ИМПОРТИРУЕМ НЕОБХОДИМЫЕ БИБЛИОТЕКИ

```
Ввод [2]:
```

```
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/dannie'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
import matplotlib.pyplot as plt
import seaborn as sns
from surprise import Dataset
from surprise import Reader
from surprise import SVD, SlopeOne, CoClustering, KNNBasic, KNNWithMeans, KNNWithZSoffrom surprise.model_selection import cross_validate
import difflib
import random
```

Считываем нужные нам данные

```
Ввод [6]:
```

```
fail_user = "/kaggle/input/restoran/rating_final.csv"
file_geo = "/kaggle/input/restoran/geoplaces2.csv"
data = pd.read_csv(fail_user)
data_geo = pd.read_csv(file_geo)
```

Есть ли пропущенные значения в данных

Ввод [9]: data_geo.isnull().sum() Out[9]: 0 placeID latitude longitude the_geom_meter 0 name address 0 city state country 0 fax 0 zip alcohol smoking area dress code accessibility 0 price 0 url 0 Rambience franchise area other services dtype: int64

Ввод [10]:

```
data.isnull().sum()
```

Out[10]:

userID 0
placeID 0
name 0
rating 0
food_rating 0
service_rating 0
dtype: int64

Объединяем 2 таблицы

Ввод [12]:

```
data = pd.merge(data, data_geo[['placeID', 'name']], on='placeID')
data = data[['userID', 'placeID', 'name', 'rating', 'food_rating', 'service_rating'
data.head()
```

Out[12]:

	userID	placeID	name	rating	food_rating	service_rating
0	U1077	135085	Tortas Locas Hipocampo	2	2	2
1	U1108	135085	Tortas Locas Hipocampo	1	2	1
2	U1081	135085	Tortas Locas Hipocampo	1	2	1
3	U1056	135085	Tortas Locas Hipocampo	2	2	2
4	U1134	135085	Tortas Locas Hipocampo	2	1	2

Этап 1

Топ-10 самых посещаемых ресторанов

Ввод [13]:

```
placeID_group = data.groupby('placeID')
placeID_grouped_data = placeID_group.count().sort_values(by='rating', ascending=Fal:
placeID_grouped_data.iloc[ : 10]
```

Out[13]:

	userID	name	rating	food_rating	service_rating
placeID					
135085	36	36	36	36	36
132825	32	32	32	32	32
135032	28	28	28	28	28
135052	25	25	25	25	25
132834	25	25	25	25	25
135038	24	24	24	24	24
135060	22	22	22	22	22
135062	21	21	21	21	21
135042	20	20	20	20	20
132862	18	18	18	18	18

10 лучших ресторанов с самым высоким средним рейтингом food_rating.

Ввод [14]:

placeID_food_rating_data = data.groupby('placeID').mean().sort_values(by='food_rating_data.iloc[: 10]

Out[14]:

rating food_rating service_rating

placeID			
132667	1.250000	2.000000	1.250000
134986	2.000000	2.000000	2.000000
135034	2.000000	2.000000	1.600000
132755	1.800000	2.000000	1.600000
135013	1.750000	2.000000	1.750000
132955	2.000000	1.800000	1.800000
134976	1.750000	1.750000	1.000000
135074	1.750000	1.750000	1.750000
135018	1.500000	1.750000	1.500000
135055	1.714286	1.714286	1.714286

Ввод [15]:

```
placeID_food_rating_data.iloc[ : 10].plot(kind='bar', figsize=(12,8))
plt.xticks(rotation=-45)
plt.show()
```


Ввод [16]:

```
print("Ресторан {} имеет средний рейтинг food_rating 2, что является максимальным,
```

Pectopah little pizza Emilio Portes Gil имеет средний рейтинг food_rat ing 2, что является максимальным, но у него низкие общие рейтинги и se rvice_ratings.

Топ-10 ресторанов с самыми высокими средними общими рейтингами.

