import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import scipy as sp
import warnings
import datetime
warnings.filterwarnings("ignore")
%matplotlib inline

data = pd.read_csv("/content/data/supermarket_sales - Sheet1.csv")

data

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	Total	
0	750-67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	548.9715	1/5
1	226-31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200	80.2200	3/8
2	631-41- 3108	Α	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155	340.5255	3/3
3	123-19- 1176	Α	Yangon	Member	Male	Health and beauty	58.22	8	23.2880	489.0480	1/27
4	373-73- 7910	Α	Yangon	Normal	Male	Sports and travel	86.31	7	30.2085	634.3785	2/8
995	233-67- 5758	С	Naypyitaw	Normal	Male	Health and beauty	40.35	1	2.0175	42.3675	1/29
996	303-96- 2227	В	Mandalay	Normal	Female	Home and lifestyle	97.38	10	48.6900	1022.4900	3/2
997	727-02- 1313	А	Yangon	Member	Male	Food and beverages	31.84	1	1.5920	33.4320	2/9
998	347-56- 2442	А	Yangon	Normal	Male	Home and lifestyle	65.82	1	3.2910	69.1110	2/22
999	849-09- 3807	Α	Yangon	Member	Female	Fashion accessories	88.34	7	30.9190	649.2990	2/18

1000 rows × 17 columns

data.head()

		Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	
	0	750-67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	Ę
		226-31-					Flectronic				
data.	des	cribe()									

	Unit price	Quantity	Tax 5%	Total	cogs	gross margin percentage	
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000	1000.000000	1000
mean	55.672130	5.510000	15.379369	322.966749	307.58738	4.761905	15
std	26.494628	2.923431	11.708825	245.885335	234.17651	0.000000	11
min	10.080000	1.000000	0.508500	10.678500	10.17000	4.761905	(
25%	32.875000	3.000000	5.924875	124.422375	118.49750	4.761905	ξ
50%	55.230000	5.000000	12.088000	253.848000	241.76000	4.761905	12
75%	77.935000	8.000000	22.445250	471.350250	448.90500	4.761905	22
max	99.960000	10.000000	49.650000	1042.650000	993.00000	4.761905	49

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Invoice ID	1000 non-null	object
1	Branch	1000 non-null	object
2	City	1000 non-null	object
3	Customer type	1000 non-null	object
4	Gender	1000 non-null	object
5	Product line	1000 non-null	object
6	Unit price	1000 non-null	float64
7	Quantity	1000 non-null	int64
8	Tax 5%	1000 non-null	float64
9	Total	1000 non-null	float64
10	Date	1000 non-null	object
11	Time	1000 non-null	object
12	Payment	1000 non-null	object
13	cogs	1000 non-null	float64
14	gross margin percentage	1000 non-null	float64
15	gross income	1000 non-null	float64
16	Rating	1000 non-null	float64
d+vn	oc. $flos+64(7)$ $in+64(1)$	object(0)	

dtypes: float64(7), int64(1), object(9)
memory usage: 132.9+ KB

data.value_counts()

Invoice ID Branc	h City	Customer type	Gender Product line	Unit price Quantity
Tax 5% Total	Date	Time Payment	cogs gross margin p	percentage gross income
Rating				
101-17-6199 A	Yangon	Normal	Male Food and beverage	es 45.79 7
16.0265 336.5565	3/13/2019	19:44 Credit ca	ard 320.53 4.761905	16.0265
7.0 1				
641-62-7288 B	Mandalay	Normal	Male Home and lifesty	le 99.92 6
29.9760 629.4960	3/24/2019	13:33 Ewallet	599.52 4.761905	29.9760
7.1 1				

```
Normal Female Home and lifestyle 12.03
633-91-1052 A Yangon
1.2030 25.2630 1/27/2019 15:51 Cash
                                     24.06 4.761905
                                                               1.2030
      1
                       Normal
634-97-8956 A Yangon
                                  Male Food and beverages 32.90
                                                                  3
4.9350 103.6350 2/17/2019 17:27 Credit card 98.70 4.761905
                                                               4.9350
      1
                       Normal Male Health and beauty 56.00 3
635-28-5728 A
              Yangon
8.4000 176.4000 2/28/2019 19:33 Ewallet 168.00 4.761905
                                                               8.4000
4.8
      1
373-14-0504 A Yangon
                       Member
                                   Female Sports and travel
                                                          71.63
                                                                  2
7.1630 150.4230 2/12/2019 14:33 Ewallet 143.26 4.761905
                                                                7.1630
8.8
      1
                       Normal
373-73-7910 A Yangon
                                   Male Sports and travel
                                                          86.31
30.2085 634.3785 2/8/2019 10:37 Ewallet
                                   604.17 4.761905
                                                                30.2085
      1
                                                                5
373-88-1424 C Naypyitaw Member Male Home and lifestyle
                                                          35.81
8.9525 188.0025 2/6/2019 18:44 Ewallet 179.05 4.761905
                                                                8.9525
374-17-3652 B Mandalay Member Female Food and beverages 42.82
19.2690 404.6490 2/5/2019 15:26 Credit card 385.38 4.761905
                                                               19.2690
8.9 1
898-04-2717 A Yangon
                       Normal Male Fashion accessories 76.40 9
34.3800 721.9800 3/19/2019 15:49 Ewallet 687.60 4.761905
                                                               34.3800
      1
Length: 1000, dtype: int64
```

