# **Lecture 6: Intro to Classifiers**

**INFO 1998: Introduction to Machine Learning** 



# **Apply to Cornell Data Science!**

- All subteams are recruiting freshmen this semester!
  - o Deadline: October 17th, 11:59pm
  - Don't forget to also submit the College of Engineering <u>application</u>.
- Application Link: <u>https://cornelldata.science/recruitment</u>
- If you're enjoying this class...
  - you'll LOVE being on CDS ●



Subteam UTea trip!



# **Agenda**

- 1. What is a Classifier?
- 2. K-Nearest Neighbors Classifier
- 3. Review of Underfitting v. Overfitting
- 4. Confusion Matrices



# What are Classifiers?



#### What are Classifiers?

### Classifiers are able to help answer questions like...

- "What species is this?"
- "What major is a student in based on their classes?"
- "Which Hogwarts House do I belong to?"
- "Am I going to pass this class?"



#### What are Classifiers?

Classifiers predict the class/category of a set of data points.
 This class/category is based off of the target variable we are looking at.

- Difference between linear regression and classifiers
  - Linear regression is used to predict the value of a continuous variable
  - Classifiers are used to predict categorical or binary variables



# K-Nearest Neighbors Classifier



#### What is the KNN Classifier?

- Lazy learner classifier
- Easy to interpret
- Fast to calculate
- Good for coarse analysis





#### **How Does It Work?**

Uses the k (a user specified value) nearest data points to predict the unknown one

- A simple assumption: the values nearest to a data point are similar to it
- k is a hyperparameter of the KNN model
  - a parameter which affects the training process



# **How Does It Work?** Most around me got an A, maybe I got an A as well Α Α Α Α

**Define** a k value (in this case k = 3)





**Define** a k value (in this case k = 3)

**Pick** a point to predict (blue diamond)





**Define** a k value (in this case k = 3)

**Pick** a point to predict (blue diamond)

**Count** the number of closest points









**Define** a k value (in this case k = 3)

**Pick** a point to predict

(blue diamond)

**Count** the number of closest points

**Increase** the radius until the number of points in circle adds up to 3







**Define** a k value (in this case k = 3)

Pick a point to predict (blue diamond)

**Count** the number of closest points

**Increase** the radius until the number of points within the radius adds up to 3

**Predict** the blue diamond to be a blue circle!





# **Demo**



# **Underfitting v. Overfitting**



## **Underfitting**

Underfitting means we have <u>high bias</u> and <u>low variance</u>.

- Lack of relevant variables/factor
- Imposing limiting assumptions
  - Linearity
  - Assumptions on distribution
  - Wrong values for parameters





### **Overfitting**

Overfitting means we have <u>low bias</u> and <u>high variance</u>.

- Model fits too well to specific cases
- Model is over-sensitive to sample-specific noise
- Model introduces too many variables/complexities than needed





# Relationship Between k and Fit

The **k** value you use has a relationship to the fit of the model

A higher k gives a smoother line, but too large of a k and it is the average of all the data (or the label that is most common/likely)





# **Confusion Matrix**



### What is a Confusion Matrix?

Table used to describe the performance of a classifier on a set of binary test data for which the true values are known

|               | p'<br>(Predicted) | n'<br>(Predicted) |
|---------------|-------------------|-------------------|
| P<br>(Actual) | True Positive     | False Negative    |
| n<br>(Actual) | False Positive    | True Negative     |



### Sensitivity

Called the true positive rate

Tells us how many positives are correctly identified as positives

Optimize for: Initial diagnosis of fatal disease

|               | p'<br>(Predicted) | n'<br>(Predicted) |
|---------------|-------------------|-------------------|
| P<br>(Actual) | True Positive     | False Negative    |
| n<br>(Actual) | False Positive    | True Negative     |

Sensitivity = True Positive/ (True Positive + False Negative)



### **Specificity**

Called the true negative rate

Tells us how many negatives are correctly identified as negatives

Optimize for: testing for a disease with a risky treatment

|               | P'<br>(Predicted) | n'<br>(Predicted) |
|---------------|-------------------|-------------------|
| P<br>(Actual) | True Positive     | False Negative    |
| n<br>(Actual) | False Positive    | True Negative     |

**Specificity** = True Negative/ (True Negative + False Positive)



### Question

Which is an example of when you would want higher specificity?

- A. DNA tests for a death penalty case
- B. Deciding which iPhone to buy
- C. Airport security



## **Overall Accuracy**

### Proportion of correct predictions

|               | p'<br>(Predicted) | n'<br>(Predicted) |
|---------------|-------------------|-------------------|
| P<br>(Actual) | True Positive     | False Negative    |
| n<br>(Actual) | False Positive    | True Negative     |

Accuracy = (True Positive + True Negative) / Total



#### **Overall Error Rate**

### Proportion of incorrect predictions

|               | p'<br>(Predicted) | n'<br>(Predicted) |
|---------------|-------------------|-------------------|
| P<br>(Actual) | True Positive     | False Negative    |
| n<br>(Actual) | False Positive    | True Negative     |

**Error** = (False Positive + False Negative) / Total



### **Precision**

Proportion of correct positive predictions among all positive predictions

|               | p'<br>(Predicted) | n'<br>(Predicted) |
|---------------|-------------------|-------------------|
| P<br>(Actual) | True Positive     | False Negative    |
| n<br>(Actual) | False Positive    | True Negative     |

Precision = True Positive /
(True Positive + False Positive)



### **Coming Up**

- Assignment 5: Due Friday 10/18 at 11:59pm!
- Assignment 6: Due next Wednesday 10/23
- Mid-Semester Check-In: Details on ED! Complete by Wednesday 10/23.
- Next Lecture: Supervised Learning Pt. 1