PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-093382

(43) Date of publication of application: 10.04.1998

(51)Int.CI.

H03H 9/25

нозн 9/72

(21)Application number: 08-245178

(71)Applicant: OKI ELECTRIC IND CO LTD

(22)Date of filing:

17.09.1996

(72)Inventor: NOGUCHI KAZUSHIGE

(54) STRUCTURE OF SURFACE ACOUSTIC WAVE FILTER CIRCUIT PATTERN

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain characteristics which are close to an LPF type filter by holding parallel arms of a ladder type circuit, comprising a surface acoustic wave resonator, at the same potential on a chip and connecting them to a package earth by wire bonding.

SOLUTION: When a signal is sent to a surface acoustic wave(SAW) filter, a signal line is separated from the input pad of the chip through bonding (inductance LIN by it) from the input part of a package, and one transmits the surface wave to a SAW resonator RP1 and held at the same potential in the chip with other parallel arms through its earth pad. The other sends the surface wave to a SAW resonator RSI. The former transmits the surface wave to a SAW resonator RP2 to have the same potential at the earth pad and the other sends the surface wave to a SAW resonator RS1. Then the former transmits the surface wave to a SAW resonator RP2 to have the same potential at the earth pad and the other

sends the signal to the output terminal of the package by wire bonding. Thus, signals which are outside the passing band are cut off.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-93382

(43)公開日 平成10年(1998) 4月10日

(51) Int.Cl.6

識別記号

FΙ

H03H 9/25

9/72

H03H 9/25

9/72

Α

審査請求 未請求 請求項の数4 〇L (全 7 頁)

(21)出願番号

(22)出願日

特願平8-245178

平成8年(1996)9月17日

(71)出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72) 発明者 野口 和繁

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74)代理人 弁理士 清水 守 (外1名)

(54) 【発明の名称】 表面弾性波フィルタ回路パターンの構造

(57)【要約】

【課題】LPF形フィルタ構成に近い特性を有する表 面弾性波フィルタ回路パターンの構造を提供する。 【解決手段】SAW共振器で構成する梯子形回路の並 列部をチップ上で同電位にし、そこからワイヤーボンデ ィングを介してパッケージのアースに接続する。したが って、通過帯域低域側近傍の減衰量を抑えたチップパタ ーンを有する表面弾性波ー送受切換え用送信フィルタを 得ることができる。

Rsi, Rsz: 直列族としてのSAW共振器 RP1, RP2, RP3: 並列腕をしてのSAW共振器 した: インダクタンス

【特許請求の範囲】

【請求項1】 表面弾性波フィルタ回路パターンの構造 において、

チップパターン上に並列腕の表面弾性波共振器のアース 側を順次接続した共通アース部を形成し、該共通アース 部をワイヤーボンディングでパッケージアースに接続す るようにしたことを特徴とする表面弾性波フィルタ回路 パターンの構造。

【請求項2】請求項1記載の表面弾性波フィルタ回路パターンの構造において、2段の直列腕の表面弾性波共振器と3段の並列腕の表面弾性波共振器を有する分波器用送信フィルタを構成することを特徴とする表面弾性波フィルタ回路パターンの構造。

【請求項3】表面弾性波フィルタ回路パターンの構造 において、

チップパターン上に並列腕の表面弾性波共振器のアース 側を一括接続した共通アース部を形成し、該共通アース 部をワイヤーボンディングでパッケージアースに接続す るようにしたことを特徴とする表面弾性波フィルタ回路 パターンの構造。

【請求項4】請求項3記載の表面弾性波フィルタ回路パターンの構造において、3段の直列腕の表面弾性波共振器と2段の並列腕の表面弾性波共振器を有する分波器用送信フィルタを構成することを特徴とする表面弾性波フィルタ回路パターンの構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、通信用機器、特に 携帯電話のRF部における段間のSAW(表面弾性波) フィルタもしくは空中線共用器用フィルタ(SAW-D uplexer:分波器)に関するものである。

[0002]

【従来の技術】一般に、従来の段間フィルタもしくはS AW-Duplexerは、通過帯域の両側に減衰極を 持つ周波数特性を有している。

[0003]

