برقی ادوار

خالد خان بوسفر کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی، اسلام آباد khalidyousafzai@comsats. edu. pk

عنوان

1	بنياد	1
برقی بار، برقی رو اور برقی دباو	1.1	
قانونِ اوہم	1.2	
نوانائی اور طاقت	1.3	
برقی پرزے	1.4	
1.4.1 غير تابع منبع		
1.4.2 تابع منبع		
ادوار	مزاحمتي	2
قانون او _ل ىم 	2.1	
فوانين كرچاف	2.2	

اب 1

بنياد

اس کتاب میں بین الاقوامی نظام اکائی استعال کی گئی ہے جس کے چند بنیادی اکایاں کلو گرام (kg)، میٹر (m)، سینڈ (s)اور کیلون (K) ہیں۔ان اکایوں کے ساتھ عموماً شکل 1.1 میں دکھائے گئے ضربے استعال کئے جاتے ہیں جن سے آپ بخوبی واقف ہیں۔

1.1 برقی بار، برقی رو اور برقی دباو

اس کتاب میں بوقی باد 2 اور بوقی رو 3 کلیدی کردار ادا کریں گے۔ برقی بارکی اصطلاح کو چھوٹا کر کے صرف بوق یا صرف بارکی اصطلاح استعال کی جائے گی جبکہ برقی روکہتے ہیں۔چونکہ بارکی حرکت سے توانائی ایک مقام سے دوسرے مقام منتقل ہوتی ہے لہذا ہماری دلچیسی کا مرکز برقی روہوگی۔

موصل تارکی مدد سے برتی پرزہ جات کو مختلف انداز میں آپس میں جوڑنے سے بوقی دور احاصل ہوتا ہے۔ جیسے پائپ سے پانی کو ایک مقام سے دوسرے مقام تک منتقل کیا جاتا ہے، بالکل اسی طرح برتی دور میں ایک نقطے سے دوسرے نقطے تک بار موصل تارکے ذریعہ پہنچایا جاتا ہے۔ یوں اگر پانی کو بار تصور کیا جائے گا۔ برتی ادوار سیجھنے میں یہ مثابہت مدد گارثابت ہوتی ہے۔

کسی بھی نقطے پر برقی روسے مراد اس نقطے سے فی سینڈ گزرتا بار ہے۔رواور بار کے تعلق کو تفرقی 5 صورت میں یوں

$$i = \frac{\mathrm{d}q}{\mathrm{d}t}$$

SI system¹ electric charge² electric current³ electric circuit⁴ differential form⁵

10^{-12}	10-9	10-6	10^{-3}	100	103	106	109	10 ¹²
p	n	µ	m		k	M	G	T
pico	nano	micro	milli		kilo	mega	giga	tera
پیکو	نینو	مائيكرو	مِلٰی		کِلو	میگا	گیگا	ٹیرا

شکل 1.1: بین الاقوامی نظام اکائی کے ضربیر۔

باب 1. بنیاد

شکل 1.2: برقی رو کو بیان کرنے کے درست طریقے۔

اور تکملہ صورت⁶ میں یوں

$$q = \int_{-\infty}^{t} i \, \mathrm{d}t$$

i ککھا جا سکتا ہے جہاں برقی بار کو g سے ظاہر کیا گیا ہے اور برقی روکو i سے ظاہر کیا گیا ہے۔بدلتے متغیرات کو انگریزی کے چھوٹے حروف تبجی مثلاً i یا g سے ظاہر کیا جاتا ہے۔یوں غیر متغیر روکو I اور غیر متغیر بار کو g سے ظاہر کیا جاتا ہے۔یوں غیر متغیر روکو I اور غیر متغیر بار کو g سے ظاہر کیا جائے گا۔

بارکی اکائی کو تکو لمب⁷ کہتے ہیں جے C کی علامت سے ظاہر کیا جاتا ہے جبکہ روکی اکائی کو ایمپیئر ⁸ کہتے ہیں۔ایمپیئر کی علامت A ہے۔اگر تار سے ایک سینڈ دورانیے میں ایک ایمپیئر کی برقی روپائی جائے گی۔

روایتی طور پریہ تصور کیا جاتا تھا کہ مثبت بار کے حرکت سے برقی رو پیدا ہوتی ہے۔اب ہم جانتے ہیں کہ حقیقت میں موصل تار میں مثبت ایٹم ساکن ہوتے ہیں اور آزاد منفی الیکٹران کے حرکت سے رو پیدا ہوتی ہے۔اس حقیقت کے باوجود، تصور کیا جاتا ہے کہ مثبت بارکی حرکت برقی روکو جنم دیتی ہے۔شکل۔
الف میں فی سکنڈ 3 کا بار بائیں سے دائیں جانب منتقل ہو رہا ہے جبکہ شکل۔ب میں فی سکنڈ 2 کا بار دائیں سے بائیں جانب منتقل ہو رہا ہے۔یوں آپ دیکھ سکتے ہیں کہ برقی روکی مقدار اور سمت دونوں بیان کرناضروری ہیں۔

غیر متغیر برقی رو کو یک سمتی رو ⁹ کہتے ہیں۔ یک سمتی رو کی مقدار وقت کے ساتھ تبدیل نہیں ہوتی۔وقت کے ساتھ تبدیل ہوتی برقی رو کو بدلتی رو ¹⁰ کہتے ہیں۔ان دونوں کو شکل میں دکھایا گیا ہے۔موبائل کی بیٹری یک سمتی رو پیدا کرتی ہے جبکہ گھریلو پٹکھا بدلتی روسے چلتا ہے۔

شکل 1.3-الف میں 50 کی مزاحمت میں 4A کی روپائی جاتی ہے۔اس مزاحمت کے دونوں سرے مزید پرزہ جات سے جڑے ہیں جنہیں شکل میں نہیں دکھایا گیا ہے۔شکل-ب تا شکل-ٹ میں مزاحمت پر دباواور مزاحمت میں رو کو مختلف طریقوں سے لکھا گیا ہے۔کسی بھی دو متغیرات کو کل چار انداز

integral form

 $Coulomb^7$

Ampere⁸

direct current, DC⁹

alternating current, AC^{10}

$$I = -4 \,\mathrm{A}$$
 \Rightarrow $V = 20 \,\mathrm{V}$ \Rightarrow $Y = 20 \,\mathrm{$

شکل 1.3: مزاحمت کی رو اور دباو لکھنے کے چار ممکنہ طریقے۔

شکل 1.4: انفعالی سمت کر ترکیب کی پہچان۔

باب1. بنیاد

شكل 1.5: برقى دباو مين نقطه حواله كي ابميت.

میں لکھا جا سکتا ہے۔ یہی دوعد دمتغیرات یعنی د باواور رو کے لئے بھی درست ہے المذاانہیں لکھنے کے کل چار طریقے ہیں۔ شکل 1.4 میں برقی د باواور برقی رو کے مقدار لکھے بغیر یہی چار طریقے دوبارہ د کھائے گئے ہیں۔ان میں شکل-باور شکل-ٹ کے طرز کو انفعانی سمت کی ترکیب ان کہتے ہیں۔انفعالی سمت کی ترکیب میں د باو کا اور رو اکی سمتیں یوں چنئی جاتی ہیں کہ برقی پرزے میں رو مثبت سرے سے داخل ہوتی ہے۔ یوں شکل-ب میں مزاحمت کا بھلائی سرے کو د باو کا مثبت سرا چنا گیا ہے المذاانفعالی سمت کی ترکیب میں اس برقی رواور برقی د باو کا مثبت سر ہے لمذاانفعالی سمت کی ترکیب میں اس برقی رواور برقی د باو کی درست سمتوں کا کوئی کردار نہیں۔قانونِ او ہم 10 طاقت کے حساب میں انفعالی سمت کی ترکیب استعمال کیا جاتا ہے۔

انفعالی سمت کی توکیب میں برقی پرزے پر دباوکی سمت چننے کے بعد روکی سمت یوں چننی جاتی ہے کہ چنے گئے دباو کے مثبت سر سے پرزے میں رو داخل ہو۔

عام زندگی میں اونچائی کو زمین سے ناپا جاتا ہے جہاں زمین کی اونچائی صفر کے برابر لی جاتی ہے۔یوں اونچائی کے ناپ میں زمین کو نقطہ حوالہ 13 لیا جاتا ہے۔شکل 1.5-الف میں سات منزلہ عمارت و کھائی گئی ہے۔اگر زمین نقطہ ت پر ہو تب نقطہ ن مثبت تین پڑھا جا سکتا ہے۔اس کے بر عکس اگر زمین نقطہ ٹ پر ہو تب نقطہ ن مثبت تین پڑھا جا سکتا ہے۔اس کے بر عکس اگر زمین نقطہ ٹ پر ہونے کی صورت میں نقطہ ن منفی چار پر ہوگا۔آپ دیکھ سکتے ہیں کہ نقطہ ن کی حتمی اونچائی کوئی معنی نہیں ر کھتی۔اونچائی صرف اس صورت میں معنی خیز ہوتی ہے جب نقطہ حوالہ بھی بیان کیا جائے۔ برتی دباو بھی بالکل اونچائی کی طرح ناپی جاتی ہوں شکل 1.5-ب میں نقطہ ت کے حوالے سے نقطہ ٹ مثبت دو وولٹ 2V پر ہے جبکہ نقطہ ث کے حوالے سے نقطہ ٹ منفی پانچ وولٹ 2V پر ہے۔اس طرح نقطہ ٹ کے حوالے سے نقطہ ث کر ہوں۔ پر اور نقطہ ث کے کوالے سے نقطہ ث کر ہوں۔ خوالے سے نقطہ ث کر ہوں۔ خوالے سے نقطہ ش کر ہوں ہوں کی جاتی ہوں۔

