FEDERAL STATE AUTONOMOUS EDUCATIONAL INSTITUTION FOR HIGHER EDUCATION NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS Faculty of Computer Science

BIG HOMEWORK REPORT On the course ORDERED SETS IN DATA ANALYSIS

Lazy FCA

Student:

Tarasova Polina

Group: DS231

Supervisor:

D.Sc., Prof.

Kuznetsov Sergey Olegovich

Introduction

In this paper will be introduced implementation of a Lazy FCA classification algorithm base on pattern structures. Proposed algorithm was compared with baseline Lazy FCA algorithm and popular models: Random Forest, Decision Tree, Logistic Regression, KNN and Naive Bayes. For comparison I used three datasets:

Heart Attack Analysis & Prediction Dataset

 $\underline{https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset}$

Loan Defaults

https://www.kaggle.com/datasets/joebeachcapital/loan-default

Hotel Booking

https://www.kaggle.com/datasets/mojtaba142/hotel-booking

You can find all code in my GitHub repository: https://github.com/hellz-bellz/bhw-lazyfca

Preprocessing and feature selection

All datasets were binarized: all numerical features were discretized, many valued categorical features were removed, then one-hot encoding technic was used.

Training and metrics

The metrics for evaluation: accuracy, F1-macro and F1-binary. For training 10-fold Cross-Validation method was used.

Also, the Cross-Validation function was created for training LazyFCA models.

Standard models

	Heart Attack			Loan Defaults			Hotel Booking		
	ACC	F1-M	F1-B	ACC	F1-M	F1-B	ACC	F1-M	F1-B
DT	0.830	0.826	0.834	0.999	0.998	0.998	0.810	0.588	0.887
RF	0.954	0.934	0.899	0.992	0.990	0.986	0.850	0.541	0.915
LR	0.790	0.788	0.788	0.994	0.992	0.989	0.870	0.596	0.926
KNN	0.840	0.838	0.841	0.939	0.922	0.885	0.880	0.583	0.933
NB	0.825	0.824	0.826	0.999	0.998	0.998	0.850	0.598	0.914

Lazy FCA

	Heart Attack			Loan Defaults			Hotel Booking		
	ACC	F1-M	F1-B	ACC	F1-M	F1-B	ACC	F1-M	F1-B
BBC	0.525	0.423	0.522	0.995	0.994	0.991	0.780	0.595	0.861
PBC	0.740	0.716	0.752	0.739	0.483	0.601	0.750	0.613	0.823

Conclusion

The datasets that I've chose all have different shape and target distribution. That and as well as the feature selection caused a great difference in results and training time.

The proposed algorithms has comparable results with popular classification models, but they has some problems with training time and overfitting, so there are a huge field for research and testing different approaches, especially in feature selection and preprocessing field.