Single Variable Calculus

Otto Martinwall

March 6, 2022

Contents

1	Cald	Calculus A Complete Course														2				
	1.1	Limits																	3	
		1.1.1	Exercises 1.1 .																	5
		1.1.2	Exercises 1.2 .																	5
2	Lec	tures																		6

1 Calculus A Complete Course

1.1 Limits and Continuity

Theorem 1 (The Squeeze Theorem). Suppose that $f(x) \leq g(x) \leq h(x)$ holds for all x in some open interval containing c, except possibly at x=c. Suppose also that

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$

Then $\lim_{x\to c} g(x) = L$.

Proof. For this proof, the (ϵ, δ) -definition of the limit will be used.

The goal is to prove that $\lim_{x\to c} g(x) = L$, which is true if

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x, (|x - c| < \delta \Rightarrow |g(x) - L| < \epsilon).$$

Since $\lim_{x\to c} f(x) = L$,

$$\forall \epsilon > 0, \exists \delta_1 > 0 : \forall x, (|x - c| < \delta_1 \Rightarrow |f(x) - L| < \epsilon) \tag{1}$$

And since $\lim_{x\to c} h(x) = L$,

$$\forall \epsilon > 0, \exists \delta_2 > 0 : \forall x, (|x - c| < \delta_2 \Rightarrow |h(x) - L| < \epsilon).$$
 (2)

Then we have

$$f(x) \leq g(x) \leq h(x)$$

$$f(x) - L \leq g(x) - L \leq h(x) - L$$
 1.1 Limits and Continuity

We can choose $\delta=\min\{\delta_1,\delta_2\}$, then if $|x-c|<\delta$, and combining (1) and (2), we have

$$-\epsilon < f(x) - L \le g(x) - L \le h(x) - L < \epsilon$$
$$-\epsilon < g(x) - L < \epsilon$$
$$|g(x) - L| < \epsilon$$

So $\lim_{x\to c} g(x) = L$, which completes the proof.

- 1.1.1 Exercises 1.1
- 1.1.2 Exercises 1.2

2 Lectures