برتی د باوکی قیمت بھی بیان کرتے ہوئے ضروری ہے کہ نقطہ حوالہ بیان کیا جائے۔ برتی دور میں د باوکی نشاندہی کرتے ہوئے نقطہ حوالہ کو منفی کی علامت (-) سے ظاہر کیا جاتا ہے۔ شکل 0.1-الف میں یوں کچل تار نقطہ حوالہ ہے۔ یوں اگر (-) سے ظاہر کیا جاتا ہے۔ شکل 0.1-الف میں یوں کچل تار نقطہ حوالہ ہے۔ یوں اگر 0.1-الف میں یوں کچل تار کی نسبت سے بالائی تار منبیت چار وولٹ پر ہوگا۔ اسی طرح 0.1-الف میں یوں کچل تار کی نسبت سے بالائی تار کو حوالہ لیتے ہوئے کچل تار کی برقی د باو مثبت سات وولٹ ہوگی۔ شکل 0.1-ب میں کچل تار کو منا مطلب ہے کہ بالائی تار کو حوالہ لیتے ہوئے کچل تار کی برقی د باو مؤل ہوگا۔ شکل 0.1-ب میں کچل تار کو خوالہ لیتے ہوئے کچل تار کے حوالے سے بالائی تار کی د باو کو 0.1-ب میں کچل تار پر نوشت میں کہلے در کار نقطے کا نام اور بعد میں نقطہ حوالہ کا نام بیان کیا جاتا ہے۔ یوں اگر 0.1- کی قیمت منفی ہو تب بالائی تار کے حوالے سے کچل تار پر مثبت د باو ہو گا۔ برقی زمین کی نشاندہی کر ناضرور کی گا۔ برقی دور میں عموماً کسی ایک نقطے کو ہوتی ذمین 0.1- پنا جاتا ہے۔ یوں مختلف مقامات کے د باو بیان کرتے ہوئے ہر مرتبہ برقی زمین کی نشاندہی کر ناضرور کی نہیں ہوتا۔ شکل 0.1- بین برتی زمین کی علامت استعال کی گئی ہے۔ برقی زمین کی برقی د باو صفر کے برابر لی جاتی ہے۔ اس شکل میں بالائی تار کی برقی د بو

passive sign convention¹¹

Ohm's law

reference¹³

electrical ground14

1.2. قانون اوبم

شكل 1.6: برقى دباو كا اظهار.

ب میں کا کوئی و کر نہیں کیا گیا۔ شکل ہے گی جہاں زیر نوشت میں صرف بالائی تارکی نشاندہی b ککھ کر کی گئی جبکہ برقی زمین کا کوئی و کر نہیں کیا گیا۔ شکل پ میں اب بھی $V_b = 10\,\mathrm{V}$ کھا جا سکتا ہے۔

1.2 قانونِ اوہم

قانون اوہم 15 سے آپ بخوبی واقف ہیں

$$(1.3) V = IR$$

جو مزاحمت کی برقی رواور مزاحمت کی برقی دیاوکا تعلق بیان کرتا ہے۔ اس قانون 1 کے استعال میں دیاو V اور رو I کو انفعالی سمت کی ترکیب سے چننا جاتا ہے۔ شکل I 1.7 میں ایک عدد مزاحمت اور دو عدد منبع دیاوکا دور دکھایا گیا ہے۔ برقی زمین کے حوالے سے مزاحمت کے بائیں سرے پر V 5 اور دائیں سرے پر V 9 دیاو پایا جاتا ہے۔ قانون او ہم میں مزاحمت کے دو سرول کے مابین برقی دیاو استعال کیا جاتا ہے۔ یوں مزاحمت کے ایک سرے کو حوالمہ لیتے ہوئے مزاحمت کے دو سر ول جاتی ہے۔ شکل - الف میں مزاحمت کا بایاں سر ابطور حوالہ چننا گیا ہے جبکہ مزاحمت کے دائیں سرے لیتے ہوئے مزاحمت کے دو سرے پر برقی دیاولی جاتی ہے۔ شکل - الف میں مزاحمت کے بائیں جانب V کی علامت سے ظاہر کی جائے گی۔ یہ حقیقت مزاحمت کے قریب V کے بائیں جانب V کی علامت اور دائیں جانب V کی علامت سے ظاہر کی جاتی ہے۔ یوں انفعالی سمت کی ترکیب کے تحت برقی روکی سمت دائیں سے بائیں جانب چنٹی جائے گی۔ شکل - الف میں یوں

$$V_R = 9 - 5 = 4 \,\mathrm{V}$$

ہو گا جے اوہم کے قانون میں استعال کرتے ہوئے

$$I_R = \frac{V_R}{R} = \frac{4}{8} = 0.5 \,\mathrm{A}$$

حاصل ہوتا ہے۔حاصل برقی روکی قیمت مثبت مقدار ہے جس کا مطلب ہے کہ روکی سمت وہی ہے جو شکل-الف میں چننی گئی ہے۔

شکل -1.7 بیں مزاحمت کا دایاں سرا بطور نقطہ حوالہ چننا گیا ہے۔ یوں V_R کے دائیں جانب (-) کی علامت لگائی گئی ہے۔ انفعالی سمت کی ترکیب کے تحت روکی سمت بائیں سے دائیں کو چننی گئی ہے۔ یہاں

$$V_R = 5 - 9 = -4 \,\mathrm{V}$$

کے برابر ہے جسے اوہم کے قانون میں استعال کرتے ہوئے

$$I_R = \frac{-4}{8} = -0.5 \,\text{A}$$

Ohm's law^{15}

 $\frac{1}{2}$ باب $\frac{1}{2}$

شكل 1.7: قانونِ اوہم اور انفعالي سمت كي تركيب.

شكل 1.8: قانونِ اوہم كا صحيح استعمال.

حاصل ہوتا ہے۔ شکل - ب میں V_R کی قیمت منفی حاصل ہوئی جس کا مطلب ہے کہ حقیقت میں مزاحمت پر برقی دباو چننی گئی ست کے الٹ ہے۔ اس طرح رو I_R کی قیمت ہوئی ہے جس کا مطلب ہے کہ حقیقت میں رو چننی گئی سمت کے الٹ ہے لیعنی برقی رو حقیقت میں دائیں سے بائیں جانب کو ہے۔

شكل 1.8 ميں قانون اوہم كا صحيح استعال د كھايا گيا ہے۔

1.3 توانائي اور طاقت

h فقلی میدان m پر قوت m و m مگل کرتا ہے جہاں $g=9.8 \frac{m}{s^2}$ برابر ہے۔یوں ثقلی میدان کے مخالف m کو m بندی تک پہنچانے کی خاطر m=Fh=mgh توت عمل بندی تک پہنچانے کی خاطر m=Fh=mgh فوت عمل کرتا ہے اور برقی میدان کے مخالف m فاصلے تک بار کو منتقل کرنے کی خاطر

$$(1.4) w = qEh$$

توانائی در کار ہے۔ برقی میدان میں ابتدائی نقطے سے اختتامی نقطے تک اکائی برقی بار منتقل کرنے کے لئے در کار توانائی کو ابتدائی نقطے کے حوالے سے اختتامی نقطے کی برقی دباو کہا جاتا ہے۔

gravitational field¹⁷ electric field¹⁸

1.3. توانائي اور طاقت

مثال 1.1: برقی میدان $E=600 \frac{V}{m}$ میں 0.2C بار قوت کے مخالف $12 \, \mathrm{mm}$ فاصلہ دُور منتقل کیا جاتا ہے۔درکار توانائی حاصل کریں۔ابتدائی نقطہ i اور اختتامی نقطہ i کے مابین برقی دباو حاصل کریں۔

حل: در کار توانائی

 $w = 0.2 \times 600 \times 0.012 = 1.44 \,\mathrm{J}$

کے برابرہے جبکہ برقی دباو

$$V_{ki} = \frac{1.44}{0.2} = 7.2 \,\mathrm{V}$$

کے برابر ہے۔

مساوات 1.4 کی تفرقی صورت

dw = Eh dq

ککھی جا سکتی ہے جو چھوٹی برتی بار dq کو منتقل کرنے کے لئے درکار توانائی dw دیتی ہے۔ یوں اکائی بار کو منتقل کرنے کی خاطر dw توانائی درکار ہو گی جے برتی دباو v کہتے ہیں یعنی

$$v = \frac{\mathrm{d}w}{\mathrm{d}q}$$

لکھی جاسکتی ہے۔

مساوات 1.5 کو مساوات 1.1 سے ضرب دینے سے

$$v \times i = \frac{\mathrm{d}w}{\mathrm{d}q} \times \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}t} = p$$

حاصل ہوتا ہے جو طاقت 19 کو ظاہر کرتا ہے۔ فی سینٹر در کار توانائی کو طاقت کہتے ہیں۔طاقت کی اکائی واٹ 20 سے۔مندرجہ بالا مساوات کی تکملہ صورت درج ذیل ہے۔

(1.7)
$$w = \int_{t_1}^{t_2} p \, \mathrm{d}t = \int_{t_1}^{t_2} vi \, \mathrm{d}t$$

آئیں ان معلومات کو مد نظر رکھتے ہوئے شکل 1.9 پر غور کریں جہاں 10 V کی منبع بوقی دباو 21 کے ساتھ 50 کی بوقی مزاحمت22 جوڑی گئی ہے۔اس دور میں برقی روکو منبع پیداکرتی ہے لہذا منبع کو فعال پرزہ 23 جبکہ مزاحمت کو انفعال پرزہ 24 کہا جاتا ہے۔انفعالی سمت کمی ترکیب کا نام اس حقیقت سے نکلاہے کہ اس ترکیب کے استعال سے انفعالی پرزہ جات پر مثبت طاقت حاصل ہوتا ہے۔

passive component²⁴

power¹⁹

voltage source²¹

electrical resistance²² active component²³

ابا-1. بنیاد

شكل 1.9: طاقت كى بيداوار اور طاقت كا ضياع.

