Chapter 4 Descriptive Analysis of Network Graph Characteristics

Statistical Analysis of Network Data, with R - Eric D. Kolaczyk

Thu Nguyen 24 June, 2019

Contents

1	Intr	roduction	1				
2	Ver	tex and Edge Characteristics	2				
	2.1	Vertex degree	2				
	2.2	Vertex Centrality	4				
	2.3	Characterizing Edges	6				
3	Cha	Characterizing Network Cohesion					
	3.1	Subgraphs and Censuses	7				
	3.2	Density and Related Notions of Relative Frequency					
	3.3	Connectivity, Cuts, and Flows	10				
4	Graph Partitioning						
	4.1	Hierarchical Clustering	12				
	4.2	Spectral Partitioning	14				
	4.3	Validation of Graph Partitioning	15				
5	Assortativity and Mixing						
Li	brarie	es es					
		y(igraph) y(igraphdata)					
li	brar	y(sand) y(ape)					

1 Introduction

2 Vertex and Edge Characteristics

2.1 Vertex degree

Given G = (V, E), with degree d_v for vertex v, define f_d to be the fraction of vertices $v \in V$ with degree $d_v = d$. Then $\{f_d\}_{d>0}$ is the **degree distribution** of G. For example:

Degree distribution on karate data

For a weighted networks, **vertex strength** is the sum of weights of edges incident to a given vertex, by function **graph.strength()**. For example:

Vertex Strength

Another dataset, yeast from package igraphdata:

```
data(yeast)
nv <- vcount(yeast); ne <- ecount(yeast)</pre>
```

where there are 2617 vertices and 11855 edges, and the distributions of degree and log(degree), which gives a fairly linear relationship:

Alternatively, we can look at the average degree of the neighbors of a given vertex, by graph.knn():

2.2 Vertex Centrality

Closeness centrality measures attempts to measure that a vertex is 'central' if it is 'close' to many other vertices. Let dist(v, u) be the geodesic distance, the standard approach is:

$$c_{Cl}(v) = \frac{1}{\sum_{u \in V} dist(v, u)}$$

Betweenness centrality measures attempts to summarize the extent to which a vertex is located 'between' other pairs of vertices. The perspective is that 'importance' relates to where a vertex is located relative to network' paths. Let $\sigma(s,t|v)$ be the total number of shortest paths between s and t passing through v, and sigma(s,t) be the total number of shortest paths anywhere, the standard approach is:

$$c_B(v) = \sum_{s \neq t \neq t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}$$

Status/Prestige/Rank: the more central a vertex's neighbors are, the more central that vertex itself is. This is typically expressed as eigenvector solutions of linear systems of equations, called **eigenvector centrality measures**. Let $\mathbf{c}_{Ei} = (c_{Ei}(1), \dots, c_{Ei}(N_v))^T$ be the solution to $\mathbf{Ac}_{Ei} = \alpha^{-1}\mathbf{c}_{Ei}$, where \mathbf{A} is the adjacency matrix:

$$c_{Ei}(v) = \alpha \sum_{\{u,v\} \in E} c_{Ei}(u)$$

To display vertex centrality, use gplot.target() from package sna, to get adjacency matrix: get.adjacency():

Similarly, instead of degree(g), we can plot with attributes closeness(g), betweenness(g), evcent(g)\$vector for the 3 measures above respectively.

```
library(network); library(sna)
par(mfrow = c(2,2)); par(mar=c(0,0,1,0))
A <- get.adjacency(karate, sparse = FALSE)
g <- network::as.network.matrix(A)</pre>
sna::gplot.target(g, degree(g), main = 'Degree',
                  circ.lab = FALSE, circ.col = 'darkblue', usearrows = FALSE,
                  vertex.col = c('blue', rep('red', 32), 'yellow'), edge.col = 'darkgray')
sna::gplot.target(g, closeness(g), main = 'Closeness',
                  circ.lab = FALSE, circ.col = 'darkblue', usearrows = FALSE,
                  vertex.col = c('blue', rep('red', 32), 'yellow'), edge.col = 'darkgray')
sna::gplot.target(g, betweenness(g), main = 'Betweenness',
                  circ.lab = FALSE, circ.col = 'darkblue', usearrows = FALSE,
                  vertex.col = c('blue', rep('red', 32), 'yellow'), edge.col = 'darkgray')
sna::gplot.target(g, evcent(g), main = 'Eigenvalue',
                  circ.lab = FALSE, circ.col = 'darkblue', usearrows = FALSE,
                  vertex.col = c('blue', rep('red', 32), 'yellow'), edge.col = 'darkgray')
```


Closeness

Extension from undirected to directed graphs are straightforward. For example: new dataset AIDS blog network:

```
1 <- layout.kamada.kawai(aidsblog)
par(mfrow=c(1,2)); par(mar=c(0,0,1,0))
plot(aidsblog, layout = 1, main = 'Hubs', vertex.label = '',
    vertex.size = 10*sqrt(hub.score(aidsblog)$vector))
plot(aidsblog, layout = 1, main = 'Authorities', vertex.label = '',
    vertex.size = 10*sqrt(authority.score(aidsblog)$vector))</pre>
```


2.3 Characterizing Edges

```
eb <- edge.betweenness(karate)
E(karate)[order(eb, decreasing = T)[1:3]]

## + 3/78 edges from 4b458a1 (vertex names):
## [1] Actor 20--John A Mr Hi --Actor 20 Mr Hi --Actor 32</pre>
```

3 Characterizing Network Cohesion

Questions to consider regarding **network cohesion**:

- Do friends of a given person in a social network tend to be friends of another as well?
- Does the structure of WWW pages tend to separate with respect to distinct types of content?

