

Workforce of the Future

Guest Lecture: Biologics Quality by Design (QbD)

Meli Gallup – Genentech – Director Global MSAT Biologics Drug Products Rosalina Padilla – Grifols – Director Quality Assurance Ryan Chaney – Genentech – Senior Engineer Global MSAT Drug Substance Nassim Farrokhzad – AstraZeneca – Associate Principal Scientist Drug Product & Combination Products

Wednesday 25 May 2022 11 - noon PDT

Lecture Outline

Background

Quality by Design (QbD) in Biologics

Summary

Questions and Answers with Panelists

Workforce of the Future (WoF) Collaboration with UC Davis

Issue

Projected skilled US workforce gap in Biopharma in the next 5 – 10 years

Scope

- Process Development
- Manufacturing Operations

The End in Mind

- Biotech Process
 Engineer
- Process Development Scientists
- Combination Products
 Engineer
- Increase understanding technology, regulatory science, industry 4.0

Industry course focus area with universities in US.

For UC Davis:

- QbD lecture
- Pharmaceutical Risk Management course
- IT/Data Management course

Biologics Manufacturing – How Hard Can It Be?

How do monoclonal antibodies differ from traditional chemical molecules?

http://www.slideshare.net/bathasu/the-chemistry-of-monoclonal-antibodies

Monoclonal Antibodies

Rodrigo et al., 2015. Antibodies. 4: 259-277.

Shukla, et al., 2017. Bioengineering & Translational Medicine. 2: 58-69.

- mAbs are Y-shaped multi-domain protein molecules comprised of two light chains and two heavy chains linked by a series of disulfide bonds
- The fragment crystallizable (Fc) region binds to protein A
- Biotech is moving into novel antibody constructs

Product Lifecycle and Process Development Timeline

Illustrative Biologics Manufacturing Overview

Lecture Outline

Background

Quality by Design (QbD) in Biologics Manufacturing

Summary

Questions and Answers with Industry Panel

Quality By Design

What Does Quality by Design Mean to You?

Note: prepare word cloud

ICH and Quality by Design (QbD)

International Council (Conference) on Harmonization of Technical Requirements for Pharmaceuticals for Human Use

- A joint initiative between regulatory authorities and pharmaceutical industry to discuss scientific and technical aspects of pharmaceuticals
- Mission is to achieve to achieve greater harmonization worldwide to ensure safe, effective, and high quality medicines are developed, registered, and maintained in efficient manner while meeting high standards
- Outputs: ICH guidelines

ICH Guidelines containing QbD elements:

• Q8 (R2): Pharmaceutical Development

Q9 : Quality Risk Management

Q10 : Pharmaceutical Quality System

Q11 : Development and Manufacture of Drug Substance

 Q12 : Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management

What is Quality by Design (QbD)?

ICH Q8: QbD is a **systematic** approach to development that begins with predefined objectives and emphasizes **product** and **process understanding** and **process control**, based on sound **science** and **quality risk management**.

Leverages knowledge of structure-function relationship to define product attributes that are important

What are advantages of QbD?

- Expects a science-based and risk-based approaches to define the commercial manufacturing process
- Promotes deeper product & process understanding throughout the lifecycle of a product
- Allows framework for post-approval process changes

→ QbD does not change the manufacturing process in itself!

11

*ICH Q8 R2 - Pharmaceutical Development

QbD Elements – Framework Begins with the End in Mind

- QTPP A prospective summary of the quality characteristics of a Drug Product that ideally will be achieved to ensure the desired quality, taking into account safety and efficacy of the Drug Product.
- (p)CQA A physical, chemical or microbiological property or characteristic that should be within an appropriate limit, range or distribution to ensure the desired product quality ((p) = potential). Considers the relevant Mechanisms of Action.
- **(p)CPP** A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality ((p) = potential).
- DS The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality.
- CS A planned set of controls, derived from current product and process understanding that ensures process performance and product quality.

*QRM – A systematic process of organizing information to support decision making based on identification of hazards and evaluation of risks management associated with those hazards.

Quality Target Product Profile

What are our target product quality characteristics to ensure safety and efficacious drug product?

