Mecânica e Campo Eletromagnético - TP1

Universidade de Aveiro

Tiago Mendes, Pedro Costa

Mecânica e Campo Eletromagnético - TP1

Dpt. de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

Tiago Mendes, Pedro Costa (119378) tfdmendes@ua.pt, (112682)pedromsc37@ua.pt

24 de outubro de 2024

Resumo

O objetivo deste trabalho foi determinar a velocidade inicial de um projétil utilizando tanto as equações do movimento quanto um pêndulo balístico, além de verificar a dependência do alcance em relação ao ângulo de lançamento. A metodologia incluiu a realização de lançamentos com diferentes ângulos e o uso de sensores para medir os tempos, e as instrumentos analógicos as distâncias percorridas. As medições de comprimento apresentam um erro de 0,5cm, medições de massa apresentam um erro de 0,1g. O trabalho demonstrou uma boa precisão e exatidão nos resultados obtidos, atingindo os objetivos propostos, desde calcular a velocidade inicial com o lançador e pêndulo, tal calcular o alcance máximo.

Índice

1	Introdução	1
2	Detalhes Experimentais Relevantes	2
	2.1 Pêndulo Balístico	4
	2.2 Parte A	
	2.2.1 Material	
	2.2.2 Procedimento Experimental	
	2.3 Parte B	4
	2.3.1 Material	4
	2.3.2 Procedimento Experimental	4
	2.4 Parte C	Ę
	2.4.1 Material	Ę
	2.4.2 Procedimento Experimental	ţ
3	Análise e Discussão	6
	3.1 Parte A	(
	3.2 Parte B	7
	3.3 Parte C	ć
4	Conclusão	10
5	Anexos	11

Lista de Tabelas

	Medições de Distância e Tempo
3.2	Distância Média em Função do Ângulo
	Valores medidos para o pêndulo balístico

Lista de Figuras

2.1	Figura Parte A
	Figura Parte B
2.3	Figura Parte C
3.1	Gráfico Alcance Máximo em função do ângulo
5.1	Tabela Parte A
5.2	Tabela Parte B
5.3	Tabela Parte C

Introdução

Este trabalho insere-se no âmbito do estudo da cinemática, uma das áreas fundamentais da física. O foco principal é o **movimento de projéteis**, **movimento curvilíneo**. Estes tópicos foram abordados detalhadamente na componente teórica, nomeadamente a descrição dos movimentos em duas dimensões, como o movimento curvilíneo e o lançamento de projéteis.

Neste contexto, a análise do pêndulo balístico permite aplicar os **conceitos de conservação da energia** e **leis de Newton**, temas fundamentais discutidos em aula. Através da metodologia experimental, foram aplicadas as leis de Newton e os princípios de trabalho e energia para determinar a velocidade inicial de um projétil após colidir com um pêndulo

Este relatório descreve a experiência e os resultados obtidos na determinação da velocidade inicial do projétil através das equações do movimento, verificação da dependência do alcance com o ângulo de lançamento, e determinação da velocidade inicial do projétil utilizando um pêndulo balístico.

Detalhes Experimentais Relevantes

Para este trabalho, adotamos como pontos de partida os seguintes princípios:

- Desprezamos os efeitos de resistência do ar.
- Desprezamos os efeitos de rotação da terra.
- Admitimos que o módulo da aceleração da gravidade não varia com a altitude nem com a latitude do lugar, isto é, admitimos que:

$$g = 9.8 \,\mathrm{m/s}^2$$

A posição de um projétil, de massa M e velocidade inicial v_0 , que se desloca no plano x, y, é dada por:

$$x = x_0 + v_0 t \cos \theta_0 \tag{2.1}$$

$$y = y_0 + v_0 t \sin \theta_0 - \frac{1}{2} g t^2 \tag{2.2}$$

onde g é a aceleração da gravidade, t é o tempo, x_0 e y_0 são as coordenadas da posição inicial do projétil, e θ_0 é a inclinação do vetor velocidade inicial relativamente ao eixo dos x. Eliminando a variável t das equações $\ref{eq:total_sigma}$ e $\ref{eq:total_sigma}$, obtém-se uma nova equação para o alcance x em função do ângulo, que permite determinar o ângulo correspondente ao alcance máximo, $\theta_{\rm amax}$. Se um corpo é lançado de uma altura y_i e atinge uma altura final y_f , $\theta_{\rm amax}$ é dado por:

$$\theta_{\text{amax}} = \arctan\left(\frac{1}{\sqrt{1 + \frac{2g(y_i - y_f)}{v_2^2}}}\right) \tag{2.3}$$

Se o valor da altura inicial for igual ao da altura final $(y_i = y_f)$, então, $\tan \theta_{\text{amax}} = 1$, pelo que $\theta_{\text{amax}} = 45^{\circ}$.

