

Universidade Federal do Vale do São Francisco

Introdução a Algoritmos

Professor: Marcelo Santos Linder

E-mail: marcelo.linder@univasf.edu.br

Página: www.univasf.edu.br/~marcelo.linder

Ementa

Conceitos de algoritmo. Algoritmo como representação da solução de problemas. Constantes. Identificadores. Palavras reservadas. Variáveis e tipos primitivos. Operadores. Expressões. Instruções. Lógica de programação. Pseudo-linguagem e seu na representação de algoritmos. Comandos de entrada e saída de dados. Estrutura de controle de fluxo (següencial, condicional e iterativa). Teorema de Böhm-Jacopini. Estruturas de dados homogêneas e heterogêneas. Modularização. Recursão.

Metodologia

→ A disciplina será trabalhada com aulas expositivodialogadas, onde serão fornecidos os componentes teóricos e será feita a prática de exercícios.

Recursos

Quadro branco, marcador, notebook e projetor multimídia.

Forma de Avaliação

→ A avaliação será realizada mediante provas escritas e um trabalho. Duas provas possuirão datas especificadas previamente e a(s) outra(s) será(ão) realizada(s) em data(s) definida(s) no momento de sua(s) realização(ões). As avaliações com data definida (AVD´s) têm, cada uma, o peso igual a dois, já cada avaliação surpresa (AVS) possui peso igual a um. O trabalho (T) terá peso igual a um. Logo, a média final (MF) do aluno, considerando a realização de duas provas surpresas, resultará da seguinte equação:

$$MF = (AVD1*2 + AVD2*2 + AVS1*1 + AVS2*1 + T)/7$$

OBS. : A existência do trabalho dependerá de acordo com o(s) professor(es) da(s) turma(s) da disciplina de Introdução à Programação.

O aluno para obter aprovação deve ter no mínimo 75% de presença.

Bibliografia

→ Bibliografia Básica:

- → ASCENCIO, A. F. G.; CAMPOS, E. A. V. Fundamentos da Programação de Computadores. 2ª ed. Editora Pearson Education, 2003.
- OLIVEIRA, A. B.; BORATTI, I. C. Introdução à Programação Algoritmos. 3 a ed. Visual Books, 1999.
- → CORMEN, T. H. et al. Algoritmos, Teoria e Prática. 2ª ed. Elsevier, 2002.

Bibliografia Complementar:

- MEDINA, M.; FERTIG, C. Algoritmos e Programação Teoria e Prática. 2ª Ed. Novatec, 2006.
- → FORBELLONE, A.; EBERSPÄCHER, H. Lógica de Programação A construção de algoritmos e estruturas de dados. 3ª ed. Pearson Education, 2005.
- CARBONI, I. F. Lógica de Programação. Cengage Learning, 2003.
- → PUGA, S.; RISSETTI, G. Lógica de programação e estruturas de dados com aplicações em Java. Pearson Education, 2003.

Informações Gerais

→ Material de apoio

Os slides utilizados em aula, listas de exercícios, datas de avaliações e demais informações referentes à disciplina serão encontradas na página www.univasf.edu.br/~marcelo.linder

Dados sobre a oferta anterior (2011.2)

- **→ Total de discentes:** 54
- → Percentual geral de aprovação: 22%

Conceito de Problema

O que é um problema?

Conceito de Problema

Problema (Dicionário Michaelis):

Substantivo Masculino.

Questão matemática proposta para ser resolvida.

Questão difícil, delicada, suscetível de diversas soluções.

Qualquer coisa de difícil explicação; mistério, enigma.

Dúvida, questão.

Exemplos de Problema

- → Problemas fazem parte do nosso cotidiano.
- → Exemplo de problemas cotidianos:
 - Trocar a resistência de um chuveiro.
 - Definir onde Almoçar.
- → Sempre que nos deparamos com um problema buscamos um procedimento para solucionar o mesmo.

Exemplo de Solução

- → Por exemplo, para trocar a resistência de um chuveiro devemos:
 - Adquirir uma resistência nova;
 - Localizar o chuveiro a ser manipulado;
 - Abrir o chuveiro;
 - Retirar a resistência defeituosa;
 - Colocar a resistência nova;
 - Fechar o chuveiro;
 - Descartar a resistência defeituosa.
- Definir onde Almoçar.

Conceito de Lógica

O que orientou a obtenção dos procedimentos (passos) para as soluções vislumbradas?

A lógica.

O que é lógica?

A lógica é o ramo da Filosofia e da Matemática que estuda os métodos e princípios que permitem fazer distinção entre raciocínios válidos e não válidos, determinando o processo que leva ao conhecimento verdadeiro.

Conceito de Lógica

O uso da lógica é primordial na solução de problemas. Com ela é possível alcançar objetivos com eficiência e eficácia.

Ninguém ensina outra pessoa a pensar, mas a desenvolver e aperfeiçoar esta técnica, com persistência e constância.

Conceito de Algoritmo

Ao utilizarmos a lógica para listar passos ordenados que resultam na solução de um determinado problema estamos construindo um algoritmo.

Contrapondo o que normalmente se imagina, o termo algoritmo não foi originado na computação e muito menos pode ser utilizado apenas no contexto computacional.

Podemos definir um algoritmo como:

- uma seqüência de passos que visa atingir um objetivo bem definido;
- uma seqüência de passos bem definida que deve ser seguida para a realização de uma tarefa ou solução de um problema.