Ввод [17]:

```
# группируем данные по placeID

placeID_group = data.groupby('placeID')

placeID_grouped_data = placeID_group.count().sort_values(by='rating', ascending=FalselD_grouped_data.iloc[: 10]
```

Out[17]:

	userID	name	rating	food_rating	service_rating
placeID					
135085	36	36	36	36	36
132825	32	32	32	32	32
135032	28	28	28	28	28
135052	25	25	25	25	25
132834	25	25	25	25	25
135038	24	24	24	24	24
135060	22	22	22	22	22
135062	21	21	21	21	21
135042	20	20	20	20	20
132862	18	18	18	18	18

Ввод [18]:

```
plt.style.use('seaborn')
placeID_grouped_data.iloc[: 10]['rating'].plot(kind='bar')
plt.xlabel("Идентификатор ресторана")
plt.ylabel("Частота")
plt.xticks(rotation=-45)
plt.show()
```


Топ-10 ресторанов с самыми высокими средними общими рейтингами.

Ввод [19]:

```
placeID_ratings_data = data.groupby('placeID').mean().sort_values(by='rating', ascerplaceID_ratings_data.iloc[ : 10]
```

Out[19]:

rating food_rating service_rating

placeID			
132955	2.000000	1.800000	1.800000
135034	2.000000	2.000000	1.600000
134986	2.000000	2.000000	2.000000
132922	1.833333	1.500000	1.833333
132755	1.800000	2.000000	1.600000
135013	1.750000	2.000000	1.750000
134976	1.750000	1.750000	1.000000
135074	1.750000	1.750000	1.750000
135055	1.714286	1.714286	1.714286
135075	1.692308	1.692308	1.461538

Ввод [20]:

```
plt.style.use('seaborn')
placeID_ratings_data.iloc[ : 10].plot(kind='bar', figsize=(12,8))
plt.xticks(rotation=-45)
plt.grid()
plt.show()
```


Ввод [21]:

```
print("Ресторан с самым высоким средним общим рейтингом, food_rating и service_ration.
```

Pесторан с самым высоким средним общим рейтингом, food_rating и servic e rating: Restaurant Las Mananitas

10 ресторанов с самым высоким средним рейтингом food_rating.

Ввод [22]:

```
placeID_food_rating_data = data.groupby('placeID').mean().sort_values(by='food_ratin
placeID_food_rating_data.iloc[ : 10]
```

Out[22]:

rating	food	rating	service_	rating

placeID			
132667	1.250000	2.000000	1.250000
134986	2.000000	2.000000	2.000000
135034	2.000000	2.000000	1.600000
132755	1.800000	2.000000	1.600000
135013	1.750000	2.000000	1.750000
132955	2.000000	1.800000	1.800000
134976	1.750000	1.750000	1.000000
135074	1.750000	1.750000	1.750000
135018	1.500000	1.750000	1.500000
135055	1.714286	1.714286	1.714286

Ввод [23]:

```
plt.style.use('seaborn')
placeID_food_rating_data['food_rating'].iloc[: 10].plot(kind='bar')
plt.ylabel("Рейтинги еды")
plt.xticks(rotation=-45)
plt.show()
```


Ввод [24]:

```
placeID_food_rating_data.iloc[ : 10].plot(kind='bar', figsize=(12,8))
plt.xticks(rotation=-45)
plt.show()
```


Топ-10 наименее посещаемых ресторанов (наименее встречающихся в данных).

Ввод [25]:

```
placeID_rating_data = data.groupby('placeID').count().sort_values(by='rating')
```

```
Ввод [26]:
```

```
placeID_rating_data.iloc[ : 10]
```

Out[26]:

	userID	name	rating	food_rating	service_rating
placeID					
135011	3	3	3	3	3
132668	3	3	3	3	3
134975	3	3	3	3	3
132766	3	3	3	3	3
135016	3	3	3	3	3
132717	3	3	3	3	3
135033	4	4	4	4	4
135018	4	4	4	4	4
135040	4	4	4	4	4
135013	4	4	4	4	4

Ввод [27]:

```
placeID_rating_data['rating'].iloc[ : 10].plot(kind='bar')
plt.xticks(rotation=-45)
plt.show()
```


10 ресторанов с самым низким средним общим

рейтингом.