【発明が解決しようとする課題】しかしながら、上記した従来のSAWフィルタ、特にSAW-Duplexerは、通過帯域の低域側の帯域外減衰量規格が緩和されていても、通過帯域の低域、高域側に十分な減衰極を要するようなフィルタ周波数特性のため、LPF形フィルタ構成に近い特性(通過帯域低域側減衰量:小、通過帯域高域側減衰量:大)を得ることが困難であった。【0004】本発明は、上記問題点を除去し、LPF形フィルタ構成に近い特性を有する表面弾性波フィルタ回路パターンの構造を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明は、上記目的を達成するために、

(1)表面弾性波フィルタ回路パターンの構造におい

て、チップパターン上に並列腕の表面弾性波共振器のアース側を順次接続した共通アース部を形成し、この共通アース部をワイヤーボンディングでパッケージアースに接続するようにしたものである。

【0006】(2)上記(1)記載の表面弾性波フィルタ回路パターンの構造において、2段の直列腕の表面弾性波共振器と3段の並列腕の表面弾性波共振器を有する分波器用送信フィルタを構成するようにしたものである。上記のように構成したので、帯域内挿入損失を低減した表面弾性波ー分波器用送信フィルタを得ることができる

【0007】(3)表面弾性波フィルタ回路パターンの 構造において、チップパターン上に並列腕の表面弾性波 共振器のアース側を一括接続した共通アース部を形成 し、この共通アース部をワイヤーボンディングでパッケ ージアースに接続するようにしたものである。

(4)上記(3)記載の表面弾性波フィルタ回路パターンの構造において、3段の直列腕の表面弾性波共振器と 2段の並列腕の表面弾性波共振器を有する分波器用送信フィルタを構成するようにしたものである。

【0008】上記のように構成したので、通過帯域高域側(受信側遮断周波数帯域)の減衰量が大になるように改善した表面弾性波ー分波器用送信フィルタを得ることができる。

[0009]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明の第1 実施例を示すSAWフィルタの回路図(π形)、図2は そのSAW共振器のパターン図である。図2において、 1は水晶やLiTaO3 などの圧電基板、2は第1の櫛 歯状電極、3は第2の櫛歯状電極、4は櫛歯状電極2, 3の両側に配置される反射器である。なお、ここでは反 射器4は閉じられた構造のものを示しているが、開かれ た構造の反射器を用いてもよい。

【0010】図1において、直列腕としてのSAW共振器 R_{S1} , R_{S2} (図2参照)、並列腕としてのSAW共振器 R_{P1} , R_{P2} , R_{P3} (図2参照)が配置されている。また、 L_{IN} , L_{E} , L_{OUT} は、ワイヤーボンディングによるインダクタンスである。また、図3は本発明と比較するために図示された一般的な段間フィルタの回路図(π 形)である。

【0011】一般的に段間で使用されるSAWフィルタは、通過帯域以外は全て余計なノイズ等の信号を遮断するといったフィルタ構造であり、通過帯域の低域側、高域側近傍に減衰極を必要とするため、図3に示すように、SAW共振器で構成する梯子形回路のアースに接続される並列腕が個々に分離され、ワイヤーボンディングにより、バッケージ内のアースに接続されている。【0012】これに対し、本発明の第1実施例では、S・AW-Duplexer用の送信フィルタの規格の利点

を生かし、図4に示すように、通過帯域低域側近傍の減衰量を抑えたチップパターンの構成になっている。つまり、先に図3を用いて述べた一般的な段間フィルタ回路からなる図5に示すようなチップパターンとは違い、SAW共振器で構成する梯子形回路の並列部をチップ上で同電位にし、そこからワイヤーボンディングを介してパッケージのアースに接続するようにしている。【0013】なお、図5において、41はチップの入力パッド、42はチップの出力パッド、43はR₅₂のアー

パッド、42はチップの出力パッド、43は R_{52} のアース用パッド、44は R_{51} のアース用パッド、45は R_{P3} のアース用パッド、46は R_{P2} のアース用パッド、47 は R_{P1} のアース用パッドである。ここで、本発明のSA Wフィルタの動作について説明する。

【0014】まず、SAWフィルタに信号が送られてくると、パッケージの入力部からボンディング(これによるインダクタンス $L_{\rm IN}$)(図1参照)を介して、図4に示すように、チップの入力パッド31から接続線を介して、信号が分離して、一方はSAW共振器 $R_{\rm Pl}$ に表面波が伝わり、 $R_{\rm Pl}$ のアース用パッド37で他の並列腕とチップ内で同電位となる。もう一方は、SAW共振器 $R_{\rm Sl}$ に表面波を伝える。