قانون او ہم 25 کے تحت شکل 1.9 کے دور میں سمت گھڑی 2 A کی برتی رو پائی جائے گی جے دور میں بالائی تار پر تیر کے نشان سے دکھایا گیا ہے۔دور میں او ہم 2 کے بحت شکل 1.9 برتی روسے مراد ہیہ ہے کہ دور میں کئی تھلے پر اگر دیکھا جائے تو اس نقطے سے فی سینڈ 2 C بار گزرے گا۔ اس دور میں مجلی تارک حوالے سے بالائی تارپر مثبت دس وولٹ کی دباو ہے۔ یوں مزاحمت کے بالائی یعنی مثبت سرے سے مزاحمت کے نچلے یعنی منفی سرے کی جانب فی سینڈ دو کولب بار منتقل ہوتا ہے۔ یہ بالکل ایسا ہی ہے جیسے نقلی میدان میں بلند مقام سے میکانی بار گررہا ہو۔دو کولب کا بار دس وولٹ نیچ گرتے ہوئے 20 J کی مغفی توانائی 2 کو حوارتی توانائی 20 میں تبدیل ہو کر مزاحمت کو گرم کرے گی۔ ہم کہتے ہیں کہ مزاحمت میں فی سینڈ توانائی کا ضیاع 30 لی کو خوارتی ضیاع 30 اور مزاحمت میں فی سینڈ توانائی کا ضیاع 30 کے نیاں کہ مزاحمت میں طاقت کے ضیاع کو حوارتی ضیاع 32 اور مزاحمت میں طاقت کے ضیاع کو حوارتی ضیاع 20 اور مزاحمت میں عالم کے تبیں۔

انفعالی سمت کی ترکیب استعال کرتے ہوئے ہم شکل 1.9-الف میں منبع کی دباو کو V_M اور مزاحمت کی دباو کو V_R چننے کے بعد ان دباو کے مثبت سر سے منفی سرکی جانب روکی سمت چنتے ہیں۔ یوں حاصل منبع کی برقی رو I_M اور مزاحمت کی برقی رو I_R کو شکل-الف میں دکھایا گیا ہے۔ شکل- کو دیکھتے ہوئے درج ذیل کھا جا سکتا ہے۔

$$V_M = 10 \text{ V}$$
 $V_R = 10 \text{ V}$
 $I_M = -2 \text{ A}$
 $I_R = 2 \text{ A}$

ان قیمتوں کو مساوات 1.6 میں پر کرتے ہوئے منبع اور مزاحمت کی طاقت حاصل کرتے ہیں۔

$$P_M = 10 imes (-2) = -20 \, \mathrm{W}$$
 طاقت کی منفی قیمت، طاقت کی پیداوار کو ظاہر کرتی ہے $P_R = 10 imes 2 = 20 \, \mathrm{W}$ طاقت کی مثبت قیمت، طاقت کی ضیاع کو ظاہر کرتی ہے

یہاں غیر متغیر طاقت کو بڑھے حروف تبجی میں P_M اور P_R لکھا گیا۔مزاحمت کی طاقت مثبت مقدار حاصل ہوئی ہے جبکہ منبع کی طاقت منفی مقدار ہے۔یوں مساوات 1.6 سے حاصل مثبت مقدار طاقت کے ضیاع کو ظاہر کرتی ہے جبکہ منفی مقدار طاقت کی پیدا وار کو ظاہر کرتی ہے۔

شکل 1.9 میں برقی دباو کے سمت الٹ چننے گئے جس کی وجہ سے رو کی سمتیں بھی الٹ کر دی گئی ہیں۔ یوں

$$V_M = -10 \,\mathrm{V}$$
 $V_R = -10 \,\mathrm{V}$
 $I_M = 2 \,\mathrm{A}$
 $I_R = -2 \,\mathrm{A}$

Ohm's law²⁵

clockwise²⁶

potential energy 27 مخفی توانائی کی اصطلاح خفیہ توانائی سے حاصل کی گئی ہے۔

thermal energy²⁹

 $loss^{30}$

power loss³¹ thermal loss³²

resistive loss33

1.3. توانائي اور طاقت

شكل 1.10: فعال اور انفعال پرزے كى مثال.

لکھے جائیں گے جن سے دوبارہ

$$P_M = (-10) \times 2 = -20 \,\mathrm{W}$$

 $P_R = (-10) \times (-2) = 20 \,\mathrm{W}$

حاصل ہوتے ہیں۔

مثال 1.12 شکل 1.10 میں دوادوار دکھائے گئے ہیں۔دریافت کریں کہ آیا بیرونی پرزہ بقایا دور کو طاقت فراہم کرتا ہے یا کہ اس سے طاقت حاصل کرتا ہے۔طاقت کی قیمت بھی دریافت کریں۔

حل: شکل-الف میں برقی روکی قیمت منفی لکھی گئی ہے جس کا مطلب ہے کہ حقیقت میں رو تیر کے نشان کے الٹ سمت میں ہے۔روکی سمت الٹ تصور کرتے ہوئے ہم دیکھتے ہیں کہ بقایا دور کے مثبت سرے پر رو اندر داخل ہوتی ہے۔یوں بقایا دور انفعال ہے۔ییرونی پرزے کے مثبت سرے سے حقیقی رو خارج ہوتی ہے لہذا یہ فعال پرزہ ہے۔یوں بیرونی پرزہ طاقت فراہم کرتا ہے جبکہ بقایا دور میں طاقت خرچ ہوتا ہے۔یبی نتائج انفعال سمت کے ترکیب سے یوں حاصل ہوتی ہے۔ییرونی پرزے کے برقی دباو کو دیکھتے ہوئے روکی و کھائی گئی سمت ہی استعال کی جائے گی۔یوں ییرونی پرزے کی طاقت ترکیب سے یوں حاصل ہوتی ہے۔ یہو طاقت کی پیداوار ہے۔بقایا دور میں روکی انفعال سمت دکھائے گئے سمت کے الٹ ہے لہذا طاقت $P = 5 \times (-6) = -30$ سکت کے الٹ ہے لہذا طاقت ہیں کو ظاہر کرتا ہے۔آپ نے دیکھا کہ بیرونی پرزہ کی کا قائد بیدا کرتا ہے جبکہ بقایا دور اتنی ہی طاقت استعال کرتا ہے۔آپ دیکھی دور میں توانائی کی پیداوار اور خرج برابر ہوتے ہیں۔

شکل-ب میں رو نچلی تار میں دائیں سے بائیں طرف رواں ہے۔یوں بیر ونی پرزے کے مثبت سرے سے رو خارج ہوتی ہے جبکہ بقایا دور کے مثبت سرے میں رو داخل ہوتی ہے۔یوں بیر ونی پرزہ فعال اور بقایا دور انفعال ہے۔ بیر ونی پرزے کی طاقت کی طاقت P = 7 × (-3) = P ہے جو طاقت کی پیداوار ہے جبکہ بقایا دور کی طاقت P = 7 × 3 = 21 W ہے جو طاقت کی ضیاع کو ظاہر کرتی ہے۔

مثق 1.1: شکل 1.11 میں بیرونی پرزے کی طاقت حاصل کریں۔

باب 1. بنیاد

شكل 1.11: فعال اور انفعال پرزے كى مشق.

شکل 1.12: طاقت اور ایک متغیرہ دیا گیا ہے۔دوسرا دریافت کرنا ہے۔

جوابات: (الف) 8W ؛ (ب) 27W

مثال 1.3: شکل 1.12-الف میں برقی رو کی مقدار اور ست حاصل کریں جبکہ شکل-ب میں برقی د باواور اس کا مثبت سرا دریافت کریں۔

حل: شکل-الف میں بیرونی پرزے کی طاقت منفی ہے۔ یوں بیرونی پرزہ طاقت پیدا کرتا ہے لہٰذااس کے مثبت سرے سے رو خارج ہوگی یعنی دور میں گھڑی کے الٹ ست میں رویائی جائے گی۔رو کی قیت AA ہوگی۔

شکل-ب میں بیرونی پرزے کی طاقت مثبت ہے للذااس میں طاقت کا ضیاع ہو گااور برتی رو مثبت سرے سے پرزے میں داخل ہو گی۔دور میں گھڑی کی سمت میں منفی رو دکھائی گئی ہے للذا حقیقت میں رو گھڑی کی الٹ سمت ہے۔حقیقی رو کو گھڑی کے الٹ سمت تصور کرتے ہوئے بیرونی پرزے کا نچلا سرا مثبت ہو گااور برقی دباوکی قیبت 2V ہو گی۔

مثق 1.2: شكل 1.13 ميں نامعلوم متغيره دريافت كريں۔

حل: (الف) گھڑی کے الٹ A 3 ؛ (ب) بالائی تار مثبت ہے جبکہ دباو V 3 ہے۔

آخر میں دوبارہ اس حقیقت کی نشاندہی کرتے ہیں کہ کسی بھی برقی دور میں پیدادار طاقت اور طاقت کا ضیاع برابر ہوں گے۔

1.4. برقى پرزے

شکل 1.13: طاقت اور ایک متغیره دیا گیا ہے۔دوسرا دریافت کریں۔

شكل i: غير تابع منبع دباو اور اس كا i خطـ شكل 1.14:

1.4 برقی پرزے

برقی پرزوں کو دواقسام میں تقسیم کیا جا سکتا ہے۔وہ پرزے جو طاقت پیدا کرتے ہیں فعال پوزے ³⁵ کہلاتے ہیں جبکہ طاقت ضائع کرنے والے پرزوں کو انفعال پوز_{ے ³⁶ کہتے ہیں۔ جزیٹر اور بیٹری فعال پرزوں کی مثال ہے جبکہ مزاحمت، امالہ گیر ³⁷ اور برق گیر ⁸⁸ انفعال پرزے ہیں۔}

فعال پرزوں پر اس باب میں غور کیا جائے گا جبکہ انفعال پرزوں پر اگلے باب میں تفصیلاً غور کیا جائے گا۔

1.4.1 غير تابع منبع

غیر تابع منبع دباو 39سے مراد ایک منبع ہے جو، منبع میں سے گزرتی رو کے قطع نظر، اپنے دو سروں کے درمیان مخصوص برتی دباو برقرار رکھتا ہے۔ غیر تابع منبع دباوکی علامت کو شکل 1.14 میں دکھایا گیا ہے جہاں نقطہ A کے حوالے سے نقطہ B پر v(t) برتی دباو برقرار رہتا ہے۔ شکل میں غیر تابع منبع دباوکا دباو بالمقابل رو v(t) خط بھی دکھایا گیا ہے۔اس خط کے مطابق برتی دباوکی قیت پر برتی روکا کوئی اثر نہیں پایا جاتا۔

شکل 1.15 میں غیر تابع منبع رو 40 کی علامت اور رو بالمقابل د باو v-i خطر دکھایا گیا ہے۔غیر تابع منبع روسے مراد ایسی منبع ہے جو، منبع پر د باو کے قطع نظر، مخصوص برقی رو بر قرار رکھتا ہے۔غیر تابع منبع رو کے د باو بالمقابل رو خط کے تحت منبع پر برقی د باو کے تبدیلی کا منبع کی روپر کوئی اثر نہیں پایا جاتا۔ منبع رو میں مثبت روکی سمت کو تیر کے نشان سے دکھایا جاتا ہے۔

عام استعال میں منبع بقایا دور کو طاقت فراہم کرتی ہے۔شکل 1.13-ب میں اگر بیرونی پرزہ منبع ہو تب آپ دیکھ سکتے ہیں کہ منبع کو بھی طاقت فراہم کی جا سکتی ہے۔

active components³⁵

passive components³⁶

 $m nductor^{37}$

capacitor

independent voltage source³⁹ independent current source⁴⁰

باب 1. بنیاد

شکل 1.15: غیر تابع منبع رو اور اس کا v-i خط.

شكل 1.16: طاقت كا حساب.

منبع محدود صلاحیت کا حامل ہے۔اگرچہ ہم توقع کرتے ہیں کہ منبع د باوکسی بھی قیمت کی برقی رو فراہم کرتے ہوئے پیدا کردہ برقی د باو برقرار رکھے گا، حقیقت میں کوئی بھی منبع کسی محدود رو کی حد تک ایسا کر پاتا ہے۔

مثال 1.4: شکل 1.16-الف میں تینوں پرزوں کی طاقت دریافت کریں۔ (اشارہ: سلسلہ وار جڑے پرزوں میں یکساں روپائی جاتی ہے۔)

حل: منبع کے مثبت سرسے رو خارج ہور ہی ہے لہذا یہ پرزہ طاقت فراہم کر رہاہے جبکہ بقایاد و پرزوں کے مثبت سرسے روپرزے میں داخل ہوتی ہے لہذا ۔ 2 اور پرزہ ۔ 2 کی طاقت ضائع ہوتا ہے۔ منبع کی طاقت کی خیاع کا سے جبکہ پرزہ ۔ 1 کی طاقت کی پیداوار کے برابر ہے۔ کی طاقت کی خیاع کا طاقت کی خیاع کی طاقت کی خیاع کا سے جبکہ کے بیار ہور ہے۔ ایک کی بیداوار کے برابر ہے۔

مثق 1.3: شکل 1.16-ب میں تینوں پرزوں کی طاقت حاصل کریں۔

1.4. برقی پرزے

شکل 1.17: تابع منبع کے چار اقسام۔

1.4.2 تابع منبع

غیر تابع منبع دباوکی پیدا کردہ دباوکا انحصار منبع سے گزرتی روپر بالکل نہیں ہوتا۔ اسی طرح غیر تابع منبع روکی پیدا کردہ روکا انحصار منبع پر دباوپر بالکل نہیں ہوتا۔ اسی طرح غیر تابع منبع دولو 41 کی پیدا کردہ دباو، دور میں کسی مخصوص مقام کی روپا دباوپر منحصر ہوتا ہے۔ اسی طرح تابع منبع رو⁴² کی پیدا کردہ روہ دور میں کسی مخصوص مقام کی روپا دباوپر منحصر ہوتا ہے۔ تابع منبع ہر قیات کی میدان میں کلیدی کردار ادا کرتے ہیں جہاں ہر قیاتی پرزہ جات مثلاً دو جوڑ شرانز سٹر پر مبنی ہر قیاتی ادوار کا حمالی حل انہیں ریاضی نمونوں کی مدد سے حاصل کیا جاتا ہے۔

غیر تالع منبع کو گول دائر ہے سے ظاہر کیا جاتا ہے جبکہ تالع منبع کو ہیرا شکل سے ظاہر کیا جاتا ہے۔ شکل 1.17 میں چارا قسام کے تالع منبع و کھائے گئے ہیں۔ شکل۔ الف میں تابع منبع دباو 40 کی پیدا کردہ دباو کا انحصار بائیں جانب کے دباو v_S پر ہے۔ یول v_S ضابط دباو 40 کہلاتا ہے۔ یہ منبع v_S و باو پیدا کرتا ہے۔ ان دواقسام کے منبع کے مشتقل v_S اور v_S بھد v_S مقدار ہیں۔ شکل ۔ پ میں تابع منبع رو⁴⁸ کو v_S قابو کرتا ہے۔ ان دواقسام کے منبع کے مشتقل v_S اور v_S بھد v_S بات کہا جاتا کہ جو عین مزاحمت کی بُعد ہے۔ اس منبع کے مشتقل v_S کا بُعد ہے۔ اس منبع کے مشتقل v_S کا بُعد کے موصلیت کی بھی بُعد کے۔ شکل ۔ ت میں تابع منبع موصلیت کی بھی بُعد کے۔ اس منبع کے مشتقل v_S کا بُعد ہے۔ و موصلیت کی بھی بُعد ہے۔ اس منبع کے مشتقل v_S کا بُعد ہے۔ اس منبع کے مستقل v_S کا بُعد ہے۔ اس منبع کے مستقل v_S کا بُعد ہے۔ و موصلیت کی بھی بُعد ہے۔

مثال 1.5: شکل 1.18-الف میں خارجی دباواور شکل-ب میں خارجی رو دریافت کریں۔

dependent voltage source⁴¹

dependent current source⁴²

bipolar transistor, $\mathrm{BJT^{43}}$

MOSFET⁴⁴

mathematical model⁴⁵

dependent voltage source⁴⁶

control voltage⁴⁷

depended current source⁴⁸

dimensionless⁴⁹

dimension⁵⁰

dependent transresistance source⁵¹

dependent transconductance source⁵²

باب 1. بنیاد

شکل 1.18: تابع منبع دباو اور تابع منبع رو کے استعمال کی مثال.

شکل 1.19: تابع منبع دباو اور تابع منبع رو کے استعمال کی مشق۔

عل: شكل-الف مين ضابط دباو 0.2 V اور منبع كالمستقل 7 ہے۔ يول پيدا كرده دباو 1.4 V = 7 × 0.2 ہو گا۔ شكل-ب ميں ضابط رو AmA اور منبع كا مستقل 12 ہے۔ يول پيدا كرده رو AmA 3 مستقل 12 ہے۔ يول پيدا كرده رو AmA 3 مستقل 12 ہے۔ يول پيدا كرده رو AmA 3 مستقل 12 ہے۔

اس مثال میں تابع منبع دباو داخلی دباو کو 7 گنا بڑھاتا ہے گویا منبع بطور ایمپلیفائر دباو 53 کر دار اداکرتا ہے اور اس ایمپلیفائر کی افزائش دباو 54 ہے۔اس طرح شکل-ب میں تابع منبع رونے داخلی رو کو 12 گنا بڑھاکر خارج کیا، گویا ہے منبع بطور ایمپلیفائو رو 55 کر دار اداکرتا ہے اور اس ایمپلیفائر کی افزائش رو 56کی قیت 12 ہے۔

شکل 1.17-پ بالکل اسی طرح داخلی ضابط رو کی نسبت سے برقی دباو خارج کرتے ہوئے بطور ایمپلیفائو مزاحمت۔ نما⁵⁷ کردار اداکرتا ہے جہال منبع کا مستقل افزائش مزاحمت۔ نما⁶⁸ کام کرتا ہے اور اس کے مستقل کو افزائش موصلیت۔ نما⁶⁹ کہا فزائش مزاحمت۔ نما⁶⁹ کہا ہے ہیں۔

مثق 1.4: شكل 1.19 مين برقى بوجه كي طاقت دريافت كرين-

voltage amplifier⁵³

voltage gain⁵⁴

current amplifier55

 $\rm current~gain^{56}$

transresistance amplifier⁵⁷

 ${\rm transresistance~gain^{58}} \\ {\rm transconductance~amplifier^{59}}$

transconductance gain⁶⁰

1.4. برقی پرزے

شكل 1.20: مثال 1.6 كا دور.

