Analise Correlação

June 14, 2020

1 Análise de Correlação

```
In [ ]: # Importando os módulos
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import matplotlib
        import seaborn as sns
        import scipy as sp
        %matplotlib inline
In [2]: sns.__version__
Out[2]: '0.9.0'
1.0.1 Primeiro dataset
In [3]: matplotlib.__version__
Out[3]: '3.0.3'
In [4]: # Carregando o dataset
        casas = pd.read_csv('Casas.csv')
        casas.head()
Out [4]:
           id Valor
                       Tamanho
                               Lote
                                      Banheiros
                                                  Quartos
                                                              BQ
                                                                        Tempo \
                                                                   Ano
        0
            1
               388.0
                         2.180
                                   4
                                             3.0
                                                         4
                                                            12.0 1940
                                                                         -3.0
        1
            2 450.0
                         2.054
                                             3.0
                                                          12.0 1957
                                   5
                                                        4
                                                                         -1.3
        2
            3 386.0
                         2.112
                                   5
                                             2.0
                                                        4
                                                             8.0 1955
                                                                         -1.5
        3
                                                        2
                                                             2.0
            4
               350.0
                         1.442
                                   6
                                             1.0
                                                                  1956
                                                                         -1.4
                                                         4
                                                                  1994
                                                                           2.4
               155.5
                         1.800
                                             2.0
                                                             8.0
           Tempo_Quad
                       Garagem_Tamanho Status D7
                                                     escola D8
                                                                  D9
                                                                      D10
                                                                           D11
        0
                 9.00
                                      0
                                            sld
                                                     edison
                                                                   0
                                                                        0
                                                               1
        1
                 1.69
                                      2
                                            sld
                                                     edison
                                                                              0
                                                                                   0
                                                  0
                                                               1
                                                                   0
                                                                        0
        2
                 2.25
                                      2
                                            sld
                                                  0
                                                     edison
                                                               1
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
        3
                 1.96
                                       1
                                                               0
                                                                   0
                                                                        1
                                                                              0
                                                                                   0
                                            act
                                                  1
                                                      adams
        4
                                                      adams
                                                                   0
                                                                                   0
                 5.76
                                       1
                                            sld
```

Out[5]: (76, 19)

In [6]: # Scatterplot

sns.scatterplot(x=casas['Tamanho'], y=casas['Valor'])

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7f584df5c0>

1.0.2 Segundo dataset

Out[8]:		Valor	Area	Banheiros	Quartos	TamanhoLote	Tempo	Lareira
	0	142212	1982	1.0	3	2.00	133	0
	1	134865	1676	1.5	3	0.38	14	1
	2	118007	1694	2.0	3	0.96	15	1
	3	138297	1800	1.0	2	0.48	49	1
	4	129470	2088	1.0	3	1.84	29	1

Out[9]: (1047, 7)

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5a5b5ef0>

In []:

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5a5ec9b0>

Out[13]: <seaborn.axisgrid.JointGrid at 0x7f5b649da0>

Out[14]:		Valor	Area	Banheiros	Quartos	${\tt TamanhoLote}$	Tempo	\
	Valor	1.000000	0.776396	0.670189	0.471074	0.155284	-0.363354	
	Area	0.776396	1.000000	0.722649	0.664347	0.200180	-0.263168	
	Banheiros	0.670189	0.722649	1.000000	0.491798	0.100993	-0.443830	
	Quartos	0.471074	0.664347	0.491798	1.000000	0.140682	-0.060598	
	TamanhoLote	0.155284	0.200180	0.100993	0.140682	1.000000	0.015135	
	Tempo	-0.363354	-0.263168	-0.443830	-0.060598	0.015135	1.000000	
	Lareira	0.460237	0.481436	0.444700	0.295873	0.052765	-0.248794	
		Lareira						
	Valor	0.460237						
	Area	0.481436						

Banheiros 0.444700 Quartos 0.295873 TamanhoLote 0.052765 Tempo -0.248794 Lareira 1.000000

In [15]: # Mapa de calor identificando as correlações entre as variáveis sns.heatmap(casas.corr(), cmap ="YlGnBu", linewidths = 0.1, annot=True)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5d820e48>


```
In [17]: # Contagem de casas pela variável "quartos"
         casas['Quartos'].value_counts()
Out[17]: 3
              522
         4
              321
         2
              176
               22
         5
         6
                3
                3
         Name: Quartos, dtype: int64
In [18]: # Média de valores de acordo com os quartos
         casas.groupby('Quartos')['Valor'].mean()
Out[18]: Quartos
               73555.333333
         2
              120312.602273
              149917.019157
         3
         4
              206800.227414
         5
              221827.772727
              216064.333333
         Name: Valor, dtype: float64
In [19]: # Análise da relação entre variável categórica e quantitativa (quartos e valores)
         plt.figure(figsize=(8,5))
         sns.boxplot(x=casas['Quartos'], y=casas['Valor'], showmeans=True)
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5e854198>

In [20]: # Análise da relação entre variável categórica e quantitativa (banheiros e valores)
 plt.figure(figsize=(8,5))
 sns.boxplot(x=casas['Banheiros'], y=casas['Valor'], showmeans=True)

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5f1c2a90>

