Proposition 0.1. Let $k, i \in \mathbb{N}$ and $1 \le i \le k/2$, there exists k graph property on v vertices that has sensitivity $O(v^{k-i})$ and block sensitivity $\Omega(v^k)$.

We prove the proposition by first proving two lemmas.

Lemma 0.2. In a k-uniform hypergraph on v vertices, there are $\Omega(v^k)$ disjoint $K_{k+1}^{(k)}$

Proof. there are $\binom{v}{k+1}$ such cliques and for every clique chosen we eliminate any other cliques with more than k-1 points in common. In this way we get at least

(0.3)
$$\frac{\binom{v}{k+1}}{\binom{k+1}{k}(v-k)} = c * v^k$$

many cliques and any two of them have no more than k-1 points in common, which guarantees that they are disjoint cliques.

We also need a special case of the Ray-Chaudhuri-Wilson's Theomrem.

Lemma 0.4. Given \mathcal{F} a family of subsets of [n] such that any element of \mathcal{F} has size $s \geq i$ and the intersection of any two elements has size at most i-1. Then we have

$$(0.5) |\mathcal{F}| \le \binom{n}{i}.$$

Proof. Since the intersection of any element of mathcal F has size at most i-1, any subset of [n] with size i is contained in at most one element of \mathcal{F} . And any element of \mathcal{F} contains at least one i subset of [n], we have

$$(0.6) |\mathcal{F}| \le \binom{n}{i}.$$

With these two lemmas we can define the desired k graph property and analyze its block sensitivity and sensitivity.

Proof. Define f be the graph property that there exists a $K_{k+1}^{(k)}$ inside the graph such that $|K_{k+1}^{(k)} \cap E| \leq i-1$ for any edge E lies not entirely inside the clique. We claim that this is the desired k-graph property.

First we calculate the block sensitivity. Consider the empty graph, by the first lemma, there are $\Omega(v^k)$ disjoint cliques and each of them is a sensitive block. Hence we have

$$(0.7) bs(f) = \Omega(v^k).$$

Then we want to show that the sensitivity of f is $O(v^{k-i})$. We calculate the

sensitivity by looking at $s^0(f)$ and $s^1(f)$ separately When f=1, there is a desired $K_{k+1}^{(k)}$ clique inside the graph. To change the value of f, we need to either remove an edge from $K_{k+1}^{(k)}$ or add an edge with more than i-1 common vertices with the clique. We have

(0.8)
$$s^{1}(f) \leq \binom{k+1}{2} + \binom{k+1}{i} \binom{v-i}{k-i} \leq C * v^{k-i},$$

for some constant C.

When f = 0, there doesn't exist such $K_{k+1}^{(k)}$ in the graph. We call a k+1-tuple

 $\{v_1,...,v_{k+1}\}$ sensitive if adding or removing an edge from the graph will make $\{v_1,...,v_{k+1}\}$ the vertices of a desired clique. Any sensitive edge is associated with a sensitive tuple by this definition. Also, we can show that there is precisely 1 sensitive edge associated with each sensitive tuple since if there are two sensitive edges associated with a k+1-tuple, we can't construct a desired clique by just removing or adding just one edge. Thus we have a injection from the set of sensitive edges into the set of sensitive tuples, and let $\mathcal F$ denote the set of all sensitive tuples, we have

$$(0.9) s^0(f) \le |\mathcal{F}|.$$

Given two sensitive tuples, if they have more than i-1 vertices in common, without loss of generality, assume that $\{v_1,...,v_i\}$ are vertices in common. If both of them can form a desired clique by adding an edge to the graph, there are no less than 1 edge through these i points and adding any edge will not remove these edges, which contradicts the fact that these two tuples can form a desired clique by adding an edge. If there exists one tuple can form a desired clique by removing an edge, there exists no less than 2 edges through $\{v_1,...,v_i\}$ in one of the tuples, and thus another tuple can't form a desired clique by either removing or adding exactly 1 edge, which contradicts the fact that the tuple is sensitive. Then given any two sensitive tuples, they have at most k-i-1 common vertices.

Then \mathcal{F} is a family of subsets of [v] such that any element has size k+1 and any two elements have at most i-1 intersections. By our second lemma,

$$(0.10) |\mathcal{F}| \le \binom{v}{i} \le C' * v^i,$$

for some constant C'.

From above $s^0(f) = O(v^{k-i})$ and $s^1(f) = O(v^i)$ we conclude that $s(f) = O(v^{k-i})$ since $i \le k/2$. Hence, f is a k-graph property with sensitivity v^{k-i} and block sensitivity v^k .

Corollary 0.11. When k is even, there exists k graph property on v vertices that has sensitivity $O(v^{k/2})$ and block sensitivity $\Omega(v^k)$. When k is odd, there exists k graph property on v vertices that has sensitivity $O(v^{(k+1)/2})$ and block sensitivity $\Omega(v^k)$.

Proof. When k is even, choose i=k/2 and when k is odd, choose i=(k-1)/2 in above proposition.

Remark 0.12. Note that we don't actually require the "isolated" graph to be a clique, i.e. $K_{k+1}^{(k)}$ in our analysis of the block sensitivity and sensitivity. So we can replace $K_{k+1}^{(k)}$ by any k hypergraph \mathcal{H} on k+1 vertices, such that given any i vertices of \mathcal{H} , there are at least two edges through these i vertices. Then we can construct many k graph properties with the desired lower bound on block sensitivity and upper bound on sensitivity in a similar way.