data.shape

(1000, 17)

data.dtypes

object Invoice ID Branch object object City Customer type object Gender object Product line object Unit price float64 int64 Quantity Tax 5% float64 Total float64 Date object Time object Payment object float64 cogs gross margin percentage float64 gross income float64 Rating float64 dtype: object

data.columns

data.isnull().sum()

Invoice ID 0
Branch 0
City 0
Customer type 0
Gender 0

Product line 0 Unit price 0 Quantity 0 Tax 5% 0 Total Date Time 0 Payment 0 0 cogs 0 gross margin percentage 0 gross income Rating 0 dtype: int64

data.isnull().any()

Invoice ID False Branch False City False Customer type False Gender False Product line False Unit price False False Quantity Tax 5% False Total False Date False Time False Payment False cogs False gross margin percentage False gross income False False Rating

data.hist(figsize=(20,14))
plt.show()

dtype: bool

data.corr()

	Unit price	Quantity	Tax 5%	Total	cogs	gross margin percentage	gross income
Unit price	1.000000	0.010778	0.633962	0.633962	0.633962	NaN	0.633962
Quantity	0.010778	1.000000	0.705510	0.705510	0.705510	NaN	0.705510
Tax 5%	0.633962	0.705510	1.000000	1.000000	1.000000	NaN	1.000000
Total	0.633962	0.705510	1.000000	1.000000	1.000000	NaN	1.000000
cogs	0.633962	0.705510	1.000000	1.000000	1.000000	NaN	1.000000
gross margin percentage	NaN	NaN	NaN	NaN	NaN	NaN	NaN
gross	^ ^^^^	20 TOFF12	1 000000	1 000000	1 222222		1 000000

plt.figure(figsize = (12,10))

sns.heatmap(data.corr(), annot =True)

<Axes: >

data.columns

plt.figure(figsize=(14,10))
sns.set_style(style='whitegrid')
plt.subplot(2,3,1)
sns.boxplot(x='Unit price',data=data)
plt.subplot(2,3,2)
sns.boxplot(x='Quantity',data=data)
plt.subplot(2,3,3)
sns.boxplot(x='Total',data=data)
plt.subplot(2,3,4)
sns.boxplot(x='cogs',data=data)
plt.subplot(2,3,5)
sns.boxplot(x='Rating',data=data)
plt.subplot(2,3,6)
sns.boxplot(x='gross income',data=data)

<Axes: xlabel='gross income'>

sns.pairplot(data=data)

sns.regplot(x='Rating', y= 'gross income', data=data)

<Axes: xlabel='Rating', ylabel='gross income'>

sns.scatterplot(x='Rating', y= 'cogs', data=data)

<Axes: xlabel='Rating', ylabel='cogs'>

sns.jointplot(x='Rating', y= 'Total', data=data)

<seaborn.axisgrid.JointGrid at 0x78e978475300>

sns.catplot(x='Rating', y= 'cogs', data=data)

<seaborn.axisgrid.FacetGrid at 0x78e9af093760>

sns.lmplot(x='Rating', y= 'cogs', data=data)