جوابات: (الف): 69.3 W (ب) 120 W

مثال 1.6: شکل 1.20 میں تمام پرزه جات کی طاقت دریافت کریں۔

 2 علی: بوجھ-الف میں برقی روصفر ہے اور اس کے دونوں سروں کے مابین دباو بھی صفر ہے للذا اس کی طاقت $0 \times 0 = 0 \times 0 = 0 \times 0 = 0 \times 0$ ہے۔ بوجھ-ب کی طاقت $0 \times 0 = 0 \times 0 = 0 \times 0 = 0 \times 0 = 0 \times 0$ طاقت $0 \times 0 = 0 \times 0 = 0 \times 0 = 0 \times 0 = 0 \times 0$ طاقت $0 \times 0 = 0 \times 0 = 0 \times 0 = 0 \times 0 = 0 \times 0$ طاقت $0 \times 0 = 0 \times 0$ طاقت $0 \times 0 = 0 \times 0 =$

کل طاقت کا ضیاع $22.5 \, \mathrm{W} = 5 + 6.25 + 5 + 6.26 + 5 + 6.26 + 5$ ہے۔ دایاں منبع تمام طاقت پیدا کرتا ہے جبکہ بائیں منبع کو از خود طاقت در کار ہے۔

مثق 1.5 شکل 1.21 کے تمام پرزوں میں طاقت حاصل کریں۔ کیا طاقت کی پیدا وار اور اس کا ضیاع برابر ہیں۔

جوابات: بالترتیب الف تاٹ: 1.5125 W ، 4.5375 W ، 4.05 W ، 3.6 W ، 3.6 W ، منبع دباو کی طاقت 0.3 W – اور منبع رو کی طاقت 15 W – ہے۔دور میں کل طاقت کی پیداوار 15.3 W ہے۔اتنی ہی طاقت پیدا بھی ہوتی ہے للذا دونوں برابر ہیں۔ اب 1. بیاد

شکل 1.21: طاقت کے حصول کی مشق۔

شكل 1.7: مثال 1.7 كا شكل.

1.4. برقی پرزے

شكل 1.7: برقى رو مثال 1.7

مثال 1.7: شکل 1.22-الف میں ڈبہ دور د کھایا گیا ہے جس میں برقی بار بھری جارہی ہے۔برقی بار بالمقابل وقت کا خط شکل-ب میں دیا گیا ہے۔اس خط سے برقی رو بالمقابل وقت کا خط حاصل کریں۔

من وقت t=0 تا $\Delta q=0$ تا کی برتی بار بلا تبدیل ہوئے $0.5\,\mathrm{mC}$ رہتا ہے لہذا $t=0.5\,\mathrm{\mu s}$ ہونے میں t=0

$$i = \frac{\Delta q}{\Delta t} = \frac{0 \text{ C}}{0.5 \,\mu\text{s}} = 0 \text{ A}$$
 $(0 < t < 0.5 \,\mu\text{s})$

ہو گا۔وقت $t=0.5\,\mathrm{\mu s}$ تا $t=0.5\,\mathrm{\mu s}$ کے دوران برقی بار $t=0.5\,\mathrm{mC}$ سے تبدیل ہو کر $t=0.5\,\mathrm{\mu s}$ ہو گا۔

$$i = \frac{2 \,\mathrm{mC} - 0.5 \,\mathrm{mC}}{2 \,\mathrm{us} - 0.5 \,\mathrm{us}} = 1000 \,\mathrm{A}$$
 (0.5 $\,\mathrm{\mu s} < t < 2 \,\mathrm{\mu s}$)

ہو گا۔اسی طرح بقایا دورانیوں میں

$$i = \frac{2.5 \text{ mC} - 2 \text{ mC}}{3.5 \text{ } \mu \text{s} - 2 \text{ } \mu \text{s}} = 333.33 \text{ A} \qquad (2 \text{ } \mu \text{s} < t < 3.5 \text{ } \mu \text{s})$$

$$i = \frac{2.5 \text{ mC} - 2.5 \text{ mC}}{4 \text{ } \mu \text{s} - 3.5 \text{ } \mu \text{s}} = 0 \text{ A} \qquad (3.5 \text{ } \mu \text{s} < t < 4 \text{ } \mu \text{s})$$

$$i = \frac{-1 \text{ mC} - 2.5 \text{ mC}}{5 \text{ } \mu \text{s} - 4 \text{ } \mu \text{s}} = -3500 \text{ A} \qquad (4 \text{ } \mu \text{s} < t < 5 \text{ } \mu \text{s})$$

$$i \frac{-1 \text{ mC} - (-1 \text{ mC})}{6 \text{ } \mu \text{s} - 5 \text{ } \mu \text{s}} = 0 \text{ A} \qquad (5 \text{ } \mu \text{s} < t < 6 \text{ } \mu \text{s})$$

$$i = \frac{-0.5 \text{ mC} - (-1 \text{ mC})}{7 \text{ } \mu \text{s} - 6 \text{ } \mu \text{s}} = 500 \text{ A} \qquad (6 \text{ } \mu \text{s} < t < 7 \text{ } \mu \text{s})$$

$$i = 0 \text{ A} \qquad (7 \text{ } \mu \text{s} < t)$$

اور اس کے بعد i=0 ہے۔ان نتائج کو شکل 1.23 میں د کھایا گیا ہے۔آپ د کیھ سکتے ہیں کہ بار نہ بدلنے کی صورت میں رو صفر ہوتی ہے۔ بڑھتے بار کی صورت میں مثبت رواور گھٹتے بار کی صورت میں منفی رو پائی جاتی ہے۔ باب 1. بنیاد

شكل 1.24: طاقت بالمقابل وقت

مثال 1.8: مندرجه بالا مثال مين طاقت بالمقابل وقت حاصل كريں۔

حل: طاقت p=vi ہوتا ہے۔ شکل 1.22-الف سے دباو کی قیمت 15 V ملتی ہے جبکہ شکل 1.23 سے رو کی قیمت مختلف دورا نیے کے لئے حاصل کی جا سکتی ہے۔ یوں مختلف دورا نیے کے طاقت درج ذیل حاصل ہوتے ہیں۔

$$\begin{array}{lll} p = 15 \times 0 = 0 \, \mathrm{W} & (0 < t < 0.5 \, \mathrm{\mu s}) \\ p = 15 \times 1000 = 15 \, \mathrm{kW} & (0.5 \, \mathrm{\mu s} < t < 2 \, \mathrm{\mu s}) \\ p = 15 \times 333.33 = 5 \, \mathrm{kW} & (2 \, \mathrm{\mu s} < t < 3.5 \, \mathrm{\mu s}) \\ p = 15 \times 0 = 0 \, \mathrm{W} & (3.5 \, \mathrm{\mu s} < t < 4 \, \mathrm{\mu s}) \\ p = 15 \times (-3500) = -52.5 \, \mathrm{kW} & (4 \, \mathrm{\mu s} < t < 5 \, \mathrm{\mu s}) \\ p = 15 \times 0 = 0 \, \mathrm{W} & (5 \, \mathrm{\mu s} < t < 6 \, \mathrm{\mu s}) \\ p = 15 \times 500 = 7.5 \, \mathrm{kW} & (6 \, \mathrm{\mu s} < t < 7 \, \mathrm{\mu s}) \\ p = 15 \times 0 = 0 \, \mathrm{W} & (7 \, \mathrm{\mu s} < t) \end{array}$$

ان جوابات كوشكل 1.24 مين د كھايا گيا ہے۔

مثال 1.9: آج کل کمپیوٹر 61 کا زمانہ ہے اور یو-ایس-بی 62 یعنی عمومی سلسلہ وار پھاٹک کا استعال عام ہے۔ کسی بھی کمپیوٹر یا عددی دور 63 کو عددی مواد 64 جن برقی تارول کے ذریعہ کمپیوٹر یا عددی دور کے داخلی پھاٹک 65 کہلاتے ہیں اور جن تارول کے ذریعہ کمپیوٹر یا عددی دور سے عددی مواد صاصل کیا جاتا ہے، کمپیوٹر یا عددی دور کے خارجی پھاٹک 66 کہلاتے ہیں۔ عمومی سلسلہ وار پھاٹک (یو-ایس-بی) پر کمپیوٹر عددی مواد حاصل

```
computer<sup>61</sup>
USB Universal Serial Port<sup>62</sup>
digital circuit<sup>63</sup>
digital data<sup>64</sup>
```

input port⁶⁵ output port⁶⁶

1.4. برقی پرزے

بھی کر سکتا ہے اور خارج بھی کر سکتا ہے۔ یوں یہ داخلی۔ خارجی پھاٹک ⁶⁷ ہے۔ اس پھاٹک کی مدد سے کمپیوٹر کے ساتھ بیر ونی آلات مثلاً موبائل فون، عددی کیمرہ وغیرہ جوڑے جا سکتے ہیں۔ یہ پھاٹک بیر ونی آلات کو برقی طاقت فراہم کرنے کی صلاحیت بھی رکھتا ہے۔ یہ پھاٹک چار عدد برقی تاروں پر مشمل ہے جن میں دو تار عددی مواد کے ترسیل اور دو تار برقی طاقت کی فراہمی کے لئے استعال ہوتے ہیں۔ یہ پھاٹک عام حالت میں 100 mA برقی رو فراہم کر سکتا ہے جبکہ سافٹ وئیر کے ذریعہ پھاٹک سے برقی روکی فراہمی کے 20 سرگا تک بڑھائی جا سمتی ہے۔

یو۔ایس-بی پھائک استعال کرتے ہوئے موبائل کی بیے باد® بیٹری میں بار بھرا جاتا ہے۔بیٹری کی استعداد 1700 mA h ہے۔الف) بیٹری کی استعداد کولیب ک میں حاصل کریں۔ب) اگر پھائک 100 mA رو فراہم کر رہا ہو تب بیٹری کو مکمل بھرنے میں کتنی دیر گئے گی۔

