RFSA via Functors

Quentin Schroeder

Université Paris Cité, France

Word automata

Word automata

Word automata

Idea:

- Automata = Functors
- Minimization works once the ouput category is well behaved! (Colcombet and Petrişan,2021)

The problem with minimization of NFAs

Known problem: no unique minimal NFA

The problem with minimization of NFAs

- · Known problem: no unique minimal NFA
- Functorial framework explains this: Rel is not well behaved!

The problem with minimization of NFAs

- Known problem: no unique minimal NFA
- · Functorial framework explains this: Rel is not well behaved!
- Several approaches exist: we consider the one of Denis et al.

Word automata as functors

Word automata on A^* can be seen by interpreting the vertices and edges in the graph below in some output category \mathcal{C} of "effects".

Word automata as functors

Word automata on A^* can be seen by interpreting the vertices and edges in the graph below in some output category \mathcal{C} of "effects".

This amounts to defining a functor – a composition preserving mapping – from the free category $\mathcal I$ to $\mathcal C$.

Automata and languages as functors

An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes

Automata and languages as functors

An automaton $\mathcal A$ accepts a language $\mathcal L$ when the next diagram commutes

For every language $\mathcal{L} \colon \mathcal{O} \to \mathcal{C}$ we consider a category $\mathsf{Auto}_{\mathcal{L}}$ of automata accepting \mathcal{L} .

 ${\mathcal O}$ can be seen as an "observation" subcategory of ${\mathcal I}$.

 $\ensuremath{\mathcal{I}}$ is like a "template" for the internal state of the automaton.

Functorial Minimization

· What does it mean for a DFA to be minimal?

· Answer 1: DFA is minimal if it is state minimal

 Answer 2: A DFA is minimal if it divides any other automaton accepting its language. Here divides = «is a quotient of a sub-automaton of»

- Answer 2: A DFA is minimal if it divides any other automaton accepting its language. Here divides = «is a quotient of a sub-automaton of»
- To generalize this we need a factorization system, for which we need a notion of quotient (think: surjection) and of sub-object (think: injection)

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

If the category of automata accepting $\mathcal L$ has

• an initial object $A_{\text{init}}(\mathcal{L})$,

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

If the category of automata accepting $\ensuremath{\mathcal{L}}$ has

- an initial object $A_{\text{init}}(\mathcal{L})$,
- a final object $\mathcal{A}_{\mathtt{final}}(\mathcal{L})$, and,

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

If the category of automata accepting $\mathcal L$ has

- an initial object $A_{\text{init}}(\mathcal{L})$,
- a final object $A_{final}(\mathcal{L})$, and,
- · a factorization system

then $Min(\mathcal{L})$ is obtained as the factorization

$$\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \texttt{Min}(\mathcal{L}) \rightarrowtail \mathcal{A}_{\text{final}}(\mathcal{L})\,.$$

When does a 'minimal' automaton accepting a language \mathcal{L} exist?

If the category of automata accepting $\mathcal L$ has

- an initial object $A_{\text{init}}(\mathcal{L})$,
- a final object $A_{final}(\mathcal{L})$, and,
- · a factorization system

 \checkmark when \mathcal{C} has copowers \checkmark when \mathcal{C} has powers \checkmark when \mathcal{C} has one

then $Min(\mathcal{L})$ is obtained as the factorization

$$\mathcal{A}_{ exttt{init}}(\mathcal{L}) woheadrightarrow exttt{Minit}(\mathcal{L})
ightarrow \mathcal{A}_{ exttt{final}}(\mathcal{L}) \,.$$

The initial automaton $\mathcal{A}_{\mathtt{init}}$ for Set-automata accepting a language L is the following :

The initial automaton $\mathcal{A}_{\mathtt{init}}$ for Set-automata accepting a language L is the following :

$$\begin{array}{c}
\stackrel{w\mapsto wa}{\overbrace{}} \\
1 \stackrel{\varepsilon}{\longrightarrow} A^* \stackrel{L?}{\longrightarrow} 2
\end{array}$$

The final automaton $\mathcal{A}_{\mathtt{final}}$ for Set-automata accepting a language L is the following :

$$\begin{array}{c}
K \mapsto a^{-1}K \\
\downarrow \\
1 \xrightarrow{L} 2^{A^*} \xrightarrow{\varepsilon?} 2
\end{array}$$

The unique map from the initial to the final automaton is given by $!: A^* \to 2^{A^*}$, defined by $w \mapsto w^{-1}L$.

The unique map from the initial to the final automaton is given by $!: A^* \to 2^{A^*}$, defined by $w \mapsto w^{-1}L$.

The unique map from the initial to the final automaton is given by $!: A^* \to 2^{A^*}$, defined by $w \mapsto w^{-1}L$.

