https://r4ds.hadley.nz/ Chapter 3-9

CSCI 297b, Spring 2023

May 5, 2023

The Big Picture

Program

The dplyr package and the nycflights13 dataset

library(nycflights13)
library(tidyverse)

the nycflights13 dataset

```
> glimpse(flights)
Rows: 336,776
Columns: 19
$ year
                 <int> 2013, 2013, 2013, 2013,...
$ month
                 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ day
                 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ dep_time
                 <int> 517, 533, 542, 544, 554...
$ sched_dep_time <int> 515, 529, 540, 545, 600...
$ dep_delay
                <dbl> 2, 4, 2, -1, -6, -4, -5...
$ arr time
                 <int> 830, 850, 923, 1004, 81...
$ sched_arr_time <int> 819, 830, 850, 1022, 83...
$ arr_delay
                 <dbl> 11, 20, 33, -18, -25, 1...
$ carrier
                 <chr> "UA", "UA", "AA", "B6",...
$ flight
                 <int> 1545, 1714, 1141, 725, ...
$ tailnum
                 <chr> "N14228", "N24211", "N6...
$ origin
                 <chr> "EWR", "LGA", "JFK", "J...
$ dest
                 <chr> "IAH", "IAH", "MIA", "B...
$ air time
                 <dbl> 227, 227, 160, 183, 116...
$ distance
                 <dbl> 1400, 1416, 1089, 1576,...
$ hour
                 <dbl> 5, 5, 5, 5, 6, 5, 6, 6,...
$ minute
                 <dbl> 15, 29, 40, 45, 0, 58, ...
$ time_hour
                 <dttm> 2013-01-01 05:00:00, 2...
```

The dplyr package

- The first argument is always a data frame.
- The subsequent arguments typically describe which columns to operate on, using the variable names (without quotes).
- The output is always a new data frame.
- Each verb operates on either
 - rows.
 - columns,
 - groups, or
 - tables

The pipe

```
flights |>
  filter(dest == "IAH") |>
  group_by(year, month, day) |>
  summarize(
    arr_delay = mean(arr_delay, na.rm = TRUE)
)
```

Global options

- Enable "Use native pipe operator."
- This will enable you to produce the pipe with ctrl-shift-M

filter

```
flights |>
 filter(dep_delay > 120)
\#> \# A tibble: 9,723 \times 19
#>
     year month day dep_time sched_dep_time dep_delay arm
#>
    <int> <int> <int>
                       <int>
                                    <int>
                                             <dbl>
#> 1 2013
                         848
                                     1835
                                               853
#> 2 2013 1
                        957
                                      733
                                               144
#> 3 2013 1
                       1114
                                      900
                                              134
#> 4 2013 1 1
                       1540
                                     1338
                                             122
#> 5 2013 1 1 1815
                                     1325
                                               290
#> 6
    2013
                        1842
                                     1422
                                               260
#> # i 9,717 more rows
#> # i 11 more variables: arr_delay <dbl>, carrier <chr>, f
```

arrange

```
flights |>
 arrange(year, month, day, dep_time)
#> # A tibble: 336,776 × 19
#>
     year month day dep_time sched_dep_time dep_delay arm
#>
    <int> <int> <int> <int>
                                   <int>
                                           <dbl>
#> 1 2013
                        517
                                    515
#> 2 2013 1 1
                        533
                                    529
#> 3 2013 1 1
                       542
                                    540
#> 4 2013 1 1
                       544
                                    545
#> 5 2013 1 1
                       554
                                    600
                                            -6
#> 6 2013
                        554
                                    558
                                              -4
#> # i 9,717 more rows
#> # i 11 more variables: arr_delay <dbl>, carrier <chr>, f
```

distinct

```
# Find all unique origin and destination pairs
flights |>
 distinct(origin, dest)
#> # A tibble: 224 × 2
#> origin dest
#> <chr> <chr>
#> 1 EWR. TAH
#> 2 LGA IAH
#> 3 .JFK MTA
#> 4 JFK BQN
#> 5 LGA ATL
#> 6 EWR ORD
#> # i 218 more rows
```

count

```
flights |>
 count(origin, dest, sort = TRUE)
\# # A tibble: 224 × 3
#> origin dest
#> <chr> <chr> <int>
#> 1 JFK LAX 11262
#> 2 LGA ATL 10263
#> 3 LGA ORD
                8857
#> 4 JFK SFO 8204
#> 5 LGA CLT 6168
#> 6 EWR ORD
                6100
#> # i 218 more rows
```

