E1-29 The definition of the meter was wavelengths per meter; the question asks for meters per wavelength, so we want to take the reciprocal. The definition is accurate to 9 figures, so the reciprocal should be written as 1/1, 650, $763.73 = 6.05780211 \times 10^{-7}$ m = 605.780211 nm.

E1-31 The easiest approach is to first solve Darcy's Law for K, and then substitute the known SI units for the other quantities. Then

$$K = \frac{VL}{AHt}$$
 has units of $\frac{\text{m}^3 \text{ (m)}}{\text{(m}^2)\text{ (m) (s)}}$

which can be simplified to m/s.

P1-7 Let the radius of the grain be given by r_g . Then the surface area of the grain is $A_g = 4\pi r_g^2$, and the volume is given by $V_g = (4/3)\pi r_g^3$.

If N grains of sand have a total surface area equal to that of a cube 1 m on a edge, then $NA_g = 6 \text{ m}^2$. The total volume V_t of this number of grains of sand is NV_g . Eliminate N from these two expressions and get

$$V_t = NV_g = \frac{(6 \text{ m}^2)}{A_g} V_g = \frac{(6 \text{ m}^2)r_g}{3}.$$

Then $V_t = (2 \text{ m}^2)(50 \times 10^{-6} \text{ m}) = 1 \times 10^{-4} \text{ m}^3$.

The mass of a volume V_t is given by

$$1 \times 10^{-4} \text{ m}^3 \left(\frac{2600 \text{ kg}}{1 \text{ m}^3} \right) = 0.26 \text{ kg}.$$

P1-9 (a) The volume per particle is

$$(9.27 \times 10^{-26} \text{kg})/(7870 \, \text{kg/m}^3) = 1.178 \times 10^{-28} \text{m}^3.$$

The radius of the corresponding sphere is

$$r = \sqrt[3]{\frac{3(1.178 \times 10^{-28} \text{m}^3)}{4\pi}} = 1.41 \times 10^{-10} \text{m}.$$

Double this, and the spacing is 282 pm.

(b) The volume per particle is

$$(3.82 \times 10^{-26} \text{kg})/(1013 \, \text{kg/m}^3) = 3.77 \times 10^{-29} \text{m}^3$$

The radius of the corresponding sphere is

$$r = \sqrt[3]{\frac{3(3.77 \times 10^{-29} \text{m}^3)}{4\pi}} = 2.08 \times 10^{-10} \text{m}.$$

Double this, and the spacing is 416 pm.

E2-9 (a) The magnitude of $\vec{\mathbf{a}}$ is $\overline{4.0^2 + (-3.0)^2} = 5.0$; the direction is $\theta = \tan^{-1}(-3.0/4.0) = 323^\circ$.

- (b) The magnitude of $\vec{\mathbf{b}}$ is $\sqrt{6.0^2 + 8.0^3} = 10.0$; the direction is $\theta = \tan^{-1}(6.0/8.0) = 36.9^\circ$.
- (c) The resultant vector is $\vec{\mathbf{a}} + \vec{\mathbf{b}} = (4.0 + 6.0)\hat{\mathbf{i}} + (-3.0 + 8.0)\hat{\mathbf{j}}$. The magnitude of $\vec{\mathbf{a}} + \vec{\mathbf{b}}$ is $\sqrt{(10.0)^2 + (5.0)^2} = 11.2$; the direction is $\theta = \tan^{-1}(5.0/10.0) = 26.6^{\circ}$.
- (d) The resultant vector is $\vec{\bf a} \vec{\bf b} = (4.0 6.0)\hat{\bf i} + (-3.0 8.0)\hat{\bf j}$. The magnitude of $\vec{\bf a} \vec{\bf b}$ is $\sqrt{(-2.0)^2 + (-11.0)^2} = 11.2$; the direction is $\theta = \tan^{-1}(-11.0/-2.0) = 260^\circ$.
- (e) The resultant vector is $\vec{\mathbf{b}} \vec{\mathbf{a}} = (6.0 4.0)\hat{\mathbf{i}} + (8.0 -3.0)\hat{\mathbf{j}}$. The magnitude of $\vec{\mathbf{b}} \vec{\mathbf{a}}$ is $\sqrt{(2.0)^2 + (11.0)^2} = 11.2$; the direction is $\theta = \tan^{-1}(11.0/2.0) = 79.7^{\circ}$.

