Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторным работам №1-4 по дисциплине "Математическая статистика"

Студент: Скворцов Владимир Сергеевич

Преподаватель: Баженов Александр Николаевич

Группа: 5030102/10201

Санкт-Петербург 2024

Содержание

1	Пос	становка задачи	2
	1.1	Описательная статистика	2
	1.2	Точечное оценивание характеристик положения и рассеяния	2
2	Teo	ретическое обоснование	2
	2.1	Функции распределения	2
	2.2	Характеристики положения и рассеяния	3
3	Оп	исание работы	3
4	Рез	ультаты	4
	4.1	Гистограммы и графики плотности распределения	4
	4.2	Характеристики положения и рассеяния	6
5	Вы	воды	8
6	Пос	становка задачи	9
	6.1	Боксплот Тьюки	9
	6.2	Доверительные интервалы для параметров нормального распределения	9
7	Teo	ретическое обоснование	9
	7.1	Функции распределения	9
	7.2	Боксплот Тьюки	10
	7.3	Доверительные интервалы для параметров нормального распределения	10
8	Опп	исание работы	10
9	Рез	ультаты	11
	9.1	Гистограммы и графики плотности распределения	11
	9.2	Доверительные интервалы для параметров распределений	13
10	Brn	ROILI	14

1 Постановка задачи

1.1 Описательная статистика

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- распределение Коши C(x, 0, 1)
- Распределение Стьюдента t(x,0,3) с тремя степенями свободы
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10, 50, 1000 элементов.

Построить на одном рисунке гистограмму и график плотности распределения.

1.2 Точечное оценивание характеристик положения и рассеяния

Сгенерировать выборки размером 10, 50, 1000 элементов.

Для каждой выборки вычислить следующие статистические характеристики положения данных: \bar{x} , $med\ x$, z_Q , z_R , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов: $E(z) = \bar{z}$. Вычислить оценку дисперсии по формуле $D(z) = \bar{z}^2 - \bar{z}^2$.

2 Теоретическое обоснование

2.1 Функции распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{1}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

• Распределение Стьюдента t(x,0,3) с тремя степенями свободы

$$t(x,0,3) = \frac{6\sqrt{3}}{\pi(3+t^2)^2} \tag{3}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |x| \le \sqrt{3} \\ 0 & \text{при } |x| > \sqrt{3} \end{cases}$$
 (5)

2.2 Характеристики положения и рассеяния

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{6}$$

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)} & \text{при} \quad n = 2l+1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при} \quad n = 2l \end{cases}$$
 (7)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{8}$$

• Полусумма квартилей Выборочная квартиль z_p порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & \text{при} & np \text{ дробном} \\ x_{(np)} & \text{при} & np \text{ целом} \end{cases}$$
 (9)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{10}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n-2r} \sum_{i=r+1}^{n-r} x_{(i)}, \ r \approx \frac{n}{4}$$
 (11)

• Среднее характеристики

$$E(z) = \overline{z} \tag{12}$$

• Оценка дисперсии

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{13}$$

3 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек numpy, pandas, matplotlib, seaborn были построены гистограммы распределений и посчитаны характеристики пложения.

 ${\it Cc}$ Ссылка на GitHub peпозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

4 Результаты

4.1 Гистограммы и графики плотности распределения

Рис. 1: Нормальное распределение (14)

Рис. 2: Распределение Коши (15)

Рис. 3: Распределение Стьюдента (16)

Рис. 4: Распределение Пуассона (17)

Рис. 5: Равномерное распределение (18)