Ввод [28]:

```
placeID_ratings_data = data.groupby('placeID').mean().sort_values(by='rating', ascentiate placeID_ratings_data.iloc[ : 10]
```

Out[28]:

	rating	food_rating	service_rating
placeID			
132654	0.250	0.250	0.250000
135040	0.250	0.250	0.250000
132560	0.500	1.000	0.250000
132663	0.500	0.500	0.666667
135069	0.500	0.500	0.750000
132594	0.600	1.200	0.600000
132609	0.600	0.600	0.600000
132885	0.600	0.600	0.400000
132870	0.600	1.000	0.400000
132732	0.625	0.875	1.000000

Ввод [29]:

```
# Нарисуем приведенные выше данные

placeID_ratings_data['rating'].iloc[ : 10].plot(kind='bar')

plt.xticks(rotation=-45)

plt.show()
```


10 ресторанов с самым низким средним рейтингом food_rating

Ввод [30]:

placeID_service_rating_data = data.groupby('placeID').mean().sort_values(by='food_rations placeID_service_rating_data.iloc[: 10]

Out[30]:

rating	food_rating	service_rating
--------	-------------	----------------

placeID			
135040	0.25	0.25	0.250000
132654	0.25	0.25	0.250000
134987	1.00	0.50	1.000000
132663	0.50	0.50	0.666667
135069	0.50	0.50	0.750000
135086	0.80	0.60	0.800000
132845	0.80	0.60	0.800000
132609	0.60	0.60	0.600000
135049	1.00	0.60	1.000000
132885	0.60	0.60	0.400000

Ввод [31]:

```
placeID_service_rating_data.iloc[ : 10].plot(kind='bar', figsize=(12, 8))
plt.xticks(rotation=-45)
plt.show()
```


10 ресторанов с самым низким средним рейтингом service_rating.

Ввод [32]:

placeID_service_rating_data = data.groupby('placeID').mean().sort_values(by='service
placeID_service_rating_data.iloc[: 10]

Out[32]:

	rating	food_rating	service_rating
placeID			
132560	0.50	1.00	0.250
132654	0.25	0.25	0.250
135040	0.25	0.25	0.250
132870	0.60	1.00	0.400
132885	0.60	0.60	0.400
132715	1.00	1.00	0.500
132594	0.60	1.20	0.600
132609	0.60	0.60	0.600
132858	0.80	1.40	0.600
132740	0.75	1.25	0.625

Топ-10 ресторанов с самым низким средним рейтингом food_rating, service_rating

Ввод [33]:

```
placeID_service_rating_data.iloc[ : 10].plot(kind='bar', figsize=(12, 8))
plt.xticks(rotation=-45)
plt.show()
```


Ввод [34]:

```
data.groupby('userID').count().sort_values(by='rating', ascending=False).iloc[: 10 plt.xlabel("Пользователь ID") plt.ylabel("Частота оценок") plt.xticks(rotation=-45) plt.yticks(np.arange(0,19,1)) plt.show()
```


Ввод [35]:

```
data[['rating', 'food_rating', 'service_rating']].describe()
```

Out[35]:

	rating	food_rating	service_rating
count	1161.000000	1161.000000	1161.000000
mean	1.199828	1.215332	1.090439
std	0.773282	0.792294	0.790844
min	0.000000	0.000000	0.000000
25%	1.000000	1.000000	0.000000
50%	1.000000	1.000000	1.000000
75%	2.000000	2.000000	2.000000
max	2.000000	2.000000	2.000000

