```
In [ ]: ##### Author : Amir Shokri
         ##### github link : https://github.com/amirshnll/Covertype
         ##### dataset link : http://archive.ics.uci.edu/ml/datasets/Covertype
         ##### email : amirsh.nll@gmail.com
         import pandas as pd
In [1]:
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.decomposition import PCA
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import mean_squared_error as MSE
         from sklearn.metrics import classification report
         df = pd.read_csv('covtype_data.csv', header=None)
In [2]:
In [3]:
         df
Out[3]:
                     0
                          1
                              2
                                  3
                                       4
                                             5
                                                  6
                                                       7
                                                            8
                                                                 9
                                                                        45
                                                                           46
                                                                               47
                                                                                   48
                                                                                       49
                                                                                           50
                                                                                               51
               0 2596
                         51
                              3
                                 258
                                       0
                                           510
                                                221
                                                     232
                                                          148
                                                               6279
                                                                         0
                                                                                0
                                                                                    0
                                                                                            0
                                                                                                0
                  2590
                         56
                              2
                                212
                                           390
                                                220
                                                     235
                                                          151
                                                               6225
                                                                         0
                                                                                    0
                                                                                                0
               1
                                       -6
                                                                             0
                                                                                0
                                                                                        0
                                                                                            0
                  2804
                        139
                              9
                                 268
                                      65
                                          3180
                                                234
                                                     238
                                                          135
                                                               6121
                                                                         0
                                                                             0
                                                                                0
                                                                                    0
                                                                                        0
                                                                                                0
                                          3090
                                                     238
                  2785
                        155
                             18
                                 242
                                      118
                                                238
                                                          122
                                                               6211
                                                                             0
                                                                                0
                                                                                    0
                                                                                        0
                                                                                                0
                  2595
                         45
                                 153
                              2
                                           391
                                                220
                                                     234
                                                          150
                                                               6172
                                                                         0
                                                                             0
                                                                                0
                                                                                    0
                                                                                        0
                                                                                            0
                                                                                                0
                                       -1
                         ...
                                  ...
                                       ...
                                             ...
          581007
                  2396
                        153
                            20
                                 85
                                      17
                                           108
                                                240
                                                     237
                                                          118
                                                                837
                                                                         0
                                                                             0
                                                                                0
                                                                                    0
                                                                                        0
                                                                                            0
                                                                                                0
          581008
                  2391
                            19
                                 67
                                      12
                                                     237
                                                               845
                                                                         0
                                                                                    0
                                                                                        0
                                                                                            0
                                                                                                0
                        152
                                            95
                                                240
                                                          119
                                                                             0
                                                                                0
          581009
                  2386
                        159
                            17
                                 60
                                       7
                                                236
                                                     241
                                                          130
                                                               854
                                                                                    0
                                                                                                0
                                            90
                                                                         0
                                                                             0
                                                                                0
                                                                                        0
          581010 2384
                                                          143
                       170 15
                                 60
                                       5
                                            90
                                                230
                                                     245
                                                               864
                                                                                0
                                                                                    0
                                                                                        0
                                                                                            0
                                                                                                0
                                                                         0
                                                                             0
          581011 2383
                       165 13
                                 60
                                       4
                                            67
                                                231
                                                     244
                                                          141
                                                                875
                                                                         0
                                                                             0
                                                                                0
                                                                                    0
                                                                                        0
                                                                                            0
                                                                                                0
```

581012 rows × 55 columns

In [4]: df.describe()

Out[4]:

	0	1	2	3	4	
count	581012.000000	581012.000000	581012.000000	581012.000000	581012.000000	581012.00000
mean	2959.365301	155.656807	14.103704	269.428217	46.418855	2350.1466 ⁻
std	279.984734	111.913721	7.488242	212.549356	58.295232	1559.25487
min	1859.000000	0.000000	0.000000	0.000000	-173.000000	0.00000
25%	2809.000000	58.000000	9.000000	108.000000	7.000000	1106.00000
50%	2996.000000	127.000000	13.000000	218.000000	30.000000	1997.00000
75%	3163.000000	260.000000	18.000000	384.000000	69.000000	3328.00000
max	3858.000000	360.000000	66.000000	1397.000000	601.000000	7117.00000

8 rows × 55 columns

In [13]: x = df[df.columns[:54]]
y = df[df.columns[54]]
scaler = MinMaxScaler()
scaled_x = scaler.fit_transform(x)

In [14]: y.value_counts().plot.pie()

