# Fast Estimation of Causal Interactions using Wold Processes

Flavio Figueiredo, Guilherme Borges, Pedro O.S., Vaz de Melo, Renato Assunção

Universidade Federal de Minas Gerais (UFMG) (NeurIPS 2018)

## A Variational Inference Approach to Learning Multivariate Wold Processes

Jalal Etesami \*, William Trouleau\*, Negar Kiyavash, Matthias Grossglauser, Patrick Thiran École Polytechnique Fédérale de Lausanne (EPFL) (AISTATS 2021)

Presenter: Qingmei Wang

- Background
- ► GRANGER-BUSCA
- ► Variational Inference Approach
- Experiments
- **►** Summary

## **Event Sequences and Temporal Point Processes**

Event sequence:  $\{(t_i, c_i)\}_{i=1}^I$ ,  $c_i \in \mathcal{C}$ , or Counting process:  $N(t) = \{N_c(t)\}_{c \in \mathcal{C}}$ .



Where  $t_i \in [0, T]$  mean timestamps and  $c_i \in \mathcal{C} = \{1, \dots, C\}$  mean event types.

## Each entity is viewed as a point process



► Each observation is a timestamp

#### Notice how f and d are related



► Eventst tends to precede the other

## How do we capture this relation?

► Hawkes Processes

Hawkes Process  $HP_{\mathcal{C}}(\mu, \Phi)$  models the triggering pattern between different events:

$$\lambda_c(t) = \underbrace{\mu_c}_{ ext{base intensity}} + \sum_{(t_i, c_i) \in \mathcal{H}_t} \underbrace{\phi_{cc_i}(t - t_i)}_{ ext{impact function}}$$
 (1)

- $\blacktriangleright$   $\mu = [\mu_c]$ : exogenous fluctuation of the system.
- $lackbox{\Phi} = [\phi_{cc'}(t)]$ : endogenous triggering pattern of type-c' on type-c.

#### **Hawkes Processes**

- $\phi_{cc}(\cdot)$ : the **self**-triggering pattern.
- $\phi_{cc'}(\cdot), c \neq c'$ : the **mutually**-triggering pattern.



Figure 1: Granger causality

## Long memory

$$\lambda_a(t|\mathcal{H}(t)) = \mu_a + \sum_{b=0}^{K-1} \sum_{i_{b_i} < t} \phi_{ba}(t-t_{b_i})$$
 Slow 
$$\mathbf{e}$$
 
$$\mathbf{d}$$
 
$$\mathbf{c}$$
 
$$\mathbf{b}$$
 
$$\mathbf{a}$$

#### **Wold Processes**

▶ Different from Hawkes processes, whose intensity function depends on the whole history of previous events, the probability distribution of the *i*-th inter-event time  $\delta_i$  depends only on the previous inter-event time  $\delta_{i-1}$ 

$$\lambda_a(t \mid \mathcal{H}(t)) = \mu_a + \sum_{b=0}^{K-1} \alpha_{ba} \omega_{ba}(t)$$



## Depends on the last increment only

$$\omega_{ba}(t) = \frac{1}{\beta_b + \Delta_{ba}(t)}$$

Time

## Fast!



- ► Background
- ► GRANGER-BUSCA
- ► Variational Inference Approach
- Experiments
- **►** Summary

## What does Granger Busca look like?

► Busca is another point process model based on Wold processes and it is GRANGER-BUSCA's starting point



Figure 1: GRANGER-BUSCA at work. Plot (a) shows the events of process  $\mathcal{P}_a$  (circles) and process  $\mathcal{P}_b$  (triangles). The arrows show the excitement component of the model. Plot (b) illustrates how  $\Delta_{aa}(t)$  and  $\Delta_{ba}(t)$  are calculated. Plot (c) shows the cumulative random processes  $N_a(t)$  and  $N_b(t)$  in the top, while the bottom plot shows the random conditional intensity functions  $\lambda_a(t)$  and  $\lambda_b(t)$ .