2.1 Pêndulo Balístico

O pêndulo balístico trata-se de uma massa M suspensa de um fio ou barra que quando atingido por um projétil vai descrever o movimento de um pêndulo.

Esta utiliza a lei da **conservação da energia mecânica** onde, após a colisão, a energia cinética do sistema é convertida em energia potencial gravítica.

$$E_c(inicial) = \frac{1}{2}(m+M)v_2^2 = (m+M)gh = E_p(max)$$
 (2.4)

E a lei da **conservação do momento linear** na colisão do projétil e pêndulo onde o momento linear do projétil é transferido para o conjunto massa + projétil de onde se obtém:

$$mv_0 = (m+M)v_2 \tag{2.5}$$

De maneira a calcular velocidade inicial do projétil utilizamos a expressão 2.5 para obter uma expressão que nos dá relação entre v_0 e h dada por:

$$\nu_0 = \left(\frac{m+M}{m}\right)\sqrt{2gh} \tag{2.6}$$

m representa a massa do projétil, v_0 a velocidade inicial do projétil, M a massa do pêndulo, v_2 a velocidade do conjunto massa + projétil imediatamente após à colisão, h a altura e g é a aceleração da gravidade

2.2 Parte A

2.2.1 Material

- 1. Lançador de Projéteis
- 2. Base de fixação para o Lançador de Projéteis
- 3. Sensor de passagem
- 4. Sensor de passagem
- 5. Sistema de controlo dos sensores
- 6. Fita Métrica
- 7. Bola Metálica

Figura 2.1: Figura Parte A

2.2.2 Procedimento Experimental

Antes de iniciar qualquer procedimento experimental, é essencial garantir que o lançador de projéteis está corretamente montado e que o sistema de controlo correspondente está ligado e a funcionar adequadamente.

- 1. Efetuar a montagem de acordo com a figura 2.2.1.
- 2. Medir a distância, s, entre os sensores.
- 3. Carregar o lançador de projéteis (1) com a bola metálica utilizando a vareta de carregamento, posicionando-o na configuração de tiro curto SHORT RANGE.
- 4. Colocar o sistema de controlo dos sensores (5) na posição TWO GATES e carregar em START/STOP.
- 5. Disparar o projétil puxando o fio do disparador verticalmente com suavidade e registar os valores de tempo obtidos.
- 6. Efetuar 3 disparos, verificando a horizontalidade do LP, e registar as medições.

2.3 Parte B

2.3.1 Material

- 1. Lançador de Projéteis
- 2. Base de fixação para o Lançador de Projéteis
- 3. Alvo
- 4. Fita Métrica
- 5. Bola Metálica
- 6. Vareta de Carregar

Figura 2.2: Figura Parte B

2.3.2 Procedimento Experimental

Antes de iniciar qualquer procedimento experimental, é essencial garantir que o lançador de projéteis está corretamente montado.

- 1. Efetuar a montagem de acordo com a figura 2.3.1.
- 2. Colocar o alvo a uma distância tal que a esfera caia sobre a sua superfície.
- 3. Carregar o lançador de projéteis (1) com a bola metálica utilizando a vareta de carregamento, posicionando-o na configuração de tiro curto SHORT RANGE.
- 4. Disparar o projétil, registando o alcance, x, e o ângulo de lançamento, θ .
- 5. Efetuar 3 disparos, verificando a constância do ângulo de lançamento.
- 6. Repetir os passos anteriores para ângulos de 34°, 38°, 40°, e 43°.

2.4 Parte C

2.4.1 Material

- 1. Lançador de Projéteis
- 2. Base de fixação para o Lançador de Projéteis
- 3. Bola Metálica
- 4. Fita Métrica
- 5. Vareta de Carregar
- 6. Pêndulo Balístico
- 7. Balança

Figura 2.3: Figura Parte C

2.4.2 Procedimento Experimental

Antes de iniciar qualquer procedimento experimental, é essencial garantir que o lançador de projéteis está corretamente montado.

