Correction S1B1 LE

Exercice 1 : équation du second degré

1. Résoudre dans \mathbb{C} l'équation $2z^2 + 2\sqrt{3}z + 2 = 0$. On notera z_1 et z_2 les deux solutions trouvées.

On a
$$\Delta=-4$$
. Ainsi, $z_1=\frac{-2\sqrt{3}+2i}{4}=-\frac{\sqrt{3}}{2}+\frac{1}{2}i$ et $z_2=\overline{z_1}=-\frac{\sqrt{3}}{2}-\frac{1}{2}i$

2. Donner la forme exponentielle de z_1 et de z_2 .

$$|z_1| = |z_2| = 1$$
. $z_1 = e^{\frac{5\pi}{6}i}$ et $z_1 = e^{\frac{7\pi}{6}i}$.

Exercice 2: logique

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$.

- 1. Traduire les phrases suivantes en syntaxe mathématique (avec les quantificateurs)
 - (a) « La fonction f s'annule au moins une fois »

$$\exists x \in \mathbb{R}, \ f(x) = 0$$

(b) « La fonction f est constante »

$$\exists a \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = a$$

(c) « La fonction f est majorée »

$$\exists M \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) \leq M$$

2. On considère les assertions :

$$P: \langle \forall x \in \mathbb{R}, f(x) = 0 \rangle, Q: \langle \exists x \in \mathbb{R}, f(x) = 0 \rangle \text{ et } R: \langle (\forall x \in \mathbb{R}, f(x) > 0) \rangle \langle (\forall x \in \mathbb{R}, f(x) < 0) \rangle$$

(a) Donner la négation de P, de Q et de R.

$$\neg(P) = \ll \exists x \in \mathbb{R}, f(x) \neq 0 \gg$$

$$\neg(Q) = \forall x \in \mathbb{R}, f(x) \neq 0$$

$$\neg(R) = \langle (\exists x \in \mathbb{R}, f(x) \le 0) \land (\exists x \in \mathbb{R}, f(x) \ge 0) \rangle$$

(b) Cocher dans le tableau suivant les implications vraies :

$P \Longrightarrow Q$	$Q \Longrightarrow P$	$Q \Longrightarrow R$	$\neg(Q) \Longrightarrow \neg(P)$	$\neg(P) \Longrightarrow \neg(R)$
X			X	

Exercice 3: ensembles et fonctions

1. Soient E et F deux ensembles, $f: E \longrightarrow F$, $A \subset E$ et $B \subset F$. Rappeler la définition mathématique des ensembles f(A) et $f^{-1}(B)$.

$$f(A) = \{f(x); x \in A\} \text{ et } f^{-1}(B) = \{x \in E; f(x) \in B\}$$

2. Dessiner (graphe, patate) une fonction $f: \{a, b, c, d\} \longrightarrow \llbracket 1, 5 \rrbracket$ qui vérifie à la fois $f(\{a, b\}) = \{1, 2\}, f^{-1}(\{5\}) = \emptyset$ et $f^{-1}(\{2\}) = \{b, c\}.$

Par exemple,
$$f(a) = 1$$
, $f(b) = 2$, $f(c) = 2$ et $f(d) = 4$

- 3. Soit $g: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & |x-1| \end{array} \right.$
 - (a) Dessiner le graphe de g.

A faire tout seul.

(b) Donner $g(\{-1,2\}), g([-1,3]), g^{-1}(\{1\}) \text{ et } g^{-1}([0,1]).$

$$g(\{-1,2\}) = \{2,1\}, g([-1,3]) = [0,2], g^{-1}(\{1\}) = \{0,2\} \text{ et } g^{-1}([0,1]) = [0,2].$$

- (c) g est-elle injective? Justifier. Si non, proposer deux intervalles I_1 et J_1 pour lesquels $g:I_1\longrightarrow J_1$ soit injective.
 - g(0)=g(2)=1 et $1\neq 2$ donc g n'est pas injective. Pour la rendre injective, on peut prendre $I_1=[1,+\infty[$ et $J_1=\mathbb{R}.$
- (d) g est-elle surjective? Justifier. Si non, proposer deux intervalles I_2 et J_2 pour lesquels $g:I_2\longrightarrow J_2$ soit surjective.
 - -2 n'a pas d'antécédent donc g n'est pas surjective. Pour la rendre surjective, on peut prendre $I_2 = \mathbb{R}$ et $J_2 = \mathbb{R}^+$.

Exercice 4: relations

Dans $E = \mathbb{N}^*$, on définit la relation \mathcal{R} par : $\forall (a,b) \in E^2$, $a \mathcal{R} b \iff \exists n \in \mathbb{N}$ tel que $b = a^n$.

- 1. Dire si R est réflexive. Justifier.
 - Soit $a \in E$. On a $a = a^1$, d'où aRa. R est réflexive.
- 2. Dire si \mathcal{R} est symétrique. Justifier.
 - $8=2^3$ d'où $2\mathcal{R}8$. En revanche, on ne peut pas écrire 2 comme une puissance de 8. Donc \mathcal{R} n'est pas symétrique.
- 3. Dire si \mathcal{R} est transitive. Justifier.
 - Soit $(a, b, c) \in E^3$ tel que $a\mathcal{R}b$ et $b\mathcal{R}c$. Il existe ainsi $(n, p) \in \mathbb{N}^2$ tel que $b = a^n$ et $c = b^p$. Ainsi, $c = a^{np}$ ce qui donne $a\mathcal{R}c$. La relation est transitive.
- 4. Soit $(a,b) \in E^2$ tels que aRb et bRa.
 - (a) Montrer qu'il existe $(n,p) \in \mathbb{N}^2$ tel que $b = b^{np}$.

Comme $a\mathcal{R}b$ et $b\mathcal{R}a$, il existe $(n,p) \in \mathbb{N}^2$ tel que $b=a^n$ et $a=b^p$. Ainsi, $b=b^{np}$.

(b) En déduire que b = 1 ou que n = p = 1. Qu'avez-vous finalement démontré?

 $b=b^{np} \implies b=1$ ou np=1. Dans le cas où np=1, comme ce sont deux entiers naturels, on a forcément n=p=1.

Si b=1 alors a=1. Si $b\neq 1$, $b=a^n=a^1=a$. Dans tous les cas, on obtient a=b. La relation est antisymétrique.