#### Goal in this work

- ▶ To extract Granger causality from multivariate point process data only
- ▶ To develop learning algorithms that are asymptotically fast

### Formalize GRANGER-BUSCA

► GRANGER-BUSCA's multivariate conditional intensity function

$$\lambda_{a}(t) = \underbrace{\mu_{a}}_{\text{Exogenous Poisson Rate}} + \underbrace{\sum_{b=0}^{K-1} \frac{\alpha_{ba}}{\beta_{b} + \Delta_{ba}(t)}}_{\text{Endogenous Wold Rate}}$$
(2)

## Learning GRANGER-BUSCA

- ► Developed Markov Chain Monte Carlo (MCMC) sampling algorithm to learn GRANGER-BUSCA from data
- Fixed  $\beta = 1$  to simplify the learning strategy
- ▶ Sample a latent variable,  $z_{a_i}$ , which takes a value of  $b \in [0, K-1]$  when process  $\mathcal{P}_a$  influences  $t_{a_i}$ . When the stamp is exogenous, set this value to a constant K.
- Learned GRANGER-BUSCA with an Expectation Maximization approach. Hidden labels and the matrix G are estimated in the Expectation step. With the labels,  $\mu$  estimated in the maximization step

## How to update the $z_{a_i}$ lables

► Given any event at

$$\Pr\left[t_{a_i} \in \text{EXOG.}\right] = \frac{\mu_a}{\mu_a + \sum_{b'=0}^{K-1} \lambda_{b'a}\left(t_{a_i}\right)} \tag{3}$$

$$\Pr\left[t_{a_i} \leftarrow \mathcal{P}_b\right] = \frac{\lambda_{ba}\left(t_{a_i}\right)}{\mu_a + \sum_{b'=0}^{K-1} \lambda_{b'a}\left(t_{a_i}\right)} \tag{4}$$

Selected the inducing process based on the conditional probability

$$\Pr\left[t_{a_i} \leftarrow \mathcal{P}_b \mid t_{a_i} \notin \text{ EXOG.}\right] = \frac{\lambda_{ba}\left(t_{a_i}\right)}{\sum_{b'=0}^{K-1} \lambda_{b'a}\left(t_{a_i}\right)} \tag{5}$$

## Learning GRANGER-BUSCA

- ▶ Sample the hidden labels  $z_{a_i}$  as follows
  - 1. For each process  $\mathcal{P}_a$ 
    - (a) Sample row a from G as  $\sim Dirichlet(\alpha_p)$
  - 2. For each process  $\mathcal{P}_a$ 
    - (a) For each observation  $t_{a_i} \in \mathcal{P}_a$ 
      - i. Sample  $p \sim Uniform(0,1)$ 
        - A. When  $p < e^{-\mu_a(t_{a_i} t_{\mu_a})}$  $z_{a_i} \leftarrow \text{exogeneous}$
        - B. Otherwise Sample  $z_{a_i} \sim Multinomial(Eq 5)$

- ► Background
- ► GRANGER-BUSCA
- ► Variational Inference Approach
- Experiments
- **►** Summary

## Relax all restrictive assumptions

- ▶ GRANGER-BUSCA assumes that  $\sum_{k=1}^{K} \alpha_{k',k} = 1$  and  $\beta_{k',k} = \beta_k$  for all  $k' \in [K]$ .
- ▶ Variational inference approach targeted to learn the set of parameters

$$oldsymbol{\mu}\coloneqq\{\mu_k:k\in[K]\}, \ oldsymbol{lpha}\coloneqq\{lpha_{k',k}:k',k\in[K]\}, \ ext{and} \quad oldsymbol{eta}\coloneqq\{eta_{k',k}:k',k\in[K]\}.$$

## Variational Inference Approach

► A method for approximating the posterior distribution over the model parameters given the observations



Figure 1: Illustration of the Wold process dynamics on a simple toy example with 2 processes, where process k is influenced by process k' and by itself, i.e.,  $\alpha_{k',k} > 0$  and  $\alpha_{k,k} > 0$ , and process k' also influences itself. At the highlighted time t, the intensity in process k depends on the two highlighted inter-event times  $\Delta_{k',k}(t)$  and  $\Delta_{k,k}(t)$ , which remain constant until the next event in process k.

### **Maximum Likelihood Estimation**

$$\log p(\mathcal{P} \mid \beta, \alpha, \mu) = \sum_{k} \sum_{t_{k,i} \in \mathcal{P}_k} \log \lambda_k \left( t_{k,i} \mid \mathcal{H}_t \right) - \sum_{k} \int_0^T \lambda_k \left( t \mid \mathcal{H}_t \right) dt$$
 (6)

▶ The specific form of Wold process defined makes the log-likelihood function non-convex with respect to  $\beta$ 

$$\lambda_k(t \mid \mathcal{H}_t) = \mu_k + \sum_{k'=1}^K \frac{\alpha_{k',k}}{\beta_{k',k} + \Delta_{k',k}(t)}$$

$$\tag{7}$$

- Moreover, maximum-likelihood estimation of point processes typically scales poorly to high dimensional settings
- Used a variational inference approach to circumvent both issues of non-convexity and scalability.

