Global-coarsening multigrid for hp-adaptive FEM

Marc Fehling, Peter Munch, Martin Kronbichler, Wolfgang Bangerth

marc.fehling@matfyz.cuni.cz

August 14, 2024

Table of Contents

hp-adaptive FEM

What is *hp*-FEM?

Error convergence: Laplace on L-domain

Implementation challenges

Choice of solver

Hybrid preconditioner

Block-diagonal smoother

Parallel scaling: Stokes on Y-pipe

Outlook

M. Fehling et al. 2 | 26

h- vs *p*-adaptive finite elements

Global refinement: Guaranteed to drive the error to zero Adaptive refinement: Achieve the same error with less work

h-adaptation: dynamic cell sizes suited for irregular solutions p-adaptation: dynamic polynomial degrees suited for smooth solutions

Figure: Two rectangular cells of which right cell is refined.

Symbols indicate support points on vertices (\bullet) , lines (\Box) and quadrilaterals (\circ) .

Left: h-adaptation with Q_2 elements, Right: p-adaptation with Q_2/Q_4 elements

M. Fehling et al. 3 | 26

hp-adaptive finite elements

hp-adaptation: Choose both cell size and polynomial degree adaptively

Figure: hp-adaptation with $Q_1 \dots Q_4$ elements.

Superior convergence behavior known since mid-1980s: (Babuška and Suri 1990; Guo and Babuška 1986)

$$||u - u_{hp}||_{H^{1}(\Omega)} \le C \frac{h^{p}}{p^{p}} ||u||_{H^{p+1}(\Omega)}$$

 $||u - u_{hp}||_{H^{1}(\Omega)} \le C(u) e^{-b N_{dofs}^{\alpha}}$

M. Fehling et al. 4 | 26

Example: Laplace on L-domain

Elliptic problems have singularities at non-convex parts of boundary.

Consider L-shaped domain:

$$\Omega = [-1,1]^2 \setminus ([0,1] \times [-1,0])$$

Manufacture Laplace problem:

$$-
abla^2 u = 0$$
 on Ω $u = ar{u}$ on $\partial\Omega$ $ar{u} = r^{2/3} \sin{(2/3 \ arphi)}$ $\|
abla ar{u}\| = r^{-1/3}$

Figure: Manufactured solution.

M. Fehling et al. 5 | 26

Laplace: Error convergence

Experiments confirm exponential convergence (Fehling 2020).

Figure: *hp*-discretization.

Figure: Error convergence for different refinement types.

M. Fehling et al. 6 | 26

Examples in deal.II

step-27 solves Laplace eq. with successive *hp*-refinement

simple – only 275 lines of code (measured with $cloc \Box$)

Useful in other applications:

- ▶ step-46 🗹: multi-physics problems
- ▶ step-85 🗗: CutFEM
- ▶ step-90 🗗: Trace FEM

Figure: step-27 solution.

M. Fehling et al. 7 | 26

Implementation challenges for parallelization

- ▶ Algorithms to decide between *h* and *p* refinement
- Unique and replicable enumeration of degrees of freedom
- Weighted load balancing on decomposed domain
- ► Choice of robust and efficient solver

Figure: Different finite elements and their number of nodes in 2D

M. Fehling et al. 8 | 26

Table of Contents

hp-adaptive FEM

What is hp-FEM?

Error convergence: Laplace on L-domain

Implementation challenges

Choice of solver

Hybrid preconditioner

Block-diagonal smoother

Parallel scaling: Stokes on Y-pipe

Outlook

M. Fehling et al. 9 | 26

First try: AMG

Use what has proven successful before: Algebratic Multigrid (AMG).

Solver performance drops with increasing fragmentation of polynomial degrees.

Figure: Iterations and scaling for consecutive refinements using PreconditionAMG.

M. Fehling et al. 10 | 26

Alternative: Geometric Multigrid (GMG)

Idea: Use advanced methods: Geometric Multigrid (GMG)

- build hierarchy in different polynomial degrees and mesh sizes (Mitchell 2010)
 - reduce maximum polynomial degree first, then coarsen mesh
- ightharpoonup solve coarse system with AMG (Fehn et al. 2020) ightharpoonup Hybrid-GMG

Matrix-free

Allows for use with matrix-free methods!

M. Fehling et al. 11 | 26

Hybrid-GMG

M. Fehling et al. 12 | 26

Configurations that lead to bad conditioning

Using diagonal as smoother yields high eigenvalues.

Figure: Coarse Q_2 cell neighbors fine Q_1 cells.

Figure: Coarse Q_3 cell neighbors fine Q_2 cells.

Continuous elements

faces on a coarse, high p cell neighboring a fine, low p cell are problematic

M. Fehling et al. 13 | 26

Eigenvalues

Use LAPACK to investigate eigenvalues, see xSYGV \square . Eigenvalue distribution looks odd. Discussion on mg-ev-estimator/#4 \square .

Figure: Eigenvector of largest eigenvalue with diagonal smoother.

M. Fehling et al.

Additive Schwarz Methods (ASM)

Constrained DoFs are problematic. We need more information than just the diagonal.

Use block-Jacobi method.

Requires some SparseMatrix to extract cell-local matrices as blocks.