E2-17 (a) Evaluate $\vec{\mathbf{r}}$ when t=2 s.

$$\vec{\mathbf{r}} = [(2 \text{ m/s}^3)t^3 - (5 \text{ m/s})t]\hat{\mathbf{i}} + [(6 \text{ m}) - (7 \text{ m/s}^4)t^4]\hat{\mathbf{j}}$$

$$= [(2 \text{ m/s}^3)(2 \text{ s})^3 - (5 \text{ m/s})(2 \text{ s})]\hat{\mathbf{i}} + [(6 \text{ m}) - (7 \text{ m/s}^4)(2 \text{ s})^4]\hat{\mathbf{j}}$$

$$= [(16 \text{ m}) - (10 \text{ m})]\hat{\mathbf{i}} + [(6 \text{ m}) - (112 \text{ m})]\hat{\mathbf{j}}$$

$$= [(6 \text{ m})]\hat{\mathbf{i}} + [-(106 \text{ m})]\hat{\mathbf{j}}.$$

(b) Evaluate:

$$\vec{\mathbf{v}} = \frac{d\vec{\mathbf{r}}}{dt} = [(2 \text{ m/s}^3)3t^2 - (5 \text{ m/s})]\hat{\mathbf{i}} + [-(7 \text{ m/s}^4)4t^3]\hat{\mathbf{j}}$$
$$= [(6 \text{ m/s}^3)t^2 - (5 \text{ m/s})]\hat{\mathbf{i}} + [-(28 \text{ m/s}^4)t^3]\hat{\mathbf{j}}.$$

Into this last expression we now evaluate $\vec{\mathbf{v}}(t=2\text{ s})$ and get

$$\vec{\mathbf{v}} = [(6 \text{ m/s}^3)(2 \text{ s})^2 - (5 \text{ m/s})]\hat{\mathbf{i}} + [-(28 \text{ m/s}^4)(2 \text{ s})^3]\hat{\mathbf{j}}$$

$$= [(24 \text{ m/s}) - (5 \text{ m/s})]\hat{\mathbf{i}} + [-(224 \text{ m/s})]\hat{\mathbf{j}}$$

$$= [(19 \text{ m/s})]\hat{\mathbf{i}} + [-(224 \text{ m/s})]\hat{\mathbf{j}},$$

for the velocity $\vec{\mathbf{v}}$ when t=2 s.

(c) Evaluate

$$\vec{\mathbf{a}} = \frac{d\vec{\mathbf{v}}}{dt} = [(6 \text{ m/s}^3)2t]\hat{\mathbf{i}} + [-(28 \text{ m/s}^4)3t^2]\hat{\mathbf{j}}$$
$$= [(12 \text{ m/s}^3)t]\hat{\mathbf{i}} + [-(84 \text{ m/s}^4)t^2]\hat{\mathbf{j}}.$$

Into this last expression we now evaluate $\vec{\mathbf{a}}(t=2 \text{ s})$ and get

$$\vec{\mathbf{a}} = [(12 \text{ m/s}^3)(2 \text{ s})]\hat{\mathbf{i}} + [-(84 \text{ m/s}^4)(2 \text{ 2})^2]\hat{\mathbf{j}}$$
$$= [(24 \text{ m/s}^2)]\hat{\mathbf{i}} + [-(336 \text{ m/s}^2)]\hat{\mathbf{j}}.$$

E2-35 (a) Up to $A v_x > 0$ and is constant. From A to $B v_x$ is decreasing, but still positive. From B to $C v_x = 0$. From C to $D v_x < 0$, but $|v_x|$ is decreasing.

