89 MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_NED, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DEAS, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 89 MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_QO_TOL_DFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_MEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PEAF, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_INTPNT_DREL_GAP_CONST, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_QO_TOL_INFEAS, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFAS, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_MU_RED, 89 MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_REL_GAP_GONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PAFEAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_QO_TOL_PFEAS, 90 MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 90 MSK_DPAR_INTPNT_TOL_DFEAS, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_TOL_DFAS, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PFAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_TOL_DSAFE, 90 MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_TOL_INFEAS, 90 MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99	· · · · · · · · · · · · · · · · · · ·	
MSK_DPAR_INTPNT_TOL_MU_RED, 90 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PEAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99	· · · · · · · · · · · · · · · · · · ·	
MSK_DPAR_INTPNT_TOL_PATH, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_TOL_PFEAS, 91 MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_DPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_INTPNT_TOL_PSAFE, 91 MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_BCGULARIZATION_USE, 99 MSK_IPAR_INTPNT_REGULARIZATION_USE, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCOLVE_FORM, 99		
MSK_DPAR_INTPNT_TOL_REL_GAP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_IPAR_INTPNT_OFF_COL_TRH, 98 MSK_IPAR_INTPNT_OFF_COL_TRH, 98 MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS, 98 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_IPAR_INTPNT_ORDER_METHOD, 99 MSK_DPAR_MIO_MAX_TIME, 92 MSK_IPAR_INTPNT_PURIFY, 99 MSK_IPAR_INTPNT_REGULARIZATION_USE, 99 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99	•	
MSK_DPAR_INTPNT_TOL_REL_STEP, 91 MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_ORDER_METHOD, 99 MSK_IPAR_INTPNT_PURIFY, 99 MSK_IPAR_INTPNT_REGULARIZATION_USE, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99		
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91 MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_SOLVE_FORM, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_LOWER_OBJ_CUT, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_REGULARIZATION_USE, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99		
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 92 MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99	MSK_DPAR_INTPNT_TOL_STEP_SIZE, 91	
MSK_DPAR_MIO_MAX_TIME, 92 MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99	MSK_DPAR_LOWER_OBJ_CUT, 92	
MSK_DPAR_MIO_REL_GAP_CONST, 92 MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_SCALING, 99 MSK_IPAR_INTPNT_SOLVE_FORM, 99		
MSK_DPAR_MIO_TOL_ABS_GAP, 92 MSK_IPAR_INTPNT_SOLVE_FORM, 99		•
non_br mv_nro_rob_nbb_am , v2	MSK_DPAR_MIO_REL_GAP_CONST, 92	
	MSK_DPAR_MIO_TOL_ABS_GAP, 92	•
MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 92 MSK_IPAR_INTPNT_STARTING_POINT, 99		
MSK_DPAR_MIO_TOL_FEAS, 92 MSK_IPAR_LICENSE_DEBUG, 99	MSK_DPAR_MIO_TOL_FEAS, 92	MSK_IPAK_LICENSE_DEBUG, 99

```
MSK_IPAR_LICENSE_PAUSE_TIME, 100
                                              MSK_IPAR_OPF_WRITE_HEADER, 108
                                              {\tt MSK\_IPAR\_OPF\_WRITE\_HINTS},\,109
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 100
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN, 100
                                              MSK_IPAR_OPF_WRITE_LINE_LENGTH, 109
MSK_IPAR_LICENSE_WAIT, 100
                                              MSK_IPAR_OPF_WRITE_PARAMETERS, 109
                                              MSK_IPAR_OPF_WRITE_PROBLEM, 109
MSK_IPAR_LOG, 100
                                              {\tt MSK\_IPAR\_OPF\_WRITE\_SOL\_BAS},\ 109
MSK_IPAR_LOG_ANA_PRO, 100
MSK_IPAR_LOG_BI, 100
                                              MSK_IPAR_OPF_WRITE_SOL_ITG, 109
MSK_IPAR_LOG_BI_FREQ, 101
                                              MSK_IPAR_OPF_WRITE_SOL_ITR, 109
MSK_IPAR_LOG_CHECK_CONVEXITY, 101
                                              MSK_IPAR_OPF_WRITE_SOLUTIONS, 110
MSK_IPAR_LOG_CUT_SECOND_OPT, 101
                                              MSK_IPAR_OPTIMIZER, 110
MSK_IPAR_LOG_EXPAND, 101
                                              MSK_IPAR_PARAM_READ_CASE_NAME, 110
MSK_IPAR_LOG_FEAS_REPAIR, 101
                                              MSK_IPAR_PARAM_READ_IGN_ERROR, 110
MSK_IPAR_LOG_FILE, 101
                                              MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL, 110
MSK_IPAR_LOG_INCLUDE_SUMMARY, 102
                                              MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES,
MSK_IPAR_LOG_INFEAS_ANA, 102
MSK_IPAR_LOG_INTPNT, 102
                                              MSK_IPAR_PRESOLVE_LEVEL, 110
MSK_IPAR_LOG_LOCAL_INFO, 102
                                              MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH, 111
                                              MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH, 111
MSK_IPAR_LOG_MIO, 102
MSK_IPAR_LOG_MIO_FREQ, 102
                                              MSK_IPAR_PRESOLVE_LINDEP_USE, 111
MSK_IPAR_LOG_ORDER, 102
                                              {\tt MSK\_IPAR\_PRESOLVE\_MAX\_NUM\_PASS},\,111
MSK_IPAR_LOG_PRESOLVE, 103
                                              MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS, 111
                                              MSK_IPAR_PRESOLVE_USE, 111
