$$x_1, x_2, x_3, \dots, x_n$$
의 평균, 분산, 표준편차 (Mean, Variance, Standard Deviation of $x_1, x_2, x_3, \dots, x_n$)

Start
$$\triangleright$$
 End $x_1, x_2, x_3, \cdots, x_n$

Mean:

Mean: m

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \cdots + x_n}{n}$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance:

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

= $\frac{1}{n} \sum_{i=1}^{n} x_i$

Variance : σ^2

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

 $= \frac{1}{n} \sum_{i=1}^{n} x_i$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

 $= \frac{1}{n} \sum_{i=1}^{n} x_i$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$
 $= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^n x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^n (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^n (x_i^2 - 2mx_i + m^2)$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times m$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times m + m^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^n x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^n (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^n (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^n x_i + m^2 \times \frac{1}{n} \sum_{i=1}^n 1$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m^2 + \frac{1}{n} \sum_{i=1}^{n} x_$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^n x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^n (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^n (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^n x_i + m^2 \times \frac{1}{n} \sum_{i=1}^n 1$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m^2 + m^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m^2 + m^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m^2 + m^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - m^2$$

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^n x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^n (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^n (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^n x_i + m^2 \times \frac{1}{n} \sum_{i=1}^n 1$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2m^2 + m^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - m^2$$

Standard Deviation

$$x_1, x_2, x_3, \cdots, x_n$$

Mean:
$$m = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$
Variance: $\sigma^2 = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2mx_i + m^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times \frac{1}{n} \sum_{i=1}^{n} x_i + m^2 \times \frac{1}{n} \sum_{i=1}^{n} 1$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m \times m + m^2 \times \frac{1}{n} \times n$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - 2m^2 + m^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - m^2$$

Standard Deviation : $\sigma = \sqrt{\sigma^2}$

Github:

https://min7014.github.io/math20230517001.html

Click or paste URL into the URL search bar, and you can see a picture moving.