4.2 Характеристики положения и рассеяния

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_{R} (8)	$z_Q \ (10)$	$z_{tr} (11)$
E(z) (12)	-1.747×10^{-2}	-1.928×10^{-2}	-1.949×10^{-2}	-1.449×10^{-2}	-7.937×10^{-3}
D(z) (13)	1.009×10^{-1}	1.427×10^{-1}	1.878×10^{-1}	1.154×10^{-1}	1.608×10^{-1}
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	z_{R} (8)	$z_{Q} (10)$	$z_{tr} (11)$
E(z) (12)	-7.937×10^{-3}	1.009×10^{-1}	1.427×10^{-1}	1.878×10^{-1}	1.154×10^{-1}
D(z) (13)	9.941×10^{-3}	1.554×10^{-2}	9.559×10^{-2}	1.239×10^{-2}	2.000×10^{-2}
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q \ (10)$	$z_{tr} (11)$
E(z) (12)	3.800×10^{-5}	-1.779×10^{-3}	-2.971×10^{-3}	1.002×10^{-3}	-8.500×10^{-5}
D(z) (13)	9.850×10^{-4}	1.682×10^{-3}	6.138×10^{-2}	1.243×10^{-3}	1.939×10^{-3}

Таблица 1: Нормальное распределение

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	z_{Q} (10)	$z_{tr} (11)$
E(z) (12)	-4.724	-1.599×10^{-2}	-2.361×10	-1.518×10^{-2}	-8.311
D(z) (13)	1.148×10^4	3.371×10^{-1}	2.865×10^{5}	1.164	3.170×10^4
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	$z_{R} (8)$	z_{Q} (10)	$z_{tr} (11)$
E(z) (12)	7.817×10^{-1}	1.222×10^{-2}	$3,703 \times 10$	8.637×10^{-3}	8.573×10^{-1}
D(z) (13)	4.319×10^{2}	2.532×10^{-2}	1.060×10^{6}	5.501×10^{-2}	1.677×10^2
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_{R} (8)	z_{Q} (10)	$z_{tr} (11)$
E(z) (12)	-3.361×10^{-1}	-1.532×10^{-3}	-1.290×10^2	-1.540×10^{-3}	-4.972×10^{-2}
D(z) (13)	2.406×10^2	2.310×10^{-3}	5.036×10^{7}	4.735×10^{-3}	1.743×10^{2}

Таблица 2: Распределение Коши

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	$z_R \ (8)$	$z_Q (10)$	z_{tr} (11)
E(z) (12)	1.626×10^{-2}	4.667×10^{-3}	4.092×10^{-2}	1.432×10^{-2}	7.500×10^{-4}
D(z) (13)	2.591×10^{-1}	1.838×10^{-1}	1.659	1.846×10^{-1}	4.319×10^{-1}
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	$z_{R} (8)$	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	-2.158×10^{-3}	-1.389×10^{-3}	2.124×10^{-2}	3.592×10^{-3}	-1.675×10^{-2}
D(z) (13)	2.691×10^{-2}	1.905×10^{-2}	9.894	1.848×10^{-2}	5.278×10^{-2}
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	$z_{R} (8)$	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	3.350×10^{-4}	-2.380×10^{-4}	-5.482×10^{-2}	1.620×10^{-4}	6.790×10^{-4}
D(z) (13)	2.898×10^{-3}	1.903×10^{-3}	3.253×10	1.944×10^{-3}	5.656×10^{-3}

Таблица 3: Распределение Стьюдента

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_{R} (8)	$z_Q \ (10)$	$z_{tr} (11)$
E(z) (12)	1.000×10	9.874	1.029×10	9.918	9.937
D(z) (13)	1.082	1.478	2.018	1.284	1.699
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q \ (10)$	$z_{tr} (11)$
E(z) (12)	1.001×10	9.856	1.090×10	9.945	1.001×10
D(z) (13)	9.575×10^{-2}	1.974×10^{-1}	9.572×10^{-1}	1.398×10^{-1}	2.048×10^{-1}
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q \ (10)$	$z_{tr} (11)$
E(z) (12)	1.000×10	9.997	1.163×10	9.994	1.000×10
D(z) (13)	1.014×10^{-2}	2.991×10^{-3}	6.344×10^{-1}	2.964×10^{-3}	2.072×10^{-2}

