Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

Soit la suite (u_n) définie par $u_0=1$ et tout entier naturel n par $u_{n+1}=u_n+2n+3.$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par $u_{n+1} = u_n + 2n + 3.$

$$u_0 = 1, u_1 =$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par $u_{n+1} = u_n + 2n + 3.$

$$u_0 = 1, u_1 = 4,$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

$$u_0 = 1, u_1 = 4, u_2 =$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

$$u_0 = 1, u_1 = 4, u_2 = 9.$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

$$u_0 = 1, u_1 = 4, u_2 = 9.$$

Il semble que pour tout entier naturel n on ait

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

 $u_0 = 1, u_1 = 4, u_2 = 9.$

Il semble que pour tout entier naturel n on ait

$$u_n = (n+1)^2.$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

 $u_0 = 1, u_1 = 4, u_2 = 9.$

Il semble que pour tout entier naturel n on ait

$$u_n = (n+1)^2.$$

À quelle difficulté est-on confronté?

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

 $u_0 = 1, u_1 = 4, u_2 = 9.$

Il semble que pour tout entier naturel n on ait

$$u_n = (n+1)^2.$$

À quelle difficulté est-on confronté?

Le raisonnement par récurrence peut se comparer à la théorie des dominos : on considère une suite de dominos rangés de telle sorte que si un domino tombe alors le suivant tombera. Si on fait tomber le premier domino alors le second tombera, puis le troisième, ...etc.. Conclusion : si le premier domino tombe alors tous tomberont. Tout repose en fait sur le principe de propagation "si l'un tombe alors le suivant aussi"

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Hérédité : soit $n \in \mathbb{N}$.

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Hérédité: soit $n \in \mathbb{N}$. Si la véracité de la proposition P_n avec $n \geq n_0$ implique que la proposition P_{n+1} soit vraie

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Hérédité: soit $n \in \mathbb{N}$. Si la véracité de la proposition P_n avec $n \geq n_0$ implique que la proposition P_{n+1} soit vraie

alors pour tout entier naturel $n \ge n_0$ la proposition P_n est vraie.

• Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.

• Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.

- Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.

- Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.

- Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 La propriété ne peut donc pas être vraie pour tout n ≥ n₀.

- Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 La propriété ne peut donc pas être vraie pour tout n ≥ n₀.
- **3** De même si l'un domino tombe mais ne fait pas tomber le suivant alors tous les dominos ne tombent pas et la propriété ne peut être vraie pour tout $n \ge n_0$.

- Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 La propriété ne peut donc pas être vraie pour tout n ≥ n₀.
- **3** De même si l'un domino tombe mais ne fait pas tomber le suivant alors tous les dominos ne tombent pas et la propriété ne peut être vraie pour tout $n \ge n_0$.

- Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 La propriété ne peut donc pas être vraie pour tout n ≥ n₀.
- **3** De même si l'un domino tombe mais ne fait pas tomber le suivant alors tous les dominos ne tombent pas et la propriété ne peut être vraie pour tout $n \ge n_0$.
- lacktriangle L'initialisation et l'hérédité sont donc indispensables pour prouver une proposition pour $\overline{\text{TOUT}}$

Reprenons l'exemple initial.

Reprenons l'exemple initial.

On pose P_n : " $u_n = (n+1)^2$ ".

Reprenons l'exemple initial.

On pose P_n : " $u_n = (n+1)^2$ ".

Initialisation:

Reprenons l'exemple initial.

On pose P_n : " $u_n = (n+1)^2$ ".

 ${\it Initialisation}:$ si n=0 on a d'une part dans le membre de gauche

Reprenons l'exemple initial.

On pose P_n : " $u_n = (n+1)^2$ ".

Initialisation:si n=0on a d'une part dans le membre de gauche $u_0=1$ d'après l'énoncé et

Reprenons l'exemple initial.

On pose P_n : " $u_n = (n+1)^2$ ".

Initialisation : si n=0 on a d'une part dans le membre de gauche $u_0=1$ d'après l'énoncé et dans le membre de droite

 ${\bf Reprenons\ l'exemple\ initial.}$

On pose P_n : " $u_n = (n+1)^2$ ".

Initialisation: si n=0 on a d'une part dans le membre de gauche $u_0=1$ d'après l'énoncé et dans le membre de droite $(0+1)^2=1$ donc P_0 est vraie.

Hérédité :

Hérédité : Soit $n \in \mathbb{N}$.

Hérédité: Soit $n \in \mathbb{N}$. Supposons P_n vraie(

Hérédité: Soit $n \in \mathbb{N}$. Supposons P_n vraie $(u_n = (n+1)^2)$.

$$u_{n+1} =$$

$$u_{n+1} = u_n + 2n + 3$$
 d'après l'énoncé.
=

$$u_{n+1} = u_n + 2n + 3$$
 d'après l'énoncé.
= $(n+1)^2 + 2n + 3$ d'après l'hypothèse de récurrence.
=

$$u_{n+1} = u_n + 2n + 3$$
 d'après l'énoncé.
 $= (n+1)^2 + 2n + 3$ d'après l'hypothèse de récurrence.
 $= n^2 + 4n + 4$ en développant.
 $=$

$$u_{n+1} = u_n + 2n + 3$$
 d'après l'énoncé.
 $= (n+1)^2 + 2n + 3$ d'après l'hypothèse de récurrence.
 $= n^2 + 4n + 4$ en développant.
 $= (n+2)^2$ identité remarquable

$$u_{n+1} = u_n + 2n + 3$$
 d'après l'énoncé.
 $= (n+1)^2 + 2n + 3$ d'après l'hypothèse de récurrence.
 $= n^2 + 4n + 4$ en développant.
 $= (n+2)^2$ identité remarquable

On en déduit donc que P_{n+1} est vraie.

 P_0 est vraie et P_n est héréditaire à partir du rang n=0.

 P_0 est vraie et P_n est héréditaire à partir du rang n=0. On en déduit que P_n est vraie pour tout entier naturel n soit :

 P_0 est vraie et P_n est héréditaire à partir du rang n=0. On en déduit que P_n est vraie pour tout entier naturel n soit :

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2.$$