RELATÓRIO TÉCNICO

Sistema de Controle de Tráfego Aéreo ${\it Projeto~Margolis}$

Autores: Guilherme Ganassini, Gustavo Domenech

Disciplina: Sistemas Operacionais

Data: Agosto de 2025

Contents

1.	Resumo Executivo	. 3
2.	Especificação do Sistema	. 3
	2.1. Recursos do Aeroporto	. 3
	2.2. Operações por Tipo de Voo	. 3
	2.3. Sistema de Prioridades	. 3
3.	Arquitetura da Solução	. 3
	3.1. Estruturas de Dados Principais	. 3
	3.2. Estados do Sistema	. 4
4.	Implementação de Sincronização	. 4
	4.1. Prevenção de Deadlock	. 4
	4.2. Prevenção de Starvation	. 4
	4.3. Concorrência	. 4
5.	Configuração e Parametrização	. 4
	5.1. Parâmetros Configuráveis	. 4
	5.2. Perfis de Aeroportos	. 4
6.	Análise de Desempenho	. 5
	6.1. Métricas Coletadas	. 5
	6.2. Sistema de Logging	. 5
7.	Pontos Críticos da Implementação	. 5
	7.1. Gestão de Recursos	. 5
	7.2. Sistema de Prioridades	. 5
	7.3. Controle de Concorrência	. 5
8.	Resultados e Validação	. 5
	8.1. Funcionalidades Implementadas	. 5
	8.2. Tratamento de Problemas	. 5
9.	Conclusões	. 5
	9.1. Contribuições Principais	. 6
	9.2. Trabalhos Futuros	. 6

1. Resumo Executivo

O projeto Margolis implementa um simulador de controle de tráfego aéreo utilizando programação concorrente em C com PThreads. O sistema simula operações de pouso, desembarque e decolagem para voos domésticos e internacionais, gerenciando recursos limitados do aeroporto e tratando problemas de sincronização como deadlock e starvation.

2. Especificação do Sistema

2.1. Recursos do Aeroporto

O aeroporto simulado possui os seguintes recursos limitados:

- 3 Pistas: Recursos exclusivos para pouso e decolagem
- 5 Portões: Recursos exclusivos para embarque/desembarque
- 1 Torre de Controle: Recurso compartilhado (máximo 2 operações simultâneas)

2.2. Operações por Tipo de Voo

Tipo	Operação	Ordem de Solicitação
Internacional	Pouso	$Pista \rightarrow Torre$
	Desembarque	$Portão \rightarrow Torre$
	Decolagem	$Portão \rightarrow Pista \rightarrow Torre$
Doméstico	Pouso	$Torre \rightarrow Pista$
	Desembarque	Torre o Portão
	Decolagem	$Torre \rightarrow Port\tilde{a}o \rightarrow Pista$

2.3. Sistema de Prioridades

- Voos internacionais possuem prioridade sobre domésticos
- Mecanismo anti-starvation implementado:
 - ▶ Estado crítico após 60s de espera
 - · Crash simulado após 90s de espera

3. Arquitetura da Solução

3.1. Estruturas de Dados Principais

```
typedef struct {
    int id;
    pthread t thread id;
    FlightType type;
    PlaneState state;
    time_t created_at;
    time t waiting since;
    time t finished at;
    bool is_in_critical_state;
} Plane;
typedef struct {
    sem_t tracks;
    sem_t gates;
    sem t tower;
    pthread_mutex_t mutex_priority;
    int waiting_international_flights;
} Airport;
```

3.2. Estados do Sistema

- WAITING_FOR_LANDING: Aguardando recursos para pouso
- DURING_LANDING: Executando operação de pouso
- WAITING_FOR_GATE: Aguardando portão para desembarque
- DURING_DISEMBARK: Executando desembarque
- WAITING_FOR_TAKEOFF: Aguardando recursos para decolagem
- DURING TAKEOFF: Executando decolagem
- FINISHED: Operações concluídas com sucesso
- CRASHED STARVATION: Falha por starvation
- CRASHED_DEADLOCK: Falha por deadlock