Current design:

- 1. Build patches on locally owned cells with locally active DoFs.
- 2. Build sparse matrix with patch DoFs only.
- Build patch matrices with SparseMatrixTools::restrict_to_full_matrices.

4. In vmult, apply patch matrices on patch DoFs, and inverse diagonal on others.

M. Fehling et al. 15 | 26

Eigenvalues with patch

Block-diagonal smoother relaxes eigenvalues thus improves conditioning.

Figure: Eigenvector of largest eigenvalue with block-diagonal smoother.

M. Fehling et al. 16 | 26

Constraints

On distributed 3D domains, constraints on locally active DoFs *might* differ.

Negative effect on solver convergence (iteration count).

Make sure your constraints are consistent in parallel hp-applications!

Useful functions:

- ▶ to check: AffineConstraints::is_consistent_in_parallel 🗹
- ▶ to correct: AffineConstraints::make_consistent_in_parallel 🗹

M. Fehling et al. 17 | 26

Example: Stokes on Y-pipe

Construct 3d test problem with solution both smooth and singular in different parts of the domain.

$$-\nabla^2 \mathbf{u} + \nabla p = 0$$
$$-\nabla \cdot \mathbf{u} = 0$$

M. Fehling et al. 18 | 26

Stokes: *hp*-Discretization

Low polynomial degrees: In the interior (solution \approx Poiseuille flow) and at nonconvex parts of the boundary.

High polynomial degrees: In smooth parts of the flow.

M. Fehling et al. 19 | 26

Stokes: Preconditioner design

Silvester–Wathen type preconditioner P^{-1} on system matrix M: (for details see step-31 \square and step-32 \square)

$$P^{-1}M = \begin{pmatrix} A^{-1} & 0 \\ S^{-1}BA^{-1} & -S^{-1} \end{pmatrix} \begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}$$

- ▶ Approximate Schur complement $S = BA^{-1}B^T$ by mass matrix $S^{-1} \approx M_p^{-1}$
- lacktriangle Approximate action of A^{-1} by multigrid preconditioner \bar{A}
- Solve linear system with FGMRES

M. Fehling et al. 20 | 26

Stokes: Weighted load balancing

Balance sum of weights among processes, with weights n_{DoFs}^c per cell. One fixed problem (\approx 74M DoFs, 144 MPI processes), variable weighting exponent c.

M. Fehling et al. 21 | 26

Stokes: Strong scaling

One fixed problem (\approx 74M DoFs), variable number of MPI processes.

M. Fehling et al. 22 | 26

Stokes: Consecutive refinements

Fixed number of processes (=144), successive adaptive refinements.

M. Fehling et al. 23 | 26

Stokes: Consecutive refinements

Fixed number of processes (=144), successive adaptive refinements.

M. Fehling et al. 24 | 26

Table of Contents

hp-adaptive FEM

What is hp-FEM?

Error convergence: Laplace on L-domain

Implementation challenges

Choice of solver

Hybrid preconditioner

Block-diagonal smoother

Parallel scaling: Stokes on Y-pipe

Outlook

M. Fehling et al. 25 | 26

Outlook

All algorithms available in hpbox .

Next steps:

- ▶ Adjust step-75 🗹 to incorporate ASM.
- Manuscript for publication.

Remaining problems:

- More refinements lead to convergence issues in solving the Schur Block.
 - ► Also with h-refinement. Also in aspect ??
- Performance of AffineConstraints::make_consistent_in_parallel?
- Multi-point constraints as alternative to ASM?
- ▶ Issues with PR #14905 ✓ Merge strategy on make consistent in parallel.

Try to find failing example in this workshop.

M. Fehling et al. 26 | 26

Bibliography I

- Arndt, Daniel, Wolfgang Bangerth, Maximilian Bergbauer, et al. (2023). "The deal.II Library, Version 9.5". In: *Journal of Numerical Mathematics* 31.3, pp. 231–246. DOI: 10.1515/jnma-2023-0089.
- Arndt, Daniel, Wolfgang Bangerth, Denis Davydov, et al. (2021). "The deal.II finite element library: Design, features, and insights". In: Computers & Mathematics with Applications 81, pp. 407–422. DOI: 10.1016/j.camwa.2020.02.022.
- Fehling, Marc (2020). "Algorithms for massively parallel generic hp-adaptive finite element methods". PhD thesis. Bergische Universität Wuppertal, vii, 78 pp. URL: https://hdl.handle.net/2128/25427.

M. Fehling et al. 1 | 2

Bibliography II

- Fehn, Niklas et al. (Aug. 2020). "Hybrid multigrid methods for high-order discontinuous Galerkin discretizations". In: Journal of Computational Physics 415, p. 109538. DOI: 10.1016/j.jcp.2020.109538. URL: https://doi.org/10.1016/j.jcp.2020.109538.
- Guo, Benqi and Ivo Babuška (1986). "The *h-p* version of the finite element method, Part 1: The basic approximation results". In: Computational Mechanics 1.1, pp. 21–41. DOI: 10.1007/BF00298636 ...
- Mitchell, William F. (Apr. 2010). "The hp-multigrid Method Applied to hp-adaptive Refinement of Triangular Grids". In: Numerical Linear Algebra with Applications 17.2-3, pp. 211–228. ISSN: 1070-5325. DOI: 10.1002/nla.700.

M. Fehling et al.