- ➤ Variational inference (VI) is a method for approximating the posterior distribution over the model parameters given the observations
- ▶ Defined an auxiliary variable  $\mathbf{z}_{k,i}$  for each event  $t_{k,i}$  to be a one-hot vector that indicates the cause of that event
- $\mathbf{z}_{k,i} = \left[ z_{k,i}^{(0)}, z_{k,i}^{(1)}, \cdots, z_{k,i}^{(K)} \right]$
- Approximate the posterior distribution  $p(\mu, \mathbf{z}, \alpha, \beta \mid \mathcal{P})$  with a variational distribution  $q(\mu, \mathbf{z}, \alpha, \beta)$  that minimizes the KL-divergence between p and q.

► VI solves for the optimal variational distribution that minimizes the KL-divergence, or equivalently it maximizes the evidence lower bound (ELBO), given by

$$ELBO(q) = \mathbb{E}_q[\log p(\boldsymbol{\mu}, \mathbf{z}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathcal{P})] - \mathbb{E}_q[\log q(\boldsymbol{\mu}, \mathbf{z}, \boldsymbol{\alpha}, \boldsymbol{\beta})]. \tag{8}$$

Considered a mean-field approximation for the variational distribution. In such an approximation, the variational parameters are assumed to be independent. Therefore

$$q(\boldsymbol{\mu}, \mathbf{z}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \prod_{k=1}^{K} q(\mu_k) \times \prod_{k=1}^{K} \prod_{i=1}^{|\mathcal{P}_k|} q(\mathbf{z}_{k,i})$$

$$\times \prod_{k=1}^{K} \prod_{k'=1}^{K} q(\alpha_{k',k}) q(\beta_{k',k})$$
(9)

▶ Using this approximation and coordinate ascent for maximizing (3), we obtain the variational distributions  $\{q(\mu_k), q(\mathbf{z}_{k,i}), q(\alpha_{k',k}), q(\beta_{k',k})\}$  by selecting appropriate prior distributions over the parameters

Variational update of the auxiliary parent variable  $\mathbf{z}_{k,i}$ . The definition of the auxiliary variable  $\mathbf{z}_{k,i}$  implies that  $\sum_{k'=0}^K z_{k,i}^{(k')} = 1$ . As shown in Appendix  $\mathbf{B}$ , this results in

$$q(\mathbf{z}_{k,i}) = \text{Categorical}(K+1; p_{k,i}^{(0)}, ..., p_{k,i}^{(K)}),$$
 (5)

where the probabilities

$$\begin{split} p_{k,i}^{(0)} &\propto \exp\left(\mathbb{E}_{q(\mu_k)}[\log \mu_k]\right) \\ \text{and } p_{k,i}^{(k')} &\propto \exp\left(\mathbb{E}_{q(\alpha_{k',k})}[\log(\alpha_{k',k})] \\ &- \mathbb{E}_{q(\beta_{k',k})}[\log\left(\beta_{k',k} + \Delta_{k',k}(t_{k,i})\right)]\right), \\ &\forall k' \in [K] \end{split}$$

are normalized such that  $\sum_{k'=0}^K p_{k,i}^{(k')} = 1$ . In the above equations, the expectations are over the variational distributions.

Variational update of  $\beta_{k',k}$ . For this parameter, we select the prior distribution to be Inverse-Gamma with shape  $\phi_{k',k}$  and scale  $\psi_{k',k}$ . This choice of prior results in a variational distribution of  $\beta_{k',k}$  proportional to

$$(\beta_{k',k})^{-\phi_{k',k}-1} e^{\left(-\frac{\psi_{k',k}}{\beta_{k',k}}\right)} \prod_{i=1}^{|\mathcal{P}_k|} \left[ \left(\beta_{k',k} + \Delta_{k',k}(t_{k,i})\right)^{-\mathbb{E}\left[z_{k,i}^{(k')}\right]} \exp\left(-\frac{\mathbb{E}\left[\alpha_{k',k}\right](t_{k,i} - t_{k,i-1})}{\beta_{k',k} + \Delta_{k',k}(t_{k,i})}\right) \right].$$
(8)

