CS-3331 计算机网络 第 2 章练习题

1. 下列选项中,不属于物理层接口规范定义范畴的是。 A. 接口形状 B. 引脚功能 C. 物理地址 (MAC 地址) D. 信号电平 2. 信号经过调制后送到通信线路上传输的方法称为。	
A. 同步传输 B. 异步传输 C. 基带传输 D. 频带传输	
3. 下列哪种方式允许两个站点同时在两个方向上传输数据。	
 4. 波特率等于。 A. 信号每秒变化的次数 B. 每秒传输的比特数 C. 每秒传输的字节数 D. 一个信号码元的等级数 	
5. 双绞线使用两根绝缘导线绞合而成,绞合的目的是。 A. 减少电磁干扰 B. 提高传输速度 C. 增大传输距离 D. 提高抗拉强度	
6. 下面关于卫星通信的说法,哪一个是错误的。A. 卫星通信通信距离大,覆盖的范围广; B. 使用卫星通信易于实现广播通信和多址通信; C. 卫星通信的好处在于不受气候的影响,误码率很低; D. 通信费用高,延时较大是卫星通信的不足之处;	
7. 当描述一个物理层接口引脚在处于高电平时的含义时,该描述属于。 A. 机械特性 B. 电气特性 C. 功能特性 D. 规程特性	
8. 一次传输一个字符(5~8 位组成),每个字符用一个起始码引导,同一个停止码结束,如 发送,发送方可以连续发送停止码,这种通信方式称为。	如果没有数据

二、简答题

1. 为什么要使用信道复用技术? 常用的信道复用技术有哪些?

答:信道资源是有限的,实际网络中,多对用户往往需要利用相同的信道资源传输信息,而不同的信号同时在同一信道中传输会产生严重的相互干扰,导致传输失败。复用技术的目的是:允许用户使用一个共享信道进行通信,避免相互干扰,降低成本,提高利用率。

- **频分复用**(FDM)利用通带传输的优势使多个用户共享一个信道。它将频谱分成几个频 段,每个用户完全拥有其中的一个频段来发送自己的信号。
- **时分多路复用**(TDM)下,用户以循环的方式轮流工作。每个用户周期性地获得整个带宽非常短的一个时间。
- 统计时分复用(STDM)是指动态地按需分配共用信道的时隙,只将需要传送数据的终端接入共用信道,以提高信道利用率的多路复用技术。
- **码分复用**(CDM)是扩展频谱通信的一种形式,它把一个窄带信号扩展到一个很宽的频带上。这种方法更能容忍干扰,而且允许来自不同用户的多个信号共享相同的频带。
- 波分复用(WDM)是利用多个激光器在单条光纤上同时发送多束不同波长激光的技术。
- **正交频分复用**(OFDM)将信道分成若干正交子信道,并将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。
- 空分复用 (SDM) 是指让同一个频段在不同的空间内得到重复利用。
- 2. 奈氏准则和香农公式的主要区别是什么?这两个公式对数据通信的意义是什么?

答: 奈氏准则和香农公式都是数据通信领域中的重要公式。奈氏准则认为,对于一条有限带宽、 无噪声的理想信道信道容量的计算公式(简称奈奎斯特公式)为

$$C = 2B \log_2 M$$
 (bit/s)

而香农公式则推导出了在信号平均功率受限的高斯白噪声信道中,计算信道容量的理论公式为

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

式中 B 是信道带宽(单位为 Hz),S/N 是平均信号噪声功率比,S 为接收信号功率,N 为噪声功率(指正态分布的加性高斯白噪声)。

奈氏准则和香农公式都是揭示了信道对数据传输率的限制,只是两者作用的范围不同。奈氏准则适用于理想低通信道,而香农公式适用于带宽受限且有高斯白噪声干扰的信道。这两个公式对数据通信的意义在于揭示了信道对数据传输率的限制,从而为数据通信系统设计提供了理论依据。

三、计算题

1. 假定某信道受奈氏准则限制的最高码元速率为 20000 码元/秒。如果采用振幅调制,把码元的振幅划分为 16 个不同等级来传送,那么可以获得多高的数据率(bit/s)?

解: 20000 码元/秒 $\times \log_2 16 = 80000$ bit/s。

2. 电话系统的典型参数是信道带宽 3kHz, 信噪比为 30dB, 试计算该系统的最大数据传输速率。

解:

$$B = 3 \, \text{kHz}$$

$$N = 10^{-30/10} = 10^{-3} \,\mathrm{W}$$

假设电话系统的电平范围为 -1 到 +1,

$$S = \frac{1^2 + (-1)^2}{2} = 1 \,\mathrm{W}$$

$$C = B \log_2 \left(1 + \frac{S}{N}\right) = 3\,\mathrm{kHz} \times \log_2 \left(1 + \frac{1\,\mathrm{W}}{10^{-3}\,\mathrm{W}}\right) = 29.9\,\mathrm{kbit/s}$$

- 3. 用香农公式计算一下,假定信道带宽为 3.1 kHz,最大信息传输速率为 35 kbps,那么若想使最大信息传输速率增加 60%,问信噪比(SNR)应增大到多少倍(增大多少 dB)? 如果在刚才计算出的基础上将 SNR 再增大到 10 倍,问最大信息速率能否再增加 20%? 这说明什么问题?
 - **解**: 如果想使最大信息传输速率增加 60%,则需要将 S/N 增加到原来的 2.5 倍。因此,SNR 应该增大到

$$10 \times \log_{10} 2.5 = 4.77 \, dB$$

不能。如果将 SNR 增加到 10 倍,则 S/N 将增加到原来的 100 倍。因此,最大信息传输速率 将增加

$$\log_2 101 = 6.66 \, \text{kbit/s}$$

即 18 % 左右。这说明,在信噪比较高时,即使将 SNR 增加到很高的值,也不能显著地提高最大信息传输速率。