Homework 7: pages 184 - 185 numbers 1, 2(a)(b), 3(e), 4, 10, 13, 14 \leftarrow 14 is difficult, but not impossible! (want to show that $\lim_{n \to \infty} (1 + \frac{1}{n})^n$ exists)

$$\begin{array}{l} (1+{\bf b})^n = 1 + {\bf n}{\bf b} + \frac{n(n-1)}{2!}{\bf b}^n + \ldots + \frac{n(n-1)\ldots(n-(r-1))}{r!}{\bf b}^r + \ldots + {\bf b}^n \\ \text{In our problem, } {\bf b} = \frac{1}{n} \\ \text{Look at it as } 1 + \sum_{r=1}^n \frac{n(n-1)\ldots(n-(r-1))}{r!} \frac{1}{n^r} \\ (1+\frac{1}{n})^n \text{ goes in there somewhere somehow.} \end{array}$$

Problem 1

Mark each statement True or False. Justify each answer.

a. If a monotone sequence is bounded, then it is convergent.

True

by Theorem 4.3.3

b. If a bounded sequence is monotone, then it is convergent.

True

by Theorem 4.3.3

c. If a convergent sequence is monotone, then it is bounded.

True

by Theorem 4.3.3

Problem 2(a)(b)

Mark each statement True or False. Justify each answer.

a. If a convergent sequence is bounded, then it is monotone.

False.

Counterexample: $s_n =$

$$(-1)^n \frac{1}{n}$$

b. If (s_n) is an unbounded increasing sequence, then $\lim s_n = +\infty$

True.

By Theorem 4.3.8

Assume: (s_n) is an unbounded, increasing sequence.

Then, $\forall n \in \mathbb{N}$, $s_n \leq s_{n+1}$

and

 $\forall m \in \mathbb{R}, \exists N \in \mathbb{N} \text{ st. } n \geq N \text{ implies } s_n > m$

By Definition 4.2.9:

We say a sequence diverges to ∞ if \forall m \in \mathbb{R} , \exists N \in N st n \geq N implies s_n > m

Hence, result.

Problem 3(e)

Prove that each sequence is monotone and bounded. Then, find the limit.

(e)
$$s_1 = 5$$
 and $s_{n+1} = \sqrt{4s_n + 1}$ for $n \ge 1$

 s_n is monotone if it's either increasing or decreasing.

$$s_1 = 5$$
, $s_2 = \sqrt{21} = 4.58257569496$, $s_3 = \sqrt{4\sqrt{21} + 1} = \sqrt{\sqrt{336} + 1} = \sqrt{19.3303028} = 4.39662402304$
Hmm, limit's probably 4. Let's see.

Conjecture

 $\{s_n\}$ is decreasing and $4 \le s_n \le 5, \forall n \in \mathbb{N}$

P(n) (Proposition as a function of n):

$$s_n \ge s_{n+1}, \forall n \in \mathbb{N}$$

$$s_1=5>\sqrt{21}=s_2$$

Suppose that, $\forall k \in \mathbb{N}$,

$$\sqrt{4s_k + 1} \ge \sqrt{4s_{k+1} + 1}$$

Now.

$$s_{k+1} = \sqrt{4s_{k+1} + 1} \ge \sqrt{4s_{k+2} + 1} = s_{k+2}$$

So,

$$s_k \ge s_{k+1}$$

Hence, by induction, P(n): $s_n \ge s_{n+1}$ is true $\forall n \in \mathbb{N}$

$$Q(n): s_n \ge 4 \ \forall \ n \in \mathbb{N}$$

$$s_1 = 5 > 4$$

Assume for $k \in \mathbb{N}$ that $s_k > 4$

$$s_{k+1} = \sqrt{4s_k + 1} > \sqrt{4(3.75) + 1} = 4$$

Hence, by induction, Q(n): $s_n > 4$ is true \forall n $\in \mathbb{N}$

By the Montone Convergence Theorem,

$$\exists\ s\in\mathbb{R}\ st$$

$$\lim s_n = s$$

By HW problem 11, page 170.

Thus,

$$\lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} s_n = s$$

$$\lim_{n\to\infty} s_{n+1} = \lim_{n\to\infty} s_n = s$$

So, we claim that $\lim_{n\to\infty} s_{n+1} = s = \lim_{n\to\infty} \sqrt{4s_n + 1} = \sqrt{4s + 1}$

From Example 4.2.6,

$$\lim_{n \to \infty} \sqrt{t_n} = \sqrt{t} \text{ if } \lim_{n \to \infty} t_n = t$$

Also, by Theorem 4.2.1 (b),
$$\lim_{n\to\infty} \sqrt{1+s_n} = \sqrt{1+s}$$

(which is like saying $\lim_{n\to\infty} t_n = t$)

Hence,

$$s = \sqrt{4s+1}$$

$$s^2 = 4s+1$$

$$s^2 - 4s - 1 = 0$$

$$s = \frac{4 \pm \sqrt{20}}{2}$$

But one of those limits can't be true since limits are unique.

Since $s_n \geq 0, \forall n \in \mathbb{N}$,

then $\lim s_n = s \ge 0, \forall n \in \mathbb{N}$

(By Corollary 4.2.5)

Hence,

$$s = \frac{4+\sqrt{20}}{2} = 2 + \sqrt{5}$$

Problem 4

Find an example of a sequence of real numbers satisfying each set of properties.

a. Cauchy, but not monotone.

$$s_n = (-1)^n \frac{1}{n}$$

b. Monotone, but not cauchy.

$$s_n = n$$

c. Bounded, but not cauchy.

$$s_n = (-1)^n$$

Problem 10

a. Suppose that $|\mathbf{r}| < 1$. Recall from Exercise 3.1.7 that

$$1 + r + r^2 + \dots r^n = \frac{1 - r^{n-1}}{1 - r}$$

Find
$$\lim_{n\to\infty} (1 + r + r^2 + \dots r^n)$$
.

In other words, find $\lim_{n\to\infty} \frac{1-r^{n-1}}{1-r}$

P(n): $s_n = \frac{1-r^{n-1}}{1-r}$ is increasing and bounded.

$$s_1 = 0, s_2 = 1$$

Assume: $s_k \leq s_{k+1}$

$$s_{k+1} =$$

b. If we let the infinite repeating decimal 0.9999... stand for the limit:

$$\lim_{n\to\infty}(\frac{9}{10}+\frac{9}{10^2}+\ldots+\frac{9}{10^n}),$$

Show that 0.99999... = 1.

Problem 13

Prove Lemma 4.3.11:

Every Cauchy sequence is bounded. (Similar to the proof of Theorem 4.1.13)

Problem 14

Let (s_n) be the sequence defined by $s_n = (1 + \frac{1}{n})^n$.

Use the binomial theorem (Exercise 3.1.30) to show that (s_n) is an increasing sequence with $s_n < 3 \forall n$. Conclude that (s_n) is convergent. The limit of (s_n) is referred to as e and is used as the base for natural logarithms. The approximate value of e is 2.71828.