King Mongkut's University of Technology Thonburi Midterm Examination of First Semester, Academic Year 2008

				Sys	
COURSE	CPE 2	20 Dig	ital Ç	ircuit	Design
Friday 25	July		•		

Computer Engineering Department, 2nd Yr. 13.00-16.00h.

Instructions

- 1. This examination contains 5 problems, 8 pages (including this cover page).
- 2. The answers must be written in these examination sheets.
- 3. Students are allowed to use paper-based dictionaries.
- 4. Students are **not** allowed to use calculators.
- 5. No books, notes, or any other documents can be taken into the examination room.

Students must raise their hand to inform to the proctor upon their completion of the examination, to ask for permission to leave the examination room.

Students must not take the examination and the answers out of the examination room.

Students will be punished if they violate any examination rules. The highest punishment is dismissal.

This examination is designed by		
Associate Professor Dr.Naruemon Wa Tel. 0-2470-9089	attanapongsakorn,	
This examination is approved by the	department of computer engi	ineering.
Student Name	Student ID	Seat No.

Exam Problem	Total Points	Obtained Points
Problem 1	10	
Problem 2	20	
Problem 3	14	
Problem 4	29	
Problem 5	27	
Sum	100	

Problem 1:

Determine each of the following statements, and answer True or False. (10 points)

- 1.1 CPLD has a FAN-IN limitation; each logic gate can have a maximum fan-in of two.
- 1.2 FPGA chips cost more than any other chip types because they are application-specific designed.
- 1.3 The size of transistor gate length has been decreased in the past few years.
- 1.4 PMOS transister has its substrate connected to VDD, and NMOS transister has its substate connected to GND.
- 1.5 The function G(X, Y, Z) is valid where $G(X, Y, Z) = m_1 + m_2 + m_3 + m_4 + m_5 + m_6 = X'Y' + XZ' + Y'Z$

Problem 2: Given
$$F(A,B,C) = \overline{A} \overline{B} C + \overline{A} B + B \overline{C} + A \overline{C}$$
 (20 points)

- 2.1 Find the corresponding minterms for the function F (3 points)
- 2.2 Find the corresponding maxterms for the function F (3 points)

2.3 Find the minimum sum-of-product expression for the function F using algebraic manipulation (4 points)

2.4 Find the minimum sum-of-product expr	ression for the function F using K-Map (3 points)	nts)
2.5) Find the minimum product-of-sum exp	ression for the function F (3 points)	
2.6) Draw a timing diagram for the functio output (4 points)	on F considering all possible states of inputs ar	nd
,		
Student Name	_ID pa	ge 3/ 8

Problem 3: Given two functions F and G, where

$$F(A,B,C) = \overline{A} \overline{B} + \overline{A} \overline{C} + C$$

$$G(A,B,C) = AB + BC + ABC$$
 (14 points, 7 points each)

The input variables are available only in TRUE forms.

3.1 Design a CMOS circuit for the function F using minimum number of transistors.

3.2 Design a CMOS circuit for the function G using minimum number of transistors.

Student Name_____ID ____

Problem 4:

4.1: Given two functions F and G

$$F(A, B, C, D) = \sum m (0, 2, 4, 6, 7, 9) + d(10, 11, 15)$$

$$G(A, B, C, D) = \sum m(2, 4, 9, 10, 15) + d(0, 6, 7, 13, 14)$$

The input variables are available in both complemented and true form.

4.1.1) Implement functions F and G separately. Find cost of the circuit implementation? (7 points)

4.1.2) Redesign the circuit to have minimum cost using logic gates AND, OR, NOT. What is the cost of this new circuit? (8 points)

The circuit has a maximum f	an-in of two.	
The input variables are availa	able only in the true form: X_1 , X_2 , X_3 , X_4	(14 points)
	•	

4.2 Given $F(X_1, X_2, X_3, X_4) = \prod M(0, 3, 4, 7, 9, 10, 13, 14)$

Problem 5:

5.1 Complete values in the table for the corresponding unsigned numbers. (12 points)

Decimal	Binary	Hexadecimal
21.5		

Binary	Decimal	Octal
101110.01		

Octal	Decimal	Hexadecimal
77		

Hexadecimal	Binary	Octal
10C.A		

5.2 Perform the following operations where each number has 6 bits. Show your answers
by converting to decimal sign-and-magnitude representation.
5.2.1) The numbers are given in sign-magnitude representation. (5 points)
010110
<u>101101</u>
5.2.2) The numbers are given in the 1's complement representation. (5 points)
001101
+ 110110
<u>110110</u>
5.2.2) The numbers are given in the 2's complement form. (5 points)
5.2.3) The numbers are given in the 2's complement form. (5 points)
101100
111010

____ID ___

Student Name_____