<Axes: xlabel='Rating', ylabel='Unit price'>

sns.lineplot(x='Rating', y= 'Unit price', data=data)

```
plt.style.use("default")
plt.figure(figsize=(5,5))
sns.barplot(x="Rating", y="Unit price", data=data[170:180])
plt.title("Rating vs Unit Price",fontsize=15)
plt.xlabel("Rating")
plt.ylabel("Unit Price")
plt.show()
```


data.columns

ē

Rating vs Gender Male -

```
plt.style.use("default")
plt.figure(figsize=(5,5))
sns.barplot(x="Rating", y="Quantity", data=data[170:180])
plt.title("Rating vs Quantity",fontsize=15)
plt.xlabel("Rating")
plt.ylabel("Quantity")
plt.show()
```



```
#lets find the categorialfeatures
list_1=list(data.columns)

list_cate=[]
for i in list_1:
    if data[i].dtype=='object':
        list_cate.append(i)

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

for i in list_cate:
    data[i]=le.fit_transform(data[i])
```

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	Τι
0	814	0	2	0	0	3	74.69	7	26.1415	548.9
1	142	2	1	1	0	0	15.28	5	3.8200	80.2
2	653	0	2	1	1	4	46.33	7	16.2155	340.
3	18	0	2	0	1	3	58.22	8	23.2880	489.0
4	339	0	2	1	1	5	86.31	7	30.2085	634.
995	153	2	1	1	1	3	40.35	1	2.0175	42.3
996	250	1	0	1	0	4	97.38	10	48.6900	1022.4
997	767	0	2	0	1	2	31.84	1	1.5920	33.4
998	308	0	2	1	1	4	65.82	1	3.2910	69.
999	935	0	2	0	0	1	88.34	7	30.9190	649.1

1000 rows × 17 columns

```
y=data['Gender']
x=data.drop('Gender',axis=1)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.2)
print(len(x train))
print(len(x_test))
print(len(y_train))
print(len(y_test))
     800
     200
     800
     200
#KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=7)
knn.fit(x_train,y_train)
             KNeighborsClassifier
     KNeighborsClassifier(n_neighbors=7)
```

```
0
                        0.47
                                   0.49
                                             0.48
                                                         100
                1
                        0.47
                                   0.45
                                             0.46
                                                         100
                                             0.47
                                                         200
         accuracy
                                   0.47
                        0.47
                                             0.47
                                                         200
        macro avg
     weighted avg
                        0.47
                                   0.47
                                             0.47
                                                         200
     Confusion Matrix:
      [[49 51]
      [55 45]]
     Training Score:
      64.75
#SVC
from sklearn.svm import SVC
svc = SVC()
svc.fit(x_train, y_train)
      ▼ SVC
     SVC()
y_pred=svc.predict(x_test)
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
print("Classification Report is:\n",classification_report(y_test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
print("Training Score:\n",svc.score(x_train,y_train)*100)
     Classification Report is:
                    precision
                                  recall f1-score
                                                      support
                0
                        0.45
                                   0.49
                                             0.47
                                                         100
                        0.44
                                   0.40
                                             0.42
                                                         100
                                                         200
         accuracy
                                             0.45
                                                         200
        macro avg
                        0.44
                                   0.45
                                             0.44
                                   0.45
                                             0.44
                                                         200
     weighted avg
                        0.44
     Confusion Matrix:
      [[49 51]
      [60 40]]
     Training Score:
      55.50000000000001
#Naive Bayes
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(x_train,y_train)
      ▼ GaussianNB
     GaussianNB()
y_pred=gnb.predict(x_test)
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean squared error
print("Classification Report is:\n",classification_report(y_test,y_pred))
```

print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
print("Training Score:\n",gnb.score(x_train,y_train)*100)

```
Classification Report is:
               precision
                            recall f1-score
                                                support
           0
                   0.51
                             0.35
                                        0.41
                                                   100
           1
                   0.50
                             0.66
                                        0.57
                                                   100
    accuracy
                                        0.51
                                                   200
                             0.51
                                        0.49
                                                   200
                   0.51
   macro avg
weighted avg
                   0.51
                             0.51
                                        0.49
                                                   200
```

Confusion Matrix:

[[35 65] [34 66]]

Training Score:

55.125

#Decision Tree

from sklearn.tree import DecisionTreeClassifier

dtree = DecisionTreeClassifier(max_depth=6, random_state=123,criterion='entropy')

dtree.fit(x train,y train)

```
DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy', max_depth=6, random_state=123)
```

```
y_pred=dtree.predict(x_test)
```

 $from \ sklearn. \verb|metrics| import| accuracy_score, classification_report, confusion_matrix|$

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

print("Classification Report is:\n",classification_report(y_test,y_pred))

print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))

print("Training Score:\n",dtree.score(x_train,y_train)*100)

