SOSELETO: A Unified Approach to Transfer Learning and Training with Noisy Labels

Or Litany

Facebook Al Research

Joint work with Daniel Freedman (Google)

Or Litany SOSELETO May 6th, 2019 1/19

Background

• Deep Learning is data hungry

Background

- Deep Learning is data hungry
- What about data-poor regimes?

Transfer learning

Pass knowledge gleaned from a *source* (data-rich regime) to the *target* (data-poor regime)

Image credit: Medium.com

3/19

Selective Transfer Learning

Observation

Some source examples are more informative than others for the target classification problem.

Core idea

Problem

We do not know a priori which source examples will be important.

Core idea

Problem

We do not know a priori which source examples will be important.

Proposal

What if we let the target decide?

$$\theta^*, \phi^{s*} = \operatorname*{arg\,min}_{\theta,\phi^s} \mathit{L}_s(\theta,\phi^s)$$

$$\phi^{t*} = \operatorname*{arg\,min}_{\phi^t} L_t(\theta^*, \phi^t)$$

Or Litany SOSELETO May 6th, 2019 6 / 19

Target Source

$$egin{aligned} heta^*, \phi^{s*} &= rg \min_{ heta, \phi^s} rac{1}{n^s} \sum_{j=1}^{n^s} \ell(y^s_j, F(x^s_j; heta, \phi^s)) \ \phi^{t*} &= rg \min_{\phi^t} L_t(heta^*, \phi^t) \end{aligned}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 める(*)

$$\theta^*(\alpha), \phi^{s*}(\alpha) = \arg\min_{\theta, \phi^s} \frac{1}{n^s} \sum_{i=1}^{n^s} \alpha_i \ell(y_j^s, F(x_j^s; \theta, \phi^s))$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

$$egin{aligned} heta^*(oldsymbol{lpha}), \phi^{s*}(oldsymbol{lpha}) &= rg \min_{ heta, \phi^s} rac{1}{n^s} \sum_{j=1}^{n^s} lpha_j \ell(y^s_j, F(x^s_j; heta, \phi^s)) \ \phi^{t*}, lpha^* &= rg \min_{oldsymbol{lpha}, \phi^t} L_t(heta^*(oldsymbol{lpha}), \phi^t) \end{aligned}$$

6/19

4□ > 4□ > 4 = > 4 = > = 90

Or Litany SOSELETO May 6th, 2019 7/19

4□ > 4□ > 4 = > 4 = > = 90

Or Litany SOSELETO May 6th, 2019 7/19

 Or Litany
 SOSELETO
 May 6th, 2019
 7 / 19

Interior level:

$$\theta^*(\alpha), \phi^{s*}(\alpha) = \underset{\theta, \phi^s}{\arg\min} L_s(\theta, \phi^s, \alpha)$$

Exterior level:

$$\min_{\alpha,\phi^t} L_t(\theta^*(\alpha),\phi^t)$$

 Or Litany
 SOSELETO
 May 6th, 2019
 8 / 19

Interior level:

$$\theta^*(\alpha), \phi^{s*}(\alpha) = \underset{\theta, \phi^s}{\arg\min} L_s(\theta, \phi^s, \alpha)$$

$$\theta_{m+1} = \theta_m - \lambda_p \frac{\partial L_s}{\partial \theta} (\theta_m, \phi_m^s, \alpha_m)$$

$$= \theta_m - \lambda_p Q(\theta_m, \phi_m^s) \alpha_m$$
(1)

Exterior level:

$$\min_{\alpha,\phi^t} L_t(\theta^*(\alpha),\phi^t)$$

Interior level:

$$\theta^*(\alpha), \phi^{s*}(\alpha) = \underset{\theta, \phi^s}{\arg\min} L_s(\theta, \phi^s, \alpha)$$

$$\theta_{m+1} = \theta_m - \lambda_p \frac{\partial L_s}{\partial \theta} (\theta_m, \phi_m^s, \alpha_m)$$

$$= \theta_m - \lambda_p Q(\theta_m, \phi_m^s) \alpha_m$$
(1)

Exterior level:

$$\min_{\alpha,\phi^t} L_t(\theta_m - \lambda_p Q \alpha, \phi^t)$$

Interior level:

$$\theta^*(\alpha), \phi^{s*}(\alpha) = \underset{\theta, \phi^s}{\arg\min} L_s(\theta, \phi^s, \alpha)$$

$$\theta_{m+1} = \theta_m - \lambda_p \frac{\partial L_s}{\partial \theta} (\theta_m, \phi_m^s, \alpha_m)$$

$$= \theta_m - \lambda_p Q(\theta_m, \phi_m^s) \alpha_m$$
(1)

Exterior level:

$$\min_{\alpha,\phi^t} L_t(\theta_m - \lambda_p Q \alpha, \phi^t)$$

$$\alpha_{m+1} \approx \alpha_m + \lambda_\alpha \lambda_\rho Q^T \frac{\partial L_t}{\partial \theta} (\theta_m)$$
 (2)

