BACKGROUND

Dubrovnik Skein Theory and Power Sum Elements

Alexander Pokorny University of California, Riverside

INTRODUCTION

Introduction

BACKGROUND

POWER SUM ELEMENTS

The Algebra $\mathcal{D}(T^2)$

Type B/C/D Schur Functions

(FRAMED) LINK INVARIANTS

INTRODUCTION

INTRODUCTION

$$= + (s - s^{-1}) \left(\bigcirc - \bigcirc \right)$$
 (1)

DUBROVNIK SKEIN RELATIONS

SKEIN MODULES

Observation: Skein relations are defined locally.

SKEIN MODULES

INTRODUCTION

Observation: Skein relations are defined locally.

Consequence: May impose skein relations on tangles in arbitrary 3-dimensional manifolds.

INTRODUCTION

Observation: Skein relations are defined locally.

Consequence: May impose skein relations on tangles in arbitrary 3-dimensional manifolds.

Definition

Let *M* be an oriented 3-manifold and $R := \mathbb{Q}(s, v)$.

$$\mathcal{D}(M, N) := R\{\text{Tangles in } M \text{ relative to } N\}/\sim$$

FUNCTORIALITY

- A "nice" embedding $f:(M,N)\to (M',N')$
- + A wiring diagram in image complement
- = A linear transformation $D(f) : \mathcal{D}(M, N) \to \mathcal{D}(M', N')$

FUNCTORIALITY

BACKGROUND 000000

- A "nice" embedding $f:(M,N)\to (M',N')$
- + A wiring diagram in image complement
- = A linear transformation $D(f): \mathcal{D}(M,N) \to \mathcal{D}(M',N')$

<u>Consequence</u>: Dubrovnik skein theory is a type of algebraic topology for smooth, oriented, 3-manifolds.

SPECIAL CASE: SKEIN ALGEBRAS

If

$$ightharpoonup M = \Sigma \times I$$

►
$$N = (X \times \{0\}) \sqcup (X \times \{1\})$$

Then $\mathcal{D}(M, N)$ is naturally an algebra.

SPECIAL CASE: SKEIN ALGEBRAS

If

$$ightharpoonup M = \Sigma \times I$$

$$N = (X \times \{0\}) \sqcup (X \times \{1\})$$

Then $\mathcal{D}(M, N)$ is naturally an algebra.

e.g.: $\Sigma = \text{Square}, N = 2n \text{ points } \rightsquigarrow \mathcal{D}(\Sigma, N) \cong BMW_n$

INTRODUCTION

IDEMPOTENTS IN BIRMAN-MURAKAMI-WENZL ALGEBRAS

Theorem (Ram-Wenzl 1992, Beliakova-Blanchet 2001)

For each partition $\lambda \vdash n$, there is a minimal idempotent $\tilde{y}_{\lambda} \in BMW_n$.

TYPE B/C/D SCHUR FUNCTIONS

INTRODUCTION

IDEMPOTENTS IN BIRMAN-MURAKAMI-WENZI. ALGEBRAS

Theorem (Ram-Wenzl 1992, Beliakova-Blanchet 2001)

For each partition $\lambda \vdash n$, there is a minimal idempotent $\tilde{y}_{\lambda} \in BMW_n$.

IDEMPOTENTS IN BIRMAN-MURAKAMI-WENZI. **ALGEBRAS**

Theorem (Ram-Wenzl 1992, Beliakova-Blanchet 2001)

For each partition $\lambda \vdash n$, there is a minimal idempotent $\tilde{y}_{\lambda} \in BMW_n$.

Theorem (Lu-Zhong 2002)

The elements $\widetilde{Q}_{\lambda} := \operatorname{cl}(\widetilde{y}_{\lambda})$ form a basis of $\mathcal{D}(A)$.

DUBROVNIK POWER SUM ELEMENTS

Define a family of elements $\widetilde{P}_k \in \mathcal{D}(A)$ for $k \in \mathbb{Z}_{\geq 1}$ via

$$\sum_{k\geq 1} \frac{\widetilde{P}_k}{k} t^k = \ln\left(1 + \sum_{n\geq 1} \widetilde{Q}_{(n)} t^n\right)$$

<u>Idea:</u>

 $Q_{(n)}$ are "like" complete homogeneous symmetric functions.

 $\leadsto \widetilde{P}_k$ are "like" power sum symmetric functions.

(Will make more precise later)

Let $A := \mathcal{D}(A, 1)$.

INTRODUCTION

COMMUTATION RELATIONS

Theorem (Morton-P.-Samuelson)

INTRODUCTION

$$e \cdot \widetilde{P}_k - \widetilde{P}_k \cdot e = (s^k - s^{-k})(a^k - a^{-k})$$

TYPE B/C/D SCHUR FUNCTIONS

COMMUTATION RELATIONS

Theorem (Morton-P.-Samuelson)

$$e \cdot \widetilde{P}_k - \widetilde{P}_k \cdot e = (s^k - s^{-k})(a^k - a^{-k})$$

Theorem (P.)

$$e \cdot \widetilde{Q}_{(n)} - \widetilde{Q}_{(n)} \cdot e = \sum_{i=1}^{n} d_i (e \cdot \widetilde{Q}_{(n-i)})$$

where

$$d_i = \sum_{i=1}^{i-1} (s^2 - 1)s^{2l-i}a^{i-2l} + (s^{-2} - 1)s^{i-2l}a^{2l-i}$$

IDEA OF PROOF

INTRODUCTION

1) By power series manipulations, the statement is equivalent to

$$\begin{split} e\cdot \big(\widetilde{Q}_{(n+2)} + \widetilde{Q}_{(n)}\big) - \big(\widetilde{Q}_{(n+2)} + \widetilde{Q}_{(n)}\big) \cdot e \\ &= \\ (sa + s^{-1}a^{-1})\big(e\cdot \widetilde{Q}_{(n+1)}\big) - (s^{-1}a + sa^{-1})\big(\widetilde{Q}_{(n+1)} \cdot e\big) \end{split}$$

2) [Shelly, 2016] The $\widetilde{y}_{(n)}$ satisfy a skein-theoretic recurrence relation.

APPLICATION: CENTRAL ELEMENTS OF BMW_n

The Jucys-Murphy elements $M_{n,i}$ generate a commutative subalgebra of BMW_n .

 $2 \le i \le n$

APPLICATION: CENTRAL ELEMENTS OF BMW_n

The Jucys-Murphy elements $M_{n,i}$ generate a commutative subalgebra of BMW_n .

 $2 \le i \le n$

Proposition (P.)

BACKGROUND

INTRODUCTION

BACKGROUND

APPLICATION: MERIDIANS OF \widetilde{y}_{λ}

Proposition (P.)

$$= \left(\langle \widetilde{P}_k \rangle + (s^k - s^{-k}) \sum_{\square \in \lambda} \left(v^{-k} s^{2 \operatorname{cn}(\square)} - v^k s^{-2 \operatorname{cn}(\square)} \right) \right) \widetilde{y}_{\lambda}$$

Proposition (P.)

INTRODUCTION

$$= \left(\langle \widetilde{P}_k \rangle + (s^k - s^{-k}) \sum_{\square \in \lambda} \left(v^{-k} s^{2 \operatorname{cn}(\square)} - v^k s^{-2 \operatorname{cn}(\square)} \right) \right) \widetilde{y}_{\lambda}$$

<u>Observation:</u> For any fixed k, the eigenvalues of \tilde{y}_{λ} are distinct.

APPLICATION: MERIDIANS OF \widetilde{y}_{λ}

Proposition (P.)

INTRODUCTION

$$= \left(\langle \widetilde{P}_k \rangle + (s^k - s^{-k}) \sum_{\square \in \lambda} \left(v^{-k} s^{2 \operatorname{cn}(\square)} - v^k s^{-2 \operatorname{cn}(\square)} \right) \right) \widetilde{y}_{\lambda}$$

<u>Observation:</u> For any fixed k, the eigenvalues of \tilde{y}_{λ} are distinct. Consequence: The basis $\{Q_{\lambda}\}\$ of $\mathcal{D}(A)$ is an eigenbasis with 1-dimensional eigenspaces. Setting k = 1 recovers the result from [Lu-Zhong, 2002].

Compatibility With Kauffman Bracket Skein Theory $\mathcal K$

The Kauffman bracket skein relation → Jones polynomial

Compatibility With Kauffman Bracket Skein Theory $\mathcal K$

The Kauffman bracket skein relation → Jones polynomial

<u>Fact:</u> The Dubrovnik skein relation satisfies the Kauffman bracket skein relation.

