

Na penúltima linha é calculada a soma dos valores para cada produto, considerando os pesos. Para os produtos que não contêm informação em determinado atributo, este não é levado em consideração na soma.

Por último é feita uma classificação, em que o melhor é aquele cuja pontuação é maior. O quadro 3 apresenta essas relações de produtos, atributos e pesos.

		Kits sem forma definida				Kits de braços robóticos		
Gerais	Peso	Nome	Lego	Modelix	Robo Fácil	Lynxm.	Hajime	Easy Arm
	1	Fabricação	1	3	2	1	2	3
	1	Material	2	1		1	2	3
	3	Preço	1	1	3	2		3
Técnicos	3	Arquitetura	1	1	3	1	3	
	3	Linguagem	2	3	2		2	
	2	Estrutura	3	3		1	1	1
	-	Soma	21	25	26	13	21	17
Classificação			30	20	10	30	10	20

Quadro 3 - Comparação dos produtos

Nessa análise obtêm-se dois melhores classificados (RoboFácil e Hajime), um entre os kits sem forma definida e outro com a estrutura de um braço robótico antropomórfico, respectivamente.

Para cada um dos melhores colocados é feita uma lista de verificação, cujo objetivo é pontuar os aspectos positivos e negativos, para, posteriormente, levantar os requisitos do projeto.

Por exemplo, no projeto RoboFácil, o maior destaque está na disponibilização da arquitetura de hardware, com descrições de como foi implementado o circuito eletrônico principal, os displays, portas paralelas, porta serial, conversores DAC³ e ADC⁴, plug-ins de controle dos motores de passo, *led* e sensores.

Em contrapartida, a estrutura possui grandes dimensões comparadas às outras e não possui um modelo de robô como demonstração que possa ser utilizado no sistema.

No Hajime, por se tratar também de um projeto acadêmico, o usuário deve buscar todo o material para a construção do braço robótico, além de utilizar a porta paralela, que vem entrando em desuso. Esses pontos são os que mais se destacam entre os negativos. Porém, como vantagem, o Hajime não possui circuito eletrônico e a interface é simples e intuitiva, podendo ser utilizada nos níveis de ensino mais básicos.

Com base na lista de verificação, levanta-se uma lista de necessidades explicitando as características de cada modelo que podem ser mantidas e aquelas que podem ser aperfeiçoadas. Considerando-se, também, o acréscimo de novas funcionalidades para cada um dos melhores modelos de cada categoria – RoboFácil e Hajime.

A partir disso formulam-se, primeiramente, os requisitos de forma mais abrangente, que são:

- Ter arquitetura de hardware/software aberta;
 - Ter Baixo custo;
- Possuir estrutura física compacta, leve e resistente;
 - Vir com manual de instrução;
- Ter funcionalidades para o aprendizado em programação e robótica;

Para então, formular os demais requisitos, conforme o tópico seguinte.

³ DAC – Conversor digital analógico.

⁴ ADC – Conversor analógico digital.