ASSIGNMENT 2 (DUE ON 13 AUGUST 2021 AT 11:59PM)

MATH2301, SEMESTER 2, 2021

INSTRUCTOR: ASILATA BAPAT

(1) Consider modular addition with the modulus d = 6. For each modular number [x], determine whether or not [x] has a multiplicative inverse, and if yes, find the inverse. That is, figure out whether there is some [y] such that $[x] \cdot [y] = [1]$.

(Bonus: Can you find a pattern here? Does a number ever have more than one inverse?)

Solution. There are 6 equivalence classes modulo d, namely $[0], [1], \ldots, [5]$. Note that $[1] \cdot [1] = [1] = [5] \cdot [5]$. None of the other numbers have inverses: you can check this directly, for example note that $[0] \cdot [x] = [0]$ for any [x], and similarly we have $[2] \cdot [1] = [2]$, $[2] \cdot [2] = [4]$, $[2] \cdot [3] = [0]$, $[2] \cdot [4] = [2]$, $[2] \cdot [5] = [4]$, etc.

No number has more than one inverse. Indeed, if $[x] \cdot [y] = [1]$ and $[x] \cdot [z] = [1]$ then we know that xy = 6n + 1 and xz = 6m + 1, and so xy - xz = x(y - z) = 6(n - m). On the other hand, we know that yx = 6n + 1, so multiplying the previous equation by y, we get

$$(6n+1)(y-z) = 6(n-m).$$

Rewrite to see that (y-z)+6n(y-z)=6(n-m), or (y-z)=6(n-m)-6n(y-z). Since the right hand side is a multiple of 6, we see that [y]=[z].

The pattern is that a number cannot have a multiplicative inverse if it is divisible by any prime that 6 is also divisible by. Note that having an inverse means that $[x] \cdot [y] = [1]$, so that xy = 6n + 1, or alternatively, xy - 6n = 1 for some n. Now if x is divisible by 2 (or 3), then the left hand side is divisible by 2 (or 3), while the right hand side isn't, and so that equation cannot be true. On the other hand, suppose that [x] does not share any common factor with [6], which means that their greatest common divisor (GCD) equals 1. The Euclid's GCD algorithm (which we haven't talked about in class) says that there must be integers m and n such that mx + 6n = 1. If you rewrite this as mx = 6(-n) + 1, we see that [m] is an inverse of [x].

(2) Fix a modulus d > 1, and consider the equivalence relation $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid d \mid (x - y)\}$. Let x and y be two arbitrary integers. Show that if $\lceil x \rceil = \lceil y \rceil$, then $\lceil x^2 \rceil = \lceil y^2 \rceil$.

Solution. Knowing that [x] = [y] means that there is some integer n such that x = nd + y. In this case, we have $x^2 = (nd + y)^2 = n^2d^2 + 2ndy + y^2$. Since $n^2d^2 + 2ndy = (n^2d + 2ny)d$ is a multiple of d, we conclude that $[x^2] = [y^2]$.

(3) Show that if $3x \equiv 5 \mod 7$, then $x \equiv 4 \mod 7$.

Solution. There are many ways to solve this. Here is one approach. If $3x \equiv 5 \mod 7$, then we know that 3x - 5 = 7n for some $n \in \mathbb{Z}$. Note that $3 \times 5 = 7 \times 2 + 1$, and so 15x - 25 = 35n gives x + 14x - 25 = 35n. Rewriting 25 as 25 = 21 + 4, we see that

$$x-4=35n-21-14x=7(5n+3-2x)$$
,

which means that $x \equiv 4$ modulo 7.

- (4) For each property listed, find an example of a partial order that has that property, with justification or specific examples as appropriate. Draw its Hasse diagram.
 - (a) A partial order that is also an equivalence relation.

Solution. This is a relation that is reflexive, symmetric, anti-symmetric, and transitive. This means it consists of pairs that lie solely on the diagonal. So for example the relation $\{(a,a),(b,b)\}$ on $S=\{a,b\}$ has this property.