3.1 Subgraphs and Censuses

Cliques are complete subgraphs, and thus subsets of fully cohesive vertices, like $K_1, K_2, K_3, ...$, by cliques(). Example from karate where there are 34 isolated vertices (K_1) , 78 pairs/ K_2 , 45 triangles/ K_3 , and so on:

```
table(sapply(cliques(karate), length))
```

The 2 biggest cliques of size 5, both having the head instructor, are:

```
cliques(karate)[sapply(cliques(karate), length) == 5]
```

Maximal cliques: cliques that are not subsets of a larger clique, maximal.cliques()

```
table(sapply(maximal.cliques(karate), length))
```

```
##
## 2 3 4 5
## 11 21 2 2
```

k-core of G is maximal subgraph for which all vertex degrees are $\geq k$. The notion of cores is popular in visualization in helping decomposing a network into 'layers', graph.coreness():

k-core from karate


```
detach('package:sna'); detach('package:network')
```

3.2 Density and Related Notions of Relative Frequency

Density: frequency of realized edges relative to potential edges. For a *simple*, undirected G, with n vertices and m edges, and subgraph H:

 $den(H) = \frac{m}{\frac{n(n-2)}{2}}$

For a simple, directed G:

$$den(H) = \frac{m}{n(n-1)}$$

If H = G, den(H) = den(G). If $H = H_v : V(H_v) = N(v)$ (set of neighbors of v), den(H) measures the density in the immediate neighborhood of v. To get N(v): neighborhood(), subgraph: induced.subgraph(), and density: graph.density(). For example:

```
# Getting subgraph of neighbors of the instructor, vertex 1, and admin, vertex 34
ego.instr <- induced.subgraph(karate, neighborhood(karate, 1, 1)[[1]])
ego.admin <- induced.subgraph(karate, neighborhood(karate, 1, 34)[[1]])
den.k <- graph.density(karate);
den.i <- graph.density(ego.instr); den.a <- graph.density(ego.admin)</pre>
```

Whereas the whole network density is low, at 0.1390374, densities at both the instructor = 0.25 and the admin = 0.2091503 are quite higher, which is consistent with the disparity in the number of within-versus between-fraction edges.

Clustering coefficient, given $\tau_{\Delta}(G)$: the number of triangles in G, and $\tau_3(G)$: the number of connected triples (or 2-star):

$$cl_T(G) = \frac{3 \ \tau_{\Delta}(G)}{\tau_3(G)}$$

 $c|_T$ also **transitivity**, or 'fraction of transitive triples', measuring global clustering for the entire network, **transitivity**():

transitivity(karate)

[1] 0.2556818

Locally, let $\tau_{\Delta}(v)$: the number of triangles in G containing v, and $\tau_3(v) = \binom{d_v}{2}$: the number of connected triples for which both 2 edges are incident to v. Then for v such that $\tau_3(v) > 0$, the **local clustering coefficient** is:

$$cl(v) = \frac{\tau_{\Delta}(v)}{\tau_{3}(v)}$$

```
transitivity(karate, 'local', vids = c(1,34))
```

[1] 0.1500000 0.1102941

Unique to directed graph is reciprocity. There are 2 approaches: through dyads or directed edges:

```
def <- reciprocity(aidsblog, mode = 'default'); rat <- reciprocity(aidsblog, mode = 'ratio')
print(cat('Dyads: ', def, '\n', 'Directed edges: ', rat, '\n'))</pre>
```

Dyads: 0.03243243

Directed edges: 0.01648352

NULL

3.3 Connectivity, Cuts, and Flows

Recall *components*, by decompse.graph(), and getting vertex count by vcount(). From yeast dataset, there is giant component of 2375 vertices or 90% of all vertices, 0 isolated vertices, 63 pairs, ...

```
comps <- decompose.graph(yeast)</pre>
table(sapply(comps, vcount))
##
##
      2
                             6
                                   7 2375
            3
                        5
##
     63
           13
                        6
                                   3
yeast.gc <- decompose.graph(yeast)[[1]] # qiant component</pre>
ave.path <- round(average.path.length(yeast.gc),2)</pre>
diam <- diameter(yeast.gc)</pre>
tran <- round(transitivity(yeast.gc),2)</pre>
```

The giant component have a few characteristics of a *small world* model such as small *shortest-path distance* between pairs of vertices of 5.1, and small longest paths of 15, and high clustering of 0.47, indicating that close to 50% of connected triples form triangles.