MSK_IPAR_LOG_RESPONSE, 103
MSK_IPAR_LOG_SENSITIVITY, 103
                                              MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER, 111
MSK_IPAR_LOG_SENSITIVITY_OPT, 103
                                              MSK_IPAR_PTF_WRITE_TRANSFORM, 112
                                              MSK_IPAR_READ_DEBUG, 112
MSK_IPAR_LOG_SIM, 103
MSK_IPAR_LOG_SIM_FREQ, 103
                                              MSK_IPAR_READ_KEEP_FREE_CON, 112
MSK_IPAR_LOG_SIM_MINOR, 104
                                              MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU, 112
MSK_IPAR_LOG_STORAGE, 104
                                              MSK_IPAR_READ_LP_QUOTED_NAMES, 112
MSK_IPAR_MAX_NUM_WARNINGS, 104
                                              MSK_IPAR_READ_MPS_FORMAT, 112
                                              MSK_IPAR_READ_MPS_WIDTH, 112
MSK_IPAR_MIO_BRANCH_DIR, 104
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION, 104
                                              MSK_IPAR_READ_TASK_IGNORE_PARAM, 113
MSK_IPAR_MIO_CUT_CLIQUE, 104
                                              MSK_IPAR_REMOVE_UNUSED_SOLUTIONS, 113
MSK_IPAR_MIO_CUT_CMIR, 104
                                              MSK_IPAR_SENSITIVITY_ALL, 113
MSK_IPAR_MIO_CUT_GMI, 105
                                              MSK_IPAR_SENSITIVITY_OPTIMIZER, 113
MSK_IPAR_MIO_CUT_IMPLIED_BOUND, 105
                                              MSK_IPAR_SENSITIVITY_TYPE, 113
MSK_IPAR_MIO_CUT_KNAPSACK_COVER, 105
                                              MSK_IPAR_SIM_BASIS_FACTOR_USE, 113
MSK_IPAR_MIO_CUT_SELECTION_LEVEL, 105
                                              MSK_IPAR_SIM_DEGEN, 114
MSK_IPAR_MIO_FEASPUMP_LEVEL, 105
                                              MSK_IPAR_SIM_DUAL_CRASH, 114
MSK_IPAR_MIO_HEURISTIC_LEVEL, 105
                                              MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 114
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 106
                                              MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 114
                                              MSK_IPAR_SIM_DUAL_SELECTION, 114
MSK_IPAR_MIO_MAX_NUM_RELAXS, 106
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS, 106
                                              MSK_IPAR_SIM_EXPLOIT_DUPVEC, 114
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 106
                                              MSK_IPAR_SIM_HOTSTART, 114
MSK_IPAR_MIO_MODE, 106
                                              MSK_IPAR_SIM_HOTSTART_LU, 115
MSK_IPAR_MIO_NODE_OPTIMIZER, 106
                                              MSK_IPAR_SIM_MAX_ITERATIONS, 115
MSK_IPAR_MIO_NODE_SELECTION, 106
                                              MSK_IPAR_SIM_MAX_NUM_SETBACKS, 115
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE, 107
                                              MSK_IPAR_SIM_NON_SINGULAR, 115
MSK_IPAR_MIO_PROBING_LEVEL, 107
                                              MSK_IPAR_SIM_PRIMAL_CRASH, 115
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT, MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD, 115
                                              MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION, 116
MSK_IPAR_MIO_RINS_MAX_NODES, 107
                                              MSK_IPAR_SIM_PRIMAL_SELECTION, 116
                                              {\tt MSK\_IPAR\_SIM\_REFACTOR\_FREQ},\ 116
MSK_IPAR_MIO_ROOT_OPTIMIZER, 107
MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL,
                                              MSK_IPAR_SIM_REFORMULATION, 116
                                              MSK_IPAR_SIM_SAVE_LU, 116
MSK_IPAR_MIO_SEED, 108
                                              MSK_IPAR_SIM_SCALING, 116
MSK_IPAR_MIO_VB_DETECTION_LEVEL, 108
                                              MSK_IPAR_SIM_SCALING_METHOD, 116
MSK_IPAR_MT_SPINCOUNT, 108
                                              MSK_IPAR_SIM_SEED, 117
                                              MSK_IPAR_SIM_SOLVE_FORM, 117
MSK_IPAR_NUM_THREADS, 108
```

```
MSK_IPAR_SIM_STABILITY_PRIORITY, 117
                                              MSK_SPAR_STAT_FILE_NAME, 124
MSK_IPAR_SIM_SWITCH_OPTIMIZER, 117
                                              MSK_SPAR_STAT_KEY, 124
MSK_IPAR_SOL_FILTER_KEEP_BASIC, 117
                                              MSK_SPAR_STAT_NAME, 125
MSK_IPAR_SOL_FILTER_KEEP_RANGED, 117
                                              MSK_SPAR_WRITE_LP_GEN_VAR_NAME, 125
MSK_IPAR_SOL_READ_NAME_WIDTH, 118
                                              Response codes
MSK_IPAR_SOL_READ_WIDTH, 118
MSK_IPAR_SOLUTION_CALLBACK, 118
                                              Termination, 125
MSK_IPAR_TIMING_LEVEL, 118
                                              MSK_RES_OK, 125
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 118
                                              MSK_RES_TRM_INTERNAL, 126
MSK_IPAR_WRITE_BAS_HEAD, 118
                                              MSK_RES_TRM_INTERNAL_STOP, 126
MSK_IPAR_WRITE_BAS_VARIABLES, 118
                                              MSK_RES_TRM_MAX_ITERATIONS, 125
MSK_IPAR_WRITE_COMPRESSION, 119
                                              MSK_RES_TRM_MAX_NUM_SETBACKS, 126
MSK_IPAR_WRITE_DATA_PARAM, 119
                                              MSK_RES_TRM_MAX_TIME, 125
MSK_IPAR_WRITE_FREE_CON, 119
                                              MSK_RES_TRM_MIO_NUM_BRANCHES, 125
MSK_IPAR_WRITE_GENERIC_NAMES, 119
                                              MSK_RES_TRM_MIO_NUM_RELAXS, 125
MSK_IPAR_WRITE_GENERIC_NAMES_IO, 119
                                              MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS, 125
MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS,
                                              MSK_RES_TRM_NUMERICAL_PROBLEM, 126