Do exercise 6

mutate

```
flights |>
 mutate(
   gain = dep_delay - arr_delay,
   speed = distance / air_time * 60,
    .before = 1
#> # A tibble: 336,776 × 21
#>
     gain speed year month day dep_time sched_dep_time dep_delay arr_time
#>
    <dbl> <dbl> <int> <int> <int>
                                   <int>
                                                  <int>
                                                           <dbl>
                                                                    <int>
       -9 370. 2013
                                     517
                                                    515
                                                                      830
#> 1
#> 2 -16 374, 2013
                                     533
                                                    529
                                                               4
                                                                     850
#> 3 -31 408, 2013
                                     542
                                                    540
                                                                      923
#> 4 17 517, 2013
                                     544
                                                    545
                                                              -1
                                                                     1004
#> 5
     19 394, 2013
                                     554
                                                    600
                                                              -6
                                                                     812
#> 6
      -16 288, 2013
                                     554
                                                    558
                                                                      740
                                                              -4
#> # i 336,770 more rows
#> # i 12 more variables: sched_arr_time <int>, arr_delay <dbl>, ...
```

select

```
flights |>
  select(year, month, day)
flights |>
  select(year:day)
flights |>
  select(!year:day)
flights |>
  select(where(is.character))
    starts_with("abc"): matches names that begin with "abc".
   ends_with("xyz"): matches names that end with "xyz".

    contains("ijk"): matches names that contain "ijk".

   • num_range("x", 1:3): matches x1, x2 and x3.
```

rename

flights |>

```
rename(tail_num = tailnum)
\#> \# A tibble: 336,776 \times 19
#>
      year month day dep_time sched_dep_time dep_delay arr_time sched_arr_tim
     <int> <int> <int>
                           <int>
                                            <int>
                                                      <dbl>
                                                                <int>
                                                                                 <int
#>
#> 1
      2013
                              517
                                              515
                                                           2
                                                                  830
                                                                                   81
#> 2
      2013
                              533
                                              529
                                                           4
                                                                  850
                                                                                   83
#> 3
      2013
                              542
                                              540
                                                           2
                                                                  923
                                                                                   85
#> 4
      2013
                              544
                                              545
                                                          -1
                                                                  1004
                                                                                  102
#> 5
     2013
                              554
                                              600
                                                          -6
                                                                  812
                                                                                   83
                                                                                   72
#> 6
      2013
                              554
                                              558
                                                          -4
                                                                   740
```

relocate

```
flights |>
  relocate(time_hour, air_time)
\#> \# A tibble: 336,776 \times 19
     time_hour
                          air_time year month
                                                  day dep_time sched_dep_time
#>
#>
     \langle dt.t.m \rangle
                             <dbl> <int> <int> <int>
                                                         <int>
                                                                         <int>
#> 1 2013-01-01 05:00:00
                               227
                                    2013
                                                            517
                                                                            515
#> 2 2013-01-01 05:00:00
                               227
                                    2013
                                                            533
                                                                            529
#> 3 2013-01-01 05:00:00
                               160
                                    2013
                                                            542
                                                                           540
#> 4 2013-01-01 05:00:00
                               183
                                    2013
                                                            544
                                                                           545
#> 5 2013-01-01 06:00:00
                               116
                                    2013
                                                           554
                                                                           600
#> 6 2013-01-01 05:00:00
                               150
                                    2013
                                                            554
                                                                            558
```

