GAUGE AND HIGGS BOSONS

 γ

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 2 \times 10^{-16}$ eV Charge $q < 5 \times 10^{-30}$ e Mean life $\tau =$ Stable

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

W

$$J=1$$

Charge $= \pm 1~e$ Mass $m = 80.423 \pm 0.039~{\rm GeV}$ $m_Z - m_W = 10.764 \pm 0.039~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.2 \pm 0.6~{\rm GeV}$ Full width $\Gamma = 2.118 \pm 0.042~{\rm GeV}$ $\langle N_{\pi^\pm} \rangle = 15.70 \pm 0.35$ $\langle N_{K^\pm} \rangle = 2.20 \pm 0.19$ $\langle N_p \rangle = 0.92 \pm 0.14$ $\langle N_{\rm charged} \rangle = 19.41 \pm 0.15$

 W^- modes are charge conjugates of the modes below.

W+ DECAY MODES	Fraction (Γ_i/Γ) Confide		nce level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[b] (10.68± 0.12	2) %		
$e^+ \nu$	(10.72 ± 0.16)	s) %		40212
$\mu^+ \nu$	(10.57 ± 0.22)	2) %		40211
$ au^+ u$	(10.74 ± 0.27)	') %		40192
hadrons	(67.96 ± 0.35)	5) %		_
$\pi^+ \gamma$	< 8	$\times 10^{-5}$	95%	40211
$D_s^+ \gamma$	< 1.3	$\times 10^{-3}$	95%	40187
cX	$(33.6 \pm 2.7$) %		_
c s	$(31 \begin{array}{cc} +13 \\ -11 \end{array}$) %		_
invisible	[c] (1.4 \pm 2.8) %		_

Z

$$J = 1$$

Charge = 0 Mass
$$m = 91.1876 \pm 0.0021$$
 GeV $[d]$ Full width $\Gamma = 2.4952 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV $[b]$ $\Gamma(\text{invisible}) = 499.0 \pm 1.5$ MeV $[e]$ $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0009 \pm 0.0028$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0019 \pm 0.0032$ $[f]$

Average charged multiplicity

$$\langle N_{charged} \rangle = 21.07 \pm 0.11$$

Couplings to leptons

$$g_V^\ell = -0.03783 \pm 0.00041$$
 $g_A^\ell = -0.50123 \pm 0.00026$
 $g_e^{\nu} = 0.53 \pm 0.09$
 $g_\mu^{\nu} = 0.502 \pm 0.017$

Asymmetry parameters [g]

$$A_e = 0.1515 \pm 0.0019$$
 $A_\mu = 0.142 \pm 0.015$
 $A_\tau = 0.143 \pm 0.004$
 $A_s = 0.90 \pm 0.09$
 $A_c = 0.666 \pm 0.036$
 $A_b = 0.928 \pm 0.031$

Charge asymmetry (%) at Z pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$
 $A_{FB}^{(0u)} = 4 \pm 7$
 $A_{FB}^{(0s)} = 9.8 \pm 1.1$
 $A_{FB}^{(0c)} = 7.16 \pm 0.36$
 $A_{FB}^{(0b)} = 10.02 \pm 0.19$

Z DECAY MODES	$\begin{array}{ccc} & & \text{Scale factor}/\\ \text{Fraction } \left(\Gamma_{\vec{i}}/\Gamma\right) & & \text{Confidence level} \end{array}$	•
e^+e^-	(3.363 ± 0.004) %	45594
$\mu^+\mu^-$	(3.366 ± 0.007) %	45594
$\tau^+\tau^-$	(3.370 ± 0.008) %	45559
$\ell^+\ell^-$	[b] (3.3658 ± 0.0023) %	_
invisible	(20.00 \pm 0.06) %	_
hadrons	(69.91 ± 0.06) %	_