                                              MSK_RES_TRM_OBJECTIVE_RANGE, 125
MSK_IPAR_WRITE_INT_CONSTRAINTS, 119
                                              MSK_RES_TRM_STALL, 125
MSK_IPAR_WRITE_INT_HEAD, 120
                                              MSK_RES_TRM_USER_CALLBACK, 126
{\tt MSK\_IPAR\_WRITE\_INT\_VARIABLES},\ 120
                                              Warnings, 126
MSK_IPAR_WRITE_LP_FULL_OBJ, 120
                                              MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS, 128
MSK_IPAR_WRITE_LP_LINE_WIDTH, 120
                                              MSK_RES_WRN_ANA_C_ZERO, 128
MSK_IPAR_WRITE_LP_QUOTED_NAMES, 120
                                              MSK_RES_WRN_ANA_CLOSE_BOUNDS, 128
MSK_IPAR_WRITE_LP_STRICT_FORMAT, 120
                                              MSK_RES_WRN_ANA_EMPTY_COLS, 128
MSK_IPAR_WRITE_LP_TERMS_PER_LINE, 120
                                              MSK_RES_WRN_ANA_LARGE_BOUNDS, 128
MSK_IPAR_WRITE_MPS_FORMAT, 120
                                              MSK_RES_WRN_DROPPED_NZ_QOBJ, 126
MSK_IPAR_WRITE_MPS_INT, 121
                                              MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES,
MSK_IPAR_WRITE_PRECISION, 121
MSK_IPAR_WRITE_SOL_BARVARIABLES, 121
                                              MSK_RES_WRN_DUPLICATE_CONE_NAMES, 128
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 121
                                              MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES, 127
MSK_IPAR_WRITE_SOL_HEAD, 121
                                              MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES, 127
MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES,
                                              MSK_RES_WRN_ELIMINATOR_SPACE, 127
        121
                                              MSK_RES_WRN_EMPTY_NAME, 127
MSK_IPAR_WRITE_SOL_VARIABLES, 121
                                              MSK_RES_WRN_EXP_CONES_WITH_VARIABLES_FIXED_AT_ZERO,
MSK_IPAR_WRITE_TASK_INC_SOL, 122
MSK_IPAR_WRITE_XML_MODE, 122
                                              MSK_RES_WRN_IGNORE_INTEGER, 126
String parameters, 122
                                              MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK,
MSK_SPAR_BAS_SOL_FILE_NAME, 122
                                                      127
MSK_SPAR_DATA_FILE_NAME, 122
                                              MSK_RES_WRN_LARGE_AIJ, 126
MSK_SPAR_DEBUG_FILE_NAME, 122
                                              MSK_RES_WRN_LARGE_BOUND, 126
MSK_SPAR_INT_SOL_FILE_NAME, 122
                                              MSK_RES_WRN_LARGE_CJ, 126
MSK_SPAR_ITR_SOL_FILE_NAME, 122
                                              MSK_RES_WRN_LARGE_CON_FX, 126
MSK_SPAR_MIO_DEBUG_STRING, 122
                                              MSK_RES_WRN_LARGE_LO_BOUND, 126
MSK_SPAR_PARAM_COMMENT_SIGN, 123
                                              MSK_RES_WRN_LARGE_UP_BOUND, 126
MSK_SPAR_PARAM_READ_FILE_NAME, 123
                                              MSK_RES_WRN_LICENSE_EXPIRE, 127
MSK_SPAR_PARAM_WRITE_FILE_NAME, 123
                                              MSK_RES_WRN_LICENSE_FEATURE_EXPIRE, 127
MSK_SPAR_READ_MPS_BOU_NAME, 123
                                              MSK_RES_WRN_LICENSE_SERVER, 127
MSK_SPAR_READ_MPS_OBJ_NAME, 123
                                              MSK_RES_WRN_LP_DROP_VARIABLE, 126
MSK_SPAR_READ_MPS_RAN_NAME, 123
                                              MSK_RES_WRN_LP_OLD_QUAD_FORMAT, 126
MSK_SPAR_READ_MPS_RHS_NAME, 123
                                              MSK_RES_WRN_MIO_INFEASIBLE_FINAL, 127
MSK_SPAR_REMOTE_ACCESS_TOKEN, 123
                                              MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR, 126
MSK_SPAR_SENSITIVITY_FILE_NAME, 124
                                              MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR, 126
MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 124
                                              {\tt MSK\_RES\_WRN\_MPS\_SPLIT\_RHS\_VECTOR},\ 126
MSK_SPAR_SOL_FILTER_XC_LOW, 124
                                              MSK_RES_WRN_NAME_MAX_LEN, 126
MSK_SPAR_SOL_FILTER_XC_UPR, 124
                                              MSK_RES_WRN_NO_DUALIZER, 128
MSK_SPAR_SOL_FILTER_XX_LOW, 124
                                              MSK_RES_WRN_NO_GLOBAL_OPTIMIZER, 126
MSK_SPAR_SOL_FILTER_XX_UPR, 124
                                              MSK_RES_WRN_NZ_IN_UPR_TRI, 126
```

```
MSK_RES_WRN_OPEN_PARAM_FILE, 126
                                              MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES,
MSK_RES_WRN_PARAM_IGNORED_CMIO, 127
                                                      142
MSK_RES_WRN_PARAM_NAME_DOU, 127
                                              MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION,
MSK_RES_WRN_PARAM_NAME_INT, 127
                                                      141
MSK_RES_WRN_PARAM_NAME_STR, 127
                                              MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION, 142
MSK_RES_WRN_PARAM_STR_VALUE, 127
                                              MSK_RES_ERR_CBF_INVALID_INT_INDEX, 142
MSK_RES_WRN_POW_CONES_WITH_ROOT_FIXED_AT_ZERMSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES,
MSK_RES_WRN_PRESOLVE_OUTOFSPACE, 127
                                              MSK_RES_ERR_CBF_INVALID_POWER, 142
MSK_RES_WRN_QUAD_CONES_WITH_ROOT_FIXED_AT_ZERICK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX,
                                                      142
MSK_RES_WRN_RQUAD_CONES_WITH_ROOT_FIXED_AT_ZMBM_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX,
        128
                                                      142
MSK_RES_WRN_SOL_FILE_IGNORED_CON, 127