Ввод [38]:

```
# Построим распределение рейтингов food_rating, service_rating с помощью блочной ди

columns_to_plot = ['rating', 'food_rating', 'service_rating']

plt.figure(figsize=(12, 12))

for i, col in enumerate(columns_to_plot):
    plt.subplot(2, 2, i+1)
    sns.boxplot(data=data, x=col, color='red')
    plt.xlabel(col)
    plt.title("Bokc плот {}".format(col))

plt.show()
```

О.00 0.25 0.50 0.75 100 1.25 1.50 1.75 2.00 rating

Ввод [39]:

```
# Визуализируем распределение rating, food_rating и service_rating

columns_to_plot = ['rating', 'food_rating', 'service_rating']

plt.figure(figsize=(15, 10))

for i, col in enumerate(columns_to_plot):
    plt.subplot(2, 2, i+1)
    sns.countplot(data=data, x=col, palette='husl')
    plt.xlabel(col)
    plt.ylabel("Частота")
    plt.title("Частотное распределение {}".format(col))

plt.show()
```


Система рекомендаций

Для начала используем тип рекомендательной системы, который дает рекомендации на основе популярности продукта. Очень простой и понятный алгоритм

Присваиваем баллы каждому ресторану на основе количества их посещений, т. е. место, которое встречается чаще всего, является более популярным, следовательно, получает высокий балл.

```
Ввод [40]:
```

```
placeID_count = data.groupby('placeID').count()['userID'].to_dict()
data['placeScore'] = data['placeID'].map(placeID_count)
```

Создаем 10 лучших рекомендаций

Ввод [41]:

```
top_10_recommendations = pd.DataFrame(data['placeID'].value_counts()).reset_index()
top_10_recommendations = pd.merge(data[['placeID', 'name']], top_10_recommendations,
```

10 лучших рекомендаций

Ввод [42]:

```
top_10_recommendations
```

Out[42]:

	placeID	name	placeScore
0	135085	Tortas Locas Hipocampo	36
36	132825	puesto de tacos	32
68	135032	Cafeteria y Restaurant El Pacifico	28
96	135052	La Cantina Restaurante	25
121	132834	Gorditas Doa Gloria	25
146	135038	Restaurant la Chalita	24
170	135060	Restaurante Marisco Sam	
192	135062	Restaurante El Cielo Potosino	21
213	135042	Restaurant Oriental Express	20
233	135058	Restaurante Tiberius	18

2. Совместная фильтрация:

В общем, совместная фильтрация — это процесс фильтрации информации с использованием методов, включающих несколько агентов, точку зрения, источники данных и т. д. В частности, для рекомендательных систем совместная фильтрация — это метод для создания прогнозов об интересах/ предпочтениях пользователя в отношении продукта на основе интересы/предпочтения других подобных пользователей.

Основополагающее предположение, лежащее в основе этой концепции, состоит в том, что если человек А имеет такое же мнение о продукте, как и мнение человека Б о каком-то другом продукте, то весьма вероятно, что мнение А будет похоже на мнение Б о каком-то другом продукте, в отличии от случайно выбранного человека.

Ввод [43]:

```
data.drop('placeScore', axis=1, inplace=True)
```

Ввод [44]:

```
data.head()
```

Out[44]:

	userID	placeID	name	rating	food_rating	service_rating
0	U1077	135085	Tortas Locas Hipocampo	2	2	2
1	U1108	135085	Tortas Locas Hipocampo	1	2	1
2	U1081	135085	Tortas Locas Hipocampo	1	2	1
3	U1056	135085	Tortas Locas Hipocampo	2	2	2
4	U1134	135085	Tortas Locas Hipocampo	2	1	2

Создаем объект для чтения

```
Ввод [45]:
```

```
reader = Reader(rating_scale=(0,2)) # Класс Reader используется для анализа файла, rating_data = Dataset.load_from_df(data[['userID', 'placeID', 'rating']], reader)
```

