DGL

Deep Graph Learning

主流的图学习框架 (库)

The Tools of the GraphNeuralNetwork

名称			Github						
OpenNE			https://github.com/thunlp/OpenNE						
Graph_nets	图神经网络	基于关系模糊的图数据推理	https://github.com/deepmind/graph_nets						
DGL	图神经网络	建立图数据(可以无需通过networkx) 并加载常用图神经网络	https://github.com/jermainewang/dgl						
GPF	训练流程	基于关系数据的数据预测(节点分类、 关系预测)	https://github.com/xchadesi/GPF						
networkx	图数据预处理	非大规模图数据预处理	https://github.com/networkx/networkx						
Euler	工业级图深度 工业级图数据的用户研究快速进行算法 学习框架 创新与定制		https://github.com/alibaba/euler						
PyG	几何深度学习 适合于图、点云、流形数据的深度学 习,速度比DGL快		https://github.com/rusty15/70/te/fch@organ						

DGL的优势

- 支持后端: Pytorch, MXNET, Numpy(no autograd)
- •接口友好
- 能够在巨大的图上(5亿节点,250亿边)训练图神经网络。
- 消息融合 (Fused Message Passing)
- ICLR workshop(https://rlgm.github.io/papers/49.pdf)

大图训练的性能瓶颈

绝大多数图神经网络模型遵循消息传递的计算范式,用户需要提供两个函数:

1.消息函数:在边上触发,定义了如何计算发送给相邻节点的消息。

2.累和函数:在点上触发,定义了如果在点上累和收到的消息。

消息传递机制

消息张量的大小正比于图中 边的数量,因而当图增大时, 消息张量消耗的内存空间也 会显著上升

消息融合解决大图训练难题

$$\mathbf{M} = \mathrm{send}(E, \phi^e, \mathbf{H}_v)$$
 $\mathbf{H}_v' = \mathrm{recv}(V, \Sigma, \mathbf{M})$ Basic message passing

DGL fuses the computation as send_and_recv to avoid explicit message storage, thus is faster and more scalable for large graphs.

DGL将 send 和 recv 接口合并成 send_and_recv (见下图) DGL的后端通过自己的CUDA代码,在每个GPU线程中将源节点特征载入其本地内存并计算消息函数,然后将计算结果直接累和到目标节点,从而避免生成消息张量。

性能表现

$egin{array}{c c} \mathbf{Dataset} \ oldsymbol{V} & oldsymbol{E} \end{array}$	Model	Accuracy	Time PyG DGL		Memory PyG DGL					• D	GL (Dv.	G		
Cora	GCN	81.31 ± 0.88	0.478	0.666	1.1	1.1		3 -			OL (·y	•		
3K 11K	GAT	83.98 ± 0.52	1.608	1.399	1.2	1.1									1
CiteSeer	GCN	70.98 ± 0.68	0.490	0.674	1.1	1.1	(s)								,'
3K 9K	GAT	69.96 ± 0.53	1.606	1.399	1.3	1.2	Time	2 -						1	1
PubMed	GCN	79.00 ± 0.41	0.491	0.690	1.1	1.1	T HS							,1	
20K 889K	GAT	77.65 ± 0.32	1.946	1.393	1.6	1.2	Epoch	1 -					-/	1	
Reddit 232K 114M	GCN	93.46 ± 0.06	OOM	28.6	OOM	11.7	200 E		-	-		-			
Reddit-S 232K 23M	GCN	N/A	29.12	9.44	15.7	3.6		0 -	16	32	64 Hida		200	512	1024

Table 2: Training time (in seconds) for 200 epochs and memory consumption (GB).

Figure 1: GCN training time on Pubmed with varying hidden size.