Таблица 4: Распределение Пуассона

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	z_{Q} (10)	$z_{tr} (11)$
E(z) (12)	-5.450×10^{-3}	-6.939×10^{-3}	-5.412×10^{-3}	-7.901×10^{-3}	-1.561×10^{-2}
D(z) (13)	1.041×10^{-1}	2.402×10^{-1}	4.402×10^{-2}	1.443×10^{-1}	1.722×10^{-1}
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	$z_{R} (8)$	z_{Q} (10)	$z_{tr} (11)$
E(z) (12)	-1.915×10^{-3}	-6.312×10^{-3}	-1.349×10^{-3}	1.960×10^{-3}	-4.766×10^{-3}
D(z) (13)	1.002×10^{-2}	2.972×10^{-2}	5.990×10^{-4}	1.428×10^{-2}	1.894×10^{-2}
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_{R} (8)	z_{Q} (10)	$z_{tr} (11)$
E(z) (12)	4.700×10^{-4}	9.240×10^{-4}	-1.330×10^{-4}	-3.550×10^{-4}	-3.870×10^{-4}
D(z) (13)	1.014×10^{-3}	3.127×10^{-3}	5.000×10^{-6}	1.469×10^{-3}	1.887×10^{-3}

Таблица 5: Равномерное распределение

5 Выводы

В процессе выполнения лабораторной работы был проведен анализ пяти уникальных распределений: нормальное, Коши, Стьюдента, Пуассона и равномерное. Были сгенерированы выборки разных объемов для каждого из них - 10, 50 и 1000 элементов. Были созданы гистограммы каждого распределения и нанесены на них графики плотности соответствующих распределений, что облегчило наглядное сопоставление формы распределения выборок с их теоретическими аналогами. Были также рассчитаны разные показатели положения и рассеяния для каждой выборки, включая выборочную среднюю величину, медиану, полусумму крайних элементов выборки, полусумму квартилей и усеченное среднее. Использовалась стандартная формула для оценки дисперсии.

На основании полученных данных были сделаны следующие выводы:

- 1. В случае нормального распределения, оценки показателей положения и рассеяния становятся ближе к их теоретическим значениям по мере увеличения размера выборки.
- 2. Для распределения Коши показатели положения и рассеяния менее стабильны и могут сильно отличаться от теоретических даже при больших размерах выборки.
- 3. Распределение Стьюдента при небольших размерах выборки также демонстрирует определенную нестабильность оценок, однако с увеличением размера выборки результаты становятся более точными.
- 4. Для распределения Пуассона и равномерного распределения, оценки показателей положения и рассеяния кажутся стабильными при любом объеме выборки.
- 5. В общем, выборочное среднее является наиболее чувствительным к экстремальным значениям по сравнению с медианой, особенно в меньших выборках. Однако с увеличением размера выборки, влияние этих экстремальных значений на среднее значение уменьшается. В то же время, медиана обычно более устойчива к выбросам и мало варьирует с изменением размера выборки.
- 6. Медиана является чувствительной к типу распределения: в нормальном и распределении Стьюдента медиана равна среднему, в распределении Коши она дает надежные, устойчивые к выбросам оценки, в Пуассоновском приближается к среднему, и в равномерном равна половине суммы минимального и максимального значений.

6 Постановка задачи

6.1 Боксплот Тьюки

Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки.

6.2 Доверительные интервалы для параметров нормального распределения

Сгенерировать выборки размером 20 и 100 элементов. Вычислить параметры положения и рассеяния:

- для нормального распределения,
- для произвольного распределения.