Использование разложения по сингулярным значениям (матричная факторизация) для построения рекомендательной системы

```
Ввод [46]:
```

```
svd = SVD(verbose=True, n epochs=100)
svd results = cross validate(svd, rating data, measures=['RMSE', 'MAE'], cv=3, verb
Processing epoch 6
Processing epoch 7
Processing epoch 8
Processing epoch 9
Processing epoch 10
Processing epoch 11
Processing epoch 12
Processing epoch 13
Processing epoch 14
Processing epoch 15
Processing epoch 16
Processing epoch 17
Processing epoch 18
Processing epoch 19
Processing epoch 20
Processing epoch 21
Processing epoch 22
Processing epoch 23
Processing epoch 24
Processing epoch 25
```

```
Ввод [47]:

svd_results

Out[47]:

{'test rmse': array([0.65365934, 0.65104267, 0.68220918]),
```

```
{'test_rmse': array([0.65365934, 0.65104267, 0.68220918]),
  'test_mae': array([0.52987044, 0.53130267, 0.55458904]),
  'fit_time': (0.25042057037353516, 0.24772024154663086, 0.245221853256
22559),
  'test_time': (0.0032835006713867188,
    0.0026786327362060547,
    0.002908945083618164)}
```

Ввод [48]:

```
# Результаты SlopOne

slope_one = SlopeOne()
slope_one_results = cross_validate(slope_one, rating_data, measures=['RMSE', 'MAE']
```

Evaluating RMSE, MAE of algorithm SlopeOne on 3 split(s).

```
Fold 1 Fold 2 Fold 3 Mean
                0.7563 0.7775 0.7148 0.7495 0.0260
RMSE (testset)
MAE (testset)
               0.5667 0.5745 0.5156 0.5522 0.0261
Fit time
               0.00 0.00
                              0.00
                                     0.00
                                           0.00
Test time
               0.00
                      0.00
                           0.00
                                     0.00
                                           0.00
```

Ввод [49]:

```
slope_one_results
```

Out[49]:

```
{'test_rmse': array([0.75634665, 0.77746053, 0.71478691]),
'test_mae': array([0.56669483, 0.57445593, 0.51556528]),
'fit_time': (0.0023374557495117188,
    0.0021839141845703125,
    0.0024318695068359375),
'test_time': (0.004126310348510742,
    0.0032312870025634766,
    0.004116058349609375)}
```

```
Ввод [50]:
```

```
# Совместная кластеризация
co_clustering = CoClustering(n_epochs=100, verbose=True, random_state=0)
co clustering results = cross validate(co clustering, rating data, measures=['RMSE'
Processing epoch 0
Processing epoch 1
Processing epoch 2
Processing epoch 3
Processing epoch 4
Processing epoch 5
Processing epoch 6
Processing epoch 7
Processing epoch 8
Processing epoch 9
Processing epoch 10
Processing epoch 11
Processing epoch 12
Processing epoch 13
Processing epoch 14
Processing epoch 15
Processing epoch 16
Processing epoch 17
Processing epoch 18
           Ввод [51]:
co clustering results
Out[51]:
{'test rmse': array([0.72040653, 0.6975957, 0.67635337]),
 'test mae': array([0.53122943, 0.5184101 , 0.49201026]),
 'fit_time': (0.14549779891967773, 0.13156700134277344, 0.129710435867
 'test time': (0.0023391246795654297,
  0.0019884109497070312,
```

KNNBasic

0.0020797252655029297)}

```
Ввод [52]:
knn basic = KNNBasic(k=50)
knn_basic_results = cross_validate(knn_basic, rating_data, measures=['RMSE', 'MAE']
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Evaluating RMSE, MAE of algorithm KNNBasic on 3 split(s).
```

	Fold 1	Fold 2	Fold 3	Mean	Std
RMSE (testset)	0.8384	0.8370	0.8384	0.8379	0.0007
MAE (testset)	0.6888	0.6819	0.6664	0.6790	0.0093
Fit time	0.00	0.00	0.00	0.00	0.00
Test time	0.01	0.01	0.01	0.01	0.00

KNNWithMeans

```
Ввод [53]:
```

```
knn means = KNNWithMeans(k=100)
knn means results = cross validate(knn means, rating data, measures=['RMSE', 'MAE']
Computing the msd similarity matrix...
```

Done computing similarity matrix. Computing the msd similarity matrix... Done computing similarity matrix. Computing the msd similarity matrix... Done computing similarity matrix.

Fold 1 Fold 2 Fold 3 Mean Std RMSE (testset) 0.6904 0.6864 0.7138 0.6969 0.0121 0.5159 0.4985 0.5348 0.5164 0.0148 MAE (testset) 0.00 0.00 0.00 0.00 0.00

Evaluating RMSE, MAE of algorithm KNNWithMeans on 3 split(s).

Fit time Test time 0.01 0.01 0.01 0.01 0.00

Ввод [54]:

```
knn means results
```

Out [54]:

```
{'test_rmse': array([0.69037119, 0.68643861, 0.71383111]),
'test mae': array([0.51591581, 0.49851358, 0.5347986 ]),
'fit time': (0.002763032913208008,
 0.0025720596313476562,
 0.002195119857788086),
 'test time': (0.006704807281494141,
 0.006420135498046875,
 0.00616002082824707)}
```

KNNWithZScore

```
Ввод [55]:
knn zscore = KNNWithZScore(k=100)
knn_zscore_results = cross_validate(knn_zscore, rating_data, measures=['RMSE', 'MAE
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Computing the msd similarity matrix...
Done computing similarity matrix.
Evaluating RMSE, MAE of algorithm KNNWithZScore on 3 split(s).
                  Fold 1 Fold 2 Fold 3 Mean
                                                  Std
                 0.6492 0.6879 0.7357 0.6909 0.0354
RMSE (testset)
MAE (testset)
                0.4969 0.5028 0.5574 0.5190 0.0272
                 0.01
                         0.01
                                         0.01
                                                 0.00
Fit time
                                 0.01
Test time
                 0.01
                         0.01
                                 0.01
                                         0.01
                                                 0.00
Ввод [56]:
np.array((svd results['test rmse'],
co clustering results['test rmse'],
slope one results['test rmse'],
knn basic results['test rmse'],
knn means results['test rmse'],
knn zscore results['test rmse']))
Out[56]:
array([[0.65365934, 0.65104267, 0.68220918],
       [0.72040653, 0.6975957, 0.67635337],
       [0.75634665, 0.77746053, 0.71478691],
       [0.83841881, 0.83700522, 0.83840753],
       [0.69037119, 0.68643861, 0.71383111],
       [0.64918674, 0.68789891, 0.73573764]])
```

Объединим результаты всех моделей

```
Ввод [57]:
```

Вычислим средний балл RMSE

```
Ввод [58]:

result_df['Mean_RMSE'] = result_df[['RMSE_fold_1', 'RMSE_fold_2', 'RMSE_fold_3']].me

Ввод [59]:

result_df.sort_values(by='Mean_RMSE')
```

Out[59]:

	RMSE_fold_1	RMSE_fold_2	RMSE_fold_3	Mean_RMSE
SVD	0.653659	0.651043	0.682209	0.662304
KNN_ZScore	0.649187	0.687899	0.735738	0.690941
KNN_Means	0.690371	0.686439	0.713831	0.696880
CoClustering	0.720407	0.697596	0.676353	0.698119
SlopeOne	0.756347	0.777461	0.714787	0.749531
KNN_Basic	0.838419	0.837005	0.838408	0.837944

KNN_Basic работает лучше всех.