QTPP

Process Development

> Platform Knowledge

Product Understanding

Scientific Literature

Examples of elements for considerations:

- Target Product Profile: Therapeutic area, patient population
- Clinical Development: Route of administration (oral, IV, IM, SC), Clinical setting (self or clinic administration), Pharmacokinetic characteristics, Dosage form: liquid for injection, solid tablet, etc
- Legal requirements
- · Quality characteristics: sterility, purity, etc
- · Many others ..

Assessment Check

What are key characteristics of a Quality Target Product Profile?

- A. Process Development and Platform Knowledge
- B. Any attribute that can help with understanding drug product quality characteristics
- C. Not relevant for biologics manufacturing
- D. Process Development, Platform Knowledge, Product Understanding, Scientific Literature

QbD Elements – Framework Begins with the End in Mind

*QRM – A systematic process of organizing information to support decision making based on identification of hazards and evaluation of risks management associated with those hazards.

Quality Target Product Profile

QbD risk assessment tools assess product quality attributes for criticality

What attributes should be measured?

What are potential Critical Quality Attributes for a Monoclonal Antibody?

ICH Q8 R1: Critical Quality Attributes - Link Directly to Patient Safety & Efficacy

A physical, chemical, biological or microbiological property or characteristic that should be within an **appropriate** limit, range, or distribution **to ensure the desired product quality**.

Assessment Workflow

Assessment Process

Assessment Check

Which best describes the definition of Quality?

- A. The degree to which a product passes its final QC testing specification
- B. The degree to which a product complies with the FDA requirements
- C. The degree to which a set of inherent properties of a product, system, or process fulfills requirements
- D. The degree to which the term Quality is added to Standard Operating Procedures

Assessment Check

What is a Critical Quality Attribute?

- A. Property or characteristics within appropriate range to achieve desired product quality
- B. Summary of intended drug product quality characteristics
- C. An attribute that is described as having critical quality
- D. It is not important in the manufacturer of biologics products

Critical Process Parameters and Design Space

*QRM – A systematic process of organizing information to support decision making based on identification of hazards and evaluation of risks management associated with those hazards.

Critical Process Parameters

What attributes should be measured?

Critical Process Parameters

How do we determine Critical Process Parameters?

ICH Q8(R2): CPP

A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality.

Critical Process Parameters and Design Space

How do we determine Critical Process Parameters?

- 1. Identify potential Critical Process Parameters via QRM
- Process Design Studies for each process step to determine acceptable ranges and process parameters critical for a given process step

3. End-to-end (linking) Process Design Study to develop overall design space

Example

Identification of CPPs

Process Step	Process Parameter	Scale Tested	
Freeze	Heat Transfer Fluid Temperature (or Product Temperature)	Manufacturing scale and small-scale model	
	Bulk Volume in Freeze/Thaw Vessel		
	Freeze Cycle Duration		
	Number of Freeze/Thaw Cycles		
Thaw	Heat Transfer Fluid Temperature	Manufacturing scale and small-scale model	
	Bulk Volume in Freeze/Thaw Vessel		
	Bulk Recirculation Start Time		
	Bulk Recirculation Time		
	Bulk Recirculation Flow Rate		
	Number of Freeze/Thaw Cycles		Freeze
Pooling/ Mixing	Mixing Time	Manufactu	Bulk Volu
	Mixing Speed		
	Product Temperature		Heat Tran
	Bulk Volume		Tempe
Bulk Transfer from Freeze/Thaw Tank to Mixing Tank	Transfer Pressure	Manufactu	Fixed F
	Transfer Temperature		
			Freeze C
Bioburden Reduction Filtration	Filtration Pressure	Manufactu small-scale	Tempe
	Ration of Bulk Volume to Filter Surface Area		Dura
	Number of Refiltrations		Maxii