حل:الف) مکمل بھری بیٹری میں کل بار ہی بیٹری کی استعداد ہوتی ہے۔ بیٹری کی استعداد کو کولمب C کی بجائے Ah میں بیان کیا جاتا ہے۔ دی گئی بیٹری کی استعداد

$$Q = I \times t = 1700 \times 10^{-3} \times 3600 = 6120 \,\mathrm{C}$$

ہے جہاں ایک گھنٹہ 3600 سینڈکے برابرہے۔

ب) یوں MA کی روسے بیٹری بھرنے میں

$$t = \frac{6120}{100 \times 10^{-3}} = 61200 \,\mathrm{s} = 17 \,\mathrm{h}$$

ستر ہ گھنٹے در کار ہوں گے۔

input-output port⁶⁷ discharged⁶⁸

باب 1. بیاد

باب 2

مزاحمتي ادوار

2.1 قانون اوہم

شکل 2.1-الف میں کارتیسی محدد اپر سید سے خطوط دکھائے گئے ہیں۔بالائی خط کی مساوات $y=m_1x+c_1$ ہے جہاں خط کی ڈھلوان m_1 جبکہ خط y محدد کو m_2 کی خط کی ڈھلوان m_3 ہے جبکہ سے محدد کے مرکز m_3 سے گزرتی ہے للذا سے خط محدد کو m_2 محدد کو m_3 ہے جبکہ سے محدد کے مرکز m_3 سے ادریوں اس کی مساوات m_3 ہے۔

مزاحمت کے دو سروں کے مابین مختلف برقی دباو ہ لاگو کرتے ہوئے برقی رو i ناپی گئے۔ برقی دباو کو عمودی محدد اور برقی رو کو افقی محدد پر رکھتے ہوئے ان کے تعلق کو شکل 2.1-ب میں دکھایا گیا ہے۔اس خط کو مزاحمت کی دباو بالمقابل رو خط کہا جاتا ہے۔شکل-ب کا شکل-الف کی پنجلی خط کے ساتھ موازنہ کرتے ہوئے اس خط کو

$$v = Ri \qquad v = ri$$

لکھا جا سکتا ہے جہاں خط کی ڈھلوان کو R کھااور برقی مزاحمت 3 یا صرف مزاحمت پکارا جاتا ہے۔اس مساوات کو قانون اوہم 4 کہتے ہیں۔شکل-ب میں مزاحمت R کو بطور ڈھلوان دکھایا گیا ہے۔

$$R = rac{v_2 - v_1}{i_2 - i_1} = rac{\Delta v}{\Delta i}$$
 عزاجمت کی تعریف

Cartesian coordinates¹ slope² electrical resistance³ Ohm's law⁴

(ب) مزاحمت کے برقی دباو بالمقابل رو خط اور اوہم کا قانون۔

(۱) سیدهر خطوط اور ان کی ریاضی مساوات.

22 باب 2. مزاحمتی ادوار

شكل 2.2: غير خطى دباو بالمقابل رو كي تعلق.

شكل 2.3: اوبم كا قانون اور مزاحمتي ضياع.

شکل 2.1-ب میں دباو اور رو راست تناسب کا تعلق رکھتے ہیں۔راست تناسی تعلق کو خطبی تعلق کہا جاتا ہے۔اگرچہ اس کتاب میں مزاحمت کو خطبی پرزہ ؟ ہی تصور کیا جائے گا، یہ جاننا ضروری ہے کہ کئی نہایت اہم اقسام کے پرزے غیر خطبی مزاحمت کی خاصیت رکھتے ہیں۔عام استعال میں 200 پر جلنے والا بلب غیر خطبی مزاحمت کی مثال ہے۔اس بلب کے v-i تعلق کو شکل 2.2 میں دکھایا گیا ہے۔

وقت کے ساتھ بدلتا دیاو اور بدلتی رو کی صورت میں قانون اوہم

$$(2.3) v(t) = Ri(t)$$

کھا جائے گا جہاں وقت t کے ساتھ بدلتے برقی دباو اور بدلتی برقی رو کو چھوٹے حروف میں کھا گیا ہے۔ مساوات 2.3 سے مزاحمت کا اُبعد $\frac{V}{A}$ حاصل ہوتا ہے جسے اوہ ہم پر پکار ااور Ω سے ظاہر کیا جاتا ہے۔ یوں اگر کسی مزاحمت پر $10\,V$ کا برقی دباولا گو کرنے سے مزاحمت میں 0 کی روگزرے تب مزاحمت کی قیمت 0 ہوگی۔ تب مزاحمت کی قیمت 0 ہوگی۔

شکل 2.3 میں برقی دور کے ساتھ مزاحمت کی جہ مزاحمت کی دباو v(t) اور رو i(t) ہیں۔ صفحہ 7 پر مساوات 1.6 کے تحت اس مزاحمت میں طاقت کا ضیاع

$$p(t) = v(t)i(t)$$

ہو گا۔ اس مساوات میں برقی دباو v(t) میں قانون اوہم پُر کرتے ہوئے

$$p(t) = Ri(t) \times i(t) = Ri^{2}(t)$$

i(t) کی جگہ قانون اوہم استعال کرتے ہوئے ماصل ہوتا ہے۔ اس طرح طاقتی ضیاع کی مساوات میں

$$p(t) = v(t) \times \frac{v(t)}{R} = \frac{v^2(t)}{R}$$

linear⁵ linear component⁶

Ohm⁷

2.1. قانون اوبم

حاصل ہوتا ہے۔مندرجہ بالا تین مساوات کو اکٹھے لکھتے ہیں۔

$$p(t) = v(t)i(t) = Ri^{2}(t) = \frac{v^{2}(t)}{R}$$
 وزاحتی ضیاح

درج بالا مساوات مزاحمت کی طاقت دیتی ہے۔ یہ طاقت حرارتی توانائی میں تبدیل ہوتی ہے جس سے مزاحمت کا درجہ حرارت بڑھتا ہے۔

مزاحت کے علاوہ موصلیت 8 G مجی بہت مقبول ہے جہاں

$$(2.5) G = \frac{1}{R}$$

کے برابر ہے۔موصلیت کی اکائی سیمنز ° S ہے جہاں

$$(2.6) 1S = 1\frac{A}{V}$$

ك برابر ہے۔مساوات 2.5 كے استعال سے اوجم كے قانون كو

$$i(t) = Gv(t)$$

اور مزاحمت کی طاقت کو

(2.8)
$$p(t) = Gv^{2}(t) = \frac{i^{2}(t)}{G}$$

لکھا جا سکتا ہے۔

مثال 2.1: ایک عدد مزاحمت پر 20 V لاگو کرنے سے مزاحمت میں 4A پیدا ہوتی ہے۔ اس کی موصلیت دریافت کریں۔

حل:مساوات 2.7 کی مدد سے

$$G = \frac{i}{v} = \frac{4}{20} = 0.2 \,\mathrm{S}$$

 $R=rac{20}{4}=0.2$ سے بھی حاصل ہوتا ہے۔ $G=rac{1}{R}=0.2$ سے بھی حاصل ہوتا ہے۔ $R=rac{20}{4}=5$ سے بھی حاصل ہوتا ہے۔

شکل 2.4-الف میں برقی دور کے ساتھ متغیر مزاحمت i^{10} جڑاد کھایا گیا ہے۔ مزاحمت پر ترچھا تیر کھنچ کر متغیر مزاحمت کو ظاہر کیا جاتا ہے۔ اگر متغیر مزاحمت $v=i(t)\times 0=0$ کی قیمت کم کرتے کرتے صفر کر دی جائے تو کسی بھی رو i(t) کی صورت میں مزاحمت پر لاگو برقی دباو، قانون اوہم کے تحت $v=i(t)\times 0=0$ کی قیمت کم کرتے کرتے صفر تو کسی مخالی گئی ہے اور اس صورت کو قصور دور ¹¹ کہتے ہیں۔ دو نقطوں کو موصل تارسے جوڑ کر قصر دور کیا جاتا ہے۔ اس کے برعکس اگر متغیر مزاحمت کی قیمت لامحدود کر دی جائے تب کسی بھی دباو v(t) پر، قانون اوہم کے تحت v(t) کی جورت کی جائے تب کسی بھی دباو v(t) بر، قانون اوہم کے تحت v(t) کے برعکس اگر متغیر مزاحمت کی قیمت لامحدود کر دی جائے تب کسی بھی دباو v(t) بر، قانون اوہم کے تحت v(t)

24 باب 2. مزاحمتی ادوار

شكل 2.5: مزاحمتي ادوار مثال 2.2 تا مثال 2.4

جے کھلا دور ¹² کہتے ہیں کو شکل-پ میں دکھائی گئی ہے۔ کسی بھی دو نقطوں کو کھلا دور کرنے کا مطلب سے ہے کہ ان نقطوں کے مابین مزاحمت لا محدود کر دی جائے۔ قصر دور پر ہر صورت صفر د باو پایا جاتا ہے جبکہ کھلا دور پر ہر صورت صفر رو پائی جاتی ہے۔