Создание рекомендаций с использованием KNN_Basic

```
Ввод [62]:
```

```
# 1. Получить идентификатор ресторана из названия ресторана
def get rest id(rest name, data):
   '''Возвращает идентификатор ресторана (placeID) с учетом названия ресторана.'''
   rest names = list(data['name'].values)
    # Using difflib find the restaurants that are closest to the input and extract
   closest names = difflib.get close matches(rest name, rest names)
   rest id = data[data['name'] == closest names[0]]['placeID'].iloc[0]
   return rest id
# 2. Предсказать рейтинг этого ресторана для данного пользователя
def predict rating(user id, rest name, data, model=KNNBasic(k=50)):
    # извлечь идентификатор ресторана из названия ресторана
   rest id = get rest id(rest name, data)
    # сделать предсказания
   estimated ratings = model.predict(uid = user id, iid = rest id)
   return estimated ratings.est
# 3. Генерация рекомендаций для данного пользователя
1.1.1
При этом мы возьмем userID в качестве входных данных и выведем названия всех рестор-
дать рейтинг выше определенного порогового рейтинга (в данном случае 1,5).
1.1.1
def recommend restaurants(user id, data=data, model=KNNBasic(k=50), threshold=1.5):
    # сохраним в словаре рекомендуемые рестораны вместе с прогнозируемыми рейтингам
   recommended restaurants = {}
# Найдем все уникальные названия ресторанов
   unique rest names = list(np.unique(data['name'].values))
# Перемешаем список названий ресторанов
   random.shuffle(unique rest names)
# перебираем список и генерируем рейтинги (прогнозы) для каждого ресторана и возвра
   for rest name in unique rest names:
        # сгенерируем прогнозы
        rating = predict rating(user id=user id, rest name=rest name, data=data, mo
# проверим, если рейтинг > порога
        if rating > threshold:
            recommended restaurants[rest name] = np.round(rating,2)
   print("Создание рекомендаций по ресторанам для идентификатора пользователя {}:
    restaurant names = np.array(list(recommended restaurants.keys())).reshape(-1,1)
    restaurant ratings = np.array(list(recommended restaurants.values())).reshape(-
```

```
results = np.concatenate((restaurant_names, restaurant_ratings), axis=1)
results_df = pd.DataFrame(results, columns=['Restaurants', 'Rating (0-2)']).sor
return results_df.reset_index().drop('index', axis=1)
```

Ввод [63]:

```
# Случайным образом выбрать идентификатор пользователя, используя np.random.choice random_user_id = np.random.choice(list(np.unique(data['userID'].values)))

# Создание рекомендаций для идентификатора пользователя recommend_restaurants(user_id = random_user_id)
```

Создание рекомендаций по ресторанам для идентификатора пользователя U1 002 :

Out[63]:

	Poetaurante	Pating (0.2)
_	Restaurants	_
0	Luna Cafe	1.8
1	crudalia	1.79
2	puesto de tacos	1.79
3	Restaurant Las Mananitas	1.78
4	Michiko Restaurant Japones	1.77
5	Kiku Cuernavaca	1.75
6	Cabana Huasteca	1.72
7	Sirlone	1.7
8	Restaurante la Parroquia Potosina	1.7
9	KFC	1.67
10	La Cantina Restaurante	1.66
11	shi ro ie	1.65
12	la perica hamburguesa	1.65
13	Arrachela Grill	1.64
14	El Rincon de San Francisco	1.64
15	La Estrella de Dimas	1.63
16	La Fontana Pizza Restaurante and Cafe	1.62
17	carnitas_mata	1.62
18	Mariscos El Pescador	1.61
19	Preambulo Wifi Zone Cafe	1.6
20	Restaurante y Pescaderia Tampico	1.59
21	El Oceano Dorado	1.58
22	Giovannis	1.57
23	Restaurante la Gran Via	1.56
24	La Posada del Virrey	1.56
25	cafe punta del cielo	1.56
26	tortas hawai	1.55
27	little pizza Emilio Portes Gil	1.55
28	Log Yin	1.54
29	TACOS CORRECAMINOS	1.53

	Restaurants	Rating (0-2)
30	Sanborns Casa Piedra	1.53
31	Restaurante Versalles	1.53
32	Los Vikingos	1.52
33	Rincon del Bife	1.52
34	Dominos Pizza	1.51
35	Chilis Cuernavaca	1.51
36	Restaurant Bar Coty y Pablo	1.51
27	Postouranto Puoblo Ropito	1 5