【0015】また、同様に、一方は、SAW共振器 R_{P2} に表面波が伝わり、アース用パッド36で同電位となり、もう一方は、SAW共振器 R_{S2} へ表面波を伝えていく。その後、一方はSAW共振器 R_{P3} に表面波が伝わり、アース用パッド35で同電位となり、もう一方は、チップの出力パッド32を経て、ワイヤーボンディングにより、パッケージの出力端に信号が送られる。その間に通過帯域以外の信号は遮断される。なお、33はSAW共振器 R_{S2} のアース用パッド、34はSAW共振器 R_{S1} のアース用パッドである。

【0016】基本的に、直列腕のSAW共振器の単体周波数特性は、図6に示すような伝送特性図であり、並列腕のSAW共振器の単体周波数特性は、図7に示すような伝送特性図である。そして、図4に示す本発明の第1 実施例のチップパターンによるSAWフィルタの周波数伝送特性は、図8に示すようになり、図5に示す一般的なチップパターンによる段間のSAWフィルの周波数伝送特性は、図9に示すようになる。

【0017】図8において、▽マーク1は、824MH zにおいて-2.9913dB、△マーク2は、849 MHzにおいて-2.9875dBを示しているのに対して、図9において、▽マーク1は、824MHzにおいて-3.1086dB、△マーク2は、849MHzにおいて-3.1956dBを示している。このことからも明らかなように、本発明の第1実施例においては、帯域内挿入損失を低減させていることが分かる。【0018】また、図8において、△マーク3は、869MHzにおいて-38.055dB、△マーク4は、894MHzにおいて-38.035dBを示している

のに対して、図9において、△マーク3は、869MH zにおいて-40.548dB、△マーク4は、894 MHzにおいて-37.338dBを示している。つまり、本発明の第1実施例においては、高域側減衰量の確保と、なおかつ、帯域内挿入損失の改善の効果が得られた伝送特性となる。

【0019】以上のように、第1実施例によれば、SA W共振器で構成する梯子形回路の並列腕をチップ上で同 電位にして、そこからワイヤーボンディングを介して、 パッケージアースに接続することにより、通常通過帯域 両側(低域、高域)近傍減衰極のバランスがとれた一般 的な段間フィルタの周波数特性が、本発明の高域側減衰 量を確保し、なおかつ、帯域内挿入損失の改善の効果が 得られた周波数特性となる。

【0020】次に、本発明の第2実施例について説明する。上記した第1実施例はSAWフィルタの4段構成(図1:SAW共振子5個参照)を基にした構成であったが、第2実施例では、通過帯域高域側の減衰量を更に重視した構成となっている。第1実施例の動作で述べたように、直列腕の多いフィルタ構成程、高域側減衰量が確保し易いので、4段構成でも直列腕の多いT形回路構成が有利である。

【0021】図10は本発明の第2実施例を示すSAWフィルタの回路図(T形)、図11は一般的な段間のSAWフィルタの回路図(T形)、図12は本発明の第2実施例を示すSAWフィルタのチップパターンの構成図(T形)、図13は一般的な段間のSAWフィルタのチップパターンの構成図(T形)、図14は本発明の第2実施例を示すSAWフィルタのチップパターンの周波数伝送特性図、図15は一般的な段間のSAWフィルタのチップパターンの周波数伝送特性図、図15は一般的な段間のSAWフィルタのチップパターンの周波数伝送特性図である。

【0022】図13において、81はチップの入力パッド、82はチップの出力パッド、83は R_{S3} のアース用パッド、84は R_{S2} のアース用パッド、85は R_{S1} のアース用パッド、86は R_{P2} のアース用パッド、87は R_{S2} のアース用パッド、88は R_{P1} のアース用パッドである。この第2実施例では、SAW共振器の直列腕と並列腕の個々の段数が違うだけで、動作については、第1実施例と同様である。

【0023】すなわち、SAWフィルタに信号が送られてくると、パッケージの入力部からワイヤーボンディング($L_{\rm IN}$)(図11参照)を介して、図12に示すように、チップの入力パッド71から接続線を介して信号が分離して、一方はSAW共振器 $R_{\rm SI}$ に表面波が伝わる。更に、接続線を介して信号が分離して、一方はSAW共振器 $R_{\rm PI}$ に表面波が伝わり、アース用パッド76で他の並列腕とチップ内で同電位となる。もう一方は、SAW共振器 $R_{\rm SI}$ に表面波が伝わる。

【0024】更に、同様に、接続線を介して信号が分離して、一方はSAW共振器R_{P2}に表面波が伝わり、アー

ス用パッド76で他の並列腕とチップ内で同電位となる。もう一方は、SAW共振器R₅₃ に表面波が伝わり、チップの出力パッド72を経て、ワイヤーボンディングにより、パッケージの出力端に信号が送られる。その間に通過帯域以外の信号は遮断される。

【0025】このように、第2実施例では、並列腕のアース用パッド76だけの共通パッドによる構成としている。なお、73はSAW共振器R₅₃のアース用パッド、75はSAW共振器R₅₁のアース用パッド、75はSAW共振器R₅₁のアース用パッドである。図14において、▽マーク1は、818MHzにおいてー3.0609dB、△マーク2は、843MHzにおいてー2.9886dBを示しているのに対して、図15において、▽マーク1は、818MHzにおいてー3.0701dB、△マーク2は、843MHzにおいてー3.2366dBを示している。

【0026】また、図14において、▽マーク3は、8 63MHzにおいてー43. 794dB、△マーク4 は、888MHzにおいてー38. 099dBを示して いるのに対して、図15において、▽マーク3は、86 3MHzにおいてー45. 661dB、△マーク4は、 888MHzにおいてー34. 996dBを示してい

【0027】以上のように、図6及び図7の各々単体周 波数特性から、第1実施例では直列腕2段、並列腕3段 の構成であるのに対し、第2実施例では、直列腕3段、 並列腕2段の構成であるので、帯域内挿入損失の改善 は、第1実施例程見込めないにしても、通過帯域高域の 減衰量は改善されるといった効果が得られる。なお、本 発明は上記実施例に限定されるものではなく、本発明の 趣旨に基づいて種々の変形が可能であり、これらを本発 明の範囲から排除するものではない。

[0028]

【発明の効果】以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
(A) SAW共振器で構成する梯子形回路の並列腕をチップ上で同電位にして、そこからワイヤーボンディングによりパッケージアースに接続することにより、LPF形フィルタ構成に近い特性を有する表面弾性波フィルタ回路バターンを提供することができる。
【0029】(B) 通過帯域高域の減衰量を更に改善す

【0029】(B) 通適常域局域の減衰量を更に以書することができる。

【図面の簡単な説明】

【図1】本発明の第1実施例を示すSAWフィルタの回

路図(π形)である。

【図2】本発明の第1実施例を示すSAW共振器のパターン図である。

【図3】一般的な段間のSAWフィルタの回路図 $(\pi$ 形)である。

【図4】本発明の第1実施例を示すSAWフィルタのチップパターンの構成図(π形)である。

【図5】一般的な段間のSAWフィルタチップパターンの構成図(π形)である。

【図6】本発明の第1実施例を示す直列腕のSAW共振 器の単体特性図である。

【図7】本発明の第1実施例を示す並列腕のSAW共振 器の単体特性図である。

【図8】本発明の第1実施例を示すSAWフィルタのチップパターンの周波数伝送特性図である。

【図9】一般的な段間のSAWフィルタのチップパターンの周波数伝送特性図である。

【図10】本発明の第2実施例を示すSAWフィルタの 回路図(T形)である。

【図11】一般的な段間のSAWフィルタの回路図(T形)である。

【図12】本発明の第2実施例を示すSAWフィルタの チップパターンの構成図(T形)である。

【図13】一般的な段間のSAWフィルタのチップパターンの構成図(T形)である。

【図14】本発明の第2実施例を示すSAWフィルタの チップパターンの周波数伝送特性図である。

【図15】一般的な段間のSAWフィルタのチップパターンの周波数伝送特性図である。

【符号の説明】

- 1 圧電基板
- 2 第1の櫛歯状電極
- 3 第2の櫛歯状電極
- 4 反射器

R_{S1}, R_{S2} 直列腕としてのSAW共振器

Rp, , Rpg , Rpg 並列腕としてのSAW共振器

- 31,71 チップの入力パッド
- 32,72 チップの出力パッド
- 33, 74 SAW共振器R_{S2} のアース用パッド
- 34, 75 SAW共振器R_{SI} のアース用パッド
- 35, 36, 37, 76 アース用パッド
- 73 SAW共振器R_{S3} のアース用パッド

【図15】