COMPATIBILITY WITH KAUFFMAN BRACKET SKEIN THEORY K

THE ALGEBRA $\mathcal{D}(T^2)$

The Kauffman bracket skein relation → Jones polynomial

Fact: The Dubrovnik skein relation satisfies the Kauffman bracket skein relation.

Consequence: There is a natural transformation of skein theories $\eta: \mathcal{D} \Rightarrow \mathcal{K}$.

BACKGROUND

The Kauffman bracket skein relation → Jones polynomial

Fact: The Dubrovnik skein relation satisfies the Kauffman bracket skein relation.

Consequence: There is a natural transformation of skein theories $\eta: \mathcal{D} \Rightarrow \mathcal{K}$.

Theorem (Morton-P.-Samuelson)

The image of $P_k \in \mathcal{D}(A)$ under η_A is the Chebyshev polynomial $T_k \in \mathcal{K}(A)$.

INTRODUCTION

Theorem (Frohman-Gelca 2000)

The algebra $K(T^2)$ is presented by generators T_x for $\mathbf{x} \in \mathbb{Z}^2/\langle \mathbf{x} = -\mathbf{x} \rangle$ subject to the relations

$$T_{\mathbf{x}}T_{\mathbf{y}} = s^{\det(\mathbf{x},\mathbf{y})}T_{\mathbf{x}+\mathbf{y}} + s^{-\det(\mathbf{x},\mathbf{y})}T_{\mathbf{x}-\mathbf{y}}$$

SKEIN ALGEBRAS OF T^2

Theorem (Frohman-Gelca 2000)

The algebra $K(T^2)$ is presented by generators T_x for $\mathbf{x} \in \mathbb{Z}^2/\langle \mathbf{x} = -\mathbf{x} \rangle$ subject to the relations

$$T_{\mathbf{x}}T_{\mathbf{y}} = s^{\det(\mathbf{x},\mathbf{y})}T_{\mathbf{x}+\mathbf{y}} + s^{-\det(\mathbf{x},\mathbf{y})}T_{\mathbf{x}-\mathbf{y}}$$

Theorem (Morton-Samuelson 2017)

The algebra $\mathcal{H}(T^2)$ is presented by generators P_x for $\mathbf{x} \in \mathbb{Z}^2$ subject to the relations

$$[P_{\mathbf{x}}, P_{\mathbf{y}}] = (s^{\det(\mathbf{x}, \mathbf{y})} - s^{-\det(\mathbf{x}, \mathbf{y})})P_{\mathbf{x} + \mathbf{y}}$$

A Presentation of $\mathcal{D}(T^2)$

Let $\mathbf{x} = (a, b), k = \gcd(\mathbf{x}).$

Define $\widetilde{P}_{\mathbf{x}} \in \mathcal{D}(T^2)$ be the embedding of \widetilde{P}_k along the closed curve of slope a/b.

Theorem (Morton-P.-Samuelson)

The algebra $\mathcal{D}(T^2)$ is presented by generators $\widetilde{P}_{\mathbf{x}}$ for $\mathbf{x} \in \mathbb{Z}^2/\langle \mathbf{x} = -\mathbf{x} \rangle$ subject to the relations

$$[\widetilde{P}_{\mathbf{x}},\widetilde{P}_{\mathbf{y}}] = (s^{\det(\mathbf{x},\mathbf{y})} - s^{-\det(\mathbf{x},\mathbf{y})})(\widetilde{P}_{\mathbf{x}+\mathbf{y}} - \widetilde{P}_{\mathbf{x}-\mathbf{y}})$$

A Presentation of $\mathcal{D}(T^2)$

Proof:

INTRODUCTION

$$1. \ \ [\widetilde{P}_{\mathbf{x}},\widetilde{P}_{\mathbf{y}}] = (s^{\det(\mathbf{x},\mathbf{y})} - s^{-\det(\mathbf{x},\mathbf{y})}) (\widetilde{P}_{\mathbf{x}+\mathbf{y}} - \widetilde{P}_{\mathbf{x}-\mathbf{y}}).$$

1.1
$$[\widetilde{P}_{1,0}, \widetilde{P}_{0,n}] = (s^n - s^{-n})(\widetilde{P}_{1,n} - \widetilde{P}_{1,-n})$$

1.2
$$[\widetilde{P}_{1,0}, \widetilde{P}_{1,n}] = (s^n - s^{-n})(\widetilde{P}_{2,n} - \widetilde{P}_{0,n})$$

- 1.3 Use $SL_2(\mathbb{Z})$ -action on $\mathcal{D}(T^2)$. Induct on $|\det(\mathbf{x}, \mathbf{y})|$.
- 2. The P_x generate $\mathcal{D}(T^2)$.
 - 2.1 Each link in $\mathcal{D}(T^2)$ is a sum of products of annular knots.
 - 2.2 The P_k generate $\mathcal{D}(A)$.
- 3. The $P_{\mathbf{x}}$ are linearly independent.
 - 3.1 Diamond lemma type argument.