Non-Example: minimizing NFAs

The initial automaton $\mathcal{A}_{\mathtt{init}}$ for Rel-automata accepting a language L is the following :

Non-Example: minimizing NFAs

The initial automaton $\mathcal{A}_{\mathtt{init}}$ for Rel-automata accepting a language L is the following :

The final automaton A_{final} for Rel-automata accepting a language L is the following:

Non-example: minimizing NFAs

The unique map from the initial to the final automaton is given by $!: A^* \to A^*$, defined by (w, v) iff $v \in w^{-1}L$.

 ${\cal A}$ NFA model Rel

The right choice for C

• The category of (complete) join-semi lattices JSL, i.e. ordered sets where each subset has a least upper bound.

The right choice for $\mathcal C$

- The category of (complete) join-semi lattices JSL, i.e. ordered sets where each subset has a least upper bound.
- Example: For a set S, $(\mathcal{P}(S), \subseteq, \bigcup)$ is a JSL.

The right choice for C

- The category of (complete) join-semi lattices JSL, i.e. ordered sets where each subset has a least upper bound.
- Example: For a set S, $(\mathcal{P}(S), \subseteq, [])$ is a JSL.
- · Embedding:

$$\mathcal{K}: \mathsf{Rel} \to \mathsf{JSL}$$

$$\mathsf{X} \mapsto \mathcal{P}(\mathsf{X})$$

$$(R: \mathsf{X} \nrightarrow \mathsf{Y}) \mapsto R[-]: \mathcal{P}(\mathsf{X}) \to \mathcal{P}(\mathsf{Y})$$

Strategy for minimization

Strategy for minimization

Minimizing join-semi lattice automata accepting L

The initial automaton $\mathcal{A}_{\text{init}}$ for JSL-automata (JSLA) accepting a language L is the following :

Minimizing join-semi lattice automata accepting L

The initial automaton $\mathcal{A}_{\text{init}}$ for JSL-automata (JSLA) accepting a language L is the following :

$$\begin{array}{c}
S \mapsto Sa \\
\downarrow \\
2 \xrightarrow{\{\varepsilon\}} 2^{A^*} \xrightarrow{L \cap ?} 2
\end{array}$$

The final automaton A_{final} for JSL-automata accepting a language L is the following:

$$\begin{array}{c}
S \mapsto a^{-1}S \\
\downarrow \\
2 \xrightarrow{L} 2^{A^*} \xrightarrow{\varepsilon?} 2
\end{array}$$

Minimizing join-semi lattice automata accepting L

The unique map from the initial to the final automaton is given by $!: 2^{A^*} \to 2^{A^*}$, defined by $S \mapsto \bigcup_{w \in S} w^{-1}L$.

Going back to Rel

Note: $Q_{min} := \text{Min}_{JSL}(\mathcal{L})$ consists unions of sets $w^{-1}L$.

 Reduce a join-semi lattice to its basic components: the join irreducible elements.

Going back to Rel

Note: $Q_{min} := Min_{JSL}(\mathcal{L})$ consists unions of sets $w^{-1}L$.

- Reduce a join-semi lattice to its basic components: the join irreducible elements.
- Join irreducible elements $\mathcal{J}(L)$ are elements that are $\neq \bot$ and that aren't joins of other elements, e.g. singletons in a powerset lattice.

Going back to Rel

Note: $Q_{min} := Min_{JSL}(\mathcal{L})$ consists unions of sets $w^{-1}L$.

- Reduce a join-semi lattice to its basic components: the join irreducible elements.
- Join irreducible elements $\mathcal{J}(L)$ are elements that are $\neq \bot$ and that aren't joins of other elements, e.g. singletons in a powerset lattice.

Canonical RFSA

For a regular language $\mathcal L$ the canonical RFSA of Denis et al. is

$$min_{RFSA}(\mathcal{L}) = (Q, I, F, \delta)$$

where

$$Q = \{w^{-1}L \text{ join-irreducible}\}$$
 $I = \{w^{-1}L \text{ join-irreducible } \subseteq L\}$
 $F = \{w^{-1}L \text{ join-irreducible } | w \in L\}$
 $\delta_a = \{(p,q) \mid q \subseteq a^{-1}p\}$

This definition coincides with the automaton generated by the image of $\mathcal J$ of the minimal JSLA accepting $\mathcal L$.

A non-minimal NFA for $L = a^* + b^*$.

1. Determinize and keep only reachable states:

- 1. Determinize and keep only reachable states:
- 2. Minimize by identifying states accepting the same quotients:

- 1. Determinize and keep only reachable states:
- 2. Minimize by identifying states accepting the same quotients:
- 3. Find irreducible states and check if $\subseteq L$:

- 1. Determinize and keep only reachable states:
- 2. Minimize by identifying states accepting the same quotients:
- 3. Find irreducible states and check if $\subseteq L$:
- 4. Construct the NFA on irreducible quotients:

