CS 6041 Theory of Computation

Pushdown Automata

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Pushdown Automata (PDA)

Pushdown Automata (PDA)

 Pushdown automatas are equivalent in power to context-free grammars (PDA=CFG)

PDA can recognize some nonregular languages

What does PDA look like?

finite automaton

Memory = 1

pushdown automaton

Memory = N

What does PDA looks like?

Pushdown automata has more memories than finite automata

PDA = finite automata + A stack (unlimited size)

Stack operation

Push: add to the top of stack

Stack operation

Pop: remove from the top of stack

Informal description for PDA to recognize some languages

- $A = \{0^n1^n \mid n \ge 0\}$
- Read symbols from input
 - Operation
 - For every 0s, push 0 into stack
 - When read 1s, pop one 0 from stack for every 1
 - Determine accept/reject:
 - When finish reading string and there is no 0s in stack, accept;
 - ▶ When there exist 0s after 1s, reject.
 - When tape is not finished while the stack is empty, reject;
 - When tape finished while the stack is non-empty, reject;

Informal description for PDA to recognize some languages

- L = {w | w has some features}
- Read symbols from input
 - STEP1: regular?
 - If the language is regular, do not need to use stack; if not regular, define operations on stack
 - STEP2: define operations:
 - When to push
 - When to pop
 - STEP 3: determine accept/reject:
 - Under which cases, accept
 - Under which cases, reject

- L1={w| w has at least three 1s}
 - This set is regular $(\Sigma^*1\Sigma^*1\Sigma^*1\Sigma^*)$, so the PDA doesn't even need to use its stack.
 - The PDA scans the string and uses its finite control to maintain a counter which counts up to 3. The PDA accepts the moment it sees three ones.

Single read-only input tape

 q_i : No 1s; one 1; two 1s; three and more 1s;

- L2={w| w starts and ends with the same symbol}
 - This set is regular, so the PDA doesn't even need to use its stack.
 - The PDA scans the string and keep track of the first and last symbol in its finite control. If they are the same, accepts.

- L3={w| w has more 1s than 0s}
 - This set is not regular.
 - The PDA scans across the input.
 - POP: If it sees a 1 and its top stack symbol is a 0, it pops the stack.
 Similarly, if it scans a 0 and its top stack symbol is a 1, it pops the stack.
 - ▶ PUSH: In all other cases, it pushes the input symbol onto the stack.
 - After it scans the input, if there is a
 1 on top of the stack, it accepts.

 Otherwise it rejects.

Single read-only input tape

- L4=Ø
 - Just reject.

Single read-only input tape

Definition of PDA (non-deterministic)

- PDA M=(Q, Σ , Γ , δ ,q₀,F), where
 - 1) Q: set of states
 - 2) Σ : input alphabet, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
 - 3) Γ : stack alphabet, $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$
 - 4) $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(Q \times \Gamma_{\varepsilon})$, transition function
 - 5) $q_0 \in \mathbb{Q}$: start state
 - 6) F⊆Q: accept state set

PDA vs. NFA

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta : Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta : Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Computation on PDA

• $M=(Q,\Sigma,\Gamma,\delta,q_0,F);$ $input w=w_1w_2...w_m,$ $w_i \in \Sigma_{\epsilon}$

Computation: (state, stack)

$$(r_0,s_0), (r_1,s_1), ..., (r_m,s_m),$$

Where $r_i \in Q$, $s_i \in \Gamma^*$, satisfying
1) $(r_0,s_0)=(q_0,\epsilon);$

At first, the first state is q_0 and stack is empty

2)
$$(r_{i+1},b) \in \delta(r_i,w_{i+1},a);$$

where s_i =at; s_{i+1} =bt,
 $a,b \in \Sigma_{\epsilon}$,

After input w_{i+1} , state changes from r_i to r_{i+1} and the top element in stack changes from a to b

 $t \in \Gamma^*$ (t are other elements in stack)

Computation on PDA

Accept of computation:

3)
$$r_m \in F$$
;

M accepts w:

M is at accept states after input of w

The language that M accepts:

$$L(M) = \{ x \mid M \text{ accepts } x \}$$

- L = $\{0^n1^n \mid n \ge 0\}$
- $M_1 = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, \$\}, \delta, q_1, \{q_1, q_4\})$

Can you explain what this PDA means?

PDA M=(Q,Σ,Γ,δ,q₀,F), where 1) Q: set of states 2) Σ: input alphabet, $Σ_ε=Σ ∪ {ε}$ 3) Γ: stack alphabet, $Γ_ε=Γ ∪ {ε}$ 4) δ: $Q \times Σ_ε \times Γ_ε \rightarrow P(Q \times Γ_ε)$, transition function 5) $q_0 ∈ Q$: start state 6) F ⊆ Q: accept state set

• $L = \{0^n 1^n \mid n \ge 0\}$

We only put 0 or \$ into stack

• $M_1 = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, \$\}, \delta, q_1, \{q_1, q_4\})$

• $M_1 = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, \$\}, \delta, q_1, \{q_1, q_4\})$

stack

• $M_1 = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, \$\}, \delta, q_1, \{q_1, q_4\})$