Do exercise 7

The Pipe

```
flights |>
 filter(dest == "IAH") |>
 mutate(speed = distance / air_time * 60) |>
 select(year:day, dep_time, carrier, flight, speed) |>
 arrange(desc(speed))
\# # A tibble: 7,198 × 7
     year month day dep_time carrier flight speed
#>
#>
    <int> <int> <int> <int> <chr>
                                       <int> <dbl>
#> 1 2013
              7
                    9
                          707 UA
                                         226 522.
#> 2 2013
              8
                   27
                         1850 UA
                                        1128 521.
#> 3 2013
              8
                   28
                          902 UA
                                        1711 519.
#> 4 2013
              8
                   28
                         2122 UA
                                        1022 519.
#> 5 2013
              6
                  11
                         1628 UA
                                        1178
                                             515.
#> 6 2013
              8
                   27
                         1017 UA
                                         333
                                             515.
```

The Pipe vs. function nesting

```
arrange(
    select(
        mutate(
            filter(
                flights,
                 dest == "IAH"
            ),
        speed = distance / air_time * 60
        ),
        year:day, dep_time, carrier, flight, speed
    ),
    desc(speed)
)
```

The Pipe vs. assignment to temporaries

```
flights1 <- filter(flights, dest == "IAH")
flights2 <- mutate(flights1, speed = distance / air_time * 60)
flights3 <- select(flights2, year:day, dep_time, carrier, flight, speed)
arrange(flights3, desc(speed))</pre>
```

group_by

```
flights |>
  group_by(month)
#> # A tibble: 336,776 × 19
#> # Groups:
               month [12]
#>
      year month
                    day dep_time sched_dep_time dep_delay arr_time sched_arr_tim
     <int> <int> <int>
                           <int>
                                            <int>
                                                      <dbl>
#>
                                                                <int>
                                                                                <int
#> 1
      2013
                              517
                                              515
                                                           2
                                                                  830
                                                                                  81
#> 2
                                                                  850
                                                                                  83
     2013
                              533
                                              529
#> 3
     2013
                              542
                                              540
                                                                  923
                                                                                  85
#> 4
      2013
                              544
                                              545
                                                         -1
                                                                 1004
                                                                                 102
#> 5 2013
                              554
                                             600
                                                         -6
                                                                  812
                                                                                  83
                                                                                  72
#> 6
      2013
                              554
                                              558
                                                         -4
                                                                  740
```

All subsequent operations will now work "by month"

summarize

```
flights |>
  group_by(month) |>
  summarize(
    avg_delay = mean(dep_delay)
#> # A tibble: 12 × 2
#>
    month avg_delay
#>
     <int>
               <dbl>
#> 1
                  NA
#> 2
                  NA
#> 3
                  NA
#> 4
                  NA
#> 5
                  NA
#> 6
                  NA
```

• We forgot na.rm

summarize

```
flights |>
 group_by(month) |>
 summarize(
   delay = mean(dep_delay, na.rm = TRUE)
#> # A tibble: 12 × 2
#>
    month delay
#> <int> <dbl>
#> 1
       1 10.0
#> 2 2 10.8
#> 3 3 13.2
#> 5 5 13.0
       6 20.8
#> 6
```

summarize with n

```
flights |>
 group_by(month) |>
 summarize(
  delay = mean(dep_delay, na.rm = TRUE),
  n = n()
#> # A tibble: 12 x 3
#>
   month delay n
#>
  <int> <dbl> <int>
#> 1 10.0 27004
#> 2 2 10.8 24951
#> 4 4 13.9 28330
#> 5 5 13.0 28796
```

slice

- df |> slice_head(n = 1) takes the first row from each group.
- df |> slice_tail(n = 1) takes the last row in each group.
- df |> slice_min(x, n = 1) takes the row with the smallest value of column x.
- df |> slice_max(x, n = 1) takes the row with the largest value of column x.
- df |> slice_sample(n = 1) takes one random row.

slice

```
flights |>
  group_by(dest) |>
  slice_max(arr_delay, n = 1) |>
  relocate(dest)
#> # A tibble: 108 × 19
#> # Groups:
               dest [105]
     dest
            year month
                          day dep_time sched_dep_time dep_delay arr_time
#>
     <chr> <int> <int> <int>
                                                 <int>
#>
                                 <int>
                                                            <dbl>
                                                                     <int>
#> 1 ABQ
            2013
                      7
                           22
                                  2145
                                                  2007
                                                               98
                                                                       132
#> 2 ACK
            2013
                      7
                           23
                                  1139
                                                   800
                                                              219
                                                                      1250
#> 3 ALB
            2013
                      1
                           25
                                   123
                                                  2000
                                                              323
                                                                       229
#> 4 ANC
            2013
                      8
                           17
                                  1740
                                                  1625
                                                               75
                                                                      2042
                      7
#> 5 ATL
            2013
                           22
                                  2257
                                                   759
                                                              898
                                                                       121
                      7
#> 6 AUS
            2013
                           10
                                  2056
                                                  1505
                                                              351
                                                                      2347
```