(b) An element a of a poset is said to be *maximal* there is no element $b \neq a$ such that $a \leq b$. Find a poset where every element is maximal.

Solution. The previous example also works for this problem: all elements are incomparable so they are all maximal. $\hfill\Box$

(c) An element a of a poset is said to be the *maximum* element if for every element b, we have $b \le a$. Find a poset that has at least one maximal element but no maximum elements.

Solution. Consider the partial order relation on $\{a, b, c, d\}$ specified by $a \leq b$, $a \leq d$, $c \leq b$, $c \leq d$.

(5) Let (P, \preceq) be a poset and let A be any subset of P. An element $u \in P$ is said to be an *upper bound* for A if for each $a \in A$, we have $a \preceq u$. An element $l \in P$ is said to be a *lower bound* for A if for each $a \in A$, we have $l \preceq a$. Further, an element $u \in P$ is said to be a *least upper bound* (lub) for A if:

- *u* is an upper bound for *A*, and
- if $v \in P$ is any upper bound for A, then $u \leq v$.

Similarly, an element $l \in P$ is said to be a *greatest lower bound* (glb) for A if:

- *l* is a lower bound for *A*, and
- if $m \in P$ is any lower bound for A, then $m \leq l$.

With this background, answer the following.

(a) Draw a Hasse diagram of a poset (P, \leq) and write down a subset A that has an upper bound, but no least upper bound. Justify briefly.

Solution. There are many options. In particular, the following poset works.

We can take $A = \{a, c\}$. Then the elements b and d are the only upper bounds for A, but they are not related to each other so neither of them can be a least upper bound.

(b) Draw a Hasse diagram of a poset (P, \preceq) and write down a subset A that has a greatest lower bound. Justify briefly.

Solution. There are many options. In particular, the following poset works.

We can take $A = \{a\}$. Then the only lower bound for A is the element a itself, so it is a greatest lower bound.

(c) Complete the following partial proof of the following statement: "If (P, \preceq) is a poset and $A \subseteq P$ has a least upper bound, then the least upper bound is unique." Write out the third step with full justifications.

2

(i)	Suppose that <i>A</i>	$\subseteq P$	has a	least u	pper	bound	и	$\in P$	٠.
-----	-----------------------	---------------	-------	---------	------	-------	---	---------	----

- (ii) Suppose that $v \in P$ is also a least upper bound of A.
- (iii) ··· | Fill this in | ···

Solution. Since u is a lub for A and v is another upper bound, we have $u \leq v$. Since v is a lub for A and u is another upper bound, we have $v \leq u$. The partial order relation is anti-symmetric. So if $u \leq v$ and $v \leq u$, then u = v.

- (iv) Therefore, u = v.
- (d) Let S be a finite set and let P be the power set of S with \subseteq as the partial order relation. Let A, B be subsets of S. Find formulas for the lub and glb of $\{A, B\}$. Justify briefly, but you do *not* need to give a formal proof.

Solution. The lub of $\{A, B\}$ is just $A \cup B$. To justify this, first see that $A \subseteq A \cup B$ and $B \subseteq A \cup B$, so the set $A \cup B$ is an upper bound. Now if we have any other upper bound C, it has the property that $A \subseteq C$ and $B \subseteq C$. So every element $a \in A$ is in C and every element $b \in B$ is in C. Any element of $A \cup B$ is either an element of A or an element of B, so we see that $(A \cup B) \subset C$.

The glb of $\{A, B\}$ is just $A \cap B$. To justify this, first see that $A \supseteq A \cap B$ and $B \supseteq A \cap B$, so the set $A \cap B$ is an upper bound. Now if we have any other lower bound C, it has the property that $A \supseteq C$ and $B \supseteq C$. So every element $c \in C$ is both an element of A and an element of A, and thus an element of $A \cap B$. So we see that $A \cap B \cap C$.