Recall from Graph Theory of Math 154, k-vertex-connected and k-connected, and that $\kappa(u, v) \leq \lambda(u, v) \leq \delta(G)$. To see connectivity: vertex.connectivity(), and edge.connectivity():

```
v.con <- vertex.connectivity(yeast.gc)
e.con <- edge.connectivity(yeast.gc)
print(paste('Vertex connectivity: ', v.con, '; Edge connectivity: ', e.con))</pre>
```

```
## [1] "Vertex connectivity: 1; Edge connectivity: 1"
```

Vertex-cut (edge-cut) is a set vertices (edges) that disconnect G. Also, if only of size 1, $cut\ vertex$ or $articulation\ point$, by articulation.points():

```
yeast.cut.vertices <- articulation.points(yeast.gc)
print(paste('The number of cut vertices:', length(yeast.cut.vertices)))</pre>
```

```
## [1] "The number of cut vertices: 350"
```

Menger's theorem vertex form:

```
\min\{ab - \text{separator}\} = \max\{\text{pariwise internally disjoint paths between } a \text{ and } b\}
```

R: shortest.paths(), graph.maxflow(), and graph.mincut().

These concepts extend naturally to *directed* graphs:

```
w.con <- is.connected(aidsblog, mode = 'weak')
s.con <- is.connected(aidsblog, mode = 'strong')
print(paste0('Weak: ', w.con, '; Strong: ', s.con))

## [1] "Weak: TRUE; Strong: FALSE"

Strongly connected components, from clusters():
aidsblog.scc <- clusters(aidsblog, mode = 'strong')
table(aidsblog.scc$csize)

##
## 1 4
## 12 1</pre>
```

4 Graph Partitioning

4.1 Hierarchical Clustering

There are 2 main approaches:

- agglomerative: successive coarsening of paritions through merging
- divisive: successive coarsening of paritions through splitting

To do clustering: fastgreedy.community(), sizes(), membership():

```
kc <- fastgreedy.community(karate)
sizes(kc)

## Community sizes
## 1 2 3
## 18 11 5

membership(kc)</pre>
```

```
##
     Mr Hi Actor 2 Actor 3 Actor 4 Actor 5 Actor 6 Actor 7 Actor 8
                                             3
##
                                                      3
   Actor 9 Actor 10 Actor 11 Actor 12 Actor 13 Actor 14 Actor 15 Actor 16
##
                                    2
                                             2
                                                      2
                           3
## Actor 17 Actor 18 Actor 19 Actor 20 Actor 21 Actor 22 Actor 23 Actor 24
##
                           1
                                    2
                                             1
                                                      2
## Actor 25 Actor 26 Actor 27 Actor 28 Actor 29 Actor 30 Actor 31 Actor 32
         1
                                    1
## Actor 33
             John A
```

dendPlot() from package ape for dendogram:

```
library(ape)
par(mfrow=c(1,2)); par(mar=c(0,0,1,0))
plot(kc, karate, main = 'Clusters')
dendPlot(kc, mode = 'phylo', main = 'Dendogram')
```

Clusters Dendogram -Actor 9 -Actor 31 Actor 10 Actor 29 -- Actor 19 -Actor 21 -Actor 15 -Actor 24 -Actor 28 - Actor 32 Actor 26 - Actor 25 -John A -Actor 33 -Actor 16 - Actor 27 - Actor 30 -Actor 23 -Actor 5 -Actor 11 - Actor 6 - Actor 7 --- Actor 17 -Actor 18 -Actor 12 -Actor 20 -Actor 22 Actor 2

- Actor 14 - Actor 3 - Actor 4 - Actor 8 - Mr Hi

4.2 Spectral Partitioning

Spectral graph theory: connectivity of G is associated with the eigen-analysis of certain matrices. Define Laplacian L of G with adjacency matrix A, and diagonal degree matrix $D = diag[(d_v)]$:

$$L = D - A$$

Then the number of components in G is directly related to the number of non-zero eigenvalues of L. In R: graph.laplacian(), eigen(), get.vertex.attribute():

```
par(mar=c(2,5,.5,5))
k.lap <- graph.laplacian(karate)
eig.anal <- eigen(k.lap)
plot(eig.anal$values, col = 'blue', ylab = 'Eigenvalues')</pre>
```


Extracting Fiedler vector \mathbf{x}_2 from:

$$S = \{v \in V : \mathbf{x}_2(v) \ge 0\}, \text{ and } \bar{S} = \{v \in V : \mathbf{x}_2(v) < 0\}$$

which partition into 2 subsets of vertices, for example:

```
par(mar=c(4,5,.5,5))
f.vec <- eig.anal$vectors[, 33]
faction <- get.vertex.attribute(karate, 'Faction')
f.colors <- as.character(length(faction))
f.colors[faction == 1] <- 'red'; f.colors[faction == 2] <- 'cyan'
plot(f.vec, pch = 16, xlab = 'Actor Number', ylab = 'Fiedler Vector', col = f.colors)
abline(0, 0, lwd = 2, col = 'lightgray')</pre>
```


5	Assortativity	and Mixing		
ass	ortativity.degree(ve	ast)		

[1] 0.4610798

4.3 Validation of Graph Partitioning