Groiuping by more than one variable

```
daily <- flights |>
  group_by(year, month, day)
daily
#> # A tibble: 336.776 × 19
#> # Groups: year, month, day [365]
      year month day dep_time sched_dep_time dep_delay arr_time sched_arr_tim
#>
     <int> <int> <int>
                          <int>
                                          <int>
                                                    <db1>
#>
                                                             <int>
                                                                             <int
      2013
                            517
                                            515
                                                        2
                                                               830
                                                                               81
#> 1
#> 2
     2013
                            533
                                            529
                                                        4
                                                               850
                                                                               83
#> 3 2013
                            542
                                            540
                                                        2
                                                               923
                                                                               85
#> 4 2013
                            544
                                            545
                                                       -1
                                                               1004
                                                                              102
#> 5 2013
                            554
                                            600
                                                       -6
                                                               812
                                                                               83
#> 6
      2013
                            554
                                            558
                                                       -4
                                                               740
                                                                               72
```

Case study

```
batters <- Lahman::Batting |>
 group_by(playerID) |>
 summarize(
   performance = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),
   n = sum(AB, na.rm = TRUE)
batters
#> # A tibble: 20,166 × 3
#> playerID performance
  <chr>
         <dbl> <int>
#>
#> 1 aardsda01 0
#> 2 aaronha01 0.305 12364
#> 3 aaronto01 0.229
                         944
               0
#> 4 aasedo01
#> 5 abadan01 0.0952
                          21
#> 6 abadfe01 0.111
#> # i 20,160 more rows
```

Case study

```
batters |>
  filter(n > 100) |>
  ggplot(aes(x = n, y = performance)) +
  geom_point(alpha = 1 / 10) +
  geom_smooth(se = FALSE)
```


- The variation in performance is larger among players with fewer at-bats.
- There's a positive correlation between skill (performance) and opportunities to hit the ball (n) because teams want to give their best batters the most opportunities to hit the ball.

Finding the best batters

- http://varianceexplained.org/r/empirical_bayes_ baseball/
- https://www.evanmiller.org/ how-not-to-sort-by-average-rating.html

```
#> # A tibble: 317 × 79
#>
    artist
          track
                                date.entered
                                              wk1
                                                   wk2
                                                         wk3
#> <chr> <chr>
                                 <date>
                                         <dbl> <dbl> <dbl> <dbl> <dbl> <dbl
#> 1 2 Pac Baby Don't Cry (Ke... 2000-02-26 87
                                                      82
                                                           72
                                                                77
#> 2 2Ge+her
               The Hardest Part 0... 2000-09-02 91
                                                      87
                                                                NA
                                                           92
                                                                    6
```

#> 3 3 Doors Down Kryptonite 2000-04-08 81 70 68 67 #> 4 3 Doors Down Loser 2000-10-21 76 76 72 69 #> 5 504 Boyz Wobble Wobble 2000-04-15 57 34 25 17 #> 6 98^0 Give Me Just One N... 2000-08-19 51 39 34 26

#> # i 311 more rows

billboard

#> # i 71 more variables: wk6 <dbl>, wk7 <dbl>, wk8 <dbl>, wk9 <dbl>, ...

