Twitter and Stocks

Rohan Ganguli, David Li, Rachel Park, William Rothman, Ivy Sim

Mentored by Austin Nicola Ardisaputra

Background I

- Why Apple?

Background I

- Why Apple?
 - Apple products are integral to our way of life
 - FAANG! All of us here love technology
 - Also, Apple is a good case study

Background II

- Why Twitter?

Donald J. Trump

© realDonaldTrump

looks at logo on bag

You failed.

Eric @canceric

I hope every person who ever thought I would fail sees this.

Democrat Congresswoman totally fabricated what I said to the wife of a soldier who died

Background II

- Why Twitter?
 - Primary source of public communication of large companies and public officials
 - Like Apple, everyone uses it
 - Most publicly available dataset with stock tickers

Our Hypothesis

Null: A company's tweet frequency does not affect their stock price.

Our Hypothesis

Null: A company's tweet mention frequency does not affect their stock price.

Alternative: A company's tweet mention frequency affects their stock price.

Methodology

- Data Collection: Twitter, Apple stock...
- 2. **Data Cleaning & Preprocessing:** Standardization
- 3. **Data Analysis**
 - a. **Data visualization:** Matplotlib, Seaborn, Plotly
 - b. **Hypothesis testing**

Our Datasets

Apple Stock Data

Shows the stock history of Apple, showing the opening price (according to each date), in addition to the high, low, and closing prices. Also has some additional information, such as volume traded.

Tweets

 Shows data about the tweets that were posted, including post date, number of comments, retweets, likes, etc..

tweet_id	writer	post_date	body	comment_num	retweet_num	like_num
550441509175443456	VisualStockRSRC	1420070457	lx21 made 10,008on AAPL -Check it out! htt	0	0	1
550441672312512512	KeralaGuy77	1420070496	Insanity of today weirdo massive selling. \$aap	0	0	0
550441732014223360	DozenStocks	1420070510	S&P100 #Stocks Performance HDLOW SBUXTGT	0	0	0
550442977802207232	ShowDreamCar	1420070807	GMTSLA: Volkswagen Pushes 2014 Record Recal	0	0	1
550443807834402816	i_Know_First	1420071005	Swing Trading: Up To 8.91% Return In 14 Days h	0	0	1
1212159765914079234	TEEELAZER	1577836383	That SPY SPX puuump in the last hour was the	1	0	6
			In 2020 I may start			

Our Datasets

Company

 Shows data associating the company ticker symbol with the company name. Total of 6 different ticker symbols.

- Company_Tweets

 Shows data with a tweet id along with the corresponding ticker symbol.

	ticker_symbol	company_name
0	AAPL	apple
1	GOOG	Google Inc
2	GOOGL	Google Inc
3	AMZN	Amazon.com
4	TSLA	Tesla Inc
5	MSFT	Microsoft

	tweet_id	ticker_symbol
0	550803612197457920	AAPL
1	550803610825928706	AAPL
2	550803225113157632	AAPL
3	550802957370159104	AAPL
4	550802855129382912	AAPL
4336440	1212158772015034369	TSLA
4336441	1212159099632267268	TSLA
4336442	1212159184931717120	TSLA
4336443	1212159838882533376	TSLA
4336444	1212160015332728833	TSLA

Data Science Cycle

- Dropped a lot of unnecessary columns within each dataset
- Cleaned the data to only consist of years after

apple_history = pd.read_csv("Apple_stock_history.csv")

2015.

Data Science Cycle

 Merged datasets together

 Calculated the data we need: percent change in stock price

Visualization

- We used scatter plots to visualize the numerical relationship between the number of tweets and the corresponding monthly stock price change.
- Using line graphs or bar graphs could not accurately portray the high of variation data points.

of Tweets vs. Percent Change

Percent Change vs. # of Tweets

Regression Plots

Bootstrap Test

- Null Hypothesis: The slope of the regression line is equal to 0.
- Perform regressions on the bootstrapped data
- 1000 simulation
- Calculate the p-value

Bootstrap Visualization

Further Steps

Further Steps

 Using a prediction model - although the results turned out to be relatively inconclusive, it would be interesting to generate a Machine Learning based prediction model to estimate the amount of percent change that correlates to the amount of tweets and vice-versa.

Further Steps

- Using a prediction model although the results turned out to be relatively inconclusive, it would be interesting to generate a Machine Learning based prediction model to estimate the amount of percent change that correlates to the amount of tweets and vice-versa.
- Expanded dataset the tweets and stock ticker/valuation only dated back to 2015, and only used monthly data - conclusions drawn from a wider ranging dataset that maybe used daily values and insights could be more comprehensive.

Thank you.