Or Litany SOSELETO May 6th, 2019 8 / 19

Interior level:

$$\theta^*(\alpha), \phi^{s*}(\alpha) = \underset{\theta, \phi^s}{\arg\min} L_s(\theta, \phi^s, \alpha)$$

$$\theta_{m+1} = \theta_m - \lambda_p \frac{\partial L_s}{\partial \theta} (\theta_m, \phi_m^s, \alpha_m)$$

$$= \theta_m - \lambda_p Q(\theta_m, \phi_m^s) \alpha_m$$
(1)

Exterior level:

$$\min_{\alpha,\phi^t} L_t(\theta_m - \lambda_p Q \alpha, \phi^t)$$

$$\alpha_{m+1} = \mathsf{CLIP}_{[0,1]} \left(\alpha_m + \lambda_\alpha \lambda_p Q^\mathsf{T} \frac{\partial L_t}{\partial \theta} (\theta_m) \right) \tag{2}$$

Or Litany SOSELETO May 6th, 2019 8 / 19

- Weigh source instances.
- Train a shared representation, as a bi-level optimization:
 - Interior level: minimize source loss wrt representation parameters.
 - Exterior level: minimize target loss wrt source weights.

Or Litany SOSELETO May 6th, 2019 9 / 19

Intuition

- The target set "chooses" source samples which are informative for its own classification task.
- bi-level optimization mitigates overfitting: target samples do not control the representation parameter directly.

Or Litany SOSELETO May 6th, 2019 10 / 19

Noisy Labels: synthetic experiment

- Source: 500 points with 20% noisy labels.
- Target: 50 points with clean labels

Noisy Labels: synthetic experiment

Results: Noisy labels (CIFAR-10)

- 60,000 images of 10 categories (airplane, automobile, bird, etc.)
- Noise was added uniformly (unstructured)

Or Litany SOSELETO May 6th, 2019 13 / 19

Results: Noisy labels (CIFAR-10)

- 60,000 images of 10 categories (airplane, automobile, bird, etc.)
- Noise was added uniformly (unstructured)

Noise Level	CIFAR-10 Quick	Sukhbaatar <i>et al.</i> 10K clean examples	Xiao <i>et al.</i> 10K clean examples	Ours 5K clean examples
30%	65.57	69.73	69.81	72.41
40%	62.38	66.66	66.76	69.98
50%	57.36	63.39	63.00	66.33

Results: Noisy labels (CIFAR-10)

A denoising effect:

Or Litany SOSELETO May 6th, 2019 14 / 19

$\overline{\text{SVHN}}$ 0-4 \rightarrow MNIST 5-9

Or Litany SOSELETO May 6th, 2019 15 / 19

SVHN 0-4 \rightarrow MNIST 5-9

Uses Unlabelled Data?	Method	$n^{t} = 20$	$n^t = 25$
No	Target only	80.1	84.0
No	Fine-tuning	80.2	83.0
No	SOSELETO	83.2	87.9
Yes	Matching Nets ¹	56.6	51.3
Yes	Fine-tuned Matching Nets	79.3	82.7
Yes	Fine-tune domain adversarial ²	80.4	83.1
Yes	Label Efficient ²	94.2	95.0

¹Vinyals et al., 2016

²Luo *et al.*, 2017

SVHN 0-4 \rightarrow MNIST 5-9

Uses Unlabelled Data?	Method	$n^t = 20$	$n^t = 25$
No	Target only	80.1	84.0
No	Fine-tuning	80.2	83.0
No	SOSELETO	83.2	87.9
Yes	Matching Nets ¹	56.6	51.3
Yes	Fine-tuned Matching Nets	79.3	82.7
Yes	Fine-tune domain adversarial ²	80.4	83.1
Yes	Label Efficient ²	94.2	95.0

 \bullet Leveraging unlabeled MNIST: $\approx 92\%$

¹Vinyals et al., 2016

²Luo *et al.*, 2017

Boosts performance to above 90%

Or Litany SOSELETO May 6th, 2019 17 / 19

- Boosts performance to above 90%
- Distribution across classes: does not correlate with labels

Or Litany SOSELETO May 6th, 2019 17/19

- Boosts performance to above 90%
- Distribution across classes: does not correlate with labels
- Some correlation to appearance

Or Litany SOSELETO May 6th, 2019 17 / 19

- Boosts performance to above 90%
- Distribution across classes: does not correlate with labels
- Some correlation to appearance
- Noisy lable detector

Or Litany SOSELETO May 6th, 2019 17 / 19

Summary

- Datasets and tasks share information (don't reinvent the mechanical turk)
- SOSELETO: Simple to implement, can be used with any architecture

Or Litany SOSELETO May 6th, 2019 18 / 19

Summary

- Datasets and tasks share information (don't reinvent the mechanical turk)
- SOSELETO: Simple to implement, can be used with any architecture
- Limitations:
 - Requires more memory (and adds variables)
 - Updates a sample once per epoch

Summary

- Datasets and tasks share information (don't reinvent the mechanical turk)
- SOSELETO: Simple to implement, can be used with any architecture
- Limitations:
 - Requires more memory (and adds variables)
 - Updates a sample once per epoch
- Follow ups:
 - Group weighting
 - Domain adaptation
 - Task weighting

Thanks!

github.com/orlitany

Or Litany SOSELETO May 6th, 2019 19 / 19