6

```
billboard |>
 pivot_longer(
    cols = starts_with("wk"),
   names_to = "week",
    values to = "rank"
#> # A tibble: 24.092 × 5
#>
      artist track
                                     date.entered week
                                                         rank
#>
     <chr> <chr>
                                     <date>
                                                  <chr> <dbl>
                                                           87
    1 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk1
#>
   2 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk2
                                                           82
   3 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk3
                                                           72
#>
   4 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk4
                                                           77
#>
#>
   5 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk5
                                                           87
#>
   6 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk6
                                                           94
   7 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk7
                                                           99
#>
   8 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk8
                                                           NA
#>
#>
   9 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  wk9
                                                           NΑ
#> 10 2 Pac
            Baby Don't Cry (Keep... 2000-02-26
                                                  wk10
                                                           NA
#> # i 24.082 more rows
```

```
billboard |>
 pivot_longer(
   cols = starts_with("wk"),
   names_to = "week",
   values to = "rank".
   values_drop_na = TRUE
#> # A tibble: 5.307 × 5
#>
    artist track
                                   date.entered week
                                                      rank
#>
    <chr> <chr>
                                   <dat.e>
                                               <chr> <dbl>
#> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                              wk1
                                                        87
#> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                              wk2
                                                        82
                                              wk3
                                                        72
#> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26
#> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                              wk4
                                                        77
#> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                               wk5
                                                        87
#> 6 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                               wk6
                                                        94
#> # i 5,301 more rows
```

```
billboard_longer <- billboard |>
 pivot_longer(
   cols = starts_with("wk"),
   names to = "week".
   values_to = "rank",
   values_drop_na = TRUE
 ) |>
 mutate(
   week = parse_number(week)
billboard_longer
#> # A tibble: 5.307 × 5
#>
    artist track
                                   date.entered week rank
                                   <date> <dbl> <dbl>
#> <chr> <chr>
#> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                        87
#> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                   2 82
#> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                   3 72
#> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                   4 77
#> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                   5
                                                        87
           Baby Don't Cry (Keep... 2000-02-26
                                                        94
#> 6 2 Pac
#> # i 5.301 more rows
```

```
billboard_longer |>
  ggplot(aes(x = week, y = rank, group = track)) +
  geom_line(alpha = 0.25) +
  scale_y_reverse()
```



```
df <- tribble(
 ~id, ~bp1, ~bp2,
   "A", 100, 120,
   "B", 140, 115,
   "C", 120, 125
df |>
 pivot_longer(
   cols = bp1:bp2,
   names_to = "measurement",
   values to = "value"
#> # A tibble: 6 × 3
#>
    id
          measurement value
#>
    <chr> <chr>
                       <dbl>
#> 1 A
          bp1
                        100
#> 2 A
       bp2
                        120
#> 3 B
       bp1
                        140
#> 4 B
                        115
          bp2
#> 5 C
          bp1
                        120
#> 6 C
          bp2
                        125
```

pivot_longer()

```
df |>
  pivot_longer(
   cols = bp1:bp2,
   names_to = "measurement",
   values_to = "value"
)
```

id	bp1	bp2
Α	100	120
В	140	115
С	120	125

id	name	value
Α	bp1	100
Α	bp2	120
В	bp1	140
В	bp2	115
С	bp1	120
С	bp2	125

pivot_longer()

```
df |>
  pivot_longer(
   cols = bp1:bp2,
   names_to = "measurement",
   values_to = "value"
)
```

id	bp1	bp2
Α	100	120
В	140	115
С	120	125

id	name	value
Α	bp1	100
Α	bp2	120
В	bp1	140
В	bp2	115
С	bp1	120
С	bp2	125

pivot_longer()

```
df |>
  pivot_longer(
   cols = bp1:bp2,
   names_to = "measurement",
   values_to = "value"
)
```

id	bp1	bp2
Α	100	120
В	140	115
С	120	125

id	name	value
Α	bp1	100
Α	bp2	120
В	bp1	140
В	bp2	115
С	bp1	120
С	bp2	125

Many variables in column names

```
who2
\#> \# A tibble: 7,240 \times 58
#>
     country
                  year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554
                                                           <dbl>
#>
     <chr>>
                 <dbl>
                           <dbl>
                                     <dbl>
                                                <dbl>
                                                                     <dbl>
#> 1 Afghanistan 1980
                                         NΑ
                                                   NΑ
                                                              NΑ
                              NΑ
                                                                        NΑ
#> 2 Afghanistan
                  1981
                              NΑ
                                         NΑ
                                                   NΑ
                                                              NΑ
                                                                        NΑ
#> 3 Afghanistan 1982
                              NΑ
                                         NA
                                                   NA
                                                              NA
                                                                        NA
#> 4 Afghanistan 1983
                              NΑ
                                         NΑ
                                                   NΑ
                                                              NΑ
                                                                        NΑ
#> 5 Afghanistan
                  1984
                                         NA
                                                   NA
                                                              NA
                              NΑ
                                                                        NA
#> 6 Afghanistan 1985
                              NA
                                         NA
                                                   NA
                                                              NA
                                                                        NA
#> # i 7.234 more rows
#> # i 51 more variables: sp_m_5564 <dbl>, sp_m_65 <dbl>, sp_f_014 <dbl>, ...
```

