Dynamics of Droplet-Droplet and Droplet-Film Collision

C. K. Law

Princeton University

The physical phenomena of droplet-droplet and droplet-film collision in the head-on orientation were studied experimentally and computationally, with emphasis on the transition between bouncing and merging of the liquid surfaces. Experimentally, the droplets (~300 µm diameter) were generated using the ink-jet printing technique, and imaged using stroboscopy and high-speed cine-photography for the droplet-droplet and droplet-film collision events respectively. Computationally, the collision event was simulated using the front-tracking technique.

For the study of droplet-droplet collision, the instant of merging was experimentally determined and then used as an input in the computational simulation of the entire collision event. The simulation identified the differences between collision and merging at small and large Weber numbers, and satisfactorily described the dynamics of the interdroplet gap including the role of the van der Waals force in effecting surface rupture.

For the study of droplet-film collision, extensive experimental mapping showed that the collision dynamics is primarily affected by the droplet Weber number (*We*) and the film thickness scaled by the droplet radius (*H*), that while droplet absorption by the film is facilitated with increasing droplet Weber number, the boundary of transition is punctuated by an absorption peninsula, in the *We-H* space, within which absorption is facilitated for smaller Weber numbers. Results from computation simulation revealed the essential dependence of the collision dynamics on the restraining nature of the solid surface, the energy exchange between the droplet and the film, and the coherent motion of the gas-liquid interfaces. Partial absorption with the emission of a secondary droplet of smaller size was also observed and explained.

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 22 JUN 2004			3. DATES COVERED				
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER					
Dynamics of Dropl	5b. GRANT NUMBER						
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
				5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University				8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITO	9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONY			ONITOR'S ACRONYM(S)			
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited							
	OTES 93, International Sy une 2005., The origi			ndamentals H	leld in Istanbul,		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER 19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 18	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Dynamics of Droplet-Droplet and Droplet-Film Collision

C. K. Law, Princeton University

International Symposium on Energy Conversion Fundamentals June 21-25, 2004, Istanbul, Turkey

Practical Relevance

- Droplet-droplet collision:
 - Spray processes
 - Rain drop formation
 - Model for nuclear fusion
- Droplet-surface collision:
 - Spray impingement on surface of combustion chamber
 - Raindrop interaction with ocean and soil
 - Meteorite impaction
 - Ink-jet printing
 - Spray-painting/coating

Fundamental Interests

- Dynamics of deformable bodies
- Large deformation implies nonlinear dynamics
- Many decades of length scales:
 - Droplet size: 10 ~ 10³ μm
 - Molecular force distance: 10⁻² μm
- Wide range of physical regimes:
 - Continuum flows
 - Rarefied flows
 - van der Waals force
- Computationally & experimentally challenging
- Description of state of merging

Dynamics of Droplet-Droplet Collision

Time (ms)	Regime I	Time (ms)	Regime II
0	00	. 0	00
0.50	00		ထ
1.05	•		©
	•	0.40	AA
1.45	•		$\boldsymbol{\omega}$
2.05 .	0	0.75	00
2.65	0		00
4.20	0	1.05	0 0
U (m/s)	0.14	1.0 mm	0.64

