数学建模论文排版

摘要

这里写摘要,国赛论文摘要要求是一页最好,不要多也不要太少。 **关键词:** Fisher 精确检验 多元线性回归 系统聚类 灰色关联分析

一、问题重述

问题重述部分正文

二、问题分析

2.1 问题一的分析

这里是第一段的内容。

- 2.2 问题二的分析
- 2.3 问题三的分析

三、基本假设与符号说明

3.1 基本假设

- 假设理论物理跟泵不存在;
- 假设数据中未填写的数据项为 0;
- 假设所提供的数据准确无误;
- 不考虑因检验手段等原因对数据值的影响。

3.2 符号说明

符号	含义
W_{j}	基站 j 的服务量
m_{j}	第 j 个基站的成本
W	最大的总服务量
p_{i}	选择该基站
q_i	不选择该基站
S_{i}	数据到簇中心的平均距离
δ	时间复杂度
T_{i}	模拟退火温度控制参数
R_{ij}	相似度衡量值

四、问题一模型的建立与求解

图 1 问题一的流程图

我们初始对铅钡玻璃聚类分析时,直接用 14 组化学成分作为聚类指标,可结果不如人意。这种结果是显然的,在数据可视化阶段就容易发现。为使聚类分析得以顺利进行,应首先选择可以进行亚分类的主要化学成分。下面首先说明聚类分析具体步骤,后分别对未风化的高钾和铅钡玻璃进行系统聚类。

4.1 模型的建立

step1: 确定母序列和子序列

step2: 对各指标赋以权重

step3: 计算灰色关联系数

- 4.2 模型的求解
- 4.3 结果展示

(a) 错误 1 (b) 错误 2

图 2 执行过程中可能出现的错误

(a) 乐观锁 (b) 悲观锁

图 3 乐观锁和悲观锁的插图

(a) 狗狗 1 (b) 狗狗 2 (c) 狗狗 3

图 4 多狗三行并排示例

4.4 表格的展示

欧式距离	门限小于 10	欧式距离	门限小于 10	欧式距离	门限小于 10
66	1486	922	834	2538	787
67	1486	921	834	2537	787
177	1486	834	752	2441	701
187	1486	827	745	2432	694
284	1486	755	680	2348	625
309	1486	738	664	2326	609
1400	1486	790	866	1499	841
1418	1486	803	880	1488	857
1419	1486	804	881	1488	857
1464	1486	838	917	1461	895
1483	1486	853	933	1450	912
1554	1486	909	992	1411	973
1571	1486	923	1007	1402	988
1582	1486	932	1016	1397	998
1584	1486	934	1018	1396	1000
1610	1486	955	1040	1382	1023
1611	1486	956	1041	1382	1024
1615	1486	959	1045	1380	1027
1618	1486	962	1047	1378	1030
1624	1486	967	1052	1375	1035

表 1 卡方检验表

	值	自由度	渐进显著性	精确显著性	精确显著性	(単侧)
皮尔逊卡方	6.880	1	0.009			
连续性修正	5.452	1	0.020			
似然比	6.889	1	0.009			
费希尔精确检验				0.011	0.010)
有效个案数	58					

表 3 未风化高钾玻璃描述统计

化学成分	总数	最小值	最大值	均值	标准偏差
二氧化硅 (SiO ₂)	12	60.12839	87.05	69.23145	8.701645
氧化钠 (Na ₂ O)	12	0	3.414141	0.70519	1.305063
氧化钾 (K ₂ O)	12	0	14.7546	9.515034	4.001147
氧化钙 (CaO)	12	0	8.864887	5.440412	3.163654
氧化镁 (MgO)	12	0	2.001617	1.102537	0.692212
氧化铝 (Al ₂ O ₃)	12	3.136247	11.27173	6.738553	2.515071
氧化铁 (Fe ₂ O ₃)	12	0	6.110886	1.968776	1.690123
氧化铜 (CuO)	12	0	5.147654	2.500335	1.691155
氧化铅 (PbO)	12	0	1.636364	0.416285	0.595673
氧化钡 (BaO)	12	0	2.892395	0.605703	0.994125
五氧化二磷 (P2O ₅)	12	0	4.552813	1.426007	1.448627
氧化锶 (SrO)	12	0	0.121408	0.042378	0.049065
氧化锡 (SnO ₂)	12	0	2.426735	0.202228	0.700538
二氧化硫 (SO ₂)	12	0	0.486996	0.105109	0.191805

吧吧吧吧吧吧宝宝宝宝宝5

表 2 纹饰与表面风化 3×2 列联表

纹饰表面	未风化	风化	总和
A	11	11	22
В	0	6	6
C	13	17	30
总和	24	34	58

表 4 第一亚类

文物编号	表面风化	CaO	MgO	Al_2O3	Fe_2O_3	CuO	P_2O_5
32	无风化	0.466	0	2.392	1.014	0.111	0.172
35	无风化	0.395	0	1.497	0.177	0.166	0.437
37	无风化	0.890	0	2.721	0	3.011	1.460
55	无风化	1.172	0	1.504	0	0.892	0.363
45	无风化	0.854	0.753	5.084	0	0.539	0
47	无风化	0.895	0.627	3.146	0	0.668	0.103

表 5 交叉表

		期望计数	10.6	7.4	18.0
	占类型百分比		33.3%	66.7%	100.0%
		计数	28	12	40
	铅钡	期望计数	23.4	16.6	40.0
		占类型百分比	70.0%	30.0%	100.0%
		计数	34	24	58
总计		期望值	34.0	24.0	58.0
	占	类型百分比	58.6%	41.4%	100.0%

五、问题二模型的建立与求解

$$E = mc^2 (1)$$

根据公式(1),我们可以得出结论:能量和质量之间存在着等价关系。

六、问题三模型的建立与求解

七、模型的评价

八、模型的推广

哈哈哈哈哈哈哈哈哈 1 $_{
m nnnn}$ $^{
m hhhhhh}^2$

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

附录A 模板所用的宏包

表 6 宏包罗列

模板中已经加载的宏包					
amsbsy amsfonts amsgen amsmath amsopn					
amssymb	amstext	appendix	array	atbegshi	

以上宏包都已经加载过了,不要重复加载它们。

附录 B 排队算法-matlab 源程序

kk=2;[mdd,ndd]=size(dd);

附录 C 规划解决程序-lingo 源代码

- 1 kk=2;
- 2 [mdd,ndd]=size(dd);