4. Implementação de Sincronização

4.1. Prevenção de Deadlock

- Detecção de potencial deadlock baseada em timeout (30s)
- Diferentes ordens de aquisição de recursos entre tipos de voo
- Liberação ordenada de recursos

4.2. Prevenção de Starvation

- Sistema de prioridade com mutex específico
- Monitoramento de tempo de espera
- Estados críticos e crashes por timeout

4.3. Concorrência

- Semáforos para recursos limitados (pistas, portões, torre)
- Mutexes para proteção de seções críticas
- Thread pool para aviões
- Thread dedicada para geração contínua de aviões

5. Configuração e Parametrização

O sistema permite configuração flexível através dos arquivos config.h e params.h:

5.1. Parâmetros Configuráveis

- Duração da simulação (300s padrão)
- Número de pistas (3 padrão)
- Número de portões (5 padrão)
- Capacidade da torre (2 operações simultâneas)
- Tempos de timeout para starvation (60s crítico, 90s crash)

5.2. Perfis de Aeroportos

O sistema inclui 5 perfis de aeroportos reais com diferentes proporções de tráfego internacional:

Aeroporto	Localização	% Internacional
JFK	New York, USA	56%
Heathrow	London, UK	95%
Dubai	Dubai, UAE	99%
Atlanta	Atlanta, USA	15%
Guarulhos	São Paulo, Brazil	35%

6. Análise de Desempenho

6.1. Métricas Coletadas

- Total de aviões processados
- Taxa de sucesso
- Casos de starvation detectados
- Deadlocks identificados
- Máximo de aviões simultâneos
- Distribuição por estado final

6.2. Sistema de Logging

- Registro timestampado de todas as operações
- Rastreamento de estado por avião
- Identificação de problemas em tempo real
- Relatório final completo

7. Pontos Críticos da Implementação

7.1. Gestão de Recursos

A diferença na ordem de aquisição de recursos entre voos internacionais e domésticos é a principal fonte de complexidade, exigindo cuidado especial na implementação para evitar deadlocks.

7.2. Sistema de Prioridades

A implementação do sistema de prioridades para voos internacionais requer sincronização adicional através de mutex_priority para evitar starvation de voos domésticos.

7.3. Controle de Concorrência

O uso de múltiplos mutexes e semáforos requer ordem cuidadosa de aquisição e liberação para manter a consistência do sistema.

8. Resultados e Validação

8.1. Funcionalidades Implementadas

- ✓ Simulação completa do ciclo de voo (pouso, desembarque, decolagem)
- ✓ Diferentes estratégias por tipo de voo
- ✓ Sistema de prioridades funcionais
- ✓ Detecção de deadlock e starvation
- ✓ Configuração parameterizável
- ✓ Logging detalhado e relatórios
- ✓ Controle de parada limpa da simulação

8.2. Tratamento de Problemas

- Deadlock: Detecção por timeout e recuperação
- Starvation: Monitoramento ativo com estados de alerta
- Race Conditions: Proteção através de mutexes apropriados
- Resource Leaks: Cleanup adequado de recursos

9. Conclusões

O sistema Margolis demonstra uma implementação robusta de controle de tráfego aéreo com programação concorrente. A solução aborda efetivamente os desafios de sincronização em sistemas

de recursos limitados, implementando mecanismos adequados de prevenção de deadlock e starvation.

A arquitetura modular e configurável permite experimentação com diferentes cenários e cargas de trabalho, tornando o sistema adequado tanto para fins educacionais quanto para análise de desempenho de sistemas concorrentes.

9.1. Contribuições Principais

- 1. Implementação de diferentes estratégias de aquisição de recursos
- 2. Sistema robusto de detecção e prevenção de problemas de sincronização
- 3. Framework configurável para simulação de diferentes perfis de aeroportos
- 4. Logging abrangente para análise de comportamento do sistema

9.2. Trabalhos Futuros

- Implementação de algoritmos de scheduling mais sofisticados
- Análise de performance com diferentes configurações de recursos
- Extensão para múltiplos aeroportos conectados
- Interface gráfica para visualização em tempo real