                                              MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION,
MSK_RES_WRN_SOL_FILE_IGNORED_VAR, 127
                                                      142
MSK_RES_WRN_SOL_FILTER, 127
                                              MSK_RES_ERR_CBF_INVALID_VAR_TYPE, 141
MSK_RES_WRN_SPAR_MAX_LEN, 126
                                              MSK_RES_ERR_CBF_NO_VARIABLES, 141
MSK_RES_WRN_SYM_MAT_LARGE, 128
                                              MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED, 141
MSK_RES_WRN_TOO_FEW_BASIS_VARS, 127
                                              MSK_RES_ERR_CBF_OBJ_SENSE, 141
MSK_RES_WRN_TOO_MANY_BASIS_VARS, 127
                                              MSK_RES_ERR_CBF_PARSE, 141
MSK_RES_WRN_UNDEF_SOL_FILE_NAME, 127
                                              MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG, 142
                                              MSK_RES_ERR_CBF_POWER_CONE_MISMATCH, 142
MSK_RES_WRN_USING_GENERIC_NAMES, 127
                                              MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH,
MSK_RES_WRN_WRITE_CHANGED_NAMES, 127
MSK_RES_WRN_WRITE_DISCARDED_CFIX, 127
                                              MSK_RES_ERR_CBF_SYNTAX, 141
MSK_RES_WRN_ZERO_AIJ, 126
MSK_RES_WRN_ZEROS_IN_SPARSE_COL, 127
                                              MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS, 142
MSK_RES_WRN_ZEROS_IN_SPARSE_ROW, 127
                                              MSK_RES_ERR_CBF_TOO_FEW_INTS, 142
                                              {\tt MSK\_RES\_ERR\_CBF\_TOO\_FEW\_PSDVAR},\ 142
Errors, 128
MSK_RES_ERR_AD_INVALID_CODELIST, 139
                                              MSK_RES_ERR_CBF_TOO_FEW_VARIABLES, 142
                                              MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS, 141
MSK_RES_ERR_API_ARRAY_TOO_SMALL, 139
MSK_RES_ERR_API_CB_CONNECT, 139
                                              MSK_RES_ERR_CBF_TOO_MANY_INTS, 142
                                              {\tt MSK\_RES\_ERR\_CBF\_TOO\_MANY\_VARIABLES},\ 141
MSK_RES_ERR_API_FATAL_ERROR, 139
                                              MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE,
MSK_RES_ERR_API_INTERNAL, 139
MSK_RES_ERR_APPENDING_TOO_BIG_CONE, 136
                                                      142
MSK_RES_ERR_ARG_IS_TOO_LARGE, 133
                                              MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE,
MSK_RES_ERR_ARG_IS_TOO_SMALL, 133
                                                      142
MSK_RES_ERR_ARGUMENT_DIMENSION, 133
                                              MSK_RES_ERR_CBF_UNSUPPORTED, 142
                                              MSK_RES_ERR_CON_Q_NOT_NSD, 135
MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE, 140
MSK_RES_ERR_ARGUMENT_LENNEQ, 133
                                              MSK_RES_ERR_CON_Q_NOT_PSD, 135
MSK_RES_ERR_ARGUMENT_PERM_ARRAY, 136
                                              MSK_RES_ERR_CONE_INDEX, 136
MSK_RES_ERR_ARGUMENT_TYPE, 133
                                              MSK_RES_ERR_CONE_OVERLAP, 136
MSK_RES_ERR_BAR_VAR_DIM, 140
                                              MSK_RES_ERR_CONE_OVERLAP_APPEND, 136
MSK_RES_ERR_BASIS, 135
                                              MSK_RES_ERR_CONE_PARAMETER, 136
MSK_RES_ERR_BASIS_FACTOR, 138
                                              MSK_RES_ERR_CONE_REP_VAR, 136
MSK_RES_ERR_BASIS_SINGULAR, 138
                                              MSK_RES_ERR_CONE_SIZE, 136
MSK_RES_ERR_BLANK_NAME, 130
                                              MSK_RES_ERR_CONE_TYPE, 136
MSK_RES_ERR_CBF_DUPLICATE_ACOORD, 142
                                              MSK_RES_ERR_CONE_TYPE_STR, 136
MSK_RES_ERR_CBF_DUPLICATE_BCOORD, 141
                                              MSK_RES_ERR_DATA_FILE_EXT, 130
MSK_RES_ERR_CBF_DUPLICATE_CON, 141
                                              MSK_RES_ERR_DUP_NAME, 130
MSK_RES_ERR_CBF_DUPLICATE_INT, 141
                                              MSK_RES_ERR_DUPLICATE_AIJ, 136
MSK_RES_ERR_CBF_DUPLICATE_OBJ, 141
                                              MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES.
MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD, 141
MSK_RES_ERR_CBF_DUPLICATE_POW_CONES, 142
                                              MSK_RES_ERR_DUPLICATE_CONE_NAMES, 140
MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES,
                                              MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES, 140
        142
                                              MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES, 140
                                              {\tt MSK\_RES\_ERR\_END\_OF\_FILE},\ 130
MSK_RES_ERR_CBF_DUPLICATE_PSDVAR, 142
MSK_RES_ERR_CBF_DUPLICATE_VAR, 141
                                              MSK_RES_ERR_FACTOR, 138
MSK_RES_ERR_CBF_INVALID_CON_TYPE, 141
                                              MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX, 138
```

```
MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND,
                                              MSK_RES_ERR_INV_SKC, 135
        138
                                              MSK_RES_ERR_INV_SKN, 135
MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED, 138
                                              MSK_RES_ERR_INV_SKX, 135
MSK_RES_ERR_FILE_LICENSE, 128
                                              MSK_RES_ERR_INV_VAR_TYPE, 134
MSK_RES_ERR_FILE_OPEN, 130
                                              MSK_RES_ERR_INVALID_AIJ, 137
{\tt MSK\_RES\_ERR\_FILE\_READ},\,130
                                              MSK_RES_ERR_INVALID_AMPL_STUB, 139
MSK_RES_ERR_FILE_WRITE, 130
                                              MSK_RES_ERR_INVALID_BARVAR_NAME, 130
MSK_RES_ERR_FINAL_SOLUTION, 137
