

Database System

Introduction

Muhammad Tariq Mahmood tariq@koreatech.ac.kr School of Computer Science and Engineering Korea University of Technology and Education

Course Objectives

- Understand the basic concepts of database systems, data modeling and database design
- Retrieve and manipulate data using T-SQL
- Implement business rules using T-SQL (Stored procedure, triggers, functions)
- Understand concepts of transaction and query processing, concurrency control, database recovery and security
- Develop database application using high level language such as JAVA

Course Overview

Grading

0	Term project	20%	
0	Assignments	20%	
0	Midterm Exam	30%	
0	Final Exam	30%	
0	quizzes/attendance/participation	10%	(bonus)

Text books and references

- Database Systems, Models, Languages, Design, and Application Programing, 6th Edition by Ramez Almasri and Shamkant B. Navathe
- Database systems: the complete book. By Garcia-Molina H. Pearson Education .
- Database System Concepts by Henry F. Korth , Abraham Silberschatz, S. Sudarshan
- Practical Database Programming with JAVA by Ying Bai

Course Contents

- Part-1 (Fundamental Concepts)
 - Relational Database
 - E-R Model, database design and implementation
- Part-2 (Business Rules implementation)
 - T-SQL (Data manipulation)
 - Stored programs (Procedures, Functions, Triggers)
- Part-3 (Database Connectivity)
 - JDBC drivers
 - JDBC API
- Part-4 (GUI,Two-Tier Client -Server Model)
 - Java API's,
 - data retrieval and manipulation
- Part-5
 - Transaction and query processing
 - Concurrency control
 - Database recovery and security

Data

Data

- Data is the collection of raw facts collected from any specific environment for a specific purpose.
- Data is a very important resource for an organization.

Information

 Once we have processed data using different methods data is converted into meaningful form and that form of the Data is called information

Database

- Def 1: A shared collection of logically related data, designed to meet the information needs of multiple users in an organization.
- Def 2: A collection of data: part numbers, product codes, customer information, etc. It usually refers to data organized and stored on a computer that can be searched and retrieved by a computer program.
- Def 3: A data structure that stores metadata, i.e. data about data. More generally we can say an organized collection of information.
- Def 5: An organized collection of information in computerized format.
- Def 6: A collection of related information about a subject organized in a useful manner that provides a base or foundation for procedures such as retrieving information, drawing conclusions, and making decisions.
- Def 7: A Computerized representation of any organizations flow of information and storage of data.

Database Management System (DBMS)

- The computer programs used to create, manage, and query databases are known as Database Management Systems (DBMS)
- In other words
 - DBMS contains collection of interrelated data and a set of programs to access the data
 - An environment that is both convenient and efficient to use

Database-System Applications

Enterprise Information

- Sales: For customer, product, and purchase information.
- Accounting: For payments, receipts, account balances, assets and other accounting information.
- Human resources: For information about employees, salaries, payroll taxes, and benefits, and for generation of paychecks.
- Manufacturing: For management of the supply chain and for tracking production of items in factories, inventories of items in warehouses and stores, and orders for items.
- Online retailers: For sales data noted above plus online order tracking, generation of recommendation lists, and maintenance of online product evaluations.

Banking and Finance

- Banking: For customer information, accounts, loans, and banking transactions.
- Credit card transactions: For purchases on credit cards and generation of monthly statements.
- Finance: For storing information about holdings, sales, and purchases of financial instruments such as stocks and bonds; also for storing real-time market data to enable online trading by customers and automated trading by the firm.

Database-System Applications

- Universities: For student information, course registrations, and grades (in addition to standard enterprise information such as human resources and accounting).
- Airlines: For reservations and schedule information. Airlines were among the first to use databases in a geographically distributed manner.
- Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances on prepaid calling cards, and storing information about the communication networks.

Why Database Systems?

File-processing system

- The system stores
 permanent records in
 various files, and it
 needs different
 application programs to
 extract records from,
 and add records to, the
 appropriate files.
- File processing systems are advantageous when data is static and applications are simple; it eliminates the need for an expensive DBMS

Disadvantages of File Processing System

- Data redundancy (duplication)
- Inconsistency
- Difficulty in accessing data
- Data isolation
- Integrity problems
- Atomicity problems

Why Database Systems?

