Information Security CS 3002

Dr. Haroon Mahmood
Assistant Professor
NUCES Lahore

Digital Certificates

Signed certificate: Recipient can verify signature using CA's public key.

Digital Signatures

- Combines a hash with a digital signature algorithm
- To sign
 - hash the data
 - encrypt the hash with the sender's private key
 - send data signer's name and signature

To verify

- hash the data
- find the sender's public key
- decrypt the signature with the sender's public key
- the result of which should match the hash

Elements of PKI

- x.509 Identity Certificates Certificate management
- Certificate Authorities (CA)
 - OpenSSL, Netscape, Verisign, Entrust, RSA Keon
- Registration Authority (RA)
- Public/Private Key Pairs Key management
- Certificate Revocation Lists (CRL)

Digital Certificate

- Electronic file/data structure that contains the following information:
 - who issued the certificate: Comodo, Symantec etc
 - who the certificate is issued to
 - Public key of the owner
 - Validity period
 - Digital signature
- Issued by CA
- Helps in authentication
- Associate public key with an individual/company
- X.509 Standard

X.509 Identity Certificates

- Distinguished Name of user
 - C=US, O=Lawrence Berkely National Laboratory, OU=DSD,
 CN=Mary R. Thompson
- DN of Issuer
 - C=US, O=Lawrence Berkely National Laboratory, CN=LBNL-CA
- Validity dates:
 - Not before <date>, Not after <date>
- User's public key
- V3- extensions
- Signed by CA
- Defined in ANS1 notation language independent

Certificate Authority

- A trusted third party must be a secure server
- Signs and publishes X.509 Identity certificates
- Revokes certificates and publishes a Certification Revocation List (CRL)

- Many vendors
 - OpenSSL open source, very simple
 - Netscape free for limited number of certificates
 - Entrust Can be run by enterprise or by Entrust
 - Verisign Run by Verisign under contract to enterprise
 - RSA Security Keon servers

Registration Authority

- An RA is responsible for accepting requests for digital certificates and authenticating the entity making the request.
- You provide RA with information and money
- Verifies the information before the CA issues the certificate
- Does not sign the certificate
- Key pair maybe created by RA or you

Certificate Issuance process

Certificate Revocation List (CRL)

- List of revoked/cancelled certificates
- List published by CA frequently
- Reasons for revocation:
 - Certificate expiration
 - Certificate revocation (permanent)
 - Compromised private key
 - HR reasons
 - Company changed names, physical address, DNS
 - Any reason prior to expiration
 - Certificate suspended
 - "Certificate hold" as reason for revocation. E.g: resource on leave
- Owner can request the revocation of certificate

Certificate Revocation Lists

- Certificate revocation lists
 - Too much work on the client
 - Too much traffic on internet
 - Not used
- On-line Revocation Server (OLRS)
 - On-line certificate status protocol (OCSP)
 - Provides current information
 - Saves traffic on the internet
 - Allows chaining of OCSP responders

Certificate Revocation Timeline

OCSP

- Online certificate status protocol
- IETF-PKIX standard to verify online if a certificate is valid:
 - Good/Verified
 - revoked
 - Revocation Time
 - revocation reason
 - unknown
- response signed by the server (not by the CA!)
- the OCSP server certificate cannot be verified with OCSP itself!

Message Authentication

- protects against active attacks
- verifies received message is authentic
 - contents unaltered
 - from authentic source
 - timely and in correct sequence
- can use conventional encryption
 - only sender & receiver have key needed
- Using public key cryptography
- or separate authentication mechanisms
 - append authentication tag to clear-text message

Message Authentication

Types of message authentication

Hash algorithms

- Also called message digests or one-way transformations
- Given a message m, the hash h is equal to h = Hash(m)
- "h" is the output, "Hash" is the reference to hash function, "m" is the message

Review of hash function

- Input(m) to hash functions can be variable size.
 - Any number of bits, Usually large
- Output of hashes(h) will be fixed.
 - Usually small number of bits
- Strong hash function
 - h is the combination of 1's and 0's distributed variably with a proportion of 50% each.
 - A single bit change in input must change the output by at least 50%
- Collisions in hash functions
 - Two messages having the same h is a collision

Hash functions

- two attack approaches
 - cryptanalysis
 - exploit logical weakness in algorithm
 - brute-force attack
 - trial many inputs
 - strength proportional to size of hash code $(2^{n/2})$
- SHA most widely used hash algorithm
 - SHA-1 gives 160-bit hash
 - more recent SHA-256, SHA-384, SHA-512 provide improved size and security

Digital Envelopes

(a) Creation of a digital envelope

(b) Opening a digital envelope