                                              MSK_RES_ERR_INVALID_COMPRESSION, 138
MSK_RES_ERR_FIRST, 137
                                              MSK_RES_ERR_INVALID_CON_NAME, 130
MSK_RES_ERR_FIRSTI, 135
                                              MSK_RES_ERR_INVALID_CONE_NAME, 130
MSK_RES_ERR_FIRSTJ, 135
                                              MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX,
MSK_RES_ERR_FIXED_BOUND_VALUES, 137
MSK_RES_ERR_FLEXLM, 129
                                              MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES,
{\tt MSK\_RES\_ERR\_FORMAT\_STRING},\,130
                                                       140
MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM, 137
                                              MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS,
MSK_RES_ERR_HUGE_AIJ, 136
MSK_RES_ERR_HUGE_C, 136
                                              MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR,
MSK_RES_ERR_IDENTICAL_TASKS, 139
                                                       140
MSK_RES_ERR_IN_ARGUMENT, 133
                                               MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS,
MSK_RES_ERR_INDEX, 134
MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE, 133
                                              MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT,
MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL, 133
MSK_RES_ERR_INDEX_IS_TOO_LARGE, 133
                                              MSK_RES_ERR_INVALID_FILE_NAME, 130
MSK_RES_ERR_INDEX_IS_TOO_SMALL, 133
                                              MSK_RES_ERR_INVALID_FORMAT_TYPE, 135
MSK_RES_ERR_INF_DOU_INDEX, 133
                                              MSK_RES_ERR_INVALID_IDX, 134
MSK_RES_ERR_INF_DOU_NAME, 133
                                              MSK_RES_ERR_INVALID_IOMODE, 138
MSK_RES_ERR_INF_INT_INDEX, 133
                                              MSK_RES_ERR_INVALID_MAX_NUM, 134
MSK_RES_ERR_INF_INT_NAME, 133
                                              MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE, 132
{\tt MSK\_RES\_ERR\_INF\_LINT\_INDEX},\ 133
                                              {\tt MSK\_RES\_ERR\_INVALID\_OBJ\_NAME,\ 130}
                                              MSK_RES_ERR_INVALID_OBJECTIVE_SENSE, 137
MSK_RES_ERR_INF_LINT_NAME, 133
MSK_RES_ERR_INF_TYPE, 133
                                              MSK_RES_ERR_INVALID_PROBLEM_TYPE, 140
MSK_RES_ERR_INFEAS_UNDEFINED, 140
                                              MSK_RES_ERR_INVALID_SOL_FILE_NAME, 130
                                              MSK_RES_ERR_INVALID_STREAM, 130
MSK_RES_ERR_INFINITE_BOUND, 136
MSK_RES_ERR_INT64_TO_INT32_CAST, 140
                                              MSK_RES_ERR_INVALID_SURPLUS, 135
MSK_RES_ERR_INTERNAL, 139
                                               MSK_RES_ERR_INVALID_SYM_MAT_DIM, 140
MSK_RES_ERR_INTERNAL_TEST_FAILED, 139
                                              MSK_RES_ERR_INVALID_TASK, 130
MSK_RES_ERR_INV_APTRE, 134
                                              MSK_RES_ERR_INVALID_UTF8, 139
MSK_RES_ERR_INV_BK, 134
                                              MSK_RES_ERR_INVALID_VAR_NAME, 130
MSK_RES_ERR_INV_BKC, 134
                                              MSK_RES_ERR_INVALID_WCHAR, 139
MSK_RES_ERR_INV_BKX, 134
                                              MSK_RES_ERR_INVALID_WHICHSOL, 133
MSK_RES_ERR_INV_CONE_TYPE, 135
                                              MSK_RES_ERR_JSON_DATA, 132
MSK_RES_ERR_INV_CONE_TYPE_STR, 135
                                              MSK_RES_ERR_JSON_FORMAT, 132
MSK_RES_ERR_INV_MARKI, 138
                                              MSK_RES_ERR_JSON_MISSING_DATA, 132
MSK_RES_ERR_INV_MARKJ, 138
                                              MSK_RES_ERR_JSON_NUMBER_OVERFLOW, 132
MSK_RES_ERR_INV_NAME_ITEM, 135
                                              MSK_RES_ERR_JSON_STRING, 132
MSK_RES_ERR_INV_NUMI, 138
                                              MSK_RES_ERR_JSON_SYNTAX, 132
MSK_RES_ERR_INV_NUMJ, 138
                                              MSK_RES_ERR_LAST, 138
MSK_RES_ERR_INV_OPTIMIZER, 137
                                              MSK_RES_ERR_LASTI, 135
MSK_RES_ERR_INV_PROBLEM, 137
                                              MSK_RES_ERR_LASTJ, 135
MSK_RES_ERR_INV_QCON_SUBI, 136
                                              MSK_RES_ERR_LAU_ARG_K, 141
MSK_RES_ERR_INV_QCON_SUBJ, 136
                                              MSK_RES_ERR_LAU_ARG_M, 141
MSK_RES_ERR_INV_QCON_SUBK, 136
                                              MSK_RES_ERR_LAU_ARG_N, 141
MSK_RES_ERR_INV_QCON_VAL, 136
                                              MSK_RES_ERR_LAU_ARG_TRANS, 141
MSK_RES_ERR_INV_QOBJ_SUBI, 136
                                              MSK_RES_ERR_LAU_ARG_TRANSA, 141
MSK_RES_ERR_INV_QOBJ_SUBJ, 136
                                              MSK_RES_ERR_LAU_ARG_TRANSB, 141
MSK_RES_ERR_INV_QOBJ_VAL, 136
                                              MSK_RES_ERR_LAU_ARG_UPLO, 141
                                              MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX,
MSK_RES_ERR_INV_SK, 135
MSK_RES_ERR_INV_SK_STR, 135
```

```
MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATNEX_RES_ERR_MPS_MUL_CSEC, 131
        141
                                               MSK_RES_ERR_MPS_MUL_QOBJ, 131
MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE, 141
                                               MSK_RES_ERR_MPS_MUL_QSEC, 131
MSK_RES_ERR_LAU_SINGULAR_MATRIX, 141
                                               MSK_RES_ERR_MPS_NO_OBJECTIVE, 131
MSK_RES_ERR_LAU_UNKNOWN, 141
                                               MSK_RES_ERR_MPS_NON_SYMMETRIC_Q, 131
                                               {\tt MSK\_RES\_ERR\_MPS\_NULL\_CON\_NAME},\ 131
