Подробнее про дополнительный код отрицательного числа

- Образуется из решения уравнения x + a = 0, где x дополнительный код числа -a, a положительное число
- Если a = 5 (101b), то x = 0 5:

	 *	*	*	*	
	 0	0	0	0	0
Дополнительный код —	 0	0	1	0	1
числа -5 =>	 1	1	0	1	1

Преобразование отрицательного числа в дополнительный код

- Ограниченная разрядная сетка из N двоичных разрядов содержит 2^N доступных кодов
- Все коды со старшим разрядом = 1 отводятся под отрицательные числа
- Код 0...000 отводится под 0
- Оставшиеся коды отводятся под положительные числа

Преобразование отрицательного числа в дополнительный код

- Формула для получения дополнительного кода произвольного отрицательного числа x: $x_{comp} = \sim |x| + 1$
- Берется код модуля числа
- Инверсией разрядов код переводится в область разрядов со старшим единичным разрядом
- Из-за несимметричности распределения положительных и отрицательных чисел по кодам (из-за наличия нуля), при инверсии получится код (и число) на 1 меньше искомого, поэтому к результату прибавляется 1

Беззнаковое сложение

- Беззнаковое n-битное число может принимать значения от 0 до 2ⁿ – 1
- При сложении n-битных чисел переполнение произойдет, если результат сложения превышает число $2^n 1$
- Переполнение можно обнаружить, если следить за переносом бита из наиболее значимого разряда двоичного числа
- По умолчанию в SV переменные являются беззнаковыми

```
logic [3:0] a, b, c;
logic [4:0] c_ext;
assign a = 4'b1000;  // 8
assign b = 4'b1001;  // 9
assign c = a + b;  // 4'b0001
assign c ext = a + b; // 5'b10001
```

Знаковое сложение

- В случае знаковых чисел старший разряд означает знак числа
- n-битное знаковое число может принимать значения от -2ⁿ⁻¹ до 2ⁿ⁻¹-1
- При сложении n-битных чисел переполнение произойдет, если результат больше чем $2^{n-1} 1$ или меньше чем -2^{n-1}
- Сложение положительного и отрицательного чисел никогда не приводит к переполнению
- Признаком переполнения является ситуация, когда после сложения двух чисел с одинаковым знаком, знаковый бит суммы не совпадает со знаковыми битами слагаемых

```
logic signed [3:0] a, b, c;
logic [4:0] c_ext;
assign a = 4'b1000;  // -8
assign b = 4'b1001;  // -7
assign c = a + b;  // 4'b0001
assign c_ext = a + b; // 5'b10001 // -15
```

- Разрядность операндов расширяется или усекается в зависимости от разрядности результата
- При увеличении разрядности операндов старшие разряды приобретают значения, зависящее от их интерпретации (для знаковых происходит расширение знакового разряда, для беззнаковых дополнение нулями)
- Производится "обычная" операция сложения (т.е. на саму операцию не влияет знаковость/беззнаковость операндов)

```
logic signed [3:0] a, b;
logic [4:0] c;
assign a = 4'b0111; // 7
assign b = 4'b1001; // -7
assign c = a + b; // 5'b00000
logic [3:0] a, b;
logic [4:0] c;
logic [4:0] c s;
assign a = 4'b01111;
                              // -7
assign b = 4'b1001;
assign c = a + b;
                            // 5'b10000
assign c s = \$signed(a) + \$signed(b); // 5'b000000
```

Сложение

- Для корректного представления результата сложения, разрядность результата должна быть на один бит больше операнда с наибольшей разрядностью
- Операнды для арифметических операций рекомендуется объявлять с ключевыми словами signed или unsigned

Умножение чисел

- Умножение двоичных чисел аналогично десятичному умножению, но производится с единицами и нулями
- В обоих случаях формируются частичные произведения путем умножения отдельных разрядов 1го множителя на весь 2й множитель
- Результат умножения получается путем сложения сдвинутых частичных произведений

Умножение чисел

- При умножении чисел разрядностей N₁ и N₂ результат в общем случае имеет разрядность N₁+ N₂
- При умножении двух N-разрядных чисел получается 2N-разрядный результат
- Умножение одного разряда двоичных чисел равносильно операции И
- N-разрядным операндам соответствуют N частичных произведений и N-1 каскадов сумматоров

Беззнаковое умножение

$$\begin{split} X &= x_{n-1}, x_{n-2}, \dots, x_0 & Y &= y_{n-1}, y_{n-2}, \dots, y_0 \\ M &= X \times Y = m_{2n-1}, m_{2n-2}, \dots, m_0 = \sum_{i=0}^{N-1} P_i \times 2^i = \sum_{i=0}^{N-1} (x_{n-1}, x_{n-2}, \dots, x_0) \times y_i \times 2^i \\ P_i &= p_{n-1}, p_{n-2}, \dots, p_0 = (x_{n-1}, x_{n-2}, \dots, x_0) \times y_i = x_{n-1} y_i, x_{n-2} y_i, \dots, x_0 y_i \end{split}$$

 2^i – вес разряда y_i

 P_i – частичное произведение

 $p_{i} = x_{j}y_{i} = x_{j} \& y_{i}$ — элементарные произведения

j – номер разряда X

Беззнаковое умножение

Беззнаковый 8-битный умножитель

$$\begin{split} M &= P_7 \times 2^7 + P_6 \times 2^6 + P_5 \times 2^5 + P_4 \times 2^4 + P_3 \times 2^3 + P_2 \times 2^2 + P_1 \times 2^1 + P_0 \times 2^0 = \\ & (P_7 \times 2^1 + P_6 \times 2^0) \times 2^6 + (P_5 \times 2^1 + P_4 \times 2^0) \times 2^4 + \\ & + (P_3 \times 2^1 + P_2 \times 2^0) \times 2^2 + (P_1 \times 2^1 + P_0 \times 2^0) \times 2^0 = \\ & [(P_7 \times 2^1 + P_6 \times 2^0) \times 2^2 + (P_5 \times 2^1 + P_4 \times 2^0) \times 2^0] \times 2^4 + \\ & + [(P_3 \times 2^1 + P_2 \times 2^0) \times 2^2 + (P_1 \times 2^1 + P_0 \times 2^0) \times 2^0] \times 2^0 \end{split}$$

Беззнаковый 8-битный умножитель

Знаковое умножение

$$X = x_{n-1}, x_{n-2}, ..., x_0 = x_{n-1} \times (-2^{n-1}) + x_{n-2} \times 2^{n-2} + ... + x_1 \times 2^1 + x_0 \times 2^0$$

• Знаковый разряд имеет вес -2ⁿ⁻¹

$$M = X \times Y = m_{2n-1}, m_{2n-2}, ..., m_0 = \sum_{i=0}^{N-2} P_i \times 2^i - P_{N-1} \times 2^{N-1} =$$

$$= \sum_{i=0}^{N-1} (x_{n-1}, x_{n-2}, ..., x_0) \times y_i \times 2^i - (x_{n-1}, x_{n-2}, ..., x_0) \times y_{N-1} \times 2^{N-1}$$

- Перед сложением разрядность частичных произведений расширяется до разрядности результата с расширением знакового разряда
- Последнее частичное произведение вычитается из общей суммы

Знаковое умножение

						X _{n-1}	<i>X</i> _{n-2}		<i>X</i> ₂	X ₁	X ₀	X	
					:	× y _{n-1}	y n-2		y ₂	y 1	y o	Y	
+	$X_{n-1}Y_0$	$X_{n-1}y_0$	X _{n-1} y ₀	$X_{n-1}Y_0$	<i>X</i> _{n-1} <i>y</i> ₀	$X_{n-1}y_0$	$X_{n-2}Y_0$		<i>X</i> ₂ <i>y</i> ₀	<i>X</i> ₁ <i>Y</i> ₀	$x_0 y_0$	$P_0 2^0$	
+	$X_{n-1}Y_1$	$X_{n-1}y_1$	$X_{n-1}y_1$	$X_{n-1}Y_1$	$X_{n-1}Y_1$	$X_{n-2}y_1$		X_2Y_1	X_1Y_1	x_0y_1		$P_1 2^1$	
•	$X_{n-1}Y_2$	$X_{n-1}y_2$	$X_{n-1}Y_2$	<i>X</i> _{n-1} <i>y</i> ₂	$X_{n-2}Y_2$		$X_2 y_2$	X_1Y_2	$X_0 Y_2$			$P_2 2^2$	
_	•••	•••											
	$X_{n-1}Y_{n-1}$	$X_{n-1}Y_{n-1}$	$X_{n-2}Y_{n-2}$	1	<i>X</i> ₂ <i>y</i> _{n-1}	X 1 Y n-1	X ₀ y _{n-1}					P_{n-1} 2	
	m_{2n-1}	m_{2n-2}	m_{2n-3}			m_n	m_{n-1}		m_2	m_1	m_0	M	

Примеры

11

9

Беззнаковое умножение

Знаковое умножение

Знаковый 8-битный умножитель

SEn - расширение знакового разряда на n бит

Конвейерный беззнаковый 8-битный умножитель

Литература

- Дэвид М. Хэррис, Сара Л. Хэррис: "Цифровая схемотехника и архитектура компьютера"
- Кузин А.А.: Презентация к лекциям по дисциплине "Аппаратные средства ЦОС"