SINGAPORE POLYTECHNIC **2016/2017 S2 MID-SEMESTER TEST**

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

No	SOLUTIO	N				
	SECTIO	<u>N – A</u> (10 M	CQ, 3	marl	ks each)
	1.	(d)				
	2.	(d)				
	3.	(b)				
	4.	(c)				
		(d)				
		(c)				
		(a)				
	8.					
	9.					
	10.	(b)				
	10.	(0)				
		A	В	С	D	
	1				✓	
	2				✓	
	3		✓			
	5			✓	✓	-
	6			√	,	
	7	√				-
	8			√		
	9		✓			
	10		✓			

SINGAPORE POLYTECHNIC 2016/2017 S2 MID-SEMESTER TEST

SAS code:

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

No	SOLUTION								
5.4	SECTION – B								
B1 a)	ADD $+57_{10}$ to $+36_{10}$ in BCD format								
	+57 = 0 1 0 1 0 1 1 1 ← BCD								
	+36 = 0 0 1 1 0 1 1 0 BCD								
	=								
	+ 1 1 0 ← Adjust by adding 6								
	+93 = 1 0 0 1 0 0 1 1								
b)	Subtract $+70_{10}$ to $+99_{10}$ =								
	Equivalent to ADD - 70_{10} from + 99_{10}								
	sign 64 32 16 8 4 2 1								
	$+70 = 0 1 0 0 0 1 1 0$ \leftarrow True binary value								
	-70 = 1 0 1 1 1 0 1 0 \leftarrow 2's complement								
	+99 = 0 1 1 0 0 0 1 1 $+ 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$								
	+29 = 1 0 0 0 1 1 1 0 1 discard 9 th bit								

SINGAPORE POLYTECHNIC

2016/2017 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

No	SOLUTION					
B2						
(a)	Given: A4 A3 A2 A1 A0 = $0\ 1\ 1\ 1\ 0_2$					
	B4 B3 B2 B1 B0 = 1 1 0 1 1 ₂					
	And Cin = <u>1</u>					
	Cout S4 S3 S2 S1 S0 = 1 0 1 0 1 0					
(b)	If 5-bits 2's complement is used,					
	Then the number at the A inputs is +ve since sign bit = 0					
	And it is $= 8+4+2 = +14_{10}$					
	The number at the B inputs is -ve as the sign bit = 1 and with Cin = 1; it should be in 1's complement form.					
	Hence the magnitude of the number is = 00100_2					
	= 4 ₁₀					
	Hence number at B inputs = -4_{10} The sum result is +ve and = $14 - 4 = +10_{10}$					
(c)	To construct the 74LS283 IC, 4 Full Adders are needed. Connection is as shown:					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

SINGAPORE POLYTECHNIC 2016/2017 S2 MID-SEMESTER TEST

SAS code: MST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

No	SOLUTION					
B3 (a)	(i) Frequency = 1/40uS = 25000 Hz or 25 kHz					
	(ii) Duty cycle = 10/40 * 100% = 25%					
(b)	Given frequency to mod-8 counter = 25000 Frequency at MSB output = 25000/8 = 3125Hz					
	Duty cycle = 50%					
(c)	Q0 Q1 Q2 C C MSB Logic H MSB					
	CLK PR PR J J Q CLK K K K CLR					
	Important Use correct number of FFs J=k=PRE=CLR = H Label MSB & LSB					
(d)	111 001					
	Given start state = 000 and 650 Clocks are applied, output values at the end of 650 clks = 0102					

SINGAPORE POLYTECHNIC

NOT TO BE GIVEN TO STUDENTS

/16/17_52 MST SOLUTIONS

SINGAPORE POLYTECHNIC

2016/2017 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

1 cycle of counter —

No	SOLUTION
C1 (a)	Frequency at output of Astable Circuit = 10 * 400 = 4000 Hz
(b)	Given $F_1 = \frac{0.8}{R_1 C_1}$ and C1 = 1uF and with Frequency = 4000 Hz
	$4000 = 0.8/(R * 10^{-6})$
	Therefore R = $0.8/(4000 * 10^{-6})$
	= 200 Ohms
(c)	CLK ————————————————————————————————————
	Important to Note
	Q0 to CP1 connection for use of 4 flip-flops
	CP0 is the clock input
	MSB and LSB must be labelled clearly Feedback from Q1, Q3 to MR1/MR2 for Mod-10.
(d)	Duty cycle at MSB output = 2/10 * 100% = 20%
	Since at MSB output Q3, there are 8 periods of 0's and 2 periods of
	1's in one cycle of the counter.
	Q ₃ 0 0 0 0 0 0 0 0 1 1 0 0

SINGAPORE POLYTECHNIC

2016/2017 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: DASE/DCEP/DESM/DCPE/ DEEE 1FT