MSK_RES_ERR_LICENSE, 128
                                               MSK_RES_ERR_MPS_NULL_VAR_NAME, 131
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE, 129
MSK_RES_ERR_LICENSE_CANNOT_CONNECT, 129
                                               MSK_RES_ERR_MPS_SPLITTED_VAR, 131
MSK_RES_ERR_LICENSE_EXPIRED, 128
                                               MSK_RES_ERR_MPS_TAB_IN_FIELD2, 131
MSK_RES_ERR_LICENSE_FEATURE, 129
                                               MSK_RES_ERR_MPS_TAB_IN_FIELD3, 131
MSK_RES_ERR_LICENSE_INVALID_HOSTID, 129
                                               MSK_RES_ERR_MPS_TAB_IN_FIELD5, 131
MSK_RES_ERR_LICENSE_MAX, 129
                                               MSK_RES_ERR_MPS_UNDEF_CON_NAME, 131
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON, 129
                                               MSK_RES_ERR_MPS_UNDEF_VAR_NAME, 131
MSK_RES_ERR_LICENSE_NO_SERVER_LINE, 129
                                               MSK_RES_ERR_MUL_A_ELEMENT, 134
MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT, 129
                                               MSK_RES_ERR_NAME_IS_NULL, 138
MSK_RES_ERR_LICENSE_SERVER, 129
                                               MSK_RES_ERR_NAME_MAX_LEN, 138
MSK_RES_ERR_LICENSE_SERVER_VERSION, 129
                                               MSK_RES_ERR_NAN_IN_BLC, 137
MSK_RES_ERR_LICENSE_VERSION, 128
                                               MSK_RES_ERR_NAN_IN_BLX, 137
MSK_RES_ERR_LINK_FILE_DLL, 129
                                               MSK_RES_ERR_NAN_IN_BUC, 137
MSK_RES_ERR_LIVING_TASKS, 130
                                               MSK_RES_ERR_NAN_IN_BUX, 137
MSK_RES_ERR_LOWER_BOUND_IS_A_NAN, 136
                                               MSK_RES_ERR_NAN_IN_C, 137
MSK_RES_ERR_LP_DUP_SLACK_NAME, 132
                                               MSK_RES_ERR_NAN_IN_DOUBLE_DATA, 137
MSK_RES_ERR_LP_EMPTY, 132
                                               MSK_RES_ERR_NEGATIVE_APPEND, 138
MSK_RES_ERR_LP_FILE_FORMAT, 132
                                               MSK_RES_ERR_NEGATIVE_SURPLUS, 138
                                               {\tt MSK\_RES\_ERR\_NEWER\_DLL},\ 129
MSK_RES_ERR_LP_FORMAT, 132
MSK_RES_ERR_LP_FREE_CONSTRAINT, 132
                                               MSK_RES_ERR_NO_BARS_FOR_SOLUTION, 140
MSK_RES_ERR_LP_INCOMPATIBLE, 132
                                               MSK_RES_ERR_NO_BARX_FOR_SOLUTION, 140
MSK_RES_ERR_LP_INVALID_CON_NAME, 132
                                               MSK_RES_ERR_NO_BASIS_SOL, 138
MSK_RES_ERR_LP_INVALID_VAR_NAME, 132
                                               MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL, 139
MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM, 132
                                               MSK_RES_ERR_NO_DUAL_INFEAS_CER, 138
MSK_RES_ERR_LP_WRITE_GECO_PROBLEM, 132
                                               MSK_RES_ERR_NO_INIT_ENV, 130
MSK_RES_ERR_LU_MAX_NUM_TRIES, 139
                                               MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE, 137
{\tt MSK\_RES\_ERR\_MAX\_LEN\_IS\_TOO\_SMALL},\ 135
                                               {\tt MSK\_RES\_ERR\_NO\_PRIMAL\_INFEAS\_CER},\ 138
MSK_RES_ERR_MAXNUMBARVAR, 134
                                               MSK_RES_ERR_NO_SNX_FOR_BAS_SOL, 139
MSK_RES_ERR_MAXNUMCON, 134
                                               MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK, 138
MSK_RES_ERR_MAXNUMCONE, 136
                                               MSK_RES_ERR_NON_UNIQUE_ARRAY, 140
MSK_RES_ERR_MAXNUMQNZ, 134
                                               MSK_RES_ERR_NONCONVEX, 135
MSK_RES_ERR_MAXNUMVAR, 134
                                               MSK_RES_ERR_NONLINEAR_EQUALITY, 135
MSK_RES_ERR_MIO_INTERNAL, 140
                                               MSK_RES_ERR_NONLINEAR_RANGED, 135
{\tt MSK\_RES\_ERR\_MIO\_INVALID\_NODE\_OPTIMIZER},\ 142
                                               MSK_RES_ERR_NULL_ENV, 130
MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER, 142
                                               MSK_RES_ERR_NULL_POINTER, 130
MSK_RES_ERR_MIO_NO_OPTIMIZER, 137
                                               MSK_RES_ERR_NULL_TASK, 130
                                               MSK_RES_ERR_NUM_ARGUMENTS, 133
MSK_RES_ERR_MISSING_LICENSE_FILE, 128
                                               {\tt MSK\_RES\_ERR\_NUMCONLIM},\ 134
MSK_RES_ERR_MIXED_CONIC_AND_NL, 137
MSK_RES_ERR_MPS_CONE_OVERLAP, 131
                                               MSK_RES_ERR_NUMVARLIM, 134
MSK_RES_ERR_MPS_CONE_REPEAT, 131
                                               MSK_RES_ERR_OBJ_Q_NOT_NSD, 135
MSK_RES_ERR_MPS_CONE_TYPE, 131
                                               MSK_RES_ERR_OBJ_Q_NOT_PSD, 135
MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT, 131
                                               MSK_RES_ERR_OBJECTIVE_RANGE, 134
MSK_RES_ERR_MPS_FILE, 131
                                               MSK_RES_ERR_OLDER_DLL, 129
MSK_RES_ERR_MPS_INV_BOUND_KEY, 131
                                               MSK_RES_ERR_OPF_FORMAT, 132
MSK_RES_ERR_MPS_INV_CON_KEY, 131
                                               MSK_RES_ERR_OPF_NEW_VARIABLE, 132
MSK_RES_ERR_MPS_INV_FIELD, 131
                                               MSK_RES_ERR_OPF_PREMATURE_EOF, 132
MSK_RES_ERR_MPS_INV_MARKER, 131
                                               MSK_RES_ERR_OPTIMIZER_LICENSE, 129
MSK_RES_ERR_MPS_INV_SEC_NAME, 131
                                               MSK_RES_ERR_OVERFLOW, 138
MSK_RES_ERR_MPS_INV_SEC_ORDER, 131
                                               MSK_RES_ERR_PARAM_INDEX, 133
MSK_RES_ERR_MPS_INVALID_OBJ_NAME, 131
                                               MSK_RES_ERR_PARAM_IS_TOO_LARGE, 133
MSK_RES_ERR_MPS_INVALID_OBJSENSE, 131
