Lab3

電機碩二_111061629_洪啓恩

1. Block Diagram

2. Describe operation

FIR 是一種數字濾波器,它的運作方式是通過將一串數據(即輸入信號)與一組系數(也稱為脈衝響應)進行點積來生成輸出信號。在這個過程中,每一筆新的數據輸入都會與相應的系數相乘,然後將這些相乘的結果進行累加,直到所有的系數都被使用過,這時就會輸出該次計算的結果。

在硬件設計中,使用 BRAM (Block RAM) 來存儲這些數據和系數是一種常見的做法。然而,對於 FIR 濾波器,每次計算都需要將數據和系數進行移位操作,這樣才能確保每次計算都使用到正確的數據和系數。然而,在 BRAM 中進行這種移位操作相對比較複雜且耗時,因為讀取和寫入操作本身就需要較多的時間。

為了解決這個問題,我利用 pointer。通過使用 pointer,我們可以跳過將數據和系數進行實際移位的過程,而是直接通過改變指針的值來指向 BRAM 中的正確位置。這樣,我們就可以更高效地訪問需要的數據和系數,從而加快計算速度。

3. Resource usage

下圖可以看到 FF 和 LUT

28 1. Slice Logic					
29					
30					
31 +	+	+	+	+	++
32 Site Type	Used	Fixed	Prohibited	Available	Util%
33 +	+	+	+	+	++
34 Slice LUTs*	2181	0	0	53200	4.11
35 LUT as Logic	2181	0	0	53200	4.11
36 LUT as Memory	0	0	0	17400	0.00
37 Slice Registers	1096	0	0	106400	1.03
38 Register as Flip Flop	1093	0	0	106400	1.03
39 Register as Latch	3	0	0	106400	<0.01
40 F7 Muxes	429	0	0	26600	1.61
41 F8 Muxes	204	0	0	13300	1.53
42 +	+	+	+	+	++

4. Timing Report

Slack 為 5.261 ns

Design Timing Summary

etup		Hold		Pulse Width		
Worst Negative Slack (WNS):	5.261 ns	Worst Hold Slack (WHS):	0.143 ns	Worst Pulse Width Slack (WPWS):	4.500 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	169	Total Number of Endpoints:	169	Total Number of Endpoints:	1124	

Max delay path:

```
533 Max Delay Paths
535 Slack (MET) :
                                   5.261ns (required time - arrival time)
                                   genblk1.coef_lite_reg[93][3]/C
      Source:
                                   (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.000ns period=10.000ns})
genblk1.rdata_r_reg[19]/0
537
                                     (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.000ns period=10.000ns})
539
                                   axis_clk
541
      Path Type:
                                   Setup (Max at Slow Process Corner)
                                   10.000ns (axis_clk rise@10.000ns - axis_clk rise@0.000ns)
4.603ns (logic 1.145ns (24.875%) route 3.458ns (75.125%))
      Requirement:
      Data Path Delay:
Logic Levels:
543
                                   4 (LUT6=4)
545
      Clock Path Skew:
                                   -0.145ns (DCD - SCD + CPR)
        Destination Clock Delay (DCD):
                                                 2.128ns = ( 12.128 - 10.000 )
546
        Source Clock Delay
Clock Pessimism Removal
                                     (SCD):
(CPR):
547
                                                 2.456ns
548
                                                 0.184ns
549
      Clock Uncertainty:
                                   0.035ns
                                            ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
        Total System Jitter
Total Input Jitter
                                     (TSJ):
                                                 0.071ns
550
                                      (TIJ):
                                                 0.000ns
552
         Discrete Jitter
                                       (DJ):
                                                 0.000ns
         Phase Error
                                       (PE):
```

5. Simulation Waveform

stream-in, and stream-out

Data BRAM 寫入操作中,輸入數據通過 AXI stream 進入,並直接寫入 Data BRAM 中。當 ss_tready,ss_tvalid 同時為 1,且 data_we 為 4'b1111,在下一個 clock cycle,數據將被寫入 BRAM。

完成 FIR 運算後,答案由 AXI stream 輸出,port 為 sm_tdata。當 sm_data 上出現此次運算的答案時,sm_tvalid 會被設置為 1。這時 testbench 會讀取並與 golden data 比對是否正確。

Tap BRAM write:

Tap BRAM read back:

