

胡逸同, 2023/11/09

目录

- 1. 目录
- 2. 概述
 - 1. Substrates & Scenarios
 - 2. Evaluation Metrics
- 3. Contest @NeurIPS 23
 - 1. 任务
 - 2. Evaluation Metric
 - 3. Allelopathic Harvests
 - 1. 动作空间
 - 2. 策略 (直觉)
 - 4. Clean Up
 - 1. 动作空间
 - 2. 策略 (直觉)
 - 5. Territory: Rooms

概述

Melting Pot 由 DeepMind 设计/开发,它:

- 关注 MARL 算法在社会情境 (agents 彼此熟悉 or 陌生) 做互动任务 (混合合作/竞争/欺骗等) 的泛化能力
- 集成 50+ 经典游戏 (substrate) , 并为每个 substrate 设计了不同的 scenario (共计 256+)
- 为 MARL 算法提供了 benchmark

具体解释:

- 1. Substrates & Scenarios
- 2. Evaluation Metrics

Substrates & Scenarios

substrate 是世界的物理部分(空间布局、物体的位置/运动方式、物理规则等)

A substrate is an N-player **partially observable** generalsum Markov game (Leibo et al., 2021).

"scenario 是 substrate 参数化后的实例":

A test scenario is a Markov game parameterized by a substrate factory F, a role configuration ${\bf r}$, the focal-population size $N \leq |{\bf r}|$, and a background population of held-out bots g_F .

- background population 是游戏中的 NPC,它们不参与训练,只用于评估
- focal population 是参与训练的 agents

Visualized Substrates

Evaluation Metrics

- focal_player_returns
- focal_per_capita_return
- background_player_returns
- background_per_capita_return

详见论文

Visualized Substrates

Contest @NeurIPS 23

任务

比赛只关注以下 4 个 substrates 和各自对应的 scenarios:

Substrate	Scenarios	Sum
allelopathic_harvestopen	allelopathic_harvestopen_0-2	3
clean_up	clean_up_2-8	7
prisoners_dilemma_in_the_matrixarena	prisoners_dilemma_in_the_matrixarena_0-5	6
territoryrooms	territoryrooms_0-3	4

Evaluation Metric

- 参赛者提交 4 组群体 (agents) , 分别对应 4 个 substrate。
- 对于每个 substrate,在其 scenario 中评估 agents,计算 focal_per_capita_return。
 - 对各 scenario 的得分做平均,得到该 substrate 的得分。
- 为了在不同 scenario 间保持评估的一致性,基于 MP2.0 的 baseline 范围,对 *focal_per_capita_return* 做标准化:

Normalized Focal Per Capita Return $=\frac{\text{Focal Per Capita Return-Min Baseline Score}}{\text{Max Baseline Score-Min Baseline Score}}$ 其中:

- Focal Per Capita Return 是参赛者提交的 agents 在特定 substrate 中的 focal_per_capita_return。
- Max/Min Baseline Score 是 baseline 在该 substrate 所有 scenario 中的最高/低得分。

Note: 参赛者的得分可以超出 [0-1] (可能比 baseline 更好/更差)

■ 对 4 个 substrate 的得分做平均,得到参赛者的最终得分(排名)。

Allelopathic Harvests

简介

- 1. 有3种浆果:红、绿、蓝, agent 可以种任何果
- 2. 某浆果占比越多, 其生成速度越快, 二者线性正相关
- 3. agent 可以吃任何果 (浆果成熟后) 获得奖励
- 4. agent 可以杀任何其他 agents

Rreward

对于每个 agent	
Event	Rreward
吃红果	2
吃绿 or 蓝果	1
被杀	-10

动作空间

`SPACE`

```
      a = ['W', 'A', 'S', 'D', 'Q', 'E', '1', '2', '3', 'SPACE']

      按键
      动作

      `W` / `A` / `S` / `D` 移动 (碰到果自动吃)

      `Q` / `E`
      左/右转

      `1` / '2` / `3`
      种下红/绿/蓝果
```

发射 zapper (AOE) ,第一次索敌(会标记上X),第二次击杀

`TAB` **换人**

- | 1. `W` / `A` / `S` / `D` & `SPACE` & `1` / `2` / `3` 可能会被其他 agents 阻挡
- 2. 被击杀的 agent 会在随机位置复活

策略 (直觉)

- 1. start-up problem
- 2. free-rider problem
- 3. 尽量避免击杀, 扣分太多
- 4. 守着自己的果园,不要去别人的果园?

Clean Up

简介

- 1.7人游戏,目标是收集苹果
- 2. 果园中苹果的生长速度与附近河流的清洁度成反比
- 3. 河流以恒定速度积累污染,污染超过阈值后,苹果停止生长
- 4. agent 可以清理河流 (AOE)
- 5. agent 可以击杀其他 agents (AOE) , 被击杀的 agent 50 步后复活

TODO

谁的 50 步? 击杀者的 50 步启,被击杀者复活在哪里?

收苹果的 reward 是多少?

Reword (对于每个 agent)

Event Rreward

收苹果

动作空间

a = ['W', 'A', 'S', 'D)', 'Q', 'E', '1', '2']
按键	动作
`W`/`A`/`S`/`D`	移动 (碰到果自动收)
`Q`/`E`	左/右转
`1`	一击必杀 agent (AOE)
`2`	清理河流(AOE)
`TAB`	换人

策略 (直觉)

- 1. public good provision problem
- 2. 清理河流工作量很大, 但是收益是共享的
- 3. 主要是合作, 要合理分配清理和收果
- 4. 避免击杀: 地方大, 人多, 击杀的收益不大

Territory: Rooms

- 1. 认领领地,碰到墙自动认领资源,100 timesteps 后资源激活,以每时间步 0.01 的比率随机向领取资源的玩家提供奖励
- 2. agent 可以拆墙 (AOE) , 拆墙后墙消失, 墙上的 资源消失
- 3. agent 可以击杀其他 agents (AOE) ,被击杀的 agent 永久消失

Reword (对于每个 agent)

Event	Rreward
资源被激 活	每时间步 0.01 的比率随机向资源所属 agent 提供奖励
被击杀	清零

动作空间

a = ['W', 'A', 'S', 'D', 'Q', 'E', 'SPACE']	
按键	动作
`W`/`A`/`S`/`D`	移动
`Q`/`E`	左/右转
`SPACE`	攻击(AOE),类似 allenlopathic_harvest,两步操作
`TAB`	换人

策略 (直觉)

- 1. 一旦有人拆墙, 就会引发连锁反应, 大家都会拆墙
- 2. 拆墙后,资源被激活,但是资源是随机分配的,所以拆墙后,资源可能被其他人拿走

运行指南

- 1. 环境设置
- 2. 动手体验游戏
- 3. Training, Evaluation and Visualization

环境设置

```
conda activate mpc_main \
&& cd ~/Projects/Melting-Pot-Contest-2023 \
&& substrate=(pd_arena al_harvest clean_up territory_rooms) \
&& path=(./results/torch/${substrate[0]}/PPO_meltingpot_a0cbb_00000_0_2023-10-31_14-20-46 \
./results/torch/${substrate[1]}/PPO_meltingpot_b833f_00000_0_2023-10-31_14-50-03 \
./results/torch/${substrate[2]}/PPO_meltingpot_086de_00000_0_2023-10-31_15-06-37 \
./results/torch/${substrate[3]}/PPO_meltingpot_18d19_00000_0_2023-10-31_15-07-04) \
&& n=0
```

n	Substrate
0	pd_arena
1	al_harvest
2	clean_up
3	territory_rooms

动手体验游戏

```
# allelopathic_harvest_open
python meltingpot/human_players/play_allelopathic_harvest.py

# clean_up
python meltingpot/human_players/play_clean_up.py

# prisoners_dilemma_in_the_matrix_arena
python meltingpot/human_players/play_anything_in_the_matrix.py --level_name=prisoners_dilemma_in_the_matrix_arena

# territory__rooms
python meltingpot/human_players/play_territory.py
```

Training, Evaluation and Visualization

1. Training (baseline)

```
python baselines/train/run_ray_train.py --exp=${substrate[$n]}
# python baselines/train/run_ray_train.py --exp=${substrate[$n]} --as-test=True
```

Note: 默认使用远程 Ray 服务器

2. Evaluation

```
python baselines/evaluation/evaluate.py \
--config_dir=${path[$n]} \
--policies_dir=${path[$n]}/checkpoint_000001/policies
```

BUG: 无法创建场景视频 (未解决)

```
--create_videos=True --video_dir='./results/videos'
# 报错:
# OpenCV: FFMPEG: tag 0x30397076/'vp90' is not supported with codec id 167 and format 'webm / WebM'
```

3. Visualization

```
python baselines/train/render_models.py \
--config_dir=${path[$n]} \
--policies_dir=${path[$n]}/checkpoint_000001/policies
```

References

- 1. AlCrowd | Melting Pot Contest (MPC)
- 2. GitHub | MPC Bassline
- 3. Github | MP 2.0
- 4. arXiv | MP 2.0 Tech. Report

Thank you!

胡逸同, 2023/11/09