- Database System
 - A better alternative to a file processing system is an integrated database approach.
 - All data belonging to an organization is stored in a single database.
 - A user may interact either directly with the DBMS or via a program written in a specific programming language such as C++, C#, Java or Visual Basic.
 - Integration implies a logical relationship, usually provided through a common column in the tables.

Figure 1.1A simplified database system environment.

Database System Internals

Advantages of Database System

- Data Sharing
- Data Independence
- Controlled Redundancy
- Better Data Integrity
- Faster Application Development
- Economy of Scale
- Better Backup and Recovery Facility
- Better Concurrency Control

Naïve Users

- They are unsophisticated users who interact with the system by invoking one of the application programs that have been written previously.
- The typical user interface for naive users is a forms interface, where the user can fill in appropriate fields of the form.
- Naive users may also simply read reports generated from the database.

Application programmers

- They are computer professionals who write application programs.
- They can choose from many tools to develop user interfaces.
- Rapid application development (RAD) tools are tools that enable an application programmer to construct forms and reports with minimal programming effort.

Sophisticated users

- They interact with the system without writing programs.
- Instead, they form their requests either using a database query language or by using tools such as data analysis software.
- Analysts who submit queries to explore data in the database fall in this category.

Specialized users

- They are sophisticated users who write specialized database applications that do not fit into the traditional data-processing framework.
- Among these applications are computer-aided design systems, knowledge base and expert systems, systems that store data with complex data types (for example, graphics data and audio data), and environment-modeling systems

Database Administrator

- **Schema definition.** The DBA creates the original database schema by executing a set of data definition statements in the DDL.
- Storage structure and access-method definition.
- Schema and physical-organization modification. The DBA carries out changes to the schema and physical organization to reflect the changing needs of the organization, or to alter the physical organization to improve performance.
- Granting of authorization for data access.
 - The database administrator can regulate which parts of the database various users can access.
 - The authorization information is kept in a special system structure that the database system consults whenever someone attempts to access the data in the system.

Routine maintenance.

- Periodically backing up the database, either onto tapes or onto remote servers, to prevent loss of data in case of disasters such as flooding.
- Ensuring that enough free disk space is available for normal operations, and upgrading disk space as required.
- Monitoring jobs running on the database and ensuring that performance is not degraded by very expensive tasks submitted by some users.

- The architecture of a database systems is greatly influenced by the underlying computer system on which the database is running:
 - Centralized
 - Client–server
 - Parallel (multi-processor)
 - Distributed

- Centralized DBMSs Architecture
 - All DBMS functionality, application program execution, and user interface processing carried out on one machine

Figure 2.4
A physical centralized architecture.

- Client/Server Architecture
- Servers with specific functionalities
 - File server
 - · Maintains the files of the client machines.
 - Printer server
 - Connected to various printers; all print requests by the clients are forwarded to this machine
 - Web servers or e-mail servers

Client machines

- Provide user with:
 - Appropriate interfaces to utilize these servers
 - Local processing power to run local applications

Two-Tier Client/Server

Figure 2.5
Logical two-tier
client/server
architecture.

Three-Tier Client/Server

Systems Development Life Cycle Approach

- Problem Identification identify user requirements
- Project Planning Establish scope of the project.
- Problem Analysis Specify detailed requirements
- Logical Design Determine screen designs, report layout designs, data models etc.
- Physical Design Develop physical data structures
- Implementation Code programs; perform testing.

Database Development

Planning and Analysis

 includes requirement specifications, evaluating alternatives, determining input, output, and reports

Conceptual Design

develop a conceptual schema based on the requirement specification

Logical Design

 Define the tables (entities) and fields (attributes). Identify primary and foreign key for each table. Define relationships between the tables.

Physical Design

 Develop physical data structures; specify file organization, and data storage etc.

Implementation

Implement the physical design. Perform testing. Modify if necessary