- $L = \{0^n 1^n \mid n \ge 0\}$
- $M_1 = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, \$\}, \delta, q_1, \{q_1, q_4\})$

• L = $\{0^n1^n \mid n \ge 0\}$

• $M_1 = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, \$\}, \delta, q_1, \{q_1, q_4\})$

ε ε ε ε ε

stack

•
$$L = \{0^n1^n \mid n \ge 0\}$$

• $M_1 = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, \$\}, \delta, q_1, \{q_1, q_4\})$

If input is 0, (q_2, ϵ) changes to $(q_2, 0)$ ϵ in stack change to 0 (PUSH 0)

 δ : Q×Σ_ε×Γ_ε→P(Q×Γ_ε)

δ table

Q

	<u> </u>									
Input		0			1			3		
sta	ack	0	\$	3	0	\$	3	0	\$	3
state	q_1	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	$\{(q_2,\$)\}$
	q_2	Ø	Ø	$\{(q_2,0)\}$	$\{(q_3,\epsilon)\}$	Ø	Ø	\Diamond	Ø	Ø
	q_3	Ø	Ø	Ø	$\{(q_3, \epsilon)\}$	Ø	Ø	Ø	$\{(q_4,\epsilon)\}$	Ø
	q_4	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

 δ graph

 δ table

Input		0			1			3			
sta	ack	0	\$	3	0	\$	3	0	\$	3	
	q_1	Ø	Ø	Ø	Ø	Ø	Ø	\boxtimes	Ø	$\{(q_2,\$)\}$	
state	q_2	Ø	Ø	$\{(q_2,0)\}$	$\{(q_3,\epsilon)\}$	Ø	Ø	Ø	Ø	Ø	
ate	q_3	Ø	Ø	Ø	$\{(q_3,\epsilon)\}$	Ø	Ø	Ø	$\{(q_4,\epsilon)\}$	Ø	
	q_4	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	

- $L(M_2)=\{a^nb^nc^m | m,n\geq 0\}$
 - Operation:
 - ☐ For an input a, and push a into stack
 - ☐ For an input b, pop one a from the stack
 - Determine accept/reject
 - □ If the stack is empty when finish reading b, then after reading all the cs, accept;
 - □ Otherwise, reject;

aaa...a bbb...b ccc...c

• $L(M_2)=\{a^nb^nc^m | m,n\geq 0\}$

X,Y->Zx: input y->z: the top of stack changes

- $L(M_2)=\{a^nb^nc^m | m,n\geq 0\}$
 - Operation:
 - ☐ For an input a, and push a into stack
 - ☐ For an input b, pop one a from the stack
 - Determine accept/reject
 - ☐ If the stack is empty when finish reading b, then after reading all the cs, accept;
 - Otherwise, reject;

Can you define the transitions x,y->z?

 $X, Y \longrightarrow Z$

stack

3

• $L(M_2)=\{a^nb^nc^m | m,n\geq 0\}$

stack

• $L(M_2)=\{a^nb^nc^m | m,n\geq 0\}$

- $L(M_2)=\{ a^nb^mc^n | m,n\geq 0 \}$
 - Operation:
 - ☐ For an input a, and push a into stack
 - ☐ After reading some bs, every time, for an input c, pop one a from the stack
 - Determine accept/reject
 - □ If the stack is empty when input is done, accept;
 - □ Otherwise, reject.

• $L(M_2)=\{a^nb^mc^n| m,n\geq 0\}$

x,y->z x: input y->z: the top of stack changes

- $L(M_2)=\{ a^nb^mc^n | m,n\geq 0 \}$
 - Operation:
 - ☐ For an input a, and push a into stack
 - □ After reading some bs, every time, for an input c, pop one a from the stack
 - Determine accept/reject
 - □ If the stack is empty when input is done, accept;
 - □ Otherwise, reject.

• $L(M_2)=\{a^nb^mc^n|m,n>0\}$

- L(M₃)={ w | w contains at least three 1s}, input = {0, 1}
 - ▶ Input : 001101
 - □ Output : Accepted
 - ▶ Input : 100010
 - □ Output : Not Accepted
 - Regular language
 - \square Does not need the stack, $\varepsilon \rightarrow \varepsilon$

L(M₃)={ w| w contains at least three 1s}, input =
 {0, 1}

What are the states?

L(M₃)={ w| w contains at least three 1s}, input =
 {0, 1}

 q_1

 q_4

- Palindromes:
- Examples:
 - NOON
 - 123321
 - abba

111...0 0...111 q₂ q₃ c

Palindromes:

 q_1

abc...z

n_a

 q_4

• Palindromes:

Kennesaw State University

 q_1

abc...z

ے...د م

 q_4

• Palindromes:

 q_1

abc...z

z...cba

 q_3

 q_4

Palindromes:

Conclusion

What is pushdown automata (PDA)?

How to use PDA to recognize some CFL? Informal description

• Definition of PDA M=(Q, Σ , Γ , δ ,q₀,F)

• PDA examples, δ : x, y \rightarrow z

PUSH z: x, $\varepsilon \rightarrow z$

POP z.: $x, z \rightarrow \varepsilon$