Tuberculosis diagnoses

- sp/rel/ep describes the method used for the diagnosis
- m/f is the gender (coded as a binary variable in this dataset)
- 014/1524/2534/3544/4554/5564/65 is the age range (014 represents 0-14, for example)

names_to names_sep values_to

```
who2 |>
        pivot_longer(
                  cols = !(country:year),
                 names_to = c("diagnosis", "gender", "age"),
                 names_sep = "_",
                 values_to = "count"
#> # A tibble: 405,440 × 6
#> country year diagnosis gender age count
                      <chr> <dbl> <chr> <chr< <chr> <chr> <chr> <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <
#>
#> 1 Afghanistan 1980 sp
                                                                                                                                                                                      014
                                                                                                                                                                                                                               NA
                                                                                                                                                      m
                                                                                                                                                      m 1524
#> 2 Afghanistan 1980 sp
                                                                                                                                                                                                                            NA
#> 3 Afghanistan 1980 sp
                                                                                                                                                      m
                                                                                                                                                                                      2534
                                                                                                                                                                                                                           NΑ
#> 4 Afghanistan 1980 sp
                                                                                                                                                      m 3544
                                                                                                                                                                                                                           NA
#> 5 Afghanistan 1980 sp
                                                                                                                                                      m 4554
                                                                                                                                                                                                                            NΑ
#> 6 Afghanistan 1980 sp
                                                                                                                                                      m
                                                                                                                                                                                      5564
                                                                                                                                                                                                                               NΑ
#> # i 405,434 more rows
```

Data in column names

id	x_1	y_2
Α	1	2
В	3	4
С	5	6

id	name	number	value
Α	х	1	1
Α	у	2	2
В	х	1	3
В	у	2	4
С	х	1	5
С	у	2	6

Data and variable names in column header

```
household
#> # A tibble: 5 x 5
    family dob_child1 dob_child2 name_child1 name_child2
     <int> <date>
                     <date>
                                <chr>
                                           <chr>>
#>
         1 1998-11-26 2000-01-29 Susan
                                           Jose
#> 1
#> 2
         2 1996-06-22 NA
                               Mark
                                           <NA>
#> 3
         3 2002-07-11 2004-04-05 Sam
                                           Seth
#> 4 4 2004-10-10 2009-08-27 Craig
                                           Khai
```

5 2000-12-05 2005-02-28 Parker

#> 5

Gracie

.value

```
household |>
 pivot_longer(
   cols = !family,
   names_to = c(".value", "child"),
   names_sep = "_",
   values_drop_na = TRUE
#> # A tibble: 9 × 4
    family child dob
#>
                           name
#>
     <int> <chr> <date> <chr>
#> 1
         1 child1 1998-11-26 Susan
#> 2 1 child2 2000-01-29 Jose
#> 3 2 child1 1996-06-22 Mark
#> 4 3 child1 2002-07-11 Sam
#> 5 3 child2 2004-04-05 Seth
#> 6 4 child1 2004-10-10 Craig
#> # i 3 more rows
```

Data and variable names in header

id	x_1	x_2	y_ <mark>1</mark>	y_2
Α	1	2	3	4
В	5	6	7	8

id	х	у	num
Α	1	3	1
Α	2	4	2
В	5	7	1
В	6	8	2

```
cms_patient_experience
#> # A tibble: 500 x 5
    org_pac_id org_nm
                                                        measure_title prf_rat
#>
                                           measure_cd
                                                                            <db1
#>
     <chr>>
                <chr>>
                                           <chr>>
                                                        <chr>>
#> 1 0446157747 USC CARE MEDICAL GROUP INC CAHPS GRP 1 CAHPS for MIPS...
#> 2 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_2 CAHPS for MIPS...
#> 3 0446157747 USC CARE MEDICAL GROUP INC CAHPS GRP 3 CAHPS for MIPS...
#> 4 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_5 CAHPS for MIPS...
#> 5 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_8 CAHPS for MIPS...
#> 6 0446157747 USC CARE MEDICAL GROUP INC CAHPS GRP 12 CAHPS for MIPS...
#> # i 494 more rows
```

• Each organization is spread over six rows.