7 Теоретическое обоснование

7.1 Функции распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{14}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{15}$$

• Распределение Стьюдента t(x,0,3) с тремя степенями свободы

$$t(x,0,3) = \frac{6\sqrt{3}}{\pi(3+t^2)^2} \tag{16}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{17}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, & |x| \le \sqrt{3} \\ 0, & |x| > \sqrt{3} \end{cases}$$
 (18)

7.2 Боксплот Тьюки

Боксплот (англ. box plot) — график, использующихся в описательной статистике, компактно изобрадающий одномерное распределение вероятностей. Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выброса). Длину «усов» определяют разность первого квартиля и полутора межквартальных расстояний и сумма третьего квартиля и полутора межквартальных расстояний. Формула имеет вид

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \ X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1),$$
 (19)

где X_1 — нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 - третий квартиль. Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков. Выбросами считаются величины, такие что:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(20)

7.3 Доверительные интервалы для параметров нормального распределения

Пусть $F_T(x)$ — функция распределения Стьюдента с n-1 степенями свободы. Полагаем, что $2F_T(x)-1=1-\alpha$, где α — выбранный уровень значимости. Тогда $F_T(x)=1-\alpha/2$. Пусть $st_{1-\alpha/2}(n-1)$ — квантиль распределения Стьюдента с n-1 степенями свободы и порядка $1-\alpha/2$. Тогда получаем

$$P\left(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha,\tag{21}$$

что и даст доверительный интервал для m с доверительной вероятностью $\gamma=1\alpha$ для нормального распределения.

Случайная величина $n\frac{s^2}{\sigma^2}$ распределена по закону χ^2 с n-1 степенями свободы. Тогда

$$P\left(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha,\tag{22}$$

8 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек: numpy, pandas, matplotlib, seaborn.

Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

9 Результаты

9.1 Гистограммы и графики плотности распределения

Рис. 6: Нормальное распределение (14)

Рис. 7: Распределение Коши (15)

Рис. 8: Распределение Стьюдента (16)

Рис. 9: Распределение Пуассона (17)

Рис. 10: Равномерное распределение (18)

9.2 Доверительные интервалы для параметров распределений

n = 20	m	σ
	-0.43 < m < 0.37	$0.66 < \sigma < 1.25$
n = 100	m	σ
	-0.12 < m < 0.24	$0.81 < \sigma < 1.07$

Таблица 6: Доверительные интервалы для параметров нормального распределения (14)

n = 20	m	σ
	0.11 < m < 0.97	$0.29 < \sigma < 0.33$
n = 100	m	σ
	0.30 < m < 0.67	$0.28 < \sigma < 0.33$

 Таблица 7: Доверительные интервалы для параметров произвольного распределения.

 Асимптотический подход

Рис. 11: Гистограммы и оценки для параметров нормального распределения

(0.663480, -0.434162, 0.374849, 1.252336)

(-0.117590, 0.248381, 0.810296, 1.070570)

10 Выводы

По результатам выполнения лабораторной работы были сгенерированы выборки размером 20 и 100 элементов и построены для них боксплоты Тьюки.

Боксплот позволяет наглядно представить основные характеристики выборки - медиану, квартили, межквартальный размах и выбросы. На основе построенных графиков можно увидеть разницу в распределении данных для двух выборок. Для выборки размером в 100 элементов представленные метрики имеют более проработанный вид, ведь с увеличением размера выборки улучшается точность оценок параметров распределения, но при этом количество выбросов растет.

Также в ходе выполнения лабораторной работы были сгенерированы две выборки размерами 20 и 100 элементов для нормального и произвольного распределения. Затем для каждой из них были вычислены параметры распределения: среднее значение и дисперсия.

Результаты, представленные графически, демонстрируют, что количество элементов в выборке влияет на точность оценок параметров. Более большое количество наблюдений (т.е. 100 элементов) приводит к более точным и стабильным оценкам среднего и дисперсии, как для нормального, так и для произвольного распределения. Для выборки с меньшим количеством элементов (20 элементов) оценки могут сильно варьироваться в зависимости от конкретной выборки, что также наглядно отображено на графиках.

Лабораторная работа иллюстрирует важнейший статистический принцип: точность статистической оценки увеличивается с ростом объема выборки. Результаты этого исследования подчеркивают значимость использования достаточно больших выборок для надежного анализа данных.