Signali i sustavi

Drugi međuispit (grupa A) - 5. svibnja 2011.

1.	Zadan je signal od 6 uzoraka $x(n)=\{\underline{4},0,2,0,2,0\}$. Vrijednost DFT ₆ transformacije signala $x(n)$ za $k=3$ je:
	a) $X(3) = 2$ b) $X(3) = 4 - 4j$ c) $X(3) = 4 + 4j$ d) $X(3) = 8$ e) $X(3) = 10$
2.	Izračunajte IDFT ₄ transformaciju spektra $X(k)=\{\underline{4},-2j,0,2j\}.$
	a) $x(n) = \{\underline{1}, 0, 1, 2\}$ b) $x(n) = \{\underline{4}, 0, 4, 8\}$ c) $x(n) = \{\underline{1}, 2, 1, 0\}$ d) $x(n) = \{\underline{4}, 8, 4, 0\}$ e) $x(n) = \{\underline{0}, -2, 4, 2\}$
3.	Zadan je vremenski kontinuirani signal $x(t) = 2\sin(2t) + 2\cos(4t)$. Signal je očitan s frekvencijom očitavanja $\omega_S = 5$ pa

=5 pa je zatim rekonstruiran idealnim interpolatorom. Koji se signal dobiva nakon tog postupka?

a) $2\sin(2t) + 2\cos(4t)$ **b)** $2\sin(t) + 2\sin(2t)$ c) $2\cos(t) + 2\sin(2t)$ d) $2\cos(t) + 2\sin(2t) + 2\sin(3t) + 2\cos(4t)$

e) $2\sin(t) + 2\sin(2t) + 2\cos(3t) + 2\cos(4t)$

Razmatramo očitavanje CTFT spektra $X(j\omega)$ vremenski kontinuiranog signala x(t) konačne energije. Koji od sljedećih uvjeta mora biti zadovoljen kako bi mogli očitati spektar u točkama $k\omega_S$, $k\in\mathbb{Z}$, tako da iz dobivenih uzoraka spektra $X(jk\omega_S)$ bude moguća rekonstrukcija polaznog kontinuiranog spektra $X(j\omega)$?

a) Najveća frekvencijska komponenta signala x(t) mora biti veća od ω_S .

b) Najveća frekvencijska komponenta signala x(t) mora biti dvaput manja od ω_S .

c) Najmanja frekvencijska komponenta signala x(t) mora biti manja od ω_S .

d) Signal mora biti jednak nuli izvan konačnog segmenta trajana $2\pi/\omega_S$.

e) Signal mora biti gladak.

Promatramo kontinuirani signal $x(t) = 1 + \sin(10\pi t)$. Započevši od trenutka t = 0s snimili smo 150 ms danog signala. Dobiveni segment smo zatim očitali uz frekvenciju očitavanja $f_S = 20 \,\mathrm{Hz}$ te smo iz dobivena četiri uzorka izračunali DFT. Koja vrijednost diskretne Fourierove transformacije odgovara kontinuiranoj frekvenciji $\omega = 10\pi \,\mathrm{rad/s}$?

a) 4 **b)** -2i **c)** 2i **d)** -i/2 **e)** i/2

6. Neka je y(t) odziv sustava S na pobudu u(t), dakle y(t) = S(u(t)), te neka je T realan broj. Za sustav S kažemo da je vremenski nepromjenjiv ako za svaku pobudu vrijedi:

a) $\forall T: S(u(t-T)) = y(t-T)$ **b)** $\forall T: S(u(t-T)) = y(t+T)$ **c)** $\forall T: u(t-T) = y(t-T)$ **d)** $\forall T: u(t-T) = y(t+T)$ **e)** $\forall T: S(y(t+T)) = u(t+T)$

7. Zadan je sustav $y(n) = e^{-\lambda n}u(n) + \lambda$ gdje je y(n) izlazni signal, u(n) ulazni signal i $\lambda \in \mathbb{C}$ konstanta. Samo jedna od navedenih tvrdni je točna! Koja?

a) Sustav je nekauzalan. b) Sustav je memorijski. c) Sustav je nelinaran za svaki λ .

d) Ako je sustav linearan za neki λ onda je i vremenski nepromjenjiv za taj isti λ .

e) Sustav je vremenski promjenjiv za svaki λ .

8. Zadan je sustav $y(t) = e^{3t} \mu(t+1)u(t)$ gdje je y(t) izlazni signal i gdje je u(t) ulazni signal. Zadani sustav je:

a) linearan i memorijski b) linearan i vremenski nepromjenjiv c) bezmemorijski i vremenski nepromjenjiv

d) linearan i vremenski promjenjiv e) memorijski i vremenski promjenjiv

Za promatrani diskretni sustav je poznato da na tri ulazna signala $u_1(n) = \delta(n), u_2(n) = \mu(n-1)$ i $u_3(n) = \mu(n)$ redom daje odzive $y_1(n) = h(n)$, $y_2(n) = (n-1)h(n)$ i $y_3(n) = h(n)$. Pri tome je h(n) diskretni signal takav da vrijedi h(n) > 1za svaki n. Samo jedna od navedenih tvrdnji je točna! Koja?

a) Zadani sustav je linearan i BIBO stabilan. b) Zadani sustav je linearan i BIBO nestabilan.

c) Zadani sustav je nelinearan i BIBO stabilan.
d) Zadani sustav je nelinearan i BIBO nestabilan.

e) Na temelju zadanog nije moguće ispitati linearnost i BIBO stabilnost.