(b) No. Constant acceleration would appear as (part of) a parabola; but it would be challenging to distinguish between a parabola and an almost parabola.

P2-9 (a) The average velocity during the time interval is $v_{\rm av} = \Delta x/\Delta t$, or

$$v_{\rm av} = \frac{(A + B(3\,{\rm s})^3) - (A + B(2\,{\rm s})^3)}{(3\,{\rm s}) - (2\,{\rm s})} = (1.50\,{\rm cm/s}^3)(19\,{\rm s}^3)/(1\,{\rm s}) = 28.5\,{\rm cm/s}.$$

- (b) $v = dx/dt = 3Bt^2 = 3(1.50 \text{ cm/s}^3)(2 \text{ s})^2 = 18 \text{ cm/s}.$
- (c) $v = dx/dt = 3Bt^2 = 3(1.50 \text{ cm/s}^3)(3 \text{ s})^2 = 40.5 \text{ cm/s}.$
- (d) $v = dx/dt = 3Bt^2 = 3(1.50 \text{ cm/s}^3)(2.5 \text{ s})^2 = 28.1 \text{ cm/s}.$
- (e) The midway position is $(x_f + x_i)/2$, or

$$x_{\text{mid}} = A + B[(3 \text{ s})^3 + (2 \text{ s})^3)]/2 = A + (17.5 \text{ s}^3)B.$$

This occurs when $t = \sqrt[3]{(17.5 \,\mathrm{s}^3)}$. The instantaneous velocity at this point is

$$v = dx/dt = 3Bt^2 = 3(1.50 \text{ cm/s}^3)(\sqrt[3]{(17.5 \text{ s}^3)})^2 = 30.3 \text{ cm/s}.$$

P2-17 The runner covered a distance d_1 in a time interval t_1 during the acceleration phase and a distance d_2 in a time interval t_2 during the constant speed phase. Since the runner started from rest we know that the constant speed is given by $v = at_1$, where a is the runner's acceleration.

The distance covered during the acceleration phase is given by

$$d_1 = \frac{1}{2}at_1^2.$$

The distance covered during the constant speed phase can also be found from

$$d_2 = vt_2 = at_1t_2.$$

We want to use these two expressions, along with $d_1 + d_2 = 100$ m and $t_2 = (12.2 \text{ s}) - t_1$, to get

100 m =
$$d_1 + d_2 = \frac{1}{2}at_1^2 + at_1(12.2 \text{ s} - t_1),$$

= $-\frac{1}{2}at_1^2 + a(12.2 \text{ s})t_1,$
= $-(1.40 \text{ m/s}^2)t_1^2 + (34.2 \text{ m/s})t_1.$

This last expression is quadratic in t_1 , and is solved to give $t_1 = 3.40 \,\mathrm{s}$ or $t_1 = 21.0 \,\mathrm{s}$. Since the race only lasted 12.2 s we can ignore the second answer.

(b) The distance traveled during the acceleration phase is then

$$d_1 = \frac{1}{2}at_1^2 = (1.40 \text{ m/s}^2)(3.40 \text{ s})^2 = 16.2 \text{ m}.$$

E4-38 (a) $v = 2\pi r/T = 2\pi (6.37 \times 10^6 \text{m})/(86400 \text{ s}) = 463 \text{ m/s}.$ $a = v^2/r = (463 \text{ m/s})^2/(6.37 \times 10^6 \text{m}) = 0.034 \text{ m/s}^2.$

(b) The net force on the object is $F=ma=(25.0~{\rm kg})(0.034~{\rm m/s^2})=0.85~{\rm N}$. There are two forces on the object: a force up from the scale (S), and the weight down, $W=mg=(25.0~{\rm kg})(9.80~{\rm m/s^2})=245~{\rm N}$. Then $S=W-F=245~{\rm N}-0.85~{\rm N}=244~{\rm N}$.

E4-42 The horizontal component of the rain drop's velocity is 28 m/s. Since $v_x = v \sin \theta$, $v = (28 \text{ m/s})/\sin(64^\circ) = 31 \text{ m/s}$.