Power Calculation

Taryn Heilman Ryan Henning Frank Burkholder

Learning Objectives

- Review relevant concepts
- Define statistical power
- Learn how to calculate power and how to integrate into hypothesis
- Understand different factors that affect power

- What does the Central Limit Theorem state?
- What are the implications of this for hypothesis testing?
- Describe the steps necessary to compute a hypothesis test
- What is a p-value?
- Describe Type I and Type II Errors and name a situation where each would be the worst error to make
- Describe the Bonferroni correction and why we would use it

One more time: Central Limit Theorem

Let the underlying distribution have mean and std. dev.

$$\mu$$
 and σ

The sampling distribution's mean and std. dev. will equal:

$$\mu' = \mu \\ \sigma' = \sigma / \sqrt{n}$$

Review: One-tailed vs. Two-tailed tests

Direction	H_0	H_A	P-value
2-sided	=	#	One half of P-value
Test			in each tail
Left-Tail	>	<	All of P-value
			in left tail
Right-Tail	<u> </u>	>	All of P-value
			in right tail

Statistical Power

galvanize

Think of H_a as positive.

We call this the experiment's "Power". It is the probability that we **correctly reject H_0** when the null hypothesis is false.

Hypothesis testing: the *power* region

The *power* measurement is in relationship to a <u>specific</u> alternative hypothesis. Think of it as the *power* to detect a particular "effect size".

Hypothesis testing: the *power* region

Power:

- a) the probability that your test will reject a false null hypothesis
- b) the ability of your test to detect an effect, if it actually exists

typically set to 80%

Explaining Power Interactively

Interactive exploration
http://rpsychologist.com/d3/NHST/

Another resource
http://powerandsamplesize.com/Calculators/Other/1-Sample-Normal

Factors that affect Power

- Significance level (alpha)
- Effect size
- Sample size (n)

Can do this calculation to solve for any of the 4 factors (alpha, effect size, n, power)

TYPICALLY you set an alpha, desired effect size, and statistical power, and calculate the required sample size based on these

Check Understanding: factors that affect power

What happens to *power* when we:

- increase alpha?
- Increase effect size?
- *increase the sample size?*(Hint, what happens to standard deviation as we increase sample size?)

Hypothesis testing: in practice

	H ₀ is true	H ₀ is false	
Accept H ₀	Correct Decision (1-α)	Type II Error (β)	
Reject H ₀	Type I Error (α)	Correction Decision (1-β)	

Often, we know:

- 1. The "effect size" that we want to detect, and
- 2. The *power* that we want to achieve.

We then calculate the sample size needed to get what we want!

Hypothesis Testing Steps: revised

galvanıze

- 1. State the null (H0) and the alternative (H1) hypotheses
- 2. Choose a level of significance (alpha) and power (1 beta)
 - i. Compute number of samples required for desired effect size
 - ii. Collect data
- 3. Compute the test statistic
- 4. Calculate p-value
- 5. Draw conclusions
 - Reject H0 in favor of H1
 - Fail to reject H0

$$n > \left((Z_{(1-\beta)} - Z_{\alpha}) \frac{s}{\mu_b - \mu_a} \right)^2$$

FYI: derivation

```
from scipy import stats
alpha = 0.05 # allowable Type I error rate (incorrectly rejecting H0)
beta = 0.2 # allowable Type II error rate (failing to reject H0 when we should)
power = 1 - beta

mu_a = val_a # the mean value of a
mu_b = val_b # the mean value of b
s = val_s # effective standard deviation of the difference between a & b distributions
n = ((stats.norm.ppf(1-beta) - stats.norm.ppf(alpha)) * s / (mu_b - mu_a))**2
```

Breakout 1: calculate sample size

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 6%. (The standard deviation would be 0.24.)

We want to test a new homepage design to see if we can get a <u>7% signup rate</u>. We'll want an experiment where <u>alpha is 1%</u> and <u>power is 95%</u>.

Breakout 1: calculate sample size

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 6%. (The standard deviation would be 0.24.)

We want to test a new homepage design to see if we can get a <u>7% signup rate</u>. We'll want an experiment where <u>alpha is 1%</u> and <u>power is 95%</u>.

$$n \ge 9,084$$

Breakout 2: calculate sample size

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 1%. (The standard deviation would be 0.099.)

We want to test a new homepage design to see if we can get a 1.2% signup rate. We'll want an experiment where alpha is 1% and power is 95%.

Breakout 2: calculate sample size

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 1%. (The standard deviation would be 0.099.)

We want to test a new homepage design to see if we can get a 1.2% signup rate. We'll want an experiment where alpha is 1% and power is 95%.

$$n \ge 38,642$$

Learning Objectives

- Review relevant concepts
- **Define** statistical power
- Learn how to calculate power and how to integrate into hypothesis
- Understand different factors that affect power

Recap: Learning Objectives

galvanize

- ✓ Review relevant concepts
- ✓ Overview of other test statistics:
 - ✓ Chi-squared tests
 - ✓ Paired t-test
 - ✓ KS test
- ✓ Discuss Experimental design and Confounding Variables
- ✓ Define statistical power
- ✓ Learn how to calculate power and how to integrate into hypothesis
- ✓ Understand different factors that affect power