HTTP://PDG.LBL.GOV

Page 2

$(u\overline{u}+c\overline{c})/2$		(10.1	±1.1) %	_
$(d\overline{d} + s\overline{s} + b\overline{b})/3$		(16.6	± 0.6) %	_
$c\overline{c}$		(11.76	±0.33) %	_
$b\overline{b}$		(15.14	±0.05) %	_
<i>b</i> b b b		(3.6	± 1.3	$) \times 10^{-4}$	_
ggg		< 1.1		% CL=95%	_
$\pi^0\gamma$		< 5.2		$\times 10^{-5} \text{ CL} = 95\%$	45594
$\eta\gamma$		< 5.1		$\times10^{-5}$ CL=95%	45592
$\omega \gamma$		< 6.5		$\times10^{-4}$ CL=95%	45590
$\eta'(958)\gamma$		< 4.2		$\times 10^{-5}$ CL=95%	45589
$\gamma\gamma$		< 5.2		$\times 10^{-5}$ CL=95%	45594
$\gamma\gamma\gamma$		< 1.0		$\times 10^{-5}$ CL=95%	45594
$\pi^{\pm}W^{\mp}$		[h] < 7		$\times 10^{-5} \text{ CL} = 95\%$	10128
$ ho^\pm W^\mp$		[h] < 8.3		$\times 10^{-5}$ CL=95%	10103
$J/\psi(1S)$ X		(3.51	$+0.23 \\ -0.25$	$) \times 10^{-3}$ S=1.1	_
ψ (2 S)X		(1.60	± 0.29	$) \times 10^{-3}$	_
$\chi_{c1}(1P)X$		(2.9		$) \times 10^{-3}$	_
$\chi_{c2}(1P)X$		< 3.2		$\times 10^{-3}$ CL=90%	_
$\Upsilon(1S) \times + \Upsilon(2S) \times$		(1.0	± 0.5	$) \times 10^{-4}$	_
$+\Upsilon(3S)$ X					
$\Upsilon(1S)X$		< 4.4		$\times10^{-5}$ CL=95%	_
$\Upsilon(2S)X$		< 1.39		$\times10^{-4}$ CL=95%	- - -
$\Upsilon(3S)X$		< 9.4		$\times10^{-5}$ CL=95%	_
$(D^0/\overline{D}{}^0)$ X		(20.7	± 2.0) %	_
$D^{\pm}X$		(12.2	±1.7) %	_
$D^*(2010)^{\pm}X$		[h] (11.4	± 1.3) %	_
$D^{*'}(2629)^{\pm}X$		searched f	for		_
$B_s^0 X$		seen			_
$B_c^+ X$		searched f	for		_
anomalous $\gamma+$ hadrons		[i] < 3.2		$\times 10^{-3} \text{ CL} = 95\%$	_
$e^+e^-\gamma$		[i] < 5.2		$\times10^{-4}$ CL=95%	45594
$\mu^+\mu^-\gamma$		[i] < 5.6		$\times10^{-4}$ CL=95%	45594
$\tau^+\tau^-\gamma$		[i] < 7.3		$\times10^{-4}$ CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[j] < 6.8		$\times10^{-6}$ CL=95%	_
$q \overline{q} \gamma \gamma$		[j] < 5.5		$\times 10^{-6}$ CL=95%	_
$ u \overline{ u} \gamma \gamma$		[j] < 3.1		$\times 10^{-6} \text{ CL}=95\%$	45594
$e^\pm\mu^\mp$	LF	[h] < 1.7		$\times 10^{-6}$ CL=95%	45594
$e^{\pm} au^{\mp}$	LF	[h] < 9.8		$\times 10^{-6}$ CL=95%	45576
$\mu^{\pm} au^{\mp}$	LF	[h] < 1.2		$\times 10^{-5}$ CL=95%	45576
pe	L,B	< 1.8		$\times 10^{-6}$ CL=95%	_
$p\mu$	L,B	< 1.8		$\times 10^{-6}$ CL=95%	_

Higgs Bosons — H^0 and H^{\pm} , Searches for

 H^0 Mass m > 114.3 GeV, CL = 95%

 H_1^0 in Supersymmetric Models $(m_{H_1^0} < m_{H_2^0})$

Mass m > 89.8 GeV, CL = 95%

 A^0 Pseudoscalar Higgs Boson in Supersymmetric Models [k]

Mass m > 90.1 GeV, CL = 95% $tan \beta > 1$

 H^{\pm} Mass m > 71.5 GeV, CL = 95%

See the Particle Listings for a Note giving details of Higgs Bosons.

Heavy Bosons Other Than Higgs Bosons, Searches for

Additional W Bosons

W' with standard couplings decaying to $e\nu$, $\mu\nu$

Mass m > 786 GeV, CL = 95%

 W_R — right-handed W

Mass m > 715 GeV, CL = 90% (electroweak fit)

Additional Z Bosons

 Z'_{SM} with standard couplings

Mass m > 690 GeV, CL = 95% ($p\overline{p}$ direct search)

Mass m > 1500 GeV, CL = 95% (electroweak fit)

 Z_{LR} of $SU(2)_L \times SU(2)_R \times U(1)$

(with $g_L = g_R$)

Mass m > 630 GeV, CL = 95% ($p\overline{p}$ direct search)

Mass m > 860 GeV, CL = 95% (electroweak fit)

 Z_{χ} of SO(10) ightarrow SU(5)imesU(1) $_{\chi}$ (with $g_{\chi}{=}e/{\cos}\theta_W$)

Mass m > 595 GeV, CL = 95% $(p\overline{p})$ direct search)

Mass m > 680 GeV, CL = 95% (electroweak fit)

 Z_{ψ} of $E_6 \rightarrow SO(10) \times U(1)_{\psi}$ (with $g_{\psi} = e/\cos\theta_W$)

Mass m > 590 GeV, CL = 95% ($p\overline{p}$ direct search)

Mass m > 350 GeV, CL = 95% (electroweak fit)

 Z_n of $E_6 \rightarrow SU(3)\times SU(2)\times U(1)\times U(1)_n$ (with $g_n=e/\cos\theta_W$)

Created: 6/18/2002 15:11

Mass m > 620 GeV, CL = 95% $(p\overline{p})$ direct search)

Mass m > 619 GeV, CL = 95% (electroweak fit)

Scalar Leptoquarks

```
Mass m>242 GeV, CL = 95% (1st generation, pair prod.)
Mass m>290 GeV, CL = 95% (1st gener., single prod.)
Mass m>202 GeV, CL = 95% (2nd gener., pair prod.)
Mass m>73 GeV, CL = 95% (2nd gener., single prod.)
Mass m>148 GeV, CL = 95% (3rd gener., pair prod.)
(See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)
```

Axions (A⁰) and Other Very Light Bosons, Searches for

The standard Peccei-Quinn axion is ruled out. Variants with reduced couplings or much smaller masses are constrained by various data. The Particle Listings in the full *Review* contain a Note discussing axion searches.

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] ℓ indicates each type of lepton (e, μ , and τ), not sum over them.
- [c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [e] This partial width takes into account Z decays into $\nu\overline{\nu}$ and any other possible undetected modes.
- [f] This ratio has not been corrected for the τ mass.
- [g] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [h] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [\emph{i}] See the \emph{Z} Particle Listings for the γ energy range used in this measurement.
- [j] For $m_{\gamma\gamma}=$ (60 \pm 5) GeV.
- [k] The limits assume no invisible decays.