10. Ako je poznato da je $y_1(n) = 6n \mu(n)$ odziv linearnog vremenski nepromjenjivog sustava na pobudu $u_1(n) = \mu(n)$ odredite odziv $y_2(n)$ sustava na pobudu $u_2(n) = 3\delta(n)$.

a) $y_2(n) = 6 \mu(n-1)$ **b)** $y_2(n) = 6n\delta(n)$ **c)** $y_2(n) = 6 \mu(n)$ **d)** $y_2(n) = 18 \mu(n-1)$ **e)** $y_2(n) = 18 \mu(n)$

- **11.** Sustav $y(n) = u(n^6)$ je:
 - a) BIBO stabilan i vremenski nepromjenjiv b) BIBO stabilan i vremenski promjenjiv
 - c) BIBO stabilan i nelinearan
- d) BIBO nestabilan i nelinearan
- e) BIBO nestabilan i vremenski nepromjenjiv

- **12.** Izračunajte $(\delta(n+2)*2^n) \cdot \delta(3n-6)$.
 - **a**) 16
- **b)** $16\delta(3n-6)$
- c) $\frac{1}{4}\delta(3n-6)$
- d) $\frac{1}{16}$ **e)** 2^{n}
- 13. Izračunajte konvoluciju vremenski diskretnih signala konačnog trajanja $x_1(n) = \delta(n-1) + 2\delta(n-2)$ i $x_2(n) = \delta(n+1) + 2\delta(n-2)$ $\delta(n) + \delta(n-1)$.
 - a) $2\delta(n+3)+3\delta(n+2)+3\delta(n+1)+\delta(n)$ b) $\delta(n+1)+3\delta(n)+3\delta(n-1)+2\delta(n-2)$ c) $\delta(n)+3\delta(n-1)+3\delta(n-2)+2\delta(n-3)$
 - **d)** $\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 3\delta(n-3) + 2\delta(n-4)$
- e) $2\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 3\delta(n-3) + \delta(n-4)$
- 14. Odredite konvoluciju $x_1(t) * x_2(t)$ signala konačnih trajanja zadanih slikom.

- Ako je poznato da je y(t) = u(t) * h(t) izrazite u(t+3) * h(t-2) preko y(t)!
 - **a)** u(t+3)*h(t-2) = y(t-2) **b)** u(t+3)*h(t-2) = y(t-1) **d)** u(t+3)*h(t-2) = y(t+3) **e)** u(t+3)*h(t-2) = y(t+5)
- c) u(t+3) * h(t-2) = y(t+1)

- 16. Impulsni odziv kauzalnog, linearnog i vremenski nepromjenjivog diskretnog sustava opisanog jednadžbom diferencija y(n) - 2y(n-1) + y(n-2) = u(n) je:
 - a) $h(n) = (1+2n)\mu(n)$ b) $h(n) = (1+n)\mu(n)$ c) $h(n) = \mu(n)$
- **d)** $h(n) = (1-n)\mu(n)$ **e)** $h(n) = (-1)^n \mu(n)$
- 17. Za sustav iz prethodnog zadataka odredite odziv MIRNOG sustava na pobudu $u(n) = 4 \mu(n)$.

 - a) $y_m(n) = (4 + 8n + 2n^2) \mu(n)$ b) $y_m(n) = (4 + 6n + 2n^2) \mu(n)$ c) $y_m(n) = (2n + 2n^2) \mu(n)$

- **d)** $y_m(n) = (4 + 8n) \mu(n)$ **e)** $y_m(n) = 2n^2 \mu(n)$
- 18. Promatramo kauzalni sustav zadan jednadžbom $y(n) + \frac{1}{3}y(n-1) = u(n-1)$. Odredite PRISILNI odziv sustava na svevremensku pobudu $u(n) = 10\sin(\frac{\pi}{2}n)$.
 - a) $y_p(n) = -3\cos(\frac{\pi}{2}n) + 9\sin(\frac{\pi}{2}n)$ b) $y_p(n) = 3\cos(\frac{\pi}{2}n) 9\sin(\frac{\pi}{2}n)$ c) $y_p(n) = -3\sin(\frac{\pi}{2}n) + 9\cos(\frac{\pi}{2}n)$ d) $y_p(n) = 3\sin(\frac{\pi}{2}n) 9\cos(\frac{\pi}{2}n)$ e) $y_p(n) = -3\cos(\frac{\pi}{2}n) 9\sin(\frac{\pi}{2}n)$

- 19. Za sustav iz prethodnog zadatka odredite PRIRODNI odziv ako je poznato da je y(-1) = -39.
 - a) $y_0(n) = 12(-\frac{1}{3})^n \mu(n) + 3\sin(\frac{\pi}{2}n)$ b) $y_0(n) = 13(-\frac{1}{3})^n \mu(n) + 3\cos(\frac{\pi}{2}n)$ c) $y_0(n) = 12(-\frac{1}{3})^n \mu(n)$ d) $y_0(n) = 13(-\frac{1}{3})^n \mu(n)$

- **20.** Za kauzalni sustav opisan jednadžbom $y(n) + \frac{1}{3}y(n-1) = u(n)$ odziv mirnog sustava na pobudu $u(n) = \mu(n) \mu(n-10)$ u koraku n = 154 iznosi:
 - a) $\frac{1}{4}(3^{-154}-3^{-144})$
- b) $\frac{1}{4}(3^{-154}-3^{-146})$ c) 3^{-154} d) $\frac{1}{4}3^{-154}+\frac{3}{4}$ e) $-\frac{1}{4}3^{-144}$