                                               MSK_RES_ERR_PARAM_IS_TOO_SMALL, 133
MSK_RES_ERR_MPS_MUL_CON_NAME, 131
                                               MSK_RES_ERR_PARAM_NAME, 133
```

```
MSK_RES_ERR_THREAD_COND_INIT, 130
MSK_RES_ERR_PARAM_NAME_DOU, 133
MSK_RES_ERR_PARAM_NAME_INT, 133
                                              MSK_RES_ERR_THREAD_CREATE, 129
MSK_RES_ERR_PARAM_NAME_STR, 133
                                              MSK_RES_ERR_THREAD_MUTEX_INIT, 129
MSK_RES_ERR_PARAM_TYPE, 133
                                              MSK_RES_ERR_THREAD_MUTEX_LOCK, 129
MSK_RES_ERR_PARAM_VALUE_STR, 133
                                              MSK_RES_ERR_THREAD_MUTEX_UNLOCK, 129
MSK_RES_ERR_PLATFORM_NOT_LICENSED, 129
                                              MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC, 142
MSK_RES_ERR_POSTSOLVE, 138
                                              MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD, 142
MSK_RES_ERR_PRO_ITEM, 135
                                              MSK_RES_ERR_TOCONIC_CONSTRAINT_FX, 142
MSK_RES_ERR_PROB_LICENSE, 128
                                              MSK_RES_ERR_TOCONIC_CONSTRAINT_RA, 142
MSK_RES_ERR_PTF_FORMAT, 132
                                              MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD, 143
MSK_RES_ERR_QCON_SUBI_TOO_LARGE, 137
                                              MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE,
MSK_RES_ERR_QCON_SUBI_TOO_SMALL, 137
MSK_RES_ERR_QCON_UPPER_TRIANGLE, 137
                                              MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ, 134
MSK_RES_ERR_QOBJ_UPPER_TRIANGLE, 137
                                              MSK_RES_ERR_TOO_SMALL_MAXNUMANZ, 134
                                              MSK_RES_ERR_UNB_STEP_SIZE, 139
MSK_RES_ERR_READ_FORMAT, 131
MSK_RES_ERR_READ_LP_MISSING_END_TAG, 132
                                              MSK_RES_ERR_UNDEF_SOLUTION, 134
MSK_RES_ERR_READ_LP_NONEXISTING_NAME, 132
                                              MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE, 137
MSK_RES_ERR_REMOVE_CONE_VARIABLE, 136
                                              MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS, 140
MSK_RES_ERR_REPAIR_INVALID_PROBLEM, 138
                                              MSK_RES_ERR_UNKNOWN, 130
MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED, 138
                                              MSK_RES_ERR_UPPER_BOUND_IS_A_NAN, 136
MSK_RES_ERR_SEN_BOUND_INVALID_LO, 139
                                              MSK_RES_ERR_UPPER_TRIANGLE, 140
MSK_RES_ERR_SEN_BOUND_INVALID_UP, 139
                                              MSK_RES_ERR_WHICHITEM_NOT_ALLOWED, 134
MSK_RES_ERR_SEN_FORMAT, 139
                                              MSK_RES_ERR_WHICHSOL, 134
MSK_RES_ERR_SEN_INDEX_INVALID, 139
                                              MSK_RES_ERR_WRITE_LP_FORMAT, 132
MSK_RES_ERR_SEN_INDEX_RANGE, 139
                                              MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME, 132
MSK_RES_ERR_SEN_INVALID_REGEXP, 139
                                              MSK_RES_ERR_WRITE_MPS_INVALID_NAME, 132
MSK_RES_ERR_SEN_NUMERICAL, 139
                                              MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME, 132
                                              MSK_RES_ERR_WRITING_FILE, 132
MSK RES ERR SEN SOLUTION STATUS, 139
{\tt MSK\_RES\_ERR\_SEN\_UNDEF\_NAME},\ 139
                                              MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE, 139
MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE, 139
                                              MSK_RES_ERR_Y_IS_UNDEFINED, 137
MSK_RES_ERR_SERVER_CONNECT, 143
MSK_RES_ERR_SERVER_PROTOCOL, 143
MSK_RES_ERR_SERVER_STATUS, 143
MSK_RES_ERR_SERVER_TOKEN, 143
MSK_RES_ERR_SHAPE_IS_TOO_LARGE, 133
MSK_RES_ERR_SIZE_LICENSE, 128
MSK_RES_ERR_SIZE_LICENSE_CON, 129
MSK_RES_ERR_SIZE_LICENSE_INTVAR, 129
MSK_RES_ERR_SIZE_LICENSE_NUMCORES, 140
MSK_RES_ERR_SIZE_LICENSE_VAR, 129
MSK_RES_ERR_SLICE_SIZE, 138
MSK_RES_ERR_SOL_FILE_INVALID_NUMBER, 136
MSK_RES_ERR_SOLITEM, 134
MSK_RES_ERR_SOLVER_PROBTYPE, 134
MSK_RES_ERR_SPACE, 130
MSK_RES_ERR_SPACE_LEAKING, 130
MSK_RES_ERR_SPACE_NO_INFO, 130
MSK_RES_ERR_SYM_MAT_DUPLICATE, 140
MSK_RES_ERR_SYM_MAT_HUGE, 137
MSK_RES_ERR_SYM_MAT_INVALID, 137
MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX, 140
MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX, 140
MSK_RES_ERR_SYM_MAT_INVALID_VALUE, 140
MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR,
       140
MSK_RES_ERR_TASK_INCOMPATIBLE, 138
MSK_RES_ERR_TASK_INVALID, 138
MSK_RES_ERR_TASK_WRITE, 139
```

Index

Symbols	-primalrepair mosek command line option, 13
-=	-q <name></name>
mosek command line option, 13	mosek command line option, 13
-a mosek command line option, 12	-r
	mosek command line option, 13
-anapro mosek command line option, 12	-removeitg
-anasoli <name></name>	mosek command line option, 13
mosek command line option, 12	-rout <name></name>
-anasolo <name></name>	mosek command line option, 13
mosek command line option, 12	-sen <file></file>
-basi <name></name>	mosek command line option, 13
mosek command line option, 12	-silent
-baso <name></name>	mosek command line option, 13
mosek command line option, 12	-toconic
-d <name> <value></value></name>	mosek command line option, 13
mosek command line option, 12	-V
	mosek command line option, 13
-dbgmem <name></name>	-W
mosek command line option, 12 -f	mosek command line option, 13
	-X
mosek command line option, 12	mosek command line option, 13
-h, -?	,
mosek command line option, 12 -info <name></name>	A
	AMPL
mosek command line option, 12	outlev, 17
-infrepo <name></name>	wantsol, 17
mosek command line option, 12	analysis
-inti <name></name>	infeasibility, 63
mosek command line option, 12	arguments