Exemplos de Algoritmos

Como vimos os conceitos de algoritmo são bem amplos, sendo importante salientar que qualquer tarefa que siga determinado padrão pode ser descrita por um algoritmo, como por exemplo:

ALGORITMO: TROCAR UMA LÂMPADA

PASSO 1: Pegar a lâmpada nova

PASSO 2: Pegar a escada

PASSO 3: Posicionar a escada embaixo da

lâmpada queimada

PASSO 4: Subir na escada com a lâmpada nova

PASSO 5: Retirar a lâmpada queimada

PASSO 6: Colocar a lâmpada nova

PASSO 7: Descer da escada

PASSO 8: Ligar o interruptor

PASSO 9: Guardar a escada

PASSO 10: Jogar a lâmpada velha no lixo

ALGORITMO: SACAR DINHEIRO

PASSO 1: Ir até o caixa eletrônico

PASSO 2: Colocar o cartão

PASSO 3: Digitar a senha

PASSO 4: Solicitar o saldo

PASSO 5: Se o saldo for maior ou

igual à quantia desejada,

sacar a quantia desejada;

caso contrário sacar o

valor do saldo

PASSO 6: Retirar dinheiro e cartão

PASSO 7: Sair do caixa eletrônico

Descrição Narrativa

Conforme vimos até o momento a descrição narrativa em linguagem natural foi utilizada na descrição dos algoritmos.

Qual a vantagem?

Não há a necessidade de aprender nenhum novo conceito.

Qual a desvantagem?

Em virtude da ambigüidade presente na linguagem natural a descrição narrativa é passível de mais de uma interpretação.

Descrição Narrativa

Um exemplo de ambigüidade presente em uma sentença na linguagem natural é:

O policial escutou o barulho da porta.

Esta frase pode ter pelo menos três interpretações:

- 1 O policial escutou o barulho produzido pela porta.
- 2 O policial estava junto à porta e escutou o barulho.
- 3 O policial escutou o barulho que veio através da porta.

Do ponto de vista computacional um algoritmo será implementado em uma linguagem de computação gerando um programa, o qual visa instruir um computador (uma máquina) a executar determinada tarefa.

Devemos ter consciência que um computador não é dotado da capacidade de tomar decisões com base em premissas. Portanto, não podemos instruir um computador com sentenças dúbias.

Sendo assim, consideraremos que um algoritmo é uma seqüência, que não permite ambigüidade, de passos finitos, passível de ser executada com um esforço finito em tempo finito e que acaba para qualquer entrada (inclusive erro).

O algoritmo tem como papel fundamental ser o elo de ligação entre dois mundos (real e computacional). A atividade de programação tem início com a construção do algoritmo.

Funcionalidade do Algoritmo

Mundo Real

Máquina

Contudo, quando falamos em algoritmo sob o enfoque computacional, como já foi mencionado, não podemos utilizar uma descrição narrativa para representar um algoritmo.

Sendo assim, veremos dois métodos para representação de algoritmos:

- fluxograma representação gráfica;
- pseudocódigo (português estruturado) –
 representação textual.

Os métodos em questão impõem regras e disponibilizam um conjunto reduzido de palavras/símbolos passiveis de serem utilizados (rigidez sintática). O objetivo é obter uma consistência semântica para a eliminação da ambigüidade intrínseca à linguagem natural.

Destacaremos agora uma vantagem e uma desvantagem de cada uma das formas, mencionadas, de representação de algoritmos.

Fluxograma:

<u>Vantagem</u> – a representação gráfica é mais concisa que a representação textual.

<u>Desvantagem</u> – é necessário aprender a simbologia dos fluxogramas.

Pseudocódigo:

<u>Vantagem</u> – sua transcrição para qualquer linguagem de programação é quase que direta.

Desvantagem – é necessário aprender as regras do pseudocódigo.

Solução do problema de trocar a resistência de um chuveiro resolvido com um algoritmo representado em pseudocódigo.

Conforme foi mencionado são impostas regras e é definido um número restrito de ações. Neste caso as ações disponíveis são: pegar, largar, abrir, fechar, retirar e colocar.

Descrição Narrativa

Adquira uma resistência nova e localize o chuveiro a ser manipulado. Em seguida abra o chuveiro retirando a resistência defeituosa, coloque a resistência nova e feche o chuveiro. Após descarte a resistência defeituosa.

Pseudocódigo

- 1. Pegar (resistência nova);
- 2. Pegar (chuveiro);
- 3. Abrir (chuveiro);
- 4. Retirar (resistência defeituosa);
- 5. Colocar (resistência nova);
- 6. Fechar (chuveiro);
- 7. Largar (resistência defeituosa).

Solução do problema de trocar a resistência de um chuveiro resolvido com um algoritmo representado em fluxograma.

Conforme foi mencionado são impostas regras e é definido um número restrito de ações/símbolos. Neste caso as ações disponíveis e os símbolos a elas associados são:

Fluxograma

Descrição Narrativa

Adquira uma resistência nova e localize o chuveiro a ser manipulado. Em seguida abra o chuveiro retirando a resistência defeituosa, coloque a resistência nova e feche o chuveiro. Após descarte a resistência defeituosa.

Ações/Símbolos

pegar <=>

fechar <=>

 \bigcirc

colocar <=>

largar <=> ()

abrir <=>

retirar <=> (

Conceitos Básicos de Algoritmos

Antes de nos aprofundarmos nos métodos de representação de algoritmos, devemos ter de forma clara a compreensão de alguns conceitos como:

- → Constante;
- → Variável;
- Identificador;
- → Palavra-reservada;
- ▶ Entrada;
- → Saída;
- → Operadores.