Corollary (Morton-P.-Samuelson)

There is a surjective algebra homomorphism $\mathcal{D}(T^2) \to \mathcal{K}(T^2)$ defined by

$$\widetilde{P}_{\mathbf{x}} \mapsto T_{\mathbf{x}}$$
.

<u>Proof:</u> Use the natural transformation $\eta : \mathcal{D} \Rightarrow \mathcal{K}$. Recall

$$\eta_A(\widetilde{P}_k) = T_k.$$

Note: $\mathcal{D}(T^2)$ is much bigger than $\mathcal{K}(T^2)$.

RELATIONSHIP WITH $\mathcal{H}(T^2)$

Corollary (P.)

The algebras $\mathcal{D}(T^2)$ and $\mathcal{H}(T^2)$ are universal enveloping algebras of some Lie algebras $\mathfrak{g}_{\mathcal{D}}$ and $\mathfrak{g}_{\mathcal{H}}$ generated by the $\widetilde{P}_{\mathbf{x}}$ and $T_{\mathbf{x}}$, respectively. There is an injective Lie algebra homomorphism $\mathfrak{g}_{\mathcal{D}} \to \mathfrak{g}_{\mathcal{H}}$ defined by

$$\widetilde{P}_{\mathbf{x}} \mapsto P_{\mathbf{x}} + P_{-\mathbf{x}}.$$

<u>Proof:</u> $[\widetilde{P}_{\mathbf{x}}, \widetilde{P}_{\mathbf{v}}] - (s^{\det(\mathbf{x}, \mathbf{y})} - s^{-\det(\mathbf{x}, \mathbf{y})})(\widetilde{P}_{\mathbf{x} + \mathbf{v}} - \widetilde{P}_{\mathbf{x} - \mathbf{v}})$ is sent to 0. Note: This restricts to an algebra homomorphism

$$\mathcal{D}(A) \to \mathcal{H}(A)$$
.

Note: $\mathcal{D}(A)$ and $\mathcal{H}(A)$ are related to characters of classical Lie groups.

Lemma (P.)

INTRODUCTION

 $\mathcal{D}(T^2)$ is generated by the identity and the elements

$$\widetilde{P}_{1,0},\widetilde{P}_{0,1},\widetilde{P}_{1,1},\widetilde{P}_{2,0}$$

<u>Proof:</u> Can generate a "line" of \widetilde{P}_x by

$$\widetilde{P}_{\mathbf{y}+n\mathbf{z}} = (s^d - s^{-d})^{-1} \Big([\widetilde{P}_{\mathbf{y}+(n-1)\mathbf{z}}, \widetilde{P}_{\mathbf{z}}] + \{d\} \widetilde{P}_{\mathbf{y}+(n-2)\mathbf{z}} \Big)$$

as long as $d := \det(\mathbf{y} + n\mathbf{z}, \mathbf{z}) = \det(\mathbf{y}, \mathbf{z}) \neq 0$.

A $\mathcal{D}(T^2)$ -ACTION ON $\mathcal{D}(D^2 \times S^1)$

Proposition (P.)

