Chapter 5

Sequential Circuits

- Combinational vs Sequential
- Its all about feedback
- What is feedback?
 - The output of a circuit acts as an input to the circuit

Feedback

Copyright ©2013 Pearson Education, publishing as Prentice Hall

- Combinational
 - No feedback
 - Output depends solely on the inputs
- Sequential
 - Feedback
 - Current state depends on previous state
- State
 - Output at a given time
 - State is tied to a specific point in time

Sequential Circuits

- Feedback allows for the creation of a storage element.
 - Memory
 - Store, retain, and retrieve information

- Thus a sequential circuit is specified by a time sequence of inputs, outputs, and internal states.
- Two main types of sequential circuits
 - Synchronous
 - Asynchronous

Synchronous

 Behavior of the circuit is defined by the knowledge of its signals at a discrete points in time

Asynchronous

 Behavior depends on the inputs at ANY instant in time AND the order in which the inputs change

Asynchronous

- Can be thought of as a combinational circuit with feedback
- Can be become unstable due to feedback among gates

Synchronous

- Uses a clock generator or clock
- Determines when computational activity will occur within the circuit.

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Storage Elements

- Latches vs Flip-flops
 - Latch A change in signal level changes output
 - Flip-flop Controlled by the transition from high to low or low to high NOT the level.

Latches

- Useful for storing binary information and for the design of asynchronous circuits
- Not practical for use as storage elements in sequential circuits

SR Latch

SR – Set/Reset

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Q = 1 & Q'=0 Latch is set

Note: 00 results in no change on the output.

(b) Function table

Q = 0 & Q'=1 Latch is reset

Can also build with NAND Gates

(b) Function table

Copyright ©2013 Pearson Education, publishing as Prentice Hall

SR-Latch with Enable

Copyright ©2013 Pearson Education, publishing as Prentice Hall

En	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0 1	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

D-Latch

 Eliminates the indeterminate condition of the SR-Latch

 $egin{array}{ccc} 0 & \mathbf{X} & \text{No change} \\ 1 & 0 & Q = 0; \text{ reset state} \\ 1 & 1 & Q = 1; \text{ set state} \\ \end{array}$

Next state of Q

Copyright ©2013 Pearson Education, publishing as Prentice Hall

(b) Function table

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Flip-flops

- A binary storage device capable of storing 1 bit of binary information.
- Used in clocked sequential circuits
- State is changed by a change in the control input
 - Clock transition
 - A trigger

Edge-Triggered D Flip-flop

D-type Positive Edge Triggered F/F

D-Flip-flop

D Flip-Flop

D	Q(t + 1)
0	
1	

JK Flip-Flop

JK I	<i>JK</i> Flip-Flop		
J	K	Q(t+1)	
0	0		
0	1		
1	0		
1	1		

Toggle Flip-Flop

T Flip-Flop

T	Q(t + 1)	
0		
1		

Make a T from a JK

JK I	<i>JK</i> Flip-Flop				
J	K	Q(t+1)			
0	0	Q(t)			
0	1	0			
1	0	1			
1	1	Q'(t)			

т ғир-ғюр		
T	Q(t + 1)	
0	Q(t)	
1	Q'(t)	

From a D Flip-flop

D Flip-Flop

D	Q(t +	1)
0	0	
1	1	

T Flip-Flop

T	Q(t + 1)	
0	Q(t)	
1	Q'(t)	