- 1. Efetuar a montagem de acordo com a figura 2.4.1.
- 2. Medir as massas do projétil, m, e do pêndulo, M.
- 3. Medir comprimento do pêndulo, l.
- 4. Carregar o LP na posição de tiro curto SHORT RANGE.
- 5. Efetuar um disparo e medir o ângulo máximo, α , descrito pelo pêndulo.
- 6. Repetir o ponto anterior 3 vezes.

Análise e Discussão

3.1 Parte A

De maneira a calcular a velocidade inicial é necessário utilizar a seguinte fórmula:

$$v = \frac{d}{t} \tag{3.1}$$

Sendo d a distância entre ambos os sensores, e t a média do intervalo de tempo de passagem entre os sensores. As medições feitas foram as seguintes:

Medição	Distância (m)	Erro Distância (m)	Tempo (s)	Erro Tempo (s)		
1 ^a Medição	0.100	0.001	0.0430	0.0001		
2ª Medição	0.100	0.001	0.0429	0.0001		
3ª Medição	0.100	0.001	0.0433	0.0001		
Média	0.100	0.001	0.0431	0.0002		

Tabela 3.1: Medições de Distância e Tempo

A distância entre os sensores foi constante para todos os lançamentos e o seu erro associado foi $0,001m^1$. O tempo foi medido pelo sistema de controlo dos sensores, em segundos. O erro associado a esta medição foi $0,0001s^2$. Sendo o maior desvio de 0.0002s. Assim,

$$v = \frac{0.1}{0.0431} = 2.32 \,\mathrm{m/s} \; \mathrm{(SI)}$$

O erro associado a este cálculo da velocidade é dado por:

$$\Delta v = v \times \frac{\Delta t_{\text{máx}}}{t_{\text{média}}} = 2.32 \times \frac{0.0002}{0.0431} = 0.011$$

Cuja precisão foi

$$prec = (1 - 0.011) \times 100 = 98.90\%$$

As principais fontes de variação nos valores medidos poderão ser:

- A forma como a pessoa efetua o disparo.
- A consistência da força da mola.

 $^{^{1}}$ O erro foi obtido através da metade do valor da menor divisão da escala da fita métrica. Multiplicar o erro por 2 reflete a incerteza acumulada ao medir a distância total entre os dois sensores. (0,0005*2) (m)

²Dado que o instrumento é digital, o erro instrumental é igual à menor divisão da escala

3.2 Parte B

A **Parte B** foca-se na dependência do alcance com o ângulo de lançamento. Tendo em conta os conhecimentos teóricos obtidos durante a Unidade Curricular (UC) sabe-se que o ângulo ideal para o alcance máximo depende da posição inicial e final:

- 1. Se $y_i = y_f$ (lançamento e queda ao mesmo nível): o ângulo ideal é 45°
- 2. Se $y_i > y_f$ (queda a um nível mais baixo): ângulo ideal será inferior a 45°.
- 3. Se $y_i < y_f$ (queda a um nível mais alto): o ângulo ideal será superior a 45°

Dado que a altura y (Ver figura 2.3.1) foi sempre igual a 26cm (O **erro** associado é 0,005m) é possível concluir que o ângulo correspondente ao alcance máximo será teoricamente **inferior** a 45° .

É possível realizar o cálculo do alcance máximo teórico, $\theta_{\text{amax},T}$, utilizando a equação 2.3.

$$\theta_{\text{amax}} = \arctan\left(\frac{1}{\sqrt{\frac{2\times 9.8\times (0.26)}{2.32^2}}}\right) = \arctan\left(\frac{1}{1.2138}\right) = 35.6^{\circ}$$

O ângulo de lançamento varia de lançamento para lançamento, sendo medido utilizando as marcações analógicas do lançador. Desta forma, o **erro** associado a cada medição foi de 0.5°.