Outcomes – CPP summary

Process Step/Parameter	Acceptable Range	Range Type	CPP Type	
Freeze				
Bulk Volume in Freeze/Thaw Vessel (L)	120 L: 14-120 300 L: 50-300	MAR	Non-CPP	
Heat Transfer Fluid Temperature/Product Temperature ^a				
Temperature-Feedback Approach (°C)	Heat Transfer Fluid Temperature ≤-43	MAR	Non-CPP	
Fixed Freeze-Operation Time Approach (°C) ^a	Product Temperature is ≤-36°C for ≥7.5 hours	MAR	Non-CPP	
Freeze Cycle Duration				
Temperature-Feedback Approach				
Duration Product Temperature ≤-36°C (hours)	120/300 L F/T Tank: ≥7.5	MAR	Non-CPP	
Maximum Duration to Achieve Freeze Completion (hours)	≤35	MAR	Non-CPP	
Fixed Freeze-Operation Time Approach				
Minimum Freeze Time (hours)	≥15	MAR	Non-CPP	
Maximum Duration to Achieve Freeze Completion (hours)	≤35	MAR	Non-CPP	
Number of Freeze Cycles	≤5	MAR	Non-CPP	
Thaw				
Bulk Volume in Freeze/Thaw Vessel (L)	120 L: 14 – 120 300 L: 50 – 300	MAR	Non-CPP	
Heat Transfer Fluid Temperature				
Temperature-Feedback Approach (°C)	23-26	MAR	Non-CPP	
Two-Step Approach (°C)	23-26 (Stage 1) and 16-26 (Stage 2)	MAR	Non-CPP	

Quality Attributes Tested^a
Size Variants, Charge Variants, COC,

Protein Concentration, Visible/Subvisible

Particles, pH, Osmolality, Potency

Size Variants, Charge Variants, COC,

Protein Concentration, Visible/Subvisible Particles, pH, Osmolality, Potency,

QbD Elements – Framework Begins with the End in Mind

*QRM – A systematic process of organizing information to support decision making based on identification of hazards and evaluation of risks management associated with those hazards.

Control Strategy

Systematic Definition of the Testing Strategy

Do we have the right tests and criteria (limits)?

Quality by Design risk assessment tools integrate product and process knowledge into the Control Strategy

CQA Acceptance Criteria (CQA-AC)

The CQA-AC represents a numerical limit a CQA must meet at a given unit operation in order to ensure the desired quality of the product.

- Based on patient impact and not based on product-specific (clinical) manufacturing
- Collective effect of QAs considered to ensure PK and biological activity
- Drive CPP and Design Space identification and definition of control strategy

CQA-AC are established based on:

- Product-specific non-clinical and clinical experience
- Platform knowledge and published literature
- Process capability and testing strategy considerations
- For CQAs that are not formed, no CQA-ACs are set

May extend beyond product-specific clinical and non-clinical historical ranges with justification

Not necessarily product release criteria

Control Strategy

Setting of the acceptance criteria can be an iterative process

Illustrative example

Control Strategy

Piecing Things Together

QbD Elements – Recap so Far

Typical Elements of the Commercial Manufacturing Lifecycle Management

- Monitor the production process and product quality attributes to ensure that both remain within a controlled state post-approval
- Update the control strategy as necessary based on further process and product knowledge
- Manage changes to process parameters within the design space

- Systematically adds to process understanding →
- Continuous improvement to enhance process overtime >
- Assure product quality to patients

Lecture Outline

Background

Quality by Design (QbD) in Biologics Manufacturing

Summary

Questions and Answers with Industry Panel

Quality by Design (QbD)

Pharmaceutical Quality System, ICH Q10

Quality by Design (ObD)

- Systematic approach applied to the development of a Product
- Emphasis on process and product understanding
- Science and risk-based approach used in the development of a product
- QbD elements are covered in ICH Q10, Pharmaceutical Quality System

ICH Q10, Pharmaceutical Quality System

Applies to systems supporting the development and manufacture of pharmaceutical drug substances and drug products, including biotechnology and biological products, throughout the product lifecycle.

Quality by Design (QbD) Pharmaceutical Quality System, ICH Q10

ICH Q10, Pharmaceutical Quality System

- Provides quality management throughout the lifecycle of the product
- Considers the different goals and knowledge available for each stage of product life cycle
- Encourages the use of science and risk-based approach at each lifecycle stage
- Facilitates innovation and continuous improvement to improve product quality

Lecture Outline

Background

Quality by Design (QbD) in Biologics Manufacturing

Summary

Questions and Answers

Workforce of the Future

Q&A Panelists

Meli Gallup – Genentech – Director Global MSAT Biologics Drug Products Rosalina Padilla – Grifols – Director Quality Assurance Ryan Chaney – Genentech – Senior Engineer Global MSAT Drug Substance Nassim Farrokhzad – AstraZeneca – Associate Principal Scientist Drug Product & Combination Products