Variational update of  $\mu_k$ . Similar to  $\alpha$ , we use the Gamma distribution as the prior of  $\mu_k$  with shape  $c_k$  and rate  $d_k$  resulting in the posterior

$$q(\mu_k) = \operatorname{Gamma}(C_k; D_k), \qquad (7)$$

where

$$egin{aligned} C_k \coloneqq c_k + \sum_{i=1}^{|\mathcal{P}_k|} \mathbb{E}_{q(z_{k,i}^{(0)})}[z_{k,i}^{(0)}], \ D_k \coloneqq d_k + \sum_{i=1}^{|\mathcal{P}_k|} (t_{k,i} - t_{k,i-1}). \end{aligned}$$

- ► Background
- ► GRANGER-BUSCA
- ► Variational Inference Approach
- **▶** Experiments
- **▶** Summary

## **Accuracy**

- ► Precision @ n score
  - ► Retrieve top neighbors per node



Figure 2: Precision Scores for the Top-100 datasets.

#### **Full Datasets**

Table 1: Datasets used for Experiments and Precision Scores for Full Datasets. Due to their sizes, only GRANGER-BUSCA is able to execute in all datasets. To allow comparisons, we execute baselines methods with only the Top-100 destination nodes. Other results are presented in Table 2 and Figure 2.

|                      | # Proc (K) | # Obs. (N) | N (Top-100) | Span       | %NZ    | P@5  | P@10 | P@20 | TT(s) |
|----------------------|------------|------------|-------------|------------|--------|------|------|------|-------|
| bitcoinalpha [28]    | 3,257      | 23,399     | 2,279       | 5Y         | 0.2%   | 0.26 | 0.14 | 0.07 | 3     |
| bitcoinotc [28]      | 4,791      | 33,766     | 2,328       | 5Y         | 0.1%   | 0.25 | 0.14 | 0.07 | 7     |
| college-msg [39]     | 1,313      | 58,486     | 10,869      | 193D       | 1.1%   | 0.36 | 0.30 | 0.19 | 1     |
| email [31, 50]       | 803        | 327,677    | 92,924      | 803D       | 3.74%  | 0.23 | 0.28 | 0.32 | 4     |
| sx-askubuntu [40]    | 88,549     | 879,121    | 58,142      | 7 <b>Y</b> | 0.006% | 0.25 | 0.13 | 0.06 | 2774  |
| sx-mathoverflow [40] | 16,936     | 488,984    | 59,602      | 7 <b>Y</b> | 0.07%  | 0.28 | 0.16 | 0.09 | 98    |
| sx-superuser [40]    | 114,623    | 1,360,974  | 64,866      | 7 <b>Y</b> | 0.006% | 0.26 | 0.14 | 0.07 | 4614  |
| wikitalk [30, 40]    | 251,154    | 7,833,140  | 211,344     | 6Y         | 0.003% | 0.25 | 0.14 | 0.07 | 27540 |
| memetracker-100 [29] | 100        | 24,665,418 | -           | 9M         | 9.85%  | 0.30 | 0.29 | 0.22 | 114   |
| memetracker-500 [29] | 500        | 39,318,989 | -           | 9M         | 4.44%  | 0.30 | 0.30 | 0.23 | 274   |

#### Memetracker

Table 2: Comparing Granger-Busca (GB) with Hawkes-Cumulants (HC) Memetracker.

|         | Precision@5 |      | Precision@10 |      | Precision@20 |      | Kendall |      | Rel. Error |      | TT(s) |     |
|---------|-------------|------|--------------|------|--------------|------|---------|------|------------|------|-------|-----|
|         | HC          | GB   | HC           | GB   | HC           | GB   | HC      | GB   | HC         | GB   | HC    | GB  |
| top-100 | 0.06        | 0.30 | 0.09         | 0.29 | 0.01         | 0.22 | 0.05    | 0.26 | 1.0        | 0.44 | 87    | 114 |
| top-500 | 0.01        | 0.30 | 0.01         | 0.30 | 0.02         | 0.23 | 0.08    | 0.20 | 1.8        | 0.06 | 715   | 274 |

- ► Background
- ► GRANGER-BUSCA
- ► Variational Inference Approach
- **▶** Experiments
- **▶** Summary

## **Summary**

#### **Fast Estimation**

- ► By using a Wold Process
  - ▶ We can evaluate the intensity in linear time
  - ► Fast data structures for estimation
- Hawkes Processes
  - Usually quadratic both on time and processes