• There are only six unique cd/title combinations

```
cms_patient_experience |>
 pivot_wider(
   names_from = measure_cd,
   values_from = prf_rate
#> # A tibble: 500 × 9
#>
    org_pac_id org_nm
                                         measure title CAHPS GRP 1 CAHPS GRP
                <chr>>
#>
     <chr>
                                         <chr>>
                                                                <dbl>
                                                                            <db1
#> 1 0446157747 USC CARE MEDICAL GROUP ... CAHPS for MIPS...
                                                                       63
#> 2 0446157747 USC CARE MEDICAL GROUP ... CAHPS for MIPS...
                                                                       NΑ
#> 3 0446157747 USC CARE MEDICAL GROUP ... CAHPS for MIPS...
                                                                       NA
#> 4 0446157747 USC CARE MEDICAL GROUP ... CAHPS for MIPS...
                                                                       NA
#> 5 0446157747 USC CARE MEDICAL GROUP ... CAHPS for MIPS...
                                                                       NΑ
#> 6 0446157747 USC CARE MEDICAL GROUP ... CAHPS for MIPS...
                                                                       NA
#> # i 494 more rows
#> # i 4 more variables: CAHPS_GRP_3 <dbl>, CAHPS_GRP_5 <dbl>, ...
```

- We still have multiple rows for each organization.
- We need to say which columns have values that uniquely identify each row.

```
cms_patient_experience |>
  pivot_wider(
    id_cols = starts_with("org"),
    names_from = measure_cd,
    values_from = prf_rate
#> # A tibble: 95 x 8
#>
     org_pac_id org_nm
                                 CAHPS GRP 1 CAHPS GRP 2 CAHPS GRP 3 CAHPS GRP
#>
     <chr>
                <chr>
                                        <dbl>
                                                    <dbl>
                                                                 <dbl>
                                                                             <dbl
#> 1 0446157747 USC CARE MEDICA...
                                             63
                                                          87
                                                                      86
#> 2 0446162697 ASSOCIATION OF ...
                                             59
                                                          85
                                                                      83
#> 3 0547164295 BEAVER MEDICAL ...
                                             49
                                                          NA
                                                                      75
#> 4 0749333730 CAPE PHYSICIANS...
                                             67
                                                          84
                                                                      85
#> 5 0840104360 ALLIANCE PHYSIC...
                                             66
                                                          87
                                                                      87
#> 6 0840109864 REX HOSPITAL INC
                                           73
                                                                    84
                                                        87
#> # i 89 more rows
#> # i 2 more variables: CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>
```

pivot_wider

```
df <- tribble(
 ~id, ~measurement, ~value,
  "A",
             "bp1",
                       100,
  "B".
             "bp1", 140,
  "B",
             "bp2", 115,
 "A",
             "bp2", 120,
  "A",
             "bp3",
                    105
df |>
 pivot_wider(
   names_from = measurement,
   values_from = value
#> # A tibble: 2 × 4
#>
    id
            bp1 bp2 bp3
    <chr> <dbl> <dbl> <dbl>
#>
#> 1 A
            100
                 120
                        105
#> 2 B
           140 115
                         NΑ
```

pivot_wider with duplicate rows

```
df <- tribble(
 ~id, ~measurement, ~value,
 "A",
             "bp1", 100,
 "A".
          "bp1", 102,
 "A",
          "bp2", 120,
 "B",
          "bp1", 140,
  "B".
          "bp2", 115
df |>
 pivot_wider(
   names_from = measurement,
   values_from = value
#> Warning: Values from 'value' are not uniquely identified; output will contai
#> list-cols.
. . . .
```