Classification Report is:

	precision	recall	f1-score	support
0	0.52	0.79	0.63	100
1	0.56	0.27	0.36	100
accuracy			0.53	200
macro avg	0.54	0.53	0.50	200
weighted avg	0.54	0.53	0.50	200

Confusion Matrix:

[[79 21]

[73 27]]

Training Score:

63.87500000000001

#Random Forest Classifier

from sklearn.ensemble import RandomForestClassifier

rfc=RandomForestClassifier()

rfc.fit(x train,y train)

▼ RandomForestClassifier

RandomForestClassifier()

```
y pred=rfc.predict(x test)
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
print("Classification Report is:\n",classification_report(y_test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
print("Training Score:\n",rfc.score(x_train,y_train)*100)
     Classification Report is:
                    precision
                                 recall f1-score
                                                     support
                        0.51
                                  0.56
                                             0.53
                                                        100
                        0.51
                                  0.46
                                             0.48
                                                        100
                                             0.51
                                                        200
         accuracy
                        0.51
                                  0.51
                                             0.51
                                                        200
        macro avg
     weighted avg
                        0.51
                                  0.51
                                             0.51
                                                        200
     Confusion Matrix:
      [[56 44]
      [54 46]]
     Training Score:
      100.0
#Gradient Boosting Classifier
from sklearn.ensemble import GradientBoostingClassifier
gbc=GradientBoostingClassifier()
gbc.fit(x_train,y_train)
      ▼ GradientBoostingClassifier
     GradientBoostingClassifier()
y pred=gbc.predict(x_test)
from \ sklearn. \verb|metrics| import| accuracy\_score, classification\_report, confusion\_matrix|
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
print("Classification Report is:\n",classification_report(y_test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
print("Training Score:\n",gbc.score(x_train,y_train)*100)
     Classification Report is:
                    precision
                                 recall f1-score
                                                     support
                        0.47
                                  0.47
                                             0.47
                                                        100
                1
                        0.46
                                  0.46
                                             0.46
                                                        100
                                             0.47
                                                        200
         accuracy
        macro avg
                        0.46
                                  0.46
                                             0.46
                                                        200
     weighted avg
                        0.46
                                  0.47
                                             0.46
                                                        200
     Confusion Matrix:
      [[47 53]
      [54 46]]
     Training Score:
      88.75
data = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
data
```

	Actual	Predicted	=
993	1	1	ıl.
859	0	0	
298	1	1	
553	1	0	
672	0	0	
679	1	0	
722	1	1	
045	4	4	

#XGB Classifier

from xgboost import XGBClassifier

xgb.fit(x_train, y_train)

```
XGBClassifier
XGBClassifier(alpha=10, base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=0.3, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.1, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=10, n_jobs=None, num_parallel_tree=None, ...)
```

```
y_pred=xgb.predict(x_test)
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
print("Classification Report is:\n",classification_report(y_test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
print("Training Score:\n",xgb.score(x_train,y_train)*100)
```

Classification Report is:

	precision	recall	f1-score	support
0	0.46	0.48	0.47	100
1	0.46	0.44	0.45	100
accuracy			0.46	200
macro avg	0.46	0.46	0.46	200
weighted avg	0.46	0.46	0.46	200

Confusion Matrix:

[[48 52]

[56 44]]

Training Score:

62.0

data

ExtraTreesClassifier(random_state=0)

```
y pred=etc.predict(x test)
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
print("Classification Report is:\n",classification_report(y_test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
print("Training Score:\n",etc.score(x_train,y_train)*100)
     Classification Report is:
                    precision
                                 recall f1-score
                                                     support
                0
                        0.50
                                  0.50
                                            0.50
                                                        100
                        0.50
                                  0.50
                                            0.50
                                                        100
                                                        200
         accuracy
                                            0.50
        macro avg
                        0.50
                                  0.50
                                            0.50
                                                        200
                                  0.50
                                            0.50
                                                        200
     weighted avg
                        0.50
     Confusion Matrix:
     [[50 50]
     [50 50]]
     Training Score:
     100.0
#Bagging Classifier
from sklearn.ensemble import BaggingClassifier
from sklearn import tree
model = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1))
model.fit(x train, y train)
model.score(x_test,y_test)
     0.54
```

data = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})

	Actual	Predicted	\blacksquare
859	0	1	
v. <u>-</u>	v		
679	1	1	
722	1	1	
215	1	0	