INTRODUCTION

The $\mathcal{D}(T^2)$ -action on $\mathcal{D}(D^2 \times S^1)$ is determined by the equations

$$\begin{split} \widetilde{P}_{1,0} \cdot \widetilde{Q}_{\lambda} &= \bigg(\langle \widetilde{P}_{1} \rangle + \{1\} \bigg(v^{-1} \sum_{\square \in \lambda} s^{2 \operatorname{cn}(\square)} - v \sum_{\square \in \lambda} s^{-2 \operatorname{cn}(\square)} \bigg) \bigg) \widetilde{Q}_{\lambda} \\ \widetilde{P}_{2,0} \cdot \widetilde{Q}_{\lambda} &= \bigg(\langle \widetilde{P}_{2} \rangle + \{2\} \bigg(v^{-2} \sum_{\square \in \lambda} s^{4 \operatorname{cn}(\square)} - v^{2} \sum_{\square \in \lambda} s^{-4 \operatorname{cn}(\square)} \bigg) \bigg) \widetilde{Q}_{\lambda} \\ \widetilde{P}_{0,1} \cdot \widetilde{Q}_{\lambda} &= \sum_{\substack{\lambda \subset \mu \\ \mu = \lambda + \square}} \widetilde{Q}_{\mu} + \sum_{\substack{\nu \subset \lambda \\ \lambda = \nu + \square}} \widetilde{Q}_{\nu} \\ \widetilde{P}_{1,1} \cdot \widetilde{Q}_{\lambda} &= v^{-1} \sum_{\substack{\lambda \subset \mu \\ \mu = \lambda + \square}} s^{2 \operatorname{cn}(\square)} \widetilde{Q}_{\mu} + v \sum_{\substack{\nu \subset \lambda \\ \lambda = \nu + \square}} s^{-2 \operatorname{cn}(\square)} \widetilde{Q}_{\nu} \end{split}$$

Symmetric Functions and $\mathcal{H}(A)^+$

 Λ - The ring of symmetric functions

 s_{λ} - Schur function

 $\mathcal{H}(A)^+$ - Annular HOMFLYPT links oriented counter-clockwise

Theorem (Lukac 2005)

There is a basis of elements Q_{λ} *in* $\mathcal{H}(A)^+$ *indexed by partitions* λ . The assignment $\Lambda \to \mathcal{H}(A)^+$ defined by

$$s_{\lambda} \mapsto Q_{\lambda}$$

is an algebra isomorphism.

<u>Hope:</u> Generalize this to Dubrovnik case.

ORTHOGONAL & SYMPLECTIC SCHUR FUNCTIONS

Partition $\lambda \longrightarrow Symmetric functions <math>sb_{\lambda}, sc_{\lambda}$

ORTHOGONAL & SYMPLECTIC SCHUR FUNCTIONS

Partition $\lambda \longrightarrow Symmetric functions <math>sb_{\lambda}, sc_{\lambda}$

Theorem (Koike-Terada 1987, Koike 1989)

The sets $\{sb_{\lambda}\}$ *and* $\{sc_{\lambda}\}$ *are bases of* Λ .

The structure constants of Λ with resepct to each basis are identical natural numbers.

ORTHOGONAL & SYMPLECTIC SCHUR FUNCTIONS

Partition $\lambda \longrightarrow Symmetric functions <math>sb_{\lambda}, sc_{\lambda}$

Theorem (Koike-Terada 1987, Koike 1989)

The sets $\{sb_{\lambda}\}$ *and* $\{sc_{\lambda}\}$ *are bases of* Λ .

The structure constants of Λ with resepct to each basis are identical natural numbers.

Conjecture

Both of the assignments $\Lambda \to \mathcal{D}(A)$ defined by

$$sb_{(n)} \mapsto \widetilde{Q}_{(n)}$$

$$sc_{(n)} \mapsto \widetilde{Q}_{(n)}$$

are algebra isomorphisms.

PARTIAL PROOF OF CONJECTURE

BACKGROUND

Idea: Let S_{λ} be the image of sc_{λ} . Show $S_{\lambda} = O_{\lambda}$.

- 1. Show S_{λ} is in the same eigenspace of \widetilde{Q}_{λ} with respect to the meridian map Γ .
 - 1.1 Use a Jacobi-Trudi type identity to write S_{λ} as a determinant whose entries are in terms of $S_{(n)} = Q_{(n)}$.
 - 1.2 Factor Γ though the algebra \mathcal{A} so that

- 1.3 ??? $\operatorname{cl}_{\mathcal{A}}(e \cdot x) = \delta x$. Try to translate left-action to right-action. (Works if $|\lambda| \leq 2$)
- 1.4 Compute eigenvalue.
- 2. Eigenspaces are 1-dimensional $\Rightarrow S_{\lambda} = dQ_{\lambda}$. Show d = 1with branching rules: $S_{\square}^{n} = \sum c_{u}S_{u}$ and $Q_{\square}^{n} = \sum c_{u}Q_{u}$

Frame 1