$\hat{\mathbf{A}}$ ngulo ($^{\circ}$)	Distância Média x (m)
30°	0.793
34°	0.793
38°	0.795
40°	0.786
43°	0.763

Tabela 3.2: Distância Média em Função do Ângulo

Ao inserir os valores da Tabela 3.2 num gráfico, obtém-se a equação polinomial que descreve a trajetória parabólica. Derivando essa equação e igualando a zero, é possível determinar **o valor do ângulo** correspondente ao alcance máximo prático.

$$y(x) = -4.24 \times 10^{-4}x^{2} + 0.0289x + 0.305$$
$$y'(x) = -8.48 \times 10^{-4}x + 0.0289$$
$$0 = -8.48 \times 10^{-4}x + 0.0289$$
$$\theta_{\text{amax.P}} = 34.1^{\circ}$$

Figura 3.1: Gráfico Alcance Máximo em função do ângulo

Assim, a precisão observada foi:

$$\mathrm{prec} = \frac{34,1}{35,6} \times 100 = 96,00\%$$

As principais fontes de variação nos valores medidos que foram discutidos foram:

- A forma como a pessoa efetua o disparo.
- A consistência da força da mola.
- As marcas já existentes no alvo podem gerar confusão à pessoa que as verifica.

3.3 Parte C

A $\mathbf{Parte}\ \mathbf{C}$ apresenta um método alternativo para o cálculo da velocidade inicial de um projétil com base num pêndulo.

Massa Pêndulo M (kg)	Massa Projétil m (kg)	Tamanho Do Pêndulo L (m)		
0.2636	0.0632	0.3		
± 0.0001	± 0.0001	± 0.005		

Tabela 3.3: Valores medidos para o pêndulo balístico

O **ângulo** obtido foi constantemente 17° , sendo o erro associado ao mesmo a metade da menor divisão da escala de onde foi lido - 0.25°

Utilizando a fórmula seginte, é possível fazer o cálculo da altura

$$h = L(1 - \cos(\theta))$$

 $h = 3 \times (1 - \cos(17))$
 $h = 0.0131 \text{m} = 13.1 \text{mm}$

Por conseguinte a fórmula associada ao erro da altura é:

$$\Delta h = (1 - \cos(\theta)) \cdot \Delta L + L \cdot \sin(\theta) \cdot \Delta \theta$$

$$\Delta h = 0.02214$$
 Precisão $h = 97, 8\%$

110013407t = 31,070

Para concluir, o cálculo da velocidade inicial é dado pela fórmula 2.6:

$$v_0 = \frac{0.0632 + 0.2636}{0.2636} \times \sqrt{2 \times 9, 8 \times 0.0131} = 2,61 \text{m/s}$$

As principais fontes de variação nos valores medidos que foram discutidos foram:

- A forma como a pessoa efetua o disparo.
- A consistência da força da mola.
- Incerteza associada ao instrumento de medição.

Conclusão

Os principais objetivos foram atingidos, como a determinação da velocidade inicial do projétil e a análise do alcance em função do ângulo. No entanto, a precisão foi afetada por limitações nas medições de tempo e distância, mitigadas através de múltiplas medições e cálculos de médias. Pequenas variações no disparo também influenciaram os resultados, sugerindo a necessidade de maior controlo e instrumentos mais precisos. Em geral, os objetivos foram alcançados.

A contribuição dos autores foi:

Tiago Mendes: 70% Pedro Costa: 30%

Anexos

		Distância e	ntre sensores					
Distância Erro Instrumental Média Desvio								
Unidade Medida	m	m	m	m				
1ª Medição	0.1			0				
2ª Medição	0.1	0,001	0.1	0				
3ª Medição	0.1						Cálculos	
						Velocidade	Erro	Precisão
						m/s		%
	Ter	npo percorrido	entre os 2 sens	ores		2.32	0.011	98.90%
Ângulo	Tempo	Erro Instrumental	Média Tempo (~t)	Desvio (d ~t)	Incerteza Absoluta			
0	s	s	s	s				
	0.043			0.0001	0.0002			
0°	0.0429	0,0001	0.0431	0.0002	0.0002			
	0.0433	1		0.0002	1			

Figura 5.1: Tabela Parte A

Figura 5.2: Tabela Parte B

							Altura							
Massa Pêndulo M	Massa Projétil m	Tamanho Do Pêndulo L	ΔL	Ângulos	Média Ângulos	Erro Instrumental	Altura h	Δh	Precisão h	V _a				
kg	kg	m	m	0	RADs	RADs	С			m/s				
0.2636	0.0632	0.3	0.005	17	0.2967059728	0.00436332313	0.01310857321	0.02214	97.70%	2.61014528				
				17			0.01310857321							
				17			0.01310857321							
				17			0.01310857321							
												17		
± 0.1	± 0.1			± 0.25°	± 0.25°									

Figura 5.3: Tabela Parte C

Acrónimos

 ${f UC}$ Unidade Curricular

24 de outubro de 2024