Esercizi dell'11 aprile

Esercizio 3.5

Consideriamo la superficie chiusa ottenuta incollando lati opposti di un 4g-gono regolare con orientazioni parallele. Più precisamente, detti x_1, \ldots, x_{4g} i vertici del poligono regolare, incolliamo il segmento $x_i x_{i+1}$ con il segmento $x_{2g+i+1} x_{2g+i}$. La superficie Σ così ottenuta ha una struttura di CW-complesso con una 0-cella, 2g 1-celle e una 2-cella.

- \blacksquare Σ è orientabile. Questo si vede immediatamente triangolando il poligono regolare e osservando che le identificazioni fra lati invertono l'orientazione.
- Una base per $H_1(\Sigma, \mathbb{Z})$ è data dai segmenti $x_i x_{i+1}$ per $1 \leq i < 2g$. Questo si vede facilmente calcolando l'omologia cellulare: infatti i segmenti $x_i x_{i+1}$ sono esattamente le 1-celle, e hanno tutte bordo nullo. Al contempo, anche l'unica 2-cella ha bordo nullo, dunque $H_1(\Sigma, \mathbb{Z}) \simeq \mathbb{Z}^{2g}$ con base data dalle 1-celle.

In particolare, Σ è una superficie chiusa orientabile di genere g.

Per ogni $1 \leq i < 2g$, sia $\alpha_i \in H_1(\Sigma, \mathbb{Z})$ la classe rappresentata in omologia dal segmento $x_i x_{i+1}$. Consideriamo l'automorfismo $f \colon \Sigma \to \Sigma$ indotto dalla rotazione di angolo π intorno al centro del poligono regolare. Osserviamo che il segmento $x_i x_{i+1}$ viene mandato da f nel segmento $x_2 x_{2g+i+1}$, dunque $f_*(\alpha_i) = -\alpha_i$. Poiché gli α_i formano una base di $H_1(\Sigma, \mathbb{Z})$, abbiamo che $f_* = -\operatorname{id}_{H_1(\Sigma, \mathbb{Z})}$. Ovviamente f ha ordine 2 e preserva l'orientazione, dunque $[f] \in \operatorname{MCG}(\Sigma)$ è l'involuzione iperellittica cercata.

Esercizio 3.6

Siano $[f] \in \text{MCG}(S_g)$, $[m] \in \text{Teich}(S_g)$ tali che $[f_*m] = [m]$. Ciò significa che esiste un diffeomorfismo h di S_g isotopo all'identità e tale che $f_*m = h_*m$. Ma allora $(h^{-1} \circ f)_*m = m$; poiché $h^{-1} \circ f$ e f sono isotopi, essi rappresentano la stessa classe in $\text{MCG}(S_g)$, dunque possiamo supporre (a meno di cambiare rappresentante) che $f_*m = m$. Ciò significa precisamente che f è un'isometria per la superficie S_g con la metrica m.

I punti singolari dello spazio dei moduli sono precisamente le (classi di) metriche che sono fissate da elementi non banali di $\mathrm{MCG}(S_g)$. Come abbiamo visto, se elemento $\varphi \in \mathrm{MCG}(S_g)$ fissa una classe $[m] \in \mathrm{Teich}(S_g)$, allora esiste un rappresentante f di φ (che non sarà isotopo all'identità se φ è non banale) che è un'isometria per S_g munita della metrica m.