مثال 2.2: شكل 2.5-الف ميں رواور مزاحمتی طاقت دريافت كريں۔

حل: قانون اوہم سے مزاحت میں رو

$$i = \frac{12}{3} = 4 \,\mathrm{A}$$

حاصل ہوتی ہے اور یوں مزاحمتی طاقت درج ذیل ہو گا۔

$$p = v \times i = 12 \times 4 = 48 \,\mathrm{W}$$

مثال 2.3: شكل 2.5-ب مين رواور مزاحمتي طاقت دريافت كرين ـ

حل: مزاحمت کا بالائی سرا مثبت ہے لہذا اس میں رو کی سمت اوپر سے نیچے ہو گی جو د کھلائے گئی سمت کے الٹ ہے۔اس طرح دی گئی سمت میں رو کی قیمت منفی ہو گی یعنی

$$i = -\frac{10}{5} = -2 \,\mathrm{A}$$

open circuit12

2.5. قانون اوبم

شكل 2.6: مزاحمتي ادوار مثال 2.5 تا مثال 2.6

جبکه مزاحمت طاقت درج ذیل ہو گا۔

$$p = i^2 R = 20 \,\mathrm{W}$$

مثال 2.4: شکل 2.5-پ میں رواور مزاحمتی دریافت کریں۔

حل: دور میں طاقت کی پیدادار اور ضیاع برابر کیتے ہوئے طاقت کی مساوات p=vi سے منبع کی رو حاصل کرتے ہیں۔ $i=rac{p}{v}=rac{2.5}{5}=0.5\,\mathrm{A}$

اوہم کے قانون سے مزاحت کی قیمت درج ذیل حاصل ہوتی ہے۔

$$R = \frac{v}{i} = \frac{5}{0.5} = 10\,\Omega$$

مثال 2.5: شکل 2.6-الف میں مزاحمت کی رواور طاقت دریافت کریں۔

 $^{-1}$ حل: قانون اوہم میں مزاحمت کی دباو V=12 V=10 کیتے ہوئے روحاصل کرتے ہیں۔

$$i = \frac{12}{10} = 1.2 \,\mathrm{A}$$

ای طرح مزاحمت کی دباو $p=i^2R$ سے بھی حاصل ہو گا۔ اس کی طاقت درج ذیل حاصل ہو گا ہے۔ یہی جواب $p=i^2R$ سے بھی حاصل ہو گا۔

$$p = vi = 12 \times 1.2 = 14.4 \,\mathrm{W}$$

باب 2. مزاحمتی ادوار

26

2.3 مزاحمتی ادوار مشق 2.1 تا مشق 2.7

مثال 2.6: شکل 2.6-ب میں مزاحت میں رواور طاقت دریافت کریں۔دائیں منبع کی طاقت بھی دریافت کریں۔

حل: بائیں منبع کی طاقت اور دیاو دیے گئے جس سے منبع کی مثبت سر سے خارج ہوتی رو کی قیت ہے کہ احسال ہوتی ہے۔مزاحمت کی دیاو 8V ہے لہٰذااس کی مزاحمت

$$R = \frac{8}{12} = \frac{2}{3}\,\Omega$$

ہو گی۔اس طرح مزاحمت کی طاقت

$$p = vi = 8 \times 12 = 96 \,\mathrm{W}$$

ہو گا۔دائیں منبع کو طاقت فراہم کی جارہی ہے جس کی قیمت درج ذیل ہے۔

$$p = vi = 2 \times 12 = 24 \,\mathrm{W}$$

آپ دیکھ سکتے ہیں کہ طاقت کی پیدا وار اور ضیاع برابر ہیں۔

مثق 2.1: شكل 2.7-الف ميں مزاحت كى رواور طاقت حاصل كريں۔ منبع كى طاقت بھى حاصل كريں۔

 $p = -127\,\mathrm{W}$ ، $p = 127\,\mathrm{W}$ ، $i = 7\,\mathrm{A}$ جوابات:

27 2.2. قوانين كرچاف

شكل 2.8: جوڑ اور دائرے۔

 $p = -48 \,\mathrm{W}$ ، $p = 48 \,\mathrm{W}$ ، $v = 24 \,\mathrm{V}$ جوابات:

مثق 2.3: شکل 2.7-پ میں مزاحت کی رواور دباو حاصل کریں۔ منبع کی طاقت دریافت کریں۔

 $p = -36 \,\mathrm{W}$ ، $v = 18 \,\mathrm{V}$ ، $i = 2 \,\mathrm{A}$ جرایات:

قوانین کرچاف 2.2

اوہم کے قانون سے ایک مزاحت اور ایک منبع پر مبنی دور آسانی سے حل ہوتا ہے البتہ زیادہ پر زوں پر مبنی دور حل کرتے ہوئے اس کا استعال قدر مشکل ہوتا ہے۔ زیادہ پرزہ جات کے ادوار قوانین کو چاف ^{14 13} کی مدد سے نہایت آسانی کے ساتھ حل ہوتے ہیں۔ برقی دور میں برقی پرزوں کو موصل تاروں سے آپس میں جوڑا جاتا ہے۔موصل تارکی مزاحمت کو صفر اوہم تصور کیا جاتا ہے لہٰذاان میں طاقت کا ضیاع صفر ہو گا۔یوں طاقت کی پیداوار اور ضیاع صرف برقی برزوں میں ممکن ہے۔

اس سے پہلے کہ ہم کرجاف کے قوانین پر غور کریں، ہم کچھ اصطلاحات مثلاً جوڑ¹⁵، دائرہ 16 اور شاخ¹⁷ جاننے کی کوشش کرتے ہیں۔شکل 2.8-الف میں مزاحت R₃ ، R₂ اور منبع V₁ نقطہ n₀ برجڑے ہیں۔اس نقطے کو جوڑ n₀ کہا جائے گا۔اسی شکل میں جوڑ N₁ ، n₁ اور N₃ ، R₂ دکھائے

Kirchoff's laws13

 $^{^{1845}}$ یش کیا۔ 1845 یش کیا۔ 1846 یش کیا۔ 1846

 $branch^{17}$

28 مزاحمتی ادوار

گئے ہیں۔ شکل 2.8-ب میں اسی شکل کو قدر مختلف طریقے سے دکھایا گیا ہے۔ یہاں بھی ان جو ڈوں کی نشاندہی کی گئی ہے۔ کسی بھی دویادوسے زیادہ پر زول کو جوڑ نصور کیا جاتا ہے۔ یوں شکل-الف میں جوڑ اس نقطہ مانند ہے جبکہ شکل-ب میں مجلی پوری تار جوڑ اس ہے۔جوڑ کو ظاہر کرنے والی تارکی لمبائی کچھ بھی ہو سکتی ہے۔

 $i_1(t)$ کسی بھی دور میں متعدد راستے ممکن ہیں۔ شکل 2.8 میں جوڑ n_1 سے مزاحمت R_4 کے راستے جوڑ n_3 تک پہنچا جاسکتا ہے جہاں سے منبع $i_1(t)$ کہ راستہ کہلاتا راستہ جو ابتدائی جوڑ پر بمی اختتام پزیر ہو ببند راستہ کہلاتا ہے۔ ایسا بند راستہ جس پر کسی بھی جوڑ سے صرف ایک مرتبہ گزرا جائے دائرہ $i_1(t)$ ، $i_$

برقی دور میں ہر برقی پرزے کو شاخ 19 کہتے ہیں۔ شکل 2.8 میں کل چھ (6) شاخ ہیں۔ جوڑ n_3 پر تین شاخ n_3 ، n_4 اور n_3 بیں۔ جوڑ n_5 پیں۔ جوڑ n_6 پر تین شاخ n_5 اور n_6 بیں۔ آئیں اب قوانین کر چاف کی بات کریں۔

کرچاف کا قانون برائے برقی رو کہتا ہے کہ کسی بھی جوڑ پر داخلی برقی رو کا مجموعہ خارجی برقی رو کے مجموعے کے عین برابر ہوتا ہے۔

کر چاف کے قانون برائے برقی رو کو کو چاف قانون رو کہا جائے گا۔اس قانون کو کسی بھی جوڑ کے لئے یوں

$$\sum i_{ij} = \sum i_{ij} = \sum i_{ij}$$
 (2.9)

کھا جاتا ہے۔ شکل 2.8-ب میں جوڑ n₀ پر درج بالا مساوات سے

(2.10)
$$i_3(t) + i_5(t) = i_6(t) \qquad n_0 \mathcal{F}.$$

حاصل ہوتا ہے۔اسی طرح بقایا جوڑوں پر کرچاف قانونِ روسے درج ذیل حاصل ہوتے ہیں جہاں مساوی علامت (=) کے بائیں جانب داخلی رو کا مجموعہ اور دائیں جانب خارجی رو کا مجموعہ ہے۔

(2.11)
$$i_6(t) = i_2(t) + i_4(t) \qquad n_1 \mathcal{F}.$$

(2.12)
$$i_1(t) + i_4(t) = i_5(t) \qquad n_2 \mathcal{I}.$$

(2.13)
$$i_2(t) = i_1(t) + i_3(t) \qquad n_3 \mathcal{F}.$$

ا گرجوڑ پر تمام رو کی سمت خارجی تصور کی جائے تب قانون کو چاف بوائیے رو 20 کو درج ذیل لکھا جا سکتا ہے جہاں $i_j(t)$ شاخ j میں جوڑ سے خارج رو بے اور جوڑ کے ساتھ جڑے شاخوں کی تعداد N ہے۔

$$\sum_{j=1}^{N} i_{j}(t) = 0$$
 کرچاف قانونِ رو

ا گر جوڑ پر تمام روکی سمت داخلی تصور کی جائے تب قانون کر چاف برائے رو کو درج بالا لکھا جا سکتا ہے جہاں $i_i(t)$ شاخ j میں جوڑ پر داخل رو ہے۔

 $loop^{18}$

branch¹⁹

Kirchoff's Current Law, KCL²⁰

2.2. قوانین کرچاف

شكل 2.9: كرچاف قانونِ رو كو بكريوں پر بھى لاگو كيا جا سكتا ہر ـ

مساوات 2.14 کو استعال کرتے ہوئے شکل 2.8-ب کے لئے درج ذیل لکھا جائے گا جہاں خارجی رو مثبت اور داخلی رو منفی لکھے گئے ہیں۔