-into <name></name>	command line tool, 8
mosek command line option, 12	commend the tool, o
-itri <name></name>	В
mosek command line option, 12	basis identification, 51
-itro <name></name>	basis type
mosek command line option, 12	sensitivity analysis, 69
-l,-L <dir></dir>	bound
mosek command line option, 12	constraint, 36, 39
-max	variable, 36, 39
mosek command line option, 12	variable, 50, 59
-min	C
mosek command line option, 12	CDE former 100
-n	CBF format, 192 certificate
mosek command line option, 12	
-out <name></name>	dual, 38, 42
mosek command line option, 13	primal, 37, 41
-p <name>, -pari <name></name></name>	command line tool
mosek command line option, 13	arguments, 8
-paro <name></name>	complementarity, 37, 41
mosek command line option, 13	cone

dual, 40	integer
conic optimization, 39	optimizer, 58
interior-point, 54	integer feasible
termination criteria, 56	solution, 60
constraint	integer optimization, 58
bound, 36, 39	cut, 59
matrix, 36, 39	objective bound, 59
quadratic, 44	optimality gap, 61
	relaxation, 59
cut, 59	
D	termination criteria, 60
	tolerance, 60
dual	integer optimizer
certificate, 38, 42	logging, 61
cone, 40	interior-point
feasible, 37	conic optimization, 54
infeasible, 37, 38, 42	linear optimization, 48
problem, 37, 40, 43	$\log 52, 58$
variable, 37, 40	optimizer, 48, 54
duality	termination criteria, 50, 56
conic, 40	,,,
linear, 37	J
semidefinite, 43	json format, 210
	Json format, 210
dualizer, 47	
E	1. 10
	license, 13
eliminator, 47	linear dependency, 47
г	linear optimization, 36
F	infeasibility, 37
feasible	interior-point, 48
dual, 37	simplex, 53
primal, 36, 49, 55	termination criteria, 50, 53
problem, 36	linearity interval, 68
format	logging
CBF, 192	integer optimizer, 61
	interior-point, 52, 58
json, 210	- ' ' '
LP, 166	optimizer, 52, 54, 58
MPS, 171	simplex, 54
OPF, 183	LP format, 166
PTF, 206	M
sol, 218	IVI
task, 210	matrix
1.1	constraint, 36, 39
Н	MIP, see integer optimization
hot-start, 53	mixed-integer, see integer
,	mosek command line option
	-=, 13
infeasibility, 37, 41	-a, 12
*	-anapro, 12
analysis, 63	-anasoli <name>, 12</name>
linear optimization, 37	
repair, 63	-anasolo <name>, 12</name>
semidefinite, 43	-basi <name>, 12</name>
infeasible	-baso <name>, 12</name>
dual, 37, 38, 42	-d < name > < value > , 12
primal, 36, 37, 41, 49, 56	-dbgmem $\langle \text{name} \rangle$, 12
problem, 36, 37, 43	-f, 12
installation, 5	-h, -?, 12
requirements, 5	-info $<$ name $>$, 12
troubleshooting, 5	-infrepo $<$ name $>$, 12
O1 -	•

-inti < name > 12	linear dependency check, 47
-into <name>, 12</name>	numerical issues, 47
-itri <name>, 12</name>	primal
-itro <name>, 12</name>	certificate, 37, 41
-l,-L <dir>, 12</dir>	feasible, 36, 49, 55
$-\max$, 12	infeasible, 36, 37, 41, 49, 56
-min, 12	problem, 37, 40, 43
-n, 12	solution, 36
-out $\langle \text{name} \rangle$, 13	primal-dual
-p < name >, -pari < name >, 13	problem, 48, 55
-paro <name>, 13</name>	solution, 37
-primalrepair, 13	problem
-q < name > 13	dual, 37, 40, 43
-r, 13	feasible, 36
-removeitg, 13	infeasible, 36, 37, 43
-rout $\langle \text{name} \rangle$, 13	primal, 37, 40, 43
-sen < file > 13	primal-dual, 48, 55
-silent, 13	unbounded, 38, 42
-toconic, 13	PTF format, 206
-v, 13	\circ
-w, 13	Q
-x, 13	quadratic
MPS format, 171	constraint, 44
free, 182	quadratic optimization, 44
NI	quality
N	solution, 61
near-optimal	5
solution, 60	R
numerical issues	relaxation, 59
presolve, 47	
preserve, 11	repan
scaling, 47	repair infeasibility, 63
	infeasibility, 63
scaling, 47 simplex, 53	
scaling, 47	infeasibility, 63
scaling, 47 simplex, 53	infeasibility, 63 S scaling, 47
scaling, 47 simplex, 53 O objective, 36, 39	infeasibility, 63 S scaling, 47 semidefinite
scaling, 47 simplex, 53	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58	scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53 outlev	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218 integer feasible, 60
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53 outlev	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218 integer feasible, 60 near-optimal, 60
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53 outlev AMPL, 17	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218 integer feasible, 60 near-optimal, 60 primal, 36
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53 outlev AMPL, 17 P parameter	scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218 integer feasible, 60 near-optimal, 60 primal, 36 primal-dual, 37
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53 outlev AMPL, 17 P parameter simplex, 53	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218 integer feasible, 60 near-optimal, 60 primal, 36
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53 outlev AMPL, 17 P parameter simplex, 53 parameter file, 11	scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218 integer feasible, 60 near-optimal, 60 primal, 36 primal-dual, 37
scaling, 47 simplex, 53 O objective, 36, 39 objective bound, 59 OPF format, 183 optimality gap, 61 optimization conic, 39 conic quadratic, 39 linear, 36 semidefinite, 43 optimizer integer, 58 interior-point, 48, 54 logging, 52, 54, 58 selection, 47, 48 simplex, 53 outlev AMPL, 17 P parameter simplex, 53	infeasibility, 63 S scaling, 47 semidefinite infeasibility, 43 semidefinite optimization, 43 sensitivity analysis, 67 basis type, 69 shadow price, 68 simplex linear optimization, 53 logging, 54 numerical issues, 53 optimizer, 53 parameter, 53 termination criteria, 53 sol format, 218 solution file format, 218 integer feasible, 60 near-optimal, 60 primal, 36 primal-dual, 37 quality, 61

```
termination\ criteria
    conic optimization, 56
    integer optimization, 60
    interior-point, 50, 56
    linear optimization, 50, 53
    simplex, 53
    tolerance, 51, 57, 60
tolerance
    integer optimization, 60
    termination criteria, 51, 57, 60
troubleshooting
    installation, 5
U
unbounded
    problem, 38, 42
V
variable, 36, 39
    bound, 36, 39
    \mathrm{dual},\,37,\,40
W
wantsol
    AMPL, 17
```