Time (ms) Regime III Time (ms) Regime IV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
0.05 0.10 0.15 0.15 0.20 0.25 0.85 0.85 0.140 0.45 0.40 0.40 0.50 0.85 0.85 0.85 0.80 0.80 0.80 0.8	Regime IV	Time (ms)	Regime III	Time (ms)	
1.10	00	0	00	0	
0.15 0.20 \$\frac{1}{3}\$ 0.25 \$\frac{1}{3}\$ 0.60 \$\frac{1}{3}\$ 0.85 \$\frac{1}{3}\$ 0.140 \$\frac{1}{3}\$ 0.145 \$\frac{1}{3}\$ 0.25 \$\frac{1}{3}\$ 0.26 \$\frac{1}{3}\$ 0.27 \$\frac{1}{3}\$ 0.28 \$\frac{1}{3}\$ 0.29 \$\frac{1}{3}\$ 0.20 \$	•	0.10	ထာ	0.05	
0.25 \$ 0.60 \$ 0.85 \$ 0.60 \$ 0.85 \$ 0.85 \$ 0.60 \$ 0.85 \$ 0.60 \$ 0.85 \$ 0.60 \$ 0.85 \$ 0.	•	0.15		1.10	
0.85	9	0.20	•	0.15	
1.50 1.40 \longrightarrow 0 1.50 \bigcirc 1.45 \bigcirc 0 1.45 \bigcirc 2.30	6	0.60	\$	0.25	
1.50° 1.45 • • • • • • • • • • • • • • • • • • •	00		0	0.85	
1.50 1.45 • • • • • • • • • • • • • • • • • • •	0 -0	1.40	0		
<u> </u>	0 · 0	1.45	0		
	2.30	0 1.0 mm	1.24	U (m/s)	

Computational Simulation

 Front tracking method of Tryggvason & immersed boundary method of Peskin

Continuum formulation

$$\frac{\partial(\rho \mathbf{V})}{\partial t} + \nabla \cdot (\rho \mathbf{V} \mathbf{V}) = -\nabla p + \mathbf{g} + \nabla \cdot \frac{1}{Re} (\nabla \mathbf{V} + \nabla \mathbf{V}^{\mathrm{T}}) - \frac{8}{We} \int_{\Delta s} \kappa \mathbf{n} \, \delta(\mathbf{r} - \mathbf{r}_{\mathrm{f}}) da$$

Dynamics of Colliding Interfaces

Matched Instant of Merging

- Identify experimental instant of curvature reversal of interface cusp as state of surface rupture
- Use this instant in simulation
- Close agreement with experimental images

Mis-Matched Instants of Merging

Advanced rupture

Delayed rupture

Surface Rupture Induced by Molecular Force (1/3)

• To effect surface 0.012 rupture, add van der Waals force in formulation: A/ $(6\pi\delta^3)$ 0.008

Simulation shows
 divergence of
 interface for certain A

 Adjust A to agree with empirical instant of rupture

Surface Rupture Induced by Molecular Force (2/3)

- Soft merging occurs late in collision, at rim
- Hard merging occurs early in collision, at rim

Surface Rupture Induced by Molecular Force (3/3)

- Augmented Hamaker constant is 10³ to 10⁶ larger than the real one
- Implying the interfacial gap width from simulation is one to two orders too large
- Consistent with:
 Simulated gap width ~ 10⁻¹ μm
 van der Waals force range ~ 10⁻³ 10⁻² μm

Missing Physics

- Additional physics needed so that the interface can reach the range of the molecular force
- Need rarefied flow treatment
- Need variable density treatment
- Computationally challenging
- Possibly described through analysis

Dynamics of Droplet-Film Collision

(Thin film)

- (a) Bouncing
- (b) Partial absorption
- (c) Total absorption

Dynamics of Droplet-Film Collision

(Thick film)

- (a) Bouncing
- (b) Partial absorption
- (c) Total absorption

Regime Diagram of Droplet-Film Collision

 Controlling parameters: Weber number & film thickness (H=h/R)

 Existence of merging peninsula around H≈1

 Existence of triple reversal in absorption & bouncing with increasing H

Factors Affecting Bouncing vs Absorption

- Solid surface restrains droplet motion
- Impact inertia narrows interfacial gap
- Droplet flattening increases resistance
- Droplet deformation increases viscous loss
- Energy transfer to film
- Oscillatory resonance around H ≈ 1

Summary

- Instant of droplet merging can be empirically determined and used to simulate complete droplet collision sequence
- Surface rupture can be induced through an augmented van der Waals force
- Proper description of interfacial dynamics, allowing for rarefied flow and variable density, is essential
- For droplet-film collision, existence of merging peninsula around H ≈ 1