(2.15)
$$i_6(t) - i_3(t) - i_5(t) = 0 \qquad n_0 \mathcal{I}.$$

$$(2.16) i_2(t) + i_4(t) - i_6(t) = 0$$

$$(2.17) i5(t) - i1(t) - i4(t) = 0$$

$$(2.18) i_1(t) + i_3(t) - i_2(t) = 0$$

مساوات 2.10 تا مساوات 2.13 کو مساوات 2.9 سے حاصل کیا گیا جبکہ مساوات 2.15 تا مساوات 2.18 کو مساوات 2.14 سے حاصل کیا گیا۔ مساوات 2.10 تا مساوات 3.15 کو مساوی نشان (=) کی دوسری جانب منتقل کرنے سے مساوات 2.15 حاصل ہوتا ہے۔ آپ دیکھ سکتے ہیں کہ مساوات 2.14 حاصل ہوتا ہے۔ آپ دیکھ سکتے ہیں کہ مساوات 2.19 در مساوات 2.14 عین برابر ہیں۔

کرچاف قانونِ روکے استعال میں اصل روکی سمت کو نہیں دیکھا جاتا بلکہ صرف متغیرات $i_1(t)$ ، $i_2(2)$ ، $i_3(t)$ ، $i_3(t)$

کرچاف قانونِ روعمومی مساوات ہے جے ہم روز مرہ زندگی میں برقی روکی بجائے مختلف چیزوں پر لا گو کرتے ہیں۔ شکل 2.9-الف میں ایک گڈریا پورے دن بکریاں چرانے کے بعد انہیں شام کو پہاڑی سے نیچے ایک پگڈنڈی پر اتار رہا ہے۔ گڈریا پی بکریوں کو خیر خیر بیت سے دکھائی گئے راستے سے نیچے اتار پاتا ہے۔ نقط اسے نیچے دو پگڈنڈیاں ہیں۔ اگر بالائی پگڈنڈی پر الل بکریاں اترتے گئی جائیں تو آپ یقین کر سکتے ہیں کہ نچل دو پگڈنڈیوں پر کل اتن ہی بکریاں اترے گئی جائیں اترے گئی ہوئی ہوگی دو پگڈنڈیوں پر کل اتن ہوئے ہی بکریاں اترے گی یعنی اور کہتے ہیں۔ یوں برقی روکہتے ہیں۔ یوں برقی روکہتے ہیں۔ یوں برقی روکہ بات کرتے ہوئے ہم حقیقت میں برقی بارکی بات کرتے ہیں۔ تار میں برقی بارکا وجود الیکٹران پر ہے جس کی تعداد ناتو کم ہوتی ہے اور ناہی بڑھتی ہے۔ اس کے بالکل پر چلتی بکریوں کی طرح تار میں چلتے الیکٹران کی تعداد اس جوڑ سے خارج ہوتے الیکٹران کی تعداد اس جوڑ سے خارج ہوتے الیکٹران کی تعداد اس جوڑ سے خارج ہوتے الیکٹران کے برابر ہوگی۔ طبیعیات کے اصولوں کے تحت کسی بھی جوڑ پر برقی بارکا انبار نہیں جع ہوتا۔ 12

کر چاف قانونِ رو کسی بھی بند سطح کے لئے درست ہے۔شکل 2.9-ب میں ہلکی ساہی میں بند سطح میں داخل بکر یوں کی تعداد سطح سے خارج بکر یوں کے برابر ہوگی۔اس شکل میں بند سطح کو جوڑ n تصور کیا جا سکتا ہے۔

مثال 2.7: شكل 2.10-الف مين نامعلوم رو دريافت كرين

 $i_4=5\,\mathrm{mA}+2\,\mathrm{mA}=7\,\mathrm{mA}$ کے برابر ہو گی لیعن $i_4=5\,\mathrm{mA}+2\,\mathrm{mA}=7\,\mathrm{mA}$

30 باب 2. مزاحمتی ادوار

شكل 2.10: كرچاف قانون رو كى مثال.

جوڑ n_3 پر داخلی رو کا مجموعہ i_4+i_3 ہے جو خار جی $6\,\mathrm{mA}$ کے برابر ہو گا۔ یوں درج بالا حاصل کردہ i_4 کی قیمت پُر کرتے ہوئے $7\,\mathrm{mA}+i_3=6\,\mathrm{mA}$

سے درج ذیل حاصل ہوتاہے

$$i_3 = -1 \,\mathrm{mA}$$

$$9\,\mathrm{mA} + i_2 = 6\,\mathrm{mA}$$

ہو گا جس سے

$$i_2 = -3 \,\mathrm{mA}$$

 $9\,\mathrm{mA} = i_1 + 5\,\mathrm{mA}$

لكھا كر

$$i_1 = 4 \,\mathrm{mA}$$

 n_4 ماصل ہوتا ہے۔ شکل-الف میں جوڑ n_4 پر

$$i_1 + i_2 = i_3 + 2 \,\mathrm{mA}$$

کھا جا سکتا ہے۔ ہم $i_3=-1\,\mathrm{mA}$ اور $i_2=-3\,\mathrm{mA}$ کو اور $i_3=-1\,\mathrm{mA}$

$$i_1 = i_3 + 2 \text{ mA} - i_2$$

= $-1 \text{ mA} + 2 \text{ mA} - (-3 \text{ mA})$
= 4 mA

ہی حاصل ہوتا ہے۔آپ دیکھ سکتے ہیں کہ کرچاف قانونِ رولکھتے ہوئے ، ia ، i2 ، i1 کے دکھائے گئے سمتوں سے ہی انہیں داخلی یا خارجی روگنا جاتا ہے۔ 2.2. قوانين كرچاف

شكل 2.11: كرچاف قانون رو كى دوسرى مثال.

شكل 2.12: كرچاف قانونِ رو كا پهلا مشق.

مثال 2.8: شكل 2.11 مين تمام جوڑ پر كرچاف قانونِ رو كى مساوات لكھيں۔

حل:جوڑ n_0 تاجوڑ n_3 بالترتیب مساوات لکھتے ہیں۔خارجی رو کو مثبت تصور کیا گیا ہے۔

$$i_1 + i_2 - i_3 = 0$$

$$i_4 + i_5 - i_1 = 0$$

$$i_6 - i_2 - i_4 = 0$$

$$i_3 - i_5 - i_6 = 0$$

مشق 2.4: شكل 2.12 مين I دريافت كريں۔

 $I = 8 \,\text{mA}$:(ب): $I = -5 \,\text{mA}$ (ب): جواب:(الف)

32 باب 2. مزاحمتی ادوار

شكل 2.13: مشق 2.5 كي شكل.

شکل 2.14: کرچاف قانونِ رو ہر بند سطح پر لاگو ہوتا ہے۔

مشق 2.5: شکل 2.13 میں I_S اور I حاصل کریں۔

جوابات: n_1 فرور نصور کریں۔ I_S جوابات: $I_S=5\,\mathrm{mA}$ ، $I_S=12\,\mathrm{mA}$

مثال 2.9: شکل 2.10-ب میں کسی بھی جگہ بند سطح تھینج کر دیکھا جا سکتا ہے کہ کرچاف قانونِ رو بند سطح پر لا گو ہوتا ہے۔ شکل 2.14-الف میں ایسا ہی کیا گیا ہے۔ بلائی اور مچلی سطح کے داخلی اور خارجی رو دریافت کریں۔

حل: بالائی سطح کو جوڑ تصور کیا جا سکتا ہے۔ شکل میں اس جوڑ کو n_b کہا گیا ہے۔ بالائی سطح پر مجموعی داخلی رو کھے اس سے 5 mA + 2 mA ہے۔ اس سے 7 mA رو خارج ہوتی ہے۔ آپ دیکھ سکتے ہیں کہ داخلی اور خارجی رو برابر ہیں۔

نجلی سطح پر داخلی رو A m A + 6 m A ہے اور خارجی رو 9 m A ہے۔اس سطح پر بھی داخلی اور خارجی رو برابر ہیں۔ نجلی سطح کو جوڑ nn کہا گیا ہے۔

آپ شکل 2.10-ب پر کسی بھی جگہ پر بند سط کھنچ کر دیکھ سکتے ہیں کہ اس سطح پر داخلی رو مین سطح سے خارجی رو کے برابر ہو گی۔

2.2. قوانين كرچاف

شكل 2.15: مشق 2.7 ميں استعمال ہونے والا دور۔

شكل 2.16: مشق 2.8 ميں استعمال ہونے والا دور۔

مثق 2.6: شکل 2.14-ب میں بند سطح کی داخلی اور خارجی رو حاصل کریں۔

جوابات: داخلی رو MA و ہے اور خار جی رو بھی 9 mA ہے۔

مثق 2.7: شكل 2.15 ميں نامعلوم رو دريافت كريں۔

 $I_3 = 6\,\mathrm{mA}$ اور $I_2 = 11\,\mathrm{mA}$ ، $I_1 = 5\,\mathrm{mA}$: واب

مشق 2.8: شکل 2.16 میں i_a اور i_a دریافت کریں۔

 $i_a=rac{2}{3}\,\mathrm{mA}$ ، $i_1=3\,\mathrm{mA}$ جوابات:

کر جاف کا دوسرا قانون، کر چاف قانون برائے برقی دباو کہلاتا ہے۔ اس قانون کو عموماً کر چاف قانون دباو ²² کہا جاتا ہے۔

باب 2. مزاحمتی ادوار