www.gammal.tech

Lesson 35 Bitwise Operator OR

In this lesson, we'll discuss the **bitwise operator OR**.

int
$$x = 5$$
, $y = 6$;

int z = x | y;

- what does $z = x \mid y \text{ mean}$?

64	32	16	8	4	2	1	
0	0	0	0	1	0	1	- x in binary
0	0	0	0	1	1	0	- y in binary
0	0	0	0	1	1	1	x y

The | operator means:

- If **both** bits are 1, then the result of OR is 1 (true).
- If **any** of the two bits is **1**, then the result of OR is 1 (true).
- If **none** of the two bits is **1**, then the result of OR is 0 (false).

As a result, z = 7.

if(true | false)

Sometimes we use the OR operator (||) in if statements.

If either (or both) of the two conditions are true then it returns true.

In the Bitwise operator, however, we use the (|) operator that works on the binary equivalent of decimal numbers bit by bit instead of the number as a whole.

www.gammal.tech

int
$$x = 11$$
, $y = 3$;

64	32	16	8	4	2	1
0	0	0	1	1	1	1
0	0	0	0	1	1	1
0	0	0	1	1	1	1

Here, z = 11.