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x1c9c8d1c488>


```
In [6]: #Dimentionality reduction
    pca = PCA(n_components=15)
    reduced_x = pca.fit_transform(scaled_x)
```

```
In [7]: #Choose whether reduces or not
         X = scaled x
         X = reduced x
In [8]:
         X train, X test, y train, y test = train test split(X, y, test size=0.3, rando
         m state=0)
In [10]: | #Now we run algorithms and evaluate
In [11]:
         from sklearn.naive_bayes import CategoricalNB
         cnb = CategoricalNB()
         cnb.fit(X_train, y_train)
         predicted = cnb.predict(X_test)
         print('MSE:', MSE(y_test, predicted))
         print(classification_report(y_test, predicted))
         MSE: 1.8519196346612814
                        precision
                                     recall f1-score
                                                        support
                     1
                             0.67
                                       0.03
                                                 0.06
                                                           63498
                                       0.98
                     2
                             0.51
                                                 0.67
                                                          85198
                     3
                             0.58
                                       0.33
                                                 0.42
                                                          10581
                     4
                             0.00
                                       0.00
                                                 0.00
                                                            822
                     5
                             0.00
                                       0.00
                                                 0.00
                                                            2850
                     6
                             0.00
                                       0.00
                                                 0.00
                                                            5229
                     7
                             0.00
                                       0.00
                                                 0.00
                                                            6126
                                                 0.51
                                                         174304
             accuracy
            macro avg
                             0.25
                                       0.19
                                                 0.16
                                                         174304
                                       0.51
                                                 0.37
         weighted avg
                             0.52
                                                         174304
In [10]:
         from sklearn.neural network import MLPClassifier
         mlp = MLPClassifier(hidden layer sizes=(100, 100), activation='relu', solver=
          'adam', alpha=0.0001)
         mlp.fit(X train, y train)
         predicted = mlp.predict(X_test)
         print('MSE:', MSE(y_test, predicted))
         print(classification_report(y_test, predicted))
         MSE: 0.96
                        precision
                                     recall f1-score
                                                        support
                     1
                                       0.58
                                                              71
                             0.66
                                                 0.62
                     2
                             0.81
                                       0.82
                                                 0.81
                                                             168
                     5
                             0.78
                                       0.87
                                                 0.82
                                                              61
             accuracy
                                                 0.77
                                                             300
                             0.75
                                                 0.75
                                                             300
            macro avg
                                       0.75
                             0.77
                                       0.77
                                                 0.77
                                                             300
         weighted avg
```

```
In [15]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
predicted = knn.predict(X_test)

print('MSE:', MSE(y_test, predicted))
print(classification_report(y_test, predicted))
```

```
MSE: 0.35506930420414906
              precision
                           recall f1-score
                                              support
           1
                   0.93
                             0.92
                                       0.93
                                                63498
           2
                   0.94
                             0.95
                                       0.94
                                                85198
           3
                   0.92
                             0.93
                                       0.92
                                                10581
           4
                   0.86
                             0.71
                                       0.78
                                                 822
           5
                   0.84
                             0.77
                                       0.80
                                                 2850
           6
                   0.87
                             0.86
                                                 5229
                                       0.87
           7
                   0.94
                             0.93
                                       0.93
                                                 6126
    accuracy
                                       0.93
                                               174304
                   0.90
   macro avg
                             0.87
                                       0.88
                                               174304
                                       0.93
weighted avg
                   0.93
                             0.93
                                               174304
```

```
In [13]: from sklearn.tree import DecisionTreeClassifier
Dtree = DecisionTreeClassifier()
Dtree.fit(X_train, y_train)
predicted = Dtree.predict(X_test)

print('MSE:', MSE(y_test, predicted))
print(classification_report(y_test, predicted))
```

MSE:	0.479879	9798053975			
	precision		recall	f1-score	support
	1	0.90	0.90	0.90	63498
	2	0.91	0.91	0.91	85198
	3	0.88	0.88	0.88	10581
	4	0.74	0.73	0.74	822
	5	0.73	0.74	0.74	2850
	6	0.80	0.80	0.80	5229
	7	0.92	0.92	0.92	6126
i	accuracy			0.90	174304
ma	acro avg	0.84	0.84	0.84	174304
weig	hted avg	0.90	0.90	0.90	174304

MSE: 1.782133	5138608407			
	precision		f1-score	support
1	0.66	0.57	0.61	63498
2	0.67	0.80	0.73	85198
3	0.60	0.76	0.67	10581
4	0.11	0.00	0.00	822
5	1.00	0.00	0.00	2850
6	0.37	0.10	0.15	5229
7	0.66	0.37	0.47	6126
accuracy			0.66	174304
macro avg	0.58	0.37	0.38	174304
weighted avg	0.66	0.66	0.64	174304

```
In [ ]:
```